A Few Models to Rule Them All:

Aggregating Machine Learning Models

Florian Siepe
Phillip Wenig
Thorsten Papenbrock

Objectives

- Reduce Costs and Complexity: Transition from using individual models for each heating system to using fewer consolidated models without compromising the prediction accuracy
- Model Clustering & Consolidation: Identify groups or clusters of similar heat generator models

CAML

(C) lustering and (A) ggregating (ML) models

Hierarchical clustering with custom Cross Performance distance function.

Idea: Calculate the error of any two models m_i , m_j against each other's test sets (x_i, y_i) by applying a loss function l for measuring of how well m_i performs in m_j 's environment and vice versa:

$$d(m_i, m_j) = \frac{1}{2} (l(m_i(x_j), y_j) + l(m_j(x_i), y_i))$$

 Aggregation of every cluster into a single cluster model by training a new model on the combined training data of all individual models of that cluster

Use Cross Performance
distances for aggregating
your ML Models

Take a picture to download the full paper

Evaluation

Idea: Measure the ability of a cluster model to generalize

Prediction error of the cluster model on

all test sets (μ_c) of that cluster vs.

the average error of the original models on their respective test sets (μ_b)

$$\begin{split} \mu_{c}(i) &= \frac{1}{|C_{i}|} \sum_{j=1}^{|C_{i}|} \mathsf{MAE}(M_{i}(x_{i,j}), y_{i,j}) \\ \mu_{b}(i) &= \frac{1}{|C_{i}|} \sum_{j=1}^{|C_{i}|} \mathsf{MAE}(m_{j}(x_{i,j}), y_{i,j}) \\ \mu_{C} &= \frac{1}{N} \sum_{i=1}^{k} |C_{i}| \cdot \mu_{c}(i) \\ \mu_{B} &= \frac{1}{N} \sum_{i=1}^{k} |C_{i}| \cdot \mu_{b}(i) \end{split}$$

Prediction error of cluster models is close to the baseline

With 15% of the models the prediction error μ_C is 2kWh

Cross Performance outperforms clustering on training data and output data