Determinants

LEVEL-I

1. Let
$$f(x) = x(x - 1)$$
, then $\Delta = \begin{vmatrix} f(0) & f(1) & f(2) \\ f(1) & f(2) & f(3) \\ f(2) & f(3) & f(4) \end{vmatrix}$ is equal to

- (A) -2!
- (B) -3! 2!
- (C) 0
- (D) none of these

2. If f (x) =
$$\begin{vmatrix} 1 & x & x+1 \\ 2x & x(x-1) & (x+1)x \\ 3x(x-1) & x(x-1)(x-2) & (x+1)x(x-1) \end{vmatrix}$$
, then f (100) is equal to

(A) 0 (B) 1 (C) 100 (D) -100

- The determinant $\Delta(x) = \begin{vmatrix} a^2(1+x) & ab & ac \\ ab & b^2(1+x) & bc \\ ac & bc & c^2(1+x) \end{vmatrix}$ (abc \neq 0) is divisible by 3.
 - (A)

(C)

- none of these
- 4. The value of the determinant (A) pgr

(B) p + q + r

(C) p + q + r - pqr

(D) 0

- (A) $a^{x} + b^{y} + c^{z}$

(B) $a^{-x} b^{-y} c^{-z}$ (D) 0

(C) a^{2x} b^{2y} c^{2z}

- 6. Given a system of equations in x, y, z: x + y + z = 6; x + 2y + 3z = 10 and x + 2y + az = b. If this system has infinite number of solutions, then
 - (A) a = 3, b = 10

(B) $a = 3, b \neq 10$

(C) $a \neq 3$, b = 10

- (D) a \neq 3, b \neq 10
- If each element of a determinant of 3rd order with value A is multiplied by 3, then the value of 7. the newly formed determinant is
 - (A) 3A
- (B) 9A
- (C) 27A
- (D) none of these
- If the value of 3rd order determinant is 11, then the value of the determinant formed by the 8. cofactors will be
 - (A) 11
- (B) 121
- (C) 1331
- (D) 14641

9. If
$$a^{-1} + b^{-1} + c^{-1} = 0$$
 such that $\begin{vmatrix} 1+a & 1 & 1 \\ 1 & 1+b & 1 \\ 1 & 1 & 1+c \end{vmatrix} = \lambda$, then the value of λ is (A) 0 (B) abc (C) -abc (D) none of these

- If a, b, c are real numbers, then $\Delta = |b-1| b b+1$ is 10.
 - (C) 9

- None of these
- Let D be the determinant of order 3 × 3 with the entry Ii + k in Ith row and kth column 11. $(I = \sqrt{-1})$. Then value of D is
 - imaginary (A)

Zero

real and positive (C)

- (D) real and negative
- The value of the determinant $\begin{vmatrix} 1 & a & a^2 bc \\ 1 & b & b^2 ca \\ 1 & c & c^2 ab \end{vmatrix}$ is (A) $a^3 + b^3 + c^3 3abc$ (B) a 12.

(B) $a^2+b^2+c^2-bc-ca-ab$

(C) $a^2b^2+b^2c^2+c^2a^2$

- (D) None of these
- Let $\Delta = \begin{vmatrix} x & l & m & 1 \\ \alpha & x & n & 1 \\ \alpha & \beta & \gamma & 1 \end{vmatrix}$. Then, the roots of the equation are 13.
 - (Α) α, β, γ

(B) /, m ,n

(C) α + β , β + γ , γ + α

- (D) /+m, m+n, n+/
- Let $\Delta = \begin{bmatrix} b & c & a \\ c & a & b \end{bmatrix}$; a>0, b>0, c>0. Then, 14.
 - (A) $\Delta \neq 0$

(B) a+b+c=0

(C) $\Delta > 0$

- (D) ∆∈R
- The value of $\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{vmatrix}$ is 15.

- (C) $\sqrt{3}$ i (D) $\sqrt{3}$ i
- If a, b, c are negative different real numbers, then $\Delta = |b| c$ a is 16.
 - (A) < 0
- (B) ≤ 0
- (C) > 0
- (D) ≥ 0
- 17. The equation x + 2y + 3z = 1, x - y + 4z = 0, 2x + y + 7z = 1 have

 - (A) one solution only (B) two solutions only (C) no solution
- (D) infinitely may solution

The value of λ and μ for which the system of equation x + y + z = 6, x + 2y + 3z = 10, 18. $x + 2y + \lambda z = \mu$ have unique solution are

(A) $\lambda = 3$, $\mu \in R$

(B) $\lambda = 3, \, \mu = 10$

(C) $\lambda \neq 3$, $\mu = 10$ (D) $\lambda \neq 3$, $\mu \neq 10$

LEVEL-II

1			i ^{m+1} i ^{m+4}	•	, where $i = \sqrt{-1}$ is
	THE VAIGE OF	i ^{m+6}	i ^{m+7}	i ^{m+8}	, whole I = \(- \) is

(A) 1 if m is multiple of 4

(B) 0 for all real m

(C) -i if m is a multiple of 3

(D) none of these

2. If the equations a(y + z) = x, b(z + x) = y and c(x + y) = z, where $a \ne -1$, $b \ne -1$, $c \ne -1$ admit non-trivial solution, then $(1 + a)^{-1} + (1 + b)^{-1} + (1 + c)^{-1}$ is

(A) 2

(B) 1

(C) 1/2

(D) none of these

3. The number of values of t for which the system of equations (a - t)x + by + c = 0, bx + (c - t)y + az = 0, cx + ay + (b - t)z = 0 has non-trivial solution is

(A) 1

(B) 2

(C) :

(D) 4

4. If α , β are non real numbers satisfying $x^3-1=0$, then the value of $\begin{vmatrix} \lambda+1 & \alpha & \beta \\ \alpha & \lambda+\beta & 1 \\ \beta & 1 & \lambda+\alpha \end{vmatrix}$ is

equal to

(A) 0

(B) λ³

(C) $\lambda^3 + 1$

(D) none of these

5. The system of equations ax + 4y + z = 0, bx + 3y + z = 0, cx + 2y + z = 0 has non trivial solutions if a, b, c are in

(A) A.P

(B) G.P

(C) H.P

(D) none of these

(D) 6

6. The maximum value of $\begin{vmatrix} 1 + \sin^2 x & \cos^2 x & 4\cos 2x \\ \sin^2 x & 1 + \cos^2 x & 4\sin 2x \\ \sin^2 x & \cos^2 x & 1 + 4\sin 2x \end{vmatrix}$ is (A) 3 (B) 4 (C) 5

7. There are three points (a, x), (b, y) and (c, z) such that the straight lines joining any two of them are not equally inclined to the coordinate axes where $a, b, c, x, y, z \in R$.

If
$$\begin{vmatrix} x+a & y+b & z+c \\ y+b & z+c & x+a \\ z+c & x+a & y+b \end{vmatrix} = 0$$
 and $a+c=-b$, then x , $-\frac{y}{2}$, z are in

(A) A. P.

(B) G.P.

(C) H.P.

(D) none of these

8. If x, y, z are the integers in A.P, lying between 1 and 9 and x51, y41 and z31 are $\begin{vmatrix} 5 & 4 & 3 \\ x51 & y41 & z31 \end{vmatrix}$ is

(A) x + y + z

(B) x - y + z

(C) 0

(D) None of these

X

z

$$(A) \Delta_1 = 3(\Delta_2)^2$$

$$\left(\frac{d}{d}\right)\Delta_1 = 3(\Delta_2)^2 \tag{D} \quad \Delta_1 = 3(\Delta_2)^2$$

15. Let
$$\begin{vmatrix} xp + y & x & y \\ yp + z & y & z \\ 0 & xp + y & yp + z \end{vmatrix} = 0$$
. Ther

16. Let
$$f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$
 where 'p' is a constant. Then $\frac{d^3}{dx^3} [f(x)]$ at $x = 0$ is

 $(C)^{r}p+p^{3}$

(B) p+p²(D) independent of 'p'

17. Let
$$\Delta = \begin{vmatrix} 1 & \sin \theta & 1 \\ -\sin \theta & 1 & \sin \theta \\ -1 & -\sin \theta & 1 \end{vmatrix}$$
, then Δ lies in the interval

(A) [2, 3] (B) [3, 4] (C) [2, 4] (D) (2, 4)

18. If
$$\alpha$$
, β , γ are roots of $x^3 + ax^2 + b = 0$, then the value of $\begin{vmatrix} \alpha & \beta & \gamma \\ \beta & \gamma & \alpha \\ \gamma & \alpha & \beta \end{vmatrix}$ is
 (A) $-a^3$ (B) $a^3 - 3b$ (C) a^3 (D) $a^2 - 3b$

19. Given
$$a_i^2 + b_i^2 + c_i^2 = 1$$
, $(i = 1, 2, 3)$ and $a_i a_j + b_i b_j + c_i c_j = 0$ $(i \neq j, i, j = 1, 2, 3)$, then the value
$$\begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}^2$$
 is
$$(A) \ 0 \qquad (B) \ 1/2 \qquad (C) \ 1 \qquad (D) \ 2$$

20. If
$$\Delta(x) = \begin{vmatrix} 1 & \cos x & 1 - \cos x \\ 1 + \sin x & \cos x & 1 + \sin x - \cos x \\ \sin x & \sin x & 1 \end{vmatrix}$$
, then $\int_{0}^{\pi/2} \Delta(x) dx$ is equal to (A) 1/4 (B) 1/2 (C) 0 (D) -1/2

- sin² A cot A 1 If A + B + C = π , then the value of determinant $\sin^2 B = \cot B = 1$ is equal to $\sin^2 C = \cot C = 1$ 21.

(B)

(C) -1 (D) None of these

LEVEL-III

1. If
$$\begin{vmatrix} x^n & x^{n+2} & x^{n+3} \\ y^n & y^{n+2} & y^{n+3} \\ z^n & z^{n+2} & z^{n+3} \end{vmatrix} = (y-z)(z-x)(x-y)\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$$
, then

(A)
$$n = 2$$

(B)
$$n = -2$$

$$(C) n = -1$$

(D)
$$n = 1$$

2. Let m be a positive integer and
$$\Delta_r = \begin{vmatrix} 2r-1 & {}^mC_r & 1\\ m^2-1 & 2^m & m+1\\ \sin^2(m^2) & \sin^2(m) & \sin(m^2) \end{vmatrix}$$
.

Then the value of $\sum\limits_{r=0}^{m}\,\Delta_{r}$ is given by

(B)
$$m^2-1$$
 (D) $2^m \sin^2(2^m)$

3. If
$$\Delta(x) = \begin{vmatrix} x & 1+x^2 & x^3 \\ \log(1+x^2) & e^x & \sin x \\ \cos x & \tan x & \sin^2 x \end{vmatrix}$$
 then

(A)
$$\Delta$$
 (x) is divisible by x

(B)
$$\Delta(x) = 0$$

(C)
$$\Delta'(x) = 0$$

4. If
$$f_r(x)$$
, $g_r(x)$, $h_r(x)$, $(r=1,2,3)$ are polynomials in x such that $f_r(A) = g_r(A) = h_r(A)$, $r = 1,2,3$ and $\begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_r(x) & g_r(x) & g_r(x) \end{vmatrix}$, then $F_r'(x)$ at $x = 3$ is

$$F(x) = \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix}, \text{ then F } ' (x) \text{ at } x = a \text{ is }$$

(C)
$$\sum f_r(x) + \sum g_r(x) + \sum h_r(x)$$

5. Let
$$f(x) = \begin{vmatrix} \sec x & \cos x & \sec^2 x + \cos e c x \cot x \\ \cos^2 x & \cos^2 x & \cos e c^2 x \\ 1 & \cos^2 x & \cos^2 x \end{vmatrix}$$
. Then $\int_0^{\pi/2} f(x) dx$ is equal to

$$(A) \left[\frac{8}{15} - \frac{\pi}{4} \right]$$

(B)
$$\left[\frac{8}{15} + \frac{\pi}{4}\right]$$

(C)
$$-\left[\frac{8}{15} + \frac{\pi}{4}\right]$$

(D) None of these

6. Let
$$D_r = \begin{vmatrix} 2^{r-1} & 2(3^{r-1}) & 4(5^{r-1}) \\ \alpha & \beta & \gamma \\ 2^n - 1 & 3^n - 1 & 5^n - 1 \end{vmatrix}$$
. Then $\sum_{r=1}^n D_r$ is equal to

(A)
$$\alpha$$
+ β + γ

are α and β , then

- (A) $\alpha + \beta^{99} = 4$ (B) $\alpha^3 \beta^{17} = 26$
- (C) $(\alpha^{2n} \beta^{2n})$ is always an even integer for $n \in \mathbb{N}$
- (D) a triangle can be constructed having it's sides as α , β and α β .

8. The parameter on which the value of the determinant

$$\begin{vmatrix} 1 & a & a^2 \\ \cos(p-d)x & \cos px & \cos(p+d)x \\ \sin(p-d)x & \sin px & \sin(p+d)x \end{vmatrix}$$
 does not depend upon is

(A) a

(B) p

(C) d

(D) x

L-I 1. В 2. Α 3. С 4. D 5. D 6. С 7. 8. В 9. Α 10. 11. В 12. D 13. Α 14. D С 15. Α 16. С

- 17. 18. L-II 2. 1. D 3. 4. 5. 6. 7. Α 8. 9. С
 - Α Α D 10. Α 12. С В 14. D 16.

С

D

Α

Α

D

В

18.

20.

8.

С 17. 19. Α L-III

Α

С

В

В

11.

13.

15.

7.

- 2. 4. 6.
- С 1. 3. С 5.