WO 2005/009383 PCT/US2004/023658

CLAIMS:

What is claimed is:

5 1. A method of treating or preventing cardiovascular pathology; comprising, administering a therapeutically effective amount of LXR agonist, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof.

- 2. The method of claim 1 in which cardiovascular pathology is selected from the group consisting of cardiac hypertrophy, coronary heart disease, arrhythmia, restricted coronary blood flow, arteriosclerosis, heart failure, congestive heart failure (CHF), and myocardial infarction.
- A pharmaceutical composition for treating or preventing cardiovascular pathology comprising a therapeutically effective amount of LXR agonist, or a pharmaceutically acceptable salt, solvate, or physiologically functional derivative thereof, and a pharmaceutically acceptable carrier.
 - 4. The pharmaceutical composition of claim 3 in which cardiovascular pathology is selected from the group consisting of cardiac hypertrophy, coronary heart disease, arrhythmia, restricted coronary blood flow, arteriosclerosis, heart failure, congestive heart failure (CHF), and myocardial infarction.
 - 5. The LXR agonist of any one of claims 1 to 4 that is a compound of formula (II):

$$X \xrightarrow{(CR^1R^2)_p} Z \xrightarrow{(CH_2)_n} X \xrightarrow{(CH_2)_$$

25 wherein:

20

X is OH or NH₂;

p is 0-6;

each R¹ and R² are the same or different and are each independently selected from the group consisting of H, C₁₋₈alkyl, C₁₋₈alkoxy and C₁₋₈thioalkyl;

WO 2005/009383 PCT/US2004/023658

Z is CH or N;

when Z is CH, k is 0-4;

when Z is N, k is 0-3;

each R3 is the same or different and is independently selected from the group consisting of halo,

5 –OH, C₁₋₈alkyl, C₂₋₈alkenyl, C₁₋₈alkoxy, C₂₋₈alkenyloxy,

 $-S(O)_aR^6$, $-NR^7R^8$, $-COR^6$, $COOR^6$, $R^{10}COOR^6$, $OR^{10}COOR^6$, $CONR^7R^8$, $-OC(O)R^9$,

-R¹⁰NR⁷R⁸, -OR¹⁰NR⁷R⁸, 5-6 membered heterocycle, nitro, and cyano;

a is 0, 1 or 2;

 R^6 is selected from the group consisting of H, C_{1-8} alkyl, C_{1-8} alkoxy and

10 C₂₋₈alkenyl;

each R⁷ and R⁸ are the same or different and are each independently selected from the group consisting of H, C₁₋₈alkyl, C₂₋₈alkenyl,

C₃₋₈alkynyl;

R⁹ is selected from the group consisting of H, C₁₋₈alkyl and -NR⁷R⁸;

15 R^{10} is C_{1-8} alkyl;

n is 2-8;

q is 0 or 1;

R⁴ is selected from the group consisting of H, C₁₋₈alkyl, C₁₋₈alkenyl, and alkenyloxy;

Ring A is selected from the group consisting of C₃₋₈cycloalkyl, aryl, 4-8 membered heterocycle, and 5-6 membered heteroaryl;

each ring B is the same or different and is independently selected from the group consisting of C₃₋₈cycloalkyl and aryl.

6. The LXR agonist of claim 5 that is the compound of formula (IIa)

25

20

(lla)

WO 2005/009383 PCT/US2004/023658

7. The LXR agonist of any one of claims 1 to 4 that is a compound of formula (I):

$$X^{1} \xrightarrow{X^{2}} X^{3}$$

$$R^{1} \xrightarrow{A_{\Gamma} - Y} X^{4}$$

$$X^{5} \xrightarrow{X^{6}} R^{2}$$
(I)

wherein:

Ar represents an aryl group; R^1 is -OH, -O-(C_1 - C_7)alkyl, -OC(O)-(C_1 - C_7)alkyl, -O-(C_1 - C_7)heteroalkyl, -OC(O)- (C_1 - C_7)heteroalkyl, -CO₂H, -NH₂, -NH(C_1 - C_7)alkyl, -N((C_1 - C_7)alkyl)₂ or -NH-S(O)₂-(C_1 - C_5)alkyl;

 \mathbb{R}^2 is (C_1-C_7) alkyl, (C_1-C_7) heteroalkyl, aryl and aryl (C_1-C_7) alkyl;

X¹, X², X³, X⁴, X⁵ and X⁶ are each independently H, (C₁-C₅)alkyl, (C₁-C₅)hetroalkyl, F or

Cl, with the proviso that no more than three of X¹ through X⁶ are H, (C₁-C₅)alkyl or

(C₁-C₅)heteroalkyl; and

Y is -N(R¹²)S(O)_m-, -N(R¹²)S(O)_mN(R¹³)-, -N(R¹²)C(O)-, -N(R¹²)C(O)N(R¹³)-,
-N(R¹²)C(S)- or -N(R¹²)C(O)O-, wherein R12 and R13 are each independently hydrogen, (C₁-C₇)aryl, (C₁-C₇)heteroalkyl, aryl and aryl(C₁-C₇)alkyl, and optionally when Y is -N(R¹²)S(O)_m- or -N(R¹²)S(O)_mN(R¹³)-, R¹² forms a five, six or seven-membered ring fused to Ar or to R² through covalent attachment to Ar or R², respectively. In the above Y groups, the subscript m is an integer of from 1 to 2; or a pharmaceutically acceptable derivative thereof

20 8. The LXR agonist of claim 7 that is the compound formula (Ia):