

COURSE STRUCTURE

Course Code	SCI103B				
Course Category	Basic Scie	Basic Sciences			
Course Title	Integral C	Integral Calculus			
Teaching Scheme and Credits	L	T	Laboratory	Credits	
Weekly load hrs	03 hours	1hour		2+1+0=3	

Pre-requisites: HSC (Mathematics), Linear Algebra and Differential Calculus

Course Objectives:

- 1) To learn Basic Concepts of Mathematics useful for Engineering.
- 2) To apply mathematical tools in various Engineering problems.

Course Outcomes:

After completion of this course, students will be able to

- 1) solve the differential equations which occur as models in Electrical circuits andheat transfer .(CL-II)
- 2) apply the knowledge of Geometry to draw the curves in Cartesian , polar and parametric form (CL-I)
- 3) apply methods of integration to compute area and volumes of two dimensional and three dimensional objects respectively(CL-I)
- 4) identify periodic wave forms in series of sines and cosines of multiple angles and carry out practical analysis(CL-I)

Course Contents:

Ordinary Differential Equations and Applications

Introduction to first order differential equations, modelling and solution of exact and linear differential equation.

Group Activity: Applications of Differential Equations to Orthogonal Trajectories, Electrical Circuits, 1-Dimensional Heat Conduction Problemsetc.

Introduction to tracing of curves and 3-dimensional coordinate system:

Standard and important curves in Cartesian, Parametric and Polar coordinates. Examples based on 3- dimensional Cartesian, spherical polar and cylindrical coordinate system.

Tools for Integration, Multiple Integrals and their Applications

Problems on Reduction formulae, Beta, Gamma functions, Differentiation under integral sign, Error functions. Double and Triple integrations.

Group activity: Applications of double and triple integrals incalculating Area and Volume.

Fourier series

Introduction to Fourier series, Dirichlet's conditions, Harmonic Analysis.

Tutorial Exercises:

- 1. Linear and Exact Differential Equations.
- 2. Applications of Differential Equations.
- 3. Tracing of Curves (Cartesian and Parametric)
- 4. Tracing of Curves (Polar) and 3-dim coordinate system.
- 5. Reduction Formulae and Gamma functions.
- 6. Beta Functions.
- 7. DUIS & error function.
- 8. Double Integral.
- 9. Triple Integral.
- 10. Area and Volume.
- 11. Fourier series
- 12. Fourier Series of Odd and Even Functions and Harmonic Analysis

Three tutorials will be conducted using Mathematical Software.

Learning Resources:

Reference Books

- 1. Kreyszig Erwin, "Advanced Engineering Mathematics", 10thedition, Wiley Eastern Limited2015.
- 2. Greenberg Michael D., "Advanced Engineering Mathematics", 2ndedition. Pearson 2009.
- 3. Grewal B.S. "Higher Engineering Mathematics", 44th edition, Khanna Publishers 2017.

Supplementary Reading:

Weber H.J. and Arfken G.B. "Mathematical Methods For Physicists" ,6th edition, Academic Press 2011.

Web Resources:

Differential Equations:

- 1. http://nptel.ac.in/courses/111106100/1
- 2. http://nptel.ac.in/courses/111106100/4

Fourier Series:

http://mathworld.wolfram.com/FourierSeries.html

MOOCs (Coursera)

https://www.edx.org/course/differential-equations-linear-algebra-and-nxn-systems-of-differential-equations

MIT Opencourseware

Pedagogy:

- 1. Team teaching
- 2. Group activity
- 3. Audio- video techniques
- 4. Tutorials and class tests

Assessment Scheme:

Class Continuous Assessment (CCA): 100 marks

Assignment/	Tutorial	Mid Term	Group	Case	MCQ	Oral	Attendance	Total
short term		Test	Activity	study				
Question								
answers								
Tests								
20 Marks	50 Marks	15 Marks	10 Marks	Nil	Nil	Nil	5 Marks	100
								Marks

Laboratory Continuous Assessment (LCA): NA

Regularity and punctuality	Understanding of objective	Understanding of procedure	Experimental skills	Ethics

Term End Examination: 50 marks

Syllabus:

Module	Module No. Contents		Workload in Hrs		
No.			Tutorial	Assess	
1	Ordinary Differential Equations and Applications	8	2		
2	Introduction to Tracing of Curves and 3 dimensional coordinate system	4	2		
3	Tools for Integration, Multiple Integrals and their Applications	13	6		
4	Fourier Series and Harmonic Analysis	5	2		

Prepared By	Checked By	Approved By
Prof. Gajanan Birajdar	Prof. Ramaa Sandu	Prof.Dr.Shubhalaxmi Joshi
Subject Coordinator	HOS, Mathematics and	Associate Dean, Faculty of
	Statistics	Science