Complétude du calcul des prédicats

HLIN602 Logique II Christian Retoré

mise à jour : 29 novembre 2021

1. Complétude

Un objectif majeur du cours est de mettre en rapport les deux notions centrales vues dans la première partie :

- les preuves (calcul des séquents ou résolution)
- les modèles

Théorème de complétude (Gödel, 1929) : $X_1, ..., X_n \vdash F$ est démontrable (par exemple dans le calcul des séquents, ou par résolution) si et seulement si toute interprétation qui rend $X_1, ..., X_n$ vrais rend F vraie.

Quand je dis " $X_1,...,X_n \vdash F$ est démontrable par résolution" cela signifie que la résolution conduit de $X_1,...,X_n, \neg F$ à \bot .

2. Model existence lemma

<u>Model Existence Lemma</u>: Si un ensemble de formules est cohérent (c.-à-d.consistent, c.-à-d.s'il ne démontre pas \perp) alors il admet un modèle.

On procède ainsi:

- 1. on part d'un ensemble cohérent de formules, une théorie $\mathcal T$
- 2. on complète cette théorie en une théorie $\bar{\mathcal{T}}$ (pour tout F soit $\mathcal{T} \vdash F$ soit $\mathcal{T} \vdash \neg F$ et avec des témoins de Henkin pour les formules existentielles)
- 3. on construit un modèle dont le domaine est constitué des termes de la syntaxe (attention c'est source de confusion)
- 4. être vrai dans ce modèle c'est être démontrable dans \bar{T}
- 5. ce modèle satisfait donc toute formule de $\bar{\mathcal{T}}$ et donc a fortiori toute formule de \mathcal{T}

3. Model existence lemma ⇒ complétude

La contraposée (équivalente) du Model Existence Lemma s'exprime en termes d'insatisfiabilité et d'incohérence :

Contraposée du MEL Si un ensemble de formules n'admet pas de modèle (insatisfiable) alors cet ensemble de formules entraı̂ne \perp (dans le calcul des séquents, ou par résolution).

Si une formule F est vraie dans tout modèle alors sa négation $\neg F$ n'est vraie dans aucun modèle et donc, par la contraposée du Model Existence Lemma, $\neg F \vdash \bot$ est démontrable. On notera que la résolution est bien adaptée pour dériver une contradiction.

4. Un peu de vocabulaire

Une **théorie** \mathcal{T} sur un langage \mathcal{L} est un ensemble de formules closes de ce langage.

F est une conséquence d'une théorie \mathcal{T} , notation abusive $\mathcal{T} \vdash F$, s'il existe une démonstration du séquent $T_1, \ldots, T_n \vdash F$ avec $T_1, \ldots, T_n \in \mathcal{T}$ (fini) (ou de $\vdash F$ à partir de $\vdash T_1, \vdash T_2, \ldots$, et $\vdash T_n$).

Une théorie sur un langage \mathcal{L} est dite **cohérente (consistante)** s'il n'existe pas de formule F telle que $\mathcal{T} \vdash F$ et $\mathcal{T} \vdash \neg F$.

Une théorie est dite **complète**, si pour toute formule close on a $\mathcal{T} \vdash F$ ou $\mathcal{T} \vdash \neg F$.

5. Témoins de Henkin et théorie de Henkin

Une théorie admet des témoins de Henkin si pour toute formule à une variable libre F[v] il existe une constante c telle que $(\exists v. \ F[v]) \Rightarrow F[c]$

Une théorie de Henkin est une théorie

- cohérente,
- complète,
- et qui possède des témoins de Henkin.

6. Toute théorie de Henkin admet un modèle

On considère un modèle $\mathcal H$ dont les éléments sont les termes clos (construits à partir des constantes à l'aide des fonctions comme f(g(a,b),a) où a et b sont des constantes).

Attention : les termes de la syntaxe sont des éléments du modèle !

On interprète constantes et fonctions par elles-mêmes :

$$I(c) = c$$
 $I(f)(t_1, t_2) = f(t_1, t_2)$ etc.

L'interprétation d'un symboles de prédicat n-aire R est définie ainsi : $I(R)(t_1,...,t_n)=1$ si et seulement si $\mathcal{T} \vdash R(t_1,...,t_n)$. On peut vérifier par induction sur la construction de la formule F que F est vraie dans \mathcal{H} si et seulement si $\mathcal{T} \vdash F$.

7. "vrai dans \mathcal{H} " \Leftrightarrow "démontrable dans \mathcal{T} "

On procède par induction sur la formule. Traitons par ex. le cas d'une formule de la forme $\forall xF$ Si $\mathcal{T} \vdash \forall xF$ alors $\forall xF$ est vrai dans \mathcal{H} .

Preuve : Si $\mathcal{T} \vdash \forall xF$ alors pour tout terme t ($\forall t \in \mathcal{H}$) on a $\mathcal{T} \vdash F[t/x]$, comme cette formule contient moins de connecteurs, par hypothèse d'induction F[t/x] est vraie dans \mathcal{H} . Comme F[t/x] est vrai dans \mathcal{H} pour tout élément de \mathcal{H} , et par définition de $I(\forall xF)$ dans un modèle, $\forall xF$ est vraie dans \mathcal{H} . Si $\forall xF$ est vrai dans \mathcal{H} alors $\mathcal{T} \vdash \forall xF$.

Preuve : On va montrer la contraposée. Si $\mathcal{T} \not\vdash \forall xF$ comme \mathcal{T} est complète, on a $\mathcal{T} \vdash \neg \forall xF$. Donc $\mathcal{T} \vdash \exists x \neg F$, et il y a une constante c telle que $\mathcal{T} \vdash (\exists x \neg F) \Rightarrow \neg F[c]$ et donc $\mathcal{T} \vdash \neg F[c]$. Comme \mathcal{T} est cohérente $\mathcal{T} \not\vdash F[c]$ et par hypothèse d'induction, F[c] est faux dans \mathcal{H} et donc $\forall x.F$ est faux dans \mathcal{H} .

8. Existence de modèle pour une théorie de Henkin

On voit que tout formule de \mathcal{T} est vraie dans \mathcal{H} car $\mathcal{T} \vdash F$ pour toute formule $F \in \mathcal{T}$.

9. Théorie cohérente → théorie de Henkin

Toute théorie cohérente \mathcal{T} sur un langage \mathcal{L} peut être étendue en une théorie de Henkin $\mathcal{T}' \supset \mathcal{T}$ sur un langage $\mathcal{L}' \supset \mathcal{L}$.

Soit \mathcal{L}' le langage \mathcal{L} étendu par une infinité dénombrable de constante c_i et soit F_n une énumération des formules closes sur le langage \mathcal{L}' (cf. rappels énumération).

On construit une suite de théories \mathcal{T}_n avec $\mathcal{T}_0 = \mathcal{T}$ sur \mathcal{L}' telles que :

- \mathcal{T}_n est cohérente.
- $-\mathcal{T}_n \subset \mathcal{T}_{n+1}$
- \mathcal{T}_n contient un nombre fini de formules en plus de \mathcal{T}_0 .
- $-F_n \in \mathcal{T}_n \text{ or } \neg F_n \in \mathcal{T}_n$

La théorie de Henkin étendant \mathcal{T} sera $\cup \mathcal{T}_n$.

10. Théorie cohérente → théorie de Henkin

A partir de notre énumération des formules closes de \mathcal{L}' on définit une suite G_n de formules closes :

- si $\mathcal{T}_n \cup \{F_{n+1}\}$ est cohérente, alors $G_{n+1} = F_{n+1}$
- si $\mathcal{T}_n \cup \{F_{n+1}\}$ n'est pas cohérente, comme \mathcal{T}_n est cohérente, on a $\mathcal{T}_n \vdash \neg F_{n+1}$ et on pose $G_{n+1} = \neg F_{n+1}$

 \mathcal{T}_{n+1} est défini à partir de \mathcal{T}_n ainsi :

si G_{n+1} est de la forme $\exists v H[v]$ avec H[v] à une seule variable libre v alors $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{G_{n+1}, H[c_{n+1}]\}$ sinon $\mathcal{T}_{n+1} = \mathcal{T}_n \cup \{G_{n+1}\}$

11. \mathcal{T}_{n+1} est cohérente

```
Si G_{n+1} n'est pas de la forme \exists v H[v] alors \mathcal{T}_{n+1} = \mathcal{T}_n \cup \{G_{n+1}\} est cohérent par construction. si G_{n+1} est de la forme \exists v H[v] alors \mathcal{T}_{n+1} = \mathcal{T}_n \cup \{\exists v. H[v], H[c_n/v]\} Montrons que \mathcal{T}_{n+1} est cohérente par l'absurde. Si \mathcal{T}_n \cup \{\exists v. H[v], H[c_n/v]\} n'est pas cohérente comme \mathcal{T}_n \cup \{\exists v. H[v]\} est cohérente par construction, c'est que \mathcal{T}_n, \{\exists v. H[v]\} \vdash \neg H[c_n/v]. Comme c_n n'apparait pas dans \mathcal{T}_n ni dans \exists v. H[v] on a d'après R ci-dessous \mathcal{T}_n \cup \{\exists v. H[v]\} \vdash \forall x. \neg H[x] \vdash \neg (\exists x. H[x]), ce qui n'est pas possible car \mathcal{T}_n \cup \{\exists v. H[v]\} est cohérente.
```

Remarque R : si $\mathcal{T}^* \vdash F[c/v]$ avec F[v] à une seule variable libre v et et que ni \mathcal{T}^* ni F[v] ne contiennent la constante c alors $\mathcal{T}^* \vdash \forall x. F[x]$. Evident en calcul des séquents, la restriction sur le \forall est satisfaite.

12. Théorie cohérente → théorie de Henkin

 $\mathcal{T}^+ = \bigcup_n \mathcal{T}_n$ est une théorie de Henkin :

 \mathcal{T}^+ cohérente : tout incohérence repose sur un nombre fini N de formules,

qui sont toutes incluses dans l'un des \mathcal{T}_N et chaque \mathcal{T}_n est cohérente ;

 \mathcal{T}^+ complète par construction, car \mathcal{T}^+ contient toute formule close de \mathcal{L}' ou sa négation

 \mathcal{L}' contient les témoins de Henkin pour toute formule existentielle et l'implication est conséquence de \mathcal{T}^+

13. Existence d'un modèle, fin

Récapitulons ce que nous avons montré :

Soit une théorie cohérente \mathcal{T} sur \mathcal{L} , on peut étendre son langage en \mathcal{L}' et compléter \mathcal{T} en une théorie de Henkin \mathcal{T}^+ .

Cette théorie \mathcal{T}^+ admet un modèle I.

Ce modèle I satisfait toutes les formules de \mathcal{T}^+ et donc a fortiori toutes les formules de \mathcal{T} .

Ce qui démontre le Model Existence Lemma :

Toute théorie cohérente \mathcal{T} admet au moins un modèle.

14. Complétude

Si la formule F est vraie dans tout modèle d'une théorie \mathcal{T} (cohérente) alors $\mathcal{T} \vdash F$.

Procédons par l'absurde. Si $\mathcal{T} \not\vdash F$ alors $\mathcal{T} \cup \{\neg F\}$ est cohérente et, d'après le Model Existence Lemma, $\mathcal{T} \cup \{\neg F\}$ a un modèle, modèle qui serait un modèle de \mathcal{T} ne satisfaisant pas F.

15. Validité et complétude

On sait que le calcul des prédicats est valide, que les règles ne dérivent que des séquents vrais tant tout modèle.

Donc une théorie \mathcal{T} qui admet un modèle I est forcément cohérente.

Si non, c.-à-d. si $\mathcal T$ n'était pas cohérente, les preuves de $\Gamma \vdash F$ et de $\Delta \vdash \neg F$ avec Γ et Δ sous ensemble finis de $\mathcal T$ conduiraient à une preuve de $\Gamma, \Delta \vdash \bot$ et nous aurions donc $I(\bot) = \top ! ! ! !$

16. Compacité du calcul des prédicats

Si toute partie finie d'une théorie \mathcal{T} admet un modèle. Alors \mathcal{T} toute entière admet un modèle.

Toute partie finie de $\mathcal T$ est cohérente donc $\mathcal T$ est cohérente (une incohérence est une preuve de \bot qui n'utilise qu'un nombre fini de formules de $\mathcal T$). Comme $\mathcal T$ est cohérente, elle admet un modèle.

17. Autres conséquences du théorème de complétude

Outre le théorème de compacité on peut déduire de la complétude :

- la règle du coupure du calcul des séquents est redondante

Un séquent $F_1,\ldots,F_n\vdash G_1,\ldots G_p$ est dérivable dans le calcul des séquents avec règle de coupure

si et seulement si

il est dérivable dans le calcul des séquents sans règle de coupure

– calcul des séquents et méthode de résolution sont équivalentes :

le calcul des séquents permet de dériver $F_1,\ldots,F_n\vdash G_1,\ldots G_p$ si et seulement si

la résolution dérive \perp à partir de $F_1, \ldots, F_n, \neg G_1, \ldots, \neg G_p$

Mais c'est difficile sans se voir devant un tableau. (confinement...)