A visualization of trajectories of the RDS from Example ??. The x-axis denotes time; the y-axis is the state space $X = N_0$. An arrow from $(\theta_{-n}\omega, x)$ to $(\theta_{-n+1}\omega, y)$ indicates that $\varphi^1_{\theta_{-n}\omega}x = y$. The thick line shows the value of $m_n(\omega)$. The depicted graph on the set of nodes $Z \times X$ has been called

Doeblin graph in the literature [?].

Figure 1: Visualization of trajectories of the RDS from Example ??. The x-axis denotes time; the y-axis is the state space $X = N_0$. An arrow from $(\theta_{-n}\omega, x)$ to $(\theta_{-n+1}\omega, y)$ indicates that $\varphi^1_{\theta_{-n}\omega}x = y$. The thick line shows the

value of $m_n(\omega)$. The depicted graph on the set of nodes $Z \times X$ has been called *Doeblin graph* in the literature [?].