NEWTON, BERNOULLI, LEIBNIZ & FIBONACCI

CHRISTOPHE BAL

Document, avec son source $L^{A}T_{E}X$, disponible sur la page https://github.com/bc-writings/bc-public-docs/tree/main/drafts.

Mentions « légales »

Ce document est mis à disposition selon les termes de la licence Creative Commons "Attribution – Pas d'utilisation commerciale – Partage dans les mêmes conditions 4.0 International".

Table des matières

1.	Des identités bien connues	2
2.	Dites-les avec des arbres!	2
3.	La formule du binôme de Newton implique	2

Date: 17 Mars 2025.

1. Des identités bien connues

Les formules suivantes, qui sont de grands classiques pour les trois premières, ¹ partagent une ressemblance évidente. Nous allons donner deux démonstrations de ces identités via deux méthodes rendant moins mystérieuses ces similarités portant sur des objets a priori bien différents. Ci-après, δ_{jk} désigne le symbole de Kronecker valant 1 si j=k, et 0 sinon, tandis que X est la variable aléatoire comptant le nombre de succès d'un schéma de Bernoulli de paramètre (n;p), et enfin $(F_k)_{k\in\mathbb{N}}$ correspond à la suite de Fibonacci.

- Formule du binôme de Newton : $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- Formule de dérivation de Leibniz : $(fg)^{(n)}(x) = \sum_{k=0}^{n} {n \choose k} f^{(k)}(x) g^{(n-k)}(x)$.
- Loi binomiale : $P(X=j) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k} \delta_{jk}$.
- Expression de F_{2n} en fonction de F_k précédents : $F_{2n} = \sum_{k=0}^{n} {n \choose k} F_k$.
 - 2. Dites-les avec des arbres!

XXXX

3. La formule du binôme de Newton implique...

XXXX

Les nombres de Bell B_n comptent les partitions d'un ensemble et admettent la relation :

$$B_{n+1} = \sum_{k=0}^{n} \binom{n}{k} B_k.$$

Cette somme ressemble fortement à la relation pour F_{2n} .

Les **nombres de Bell** B_n comptent le nombre de partitions d'un ensemble à n éléments. Ils apparaissent en combinatoire et ont plusieurs formules intéressantes impliquant des coefficients binomiaux et des sommes.

Le nombre de Bell B_n est défini comme le nombre de façons de partitionner un ensemble de n éléments en sous-ensembles non vides.

Quelques premiers termes:

$$B_0 = 1$$
, $B_1 = 1$, $B_2 = 2$, $B_3 = 5$, $B_4 = 15$, $B_5 = 52$.

Par exemple, pour n = 3, il y a $B_3 = 5$ partitions possibles de l'ensemble $\{a, b, c\} : 1$. $\{\{a, b, c\}\}$ (1 seul bloc) 2. $\{\{a, b\}, \{c\}\}$ 3. $\{\{a, c\}, \{b\}\}$ 4. $\{\{b, c\}, \{a\}\}$ 5. $\{\{a\}, \{b\}, \{c\}\}$ (chaque élément seul)

^{1.} La 4^e identité est un classique des classes préparatoires.