Theory of Computation

(Finite Automata)

Rezaul Chowdhury (Slides by Pramod Ganapathi)

Department of Computer Science State University of New York at Stony Brook Fall 2021

Automaton?

Automaton?

au·tom·a·ton

/ô tämədən,ô tämə tän/

noun

noun: automaton; plural noun: automata; plural noun: automatons

a moving mechanical device made in imitation of a human being.

"a collection of 19th century French automata: acrobats, clowns, and musicians"

- a machine that performs a function according to a predetermined set of coded instructions, especially one capable of a range of programmed responses to different circumstances.
 "sophisticated automatons continue to run factory assembly lines"
- used in similes and comparisons to refer to a person who seems to act in a mechanical or unemotional way.

"she went about her preparations like an automaton"

'The Writer' Automaton (1770-72):

A Distant Ancestor
of Modern Programmable Computers!

(Video)

Contents

Contents

- Deterministic Finite Automata (DFA)
- Regular Languages
- Regular Expressions
- Nondeterministic Finite Automata (NFA)
- Transformations
- Non-Regular Languages

Video Games are Finite-State Machines

(Video)

The AI of Half-Life: Finite-State Machines (Video)

Finite-State Machines in Game Development

(Video)

Electric bulb

Problem

• Design the logic behind an electric bulb.

Electric bulb

Problem

• Design the logic behind an electric bulb.

Solution

• Diagram.

- Analysis.States = {nolight, light}, Input = {off, on}
- Finite Automaton.

Multispeed fan

Problem

• Design the logic behind a multispeed fan.

Multispeed fan

Problem

• Design the logic behind a multispeed fan.

Solution

• Diagram.

• Analysis.

$$\begin{aligned} \text{States} &= \{0,1,2,3\} \\ \text{Input} &= \{\circlearrowright,\circlearrowleft\} \end{aligned}$$

• Finite Automaton.

Automatic doors

Problem

• Design the logic behind automatic doors in Walmart.

Automatic doors

Solution

• Diagram.

- Analysis.
 - $\mathsf{States} = \{\mathsf{close}, \mathsf{open}\}, \; \mathsf{Input} = \{\mathsf{left}, \mathsf{right}, \mathsf{neither}\}$
- Finite Automaton.

Basic features of finite automata

- A finite automaton is a simple computer with extremely limited memory
- A finite automaton has a finite set of states
- Current state of a finite automaton changes when it reads an input symbol
- A finite automaton acts as a language acceptor i.e., outputs "yes" or "no"

Why should you care?

Deterministic Finite Automata (DFA) are everywhere.

- ATMs
- Ticket machines
- Vending machines
- Traffic signal systems
- Calculators
- Digital watches
- Automatic doors
- Flevators
- Washing machines
- Dishwashing machines
- Thermostats
- Train switches
- (CS) Compilers
- (CS) Search engines
- (CS) Regular expressions

Why should you care?

Probabilistic Finite Automata (PFA) are everywhere, too.

- Speech recognition
- Optical character recognition
- Thermodynamics
- Statistical mechanics
- Chemical reactions
- Information theory
- Queueing theory
- PageRank algorithm
- Statistics
- Reinforcement learning
- Price changes in finance
- Genetics
- Algorithmic music composition
- Bioinformatics
- Probabilistic forecasting

What is a decision problem?

Definition

- A decision problem is a computational problem with a 'yes' or 'no' answer.
- A computer that solves a decision problem is a decider. Input to a decider: A string w Output of a decider: Accept (w is in the language) or Reject (w is not in the language)

What is a decision problem?

- $\bullet \ \mathsf{Language} = \mathsf{English} \ \mathsf{language} = \{\mathsf{milk}, \mathsf{food}, \mathsf{sleep}, \ldots\} \rhd \mathsf{Accept}$
- $\bullet \ \, \mathsf{Not} \,\, \mathsf{in} \,\, \mathsf{language} = \{\mathsf{zffgb}, \mathsf{cdcapqw}, \ldots\} \\ \qquad \qquad \rhd \,\, \mathsf{Reject}$

What is a decision problem?

Problem

• Does the DFA accept the string bbab?

Problem

• Does the DFA accept the string bbab?

Solution

The computation is:

- 1. Start in state q_0
- 2. Read b, follow transition from q_0 to q_1 .
- 3. Read b, follow transition from q_1 to q_1 .
- 4. Read a, follow transition from q_1 to q_2 .
- 5. Read b, follow transition from q_2 to q_1 .
- 6. Accept because the DFA is in an accept state q_1 at the end of the input.

Problem

• Does the DFA accept the string aaba?

Problem

• Does the DFA accept the string aaba?

Solution

The computation is:

- 1. Start in state q_0
- 2. Read a, follow transition from q_0 to q_0 .
- 3. Read a, follow transition from q_0 to q_0 .
- 4. Read b, follow transition from q_0 to q_1 .
- 5. Read a, follow transition from q_1 to q_2 .
- 6. Reject because the DFA is in a reject state q_2 at the end of the input.

Problem

• What language does the DFA accept?

Problem

• What language does the DFA accept?

Examples

- The DFA accepts the following strings: $b, ab, bb, aabbb, ababababab, \dots$ \rhd ends with b $baa, abaa, ababaaaaaa, \dots \rhd$ ends with b followed by even a's
- The DFA rejects the following strings: $a, ba, babaaa, \ldots$
- What language does the DFA accept?

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{\epsilon,a,aa,aaa,aaaa,\ldots\}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{\epsilon,a,aa,aaa,aaaa,\ldots\}$

Solution

- $\bullet \ \, \mathsf{Language} \,\, L \colon \, \Sigma^* = \{\epsilon, a, aa, aaa, aaaa, \ldots\}$
- Expression: a^*
- Deterministic Finite Automaton (DFA) M:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{\}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{\}$

Solution

ullet Language L: $\phi = \{\}$

- Expression: ϕ
- DFA *M*:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{a,aa,aaa,aaaa,\ldots\}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{a,aa,aaa,aaaa,\ldots\}$

Solution

- $\bullet \ \ \mathsf{Language} \ L \colon \ \Sigma^* \{\epsilon\} = \{a, aa, aaa, aaaa, \ldots\}$
- Expression: a^+
- DFA *M*:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{\epsilon\}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{\epsilon\}$

Solution

- ullet Language L: $= \{\epsilon\}$
- Expression: ϵ
- \bullet DFA M:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{aaa\}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{aaa\}$

Solution

- Language L: $\{aaa\}$
- Expression: aaa
- DFA *M*:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of even size} \}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of even size} \}$

- Language L: $\{\epsilon, aa, aaaa, aaaaaaa, \ldots\}$
- Expression: $(aa)^*$
- DFA *M*:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of odd size} \}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of odd size} \}$

- Language L: $\{a, aaa, aaaaa, \ldots\}$
- Expression: $a(aa)^*$
- DFA *M*:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by 3} \}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by 3} \}$

- $\bullet \ \, \mathsf{Language} \,\, L \colon \, \{\epsilon, aaa, aaaaaaa, aaaaaaaaaa, \ldots \}$
- Expression: $(aaa)^*$
- DFA *M*:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size not divisible by } 3 \}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size not divisible by } 3 \}$

- ullet Language L: $\{a, aa, aaaa, aaaaa, \ldots\}$
- Expression: $(a \cup aa)(aaa)^*$
- DFA *M*:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by 6} \}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by 6} \}$

- ullet Language L: $\{\epsilon, aaaaaa, aaaaaaaaaaaa, \ldots\}$
- Expression: $(aaaaaa)^*$
- DFA *M*:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by 6} \}$

Solution

- $\bullet \ \, \mathsf{Language} \,\, L \colon \, \{\epsilon, aaaaaa, aaaaaaaaaaaaa, \ldots\}$
- Expression: $(aaaaaa)^*$
- DFA *M*:

• Can you think of another approach?

Problem

• Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by 6} \}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings of size divisible by 6} \}$

Solution

- Let n =string size
- Observation $n \mod 6 = 0 \iff n \mod 2 = 0$ and $n \mod 3 = 0$
- Idea

Build DFA M_1 for $n \mod 2 = 0$.

Build DFA M_2 for $n \mod 3 = 0$.

Run M_1 and M_2 in parallel.

Accept a string if both DFAs M_1 and M_2 accept the string.

Reject a string if at least one of the DFAs M_1 and M_2 reject the string.

It is possible to build complicated DFAs from simpler DFAs

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{\text{strings with size } n \text{ where } n \bmod 4=2\}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L=\{\text{strings with size } n \text{ where } n \bmod 4=2\}$

Solution

- Language L: $\{aa, aaaaaa, aaaaaaaaaa, \ldots\}$
- Expression: $aa(aaaa)^*$
- DFA *M*:

• What about strings with size n where $n \mod k = i$?

More Problems

Construct a DFA that accepts all strings from the language $L = \{ \mbox{strings with size } n \}$ such that

- $n^2 5n + 6 = 0$
- $n \in [4, 37]$
- ullet n is a perfect cube
- \bullet n is a prime number
- ullet n satisfies a mathematical function f(n)

Specifying a DFA

The specification of DFA consists of:

- A (finite) alphabet
- A (finite) set of states
- Which state is the start state?
- Which states are the final states?
- What is the transition from each state, on each input character?

What is a deterministic finite automaton (DFA)?

- Deterministic = Events can be determined precisely
- Finite = Finite and small amount of space used
- Automaton = Computing machine

What is a deterministic finite automaton (DFA)?

- Deterministic = Events can be determined precisely
- Finite = Finite and small amount of space used
- Automaton = Computing machine

Definition

A deterministic finite automaton (DFA) M is a 5-tuple

 $M = (Q, \Sigma, \delta, q_0, F)$, where,

- 1. Q: A finite set (set of states). \triangleright Space (computer memory)
- 2. Σ : A finite set (alphabet).
- 3. $\delta: Q \times \Sigma \to Q$ is the transition function.

- 4. q_0 : The start state (belongs to Q).
- 5. F: The set of accepting/final states, where $F \subseteq Q$.

Acceptance and rejection of strings

Definition

- A DFA accepts a string $w=w_1w_2\dots w_k$ iff there exists a sequence of states r_0,r_1,\dots,r_k such that the current state starts from the start state and ends at a final state when all the symbols of w have been read.
- A DFA rejects a string iff it does not accept it.

What is a regular language?

Definition

- We say that a DFA M accepts a language L if $L = \{w \mid M \text{ accepts } w\}.$
- A language is called a regular language if some DFA accepts or recognizes it.

How can Simple Robots with Limited Memory Complete Complex Assembly Operations? (Video)

Problem

• Construct a DFA that accepts all strings from the language $L = \{\text{strings with odd number of } b\text{'s}\}$

Problem

ullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings with odd number of } b \text{'s} \}$

Solution

States

- \bullet q_{odd} : DFA is in this state if it has read odd b's.
- ullet q_{even} : DFA is in this state if it has read even b's.

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings with odd number of } b \text{'s} \}$

- ullet Language L: {strings with odd number of b's}
- Expression: $a^*b(a \cup ba^*b)^*$ or $a^*ba^*(ba^*ba^*)^*$
- DFA *M*:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ \text{strings with odd number of } b \text{'s} \}$

Solution (continued)

• DFA M is specified as Set of states is $Q = \{q_{\mathsf{even}}, q_{\mathsf{odd}}\}$ Set of symbols is $\Sigma = \{a, b\}$ Start state is q_{even} Set of accept states is $F = \{q_{\mathsf{odd}}\}$ Transition function δ is:

δ	a	b		
q_{even}	q_{even}	$q_{\sf odd}$		
$q_{\sf odd}$	$q_{\sf odd}$	q_{even}		

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ {\rm strings~containing~} bab \}$

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ {\rm strings\ containing\ } bab \}$

Solution

States

- q_b : DFA is in this state if the last symbol read was b, but the substring bab has not been read.
- q_{ba} : DFA is in this state if the last two symbols read were ba, but the substring bab has not been read.
- q_{bab} : DFA is in this state if the substring bab has been read in the input string.
- q: In all other cases, the DFA is in this state.

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ {\rm strings\ containing\ } bab \}$

Solution (continued)

- Language L: {strings containing bab}
- Expression: $(a^*b^+aa)^*bab(a \cup b)^*$
- DFA *M*:

Problem

 \bullet Construct a DFA that accepts all strings from the language $L = \{ {\rm strings\ containing\ } bab \}$

Solution (continued)

• DFA M is specified as Set of states is $Q = \{q, q_b, q_{ba}, q_{bab}\}$ Set of symbols is $\Sigma = \{a, b\}$ Start state is q Set of accept states is $F = \{q_{bab}\}$ Transition function δ is:

δ	a	b		
q	q	q_b		
q_b	q_{ba}	q_b		
q_{ba}	q	q_{bab}		
q_{bab}	q_{bab}	q_{bab}		

Closure properties of regular languages

Properties

Let L_1 and L_2 be regular languages.

Then, the following languages are regular.

- Complement. $\overline{L_1} = \{x \mid x \in \Sigma^* \text{ and } x \notin L_1\}.$
- Union. $L_1 \cup L_2 = \{x \mid x \in L_1 \text{ or } x \in L_2\}.$
- Intersection. $L_1 \cap L_2 = \{x \mid x \in L_1 \text{ and } x \in L_2\}.$
- Concatenation. $L_1 \cdot L_2 = \{xy \mid x \in L_1 \text{ and } y \in L_2\}.$
- Star. $L_1^* = \{x_1 x_2 \dots x_k \mid k \geq 0 \text{ and each } x_i \in L_1\}.$

Closure properties for languages

	Operation								
Language	$L_1 \cup L_2$	$L_1 \cap L_2$	L'	L_1L_2	L^*	L^R	L^T		
Regular	✓	√	>	\	\	\	>		
DCFL	X	Х	\	Х	Х	Х	X		
CFL	✓	Х	X	✓	✓	✓	>		
Recursive	1	1	/	1	1	1	Х		
R.E.	✓	✓	X	✓	✓	1	1		

- $L_1 \cup L_2 = \mathsf{Union} \ \mathsf{of} \ L_1 \ \mathsf{and} \ L_2$
- ullet $L_1\cap L_2=$ Intersection of L_1 and L_2
- ullet L' = Complement of <math>L
- ullet $L_1L_2=$ Concatenation of L_1 and L_2
- $\bullet \ \ L^* = {\sf Powers} \ {\sf of} \ L$
- $\bullet \ \, L^R = {\rm Reverse} \,\, {\rm of} \,\, L$
- \bullet $L^T=$ Finite transduction of L (may include: intersection/shuffle/perfect-shuffle/quotient with arbitrary regular languages)

Construct DFA for $L_1 \cup L_2$

Problem

• Construct a DFA that accepts all strings from the language $L=\{\text{strings with size multiples of 2 or 3}\}$ where $\Sigma=\{a\}$

- Language $L_1 = \{\text{strings with size multiples of 2}\}$
- Language $L_2 = \{ \text{strings with size multiples of 3} \}$

Construct DFA for $L_1 \cup L_2$

Solution (continued)

• Language $L_1 \cup L_2 = \{ \text{strings with size multiples of 2 or 3} \}$

Construct DFA for $L_1 \cup L_2$

Union

- Let M_1 accept L_1 , where $M_1 = (Q_1, \Sigma, \delta_1, (q_0)_1, F_1)$ Let M_2 accept L_2 , where $M_2 = (Q_2, \Sigma, \delta_2, (q_0)_2, F_2)$
- Let M accept $L_1 \cup L_2$, where $M = (Q, \Sigma, \delta, q, F)$. Then $Q = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\} \Rightarrow \text{Cartesian product } \delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)) \ \ \forall (r_1, r_2) \in Q, a \in \Sigma$ $q_0 = ((q_0)_1, (q_0)_2)$ $F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}$

Construct DFA for $L_1 \cap L_2$

Problem

• Construct a DFA that accepts all strings from the language $L=\{\text{strings with size multiples of 2 and 3}\}$ where $\Sigma=\{a\}$

- Language $L_1 = \{\text{strings with size multiples of 2}\}$
- Language $L_2 = \{ \text{strings with size multiples of 3} \}$

Construct DFA for $L_1 \cap L_2$

Solution (continued)

• Language $L_1 \cap L_2 = \{\text{strings with size multiples of 2 and 3}\}$

Construct DFA for $L_1 \cap L_2$

Intersection

- Let M_1 accept L_1 , where $M_1 = (Q_1, \Sigma, \delta_1, (q_0)_1, F_1)$ Let M_2 accept L_2 , where $M_2 = (Q_2, \Sigma, \delta_2, (q_0)_2, F_2)$
- Let M accept $L_1\cap L_2$, where $M=(Q,\Sigma,\delta,q,F)$. Then $Q=\{(r_1,r_2)\mid r_1\in Q_1 \text{ and } r_2\in Q_2\}$ ightharpoonup Cartesian product $\delta((r_1,r_2),a)=(\delta_1(r_1,a),\delta_2(r_2,a))\ \, \forall (r_1,r_2)\in Q,a\in \Sigma$ $q_0=((q_0)_1,(q_0)_2)$

$$F = \{(r_1, r_2) \mid r_1 \in F_1 \text{ and } r_2 \in F_2\}$$

Problems for practice

Problems

Assume $\Sigma = \{a, b\}$ unless otherwise mentioned.

Construct DFA's for the following languages and generalize:

- $L = \{w \mid |w| = 2\}$
- $L = \{w \mid |w| \le 2\}$
- $L = \{w \mid |w| \ge 2\}$
- $L = \{ w \mid n_a(w) = 2 \}$
- $L = \{ w \mid n_a(w) \le 2 \}$
- $L = \{ w \mid n_a(w) \ge 2 \}$
- $L = \{w \mid n_a(w) \text{ mod } 3 = 1\}$
- $L = \{w \mid n_a(w) \bmod 2 = 0 \text{ and } n_b(w) \bmod 2 = 0\}$
- $L = \{ w \mid n_a(w) \bmod 3 = 2 \text{ and } n_b(w) \bmod 2 = 1 \}$
- $L = \{w \mid n_a(w) \bmod 5 = 3, n_b(w) \bmod 3 = 2, \text{ and } n_c(w) \bmod 2 = 1\}$ for $\Sigma = \{a, b, c\}$
- $\bullet L = \{w \mid n_a(w) \bmod 3 \ge n_b(w) \bmod 2\}$

Problems for practice

Problems (continued)

- $L = \{b \mid \text{binary number } b \bmod 3 = 1\} \text{ for } \Sigma = \{0, 1\}$
- $L = \{t \mid \text{ternary number } t \bmod 4 = 3\} \text{ for } \Sigma = \{0, 1, 2\}$
- $L = \{w \mid w \text{ starts with } a\}$
- $L = \{w \mid w \text{ contains } a\}$
- $L = \{w \mid w \text{ ends with } a\}$
- $L = \{w \mid w \text{ starts with } ab\}$
- $L = \{w \mid w \text{ contains } ab\}$
- $L = \{w \mid w \text{ ends with } ab\}$
- $L = \{w \mid w \text{ starts with } a \text{ and ends with } b\}$
- $L = \{w \mid w \text{ starts and ends with different symbols}\}$
- $L = \{w \mid w \text{ starts and ends with the same symbol}\}$
- $\bullet \ L = \{w \mid \mathsf{every} \ a \ \mathsf{in} \ w \ \mathsf{is} \ \mathsf{followed} \ \mathsf{by} \ \mathsf{a} \ b\}$
- $L = \{w \mid \text{every } a \text{ in } w \text{ is never followed by a } b\}$

Problems for practice

Problems (continued)

- $L = \{w \mid \text{ every } a \text{ in } w \text{ is followed by } bb\}$
- $\bullet \ L = \{ w \mid \text{every } a \text{ in } w \text{ is never followed by } bb \}$
- $L = \{w \mid w = a^m b^n \text{ for } m, n \ge 1\}$
- $\bullet \ L = \{ w \mid w = a^m b^n \text{ for } m, n \ge 0 \}$
- $\bullet \ L = \{ w \mid w = a^m b^n c^\ell \text{ for } m, n, \ell \ge 1 \} \text{ for } \Sigma = \{a, b, c\}$
- $L = \{w \mid w = a^m b^n c^\ell \text{ for } m, n, \ell \ge 0\} \text{ for } \Sigma = \{a, b, c\}$
- $\bullet \ L = \{w \mid \mathsf{second} \mathsf{\ symbol\ from\ left\ end\ of\ } w \mathsf{\ is\ } a\}$
- $\bullet \ L = \{w \mid \mathsf{second} \mathsf{\ symbol\ from\ right\ end\ of}\ w \mathsf{\ is\ } a\}$
- $\bullet \ L = \{ w \mid w = a^3bxa^3 \text{ such that } x \in \{a,b\}^* \}$

Equivalence of different computation models

- Two machines or computational models are computationally equivalent if they accept/recognize the same language.
- The following models are computationally equivalent:
 DFA, regular expressions, NFA, and regular grammars.

Closure properties for languages

	Operation				
Language	$L_1 \cup L_2$	$L_1 \cap L_2$	$ar{L}$	$L_1 \circ L_2$	L^*
DFA	Easy	Easy	Easy	Hard	Hard
Regex	Easy	Hard	Hard	Easy	Easy
NFA	Easy	Hard	Hard	Easy	Easy

- $L_1 \cup L_2 = \mathsf{Union} \ \mathsf{of} \ L_1 \ \mathsf{and} \ L_2$
- ullet $L_1\cap L_2=$ Intersection of L_1 and L_2
- $\bar{L} = \text{Complement of } L$
- $L_1 \circ L_2 = \mathsf{Concatenation}$ of L_1 and L_2
- $\bullet \ L^* = {\sf Powers} \ {\sf of} \ L$

Regular Expressions

Example

Example

• Arithmetic expression.

$$(5+3)\times 4=32=\mathsf{Number}$$

• Regular expression.

$$(a \cup b)a^* = \{a, b, aa, ba, aaa, baa, \ldots\} = \mathsf{Regular\ language}$$

Applications

• Regular expressions in Linux.

Used to find patterns in filenames, file content etc.

Used in Linux tools such as awk, grep, and Perl.

What is a regular expression?

Definition

- The following are regular expressions. $\epsilon, \phi, a \in \Sigma$.
- ullet If R_1 and R_2 are regular expressions, then the following are regular expressions.

```
(Union.) R_1 \cup R_2
(Concatenation.) R_1 \circ R_2
(Kleene star.) R_1^*
```

Examples

Regular language	Regular expression
{}	ϕ
$\{\epsilon\}$	ϵ
$\{a\}$	a
$\{a,b\}$	$a \cup b$
$\{a\}\{b\}$	ab
$\{a\}^* = \{\epsilon, a, aa, aaa, \ldots\}$	a^*
$\{aab\}^*\{a,ab\}$	$(aab)^*(a \cup ab)$
$(\{aa, bb\} \cup \{a, b\} \{aa\}^* \{ab, ba\})^*$	$(aa \cup bb \cup (a \cup b)(aa)^*(ab \cup ba))^*$

Examples

Regular language	Regular expression
{}	ϕ
$\{\epsilon\}$	ϵ
$\{a\}$	a
$\{a,b\}$	$a \cup b$
$\{a\}\{b\}$	ab
$\{a\}^* = \{\epsilon, a, aa, aaa, \ldots\}$	a^*
$\{aab\}^*\{a,ab\}$	$(aab)^*(a \cup ab)$
$(\{aa, bb\} \cup \{a, b\} \{aa\}^* \{ab, ba\})^*$	$(aa \cup bb \cup (a \cup b)(aa)^*(ab \cup ba))^*$

Equality

• Two regular expressions are equal if they describe the same regular language. E.g.:

$$(a^*b^*)^* = (a \cup b)^*ab(a \cup b)^* \cup b^*a^* = (a \cup b)^* = \Sigma^*$$

Examples

Examples

Let
$$\Sigma = a \cup b$$
, $R^+ = RR^*$, and $R^k = \underbrace{R \cdots R}_{k \text{ times}}$

- $L = \{w \mid |w| = 2\}$ $R = \Sigma\Sigma$
- $L = \{ w \mid |w| \le 2 \}$ $R = \epsilon \cup \Sigma \cup \Sigma \Sigma$
- $L = \{w \mid |w| > 2\}$
 - $R = \sum \sum \Sigma^*$
- $L = \{ w \mid n_a(w) = 2 \}$
 - $R = b^*ab^*ab^*$
- $L = \{ w \mid n_a(w) \le 2 \}$
 - $R = b^* \cup b^*ab^* \cup b^*ab^*ab^*$
- $L = \{w \mid n_a(w) \ge 2\}$ $R = b^*ab^*ab^*(ab^*)^*$

Solving Pokemon Blue with a Single, Huge Regular Expression! (Video)

Rules

Beware of ϕ and ϵ

Suppose R is a regular expression.

- $R \cup \phi = R$
- $R \circ \epsilon = R$
- $\begin{array}{c|c} \bullet & R \cup \epsilon \text{ may not equal } R \\ \hline \text{(e.g.: } R = 0, \ L(R) = \{0\}, \ L(R \cup \epsilon) = \{0, \epsilon\}) \end{array}$
- $R \circ \phi$ may not equal R (e.g.: R = 0, $L(R) = \{0\}$, $L(R \circ \phi) = \phi$)

Rules

Rules

Suppose R_1, R_2, R_3 are regular expressions. Then

•
$$R_1\phi = \phi R_1 = \phi$$

$$\bullet \ R_1 \epsilon = \epsilon R_1 = R_1 \cup \phi = \phi \cup R_1 = R_1$$

$$\bullet \ R_1 \cup R_1 = R_1$$

•
$$R_1 \cup R_2 = R_2 \cup R_1$$

$$\bullet \ R_1(R_2 \cup R_3) = R_1 R_2 \cup R_1 R_3$$

$$\bullet \ (R_1 \cup R_2)R_3 = R_1R_3 \cup R_2R_3$$

$$P_1(R_2R_3) = (R_1R_2)R_3$$

$$\bullet \ (\epsilon \cup R_1)^* = R_1^*$$

•
$$R_1^*(\epsilon \cup R_1) = (\epsilon \cup R_1)R_1^* = R_1^*$$

$$\bullet \ R_1^* R_2 \cup R_2 = R_1^* R_2$$

•
$$R_1(R_2R_1)^* = (R_1R_2)^*R_1$$

•
$$(R_1 \cup R_2)^* = (R_1^* R_2)^* R_1^* = (R_2^* R_1)^* R_2^*$$

Problem

• Construct a regular expression to describe the language $L = \{w \mid n_a(w) \text{ is odd}\}$

Problem

• Construct a regular expression to describe the language $L = \{w \mid n_a(w) \text{ is odd}\}$

Solution

```
• Incorrect expressions.
```

$$b^*ab^*(ab^*a)^*b^*$$

 $b^*a(b^*ab^*ab^*)^*$

> Why?
> Why?

• Correct expressions.

$$b^*a(b^*ab^*a)^*b^*$$

 $b^*a(b \cup ab^*a)^*$

$$(b \cup ab^*a)^*ab^*$$

Problem

• Construct a regular expression to describe the language $L = \{w \mid w \text{ ends with } b \text{ and does not contain } aa\}$

Problem

 \bullet Construct a regular expression to describe the language $L=\{w\mid w \text{ ends with } b \text{ and does not contain } aa\}$

Solution

- \bullet A string not containing aa means that every a in the string:
 - is immediately followed by \emph{b} , or
 - is the last symbol of the string
- ullet Each string in the language has to end with b.
- \bullet Hence, every a in each string of the language is immediately followed by b
- Regular expression is: $(b \cup ab)^+$

Construct a regex to recognize identifiers in C

Problem

- Identifiers are the names you supply for variables, types, functions, and labels.
- Construct a regular expression to recognize the identifiers in the C programming language.

Construct a regex to recognize identifiers in C

Problem

- Identifiers are the names you supply for variables, types, functions, and labels.
- Construct a regular expression to recognize the identifiers in the C programming language.

Solution

- C identifier = FirstLetter OtherLetters
 FirstLetter = English letter or underscore
 OtherLetters = Alphanumeric letters or underscore
- Let $L=(a\cup b\cup\ldots\cup z\cup A\cup B\cup\ldots\cup Z)$ and $D=(0\cup 1\cup\ldots\cup 9)$
- Regular expression is: $R = \text{FirstLetter} \circ \text{OtherLetters}$ FirstLetter = $(L \cup _)$ OtherLetters = $(L \cup D \cup _)$

Construct a regex to recognize decimals in C

Problem

- Construct a regular expression to recognize the decimal numbers in the C programming language.
- Examples: 14, +1, -12, 14.3, -.99, 16., 3E14, -1.00E2, 4.1E-1, and .3E+2

Construct a regex to recognize decimals in C

Problem

- Construct a regular expression to recognize the decimal numbers in the C programming language.
- Examples: 14, +1, -12, 14.3, -.99, 16., 3E14, -1.00E2, 4.1E-1, and .3E+2

Solution

- ullet C decimal number = Sign Decimals Exponent
- Let $D = (0 \cup 1 \cup ... \cup 9)$
- Regular expression is:

$$R = \mathsf{Sign} \, \circ \, \mathsf{Decimals} \, \circ \, \mathsf{Exponent}$$

$$\mathsf{Sign} = (+ \cup - \cup \epsilon)$$

$$\mathsf{Decimals} = (D^+ \cup D^+.D^* \cup D^*.D^+)$$

$$\mathsf{Exponent} = (\epsilon \cup E \; \mathsf{Sign} \; D^+)$$

An Automata Processor?

(Video 1, Video 2)

Nondeterministic Finite Automata (NFA)

Example NFA's

Example NFA's

Difference	DFA	NFA
Multiple transitions using the same symbol	1 exiting arrow for each symbol	≥ 0 exiting arrows for each symbol
Epsilon transitions	Х	/
	•	

What is the intuition behind nondeterminism?

Intuition

Nondeterministic computation = Parallel computation (NFA searches all possible paths in a graph to the accept state)

- When NFA has multiple choices for the same input symbol, think of it as a process forking multiple processes for parallel computation.
- A string is accepted if any of the parallel processes accepts the string.

Nondeterministic computation = Tree of possibilities (NFA magically guesses a right path to the accept state)

- Root of the tree is the start of the computation.
- Every branching point is the decision-making point consisting of multiple choices.
- Machine accepts a string if any of the paths from the root of the tree to a leaf leads to an accept state.

Why care for NFA's?

Uses of NFA's

- Constructing NFA's is easier than directly constructing DFA's for many problems.
 - Hence, construct NFA's and then convert them to DFA's.
- NFA's are easier to understand than DFA's.

Problem

 Onstruct an NFA that accepts all strings from the language $L = \{ {\rm strings\ containing\ 11\ or\ 101} \}$

- How does the machine work for the input 010110?
- What is the equivalent DFA for solving the problem?

Solution (continued)

INPUT = O10110

 q_1

Source: Anil Maheshwari and Michiel Smid's Theory of Computation

Solution (continued)

INPUT = 010110

$$q_1 \xrightarrow{0} q$$

Source: Anil Maheshwari and Michiel Smid's Theory of Computation

Problem

 \bullet Construct an NFA that accepts all strings from the language $L = \{ \text{strings of size multiples of 2 or 3 or 5} \}$

• What is the equivalent DFA for solving the problem?

What is a nondeterministic finite automaton (NFA)?

- Nondeterministic = Event paths cannot be determined precisely
- Finite = Finite and small amount of space used
- Automaton = Computing machine

Definition

A nondeterministic finite automaton (NFA) M is a 5-tuple

 $M=(Q,\Sigma,\delta,q_0,F)$, where,

- 1. Q: A finite set (set of states). \triangleright Space (computer memory)
- 2. Σ : A finite set (alphabet).
- 3. $\delta: Q \times (\Sigma \cup \epsilon) \to P(Q)$ is the transition function, where P(Q) is the power set of Q. \triangleright Time (computation)
- 4. q_0 : The start state (belongs to Q).
- 5. F: The set of accepting/final states, where $F \subseteq Q$.

Convert NFA to DFA

Problem

Convert the NFA to a DFA.

Source: Anil Maheshwari and Michiel Smid's Theory of Computation

Solution

• NFA M is specified as Set of states is $Q=\{1,2,3\}$ Set of symbols is $\Sigma=\{a,b\}$ Start state is 1 Set of accept states is $F=\{2\}$ Transition function δ is:

δ	a	b	ϵ
1	{3}	ϕ	{2}
2	{1}	ϕ	ϕ
3	{2}	$\{2, 3\}$	ϕ

• How do you convert this NFA to DFA?

Solution

• NFA M is specified as Set of states is $Q=\{1,2,3\}$ Set of symbols is $\Sigma=\{a,b\}$ Start state is 1 Set of accept states is $F=\{2\}$ Transition function δ is:

δ	a	b	ϵ	
1	{3}	ϕ	{2}	
2	{1}	ϕ	ϕ	
3	{2}	$\{2, 3\}$	ϕ	

• How do you convert this NFA to DFA? If NFA has states Q, then construct a DFA with states P(Q).

Solution (continued)

$$\bullet \phi \xrightarrow{b} \phi \\
\bullet \{1\} \xrightarrow{a} \{3\}$$

•
$$\{1\} \xrightarrow{b} \phi$$

• $\{2\} \xrightarrow{a} \{1, 2\}$

$$\bullet \ \{2\} \xrightarrow{b} \phi \\
\bullet \ \{3\} \xrightarrow{a} \{2\}$$

$$\bullet \{3\} \xrightarrow{b} \{2,3\}$$

•
$$\{1,2\} \xrightarrow{a}$$
?
• $\{1,2\} \xrightarrow{b}$?

•
$$\{1,3\} \xrightarrow{a} ?$$

• $\{1,3\} \xrightarrow{b} ?$

•
$$\{2,3\} \xrightarrow{a} ?$$

•
$$\{2,3\} \xrightarrow{b} ?$$

• $\{1,2,3\} \xrightarrow{a} ?$

•
$$\{1,2,3\} \xrightarrow{b}$$
?

Solution (create states – power set of $Q=\{1,2,3\}$)					

Convert NFA to DFA

- Let $N = (Q, \Sigma, \delta, q, F)$ be the NFA. Let $M = (Q', \Sigma, \delta', q', F')$ be the DFA. Then
- $\begin{array}{ll} \bullet \ \, Q' = P(Q) & \rhd \ \, \text{Power set of} \ Q \\ q' = C_{\epsilon}(\{q\}) & \rhd \ \, \epsilon\text{-closure of the start state} \\ F' = \{S \in Q' \mid S \cap F \neq \phi\} & \rhd \ \, S \cap F \neq \phi \ \, \text{means that} \ S \\ \text{contains at least one accept state of} \ \, N \\ \delta' : Q' \times \Sigma \rightarrow Q' \ \, \text{is defined as follows:} \end{array}$

$$\delta'(S, a) = \bigcup_{s \in S} C_{\epsilon}(\delta(s, a))$$

Union of NFA

Source: Margaret Fleck and Sariel Har-Peled's Notes on Theory of Computation

Concatenation of NFA

Source: Margaret Fleck and Sariel Har-Peled's Notes on Theory of Computation

Star of NFA

Source: Margaret Fleck and Sariel Har-Peled's Notes on Theory of Computation

Construct an NFA for $(aa \cup aab)^*b$

Problem

ullet Construct an NFA for the regular expression $(aa \cup aab)^*b$.

Construct an NFA for $(aa \cup aab)^*b$

Problem

• Construct an NFA for the regular expression $(aa \cup aab)^*b$.

Solution

Source: John Martin's Introduction to Languages and the Theory of Computation.

Construct an NFA for $(aab)^*(a \cup aba)^*$

Problem

 \bullet Construct an NFA for the regular expression $(aab)^*(a \cup aba)^*.$

Construct an NFA for $(aab)^*(a \cup aba)^*$

Problem

ullet Construct an NFA for the regular expression $(aab)^*(a \cup aba)^*$.

Solution

Source: John Martin's Introduction to Languages and the Theory of Computation.

Denial of Service Attacks using Regular Expressions (NFA)! (Video)

Non-Regular Languages

Problems

Let $\Sigma = \{a, b\}$ unless mentioned otherwise. Check if the languages are regular or non-regular (\mathbf{X}):

- $L = \{ w \mid w = a^n \text{ and } n \le 10^{100} \}$
- $\bullet \ L = \{ w \mid w = a^n \text{ and } n \ge 1 \}$
- $\bullet \ L = \{ w \mid w = a^m b^n \text{ and } m, n \ge 1 \}$
- $L = \{ w \mid w = a^*b^* \}$
- $\bullet \ L = \{ w \mid w = a^n b^n \text{ and } n \ge 1 \}$
- $L = \{ww^R \mid |w| = 3\}$
- $L = \{ww^R \mid |w| \ge 1\}$
- $\bullet \ L = \{ w \mid w = w^R \text{ and } |w| \ge 1 \}$
- $L = \{ w \mid w = a^{2i+1}b^{3j+2} \text{ and } i, j \ge 1 \}$
- $\bullet \ L = \{ w \mid w = a^n \text{ and } n \text{ is a square} \}$
- $L = \{w \mid w = a^n \text{ and } n \text{ is a prime}\}$
- $L = \{ w \mid w = a^i b^{j^2} \text{ and } i, j \ge 1 \}$

Problems

```
Let \Sigma = \{a, b\} unless mentioned otherwise. Check if the lan-
guages are regular or non-regular (X):
• L = \{w \mid w = a^n \text{ and } n < 10^{100} \}
• L = \{w \mid w = a^n \text{ and } n \ge 1\}
• L = \{w \mid w = a^m b^n \text{ and } m, n > 1\}
• L = \{w \mid w = a^*b^*\}
• L = \{ww^R \mid |w| = 3\}
• L = \{w \mid w = a^{2i+1}b^{3j+2} \text{ and } i, i > 1\}
• L = \{w \mid w = a^n \text{ and } n \text{ is a square}\} \dots X
ullet L=\{w\mid w=a^ib^{j^2} \ 	ext{and} \ i,j\geq 1\} \ \dots
```

Problems (continued)

- $L = \{ w \mid n_a(w) = n_b(w) \}$
- $\bullet \ L = \{ w \mid n_a(w) \bmod 3 \ge n_b(w) \bmod 5 \}$
- $L = \{ w \mid w = a^i b^j \text{ and } j > i \ge 1 \}$
- $L = \{wxw^R \mid x \in \Sigma^*, |w|, |x| \ge 1, \text{ and } |x| \le 5\}$
- $\bullet \ L = \{wxw^R \mid x \in \Sigma^* \text{ and } |w|, |x| \ge 1\}$
- $L = \{xww^Ry \mid x, y \in \Sigma^* \text{ and } |w|, |x|, |y| \ge 1\}$
- $\bullet \ L = \{xww^R \mid x \in \Sigma^* \text{ and } |w|, |x| \ge 1\}$
- $\bullet \ L = \{ww^Ry \mid y \in \Sigma^* \text{ and } |w|, |y| \geq 1\}$

Problems (continued)

- $\bullet \ L = \{ w \mid n_a(w) \bmod 3 \ge n_b(w) \bmod 5 \}$

- $\bullet \ L = \{wxw^R \mid x \in \Sigma^* \text{ and } |w|, |x| \ge 1\}$
- $\bullet \ L = \{xww^Ry \mid x,y \in \Sigma^* \text{ and } |w|,|x|,|y| \geq 1\}$
- $\bullet \ L = \{xww^R \mid x \in \Sigma^* \text{ and } |w|, |x| \geq 1\} \dots X$
- $L = \{xww \mid x \in Z \text{ and } |w|, |x| \geq 1\} \dots$

How to prove that certain languages are not regular?

Pumping lemma

- Many languages are not regular.
- Pumping lemma is a method to prove that certain languages are not regular.

Pumping property

- If a language is regular, then it must have the pumping property.
- If a language does not have the pumping property, then the language is not regular.

 ▷ Proof by contraposition

How to prove languages non-regular using pumping lemma?

• Proof by contradiction.

Assume that the language is regular.

Show that the language does not have the pumping property. Contradiction! Hence, the language has to be non-regular.

Pumping property of regular languages

- Suppose a DFA M with s number of states accepts a very long string w such that $|w| \geq s$ from a language L.
- From pigeonhole principle, at least one state is visited twice.
- This implies that the string went through a loop.

Pumping property of regular languages

Observations

- Suppose string w has more characters than the number of states in the DFA, i.e., $|w| \geq s$
- String w can be split into three parts i.e., w = xyz where
 x: string before the first loop
 y: string of the first loop
 z: string after the first loop (might contain loops)
- Loop must appear i.e., $|y| \ge 1$ (x and z can be empty)
- ullet Loop must appear in the first s characters of w i.e., $|xy| \leq s$

Pumping property of regular languages

Idea

- An infinite number of strings can be pumped by varying the number of times the loop is taken and they must also be in the language.
- ullet Formally, for all $i\geq 0$, xy^iz must be in the language.
- \bullet xz, xyz, xyyz, xyyyz, etc must also belong to the language.

Pumping lemma for regular languages

Theorem

Suppose L is a regular language over alphabet Σ . Suppose L is accepted by a finite automaton M having s states. Then, every long string $w \in L$ satisfying $|w| \geq s$ can be split into three strings w = xyz such that the following three conditions are true.

- $|xy| \leq s$.
- $|y| \ge 1$.
- For every $i \ge 0$, the string xy^iz also belongs to L.

$$L = \{a^n b^n \mid n \ge 0\}$$
 is non-regular

 \bullet Prove that $L=\{a^nb^n\mid n\geq 0\}$ is not a regular language.

$$L = \{a^nb^n \mid n \ge 0\}$$
 is non-regular

ullet Prove that $L=\{a^nb^n\mid n\geq 0\}$ is not a regular language.

- \bullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = a^s b^s$.
- Let $w = xyz = \boxed{\begin{array}{c|c} a^p & a^q & a^rb^s \end{array}}$ where $|xy| \leq s, \ |y| \geq 1, \ \text{and} \ p+q+r=s.$
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xyyz is not in L. Reason: $xyyz = a^p a^q a^q a^r b^s = a^{s+q} b^s \not\in L$. xyyz has more a's than b's.
- ullet Contradiction! Hence, L is not regular.

$$L = \{w \mid n_a(w) = n_b(w)\}$$
 is non-regular

 \bullet Prove that $L = \{ w \mid n_a(w) = n_b(w) \}$ is not a regular language.

$$L = \{w \mid n_a(w) = n_b(w)\}$$
 is non-regular

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

- ullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = (ab)^s$.
- Let w = xyz = ϵ $(ab)^1$ $(ab)^{s-1}$
- We have $|xy| \le \overline{s}$ and $|y| \ge 1$.
- Also, xy^iz must belong to L for all $i \ge 0$.
- xy^iz belongs to L for all $i \geq 0$.
- ullet No contradiction! Hence, L is regular.

$L = \{w \mid n_a(w) = n_b(w)\}$ is non-regular

Problem

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

- Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = (ab)^s$. • Let $w = xyz = \begin{bmatrix} \epsilon & (ab)^1 & (ab)^s \end{bmatrix}$
- We have $|xy| \le s$ and $|y| \ge 1$.
- Also, xy^iz must belong to L for all $i \ge 0$.
- xy^iz belongs to L for all $i \geq 0$.
- ullet No contradiction! Hence, L is regular.

$L = \{w \mid n_a(w) = n_b(w)\}$ is non-regular

Problem

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

Solution

- \bullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = (ab)^s$.
- Let $w = xyz = \begin{bmatrix} \epsilon & (ab)^1 & (ab)^{s-1} \end{bmatrix}$
- We have $|xy| \leq \overline{s}$ and $|y| \geq 1$.
- Also, xy^iz must belong to L for all $i \geq 0$.
- xy^iz belongs to L for all $i \ge 0$.
- ullet No contradiction! Hence, L is regular.

Incorrect solution! Why?

- 1. Not finding contradiction for some choices of x, y and z does not mean that no contradiction exists for other choices.
- 2. We must try for all possible choices of x, y such that $|xy| \le s$.
- 3. The chosen string $(ab)^s$ is a bad string to work with.

$$L = \{w \mid n_a(w) = n_b(w)\}$$
 is non-regular

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

- ullet Suppose L is regular. Then it must satisfy pumping property.
- $\bullet \ \mathsf{Suppose} \ w = a^s b^s.$
- Let $w = xyz = \boxed{\begin{array}{c|c} a^p & a^q & a^rb^s \\ \end{array}}$ where $|xy| \leq s, \ |y| \geq 1, \ \text{and} \ p+q+r=s.$
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xyyz is not in L. Reason: $xyyz = a^p a^q a^q a^r b^s = a^{s+q} b^s \not\in L$. xyyz has more a's than b's.
- Contradiction! Hence, L is not regular.

$L = \{w \mid n_a(w) = n_b(w)\}$ is non-regular

Problem

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

- \bullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = a^s b^s$.
- Let $w = xyz = \boxed{\begin{array}{c|c} a^p & a^q & a^rb^s \end{array}}$ where $|xy| \leq s$, $|y| \geq 1$, and p+q+r=s.
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xyyz is not in L. Reason: $xyyz = a^p a^q a^q a^r b^s = a^{s+q} b^s \not\in L$. xyyz has more a's than b's.
- Contradiction! Hence, L is not regular.

$L = \{w \mid n_a(w) = n_b(w)\}$ is non-regular

Problem

• Prove that $L = \{w \mid n_a(w) = n_b(w)\}$ is not a regular language.

Solution

- \bullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = a^s b^s$.
- Let $w = xyz = \boxed{\begin{array}{c|c} a^p & a^q & a^rb^s \end{array}}$ where $|xy| \leq s$, $|y| \geq 1$, and p+q+r=s.
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xyyz is not in L. Reason: $xyyz = a^p a^q a^q a^r b^s = a^{s+q} b^s \notin L$. xyyz has more a's than b's.
- ullet Contradiction! Hence, L is not regular.

Takeaway

1. Reduction! Reduce a problem to another. Reuse its solution.

Superset of a non-regular language

Problem

• $\{a^nb^n\}$ is a subset of $\{w\mid n_a(w)=n_b(w)\}.$

We used the fact that $\{a^nb^n\}$ is non-regular to prove that $\{w\mid n_a(w)=n_b(w)\}$ is non-regular.

Is a superset of a non-regular language always non-regular?

Superset of a non-regular language

Problem

 $\bullet \ \{a^nb^n\} \text{ is a subset of } \{w \mid n_a(w) = n_b(w)\}.$

We used the fact that $\{a^nb^n\}$ is non-regular to prove that $\{w\mid n_a(w)=n_b(w)\}$ is non-regular.

Is a superset of a non-regular language always non-regular?

Solution

No!

 Σ^{\ast} is a superset of every non-regular language.

But, it is regular.

$L = \{w \mid n_a(w) = n_b(w)\}$ is non-regular

Problem

ullet Prove that $L=\{w\mid n_a(w)=n_b(w)\}$ is not a regular language.

Solution (without using pumping lemma)

- Suppose L is regular.
- We know that $L' = \{w \mid w = a^i b^j, i, j \ge 0\}$ is regular.
- As regular languages are closed under intersection, $L \cap L'$ must also be regular.
- We see that $L \cap L' = \{w \mid w = a^n b^n \text{ and } n \ge 0\}.$
- But, this language was earlier proved to be non-regular.
- Contradiction! Hence, *L* is not regular.

Problem

 \bullet Prove that $L=\{ww\}$ is not a regular language.

Problem

ullet Prove that $L=\{ww\}$ is not a regular language.

- ullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $ww = a^s a^s$.
- Let $ww = xyz = \boxed{a^p \quad a^1 \quad a^{s-p-1}a^p}$
- We have $|xy| \le s$ and $|y| \ge 1$.
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xyyz is not in L. Reason: $xyyz = a^pa^1a^1a^s^{s-p-1}a^p = a^{s+1}a^s \not\in L$. xyyz has odd number of a's.
- Contradiction! Hence, *L* is not regular.

Problem

 \bullet Prove that $L=\{ww\}$ is not a regular language.

Solution

- \bullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $ww = a^s a^s$.
- Let $ww = xyz = \boxed{a^p \quad a^1 \quad a}$
- $\bullet \ \ \text{We have} \ |xy| \leq s \ \overline{\ \ \text{and} \ |y| \geq 1.}$
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xyyz is not in L.

Reason: $xyyz = a^p a^1 a^1 a^{s-p-1} a^p = a^{s+1} a^s \notin L$.

xyyz has odd number of a's.

ullet Contradiction! Hence, L is not regular.

Problem

 \bullet Prove that $L=\{ww\}$ is not a regular language.

Solution

- \bullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $ww = a^s a^s$.
- Let $ww = xyz = \boxed{a^p \quad a^1 \quad a^{s-p}}$
- We have $|xy| \le s$ and $|y| \ge 1$.
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xyyz is not in L.

Reason: $xyyz = a^p a^1 a^1 a^{s-p-1} a^p = a^{s+1} a^s \notin L$.

xyyz has odd number of a's.

ullet Contradiction! Hence, L is not regular.

Incorrect solution! Why?

- 1. We must try all possible choices of x,y such that $|xy| \leq s$.
- 2. Try pumping with $y \in \{a^2, a^4, \ldots\}$ such that $|y| \leq s$.

Problem

ullet Prove that $L=\{ww\}$ is not a regular language.

Problem

• Prove that $L = \{ww\}$ is not a regular language.

- ullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $ww = a^s b^s a^s b^s$.
- Let $ww = xyz = \boxed{a^p \quad a^q \quad a^rb^sa^sb^s}$ where $|xy| \le s$, $|y| \ge 1$, and p+q+r=s.
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xyyz is not in L. Reason: $xyyz = a^p a^q a^q a^r b^s a^s b^s = a^{s+q} b^s a^s b^s \notin L$.
- ullet Contradiction! Hence, L is not regular.

 $L = \{w \mid w = a^n, n \text{ is a square}\}\$ is non-regular

Problem

• Prove that $L = \{w \mid w = a^{n^2}\}$ is not a regular language.

$L = \{w \mid w = a^n, n \text{ is a square}\}\$ is non-regular

Problem

• Prove that $L = \{ w \mid w = a^{n^2} \}$ is not a regular language.

- \bullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = a^{s^2}$.
- Let $w = xyz = \boxed{\begin{array}{c|ccc} a^p & a^q & a^ra^{s^2-s} \\ \end{array}}$ where $|xy| \leq s, \ |y| \geq 1, \ \text{and} \ p+q+r=s.$
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xyyz is not in L. Reason: $xyyz = a^p a^q a^q a^r a^{s^2-s} = a^{s^2+q} \not\in L$. Because, $s^2 < s^2 + q < (s+1)^2$.
- Contradiction! Hence, L is not regular.

$L = \{w \mid w = a^n, n \text{ is prime}\}$ is non-regular

Problem

 $\bullet \ \, {\rm Prove \ that} \, \, L = \{ w \mid w = a^n, n \ {\rm is \ prime} \} \, {\rm is \ not \ regular}.$

$L = \{w \mid w = a^n, n \text{ is prime}\}$ is non-regular

Problem

• Prove that $L = \{w \mid w = a^n, n \text{ is prime}\}$ is not regular.

- ullet Suppose L is regular. Then it must satisfy pumping property.
- ullet Suppose $w=a^m$, where m is prime and $m\geq s$.
- Let $w = xyz = \boxed{a^p \quad a^q \quad a^r}$ where $|xy| \le s$, $|y| \ge 1$, and p + q + r = m.
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, $xy^{m+1}z$ is not in L. Reason: $xy^{m+1}z = a^pa^{q(m+1)}a^r = a^{m(q+1)} \not\in L$.
- Contradiction! Hence, L is not regular.

$$L = \{w \mid w = a^m b^n, m > n\}$$
 is non-regular

 \bullet Prove that $L = \{ w \mid w = a^m b^n, m > n \}$ is not regular.

$$L = \{w \mid w = a^m b^n, m > n\}$$
 is non-regular

 $\bullet \ \mbox{Prove that} \ L = \{ w \mid w = a^m b^n, m > n \} \ \mbox{is not regular}.$

- ullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = a^{s+1}b^s$.
- Let $w = xyz = \boxed{a^p \quad a^q \quad a^rb^s}$ where $|xy| \le s$, $|y| \ge 1$, and p+q+r=s+1.
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xz is not in L. \triangleright Pumping down Reason: $xz = a^p a^r b^s = a^{p+r} b^s \notin L$. Because, $p+r \le s$ i.e., #a's is not greater than #b's.
- ullet Contradiction! Hence, L is not regular.

$$L = \{w \mid w = a^m b^n, m \neq n\}$$
 is non-regular

 \bullet Prove that $L=\{w \mid w=a^mb^n, m\neq n\}$ is not regular.

$$L = \{w \mid w = a^m b^n, m \neq n\}$$
 is non-regular

• Prove that $L = \{ w \mid w = a^m b^n, m \neq n \}$ is not regular.

Solution

- ullet Suppose L is regular. Then it must satisfy pumping property.
- Suppose $w = a^s b^{s+s!}$.
- Let $w = xyz = \boxed{\begin{array}{c|c} a^p & a^q & a^rb^{s+s!} \\ \end{array}}$ where $|xy| \leq s, \ |y| \geq 1, \ \text{and} \ p+q+r=s.$
- Also, xy^iz must belong to L for all $i \geq 0$.
- But, xy^iz is not in L for some i. We pump a^q to get $a^{s+s!}b^{s+s!}$.

 $\text{Reason: } xy^iz=a^pa^{qi}a^rb^{s+s!}=a^{s+(i-1)q}b^{s+s!}\not\in L.$

This means $(i-1)q = s! \implies i = s!/q + 1$.

ullet Contradiction! Hence, L is not regular.

$$L = \{w \mid w = a^m b^n, m \neq n\}$$
 is non-regular

 \bullet Prove that $L=\{w \mid w=a^mb^n, m \neq n\}$ is not regular.

Solution (without using pumping lemma)

- ullet Suppose L is regular.
- We know that $L' = \{w \mid w = a^i b^j, i, j \ge 0\}$ is regular.
- Let $L'' = \{ w \mid w = a^n b^n, n \ge 0 \}.$
- As regular languages are closed under intersection and complementation, $L''=L'-L=L'\cap \overline{L}$ is regular.
- ullet But, the language L'' was earlier proved to be non-regular.
- Contradiction! Hence, *L* is not regular.

Pumping Lemma (Album: Frobenius Ring Infection Track: 2

Artist: Math Dealer)