Pontificia Universidad Catolica del Peru

Facultad de Ciencias e Ingeniería

Ecuaciones Diferenciales Ordinarias

Prof: Rubén Agapito Tarea 1

Fecha de entrega: 16 de enero hasta las 11pm

Preguntas 1

1. Use la definición de matriz exponencial para probar las propiedades básicas de la siguiente proposición dada en clase:

Proposición 1. Sea $A \in \mathbb{C}^{n \times n}$. Se cumplen:

- a) Si Θ es la matriz nula, entonces $e^{\Theta} = I$.
- b) $A^m e^A = e^A A^m, \forall m \in \mathbb{Z}^+.$ c) $(e^A)^T = e^{A^T}.$
- d) Si AB = BA, entonces $A e^B = e^B A$ y $e^A e^B = e^B e^A$.
- 2. Demuestre que $e^{cI+A} = e^c e^A$, para todos los escalares c y todas las matrices cuadradas A.
- 3. Si $A^2 = A$, encuentre una fórmula para e^A .
- 4. Calcule e^A para las matrices

$$(a) A = \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \qquad (b) A = \begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix} \qquad (c) A = \begin{bmatrix} a & 0 \\ b & 0 \end{bmatrix}$$

5. Si $A^2 = I$, demuestre que

$$2e^{A} = \left(e + \frac{1}{e}\right)I + \left(e - \frac{1}{e}\right)A.$$

- 6. Supongamos que $\lambda \in \mathbb{C}$ y $\vec{x} \in \mathbb{C}^n$ es no nulo tal que $A\vec{x} = \lambda \vec{x}$. Demuestre que $e^A \vec{x} = e^{\lambda} \vec{x}$.
- 7. Considere las matrices

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad B = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

Demuestre por cálculo directo que $e^{A+B} \neq e^A e^B$.

8. La traza de una matriz cuadrada A de tamaño $n \times n$ está definida por la suma de sus entradas en la diagonal:

$$tr(A) = a_{11} + a_{22} + \cdots + a_{nn}.$$

Demuestre que, si A es diagonalizable, entonces $det(e^A) = e^{tr(A)}$.