

# Interactive Showcase 1: Motion Capture System (and Virtual reality technology)

Alpha Agape Gopalai

School of Engineering Monash University Malaysia



### **Contents**

- Introduction: What is motion capture?
  - Nature of data
  - Potential of data
  - Usage of AI in motion capture
- The How's of motion capture
  - Motion capture marker placement
  - Electromyography (EMG)
  - EMG sensor placement
- Hands on/demonstration



- Technology used to record movements of <u>object</u> or <u>people</u>.
- Capture motion data by tracking specific point on the object/subject.
- Data can be further analysed.

#### **Applications of Motion Capture**

- Biomechanics & Medicine: Analyzing movement for rehabilitation.
- Robotics & AI: Teaching robots to mimic human motion. Recognition tool for sign language.
- Virtual Reality: Creating immersive experiences that respond to movement.
- Entertainment: Character animation for movies and games.



#### Common (Gold standard) measuring technology/instrument

- Optical Motion Capture
  - Uses cameras and reflective markers on the body.
  - Captures precise 3D movement by tracking key points.

- Inertial Motion Capture
  - Uses wearable sensors on body parts.
  - Records orientation and acceleration data without cameras.



#### **Data integration**

 A robust motion capture system must allow seamless integration of multiple data sources to enhance analysis and understanding of movement.

#### Force Plate Data

- Measures ground reaction forces during movements.
- Essential for analyzing balance, stability, and force distribution.

#### Inertial Measurement Unit (IMU) Data

- Tracks acceleration, orientation, and rotation of body segments.
- Provides movement data even outside camera range.

#### Electromyography (EMG) Data

- Measures muscle activation patterns.
- Important for studying muscle engagement during activities.



Benefits of Multi-Source Integration

- Improved Analysis
- Enhanced Precision
- Broader Applications



## Potential of Artificial Intelligence in motion capture

#### 1. Markerless motion capture

- Fall detection (without markers)
- Pose estimation
- Sign language translation

#### 2. Movement analysis and recognition

- Classification of similar movement patterns (walking, jumping, etc)
- Injury prevention, estimating risky movements

#### 3. Learn from demonstration

- Robots can learn movement techniques from humans
- Manufacturing, healthcare and personal assistance



## Potential of Artificial Intelligence in motion capture

#### In our lab:

- Estimate the amount of torque needed to support a sitting to standing motion
- Identify trends in muscle decline across age group and gender
- Identify fall risks among individuals during ADL



# The How's of motion capture



## Motion capture marker placement

Anatomical lower body joints (a) (b) RTH1 LFCC RFCC (c) LFMT1 •





Fig. 2 Lower body marker placement on a test subject





## **Electromyography (EMG)**

To measure and record the electrical activity produced by muscles when they contract.



 Diagnose muscle impairments and analyze movement patterns in sports, rehabilitation, and research.

## **EMG** sensor placement



Fig. 3 Lower body EMG sensor placement

#### Eight dominant leg muscles

- Tibialis anterior
- Vastus lateralis
- Vastus medialis
- Rectus femoris
- 5. Gastrocnemius medialis
- Gastrocnemius lateralis
- 7. Semitendinosus
- 8. Bicep femoris



## Sit-to-walk (STW) motion capture dataset

- Our STW motion capture and EMG dataset is publically available and can be accessed <u>here</u> on Monash bridges repository.
- Experimental design details can be obtained in the publication below.
- Perera, C.K., Hussain, Z., Khant, M. et al. A Motion Capture Dataset on Human Sitting to Walking Transitions. Sci Data 11, 878 (2024). https://doi.org/10.1038/s41597-024-03740-z



## Hand-on/ Demo session

