TELEX Command Reference

Revision v.13p

- n represents the number of outputs or inputs that you have added to your Teletype (4 of each type for each expander)
- x represents the expander unit as opposed to an output (1 for each expander)
- α represents the value that you are supplying to an operator that takes a parameter; values are bipolar (-16384 to 16383)

TELEXO (TXO)

		10.03C.N 1-11 a	targets oscillation to note # a in Osc.scale
TELEXo (TXo)		TO.OSC.N.SET 1-n α	sets oscillation to note # α in OSC.SCALE
		TO.OSC.FQ 1-n α	targets oscillation to frequency α in Hz
TO.TR 1-n α	Set TR value to α (0/1)	TO.OSC.FQ.SET 1-n α	sets oscillation to frequency α in Hz
TO.TR.TOG 1-n	Toggle TR	TO.OSC.LFO 1-n α	targets oscillation to frequency α in mHz
TO.TR.PULSE 1-n	Pulse TR using TO.TR.TIME/S/M as an interval	TO.OSC.LFO.SET 1-n α	sets oscillation to frequency α in mHz (
TO.TR.PULSE.DIV 1-n α	Pulse Divider for every α pulses	TO.OSC.WAVE 1-n α	waveform [0-4] [sin tri saw pulse noise]
TO.TR.TIME 1-n α	time for TR.PULSE; α in milliseconds	TO.OSC.SYNC 1-n	resets the phase of the oscillator to zero
TO.TR.TIME.S 1-n α	time for TR.PULSE; α in seconds	TO.OSC.WIDTH 1-n α	sets the pulse width to α [0-100]
TO.TR.TIME.M 1-n α	time for TR.PULSE; α in minutes	TO.OSC.RECT 1-n α	rectifies the oscillator to α [-2-+2]
TO.TR.POL 1-n α	polarity for TO.TR.PULSE set to α (0-1)	TO.OSC.SLEW 1-n α	sets the slew time for the oscillator; $\boldsymbol{\alpha}$ in ms
TO.TR.M 1-n α	time for TR.M; α in milliseconds	TO.OSC.SLEW.S 1-n α	sets the slew time for the oscillator; $\boldsymbol{\alpha}$ in sec
TO.TR.M.S 1-n α	time for TR.M; α in seconds	TO.OSC.SLEW.M 1-n α	sets the slew time for the oscillator; α in min
TO.TR.M.M 1-n α	time for TR.M; α in minutes	TO.OSC.SCALE 1-n α	sets the quantization scale for the oscillator
TO.TR.M.BPM 1-n α	time for TR.M; α in beats per minute	TO.ENV.ACT 1-n α	activates the envelope generator [0/1]
TO.TR.M.ACT 1-n α	activates the metronome pulse [0/1]	TO.ENV.ATT 1-n α	attack time for the envelope; α in ms
TO.TR.M.SYNC 1-n x	synchronizes the metronomes for device x	TO.ENV.ATT.S 1-n α	attack time for the envelope; α in sec
TO.CV 1-n α	CV target α (bipolar)	TO.ENV.ATT.M 1-n α	attack time for the envelope; $\boldsymbol{\alpha}$ in min
TO.CV.SLEW 1-n α	CV slew time; α in milliseconds	TO.ENV.DEC 1-n α	decay time for the envelope; α in ms
TO.CV.SLEW.S 1-n α	CV slew time; α in seconds	TO.ENV.DEC.S 1-n α	decay time for the envelope; α in sec
TO.CV.SLEW.M 1-n α	CV slew time; α in minutes	TO.ENV.DEC.M 1-n α	decay time for the envelope; α in min
TO.CV.SET 1-n α	set CV to α (bipolar); ignoring SLEW	TO.ENV.TRIG 1-n	triggers the envelope to play
TO.CV.OFF 1-n α	CV offset; α added at final stage	TO.KILL	cancels TR pulses and CV slews

TO.CV.QT 1-n α

TO.CV.N 1-n α TO.CV.N.SET 1-n α

TO.OSC 1-n α

TO.CV.QT.SET 1-n α

TO.CV.SCALE 1-n α

TO.OSC.SET 1-n α

TO.OSC.QT 1-n α

TO.OSC.N 1-n α

CV target α ; quantized to output's CV.SCALE

set CV to α; quantized to output's CV.SCALE

CV target note # α in output's CV.SCALE

set CV to note # α in output's CV.SCALE

select scale # α for individual CV output

sets oscillation to α ; ignores OSC.SLEW

targets oscillation to α in OSC.SCALE

TO.OSC.QT.SET 1-n α sets oscillation to α in OSC.SCALE

targets oscillation to α (1v/oct translated)

targets oscillation to note # α in OSC.SCALE

TELEXi (TXi)

TI.IN 1-n reads the CV input jack [-16384 - 16383] TI.IN.QT 1-n return the quantized value in IN.SCALE TI.IN.N 1-n return the note number in IN.SCALE TI.IN.SCALE 1-n α sets the current scale for the input to α

TI.PARAM 1-n reads the PARAM knob [0 - 16383]

TI.PARAM.QT 1-n return the quantized value in PARAM.SCALE
TI.PARAM.N 1-n return the note number in PARAM.SCALE

TI.PARAM.SCALE 1-n α sets the current scale to α

TI.IN.CALIB 1-n α calibrates the scaling for the IN jack TI.PARAM.CALIB 1-n α calibrates the PARAM knob scaling

TI.STORE 1-x stores the calibration data

Quantization Scale Reference

Scale Name

- o Standard 12 Tone Equal Temperament [DEFAULT]
- 1 12-tone Pythagorean scale
- 2 Vallotti & Young scale (Vallotti version)
- 3 Andreas Werckmeister's temperament III
- 4 Wendy Carlos' Alpha scale with perfect fifth divided in nine
- 5 Wendy Carlos' Beta scale with perfect fifth divided by eleven
- 6 Wendy Carlos' Gamma scale with third divided by eleven or fifth by twenty
- 7 Carlos Harmonic
- 8 Carlos Super Just
- 9 Kurzweil "Empirical Arabic"
- 10 Kurzweil "Just with natural b7th", is Sauveur Just with 7/4
- 11 Kurzweil "Empirical Bali/Java Harmonic Pelog"
- 12 Kurzweil "Empirical Bali/Java Slendro, Siam 7"
- 13 Kurzweil "Empirical Tibetian Ceremonial"
- 14 Harry Partch's 43-tone pure scale
- 15 Partch's Indian Chromatic, Exposition of Monophony, 1933.
- 16 Partch Greek scales from "Two Studies on Ancient Greek Scales" on black/white