МІНІСТЕРСТВО ОСВІТИ І НАУКИ, МОЛОДІ І СПОРТУ УКРАЇНИ НАЦІОНАЛЬНИЙ ТЕХНІЧНИЙ УНІВЕРСИТЕТ УКРАЇНИ «КИЇВСЬКИЙ ПОЛІТЕХНІЧНИЙ ІНСТИТУТ імені ІГОРЯ СІКОРСЬКОГО»

КАФЕДРА КОНСТРУЮВАННЯ КЕОА

3BIT

з лабораторної роботи №5 по курсу «Аналогова електроніка» на тему

«Операційний підсилювач»

Виконав:

студент гр. ДК-61

Шваюк М.В.

Перевірив:

доцент

Короткий Є. В.

Завдання 1. Зібрати на лабораторному стенді інвертуючий підсилювач з коефіцієнтом підсилення 10

Uin = 41mV Uout = 403mV Ku = 10

3сув фаз = 180^{0}

Завдання 2. Зібрати на лабораторному стенді неінвертуючий підсилювач

Ku = 11

3сув фаз = 0^0

Завдання 3. Зібрати на стенді з набором операційних підсилювачів та компонентів до них тригер Шмідта

Інвертуючий трігер Шмідта:

Такий тригер Шмідта є двохполярним, тобто видає як додатні так і від'ємні імпульси, також він є інвертуючим. Працює по передньому фронту

Порогова напруга:

$$U_{nopir} = U_{out} * \frac{R_2}{R_1 + R_2} = 10 * \frac{1}{1 + 10} = 0.92 B$$

Тут в нас вийшло наступне:

При вхідній напрузі **0.91В** тригер не перемикався. Почав перемикатись при напрузі **1.04В**, але коефіцієнт заповненості тут явно не 50%.

При вхідній напрузі **5В** меандр вже нормальний, але порогова напруга **1.72В**, що не відповідає теоретичним очікуванням.

Uвх = **1.04 В**; U_{пексперимент} = **989.7мВ**; передній фронт

Uвх = **1.04 В**; U_{пексперимент} = **-826.5мВ**; задній фронт

UBx = 5 B; $U_{\text{п експеримент}} = 1.719 B;$ передній фронт

Uвх = **5 В**; U_{п експеримент} = -**1.055 В**; задній фронт

НЕінвертуючий тригер Шмідта:

Перемикається до напруги живлення при досяганні додатньої порогової напруги і навпаки.

$$U_{\text{n reop}} = U_{out} * \frac{R_2}{R_1} = 10 * \frac{1}{10} = 1B$$

При перемиканні тригера спостерігаються просідання вхідної напруги. Це можна пояснити тим, що в момент перемикання в схемі протікають струми, більші ніж і через це виділяється напруга на внутрішньому опорі генератора, що й спричинює просідання.

 $U_{BX} = 1.5 B;$ $U_{\text{п експеримент}} = 969 \text{ мB};$ передній фронт

Uвх = **1.5 В**; U_{пексперимент} = -**1.163 В**; задній фронт

UBx = 5 B; $U_{\text{п експеримент}} = 2.102 B;$ передній фронт

Uвх = **5 В**; U_{п експеримент} = -**2.543 В**; задній фронт

Завдання 4. Зібрати на стенді з набором операційних підсилювачів та компонентів до них генератор прямокутного тактового сигналу

Даний генератор видає на виході прямокутні імпульси з коефіцієнтом заповнення 50% з періодом який визначається:

$$\beta = R1/(R1+R2)=0.091$$

$$T = 2R_3C * \ln\left(\frac{1+\beta}{1-\beta}\right) = 36.5 \text{ MKC}$$

Принцип роботи схеми: спочатку тригер Шмідта виставляє на своєму виході напругу живлення (+ чи -), вихід тригера під'єднано до входу через RC ланцюжок, відповідно напруга на конденсаторі є вхідною напругою тригера. Знаємо, що напруга на конденсаторі змінюється поступово, тому коли напруга на виході тригера стала напругою живлення, конденсатор починає заряджатись і як тільки конденсатор зарядиться до порогової напруги тригера, тригер скинеться протилежної напруги живлення і процес буде повторюватись.

Також можна сказати що це не тільки генератор імпульсних сигналів, а ще й генератор пилкоподібних сигналів, якщо брати напругу з конденсатора.

$$T_{\text{експеримент}} = 26.31 \,\text{мкC}$$
 (похибка = 28%)

Похибка задовільна, враховуючи неточність компонентів, опір та ємність коксіальних кабелів та інші чинники.