

Table of Contents

- Routing Basics
- ► IP Routing Process
- Static and Dynamic Routing

Routing Basics

Routing Basics

- IP routing is the process of sending packets from a host on one network to another host on a different remote network
- This process is usually done by routers
- Routers use routing tables
- Routers don't really care about hosts—they care only about networks and the best path to each network

CLARUSWAY®

Routing Basics

To be capable of routing packets, a router must know at least the following information:

- Destination network address
- Neighbor routers from which it can learn about remote networks
- Possible routes to all remote networks
- The best route to each remote network
- How to maintain and verify routing information

Routing Basics

- Each router maintains a routing table
- Routing table is used to determine the path to the destination network
- Each routing table consists of:
 - Network destination and subnet mask
 - Remote router IP address of the router
 - Outgoing interface

```
[Comware] display ip routing-table
Routing Tables: Public
Destinations: 7 Routes: 7
Destination/Mask Proto Pre Cost
                              NextHop
                                         Interface
10.2.0.0/18 OSPF 10 110
                               10.1.1.5
                                         Vlan3
10.2.64.0/18
              OSPF 10 130
                               10.1.1.13 Vlan5
10.2.128.0/17
              OSPF 10 30
                               10.1.1.5
                                         Vlan3
10.2.192.0/17
              OSPF 10 40
                               10.1.1.13 Vlan5
<-output omitted->
```


2

IP Routing Process

IP Routing Process

R1

Build a new frame and send to R2

<u>R2</u>

- Check the FCS of the Ethernet frame
- De-encapsulate the IP packet, discard the frame
- Check the IP header checksum
- Check the destination IP address

15

IP Routing Process

R2 Check its routing table for destination IP address

```
Source:
                                                     Destination:
     Source:
                    Destination:
                                                                     Data
 FA16.3E87.9C2A
                  FA16.3E01.0C98
                                     192.168.1.1
                                                     192.168.2.2
R2#show ip route
       192.168.1.0/24 [1/0] via 192.168.12.1
       192.168.2.0/24 is variably subnetted, 2 subnets, 2 masks
          192.168.2.0/24 is directly connected, GigabitEthernet0/1 192.168.2.254/32 is directly connected, GigabitEthernet0/1
       192.168.12.0/24 is variably subnetted, 2 subnets, 2 masks
          192.168.12.0/24 is directly connected, GigabitEthernet0/2
          192.168.12.2/32 is directly connected, GigabitEthernet0/2
```


Decrease TTL to 253 and check the ARP table if destination address (192.168.2.2) matches any

```
R2#show ip arp
Protocol Address
                            Age (min)
                                       Hardware Addr
                                                        Туре
                                                               Interface
Internet 192.168.2.2
                                 121
                                       fa16.3e4a.f598
                                                        ARPA
                                                               GigabitEthernet0/1
Internet
                                       fa16.3e3c.7da4
                                                        ARPA
                                                               GigabitEthernet0/1
         192.168.2.254
Internet
          192.168.12.1
                                                               GigabitEthernet0/2
                                 111
                                       fa16.3e02.83a1
                                                        ARPA
Internet
          192.168.12.2
                                                               GigabitEthernet0/2
                                       fa16.3e01.0c98
                                                        ARPA
```

16

IP Routing Process

<u>R2</u>

• Build a new frame and send to H2

Source: Destination: Source: Destination: 192.168.1.1 Destination: Data

<u>H2</u>

- Checks the FCS
- Finds its own MAC address as the destination MAC address
- De-encapsulates the IP packet from the frame
- Finds its own IP address as the destination in the IP packet

1

IP Routing Process

The host has a simple decision to make:

- Is the destination on the local network?
 - Check ARP table for **destination** IP address, if empty, send an ARP request.
- Is the destination on a remote network?
 - Check ARP table for **default gateway** IP address, if empty, send an ARP request.

IP Routing Process

The router has to perform a number of tasks:

- When it receives an Ethernet frame, checks if the FCS is correct. If not, drops the frame
- Checks if the destination address of the frame is:
 - destined to router's MAC address
 - destined to a broadcast address of the network router's interface is in
 - destined to a multicast address that the router listens to
- De-encapsulates the IP packet from the frame, discard the Ethernet frame
- Looks for a match in the routing table for the destination IP address, figures out what the outgoing interface and optionally, the next hop IP address is
- Decreases the TTL field in the IP header, recalculates the header checksum.
- Encapsulates the IP packet in a **new Ethernet frame**
- Checks the ARP table for the destination IP address or next hop IP address
- Transmits the frame

CLARUSWAY®

1

IP Routing Flow Chart - Remote Network Recursive FCS **FCS** Reduce TTL **FCS** lookup for OK? OK? by 1 next hop Network? Reduce TTL Extract IP Get MAC for Verify by 1 Destination **Packet** destination ARP Valid MAC MAC for Ν Request for MAC? Address MAC Router? address Re-create & Get MAC for Send Header next hop Ethernet Extract IP checksum Extract IP Frame Create & packet **Packet** Send Ethernet Re-create & Frame Send Ethernet Verify Verify local Frame destination IP and get IΡ MAC checksum OK? CLARUSWAY[©]

Static and Dynamic Routing

Static and Dynamic Routing

- How routers know the IP destinations?
- In static routing (or non-adaptive) routing, tables created and updated manually

CLARUSWAY®

22

- In dynamic routing (or adaptive) routing, tables created and updated automatically using routing protocols
- Dynamic routing is used in larger networks
- Finds the optimal route (fastest path)

 Reacts to topology changes and failures, recalculates optimal path

CLARUSWAY®

23

Static and Dynamic Routing

Static	Dynamic
Routes are user defined	Routes are updated according to the topology
Does not use complex routing algorithms	Uses complex routing algorithms
Provides high or more security	Provides less security
Manual	Automated
Implemented in small networks	Implemented in large networks
Additional resources are not required	Additional resources are required

CLARUSWAY®
WAY TO REINVENT YOURSELF

25