

www. X = 32, -62 -x+2x2 <1 -2xy-3250 一大十五く土 一次十4至人十3 44-3 <23 -2-22+2=1 -2-22+2=0 -2+2+2=1 -2+42+2=1 -2+42+2=13 42-2+2=23

Exem	yde 3	3-											Lucy (
В	26,	2/2	2	3	zų	25	126	xx	Ь	CQ				
23	-1	-2	1		0	0	0	0	1	=4		1	2.1	
24	-2	-1	(0	1	0	0	9	0	0	1	1	7 5	
x 5	-1	1		3	0	1	0	0	1	1	1 2	2	3	
×6	-1	4	1	3	0	0	1	0	13	13	LL		Lit	l lá
X.	4	-1	1	0/0	7	0	0	1	23	23	14	14	113	- 3
Z	3	9		1	0	0	0	0	0	-	15	6	6 L	
	UNIT CA	no de	e T	_	90	n por	mute	25/	0,2	2	6	6	3	
8	1/2	1	2	×3	2	4 8	5 0	K6	χ_{\mp}	b	00	AR.		
23	-3		0	1	(0 /2	2/1	5	0	3	-1	1	1.3	31
064	-3		0	0		1	1/0		0	4	-3	1	1	3 4
×2	-	1	1	0		0	1	0	0	1	-1	12	L	11
χ_6	3	-	0	0		0	-4	1	0	3	3	3	31	31
2x	3	-	0	0		0	1	0	1	-24	8	L	4 _L_	33 L
Z	-3	3/1	0	0		0	6	0	-0	6	-3	15	-1-	31
-	1	-	Su	po		LX6	Par	24		1	-	6	6	3 4
B	2		-	23	24	X5	26	100000	Village	1	9			
23	0	-	7	1	0	-2	1	0	12	-		C.>	0.8	mne
24	10	10		0	1	-3	1	0	10			peut	فروم	N N
-	+	-	1	0	0	3	3	0	4			mini	ruen	N N
24	11	=	0	0	0	43		0	3	1		Z		5:
7	0		0	0	0	5	1-1	10	15	-		Jones	in or	jects
Z	-	1			10	12	11	1	15	-		solution		timak
*Ex	complex = 5	= 3x 24 24+	42		323	24 =	-45	√ <u></u>	Z	<i>t</i> /		4=3	, 3	=4
404+ 304+	32	200	_	5=	5									

Snite Exemple 5 ROO Chapitre 4:5 B	B x_1 x_2 x_3 x_4 x_5 x_6 b cq x_4 -2 0 4 1 0 1 4 -2 solution. x_5 0 0 3 0 1 1 5 00 non-bosinee. x_9 -1 1 2 0 6 1 1 -1 x_7 -5 0 x_7 0 0 3 3 3 - colonne d'éléments regatile ou muls x_8 -2 x_1 + x_1 + x_2 + x_3 + x_4 + x_5 x_6 5 x_6 b x_6			uve de			pitre I				
x_{4} = 2 0 4 1 0 1 4 = 2 solution x_{5} 0 0 3 0 1 1 5 00 non bosições x_{9} = 1 1 2 0 6 1 1 - 1 x_{7} colonne d'élèments regatif ou muls x_{1} = 4 x_{1} = 4 x_{2} = 4 x_{1} = 4 x_{2} = 4 x_{3} = 4 x_{4} = 5 x_{5} = 5 x_{1} = 4 x_{1} = 4 x_{2} = 5 x_{3} = 5 x_{1} = 5 x_{2} = 5 x_{3} = x_{1} = 5 x_{2} = 5 x_{3} = x_{1} = 5 x_{2} = 5 x_{3} = x_{1} = x_{2} = x_{3} = x_{2} = x_{3} = x_{3} = x_{3} = x_{4} = x_{4} = x_{3} = x_{4} = x_{4} = x_{3} = x_{4} = $x_$	x_{4} = 2 0 4 1 0 1 4 = 2 solution x_{5} 0 0 3 0 1 1 5 00 non-horizon x_{9} = 1 1 2 0 6 1 1 - 1 x_{7} = 1 2 0 6 1 1 - 1 x_{7} colonne d'élèments regatif ou muls x_{1} = 4 x_{1} = 4 x_{1} = 4 x_{2} = 4 x_{1} = 4 x_{2} = 5 x_{1} = 4 x_{2} = 5 x_{3} = 5 x_{1} = 5 x_{2} = 5 x_{3} = 5 x_{1} = 5 x_{2} = 5 x_{3} = 5 x_{1} = 5 x_{2} = 5 x_{3} = x_{1} = 5 x_{2} = 5 x_{2} = 5 x_{3} = x_{1} = 5 x_{2} = x_{2} = 5 x_{3} = x_{1} = 5 x_{2} = 5 x_{2} = 5 x_{3} = x_{1} = 5 x_{2} = 5 x_{2} = 5 x_{3} = x_{1} = 5 x_{2} = 5 x_{3} = x_{1} = 5 x_{2} = 5 x_{3} = x_{1} = x_{2} = 5 x_{3} = x_{1} = 5 x_{2} = 5 x_{2} = x_{1} = x_{2} = x_{2} = x_{1} = x_{2} = x_{1} = x_{2} = x_{2} = x_{1} = x_{2} = x_{2} = x_{1} = x_{2} = x_{2} = x_{1} = x	Sid	ie Ex	emple	-		-	-		No. 1	
$x_{5} = 0$ 0 3 0 1 1 5 00 non britished $x_{9} = 1$ 1 2 0 6 1 1 -1 $x_{5} = 1$ 2 0 0 3 3 $x_{7} = 1$ 2 $x_{1} = 1$ 3 $x_{1} = 1$ 5 $x_{1} = 1$ 5 $x_{2} = 1$ 5 $x_{1} = 1$ 5 $x_{2} = 1$ 5 $x_{1} = 1$ 5 $x_{2} = 1$ 5 $x_{3} = 1$ 5 $x_{1} = 1$ 5 $x_{2} = 1$ 5 $x_{3} = 1$ 5 $x_{4} = 1$ 5 $x_{5} = $	$x_{5} = 0$ 0 3 0 1 1 5 00 non bolivies $x_{9} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 6 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 1 1 1 1 -1 $x_{10} = 1$ 1 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	В	1Ky	22	x ₃	24	25	26	0	CQ	
x_{9} -1 1 2 0 6 1 1 -1 x_{1} -5 0 x_{1} 0 0 3 3 -	$\frac{x_{9}}{x_{1}} = \frac{1}{1} = \frac{1}{2} = \frac{1}{2$	24	-2	0	4	1	0	1	4	-2	solution
colonne d'éléments négatifi ou muls $ \frac{2x_1 + x_2 + x_4 + x_5 + x_4 + x_5}{3x_1 + x_2 + x_5} $ $ \frac{3x_1 + x_2 + x_5}{3x_1 + x_2 + x_5} $ $ \frac{3x_1 + x_2 + x_5}{3x_1 + x_2 + x_5} $ $ \frac{3x_1 + x_2 + x_5}{3x_1 + x_2 + x_5} $	colonne d'éléments négatifi ou muls $ \frac{2x_1 + x_2 + x_4 + x_5 + x_4 + x_5}{3x_1 + x_2 + x_5} $ $ \frac{3x_1 + x_2 + x_5}{3x_1 + x_2 + x_5} $ $ \frac{3x_1 + x_2 + x_5}{3x_1 + x_2 + x_5} $ $ \frac{3x_1 + x_2 + x_5}{3x_1 + x_2 + x_5} $	x_5	0	0	3	0	1	1	5	00	non bolling
colonne déléments régatife ou muls $ \frac{2x_1 + x_2 + x_4 + x_5}{3x_1 + x_2 + x_5} = 4 $ $ \frac{3x_1 + x_2 + x_5}{3x_1 + x_2 + x_5} = 5 $ $ \frac{5c}{3x_1 + x_2 + x_5} = 5 $	colonne déléments régatif ou muls $ \frac{2x_1 + x_2 + x_4 + x_5}{3x_1 + x_2 + x_5} = 4 $ $ \frac{3x_1 + x_2 + x_5}{3x_1 + x_2 + x_5} = 5 $ $ \frac{5c}{3x_1 + x_2 + x_5} = 5 $	Xa	-1	1	2	0	6	1	1	-1	1/
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2			- Anna Contract Contr	1		1 0	2		1
	$\begin{cases} -2x_{1} + x_{4} = 4 & (x_{4} = 4 + 2x_{4}) \\ x_{5} = 5 & (x_{5} = 5) \end{cases}$	Z	nme o	l'élèm	2 2		-		3		

NE RIEN ECRIRE ICI

								19		
		ma	nple xx xx	=2	24	3 x		Planes		Forme stands not $x_1 + 2x_2 + 3x_3 = 10$
	15	Ry+	4x2	>20	2	7_	1' 2 52,	4%	20	$52_1 - 42_1 = -90$ $x_1, x_2, x_3, x_4 > 0$ Solution non admissible
Phon I:	- I	Pha	s.C	{ -5x	4-4	+23	-x = : 4 = :	-20	~	= bare initiale: (23,24) Solution de base initiale:
	-	2	12			lonne	pwot b	Tes		$(x_1=0, x_2=0, x_3=10, x_4=0, x_6=20)$
ligne pivot	Base	1	1 -4	1	7	-1	10	1	1-2	< 1/2 = 1/2 =
0 1	Z	0	0	σ	0	1	0		3	
	Calle Calle	per	pivo	t 41	ar x	Name and Address of the Owner, where the Owner, which is the Ow	> B:	= (23, 2	(e)	
	B	5	10000		724 -1	×°	30	cQ 5		4 4 5 2
ligne pivot	20 Z	5	4	0	-1 1	1	20	4	1	12 5 2 L3 - L3 + L2

		97V	pera	uta	ay pa	nai	→ E	= (a, z,	i)
	B	24	20	23	24	× o	Ь	20	on me port plus anothern supportil
6.14	23	0	15	1	1/5	-0	6		conare 1 s'aviete x=z=0
	2,	λ	15	0	吉	1/5	4		1
	z	0	0	0	0	1	0	1200	B= {x, x,} , Solition de base initiale de
	-	B	- {	2,2	3,7	blean	initio		kale II:
Place II:	B	10	4	2	23	2		b	colonne de ay lini 1
	23		_	10	1	1/3	,	6	ligne de l'objectif si l'al
	x,	_	-	45	0	1-1	-	4	ligne initiale de Z la ser
	Z	I.	2	3	0	0	_	0	بنخس هستنده مند
	*	et	1		es pive	2.	ceess	icients d	de la stabjectif <u>nuls</u> !
	B	,	24	2	-			cQ	
	-	3	0	专	1	13		-	- 1221
ligne de pivot			1	40	3 420.00	-1/6		THE RESERVE AND ADDRESS OF THE PERSON NAMED IN	1 7 1
	F		0	1	10	3		0 ===	
	-	-95	pepe	Junite	e z	eur x	paret		
	-	3	24 3	2	23	x 4	8	CQ	- Le 11,
lignede pinot		3 -	4	0	1 -	4	5	20	J Lie 1,+1,
(金4分)	+	22 7	4	1	0	3_	5	-20	3 3 4
·青+青/寺	F	2	4	0	0	4 -	-15	-20	
* \$(2+ 2) \$ \$		-9	n pe	rmu	te x	burs	4	·m	ne peut plus augmenter l'objectif =
	1	В	24	22	20		REAL PROPERTY.	+ 2	Spe=30
231	-	×4	-1	0	4	1	20	.5	olution de bare sommet de coordonnées
サーチ	1	Z	-1	0	-3	0	10	11494	(2,2,2)=(0,10,0,20) (2,2)=(0,10)
	1		U	_		1	-Z	THE SHARE OF	Solution optimale I
				Cz <	(0				

Total des feuilles Numero de la feuille double doubles remises Epreuve de * Exercise 4 TD 2. (i = 1,2) quantité/rombre de Groh enverge depris de centrale i(i=1,2) vers da ville j (j = 1,2) min 3 = 8 x + 62 + 9 x + 12 x 2+2 (35 x+2 (35 -2+2x+x=160 な、た、ステロ ないないないないないなかの

- 1										
B	(X)	Xe	X3	X	XE	×	6	Ь	cq	
x,	3	1	1	4	0	0	4	180	60	
z ₅	7	-1	2	0	1	0	-	160	160	1 1 3 1 1
x6	1	1	-1	0	6	1		80	80	LeL 14.
max Z	4	-e	2	0	0	0		0	641	1 3 3 3 4
		90	rper	mete	×4	par	×			4 4 3 1
В	×4	X2	X3	X4	X5	3,010,000	Ь		CE	
4		3	13	专	0	0	٦	0	180	1, 4, 4,
×5	0	当	53	7-10	1	0	10	0	60)	1 31
z ₆	0	当	3	110	0	1	2	0	-15	2 52
max z	0	103	3	当	0	0	-24	0	_	3 3 5 2
	2	-		-	5 pa	n Xa	,		The second second	4 4 5 2
B	X		100	100	State State	1/5	×G	P	co	Land no sout alice on the
X1	9	3/5	SHEET PROPERTY.	100		10	0	40) of de described augmenter
X	0	145		1 -	SPECIAL VI	35	0	60		La ft de l'objects]: L'algorithere L'arrête: solution optimale: (40,0,0
Xe	0	73/5				岩	1	100		
muxz	0	档			6/5	2/5	0	-28	0 -	Fet= 280
								-Z	t	

Epreuve de TD NF2: Simplexe:

Numéro	Total des feuilles
de la feuille double	doubles remises

F	xerci	ce 1						
			224	.6x	Q=========		max 2	C-2K+6X5
			(40		- +	-	5-2,+	2=+3=40
			130					×2+2=30
	2,5	-						$2,\frac{2}{3},\frac{2}{4}\geqslant 0$
_	+	15	_		_	I		7
B	-		-	23	24	6	100	1/4
De.	3 -	1	1	1	0	40	-	12 2 1
×	4	1	-1	0	1	30	-30	13 - 13 - 61
Z		2	6	6	0	0	-	3 3 1
			elid					
В	Tx,	1 x2	1 x	x	4/6	1	cQ	91 non bornte
R.	-1	1	1	0	4	0	-40	< Pas de solution optimale
Zu	0	0	1	1	7	0	00	1 >>
7			1	-	1		- PURE SAT	

Exercice 2 ×4 X5 C X3 当 on permute no par 24 XS X3 Xe X4 CQ O X3 on permute x, par x,

* Exercice 3:

							105	-	
min.	Z=	-2X	+22	, ,	->	- max	(2) = m	Med .	
(x,-	3x	>	1		-	Lam	ax (to)=	24-	,
[x.						(-X,	+ 3×		
	المري			2		1	-X		
A	20						,×2>0		
, (-x,+	3 x	+2=	1					
		2+X			- 0	[3,7	} , 113:	1 77.25	
		x3,							7.8
- 1	121	37	40						
BX	1	x.	X3	Xu S	BT	CQ	1	1.	1
X3 -		3	1	0	1	->K	1	1 4	2
×4 .	-	-1	-	1	1	1	12	- 2	01
	-	-	0	0	0	_	3	4 3	2
		-	-	par x	u				
100		X2		Xu		CQ			,
Page 1		2		1	2	_		1 2	1,
1	1	-1	0	1	1	1-W	1	- L	21
Z	0	1	0	1-2	-2	1	-	34 13	21
2		Dean		3 Par		1			
2	1	100	V X	3 /2	0	-6	1		
P	^4	12	13	14	P	cQ	en ne	cent pous	sugmenter Z
×2	0	1	3	2	1				> on l'arrête
×A	1	0	3	1-5	2		The second second second		ion optimale:
Z	0	10	3	1/2	-3	-	J gr	= 2 d	c=4
		1-6		4	-	t	w=	- × don	czept=-3
max	x=	2+	u .						obe
Cx.		-040	2	,	· * . ·		60	CHE IN	
	**				A	2 3	- 410		
	-XX		1			2×+×			
		(120		1	100 0 12	X+X=			
10000	(45				2+	X = 45			
Cx	27	0					X,X,X	>0	74

* Exercice 4.

3	Xa	X2	X ₃	×4	X5	XG	Ь	cq	Tous	les C	40	denc	8m
X ₃	0	0	1	-1	6	1	5	5	1 000	ito :	Z	st=10	U_
XI	1	0	σ	1	0	-2	10	×	_X_=	10,	X	=45	
X5	0	0	0	-3	1	5	45	9	1		_		
X2	0	1	d	0	0	1	45	45					
Z	0	0	0	-1	0	0	100	-	0				
/B	= { > n'o	X,, X	, X, 3,	x}}	H		X X de	},	max.	z=	-d.)	40 perm	x stex
3/B _X	={2 n/o	X, , X	un	×3 Not	H : 11			} ,	max.	z=	-J.>	yerm perm	x stex
			X ₃ ,	of		B = {	X, X, X, de		max.	Z=	-1.2 -1.2	perm	x stex
3	×4	X2	un	X4	X5	B= { tree	x ₄ , x ₆		max.	Z=	-1.2 -L.	1 + 2 5	x sute x
×6	×,1	X ₂	X ₃	X4	X5	B= { trer	x, X, X, X, X, do		max.	Z= 1 2 3 1	-1.2 -L. L. L	1 + 2 5 3 1	x 6 x 3 x 1 1 1 1
×4	x4 0	X ₂	X ₃ 1 2	×4 -1	X ₅	B= { trer	x, x, x, do		max.	Z= 1 2 3 4	-1.2 -L. L. L	1 + 2 3 _ L	X6 X1 X1 1 1 1

max (w) = 25 3+15 xe DC 2020/2021 min 2 = -25 x, - 15 x = - max (-2) Exercice: X5 X3 X 4 6 CQ Xe B 0 50 56 0 1 1 X3 00 0 1 0 -5 0 -1 O 0 1 10 10 0 -25 15 0 0 0 0 on permute x par x X3 X 5 X, b CO B 0 40 40 -1 0 0 0 1 -5 5 6 -1 XI 0 1 6 0 10 0 151 0 15 -25 0 0 -250 on permite x par & Xe X¥ XI X5 CQ X3 P B X3 35 35 0 1 - 1 0 -1 1 0 5 35 0 X2 Ò 10 000 XA 0 0 1 1 0 15 15 0 -25 0 0 X5 X4 CQ Xe X3 P -25+15 1 1 35 0 -1 0 X4 - 475_15 x35 40 1 -1 0 Xz 0 1 1 1 10 0 0 XI 0 -15 700 6 -10 0

west