Modeling Text

Abdus Salam Azad

Vectorize text

Most of the models work with numbers

 So if we us a numeric vector for texts will be more convenient

A Simplified Example

Body

- Training Documents:
 Topic
 - D1:
 - Life
 - We have a purpose
 - D2:
 - Death
 - We will die
- Test Documents
 - D3:
 - 355
 - A real purpose
- Here each word is a feature
- We represent each document as a vector

Bag of word models

- Each element corresponds to one word of the dictionary
 - Dictionary: all the words in all the documents

Bag of word models

$$\begin{bmatrix} we \\ have \\ purpose \\ will \\ die \\ real \end{bmatrix} D1: \begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} D2: \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} D3: \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

- For each word for a document we can use
 - Is the word present or not ? [Word Occurrence Vector]
 - Count of the word [Count Vector]
 - Tf-idf weight

TF-IDF weights

- Let w be a word, d be a document, N(d,w) be the number of occurrences of w in d
- TF(d,w) = N(d,w) / W(d)
 - where W(d) is the total number of words in d
- IDF(d,w) = log(D/C(w))
 - where **D** is the total number of documents
 - C(w) is the total number of documents that contains the word w
- The TF-IDF weight for w in d is TF(d,w)*IDF(d,w)

STOP Words

- The words which appear in nearly every document
 - Am, is, are
 - Was, were
 - A, an, the
- Does not have effect of classification