Overview of Principal Component Analysis And Low-Rank Models

Probability and Statistics for Data Science

Carlos Fernandez-Granda

These slides are based on the book Probability and Statistics for Data Science by Carlos Fernandez-Granda, available for purchase here. A free preprint, videos, code, slides and solutions to exercises are available at https://www.ps4ds.net

Motivation

Model data with multiple features

Motivation

Model data associated with two entities

Bob	Molly	Mary	Larry	
/ 1	1	5	4 \	The Dark Knight
2	1	4	5	Spiderman 3
4	5	2	1	Love Actually
5	4	2	1	Bridget Jones's Diary
4	5	1	2	Pretty Woman
\ 1	2	5	5 /	Superman 2

Plan

- Covariance matrix
- ► Principal component analysis
- ▶ Dimensionality reduction
- ► Low-rank models
- ► Matrix completion

Goal

Describe data with multiple features

Model: d-dimensional random vector

$$ilde{x} := egin{bmatrix} ilde{x}[1] \ ilde{x}[2] \ hdots \ ilde{x}[d] \end{bmatrix}$$

Mean of a random vector

The d-dimensional mean of a random vector \tilde{x} is

$$\mathrm{E}\left[\tilde{x}\right] := \begin{bmatrix} \mathrm{E}\left[\tilde{x}[1]\right] \\ \mathrm{E}\left[\tilde{x}[2]\right] \\ \dots \\ \mathrm{E}\left[\tilde{x}[d]\right] \end{bmatrix}$$

Random vector

Sample mean

Dataset with d features: $X := \{x_1, x_2, \dots, x_n\}$

$$m(X) := \frac{1}{n} \sum_{i=1}^{n} x_i$$

Canadian cities

Canadian cities

Faces

 64×64 images from 40 subjects

Vectorized images interpreted as vectors in \mathbb{R}^{4096}

Sample mean

The variance characterizes average variation of a random variable

How can we characterize fluctuations of a random vector?

Variance of linear combinations of the entries

Covariance matrix

The covariance matrix of a random vector \tilde{x} is

$$\Sigma_{\tilde{x}} := \begin{bmatrix} \operatorname{Var}\left[\tilde{x}[1]\right] & \operatorname{Cov}\left[\tilde{x}[1], \tilde{x}[2]\right] & \cdots & \operatorname{Cov}\left[\tilde{x}[1], \tilde{x}[d]\right] \\ \operatorname{Cov}\left[\tilde{x}[1], \tilde{x}[2]\right] & \operatorname{Var}\left[\tilde{x}[2]\right] & \cdots & \operatorname{Cov}\left[\tilde{x}[2], \tilde{x}[d]\right] \\ \vdots & \vdots & \ddots & \vdots \\ \operatorname{Cov}\left[\tilde{x}[1], \tilde{x}[d]\right] & \operatorname{Cov}\left[\tilde{x}[2], \tilde{x}[d]\right] & \cdots & \operatorname{Var}\left[\tilde{x}[d]\right] \end{bmatrix}$$

Variance of linear combination $a^T \tilde{x}$

For any deterministic vector a

$$\operatorname{Var}\left[a^{T}\tilde{x}\right] = a^{T}\Sigma_{\tilde{x}}a$$

Gaussian random vector

$$\Sigma_{\tilde{x}} := \begin{bmatrix} 0.5 & -0.3 \\ -0.3 & 0.5 \end{bmatrix}$$

Variance in a certain direction?

Directional variance $Var[a^T \tilde{x}] = a^T \Sigma_{\tilde{x}} a$

$a^T \Sigma_{\tilde{x}} a$ on the unit circle

Maximum is direction of maximum variance

The eigenvectors of the covariance matrix are directions of maximum variance

The components in those directions are the principal components

First principal direction

First principal direction

Joint pdf of \tilde{x}

First principal component

Second principal direction

Second principal direction

Joint pdf of \tilde{x}

Second principal component

Original joint pdf

Joint pdf of principal components

Covariance matrix of a dataset

Data with d features: $X := \{x_1, x_2, \dots, x_n\}$

Sample covariance matrix of X:

$$\Sigma_{X} := \begin{bmatrix} v(X[1]) & c(X[1], X[2]) & \cdots & c(X[1], X[d]) \\ c(X[1], X[2]) & v(X[2]) & \cdots & c(X[2], X[d]) \\ \vdots & \vdots & \ddots & \vdots \\ c(X[1], X[d]) & c(X[2], X[d]) & \cdots & v(X[d]) \end{bmatrix}$$

Cities in Canada

Sample covariance matrix:

$$\Sigma_X = \begin{bmatrix} 524.9 & -59.8 \\ -59.8 & 53.7 \end{bmatrix}$$

Sample variance of linear combination

Dataset:
$$X = \{x_1, \dots, x_n\}$$

$$X_a := \left\{ a^T x_1, \dots, a^T x_n \right\}$$

$$v(X_a) = a^T \Sigma_X a$$

Sample variance in a certain direction?

Sample directional variance $a^T \Sigma_X a = v(X_a)$

$a^T \Sigma_X a$ on the unit circle

The eigenvectors of the sample covariance matrix are directions of maximum variance

The components in those directions are the principal components

First principal direction

First principal direction

Data

First principal component

Second principal direction

Second principal direction

Data

Second principal component

Data

Principal components

Dimensionality reduction

Data with a large number of features can be difficult to analyze/process

Solution: Reduce dimensionality while preserving as much information as possible

Important preprocessing step in many applications

The first k principal directions span the subspace that captures the most variance in the data

Wheat seeds

3 varieties: Kama, Rosa and Canadian

Features:

- Area
- Perimeter
- Compactness
- ► Length of kernel
- Width of kernel
- Asymmetry coefficient
- Length of kernel groove

Challenge: How to visualize the data in two dimensions?

Two first principal components

Faces

 64×64 images from 40 subjects

Vectorized images interpreted as vectors in \mathbb{R}^{4096}

Sample mean

Principal directions

Principal directions

Principal directions

k = 5

Approximation

Matrix-valued data

	Bob	Molly	Mary	Larry	
D :=	/ 1	1	5	4 \	The Dark Knight
	2	1	4	5	Spiderman 3
	4	5	2	1	Love Actually
	5	4	2	1	Bridget Jones's Diary
	4	5	1	2	Pretty Woman
	\ 1	2	5	5 /	Superman 2

Rank-1 model a[movie]b[user]

Ratings \approx Mean rating +

```
Dark Knight
 Spiderman 3
Love Actually
                0.39
                                Molly
                          Bob
                                        Mary
                                                 Larry
   BJ's Diary
                0.38
                         (3.74)
                                4.05
                                        -3.74
                                                -4.05)
Pretty Woman
                0.38
  Superman 2
```

Low-rank model

Dimensionality reduction of rows and columns

Rank of L is r

Singular value decomposition

All matrices have an SVD $(n_1 \le n_2)$

$$D = \underbrace{\begin{bmatrix} u_1 & u_2 & \cdots & u_{n_1} \end{bmatrix}}_{U} \underbrace{\begin{bmatrix} s_1 & 0 & \cdots & 0 \\ 0 & s_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & s_{n_1} \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} v_1 & v_2 & \cdots & v_{n_1} \end{bmatrix}^{T}}_{V^{T}}$$

- ▶ Singular values $s_1 \ge s_2 \ge \cdots \ge s_r \ge 0$
- ▶ Left singular vectors $u_1, u_2, \ldots u_{n_1} \in \mathbb{R}^{n_1}$ are orthonormal
- ▶ Right singular vectors v_1 , v_2 , ... $v_{n_1} \in \mathbb{R}^{n_2}$ are orthonormal

SVD as a superposition of rank-1 components

$$K_1, \ldots, K_{n_1}$$
 are rank 1, orthogonal, unit norm

Norm of
$$D = \sqrt{\sum_{l=1}^{l} s_l^2}$$

Truncated SVD

$$L_{\mathsf{SVD}}$$
 $:=\sum_{l=1}^{r} \mathbb{I}_{\square}^{s_l}$ κ_l

Equivalent to principal component analysis of columns / rows

$$L_{SVD} = \arg\min_{\operatorname{rank}(L)=r} ||D - L||_{\mathsf{F}}$$

Movie ratings

	Bob	Molly	Mary	Larry	
D :=	/ 1	1	5	4 \	The Dark Knight
	2	1	4	5	Spiderman 3
	4	5	2	1	Love Actually
	5	4	2	1	Bridget Jones's Diary
	4	5	1	2	Pretty Woman
	\ 1	2	5	5 /	Superman 2

Rank-1 model a[movie]b[user]

Ratings \approx Mean rating +

```
Dark Knight
 Spiderman 3
Love Actually
                0.39
                                Molly
                          Bob
                                        Mary
                                                 Larry
   BJ's Diary
                0.38
                         (3.74)
                                4.05
                                        -3.74
                                                -4.05)
Pretty Woman
                0.38
  Superman 2
```

Rank-1 model

Bob	Molly	Mary	Larry	
/1.34(1)	1.19(1)	4.66 (5)	4.81 (4) _\	The Dark Knight
1.55 (2)	1.42(1)	4.45 (4)	4.58 (5)	Spiderman 3
4.45 (4)	4.58 (5)	1.55(2)	1.42(1)	Love Actually
4.43 (5)	4.56 (4)	1.57(2)	1.44(1)	B. Jones's Diary
4.43 (4)	4.56 (5)	1.57(1)	1.44(2)	Pretty Woman
1.34(1)	1.19(2)	4.66 (5)	4.81 (5)	Superman 2

What if some entries are missing?

$$D := \begin{pmatrix} ? & ? & 5 & 4 \\ ? & 1 & 4 & ? \\ 4 & 5 & 2 & ? \\ ? & 4 & 2 & 1 \\ 4 & ? & 1 & 2 \\ 1 & 2 & ? & 5 \end{pmatrix} \begin{array}{l} \text{The Dark Knight} \\ \text{Spiderman 3} \\ \text{Love Actually} \\ \text{Bridget Jones's Diary} \\ \text{Pretty Woman} \\ \text{Superman 2} \end{array}$$

Matrix completion problem

We can insert any values!

Assumption: Matrix is low rank

Low-rank matrix completion

In practice

Data cannot be expected to be exactly low rank

Goal: Find low-rank matrix that is closest to the data

$$\sum_{(i,j) \in \mathsf{observed}} \left(D[i,j] - \sum_{l=1}^r a_l[i] b_l[j] \right)^2$$

Problem: Nonconvex cost function that is difficult to optimize

Truncated SVD

Optimal if no entries are missing

Movie ratings

$$D := \begin{pmatrix} ? & ? & 5 & 4 \\ ? & 1 & 4 & ? \\ 4 & 5 & 2 & ? \\ ? & 4 & 2 & 1 \\ 4 & ? & 1 & 2 \\ 1 & 2 & ? & 5 \end{pmatrix} \begin{array}{l} \text{The Dark Knight} \\ \text{Spiderman 3} \\ \text{Love Actually} \\ \text{Bridget Jones's Diary} \\ \text{Pretty Woman} \\ \text{Superman 2} \end{array}$$

Idea: Alternate between imputing missing entries and fitting low-rank model

Missing entries (mean observed rating = 2.94)

Final estimate

	Bob	Molly	Mary	Larry	T. D. L.V. L.
•	(1.48 (1)	1.38 (1)	4.45 (5)	4.52 (4)	The Dark Knight
1	1.50 (2)	1.41(1)	4.42 (4)	4.50 (5)	Spiderman 3
١	4.26 (4)	4.34 (5)	1.57 (2)	1.51 (1)	Love Actually
١	4.18 (5)	4.26 (4)	1.65 (2)	1.59 (1)	Bridget Jones's Diary
1	4.2 (4)	4.28 (5)	1.64(1)	1.57 (2)	Pretty Woman
\	1.37 (1)	1.27 (2)	4.55 (5)	4.63 (5)	Superman 2

What have we learned?

- Covariance matrix
- Principal component analysis
- ▶ Dimensionality reduction
- ► Low-rank models
- ► Matrix completion