Experiments

Comparison of Learned Representations

- Visualize the item representations learned by SML, HGN, CRIS to investigate whether they can consider the interest sustainability of items.
- Observe the baseline methods (HGN, SML) suffer from distinguishing the item with respect to their ISSs. Thus, items that appear over the representation space in test time.
- This result indicates that modeling only user-item interactions is limited to capture whether each item will be consumed in the future.
- CRIS successfully captures the interest sustainability, appear more clearly clustered that those baselines.
- Thus, we conclude that ISSs of items are essential signal that enables system to consider how users' interest will sustain in the future.

$$L^{P}(\theta) = \sum_{(u,i^{+}) \in P} \sum_{(u,i^{-}) \notin P} L^{P}_{C}(u,i^{+},i^{-}) + \lambda L^{P}_{S}(u,i^{+},i^{-})$$
Experiments $Score(u,i) = -\{d(C,T_{u,i}) + \gamma d(S,T_{u,i})\}$
Effect of Balancing Coefficients
(a) Toys
(b) Health
(c) Yelp

- Illustrates the sensitivity of the balance coefficients λ and γ :
 - CRIS achieves the best performance with small λ but large γ , which indicates the importance of the ISSs.
 - Conjecture the inconsistency between training and evaluation time is caused by the noise in the ISSs.
 - While training, CRIS depends less on the L_S^{P} to avoid overfitting to noisy ISSs.
 - In the evaluation time, CRIS largely depends on the denoised ISSs when determining the recommendation scores.
- CRIS can handle the noise in the ISSs by adjusting the balance coefficients λ and γ
- λ less than 0.5 is the best, reaffirms that ISSs should modeled with L_C^P to learn users' personalized preference.