



## Reconhecendo Imagens com Inteligência Artificial

Construa sua Própria Rede Neural com TensorFlow

Sandro Moreira
@sandro\_moreira



### **About Me**





Organizador do Google Developers Group Rio Verde

Organizador do TensorFlow Goiás

Doutorando em Ciência da Computação (UFG)

Mestre em Engenharia Mecânica (UNESP)

Pesquisador no Centro de Excelência em Inteligência Artificial (CEIA)

Professor na Faculdade de Engenharia de Software (UniRV)

Google Certified Educator Level 1

Mentor no Saturdays.AI (La Paz - BO)

Mentor de Machine Learning no Google for Startups

@sandro\_moreira



### Como os humanos vêem?





#### Como os humanos reconhecem?

"No cérebro, a área envolvida nesse processo é o hipocampo, que é a região que mais concentra neurônios associados à consolidação das memórias."

https://www.brainlatam.com/blog/memoria-e-atencao--993





# Como ensinar uma máquina a reconhecer?





### Imitando humanos...





Modelos matemáticos inspirados em Neurônios Biológicos



## Basicamente, um neurônio artificial





### Precisamos de uma rede de neurônios





### Precisamos de uma rede de neurônios







## Uma imagem é uma matriz





#### Precisamos de uma rede de neurônios

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} * \begin{bmatrix} 2 & 0 \\ 1 & 2 \end{bmatrix} + \begin{bmatrix} 4 & 3 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 7 \\ 10 & 9 \end{bmatrix}$$

entradas \* pesos + bias = prediction



#### Precisamos de uma rede de neurônios





Imagem com 200x200px

40.000 x 4 = 160 mil neurônios cada um com seus parâmetros





# E as dificuldades não param por aí...













### Redes Neurais Convolucionais

Convolution Neural Networks

Inspiradas no Cortex Visual Humano





## Redes Convolucionais



O valor atual do pixel é 192 Considera valores ao redor

Filtro Convolucional



## Filtros Convolucionais e Pooling



| 12  | 20  | 30 | 0  |                       |     |    |
|-----|-----|----|----|-----------------------|-----|----|
| 8   | 12  | 2  | 0  | $2 \times 2$ Max-Pool | 20  | 30 |
| 34  | 70  | 37 | 4  |                       | 112 | 37 |
| 112 | 100 | 25 | 12 |                       |     |    |



## Filtros Convolucionais





## Um imagem, múltiplos mapas de características





## Um imagem, múltiplos mapas de características





# Aplicações de uma CNN





# Aplicações de uma CNN









#### Uma CNN com TensorFlow

```
model = tf.keras.model.Sequential([
    tf.keras.layers.Conv2D(64, (3,3), activation='relu',input_shape=(28,28,1)),
    tf.keras.layers.MaxPooling2D(2,2),
    tf.keras.layers.Flatten(),
    tf.keras.layers.Dense(128, activation=tf.nn.relu),
    tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
```



## Redes Pré-Treinadas e a Transferência de Aprendizado



- 1,000 object classes (categories).
- Images:
  - o 1.2 M train
  - 100k test.



Treinar uma CNN pode ser algo demorado

Uma arquitetura de rede muito eficiente descoberta em 2017, chamada de **Xception**, precisou de **60 GPUs Nvidia K80 em paralelo** para conseguir ser treinada no dataset **Imagenet** a uma taxa de 28 steps por segundo.

Treinar redes assim muito frequentemente pode se tornar algo problemático nos ambientes de produção que precisam de deployments ágeis.



## Redes Pré-Treinadas e a Transferência de Aprendizado





#### Let's Code...











### Links Recomendados

- https://ai.google
- http://playground.tensorflow.org
- https://www.tensorflow.org/guide
- •https://keras.io
- http://deeplearning.stanford.edu/tutorial
- http://www.saturdays.ai
- Deep Learning Brasil <a href="https://www.facebook.com/groups/333175140356771/">https://www.facebook.com/groups/333175140356771/</a>

https://www.youtube.com/sandromoreirago

