triangle inequality on boundary

Arthur Ayestas Hilgert

January 2023

Let $\alpha, \beta, \zeta \in \partial T$.

$$d(\alpha, \beta) = \frac{1}{e^{\# \text{ common edges between } \alpha, \beta}}$$
 (1)

$$d(\alpha, \zeta) = \frac{1}{e^{\# \text{ common edges between } \alpha, \zeta}}$$
 (2)

$$d(\zeta, \beta) = \frac{1}{e^{\# \text{ common edges between } \zeta, \beta}}$$
 (3)

Case 1: Say ζ diverges from α and β before (or at) the point at which α and β diverge. In this case, ζ diverges from α and β at the same time (before α and β diverge). Therefore, ζ is at least as far away from α as α is from β . Therefore, we have $d(\alpha, \beta) \leq d(\alpha, \zeta) = d(\zeta, \beta)$. Therefore, $d(\alpha, \beta) \leq d(\alpha, \zeta) + d(\zeta, \beta)$.

Case 2: Say ζ follows α (or β , but we will assume α w.o.l.o.g.) after the point at which α and β diverge. In this case, ζ must diverge from β when α diverges from β . Therefore, we have $d(\alpha, \beta) = d(\zeta, \beta)$. And therefore, $d(\alpha, \beta) \leq d(\alpha, \zeta) + d(\zeta, \beta)$.