

SIM800 系列_MUX_应用文档_V1.01

手册名称	SIM800 系列_MUX_应用文档
版本	1.01
日期	2014-06-30
状态	发布
文档控制号	SIM800 系列_MUX_应用文档_V1.01

一般事项

SIMCom把本手册作为一项对客户的服务,编排紧扣客户需求,章节清晰,叙述简要, 力求客户阅读后,可以通过AT命令轻松使用模块,加快开发应用和工程计划的进度。

SIMCom不承担对相关附加信息的任何独立试验,包含可能属于客户的任何信息。而且,对一个包含SIMCom模块、较大型的电子系统而言,客户或客户的系统集成商肩负其系统验证的责任。

由于产品版本升级或其它原因,本手册内容会不定期进行更新。除非另有约定,本手册 仅作为使用指导,本手册中的所有陈述、信息和建议不构成任何明示或暗示的担保。手册中 信息修改,恕不另行通知。

版权

本手册包含芯讯通无线科技(上海)有限公司的专利技术信息。除非经本公司书面许可,任何单位和个人不得擅自摘抄、复制本手册内容的部分或全部,并不得以任何形式传播,犯规者可被追究支付赔偿金。对专利或者实用新型或者外观设计的版权所有,SIMCom保留一切权利。

版权所有©芯讯通无线科技(上海)有限公司2014年

目录

版	女 本历	j史	4
1	符介		5
_		设计目的	
		架构框图	
		限制	
		A	G
2	SIM	Com多路复用协议综述	7
		传输帧结构	
		2.1.1 标记域	
		2.1.2 地址域	7
		2.1.3 控制域	7
		2.1.4 信息域	8
		2.1.5 长度指示域	8
	2.2	传输帧类型	8
		2.2.1 SABM	8
		2.2.2 UA	9
		2.2.3 DISC	9
		2.2.4 DM	9
		2.2.5 UIH	
		2.2.6 UI	10
	2.3	建立DLC通道	10
	2.4	关闭DLC通道 控制通道	10
	2.5		
		2.5.1 PSC	11
		2.5.2 CLD	
		2.5.3 Test	11
		2.5.4 MSC	11
		2.5.5 FCoff	12
	/^	2.5.6 FCon	
		2.5,7 PN, NSC, RPN, RLS, SNC	
	2.6	逻辑通道	12
	2.7	关于流量控制	12
		2.8 帧结构举例	
	2.9	传输格式约定	14
3	使用	举例	15
_		建立通道应用	
		帧收发	
		睡眠状态及唤醒	
		流量控制	

3.5	出错帧处理	20
3.6	关闭多路复用	21
附录		22
	参考文档	

版本历史

日期	版本	修改描述	作者
2013-07-25	1.00	第一版	杨明
2014-06-30	1.01	适用范围,增加项目	陈海兵
		2.6 章节,增加"注意事项"	

适用范围

本文档描述 SIM800 多路复用协议及其使用方法,同时包括了应用举例。 本文档适用于 SIM800V, SIM840V, SIM800W, SIM840W, SIM800W16, SIM800W16, SIM800L, SIM800H, SIM800, SIM800-WB64, SIM800G 和 SIM808。

1 简介

本文档旨在描述 SIMCom 多路复用协议及其使用方法。

1.1 设计目的

具有GSM和GPRS功能的设备需要同时处理(发送和接收)各种数据流,例如AT指令流 (AT Command), GPRS数据流, GSM线路交接数据流(circuit switched data)等, 这些数据流彼此独立。

对于不使用多路复用的设备来说,在某个时间段只能处理一种数据流或者一路数据流,这样,设备的使用率不高,因此设计采用GSM0710规范定义的标准多路复用协议,将传输设备划分成多个逻辑链路通道(Channel或者DLC),来同时传输这些数据流,每个逻辑通道都具备独立的缓冲区(buffer)和流量控制。

1.2 架构框图

SIMCom 多路复用器架构框图如下图所示:

SIMCom 多路复用器架构框图

SIMCom 多路复用器构建在系统传输设备之上(通常是串行通信端口),将数据流按照 GSM0710 协议(见第二章节 SIMCom 多路复用协议综述)进行封装和编址(逻辑通道号),使用传输设备提供的接口发送数据流。

1.3 限制

- 不支持 DC1/XON and DC3/XOFF 流量控制
- 不支持纠错模式(Error Recovery Mode)
- 不支持 PN, NSC, RPN, RLS, SNC 消息帧,
- 所有参数都为 GSM 0710 默认值(最大帧长度为 127), 如下表

参数	值	注释
T1(Acknowledgement Timer)	100 milliseconds	等待肯定应答的时间,仅使用 在对DISC帧的回复
N1 (Maximum Frame Size)	127	一帧所包含的最大字节数
N2(Maximum number of retransmissions)	3	重传次数(不使用)
T2(Response Timer for multiplexer control channel)	300 milliseconds	控制通道(DLC_0)响应时间(不 使用)
T3(Response Timer for wake-up procedure)	10 seconds	唤醒时间
K(Window Size)	N/A	不使用

- 不支持 UI Frames
- 仅支持多路复用基本选项(GSM 0710 Basic Option)

2 SIMCom多路复用协议综述

SIMCom 多路复用协议给出了一种通过在 TE 和 MS 之间建立起 DLC 链路来进行数据流(帧见 2.1)传输的方式,在 TE 和 MS 之间可以建立起多个 DLC,每个 DLC 相互独立,具有各自的 buffer 管理和流量控制

2.1 传输帧结构

当前协议使用8位字节起止传输机制,以帧形式进行数据通讯。

多路复用器基本选项下的帧结构如下表:

标记域 Flag	地址域 Address	控制域 Control	长度指示域 Length	信息域 Information	帧校验域 FCS	标记域 Flag
			Indicator		Y	
	1 字节	1 字节	1~2 字节	多字节 🗸	1 字节	1 字节

2.1.1 标记域

该域长度占用 1 个字节,多路复用器在基本选项下,该字节等于 0xF9

2.1.2 地址域

该域长度占用1个字节,位定义如下表

位号							
1	2	3	4	5	6	7	8
EA	CR		D	L	C	I	

其中:

EA 位:按 ISO/IEC 13239:1997 标准规定,地址域可以通过使用 EA 位来扩展;若 EA 置为 1,表示该字节是地址域的最后一个字节。若 EA 置为 0,表示 EA 位所属字节的后一个字节 也属于地址域。SIMCom 多路复用器只支持地址域长度为一个字节的情况,因此,地址域的 EA 位总是设定为 1。

C/R 位: 表明了消息帧是指令还是响应。

DLCI 位: 共 6 位,表示逻辑通道号,通道值取 0~32。

2.1.3 控制域

该域定义了帧类型(见 2.2 传输帧类型),占用 1 个字节,控制帧可分为 6 种类型,参见下表

位号	1								l la ste mat	
1	2	3	4	5	6	7	8	HEX[注]	帧类型	备注
1	1	1	1	P/F	1	0	0	0x2F	SABM	设置异步平衡模式
1	1	0	0	P/F	1	1	0	0x63	UA	未编号确认
1	1	1	1	P/F	0	0	0	0x0F	DM	断开连接模式
1	1	0	0	P/F	0	1	0	0x43	DISC	断开连接
1	1	1	1	P/F	1	1	1	0xEF	UIH	头校验无编号信息
1	1	0	0	P/F	0	0	0	0x03	UI	无编号信息(可选)

注: Hex 未计入位 5 的值

2.1.4 信息域

信息域为传输帧的有效载荷(payload),携带用户数据,如 AT Command。在 SIMCom 多路复用器中,信息域仅出现在 UIH 帧中。

2.1.5 长度指示域

如下表

位号							
1	2	3	4	5	6	7	8
EA	L1	L2	L3	L4	L5	L6	L7

其中 L1----L7 指示携带的数据长度。

EA 设置为 1 代表此字节为长度指示域中最后一个字节,设置为 0 代表长度指示域中有两个字节,在此字节之后还存在一个字节指示长度。SIMCom 多路复用器仅支持 EA 为 1 的情况 (一个字节)。

注: 长度指示域必须始终存在,即使信息域为空。

2.2 传输帧类型

2.2.1 SABM

SABM 帧用来在 TE 和 MS 之间建立逻辑通道,为命令帧,具体用法见使用举例 3.1 建立逻辑通道。

2.2.2 UA

UA 帧是对 SABM 帧和 DISC 帧的回应,为响应帧,见下图,具体用法见使用举例 3.1 建立逻辑通道和 3.6 关闭多路复用

2.2.3 **DISC**

DISC 帧用来关闭逻辑通道,为命令帧,当接收方收到 DISC,在处理关闭动作之前应先发一个 UA 帧作为回应,见上图所示,具体用法见使用举例 3.6 关闭多路复用若在控制通道 DLC 0 收到 DISC 帧代表关闭多路复用功能。

2.2.4 DM

DM 帧代表当前逻辑通道已经处于关闭状态,为响应帧,具体用法见使用举例 3.1 建立逻辑通道

2.2.5 UIH

UIH 用来传输用户数据,为命令帧或响应帧,具体用法见使用举例.3.2 帧收发

2.2.6 UI

不支持

2.3 建立DLC通道

TE 通过发送 SABM 帧至 MS 来建立 DLC 通道,其中 P bit 设置为 1,地址域包含指定通道的 DLCI 值,若 MS 收到并准备打开指定的通道,必须回送 UA 帧表示确认,其中 F bit 设置为 1,若 MS 没有准备好打开通道,则必须回送 DM 帧表示拒绝,其中 F bit 设置为 1。具体流程见使用举例 3.1 建立逻辑通道。

2.4 关闭DLC通道

TE 发送 DISC 帧至 MS 来关闭 DLC 通道,其中 P bit 设置为 1,地址域包含指定通道的 DLCI 值, MS 必须回送 UA 帧表示确认,其中 F bit 设置为 1。若 MS 在收到 DISC 帧时, DLC 已经处在关闭状态,则回送 DM 帧。具体流程见使用举例 3.6 关闭多路复用。

2.5 控制通道

控制通道是多路复用器传输管理信息的基本通道,逻辑通道的建立和关闭,睡眠模式的启动和唤醒,流量控制等控制信息都通过控制通道来实现的。

控制通道的 DLCI 为 0,是在启动多路复用功能后建立的第一个通道。

控制通道通过 UIH 帧可以传输消息, 所有消息帧中的信息域使用如下格式:

Type	Type Length		Value 1	Value 2			Value n	
其中 Type 字节格式为:								
1	2	3	4	5	6	7	8	
EA	C/R	T1	T2	Т3	T4	T5	T6	

其中 T1----T6 为消息种类的代码, 见 2.5.1----2.5.6。

长度字节格式为

/>- 1	, 18. 47.						
1	2	3	4	5	6	7	8
EA	L1	L2	L3	L4	L5	L6	L7

消息帧种类可分为:

2.5.1 PSC

消息类型代码为

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	0	1	0

对应 Hex 值为 0x43(命令), 0x41(响应)

TE 发送 PSC 消息命令帧至 MS, MS 回送 PSC 消息响应帧表示确认。

PSC 帧中信息域长度为 0,没有 value 字节

2.5.2 CLD

消息类型代码为

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	0	1	1

对应 Hex 值为 0xC3(命令), 0xC1(响应)

CLD 帧中信息域长度为 0,没有 value 字节

2.5.3 Test

消息类型代码为

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	1	0	0

Test 消息帧用来测试 TE 和 MS 之间的连接状况,命令中携带的 value 值必须在回应帧中返回。

对应 Hex 值为 0x23(命令), 0x21(响应)。

2.5.4 MSC

MSC 消息帧传送 V.24 control signals。

字节格式为

Type	Length	DLCI	V.24 control signals	Break signals
				(可选)

消息类型代码为:

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	1	1	1

对应 Hex 值为 0xE3(命令), 0xE1(回应)

V.24 control signals 格式为

1	2	3	4	5	6	7	8
EA	FC	RTC	RTR	保留(0)	保留(0)	IC	DV

Break signals 为 0x01

2.5.5 FCoff

消息类型代码为

	, , , , , ,					
1	2	3	4	5	6	7 8
EA	C/R	0	0	0	1	1 0

FCoff 帧中信息域长度为 0, 没有 value 字节 对应 Hex 值为 0x63(命令), 0x61(回应)

2.5.6 FCon

消息类型代码为

1	2	3	4	5	6	7	8
EA	C/R	0	0	0	1	0	1

FCon 帧中信息域长度为 0, 没有 value 字节 对应 Hex 值为 0xA3(命令), 0xA1(回应)

2.5.7 PN, NSC, RPN, RLS, SNC

不支持。

2.6 逻辑通道

逻辑通道传输用户数据,比如 AT 命令数据,GPRS 数据流,GSM 线路交接数据流等。逻辑通道只有在 DLCI 0 控制通道联接后才会建立,详见 3.1。

注意:如果用户想传输大数据,比如PPP 拨号等,强烈推荐使用DLCI 1。因为DLCI 1的缓存(16K Byte)远大于其他逻辑通道(1K Byte)。

2.7 关于流量控制

SIMCom 多路复用协议使用软件流控,不支持硬件流控。

软件采用 GSM 0710 MSC, FCoff 和 FCon 消息帧发送的方式进行。

当 MS 拒绝接收数据的时候会发送 MSC 消息帧至 TE 端,其中 V.24 control signals 字节的 FC 位置为 1,代表 MS 端无法收数据,反之,若 MS 恢复接收数据,则发送 MSC 消息帧至 TE 端,其中 V.24 control signals 字节的 FC 位置为 0,代表 MS 端恢复接收数据。

当 TE 拒绝接收数据的时候可以发送 MSC 消息帧至 MS 端,其中 V.24 control signals 字节的 FC 位置为 1,代表 TE 端无法收数据,反之,若 TE 恢复接收数据,则可以发送 MSC 消息帧至 MS 端,其中 V.24 control signals 字节的 FC 位置为 0,代表 TE 端恢复接收数据。

当 TE 拒绝接收数据的时候也可以发送 FCoff 消息帧至 MS 端表示无法接收数据,MS 收到后回送相同的消息响应帧,并停止除了控制通道 DLC 0 之外的所有通道的数据发送。 反之 TE 可以发送 FCon 消息帧表示恢复接收数据,MS 收到后回送相同的消息响应帧,继续发送数据。

MSC 方式和 FCon, FCoff 方式的区别在于前者是针对某个通道的流量控制,后者为除了控制通道之外的所有通道。

具体用法见使用举例 3.4 流量控制

2.8 帧结构举例

示例帧 1:

F9	03	3F	01	1C	F9
标志域	地址域	控制域	长度指示域	帧校验域	标志域
头	代表控制通	代表 SABM	长度为0,没		尾
	道 DLC 0	帧	有信息域		

以上数据代表一个 SABM 帧,用于打开控制通道 0

示例帧 2:

F9	05	EF	09	41 54 49 0D	58	F9
标志域	地址域	控制域	长度指	信息域	帧校验域	标志域
	*		示域			
头	代表逻	代表 UIH	信息域	ATI		尾
	辑通道	帧	长度为			
	DLC 1		4			

以上数据代表一个 UIH 数据帧,用与在逻辑通道传输数据 ATI。

示例帧 3:

F9	01	EF	0B	E3 07 07 0D 01	79	F9
标志域	地址域	控制域	长度指 示域	信息域	帧校验域	标志域

头	代表控	代表 UIH	信息域	代表 MSC 消息,	尾
	制通道	帧	长度为	长度为3	
	DLC 0		5		

以上数据代表一个 MSC 消息帧

2.9 传输格式约定

所有字节将使用 1 位起始,8 位数据位,1 位停止位来传输,不使用校验位。 所有上述提到的帧格式中,传输顺序从位 1 开始(先传输低位)

3 使用举例

3.1 建立通道应用

步骤 1: 启动多路复用

序号	步骤	数据流向	Hex	备注
		TE<>MS		
1	TE 启动 MS	>	61 74 2B 63 6D 75 78 3D	AT+CMUX=0 <cr><lf></lf></cr>
	多路复用,使		30 0D 0D 0A 4F 4B 0D	小写
	用 AT 指令		0A 0D 0A	$\langle \lambda \rangle$
	MS 返回启动	<	61 74 2B 63 6D 75 78 3D	AT+CMUX=0 <cr><lf></lf></cr>
	信息		30 0D 0D 0A 4F 4B 0D	OK <cr><lf><cr><lf< td=""></lf<></cr></lf></cr>
			0A 0D 0A	>
	MS 进入多路	<	41542b434d55583d300d	注1收到OK后,需要快
	复用状态返		0d0a4f4b0d0a	速发送建立控制通道帧,
	回信息			否则模块会退出 MUX 状
				态。

注 1

该处4个帧头标志指令的发送有三个作用;

- 1) 表明 MS 端 MUX 状态初始化完成;
- 2) TE 或 MS 间一方唤醒睡眠状态的另一方;
- 3) TE 或 MS 间数据失步后的同步。

这里是起到1)的作用。

步骤 2: 建立控制通道 DLC 0

序号	步骤	数据流向	Hex	备注
		TE<>MS		
1	TE 建立控制通道 DLCI 0	>	F9 03 3F 01 1C F9	SABM 帧
	使用 SABM 帧			
_	MS 收到 SABM 帧响应	<	F9 03 73 00 00 A4 F9	UA 帧
	UA 帧			

步骤 3: 建立逻辑通道 DLC 1, 2

序号	步骤	数据流向	Hex	备注
		TE<>MS		
1	TE请求建立逻辑通道 DLCI	>	F9 07 3F 01 DE F9	
	1,			
	使用 SABM 帧			
	MS 回送 UA 帧表示收到	<	F9 07 73 00 00 D7 F9	
2	TE 发送 MSC 消息帧	>	F9 01 EF 0B E3 07 07 0D 01 79	
			F9	$\langle \lambda \rangle$
	MS 回送 MSC 消息帧	<	F9 01 EF 0A 00 E1 05 07 0D 01	
			96 F9	
3	TE请求建立逻辑通道 DLCI	>	F9 0B 3F 01 59 F9	
	2,			
	使用 SABM 帧		4	
	MS 回送 UA 帧表示收到	<	F9 0B 73 00 00 42 F9	
	MS 回送 MSC 消息帧	<	F9 01 EF 0A 00 E1 05 07 0B 0D	
			01 96 F9	
	TE 发送 MSC 消息帧	>	F9 01 EF 0B E3 07 0B 0D 01 79	
			F9	
4	MS 回送 MSC 消息帧	<	F9 01 EF 0A 00 E1 05 07 0B 0D	
			01 96 F9	
5	DLC 3, 4 建立过程依次类	/ Y		
	推	$\langle \rangle$		
	至此,4路逻辑通道建立完	7>		
	毕,复用器正常工作。	>		

注 1

该指令用于确认 MS 的多路复用模式:

- 1) 若 MS 以 DM 帧响应,说明 MS 为标准(Standard)多路复用模式
- 2) 若 MS 以 UA 帧响应,说明 MS 为嵌入(Embedded)多路复用模式

注 2

SIMCom 多路复用器仅支持标准(Standard)多路复用模式,因此 MS 回送 DM 帧 F9 27 73 00 00 CD F9

3.2 帧收发

在完成控制通道和逻辑通道建立之后,TE 和 MS 之间可以通过 UIH 帧正常收发数据。

序号	步骤	数据流向	Hex	备注
		TE<>MS		
1	TE 通过 DLC	>	F9 05 EF 09 41 54 49 0D 58 F9	UIH 帧
	1 发送 AT 命			
	令"ATI"			$\langle \langle \rangle \rangle$
	MS 通过 DLC	<	f905ef0800	UIH 帧
	1 回送响应		4154490d3ff9f905ef20000d0a53494d	Y
			393030205231312e300d0afff9f905ef	
			0c000d0a4f4b0d0a4af9	
2	TE 通过 DLC	>	F9 09 EF 07 41 54 0D 35 F9	UIH 帧
	2 发送"AT"			
	MS 通过 DLC	<	f909ef060061740deff9f909ef0c000d0	UIH 帧
	2 回送响应		a4f4b0d0adff9	
3	DLC 3, 4 依		Y	
	次类推			

3.3 睡眠状态及唤醒

睡眠

序号	步骤	数据流向	Hex	备注
		TE<>MS		
1	TE 通过控制通道 DLC	>	F9 03 EF 05 43	PSC 命令帧
	0 发		01 F2 F9	
	送 PSC 消息帧,请求睡			
	眠			(\mathcal{N})
	MS 通过控制通道 DLC	<	F9 03 EF 05 41	PSC 响应帧
	0 回送 PSC 消息帧		01 F2 F9	
				* * * * * * * * * * * * * * * * * * *

注意:

允许MS 进入睡眠状态的必要条件:

- 1. 设置AT+CSCLK=1,以便允许模块进入睡眠模式,默认情况下,模块是不允许进入睡眠模式:
- 2. 拉高DTR,以便从硬件上允许模块进入睡眠模式。 在满足上面两个条件下,TE 发送PSC 帧,模块返回PSC 响应帧之后,模块在空闲后会进 入睡眠模式。

唤醒

序号	步骤	数据流向	Hex	备注
		TE<——>MS		
1	TE 发送唤醒标志	>	F9 F9 F9 F9	注 1
	MS 回送	<	F9 F9 F9 F9	
2	MS 被唤醒,数据收发恢复正			
	常			

注 1

唤醒可以使用一般的帧或 4 个 Flag, 这里以 4 个 Flag 为例

- 注: a. 以上睡眠指令是单次有效指令
 - b. 关于标志 F9 的作用请参考 3.1 节中的步骤 1 注 1

3.4 流量控制

序	步骤	数据流向	Hex	备注
号		TE<>M		
		S		
1	MS 通过控制通道 DLC 0 发送 MSC 消	<	F9 01 EF 0B E3 07	注 1
	息命令		07 8F 01 79 F9	
	帧表示逻辑通道 DLC 1 拒绝接收数据			
2	MS 通过控制通道 DLC 0 发送 MSC 消	<	F9 01 EF 0B E3 07	注2
	息帧表示逻辑通道 DLC 1 恢复接收数		07 8D 01 79 F9	() y
	据			Y
3	TE 通过控制通道 DLC 0 发送 MSC 消息	>	F9 01 EF 0B E3 07	
	命令		07 8F 01 79 F9	
	帧表示逻辑通道 DLC 1 拒绝接收数据			
4	TE 通过控制通道 DLC 0 发送 MSC 消息	>	F9 01 EF 0B E3 07	
	命令帧表示逻辑通道 DLC 1 恢复接收		07 8D 01 79 F9	
	数据		Y	
5	TE 通过控制通道 DLC 0 发送 FCoff 消		F9 01 EF 05 63 01 93	注 3
	息帧表示 TE 拒绝接收数据		F9	
6	TE通过控制通道 DLC 0 发送 FCon 消息	>	F9 01 EF 05 A3 01	注3
	帧表示 TE 恢复接收数据	V '	93 F9	

注 1

其中字节 8F 中的 FC 位被设置为 1 表示无法接收数据。

注 2

其中字节 8D 中的 FC 位被设置为 0 表示恢复接收数据

注3

TE 端除了控制通道 DLC 0 外所有通道

3.5 出错帧处理

通道正常建立,TE和MS两端处于正常多路复用状态。

序号	步骤	数据流向	Hex	备注
		TE<		
		>MS		
1	TE 端发送十六进制 0xF1	>	F1	注 1
3	TE 通过通道 1 发送 "AT"	>	F9 05 EF 07 41 54 0D 06 F9	注 2
	测试			
	MS 回送响应		F9 05 EF 07 41 54 0D 67 F9	()) "
		<	F9 25 EF 0D 0D 0A 4F 4B	Y
			0D 0A 8A F9	7

注 1

发送非正常帧数据,使得 MS 收到一个错误的帧。

注 2

MS 端收到非正常帧则自动丢弃,继续等待下一帧,如果是正确的则继续正常处理,MS 端会给出正确的响应,如果是错误的帧则直接丢弃等待下一帧。

3.6 关闭多路复用

序号	步骤	数据流向	Hex	备注
	2 .,	TE<——>MS		, , , .—
1	TE 发送 DISC 帧 请求关闭	>	F9 07 53 01 3f F9	
	DLC 1			
	MS 回送 UA 帧,表示收到	<	F9 07 73 00 00 D7 F9	
2	TE 发送 DISC 帧 请求关闭	>	F9 0b 53 01 B8 F9	6
	DLC 2			
	MS 回送 UA 帧,表示收到	<	F9 0b 73 00 00 42 F9	
3	TE 发送 DISC 帧 请求关闭	>	F9 0f 53 01 3f F9	Y
	DLC 3			,
	MS 回送 UA 帧,表示收到	<	F9 0f 73 00 00 31 F9	
4	TE 发送 DISC 帧 请求关闭	>	F9 13 53 01 3f F9	
	DLC 4			
	MS 回送 UA 帧,表示收到	<	F9 13 73 00 00 A9 F9	
5	TE 通过控制通道 DLC 0 发	>	F9 03 EF 05 C3 01 F2 F9	
	送 CLD 消息帧			
	MS 回送 CLD 消息帧,表示	<	F9 01 EF 04 00 C1 01 D3	
	收到	()	F9	
6	至此, 关闭成功	A		

附录

A. 参考文档

编号	文档名称	说明
[1]	SIM800 Series AT Command Manual	
[2]	Digital cellular telecommunications system (Phase 2+). Terminal Equipment to	
	Mobile Station (TE-MS)multiplexer protocol(GSM 07.10 version 7.1.0 Release	
	1998)	

B. 术语和缩写

术语	描述
DLC	Data Link Connection
DLCI	Data Link Connection Identifier
RLS	Remote Line Status Command
SABM	Set Asynchronous Balanced Mode
UA	Unnumbered Acknowledgement
DM	Disconnected Mode
DISC	Disconnect (DISC) command
UIH	Unnumbered information with header check (UIH) command and response
UI	Unnumbered Information command and response
PSC	Power Saving Control
CLD	Multiplexer close down
MSC	Modem Status Command
TE	Terminal Equipment
MS	Mobile Station
FC	Flow Control
RTC	Ready To Communicate
RTR	Ready To Receive
IC	Incoming Call Indicator
DV	Data Valid
PN	Parameter Negotiation
FCon	Flow Control On Command
FCoff	Flow Control Off Command
NSC	Non Support Command

RPN	Remote Port Negotiation
RLS	Remote Line Status Command
SNC	Service Negotiation Command
TE	Terminal Equipment
MS	Mobile Station

联系我们:

芯讯通无线科技(上海)有限公司

地址: 上海市金钟路 633 号晨讯科技大楼 A 楼

邮编: 200335

电话: +86 21 3252 3300 传真: +86 21 3252 2030 网址: www.sim.com/wm