(EFFICIENT) ZERO-KNOWLEDGE, (SPECIAL PURPOSE) GARBLED CIRCUITS, (THE SIMPLEST) OBLIVIOUS TRANSFER,

In this talk: 3 simple ideas from

- Jawurek, Kerschbaum, Orlandi
 - Zero-Knowledge from Garbled Circuits, CCS 2013
- Frederiksen, Nielsen, Orlandi
 - □ Privacy-Free Garbled Circuits, EUROCRYPT 2015
- Chuo, Orlandi
 - The Simplest OT Protocol, ePrint (next week?)

Zero-Knowledge from Garbled Circuits

Jawurek, Ferschbaum, Orlandi CCS 2013

Zero-Knowledge Protocols

- □ IP/ZK GMR85
 - Revolutionary idea in cryptography and CS
- Important in practice
 - Authentication
 - Essential component in complex protocols
- What about efficiency?

Zero-Knowledge Protocols

- Many examples of efficient ZK for algebraic languages
 - Discret Logarithm
 - RSA
 - Lattice
 - **-** ...
- What about non-algebraic statements?
 - How do I prove "I know x s.t. y=SHA(x)"?
- This work tries to fill this gap!

Related Work

- IKOS'07
 - ZK from (honest majority) MPC
 - □ First step towards the "MPC in the head" approach
- □ Efficient NIZK/SNARK (GOS06,GGPPR13,...)
 - Non-interactive ②
 - Require public key operation per gate 😊

Zero-Knowledge vs Secure 2PC

Correct if z=f(x)

2PC from GC (Yao's protocol)

2PC secure against active adversaries?

How can Bob prove that he garbled F without revealing any extra information?

- □ Plenty of (costly) solutions are known for 2PC
 - Zero-Knowledge
 - Cut-and-choose
 - Etc.
- □ Can we do better for ZK?

ZK based on GC

The main idea:

- □ In ZK the verifier (Bob) has no secrets!
- After the protocol, Bob can reveal all his randomness.
- Alice can simply check that Bob behaved honestly by redoing his entire computation.

CCS Implementations

- Code not open-source, but easily reproducible
 - FastGC garbled circuits implementation
 - Smart-Tillich optimized circuits: AES, MD5, SHA...
 - GCParser to combine the two above
 - SCAPI for implementing OT (using elliptic curves)

Privacy-Free Garbled Circuits

Frederiksen, Nielsen, Orlandi

EUROCRYPT 2015

Garbled Circuits

Correct if z=f(x)

Main idea

- In 2PC GC ensure that evaluator does not learn internal values
 - In Yao garbled circuits evaluation must be oblivious
- But in ZK the prover knows all the input bits!
 - He also knows all internal wires values

- □ Can we optimize?
 - Yes!

Garbling Schemes without Privacy

Conceptual contribution:

Natural separation between privacy and authenticity

Concrete efficiency:

Better constants in garbled circuit

Can we construct garbling schemes tailored to specific applications, which are more efficient than Yao's original construction?

Performances for m-ary gate

		Garbler H/gate	Eval H/gate	Communication bit/gate
GRR1	AND	m+1	1	k(m-1)
	XOR	-	-	k(m-1)
Free-XOR	AND	m+1	1	km
	XOR	-	-	-

• •	
Communication	
Communication	

(amortized # of ciphertexts per gate)

			\	,,	1	1 0	/		
Circuit	# of Gates		Private			Privacy-free			Saving
	AND	XOR	GRR2	free-XOR	fleXOR	GRR1	free-XOR	fleXOR	Javing
DES	18124	1340	2.0	2.79	1.89	1.0	1.86	0.96	49%
AES	6800	25124	2.0	0.64	0.72	1.0	0.43	0.51	33%
SHA-1	37300	24166	2.0	1.82	1.39	1.0	1.21	0.78	44%
SHA-256	90825	42029	2.0	2.05	1.56	1.0	1.37	0.87	44%

	Computation

(amortized # of energyptions per cate for carbler (avaluator)

(amortized # of encryptions per gate for garbler/evaluator)								
Circuit	# of Gates		Private			Privacy-free	Saving	
	AND	XOR	GRR2	free-XOR	fleXOR	GRR1/free-XOR/fleXOR	Daving	
DES	18124	1340	4.0/1.0	3.72/0.93	3.78/0.96	2.79/0.93	25%/0%	
AES	6800	25124	4.0/1.0	0.85/0.21	1.44/0.51	0.64/0.21	25%/0%	
SHA-1	37300	24166	4.0/1.0	2.43/0.61	2.78/0.78	1.82/0.61	25%/0%	
SHA-256	90825	42029	4.0/1.0	2.73/0.68	3.11/0.87	2.05/0.68	25%/0%	

Notation

 A (privacy-free) garbled gate is a gadget that given two inputs keys gives you the right output key (and nothing else)

- \square (Z_0, Z_1, gg) \leftarrow Gb(L_0, L_1, R_0, R_1)
- $\square Z_{g(a,b)} \leftarrow Ev(L_a,R_b,gg)$

Garbling w/o free-XOR (GRR1)

$$Gb_AND(L_0,L_1,R_0,R_1)$$

- Output keys:
 - $\square Z_1 = H(L_1,R_1)$
 - $\square Z_0 = H(L_0)$
- □ Send:
 - $\Box C = Z_0 \oplus H(R_0)$

- □ If(x = y = 1) output $Z_1 = H(L_x, R_y)$
- □ If(x = 0)
 output $Z_0 = H(L_x)$
- □ If(y = 0) output $Z_0 = C \oplus H(R_y)$

Garbling w/o free-XOR (GRR1)

$$Gb_XOR(L_0,L_1,R_0,R_1)$$

Output keys:

$$\square Z_0 = L_0 \oplus R_0$$

$$\square Z_1 = L_1 \oplus R_0$$

□ Send:

$$\square$$
 C=L₀ \bigoplus R₀ \bigoplus L₁ \bigoplus R₁

□ If(a = 0) output
$$Z_{(a \oplus b)} = L_a \oplus R_b$$

□ If(a = 1) output
$$Z_{(a \oplus b)} = C \oplus L_a \oplus R_b$$

Conclusions & Open Problems

Still a lot to be done with garbling schemes!

- Other specific purpose garbling schemes?
- □ Non-interactive ZK (w/o PKE/gate)?

The Simplest Oblivious Transfer Protocol

Chou, Orlandi coming soon on ePrint

Diffie Hellman Key Exchange

m

$$X = g^{x}$$

$$Y = g^y$$

$$K = H(Y^{x})$$

$$K = H(X^{\gamma})$$

There is another key $K' = H((X/Y)^{x})$ which Bob cannot
compute!

$$C = E(K,m)$$

$$m = D(K,C)$$

The Simplest OT protocol

$$m_0, m_1$$

$$X = g^{x}$$

0

$$b=0 : Y = g^y$$

$$b=1: Y = X/g^{y}$$

$$K_0 = H(Y^x)$$

 $K_1 = H((X/Y)^x)$

Y

$$K_b = H(X^y)$$

$$E((\alpha,\beta), m) =$$

$$(\alpha + m, (\alpha + m)\beta)$$

$$C_0 = E(K_0, m_0)$$

$$C_1 = E(K_1, m_1)$$

$$m_b = D(K_b, C_b)$$

The Simplest OT Protocol

- Complexity:
 - □ Communication: 1ge/OT + 2 ctxt/OT + 1ge
 - \square Computation: $3 \exp/OT + 3 H/OT + 2 \exp$
- Security:
 - UC vs. active adversary with programmable RO
- □ Performances: ~0.2ms/OT @ 64 OTs
 - Implementation based on Bernstein's Curve 25519