Comfiladores

L.EIC ₩3.2

Cheat sheet for HTS

Ambiguity

For a single sentential form, has two or more leftmost decivations, or two or more rightmost decivations

· How to comove it? : S > if E then S Change the grammar

1 if E then 5 else S 1 & 1/ other stants

S -> with Else No Else With Else > if E then With Else else With Else 1 & 11 other stants

Ex. IF - then - else Problem

- No Else > if F then S
 - I if E then With Else else No Else

Left - recursivity | Incompatible with top-down parsers

- · Convert to right recursion: Ex F → F x | }

FIRST ()

Set of First symbols in some string that derives from a Z E FIRST (N) iff N => 2 7 for some >

FOLLOW()

Set of all symbols that can affect immediately after or

- \$ & FOLLOW (start symbol >)
- · If A → BCD, then (FIPST(D)/ε) & Follow (C)
- · JF A → BC or A → BCD and E & FIRST (D), then Follow (A) E Follow (C)

LL (3) Proferty

The Parser can make the correct choice of froduction with a lookahead of excetly one symbol

· Check:

En Anx B

FIRST () 1 FIRST (3) = \$

· Left Factoring

LL(3) Table

Used later to select the correct froduction in the top-down farser.

I If any entry is defined multiple times, the grammar is not LL(1).

- · Filling entry HIX19]
 - · X = B if y & FIRST (B)
 - · × → € if y ∈ Follow (x)

and x → E € grammar

· error otherwise

Ex,	S	÷	аТ	
,)	e	

1 5

FJRST	(2)	=	Şα,	e }

S=e

T - S

S = aT

T>S

3

Actions

. Shift: Add symbol / element to the stack

. Reduce: Pof elements, affly a foodmetion and fash LHS

· Accept: Report success (Fot ceached and stack only has start symbol)

· Refert: Refort Failure (FOF reached but stack has more elements)

Ey, S -> × \$ (5) × -> (×) (2) 1 () (3)

Imput:

Shele	()	\$	×
0	shift 2	×	>:	go to 1
3	×	*	acce pt	
2	shift 2	shift 5	k	go -lo 3
3	×	shift 4	~	
ч	reduce (2)	caolure (2)	reduce (2)	
5	Carlesa (3)	Carleso (3)	cadem (3)	

0				
0	2			
0	2	2		
0	2	8	5	
0	2	3		
0	2	3	4	
0	1			

\$:) sh: Ft 2
\$ (
\$ (() shift 2 .) shift 5
\$ (۷)	:) notee (3)
\$ C	×		.) shift 4
\$ (×)	
\$ ×) reduce (2)
			I DEEL IT V

4.

Altei butes

· Symthenized

- · Only uses values from children, self and earnstants;
- · S-atte: buted grammars;
- · 6002 For LR Parsing.

· Imherited

- · Also uses values from facents and siblings;
- · More materal, but harder to face.

"Float " tyle

int Fm (int a) I

int b = 3.2;

ceturn a # 3;

Includes (usually):

• seofe • Kind • symbol

• type • size • facent set.

Ex, int a;

scope:	file	Pare	mit: •
kind	symbol	ty pe	size
local /var	a	imt	4

scope: for facent: b

kind symbol type size

faram a int 4

lucal/vor b double 8

Three - Address eade generation

2 = fm (4,2)

tomp = i * 8 // 8 = 1,20 of (2 / lg/a >) x = y [+mp]

loof: if
$$(a>40)$$
 goto mext
 $a=a+3$
if $(a goto loof
mext: ...$

: F (a > b) goto mext

L.EIC #3.2

Cheat sheet for HT2

1

ماد المرسم عادماه

ode General

A. thmetie

Stenets

x = * t3; *e = 9;

ts = e +4;

Boolean

Function Ded.

golfacam x) revent; ts: x + y return ts

Short - circuit

Array Index

while

Function Cale

2D Amay Access A [is , is]

- · Row mofor: base A + [(is-lows) * (highz-lowz + 1) + iz-lowz] * 1:20 f (Abosetyfe)
- · Column mafor: base A + [(i2-low2) * (hish3-lows +3) + i3 lows] * sizeof (Above ty le)
- · Indirection vectors: * (A[:3])[:2]

٥

Allocation

- · Statie : Procedure makes no calls
- . Heaf: Promodure can cultive its cultur or can return an object that can retirence its execution state
- · Stack: AR and invocation lifetimes match and fromodure executes a column.

Clano Strueture

Access to object data is analogous to stinet fields

				—,	
	Clan A		æ	- [5
	Fee ()]	-[•]	L	E
1		ł	i		a
ĺ	foe ()	1	i		ь

Imfortamee

· Use registers as much as famible / avoid leads and stores to Faster accesses compared to memory to less number of instructions

Top - Down

To timate the overall benefit of each variable and assign the highest-fayoff ones to registers.

Bottom - Uf Allocate variables to unused registers and release register where value is to be used the Farthest into the fudure when out of registers.

Web Du chaims { . All was of a def are in the same web . All was of a def are in the same web . Interference; F two web ranges overlap in time

Global RA

- 1. Draw an interference grafts (webs are mades and interferences are expes)
- 2. Find min. # casidars with graph coloring the t

Ex, 4=0; 2 = 3+4; -> 4=0; 2 = 3+0;

Basie Block

A maximal seguence of instructions that start with the "leader" instruction

Leader detection:

- · The first statement;
- · Amy statement that is the target of a goto;
- · Any statement that immediately Follows a goto.

X dominates y if avery execution forth From entry to y imelades x.

Iterative algorithm:

- · Start with the entry mode dominating itself and every mode dominating the remaining;
- · Visit modes in any order 4 Dominator and of the mode in the intersection of all feeds cenors + current made
- · Refeat until no change

Definition | A collection of techniques for comfile-time reasoning about the runtime flow of values in a foram.

- Lattice · VISH of values = \$3,2,35 TITOL value. = \$12.35
 - T 1 Top value = {1,2,3}
 - · I Bottom value = 13
- · 1 | Meet operation (greatest lower bound) {1,2} 1 {2,3} = {2}
- · V | Soim ofecation (lowest seffer bound) {3, z} v {3} = {5,2,3}

Iterative Algorithm

Transfer function freferties:

Commentativity · Associativity

- . LFG with " Entry " and " Exit" modes
- · Direction of the data-flow: forward or backward
- · Set of values V · Heet aperator A
- · Transfer functions for each block
- . Comstant boundary value: Ventry or Vent

IN and OUT sets

Available Exfressions (3) 3 2 2 2 1

- · V = Set of expressions = \$1.7}
- . Data flows Forward (In + out)
- · Functions:
 - by Out = gen U (Im kill)
 - to gen = exfressions calculated in the BB
 - to kill : expressions that use the var.
- · 1 = Im = 1 aut

In init = }}	: [AE] [3 @ [1]	@ {\$.2}			→ [3] @ [3,=]
			(0 } 3}	5) {3.5} ((3,5,c)

Out

K:00 2,3,4,5,6,7

Copy Propagation

1,3,4

- · V : set of tufles < v, u> ; F "v = u" start exists
- . Data Flows forwards

- · Functions:
 - le Our = gen U (In kill)
 - 6 6en = (ev, us | "v : " : a a start. }
 - b Kill = Sev, u> | LHS assign. start. in either varu}
- . n = In : n out
- · V:~:1 · 5}

	BBJ	BBS	BB3	334	
6en	ø	(8,0), (4,0)	22,4>	p	
p:eel	(2,07,10,07	Ø	P	20,00	
Im	ø	ø	ŕ	12,4>	
Onit	6	(), 0>, 00, 6>	(2), a>	ø	

live - Vaciable Amalysis () >

Data	Flows	baskwards	(Im .	aut)
	()		C 1.	

•	Funet	0~5	:			
	6 J.	, =	gen	υ	(Out	- kiA

•	/) =	Out =	UIM (suggenors)
	vicit	= {}	

