Week 1

Name:	
Date: _	

Direct Proof

A direct proof is a proof that works directly from definitions to arrive at the desired statement using positive logical reasoning. A direct proof will NOT involve proving a logically equivalent statement, as this is an indirect proof and we will cover these next week.

We typically use a direct proof when presented with conditional statements, think statements of the form "if...then". These are commonly presented in logic as $p \implies q$ (if p, then q). Your job is to use your reasoning skills to find the \implies , or 'link' between your assumption, p, and your conclusion, q. This is typically done as follows:

- 1. Assume p to be true. Examine what you know from this assumption, ie, what are the facts you are given and what tools do you know that apply to these facts.
- 2. Apply tools to progressively reason towards your conclusion. Think about a maze, this step is essentially you figuring out which paths to take that lead to the end.
- 3. Arrive at q as a necessary result of your reasoning.

Exercises

Do your best!

- 1. The square of an odd number is odd.
- 2. The product of an even and an odd is even.
- 3. Is $\emptyset \in \emptyset$? What about $\emptyset \in \{\emptyset\}$?
- 4. How many elements are in the set $S = \{\{\emptyset, \{\emptyset\}\}, \{\emptyset\}, \emptyset\}$?
- 5. What is $\mathcal{P}(S)$ for the above S? Write it out fully.
- 6. Prove that $\emptyset \in \mathcal{P}(S)$ for any given set S.
- 7. Prove that for $x \in \emptyset$, then $x^2 = 9$
- 8. Prove that $A \cap \emptyset = \emptyset$
- 9. Prove that $A \cup \emptyset = A$
- 10. Prove that $P \vee \neg P$ is T is true regardless of the truth value of P.
- 11. Show that $(P \wedge Q) \vee (\neg P \vee \neg Q)$ is true.