Problem 1

- (a) Prove -(-x) = x.
- (b) Prove -(xy) = (-x)y.

Solution

Part (a)

$$0 + -(-x) = -(-x)$$
 by (A3)

$$[x + -x] + -(-x) = -(-x)$$
 by (A4)

$$x + [-x + -(-x)] = -(-x)$$
 by (A2)

$$x + 0 = -(-x)$$
 by (A4)

$$x = -(-x)$$
 by (A3)

Part (b)

$$(-x)y + xy = (-x + x)y$$
 by (D)
$$(-x)y + xy = (0)y$$
 by (A4)

In class it was proved that $0 \cdot x = 0$ for all x. By this result we get

$$(-x)y + xy = 0$$

 $(-x)y + xy + -(xy) = 0 + -(xy)$ add $-(xy)$
 $(-x)y + 0 = -(xy)$ by (A4)
 $(-x)y = -(xy)$ by (A3)

Problem 2

- (a) Prove if x > y, z < 0 then xz < yz.
- (b) Prove if x > y > 0, z > w > 0 then xz > yw.
- (c) Prove if x > 0 then $x^{-1} > 0$.

Solution

Part (a)

In order to prove this I will first prove consequent 7 introduced in class, that $(-x) \cdot (y) = (-xy) = x \cdot (-y)$.

$$x + [(-1) \cdot x] = [1 \cdot x] + [(-1) \cdot x]$$

$$x + [(-1) \cdot x] = (1 + (-1)) \cdot x$$

$$x + [(-1) \cdot x] = 0 \cdot x$$

$$x + [(-1) \cdot x] = 0$$

$$x + [(-1) \cdot x] = 0$$

$$-x + x + [(-1) \cdot x] = -x + 0$$

$$0 + [(-1) \cdot x] = -x + 0$$

$$[(-1) \cdot x] = -x + 0$$
(A4)
$$(A3)$$

Using the equivalence established above;

$$(-x)(y) = (-1 \cdot x) \cdot (y)$$

$$(-x)(y) = -1 \cdot (x \cdot y)$$

$$(-x)(y) = -(xy)$$
(D)

This shows that (-x)(y) = -(xy). The argument that -(xy) = (x)(-y) has an identical structure.

$$z < 0 \text{ and } -1 < 0 \text{ so}$$

$$\begin{array}{ll} 0 \cdot -1 < z \cdot (-1) & \text{by (O7)} \\ 0 < z \cdot (-1) & \text{consequent 3 proved in class} \\ 0 < -(z \cdot 1) & \text{by consequent 7} \\ 0 < -z & \text{by M3} \\ -z > 0 & \text{definition of ;} \end{array}$$

Having -z > 0 and x > y we use (O6) to get x(-z) > y(-z)

$$-(xz) > -(yz)$$
 consequent 7
$$-(xz) + ((xz) + (yz)) > -(yz) + ((xz) + (yz))$$
 (O4)
$$-(xz) + ((xz) + (yz)) > -(yz) + ((yz) + (xz))$$
 (A1)
$$(-(xz) + (xz)) + (yz) > (-(yz) + (yz)) + (xz)$$
 (M2)
$$0 + (yz) > 0 + (xz)$$
 (A4)
$$(yz) > (xz)(A3)$$

By the definition of > this is the same as saying xz < yz.

Part (b)

It is given that z > w and w > 0. By (O2) z > 0. It is also given that x > y. Then by (O6) xz > yz. It is also given that y > 0. By (O6) again zy > wy. Then by (M1) yz > yw and finally by (O2) xz > yw.

Part (c)

First assume that $x^{-1} < 0$. Then by (O7) proved in class:

$$x \cdot x^{-1} < 0 \cdot x^{-1}$$

It was also proved in class that $0 \cdot x = 0$ for all x. Thus,

$$x \cdot x^{-1} < 0$$

$$1 < 0 \qquad \text{by (M4)}$$

This is a contradiction so $x^{-1} > 0$.

Problem 3

Prove that there does not exist an $x \in \mathbb{Z}$ such that 0 < x < 1. $\mathbb{Z} = \{x \in \mathbb{R} \mid x \in \mathbb{N} \lor x = 0 \lor -x \in \mathbb{N}\}.$

Solution

Consider any arbitrary $x \in \mathbb{R}$. There are three possible cases.

- (a) Case 1: $x \in \mathbb{N}$ It was proven in class that for all x in \mathbb{N} , $x \ge 1$. Thus it is impossible that x < 1.
- (b) Case 2: x = 0If x = 0 then it is impossible that x > 0.
- (c) Case 3: $-x \in \mathbb{N}$ By the same fact used in case 1, $-x \ge 1 \implies x \le -1$. So it is impossible that x > 0.

There is no case in which it is possible that 0 < x < 1.

Problem 4

Prove that it is impossible to define inequalities in \mathbb{C} such that (O1)-(O4) hold.

Solution

The proof given in the book that for any nonzero $a \in \mathbb{R}$, $a^2 > 0$ depends only on axioms (O1)-(O4). Thus if these axioms held in \mathbb{C} then it would have to be the case that the square of any nonzero element of \mathbb{C} was greather than 0. However, i is defined such that $i^2 = -1$. Using the fact introduced in class that 1 > 0 we can say

$$1 + (-1) > 0 + (-1)$$

$$0 > -1$$
 (A4)

By axiom (O1) it is impossible for it also to be the case that 0 < -1. Thus this is a contradiction. Therefore it is impossible to define inequalitied in \mathbb{C} in such a way that axioms (O1)-(O4) hold.

Problem 5

- (a) Let $x, y \in \mathbb{R}$. Prove $x \leq y$ if and only if $x \epsilon < y + \epsilon \forall \epsilon > 0$.
- (b) Let $x, y \in \mathbb{R}$ with x < y. Prove there exists $z \in \mathbb{R}$ with x < z < y.
- (c) Let $a, x, b \in \mathbb{R}$ with a < x < b. Prove there exists $\epsilon > 0$ such that $a < x \epsilon < x + \epsilon < b$. Deduce that $(x \epsilon, x + \epsilon) \subset (a, b)$.

Solution

Part (a)

By Theorem 1.9 part i proved in the book, $x < y + \epsilon$ for all $\epsilon > 0$. For any given value for $\epsilon > 0$, $0 > -\epsilon$. Then by (O5) $y + \epsilon > x - \epsilon$ for all $\epsilon > 0$.

Part (b)

Let n be the largest natural number such that $\frac{1}{n} < y - x$. Let k be the largest natural number such that $\frac{k}{n} \le x$. Then by our selection of k, $\frac{k+1}{n} > x$. Now assume that $y \le \frac{k+1}{n}$. Then we have that $\frac{k+1}{n} \ge y$ and $-\frac{k}{n} \ge -x$ so by (O5)":

$$\frac{1}{n} = \frac{k+1}{n} - \frac{k}{n} \ge y - x$$

. This is a contradiction so it must be the case that $y > \frac{k+1}{n}$. Thus $z = \frac{k+1}{n}$ is a number satisfying x < z < y.

Part (c)

Let y be the smaller value of b-x and x-a. Then $a \le x-y < x < x+y \le b$. By part b) there exists a z such that x < z < x+y. Let $\epsilon = z-x$. This value satisfies that desired conditions.

Problem 6

Prove that each of the following are metric spaces.

- (a) $X = \mathbb{R}, d(x, y) = |y x|$
- (b) $X = \text{any set}, d(x, y) = 1 \text{ if } x \neq y \text{ and } d(x, y) = 0 \text{ if } x = y.$
- (c) Give another example of a metric space.

Solution

Part (a)

This proof will use the fact that $-1 \cdot x = -x$. This was proven as an intermediate step in problem 2.

First I will prove that -(x-y) = y - x.

$$-(x - y) = -1 \cdot (x + (-y))$$
 see problem 2

$$-(x - y) = -1 \cdot x + -1 \cdot -y$$
 (D)

$$-(x - y) = -x + -(-y)$$
 see problem 2

$$-(x - y) = -x + y$$
 proved in class

$$-(x - y) = y + (-x)$$
 (A1)

$$-(x - y) = y - x$$
 def. of -

$$i d(x,y) = 0 \iff x = y$$

First assume x = y. Then |y - x| = |0| = 0. Now assume that |y - x| = 0. Then either y - x = 0 or x - y = 0. In the first case y - x + x = x so by (A4) y = x. In the second case x - y + y = y so by (A4) x = y.

ii
$$d(x,y) = d(y,x)$$

This would directly follow from a proof of property 2 of absolute values that states |y-x| = |x-y|. There are two cases.

Case:
$$y - x > 0$$
.

By the definition of absolute value |y-x|=y-x. Then

$$y-x>0$$

 $y-x+x>0+x$ O4
 $y+0>0+x$ A4
 $y>x$ A3
 $y+(-y)>x+(-y)$ O4
 $0>x+(-y)$ A4
 $0>x-y$ def. of -

Thus by the definition of absolute value |x - y| = -(x - y) which, as proved at the beginning of this problem, is equal to y - x.

Case: y - x < 0.

By the definition of absolute value |y - x| = -(y - x). Using the same fact as above, this equals x - y.

$$y-x < 0$$

 $y-x+x < 0+x$ O4
 $y+0 < 0+x$ A4
 $y < x$ A3
 $y+(-y) < x+(-y)$ O4
 $0 < x+(-y)$ A4
 $0 < x-y$ def. of -

Thus |x - y| = x - y by definition.

Case: y - x = 0

In this case |y - x| = y - x = 0 by definition.

$$y - x = 0$$

 $y - x + x = 0 + x$
 $y + 0 = 0 + x$ (A4)
 $y = x$ (A3)
 $y + (-y) = x + (-y)$
 $0 = x + (-y)$ (A4)
 $0 = x - y$ def. of -

So |x - y| = y - x = 0 by definition.

iii
$$d(x,z) \le d(x,y) + d(y,z)$$

 $|z-x| \le |y-x| + |z-4|$ by the triangle inequality proved in class.

Part (b)

i $d(x,y) = 0 \iff x = y$ This is true by the definition of the function d.

ii d(x,y) = d(y,x)In the case when x = y, d(x,y) = 0 = d(y,x). In the case when $x \neq y$, d(x,y) = 1 = d(y,x).

iii
$$d(x,z) \le d(x,y) + d(y,z)$$

$$\begin{array}{c} \text{Case: } x=y=z\\ 0\leq 0\\ \text{Case: } x\neq y\neq z\\ 1\leq 2\\ \text{Case: } x=y\neq z\\ 1\leq 1\\ \text{Case: } x\neq y=z\\ 1\leq 1\\ \text{Case: } x=z\neq y\\ 0\leq 1 \end{array}$$

Part (c)

$$X = \mathbb{C}, d(x, y) = \sqrt{x^2 + y^2}.$$