HOJA DE TRABAJO No.4

Flujo Eléctrico y Ley de Gauss

1. Un cilindro aislante de 12cm de radio tiene una densidad uniforme de 5nC/m³. Determine utilizando la Ley de Gauss, la magnitud del campo eléctrico (en N/C) a 5 cm del eje del cilindro.

-	. 0				
	a) 25	b) 20	c) 14	d) 31	e) 34

2. Un cilindro aislante de 12cm de radio tiene una densidad uniforme de 5nC/m³. Determine utilizando la Ley de Gauss, la magnitud del campo eléctrico (en N/C) a 15 cm del eie del cilindro.

~	aagtaa aa. tapa ataa (a, a, a = a aa. aja aa. ta.					
	a) 20	b) 27	c) 16	d) 12	e) 54	

3. Un trozo de styrofoam de 10g tiene una carga neta de -0.700mC y flota por encima de una gran lámina horizontal de plástico que tiene una densidad de carga uniforme en su superficie. ¿Cuál es la carga por unidad de superficie (en nC/m²) presente en la lámina de plástico?

/ F				
a) +1.24	b) -2.48	c) +2.48	d)-1.24	e) NEC

4. Una carga puntual de 6 nC se coloca en el centro de un cascarón esférico conductor (radio interior 1cm; radio exterior 2 cm) el cual tiene una carga neta negativa de - 4 nC. Determine la densidad de carga resultante (en $\mu C/m^2$) en la superficie interna del cascarón conductor una vez se alcanza el equilibrio.

				٠ -	
a + 4 8	I h) -4 8	I cl -9 5	1 41 +9 5	I e) -8	
u, 17.0	D) T.U	() 3.3	u, 13.3	0	

- 5. La figura muestra una carga $q=+4\mu C$ dispuesta uniformemente en una esfera <u>no</u> <u>conductora</u> de radio a=5cm y situada en el centro de una esfera hueca <u>conductora</u> de radio interior b=8cm y radio exterior c=10cm. La esfera hueca exterior contiene una carga de q=-6 μC . Utilizando la ley de Gauss, encuentre la magnitud del campo eléctrico E(r)=? en las siguientes ubicaciones
- a. Dentro de la esfera E(r = 3cm) = $(8.6 \times 10^6 \frac{N}{c} \hat{r})$
- b. Dentro de la esfera hueca E(r = 9cm) = (0 N/C)
- c. Afuera de la esfera hueca E(r = 12 cm) = $(-1.248 \times 10^6 N/C \hat{r})$
- d. d. ¿Cuáles cargas aparecen en las superficies internas y externas de la esfera hueca?

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE FÍSICA

FÍSICA 2 - INGA. CLAUDIA CONTRERAS

Dos láminas de carga infinitas están separadas por una distancia de 10.0 cm, como lo muestra la figura. La lámina 1 tiene una distribución de carga superficial σ_1 = 3.00 μ C/m² y la lámina 1 tiene una distribución de carga superficial σ_2 = -5.00 μ C/m².

a) Calcular la magnitud del campo eléctrico resultante (en kN/C) en el punto "p", situado a 6.00 cm a la derecha de la lámina 1.

Respuesta: 452 tolerancia = ± 5 (5 puntos)

b) Calcular la magnitud del campo eléctrico resultante (en kN/C) en el punto "po", situado a 6.00 cm a la izquierda de la lámina 1.

Respuesta: 113 tolerancia = ± 5 (5 puntos)

7.

En una condición inicial, la carga contenida en un cascarón esférico conductor de radio interno R_1 =10.0 cm y radio exterior R_2 =20.0 cm con su cavidad vacía genera un campo eléctrico de 750 N/C hacia afuera del cascarón a una distancia de 30.0 cm del centro de la esfera. Posteriormente se coloca una carga puntual de +2.00 nC en el centro de la cavidad. Determine:

- a) La carga neta del cascaron conductor en las condiciones iniciales (en nC). Respuesta: 7.50 tolerancia = ± 0.05
- b) La carga en nC en la superficie exterior del cascarón cuando se ha introducido la carga puntual en la cavidad.

 Respuesta: 9.50 tolerancia = ± 0.05
- c) El flujo eléctrico (en $\frac{N}{c}$ m^2) que atraviesa una superficie esférica de 5.00 cm de radio concéntrica con el cascarón cuando ya contiene la carga puntual en la cavidad.

Respuesta: 226 tolerancia = ± 5