

5

10

15

Umlenkeinrichtung für einen Kraftfahrzeugfensterheber

20

Beschreibung

25

Die Erfindung betrifft eine Umlenkeinrichtung für einen Kraftfahrzeugfensterheber nach dem Oberbegriff des Anspruchs 1.

Eine derartige Umlenkeinrichtung umfasst ein Umlenkelement zur Umlenkung eines
30 Zugmittels des Fensterhebers sowie Federmittel zur Straffung des Zugmittels, um eine Längung des Zugmittels zu kompensieren.

Bei dem Umlenkelement kann es sich beispielsweise um eine Seilrolle handeln, mittels
35 der ein Zugmittel eines Fensterhebers in Form eines Antriebsseiles umgelenkt wird, um das Antriebsseil entlang der Verschieberichtung der mit dem Fensterheber zu verstellenden Fensterscheibe zu führen. Das Zugmittel bzw. Antriebsseil dient zur Kopplung der zu verstellenden Fensterscheibe an die Antriebseinrichtung des Fensterhebers und wird durch diese bewegt. Indem die Fensterscheibe über einen Mitnehmer mit dem Antriebsseil verbunden ist, wird sie bei einer Bewegung des
40 Antriebsseiles entlang seiner Erstreckungsrichtung mitgenommen. Ein entlang der Verschieberichtung der zu verstellenden Fensterscheibe geführtes Antriebsseil bewirkt

daher bei einer Aktivierung des Antriebs des Fensterhebers die gewünschte Verstellbewegung der Fensterscheibe.

Als Folge des Setzungsverhaltens der (unter Spannung stehenden) Fahrzeugkomponenten, insbesondere Kunststoffkomponenten, an denen der Fensterheber befestigt ist, kommt es nach längerem Betrieb zu einer scheinbaren (relativen) Längung des Zugmittels bzw. Antriebsseiles (Bildung einer sogenannten Seillose) relativ zu den besagten Fahrzeugkomponenten, die kompensiert werden muss, damit das Zugmittel weiterhin definiert und straff entlang der Verschieberichtung der zu

verstellenden Fensterscheibe geführt ist und die vom Fensterheberantrieb erzeugten Kräfte auf die Fensterscheibe übertragen kann. Ferner kann aufgrund der erheblichen Zugkräfte, die im Betrieb des Fensterhebers auf das Zugmittel bzw. Antriebsseil wirken, auch eine gewisse direkte Längung des Zugmittels selbst erfolgen.

Es ist bekannt zur Aufrechterhaltung der Spannung des Zugmittels, vorgespannte Federmittel zu verwenden, die an einem beweglich gelagerten Umlenkelement des Fensterhebers angreifen und die Tendenz haben, dieses derart zu verschieben oder zu verschwenken, dass das Zugmittel durch die Verlagerung des Umlenkelementes gestrafft wird.

20

Der Erfindung liegt das Problem zugrunde, eine Umlenkeinrichtung der eingangs genannten Art weiter zu verbessern.

Dieses Problem wird erfindungsgemäß durch die Schaffung einer Umlenkeinrichtung mit den Merkmalen des Anspruchs 1 gelöst.

Danach ist vorgesehen, dass das Umlenkelement beweglich an einer Aufnahme gelagert und zur Kompensation einer Längung des Zugmittels durch an der Aufnahme angeordnete Federmittel in eine Mehrzahl unterschiedlicher Positionen bringbar ist, wobei die Aufnahme zusammen mit dem Umlenkelement und den Federmitteln als vormontierte Baugruppe an dem Fensterheber befestigbar ist.

Unter dem Fensterheber werden dabei vorliegend nicht nur die Antriebsmittel des Fensterhebers, wie z. B. ein Antriebsmotor, ein zur Kopplung des Antriebsmotors mit dem Zugmittel vorgesehenes Getriebe, ein Mitnehmer für die Fensterscheibe usw. verstanden, sondern auch die den Fensterheber tragenden Baugruppen, wie z. B. ein Trägerelement in Form eines Trägerbleches. Hieran bzw. an einer zur Führung des mit

dem Zugmittel verbundenen Mitnehmers dienenden Führungseinrichtung wird die an der Aufnahme vormontierte Baugruppe vorzugsweise befestigt.

Unter der „Längung“ des Zugmittels wird vorliegend nicht nur eine direkte Längung des

- 5 Zugmittels selbst verstanden, sondern allgemein eine relative Änderung der Länge des Zugmittels bezüglich der Fahrzeugkomponenten (Türkomponenten, wie z.B. eine Trägerplatte des Fensterhebers), an denen der Fensterheber angeordnet ist, also insbesondere auch eine scheinbare Längung des Zugmittels, die auf Setzungsverhalten jener Türkomponenten (an denen beispielsweise die Umlenkelemente zur Führung des
- 10 Zugmittels befestigt sind) zurückzuführen ist.

Die erfindungsgemäße Lösung hat den Vorteil, dass sämtliche Komponenten einer Umlenkeinrichtung für ein Zugmittel eines Fensterhebers, die gleichzeitig zur Kompensation einer Längung des Zugmittels dient, einschließlich der hierfür erforderlichen Federmittel sowie der Mittel zur beweglichen Lagerung des Umlenkelementes, als separate Baueinheit vormontiert werden können, die dann komplett vormontiert am Fensterheber befestigt wird. Hierdurch wird die Flexibilität bei der Montage eines Fensterhebers weiter erhöht.

- 20 Gemäß einer bevorzugten Ausführungsform der Erfindung bildet die Aufnahme ein Gehäuse, an oder in dem die Umlenkeinrichtung beweglich gelagert ist.

Zur beweglichen, insbesondere verschieblichen oder schwenkbaren, Lagerung des Umlenkelementes an der Aufnahme kann dort eine Führungsbahn vorgesehen sein, mittels der das Umlenkelement derart geführt ist, dass es zur Kompensation einer Längung des Zugmittels in unterschiedliche Positionen bringbar ist, die jeweils eine definierte Straffung des Zugmittels bewirken.

- 30 Hierzu ist das Zugmittel bevorzugt an einem beweglich an der Aufnahme geführten Gleiter angeordnet, bei dem es sich um ein von dem Umlenkelement separates Teil handeln kann, mit dem das Umlenkelement durch geeignete Verbindungsmittel, z. B. durch Nieten verbunden ist. Die hierfür erforderlichen Verbindungselemente können an dem Umlenkelement vorgesehen sein, z. B. in Form eines Stufenbolzens, der eine zugeordnete Öffnung in dem Gleiter durchgreift und dessen aus der Öffnung herausragender, dem Umlenkelement abgewandter Endabschnitt derart umgelegt ist, dass eine formschlüssige Verbindung zwischen Umlenkelement und Gleiter besteht.

Selbstverständlich kann das Verbindungsmitte umgekehrt auch an dem Gleiter vorgesehen sein und eine zugeordnete Öffnung in dem Umlenkelement durchgreifen.

Die Federmittel, mit denen eine Bewegung des Umlenkelementes zur Straffung des

- 5 Zugmittels ausgelöst werden kann, werden vorzugsweise durch mindestens ein vorgespanntes Federelement gebildet, das an der Aufnahme des Umlenkelementes gelagert ist und an dem Umlenkelement bzw. dem zugeordneten Gleiter angreift.

Gemäß einer bevorzugten Weiterbildung der Erfindung ist eine Fixiereinrichtung

- 10 vorgesehen, um das Umlenkelement bzw. den Gleiter an der Aufnahme zu fixieren, solange die vormontierte Baugruppe noch nicht an einen Fensterheber montiert ist. Denn erst nach der Montage der besagten Umlenk- und Kompensationsbaugruppe an einen Fensterheber und der Inbetriebnahme des Fensterhebers soll ja eine Bewegung des Umlenkelementes bzw. Gleiters in der Aufnahme möglich sein, um eine Längung des
- 15 Zugmittels zu kompensieren. Im vormontierten Zustand sollen die entsprechenden Komponenten aber möglichst zueinander fixiert sein, um einen einfachen Transport der vormontierten Baueinheit zu gewährleisten.

Die Fixiereinrichtung kann beispielsweise zur Herstellung einer formschlüssigen

- 20 Verbindung zwischen dem Umlenkelement bzw. Gleiter und der Aufnahme eingerichtet und ausgebildet sein, z. B. mittels einer Rastverbindung oder mittels eines Sicherungsstiftes.

In einer bevorzugten Ausführungsform ist die Fixiereinrichtung bei Inbetriebnahme des

- 25 Fensterhebers durch die Einwirkung des Zugmittels auf die Umlenkeinrichtung automatisch entriegelbar, so dass dann das Umlenkelement bzw. der Gleiter in der Aufnahme beweglich ist. Nach der Entriegelung der Fixiereinrichtung wird das Umlenkelement bzw. der Gleiter in seiner jeweiligen Gleichgewichtsposition durch das Zusammenspiel der Federmittel und des Zugmittels des Fensterhebers gehalten.

- 30 Weiterhin sind Arretierungsmittel vorgesehen, um das Umlenkelement in seiner durch das Zusammenwirken der Federmittel mit dem Zugmittel definierten Gleichgewichtslage zu arretieren; hierbei kann es sich beispielsweise um Formschlussmittel in Form miteinander zusammenwirkender Verzahnungsbereiche handeln.

- 35 Einer der beiden Verzahnungsbereiche ist dabei an der Aufnahme oder einem in der Aufnahme angeordneten Einlegeteil angeordnet und der andere Verzahnungsbereich an

dem Gleiter. Für eine besonders feinstufige Positionierung des Umlenkelementes an der Aufnahme können dabei die Verzahnungsbereiche an je einer von zwei zueinander zugeordneten schiefen Ebenen vorgesehen sein.

- 5 Im Betrieb des Fensterhebers werden die Arretierungsmitte durch die Spannung des Zugmittels verriegelt, so dass das Umlenkelement kontinuierlich in einer bestimmten Position an der Aufnahme verbleibt, solange das Zugmittel hinreichend gespannt ist. Kommt es im Betrieb des Fensterhebers zu einer Längung des Zugmittels, d. h. einer Seillose eines Antriebseiles, so kann aufgrund der nachlassenden Spannung des
- 10 Zugmittels eine Entriegelung der Arretierungsmitte erfolgen und die zur Seilstraffung vorgesehenen Federmittel bewirken eine Verlagerung des Umlenkelementes (über den zugeordneten Gleiter), aufgrund derer das Seil wiederum gespannt und das Umlenkelement in einer neuen Gleichgewichtsposition arretiert werden kann.
- 15 Die erfindungsgemäße Umlenkeinrichtung eignet sich insbesondere zur Anwendung bei sogenannten Bahnenfensterhebern, bei denen eine Mehrzahl Führungsbahnen für zugeordnete Mitnehmer des Fensterhebers in einen Träger integriert ist.

Eine besondere Bedeutung kommt dem Seillängenausgleich zu, wenn der

20 (bahngesteuerte) Fensterheber in Verbindung mit einer sogenannten Kurzhubanwendung für rahmenlose Fensterscheiben zum Einsatz kommt, so dass die Fensterscheibe beim Öffnen und Schließen der zugehörigen Fahrzeugtür jeweils kurzzeitig abgesenkt wird. In diesem Fall unterliegt das Verstellsystem, insbesondere das Seil, einer sehr hohen Belastung, die über die Lebensdauer zumeist zu einer derart großen Seillängung führt, dass die Kurzhubfunktion und ein eventuell vorgesehener Einklemmschutz nicht mehr ausreichend sicher betrieben werden können.

Ein Fensterheber, insbesondere Bahnenfensterheber, bei dem die erfindungsgemäße Umlenkeinrichtung angesetzt wird, ist durch die Merkmale der Ansprüche 21 bzw. 22

25 charakterisiert.

Weitere Merkmale und Vorteile der Erfindung werden bei der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Figuren deutlich werden.

30

35 Es zeigen:

- Fig. 1a einen Ausschnitt eines Bahnensterhebers mit einer daran angeordneten Umlenleinrichtung, die ein beweglich gelagertes Umlenkelement für ein Zugmittel des Bahnensterhebers aufweist, welches für eine Straffung des Zugmittels verlagerbar ist;
- 5 Fig. 1b die Anordnung aus Figur 1a nach einer Verlagerung des Umlenkelementes;
- 10 Fig. 2a und 2b eine perspektivische Darstellung sowie eine Explosionsdarstellung der Umlenleinrichtung aus den Figuren 1a und 1b;
- 15 Fig. 3a bis 3d jeweils eine Schnittdarstellung unterschiedlicher Zustände der Umlenleinrichtung aus den Figuren 2a und 2b, nämlich im vormontierten Zustand der Umlenleinrichtung, nach dem Einbau in einen Fensterheber, beim Auftreten einer Seillose sowie nach dem Ausgleich einer Seillose;
- 20 Fig. 4 eine Abwandlung der Umlenleinrichtung aus den Figuren 3a und 3b hinsichtlich der Sicherung des Umlenkelementes im vormontierten Zustand der Umlenleinrichtung;
- Fig. 4a und 4b eine weitere Abwandlung der Umlenleinrichtung aus den Figuren 2a und 2b vor und nach einem Seillängenausgleich;
- 25 Fig. 5 einen Querschnitt durch die Umlenleinrichtung aus den Figuren 4a und 4b nach einem Seillängenausgleich;
- Fig. 6a und 6b eine weitere Abwandlung der Umlenleinrichtung aus den Figuren 2a und 2b vor und nach einem Seillängenausgleich;
- 30 Fig. 7a und 7b jeweils eine perspektivische Darstellung von Arretierungsmitteln zur Arretierung des Umlenkelementes der Umlenleinrichtung aus den Figuren 6a und 6b.
- 35 Figur 1a zeigt einen Bahnensterheber mit einem Antriebsmotor M und mit einem dem Antriebsmotor M nachgeordneten Getriebe G, mit dem ein Zugmittel in Form eines Antriebseiles S des Fensterhebers angetrieben wird, welches wiederum mittels eines Umlenkelementes E in Form einer Seilrolle einer Umlenleinrichtung U derart umgelenkt

ist, dass es sich entlang der Führungsbahnen B des Bahnensterhebers erstreckt. Die drei Führungsbahnen B verlaufen entlang der Verschieberichtung der mittels des Fensterhebers zu verstellenden Fensterscheibe und dienen zur verschieblichen Lagerung eines Mitnehmers, der einerseits die zu verstellende Fensterscheibe trägt und der andererseits mit dem Antriebsseil S verbunden ist. Da das Antriebsseil S mittels des Umlenkelementes E der Umlenleinrichtung U entlang der Erstreckungsrichtung der Führungsbahnen B geführt ist, lässt sich der die Fensterscheibe aufnehmende Mitnehmer durch dieses Antriebsseil bei Aktivierung des Antriebsmotors M entlang dieser Führungsbahnen B verschieben, um die hiermit verbundene Fensterscheibe anzuheben oder abzusenken.

Das Umlenkelement E der Umlenleinrichtung U ist dabei verschieblich in einer Aufnahme A gelagert, die an dem Trägerelement (Trägerblech T) befestigt ist, an dem die Führungsbahnen B angeordnet (einstückig herausgeformt) sind und das außerdem die Antriebsmittel M, G des Fensterhebers trägt.

Figur 1b zeigt die Anordnung aus Figur 1a nach einer Verschiebung des Umlenkelementes E in der Aufnahme A, die zu einer Straffung des Antriebsseiles S zur Kompensation einer Seilloose (induziert durch Setzungsverhalten des Trägerbleches T) geführt hat.

Die Straffung eines Antriebsseiles durch Bewegung eines Umlenkelementes eines Fensterhebers ist grundsätzlich bekannt. Nachfolgend wird daher vor allem auf die Besonderheiten der vorliegenden Umlenleinrichtung U eingegangen, die sich insbesondere dadurch auszeichnet, dass sie eine außerhalb des Fensterhebers vormontierbare Baueinheit bildet, in der die Funktionen einer Umlenkung des Antriebsseiles S sowie eines Seillängenausgleiches (Kompensation einer Seilloose) zusammengefasst sind.

Die Figuren 2a und 2b zeigen die Umlenleinrichtung U aus den Figuren 1a und 1b in einer perspektivischen Darstellung sowie in einer Explosionsdarstellung. Die Umlenleinrichtung umfasst eine gehäuseartige Aufnahme 1 mit einer Basisfläche 10, von der zwei nach innen abgewinkelte Schenkel 11, 12 senkrecht abstehen, die eine durch eine Rückwand 14 der Aufnahme 1 begrenzte, entlang einer Längsrichtung L erstreckte Längsführung 13 für einen Gleiter 2 definieren, der mit seitlichen Führungs- und Gleitflächen 23 in die Längsführung 13 eingreift. Der Gleiter 2 ist hierdurch entlang

einer Längsrichtung L, die der Erstreckungsrichtung der Längsführung 13 entspricht, verschieblich in der gehäuseartigen Aufnahme 1 gelagert.

- Der Gleiter 2 weist eine Durchgangsöffnung 25 auf, an der mittels eines Stufenbolzens 35 ein Umlenkelement in Form einer Seilrolle 3 befestigt ist, die einen Führungsabschnitt 31 für das umzulenkende Antriebsseil und einen Montageabschnitt 32 zum Überführen des Antriebsseiles auf den Führungsabschnitt 31 bei der Montage des Fensterhebers aufweist.
- 10 Im montierten Zustand des Fensterhebers, also wenn die Seilrolle 3 von dem Antriebsseil des Fensterhebers umschlungen ist, hat dieses aufgrund der bestehenden Seilspannung die Tendenz, die Seilrolle 3 zusammen mit dem Gleiter 2 gegen die Rückwand 14 der Aufnahme 1 zu drücken. Dem wirken jedoch Federmittel 4 in Form zweier vorgespannter Federn 41, 42 entgegen, die sich einerseits an der Rückwand 14 der Aufnahme 1 und andererseits an dem Gleiter 2 abstützen und die die Tendenz haben, den Gleiter 2 von der Rückwand 14 der Aufnahme 1 wegzubewegen. Hierdurch kann eine Längung des Antriebsseiles ausgeglichen und dieses in einem stets gestrafften Zustand gehalten werden.
- 15 Um den Gleiter 2 in bestimmten Längspositionen relativ zu der Aufnahme 1 fixieren zu können, ist in der Aufnahme 1 ein Einlegeteil 15 mit einer Längsverzahnung 16 angeordnet, das mittels einer Feder 17 in einer definierten Position innerhalb der Aufnahme 1 gehalten wird. Der Verzahnung 16 des Einlegeteiles 15 ist eine entsprechende Gegenverzahnung des Gleiters 2 zugeordnet, so dass bei einem 20 Ineinandergreifen der beiden Verzahnungen der Gleiter 2 in einer bestimmten Position innerhalb der Aufnahme 1 arretiert ist, wie nachfolgend anhand der Figuren 3a und 3b noch näher beschrieben werden wird.
- 25 Ferner ist an dem Gleiter 2 ein Rasthaken bzw. Klipp 24 angeordnet, der in einen zugeordneten Rast- bzw. Klippsbereich 14a der Rückenwand 14 der Aufnahme 1 eingreifen kann, so dass im vormontierten Zustand der aus der Aufnahme 1, dem Gleiter 2, der Seilrolle 3 und den Federmitteln 4 bestehenden Baueinheit der Gleiter 2 (und somit auch die Umlenkeinrichtung 3 und die Federmittel 4) an der Aufnahme 1 fixiert sind.
- 30 Figur 3a zeigt einen Längsschnitt durch die Umlenkeinrichtung aus den Figuren 2a und 2b im vormontierten Zustand, d. h. vor deren Integration in einen
- 35

Kraftfahrzeugfensterheber. Es ist erkennbar, dass die Verzahnung 16 des Einlegeteils 15 der Aufnahme 1 einerseits und die Gegenverzahnung 26 des Gleiters 2 sich in diesem Zustand außer Eingriff befinden und dass der Gleiter 2 durch einen Eingriff seines Rast- bzw. Klippshakens 24 in den Rast- bzw. Klippsbereich 14a an der Rückwand 14 der

- 5 Aufnahme 1 in dieser Fixiert ist. Ferner ist erkennbar, dass der als Hohlkörper mit einer axialen Durchgangsöffnung ausgebildete Stufenbolzen 35 der Seilrolle 3 die zugeordnete Durchgangsöffnung 25 des Leiters 2 durchgreift und an seinen freien Enden derart umgelegt ist, dass eine kraft- und formschlüssige Verbindung zwischen der Seilrolle 3 und dem Gleiter 2 vorliegt.

10

In dem in Figur 3a gezeigten Zustand wird die aus der Aufnahme 1, dem Gleiter 2, dem Umlenkelement 3 und den Federmitteln 4 bestehende Baueinheit, z. B. mittels Schrauben oder Nieten, an einem Fensterheber montiert und es wird das Antriebsseil S auf den Führungsabschnitt 31 der Seilrolle 3 gebracht. Wenn nun im ersten Betrieb des

- 15 fertig montierten Fensterhebers der Mitnehmer (und damit die zu verstellende Fensterscheibe) an den unteren Anschlag des Fensterhebers gefahren wird, dann zieht das Antriebsseil S, vergleiche Figur 3b, den Gleiter 2 entgegen der Wirkung der Federmittel 4 gegen die Rückwand 14 der Aufnahme 1, wobei die Verzahnung 16 des Einlegeteils 15 und die zugeordnete Gegenverzahnung 26 des Gleiters 2 miteinander in
20 Eingriff geraten und die Rast- bzw. Klippsverbindung 14a, 24 gemäß Fig. 3b gelöst wird. Hierdurch ist der Gleiter 2 mittels des Einlegeteiles 15, das über eine Feder 17 definiert in der Aufnahme 1 positioniert ist, und durch die Wirkung der ineinander greifenden Verzahnungen 16, 26 in einer definierten Längsposition innerhalb der Aufnahme 1 arretiert, und zwar in der nächsten Position zu der Rückwand 14 der Aufnahme 1 hin,
25 die im Zusammenspiel der Verzahnungen 16, 26 möglich ist.

- Beim Auftreten einer Seillose also einer Längung des Antriebsseiles S und einem Nachlassen der Seilspannung, geraten die beiden Verzahnungen 16, 26 außer Eingriff und der Gleiter 2 und somit auch die Seilrolle 3 entfernen sich unter der Wirkung der
30 Federmittel 4 (vergleiche Figuren 2a und 2b) etwas von der Rückwand 14 der Aufnahme 1, entsprechend der Darstellung in Figur 3c.

- Wenn schließlich die Seillängung einen solchen Umfang angenommen hat, dass die Längsverschiebung des Gleiters 2 bezüglich der Rückwand 14 der Aufnahme 1 einer
35 Zahnbreite entspricht, dann geraten die beiden Verzahnungen 16, 26 gemäß Figur 3d wieder in Eingriff, so dass der Gleiter 2 und das Umlenkelement 3 wiederum in der definierten Position in der Aufnahme 1 arretiert sind.

Figur 4 zeigt eine Abwandlung der Umlenkeinrichtungen aus den Figuren 2a und 2b, wobei der Unterschied darin besteht, dass zur Vorfixierung des Gleiters 2 in der Aufnahme 1 ein Sicherungsstift 5 anstatt einer Klipps- bzw. Rastverbindung 14a, 24 verwendet wird. Dieser Sicherungsstift 5, der einander zugeordnete Öffnungen in der Aufnahme 1 und dem Gleiter 2 durchgreift und diesen hierdurch in der Aufnahme 1 fixiert, wird nach dem Einbau der Baueinheit in einen Fensterheber abgezogen. Es erfolgt hier also keine selbsttätige Entriegelung der Fixierungseinrichtung, im Gegensatz zu der Umlenkeinrichtung aus den Figuren 2a und 2b.

10

Figur 4a zeigt eine weitere Abwandlung der Umlenkeinrichtungen aus den Figuren 2a und 2b, wobei ein Unterschied in der Ausbildung der Führungseinrichtung besteht, mittels der der Gleiter 2 in Längsrichtung L beweglich in der Aufnahme 1 geführt ist. Hierzu weist der Gleiter 2 seitliche Führungsfortsätze 23' auf, die in zugeordneten Längsschlitten 13' der Aufnahme 1 geführt sind. Ferner werden die Federmittel 4 bei der in Figur 4a gezeigten Umlenkeinrichtung durch ein einzelnes vorgespanntes Federelement 40 gebildet.

Figur 4b zeigt die Umlenkeinrichtung aus 4a nach einer Verschiebung der Seilrolle 3 unter der Wirkung des Federelementes 40 zur Kompensation einer Längung des Antriebsseiles S, wobei der Gleiter 2 in der Längsführung 13', 23' geführt wurde.

Anhand einer Zusammenschau der Figur 4b mit dem Längsschnitt aus Figur 5 wird dabei auch deutlich, dass vorliegend die Verzahnung 16 der Aufnahme 1 nicht an einem separaten Einlegeteil, sondern unmittelbar an der Basisplatte 10 der Aufnahme 1 ausgebildet ist. Ferner wird die Gegenverzahnung des Gleiters 2 nur durch ein einziges Verzahnungselement gebildet.

In den Figuren 6a und 7a ist eine weitere Abwandlung der Umlenkeinrichtung aus den Figuren 2a und 2b dargestellt, wobei vorliegend die Aufnahme 1 nicht gehäuse- sondern plattenartig ausgebildet ist und zur Führung des Gleiters 2 Längsschlitte 13" mit Einfädelbereichen 130 aufweist. Ferner wirken die Aufnahme 1 und der Gleiter 2 über jeweils eine mit einem Verzahnungsbereich 19 bzw. 29 versehene schiefe Ebene 18, 28 zusammen, die eine besonders feinstufige Arretierung des Gleiters 2 in unterschiedlichen Längspositionen an der Aufnahme 1 ermöglicht. Gemäß der Umsetzung einer durch die Federmittel 4 in Form eines vorgespannten Federelementes 40 ausgelösten Bewegung der aufnahmeseitigen schiefen Ebene 18 in eine Längsbewegung der dem Gleiter 2

zugeordneten schiefen Ebene 28 ist die Wirkrichtung der Federmittel 4 in diesem Fall senkrecht zu der Längsrichtung L, entlang der sich die Führungsschlüsse 13" für den Gleiter 2 erstrecken und entlang der der Gleiter 2 zum Seillängenausgleich bewegt wird, wie anhand der Figuren 6b und 7b erkennbar ist, in denen die Umlenkeinrichtung aus 5 den Figuren 6a und 6b nach dem maximalen Seillängenausgleich durch Entspannung des Federelementes 40 und entsprechende Verschiebung der schiefen Ebenen 18, 28 sowie des Gleiters 2 dargestellt ist.

* * * * *

Ansprüche

- 5 1. Umlenkeinrichtung für einen Kraftfahrzeugfensterheber mit

 - einem Umlenkelement zur Umlenkung eines Zugmittels des Fensterhebers und
 - Federmitteln zur Straffung des Zugmittels,

10 **dadurch gekennzeichnet,**

15 dass das Umlenkelement (3) beweglich an einer Aufnahme (1) gelagert ist und zur Straffung Zugmittels (S) durch die an der Aufnahme (1) angeordneten Federmittel (4) in eine Mehrzahl unterschiedlicher Positionen an der Aufnahme (1) bringbar ist und dass die Aufnahme (1) zusammen mit dem Umlenkelement (3) und den Federmitteln (4) als vormontierte Baugruppe an dem Fensterheber befestigbar ist.

20 2. Umlenkeinrichtung nach Anspruch 1, **dadurch gekennzeichnet**, dass die Aufnahme (1) ein Gehäuse bildet.

25 3. Umlenkeinrichtung nach Anspruch 1 oder 2, **dadurch gekennzeichnet**, dass an der Aufnahme (1) eine Führung (13, 13', 13'') vorgesehen ist, mittels der das Umlenkelement (3) derart geführt ist, dass es zur Straffung des Zugmittels (S) in verschiedene Positionen bringbar ist.

30 4. Umlenkeinrichtung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass das Umlenkelement (3) verschieblich an der Aufnahme (1) gelagert ist.

5. Umlenkeinrichtung nach Anspruch 5, **dadurch gekennzeichnet**, dass der Gleiter (2) und das Umlenkelement (3) durch separate, miteinander verbundene Teile gebildet werden.

5

6. Umlenkeinrichtung nach Anspruch 6, **dadurch gekennzeichnet**, dass das Umlenkelement (3) mittels eines Stufenbolzens (35), der eine Durchgangsöffnung (25) des Gleiters (2) durchgreift, an diesem befestigt ist.

10

7. Umlenkeinrichtung nach Anspruch 3 und einem der Ansprüche 5 bis 7, **dadurch gekennzeichnet**, dass der Gleiter (2) in der Führung (13, 13', 13'') geführt ist.

15

8. Umlenkeinrichtung nach einem der Ansprüche 5 bis 8, **dadurch gekennzeichnet**, dass die Federmittel (4) durch mindestens ein vorgespanntes Federelement (40, 41, 42) gebildet werden, das an dem Gleiter (2) angreift und die Tendenz hat, diesen derart zu verschieben, dass das Zugmittel (S) gestrafft wird.

20

9. Umlenkeinrichtung nach einem der Ansprüche 5 bis 9, **dadurch gekennzeichnet**, dass an der Aufnahme (1) eine Fixiereinrichtung (14a, 24; 5) vorgesehen ist, um den Gleiter (2) an der Aufnahme (1) zu fixieren, solange die vormontierte Baugruppe (1, 2, 3, 4) noch nicht an einem Fensterheber montiert ist.

25

10. Umlenkeinrichtung nach Anspruch 10, **dadurch gekennzeichnet**, dass die Fixiereinrichtung (14a, 24; 5) für eine formschlüssige Verbindung, z. B. eine Rastverbindung, vorgesehen ist.

30

11. Umlenkeinrichtung nach Anspruch 10 oder 11, **dadurch gekennzeichnet**, dass die Fixiereinrichtung (14a, 24) bei Inbetriebnahme des Fensterhebers unter der Wirkung des Zugmittels (S) automatisch entriegelbar ist.

35

12. Umlenkeinrichtung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass Arretierungsmittel (16, 26; 19, 29) zur Arretierung des Umlenkelementes in verschiedenen Positionen an der Aufnahme (1) vorgesehen sind.

5

13. Umlenkeinrichtung nach Anspruch 12, **dadurch gekennzeichnet**, dass die Arretierungsmittel (16, 26; 19, 29) durch Formschlussmittel, insbesondere durch einander zugeordnete Verzahnungsbereiche, gebildet werden.

10

14. Umlenkeinrichtung nach Anspruch 13, **dadurch gekennzeichnet**, dass ein Verzahnungsbereich (16, 19) an der Aufnahme (1) oder einem dort aufgenommenen Einlageteil (15, 18) vorgesehen ist.

15

15. Umlenkeinrichtung nach Anspruch 5 und 14, **dadurch gekennzeichnet**, dass ein anderer Verzahnungsbereich (26, 29) am Gleiter (2) vorgesehen ist.

20

16. Umlenkeinrichtung nach einem der Ansprüche 14 bis 16, **dadurch gekennzeichnet**, dass die Verzahnungsbereiche (19, 29) an je einer von zwei einander zugeordneten, zueinander beweglichen schiefen Ebenen (18, 28) vorgesehen sind.

25

17. Umlenkeinrichtung nach einem der Ansprüche 13 bis 16, **dadurch gekennzeichnet**, dass die Arretierungsmittel (16, 26; 19, 29) im Betrieb des Fensterhebers durch die Spannung des Zugmittels (S) arretiert sind.

30

18. Umlenkeinrichtung nach Anspruch 17, **dadurch gekennzeichnet**, dass die Arretierungsmittel (16, 26; 19, 29) bei einer Entspannung des Zugmittels entriegelbar sind, so dass das Umlenkelement (3) unter der Wirkung der Federmittel (4) zur Straffung des Zugmittels (S) verlagerbar ist.

35

19. Umlenkeinrichtung nach einem der vorhergehenden Ansprüche, **dadurch gekennzeichnet**, dass sie zur Anwendung bei einem Bahnensterheber mit mehreren parallel zueinander verlaufenden Führungsbahnen (B) für einen Mitnehmer des Fensterhebers eingerichtet und vorgesehen ist.

5

20. Kraftfahrzeugfensterheber mit

- einem Antrieb (A, G);
- einem durch den Antrieb (A, G) antreibbaren Zugmittel (S) und
- einer Umlenkeinrichtung (U) für das Zugmittel (S),

gekennzeichnet durch,

15

eine Umlenkeinrichtung (U) nach einem der Ansprüche 1 bis 20.

21. Fensterheber nach Anspruch 21, **dadurch gekennzeichnet**, dass der Fensterheber als Bahnensterheber mit einer Mehrzahl nebeneinander angeordneter Führungsbahnen (B) für mindestens einen mit dem Zugmittel (S) verbundenen Mitnehmer ausgebildet ist.

20

25

1/7

FIG 1A

FIG 1B

2/7

FIG 2A

FIG 2B

3/7

FIG 3A

FIG 3B

FIG 3C

4/7

FIG 3D

FIG 4

5/7

FIG 4A

FIG 4B

6/7

FIG 5

FIG 6A

FIG 6B

7/7

FIG 7A

FIG 7B

INTERNATIONAL SEARCH REPORT

International Application No

11/DE2004/001188

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 E05F11/48

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 E05F

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the International search (name of data base and, where practical, search terms used)
EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	DE 101 38 586 A (BROSE FAHRZEUGTEILE) 6 March 2003 (2003-03-06) column 4, line 62 - column 5, line 23 column 7, line 18 - line 32; figures	1-4, 7-10, 12-18, 20
X	WO 95/00734 A (BELLO BRUNO TIBERIO ; ROCKWELL BODY & CHASSIS SYST (AU)) 5 January 1995 (1995-01-05) page 7, line 1 - line 31; figures	1, 12, 13, 20
X	US 5 623 785 A (MARIEL JAMES G) 29 April 1997 (1997-04-29) column 4, line 46 - column 5, line 22 column 2, line 39 - line 43; figure 1	1, 3-5, 7-9, 19-21

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

T later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International search report

6 October 2004

18/10/2004

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Witasse-Moreau, C

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

I ..DE2004/001188

Patent document cited in search report	Publication date		Patent family member(s)		Publication date
DE 10138586	A 06-03-2003	DE	10138586 A1		06-03-2003
WO 9500734	A 05-01-1995	AU WO	6990894 A 9500734 A1		17-01-1995 05-01-1995
US 5623785	A 29-04-1997	NONE			

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

/DE2004/001188

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 E05F11/48

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 E05F

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)
EPO-Internal

C. ALS WESENTLICH ANGEGEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	DE 101 38 586 A (BROSE FAHRZEUGTEILE) 6. März 2003 (2003-03-06) Spalte 4, Zeile 62 – Spalte 5, Zeile 23 Spalte 7, Zeile 18 – Zeile 32; Abbildungen	1-4, 7-10, 12-18, 20
X	WO 95/00734 A (BELLO BRUNO TIBERIO ; ROCKWELL BODY & CHASSIS SYST (AU)) 5. Januar 1995 (1995-01-05) Seite 7, Zeile 1 – Zeile 31; Abbildungen	1, 12, 13, 20
X	US 5 623 785 A (MARIEL JAMES G) 29. April 1997 (1997-04-29) Spalte 4, Zeile 46 – Spalte 5, Zeile 22 Spalte 2, Zeile 39 – Zeile 43; Abbildung 1	1, 3-5, 7-9, 19-21

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- *T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- *X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- *Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- *&* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der Internationalen Recherche

Absendedatum des Internationalen Recherchenberichts

6. Oktober 2004

18/10/2004

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax (+31-70) 340-3016

Bevollmächtigter Bediensteter

Witasse-Moreau, C

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen
I .../DE2004/001188

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
DE 10138586	A	06-03-2003	DE	10138586 A1		06-03-2003
WO 9500734	A	05-01-1995	AU WO	6990894 A 9500734 A1		17-01-1995 05-01-1995
US 5623785	A	29-04-1997		KEINE		

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.