TECHNICAL REPORT 7
TEP4905-RP-02-07 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30th-2016

INTRODUCTION

The InjectionObj class includes properties, methods and events needed to describe quantitatively a diluent injection point, from the process point of view, in a single well infrastructure.

The most relevant algorithms included in this class are the viscosity blending method, e.g. methods to calculate the viscosity of an oil mixture, typically one with low API gravity and viscosity, and the other with high API gravity and viscosity. Generally speaking, the density and the viscosity of a crude oil increase in the same direction, however, these two properties are unrelated.

This class includes two algorithms to calculate the viscosity of a blend:

- Cragoe's method
- · ASTM D7152 (2011) method

Both methods use an exponential expression to extrapolate the viscosity of a blend, using two reference values. The methods differ on the set of calculation to calculate the adjustment parameters. For more information on these methods, it is recommended that the user reviews the following: (ASTM Standard D7152, 2011), (Cragoe, 1933), and (Sæten, 2014).

DOCUMENT OBJECTIVE

Describing the main features, algorithms and calculations perform by the InjectionObj class.

DOCUMENT SCOPE

Describe all properties, methods and events included in the InjectionObj class, in its version 01. Additional to this, provide a detailed explanation on the major algorithms applied to solve the object depending on the variable configurations.

PROPERTIES

An attribute table describes each property. This table is a simplified version of the property attributes available in MATLAB, and it purpose is for any user or programmer with no previous experience in MATLAB have a better understanding of the property functionality.

For information, the attribute descriptions are as follows:

TECHNICAL REPORT 7 TEP4905-RP-02-07 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30th-2016

Property attribute	Description	Values
Access	Property accessibility once a class instance is created. Public: unrestricted access	{public protected private}
	Protected: access from classes and subclasses	
	Private: access from class member only	
Dependent	Property auto-calculated by class instance, once all dependencies have been set. When true, the property does not store any value, and it is calculated in every callback.	{true false}
Hidden	Property visibility for a class instance. When true, the property is not listed in the available class instance's properties.	{true false}
Set access	Property ability to be written by the user in a class instance.	{public protected private
	Public: unrestricted access	immutable}
	Protected: access from classes and subclasses	
	Private: access from class member only	
	Immutable: access from class constructor only	
Get access	Property ability to be read by the user in a class instance.	{public protected private}
	Public: unrestricted access	
	Protected: access from classes and subclasses	
	Private: access from class member only	

$\mathbf{Q}_{\mathbf{D}}$

Description	Diluent flowrate Diluent flowrate at local conditions, given in m³/d.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

Qo

Description	Oil flowrate					
	Oil flowrate at local conditions, given in m ³ /d.					
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	Double	Get access	Public	

TECHNICAL REPORT 7

TEP4905-RP-02-07

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30th-2016

Rev. 1

Qw

Description	Water flowrate					
	Water flowrate at local conditions, given in m³/d.					
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	Double	Get access	Public	

Тв

Description	Blending temperature					
	Temperature at which the oil and the diluent flowrate will be blended, given in C.					
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	Double	Get access	Public	

DRHO

Description	Diluent density Diluent density given in kg/m³.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

ORHO

Description	Oil density				
	Oil density given in kg/m³.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

WRHO

Description	Water density	Water density				
	Water density given in kg/m³.					
	Constant value of 1000 kg/m³, at 4 C and 101,33 kPa.					
Access	Protected	Dependent	False	Set access	Public	
Hidden	True	Class	Double	Get access	Public	

TECHNICAL REPORT 7 TEP4905-RP-02-07 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30th-2016

MRT

Description	Reference matrix, temperature				
	This property stores the 2x2 matrix, for the given corresponding temperature values of the reference viscosity, in C, given in property mrmu. The first row of the matrix includes the reference temperature value for the crude oil, while the second row includes the diluent reference.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

MRMU

Description	Reference matrix, viscosity				
	This property stores the 2x2 matrix, for the given corresponding viscosity values used as reference for the blending given in cP. The first row of the matrix includes the reference viscosity value for the crude oil, while the second row includes the diluent reference. The corresponding temperature values of the viscosity values given in this matrix, must be saved in mrT property.				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

BMRT

Description	Blending matrix, te	emperature			
	5x1 matrix including the temperature value references of the corresponding viscosity blending stored in property bmrmu. Temperature value are given in C. The user must invoke the BlendingReference method to set the values for this property.				
Access	Public	Dependent	False	Set access	Protected
Hidden	False	Class	Double	Get access	Public

BMRMU

Description	Blending matrix, te	Blending matrix, temperature					
	5x1 matrix including the viscosity value references of the corresponding temperature of blending stored in property bmrT. Viscosity is given in the same units as in the mrmu property.						
	The user must invoke the BlendingReference method to set the values for this property.						
Access	Public	Dependent	False	Set access	Protected		
Hidden	False	Class	Double	Get access	Public		

TEP4905-RP-02-07 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30th-2016

BLENDING**M**ETHOD

Description	Blending procedure to calculate viscosity This property is an array of characters, indicating the procedure to be used to calculate the blend viscosity. The class supports two methods:				
	· 'cragoe' · 'astm_d7152'				
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	String	Get access	Public

CRAGOE**A**

Description	Cragoe coefficient, Coefficient of the review (Cragoe, 19 Default value = 50	Cragoe viscosity fitt 933).	ting expression. For	more information a	about the method,
Access	Public	Dependent	False	Set access	Public
Hidden	False	Class	Double	Get access	Public

CRAGOE**B**

Description	Cragoe coefficient,	Cragoe coefficient, B				
	Coefficient of the Cragoe viscosity fitting expression. For more information about the method, review (Cragoe, 1933).					
	Default value = 1e3*log(20)					
Access	Public	Dependent	False	Set access	Public	
Hidden	False	Class	Double	Get access	Public	

BRHO

Description	Blend density	Blend density				
	Blend density calculated as average, on weight basis, between the crude oil and the diluent. The density is given in kg/m ³ .					
Access	Public	Dependent	True	Set access	Public	
Hidden	False	Class	Double	Get access	Public	

TECHNICAL REPORT 7

TEP4905-RP-02-07 Rev. 1

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30th-2016

BMU

Description	Blend viscosity	Blend viscosity					
	Blend viscosity calculated using one of the blending procedures available, Cragoe's method or ASTM D7152 standard. The viscosity is given in cP.						
Access	Public	Dependent	True	Set access	Public		
Hidden	False	Class	Double	Get access	Public		

BSG

Description	Blend specific gravity Blend specific gravity calculated as average, on weight basis, between the crude oil and the diluent. The specific gravity is dimensionless.				
Access	Public	Dependent	True	Set access	Public
Hidden	False	Class	Double	Get access	Public

WC

Description	Water cut				
	Water cut calculated as average, on volume basis, between the oil phase and the water phase. The diluent is considered as oil phase, therefore, the water cut is supposed to be lower than the previous calculation step of the system. The water cut is dimensionless.				
Access	Public	Dependent	True	Set access	Public
Hidden	False	Class	Double	Get access	Public

WT

Description	Weight fraction, oil phase Weight fraction of the diluent in respect to the oil phase. This variable is required to use the viscosity blending procedures.				
Access	Public	Dependent	True	Set access	Public
Hidden	False	Class	Double	Get access	Public

METHODS

An attribute table describes each method. This table is a simplified version of the method attributes available in MATLAB, and it purpose is for any user or programmer with no previous experience in MATLAB have a better understanding of the method functionality.

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30th-2016

For information, the attribute descriptions are as follows:

Method attribute	Description	Values	
Access	Method accessibility once a class instance is created. Public: unrestricted access Protected: access from classes and subclasses Private: access from class member only	{public protected private}	
Hidden	Method visibility for a class instance. When true, the property is not listed in the available class instance's methods.	{true false}	
Static	Method independency on a class object. Relative to methods inherent to the class code, such as error/exception handling. When true, the method is only available inside the class code only and does not require arguments related to the class instance.	{true false}	

BLENDING REFERENCE

Description	reference values us within the black oi a span +/-10 C, us	ws to create two sed by objects from I model. The metho es the selected blen	(2) 5x1 matrixes, c the class BOObj, in o d uses the Tb proper ding method to calc and bmrmu propert	order to adjust the v ty as temperature p ulate five (5) viscosit	iscosity calculation ivot, and then with
Access	Public	Hidden	False	Static	False

$\pmb{\mathsf{BLENDING}} \pmb{\mathsf{ASTM}} \pmb{\mathsf{D7152}}$

Description	Blending procedure	Blending procedure, ASTM D7152 standard (2011)				
	Calculation of viscosity of an oil blend, using ASTM D-7152 method (ASTM Standard D7152, 2011). It is applicable for blends based on their viscosity and weight fraction. This is an auxiliary method to the dependent property bmu.					
Access	Protected	Hidden	True	Static	False	

BLENDINGCRAGOE

Description		osity of an oil blend	d, using Cragoe met eight fraction. This is	_	
Access	Protected	Hidden	True	Static	False

TEP4905-RP-02-07 Rev. 1

Jun-30th-2016

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

STRUCTURE BRIEFING

In the following table, there is a list of all public properties included in every object created from this class.

Property	Name	Remarks
Qd	Diluent flowrate	Required.
Qo	Oil flowrate	Required.
Qw	Water flowrate	Required.
Tb	Blending temperature	Required.
drho	Diluent density	Required.
orho	Oil density	Required.
mrT	Reference matrix, temperature	Required.
mrmu	Reference matrix, viscosity	Required.
bmrT	Reference matrix, temperature	Calculated by BlendingReference.
bmrmu	Reference matrix, viscosity	Calculated by BlendingReference.
BlendingMethod	Blending procedure to calculate viscosity	Required. Default value = \astm_d7152'
CragoeA	Cragoe coefficient, A	Required (*). Default value = 5e-02
CragoeB	Cragoe coefficient, B	Required (*). Default value = 1e3*log(20)
brho	Blend density	Dependent.
bmu	Blend viscosity	Dependent.
bSG	Blend specific gravity	Dependent.
WC	Water cut	Dependent.
wt	Weight fraction, oil phase	Dependent.

^(*) Required when the ${\tt BlendingMethod}$ property is set to 'Cragoe'.

APPLICATION

In the next blocks of code, some applications of the class are shown

EXAMPLE 1: DEFINING AN OBJECT

```
BL = InjectionObj;
BL.Qo = 0;
```

TEP4905 – MASTER THESIS INDUSTRIAL PROCESS TECHNOLOGY

RUBEN ENSALZADO - N754813

Jun-30th-2016

```
BL.Qd = 500;

BL.Qw = 0;

BL.Tb = 30;

BL.mrmu = [906 329;9.8 7.5];

BL.mrT = [37.8 50.0; 38.0 54.0];

BL.drho = 872.0;

BL.orho = 969.2;
```

EXAMPLE 2: USING THE BLENDING REFERENCE METHOD

The following code shows and application of the BlendingReference method using the same variable defined above.

```
BL.BlendingReference
BL.bmrmu
ans

13.9325
12.5575
11.3741
10.3496
9.4577
BL.bmrT
ans =
20
25
30
35
40
```

REFERENCES

- ASTM Standard D7152. (2011). Standard Practice for Calculating Viscosity of a Blend of Petroleum Products. West Conshohocken, PA: ASTM International. doi:10.1520/D7152-11
- Cragoe, C. (1933). Changes in the viscosity of liquids with temperature, pressure and composition. First World Petroleum Congress, (pp. WPC-201). London, UK.
- Sæten, S. (2014). *Estimating Viscosity of a Petroleum Blend*. Specialization Project Report, Norwegian University of Science and Technology, Department of Petroleum Engineering and Applied Geophysics.