理系基礎科目(文系) 数学入門 第2回レポート

講義担当者:中島秀斗 出題日:2020年5月21日 レポート作成における注意点は裏面(2ページ目)を参照のこと.

第4回分の演習問題

- (1) 次の関数を微分せよ.
 - (a) 積・商の微分を用いるもの

(i)
$$(x-3)(x^2+2x+2)$$
 (ii) $(x^2+1)(x^2-4)$

(iii)
$$\frac{1}{x^2+1}$$
 (iv) $\frac{2x^2+3}{x}$ (v) $\frac{3x}{x^2-9}$

(b) 合成関数の微分を用いるもの

(i)
$$(x^4 + 2x + 1)^3$$
 (ii) $\frac{1}{(x^3 - 2)^2}$
(iii) $\sqrt{2 - 3x}$ (iv) $\sqrt{x^2 + 1}$

- (c) 逆関数の微分を用いるもの
 - (i) $\sqrt[3]{x}$ (ii) $\sqrt[5]{x}$
- (2) 次の関数を微分せよ.

(i)
$$\sqrt[4]{9-x^2}$$
 (ii) $\frac{1}{x^2}$ (iii) $\frac{1}{x^3}$ (iv) $\frac{1}{\sqrt{x}}$ (v) $(3x+1)^2$ (vi) $\sqrt{x^3}$ (vii) $(x^3-1)(x^2-2)$

- (3) 第5回の講義スライド中においてより一般的な場合 について示していること、および証明問題なので PC で の記述が大変であることを踏まえ,この問題は任意と
- (4) f(x), g(x), h(x) を微分可能な関数とするとき,次 の関数の導関数を求めよ.

$$y = f(x)g(x)h(x)$$

第5回分の演習問題

- (1) 次の関数を微分せよ.
 - (a) 三角関数・逆三角関数の微分を用いるもの.
 - (i) $\sin^2 x$ (ii) $\cos^3 2x$ (iii) $\tan 2x$ (iv) Arctan 3x (v) $x \cos x$
 - (b) 指数関数・対数関数の微分を用いるもの.
 - (i) $\log(x^2 + x + 1)$ (ii) $\log |x|$ (iii) $e^x \log x$ (iv) $(x+1)\log x$ (v) $\log(x^3+x-2)$
 - (c) 対数微分法を用いるもの.

(i)
$$(x-1)^2 \sqrt[3]{x+2}$$
 (ii) $\frac{\sqrt{x+2}}{x+1}$

(2) 次の関数を微分せよ.

- (a) $\frac{\log x}{x}$
- (b) xe^x (c) $x\cos x \sin x$

- (d) $\log \sin x$ (e) $\log \tan x$ (f) $(x^2 + 1) \tan x$
- (g) $e^x \sin x$
- (h) Arcsin \sqrt{x} (i) Arctan $\sqrt{x^2 1}$
- (i) e^{-3x}
- (k) $\log 2x$
- (1) $\log_2 |3x 1|$

(m)
$$(x-1)e^x$$
 (n) $x(\log x - 1)$ (o) $\log \frac{x-1}{x+1}$

3 レポート作成時における留意点

- 表紙を作る必要はないが、1ページ目に学生番号、氏名を書くこと.
- できる限り1つの pdf ファイルとして作成すること. ファイル名は以下のようにする.

数学入門レポート 2(学生番号).pdf

提出期限 5月31日(日)23:59まで

提出方法 NUCT の課題画面にてファイルを添付する

提出形式 できる限り 1 つの pdf ファイルとして提出すること

使用ソフトについて

- 慣れ親しんだソフトがあるのならそれを使うのがよいが、そうではない場合について。
- Windows を使っている方は Word を使うのがよい。数式機能もついています。
- Mac の場合はよくわからないので申し訳ないのですが、とりあえず Google ドキュメントは使えるはずです。一応、アドオンを導入すれば数式も使えます(実はなくても使えますが)。

pdf ファイルとして出力する方法

- Word の場合は「ファイル→名前を付けて保存→参照」としてダイアログを出して、ファイルの種類で pdf を選択する。あるいは、印刷から pdf に出力してもよい。
- Google ドキュメントの場合は「ファイル→ダウンロード→ pdf ドキュメント」でよい。

数式の記述がどうしてもできないという方は、以下のようにして数式を記述することもできます。

$$x^2$$
 x^2 $\log_2 x$ $\log_2 2x$ \sqrt{x} \sqrt{x} \sqrt{x} または $\mathrm{sqrt}(x)$ $\frac{1}{n}$ $1/n$ 30° 30 度 $\sqrt[3]{x}$ など x^(1/3)

数式を記述する際のアドバイス

- 数式はルート記号,無限大の記号など全角にしかないものを除いて,半角を使うのが良い. ただし,マイナス 記号は全角で記述するほうが見やすい.
- 式を記述する際,半角スペースを上手く利用する. ± の前後や = などに半角スペースを入れると見やすくなることが多い(入れすぎると見辛くもなるので加減が難しいが). 以下の2つを比較してほしい

$$(x^2-1)/(x^3-1)=(x+1)/(x^2+x+1)$$
 $(x^2-1)/(x^3-1)=(x+1)/(x^2+x+1)$

• 極限は次のようにも書くことができる

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} 1/n = 0 \quad (n \to \infty)$$

● 括弧をうまく活用する. 例えば 1/2x だと (1/2) x なのか 1/(2x) なのかが判別できない.