Remark: This document extends the main paper. The content resumes from App.D, which first described the datasets (App.D.1) and then the hardware platforms (App.D.2). We also provide the "full" paper.^a

a. Available at our repository: https://github.com/hihey54/pragmaticAssessment/blob/main/full_paper.pdf

D.3. Data Availability

Data, especially when labelled, is not cheap to obtain, and thus it is important to consider also cases in which the amount of labelled data is a hard constraint. To ensure fair and consistent comparisons, we always compose the evaluation partition $\mathbb E$ by choosing 20% of the available samples for each class in $\mathbb D$. Then we consider four 'data availability' scenarios that regulate $\mathbb T$:

- Abundant: we use all the remaining samples as training (i.e., \mathbb{T} is 80% of \mathbb{D}).
- *Modest*: we use half of the remaining data (i.e., \mathbb{T} is 40% of \mathbb{D}).
- Scarce: the training data is restricted to only a fifth of the remaining samples (i.e., T is 15% of D)
- Limited: we use only 100 samples per class as training data \mathbb{T} .

Nevertheless, we set a cap on the maximum amount of samples that are considered for any evaluation. Specifically, whenever we choose a dataset, the amount of benign samples that are put in \mathbb{D} cannot exceed 500k, whereas the amount of malicious samples for each class cannot exceed 166k (i.e., one third of the benign samples). Indeed, some datasets (e.g., CTU13) contain millions of samples which are realistically difficult to manage (labelling issues are common in NID [33]). Moreover, we do not want the malicious samples to be more present than benign samples because this is not realistic: in reality, attacks are a "needle in a haystack" [114]. We remark, however, that we perform hundreds of trials—each drawing a different amount of samples from a source dataset to compose $\mathbb D$ (and hence \mathbb{T} and \mathbb{E}). Hence, we can reasonably assume that all samples in each dataset are analyzed by some ML model (either for training or testing such a model).

D.4. Feature sets

NetFlows exporters can generate diverse features. In some cases, however, some features cannot be computed because the source PCAP data does not contain the necessary pieces of information (see [52]). Hence, we consider two cases of feature sets for each source dataset:

- *Complete*: we use *all* the features provided with each dataset (and, hence, by the respective NetFlow exporter). To avoid classification bias [8], we omit the plain IP address and network ports (we replace the latter with their IANA categories, as done in [175]).
- Essential: we use a subset of about half of the original features, which include the essential NetFlow fields (e.g., duration, packets, bytes [51]).

Such distinction is also used to shape the different operational scenarios (described in ${\tt App.E}$).

D.5. Design of the ML Pipelines

We always focus on ML components that operate as a *detection* engine within the NIDS. We consider a wide array of such detectors, each with its own pipeline, which we now describe. A schematic is given in Fig. 12.

- Binary Detector (BD, Fig.12a). It consists of a single binary classifier: a sample is benign or malicious.
- Multiclass Detector (MD, Fig.12b). It consists of a single 1+M-class classifier which infers whether a sample is benign, or belongs to one among M classes.
- Binary+Multiclass Detector (BMD, Fig.10). This pipeline envisions a cascade of two ML models: the first is a binary classifier (i.e., the BD), and the second is an M-class classifier which must determine the family of the malicious samples provided as output by the first classifier.
- Ensemble Detector (Fig.12c). This pipeline consists of an ensemble of M binary classifiers, each specialized on a single type of attack—which is common in NID (e.g., [60]). All such classifiers independently analyze each sample, and the output is produced by a final decision component. In particular, we consider 3 variants—each producing a binary output:
 - Logical Or (ED-o), where a sample is considered malicious if at least one classifier says so.
 - Majority Voting (ED-v), where a sample is considered malicious if at least M/2 classifiers say so.
 - Stacked (ED-s), where an additional ML model analyzes the predictions of all the M classifiers.

We recall (cf. App.A.4) that some past works propose ensemble detectors where each classifier receives *only* the malicious samples that it can recognize (e.g., [175]), and the results are taken by averaging the performance of each classifier. Despite the poor pragmatic value, we find instructive to consider also such 'redundant' design, which we denote as ED (cf. Fig.11).

With respect to the NIDS architecture in Fig.2, all our detectors can be placed in the exemplary "ML pipeline", where the preprocessing is done by the NetFlow tool.

D.6. Selected ML Algorithms

We create 4 variants of each detector, each using a specific ML algorithm. Of course, there exist dozens of ML algorithms, and benchmarking all of them is unfeasible and also outside the scope of our paper³⁸. Our focus is hence on a select subset of ML algorithms that have found use for ML-NIDS based on NetFlows (and that are known to be 'easy to explain'). In particular, we use:

- *Decision Tree* (DT). One of the most popular classification algorithms for NID (e.g., [31], [32], [196]).
- Random Forest (RF). A well-known (e.g., [28]) ensemble method, where each estimator is a single DT.
- Logistic Regression (LR). Among the most common ML algorithms (also for NID [197]), it relies on different decision mechanisms than tree-based algorithms (i.e., DT and RF).
- *Histogram Gradient-boosting* (HGB). This algorithm leverages a novel boosting technique [198] that

38. In our source-code, changing the ML algorithm is a one-liner.

Fig. 12: Design of the ML pipelines entailed in our considered ML-NIDS.

makes training significantly faster with respect to other gradient-based algorithms³⁹.

From a resource utilization viewpoint, the learning phase for RF, LR and HGB use all cores available on a specific platform; whereas DT only uses a single core. On the other hand, the inference phase always uses a single core.

To the best of our knowledge, we are the first to evaluate detectors using HGB in our testbed, which is why we focus on this ML algorithm in our main paper.

Appendix E. Experiments: Operational Scenarios

For each dataset, all the considered ML-NIDS are assessed in three different scenarios, which include both "closed" and "open" world settings. Specifically:

- Known Attacks (Baseline). This is the optimistic "closed world" setting: we use all the available attack classes for both $\mathbb T$ and $\mathbb E$.
- Unknown Attacks. To assess the performance against unknown attacks, we use the exclusion technique presented in §4.2.1: we re-train each detector on *all but one* of the available attack classes in \mathbb{T} , and then test it on the leftout class (by using 20% of its samples in \mathbb{E}). For simplicity, we do such retraining by considering the 'complete' feature set.
- Adversarial Attacks. We carry out adversarial *evasion* attacks based on a well-known prior work [141], which envisions attacks that are both realistically feasible (i.e., the attacker treats the ML-NIDS as a black-box and cannot observe the output because it is accessible only from security administrators [72]) and physically realizable (by extending the communications with junk bytes of data). To comply with the settings in [141], we consider the Essential feature set. More details are in App. E.2.

We re-assess every scenario through many trials, each involving a different $\mathbb T$ and $\mathbb E$. Let us explain.

E.1. Dependencies and Repetitions

All the three scenarios are assessed by assuming both 'static' and 'temporal' data dependencies (§4.2.2).

• Static dependency. Under this assumption, we always compose \mathbb{T} and \mathbb{E} by random sampling from \mathbb{D} . To ensure statistically significant results that account for randomness, we perform a massive amount of trials for each setting. Specifically, we repeat the

39. We also assessed neural nets, but HGB always outmatched them—which is why we chose HGB as exemplary gradient-based algorithms.

- training/testing: 100 times for the *Abundant*, *Moderate*, and *Scarce* labelling budgets; and 1000 times for the *Limited* labelling budget.
- Temporal dependency. To take into account the potential temporal dependency between samples, we repeat the same 3 operational scenarios, but by changing the way we compose T and E. Specifically—instead of randomly sampling from D—we compose E by selecting the *most recent* samples, whereas we compose T by selecting the *first appearing* samples. Of course, the composition of T is done according to the considered data availability setting—hence allowing a fair comparison with the 'static' scenarios. As explained in §4.2.2, the temporal scenarios are assessed only once per dataset (because they assume a deterministic 'appearance' of samples).

As an example, consider the *Moderate* data availability setting. For the *static* assumption, we first create $\mathbb E$ by randomly choosing 20% of the samples for each class in a given $\mathbb D$, and then create $\mathbb T$ by choosing 40% of the remaining samples per class. For the *temporal* assumption, we select the last 20% samples for each class for $\mathbb E$, and the first 40% samples for $\mathbb T$ —resulting in a time-gap of 40% samples between $\mathbb T$ and $\mathbb E$.

E.2. Adaptive "adversarial" Attacks

We describe our adaptive attacks, which resemble the well-known paper by Apruzzese and Colajanni [141].

Threat Model. The *defender* is an organization that adopts a ML-NIDS to detect malicious activities occurring in their network—a deployment scenario similar to the one depicted in Fig. 1. In particular, the NIDS includes an ML component that analyzes NetFlows, outputting whether a NetFlow is benign or malicious according to the data seen during its training stage. The attacker is assumed to have already infiltrated the network (by, e.g., exploiting some zero day vulnerability, or by successfully 'phishing' some employees). As such, the attacker is *capable* of controlling some hosts, e.g., by manipulating the network communications. The attacker knows that the organization adopts a ML-NIDS, but is agnostic of the exact functionalities of such ML-NIDS; moreover, the attacker cannot observe the output of the ML-NIDS because the attacker has no access to the admin console of the ML-NIDS. The attacker wants to maintain access to the network: hence, the attacker is aware that they must operate stealthily and continuously change their activities to avoid being detected, especially if the ML-NIDS is retrained with data pertaining to more recent attacks. The strategy adopted by attacker is to modify the network communications (by, e.g., adding junk

payloads) of the controlled machines, which results in 'adversarial perturbations' that will affect the data analyzed by the ML-NIDS. Such an erratic behavior can confuse the ML-NIDS, potentially bypassing its detection. Such a threat model denotes attacks that are *feasible* to stage [72], and hence likely to occur in reality.

Implementation. We create the adversarial perturbations by manipulating the NetFlows samples. Such perturbations can be considered to be applied in the 'feature space' [103]. To ensure that the resulting adversarial samples are physically realizable [102], we follow strict rules.

- We only perturb NetFlows whose source host is within the internal network. Indeed, our threat model assumes that the attacker has access and can control some machines within the target network.
- We only perturb UDP NetFlows. This is because other protocols may not allow the introduction of perturbations at the network-level.⁴⁰
- The perturbations increase (by tiny amounts) the duration or the exchanged bytes—which are both common NetFlow features (and 'controllable' by our attacker). We do not decrease such features because it may result in corrupted packets. Moreover, we ensure that the resulting 'adversarial NetFlow' does not violate physical constraints (e.g., exceeding the MTU, or the maximum NetFlow duration).
- After applying the perturbation, we re-create the sample by taking into account inter-features dependencies (e.g., we recalculate the 'bytes per second').

Finally, to replicate the scenario considered by Apruzzese and Colajanni [141], we only assess such attacks against the detectors that use the Essential feature set. This choice is also motivated by the fact that it is impossible to predict the effects of our perturbations to some features of the Complete feature set. As such, we consider the Essential setting to ensure that all of our adversarial samples are physically realizable. Nonetheless, a recent work [104] also suggests that our perturbations can be considered as a "worst-case" scenario, wherein an attacker has compromised the NetFlow exporter and is able to manipulate the preprocessing operations of the ML-NIDS.

E.3. Performance Evaluation

We consider several performance metrics. Specifically:

- False Positive Rate (fpr), because any security system must exhibit low rates of false alarms.
- True Positive Rate (tpr), because our primary focus is on intrusion detection (a positive is a malicious sample, irrespective of its class). Furthermore, our adversarial attacks focus on evasion, and hence will affect the tpr.
- Accuracy (Acc). Due to the base rate fallacy [8], we only use Acc to assess the multi-classification capabilities for the malicious classes (i.e., only for MD and BMD).
- *Training time*, which is the time (in seconds) to train a given ML model on T.
- Inference time, which is the time that a (trained) ML model needs to analyze all samples in \mathbb{E} .

40. For instance, some protocols (e.g., ICMP) have payload restrictions, whereas others perform additional communications (e.g., TCP's three-way handshake) that could result in unreliable adversarial samples.

For each dataset and data availability setting, we choose an ML algorithm (i.e., either RF, DT, LR, HGB). Then, we proceed by adopting the following workflow.

E.3.1. Training. First, we develop all our detectors, i.e.: BD, MD, BMD, as well as all the 'specialized' detectors of ED (i.e., ED-v, ED-o, ED-s). All such detectors come in three variants: one using the Complete feature set; one using the Essential feature set; and one using the Complete feature set but trained without considering a specific malicious class—i.e., the unknown attacks (The latter yields M-1 sub-variants of each detector.) All such detectors are trained on the same T (with the appropriate changes of features or classes), and we measure their training time.

E.3.2. Inference. Then, we test each detector on \mathbb{E} by computing the fpr and tpr while measuring the time required to analyze \mathbb{E} . For MD, we consider a sample to be detected if it is classified as any attack class. Moreover, because the BMD uses BD as first detection layer, it follows that the fpr and tpr of BMD are always the same as BD. Indeed, to measure the benefit of BMD we measure its Acc on the malicious samples predicted by BD; to allow a fair comparison, we also measure Acc for MD—but only on the malicious samples, otherwise the results would be skewed in favor of the benign samples which are analyzed by MD but not by the multi-class classifier of BMD.

E.3.3. Adversarial Robustness. Next, we craft the adversarial samples (as explained in App. E.2). We isolate from \mathbb{E} the NetFlows that meet our criteria (must be UDP and start from an internal host, and of course be malicious), and re-compute the tpr of all our detectors on such 'clean' samples (which should be different from the initial tpr computed on the whole \mathbb{E}). Then, we apply the perturbations and analyze the resulting adversarial samples with all our detectors: if such 'adversarial' tpr is lower than the one on the 'clean' malicious samples, then the attack is successful.

E.3.4. Reiterate and finalize. All the procedures above are then repeated 100 times for the Abundant, Moderate and Scarce data availability settings, and 1000 times for the Limited data availability setting. Finally, we repeat all such experiments one last time by considering the temporal dependency (and hence choosing \mathbb{T} and \mathbb{E} accordingly).

Appendix F. Experiments: Benchmark Results

All our results are provided in a series of tables, each reporting the results achieved by all combinations of ML pipelines and ML algorithms for the increasing settings of data availability on a given dataset. The values reported in each table vary depending on the purpose of each table.

F.1. Detection Performance (binary)

We report our results for *binary classification* by distinguishing the "closed" and "open" world settings.

• "Closed World": CTU13 in Tables 7, GTCS in Tables 9, NB15 in Tables 11, UF-NB15 in Tables 13,

cicids 7 in Tables 15. Each of these tables reports the the tpr and fpr achieved by all our considered ML models, where we also differentiate the Essential from the Complete feature set. In particular, every table contains two subtables: the former (e.g., Table 7a) reports the results in the absence of temporal dependencies, and hence the values denote the average metric (and standard deviation) across the many trials we performed. Whereas the latter (e.g., Table 7b) reports the results of the single trial in which the samples are assumed to have temporal dependencies.

"Open World": CTU13 in Tables 8, GTCS in Tables 10, NB15 in Tables 12, UF-NB15 in Tables 14, CICIDS17 in Tables 16. Each of these tables considers the twofold perspective of 'unknown' attacks and 'adversarial' attacks. For the former, which assume detectors using the Complete feature set, we report the tpr (on the 'unknown' samples), but also the fpr (indeed, by excluding one class from T, the performance on the benign samples can also change). For the latter, which assume the Essential feature set, we report the tpr on the 'original' NetFlows (which can vary from the one in the 'open world' scenario because such samples are a subset of \mathbb{E}) and on the 'adversarial' NetFlows. Each of these tables contains two subtables, one for the 'static' (e.g., Table 8a) and one for the 'temporal' (e.g., Table 8b) dependency case.

We do not report the results of BMD in any of these tables because they are identical to BD: if a malicious sample 'evades' the BD, then it will logically also evade BMD (whereas benign samples are not analyzed by the multi-class classifier of BMD).

During our experiments, we observed that (especially when the size of \mathbb{T} is huge) detectors based on LR tend to classify every sample as benign: in these cases we report a 0 for both tpr and fpr (the detector is clearly unusable).

F.2. Attack Identification (multiclass)

Next, we focus on the classification performance on the *malicious* samples. Such performance is measured via the *Acc*, which is computed for the MD and BMD detectors and only by taking into account the malicious samples (for the case of MD, because these detectors also analyze benign samples). These values are computed only for the "closed world" settings, because any 'unknown' attack is—by definition—misclassified (and the same can be said for the adversarial attacks). All such results are reported in five tables (one per dataset): CTU13 in Table 17, GTCS in Table 18, NB15 in Table 20, UF-NB15 in Table 20, CICIDS17 in Table 21. All such tables include the *Acc* for both the Essential and Complete feature set, in both the static and temporal dependency scenarios.

F.3. Runtime Performance (high-end platform)

We report the runtime of all our ML models on the *high-end* platform. The runtime for the temporal and static dependency scenarios is always the same.

• *Training*. We provide five tables, one per dataset: CTU13 in Table 22, GTCS in Table 23, NB15 in Table 24, UF-NB15 in Table 25, CICIDS17 in Table 26. In these tables we report both the actual time (in seconds)

- and the standard deviation across all our trials. The training time of ED is the sum of the training times for all the classifiers that compose the ensemble—which is the same for both ED-v and ED-o. The training time of ED-s is always superior because it also requires training the stacked classifier.
- Testing. We provide five tables, one per dataset: CTU13 in Table 27, GTCS in Table 28, NB15 in Table 29, UF-NB15 in Table 30, CICIDS17 in Table 31. In these tables we report only the actual time (in seconds), because variations were almost imperceptible. The testing time of ED is the sum of the testing times for all the classifiers that compose the ensemble—which is the same for both ED-v and ED-o. The testing time of ED-s is not necessarily superior than those of ED because the stacked component can take a decision immediately.

In all cases, the runtime for BMD is (almost) equivalent to the sum of BD and MD.

F.4. Runtime Performance (other platforms)

We report the computational runtime of all our ML models as measured on the *other hardware* platforms. We do this on a single dataset, GTCS, because it was the only one that could be processed by (most) of our machines. Indeed, *the Raspberry Pi4 was not able to run any* of our experiments (aside from those using the Limited data availability), due to a lack of available RAM memory. Such phenomenon motivated us to create a dedicated Virtual Machine (the *low-end* platform) having a computational power similar to a Raspberry Pi4, but with significantly more RAM—enabling the development of ML models trained on GTCS.

We report all such results in Tables 32, which contains four subtables—each dedicated to a specific platform. These experiments are repeated 10 times and we report the average training and testing time.

TABLE 7: CTU13 binary classification results (fpr and tpr) against 'known' attacks seen during the training stage (closed world).

Avail	able Data	1	Limited (100 per	class) [N=1000]]	I	Scarce (15%	of D) [N=100]		I	Moderate (40%	of D) [N=100]			Abundant (80%	of D) [N=100]	
	atures	Com	plete	Esse	ntial	Com	plete	Esse		Com	plete	Esse	ntial	Com	plete	Esse	
Alg.	Design	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr
B	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.090 {\pm} 0.016 \\ 0.081 {\pm} 0.017 \\ 0.013 {\pm} 0.009 \\ 0.087 {\pm} 0.016 \\ 0.094 {\pm} 0.017 \\ 0.024 {\pm} 0.007 \end{array}$	$\begin{array}{c} 0.998 {\scriptstyle \pm 0.002} \\ 0.996 {\scriptstyle \pm 0.003} \\ 0.693 {\scriptstyle \pm 0.156} \\ 0.997 {\scriptstyle \pm 0.003} \\ 0.997 {\scriptstyle \pm 0.003} \\ 0.986 {\scriptstyle \pm 0.007} \end{array}$	$\begin{array}{c} 0.253{\scriptstyle \pm 0.027} \\ 0.212{\scriptstyle \pm 0.027} \\ 0.039{\scriptstyle \pm 0.016} \\ 0.218{\scriptstyle \pm 0.027} \\ 0.220{\scriptstyle \pm 0.027} \\ 0.060{\scriptstyle \pm 0.011} \end{array}$	$\begin{array}{c} 0.987 {\scriptstyle \pm 0.005} \\ 0.972 {\scriptstyle \pm 0.008} \\ 0.470 {\scriptstyle \pm 0.100} \\ 0.975 {\scriptstyle \pm 0.008} \\ 0.975 {\scriptstyle \pm 0.008} \\ 0.942 {\scriptstyle \pm 0.014} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.999 {\scriptstyle \pm 0.000} \\ 0.998 {\scriptstyle \pm 0.000} \\ 0.348 {\scriptstyle \pm 0.008} \\ 0.998 {\scriptstyle \pm 0.000} \\ 0.998 {\scriptstyle \pm 0.000} \\ 0.997 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.016{\scriptstyle \pm 0.000} \\ 0.015{\scriptstyle \pm 0.000} \\ 0.001{\scriptstyle \pm 0.000} \\ 0.016{\scriptstyle \pm 0.000} \\ 0.016{\scriptstyle \pm 0.000} \\ 0.003{\scriptstyle \pm 0.000} \end{array}$		$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.999 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \\ 0.359 {\pm} 0.007 \\ 0.999 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \\ 0.998 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.014{\scriptstyle \pm 0.000} \\ 0.014{\scriptstyle \pm 0.000} \\ 0.001{\scriptstyle \pm 0.000} \\ 0.014{\scriptstyle \pm 0.000} \\ 0.014{\scriptstyle \pm 0.000} \\ 0.003{\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.984{\scriptstyle \pm 0.000} \\ 0.983{\scriptstyle \pm 0.001} \\ 0.302{\scriptstyle \pm 0.004} \\ 0.983{\scriptstyle \pm 0.001} \\ 0.983{\scriptstyle \pm 0.001} \\ 0.976{\scriptstyle \pm 0.001} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$0.999_{\pm 0.000}$ $0.363_{\pm 0.007}$ $0.999_{\pm 0.000}$ $0.999_{\pm 0.000}$	0.001±0.000 0.013±0.000	$\begin{array}{c} 0.985 \pm 0.000 \\ 0.984 \pm 0.000 \\ 0.303 \pm 0.004 \\ 0.984 \pm 0.000 \\ 0.984 \pm 0.000 \\ 0.979 \pm 0.001 \end{array}$
TQ	BD MD ED-v ED-s ED-o ED	$0.026_{\pm 0.016}$ $0.104_{\pm 0.026}$ $0.137_{\pm 0.029}$	$\begin{array}{c} 0.991{\scriptstyle \pm 0.005} \\ 0.994{\scriptstyle \pm 0.004} \\ 0.820{\scriptstyle \pm 0.154} \\ 0.997{\scriptstyle \pm 0.003} \\ 0.998{\scriptstyle \pm 0.002} \\ 0.980{\scriptstyle \pm 0.009} \end{array}$	$\begin{array}{c} 0.243_{\pm 0.031} \\ 0.256_{\pm 0.035} \\ 0.051_{\pm 0.018} \\ 0.308_{\pm 0.037} \\ 0.325_{\pm 0.036} \\ 0.088_{\pm 0.013} \end{array}$	$\begin{array}{c} 0.963{\scriptstyle \pm 0.010} \\ 0.966{\scriptstyle \pm 0.011} \\ 0.506{\scriptstyle \pm 0.128} \\ 0.979{\scriptstyle \pm 0.008} \\ 0.980{\scriptstyle \pm 0.008} \\ 0.933{\scriptstyle \pm 0.015} \end{array}$	$\begin{array}{c} 0.002 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.998 {\pm 0.000} \\ 0.998 {\pm 0.000} \\ 0.501 {\pm 0.101} \\ 0.998 {\pm 0.000} \\ 0.998 {\pm 0.000} \\ 0.996 {\pm 0.000} \end{array}$	0.001±0.000 0.025±0.001 0.025±0.001	$\begin{array}{c} 0.972_{\pm 0.001} \\ 0.972_{\pm 0.001} \\ 0.310_{\pm 0.005} \\ 0.975_{\pm 0.001} \\ 0.975_{\pm 0.001} \\ 0.963_{\pm 0.001} \end{array}$	$\begin{array}{c} 0.002 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.998 {\pm 0.000} \\ 0.998 {\pm 0.000} \\ 0.544 {\pm 0.127} \\ 0.999 {\pm 0.000} \\ 0.999 {\pm 0.000} \\ 0.997 {\pm 0.000} \end{array}$	$\begin{array}{c} 0.019 {\scriptstyle \pm 0.001} \\ 0.019 {\scriptstyle \pm 0.001} \\ 0.001 {\scriptstyle \pm 0.000} \\ 0.021 {\scriptstyle \pm 0.001} \\ 0.021 {\scriptstyle \pm 0.001} \\ 0.004 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.976 \scriptstyle{\pm 0.001} \\ 0.976 \scriptstyle{\pm 0.001} \\ 0.312 \scriptstyle{\pm 0.006} \\ 0.978 \scriptstyle{\pm 0.001} \\ 0.978 \scriptstyle{\pm 0.001} \\ 0.969 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.001_{\pm 0.000} \\ 0.002_{\pm 0.000} \\ 0.000_{\pm 0.000} \\ 0.002_{\pm 0.000} \\ 0.002_{\pm 0.000} \\ 0.000_{\pm 0.000} \end{array}$	0.998 ± 0.000 0.508 ± 0.101 0.999 ± 0.000 0.999 ± 0.000	$\begin{array}{c} 0.017_{\pm 0.000} \\ 0.017_{\pm 0.000} \\ 0.001_{\pm 0.000} \\ 0.018_{\pm 0.000} \\ 0.018_{\pm 0.000} \\ 0.004_{\pm 0.000} \end{array}$	0.313 ± 0.005 0.981 ± 0.001 0.981 ± 0.001
LR	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.524{\scriptstyle \pm 0.061} \\ 0.437{\scriptstyle \pm 0.049} \\ 0.132{\scriptstyle \pm 0.040} \\ 0.364{\scriptstyle \pm 0.068} \\ 0.416{\scriptstyle \pm 0.043} \\ 0.148{\scriptstyle \pm 0.020} \end{array}$	$\begin{array}{c} 0.954{\scriptstyle \pm 0.021} \\ 0.853{\scriptstyle \pm 0.073} \\ 0.759{\scriptstyle \pm 0.107} \\ 0.928{\scriptstyle \pm 0.034} \\ 0.934{\scriptstyle \pm 0.035} \\ 0.883{\scriptstyle \pm 0.046} \end{array}$	$\begin{array}{c} 0.909 {\scriptstyle \pm 0.100} \\ 0.795 {\scriptstyle \pm 0.255} \\ 0.130 {\scriptstyle \pm 0.072} \\ 0.509 {\scriptstyle \pm 0.334} \\ 0.615 {\scriptstyle \pm 0.228} \\ 0.190 {\scriptstyle \pm 0.070} \end{array}$	$\begin{array}{c} 0.992_{\pm 0.046} \\ 0.900_{\pm 0.158} \\ 0.660_{\pm 0.091} \\ 0.749_{\pm 0.422} \\ 0.922_{\pm 0.136} \\ 0.836_{\pm 0.123} \end{array}$	$\begin{array}{c} 0.007 \scriptstyle{\pm 0.011} \\ 0.001 \scriptstyle{\pm 0.001} \\ 0.032 \scriptstyle{\pm 0.014} \\ 0.034 \scriptstyle{\pm 0.014} \end{array}$	$\begin{array}{c} 0.785{\scriptstyle \pm 0.091} \\ 0.066{\scriptstyle \pm 0.136} \\ 0.005{\scriptstyle \pm 0.017} \\ 0.606{\scriptstyle \pm 0.057} \\ 0.606{\scriptstyle \pm 0.057} \\ 0.444{\scriptstyle \pm 0.073} \end{array}$	0.027±0.020 0.037±0.020	$\begin{array}{c} 0.546_{\pm 0.169} \\ 0.510_{\pm 0.081} \\ 0.148_{\pm 0.182} \\ 0.479_{\pm 0.097} \\ 0.486_{\pm 0.098} \\ 0.366_{\pm 0.060} \end{array}$	$\begin{array}{c} 0.194{\scriptstyle \pm 0.031} \\ 0.003{\scriptstyle \pm 0.005} \\ 0.000{\scriptstyle \pm 0.001} \\ 0.027{\scriptstyle \pm 0.009} \\ 0.029{\scriptstyle \pm 0.009} \\ 0.006{\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.797_{\pm 0.090} \\ 0.024_{\pm 0.060} \\ 0.004_{\pm 0.013} \\ 0.584_{\pm 0.047} \\ 0.586_{\pm 0.047} \\ 0.413_{\pm 0.045} \end{array}$	$\begin{array}{c} 0.149_{\pm 0.184} \\ 0.069_{\pm 0.011} \\ 0.002_{\pm 0.004} \\ 0.027_{\pm 0.020} \\ 0.036_{\pm 0.021} \\ 0.008_{\pm 0.005} \end{array}$	$0.517_{\pm 0.074}$ $0.159_{\pm 0.179}$ $0.474_{\pm 0.108}$ $0.479_{\pm 0.107}$	$\begin{array}{c} 0.187{\scriptstyle \pm 0.035} \\ 0.003{\scriptstyle \pm 0.003} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.029{\scriptstyle \pm 0.011} \\ 0.030{\scriptstyle \pm 0.011} \\ 0.006{\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.020 \scriptstyle{\pm 0.035} \\ 0.001 \scriptstyle{\pm 0.006} \\ 0.575 \scriptstyle{\pm 0.050} \\ 0.577 \scriptstyle{\pm 0.050} \end{array}$		0.503±0.086 0.116±0.156 0.477±0.103 0.484±0.108
нсв	BD MD ED-v ED-s ED-o ED	0.088±0.018 0.075±0.017 0.018±0.013 0.079±0.018 0.088±0.019 0.026±0.009	$\begin{array}{c} 0.999 {\scriptstyle \pm 0.002} \\ 0.998 {\scriptstyle \pm 0.002} \\ 0.775 {\scriptstyle \pm 0.149} \\ 0.998 {\scriptstyle \pm 0.003} \\ 0.998 {\scriptstyle \pm 0.002} \\ 0.991 {\scriptstyle \pm 0.006} \end{array}$	0.253±0.025 0.213±0.025 0.056±0.021 0.238±0.027 0.243±0.028 0.073±0.013	$\begin{array}{c} 0.973 \pm 0.008 \\ 0.505 \pm 0.098 \\ 0.977 \pm 0.008 \\ 0.978 \pm 0.008 \\ 0.944 \pm 0.014 \end{array}$	$\begin{array}{c} 0.002 {\pm} 0.000 \\ 0.005 {\pm} 0.001 \\ 0.000 {\pm} 0.000 \\ 0.002 {\pm} 0.001 \\ 0.002 {\pm} 0.001 \\ 0.001 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.999 {\pm} 0.000 \\ 0.997 {\pm} 0.001 \\ 0.466 {\pm} 0.038 \\ 0.999 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \\ 0.997 {\pm} 0.000 \end{array}$	0.031±0.002 0.001±0.000 0.025±0.001 0.025±0.001	$\begin{array}{c} 0.972_{\pm 0.001} \\ 0.960_{\pm 0.006} \\ 0.317_{\pm 0.004} \\ 0.974_{\pm 0.001} \\ 0.974_{\pm 0.001} \\ 0.965_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.002 \pm 0.000 \\ 0.004 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.001 \pm 0.000 \\ \end{array}$	$\begin{array}{c} 0.999 {\pm 0.000} \\ 0.998 {\pm 0.000} \\ 0.472 {\pm 0.028} \\ 0.999 {\pm 0.000} \\ 0.999 {\pm 0.000} \\ 0.998 {\pm 0.000} \end{array}$	$\begin{array}{c} 0.030 \pm 0.001 \\ 0.001 \pm 0.000 \\ 0.025 \pm 0.001 \\ 0.025 \pm 0.001 \\ 0.005 \pm 0.000 \end{array}$	$\begin{array}{c} 0.972{\scriptstyle \pm 0.001} \\ 0.958{\scriptstyle \pm 0.006} \\ 0.321{\scriptstyle \pm 0.005} \\ 0.974{\scriptstyle \pm 0.002} \\ 0.974{\scriptstyle \pm 0.002} \\ 0.965{\scriptstyle \pm 0.002} \end{array}$	$0.000_{\pm 0.000}$ $0.002_{\pm 0.000}$ $0.002_{\pm 0.000}$	$\begin{array}{c} 0.998 \pm 0.001 \\ 0.463 \pm 0.028 \\ 0.999 \pm 0.000 \\ 0.999 \pm 0.000 \\ 0.998 \pm 0.000 \end{array}$	$\begin{array}{c} 0.001 \scriptstyle{\pm 0.000} \\ 0.025 \scriptstyle{\pm 0.001} \\ 0.025 \scriptstyle{\pm 0.001} \\ 0.005 \scriptstyle{\pm 0.000} \end{array}$	0.956 ± 0.005 0.322 ± 0.004 0.974 ± 0.002 0.974 ± 0.002

(a) Static Dependency: Results by assuming the absence of temporal dependencies among samples (\mathbb{T} and \mathbb{E} are randomly sampled from \mathbb{D}).

Availa	able Data	Limi	ted (100 p	er class) [N=1]	Sca	arce (15%	of D) [N:	=1]	Mod	lerate (409	% of D) [1	N=1]	Abu	ndant (80	% of D) [1	N=1]
Fe	atures	Com	plete	Esse	ntial	Com	plete	Esse	ntial	Com	plete	Esse	ntial	Com	plete	Esse	ential
Alg.	Design	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr
RF	BD MD ED-v ED-s ED-o ED	0.107 0.086 0.010 0.089 0.090 0.024	0.995 0.995 0.902 0.994 0.995 0.990	0.248 0.205 0.046 0.211 0.212 0.061	0.986 0.972 0.811 0.978 0.978 0.948	0.001 0.001 0.000 0.001 0.001 0.000	0.999 0.999 0.351 0.999 0.999	0.016 0.015 0.001 0.015 0.015 0.015 0.003	0.980 0.979 0.303 0.979 0.979 0.971	0.001 0.001 0.000 0.001 0.001 0.000	0.999 0.999 0.361 0.999 0.999 0.998	0.014 0.013 0.001 0.013 0.013 0.003	0.983 0.982 0.305 0.982 0.982 0.976	0.001 0.001 0.000 0.001 0.001 0.000	0.999 0.999 0.366 0.999 0.999	0.013 0.013 0.001 0.013 0.013 0.003	0.986 0.985 0.308 0.985 0.985 0.979
DT	BD MD ED-v ED-s ED-o ED	0.131 0.135 0.019 0.187 0.220 0.057	0.982 0.995 0.939 0.997 0.997	0.304 0.272 0.075 0.339 0.341 0.099	0.976 0.977 0.860 0.979 0.979	0.002 0.002 0.000 0.003 0.003 0.001	0.998 0.997 0.768 0.998 0.998 0.995	0.022 0.022 0.001 0.025 0.025 0.005	0.971 0.973 0.319 0.975 0.975 0.962	0.002 0.002 0.000 0.002 0.002 0.000	0.998 0.998 0.498 0.999 0.999	0.020 0.020 0.001 0.021 0.021 0.004	0.975 0.977 0.316 0.979 0.979 0.968	0.001 0.002 0.000 0.002 0.002 0.000	0.999 0.998 0.484 0.999 0.999	0.017 0.018 0.001 0.018 0.018 0.004	0.979 0.979 0.306 0.981 0.981 0.973
LR	BD MD ED-v ED-s ED-o ED	0.576 0.419 0.141 0.448 0.465 0.148	0.983 0.888 0.875 0.950 0.951 0.923	0.989 0.931 0.105 0.564 0.606 0.168	0.991 0.981 0.600 0.977 0.983 0.930	0.044 0.000 0.000 0.021 0.023 0.004	0.105 0.001 0.000 0.549 0.550 0.369	0.108 0.073 0.002 0.022 0.031 0.008	0.663 0.554 0.296 0.561 0.568 0.383	0.224 0.000 0.001 0.021 0.022 0.004	0.842 0.001 0.000 0.554 0.554 0.370	0.032 0.045 0.000 0.068 0.068 0.012	0.359 0.360 0.000 0.568 0.568 0.388	0.208 0.000 0.000 0.023 0.023 0.006	0.845 0.001 0.000 0.552 0.552 0.421	0.154 0.067 0.000 0.032 0.035 0.007	0.645 0.554 0.000 0.414 0.414 0.316
HGB	BD MD ED-v ED-s ED-o ED	0.082 0.073 0.025 0.097 0.111 0.033	1.000 0.999 0.938 0.999 1.000 0.962	0.251 0.202 0.065 0.271 0.277 0.087	0.983 0.966 0.843 0.976 0.976 0.938	0.003 0.005 0.000 0.002 0.002 0.002	0.998 0.998 0.492 0.999 0.999	0.027 0.036 0.001 0.025 0.025 0.005	0.971 0.960 0.316 0.974 0.974 0.966	0.001 0.005 0.000 0.002 0.002 0.002	0.999 0.999 0.440 0.999 0.999 0.998	0.026 0.030 0.001 0.026 0.026 0.005	0.972 0.957 0.317 0.973 0.973 0.963	0.002 0.003 0.000 0.002 0.002 0.002	0.999 0.997 0.455 0.999 0.999 0.998	0.027 0.030 0.001 0.025 0.025 0.005	0.970 0.959 0.339 0.971 0.971 0.962

(b) Temporal Dependency: Results by assuming the presence of temporal dependencies among samples (the 'first' samples of $\mathbb D$ are put in $\mathbb T$, while the last 20% represent $\mathbb E$).

TABLE 8: CTU13. Results against adversarial (original tpr and adversarial tpr) and unknown attacks (the tpr is the average on the 'unknown' attacks, while the fpr is due to training on a new $\mathbb T$ that does not have the 'unknown' class.).

Avail	able Data		Limited (100 per	r class) [N=1000	g .		Scarce (15%	of D) [N=100]			Moderate (40%	of D) [N=100]		l	Abundant (80%	of D) [N=100]	
	enario	Adversari	ial Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	1 Attacks	Adversari	al Attacks	Unknown	Attacks
Alg.	Design	tpr (org)	tpr (adv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr
RF	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.966 \scriptstyle{\pm 0.015} \\ 0.942 \scriptstyle{\pm 0.022} \\ 0.378 \scriptstyle{\pm 0.163} \\ 0.948 \scriptstyle{\pm 0.021} \\ 0.948 \scriptstyle{\pm 0.021} \end{array}$	$\begin{array}{c} 0.924 \scriptstyle{\pm 0.191} \\ 0.716 \scriptstyle{\pm 0.322} \\ 0.077 \scriptstyle{\pm 0.202} \\ 0.728 \scriptstyle{\pm 0.336} \\ 0.728 \scriptstyle{\pm 0.336} \end{array}$	$ \begin{array}{c} 0.082 \pm 0.015 \\ 0.074 \pm 0.016 \\ 0.008 \pm 0.006 \\ 0.078 \pm 0.015 \\ 0.084 \pm 0.017 \end{array} $	$\begin{array}{c} 0.922 {\pm}_{0.065} \\ 0.858 {\pm}_{0.068} \\ 0.540 {\pm}_{0.081} \\ 0.853 {\pm}_{0.074} \\ 0.863 {\pm}_{0.073} \end{array}$	$\begin{array}{c} 0.964 {\scriptstyle \pm 0.002} \\ 0.961 {\scriptstyle \pm 0.002} \\ 0.004 {\scriptstyle \pm 0.002} \\ 0.962 {\scriptstyle \pm 0.002} \\ 0.962 {\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.002 \pm 0.000 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ \end{array}$	$\begin{array}{c} 0.741 \scriptstyle{\pm 0.003} \\ 0.738 \scriptstyle{\pm 0.005} \\ 0.397 \scriptstyle{\pm 0.007} \\ 0.736 \scriptstyle{\pm 0.004} \\ 0.736 \scriptstyle{\pm 0.004} \end{array}$		$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.741 \scriptstyle{\pm 0.014} \\ 0.729 \scriptstyle{\pm 0.022} \\ 0.394 \scriptstyle{\pm 0.021} \\ 0.737 \scriptstyle{\pm 0.014} \\ 0.737 \scriptstyle{\pm 0.014} \end{array}$		$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ \end{array}$	$\begin{array}{c} 0.734 {\scriptstyle \pm 0.029} \\ 0.717 {\scriptstyle \pm 0.030} \\ 0.386 {\scriptstyle \pm 0.036} \\ 0.731 {\scriptstyle \pm 0.026} \\ 0.731 {\scriptstyle \pm 0.026} \end{array}$
TO	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.920 {\scriptstyle \pm 0.029} \\ 0.927 {\scriptstyle \pm 0.030} \\ 0.373 {\scriptstyle \pm 0.159} \\ 0.952 {\scriptstyle \pm 0.022} \\ 0.954 {\scriptstyle \pm 0.022} \end{array}$	$\begin{array}{c} 0.729 \pm 0.368 \\ 0.795 \pm 0.357 \\ 0.340 \pm 0.401 \\ 0.907 \pm 0.242 \\ 0.923 \pm 0.220 \end{array}$	$ \begin{array}{c} 0.082 \pm_{0.019} \\ 0.086 \pm_{0.019} \\ 0.018 \pm_{0.012} \\ 0.096 \pm_{0.022} \\ 0.124 \pm_{0.026} \end{array} $	$\begin{array}{c} 0.902 \pm 0.068 \\ 0.910 \pm 0.061 \\ 0.646 \pm 0.104 \\ 0.904 \pm 0.068 \\ 0.932 \pm 0.056 \end{array}$	$0.935 \pm 0.003 \atop 0.034 \pm 0.012$	$\begin{array}{c} 0.139 \pm_{0.227} \\ 0.224 \pm_{0.256} \\ 0.002 \pm_{0.008} \\ 0.357 \pm_{0.318} \\ 0.357 \pm_{0.318} \end{array}$		0.807 ± 0.065 0.468 ± 0.054	$\begin{array}{c} 0.943 \pm 0.002 \\ 0.943 \pm 0.002 \\ 0.044 \pm 0.013 \\ 0.950 \pm 0.002 \\ 0.950 \pm 0.002 \end{array}$	$\begin{array}{c} 0.186 \pm_{0.280} \\ 0.238 \pm_{0.268} \\ 0.003 \pm_{0.015} \\ 0.428 \pm_{0.315} \\ 0.428 \pm_{0.315} \end{array}$	0.002±0.000 0.002±0.000 0.000±0.000 0.002±0.000 0.002±0.000	$\begin{array}{c} 0.790 _{\pm 0.062} \\ 0.799 _{\pm 0.063} \\ 0.477 _{\pm 0.068} \\ 0.816 _{\pm 0.063} \\ 0.825 _{\pm 0.061} \end{array}$	$0.948_{\pm 0.002}$ $0.048_{\pm 0.010}$ $0.954_{\pm 0.002}$	$\begin{array}{c} 0.243 {\scriptstyle \pm 0.313} \\ 0.244 {\scriptstyle \pm 0.260} \\ 0.009 {\scriptstyle \pm 0.053} \\ 0.504 {\scriptstyle \pm 0.290} \\ 0.504 {\scriptstyle \pm 0.290} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ \end{array}$	$\begin{array}{c} 0.791 {\scriptstyle \pm 0.070} \\ 0.784 {\scriptstyle \pm 0.066} \\ 0.456 {\scriptstyle \pm 0.064} \\ 0.792 {\scriptstyle \pm 0.069} \\ 0.801 {\scriptstyle \pm 0.070} \end{array}$
LR	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.993 \scriptstyle{\pm 0.048} \\ 0.788 \scriptstyle{\pm 0.359} \\ 0.067 \scriptstyle{\pm 0.216} \\ 0.984 \scriptstyle{\pm 0.073} \\ 0.770 \scriptstyle{\pm 0.393} \end{array}$	$\begin{array}{c} 0.830 {\scriptstyle \pm 0.366} \\ 0.611 {\scriptstyle \pm 0.455} \\ 0.417 {\scriptstyle \pm 0.468} \\ 0.914 {\scriptstyle \pm 0.260} \\ 0.916 {\scriptstyle \pm 0.255} \end{array}$	$ \begin{array}{c} 0.479 \scriptstyle{\pm 0.045} \\ 0.422 \scriptstyle{\pm 0.041} \\ 0.094 \scriptstyle{\pm 0.028} \\ 0.342 \scriptstyle{\pm 0.054} \\ 0.388 \scriptstyle{\pm 0.039} \end{array} $	$\begin{array}{c} 0.888 \pm 0.050 \\ 0.863 \pm 0.080 \\ 0.639 \pm 0.088 \\ 0.897 \pm 0.038 \\ 0.915 \pm 0.026 \end{array}$	$\begin{array}{c} 0.152 {\pm 0.331} \\ 0.014 {\pm 0.003} \\ 0.000 {\pm 0.000} \\ 0.005 {\pm 0.005} \\ 0.006 {\pm 0.005} \end{array}$	$\begin{array}{c} 0.001 \pm 0.001 \\ 0.007 \pm 0.006 \\ 0.000 \pm 0.000 \\ 0.027 \pm 0.145 \\ 0.027 \pm 0.145 \end{array}$		0.099±0.113 0.007±0.025	$\begin{array}{c} 0.150 {\scriptstyle \pm 0.312} \\ 0.014 {\scriptstyle \pm 0.002} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.005 {\scriptstyle \pm 0.005} \\ 0.007 {\scriptstyle \pm 0.006} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.007 \pm 0.005 \\ 0.000 \pm 0.000 \\ 0.036 \pm 0.170 \\ 0.047 \pm 0.182 \end{array}$	$\begin{array}{c} 0.136 \pm 0.018 \\ 0.004 \pm 0.003 \\ 0.000 \pm 0.000 \\ 0.024 \pm 0.008 \\ 0.025 \pm 0.007 \end{array}$	$\begin{array}{c} 0.600 \pm 0.064 \\ 0.060 \pm 0.051 \\ 0.006 \pm 0.022 \\ 0.366 \pm 0.050 \\ 0.371 \pm 0.050 \end{array}$	0.013±0.003 0.000±0.000 0.006±0.006	$\begin{array}{c} 0.001_{\pm 0.001} \\ 0.006_{\pm 0.004} \\ 0.000_{\pm 0.000} \\ 0.002_{\pm 0.004} \\ 0.003_{\pm 0.005} \end{array}$	$\begin{array}{c} 0.133 \pm 0.016 \\ 0.003 \pm 0.002 \\ 0.000 \pm 0.000 \\ 0.024 \pm 0.009 \\ 0.026 \pm 0.009 \end{array}$	$\begin{array}{c} 0.584 {\scriptstyle \pm 0.065} \\ 0.052 {\scriptstyle \pm 0.036} \\ 0.001 {\scriptstyle \pm 0.007} \\ 0.368 {\scriptstyle \pm 0.053} \\ 0.370 {\scriptstyle \pm 0.053} \end{array}$
нсв	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.960 {\scriptstyle \pm 0.018} \\ 0.947 {\scriptstyle \pm 0.022} \\ 0.427 {\scriptstyle \pm 0.163} \\ 0.951 {\scriptstyle \pm 0.021} \\ 0.953 {\scriptstyle \pm 0.021} \end{array}$	$\begin{array}{c} 0.897 \scriptstyle{\pm 0.204} \\ 0.794 \scriptstyle{\pm 0.293} \\ 0.649 \scriptstyle{\pm 0.330} \\ 0.962 \scriptstyle{\pm 0.091} \\ 0.966 \scriptstyle{\pm 0.083} \end{array}$	$ \begin{array}{c} 0.079 \pm 0.017 \\ 0.069 \pm 0.016 \\ 0.013 \pm 0.010 \\ 0.072 \pm 0.016 \\ 0.080 \pm 0.018 \end{array} $	$\begin{array}{c} 0.898 \pm _{0.068} \\ 0.841 \pm _{0.072} \\ 0.651 \pm _{0.080} \\ 0.880 \pm _{0.071} \\ 0.898 \pm _{0.066} \end{array}$	$\begin{array}{c} 0.939 {\scriptstyle \pm 0.003} \\ 0.925 {\scriptstyle \pm 0.008} \\ 0.020 {\scriptstyle \pm 0.014} \\ 0.946 {\scriptstyle \pm 0.004} \\ 0.946 {\scriptstyle \pm 0.004} \end{array}$	$\begin{array}{c} 0.015 \pm 0.067 \\ 0.109 \pm 0.195 \\ 0.000 \pm 0.000 \\ 0.037 \pm 0.123 \\ 0.037 \pm 0.123 \end{array}$	0.005±0.001 0.000±0.000 0.002±0.000	0.753±0.033 0.456±0.045	$\begin{array}{c} 0.940 \scriptstyle{\pm 0.004} \\ 0.921 \scriptstyle{\pm 0.009} \\ 0.034 \scriptstyle{\pm 0.015} \\ 0.947 \scriptstyle{\pm 0.004} \\ 0.947 \scriptstyle{\pm 0.004} \end{array}$	$\begin{array}{c} 0.010 {\scriptstyle \pm 0.020} \\ 0.110 {\scriptstyle \pm 0.203} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.046 {\scriptstyle \pm 0.110} \\ 0.046 {\scriptstyle \pm 0.110} \end{array}$	$\begin{array}{c} 0.002 \pm 0.000 \\ 0.003 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.002 \pm 0.000 \end{array}$	$\begin{array}{c} 0.751 \scriptstyle{\pm 0.013} \\ 0.765 \scriptstyle{\pm 0.044} \\ 0.467 \scriptstyle{\pm 0.037} \\ 0.755 \scriptstyle{\pm 0.026} \\ 0.758 \scriptstyle{\pm 0.029} \end{array}$	$\begin{array}{c} 0.941 \scriptstyle{\pm 0.003} \\ 0.920 \scriptstyle{\pm 0.007} \\ 0.039 \scriptstyle{\pm 0.014} \\ 0.948 \scriptstyle{\pm 0.004} \\ 0.948 \scriptstyle{\pm 0.004} \end{array}$	$\begin{array}{c} 0.010 \pm_{0.037} \\ 0.148 \pm_{0.213} \\ 0.000 \pm_{0.000} \\ 0.046 \pm_{0.080} \\ 0.053 \pm_{0.104} \end{array}$	0.001±0.000 0.003±0.000 0.000±0.000 0.002±0.000 0.002±0.000	$\begin{array}{c} 0.755{\scriptstyle \pm 0.022} \\ 0.785{\scriptstyle \pm 0.058} \\ 0.476{\scriptstyle \pm 0.051} \\ 0.760{\scriptstyle \pm 0.032} \\ 0.760{\scriptstyle \pm 0.032} \end{array}$

(a) Static Dependency: Results by assuming the absence of temporal dependencies among samples (\mathbb{T} and \mathbb{E} are randomly sampled from \mathbb{D}).

Availa	able Data	Lim	ited (100 pe	er class) [N	N=1]	S	carce (15%	of D) [N=	1]	Mo	derate (40%	of D) [N	=1]	Ab	undant (809	6 of □) [N	=1]
Sc	enario	Adversari	ial Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	ial Attacks	Unknow	n Attacks	Adversar	ial Attacks	Unknow	n Attacks
Alg.	Design	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr
RF	BD	0.954	0.999	0.095	0.972	0.965	0.003	0.001	0.743	0.968	0.003	0.001	0.746	0.970	0.003	0.001	0.746
	MD	0.933	0.857	0.074	0.937	0.962	0.003	0.001	0.739	0.966	0.003	0.001	0.743	0.968	0.003	0.001	0.739
	ED-v	0.522	0.000	0.007	0.704	0.002	0.000	0.000	0.396	0.010	0.000	0.000	0.402	0.012	0.000	0.000	0.393
	ED-s	0.947	0.234	0.079	0.967	0.963	0.003	0.001	0.737	0.968	0.003	0.001	0.746	0.968	0.003	0.001	0.742
	ED-o	0.947	0.234	0.081	0.969	0.963	0.003	0.001	0.737	0.968	0.003	0.001	0.746	0.968	0.003	0.001	0.742
DT	BD	0.941	0.988	0.105	0.908	0.933	0.005	0.002	0.742	0.942	0.096	0.001	0.876	0.950	0.013	0.001	0.752
	MD	0.947	0.331	0.109	0.905	0.939	0.558	0.002	0.745	0.947	0.160	0.002	0.732	0.949	0.005	0.001	0.865
	ED-v	0.661	0.001	0.012	0.754	0.050	0.000	0.000	0.447	0.051	0.000	0.000	0.563	0.039	0.000	0.000	0.476
	ED-s	0.949	0.982	0.168	0.893	0.944	0.164	0.002	0.866	0.952	0.025	0.002	0.754	0.957	0.026	0.001	0.752
	ED-o	0.949	0.982	0.200	0.906	0.944	0.164	0.002	0.866	0.952	0.025	0.002	0.754	0.957	0.026	0.001	0.757
LR	BD	0.995	0.998	0.516	0.926	0.013	0.001	0.065	0.409	0.009	0.001	0.134	0.630	0.339	0.001	0.150	0.648
	MD	0.994	0.033	0.403	0.818	0.013	0.006	0.004	0.019	0.009	0.001	0.004	0.018	0.014	0.006	0.004	0.068
	ED-v	0.014	0.008	0.093	0.662	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ED-s	0.987	0.020	0.410	0.912	0.001	0.001	0.018	0.346	0.014	0.014	0.018	0.366	0.012	0.001	0.021	0.369
	ED-o	0.987	0.020	0.421	0.915	0.001	0.001	0.019	0.347	0.014	0.014	0.019	0.366	0.012	0.001	0.021	0.369
HGB	BD	0.955	0.998	0.082	0.921	0.939	0.002	0.002	0.752	0.943	0.044	0.002	0.749	0.935	0.003	0.001	0.748
	MD	0.916	0.996	0.070	0.844	0.919	0.419	0.004	0.749	0.922	0.122	0.003	0.747	0.921	0.004	0.002	0.744
	ED-v	0.612	0.006	0.020	0.669	0.008	0.000	0.000	0.462	0.023	0.000	0.000	0.559	0.099	0.000	0.000	0.464
	ED-s	0.940	0.992	0.088	0.937	0.947	0.005	0.002	0.749	0.949	0.021	0.002	0.753	0.943	0.010	0.002	0.752
	ED-o	0.940	0.992	0.100	0.939	0.947	0.005	0.002	0.749	0.949	0.021	0.002	0.753	0.943	0.010	0.002	0.752

TABLE 9: GTCS binary classification results (fpr) and tpr) against 'known' attacks seen during the training stage (closed world).

Avail	able Data		Limited (100 per	r class) [N=1000]		Scarce (15%	of D) [N=100]			Moderate (40%	of D) [N=100]			Abundant (80%	of D) [N=100]	
Fe	atures	Con	plete	Esse	ntial	Com	plete	Esse	ntial	Com	plete	Esse	ntial	Com	plete	Esse	ntial
Alg.	Design	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr
R	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.130{\scriptstyle \pm 0.021} \\ 0.135{\scriptstyle \pm 0.025} \\ 0.005{\scriptstyle \pm 0.003} \\ 0.123{\scriptstyle \pm 0.022} \\ 0.124{\scriptstyle \pm 0.022} \\ 0.032{\scriptstyle \pm 0.006} \end{array}$	$\begin{array}{c} 0.977_{\pm 0.009} \\ 0.974_{\pm 0.009} \\ 0.632_{\pm 0.160} \\ 0.976_{\pm 0.009} \\ 0.977_{\pm 0.009} \\ 0.974_{\pm 0.009} \end{array}$	$ \begin{array}{c} 0.264{\scriptstyle \pm 0.039} \\ 0.233{\scriptstyle \pm 0.037} \\ 0.011{\scriptstyle \pm 0.006} \\ 0.231{\scriptstyle \pm 0.036} \\ 0.232{\scriptstyle \pm 0.036} \\ 0.061{\scriptstyle \pm 0.010} \end{array} $	$\begin{array}{c} 0.971{\scriptstyle \pm 0.008} \\ 0.970{\scriptstyle \pm 0.008} \\ 0.587{\scriptstyle \pm 0.109} \\ 0.969{\scriptstyle \pm 0.008} \\ 0.969{\scriptstyle \pm 0.008} \\ 0.967{\scriptstyle \pm 0.008} \end{array}$	$\begin{array}{c} 0.033 {\pm} 0.001 \\ 0.032 {\pm} 0.001 \\ 0.000 {\pm} 0.000 \\ 0.032 {\pm} 0.001 \\ 0.032 {\pm} 0.001 \\ 0.008 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.992{\scriptstyle \pm 0.001} \\ 0.992{\scriptstyle \pm 0.001} \\ 0.596{\scriptstyle \pm 0.081} \\ 0.992{\scriptstyle \pm 0.001} \\ 0.992{\scriptstyle \pm 0.001} \\ 0.992{\scriptstyle \pm 0.001} \end{array}$		$0.506_{\pm 0.021}$ $0.976_{\pm 0.005}$ $0.976_{\pm 0.005}$		$\begin{array}{c} 0.993 {\scriptstyle \pm 0.000} \\ 0.993 {\scriptstyle \pm 0.000} \\ 0.574 {\scriptstyle \pm 0.066} \\ 0.993 {\scriptstyle \pm 0.000} \\ 0.993 {\scriptstyle \pm 0.000} \\ 0.993 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.119{\scriptstyle \pm 0.016} \\ 0.121{\scriptstyle \pm 0.018} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.120{\scriptstyle \pm 0.018} \\ 0.120{\scriptstyle \pm 0.018} \\ 0.030{\scriptstyle \pm 0.005} \end{array}$	$\begin{array}{c} 0.977_{\pm 0.004} \\ 0.979_{\pm 0.004} \\ 0.509_{\pm 0.026} \\ 0.979_{\pm 0.004} \\ 0.979_{\pm 0.004} \\ 0.979_{\pm 0.004} \end{array}$	$\begin{array}{c} 0.027_{\pm 0.001} \\ 0.027_{\pm 0.001} \\ 0.000_{\pm 0.000} \\ 0.027_{\pm 0.001} \\ 0.027_{\pm 0.001} \\ 0.007_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.994_{\pm 0.000} \\ 0.994_{\pm 0.000} \\ 0.542_{\pm 0.055} \\ 0.994_{\pm 0.000} \\ 0.994_{\pm 0.000} \\ 0.994_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.123{\scriptstyle \pm 0.007} \\ 0.126{\scriptstyle \pm 0.009} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.124{\scriptstyle \pm 0.011} \\ 0.124{\scriptstyle \pm 0.011} \\ 0.031{\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} 0.977 \pm 0.002 \\ 0.980 \pm 0.003 \\ 0.506 \pm 0.002 \\ 0.980 \pm 0.004 \\ 0.980 \pm 0.004 \\ 0.979 \pm 0.004 \end{array}$
DT	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.131{\scriptstyle \pm 0.018} \\ 0.143{\scriptstyle \pm 0.021} \\ 0.019{\scriptstyle \pm 0.013} \\ 0.140{\scriptstyle \pm 0.020} \\ 0.149{\scriptstyle \pm 0.022} \\ 0.042{\scriptstyle \pm 0.008} \end{array}$	$\begin{array}{c} 0.976 \scriptstyle{\pm 0.007} \\ 0.979 \scriptstyle{\pm 0.008} \\ 0.692 \scriptstyle{\pm 0.151} \\ 0.978 \scriptstyle{\pm 0.007} \\ 0.980 \scriptstyle{\pm 0.007} \\ 0.975 \scriptstyle{\pm 0.007} \end{array}$	$ \begin{array}{c} 0.261 \scriptstyle{\pm 0.037} \\ 0.278 \scriptstyle{\pm 0.039} \\ 0.024 \scriptstyle{\pm 0.012} \\ 0.271 \scriptstyle{\pm 0.037} \\ 0.275 \scriptstyle{\pm 0.038} \\ 0.075 \scriptstyle{\pm 0.011} \end{array} $	$\begin{array}{c} 0.955{\scriptstyle \pm 0.008} \\ 0.955{\scriptstyle \pm 0.009} \\ 0.592{\scriptstyle \pm 0.129} \\ 0.958{\scriptstyle \pm 0.008} \\ 0.959{\scriptstyle \pm 0.008} \\ 0.949{\scriptstyle \pm 0.009} \end{array}$	$\begin{array}{c} 0.033 {\scriptstyle \pm 0.001} \\ 0.033 {\scriptstyle \pm 0.001} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.033 {\scriptstyle \pm 0.001} \\ 0.033 {\scriptstyle \pm 0.001} \\ 0.008 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.988 {\scriptstyle \pm 0.001} \\ 0.988 {\scriptstyle \pm 0.001} \\ 0.488 {\scriptstyle \pm 0.120} \\ 0.988 {\scriptstyle \pm 0.001} \\ 0.988 {\scriptstyle \pm 0.001} \\ 0.988 {\scriptstyle \pm 0.001} \end{array}$	$ \begin{array}{c} 0.100_{\pm 0.002} \\ 0.100_{\pm 0.002} \\ 0.001_{\pm 0.000} \\ 0.100_{\pm 0.002} \\ 0.100_{\pm 0.002} \\ 0.025_{\pm 0.001} \end{array} $	$\begin{array}{c} 0.963 {\scriptstyle \pm 0.001} \\ 0.963 {\scriptstyle \pm 0.001} \\ 0.469 {\scriptstyle \pm 0.058} \\ 0.963 {\scriptstyle \pm 0.001} \\ 0.963 {\scriptstyle \pm 0.001} \\ 0.963 {\scriptstyle \pm 0.001} \end{array}$	0.028 ± 0.001 0.000 ± 0.000 0.028 ± 0.001 0.028 ± 0.001	$\begin{array}{c} 0.990 {\pm 0.000} \\ 0.990 {\pm 0.000} \\ 0.480 {\pm 0.106} \\ 0.990 {\pm 0.000} \\ 0.990 {\pm 0.000} \\ 0.990 {\pm 0.000} \end{array}$	$\begin{array}{c} 0.097 {\scriptstyle \pm 0.009} \\ 0.097 {\scriptstyle \pm 0.009} \\ 0.001 {\scriptstyle \pm 0.000} \\ 0.096 {\scriptstyle \pm 0.009} \\ 0.096 {\scriptstyle \pm 0.009} \\ 0.024 {\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.966 {\pm} 0.003 \\ 0.966 {\pm} 0.003 \\ 0.449 {\pm} 0.045 \\ 0.966 {\pm} 0.003 \\ 0.966 {\pm} 0.003 \\ 0.966 {\pm} 0.003 \end{array}$	$\begin{array}{c} 0.026_{\pm 0.001} \\ 0.026_{\pm 0.001} \\ 0.000_{\pm 0.000} \\ 0.026_{\pm 0.001} \\ 0.026_{\pm 0.001} \\ 0.006_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.990 {\pm} 0.000 \\ 0.991 {\pm} 0.000 \\ 0.462 {\pm} 0.098 \\ 0.991 {\pm} 0.000 \\ 0.991 {\pm} 0.000 \\ 0.991 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.097_{\pm 0.002} \\ 0.097_{\pm 0.002} \\ 0.001_{\pm 0.000} \\ 0.097_{\pm 0.002} \\ 0.097_{\pm 0.002} \\ 0.025_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.966 {\scriptstyle \pm 0.001} \\ 0.966 {\scriptstyle \pm 0.001} \\ 0.437 {\scriptstyle \pm 0.015} \\ 0.966 {\scriptstyle \pm 0.001} \\ 0.966 {\scriptstyle \pm 0.001} \\ 0.966 {\scriptstyle \pm 0.001} \end{array}$
LR	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.067{\scriptstyle \pm 0.250} \\ 0.106{\scriptstyle \pm 0.279} \\ 0.009{\scriptstyle \pm 0.019} \\ 0.028{\scriptstyle \pm 0.074} \\ 0.052{\scriptstyle \pm 0.066} \\ 0.015{\scriptstyle \pm 0.017} \end{array}$	$\begin{array}{c} 0.067{\scriptstyle \pm 0.250} \\ 0.195{\scriptstyle \pm 0.297} \\ 0.199{\scriptstyle \pm 0.244} \\ 0.230{\scriptstyle \pm 0.384} \\ 0.540{\scriptstyle \pm 0.311} \\ 0.423{\scriptstyle \pm 0.166} \end{array}$	$ \begin{array}{c} 0.610 {\scriptstyle \pm 0.109} \\ 0.532 {\scriptstyle \pm 0.085} \\ 0.135 {\scriptstyle \pm 0.051} \\ 0.523 {\scriptstyle \pm 0.113} \\ 0.543 {\scriptstyle \pm 0.085} \\ 0.173 {\scriptstyle \pm 0.029} \end{array} $	$\begin{array}{c} 0.983 {\scriptstyle \pm 0.045} \\ 0.968 {\scriptstyle \pm 0.040} \\ 0.627 {\scriptstyle \pm 0.166} \\ 0.958 {\scriptstyle \pm 0.121} \\ 0.972 {\scriptstyle \pm 0.036} \\ 0.956 {\scriptstyle \pm 0.043} \end{array}$	$\begin{array}{c} 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.007 \pm 0.043 \\ 0.008 \pm 0.043 \\ 0.002 \pm 0.011 \end{array}$	$0.000_{\pm 0.000}$ $0.025_{\pm 0.072}$ $0.076_{\pm 0.229}$ $0.306_{\pm 0.171}$	$ \begin{array}{c} 0.440_{\pm 0.046} \\ 0.249_{\pm 0.040} \\ 0.022_{\pm 0.011} \\ 0.207_{\pm 0.047} \\ 0.237_{\pm 0.028} \\ 0.065_{\pm 0.008} \end{array} $	$\begin{array}{c} 0.953{\scriptstyle \pm 0.029} \\ 0.881{\scriptstyle \pm 0.016} \\ 0.353{\scriptstyle \pm 0.090} \\ 0.870{\scriptstyle \pm 0.018} \\ 0.878{\scriptstyle \pm 0.012} \\ 0.858{\scriptstyle \pm 0.010} \end{array}$	$\begin{array}{c} 0.000 \scriptstyle{\pm 0.000} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.013 \scriptstyle{\pm 0.083} \\ 0.002 \scriptstyle{\pm 0.005} \end{array}$	$\begin{array}{c} 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.013 \pm 0.053 \\ 0.062 \pm 0.212 \\ 0.277 \pm 0.131 \\ 0.256 \pm 0.104 \end{array}$	0.245±0.052 0.022±0.011 0.201±0.069 0.230±0.039	$\begin{array}{c} 0.932 {\scriptstyle \pm 0.136} \\ 0.863 {\scriptstyle \pm 0.125} \\ 0.358 {\scriptstyle \pm 0.109} \\ 0.865 {\scriptstyle \pm 0.018} \\ 0.867 {\scriptstyle \pm 0.069} \\ 0.848 {\scriptstyle \pm 0.070} \end{array}$	$\begin{array}{c} 0.000 \scriptstyle{\pm 0.000} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.000 \scriptstyle{\pm 0.000} \end{array}$	$\begin{array}{c} 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.233 \pm 0.003 \\ 0.222 \pm 0.001 \end{array}$	$\begin{array}{c} 0.439 {\scriptstyle \pm 0.048} \\ 0.245 {\scriptstyle \pm 0.035} \\ 0.023 {\scriptstyle \pm 0.010} \\ 0.187 {\scriptstyle \pm 0.050} \\ 0.234 {\scriptstyle \pm 0.022} \\ 0.064 {\scriptstyle \pm 0.007} \end{array}$	$\begin{array}{c} 0.952 {\pm} 0.029 \\ 0.879 {\pm} 0.016 \\ 0.371 {\pm} 0.102 \\ 0.861 {\pm} 0.013 \\ 0.876 {\pm} 0.012 \\ 0.858 {\pm} 0.012 \end{array}$
HGB	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.145{\scriptstyle \pm 0.023} \\ 0.135{\scriptstyle \pm 0.024} \\ 0.010{\scriptstyle \pm 0.008} \\ 0.147{\scriptstyle \pm 0.024} \\ 0.157{\scriptstyle \pm 0.026} \\ 0.042{\scriptstyle \pm 0.008} \end{array}$	$\begin{array}{c} 0.989 \scriptstyle{\pm 0.005} \\ 0.987 \scriptstyle{\pm 0.006} \\ 0.732 \scriptstyle{\pm 0.115} \\ 0.987 \scriptstyle{\pm 0.006} \\ 0.988 \scriptstyle{\pm 0.005} \\ 0.985 \scriptstyle{\pm 0.006} \end{array}$	$ \begin{array}{c} 0.259 \scriptstyle{\pm 0.042} \\ 0.233 \scriptstyle{\pm 0.039} \\ 0.019 \scriptstyle{\pm 0.011} \\ 0.265 \scriptstyle{\pm 0.046} \\ 0.266 \scriptstyle{\pm 0.046} \\ 0.072 \scriptstyle{\pm 0.013} \end{array} $	$\begin{array}{c} 0.964 \scriptstyle{\pm 0.007} \\ 0.960 \scriptstyle{\pm 0.008} \\ 0.605 \scriptstyle{\pm 0.130} \\ 0.961 \scriptstyle{\pm 0.010} \\ 0.961 \scriptstyle{\pm 0.010} \\ 0.952 \scriptstyle{\pm 0.011} \end{array}$	$\begin{array}{c} 0.042 {\scriptstyle \pm 0.001} \\ 0.037 {\scriptstyle \pm 0.001} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.040 {\scriptstyle \pm 0.001} \\ 0.040 {\scriptstyle \pm 0.001} \\ 0.010 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.997 \scriptstyle{\pm 0.000} \\ 0.997 \scriptstyle{\pm 0.000} \\ 0.682 \scriptstyle{\pm 0.048} \\ 0.997 \scriptstyle{\pm 0.000} \\ 0.997 \scriptstyle{\pm 0.000} \\ 0.997 \scriptstyle{\pm 0.000} \end{array}$	$ \begin{array}{c} 0.077 \scriptstyle{\pm 0.004} \\ 0.072 \scriptstyle{\pm 0.003} \\ 0.001 \scriptstyle{\pm 0.000} \\ 0.073 \scriptstyle{\pm 0.003} \\ 0.073 \scriptstyle{\pm 0.003} \\ 0.018 \scriptstyle{\pm 0.001} \end{array} $	0.978 ± 0.001 0.516 ± 0.013 0.978 ± 0.001 0.978 ± 0.001	$0.000_{\pm 0.000}$ $0.038_{\pm 0.002}$ $0.038_{\pm 0.001}$	$\begin{array}{c} 0.997 \scriptstyle{\pm 0.000} \\ 0.997 \scriptstyle{\pm 0.000} \\ 0.681 \scriptstyle{\pm 0.033} \\ 0.997 \scriptstyle{\pm 0.000} \\ 0.997 \scriptstyle{\pm 0.000} \\ 0.997 \scriptstyle{\pm 0.000} \end{array}$	0.072±0.004 0.000±0.000 0.074±0.005 0.074±0.005	$\begin{array}{c} 0.978 \scriptstyle{\pm 0.003} \\ 0.980 \scriptstyle{\pm 0.002} \\ 0.518 \scriptstyle{\pm 0.022} \\ 0.980 \scriptstyle{\pm 0.002} \\ 0.980 \scriptstyle{\pm 0.002} \\ 0.980 \scriptstyle{\pm 0.002} \end{array}$	$\begin{array}{c} 0.034 \scriptstyle{\pm 0.001} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.038 \scriptstyle{\pm 0.001} \\ 0.038 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.997_{\pm 0.000} \\ 0.998_{\pm 0.000} \\ 0.699_{\pm 0.029} \\ 0.998_{\pm 0.000} \\ 0.998_{\pm 0.000} \\ 0.998_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.078 \scriptstyle{\pm 0.004} \\ 0.073 \scriptstyle{\pm 0.003} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.076 \scriptstyle{\pm 0.002} \\ 0.076 \scriptstyle{\pm 0.002} \\ 0.019 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.979 {\scriptstyle \pm 0.002} \\ 0.981 {\scriptstyle \pm 0.001} \\ 0.515 {\scriptstyle \pm 0.003} \\ 0.981 {\scriptstyle \pm 0.001} \\ 0.981 {\scriptstyle \pm 0.001} \\ 0.981 {\scriptstyle \pm 0.001} \end{array}$

(a) Static Dependency: Results by assuming the absence of temporal dependencies among samples ($\mathbb T$ and $\mathbb E$ are randomly sampled from $\mathbb D$).

Availa	ible Data	Limi	ted (100 p	er class) [N=1]	Sca	arce (15%	of D) [N:	=1]	Mod	lerate (409	% of D) [1	N=1]	Abu	ndant (80	% of D) [I	N=1]
	atures	Com	plete	Esse	ntial	Com	plete	Esse	ential	Com	plete	Esse	ntial	Com	plete	Esse	ntial
Alg.	Design	fpr	tpr														
RF	BD MD ED-v ED-s ED-o ED	0.109 0.098 0.002 0.083 0.083 0.021	0.970 0.938 0.496 0.954 0.954 0.951	0.272 0.244 0.004 0.231 0.231 0.059	0.972 0.958 0.473 0.958 0.958 0.956	0.024 0.024 0.000 0.024 0.024 0.006	0.983 0.984 0.524 0.985 0.985 0.985	0.040 0.039 0.000 0.034 0.034 0.009	0.928 0.927 0.505 0.926 0.926 0.926	0.030 0.030 0.000 0.030 0.030 0.030	0.993 0.993 0.609 0.993 0.993 0.993	0.124 0.112 0.000 0.127 0.127 0.032	0.978 0.974 0.508 0.978 0.978 0.978	0.026 0.026 0.000 0.026 0.026 0.006	0.994 0.994 0.484 0.994 0.994 0.994	0.121 0.120 0.000 0.108 0.108 0.027	0.975 0.977 0.506 0.974 0.974 0.974
DT	BD MD ED-v ED-s ED-o ED	0.123 0.116 0.012 0.146 0.148 0.040	0.971 0.949 0.584 0.958 0.958 0.957	0.273 0.260 0.009 0.250 0.250 0.065	0.960 0.942 0.571 0.942 0.942 0.923	0.029 0.029 0.000 0.027 0.027 0.007	0.981 0.982 0.544 0.981 0.981 0.981	0.084 0.083 0.001 0.084 0.084 0.021	0.951 0.951 0.412 0.951 0.951 0.950	0.028 0.027 0.000 0.027 0.027 0.007	0.988 0.989 0.534 0.989 0.989	0.099 0.099 0.001 0.099 0.099 0.025	0.964 0.964 0.426 0.964 0.964 0.964	0.026 0.025 0.000 0.025 0.025 0.006	0.990 0.990 0.658 0.990 0.990 0.990	0.097 0.099 0.001 0.098 0.098 0.025	0.964 0.964 0.441 0.964 0.964
LR	BD MD ED-v ED-s ED-o ED	0.000 0.001 0.034 0.061 0.061 0.024	0.000 0.197 0.772 0.877 0.877 0.813	0.498 0.430 0.159 0.430 0.449 0.155	0.989 0.982 0.741 0.983 0.983 0.961	0.000 0.000 0.000 0.000 0.001 0.000	0.000 0.000 0.000 0.000 0.239 0.222	0.340 0.263 0.044 0.266 0.266 0.078	0.915 0.907 0.535 0.896 0.896 0.879	0.000 0.000 0.000 0.000 0.001 0.000	0.000 0.000 0.000 0.000 0.237 0.222	0.488 0.271 0.019 0.248 0.248 0.067	0.913 0.875 0.309 0.877 0.877 0.853	0.000 0.000 0.000 0.000 0.000 0.000	0.000 0.000 0.000 0.000 0.232 0.222	0.441 0.273 0.016 0.189 0.189 0.051	0.973 0.883 0.308 0.876 0.876 0.856
нев	BD MD ED-v ED-s ED-o ED	0.116 0.106 0.005 0.111 0.113 0.030	0.990 0.987 0.695 0.965 0.967 0.965	0.259 0.215 0.013 0.236 0.236 0.062	0.960 0.959 0.290 0.942 0.942 0.926	0.036 0.029 0.000 0.032 0.032 0.008	0.994 0.993 0.598 0.994 0.994 0.994	0.050 0.049 0.000 0.044 0.044 0.011	0.964 0.967 0.521 0.962 0.962 0.962	0.038 0.033 0.000 0.035 0.035 0.009	0.997 0.997 0.729 0.997 0.997 0.997	0.086 0.077 0.000 0.079 0.079 0.020	0.983 0.983 0.515 0.982 0.982 0.982	0.038 0.033 0.000 0.036 0.036 0.009	0.998 0.998 0.687 0.998 0.998 0.998	0.072 0.071 0.000 0.075 0.075 0.019	0.978 0.982 0.516 0.981 0.981

(b) Temporal Dependency: Results by assuming the presence of temporal dependencies among samples (the 'first' samples of $\mathbb D$ are put in $\mathbb T$, while the last 20% represent $\mathbb E$).

TABLE 10: GTCS. Results against adversarial (original tpr and adversarial tpr) and unknown attacks (the tpr is the average on the 'unknown' attacks, while the fpr is due to training on a new \mathbb{T} that does not have the 'unknown' class.).

Avail	able Data		Limited (100 per	r class) [N=1000]		Scarce (15%	of D) [N=100]			Moderate (40%	of D) [N=100]		1	Abundant (80%	of D) [N=100]	
Sc	enario	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknown	n Attacks
Alg.	Design	tpr (org)	tpr (sdv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr	tpr (ceg)	tpr (sdv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr
RF	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.881 \scriptstyle{\pm 0.082} \\ 0.877 \scriptstyle{\pm 0.081} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.867 \scriptstyle{\pm 0.088} \\ 0.867 \scriptstyle{\pm 0.088} \end{array}$	$\begin{array}{c} 0.211 {\scriptstyle \pm 0.378} \\ 0.221 {\scriptstyle \pm 0.391} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.193 {\scriptstyle \pm 0.379} \\ 0.193 {\scriptstyle \pm 0.379} \end{array}$	$ \begin{array}{c} 0.098 \pm _{0.016} \\ 0.101 \pm _{0.018} \\ 0.002 \pm _{0.002} \\ 0.094 \pm _{0.017} \\ 0.094 \pm _{0.017} \end{array} $	$\begin{array}{c} 0.686 \pm_{0.083} \\ 0.518 \pm_{0.139} \\ 0.022 \pm_{0.035} \\ 0.603 \pm_{0.135} \\ 0.602 \pm_{0.136} \end{array}$	$\begin{array}{c} 0.817 \pm 0.076 \\ 0.856 \pm 0.091 \\ 0.000 \pm 0.000 \\ 0.884 \pm 0.079 \\ 0.884 \pm 0.079 \end{array}$	$\begin{array}{c} 0.490 {\scriptstyle \pm 0.480} \\ 0.147 {\scriptstyle \pm 0.337} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.170 {\scriptstyle \pm 0.365} \\ 0.170 {\scriptstyle \pm 0.365} \end{array}$	$ \begin{array}{c} 0.025 \pm 0.001 \\ 0.024 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.024 \pm 0.001 \\ 0.024 \pm 0.001 \end{array} $	$\begin{array}{c} 0.574 \pm 0.075 \\ 0.525 \pm 0.079 \\ 0.000 \pm 0.000 \\ 0.550 \pm 0.076 \\ 0.550 \pm 0.076 \end{array}$	$\begin{array}{c} 0.851 \pm 0.052 \\ 0.906 \pm 0.063 \\ 0.000 \pm 0.000 \\ 0.913 \pm 0.061 \\ 0.913 \pm 0.061 \end{array}$	$\begin{array}{c} 0.594 \pm 0.465 \\ 0.254 \pm 0.413 \\ 0.000 \pm 0.000 \\ 0.365 \pm 0.463 \\ 0.367 \pm 0.464 \end{array}$	$\begin{array}{c} 0.022{\scriptstyle \pm 0.001} \\ 0.022{\scriptstyle \pm 0.001} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.022{\scriptstyle \pm 0.001} \\ 0.022{\scriptstyle \pm 0.001} \end{array}$	$\begin{array}{c} 0.539 \pm 0.066 \\ 0.488 \pm 0.069 \\ 0.000 \pm 0.000 \\ 0.533 \pm 0.059 \\ 0.532 \pm 0.060 \end{array}$	$\begin{array}{c} 0.858 {\scriptstyle \pm 0.034} \\ 0.916 {\scriptstyle \pm 0.052} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.917 {\scriptstyle \pm 0.059} \\ 0.917 {\scriptstyle \pm 0.059} \end{array}$	$\begin{array}{c} 0.674 \scriptstyle{\pm 0.450} \\ 0.266 \scriptstyle{\pm 0.432} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.494 \scriptstyle{\pm 0.483} \\ 0.494 \scriptstyle{\pm 0.483} \end{array}$	$\begin{array}{c} 0.021 \pm 0.001 \\ 0.020 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.020 \pm 0.001 \\ 0.020 \pm 0.001 \end{array}$	$\begin{array}{c} 0.510 {\scriptstyle \pm 0.061} \\ 0.466 {\scriptstyle \pm 0.056} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.502 {\scriptstyle \pm 0.055} \\ 0.502 {\scriptstyle \pm 0.055} \end{array}$
TO	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.762 {\scriptstyle \pm 0.078} \\ 0.766 {\scriptstyle \pm 0.080} \\ 0.020 {\scriptstyle \pm 0.038} \\ 0.766 {\scriptstyle \pm 0.079} \\ 0.766 {\scriptstyle \pm 0.079} \end{array}$	$\begin{array}{c} 0.319 {\scriptstyle \pm 0.457} \\ 0.347 {\scriptstyle \pm 0.462} \\ 0.001 {\scriptstyle \pm 0.031} \\ 0.322 {\scriptstyle \pm 0.458} \\ 0.322 {\scriptstyle \pm 0.458} \end{array}$	$ \begin{array}{c} 0.104 {\pm 0.014} \\ 0.113 {\pm 0.015} \\ 0.010 {\pm 0.007} \\ 0.112 {\pm 0.016} \\ 0.116 {\pm 0.018} \end{array} $	$\begin{array}{c} 0.658 \pm 0.134 \\ 0.606 \pm 0.160 \\ 0.117 \pm 0.137 \\ 0.651 \pm 0.137 \\ 0.657 \pm 0.137 \end{array}$	$0.669_{\pm 0.011}$ $0.000_{\pm 0.000}$ $0.669_{\pm 0.011}$	$\begin{array}{c} 0.816 \pm_{0.382} \\ 0.323 \pm_{0.458} \\ 0.000 \pm_{0.000} \\ 0.554 \pm_{0.477} \\ 0.554 \pm_{0.477} \end{array}$	$ \begin{array}{c} 0.025 \pm 0.001 \\ 0.025 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.024 \pm 0.001 \\ 0.024 \pm 0.001 \end{array} $	$\begin{array}{c} 0.541 \scriptstyle{\pm 0.107} \\ 0.480 \scriptstyle{\pm 0.121} \\ 0.017 \scriptstyle{\pm 0.042} \\ 0.454 \scriptstyle{\pm 0.121} \\ 0.454 \scriptstyle{\pm 0.121} \end{array}$	$\begin{array}{c} 0.698 \pm 0.025 \\ 0.698 \pm 0.025 \\ 0.000 \pm 0.000 \\ 0.698 \pm 0.026 \\ 0.698 \pm 0.026 \end{array}$	$\begin{array}{c} 0.944 {\scriptstyle \pm 0.213} \\ 0.427 {\scriptstyle \pm 0.483} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.442 {\scriptstyle \pm 0.479} \\ 0.442 {\scriptstyle \pm 0.479} \end{array}$	$\begin{array}{c} 0.022{\scriptstyle \pm 0.001} \\ 0.021{\scriptstyle \pm 0.001} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.021{\scriptstyle \pm 0.001} \\ 0.021{\scriptstyle \pm 0.001} \end{array}$	$0.491_{\pm 0.079}$ $0.008_{\pm 0.030}$ $0.453_{\pm 0.106}$	$\begin{array}{c} 0.703 {\scriptstyle \pm 0.008} \\ 0.702 {\scriptstyle \pm 0.008} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.702 {\scriptstyle \pm 0.008} \\ 0.702 {\scriptstyle \pm 0.008} \end{array}$	$\begin{array}{c} 0.896 \pm 0.298 \\ 0.443 \pm 0.487 \\ 0.000 \pm 0.000 \\ 0.353 \pm 0.468 \\ 0.353 \pm 0.468 \end{array}$	$\begin{array}{c} 0.020 \pm 0.001 \\ 0.019 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.019 \pm 0.001 \\ 0.019 \pm 0.001 \end{array}$	$\begin{array}{c} 0.500 {\pm}_{0.093} \\ 0.491 {\pm}_{0.076} \\ 0.000 {\pm}_{0.000} \\ 0.440 {\pm}_{0.097} \\ 0.440 {\pm}_{0.097} \end{array}$
LR	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.949 \scriptstyle{\pm 0.188} \\ 0.847 \scriptstyle{\pm 0.345} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.858 \scriptstyle{\pm 0.333} \\ 0.836 \scriptstyle{\pm 0.354} \end{array}$	$\begin{array}{c} 0.003 \pm 0.054 \\ 0.173 \pm 0.374 \\ 0.000 \pm 0.000 \\ 0.171 \pm 0.373 \\ 0.150 \pm 0.353 \end{array}$	$\begin{array}{c} 0.027{\scriptstyle \pm 0.068} \\ 0.107{\scriptstyle \pm 0.218} \\ 0.005{\scriptstyle \pm 0.010} \\ 0.032{\scriptstyle \pm 0.053} \\ 0.041{\scriptstyle \pm 0.050} \end{array}$	$\begin{array}{c} 0.042 {\scriptstyle \pm 0.080} \\ 0.165 {\scriptstyle \pm 0.246} \\ 0.057 {\scriptstyle \pm 0.122} \\ 0.230 {\scriptstyle \pm 0.234} \\ 0.282 {\scriptstyle \pm 0.241} \end{array}$	0.000±0.000 0.001±0.003	$\begin{array}{c} 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$ \begin{array}{c} 0.002 \pm 0.016 \\ 0.002 \pm 0.014 \\ 0.000 \pm 0.000 \\ 0.005 \pm 0.033 \\ 0.006 \pm 0.033 \end{array} $	$\begin{array}{c} 0.002 \pm 0.018 \\ 0.004 \pm 0.025 \\ 0.001 \pm 0.004 \\ 0.047 \pm 0.141 \\ 0.066 \pm 0.137 \end{array}$	$\begin{array}{c} 0.532 {\scriptstyle \pm 0.482} \\ 0.031 {\scriptstyle \pm 0.166} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.019 {\scriptstyle \pm 0.132} \\ 0.002 {\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.000 {\pm} 0.000 \\ 0.009 {\pm} 0.032 \\ 0.000 {\pm} 0.000 \\ 0.013 {\pm} 0.082 \\ 0.001 {\pm} 0.004 \end{array}$	$\begin{array}{c} 0.000 \pm 0.000 \\ 0.018 \pm 0.062 \\ 0.000 \pm 0.001 \\ 0.044 \pm 0.158 \\ 0.041 \pm 0.095 \end{array}$	$\begin{array}{c} 0.551 {\scriptstyle \pm 0.480} \\ 0.040 {\scriptstyle \pm 0.190} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.000 {\scriptstyle \pm 0.001} \\ 0.001 {\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} 0.000_{\pm 0.000} \\ 0.000_{\pm 0.000} \\ 0.000_{\pm 0.000} \\ 0.000_{\pm 0.000} \\ 0.000_{\pm 0.000} \end{array}$	0.000±0.000 0.003±0.019 0.000±0.000 0.000±0.000 0.000±0.000	$\begin{array}{c} 0.000 \pm 0.000 \\ 0.008 \pm 0.041 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.015 \pm 0.004 \end{array}$
нсв	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.814 {\scriptstyle \pm 0.084} \\ 0.804 {\scriptstyle \pm 0.083} \\ 0.008 {\scriptstyle \pm 0.020} \\ 0.814 {\scriptstyle \pm 0.087} \\ 0.814 {\scriptstyle \pm 0.087} \end{array}$	$\begin{array}{c} 0.211 {\scriptstyle \pm 0.394} \\ 0.180 {\scriptstyle \pm 0.369} \\ 0.002 {\scriptstyle \pm 0.044} \\ 0.154 {\scriptstyle \pm 0.334} \\ 0.154 {\scriptstyle \pm 0.334} \end{array}$	$ \begin{array}{c c} 0.111 \pm_{0.018} \\ 0.105 \pm_{0.018} \\ 0.005 \pm_{0.005} \\ 0.114 \pm_{0.019} \\ 0.120 \pm_{0.021} \end{array} $	$0.644_{\pm 0.117}$ $0.166_{\pm 0.146}$ $0.680_{\pm 0.104}$	$\begin{array}{c} 0.848 \pm _{0.023} \\ 0.858 \pm _{0.011} \\ 0.000 \pm _{0.000} \\ 0.870 \pm _{0.018} \\ 0.870 \pm _{0.018} \end{array}$	$\begin{array}{c} 0.000 \pm_{0.000} \\ 0.001 \pm_{0.002} \\ 0.000 \pm_{0.000} \\ 0.001 \pm_{0.002} \\ 0.001 \pm_{0.002} \end{array}$	$ \begin{array}{c c} 0.031 \pm 0.001 \\ 0.027 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.030 \pm 0.001 \\ 0.030 \pm 0.001 \end{array} $	$\begin{array}{c} 0.606 \pm 0.044 \\ 0.581 \pm 0.053 \\ 0.006 \pm 0.025 \\ 0.620 \pm 0.042 \\ 0.620 \pm 0.042 \end{array}$	$\begin{array}{c} 0.864 \scriptstyle{\pm 0.029} \\ 0.882 \scriptstyle{\pm 0.017} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.894 \scriptstyle{\pm 0.017} \\ 0.895 \scriptstyle{\pm 0.017} \end{array}$	$\begin{array}{c} 0.006 \pm_{0.041} \\ 0.020 \pm_{0.137} \\ 0.000 \pm_{0.000} \\ 0.028 \pm_{0.153} \\ 0.029 \pm_{0.159} \end{array}$	$\begin{array}{c} 0.030 {\pm}_{0.001} \\ 0.026 {\pm}_{0.001} \\ 0.000 {\pm}_{0.000} \\ 0.029 {\pm}_{0.001} \\ 0.029 {\pm}_{0.001} \end{array}$	$0.584_{\pm 0.046}$ $0.000_{\pm 0.000}$ $0.615_{\pm 0.037}$	$\begin{array}{c} 0.868 {\scriptstyle \pm 0.025} \\ 0.890 {\scriptstyle \pm 0.007} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.905 {\scriptstyle \pm 0.009} \\ 0.905 {\scriptstyle \pm 0.009} \end{array}$	$\begin{array}{c} 0.000_{\pm 0.000} \\ 0.001_{\pm 0.002} \\ 0.000_{\pm 0.000} \\ 0.003_{\pm 0.020} \\ 0.003_{\pm 0.020} \end{array}$	$\begin{array}{c} 0.029 \pm 0.001 \\ 0.025 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.028 \pm 0.001 \\ 0.028 \pm 0.001 \end{array}$	$\begin{array}{c} 0.618 {\scriptstyle \pm 0.024} \\ 0.590 {\scriptstyle \pm 0.049} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.634 {\scriptstyle \pm 0.028} \\ 0.634 {\scriptstyle \pm 0.028} \end{array}$

(a) Static Dependency: Results by assuming the absence of temporal dependencies among samples (\mathbb{T} and \mathbb{E} are randomly sampled from \mathbb{D}).

Availa	able Data	Lim	ited (100 pe	er class) [N	¥=1]	S	carce (15%	of D) [N=	1]	Mo	derate (40%	of D) [N:	=1]	Ab	undant (809	% of D) [N	[=1]
Sc	enario	Adversari	al Attacks	Unknow	n Attacks	Adversari	ial Attacks	Unknow	n Attacks	Adversar	ial Attacks	Unknow	n Attacks	Adversar	ial Attacks	Unknow	n Attacks
Alg.	Design	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr
RF	BD	0.967	0.977	0.073	0.377	0.234	0.014	0.018	0.621	0.909	0.978	0.022	0.457	0.851	0.978	0.020	0.571
	MD	0.968	0.149	0.070	0.132	0.258	0.001	0.017	0.507	0.864	0.978	0.022	0.566	0.881	0.366	0.019	0.476
	ED-v	0.000	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ED-s	0.972	0.975	0.063	0.478	0.243	0.001	0.018	0.506	0.915	0.978	0.022	0.565	0.847	0.001	0.019	0.441
	ED-o	0.972	0.975	0.063	0.478	0.243	0.001	0.018	0.506	0.915	0.978	0.022	0.565	0.847	0.001	0.019	0.441
DT	BD	0.742	0.982	0.094	0.560	0.599	0.992	0.021	0.476	0.714	0.993	0.021	0.580	0.698	0.993	0.019	0.377
	MD	0.787	0.000	0.098	0.268	0.598	0.988	0.021	0.545	0.713	0.982	0.021	0.367	0.699	0.989	0.019	0.514
	ED-v	0.000	0.000	0.006	0.249	0.000	0.000	0.000	0.125	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ED-s	0.816	0.011	0.112	0.517	0.598	0.000	0.020	0.519	0.713	0.978	0.020	0.475	0.698	0.000	0.019	0.604
	ED-o	0.816	0.011	0.114	0.522	0.598	0.000	0.020	0.519	0.713	0.978	0.020	0.475	0.698	0.000	0.019	0.604
LR	BD	0.979	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.977	0.000	0.000	0.000
	MD	0.981	0.002	0.025	0.087	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.010	0.000	0.000	0.000
	ED-v	0.000	0.000	0.018	0.313	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ED-s	0.981	0.002	0.051	0.771	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ED-o	0.981	0.002	0.054	0.772	0.000	0.000	0.001	0.024	0.000	0.000	0.001	0.020	0.000	0.000	0.000	0.014
HGB	BD	0.868	0.683	0.090	0.636	0.732	0.000	0.025	0.498	0.933	0.000	0.028	0.605	0.857	0.000	0.028	0.620
	MD	0.867	0.612	0.082	0.385	0.764	0.000	0.022	0.498	0.930	0.000	0.025	0.513	0.911	0.001	0.024	0.623
	ED-v	0.020	0.000	0.002	0.026	0.002	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ED-s	0.859	0.992	0.085	0.634	0.702	0.000	0.024	0.581	0.938	0.002	0.026	0.665	0.923	0.002	0.027	0.622
	ED-o	0.859	0.992	0.086	0.634	0.702	0.000	0.024	0.581	0.938	0.002	0.026	0.665	0.923	0.002	0.027	0.622

TABLE 11: NB15 binary classification results (fpr and tpr) against 'known' attacks seen during the training stage (closed world).

Avail	able Data		Limited (100 per	r class) [N=1000	g .		Scarce (15%	of D) [N=100]			Moderate (40%	of D) [N=100]			Abundant (80%	of D) [N=100]	
Fe	atures	Con	plete	Esse	ential	Com	plete	Esse	ntial	Com	plete	Esse	ntial	Com	plete	Esse	ntial
Alg.	Design	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr
RF	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.021{\scriptstyle \pm 0.002} \\ 0.020{\scriptstyle \pm 0.001} \\ 0.019{\scriptstyle \pm 0.002} \\ 0.021{\scriptstyle \pm 0.002} \\ 0.022{\scriptstyle \pm 0.002} \\ 0.018{\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 1.000 \scriptstyle{\pm 0.000} \\ 0.998 \scriptstyle{\pm 0.001} \\ 0.970 \scriptstyle{\pm 0.035} \\ 0.999 \scriptstyle{\pm 0.001} \\ 1.000 \scriptstyle{\pm 0.001} \\ 0.997 \scriptstyle{\pm 0.002} \end{array}$	$\begin{array}{c} 0.022 {\scriptstyle \pm 0.002} \\ 0.020 {\scriptstyle \pm 0.002} \\ 0.018 {\scriptstyle \pm 0.002} \\ 0.023 {\scriptstyle \pm 0.002} \\ 0.023 {\scriptstyle \pm 0.002} \\ 0.017 {\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.997_{\pm 0.001} \\ 0.995_{\pm 0.001} \\ 0.959_{\pm 0.040} \\ 0.996_{\pm 0.001} \\ 0.997_{\pm 0.001} \\ 0.991_{\pm 0.003} \end{array}$	$\begin{array}{c} 0.010 {\pm} 0.000 \\ 0.010 {\pm} 0.000 \\ 0.000 {\pm} 0.000 \\ 0.010 {\pm} 0.000 \\ 0.010 {\pm} 0.000 \\ 0.002 {\pm} 0.000 \end{array}$		$\begin{array}{c} 0.010 {\scriptstyle \pm 0.000} \\ 0.009 {\scriptstyle \pm 0.000} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.009 {\scriptstyle \pm 0.000} \\ 0.009 {\scriptstyle \pm 0.000} \\ 0.002 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.989_{\pm 0.001} \\ 0.984_{\pm 0.001} \\ 0.554_{\pm 0.021} \\ 0.985_{\pm 0.001} \\ 0.985_{\pm 0.001} \\ 0.975_{\pm 0.002} \end{array}$		$\begin{array}{c} 0.991 \scriptstyle{\pm 0.001} \\ 0.988 \scriptstyle{\pm 0.001} \\ 0.564 \scriptstyle{\pm 0.019} \\ 0.988 \scriptstyle{\pm 0.001} \\ 0.988 \scriptstyle{\pm 0.001} \\ 0.981 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.009 {\scriptstyle \pm 0.000} \\ 0.009 {\scriptstyle \pm 0.000} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.008 {\scriptstyle \pm 0.000} \\ 0.008 {\scriptstyle \pm 0.000} \\ 0.001 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.989_{\pm 0.001} \\ 0.985_{\pm 0.001} \\ 0.575_{\pm 0.015} \\ 0.986_{\pm 0.001} \\ 0.986_{\pm 0.001} \\ 0.979_{\pm 0.001} \end{array}$	$\substack{0.008 \pm 0.000 \\ 0.008 \pm 0.000}$	$\begin{array}{c} 0.991 \scriptstyle{\pm 0.001} \\ 0.988 \scriptstyle{\pm 0.001} \\ 0.579 \scriptstyle{\pm 0.015} \\ 0.988 \scriptstyle{\pm 0.001} \\ 0.988 \scriptstyle{\pm 0.001} \\ 0.983 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.009 {\scriptstyle \pm 0.000} \\ 0.008 {\scriptstyle \pm 0.000} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.008 {\scriptstyle \pm 0.000} \\ 0.008 {\scriptstyle \pm 0.000} \\ 0.001 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.989 {\scriptstyle \pm 0.001} \\ 0.986 {\scriptstyle \pm 0.001} \\ 0.586 {\scriptstyle \pm 0.013} \\ 0.987 {\scriptstyle \pm 0.001} \\ 0.987 {\scriptstyle \pm 0.001} \\ 0.982 {\scriptstyle \pm 0.001} \end{array}$
DT	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.022{\scriptstyle \pm 0.004} \\ 0.022{\scriptstyle \pm 0.004} \\ 0.017{\scriptstyle \pm 0.002} \\ 0.022{\scriptstyle \pm 0.004} \\ 0.023{\scriptstyle \pm 0.005} \\ 0.016{\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.996 {\scriptstyle \pm 0.004} \\ 0.996 {\scriptstyle \pm 0.004} \\ 0.932 {\scriptstyle \pm 0.068} \\ 0.997 {\scriptstyle \pm 0.003} \\ 0.999 {\scriptstyle \pm 0.002} \\ 0.982 {\scriptstyle \pm 0.012} \end{array}$	$ \begin{array}{c} 0.028 \scriptstyle{\pm 0.012} \\ 0.028 \scriptstyle{\pm 0.012} \\ 0.016 \scriptstyle{\pm 0.002} \\ 0.029 \scriptstyle{\pm 0.012} \\ 0.030 \scriptstyle{\pm 0.013} \\ 0.017 \scriptstyle{\pm 0.003} \end{array} $	$\begin{array}{c} 0.994{\scriptstyle \pm 0.004} \\ 0.994{\scriptstyle \pm 0.004} \\ 0.955{\scriptstyle \pm 0.045} \\ 0.995{\scriptstyle \pm 0.002} \\ 0.996{\scriptstyle \pm 0.002} \\ 0.981{\scriptstyle \pm 0.011} \end{array}$	$\begin{array}{c} 0.008 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.009 \pm 0.000 \\ 0.009 \pm 0.000 \\ 0.002 \pm 0.000 \end{array}$	$0.959_{\pm 0.002}$ $0.613_{\pm 0.028}$ $0.967_{\pm 0.002}$ $0.967_{\pm 0.002}$	$\begin{array}{c} 0.008 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.002 \pm 0.000 \end{array}$	$\begin{array}{c} 0.958_{\pm 0.002} \\ 0.959_{\pm 0.002} \\ 0.641_{\pm 0.031} \\ 0.966_{\pm 0.002} \\ 0.967_{\pm 0.002} \\ 0.946_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.008 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.008 \pm 0.000 \end{array}$	$\begin{array}{c} 0.962 {\scriptstyle \pm 0.002} \\ 0.962 {\scriptstyle \pm 0.002} \\ 0.616 {\scriptstyle \pm 0.026} \\ 0.969 {\scriptstyle \pm 0.002} \\ 0.969 {\scriptstyle \pm 0.002} \\ 0.953 {\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.008 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.962{\scriptstyle \pm 0.002} \\ 0.963{\scriptstyle \pm 0.002} \\ 0.637{\scriptstyle \pm 0.027} \\ 0.968{\scriptstyle \pm 0.001} \\ 0.968{\scriptstyle \pm 0.001} \\ 0.953{\scriptstyle \pm 0.002} \end{array}$	0.007±0.000 0.000±0.000 0.007±0.000 0.007±0.000	$\begin{array}{c} 0.965{\scriptstyle \pm 0.001} \\ 0.966{\scriptstyle \pm 0.001} \\ 0.610{\scriptstyle \pm 0.022} \\ 0.970{\scriptstyle \pm 0.001} \\ 0.970{\scriptstyle \pm 0.001} \\ 0.959{\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.007_{\pm 0.000} \\ 0.007_{\pm 0.000} \\ 0.000_{\pm 0.000} \\ 0.007_{\pm 0.000} \\ 0.007_{\pm 0.000} \\ 0.001_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.966 {\scriptstyle \pm 0.001} \\ 0.966 {\scriptstyle \pm 0.001} \\ 0.628 {\scriptstyle \pm 0.022} \\ 0.971 {\scriptstyle \pm 0.001} \\ 0.971 {\scriptstyle \pm 0.001} \\ 0.959 {\scriptstyle \pm 0.002} \end{array}$
LR	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.361{\scriptstyle \pm 0.016} \\ 0.499{\scriptstyle \pm 0.201} \\ 0.147{\scriptstyle \pm 0.008} \\ 0.305{\scriptstyle \pm 0.053} \\ 0.329{\scriptstyle \pm 0.021} \\ 0.175{\scriptstyle \pm 0.013} \end{array}$	$\begin{array}{c} 0.973 \scriptstyle{\pm 0.006} \\ 0.873 \scriptstyle{\pm 0.140} \\ 0.853 \scriptstyle{\pm 0.021} \\ 0.951 \scriptstyle{\pm 0.021} \\ 0.960 \scriptstyle{\pm 0.010} \\ 0.924 \scriptstyle{\pm 0.034} \end{array}$	$ \begin{array}{c} 0.462 \scriptstyle{\pm 0.199} \\ 0.636 \scriptstyle{\pm 0.295} \\ 0.019 \scriptstyle{\pm 0.010} \\ 0.169 \scriptstyle{\pm 0.054} \\ 0.194 \scriptstyle{\pm 0.057} \\ 0.049 \scriptstyle{\pm 0.015} \end{array} $	$\begin{array}{c} 0.963{\scriptstyle \pm 0.088} \\ 0.869{\scriptstyle \pm 0.142} \\ 0.673{\scriptstyle \pm 0.056} \\ 0.961{\scriptstyle \pm 0.024} \\ 0.967{\scriptstyle \pm 0.037} \\ 0.894{\scriptstyle \pm 0.055} \end{array}$	$\begin{array}{c} 0.002 {\pm} 0.001 \\ 0.001 {\pm} 0.000 \\ 0.000 {\pm} 0.000 \\ 0.013 {\pm} 0.001 \\ 0.013 {\pm} 0.001 \\ 0.002 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.005 \pm 0.002 \\ 0.000 \pm 0.000 \\ 0.201 \pm 0.012 \\ 0.202 \pm 0.012 \end{array}$	$ \begin{array}{c} 0.008 \pm 0.004 \\ 0.001 \pm 0.006 \\ 0.001 \pm 0.001 \\ 0.009 \pm 0.003 \\ 0.010 \pm 0.003 \\ 0.002 \pm 0.001 \end{array} $	$\begin{array}{c} 0.450 {\scriptstyle \pm 0.153} \\ 0.022 {\scriptstyle \pm 0.024} \\ 0.327 {\scriptstyle \pm 0.024} \\ 0.598 {\scriptstyle \pm 0.060} \\ 0.605 {\scriptstyle \pm 0.061} \\ 0.436 {\scriptstyle \pm 0.052} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.013 \pm 0.000 \\ 0.013 \pm 0.000 \end{array}$	$\begin{array}{c} 0.048 \scriptstyle{\pm 0.007} \\ 0.006 \scriptstyle{\pm 0.003} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.201 \scriptstyle{\pm 0.007} \\ 0.202 \scriptstyle{\pm 0.007} \\ 0.101 \scriptstyle{\pm 0.004} \end{array}$	$\begin{array}{c} 0.008 \pm 0.004 \\ 0.001 \pm 0.006 \\ 0.001 \pm 0.001 \\ 0.008 \pm 0.002 \\ 0.010 \pm 0.002 \\ 0.003 \pm 0.001 \end{array}$	$\begin{array}{c} 0.458 {\scriptstyle \pm 0.157} \\ 0.021 {\scriptstyle \pm 0.031} \\ 0.338 {\scriptstyle \pm 0.023} \\ 0.578 {\scriptstyle \pm 0.049} \\ 0.587 {\scriptstyle \pm 0.049} \\ 0.438 {\scriptstyle \pm 0.048} \end{array}$	$\begin{array}{c} 0.001 \scriptstyle{\pm 0.000} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.013 \scriptstyle{\pm 0.000} \\ 0.013 \scriptstyle{\pm 0.000} \end{array}$	$\begin{array}{c} 0.046 \pm 0.006 \\ 0.006 \pm 0.004 \\ 0.000 \pm 0.000 \\ 0.203 \pm 0.005 \\ 0.203 \pm 0.005 \\ 0.101 \pm 0.003 \end{array}$	$\begin{array}{c} 0.008 \scriptstyle{\pm 0.005} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.001 \scriptstyle{\pm 0.000} \\ 0.007 \scriptstyle{\pm 0.002} \\ 0.009 \scriptstyle{\pm 0.002} \\ 0.002 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.456 {\pm 0.148} \\ 0.020 {\pm 0.019} \\ 0.335 {\pm 0.021} \\ 0.562 {\pm 0.045} \\ 0.571 {\pm 0.046} \\ 0.422 {\pm 0.038} \end{array}$
HGB	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.022{\scriptstyle \pm 0.003} \\ 0.022{\scriptstyle \pm 0.003} \\ 0.016{\scriptstyle \pm 0.003} \\ 0.021{\scriptstyle \pm 0.003} \\ 0.023{\scriptstyle \pm 0.005} \\ 0.015{\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} 0.999_{\pm 0.001} \\ 0.999_{\pm 0.001} \\ 0.921_{\pm 0.074} \\ 0.998_{\pm 0.002} \\ 0.999_{\pm 0.001} \\ 0.992_{\pm 0.005} \end{array}$	$ \begin{array}{c} 0.024 \scriptstyle{\pm 0.006} \\ 0.023 \scriptstyle{\pm 0.003} \\ 0.016 \scriptstyle{\pm 0.003} \\ 0.023 \scriptstyle{\pm 0.005} \\ 0.026 \scriptstyle{\pm 0.008} \\ 0.016 \scriptstyle{\pm 0.003} \end{array} $	$\begin{array}{c} 0.997_{\pm 0.001} \\ 0.996_{\pm 0.002} \\ 0.936_{\pm 0.060} \\ 0.996_{\pm 0.002} \\ 0.997_{\pm 0.001} \\ 0.989_{\pm 0.005} \end{array}$	$\begin{array}{c} 0.010_{\pm 0.000} \\ 0.012_{\pm 0.001} \\ 0.000_{\pm 0.000} \\ 0.010_{\pm 0.000} \\ 0.010_{\pm 0.001} \\ 0.002_{\pm 0.000} \end{array}$	0.986 ± 0.003 0.600 ± 0.023 0.986 ± 0.002 0.987 ± 0.002	$\begin{array}{c} 0.010 {\scriptstyle \pm 0.000} \\ 0.011 {\scriptstyle \pm 0.001} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.010 {\scriptstyle \pm 0.000} \\ 0.010 {\scriptstyle \pm 0.001} \\ 0.002 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.991_{\pm 0.002} \\ 0.983_{\pm 0.003} \\ 0.635_{\pm 0.027} \\ 0.986_{\pm 0.002} \\ 0.987_{\pm 0.002} \\ 0.975_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.011 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.010 \pm 0.000 \\ 0.010 \pm 0.000 \end{array}$	$\begin{array}{c} 0.993 \scriptstyle{\pm 0.001} \\ 0.989 \scriptstyle{\pm 0.002} \\ 0.618 \scriptstyle{\pm 0.019} \\ 0.990 \scriptstyle{\pm 0.001} \\ 0.990 \scriptstyle{\pm 0.001} \\ 0.983 \scriptstyle{\pm 0.002} \end{array}$	$\begin{array}{c} 0.010 {\pm} 0.000 \\ 0.011 {\pm} 0.001 \\ 0.000 {\pm} 0.000 \\ 0.010 {\pm} 0.000 \\ 0.010 {\pm} 0.001 \\ 0.002 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.993_{\pm 0.001} \\ 0.986_{\pm 0.002} \\ 0.643_{\pm 0.022} \\ 0.990_{\pm 0.001} \\ 0.991_{\pm 0.001} \\ 0.982_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.011 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.010 \pm 0.000 \end{array}$	$\begin{array}{c} 0.994 \scriptstyle{\pm 0.001} \\ 0.990 \scriptstyle{\pm 0.001} \\ 0.628 \scriptstyle{\pm 0.017} \\ 0.991 \scriptstyle{\pm 0.001} \\ 0.992 \scriptstyle{\pm 0.001} \\ 0.986 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.010_{\pm 0.000} \\ 0.011_{\pm 0.001} \\ 0.000_{\pm 0.000} \\ 0.010_{\pm 0.000} \\ 0.010_{\pm 0.001} \\ 0.002_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.994{\scriptstyle \pm 0.001} \\ 0.986{\scriptstyle \pm 0.002} \\ 0.653{\scriptstyle \pm 0.021} \\ 0.991{\scriptstyle \pm 0.001} \\ 0.992{\scriptstyle \pm 0.001} \\ 0.985{\scriptstyle \pm 0.001} \end{array}$

(a) Static Dependency: Results by assuming the absence of temporal dependencies among samples ($\mathbb T$ and $\mathbb E$ are randomly sampled from $\mathbb D$).

Availa	able Data	Limi	ted (100 p	er class) [[N=1]	Sca	arce (15%	of D) [N	=1]	Mod	lerate (40	% of D) [1	N=1]	Abu	ndant (80	% of D) [I	N=1]
Fe	atures	Con	plete	Esse	ential	Com	plete	Esse	ential	Com	plete	Esse	ntial	Con	plete	Esse	ntial
Alg.	Design	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr
RF	BD MD ED-v ED-s ED-o ED	0.019 0.019 0.020 0.020 0.021 0.019	1.000 0.997 0.974 1.000 1.000 0.996	0.023 0.019 0.019 0.024 0.024 0.019	0.997 0.996 0.982 0.998 0.998 0.992	0.010 0.009 0.000 0.009 0.009 0.002	0.994 0.989 0.535 0.987 0.987 0.977	0.010 0.009 0.000 0.009 0.009 0.001	0.990 0.984 0.566 0.985 0.985 0.974	0.010 0.010 0.000 0.009 0.009 0.001	0.991 0.986 0.563 0.986 0.986 0.981	0.010 0.009 0.000 0.009 0.009 0.001	0.988 0.984 0.573 0.985 0.985 0.980	0.009 0.008 0.000 0.008 0.008 0.001	0.990 0.988 0.578 0.987 0.987 0.983	0.008 0.008 0.000 0.008 0.008 0.001	0.988 0.985 0.582 0.985 0.985 0.980
DT	BD MD ED-v ED-s ED-o ED	0.020 0.020 0.019 0.020 0.025 0.019	1.000 1.000 0.990 1.000 1.000 0.993	0.032 0.029 0.019 0.030 0.030 0.020	0.997 0.997 0.990 0.997 0.997 0.992	0.008 0.008 0.000 0.009 0.009 0.002	0.959 0.962 0.585 0.971 0.971 0.949	0.008 0.008 0.000 0.008 0.008 0.002	0.959 0.960 0.585 0.965 0.965 0.947	0.007 0.007 0.000 0.008 0.008 0.001	0.962 0.961 0.640 0.969 0.969 0.954	0.007 0.008 0.000 0.008 0.008 0.001	0.961 0.962 0.671 0.966 0.966 0.953	0.007 0.007 0.000 0.007 0.007 0.001	0.966 0.967 0.571 0.970 0.970 0.958	0.007 0.007 0.000 0.007 0.007 0.001	0.968 0.969 0.622 0.971 0.971 0.959
LR	BD MD ED-v ED-s ED-o ED	0.356 0.397 0.144 0.321 0.321 0.166	0.971 0.547 0.861 0.957 0.958 0.914	0.341 0.937 0.017 0.065 0.149 0.037	0.983 0.963 0.689 0.951 0.980 0.922	0.004 0.000 0.000 0.012 0.012 0.002	0.045 0.005 0.000 0.195 0.197 0.102	0.008 0.000 0.001 0.010 0.010 0.002	0.548 0.006 0.329 0.630 0.630 0.474	0.004 0.000 0.000 0.013 0.013 0.002	0.045 0.005 0.000 0.213 0.213 0.108	0.004 0.000 0.000 0.004 0.007 0.002	0.306 0.009 0.314 0.479 0.488 0.375	0.002 0.000 0.000 0.013 0.013 0.002	0.044 0.005 0.000 0.198 0.198 0.097	0.008 0.001 0.001 0.006 0.011 0.003	0.533 0.035 0.326 0.538 0.558 0.411
нсв	BD MD ED-v ED-s ED-o ED	0.023 0.024 0.021 0.023 0.023 0.020	1.000 1.000 0.947 1.000 1.000 0.996	0.028 0.028 0.020 0.027 0.027 0.028 0.020	0.997 0.997 0.867 0.996 0.997 0.990	0.010 0.012 0.000 0.010 0.010 0.002	0.990 0.987 0.581 0.988 0.989 0.977	0.010 0.011 0.000 0.010 0.010 0.002	0.990 0.991 0.646 0.986 0.987 0.976	0.010 0.011 0.000 0.009 0.010 0.002	0.993 0.989 0.640 0.989 0.989 0.982	0.010 0.011 0.000 0.010 0.010 0.002	0.992 0.985 0.682 0.990 0.990 0.983	0.011 0.012 0.000 0.010 0.010 0.002	0.995 0.990 0.622 0.992 0.993 0.986	0.011 0.011 0.000 0.011 0.011 0.002	0.995 0.987 0.657 0.992 0.992 0.984

(b) Temporal Dependency: Results by assuming the presence of temporal dependencies among samples (the 'first' samples of $\mathbb D$ are put in $\mathbb T$, while the last 20% represent $\mathbb E$).

TABLE 12: NB15. Results against adversarial (original tpr and adversarial tpr) and unknown attacks (the tpr is the average on the 'unknown' attacks, while the fpr is due to training on a new \mathbb{T} that does not have the 'unknown' class.).

Avail	able Data		Limited (100 per	r class) [N=1000	g .		Scarce (15%	of D) [N=100]			Moderate (40%	of D) [N=100]			Abundant (80%	of D) [N=100]	
	enario	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknown	Attacks
Alg.	Design	tpr (org)	tpr (sdv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr
RF	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.984 {\scriptstyle \pm 0.007} \\ 0.971 {\scriptstyle \pm 0.006} \\ 0.896 {\scriptstyle \pm 0.098} \\ 0.975 {\scriptstyle \pm 0.008} \\ 0.977 {\scriptstyle \pm 0.006} \end{array}$	$\begin{array}{c} 0.976 \pm 0.010 \\ 0.552 \pm 0.263 \\ 0.171 \pm 0.229 \\ 0.861 \pm 0.154 \\ 0.886 \pm 0.128 \end{array}$	$ \begin{array}{c} 0.021 \pm_{0.002} \\ 0.020 \pm_{0.001} \\ 0.018 \pm_{0.002} \\ 0.021 \pm_{0.002} \\ 0.022 \pm_{0.002} \end{array} $	$\begin{array}{c} 1.000 {\pm} 0.001 \\ 0.995 {\pm} 0.005 \\ 0.958 {\pm} 0.035 \\ 0.998 {\pm} 0.003 \\ 0.999 {\pm} 0.002 \end{array}$	$\begin{array}{c} 0.972 {\scriptstyle \pm 0.005} \\ 0.967 {\scriptstyle \pm 0.006} \\ 0.349 {\scriptstyle \pm 0.082} \\ 0.968 {\scriptstyle \pm 0.005} \\ 0.968 {\scriptstyle \pm 0.005} \end{array}$	$\begin{array}{c} 0.998 \scriptstyle{\pm 0.003} \\ 0.989 \scriptstyle{\pm 0.008} \\ 0.062 \scriptstyle{\pm 0.054} \\ 0.982 \scriptstyle{\pm 0.020} \\ 0.982 \scriptstyle{\pm 0.020} \end{array}$	$\begin{array}{c} 0.009 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.008 \pm 0.000 \end{array}$	$\begin{array}{c} 0.890 {\scriptstyle \pm 0.003} \\ 0.861 {\scriptstyle \pm 0.006} \\ 0.547 {\scriptstyle \pm 0.028} \\ 0.879 {\scriptstyle \pm 0.004} \\ 0.879 {\scriptstyle \pm 0.004} \end{array}$	$\begin{array}{c} 0.974 \scriptstyle{\pm 0.004} \\ 0.972 \scriptstyle{\pm 0.004} \\ 0.384 \scriptstyle{\pm 0.086} \\ 0.972 \scriptstyle{\pm 0.003} \\ 0.972 \scriptstyle{\pm 0.003} \end{array}$	$\begin{array}{c} 1.000 \scriptstyle{\pm 0.001} \\ 0.996 \scriptstyle{\pm 0.003} \\ 0.072 \scriptstyle{\pm 0.053} \\ 0.993 \scriptstyle{\pm 0.014} \\ 0.993 \scriptstyle{\pm 0.014} \end{array}$	$\begin{array}{c} 0.008 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.008 \pm 0.000 \end{array}$	$\begin{array}{c} 0.886 {\scriptstyle \pm 0.002} \\ 0.863 {\scriptstyle \pm 0.004} \\ 0.559 {\scriptstyle \pm 0.027} \\ 0.879 {\scriptstyle \pm 0.003} \\ 0.879 {\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} 0.975 \scriptstyle{\pm 0.003} \\ 0.973 \scriptstyle{\pm 0.003} \\ 0.400 \scriptstyle{\pm 0.062} \\ 0.974 \scriptstyle{\pm 0.003} \\ 0.974 \scriptstyle{\pm 0.003} \end{array}$	$\begin{array}{c} 1.000 {\pm} 0.000 \\ 0.998 {\pm} 0.002 \\ 0.064 {\pm} 0.040 \\ 0.993 {\pm} 0.016 \\ 0.993 {\pm} 0.016 \end{array}$	0.008±0.000 0.007±0.000 0.000±0.000 0.007±0.000 0.007±0.000	$\begin{array}{c} 0.883 \scriptstyle{\pm 0.003} \\ 0.863 \scriptstyle{\pm 0.003} \\ 0.559 \scriptstyle{\pm 0.024} \\ 0.879 \scriptstyle{\pm 0.003} \\ 0.879 \scriptstyle{\pm 0.003} \end{array}$
TO	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.975 \scriptstyle{\pm 0.015} \\ 0.974 \scriptstyle{\pm 0.017} \\ 0.914 \scriptstyle{\pm 0.141} \\ 0.978 \scriptstyle{\pm 0.012} \\ 0.980 \scriptstyle{\pm 0.010} \end{array}$	$\begin{array}{c} 0.973 \pm 0.056 \\ 0.982 \pm 0.015 \\ 0.880 \pm 0.223 \\ 0.977 \pm 0.047 \\ 0.982 \pm 0.036 \end{array}$	$ \begin{array}{c} 0.021 \pm 0.003 \\ 0.022 \pm 0.003 \\ 0.015 \pm 0.003 \\ 0.021 \pm 0.003 \\ 0.023 \pm 0.004 \end{array} $	$\begin{array}{c} 0.992 \pm 0.008 \\ 0.985 \pm 0.014 \\ 0.905 \pm 0.067 \\ 0.994 \pm 0.006 \\ 0.997 \pm 0.004 \end{array}$	0.367±0.079 0.923±0.007	$\begin{array}{c} 0.865 {\scriptstyle \pm 0.127} \\ 0.866 {\scriptstyle \pm 0.271} \\ 0.395 {\scriptstyle \pm 0.252} \\ 0.972 {\scriptstyle \pm 0.064} \\ 0.972 {\scriptstyle \pm 0.064} \end{array}$	$\begin{array}{c} 0.007 \pm 0.000 \\ 0.007 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.008 \pm 0.000 \end{array}$	$0.863_{\pm 0.009}$ $0.563_{\pm 0.027}$ $0.890_{\pm 0.005}$	$\begin{array}{c} 0.925 \pm 0.006 \\ 0.925 \pm 0.006 \\ 0.357 \pm 0.072 \\ 0.930 \pm 0.006 \\ 0.930 \pm 0.006 \end{array}$	$\begin{array}{c} 0.882 {\scriptstyle \pm 0.126} \\ 0.767 {\scriptstyle \pm 0.367} \\ 0.378 {\scriptstyle \pm 0.225} \\ 0.969 {\scriptstyle \pm 0.058} \\ 0.969 {\scriptstyle \pm 0.058} \end{array}$	0.007±0.000 0.007±0.000 0.000±0.000 0.007±0.000 0.007±0.000	0.863 ± 0.009 0.563 ± 0.021 0.886 ± 0.005	$\begin{array}{c} 0.932 {\scriptstyle \pm 0.006} \\ 0.932 {\scriptstyle \pm 0.006} \\ 0.336 {\scriptstyle \pm 0.077} \\ 0.936 {\scriptstyle \pm 0.005} \\ 0.936 {\scriptstyle \pm 0.005} \end{array}$	$\begin{array}{c} 0.877 \pm 0.121 \\ 0.716 \pm 0.337 \\ 0.341 \pm 0.186 \\ 0.951 \pm 0.064 \\ 0.951 \pm 0.064 \end{array}$	0.006±0.000 0.006±0.000 0.000±0.000 0.007±0.000 0.007±0.000	$\begin{array}{c} 0.862 {\scriptstyle \pm 0.006} \\ 0.862 {\scriptstyle \pm 0.008} \\ 0.560 {\scriptstyle \pm 0.015} \\ 0.881 {\scriptstyle \pm 0.004} \\ 0.881 {\scriptstyle \pm 0.004} \end{array}$
LR	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.958 \scriptstyle{\pm 0.027} \\ 0.984 \scriptstyle{\pm 0.051} \\ 0.660 \scriptstyle{\pm 0.120} \\ 0.956 \scriptstyle{\pm 0.022} \\ 0.961 \scriptstyle{\pm 0.019} \end{array}$	$\begin{array}{c} 0.807 {\scriptstyle \pm 0.355} \\ 0.160 {\scriptstyle \pm 0.254} \\ 0.032 {\scriptstyle \pm 0.133} \\ 0.863 {\scriptstyle \pm 0.266} \\ 0.917 {\scriptstyle \pm 0.189} \end{array}$	$ \begin{array}{c} 0.349 {\scriptstyle \pm 0.017} \\ 0.446 {\scriptstyle \pm 0.143} \\ 0.145 {\scriptstyle \pm 0.007} \\ 0.283 {\scriptstyle \pm 0.044} \\ 0.309 {\scriptstyle \pm 0.020} \end{array} $	$0.910_{\pm 0.087}$ $0.896_{\pm 0.020}$ $0.957_{\pm 0.007}$	$\begin{array}{c} 0.295 \scriptstyle{\pm 0.256} \\ 0.075 \scriptstyle{\pm 0.097} \\ 0.064 \scriptstyle{\pm 0.040} \\ 0.567 \scriptstyle{\pm 0.129} \\ 0.574 \scriptstyle{\pm 0.127} \end{array}$	$\begin{array}{c} 0.500 {\scriptstyle \pm 0.473} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.239 {\scriptstyle \pm 0.373} \\ 0.300 {\scriptstyle \pm 0.390} \end{array}$	0.001±0.000 0.000±0.000 0.011±0.001	$0.010_{\pm 0.003}$ $0.000_{\pm 0.000}$ $0.143_{\pm 0.008}$	$\begin{array}{c} 0.321 \pm 0.264 \\ 0.073 \pm 0.115 \\ 0.080 \pm 0.061 \\ 0.585 \pm 0.108 \\ 0.596 \pm 0.104 \end{array}$	$0.000_{\pm 0.000}$ $0.000_{\pm 0.000}$ $0.380_{\pm 0.414}$	$\begin{array}{c} 0.004 \scriptstyle{\pm 0.001} \\ 0.001 \scriptstyle{\pm 0.000} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.011 \scriptstyle{\pm 0.000} \\ 0.011 \scriptstyle{\pm 0.000} \end{array}$	0.010±0.003 0.000±0.000 0.143±0.005	$\begin{array}{c} 0.322 {\scriptstyle \pm 0.266} \\ 0.075 {\scriptstyle \pm 0.084} \\ 0.072 {\scriptstyle \pm 0.050} \\ 0.565 {\scriptstyle \pm 0.111} \\ 0.577 {\scriptstyle \pm 0.109} \end{array}$	$\begin{array}{c} 0.558 \pm 0.469 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.313 \pm 0.407 \\ 0.350 \pm 0.411 \end{array}$	$\begin{array}{c} 0.004 {\scriptstyle \pm 0.000} \\ 0.001 {\scriptstyle \pm 0.000} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.011 {\scriptstyle \pm 0.000} \\ 0.011 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.055 {\scriptstyle \pm 0.002} \\ 0.010 {\scriptstyle \pm 0.003} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.143 {\scriptstyle \pm 0.005} \\ 0.146 {\scriptstyle \pm 0.005} \end{array}$
нсв	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.983 {\scriptstyle \pm 0.008} \\ 0.979 {\scriptstyle \pm 0.010} \\ 0.817 {\scriptstyle \pm 0.217} \\ 0.980 {\scriptstyle \pm 0.009} \\ 0.982 {\scriptstyle \pm 0.008} \end{array}$	$\begin{array}{c} 0.972 \pm 0.060 \\ 0.941 \pm 0.111 \\ 0.763 \pm 0.260 \\ 0.963 \pm 0.072 \\ 0.975 \pm 0.032 \end{array}$	$ \begin{array}{c c} 0.021 \pm 0.002 \\ 0.021 \pm 0.002 \\ 0.014 \pm 0.003 \\ 0.021 \pm 0.002 \\ 0.022 \pm 0.004 \end{array} $	$\begin{array}{c} 0.997 \pm 0.004 \\ 0.993 \pm 0.008 \\ 0.888 \pm 0.064 \\ 0.990 \pm 0.011 \\ 0.995 \pm 0.007 \end{array}$	$\begin{array}{c} 0.983 \pm 0.005 \\ 0.957 \pm 0.011 \\ 0.429 \pm 0.090 \\ 0.978 \pm 0.006 \\ 0.979 \pm 0.005 \end{array}$	$\begin{array}{c} 0.992 {\scriptstyle \pm 0.019} \\ 0.956 {\scriptstyle \pm 0.085} \\ 0.458 {\scriptstyle \pm 0.203} \\ 0.980 {\scriptstyle \pm 0.030} \\ 0.981 {\scriptstyle \pm 0.030} \end{array}$	$\begin{array}{c} 0.010 \scriptstyle{\pm 0.001} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.008 \scriptstyle{\pm 0.000} \end{array}$	0.858±0.012 0.589±0.030	$\begin{array}{c} 0.989 \scriptstyle{\pm 0.003} \\ 0.966 \scriptstyle{\pm 0.007} \\ 0.457 \scriptstyle{\pm 0.076} \\ 0.984 \scriptstyle{\pm 0.004} \\ 0.986 \scriptstyle{\pm 0.003} \end{array}$	$\begin{array}{c} 0.992 {\scriptstyle \pm 0.033} \\ 0.962 {\scriptstyle \pm 0.073} \\ 0.477 {\scriptstyle \pm 0.196} \\ 0.982 {\scriptstyle \pm 0.034} \\ 0.984 {\scriptstyle \pm 0.031} \end{array}$	$\begin{array}{c} 0.009 \pm 0.000 \\ 0.010 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.008 \pm 0.000 \\ 0.009 \pm 0.000 \end{array}$	$0.850_{\pm 0.016}$ $0.596_{\pm 0.024}$ $0.880_{\pm 0.003}$	$\begin{array}{c} 0.990 {\scriptstyle \pm 0.003} \\ 0.967 {\scriptstyle \pm 0.005} \\ 0.469 {\scriptstyle \pm 0.065} \\ 0.986 {\scriptstyle \pm 0.004} \\ 0.987 {\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} 0.991 \scriptstyle{\pm 0.024} \\ 0.974 \scriptstyle{\pm 0.027} \\ 0.500 \scriptstyle{\pm 0.188} \\ 0.983 \scriptstyle{\pm 0.026} \\ 0.986 \scriptstyle{\pm 0.023} \end{array}$		$\begin{array}{c} 0.886 {\scriptstyle \pm 0.003} \\ 0.846 {\scriptstyle \pm 0.018} \\ 0.588 {\scriptstyle \pm 0.018} \\ 0.879 {\scriptstyle \pm 0.003} \\ 0.882 {\scriptstyle \pm 0.003} \end{array}$

(a) Static Dependency: Results by assuming the absence of temporal dependencies among samples (\mathbb{T} and \mathbb{E} are randomly sampled from \mathbb{D}).

Availa	able Data	Lim	ited (100 p	er class) [N	I=1]	S	carce (15%	of D) [N=	1]	Mo	derate (40%	of D) [N	=1]	Ab	oundant (809	6 of □) [N	I=1]
Sc	enario	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	ial Attacks	Unknow	n Attacks
Alg.	Design	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr
RF	BD	0.985	0.983	0.020	1.000	0.967	0.998	0.009	0.890	0.972	1.000	0.009	0.886	0.973	1.000	0.008	0.882
	MD	0.974	0.529	0.019	0.996	0.957	0.960	0.008	0.859	0.969	0.998	0.008	0.865	0.974	1.000	0.007	0.865
	ED-v	0.928	0.407	0.020	0.970	0.416	0.151	0.000	0.583	0.398	0.098	0.000	0.531	0.452	0.161	0.000	0.550
	ED-s	0.982	0.645	0.020	1.000	0.956	0.975	0.008	0.879	0.970	1.000	0.008	0.877	0.972	0.994	0.007	0.877
	ED-o	0.983	0.925	0.021	1.000	0.956	0.975	0.008	0.879	0.970	1.000	0.008	0.877	0.972	0.994	0.007	0.877
DT	BD	0.982	0.982	0.020	1.000	0.914	0.915	0.007	0.872	0.927	0.660	0.007	0.870	0.934	0.955	0.006	0.858
	MD	0.982	0.983	0.021	1.000	0.929	0.991	0.007	0.877	0.935	0.783	0.007	0.834	0.928	0.982	0.006	0.864
	ED-v	0.978	0.978	0.019	0.989	0.306	0.168	0.000	0.541	0.383	0.293	0.000	0.558	0.368	0.013	0.000	0.545
	ED-s	0.982	0.983	0.020	0.998	0.928	0.993	0.008	0.896	0.930	0.987	0.007	0.881	0.937	0.839	0.006	0.885
	ED-o	0.982	0.983	0.024	1.000	0.928	0.993	0.008	0.896	0.930	0.987	0.007	0.881	0.937	0.839	0.006	0.885
LR	BD	0.974	0.993	0.346	0.974	0.563	0.971	0.004	0.058	0.015	0.000	0.004	0.055	0.578	0.999	0.003	0.052
	MD	0.999	0.249	0.219	0.594	0.001	0.000	0.001	0.008	0.007	0.000	0.002	0.012	0.167	0.000	0.001	0.008
	ED-v	0.476	0.005	0.144	0.908	0.062	0.000	0.000	0.000	0.013	0.000	0.000	0.000	0.077	0.000	0.000	0.000
	ED-s	0.937	0.999	0.274	0.951	0.739	0.002	0.011	0.136	0.192	0.883	0.012	0.152	0.555	0.001	0.011	0.139
	ED-o	0.941	1.000	0.298	0.960	0.739	0.002	0.011	0.144	0.210	0.883	0.012	0.154	0.587	0.836	0.011	0.143
HGB	BD	0.979	0.975	0.023	0.999	0.984	0.989	0.009	0.891	0.991	0.999	0.008	0.889	0.989	0.999	0.009	0.887
	MD	0.979	0.975	0.024	0.999	0.988	0.989	0.010	0.825	0.969	0.980	0.010	0.853	0.972	0.979	0.010	0.826
	ED-v	0.972	0.000	0.021	0.942	0.421	0.380	0.000	0.599	0.527	0.244	0.000	0.593	0.507	0.207	0.000	0.603
	ED-s	0.980	0.975	0.023	0.998	0.974	0.965	0.008	0.882	0.988	0.998	0.008	0.883	0.983	0.993	0.009	0.878
	ED-o	0.980	0.975	0.023	0.999	0.976	0.965	0.009	0.891	0.988	0.998	0.008	0.886	0.984	0.993	0.009	0.884

TABLE 13: UF-NB15 binary classification results (fpr and tpr) against 'known' attacks seen during the training stage (closed world).

Avai	able Data	1	Limited (100 per	r class) [N=1000	1	ı	Scarce (15%	of D) [N=100]		ı	Moderate (40%	of D) [N=100]		I	Abundant (80%	of D) [N=100]	
	eatures	Con	plete	Esse	ential	Com	plete	Esse	ntial	Com	plete	Esse	ntial	Com	plete	Esse	ntial
Alg.	Design	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr
Æ	BD MD ED-v ED-s ED-o ED	0.011±0.003 0.009±0.002 0.008±0.002 0.011±0.003 0.012±0.003	$\begin{array}{c} 0.999_{\pm 0.001} \\ 0.998_{\pm 0.001} \\ 0.913_{\pm 0.094} \\ 0.999_{\pm 0.001} \\ 0.999_{\pm 0.001} \\ 0.996_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.060 {\pm} _{0.027} \\ 0.050 {\pm} _{0.025} \\ 0.008 {\pm} _{0.003} \\ 0.057 {\pm} _{0.026} \\ 0.058 {\pm} _{0.027} \\ 0.018 {\pm} _{0.007} \end{array}$	$\begin{array}{c} 0.991_{\pm 0.006} \\ 0.982_{\pm 0.009} \\ 0.699_{\pm 0.031} \\ 0.984_{\pm 0.009} \\ 0.985_{\pm 0.009} \\ 0.969_{\pm 0.011} \end{array}$	$\begin{array}{c} 0.004 {\pm} 0.000 \\ 0.003 {\pm} 0.000 \\ 0.000 {\pm} 0.000 \\ 0.003 {\pm} 0.000 \\ 0.003 {\pm} 0.000 \\ 0.001 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.994{\scriptstyle \pm 0.001} \\ 0.990{\scriptstyle \pm 0.001} \\ 0.423{\scriptstyle \pm 0.022} \\ 0.991{\scriptstyle \pm 0.001} \\ 0.991{\scriptstyle \pm 0.001} \\ 0.979{\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.004 \scriptstyle{\pm 0.000} \\ 0.004 \scriptstyle{\pm 0.000} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.004 \scriptstyle{\pm 0.000} \\ 0.004 \scriptstyle{\pm 0.000} \\ 0.001 \scriptstyle{\pm 0.000} \end{array}$	$\begin{array}{c} 0.989 {\scriptstyle \pm 0.001} \\ 0.985 {\scriptstyle \pm 0.001} \\ 0.389 {\scriptstyle \pm 0.035} \\ 0.986 {\scriptstyle \pm 0.001} \\ 0.986 {\scriptstyle \pm 0.001} \\ 0.967 {\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.994 \scriptstyle{\pm 0.001} \\ 0.990 \scriptstyle{\pm 0.001} \\ 0.421 \scriptstyle{\pm 0.015} \\ 0.991 \scriptstyle{\pm 0.001} \\ 0.991 \scriptstyle{\pm 0.001} \\ 0.980 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.990_{\pm 0.001} \\ 0.986_{\pm 0.001} \\ 0.383_{\pm 0.025} \\ 0.987_{\pm 0.001} \\ 0.987_{\pm 0.001} \\ 0.972_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.994{\scriptstyle \pm 0.001} \\ 0.991{\scriptstyle \pm 0.001} \\ 0.420{\scriptstyle \pm 0.014} \\ 0.991{\scriptstyle \pm 0.001} \\ 0.991{\scriptstyle \pm 0.001} \\ 0.982{\scriptstyle \pm 0.001} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.991_{\pm 0.001} \\ 0.988_{\pm 0.001} \\ 0.383_{\pm 0.015} \\ 0.988_{\pm 0.001} \\ 0.988_{\pm 0.001} \\ 0.975_{\pm 0.001} \end{array}$
DT	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.011 \pm 0.004 \\ 0.011 \pm 0.004 \\ 0.008 \pm 0.003 \\ 0.012 \pm 0.004 \\ 0.013 \pm 0.004 \\ 0.008 \pm 0.002 \end{array}$	$\begin{array}{c} 0.997_{\pm 0.003} \\ 0.997_{\pm 0.003} \\ 0.934_{\pm 0.085} \\ 0.998_{\pm 0.002} \\ 0.999_{\pm 0.001} \\ 0.993_{\pm 0.007} \end{array}$	$ \begin{array}{c} 0.065{\scriptstyle \pm 0.027} \\ 0.072{\scriptstyle \pm 0.031} \\ 0.008{\scriptstyle \pm 0.007} \\ 0.094{\scriptstyle \pm 0.034} \\ 0.103{\scriptstyle \pm 0.034} \\ 0.025{\scriptstyle \pm 0.009} \end{array} $	$\begin{array}{c} 0.975{\scriptstyle \pm 0.010} \\ 0.976{\scriptstyle \pm 0.010} \\ 0.698{\scriptstyle \pm 0.046} \\ 0.983{\scriptstyle \pm 0.009} \\ 0.985{\scriptstyle \pm 0.008} \\ 0.948{\scriptstyle \pm 0.015} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.979 {\pm 0.002} \\ 0.980 {\pm 0.002} \\ 0.419 {\pm 0.032} \\ 0.985 {\pm 0.001} \\ 0.985 {\pm 0.001} \\ 0.964 {\pm 0.002} \end{array}$	$\begin{array}{c} 0.004 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.005 \pm 0.000 \\ 0.005 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.974_{\pm 0.002} \\ 0.975_{\pm 0.002} \\ 0.362_{\pm 0.042} \\ 0.980_{\pm 0.002} \\ 0.980_{\pm 0.002} \\ 0.950_{\pm 0.003} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.981 \scriptstyle{\pm 0.001} \\ 0.982 \scriptstyle{\pm 0.001} \\ 0.413 \scriptstyle{\pm 0.029} \\ 0.986 \scriptstyle{\pm 0.001} \\ 0.986 \scriptstyle{\pm 0.001} \\ 0.969 \scriptstyle{\pm 0.002} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.979 {\pm 0.001} \\ 0.979 {\pm 0.001} \\ 0.377 {\pm 0.032} \\ 0.983 {\pm 0.001} \\ 0.983 {\pm 0.001} \\ 0.959 {\pm 0.002} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.983 {\scriptstyle \pm 0.001} \\ 0.983 {\scriptstyle \pm 0.001} \\ 0.400 {\scriptstyle \pm 0.028} \\ 0.987 {\scriptstyle \pm 0.001} \\ 0.987 {\scriptstyle \pm 0.001} \\ 0.971 {\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.981 {\scriptstyle \pm 0.001} \\ 0.981 {\scriptstyle \pm 0.001} \\ 0.379 {\scriptstyle \pm 0.022} \\ 0.984 {\scriptstyle \pm 0.001} \\ 0.984 {\scriptstyle \pm 0.001} \\ 0.964 {\scriptstyle \pm 0.002} \end{array}$
LR	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.701{\scriptstyle \pm 0.111} \\ 0.579{\scriptstyle \pm 0.320} \\ 0.039{\scriptstyle \pm 0.019} \\ 0.298{\scriptstyle \pm 0.111} \\ 0.460{\scriptstyle \pm 0.118} \\ 0.129{\scriptstyle \pm 0.030} \end{array}$	$\begin{array}{c} 0.966 \scriptstyle{\pm 0.052} \\ 0.832 \scriptstyle{\pm 0.167} \\ 0.683 \scriptstyle{\pm 0.061} \\ 0.922 \scriptstyle{\pm 0.031} \\ 0.955 \scriptstyle{\pm 0.048} \\ 0.809 \scriptstyle{\pm 0.071} \end{array}$	$ \begin{array}{c} 0.469 \scriptstyle{\pm 0.144} \\ 0.651 \scriptstyle{\pm 0.184} \\ 0.029 \scriptstyle{\pm 0.018} \\ 0.228 \scriptstyle{\pm 0.064} \\ 0.283 \scriptstyle{\pm 0.087} \\ 0.079 \scriptstyle{\pm 0.020} \end{array} $	$\begin{array}{c} 0.890 {\scriptstyle \pm 0.054} \\ 0.922 {\scriptstyle \pm 0.103} \\ 0.588 {\scriptstyle \pm 0.059} \\ 0.906 {\scriptstyle \pm 0.029} \\ 0.914 {\scriptstyle \pm 0.030} \\ 0.807 {\scriptstyle \pm 0.048} \end{array}$	$\begin{array}{c} 0.009 \scriptstyle{\pm 0.018} \\ 0.004 \scriptstyle{\pm 0.001} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.008 \scriptstyle{\pm 0.002} \\ 0.045 \scriptstyle{\pm 0.035} \\ 0.007 \scriptstyle{\pm 0.005} \end{array}$	$\begin{array}{c} 0.241_{\pm 0.096} \\ 0.284_{\pm 0.003} \\ 0.081_{\pm 0.100} \\ 0.469_{\pm 0.051} \\ 0.500_{\pm 0.046} \\ 0.235_{\pm 0.039} \end{array}$	$\begin{array}{c} 0.007_{\pm 0.005} \\ 0.014_{\pm 0.025} \\ 0.000_{\pm 0.000} \\ 0.005_{\pm 0.001} \\ 0.007_{\pm 0.003} \\ 0.002_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.220_{\pm 0.048} \\ 0.279_{\pm 0.065} \\ 0.116_{\pm 0.023} \\ 0.419_{\pm 0.043} \\ 0.432_{\pm 0.042} \\ 0.230_{\pm 0.033} \end{array}$	$\begin{array}{c} 0.005 \pm 0.011 \\ 0.005 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.009 \pm 0.002 \\ 0.030 \pm 0.031 \\ 0.005 \pm 0.004 \end{array}$	$\begin{array}{c} 0.268 {\scriptstyle \pm 0.074} \\ 0.284 {\scriptstyle \pm 0.003} \\ 0.053 {\scriptstyle \pm 0.084} \\ 0.464 {\scriptstyle \pm 0.037} \\ 0.491 {\scriptstyle \pm 0.029} \\ 0.233 {\scriptstyle \pm 0.040} \end{array}$	$\begin{array}{c} 0.007_{\pm 0.005} \\ 0.023_{\pm 0.033} \\ 0.000_{\pm 0.000} \\ 0.005_{\pm 0.001} \\ 0.007_{\pm 0.003} \\ 0.002_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.242 \scriptstyle{\pm 0.050} \\ 0.298 \scriptstyle{\pm 0.015} \\ 0.123 \scriptstyle{\pm 0.018} \\ 0.414 \scriptstyle{\pm 0.046} \\ 0.426 \scriptstyle{\pm 0.045} \\ 0.232 \scriptstyle{\pm 0.035} \end{array}$	$\begin{array}{c} 0.005{\scriptstyle \pm 0.007} \\ 0.005{\scriptstyle \pm 0.001} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.009{\scriptstyle \pm 0.002} \\ 0.019{\scriptstyle \pm 0.022} \\ 0.003{\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} 0.268 \scriptstyle{\pm 0.080} \\ 0.284 \scriptstyle{\pm 0.003} \\ 0.072 \scriptstyle{\pm 0.095} \\ 0.463 \scriptstyle{\pm 0.032} \\ 0.487 \scriptstyle{\pm 0.024} \\ 0.233 \scriptstyle{\pm 0.036} \end{array}$	$\begin{array}{c} 0.006 \scriptstyle{\pm 0.003} \\ 0.019 \scriptstyle{\pm 0.029} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.005 \scriptstyle{\pm 0.001} \\ 0.007 \scriptstyle{\pm 0.001} \\ 0.001 \scriptstyle{\pm 0.000} \end{array}$	$\begin{array}{c} 0.259_{\pm 0.049} \\ 0.297_{\pm 0.031} \\ 0.122_{\pm 0.017} \\ 0.415_{\pm 0.034} \\ 0.426_{\pm 0.032} \\ 0.227_{\pm 0.030} \end{array}$
HGB	BD MD ED-v ED-s ED-o ED	0.011±0.003 0.011±0.003 0.008±0.002 0.011±0.003 0.011±0.004 0.007±0.002	$\begin{array}{c} 0.999 \scriptstyle{\pm 0.001} \\ 0.998 \scriptstyle{\pm 0.001} \\ 0.913 \scriptstyle{\pm 0.101} \\ 0.999 \scriptstyle{\pm 0.002} \\ 0.999 \scriptstyle{\pm 0.001} \\ 0.995 \scriptstyle{\pm 0.003} \end{array}$	$\begin{array}{c} 0.058 \scriptstyle{\pm 0.025} \\ 0.054 \scriptstyle{\pm 0.025} \\ 0.012 \scriptstyle{\pm 0.008} \\ 0.065 \scriptstyle{\pm 0.031} \\ 0.068 \scriptstyle{\pm 0.032} \\ 0.021 \scriptstyle{\pm 0.008} \end{array}$	$\begin{array}{c} 0.988 \scriptstyle{\pm 0.006} \\ 0.984 \scriptstyle{\pm 0.007} \\ 0.690 \scriptstyle{\pm 0.057} \\ 0.984 \scriptstyle{\pm 0.008} \\ 0.985 \scriptstyle{\pm 0.007} \\ 0.960 \scriptstyle{\pm 0.015} \end{array}$	$\begin{array}{c} 0.004 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.004 \pm 0.001 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.997_{\pm 0.001} \\ 0.990_{\pm 0.002} \\ 0.462_{\pm 0.028} \\ 0.993_{\pm 0.001} \\ 0.994_{\pm 0.001} \\ 0.978_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.005 \pm 0.000 \\ 0.006 \pm 0.002 \\ 0.000 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.005 \pm 0.001 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.994 \scriptstyle{\pm 0.001} \\ 0.976 \scriptstyle{\pm 0.004} \\ 0.434 \scriptstyle{\pm 0.031} \\ 0.989 \scriptstyle{\pm 0.002} \\ 0.990 \scriptstyle{\pm 0.002} \\ 0.966 \scriptstyle{\pm 0.005} \end{array}$	$\begin{array}{c} 0.004 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.998 \scriptstyle{\pm 0.000} \\ 0.992 \scriptstyle{\pm 0.002} \\ 0.452 \scriptstyle{\pm 0.028} \\ 0.994 \scriptstyle{\pm 0.001} \\ 0.995 \scriptstyle{\pm 0.001} \\ 0.983 \scriptstyle{\pm 0.002} \end{array}$	$\begin{array}{c} 0.005 \pm 0.000 \\ 0.005 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.005 \pm 0.001 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.996 \scriptstyle{\pm 0.001} \\ 0.979 \scriptstyle{\pm 0.004} \\ 0.426 \scriptstyle{\pm 0.032} \\ 0.992 \scriptstyle{\pm 0.002} \\ 0.993 \scriptstyle{\pm 0.001} \\ 0.974 \scriptstyle{\pm 0.005} \end{array}$	0.004±0.000 0.004±0.000 0.000±0.000 0.003±0.000 0.004±0.000 0.001±0.000	$\begin{array}{c} 0.999 \scriptstyle{\pm 0.000} \\ 0.992 \scriptstyle{\pm 0.001} \\ 0.438 \scriptstyle{\pm 0.027} \\ 0.995 \scriptstyle{\pm 0.001} \\ 0.996 \scriptstyle{\pm 0.001} \\ 0.985 \scriptstyle{\pm 0.004} \end{array}$	$\begin{array}{c} 0.005 \pm 0.000 \\ 0.005 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.005 \pm 0.002 \\ 0.001 \pm 0.000 \end{array}$	$0.997_{\pm 0.001}$ $0.980_{\pm 0.004}$ $0.427_{\pm 0.027}$ $0.994_{\pm 0.001}$ $0.995_{\pm 0.001}$ $0.978_{\pm 0.005}$

(a) Static Dependency: Results by assuming the absence of temporal dependencies among samples (T and E are randomly sampled from D).

Availa	ible Data	Limi	ted (100 p	er class) [N=1]	Sca	arce (15%	of D) [N:	=1]	Mod	lerate (40°	% of D) [1	N=1]	Abu	ndant (80	% of D) [1	N=1]
	atures	Com	plete	Esse	ntial	Com	plete	Esse	ntial	Com	plete	Esse	ntial	Com	plete	Esse	ntial
Alg.	Design	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr
RF	BD MD ED-v ED-s ED-o ED	0.009 0.008 0.008 0.009 0.009 0.007	0.999 0.998 0.997 0.999 0.999	0.050 0.052 0.007 0.050 0.050 0.050 0.015	0.996 0.994 0.706 0.995 0.995 0.985	0.004 0.003 0.000 0.004 0.004 0.001	0.995 0.992 0.424 0.993 0.993 0.980	0.004 0.004 0.000 0.004 0.004 0.001	0.992 0.988 0.341 0.989 0.989 0.971	0.003 0.003 0.000 0.003 0.003 0.001	0.995 0.993 0.425 0.993 0.993 0.983	0.003 0.003 0.000 0.003 0.003 0.001	0.992 0.988 0.367 0.990 0.990 0.974	0.003 0.003 0.000 0.003 0.003 0.001	0.994 0.991 0.427 0.992 0.992 0.982	0.003 0.003 0.000 0.003 0.003 0.001	0.991 0.988 0.383 0.988 0.988 0.975
DT	BD MD ED-v ED-s ED-o ED	0.006 0.010 0.005 0.011 0.011 0.006	0.998 0.994 0.808 0.996 1.000 0.983	0.050 0.088 0.003 0.073 0.100 0.021	0.954 0.962 0.647 0.974 0.991 0.920	0.003 0.003 0.000 0.003 0.003 0.001	0.978 0.978 0.492 0.987 0.987 0.967	0.004 0.004 0.000 0.005 0.005 0.001	0.975 0.975 0.385 0.981 0.981 0.951	0.003 0.003 0.000 0.003 0.003 0.001	0.980 0.983 0.431 0.986 0.986 0.968	0.003 0.003 0.000 0.004 0.004 0.001	0.980 0.978 0.398 0.982 0.982 0.959	0.003 0.003 0.000 0.003 0.003 0.001	0.984 0.985 0.428 0.987 0.987	0.003 0.003 0.000 0.003 0.003 0.001	0.982 0.983 0.321 0.986 0.986
LR	BD MD ED-v ED-s ED-o ED	0.603 0.224 0.062 0.217 0.433 0.154	0.987 0.737 0.678 0.952 0.985 0.795	0.362 0.349 0.088 0.299 0.300 0.141	0.928 0.870 0.703 0.961 0.971 0.916	0.001 0.003 0.000 0.008 0.080 0.012	0.048 0.280 0.159 0.469 0.512 0.241	0.013 0.004 0.000 0.005 0.007 0.001	0.193 0.285 0.094 0.409 0.413 0.201	0.002 0.005 0.000 0.008 0.081 0.012	0.298 0.284 0.005 0.456 0.478 0.198	0.008 0.004 0.000 0.005 0.006 0.001	0.209 0.290 0.129 0.409 0.414 0.231	0.003 0.006 0.000 0.010 0.011 0.002	0.295 0.286 0.226 0.472 0.482 0.244	0.004 0.005 0.000 0.003 0.007 0.002	0.294 0.297 0.129 0.454 0.494 0.238
нев	BD MD ED-v ED-s ED-o ED	0.012 0.013 0.005 0.011 0.031 0.010	0.996 0.996 0.996 0.996 1.000 0.997	0.062 0.064 0.040 0.065 0.065 0.032	0.986 0.979 0.765 0.980 0.982 0.959	0.004 0.004 0.000 0.004 0.004 0.001	0.997 0.987 0.505 0.993 0.994 0.979	0.005 0.006 0.001 0.004 0.005 0.001	0.994 0.973 0.384 0.989 0.989 0.963	0.004 0.004 0.000 0.004 0.004 0.001	0.998 0.992 0.492 0.993 0.994 0.983	0.005 0.005 0.000 0.004 0.005 0.001	0.996 0.977 0.452 0.991 0.992 0.972	0.004 0.004 0.000 0.004 0.004 0.001	0.999 0.993 0.452 0.997 0.997 0.988	0.004 0.005 0.000 0.004 0.005 0.001	0.997 0.985 0.448 0.994 0.995 0.977

(b) Temporal Dependency: Results by assuming the presence of temporal dependencies among samples (the 'first' samples of $\mathbb D$ are put in $\mathbb T$, while the last 20% represent $\mathbb E$).

TABLE 14: UF-NB15. Results against adversarial (original tpr and adversarial tpr) and unknown attacks (the tpr is the average on the 'unknown' attacks, while the fpr is due to training on a new $\mathbb T$ that does not have the 'unknown' class.).

Avail	able Data		Limited (100 per	r class) [N=1000	g .		Scarce (15%	of D) [N=100]			Moderate (40%	of D) [N=100]			Abundant (80%	of D) [N=100]	
	enario	Adversari	ial Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknown	Attacks
Alg.	Design	tpr (org)	tpr (adv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr
RF	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.987 \scriptstyle{\pm 0.006} \\ 0.982 \scriptstyle{\pm 0.007} \\ 0.965 \scriptstyle{\pm 0.025} \\ 0.983 \scriptstyle{\pm 0.006} \\ 0.985 \scriptstyle{\pm 0.005} \end{array}$	$\begin{array}{c} 0.460 {\scriptstyle \pm 0.395} \\ 0.295 {\scriptstyle \pm 0.293} \\ 0.002 {\scriptstyle \pm 0.021} \\ 0.143 {\scriptstyle \pm 0.211} \\ 0.149 {\scriptstyle \pm 0.214} \end{array}$	$ \begin{array}{c c} 0.011 \pm_{0.002} \\ 0.009 \pm_{0.002} \\ 0.007 \pm_{0.001} \\ 0.011 \pm_{0.002} \\ 0.012 \pm_{0.003} \end{array} $	$\begin{array}{c} 0.999_{\pm 0.001} \\ 0.997_{\pm 0.002} \\ 0.864_{\pm 0.057} \\ 0.998_{\pm 0.003} \\ 0.999_{\pm 0.001} \end{array}$	$\begin{array}{c} 0.992 {\scriptstyle \pm 0.003} \\ 0.990 {\scriptstyle \pm 0.003} \\ 0.583 {\scriptstyle \pm 0.134} \\ 0.990 {\scriptstyle \pm 0.003} \\ 0.990 {\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} 0.956 \pm 0.148 \\ 0.899 \pm 0.222 \\ 0.000 \pm 0.000 \\ 0.889 \pm 0.222 \\ 0.889 \pm 0.222 \end{array}$	$ \begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \end{array} $	$\begin{array}{c} 0.937 \scriptstyle{\pm 0.007} \\ 0.920 \scriptstyle{\pm 0.008} \\ 0.478 \scriptstyle{\pm 0.049} \\ 0.928 \scriptstyle{\pm 0.006} \\ 0.928 \scriptstyle{\pm 0.006} \end{array}$		$\begin{array}{c} 0.996 \pm 0.011 \\ 0.972 \pm 0.067 \\ 0.000 \pm 0.000 \\ 0.958 \pm 0.101 \\ 0.958 \pm 0.101 \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \end{array}$		$\begin{array}{c} 0.995 {\scriptstyle \pm 0.002} \\ 0.995 {\scriptstyle \pm 0.002} \\ 0.550 {\scriptstyle \pm 0.077} \\ 0.995 {\scriptstyle \pm 0.002} \\ 0.995 {\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.992 {\scriptstyle \pm 0.051} \\ 0.947 {\scriptstyle \pm 0.123} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.922 {\scriptstyle \pm 0.149} \\ 0.922 {\scriptstyle \pm 0.149} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \end{array}$	$\begin{array}{c} 0.911_{\pm 0.004} \\ 0.897_{\pm 0.005} \\ 0.473_{\pm 0.045} \\ 0.902_{\pm 0.004} \\ 0.902_{\pm 0.004} \end{array}$
TQ	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.987 \scriptstyle{\pm 0.010} \\ 0.987 \scriptstyle{\pm 0.012} \\ 0.861 \scriptstyle{\pm 0.198} \\ 0.989 \scriptstyle{\pm 0.007} \\ 0.993 \scriptstyle{\pm 0.005} \end{array}$		$ \begin{array}{c} 0.011 \pm 0.003 \\ 0.011 \pm 0.003 \\ 0.007 \pm 0.002 \\ 0.011 \pm 0.003 \\ 0.012 \pm 0.004 \end{array} $	$\begin{array}{c} 0.996 \scriptstyle{\pm 0.005} \\ 0.994 \scriptstyle{\pm 0.007} \\ 0.902 \scriptstyle{\pm 0.075} \\ 0.997 \scriptstyle{\pm 0.004} \\ 0.998 \scriptstyle{\pm 0.003} \end{array}$	$\substack{0.988 \pm 0.004 \\ 0.383 \pm 0.210}$	$\begin{array}{c} 0.727 \pm 0.364 \\ 0.948 \pm 0.137 \\ 0.025 \pm 0.110 \\ 0.817 \pm 0.280 \\ 0.818 \pm 0.279 \end{array}$	$ \begin{array}{c} 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \end{array} $	$0.893_{\pm 0.011}$ $0.442_{\pm 0.051}$ $0.915_{\pm 0.008}$		$\begin{array}{c} 0.803 {\scriptstyle \pm 0.315} \\ 0.944 {\scriptstyle \pm 0.127} \\ 0.002 {\scriptstyle \pm 0.007} \\ 0.740 {\scriptstyle \pm 0.301} \\ 0.740 {\scriptstyle \pm 0.301} \end{array}$	0.003±0.000 0.003±0.000 0.000±0.000 0.003±0.000 0.003±0.000	$0.878_{\pm 0.010}$ $0.443_{\pm 0.042}$ $0.903_{\pm 0.006}$		$\begin{array}{c} 0.834 {\scriptstyle \pm 0.277} \\ 0.892 {\scriptstyle \pm 0.217} \\ 0.006 {\scriptstyle \pm 0.030} \\ 0.717 {\scriptstyle \pm 0.292} \\ 0.717 {\scriptstyle \pm 0.292} \end{array}$		$\begin{array}{c} 0.878 \scriptstyle{\pm 0.006} \\ 0.870 \scriptstyle{\pm 0.009} \\ 0.429 \scriptstyle{\pm 0.041} \\ 0.896 \scriptstyle{\pm 0.005} \\ 0.896 \scriptstyle{\pm 0.005} \end{array}$
LR	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.808 {\scriptstyle \pm 0.311} \\ 0.950 {\scriptstyle \pm 0.135} \\ 0.776 {\scriptstyle \pm 0.281} \\ 0.968 {\scriptstyle \pm 0.011} \\ 0.971 {\scriptstyle \pm 0.011} \end{array}$	$\begin{array}{c} 0.324 {\scriptstyle \pm 0.386} \\ 0.961 {\scriptstyle \pm 0.092} \\ 0.020 {\scriptstyle \pm 0.085} \\ 0.084 {\scriptstyle \pm 0.201} \\ 0.212 {\scriptstyle \pm 0.345} \end{array}$	$ \begin{array}{c} 0.660 {\scriptstyle \pm 0.084} \\ 0.513 {\scriptstyle \pm 0.282} \\ 0.029 {\scriptstyle \pm 0.014} \\ 0.265 {\scriptstyle \pm 0.084} \\ 0.432 {\scriptstyle \pm 0.106} \end{array} $	$0.841_{\pm 0.116}$ $0.730_{\pm 0.073}$ $0.922_{\pm 0.020}$	0.007 ± 0.022	$\begin{array}{c} 0.018 \pm 0.008 \\ 0.117 \pm 0.236 \\ 0.000 \pm 0.000 \\ 0.002 \pm 0.004 \\ 0.018 \pm 0.005 \end{array}$	$\begin{array}{c} 0.012{\scriptstyle \pm 0.013} \\ 0.003{\scriptstyle \pm 0.000} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.007{\scriptstyle \pm 0.001} \\ 0.040{\scriptstyle \pm 0.030} \end{array}$	$0.451_{\pm 0.020}$ $0.084_{\pm 0.118}$ $0.593_{\pm 0.043}$	$\begin{array}{c} 0.478 \scriptstyle{\pm 0.431} \\ 0.955 \scriptstyle{\pm 0.007} \\ 0.006 \scriptstyle{\pm 0.020} \\ 0.874 \scriptstyle{\pm 0.217} \\ 0.879 \scriptstyle{\pm 0.215} \end{array}$	$\begin{array}{c} 0.019 {\scriptstyle \pm 0.008} \\ 0.104 {\scriptstyle \pm 0.165} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.004 {\scriptstyle \pm 0.007} \\ 0.019 {\scriptstyle \pm 0.009} \end{array}$	$\begin{array}{c} 0.008 \pm 0.008 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.008 \pm 0.001 \\ 0.026 \pm 0.027 \end{array}$	$\begin{array}{c} 0.429 \scriptstyle{\pm 0.063} \\ 0.446 \scriptstyle{\pm 0.014} \\ 0.057 \scriptstyle{\pm 0.114} \\ 0.593 \scriptstyle{\pm 0.034} \\ 0.622 \scriptstyle{\pm 0.026} \end{array}$	$\begin{array}{c} 0.637 {\scriptstyle \pm 0.411} \\ 0.944 {\scriptstyle \pm 0.093} \\ 0.002 {\scriptstyle \pm 0.005} \\ 0.921 {\scriptstyle \pm 0.133} \\ 0.926 {\scriptstyle \pm 0.133} \end{array}$	$\begin{array}{c} 0.020 {\pm}_{0.005} \\ 0.103 {\pm}_{0.143} \\ 0.000 {\pm}_{0.000} \\ 0.004 {\pm}_{0.009} \\ 0.020 {\pm}_{0.004} \end{array}$	$\begin{array}{c} 0.006 \pm 0.005 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.008 \pm 0.001 \\ 0.017 \pm 0.019 \end{array}$	$\begin{array}{c} 0.440 \scriptstyle{\pm 0.055} \\ 0.442 \scriptstyle{\pm 0.011} \\ 0.079 \scriptstyle{\pm 0.119} \\ 0.597 \scriptstyle{\pm 0.026} \\ 0.622 \scriptstyle{\pm 0.022} \end{array}$
нсв	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.985 {\scriptstyle \pm 0.008} \\ 0.982 {\scriptstyle \pm 0.009} \\ 0.796 {\scriptstyle \pm 0.264} \\ 0.984 {\scriptstyle \pm 0.008} \\ 0.987 {\scriptstyle \pm 0.006} \end{array}$	$\begin{array}{c} 0.566 \pm 0.418 \\ 0.471 \pm 0.393 \\ 0.009 \pm 0.044 \\ 0.484 \pm 0.393 \\ 0.536 \pm 0.387 \end{array}$	$ \begin{array}{c} 0.011 \pm 0.003 \\ 0.011 \pm 0.003 \\ 0.007 \pm 0.002 \\ 0.011 \pm 0.003 \\ 0.011 \pm 0.004 \end{array} $	$\begin{array}{c} 0.998 \pm 0.003 \\ 0.997 \pm 0.003 \\ 0.877 \pm 0.076 \\ 0.997 \pm 0.004 \\ 0.998 \pm 0.003 \end{array}$	0.958±0.014 0.640±0.089	$\begin{array}{c} 0.968 \pm_{0.091} \\ 0.474 \pm_{0.363} \\ 0.009 \pm_{0.054} \\ 0.821 \pm_{0.163} \\ 0.851 \pm_{0.129} \end{array}$	$ \begin{array}{c} 0.004 \scriptstyle{\pm 0.000} \\ 0.004 \scriptstyle{\pm 0.001} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.003 \scriptstyle{\pm 0.000} \\ 0.004 \scriptstyle{\pm 0.001} \end{array} $	0.913±0.011 0.489±0.044	$\begin{array}{c} 0.999 \pm 0.001 \\ 0.965 \pm 0.012 \\ 0.626 \pm 0.059 \\ 0.992 \pm 0.007 \\ 0.996 \pm 0.004 \end{array}$	$\begin{array}{c} 0.980 {\scriptstyle \pm 0.038} \\ 0.619 {\scriptstyle \pm 0.365} \\ 0.023 {\scriptstyle \pm 0.101} \\ 0.843 {\scriptstyle \pm 0.199} \\ 0.859 {\scriptstyle \pm 0.189} \end{array}$	$\begin{array}{c} 0.004 \pm 0.000 \\ 0.004 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \end{array}$	$\begin{array}{c} 0.922 {\scriptstyle \pm 0.005} \\ 0.906 {\scriptstyle \pm 0.010} \\ 0.476 {\scriptstyle \pm 0.045} \\ 0.908 {\scriptstyle \pm 0.006} \\ 0.920 {\scriptstyle \pm 0.007} \end{array}$	$\begin{array}{c} 0.999 {\scriptstyle \pm 0.001} \\ 0.964 {\scriptstyle \pm 0.012} \\ 0.620 {\scriptstyle \pm 0.046} \\ 0.994 {\scriptstyle \pm 0.005} \\ 0.997 {\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} 0.984 {\pm}_{0.033} \\ 0.644 {\pm}_{0.332} \\ 0.021 {\pm}_{0.092} \\ 0.872 {\pm}_{0.197} \\ 0.887 {\pm}_{0.182} \end{array}$	$\begin{array}{c} 0.003 \pm 0.000 \\ 0.004 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.003 \pm 0.000 \end{array}$	$\begin{array}{c} 0.917 {\scriptstyle \pm 0.003} \\ 0.901 {\scriptstyle \pm 0.008} \\ 0.478 {\scriptstyle \pm 0.042} \\ 0.902 {\scriptstyle \pm 0.005} \\ 0.910 {\scriptstyle \pm 0.006} \end{array}$

(a) Static Dependency: Results by assuming the absence of temporal dependencies among samples (\mathbb{T} and \mathbb{E} are randomly sampled from \mathbb{D}).

Availa	able Data	Lim	ited (100 pe	er class) [N	N=1]	S	carce (15%	of D) [N=	1]	Mo	derate (40%	of D) [N	=1]	Ab	undant (809	6 of □) [N	[=1]
Sc	Scenario Adversarial Attacks Unknown Att p. Design tpr (org) tpr (adv) fpr t		n Attacks	Adversari	ial Attacks	Unknow	n Attacks	Adversar	ial Attacks	Unknow	n Attacks	Adversar	ial Attacks	Unknow	n Attacks		
Alg.	Design	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr
RF	BD	0.988	0.063	0.009	0.999	0.991	1.000	0.003	0.942	0.993	1.000	0.003	0.923	0.994	1.000	0.003	0.909
	MD	0.986	0.241	0.008	0.998	0.990	1.000	0.003	0.928	0.993	1.000	0.003	0.907	0.994	1.000	0.003	0.897
	ED-v	0.979	0.000	0.008	0.994	0.238	0.000	0.000	0.542	0.460	0.000	0.000	0.472	0.434	0.000	0.000	0.447
	ED-s	0.984	0.032	0.009	0.999	0.989	1.000	0.003	0.934	0.993	1.000	0.003	0.915	0.994	0.993	0.003	0.900
	ED-o	0.984	0.032	0.009	0.999	0.989	1.000	0.003	0.934	0.993	1.000	0.003	0.915	0.994	0.993	0.003	0.900
DT	BD	0.976	0.976	0.008	0.995	0.994	0.991	0.003	0.895	0.989	0.980	0.003	0.893	0.994	0.956	0.002	0.883
	MD	0.968	0.986	0.008	0.993	0.988	0.877	0.003	0.904	0.987	0.959	0.003	0.899	0.994	0.999	0.002	0.874
	ED-v	0.694	0.000	0.004	0.813	0.458	0.000	0.000	0.524	0.604	0.000	0.000	0.451	0.043	0.006	0.000	0.449
	ED-s	0.991	1.000	0.011	0.997	0.993	1.000	0.003	0.923	0.990	0.998	0.003	0.914	0.995	0.983	0.003	0.902
	ED-o	0.995	1.000	0.011	0.998	0.993	1.000	0.003	0.923	0.990	0.998	0.003	0.914	0.995	0.983	0.003	0.902
LR	BD	0.987	0.992	0.580	0.963	0.031	0.013	0.012	0.478	0.092	0.024	0.012	0.478	0.953	0.023	0.003	0.333
	MD	0.940	0.998	0.201	0.745	0.949	0.018	0.003	0.479	0.954	0.027	0.003	0.439	0.953	0.022	0.004	0.445
	ED-v	0.945	0.979	0.061	0.799	0.004	0.000	0.000	0.223	0.008	0.000	0.000	0.001	0.000	0.000	0.000	0.274
	ED-s	0.974	0.993	0.230	0.942	0.946	0.000	0.007	0.604	0.947	0.000	0.007	0.545	0.943	0.000	0.009	0.614
	ED-o	0.985	0.995	0.414	0.984	0.949	0.018	0.069	0.649	0.955	0.023	0.070	0.614	0.953	0.022	0.010	0.627
HGB	BD	0.979	0.012	0.012	0.997	0.996	0.979	0.004	0.933	1.000	0.989	0.004	0.926	0.999	1.000	0.003	0.911
	MD	0.976	0.012	0.013	0.997	0.951	0.280	0.004	0.907	0.966	0.589	0.004	0.913	0.975	0.778	0.003	0.891
	ED-v	0.969	0.005	0.004	0.845	0.593	0.000	0.000	0.563	0.660	0.038	0.000	0.558	0.599	0.000	0.000	0.487
	ED-s	0.977	0.008	0.011	0.997	0.985	0.882	0.003	0.919	0.986	0.942	0.003	0.913	0.995	0.991	0.003	0.899
	ED-o	0.980	0.196	0.028	1.000	0.985	0.882	0.004	0.929	0.988	0.942	0.004	0.930	0.996	0.991	0.003	0.906

TABLE 15: CICIDS17 binary classification results (fpr) and tpr) against 'known' attacks seen during the training stage (closed world).

Avail	able Data		Limited (100 per	r class) [N=1000]		Scarce (15%	of D) [N=100]			Moderate (40%	of D) [N=100]			Abundant (80%	of D) [N=100]	
Fe	atures	Con	plete	Esse	ntial	Com	plete	Esse	ntial	Com	plete	Esse	ential	Com	plete	Esse	ntial
Alg.	Design	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr	fpr	tpr
R	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.109 {\scriptstyle \pm 0.029} \\ 0.072 {\scriptstyle \pm 0.021} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.076 {\scriptstyle \pm 0.023} \\ 0.079 {\scriptstyle \pm 0.024} \\ 0.011 {\scriptstyle \pm 0.004} \end{array}$	$\begin{array}{c} 0.999_{\pm 0.001} \\ 0.998_{\pm 0.002} \\ 0.002_{\pm 0.018} \\ 0.998_{\pm 0.002} \\ 0.998_{\pm 0.002} \\ 0.997_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.102{\scriptstyle \pm 0.026} \\ 0.064{\scriptstyle \pm 0.018} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.066{\scriptstyle \pm 0.018} \\ 0.066{\scriptstyle \pm 0.019} \\ 0.009{\scriptstyle \pm 0.003} \end{array}$	$\begin{array}{c} 0.999_{\pm 0.001} \\ 0.999_{\pm 0.001} \\ 0.024_{\pm 0.061} \\ 0.998_{\pm 0.001} \\ 0.998_{\pm 0.001} \\ 0.998_{\pm 0.001} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 1.000 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \\ 0.000 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.999_{\pm 0.000} \\ 0.999_{\pm 0.000} \\ 0.000_{\pm 0.000} \\ 0.999_{\pm 0.000} \\ 0.999_{\pm 0.000} \\ 0.999_{\pm 0.000} \end{array}$		$\begin{array}{c} 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 1.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \\ 0.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \\ \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ \end{array}$
DT	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.101{\scriptstyle \pm 0.027} \\ 0.125{\scriptstyle \pm 0.030} \\ 0.000{\scriptstyle \pm 0.001} \\ 0.131{\scriptstyle \pm 0.031} \\ 0.151{\scriptstyle \pm 0.030} \\ 0.023{\scriptstyle \pm 0.006} \end{array}$	$\begin{array}{c} 0.995{\scriptstyle \pm 0.004} \\ 0.997{\scriptstyle \pm 0.002} \\ 0.157{\scriptstyle \pm 0.184} \\ 0.997{\scriptstyle \pm 0.003} \\ 0.997{\scriptstyle \pm 0.003} \\ 0.994{\scriptstyle \pm 0.003} \end{array}$	$ \begin{array}{c} 0.106 {\pm 0.026} \\ 0.119 {\pm 0.025} \\ 0.000 {\pm 0.002} \\ 0.118 {\pm 0.029} \\ 0.131 {\pm 0.030} \\ 0.019 {\pm 0.006} \end{array} $	$\begin{array}{c} 0.997_{\pm 0.004} \\ 0.996_{\pm 0.003} \\ 0.113_{\pm 0.135} \\ 0.997_{\pm 0.003} \\ 0.997_{\pm 0.003} \\ 0.996_{\pm 0.003} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.999 \pm 0.000 \\ 0.999 \pm 0.000 \\ 0.008 \pm 0.028 \\ 0.999 \pm 0.000 \\ 0.999 \pm 0.000 \\ 0.999 \pm 0.000 \end{array}$	$\begin{array}{c} 0.002 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.999 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \\ 0.000 {\pm} 0.003 \\ 0.999 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \end{array}$	0.001 ±0.000 0.000 ±0.000 0.001 ±0.000 0.001 ±0.000	$\begin{array}{c} 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 0.004 \pm 0.015 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 1.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \\ 0.001 {\pm} 0.012 \\ 1.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 1.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \\ 0.001 {\pm} 0.003 \\ 1.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \end{array}$
LR	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.482 {\scriptstyle \pm 0.141} \\ 0.640 {\scriptstyle \pm 0.057} \\ 0.002 {\scriptstyle \pm 0.004} \\ 0.212 {\scriptstyle \pm 0.106} \\ 0.238 {\scriptstyle \pm 0.033} \\ 0.043 {\scriptstyle \pm 0.008} \end{array}$	$\begin{array}{c} 0.999_{\pm 0.001} \\ 0.997_{\pm 0.015} \\ 0.051_{\pm 0.098} \\ 0.883_{\pm 0.314} \\ 0.995_{\pm 0.004} \\ 0.978_{\pm 0.007} \end{array}$	$ \begin{array}{c} 0.621 \scriptstyle{\pm 0.317} \\ 0.968 \scriptstyle{\pm 0.073} \\ 0.005 \scriptstyle{\pm 0.006} \\ 0.312 \scriptstyle{\pm 0.259} \\ 0.414 \scriptstyle{\pm 0.285} \\ 0.068 \scriptstyle{\pm 0.038} \end{array} $	$\begin{array}{c} 0.995{\scriptstyle \pm 0.071} \\ 0.980{\scriptstyle \pm 0.086} \\ 0.094{\scriptstyle \pm 0.124} \\ 0.886{\scriptstyle \pm 0.315} \\ 0.984{\scriptstyle \pm 0.116} \\ 0.983{\scriptstyle \pm 0.062} \end{array}$	$\begin{array}{c} 0.113{\scriptstyle \pm 0.002} \\ 0.079{\scriptstyle \pm 0.003} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.046{\scriptstyle \pm 0.003} \\ 0.050{\scriptstyle \pm 0.003} \\ 0.006{\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.970 \scriptstyle{\pm 0.001} \\ 0.962 \scriptstyle{\pm 0.003} \\ 0.000 \scriptstyle{\pm 0.001} \\ 0.986 \scriptstyle{\pm 0.002} \\ 0.987 \scriptstyle{\pm 0.001} \\ 0.983 \scriptstyle{\pm 0.001} \end{array}$	$ \begin{array}{c} 0.012 {\pm} 0.036 \\ 0.001 {\pm} 0.002 \\ 0.000 {\pm} 0.000 \\ 0.044 {\pm} 0.027 \\ 0.072 {\pm} 0.030 \\ 0.010 {\pm} 0.005 \end{array} $	$\begin{array}{c} 0.097_{\pm 0.289} \\ 0.000_{\pm 0.001} \\ 0.000_{\pm 0.000} \\ 0.634_{\pm 0.206} \\ 0.642_{\pm 0.207} \\ 0.611_{\pm 0.186} \end{array}$	$\begin{array}{c} 0.080 \scriptstyle{\pm 0.003} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.047 \scriptstyle{\pm 0.002} \\ 0.050 \scriptstyle{\pm 0.002} \end{array}$	$\begin{array}{c} 0.970 {\scriptstyle \pm 0.001} \\ 0.962 {\scriptstyle \pm 0.003} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.986 {\scriptstyle \pm 0.001} \\ 0.987 {\scriptstyle \pm 0.001} \\ 0.983 {\scriptstyle \pm 0.001} \end{array}$	$\begin{array}{c} 0.013{\scriptstyle \pm 0.037} \\ 0.000{\scriptstyle \pm 0.001} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.036{\scriptstyle \pm 0.025} \\ 0.072{\scriptstyle \pm 0.033} \\ 0.010{\scriptstyle \pm 0.005} \end{array}$	$\begin{array}{c} 0.108 \pm 0.304 \\ 0.000 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.563 \pm 0.209 \\ 0.571 \pm 0.209 \\ 0.534 \pm 0.164 \end{array}$	$\begin{array}{c} 0.113{\scriptstyle \pm 0.002} \\ 0.079{\scriptstyle \pm 0.003} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.047{\scriptstyle \pm 0.002} \\ 0.050{\scriptstyle \pm 0.002} \\ 0.006{\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.970 {\scriptstyle \pm 0.001} \\ 0.962 {\scriptstyle \pm 0.003} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.986 {\scriptstyle \pm 0.001} \\ 0.987 {\scriptstyle \pm 0.001} \\ 0.983 {\scriptstyle \pm 0.001} \end{array}$	$\begin{array}{c} 0.029{\scriptstyle \pm 0.056} \\ 0.001{\scriptstyle \pm 0.008} \\ 0.000{\scriptstyle \pm 0.000} \\ 0.045{\scriptstyle \pm 0.029} \\ 0.080{\scriptstyle \pm 0.030} \\ 0.012{\scriptstyle \pm 0.005} \end{array}$	$\begin{array}{c} 0.221 {\scriptstyle \pm 0.404} \\ 0.004 {\scriptstyle \pm 0.037} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.620 {\scriptstyle \pm 0.194} \\ 0.629 {\scriptstyle \pm 0.193} \\ 0.605 {\scriptstyle \pm 0.175} \end{array}$
HGB	BD MD ED-v ED-s ED-o ED	$\begin{array}{c} 0.074 \scriptstyle{\pm 0.026} \\ 0.050 \scriptstyle{\pm 0.019} \\ 0.000 \scriptstyle{\pm 0.001} \\ 0.085 \scriptstyle{\pm 0.027} \\ 0.096 \scriptstyle{\pm 0.028} \\ 0.014 \scriptstyle{\pm 0.005} \end{array}$	$\begin{array}{c} 0.999_{\pm 0.001} \\ 0.998_{\pm 0.002} \\ 0.066_{\pm 0.119} \\ 0.997_{\pm 0.002} \\ 0.998_{\pm 0.002} \\ 0.995_{\pm 0.003} \end{array}$	$ \begin{array}{c} 0.095 \scriptstyle{\pm 0.024} \\ 0.066 \scriptstyle{\pm 0.019} \\ 0.000 \scriptstyle{\pm 0.001} \\ 0.093 \scriptstyle{\pm 0.025} \\ 0.097 \scriptstyle{\pm 0.026} \\ 0.015 \scriptstyle{\pm 0.005} \end{array} $	$\begin{array}{c} 0.999_{\pm 0.001} \\ 0.998_{\pm 0.002} \\ 0.045_{\pm 0.060} \\ 0.996_{\pm 0.003} \\ 0.997_{\pm 0.002} \\ 0.995_{\pm 0.004} \end{array}$	$\begin{array}{c} 0.001_{\pm 0.000} \\ 0.006_{\pm 0.002} \\ 0.000_{\pm 0.000} \\ 0.002_{\pm 0.000} \\ 0.002_{\pm 0.001} \\ 0.000_{\pm 0.000} \end{array}$	$\begin{array}{c} 1.000 \scriptstyle{\pm 0.000} \\ 0.998 \scriptstyle{\pm 0.001} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.999 \scriptstyle{\pm 0.000} \\ 0.999 \scriptstyle{\pm 0.000} \\ 0.999 \scriptstyle{\pm 0.000} \end{array}$	$ \begin{array}{c} 0.001 \pm 0.000 \\ 0.006 \pm 0.004 \\ 0.000 \pm 0.000 \\ 0.002 \pm 0.000 \\ 0.002 \pm 0.001 \\ 0.000 \pm 0.000 \end{array} $	$\begin{array}{c} 0.999_{\pm 0.000} \\ 0.998_{\pm 0.001} \\ 0.045_{\pm 0.075} \\ 0.999_{\pm 0.001} \\ 0.999_{\pm 0.001} \\ 0.999_{\pm 0.001} \end{array}$	$\begin{array}{c} 0.003 \pm 0.002 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 1.000 \pm 0.000 \\ 0.999 \pm 0.001 \\ 0.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.001_{\pm 0.000} \\ 0.003_{\pm 0.001} \\ 0.000_{\pm 0.000} \\ 0.002_{\pm 0.001} \\ 0.002_{\pm 0.001} \\ 0.000_{\pm 0.000} \end{array}$	$\begin{array}{c} 1.000 \scriptstyle{\pm 0.000} \\ 0.999 \scriptstyle{\pm 0.000} \\ 0.046 \scriptstyle{\pm 0.070} \\ 0.999 \scriptstyle{\pm 0.001} \\ 0.999 \scriptstyle{\pm 0.001} \\ 0.999 \scriptstyle{\pm 0.001} \end{array}$	0.002±0.000 0.000±0.000 0.001±0.000 0.001±0.000	$\begin{array}{c} 1.000 {\pm} 0.000 \\ 0.999 {\pm} 0.000 \\ 0.000 {\pm} 0.001 \\ 1.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \\ 1.000 {\pm} 0.000 \end{array}$	$\begin{array}{c} 0.001_{\pm 0.000} \\ 0.002_{\pm 0.000} \\ 0.000_{\pm 0.000} \\ 0.001_{\pm 0.000} \\ 0.002_{\pm 0.001} \\ 0.000_{\pm 0.000} \end{array}$	$\begin{array}{c} 1.000 \pm 0.000 \\ 0.999 \pm 0.000 \\ 0.063 \pm 0.076 \\ 0.999 \pm 0.001 \\ 1.000 \pm 0.000 \\ 0.999 \pm 0.000 \end{array}$

(a) Static Dependency: Results by assuming the absence of temporal dependencies among samples ($\mathbb T$ and $\mathbb E$ are randomly sampled from $\mathbb D$).

Availa	able Data	Limi	ted (100 p	er class) [N=1]	Sca	arce (15%	of D) [N:	=1]	Mod	lerate (409	% of D) [1	N=1]	Abu	ndant (80	% of D) [1	N=1]
Fe	atures	Com	plete	Esse	ntial	Com	plete	Esse	ential	Com	plete	Esse	ntial	Com	plete	Esse	ential
Alg.	Design	fpr	tpr														
	BD MD	0.327 0.174	1.000 0.996	0.335 0.317	1.000 1.000	0.010 0.010	0.990 0.989	0.010 0.010	0.990 0.989	0.010 0.010	0.994 0.993	0.010 0.010	0.994 0.994	0.007 0.007	0.994 0.993	0.009 0.009	0.994 0.994
R	ED-v ED-s ED-o	0.000 0.166 0.180	0.044 0.994 0.995	0.008 0.331 0.335	0.440 0.999 0.999	0.000 0.010 0.010	0.000 0.989 0.989	0.000 0.010 0.010	0.000 0.989 0.989	0.000 0.010 0.010	0.000 0.992 0.992	0.000 0.010 0.010	0.000 0.993 0.993	0.000 0.007 0.007	0.000 0.992 0.992	0.000 0.009 0.009	0.000 0.993 0.993
	ED ED	0.028	0.987	0.082	0.990	0.001	0.988	0.001	0.989	0.001	0.992	0.001	0.993	0.007	0.992	0.009	0.992
DT	BD MD ED-v ED-s ED-o ED	0.334 0.144 0.003 0.178 0.191 0.040	0.976 0.983 0.536 0.995 0.995 0.980	0.336 0.296 0.034 0.344 0.348 0.124	0.999 0.992 0.248 1.000 1.000 0.988	0.011 0.010 0.000 0.011 0.011 0.001	0.990 0.988 0.000 0.992 0.992 0.989	0.012 0.010 0.000 0.011 0.011 0.001	0.989 0.993 0.000 0.992 0.992 0.992	0.009 0.011 0.000 0.012 0.012 0.001	0.994 0.996 0.003 0.995 0.995 0.993	0.012 0.012 0.000 0.013 0.013 0.001	0.988 0.997 0.000 0.991 0.991 0.988	0.008 0.009 0.000 0.008 0.008 0.001	0.995 0.998 0.000 0.994 0.994 0.993	0.010 0.010 0.000 0.010 0.010 0.001	0.994 0.994 0.000 0.996 0.996 0.995
LR	BD MD ED-v ED-s ED-o ED	0.289 0.334 0.062 0.310 0.321 0.119	0.986 0.675 0.285 0.986 0.988 0.972	0.358 0.931 0.059 0.354 0.354 0.115	1.000 0.989 0.599 0.999 0.999	0.070 0.037 0.000 0.030 0.035 0.005	0.961 0.958 0.000 0.984 0.984 0.977	0.072 0.000 0.000 0.029 0.036 0.006	0.974 0.000 0.000 0.602 0.603 0.600	0.057 0.037 0.000 0.028 0.035 0.005	0.965 0.954 0.000 0.982 0.986 0.979	0.003 0.000 0.001 0.049 0.052 0.008	0.000 0.000 0.000 0.596 0.597 0.593	0.059 0.035 0.000 0.026 0.031 0.004	0.963 0.954 0.000 0.981 0.985 0.979	0.083 0.000 0.000 0.014 0.057 0.008	0.972 0.000 0.000 0.388 0.399 0.394
HGB	BD MD ED-v ED-s ED-o ED	0.336 0.283 0.022 0.300 0.307 0.077	1.000 0.999 0.546 0.999 1.000 0.986	0.338 0.335 0.027 0.335 0.365 0.096	1.000 1.000 0.192 1.000 1.000 0.975	0.003 0.007 0.000 0.010 0.010 0.001	0.992 0.991 0.000 0.992 0.992 0.991	0.012 0.013 0.000 0.012 0.012 0.001	0.985 0.988 0.002 0.993 0.993 0.991	0.010 0.010 0.000 0.011 0.011 0.001	0.999 0.992 0.000 0.994 0.994 0.993	0.011 0.013 0.000 0.011 0.011 0.001	0.990 0.994 0.061 0.994 0.994 0.992	0.007 0.011 0.000 0.008 0.008 0.001	0.999 0.996 0.000 0.994 0.994 0.994	0.010 0.012 0.000 0.010 0.010 0.001	0.995 0.997 0.053 0.993 0.993 0.992

(b) Temporal Dependency: Results by assuming the presence of temporal dependencies among samples (the 'first' samples of $\mathbb D$ are put in $\mathbb T$, while the last 20% represent $\mathbb E$).

TABLE 16: CICIDS17. Results against adversarial (original tpr and adversarial tpr) and unknown attacks (the tpr is the average on the 'unknown' attacks, while the fpr is due to training on a new \mathbb{T} that does not have the 'unknown' class.).

Avail	able Data		Limited (100 per	class) [N=1000]		Scarce (15%	of D) [N=100]		l	Moderate (40%	of D) [N=100]		1	Abundant (80%	of D) [N=100]	
	enario	Adversari	ial Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknown	Attacks
Alg.	Design	tpr (org)	tpr (adv)	fpr	tpr	tpr (ceg)	$tpr_{(adv)}$	fpr	tpr	tpr (ceg)	tpr (sdv)	fpr	tpr	tpr (ceg)	tpr (adv)	fpr	tpr
RF	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.999 \scriptstyle{\pm 0.001} \\ 0.999 \scriptstyle{\pm 0.001} \\ 0.024 \scriptstyle{\pm 0.061} \\ 0.998 \scriptstyle{\pm 0.001} \\ 0.998 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.742 {\scriptstyle \pm 0.221} \\ 0.431 {\scriptstyle \pm 0.190} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.496 {\scriptstyle \pm 0.232} \\ 0.515 {\scriptstyle \pm 0.219} \end{array}$	$\begin{array}{c} 0.099 \pm _{0.027} \\ 0.065 \pm _{0.019} \\ 0.000 \pm _{0.000} \\ 0.070 \pm _{0.021} \\ 0.072 \pm _{0.022} \end{array}$	$\begin{array}{c} 0.787 \pm 0.075 \\ 0.580 \pm 0.070 \\ 0.000 \pm 0.003 \\ 0.598 \pm 0.058 \\ 0.600 \pm 0.058 \end{array}$		$\begin{array}{c} 0.004 {\pm}_{0.002} \\ 0.002 {\pm}_{0.002} \\ 0.000 {\pm}_{0.000} \\ 0.003 {\pm}_{0.002} \\ 0.003 {\pm}_{0.002} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.391 \scriptstyle{\pm 0.021} \\ 0.327 \scriptstyle{\pm 0.017} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.325 \scriptstyle{\pm 0.018} \\ 0.325 \scriptstyle{\pm 0.018} \end{array}$		$\begin{array}{c} 0.004 {\pm}_{0.002} \\ 0.002 {\pm}_{0.002} \\ 0.000 {\pm}_{0.000} \\ 0.003 {\pm}_{0.002} \\ 0.003 {\pm}_{0.002} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ \end{array}$	$\begin{array}{c} 0.366 \pm_{0.020} \\ 0.308 \pm_{0.016} \\ 0.000 \pm_{0.000} \\ 0.301 \pm_{0.020} \\ 0.301 \pm_{0.020} \end{array}$	$\begin{array}{c} 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.004_{\pm 0.001} \\ 0.002_{\pm 0.002} \\ 0.000_{\pm 0.000} \\ 0.002_{\pm 0.002} \\ 0.002_{\pm 0.002} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ \end{array}$	$\begin{array}{c} 0.338 \scriptstyle{\pm 0.016} \\ 0.288 \scriptstyle{\pm 0.013} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.267 \scriptstyle{\pm 0.020} \\ 0.267 \scriptstyle{\pm 0.020} \end{array}$
DT	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.997 \scriptstyle{\pm 0.004} \\ 0.996 \scriptstyle{\pm 0.003} \\ 0.113 \scriptstyle{\pm 0.135} \\ 0.997 \scriptstyle{\pm 0.003} \\ 0.997 \scriptstyle{\pm 0.003} \end{array}$	$\begin{array}{c} 0.745 \scriptstyle{\pm 0.295} \\ 0.690 \scriptstyle{\pm 0.285} \\ 0.027 \scriptstyle{\pm 0.103} \\ 0.804 \scriptstyle{\pm 0.244} \\ 0.856 \scriptstyle{\pm 0.194} \end{array}$	$\begin{array}{c} 0.095 \scriptstyle{\pm 0.020} \\ 0.117 \scriptstyle{\pm 0.022} \\ 0.000 \scriptstyle{\pm 0.001} \\ 0.123 \scriptstyle{\pm 0.028} \\ 0.139 \scriptstyle{\pm 0.029} \end{array}$	$\begin{array}{c} 0.695 \pm 0.097 \\ 0.659 \pm 0.091 \\ 0.017 \pm 0.040 \\ 0.703 \pm 0.077 \\ 0.731 \pm 0.078 \end{array}$	$\begin{array}{c} 0.999 {\scriptstyle \pm 0.000} \\ 0.999 {\scriptstyle \pm 0.000} \\ 0.000 {\scriptstyle \pm 0.003} \\ 0.999 {\scriptstyle \pm 0.000} \\ 0.999 {\scriptstyle \pm 0.000} \end{array}$	$\begin{array}{c} 0.015 \pm 0.018 \\ 0.532 \pm 0.155 \\ 0.000 \pm 0.000 \\ 0.788 \pm 0.326 \\ 0.788 \pm 0.326 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.321 \pm 0.062 \\ 0.359 \pm 0.078 \\ 0.000 \pm 0.001 \\ 0.411 \pm 0.044 \\ 0.411 \pm 0.044 \end{array}$		$\begin{array}{c} 0.011 \pm_{0.008} \\ 0.456 \pm_{0.232} \\ 0.000 \pm_{0.001} \\ 0.705 \pm_{0.371} \\ 0.705 \pm_{0.371} \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ \end{array}$	$\begin{array}{c} 0.325 \pm 0.063 \\ 0.360 \pm 0.075 \\ 0.000 \pm 0.000 \\ 0.385 \pm 0.057 \\ 0.385 \pm 0.057 \end{array}$	$\begin{array}{c} 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 1.000 \pm 0.000 \\ 1.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.015 \pm 0.019 \\ 0.416 \pm 0.255 \\ 0.000 \pm 0.001 \\ 0.503 \pm 0.398 \\ 0.503 \pm 0.398 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \\ \end{array}$	$\begin{array}{c} 0.347_{\pm 0.064} \\ 0.369_{\pm 0.072} \\ 0.000_{\pm 0.000} \\ 0.372_{\pm 0.048} \\ 0.372_{\pm 0.048} \end{array}$
LR	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.999_{\pm 0.032} \\ 0.980_{\pm 0.086} \\ 0.094_{\pm 0.124} \\ 0.998_{\pm 0.005} \\ 0.997_{\pm 0.025} \end{array}$	$\begin{array}{c} 0.835 {\scriptstyle \pm 0.351} \\ 0.959 {\scriptstyle \pm 0.141} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.581 {\scriptstyle \pm 0.401} \\ 0.564 {\scriptstyle \pm 0.389} \end{array}$	$\begin{array}{c} 0.441 \scriptstyle{\pm 0.109} \\ 0.602 \scriptstyle{\pm 0.053} \\ 0.001 \scriptstyle{\pm 0.002} \\ 0.202 \scriptstyle{\pm 0.072} \\ 0.222 \scriptstyle{\pm 0.032} \end{array}$	$\begin{array}{c} 0.864 \scriptstyle{\pm 0.046} \\ 0.829 \scriptstyle{\pm 0.042} \\ 0.002 \scriptstyle{\pm 0.009} \\ 0.694 \scriptstyle{\pm 0.223} \\ 0.768 \scriptstyle{\pm 0.081} \end{array}$	$\begin{array}{c} 0.097 \scriptstyle{\pm 0.289} \\ 0.000 \scriptstyle{\pm 0.001} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.634 \scriptstyle{\pm 0.206} \\ 0.642 \scriptstyle{\pm 0.207} \end{array}$	$\begin{array}{c} 0.001 \pm 0.012 \\ 0.004 \pm 0.039 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$ \begin{array}{c} 0.100 {\pm 0.002} \\ 0.076 {\pm 0.002} \\ 0.000 {\pm 0.000} \\ 0.041 {\pm 0.002} \\ 0.045 {\pm 0.003} \end{array} $		$0.000_{\pm 0.001}$ $0.000_{\pm 0.000}$ $0.563_{\pm 0.209}$	$\begin{array}{c} 0.000 \pm 0.000 \\ 0.000 \pm 0.001 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.000 \pm 0.000 \end{array}$	$\begin{array}{c} 0.099 \scriptstyle{\pm 0.001} \\ 0.075 \scriptstyle{\pm 0.001} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.042 \scriptstyle{\pm 0.002} \\ 0.045 \scriptstyle{\pm 0.002} \end{array}$	$\begin{array}{c} 0.375 \pm 0.016 \\ 0.362 \pm 0.024 \\ 0.000 \pm 0.000 \\ 0.369 \pm 0.038 \\ 0.451 \pm 0.042 \end{array}$	$\begin{array}{c} 0.221 {\scriptstyle \pm 0.404} \\ 0.004 {\scriptstyle \pm 0.037} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.620 {\scriptstyle \pm 0.194} \\ 0.629 {\scriptstyle \pm 0.193} \end{array}$	$\begin{array}{c} 0.000_{\pm 0.000} \\ 0.000_{\pm 0.000} \\ 0.000_{\pm 0.000} \\ 0.000_{\pm 0.000} \\ 0.000_{\pm 0.000} \end{array}$	$\begin{array}{c} 0.099 {\scriptstyle \pm 0.002} \\ 0.075 {\scriptstyle \pm 0.001} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.042 {\scriptstyle \pm 0.002} \\ 0.045 {\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.371_{\pm 0.012} \\ 0.361_{\pm 0.021} \\ 0.000_{\pm 0.000} \\ 0.359_{\pm 0.034} \\ 0.434_{\pm 0.034} \end{array}$
нсв	BD MD ED-v ED-s ED-o	$\begin{array}{c} 0.999 {\scriptstyle \pm 0.001} \\ 0.998 {\scriptstyle \pm 0.002} \\ 0.045 {\scriptstyle \pm 0.060} \\ 0.996 {\scriptstyle \pm 0.003} \\ 0.997 {\scriptstyle \pm 0.002} \end{array}$	$\begin{array}{c} 0.796 \pm 0.270 \\ 0.668 \pm 0.246 \\ 0.007 \pm 0.046 \\ 0.768 \pm 0.252 \\ 0.807 \pm 0.235 \end{array}$	$\begin{array}{c} 0.068 \pm_{0.023} \\ 0.046 \pm_{0.017} \\ 0.000 \pm_{0.000} \\ 0.079 \pm_{0.025} \\ 0.088 \pm_{0.026} \end{array}$	$\begin{array}{c} 0.748 \pm 0.071 \\ 0.685 \pm 0.062 \\ 0.009 \pm 0.022 \\ 0.681 \pm 0.077 \\ 0.692 \pm 0.079 \end{array}$		$\begin{array}{c} 0.012 \pm 0.042 \\ 0.623 \pm 0.383 \\ 0.000 \pm 0.000 \\ 0.586 \pm 0.443 \\ 0.617 \pm 0.435 \end{array}$	0.005±0.001 0.000±0.000 0.001±0.000	$0.307_{\pm 0.043}$ $0.000_{\pm 0.000}$ $0.354_{\pm 0.046}$	$\begin{array}{c} 1.000 \scriptstyle{\pm 0.000} \\ 0.999 \scriptstyle{\pm 0.000} \\ 0.046 \scriptstyle{\pm 0.070} \\ 0.999 \scriptstyle{\pm 0.001} \\ 0.999 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.019 \pm 0.085 \\ 0.777 \pm 0.338 \\ 0.000 \pm 0.000 \\ 0.510 \pm 0.426 \\ 0.510 \pm 0.426 \end{array}$	$\begin{array}{c} 0.001 \pm 0.000 \\ 0.003 \pm 0.000 \\ 0.000 \pm 0.000 \\ 0.001 \pm 0.000 \\ 0.001 \pm 0.000 \end{array}$	$\begin{array}{c} 0.465 \scriptstyle{\pm 0.018} \\ 0.327 \scriptstyle{\pm 0.046} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.326 \scriptstyle{\pm 0.049} \\ 0.326 \scriptstyle{\pm 0.049} \end{array}$	$0.999_{\pm 0.000}$ $0.063_{\pm 0.076}$ $0.999_{\pm 0.001}$	$\begin{array}{c} 0.032 {\scriptstyle \pm 0.113} \\ 0.851 {\scriptstyle \pm 0.271} \\ 0.000 {\scriptstyle \pm 0.000} \\ 0.604 {\scriptstyle \pm 0.436} \\ 0.626 {\scriptstyle \pm 0.428} \end{array}$	0.001±0.000 0.002±0.000 0.000±0.000 0.001±0.000 0.001±0.000	$\begin{array}{c} 0.468 \scriptstyle{\pm 0.018} \\ 0.315 \scriptstyle{\pm 0.049} \\ 0.000 \scriptstyle{\pm 0.000} \\ 0.310 \scriptstyle{\pm 0.051} \\ 0.311 \scriptstyle{\pm 0.051} \end{array}$

(a) Static Dependency: Results by assuming the absence of temporal dependencies among samples (\mathbb{T} and \mathbb{E} are randomly sampled from \mathbb{D}).

Availa	able Data	Lin	ited (100 pc	er class) [N	I=1]	S	carce (15%	of D) [N=	1]	Mo	derate (40%	of D) [N	=1]	Ab	undant (809	6 of □) [N	[=1]
Sc	enario	Adversar	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	al Attacks	Unknow	n Attacks	Adversari	ial Attacks	Unknow	n Attacks
Alg.	Design	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr	tpr (org)	tpr (adv)	fpr	tpr
RF	BD	1.000	1.000	0.325	0.799	0.990	0.000	0.009	0.363	0.994	0.005	0.009	0.318	0.994	0.005	0.006	0.260
	MD	1.000	0.999	0.171	0.663	0.989	0.000	0.009	0.301	0.994	0.000	0.009	0.202	0.994	0.000	0.007	0.190
	ED-v	0.440	0.570	0.000	0.019	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ED-s	0.999	1.000	0.154	0.530	0.989	0.000	0.009	0.265	0.993	0.000	0.009	0.207	0.994	0.000	0.006	0.147
	ED-o	0.999	1.000	0.165	0.578	0.989	0.000	0.009	0.265	0.993	0.000	0.009	0.207	0.994	0.000	0.006	0.147
DT	BD	0.999	0.986	0.330	0.775	0.989	0.027	0.009	0.231	0.988	0.006	0.006	0.241	0.994	0.010	0.006	0.269
	MD	0.993	0.711	0.193	0.823	0.993	0.578	0.009	0.176	0.997	0.390	0.010	0.367	0.994	0.568	0.007	0.312
	ED-v	0.248	0.000	0.002	0.132	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ED-s	1.000	0.628	0.171	0.710	0.992	1.000	0.009	0.372	0.991	0.025	0.011	0.279	0.996	0.035	0.007	0.317
	ED-o	1.000	0.628	0.182	0.710	0.992	1.000	0.009	0.372	0.991	0.025	0.011	0.279	0.996	0.035	0.007	0.317
LR	BD	1.000	0.981	0.294	0.758	0.974	0.000	0.052	0.348	0.000	0.000	0.052	0.367	0.972	0.001	0.055	0.375
	MD	0.989	0.610	0.334	0.792	0.000	0.000	0.043	0.321	0.000	0.000	0.037	0.348	0.000	0.000	0.037	0.337
	ED-v	0.599	0.232	0.030	0.057	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	ED-s	0.999	0.924	0.304	0.781	0.602	0.000	0.027	0.514	0.596	0.000	0.025	0.358	0.388	0.000	0.024	0.456
	ED-o	0.999	0.961	0.314	0.788	0.603	0.000	0.031	0.533	0.597	0.000	0.031	0.452	0.399	0.000	0.028	0.549
HGB	BD	1.000	1.000	0.330	0.890	0.985	0.000	0.003	0.336	0.990	0.005	0.007	0.440	0.995	0.000	0.006	0.407
	MD	1.000	0.568	0.292	0.887	0.988	0.668	0.009	0.177	0.994	1.000	0.011	0.264	0.997	0.896	0.009	0.252
	ED-v	0.192	0.000	0.013	0.162	0.002	0.000	0.000	0.000	0.061	0.000	0.000	0.000	0.053	0.000	0.000	0.000
	ED-s	1.000	0.635	0.287	0.861	0.993	1.000	0.009	0.267	0.994	0.006	0.009	0.310	0.993	1.000	0.007	0.152
	ED-o	1.000	0.760	0.295	0.871	0.993	1.000	0.009	0.267	0.994	0.006	0.009	0.310	0.993	1.000	0.007	0.152

TABLE 17: CTU13 Multi-classification results. Cells report the (average) Accuracy (and std. dev.) computed exclusively on the malicious samples.

Avail	able Data	I	Limited (100 p	er class)		I	Scarce (15%	of D)		I	Moderate (409	of □)		I	Abundant (80	% of D)	
Dep	endency	Static []	N=1000]	Tempora	ıl [N=1]	Static []	N=1000]	Tempor	al [N=1]	Static []	N=1000]	Tempora	l [N=1]	Static []	N=1000]	Tempora	ıl [N=1]
Alg.	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
RF	BMD MD	0.742±0.021 0.741±0.021	$\substack{0.722 \pm 0.017 \\ 0.706 \pm 0.018}$	0.734 0.740	0.697 0.678	0.893±0.001 0.892±0.001	$0.877 \scriptstyle{\pm 0.001} \\ 0.858 \scriptstyle{\pm 0.001}$	0.895 0.893	0.878 0.859	0.897±0.001 0.896±0.001	$\substack{0.880 \pm 0.001 \\ 0.865 \pm 0.001}$	0.899 0.898	0.882 0.865	0.900±0.001 0.900±0.001	$0.884 \scriptstyle{\pm 0.001} \\ 0.869 \scriptstyle{\pm 0.001}$	0.900 0.900	0.884 0.870
15	BMD MD	$0.705 \scriptstyle{\pm 0.022} \\ 0.701 \scriptstyle{\pm 0.022}$	$\substack{0.691 \pm 0.018 \\ 0.667 \pm 0.019}$	0.757 0.728	0.703 0.695	0.879±0.001 0.876±0.001	$0.864 \scriptstyle{\pm 0.001} \\ 0.840 \scriptstyle{\pm 0.002}$	0.878 0.876	0.864 0.842	$\substack{0.884 \pm 0.001 \\ 0.882 \pm 0.001}$	$\substack{0.869 \pm 0.001 \\ 0.848 \pm 0.001}$	0.884 0.883	0.869 0.850	0.889±0.001 0.887±0.001	$0.874 \scriptstyle{\pm 0.001} \\ 0.855 \scriptstyle{\pm 0.001}$	0.889 0.887	0.874 0.855
LR	BMD MD	$0.429 \scriptstyle{\pm 0.037} \\ 0.362 \scriptstyle{\pm 0.042}$	$\substack{0.531 \pm 0.111 \\ 0.508 \pm 0.117}$	0.428 0.405	0.484 0.476	0.774±0.040 0.048±0.105	$\substack{0.729 \pm 0.085 \\ 0.354 \pm 0.036}$	0.714 0.001	0.622 0.370	$\begin{array}{c} 0.776 \scriptstyle{\pm 0.024} \\ 0.017 \scriptstyle{\pm 0.049} \end{array}$	$\substack{0.722 \pm 0.081 \\ 0.354 \pm 0.033}$	0.768 0.001	0.805 0.290	$\begin{array}{c} 0.776 \scriptstyle{\pm 0.024} \\ 0.015 \scriptstyle{\pm 0.033} \end{array}$	$\substack{0.753 \pm 0.091 \\ 0.350 \pm 0.036}$	0.766 0.001	0.702 0.374
HGB	BMD MD	0.727 _{±0.022} 0.727 _{±0.021}	0.701±0.020 0.686±0.019	0.731 0.728	0.707 0.694	0.906±0.004 0.899±0.003	0.883±0.026 0.846±0.007	0.904 0.899	0.884 0.842	0.907±0.003 0.901±0.002	0.886±0.006 0.845±0.006	0.907 0.902	0.886 0.841	0.907±0.002 0.902±0.003	0.886±0.002 0.844±0.006	0.908 0.901	0.886 0.846

TABLE 18: GTCS Multi-classification results. Cells report the (average) Accuracy (and std. dev.) computed exclusively on the malicious samples.

Availa	able Data	I	Limited (100 p	er class)		I	Scarce (15%	of D)		Ī	Moderate (40%	of D)		Ī	Abundant (804	% of D)	
Dep	endency	Static [N	N=1000]	Tempora	l [N=1]	Static [N	N=1000]	Tempora	l [N=1]	Static []	N=1000]	Tempora	l [N=1]	Static [N	N=1000]	Tempora	al [N=1]
Alg.	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
RF	BMD MD	$0.995_{\pm 0.002} \ 0.970_{\pm 0.009}$	$\substack{0.990 \pm 0.003 \\ 0.961 \pm 0.008}$	0.985 0.935	0.972 0.940	1.000±0.000 0.992±0.001	$\substack{0.997 \pm 0.000 \\ 0.972 \pm 0.006}$	1.000 0.984	0.997 0.924	1.000±0.000 0.993±0.000	0.997±0.000 0.977±0.004	1.000 0.993	0.997 0.971	1.000±0.000 0.994±0.000	$\substack{0.997 \pm 0.000 \\ 0.977 \pm 0.003}$	1.000 0.994	0.997 0.974
ы	BMD MD	0.991±0.003 0.971±0.008	$\substack{0.984 \pm 0.005 \\ 0.940 \pm 0.010}$	0.966 0.942	0.960 0.918	1.000±0.000 0.988±0.001	$\substack{0.996 \pm 0.000 \\ 0.960 \pm 0.001}$	0.999 0.981	0.996 0.947	1.000±0.000 0.990±0.000	0.996±0.000 0.963±0.003	1.000 0.989	0.996 0.960	1.000±0.000 0.991±0.000	$\substack{0.997 \pm 0.000 \\ 0.963 \pm 0.001}$	1.000 0.990	0.997 0.961
LR	BMD MD	$0.066 \scriptstyle{\pm 0.220} \atop 0.030 \scriptstyle{\pm 0.061}$	$\substack{0.961 \pm 0.044 \\ 0.927 \pm 0.048}$	0.000 0.017	0.939 0.921	$0.000{\scriptstyle \pm 0.000}\atop 0.000{\scriptstyle \pm 0.002}$	$\substack{0.963 \pm 0.004 \\ 0.846 \pm 0.016}$	0.000 0.000	0.963 0.870	$0.000{\scriptstyle \pm 0.000}\atop 0.000{\scriptstyle \pm 0.002}$	$\begin{array}{c c} 0.944_{\pm 0.135} \\ 0.829_{\pm 0.120} \end{array}$	0.000	0.963 0.839	$0.000{\scriptstyle \pm 0.000}\atop 0.000{\scriptstyle \pm 0.002}$	$\substack{0.964 \pm 0.005 \\ 0.844 \pm 0.015}$	0.000	0.966 0.851
HGB	BMD MD	0.994±0.003 0.982±0.006	$0.984 \scriptstyle{\pm 0.006} \\ 0.946 \scriptstyle{\pm 0.009}$	0.972 0.980	0.978 0.932	1.000±0.000 0.996±0.000	$0.997 \scriptstyle{\pm 0.000} \\ 0.976 \scriptstyle{\pm 0.001}$	1.000 0.980	0.997 0.932	1.000±0.000 0.997±0.000	0.997±0.000 0.978±0.002	1.000 0.997	0.998 0.980	1.000±0.000 0.998±0.000	$0.997 \scriptstyle{\pm 0.001} \\ 0.979 \scriptstyle{\pm 0.001}$	1.000 0.998	0.998 0.980

TABLE 19: NB15 Multi-classification results. Cells report the (average) Accuracy (and std. dev.) computed exclusively on the malicious samples.

Available Data	Limited (1	00 per class)		I	Scarce (15%	of D)		I	Moderate (409	of D)			Abundant (804	% of D)	
Dependency	Static [N=1000]	Tempora	ıl [N=1]	Static [N	N=1000]	Tempora	l [N=1]	Static []	N=1000]	Tempora	l [N=1]	Static []	N=1000]	Tempora	ıl [N=1]
Alg. Design	Complete Essentia	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
≝ BMD MD	$\begin{array}{ccc} 0.572 {\scriptstyle \pm 0.014} & 0.572 {\scriptstyle \pm 0.} \\ 0.572 {\scriptstyle \pm 0.015} & 0.571 {\scriptstyle \pm 0.} \end{array}$		0.578 0.575	0.698±0.003 0.688±0.004	$\substack{0.696 \pm 0.003 \\ 0.685 \pm 0.004}$	0.571 0.685	0.578 0.680	0.710±0.003 0.701±0.003	$0.708_{\pm 0.003} \ 0.697_{\pm 0.004}$	0.571 0.701	0.578 0.697	0.712±0.003 0.703±0.003	$0.710 \scriptstyle{\pm 0.003} \\ 0.700 \scriptstyle{\pm 0.003}$	0.712 0.703	0.711 0.699
E BMD	$\begin{array}{ccc} 0.524 {\scriptstyle \pm 0.017} & 0.519 {\scriptstyle \pm 0.} \\ 0.521 {\scriptstyle \pm 0.018} & 0.515 {\scriptstyle \pm 0.} \end{array}$		0.527 0.522	0.668±0.004 0.641±0.005	$0.668 \scriptstyle{\pm 0.004} \\ 0.639 \scriptstyle{\pm 0.004}$	0.667 0.641	0.666 0.638	0.683±0.003 0.658±0.004	$\substack{0.683 \pm 0.003 \\ 0.657 \pm 0.003}$	0.686 0.660	0.684 0.659	0.687±0.003 0.664±0.003	$0.686 \scriptstyle{\pm 0.002} \atop 0.662 \scriptstyle{\pm 0.004}$	0.690 0.668	0.691 0.667
HD MD	$\begin{array}{ccc} 0.224_{\pm 0.062} & 0.329_{\pm 0.} \\ 0.185_{\pm 0.074} & 0.260_{\pm 0.} \end{array}$		0.360 0.313	0.266±0.039 0.003±0.006	$0.439 \scriptstyle{\pm 0.024} \\ 0.011 \scriptstyle{\pm 0.013}$	0.236 0.003	0.411 0.004	0.267±0.030 0.003±0.006	$\substack{0.437_{\pm 0.023}\\0.009_{\pm 0.012}}$	0.263 0.003	0.456 0.002	$\begin{array}{c} 0.261 \scriptstyle{\pm 0.025} \\ 0.004 \scriptstyle{\pm 0.006} \end{array}$	$\substack{0.438 \pm 0.026 \\ 0.011 \pm 0.010}$	0.256 0.002	0.408 0.017
BMD MD	0.568±0.012 0.562±0. 0.566±0.013 0.558±0.		0.573 0.569	0.721±0.003 0.697±0.006	$0.718 \scriptstyle{\pm 0.003} \\ 0.691 \scriptstyle{\pm 0.006}$	0.721 0.696	0.715 0.698	0.731±0.003 0.711±0.004	0.727±0.003 0.704±0.004	0.728 0.705	0.724 0.698	0.737±0.003 0.716±0.004	$0.733 \scriptstyle{\pm 0.003} \\ 0.708 \scriptstyle{\pm 0.004}$	0.739 0.718	0.734 0.711

TABLE 20: UF-NB15 Multi-classification results. Cells report the (average) Accuracy (and std. dev.) computed exclusively on the malicious samples.

Avai	lable Data	Ī	Limited (100 p	er class)			Scarce (15%	of D)			Moderate (409	b of □)		Ī	Abundant (804	% of D)	
Dep	pendency	Static []	N=1000]	Tempora	l [N=1]	Static [N	N=1000]	Tempora	ıl [N=1]	Static []	N=1000]	Tempora	l [N=1]	Static []	N=1000]	Tempora	al [N=1]
Alg.	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
RF	BMD MD	$\substack{0.676 \pm 0.015 \\ 0.675 \pm 0.017}$	$0.657 \scriptstyle{\pm 0.015} \\ 0.645 \scriptstyle{\pm 0.019}$	0.691 0.688	0.667 0.662	0.784±0.003 0.776±0.003	$\substack{0.767 \pm 0.003 \\ 0.757 \pm 0.003}$	0.787 0.779	0.769 0.760	0.791±0.003 0.784±0.003	$\begin{array}{c c} 0.776 \scriptstyle{\pm 0.003} \\ 0.767 \scriptstyle{\pm 0.004} \end{array}$	0.791 0.785	0.777 0.766	0.788±0.003 0.781±0.003	$\substack{0.775 \pm 0.003 \\ 0.766 \pm 0.003}$	0.787 0.779	0.772 0.763
DI	BMD MD	$0.641 \scriptstyle{\pm 0.018} \\ 0.639 \scriptstyle{\pm 0.018}$	$\substack{0.627_{\pm 0.017}\\0.613_{\pm 0.019}}$	0.657 0.640	0.635 0.615	0.766±0.003 0.751±0.004	$\substack{0.752 \pm 0.004 \\ 0.733 \pm 0.005}$	0.768 0.751	0.755 0.735	0.777±0.003 0.763±0.004	$\begin{array}{c c} 0.764 \scriptstyle{\pm 0.003} \\ 0.748 \scriptstyle{\pm 0.004} \end{array}$	0.779 0.765	0.767 0.751	0.778±0.003 0.764±0.004	$0.765 \scriptstyle{\pm 0.003} \\ 0.751 \scriptstyle{\pm 0.004}$	0.774 0.762	0.763 0.750
LR	BMD MD	0.382±0.075 0.295±0.100	0.322±0.073 0.281±0.083	0.351 0.221	0.316 0.210	0.236±0.147 0.088±0.007	0.214±0.050 0.038±0.011	0.176 0.087	0.261 0.035	0.180±0.096 0.087±0.006	0.198±0.057 0.041±0.011	0.155 0.087	0.258 0.040	0.185±0.110 0.088±0.006	0.180±0.058 0.043±0.011	0.140 0.090	0.140 0.035
HGB	BMD MD	0.667±0.017 0.666±0.017	0.646±0.017 0.637±0.018	0.659 0.659	0.644 0.623	0.788±0.003 0.757±0.006	$\substack{0.768 \pm 0.003 \\ 0.724 \pm 0.013}$	0.784 0.752	0.762 0.718	0.797±0.003 0.767±0.005	0.778±0.003 0.734±0.006	0.797 0.764	0.777 0.740	0.801±0.003 0.772±0.007	0.782±0.003 0.740±0.006	0.803 0.775	0.786 0.745

TABLE 21: CICIDS17 Multi-classification results. Cells report the (average) Accuracy (and std. dev.) computed exclusively on the malicious samples.

Avai	lable Data		Limited (100 p	er class)		Scarce (15% of D) Static [N=1000] Temporal [N=1]					Moderate (409	of D)		I	Abundant (804		
De	pendency	Static [?	N=1000]	Tempora	al [N=1]	Static [N=1000] Temporal [N=1] Complete Essential Complete Essential			Static []	N=1000]	Tempora	ıl [N=1]	Static [?	N=1000]	Tempora	al [N=1]	
Alg.	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
RF	BMD MD	0.998±0.003 0.996±0.003	$\substack{0.998 \pm 0.001 \\ 0.997 \pm 0.002}$	0.986 0.984	0.985 0.988	1.000±0.000 0.999±0.000	$\substack{1.000 \pm 0.000 \\ 0.999 \pm 0.000}$	0.999 0.989	0.999 0.989	1.000±0.000 1.000±0.000	1.000±0.000 1.000±0.000	0.999 0.992	0.998 0.993	1.000±0.000 1.000±0.000	1.000±0.000 1.000±0.000	0.999 0.993	0.999 0.993
DI	BMD MD	$\begin{array}{c} 0.997 \scriptstyle{\pm 0.002} \\ 0.995 \scriptstyle{\pm 0.004} \end{array}$	$\substack{0.994 \pm 0.003 \\ 0.991 \pm 0.004}$	0.931 0.969	0.787 0.972	1.000±0.000 0.999±0.000	$\substack{1.000 \pm 0.000 \\ 0.999 \pm 0.000}$	0.999 0.987	0.997 0.992	1.000±0.000 1.000±0.000	1.000±0.000 1.000±0.000	0.997 0.992	0.996 0.993	1.000±0.000 1.000±0.000	1.000±0.000 1.000±0.000	0.998 0.995	0.997 0.991
LR.	BMD MD	0.939±0.010 0.938±0.018	$\substack{0.171_{\pm 0.251}\\0.147_{\pm 0.229}}$	0.883 0.547	0.007 0.006	0.962±0.005 0.907±0.005	$0.553{\scriptstyle \pm 0.482}\atop0.003{\scriptstyle \pm 0.003}$	0.960 0.892	0.977 0.002	0.963±0.004 0.908±0.004	$\substack{0.528 \pm 0.488 \\ 0.003 \pm 0.002}$	0.966 0.906	1.000 0.002	0.962±0.004 0.907±0.004	$0.550 {\scriptstyle \pm 0.476} \atop 0.003 {\scriptstyle \pm 0.002}$	0.971 0.901	0.980 0.002
HGB	BMD MD	$\begin{array}{c} 0.997 \scriptstyle{\pm 0.003} \\ 0.995 \scriptstyle{\pm 0.003} \end{array}$	$\begin{array}{c} 0.996 \scriptstyle{\pm 0.003} \\ 0.995 \scriptstyle{\pm 0.003} \end{array}$	0.978 0.980	0.984 0.985	$0.993 \scriptstyle{\pm 0.003} \\ 0.996 \scriptstyle{\pm 0.001}$	$0.989 \scriptstyle{\pm 0.004} \\ 0.996 \scriptstyle{\pm 0.002}$	0.993 0.987	0.985 0.985	$\begin{array}{c} 0.994 \scriptstyle{\pm 0.002} \\ 0.997 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.992 _{\pm 0.004} \\ 0.997 _{\pm 0.002} \end{array}$	0.994 0.989	0.993 0.989	$0.995{\scriptstyle \pm 0.003\atop 0.998{\scriptstyle \pm 0.001}}$	$\begin{array}{c} 0.994 _{\pm 0.004} \\ 0.998 _{\pm 0.002} \end{array}$	0.991 0.993	0.990 0.993

TABLE 22: CTU13 Runtime (in seconds) for training the ML-NIDS on the *high-end* platform..

Availab	le Data	Limited (100	per class) [N=1000]	Scarce (15% of	of D) [N=100]	Moderate (40%	of D) [N=100]	Abundant (80%	of D) [N=100]
Alg. CPU	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
RF all cores	BD MD ED ED-s	$\begin{array}{c} 0.82 \scriptstyle{\pm 0.014} \\ 0.86 \scriptstyle{\pm 0.017} \\ 4.25 \scriptstyle{\pm 0.047} \\ 5.92 \scriptstyle{\pm 0.070} \end{array}$	$\begin{array}{c} 0.33 \scriptstyle{\pm 0.011} \\ 0.86 \scriptstyle{\pm 0.014} \\ 4.31 \scriptstyle{\pm 0.042} \\ 5.98 \scriptstyle{\pm 0.067} \end{array}$	$\begin{array}{c} 1.71 \scriptstyle{\pm 0.036} \\ 1.84 \scriptstyle{\pm 0.048} \\ 6.84 \scriptstyle{\pm 0.080} \\ 10.53 \scriptstyle{\pm 0.141} \end{array}$	$\begin{array}{c} 0.59 \scriptstyle{\pm 0.123} \\ 1.70 \scriptstyle{\pm 0.076} \\ 6.99 \scriptstyle{\pm 0.107} \\ 9.72 \scriptstyle{\pm 0.184} \end{array}$	$\substack{4.94 \pm 0.082 \\ 5.06 \pm 0.075 \\ 16.44 \pm 0.163 \\ 23.28 \pm 0.187}$	$\substack{1.94 \pm 0.783\\ 4.00 \pm 0.068\\ 12.83 \pm 0.164\\ 17.71 \pm 0.212}$	$\begin{array}{c} 11.72{\scriptstyle \pm 0.330} \\ 11.57{\scriptstyle \pm 0.324} \\ 37.44{\scriptstyle \pm 0.957} \\ 50.05{\scriptstyle \pm 1.112} \end{array}$	$\begin{array}{c} 5.67 \pm 0.465 \\ 9.11 \pm 0.305 \\ 29.01 \pm 0.718 \\ 37.57 \pm 0.796 \end{array}$
DT	BD MD ED ED-s	$\begin{array}{c} 0.00 \pm 0.000 \\ 0.01 \pm 0.000 \\ 0.02 \pm 0.001 \\ 0.03 \pm 0.001 \end{array}$	$\begin{array}{c} 0.00 \pm 0.000 \\ 0.00 \pm 0.000 \\ 0.01 \pm 0.001 \\ 0.02 \pm 0.001 \end{array}$	$\begin{array}{c} 0.89 \scriptstyle{\pm 0.060} \\ 0.85 \scriptstyle{\pm 0.038} \\ 2.80 \scriptstyle{\pm 0.126} \\ 3.85 \scriptstyle{\pm 0.148} \end{array}$	$\begin{array}{c} 0.16 \scriptstyle{\pm 0.001} \\ 0.37 \scriptstyle{\pm 0.023} \\ 1.24 \scriptstyle{\pm 0.072} \\ 1.33 \scriptstyle{\pm 0.075} \end{array}$	$\begin{array}{c} 2.39 \scriptstyle{\pm 0.175} \\ 2.25 \scriptstyle{\pm 0.118} \\ 6.94 \scriptstyle{\pm 0.326} \\ 9.15 \scriptstyle{\pm 0.376} \end{array}$	$\begin{array}{c} 0.95 \scriptstyle{\pm 0.201} \\ 0.97 \scriptstyle{\pm 0.072} \\ 3.27 \scriptstyle{\pm 0.223} \\ 3.52 \scriptstyle{\pm 0.230} \end{array}$	$\begin{array}{c} 5.58 {\pm}_{0.510} \\ 5.15 {\pm}_{0.435} \\ 15.46 {\pm}_{1.244} \\ 20.05 {\pm}_{1.537} \end{array}$	$\begin{array}{c} 1.87 \pm 0.653 \\ 2.23 \pm 0.246 \\ 7.62 \pm 0.778 \\ 8.15 \pm 0.800 \end{array}$
LR all ones	BD MD ED ED-s	$\begin{array}{c} 0.08 \pm _{0.385} \\ 0.11 \pm _{0.026} \\ 0.22 \pm _{0.155} \\ 0.26 \pm _{0.186} \end{array}$	$\begin{array}{c} 0.01 \pm \scriptstyle{0.001} \\ 0.11 \pm \scriptstyle{0.030} \\ 0.18 \pm \scriptstyle{0.133} \\ 0.21 \pm \scriptstyle{0.133} \end{array}$	$\begin{array}{c} 7.08 \pm 0.931 \\ 10.04 \pm 1.527 \\ 30.75 \pm 3.091 \\ 32.45 \pm 3.079 \end{array}$	$\begin{array}{c} 3.44 \scriptstyle{\pm 0.873} \\ 9.64 \scriptstyle{\pm 1.729} \\ 12.33 \scriptstyle{\pm 1.232} \\ 12.84 \scriptstyle{\pm 1.231} \end{array}$	$\substack{23.76 \pm 6.714 \\ 25.77 \pm 6.915 \\ 117.02 \pm 30.614 \\ 120.31 \pm 31.382}$	$\begin{array}{c} 11.34{\scriptstyle \pm 4.351} \\ 27.96{\scriptstyle \pm 8.821} \\ 35.94{\scriptstyle \pm 9.819} \\ 37.07{\scriptstyle \pm 10.086} \end{array}$	$\begin{array}{c} 47.84{\scriptstyle \pm 12.698} \\ 52.06{\scriptstyle \pm 14.071} \\ 243.77{\scriptstyle \pm 66.388} \\ 249.68{\scriptstyle \pm 67.708} \end{array}$	$\substack{21.85 \pm 14.564 \\ 56.45 \pm 15.916 \\ 95.58 \pm 26.226 \\ 97.72 \pm 26.740}$
HGB	BD MD ED ED-s	$\begin{array}{c} 0.33 \pm 0.041 \\ 2.25 \pm 0.699 \\ 0.66 \pm 0.063 \\ 0.76 \pm 0.071 \end{array}$	$\begin{array}{c} 0.01 \pm \scriptstyle{0.012} \\ 1.80 \pm \scriptstyle{0.120} \\ 0.58 \pm \scriptstyle{0.057} \\ 0.72 \pm \scriptstyle{0.067} \end{array}$	$\begin{array}{c} 1.52 \scriptstyle{\pm 0.136} \\ 2.04 \scriptstyle{\pm 0.470} \\ 6.90 \scriptstyle{\pm 0.360} \\ 9.30 \scriptstyle{\pm 0.379} \end{array}$	$\begin{array}{c} 0.64 \scriptstyle{\pm 0.191} \\ 1.93 \scriptstyle{\pm 0.474} \\ 5.20 \scriptstyle{\pm 0.341} \\ 6.32 \scriptstyle{\pm 0.343} \end{array}$	$\substack{2.75 \pm 0.176\\3.88 \pm 0.679\\12.41 \pm 0.320\\17.69 \pm 0.364}$	$\begin{array}{c} 0.99 \scriptstyle{\pm 0.033} \\ 3.14 \scriptstyle{\pm 0.706} \\ 9.23 \scriptstyle{\pm 0.563} \\ 11.73 \scriptstyle{\pm 0.628} \end{array}$	$\begin{array}{c} 4.72 \pm 0.240 \\ 5.94 \pm 1.166 \\ 19.80 \pm 0.458 \\ 30.29 \pm 0.622 \end{array}$	$\substack{1.95 \pm 0.547\\4.81 \pm 0.857\\14.44 \pm 0.936\\19.20 \pm 1.033}$

TABLE 23: GTCS: Runtime (in seconds) for training the ML-NIDS on the high-end platform..

Availab		Limited (100 p	per class) [N=1000]	Scarce (15%	of D) [N=100]	Moderate (40%	of D) [N=100]	Abundant (80%	of D) [N=100]
Alg. CPU	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
RF all cores	BD MD ED ED-s	$\begin{array}{c} 0.79 \scriptstyle{\pm 0.050} \\ 0.81 \scriptstyle{\pm 0.053} \\ 2.81 \scriptstyle{\pm 0.129} \\ 4.10 \scriptstyle{\pm 0.203} \end{array}$	$\begin{array}{c} 0.29 {\scriptstyle \pm 0.043} \\ 0.81 {\scriptstyle \pm 0.051} \\ 2.87 {\scriptstyle \pm 0.131} \\ 4.17 {\scriptstyle \pm 0.205} \end{array}$	$\begin{array}{c} 1.46 \scriptstyle{\pm 0.033} \\ 1.41 \scriptstyle{\pm 0.043} \\ 4.17 \scriptstyle{\pm 0.056} \\ 7.40 \scriptstyle{\pm 0.079} \end{array}$	$\begin{array}{c} 1.63 \scriptstyle{\pm 0.047} \\ 1.07 \scriptstyle{\pm 0.043} \\ 4.14 \scriptstyle{\pm 0.085} \\ 6.36 \scriptstyle{\pm 0.092} \end{array}$	$\begin{array}{c} 4.35{\scriptstyle \pm 1.474} \\ 3.92{\scriptstyle \pm 1.304} \\ 6.41{\scriptstyle \pm 1.188} \\ 12.53{\scriptstyle \pm 1.637} \end{array}$	$\substack{2.81 \pm 0.784 \\ 2.40 \pm 0.706 \\ 4.39 \pm 0.636 \\ 7.65 \pm 1.181}$	$\begin{array}{c} 9.69{\scriptstyle \pm 0.195} \\ 8.57{\scriptstyle \pm 0.165} \\ 12.60{\scriptstyle \pm 0.211} \\ 23.11{\scriptstyle \pm 0.383} \end{array}$	$\begin{array}{c} 5.38 \pm_{0.334} \\ 4.89 \pm_{0.096} \\ 7.14 \pm_{0.110} \\ 11.77 \pm_{0.121} \end{array}$
DT one core	BD MD ED ED-s	$\begin{array}{c} 0.01 \pm 0.001 \\ 0.01 \pm 0.000 \\ 0.02 \pm 0.001 \\ 0.03 \pm 0.001 \end{array}$	$\begin{array}{c} 0.01 \pm _{0.001} \\ 0.00 \pm _{0.000} \\ 0.01 \pm _{0.000} \\ 0.01 \pm _{0.001} \end{array}$	$\begin{array}{c} 1.11 \scriptstyle{\pm 0.056} \\ 1.02 \scriptstyle{\pm 0.048} \\ 1.27 \scriptstyle{\pm 0.028} \\ 2.29 \scriptstyle{\pm 0.049} \end{array}$	$\begin{array}{c} 0.33 \scriptstyle{\pm 0.074} \\ 0.42 \scriptstyle{\pm 0.017} \\ 0.54 \scriptstyle{\pm 0.018} \\ 0.58 \scriptstyle{\pm 0.019} \end{array}$	$\begin{array}{c} 3.19 \pm \scriptstyle{0.209} \\ 2.90 \pm \scriptstyle{0.181} \\ 3.50 \pm \scriptstyle{0.230} \\ 6.39 \pm \scriptstyle{0.242} \end{array}$	$\begin{array}{c} 0.94 \pm_{0.114} \\ 1.15 \pm_{0.081} \\ 1.48 \pm_{0.097} \\ 1.61 \pm_{0.173} \end{array}$	$\begin{array}{c} 7.15 \scriptstyle{\pm 0.576} \\ 6.41 \scriptstyle{\pm 0.476} \\ 7.63 \scriptstyle{\pm 0.393} \\ 13.64 \scriptstyle{\pm 0.545} \end{array}$	$\begin{array}{c} 2.11 \pm 0.674 \\ 2.52 \pm 0.208 \\ 3.29 \pm 0.262 \\ 3.55 \pm 0.274 \end{array}$
LR all cores	BD MD ED ED-s	$\begin{array}{c} 0.03 \pm 0.176 \\ 0.08 \pm 0.034 \\ 0.10 \pm 0.128 \\ 0.13 \pm 0.152 \end{array}$	$\begin{array}{c} 0.01 \pm_{0.087} \\ 0.09 \pm_{0.022} \\ 0.11 \pm_{0.086} \\ 0.13 \pm_{0.112} \end{array}$	$\begin{array}{c} 1.58 \scriptstyle{\pm 0.221} \\ 5.26 \scriptstyle{\pm 0.581} \\ 5.79 \scriptstyle{\pm 0.811} \\ 7.09 \scriptstyle{\pm 0.818} \end{array}$	$\begin{array}{c} 2.05 \pm 0.712 \\ 3.34 \pm 0.155 \\ 2.45 \pm 0.206 \\ 2.71 \pm 0.217 \end{array}$	$\begin{array}{c} 4.94 \scriptstyle{\pm 0.406} \\ 13.00 \scriptstyle{\pm 1.305} \\ 20.00 \scriptstyle{\pm 2.969} \\ 23.20 \scriptstyle{\pm 3.036} \end{array}$	$\begin{array}{c} 9.04{\scriptstyle \pm 1.013} \\ 8.87{\scriptstyle \pm 0.318} \\ 7.43{\scriptstyle \pm 1.444} \\ 7.86{\scriptstyle \pm 1.726} \end{array}$	$\begin{array}{c} 10.19 \scriptstyle{\pm 0.683} \\ 26.36 \scriptstyle{\pm 2.640} \\ 46.23 \scriptstyle{\pm 1.968} \\ 52.53 \scriptstyle{\pm 1.981} \end{array}$	$\begin{array}{c} 17.06 \pm 1.741 \\ 17.19 \pm 0.737 \\ 20.92 \pm 2.338 \\ 21.62 \pm 2.347 \end{array}$
HGB	BD MD ED ED-s	$\begin{array}{c} 0.32 \scriptstyle{\pm 0.042} \\ 1.21 \scriptstyle{\pm 0.119} \\ 0.45 \scriptstyle{\pm 0.057} \\ 0.53 \scriptstyle{\pm 0.061} \end{array}$	$\begin{array}{c} 0.29 {\scriptstyle \pm 0.026} \\ 1.11 {\scriptstyle \pm 0.101} \\ 0.43 {\scriptstyle \pm 0.047} \\ 0.52 {\scriptstyle \pm 0.052} \end{array}$	$\begin{array}{c} 1.76 \scriptstyle{\pm 0.041} \\ 5.81 \scriptstyle{\pm 0.431} \\ 4.55 \scriptstyle{\pm 0.148} \\ 6.53 \scriptstyle{\pm 0.176} \end{array}$	$\substack{1.03 \pm 0.047\\4.23 \pm 0.210\\2.88 \pm 0.124\\3.53 \pm 0.142}$	$\begin{array}{c} 3.56 \scriptstyle{\pm 0.474} \\ 10.51 \scriptstyle{\pm 1.440} \\ 8.46 \scriptstyle{\pm 0.632} \\ 14.14 \scriptstyle{\pm 0.612} \end{array}$	$\begin{array}{c} 1.80 \scriptstyle{\pm 0.347} \\ 7.08 \scriptstyle{\pm 0.879} \\ 4.57 \scriptstyle{\pm 0.464} \\ 6.02 \scriptstyle{\pm 0.815} \end{array}$	$\begin{array}{c} 5.80 \scriptstyle{\pm 0.069} \\ 16.52 \scriptstyle{\pm 0.211} \\ 13.98 \scriptstyle{\pm 0.183} \\ 24.11 \scriptstyle{\pm 0.279} \end{array}$	$\begin{array}{c} 2.96 \pm _{0.143} \\ 11.00 \pm _{0.868} \\ 7.30 \pm _{0.126} \\ 10.02 \pm _{0.173} \end{array}$

TABLE 24: $\mathtt{NB15}$: Runtime (in seconds) for training the ML-NIDS on the $\mathit{high-end}$ platform..

Availab	le Data	Limited (100	per class) [N=1000]	Scarce (15% of	of D) [N=100]	Moderate (40%	of D) [N=100]	Abundant (80%	of D) [N=100]
Alg. CPU	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
RF all cores	BD MD ED ED-s	$\begin{array}{c} 0.80 {\scriptstyle \pm 0.013} \\ 0.90 {\scriptstyle \pm 0.015} \\ 4.84 {\scriptstyle \pm 0.075} \\ 6.66 {\scriptstyle \pm 0.099} \end{array}$	$\begin{array}{c} 0.33 \pm 0.009 \\ 0.90 \pm 0.017 \\ 4.95 \pm 0.076 \\ 6.77 \pm 0.101 \end{array}$	$\begin{array}{c} 1.28 \scriptstyle{\pm 0.027} \\ 1.37 \scriptstyle{\pm 0.027} \\ 7.74 \scriptstyle{\pm 0.086} \\ 11.53 \scriptstyle{\pm 0.104} \end{array}$	$\substack{1.71 \pm 0.264\\1.23 \pm 0.036\\8.02 \pm 0.106\\11.23 \pm 0.113}$	$\begin{array}{c} 3.58 \pm 0.090 \\ 3.77 \pm 0.088 \\ 18.33 \pm 0.178 \\ 24.74 \pm 0.207 \end{array}$	$\substack{3.89 \pm 0.074\\3.67 \pm 0.067\\16.28 \pm 0.163\\21.48 \pm 0.169}$	$\begin{array}{c} 8.23{\scriptstyle \pm 0.214} \\ 8.62{\scriptstyle \pm 0.228} \\ 42.41{\scriptstyle \pm 0.527} \\ 54.48{\scriptstyle \pm 0.552} \end{array}$	$\begin{array}{c} 8.85 \scriptstyle{\pm 0.413} \\ 9.01 \scriptstyle{\pm 0.154} \\ 38.48 \scriptstyle{\pm 0.355} \\ 47.50 \scriptstyle{\pm 0.441} \end{array}$
DT	BD MD ED ED-s	$\begin{array}{c} 0.00 \scriptstyle{\pm 0.001} \\ 0.01 \scriptstyle{\pm 0.000} \\ 0.02 \scriptstyle{\pm 0.001} \\ 0.04 \scriptstyle{\pm 0.001} \end{array}$	$\begin{array}{c} 0.00 \pm_{0.001} \\ 0.01 \pm_{0.000} \\ 0.02 \pm_{0.001} \\ 0.03 \pm_{0.001} \end{array}$	$\begin{array}{c} 0.65 \pm 0.040 \\ 0.70 \pm 0.045 \\ 3.53 \pm 0.180 \\ 4.67 \pm 0.184 \end{array}$	$\begin{array}{c} 0.60 \scriptstyle{\pm 0.074} \\ 0.66 \scriptstyle{\pm 0.070} \\ 2.11 \scriptstyle{\pm 0.114} \\ 2.71 \scriptstyle{\pm 0.117} \end{array}$	$\begin{array}{c} 2.06 \scriptstyle{\pm 0.860} \\ 2.19 \scriptstyle{\pm 0.853} \\ 11.31 \scriptstyle{\pm 4.645} \\ 14.76 \scriptstyle{\pm 6.123} \end{array}$	$\substack{1.37 \pm 0.368 \\ 2.19 \pm 0.963 \\ 7.11 \pm 3.002 \\ 8.94 \pm 3.804}$	$\begin{array}{c} 3.89{\scriptstyle \pm 0.671} \\ 4.16{\scriptstyle \pm 0.788} \\ 21.57{\scriptstyle \pm 3.615} \\ 28.26{\scriptstyle \pm 4.703} \end{array}$	$\begin{array}{c} 3.70 \pm_{0.234} \\ 4.32 \pm_{0.965} \\ 14.09 \pm_{2.499} \\ 17.29 \pm_{3.013} \end{array}$
LR all cores	BD MD ED ED-s	$\begin{array}{c} 0.05 \pm 0.209 \\ 0.12 \pm 0.023 \\ 0.16 \pm 0.149 \\ 0.22 \pm 0.175 \end{array}$	$\begin{array}{c} 0.04 \pm_{0.111} \\ 0.12 \pm_{0.028} \\ 0.29 \pm_{0.020} \\ 0.33 \pm_{0.024} \end{array}$	$\begin{array}{c} 3.47 \pm 0.537 \\ 7.39 \pm 0.210 \\ 24.62 \pm 1.390 \\ 26.40 \pm 1.402 \end{array}$	$\substack{2.94 \pm 0.754 \\ 5.66 \pm 0.519 \\ 18.28 \pm 0.956 \\ 19.63 \pm 0.955}$	$\begin{array}{c} 12.16 \pm 2.188 \\ 19.15 \pm 0.417 \\ 97.78 \pm 5.799 \\ 101.51 \pm 5.853 \end{array}$	$\begin{array}{c} 8.60 {\scriptstyle \pm 1.147} \\ 18.07 {\scriptstyle \pm 1.515} \\ 79.06 {\scriptstyle \pm 3.903} \\ 81.64 {\scriptstyle \pm 3.927} \end{array}$	$\begin{array}{c} 23.88 {\pm}_{3.130} \\ 37.93 {\pm}_{0.818} \\ 205.70 {\pm}_{13.803} \\ 213.28 {\pm}_{13.881} \end{array}$	$\substack{21.17 \pm 1.411\\35.38 \pm 2.705\\172.12 \pm 6.615\\176.82 \pm 6.698}$
HGB	BD MD ED ED-s	$\begin{array}{c} 0.33 \pm 0.082 \\ 3.36 \pm 0.157 \\ 0.73 \pm 0.174 \\ 0.84 \pm 0.191 \end{array}$	$\begin{array}{c} 0.31 \pm_{0.034} \\ 3.07 \pm_{0.134} \\ 0.69 \pm_{0.120} \\ 0.79 \pm_{0.139} \end{array}$	$\begin{array}{c} 1.38 \scriptstyle{\pm 0.091} \\ 1.46 \scriptstyle{\pm 0.261} \\ 7.37 \scriptstyle{\pm 0.444} \\ 9.74 \scriptstyle{\pm 0.463} \end{array}$	$\begin{array}{c} 1.18 \scriptstyle{\pm 0.168} \\ 1.06 \scriptstyle{\pm 0.154} \\ 5.61 \scriptstyle{\pm 0.454} \\ 7.30 \scriptstyle{\pm 0.462} \end{array}$	$\begin{array}{c} 2.76 \scriptstyle{\pm 0.050} \\ 2.60 \scriptstyle{\pm 0.053} \\ 14.48 \scriptstyle{\pm 0.804} \\ 20.07 \scriptstyle{\pm 0.917} \end{array}$	$\substack{2.18 \pm 0.085\\ 1.97 \pm 0.051\\ 10.62 \pm 0.624\\ 14.35 \pm 0.661}$	$\begin{array}{c} 4.57{\scriptstyle \pm 0.073} \\ 4.15{\scriptstyle \pm 0.121} \\ 23.76{\scriptstyle \pm 1.494} \\ 35.56{\scriptstyle \pm 1.650} \end{array}$	$\begin{array}{c} 3.67 \pm 0.085 \\ 3.25 \pm 0.068 \\ 16.97 \pm 0.789 \\ 24.08 \pm 0.949 \end{array}$

TABLE 25: UF-NB15: Runtime (in seconds) for training the ML-NIDS on the *high-end* platform..

Availab	le Data	Limited (100)	per class) [N=1000]	Scarce (15% of	of D) [N=100]	Moderate (40%	of D) [N=100]	Abundant (80%	of D) [N=100]
Alg. CPU	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
RF all cores	BD MD ED ED-s	$\begin{array}{c} 0.78 \scriptstyle{\pm 0.014} \\ 0.90 \scriptstyle{\pm 0.015} \\ 4.74 \scriptstyle{\pm 0.074} \\ 6.54 \scriptstyle{\pm 0.096} \end{array}$	$\begin{array}{c} 0.33 \pm_{0.024} \\ 0.90 \pm_{0.018} \\ 5.00 \pm_{0.062} \\ 6.81 \pm_{0.088} \end{array}$	$\begin{array}{c} 1.20 \scriptstyle{\pm 0.030} \\ 1.17 \scriptstyle{\pm 0.026} \\ 9.65 \scriptstyle{\pm 0.065} \\ 13.41 \scriptstyle{\pm 0.084} \end{array}$	$\begin{array}{c} 1.70 \scriptstyle{\pm 0.054} \\ 1.41 \scriptstyle{\pm 0.048} \\ 8.98 \scriptstyle{\pm 0.128} \\ 12.07 \scriptstyle{\pm 0.138} \end{array}$	$\substack{2.46 \pm 0.067 \\ 2.51 \pm 0.069 \\ 14.28 \pm 0.236 \\ 20.50 \pm 0.364}$	$\begin{array}{c} 3.46 \scriptstyle{\pm 0.084} \\ 3.21 \scriptstyle{\pm 0.062} \\ 15.66 \scriptstyle{\pm 0.156} \\ 20.57 \scriptstyle{\pm 0.184} \end{array}$	$\begin{array}{c} 5.67 \scriptstyle{\pm 0.115} \\ 5.76 \scriptstyle{\pm 0.123} \\ 30.22 \scriptstyle{\pm 0.239} \\ 41.08 \scriptstyle{\pm 0.262} \end{array}$	$\begin{array}{c} 7.96 \pm _{0.107} \\ 7.90 \pm _{0.170} \\ 36.18 \pm _{0.478} \\ 44.56 \pm _{0.518} \end{array}$
DT	BD MD ED ED-s	$\begin{array}{c} 0.00 \pm 0.000 \\ 0.01 \pm 0.000 \\ 0.02 \pm 0.001 \\ 0.03 \pm 0.001 \end{array}$	$\begin{array}{c} 0.01 \pm 0.000 \\ 0.00 \pm 0.000 \\ 0.02 \pm 0.001 \\ 0.03 \pm 0.001 \end{array}$	$\begin{array}{c} 0.44 \scriptstyle{\pm 0.033} \\ 0.44 \scriptstyle{\pm 0.037} \\ 1.85 \scriptstyle{\pm 0.058} \\ 2.85 \scriptstyle{\pm 0.060} \end{array}$	$\begin{array}{c} 0.02 \scriptstyle{\pm 0.029} \\ 0.30 \scriptstyle{\pm 0.014} \\ 1.38 \scriptstyle{\pm 0.039} \\ 1.88 \scriptstyle{\pm 0.040} \end{array}$	$\begin{array}{c} 1.30 {\scriptstyle \pm 0.124} \\ 1.30 {\scriptstyle \pm 0.118} \\ 5.28 {\scriptstyle \pm 0.392} \\ 8.00 {\scriptstyle \pm 0.585} \end{array}$	$\begin{array}{c} 0.70 \scriptstyle{\pm 0.111} \\ 0.83 \scriptstyle{\pm 0.077} \\ 3.80 \scriptstyle{\pm 0.307} \\ 4.97 \scriptstyle{\pm 0.379} \end{array}$	$\begin{array}{c} 3.57 \pm 0.876 \\ 3.52 \pm 0.848 \\ 14.13 \pm 3.225 \\ 20.45 \pm 4.571 \end{array}$	$\substack{1.66 \pm 0.578 \\ 2.25 \pm 0.572 \\ 10.30 \pm 2.432 \\ 13.18 \pm 3.021}$
LR all cores	BD MD ED ED-s	$\begin{array}{c} 0.05 \pm _{0.142} \\ 0.12 \pm _{0.024} \\ 0.23 \pm _{0.141} \\ 0.28 \pm _{0.168} \end{array}$	$\begin{array}{c} 0.27 \pm _{0.197} \\ 0.12 \pm _{0.025} \\ 0.32 \pm _{0.033} \\ 0.36 \pm _{0.035} \end{array}$	$\begin{array}{c} 4.77_{\pm 0.554} \\ 6.76_{\pm 0.230} \\ 31.27_{\pm 1.151} \\ 32.95_{\pm 1.159} \end{array}$	$\substack{2.38 \pm 0.678 \\ 5.85 \pm 0.800 \\ 13.59 \pm 1.249 \\ 14.79 \pm 1.267}$	$\substack{21.43 \pm 3.804 \\ 18.95 \pm 1.235 \\ 132.16 \pm 10.707 \\ 136.07 \pm 11.071}$	$\begin{array}{c} 11.06 \pm 2.987 \\ 18.68 \pm 3.129 \\ 53.76 \pm 8.105 \\ 56.08 \pm 8.263 \end{array}$	$\begin{array}{c} 45.62{\scriptstyle\pm5.266} \\ 36.81{\scriptstyle\pm1.202} \\ 292.26{\scriptstyle\pm13.293} \\ 299.48{\scriptstyle\pm13.352} \end{array}$	$\begin{array}{c} 27.78 \pm 4.997 \\ 39.99 \pm 4.944 \\ 127.41 \pm 14.443 \\ 131.67 \pm 14.515 \end{array}$
HGB	BD MD ED ED-s	$\begin{array}{c} 0.23 \pm 0.090 \\ 3.37 \pm 0.161 \\ 0.60 \pm 0.186 \\ 0.69 \pm 0.198 \end{array}$	$\begin{array}{c} 0.44 \pm _{0.132} \\ 3.09 \pm _{0.288} \\ 0.71 \pm _{0.075} \\ 0.84 \pm _{0.090} \end{array}$	$\begin{array}{c} 1.20 \scriptstyle{\pm 0.105} \\ 1.22 \scriptstyle{\pm 0.071} \\ 5.96 \scriptstyle{\pm 0.324} \\ 8.16 \scriptstyle{\pm 0.364} \end{array}$	$\begin{array}{c} 1.14 \pm 0.087 \\ 0.99 \pm 0.086 \\ 5.00 \pm 0.318 \\ 6.51 \pm 0.347 \end{array}$	$\substack{2.51 \pm 0.076 \\ 2.47 \pm 0.069 \\ 13.43 \pm 0.457 \\ 19.52 \pm 0.649}$	$\substack{2.04 \pm 0.066 \\ 1.80 \pm 0.053 \\ 9.69 \pm 0.373 \\ 12.91 \pm 0.441}$	$\begin{array}{c} 4.18 \pm 0.055 \\ 3.90 \pm 0.095 \\ 22.14 \pm 0.458 \\ 33.33 \pm 0.564 \end{array}$	$3.43\pm_{0.078}$ $3.15\pm_{0.095}$ $16.09\pm_{0.879}$ $23.01\pm_{1.345}$

TABLE 26: CICIDS17: Runtime (in seconds) for training the ML-NIDS on the high-end platform..

Availal	ble Data	Limited (100 p	per class) [N=1000]	Scarce (15% o	f D) [N=100]	Moderate (40%	of D) [N=100]	Abundant (80%	of D) [N=100]
Alg. CPU	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
RF all cores	BD MD ED ED-s	$\begin{array}{c} 0.84 \scriptstyle{\pm 0.015} \\ 0.86 \scriptstyle{\pm 0.016} \\ 6.19 \scriptstyle{\pm 0.113} \\ 8.42 \scriptstyle{\pm 0.178} \end{array}$	$\begin{array}{c} 0.23 \pm 0.008 \\ 0.85 \pm 0.017 \\ 6.21 \pm 0.120 \\ 8.41 \pm 0.196 \end{array}$	$\begin{array}{c} 3.33 \scriptstyle{\pm 0.048} \\ 3.73 \scriptstyle{\pm 0.055} \\ 13.40 \scriptstyle{\pm 0.165} \\ 21.10 \scriptstyle{\pm 0.255} \end{array}$	$\begin{array}{c} 0.94 \scriptstyle{\pm 0.103} \\ 1.42 \scriptstyle{\pm 0.055} \\ 12.26 \scriptstyle{\pm 0.086} \\ 16.54 \scriptstyle{\pm 0.090} \end{array}$	$ \begin{array}{c} 10.11{\scriptstyle \pm 0.157} \\ 11.16{\scriptstyle \pm 0.151} \\ 38.33{\scriptstyle \pm 0.424} \\ 54.73{\scriptstyle \pm 0.588} \end{array} $	$\begin{array}{c} 3.47 \pm 0.098 \\ 3.58 \pm 0.050 \\ 16.47 \pm 0.159 \\ 24.19 \pm 0.200 \end{array}$	$\substack{24.20 \pm 0.549 \\ 26.21 \pm 0.656 \\ 89.38 \pm 1.622 \\ 121.04 \pm 1.665}$	$\begin{array}{c} 13.20 {\scriptstyle \pm 0.341} \\ 8.68 {\scriptstyle \pm 0.156} \\ 33.09 {\scriptstyle \pm 0.369} \\ 48.20 {\scriptstyle \pm 0.370} \end{array}$
DT	BD MD ED ED-s	$\begin{array}{c} 0.02 \scriptstyle{\pm 0.003} \\ 0.02 \scriptstyle{\pm 0.001} \\ 0.03 \scriptstyle{\pm 0.002} \\ 0.07 \scriptstyle{\pm 0.003} \end{array}$	$\begin{array}{c} 0.01 \pm 0.000 \\ 0.00 \pm 0.000 \\ 0.02 \pm 0.001 \\ 0.04 \pm 0.002 \end{array}$	$\substack{4.85 \pm 0.745\\4.46 \pm 0.557\\13.35 \pm 1.434\\18.02 \pm 1.835}$	$\begin{array}{c} 0.44 \scriptstyle{\pm 0.013} \\ 0.49 \scriptstyle{\pm 0.053} \\ 2.19 \scriptstyle{\pm 0.250} \\ 3.31 \scriptstyle{\pm 0.336} \end{array}$	$\begin{array}{c} 12.27{\scriptstyle \pm 1.452} \\ 11.27{\scriptstyle \pm 0.826} \\ 37.77{\scriptstyle \pm 2.280} \\ 49.31{\scriptstyle \pm 2.592} \end{array}$	$\substack{1.26 \pm 0.090\\1.30 \pm 0.094\\5.65 \pm 0.336\\8.24 \pm 0.442}$	$\begin{array}{c} 24.89 {\scriptstyle \pm 2.915} \\ 22.84 {\scriptstyle \pm 4.166} \\ 81.49 {\scriptstyle \pm 15.688} \\ 103.94 {\scriptstyle \pm 17.805} \end{array}$	$\substack{2.71 \pm 0.499 \\ 2.77 \pm 0.563 \\ 12.33 \pm 1.905 \\ 18.16 \pm 2.597}$
LR all cores	BD MD ED ED-s	$\begin{array}{c} 0.07{\scriptstyle \pm 0.153} \\ 0.15{\scriptstyle \pm 0.028} \\ 0.37{\scriptstyle \pm 0.210} \\ 0.46{\scriptstyle \pm 0.238} \end{array}$	$\begin{array}{c} 0.05 \pm 0.134 \\ 0.16 \pm 0.031 \\ 0.23 \pm 0.030 \\ 0.29 \pm 0.034 \end{array}$	$\begin{array}{c} 18.57 \scriptstyle{\pm 0.568} \\ 19.47 \scriptstyle{\pm 0.844} \\ 119.46 \scriptstyle{\pm 3.840} \\ 125.06 \scriptstyle{\pm 3.860} \end{array}$	$\begin{array}{c} 13.21 \scriptstyle{\pm 0.645} \\ 17.17 \scriptstyle{\pm 3.146} \\ 31.92 \scriptstyle{\pm 3.638} \\ 34.45 \scriptstyle{\pm 3.652} \end{array}$	$\substack{60.62 \pm 7.938\\48.32 \pm 4.827\\376.68 \pm 52.504\\390.13 \pm 52.424}$	$\substack{39.45 \pm 5.54\\46.13 \pm 7.626\\132.97 \pm 22.547\\138.92 \pm 22.410}$	$\begin{array}{c} 129.09 \pm 9.790 \\ 96.15 \pm 5.844 \\ 867.38 \pm 68.230 \\ 894.22 \pm 69.537 \end{array}$	$\begin{array}{c} 112.89{\scriptstyle\pm11.14}\\ 96.44{\scriptstyle\pm13.016}\\ 275.00{\scriptstyle\pm29.632}\\ 288.14{\scriptstyle\pm29.984} \end{array}$
HGB all cores	BD MD ED ED-s	$\begin{array}{c} 0.55 \pm _{0.042} \\ 3.04 \pm _{0.626} \\ 1.12 \pm _{0.245} \\ 1.31 \pm _{0.249} \end{array}$	$\begin{array}{c} 0.01_{\pm 0.012} \\ 2.50_{\pm 1.382} \\ 1.00_{\pm 0.077} \\ 1.20_{\pm 0.087} \end{array}$	$\substack{2.75 \pm 0.067\\ 3.08 \pm 0.306\\ 14.80 \pm 0.512\\ 23.38 \pm 0.682}$	$\begin{array}{c} 0.52 \scriptstyle{\pm 0.076} \\ 1.85 \scriptstyle{\pm 0.453} \\ 8.27 \scriptstyle{\pm 0.516} \\ 10.91 \scriptstyle{\pm 0.543} \end{array}$	$\begin{array}{c} 5.43 {\scriptstyle \pm 0.124} \\ 5.85 {\scriptstyle \pm 0.768} \\ 30.81 {\scriptstyle \pm 0.884} \\ 48.96 {\scriptstyle \pm 0.965} \end{array}$	$\substack{1.28 \pm 0.086\\ 3.40 \pm 0.600\\ 16.83 \pm 0.784\\ 23.21 \pm 1.039}$	$\begin{array}{c} 9.53 {\scriptstyle \pm 0.219} \\ 9.58 {\scriptstyle \pm 0.788} \\ 48.19 {\scriptstyle \pm 1.059} \\ 79.28 {\scriptstyle \pm 1.198} \end{array}$	$\substack{2.94 \pm 0.486\\5.84 \pm 0.525\\26.91 \pm 1.091\\41.13 \pm 1.209}$

TABLE 27: CTU13: Runtime (in seconds) for testing (on \mathbb{E}) the ML-NIDS on the $\emph{high-end}$ platform..

Avail	able Data	Limited (10	00 per class)	Scarce (2)	0% of □)	Moderate ((40% of D)	Abundant ((80% of D)
Alg.	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
	BD	0.34	0.15	0.37	0.22	0.38	0.25	0.38	0.25
Ŧ	MD	0.62	0.44	0.63	0.45	0.64	0.48	0.67	0.51
~	ED	2.01	0.95	2.06	1.02	2.09	1.09	2.11	1.13
	ED-s	2.15	1.09	2.19	1.13	2.20	1.21	2.24	1.25
	BD 0.18 MD 0.18				0.02	0.19	0.02	0.19	0.02
DT	MD	0.18	0.02	0.19	0.03	0.19	0.03	0.19	0.03
Ω	ED	1.09	0.09	1.10	0.10	1.10	0.11	1.10	0.11
	ED-s	1.06	0.07	1.08	0.09	1.07	0.10	1.07	0.11
	BD	0.23	0.03	0.23	0.01	0.23	0.01	0.23	0.01
Ľ	MD	0.24	0.02	0.24	0.02	0.24	0.02	0.24	0.02
7	ED	1.39	0.09	1.38	0.09	1.39	0.09	1.39	0.09
	ED-s	1.41	0.07	1.41	0.07	1.40	0.07	1.41	0.08
	BD	0.29	0.06	0.28	0.06	0.27	0.05	0.28	0.06
æ	MD	0.63	0.38	0.37	0.19	0.31	0.10	0.32	0.09
HGB	ED	1.67	0.28	1.71	0.28	1.72	0.27	1.72	0.08
	ED-s	1.66	0.30	1.73	0.30	1.71	0.30	1.72	0.11

TABLE 28: GTCS: Runtime (in seconds) for testing (on \mathbb{E}) the ML-NIDS on the *high-end* platform.

Availa	able Data	Limited (10	0 per class)	Scarce (2	0% of □)	Moderate (40% of □)	Abundant ((80% of D)
Alg.	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
RF	BD	0.48	0.11	0.50	0.12	0.51	0.13	0.52	0.14
	MD	0.56	0.20	0.55	0.19	0.55	0.19	0.56	0.19
	ED	2.00	0.68	1.97	0.50	1.97	0.49	1.97	0.50
	ED-s	2.14	0.86	2.07	0.64	2.07	0.62	2.08	0.61
DT	BD	0.34	0.01	0.35	0.02	0.35	0.02	0.36	0.02
	MD	0.34	0.01	0.35	0.02	0.35	0.02	0.36	0.02
	ED	1.35	0.04	1.39	0.05	1.38	0.05	1.41	0.05
	ED-s	1.33	0.04	1.35	0.04	1.34	0.05	1.37	0.05
LR	BD	0.39	0.01	0.40	0.01	0.40	0.01	0.40	0.01
	MD	0.40	0.02	0.41	0.02	0.40	0.02	0.41	0.02
	ED	1.57	0.06	1.60	0.06	1.59	0.06	1.61	0.06
	ED-s	1.58	0.04	1.61	0.04	1.59	0.04	1.60	0.05
HGB	BD	0.49	0.04	0.62	0.04	0.60	0.04	0.61	0.04
	MD	0.72	0.17	0.73	0.14	0.57	0.16	0.72	0.17
	ED	2.40	0.13	1.84	0.14	2.09	0.15	2.40	0.15
	ED-s	2.38	0.14	1.84	0.15	2.35	0.16	2.37	0.17

TABLE 29: NB15: Runtime (in seconds) for testing (on \mathbb{E}) the ML-NIDS on the *high-end* platform.

	able Data	Limited (10	0 per class)	Scarce (2)	0% of □)	Moderate (40% of D)	Abundant (80% of □)
Alg.	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
	BD	0.32	0.21	0.31	0.23	0.32	0.23	0.32	0.24
(±	MD	0.52	0.42	0.52	0.42	0.54	0.43	0.54	0.44
Ę	ED	2.34	1.63	2.20	1.54	2.24	1.53	2.15	1.54
	ED-s	2.48	1.82	2.35	1.65	2.33	1.65	2.25	1.67
	BD	0.18	0.09	0.19	0.10	0.19	0.10	0.20	0.10
DT	MD	0.18	0.10	0.19	0.10	0.20	0.10	0.20	0.10
Ω	ED	1.27	0.65	1.30	0.66	1.33	0.66	1.34	0.67
	ED-s	1.25	0.63	1.22	0.64	1.31	0.65	1.33	0.65
	BD	0.24	0.16	0.25	0.15	0.25	0.15	0.24	0.15
C,R	MD	0.25	0.16	0.25	0.15	0.25	0.16	0.24	0.16
<u> </u>	ED	1.63	1.07	1.72	1.07	1.74	1.08	1.74	1.08
	ED-s	1.66	1.11	1.75	1.11	1.75	1.11	1.78	1.11
	BD	0.29	0.17	0.30	0.16	0.31	0.16	0.30	0.16
99	MD	0.61	0.46	0.36	0.18	0.33	0.18	0.32	0.18
HGB	ED	2.07	1.10	2.12	1.07	2.06	1.07	2.01	1.07
	ED-s	2.00	1.10	2.07	1.07	2.07	1.07	1.94	1.07

TABLE 30: UF-NB15: Runtime (in seconds) for testing (on \mathbb{E}) the ML-NIDS on the *high-end* platform..

					_				_
Availa	able Data	Limited (10	0 per class)	Scarce (2	0% of □)	Moderate (40% of D)	Abundant (80% of D)
Alg.	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
	BD	0.32	0.19	0.31	0.22	0.30	0.23	0.27	0.23
Ex.	MD	0.51	0.38	0.51	0.39	0.50	0.40	0.48	0.39
RF	ED	2.48	1.47	2.20	1.42	2.13	1.43	2.00	1.45
	ED-s	2.69 1.65 0.17 0.07		2.30	1.55	2.26	1.55	2.14	1.55
	BD	0.17	0.07	0.15	0.08	0.17	0.08	0.19	0.08
-	MD	0.17	0.08	0.16	0.08	0.18	0.08	0.19	0.08
DT	ED	1.18	0.50	1.08	0.53	1.20	0.53	1.23	0.53
	ED-s	1.15	0.49	1.04	0.51	1.17	0.52	1.17	0.52.
	BD	0.24	0.14	0.21	0.14	0.24	0.14	0.25	0.14
~	MD	0.25	0.14	0.22	0.14	0.25	0.14	0.25	0.14
LR	ED	1.68	0.94	1.48	0.95	1.72	0.96	1.75	0.96
	ED-s	1.73	0.99	1.48	0.99	1.74	0.99	1.77	0.99
	BD	0.35	0.14	0.34	0.14	0.33	0.14	0.25	0.14
æ	MD	0.64	0.41	0.37	0.16	0.36	0.16	0.27	0.15
HGB	ED	1.82	0.88	2.03	0.85	2.24	0.87	2.29	0.86
	ED-s			1.65	0.86	2.27	0.87	2.41	0.87
		•		•		•		•	

TABLE 31: CICIDS17: Runtime (in seconds) for testing (on \mathbb{E}) the ML-NIDS on the *high-end* platform.

Availa	able Data	Limited (10	0 per class)	Scarce (2)	0% of □)	Moderate (40% of D)	Abundant ((80% of D)
Alg.	Design	Complete	Essential	Complete	Essential	Complete	Essential	Complete	Essential
	BD	0.79	0.29	0.82	0.30	0.83	0.31	0.82	0.31
Œ	MD	1.30	0.81	1.30	0.81	1.31	0.79	1.28	0.77
RF	ED	7.19	2.73	7.04	2.65	6.96	2.65	7.04	2.68
	ED-s	D 0.61 0.25		7.03	2.79	7.16	2.80	7.03	2.80
	BD	0.61		0.65	0.14	0.62	0.14	0.62	0.14
DT	MD	0.61	0.65	0.67	0.14	0.62	0.14	0.62	0.14
Ω	ED	5.47	2.05	5.87	1.20	5.50	1.20	5.52	1.21
	ED-s	5.33	2.04	5.80	1.17	5.35	1.17	5.40	1.17
	BD	0.65	0.19	0.63	0.19	0.66	0.19	0.65	0.19
ĸ	MD	0.66	0.20	0.64	0.20	0.67	0.20	0.66	0.20
7	ED	5.80	1.75	5.64	1.72	5.71	1.71	5.79	1.76
	ED-s	5.77	1.77	5.47	1.74	5.68	1.73	5.78	1.77
	BD	1.10	0.14	1.14	0.23	1.09	0.23	1.09	0.24
HGB	MD	1.59	0.14	1.05	0.29	1.14	0.29	1.13	0.29
Ħ	ED	9.57	1.20	9.64	2.01	9.66	1.97	9.61	2.03
	ED-s	9.64	1.17	9.59	2.00	9.62	1.98	9.57	1.94

TABLE 32: Runtime (training and testing) on the other platforms (for the GTCS dataset).

Availabl	e Data	Lim	ited (10	0 per cla	iss)	So	carce (2	0% of □)	Mo	derate (40% of I	D)	Ab	undant	(80% of	\mathbb{D})
Featur	e Set	Com	plete	Essei	ntial	Comp	olete	Essei	ntial	Comp	olete	Essei	ntial	Comp	plete	Esse	ntial
Alg. CPU	Design	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
	BD	0.22	0.51	0.21	0.20	3.04	0.64	1.81	0.26	9.74	0.66	5.55	0.31	23.30	0.68	13.49	0.32
RF cores	MD	0.22	0.65	0.21	0.34	2.93	0.75	2.19	0.40	9.01	0.75	6.55	0.40	21.22	0.77	14.74	0.41
≃ å	ED	0.82	1.95	0.85	0.82	4.41	2.17	3.26	0.97	11.28	2.13	7.97	0.94	26.94	2.16	17.74	0.95
Fig.	ED-s	0.91	2.04	0.97	1.00	5.67	2.24	3.97	1.13	13.45	2.25	10.17	1.11	31.57	2.25	26.41	1.088
	BD	0.00	0.32	0.00	0.02	1.02	0.31	0.40	0.02	3.24	0.31	1.09	0.02	6.84	0.31	2.11	0.03
DT cores	MD	0.00	0.32	0.00	0.02	1.01	0.31	0.41	0.03	2.76	0.32	1.13	0.03	6.33	0.31	2.51	0.03
DT all cor	ED	0.01	1.27	0.01	0.07	1.26	1.24	0.54	0.08	3.49	1.23	1.51	0.08	7.39	1.22	3.23	0.08
783	ED-s	0.02	1.23	0.01	0.06	1.67	1.19	0.64	0.06	4.97	1.18	1.97	0.06	9.87	1.18	4.21	0.07
	BD	0.89	0.36	0.40	0.02	2.30	0.35	3.21	0.01	5.13	0.34	7.42	0.01	9.51	0.34	14.61	0.01
Cores	MD	0.40	0.37	0.42	0.02	5.83	0.35	3.86	0.02	8.94	0.35	8.77	0.02	25.71	0.34	17.41	0.02
	ED	1.51	1.43	0.79	0.06	8.17	1.38	4.93	0.06	24.78	1.36	12.04	0.06	45.98	1.35	21.05	0.06
_ E	ED-s	1.87	1.38	0.97	0.05	10.47	1.35	5.98	0.04	27.87	1.31	16.47	0.04	56.87	1.30	27.14	0.05
-	BD	1.05	0.45	0.47	0.16	3.97	0.47	1.72	0.17	6.28	0.45	2.77	0.14	10.14	0.45	4.66	0.14
HGB ne core	MD	3.83	0.88	2.13	0.70	14.91	0.96	7.57	0.69	22.49	0.91	11.20	0.61	35.24	0.88	18.32	0.61
HC one	ED	1.22	1.64	0.63	0.44	8.81	1.78	4.53	0.52	14.18	1.74	6.66	0.50	22.87	1.72	10.34	0.52
	ED-s	1.67	1.68	0.87	0.50	11.17	1.86	5.98	0.58	17.84	1.78	9.74	0.56	29.84	1.77	14.64	0.57

(a) Workstation: Intel Core-i7 10750HQ@2.6GHz (12 cores) with 32GB RAM. The OS is Windows 10.

Available Data		Lim	ited (10	0 per cla	ss)	Scarce (20% of \mathbb{D}) Moderate (40% of \mathbb{D})					Abundant (80% of D)						
Feature Set		Complete		Essential		Complete		Essential		Complete		Essential		Complete		Essential	
Alg. CPU	Design	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
20	BD	0.29	0.29	0.25	0.67	6.88	1.34	4.42	0.69	20.43	1.38	12.63	0.70	44.47	1.35	30.25	0.75
RF all cores	MD	1.11	0.26	0.26	1.56	6.09	1.44	4.53	0.88	18.35	1.46	12.71	0.86	39.60	1.47	30.45	0.91
	ED	1.04	3.29	0.96	2.15	8.50	4.27	6.14	2.21	21.74	3.91	15.35	2.13	41.26	3.97	37.01	2.18
	ED-s	1.24	3.50	1.07	2.22	10.14	4.58	8.94	2.62	29.87	4.22	19.87	2.50	56.12	4.23	50.65	2.55
	BD	0.01	0.40	0.01	0.02	1.44	0.47	0.42	0.03	3.44	0.40	1.17	0.03	7.59	0.39	2.50	0.03
DT one core	MD	0.00	0.40	0.01	0.03	1.26	0.47	0.45	0.03	3.15	0.41	1.29	0.03	7.18	0.40	2.76	0.03
	ED	0.02	1.60	0.04	0.09	1.64	1.83	0.59	0.10	4.03	1.61	1.67	0.09	8.33	1.58	3.67	0.01
10	ED-s	0.02	1.56	0.05	0.07	1.99	1.80	0.75	0.08	6.15	1.55	2.01	0.08	11.45	1.52	4.97	0.08
	BD	1.25	0.40	0.03	0.02	2.84	0.46	4.11	0.02	6.78	0.41	8.75	0.02	11.08	0.39	17.61	0.02
Cores	MD	0.92	0.41	0.04	0.02	5.92	0.50	5.71	0.02	15.99	0.41	11.33	0.02	32.88	0.40	22.04	0.02
L.R.	ED	0.92	1.60	0.06	0.07	11.81	1.74	6.39	0.08	26.30	1.63	12.78	0.07	49.36	1.58	29.04	0.06
_ E	ED-s	1.26	1.55	0.08	0.05	14.64	1.63	9.45	0.06	33.14	1.56	17.64	0.05	59.45	1.52	37.64	0.05
	BD	0.40	0.67	0.36	0.36	4.13	0.82	1.69	0.41	6.78	0.71	2.72	0.28	12.12	0.68	5.12	0.28
GB cores	MD	1.32	1.56	1.34	1.67	14.14	2.05	6.68	1.64	21.67	1.69	9.99	1.27	39.49	1.67	19.24	1.28
	ED	0.46	2.15	0.53	1.07	8.48	3.10	3.82	1.26	12.58	2.66	5.55	1.04	23.81	2.65	10.09	1.05
Ξ E	ED-s	0.67	2.22	0.77	1.28	12.47	3.40	5.01	1.51	16.97	2.75	8.40	1.18	29.01	3.00	14.57	1.18

(b) Desktop: Intel Core i5-4670@3.2GHz (4 cores) and 8GB of RAM. The OS is Windows 10.

Available Data		Lir	nited (10	00 per cla	ss)		Scarce (2	0% of □)	Moderate (40% of □)					Abundant (80% of □)		
Feature	e Set	Com	Complete Essential		Complete		Essential		Complete		Essential		Complete		Essential		
Alg. CPU	Design	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
RF all cores	BD	0.70	2.55	0.65	3.00	40.83	5.74	23.02	4.31	124.82	6.42	71.92	3.58	263.27	6.27	160.68	4.22
	MD	0.62	3.42	1.20	3.55	35.81	5.92	25.22	4.90	123.11	6.62	72.77	4.45	243.23	6.67	158.24	4.82
	ED	3.76	11.17	4.82	9.09	52.74	16.45	30.36	12.90	152.04	18.23	77.40	12.23	298.37	18.76	192.61	12.15
	ED-s	4.06	14.20	6.74	11.11	66.11	20.18	38.45	14.43	169.45	18.76	86.45	14.73	397.41	19.87	234.10	14.07
	BD	0.02	0.92	0.01	0.11	4.46	0.93	1.88	0.11	11.68	0.93	4.13	0.08	25.95	0.91	7.31	0.09
DT one core	MD	0.02	1.32	0.01	0.11	3.03	0.93	1.06	0.08	8.31	1.16	2.93	0.08	30.29	0.93	6.64	0.09
	ED	0.05	4.22	0.02	0.24	5.04	5.46	1.45	0.27	17.66	5.09	4.03	0.26	38.17	4.99	8.96	0.27
	ED-s	0.07	4.93	0.03	0.19	7.01	5.29	1.98	0.22	23.17	5.29	5.45	0.21	55.64	5.11	13.14	0.22
	BD	3.69	1.27	3.43	0.05	9.12	1.55	13.16	0.05	18.15	1.51	28.03	0.05	34.66	1.38	50.68	0.05
LR all cores	MD	4.43	1.59	2.38	0.07	30.05	1.78	19.44	0.12	54.52	1.49	47.54	0.11	134.30	1.65	92.40	0.07
	ED	2.49	5.10	2.37	0.20	40.57	5.18	22.53	0.36	87.90	5.38	40.22	0.21	154.10	5.90	75.10	0.28
্ল	ED-s	5.01	5.71	4.44	0.20	45.74	5.62	29.78	0.15	101.21	5.31	49.65	0.15	198.45	5.61	101.61	0.22
	BD	2.45	2.99	1.59	1.88	22.27	3.68	5.63	1.92	35.46	3.54	16.23	1.74	66.47	3.46	31.81	1.79
8 .	MD	5.83	8.81	6.40	7.41	68.72	7.90	38.10	7.77	148.65	8.58	69.24	7.26	262.43	8.55	120.57	7.23
HGB	ED	1.91	8.52	1.89	3.88	29.13	12.74	19.86	6.02	71.74	10.22	31.64	5.53	130.34	10.91	48.33	6.33
ੋ ਚ	ED-s	3.84	9.34	3.98	5.30	39.47	13.50	21.68	8.88	99.87	12.37	40.58	6.63	169.64	12.22	69.14	7.07
()																	

(c) Laptop: Intel Core i5-430M@2.5GHz (4 cores) and 8GB of RAM. The OS is Windows 10.

Available Data		Limited (100 per class)				Scarce (20% of D)				M	oderate (40% of I	D)	Al	oundant (80% of D)	
Feature Set		Complete		Essential		Complete		Essential		Complete		Essential		Complete		Essential	
Alg. CPU	Design	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test	Train	Test
RF all cores	BD	0.57	1.68	0.61	0.78	12.46	2.26	8.34	1.07	37.92	2.39	24.72	1.12	88.37	2.53	53.90	1.23
	MD	0.42	2.12	0.51	1.13	11.91	2.43	8.70	1.43	34.03	2.60	24.18	1.44	81.65	2.78	57.79	1.55
	ED	1.91	5.83	1.77	2.57	16.14	6.75	11.71	3.21	42.35	6.92	31.25	3.30	100.05	7.25	70.28	3.48
	ED-s	2.10	6.23	1.98	3.13	20.64	7.14	14.74	3.77	49.43	7.33	39.78	3.90	124.84	7.58	89.21	3.93
DT one core	BD	0.06	0.92	0.00	0.02	2.47	0.91	0.64	0.03	7.75	0.91	2.17	0.04	16.50	0.90	4.97	0.04
	MD	0.00	0.92	0.00	0.03	2.48	0.91	0.92	0.04	6.96	0.89	2.60	0.05	14.57	0.90	5.80	0.06
	ED	0.01	3.65	0.00	0.09	3.04	3.64	1.25	0.13	8.11	3.60	3.28	0.12	18.31	3.60	7.38	0.14
	ED-s	0.04	5.58	0.01	0.08	3.87	3.55	1.87	0.10	11.74	3.53	4.84	0.11	24.15	3.57	9.87	0.11
LR all cores	BD	1.35	0.97	1.46	0.07	6.43	0.97	5.39	0.02	15.31	0.98	20.02	0.07	32.00	0.99	36.10	0.06
	MD	0.86	1.00	1.00	0.07	10.77	0.99	9.80	0.10	28.53	1.02	21.66	0.10	57.55	1.01	42.93	0.09
	ED	1.03	3.96	0.95	0.19	21.85	3.88	6.75	0.13	68.23	3.89	16.02	0.21	140.39	3.97	55.37	0.28
	ED-s	1.94	4.14	1.12	0.12	27.41	3.93	9.99	0.19	81.41	3.94	21.58	0.44	167.64	3.91	75.45	0.06
HGB all cores	BD	29.21	12.76	0.74	1.47	184.45	5.16	123.33	13.44	92.49	6.11	15.50	4.31	260.53	8.88	24.33	3.52
	MD	3.35	26.66	4.26	56.50	167.48	39.03	41.76	16.00	504.85	37.33	578.36	34.91	526.04	59.27	278.97	14.13
	ED	3.53	18.40	14.80	8.24	55.38	66.50	180.47	28.68	552.68	31.09	426.50	5.37	129.22	42.36	854.91	45.37
	ED-s	4.94	26.63	16.41	11.61	67.98	40.61	207.58	38.90	597.84	27.56	504.68	34.52	187.54	20.51	904.65	29.39

(d) Low-end: a Virtual Machine that is set up to use only 4 cores and at most 40% of the frequency and 8GB of RAM of the Workstation platform. The OS is Ubuntu 20.04.