PATENT ABSTRACTS OF JAPAN

(11) Publication number:

63162143 A

(43) Date of publication of application: 05.07.1988

(51) Int. CI

B23Q 17/24

(21) Application number:

61314892

(22) Date of filing:

23.12.1986

(71) Applicant: NEC CORP

(72) Inventor:

TERAI HIROYUKI

(54) CENTERING DEVICE

(57) Abstract:

PURPOSE: To permit the centering with high precision, eliminating the need of a skilled operator, by instaling a unidimensional sensor-with catches the image due to the light supplied from an optical system and an image processing part which calculates the eccentricity quantity between the inside diameter of a sleeve-shaped metal fitting and the revolution center of a spindle from the signal supplied from the unidimensional sensor and the signal supplied from an encoder.

CONSTITUTION: The image of a sleeve-shaped metal fitting 3 at each revolution angle is taken into a unidimensional sensor 5 according to the synchronous signal (c) supplied from an image processing part 10 during one revolution of a spindle 6. The sensor 5 returns the taken-in image as an image signal (a) into the image processing part 10. Further, the pulse signal (b) is sent as the value of the angle in the case when each image is taken in, into the image processing part 10 from an encoder 9. In the image processing part 10, the deflection quantity between the center of the inside diameter of the sleeve metal fitting 3 and the revolution

center of the spindle 6 is calculated from the both input signals (a) and (b). At the initial position of revolution of the spindle 6, the sleeveshaped metal fitting 3 is shifted in the X and Y directions by a position adjustor mechanism 7 according to the above-described deflection quantity, and center adjustment is carried out.

COPYRIGHT: (C)1988, JPO& Japio

⑩ 日本国特許庁(JP)

⑩ 特許出願公開

.@ 公 開 特 許 公 報 (A)

昭63-162143

@Int.Cl.4

識別記号

广内整理番号

母公開 昭和63年(1988)7月5日・

B 23 Q 17/24

C-8107-3C

審査請求 未請求 発明の数 1 (全5頁)

9発明の名称 芯出し装置

②特 顧 昭61-314892

②出 顋 昭61(1986)12月23日

砂発明者 寺井

弘。幸

東京都港区芝5丁目33番1号 日本電気株式会社内

⑪出 顋 人 日本電気株式会社

東京都港区芝5丁目33番1号

20代理人 弁理士内原 晋

明 超 青

1. 発明の名称 広出し装置

2. 特許請求の範囲

スピンドルに取りつけられた前配スピンドルに 強直な平面内で位置決め可能を位置調整機構と、 前記スピンドルの団転角度を検出するエンコーダと、 前記位置調整機構と被芯出し物であるスリープは 金具とを固定するチャックと、 前記スリープ状金具の内偶の透透照明を行うランプの光を前記スリープ状金具の内偶に導 くライトガイドと、 前記スリープ状金具の内部記ランプによる透 造光を拡大する元学系と、 前記光学系からの光による厳像をとらえる一次元 センサーと、 前記一次元センサーからの信号と前記エンコーダ からの信号にもとづいて前記スリープ状金具の内 怪と前記スピンドルの回転中心との偏心量を算出 する面像処理部とを含むことを停歇とする芯出し 装置。

3. 発明の詳細な説明

(職業上の利用分野)

本発明は芯出し袋屋、特に、光伝送用ファイベ・ケーブルを光学的に接続する、コネクタ端末用スリーブ状金具を加工するために必要な芯出し、または、スリーブ状金具の内径と外径を同心円上に加工するために必要な芯出し、を行うための芯出し装置に関する。

〔従来の技術〕 .

従来の技術としては、例えば、特公昭60一 150948 号公報に示されているように無小孔の 芯出し装置がある。

従来の志出し装置は、中空スピンドルに像小孔 付きのワークピースを固定するためのコレクトテ ャッタと、スピンドルとワータピースの数小孔中心能とを一致させるための調整ネジと、放ワークピースの微小孔に対して透過照明を行うためのランプと、放ワータピースの微小孔の画像を拡大するための換板鏡と、前配級像観の像を見るためののぞき窓と、を含んで構成される。

次に従来の芯出し装置について図面を参照して 詳細に説明する。

第5図は従来の芯出し装置の一例を示す構成図である。

第5図 に示す芯出し装置は、中空スピンドル101の内部にインナースリーブ102とワークピース103の取りつけられたコレクトチャック104が挿入され、前記インナースリープ102とコレクトチャック104を連結することによりワークピース103を保持している。

前記中空スピンドル1 0 1 の階部には芯出しティック1 0 5 と固定ネジ1 0 6 が取り付けられ複数個の調整ネジ1 0 7 によって中空スピンドル101の固転軸とワークピース1 0 3 の数小大中心軸と

る芯出し作業に離点があった。 すをわち従来の芯出し接続は、前述の微小孔の光像のふらつき状態から調整ネジによる頻整の置合い、言いかえれば、 値心量を作業者が判断したければならず熟額を受 した。

また、スピンドルの回転とそれを止めた時の芯 出し作業とを数回線り返さなければならず。長大 な時間を会するという欠点があった。

(問題点を解決するための手段)

本発明の芯出し装置は、スピンドルに取り付けられたスピンドルに垂直を平面内で位置決め可能な位置調整機構と、前記スピンドルの回転角度を 機出するエンコーダと、該位置調整機構と被芯出 し物であるスリープ状金具とを固定するチャック と、前記スリープ状金具の内偏の透過照明を行う ランプと、前記ランプの先を該スリープ状金具の 内側に導くライトガイドと、該スリープ状金具の 増配た学系からの光による個像をとらえる一次元 センサーと、前記一次元センサからの信号と該エ を一致させることができる。ランブ108の光は 増動台109上に取り付けられた製像機110に よって拡大され、のぞき際111に錯像される。

次に従来の芯出し袋遣を用いた芯出し方法につ . いて説明する。

最初にワータピース103をコレクトテャッタ
104に固定する。次にランプ108からの光が
のぞき窓111に集光するように個動台109を
移動させ固定する。次にランプ108の光を投射
しながら、中空スピンドル101を回転させのぞ
き窓111上の像のふらつきを測定する。次にスピンドル101を止め、調整ネジ107のいずれ
かまたは全部を被調整して像のふらつきが最小と
なるように苫出しチャック105を援動させる。

この像のふらつきの測定及び芯出しティック 105の調整を数回繰り返すことにより、高稽度 な芯出しが可能となる。

〔発明が解決しようとする問題点〕

上述した従来の芯出し装置は、ワータピースの 数小孔の中心とスピンドルの関転中心を一致させ

(実施例)

次に、本発明の実施例について、図面を参照し て詳細に説明する。

第1図は、本発明の一実施例を示す傾面図である。

ランブ1からの先はライトガイド2を通って芯出しを行う被対象物であるスリープは金具3の透過照明によるスリープは金具3の端末の面像は、光学系4によって拡大され、一次元センサー5に入力される。一方スピンドル6の回転軸を垂直な断になった。二次元的に位置決めが可能を位置調整機構7により付けてある。前記位置により一方には、スピンドル6の他を位置調整機構7に対したが取り付けてある。前記位置により一方とは、スピンドル6の他方には、スピンドル6の他方には、スピンドル6の他方には、スピンドル6の他方には、スピンドル6の他方には、スピンドル6の他方には、スリープが、カウトティック8を用いてスリープ状金具3が出した。またスピンドル6の他方によりが、カウドル6の回転角度を求めるためのエンコーダ9が、取り付けられている。前記一次元センサ5かの

面像信号 a と前記エンコーダからのベルス信号 b は面像処理部 1 0 に送られ、そとでスピンドル 6 の回転中心とスリーブ伏金具の内径の中心との偏 心量が計算され、表示される。

次に本袋機の動作を示す。

dの入力でとに以前のエッジ医療の最小。最大値と比較し、最小医療値でと最大医療値でを記憶及び出力する。

操電算出回路16では最小監察値eと最大磁 保値「の差を求め、扱れ鏡音を配信及び出力する。

カウンタ回路13では同期信号cの入力時のエンコーダリからのベルス信号を記憶し、カウント数トを出力する。

角度記憶団路17では、最大値算出回路15 において最大値検出時に出力される最大値検出 信号1の入力時にカウント数1を取り込み、最 大銭入力時角度1として記憶する。

偏心量算出回路18では、カウンタ回路13からエンコーダ9の一回転終了時に出力される回転終了情号を受けた時点で扱れ並8及び般大値入力時角度」を取り込み、偏心量1及び調芯のためのX。Y方向の調整量皿を計算し、表示回路19によって表示する。

第3図(4)、(4)は、偏心の状態と一次元センサ

をX方向とし、それに垂直な方向をY方向とし、 X・Y方向のメレ量を計算する。

次に計算したスレ量に従い、スピンドルの値 転初期位置で位置調整機構10により、X・Y 方向にスリープ伏金具3を移動させ、調芯を行 う。

次に画像処理部10の動作を説明する。 第2図は、画像処理部10のブロック図であっ

阿期発生回路11では、スピンドル6の一回では中に取り出すあらかじめ設定したデータ数に従い、阿期信号 c を出力する。 同期信号 c 化よって一次元センサ 5 から画像信号 a を取り出しエッジ検出回路12に入力する。 一方エンコーダ 9 からのパルス信号 b を取り出しカウンタ回路13に入力する。

エッジ検出回路12では、画像信号 a のエッジ密標 d を抽出し、最小値算出回路14と最大値算出回路15に入力される。最小値算出回路15では、エッジ密観

の出力を説明するための図である。

第3図(a)は回転初期位置でのスリープ状金具3の状態を示している。回転中心20 に対してスリープ状金具3の内傷中心21のズレ量を偏心量22とすると、芯出しのための調整量はX・Y方向それぞれX調整量△X23、Y現整量△Y24と表わせる。またとの時の一次元センサの出力は第3図(b)のようになる。透過照明のためセンサの出力は内径円周25の部分で低下する。すなわちセンサ出力のエッジ座標 d を求めることにより内径の円局位置を求めることができる。

第4図(a)。(b)。(c)は、循心兼算出方法を説明 するための図である。

第4図(a)は第3図(a)を回転中心20 に対して、スリープ状金具3を回転させたものであり、回転に伴い内径中心及びエッジ密観が移動する。

第4図(i)は回転に伴うエック密係の変化を示 した図である。

第4図(4)、(6)より内径中心が回転によりX軸

上に来た時、エッツ強保が最大となるため、その時の回転角 8m 2 6を求めることにより、回転初期位置2 7での内径中心の方向、すなわち回転中心からの場心の方向がわかる。

 $F_{ij}^{(k)} = \{i \in \{i, j \in \mathcal{F}_{ij}\} \mid i \in \mathcal{F}_{ij} = i\}$

また終4図(c)に示すようにエッジ座標域大位 値28から180°回転した位置でエッジ座標 が最小となり、値心量 d122は、最大座標値 fと最小座標値をの半分、すなわち扱れ量 gの 半分となる。よって、X調整量△X23及びY 環盤量△Y24は、

 $\Delta X = 扱れ数/2 \cdot \cos\theta m$ = d1 · cos θm $\Delta Y = 扱れ量/2 · \sin\theta m$ = d1 · $\sin\theta m$ となる。

(発明の効果)

本発明の芯出し装置は、回転軸と被芯出し物の 偏心の状態を目視によって観察し、脚芯を行う代 りに、自動的に偏心量を計削するための画像処態 部を設けることにより偏心量及び調芯のための調 整量を定量的に求めることができる。このため脚 芯を行う際、熱練者を必要とせず短時間に高精度

a ……画像信号、b ……ベルス信号、c ……同期信号、d ……エッジ医療、e ……最小医療値、 f ……最大医療値、 g ……振れ量、b ……カウント数、i ……最大値検出信号、j ……最大値入力時角度、k ……回転終了信号、1 ……偏心量、m ……调整量。

、代继人 弁理士 内 原

な芯出しができるという効果がある。

また、被芯出し物の画像を取り込む場合、一次 元センサを用いるととにより二次元イメージセン サに較らべ高速にかつ、高い分解能で画像が得られ、高精度な針側鎖朵が求められる。

4. 図面の簡単を説明

第1図は本発明の一実施例を示す衡面図、第2図は第1図に示す画像処理部のブロック図、第3図(a)。(b)は第2図に示すエッジ検出図路での動作を説明するための動作説明図、第4図(a)。(b)。(c)は、第2図に示す偏心量算出図路での算出方法を説明するための動作説明図、第5図は従来の一例を示す例面図である。

1 ……ランプ、2 ……ライトガイド、3 ……スリープ 依金具、4 ……光学系、5 ……一次元センサ、6 ……スピンドル、7 ……位置 脚整機構、8 ……コレクトティック、9 ……エンコーダ、10 ……画像処理部、11 ……両期発生回路、12 ……エッジ検出回路、13 ……カウンタ回路、14

特開昭63-162143 (5)

101---中空スピンドル 108---ランプ
102---インナースリープ 109---褶動台
103---ワークピース 110---顕彼鏡
104---コレクトナーック 111---のぞき窓
105---恋出しチャック
106 --- 固定ネジ
107 --- 調整ネジ

第5回