ECS404 Computer Systems and Networks

Computer Architecture
Week 4 Pt 1: The Memory Hierarchy

Aims

 This video provides an introduction to the week by discussing the hierarchy of different kinds of memory in a typical computer.

Learning Objectives

 Understand the concept of the memory hierarchy, and be able to list and rank the components of a typical example

Memory

- Remember that computers store information in various places:
 - cpu registers
 - Short-term memory: RAM
 - Long-term memory: disk, flash memory

Memory Hierarchy

 The memory hierarchy is the list of memory components and storage devices that form part of a computer's architecture, ranked by response time from the point of view of the component.

Basic memory hierarchy

- Top: CPU registers
- Middle: Main memory (RAM)
- Low: Long-term memory: disk

Basic memory hierarchy: technologies

- Top: CPU registers:inverter-based memory cells (SRAM)
- Middle: Main memory (RAM): DRAM
- Low: Long-term memory: disk: magnetic disk, flash memory

Basic memory hierarchy: timings

Technology	Access time	\$ per GB
SRAM semiconductor	0.5-2.5ns	500-100
DRAM semiconductor	50-70ns	10-20
Flash semiconductor	5,000-50,000ns	0.75-1.00
Magnetic disk	5,000,000-20,000,000ns	0.05-0.10

Patterson & Hennessy 5.2

Ranking mechanisms that correlate

- Response time
- Cost per GB

Why use slow memory if fast memory is cheaper?

Ranking mechanisms that correlate

- Response time
- Cost per GB
- · Size

Why use small if you can get large for the same price?

Ranking mechanisms that correlate

- Response time
- Cost per GB
- Size
- Proximity to the cpu in architecture

Block Diagram

Disk: via comms chip

Main memory: direct connection

What does having a memory hierarchy do for you?

- Layers provide different functionality.
- Larger lower layers give some of the effect of having larger higher layers that you cannot afford.

Memory hierarchy: a complication

 There are also intermediate layers (caches): we'll talk about these later.

Summary