

Corso di Integrità del Segnale Class Project

Embedded capacitance e misure per Power Integrity

Studenti: M. Ragnoli, D. Colaiuda

Prof.: A. Orlandi, F. de Paulis

Introduzione

Legge di Moore (1971-2018)

Sfide per la Power Integrity (PI):

- Incremento densità di gates
- Incremento della densità di IC sulle schede
- Sistemi a velocità crescente
- Dispositivi low voltage

Richieste sempre più spinte per le reti di alimentazione

Rumore sull'alimentazione

- *IR*-drop: rumore proporzionale alla corrente *I* causato da *R* parassita
- ΔI noise : dipende dalla velocità di switching dei gate

$$V_N = -L_{ps} \frac{di(t)}{dt}$$

Necessità di ottenere PDN a bassa R_{ps} e bassa L_{ps} \longrightarrow minimizzare Z_{in}

Power Decoupling

Nel dominio della frequenza:

$$V_{noise} = Z_{in} I$$

- $Z_{Lp}=j\omega L_p$ impedenza induttiva aumenta con f
- $Z_{Cd}={}^{1}/{j\omega C_{d}}$ impedenza capacitiva decresce con f

La capacità di disaccoppiamento C_d in parallelo introduce un percorso a bassa impedenza

Problemi di Decoupling

- I condensatori hanno ESL ed ESR non nulle
- Il montaggio introduce parassiti

Incremento indesiderato di Z_{in}

Embedded Capacitance

$$C = \varepsilon_o \varepsilon_r \frac{S}{t}$$

Livelli di implementazione dell'embedded capacitance

Tipologie realizzative

Simulazione PDN

$$I_{max} = 1.3A$$
 $W = 10500 \text{ mils}$

$$F_{effective} = 70MHz$$
 $L = 5600 mils$

$$Z_{in} \le Z_{target} = 68m\Omega$$

Bulk Cap (µF)	Bulk	Bulk Custom		
Buik Cap (µr)	ESR (Ω)	ESL (nH)	Lmnt (nH	
10	0,030	2,300	1,700	
22	0,030	2,300	1,700	
47	0,030	2,300	1,700	
100	0,030	2,300	1,700	
220	0,030	2,300	1,700	
330	0,030	2,300	1,700	
470	0,080	68,000	2,250	

Summary	Options	R (Ω)	L (nH)	C (µF)
VRM	Custom	4,0E-02	4,7E+03	N/A
Spreading	High	0,0015	0,0450	N/A
BGA Via	Calculate	0,0001	0,0114	N/A
Plane Cap	Calculate	0,0014	N/A	0,0027

Decoupling Cap (µF)	Custom				
Decoupling Cap (µF)	ESR (Ω)	ESL (nH)	Lmnt (nH)		
0,001	0,001	0,300	1,000		
0,0022	0,001	0,300	1,000		
0,0047	0,001	0,300	1,000		
0,01	0,001	0,300	1,000		
0,022	0,001	0,300	1,000		
0,047	0,001	0,300	1,000		
0,1	0,008	0,035	1,920		
0,22	0,008	0,035	1,920		
0,47	0,080	28,000	2,300		
1	0,080	28,000	2,300		
2,2	0,001	0,300	1,000		
4,7	0,080	28,000	2,300		
User1	0,080	28,000	2,300		
User2	0,080	23,000	2,450		
User3	0,001	0,300	1,000		
User4	0,001	0,300	1,000		

Simulazione PDN: risultati FR4

Footprint	Valore (μF)	Quantità
SMT	0.1	10
SMT	0.22	8
bulk	330	2
bulk	470	2

$$\varepsilon_r = 4.0 \, F/_m \qquad t = 20 \, mils$$

Condensatori totali: 22

Simulazione PDN: embedded capacitance

		Standard Dk			High Dk		Low Df
Properties	Test Method	MC24M	MC12M	МС8М	MC12TM	мс8тм	MC25L
Dielectric Thickness, µm	Nominal	22	12	8	12	8	25
Cp @ 1 MHz, nF/in² (pF/cm²)	Nominal	1.2 (180)	2.0 (320)	3.1 (480)	4.2 (650)	6.5 (1010)	1.0 (130)
Dk (Dielectric Constant) @ 1 MHz/1 GHz	Mitsui Method	4.4/3.5	4.4/3.5	4.4/3.5	10.0/9.5	10.5/10.0	3.9/3.8
Df (Loss Tangent) @1 MHz/1 GHz	Mitsui Method	0.015/0.016	0.015/0.020	0.016/0.021	0.015/0.020	0.020/0.021	0.004/0.005
Peel Strength, kN/m 1 oz Cu	IPC TM-650 2.4.8C*	1.5	1.5	1.5	0.9	0.9	1.0
Breakdown Voltage, V	IPC TM-650 2.5.6.2A*	≤5000	4000	3000	2500	1500	≤5000
Tensile Strength, MPa (kpsi)	ASTM D-882	219 (31.8)	194 (28.2)	126 (18.3)	153 (22.2)	127 (18.4)	227 (32.9)
Elongation, %	ASTM D-882A	36.0	13.5	8.5	31.4	14	47.0
CTE, ppm/°C, x-y, TMA	IPCTM-650 2.4.24.5*	24	23	32	28	22	30
Tg, °C, DMA	IPCTM-650 2.4.24.4*	183	187	188	189	191	170
Hi-Pot test (each panel)	IPC TM-650 2.5.7.2*	PASS (500V)	PASS (500V)	PASS (500V)	PASS (500V)	PASS (250V)	PASS (500V)
Thermal Stress (10 Sec Float @288°C), Times	Mitsui Method	>10	>10	>10	>10	>10	>10
Moisture Absorption %	TM-650 2.6.2.1*	1.3	1.3	0.5	8.0	0.5	0.3
THB, 85°C/85% RH/dc bias	Mitsui Method	PASS (50V)	PASS (50V)	PASS (35V)	PASS (50V)	PASS (35V)	PASS (50V)
HAST, 130°C/85% RH/dc bias	Mitsui Method w/GEA-700G	PASS (50V)					
Flammability/Temp Rating	UL 94	V0 130°C					
PWB Processing	_	Both sides					

		High Dk/Lov	v Df	High Dk			
Properties	Test Method	MC12LD	MC12ST	мс8тм	MC8T	МСЗТА	МСЗТВ
Dielectric Thickness, µm	Nominal	12	12	8	8	3	3
Cp @ 1 kHz/1 MHz, nF/in ²	Nominal	- /4.3	10.9/10.5	7.0/6.5	24.2/21.9	40.0/36.7	40.0/38.5
Dk (Dielectric Constant) @ 1 kHz/1 MHz	Mitsui Method	7.3@1MHz 7.9@1GHz	23.1/22.8	10/10.5	30.0/24.0	23.0/21.0	22.4/21.7
Df (Loss Tangent) @1 kHz/1 MHz	Mitsui Method	0.002@1MHz 0.0017@1GHz	0.006/0.005	0.020/0.020	0.020/0.025	0.020/0.023	0.010/0.008
Peel Strength, kN/m 0.5 oz Cu	IPC TM-650 2.4.8C*	0.70	0.70	0.77	0.70	0.45	0.70
Breakdown Voltage, V	IPC TM-650 2.5.6.2A*	300	150	1500	200	50	50
Tensile Strength, MPa (kpsi)	ASTM D-882	N/A	NA	127 (18.4)	NA	NA	NA
Elongation, %	ASTM D-882A	N/A	NA	14	NA	NA	NA
CTE, ppm/°C, x-y, TMA	IPC TM-650 2.4.24.5*	55	32 (@1) 97 (@2)	22	17 (@1) 42(@2)	47 (@1) 153 (@2)	32 (@1) 121 (@2)
Tg, °C, DMA	IPC TM-650 2.4.24.4*	215	160	191	191	189	136
Hi-Pot test (Sampling/Lot)	IPC TM-650 2.5.7.2*	N/A	PASS (50V)	PASS (100V)	PASS (50V)	PASS (20V)	PASS (20V)
Thermal Stress (10 Sec Float), Times	Mitsui Method	>10 (288°C)	>10 (288°C)	>10 (288°C)	>10 (288°C)	>10 (300°C)	>10 (300°C)
Moisture Absorption %	TM-650 2.6.2.1*	0.37	0.14	0.5	0.4	0.2	0.2
THB, 85°C/85% RH/dc bias	Mitsui Method	PASS (10V)	PASS (3.7V)	PASS (35V)	PASS (3.7V)	PASS (3.7V)	PASS (3.7V)
HAST, 130°C/85% RH/dc bias	Mitsui Method w/GEA-700G	N/A	PASS (2.8V)	PASS (50V)	PASS (2.8V)	PASS (2.8V)	PASS (2.8V)
Flammability/Temp Rating	UL 94	N/A	NA	V0 130°C	V0 130°C	NA	NA
PWB Processing	-	Sequential	Sequential	Both sides	Sequential	Sequential	Sequential

Simulazione PDN: risultati embedded capacitance (UAQ ENC Lab)

Laminato MC8T

Footprint	Valore (μF)	Quantità
SMT	0.22	5
bulk	330	2
bulk	470	2

Condensatori totali: 9

Laminato MC3T

Footprint	Valore (μF)	Quantità
bulk	330	2
bulk	470	2

Condensatori totali: 4

Dal circuito alla board

Workflow simulazione EM Mentor Nimbic

UAq EMC Laboratory

Misure Frequency Domain (VNA)

Misura 1-port:

• $Z_{DUT} \leq 0.1 m\Omega \rightarrow \text{riflessione quasi}$ totale \rightarrow misura poco accurata

Misura 2-port:

• S_{21} accurata \rightarrow misura accurata

Misure Time Domain (oscilloscopio)

Necessità per una buona misura:

banda sufficientemente ampia

Null measurement			
Bandwidth	Vpp	Vrms	
2 GHz	1,040 μV	110 μV	
1 GHz	860 μV	90 μV	
500 MHz	800 μV	80 μV	
20 MHz	460 μV	60 μV	

Misure Time Domain (oscilloscopio)

basso rumore

evitare attenuazione→ Preferire sonde 1:1

Misure Time Domain (oscilloscopio)

utilizzo di offset
 → (evitare DC block)

limitare effetto di carico della sonda

UAq EMC Laboratory

Sonda Keysight N7020A

Table 6 N7020A Electrical Characteristics and Specifications

	Characteristics (based on probe's connection configuration)						
Attribute	With N7022A Main Cable	With N7021A Pigtail Cable & N7022A Main Cable	With N7023A Browser	With N7032A Browser & N7022A Main Cable	With N7033A Browser & N7022A Main Cable		
Probe Bandwidth (-3 dB)	2 GHz	2 GHz	350 MHz (using the included ground spring)	2 GHz	2 GHz		
Maximum Input Voltage (non-destructive)			±30V peak input (mains isolated)				
Attenuation Ratio			1.1:1				
Offset Range			± 24V				
Input Impedance at DC *			50 kΩ ±2%				
Active Signal Range		± 850	mV (about offset volt	age)			
Probe Noise (at 2 GHz)		10% increase in the	ne noise of the connec	ted oscilloscope			
Output Termination			50 Ω scope input				
Probe Type			Single Ended				

Simulazione N7020A: impedenza

Impedenza ingresso sonda N7020A(Ω)

$$Z_{eq} = 50k\Omega \ f \le 100 \ Hz$$

$$Z_{eq} = 50\Omega$$
 $f \ge 1 \text{ MHz}$

UAq EMC Laboratory

Simulazione N7020A: effetto di carico

In questo caso:

 $50\Omega \gg Z_{target}$

1

La sonda non perturba la misura di Z_{in} neanche ad alta frequenza

Referenze

- S. Lin and N. Chang, "Challenges in power-ground integrity," IEEE/ACM ICCAD 2001, San Jose, CA, USA, 2001, pp. 651-654, doi: 10.1109/ICCAD.2001.968730.
- Alex Manukovsky, Shimon Mordooch, Amiram Jibly, Power Delivery Improvement & Noise Reduction Using Ultra-Thin (8um) PCB Layers: Simulation, Board Measurements & Practice, DesignCon 2020
- Oak-Mitsui Company, Online: http://www.oakmitsui.com/pages/copperFoil/copperFoil.asp
- FaradFlex®. Online: https://www.faradflex.com/standard-dk/
- Intel.com. Online: https://www.intel.com/content/www/us/en/products/programmable/fpga/stratix-iv.html
- Intel.com. Online: https://www.intel.com/content/www/us/en/programmable/solutions/partners/partner-profile/terasic-inc-/board/de4-stratix-iv-development-board.html
- Mentor. Online https://www.mentor.com/

Referenze

- Erwan Petillon, Power Delivery Network Analysis, Application Report, SWPA222A November 2012
- Keysight, Making Your Best Power Integrity Measurements, Application note
- Keysight. Online: https://www.keysight.com/en/pdx-x202066-pn-DSOS054A/high-definition-oscilloscope-500-mhz-4-analog-channels?cc=US&lc=eng
- Keysight. Online: https://www.keysight.com/en/pd-2471132-pn-N7020A/power-rail-probe
- Keysight. Online: https://www.keysight.com/en/pdx-x202079-pn-MSOS804A/high-definition-oscilloscope-8-ghz-4-analog-plus-16-digital-channels?cc=US&lc=eng