Dueling Network Architectures for Deep Reinforcement Learning (ICML 2016)

Yoonho Lee

Department of Computer Science and Engineering Pohang University of Science and Technology

October 11, 2016

Reinforcement Learning

Definition of RL

Mathematical formulations

Algorithms

Neural Fitted Q Iteration Deep Q Network

Double Deep Q Network

Prioritized Experience Replay

Dueling Network

Reinforcement Learning

Definition of RL

Mathematical formulations

Algorithms

Neural Fitted Q Iteration

Deep Q Network

Double Deep Q Network

Prioritized Experience Replay

Dueling Network

Definition of RL

general setting of RL

Definition of RL

atari setting

Reinforcement Learning

Definition of RL

Mathematical formulations

Algorithms

Neural Fitted Q Iteration

Deep Q Network

Double Deep Q Network

Prioritized Experience Replay

Dueling Network

Mathematical formulations objective of RL

Definition

Return G_t is the cumulative discounted reward from time t

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

objective of RL

Definition

Return G_t is the cumulative discounted reward from time t

$$G_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots$$

Definition

A policy π is a function that selects actions given states

$$\pi(s) = a$$

▶ The goal of RL is to find π that maximizes G_0

Mathematical formulations Q-Value

$$G_t = \sum_{i=0}^{\infty} \gamma^k r_{t+i+1}$$

Definition

The action-value (Q-value) function $Q_{\pi}(s, a)$ is the expectation of G_t under taking action a, and then following policy π afterwards

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a, A_{t+i} = \pi(S_{t+i}) \forall i \in \mathbb{N}]$$

▶ "How good is action a in state s?"

Optimal Q-value

Definition

The optimal Q-value function $Q_*(s,a)$ is the maximum Q-value over all policies

$$Q_*(s,a) = \max_{\pi} Q_{\pi}(s,a)$$

Optimal Q-value

Definition

The optimal Q-value function $Q_*(s,a)$ is the maximum Q-value over all policies

$$Q_*(s,a) = \max_{\pi} Q_{\pi}(s,a)$$

Theorem

There exists a policy π_* such that $Q_{\pi_*}(s,a) = Q_*(s,a)$ for all s,a

► Thus, it suffices to find Q_{*}

Q-Learning

Bellman Optimality Equation

 $Q_*(s, a)$ satisfies the following equation:

$$Q_*(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_*(s', a')$$

Q-Learning

Bellman Optimality Equation

 $Q_*(s, a)$ satisfies the following equation:

$$Q_*(s, a) = R(s, a) + \gamma \sum_{s'} P(s'|s, a) \max_{a'} Q_*(s', a')$$

Q-Learning

Let a be ϵ -greedy w.r.t. Q, and a' be optimal w.r.t. Q. Q converges to Q_* if we iteratively apply the following update:

$$Q(s, a) \leftarrow \alpha(R(s, a) + \gamma Q(s', a')) + (1 - \alpha)Q(s, a)$$

Other approcahes to RL

Value-Based RL

- ▶ Estimate $Q_*(s, a)$
- ► Deep Q Network

Policy-Based RL

- ▶ Search directly for optimal policy π_*
- DDPG, TRPO...

Model-Based RL

- ▶ Use the (learned or given) transition model of environment
- ► Tree Search, DYNA ...

Reinforcement Learning

Definition of RL

Mathematical formulations

Algorithms

Neural Fitted Q Iteration

Deep Q Network
Double Deep Q Network
Prioritized Experience Replay
Dueling Network


```
NFQ_main() { input: a set of transition samples D; output: Q-value function Q_N k=0 init_MLP() \rightarrow Q_0; Do { generate_pattern_set P = \{(input^l, target^l), l = 1, \dots, \#D\} where: input^l = s^l, u^l, target^l = c(s^l, u^l, s^n) + \gamma \min_b Q_k(s^n, b) Rprop_training(P) \rightarrow Q_{k+1} k:= k+1 } While (k < N)
```

Fig. 1. Main loop of NFQ

Supervised learning on (s,a,r,s')

input

```
NFQ_main() { [input: a set of transition samples D; output: Q-value function Q_N k=0 init_MLP() \rightarrow Q_0; Do { generate_pattern_set P = \{(input^l, target^l), l = 1, \dots, \#D\} where: input^l = s^l, u^l, target^l = c(s^l, u^l, s^n) + \gamma \min_b Q_k(s^n, b) Rprop_training(P) \rightarrow Q_{k+1} k:= k+1 } While (k < N)
```

Fig. 1. Main loop of NFQ

target equation

```
NFQ_main() { input: a set of transition samples D; output: Q-value function Q_N k=0 init_MLP() \rightarrow Q_0; Do { generat_pattern_set P = \{(input^l, target^l), l = 1, \dots, \#D\} where: \begin{array}{c} input^l = s^l, u^l, \\ target^l = c(s^l, u^l, s^{\prime l}) + \gamma \min_b Q_k(s^{\prime l}, b) \\ \text{Rprop_training}(P) \rightarrow Q_{k+1} \\ \text{k:= k+1} \\ \} \text{ While } (k < N) \end{array}
```

Fig. 1. Main loop of NFQ

Shortcomings

- Exploration is independent of experience
- Exploitation does not occur at all
- Policy evaluation does not occur at all
- Even in exact(table lookup) case, not guaranteed to converge to Q*

Reinforcement Learning

Definition of RL

Mathematical formulations

Algorithms

Neural Fitted Q Iteration

Deep Q Network

Double Deep Q Network Prioritized Experience Replay Dueling Network

action policy

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function O with random weights \theta
Initialize target action-value function \hat{O} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1,T do
        With probability \varepsilon select a random action a_t
        otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
        Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
        Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
        Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from D
       \mathrm{Set}\,y_{j} = \left\{ \begin{array}{c} r_{j} & \text{if episode terminates at step } j+1 \\ r_{j} + \gamma \, \max_{a'} \hat{\mathcal{Q}} \Big(\phi_{j+1}, a'; \theta^{-}\Big) & \text{otherwise} \end{array} \right.
        Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the
        network parameters \theta
        Every C steps reset \hat{O} = O
   End For
End For
```

lacktriangle Choose an ϵ -greedy policy w.r.t. Q

network freezing

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function O with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1.T do
        With probability \varepsilon select a random action a_t
        otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
        Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
        Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
        Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from D
       \mathrm{Set}\,y_{j} = \left\{ \begin{array}{c} r_{j} & \text{if episode terminates at step } j+1 \\ r_{j} + \gamma \, \max_{a'} \boxed{ 2 \left(\phi_{j+1}, a'; \theta^{-}\right) } \end{array} \right. \quad \text{otherwise}
        Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 with respect to the
        network parameters \theta
        Every C steps reset \hat{O} = O
   End For
End For
```

► Get a copy of the network every *C* steps for stability


```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function O with random weights \theta
Initialize target action-value function \hat{O} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1.T do
        With probability \varepsilon select a random action a_t
       otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
       Execute action a_t in emulator and observe reward r_t and image x_{t+1}
       Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
       Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
       Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from D
       Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
       Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 with respect to the
       network parameters \theta
       Every C steps reset \hat{O} = O
   End For
End For
```


performance

overoptimism

```
Algorithm 1: deep Q-learning with experience replay.
Initialize replay memory D to capacity N
Initialize action-value function O with random weights \theta
Initialize target action-value function \hat{O} with weights \theta^- = \theta
For episode = 1, M do
   Initialize sequence s_1 = \{x_1\} and preprocessed sequence \phi_1 = \phi(s_1)
   For t = 1.T do
        With probability \varepsilon select a random action a_t
        otherwise select a_t = \operatorname{argmax}_a Q(\phi(s_t), a; \theta)
        Execute action a_t in emulator and observe reward r_t and image x_{t+1}
        Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
        Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in D
        Sample random minibatch of transitions (\phi_i, a_i, r_i, \phi_{i+1}) from D
       \mathrm{Set}\,y_{j} = \left\{ \begin{array}{c} r_{j} & \text{if episode terminates at step } j+1 \\ r_{j} + \gamma \, \max_{a'} \boxed{ 2 \left(\phi_{j+1}, a'; \theta^{-}\right) } \end{array} \right. \quad \text{otherwise}
        Perform a gradient descent step on (y_i - Q(\phi_i, a_i; \theta))^2 with respect to the
        network parameters \theta
        Every C steps reset \hat{O} = O
   End For
End For
```

▶ What happens when we overestimate *Q*?

Problems

- ▶ Overestimation of the Q function at any s spills over to actions that lead to $s \rightarrow$ Double DQN
- ightharpoonup Sampling transitions uniformly from D is inefficient ightharpoonup Prioritized Experience Replay

Reinforcement Learning

Definition of RL

Mathematical formulations

Algorithms

Neural Fitted Q Iteration

Deep Q Network

Double Deep Q Network

Prioritized Experience Replay

Dueling Network

We can write the DQN target as:

$$Y_t^{DQN} = R_{t+1} + \gamma Q(S_{t+1}, \underset{\textit{a}}{\textit{argmax}} Q(S_{t+1}, \textit{a}; \theta_t^-); \theta_t^-)$$

Double DQN's target is:

$$Y_t^{DDQN} = R_{t+1} + \gamma Q(S_{t+1}, \underset{a}{\operatorname{argmax}} Q(S_{t+1}, \underset{a}{a}; \theta_t); \theta_t^-)$$

This has the effect of decoupling action selection and action evaluation

Double Deep Q Network

performance

Much stabler with very little change in code

Reinforcement Learning

Definition of RL

Mathematical formulations

Algorithms

Neural Fitted Q Iteration

Deep Q Network

Double Deep Q Network

Prioritized Experience Replay

Dueling Network

Prioritized Experience Replay

Algorithm 1 Double DQN with proportional prioritization

```
1: Input: minibatch k, step-size \eta, replay period K and size N, exponents \alpha and \beta, budget T.
 2: Initialize replay memory \mathcal{H} = \emptyset, \Delta = 0, p_1 = 1
 3: Observe S_0 and choose A_0 \sim \pi_{\theta}(S_0)
 4: for t = 1 to T do
        Observe S_t, R_t, \gamma_t
        Store transition (S_{t-1}, A_{t-1}, R_t, \gamma_t, S_t) in \mathcal{H} with maximal priority p_t = \max_{i < t} p_i
        if t \equiv 0 \mod K then
 7:
           for i = 1 to k do
 8.
               Sample transition j \sim P(j) = p_i^{\alpha} / \sum_i p_i^{\alpha}
 9:
               Compute importance-sampling weight w_i = (N \cdot P(i))^{-\beta} / \max_i w_i
10:
               Compute TD-error \delta_j = \hat{R}_j + \gamma_j Q_{\text{target}}(S_j, \arg \max_a \hat{Q}(S_j, a)) - Q(S_{j-1}, A_{j-1})
11:
               Update transition priority p_i \leftarrow |\delta_i|
12:
               Accumulate weight-change \Delta \leftarrow \Delta + w_i \cdot \delta_i \cdot \nabla_{\theta} Q(S_{i-1}, A_{i-1})
13:
14.
           end for
15:
            Update weights \theta \leftarrow \theta + \eta \cdot \Delta, reset \Delta = 0
           From time to time copy weights into target network \theta_{\text{target}} \leftarrow \theta
16:
17:
        end if
        Choose action A_t \sim \pi_{\theta}(S_t)
19: end for
```

▶ Update 'more surprising' experiences more frequently

Reinforcement Learning

Definition of RL

Mathematical formulations

Algorithms

Neural Fitted Q Iteration
Deep Q Network
Double Deep Q Network
Prioritized Experience Replay

Dueling Network

ightharpoonup The scalar approximates V, and the vector approximates A

forward pass equation

The exact forward pass equation is:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, a; \theta, \alpha) - \max_{a'} A(s, a'; \theta, \alpha))$$

The following module was found to be more stable without losing much performance:

$$Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \beta) + (A(s, a; \theta, \alpha) - \frac{1}{|A|} \sum_{a'} A(s, a'; \theta, \alpha))$$

attention

 Advantage network only pays attention when current action crucial

performance

	30 no-ops		Human Starts	
	Mean	Median	Mean	Median
Prior. Duel Clip	591.9%	172.1%	567.0%	115.3%
Prior. Single	434.6%	123.7%	386.7%	112.9%
Duel Clip	373.1%	151.5%	343.8%	117.1%
Single Clip	341.2%	132.6%	302.8%	114.1%
Single	307.3%	117.8%	332.9%	110.9%
Nature DQN	227.9%	79.1%	219.6%	68.5%

Achieves state of the art in the Atari domain among DQN algorithms

Summary

- Since this is an improvement only in network architecture, methods that improve DQN(e.g. Double DQN) are all applicable here as well
- ▶ Solves problem of *V* and *A* typically being of different scale
- ▶ Updates *Q* values more frequently than a single-stream DQN, where only a single *Q* value is updated for each observation
- ► Implicitly splits the credit assignment problem into a recursive binary problem of "now or later"

Shortcomings

- ▶ Only works for $|A| < \infty$
- ▶ Still not able to solve tasks involving long-term planning
- ▶ Better than DQN, but sample complexity is still high
- ightharpoonup ϵ -greedy exploration is essentially random guessing

