

ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ И УПРАВЛЕНИЕ ПО ПРОГНОЗИРУЮЩЕЙ МОДЕЛИ ДЛЯ ЗАДАЧИ РОСТА ТЕХНОЛОГИЧЕСКОГО ПОСЛЕДОВАТЕЛЯ

Готовец Мария Алексеевна

М.А. Готовец Диплом, 2020 1 / 24

Объект исследования и цели работы

• Объект исследования

- ▶ Процесс экономического развития страны технологического последователя, заимствующего технологии страны-лидера
- ▶ Задача оптимального управления распределением трудовых ресурсов станы-последователя

• Цели работы

- Проанализировать решение задачи оптимального экономического роста страны-последователя при различных параметрах
- ▶ Применить методы управления по прогнозирующей модели с целью аппроксимации решения задачи с бесконечным горизонтом последовательным решением прогнозирующих задач с конечным горизонтом
- Исследовать три различных подхода к построению прогнозирующих задач

М.А. Готовец Диплом, 2020 2 / 24

Задача оптимального роста технологического последователя

3 / 24

- A страна-лидер, выделяет в исследовательский сектор долю $L_N^A(t)$ трудовых ресурсов
- ullet B страна-последователь, выделяет в исследовательский сектор долю $L_N^B(t)$ трудовых ресурсов, заимствует технологии у A

$$\begin{split} \int_0^\infty e^{-\rho^B t} \left\{ \left(\frac{1}{\alpha} - 1\right) \ln N^B(t) + \ln(L^B - L_N^B(t)) \right\} dt &\to \max_{L_N^B} \\ \dot{N}^B(t) &= \frac{L_N^B}{a^B} (N^B(t) + \gamma N^A(t)), \ L_N^B(t) \in [0, L^B[\\ \dot{N}^A(t) &= g^A N^A(t) \\ N^A(0) &= N_0^A, \ N^B(0) = N_0^B \end{split}$$

 $lacktriangledown g^A,\ L^B,\ a^B,\ \gamma>0$ — заданные параметры

 $ightharpoonup N_0^A > 0, \ N_0^B > 0$ — заданные начальные состояния

М.А. Готовец Диплом, 2020

Задача оптимального роста технологического последователя

• Замена переменных

$$x(t) = N^{B}(t), \ b = \frac{L^{B}}{a^{B}}, \ u(t) = \frac{L^{B}(t)}{a^{B}}, \ \rho = \rho^{B}$$

 $y(t) = N^{A}(t), \ \nu = g^{A}, \ \kappa = \frac{1}{\alpha} - 1$

$$J(x,u) = \int_0^\infty e^{-\rho t} [\kappa \ln x(t) + \ln(b - u(t))] dt \to \max$$

$$\dot{x}(t) = u(t)(x(t) + \gamma y(t))$$

$$x(0) = x_0$$

$$\dot{y}(t) = \nu y(t)$$

$$y(0) = y_0, \ u(t) \in [0, b - \varepsilon]$$

Редуцированная задача

• Замена переменных с целью понижения размерности:

$$z(t) = \frac{x(t)}{y(t)}, \ t \ge 0, \ z_0 = \frac{x_0}{y_0}$$

• Редуцированная задача

$$I(z,u) = \int_0^\infty e^{-\rho t} [\kappa \ln z(t) + \ln(b - u(t))] dt \to \max$$

$$\dot{z}(t) = u(t)(z(t) + \gamma) - \nu z(t), \ z(0) = z_0$$

$$u(t) \in [0, b - \varepsilon], \ t \ge 0$$

$$(1)$$

 $z \in \mathbb{R}$ — состояние системы, $u \in \mathbb{R}$ — управление.

 Задача оптимального управления нелинейной системы с критерием Лагранжа.

Решение редуцированной задачи

• Гамильтонова система:

$$\dot{z}(t) = (b-\nu)z(t) + b\gamma - \frac{1}{p(t)}$$

$$\dot{p}(t) = -(b-\nu-\rho)p(t) - \frac{\gamma\kappa + (\kappa+1)z(t)}{z(t) + \gamma)z(t)}$$

• Уравнения для (z_1, p_1) :

$$p = h_{11}(z)$$

$$h_{11}(z) = h_{12}(z)$$

$$h_{11}(z) = \frac{1}{b\gamma - (\nu - b)z},$$

$$h_{12}(z) = \frac{\gamma\kappa + (\kappa - 1)z}{\beta_0(z + \gamma)z},$$

 Типичные фазовые траектории решений гамильтоновой системы в неособых невырожденных случаях

Стабилизация нелинейной системы

• Модель объекта управления

$$\dot{x}(s) = f(x(s), u(s), s), \ x(t) = x_t, \ s \ge t$$
 (2)

 $x(s) \in \mathbb{R}^n$, $u(s) \in \mathbb{R}^r$ — состояния и управления модели (2)

- В модели (2) считаются заданными:
 - множество $X_0 \subset \mathbb{R}^n$ всех возможных начальных состояний объекта управления в начальный момент времени t_0 $(t \geq t_0)$
 - ▶ n-вектор x_t (при $t \ge t_0$) состояние физического объекта в момент времени t
 - функция $f:\mathbb{R}^n imes\mathbb{R}^r imes\mathbb{R}^n$, обеспечивает существование и единственность решений x(s), $s\geq t$, уравнения (2) при любых кусочно-непрерывных управлениях u(s), $s\geq t$, и начальных состояниях $x_t\in X_0$
 - lacktriangle множества доступных значений управления $U(t)\subseteq \mathbb{R}^r$, $t\geq t_0$

Стабилизация нелинейной системы

Предположение

- ullet Для всех $t\in\mathbb{R}$ множество U(t) содержит начало координат и $f(0,0,t)=0,\,t\geq t_0$
- Функция f непрерывна по своим аргументам и удовлетворяет условию Липшица по переменной x для любой фиксированной пары (t,u)
- Множество U(t) компактно для всех t и для каждой пары (t,x) множество f(x,U(t),t) выпукло
- ullet Для любого компакта $X\subset \mathbb{R}^n$, множество $\{\|f(x,u,t)\|,\ t\in \mathbb{R},\ x\in X,\ u\in U(t)\}$ компакт

Управление по прогнозирующей модели Моу

Прогнозирующая задача оптимального управления

$$\mathcal{P}(t, x_t, T) = \int_t^{t+T} L(x(s), u(s), s) ds + W(t + T, x(t + T))$$

$$\dot{x}(s) = f(x(s), u(s), s), \ x(t) = x_t$$

$$u(s) \in U(s), \ s \in [t, t + T]$$

$$x(t + T) \in S$$

Параметры МРС-регулятора:

- lacktriangle горизонт управления T
- $oldsymbol{\circ}$ функции текущей и конечной (терминальной) стоимостей L и W
- ullet терминальное множество $S \subset \mathbb{R}^n$

Управление по прогнозирующей модели 🚺 🧻

Алгоритм МРС

- Измерить текущего состояния объекта x_{t_i}
- ② Вычислить оптимального (программного) управления $u^0(t)$, $t \in [t_i, t_i + T]$, задачи $\mathcal{P}(t_i, x_{t_i}, T)$
- ullet Управление $u^*(t):=u^0(t)$ при $t\in [t_i,t_i+\delta]$ подать на вход объекта управления
- **1** Процедуру повторить для следующего момента t_{i+1}

При выполнении предположений, ряда условий устойчивости и для достаточно малого периода квантования δ система, замкнутая обратной связью MPC, асимптотически устойчива в том смысле, что $\|x^*(t)\| \to 0$ при $t \to \infty$

Подход 1: Прогнозирующая задача для неограниченного EMPC

- В задаче (3) заменим бесконечный горизонт управления конечным
- Дополнительные условия на правый конец траектории не накладываем

$$I_{1}(z,u) = \int_{\tau}^{\tau+T} e^{-\rho t} \left[\kappa \ln z(t) + \ln(b - u(t))\right] dt \to \max$$

$$\dot{z}(t) = u(t)(z(t) + \gamma) - \nu z(t)$$

$$z(\tau) = \frac{x(\tau)}{y(\tau)}$$

$$u(t) \in [0, b - \varepsilon], \ t \in [\tau, \tau + T]$$

$$(3)$$

М.А. Готовец Диплом, 2020 11 / 24

Подход 2: с терминальным ограничением М

- В прогнозирующую задачу добавим терминальное ограничение-равенство
- Потребуем, чтобы в терминальный момент состояние равнялось магистральному значению z_1

$$I_{2}(z,u) = \int_{\tau}^{\tau+T} e^{-\rho t} \left[\kappa \ln z(t) + \ln(b - u(t))\right] dt \to \max$$

$$\dot{z}(t) = u(t)(z(t) + \gamma) - \nu z(t)$$

$$z(\tau) = \frac{x(\tau)}{y(\tau)}, \ z(\tau + T) = z_{1}$$

$$u(t) \in [0, b - \varepsilon], \ t \in [\tau, \tau + T]$$

$$(4)$$

М.А. Готовец Диплом, 2020 12 / 24

Подход 3: с терминальной стоимостью

- В прогнозирующую задачу добавим терминальную стоимость
- В качестве значения параметра α выберем соответствующее магистральное значение p_1

$$I_{3}(z,u) = \alpha e^{-\rho(\tau+T)} z(\tau+T) + \int_{\tau}^{\tau+T} e^{-\rho t} [\kappa \ln z(t) + \ln(b-u(t))] dt \to \max$$

$$\dot{z}(t) = u(t)(z(t) + \gamma) - \nu z(t)$$

$$z(\tau) = \frac{x(\tau)}{y(\tau)}$$

$$u(t) \in [0, b - \varepsilon], \ t \in [\tau, \tau + T]$$

$$(5)$$

М.А. Готовец Диплом, 2020 13 / 24

Подход 1: Программное решение

14 / 24

• Оптимальные траектории имеют продолжительные промежутки убывания и далеки от магистрали

Подход 2: Программное решение

• Участков убывания оптимальной траектории нет и значения уже ближе к магистральным, но время решения на 61% больше

Подход 3: Программное решение

16 / 24

• Участки убывания оптимальной траектории значительно сократились, значения стремятся к магистральным

М.А. Готовец Диплом, 2020

Сравнения программных решений в подходах 1-3

Параметры:

$$\gamma = 0.1, \ \nu = 0.5, \ b = 0.55, \ \rho = 0.15, \ \kappa = 1.5, \ z_0 = 0.1$$

Подход 1: Неограниченный ЕМРС

- Оптимальные траектории задачи имеют продолжительные участки убывания
- При увеличении T с 10 до 30 с сохранением точности траектория достигает магистрали, однако время решения прогнозирующей задачи возрастает в 7.15 раз

Подход 2: EMPC с ограничениями-равенствами

Недостатки задачи с терминальным ограничением-равенством:

- трудоемкость решения задачи
- начальная недопустимость задачи с ограничением-равенством

М.А. Готовец Диплом, 2020 19 / 24

Подход 3: ЕМРС с терминальной стоимостью

- Достигает магистрального значения
- Имеет решение при любом горизонте Т

М.А. Готовец Диплом, 2020 20 / 24

Обоснование терминальной стоимости

Общая прогнозирующая задача для EMPC с терминальной стоимостью

$$\min_{u} \int_{\tau}^{\tau+T} L(x(t), u(t))dt + W(x(\tau+T))$$

$$\dot{x}(t) = f(x(t), u(t)), \ x(\tau) = x_{\tau}$$

$$u(t) \in U, \ x(t) \in X, \ t \in [\tau, \tau+T]$$

• Гамильтонова система для прогнозирующей задачи в общем виде:

$$\dot{p} = -(\partial f(x(t), u(t))/\partial x)^T p(t) + \partial L(x(t), u(t))/\partial x$$
$$\dot{x}(t) = f(x(t), u(t)), t \in [\tau, \tau + T]$$

• Условие трансверсальности:

$$p(\tau + T) = p_1$$

М.А. Готовец Диплом, 2020 21 / 24

- \bullet Выберем линейную терминальную стоимость $W(x)=p_1^Tx$
- Тогда:

$$p(\tau + T) \equiv -\partial W(z(\tau + T))/\partial x = p_1$$

• Условия оптимальности имеют вид:

$$\partial L(x, u)/\partial x + (\partial f(x, u)/\partial x)^T \lambda = 0$$

 $f(x, u) = 0$

• Гамильтонова система на магистральных значениях:

$$-(\partial f(z_1, u_1)/\partial x)^T p_1 + \partial L(z_1, u_1)/\partial x = 0, \quad f(z_1, u_1) = 0$$

• Установим, что $p_1=-\lambda_1$ удовлетворяет гамильтоновой системе, тогда $W(x)=-\lambda_1^T x$

В задаче роста терминальная стоимость содержит дисконтирование:

$$W(z(\tau+T)) = e^{-\rho(\tau+T)} p_1 z(\tau+T)$$

М.А. Готовец Диплом, 2020 22 / 24

Заключение

- Сравнивались три варианта ЕМРС
 - неограниченный ЕМРС
 - ▶ EMPC с терминальным ограничением типа равенства
 - EMPC с терминальной стоимостью
- Построено программное решение прогнозирующих задач оптимального роста технологического последователя для всех трех подходов
- Исследовались параметры, позволяющие получить решение асимптотически приближающие магистральное значение
- В результате численных экспериментов продемонстрировано преимущества третьего подхода
 - ▶ Простой вариант выбора терминальной стоимости
 - Задача оптимального управления проще с точки зрения численного решения
 - Задача проще с вычислительной точки зрения
 - ightharpoonup Имеет решение при любом горизонте T

М.А. Готовец Диплом, 2020 23 / 24

Спасибо за внимание!

М.А. Готовец Диплом, 2020 24 / 24