k-Nearest Neighbors (k-NN)

Instance-Based Learning

- Knn works like a classifier in supervised mode.
 - ► Have training examples: (x_i, y_i) , i=1, ..., N
 - x_i could have discrete or real value
 - Try to predict the class for new example x
 - ▶ $y=f(x) \in \{C_1, \dots, C_c\}$
- The main idea to determine the class
 - Similar examples have similar label
 - Algorithm:
 - 1. Find most similar training examples x_n
 - 2. Classify x "like" these most similar examples
- Questions:
 - ▶ How to determine similar example?
 - How many similar training examples to consider?
 - How to resolve in consistencies among the training examples?

1-Nearest Neighbor

- ▶ One of the simplest of all machine learning classifiers
- > Simple idea: label a new point the same as the closest known point

3-Nearest Neighbors

- ▶ Generalizes I-NN to smooth away noise in the labels
- A new point is now assigned the most frequent label of its 3 nearest neighbors

K-Nearest Neighbors (KNN)

K-Nearest neighbors:

- Given a query instance x,
- First locate the k nearest training examples $x_1, x_2, ..., x_k$
- Classification:
 - Discrete values target function
 - ▶ Take vote among its *k* nearest neighbors
- Extension for regression
 - Real valued target function
 - lacktriangle Take the mean of the values of the k nearest neighbors

Remember. We have to answer to:

- I. How to determine similar example?
- 2. How many similar training examples to consider (value of k)?
- 3. How to resolve in consistencies among the training examples (how to avoid noise)?

1. How to determine similarity?

It is possible to use any function that respects the following principles

- It's from 'distance properties'
 - Non-negative: d(i, j) > 0
 - d(i,i) = 0
 - Symmetry: d(i, j) = d(j, i)
 - ▶ Triangle inequality: $d(i, k) \le d(i, j) + d(j, k)$
- Difference between distance and similarity
 - d(i,i) = 0 but sim(i,i) = 1
 - ▶ $d(i,j) \in [0, +\infty [$ but $sim(i,j) \in [-1, 1]$
 - From distance to similarity
 - ▶ Normalize : $d_{norm} = \frac{d}{\max(d)}$
 - ▶ Then : $sim = 1 d_{norm}$
 - ▶ General approach : use a **strictly monotone decreasing** function f
 - Work in both sense
 - \rightarrow d = f(sim) and sim = f(d)
 - Some example : $\frac{1}{a+x}$ or e^{-x^a}

1. How to determine similarity?

Some distance

- Manhattan distance ("city-block"): $d(x, y) = \sum |x_i y_i|$
- Euclidian distance: $d(x, y) = \sqrt{\sum (x_i y_i)^2}$
- Levenshtein distance: measure the difference between two sequences

$$\operatorname{lev}(a,b) = \begin{cases} |a| & \text{if } |b| = 0, \\ |b| & \text{if } |a| = 0, \\ \operatorname{lev} \left(\operatorname{tail}(a), \operatorname{tail}(b) \right) & \text{if } a[0] = b[0], \\ 1 + \min \begin{cases} \operatorname{lev} \left(\operatorname{tail}(a), b \right) \\ \operatorname{lev} \left(a, \operatorname{tail}(b) \right) & \text{otherwise} \\ \operatorname{lev} \left(\operatorname{tail}(a), \operatorname{tail}(b) \right) \end{cases}$$

1. How to determine similarity?

- Some similarity
 - Cosine similarity (between vectors)

$$\text{cosine similarity} = S_C(A,B) := \cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum\limits_{i=1}^n A_i B_i}{\sqrt{\sum\limits_{i=1}^n A_i^2} \sqrt{\sum\limits_{i=1}^n B_i^2}},$$

Jaccard Index (between sets)

Knn need to normalize each feature

- The distance measure is influenced by the units of the different variables, especially if there is a wide variation in units.
 - Variables with "larger" units will influence the distances more than others.

An example

	Income in \$	Age
Carry	\$31 779	36
Sam	\$32 739	40
Miranda	\$33 880	38

- d(Carry, Sam) = $((31779 32739)^2 + (36 40)^2)^{1/2}$ = $((960)^2 + (4)^2)^{1/2} = (921600 + 16)^{1/2} = 960,008$ ± difference of income
- In order to take into account all the features, the dataset must be normalized.

Knn need to normalize each feature

	Income in \$	Age	Normalized income	Normalized Age
Carry	\$31 779	36	0	0
Sam	\$32 739	40	0,46	1
Miranda	\$33 880	38	1	0,5

With un-normalized features

	distance	rank
d(Carry,Sam)	960	1
d(Sam, Miranda)	1 141	2
d(Miranda,Carry)	2 101	3

With normalized features

	distance	rank
d(Carry,Sam)	1,1	3
d(Sam, Miranda)	0,73	1
d(Miranda, Carry)	1,12	2

2. How many similar training examples to consider?

Selecting the Number of Neighbors

- Increase k:
 - Makes KNN less sensitive to noise
- Decrease k:
 - Allows capturing finer structure of space
- ▶ Hard to tune!
- ▶ The main problem is to find the nearest neighbours efficiently
 - not covered in this course

3. How to resolve in consistencies among the training examples?

- Try to use more neighbors
- But give less weight to the far neighbors compared to the close neighbors

Hard to tune to!

- Weigthed neighbors = soft voting
 - i.e. Weigthed contribution of each neighbors

K-Nearest Neighbors with sklearn

- from sklearn.neighbors import KNeighborsClassifier
 - ▶ 3 main parameters
 - Choose the neighbors: n_neighbors (k)
 - ▶ Choose the distance: p (power): $(\sum |a_i bi|^p)^{1/p}$ for Minskowski distance
 - □ p==1: Manhattan
 - □ p==2: Euclidian
 - □ Or your own distance
 - ▶ Choose the proximity weight
 - □ with weight ('distance') or without weight ('uniform') or you own function
- clf = KNeighborsClassifier(n_neighbors=5, weights='uniform', p=2)
- clf.fit(X_train, y_train)
- y_pred = clf.predict(X_test) or clf.predict_proba(X_test)

PRO of k-NN

- Highly efficient inductive inference method for noisy training data and complex target functions
- k-NN is simple to understand and implement
- ▶ k-NN has no assumptions other than the need to standardize features.
- No training step: each new entry is labelled according to these neighbors
- It is possible to enrich the model with run-of-river data.
- No specific work to do to go from a problem with 2 classes, multiclass or regression
- A very wide variety of distances can be chosen (although we mainly looked at Minkowski)

CONS of k-NN

- Need a distance that "matches" the target function
 - possibly the distance depends on the feature
- k-NN works well with a properly balanced dataset
 - Very expensive for large datasets
- k-NN works well with a small number of features
 - Need dimension reduction for high-dimensional data (more than 10) in order to avoid the effects of the curse of dimensionality.
 - Use PCA or LDA
- k-NN works well with a properly balanced dataset
- Need to standardize the data to give equal weight to each feature
- k-NN doesn't work with missing value
- **k-NN** is very sensitive to outliers because it simply chooses neighbors based on distance criteria.
- But one of the main problems with k-NN is to choose the optimal number of neighbors to be considered when classifying the new data entry.

k-NN extension Approximate Nearest Neighbors

- ▶ KNN (K-Nearest Neighbors) is Dead!
 - https://pub.towardsai.net/knn-k-nearest-neighbors-is-dead-fc16507eb3e
- Comprehensive Guide To Approximate Nearest Neighbors Algorithms
 - https://towardsdatascience.com/comprehensive-guide-to-approximate-nearest-neighbors-algorithms-8b94f057d6b6
- Approximate Nearest Neighbor Search in High Dimensions
 - https://arxiv.org/abs/1806.09823

k-NN extension Missing data inputation

- The KNN algorithm helps to impute missing data by finding the closest neighbors
 - Imputs missing data with non-missing values from neighbors.
- from sklearn.impute import KNNImputer
 - ▶ n_neighbors: Number of neighboring samples to use for imputation.
 - **Weights**: Weight function used in prediction.
 - 'uniform' : All points in each neighborhood are weighted equally.
 - 'distance': weight points by the inverse of their distance.

The lab of today → Short lecture... but long lab

- Part I. K-nearest neighbors for classification
- Part II. K-nearest neighbors for regression

Read, understand and complete the code

- Part III.
 - Step 1: Build a pipeline
 - Impute missing value
 - Normalize data
 - Predict with knn model
 - Evaluate your pipeline with default parameters
 - Search best hyper-parameters
 - Plot confusion matrix
 - Print classification report

- Put comments on your notebook and submit it
- Part IV. Read paper « KNN (K-Nearest Neighbors) is Dead! »
 - Try to understand ANN (Approximate Nearest Neighbors)

Some complements to help you revise

Exercise: data

The following table contains data on individuals in a population described by two attributes: attribute 1 and attribute 2. The class of an individual can be: C1, or C2, ... or C6.

N°	Attribut I	Attribut 2	Class
I	I	2	CI
2	2	6	CI
3	2	5	C2
4	2	I	C3
5	4	2	C5
6	5	6	C4
7	6	5	C3
8	6	I	C6

Exercise: questions

Dataset

Plot the data from the previous table.

2. 3-NN Manhattan

We want to classify a new individual U with attributes (1, 4) using the KNN method. What will be the class of U if we choose k=3 and Manhattan distance. Justify.

3. 3-NN Euclidian

We want to classify a new individual U with attributes (1, 4) using the KNN method. What will be the class of U if we choose k=3 and Euclidian distance. Justify.

4. Weigted 3-NN

We now use the variant of KNN which uses the distance 1/d2 (inverse of the distance squared) to calculate the neighbours. The distance is the Euclidian one. What will be the class of U with k=3? Justify.

Exercise: solutions

Exercise: solutions (cont')

Euclidian distance

- Dist(U, P1) = 2
- Dist(U, P2)= 2.24
- Dist(U, P3) = 1.41
- Dist(U, P4) = 3.16
- Etc. The other points are further on.
- Point U is class C1 (2 votes for C1, against 1 vote for C2)

Weigthed Euclidian distance

- ▶ For class 1, the weights are 1/(2*2) and $1/(2.24*2.24) \rightarrow 0.25+0.20 = 0.45$
- For class 2, the weight is 1/(1.41*1.41) = 0.5
- ▶ The U-point will therefore be assigned to class C2