SNC1D - Current Electricity Formative Quiz

 \Box You have successfully demonstrated your *knowledge* \Box You need further review of this material.

Parent's Signature:

REFERENCE MATERIAL

Equations			
V = I x R	$P = E \div \dagger$	Efficiency = \underline{E}_{out} x 100%	$E_{consumed} = kW \times hours$
		Ein	
R = V÷ I	$E = P \times t$	Efficiency = $\underline{E_{\text{useful}}}$ x 100%	Cost = E _{consumed} x rate
		Etotal	
I = V÷ R	† = E ÷ P		Cost = power x time x rate

SHORT ANSWERS – answer the questions as directed.

- 1) Use the diagram to the right to answer the following questions:
 - (a) Label the following on the diagram: (1K)
 - √ Energy Source
 - √ Load

(b) Is this a parallel or series circuit? Explain how you know. (1C)

Parallel or Series?		
I know this because		

(c) If the cell produced **5 V** of energy, what is the **voltage drop** of each bulb? ASSUME THAT THE BULBS ARE IDENTICAL. **Be sure to include units!** (1T)

Bulb 1: _____ Bulb 2: ____

- (d) What will happen to the **brightness** of the first light bulb when you **add** a **third (identical)** bulb into the circuit (i.e. will it be brighter, dimmer, the same, or off)? **Explain** your answer. (2T)
- (e) What will happen to the **total current** in the circuit when you **add** a **third (identical) bulb** into the circuit? **Explain** your answer. **(2T)**

2) Use the diagram to the right to answer the following questions. ASSUME THE BULBS ARE IDENTICAL.

(a) What is the **voltage drop** of each bulb if the battery produces **5 V** of energy? **Be sure to** *include units!* (1T)

Bulb 1: _____ Bulb 2: ____

(b) What is the current at each bulb if the total current is 0.5 A? Be sure to include units! (1T)

Bulb 1: _____ Bulb 2: ____

- (c) What will happen to the **brightness** of the light bulbs when you **add** a **third (identical) bulb** in **parallel** (i.e. will it be bright, dimmer, the same, or off)? **Explain** your answer. **(2T)**
- (d) The total current is **0.5 A.** If you **added** a **third (identical bulb)** in **parallel**, what would the **current at the third bulb** be? **(1T)**
- (e) The voltage from the battery is **5 V.** If you **added** a **third (identical bulb)** in **parallel**, what would the **voltage at the third bulb** be? **(1T)**

DIAGRAMS – draw your answer as directed.

- 3) Draw a circuit diagram of a circuit with the following components: (6C)
 - ✓ A 3-cell battery (with the + and terminals labelled).
 - ✓ A light bulb and motor in parallel.
 - ✓ An open switch ONLY controlling the light bulb.
 - ✓ An ammeter only measuring the current of the motor.
 - ✓ A voltmeter measuring the total voltage.
 - ✓ A fuse on the main path.

<u>CALCULATIONS</u> – Show all of your work using the GRASS method. Be sure to record your final answer with the correct units.
4) A radio uses 100 V and has a resistance of 0.05 Ω . How much current passes through the radio? (2T)
5) How long (in minutes) will your cell phone last, if you only have 800 J of energy left and your phone requires 1.00 W of power? (3T)
6) How much does it cost to watch TV for 2 hours a day every year if your TV has a power rating of 1.0 kW and the electrical company charges you at a rate of \$0.05/kWh. Assume a year has 365 days. (3T)
7) An electric drill produces 4000 J of useful energy and 100 J of wasted energy . What is the efficiency of this drill? (2T)