A PORT - DE MARIE - DE MARIE - MARIE -

ABSTRACT

The present invention relates to biodetectors for detecting and quantifying molecules in liquid, gas, or matrices. More specifically, the present invention relates to biodetectors comprising a molecular switching mechanism to express a reporter gene upon interaction with target substances. The invention further relates to methods using such biodetectors for detecting and quantifying selected substances with high specificity and high sensitivity.

10

15

20

25

30

35