#### Introducción a la estadística Bases indispensables y uso de

#### Olivier Devineau

olivier.devineau@fcdarwin.org.ec

Fundación Charles Darwin

Taller interno, 27-30 abril 2010

Introducción y conceptos importantes

1 / 16

#### Cosas importantes

Teoría estadística: 8:30–10:00, 10:30–12:00
Práctica con R: 13:30–15:00, 15:30–17:00

• Café: 10:00–10:30 y 15h00-15h30

• Por favor, apagan los celulares

¡Preguntas bienvenidas en cualquier momento!

#### Agradecimientos

Use material amablemente provisto por:

- Claude-Pierre Guillaume, EPHE, Montpellier, Francia
- Damien Caillaud, UT, Austin, Texas, USA
- Julien Dutheil, CNRS, Montpellier, Francia
- $\bullet$  Vladimir Grosbois, CIRAD, Montpellier, Francia

Correcciones, comentarios y sugerencias por

• Eliana Bontti, FCD

3 / 16

#### Agradecimientos

#### Y también:

- Crawley, M.J. 2005. *Statistics, an introduction using R.* John Wiley & Sons. (con el consentimiento del autor)
- Quinn, G.P., and Keough, M.J. 2002. *Experimental design* and data analysis for biologists. Cambridge University Press.

5 / 161

#### ¿Qué es la estadística?

Definición

- Principios y métodos para recoger, clasificar, resumir y analizar datos
- Aprender, hacer conclusiones y tomar decisiones

#### Licencia @ 🛈 🕏 💿

- Este documento está bajo la licencia Creative Commons: Reconocimiento - No comercial - Compartir bajo la misma licencia 3.0 Ecuador
- Para ver una copia de esta licencia, visite: http://creativecommons.org/licenses/by-nc-sa/3.0/ec/
- Código LATEX a petición

6 / 161

#### La verdadera estadística . . .

Evolución de salarios y empleados en una empresa

|           |      | Obreros | Ejecutivos | Promedio |
|-----------|------|---------|------------|----------|
| Salario   | 2004 | 200     | 2000       | 1100     |
|           | 2006 | 180     | 1800       | 990      |
| Empleados | 2004 | 1000    | 100        | 550      |
|           | 2006 | 600     | 500        | 550      |

Periódico Salarios bajaron en un 10%

Empresa Salario promedio por empleado aumentó de

\$363.6 a \$916.3

Periódico Hubo despidos en la empresa

Empresa Igual número de empleados y reclutamiento

#### La estadística...

#### Puede

- Proveer criterios objetivos para probar hipótesis
- Optimizar esfuerzos
- Evaluar razonamiento de manera crítica

#### NO puede

- Decir la verdad
- Compensar ausencia de controles o mala planificación
- Indicar importancia que no es probabilística

## Primer paso para entender datos: ¡describirlos!

- Distribución normal, poisson, binomial . . .
- Media, mediana
- Varianza, desviación estándar y error estándar
- $\Rightarrow$  Estadística descriptiva informa sobre forma, centro y amplitud de los datos

9 / 16

\_

#### Describir no es suficiente

- No es suficiente averiguar que hay variación
- ¿Variación científicamente interesante o variación natural?

#### Estadística inferencial permite:

- Distinguir entre señal y ruido
- Deducir información y llegar a conclusiones

#### Lo más difícil es empezar

- ¿Qué tipo de análisis?
- Depende de los datos y de la pregunta inicial
- ¿Cómo saber que hacer? ¡habiéndolo hecho miles de veces!

11 / 161

#### ¿Estadística paramétrica o no?

#### Paramétrica

- Intervalos regulares
- Hipótesis de distribución normal
- Media y error/desviación estándar

#### No paramétrica

- Cualquier tipo de escala
- No hipótesis de distribución (independencia)
- Mediana y desviación mediana

13 / 161

#### ¿Qué preguntarse para empezar?

- ¿Cuál es la variable dependiente?
- ¿De qué tipo es? ¿Medida continua, número, proporción, categoría?
- ¿Cuáles son las variables independientes?
- ¿Son continuas? ¿Categóricas? ¿Ambos?

14 / 161

#### ¿Qué análisis? Guía de decisión

1) Variables independientes

Todas continuas

Todas categóricas

• Ambas continuas y categóricas

Regresión

Anova

Ancova

¿Qué análisis? Guía de decisión

2) Variable dependiente

Continua

Regresión normal, Anova, Ancova

Proporción

Regresión logística

Número

Regresión log-lineal

• Binaria

Análisis logístico binario

• Tiempo hasta la muerte

Análisis de sobrevivencia

15 / 161

#### Por qué la estadística?

¡Porque Todo varia!

Mucha variabilidad temporal, espacial y entre individuos:

- Genética
- Factores ambientales
- Azar
- Errores de observación y medida

17 / 161

#### ¿Como medir la variabilidad?

• Rango: [5, 15]



18 / 161

#### ¿Como medir la variabilidad?



- Rango: [5, 15]
- Media y desviaciones de la media
- Residuales
- $\sum (y \bar{y}) = 0$
- $SS = \sum (y \bar{y})^2$
- Suma de los cuadrados (sum of squares)

#### Una mejor medida de la variabilidad

- $SS = \sum (y \bar{y})^2$ , n = 11
- ullet ¿Que pasa con SS si se agrega un punto?
- ullet SS aumenta por cada nuevo punto
- $MS = \frac{\sum (y \bar{y})^2}{n}$
- ullet Desviación cuadrática media (Mean square deviation MS)

19 / 161

#### Grados de libertad

 $\bullet$  Muestra de 5 números:  $\bar{y}=4$  ,  $\sum y=20$ 

| 2 7 | 4 | 0 | 7 |
|-----|---|---|---|
|-----|---|---|---|

- Total libertad en la selección de números 1-4  $\Rightarrow 4$  grados de libertad (degrees of freedom d.f.)
- df = n p
- ullet n= número de muestras, p= número de parámetros estimados por el modelo

#### Varianza (1)

Medida de la variabilidad

- $MS = \frac{\sum (y \bar{y})^2}{n}$
- $\bullet\,$  No se puede calcular MS antes de conocer  $\bar{y}$
- ¿De donde se obtiene  $\bar{y}$ ?
- ullet g es un parámetro estimado de los datos
- Se pierde un grado de libertad

22 / 16

#### Varianza (2)

Formalización y definición

• Medida cuantitativa de la variabilidad:

$$Varianza = \frac{Suma de cuadrados}{Grados de libertad} = \frac{SS}{df}$$

$$s^2 = \frac{\sum (y - \bar{y})^2}{n - 1}$$

#### Varianza y tamaño de muestra

Media: 10, Varianza: 4



#### Una medida de fiabilidad

¡Error estándar de la media!

- ¿Fiabilidad de estimaciones cuando  $s^2 \nearrow$  ?
- Fiabilidad  $\propto s^2$
- ¿Y qué tal del tamaño de la muestra?
- Fiabilidad  $\propto \frac{s^2}{n}$
- Qué son las unidades?
- $SE_{\bar{y}} = \sqrt{\frac{s^2}{n}}$

25 / 161

#### Diseño experimental

Conceptos claves

Replicación: aumenta fiabilidad Aleatorización: reduce sesgo

- Si replican y randomizan correctamente, ¡no hay problema!
- Diseño inadecuado 🛶 buenos resultados

Intervalos de confianza

- Muestreo repetido → rango de valores
- Intervalo de confianza  $\propto$  Fiabilidad
- Distribución t de Student
- Nivel de confianza  $\alpha$  y grados de libertad df
- Número de errores estándar que se espera
- $CI_{95\%} = \bar{y} \pm t_{\alpha,df} \sqrt{\frac{s^2}{n}}$

26 / 16

#### Replicación

- Permite aumentar la fiabilidad y cuantificar la variabilidad dentro de un tratamiento
- Medidas repetidas deben:
  - Ser independientes (individuos distintos)
  - No formar una serie temporal
  - No estar agrupadas juntas en un lugar
  - Tener escala espacial adecuada

27 / 161

#### Replicación (2)

• Idealmente: una réplica de cada tratamiento debe estar agrupada en un bloque y cada tratamiento debe estar repetido en varios bloques

29 / 161

#### Poder y réplicas

- ullet Poder: probabilidad de rechazar  $H_0$  cuando es falsa
- ¿Cuantas réplicas para detectar un efecto  $\delta$  con 80% probabilidad de no cometer un error?
- Experiencia y/o estudio piloto
  - $\Rightarrow$  Primera estimación del efecto  $\delta$  y de la varianza  $s^2$

•

$$n \approx \frac{8 * s}{\delta^2}$$

#### ¿Cuántas réplicas?

- Tantas como sea posible ©
- ¿Cómo saber? Estudios pilotos y experiencia
   ⇒ Indicación sobre varianza base y magnitud de la respuesta al tratamiento
- Método práctico (en general):  $\geq 30$

30 / 161

#### Seudoreplicación

Condición importante: independencia de los errores

- Medidas repetidas del mismo individuo  $\rightarrow$  seudoreplicación temporal
- ullet Varias medidas del mismo lugar ightarrow seudoreplicación spacial
- ¿Cuántos grados de libertad?

#### ¿Qué hacer con seudoreplicación?

- Promediar seudoreplicación y hacer análisis sobre medias
- Hacer análisis separados por cada período de tiempo
- Usar análisis de series de tiempo o modelos de efectos mixtos

3 / 161

35 / 161

#### Aleatorización

- ¿Cómo seleccionar un árbol al azar en una selva?
- ¿Hojas accesibles?
- ¿Cerca del laboratorio?
- ¿Parece sano?
- ¿Sin insectos?
- $\Rightarrow$  ¡Sesgo en la fotosíntesis!

34 / 161

#### Selección aleatoria de un árbol



#### Controles

• No controles, no conclusiones

#### ¿Cuánto tiempo?

- Idealmente: determinar duración por adelantado
- NO seguir experimento hasta que se obtenga un "buen" resultado

37 / 161

#### Modelaje estadístico

- Datos: lo que pasó
- Descripción → patrones → mecanismos
- Modelo para explicar y predecir
- Varios (muchos) modelos están ajustados a los datos
- → Modelo mínimo y adecuado

#### Inferencia fuerte

- Formular una hipótesis clara
- Diseñar un test aceptable
- Sin replicación, aleatorización y controles, no hay progreso

38 / 1

#### Modelaje estadístico

Mínimo: Suficientemente simple

Adecuado: ¿Por qué usar modelo que no describe los datos?

Mejor modelo: La menor proporción de varianza que no sea

explicada (desviación residual mínima)

39 / 161

#### La navaja de Occam

Principio de parsimonia

- Con varias explicaciones igualmente válidas
- Correcta: la más simple

En estadística significa que:

- Tan pocos parámetros como sea posible
- Modelos lineales > no lineales
- Pocas condiciones > muchas
- Pocas variables > muchas
- 1 explicación simple > varias explicaciones complicadas

41 / 161

#### La navaja de Einstein

Einstein: "Un modelo debe ser tan simple como posible. Pero no más simple"

42 / 16

#### Máximo de verosimilitud

(Maximum Likelihood: ML)

- Dado los datos
- Y dado un modelo
- ¿Qué valores de parámetros hacen a los datos observados más probables?
- ⇒ Estimadores sin sesgo que minimizan la varianza











#### Máximo de verosimilitud

Ejemplo: regresión y = a + bx



Noción de test estadístico

50 / 161

#### Distribución de probabilidad

• Representación de las probabilidades asociadas con los estados posibles de una variable aleatoria

Ejemplo: X= número de hijos en una familia de 2 niños

- 29, (13, 19), (19, 13), 23
- $p(X = 0 \ \text{o}) = 1/4$
- $p(X = 1 \ \sigma) = 1/4 + 1/4$   $\sum p(X) = 1$
- $p(X = 2 \, \text{c}) = 1/4$

## Distribución binomial Definición

- ullet Serie de n intentos independientes
- Cada intento → Éxito / Fracaso
- ullet Probabilidad de éxito: p
- Distribución discontinua
- $X \rightsquigarrow \mathcal{B}(n,p)$
- $P(r) = \binom{n}{r} p^r (1-p)^{n-r}$

51 / 161

#### Distribución Binomial (2)

- 39% de los habitantes tienen ojos azules
- $X \sim \mathcal{B}(3, 0.39)$



53 / 161

#### Distribución de Poisson

Definición

- Cuantas veces un evento raro occurre por unidad de tiempo/espacio
- Distribución discontinua
- $X \rightsquigarrow \mathcal{P}(\lambda)$
- $P(k) = \frac{\lambda^k e^{-\lambda}}{k!}$

#### Distribución binomial

¿Cuando se aplica?

- Porcentaje de mortalidad
- Tasa de infección
- Proporción: sexos, respuesta a un tratamiento, intenciones de voto . . .

Se necesita saber cuantos individuos hay en categoría *éxito* y cuantos hay en categoría *fracaso* 

54 / 161

#### Distribución de Poisson

¿Cuando se aplica?

- Plantas en una parcela
- Semillas comidas por una ave por minuto
- Bebes naciendo por hora en un hospital
- Errores en un texto
- Degradación de substancia radioactiva



#### Distribución normal

Definición

- Teorema del límite central
- Suficientes muestras → medias → distribución normal
- Distribución continua
- $X \rightsquigarrow \mathcal{N}(\mu, \sigma)$
- $f(y) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{y-\mu}{\sigma}\right)^2}$

-2

-1

0

57 / 161

#### Distribución normal

¿Cuando se aplica?

- ¡Todo el tiempo!
- Regresión lineal, análisis de varianza ...



58 / 161

60 / 161

## Distribución Normal Estándar $X \sim \mathcal{N}(0,1)$

• ± 1 σ ~ 68%

Distribución Normal Estándar  $X \sim \mathcal{N}(0,1)$ 



#### Otras distribuciones de variables

- Lognormal (largo, peso . . . )
- Exponencial (Tiempo de fracaso)
- Gamma
- Distribución de Weibull
- Beta

62 / 161

#### Distribuciones de estadísticos

- Distribución z
- ullet Distribución t de Student
- Distribución del  $\chi^2$
- ullet Distribución F de Fischer

#### ¿Qué es un test estadístico?

Herramienta para tomar decisión

- ullet Calcular un estadístico  $T_{obs}$  de una muestra
- $\bullet$  Comparar  $T_{obs}$  con la distribución de  $T_{teo}$  cuando la hipótesis es verdadera
- $\bullet$  La posición de  $T_{obs}$  informa sobre la probabilidad de que la hipótesis sea verdadera

63 / 161

#### Test estadístico: procedimiento

- 1 Pregunta biológica: ¿Hay cóndores en el parque?
- **2** Pregunta estadística: Hipótesis  $H_0$
- 3 Elección del test estadístico: ¿Cuál usar?
- ♠ Criterios de decisión: ¿Qué riesgo de error? ¿Qué nivel de confianza?

#### Buenas y malas hipótesis

- Una buena hipótesis se puede rechazar/falsear
- Hay cóndores en el parque
- 2 No hay cóndores en el parque
- ¡Ausencia de prueba no es prueba de ausencia!

#### Test estadístico: procedimiento

- 6 ¡Colección de los datos!
- 6 Cálculo de el estadístico del test
- ${f 7}$  Decisión estadística: ¿Se puede rechazar  $H_0$  o no?
- 8 Inferencia y explicación biológica

66 / 1

#### Hipótesis nula

- "Nada está pasando"
- "Las medias de dos muestras son las mismas"
- "La pendiente de la relación es cero"
- $\Rightarrow$  La hipótesis nula se puede falsear. Rechazar cuando los datos muestran que es suficientemente improbable

67/10

#### Elección del test

- Tipo de variables: cualitativas, cuantitativas ...
- Número y tamaño de las muestras
- Condiciones de cada test

69 / 161

71 / 161

## Criterios de decisión (1)



70 / 161

#### Criterios de decisión (1)



#### Criterios de decisión (2)

• 2 errores posibles :

Tipo I : Rechazar  $H_0$  cuando es verdadera

Tipo II : Aceptar  $H_0$  cuando es falsa

| _              | Situación real                      |                           |  |
|----------------|-------------------------------------|---------------------------|--|
| Hipótesis nula | Verdadera                           | Falsa                     |  |
| Acepta         | Decisión correcta Poder $1 - \beta$ | Tipo II<br>Riesgo $\beta$ |  |
| Rechaza        | Tipo I<br>Riesgo $\alpha$           | Decisión correcta         |  |

#### Hay que comprometer . . .

Poder: Probabilidad de rechazar  $H_0$  cuando es falsa

ullet Error I: rechazar  $H_0$  cuando es verdadera lpha

• Error II: aceptar  $H_0$  cuando es falsa  $\beta$ 

• Poder:  $1 - \beta$ 

•  $\alpha$  y  $\beta$  relacionados

• Cuando  $\alpha \searrow \beta \nearrow$ 

¿Cuando  $\alpha$  debe ser alto?

Ejemplo: Efectos secundarios de una droga

• Test final antes de comercializar

• Grupo A: droga | Grupo B: placebo

ullet  $H_0$ : no hay diferencia entre grupos A y B

ullet  $H_1$ : A tiene mayor frecuencia de anomalías que B

74 / 161

73 / 161

#### ¿Cuándo $\alpha$ debe ser alto?

Aceptar riesgo  $\alpha$  más alto para reducir riesgo  $\beta$ 

 $\alpha$  alto: error de tipo I

- ullet  $H_0$  rechazada pero verdadera
- No se comercializa
- Más estudios para determinar efecto real

 $\beta$  alto: error de tipo II

- ullet  $H_0$  "aceptada" pero falsa
- Comercialización
- ¡Mucha gente sufre de los efectos secundarios!

Colección de los datos

¡Acuérdense!

- Aleatorización
- Replicación

75 / 161

#### Computación del estadístico del test

#### Ejemplo: Prevalencia de la malaria

- "La prevalencia es la misma en A y en B"
- $H_0: \mu_A = \mu_B$
- El estadístico del test representa la diferencia de prevalencia:  $T = f(prev_A prev_B)$
- Distribución de T corresponde a  $H_0$  verdadera

77 / 161

## Comparación de T con la distribución teórica



- $T_{obs}$  no está en la región de rechazo
- ullet No se puede rechazar  $H_0$
- No es posible afirmar que hay una diferencia de prevalencia entre A y B

78 / 161

## Comparación de T con la distribución teórica



- $T_{obs}$  está en la región de rechazo
- Se puede rechazar  $H_0$
- Se concluye que la prevalencia de la malaria es diferente entre A y B
- El riesgo de que esta conclusión sea falsa es  $\alpha = 5\%$

#### Valor P

• Medida de la credibilidad de la hipótesis nula

#### Ejemplo

- $H_0: \mu_A = \mu_B$
- $p < 0.05 \Rightarrow$  improbable que  $H_0$  sea verdadera:  $\mu_A \neq \mu_B$
- ullet  $p=0.23 \Rightarrow$  No hay suficiente evidencia para rechazar  $H_0$

#### Significancia

- ¿Qué significa "Resultado significativo"?
- Diccionario: Que tiene sentido
- Estadística: Improbable que haya ocurrido por azar si la hipótesis nula es verdadera
- $\bullet$  Improbable: Occurre menos de 5% de las veces

81 / 161

## ¿Como elegir el test adecuado?

Algunas directrices (1)



82 / 161

#### ¿Como elegir el test adecuado?

Algunas directrices (2)



#### Dependencia - Asociación

Tests asociados

- Muestras asociadas: vienen del mismo grupo
- Relacionadas por correlación o por regresión
- Conexión espacial
- Conexión temporal
- ⇒ Usar tests específicos: e.g., "paired t-test"

## Comparar una muestra con una distribución teórica

- ⇒ Test de conformidad
  - ullet Test t de conformidad
  - Test de Wilcoxon
  - Test binomial
  - Test  $\chi^2$  de conformidad
  - ...

85 / 161

### Comparar dos muestras

- ⇒ Test de comparación (de homogeneidad)
  - Test t (posiblemente "asociado")
  - Test de Mann-Whitney
  - Test de Fisher
  - $\bullet$  Test  $\chi^2$
  - ...

86 / 16

#### Comparar *más* de dos muestras

- ⇒ Test de comparación (continuación)
  - Anova / Manova
  - Test de Kruskal-Wallis
  - Test de Friedman
  - $\bullet \ \ {\rm Test} \ \chi^2$
  - ...

## Evaluar el grado de asociación entre variables

Muestras independientes

- ⇒ Correlación y regresión
  - Correlación de Pearson / de Spearman (n=2)
  - Regresión simple / regresión logística (n=2)
  - Regresión no paramétrica
  - Regresión múltiple / regresión logística múltiple (n|handout:1>2)
  - ...

# Comparar un grupo con una distribución teórica

| $\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$ | Categoría, grado,<br>sin distribución | Binomial                      |
|------------------------------------------------------------------------------|---------------------------------------|-------------------------------|
| Test t 1 muestra                                                             | Test de Wilcoxon                      | Test $\chi^2$ , test binomial |

#### Comparar 2 grupos asociados

| $\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$ | Categoría, grado,<br>sin distribución | Binomial                      |
|------------------------------------------------------------------------------|---------------------------------------|-------------------------------|
| Test $t$ 1 muestra                                                           | Test de Wilcoxon                      | Test $\chi^2$ , test binomial |
| Test $t$ no asociado                                                         | Test de Mann-Whitney                  | Test de Fisher, test $\chi^2$ |
| Test $t$ asociado                                                            | Test de Wilcoxon                      | Test de McNemar               |

#### ${\it Comparar} \ 2 \ {\it grupos} \ {\it no} \ {\it asociados}$

| $\begin{matrix} Medidas \\ X \rightsquigarrow \mathcal{N}(\mu, \sigma) \end{matrix}$ | Categoría, grado,<br>sin distribución | Binomial                      |
|--------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|
| Test t 1 muestra                                                                     | Test de Wilcoxon                      | Test $\chi^2$ , test binomial |
| Test $t$ no asociado                                                                 | Test de Mann-Whitney                  | Test de Fisher, test $\chi^2$ |

#### $\mathsf{Comparar} \geqslant 3 \mathsf{\ grupos\ no\ asociados}$

| $\begin{matrix} & Medidas \\ X \leadsto \mathcal{N}(\mu,\sigma) \end{matrix}$ | Categoría, grado, Binomial |                               |
|-------------------------------------------------------------------------------|----------------------------|-------------------------------|
| Test $t$ 1 muestra                                                            | Test de Wilcoxon           | Test $\chi^2$ , test binomial |
| Test $t$ no asociado                                                          | Test de Mann-Whitney       | Test de Fisher, test $\chi^2$ |
| Test $t$ asociado                                                             | Test de Wilcoxon           | Test de McNemar               |
| Anova simple                                                                  | Test de Kruskal-Wallis     | Test $\chi^2$                 |

#### ${\sf Comparar}\geqslant 3 \ {\sf grupos} \ {\sf asociados}$

| $\begin{matrix} \text{Medidas} \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$ | Categoría, grado,<br>sin distribución | Binomial                      |
|-------------------------------------------------------------------------------------|---------------------------------------|-------------------------------|
| Test $t$ 1 muestra                                                                  | Test de Wilcoxon                      | Test $\chi^2$ , test binomial |
| Test $t$ no asociado                                                                | Test de Mann-Whitney                  | Test de Fisher, test $\chi^2$ |
| Test $t$ asociado                                                                   | Test de Wilcoxon                      | Test de McNemar               |
| Anova simple                                                                        | Test de Kruskal-Wallis                | Test $\chi^2$                 |
| Anova con medidas repetidas                                                         | Test de Friedman                      | Test ${\cal Q}$ de Cochran    |

#### Predecir valor desde 1 variable

| $\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$ | Categoría, grado,<br>sin distribución | Binomial                      |  |
|------------------------------------------------------------------------------|---------------------------------------|-------------------------------|--|
| Test t 1 muestra                                                             | Test de Wilcoxon                      | Test $\chi^2$ , test binomial |  |
| Test $t$ no asociado                                                         | Test de Mann-Whitney                  | Test de Fisher, test $\chi^2$ |  |
| Test $t$ asociado                                                            | Test de Wilcoxon                      | Test de McNemar               |  |
| Anova simple                                                                 | Test de Kruskal-Wallis                | Test $\chi^2$                 |  |
| Anova con medidas repetidas                                                  | Test de Friedman                      | $Test\ Q\ de\ Cochran$        |  |
| Correlación de Pearson                                                       | Correlación de<br>Spearman            | Coeficientes de contingencia  |  |
| Regresión (no)lineal simple                                                  | Regresión no<br>paramétrica           | Regresión logística<br>simple |  |

#### Cuantificar asociación entre 2 variables

| $\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$ | Categoría, grado,<br>sin distribución | Binomial                      |
|------------------------------------------------------------------------------|---------------------------------------|-------------------------------|
| Test $t$ 1 muestra                                                           | Test de Wilcoxon                      | Test $\chi^2$ , test binomial |
| Test $t$ no asociado                                                         | Test de Mann-Whitney                  | Test de Fisher, test $\chi^2$ |
| Test $t$ asociado                                                            | Test de Wilcoxon                      | Test de McNemar               |
| Anova simple                                                                 | Test de Kruskal-Wallis                | ${\sf Test}\ \chi^2$          |
| Anova con medidas repetidas                                                  | Test de Friedman                      | Test ${\cal Q}$ de Cochran    |
| Correlación de Pearson                                                       | Correlación de<br>Spearman            | Coeficientes de contingencia  |

#### Predecir valor desde varias variables

| $\begin{matrix} Medidas \\ X \leadsto \mathcal{N}(\mu, \sigma) \end{matrix}$ | Categoría, grado,<br>sin distribución | Binomial                        |  |
|------------------------------------------------------------------------------|---------------------------------------|---------------------------------|--|
| Test t 1 muestra                                                             | Test de Wilcoxon                      | Test $\chi^2$ , test binomial   |  |
| Test $t$ no asociado                                                         | Test de Mann-Whitney                  | Test de Fisher, test $\chi^2$   |  |
| Test $t$ asociado                                                            | Test de Wilcoxon                      | Test de McNemar                 |  |
| Anova simple                                                                 | Test de Kruskal-Wallis                | Test $\chi^2$                   |  |
| Anova con medidas repetidas                                                  | Test de Friedman                      | $Test\ Q\ de\ Cochran$          |  |
| Correlación de Pearson                                                       | Correlación de<br>Spearman            | Coeficientes de contingencia    |  |
| Regresión (no)lineal<br>simple                                               | Regresión no<br>paramétrica           | Regresión logística simple      |  |
| Regresión (no)lineal<br>multiple                                             |                                       | Regresión logística<br>multiple |  |

#### Más recursos para elegir un test

- Handbook of Biological Statistics: http://udel.edu/~mcdonald/statbigchart.html
- Statistics Online Computational Resources: www.socr.ucla.edu/Applets.dir/ChoiceOfTest.html
- GraphPad / Intuitive Biostatistics: www.graphpad.com/www/Book/Choose.htm
- Social Research Methods: www.socialresearchmethods.net/selstat/ssstart.htm
- James D. Leeper, University of Alabama: http://bama.ua.edu/~jleeper/627/choosestat.html
- S. Holttum, B. Blizard, Canterbury Christ Church University: www.whichtest.info/index.html

Correlación y regresión

98 / 161

#### Dos categorías de tests estadísticos

Tests de comparación : 1 variable,  $\geq 2$  poblaciones

Tests de relación :  $\geqslant 2$  variables, 1 población

#### $\geqslant 2$ variables es común en biología

2 variables para el mismo individuo

- Presión sanguínea  $X_1$ , peso  $X_2$
- Abundancia de una especie de planta  $X_1$ , nivel del pH en el suelo  $X_2$ , temperatura  $X_3$
- Datos bivariados o multivariados
- $\Rightarrow$  ¿Cuál es la relación entre las variables?

99 / 161

#### Relación entre $\geq 2$ variables

La estadística correlacional

Varios tipos de relación

- No conexión
- Relación |handout: 1 > 0 / < 0, causal / no
- Conexión funcional → predicción

Objetivo de la estadística correlacional

- Determinar validez y fuerza de la relación entre las variables
- Determinar la dirección de la relación

101 / 161

#### Noción de correlación

#### Ejemplo

- 1 población: 2 variables continuas
- Presión sanguínea  $X_1$ , peso  $X_2$
- ullet Cada muestra i: 1 valor por cada variable:  $x_{i_1}$  y  $x_{i_2}$
- ¿La presión sanguínea y el peso son correlativas?

#### Estadística correlacional

Correlación: ¿Cómo 2 variables varían juntas?

Regresión: Relación entre 1 variable dependiente y  $\geqslant 1$ 

variable independiente

Análisis multivariados: Relación entre  $\geqslant 2$  variables independientes

/ dependientes / ambos

102 / 1

#### Noción de correlación (2)

Definición

Correlación se define en terminos de:

- Varianza de  $X_1$ :  $var(X_1)$
- Varianza de  $X_2$ :  $var(X_2)$
- ¿Como  $X_1$  y  $X_2$  varian juntas? Covarianza:  $cov(X_1, X_2)$ 
  - ⇒ Coeficiente de correlación

$$r = \frac{cov(X_1, X_2)}{\sqrt{var(X_1) \cdot var(X_2)}}$$

103 / 161

#### El coeficiente de correlación r

Correlación de Pearson (paramétrica)

• No unidad

•  $r \in [-1, 1]$ 

• Magnitud: fuerza de la relación

• Signo: dirección de la relación

• Muestra: r, Población:  $\rho$ 

105 / 161

#### ¿Qué test para chequear la correlación?

 $X_1$ : Presión sanguínea y  $X_2$ : peso

- ¿Hipótesis nula?
- No hay una relación lineal entre la presión sanguínea y el peso
- $H_0: \rho = 0$
- Cuando  $H_0$  es verdadera,  $r \rightsquigarrow \mathcal{N}(\mu, \sigma)$ 
  - $\Rightarrow$  uso de test t de Student

106 / 16

#### Correlación no paramétrica

- ¿Qué hacer cuando los requisitos no se cumplen?
- ⇒ Coeficiente de correlación de rango
  - de Spearman:  $\rho$  de Kendall:  $\tau$
- ¡Más conservadores!





¡Las cosas no son siempre como parecen!



109 / 161

#### Modelo lineal: concepto general

- Se puede identificar:
  - 1 variable respuesta / dependiente Y
  - $\geqslant 1$  variable explicativa / predictiva / independiente / covariable  $X_1, X_2, \ldots$
- Cada unidad de muestra:  $y_i, x_{1_i}, x_{2_i} \dots$
- ullet Explicar el patrón de Y con X

110 / 161

#### Modelo lineal

Forma general de los modelos estadísticos

- ullet Variable dependiente = modelo + error
- Modelo: covariables y parámetros
- Covariables: continuas / categoricas / ambos
- Error: parte de la variable dependiente que no esta explicada por el modelo
- $\bullet$  Se supone una distribución para el componente del error, y de ahi para la variable dependiente Y

#### ¿Qué significa lineal?

- Relación de línea recta entre 2 variables
- Combinación lineal de parámetros
- No exponente, no multiplicación por otro parámetro
- $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$

111 / 161

#### Análisis de regresión lineal

Contexto

- Usar datos de una muestra para estimar valores de parámetros y sus errores estándar
- ¿Cuando se usa?
- Variables explicativa y dependiente son continuas
- Altura, peso, volumen, temperatura ...
- Nube de puntos → regresión lineal

113 / 161

#### Análisis de regresión lineal

Varios tipos de regresión

- Regresión lineal: lo más simple y frecuente
- Regresión polinomial: chequear si una relación es no lineal
- Regresión no lineal
- Regresión no parámetrica: si no hay forma funcional

## Análisis de regresión lineal

Objetivos

- ullet Describir la relación lineal entre Y y X
- Determinar cuánto de la variación en Y se explica por la relación lineal con X y cuánto de esta variación no se puede explicar
- ullet Predecir nuevos valores de Y a partir de valores de X

114 / 161

#### Principio de la regresión lineal



- Datos
- Modelo: y = a + bx
- ¿Cambio en y?  $\delta y = -10$
- ¿Cambio en x?  $\delta x = +8$
- Pendiente  $b = \delta y / \delta x = -1.25$
- ¿Ordenada al origen? a = 12
- y = 12 1.25x

#### Principio de la regresión lineal (2)

- Ajustar un modelo a los datos
- Estimar los parámetros del modelo
- Probar varios valores de parámetros hasta encontrar el mejor modelo
- Máxima verosimilitud (Maximum Likelihood ML)
- Mínimos cuadrados (Ordinary Least Square OLS)

40

35

30

20

10

20

50 Х

> 25

#### Cuadrados mínimos: principio

OLS: Ordinary Least Squares



- Modelo y = 10 + 1/6x
- Residual  $e_i = y_i \hat{y}_i$
- $SS = \sum (y_i \hat{y}_i)^2 =$ 79.85

118 / 161

119 / 161





OLS: Ordinary Least Squares Datos • Modelo y = 10 + 1/6x40 • Residual  $e_i = y_i - \hat{y}_i$ 35 •  $SS = \sum (y_i - \hat{y}_i)^2 =$ 30 79.85 > 25 • SS = 30.8520 15 10 50 60 70

#### Hipótesis nula en regresión

- ¿Cuál seria  $H_0$ ?
- No hay una relación lineal entre las variables
- Pendiente b = 0
  - ightarrow Test de Fisher: F
  - $\rightarrow$  Test de Student: t

121 / 161

#### Varianza explicada

 $r^2$ : coeficiente de determinación

- ullet Variación de Y explicada por la relación con X
- (coeficiente de correlación)<sup>2</sup>
- $r^2 \in [0,1]$
- ¿Como se mejora el ajuste del modelo con pendiente comparado a un modelo sin pendiente?
- ullet  $r^2$  inadecuado para comparar modelos con números de parámetros diferentes

122 / 16

#### Comparar varios modelos

- Evaluar varias hipótesis → varios modelos
- $H_0$ : modelo simple,  $H_1$ : modelo más complejo
- Hay que comparar los modelos

#### Comparar modelos de regresión

#### Minimos cuadrados (OLS)

- Ajuste: proporción de varianza explicada
- No-ajuste: proporción de varianza residual
- ⇒ Análisis de varianza

#### Máxima verosimilitud (ML)

- Ajuste: tamaño de la verosimilitud
- $\Rightarrow$  Prueba de la razón de verosimilitud (Likelihood Ratio Test o AIC)

123 / 161

#### Comparar modelos de regresión (2)

Siempre la misma lógica

- Medir el ajuste de cada modelo
- Comparar los ajustes de diferente modelos para examinar hipótesis sobre los parámetros

Ejemplo: presión sanguínea y peso

- Modelo 1:  $P = \beta_0 + \varepsilon$
- Modelo 2:  $P = \beta_0 + \beta_1 * peso + \varepsilon$
- Comparar  $M_1$  y  $M_2$  es equivalente a evaluar  $H_0: \beta_1 = 0$

#### Condiciones del análisis de regresión (2)

- Normalidad:  $\varepsilon$  tiene una distribución normal
- Homogeneidad de la varianza:  $\varepsilon$  tiene la misma varianza por cada  $x_i$ :  $\sigma_1^2 = \sigma_2^2 = \ldots = \sigma_i^2 = \ldots = \sigma_{\varepsilon}^2$
- Independencia:  $\varepsilon$  son independientes: Los valores de Y para cualquier  $x_i$  no influyen los valores de Y para otra  $x_i$

#### Condiciones del análisis de regresión (1)

- Involucran de los términos de errores  $(\varepsilon_i)$
- ullet De la variable dependiente Y
- Importantes para intervalos de confianza
- ullet Importantes para tests de hipótesis con distribución t o F
- Residuales importantes para chequear condiciones

#### Homogeneidad de la varianza

No tendencia

Heteroscedasticidad



• Test de Levene, test de Barttlett

# Normalidad de los residuales Q-Q plot Q-Q plot Cuantilos teoricos

¿Qué hacer si las condiciones no cumplen?

- Residuales no son independentes:
  - Modelos con efectos aleatorios (random effect models)
- Residuales no son normales:
  - Alternativa no parámetrica
  - Transformación de los datos log, sqrt, exp . . .
  - Modelo lineal generalizado (Generalized Linear Model GLM)
- Heterogeneidad de la varianza:
  - GLM

130 / 16

Si el modelo es inadecuado, se puede...

• Transformar variable dependiente

• Test de Shapiro-Wilk

- ullet Transformar  $\geqslant 1$  variable explicativa
- Probar otras variables explicativas
- Usar una estructura de error diferente (GLM)
- Usar alternativa no parámetrica (smoothing)
- ullet Usar pesos diferentes por diferentes valores de y



131 / 161





Ejemplo: Desintegración radioactiva







- R: nls()
- Teoría:  $y = a be^{-cx}$
- No información: Modelos Aditivos Generalizados (Generalized Additive Models GAM)

#### Recordatorio de vocabulario

- Normalidad de los errores:
  - Modelos lineales
- $\bullet \ \ Normalidad + var. \ descriptivas \ continuas/categ\'oricas:$ 
  - Modelos lineales generales
- Errores no normales y/o varianza no homogénea:
  - Modelos lineales generalizados (GLM)

135 / 161

136 / 161

#### Modelos lineales generalizados (2)

Varianza no constante / residuales no normales

- ⇒ Se puede especificar la distribución de los errores
- Proporciones (regresión logistica) → Binomial
- Conteos (modelo log-lineal) → Poisson
- Variable dependiente binaria (vivo/muerto)  $\rightarrow$  Binomial
- Tiempo hasta muerte (varianza aumenta) → Exponencial

(No) enamorarse de su modelo  $\dots$ 

- Todos los modelos son incorrectos
- Algunos modelos son mejores que otros
- El modelo correcto nunca se puede conocer con certeza
- Cuanto mas simple el modelo mejor

138 / 161

137 / 161

#### Comparar $\geqslant 2$ muestras

Control biológico de las plagas del maíz

#### Análisis de varianza

#### Ejemplo: 5 tratamientos

- Nematodos del suelo
- Avispas parásitas
- Nematodos y avispas
- Bacterias
- Control

139 / 161

#### Control biológico (2)

- Muestra aleatoria por cada tratamiento
- Medida del peso de las mazorcas
  - $\Rightarrow$  Media:  $\mu_i$ , desviación estándar:  $\sigma_i$
- ¿Cuál tratamiento produce más choclo?
- ¿Como comparar las medias entre tratamientos?

¿Tests t repetidos?

**1**  $H_0: \mu_1 = \mu_2$ 

**2**  $H_0: \mu_1 = \mu_3$ 

**3**  $H_0: \mu_1 = \mu_4$ 

**4**  $H_0: \mu_1 = \mu_5$ 

**6**  $H_0: \mu_2 = \mu_3$ 

**6**  $H_0: \mu_2 = \mu_4$ 

 $H_0: \mu_2 = \mu_5$ 

**8**  $H_0: \mu_3 = \mu_4$ 

**9**  $H_0: \mu_3 = \mu_6$ 

 $\bullet$   $H_0: \mu_4 = \mu_5$ 

 Cada hipótesis: riesgo de error de tipo I

• Con 1 hipótesis:  $\alpha = 0.05$ 

• ¿Valor de  $\alpha$  con 2 hipótesis?

• *i* 0.025, 0.05, 0.0725, 0.0975, 0.10?

•  $1 - Pr(no\ error\ de\ tipo\ I)$ 

•  $1 - 0.95 \cdot 0.95 = 0.0975$ 

141 / 161

El problema con tests t multiples

; Tests t repetidos?

¡Amplifica el riesgo de error de tipo I!

Riesgo total número de número de hipótesis j $1 - 0.95^{j}$ muestras i2 1 0.05 3 3 0.14 4 6 0.26 5 10 0.40 6 15 0.54 10 45 0.90

- Riesgo de error de tipo I más grande
- Solo considera variación para 2 muestras al mismo tiempo ⇒ precisión baja
- No es posible considerar estructuras complicadas (e.g. 2 factores experimentales)
  - ⇒ El análisis de varianza se encarga de estos problemas

143 / 161

144 / 161

#### Concepto del Anova

- Variables explicativas categóricas = factores
- $\bullet \geqslant 2$  niveles / grupos / tratamientos
- Dividir entre variación no explicada y variación explicada por las variables explicativas
- Ajustar modelos lineales para explicar o predecir valores de la variable dependiente

145 / 161

#### Varios tipos de anova

- 1 factor, 2 niveles  $\rightarrow$  test t
- 1 factor,  $\geq 3$  niveles  $\rightarrow$  anova simple (one-way anova)
- $\geqslant 2$  factores  $\rightarrow$  anova de 2 or 3 factores (two/three-way anova)
- Replicación por cada nivel → diseño factorial ⇒ permite estudiar las interacciones entre variables

#### Objetivos del Anova

- Examinar la contribución relativa de diferentes fuentes de variación sobre la cantidad total de variación de la variable dependiente
- Evaluar la hipótesis  $H_0$  que las medias de los grupos / tratamientos son iguales

146 / 161

## Análisis de varianza ¿para comparar medias?

Ejemplo: Cantidad de ozono

- Variable dependiente Y: concentración de ozono
- Variable explicativa: 1 factor JARDÍN, 2 niveles A y B
- 10 réplicas por jardín
- ¿La concentración de ozono es la misma?

147 / 161



10

Orden

15

#### Principio del Anova (1)

- Mucha dispersión
- Concentración media
- $SSY = \sum (y_i \bar{y})^2$
- Residuales: suma total de los cuadrados (total sum of squares SSY)
- Variación entre los tratamientos







#### Para resumir

Análisis de varianza para comparar medias

- Cuando  $\bar{y}_{\scriptscriptstyle A} \neq \bar{y}_{\scriptscriptstyle B}$ , SSE < SSY
- Variación total = modelo + error
- SSY = SSA + SSE
- SSA: proporción de varianza explicada
- Si  $SSE < SSY \Rightarrow \bar{y}_A \neq \bar{y}_B$

153 / 161

#### Tabla de Anova

| Fuente | Suma de<br>cuadrados | Grados de<br>Iibertad | Cuadrado<br>medio | Razón-F |
|--------|----------------------|-----------------------|-------------------|---------|
| Jardín | SSA = 20.0           | 1                     | 20.0              | 15.0    |
| Error  | SSE = 24.0           | 18                    | $s^2 = 1.33$      |         |
| Total  | SSY = 44.0           | 19                    |                   |         |

- $F_{teo} = 4.41$ , ¿Qué se puede concluir?
- ullet No se puede aceptar  $H_0$
- $\bar{y}_A \neq \bar{y}_B$
- $\bullet\,$  Concentración de ozono es diferente entre los jardines A y B

#### De vuelta al jardín . . .

- SSY = 44
- ¿Cuanto es atribuible a la diferencia entre  $\bar{y}_{\scriptscriptstyle A}$  y  $\bar{y}_{\scriptscriptstyle R}$ ?
- Jardín A:  $SSE_A = 12$ , Jardín B:  $SSE_B = 12$
- Suma de cuadrados de error  $SSE = SSE_A + SSE_B = 12 + 12 = 24$
- Suma de cuadrados del tratamiento:

SSA = SSY - SSE = 44 - 24 = 20

154 / 161

#### Condiciones del anova

¡Las mismas que por la regresión!

- Independencia
- Homogeneidad de las varianzas
- Normalidad

 $_i$ Condiciones sobre los residuales!  $\Rightarrow$  hacer los tests despues del análisis

155 / 161

#### Diseños factoriales

- $\geqslant 2$  factores
- $\geqslant 2$  niveles per factor
- Replicación para cada combinación de niveles
- Interacciones: respuesta a un factor depende del nivel de otro factor

159 / 161

# Reconocer diseños complicados para evitar seudoreplicación

(Nested design and Split plots)

- Muestreo jerárquico: medidas repetidas del mismo individuo o estudios con varias escalas espaciales
- Parcelas subdivididas: diferentes tratamientos en diferentes parcelas de diferentes tamaños

158 / 161

#### Un ejemplo de diseño "split plot"



#### Factores fijos

(Fixed effects)

- Todos los niveles estan incluidos
- No extrapolación fuera de estos niveles
- Si se repite el estudio → mismos niveles
- Modelos con efectos fijos (fixed effects models)
- Anova tipo I
- Ejemplo: nivel de zinc (Fondo, bajo, medio alto), fertilizantes . . .

| Factores aleatorios (Random effects)                                                                                                                                                                                                                                                                |   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--|
| <ul> <li>Muestra aleatoria de los niveles posibles</li> <li>Inferencia (extrapolación) sobre todos los grupos</li> <li>Si se repite el estudio → otros niveles</li> <li>Modelos de efectos aleatorios (random effect models)</li> <li>Anova tipo II</li> <li>Ejemplo: Sitios de estudio,</li> </ul> |   |  |
| 161/161                                                                                                                                                                                                                                                                                             |   |  |
|                                                                                                                                                                                                                                                                                                     | 7 |  |
|                                                                                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                     |   |  |
|                                                                                                                                                                                                                                                                                                     |   |  |