

Escuela Rafael Díaz Serdán

Matemáticas 3 JC Melchor Pinto

Última revisión del documento: 10 de

 ${f Autocontrol}$

3° de Secundaria Unidad 3

2022-2023

Expresiones algebraicas, ecuaciones e identidades

Nombre del alumno:

Aprendizajes: ______

Distingue las expresiones algebraicas de las funciones, las ecuaciones e identidades.

Fecha:	į	_	_	_	
Duntuo	_	:	ź	_	

Pulltudcion.											
Pregunta	1	2	3	4	5	6	7	8	9	10	Total
Puntos	10	10	10	10	10	10	10	10	10	10	100
Obtenidos											

Vocabulario

 $Algebra \rightarrow representación simbólica de cantidades.$ $\mathbf{Cociente} \rightarrow \mathbf{el}$ resultado de una división.

Coeficiente → número que multiplica a una literal; ejemplo: a, b, c son coeficientes de $ax^2 + bx + c$.

 $\mathbf{Diferencia} \rightarrow \mathrm{resta}$ de dos numeros (el mayor menos el menor).

Exponente \rightarrow número en superíndice que indica la cantidad de veces que un nuúmero se multiplica por si mismo.

Factor \rightarrow aquello que se multiplica.

 $\mathbf{Factorizar} \to \mathbf{convertir}$ una expresión algebráica en un producto.

Fórmula \rightarrow ecuación con más de dos variables o incógnitas.

 $\mathbf{Miembro} \rightarrow \mathbf{son}$ las expresiones que aparecen a cada lado del signo igual en una ecuación o identidad.

 $\mathbf{Producto} \rightarrow \mathbf{el}$ resultado de una multiplicación.

 $\mathbf{Resolver} \to \mathbf{encontrar}$ el valor de la incógnita.

Solución \rightarrow el valor de una incógnita.

Término \rightarrow los monomios de cada miembro.

Expresión algebraica

Una expresión algebraica es una combinación de números y literales (o variables) relacionadas entre sí por signos de operaciones aritméticas (suma, resta, multiplicación, división, potencia o raíz). Ejemplo:

$$3x^{2} - x$$

Ecuación

Una ecuación es una igualdad entre expresiones algebraicas que sólo es cierta para valores concretos de las variables o incógnitas que aparecen.

Ejemplo:

$$3x^2 - x = 44$$

Identidad

Una identidad es una igualdad entre expresiones algebraicas que es cierta para cualquier valor que pueda tomar la variable.

Ejemplo:

$$3x^2 - x \equiv x(3x - 1)$$

Funciones

Figura 1

Considerando dos conjuntos de números, A y B, una función asocia a cada elemento x del conjunto A (valor de entrada) un único elemento y del conjunto B (valor de salida) mediante una regla de correspondencia f.

El número x que pertenece a un conjunto A es la variable independiente. El número y asociado con el valor x por la regla de correspondencia f es la variable dependiente.

Autocontrol

Ejercicio 1 10 puntos

Selecciona la opción que concuerde correctamente con los enunciados siguientes:

- a El área de un triángulo es la mitad del producto de la base por la altura.
 - $\widehat{A} A = (b-h)/2$

 - $\bigcirc A = 2(b+h)$
 - $(\mathbf{D}) A = bh/2$

Ejercicio 2 10 puntos

Selecciona la opción que concuerde correctamente con los enunciados siguientes:

- La mitad de un número.
 - $(A) x^2$
 - \bigcirc 2x
 - \bigcirc $\frac{x}{2}$
 - \bigcirc (D) x-2
- b La suma de un número con su tercera parte.
 - (A) x x/3
 - $(\mathbf{B}) x + x/3$
 - (C) 3x + x/3

- c El producto de dos números cualesquiera.
 - (A) b/c
 - \bigcirc b-c
 - (\mathbf{C}) bc
 - \bigcirc b+a
- d El cociente de dos números cualesquiera.
 - $(\mathbf{A}) b/c$
 - \bigcirc b-c
 - (C) bc
 - \bigcirc b+c

Ejercicio 3 10 puntos

Selecciona la opción que concuerde correctamente con los enunciados siguientes:

- O Un número disminuido en 3 es 19.
 - $A) \frac{x}{3} = 19$
 - (B) -3x = 19
 - $(C) x^{-3} = 19$
 - **(D)** x 3 = 19
- b El cuadrado de un número.

- c La suma de un número, su doble y su triple es 42.

 - (A) x + y + z = 42(B) x + 2x + 3x = 42(C) x + x/2 + x/3 = 42
 - (D) x + x + 2 + x + 3 = 42
- d El producto de la suma de dos números por su diferencia.
 - (A) (x+y) (x-y)
 - B) x(x-y)
 - $\bigcirc (x+y)(x-y)$

Ejercicio 4 10 puntos

Selecciona la opción que concuerde correctamente con los enunciados siguientes:

- a El cociente de la suma entre la diferencia de dos cantidades.
 - (A) (a+b)(a-b)

 - $\bigcirc (a+b)-(a-b)$
 - $(\mathbf{D}) (a+b)/(a-b)$

- c El triple de la diferencia de dos números.

 - \bigcirc a-3b
 - \bigcirc (\mathbf{D}) 3(a-b)

- **b** El doble producto de dos números.
 - (A) -2xy

- d La diferencia del triple de dos números.
 - (A) 3a-b
 - \bigcirc (B) 3(a-b)
 - \bigcirc a-3b

Ejercicio 5 10 puntos

Selecciona la opción que concuerde correctamente con los enunciados siguientes:

- a El perímetro de un cuadrado.
- b La suma de tres números consecutivos es 61.
 - A) a + y + z = 61

- c El cuadrado de la diferencia de dos números.

Autocontrol

- $B) a^2 b^2$
- \bigcirc $a^2 b$
- d El cubo de un número
 - (A) $3n^3$

Ejercicio 6 10 puntos

Señala las opciones que corresponden correctamente a cada una de los siguientes incisos.

- Qué expresiones representan "n veces 10"? Elige todas las respuestas correctas
 - $\square n-10$
 - $\Box \frac{n}{2}$
 - $\sqrt{10n}$
 - $\sqrt{n \cdot 10}$
- **b** ¿Qué expresiones representan "10 menos que m"? Elige todas las respuestas correctas
 - $\sqrt{-10+m}$
 - $\sqrt{m-10}$
 - \square 10 < m
 - $\Box \frac{m}{10}$
- c ¿Qué expresiones representan "el cociente de 9 y c"? Elige todas las respuestas correctas
 - $\sqrt{\frac{9}{c}}$
 - $\Box \frac{c}{9}$
 - $\sqrt{9\boldsymbol{\nabla}\cdot\boldsymbol{c}}$
 - $\Box c \nabla \cdot 9$
- ${f d}$ ¿Qué expresiones representan "la diferencia de p y 4"? Elige todas las respuestas correctas
 - $\Box \frac{4}{p}$
 - $\sqrt{4-p}$
 - $\Box \frac{p}{4}$
 - $\sqrt{p-4}$

Autocontrol

10 puntos

Ejercicio 7

Escribe una expresión algebraica para cada una de los siguientes enunciados:

Ocho menos el cociente de dos y un número.

Solución:

$$8 - \frac{2}{x}$$

b Cuatro menos que el cociente de un número y cinco.

Solución:

$$\frac{x}{5} - 4$$

C Seis veces la diferencia de cinco y un número.

Solución:

$$6(5-x)$$

d Uno más que el cociente de cuatro y un número.

Solución:

$$1 + \frac{4}{x}$$

Ejercicio 8 10 puntos

Convierte las siguientes expresiones gramaticales en expresiones algebraicas.

- a Escriban una expresión algebraica que describa cada oración.
 - I. En un salón de clases hay cierto número de estudiantes de los cuales las dos terceras partes son niñas.

Solución:

 $\frac{2}{3}x$

II. Un número natural multiplicado por su consecutivo.

Solución:

n(n+1)

III. Un número al cuadrado menos su quinta parte.

Solución:

$$x^2 - \frac{x}{5}$$
 6 $x^2 - \frac{1}{5}x$

IV. La suma entre el cubo de un número, la mitad de su cuadrado y la cuarta parte del mismo número.

Solución:

$$x^3 - \frac{x^2}{2} + \frac{x}{4}$$

b ¿Qué característica tienen en común las expresiones que escribieron?

Solución:

Todas las expresiones son de una sola variable o literal representando, en cada caso, el total de elementos de un grupo o un número desconocido.

Ejercicio 9 10 puntos

Convierte las siguientes expresiones gramaticales en expresiones algebraicas.

- Escriban una expresión algebraica que describa cada oración.
 - I. En un salón de clases hay 28 niñas que son las dos terceras partes del total de alumnos.

Solución:

$$\frac{2}{3}x = 28$$

II. Un número natural multiplicado por su consecutivo es igual a 42.

Solución:

$$n\left(n+1\right) = 42$$

III. Un número al cuadrado menos su quinta parte es igual a $\frac{1}{2}$.

Solución:

$$x^2 - \frac{x}{5} = \frac{1}{2}$$
 ó $x^2 - \frac{1}{5}x = \frac{1}{2}$

IV. La suma del cubo de un número, la mitad de su cuadrado y la cuarta parte del mismo número es igual a cero.

Solución:

$$x^3 - \frac{x^2}{2} + \frac{x}{4} = 0$$

b ¿Qué característica tienen en común las expresiones que escribieron?

Solución:

Todas las ecuaciones representan una igualdad con la que es posible obtener los valores de la variable o literal.

Ejercicio 10 10 puntos

Convierte las siguientes expresiones gramaticales en expresiones algebraicas.

- a Escriban una expresión algebraica que describa cada oración.
 - I. La diferencia entre el doble de un número y su sexta parte.

Solución:

$$2x - \frac{x}{6}$$

II. El cociente de un número más uno entre ese número menos dos.

Solución:

$$\frac{x+1}{x-2}$$

III. La diferencia entre el doble de un número y su sexta parte es 1.

Solución:

$$2x - \frac{x}{6} = 1$$

 $\scriptstyle\rm IV.$ El cociente de un número más 1 entre ese número menos 2 es igual a 3.

Solución:

$$\frac{x+1}{x-2} = 3$$

b ¿Qué característica tienen en común las expresiones que escribieron?

Solución:

Algunas de las expresiones son de una sola variable o literal representando, en cada caso, el total de elementos de un grupo o un número desconocido; y otras, representan una igualdad con la que es posible obtener los valores de la variable o literal.