Three Dice Decentralized Consensus Algorithm

Step1. Independent verification of each transaction

Verify each transaction

After the validating transactions, a bitcoin node will

propagate the new transactions and

add them to the memory pool (transaction pool), where transactions await until they can be aggregated (mined) into a candidate block by a mining node.

Step2. Independent aggregation of transaction into candidate blocks

Aggregate (mine) transactions into new candidate blocks

Step3. Independent verification of each block

Verify new candidate blocks

Assembly into a blockchain

Step4. Independent selection of blockchain

Select the blockchain

Item	Three dices
Encoding	Dice 1 + Dice 2 + Dice 3
Objective	Throwing two dices whose summation is less than a
	specified number (= target = difficult target).
All	3 (both dices are 1) – 18 (both dices are 6)
possibilities	
Related to	One can estimate the amount of work it takes to
mining	succeed from the difficulty imposed by the target. For
	example,
	If the target of the dice game is 3, if someone has
	succeeded in casting a winning throw it can be assumed
	that they attempted, on average, 216 throws.
Total	216 = 6*6*6 = 6^3
possible	Each die has 6 outcomes
outcomes	
Easy Target	Target is 12
	The player must throw 11 = 12 - 1 or less to win.
	The sum of win's combinations is $(1 + 3 + 6 + 10 + 15 +$
	21 + 25 + 27 + 27) = 135
	The probability of win is 135/216 = 5/8
Difficult	Target is 5
Target	The probability of the sum is less than 5.
	The player must throw $4 = 5 - 1$ or less to win.
	The probability of the player will lose is 4/216 = 1/54