Introduction to Optimization

Week 3 Assignment: Solution

Part I [10marks]

- 1. Let's consider the function f defined over \mathbb{R}^2 by $f(x,y) = \sqrt{x^2 + y^2 + \pi}$
 - a. Explain (simply) why $\sqrt{\pi}$ is the minimum of this function. [1mark]

Since x^2 and y^2 are always non-negative, the smallest possible value of $x^2 + y^2$ is 0, which occurs when x = 0 and y = 0. Therefore, the minimum value of f(x, y) is achieved when x = 0 and y = 0, resulting in

$$f(0,0) = \sqrt{0^2 + 0^2 + \pi} = \sqrt{\pi}.$$

b. Compute the gradients (partial derivatives) of f with respect to x and y.[2marks]Recall that for a function u(x),

$$\frac{d}{dx}\sqrt{u(x)} = \frac{1}{2\sqrt{u(x)}}\frac{du}{dx}(x) = \frac{u'(x)}{2\sqrt{u(x)}}$$

Therefore, the partial derivatives of f with respect to x and y are:

$$\frac{\partial f}{\partial x} = \frac{2x}{2\sqrt{x^2 + y^2 + \pi}} = \frac{x}{\sqrt{x^2 + y^2 + \pi}} \tag{1}$$

and

$$\frac{\partial f}{\partial y} = \frac{2y}{2\sqrt{x^2 + y^2 + \pi}} = \frac{y}{\sqrt{x^2 + y^2 + \pi}} \tag{2}$$

c. Find the pair (x, y) for which f is minimum and deduce that the minimal value of f(x, y) is indeed $\sqrt{\pi} \cdot [2marks]$

To find the minimum of f, we set the partial derivatives equal to 0:

$$\frac{\partial f}{\partial x} = 0$$
 and $\frac{\partial f}{\partial y} = 0$.

Solving these equations using (1) and (2), we find that x = 0 and y = 0. Therefore, the minimal value of f(x, y) is $\sqrt{\pi}$, as shown earlier.

2. Questions:

a. Rewrite the cost function using a matrix form. [1mark] Using

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \quad \mathbf{X} = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_m \end{bmatrix}, \quad \omega = \begin{bmatrix} \omega_0 \\ \omega_1 \end{bmatrix}.$$

where \mathbf{y} is the vector of outputs, \mathbf{X} is the design matrix, and ω is the parameter vector, the cost function $L(x;\omega)$ can be rewritten in matrix form as:

$$L(x;\omega) = \frac{1}{m} \|\mathbf{y} - \mathbf{X}\omega\|_1,$$

1

b. Compute the gradients with respect to ω_0 and ω_1 .[4marks]

To compute the gradients with respect to ω_0 and ω_1 , we keep the original form of the cost function $L(x;\omega)$ using the definition of the 1-norm:

$$L(x;\omega) = \frac{1}{m} \sum_{i=1}^{m} |y_i - \omega_0 - \omega_1 x_i|.$$

Now, let's compute the gradients:

Using $\frac{d}{dx}|u| = \frac{u}{|u|}\frac{du}{dx}$, we have for ω_0 :

$$\frac{\partial L}{\partial \omega_0} = \frac{1}{m} \sum_{i=1}^m \frac{y_i - \omega_0 - \omega_1 x_i}{|y_i - \omega_0 - \omega_1 x_i|} \cdot \frac{\partial}{\partial \omega_0} (y_i - \omega_0 - \omega_1 x_i).$$

Moreover,

$$\frac{\partial}{\partial \omega_0} (y_i - \omega_0 - \omega_1 x_i) = -1$$

Thus,

$$\frac{\partial L}{\partial \omega_0} = \frac{-1}{m} \sum_{i=1}^{m} \frac{y_i - \omega_0 - \omega_1 x_i}{|y_i - \omega_0 - \omega_1 x_i|}$$

Similarly, for ω_1 :

$$\frac{\partial L}{\partial \omega_1} = \frac{1}{m} \sum_{i=1}^m \frac{y_i - \omega_0 - \omega_1 x_i}{|y_i - \omega_0 - \omega_1 x_i|} \cdot \frac{\partial}{\partial \omega_1} (y_i - \omega_0 - \omega_1 x_i).$$

And,

$$\frac{\partial}{\partial \omega_1} (y_i - \omega_0 - \omega_1 x_i) = -x_i$$

Therefore,

$$\frac{\partial L}{\partial \omega_1} = \frac{-1}{m} \sum_{i=1}^{m} \frac{x_i (y_i - \omega_0 - \omega_1 x_i)}{|y_i - \omega_0 - \omega_1 x_i|}$$

Part II- Python Implementation. [10marks]

Find the solution in the Jupiter notebook.

- 3. We will see if we can find the results of question 1 using the gradient descent.
 - a. Use the results of question 1.b) to find the couple (x, y) that minimizes f(x, y), this time, with the gradient descent. [3marks]
 - b. Plot the values of x and y during the iterative process.[1mark]
 - c. Compute $f(x_{final}, y_{final})$ and compare with the result of question 1.[1mark]
- 4. Implementation of the question 2. You will use the dataset and the jupyter notebook provided with the assignment.
 - a. Read and visualize the dataset with a scatter plot. [0.5marks]
 - b. Use the results of question 2 to implement the gradient descent and minimize the cost function defined. [3marks]
 - c. Print the values of ω_0 and ω_1 at the end of the optimization. [0.5marks]
 - d. Plot the evolution of the error during the iterations. [1mark]