Appunti Terzo Esonero

Federico De Sisti2025-06-03

Spazi \mathbf{L}^p 1

Proposizione 1

Sia (X,μ) spazio di misura finito $(m(X) < +\infty$ se $p,q \geq 1$ $p > q \Rightarrow$ $L^p(X) \subsetneq L^q(X) \ e \ \exists c > 0 \ tale \ che \ ||f||_q \le c||f||_p \quad \forall f \in L^p(X)$

Definizione 1

 (X,μ) spazio di misura $L^{\infty}=\{f:X\to[-\infty,+\infty]\ misur.\mid\exists M>$ $0 \mid |f| \leq M \quad q.o.$

Lemma 1

 $f \in L^{\infty}(X) \Rightarrow |f| \leq ||f||_{\infty}$ q.o. su X

 $\begin{array}{l} \textbf{Proposizione 2} \ (\textbf{Holder}) \\ \textit{Sia p} > 1 \ e \ p' \ tale \ che \ \frac{1}{p} + \frac{1}{p'} = 1 \quad \forall f \in L^p(X), g \in L^{p'}(X) \Rightarrow fg \in L^1(X) \end{array}$

 $||f \cdot g|| \le ||f||_p ||g||_{p'}.$

Proposizione 3 (Minkoski)

Sia $1 \le p < +\infty \quad \forall f, g \in L^p(X) \quad ||f + g||_p \le ||f||_g + ||g||_p$

Teorema 1

 $per p \ge 1$ L^p è spazio normato completo

Definizione 2

X spazio metrico si dice separabile se ammette sottoinsieme denso numerabile

Teorema 2

 $L^{P}(\mathbb{R})$ è separabile per $1 \leq p < +\infty$, L^{∞} non è separabile

Definizione 3

 $L: V_1 \rightarrow V_2$ operatore lineare

 $L \text{ si dice limitato se } ||L(c)||_{V_2} \le c||v||_{V_1} \quad \forall v \in V_1$

Teorema 3

Sia L operatore lineare, L limitato $\Leftrightarrow L$ continuo

Teorema 4 (Parallelogramma)

$$||f + g||^2 + ||f - g||^2 \le 2(||f||^2 + ||g||^2).$$

Teorema 5 (della proiezione)

Sia H spazio di Hilbert, $C \subset H$ chiuso, connesso e non vuoto $\Rightarrow \forall f \in H \ \exists ! \ u \ t.c. \ \|u - f\| = \min_{v \in C} \{\|f - v\|\}$

$$u = p_C(f) = \begin{cases} u \in C \\ (f - u, v - u) \le 0 \quad \forall v \in C \end{cases}.$$

Corollario 1

Sia H spazio di Hilbert $M \subset H$ sottospazio vettoriale chiuso. $\forall f \in H \ \exists ! v \in M \ tale \ che$

$$||u - f|| = \min_{v \in M} ||f - v|| \quad e \quad u = p_M(f) \Leftrightarrow \begin{cases} u \in M \\ (f - u, v) = 0 \quad \forall v \in M \end{cases}.$$

Definizione 4

 $S \subset H$ sottoinsieme

$$S^{\perp} = \{ f \in H \mid (f, g) = 0 \quad \forall g \in S \}.$$

 $e\ il\ completamento\ ortogonale\ di\ S$

Proposizione 4

 $Sia S \subset H S^{\perp}$ è un sottospazio vettoriale chiuso.

Teorema 6 (Ritz)

Sia H spazio di Hilbert $\forall L \in H^* \exists ! g \in H$ tale che $L(f) = (f,g) \forall f \in H$ e $\|L\|_{H^*} = \|g\|_H$

Proposizione 5

Sia H spazio di Hilbert S sistema ortonormale S è al più numerabile

Definizione 5

Un sistema si dice completo se l'insieme delle combinazioni lineari finite di elementi $\{\varphi_k\}$ è denso in H ($\forall f \in H$ $f = \sum_{k=1}^{+\infty} \lambda_k \varphi_k$ $\lambda_k \in \mathbb{R}$)

Teorema 7

Sia H spazio di Hilbert separabile \Rightarrow H ammette un sistema ortonormale completo.

Proposizione 6

 $Sia\ M = <\varphi_1, \dots, \varphi_n> \ \forall f \in H$

$$p_M(f) = \sum_{k=1}^{n} (f, \varphi_k) \varphi_k.$$

Corollario 2

H spazio di Hilbert $\{\varphi_k\}$ sistema fondamentale numerabile

$$\Rightarrow f \in H \quad \sum_{k=1}^{+\infty} (f, \varphi_k)^2 \le ||f||^2.$$

Teorema 8

Sia H spazio di Hilbert e $\{\varphi_k\}$ sistema ortonormale in H, sono equivalenti

- 1. $\{\varphi_k\}$ è completo
- 2. $f = \sum_{k=1}^{+\infty} (f, \varphi_k) \varphi_k \quad \forall f \in H$
- 3. $\forall f \in H \ \|f\|^2 = \sum_{k=1}^{+\infty} (f, \varphi_k)^2 \ Perseval$
- 4. $\forall f, g \in H$ $(f,g) = \sum_{k=1}^{+\infty} (f,\varphi_k)(g,\varphi_k)$
- 5. $f = 0 \Leftrightarrow (f, \varphi_k) = 0 \quad \forall k \ge 1$

Teorema 9 (Weierstrass)

Dato $f \in C(\mathbb{R})$ periodica di periodo $2\pi \ \forall \varepsilon > 0 \ \exists p_n$ polinomio trigonometrico atle che $||f - f_n||_{\infty} < \varepsilon$

Definizione 6 (Misura prodotto)

La misura $\mu \times \nu$ su $X \times Y$ è definita da $\forall E \subseteq X \times Y$

$$\mu \times \nu(E) = \inf\{\sum_{i=1}^{+\infty} \mu(A_i)\nu(B_i), \ A_i \in M_\mu, \ B_i \in M_\nu, E = \sum_{i=1}^{+\infty} A_i \times B_i\}.$$

Se $A \in M_{\mu}$ e $B \in M_{\nu} \Rightarrow R = A \times B$ rettangolo (misurabile) e $\bigcup_{i=1}^{+\infty} A_i \times B_i$ è un plurirettangolo (con A_i, B_i misurabili)

Proposizione 7

Se $P \subset X \times Y$ plurirettangolo

$$\mu \times \nu(P) = \int_{Y} \int_{X} \chi_{P}(x, y) d\mu d\nu = \int_{X} \int_{Y} \chi_{P}(x, y) d\nu d\mu.$$

Lemma 2

 $E \subseteq X \times Y$ plurirettangolo $\Rightarrow \mu \times \nu(E) = \inf\{\mu \times \nu(P), P \text{ plurirettangolo } E \subseteq P\}$

Proposizione 8

 $P \subseteq X \times Y \ plurirettangolo \Rightarrow P \ \dot{e} \ \mu \times \nu$ -misurabile

Lemma 3

Sia $\{P_k\}$ successione di plurirettangoli tale che $P_0 \supseteq P_1 \supseteq P_2 \supseteq \dots$ allora $P_{\infty} = \bigcap_{k=1}^{+\infty} P_k \ \forall y \in Y \ \chi_{P_{\infty}}(\cdot,y) \ \ \dot{e} \ \mu$ -misurabile, $y \to \int_X \chi_{P_{\infty}}(x,y) d\mu \ e$

$$\mu \times \nu(P_{\infty}) = \int_{Y} \int_{X} \chi_{P_{\infty}}(x, y) d\mu d\nu = \int_{X} \int_{Y} \chi_{P_{\infty}} d\nu d\mu.$$

Definizione 7

Spazio di misura (X, μ) si dice σ -finito se $X = \bigcup_{i=1}^{+\infty} X_i$ con X_i misurabili tali che $X_i \cap X_j = \emptyset$ se $i \neq j$ e $\mu(X_i) < +\infty$ $\forall i$

Teorema 10 (Tonelli)

Siano $(X, \mu), (Y, \nu)$ Spazi di misura σ -finiti, sia $f: X \times Y \to [0, +\infty]$ allora

$$\int_{X\times Y} f(x,y)d(\mu\times\nu) = \int_{Y} \int_{X} f(x,y)d\mu d\nu = \int_{X} \int_{Y} f(x,y)d\nu d\mu$$