Assignment 2: Expressiveness

Dana Arad 311183321 Amit Elyasi 316291434

Part 1: Boolean AND-OR Networks

1. We will show that the lower bound on B cannot be larger than 2^{d-1} , since XOR_d is realizable by a shallow network of width $B=2^{d-1}$.

Denote the truth table of XOR_d :

x_1	x_2	 x_d
+1	-1	 -1

Denote each row $i = (x_1, ..., x_d)$ where $XOR_d(x_1, ..., x_d) = +1$ as w_i .

Notice that:

a.
$$\forall v \in \{+1, -1\}^d$$
. $v * v = (+1)^d$

b.
$$\forall u, v \in \{+1, -1\}^d \exists k. (u * v)_k = -1$$

We define the following shallow network, mark as N:

- $B = 2^{d-1}$
- U = I

$$\bullet \quad W = \begin{pmatrix} -w_1 - \\ \cdots \\ -w_2 - d - 1 \end{pmatrix}$$

We will show that:

1.
$$\forall (x_1, ..., x_d) \text{ s. t. } XOR_d(x_1, ..., x_d) = +1. N(x_1, ..., x_d) = +1$$

2.
$$\forall (x_1, ..., x_d) \text{ s. t. } XOR_d(x_1, ..., x_d) = -1. N(x_1, ..., x_d) = -1$$

1. Let $x_1, ..., x_d$ be inputs $\in \{+1, -1\}^d$ s.t $XOR_d(x_1, ..., x_d) = +1$, $so(x_1, ..., x_d) = w_i$ for some $1 \le i \le 2^{d-1}$. Well show that $N(x_1, ..., x_d) = +1$.

$$N(x) = OR(U * AND(W * x))$$

$$AND(W * x) = AND \begin{pmatrix} -w_1 - \\ \cdots \\ -w_{2^{d-1}} - \end{pmatrix} \begin{pmatrix} | \\ w_i \\ | \end{pmatrix} = (-1, -1, \dots + 1, \dots - 1)$$

Where the only +1 is in index i (by claim a) .

$$OR(U*(-1,-1,...+1,..-1)) = OR((-1,-1,...+1,..-1)) = +1 \blacksquare$$

2. Similarly, let $x_1, ..., x_d$ be inputs $\in \{+1, -1\}^d$ s.t $XOR_d(x_1, ..., x_d) = -1$. So, $\forall i. x \neq w_i$.

Therefore,
$$AND(W*x) = AND\left(\begin{pmatrix} -w_1 - \\ \cdots \\ -w_2^{d-1} - \end{pmatrix}\begin{pmatrix} | \\ x \\ | \end{pmatrix}\right) = (-1)^d \rightarrow OR(U*(-1)^d) = -1 \blacksquare$$

- 2. Let us look at the number of functions a deep network can express:
 - $2\log_2(d)$ Layers:
 - Odd layers:
 - $W \in \mathbb{R}^{\bar{B}*d}$
 - $W^{(2)}, \dots, W^{(2\log_2(d))} \in \mathbb{R}^{\bar{B}*\bar{B}}$
 - $\forall k. W_{ij}^{(k)} \in \{-1, 0, +1\}$
 - o Even layers:
 - $U^{(1)}, \dots, U^{(2\log_2(d)-1)} \in \mathbb{R}^{\bar{B}*\bar{B}}$
 - $U^{(2\log_2(d))} \in \mathbb{R}^{\bar{B}*1}$
 - $\forall k. U_{ij}^{(k)} \in \{-1, +1\}$

Mark T as the total number of parameters in the network:

$$T = (2\log_2(d) - 2) * (\bar{B} * \bar{B}) + (\bar{B} * d) + (\bar{B} * 1)$$

The number of possible functions is therefore $2^{T+C}=2^{poly(\bar{B})}$ (where C is some constant to change the exponent base from 3 to 2).

 $|Y^X| = |Y|^{|X|} = 2^{2^d} \to \text{unless } \bar{B} \in \exp(d)$, $2^{poly(\bar{B})} < 2^{2^d}$, so there exists a function that the network will not be able to express.

Part 2: Fully Connected ReLU Networks with 1D Input

1. First, we note that $B \ge 2$ is required for the condition to hold: when B = 1, $h \in H_1$ is equal to $h(x) = w_2[w_1x + b_1]_+ + b_2$, this is a PWL function with 2 pieces- a constant part (negative values after Relu) and a linear part. Therefore, the number of pieces $= 2 \le 1 = B$.

A shallow network of width $B \ge 2$ can realize any PWL mapping with $\le B$ pieces:

For $B \ge 2$ we will prove by induction by explicitly building such h.

$$h(x) = \sum_{i=1}^{B} w_2^i [w_1^i x^i + b_1^i]_+ + b_2$$

with
$$g_1(x) = w_2^1 [w_1^1 x + b_1^1]_+ + b_2$$
 and $g_i(x) = w_2^i [w_1^i x + b_1^i]_+$
So $h(x) = \sum_{i=1}^B g_i(x)$

Base case B=2:

Let f be a PWL function with B=2 pieces, denote $f(x) = \begin{cases} m_1 x + n_1 & x$

We will define two functions $g_1, g_2 : \mathbb{R} \to \mathbb{R}$, and show that $h(x) \coloneqq (g_1 + g_2)(x) \equiv f(x)$: Set $w_1^1 = -1, w_2^1 = -m_1, b_1^1 = p, b_2 = n_1 + m_1 p$ and get:

$$g_1(x) = -m_1[p-x]_+ + n_1 + m_1p = \begin{cases} m_1x + n_1 & x$$

Now set $w_1^2=1$, $w_2^2=m_2$, $b_1^2=-p$ and get:

$$g_2(x) = m_2[x - p_1]_+ = \begin{cases} 0 & x$$

Overall, we get:

$$(g_1 + g_2)(x) = \begin{cases} m_1 x + n_1 & x
$$= \begin{cases} m_1 x + n_1 & x$$$$

(*) f is continuos so $m_1p + n_1 = m_2p + n_2$

Induction Step:

Let's assume there exist some B so that for any PWL f $\exists h \in H_B \ s.t.h(x) = f(x)$ Let f be a PWL function with B+1 pieces $\{(-\infty, p_1), [p_1, p_2), ..., [p_B, \infty)\}$

$$f(x) = m_i x + n_i \quad if \ x \in [p_{i-1}, p_i) \ for \ i \in [B+1] \ (denote \ p_0 = -\infty, p_{B+1} = \infty)$$
 Let $f^*(x) = m_i x + n_i \quad if \ x \in [p_{i-1}, p_i) \ for \ i \in [B]$

By induction we know that there exits $h^* \in H_B$ s.t. $h^*(x) = f^*(x)$, with $h^*(x) = \sum_{i=1}^B g_i(x)$ And define $g_{B+1}(x) = w_2^{B+1}[w_1^{B+1}x + b_1^{B+1}]_+$

with
$$w_1^{B+1}=1$$
 , $w_2^{B+1}=m_{B+1}-m_B$, $b_1^B=-p_B$

So overall we will get:

$$h^{*}(x) + g_{B+1}(x) = \begin{cases} h^{*}(x) & x < p_{B} \\ m_{B}x + n_{B} + (m_{B+1} - m_{B})(x - p_{B}) & x \ge p_{B} \end{cases}$$

$$= \begin{cases} h^{*}(x) & x < p_{B} \stackrel{(*)}{\cong} \\ m_{B}x + n_{B} + m_{B+1}x - m_{B}x + m_{B+1}p_{B} - m_{B}p_{B} & x \ge p_{B} \stackrel{(*)}{\cong} \end{cases}$$

$$\begin{cases} h^{*}(x) & x
$$(*) \ again, f \ is \ continuos \ so \ m_{i}p_{i} + n_{i} = m_{i+1}p_{i} + n_{i} \blacksquare$$$$

Any mapping realizable by such network is PWL with $\leq B + 1$ pieces:

Let $h \in H_B$, so h is PWL with $\leq B + 1$ pieces because h can be written as a sum of PWL functions (like in the first direction):

Denote $p=\arg_x[w_1\cdot x+b_1=0]$, let $argsort(p)=(i_1,i_2,\dots,i_B)$ so that $p_{i_1}\leq p_{i_2}\leq\dots\leq p_{i_B}$

Let $g_{i_1}(x) = w_2^{i_1} [w_1^{i_1}x + b_1^{i_1}]_+ + b_2$ and for $i_1 \neq i \in argsort(p), g_i(x) = w_2^{i} [w_1^{i_1}x + b_1^{i_1}]_+$

$$h(x) = \sum_{j \in argsort(p)} g_j(x) = \begin{cases} g_{i_1}(x) & x < p_{i_1} \\ g_{i_1}(x) + g_{i_2}(x) & p_{i_1} \le x < p_{i_2} \\ \vdots & \vdots \\ \sum_{j \in argsort(p)} g_j(x) & x \ge p_B \end{cases}$$

all pieces of h are linear functions as sum of linear functions, and so by the equation above we have $\leq B+1$ pieces of different linear functions.

2. As shown in class,

 $|S_<|=\#\ of\ sawteeth=2^{L-2},\qquad |S_>|=2^{L-2}+1\Rightarrow |S_<\cup S_>|=2^{L-1}+1$ We'll show that a PWL function h with $\le B+1$ pieces could avoid missing \le $\left[\frac{1}{2}(2^{L-1}+1)+\frac{1}{2}(B+1)\right] \ \text{out of}\ 2^{L-1}+1 \ \text{intervals in}\ S_<,S_>$

Claim: linear h (B=1) can avoid missing $\leq \left[\frac{1}{2}(2^{L-1}+1)+\frac{1}{2}\right]$

h is linear (assume WLOG h increasing) \Rightarrow h intersect with $y=\frac{1}{2}$ once , denote the intersection point by x^* (assume WLOG x^* is a shared point of $S_>$ and $S_<$, that is there exists $[x_1,x^*]\in S_<$ and $[x^*,x_2]\in S_>$) \Rightarrow h is below $y=\frac{1}{2}$ for all $x< x^*$, and above it for all $x>x^*$. Denote the number of $intervals\in S_<\cup S_>$ in $[0,x^*]$ by k_1 and the number of $intervals\in S_<\cup S_>$ in $[x^*,1]$ by k_2 , note that $k_1+k_2=|S_<\cup S_>|=2^{L-1}+1$, so h avoids missing no more than half of k_1 and no more than half of k_2 , that is $\leq \frac{1}{2}k_2+\frac{1}{2}k_1=\frac{1}{2}(2^{L-1}+1)\leq \left[\frac{1}{2}(2^{L-1}+1)+\frac{1}{2}\right]$

back to a general PWL h with $\leq B + 1$ pieces:

Let's divide [0,1] into the intervals $[0=C_0,C_1],[C_1,C_2],...,[C_B,1=C_{B+1}]$ where on each interval h is linear. Denote the number of $intervals \in S_{<} \cup S_{>}$ in (C_i,C_{i+1}) by k_{i+1} so we get $\sum_i k_i = |S_{<} \cup S_{>}| = 2^{L-1} + 1$.

Now for each $[C_i, C_{i+1}]$ h is linear and the claim above applies, so over all we get that the number of intervals h can avoid missing is $\leq \sum_i \left[\frac{1}{2}(k_i) + \frac{1}{2}\right] = \left[\frac{1}{2}(2^{L-1} + 1) + \frac{1}{2}(B+1)\right]$

3. The universality and expressive efficiency analyses given in class, with the following modifications applies to leaky ReLU activation $\sigma(z) = \max\{az, z\}$, $a \in (0, 1)$:

Universality: for any $f \in \mathcal{F}$, $\epsilon > 0$ there exist $h \in \mathcal{H}_B$ that is built with leaky ReLU such that $d(f,h) < \epsilon$.

Note that this will also stand for $h \in \overline{\mathcal{H}}_B$ as $\mathcal{H}_B \subseteq \overline{\mathcal{H}}_B$.

We have seen in class that we can approximate any continuous function with PWL one, and that any PWL function can be realized by a ReLU network. In addition, we have seen that any ReLU neuron can be implemented by 2 leaky ReLU neurons, and vice versa.

So overall, any f can be approximated by PWL h with B pieces, that can be realized by a shallow ReLU network of width B, that can be modified to a leaky ReLU network of width 2B.

Expressive efficiency:

 $\forall \bar{B} \in O(B)$ s.t. $\mathcal{H}_B \subseteq \bar{\mathcal{H}}_{\bar{B}}$ where here \mathcal{H}_B is the set of functions that can be realized by leaky ReLU neural network.

$$\exists \bar{h} \in \bar{\mathcal{H}}_{\bar{B}} \text{ for } \bar{B} \in O(1) \text{ s.t. } \bar{h} \notin \mathcal{H}_{B} \text{ unless } B \in \exp(L)$$

As seen in class, condition (i) is an immediate consequence of the fact that a deep network can realize any mapping realizable by a shallow one of the same width.

Now for condition (ii) we'll construct a sawteeth function $g \coloneqq g^{\circ L}$ similar to the one from class, now g is PWL with 2^{L-1} pieces and we've seen that it can be realized by an L layer ReLU NN of width 3, which means the same function can be realized by an L layer leaky ReLU NN of width 6 ((*) as any ReLU neuron can be implemented by 2 leaky ones and vice versa).

Next, let $h \in \mathcal{H}_B$ be a function that can be realized by a shallow leaky ReLU NN of width B \Rightarrow h is PWL with $\leq 2B+2$ (again because (*)) pieces and like the proposition in class the most intervals in $S_{<} \cup S_{>}$ h can avoid missing is $\leq \left[\frac{1}{2}(2^{L-1}+1)+\frac{1}{2}(2B+2)\right]$ and like we've seen in class this implies that the closest a shallow leaky ReLU NN of width 2B+2 can get to g is $\geq \frac{1}{4}-(2B)2^{-L-1}-3\cdot 2^{-L}$ requiring $B>2^{L}\left(\frac{1}{4}-\epsilon\right)-6\in \exp(L)$

4. let f be a Reimann integrable function in [0,1], $\epsilon^* > 0$, $B \in \mathbb{N}$, denote $\epsilon = \frac{\epsilon^*}{B}$. f is integrable so there exist $T, S: \mathbb{R} \to \mathbb{R}$ and intervals $(x_i, x_{i+1}] \ \forall i \in [B]$ in which S,T are constant functions (step functions) s.t. $\forall x \in [0,1]$, $S(x) \leq f(x) \leq T(x)$ and $T(x) - S(x) < \epsilon$

define $h: \mathbb{R} \to \mathbb{R} \ \forall x \in (x_i, x_{i+1}] \ by \ h(x) = x \frac{f(x_{i+1}) - f(x_i)}{x_{i+1} - x_i} + x_i$ that is the line connecting the points $(x_i, f(x_i))$, $(x_{i+1}, f(x_{i+1}))$.

Note that by definition h is PWL with B pieces and so $h \in \mathcal{H}_B \subseteq \overline{\mathcal{H}}_B$.

Now, we know that $\forall x \in (x_i, x_{i+1}] \max_{x} |f(x)| \leq T(x_i)$ and $\min_{x} |h(x)| \geq S(x_i)$ so we get

$$d(f,h) = \int_0^1 |f(x) - h(x)| dx \le \int_0^1 |f(x)| dx - \int_0^1 |h(x)| dx \le \int_0^1 |T(x)| dx - \int_0^1 |S(x)| dx$$

$$= \sum_i T(x_i)(x_{i+1} - x_i) - \sum_i S(x_i)(x_{i+1} - x_i)$$

$$= \sum_i (T(x_i) - S(x_i))(x_{i+1} - x_i)$$

$$\stackrel{\forall x, \ T(x)-S(x)<\epsilon}{\gtrsim} \sum_{i} \epsilon(x_{i+1}-x_i) \stackrel{\sum_{i}(x_{i+1}-x_i)=1}{\cong} B\epsilon \sum_{i} (x_{i+1}-x_i) = B\epsilon = \epsilon^* \quad \blacksquare$$

Part 3: Convolutional Arithmetic Circuits

1. Let T and \bar{T} be tensors of orders n and \bar{n} respectively. Let $I \subset [n + \bar{n}]$ and denote by I - n the set obtained by subtracting n from each element of I, Then: $[T \otimes \bar{T}]_I = [T]_{I \cap [n]} \odot [\bar{T}]_{I-n \cap [\bar{n}]}$.

WLOG we can assume the partition is over the first indices, otherwise we can apply a permutation for each of the tensors. By definition we get:

$$\begin{split} \left[[\![T]\!]_{I\cap[n]} \odot [\![\bar{T}]\!]_{I-n\cap[\bar{n}]} \right]_{|I\cap[n]|*(i_1+j_1),|I-n\cap[\bar{n}]|*(i_2+j_2)} &= [\![T]\!]_{I\cap[n]} \right]_{i_1,j_1} * \left[[\![\bar{T}]\!]_{I-n\cap[\bar{n}]} \right]_{i_2,j_2} \\ &= [\![T]\!]_{i_1,j_1} * [\![\bar{T}]\!]_{i_2,j_2} = [\![T \otimes \bar{T}]\!]_{i_1,j_1,i_2,j_2} \\ &= [\![T \otimes \bar{T}]\!]_{I} \right]_{|I\cap[n]|*(i_1+j_1),|I-n\cap[\bar{n}]|*(i_2+j_2)} \end{split}$$

This holds for every i_1, j_1, i_2, j_2 where $i_1 \in I \cap [n], j_1 \in I^c \cap [n], i_2 \in I - n \cap [\overline{n}], j_2 \in I^c - n \cap [\overline{n}]$, and thus $[T]_{I \cap [n]} \odot [\overline{T}]_{I - n \cap [\overline{n}]} = [T \otimes \overline{T}]_I \blacksquare$

2. Modifications are only needed for part (ii) of the proof shown in class: We apply canonical matricization to the HT decomposition (corresponding to the deep network), while using the linearity of matricization and its relationship with outer/Kronecker product:

$$\llbracket \phi^{1,j,\gamma} \rrbracket = \sum_{\alpha=1}^{r_0} a_\alpha^{1,j,\gamma} \llbracket \underline{a^{0,4j-1,\alpha}} \otimes \underline{a^{0,4j,\alpha}} \rrbracket, \quad for \ j=1,2,\ldots,\frac{N}{4}, \ \gamma=1,2,\ldots,r_1$$

$$\left[\!\!\left[\phi^{l,j,\gamma}\right]\!\!\right] = \sum_{\alpha=1}^{r_{l-1}} a_{\alpha}^{l,j,\gamma} \left[\!\!\left[\phi^{l-1,4j-1,\alpha}\right]\!\!\right] \odot \left[\!\!\left[\phi^{l-1,4j,\alpha}\right]\!\!\right], \quad for \ j=1,2,\ldots,\frac{N}{4^l}, \ \gamma=1,2,\ldots,r_l$$

$$\llbracket \phi^{L-1,j,\gamma} \rrbracket = \sum_{\alpha=1}^{r_{L-2}} \alpha_{\alpha}^{L-1,j,\gamma} \llbracket \underline{\phi^{L-2,4j-1,\alpha}} \rrbracket \odot \llbracket \underline{\phi^{L-2,4j,\alpha}} \rrbracket, \quad for j = 1,2,3,4, \ \gamma = 1,2,\dots,r_{L-1}$$

$$\llbracket A^{HT} \rrbracket = \sum_{\alpha=1}^{r_{L-1}} a_{\alpha}^{L} \llbracket \underline{\phi^{L-1,1,\alpha}} \rrbracket \odot \llbracket \underline{\phi^{L-1,2,\alpha}} \rrbracket \odot \llbracket \underline{\phi^{L-1,3,\alpha}} \rrbracket \odot \llbracket \underline{\phi^{L-1,4,\alpha}} \rrbracket$$

Let r_0 be $\geq M$, and assign its filter sets - $\left\{\left(\underline{a}^{0,1,\gamma},\ldots,\underline{a}^{0,N,\gamma}\right)\right\}_{\gamma=1}^{r_0}$ by $\underline{a}^{0,j,\gamma}=e^{\gamma}$ for $\gamma\in[M]$ and $\underline{a}^{0,j,\gamma}=\underline{0}$ for $\gamma>M$.

Assign the filter sets in hidden layer $1 - \{(\underline{a}^{1,1,\gamma}, \dots, \underline{a}^{1,N/4,\gamma})\}_{\gamma-1}^{r_1}$ by $\underline{a}^{1,j,1} = \underline{1}$ (all ones) and $\underline{a}^{1,j,\gamma} = \underline{0}$ for $\gamma > 1$.

Assign the filter sets in hidden layers 2 through L-1 by:

$$\underline{a}^{l,j,\gamma} = \begin{cases} \underline{e}^1 & \text{for } \gamma = 1\\ \underline{0} & \text{otherwise} \end{cases}$$

where $l = 2,3,...,L-1, j = 1,2,...,\frac{N}{A^{l}}, \gamma = 1,2,...,r_{l}$.

And the output weights by $a^L = e^1$. Under our assignments:

$$[A^{HT}] = \underbrace{Id_m \underbrace{\bullet} \dots \underbrace{\bullet} Id_m}_{\underbrace{\frac{N}{4}times}} = Id_{M^{\frac{N}{4}}}$$

In particular, $rank([A^{HT}]) = M^{\frac{N}{4}}$. Our results on $rank([A^{HT}])$ implies that for $\bar{B} \ge$ M, $\overline{H}_{ar{B}}$ includes a function $ar{h}$ whose corresponding tensor has (canonical) matricization rank $M^{N/4}$. On the other hand, our upper bound on $rank([A^{CP}])$ implies that H_{R} includes only functions whose corresponding tensors have (canonical) matricization ranks $\leq B$. This means that $\bar{h} \notin H_B$ unless $B \geq M^{\frac{N}{4}}$, establishing condition (ii).

3. To prove $Sep(f_{deep}; I_{quad}) \le r_{L-1}r_{L-2}^2$, we can use the following lemma from class: $Sep(f;I) = rank(A)_I$

Where A is the tensor that identifies with the function f.

In the case of a deep network
$$A = A^{HT} = \sum_{\alpha=1}^{r_{L-1}} a_{\alpha}^{L} * (\phi^{L-1,1,\alpha} \otimes \phi^{L-1,2,\alpha})$$
 and $\phi^{L-1,j,\gamma} = \sum_{\alpha=1}^{r_{L-2}} a_{\alpha}^{L-1,j,\gamma} \phi^{L-2,2j-1,\alpha} \otimes \phi^{L-2,2j,\alpha}, \qquad for \ j=1,2,3,4, \ \gamma=1,2,...,r_{L-1}$

Applying the matricization we get:

$$\begin{split} & [\![A^{HT}]\!]_{I_{quad}} = \sum_{\alpha=1}^{r_{L-1}} a_{\alpha}^{L} * [\![\phi^{L-1,1,\alpha}]\!]_{I_{quad}} \odot [\![\phi^{L-1,2,\alpha}]\!]_{I_{quad}} \\ & = \sum_{\alpha=1}^{r_{L-1}} a_{\alpha}^{L} \left[\![\sum_{\alpha=1}^{r_{L-2}} a_{\alpha}^{L-1,1,\gamma} \phi^{L-2,1,\alpha} \bigotimes \phi^{L-2,2,\alpha}, \right]\!]_{I_{quad} \cap \left[\frac{N}{2}\right]} \odot \left[\![\sum_{\alpha=1}^{r_{L-2}} a_{\alpha}^{L-1,2,\gamma} \phi^{L-2,3,\alpha} \bigotimes \phi^{L-2,4,\alpha}, \right]\!]_{I_{quad} - \frac{N}{2} \cap \left[\frac{N}{2}\right]} \end{split}$$

$$=\sum_{\alpha=1}^{r_{L-1}}a_{\alpha}^{L}\sum_{\alpha=1}^{r_{L-2}}a_{\alpha}^{L-1,1,\gamma}\overbrace{\llbracket\phi^{L-2,1,\alpha}\rrbracket}_{I_{quad}\cap\left[\frac{N}{4}\right]}\odot\llbracket\phi^{L-2,2,\alpha}\rrbracket_{\underbrace{(I_{quad}\cap\left[\frac{N}{2}\right])-\frac{N}{4}\cap\left[\frac{N}{4}\right]}_{=\emptyset}}$$

$$\odot \sum_{\alpha=1}^{r_{L-2}} a_{\alpha}^{L-1,2,\gamma} \underbrace{\llbracket \phi^{L-2,3,\alpha} \rrbracket_{(I_{quad} - \frac{N}{2} \cap \left[\frac{N}{2}\right]) \cap \left[\frac{N}{4}\right]}}_{rank=1} \odot \llbracket \phi^{L-2,4,\alpha}, \rrbracket_{\underbrace{(I_{quad} - \frac{N}{2} \cap \left[\frac{N}{2}\right]) - \frac{N}{4} \cap \left[\frac{N}{4}\right]}_{=\emptyset}$$

Using $rank(A \odot B) = rank(A) * rank(B)$ we get exactly $rank\left(\llbracket A^{HT} \rrbracket_{I_{quad}} \right) \le r_{L-1} r_{L-2}^2$