ODE Cheat Sheet

Jeremy Favro December 5, 2024 Revision 3

Fundamentals

Classification

 $\frac{d^ny}{dx^n}=f(x,y)$ denotes an ODE of order n. Note that $(\frac{dy}{dx})^n\neq\frac{d^ny}{dx^n}.$ ODEs of order n will have n constants in their general form solutions.

A linear ODE is one which can be written in the form $a_n(x)\frac{d^ny}{d^nx}+a_{n-1}\frac{d^{n-1}y}{d^{n-1}x}+\cdots+a_1(x)\frac{dy}{dx}+a_0(x)y=g(x).$

Solutions

Given some IVP $\frac{dy}{dx} = f(x,y), \ y(x_0) = y_0$ if f and $\frac{\partial f}{\partial y}$ are continuous in the rectangle $(x_0,y_0) \in \{(x,y): a < x < b, c < y < d\}$ then the IVP has a unique solution $\phi(x)$ in some interval $(x_0-h,x_0+h), \ h \geq 0$

Solution Techniques n = 1

Direct Integration

Directly integrate ...

Seperable

For some ODE $\frac{dy}{dx}=f(x,y)=g(x)p(y)$ the differential can be split s.t. $\frac{1}{p(y)}dy=g(x)dx$ which can be solved by direct integration. Note that when dividing by some function we assume that the function is nonzero. If there is a case (e.g. in an IVP) where the function is zero, the

Linear

solution is lost.

For some linear ODE of the form $\frac{dy}{dx} + P(x)y = Q(x) \text{ we can multiply both sides of the ODE by}$ $\mu(x) = \exp\left(\int P(x)\,dx\right) \text{ to obtain }$ $\mu\frac{dy}{dx} + \mu P(x)y = \mu Q(x) \text{ which is equivalent to } \mu y = \mu Q(x) \text{ which can be solved by direct integration.}$

Exact

Exact equations are ODEs of the form Mdx+Ndy=0 where $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}.$ Then, $f(x,y)=\int M\,dx+h(y)=C$ or $f(x,y)=\int N\,dy+g(x)=C$ and $\frac{d}{dy}\left(\int M\,dx+h(y)\right)=N$ or $\frac{d}{dx}\left(\int N\,dy+g(x)\right)=M$

Non-Exact

In cases where something looks exact but $\frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ you can find an integrating factor

$$\mu(x) = \exp\left(\int \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} dx\right)$$
$$\mu(y) = \exp\left(\int \frac{\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}{M} dy\right)$$

Homogeneous

If each term of the ODE is of equal order (e.g. the right hand side can be expressed as a function of only $\frac{y}{x}$) we can substitute $y = ux \implies dy = udx + xdu$. This should result in a seperable equation.

Bernoulli

If we have an equation of the form $\frac{dy}{dx} + P(x)y = Q(x)y^n \text{ we divide by } y^n$ and substitute $u = y^{1-n} \implies \frac{dy}{dx} = \frac{dy}{du} \frac{du}{dx}$ (you should know what $\frac{dy}{du}$ is here). This should result in a linear equation.

Linear Substituion

An ODE of the form $\frac{dy}{dx}=f(Ax+By+C),\ B\neq 0 \ {\rm can\ be}$ solved by

$$u = Ax + By + C$$

$$\Rightarrow \frac{du}{dx} = A + B\frac{dy}{dx}$$

$$\Rightarrow \frac{dy}{dx} = (\frac{du}{dx} - A)\frac{1}{B}$$

If you solve a second order ODE and obtain a single solution $y_1,\,y_2=y_1\int \frac{e^{-\int P(x)\,dx}}{y_1^2}dx$

where
$$P(x)$$
 is found in $y'' + P(x)y' + Q(x)y = g(x)$

Constant Coefficients

An equation of the form ay'' + by' + cy = g(x) can be solved through the characteristic equation obtained by substituting $y = e^{mt}$ and solving for m. This gives a solution of the form $y_h = C_1 e^{m_1 t} + C_2 e^{m_2 t}$.

Undetermined Coefficients

To obtain the particular solution of ay'' + by' + cy = g(x) we try

$$g(x)$$

$$Ce^{\alpha x}$$

$$C_nx^n + \dots + C_1x + C_0$$

$$C\cos(\beta x), \quad C\sin(\beta x)$$

$$(C_nx^n + \dots + C_1x + C_0)e^{\alpha x}$$

$$y_p(x)$$

$$x^s (Ae^{\alpha x})$$

$$x^s (A_nx^n + \dots + A_1x + A_0)$$

$$x^s (A_nx^n + \dots + A_1x + A_0)e^{\alpha x}$$

$$x^s (A_nx^n + \dots + A_1x + A_0)e^{\alpha x}$$

Variation of Parameters

For y'' + P(x)y' + Q(x)y = g(x) if you have the homogeneous solutions $y_1(x)$ and $y_2(x)$, the particular solution $y_p(x) = u_1(x)y_1(x) + u_2(x)y_2(x)$ where

$$u_1(x) = -\int \frac{g(x)y_2(x)}{W[y_1, y_2]} dx$$

$$u_2(x) = \int \frac{g(x)y_1(x)}{W[y_1, y_2]} dx$$

where $W[y_1, y_2]$ is the Wronskian,

$$\begin{vmatrix} y_1 & y_2 \\ y_1' & y_2' \end{vmatrix}$$

Cauchy-Euler

An equation of the form $ax^2y'' + bxy' + cy = g(x)$ can be solved through the characteristic equation $am^2 + \frac{(b-a)}{m}m + c = 0$ obtained by substituting $y = x^{mt}$ and solving for m. In the case where m is complex here you end up with trig functions of logarithms.

Laplace Transform

If f(t) has period T and is piecewise continuous on [0,T] then $\mathcal{L}\left\{f(t)\right\} = \frac{\int_0^T e^{-st}f(t)dt}{1-e^{sT}}$

Properties of the Laplace Transform

$$\mathcal{L}\{f_{1} + f_{2}\} = \mathcal{L}\{f_{1}\} + \mathcal{L}\{f_{2}\}$$

$$\mathcal{L}\{cf_{1}\} = c\mathcal{L}\{f_{1}\}$$

$$\mathcal{L}\{e^{at}f(t)\} = F(s-a)$$

$$\mathcal{L}\{f'(t)\} = s\mathcal{L}\{f(t)\} - f(0)$$

$$\mathcal{L}\{f''(t)\} = s^{2}\mathcal{L}\{f(t)\} - sf(0) - f'(0)$$

$$\mathcal{L}\{t^{n}f(t)\} = (-1)^{n}\frac{d^{n}F(s)}{ds^{n}} \implies f(t) = \frac{(-1)^{n}}{t^{n}}\mathcal{L}^{-1}\left\{\frac{d^{n}F(s)}{ds^{n}}\right\}$$

$$\mathcal{L}\{f(t-a)\mu(t-a)\} = e^{-as}F(s)$$

$$\mathcal{L}^{-1}\{e^{-as}F(s)\} = f(t-a)\mu(t-a)$$

Solving Discontinuous IVPs with Laplace Transforms

For some ODE ay'' + by' + cy = g(t) $\mathcal{L}\left\{g(t)\mu(t-a)\right\} = e^{-as}\mathcal{L}\left\{g(t+a)\right\}$

$$\mu(t-a) = \begin{cases} 0 & t < a \\ 1 & t > a \end{cases}$$

Applications

Newton's Cooling

$$\frac{dT}{dt} = k(T - T_m) \implies T(t) = T_m + Ce^{kt}$$

where T is the temperature of an object, T_m the temperature of the medium in which the object sits, and k some cooling constant determined by initial/boundary conditions. C comes about as a result of solving the ODE and can also be determined using initial conditions.

Circuit Theory

$$V_{Resistor} = RI = R \frac{dQ}{dt}$$

$$V_{Inductor} = L \frac{dI}{dt} = L \frac{d^2Q}{dt^2}$$

$$V_{Capacitor} = \frac{Q}{C} = L \frac{d^2Q}{dt^2}$$