3.5 Exercises

(1) Monotonicity of Sample Complexity

Let H be a hypothesis class for a binary classification task. Suppose that H is PAC learnable and its sample complexity is given by $m_{+}(\cdot,\cdot)$. Show that m_{+} is monotonically nonincreasing in each of its parameters. In other words, show that:

Given
$$\int \delta \in (0,1)$$

 $0 < \epsilon, < \epsilon_2 < 1$
We have $m_H(\epsilon_1, \delta) > m_H(\epsilon_2, \delta)$

Similarly, show that:

Given
$$\xi \in (0,1)$$

 $0 < \delta, \leq \delta_2 < 1$
We have $m_{+}(\varepsilon, \delta_1) \gg m_{+}(\varepsilon, \delta_2)$

Solution:

. The proof follows from the definition, we restated the PAC learnability definition with realizability assumption (for simplicity), with this adjustments: $0 < \varepsilon_1 < \varepsilon_2 < 1$

leads to $m_1 \stackrel{\text{def}}{=} m_{\text{H}}(\mathcal{E}_1, \mathcal{E}) \Rightarrow m_{\text{H}}(\mathcal{E}_2, \mathcal{E}) \stackrel{\text{def}}{=} m_2$ o For every $\mathcal{E} \in (0,1)$, $0 < \mathcal{E}_1 \leqslant \mathcal{E}_2 < 1$ and distribution \mathcal{D} over \mathcal{X} , when

running the learning algorithm on $m > m_1 \stackrel{\text{def}}{=} m_1(\epsilon_1, \delta) > m_4(\epsilon_2, \delta) \stackrel{\text{def}}{=} m_2$ i.i.d. examples generated by D, the algorithm returns a hypothesis h such that, with probability at least $1 - \delta$:

$$L_{D}(h) \leqslant \varepsilon_{1} \leqslant \varepsilon_{2}$$

By the minimality of m_2 , we conclude that $m_2 \leqslant m_1$

human language explanation

Human languague explanation:

- . Given sample size $m \geqslant m_i$, we will have $\downarrow_D(h) \leqslant \epsilon_i$
- . Since $\mathcal{E}_1 \leqslant \mathcal{E}_2$, any hypothesis h that is $L_D(h) \leqslant \mathcal{E}_1$, also satisfy $L_D(h) \leqslant \mathcal{E}_2$. And since $m \gg m_1$ is required in the first case, it also satisfy the second (looser) condition, $m \gg m_1 \gg m_2$
- . "Minimality of m_2 ": means that m_2 is the smallest possible sample size such that accuracy \mathcal{E}_2 is guaranteed.
- 2) Show that a hypothesis class is PAC learnable (with realizability) Let $J \times be$ a discrete domain $J \mapsto J \times be$ a discrete domain $J \mapsto J \times be$ a $J \mapsto J \times be$

Each $z \in X$, $h_z(x) = \int 1$ if x = z $h^-(x) = 0$ $\forall x \in X$ O otherwise for all x, nothing is special

for each 2, there is exactly one hz
that label it "special"

Realizability assumption holde

that means at least 1 h in $H_{singleton}$ satisfy $L_D(h) = 0$.

- a) Describe an algorithm that implements the ERM rule for learning Hsingleton in the realizable setup
- . Since realizability holds, we need to come up with an algorithm s.t. $L_s(h) = 0$
- . Let A be the algorithm that returns hypothesis h_s with the following property: $h_s = \int_S h_x \ \text{if} \ \exists \ x \in S \ \text{s.t.} \ f(x) = 1$ $h_s = \int_S h_x \ \text{otherwise}$

Charly, $L_s(h_s) = 0$, and so A is ERM

- b) Show that $H_{singleton}$ is PAC learnable. Provide an upper bound on the sample complexity
- . Let D be distribution over X and $E \in (0,1)$
- . Based on the definition of A in previous section:
 - . If $f = h^{-}$, then A return true hypothesis, so $L_{p,q}(h^{-}) = 0$
 - 1.2 \times 3 x E ecogqu2.

Let $S|_{X} = (x_1, ..., x_m)$ be instances of training set SWe try to upper bound $D^m(\{S|_{X} : L_{p, \ell}(k_s) > \epsilon\})$ S represent D

- . If $\exists x \in S|_{X}$, then A returns true hypothesis, so $L_{0,+}(h_{S}) = 0$
- . So the only scenario left for us to upper bound on is when $\exists z \notin S|_{x}$
- . Also, it can be proven that:

 $D(x) = L_{p,+}(h) \qquad proof$

- \Rightarrow D(x) \leqslant ϵ means $L_{p,1}(h) \leqslant \epsilon$
- $\Rightarrow D(x) > \varepsilon$ means $L_{D_{+}}(h) > \varepsilon$
- \Leftrightarrow $D(x') \leqslant 1-\epsilon$ means $L_{D,f}(h) > \epsilon$ $\forall x' \in X|_{x}$
- . Combine 2 points above, we have:

 $|\langle S|_{x}: \lambda_{0,1}(k) \rangle \in \mathcal{Y} = |\langle S|_{x}: \forall x' \in S|_{x}, D(x') \leqslant 1 - \varepsilon |$

And 80:

 $D^{m}(\mathcal{L}S|_{x}: \mathcal{L}_{D, \mathcal{L}}(\mathcal{L}) > \mathcal{E} \mathcal{L})$ $= D^{m}(\mathcal{L}S|_{x}: \mathcal{L}_{\mathcal{L}}^{2} \in \mathcal{L}|_{x}, D(\mathcal{L}^{2}) \leq 1 - \mathcal{E} \mathcal{L})$ $\leq (1 - \mathcal{E})^{m}$ $\leq e^{-\mathcal{E}m}$

o her $\delta \in (0,1)$ s.t. $e^{-\epsilon m} \leqslant \delta$. We can conclude that:

 $m \geqslant \frac{\log(1/8)}{\epsilon}$

Lets analyze passible values of true error on individual instance x:

- . all negative case $\bar{k}: \sum_{n \in D} (\bar{k}) = 0$
- · contain "special" instance:
 - . Correctly identify "special" instance : $\lambda_{x} \sim D \ (h_s) = 0$
 - · Wrongly identify "special" instance:

So possible values are 0 and 1:

By LOTE and definition of A:

Therefore, $H_{singleton}$ is PAC learnable with $m_{H_{singleton}} < \lceil \frac{\log(1/\delta)}{\epsilon} \rceil$
3) Another prove PAC learnable (with realizability)
Let $X = \mathbb{R}^2$, $Y = \{0, 1\}$
H be hypothesis class of concentric circles in the plane:
Let $X = IR^2$, $Y = \{0, 1\}$ He be hypothesis class of concentric circles in the plane: $H = \{h_r : r \in IR_+\}$, where $h_r(x) = 1$ where $h_r(x) = 1$
Prove that It is PAC learnable (assume realizability)
Prove that IH is PAC learnable (assume realizability)
Visualize hypothesis class H
$\frac{h_3}{h_2} = 3$
Come up with alg A that is ERM
Solution: Proving PAC learnability has 2 steps Upper bound sample complexity
o Let D be the distribution over X , ε \in $(0,1)$ and f be target hypothesis
. Let A be algorithm that returns the smallest circle enclosing all the positive
examples from the training set 8, where (C(8) be the circle returned
{ r(S) be the cirde's radius
$\forall r(S)$ be the circle's radius $\forall A(S): X \rightarrow Y$ is the hypothesis
We can easily see that $L_S(A(S)) = 0$, so A is ERM
$\frac{\text{Proof:}}{\text{o}}$. Since A returns positive examples: $A(S)(x) = 1$
. Realizability assumption: $\exists k^* \in H \text{ s.t. } h^*(x) = 1$
$\Rightarrow A(S) = N^*$, and so $L_s(A(S)) = 0$
conclude A is ERM

by realizability assumption, $\exists h^* \in H \text{ s.t. } \downarrow_{D,t} (h^*) = 0$ Let $\int C^*$ be the circle corresponds to hypothesis h^* $\uparrow r^*$ be the corresponding radius

It can be proven that $C(S) \subseteq C^*$, where C^* is the circle enclosing all the positive examples.

<u>Proof:</u> C(S) is the smallest circle enclosing positive examples? C^* is the circle enclosing positive examples $C(S) \subseteq C^*$

o Since $C(S) \subseteq C^*$, we can prove that $L_{D,f}(A(S)) = D(C^* \setminus C(S))$ $Proof: L_{D,f}(A(S)) = D(f x \in X : A(S)(x) \neq f(x)$ $\}$ $\}$

 $= D(1 \times E \times : \times E \times S|_{\times} \text{ and } f(x)=1 \text{ } 1)$ $= D(1 \times E \times : \times E \times S|_{\times} \text{ and } f(x)=1 \text{ } 1)$

$$\int_{D,f} (A(s))$$
 consists of:

$$x \in S_{x}$$
 s.t.

$$d(x) = 1$$

muans fist case cannot

happens

o Let $r_i \leqslant r^*$ be a number such that the probability mass of r_i is $r_i \leqslant r_i$ where corresponding strip $r_i = r_i \leqslant r$

From the visualization, we can prove that:

$$L_{0,+}(A(S)) \leqslant \epsilon$$

Proof:

$$D(C^*) - D(CC)) \leq D(C_i)$$

positives outside of C(S) all positives in strip C,

previous discussion, subs D(G)?

Mow, we would like to upper bound $D^m(d S|_{x} : L_{D,t}(L_{s}) > \epsilon f)$.

With the discussion above, we can prove that:

$$\langle S|_{x} : L_{D,f}(N_{S}) > \varepsilon \rangle = \langle S|_{x} : S|_{x} \cap C_{1} = \emptyset \rangle$$

Thus are positive.

Proof:

Since
$$dS|_{x}$$
: $d_{DA}(h_{S}) \leqslant \varepsilon = dS|_{x}$: $S|_{x} \cap C_{A} \neq \emptyset$
So the opposite holds: in the strip

$$dS|_{x}$$
: $L_{D,f}(h_{S}) > E$ = $dS|_{x}$: $S|_{x} \cap C_{1} = \emptyset$

Visualize SIX n C1 = \$\frac{1}{4} \quad c^* strip C1 with mass &

Therefore, we can conclude that:

$$D^{m}(\{S|_{x}: L_{0,f}(h_{S}) > \mathcal{E} \}) = D^{m}(\{S|_{x}: S|_{x} \cap C_{1} = \emptyset \})$$

$$\leq (1 - \mathcal{E})^{m}$$

Let $\delta \in (0,1)$ such that $e^{-\epsilon m} \leqslant \delta$, then $m \geqslant \frac{\log{(1/\delta)}}{\epsilon}$, and $\theta = 0$ is PAC learnable with $m_{H} \leqslant \left\lceil \frac{\log{(1/\delta)}}{\epsilon} \right\rceil$