МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

МГТУ им Н.Э.Баумана

Факультет ФН

Кафедра вычислительной математики и математической физики

Соколов Арсений Андреевич

Курсовая работа по дифференциальной геометрии

3 курс, группа Φ H11-53Б Вариант 8

Преподаватель		
		Е.В. Осипов
«	»	 2019 г.

1 Римановы пространства

В механике и особенно в релятивистской физике тензоры широко применяют в *п*-мерных римановых пространствах, являющихся более общими, чем евклидовы. Дадим определение этих пространств, а затем покажем, как конструируются тензоры в них. Начнём с основополагающего понятия римановых пространств - элементарного многообразия.

1.1 Элементарное многообразие

Определение 1. Элементарным n-мерным многообразием называют такое множество M^n , каждой точке которого взаимнооднозначно поставлен в соответствие упорядоченный набор чисел $(X_1...X_n)$ из некоторой связной области $\mathcal{D} \in \mathbb{R}^n$, т.е, задано биективное отображение $\varphi: M^n \longrightarrow \mathcal{D} \in \mathbb{R}^n$.

Координатами точки $\mathcal{M} \in M^n$ в системе координат \mathcal{D} называют координаты $X^i \in \mathbb{R}^n$ ее образа $\varphi(\mathcal{M})$, изменяющиеся в области $\mathcal{D} \in \mathbb{R}^n$. Если для множества M^n имеется другое биективное отображение $\varphi': M^n \longrightarrow \mathcal{D} \in \mathbb{R}^n$, то координаты точки \mathcal{M} в системах координат \mathcal{D} и \mathcal{D}' , связаны соотношениями:

$$X^{\prime i} = X^{\prime i}(X^j), \quad i, j = 1 \dots n, \tag{1}$$

которые предполагают число раз дифференцируемыми и невырожденными, т.е. $\det\left(\frac{\partial X^{\prime i}}{\partial X^{j}}\right) \neq 0, \forall X^{i} \in \mathcal{D}$. Введём обозначения для якобиевых матриц преобразования, а также для их производных:

$$Q_{j}^{i} \equiv \left(\frac{\partial X^{\prime i}}{\partial X^{j}}\right), \quad P_{j}^{i} \equiv \left(\frac{\partial X^{i}}{\partial X^{\prime j}}\right), \quad P_{jk}^{i} \equiv \frac{\partial^{2} X^{i}}{\partial X^{\prime j} \partial X^{\prime k}},$$
 (2)

и кроме того будем использовать обозначения для частных производных:

$$\frac{\partial f}{\partial X^i} \equiv f_{,i}, \quad \frac{\partial f}{\partial X'^i} \equiv f_{|i} = P^j_{i} f_{,i}. \tag{3}$$

Примером двумерного (n=2) элементарного многообразия M^2 являются поверхности в \mathbb{R}^3 , на которых определены криволинейные координаты X_1, X_2 и которые заданы тремя функциями:

$$x^{i} = x^{i}(X^{1}, X^{2}), \quad i = 1, 2, 3.$$
 (4)

1.2 Касательное пространство

Определение 2. Кривой \mathcal{L} в многообразии M^n называют отображение \mathcal{L} : $[\xi_1,\xi_2]\in\mathbb{R}^1\longrightarrow M^n$, которое записывают в виде функции:

$$X^{i} = X^{i}(\xi) \quad \forall \xi \in [\xi_{1}, \xi_{2}], \quad X^{i} \in M^{n}.$$

$$(5)$$

Здесь X^i - координаты точки $\mathcal{M} \in M^n$, $[\xi_1, \xi_2]$ - некоторый отрезок из \mathbb{R}^1 , $(\xi_1 < \xi_2)$, а функции (5) предполагаем непрерывно дифференцируемыми, по крайней мере, два раза.

Зафиксировав значение параметра $\xi \in [\xi_1, \xi_2]$, получим некоторую точку $\mathcal{M} \in \mathcal{L}$, в ней можно вычислить производные от функций (5):

$$a^i = \frac{\mathrm{d}X^i}{\mathrm{d}\xi}.\tag{6}$$

Определение 3. Упорядоченный набор $(a_1 \dots a_n)$ производных (6) называют компонентами касательного вектора a^i в точке \mathcal{M} кривой \mathcal{L} в M^n .

Если перейти к координатам X'^i той же точки $\mathcal{M} \in \mathcal{L}$, то согласно (1) получаем, что компоненты касательного вектора a'^i в этой системе координат будут иметь вид: $a'^i = \frac{\mathrm{d} X'^i}{\mathrm{d} \xi}$ и связаны с a^i тензорным законом:

$$a^{\prime i} = Q^i{}_i a^j. (7)$$

Поскольку через фиксированную точку $\mathcal{M} \in M^n$ можно провести различные кривые \mathcal{L} , то, вообще говоря, в каждой точке \mathcal{M} имеется множество упорядоченных наборов $(a_1 \ldots A_n)$. Определим операции с этими наборами.

Пусть имеется две кривые \mathcal{L}_1 и \mathcal{L}_2 , заданные в виде функций $X_1^i(\xi), X_2^i(\xi)$, проходящие через точку \mathcal{L} , тогда можно построить два набора компонент касательных векторов $a_1^i = \frac{\mathrm{d} X_1^i}{\mathrm{d} \xi}$ и $a_2^i = \frac{\mathrm{d} X_2^i}{\mathrm{d} \xi}$.

Суммой компонент двух касательных векторов назовём набор

$$a_1^i + a_2^i = \frac{\mathrm{d}X_1^i + X_2^i}{\mathrm{d}\xi},$$
 (8)

который представляет собой компоненты касательного вектора к кривой $(X_1^i + X_2^i)(\xi)$ в данной точке \mathcal{M} .

Аналогично определяем произведение компонент i на вещественное число λ :

$$\lambda a^i = \lambda \frac{\mathrm{d}X^i}{\mathrm{d}\xi} = \frac{\mathrm{d}\lambda X^i}{\mathrm{d}\xi}.$$
 (9)

Поскольку набор чисел $(a_1...a_n)$ является элементом пространства \mathbb{R} , то, выбрав базис e_i в этом пространстве, можно построить сам касательный вектор a в точке \mathcal{M} кривой $\mathcal{L}: a=a^ie_i=a'^ie'_i$, где $e'_i=P^j_ie_j$ - новый базис.

Определение 4. Касательным пространством в данной точке \mathcal{M} элементарного многообразия M^n называют множество касательных векторов $= a^i e_i$, построенных ко всевозможным кривым \mathcal{L} , проходящим через данную точку.

Теорема 1. Касательное пространство в любой точке $\mathcal{M} \in M^n$ является n-мерным линейным пространством, которое обозначают как $T_{\mathcal{M}}M^n$, а векторы e, образуют базис в нем.

1.3 Определение риманова пространства

Определение 5. Элементарное n-мерное многообразие M^n называют римановым пространством \mathbb{V}^n , если в каждой точке $\mathcal{M} \in M^n$ с координатами X^i задана матрица g_{ij} n-го порядка, которая является

- 1. симметричной,
- 2. невырожденной: $\det(\tilde{g}_{ij}) \neq 0$, $\forall X^i$,
- 3. компоненты её являются непрерывно-дифференцируемыми функциями,
- 4. при переходе к другим координатам X'^l преобразуется по тензорному закону:

$$g_{ij} = Q_i^k Q_j^l g_{kl}^l. (10)$$

Двумерные поверхности в \mathbb{R}^3 , очевидно, можно рассматривать как двумерные римановы пространства \mathbb{V}^2 с метрической матрицей \tilde{g}_{IJ} .

Расстояние в римановом пространстве вводят для бесконечно близких точек \mathcal{M} и \mathcal{M}' , имеющих кординаты X^i и $X^i + dX^i$, и определяют его как

$$ds^2 = \varkappa g_{ij} dX^i dX^j, \tag{11}$$

где κ — знаковое число, которое выбирают так, чтобы форма (11) была положительной.

Риманово пространство называют собственно римановым, если метрическая матрица $g_{ij}, \forall X^i \in \mathcal{D}$ является положительно-определённой, в противном случае говорят о псевдоримановых пространствах.

2 Свойства римановых пространств

Рассмотрим некоторые свойства римановых пространств, которые понадобятся нам для введения тензора Эйнштейна, чтобы указать связь римановых пространств с общей теорией относительности.

2.1 Коэффициенты связанности в \mathbb{V}^n

Поскольку в каждой точке $\mathcal{M}(X^i) \in \mathbb{V}^n$ введена метрическая матрица $g_{ij(X^i)}$ компоненты которой, согласно п.3 определения 5, являются непрерывно дифференцируемыми функциями, то можно вычислить производные $\frac{\partial g_{ij}}{\partial X^k}$ и образовать из них следующие объекты:

$$\Gamma_{ijk} = \frac{1}{2}(g_{ik,j} + g_{jk,i} - g_{ij,k}). \tag{12}$$

Определение 6. Функции Γ_{ijk} определённые по формулам (12), называют коэффициентами связности первого рода в \mathbb{V}^n . Коэффициенты связности второго рода вводим с помощью обратной матрицы g^{ij} :

$$\Gamma_{ij}^{m} = g^{mp} \Gamma_{ijp}. \tag{13}$$

2.2 Определение аффинной связности

Определение 7. Элементарное n-мерное многообразие M^n называют пространством аффинной связности \mathbb{L}^n , если в каждой точке $\mathcal{M} \in M^n$ с координатами X^i задана система функций Γ^m_{ij} , которые

- 1. являются непрерывно-дифференцируемыми функциями,
- 2. при переходе к другим координатам X'^i преобразуются следующим образом:

$$\Gamma_{ij}^{\prime m} = P_i^l P_j^q Q_r^m \Gamma_{lq}^{r} + Q_r^m P_{ij}^{r}.$$
 (14)

Функции Γ_{ij}^m , заданные в \mathbb{L}^n , называют коэффициентами аффинной связности (или просто аффинной связностью).

2.3 Тензоры в элементарном многообразии

Построим в каждой точке $\mathcal{M} \in M^n$ множество наборов касательных векторов:

$$(a_1b^{(1)}a_2b^{(2)}\dots a_nb^{(n)} \equiv (a_ib^{(i)}),$$

где $a_i \in T_{\mathcal{M}} M^n$, $b^{(i)} T_{\mathcal{M}}^* M^n$, и введём на этом множестве операции сложения и умножения на вещественное число s:

$$(a_i b^{(i)}) + (a_i c^{(i)}) = (a_i (b^{(i)} + c^{(i)})),$$
(15)

$$(a_i b^{(i)}) + (d_i b^{(i)}) = ((a_i + d_i))b^{(i)}), \tag{16}$$

$$s(a_i b^{(i)}) = ((sa_i)b^{(i)}) = (a_i(sb^{(i)}))$$
(17)

2.4 Ковариантное дифференцирование тензоров в \mathbb{V}^n

Рассмотрим в \mathbb{V}^n произвольное поле тензора k-го ранга:

$${}^{k}\Omega\left(X^{i}\right) = \Omega^{i_{1}\dots i_{p}}{}_{j_{1}\dots j_{q}}\mathbf{e}_{i_{1}}\otimes\dots\otimes\mathbf{e}_{i_{p}}\otimes\mathbf{e}^{j_{1}}\otimes\dots\otimes\mathbf{e}^{j_{q}}, \quad p+q=k,$$
 (18)

причём его компоненты $\Omega^{i_1...i_p}_{j_1...j_q}$ будем считать непрерывно дифференцируемыми функциями координат X^i точки $\mathcal{M} \in \mathbb{V}^n$

Определение 8. Ковариантной производной от компонент тензора $\Omega^{i_1...i_p}_{\quad j_1...j_q}$ k-го ранга $^k\Omega$, определённого в \mathbb{V}^n , называют следующий объект:

$$\nabla_{i}\Omega^{i_{1}...i_{p}}{}_{j_{1}...j_{q}} = \frac{\partial}{\partial X^{i}}\Omega^{i_{1}...i_{p}}{}_{j_{1}...j_{q}} + \sum_{s=1}^{p} \Gamma^{i_{s}}_{mi}\Omega^{i_{1}...i_{p}=m...i_{p}}{}_{j_{1}...j_{q}} + \dots$$

$$\dots - \sum_{s=1}^{q} \Gamma^{m}_{j_{s}i}\Omega^{i_{1}...i_{p}}{}_{j_{1}...j_{q}=m...i_{q}}, p+q=k. \quad (19)$$