

Machine Vision

Lecture 8: Multi view geometry

Central projection model

- We will first look at cameras with finite centre of projection
- A pinhole camera with focal length f located at the coordinate origin projects a 3d point

$$(X,Y,Z) \to \left(\frac{fX}{Z},\frac{fY}{Z}\right)$$

In homogeneous coordinates this can be expressed as

$$\begin{pmatrix} fX \\ fY \\ Z \end{pmatrix} = \begin{pmatrix} f & & 0 \\ & f & 0 \\ & & 1 & 0 \end{pmatrix} \begin{pmatrix} X \\ Y \\ Z \\ 1 \end{pmatrix}$$

Camera calibration matrix

- We assumed that the coordinate system of the image plane is the same as the object coordinate system
- This is in general not the case, as our object world is typically measured in metres $[m^3]$ and the image world is measured in pixels $[pel^2]$
- Also the image coordinate system origin is not necessarily where the object Z-axis pierces the image plane, which we accommodate with translation by (x_0, y_0) and scaling by m_x and m_y of the image plane

$$\boldsymbol{x}' = \begin{pmatrix} fm_{x} & x_{0} & 0 \\ & fm_{y} & y_{0} & 0 \\ & 1 & 0 \end{pmatrix} \boldsymbol{X}$$

Camera calibration matrix

• We can summarise this image coordinate system transformation in the 3×3 camera calibration matrix

$$K = \begin{pmatrix} fm_x & s & x_0 \\ & fm_y & y_0 \\ & & 1 \end{pmatrix} = \begin{pmatrix} c & s & x_0 \\ & \alpha c & y_0 \\ & & 1 \end{pmatrix}$$

• Which has 5 parameters

• The principal length
$$c = f m_x$$

• The aspect ratio
$$\alpha = m_y/m_x$$

• The principal point
$$(x_0, y_0)$$

• The **image skew** s (modern CCD cameras are manufactured with a very regular pixel grid, so typically s=0 for digital images; however, $s\neq 0$ often happens when processing scanned film)

Changing the focal length (zoom)

- The principal length c is the distance between the projection centre and the image plane measured in the unit of the object coordinate system
- The longer the principal length, the narrower is the opening angle and the smaller is the field of view
- Optical zoom is changing distance of the image plane to the centre of projection, i.e. affecting the principal length \boldsymbol{c}

Backward projection of rays

- The calibration matrix not only tells us how 3d points are projected into 2d coordinates
- We can also reverse the equation and obtain a way of calculating the direction in space corresponding to the image point

$$\boldsymbol{m} = \boldsymbol{K}^{-1} \boldsymbol{x}'$$

• The distance λ from the camera is unknown, but we know that the 3d scene point is somewhere on the line

$$X = \lambda \frac{m}{\sqrt{m^T m}}$$

Object coordinate system

- Thus far we have assumed the camera to be located in the origin of the 3d coordinate system
- Obviously this is not the case, and we need to accommodate this transformation between camera coordinate system and world coordinate system
- If we apply the translation and rotation to every image point we can express the full transformation from object to image coordinate system in homogeneous coordinates as follows

The projective camera

• The projective camera can be described as a homogeneous 3×4 matrix $P \in \mathbb{P}^{11}$ transforming homogeneous 3d scene points $X \in \mathbb{P}^3$ into homogeneous 2d image coordinates $x \in \mathbb{P}^2$ as

$$x = PX$$

The projection matrix can be decomposed into

$$\boldsymbol{P} = \begin{pmatrix} p_{11} & p_{12} & p_{13} & p_{14} \\ p_{21} & p_{22} & p_{23} & p_{24} \\ p_{31} & p_{32} & p_{33} & p_{34} \end{pmatrix} = \begin{pmatrix} c & s & x_0 \\ & \alpha c & y_0 \\ & & 1 \end{pmatrix} \underbrace{\begin{pmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{pmatrix}^T}_{\boldsymbol{R}} \begin{pmatrix} 1 & & -t_1 \\ & 1 & & -t_2 \\ & & 1 & -t_3 \end{pmatrix}$$

• The 11dof of ${\it P}$ are distributed across the camera calibration ${\it K}$ containing 5dof, the rotation of the camera ${\it R}$ containing 3dof, and the position of the camera ${\it t}$ containing 3dof

The projective camera

To get the camera position t from the projection matrix we note that

$$\mathbf{P}\begin{pmatrix} \mathbf{t} \\ 1 \end{pmatrix} = \mathbf{K}\mathbf{R}^T [\mathbf{I}_{3\times 3} \quad -\mathbf{t}] \begin{pmatrix} \mathbf{t} \\ 1 \end{pmatrix} = \mathbf{K}\mathbf{R}^T \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \mathbf{0}$$

- Therefore the centre of projection is the right-null-space of P
- If we cut

$$P = [M \quad p]$$

into a 3×3 submatrix

$$M = KR^T$$

and a 3-vector

$$p = -KR^Tt$$

Then we can easily calculate it using the following insight:

$$-M^{-1}p = RK^{-1}KR^Tt = t$$

The projective camera

• To separate

$$M = KR^T$$

We note that this is a product of an upper diagonal matrix

$$\mathbf{K} = \begin{pmatrix} c & s & x_0 \\ & \alpha c & y_0 \\ & & 1 \end{pmatrix}$$

• and a rotation matrix \mathbf{R}^T , which we can separate using the RQ decomposition algorithm

General back-projection

 We already saw that the direction of the of a ray from the origin in the un-rotated coordinate frame is

$$\mathbf{m} = \mathbf{K}^{-1} \mathbf{x}'$$

 If we apply the coordinate system transformation, the ray originating from the centre of projection into this direction in the world coordinate frame is

$$X = t + \lambda R K^{-1} x'$$

 Putting this all together we obtain a way to calculate the ray of 3d points corresponding to an image coordinate

$$X = -M^{-1}p + \lambda M^{-1}x' = M^{-1}(\lambda x - p)$$

Triangulation of points

• Given two corresponding points x and x' in two images

$$P = (M \quad p)$$

 $P' = (M' \quad p')$

The 3d point must be on both rays

$$X = M^{-1}(\lambda x - p)$$

$$X' = M'^{-1}(\mu x' - p')$$

• In the presence of noise, this is not exactly the case, therefore we try to find the point where the rays are closest, i.e. minimise the distance

$$d = \left| \mathbf{M}^{-1} (\lambda \mathbf{x} - \mathbf{p}) - \mathbf{M'}^{-1} (\mu \mathbf{x'} - \mathbf{p'}) \right|^2$$

Triangulation of points

• To minimise the distance we look at the derivatives

$$\frac{\partial d}{\partial \lambda} = 2\left(\mathbf{M}^{-1}(\lambda \mathbf{x} - \mathbf{p}) - \mathbf{M'}^{-1}(\mu \mathbf{x'} - \mathbf{p'})\right)\mathbf{M}^{-1}\mathbf{x} = 0$$

$$\frac{\partial d}{\partial \mu} = 2\left(\mathbf{M}^{-1}(\lambda \mathbf{x} - \mathbf{p}) - \mathbf{M'}^{-1}(\mu \mathbf{x'} - \mathbf{p'})\right)\mathbf{M'}^{-1}\mathbf{x'} = 0$$

- This are two linear equations, which we can easily solve for the unknown λ and μ
- The triangulated point is then determined half-way between the two points closest to each other

$$\widehat{X} = \frac{X + X'}{2}$$

Back projection of lines

- A point x is on a line l if $l^T x = 0$
- All 3d points X that project somewhere on this line must fulfil

$$\boldsymbol{l}^T \boldsymbol{x} = \underbrace{\boldsymbol{l}^T \boldsymbol{P}}_{\boldsymbol{\pi}^T} \boldsymbol{X} = 0$$

 This can be considered as a plane equation of the 3d plane

$$\pi = P^T l$$

• Which is the back-projection of the image line $m{l}$

 A single 3d point that is visible in two images defines an epipolar plane in 3d space, which connects the point and the two centres of projection

- Because all these epipolar planes go through the centres of projection, and therefore through the baseline between the two images, they create corresponding epipolar lines
- All epipolar lines intersect in the epipoles, which are the intersections of the baseline with the image planes

- When looking for a point correspondence of a point x in another image, we don't know where it is due to the unknown distance
- However, knowing the epipolar geomery we can restrict the search to the epipolar line in the second image

Let the two camera matrices be

$$P = K(I 0)$$

$$P' = K'R^{T}(I -t)$$

• Then the point x in the first image back-projects to the line $X = \lambda K^{-1} x$

which projects into the second image at

$$\mathbf{x}' = \mathbf{K}'\mathbf{R}^T(\mathbf{X} - \mathbf{t}) = \mathbf{K}'\mathbf{R}^T(\lambda\mathbf{K}^{-1}\mathbf{x} - \mathbf{t})$$

- The epipole is the image of the centre of projection ($\lambda=0$) ${m e}'=-{m K}'{m R}^T{m t}$
- Now the epipolar line through the epipole $m{e}'$ and $m{x}'$ is

$$\boldsymbol{l} = \boldsymbol{e}' \times \boldsymbol{x} = \boldsymbol{e}' \times (\lambda \boldsymbol{K}' \boldsymbol{R}^T \boldsymbol{K}^{-1} \boldsymbol{x} + \boldsymbol{e}') = \boldsymbol{S} [\boldsymbol{K}' \boldsymbol{R}^T \boldsymbol{t}] \boldsymbol{K}' \boldsymbol{R}^T \boldsymbol{K}^{-1} \boldsymbol{x}$$

• A point x' in the second image is on the epipolar line

$$\boldsymbol{l} = \boldsymbol{S}[\boldsymbol{K}'\boldsymbol{R}^T\boldsymbol{t}]\boldsymbol{K}'\boldsymbol{R}^T\boldsymbol{K}^{-1}\boldsymbol{x}$$

• If

$$\boldsymbol{l}^T \boldsymbol{x}' = \boldsymbol{x}'^T \boldsymbol{F} \boldsymbol{x} = 0$$

• with the 3 × 3 fundamental matrix

$$F = S[K'R^Tt]K'R^TK^{-1}$$

• In conclusion, two points x and x' can only refer to the same scene point if they obey the following equation

$$\mathbf{x}^{\prime T}\mathbf{F}\mathbf{x}=0$$

- Obviously, this equation is homogeneous, i.e. the scale of ${\it F}$ does not alter the result
- Also, because $m{S}[m{e}']$ has rank 2, the fundamental matrix is always singular

$$\det \mathbf{F} = 0$$

 These two condition mean that the fundamental matrix has 7 degrees of freedom

• If F is the fundamental matrix of the image pair (P, P'), then F^T is the fundamental matrix of the image pair (P', P)

• For a point x in the first image, the epipolar line in the second image is

$$l' = Fx$$

• For a point x^\prime in the second image, the epipolar line in the first image is

$$l = F^T x'$$

Calculating the epipoles

 The fundamental matrix is singular, and the epipoles are the left and right null-spaces

$$Fe = 0$$

$$F^Te' = 0$$

• To calculate the epipoles we can use the singular value decomposition, with the epipole being the singular vector corresponding to the smallest singular value of ${\it F}$

• The fundamental matrix can be calculated from 7 point correspondences $x_i' \leftrightarrow x_i$

Each point correspondence provides a condition

$$\mathbf{x}_{i}^{\prime T}\mathbf{F}\mathbf{x}_{i}=0$$

Or equivalent using the Kronecker product

$$\underbrace{\left(\mathbf{x}_{i}^{T} \otimes \mathbf{x}_{i}^{\prime T}\right)}_{\mathbf{a}_{i}^{T}} vec[\mathbf{F}] = 0$$

• These 7 equations can be stacked into a 7×9 matrix

$$A = \begin{pmatrix} \boldsymbol{a_1^T} \\ \vdots \\ \boldsymbol{a_7^T} \end{pmatrix}$$

• For which we calculate the two null-vectors $\mathbf{A}f_1=\mathbf{0}$ and $Af_2=\mathbf{0}$ using the singular value decomposition

The fundamental matrix we are looking for is now

$$\mathbf{F} = \alpha \mathbf{F_1} + (1 - \alpha) \mathbf{F_2}$$

To determine the value for alpha we use the singularity constraint

$$\det(\alpha \mathbf{F_1} + (1 - \alpha)\mathbf{F_2}) = 0$$

• This is a degree 3 polynomial in the unknown α , which we can easily solve

 In case there are 8 points or more, we can also apply the DLT algorithm we have seen before by stacking all points into

$$A = \begin{pmatrix} \boldsymbol{a}_1^T \\ \vdots \\ \boldsymbol{a}_8^T \end{pmatrix}$$

- The fundamental matrix is then found as the singular vector corresponding to the smallest singular value
- In this case the singularity constraint needs to be applied (again using the singular value decomposition)

```
U,S,V = np.linalg.svd(A)
F = V[8,:].reshape(3,3).T
U,S,V = np.linalg.svd(F)
F = np.matmul(U,np.matmul(np.diag([S[0],S[1],0]),V))
```

Projective invariance

- The fundamental matrix for a pair of cameras (P, P') and a pair of cameras (PH, P'H) is the same for all 3d homograpgies H
- Therefore, the knowing the fundamental matrix determines the 3d scene up to a 3d projective transformation only
- If necessary we can choose the canonical cameras

$$P = [I \quad 0]$$

 $P' = [S[e']F \quad e']$

 And determine the necessary homography later from other information (camera calibration)

Image rectification

If apply any 2d homographies H and H' to both images

$$\widehat{x} = Hx$$

$$\widehat{x}' = H'x'$$

 then the fundamental matrix between the two images transforms according to

$$\widehat{F} = H'^{-T}FH^{-1}$$

• This is particularly useful, if we want to transform the images to achieve a given target fundamental matrix $\widehat{\pmb{F}}$

Image rectification

- An important special case is related to how our two eyes are arranged:
 - Both eyes are identical: K = K'
 - Both eyes look into the same direction: R = I
 - The translation is horizontal only: $\mathbf{t} = (b \quad 0 \quad 0)^T$
- In this case the fundamental matrix is

$$\mathbf{F} = \mathbf{S}[\mathbf{K}'\mathbf{R}^T\mathbf{t}]\mathbf{K}'\mathbf{R}^T\mathbf{K}^{-1} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -cb \\ 0 & cb & 0 \end{pmatrix}$$

Image rectification

 To achieve this special configuration we therefore need to find homographies so that

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix} = \mathbf{H}'^{-T} \mathbf{F} \mathbf{H}^{-1}$$

- There are many homographies ${\it H}$ and ${\it H}'$ that fulfil these equations
- Typically we will choose these transformations so that they minimally distort the original input images
- We also make sure that corresponding epipolar lines align

Disparity

 Corresponding epipolar lines are aligned in a rectified image, therefore the depth of a 3d point only affects the horizontal displacement between the images

 This horizontal displacement between the images is called disparity

Dense stereo

 Algorithms that solve this 1d search problem and calculate the disparity, and therefore the depth, for each pixel are called dense stereo algorithms

Dense stereo

 There are several dense stereo algorithms for rectified images, most of them combining smoothness constraints and similarity measures

Block Matching compares patches to calculate similarity metric

```
stereo = cv2.createStereoBM(numDisparities=16, blockSize=15)
disparity = stereo.compute(imgL,imgR)
```

The disparity is linked to depth, therefore the search range can be limited

Stereoscopic images

- Another application of rectified images is to present them to each eye individually
- Because this disparity estimation is how our spatial perception works, humans will perceive the scene in 3d then

Trifocal tensor

- We now will look very briefly at the geometry of three images
- Three lines l, l', l'' must all back-project onto a single line L in space
- These back-projections are the three planes $m{\pi} = m{P}^T m{l}$, $m{\pi}' = m{P'}^T m{l}'$ and $m{\pi}'' = m{P'}^T m{l}''$

Trifocal tensor

- We now will look briefly at the geometry of three images
- Three lines *l*, *l*', **l**" must all back-project onto a single line *L* in space
- These back-projections are the three planes $m{\pi} = m{P}^T m{l}$, $m{\pi}' = m{P'}^T m{l}'$ and $m{\pi}'' = m{P'}^T m{l}''$
- All points X on the line L must therefore be incident to all three lines,
 i.e.

$$\begin{pmatrix} \boldsymbol{\pi}^T \\ {\boldsymbol{\pi}'}^T \\ \boldsymbol{\pi}'' \end{pmatrix} \boldsymbol{X} = \mathbf{0}$$

- Because the line L is a one-dimensional entity (in addition to the homogeneity of the equation), the null-space of this matrix must be 2dimensional
- This is called the tri-focal constraint

Trifocal tensor

 The tri-focal constraint can be expressed as stating that the line

$$oldsymbol{l} oldsymbol{l} = egin{pmatrix} l'' T_1 l'' \ l'^T T_2 l'' \ l'^T T_3 l'' \end{pmatrix}$$

• The $3 \times 3 \times 3$ tensor $[\mathcal{T}_1, \mathcal{T}_2, \mathcal{T}_3]$ describing this relationship is called the **tri-focal tensor**

Tri-focal geometry

- Why is this important? Why can't we just use the pair-wise relationships provided by the epipolar geometry of mutual pairs of images?
- If we, for example want to transfer a point correspondence $x \leftrightarrow x'$ from one image pair into a third image, we could simply calculate the intersection of the epipolar lines in that image, i.e.

$$x'' = (F_{31}x) \times (F_{32}x')$$

Tri-focal geometry

- Why is this important? Why can't we just use the pair-wise relationships provided by the epipolar geometry of mutual pairs of images?
- Unfortunately, this point transfer via epipolar lines does not work in the tri-focal plane connecting all three projection centres
- Point transfer via the tri-focal tensor is possible, though

Thank you for your attention!