

Data Analyst Nanodegree

Project : Explore Weather Trends

Sai Kiran Sangam

Overview

Downloaded csv file

In this project, I have analyzed local temperature and global temperature data and compared the temperature trends for the Virginia Beach, United States.

Extracting data from a database using SQL

```
/* Select Local Temperature */
SELECT * FROM city list WHERE country = 'United States';
To visualize city data
SELECT * FROM city data WHERE city = 'Virginia Beach' AND country =
'United States';
To visualize global data
/* Select Global Temperature */
SELECT * FROM global data;
/* changing the names of columns in order to have distinct columns */
ALTER TABLE city data RENAME COLUMN avg temp to localavg temp;
ALTER TABLE global data RENAME COLUMN avg temp to globalavg temp;
/* Join tables */
SELECT global data.year, city data.city, global data.globalavg temp,
city data.localavg temp from global data, city data
WHERE (global data.year = city data.year) AND (city data.city = 'Virginia
Beach' AND city data.country = 'United States');
```

Data Visualization

spreadsheets

- Line chart plotted using microsoft excel for Virginia Beach temperature versus Global temperature.

- Moving Averages for 20 years are calculated for globalavg_temp and localavg_temp to smooth out data and make it easier to observe long term trends after plotting the line chart.
- =AVERAGE(range of 20 years)
- Line chart plotted for moving averages

global_temp and Virginia_Beach_temp

Jupyter Notebook(Python)

import pandas as pd import matplotlib.pyplot as plt import numpy as np

result = pd.read csv('result.csv')

result.info() # 1 missing value for loacalavg_temp

memory usage: 8.3+ KB

```
globalavg_temp = result['globalavg_temp']
localavg_temp = result['localavg_temp']

plt.plot(result['year'],globalavg_temp, label = 'Global')
plt.plot(result['year'], localavg_temp, label = 'Virginia Beach')
plt.legend()
plt.xlabel("years")
plt.ylabel("Celsius")
plt.title("Virginia Beach vs Global Temperature ")
```


- Moving Averages for 10 years

```
global_mavgtemp = result['globalavg_temp'].rolling(20).mean()
local_mavgtemp = result['localavg_temp'].rolling(20).mean()
```

```
plt.plot(result['year'], global_mavgtemp, label = 'Global')
plt.plot(result['year'], local_mavgtemp, label = 'Virginia Beach')
plt.legend()
plt.xlabel("Years")
```

plt.ylabel("Celsius")
plt.title(" Virgina Beach vs Global moving average Temperature")

Observations

- The trend line shows global average temperature is increasing over the years
- The Virginia Beach minimum temperature was 8.76 $^{\circ}\text{C}$ and maximum temperature was 17.49 $^{\circ}\text{C}$.
- The Global minimum temperature was 5.78 °C and maximum temperature was 9.73 °C.
- Global average temperature is 8.36 °C and Virginia Beach average temperature is 15.65 °C
- Comparing the Global average temperature and Virginia Beach average temperature then we can see Virginia Beach is hotter than Global average temperature.
- The Line Chart shows that the temperature of the world is on a constant rise.

Conclusion

In conclusion, we can outline that the global temperature has been increasing exponentially and Virginia Beach temperatures are also increasing at a similar rate.