2

1/3: Propriétés de $\mathbb R$

1	Une	e relation d'ordre sur $\mathbb R.$	1
	1.1	Relation \leq	
	1.2	Relation \leq et opérations algébriques	
	1.3	Intervalles	į
2	Vale	eur absolue.	4
	2.1	Valeur absolue.	4
	2.2	Valeur absolue et opérations algébriques	
	2.3	Une notion de distance sur \mathbb{R}	
3	Enti		6
	3.1	Entiers naturels, entiers relatifs	6
	3.2	Partie entière d'un réel	6
4	Rat	ionnels.	7
_	4.1	Nombres décimaux	-
	4.2	Nombres rationnels.	
	4.3	Densité de $\mathbb Q$ dans $\mathbb R$	
	1.0	Denotice de Q dans 12	٠
5	Par	ties bornées de $\mathbb{R}.$	10
	5.1	Majorants, minorants	10
	5.2	Maximum, minimum	10
	5.3	Borne supérieure, borne inférieure	
Ех	ercio	ces	14

La construction de l'ensemble \mathbb{R} est hors-programme. C'est donc sur un ensemble de nombres familier mais non rigoureusement défini que nous travaillerons la plupart du temps en analyse...

1 Une relation d'ordre sur \mathbb{R} .

1.1 Relation \leq .

Rappel (\leq est une relation d'ordre sur \mathbb{R}).

 $\bullet \ \forall x \in \mathbb{R} \quad x \le x.$

- (Réflexivité)
- $\forall (x,y) \in \mathbb{R}^2$ $(x \le y \text{ et } y \le x) \Longrightarrow x = y$. (Antisymétrie)
- $\forall (x, y, z) \in \mathbb{R}^3 \quad (x \le y \text{ et } y \le z) \Longrightarrow x \le z.$ (Transitivité)

Rappel (C'est une relation d'ordre totale).

On peut toujours comparer deux réels : pour tout couple (x,y) de \mathbb{R}^2 , on a $x \leq y$ ou $y \leq x$.

Rappel (Élémentaire mais fondamental).

On peut comparer deux réels en examinant le signe de leur différence :

$$\forall (x,y) \in \mathbb{R}^2 \qquad x \le y \iff y - x \ge 0.$$

Exemple 1 (Inégalité arithmético-géométrique .).

Établir l'inégalité $\sqrt{xy} \le \frac{x+y}{2}$ pour deux réels x et y positifs. Dans quel cas a-t-on égalité?

1.2 Relation \leq et opérations algébriques.

Rappel (\leq et somme).

On peut sommer des inégalités. Pour tous réels x, x', y, y',

$$\begin{cases} x & \leq y \\ & \text{et} \\ x' & \leq y' \end{cases} \implies x + x' \leq y + y'.$$

Si $(x_i)_{i\in I}$ et $(y_i)_{i\in I}$ sont des familles finies de nombres réels,

$$(\forall i \in I \quad x_i \le y_i) \quad \Longrightarrow \quad \sum_{i \in I} x_i \le \sum_{i \in I} y_i.$$

Proposition 2 (Somme nulle de termes positifs).

Soient x_1, \ldots, x_n des réels positifs tels que

$$\sum_{i=1}^{n} x_i = 0 \quad \Longrightarrow \quad \forall i \in [1, n] \quad x_i = 0.$$

Preuve Supposons que $\sum_{i=1}^{n} x_i = 0$.

Considérons un entier j particulier entre 1 et n.

Bon, en fait il n'a rien de particulier justement, il sert à prouver la chose pour tous les entiers entre 1 et n.

On a que $\forall i \in [1, n]$ $0 \le x_i$. Par somme d'inégalités, on a donc $0 \le \sum_{\substack{1 \le i \le n \\ i \ne j}}^n x_i = 0$. Ajoutons maintenant x_j : on obtient

$$x_j \le \sum_{i=1}^n x_i.$$

Or, la somme à droite est nulle par hypothèse, donc $x_j \leq 0$. De plus, $x_j \geq 0$. Par antisymétrie, $x_j = 0$.

On a bien prouvé que tous les termes de la somme sont nuls.

Rappel (\leq et produit).

Soient x et y deux réels tels que $x \leq y$.

- · Si a est un réel positif alors $ax \leq ay$.
- · Si a est un réel $\overline{\text{négatif}}$ alors $ax \ge ay$.

On peut multiplier des inégalités dont les membres sont positifs. Pour tous réels x, x', y, y',

$$\left\{ \begin{array}{ll} 0 \leq x \leq y \\ & \text{et} \\ 0 \leq x' \leq y' \end{array} \right. \implies x \times x' \leq y \times y'.$$

Rappel (\leq et quotient).

$$\forall x,y \in \mathbb{R} \qquad 0 < x \leq y \implies 0 \leq \frac{1}{y} < \frac{1}{x}.$$

Exemple 3 (Majorer, minorer une somme, un produit, un quotient).

Soient x et y deux réels tels que $2 \le x \le 5$ et $1 \le y \le 3$. Encadrer x - y, $(x - y)^2$ et $\frac{xy}{x + y}$.

1.3 Intervalles.

Définition 4 (Les deux infinis).

On a joute à l'ensemble \mathbb{R} les deux éléments $+\infty$ et $-\infty$ pour former l'ensemble

$$\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty\} \cup \{-\infty\},\,$$

en prenant la convention que pour tout x réel, $x \le +\infty$ et $-\infty \le x$.

Définition 5.

On appelle intervalle de \mathbb{R} une partie de \mathbb{R} ayant l'une des formes décrites ci-dessous :

- Segment $[a, b] = \{x \in \mathbb{R} : a \le x \text{ et } x \le b\}$ où $a, b \in \mathbb{R}$.
- Intervalles ouverts $]a, b[= \{x \in \mathbb{R} : a < x \text{ et } x < b\} \text{ où } a \in \mathbb{R} \cup \{-\infty\}, b \in \mathbb{R} \cup \{+\infty\}.$
- Intervalles semi-ouverts $]a,b] = \{x \in \mathbb{R} : a < x \text{ et } x \leq b\} \text{ où } a \in \mathbb{R} \cup \{-\infty\}, b \in \mathbb{R}, \text{ ou bien } [a,b[=\{x \in \mathbb{R} : a \leq x \text{ et } x < b\} \text{ où } a \in \mathbb{R}, b \in \mathbb{R} \cup \{+\infty\}.$

3

Remarque. Les parties décrites ci-dessus peuvent être vides. Par exemple, $[5,3] = \emptyset$.

Figures. Représentation des intervalles [1, 2] et $]5, +\infty[$.

Exemple 6.

L'ensemble des réels non nuls \mathbb{R}^* n'est \mathbf{pas} un intervalle. C'est néanmoins une réunion d'intervalles :

$$\mathbb{R}^* =]-\infty, 0[\ \cup\]0, +\infty[.$$

Pour une preuve, on attendra la caractérisation des intervalles comme parties convexes de \mathbb{R} (ou encore comme parties « sans trou ») à la fin de ce cours.

2 Valeur absolue.

2.1 Valeur absolue.

Définition 7.

Soit $x \in \mathbb{R}$. On appelle valeur absolue de x et on note |x| le nombre réel positif donné par

$$|x| = \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x < 0. \end{cases}$$

Proposition 8 (Propriétés élémentaires).

Pour tout x réel,

$$|x| = \max(x, -x)$$
$$|-x| = |x|$$

$$x \le |x|, \quad -x \le |x| \quad \text{et} \quad -|x| \le x \le |x|$$

 $|x| = 0 \iff x = 0$

2.2 Valeur absolue et opérations algébriques.

Proposition 9 (Valeurs absolues et produits).

- 1. $\forall x \in \mathbb{R} |x|^2 = x^2 \text{ et } |x| = \sqrt{x^2}.$
- 2. La valeur absolue du produit, c'est le produit des valeurs absolues

$$\forall x, y \in \mathbb{R} \quad |x \cdot y| = |x| \cdot |y|.$$

3. $\forall x \in \mathbb{R} \ \forall y \in \mathbb{R}^* \ \left| \frac{x}{y} \right| = \frac{|x|}{|y|}.$

Attention, en général, la valeur absolue de la somme n'est pas la somme des valeurs absolues...

Théorème 10 (Inégalité triangulaire).

Pour tous nombres réels x et y, on a

$$|x+y| \le |x| + |y|$$

Remarque. Avec l'inégalité analogue dans C, on pourra alors vraiment dessiner un triangle.

$\{ {f Corollaire} \,\, 11. \}$

- 1. $\forall (x,y) \in \mathbb{R}^2 \quad |x-y| \le |x| + |y|$.
- 2. $\forall (x,y) \in \mathbb{R}^2 \quad ||x| |y|| \le |x y|.$
- 3. Soit $n \in \mathbb{N}^*$. Pour tous nombres réels x_1, \ldots, x_n , on a l'inégalité $\left| \sum_{k=1}^n x_k \right| \leq \sum_{k=1}^n |x_k|$.

2.3 Une notion de distance sur \mathbb{R} .

Plaçons deux nombres x et y sur la droite réelle et considérons les cas $x \ge y$ ou que x < y.

|x-y| est la **distance** entre x et y.

Proposition 12.

$$\forall x, a \in \mathbb{R} \quad \forall b \in \mathbb{R}_+ \qquad \begin{aligned} |x - a| &\leq b &\iff x \in [a - b, a + b] \\ |x - a| &\geq b &\iff x \geq a + b \text{ ou } x \leq a - b. \end{aligned}$$

En particulier, $\forall x \in \mathbb{R}$ $\forall b \in \mathbb{R}_+$ $|x| \le b \iff -b \le x \le b$.

3 Entiers.

3.1 Entiers naturels, entiers relatifs.

Définition 13.

On note \mathbb{N} l'ensemble des entiers naturels $\mathbb{N} = \{0, 1, 2, \ldots\}$ et $\mathbb{Z} = \{0, 1, 2, \ldots\} \cup \{-1, -2, \ldots\}$ l'ensemble des entiers relatifs.

Proposition 14.

L'ensemble des entiers relatifs est stable par somme, différence, et produit.

Le résultat est admis, mais précisons le sens de "stable" : on a

$$\forall (p,q) \in \mathbb{Z}^2 \quad p+q \in \mathbb{Z} \quad p-q \in \mathbb{Z} \quad pq \in \mathbb{Z}.$$

L'ensemble des entiers naturels, quant à lui, est stable par somme et produit mais pas par différence.

Proposition 15.

Toute partie non vide et majorée de $\mathbb N$ ou de $\mathbb Z$ admet un plus grand élément.

Toute partie non vide de $\mathbb N$ admet un plus petit élément.

Toute partie non vide et minorée de Z admet un plus petit élément.

3.2 Partie entière d'un réel.

Définition 16.

Pour tout nombre réel x, on appelle **partie entière** de x, et on note $\lfloor x \rfloor$ le plus grand entier relatif inférieur à x:

$$\lfloor x \rfloor = \max \left\{ k \in \mathbb{Z} \ \mid \ k \le x \right\}.$$

Exemple. $\lfloor \pi \rfloor = 3, \lfloor -\pi \rfloor = -4.$

Proposition 17 (Partie entière et encadrements).

Pour tout nombre réel x,

$$\lfloor x \rfloor \le x < \lfloor x \rfloor + 1.$$

En « croisant » les inégalités, ceci implique notamment que pour tout $x \in \mathbb{R}$,

$$x - 1 < \lfloor x \rfloor \le x$$
.

Proposition 18.

La fonction $x \mapsto \lfloor x \rfloor$ est croissante sur \mathbb{R} .

Exemple 19 (Une propriété simple de la partie entière).

Montrer que $\forall x \in \mathbb{R} \quad |x+1| = |x| + 1$.

Ceci a pour conséquence que la fonction $x\mapsto x-\lfloor x\rfloor$ est 1-périodique.

Lemme 20 (Une utilisation de la partie entière en analyse).

L'ensemble \mathbb{R} possède la propriété dite d'Archimède : pour tout nombre réel $x \in \mathbb{R}_+^*$, pour tout réel positif $\varepsilon > 0$, il existe $n \in \mathbb{N}$ tel que $n\varepsilon > x$.

4 Rationnels.

4.1 Nombres décimaux.

Les nombres décimaux sont populaires, ce sont eux « qui s'écrivent avec un nombre fini de chiffres après la virgule ».

Définition 21.

On appelle **nombre décimal** un nombre réel qui s'écrit sous la forme $\frac{p}{10^k}$, où $p \in \mathbb{Z}$ et $k \in \mathbb{N}$. L'ensemble des nombres décimaux, est noté \mathbb{D} .

Définition 22 (généralisation).

Soit p un entier naturel supérieur ou égal à 2.

On appelle **fraction** p-adique un nombre réel qui s'écrit sous la forme $\frac{q}{p^k}$ où $q \in \mathbb{Z}$ et $k \in \mathbb{N}$.

Les fractions 2-adiques sont dites dyadiques. Les nombres "flottants" en info sont des dyadiques.

Proposition 23.

Soit $x \in \mathbb{R}$ et $n \in \mathbb{N}$. Le nombre décimal $d_n(x) := \frac{\lfloor 10^n x \rfloor}{10^n}$ satisfait l'encadrement

$$d_n(x) \le x < d_n(x) + 10^{-n}$$
.

Les nombres $d_n(x)$ et $d_n(x) + 10^{-n}$ sont appelés respectivement valeur décimale par défaut (resp. par excès) de x à la précision 10^{-n} .

Exemple. Voici les valeurs décimales par défaut et par excès à la précision 10^{-3} de certaines constantes.

	1	$\sqrt{2}$	$\sqrt{3}$	π	e	ln(2)
par défaut à 10^{-3} près	1,000	1,414	1,732	3,141	2,718	0.693
par excès à 10^{-3} près	1,001	1,415	1,733	3,142	2,719	0.694

Corollaire 24 (\mathbb{D} est dense dans \mathbb{R}).

Entre deux réels distincts, il existe toujours un nombre décimal.

$$\forall (a,b) \in \mathbb{R}^2 \quad a < b \implies \mathbb{D} \cap]a,b[\neq \emptyset.$$

Preuve Soient a, b deux réels tels que a < b. Montrons qu'il existe un nombre décimal entre a et b. On pose $m = \frac{a+b}{2}$. On sait que pour tout $n \in \mathbb{N}$, on a

$$a < m < d_n(m) + 10^{-n}$$
.

Posons $\varepsilon = b - m$. Il existe* un entier n tel que $10^{-n} < \varepsilon$ (n étant "grand" si ε est "petit"). On a alors

$$a < m < d_n(m) + 10^{-n} < d_n(m) + \varepsilon \le m + (b - m) = b,$$

ce qui implique

$$a < \underbrace{d_n(m) + 10^{-n}}_{\in \mathbb{D}} < b.$$

Détails sur * : il s'agit de prouver l'existence de $n \in \mathbb{N}$ tel que $10^{-n} < \varepsilon$, c'est-à-dire $10^n \varepsilon > 1$. Il s'agit d'une version un peu spécifique de la propriété d'Archimède énoncée plus haut. Se convaincre que l'entier $n = \lfloor \frac{\ln(1/\varepsilon)}{\ln(10)} \rfloor + 1$ convient. \square

4.2 Nombres rationnels.

Définition 25.

Un nombre **rationnel** est un nombre réel qui s'écrit sous la forme d'un quotient d'entiers $\frac{p}{q}$, où $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$. On note \mathbb{Q} l'ensemble des nombres rationnels.

On dit d'un nombre de $\mathbb{R} \setminus \mathbb{Q}$ qu'il est **irrationnel**.

Lorsqu'un rationnel s'écrit comme une fraction $\frac{p}{q}$ avec deux entiers p et q n'ayant pas de diviseurs communs (on dit aussi qu'ils sont premiers entre eux), on dit que ce rationnel est écrit sous forme **irréductible**.

Les nombres décimaux sont des nombres rationnels, et on peut écrire les inclusions

$$\mathbb{Z} \subset \mathbb{D} \subset \mathbb{Q} \subset \mathbb{R}$$

La dernière inclusion est stricte : certains réels ne sont pas rationnels, comme le montre le résultat qui suit.

Proposition 26.

 $\sqrt{2}$ est irrationnel.

Remarque. Culture : e et π sont irrationnels, mais on ne le montrera pas ici.

Proposition 27.

L'ensemble des rationnels est stable par somme, différence, produit, et passage à l'inverse.

Exemple 28.

Justifier que $\mathbb{R} \setminus \mathbb{Q}$ n'est PAS stable par somme, ni par produit.

4.3 Densité de \mathbb{Q} dans \mathbb{R} .

Théorème 29 (\mathbb{Q} et $\mathbb{R} \setminus \mathbb{Q}$ sont denses dans \mathbb{R}).

Entre deux réels distincts, il existe toujours un nombre rationnel et un irrationnel. Autrement dit, pour tous a, b réels avec a < b,

$$]a,b[\cap \mathbb{Q} \neq \emptyset \quad \text{ et } \quad]a,b[\cap (\mathbb{R} \setminus \mathbb{Q}) \neq \emptyset.$$

Preuve Soient a, b deux réels tels que a < b.

- \bullet Dans l'intervalle]a,b[, nous avons prouvé qu'il existe un nombre décimal : c'est a fortiori un nombre rationnel. Ceci démontre bien qu'entre deux réels quelconques, il existe un nombre rationnel.
- Puisque $a-\sqrt{2} < b-\sqrt{2}$, nous savons qu'il existe entre eux un nombre rationnel r.

On a $a - \sqrt{2} < r < b - \sqrt{2}$, puis $a < r + \sqrt{2} < b$.

Le nombre $r+\sqrt{2}$ est irrationnel. Comment le prouver ? Par l'absurde! Supposons qu'il est rationnel. Alors $(r+\sqrt{2})-r$ l'est aussi puisque $\mathbb Q$ est stable par différence. On obtient alors que $\sqrt{2}$ est rationnel, ce qui est une contradiction. Ceci démontre bien qu'entre deux réels quelconques, il existe un nombre irrationnel.

Corollaire 30 (Écriture séquentielle de la densité de \mathbb{Q}).

Pour tout réel x, il existe une suite (r_n) de rationnels telle que $r_n \to x$.

5 Parties bornées de \mathbb{R} .

5.1 Majorants, minorants.

Dans tout ce qui suit, A est une partie de \mathbb{R} .

Définition 31 (Majorant, minorant).

Soit A une partie de \mathbb{R} .

- On dit que A est **majorée** si il existe un réel M tel que $\forall x \in A$ $x \leq M$. Dans ce contexte, M est appelé un **majorant** de A.
- On dit que A est **minorée** si il existe un réel m tel que $\forall x \in A \ x \geq m$. Dans ce contexte, m est appelé un **minorant** de A.
- ullet On dit que A est **bornée** si elle est majorée et minorée.

Exemple 32.

Donner des majorants et des minorants de A = [0, 1[. Soit $A' = [1, +\infty[$. Démontrer que A' n'est pas majorée.

Proposition 33 (Caractérisation des parties bornées avec la valeur absolue).

Soit A une partie de \mathbb{R} .

$$A$$
 est bornée $\iff \exists \mu \in \mathbb{R}_+ \ \forall x \in A \ |x| \leq \mu.$

Remarques.

- 1. Le slogan : « être borné équivaut à être majoré en valeur absolue ».
- 2. Le mot caractérisation renvoie à l'équivalence : les parties de \mathbb{R} bornées sont majorées en valeur absolues et ce sont les seules dans ce cas. On a donc proposé ici une alternative (équivalente) à la définition.

5.2 Maximum, minimum.

Définition 34 (Maximum, minimum).

Soit A une partie de \mathbb{R} .

- S'il existe un élément $a \in A$ tel que $\forall x \in A \ x \le a$, alors cet élément est unique. Il est appelé plus grand élément de A ou encore **maximum** de A et noté $\max(A)$.
- S'il existe un élément $b \in A$ tel que $\forall x \in A \quad x \geq b$, alors cet élément est unique. Il est appelé plus petit élément de A ou encore **minimum** de A et noté $\min(A)$.

Exemple 35.

La partie [0,1] a 0 comme minimum et n'a pas de maximum (on le montre par l'absurde).

5.3 Borne supérieure, borne inférieure.

Définition.

Définition 36.

Soit A une partie de \mathbb{R} .

- On appelle **borne supérieure** de A et on note sup A, le plus petit des majorants de A, lorsque ce nombre existe.
- On appelle **borne inférieure** de A et on note inf A, le plus grand des minorants de A, lorsque ce nombre existe.

Implicite dans cette définition : l'unicité de la borne supérieure. On peut la montrer comme on avait prouvé celle d'un maximum. Pour ce qui concerne l'existence, commençons par examiner un cas simple.

Proposition 37.

Si une partie de \mathbb{R} possède un maximum M, alors elle a une borne supérieure, qui vaut M.

Le théorème ci-dessous, admis, est une propriété fondamentale de R.

Théorème 38 (Propriété de la borne supérieure/inférieure).

Toute partie de \mathbb{R} non-vide et majorée admet une borne supérieure dans \mathbb{R} .

Toute partie de \mathbb{R} non-vide et minorée admet une borne inférieure dans \mathbb{R} .

Caractérisation et calculs.

Proposition 39 (Caractérisation de la borne supérieure.).

Soit A une partie de \mathbb{R} non vide et majorée et $\alpha \in \mathbb{R}$. On a l'équivalence

$$\alpha = \sup A \Longleftrightarrow \left\{ \begin{array}{l} \alpha \text{ est un majorant de } A \\ \forall \varepsilon > 0, \exists x \in A : \alpha - \varepsilon < x \leq \alpha \end{array} \right.$$

Interprétons l'assertion commençant par $\forall \varepsilon \ \exists x \in A : \alpha - \varepsilon < x \le \alpha$ dans ce qui précède : il est dit que l'on peut trouver un élément de A aussi proche que l'on veut de α .

Si on a compris pour la borne supérieure, on sait adapter pour la borne inférieure : pour A une partie non vide et minorée et α un réel,

$$\alpha = \inf A \iff \begin{cases} \alpha \text{ est un minorant de } A \\ \dots \end{cases}$$

Exemple 40 (Calculs de bornes supérieures).

Soit A = [0, 1[. Justifier l'existence de sup A puis la calculer.

Soit $B = \{r \in \mathbb{Q} : r < \sqrt{2}\}$. Justifier l'existence de sup B puis la calculer.

Soit $C = \{1/n - 1/p, \ n, p \in \mathbb{N}^*\}$. Calculer $\sup C$ et inf C, après avoir justifié qu'elles existent.

Majoration.

Méthode (Majorer une borne supérieure/"Passage au sup").

Soient M un réel et A une partie de $\mathbb R$ possédant une borne supérieure. Pour démontrer l'inégalité

$$\sup A \leq M$$
,

il suffira de montrer que M est un majorant de A (sup A étant le plus petit des majorants de A).

Exemple 41.

Soient A et B deux parties non vides et majorées de $\mathbb R$ telles que $A\subset B$. Justifier que $\sup A\leq \sup B$.

Remarque: Pour montrer que deux bornes supérieures sont égales, on pourra utiliser l'équivalence

$$\sup A = \sup B \iff (\sup A \le \sup B \text{ et } \sup B \le \sup A).$$

Proposition 42 (Homogénéité du sup).

Soit A une partie de \mathbb{R} non vide et majorée et $\lambda \in \mathbb{R}_+$. On définit la partie $\lambda A := \{\lambda x \mid x \in A\}$.

$$\sup(\lambda A) = \lambda \sup(A).$$

Une caractérisation des intervalles.

Définition 43.

On dit qu'une partie A de \mathbb{R} est **convexe** si pour tout $a, b \in A$ avec $a \leq b$, on a $[a, b] \subset A$.

Proposition 44 (Caractérisation des intervalles).

Les intervalles de \mathbb{R} sont exactement les parties convexes de \mathbb{R} .

Preuve. Soit X une partie de \mathbb{R} .

- Supposons que X est un intervalle. Il est donc de l'un des trois types suivant.
 - · un segment $[g,d] = \{x \in \mathbb{R} : g \le x \text{ et } x \le d\}$ où $g,d \in \mathbb{R}$.
 - · un intervalle ouvert $[g, d] = \{x \in \mathbb{R} : g < x \text{ et } x < d\}$ où $g \in \mathbb{R} \cup \{-\infty\}, d \in \mathbb{R} \cup \{+\infty\}, d$
- · un intervalle semi-ouvert, par exemple du type $]g,d] = \{x \in \mathbb{R} : g < x \text{ et } x \leq d\}$ où $g \in \mathbb{R} \cup \{-\infty\}, d \in \mathbb{R}$ Dans les trois cas, on peut vérifier que ces parties sont convexes.

Par exemple, dans le cas d'un segment [g,d], si a et b sont dans [g,d] avec $a \le b$, on a $g \le a \le b \le d$ d'où $[a,b] \subset [g,d]$. Dans le cas où a > b, alors $[a,b] = \emptyset \subset [g,d]$.

- Supposons que X est convexe, c'est-à-dire satisfait : $\forall a, b \in X \quad [a, b] \subset X$.
 - \star Cas où X est vide. Alors X est un intervalle : l'intervalle [0, -5] par exemple!
 - \star Cas où X est non vide, majorée et minorée. La partie X admet alors une borne supérieure, que l'on note d et une borne inférieure, que l'on note g. Ce sont respectivement un majorant, et un minorant de X, de sorte que

$$X \subset [g,d].$$

Soit $\varepsilon > 0$. D'après la caractérisation de la borne supérieure (et inférieure), il existe $\alpha \in X$ tel que $g \le \alpha < g + \varepsilon$. Il existe $\beta \in X$ tel que $d - \varepsilon < \beta \le d$. Si on a supposé de surcroît que $\varepsilon < \frac{d - g}{2}$, on a

$$q \le \alpha < q + \varepsilon < d - \varepsilon < \beta \le d$$
.

Or, d'après l'hypothèse, le segment $[\alpha, \beta]$ est tout entier inclus dans X. Puisqu'il contient $[g + \varepsilon, d - \varepsilon]$, on parvient à

$$[g+\varepsilon,d-\varepsilon]\subset X\subset [g,d].$$

Dans ce qui précède, le nombre ε , peut être pris arbitrairement petit, ce qui conduit à

$$]g,d[\subset X\subset [g,d].$$

On a donc

$$X = |g, d|$$
 ou $X = [g, d]$ ou $X = [g, d]$ ou $X = [g, d]$.

On a bien montré que X est un intervalle.

 \star Cas où X est non vide, majorée et non minorée. En adaptant les idées ci-dessus, le lecteur montrera que qu'il existe $d \in \mathbb{R}$ tel que

$$X =]-\infty, d[$$
 ou $X =]-\infty, d[$.

 \star Cas où X est non vide, non majorée, et minorée. En adaptant les idées ci-dessus, le lecteur montrera que qu'il existe $g \in \mathbb{R}$ tel que

$$X = g, +\infty$$
 ou $X = g, +\infty$.

 \Box

 \star Cas où X est non vide, non majorée et non minorée. On peut alors montrer que $X=]-\infty,+\infty[=\mathbb{R}.$

Exemple 45 (Applications de la caractérisation).

Justifier que

- 1. \mathbb{R}^* n'est pas un intervalle.
- 2. une intersection d'intervalles est un intervalle.

Exercices

Inégalités.

2.1 $[\phi \diamondsuit \diamondsuit]$ Soient a et b deux nombres réels strictement positifs. Démontrer l'inégalité

$$\frac{a^2}{b} + \frac{b^2}{a} \ge a + b.$$

2.2 [♦♦♦]

1. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 \sqrt{a+b} \leq \sqrt{a} + \sqrt{b}$.

2. Montrer que $\forall (a,b) \in (\mathbb{R}_+)^2 |\sqrt{a} - \sqrt{b}| \leq \sqrt{|a-b|}$

2.3 $[\phi \Diamond \Diamond]$ [Manipuler la notion de distance]

En utilisant la notion de distance sur R, écrire comme réunion d'intervalles l'ensemble

$$E = \{x \in \mathbb{R} \mid |x+3| \le 6 \text{ et } |x^2-1| > 3\}.$$

[2.4] [♦♦♦] [Plusieurs façons de définir une moyenne]

Soient a et b deux réels tels que $0 < a \le b$. On définit les nombres m, g, h par

$$m = \frac{a+b}{2}, \qquad g = \sqrt{ab}, \qquad \frac{1}{h} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right),$$

et on les appelle respectivement les moyennes arithmétique, géométrique et harmonique de a et b. Démontrer l'encadrement

$$a \le h \le g \le m \le b$$
.

Valeurs absolues.

2.5 [♦♦♦] Résoudre l'équation

$$\ln|x| + \ln|x + 1| = 0.$$

2.6 $[\blacklozenge \diamondsuit \diamondsuit]$ Résoudre l'équation

$$|x-2| = 6 - 2x$$
.

Entiers, rationnels.

2.7 $[\spadesuit \spadesuit \spadesuit]$ Démontrer l'égalité $\left\lfloor \frac{\lfloor nx \rfloor}{n} \right\rfloor = \lfloor x \rfloor$ pour tout entier $n \in \mathbb{N}^*$ et tout réel x.

2.8 [♦♦♦]

1. Pour x > 0, montrer que

$$\frac{1}{2\sqrt{x+1}}<\sqrt{x+1}-\sqrt{x}<\frac{1}{2\sqrt{x}}.$$

2. Soit p un entier supérieur à 2. Que vaut la partie entière de

$$\sum_{k=1}^{p^2 - 1} \frac{1}{\sqrt{k}}?$$

2.9 $[\spadesuit \spadesuit \spadesuit]$ Prouver que $\frac{\ln(2)}{\ln(3)}$ est un nombre irrationnel.

2.10 [$\Diamond \Diamond \Diamond \Diamond$] Soient x et y deux rationnels positifs tels que que \sqrt{x} et \sqrt{y} sont irrationnels. Montrer que $\sqrt{x} + \sqrt{y}$ est irrationnel.

Parties bornées (sans la notion de borne supérieure).

2.11 [$\diamond \diamond \diamond$] Soit l'ensemble

$$A = \left\{ \frac{n - \frac{1}{n}}{n + \frac{1}{n}}, n \in \mathbb{N}^* \right\}.$$

Cette partie de R est-elle bornée ? Possède-t-elle un maximum ? Un minimum ?

 $oxed{2.12} oxed{[lack} \Diamond \Diamond oxed{]}$

1. Montrer que

$$\forall (a,b) \in (\mathbb{R}_+^*)^2 : \frac{a^2}{a+b} \ge \frac{3a-b}{4}.$$

Étudier le cas d'égalité.

2. En déduire que l'ensemble

$$E = \left\{ \frac{a^2}{a+b} + \frac{b^2}{b+c} + \frac{c^2}{c+a} \mid (a,b,c) \in (\mathbb{R}_+^*)^3 \text{ et } a+b+c \ge 2 \right\}$$

admet un minimum et le calculer.

Borne supérieure.

2.13 [♦♦♦] Calculer les bornes supérieures et inférieures des parties, après en avoir prouvé l'existence.

$$A = \left\{ \frac{1}{n} + (-1)^n \mid n \in \mathbb{N}^* \right\}, \quad B = \left\{ \frac{m}{nm+1} \mid m \in \mathbb{N}^*, n \in \mathbb{N}^* \right\}, \quad C = \left\{ x^2 + y^2 \mid (x,y) \in \mathbb{R}^2 \text{ et } xy = 1 \right\}.$$

$$\sup(A+B) = \sup(A) + \sup(B)$$