Введение в GEANT4

Иванов Артем Викторович E-mail: arivanov@jinr.ru

Содержание

- •Создание материалов
- •Описание магнитного поля

Geometry

```
G4NistManager* nist = G4NistManager::Instance();
G4Material* env_mat = nist->FindOrBuildMaterial("G4_Al");
G4Material* world_mat = nist->FindOrBuildMaterial("G4_AIR");
```

```
Создаем World, который у нас имеет форму куба
G4double world_sizeXY = 100;
G4double world_sizeZ = 100;
auto solidWorld = new G4Box("World", 0.5 * world_sizeXY, 0.5 * world_sizeXY, 0.5 * world_sizeZ);
auto logicWorld = new G4LogicaVolume(solidWorld, world_mat, "World");
auto physWorld = new G4PVPlacement(0, G4ThreeVector(0,0,0), logicWorld, "World", 0, false, 0, true);
                                            Создаем куб
                                                                                Ноль, потому что это World
G4double env_sizeXY = 10;
G4double env_sizeZ = 10;
```

```
auto solidEnv = new G4Box("Box", 0.5 * env_sizeXY, 0.5 * env_sizeXY, 0.5 * env_sizeZ);

Не ноль, потому что помещаем в World
```

auto logicEnv = new G4LogicalVolume(solidEnv, env_mat, "Box");

auto physEnv = new G4PVPlacement(0, G4ThreeVector(0,0,0), logicEnv, "Box", logicWorld, false, 0, true);

Класса для описания вещества

Основной принцип: Geant4 повторяет реальное строение вещества — материалы состоят из элементов, а элементы — из изотопов.

Три основных класса для описания вещества:

G4Isotope (Изотоп)

Описывает атомные ядра с уникальными свойствами:

- Z атомный номер (число протонов)
- N число нуклонов (протоны + нейтроны)
- А молярная масса
- Уровень изомера

G4Element (Элемент)

Описывает химические элементы:

- (Эффективный) атомный номер (Zeff)
- (Эффективное) число нуклонов
- (Эффективная) атомная масса (Aeff)
- Энергии связей на атомных оболочках

G4Material (Материал)

- Описывает макроскопические свойства вещества:
 - Плотность, агрегатное состояние, температура, давление
 - радиационная длина, длина поглощения и т.п.
- Состав определяется базовым материалом или списком компонентов. Компонентами могут быть элементы или другие материалы.

База материалов NIST

База материалов **NIST** представляет собой коллекцию различных баз данных и публикаций, созданных Национальным институтом стандартов и технологий США (NIST).

В данной базе:

- Доступно более 3000 изотопов
- Доступны часто используемые материалы: ткань, пластик, цитозин, тимин, кевлар и т.д.

Создание элементов с использованием базы NIST

Чтобы работать с материалами из базы NIST, необходимо получить указатель на менеджер:

G4NistManager* nist = G4NistManager::Instance();

Этот класс реализует паттерн Singleton, то есть в программе может существовать только один объект этого класса. Доступ к этому объекту возможен из любой части кода. Это гарантирует, что все материалы будут определяться однозначно и централизованно.

Создание элементов с использованием базы NIST

Для создания элементов из базы NIST нужно вызывать метод FindOrBuildElement() в качестве аргумента передав либо номер элемента либо его имя:

```
G4Element* H = nist->FindOrBuildElement(1);
или
G4Element* H = nist->FindOrBuildElement("H");
```

Важно понимать, что мы не создаём новые элементы, а лишь получаем указатели на них. Сами элементы уже были инициализированы в G4NistManager, поэтому их повторное создание избыточно.

Создание материалов с использованием базы NIST

Чтобы создать материал используя базу NIST необходимо воспользоваться методом **FindOrBuildMaterial()** в качестве аргумента передав имя материала:

```
G4Material* water = nist->FindOrBuildMaterial("G4_WATER");
```

Кроме того в базе материалов представлены «материалы – элементы».

```
G4Material* fe = nist->FindOrBuildMaterial("G4_Fe");
```

Эти материалы состоят из одного атома, и могут быть использованы для построения материалов, для которых не известна химическая формула, но доступно процентное содержание того или иного элемента:

Geant4 Material Database

Z	Name	ChFormula	density(g/cm^3)	I(eV)
1	G4_H		8.3748e-05	19.2
2	G4_He		0.000166322	41.8
3	G4_Li		0.534	40
4	G4_Be		1.848	63.7
5	G4_B		2.37	76
6	G4_C		2	81
7	G4_N		0.0011652	82
8	G4_0		0.00133151	95
9	G4_F		0.00158029	115
10	G4_Ne		0.000838505	137
11	G4_Na		0.971	149
12	G4_Mg		1.74	156
13	G4_Al		2.699	166
14	G4_Si		2.33	173
15	G4_P		2.2	173
16	G4_S		2	180
17	G4_Cl		0.00299473	174
18	G4_Ar		0.00166201	188
19	G4_K		0.862	190
20	G4_Ca		1.55	191
21	G4_Sc		2.989	216
22	G4_Ti		4.54	233
23 24	G4_V G4 Cr		6.11	245
25	G4_C1 G4 Mn		7.18 7.44	257
25 26	G4_MN G4 Fe		7.44 7.874	272 286
27	G4_Fe		8.9	297
28	G4_C0 G4 Ni		8.902	311
29	G4_NI G4 Cu		8.96	322
30	G4_Cu G4 Zn		7.133	330
31	G4_Z11		5.904	334
32	G4_Ga		5.323	350
33	G4_As		5.73	347
34	G4_As		4.5	348
35	G4 Br		0.0070721	343
36	G4 Kr		0.00347832	352
37	G4 Rb		1.532	363
38	G4 Sr		2.54	366
39	G4 Y		4.469	379
40	G4 Zr		6.506	393
41	G4 Nb		8.57	417
42	G4 Mo		10.22	424
43	G4 Tc		11.5	428
44	G4 Ru		12.41	441
45	G4 Rh		12.41	449
46	G4 Pd		12.02	470
47	G4 Ag		10.5	470
48	G4 Cd		8.65	469
49	G4 In		7.31	488

			1.06	
14	G4_BLOOD_ICE	G4_BL00D_ICRP		75.2
	1	0.101866		
	6	0.10002		
	7	0.02964		
	8	0.759414		
	11	0.00185		
	12	4e-05		
	14	3e-05		
	15	0.00035		
	16	0.00185		
	17	0.00278		
	19	0.00163		
	20	6e-05		
	26	0.00046		
	30	1e-05		
8	G4 BONE COMPACT ICRU		1.85	91.9
	$ \overline{1}$	0.063984		
	6	0.278		
	7	0.027		
	8	0.410016		
	12	0.002		
	15	0.07		
	16	0.002		
	20	0.147		

Создание изотопов

У class-а G4Isotope следующий конструктор

```
G4Isotope(const G4String &name, //имя
G4int z, //атомный номер
G4int n, //число нуклонов
G4double a = 0., //молярная масса
G4int m = 0) //изомерный сдвиг
```

два изотопа урана: U-235 и U-238.

```
G4Isotope* U235 = new G4Isotope("U235", 92, 235, 235.044*g/mole);
G4Isotope* U238 = new G4Isotope("U238", 92, 238, 238.051*g/mole);
```

Создание элементов

```
G4Element(const G4String& name, //имя
          const G4String& symbol, //символьное обозначение элемента
          G4int nbIsotopes) //количество изотопов
  G4Element(const G4String& name, //имя
          const G4String& symbol, //символьное обозначение элемента
          G4double Z, //атомный номер G4double A) //молярная масса
                               //молярная масса
G4Element *enrichedU = new G4Element("enrichedU", "U", 2);
enrichedU->AddIsotope(U235, 5.0 * perCent);
enrichedU->AddIsotope(U238, 95.0 * perCent);
G4Element* naturalUranium = new G4Element("NaturalUranium", "U", 92.,
238.02891*g/mole);
```

Создание материалов

У class-а G4Material следующий конструктор

```
G4Material(const G4String& name, //имя
G4double density, //плотность
G4int nComponents, //количество компонентов
G4State state = kStateUndefined, //состояние
G4double temp = NTP_Temperature, //температура
G4double pressure = CLHEP::STP_Pressure)//давление
```

```
state может принимать следующие значения
```

```
kStateSolid, // Твердое состояние kStateLiquid, // Жидкое состояние kStateGas, // Газообразное состояние kStateUnefined // Неизвестное состояние
```

Нормальное давление 1 атм

комнатная температура 293.15 K (20°C)

Создание материалов

Молекулы определяются из отдельных элементов (в данном случае мы используем число атомов)

```
G4Element* elH = new G4Element("Hydrogen", symbol="H", z=1., a = 1.01*g/mole); G4Element* elO = new G4Element("Oxygen", symbol="O", z=8., a = 16.00*g/mole);
```

G4Material* **H2O** = new G4Material("Water", density = 1.000*g/cm3, ncomp=2);

```
H2O->AddElement(elH, natoms=2); H2O->AddElement(elO, natoms=1);
```

Создание материалов

Мы также можем определять смеси, используя существующие материалы или

элементы, используя массовую долю.

```
G4Element* elC = ...; // задали элемент углерод G4Material* SiO2 = ...; // задали материал стекло G4Material* H2O = ...; // задали материал вода
```

Силикатный аэрогеля
G4Material* **Aerog** = new G4Material("Aerogel",

density = 0.200*g/cm3,
ncomponents=3);

```
Aerog->AddMaterial(SiO2, fractionmass=62.5*perCent); Aerog->AddMaterial(H2O, fractionmass=37.4*perCent); Aerog->AddElement (elC, fractionmass=0.1*perCent);
```

Создаем газ

```
G4Element* elC = ...; // задали элемент углерод
G4Element* elO = ...; // задали элемент кислород
density = 27.*mg/cm3; // Нормальное давление, комнатная температура
G4Material* CO2 = new G4Material(name="Carbonic gas", density, ncomponents=2);
CO2->AddElement(elC, natoms=1);
CO2->AddElement(elO, natoms=2);
```

Создаем газ

```
G4Element* elC = ...; // задали элемент углерод
G4Element* elO = ...; // задали элемент кислород
\frac{\text{density}}{\text{density}} = 27.\text{mg/cm}3;
pressure = 50.*atmosphere;
temperature = 325.*kelvin;
G4Material* CO2 = new G4Material(name="Carbonic gas", density, ncomponents=2, kStateGas,
                                                temperature, pressure);
CO2->AddElement(elC, natoms=1);
CO2->AddElement(elO, natoms=2);
```

Изменение плотности материала

Создавайте новый материал на основе существующего с требуемой плотностью.

Class **G4NistManager** имеет метод **BuildMaterialWithNewDensity** для изменения плотности

Class G4NistManager

```
// Build G4Material with user defined name and density on base
// of a material from Geant4 dataBase
G4Material* BuildMaterialWithNewDensity(const G4String& name, const G4String& basename,
 G4double density = 0.0, G4double temp = NTP Temperature, G4double pres = CLHEP::STP Pressure);
// Construct a G4Material from scratch by atome count
// temperature and pressure should be consistent with the density
inline G4Material* ConstructNewMaterial(const G4String& name, const std::vector<G4String>& elm,
 const std::vector<G4int>& nbAtoms, G4double dens, G4bool isotopes = true,
G4State state = kStateSolid, G4double temp = NTP Temperature,
 G4double pressure = CLHEP::STP Pressure);
// Construct a G4Material from scratch by fraction mass
// temperature and pressure should be consistent with the density
inline G4Material* ConstructNewMaterial(const G4String& name, const std::vector<G4String>& elm,
  const std::vector<G4double>& weight, G4double dens, G4bool isotopes = true,
 G4State state = kStateSolid, G4double temp = NTP Temperature,
 G4double pressure = CLHEP::STP Pressure);
// Construct a gas G4Material from scratch by atome count
inline G4Material* ConstructNewGasMaterial(const G4String& name, const G4String& nameNist,
 G4double temp, G4double pres, G4bool isotopes = true);
// Construct an ideal gas G4Material from scratch by atom count
inline G4Material* ConstructNewIdealGasMaterial(const G4String& name,
 const std::vector<G4String>& elm, const std::vector<G4int>& nbAtoms, G4bool isotopes = true,
 G4double temp = NTP Temperature, G4double pressure = CLHEP::STP Pressure);
```

Class G4NistManager

```
Get number of elements
inline std::size t GetNumberOfElements() const;
// Get atomic number by element symbol
inline G4int GetZ(const G4String& symb) const;
// Get atomic weight by element symbol - mean mass in units of amu of
// an atom with electron shell for the natural isotope composition
inline G4double GetAtomicMassAmu(const G4String& symb) const;
// Get atomic weight in atomic units - mean mass in units of amu of an atom
// with electron shell for the natural isotope composition
inline G4double GetAtomicMassAmu(G4int Z) const;
// Get mass of isotope without electron shell in Geant4 energy units
inline G4double GetIsotopeMass(G4int Z, G4int N) const;
// Get mass in Geant4 energy units of an atom of a particular isotope
// with the electron shell
inline G4double GetAtomicMass(G4int Z, G4int N) const;
```

Оптические свойства


```
G4Material* Aerog = new G4Material("Aerogel",

density = 0.200*g/cm3,

ncomponents=3);
```

```
std::vector<G4double> energy = { 7.0*eV, 7.07*eV, 7.14*eV };
std::vector<G4double> RIND = { 1.00, 1.00, 1.00 };
std::vector<G4double> ABSL = { 100*m, 100*m, 100*m};
```

```
Aerog->AddProperty("RINDEX", energy, RIND);
Aerog->AddProperty("ABSLENGTH", energy, ABSL);
```

Вауум

Geant4 не позволяет использовать абсолютный вакуум (материал с нулевой плотностью). Поэтому создается материал с ультранизкой плотностью.

G4_Galactic (плотность = 1.0e-25 [г/см³]) из предопределенной базы данных является примером такого материала.

G4Material* vacuum = nist->FindOrBuildMaterial("G4_Galactic");

Информация о материале

Как вывести информацию о материале и список материалов

```
G4cout << H2O; // вывести информацию о заданном материале G4cout << *(G4Material::GetMaterialTable()); // вывести список всех материалов
```

Как получить доступ к базе данных материалов через команды команды пользовательского интерфейса Geant4

```
/material/nist/printElement Fe # вывести информацию об элементе по имени
/material/nist/printElementZ 13 # вывести информацию об элементе по атомному номеру(Z)
/material/nist/listMaterials type # вывести материалы по типу = [hep, bio, ...]
/material/g4/printElement elmName # вывести созданный элемент по имени
/material/g4/printMaterial matName # вывести созданный материал по имени
```

Заключение по материалом

Используйте предопределенную базу данных материалов по возможности. Это просто и точно!

Создание магнитного поля

Как создать (магнитное) поле?

Создать его в методе ConstructSDandField() вашего DetectorConstruction

DetectorConstruction.hh

```
#1fndef DETECTORCONSTRUCTION_HH
                       #define DETECTORCONSTRUCTION HH
                       #include <G4VUserDetectorConstruction.hh>
                      class DetectorConstruction : public G4VUserDetectorConstruction{
                      public:
                          G4VPhysicalVolume *Construct() override;
                          void ConstructSDandField();
                       #endif
DetectorConstruction.cxx
                     #include "DetectorConstruction.hh"
                     #include "G4SystemOfUnits.hh"
                     void *DetectorConstruction::ConstructSDandField(){
```

описания полей и чувстительных объемов

Создание магнитного поля

Однородное поле:

```
использовать класс G4UniformMagField. конструктор G4UniformMagField (const G4ThreeVector &FieldVector)
```

```
G4MagneticField* magField = new G4UniformMagField(G4ThreeVector(1.*Tesla,0.,0.));
```

Создание магнитного поля

Не однородное поле:

```
●ИСПОЛЬЗОВАТЬ КЛАСС G4QuadrupoleMagField
КОНСТРУКТОР G4QuadrupoleMagField (G4double pGradient)
G4MagneticField* magField = new G4QuadrupoleMagField(
1.*tesla/(1.*meter));
```

●Создать свой собственный конкретный класс, унаследованный от G4MagneticField, и реализовать метод GetFieldValue.

void MyField::GetFieldValue(
 const double Point[4], double *field) const

```
Point[0..2] — координаты x,y,z в глобальной системе, Point[3] —время field[0..2] — выходные компоненты x,y,z магнитного поля (T)
```

Создаем магнитное поле

Создаем менеджер поля

```
G4FieldManager* fieldMgr = new G4FieldManager();
fieldMgr->SetDetectorField(magField);
fieldMgr->CreateChordFinder(magField);
```

Создаем магнитное поле

Ассоциируем с объемом

logicEnv->SetFieldManager(fieldMgr, false);

Создаем магнитное поле

Ассоциируем с world

G4TransportationManager::GetTransportationManager()->SetFieldManager(fieldMgr);

GDML

GDML (Geometry Description Markup Language) — это формат на основе **XML**, разработанный для описания геометрии детекторов в физике высоких энергий. Его основная цель — предоставить независимый от платформы и фреймворка способ хранения и обмена сложными трехмерными моделями детекторов.

B Geant4 GDML играет роль моста между декларативным описанием геометрии (файл) и программным кодом на C++.