

Oinarrizko Prog. 3. laborategia. Iterazioa eta Sekuentziak

Izena:Lucia eta AinhoaData:_2023/09/26	
--	--

Laborategi honetan iterazioak eta sekuentziak landuko dira. Laguntza modura, hemen dituzue erabili ditzakegun iterazio-egiturak.

Aldagaien hasieraketa; bitartean (baldintza) egin errepikatzeko eragiketak; aldagaien eguneraketa; ambitartean; egin I guztietarako 1 tik 30eraino errepikatzeko eragiketak; amguztietarako;

Aldagaien hasieraketa; errepikatu errepikatzeko eragiketak; aldagaien eguneraketa; atera baldin (baldintza) amaitu_errepikatu Aldagaien hasieraketa; errepikatu (baldintza) bete arte errepikatzeko eragiketak; aldagaien eguneraketa; amaitu_errepikatu

Partxisean fitxa bat etxetik ateratzeko algoritmoa idatzi ezazue. Fitxa bat etxetik aterako da baldin eta dado bat botatzean 5 bat ateratzen dugun. Ez bada 5 bat lortzen berriro botako dugu dadoa, gehienez 4 aldiz bota arte. Algoritmoa garatzeko hurrengo azpiprogramak erabil daitezke: fitxa_etxetik_atera(), dadoa_bota() (dadoa_bota() azpiprogramak balio bat eskatuko dio erabiltzaileari).

1. Espezifikazioa:

Sarrera: balio bat (inoiz ez 4 aldi baino gehiago)

Aurre: balioak 0 eta 6 artean egongo dira

Irteera: mezu bat

Post: fitxa aterako da saiatu gaitezken 4 saiakeraren artean behin 5 bat lortuz gero.

4 saiakera agortuz gero mezu bat inprimatuko da "sentitzen dut, saiakerak agortu

dituzu"

2. Proba kasuak

Sarrera: 5

Irteera: fitxa aterako da

Sarrera: 2,6,1,2

Irteera: fitxak etxean jarraitzen du, eta mezua idatziko da.

- 1. Zenbakia, aldia: integer;
- 2. Aldia $\leftarrow 1$;
- 3. Errepikatu aldia = 4 || zenbakia = 5 bete arte
- 4. zenbakia ←dadoa_bota();
- 5. Aldia \leftarrow aldia + 1;
- 6. Amaitu_errepikapena;
- 7. Baldin (zenbakia = 5) orduan
- 8. fitxa_etxetik_atera();
- 9. Bestela
- 10. idatzi("fitxak etxean jarraitzen du, eta mezua idatziko da");
- 11. Amaitu baldin.

<u>2. Ariketa (ariketa hau ebatzita dago, ulertu baino ez duzue egin behar)</u>

Programa honen helburua zenbaki baten biderketa taula lortzea da. Erabiltzaileari eskatutako N zenbaki jakin bat edukita (0 < n <=10) bere biderketa taula kalkulatzeko programa sortu

1. Espezifikazioa:

Sarrera: Zenbaki oso bat Aurre: 0 < n:balioa <=10

Irteera: 10 zenbaki

Post: 0 < n-ren biderketa bakoitza <=10

2. Proba kasuak

Sarrera: 4

Irteera: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40

Sarrera: 6

Irteera: 6, 12, 18, 24, 30, 36, 42, 48, 54, 60

3. Algoritmoa:

amaiera

```
emaitza, biderkatzailea,n: integer; -
hasiera

irakurri(n);
biderkatzailea ← 1; --memoria erreserbatzen
emaitza ← 0;
errepikatu biderkatzailea = 11 bete arte --bukatzeko baldintza
emaitza ← n * biderkatzailea;
idatzi(emaitza);
biderkatzailea ← biderkatzailea + 1; --aldagaiaren eguneraketa
-- (bukatzeko baldintza noizbait bete dadin)
amaitu_errepikatu
```


Buelta kop*1	¿Sartu?	n	biderkatzailea	emaitza
hasieraketak	-	4	1	0
1	BAI	4	2	4
2	BAI	4	3	8
3	BAI	4	4	12
4	BAI	4	5	16
5	BAI	4	6	20
6	BAI	4	7	24
7	BAI	4	8	28
8	BAI	4	9	32
9	BAI	4	10	36
10	BAI	4	11	40
11	EZ			

Demagun "*" tekla izorratua dela. Biderketa bat gehiketen bitartez burutzea ere posible da hurrengo algoritmoak erakusten duenez.

1. Espezifikazioa:

Sarrera: Zenbaki oso bat Aurre: 0 < n:balioa <=10

Irteera: 10 zenbaki

Post: 0 < n-ren biderkakizun bakoitza:balioa <=100

2. Proba kasuak

Sarrera: 4

Irteera: 4, 8, 12, 16, 20, 24, 28, 32, 36, 40

3. Algoritmoa:

kontadorea, gehiketa, n: integer; --memoria erreserbatzen hasiera irakurri(n); kontadorea \leftarrow 0; gehiketa \leftarrow 0; errepikatu kontadorea = 10 bete arte ---bukatzeko baldintza gehiketa \Box gehiketa + n; idatzi(gehiketa); kontadorea \Box kontadorea +1; ---aldagaiaren eguneraketa

¹ Buelta bakoitzean sartzean aldagaien balioak errepresentatzen duen taula

amaitu_errepikatu

amaiera

Buelta kop*2	¿Sartu?	n	kontadorea	gehiketa
hasieraketak	-	4	0	0
1	BAI	4	1	4
2	BAI	4	2	8
3	BAI	4	3	12
4	BAI	4	4	16
5	BAI	4	5	20
6	BAI	4	6	24
7	BAI	4	7	28
8	BAI	4	8	32
9	BAI	4	9	36
10	BAI	4	10	40
11	EZ			

 $^{^{2}}$ Buelta bakoitzean sartzean aldagaien balioak errepresentatzen duen taula

Demagun "*" izorratuta jarraitzen duela eta bi zenbakien arteko biderketa kalkulatzea eskatzen digutela. Aldatu aurreko algoritmoa 2 zenbaki positibo emanda (biak <=10) bien arteko biderketa kalkulatzeko.

1. Espezifikazioa:

Sarrera: 2 zenbaki oso

Aurre-baldintza: 0 < n, eta biderkatzailea :balioa <=10

Irteera: Zenbaki oso bat

Post-baldintza: 0 < emaitza:balioa <= 100 | emaitza n*biderkatzailea

izango den

2. Proba kasuak

Sarrera	Irteera
n 5 eta biderkatzailea 1	5
n 5 eta biderkatzailea 4	20
n 10 eta biderkatzailea 10	100

- 1. Zenb1, zenb2, gehiketa: integer;
- 2. Gehiketa $\leftarrow 0$;
- 3. Idatzi("sartu bi zenbaki");
- 4. Irakurri(zenb1);
- 5. Irakurri (zenb2);
- 6. Errepikatu zenb2 = 0 bete arte
- 7. Gehiketa ← gehiketa +zenb1;
- 8. Zenb2 \leftarrow zenb2 1;
- 9. Amaitu_errepikapena;
- 10. Idatzi(gehiketa);

3. Simulazioa

3. Simu	nazioa			
Buelta kop*3	¿Sartu?	Znb_1	Znb_2	Gehiketa
hasieraketak	1	5	4	0
1	bai	5	3	5
2	bai	5	2	10
3	bai	5	1	15
4	bai	5	0	20
5	ez			
Buelta kop*4	¿Sartu?	Znb_1	Znb_2	Gehiketa
hasieraketak	-	5	1	0
1	bai	5	0	5
2	EZ			
Buelta kop*5	¿Sartu?	Znb_1	Znb_2	Gehiketa
hasieraketak	-	10	10	0
1	bai	10	9	10
2	bai	10	8	20
3	bai	10	7	30
4	bai	10	6	40
5	BAI	10	5	50
6	BAI	10	4	60
7	BAI	10	3	70
8	BAI	10	2	80
9	BAI	10	1	90
10	BAI	10	0	100
11	EZ			

 ³ Buelta bakoitzean sartzean aldagaien balioak errepresentatzen duen taula
 ⁴ Buelta bakoitzean sartzean aldagaien balioak errepresentatzen duen taula
 ⁵ Buelta bakoitzean sartzean aldagaien balioak errepresentatzen duen taula

Orain demagun "/" ere izorratu dela. Erabiltzaileari eskatu zenbaki oso bat, zatikizun deituko duguna (0=<zatikizun<=100) eta beste zenbaki oso bat zatitzailea deituko duguna (0<zatitzailea<=10). Algoritmoak eskatutako balioen arteko zatiketaren emaitza osoa eta hondarra kalkulatu behar du. Horretarako ez dira "/" eta rem eragiketak erabiliko, zatiketa kenketak eginez burutu beharko da.

Zatiketa zatitzailea zatikizunari ken diezaiokegun aldien kopurua izango da, emaitza eznegatiborik eman gabe. Adibidez, $6/2 \Rightarrow 6-2=4 \Rightarrow 4-2=2 \Rightarrow 2-2=0$, 3 kenketa burutu direnez, honek esan nahi du zatiketaren emaitza 3 izango dela, eta hondarra kasu honetan 0. Beste adibide honetan, 7/2 = >7-2=5 = >5-2=3 = >3-2=1, 3 kenketa burutu direnez, honek esan nahi du zatiketaren emaitza 3 izango dela eta hondarra kasu honetan 1 izango da.

1. Espezifikazioa:

Sarrera: 2 zenbaki oso

Aurre: 0 <= zatikizun: balio1 <= 100 0< zatitzaile:balio2 <=10

Irteera: 2 zenbaki oso

Post: 0 <= zatiketa:zatikizun eta zatitzaile arteko zatiketa osoaren emaitza

0 <= hondarra: zatikizun eta zatitzaile arteko zatiketa osoa egitearen hondarra<

zatitzaile

2. Proba kasuak

Sarrera	Irteera	
Zatikizun 6 zatitzaile 2	Zatiketa 3 eta hondarra 0	
Zatikizun 21 zatitzaile 2	Zatiketa 10 eta hondarra 1	

3. Algoritmoa:

zatikizun, zatitzaile, zatiketa, hondarra: integer;

hasiera

```
zatiketa\leftarrow 0:
hondarra \leftarrow 0;
Irakurri(zatikizun);
Irakurri(zatitzaile);
errepikatu zatikizuna < zatitzailea bete arte;</pre>
               zatiketa \leftarrow zatiketa + 1;
               hondarra ←zatikizun – zatitzaile;
               zatikizun ←zatikizun – zatitzaile;
```

amaitu errepikatu

idatzi("zatiketaren emaitza" zatiketa);

idatzi("hondarra" hondarra "da"); amaiera

4) Simulazioa edo traza

Buelta kop*6	Sartzen da?	zatikizun	zatitzaile	zatiketa	hondarra
hasieraketak	-	21	2	0	0
1	BAI	19	2	1	19
2	BAI	17	2	2	17
3	BAI	15	2	3	15
4	BAI	13	2	4	13
5	BAI	11	2	5	11
6	BAI	9	2	6	9
7	BAI	7	2	7	7
8	BAI	5	2	8	5
9	BAI	3	2	9	3
10	BAI	1	2	10	1
11	EZ				
Buelta kop*7	Sartzen da?	zatikizun	zatitzaile	zatiketa	hondarra
hasieraketak	-	6	2	0	0
1	BAI	4	2	1	4
2	BAI	2	2	2	2
3	BAI	0	2	3	0
4	EZ				

 6 Buelta bakoitzean bueltaren bukaeran aldagaien balioak nola gelditzen diren errepresentatuko da 7 Buelta bakoitzean bueltaren bukaeran aldagaien balioak nola gelditzen diren errepresentatuko da

Izorratutako guztia konpondu dugu jada!! Beraz orain eragiketa guztiak erabilgarri daude berriro. Erabiltzaileari eskatutako N zenbaki jakin bat edukita (>=1), n eta n² balioen artean dauden bere multiplo bikoiti guztiak kalkulatzen dituen programa sortu.

1. Espezifikazioa:

Sarrera: Zenbaki oso bat Aurre: 1 <= n:balioa

Irteera: n eta n² balioen artean dauden n-ren multiplo bikoiti haina zenbaki

Post: $n \le n$ -ren multiplo bikoitiak $\le n^2$;

2. Proba kasuak

Sarrera: 2 Irteera: 2, 4

Sarrera: 7

Irteera: 14, 28, 42

3. Algoritmoa:

```
probatzeko_multiplo, n: integer; ---memoria alokatzen
```

hasiera

```
Irakurri(n);

probatzeko_multiplo ←n;

Errepikatu probatzeko_multiplo >= n^2 bete arte;

Baldin (probatzeko_multiplo rem 2 = 0) orduan

Idatzi (probatzeko_multiplo)

Amaitu_baldin;

Probatzeko_multiplo ← Probatzeko_multiplo + n;

amaitu_errepikatu

amaiera
```


Buelta kop*8	¿Sartu?	n	probatzeko_multiplo	Pantaila
hasieraketak	-	7	7	-
1	BAI	7	14	14
2	BAI	7	21	14
3	BAI	7	28	14 28
4	BAI	7	35	14 28
5	BAI	7	42	14 28 42
6	BAI	7	49	14 28 42
7	EZ			

Buelta kop*9	¿Sartu?	n	probatzeko_multiplo	Pantaila
hasieraketak	-	2	2	-
1	BAI	2	2	2
2	BAI	2	4	2 4
3	EZ			

 $^{^8}$ Buelta bakoitzean sartzean aldagaien balioak errepresentatzen duen taula 9 Buelta bakoitzean sartzean aldagaien balioak errepresentatzen duen taula

Sei baino txikiagoa ala berdina den zenbaki oso bat emanda, kalkulatu bere faktoriala

1. Espezifikazioa:

Sarrera: Zenbaki oso bat Aurre: 0 <= zenb:balioa <=6

Irteera: Zenbaki oso bat

Post: 0 < faktoriala:balioa <=720 | emaitza = num*(num-1)! eta

emaitza1 izango da num 0 denean.

2. Proba kasuak

Sarrera	Irteera
0!	1
4!	24

3. Algoritmoa:

faktorial, zenb, Zenb_aux: integer;

hasiera

```
faktorial ← 1;

zenb_aux ← 1;

Irakurri(zenb);

errepikatu faktorial > zenb bete arte;

faktorial ← faktorial +1;

zenb_aux ← zenb_aux * faktorial;

amaitu_errepikatu;

idatzi(zenb_aux);

amaiera
```


Buelta kop*10	¿Sartu?	zenb	faktorial	Zenb_aux	pantaila
hasieraketak	-	0	1	1	1
1	EZ				

Buelta kop*11	¿Sartu?	zenb	faktorial	Zenb_aux	pantaila
hasieraketak	-	4	1	1	1
1	BAI	4	2	2	2
2	BAI	4	3	6	6
3	BAI	4	4	24	24
4	EZ				

 $^{^{\}rm 10}$ Buelta bakoitzean sartzean aldagaien balioak errepresentatzen duen taula $^{\rm 11}$ Buelta bakoitzean sartzean aldagaien balioak errepresentatzen duen taula

SEKUENTZIEKIN LAN EGITEN

Zenbaki sekuentziekin eragiketa batzuk

1) Memoria erreserbatu zenbaki sekuentzia batentzat

erreserbatu 10 zenbaki osorentzat

sekuentzia¹²: 10 integer;

2) Teklatutik sekuentzia osatuko duten zenbakiak takada batean irakurri eta sekuentzia aldagaian gorde

sekuentzia_irakurri(sekuentzia)

3) Gorde sekuentzian n balioa, egungo posizioan (hau da, aurrera_egin/atzera_egin-ez gelditu garen posizioan)

gorde(sekuentzia, n);

4) Sekuentziaren hasierara joan

hasieran_jarri(sekuentzia);

5) Sekuentziaren bukaerara joan

bukaeran_jarri(sekuentzia);

6) Aurrera egin sekuentziaren posizioetan

aurrera_egin(sekuentzia);

horrela sekuentzian zehar mugitu ahalko gara aurretik atzera

7) Atzera egin sekuentziaren posizioetan

atzera_egin(sekuentzia);

horrela sekuentzian zehar mugitu ahal gara atzetik aurrera

8) Lortu sekuentziaren elementu bat, hain zuzen ere egungo posizioan dagoena

egungo_elementua(sekuentzia);

9) Sekuentziatik kanpo gauden jakiteko

sekuentziatik_kanpo(sekuentzia); true sekuentziatik kanpo baldin bagaude ala false barne bagaude

¹²Kasu honetan aldagaiaren izen bezala **sekuentzia** hautatu dugu, baina **sek** edo **segida** edo hautatu dezakegun edozein izen esanguratsua izan zitekeen

Eragiketa hauekin sekuentzia baten zeharketa egingo dugu. Sekuentziaren elementu bakoitza pantailaratuz

Suposatu dezagun **sekuentzia_irakurri**(**sekuentzia**) algoritmo bat existitzen dela, eta erabili dezakegula. Algoritmo hau egikarituz, erabiltzaileari sekuentzia bat guztiz betetzeko aukera ematen diogu.

1. Espezifikazioa:

Sarrera: 10 zenbaki oso

Aurre: -

Irteera: 10 zenbaki oso

Post: pantailaratuko dira sekuentzian gordetako balioak

2. Proba kasuak

Sarrera	Irteera	
12000,565,7,8,2,300,4,6,9,0	12000,565,7,8,2,300,4,6,9,0	

```
sekuentzia1: 10 integer;---alokatu memoria
aux: integer;
hasiera
irakurri_sekuentzia(sekuentzia1);
hasieran_jarri(sekuentzia1);
errepikatu (sekuentziatik_kanpo(sekuentzia1)) bete arte;
aux ← egungo_elementua(sekuentzia1);
idatzi(aux);
aurrera_egin(sekuentzia1);
amaitu_errepikatu
amaiera
```


Buelta kop	Sartu?	aux
Hasieraketak	-	-
1	BAI	1200
2	BAI	565
3	BAI	7
4	BAI	8
5	BAI	2
6	BAI	300
7	BAI	4
8	BAI	6
9	BAI	9
10	BAI	0

Orain, sekuentzia bat nola zeharkatzen den jakinda, idatzi algoritmo bat sekuentzia baten zenbaki guztien gehiketa kalkulatuko duena.

1. Espezifikazioa

Sarrera. 10 zenbaki oso

Aurre:-

Irteera: zenbaki oso bat

Post: pantailaratuko da sekuentziaren gehiketa.

2. Proba kasuak

Sarrera	Irteera	
12000,565,7,8,2,300,4,6,9,0	12000,565,7,8,2,300,4,6,9,0	

3. Algoritmoa

```
sekuentzia1: 10 integer;
gehiketa: integer;
```

hasiera

```
irakurri_sekuentzia(sekuentzia1);
      hasieran_jarri(sekuentzia1);
      gehiketa \leftarrow 0;
      errepikatu (sekuentziatik_kanpo(sekuentzia1)) bete arte;
              gehiketa ← gehiketa + egungo_elementua(sekuentzia1);
              idatzi(gehiketa);
              aurrera_egin(sekuentzia1);
      amaitu_errepikatu
amaiera
```

Buelta kop	Sartu?	aux
Hasieraketak	-	-
1	BAI	1200
2	BAI	1765
3	BAI	1772
4	BAI	1780
5	BAI	1782
6	BAI	2082
7	BAI	2086
8	BAI	2092

9	BAI	2101
10	BAI	2101
11	EZ	

Idatzi algoritmo bat sekuentzia batean 0z bukatzen diren zenbakiak pantailaratzen dituena.

1. Espezifikazioa

Sarrera. 10 zenbaki oso.

Aurre:-

Irteera:

Post: Oz bukatzen diren zenbaki guztiak pantailaratuko dira.

2. Proba kasuak

Sarrera	Irteera	
12000,565,7,8,2,300,4,6,9,0	12000,565,7,8,2,300,4,6,9,0	

```
sekuentzia1: 10 integer;
aux: integer;
hasiera

irakurri_sekuentzia(sekuentzia1);
hasieran_jarri(sekuentzia1);
errepikatu (sekuentziatik_kanpo(sekuentzia1)) bete arte;
baldin (egungo_elementua(sekuentzia1) rem 10 = 0) orduan
aux ← egungo_elementua(sekuentzia1);
idatzi(aux);
amaitu_baldin;
aurrera_egin(sekuentzia1);
amaitu_errepikatu
amaiera
```


Buelta kop	Sartu?	aux	pantaila
Hasieraketak	-	-	-
1	BAI	1200	1200
2	BAI	-	1200
3	BAI	-	1200
4	BAI	-	1200
5	BAI	-	1200
6	BAI	300	1200 300
7	BAI	-	1200 300
8	BAI	-	1200 300
9	BAI	-	1200 300
10	BAI	0	1200 300 0
11	EZ		