

System Design for Vision Based Traffic Sensing & Control

SUPERVISIOR

Prof. Rohan Munasinghe

Dept. of Electronics & Telecommunications Engineering

CO-SUPERVISIOR

Prof. Saman Bandara

Head, Dept. of Civil Engineering

MEMBERS

Abarajithan G. 150001C

Fonseka T. T. 150172A

Wickramasinghe W.M.R.R. 150689N

Wimalasuriya C. 150707V

EXTERNAL STAKEHOLDERS

- A part of the nationwide ITS (Intelligent Transportation System) Project
- In collaboration with RDA and Transportation Engineering Division, Dept. of Civil Engineering, UoM
- Funded by World Bank

Problem Statement

- Traffic lights in Sri Lanka work on preset, static timing
- Blind to dynamic changes in traffic flow, hence increases congestion
- In such conditions, traffic policemen are deployed

Existing Solutions

1. Centralized Systems

- Developed Countries [9]
- Traffic cameras for:
 - Traffic rule violations [3]
 - License plates
 - Surveillance
- Coaxial / fiber optics cables along the roads [9]
- Real-time video feed is processed at monitoring centers [9]

Edge Solutions: Research

- Developing countries [1] [7]
- Need for cost effective, scalable solution
- Attempts using:
 - Raspberry Pi
 - Basic image processing techniques to detect traffic level

Our Solution

A low cost System on Chip (SOC) design, that

- Collects video feed
- Processes the feed locally <u>at edge</u>
- Deduces traffic level
- Suggests a <u>change in time</u> (Δt) to the traffic lights

for optimal traffic flow at a junction

Advantages,

Uniqueness

&

National Importance

- Low cost solution
- Localized No optic fibers or monitoring centers
- Scalable
- Unique, ideal solution for a developing country
- First steps in implementing an ITS in Sri Lanka

Objectives

- Deduce traffic level from video feed
 - Modify a CNN
 - o Implement as a digital design
 - FPGA for prototyping and verification
 - Test real time prediction accuracy in prototype
- Algorithm to propose Δt
 - By comparing traffic levels in different lanes of a junction
 - Test and demonstrate in VISSIM [8]

Key Deliverables

- SOC (with neural network)
 - as FPGA based prototype
- Algorithm to propose Δt
 - closed loop demonstration in VISSIM simulator

Optional Deliverables

- ASIC fabrication files
- Real world demonstration (with RDA permission)

Hardware Implementation

- Specialized design
- Prototyped on FPGA
- ASIC conversion, if time permits

Algorithm

- o Input: traffic levels in all lanes of the junction
- Output: Change in static time ($\Delta t \neq 0$)
- low confidence \rightarrow static timing ($\Delta t = 0$)

Documentation

For future improvement and implementation

Risk Factors

State-of-the-art CNNs may perform poorly in real world

Accuracy - complexity trade-off

Implementing Neural Networks in hardware is complicated

Demonstrability of the project

Synchronizing the entire traffic network

ASIC conversion is complex and time consuming

- Mostly robust ^[5], further improve by fine tuning
- Extreme conditions \rightarrow static ($\Delta t = 0$)
- 100% accuracy is not required
- Traffic is a qualitative problem
- Not building a GPU / TPU
- Specific CNN on hardware is possible [2] [4] [6] [10]

(eg: DAC)

- Closed loop VISSIM simulations [8]
- Real world data on FPGA

Unsolved problem, even in developed countries (green wave)

Optional scope

VISSIM: Industry Standard Traffic Simulation Software Closed Loop Simulation COM Video feeds from commands virtual cameras To change traffic lights Python scripts Preprocessing Predicted **Traffic Levels** Algorithm **CNN** to propose Δt (trained on vissim video feed)

Resources & Budget

	Amount (Rs.)
Raspberry Pi 3 Model B (x2)	14, 000
Pi Camera (x2)	1,000
FPGA Board (x4)	36, 500
FPGA Camera (x4)	14, 000
GPU Server	
Material to build the data collection device	7, 000
Total Estimated Amount	100, 000/=

Other Resources:

- VISSIM research license
- Bucket crane vehicle
- Permissions from RDA and Traffic Police

Task Delegation

-	Task	Abarajithan	Tehara	Rukshan	Chinthana	
\	Literature review & analyzing alternate methods					200
×	Building & testing data collection device					
	Implementing device and collect preliminary data					
	Compare different approaches					Section 1
	Modify a suitable CNN					
	Collect data from 3 junctions & train					7/4
3	Implement convolution blocks in FPGA					1
	Design hardware architecture for CNN					100
	Implement hardware architecture for CNN					
	Test on real world data					
1	Train & test same CNN in simulation data					
	Design algorithm to predict Δt and test in simulation					1000
	ASIC conversion					

Timeline

References

- [1] K.Vidhya and A. B. Banu, "Density Based Traffic Signal System," International Journal of Innovative Research in Science, Engineering and Technology, vol. 3, no. 3, Jan. 1970. http://www.rroij.com/peer-reviewed/density-based-traffic-signal-system-50686.html
- [2] K. Mohammad and S. Agaian, "Efficient FPGA implementation of convolution," in 2009 IEEE International Conference on Systems, Man and Cybernetics, 2009, pp. 3478–3483. https://ieeexplore.ieee.org/ielx5/5340904/5345886/05346737.pdf?tp=&arnumber=5346737&isnumber=5345886
- [3] P. Duse, A. G. Gaikwad, and A. Chhajalane, "Intelligent Traffic Control System for Congestion Control and Violation Detection at Traffic Signal," Imperial Journal of Interdisciplinary Research, vol. 3, no. 5, May 2017.

 www.imperialjournals.com/index.php/IJIR/article/download/4894/4704
- [4] "Microsoft's Project Brainwave brings fast-chip smarts to AI at Build conference CNET." https://www.cnet.com/news/microsoft-project-brainwave-speeds-ai-with-fpga-chips-on-azure-build-conference/

References

- [5] "MIT Traffic Data Set." http://www.ee.cuhk.edu.hk/~xgwang/MITtraffic.html
- [6] R. Zhao, X. Niu, Y. Wu, W. Luk, and Q. Liu, "Optimizing CNN-Based Object Detection Algorithms on Embedded FPGA Platforms," in Applied Reconfigurable Computing, 2017, pp. 255–267. https://link.springer.com/chapter/10.1007/978-3-319-56258-2 22
- [7] K. Kiratiratanapruk and S. Siddhichai, "Practical application for vision-based traffic monitoring system," in 2009 6th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, 2009, vol. 02, pp. 1138–1141. https://ieeexplore.ieee.org/ielx5/5076159/5137082/05137245.pdf?tp=&arnumber=5137245&isnumber=5137082
- [8] PTV Group Traffic, PTV Vissim: Simulation of a Complex Intersection. https://www.youtube.com/watch?v=OtYby7QnyAE

References

- [9] "The use of fibre optics in security and surveillance systems Cabling Install."

 https://www.cablinginstall.com/articles/print/volume-19/issue-3/features/the-use-of-fiber-optics-in-security-and-surveillance-systems.html
- [10] P. V. F. U. States, "Why CTOs Should Reconsider FPGAs," Datanami, 26-Mar-2019. https://www.datanami.com/2019/03/26/why-ctos-should-reconsider-fpgas/
- [11] J. Redmon and A. Farhadi, "YOLO9000: Better, Faster, Stronger," arXiv:1612.08242 [cs], Dec. 2016. www.arxiv.org/pdf/1612.08242.pdf