Stephan Dörfler

Collective mapping and movement in a swarm of highly unreliable individuals in unknown environments

Intelligent Cooperative Systems

Master's Thesis

Collective mapping and movement in a swarm of highly unreliable individuals in unknown environments

Author: Stephan Dörfler

Professor: Prof. Dr.-Ing. habil. Sanaz Mostaghim

Examiner: Another Professor

Examiner: Someone from Industry

Advisor: Dipl.-Inform. Christoph Steup

Winter term 2017

Stephan Dörfler: Collective mapping and movement in a swarm of highly unreliable individuals in unknown environments
Otto-von-Guericke-Universität
Magdeburg, 2017.

Abstract

Foo Bar Baz _____

this will be written at the very end of the project

Todo list

this will be written at the very end of the project
write out the list below
state in the prev. chap
state some issues
wording
state more (beneficial) properties
footnotes & links
$ image \dots \dots$
explain & references
write out the list below

Contents

To	odo li	st	III
1	Intr	oduction	1
	1.1	Motivation	1
	1.2	Goal	2
	1.3	Structured approach	2
2	Bac	kground/Basics	3
	2.1	Spherical Robot: Orbotix Sphero	3
		2.1.1 Orbotix Sphero: Specifics and Limitations	4
	2.2	Probabilistic robot movement and perception	4
	2.3	Requirements	5
	2.4	Related work	5
3	Con	cept	7
	3.1	Measurement of error	7
	3.2	Separation of environmental influences from inherent inaccuracy	7
	3.3	Continuous improvement	8
	3.4	Data-Distribution	8
4	Exe	mplary implementation	9
	4.1	Ros Nodes	9
5	Eva	luation	11
6	Fut	ure works	13

1 Introduction

write out the list below

- Importance of robotics
- Importance of swarm-robotics
- We can't measure true/exact values -> probabilistic approach
- Combination of "swarm" and "probabilistic" to find good solutions despite of the problems

1.1 Motivation

- ullet simple individuals
 - cheap
 - robust
 - easy to use/initialize
 - very limited capabilities
 - highly inaccurate
- try to overcome the weaknesses
 - additional external sensors (camera tracking)
 - additional external computing (by commands via bluetooth)
 - probabilistically learn the inaccuracy and compensate accordingly
- combine multiple individuals in a swarm for better results
 - higher quality & quantity probabilistic data for learning
 - get the differences between multiple individuals

- get a better/faster impression of the environment's effects
- in most use-cases: single individual's minor inaccuracies are compensated for by the swarm

1.2 Goal

write out the list below

- Find an effective way to measure and quantify the error/inaccuracy
- From a single measurement differentiate the own error from the environment's error
- Publicly share the information about the measured inaccuracy
- As a swarm: continuously & collectively improve the knowledge about inaccuracy
- Find a way to use the knowledge of the inaccuracy to take countermeasures

1.3 Structured approach

- Figure out the required knowledge and technologies
- Draft the (measurable/verifiable) measure for success
- Related work: which similar problems are already (partly) solved?
- Design a concept
- Evaluate the concept theoretically
- Exemplary show the realization of the concept to confirm the theoretical evaluation

Background/Basics

• Basics to mobile robotics

- Basics to probabilistic robotics
- Basics to swarm behavior
- Basics to distributed mapping
- Basics to ROS as development framework

2.1 Spherical Robot: Orbotix Sphero

• Definition: spherical robot

• Sphero: specifics and limitations

Movement: differential drive

- Sensors: accelerometer

sources of inaccuracy (slip, orientation through odometry)

In this work a special kind of mobile robot is used. As stated in the previous chapter one of the principles in swarm robotics is to be able to achive a relatively complex task with each individual being as simple as possible. In regards to this principle the kind of robot used in this work is one of the simpleest forms a robot can take: a spherical robot.

state in the

prev. chap.

write out the list be-

low

state some issues

wording

A spherical robot is a robot which outer hull is spherical and all the elements are contained within this spherical hull. Thus, collisions can be handeled extremely well and a lot of issues emerging from the direction the robot is currently facing are avoided. Also, for most use-cases the internal workings of the robot can be disregarded/abstracted to just a sphere rolling in it's

environment.

state more (beneficial) properties

To be able to reproduce and verify the findings in this work, real-world robots were used. The robot best matching the properties stated above was found to be the "Sphero" made by the Company "Obortix".

footnotes & links

2.1.1 Orbotix Sphero: Specifics and Limitations

image

The Sphero (img.) is based on a spherical acrylic hull which contains the internal sensors and actors. It is originally sold as a toy to be remotely controlled via bluetooth from a smartphone. Based on the communities use-cases and suggestions more and more features regarding remote programming and automated controlling were officially added to the Sphero's capabilities.

Movement

explain & references

The movement is realized with a differiential drive, two wheels running against the acrylic hull from the inside. This special design has implication on the possible movements of the Sphero. In regards of the nautical/Cardan angles this renders the Sphero impossible to turn in a roll axis (bank-axis). Spinning around the pitch axis will result in movement and steering the direction of the movement relative to a two-dimensional world-frame is done by controlling the individuals wheels with different speeds and thus spinning around the yaw axis (bearing).

2.2 Probabilistic robot movement and perception

- uncertainty is inevitable in real-world use-cases
- instead of unrealistic simplifications use best-effort with probabilities
- approaches to minimize uncertainty

2.3 Requirements

write out the list below

- \bullet There is an error model to evaluate the error/inaccuracy by quantity and quality
- Each individual's movement is subject to a smaller error when it has knowledge vs. when it hasn't
- Each individual is able to use data from locations any individual has visited
- Statistically: increase in accuracy after a small amount of time/iterations

2.4 Related work

Topics:

• distributed mapping

• error-correction

Concept

- Error-data are collected
- Error-data get evaluated (statistically)
- Error-data are shared throughout the swarm
- Error-data are used to improve quality of movement
- New movements feed back into measurement-loop

3.1 Measurement of error

- Error is measured by error in position and error in movement
- Error is measured for each individual
- Error-data are scored by quality
- Error-data about environment and it's quality is fed into a centralized map
- Existing error-data are used to improve each individual's movement

3.2 Separation of environmental influences from inherent inaccuracy

• Error-data get separated by error from environment and error from individual

write out the list be-

write out the list be-

- Constant/linear error *probably* originates from individual
- Dynamic error *probably* originates from environment
- Comparison with existing measurements to statistically improve separation
- Environmental influences are shared with every other individual
- Individual error is kept and continually improved

3.3 Continuous improvement

write out the list below

- Respect existing data
 - per individual
 - from environment
- generate new data from movement
- feed back new data into the map
- improve data (accuracy/quality) using Kalman Filter

3.4 Data-Distribution

- Error-data about the individual are not shared
- Error-data about the environment are shared
 - A single centralized map with error-data for each coordinate
 - Each update is used to statistically improve a single coordinate's quality of data (*Kalman-Filter*)

4 Exemplary implementation

- $\bullet\,$ plan, goals, restrictions of implementation
- outline general structure of implementation
- used environment and tools

4.1 Ros Nodes

- existing ROS libs
 - camera tracking
 - bluetooth-control
 - ros-sphero-driver
 - simones error-correction
- newly developed nodes
 - centralized map
 - error-distinction (self vs. env)

write out the list below

5 Evaluation

- ullet evaluation-approach
- formally evaluate math/statistics
 - probabilistic data increase in accuracy
 - time/effort needed single vs. swarm
- evaluate via real-world tests
 - explain setting/arena
 - raw data from multiple runs
 - processing of recorded data
 - insights obtained from experiment
- evaluate via simulation
 - diff. simulation vs. real-world
 - raw data from multiple runs
 - processing of recorded data
 - insights obtained from experiment
- explain results rl vs. sim

6 Future works

• unanswered questions -> unexplained experimental data?

- overcome simplifications used in this work
 - static vs. dynamic environments
- transfer this approach to different levels of reliability
- map to imaginable use-cases (firefighter...)