Curved Yang-Mills-Higgs theories

Simon-Raphael Fischer, based on joint works with Camille Laurent-Gengoux, and with Mehran Jalali Farahani, Hyungrok Kim (金炯錄), Christian Sämann

Curved Yang-Mills-Higgs theory

Motivation: Covariantisation of Yang-Mills(-Higgs) theory

Covariantization

Classical theory	Covariantised flat theory	Curved Theory
Vector space V	Trivial vector bundle $M \times V$	Vector bundle $V o M$
$rac{\partial}{\partial x^i}$	Canonical flat connection $ abla^0$	Vector bundle connection ∇
Coordinate changes may lead to extra terms	Coordinate expressions form-inv	ariant under coordinate changes

Curved Yang-Mills gauge theory (curved YM theory)

Covariantization

YM theory	Covariantised YM theory	Curved YM theory
Lie group <i>G</i>	Trivial Lie group bundle $M \times G$	Lie group bundle $G o M$
Maurer Cartan form	Fibre-wise Maurer-Cartan	Multiplicative YM connection
Field redefinitions lead to extra terms in gauge transformations and field strength	Expressions form-invariant under field redefinitions, but curvature transforms non-trivially	

S.-R. Fischer. Geometry of curved Yang–Mills–Higgs gauge theories, Ph.D. thesis, Institut Camille Jordan [Villeurbanne], France, U. Geneva, Switzerland, 2021; doi: 10.13097/archive-ouverte/unige:152555

4

S.-R. Fischer. *Integrating curved Yang–Mills gauge theories*, arXiv: 2210.02924, 2022.

Curved Yang-Mills-Higgs theory (curved YMH theory)

Covariantization

YMH theory	Covariantised YMH theory	Curved YMH theory
Lie group G with right-action on N	Action groupoid $N \times G$	Lie groupoid $G ightrightarrows N$
Maurer Cartan form	Fibre-wise Maurer-Cartan	Covariant adjustments
Field redefinitions lead to extra terms in gauge transformations and field strength	Expressions form-invariant under field redefinitions, but curvature transforms non-trivially	

S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.

S.-R. Fischer. *Geometry of curved Yang–Mills–Higgs gauge theories*, Ph.D. thesis, Institut Camille Jordan [Villeurbanne], France, U. Geneva, Switzerland, 2021; doi: 10.13097/archive-ouverte/unige:152555

$$\mathcal{G}$$
 $\downarrow \downarrow s$
 M

Definition (Lie groupoids)

 $\mathscr G$ a **Lie groupoid** if there are surjective submersions $s,t\colon \mathscr G\to M$, source and target, respectively, and a smooth multiplication map $\mathscr G_s\times_t\mathscr G\to\mathscr G$ such that

$$s(g'g) = s(g),$$
 $t(g'g) = t(g')$

for all $(g',g) \in \mathcal{G}_{s} \times_{t} \mathcal{G}$ (i.e. s(g') = t(g)), satisfying the typical expected properties, that is,

Associativity:
$$(g''g')g = g''(g'g),$$
 Units:
$$ge_{s(g)} = g, \qquad e_{t(g)}g = g,$$
 Inverse:
$$g^{-1}g = e_{s(g)}, \qquad gg^{-1} = e_{t(g)}$$

for all $(g'', g', g) \in \mathcal{G}_s \times_t \mathcal{G}_s \times_t \mathcal{G}$, where one requires the existence of the *unit* e as a global section of both, s and t, and the *inverse* $g^{-1} \in \mathcal{G}$ of g.

Example (Lie groups)

Lie groups G

Example (Lie groups)

Lie groups G

Example (Lie group bundles (LGBs))

LGB $\pi_G : G \to M$

$$G$$
 $\pi_G \bigcup_{M} \pi_G$

Example (Action groupoid (trivial))

Lie group G with action $\Psi \colon \mathcal{N} \times G \to \mathcal{N}$, $(p,g) \mapsto p \cdot g$, on \mathcal{N} .

$$N \times G$$
 $\operatorname{pr}_1 \bigcup_{W} \Psi$
 N

$$(x,g) (x \cdot g, q) = (x, gq),$$

 $e_x = (x, e),$
 $(x,g)^{-1} = (x \cdot g, g^{-1})$

Motivation (sort of historical)

We will mainly focus on Yang-Mills theories:

	Classical	Curved
Infinitesimal	Lie algebra ${\mathfrak g}$	LAB ¹ g
Integrated	Lie group G	LGB ² 𝒯

Remarks (Why curved?)

For gauge invariance and closure of gauge transformations

- $\blacksquare \ \ \mbox{Generalize Maurer-Cartan form} \ \rightarrow \ \mbox{Multiplicative Yang-Mills connection}.$
- Generalize Field Strength.

 $^{^{1}}LAB = Lie algebra bundle$

 $^{^{2}}LGB = Lie group bundle$

Motivation (sort of historical)

We will mainly focus on Yang-Mills theories:

	Classical	Curved
Infinitesimal	Lie algebra g	LAB ¹ g
Integrated	Lie group <i>G</i>	$LGB^2 \ \mathscr{G}$

Remarks (Why curved?)

For gauge invariance and closure of gauge transformations:

- $\blacksquare \ \ \mbox{Generalize Maurer-Cartan form} \ \rightarrow \ \mbox{Multiplicative Yang-Mills connection}.$
- Generalize Field Strength.

¹LAB = Lie algebra bundle

²LGB = Lie group bundle

Singular Foliations

Example of a singular foliation

S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.

S.-R. Fischer. Geometry of curved Yang-Mills-Higgs gauge theories, Ph.D. thesis, Institut Camille Jordan [Villeurbanne], France, U. Geneva,

Switzerland, 2021; doi: 10.13097/archive-ouverte/unige:152555

Foliations are widespread

Singular Foliations:

- Gauge Theory
- Poisson Geometry (Singular foliation of symplectic leaves)
- Lie groupoids and algebroids
- Dirac structures
- Generalised complex manifolds
- Non-commutative geometry
- ...

S.-R. Fischer, M. Jalali Farahani, H. Kim, and C. Saemann. Adjusted connections I: Differential cocycles for principal groupoid bundles with connection, arXiv: 2406.16755, 202.

S.-R. Fischer. Geometry of curved Yang-Mills-Higgs gauge theories, Ph.D. thesis, Institut Camille Jordan [Villeurbanne], France, U. Geneva,

Unique transverse structure

How to classify singular foliations?

Remarks ([C. L.-G., S.-R. F.])

There is a connection on the normal bundle of a leaf *L* preserving the foliation!

- \blacksquare Transverse structure is unique: Classify singular foliation ${\mathscr F}$ like a bundle!
- Connection is a multiplicative Yang-Mills connection: Use curved gauge theory!

Source of the existence of connection on normal bundle: Camille Laurent-Gengoux and Leonid Ryvkin, The holonomy of a singular leaf, Selecta Mathematica 28, no. 2, 45, 2022.

Thank you!

Classification of singular foliations

Theorem ([C. L.-G., S.-R. F.])

Formal singular foliations with leaf L and transverse model (\mathbb{R}^d, τ_I) are equivalent to:

- A Galois cover L' over L with structural group K
- A short exact sequence of groups

$$\mathsf{Inner}(\tau_I) \longleftrightarrow H \longrightarrow K$$

■ A principal *H*-bundle *P* over *L*