

8

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Instructor Details</u>

☆ Course / Assessments / Quiz 1

Previous
Next >

click Here

 $\hfill\square$ Bookmark this page

\sim	1
()	

1.0/1.0 point (graded)

$D \subset A$:_				£
PCA	IS	em	יסוק	vea.	TO

Dimensionality	reduction

Linear regression

O Dimensionality expansion

Clustering

Submit

Q2

1.0/1.0 point (graded)

Principal components of data can be found

- Via projection of data orthogonal to principal directions
- Same as the principal directions
- Via projection of data along principal directions
- Orthogonal to the principal directions

Submit

Q3

1.0/1.0 point (graded)

The data matrix \mathbf{X} in the lecture has been defined as

$$\bigcirc \quad \frac{1}{\sqrt{N-1}} [\bar{\mathbf{x}}_1^T \quad \bar{\mathbf{x}}_2^T \quad \dots \quad \bar{\mathbf{x}}_N^T]$$

$$\bigcirc \quad \frac{1}{\sqrt{N-1}} [\bar{\mathbf{x}}_1 \quad \bar{\mathbf{x}}_2 \quad \dots \quad \bar{\mathbf{x}}_N]$$

Q4
1.0/1.0 point (graded) The PCA routine can be imported in PYTHON as
from sklearn import PCA
from sklearn.decomposition import PCA
import PCA
from decomposition import PCA
✓
Submit
Q5
1.0/1.0 point (graded) Consider PCA routine called as pca = PCA(n_components=2); PCA can be applied and data X can be transformed in PYTHON as
Xp = pca.fit_transform(X)
Xp = pca.fittransform(X)
\(\text{Xp = pca(X)} \)
Xp = pca.fit(X).transform(X)
✓
Submit
Q6
1.0/1.0 point (graded) Consider the ML example below for prediction of sales based on advertising
Sales (Million Advertising (Million Euro) 1 651 23 2 762 26
3 856 30 4 1,063 34 5 1,190 43
6 1,298 48 7 1,421 52 8 1,440 57
9 1,518 58 In this example, Sales is the
Regressor
Regression coefficient

○ Model error
✓
Submit
Q7
1.0/1.0 point (graded) Consider the linear regression model below $y(k) = h_0 + h_1 x_1(k) + \dots + h_n x_n(k) + \epsilon(k)$
The quantities h_i are
Regression coefficient
Regressor
Regressor
○ Model error
✓
Submit
Q8
1.0/1.0 point (graded) The linear regression module can be imported in PYTHON as
from sklearn.linear_model import Regression
from sklearn import LinearRegression
from sklearn.linear_model import LinearRegression
from sklearn import Regressio
✓
Submit
Q9
1.0/1.0 point (graded) Metric used to characterize performance of linear regression is
Only mean_squared_error but not r2_score
Only r2_score but not mean_squared_error
Neither r2_score nor mean_squared_error
Both r2_score and mean_squared_error

Submit			
10			
0/1.0 point (graded)			
ne linear regression model can be app reg = Regression() reg.fit(X_train, y_train)	lied as		
<pre>reg = LinearRegression() reg.fit(X_train, y_train)</pre>			
reg = LinearRegression() reg.fit(y_train, X_train)			
reg = Regression() reg.fit(y_train, X_train)			
Y			
Submit			
	<pre>< Previous</pre>	Novt N	

© All Rights Reserved

