Supply Chain Analytics Using Python

Dr. Hakeem-Ur-Rehman

Assistant Professor

Institute of Quality & Technology Management

University of the Punjab, Lahore

Supply Chain

- The **network of firms and facilities** involved in the transformation process from raw materials to a product and in the distribution of that product to customers.
- In a supply chain
 - Physical flow

(Big) Data Analytics

Some of the crucial scenarios in Supply Chain that **prescriptive analytics** allows organization/companies to answer include:

- What kind of an offer should we make to each customer?
- What should be the plant / warehouse location?
- What should be the shipment strategy for each retail location?

or likely to happen

Which product should I launch and when?

Tiwari, S., Wee, H. M., & Daryanto, Y. (2018). Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Computers & Industrial Engineering, 115, 319-330.

Supply Chain Planning Matrix

Supply Chain Planning & Supply Chain Operations Reference (SCOR) model

SCOR Domain	Source	Make	Deliver	Return			
Activities	Order and receive materials and products	Schedule and manufacture, repair, remanufacture, or recycle materials and products	Receive, schedule, pick, pack, and ship orders	Request, approve, and determine disposal of products and assets			
Strategic (time frame: years)	Strategic sourcingSupply chain mapping	Location of plantsProduct line mix at plants	Location of distribution centersFleet planning	 Location of return centers 			
Tactical (time frame: months)	Tactical sourcingSupply chain contracts	Product line rationalizationSales and operations planning	 Transportation and distribution planning Inventory policies at locations 	Reverse distribution plan			
Operational (time frame: days)	 Materials requirement planning and inventory replenishment orders 	 Workforce scheduling Manufacturing, order tracking, and scheduling 	Vehicle routing (for deliveries)	Vehicle routing (for returns collection)			
Plan	lan Demand forecasting (long term, mid term, and short term)						

Souza, G. C. (2014). Supply chain analytics. Business Horizons, 57(5), 595-605.

Analytic Techniques used in Supply Chain Management

Analytics Techniques	Source	Make	Deliver	Return	
Descriptive	Supply chain mapping	Supply chain visualization			
Predictive	 Time series methods (e.g., moving average, exponential smoothing, autoregressive models) Linear, non-linear, and logistic regression Data-mining techniques (e.g., cluster analysis, market basket analysis) 				
Prescriptive	 Analytic hierarchy process Game theory (e.g., auction design, contract design) 	 Mixed-integer linear programming (MILP) Non-linear programming 	Network flo algorithms		

Souza, G. C. (2014). Supply chain analytics. Business Horizons, 57(5), 595-605.

Mixed Integer Linear Programming

(LP) Maximize
$$z = \sum_{j} c_j x_j$$

subject to $\sum_{j} a_{ij} x_j \le b_i$ $(i = 1, 2, ..., m)$
 $x_j \ge 0$ $(j = 1, 2, ..., n)$

(MIP) Maximize
$$z = \sum_{j} c_{j}x_{j} + \sum_{k} d_{k}y_{k}$$

subject to $\sum_{j} a_{ij}x_{j} + \sum_{k} g_{ik}y_{k} \leq b_{i}$ $(i = 1, 2, ..., m)$
 $x_{j} \geq 0$ $(j = 1, 2, ..., n)$
 $y_{k} = 0, 1, 2, ...$ $(k = 1, 2, ..., p)$

Installation: Anaconda distribution

What is Anaconda distribution?

- Anaconda is a freemium open source distribution of the Python and R programming languages
- o It includes hundreds of popular data science packages
- Official Website for Installing Anaconda https://www.anaconda.com/products/individual

Individual Edition

Your data science toolkit

With over 20 million users worldwide, the open-source Individual Edition (Distribution) is the easiest way to perform Python/R data science and machine learning on a single machine. Developed to solo practitioners, it is the toolkit that equips you to work with thousands of open-source packages and libraries.

Download

Anaconda Installers

Windows •	MacOS É	Linux 🗴
Python 3.7	Python 3.7	Python 3.7
64-Bit Graphical Installer (466 MB)	64-Bit Graphical Installer (442 MB)	64-Bit (x86) Installer (522 MB)
32-Bit Graphical Installer (423 MB)	64-Bit Command Line Installer (430 MB)	64-Bit (Power8 and Power9) Installer (276 MB)
Python 2.7	Python 2.7	
64-Bit Graphical Installer (413 MB)	64-Bit Graphical Installer (637 MB)	Python 2.7
32-Bit Graphical Installer (356 MB)	64-Bit Command Line Installer (409 MB)	64-Bit (x86) Installer (477 MB)
		64-Bit (Power8 and Power9) Installer (295 MB)

Install and Manage Package / Library in Python

pip package manager	Conda package manager
pip list	conda list
pip search packagename	conda search packagename
pip install packagename	conda install packagename
pip install packagenameupgrade	conda update packagename

Python Libraries for Optimization (Operations Research)

Paradigm ¹	Problem Form	Example Use Cases	Example Python Packages
Mathematical/Numerical			
Linear Programming	$egin{array}{ll} ext{minimize} & \mathbf{c}^{\mathrm{T}}\mathbf{x} \ ext{subject to} & A\mathbf{x} \leq \mathbf{b} \ ext{and} & \mathbf{x} \geq 0 \ \end{array}$	Supply chain optimization Production planning	PuLP: interface to linear and mixed-integer solvers MIPCL: commercial mixed-integer programming GLOP: Google's LP-only solver
Integer Programming	$\begin{array}{ll} \text{maximize} & \mathbf{c}^{\mathrm{T}}\mathbf{x} \\ \text{subject to} & A\mathbf{x} \leq \mathbf{b}, \\ & \mathbf{x} \geq 0, \\ \text{and} & \mathbf{x} \in \mathbb{Z}^{n}, \end{array}$	Minimize interference across cellular network Bus scheduling/Vehicle routing "Knapsack" problem	
Quadratic Programming	minimize $\frac{1}{2}\mathbf{x}^{T}Q\mathbf{x} + \mathbf{c}^{T}\mathbf{x}$ subject to $A\mathbf{x} \leq \mathbf{b}$,	 Financial portfolio optimization Image/signals processing Least-Squares regression 	qpsolvers: unified interface around quadratic solvers quadprog: implementation of the Goldfarb/Idnani dual algorithm
Convex Optimization	$egin{array}{ll} ext{minimize} & f(x) \ ext{subject to} & g_i(x) \leq 0, i=1,\ldots,m \ \ f,g_1\ldots g_m:\mathbb{R}^n ightarrow \mathbb{R} ext{ are all convex} \end{array}$	Training ML models Linear/Quadratic are a special case of Convex	• cvxpy • cvxopt
Non-Linear Programming	minimize $f(x)$ subject to $g_i(x) \le 0$ for each $i \in \{1,, m\}$ $h_j(x) = 0$ for each $j \in \{1,, p\}$ $x \in X$.		• pyOpt
Multi-Paradigm			Pyomo: multi-paradigm interface to multiple solvers Google OR-Tools: Google's operations research tools Gurobi: commercial optimizer supporting multiple languages SciPy: its optimize package contains numerous solvers

What is PuLP?

https://coin-or.github.io/pulp/

- PuLP is a modeling framework for Linear (LP) and Integer Programing (IP) problems written in Python
- Maintained by COIN-OR Foundation (Computational Infrastructure for Operations Research)
- PuLP interfaces with different Solvers
 - o CPLEX, COIN, Gurobi, etc...

Product Mix Problem: LP Model

A Company produces 3 paints (interior, exterior and theme) from two raw materials, M1 and M2.

Decision Variables:

- x₁: Amount of exterior paint produced daily
- x₂: Amount of interior paint produced daily
- x₃: Amount of theme paint produced daily

Objective Function:

Maximizes the total daily profit

$$max Z = 1500x_1 + 2500x_2 + 3500x_3$$
s. t. $2x_1 + 2x_2 + 3x_3 \le 14$
 $x_2 + 2x_3 \le 5$
 $x_1 \ge 0$
 $x_2 \ge 0$
 $x_3 \ge 0$

The Capacitated Plant (Facility) Location Problem: MIP Model

Consider a company with three potential sites for installing its facilities/warehouses and five demand points. Each site j has a yearly activation cost (fixed cost) f_i , i.e., an annual leasing expense that is incurred for using it, independently of the volume it services. This volume is limited to a given maximum amount that may be handled yearly, M_i . Additionally, there is a transportation cost c_{ij} per unit serviced from facility j to the demand point i. These data are shown in Table Data for the facility location problem: demand, transportation costs, fixed costs, and capacities.

Data for the facility location problem: demand, transportation costs, fixed costs, and capacities

_	jacob, jacob cozaz, and cup access							
	Customer <i>i</i>	1	2	3	4	5		
	Annual	80	270	250	160	180		
	demand d_j							
	Facility <i>j</i>		c_{ij}					M_j
	1	4	5	6	8	10	1000	500
	2	6	4	3	5	8	1000	500
	3	9	7	4	3	4	1000	500

subject to:
$$\sum_{j=1}^m x_{ij} = d_i$$
 for $i=1,\cdots,n$

$$\sum_{i=1}^n x_{ij} \leq M_j y_j \qquad \qquad ext{for } j=1,\cdots,m$$

$$egin{aligned} x_{ij} & & ext{for } i=1,\cdots,n; j=1,\cdots,m \ x_{ij} & \geq 0 & & ext{for } i=1,\cdots,n; j=1,\cdots,m \end{aligned}$$

$$y_j \in \{0,1\}$$
 for $j=1,\cdots,m$

Indices:

- o n customers i = 1, 2, ..., n
- o m sites for facilities j = 1, 2, ..., m

Decision Variables:

- o $x_{i,i} \ge 0 \rightarrow$ amount serviced from facility j to demand point i
- o $y_i = 1$ if a facility is established at location j, $y_i = 0$ otherwise.

Aggregate Production Planning: MIP Model

Assumption:

- 1. Hiring and firing are allowed in addition to using overtime from the regular work force.
- 2. Backorders are allowed.

Minimize =
$$\sum_{i=1}^{N} \sum_{t=1}^{T} [c_{it} \ X_{it} + h_{it} \ I_{it} + b_{it} B_{it}] + \sum_{t=1}^{T} [r_t \ R_t + o_t \ O_t + h_t \ H_t + f_t \ F_t]$$

Subject to:

$$X_{it} + I_{i^+,t-1} - I_{it^+} B_{i,t-1} + B_{it} = d_{it} \qquad \forall \ i, t \qquad \text{(Inventory-Balancing Constraints)}$$

$$\sum_{i=1}^{N} m_i X_{it} - R_t - O_t \leq 0 \qquad \forall \ i, t \qquad \text{(Time Required to produce products)}$$

$$R_t - R_{t-1} - H_t + F_t = 0 \qquad \forall \ i, t \qquad \text{(Regular Time Required)}$$

$$O_t - pR_t \leq 0 \qquad \forall \ i, t \qquad \text{(Regular Time Required)}$$

$$R_t, O_t, \ H_t, F_t \geq 0 \qquad \forall t \qquad \text{(Non-negative constraint)}$$

$$X_{it}, I_{it}, B_{it} \geq 0 \qquad \forall \ i, t \qquad \text{(Non-negative constraint)}$$

$$X_{it} \qquad \text{(Integer)}$$

Example: We will assume a unit production rate, that <u>overtime is at most 25% of regular labor</u>, <u>Initial Inventory is 3 units</u>, <u>Initial available regular hour and Backorders are 0 (Zero)</u>, and the data from the following table.

	Jan	Feb	Mar	Apr	May	Jun
Demand	100	100	150	200	150	100
Unit Production Cost (Excluding Labor)	7	8	8	8	7	8
Unit Holding Cost	3	4	4	4	3	2
Unit Backorder Cost	20	25	25	25	20	15
Unit Regular Labor Cost	15	15	18	18	15	15
Unit Overtime Labor Cost	22.5	22.5	27	27	22.5	22.5
Hiring Cost	20	20	20	20	20	20
Firing Cost	20	20	20	20	20	15

Transportation Problem: LP Model

Punjab Flour Mill has four branches A, B, C & D and four warehouses 1, 2, 3, and 4. Production, demand and transportation costs are given below:

PRODUCTION (TONES)	DEMAND (TONES)
A – 35	1 - 70
B – 50	2 - 30
C – 80	3 – 75
D – 65	4 - 55

Transportation Costs (in Rs):

	1	2	3	4
A	10	7	6	4
В	8	8	5	7
C	4	3	6	9
D	7	5	4	3

Find the optimal solution.

Let i index the sources, and j the destinations m = # of sources, n = # destinations

Given:

S_i = quantity of goods available at source i

 D_j = quantity of goods required at destination j

C_{ij} = unit cost of shipping goods from source i to destination j

Find:

 X_{ij} = quantity of goods to be shipped from source i to destination j

$$\begin{aligned} & \text{Minimize} \quad \sum_{i=1}^{m} \sum_{j=1}^{n} C_{ij} \; X_{ij} \\ & \text{subject to} \\ & \quad \sum_{j=1}^{n} X_{ij} \leq S_{i} \quad \text{for } i{=}1, \; \dots \; m \\ & \quad \sum_{j=1}^{m} X_{ij} \geq D_{j}, \; j{=}1, \; \dots \; n \\ & \quad X_{ij} \geq 0, \; \text{all } i \; \& \; j \end{aligned}$$

Thanks!