

XII UNIT 9

Coordination Compounds

असतो मा सदगमय

DECEMBER 17, 2020

MAHESH LATH'S CHEMISTRY MANTRA

105 Dilbagh Nagar Extension Jalandhar

Unit 9

Coordination Compounds

- Q1. Using IUPAC norms write the formula for the following: Tetrahydroxozincate(II) Ans. $[Zn(OH_4)^{2-}$
- Q2. Using IUPAC norms write the formula for the following: Hexaamminecobalt(III) sulphate

Ans. $[Co(NH_3)_6]_2(SO_4)_3$

Q3. Using IUPAC norms write the formula for the following: Pentaamminenitrito-cobalt(III)

Ans. $[Co(ONO) (NH_3)_5]^{2+}$

- Q4. Using IUPAC norms write the systematic name of the following: [Co(NH₃)₆]Cl₃ Ans. Hexaamminecobalt(III) chloride
- Q5. Using IUPAC norms write the systematic name of the following:

[Pt(NH₃)₂Cl(NH₂CH₃)]Cl

Ans. Diamminechlorido(methylamine) platinum(II) chloride

- Q6. Using IUPAC norms write the systematic name of the following: c[Cr(C₂O₄)₃]³⁺ Ans. Tris(ethane-1, 2-diammine) cobalt(III) ion
- Q7. What is Spectro chemical series? Explain the difference between a weak field ligand and a strong field ligand.
- Ans. A Spectro chemical series is the arrangement of common ligands in the increasing order of their crystal-field splitting energy (CFSE) values.
- $\begin{array}{l} I_{-} < BR_{-} < S_{2^{-}} < SCN_{-} < Cl_{-} < N_{3}, < F_{-} < OH_{-} < C_{2}O_{42^{-}} \sim H_{2}O_{-} \sim NCS_{-} \sim H_{-} < CN_{-} < NH_{3} < en_{-} < SO_{32^{-}} < NO_{2^{-}} < phen_{-} < CO_{-} \\ \end{array}$
- Q8. $[Cr(NH_3)_6]^{3+}$ is paramagnetic while $[Ni(CN)_4]^{2-}$ is diamagnetic. Explain why?

Ans. Cr is in the +3 oxidation state i.e., d3 configuration. Also, NH₃ is a weak field ligand that does not cause the pairing of the electrons in the 3d orbital. Cr³⁺:

$\uparrow \uparrow \uparrow \uparrow$				
3 <i>d</i>	48	4p	4d	

Therefore, it undergoes d²sp³ hybridization and the electrons in the 3d orbitals remain unpaired. Hence, it is paramagnetic in nature.

In [Ni(CN)₄]²⁻, Ni exists in the +2 oxidation state i.e., d⁸configuration. Ni²⁺:

1111111		
3 <i>d</i>	4s	4p

CN⁻ is a strong field ligand. It causes the pairing of the 3d orbital electrons. Then, Ni²⁺undergoes dsp² hybridization.

11 11 11 11			
	100	2	

Mahesh Lath's Chemistry Mantra......9463356879, 7696256879

Q.9 A solution of [Ni(H₂O)₆] ²⁺ is GREEN BUT A SOLUTION OF [Ni(CN)₄] ²⁻ colourless. Explain.

Ans. In [Ni(H₂O)₆]²⁺is a weak field ligand. Therefore, there are unpaired electrons in Ni²⁺. In this complex, the d electrons from the lower energy level can be excited to the higher energy level i.e., the possibility of d-d transition is present. Hence, Ni(H₂O)₆]²⁺is n coloured.

In [Ni(CN)₄]²⁻, the electrons are all paired as CN⁻ is a strong field ligand. Therefore, d-d transition is not possible in [Ni(CN)₄]²⁻. Hence, it is colourless. As there are no unpaired electrons, it is diamagnetic.

Q.10 What is meant by stability of a coordination compound in solution? State the factors which govern stability of complexes.

Ans. The stability of a complex in a solution refers to the degree of association between the two species involved in a state of equilibrium. Stability can be expressed quantitatively in terms of stability constant or formation constant.

 $M + 3L \leftrightarrow ML_3$

$$\beta = \frac{\left[ML_{3}\right]}{\left[M\right]\left[L\right]^{3}}$$

Stability constant

For this reaction, the greater the value of the stability constant, the greater is the proportion of ML₃ in the solution.

LONG ANSWER TYPE QUESTIONS

- Q1. Discuss the nature of bonding in the following coordination entities on the basis of valence bond theory:
- i. $[Fe(CN)_6]^{4-}$
- ii. [FeF₆]³⁻
- असतो मा सदगमय iii. [Co(C2O4)3]3-
- iv. [CoF₆]³
- Ans. i. [Fe(CN)₆]⁴⁻ In the above coordination complex, iron exists in the +II oxidation state. Fe²⁺: Electronic configuration is 3d₆ Orbitals of Fe²⁺ion:

As CN⁻is a strong field ligand, it causes the pairing of the unpaired 3d electrons. Since there are six ligands around the central metal ion, the most feasible hybridization is d²sp³. d²sp³ hybridized orbitals of Fe²⁺ are:

6 electron pairs from CN⁻ions occupy the six hybrid d₂sp³ orbitals. Then,

Mahesh Lath's Chemistry Mantra9463356879, 7696256879
6 pairs of electrons
from 6 CN ions
Hence, the geometry of the complex is octahedral and the complex is diamagnetic (as there are
no unpaired electrons). ii. $[FeF_6]^{3-}$ In this complex, the oxidation state of Fe is +3.
Orbitals of Fe ⁺³ ion:
3d $4s$ $4p$ $4d$
There are 6 F- ions. Thus, it will undergo d ² sp ³ or sp ³ d ² hybridization. As F ⁻ is a weak
field ligand, it does not cause the pairing of the electrons in the 3d orbital. Hence, the
most feasible hybridization is sp ³ d ² .sp ³ d ² hybridized orbitals of Fe are:
3d 4s 4p 4d
sp^3d^2
3d 4s 4p 4d
sp^3d^2
6 electron pairs from F ions
Hence, the geometry of the complex is found to be octahedral.
iii. $[Co(C_2O_4)_3]^{3-}$ Cobalt exists in the +3 oxidation state in the given complex. Orbitals of
Co ³⁺ ion: Oxalate is a weak field ligand. Therefore, it cannot cause the pairing of the 3d orbital electrons. As there are 6 ligands, hybridization has to be either sp ³ d ² or
d^2sp^3 hybridization. sp^3d^2 hybridization of Co^{3+} :
111111
sp^3d^2
The 6 electron pairs from the 3 oxalate ions (oxalate anion is a bidentate ligand) occupy these sp^3d^2 orbitals.
occupy these sp d orbitals.
6 electron pairs from
Hence, the geometry of the complex is found to be octobedral

Mahesh Lath's Chemistry Mantra9463356879, 7696256879
iv. [CoF ₆] ³⁻ Cobalt exists in the +3 oxidation state. Orbitals of Co ³⁺ ion:
ALI 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3d 4s 4p 4d
Again, fluoride ion is a weak field ligand. It cannot cause the pairing of the 3d electrons. As a result, the Co ³⁺ ion will undergo sp ³ d ² hybridization.sp ³ d ² hybridized orbitals of Co ³⁺ ion are:
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Sp ³ d ² 6 electron pairs from F ions Hence, the geometry of the complex is octahedral and paramagnetic.
असतो मा सदगमय