

Machine Intelligence 1 2.2 Support Vector Machines

Prof. Dr. Klaus Obermayer

Fachgebiet Neuronale Informationsverarbeitung (NI)

WS 2017/2018

2.2.1 Structural Risk Minimization

A bound on the generalization error

finite samples: bound on the generalization error (c.f. SLT Result 3 on Slide 33 of Chapter 2.1.3)

$$P\left\{\sup_{\underline{\mathbf{w}}\in\Lambda}\left|R_{(\underline{\mathbf{w}})}-R_{\mathrm{emp}(\underline{\mathbf{w}})}^{(p)}\right|>\eta\right\}<\underbrace{4\exp\left(G_{(2p)}^{\Lambda}-p(\eta-\frac{1}{p})^{2}\right)}_{\stackrel{!}{=}\epsilon}$$

 \blacksquare with probability larger than $1 - \epsilon$ we obtain:

$$R_{(\underline{\mathbf{w}})} < \underbrace{R_{\mathrm{emp}(\underline{\mathbf{w}})}^{(p)}}_{\substack{\mathrm{empirical} \\ \mathrm{error}}} + \underbrace{\left(\frac{G_{(2p)}^{\Lambda} - \ln\frac{\epsilon}{4}}{p}\right)^{\frac{1}{2}} + \frac{1}{p}}_{\substack{\mathrm{complexity term } C}}$$

 \blacksquare For a given ϵ , the complexity term C only depends on p and $d_{\text{VC}}.$

A bound on the generalization error

underfitting \leftarrow ... appropriate model complexity ... \rightarrow overfitting

Structural Risk Minimization (SRM)

$$R_{(\underline{\mathbf{w}})} < R_{\mathsf{emp}(\underline{\mathbf{w}})}^{(p)} + C(p, d_{\mathsf{VC}})$$

- Minimize complexity $C(p, d_{VC})$ of the model class while keeping the empirical error $R_{\text{emp}(\mathbf{w})}^{(p)}$ bounded.
- SRM-learning is consistent (cf. Vapnik 1998, chapter 6.3)

2.2.2 Perceptrons Revisited

Canonical hyperplanes

- data representation binary classification: $\underline{\mathbf{x}} \in \mathbb{R}^N$, $y_T \in \{-1, +1\}$
- **model class:** connectionist neurons $y = \operatorname{sign}\left(\underline{\mathbf{w}}^T\underline{\mathbf{x}} + b\right)$
- lacktriangle parameters of the seperating hyperplane $\underline{\mathbf{w}}^T\underline{\mathbf{x}}+b=0$ are not unique
 - data dependent normalization

$$\min_{\alpha=1,...,p} \left| \underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \right| \ \stackrel{!}{=} \ 1$$

 \blacksquare norm. distance to closest point $\underline{\mathbf{x}}^{(*)}$

$$d_w = \frac{1}{\|\underline{\mathbf{w}}\|} \left| \underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(*)} + b \right| = \frac{1}{\|\underline{\mathbf{w}}\|} \frac{\mathbf{x}}{\|\underline{\mathbf{w}}\|}$$

■ The minimum normalized distance to the hyperplane is called margin.

Margins and capacity of the model class

Margins and generalization of the model class

Nested set of models

Margins and the VC dimension

Theorem (Vapnik, 1998)

$$d_{VC} \le \min\left(\left\lfloor \frac{d_R^2}{d_w^2} \right\rfloor, N\right) + 1$$

N: dimension of feature space

 d_w : lower bound of the margin: $rac{1}{\|\mathbf{w}\|} \geq \mathrm{d}_w$

 d_R : quantifies support of $\underline{\mathbf{x}}$: $P(\underline{\mathbf{x}}) \neq 0$ for $\|\underline{\mathbf{x}}\| \leq d_R$

|x|: integer part of x

 $lackbox{d} rac{\mathrm{d}_R^2}{\mathrm{d}_L^2}$ is independent of the dimension N of feature space

2.2.3 Learning by Structural Risk Minimization

The primal optimization problem

$$y(\underline{\mathbf{x}}; \underline{\mathbf{w}}) = \operatorname{sign}(\underline{\mathbf{w}}^{\top}\underline{\mathbf{x}} + b)$$

$$d_w = \frac{1}{\|\underline{\mathbf{w}}\|} \stackrel{!}{=} \max$$

$$\frac{1}{2} \|\underline{\mathbf{w}}\|^2 \stackrel{!}{=} \min$$

$$\text{s.t.} \quad y_T^{(\alpha)} \Big(\underline{\mathbf{w}}^\top \underline{\mathbf{x}}^{(\alpha)} + b \Big) \geq 1 \,, \quad \forall \alpha \,,$$

(minimize the capacity...)

(... for zero training error and normalized weight vectors)

The method of Lagrange multipliers

$$\underbrace{f_{0(\underline{\mathbf{x}})} \stackrel{!}{=} \min}_{\text{minimization}} \qquad \text{and} \qquad \underbrace{f_{k(\underline{\mathbf{x}})} \leq 0, \quad k = 1, \dots, m}_{\text{constraints}}$$

$$L_{(\underline{\mathbf{x}},\{\lambda_k\})} \stackrel{!}{=} f_{0(\underline{\mathbf{x}})} + \sum_{k=1}^{m} \lambda_k f_{k(\underline{\mathbf{x}})}, \qquad \lambda_k \ge 0, \quad \forall k \in \{1,\ldots,m\}$$

Theorem (Kuhn and Tucker)

Let $A \subset \mathbb{R}^N$ be a convex subset and f_k be convex functions. If there *exists* at least one solution $\underline{\mathbf{x}} \in A$ that satisfies all constrains $f_k(\underline{\mathbf{x}}) \leq 0, \forall k$, then the solution $\underline{\mathbf{x}}^*$ of the constrained optimization problem is given by the saddle point of the Langrangian, i.e.

$$\min_{\underline{\mathbf{x}}\in A}L_{(\underline{\mathbf{x}},\{\lambda_k^*\})}=L_{(\underline{\mathbf{x}}^*,\{\lambda_k^*\})}=\max_{\lambda_k\geq 0}L_{(\underline{\mathbf{x}}^*,\{\lambda_k\})}$$

The values of the Lagrange multipliers

$$egin{array}{ll} f_{0(\mathbf{\underline{x}})} & \stackrel{!}{=} & \min \ L_{(\mathbf{\underline{x}},\{\lambda_k\})} & := & f_{0(\mathbf{\underline{x}})} + \sum\limits_{k=1}^m \lambda_k f_{k(\mathbf{\underline{x}})} \end{array}$$

s.t.
$$f_{k(\mathbf{x})} \leq 0, \quad \forall k$$

s.t.
$$f_{k(\underline{\mathbf{x}})} \leq 0$$
, $\forall k$
s.t. $\lambda_k \geq 0$, $\forall k$

- $f_{k(\hat{\mathbf{x}})} < 0$ \Rightarrow $\lambda_k = 0$ (solution **behind** boundary, see left figure)
 $f_{k(\hat{\mathbf{x}})} = 0$ \Rightarrow $\lambda_k > 0$ (solution **on** boundary, see right figure)
- - at minimum $\hat{\mathbf{x}}$ of boundary $f_{k(\mathbf{x})} = 0$: $\frac{\partial f_0}{\partial \mathbf{x}}|_{\hat{\mathbf{x}}} \propto -\frac{\partial f_k}{\partial \mathbf{x}}|_{\hat{\mathbf{x}}}$

Application to the primal problem of SRM

binary classification with linear connectionist neuron

$$f_{0(\underline{\mathbf{w}},b)} = \frac{1}{2} \|\underline{\mathbf{w}}\|^2$$

$$f_{\alpha(\underline{\mathbf{w}},b)} = -\left\{ y_T^{(\alpha)} \left(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \right) - 1 \right\} \le 0, \quad \forall \alpha \in \{1,\dots,p\}$$

Lagrangian

$$L_{(\underline{\mathbf{w}},b,\{\lambda_{\alpha}\})} = \frac{1}{2} \|\underline{\mathbf{w}}\|^2 - \sum_{\alpha=1}^{p} \lambda_{\alpha} \left\{ y_{T}^{(\alpha)} \left(\underline{\mathbf{w}}^{T} \underline{\mathbf{x}}^{(\alpha)} + b\right) - 1 \right\}$$

$$\min_{\mathbf{w},b} L_{(\underline{\mathbf{w}},b,\{\lambda_{\alpha}^*\})} = L_{(\underline{\mathbf{w}}^*,b^*,\{\lambda_{\alpha}^*\})} = \max_{\lambda_{\alpha}>0} L_{(\underline{\mathbf{w}}^*,b^*,\{\lambda_{\alpha}\})}$$

 $\underline{\mathbf{w}}, b$: "primal" variables

 λ_{α} : "dual" variables

(solution see blackboard)

The dual problem

$$\underline{\mathbf{w}}^* = \sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)}$$

$$L = -\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\alpha)}\right)^{\top} \underline{\mathbf{x}}^{(\beta)}}_{\text{®}} + \sum_{\alpha=1}^{p} \lambda_{\alpha} \overset{!}{=} \max_{\{\lambda_{\alpha}\}}$$

$$\lambda_{\alpha} \geq 0 \,, \quad \forall \alpha \in \{1,\dots,p\} \,, \qquad \text{and} \qquad \sum_{\alpha=1}^p \lambda_{\alpha} y_T^{(\alpha)} = 0 \quad \text{(constraints)}$$

■ solved numerically using "sequential minimal optimization" (SMO)

The optimal classifier

linear classifier

$$y(\underline{\mathbf{x}}) = \operatorname{sign}(\underline{\mathbf{w}}^{\top}\underline{\mathbf{x}} + b)$$

■ When $\{\lambda_{\alpha}^*\}_{\alpha=1}^p$ are known, we can compute

$$\underline{\mathbf{w}}^* = \sum_{\alpha=1}^p \lambda_{\alpha}^* y_T^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)},$$

and the classifier is

$$y(\underline{\mathbf{x}}) = \operatorname{sign}\left(\sum_{\alpha=1}^{p} \lambda_{\alpha}^{*} y_{T}^{(\alpha)} \underbrace{\left(\underline{\mathbf{x}}^{(\alpha)}\right)^{\top}}_{\underline{\mathbf{x}}} + b^{*}\right).$$

Support vectors

■ Only constraints f_{α} correspond to finite Lagrange multipliers $\lambda_{\alpha} \neq 0$:

$$f_{\alpha}(\underline{\mathbf{w}}^*, b^*) = -\{y_T^{(\alpha)}(\underline{\mathbf{w}}^* \underline{\mathbf{x}}^{(\alpha)} + b^*) - 1\} \stackrel{!}{=} 0$$

- This implies that the corresponding data points are located on the margin of the hyperplane
- These data points are called support vectors

Calculation of the bias

 \blacksquare for all support vectors $\underline{\mathbf{x}}^{\alpha}$:

$$f_{\alpha}(\underline{\mathbf{w}}^*, b^*) = -\left\{y_T^{(\alpha)}\left(\underline{\mathbf{w}}^*^T\underline{\mathbf{x}}^{(\alpha)} + b^*\right) - 1\right\} \stackrel{!}{=} 0$$

$$\Rightarrow b^* = y_T^{(\alpha)} - \underline{\mathbf{w}}^{*\top}\underline{\mathbf{x}}^{(\alpha)}$$

 \blacksquare bias b^* is computed by averaging over the support vectors

$$b^* = \frac{1}{\#_{\text{SV}}} \sum_{\alpha \in \text{SV}} \left(y_T^{(\alpha)} - \sum_{\beta \in \text{SV}} \lambda_\beta y_T^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\beta)} \right)^T \underline{\mathbf{x}}^{(\alpha)}}_{\text{\tiny (B)}} \right)$$

Support Vector Machines (SVM)

- **perceptrons** $\hat{y}(\underline{\mathbf{x}}) = \operatorname{sign}(\underline{\mathbf{w}}^T\underline{\mathbf{x}} + b)$ trained by SRM are called SVM
- weights and threshold are calculated by solving the dual optimization problem for the Lagrange multipliers

$$\begin{split} \{\lambda_{\alpha} \geq 0\}_{\alpha=1}^{p}, \; \sum_{\alpha=1}^{p} \lambda_{\alpha} \, y_{T}^{(\alpha)} &= 0: \\ \max L(\{\lambda_{\alpha}\}) \;\; = \;\; -\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} \, \underbrace{\left(\underline{\mathbf{x}}^{(\alpha)}\right)^{T} \underline{\mathbf{x}}^{(\beta)}}_{\circledast} + \sum_{\alpha=1}^{p} \lambda_{\alpha} \end{split}$$

the SVM classifier is given by :

$$\hat{y}(\underline{\mathbf{x}}) = \operatorname{sign}\left(\sum_{\alpha \in SV} \lambda_{\alpha} y_{T}^{(\alpha)} \underbrace{(\underline{\mathbf{x}}^{(\alpha)})^{T}}_{\circledast} \underline{\mathbf{x}} + b\right)$$

$$\text{with} \quad b \ = \ \frac{1}{\#_{\mathrm{SV}}} \sum_{\alpha \in \mathrm{SV}} \left(y_T^{(\alpha)} - \sum_{\beta \in \mathrm{SV}} \lambda_\beta y_T^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\beta)}\right)^T}_{\text{\tiny \textcircled{\tiny \$}}} \underline{\mathbf{x}}^{(\alpha)} \right)$$

2.2.4 SRM Learning for Non-linear Classification Boundaries

Transformation of feature space

Transformation of feature space

 \blacksquare feature space: monomials of degree n

$$\underbrace{\mathbf{X}}_{\mbox{elementary}} \longrightarrow \underbrace{\phi(\mathbf{x})}_{\mbox{monomials of degree } n}$$

■ n=10 and N pixel values $x_i \Rightarrow N^{10}$ monomials

The kernel trick

- SVM requires only scalar products $\phi_{(\mathbf{x})}^{\top}\phi_{(\mathbf{x})}$ in feature space
- lacksquare replace scalar products with **kernel function** $\underline{\phi}_{(\mathbf{x})}^{\top}\underline{\phi}_{(\mathbf{x}')} o K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')}$
- e.g. the polynomial kernel $K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = (\underline{\mathbf{x}}^{\top}\underline{\mathbf{x}}' + 1)^n$ is a scalar product in the space of all monomials of degree n

Mercer's theorem

- lacksquare let $\mathcal X$ be a *compact* subset of $\mathbb R^N$
- \blacksquare let $K: \mathcal{X} \times \mathcal{X} \to \mathbb{R}, K \in L_{\infty}$, be a symmetric function ("kernel")
- let $T_K: L_{2(\mathcal{X})} \to L_{2(\mathcal{X})}$ be the linear convolution operator

$$T_K[f]_{(\underline{\mathbf{x}})} := \int_{\mathcal{X}} K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} f_{(\underline{\mathbf{x}}')} d\underline{\mathbf{x}}'$$

 \blacksquare let $\lambda_i \in \mathbb{R}$ be eigenvalues and $\psi_{i(\mathbf{x})} \in L_{2(\mathcal{X})}$ eigenfunctions of T_K

Mercer's theorem

Every $\operatorname{\textbf{positive semi-definite}}$ kernel K can be written as infinite sum

$$K(\underline{\mathbf{x}},\underline{\mathbf{x}}') = \sum_{i=1}^{\infty} \lambda_i \, \psi_{i(\underline{\mathbf{x}})} \, \psi_{i(\underline{\mathbf{x}}')} \,,$$

where the convergence is absolute and uniform.

Kernel properties

symmetric kernels

orthonormal eigenfunctions:

$$\int_{\mathcal{X}} \psi_{i(\underline{\mathbf{x}})} \, \psi_{j(\underline{\mathbf{x}})} \, d\underline{\mathbf{x}} = \delta_{ij}, \quad \forall i, j \in \mathbb{N}$$

positive semi-definite kernels

all eigenvalues λ_i are **non-negative**:

$$\iint\limits_{\mathcal{X}\times\mathcal{X}} K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} f_{(\underline{\mathbf{x}}')} \, d\underline{\mathbf{x}} \, d\underline{\mathbf{x}}' \geq 0 \,, \quad \forall f \in L_{2(\mathcal{X})} \,, \quad \text{(positive semi-definite)}$$

Induced feature space

$$K(\underline{\mathbf{x}},\underline{\mathbf{x}}') = \sum_{i=1}^{\infty} \underbrace{\psi_{i(\underline{\mathbf{x}})} \sqrt{\lambda_i}}_{\phi_{i(\underline{\mathbf{x}}')}} \underbrace{\sqrt{\lambda_i} \, \psi_{i(\underline{\mathbf{x}}')}}_{\phi_{i(\underline{\mathbf{x}}')}} = \underbrace{\phi_{(\underline{\mathbf{x}})}^{\top} \underline{\phi_{(\underline{\mathbf{x}}')}}}_{\underline{\mathbf{x}}'}$$

- every positive semi-definite kernel K is an **inner product** in the induced space Φ , spanned by the features $\phi_{i(\mathbf{x})} = \sqrt{\lambda_i} \, \psi_{i(\mathbf{x})}$
- lacksquare Φ is often high dimensional
- lacksquare a linear classifier in Φ can solve non-linearly separable problems in ${\mathcal X}$

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = (\underline{\mathbf{x}}^T\underline{\mathbf{x}}' + 1)^d$$

polynomial kernel of degree d \rightarrow image processing: pixel correlations

$$K_{(\mathbf{x},\mathbf{x}')} = (\mathbf{x}^T\mathbf{x}' + 1)^d$$

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \exp\left\{-\frac{(\underline{\mathbf{x}}-\underline{\mathbf{x}}')^2}{2\sigma^2}\right\}$$

polynomial kernel of degree \boldsymbol{d}

 $\,\rightarrow\,$ image processing: pixel correlations

RBF-kernel with range σ

 $\,\,
ightarrow\,\,$ infinite dimensional feature space

$$K_{(\mathbf{x},\mathbf{x}')} = (\mathbf{x}^T\mathbf{x}' + 1)^d$$

polynomial kernel of degree d \rightarrow image processing: pixel correlations

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \exp\left\{-\frac{(\underline{\mathbf{x}}-\underline{\mathbf{x}}')^2}{2\sigma^2}\right\}$$

RBF-kernel with range σ \rightarrow infinite dimensional feature space

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \tanh\left\{\kappa\underline{\mathbf{x}}^T\underline{\mathbf{x}}' + \theta\right\}$$

neural network kernel with parameters κ and $\theta \to \ {\rm not} \ {\rm positive} \ {\rm definite}$

$$K_{(\mathbf{x},\mathbf{x}')} = (\underline{\mathbf{x}}^T\underline{\mathbf{x}}' + 1)^d$$

polynomial kernel of degree d \rightarrow image processing: pixel correlations

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \exp\left\{-\frac{(\underline{\mathbf{x}}-\underline{\mathbf{x}}')^2}{2\sigma^2}\right\}$$

RBF-kernel with range σ \rightarrow infinite dimensional feature space

$$K_{(\mathbf{x},\mathbf{x}')} = \tanh\left\{\kappa \mathbf{x}^T \mathbf{x}' + \theta\right\}$$

neural network kernel with parameters κ and $\theta \to \,$ not positive definite

$$K_{(\underline{\mathbf{x}},\underline{\mathbf{x}}')} = \frac{1}{(\|\underline{\mathbf{x}}-\underline{\mathbf{x}}'\|^2 + \epsilon^2)^{N/2}}$$

Plummer kernel with parameter ϵ \rightarrow scale invariant kernel

SVM with kernels

classification

$$f(x) = \operatorname{sgn} \left(\sum_{i} \lambda_{i} k(x, x_{i}) + b \right)$$

weights

comparison: e.g. $k(x,x_i)=(x\cdot x_i)^d$

support vectors $x_1 \dots x_4$

$$k(x,x_i) = \exp(-||x-x_i||^2 / c)$$

$$k(x,x_i) = \tanh(\kappa(x \cdot x_i) + \theta)$$

input vector x

see Schölkopf & Smola (2001, p. 202)

Comments

- Mercer's theorem can be used to "kernelize" many different linear methods, both supervised or unsupervised.
 - Fisher discriminant analysis
 - principal component analysis (see MI 2)
 - k-means clustering & self-organizing maps
 - canonical correlation analysis

Comments

- SVM vs. RBF networks
- RBF network for classification
 - \blacksquare 5 Gaussian bases (\times)

$$y(\underline{\mathbf{x}}) = \operatorname{sign}\left(\sum_{i=1}^{5} w_i \exp\left(\frac{1}{2\sigma_i^2} \|\underline{\mathbf{x}} - \underline{\mathbf{t}}_i\|^2\right)\right)$$

- SVM with Gaussian kernel
 - 5 support vectors $\underline{\mathbf{x}}_i$ (\circ)
 - $\mathbf{a}_i = \lambda_{\alpha} y_T^{(\alpha)}$, for $\underline{\mathbf{x}}_i = \underline{\mathbf{x}}^{(\alpha)}$

$$y(\underline{\mathbf{x}}) = \operatorname{sign}\left(\sum_{i=1}^{5} a_i \exp\left(\frac{1}{2\sigma^2} \|\underline{\mathbf{x}} - \underline{\mathbf{x}}_i\|^2\right) + b\right)$$

see Schölkopf et al. (1997), Schölkopf & Smola (2001, p. 204)

2.2.5 The C-Support Vector Machine

Classification of non-separable problems

- real-world problems are typically non-separable
- incomplete feature sets & noise
- perfect separation of the training set ~> overfitting

Classification of non-separable problems

- real-world problems are typically non-separable
- incomplete feature sets & noise
- perfect separation of the training set ~ overfitting

consequences

$$R_{(\mathbf{w})} \leq R_{\mathrm{emp}(\mathbf{w})}^{(p)} + C(p, d_{\mathsf{VC}})$$

- finite training error $R_{\rm emp}^{(p)} \neq 0$
- trade-off between minimization of the training error and the capacity of the model class

The primal problem

$$\frac{1}{2} \| \underline{\mathbf{w}} \|^2$$

$$\stackrel{!}{=} \min \ \left\{ \right.$$

minimize upper bound on VC dimension

constraints $(\forall \alpha)$:

$$y_T^{(\alpha)} \left(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \right) \ge 1$$

normalization & correct classification of all data points

The primal problem

$$\frac{1}{2} \|\underline{\mathbf{w}}\|^2 + \frac{C}{p} \sum_{\alpha=1}^p \varphi_\alpha \stackrel{!}{=} \min \quad \left\{ \begin{array}{c} \text{minimize} \\ + \text{min} \end{array} \right.$$

 $\frac{1}{2} \|\underline{\mathbf{w}}\|^2 + \frac{C}{p} \sum_{\alpha=1}^p \varphi_\alpha \stackrel{!}{=} \min \quad \begin{cases} & \text{minimize upper bound on VC dimension} \\ & + \text{minimize (approx.) margin error} \end{cases}$

constraints $(\forall \alpha)$:

(C: regularization parameter)

$$y_T^{(\alpha)} \left(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \right) \ge 1 - \varphi_{\alpha}$$

 $\varphi_{\alpha} \ge 0$

normalization & correct classification of all data points for $\varphi_{\alpha} = 0$ "margin errors" for $\varphi_{\alpha} \neq 0$

Dual problem of the C-SVM

Objective

$$-\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\alpha)}\right)^{T} \underline{\mathbf{x}}^{(\beta)}}_{\text{kernel function}} + \sum_{\alpha=1}^{p} \lambda_{\alpha} \quad \stackrel{!}{=} \quad \max_{\left\{\lambda_{\alpha}\right\}_{\alpha=1}^{p}}$$

Constraints:

$$\sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} = 0 \qquad \qquad 0 \leq \underbrace{\lambda_\alpha \leq \frac{C}{p}}_{\substack{\text{difference to separable case}}}$$

Margin and support vectors

The C-SVM classifier

$$\underline{\mathbf{w}} = \sum_{\alpha=1}^{P} \lambda_{\alpha} y_{T}^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)}$$

 $\underline{\mathbf{w}} = \sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)} \qquad \rightsquigarrow \lambda_\alpha \neq 0 \text{ only for support vectors } SV$

The C-SVM classifier

$$\begin{array}{lcl} \underline{\mathbf{w}} & = & \displaystyle\sum_{\alpha=1}^{p} \lambda_{\alpha} y_{T}^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)} & \rightsquigarrow \lambda_{\alpha} \neq 0 \text{ only for support vectors } SV \\ \\ b & = & \displaystyle\frac{1}{\#SV_{<}} \displaystyle\sum_{\alpha \in SV_{<}} \left(y_{T}^{(\alpha)} - \displaystyle\sum_{\beta \in SV} \lambda_{\beta} y_{T}^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\beta)}\right)^{T}}_{\text{kernel!}} \underline{\mathbf{x}}^{(\alpha)} \right) \end{array}$$

 $SV_{<}$: SVs with $\lambda_{\alpha}<\frac{C}{p}$ (SVs on the margin)

The C-SVM classifier

$$\begin{array}{lcl} \underline{\mathbf{w}} & = & \displaystyle\sum_{\alpha=1}^{p} \lambda_{\alpha} y_{T}^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)} & \rightsquigarrow \lambda_{\alpha} \neq 0 \text{ only for support vectors } SV \\ \\ b & = & \displaystyle\frac{1}{\#SV_{<}} \displaystyle\sum_{\alpha \in SV_{<}} \left(y_{T}^{(\alpha)} - \displaystyle\sum_{\beta \in SV} \lambda_{\beta} y_{T}^{(\beta)} \underbrace{\left(\underline{\mathbf{x}}^{(\beta)}\right)^{T}}_{\text{kernel!}} \underline{\mathbf{x}}^{(\alpha)} \right) \end{array}$$

 $SV_<:SV$ s with $\lambda_{lpha}<rac{C}{p}$ (SVs on the margin)

Classifier

$$\hat{y}(\underline{\mathbf{x}}) = \operatorname{sign}\left(\underline{\mathbf{w}}^T\underline{\mathbf{x}} + b\right) = \operatorname{sign}\left(\sum_{\alpha \in SV} \lambda_\alpha y_\top^{(\alpha)} \underbrace{\left(\underline{\mathbf{x}}^{(\alpha)}\right)^\top}\underline{\mathbf{x}} + b\right)$$

Validation & selection of hyperparameters

validation and model selection w r t 0-1 loss

$$e(\underline{\mathbf{x}}^{(\alpha)},y_T^{(\alpha)}) \ = \ \left\{ \begin{array}{ll} 0 & \text{, if } \hat{y}(\underline{\mathbf{x}}^{(\alpha)}) = y_T^{(\alpha)} \\ 1 & \text{, otherwise} \end{array} \right.$$

 \blacksquare hyper-parameter selection (C, σ, \ldots) by n-fold **cross-validation**

validation on hold-out validation set

train	test	validation

SVM and overfitting

(related $\nu\text{-SVM}$ with $\nu \in \{0.1, 0.2, \dots, 0.8\}$ and RBF kernel)

see Schölkopf & Smola (2001, p. 207)

2.2.6 Sequential Minimal Optimization

The dual problem

$$\begin{split} -\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} K_{\left(\underline{\mathbf{x}}^{(\alpha)},\underline{\mathbf{x}}^{(\beta)}\right)} + \sum_{\alpha=1}^{p} \lambda_{\alpha} &\stackrel{!}{=} \max_{\left\{\lambda_{\alpha}\right\}_{\alpha=1}^{p}} \\ \text{s.t.} & \sum_{\alpha=1}^{p} \lambda_{\alpha} y_{T}^{(\alpha)} = 0 \,, \qquad 0 \leq \lambda_{\alpha} \leq \frac{C}{p} \,. \end{split}$$

The dual problem

$$\begin{split} &-\frac{1}{2}\sum_{\alpha,\beta=1}^{p}\lambda_{\alpha}\lambda_{\beta}y_{T}^{(\alpha)}y_{T}^{(\beta)}K_{\alpha\beta}+\sum_{\alpha=1}^{p}\lambda_{\alpha} &\stackrel{!}{=} & \max_{\left\{\lambda_{\alpha}\right\}_{\alpha=1}^{p}}\\ \text{s.t.} & \sum_{\alpha=1}^{p}\lambda_{\alpha}y_{T}^{(\alpha)}=0\,, & 0 \leq & \lambda_{\alpha} & \leq \frac{C}{p}\,. \end{split}$$

The Gram matrix ${f K}$

$$K_{\alpha\beta} = K_{(\underline{\mathbf{x}}^{(\alpha)},\underline{\mathbf{x}}^{(\beta)})}$$

$$\begin{bmatrix} 1 & 2 & 3 & \dots & j \\ 1 & K_{11} & K_{12} & \dots & \dots & K_{1j} \end{bmatrix}$$

$$\begin{bmatrix} 2 & \vdots & \vdots & K_{23} & \dots & K_{2j} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ i & K_{i1} & K_{i2} & \dots & \dots & K_{ij} \end{bmatrix}$$

The dual problem

$$-\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} K_{\alpha\beta} + \sum_{\alpha=1}^{p} \lambda_{\alpha} \stackrel{!}{=} \max_{\{\lambda_{\alpha}\}_{\alpha=1}^{p}}$$

$$\mathrm{s.t.} \qquad \sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} = 0 \,, \qquad \qquad 0 \leq \ \lambda_\alpha \ \leq \frac{C}{p} \,.$$

- SVMs operate on pairwise (similarity) data!
- lacktriangleright positive definite Gram matrix f K⇒ well defined optimization problem
- **K** should be pre-computed to speed up subsequent computations.

The SMO procedure

$$-\frac{1}{2} \sum_{\alpha,\beta=1}^{p} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} K_{\alpha\beta} + \sum_{\alpha=1}^{p} \lambda_{\alpha} \quad \stackrel{!}{=} \quad \max_{\{\lambda_{\alpha}\}_{\alpha=1}^{p}}$$

$$\mathrm{s.t.} \qquad \sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} = 0 \,, \qquad \qquad 0 \leq \ \lambda_\alpha \ \leq \frac{C}{p} \,.$$

while not converged do

Choose two Lagrange multipliers $\lambda_{\gamma}, \lambda_{\delta}$.

Optimize the constrained Lagrangian while changing only λ_{γ} and $\lambda_{\delta}.$

end

Choosing λ_{γ} and λ_{δ} based on KKT

 \underline{K} arush- \underline{K} uhn- \underline{T} ucker conditions (KKT conditions)

$$\underbrace{ \begin{bmatrix} y_T^{(\alpha)} \Big(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \Big) - 1 + \varphi_\alpha \\ \text{constraint of the primal problem:} \\ = 0 \text{ for all data points on and} \\ \text{within the margin} \end{bmatrix} \underbrace{\lambda_\alpha}_{= 0 \text{ for all data points outside the margin}} = 0 \tag{KKT}$$

- **1** loop over all λ_{γ} violating KKT-conditions (and additional "threshold"-conditions due to errors in b) pick λ_{γ} for which KKT $\neq 0$
- ② for this λ_{γ} : select λ_{δ} yielding a "large step" towards optimum (general heuristics, difference in relative errors $f(x^{(\alpha)}) y^{(\alpha)}$ vs. $f(x^{(\beta)}) y^{(\beta)}$)

Reduced optimization problem

$$\min_{(\lambda_{\alpha})} \stackrel{!}{=} \frac{1}{2} \sum_{\alpha\beta} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} K_{\alpha\beta} - \sum_{\alpha} \lambda_{\alpha}$$

Reduced optimization problem

$$\min_{(\lambda_{\alpha})} \stackrel{!}{=} \frac{1}{2} \sum_{\alpha\beta} \lambda_{\alpha} \lambda_{\beta} y_{T}^{(\alpha)} y_{T}^{(\beta)} K_{\alpha\beta} - \sum_{\alpha} \lambda_{\alpha}$$

$$\min_{(\lambda_{\delta}, \lambda_{\gamma})} \stackrel{!}{=} \frac{1}{2} \left[\lambda_{\gamma}^{2} \underbrace{\left(y_{T}^{(\gamma)} \right)^{2} K_{\gamma\gamma} + \lambda_{\delta}^{2} \underbrace{\left(y_{T}^{(\delta)} \right)^{2} K_{\delta\delta} + 2\lambda_{\gamma} \lambda_{\delta} y_{T}^{(\gamma)} y_{T}^{(\delta)} K_{\gamma\delta}}_{q_{T}^{(\gamma)} y_{T}^{(\delta)} K_{\gamma\delta}} \right]$$

$$+ \lambda_{\gamma} \underbrace{\left[\sum_{\beta \neq \delta, \gamma} \lambda_{\beta} y_{T}^{(\gamma)} y_{T}^{(\beta)} K_{\gamma\beta} - 1 \right] + \lambda_{\delta} \underbrace{\left[\sum_{\beta \neq \gamma, \delta} \lambda_{\beta} y_{T}^{(\delta)} y_{T}^{(\beta)} K_{\delta\beta} - 1 \right]}_{C_{\delta}} + \operatorname{const}_{(\lambda_{\delta}, \lambda_{\gamma})}$$

$$\min_{(\lambda_{\delta}, \lambda_{\gamma})} \stackrel{!}{=} \frac{1}{2} \left[\lambda_{\gamma}^{2} Q_{\gamma\gamma} + \lambda_{\delta}^{2} Q_{\delta\delta} + 2\lambda_{\gamma} \lambda_{\delta} Q_{\gamma\delta} \right] + C_{\gamma} \lambda_{\gamma} + C_{\delta} \lambda_{\delta}$$

Sequential Minimal Optimization (SMO)

optimize

$$\min_{(\lambda_{\delta}, \lambda_{\gamma})} \stackrel{!}{=} \frac{1}{2} \left[\lambda_{\gamma}^{2} Q_{\gamma \gamma} + \lambda_{\delta}^{2} Q_{\delta \delta} + 2 \lambda_{\gamma} \lambda_{\delta} Q_{\gamma \delta} \right] + C_{\gamma} \lambda_{\gamma} + C_{\delta} \lambda_{\delta}$$

under the following "box" and "equality" constraints

$$0 \le \lambda_{\gamma,\delta} \le \frac{C}{p}$$
, (i)

$$\lambda_{\gamma} + \underbrace{\frac{y_{T}^{(\delta)}}{y_{T}^{(\gamma)}}}_{s} \lambda_{\delta} = -\underbrace{\frac{1}{y_{T}^{(\gamma)}} \sum_{\beta \neq \gamma, \delta} \lambda_{\beta} y_{T}^{(\beta)}}_{d} \quad \Rightarrow \quad \lambda_{\gamma} + s\lambda_{\delta} = -d \quad (ii)$$

- Analytical solution: Schoelkopf & Smola, p. 308
- Pseudocode: Schoelkopf & Smola, p. 313
- Software: www.csie.ntu.edu.tw/~cjlin/libsvm/
 (also covers multiclass problems, support vector regression, one-class SVMs)

Remarks

Sequential Minimal Optimization (SMO) ...

- ...exploits that for 2 constraints the optimization problem can be solved analytically
- ...needs little memory (\approx number of datapoints)
- ...can be much faster than other algorithms
- ...convergence speed depends on rules to select the λ_i \rightsquigarrow good heuristics are important

End of Section 2.2

the following slides contain

OPTIONAL MATERIAL

Classification margin

- lacktriangle margin: minimal (nomalized) distance to hyperplane $d^{\mathsf{min}} = \frac{1}{\|\mathbf{w}\|}$
- large margins have low ambiguity ⇒ low VC-dimension

The solution of the primal problem

Lagrangian

$$L = \frac{1}{2} \|\underline{\mathbf{w}}\|^2 - \sum_{\alpha=1}^{p} \lambda_{\alpha} \left\{ y_{T}^{(\alpha)} \left(\underline{\mathbf{w}}^{T} \underline{\mathbf{x}}^{(\alpha)} + b \right) - 1 \right\}$$

 \blacksquare setting derivative w.r.t. weights \mathbf{w}_l to zero: $\underline{\mathbf{w}} = \sum_{\alpha=1}^P \lambda_\alpha \, y_T^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)}$

$$\frac{\partial L}{\partial \mathbf{w}_l} = \mathbf{w}_l - \sum_{\alpha=1}^p \lambda_\alpha y_T^{(\alpha)} \mathbf{x}_l^{(\alpha)} \stackrel{!}{=} 0$$

The solution of the primal problem

Lagrangian

$$L = \frac{1}{2} \|\underline{\mathbf{w}}\|^2 - \sum_{\alpha=1}^p \lambda_\alpha \left\{ y_T^{(\alpha)} \left(\underline{\mathbf{w}}^T \underline{\mathbf{x}}^{(\alpha)} + b \right) - 1 \right\}$$

 \blacksquare setting derivative w.r.t. weights \mathbf{w}_l to zero: $\underline{\mathbf{w}} = \sum\limits_{\alpha=1}^p \lambda_\alpha \, y_T^{(\alpha)} \underline{\mathbf{x}}^{(\alpha)}$

$$\frac{\partial L}{\partial \mathbf{w}_l} = \mathbf{w}_l - \sum_{\alpha=1}^p \lambda_{\alpha} y_T^{(\alpha)} \mathbf{x}_l^{(\alpha)} \stackrel{!}{=} 0$$

setting derivative w.r.t. b to zero

$$\frac{\partial L}{\partial b} = -\sum_{\alpha=1}^{p} \lambda_{\alpha} y_{T}^{(\alpha)} \stackrel{!}{=} 0$$

Sparse Bayesian Regression: Relevance Vector Machines

see Tipping (2001)