

# Bayesian Machine Learning for Quantifying Uncertainty in Surrogate Modelling

**Archie Luxton** 

09:00, 14<sup>th</sup> September 2022



Develop uncertainty-aware Neural Network-based surrogate models that can predict the modal frequencies of 3D structures and communicate the uncertainty in those predictions.

## Background | Modal Analysis

- Modal analysis predicts the resonant frequencies of structures
- Modal frequencies of a structure shouldn't match frequency of:
  - Earthquakes
  - Footsteps and sway
  - Wind flutter





Broughton Bridge collapse, 1826

Mexico City earthquake, 1985

Millennium Bridge, London

#### Background | Modal Analysis Using GSA

- → Oasys GSA can perform modal analysis
- → Calculates many modal frequencies of a structure
- → Solves a generalised eigenvalue problem







## Background | Advantages / Disadvantages of GSA Analysis

#### **GSA Modal Analysis**

Accurate

Explainable

Expensive

Complexity scales with size of structure

Platform-specific

Automation requires APIs/SDKs

Specific to one problem

## Background | Surrogate Models

#### What?

 Lightweight models approximating physical systems/simulations

#### Why?

- $\rightarrow$  Rapid prototyping
- → Inverse problems

#### How?

Neural network trained on data generated from simulations/observations





Base simulation

# Background | Surrogate vs GSA Analysis

| GSA Modal Analysis                       | Modal Analysis via NN-based surrogate        |
|------------------------------------------|----------------------------------------------|
| Accurate                                 | Is an approximation                          |
| Explainable                              | Challenging to explain                       |
| Expensive                                | Chean predictions                            |
| Complexity scales with size of structure | Complexity constant w.r.t. size of structure |
| Platform-specific                        | Platform agnostic / portable                 |
| Automation requires APIs/SDKs            | Automation very straightforward              |
| Specific to one problem                  | Applicable to many problems                  |

#### Methodology | Bayesian Neural Networks (BNNs)

- → Two Bayesian Neural Network (BNN) methods investigated:
  - 1. MC Dropout (Gal and Ghahramani, 2016)
  - 2. Stochastic Gradient Langevin Dynamics (SGLD) (Welling et al., 2011)
- → Both methods apply stochasticity.

Sampling stochastic outputs => approximation to predictive posterior distribution



# Methodology | MC Dropout





## Methodology | Stochastic Gradient Langevin Dynamics (SGLD)





## Results | Visualising Uncertainty



## Results | Visualising Uncertainty - Grasshopper & Rhino



## Results | Speed



# Results | Accuracy and Uncertainty: Reference Datasets



## Results | Uncertainty - Unseen Geometries

Fixed: length of elements in x, y, z Varying: number of elements in x, y, z

#### Absolute Uncertainty



#### Relative (Percentage) Uncertainty



# Results | Retraining With Additional Data



# Results | Uncertainty - Unseen Geometries





Thank you for listening

Questions?