世界知的所有権機関国 欧 事 務 局

特許協力条約に基づいて公開された国際出願

	(51) 国際特許分類6 C12N 15/55, 9/22,	I膝特件分類6 C12N 15/55, 9/22, C12Q 1/34, A6IK	A1	(11)	(11) 国際公開番号	WO99/46388
_	48/00, 38/43			(43)	(43) 国際公開日 1999年9	1999年9月16日(16.09.99)
	(21) 国際出願番号	PCT/JP	PCT/JP99/01187		一入章夫(HITOSHIO, Akio)[JP/JP]	
	(22) 国際出題日	1999年3月11日(11.03.99)	11.03.99		T170-8633 果凡都包局区局出3丁月24巻1号 大正製薬株式会社内 Tokyo,(JP)	
	(30) 優先権データ 特願平10/60969 特願平10/311098	1998年3月12日(12.03.98) 1998年10月30日(30.10.98)		R 180円 円 100円	(74) 代理人 井理士 平木祐輔, 外(HIRAKI, Yusuke et al.) 〒105-0001 東京都港区虎ノ門1丁目17番1号 店ノ門5条ビル3店 Tokyo, (IP.)	
	(11) 出願人 (米国を除くすべての指定国について) 大正製薬株式会社 FASSED BUADMACHETERS I CO. 1 TO VIDENT	ナベイの指定国について) CAI CO I TO VIEWERI		<u>s</u> H	(81) 指定国 AU, CA, CN, JP, KR, US, 欧州特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE)	特許 (AT, BE, U, MC, NL, PT, SE)
	(170-8633 東京都豊島区高田3 工業技術院長が代表する日本国	(Anistra Anistratus De Anistra) 〒170-8633 東京都豊島区南田3丁目24番1号 Tokyo,(JP) 工業技術院長が代表する日本国		- 一	統付公開書類 因熟謝全報告書	
	(JAPAN as represented by DIRECTOR-GENERAL OF AGENCY OF INDUSTRIAL SCIENCE AND TECHNOLOGY)[IP/IP]	NRECTOR-GENBRAL NAL SCIENCE AND				
-	〒100-8921 東京都千代田 (72) 発明者:および	〒100-8921 東京都千代田区霞ヶ陽1丁目3番1号 Tokyo,(JB) (72) 発明者:および	Đ,			
	(75) 発明者/出願人(米国についてのみ) 多比良和誠(TAIRA, Kazunati)[JP/JP] 〒315.0044 参城県 〇くば市単7 目4巻30.	(3) 発明者/出願人(米版にしいてのみ) 多比良和鍼(TARA, Kazumari)[JP/JP] 〒305.004. 茨城県 0く 岩木市フエ目4巻90号 Themari / JP/	ā			
	桑原知子(KUWABARA, Tomoko)[JP/JP] 〒305-0044 茨城県つくば市並木2丁目1	桑原知子(KUWABARA, Tomoko)[JP/JP] 〒305-0044 茨城県つくば市並木2丁目1番3号 A102 Ibaraki, (JP)	r, ıraki, (JF			

(54)Tide: NUCLEIC ACID ENZYME SHOWING ALLOSTERIC RNA-CLEAVING ACTIVITY ON TARGET RNA

(54)発明の名称 揉的RNAに対してアロステリックなRNA切断活性を示す核酸酵素

A nucleic acid enzyme showing an allosteric RNA-cleaving activity on a target RNA; an expression vector containing a DNA encoding this nucleic acid enzyme characterized by effecting transcription onto RNA with the use as a template of the above expression vector containing the DNA encoding the nucleic acid enzyme, medicinal compositions containing as the active ingredient the above nucleic acid enzyme or the expression vector containing as the active ingredient the above nucleic acid enzyme or the expression vector containing the DNA encoding the nucleic acid enzyme; and a method of specifically cleaving the target RNA by using the nucleic acid enzyme.

. . .

(57)要約

ターを有効成分として含む医薬組成物。および、前記核酸酵素を用いて、標的RN 標的RNAに対してアロステリックなRNA切断活性を示す核酸酵素。前記核酸酵素 をコードするDNAを含む発現ベクター。前記の核酸酵素をコードするDNAを含む発 現ベクターDNAを鋳型として、RNAに転写することを特徴とする、前記の核酸酵素 の製造方法。前記核酸酵素または前記核酸酵素をコードするDNAを含む発現ベク Aを特異的に切断する方法。

に使用されるコード(参考指数)	が 14 4 7 7 ダゲコッチ スチスセエ ソイアナギ ド ソ ス テ ダイタ米
PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用される	N
出題のベンフレット第一質に掲載	日間形でも00000000012エーーーーズXXX ZMO-AR AGUNTA NEWRON TO NEWRON TO NEW AGUNTA NEW
PCTに基づいて公開される国際	トラー

BM

明箱

標的RNAに対してアロステリックなRNA切断活性を示す核酸酵素

技術分野

本発明は、核酸酵素およびその利用に関し、より詳細には、標的RNAに対してアロステリックなRNA切断活性を示す核酸酵素およびその利用に関する。

背景技術

(G.F.Joyce, Nature, 338, 217-224(1989); N.R.Pace, T.L.Marsh, Origins o ns, Annu. Rev. Biochem., 61, 641-671(1992); J.Bratty, P.Chartrand, G.Fer beyre, R.Cedergren, Biochim. Biophys. Acta, 1216, 345-359(1993) ; Haseho それまでDNAとタン 情報と(触媒)機能の二役を兼ね備えていることから、RNA分子こそが生命の Altmanが行ったRNAとタンパク質の複合体酵素であるリボヌクレアーゼPの解 35, 849-857(1983))から、触媒機能を有するRNAであるリボザイム(ribozym 発見され(R.H.Symons, Trend. Biochem. Sci., 14, 445-450(1989) ; R.H.Symo 1980年初頭、米国コロラド大学のCechらによるテトラヒメナのェRNAのセル D.E.Gottschling, T.R.Cech, Cell, 31, 147-157(1982)) と、米国エール大学の 3(1988) ; L.E.Orgel, Nature, 358, 203(1992) ; R.F.Gesteland, J.F.Atkins, e:<u>ribo</u>nucleotide acid+en<u>zyme</u>)が見いだされた。以降、様々なリボザイムが (適位) 所結果 (C.Guerrier-Takada, K.Gaydiner, T.Marsh, N.Pace, S.Altman, Cell, フスプライシング現象の発見 (K.Kruger, P.J.Grabowski, A.J.Zaug, J.Sands, Res., 14, 3627-3640(198 起源とする"RNAワールド"説の中心的分子として注目されるようになった f Life, 16, 97(1985); A.Lazcano, R.Guerrero, J.Oro, J.Mol. Evol., 27, ff. J and W.L. Gerlach, Nature, 334, 585-591(1988) ; C.J.Hutchins, 6))、逆転写酵素、イントロンの発見、RNAediting などとあわせて、 パク質の間で情報の仲介屋程度にしか認識されていなかったRNAが、 回帯に、 thjen, A.C. Forster, R.H. Symons, Nucleic Acids. セントラルドグマの概念をゆるがしたのである。

WO 99/46388

PCT/JP99/01187

The RNA World, Monograph 24, Cold Spring Harbor Laboratory Press, Plain view, New York(1993)) ,

Jennings, Antisense Res. Dev., 4, 87(1994) ; L.Q.Sun, D.Warrilow, L.Wang, C.Witherington, J.Macpherson, G.Symonds, Proc. Natl. Acad. Sci. USA, 91. ; G. Ferbeyre, J. Bratty, H. Chen, R. Cedergern, Gene 155, 45(1995) ; M.Kie (1989); N. Sarver, E. Cantin, O. Chang, O. Lande, D. Stephens, J. Zaia, J. Ross 4); S.M.Sullivan, J.Invest. Dermatol., 103, 85(1994); F.H.Cameron, P.A. 990); A.C.Foster, R.H.Symons, Cell, 49, 211(1987); A.C.Jeffries, R.H.Sy J.Hasehoff, W.L.Gerlach, Mature, 334, 585(1988))、リボザイムによる遺伝 子治療への応用の可能性が示唆された。以降、癌やエイズなどを標的とした様々 i, Science 247, 1222(1990); M. Homann, M. Tzortzakari, K. Rittner, S. Sczaki して機能するリボザイムであるが(T.R.Cech, Annu. Rev. Biochem., 59, 543(1 mons, Nucleic Acids Res., 17, 1371(1989)) , UhlenbeckらとHaseloffとGerl ach らのグループによって2本のRNA鎖(基質領域と酵素活性保持領域)に分 割(トランス化)されたことから(O.C.Uhlenbeck, Nature, 328, 596(1987) ; な応用研究が、数多く報告されている(M.Cotten, M.L.Bimstiel, EMBO J8, 861 0, 926(1993); S.Altman: Proc. Natl. Acad. Sci. USA, 90. 10898(1993); P. たリボザイムの一つである。これは、天然においては自己切断反応(シス型)と Marschall, J.B.Thompson, F.Eckstein, Cell. Mol. Neurobiol., 14, 523(199 277 なかでもハンマーヘッド型リボザイムは、これまで最も良く研究がなされてき el, M. Tabler, Nucleic Acids Res 21, 2809(1993); R.C.Mulligan, Science 9715(1994); R.E.Christoffersen, J.J.Marr, J.Med. Chem. 38, 2023(1995) 65(1995) (1995); T. Tuschl, J.B. Thomson, F. Eckstein, Curr. Opin. Struct. Biol. ; J.D. Thompson, D. Macejak, L. Couture, D. T. Stinchcomb, Nat. Med. hntopf, E.L.Eaquivel, M.A.Brach, F.Herrmann, J.Mol. Med., 73, (1882)

リボザイムは、基質と相補的な塩基対を形成することによって、基質RNAと結合する。その後、反応に必須となるマグネシウム存在下で、基質RNA分子の切断が起こる。基質の認識は、Stem I とStem III の双方の基質結合領域がそれに

対応した基質配列と適切な塩基対を形成することによってなされるので、リボザイムの基質特異性は非常に高い。基質特異性が非常に高いと、細胞内に於いてほとんど副作用が起こらないため、リボザイムを遺伝子発現阻害剤として用いる場合の大きなメリットとなる。

しかし、このリボザイムの高い基質特異性にも例外がある。それは、ターゲットとなる基質がキメラ(二つ以上の異なる遺伝子配列が結合して一つの遺伝子として機能する)の場合である。本来、ある配列 (exon 2) に別の配列 (exon 3)がつながるベきところへ、スプライシングのミスなどが起きて別のキメラ配列(exon 1-exon 3)が誤って生じ、癌などの発病を招く場合、リボザイムを用いてこの異常なRNAの発現を抑制するという遺伝子治療が考えられる。それぞれの配列自体(exon 1、exon 2、exon 3)は正常なメッセージであるので、異常型のジャンクション配列 (exon 1-exon 3)をもつmRNAのみを特異的に切断し、その発

現を抑えることが重要となってくる。つまり、正常なmRNA (exon 2-exon 3)には

全く影響を及ぼさないリボザイムを用いなくてはならない。

9 高い切断活性を保ったまま、特異性の非常に高いリボ 正常な mRNAにも異常型のmRNAにも存在している。結局、正常型のmRNAへの非特異的な切 ション部位またはその近傍にリボザイムの切断配列であるNUX配列があったと しても、それがハンマーヘッド型リボザイムが好んで効率的に切断できる配列の はNUX (N; A, G, C, U X; A, C, U)) がある場合には、問題は生 じない。しかし、運良くジャンクション部位またはその近傍に、リボザイムの切 断配列があることはまれである。ジャンクション部位に切断可能な配列がない場 合、ジャンクション部位から遠く離れた部位にある切断配列をターゲットとする 断が起こってしまうことがどうしても避けられなくなる。また、たとえジャンク 従来のハンマーヘッド型リボザイムを用いてこのような遺伝子の発現抑制を行 ンクション部位に、リボザイムの切断可能な配列のGUCトリプレット(一般に おうとする場合、異常型のmRNAに特異的な配列部分であるexon 1-exon 3 のジャ トリプレット(GUCトリプレット)である可能性はさらに低い。従って、 しかない。しかしジャンクションから遠く離れた切断部位自体の配列は、 ザイムを構築することは困難であった。 ようなケースに於いても、

WO 99/46388

これは長す 邳 ンス部分の付加によってリボザイムの基質結合部分が長くなると、いったんリボ ため、酵素としてのターンオーバーができず切断効率が低下してしまう。さらに ぎるアンチセンス部分の配列が、正常型mRNAであるABLmRNA やBCRmRNA へ部分的 従って、本発明は、基質に対してアロステリックな切断活性を示す核酸酵素を ンマーヘッド型リボザイムでは後者のmRNAからの発現を特異的に阻害することが 断特異性を獲得しようとしたものがほとんどである。しかし、この長いアンチセ プのBCR-ABL 融合遺伝子が生じ、最終的に2種類のキメラmRNAがスプライシング ボザイムが切断できる配列(GUUトリプレット)があるが(K28ジャンクション [b3a2]mRNA)、もう一つのタイプのmRNAにはジャンクション部位の近傍に、有力 な切断配列が存在しない(L6 ジャンクション(b2a2)mRNA)。 そのため、従来のハ できない。現在までに報告されているL6mRNAからの異常なタンパク質(p210*cr-48 CML(慢性骨髄性白血病)やALL(急性リンパ性白血病)の原因となるフィ ラデルフィア染色体の形成がある。これらの白血病では染色体相互転座 t (9;22) ,q34;q11) が生じてBCR-ABL 融合遺伝子が生成する。CMLではK28translocat on とL6 translocationの2つのタイプの染色体相互転座により、2つのタイ そのうちのひとつにはBCR-4BL ジャンクション部位の近へにハンマーヘッド型リ りの発現をリボザイムで阻害する試みは、ハンマーヘッド型リボザイムに長い 実際このようなある特定のキメラ型mRNAが発病の原因になる有名な例として、 の結果生成する(K28ジャンクション(b3a2)mRNAとL6ジャンクション(b2a2)mRNA) の結果正常型mRNAへの非特異的切断が避けられないといった状況になっている。 アンチセンス部分を足し、それをジャンクション部位に相補的に結合させて、 に結合してしまい、リボザイムの基質認識力を甘くさせてしまうからである。 ザイムが基質に結合した後、基質から解離するステップが非常に遅くなる。 そうまでして獲得しようとした基質特異性は期待したほど高くない。 提供することを目的とする。

また、本発明は、前記の核酸酵素をコードするDNAを含む発現ベクターを提供することも目的とする。

さらに、本発明は、前記の核酸酵素または前記の核酸酵素をコードするDNAを含む発現ベクターを有効成分として含む医薬組成物を提供することも目的と

ç

4 2°

さらにまた、本発明は、前記の核酸酵素の製造方法および利用方法を提供することも目的とする。

発明の開示

本発明者らは、1つの活性中心領域と2つの基質結合領域を持ち、一方の基質結合領域で16(b2a2)キメラ型mRNAのジャンクション部位に結合し、もう一方の基質結合領域でジャンクション部位から遠く離れた効率の良い切断配列に結合して、その切断配列の後で基質を切断することができる核酸酵素(リボザイム)を構築し、本発明を完成させるに至った。すなわち、本発明は、標的RNAに対してアロステリックなRNA切断活性を示す核酸酵素を提供する。本発明の核酸酵素は、下記のヌクレオチド配列(10)を含むRNA分子および下記のヌクレオチド配列(20)を含むRNA分子および下記のヌクレオチド配列(20)を含むRNA分子および下記のスクレオチド配列(20)を含むRNA分子および下記のスクレオチド配列(20)

 $5'X_1' \dots X_b' Y_1' \dots Y_i' Z_i' \dots Z_j' 3'$ (10)

 $5' Z_1^2 \dots Z_n^2 Y_1^2 \dots Y_n^2 X_1^2 \dots X_k^2 3'$ (20)

(配列中、 $X_1^i \sim X_1^k$ 、 $X_2^i \sim X_2^k$ 、 $Y_1^i \sim Y_1^i$ 、 $Y_2^i \sim Y_2^s$ 、 $Z_1^i \sim Z_1^j$ および $Z_1^i \sim Z_2^s$ は、各々独立に、A、U、T、CまたはGのいずれかであり、

hおよびkは1以上の整数(例えば、1~100の整数)であり、

iおよびmは1以上の整数(例えば、1~100の整数)であり、

| は1以上の整数(例えば、1~100の整数)であり、

nは1以上の整数(例えば、1~100の整数)であり、

 $X_1^+ \cdots - X_1^*$ および $X_2^+ \cdots - X_2^*$ は、標的 ΩNA 中の特異的配列に相補的なヌクレオチド酚제ホネロ

 $Y_1' \cdots Y_1'および<math>Y_2' \cdots Y_2'$ は、ステムを形成するヌクレオチド配列であり、 $Z_1' \cdots Z_1'および<math>Z_2' \cdots Z_n'$ は、標的RNAの切断部位周辺の配列に相補的である領域および標的RNAの存在下でのみ RE^2 イオンを捕捉する空洞を形成しうる領域を

標的RNAとしては、疾病の原因となるキメラ型mRNAが挙げられる。このキメラ型mRNAは慢性骨髄性白血病の原因となるL6 (b2a2) キメラ型mRNAであってもよい。

会むヌクレオチド配列である。)

WO 99/46388

PCT/JP99/01187

本発明の核酸酵素は、例えば、下記のヌクレオチド配列(1)を含むRNA分子および下記のヌクレオチド配列(2)を含むKNA分子が形成する二量体の構造を有するとよい.

5'GAAGGGCUUC UUUCAUCGAA ACCCUGAGG 3' (1) (配列番号1)

5'CACUCACUGA UGAGAGUUAU UGAUGGUCAG 3'(2) (配列番号2)

(ただし、ヌクレオチド配列(1)の21番目~29番目のヌクレオチドおよびヌクレオチド配列(2)の17番目~31番目のヌクレオチドは標的RNAの切断部位周辺の配列に相補的になるように改変されてもよい。)

ヌクレオチド配列(1)および(2)のそれぞれの上流にリンカー配列およびtRNAVa 1プロモーター配列が付加されていてもよい。ヌクレオチド配列(1) の上流に付加されているリンカー配列は下記のヌクレオチド配列(3)を含み、ヌクレオチド配列(2)の上流に付加されているリンカー配列は下記のヌクレオチド配列(4)を含む、い、

5' AAA 3' (3)

5' UUU 3' (4)

また、ヌクレオチド配列(1)および(3)のそれぞれの上流に付加されているtRNA Valプロモーター配列は下記のヌクレオチド配列(5)を含むとよい。

5' ACCGUUGGUU UCCGUAGUGU AGUGGUUAUC ACGUUCGCCU AACACGCGAA AGGUCCCCGG

UUCGAAACCG GGCACUACAA AAACCAAC 3' (配列番号3)

さらに、ヌクレオチド配列(1)および(2)のそれぞれの下流に付加配列およびターミネーター配列が付加されていてもよい。ヌクレオチド配列(1)の下流に付加されている付加配列は下記のヌクレオチド配列(6)を含み、ヌクレオチド配列(2)の下流に付加されている付加配列は下記のヌクレオチド配列(7)を含み、ヌクレオチド配列(3)な含み、ヌクレオチド配列(1)および(2)のそれぞれの下流に付加されているターミネーター配列は下記のヌクレオチド配列(8)を含むとよい。

5' AAA 3' (6)

5' AACCGUA 3' (7)

5' UUUUU 3' (8)

標的RNAは疾病の原因となる異常型mRNAであってもよい。この異常型mRNAとし

ては、HIV(エイズ)、急性リンバ性白血病、急性前骨髄球性白血病などの原因となる異常型mKNAを挙げることができる。

また、本発明は、前記の核酸酵素をコードするDNAを含む発現ベクターを提供 - さらに、本発明は、前記の核酸酵素の製造方法であって、該核酸酵素をコードするDNAを含む発現ベクターDNAを鋳型として、BNAに転写することを特徴とする、前記の方法を提供する。

さらにまた、本発明は、前記の核酸酵素または該核酸酵素をコードするDNAを含む発現ベクターを有効成分として含む医薬組成物も提供する。この医薬組成物は、標的RNAが原因となって生じる疾病を予防および/または治療するためのものであるとよい。標的RNAが原因となって生じる疾病としては、フィラデルフィア染色体異常により生じる疾病、例えば、慢性骨髄性白血病が挙げられる。本発明の医薬組成物は、例えば、前記の核酸酵素を生体内で発現させて、疾病の原因となるキメラ型mRNAや異常型mRNAの発現の発現を抑制または阻害するために用いることができる。

さらに、本発明は、前記の核酸酵素を用いて、標的RNAを特異的に切断する方法を提供する。標的RNAは、疾病の原因となるキメラ型mRNAであってもよい。疾病としては、フィラデルフィア染色体異常により生じる疾病、例えば、慢性骨髄性白血病が挙げられる。あるいはまた、標的RNAは疾病の原因となる異常型mRNAであってもよい。このような疾病としては、HIV(エイズ)、急性リンバ性白血病、急性前骨髄球性白血病などを挙げることができる。

以下、本発明を詳細に説明する。

. ダイマー型ミニザイムの構築

まずハンマーヘッド型リボザイム、ミニザイム、および本明細書で紹介する非常に高活性なミニザイムであるダイマー型ミニザイムについて、設計と構築過程について述べる。

1-1 ハンマーヘッド型リボザイム 一金属酵素一

ミニザイムの話をする前に、まずハンマーヘッド型リボザイムについて簡単に mオス

WO 99/46388

PCT/JP99/01187

三つの 6); T.R.Cech, Annu. Rev. Biochem., 59, 543(1990); A.C.Foster, R.H.Symons, ーヘッド型リボザイムは、基質RNAを認識して結合するアンチセンス領域、そ NUXという配列の後 でのみ切断が起こることが分かった(M.Koizumi, S.Iwai, E.Ohtsuka, FEBS Let 9); R.Perriman, A.Delver, W.L.Gerlach, Gene, 113, 157(1992); T.Shimaya ハンマーヘッド型リボザイムとは、そのRNAの二次構造の形状がカナヅチの 用の両分野にわたって幅広い研究がなされており、RNA鎖切断活性を持つリボ ザイムのうちで代表的なものである。植物に感染するウイルスのウイロイド(現 在までに知られている最も小さな病原体、タンパク質の殻を持たない一本鎖の環 **状RNA)や、ウイルソイド(RNAウイルスの中に存在している、単独では感** 染性のない一本鎖の環状RNA)、またウイロイドの助けを借りることで植物に NAが見つかった。活性に必要な部分だけをin vitroで再構築した結果、高い相 同性のある二次構造、即ちハンマーヘッド構造が見いだされたのである(Haseho ff. J and W.L. Gerlach, Nature, 334, 585-591(1988) ; C.J. Hutchins, P.D. Ra のハンマーヘッド型リボザイム間で保存されている塩基配列が明らかになり、比 数的保存されている酵素活性領域と、そうでない基質領域とに、先程も述べたよ のすぐ近傍にあるループ(穴)から成る活性中心領域、ループに付随するstem-1 Gerlach, Nature, 334, 585-591(1988) ; C.J.Hutchins, P.D.Rathjen, A.C.For ster, R.H.Symons, Nucleic Acids. Res., 14, 3627-3640(1986))。 基礎及び応 感染するサテライトRNAなどにおいて、その複製過程から自己切断を起こすR Cell, 49, 211(1987) ; A.C. Jeffries, R.H. Symons, Nucleic Acids Res., 17, 頭(ハンマーヘッド)に似ているところから命名された(Hasehoff. J and M.L. t., 228(1988) ; D.E.Ruffer, G.D.Stormo, O.C.Uhlenbeck, Biochemistry, 29, ; J. Hasehoff, W. L. Gerlach, Mature, 334, 585(1988)) . これより、ハンマ 10695(1990); C.C. Sheldon, R.H. Symons, Nucleic Acids Res., 17, 5679(198 うなトランス化が行われた(図1) (0.C.Uhlenbeck, Nature, 328, 596(1987) 1371(1989); A.C.Foster, R.H.Symons, Cell, 50, 9(1987))。その後、種々 thjen, A.C.Forster, R.H.Symons, Nucleic Acids. Res., 14, 3627-3640(198 oolI 領域から形成される。さらに基質RNA上の切断可能配列として、 塩基配列の組(トリプレット)の法則性が明らかにされ、

; M. Zoumadakis, M. 最も切断効率の高いトリプレットがGUCという配列であり、通常このGUCが 基質と相補的に結合するアンチセンス領域の配列は、基質の塩基配列あわせて自 由に散定できる。つまりリボザイムはその設計次第で、あらゆるRNA配列を部 位特異的に切断できる。そのため、特定の遺伝子の発現阻害剤として、その遺伝 Tabler, Nucleic Acids Res., 23, 1192(1995)) 。このNUXルールのなかで、 リボザイムの切断配列として説明されることが多い。このトリプレット以外で、 子治療などへの応用が可能となったのである。いわばリボザイムは、 ma, S.Nishikawa, K.Taira, Biochemistry, 34, 3649(1995) NA鎖"を自由に切断できる"分子はさみ"だといえる。

Yarus, FASEB J7, 31(1993); T. Uchimaru, M. Uebayasi, K. Tanabe, K. Taira, F stem-loop11 領域を削って小型化することも可能となってくる (J.Goodchild, V. になるのだが、その詳細な反応機構への関与は十分には分かっていない。しかし、 明らかとなっている (S.C.Dahm, W.B.Derrick, O.C.Uhlenbeck, Biochemistry 3 90, 6498(1993); M.A.Pyle, Science 261, 709(1993); T.Uebayasi, T.Uchimaru, ここで重要なことは、これまで述べてきたハンマーヘッド型リボザイムのRN A鎖切断活性には、マグネシウムイオンなどの2価陽イオンが必須なことである。 このマグネシウムイオンは、リボザイムが活性型の構造を形成するためにも必要 これまでの実験結果から、実際にRNA鎖の切断を行っているのはマグネシウム イオンで、リボザイムは単に金属イオンの足場を提供しているにすぎないことが K.R.Kumar, D.M.Zhou, K.Taira, Nucleic Acids and Wolecular Biology 10, 21 7,(1996))。 つまり、リボザイムは金属酵素なのである。実際にその足場を提供 とらえるループ以外の領域は、様々な改変が可能である。例えば、基質結合領域 をRNAより安定なDNAに置き換えることも可能であるし、次に述べるように していると考えられる領域は、先程述べたハンマーヘッド型リボザイムを形成す る幾つかの領域のうち、切断部位の近傍のルーブ部分であり、この金属イオンを 4); S. Sawata, M. Komiyama, K. Taira, J. Am. Chem. Soc., 117, 2357(1995); P. 2, 13040(1993); J.A.Piccirilli, J.S.Vyle, Nature 361, 85(1993); Michael T. Koguma, T. Sawata, S. Shimayama, K. Taira, J. Org. Chem., 59, 7414(199 Sci. ASEB J7, 137(1993); T.A. Sreitz, J.A. Steitz, Proc. Natl. Acad.

WO 99/46388

PCT/JP99/01187

Kohli, Arch. Biochem. Biophys., 284, 386(1991) ; M.J.McCall, P.Hendry, P. uschl, F.Ekstein, Nucleic Acids Res., 21, 5600 (1993); D.Fu, F.Benseler, L.W.McLaughlin, J.Am. Chem. Soc., 116, 4591(1994); D.M.Long, O.C.Uhlen A.Jennings, Pros. Natl. Acad. Sci. USA, 89, 5710(1992); J.B.Thompson, T. 91, 6977(1994)) beck, Proc. Natl. Acad. Sci. USA,

1-2 ミニザイム

ダイマー型ミニザイムの構築過程を図2に示す。この図を参照しながらミニザ イムおよびダイマー型ミニザイムの構築過程について説明する、

を短鎖のリンカーで置き換えることによって構築されてきた。初期の試みとして、 分の1以下で、1000分の1以下のものも少なくない(J.Goodchild, V.Kohli, Ar ch. Biochem. Biophys., 284, 386(1991); M.J.McCall, P.Hendry, P.A.Jennin Nucleic Acids Res., 21, 5600 (1993); D.Fu, F.Benseler, L.W.Mc る。この小型化は通常、アンチセンス領域(stem I およびstem111)、活性中心領 域、stem-loop11 領域からなるハンマーヘッド型リボザイムのstem-loop11 領域 stem-loop11 領域の削除が行われた。これは、ハンマーヘッド型リボザイムのそ れぞれの領域が、切断活性にどのような役割をはたしているのかを調べるために 行われた。この結果、完全にstem-loop11 領域を削除してしまうと、切断活性は チドで代替する模索が行われた。例えば、stem-loopII 領域を全て削ってしまわ ずに、この部分を4残基のヌクレオチド(テトラループ)で置換することによっ て、ミニザイムを構築する試みなどである。しかし結局、近年報告されている詳 細な解析から、stem-loop11 領域の核酸塩基の数を減少させると、その切断活性 数々のミニザイムは、その切断活性が野生型ハンマーヘッド型リボザイムの 100 91, 6977(1994))。 stem-loop11 領域の削除また **著しく低下することが明らかになった。以降、切断活性を保持しつつ、小型化し** たリボザイムを構築するために、stem-loop11 領域をさまざまな長さのヌクレオ ミニザイムとは前述したように、小型化したハンマーヘッド型リボザイムであ gs, Pros. Natl. Acad. Sci. USA, 89, 5710(1992); J.B. Thompson, T. Tuschl, Laughlin, J.Am. Chem. Soc., 116, 4591(1994) ; D.M.Long, O.C.Uhlenbeck, に著しい影響を及ぼすことが明らかとなった。実際に、今まで報告されてきた Natl. Acad. Sci. USA,

は減少は、リボザイムが切断反応を行う上で必要となる活性型の構造をこわして しまうことにつながると考えられている。これより、ミニザイムは従来のハンマ **ーヘッド型リボザイムに比べて、抗ウイルス剤や遺伝子治療への応用に実用的で** はないと考えられた。そして、この分野の多くの研究者達の興味をそれほど引く ものではなくなっていた。

- 高活性なミニザイム 1-3 ダイマー型ミニザイムの構築

しかしダイマー型構造をとらずに、従来のハンマーヘッド型リボザイムのように 質と塩基対を形成できないように設計されているため、正しく結合できず切断反 一;同じ配列を持つ同一分子が、2つ結合してダイマーを形成する)として機能 することが塩基の配列上考えられたのである。そこで、ダイマーとして作用する のかどうかを調べるために、ダイマー構造をとらない限り、活性が得られないよ うなヘテロダイマー型ミニザイムをデザインした(図2の下段)。このヘテロダ 1分子で基質と結合しようとすると、片方の基質結合領域の配列(アンチセンス (S.V.Amontov, K.Taira, J.Am. Chem. Soc., 118, 1624(1996))。 このミニザ それは高機度領域では全く違った機構で働くこと、つまりダイマー(ホモダイマ ニザイム・Left)とMzR (ミニザイム・Right)が結合してダイマーを形成する。 イムの高活性の理由として、濃度変化の実験過程においてある示唆が得られた。 ムが1分間に、2.5分子の基質を切断することを意味する))ものが得られた 領域にある基質と相補的に結合するstem I またはstemIII のどちらか) しか、 いにも非常に高活性 (野生型の60%以上 (k.a. =2.5min-': 1分子のリボザイ さて、1-2 で述べたようなミニザイムの構築を本発明者らも行ったところ、 イマー型ミニザイムは、それぞれ違う配列を持ったヘテロな分子であるMzL 応は超こらないようになっている。

実際に切断実験を行ってみたところ、明らかな切断活性が観測された。そして、 ザイムと同様、マグネシウムイオンを必要とし、ダイマーを形成するstemll部分 ダイマーとして機能していたこと が明らかとなった (S.V.Amontov, K.Taira, J.Am. Chem. Soc., 118, 1624(199 6))。この新しく構築されたダイマー型ミニザイムは、ハンマーヘッド型リボ のG-C塩基対が重要となる (S.V.Amontov, K.Taira, J.Am. Chem. Soc., 118 これまで著しく高活性を示したミニザイムは、

WO 99/46388

PCT/JP99/01187

1624(1996) ; S.V.Amontov, S.Nishikawa, K.Taira, FEBS Lett., 386, 99(199

2.基質RNA分子を同時に2カ所で切断するダイマー型ミニザイムの構築

ム"の構築過程について述べる (T.Kuwabara, S.V.Amontov, M.Warashina, J.Oh まったく新しいタイプの リポザイムである"一つの基質を同時に二箇所で切断するダイマー型ミニザイ kawa, K.Taira, Nucleic Acids Res., 24, 2302(1996)) ここではこのダイマー型ミニザイム特性を生かした、

2-1 基質RNA分子を同時に2カ所で切断するリボザイムのメリット

であるリボザイムにとって、切断活性に必要なマグネシウムイオンをとらえる足 場となる活性中心領域、そして、基質RNA配列のどこを切るかを決める基質結 このダイマー型 以上のようにして構築されたダイマー型ミニザイムは、図3に示すようにそれ ぞれ違う配列を持ったヘテロな分子であるMzL とMzR が結合してダイマーを形成 する。この図の点線より上側と下側に分けて眺めてみていただきたい。金属酵素 ミニザイムは1つの基質に同時に2カ所へ結合し、その2箇所のNUXトリプレ 合領域が、双方に独立して一つずつあることに気付く。すると、 ットの後で基質を切断できるのではないかと考えられた。

結合してしまえば、他方の基質結合領域と基質との結合は、いってみれば同一分 子内の反応になる。従って、その衝突確率は分子間のものよりも著しく増大する 従来のリボザイムに比べて、基質の切断効率が高くなることである。しかしそれ 以外にもう一つメリットがある。それは、ダイマー型ミニザイムの一方の基質結 箇所を切断できる可能性を持つ。つまり、片方の基質結合領域がいったん基質に 合領域が、基質と非常に結合しやすい(すなわち、基質とリボザイムの結合のk この構築のメリットは、一つは当然のことながら、切断部位が1箇所しかない 以外で、たとえ高いk。値を示しても(すなわち、基質とくっつきにくい、不安 定な配列であっても)、kan値の高いトリブレットを選択する限り効率よく2 (値が十分に低い) 配列に設定できれば、他方はリボザイムの切断部位がGUC ことになるからたある。

2-2 BCR-ABL キメラmRNAを特異的に切断するダイマー型ミニザイム

ダイマー型ミニザイムは、そのダイマー構造ゆえに活性中心領域と基質結合領

WO 99/46388

WO 99/46388

(図4)。いわば、片方の基質結合領域は異常型の基質を認識する"目"として 域を2つずつ拵っている。そこで、一方の基質結合領域で異常なBCR-ABL chimer ic mRNA のジャンクション部位に結合し、もう一方の基質結合領域で、ジャンク ションから遠く離れた箇所にある、最も効率のよい切断配列に結合し、その(G UC)トリプレットの後で基質を切断するというシステムの構築が可能である 働き、もう片方の基質結合領域が基質を切断するリボザイムの働きの"実" う腕として機能するわけである。

と、切断する部分の配列は正常型mRNAであるABLmRNA やBCRmRNA 上にもあるので、 じることに変わりはなくなってしまう。そうかといってstem11部分の塩基対の安 "目"として基質を認識するもう片方の基質結合領域が機 能する、しないにかかわらず、対象となる基質領域に結合してしまう。そうする 結局従来のハンマーヘッド型リボザイムで問題となっている非特異的な切断が生 定性が低過ぎると、活性型のダイマー構造が形成しにくくなり、基質切断効率の 克服できるような、微妙なstem11部分の塩基対の安定性の獲得と異常mRNA存在下 この構築で重要なことは、ダイマー型ミニザイムの一方の基質結合領域が異常 ムとして活性を発現できる安定なダイマー構造を形成する点にある。このダイマ 一の安定性を左右するのが、stemll部分の塩基対の形成にある。この塩基対の安 マー構造を形成してしまう。その結果、ダイマー型ミニザイムの基質を切断する 非常に低い、従来のミニザイムと同様の問題点が生じてくる。この双方の問題を このシステムの構 なBCR-ABL キメラmRNAのジャンクション部位に結合したときに初めて、リボザイ 定性が高過ぎると、ダイマー型ミニザイムは(基質がなくても)それ自体でダイ でのみ活性型リボザイムを形成するような塩基配列の工夫が、 築の鍵を握っているのである。 側の基質結合領域が、

またさらに、このシステムの構築の場合、異常型のmRNAを認識して特異的に結 合する側は、基質を切断するわけではない。そこでRNA鎖切断に必要な、金属 イオンを捕らえる足場を提供する活性中心領域の配列を削ることができる。よっ これまでのダイマー型ミニザイムをさらに小型化することができる(図4の 右)。この、さらに小型化したダイマー型ミニザイムを極めて活性の低い単量体 形態の従来のミニザイムと区別するため、我々はマキシザイム"maxizyme"と名

の、非特異的切断は起こらない。また、基質を切断する側の基質結合領域が、単 正常型ABLmRNA の存在下では、不活性型の構造しかできないように設計されてい る。ジャンクションを認識する側の基質結合領域に正常型ABLmRNA 配列がやって きた場合、不活性型構造をとる(図5の下段の上側に示した構造)。ハンマーヘ ッド型リボザイムの切断活性にとって必須なマグネシウムイオンを捕らえる活性 中心部位の構造が、活性型ダイマー構造に図示したものと違って、崩れているの がわかると思う。この結果、このダイマー型ミニザイムによる正常型ABLmRNA へ 独で基質と結合したとしても(※この場合、結合する基質としては正常型ABLmRN A とBCR-ABL キメラmRNAの双方が考えられる。)、もう一方の基質結合領域に標 shaped (xの形をした、ヘテロ二量体形の)そして<u>i</u>ntelligent (インテリジェ するBCR-ABL キメラmRNAと、ダイマー型ミニザイムの2カ所の基質結合領域が正 しく結合したときのみに形成される(図5の中段に表示)。ターゲットとしない 約のBCR-ABL キメラmRNAの配列がこない限り、図に示したような活性部位が閉じ た構造を形成する(図5の下段の下側に示した構造)。この結果、切断に必須と 図5に示す。この図を見てわかるように、活性型ダイマー構造は、ターゲットと 察にBCR-ABLキメラmRNAを特異的に切断するようにデザインしたマキシザイムを ントな、アロステリックに制御可能な)ribozyme(リボザイム)を意味する。 "maxizyme"は、minimized (最小化された)、 active (活性な) なるマグネシウムイオンを捕らえられないので、切断は起こらない。

れはフィラデルフィア染色体陽性を伴う、造血幹細胞のクローン性(clonal)骨髄 (q34; q11)は、K28 転座および L6 転座の2種類に分けられ、それらはBCR-ABL 軸合遺伝子の形成をもたらす。これらの遺伝子は2種類のmRNAをコードする。 すなわち、b3a2(BCRエキソン3およびABLエキソン2からなる)およびb2a2(BC 3エキソン2およびABLエキソン2からなる)である(図9;Rowley, 1973; Bart am 5, 1983; Heisterkamp 5, 1983; Groffen 5, 1984; Shtivelman 5, 1985, 1 増殖疾患である (NowellおよびHungerford, 1960)。染色体の相互転座 t(9; 22) BCR-ABL融合m R N A の翻訳産物は慢性骨髄性白血病 (CML)を引き起こす。こ 386)。これらのmRNAは両方とも210 kDa のタンパク質 (p210^{eck-ABL}) に翻訳 される。これは上記悪性細胞の表現型に独特のものである(Konopkaら, 1984)、

.

93, 1994; Wright S., 1993; Kearney S., 1995; Leopold S., 1995; Kronenwett S., クション配列を標的にする必要がある。そうしなければ、該キメラ RNAの一部 を共有する正常なRNAもりボザイムによって切断されてしまい、宿主細胞に書 メラジャンクションから3ヌクレオチド上流に位置している。したがって、従来 の方法で設計されたパンマーヘッド型リボザイムは、K28 転座から生じた異常な いくつかの例が報告されている (Shoreら, 1993; Snyderら, 1993; Langeら, 19 プレットがハンマーヘッド型リボザイムによる切断を最も受けやすく、該ジャン z;図10)、異常型BCR-ABL mRNAの配列の一部を共有する正常型ABL mR キメラRNAを破壊することができるリボザイムを設計するためには、ジャン mRNAを特異的に切断すると予想されうるであろう。実際、そのような切断の 問題のジャンクションから 2~3 ヌクレオチド以内の所にはハンマーヘッド型リ ボザイムが切断可能なトリプレット配列は存在しない。一般的には、GUCトリ a2の場合は、リボザイムによる潜在的な切断部位であるGUUトリプレットがキ 1996)。対照的に、L6転座および幾つかのK28 転座から生じるb2a2配列の場合は、 クションから45ヌクレオチド離れた所にこのトリプレットが1つ存在している。 もしこのGUCトリプレットがリボザイムによって切断されるならば(wtR a2 mRNAを切断しうるリボザイムを設計するにあたって、我々は正常型ABL NAもまた該リボザイムによって切断され、宿主細胞に害を与えるであろう。 を与えることになる(図9、下段のパネル)。K28 BCR-ABLキメラRNA配列 mRNAの切断を確実に回避しなければならない。

LG BCR-ABL (b2a2) mRNAの切断をめざした以前の試みは、長いアンチセンスアームとリボザイム配列の組合せを必要とした(Pachukら, 1994; Jamesら, 1996)。ジャンクション領域に結合し、切断部位を越えて若干の距離だけそこを覆う潜在的能力を有する約10~30スクレオチドのアンチセンス配列がハンマーヘッド型リボザイムの基質結合部位の一方に連結された。アニーリングアームの長さはリボザイムの活性にとって重要である。なぜなら、その長さは切断反応の効率および特異性の両方に影響するからである。我々は、上記のアンチセンス付加型リボザイムがin vitroにおいて正常型ABL mRNAを非特異的に切断すること(Kumbara5, 1997)を示した。それは、長さ3ヌクレオチド程の小さな結合アーム

WO 99/46388

PCT/JP99/0118

さえあればハンマーヘッド型リボザイムが切断能を有するためである(Hertelら,1996; Birikhら,1997)。そこで我々は、L6 BCR-ABL (b2a2) mRNAのジャンクション配列が存在する場合にのみ触媒的にコンピテントな構造を形成する新規なマキシザイムを設計できないだろうかと考えたのである。

本発明のマキシザイムは、DNA/RNA 合成機 (モデル394; Applied Biosystems, Division of Perkin Elmer Co. (ABI), Foster City, CA) で化学合成したRNAを、脱保護、脱塩、PAGEによる精製を行うことにより、製造することができる。このマキシザイムの切断活性および基質特異性は、以下のようにして評価することができる。異常型BCR-ABL mRNA (120mer)、正常型ABL mRNA (92mer)の2つの基質RNAをラジオアイソトーブ (32p)で標識したものを用意する。これとマキシザイム、マグネシウムイオンをTris-HCI (pH 8.0) 緩衝液中に混合させ、37℃で反応させる。反応後、その反応液をPAGEにより分離し、切断の有無をBAS2000イメージアナライザーで検出し、ABL mRNAは切らずにBCR-ABL mRNAを特異的に切断していることの評価を行う。

後述の実施例1および3に記載のように、実際にこのマキシザイムを合成して、基質特異性の評価を行ったところ、正常型mRNAへの非特異的切断はin vitroにおいて全く起こらなかった。またその切断効率の評価は、BCR-ABL キメラmRNAをターゲットとした、現在までに報告されているアンチセンス付加タイプのハンマーヘッド型リボザイムや、他のミニザイムと比べても高かった。

3. ダイマー型ミニザイムの遺伝子治療への応用

次に、得られたマキシザイムの、遺伝子治療への応用に向けた利用法の確立およびin vivo での評価について説明する。

生体内でリボザイムを発現させる場合、外部から合成リボザイムをカチオン性の脂質膜などで包んで導入する方法(Malone, RW. Felgner, PL., Vermn, IM (1989) Proc. Natl. Acad. Sci., USA 86, 6077)と、ベクターDNA (ウイルスペクターなどを用いて)として導入して細胞内で発現させる方法 (Friedmann. T., Roblin. R. (1972) Science 175, 949)の2種類がある。後者の方法を用いるにあたっては使用するプロモーターや転写物の安定性を考慮する必要があるので、ダイマー型ミニザイムについて検討することとした。

ゼ111 のプロモーター、ターミネーター配列及びマキシザイムの配列を連結した もの(tRNA**1-MzL, tRNA**1-MzR)をpUC19 (Takara), pGREEN LANTERN (ライフテッ クオリエンタル株式会社製)、pHaMDR(HUMAN GENE THERAPY 6:905-915 (July 本発明のリボザイムをコードするDNAを含む発現ベクターは、RNA ポリメラー 995)) などのベクターに組み込むことにより、作製することができる。 上記のようにして作製した発現ベクターは、以下のようにして細胞内へ導入す ることができる。

①リポフェクション(Lipofection) 法

細胞の表面は負に荷電している。そこで、目的のベクター(DNA2本鎖環状プラ スミド) とカチオン性の脂質 (リポフェクション試薬 (リポフェクチンなど))と で複合体をつくり、それを細胞内へ導入する。

②ウイルスベクター液

①に比べ効率が高い。ウイルスの遺伝情報のうち遺伝子発現に必要な部分のみ を残し、そこへ治療効果をもつ配列(tRNA**i-MzL、tRNA**i-MzR のDNA 配列)を組 みこんだものを用意する。このベクターをウイルスの力によっで目的細胞のDNA に組み込む。 ベクター配列中のマキシザイムには、RNA ポリメラーゼIII のプロモーター配 たベクターDNA から、元来細胞内で機能しているRNA ポリメラーゼIII の働きに 列が付加されている(tRNA***-MzL、tRNA***-MzR のDNA 配列)。 細胞内に導入され より、治療効果をもつRNA 配列(tRNA^{val}-MzL, tRNA^{val}-MzR)が転写されることによ り、高い発現力でリボザイムが発現される、

外のプロモーター配列)として付加されてくる。後述の実施例2に記載のように、 実際にマキシザイムの発現ベクターを構築したのであるが、このベクターから発 の上流に必要となってくる。pollllの発現系 (Geiduschek, EP., Tocchini-Vale ntin, GP. Transciption by RNA polymerase III, Anun. Rev. Biochem. 57, 87 ザイムの配列がつながっている図6に示したものである。この図を見ると、tRNA 細胞内でリボザイムを高発現させるには、プロモーター配列がリボザイム配列 3)を用いる場合、この発現系ではtRNA" 配列が余分な配列 (リボザイム部分以 現するリボザイム成分は、tRNA** 配列の下流に短鎖のリンカーを介してマキシ

WO 99/46388

た領域)がstem11部分で塩基対を形成して、初めてダイマー型構造ができ、切断 活性を発現する。その、それぞれのNcl 配列とNck 配列の前に、その5倍以上の それぞれ一つ(図5の活性型ダイマー構造参照)。 図6中アンダーラインで示し れた。マキシザイムは、MzL 配列とMzR 配列(MzL :ミニザイム・レフト、MzR :ミニザイム・ライト。マキシザイムを形成する2つのダイマー成分のうちの 141 配列がマキシザイムにとって非常に大きな立体障害となり得ることが予想さ 鎖長をもつ余分なtRNA™ 配列が付加されているのだから立体障害のためにダイ マーが形成しない可能性があった。

た、正常型ABLmZNA への非特異的切断は全く起こらず、BCR-ABL キメラmRNAに対 シザイムについて、切断活性および基質特異性の評価をin vitroで行った(実施 が付加したタイプのマキシザイムにおいても明らかな切断活性が確認できた。ま して非常に高い特異性をもっていることも確認できた。なお、それぞれ片方のマ ようなダイマー構造は形成できないため基質のBCR-ABL mRNAの切断は起こらなか 例3)。基質としてBCR-ABL キメラmRNA(121mer)、また比較として正常型mRNA キシザイムの形成成分tRNA**! -N2J とtRNA**! -N2R だけでは、活性を持ち得る としてABLmRNA (97mer)を用意し、50mM Tris-HCl(pH8.0)、25mM MgCl2、37℃ で切断反応を行った結果を図7に示す。すると、驚くべきことに、tRNA**| 配列 tRNA**1 配列が付加したタイプのマキシザイムと、何も余分な配列のないマキ

のである。生体内のRNA分解酵素に対してマキシザイムの安定性を強化するtR 非常に高い基質特異性を持ち、 付加したタイプのマキシザイムと、何も余分な配列のないマキシザイムの切断効 率の比較を行ってみた。その結果を図8に示すが、これより我々は非常に興味深 い結果を得た。何んと両者のkar(値およびkatap)値がほとんど同じ値になった のである。もう一度繰り返すが、tRNA**i 配列が付加したタイプのマキシザイム さらに短い鎖長の基質を用いた詳細な反応速度論的解析から、tRNA"^{al} 配列が NA**| 配列が、全くマキシザイムの切断反応に影響を及ぼさないことがわかった は、何も余分な配列のないマシキザイムと同様の、 同等の切断活性も有することが明らかとなった。

また、我々は 52a2 mRNAを特異的に切断することに興味があったので、

.

白血病患者由来のBV173 細胞はマキシザイムに応答してアポトーシスを起こした。 ンサーアームによって活性をアロステリックに制御しうる新規なマキシザイムは、 6)および我々の新規なマキシザイムの培養細胞における特異性および触媒活性を みならず培養細胞においても完全なアロステリック制御下にある、人為的に作製 マーヘッド型リボザイム (asRz52およびasRz81; Pachukら, 1994; Jamesら, 199 16 BCR-ABLキメラ(b2a2)mRNAの切断について比較した (実施例10)。その 異的にアポトーシスを引き起こした。我々が知るかぎりでは、これはin vitroの されたリボザイムの最初の実例である。異常型のmRNAを特異的に認識するセ 来のハンマーヘッド型リボザイム(wtRz)、2つのアンチセンス付加型ハン なマキシザイムの活性をin vitroのみならず培養細胞においてもアロステリック に制御できることを見いだした(図12および18~21)。 マキシザイムの切 対照的に、従来のリボザイムはBaF3/p210tdr-Ma細胞およびH9細胞の両方に非特 新活性によるp210^{acs-ast}タンパク質の特異的減少は、不活性なプロカスパーゼ(pr ocaspase)-3の切断をもたらし、活性なカスパーゼ(caspase)-3 を生じ、その結 結果、L6 BCR-ABL mRNAのジャンクション配列の存在によって、我々の新規 異常なキメラ標的を破壊するための強力な道具であるに相違なく、またCMLの治 果 BaF3/p210^{tera-tat}細胞のアポトーシスが起こった。同様に、正常細胞ではなく、 療のための将来の遺伝子療法への基礎を提供するであろう。

リボザイム配列の上流にリンカー配列およびプロモーター配列が、下流にターミネーター配列が付加されていてもよいマキシザイムは、T7系の酵素を用いて、上記の配列をコードするDNA を鋳型として、RNA に転写させることにより製造することもできる。

tRNA**!-MzL、tRNA**!-MzRのDNA 配列の前にT7 RNAポリメラーゼのプロモーターとなる配列を付加した鋳型DNA を用意する。この鋳型DNA とT7 RNAポリメラーゼ反応液(Buffer、酵素、NTPs)を混合し、37℃で2~4時間反応を行い、PAGEにより精製する。

本発明のマキシザイムを用いて、慢性骨髄性白血病の原因となるL6(b2a2)キメラ型mRNAを特異的に切断することができる。その方法の一例を以下に記載する。マキシザイムは2つの基質結合領域をもつ。片方でL6(b2a2)キメラ型mRNAに特異

的なジャンクション部位に結合し、他方で遠く(45 残基) 離れた部位にある切断可能なGUC トリプレットを、マグネシウムイオン存在下で特異的に切断できる。これにより、正常型mRNAには何ら影響を与えず、BCR-ABL mRNAからp210ma-um が発現することを阻害できる。

本発明のマキシザイムは、医薬、特に、フィラデルフィア染色体異常が生じる 疾患を予防および/または治療する医薬として使用することができる。 生体内のRNA ポリメラーゼ(RNAポリメラーゼ111 など)のプロモーター配列を含むマキシザイムのDNA 配列を組み込んだ導入用ベクターを作製する。CML 患者からp210gcz-Nu を発現している細胞をとり出し、細胞にベクターを投与、培養する。それを再び生体内へ戻す。

導入用ベクターの代用として、マシキザイムRNA に化学修飾をほどこし、生体内のRNA 分解酵素に対して抵抗性をもたせたRNA を、キャリアー(カチオン性の脂質、リポソームなど)などで、細胞内へ導入してもよい。

本明細書は、本願の優先権の基礎である日本国特許出願特願平10-60969号および特願平10-311098号の明細書および図面に記載される内容を包含する。

図面の簡単な説明

図1は、ハンマーヘッド型リボザイムの二次構造を示す。

図2は、ダイマー型ミニザイムの構築過程を示す。

図3は、ヘテロダイマー型ミニザイムの二次構造を示す。

図4は、BCR-ABL キメラmRNAをターゲットとしたダイマー型ミニザイムとマキシザイムの構造と作用を示す。図4右のマキシザイムの構造において、Y同志がステムを形成し、Xは標的BNA中の特異的配列を認識する。

図5は、BCR-ABL キメラmRNAと正常型ABLmRNA のジャンクション付近の配列及び活性型マキシザイムの二次構造並びに不活性型マキシザイムの二次構造を示す.

図6は、tRNAval 配列を付加したマキシザイムの二次構造を示す。点線の枠内に示したWzL、WzR 配列のみの場合の二次構造をできるだけ崩さないようにtRNAval 配列を付加した(アンダーラインで示した部分がマキシザイムの配列)。

図7は、BCR-ABL キメラmRNAをターゲットとする、tRNA**! 配列を付加した あるいは付加しないタイプのマキシザイムの切断活性を示す 図8は、BCR-ABL キメラmRNAをターゲットとする、tRNA**i 配列を付加した あるいは付加しないタイプのマキシザイムの速度パラメーターを示す。

トがリボザイムによって切断部位として選択されるならば、異常型BCR-ABL RN A配列の一部を共有する正常型ABL mRNAもまたそのリボザイムによって切断 され、宿主細胞に害を与えるであろう (下段パネル)。 nts はヌクレオチドを表 ンクションから45スクレオチド離れた所に位置している。このようなトリブレッ Aにおいては、ハンマーヘッド型リボザイムが切断可能なトリプレット配列はBC ムによって最も切断されやすいトリプレットであるGUCトリプレットが、ジャ イシング経路を示す。L6転座および幾つかのK28転座から生じるL6 b2a2 mRN 図9は、BCR-ABL転座および融合mRNAを示す。慢性骨髄性白血病を伴う 2種類の染色体転座 (K28型 (上段パネル) およびL6型 (下段パネル)]、およ びそれらに対応する融合mRNAを示す。白の四角はBCRエキソンを、黒の四角 はABLエキソン2を表す。BCRエキソンとABLエキソンを結ぶ点線は選択的スプラ R-ABLジャンクションの近くには存在しない。一般にハンマーヘッド型リボザイ

図10は、従来のハンマーヘッド型リボザイムおよびアンチセンス付加型リ による切断部位はwtRzによるそれと同じである。マキシザイムの認識部位を矢印 ボザイムのヌクレオチド配列を示す。ジャンクション付近のL6 BCR-ABL m.R.N Aの配列を拡大してある。アンチセンス付加型リボザイム(asRz81およびasRz5 2) およびコントロールリボザイム(wtkz)による切断部位を示す。マキシザイム

下(上段パネル)でのみ活性なコンホメーションを取らなければならない。他方、 異性を達成するためには、マキシザイムは異常型BCR-ABL ジャンクションの存在 ル)では、そのコンホメーションは不活性のままでなければならない。M~Lお 図11は、活性および不活性なマキシザイムの二次構造を示す。高い基質特 正常型ABL mRNAの存在下またはBCR-ABLジャンクションの不在下(下段パネ よびM z R は、異常型b2a2 m R N A の存在または不在によって、上記のような

WO 99/46388

PCT/JP99/01187

コンホメーション変化が起こるのを可能としなければならない。

図12は、in vitroにおけるマキシザイム活性のアロステリック制御を示す。 常型ABL配列(ABL20量体)または短い28量体のBCR-ABL配列(BCR-ABL 28量体)] を調べた。MzLおよび/またはMzRを0.1 μM の濃度で、2 nM の5'末端を³ の存在下でインキュベートすることによって、マキシザイム媒介切断の特異性 **基質(S16)と共にアロステリックエフェクター分子(すなわち、短い20量体の正** ℉ で標識した基質(S16)と共にインキュベートした。エフェクター(20畳体ABL t RNA*4によって駆動される構成要案を、5′末端を*Pで標識した短い16量体 または28量体BCR-ABL)を用いた場合、その濃度は1 μM であった。

図13は、HeLa細胞におけるtRNA**-酵素の活性を測定するためのアッ セイ系を示す。 図14は、キメラBCR-ABL-ルシフェラーゼ遺伝子およびABL-ルシフェラーゼ スフェクション効率を参考にして、ルシフェラーゼ活性を標準化した(実施例7 遺伝子に対するtRNA"が-酵素の効果を示す。同時トランスフェクションした *B-ガラクトシダーゼ遺伝子の*活性をモニターすることによって測定したトラン の「実験方法」参照)。

図15は、BaF3細胞、およびヒトL6 BCR-ABL mRNAを発現する形質導入さ れたBaF3細胞のIL-3への依存を図式的に示す。 図16は、MzL転写物の細胞質への輸送の経過を示す。Nは核画分を、Cは 細胞質画分を表す。

図17は、発現されたtRNA*-|| 薛素の定常レベルおよびそれらの局在を示 す。Nは核画分を、Cは細胞質画分を表す

飽の生存率の測定結果を示す。 t RNA"⁴-酵素を発現するBV173細胞の生存率も 図18は、tRNA*1-酵素を形質導入したBaF3/p210^{BGR-AB}細胞およびH9細

図19は、tRNA"u-酵素を形質導入したBaF3/p210bGr-Abi細胞およびH9細 **抱の形態を示す。** 図20は、BaF3/p210⁶⁰³⁻⁴⁰¹細胞中のL6 BCR-ABL mRNA切断産物のノーザン ブロット分析による直接検出の結果を示す。

図21は、カスパーゼ-3の32-kDa前駆体(プロカスパーゼ-3)およびカスパーゼ-3そのものを認識する抗体 a CPP32 を用いたイムノブロット分析の結果を示すマキシザイムによるp210******タンパク質の特異的枯渇が起こった後、不活性なプロカスパーゼ-3の切断が活性なカスパーゼ-3を生じた。

図22は、マキシザイムを導入していない腫瘍細胞を注入したマウス (コントロール; Mz(-)) とマキシザイムを導入した腫瘍細胞を注入したマウス (マキシザイム; Mz(+)) の解剖前の写真である。

図23は、マキシザイムを導入していない腫瘍細胞を注入したマウス (コントロール; Mz(-)) とマキシザイムを導入した腫瘍細胞を注入したマウス (マキシザイム; Mz(+)) の脾臓の写真である。

図24は、マキシザイムを導入していない腫瘍細胞を注入したマウス (コントロール; Mz(-)) とマキシザイムを導入した腫瘍細胞を注入したマウス (マキシザイム; Mz(+)) の胸腺周辺のリンパ節の写真である。

図25は、マキシザイムを導入していない腫瘍細胞を注入したマウス(コントロール;Mz(-))とマキシザイムを導入した腫瘍細胞を注入したマウス(マキシザイム;Mz(+))の骨髄の写真である。

発明を実施するための最良の形態

本発明を以下の実施例によりさらに具体的に説明する。本発明の範囲は、これらの実施例に限定されることはない。

[実施例1] マキシザイムの合成

保護基のついた担体Si基が固定化してあるCPG カラムを用いて、配列番号 1 および2のマキシザイムの配列に従い、脱トリチル基、カップリング、キャッピング、酸化を繰り返し、RNA をDNA/RNA 合成機(モデル394; Applied Biosystems, Foster City, CA)で化学合成した。合成終了後、カラムよりRNA をNHgOH/EtOHで溶出し、脱保護、脱塩処理を行った。最終的に20% 変性PAGEにて目的の鎖長のDNA を単離した

(実施例2) tRNA** 配列が付加したタイプのマキシザイムの製造

trnavai-MzL、trnavai-MzrのDna 商品列(図6のtrnavai-MzL、trnavai-Mzrの商品列)

の前にT7 RNAポリメラーゼのプロモーター配列S,TAATACGACTCACTATA3'(配列番号)とGGG の配列を付加した、2本鎖のDNA を用意した。

これを鋳型DNA として、試験管内に、T7 RNAボリメラーゼバッファー、T7 RNAボリメラーゼ、鋳型DNA およびNTP を入れ、37℃で2~4時間転写反応を行った。反応後、5~8%変性PAGEにより、目的の鎖長のRNA を単離、精製した。

(実施例3) tRNA^{val} 配列が付加したあるいは付加しないタイプのマキシザイム の切断活性および基質特異性の評価(jn vitro 試験) 基質となるBCR-ABL のジャンクションを含むBCR-ABL 基質、比較として、正常型ABL exon 1-ABL exon 2 のジャンクション配列をもつABL 基質を用意した。これらの基質をラジオアイソトーブ**P で5'未端標識した。この標識した基質とリボザイムを次のように混ぜ合わせた (試験管内)。

50 mM Tris-HCl (pH 8.0)

25 mM MgCl₂

1 uM マキシザイム

(又はtRNAval付加型マキシザイム)

2 μM [α- ²⁸]標識した基質 (BCR-ABL 基質またはABL 基質)

37℃で60分間反応させた後、8~20% 変性PAGEで反応生成物(切断され、短い鎖長となったもの)を検出した。マキシザイムはBCR-ABL 基質のみを切断するので、ABL 基質からは切断生成物は検出されず、BCR-ABL 基質を加えたときのみ、切断による生成物が検出された(図7)。

(実施例4) IRNA** 配列が付加したあるいは付加していないタイプのマキシザ <u>イムの反応速度論的解析</u> 速度論的解析を容易に行うために、短い鎖長の基質、S16 (GUCトリプレットを含むRNA 16mer)とBCR-ABL ジャンクション部位近傍の配列を含む20mer の擬基質 (pseudosubstrate)を用意した。S16 は²⁵P で標識し、酵素 (マキシザイム) 過 剰 (シングルターンオーバー)、25 mM MgCl₂、50 mM Tris-HCl (pH 8.0) と選ぜ、切断反応を37℃で行った。その初速度を観察し、それをEadie-Hofstee プロットにプロットし、速度定数 k_{cal}、 k_{d(spp})を検出した。結果を図 8 に示す。

況を作りだしていないことを意味し、細胞内での応用に高い期待がもてることが したタイプのマキシザイムのもつ速度パラメーターがほぼ同じであることが分か った。これは、tRNA""配列が、活性型ダイマー構造を形成する上で、不利な状

(実施例5) <u>tRNA**' 配列が付加したタイプのマキシザイムの発現</u>

zR/pUcdtを作成し、それを細胞内へ導入し、ノーザンハイブリダイゼーション実 Hela 細胞 (国立感染研究所より入手) では、リポフェクション法によりtRNA** -WzL、tRNA**!-MzRのDNA 配列を組み込んだベクターtRNA**!-MzL/pUCdt、tRNA**!-M 験により、安定に両tRNA"-l-McL、tRNA"-McR RNAが高発現していることを確認し

を用いて、細胞内へベクターをトランスフェクション(リボフェクション法)し、 抽出RNA を用いてノーザンハイプリダイゼーションを行い、McL及びMcR配列に相 段酵素Csp451 、Sallで切断し、そこへtRNA**!-M2L及びtRNA**!-MzRのDNA配列をCs 3 6 時間培養した細胞から、細胞内で発現している全RNA を抽出した。この細胞 p451 、Sallで切断した断片をDNA Ligaseで連結し、tRNA**i-MzL/pUCdt及びtRNA* 簡単に説明すると、市販のpUC119にtRNA**'をくみこんだプラスミドpUCdtを制 補的な配列をもつDNAをブローブとして、ミニザイムの細胞内での発現を検出し "-MzR/pUcdtの両ベクターを作成した。リポフェクチン(Gibco-BRLにて販売)

の具体的設計、およびBCR-ABL mRNAのジャンクション配列によるその活性の (実施例6) ヒトtRNA'**-プロモーターの制御下にある新規なマキシザイム アロステリック制御のin vitro実証

ることが重要である。我々は各単量体ユニットをRNAポリメラーゼIII(Geidu キシザイム左)およびMzR(マキシザイム右;図6)を創出した。ポリメラー in vivoにおいて発現され schekおよびTocchini-Valentini, 1988; Perrimanおよびde Feyter, 1997)によ って認識されるヒトtRNA**-ブロモーター配列(Baierら, 1994; Yuら, 1995; Kawasakiち, 1996, 1998; Bertrandち, 1997)の下流に組み込み、MzL (マ CMLの治療のための遺伝子療法にマキシザイムを適用するためには、マキシザ イムが構成的に、かつ強いプロモーターの制御下で、

WO 99/46388

PCT/JP99/01187

して用いる場合、明らかに有利であろう。そして、そのような発現は二量体化の ゼ111プロモーターの制御下における高レベル発現は、マキシザイムを治療剤と 可能性をも増大させるであろう。

ようなコンホメーション変化を可能としなければならない。この現象は、アロス 変化に似ているであろう。我々のマキシザイムの活性および特異性を、同一の切 新部位を標的とする従来の野性型リボザイム(wtR2)および従来のアンチセ ンス付加型リボザイム (asRz52およびasRz81; 図10)のそれらと比較するため 1、上段のパネル)。他方、そのコンホメーションは正常型ABL mRNAの存在 サーアームの長さおよび配列、ならびに共通ステム11のそれらが変数であること テリックなタンパク質性酵素の、エフェクター分子に応答したコンホメーション らない (図11、下段のパネル)。 図11に示す具体的に設計された配列(セン クションの存在下でのみ活性なコンホメーションを取らなければならない(図1 に留意されたい) は、異常型b2a2 mRNAの存在または不在に依存する上記の 下および異常型BCR-ABLジャンクションの不在下では不活性のままでなければな 高い基質特異性を達成するため、我々のマキシザイムは異常型BCR-ABLジャン 後者の2種類のリボザイムをtRNA*4遺伝子の3,部分に組み込んだ。

6量体基質(S16)と共に、20量体正常ABLエフェクター分子または28量体L6 BCR-AB す標的部位に対応する短い、16ヌクレオチド(nt)からなるBCR-ABL基質(S16)を調 特異性を試験した。これらのエフェクター分子は、図11の下段パネル左側の正 常型ABL mRNAおよび図11の上段パネルの異常型L6 b2a2 mRNAに大文字 コンホメーション変化が異常型L6 b2a2 mRNAの存在または不在に依存する ことをin vitroにおいて証明するため、我々は図11の上段パネルに大文字で示 製した。in vitroで転写されたマキシザイムを、5′末端を2Pで標識した短い1 1.エフェクター分子の存在下および不在下でインキュベートすることによって、 **で示す配列にそれぞれ対応していた。**

t RNAを組み込んだ酵素の発現のためのプラスミドの構築

をコードする化 wtRz, asRz52およびasRz81) およびポリメラ・ ゼIII終止配列 (GeiduschekおよびTocchini-Valentini, 1988) 各酵素 (M z L、M z R、

25

モーターの下流にクローン化した(pVは、pMX puroベクターのEcoR 1およびSall p 45 1および Sall で消化した後、適切な断片をそれぞれpVのtRNA**-プロ 部位の間にヒトt RNA")遺伝子の化学的に合成したプロモーターを含んでい 学的に合成したオリゴヌクレオチドをPGRによって2本鎖配列に転換した。 た;Kitamuraら,1995)。構築物の配列は直接配列決定によって確認した。 マキシザイムおよびリボザイムの活性のin vitroアッセイ

により反応を開始させ、次に得られた各反応混合物を37℃でインキュベートした。 Tris-HCl (pH 8.0)を用いて、酵素飽和(1代謝回転)条件下で35℃で60分間の マキシザイムおよびリボザイムの活性のアッセイは、25 ㎡ NgC1,および50 ㎜ インキュベーションを行なって実施した (図12)。 T4ポリヌクレオチドキナ 反応混合物を8%ポリアクリルアミドノ7 M 尿素ゲルを用いた電気泳動に た(「結果」参照)。各酵素および基質を含む緩衝化溶液にNgCl₂を加えること 一ゼ(宝酒造、京都、日本)により基質を[γー32p]-ATPで標識した。各酵素を 1 mM の濃度で、2 nM の5'末端を22P で標識した S16と共にインキュベートし 最後に、

アームによって認識されてアニーリングされるに違いなく、そして活性な二量体 なかった。このことは、予想されたマキシザイムの高い基質特異性を示すもので ー分子は、トランスに作用した。この分子はMzLおよびMzRというセンサー の形成を引き出すのに役立つに違いない。マキシザイムの他の認識アームは短い 型ABL 配列(エフェクター分子)の存在下では、基質の切断産物は全く検出され 断が起こった (図12、右側)。 BCR-ABLジャンクションの不在下、または正常 b2a2 mRNAのジャンクション配列に対応する28量体L6 BCR-ABLエフェクタ IG量体BCR-ABL基質RNAにおける切断トリプレットを認識し、そして特異的切

エフエクター分子の存在下および不在下において、M2LまたはM2Rは単独 では何ら切断活性をもたなかったので、活性種は明らかに図12の下段右側に示 原則として、従来のリボザイムによる2分子相互作用は、4分子相互作用よりも す二量体形のマキシザイムであり、これが4分子相互作用に関与したのである。

WO 99/46388

PCT/JP99/01187

それよりも大きいことも、以下の文節に示すように実証された。エフェクター配 有利なはずである。それにもかかわらず、マキシザイムの切断活性はハンマーヘ い)。培養細胞中でマキシザイムの活性が従来のハンマーヘッド型リボザイムの キシザイムは3分子相互作用に関与した(データは記載していない)。図12に 示す結果は以下のことを証明している。すなわち、マキシザイムはトランスに付 相違ないコンホメーション変化 (図11に示す) にしたがって完全なアロステリ ック制御をin vitroにおいて受けた。さらに、上記の結果により、tRNA"41部 加されたエフェクター分子 (BCR-ABLジャンクション配列) に応答して起こるに ッド型リボザイムのそれにほぼ等しかった(wtRz;データは記載していな 別を図11に示すように切断配列に連結した場合にも、同様の結果が得られ、 分はアロステリック制御を妨げないことが確認された。

〔実施例7〕<u>哺乳動物細胞におけるマキシザ</u>イムおよび従来のハンマーヘッド型 リボザイムの細胞内活性の比較

プラスミドpB2A2-luc は、BCR-ABLジャンクションを包含する300ヌクレオチドの 次に、我々はレポーター構築物を用いて哺乳動物細胞におけるマキシザイムの 作用を検討した。マキシザイムの細胞内活性を評価するため、我々はヒトtRN ミド、ならびに標的キメラBCR-ABI(またはABL単独)配列およびルシフェラーゼ を用いて、HeLa細胞を同時トランスフェクションした。ジャンクション配列発現 配列を含んでいた。プラスミドpABL-lucは、正常型ABL mRNAのエキソン1と 我々はルシフ エキソン2の間のジャンクションを包含する300ヌクレオチドの配列を含んでい A "-プロモーターの制御下にある適切な酵素ユニットをコードする発現プラス 遺伝子をコードする標的遺伝子発現プラスミド pB2A2-luc (または pABL-luc) エラーゼ活性を測定することにより各酵素の細胞内活性を推定した。 た。それぞれの細胞溶解物中で両遺伝子を一過性に発現させた後、

転写による t RNA "al-酵素の調製

るためのPCRのDNA鋳型として用いた。各鋳型についてプライマーを合成し、 in vitroにおけるT7転写および精 図13に示すt RNA**-酵素発現ベクターは、転写用のDNA鋳型を構築す センス鎖はT7プロモーターを含んでいた。

製を文献に記載されているように実施した(Kuwabaraら, 1996)。

一週性トランスフェクション後のレポーター活性のアッセイ

PicaGene Kit (東洋インキ、東京、日本)を用いて文献 (Koseki5, 1998) に 記載されているようにルシフェラーゼ活性を測定した。β-ガラクトシダーゼ活 性を参考にしてトランスフェクションの効果を標準化するために、pSV-β-ガラ クトシダーゼコントロールベクター(Promega, Madison, WI)を用いて細胞を同時 トランスフェクトした。次に、発光β-ガラクトシダーゼ遺伝子レポーター系(CI ontech, Palo Alto, CA)を用いてKosekiらの方法に従ってβ-ガラクトシダーゼ による化学発光シグナルを定量化した(Kosekiら, 1998)。

账

このことは上記マキシザイムの極めて高い特異性を示している。 このことはin vitroにおける我々の以前の発見と一致していた(Kuwabaraら,19 果的であった(>95% 抑制) (図14、右パネル)。そして、このマキシザイムは 予想された通り、上記マキシザイムと同一の部位を標的とする従来のハンマーへ フェラーゼ遺伝子の両方の発現を抑制した。髙い特異性をもつものと最初に予想 されたにもかかわらず、従来のアンチセンス付加型リボザイム(pVasRz81および pVasRz52)もまたBCR-ABL-ルシフェラーゼ遺伝子およびABL-ルシフェラーゼ遺伝 子の両方の発現を抑制し、非特異的に作用したことに注意することが重要である 録されたルシフエラーゼ活性を100%とした(図14)。 tRNA™部分(pV)単 独の発現は、何ら抑制効果を示さなかった。対照的に、新規なマキシザイム(pV-MzL/B)は細胞培養物中でBCR-ABL-ルシフェラーゼ遺伝子を抑制するのに極めて効 ABL-ルシフェラーゼ遺伝子の発現に対しては何ら抑制効果を有さなかった(図 1 ッド型リボザイム (pVwtRz) は、BCR-ABL-ルシフェラーゼ遺伝子およびABL-ルシ 標的遺伝子発現プラスミド(pB2A2-luc または pABL-luc)を用いた場合に記 97)。さらに、従来の(アンチセンス付加型)リボザイムによる抑制の程度はマ キシザイムによる抑制ほど大きくなかった。 4、左パネル)。

マキシザイムの各サブユニット(MzLおよびMzR)は何ら抑制効果を有さなかった。したがって、マキシザイムの活性は哺乳動物細胞中での活性なヘテロニ量体の形成から生じるに違いない。さらに、マキシザイムは、マキシザイムに

よる潜在的切断部位を有する関連したABL-ルシフェラーゼ遺伝子に影響を及ぼすことなくBCR-ABL-ルシフェラーゼ遺伝子の発現を特異的に抑制したので、完全なアロステリック制御が哺乳動物細胞中で働いたに違いない。我々の知るかぎり、これは人為的に作製された酵素の活性の、哺乳動物細胞中における完全なアロステリック制御の最初の実例である。

(実施例8) ヒトL6 BCR-ABL mRNAを発現するBaF3細胞系 (BaF3/p210^{2G-18})、およびt RNA^{*a1}-リボザイムまたはt RNA^{*a1}-マキシザイムを形質導入したBaF3/p210^{2G-ABL}およびH 9細胞系の安定な形質転換体の作製

のプラスミドは全てピューロマイシン耐性遺伝子をコードしていた。 tRNA"1、 異的に作用したので(実施例7)、我々は内因性のBCR-ABL(L6 b2a2 m R N A) 性であった。したがって、後者の形質転換細胞は1L-3の不在下で増殖することが こすに違いない。したがって、マキシザイムまたはリボザイムを形質導入したBa マキシザイムはHela細胞中でレポーター遺伝子構築物に対して効率的に且つ特 ら作製した)を組み込むことにより、ヒトL6 b2a2 mRNAを持続的に発現する 現する)は、Daley およびBaltimore (1988)およびChooら(1994)が以前に用いた すべきであろう。親であるBaF3細胞系はインターロイキン3(11-3)依存性造血 標的に対するマキシザイムの活性を調べることにした。我々は、p210^{b0s-t01}を発 できた (図15、右)。しかし、p210⁶⁴³⁻⁴⁸¹の発現が抑制されたならば、BaF3/p2 (図13)を用いてBaF3/p210^{bcs-Ast}細胞を別々にトランスフェクトした。これら wtRzまたはマキシザイム構築物を安定に形質導入したBaf3/p210gg-val網胞を 細胞系 (K28 b3a2 m R N A を発現するBaF3+p210 細胞) とは異なることを強調 されたBaF3/p210^{BCG-ABI}は p210^{BCR-ABI}のチロシンキナーゼ活性のゆえに11-3非依存 F3/p210*c*-va/細胞の選択の際には、我々は11-3の供給源として10% WEH!でならし 作製するため、トランスフェクションの24時間後に10% FCSおよび3 μg/mlのピ 細胞系 (DaleyおよびBaltimore, 1988;図15の左パネル) であるが、形質転換 現するプラスミド構築物 (pMX/p210gcr-ABL; p210gcr-ABLはヒトL6 b2a2 mRNAか マウス細胞系 BaF3/p210^{pca-nal}を確立した。この細胞系(L6 b2a2 mRNAを発 10strata細胞は1L-3依存性となり、1L-3の不在下では該細胞はアポトーシスを起 たRPM1焙地を用いた。11-3の存在下で、プラスミドpV、pVwtRzおよびpV-MzL/R

ューロマイシンを補充したKPM1培地に交換した。形質導入細胞をさらに60時間培養し、次にアポトーシスをアッセイするため1L-3を培地から除去した(下記参照;図18~21に結果を示す)。

マキシザイムの特異性を調べるため、我々はヒトT細胞由来のH9細胞も使用し、コントロールとして正常型ABL mRNAの発現に対する効果も調べた。マキシザイムまたはリボザイム構築物を担持する安定に形質導入されたH9細胞は、上記の各ブラスミドを用いて作製した。トランスフェクションの効率が非常に低かったため、我々はレトロウイルスのブロデューサー細胞系(BOSC23細胞)を用いて形質導入細胞を作製した。ブラスミドpV、pWtRzまたはpV-MzL/Rを用いてトランスフェクトしたBOSC23細胞の上清を濾過し、H9細胞に加えた。このH9細胞を72時間培養し、次に耐性細胞の選択のためにピューロマイシンを添加した。形質導入細胞の種々の系は、我々が(レボーター構築物ではなく)内因性標的遺伝子に対するマキシザイムおよびリボザイムの活性および特異性を調べることを可能とした。

夷験方法

BaF3/p210^{BCR-ABL}細胞系の構築

1L-3の供給源としてWEMIならし培地の存在下で増殖させたBar3細胞をレトロウイルス感染させることによって、ヒトL6 BCR-ABL m R N A を安定に発現する細胞を得た。Mullerらの手順にしたがって(Mullerら,1991)、pMX-p210 $^{64x+61}$ ベクター(ヒトL6 BCR-ABL m R N A をコードする)を有するBOSC23細胞中にヘルバター (ヒトL6 BCR-ABL m R N A をコードする)を有するBOSC23細胞中にヘルバター (ヒトL6 BCR-ABL m R N A をコードする)を有するBOSC23細胞中にヘルバターをもたないレトロウイルスストックを産生させた。Bar3細胞のレトロウイルス感染を、Pendergastらの方法に従って実施した(Pendergastら, 1993)。感染の72時間後にL-3を除去し、融合遺伝子を発現する集団の選択を可能とした。Bar3/pg10 $^{64x+43}$ 細胞は、10%ウシ胎児血清(FCS; Gibco-BRL, Rockville, MD)および3 μ 8/m1のピューロマイシン(Gibco-BRL)を補充したRPMI-1640培地中で維持した。

(実施例 9) マキシザイムの効率的発現および細胞質への効率的輸送

発現レベルおよび発現されたリボザイムの半減期に加えて、リボザイムとその標的との共局在は明らかにリボザイムのin vivoにおける有効性の決定要素である (SullengerおよびCech、1993; EcksteinおよびLilley, 1996; Bertrandら, 1

997)。それゆえ、我々の t R N A ^{Na1}-酵素のそれぞれの細胞内局在を確認することが不可欠である。BaF3/p210^{BCR-NE}細胞におけるマキシザイムの発現および相対的安定性を確認するため、我々はノーザンブロット分析を実施した(図16および17)。種々のブラスミドを用いてトランスフェクトしたBaF3/p210^{BCR-NE}細胞の全R N A をトランスフェクションの2、4、6、12、18、24、30および36時間後に抽出した。また、全R N A のサンブルは核画分および細胞質画分に分離した。

ノーザンプロット分析

BaF3/p210⁸⁴²⁻⁴⁴⁴細胞における標的m R N A および t R N A ¹²⁴- 酵素転写物の発現をアッセイするため、ISOGEN¹⁴⁴ (ニッポンジーン、富山)を用いて全R N A を 単離した。細胞質R N A および核R N A を Huang およびCarmichaelの方法に従って分離した (Huang およびCarmichael, 1996)。1 レーンあたり30 μg の全R N A を アガロースゲル(FMC Inc., Rockland, ME)に負荷し、次にR N A バンドを Hybond-N¹²ナイロン膜 (Amersham Co., Buckinghamshire, UK)に転写した。T 4 ポリヌクレオチドキナーゼ(宝酒造、京都、日本)によって³²P で標識してあるM z L、M z R、w t R z およびL6 BCR-ABLジャンクションの配列(図10)に相補的な合成オリゴヌクレオチドをプローブとして上記ナイロン膜を釣り上げた。ブレハイブリダイゼーションおよびハイブリダイゼーションをKoseki 5の方法に従って実施した(Koseki5, 1998)。

世世

サイズがMz上に一致する、長さ約130ヌクレオチドの転写物が検出された(図16)。最初からMz上転写物は細胞質画分に見いだされ、核画分には全く検出されなかった(図16)。細胞質におけるマキシザイムレベルの経時変化を図16の右側のパネルに示す。Mz上は4時間以内に検出され、その発現レベルはトランスフェクションの24時間後に平坦域に達した。

次に、我々は各マキシザイムおよびリボザイムをコードするブラスミドを用いて安定に形質導入したBaF3/p210^{kct-tat}細胞におけるM z L、M z Rおよびwt R z の定常レベルおよび局在を調べた。この分析には、前の文節に記載した1L-3の除去後3日目に単離した全RNA(図17)を用いた。図17の結果は、各t R

た。核内にとどまるU6 snRNAの局在の分析(Ternsら, 1993)を対照として本 細胞質画分に見いだされた。核画分に有意なレベルで見いだされたものはなかっ した安定性および細胞質への局在もまたノーザンブロット分析により確認された に安定であったこと、を明確に示している。さらに、全てのtRNA"41-酵素が N A ''- 酵素が有意なレベルで発現されたこと、およびそれらの転写物が明らか 研究に含めた (図16、17)。 H9細胞における各t RNA" 4一転写物の類似 (データは記載していない) 一過性に発現された転写物 (図16) および安定な形質転換体における転写物 (図17)の両方が安定であり、かつ標的と細胞質中に共局在していたという発 見は、我々の改変したt RNA"+-発現系が包蔵する将来の遺伝子療法における 有用性を強調するのに役立つ、

(実施例10) 内<u>因性のBCR-ABL細胞性標的に対するマキシザイムの</u>活性および

(pV) をコードするプラスミドを用いて、L6 BCR-ABL (b2a2) mRNAを安定に 発現するBaF3細胞をトランスフェクトし、24時間後にピューロマイシンに暴露し 焙地で種々の時間培養した。トリパンブルー色素を排除する能力によって細胞の 死滅細胞をFicolによって除去し、ピューロマイシン耐性細胞はIL-3を含まない 生存率をアッセイした。BaF3/p210^{ets-AL}細胞の他に、正常型ABL mRNAを高レ て細胞を選択した。ピューロマイシンの存在下で60時間インキュベートした後、 我々はアポトーシスの調節におけるマキシザイムの機能的重要性を検討した。 我々は野性型リボザイム(pVwtR2)、マキシザイム(pV-M2L/R)または親ベクター ベルで発現するH9細胞をコントロールとして用いた。

細胞生存率およびアポトーシス

らの方法に従って測定し(Reutherら, 1998)、核形態を調べるため10μg/mlのHoe 細胞生存率はトリバンブルー排除によって測定した。アポトーシスはReuther 0% グリセロール/20 mM Tris (pH 8.0)/0.1% N-没食子酸プロピルを用いてマウ chst33342 (ニッポンジーン、富山)を用いて細胞を15分間染色した。洗浄し、 ントした後、蛍光顕微鏡(ニコン、東京)を用いてスライドを検査した。

WO 99/46388

PCT/JP99/01187

は下記参照)。対照的に、従来のハンマーヘッド型リボザイムwtRzは、BaF3 よび14)に一致する。さらに、マキシザイムは、野性型リボザイムまたは親ベ 由来の BV173細胞 (東京大学医科学研究所より入手) に大々的に細胞死を引き起 マキシザイムは正常型AB よび中央)。このことは、w t R z がin vitroおよび培養細胞において BCR-ABL クターを発現する細胞と比較して、フィラデルフィア染色体を有する白血病患者 ロールプラスミドを用いてトランスフェクトしたBaF3/p210^{bcn-v81} (pV) 細胞と較 例えば、11-3除去の10日後 /p210^{bos-dat}細胞およびH9細胞の両方にアポトーシスを誘導した(図18、左お 図18に示すように、マキシザイムを発現するBaF3/p210^{bu*-481}細胞は、コント ラBCR-ABL遺伝子を標的とする高い特異性を示す結果である(直接証拠について 遺伝子と正常なABL遺伝子の両方の転写物を標的にしうるという観察(図12お には約20%しか生き残っていなかった。これに対して、BaF3/p210^{pcg-Abl} (pV) LmRNAを発現するH9細胞を殺さなかった(図18、中央)。これは、 べて加速された速度で死亡した。結果を図に示したこの実験において、 ・なので イムをトランスフェクトしたBaF3/p210gg-484細胞は、 户 胞はほぼ100%生き残っていた(図18、 こした (図18、右)。

なアポトーシス形態が明らかになった(図19)。マキシザイム(pV-MzL/R)が シス的細胞死を引き起こしたことは明らかであった。これに対して、リボザイム イムによって誘導されたアポトーシスのレベルはwtRzによって誘導されたそ 盤縮されたクロマチン、断片化された核および縮まった細胞サイズを含む典型的 れよりも高かった。これは、マキシザイムの内因性標的に対する従来のリボザイ 正常なH 9 細胞に影響を及ぼすことなくBaF3/p210^{acs.all}細胞に特異的にアポトー ちらの細胞の形態も変化させなかった。BaF3/p210gg+MB細胞において、マキシザ た。予想されたように、コントロールtRNA'*i RNA単独(pV)の発現はど 死亡細胞をDNA結合蛍光色素 Hoechst33342で染色して顕微鏡で調べると、 ムよりも高い切断活性を示すものである。

(実施例11) マキシザイムおよびリボザイムによるL6 BCR-ABL m R N A の切

断および増強されたプロカスパーゼ-3の活性化の直接証拠

した。したがって我々は、図18および19に示す細胞のアポトーシスは、16B ので、我々はノーザンブロット分析によって予想される切断産物の直接検出を試 mRNAの減少の経時変化を図20の下段パネルに示す。このグラフでは、BaF3 期は、マキシザイムを産生する細胞およびwtRzを産生する細胞においてそれ ぞれ約3日および約10日であった。マキシザイムの発現の結果生じる内因性 BCR していない)。これらの断片の検出は、マキシザイムおよび従来のリボザイムが 培養細胞中で触媒的に活性であり、標的mRNAを特異的に切断したことを証明 および/またはp145 c-ABLタンパク質が枯渇したことから生じたことを確認した。 造血幹細胞の生存を延ばす、構成的に高レベルのチロシンキナーゼ活性を有する レベルをオートラジオグラムから測定した。切断産物の長さは正確に予想通りで 発現の基礎レベルを示す)。 コントロールである t RNA 'vi RNA (pV) の場合 ABL mRNAの消失速度は、マキシザイムを産生する細胞における方がwtRz みた(図20)。IL-3除去の0.5、1、3および5日後に、t R N A**1-酵素を形 発現されたL6 BCR-ABL mRNAのレベルに減少は全く見られなかった。L6 BCR-マキシザイムおよびリボザイムはアポトーシスのBCR-ABL媒介抑制を克服した 段の「コントロール」と題するグラフは各測定時におけるL6 BCR-ABL mRNA を産生する細胞におけるよりも明らかに速かった。L6 BCR-ABL mRNAの半減 -ABL mRNAの切断産物は、BV173 細胞においても確認された(データは記載 , mRNAがマキシザイムによって、またはL6 BCR-ABLおよびABL mRN pl45 c-ABL タンパク質は低い固有のチロシンキナーゼ活性を有する核タンパク Aがリボザイムによって切断され、その結果、各造血幹細胞においてp210⁶⁰⁸⁻⁴⁶ 質導入したBaF3/p210^{BCP-ABL}細胞の全RNAを抽出した。L6 BCR-ABL mRNAの 質である。他方、p210^{ttr-ktt}タンパク質はアポトーシスを抑制することによって /p210^{bG3-A81}細胞中のL6 BCR-ABL mRNAの基礎レベルを100%とした(図20上 あった (約3 kb)。t R N A **-| 酵素の存在下におけるL6 BCR-ABL 細胞質性の膜結合タンパク質である。

アポトーシスシグナルの伝達およびアポトーシスの達成には、いくつかのアス パラギン酸特異的システインプロテアーゼ (カスパーゼ(caspase)として知られ

WO 99/46388

PCT/JP99/01187

BL媒介抑制とプロカスパーゼ-3の活性化の間の逆の(inverse)関係が最近 Dubrez ム)媒介アポトーシス経路が実際に白血病性細胞におけるプロカスパーゼ-3の活 かどうか、を問うた。カスパーゼ-3の32 kDaの不活性な前駆体(プロカスパーゼ -3) およびプロセシングされた活性なプロテアーゼであるカスパーゼ-3の両方を 認識する抗体αCPP32 を用いたイムノブロット分析は、我々が成熟プロセスを追 ている〕の協調作用(coordinated actions)が必要である。アポトーシスのBCR-A パク質の特異的枯渇が不活性なプロカスパーゼ-3の切断をもたらし、活性なプロ 跡するのを可能とした。マキシザイムの特異性を調べるため、我々はH 9 細胞を ら(1998)によって証明された。それゆえ、我々はマキシザイム (またはリボザイ カスパーゼ-3を生じて、その結果BaF3/p210^{bcg-A84}細胞にアポトーシスを起こすの 性化をもたらすかどうかを検討した。我々はマキシザイムによるp210^{pcs-ABL}タン 用いて類似の試験を行なった。

ウエスタンプロット分析

サギポリクローナル抗体αCPP32 (University of South Florida, College of M 細胞溶解物を15% ポリアクリルアミドゲルを用いたSDS-PAGEにかけた。プロカ スパーゼ-3およびプロセシングされた p17 (カスパーゼ-3)の両方を認識するウ 活性化を検出した。ブロッキングおよび検出はDubrezらの方法に従って実施した シスを起こしたBaF3/p210^{bts-Adl}細胞およびH9細胞におけるプロカスパーゼ-3の edicineのHong-Gang Wang教授から好意により提供された)を用いて、アポトー (Dubrez 5, 1998)

おいては、プロカスパーゼ-3のレベルは変化しなかった。対照的に、野性型リボ プユニットのレベルが増大した。安定にマキシザイムを形質導入したH9細胞に 胞においては、プロカスパーゼ-3のレベルは低下し、カスパーゼ-3のp17 活性サ ーゼ-3のプロセシングを伴った。安定にマキシザイムを形質導入したBaF3/p210゚ てほぼ同一であった(図21)。マキシザイムを形質導入したBaF3/p210^{608-Abl}細 ザイムの発現は、BaF3/p210^{par-nat}細胞およびH9細胞の両方においてプロカスパ プロカスパーゼ-3の基礎レベルは、BaF3/p210^{scs-vst}細胞およびH9細胞におい

WO 99/46388

cr-mal細胞におけるプロカスパーゼ-3からカスパーゼ-3への転換率は、w t R z を形質導入したBaF3/p210mcr-mal細胞における転換率よりも高かった。これらのデータは、マキシザイムはp210mcr-malタンパク質を特異的に枯渇させ、それにより白血病性細胞におけるカスパーゼ-3の活性化を促進し、その結果アポトーシスを誘導した、という我々の結論を強化した。

[老祭]

がってそれらは二量体化プロセスを妨げないことが我々の分析によって示された より重要なことに、 tRNA''a'によ って駆動されるマキシザイムは、in vitroにおいてのみならず(図12)白血病 我々は本明細書に、特定のリン酸ジエステル結合を選択的に切断する、アロス テリックに調節されたRNA触媒(マキシザイム)の我々の知るかぎり最初の新 規な設計を記載した。この設計は、活性部位から少し離れた所に位置するセンサ ーアームによって認識される特定の短い配列(目的配列;図1)との相互作用に よって触媒的に活性化される二量体RNAモチーフに基づいていた。 tRNA'*i 3′改変側にリボザイム配列を結合させるのに我々が以前成功したことに基づい て実施した。この成功は、培養細胞において高い特異性を有する非常に活性なリ A "el部分がtRNA"a駆動RNAの二量体化を妨げるのではないかと恐れていた が、二量体化の間双方のtRNA"a部分は相手から若干離れた所に位置し、した (Kuwabaraら, 1998)。今回の分析は、マキシザイムのt RNA**によって駆動さ アロステリックエフェクター ボザイムをもたらした (Kawasakiら, 1996, 1998)。我々は初め転写物のt R N を組み込んだマキシザイムの設計は、ヒトt RNA遺伝子のt RNA"u部分の (図5) に応答してコンホメーション変化を受ける 患者由来の細胞を含む種々の培養細胞においても、 れる単量体ユニットの二量体化を確認した。

人工的なアロステリック酵素の創成は現在大きな関心を呼んでいるが(PortaおよびLizardi, 1995; TangおよびBreaker, 1997a, 1997b)、我々が知るかぎり、そのような酵素がこれまで動物細胞または培養細胞において試験されたことは全くなかった。我々の新規なマキシザイムは、培養細胞中で正常型ABL mRNAを損なうことなくLG BCR-ABL mRNAを特異的に切断し、人工的に作製したアロ

よってもたらされた、と報告されている(0'Brienら, 1994; Maekawaら, 1995; M ahonら, 1995; Smetsersら, 1995, 1997; Vaermanら, 1995, 1997)。我々もまた、 て何ら特異性を示さなかった。それゆえ、この種の研究においては、細胞死が実 際にアンチセンス分子による特異的抑制から生じることを確認することが重要で ある。この点は少なくとも抑制効果の推定と同じくらい重要である。我々のマキ マキシザイム全般を他 ステリック酵素の活性のアロステリック制御の最初の成功例を提供した。16 BCR an 5, 1994; Laneuville 5, 1994; Spooncer 5, 1994; Bedi 5, 1994, 1995; Mc ホスホロチオエート部分の導入等のアンチセンス分子への改変の導入が、配列特 ス付加型の従来のリボザイム(図10および14)さえも、哺乳動物細胞におい シザイムの特異性は相当高かったので、またセンサーアームおよび共通ステム[1 のキメラmRNAも切断できるに違いない新しい種類の潜在的に強力な遺伝子不 5 c-ABLタンパク質は共にアポトーシスの負のレギュレーターであるので(Chapm iahonら, 1994, 1995; Dubrezら, 1998)、特異性の低いアンチセンス分子はBCR-によって白血病性細胞にアポトーシスを誘導する場合がある。実際、最近の刊行 **ノバク質レベルの低下が全く観察されなかった、また、そのようなアンチセンス** オリゴヌクレオチドによる非特異的抑制はそれらの非アンチセンス様式の作用に 異的ではない様式で細胞死を引き起こすことを認識した。我々の掌中では、BCR-ては、特異性を示すことが困難であった。p210gcr-xatキメラタンパク質およびp14 NBLジャンクションに標的を定めた未改変アンチセンスDNAおよびアンチセン -ABL mRNAをアンチセンス分子によって破壊しようとした過去の努力におい AL経路をブロックすることに加えて正常型ABL mRNAの発現を抑制すること 物には、アンチセンス分子で処理したアポトーシス性細胞においてp210^{mct-tal}タ の長さおよび配列は非常に容易に調節できる変数なので、 活性化剤と考えるべきである。

マキシザイムの切断活性、特に細胞におけるそれは3分子相互作用(マキシザイムの1RNA**によって駆動される2つの単量体ユニットと標的基質の間の)を必要とするに相違ない。対照的に、従来のリボザイムの活性は2分子相互作用(1RNA**によって駆動される1つのリボザイムとその標的の間の)を必要とする。原則として、2分子相互作用は3分子相互作用よりも迅速である。この差する。原則として、2分子相互作用は3分子相互作用よりも迅速である。この差

異は、従来のリボザイムの方が細胞中でマキシザイムよりも効果的であろうとい スが関与するにも関わらず、マキシザイムの細胞内活性は従来のハンマーヘッド うことを示すように思われる。しかし、我々の実験において幾つかの標的配列を 培養細胞中で試験した際、我々はtRNA valに駆動される二量体は対応するtR ボザイムとマキシザイムの各セットについて同一の標的部位が用いられた)。 こ N A"a'に駆動されるリボザイムよりも常に一層活性であることを見いだした(リ の結論は今回の分析の結果によってさらに強化された。マキシザイムはリボザイ 切断した。したがって、我々のtRNA"4発現系を用いる限り、二量体化プロセ 一構築物(図14)ばかりでなく、標的が内因性分子の場合も(図18~21) ムよりも効果的にL6 BCR-ABL mRNAのジャンクションを切断した。レポータ 型リボザイムのそれよりも有意に高い、

ム配列よりはむしろ BCR-ABL融合ガン遺伝子の独特な9塩基対領域と特異的に結 増殖因子(11-3)非依存性とされたマウス細胞が、上記DNA結合ペプチドを発現 するペクターを用いた一過性トランスフェクションの結果、11-3依存性に逆戻り を刺激することができる他の増殖因子の内因性発現の引き金を引かないことに注 介して提供されるBaf3細胞の増殖のための刺激を提供する (DaleyおよびBaltimo おけるBCR-ABL m R N A のレベルが、トランスフェクトされていない細胞中のそ れに較べて24時間以内に15~18% 低下することを示した。我々は、BCR-ABL m.R フィンガーモチーフからなる注意深く設計されたDNA結合ペプチドが、親ゲノ re, 1988)。Klugのグループはさらに、一過性にトランスフェクトされた細胞に 上記ガン遺伝子の作用によって Klugのグループは正確ですっきりした(elegant)実験において、3個のジンク した。p210gara-tatタンパク質は、1L-3またはオートクリン様式でBaF3細胞の増殖 意されたい。むしろ、p210⁸⁰³⁻⁴⁸¹タンパク質は、通常はIL-3シグナル伝達経路を NAのレベルにおける同様の低下 (マキシザイムの場合、24時間以内に35% 下;図20)がIL-3への依存性を取り戻すことを見いだした(図18) 合することを示した (Chooら, 1994)。さらに、

シスの達成は、幾つかのカスパーゼの協調作用を必要とする。今日までに同定さ 脱調節されたBCR-ABLチロシンキナーゼがアポトーシス性細胞死を遅延させる 機構はまだ殆ど解明されていない。アポトーシスシグナルの伝達およびアポト、

ご発現されるとアポトーシスを引き起こすに違いないこれらカスパーゼの全ては、 を介して起こることを示した。例えば、カスパーゼ-4はプロカスパーゼ-1を活性 最初は、活性なブロテアーゼを生じるためにはアスパラギン酸残基から遠く離れ た位置で切断を必要とする1本鎖の不活性なプロ酵素として合成される。最近の 胚拠が、アポトーシスにおけるカスパーゼの活性化はタンパク質分解カスケード **化し、これが次にプロカスパーゼ-3を切断して活性なカスパーゼ-3を生じ、これ** おいて重要な役割を果たすのではないかと示唆している(Nagata, 1997)。アポト 褐は、不活性なプロカスパーゼ-3のプロセシングを明らかに促進し、活性なカス がAsp-G1u-Va1-Asp(DEVD)モチーフを認識してポリ(ADP-**眴において過多であるのに対し、カスパーゼ-3は脳のある部分でアポトーシスに** 8 転換酵素 (1CE) および線虫始原型であるCED-3との相同性の程度に基づいて4 マウスはプログラムされた細胞死においていかなる表現型も示さなかった(Liら, れた10個のヒトカスパーゼは、構造およびヒト始原型であるインターロイキン 1 リボース) ポリメラーゼを切断する(Enariら, 1996)。カスパーゼ-1をもたない 発生を示した(Kuidaら, 1996)という発見は、カスパーゼ-1はあらゆる種類の細 ーシスのBCR-ABL媒介抑制において、BCR-ABL 細胞系ではアポトーシス経路がプ ロカスパーゼ-3活性化の上流で中断される (Dubrezら, 1998)というごく最近の つのサブファミリーに分類することができる(Alnemriら, 1996)。細胞中で過剰 .995)が、カスパーゼ-3を欠くマウスは脳における過形成および細胞の無秩序な 発見が、本研究によって確認された。マキシザイムの発現によるp210⁶⁰³⁻⁴⁸¹の枯 パーゼ-3を生じた(図21)。マキシザイムによるL6 BCR-ABL 我々の設計した新規なマキシザイムが細胞中で十分機能性であることを実証した。 断のために、細胞中で高レベルの活性を有するヘテロニ量体構造を形成したこと、 まく制御されたこと、を我々は示した。マキシザイムは同じように転写された標 みマキシザイムが活性な触媒コアを形成するように細胞内でアロステリックにう 結論として、(1)我々の新規なマキシザイムは、L6 BCR-ABL mRNAの切 および(2)切断活性は、L6 BCR-ABL mRNAのジャンクションの存在下での

血病性細胞にアポトーシスをもたらしたが、正常細胞にはもたらさなかった)は、

mRNAの選択的切断およびその結果としてのカスパーゼ-3の活性化(これは白

準的リボザイムよりも細胞中で一層効果的であった。我々の知るかぎり、我々の新規なマキシザイムはその極めて高い基質特異性ゆえに今日までに報告された他の核酸に基づく薬物よりも優れている。この種類のマキシザイムは慢性骨髄性白血病 (CML)の治療、特にL6転座の場合に有用であろう。

[実施例12] マキシザイムのin vivo (動物実験) での効果

このマキシザイムはin vivo(動物実験レベル)でも効いた実験結果が得られた。簡単に説明すると、慢性骨髄性白血病にしたマウスにマキシザイムを導入したところ、非常に良く癌化が抑制されたのである。

ミ験方法

型免疫不全マウス,従来のSCIDマウスに比べて免疫能がより低く,種々のヒトの れぞれマウスに注入した。用いたマウスはNOD-SCIDマウス (Non obesity diabetes-systemic combined immunodeficiency mouse; 非肥満型糖尿病-複合 細胞移植が可能なマウス。本実施例では、東京大学医科学研究所病態薬理学研究 一にはpuromycine耐性遺伝子が組み込まれてあるため、感染開始72時間後から puromycine 0.5 mg/mlを培養液中に加えることにより、マキシザイムが組み込ま れた細胞のみを選択できる(選択時間は72時間)。これらの、マキシザイムが導 の転座型のうちL6転座型の患者由来、まだcell line化していないもので、東京 大学医科学研究所病態薬理学研究部より入手した。)を用いた。この腫瘍細胞に、 マキシザイムを組み込んだウイルスベクターpMX puro/Dimer (実施例8,10及 び11のpV-MzL/R)と、コントロールとなる何も組み込んでいないウイルスベク ターpMX puro(Kitamuraら, 1995)を懸染させた。群しい感染条件は、stroma cell (骨髄間質細胞;骨髄から取り出した細胞を培養する際に増えてくる線維芽 細胞梯の接着細胞。サイトカインを分泌し,血球系細胞の増殖を促進する。本実 施例では、東京大学医科学研究所病態薬理学研究部より入手した。)の上で上記 のCML細胞 1x 10の7乗に、ウイルスベクター (titer 1x10の5乗) 10 mlを polybrene 10 microgram/ ml 下で感染 (m.o.i. 0.1) させた。ウイルスベクタ まず、マウスを癌化させるために、b2a2 typeのCMLとト患者由来の細胞(CML 入された患者由来の腫瘍細胞と、マキシザイムを導入していない腫瘍細胞を、

WO 99/46388

PCT/JP99/01187

部より入手した。)である。このマウスの尾静脈に、puromycineで選択後の腫瘍細胞1 x 10の6乗を注入した。マウスには投与前に放射線照射して更に免疫能を落とすこともあるが、今回は照射していない。

铝米

細胞注入後、11週目にマウスを解剖した結果を図22~24に示す。N2(-)はマキシザイムを導入していない腫瘍細胞を注入したマウス、M2(+)はマキシザイムを導入していない腫瘍細胞を注入したマウス、M2(+)はマキシザイムを導入した「アウスである。図22は解剖前のマウスの写真 (この時点で体重を測定、表 1参照)、図23は脾臓の写真 (矢印で示した部位)、図24が胸腺周囲のリンパ節の写真である。図22をみて分かるように、NC(-)に比べて、N2(+)は全体にふっくらしていて元気良く生育していることが分かる。 実際に体重を測定すると(表1)、N2(-)が24g、N2(+)は34gで10gもの(通常のN0D-SCIDマウスの3分の1)体重差があることが分かった。つまり、N2(-)は癌化が進行して脾臓が配く-)は癌化が進行し、痩せ衰えていることを示したものである。次に、マウスを解剖して脾臓を比較した(図23)。 N2(-)は明らかに癌化が進行して脾臓が肥大(0.21g)しているのに対し、マキシザイムを導入したマウスは、健常体と変わらず(0.08g)脾臓は肥大していない。同様に、胸腺周囲のリンパ節を比較したものが図24であるが、マキシザイムを導入したマウスのリンバ節に(0.03g)に対して、N2(-)のリンパ節(0.27g)は、癌化が進行した形態を示している。

さらに、同マウスの骨髄の写真を図25に示す。Mc(-)の骨髄はほとんどが腫瘍細胞で占められているのに対して、マキシザイムを導入したマウスMz(+)の骨髄は、健常体の骨髄液と同様の形状(腫瘍細胞ではなく、リンバ球等の細胞が混在している)が観察された。

現在、臨床で行われている白血病の治療法のうち、有効性が確認されているものは骨髄移植しかない。しかし、骨髄移植はどの患者にも適用できるわけではなく、またその骨髄提供者も多くない。そのため、より一般的に適用でき、かつ安全な治療法が切望されている。今回の結果では、マキシザイムは動物実験レベルでも、非常に高活性でCMLの癌化を効率良く抑制し、毒性も認められなかった。

42

マキシザイムは、従来の治療法に比べて患者への適用性も幅広いことから、慢性骨髄性白血病の今後の遺伝子治療に大きく貢献するであろう。

裁一

	体重	牌戲	胸腺周囲のリンパ節
コントロール(Mz(-))	24 g	0.21 g	0.27 g
マキシザイム(Mz(+))	34 g	0.08 g	0.03 g

産業上の利用可能性

本発明のマキシザイムを用いれば、染色体上の相互転座などが引き金となり発病する慢性骨髄性白血病において産生される異常な16(D2a2)キメラ型mRNAの発現を、正常型mRNAに全く影響を与えることなく、特異的に抑制することができる。従って、本発明のマキシザイムは、慢性骨髄性白血病の遺伝子治療や慢性骨髄性白血病の原因となる16(D2a2)キメラ型mRNAの発現抑制剤として利用できる。

[参考資料]

- Alnemri, E.S., Livingston, D.J., Nicholson, D.W., Salvesen, G., Thornberry, N.A., Wong, W.W., and Yuan, J. (1996). Human ICE/CED-3 protease nomenclature. Cell 87, 171.
- Amontov.S., and Taira, K.(1996). Hammerhead minizymes with high cleavage activity: a dimeric structure as the active conformation of minizymes. J. Am. Chem. Soc. 118, 1624-1628,
- Baier, G., Coggeshall, K. M., Baier-Bitterlich, G., Giampa, L., Telford, D.,

WO 99/46388

PCT/JP99/01187

Herbert, E., Shih, W. and Altman, A. (1994). Construction and characterization of lck-and fyn-specific tRNA:ribozyme chimeras. Wol. Immunol., 31, 923-932.

- Bedi, A., Zehnbauer, B.A., Barber, J.P., Sharkis, S.J., and Jones, R.J. (1994). Inhibition of apoptosis by BCR-ABL in chronic myelogenous leukemia. Blood 83, 2038-2045.
- Bedi, A., Barber, J.P., Bedi, G.C., el-Deiry, W.S., Sidransky, D., Vala, M.S., Akhtar, A.J., Hilton, J., and Jones, R.J. (1995). BCR-ABL-mediated inhibition of apoptosis with delay of GZ/M transition after DNA damage: a mechanism of resistance to multiple aniticancer agents. Blood 86, 1148-1153.
- Bartram, C.R., de Klein, A., Hagemeijer, A., van Agthoven, T., van Kessel.
 A. G., Bootsma, D., Grosveld, G., Ferguson-Smith, M.A., Davies, T.,
 Stone, M., Heisterkamp, N., Stephenson, J.R., and Groffen, J.
 (1983). Translocation of c-abl oncogene correlates with the
 presence of a Philadelphia chromosome in chronic myelocytic
 leukemia. Nature 306, 277-280.
- Bertrand, E., Castanotto, D., Zhou, C., Carbonnelle, C., Lee, G. P., Chatterjee, S., Grange, T., Pictet, R., Kohn, D., Engelke, D. and Rossi, J.J. (1997) The expression cassette determines the functional activity of ribozymes in mammalian cells by controlling their intracellular localization. RNA 3, 75-88.
- Birikh, K.R., Heaton, P.A., and Eckstein, F. (1997). The hammerhead ribozymestructure, function and application. Eur. J. Biochem. 245, 1-16.
- Chapman, R.S., Whetton, A.D., and Dive, C. (1994). The suppression of drug-induced apoptosis by activation of v-abl protein tyrosine kinase. Cancer Res. 54, 5131-5137.
- Choo, Y., Sanchez-Garcia, I., and Klug, A.(1994). In vivo repression

by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372, 642-645.

- Dahm, S. C, Derrick, W. B. and Uhlenbeck, O. C. (1993) Role of divalent metal ions in the hammerhead RNA cleavage reaction. Biochemistry 30, 9464-9469
- Daley, G.Q., and Baltimore, D. (1988). Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210^{bcr/abl} protein. Proc. Natl. Acad. Sci. USA 85, 9312-9316.
- Duberz, L., Eymin, B., Sordet, O., Droin, N., Turhan, A.G. and Solary, E. (1998). BCR-ABL delays apoptosis upstream of procaspase-3 activation. Blood 7, 2415-2422.
- Eckstein, F. and Lilley, D.M.J. (eds.)(1996). Catalytic RNA, Nucleic Acids and Molecular Biology, vol. 10. Springer-Verlag, Berlin.
- Enari, M., Talanian, R.V., Wong, W.W., and Nagata, S. (1996). Sequential activation of ICE-like and CPP32-like proteases during Fasmediated apoptosis. Nature 380, 723-726.
- Fu, D.J., Benseler, F. and McLaughlin, L.W. (1994). Hammerhead ribozymes containing non-nucleoside linkers are active RNA catalysts. J. Am. Chem. Soc. 116, 4591-4598.
- Geiduschek, E.P. and Tocchini-Valentini, G.P.(1988). Transcription by RNA polymerase III. Annu. Rev. Biochem. 57, 873-914.
- Groffen, J., Stephenson, J.R., Heisterkamp, N., de Klein, A., Bartram, C.R., and Grosveld, G.(1984). Philadelphia chromosomal break-points are clustered within a limited region, bcr, on chromosome 22. Cell 36,
- Haseloff, J., and Gerlach, W.L. (1988). Simple RNA enzymes with new and highly specific endonuclease activities. Nature 334, 585-591.
- Heisterkamp, N., Stephenson J.R., Groffen, J., Hansen, P.F., de Klein,

WO 99/46388

PCT/JP99/01187

A., Bartram, C.R., and Grosveld, G.(1983). Localization of the c-abl oncogene adjacent to a translocation break point in chronic myelocytic leukemia. Nature 306, 239-242.

- Hertel, K.J., Herschlag, D., and Uhlenbeck (1996). Specificity of hammer-head ribozyme cleavage. EMBO J. 15, 3751-3757.
- fuang. Y. and Carmichael, G.G. (1996). Role of polyadenylation in nucleocytoplasmic transport of mRNA. Mol. Cell. Biol. 16, 1534-1542.
- James, H., Mills, K., and Gibson, I.(1996). Investigating and improving the specificity of ribozymes directed against the bcr-abl translocation. Leukemia 10, 1054-1064.
- Kawasaki, H., Ohkawa, J., Tanishige, N., Yoshinari, K., Murata, T., Yokoyama, K.K. and Taira, K.(1996). Selection of the best target site for ribozyme-mediated cleavage within a fusion gene for adenovirus EIA-associated 300 kDa protein (p300) and luciferase.
 - Nucleic Acids Res. 24, 3010-3016.
- Kawasaki, H., Eckner, R., Yao, T-P., Taira, K., Chiu, R., Livingston, D.M. and Yokoyama, K.K. (1998). Distinct roles of the co-activators p300 and CBP in retinoic-acid-induced F9-cell differentiation.
 Nature 393, 284-289.
- Kazakov, S. and Altman, S. (1992). A trinucleotide can promote metal ion-dependent specific cleavage of RNA. Proc. Natl. Acad. Sci. USA 89, 7939-7943.
- Kearney, P., Wright, L.A., Milliken, S., and Biggs, J.C. (1995). Improved specificity of ribozyme-mediated cleavage of bcr-abl mRNA. Exp. Hematol. 23, 986-989.
- Kitamura, T., Onishi, M., Kinoshita, S., Shibuya, A., Miyajima, A. and Nolan, G.P. (1995) Efficient screening of retroviral cDNA expression libraries, Proc. Natl. Acad. Sci. USA 92, 9146-9150.
- Konopka, J.B., Watanabe, S.M., and Witte, O.N.(1984). An alteration of

the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity, Cell 37, 1035-1042.

- Koseki, S., Ohkawa, J., Yamamoto, R., Takebe, Y. and Taira, K.(1998). A simple assay system for examination of the inhibitory potential in vivo of decoy RNAs, ribozymes and other drugs by measuring the Tatmediated transcription of a fusion gene composed of the long terminal repeat of HIV-1 and a gene for luciferase. J. Control. Release 53, 159-173.
- Kronenwett, R., Haas, R. and Sczakiel, G. (1996). Kinetic selectivity of complementary nucleic acids: bcr-abl-directed antisense RNA and ribozymes. J. Mol Biol. 259, 632-644.
- Kuida, K., Zheng, T.S., Na, S.-Q., Kuan, C.-Y., Yang, F., Karasuyama, H., Rakic, P., and Flavell, R.A. (1996). Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384, 368-372.
- Kuwabara, T., Amontov, S., Warashina, M., Ohkawa, J. and Taira, K. (1996).

 Characterization of several kinds of dimer minizyme:simultaneous
 cleavage at two sites in HIV-1 tat mRNA by dimer minizymes. Nucleic
 Acids Res. 24, 2302-2310.
- Kuwabara, T., Warashina, M. Tanabe, T., Tani, K., Asano, S., and Taira, K. (1997). Comparison of the specificities and catalytic activi-ties of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric L6(b2a2) mRNA. Nucleic Acids Res. 25, 3074-3082.
- Laneuville, P., Timm, M., and Hudson, A.T. (1994). Bcr/abl expression in 32D c13(6) cells inhibits apoptosis induced by protein tyrosine kinase inhibitors. Cancer Res. 54, 1360-1368.
- Lange, W., Cantin, E. M., Finke, J., and Dolken, G. (1993). In vitro and in vivo effects of synthetic ribozymes targeted against BCR/ABL mRNA Leukemia 7, 1786-1794.

47

WO 99/46388

PCT/JP99/01187

Lange, W., Daskalakis, M., Finke, J., and Dolken, G.(1994). Comparison of different ribozymes for efficient and specific cleavage of BCR/ABL related mRNAs. FEBS Lett. 338, 175-178.

- Leopold, L.H., Shore, S.K., Newkirk, T.A., Reddy, R.M.V., and Reddy, P. (1995). Multi-unit ribozyme-mediated cleavage of bcr-abl mRNA in myeloid leukemias. Blood 85, 2162-2170.
- Li, P., Allen, H., Banerjee, S., Franklin, S., Herzog, L., Johnson, C., McDowell, J., Paskind, M., Rodman, L., Salfeld, J., et al. (1995).
 Mice deficient in IL-1b-converting enzyme are defective in production of mature IL-1b and resistant to endotoxic shock.
 Cell 80, 401-411.
- Long, D.M. and Uhlenbeck, O.C.(1994). Kinetic characterization of intramolecular and intermolecular hammerhead RNAs with stem II deletions. Proc. Natl. Acad. Sci. USA 91, 6977-6981.
- Maekawa, T., Kimura, S., Hirakawa, K., Murakami, A., Zon, G., and Abe, T. (1995). Sequence specificity on the growth suppression and induction of apoptosis of chronic myeloid leukemia cells by BCR-ABL anti-sense oligonucleoside phosphorothioates. Int. J. Cancer 62, 63
- Mahon, F.X., Ripoche, J., Pigeonnier, V., Jazwiec, B., Pigneux, A., Moreau, J.F., and Reiffers, J.(1995). Inhibition of chronic myelogenous leukemia cells harboring a BCR-ABL B3A2 junction by antisense oligonucleotides targeted at the B2A2 junction. Exp. Hematol. 23, 1606-1611.
- McCall, M. J., Hendry, P. and Jennings, P.A. (1992). Minimal sequence requirements for ribozyme activity. Proc. Natl. Acad. Sci. USA 89, 5710-5714.
- McGahon, A., Bissonnette, R., Schmitt, M., Cotter, K.M., Green, D.R., and Cotter, T.G. (1994). BCR-ABL maintains resistance of chronic

myelogenous leukemia cells to apoptotic cell death. Blood 83, 1179-1187.

- and McGahon, A.J., Nishioka, W.K., Martin, S.J., Mahboubi, A., Cotter, T.G., Green, D.R. (1995). Regulation of the Fas apoptotic cell death pathway by abl. J. Biol. Chem. 270, 22625-22631
- Littman, D.R., and Witte, O.N. (1991). BCR first exon sequences Muller, A.J., Young, J.C., Pendergast, A.M., Pondel, M., Landau, N.R., specifically activate the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome-positive human leukemias. Mol. Cell. Biol. 11, 1785-1792.
- S. (1997). Apoptosis by death factor. Cell 88, 355-365. Nagata,
- Nowell, P.C., and Hungerford, D.A. (1960). A minute chromosome in human chronic granulocytic leukemia. Science 132, 1497-1499.
- AcConald, V., and Goldman, J.M. (1994). Antisense BCR-ABL oligomers cause non-specific inhibition of chronic myeloid leukemia cell O'Brien, S.G., Kirkland, M.A., Melo, J.V., Rai, M.H., Davidson, R.J., lines. Leukemia 8, 2156-2162.
- Pachuk, C.J., Yoon, K., Moelling, K., and Coney, L.R. (1994). Selective cleavage of bcr-abl chimeric RNAs by a ribozyme targeted to 301-307. non-conitiguous sequence. Nucleic Acids Res. 22,
- SH1 domain autophosphorylation of p210 BCR/ABL is required for transformation but not growth factor independence. Mol. Cell. Pendergast, A.M., Gishizky, M.L., Havlik, M.H., and Witte, O.N.(1993). Biol. 13, 1728-1736.
- ribozymes. In Turner, P.C. (ed.), Mrthods in Molecular Biology, Perriman, R. and de Feyter, R. (1997). tRNA-delivery systems for Ribozyme Protocols. Humana Press, Totowa, NJ, pp.393-402.
- Metal ion catalysis in the Tetrahymena ribozyme reaction. Nature Piccirili, J.A., Vyle, J.S., Caruthers, M.H. and Cech, T.R. (1993).

WO 99/46388

361, 85-88.

PCT/JP99/01187

Porta, H., and Lizardi, P.M. (1995). An allosteric hammerhead ribozyme.

- Biotechnology 13, 161-164.
- Reuther, J.Y., Reuther, G.W., Cortez, D., Pendergast, A.M., and Baldwin, Jr., A.S. (1998). A requirement for NF-kB activation in Bcr-Ablmediated transformation, Genes & Dev. 12, 968-981.
- chronic myelogenous leukemia identified by quinacrine fluorescence Rowley, J.D. (1973). Letter: A new consistent chromosomal abnormality in and Giemsa staining. Nature 243, 290-293.
- implication to the double-metal-ion mechanism of catalysis. J.Am. transfer process in reactions catalyzed by a hammerhead ribozyme: S., Komiyama, M., and Taira, K. (1995). Kinetic evidence based on solvent isotope effects for the nonexistence of a proton-Сhет. Soc. 117, 2357-2358. Sawata,
- cleavage of the BCR-ABL oncogene transcript: in vitro cleavage Shore, S.K., Nabissa, P.M., and Reddy, E.P. (1993). Ribozyme-mediated of RNA and in vivo loss of P210 protein-kinase activity, Oncogene 8, 3183-3188.
- transcript of abl and bcr genes in chronic myelogenous leukemia. Shtivelman, E., Lifshitz, B., Gale, R.P., and Canaani, E. (1985). Fused Nature 315, 550-553.
- (1986). Alternative splicing of RNAs transcribed from the human abl Shtivelman, E., Lifschitz, B., Gale, R. P., Roe, B.A., and Canaani, J. gene and from the bcr-abl fused gene. Cell 47, 277-284
- Smetsers, T.F., van de Locht, L.T., Pennins, A.H., Wessels, H.M., de Witte, T.M., and Mensink, E.J. (1995). Phosporothioate BCR-ABL antisense oligonucleotides induce cell death, but fail to reduce cellular bcr-abl protein levels. Leukemia 9, 118-130.
- Smetsers, T.F., Linders, E.H., van de Locht, L.T., de Witte, T.M., and

Mensink, E.J.(1997) An antisense Bcr-Abi phosphodiester-tailed methylphosphonate oligonucleotide reduces the growth of chronic myeloid leukemia patient cells by a non-antisense mechanism. Br. J.Hematol. 96, 377-381.

- Snyder, D.S., Wu, Y., Wang, J.L., Rossi, J.J., Swiderski, P., Kaplan, B.E., and Forman, S.J. (1993). Ribozyme-mediated inhibition of bcr-abl gene expression in a Philadelphia chromosome-positive cell line. Blood 82, 600-605.
- Spooncer, E., Fairbairn, L., Cowling. G.J., Dexter, T.M., Whetton, A.D., and Owen-Lynch, P.J.(1994). Biological consequences of p160 v-abl protein tyrosine kinase activity in primitive, multipotent hematopoietic cell line. Leukemia 8, 620-626.
- Steitz, T.A. and Steitz, J.A. (1993). A general two-metal-ion mechanism for catalytic RNA, Proc. Natl. Acad. Sci. USA 90, 6498-6502.
- Sullenger, B.A. and Cech, T.R. (1993). Tethering ribozymes to a retroviral packaging signal for destruction of viral RNA. Science 262, 1566-1569.
- Symons, R.H. (1989). Self-cleavage of RNA in the replication of small pathogens of plants and animals. Trends Biochem. Sci. 14, 445-
- Tang, J., and Breaker, R.R. (1997a). Rational design of allosteric ribozymes. Chem. Biol. 4, 453-459.
- Tang, J., and Breaker, R.R. (1997b). Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. RNA 3, 914-925.
- Terns, M., Dahlberg, J., Lund, E. (1993). Multiple cis-acting signals for export of pre-UI snRNA from the nucleus. Genes & Dev. 7, 1898- 1908.

Tuschl, T., and Eckstein, F. (1993). Hammerhead ribozymes: importance of stem-loop II activity. Proc. Natl. Acad. Sci. USA 90, 6991-

5

WO 99/46388

PCT/JP99/01187

6994.

Uhlenbeck, O.C.(1987). A small catalytic oligonucleotide. Nature 328, 596-600 Yu, M., Leavitt, M.C., Maruyama, M., Yamada, O., Young, D., Ho. A.D., and Wong-Staal, F.(1995). Intracellular immunization of human fetal cord blood stem/progenitor cells with a ribozyme against human immunodeficiency virus type 1. Proc. Natl. Acad. Sci. USA 92,

Vaerman, J.L., Lammineur, C., Moureau, P., Lewalle, P., Deldime, F.,
Blumanfeld, M., and Martiat, P. (1995) BCR-ABL antisense oligodeoxyribonucleotides suppress the growth of leukemic and normal
hematopoietic cells by a sequence-specific but nonantisense
mechanism. Blood 86, 3891-3896.

Vaerman, J.L., Moureau, P., Deldime, F., Lewalle, P., Lammineur, C.,
Morschhauser, F., and Martiat, P.(1997). Antisense oligodeoxyribonucleotides suppress hematologic cell growth through stepwise
release of deoxyribonucleotides Blood 90, 331-339.

Wright, L., Wilson, S.B., Milliken, S., Biggs, J., and Kearney, P. (1993).
Ribozyme-mediated cleavage of the bcr/abl transcript expressed in chronic myeloid leukemia. Exp. Hematol. 21, 1714-1718.

Zhou, D.-M., Zhang, L.-H., and Taira, K. (1997). Explanation by the double-metal-ion mechanism of catalysis for the differential metal ion-effects in the cleavage rates of 5'-oxy and 5'-thio substrates by a hammerhead ribozyme. Proc. Natl. Acad. Sci. USA 94, 14343-14348.

Zhou, D.-M. and Taira, K.(1998). The hydrolysis of RNA: from theoretical calculations to the hammerhead ribozyme-mediated cleavage of RNA. Chem. Rev. 98, 991-1026.

本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として 本明細書にとり入れるものとする、

WO 99/46388

PCT/JP99/01187

囲 熠 0 兴 艦

1. 標的RNAに対してアロステリックなRNA切断活性を示す核酸酵素。

2. 下記のヌクレオチド配列(10) を含むRNA分子および下記のヌクレオチド配列

(20) を含むRNA分子が形成する二量体の構造を有する請求項1記載の核酸酵素。

 $5' X_1' \cdots X_h' Y_1' \cdots Y_1' Z_1' \cdots Z_J' 3'$ (10)

 $5^{1}Z_{1}^{2} \cdots Z_{n}^{2} Y_{1}^{2} \cdots Y_{n}^{2} X_{1}^{2} \cdots X_{k}^{2} 3^{2}$ (20)

(配列中、X'₁~X'₁、 X²~X²、 Y'₁~Y'₁、Y²;~Y²*、Z'₁~Z'₁およびZ'₂~Z'₂ は、

各々独立に、A、U、T、CまたはGのいずれかであり、

hおよびkは1以上の整数であり、

iおよびmは1以上の整数であり、

j は1以上の整数であり、

nは1以上の整数であり、

 X_1' … X_1' および X_2' … X_2' は、標的RNA中の特異的配列に相補的なヌクレオチド 配列であり、

Y', … Y'およびY', … Y'aは、ステムを形成するヌクレオチド配列であり、

 $Z_1, \cdots Z_1$ および $Z_1, \cdots Z_n$ は、標的RNAの切断部位周辺の配列に相補的である領 域および標的RNAの存在下でのみMg²・イオンを補捉する空洞を形成しうる領域を 含むヌクレオチド配列である。)

3. 標的RNAが疾病の原因となるキメラ型mRNAである請求項1または2に記載の 核酸酵素。 4. キメラ型mRNAが慢性骨髄性白血病の原因となるL6 (b2a2) キメラ型mRNAであ る請求項3記載の核酸酵素。

5. 下記のヌクレオチド配列(1)を含むRNA分子および下記のヌクレオチド配列 (2)を含むRNA分子が形成する二量体の構造を有する請求項4記載の核酸酵素。

 Ξ 5' GAAGGCUUC UUUCAUCGAA ACCCUGAGG 3' 5' CACUCACUGA UGAGAGUUAU UGAUGGUCAG 3' (2)

(ただし、ヌクレオチド配列(1)の21番目~29番目のヌクレオチドおよびヌ

54

クレオチド配列(2)の17番目~31番目のヌクレオチドは標的RNAの切断部位周 辺の配列に相補的になるように改変されてもよい。

- 6. ヌクレオチド配列(1)および(2)のそれぞれの上流にリンカー配列およびtRNA Valプロモーター配列が付加されている請求項5記載の核酸酵素。
- 7. ヌクレオチド配列(1) の上流に付加されているリンカー配列が下記のヌクレ オチド配列(3)を含み、ヌクレオチド配列(2)の上流に付加されているリンカー配 列が下記のヌクレオチド配列(4)を含む請求項6記載の核酸酵素。

 $\widehat{\mathbb{C}}$ 5' AAA 3'

5' UUU 3' (4)

- プロモーター配列が下記のヌクレオチド配列 (5) を含む請求項 6 記載の核酸酵素。 8. ヌクレオチド配列(1)および(2)のそれぞれの上流に付加されているtRNAVal
- 5' ACCGUUGGUU UCCGUAGUGU AGUGGUUAUC ACGUUCGCCU AACACGCGAA AGGUCCCCGG

(配列番号3) (2) UUCGAAACCG GGCACUACAA AAACCAAC 3'

- 9. ヌクレオチド配列(1)および(2)のそれぞれの下流に付加配列およびターミネ 一ター配列が付加されている請求項6記載の核酸酵素
- チド配列(6)を含み、ヌクレオチド配列(3)の下流に付加されている付加配列が下 10.ヌクレオチド配列(1)の下流に付加されている付加配列が下記のヌクレオ 記のヌクレオチド配列(1)を含み、ヌクレオチド配列(1)および(2)のそれぞれの 下流に付加されているターミネーター配列が下記のヌクレオチド配列(8)を含む 請求項 9 記載の核酸酵素。

9 5' AAA 3'

9 5' AACCGUA 3' 8 5' uuuuu 3'

- 11. 標的RNAが疾病の原因となる異常型mRNAである請求項1または2に記載の
- 12. 請求項1~11のいずれかに記載の核酸酵素をコードするDNAを含む発現 ベクター

して、RNAに転写することを特徴とする、請求項1記載の核酸酵素の製造方法、

55

.

13.請求項1記載の核酸酵素をコードするDVAを含む発現ベクターDNAを鋳型と

WO 99/46388

PCT/JP99/01187

- 14. 請求項1~11のいずれかに記載の核酸酵素または請求項12記載の発現 ベクターを有効成分として含む医薬組成物。
- 15. 標的RNAが原因となって生じる疾病を予防および/または治療するための 請求項14記載の医薬組成物。
- 16. 請求項3~10のいずれかに記載の核酸酵素を生体内で発現させて、疾病 の原因となるキメラ型mRNAの発現を抑制または阻害するための請求項15記載の 医薬組成物。
- 17. フィラデルフィア染色体異常により生じる疾病を予防および/または治療 するための請求項16記載の医薬組成物。
- 18. フィラデルフィア染色体異常により生じる疾病が慢性骨髄性白血病である 請求項17記載の医薬組成物。
- 19. 請求項11記載の核酸酵素を生体内で発現させて、疾病の原因となる異常 型mRNAの発現を抑制または阻害するための請求項15記載の医薬組成物。
- 20.請求項1記載の核酸酵素を用いて、標的RNAを特異的に切断する方法。
- 21.標的RNAが疾病の原因となるキメラ型mRNAである請求項20記載の方法。
- 22. 疾病がフィラデルフィア染色体異常により生じるものである請求項21記 載の方法
- 23. フィラデルフィア染色体異常により生じる疾病が慢性骨髄性白血病である 請求項22記載の方法。
- 24.標的RNAが疾病の原因となる異常型mRNAである請求項20記載の方法。

99

<u>[:X</u>

<u>—</u>

PCT/JP99/01187

PCT/JP99/01187

WO 99/46388

MzL-MzRヘテロダイマー型ミニザイム geeec s. Suga MzR 5'cgggg Acggc 3' 报基質 ミニザイム 3,CGGCA Stem III MzL |アンチセンス領域 stem ||領域 |**5**| の削除 2/25 <u>図</u> MzL-MzRホモダイマー型ミニザイム A 活性中心領域 GGGGC^{5'} stem-loop II箭塻 CAGUAGC 5 CUG MzR (ミニザイム・ライト) ハンマーヘッド型リボガイム MzL (ミニザイム・レフト) モノマー Stem III NUX期付 3' ccuucca 3° CGGCA

<u>図</u> 4

WO 99/46388

PCT/JP99/01187

<u>図</u> 公

WO 99/46388

和解铅位 QD 切取部位 QD - อกว .9 ローマトを 3, xxxxxx X Xxxxxx 2, BCH exon 2 ABL exon 2 BCR exon 2 Z uoxa **78**7 ムトサニミ坚ーケトや

4/25

WO 99/46388

WO 99/46388

AAG CCC UUC AGC L6 (b2a2) BCR-ABL mRNA ABL exon 1
CUC CAG CUG UUA UCU GGAAG GCU GAC CAU CAA UAA GGAAG BCR exon 2

S'GAAGGGCUUCUUUC UUAUUGAUGGUCAG3' -CUUCCCGAA GAAGGAAUAACUACCAGUC 3-GGAGUCCGAVACUGAC5-A CUGA A UGA M7-1 G A GUTAB MzR - ccucagg<u>uc</u>ugague -ABL exon 2 (ジャンクション) MzL ABL exon 2

正常型 ABL mRNA -uuauugaugag $^{3^{\prime}}$ ABLexon 2
— CCUCAGGGUCUGAGUG
— GGAGUCCCA ACUCAC

3
GAA C
CU 5.
GAAGGCUUCUUUCA GAUGA-3.
—CUUCCCGAA GAAGGU CUAUU \
ABL exon 2 ABL exon 1 5' CcucAgagucugAgua 3.GGAGUCCCA ACUCACS MzR SGAAGGGCUU MzL

<u>図</u>

Euudune se u-MzL

MzR tRNAVal-MzRの二次構造 tRNA Val-Wzt., 128mer

tRNAVal-MzR 133mer

 ∞

X

PCT/JP99/01187

<u>図</u>

WO 99/46388

PCT/JP99/01187

<u>図</u>

-GGAGUCCCA ACUCAC * AGUUAUUCCUUC UUCGGGAA UCGCCGGUCA l asRz 81 wtRz ∽GUGUCGUAAGGCGACUGGUAGUUAUUCCUUC) _{Somer} macymprom _ manamoccapgoma 従来のアンチセンス付加型リボザイム asRz 52 S (WHENTER WILE GOOD STREET OF STRE **従来のハンマーヘッド型リボザイム** Recognition site for maxizym L6 BCR-ABL mRNA

avitaA emysisam

JZW + HZW

Effector: BCR-ABL 28 mer

HZM

Effector: BCH-ABL 28 mer

endosni endarin

915

WO 99/46388

HzM

inactive anuturite

Elfector: ABL 20 mer s

<u>図</u> 7

WO 99/46388

PCT/JP99/01187

<u>巡</u> 18

(day) 開制

PV-MAL/R

はま とてトV日

時間 (day)

(ANAm JBA 陸常五

18/25

(day)

BaF3/p210ecn-AeL 細胞

アボトーシス (%)

09

) 蝴睐 6H

図21

WO 99/46388

< BaF3/p210BCR-4BL cell >

10 July

(KDa)

33 21

図 22

Procaspase-3 (32 KDa)

Caspase-3 (17 KDa)

Procaspase-3 (32 KDa)

SHAMA OF

< H9 cell >

7.5

10 logglos

(KDa) 33 ĸ

Caspase-3 (17 KDa)

7.5

22/25

図 24

図 23

WO 99/46388

Control; Mz(-)

WO 99/46388

配列表

SEQUENCE LISTING

<110> DIRECTOR-GENERAL OF AGENCY OF INDUSTRIAL SCIENCE AND TECHNOLOGY TAISHO PHARMACEUTICAL CO., LTD. <120> DIMER TYPE RIBOZYME CAPABLE OF CLEAVING SPECIFICALLY MESSENGER RNA RESPONSIBLE FOR CHRONIC MYELOCYTIC LEUKEMIA

<130> P98-0496

<160> 4

<170> PatentIn Ver. 2.0

⟨210⟩ 1

<211> 29

<212> RNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: The nucleotide sequence of MzL

<400> 1

gaagggcunc uuncaucgaa acccugagg

29

1/3

25/25

<210> 2

WO 99/46388 PCT	PCT/JP99/01187	WO 99/46388 PCT/JP99/01187
<211> 30		<220>
<212> RNA		<223> Description of Artificial Sequence: The nucleotide sequence of
<213> Artificial Sequence		a promoter of T7 RNA polymerase
<220>	v	<400> 4
$\langle 223 \rangle$ Description of Artificial Sequence: The nucleotide sequence of MzR	se of MzR	taatacgact cactata

<223> Description of Artificial Sequence: The nucleotide sequence of <213> Artificial Sequence t RNA "al

配列番号4は、T7 RNA ポリメラーゼのヌクレオチド配列を示す。

配列番号1は、M2Lのヌクレオチド配列を示す。 配列番号2は、MzRのヌクレオチド配列を示す。 配列番号3は、tRNA™Oヌクレオチド配列を示す。

30

cacucacuga ugagaguuau ugauggucag

<400> 2

<212> RNA

<220>

<211> 88

<210> 3

[配列表フリーテキスト]

INTERNATIONAL SEARCH REPORT

PCT/JP99/01187 International application No.

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
BIOSIS (DIALOG), MEDLINE (DIALOG), WPI (DIALOG), JICST File (JOIS),
DDBJ/EMBL/Genbank/FIR/SwissProt/Geneseq A. CLASSIFICATION OF SUBBECT MATTER Int.Cl⁶ C12N15/55, C12N9/22, C12Q1/34, A61K48/00, A61K38/43 Minimum documentation searched (classification system followed by classification symbols)
Int.Cl⁶ C12N15/55, C12N9/22, C12Q1/34, A61K48/00, A61K38/43 According to International Patent Classification (IPC) or to both national classification and IPC C. DOCUMENTS CONSIDERED TO BE RELEVANT B. FIELDS SEARCHED

Relevant to claim No.	1-19	1-4, 11-19 5-10	1-4, 11, 14-19 5-10, 12, 13	1-19
Citation of document, with indication, where appropriate, of the relevant passages	Tomoko Kuwahara et al., "Iyakuhin kaihatsu to idenshi Iyakuhin to shiteno ribozyme sekkei", Idenshi Igaku, Vol. 2[3] (1998-Jul.), p.367-374	Nucleic Acids Res., Vol.25[15] (1997) Kuwabara T. et al., "Comparison of the specificities and catalytic activities of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric L6(b2a2) mRNA" p.3074-3081	Tomoko Kuwahara et al., "Idenshi hatsugen seigyohou-Daimaagata minizaimu no design to sono ouyou-", Biomedicine & Therapeutics, Vol. 31[4] (1997), p.435-441	Nucleic Acids Res. Vol. 26[14] (1998-Jul.) Araki M. et al., "Allosteric regulation of a ribozyme activity through ligand-induced conformational change" p.3379-3384
Category*	х [,] ч	MA	×	д ,

	×	X Further documents are listed in the continuation of Box C. See patent family annex.		See palent family annex.
_		* Special categories of cited documents:		"f" later document published after the international filing date or mioniv
	<u>`</u>	"A" document defining the general state of the art which is not		date and not in conflict with the application but cited to understand
		considered to be of particular relevance		the principle or theory underlying the jayontion
	ឃ្មុំ	earlier document but published on or after the international filing date "X" document of particular relevance; the claimed invention cannot be	×	document of narricular relevance: the claimed invention cannot be
	;	"L" document which may throw doubts on priority claim(s) or which is		considered novel or cannot be considered to involve an inventive sten
-		when to entablish the multiposition date of anather the state		

٠	Special cal	Special calegories of critic documents:	Ļ	Taker document published after the international filing date or priority
<u>·`</u>	Y document	"A" document defining the general state of the art which is not		date and not in conflict with the application but cited to understand
	considered	considered to be of particular relevance		the principle or theory underlying the jayontion
•	" earlier doc	ument but published on or after the international filing date	×	earlier document but published on or after the international filling date "X" document of particular relevance; the claimed invention cannot be
-	document?	"L" document which may throw doubts on priority claim(s) or which is		considered govel or cannot be considered to involve an inventive step
-	cited to est	cited to establish the publication date of another citation or other		when the document is taken alone
	special rea	special reason (as specified)	<u>,</u>	"Y" document of particular relevance: the claimed invention cannot be
-)" document	"O" document referring to an oral disclosure, use, exhibition or other		considered to involve an inventive step when the document is
_	means			combined with one or more other such documents, such combination
_	document y	document published prior to the international filing date but later than		being obvious to a person skilled in the art
	the priority	the priority date claimed	, 24	"&" document menther of the same patent family
_				

the priority date claimed

Date of the actual completion of the international search report 7 May, 1999 (17, 05, 99) 18 May, 1999 (18, 05, 99)	Name and mailing audicess of the ISA/ Authorized officer
Date of the	Name and m

Form PCT/ISA/210 (second sheet) (July 1992)

Facsimile No.

Telephone No.

INTERNAT

			1			
nional application No. PCT/JP99/01187		Relevant to claim No.	1-19	1-19	1-19	
International application No. PCT/JP99/011		elevant passages	amination of ribozyme by	ng J. et al., ss. p.453-459	i. et al., 161-164	
INTERNATIONAL SEARCH REPORT	nation). DOCUMENTS CONSIDERED TO BE RELEVANT		RNA, Vol. 3 (1997) Tang J. et al., "Examination the catalytic fitness of the hammerhead ribozyme in vitro selection" p.914-925	Chemistry & Biology, Vol. 4[6] (1997) Tang J. et al "Rational design of allosteric ribozymes" p.453-4	Bio/Technology, Vol. 13 (1995) Porta H. et al "An Allosteric Hammerhead Ribozyme" p.161-164	
	C (Continuation).	Category*	Æ	Ą	æ	

Form PCT/ISA/210 (continuation of second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

PCT/JP99/01187 International application No.

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)	
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:	
because they relate to subject matter not required to be searched by this Authority, namely. The group of inventions as set forth in claims 20 to 24 pertains to methods for specifically cleaving mRNA causative of diseases in vivo and thus falls under the category of methods for treatment of the human body by therapy. Thus, it relates to a subject matter which this International Searching	
_	
 Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). 	
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)	
This International Searching Authority found multiple inventions in this international application, as follows:	
 As all required additional scarch fees were timely paid by the applicant, this international search report covers all searchable claims. 	
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.	
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:	
1. So required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:	
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.	

Form PCT/ISA/210 (continuation of first sheet (1)) (July 1992)

Form PCT/ISA/210 (extra sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

PCT/JP99/01187 International application No.

Continuation of Box No. I of continuation of first sheet (1)

Authority is not required, under the provisions of Article 17(2)(a)(i) of the PCT and Rule 39.1(iv) of the Regulations under the PCT, to search.

	国際調查報告	国際出版番号 PCT/JP99	/01187
A. 発明の属す	6する分野の分類(国際特許分類(IPC))		
1 n t. C1	C12N15/55, C12N9/22, C A61K48/00, A61K38/43	12Q1/34,	
B. 調査を作 調査を行った最	B. 調査を行った分野 調査を行った最小限資料 (国際特許分類 (1 P C))		
lat. Cl	C12N15/55, C12N9/22, C A61K48/00, A61K38/43	12Q1/34,	
最小限資料以多	最小限資料以外の資料で調査を行った分野に合まれるもの		
国際額在で使用 B 10 S 1 S J 1 C S T 7	在で使用した電子データペース(データペースの名称、顕査に使用した用節) O S I S (D I A L O G), M E D L I N E (D I A L O G), W P I (D I C S Tファイル (J O I S), DBBJEMBL/Genbank/PIR/SwissProt/Genescq	和查に使用した用語) 0G), WPI(DIALOG), rissProt/Goneseq	
C. 関連する	5と認められる文献		1 - 1
引用文献の カデゴリー*	引用文献名 及び一部の箇所が関連するときは、	表示	が 単一 単一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一
ъ,х	遺伝子医学,Vol.2[3](1998-Jul.) 桑原 知子 他 「医薬品開発と遺伝子 医薬品としてのリボザイム設計」 p.367-374	原 知子 他 てのリボザイム設計」	1-19
××	Nucleic Acids Res., Vol. 25[15] (1997) Kuwabara T. et al. [Comparison of the specificities and catalytic activities of hammerhead ribozymes and DNA enzymes with respect to the cleavage of BCR-ABL chimeric LG(02a2) mRNA] p. 3074-3081	37) Kuwabara T. <i>et al.</i> s and catalytic activities nnzymes with respect to L6(62a2) mRNA]	1-4, 11-19 5-10
Xの糖の純素	C柵の続きにも文献が列挙されている。	□ パテントファミリーに関する別紙を参照	纸を参照。
* 引用文献の 「A」特に因連 もの 「E」国際出版 以後にか 「L」概本権士 日出じ、 文献(理 「O」ロ項によ	 引用文版のカテゴリー 「A」特に関連のある文献ではなく、一般的技術水準を示すもの 「E」場際出級日前の出版または特許であるが、国際出題日 以後に公表されたもの 「L」優先権主張に聚義を提起する文献又は他の文献の発行 日子しくは他の特別な理由を確立するために引用する 文献(理由を付す) 「O」ロ頭による弱示、使用、展示等に含及する文献 「O」ロ頭による弱示、使用、展示等に含及する文献 「P」「阿殊出級日前で、かつ優先権の主張の基礎となる出願 	の目の後に公表された文献 「T」国際出版日又は優先月後に公表された文献であって 工船を大招するものではなく、発卵の原理又は到 路の期間のために同用するもの 「X」特に関連のある次配であって、当該文献のみで発明 の新規性又は連歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合社に よって進歩件がないと考えられる。	公表された文献であって たく、発明の原理又は選 もの た、当該文献のみで発明 と考えられるもの と考えられるもの と当文献と他の1以 られるもの されるもの
国際調査を完了した日	Γレた用 07.05.99	国際調査報告の発送日 18,0	18,05,99
国際調金機関の 日本世 野 東京者	国際副金機関の名称及びおで先 F A 国体部庁 (1SA/JP) 所便番号100-8915 東京都千代田区優が関ニ丁目4番3号	特許庁審査官 (権限のある職員) 正 條 章 (選訴務号 03-3581-1101 内)	4B 9453 所報 3448

様式PCT/1 SA/210 (第2ページ) (1998年7月)

	国際調査報告 国際山脈番号 PCT/JP9	9/01187
C (税表).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
×l∢	治療学, Vol. 31[4](1997) 桑原 知子 他 「遺伝子発現制御法 -ダイマー型ミニザイムのデザインとその応用ー」p. 435-441	$\frac{1-4, 11, 14-19}{5-10, 12, 13}$
E, A	Nucleic Acids Res. Vol. 26[14](1998-Jul.) Araki M. et al. [Allosteric regulation of a ribozyme activity through ligand-induced conformational change] p. 3379-3384	1 – 1 9
A	RNA, Vol. 3(1997) Tang J. et al. [Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection] p.914-925	1 – 1 9
Ą	Chemistry & Biology, Vol. 4[6] (1997) Tang J. et al. [Rational design of allosteric ribozymes] p.453-459	1 – 1 9
4	Bio/Technology,Vol.13(1995) Porta H. <i>et al.</i> fAn Allosteric Hammerhead Ribozymej p.161-164	1-19

	国际部分数别	国際田敷都本 PCT/] L99/01187
第1 法第8条 成しなか	英日 樹一	(第1ページの2の続き) この国際調査報告は次の理山により請求の範囲の一部について作
<u>.</u>	請求の範囲 20-24 It、この国際調査機関が つまり、	この国際調査機関が調査をすることを要しない対象に係るものである。
	請求の範囲20-24に係る発明は生体内で疾病の原因となるmRNAを特異的に切断する方法に関するものであり、これは治療による人体の処置方法に該当するから、特許協力条約第17条(2)(a)(1)及び特許協力条約に基づく規則39.1(iv)の規定によりこの国際調査機関が調査をすることを要しない対象に係るものである。	Ŕ病の原因となるmRNAを特異的に切断 とる人体の処置方法に該当するから、特許 に基づく規則39.1(iv)の規定により ン対象に係るものである。
.;	は、有意義な国際調査を ない国際出願の部分に係るものである。 つまり、	有意義な国際調査をすることができる程度まで所定の要件を満たしてい ・ つまり、
; :	諸米の衛用 治って記載されていない。 おって記載されていない。	從属部状の範囲であってPCT規別6.4(a)の第2文及び第3文の規定に
第口權	発明の単一性が欠如しているときの意見 (第1ページの30	の統き)
次 行	※元治人るように1の国際出際に二以上の承明があるといの国際認倫撮政は認めた。	でできる。 できる
.; 	出際人が必要な追加調査手数料をすべて期間内に針付したので、の範囲について作成した。	のた、この国際調査報告は、 ナストの調査可能な請求
2.	追加調査手数料を要求するまでもなく、すべての調査可能/ 加調査手数料の納付を求めなかった。	すべての調査可能な詰求の範囲について関密することができたので、追
	出願人が必要な追加調査主教科を一部のみしか期間内に維付しなかったのた、 亡のあった状の語彙の箱囲のみについて作成した。	付しなかったので、この国際調査報告は、手数料の制
4.	山筋人が必要な追加聯本手数料を期間内に終付しなかったので、されている発明に係る次の請求の範囲にしいて作成した。	ので、この同際調査報告は、請求の範囲の最初に記載
過過過	追加調査手数体の別様の中立てに関する社会 「一・追加調査手数料の納付と共に加麗人から別議申立てがあった。 「一・追加調査手数料の納付と共に加麗人から別議申立てがあった。	った。 かった。

様式PCT/ISA/210 (第1ページの被集 (1)) (1998年7月)