* * *	* *	* *	* *	* Welcome to STN International * * * * * * * * *
NEWS	1			Web Page for STN Seminar Schedule - N. America
NEWS	2	DEC	0.1	ChemPort single article sales feature unavailable
NEWS	3	FEB	UZ	Simultaneous left and right truncation (SLART) added
				for CERAB, COMPUAB, ELCOM, and SOLIDSTATE
NEWS	$\frac{4}{2}$	FEB		GENBANK enhanced with SET PLURALS and SET SPELLING
NEWS	5	FEB		Patent sequence location (PSL) data added to USGENE
NEWS	6	FEB		COMPENDEX reloaded and enhanced
NEWS	7	FEB	11	WTEXTILES reloaded and enhanced
NEWS	8	FEB	19	New patent-examiner citations in 300,000 CA/CAplus
				patent records provide insights into related prior
				art
NEWS	9	FEB	19	<pre>Increase the precision of your patent queries use</pre>
				terms from the IPC Thesaurus, Version 2009.01
NEWS	10	FEB	2.3	Several formats for image display and print options
	_ 0			discontinued in USPATFULL and USPAT2
NEWS	11	FEB	23	MEDLINE now offers more precise author group fields
MEMP			23	and 2009 MeSH terms
NEWS	10	FEB	23	TOXCENTER updates mirror those of MEDLINE - more
MEMS	12	LFD	23	
NITTIO	1.0		0.0	precise author group fields and 2009 MeSH terms
NEWS	13	FEB	23	Three million new patent records blast AEROSPACE into
			0 =	STN patent clusters
NEWS	14	FEB	25	USGENE enhanced with patent family and legal status
				display data from INPADOCDB
NEWS	15	MAR	06	INPADOCDB and INPAFAMDB enhanced with new display
				formats
NEWS	16	MAR	11	EPFULL backfile enhanced with additional full-text
				applications and grants
NEWS	17	MAR	11	ESBIOBASE reloaded and enhanced
NEWS	18	MAR	20	CAS databases on STN enhanced with new super role
				for nanomaterial substances
NEWS	19	MAR	23	CA/CAplus enhanced with more than 250,000 patent
				equivalents from China
NEWS	2.0	MAR	3.0	IMSPATENTS reloaded and enhanced
NEWS		APR		CAS coverage of exemplified prophetic substances
111110		211 11	00	enhanced
NEWS	22	APR	0.7	STN is raising the limits on saved answers
NEWS		APR		CA/CAplus now has more comprehensive patent assignee
MEMP	23	AFK	2 4	-
NIERIO	2.4	7 DD	20	information
NEWS	Z 4	APR	26	USPATFULL and USPAT2 enhanced with patent
	0.5		0.0	assignment/reassignment information
NEWS		APR		CAS patent authority coverage expanded
NEWS				ENCOMPLIT/ENCOMPLIT2 search fields enhanced
NEWS	27	APR	28	Limits doubled for structure searching in CAS
				REGISTRY
NEWS	28	MAY		STN Express, Version 8.4, now available
NEWS	29	MAY	11	STN on the Web enhanced
NEWS	30	MAY	11	BEILSTEIN substance information now available on
				STN Easy
NEWS	31	MAY	14	DGENE, PCTGEN and USGENE enhanced with increased
				limits for exact sequence match searches and
				introduction of free HIT display format
NEWS	EXP	RESS	TUNI	E 27 08 CURRENT WINDOWS VERSION IS V8.3.

NEWS EXPRESS JUNE 27 08 CURRENT WINDOWS VERSION IS V8.3, AND CURRENT DISCOVER FILE IS DATED 06 APRIL 2009.

NEWS HOURS STN Operating Hours Plus Help Desk Availability NEWS LOGIN Welcome Banner and News Items

Enter NEWS followed by the item number or name to see news on that specific topic.

All use of STN is subject to the provisions of the STN customer agreement. This agreement limits use to scientific research. Use for software development or design, implementation of commercial gateways, or use of CAS and STN data in the building of commercial products is prohibited and may result in loss of user privileges and other penalties.

FILE 'HOME' ENTERED AT 12:06:22 ON 14 MAY 2009

=> file zcaplus
COST IN U.S. DOLLARS

FULL ESTIMATED COST ENTRY SESSION 0.22 0.22

SINCE FILE

TOTAL

FILE 'ZCAPLUS' ENTERED AT 12:06:41 ON 14 MAY 2009 USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT. PLEASE SEE "HELP USAGETERMS" FOR DETAILS. COPYRIGHT (C) 2009 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS is strictly prohibited.

FILE COVERS 1907 - 14 May 2009 VOL 150 ISS 20 FILE LAST UPDATED: 13 May 2009 (20090513/ED) REVISED CLASS FIELDS (/NCL) LAST RELOADED: Feb 2009 USPTO MANUAL OF CLASSIFICATIONS THESAURUS ISSUE DATE: Feb 2009

ZCAplus now includes complete International Patent Classification (IPC) reclassification data for the third quarter of 2008.

CAS Information Use Policies apply and are available at:

http://www.cas.org/legal/infopolicy.html

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> s tin oxide 319848 TIN 1981086 OXIDE L1 59808 TIN OXIDE (TIN(W)OXIDE)

=> s phosphinic acid 7228 PHOSPHINIC 4826619 ACID

L2 5557 PHOSPHINIC ACID (PHOSPHINIC (W) ACID)

=> s hypophosphorous acid 2056 HYPOPHOSPHOROUS 4826619 ACID L3 1976 HYPOPHOSPHOROUS ACID

(HYPOPHOSPHOROUS (W) ACID)

=> s 12 or 13

L4 7312 L2 OR L3

 \Rightarrow s 11 and 14

L5 22 L1 AND L4

=> s 15 and ester? 995955 ESTER?

L6 3 L5 AND ESTER?

=> d 16 ibib abs 1-

YOU HAVE REQUESTED DATA FROM 3 ANSWERS - CONTINUE? Y/(N):y

L6 ANSWER 1 OF 3 ZCAPLUS COPYRIGHT 2009 ACS on STN

ACCESSION NUMBER: 2008:1395141 ZCAPLUS

DOCUMENT NUMBER: 150:36034

TITLE: Method for producing phosphorus-containing polyester used as flame-retardant electronic packaging material

INVENTOR(S): Shen, Jiyang; Xi, Xiaoyue

PATENT ASSIGNEE(S): Tianjin Kaihua Insulating Material Co., Ltd., Peop.

Rep. China

SOURCE: Faming Zhuanli Shenging Gongkai Shuomingshu, 8pp.

CODEN: CNXXEV

DOCUMENT TYPE: Patent LANGUAGE: Chinese

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE			
PRIORITY APPLN. INFO.: AB The method compri heating to >100°, reactive phosphor to 170-190°, carr slowly heating to 20-30 min for a crate is >95%, and polymerization, r (-0.06)-0M Pa wit with an acid valu mPa·s/180°, a sof phosphorus conten 2-methyl-1,3-prop to melt, added wi acid 6.47, 2-carb 9,10-dihydro-9-ox 202.28, and tetra	ses the s (2) addi us-contai ying out 240-270° ondensati (4) addi eacting a hin 10-20 tening po t of 1-10 anediol 8 th adipic oxyethylg a-10-phos -Bu titar .47 g tri	steps of: (1) Ing a polypro Ining compount an esterific Ing and vacuum Ing an end-ca Ing an end-ca It 170-190° f Ing min to obta It of 60-13 It of 60-	hylene glycol 12.07, pentyl glycol 233.26 g terephthalic acid 110,	20080710 a reactor the polyol, heating within teation condensation and to aining polyester 00-8000 were heated isophthalic cid adduct			

L6 ANSWER 2 OF 3 ZCAPLUS COPYRIGHT 2009 ACS on STN

ACCESSION NUMBER: 2002:272843 ZCAPLUS

DOCUMENT NUMBER: 136:310298

TITLE: Composition of cyclic olefin addition copolymer and

cross-linked material

INVENTOR(S): Oshima, Noburo; Maruyama, Yooichiroh; Sakabe, Noboyuki; Sawada, Katsutoshi; Ohkita, Kenzo;

Hashiguchi, Yuuichi; Kanamori, Tarou; Kawahara, Kouji

PATENT ASSIGNEE(S): JSR Corporation, Japan

SOURCE: Eur. Pat. Appl., 33 pp.

CODEN: EPXXDW

DOCUMENT TYPE: Patent LANGUAGE: English

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

	PAI	ENT	NO.			KIN		DATE		APPLICATION NO.						DATE				
		1195 1195			A1 B1		2002 2004		EP 2001-123692						20011002					
		R:	•	•	•	DE, LV,			FR,	GB, G	βR	, IT,	LI,	LU,	NL,	SI	Ξ,	MC,	PT,	
	JР	2002		•			2002	0416	JE	>	2000-	-3051	48			20	0001	004		
			2266					20020814 JP 2001-21743								20010130				
			0489			А		2003	0221	JP 2001-192802							20010626			
	KR	8169	31			В1		2008	0325	KF	KR 2001-61027						20010929			
	CN	1347	939			A		2002	CN 2001-130347						20010930					
	US	20020042461				A1		2002	US	3	2001-	-9685	29			20	0011	002		
	US	6639	021			В2		2003	1028											
	${\tt WT}$	5396	95			В		2003	0701	\mathbf{T}	V :	2001-	-9012	4501			20	0011	004	
	JΡ	2002	24		A		2002	JE)	2001-	-3839	45		20011218						
	JΡ	4045			В2		2008													
	JΡ	2008	0451	33		A		2008	0228	JE)	2007-	-2250	60			20	070	831	
PRIOR	PRIORITY APPLN. INFO.:									JE		2000-	-3051	48		Α	20	0001	004	
										JE		2000-	-3910	21		Α	20	0001	222	
										JE)	2001-	-2174	3		Α	20	010	130	
										JE		2001-	-1928	02		Α	20	010	626	
										JE)	2001-	-1622	78		A	20	010	530	
										JE		2001-	-3839	45		A3	20	0011	218	

OTHER SOURCE(S): MARPAT 136:310298

GΙ

 ${\tt AB}$ A composition comprising a cyclic olefin addition copolymer containing recurring units

of the following formulas (I) and (II) wherein A1-4 = alkoxysilyl or aryloxysilyl having (CR1R2)fSi(OR3)gR4(3-g), (CR1R2)fSi(R3R4)OSi(OR3)gR4(3-g), or (CR1R2)fC(O)O(CH2)nSi(OR3)gR4(3-g), R1-2 = H or C1-20 hydrocarbon, R3 = C<10 alkyl, alkenyl, aryl, or cycloaryl, R4 = H, halogen, or C1-20 hydrocarbon, f and n = integer 0-5, g = integer 1-3, Y = CH2 or O, m = 0 or 1, B1-4 = H, C \leq 20 alkyl, alkenyl, aryl, cycloalkyl, halogen, halogenated hydrocarbon, (CH2)jX, X = C(O)OR5, C(O)OR6, R5-6 = derivs. of C \leq 20 alkyl, alkenyl, aryl, cycloalkyl, j = integer 0-5, and B1-4 may form alkylidenyl, cycloalkylene, and cycloalkenylene, and n = integer 0-2, and at least one compound selected from (A) a compound acting as an acid when heated to 50° or higher, (B) a metal compound of an alkoxy compound, aryloxy compound, carboxyl

compound, carpoxyl

 $\mbox{\sc B-diketone}$ compound, halogen compound, or oxide, (C) an organic carboxylic acid,

organic phosphoric acid, organic sulfonic acid, ammonia, primary to tertiary amine compound, or quaternary ammonium compound. The composition exhibits excellent

optical transparency, solvent resistance, dimensional stability, heat resistance, and adhesion to metals and inorg. materials, and suitable for use in optical transparent materials and electronic material parts, to a cross-linked product obtained by crosslinking the composition via siloxane bonds, and to a film, sheet, or coating made from the composition Thus, (A) 100 parts copolymer solution comprising 10 g 2-norbornene-5-triethoxysilyl-2-norbornene copolymer obtained by reacting 2-norbornene 593.75, 5-triethoxysilyl-2-norbornene 31.25, and 1,5-cyclooctadiene (mol. weight modifier) 0.25 mmol on 500 g toluene in the presence of 0.25 mmol nickel compds. (1:1 molar ratio nickel octoate and hexafluoro antimonite) and 2.25 mmol trifluoroboron di-Et ether complex, dissolved in 40 g toluene (water content 70 ppm), (B) 1 part pentaerythritoltetrakis[3-(3,5-di-tert-Bu 4-hydroxyphenyl)propionate] (antioxidant), and (C) 0.05 parts tin(II) diloctanate (crosslinking catalyst) were spread onto a PETRI dish, stand at 40° for 3 h to give a film, heated at 150° for 2 h, and dried at 230° under vacuum for 1 h to give a 100 μ m-thick colorless transparent film showing degree of non-swelling in toluene 500%, Tg 338°, total light transmission 91%, and coefficient of linear expansion 81 ppm/°.

REFERENCE COUNT: 3 THERE ARE 3 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT

L6 ANSWER 3 OF 3 ZCAPLUS COPYRIGHT 2009 ACS on STN

ACCESSION NUMBER: 2000:335732 ZCAPLUS

DOCUMENT NUMBER: 132:323618

TITLE: Preparation and reactions of water-soluble colloidal

noble metal oxide nanoparticles

INVENTOR(S): Reetz, Manfred T.; Koch, Michael Georg PATENT ASSIGNEE(S): Studiengesellschaft Kohle m.b.H., Germany

SOURCE: Ger. Offen., 10 pp.

CODEN: GWXXBX

DOCUMENT TYPE: Patent LANGUAGE: German

FAMILY ACC. NUM. COUNT: 1

PATENT INFORMATION:

PA	TENT	NO.			KIND DATE				API	DATE						
DE	1985	A1	1 20000518			DE	1998	 3-1985		19981113						
CA	2350428				A1		2000	0525	CA	1999		19991109				
WO	0 2000029332 W: CA, JP, US				A1		2000	0525	WO	1999	-EP85	19991109				
	RW:	AT,	BE,	CH,	CY,	DE,	DK,	ES,	FI, FI	R, GE	3, GR,	ΙE,	ΙT,	LU,	MC,	NL,
		PT,	SE													
EP	EP 1133447				A1 2001091				EP		19991109					
EP	1133	447			В1		2004	0421								
	R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB, GI	R, II	Γ, LI,	LU,	NL,	SE,	MC,	PT,
		ΙE,	FΙ													
JP	2002	5293	62		${f T}$		2002	0910	JP	2000)-5823	31		1	9991	109
AT	2648	13			\mathbf{T}		2004	0515	AT	1999	9-9609	65		1	9991	109
PRIORIT	Y APP	LN.	INFO	.:					DE	1998	3-1985	2547		A 1	9981	113
									WO	1999	9-EP85	94	1	W 1	9991	109
OFFIED O	OTTOOL	(()			11777	~ ~ ~	100	2026	1.0							

OTHER SOURCE(S): MARPAT 132:323618

AB Mono-, bi-, and multimetallic, water-soluble colloidal metal oxides are prepared by a directed synthesis of soluble colloidal metal oxides by controlled hydrolysis of one or more noble metal precursors in the presence of a base and a water-soluble stabilizer. The colloids (with particle size 0.5-5 nm) are prepared from metal oxides of Groups VIB, VIIB, VIII, IB, or IIB of the Periodic Table. The stabilizers are preferably selected from water-soluble amphiphilic betaines, surfactants, or water-soluble

polymers. Controlled hydrolysis is carried out in the presence of alkaline and alkaline earth carbonates (especially Li2CO3, Na2CO3, K2CO3, Cs2CO3, and MqCO3).

The nanoparticle colloidal metal oxides can be, when desired, reduced to the colloidal metals, or can be deposited (co-precipitated) onto a support (e.g.,

as the oxidized or reduced nanoparticles) consisting of gel precursors from hydrolyzed Si(OMe)4 or Si(OMe)4-C1-4-alkoxy-Si(OMe)3 mixts. The metal oxide nanoparticles are especially useful as large-surface-area catalysts.

4

REFERENCE COUNT:

THERE ARE 4 CITED REFERENCES AVAILABLE FOR THIS RECORD. ALL CITATIONS AVAILABLE IN THE RE FORMAT