

Variant-calling Workflow

Markus Mayrhofer

Overview

- Workflows
- Basic variant calling in one sample
- Basic variant calling in cohort
- Introduction to exercise

Tomorrow:

GATK's Best practices

Illumina Sequencing

the base. This cycle is repeated "n" times to create a read

length of "n" bases.

Workflows

What is a workflow

Workflow conventions

- Create a new output file in each process don't ower write the input file
- Use informative file names
- Include information of the process in output file name

Example: Basic variant calling in one sample

GATK's best practices workflow for germline short variant discovery

Basic Variant Calling in one sample

Alignment

The reference genome

A reference genome is a haploid nucleic acid sequence which represents a species genome.

The first draft of the human genome contained 150,000 gaps.

GRCh37: 250 gaps

We will work with GRCh37 in the lab.

Keep track of the reference version!

The reference genome sequence is used as input in many bioinformatics applications for NGS data:

- mapping
- variant calling
- annotation

You must keep track of which version of the reference genome your data was mapped to.

The same version must be used in all downstream analyses.

File indices

- Most large files we work with, such as the reference genome, need an index
- Allows efficient access to the file
- Different indices for different file-types
- Bwa index = Burrows-Wheeler transform of reference genome (several files)
- Needs index: fasta, bam vcf files

Alignment

Burrows-Wheeler Aligner

http://bio-bwa.sourceforge.net Burrows-Wheeler Aligner

Alignment

module load bwa

Output from mapping - Sam format

HEADER SECTION

ALIGNMENT SECTION

Read name (usually more complicated)

Convert to Bam

Bam file is a binary representation of the Sam file

Paired-end data

Paired-end sequencing enables both ends of the DNA fragment to be sequenced. Because the distance between each paired read is known, alignment algorithms can use this information to map the reads over repetitive regions more precisely. This results in much better alignment of the reads, especially across difficult-to-sequence, repetitive regions of the genome.

Paired-end data

ID_R1_001.fastq

@HISEQ:100:C3MG8ACXX:5:1101:1160:2
197 1:N:0:ATCACG
CAGTTGCGATGAGAGCGTTGAGAAGTATAATAGG
AGTTAAACTGAGTAACAGGATAAGAAATAGTGAG
ATATGGAAACGTTGTGGTCTGAAAGAAGATGT
+
B@CFFFFHHHHHHGJJJJJJJJJJJJFHHIIIJJ
JIHGIIJJJJIJIJJJJJJJJJIIEIHHIJ
HGHHHHHDFFFEDDDDDDCDDDDDDDDCDC

ID R2 001.fastq

Variant calling

Genetic variation

Genetic variation = differences in DNA among individuals of the same species

Detecting variants in reads

Reference:

Sample:

...GTGCGTAGACTGCTAGATCGAAGA...

- ...GTGCGTAGACTGATAGATCGAAGA...
- ...GTGCGTAGACTGATAGATCGAAGA...
- ...GTGCGTAGACTGCTAGATCGAAGA...
- ...GTGCGTAGACTGCTAGATCGAAGA...
- ...GTGCGTAGACTGATAGATCGAAGA...
- ...GTGCGTAGACTGATAGATCGAAGA...
- ...GTGCGTAGACTGCTAGATCGAAGA...
- ...GTGCGTAGACTGATAGATCGAAGA...
- ...GTGCGTAGACTGCTAGATCGAAGA...
- ...GTGCGTAGACTGATAGATCGAAGA...

Reference- and alternative alleles

Reference allele AGCTAGCTA

Alternative allele AGCTGGCTA

Reference allele = the allele in the refence genome **Alternative allele** = the allele NOT in the refence genome

Variant Calling HaplotypeCaller

For more info: https://www.youtube.com/watch?v=NQHGkVGICpY

Variant Call Format (VCF)

Variant Call Format (VCF)


```
##fileformat=VCFv4.2
##FILTER=<ID=LowQual, Description="Low quality">
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN, Number=1, Type=Integer, Description="Total number of alleles in called genotypes">
##contig=<ID=2,length=243199373>
##source=HaplotypeCaller
#CHROM POS
                       ΤD
                                                OUAL
                                                        FILTER
                                                                        INFO
                                                                                    FORMAT
                                                                                                HG00097
       136220992
                                        GT
                                                30.64 .
                                                                AC=1; AF=0.500; AN=2 GT: AD: DP
                                                                                                0/1:3,2:5
                                                                                                0/1:4,2:6
       136226814
                                                44.60 .
                                GAC
                                        G
                                                                AC=1; AF=0.500; AN=2 GT:AD:DP
      136234279
                                                102.60 .
                                                                AC=1; AF=0.500; AN=2 GT: AD: DP
                                                                                               0/1:3,4:7
      136234284
                                                102.60 .
                                                                AC=1; AF=0.500; AN=2 GT: AD: DP
                                                                                               0/1:3,4:7
                                                                                                0/1:8,5:13
      136263277
                                                148.60 .
                                                                AC=1; AF=0.500; AN=2 GT:AD:DP
```


Basic variant calling in cohort

Basic variant calling in cohort

GVCF Files are valid VCFs with extra information

- GVCF has records for all sites, whether there is a variant call there or not.
- The records include an accurate estimation of how confident we are in the determination that the sites are homozygous-reference or not.
- Adjacent non-variant sites merged into blocks

Basic variant calling in cohort

Variant Call Format (VCF)


```
##fileformat=VCFv4.2
##ALT=<ID=NON REF, Description="Represents any possible alternative allele at this location">
##FILTER=<ID=LowQual, Description="Low quality">
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Approximate read depth (reads with MQ=255 or with bad mates are filtered)">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##INFO=<ID=AC, Number=A, Type=Integer, Description="Allele count in genotypes, for each ALT allele, in the same order as listed">
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN, Number=1, Type=Integer, Description="Total number of alleles in called genotypes">
##contig=<ID=2,length=243199373>
##source=CombineGVCFs
##source=GenotypeGVCFs
##source=HaplotypeCaller
#CHROM POS
                                                                                                 HG00097
                                                                                                             HG00100
                                                                                                                         HG00101
                        ΙD
                                REF
                                                QUAL
                                                        FILTER
                                                                        INFO
                                                                                        FORMAT
                                                                                      GT:AD:DP 0/0:8,0:8
        136045826
                                G
                                                167.26 .
                                                                AC=1; AF=0.167; AN=6
                                                                                                             0/0:13,0:13 0/1:1,5:6
2
        136046443
                                                129.27 .
                                                                AC=3; AF=0.500; AN=6
                                                                                      GT:AD:DP 0/0:8,0:8
                                                                                                            0/1:3,1:4 1/1:0,4:4
                                CGT
       136047387
                                                186.27 .
                                                                AC=1; AF=0.167; AN=6
                                                                                      GT:AD:DP 0/0:6,0:6
                                                                                                            0/0:16,0:16 0/1:4,6:10
        136048649
                                                127.26 .
                                                                AC=1; AF=0.167; AN=6
                                                                                      GT:AD:DP 0/0:13,0:13 0/0:9,0:9 0/1:1,4:5
        136052318
                                                107.26 .
                                                                AC=1; AF=0.167; AN=6
                                                                                      GT:AD:DP 0/0:7,0:7 0/0:13,0:13 0/1:3,3:6
```


Today's lab

1000 Genomes data

- Low coverage WGS data
- 3 samples
- Small region on chromosome 2

About the samples: https://www.internationalgenome.org/data-portal/sample

The Lactase enzyme

Figure 2. Lactose digestion in the intestine.

- All mammals produce lactase as infants
- Some human produce lactase in adulthood
- Genetic variation upstream of the *LCT* gene cause the lactase persistent phenotype (lactose tolerance)

Part 1:

Variant calling in one sample

Basic variant calling in one sample

Part 2:

Variant calling in cohort

Joint variant calling workflow

Part 3:

Follow GATK best practices for short variant discovery

https://gatk.broadinstitute.org

GATK's best practices workflow for germline short variant discovery

Mark Duplicates

Duplicate reads

- PCR duplicates library preparation
- Optical duplicates sequencing
- Don't add unique information
- Gives false allelic ratios of variants
- Should be removed/marked

User Guide

Tool Index

Blog

orum

DRAGEN-GATK

Need Help?

Search our documentation

MarkDuplicates

Q

GATK / Tool Index / 4.0.1.1

MarkDuplicates (Picard) Follow

GATK Team

10 months ago · Updated

Identifies duplicate reads.

This tool locates and tags duplicate reads in a BAM or SAM file, where duplicate reads are defined as originating from a single fragment of DNA. Duplicates can arise during sample preparation e.g. library construction using PCR. See also EstimateLibraryComplexity for additional notes on PCR duplication artifacts. Duplicate reads can also result from a single amplification cluster, incorrectly detected as multiple clusters by the optical sensor of the sequencing instrument. These duplication artifacts are referred to as optical duplicates.

```
gatk --java-options -Xmx7g MarkDuplicates \
   -I input.bam \
   -O marked_duplicates.bam \
   -M marked_dup_metrics.txt
```


Base Quality Score Recalibration (BQSR)

Base Quality Score Recalibration (BQSR)

- During base calling, the sequencer estimates a quality score for each base.
 This is the quality scores present in the fastq files.
- Systematic (non-random) errors in the base quality score estimation can occur.
 - due to the physics or chemistry of the sequencing reaction
 - manufacturing flaws in the equipment
 - etc
- Can cause bias in variant calling
- Base Qualtiy Score Recalibration helps to calibrate the scores so that they correspond to the real per-base sequencing error rate (phred scores)

GATK / Technical Documentation / Algorithms

Base Quality Score Recalibration (BQSR) Follow	Articles ir
GATK Team 5 days ago · Updated	ActiveRe (Haploty)
BQSR stands for Base Quality Score Recalibration. In a nutshell, it is a data pre-processing step that detects systematic errors made by the sequencing machine when it estimates the accuracy of each base call.	Evaluatir and varia Mutect2)
Note that this base recalibration process (BQSR) should not be confused with variant recalibration (VQSR), which is a sophisticated filtering technique applied on the variant callset produced in a later step. The developers who named these methods wish to apologize sincerely to anyone, especially Spanish-speaking users, who get tripped up by the similarity of these names.	Local re- determir Mutect2)
Contents	Allele-sp germline
Overview Base recalibration procedure details Important factors for successful recalibration	Variant ζ
4. Examples of pre- and post-recalibration metrics 5. Recalibration report	Evaluatir variant c

Filter variants

https://software.broadinstitute.org/gatk/best-practices/

Germline short variant discovery (SNPs + Indels)

Filtering

- Remove low quality variants
- Variant quality score recalibration (VQSR):
 - For large data sets (>1 WGS or >30WES samples)
 - GATK has a machine learning algorithm that can be trained to recognise "likely false" variants
 - We do recommend to use VQSR when possible!
- Hard filters:
 - For smaller data sets
 - Hard filters on information in the VCF file
 - For example: Flag variants with "QD < 2" and "MQ< 40.0"
 - GATK discussion on hard filters: https://gatkforums.broadinstitute.org/gatk/discussion/2806/howto-apply-hard-filters-to-a-call-set

Part 3:

More details and links to GATK for each step is found in the lab instructions.

GATK's best practises

First look at video about this linked from schedule!

Questions?

https://gatk.broadinstitute.org

Read groups

- Link sample id, library prep, flowcell and sequencing run to the reads.
- Good for error tracking!
- Often needed for variant calling
- Detailed description at https://gatkforums.broadinstitute.org/gatk/discussion/6472/read-groups

RGID = combination of the sample id and run id

RGLB = Library prep

RGPL = Platform (for us ILLUMINA)

RGPU = Run identifier *usually barcode of flowcell*

RGSM = Sample name