Analysis and Differential Equations

Solve every problem.

Problem 1. For $n \ge 1$, we consider the integral

$$I_n = \int_{[0,1]^n} \frac{n}{\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_n}} dx_1 \dots dx_n.$$

Prove that $\lim_{n\to\infty} I_n$ exists.

Solution: For all positive integers m and n, for all x, y > 0, we check that

$$\frac{(m+n)^2}{x+y} \le \frac{m^2}{x} + \frac{n^2}{y}.$$

Thus, $J_n = nI_n$ satisfies

$$J_{m+n} \le J_m + J_n.$$

It is well-known that $\lim_{n\to\infty} \frac{J_n}{n}$ exists.

Problem 2. Let $U \subset \mathbb{C}$ be a non-empty open set and $f: U \to U$ be a non-constant holomorphic function. Prove that, if $f \circ f = f$, then $f(z) \equiv z$ for all $z \in U$.

Solution: Since f is not a constant map, $V := f(U) \subset U$ is an nonempty open set (the open mapping property). Thus, for $z \in V$, we have z = f(z). This implies that $f(z) \equiv z$.

Problem 3. Let $X \subset \mathbf{R}$ be a set with positive (Lebesgue) measure. Show that we can find an arithmetic progression of 2022 terms in X, *i.e.*, there exists $x_1, \dots, x_{2022} \in X$ so that the $x_{i+1} - x_i$'s are all equal and positive, $i = 1, \dots, 2021$.

Solution: We use m to denote the Lebesgue measure. Let $x \in X$ be a Lebesgue point; therefore, there exists an interval I so that $x \in I$ and $\frac{m(I \cap X)}{m(I)} \ge 1 - \epsilon$ and ϵ will be determined at the end of the proof. By translating and rescaling, we may assume that I = [0, 1]. We divide I into 2022 intervals:

$$I = I_1 \cup I_2 \cup \cdots \cup I_{2022}, \ I_k = \left[\frac{k-1}{2022}, \frac{k}{2022}\right], \ k = 1, 2, \dots, 2022.$$

Let $X_k=(I_k\cap X)-\frac{k-1}{2022}$ be the translation of $I_k\cap X$ and $X_k\subset I_1,\,k=1,\dots$, 2022. We know that

$$\sum_{k=1}^{2022} m(X_k) \ge 1 - \epsilon.$$

Thus,

$$m\left(\bigcap_{1\leq k\leq 2022}X_k\right)\geq \frac{1}{2022}-2022\epsilon.$$

We may take $\epsilon=2023$, thus, $\bigcap_{1\leq k\leq 2022}X_k\neq\emptyset$. Let $x_1\in\bigcap_{1\leq k\leq 2022}X_k$. Then $x_k=x_1+\frac{k-1}{2022}$ is the arithmetic progression.

Problem 4. Let C([0,1]) be the space of all continuous **C**-valued functions equipped with L^{∞} -norm. Let $\mathbf{P} \subset C([0,1])$ be a closed linear subspace. Assume that the elements of **P** are polynomials. Prove that dim $\mathbf{P} < \infty$.

Solution: Let $I = \{(x, y) \in [0, 1]^2 \mid x \neq y\}$. For each $(x, y) \in I$, we define a mapping

$$T_{(x,y)}: \mathbf{P} \to \mathbf{C}, \ u \mapsto \frac{u(x) - u(y)}{|x - y|}.$$

Therefore, we have

$$\sup_{(x,y)\in I} \left| T_{(x,y)} u \right| \le \|u'\|_{L^{\infty}}.$$

Since **P** is closed, we can apply the Banach-Steinhaus Theorem: there exists C > 0, so that

$$\sup_{(x,y)\in I} \left\| T_{(x,y)} \right\|_{_{\mathbf{P}\to\mathbf{C}}} \le C.$$

We consider the unit ball of P:

$$B = \left\{ u \in \mathbf{P} \mid \|u\|_{L^{\infty}} \le 1 \right\}.$$

Hence, for all $u \in B$, we have

$$|u(x) - u(y)| \le C|x - y|.$$

Thus, the family B is equicontinuous. By the Arzelà-Ascoli Theorem, it is compact. Thus, P is finite-dimensional.

Problem 5. Let $\Omega \subset \mathbf{R}^3$ be a bounded domain with smooth boundary. Assume that $u \in C(\overline{\mathbf{R}^3 - \Omega})$ is a harmonic function on $\mathbf{R}^3 - \Omega$ so that $u|_{\Omega} = 1$ and $\lim_{|x| \to \infty} |u(x)| = 0$.

Prove that for such u, $\lim_{|x|\to\infty} |x|u(x)$ exists.

Solution: Let $\varphi(x) \in C^{\infty}(\mathbb{R}^3)$ so that $\varphi \equiv 0$ on an open neighborhood of Ω and $\varphi \equiv 1$ for $|x| \geq R$ where R > 0 is a sufficiently large number. Therefore, we can regard $\varphi \cdot u$ as a smooth function defined on \mathbb{R}^3 . Hence,

$$\Delta(\varphi u) = \rho$$

where $\rho \equiv 0$ for $|x| \ge R$. Therefore, for sufficiently large |x|, we have

$$u(x) = \varphi(x)u(x)$$

$$= -\frac{1}{4\pi} \int_{\mathbb{R}^3} \frac{\rho(y)}{|y - x|} dy$$

$$= -\frac{1}{4\pi} \int_{|y| \le R} \frac{\rho(y)}{|y - x|} dy$$

Therefore.

$$|x|u(x) = -\frac{1}{4\pi} \int_{|y| \le R} \frac{|x|}{|y - x|} \rho(y) \, dy.$$

Since $|y| \le R$, $\frac{|x|}{|y-x|}$ converges uniformly to 1 as $|x| \to \infty$, the conclusion follows.

Problem 6. Let $f(x,y) \in C^1(\mathbb{R}^2)$. We assume that there exists C > 0 so that for all $(x,y) \in \mathbb{R}^2$, $\left|\frac{\partial f}{\partial y}(x,y)\right| \leq C$. Prove that the following ODE has a globally defined solution for all $y(0) = y_0 \in \mathbb{R}$:

$$\begin{cases} \frac{d}{dx}y(x) = f(x, y(x)), \\ y(0) = y_0. \end{cases}$$
 (1)

In addition, we assume that f is 1-periodic in x, *i.e.*, for all $(x, y) \in \mathbb{R}^2$, we have f(x + 1, y) = f(x, y). Prove that if (1) admits a globally defined bounded solution, then (1) admits a periodic solution.

Solution: The global existence is easy: fix an interval [0, a), we have

$$|y'| \le |f(x, y(x)) - f(x, y(0))| + |f(x, y(0))| \le C|y(x) - y(0)| + M \le C|y| + M.$$

where $M = \sup_{x \in [0,a]} |f(x,y(0))|$. By Gronwall's inequality, y is bounded all the way up to [0,a]. We can then extend f across a. This shows the solution can be defined globally.

Assume that φ is a bounded solution. We may assume that $\varphi(1) \neq \varphi(0)$. Otherwise, φ is a periodic solution. Without loss of generality, we may assume that $\varphi(1) > \varphi(0)$. By comparing two solutions $\varphi(x)$ and $\varphi(x+1)$ of (1), we see that $\varphi(0) < \varphi(1) < \dots < \varphi(n) < \dots$. Thus, by the boundedness of φ , we may assume that

$$\varphi(n) \to y_* \in \mathbf{R}, \ n \to \infty.$$

Therefore, the solution to (1) with y_* as the initial data is a 1-periodic solution.