GENERAL GUIDELINES

Do's:-

- Students should be on time for every lecture.
- Students are advised to show due respect to all faculty members.
- Students should keep the Classrooms, Laboratories and Workshops clean and tidy.
- Students must maintain absolute discipline and decorum, while on campus.
- Students should come prepared with algorithm / flowchart / program / procedure for all the experiments before attending the laboratory session.
- Students should bring the data sheets and laboratory records completed in all respects to the laboratory.
- Students are advised to clarify their doubts in the respective courses with the faculty.
- Students have to inform their parents that they should follow up the progress of their wards by being in touch with the institution authorities at regular intervals.
- Students are advised to be present for the mentor meetings conducted by their respective Faculty Advisors, failing which appropriate disciplinary action will be taken.

Don'ts:-

- Students are not permitted to attend the class without the identity card, once issued.
- Ragging is strictly prohibited because it is punishable under Karnataka Education Act. Any student involved in ragging, will be severely punished which includes handing over the case to Police, rustication from the college etc.
- Writing on desks and walls is strictly prohibited, failing which the students will be fined heavily. If the identity of the individual is not established the entire class / students in the block will be fined.
- Students must not use their cell phones during class hours. If any student is found using their cell phone during class hours it will be confiscated.
- Students are not supposed to alter the configuration of the system / any software on the systems.

V SEMESTER (2019-23 BATCH)

SI.	Course	Course Title	Hours per week Credits		er we	ek	Credits	Tools / Languages	Course Type
No.	Code		L	Т	Р	S	С		
1	UE19CS301	Database Management System	4	0	0	4	4	Postgre SQL 13.3, ERwin	СС
2	UE19CS302	Software Engineering	4	0	0	4	4	GitHub, MS Project, Jenkins	СС
3	UE19CS303	Machine Intelligence*	4	0	0	4	4	Tensorflow 1.15, Keras 2.3.1, Python 3.7	CC
4	UE19CS304	Database Management System Laboratory	0	0	2	1	1	Oracle, MySQL,SQL Server, PostgreSQL	СС
5	UE19CS305	Machine Intelligence Laboratory	0	0	2	1	1	Python(3.7x), sklearn(v0.23), Keras(v2.2.4), Tensorflow(v1.14)	CC
6	UE19CS31X	Elective I	4	0	0	4	4		EC
7	UE19CS32X	Elective II	4	0	0	4	4		EC
8	UE19CS306X	Special Topic- III	2	/4/4		2	2		ST
Total			20/ 22	0	4/ 8	24	24		
Electiv	e – I								
9	UE19CS311	Advanced Algorithms**	4	0	0	4	4	C or C++	EC
10	UE19CS312	Data Analytics ^{&}	4	0	0	4	4	Python and R	EC
11	UE19CS313	Internet of Things	4	0	0	4	4	Python or C	EC
12	UE19CS314	Applied Cryptography	4	0	0	4	4	Seed virtual machine environment, gcc, python	EC
13	UE19CS315	Fundamentals of Augmented and Virtual Reality ^{!!!}	4	0	0	4	4	C, C++, Java, Python using OpenGL	EC
14	UE19CS316	Human Computer Interaction	4	0	0	4	4	C/C++/JAVA/ Python using OpenGL.	EC

Electiv	Elective – II								
15	UE19CS321	Principles of Programming Languages	4	0	0	4	4	Various compilers and Debuggers as GCC, g++, Ada, Python, Ruby, Java, Prolog, Haskell, GDB, PDB.	EC
16	UE19CS322	Big Data ^{\$}	4	0	0	4	4	Hadoop, HDFS Spark, Streaming spark, HIVE, Hbase, Mllib	EC
17	UE19CS323	Graph Theory, Applications and Combinatorics!	4	0	0	4	4	C-Language	EC
18	UE19CS324	Bio-inspired Computing [%]	4	0	0	4	4	Matlab	EC
19	UE19CS325	Advance Computer Networks ^{%%}	4	0	0	4	4	Claynet, Cisco Packet Tracer	EC
20	UE19CS326	Computer Network Security ^{%%}	4	0	0	4	4	Seed Ubuntu VM, Wireshark, Snort, NetwoX, Scapy	EC

Note: Desirable Knowledge - Core: *- UE19CS203, UE19MA251, UE19CS251.

Desirable Knowledge – Elective I: %- UE19CS251, %- UE19CS203, !!!- UE19CS202.

Desirable Knowledge – Elective II: $^{\$}$ -UE19CS202, UE19CS251, $^{!}$ - UE19CS151, UE19CS202, $^{\%}$ - UE19CS251, $^{*\%}$ - UE19CS253.

ELECTIVES TO BE OPTED FOR SPECIALIZATION

SI. No.	SPECIALIZATION	ELECTIVE – I	ELECTIVE – II
А	System and Core Computing(SCC)	UE19CS311, UE19CS315.	UE19CS321, UE19CS322, UE19CS323.
В	Machine Intelligence and Data Science(MIDS)	UE19CS312, UE19CS313, UE19CS315, UE19CS316.	UE19CS322, UE19CS323, UE19CS324.
С	Network and Cyber Security(NWCS)	UE19CS313, UE19CS314.	UE19CS325, UE19CS326.

UE19CS301 - DATABASE MANAGEMENT SYSTEMS (4:0:0:0:4)

Total # of Credits: 4 No. f hours: 56

Class	Reference	Topics	% of Port	ion covered
#	Literature	·	% of	Cumulative
			Syllabus	%
Unit #	1 - Introduction to	Database and Conceptual Design using ERD		
1	T1: 1.1 – 1.8	Introduction to Databases		
2				
3	T1: 2.1 –2.3	Data models, Three-Schema Architecture and Data		
		Independence, Database Languages and Interfaces		
4	T1: 2.4 – 2.6	Database system environment, Centralized and		
		Client/Server architectures, Classification of database	18	18
		management system	10	10
5	T1: 3.1 – 3.3	Conceptual Model, Entity types, attributes and keys		
6	T1: 3.4	Relationship types, sets, roles	_	
7	T1: 3.5 – 3.7	Weak Entity, Refining the ER design, ER diagrams		
8		,, , , , , , , , , , , , , , , , , , , ,		
9	T1: 3.9	Relationship Types of degree higher than two		
10	T1: 3.10	Example: University database		
Unit #	2 - Relational Mo			
11	T1: 5.1	Relational Model concepts	_	
12	T1: 5.2	Relational model Constraints and relational Database		
		Schemas		
13	T1: 5.3	Update operations, Transactions and dealing with		
		constraint violations	_	
14	T1: 9.1	Relational Database Design Using ER-to Relational	18	36
		Mapping		
15	T1: 8.1	Unary Relational Operations	_	
16	T1: 8.2	Set Theory Operations	_	
17	T1: 8.3	Binary Relational Operations - JOIN, DIVISION	_	
18	T1: 8.4	Aggregate Functions and Grouping		
19			_	
20	T1: 8.5	Examples of Queries in Relational Algebra		
-	3 – SQL	T		
21	T1: 6.1	Advanced Data Types like CLOB, BLOB	_	
22	T1: 6.2 – 6.5	Advanced SQL Queries, Other SQL Constructs: WITH,		
	R1: Ch 4	CASE, Outer joins,	21	57
23		Sub- queries, Correlated sub-queries, ANY, ALL,		
24		ROLLUP,	_	
25	iversity	CUBE, PIVOT,		

Query execution plan Practice examples
28 T1: 7.1 – 7.4 Specifying General Constraints as Assertions and Triggers, Viewsand Schema Change Statements in SQL 30 T1: 10.1 – 10.5 Database Programming - functions, stored procedures, cursors 31 Unit#4 - Database Design 33 T1: 14.1 Informal Design Guidelines for Schemas
Triggers, Viewsand Schema Change Statements in SQL T1: 10.1 – 10.5 Database Programming - functions, stored procedures, cursors Unit#4 - Database Design T1: 14.1 Informal Design Guidelines for Schemas
30 T1: 10.1 – 10.5 Database Programming - functions, stored procedures, cursors 31 Unit#4 - Database Design 33 T1: 14.1 Informal Design Guidelines for Schemas
31 cursors Unit#4 - Database Design 31 T1: 14.1 Informal Design Guidelines for Schemas
32 Unit#4 - Database Design 33 T1: 14.1 Informal Design Guidelines for Schemas
Unit#4 - Database Design 33 T1: 14.1 Informal Design Guidelines for Schemas
34 T1: 14.2 Functional Dependencies
35 T1: 15.1 Inference Rules, Closure
36 T1: 15.1.2 – Equivalence, Minimal Cover
15.1.3
37 T1: 15.2 Properties of Relational Decompositions
38 T1: 14.3 Normal Forms Based on Primary Keys (1st, 2nd and 3rd 21 78
39 T1: 14.4 NF), General Definitions of Second and Third Normal
Forms
40 T1: 14.5 – 14.7 Boyce-Codd Normal Form, Overview of Higher Normal
41 Forms
42 T1: 15.3 Algorithms for Relational Database Schema Design
43 T1: 15.4 About Nulls, Dangling Tuples, and Alternative
Relational Designs
44 Additional Examples
Unit #5 - Implementation of Database Systems
45 T1: 30.1 – 30.3 Database Security (CREATE USER, ROLE, GRANT and
REVOKE)
46 T1: 20.1, 20.3- Transactions - ACID Properties, schedules
20.5
47 T1: 20.6 SQL commands for database transactions (BEGIN, END, COMMIT, SAVEPOINT, ROLLBACK)
48 T1: 21.1, 21.2 Concurrency, Locking, Deadlocks - Detection and
49 Prevention 22 100 50 T1: 19.9 Additional Features of SQL – performance, execution
T1: 17.1, 17.6— plan Optimization - indexed approach to show the
17.7 speed up.
51 T1: 24.1 NoSQL databases
52 T1: 24.3 Document databases
53 T1: 24.4 Key-value databases
54 T1: 24.5 Column Oriented Databases
55 T1: 24.6 Graph databases
56 R1: 19.2 In-memory databases

Literature

Book Type Code	Codo	Title & Author		Publication Information			
	Title & Author	Edition	Publisher	Year			
Text Book	T1	Fundamentals of Database Systems - RamezElamsri, Shamkant B Navathe	7 th	Pearson	2017		
Reference Book	R1	Database System Concepts -Silberschatz, H Korth, S Sudarshan	7 th	McGraw-Hill	2019		

UE19CS302: Software Engineering (4:0:0:0:4)

Total # of Credits: 4 # of Hrs: 56 Hours

	Chapter Title /			Portion vered
Class #	Reference	Topics to be Covered	Absolut	Cumulativ
Literature			е	е
Unit 1: I	ntroduction to Soft	ware Engineering& Requirements Engineering		
1		Overview, Context and Drivers of Software		
		Engineering, Process Phases and drifting into lifecycles		
2		Generic phases of lifecycle – SDLC, PLC, Support LC		
3		Legacy Models: Waterfall Model, V, Prototype, Incremental,		
		Evolutionary Models		
4		Characteristics of Legacy/Plan driven Models, Agile		
		Manifesto, Exposure to different approaches of Agile		
		SCRUM, XP and Lean Agile		
5	12 Hours	Scrum, How SCRUM addresses limitations of Plan driven		
	T1: Ch 1,9,10 and	models	21	21
6	Internet sources	Case Study/Exercise		
7	internet sources	Reuse focused Software Development approaches - CBSE,		
		Product Line	_	
8		Software Requirements, Requirement properties, Feasibility		
		study, Requirements Eng. Process	=	
9		Requirements Elicitation, Requirement Analysis - Intro to		
		UML	-	
10		Use case models, Requirement Analysis	-	
11		RequirementsSpecification, Validation & RTM	-	
12		Case Study/Exercise		
-	Software Project Ma	anagement, Architecture and Design	=	
13		Software Project Management Fundamentals, Lifecycle	-	
14		Project Planning - 1	=	
15		Project Planning – 2		
		(including estimation, Tool)	-	
16	12 Hours	Project Monitoring & Control, Closure	=	
17	T1: Ch	Case Study/Exercise	21	43
	2,7,8,11,12 and	Software Architecture: Intro, Characteristics and Influencing		
18	Internet Sources	factors, Architecture block diagrams, big-picture of		
		Architectural views, styles, patterns		
		Architectural choices and impacts, architecture conflicts,		
19		generalized models and common approaches towards		
		architecture - decomposition		

20		Architectural Views, Styles, Architectural patterns		
		Software Design: Introduction, enabling techniques and key		
21		issues to be handled in design, Contrasting Architecture and		
		Design		
22		Design method -illustration, Design Patterns		
23		Contrast with Object Oriented Architecture and Design		
24		SoA		
Unit 3: II	mplementation, SCI	M, Software Quality & Relationship to Testing:		
25	10 Hours T1: Ch 3&	Introduction, Construction languages, DE, Bug and its journey, cost of a bug, generic implementation thoughts and code personalities		
26	References and Internet Sources	Characteristics of code, Coding standards and Coding guidelines, Factors for effective coding, Defensive and Secure coding, testable coding		
27		Managing construction, Code review, Inspection, Unit testing, RTM		
28		Case Study/Exercise		
29		Introduction to configuration management and configuration management activities and Basic configuration management activities and structures of SCM	18	61
30		Configuration Management Activities: Branch, Version, Build and Install Management, Promotion Management		
31		Configuration Management Activities: Change, Defect/Bug management and Release Management		
32		Configuration management planning and tools		
33		Software Quality, A Taxonomy of Quality Attributes, Perspectives on Quality, Cost of Quality		
34		Metrics, Software Quality Assurance, SEI CMM, Testing and Quality/Reliability		
Unit 4: S	oftware Testing and	d Maintenance		
35		Introduction to testing, Test Objectives, Verification and Validation, terminologies and characterizing testing		
36		Testing types – 1 (Types and Levels)		
37	12 Hours	Testing types – 2 (Types and Levels)	21	on
38	T1: Ch 13, Ch 14	Testing types – 3 (Types and Levels)	21	82
39		Test Planning - 1 Adequacy, Models, Strategy		
40		Test planning – 2 Schedule, resource, milestones, risks and measures and a test plan		

41		Testing Process/lifecycle, measures and roles &		
		responsibilities, Test Cases		
42		Test cases, Test case generation, Examples		
43		Test execution and Metrics		
44		Exposure to tools like Junit/Selenium – Case Study/Exercise		
45		Software Maintenance Introduction and lifecycle		
46		Software Maintenance techniques and approaches		
Unit 5: E	thics, SE in Global E	nvironment, ITSM, ITIL and DevOps		
47		Software Engineering in a Global Environment, Software Engineering and Hacking		
48		Ethics in a Software		
49		Software Development to Software Services and Operations		
50		ITSM and ITSM processes		
51	10 Hours	ITIL and the Service Lifecycles	18	100
52	T1: Ch 6	DevOps: Introduction and terminologies		
53		DevOps Pipeline - 1		
54		DevOps Pipeline - 2		
55		DevOps – Pillars of DevOps		
56		Exploration of a tool like Jenkins		

Literature:

Book Type	Code	Title and Author		Publication info			
				Publisher	Year		
Text Book	T1	Software Engineering: Principles and Practice, Hans van Vliet	3rd	Wiley India	2010		
Text Book	T2	Software Testing – Principles and Practices", Srinivasan Desikan and Gopalaswamy Ramesh		Pearson	2006		
Reference Book	R1	"Effective DevOps: Building a Culture of Collaboration, Affinity, and Tooling" by Jennifer Davis, Ryn Daniels	1st	O'Reilly	2016		
Reference Book	R2	Software Engineering (A practitioner's approach), Roger S Pressman	6th	McGraw Hill	2005		
Reference Book	R3	Software Engineering, Ian Somerville	9th	Pearson Education	2009		
Reference Book	R4	Foundations of Software Testing, Aditya Mathur	2nd	Pearson Education	2013		
Reference Book	R5	Software Testing, A Craftsman's Approach, Paul C. Jorgensen	4th	Auerbach Publications	2013		
Contents from Other Sources	R6	Various Articles, Papers and Contents from Internet, IEEE S	WEBOK		•		

UE19CS303: Machine Intelligence

Total # of Credits: 4 # of Hrs: 56 Hours

Class #	Chapter Title /			Portion vered
Class #	Reference Literature	Topics to be Covered	Absolut	Cumulativ
			е	е
Unit 1	T			
1	T1 : Chapter 1 - 1.1	Introduction to AI and ML		
2	T1 : Chapter 2 - 2.1, 2.3, 2.4,2.5	Intelligent Agents and its Types		
3	Link	Machine Learning and its Models		
4	T1 : Chapter 3 - 3.1,3.2,3.3,3.4	Problem solving by Searching- Uninformed Search		
5	T1 : Chapter 3 - 3.5,3.6,3.7	Problem solving by Searching- Informed Search		
6	Design learning system	Perspectives and Issues, designing learning systems		
7	T2: Chapter2 - 2.1- 2.4,2.7	Concepts of hypotheses, Version space, inductive bias	21.4	21.4
8	Link	Performance metrics-accuracy, precision, recall, sensitivity, specificity, AUC, RoC		
9	T2: Ch 3 3.1, 3.2, 3,3	Decision Trees- Basic algorithm (ID3)		
10	T2: Ch 3 3.4, 3.5, 3.6	Hypothesis search and Inductive bias, Entropy and Gain calculations	_	
11	T2: Ch 3 3.7	Issues in Decision Tree Learning – Overfitting and Solutions to overfitting, Dealing with continuous values		
12	T2: Ch 3, Slides	Solving a numerical problem on Decision Trees		
Unit 2:				
13		Instance-based learning: k-nearest neighbor learning		
14	T2: Ch 8 pg230-236	Simple problems – weighted KNN		
14		Issues with KNN – discussion		
15	T2: Ch 4 pg 81-85	Artificial Neural networks: Introduction		
16	T2: Ch 4 pg 86-94	Perceptrons – implementing LOGIC gates	17.85	39.25
17	T2 Ch 4 pg95-101	Multi-layer networks and back-propagation	17.03	33.23
18	12 CIT 4 P833 TOT	Back-propagation derivation		
19	Slides	Activation Units – discussion		
20	T4 Ch3 pg38-53	Support Vector Machines – margin and maximization and the primal form		
21	T4 Ch4 pg54-59	SVM - The Lagrangian dual and its solution		

22	T4 C6 pg72-81	SVM – Kernel Trick Simple problems on SVM		
Unit 3:		Simple problems on Svivi		
23	D4: Dagge 120 121	Improving performance, Descring and Descring	<u> </u>	
	R4: Pages 129-131	Improving performance: Bagging and Boosting		
24	R4: Pages 131-133	Adaboost - combining weak learners	-	
25	T2: Ch6 – Pages 154-	Bayesian Learning – Bayes theorem, Concept learning		
	166, 170-171, 174-176	Maximum likelihood, MAP, Bayes optimal classifier	-	
26	T2: Ch6 – Pages 177- 183	Naïve Bayes classifier and text classification.		
27	R3: Ch15 - Pages 363- 366	Hidden Markov models – discrete Markov processes	21.4	60.65
28	R3: Ch15 - Pages 367- 373	Hidden Markov models – 3 basic problems		
29	R3: Ch15 - Pages 373- 375	Learning the state sequence		
30	R3: Ch15 - Pages 375- 378	Learning the parameters, Baum-Welch Algorithm		
31	Slides	Simple problems in Hidden Markov Models	=	
Jnit 4:	1	<u> </u>		
32	R5: Chapter 9, Pg 286-	Expectation Maximization Algorithm		
33	289	Expectation Maximization Algorithm	-	
34	R5: Chapter 9, Pg 289- 292	Gaussian Mixture Models		
35	R4: Ch10: Pages 207- 217,Ch11: Pages 224- 234, Ch12:Pages 248- 260	Unsupervised Learning: Hierarchical vs non- hierarchical clustering, Agglomerative and divisive clustering		
	R1: Chapter 9, Pg 424-	K-means clustering, Simple problems	=	
36	430	Bisecting k-means, issues with k-means.		
	R1: Chapter 9, Pg 439	K Means as special case of Expectation Maximization	17.85	78.5
37	R1: Chapter 12, Pg 559- 570	Dimensionality reduction techniques PCA		
38	Slides	SVD – Applications.	1	
20	T2: Ch0 01 02	Genetic Algorithms – Representing hypothesis,	1	
39	T2: Ch9 - 9.1, 9.2	Genetic operators		
40	T2: Ch9 - 9.2, 9.3	Fitness function and selection methods, crossover,]	
-	, , , , ,	mutation	1	
		Simple applications of the Genetic Algorithm,		
41	T2: Ch 9	application of GA in Decision tree		
		Genetic Algorithm based clustering		

42	T2: Ch7.1-7.4,Ch9	Single Objective optimization problems using GA Using GA to emulate Gradient descent/ascent		
43	T2: Ch9, Slides	Introduction to PSO	-	
44	T2: Ch9, Slides	Application in Single Objective optimization problems	-	
Unit 5:		· · · · · · · · · · · · · · · · · · ·		
45	T2: Ch 4 pg 81-85	Modelling the Neural Network (T1- pg No 725-778,839-871) Loss Function/Error Function(T1- pg No 911-939)		
46		Forward propagation(T2- pg 59-62) Backward propagation(T2 -pg 63-70)		
47	Link 1 Link 2 Link 3	Bias and Variance Trade off Regularization Batch Normalization		
48	NPTEL NOTES	Optimizers	1	
49	NPTEL NOTES	Sequence Learning Probelms	1	
50	NPTEL NOTES Designing Simple RNN Cell and Understanding its Dimensions			100
51	T3: Chapter 4 pg		21.4	
52	T3: Chapter 4 pg number 236-240,261- 266	Various architectures of RNN , Concept of vansihing and exploiding gradients		
53	T3: Chapter 5 (basic intro to LSTM and GRU)	Concept of Selctive Read ,Write and Forget Understanding LSTM and GRU Genrating Song Lyrics using RNN (Handson)		
54	Mitesh Khapra slides on CNN & T3: Ch 6	Architecture of CNNs, filters and feature maps(T3-chapter6)		
55	(Demystifying Convolutional Networks)	Pooling layers, types, paddings, fully connectedLayers(T3- chapter6)		
56	Hands on video Case study – Image classification using Keras(class work)			

Literature:

Book Type	Cod	Title and Author	Publication info			
7.	е		Edition	Publisher	Author	
Text Book	T1	1. Artificial Intelligence: A Modern Approach (3rd Edition), Stuart Russel and Peter Norvig,	3rd	Wiley India	Stuart Russel and Peter Norvig,	
Text Book	T2	Machine Learning, Tom Mitchell, McGraw Hill Education (India), 2013.		McGraw Hill Education (India)	Tom Mitchell	
Text Book	Т3	Hands-on Deep Learning Algorithm with Python - Sudharshan Ravi Chandiran			Sudharshan Ravi Chandiran	
Text Book	T2	Support Vector Machines Succinctly by Alexandre Kowalczyk			Alexandre Kowalczyk	
	R1	"Pattern Recognition and Machine Learning", Christopher Bishop, Springer (2nd Printing), 2011		Springer (2nd Printing), 2011	Christopher Bishop	
Reference	R3	Introduction to Machine Learning Second Edition by Ethem Alpaydin	2nd		Ethem Alpaydin	
Book	R4	Machine Learning in Action by Peter Harrington, First Edition, Manning 2021	1st	Manning (2021)	Peter Harrington	
	R5	"Machine Learning: The Art and Science of Algorithms that Make Sense of Data", Peter Flach, Cambridge University Press (2012).		Cambridge University Press (2012)	Peter Flach	