

МОДЕЛИРОВАНИЕ ПРОЦЕССОВ ФАЗОВЫХ ПРЕВРАЩЕНИЙ ПРИ РАЗРАБОТКЕ МЕСТОРОЖДЕНИЙ НЕФТИ И ГАЗА

Часть III. Подготовка данных для моделирования

Автор,

К.ф.-м.н, н.с. ОАО «ТомскНИПИНефть»:

С.В. Пыльник

ПОДГОТОВКА ДАННЫХ

- Equation of State of a Complex Fluid Column and Prediction of Contacts in Orocual Field, Venezuela/ Richard W.S., Wade A.B., Lugo C.// SPE 63088, Dallas, Texas, 1-4 October 2000.
- Дейнеженко А.Л., Пыльник С.В., Шевелев П.В. Восстановление начальных физико-химических свойств пластовой нефти для моделирования месторождений с газовой шапкой// Вестник ЦКР Роснедра. – 2011 – № 2. С. 38 – 43.
- Брусиловский А.И., Нугаева А.Н., Хватова Е.И. Методология системного обоснования свойств пластовых нефтей при подсчете запасов и проектировании разработки месторождений (часть I) // Недропользование – XXI век. 2009. № 5. С. 23–30.

ПОДГОТОКА ДАННЫХ

Порядок работы с данными:

- корреляционный анализ между экспериментально определенными характеристиками флюида;
- корреляционный анализ между характеристиками нефти и компонентным составом;
- проведение дробления на основе ИТК-эксперимента.

ПОДГОТОКА ДАННЫХ: Корреляционный анализ

В основном анализ базируется на сопоставлении всех возможных характеристик, таких как:

- сохранение массы;
- газосодержание абсолютная глубина;
- давление насыщения абсолютная глубина;
- поверхностная плотность нефти абсолютная глубина;
- давление насыщения газосодержание;
- газосодержание объемный коэффициент;
- давление насыщения мольная концентрация метана в пластовой нефти;
- ◆ давление насыщения мольная концентрация С₆₊ в пластовой нефти;
- газосодержание мольная концентрация метана в пластовой смеси;
- плотность вязкость.

ПОДГОТОКА ДАННЫХ: Корреляционный анализ

$$\rho_{oil,r} = \frac{1}{B_{oil}} \left[\rho_{oil,st} + \Gamma \cdot \rho_{gas,st} \right]$$

ПОДГОТОВКА ДАННЫХ: Корреляционный анализ

ПОДГОТОВКА ДАННЫХ: Корреляционный анализ

ПОДГОТОВКА ДАННЫХ: Корреляционный анализ

$$M = \frac{1}{100} \sum_{i=1}^{N} x_i M_i \Rightarrow M_{C6+} = \left(\frac{100 \cdot M - \sum_{i=1}^{N-1} x_i M_i}{x_{C6+}}\right)$$
 (1)

Таблица 1 – Компонентный состав пластового флюида

Мнемоника	Название компонента	Молярная концентрация, %
CO2	Диоксид углерода	0,39
N2	Азот+редкие газы	0,87
C1	Метан	15,60
C2	Этан	2,20
C3	Пропан	5,53
IC4	Изо-бутан	2,06
NC4	Н-бутан	4,96
IC5	Изо-пентан	2,27
NC5	Н-пентан	3,06
C6+	Гексаны+высшие	63,10
M	Молярная масса	154
M _{C6+}	Молярная масса остатка	222

Таблица 2 – Фракционный состав разгазированного флюида

Фракционный состав, % обьем.						
температура начала кипения, °C до 100 до 150 до 200 до 250 до 300						
45	7	20	30	42	55	

$$\rho_{C6+} = \frac{g_{C6+}}{\frac{1}{\rho_{\partial ez.H.}} - \frac{g_1}{\rho_1}}$$
 (2)

Таблица 3 – Компонентный состав разгазированного флюида

Мнемоника	Название компонента	Молярная концентрация, %
CO2	Диоксид углерода	0,00
N2	Азот+редкие газы	0,00
C1	Метан	0,48
C2	Этан	0,61
C3	Пропан	3,25
IC4	Изо-бутан	2,17
NC4	Н-бутан	7,48
IC5	Изо-пентан	5,67
NC5	Н-пентан	7,35
C6+	Гексаны+высшие	72,99
M	Молярная масса	204

$$g_{1} = \frac{x_{1}M_{1}}{x_{1}M_{1} + x_{C6+}M_{C6+}}$$

$$g_{C6+} = \frac{x_{C6+}M_{C6+}}{x_{1}M_{1} + x_{C6+}M_{C6+}}$$

$$g_i = \frac{\rho_i V_i}{\sum_{j=1}^N \rho_j V_j}$$
 (4)

$$M_{N} = \frac{g_{N}}{\frac{1}{M_{C6+}} - \sum_{i=1}^{N-1} \frac{g_{i}}{M_{i}}}$$
 (5)

$$f_{i} = \frac{\frac{g_{i}}{M_{i}}}{\sum_{j=1}^{N} \frac{g_{j}}{M_{j}}}$$
 (6)

$$x_{FRC,i} = f_i \cdot x_{C6+} \tag{7}$$

Мнемо	Название	Молярная
-ника	компонента	конц., %
CO2	Диоксид углерода	0,39
N2	Азот+редкие газы	0,87
C1	Метан	15,60
C2	Этан	2,20
C3	Пропан	5,53
IC4	Изо-бутан	2,06
NC4	Н-бутан	4,96
IC5	Изо-пентан	2,27
NC5	Н-пентан	3,06
FRC1	Псевдо фракция 1	8,60
FRC2	Псевдо фракция 2	14,15
FRC3	Псевдо фракция 3	9,18
FRC4	Псевдо фракция 4	9,01
FRC5	Псевдо фракция 5	8,12
FRC6	Псевдо фракция 6	14,05

• Почему важно дробить остаток?

C02	0.5
N2	1.5
C1	85
C2	2
C3	2
IC4	2
NC4	2
IC5	1.5
NC5	1.5
C6+	2

Row	Components	ZI (percent)	Weight fraction (percent)	Mol Weight	Spec Gravity	†	Phase Plot: Sample ZI
1	N2	1.5	0.44033				
2	CO2	0.5	0.23059				
3	C1	35	5.8841				
4	C2	2	0.63021				
5	C3	2	0.92419				
6	IC4	2	1.2182			7	ž100
7	NC4	2	1.2182			7	
8	IC5	1.5	1.1341			1	Diessinie Pressinie
9	NC5	1.5	1.1341			1	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
10	C6+	52	87.186	160	0.84995	7-1	
	1		-			•	
						_	0 100 200 300
Row	Components	ZI (percent)	Weight fraction (percent)	Mol Weight	Spec Gravity	+	Temperature C
1	N2	1.5	0.44033			•	Phase Plot: Sample 7I
2	C02	1.5 0.5	0.44033 0.23059				Phase Plot: Sample ZI
2	CO2 C1		0.23059 5.8841				ZI: Critical Point
2 3 4	CO2 C1 C2	0.5 35 2	0.23059 5.8841 0.63021				
2 3 4 5	CO2 C1 C2 C3	0.5 35 2 2	0.23059 5.8841 0.63021 0.92419				ZI: Critical Point
2 3 4 5	C02 C1 C2 C3 IC4	0.5 35 2 2	0.23059 5.8841 0.63021 0.92419 1.2182				ZI: Critical Point
2 3 4 5 6	C02 C1 C2 C3 IC4 NC4	0.5 35 2 2 2 2	0.23059 5.8841 0.63021 0.92419 1.2182 1.2182				ZI: Critical Point
2 3 4 5 6 7	CO2 C1 C2 C3 IC4 NC4 IC5	0.5 35 2 2 2 2 2 1.5	0.23059 5.8841 0.63021 0.92419 1.2182 1.2182 1.1341				ZI: Fixed Vapor Fraction Line (\\delta 0.83) ZI: Fixed Vapor Fraction Line (\\delta 0.87) ZI: Fixed Vapor Fraction Line (\\delta 0.67)
2 3 4 5 6 7 8	C02 C1 C2 C3 IC4 NC4 IC5 NC5	0.5 35 2 2 2 2 2 1.5 1.5	0.23059 5.8841 0.63021 0.92419 1.2182 1.2182 1.1341 1.1341				ZI: Critical Point
2 3 4 5 6 7 8 9	C02 C1 C2 C3 IC4 NC4 IC5 NC5 FRC1	0.5 35 2 2 2 2 2 1.5 1.5 7.4205	0.23059 5.8841 0.63021 0.92419 1.2182 1.2182 1.1341 1.1341 6.7737	87.11	0.79024		ZI: Fixed Vapor Fraction Line (V= 0.83) ZI: Fixed Vapor Fraction Line (V= 0.67) ZI: Fixed Vapor Fraction Line (V= 0.67)
2 3 4 5 6 7 8 9 10	C02 C1 C2 C3 IC4 NC4 IC5 NC5 FRC1 FRC2	0.5 35 2 2 2 2 1.5 1.5 7.4205	0.23059 5.8841 0.63021 0.92419 1.2182 1.2182 1.1341 1.1341 6.7737 16.045	108.75	0.81434		ZI: Fixed Vapor Fraction Line (V= 0.83) ZI: Fixed Vapor Fraction Line (V= 0.67) ZI: Fixed Vapor Fraction Line (V= 0.67)
2 3 4 5 6 7 8 9 10 11	C02 C1 C2 C3 IC4 NC4 IC5 NC5 FRC1 FRC2 FRC3	0.5 35 2 2 2 2 1.5 1.5 7.4205 14.08 14.745	0.23059 5.8841 0.63021 0.92419 1.2182 1.2182 1.1341 1.1341 6.7737 16.045 23.149	108.75 149.82	0.81434 0.85045		ZI: Fixed Vapor Fraction Line (\\delta 0.83) ZI: Fixed Vapor Fraction Line (\\delta 0.87) ZI: Fixed Vapor Fraction Line (\\delta 0.67)
2 3 4 5 6 7 8 9 10 11 12	C02 C1 C2 C3 IC4 NC4 IC5 NC5 FRC1 FRC2 FRC3 FRC4	0.5 35 2 2 2 2 1.5 1.5 7.4205 14.08 14.745 10.603	0.23059 5.8841 0.63021 0.92419 1.2182 1.2182 1.1341 1.1341 6.7737 16.045 23.149 23.941	108.75 149.82 215.48	0.81434 0.85045 0.89335		ZI: Fixed Vapor Fraction Line (V= 0.83) ZI: Fixed Vapor Fraction Line (V= 0.67) ZI: Fixed Vapor Fraction Line (V= 0.67)
2 3 4 5 6 7 8 9 10 11 12	C02 C1 C2 C3 IC4 NC4 IC5 NC5 FRC1 FRC2 FRC3	0.5 35 2 2 2 2 1.5 1.5 7.4205 14.08 14.745	0.23059 5.8841 0.63021 0.92419 1.2182 1.2182 1.1341 1.1341 6.7737 16.045 23.149	108.75 149.82	0.81434 0.85045		ZI: Fixed Vapor Fraction Line (V= 0.83) ZI: Fixed Vapor Fraction Line (V= 0.67) ZI: Fixed Vapor Fraction Line (V= 0.67)

Флюид в точке давления насыщения при раздробленном остатке

Standard pressure BARSA	1.0132
Standard temperature Deg C	15.5556
Cumulative liquid mole fraction	0.5559
Cumulative vapour mole fraction	0.4441
Cumulative Surface volume oil M3	0.1014
Cumulative Surface volume gas SM3	10.5196
Cumulative GOR (Calculated) SM3/M3	103.4950
Cumulative GOR (Observed) SM3/M3	107.0000
Oil FVF (from Phig) (Calculated) RM3/SM3	1.2900
Oil FVF (from Phig) (Observed) RM3/SM3	1.3060

Fluid properties	Liquid	Vapour	
ridia propercies	Calculated	Calculated	
Mole Weight Z-factor Viscosity	153.6349 0.0077 0.6199	22.5548 0.9957 0.0105	
Density KG/M3	842.2673	0.9562	
Molar Vol M3/KG-ML	0.1824	23.5891	

Molar Dist Components		Total, Z Measured	Liquid, X Calculated	Vapour, Y Calculated	K-Values Calculated
N2	1	1.5000	0.0034	3.3737	986.1587
CO2	2	0.5000	0.0154	1.1067	71.8402
C1	3	35.0000	0.2833	78.4643	276.9647
C2	4	2.0000	0.1240	4.3486	35.0570
C3	5	2.0000	0.4259	3.9707	9.3235
IC4	6	2.0000	0.9706	3.2888	3.3885
NC4	7	2.0000	1.2987	2.8780	2.2160
IC5	8	1.5000	1.5890	1.3885	0.8738
NC5	_9	1.5000	1.7897	1.1373	0.6355
C6+	10	52.0000	93.4999	0.0433	0.0005
Compositio	on Total	100.0000	100.0000	100.0000	

Стандартная сепарация при НЕраздробленном остатке

Standard p Standard t	1.0132 15.5556					
Cumulative Cumulative	0.5503 0.4497					
Cumulative Cumulative	0.0989 10.6533					
	Cumulative GOR (Calculated) SM3/M3 Cumulative GOR (Observed) SM3/M3					
		(Calculated) (Observed)			1.3059 1.3060	
		Liquid	Vapour			
Fluid prop	erties	Calculated	Calculated			
Mole Weigh Z-factor		154.2417 0.0076 0.7421	0.9954			
Viscosity Density	KG/M3	858.2335	0.9947			
Molar Vol	M3/KG-ML	0.1797 	23.5812 			
Molar Dist		Total, Z	Liquid,X	Vapour,Y	K-Values	
Mnemonic		Measured	Calculated	Calculated	Calculated	
N2 C02 C1 C2 C3 IC4 NC4 IC5 FRC1 FRC2 FRC3 FRC4 FRC4 FRC5	1 2 3 4 5 6 7 8 9 10 11 12 13	1.5000 0.5000 35.0000 2.0000 2.0000 2.0000 1.5000 1.5000 7.4205 14.0797 14.7446 10.6029 5.1524	0.3005 0.1286 0.4398 1.0054 1.3292 1.6257 1.8240 12.6070 25.3066 26.7835	77.4625 4.2901 3.9093 3.2171 2.8209 1.3462 1.1035 1.0736 0.3410	3.1997 2.1223 0.8281 0.6050 0.0852 0.0135 0.0005 2.5960E-06	
Compositio		100.0000	100.0000	100.0000		

Стандартная сепарация при раздробленном остатке

Характеристика флюида	До дробления	После дробления	Отклонение от соответствующей величины после дробления, %
Воспроизведение	эксперимента по опр	еделению давления нас	сыщения
Давление насыщения, МПа	197, 3871	188,2576	4,85
Мольная концентрация С ₆₊ при давлении насыщения, %	0,4421	1,1482	61,50
Плотность нефти при давлении насыщения, кг/м ³	723,8297	731,4692	1,04
Boo	произведение станда	артной сепарации	
Газосодержание при стандартной сепарации, м³/м³	103,4950	107,4476	3,68
Плотность нефти при стандартной сепарации, кг/м³	842,2673	858,2335	1,86
Плотность выделившегося газа при стандартной сепарации, кг/м ³	0,9562	0,9947	3,87

ПОДГОТОВКА ДАННЫХ: Дробление остатка. Метод Витсона

500

400

300

0.002

100

Zi = ZC7+ · AREA

200

Что делать, если нет фракционного состава?

Воспользоваться встроенной в **PVTi** функцией дробления остатка по Методу Витсона!

Иллюстрация Рис.1. модели вероятностного распределения нескольких значений параметра α

ПОДГОТОВКА ДАННЫХ: Дробление остатка. Метод Витсона

Особенности, о которых следует помнить при работе с методом Витсона:

- моделируемое распределение псевдо фракций не соответствует реальному;
- для настройки модели необходимо наличие экспериментальных данных;
- ◆ без экспериментальных данных, по которым можно откалибровать модель, успешный прогноз физико-химических свойств невозможен

ПОДГОТОВКА ДАННЫХ: Наличие экспериментов

Кроме отбора представительных данных для построения модели следует также обращать внимание на наличие информации о проведенных экспериментах. Для построения надежной модели требуется иметь ряд экспериментальных исследований;

для нефти:

- измерение давления насыщения;
- стандартная сепарация нефти;
- дифференциальное разгазирование;
- данные о ступенях сепарации в рабочих условиях на промысле;
 для газа:
- измерение давления начала конденсации;
- дифференциальная конденсация;
- данные о ступенях сепарации на промысле.

ПОДГОТОВКА ДАННЫХ: Закрепление материала

- Основы процедуры отбраковки проб
- Дробление остатка на основе фракционного состава
- Необходимость дробления тяжелого остатка