Cairo University
Faculty of Engineering
Computer Engineering Dept.



## Sheet 2: Language Models

- 1) Write out the equation for trigram probability estimation. Then, write out all the non-zero trigram probabilities for the corpus:
  - I am Sam. Sam I am. I do not like green eggs and ham.
- 2) Calculate the probability of the sentence "I want Chinese food"
  - a. using the given bigram probabilities.
  - b. using the given add-1 smoothed bigram probabilities.
  - c. Which of the two probabilities you computed is higher, unsmoothed or smoothed? Explain why.

## **Bigram Probabilities:**

|         | i       | want | to     | eat    | chinese | food   | lunch  | spend   |
|---------|---------|------|--------|--------|---------|--------|--------|---------|
| i       | 0.002   | 0.33 | 0      | 0.0036 | 0       | 0      | 0      | 0.00079 |
| want    | 0.0022  | 0    | 0.66   | 0.0011 | 0.0065  | 0.0065 | 0.0054 | 0.0011  |
| to      | 0.00083 | 0    | 0.0017 | 0.28   | 0.00083 | 0      | 0.0025 | 0.087   |
| eat     | 0       | 0    | 0.0027 | 0      | 0.021   | 0.0027 | 0.056  | 0       |
| chinese | 0.0063  | 0    | 0      | 0      | 0       | 0.52   | 0.0063 | 0       |
| food    | 0.014   | 0    | 0.014  | 0      | 0.00092 | 0.0037 | 0      | 0       |
| lunch   | 0.0059  | 0    | 0      | 0      | 0       | 0.0029 | 0      | 0       |
| spend   | 0.0036  | 0    | 0.0036 | 0      | 0       | 0      | 0      | 0       |

P(i|<s>)=0.25 and P(</s>|food)=0.68

## **Add-1 Smoothed Bigram Probabilities:**

|         | i       | want    | to      | eat     | chinese | food    | lunch   | spend   |
|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| i       | 0.0015  | 0.21    | 0.00025 | 0.0025  | 0.00025 | 0.00025 | 0.00025 | 0.00075 |
| want    | 0.0013  | 0.00042 | 0.26    | 0.00084 | 0.0029  | 0.0029  | 0.0025  | 0.00084 |
| to      | 0.00078 | 0.00026 | 0.0013  | 0.18    | 0.00078 | 0.00026 | 0.0018  | 0.055   |
| eat     | 0.00046 | 0.00046 | 0.0014  | 0.00046 | 0.0078  | 0.0014  | 0.02    | 0.00046 |
| chinese | 0.0012  | 0.00062 | 0.00062 | 0.00062 | 0.00062 | 0.052   | 0.0012  | 0.00062 |
| food    | 0.0063  | 0.00039 | 0.0063  | 0.00039 | 0.00079 | 0.002   | 0.00039 | 0.00039 |
| lunch   | 0.0017  | 0.00056 | 0.00056 | 0.00056 | 0.00056 | 0.0011  | 0.00056 | 0.00056 |
| spend   | 0.0012  | 0.00058 | 0.0012  | 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058 |

P(i|<s>)=0.19 and P(</s>|food)=0.40

- 3) Suppose we didn't use the end-symbol </s>. Train an unsmoothed bigram grammar on the following training corpus without using the end-symbol </s>
  - <s> a b
  - $\langle s \rangle b b$
  - $\langle s \rangle b a$
  - <s> a a

Demonstrate that your bigram model does not assign a single probability distribution across all sentence lengths by showing that the sum of the probability of the four possible 2 word sentences over the alphabet {a,b} is 1.0, and the sum of the probability of all possible 3 word sentences over the alphabet {a,b} is also 1.0.

- 4) We are given the following corpus:
  - <s> I am Sam </s>
  - <s> Sam I am </s>
  - <s> I am Sam </s>
  - <s> I do not like green eggs and Sam </s>

If we use linear interpolation smoothing between a maximum-likelihood bigram model and a maximum-likelihood unigram model with  $\lambda_1 = \frac{1}{2}$  and  $\lambda_2 = \frac{1}{2}$ , what is P(Sam|am)? Include <s> and </s> in your counts just like any other token.

- 5) You are given a training set of 100 numbers that consists of 91 zeros and 1 each of the other digits 1-9. Now we see the following test set: 0 0 0 0 0 3 0 0 0 0. What is the unigram perplexity?
- 6) For the following RNN, we have the following input sequence:

$$x(t=0)=2, x(t=1)=-0.5; x(t=2)=1.$$

- a. Write the equations and compute all the network values.
- b. Draw the "unrolled" network.
- c. What is this RNN learning?



- 7) Given an RNN character-level language model, assume the very small vocabulary {'h','e','l','o'} and tokens are single letters represented in the input with a one-hot encoded vector (note that in practice instead of one-hot encoded vectors we will have word embeddings). The model with the numbers is shown in the following figure.
  - a. Compute the final output using the **softmax** function.
  - b. For each output mention what the model predicts and whether the model did a correct prediction or not specifying what the correct prediction should be.

