

Labor Physik - Versuch S2

Bestimmung der Schallgeschwindigkeit mit dem Resonanzrohr

Marius Neumann & Nico Herkner

17. November 2017

Inhaltsverzeichnis

1	Theorie	1
2	Versuch	1
3	Versuchsdurchführung	1
4	Auswertung	2
5	Geräteliste	3
Aı	nhang	3
6	Messprotokoll	4

1 Theorie

Wir haben uns anhand [?, ?, ?] mit den genannten Themen vertraut gemacht und uns die Versuchsanleitung sorgfältig durchgelesen. Uns sind keine weiteren Fragen offengeblieben. Des weiteren haben wir uns die Vorbereitungsstichpunkte genau angeschaut.

2 Versuch

Wir haben uns sorgfältig mit dem Versuchsaufbau beschäftigt. Die Skizze zum Versuchsaufbau befindet sich in der Versuchsanleitung.

3 Versuchsdurchführung

Wir haben die Messung, wie im Laborumdruck beschrieben, für vier verschiedene Messungen durchgeführt und die Messwerte im Messprotokoll eingetragen. Siehe Tabelle 6.1 bis 6.5.

4 Auswertung

4.1 Berechnung von $\overline{\Delta l_n}$

Die Tabellen 4.1 bis 4.4 zeigen unsere Messergebnisse mit den dazu gehörigen Differenzen. Δl_n wurde wie folgt berechnet:

$$\Delta l_n = l_{max,n} - l_{min,n} \tag{4.1}$$

Tabelle 4.1: Messwerte mit berechneten Differenzen für die 1. Messung (500 Hz)

Messung	1	2	3	4	5	6	7	8	9	10	Mittelwert
$l_{max,1}$	98,5	98,5	98,4	98,6	98,6	98,8	98,7	98,5	98,8	98,8	98,6
$l_{min,1}$	6,0	6,0	6,1	6,0	6,1	6,1	6,1	6,0	6,0	6,1	6,1
Δl_1	92,5	92,5	92,3	92,6	92,5	92,7	92,6	92,5	92,8	92,7	92,6

Tabelle 4.2: Messwerte mit berechneten Differenzen für die 2. Messung (1000 Hz)

Messung	1	2	3	4	5	6	7	8	9	10	Mittelwert
$l_{max,1}$	98,5	98,5	98,4	98,6	98,6	98,8	98,7	98,5	98,8	98,8	98,6
$l_{min,1}$	6,0	6,0	6,1	6,0	6,1	6,1	6,1	6,0	6,0	6,1	6,1
Δl_1	92,5	92,5	92,3	92,6	92,5	92,7	92,6	92,5	92,8	92,7	92,6

Tabelle 4.3: Messwerte mit berechneten Differenzen für die 3. Messung (1500 Hz)

Messung	1	2	3	4	5	6	7	8	9	10	Mittelwert
$l_{max,1}$	98,3	98,2	98,1	98,2	98,3	98,4	98,4	98,3	98,5	98,5	98,3
$l_{min,1}$	7,5	7,5	7,5	7,6	7,6	7,7	7,7	7,8	7,8	7,8	7,7
Δl_3	90,8	90,7	90,6	90,6	90,7	90,7	90,7	90,5	90,7	90,7	90,7

Tabelle 4.4: Messwerte mit berechneten Differenzen für die 4. Messung (2000 Hz)

Messung	1	2	3	4	5	6	7	8	9	10	Mittelwert
$l_{max,1}$	98,4	98,5	98,6	98,3	98,1	98,1	98,1	98,0	97,8	98,0	98,2
$l_{min,1}$	3,7	3,6	3,6	3,6	3,7	3,5	3,5	3,5	3,5	3,6	3,6
Δl_4	94,7	94,9	95,0	94,7	94,4	94,6	94,6	94,5	94,3	94,4	94,6

4.2 Berechnung der Wellenlänge λ

Abbildung 4.1 zeigt die stehende Welle im Resonanzrohr mit den dazugehörigen Längenbeziehungen. Die Anzahl der Resonanzen ist in blau eingezeichnet, wobei bei der Resonanz l_{min} mit eins zu zählen begonnen wurde.

Abbildung 4.1: Veranschaulichung der Stehenden Welle im Resonanzrohr mit Wellenparametern

Aus der Abbildung lässt sich folgender Zusammenhang ableiten:

$$\lambda_n = \frac{\Delta l_n}{n-1} \cdot 2 \tag{4.2}$$

Mit dem Mittelwert aus 4.1 und der Gleichung wurden für jede der vier Messung die Wellenlänge λ berechnet und in Tabelle 4.5 dargestellt.

Tabelle 4.5: Berechnete Wellenlänge für die vier Messungen

Messung	$\overline{\Delta l_n}$ in cm	n	λ in cm
$1 (500 \; Hz)$	$92,\!57$	4	61,71
$2 (1000 \; Hz)$	68,04	5	34,02
$3 (1510 \ Hz)$	90,67	9	22,67
$4 (2000 \; Hz)$	94,61	12	17,20

4.3 Berechnung der Schallgeschwindigkeit c

Die Schallgeschwindigkeit c wurde wie folgt berechnet und ist in Tabelle 4.6 für jede Messung zu finden.

$$c_n = f_n \cdot \lambda \tag{4.3}$$

Tabelle 4.6: Ergebnisse der Berechnung der Schallgeschwindigkeit

Messung	f in Hz	λ in cm	c in m/s
1	500	61,7	308,6
2	1000	34,0	340,2
3	1510	22,7	342,3
4	2000	17,2	344,0

4.4 Berücksichtigung des Temperatureinflusses

Die Schallgeschwindigkeiten bei 20 °C der vier Messungen wurde mit Gleichung (11) berechnet und sind in Tabelle 4.7

Tabelle 4.7: Werte der Schallgeschwindigkeit bei $20~^{\circ}C$ der einzelnen Messungen

Messung	$T_v \text{ in } {}^{\circ}C$	$T_n \text{ in } {}^{\circ}C$	c in m/s	$c_{exp}(20 {}^{\circ}C) \text{ in } m/s$
$1 (500 \ Hz)$	20,0	20,1	$308,\!57$	308,54
$2 (1000 \; Hz)$	20,1	20,0	340,20	340,17
$3 (1510 \; Hz)$	20,0	20,1	342,28	342,25
$4 (2000 \; Hz)$	20,1	19,9	344,02	344,02

4.5 Zusammenfassung der Ergebnisse und Vergleich mit Literaturwert

Tabelle 4.8 zeigt den Vergleich des experimentellen Wertes c_{exp} und dem Literaturwert $c_{lit} = 343,14$ in Luft bei 20 °C.

Tabelle 4.8: Vergleich der Messwerte mit dem Literaturwert bei 20 °C

	O			
Messung	$c_{exp}(20 ^{\circ}C)$	$c_{lit}(20 {}^{\circ}C)$	abs. Abweichung	rel. Abweichung
$1 (500 \; Hz)$	$308,540 \ m/s$	$343,14 \ m/s$	$-34,600 \ m/s$	-10,083 %
$2 (1000 \; Hz)$	$340,171 \ m/s$	$343,14 \ m/s$	$-2,969 \ m/s$	-0.865 %
$3 (1510 \ Hz)$	$342,250 \ m/s$	$343,14 \ m/s$	$-0.890 \ m/s$	-0.259 %
$4 (2000 \; Hz)$	$344,018 \ m/s$	$343,14 \ m/s$	$0.878 \ m/s$	0,256 %
Mittelwert	$333,745 \ m/s$	$343,14 \ m/s$	$-9,395 \ m/s$	-2,738 %

4.6 Diskussion der Ergebnisse

Betrachtet man Tabelle 4.8 fällt auf, dass mit steigender Frequenz die Abweichung vom Literaturwert größer wird. Dies liegt wahrscheinlich an der Bandbreite der einzelnen Resonanzfrequenz geringer wird, weil mehr Resonanzen auf der Länge des Resonanzrohres zu messen waren, und somit die Wellenbäuche spitzer und schmaler werden. Daher war Stelle der Auslenkungsmaxima präziser abzulesen.

Die sehr geringe Abweichung bei der vierten Messung sieht schön aus, ist allerdings aber mit Vorsicht zu betrachten, d

Ein weiterer Grund für Fehler trat beim Ablesen auf. Hier war es schwierig Werte für l_{max} genau zu bestimmen, da man nicht direkt im rechten Winkel auf den Maßstab schauen konnte, sondern, weil das mit Wasser gefüllte Rohr im Weg war, von schräg oben ablesen musste. Dabei schätzen wir eine Messungenauigkeit von $1-2\ mm$.

5 Geräteliste

Tabelle 5.1: Geräteliste

Nr.	Gerät
1	${ m Lautsprecher}$
2	Resonanzrohr
3	Rohr mit Wasser
4	Frequenzgenerator
5	Mikrofon
6	$\operatorname{Verst\ddot{a}rker}$
7	Digitaloszolloskop
8	${ m Thermometer}$

Anhang

Frau Dr. Nicolaus Labor Physik - Versuch S2 Messprotokoll

6 Messprotokoll

Tabelle 6.2: Messwerte der 1. Messung

f_1 in Hz										
$T_1 \text{ in } {}^{\circ}C$										
Resonanzen n_1										
Position	1	2	3	4	5	6	7	8	9	10
$l_{max,1}$										
$l_{min,1}$										

Tabelle 6.3: Messwerte der 2. Messung

f_2 in Hz										
T_2 in ${}^{\circ}C$										
Resonanzen n_2										
Position	1	2	3	4	5	6	7	8	9	10
$l_{max,2}$										
$l_{min,2}$										

Tabelle 6.4: Messwerte der 3. Messung

f_3 in Hz										
T_3 in ${}^{\circ}C$										
Resonanzen n_3										
Position	1	2	3	4	5	6	7	8	9	10
$l_{max,3}$										
$l_{min,3}$										

Tabelle 6.5: Messwerte der 4. Messung

f_4 in Hz										
T_4 in ${}^{\circ}C$										
Resonanzen n_4										
Position	1	2	3	4	5	6	7	8	9	10
$l_{max,4}$										
$l_{min,4}$										

Zusätzliche Bemerkungen:

Nico Herkner, 70452700 Marius Neumann, 70453277 D1, 17. November 2017

Frau Dr. Nicolaus Labor Physik - Versuch S2 Messprotokoll

Fakultät: Elektrotechnik

																		_
					[[[]	
												\vdash						