MRNA - seminar 1

Andraž Vrhovec

 $March\ 23,\ 2012$

0.1 Hiter opis

Imamo semafor z N luckami, kjer je ob zacetku igre prizgana srednja luc. V igri sodelujeta dva igralca, ki izmenicno pritiskatat tipki R1 (alpha=1) in R2 (alpha=2). Ob pritisku na tipko R1 se lucka premakne levo z verjetnostjo p in desno z verjetnostjo p-1. Ob pritisku na R2 se lucka premakne levo z verjetnostjo p-1 in desno z verjetnostjo p. Cilj prvega igralca je lucko spraviti na skrajni levi rob semaforja, cilj drugega igralca pa na desni rob, pri cemer nihce ne ve verjetnosti p.

0.2 Primerjava avtomatov z PCA

Najprej sem vse avtomate primerjal z PCA. V vsaki primerjavi sem izvedel 100 ponovitev z maksimalnim stevilom korakov 1000. Pricakovano se je izkazalo da vecja kot je verjetnost p, boljse je ucenje avtomata in da se pri vrednostih p blizu 0.5 avtomati obnasajo podobno kot PCA. Opaziti je tudi da pri majhnem N, lahko dodatni pomnilnik pri $L_{2n,2}$ skoduje procesu ucenja. Vrednosti -1 v tabeli pomenijo da se simulacija ni izvedla v doglednem casu, zato sem jo prekinil.

•	$L_{2,2}$	$L_{6,2}$	L_{r-p}	L_{r-i}
PCA	1,27	1,13	1,56	1,22

Figure 1: Razmerje zmag ($\frac{|avtomat_i|}{|PCA|}$ pri N=7 in p=0,6

•	$L_{2,2}$	$L_{6,2}$	L_{r-p}	L_{r-i}
PCA	2,33	1,32	1,94	1,32

Figure 2: Razmerje zmag ($\frac{|avtomat_i|}{|PCA|}$ pri N=7 in p=0,8

•	$L_{2,2}$	$L_{6,2}$	L_{r-p}	L_{r-i}
PCA	1,38	1,56	1,33	1,27

Figure 3: Razmerje zmag ($\frac{|avtomat_i|}{|PCA|}$ pri N=19 in p=0,6

•	$L_{2,2}$	$L_{6,2}$	L_{r-p}	L_{r-i}
PCA	11.5	32,33	6,14	6,14

Figure 4: Razmerje zmag ($\frac{|avtomat_i|}{|PCA|}$ pri N=19 in p=0,8

•		$L_{2,2}$	$L_{6,2}$	L_{r-p}	L_{r-i}
PC	A	3,62	91	-1	-1

Figure 5: Razmerje zmag ($\frac{|avtomat_i|}{|PCA|}$ pri N=101 in p=0,6

•	$L_{2,2}$	$L_{6,2}$	L_{r-p}	L_{r-i}
PCA	∞	∞	∞	∞

Figure 6: Razmerje zmag ($\frac{|avtomat_i|}{|PCA|}$ pri N=101 in p=0,8

0.3 Primerjva avtomatov med seboj

Primerjava avtomatov med seboj je bila izvedena podobno kot primerjava z PCA, le da so se tokrat kot drugi igralec izmenjevali razlicni avtomati. Primerjati enak avtomat z enakim se mi ni zdelo smiselno, saj oba zavzameta podobne strategije in je izzid odvisen samo od srece.

•	$L_{2,2}$	$L_{6,2}$	L_{r-p}	L_{r-i}
$L_{2,2}$	•	0,75	0,59	0,72
$L_{6,2}$	•	•	1,13	0.78
L_{r-p}	•	•	•	1,17
L_{r-i}	•	•	•	•

Figure 7: Razmerje zmag ($\frac{|avtomat_zgoraj|}{|avtomat_levo|}$ pri N=7 in p=0,8

•	$L_{2,2}$	$L_{6,2}$	L_{r-p}	L_{r-i}
$L_{2,2}$	•	3,55	1,63	0,82
$L_{6,2}$	•	•	0,47	0.78
L_{r-p}	•	•	•	0,19
L_{r-i}	•	•	•	•

Figure 8: Razmerje zmag ($\frac{|avtomat_zgoraj|}{|avtomat_levo|}$ pri N=19 in p=0,8

0.4 Primerjava parametrov korekcijskih shem

V prvem primeru sem primerjal dva L_{r-p} avtomata z razlicnimi parametri. Pri avtomatu z vecjimi parametri se vidi vecje odklone v verjetnosti izbire skozi cas, vedar se proti koncu ujameta kar se vidi tudi na razmerju zmag, ki je na koncu blizu 1.

V drugem primeru sem primerjal L_{r-p} z L_{r-i} z enakim a. Visi se veliko lepse ucenje L_{r-i} avtomata, kar se pozna tudi na koncnem razmerju zmag 95 : 5. Iz teh rezultatov zaklucujem da je L_{r-i} avtomat boljsi za okolja kjer je

verjetnost kaznovanja fiksna, vendar neznana. Dopuscam moznost da se L_{r-p} boljse obnasa v dinamicnih okoljih, kjer se verjetnost kaznovanja spreminja, saj je njegov proces ucenja bolj fleksibilen v obe smeri.

Figure 9: Primerjava dveh L_{r-p} avtomatov z razlicnimi parametri. Graf prikazuje verjetnost izbire za avtomat ugodne akcije (za igralca 1 je to levo, za drugega desno)

0.5 Igra avtomata z clovekom

Preizkusil sem se v igri z $L_{2n,2}$ in L_{r-i} pri N=7. Za manjse N je igra za cloveka se obvladljiva in je mozno premagati avtomat v vsaj polovici primerov. Ko pa N narasca pa kolicina podatkov za cloveka postane neobvladljiva in se avtomati izkazejo dosti bolje.

Figure 10: Primerjava L_{r-p} in L_{r-i} avtomatov z enakim a. Graf prikazuje verjetnost izbire za avtomat ugodne akcije (za igralca 1 je to levo, za drugega desno)

0.6 Zakljucek

Predvsem se bil presenecen nad uspesnostjo avtomata $L_{2n,2}$, ki kljub svoji preprostosti kaze veliko zmoznost ucenja v tem primeru in premaguje druge, po zasnovi naprednejse avtomate. Kot drugi najboljsi se izkaze L_{r-i}

Figure 11: Casovna odvisnostM(n)pri avtomatu ${\cal L}_{r-p}$

Figure 12: Casovna odvisnost M(n) pri avtomatu L_{r-i}