MATH 239 — Assignment 1, Question 2

Bartosz Antczak (ID: 20603468)

a) I am mapping the vertices of graph G onto graph H

x	f(x)
1	P
2	R
3	O
4	D
5	U
6	C
7	T
8	I
9	V
10	E
11	L
12	Y

- b) We see that in graph H, there exist five vertices of degree 3. For these five vertices, we see that:
 - Vertex O has neighbours with degree $\{3, 3, 4\}$
 - Vertex T has neighbours with degree $\{3, 4, 5\}$
 - Vertex E has neighbours with degree $\{2, 3, 3\}$
 - Vertex L has neighbours with degree $\{3, 3, 5\}$
 - Vertex Y has neighbours with degree $\{2, 3, 4\}$

Now, in graph J, we see that vertex f is also degree 3; however, the respective degrees of its neighbours are $\{2, 3, 5\}$, which is not found for any third-degree vertex in graph H, thus H and J are non-isomorphic.