

WHAT IS CLAIMED IS:

1. A method of processing a silver halide photosensitive material comprising:

5 processing, with a developer in which a solution physical development arises, the silver halide photosensitive material containing at least one compound selected from the group consisting of compounds of the following types 1 to 4:

(Type 1)

10 a compound capable of undergoing a one-electron
oxidation to thereby form a one-electron oxidation
product thereof, wherein the one-electron oxidation
product is capable of releasing further two or more
electrons accompanying a subsequent bond cleavage
reaction;

(Type 2)

20 a compound capable of undergoing a one-electron oxidation to thereby form a one-electron oxidation product thereof, wherein the one-electron oxidation product is capable of releasing further one electron accompanying a subsequent carbon-carbon bond cleavage reaction, and the compound having, in its molecule, two or more groups adsorptive to silver halide;

(Type 3)

25 a compound capable of undergoing a one-electron oxidation to thereby form a one-electron oxidation product thereof, wherein the one-electron oxidation

product is capable of releasing further one or more electrons after going through a subsequent bond forming reaction; and

(Type 4)

5 a compound capable of undergoing a one-electron oxidation to thereby form a one-electron oxidation product thereof, wherein the one-electron oxidation product is capable of releasing further one or more electrons after going through a subsequent
10 intramolecular ring cleavage reaction.

2. The method of processing a silver halide photosensitive material according to claim 1, wherein the compound of type 1 is represented by the following general formula (1-1) or (1-2), the compound of type 2 is represented by the following general formula (2), the compound of type 3 is represented by the following formula (3), and the compound of type 4 is represented by the following formula (4):
15

20

5

wherein in the general formula (1-1), RED_{11} represents a reducing group; L_{11} represents a split-off group; R_{112} represents a hydrogen atom or substituent; and R_{111} represents a group of nonmetallic atoms capable of forming a cyclic structure corresponding to a tetrahydro form, hexahydro form or octahydro form of a 5-membered or 6-membered aromatic ring (including an aromatic heterocycle) together with the carbon atom (C) and RED_{11} ,

wherein in the general formula (1-2), RED_{12} and L_{12} have the same meanings as those of RED_{11} and L_{11} of the general formula (1-1), respectively; each of R_{121} and R_{122} represents a hydrogen atom or substituent capable of substituting on the carbon atom; and ED_{12} represents an electron-donating group, wherein the groups R_{121} and RED_{12} , the groups R_{121} and R_{122} , or the groups ED_{12} and RED_{12} may be bonded with each other to thereby form a cyclic structure,

25 wherein in the general formula (2), RED_2 has the same meaning as that of RED_{12} of the general formula

(1-2); L_2 represents a split-off group; and each of R_{21} and R_{22} represents a hydrogen atom or substituent, wherein RED_2 and R_{21} may be bonded with each other to thereby form a cyclic structure, provided that the 5 compound represented by the general formula (2) is a compound having, in its molecule, two or more groups adsorptive to silver halide,

wherein in the general formula (3), RED_3 has the same meaning as RED_{12} of the general formula (1-2); 10 Y_3 represents a reactive group having a carbon-carbon double bond moiety or a carbon-carbon triple bond moiety, which moiety being capable of forming a new bond by reacting with a one-electron oxidized RED_3 , and L_3 represents a linking group that links between RED_3 15 and Y_3 ,

wherein in the general formulae (4-1) and (4-2), each of RED_{41} and RED_{42} has the same meaning as RED_{12} of the general formula (1-2); each of R_{40} to R_{44} and 20 R_{45} to R_{49} represents a hydrogen atom or substituent; and in the general formula (4-2), Z_{42} represents $-CR_{420}R_{421}-$, $-NR_{423}-$ or $-O-$, wherein each of R_{420} and R_{421} represents a hydrogen atom or substituent; and R_{423} represents a hydrogen atom, alkyl group, aryl 25 group or heterocyclic group.

3. The method of processing a silver halide photosensitive material according to claim 1, wherein the compound selected from the group consisting of

those of types 1 to 4 is one having, in its molecule, an adsorptive group or a partial structure of sensitizing dye.

4. A silver halide reversal photosensitive material comprising at least one compound selected from the group consisting of those of types 1 to 4 described in claim 1.

5 5. The silver halide reversal photosensitive material according to claim 4, wherein the silver 10 halide reversal photosensitive material has a photosensitive layer containing a silver halide emulsion, on a support, and the at least one compound selected from the group consisting of those of types 1 to 4 is incorporated in the silver halide emulsion.

15 6. The silver halide reversal photosensitive material according to claim 4, wherein the silver halide reversal photosensitive material has a layer containing at least one compound whose oxidation potential is in the range of 0.18 to 0.90 eV.

20 7. The silver halide reversal photosensitive material according to claim 4, wherein the silver halide reversal photosensitive material contains silver halide emulsion grains each having a shell provided on a core, wherein the shell is formed with silver halide after a chemical sensitization step and the average 25 shell thickness of each grain is 20 nm or less.

8. The silver halide reversal photosensitive

material according to claim 4, wherein the silver halide reversal photosensitive material is a color reversal photosensitive material containing at least one azole magenta coupler represented by the following 5 general formula (MC-I):

wherein R₁ represents a hydrogen atom or substituent; one of G₁ and G₂ represents a carbon atom, and the other represents a nitrogen atom; and R₂ represents a substituent that substitutes one of G₁ and G₂ which is a carbon atom, wherein R₁ and R₂ may further have a substituent, a polymer of the general formula (MC-I) may be formed via R₁ or R₂, and polymer 10 chain may be bonded via R₁ or R₂; X represents a hydrogen atom or a group that is capable of splitting off by a coupling reaction with an oxidized aromatic 15 primary amine color developing agent.