Шаблон

Задача №0

Встречается в билетах: №0

Текст задачи

Картинка (скриншот)

Решение

Текст решения с картинками

Встречается в билетах: №1, №21

Определить спектр прямоугольного импульса. Определить ширину по критерию первого нуля спектра. Определить начальное значение спектра.

Решение

Встречается в билетах: №1, 21

Упрощенная модель биполярного транзистора. Схема с обратной связью по току. Определить входное сопротивление и коэффициенты передачи по току и напряжению.

Решение

Текст решения с картинками

Задача №3

Встречается в билетах: №2, №28

Идеальная модель операционного усилителя. Определить зависимость выходного напряжения от входного (использовать экспоненциальную модель диода).

Решение

Задача №4

Встречается в билетах: №2, №20

Определить операторным методом ток индуктивности. Ключ замыкается. Источник ЭДС имеет постоянную величину.

Решение

Текст решения с картинками

Задача №5

Встречается в билетах: №3

Построить передаточную функцию цепи. Определить импульсную и переходную характеристики. Вычислить реакцию на прохождение одиночного прямоугольного импульса.

Решение

Задача №6

Встречается в билетах: №3, №23

Получить зависимость выходного напряжения схемы от входного. ОУ представлен идеальной моделью.

Решение

Текст решения с картинками

Задача №7

Встречается в билетах: №4, №26

Построить передаточную функцию цепи. Определить импульсную и переходную характеристики. Вычислить реакцию на прохождение одиночного прямоугольного импульса.

Решение

Встречается в билетах: №4, №22

Получить зависимость выходного напряжения схемы от входного. ОУ представлен идеальной моделью.

Решение

Текст решения с картинками

Задача №9

Встречается в билетах: №5, №25

Определить резонансные частоты для следующей цепи

Решение

Текст решения с картинками

Задача №10

Встречается в билетах: №5, №24, №43

Определить порог переключения триггера Шмидта. ОУ представлен идеальной моделью.

Решение

Текст решения с картинками

Задача №11

Встречается в билетах: №6, №25

Определить передаточную функцию фильтра. Определить частоту среза и коэффициент передачи в полосе пропускания. Построить АЧХ и ФЧХ.

Решение

Задача №12

Встречается в билетах: №6, №18, №24, №37, №43

Определить результирующую ЭДС, и эквивалентное внутреннее сопротивление схемы.

Решение

Задача №13

Встречается в билетах: №7, №23

Определить спектр треугольного импульса. Определить ширину спектра. Определить начальное значение спектра.

Решение

Ширина не доделана, по первому нулю не получается

Задача №14

Встречается в билетах: №7, №27, №39

Идеальная модель операционного усилителя. Определить зависимость выходного напряжения от входного.

Решение

Текст решения с картинками

$$U_0 = -\frac{1}{RC} \int U_1 dt$$

Встречается в билетах: №8, №26

Идеальная модель операционного усилителя. Определить зависимость выходного напряжения от входных.

Решение

Задача №16

Встречается в билетах: №8, №27, №39

Инвертирующий преобразователь. Описать принцип работы и вывести соотношение для выходного напряжения.

Решение

Текст решения с картинками

Задача №17

Встречается в билетах: №9, №20

Упрощенная модель биполярного транзистора. Каскодное включение. Определить входное сопротивление и коэффициенты передачи по току и напряжению.

Решение

Текст решения с картинками

Задача №18

Встречается в билетах: №9, №32

Определить для последовательного колебательного контура величины индуктивности и емкости если резонансная частота f=15,92 МГц, а характеристическое сопротивление контура ρ =100 Ом

3. Определить для последовательного колебательного контура величины индуктивности и емкости если резонансная частота $f=15,92~\text{M}\Gamma\text{ц}$, а характеристическое сопротивление контура $\rho=100~\text{Om}$

Решение

Задача №19

Встречается в билетах: №10, №29, №41

Понижающий преобразователь. Описать принцип работы и вывести соотношение для выходного напряжения.

Решение

Текст решения с картинками

Задача №20

Встречается в билетах: №10, №29, №41

Определить передаточную функцию фильтра. Определить частоту среза и коэффициент передачи в полосе пропускания. Построить АЧХ и ФЧХ.

Решение

Текст решения с картинками

Встречается в билетах: №11

Повышающий преобразователь. Описать принцип работы и вывести соотношение для выходного напряжения.

Решение

Текст решения с картинками

Встречается в билетах: №11, №30

Определить величину вносимого на первичную сторону сопротивления. Коэффициент трансформации и нагрузка известны. ЭДС синусоидальной формы.

Решение

Задача №23

Встречается в билетах: №12, №31

Идеальная модель операционного усилителя. Определить зависимость выходного напряжения от входного.

Решение

Задача №24

Встречается в билетах: №12, №31

Определить резонансные частоты цепи.

Решение

Пример 4.4. Определить резонансные частоты цепи на рис. 4.4.

Запишем импеданс цепи относительно входных клемм:

$$Z = j\omega L_1 + \frac{j\omega L_2 \frac{1}{j\omega C}}{j\omega L_2 + \frac{1}{j\omega C}} = j\frac{\omega L_1 + \omega L_2 - \omega^3 L_1 L_2 C}{1 - \omega^2 L_2 C}$$

Импеданс полностью мнимый, следовательно значения частот можно получить решив уравнения:

$$\omega L_1 + \omega L_2 - \omega^3 L_1 L_2 C = 0$$
 и $1 - \omega^2 L_2 C = 0$

Из первого: $\omega_1 = \sqrt{\frac{L_1 + L_2}{L_1 L_2 C}}$ - это резонанс последовательного типа (резонанс напряжений).

Из второго: $\omega_2 = \sqrt{\frac{1}{L_2C}}$ - это резонанс параллельного типа (резонанс токов).

Задача №25

Встречается в билетах: №13, №28, №40

Определить первичные параметры линии связи если известно, что на частоте 106 рад/сек постоянная распространения в линии равна γ=0,76e j75° м -1, а характеристическое сопротивление линии Zc=76e -j15°Oм.

2. Определить первичные параметры линии связи если известно, что на частоте 10^6 рад/сек постоянная распространения в линии равна γ =0,76e^{j75°} м⁻¹, а характеристическое сопротивление линии Z_c =76e^{-j15°}Oм.

Решение

Текст решения с картинками

Задача №26

Встречается в билетах: №13, №32

Определить классическим методом напряжение на конденсаторе. Ключ размыкается.

Решение

Текст решения с картинками

Встречается в билетах: №14

Определить тип фильтра по его передаточной функции. Определить коэффициент передачи, добротность и частоту среза.

$$W(s) = \frac{200s}{s^2 + 200s + 10000}$$

Решение

Похожая задача (Семинар Соломатина)

Встречается в билетах: №14, №33

Определить величину согласованной нагрузки.

Решение

Встречается в билетах: №15, №30, №34

Упрощенная модель полупроводникового диода. Трехфазный мостовой выпрямитель (схема Ларионова). Определить среднее напряжение нагрузки.

Решение

$$U_{H \varphi} = \frac{1}{\frac{\pi}{3}} \int_{\frac{\pi}{3}}^{\frac{\pi}{2} + \frac{\pi}{6}} \int_{\frac{\pi}{3}}^{\frac{\pi}{3} + \frac{\pi}{6}} \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \int_{\frac{\pi}{3}}^{\frac{\pi}{3} + \frac{\pi}{6}} \int_{\frac{\pi}{3}}^{\frac{\pi}{3}} \int_{\frac{\pi}{3}}^{\frac{\pi}{3}$$

Встречается в билетах: №15

Для электрической цепи на рисунке определить передаточную функцию, определить временную и переходную характеристики. Определить реакцию на одиночный прямоугольный импульс.

Решение

Задача №31

Встречается в билетах: №16, №35

Определить токи первичной и вторичной обмоток. Трансформатор считать идеальным. Источник имеет синусоидальную форму напряжения. Величины ЭДС и нагрузки известны.

Решение

Задача №32

Встречается в билетах: №16, №35, №40

Упрощенная модель полупроводникового диода. Трехфазный однополупериодный выпрямитель (схема Миткевича). Определить среднее напряжение нагрузки.

Решение

Текст решения с картинками

Пример 7.2. Рассчитать параметры выпрямителя для рис. 7.6г. (схема Миткевича).

Рис. 7.8.

Для выпрямленного напряжения (учтем, что $\omega = 1$ т.к. $T = 2\pi$):

$$U_{\rm HCD} = \frac{1}{T} \int_{0}^{T} U_{m} \sin \omega t \, dt = \frac{3}{2\pi} \int_{\pi/6}^{5\pi/6} U_{m} \sin t \, dt = U_{m} \frac{3\sqrt{3}}{2\pi} = 1.17 U_{rms}$$

Задача №33

Встречается в билетах: №17, №36

Определить операторным методом напряжение на конденсаторе. Ключ размыкается.

Решение

Текст решения с картинками

Задача №34

Встречается в билетах: №17, №36

Определить порог переключения триггера Шмидта. ОУ представлен идеальной моделью.

Решение

Текст решения с картинками

Задача №35

Встречается в билетах: №18, №37

Определить передаточную функцию фильтра. Определить частоту среза, добротность и коэффициент передачи в полосе пропускания. Построить АЧХ и ФЧХ.

Решение

Текст решения с картинками

С семинара Соломатина

$$K = -\frac{Z_2}{Z_1} = -\frac{\frac{R_2}{1 + sC_2R_2}}{R_1 + \frac{1}{s}C_1} = -\frac{R_2}{R_1} \cdot \frac{1}{1 + \frac{C_2R_2}{C_1R_1} + sC_2R_2 + \frac{1}{sC_1R_1}} = -\frac{R_2}{R_1} \cdot \frac{s\frac{1}{C_2R_2}}{s^2 + \frac{1}{C_1R_1C_2R_2} + s(\frac{1}{C_1R_1} + \frac{1}{C_2R_2})}$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \end{array} \end{array} = \begin{array}{c} \frac{R_2}{1+sC_2R_2} \\ R_1 + \frac{1}{sC_1} \end{array} = \begin{array}{c} -\frac{R_2}{R_1} \cdot \frac{1}{1+\frac{C_2R_2}{C_1R_1} + sC_2R_2 + \frac{1}{sC_1R_1}} \\ \end{array} = \begin{array}{c} -\frac{R_2}{R_1} \cdot \frac{s\frac{1}{C_2R_2}}{s^2 + \frac{1}{C_1R_1C_2R_2} + s\frac{1}{C_2R_2} + \frac{1}{C_2R_2}} \\ \end{array} \end{array}$$

С лекций

$$W(s) = -K \frac{\frac{\omega_p}{Q_f} s}{s^2 + \frac{\omega_p}{Q_f} s + \omega_p^2}$$

Q - Добротность, wp- частота среза

Задача №36

Встречается в билетах: №19, №38, №42

Определить ток индуктивности классическим методом. Ключ размыкается.

Решение

Задача №37

Встречается в билетах: №19, №38, №42

Идеальная модель операционного усилителя. Определить зависимость выходного напряжения от входного.

Решение

Текст решения с картинками

По первому правилу Кирхгофа,

$$i_0 = \sum_{n=1}^{k} i_n$$
 $\frac{U_- - U_0}{R_2} = \sum_{n=1}^{k} \frac{U_n - U_-}{R_n}$

используя свойство равенства напряжений на входах ОУ

$$U_- = U_+ = 0$$

$$U_0 = -R \sum_{n=1}^{k} \frac{U_n}{R_n}$$

опечатка в верхней строчке, должно быть ((U-) - (U0))/R

Задача №38

Встречается в билетах: №22

Построить передаточную функцию цепи. Определить импульсную и переходную характеристики. Вычислить реакцию на прохождение одиночного прямоугольного импульса.

Решение

Текст решения с картинками

Встречается в билетах: №33

Для электрической цепи на рисунке определить передаточную функцию, определить временную и переходную характеристики. Определить реакцию на одиночный прямоугольный импульс.

Решение

Текст решения с картинками

Встречается в билетах: №34

Для электрической цепи на рисунке определить передаточную функцию, определить временную и переходную характеристики. Определить реакцию на одиночный прямоугольный импульс.

Решение

См. <u>Задача №5</u>