Sin(x)

Villads Jacobsen

June 19, 2020

This paper will examine the trigonometric function $\sin(x)$ and the numerical integral of such function. The $\sin(x)$ is given as the sum of:

$$sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$$
 (1)

and is closely related to $\cos(x)$ and $\tan(x)$ in the field of trigonometry, where they are used to calculate sides and angles of different triangles. $\sin(x)$ also relates to $\cos(x)$ through differentiation and integration.

- $\sin(x)' = \cos(x)$
- $\cos(x)' = -\sin(x)$

Which leads to the fact that $\sin(x)$ anti derrivative is $-\cos(x)$. In figure [?] we have the integral of $\sin(x)$ from 0 to 2 pi. If $-\cos(x)$ is the anti-derivative then the integral from 0 to pi should be 2 $(\cos(0)-\cos(pi)=2)$. We se from the figure that the peak value at pi is in fact 2, so the numerical integrator agrees with the analytical result.

Figure 1: This shows the integral of sin(x) from 0 to 2 pi

