- What is this talk about?
 - Efficiency of cuts for measuring $\int \Upsilon \rightarrow \text{hadrons}$
 - $-\Upsilon \to \ell^+\ell^-$ are background, cascade decays (even to $X\ell^+\ell^-$) are signal; other backgrounds are continuum processes, cosmic rays, beam-gas.

- What's new since last time?
 - Several data/MC disagreement puzzles have been solved
 - A bug in EvtGen has been discovered (and fixed by Anders)
 - Most of the systematic error table has been filled in

Jim Pivarski

Hadronic efficiencies for each cut: $\Upsilon(1S)$

- Blue diamonds are Monte Carlo, red boxes are data \pm stat \pm syst
- Cuts are applied cumulatively
- Data is $\Upsilon(1S)$ (from random on-resonance runs)
 - continuum (random off-res) beam-gas (single-beam runs)
 - cosmic rays (no-beam runs) $\Upsilon(1S) \to \tau^+\tau^-$ (from Monte Carlo)

Hadronic efficiencies for each cut: $\Upsilon(2S)$

- Blue diamonds are Monte Carlo, red boxes are data \pm stat \pm syst
- Cuts are applied cumulatively
- Data is $\Upsilon(2S)$ (from random on-resonance runs)
 - continuum (random off-res) beam-gas (single-beam runs)
 - cosmic rays (no-beam runs) $\Upsilon(2S) \to \tau^+ \tau^-$ (from Monte Carlo)

Hadronic efficiencies for each cut: $\Upsilon(3S)$

- Blue diamonds are Monte Carlo, red boxes are data \pm stat \pm syst
- Cuts are applied cumulatively
- Data is $\Upsilon(3S)$ (from random on-resonance runs)
 - continuum (random off-res) beam-gas (single-beam runs)
 - cosmic rays (no-beam runs) $\Upsilon(3S) \to \tau^+\tau^-$ (from Monte Carlo)

Here's how I will measure efficiency (you're looking at $\Upsilon(1S)$)

- Fraction that passes first four cuts (ϵ_{MC}) is calculated from Monte Carlo; data is used to bound systematic errors
- Fraction that passes Z cut (ϵ_Z) is calculated from $\Upsilon(1S)$ data and applied to all three
- Fraction that passes last four cuts (ϵ_{data}) is calculated from data for each resonance

$$\epsilon_{total} = \epsilon_{MC} \cdot \epsilon_{Z} \cdot \epsilon_{data}$$

- Trigger requirement is

Hadron OR RadTau OR ElTrack

 $\begin{aligned} \text{Hadron} &= \geq 3 \text{ AXIAL tracks AND} \geq 1 \text{ CBLO} \\ \text{RadTau} &= \geq 2 \text{ STEREO tracks AND} \\ &\qquad \qquad (\geq 2 \text{ CBLO OR} \geq 1 \text{ CBMD}) \\ \text{ElTrack} &= \geq 1 \text{ AXIAL track AND} \geq 1 \text{ CBMD} \end{aligned}$

- MC efficiency of trigger is 99.5%
- Shifting CBMD=0 bin to match data changes efficiency by 0.01%
- Shifting CBLO=7 bin to match data changes efficiency by 0.02%
- Work in progress: testing for lost events by looking at correlations between triggers and with TwoTrack

- Trigger requirement is

Hadron OR RadTau OR ElTrack

 $\begin{aligned} \text{Hadron} &= \geq 3 \text{ AXIAL tracks AND} \geq 1 \text{ CBLO} \\ \text{RadTau} &= \geq 2 \text{ STEREO tracks AND} \\ &\qquad \qquad (\geq 2 \text{ CBLO OR} \geq 1 \text{ CBMD}) \\ \text{ElTrack} &= \geq 1 \text{ AXIAL track AND} \geq 1 \text{ CBMD} \end{aligned}$

- MC efficiency of trigger is 99.5%

- Work in progress: testing for lost events by looking at correlations between triggers and with TwoTrack

- Trigger requirement is

Hadron OR RadTau OR ElTrack

 $\begin{aligned} \text{Hadron} &= \geq 3 \text{ AXIAL tracks AND} \geq 1 \text{ CBLO} \\ \text{RadTau} &= \geq 2 \text{ STEREO tracks AND} \\ &\qquad \qquad (\geq 2 \text{ CBLO OR} \geq 1 \text{ CBMD}) \\ \text{ElTrack} &= \geq 1 \text{ AXIAL track AND} \geq 1 \text{ CBMD} \end{aligned}$

- MC efficiency of trigger is 99.5%

- Work in progress: testing for lost events by looking at correlations between triggers and with TwoTrack

$$\Upsilon(2S) \to \pi^+ \pi^- \Upsilon(1S)$$

 $\Upsilon(1S) \to 0, 1, 2 \text{ extra tracks}$

- $\Upsilon(2S) \to \pi^+\pi^-\Upsilon(1S)$ can be used to check for missing physics in the Monte Carlo

- Here, π^+ and π^- satisfy 2 STEREO tracks and 2 CBLO 2 reconstructed tracks
- The rest of the $\Upsilon(1S)$ must satisfy Visible energy > 20% center-of-mass Total CC energy < 85% center-of-mass Biggest shower energy < 85% beam 2nd-biggest track momentum < 85% beam
- Data and MC are normalized at 2-track bin to $\Upsilon(1S) \to 2$ tracks (3.05%, mostly $\tau^+\tau^-$ and hadrons)

Percentage of U(1S) decays (data VS MC) Uncertainty in agreement introduces $\pm 0.07\%$ trigger systematic

- Trigger has already required one track, use its distance from the beamspot to cut out cosmic rays
- MC efficiency is 99.90%
- If this cut is moved out to infinity or in to 2 mm, efficiency changes by $\pm 0.25\%$

Closest track d0 (no quality cuts)

- Trigger has already required one track, use its distance from the beamspot to cut out cosmic rays
- MC efficiency is 99.90%
- If this cut is moved out to infinity or in to 2 mm, efficiency changes by $\pm 0.25\%$

- Trigger has already required one track, use its distance from the beamspot to cut out cosmic rays
- MC efficiency is 99.90%
- If this cut is moved out to infinity or in to 2 mm, efficiency changes by $\pm 0.25\%$

- Little $\Upsilon(1S) \to e^+e^-$ peak is a background
- $gg\gamma$ span the cut boundary, all other hadrons are well to the left
- $\Gamma_{gg\gamma}/\Gamma_{ggg}$ is precise?

Direct measurement (2.75% +-0.16)
$$\longmapsto$$
PDG alpha_strong (3.65% +-0.05) \longmapsto
What I used (3.20% +-0.45)

- Introduces $\pm 0.08\%$ systematic

Aside: EvtGen Bug

- $gg\gamma$ events were not modelled correctly in EvtGen: boost of gg was done in the wrong direction
- This event had a 4 GeV photon on one side and 28 GeV of pileup on the other. (Biggest shower distribution was distorted.)
- For the purposes of this talk, $gg\gamma$ efficiency is measured from QQ.
- Bug is corrected in

EvtGenModels v01_02_01

17500 15000 12500 10000 7500 5000 2500 -2500 -5000 0.2 0.6

Biggest shower energy / beam energy

- Residuals add to zero on both sides of the cut threshold

- Bhabha peak energy differs by 3 MeV between on- and off-resonance
- Cascades to electrons (signal) are all to the right of the threshold
- Vary $\mathcal{B}_{\mu\mu}$ and cascade \mathcal{B} 's by their uncertainties: $\pm 0.06\%$ in ϵ_{MC}
- Suppose PHOTOS is 50% wrong: $\pm 0.03\%$ in ϵ_{MC}

15000 12500 10000 7500 5000 2500 -2500 -5000 0.2 0.6

Biggest shower energy / beam energy

- Residuals add to zero on both sides of the cut threshold
- Bhabha peak energy differs by 3 MeV between on- and off-resonance
- Cascades to electrons (signal) are all to the right of the threshold
- Vary $\mathcal{B}_{\mu\mu}$ and cascade \mathcal{B} 's by their uncertainties: $\pm 0.05\%$ in ϵ_{MC}
- Suppose PHOTOS is 50% wrong: $\pm 0.01\%$ in ϵ_{MC}

- If there is no second track, this is automatically satisfied

- If there is no second track, this is automatically satisfied
- $\mathcal{B}_{\mu\mu}$ in MC is 1.5%, Istvan found 2.03%

- If there is no second track, this is automatically satisfied
- $\mathcal{B}_{\mu\mu}$ in MC is 1.81%, Istvan found 2.39%

200 — 100 —

300

-0.3

-0.2

-0.1

Closest track z0 when 2 tracks are unavailable

0.2

- Suppress beamgas by cutting around beamspot in Z
- Fallback on closest track z0 is included to keep from implicitly requiring two tracks (I forgot to move z0 to the beamspot)
- Efficiency of this cut is measured from $\Upsilon(1S)$ data:

$$99.35\% \pm 0.20\% \pm 0.56\%$$

$$\uparrow \qquad \uparrow$$

$$sample \quad scaling$$

$$stat \quad error$$

Event vertex Z (requires 2 low-quality tracks)

Closest track z0 when 2 tracks are unavailable

- Suppress beamgas by cutting around beamspot in Z
- Fallback on closest track z0 is included to keep from implicitly requiring two tracks (I forgot to move z0 to the beamspot)
- Efficiency of this cut is measured from $\Upsilon(1S)$ data:

$$99.35\% \pm 0.20\% \pm 0.56\%$$

$$\uparrow \qquad \uparrow$$

$$sample \quad scaling$$

$$stat \quad error$$

Event vertex Z (requires 2 low-quality tracks)

Closest track z0 when 2 tracks are unavailable

- Suppress beamgas by cutting around beamspot in Z
- Fallback on closest track z0 is included to keep from implicitly requiring two tracks (I forgot to move z0 to the beamspot)
- Efficiency of this cut is measured from $\Upsilon(1S)$ data:

$$99.35\% \pm 0.20\% \pm 0.56\%$$

$$\uparrow \qquad \uparrow$$

$$sample \quad scaling$$

$$stat \quad error$$

$$99.29\% \pm 0.33\% \pm 0.75\%$$

- Residual below threshold sums to zero, within errors (280 \pm 350)
- Bin on top of cosmic ray peak is 2.6σ high

$$98.05\% \pm 0.41\% \pm 0.83\%$$

- Residual below threshold sums to 1840 ± 720
- Bin at top of cosmic ray peak is 3.3σ high: scaling cosmics incorrectly?

$$99.99\% \pm 0.54\% \pm 1.07\%$$

- Residual below threshold sums to zero (-380 \pm 850)
- But that wiggle is getting out of hand!

No wiggle without hot showers

- Bottom plots are before continuum subtraction: there's a large peak of continuum processes (look like two-photon events) below the 35% of center-of-mass energy cut.
- Difference in hot showers between on- and off-resonance shifts one peak 23 MeV relative to the other
- This answers $\Upsilon(1S)$ and $\Upsilon(3S)$ discrepancies, but not $\Upsilon(2S)$.

- Efficiency is measured from data: $100.35\%\,\pm\,0.17\%\,\pm\,0.30\%$
- Data/MC disagreement no longer matters because I'm not using MC

- Efficiency is measured from data: $100.22\%\,\pm\,0.22\%\,\pm\,0.39\%$
- Data/MC disagreement no longer matters because I'm not using MC

- Efficiency is measured from data: $99.31\% \,\pm\, 0.29\% \,\pm\, 0.51\%$
- Data/MC disagreement no longer matters because I'm not using MC

- Efficiency is measured from data: $99.85\%\,\pm\,0.09\%\,\pm\,0.26\%$
- Data/MC disagreement no longer matters because I'm not using MC

$$99.63\% \pm 0.11\% \pm 0.32\%$$

- Data/MC disagreement no longer matters because I'm not using MC

- Efficiency is measured from data: $99.45\%\,\pm\,0.15\%\,\pm\,0.42\%$

- Data/MC disagreement no longer matters because I'm not using MC

	$\Upsilon(1S)$	$\Upsilon(2S)$	$\Upsilon(3S)$
ϵ_{MC}	99.03%	97.62%	98.24%
what's the trigger uncertainty? all of itself?	$\sim 0.50\%$	$\sim 0.50\%$	$\sim 0.50\%$
limit on untriggerable zero-track events	$\pm~0.07\%$	$\pm~0.07\%$	$\pm~0.07\%$
closest track to beamspot	$\pm~0.25\%$	$\pm 0.25\%$	$\pm~0.25\%$
$gg\gamma$ events straddle biggest-shower energy threshold	$\pm~0.09\%$	$\pm 0.08\%$	$\pm~0.08\%$
cascade decays to e^+e^- fail biggest shower cut, cascade decays to $\mu^+\mu^-$ fail second-biggest track cut		$\pm~0.06\%$	$\pm~0.05\%$
assume PHOTOS to be 50% wrong		$\pm 0.03\%$	$\pm~0.01\%$
Peter Onyisi's EvtGen-bunchfinder bug	$\pm~0.17\%$	$\pm 0.30\%$	$\pm~0.13\%$
I need to generate separate $\Upsilon \to q\bar{q}$ samples with the			
right branching fractions, but here are some bounds	< 0.19%	< 0.44%	< 0.44%
I placed on how much difference that will make			
ϵ_Z	99.35%	99.35%	99.35%
sample statistics	$\pm~0.20\%$	$\pm 0.20\%$	$\pm~0.20\%$
scaling systematics	$\pm~0.56\%$	$\pm~0.56\%$	$\pm~0.56\%$
ϵ_{data}	99.49%	97.92%	98.74%
sample statistics (combined)	$\pm~0.34\%$	$\pm 0.39\%$	$\pm~0.55\%$
scaling systematics (combined)	$\pm 0.81\%$	$\pm~0.88\%$	$\pm~1.10\%$
	97.88%	94.97%	96.37%
Totals	$\pm~0.39\%$	$\pm~0.44\%$	$\pm~0.59\%$
	$\pm~1.15\%$	$\pm 1.30\%$	\pm 1.44%