

物理化学实验报告

题目: 蔗糖的转化

姓 名:	王梓涵				
学号:	2100011837				
组 别:	22 组				
实验日期:	2023.10.26				
室 温:	295.15 K				
大气压强:	101.08 kPa				

摘 要 本实验利用目视旋光仪测定蔗糖转化过程中体系旋光度的变化,间接得到了蔗糖的浓度变化,从而计算蔗糖转化反应的化学反应动力学常数。实验中加入浓度为 3.13~M、4.12~M 和 6.16~M 的盐酸时,蔗糖转化反应的速率常数 k 分别为 $7.82\times10^{-4}~s^{-1}$ 、 $1.26\times10^{-3}~s^{-1}$ 和 $3.17\times10^{-3}~s^{-1}$ 。计算了对应的半衰期 $t_{1/2}$ 分别为 885~s、550~s 和 220~s。实验结果验证了蔗糖转化反应的对于蔗糖为一级反应,对氢离子为二级反应。

关键词 蔗糖的转化;目视旋光仪;反应速率常数;旋光度;一级反应

1 引言

1.1 实验目的

本实验的实验目的主要有以下几点1:

- 1. 了解一级反应动力学的动力学特征。
- 2. 测定蔗糖转化的反应级数、速率常数和 $t_{1/2}$
- 3. 掌握旋光仪的原理及其使用方法。

1.2 实验原理和实验方法

实验原理和实验方法在实验预习报告中如图 1 所示:

图 1 实验预习报告的实验原理部分

Fig. 1 The principle part of the experiment in the experiment preview report

2 实验部分

2.1 仪器和试剂

仪器: WXG-4 目视旋光仪,超级恒温槽,250 mL 烧杯,25 mL 移液管,100 mL 磨口锥形瓶,100 mL 量筒,恒温旋光管。试剂: 纯水,蔗糖 (AR),3 种不同浓度的盐酸 (AR)浓度分别为 3.13 M、4.12 M、6.16 M)。

2.2 实验内容1

2.2.1 旋光仪零点校准

接通 WXG-4 目视旋光仪电源,打开电源开关预热 $10 \, \text{min}$,待完全发出钠黄光。洗净恒温旋光管,连接好恒温水管路,将旋光管加满去离子水,并将管内气泡从加液口排净,旋光管外壁残液用滤纸擦净、两端玻璃片用擦镜纸擦净,放入旋光仪镜筒中。调节调焦螺旋,使视场中三分视场分界线最清晰。调节读盘转动手轮,至三分视场消失,视野暗度相同,从读数放大盘中读出度盘的示数,即为旋光仪零点的旋光度 α 。重复测量旋光仪零点 3 次,取平均值作为旋光仪的零点。

2.2.2 配制蔗糖溶液

用粗天平称取 30.05 g 蔗糖,加入 150.0 mL 蒸馏水,在 250 mL 烧杯中搅拌溶解。将烧杯放入 30 °C 恒温槽中保持温度。

2.2.3 旋光度的测定

用移液管移取 25.00 mL 蔗糖溶液置于干燥的 100 mL 锥形瓶中,置于 30 °C 恒温水浴槽中预热。用另一支移液管移取 25.00 mL 6.16 M 盐酸溶液,移入装有蔗糖溶液的锥形瓶中。当酸流入一半时,打开秒表开始计时。盐酸全部流入后迅速将混合液摇匀。取少量混合液润洗旋光管 2~3次,用混合液装满旋光管。

用滤纸擦净管外壁的溶液,尽快把旋光管放入旋光仪中,测量不同时间 t 时溶液的旋光角 α_t 。在反应开始 15 min 内,每一分钟记录一次读数(6.16 M 的盐酸溶液反应较快,需要 30s 记录一次),以后测量的时间间隔适当加长,测至旋光角 α_t 由右旋变为左旋(即度数变为负数),至少获取 12 组有效数据。测量结束后,将旋光管中的混合液倒回原锥形瓶中,并置于 30 °C 恒温水浴槽中继续反应。

按照以上步骤,依次使用 3.13 M、4.12 M、6.16 M 的盐酸溶液,进行混合液旋光度的测定。后续 3 组混合液不需倒回原锥形瓶中。

2.2.4 α_{∞} 的测定

将锥形瓶中保留备用的 6.16 M 盐酸溶液与蔗糖溶液的混合液取出,取少量混合液润洗 旋光管 $2\sim3$ 次,用混合液装满旋光管,每隔 $5\min$ 测定一次,重复测量 3 次,数值无明显变化时旋光度即为 α_{∞} 。

3 数据与结果

3.1 实验数据处理与分析

3.1.1 确定旋光仪的零点

按照 2.2.1 中的步骤重复测量旋光仪零点 3 次,数据示于表 1 中:

表 1 旋光仪零点测量数据

Table 1 Polarimeter zero point measurement data

编号	1	2	3
$\alpha/^{\circ}$	-0.05	-0.05	-0.00

根据表1数据,计算旋光仪零点的平均值为

$$\alpha = -0.03^{\circ}$$

因此 α 的标准偏差为:

$$\sigma_{\alpha} = \sqrt{\frac{0.02^2 + 0.02^2 + 0.03^2}{3 - 1}} = 0.02^{\circ}$$

故旋光仪零点为:

$$\alpha_0 = (-0.03 \pm 0.02)^{\circ}$$

3.1.2 旋光度的测定

分别测定盐酸浓度为 $3.13\,\,\mathrm{M}$ 、 $4.12\,\,\mathrm{M}$ 、 $6.16\,\,\mathrm{M}$ 时,蔗糖转化反应的旋光度随时间 t 的变化。记实验测得原始旋光角为 α_t' ,用 α_t' 减去旋光仪的零点 α ,得到实际的旋光角 α_t ,即:

$$\alpha_t = \alpha_t' - \alpha$$

图 2 展示了盐酸浓度为 3.13 M 时,蔗糖转化反应的旋光度随时间 t 的变化。3.13 M 时反应时间较长,测得的数据点相对较多。

做出相应的 $t - \alpha_t$ 图像如图 2 所示:

表 2 添加盐酸浓度为 3.13 M 下混合液 $t - \alpha_t$ 测量数据

Table 2 The measurement data of the mixed solution with 3.13 M added hydrochloric acid

编号	t/s	$\alpha_t'/^\circ$	$\alpha_t/^{\circ}$	编号	t/s	$\alpha_t'/^{\circ}$	$\alpha_t/^{\circ}$
1	280	9.10	9.13	11	649	6.00	6.03
2	326	8.90	8.93	12	713	5.60	5.63
3	353	8.60	8.63	13	776	5.00	5.03
4	382	8.30	8.33	14	841	4.55	4.58
5	414	8.05	8.08	15	909	4.05	4.08
6	446	7.80	7.83	16	991	3.65	3.68
7	484	7.25	7.28	17	1081	3.05	3.08
8	525	7.00	7.03	18	1261	2.15	2.18
9	566	6.70	6.73	19	1479	1.20	1.23
10	598	6.50	6.53	20	1786	0.05	0.08

图 2 添加盐酸浓度为 3.13 M 下混合液 $t - \alpha_t$ 图像

Fig. 2 The mixed solution $t - \alpha_t$ image with $3.13\,$ M added hydrochloric acid

图 **3** 展示了盐酸浓度为 4.12 M 时,蔗糖转化反应的旋光度随时间 t 的变化。做出相应的 $t-\alpha_t$ 图像如图 **3** 所示:

图 4 展示了盐酸浓度为 6.16 M 时,蔗糖转化反应的旋光度随时间 t 的变化。6.16 M 时 反应时间较短,变为左旋之前的数据点相对较少,因此测量了一部分左旋后的数据,笔者

 ξ 3 添加盐酸浓度为 4.12 M 下混合液 $t-\alpha_t$ 测量数据

Table 3 The measurement data of the mixed solution with $4.12\,$ M added hydrochloric acid

编号	t/s	$\alpha_t'/^\circ$	$\alpha_t/^{\circ}$	编号	t/s	$\alpha_t'/^\circ$	$\alpha_t/^{\circ}$
1	157	9.40	9.43	10	642	2.90	2.93
2	184	8.85	8.88	11	708	2.40	2.43
3	221	8.10	8.13	12	760	1.95	1.98
4	268	7.60	7.63	13	823	1.60	1.63
5	306	6.50	6.53	14	882	1.20	1.23
6	340	5.85	5.88	15	934	0.80	0.83
7	391	5.05	5.08	16	1024	0.35	0.38
8	458	4.20	4.23	17	1086	-0.05	-0.02
9	520	3.55	3.58				

图 3 添加盐酸浓度为 4.12 M 下混合液 $t - \alpha_t$ 图像

Fig. 3 The mixed solution $t - \alpha_t$ image with $4.12\,$ M added hydrochloric acid

认为其引入的误差较小,详细见误差分析部分。

做出相应的 $t - \alpha_t$ 图像如图 4 所示:

可以注意到,图 2、图 3、图 4 中吸光度的变化趋势是相似的,但是在吸光度的变化速率上有所不同,盐酸浓度越高,吸光度的变化速率越大。这一对比在图 5 中示出:

表 4 添加盐酸浓度为 6.16 M 下混合液 $t-\alpha_t$ 测量数据

Table 4 The measurement data of the mixed solution with 6.16 M added hydrochloric acid

编号	t/s	$\alpha_t'/^{\circ}$	$\alpha_t/^{\circ}$	编号	t/s	$\alpha_t'/^{\circ}$	$\alpha_t/^{\circ}$
1	155	6.75	6.78	7	332	1.75	1.78
2	176	5.05	5.08	8	361	1.15	1.18
3	200	4.55	4.58	9	388	0.90	0.93
4	248	3.20	3.23	10	422	0.20	0.23
5	280	2.80	2.83	11	448	-0.05	-0.02
6	303	2.10	2.13	12	476	-0.40	-0.37

图 4 添加盐酸浓度为 6.16 M 下混合液 $t-\alpha_t$ 图像

Fig. 4 The mixed solution $t-\alpha_t$ image with $6.16\,$ M added hydrochloric acid

3.1.3 α_{∞} 的测定

测量保留备用的第 1 次测定时 6.16~M 盐酸溶液与蔗糖溶液的混合液的旋光度,重复测量 3 次,读取旋光仪的原始旋光角 α_∞' ,根据

$$\alpha_{\infty} = \alpha_{\infty}' - \alpha$$

图 5 不同盐酸浓度下混合液 $\alpha_t - t$ 图

Fig. 5 $\alpha_t - t$ diagram under different hydrochloric acid concentration

表 5 α_{∞} 测量数据

Table 5 α_{∞} measurement data

编号	1	2	3
$\alpha_{\infty}'/^{\circ}$ $\alpha_{\infty}/^{\circ}$	-4.05	-4.10	-4.05
	-4.02	-4.07	-4.02

根据表 5 数据, 计算 α_{∞} 的平均值为:

$$\alpha_{\infty} = -4.04^{\circ}$$

因此 α_{∞} 的标准偏差为:

$$\sigma_{\alpha_{\infty}} = \sqrt{\frac{0.02^2 + 0.02^2 + 0.03^2}{3 - 1}} = 0.02^{\circ}$$

故 α_{∞} 为:

$$\alpha_{\infty} = (-4.04 \pm 0.02)^{\circ}$$

3.2 数据处理结果与分析

3.2.1 蔗糖转化反应关于蔗糖的反应级数

根据表 2、表 3 和表 4 的数据以及 $\alpha_{\infty}=-4.04^{\circ}$,计算不同盐酸浓度下的 $(\alpha_t-\alpha_{\infty})$ 和 $\ln(\alpha_t-\alpha_{\infty})$ 数据,各项数据示于表 6。

表 6 不同盐酸浓度下混合液 $(\alpha_t - \alpha_\infty)$ 和 $\ln(\alpha_t - \alpha_\infty)$ 数据

Table 6 Data of $(\alpha_t - \alpha_\infty) \not \Vdash \ln(\alpha_t - \alpha_\infty)$ under different hydrochloric acid concentration

			· · · · · · · · · · · · · · · · · · ·				
3.13M							
序号	t/s	$\alpha_t - \alpha_\infty/^\circ$	$\ln(\alpha_t - \alpha_\infty)$	序号	t/s	$\alpha_t - \alpha_\infty/^\circ$	$\ln(\alpha_t - \alpha_\infty)$
1	280	13.17	2.578	11	649	10.07	2.310
2	326	12.97	2.563	12	713	9.67	2.269
3	353	12.67	2.539	13	776	9.07	2.205
4	382	12.37	2.515	14	841	8.62	2.154
5	414	12.12	2.495	15	909	8.12	2.094
6	446	11.87	2.474	16	991	7.72	2.044
7	484	11.32	2.427	17	1081	7.12	1.963
8	525	11.07	2.404	18	1261	6.22	1.828
9	566	10.77	2.377	19	1479	5.27	1.662
10	598	10.57	2.358	20	1786	4.12	1.416
			4.1	12M			
序号	t/s	$\alpha_t - \alpha_{\infty}/^{\circ}$	$\ln(\alpha_t - \alpha_\infty)$	序号	t/s	$\alpha_t - \alpha_{\infty/^{\circ}}$	$\ln(\alpha_t - \alpha_\infty)$
1	157	13.47	2.600	10	642	6.97	1.942
2	184	12.92	2.559	11	708	6.47	1.867
3	221	12.17	2.499	12	760	6.02	1.795
4	268	11.67	2.457	13	823	5.67	1.735
5	306	10.57	2.358	14	882	5.27	1.662
6	340	9.92	2.295	15	934	4.87	1.583
7	391	9.12	2.210	16	1024	4.42	1.486
8	458	8.27	2.113	17	1086	4.02	1.391
9	520	7.62	2.031				
			6.1	16M			
序号	t/s	$\alpha_t - \alpha_\infty/^\circ$	$\ln(\alpha_t - \alpha_\infty)$	序号	t/s	$\alpha_t - \alpha_\infty/^\circ$	$\ln(\alpha_t - \alpha_\infty)$
1	155	10.82	2.381	10	332	5.82	1.761
2	176	9.12	2.210	11	361	5.22	1.652
3	200	8.62	2.154	12	388	4.97	1.603
4	248	7.27	1.984	13	422	4.27	1.451
5	280	6.87	1.927	14	448	4.02	1.391
6	303	6.17	1.820	15	476	3.67	1.300

根据表 **6** 数据,作出不同盐酸浓度下混合液 $\ln(\alpha_t - \alpha_\infty) - t$ 散点图,并用 origin 进行 线性拟合,作出不同盐酸浓度下混合液 $\ln(\alpha_t - \alpha_\infty) - t$ 拟合直线,如图 **6** 所示:

图 6 不同光源下 (A3) 溶液的吸收光谱

Fig. 6 Absorption spectrum of (A) solution under different light sources

根据图 **6** 可以看出,不同盐酸浓度下 $\ln(\alpha_t - \alpha_\infty) - t$ 都具有良好的线性关系,进一步的可以计算出 3.13 M、4.12 M、6.16 M 盐酸浓度下的回归直线方程分别为:

$$\ln(\alpha_t - \alpha_\infty) = -7.82 \times 10^{-4} t/s + 2.815, \quad R = -0.9998$$
$$\ln(\alpha_t - \alpha_\infty) = -1.26 \times 10^{-3} t/s + 2.752, \quad R = -0.9960$$
$$\ln(\alpha_t - \alpha_\infty) = -3.17 \times 10^{-3} t/s + 2.803, \quad R = -0.9963$$

根据一级反应的动力学特征:

$$\ln \frac{c_0}{c_t} = kt$$

可以判断 H+浓度固定的条件下,蔗糖转化反应为一级反应。

3.2.2 反应速率常数 k 和半衰期 $t_{1/2}$

根据

$$\ln(\alpha_t - \alpha_{\infty}) = kt + \ln(\alpha_0 - \alpha_{\infty})$$

可以用拟合直线的斜率 a 计算速率常数 k,即:

$$k = -a$$

又因为一级反应的半衰期满足:

$$t_{1/2} = \frac{0.693}{k}$$

由 3.2.1 中数据可得:

$$\begin{cases} k_{3.13M} = 7.82 \times 10^{-4} \text{ s}^{-1} \\ k_{4.12M} = 1.26 \times 10^{-3} \text{ s}^{-1} \\ k_{6.16M} = 3.17 \times 10^{-3} \text{ s}^{-1} \end{cases}$$

$$\begin{cases} t_{1/2,3.13M} = 887.5 \text{ s} \\ t_{1/2,4.12M} = 550.8 \text{ s} \\ t_{1/2,6.16M} = 218.6 \text{ s} \end{cases}$$

3.2.3 蔗糖转化反应关于 H+ 的反应级数

考虑 H+ 对反应速率的影响,有

$$k = k_0 + k_{H^+} c_{H^+}^n$$

其中 k_0 是 $c_{H^+} \rightarrow 0$ 时的反应速率常数, k_{H^+} 为酸催化速率常数,k 为表观速率常数,n 为 H^+ 的反应级数。两边取以 e 为底的对数,即得

$$ln(k - k_0) = nlnc_{H^+} + lnk_{H^+}$$

故作出 $\ln(k-k_0) - \ln c_{H^+}$ 拟合直线,由直线斜率即可求出 H^+ 的反应级数 n。

因为蔗糖在非质子溶剂中是稳定的,因此可以认为当 c_{H+} 浓度为 0 时,反应无法发生,即 $k_0=0$,根据 k_0 和 **3.2.2** 中数据,计算 $c_{H+}=\frac{1}{2}c(HCl)$, $\ln c_{H+}$ 与 $\ln (k-k_0)$,计算结果示于表 **7**。做出 $\ln c_{H+}-\ln (k-k_0)$ 散点图,并用 origen 进行线性拟合,作出 $\ln c_{H+}-\ln (k-k_0)$ 拟合直线,如图 **7** 所示。

表 7 $c_{\rm H^+}$, $\ln c_{\rm H^+}$ 与 $\ln (k-k_0)$ 计算结果 Table 7 Calculation results of $c_{\rm H^+}$, $\ln c_{\rm H^+}$ and $\ln (k-k_0)$

$c_{\mathrm{H^+}}/\mathrm{M}$	$\ln\!c_{\rm H^+}$	$(k-k_0)/10^{-4} \text{ s}^{-1}$	$\ln(k-k_0)$
1.565	0.4479	7.82	2.057
2.060	0.7227	12.6	2.534
3.080	1.125	31.7	3.456

根据图 7 可以看出, $\ln c_{H^+} - \ln (k - k_0)$ 具有良好的线性关系, 其回归方程为:

$$ln(k - k_0) = 2.0828 ln c_{H^+} + 1.08858, R = 0.9971$$

图 7 $\ln c_{\mathrm{H}^+} - \ln (k - k_0)$ 拟合直线 Fig. 7 $\ln c_{\mathrm{H}^+} - \ln (k - k_0)$ fitting straight line

故 H+ 的反应级数

 $n = 2.0828 \approx 2$

即对氢离子为二级反应。

4 讨论与结论

4.1 实验讨论

4.1.1 测量左旋数据的影响

在测量 6.16 M 盐酸溶液与蔗糖溶液的混合液的旋光度时,由于反应速率较快,变为左旋之前的数据点相对较少,因此测量了一部分左旋后的数据。笔者认为其引入的误差较小,因为最终计算和拟合是基于 $(\alpha_t - \alpha_\infty)$ 的,这与测量出的旋光度为正值或者负值无关,因此测量左旋数据的不会对最终结果产生系统性误差。但因为其他组的实验数据中没有测量左旋数据,因此可能此数据与其他组的数据无法进行较好的横向对比,但是笔者认为这不会对最终结果造成很大的影响。

4.1.2 误差来源分析

笔者认为本次实验中误差主要来源于以下几个方面:

1. 人眼的精确度不够: 在实际测量过程中,需要手动调节旋光仪度盘调节手轮至三分视场消失、视野暗度相同,但每一次人眼判断暗视场出现的位置会有所不同,比如笔者

眼神不太好,这导致在他看来'三分视场消失、视野暗度相同'是一个很大的区间,这必然会引入较大的误差。

2. 体系未充分混合,旋光管未充分润洗: 在实验过程中,蔗糖溶液一半倒入盐酸后就会 开始计时。在倒完蔗糖后,实验人员需要完成,摇匀、润洗旋光管、转移混合液等操 作。这些操作都需要一定的时间,但本实验又要求尽快开始测量,这必然会导致操作 的匆忙,很多步骤如润洗、混合无法充分进行,这也是误差的来源之一。

4.1.3 实验的改进

笔者认为本实验可以改进的地方有:

- 1. 降低盐酸浓度:本实验中盐酸浓度较高,导致反应速率较快,这使得实验人员在操作时很容易出现匆忙的情况,这也是误差的来源之一。因此可以考虑降低盐酸浓度,使得反应速率降低,这样可以给实验人员更多的操作时间,从而减少误差,以本实验为例,从图 6 可以明显看出,3.13 M 盐酸组的线性度要好于其他两组。但这样必然会造成实验时间的延长,因此需要在实验时间和误差之间做出权衡。
- 2. 使用更加数字化的测量方式: 这仅仅是一个猜想, 比如可以将使用光强探测器将三分视野的亮度数值化, 这样实验人员仅需比较数值差异就可以读取旋光度, 可以减少人眼的误差(虽然感觉这样就变成电子旋光仪了)。

4.2 实验结论

本实验利用目视旋光仪测定蔗糖转化过程中体系旋光度的变化,间接得到了蔗糖的浓度变化,从而计算蔗糖转化反应的化学反应动力学常数。实验中加入浓度为 3.13~M、4.12~M 和 6.16~M 的盐酸时,蔗糖转化反应的速率常数 k 分别为 $7.82\times 10^{-4}~s^{-1}$ 、 $1.26\times 10^{-3}~s^{-1}$ 和 $3.17\times 10^{-3}~s^{-1}$ 。计算了对应的半衰期 $t_{1/2}$ 分别为 885~s、550~s 和 220~s。实验结果验证了蔗糖转化反应的对于蔗糖为一级反应,对氢离子为二级反应。

5 Supporting Information

本实验所有的原始数据、python代码、实验报告的 LaTeX 源代码均可在

https://github.com/wzhstat/Physical_Chemistry_Experiments 找到,原始数据也会邮箱发送给实验老师。

参考文献

[1] 北京大学化学与分子工程学院物理化学实验教学组. 物理化学实验. 2023.

- [2] John Aurie Dean et al. *Lange's handbook of chemistry*, volume 15. McGraw-Hill New York, 1992.
- [3] William M Haynes. CRC handbook of chemistry and physics. CRC press, 2014.