东南大学电工电子实验中心 实验报告

课程名称:	数字电路实验

第 4 次实验

实验	名称:		FPGA F	付序逻辑计	<u> </u>	
院	(系):	电气工程学	<u>院</u> 专	业: 电气	【工程及其自动化	乜
姓	名:	王皓冬	学	号:_	16022627	
实员	检室:	401	实	<u> </u>		
同组	人员:		实	验时间:_		
评定	成绩:		审[阅教师:_		

一、实验目的

- 1、 进一步学习时序逻辑电路的分析和设计方法,掌握状态机设计方法
- 2、 了解可编程数字系统设计的流程,掌握 Quartus II 软件的使用方法
- 3、 掌握原理图输入方式设计时序逻辑电路的方法和流程

二、实验原理

0 输入信号与输出信号编码

输入信号

进行动态验证时,由于该电路以预置的形式产生了信号,而未采用 input 形式,因此该实验中*无输入信号*。而需要手动加载数据时,采用 CLK 按键与拨码开关作与逻辑的方式进行信号输入。故

Input: 手动加载的序列信号, 用拨码开关实现。

为了同一两种检测方式,引入选择功能,采用拨码开关实现。即

Model:模式选择。为"1"时手动输入信号进行验证,为"0"时检测预置的信号"1011011100100"。

输出信号

OD: Order, 输出预定信号"111001"部分模块的实际输出。

Y: 输出的待测信号"1011011011100100"的实际输出。

Z: 代表"待测信号中是否被检测到含有预定信号", "0"代表未检测到, "1"代表检测到。

CLKo: 输出时钟信号,用于拓展功能,便于验证。o 代表 out。

Modelo:输出 Model, 直观显示当前检测模式。用于拓展功能,便于验证。o 代表 out。

X: 对每一个 CLK 内的 OD 与 Y 异或,用于表示 OD 与 Y 信号是否相等。"0"代表不相等,"1"代表相等。用于拓展功能,便于验证。

时钟信号

用 *CLK* 代表时钟信号。实验中的时钟信号是唯一的,仿真时,CLK 的周期为 20ns。由于利用 FPGA 单步验证时,其按钮按下产生低电平,与通常的 CLK 信号相反,因此电路设计时采用了 CLKi(i 代表 in)作为输入时钟信号的标识,CLK 则仍作为接入各芯片的时钟信号标识。

其他标识说明

LD: 二进制码实现序列检测器时接入 161LD 端的导线逻辑。LD 为"0"时,161 实现加载数据的功能。

Nand: One-Hot 码中接回 D_0 触发器、用作自启动的导线逻辑。Nand 为"1",即与非的项中含有逻辑"0"时, D_0 触发器传递 1, \overline{Q}_0 输出 0,第一个译码器开始工作。

1、 实验内容:

(1) 必做:用二进制编码设计一个"111001"序列检测器,对串行输入序列进行检测,当连续检测到 6 个码元符合检测码"111001"时,检测器输出为 1

选做: 用 One-Hot 编码设计一个"111001"序列检测器,对串行输入序列进行检测,当连续检测到 6 个码元符合检测码"111001"时,检测器输出为 1 注意: "111001"序列的最后一个码元不能作为当前待测序列的第一个码元

- (2) 用静态(单步)的测试方法对实验结果进行验证
- (3) 自行设计一个"1011011011100100"序列发生器用于对实验结果进行动态验证
- (4) 用双踪示波器观察并记录动态验证结果。

2、 实验要求:

(1) 根据设计要求划分设计层次、单元模块和接口信号,在报告上记录设计过程,绘制系统框图,每个模块的状态转移图和 ASM 图,并设计验证方案。

X的判断是通过真值表写出逻辑函数式实现的。

- (2) 用原理图输入法设计所有单元模块并编译,分析编译时产生的错误和警告信息
- (3) 对所有的单元模块进行功能仿真,并记录和分析全部仿真结果
- (4) 在顶层文件中连接全部单元模块并编译、综合、分配管脚和适配。
- (5) 对整个系统进行时序仿真,并记录和分析仿真结果。

(6) 将仿真正确的设计下载到实验箱上,连接输入输出设备和示波器进行板级验证

1. 状态图

该工程包含的模块如下:

- (1) 待测信号产生模块。本质是序列发生器,包括手动输入模块与预置信号 (101101101100100)模块。
- (2) 判别相等模块, 判断每一位信号是否相等。
- (3) 预定信号模块,即"111001"。本质是序列发生器。
- (4) 序列检测器模块。

判别相等:

判别数值是否相等的功能可以通过同或逻辑实现。由于器件中没有同或门,采用异或+非的逻辑实现。将 OD 与 Y 异或后得到 X,即判断两信号是否相等。

表 1 判断相等信号

OD	Y	X
0	0	1
1	1	
1	0	0
0	1	

序列检测器(Sequential Detector, SD):

6 位 SD(二进制实现):

表 2 二进制码实现6位序列检测器

	文字	描述				二进制	訓编码	,			7.	4161 🖠	集成计	数器		
101 *	歩 本	条件	输出		现态			次态		功能			端	П		
现态	次态	米十	制山	Q2	Q1	Q0	Q2	Q1	Q0		EN	LD	D3	D2	D1	D0
S0	S0	\overline{X}	0	0	0	0	0	0	0	保持	0	1	φ	φ	φ	φ
30	S1	X	0	U	U	U	0	0	1	计数	1	1	φ	φ	φ	φ
S1	S0	\overline{X}	0	0	0	1	0	0	0	置数	0	0	0	0	0	0
31	S2	X	0	U	U	1	0	1	0	计数	1	1	φ	φ	φ	φ
S2	S0	\overline{X}	0	0	1	0	0	0	0	置数	0	0	0	0	0	0
32	S3	X	0	U	1	U	0	1	1	计数	1	1	φ	φ	φ	φ
S3	S0	\overline{X}	0	0	1	1	0	0	0	置数	0	0	0	0	0	0
33	S4	X	0	U	1	1	1	0	0	计数	1	1	φ	φ	φ	φ
S4	S0	\overline{X}	0	1	0	0	0	0	0	置数	0	0	0	0	0	0
54	S5	X	0	1	U	0	1	0	1	计数	1	1	φ	φ	φ	φ
S5	S0	\overline{X}	1	1	0	1	0	0	0	置数	0	0	0	0	0	0
33	S5	X	0	1	U	1	1	1	0	保持	0	1	φ	φ	φ	φ

6 位 SD(One-Hot 码实现):

表 3 One-Hot 码实现 6 位序列检测器

	*=	描述		0ne−l	lot 码
现	次	条	输	现态	次态

态	态	件	出	Q5	Q4	Q3	Q2	Q1	Q0	Q5	Q4	Q3	Q2	Q1	Q0
S0	S0	\overline{X}	0	0	0	0	0	0	1	0	0	0	0	0	1
30	S1	X	0	U	U	U	U	U	1	0	0	0	0	1	0
S1	S0	\overline{X}	0	0	0	0	0	1	0	0	0	0	0	0	1
51	S2	X	0	U	U	U	U	1	U	0	0	0	1	0	0
S2	S0	\overline{X}	0	0	0	0	1	0	0	0	0	0	0	0	1
32	S3	X	0	U	U	U	1	U	U	0	0	1	0	0	0
S3	S0	\overline{X}	0	0	0	1	0	0	0	0	0	0	0	0	1
33	S4	X	0	U	U	1	U	U	U	0	1	0	0	0	0
S4	S0	\overline{X}	0	0	1	0	0	0	0	0	0	0	0	0	1
34	S5	X	0	U	1	U	U	U	U	1	0	0	0	0	0
S5	S0	\overline{X}	1	1	0	0	0	0	0	0	0	0	0	0	1
33	S5	X	0	1	U	U	U	U	U	1	0	0	0	0	0

待测信号:

由于手动输入待测信号逻辑简易,在这里给出用序列发生器产生"1011011100100"的真值表。用 74161+2 片 74138 的组合获得 16 位序列发生器。2 片 74138 组装为 4 线-16 线译码器,将对应地址与非输出即可得到待测信号"1011011011100100"。由于 74161 恰为 16 进制计数器,故无需特意改装,正常计数即可。

表 4 待测信号 4 线-16 线译码器组装

信号		高位	芯片			低位;	芯片	
QD	EN1	EN2A	EN2B	功能	EN1	EN2A	EN2B	功能
0	0	Х	Х	封锁	1	0	0	工作
1	1	0	0	工作	х	1	1	封锁

表 5 待测信号输出 Y

				地址输出					信号输出
Y0	Y2	Y3	Y5	Y6	Y8	Y9	Y10	Y13	Y
0	1	1	1	1	1	1	1	1	1
1	0	1	1	1	1	1	1	1	1
1	1	0	1	1	1	1	1	1	1
1	1	1	0	1	1	1	1	1	1
1	1	1	1	0	1	1	1	1	1
1	1	1	1	1	0	1	1	1	1
1	1	1	1	1	1	0	1	1	1
1	1	1	1	1	1	1	0	1	1
1	1	1	1	1	1	1	1	0	1
1	1	1	1	1	1	1	1	1	0

预定信号:

用 74161+74138 的组合获得 6 位序列发生器,原理同上。其中,由于是将预定信号与待测信号逐位比较,应在比较结果为"不相同"时重新从预定序列的开端开始比较。即,假如比较序列结果为"假",预定信号应直接重新产生"111001"的序列。因此,置数端 LD 的接线需要特别说明。

表 6 预定信号输出 OD

	地址	输出		信号输出
Y0	Y1	Y2	Y5	OD
0	1	1	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

预定序列 ASPRG 模块的 LD 端:

由于 X 信号已经代表了当前 Y 与 OD 是否相等,且 X 输出为"0"时代表判断序列不相等, LD 端低电平有效。因此,X 可直接作为 LD 端的接入。考虑到预定序列的 ASPRG 本身是一个模 6 计数器,在从 0 计数到 5 后应当返回 0 计数,这两个条件是"或"的关系。即:序列不相等,或序列完整输出了,则重新计数。因此,将二者(X 与 \overline{Y}_5)作与运算即可。

2. 状态转移方程

根据状态转移表求得状态转移方程如下。

2.1 SD:

SD(二进制码):

$$EN = X \cdot (\sum_{i=0}^{4} m_i^{n-1})$$

$$LD = X + \overline{X} \cdot m_0^{n-1}$$

$$Z = \overline{X} \cdot m_5^{n-1}$$

其中, m_i^{n-1} 代表($Q_2Q_1Q_0$)组成的最小项的现态。SD(One-Hot 码):

$$EN = X \cdot (\sum_{i=0}^{4} m_i^{n-1})$$

$$LD = X + \overline{X} \cdot m_0^{n-1}$$

$$Z = \overline{X} \cdot m_5^{n-1}$$

2.2 ASPRG:

自动加载数据"101..."时,用于产生待检测信号的 16 位 ASPRG 中,138 组装 4 线-16 线 译码器,高位芯片与低位芯片的使能端分别如方程组(1)(2)所示:

$$\begin{cases} EN_2A = EN_2B = 0 \\ EN_1 = Q_D \end{cases}$$
 (1)

$$\begin{cases} EN_2A = EN_2B = Q_D \\ EN_1 = 1 \end{cases}$$
 (2)

而手动加载数据时,待测信号的输出仍用 Y 指代,则有:

$$Y = Input$$

2.3 各组件连接部分

由上文分析,对预定序列序列发生器(二进制码)LD 脚(记为 LDasprg),有:

$$LDasprg = LD \cdot \overline{Y}_5$$

其中, \overline{Y}_5 是该序列发生器 74138 的 \overline{Y}_5 脚输出。

同样,对预定序列序列发生器(One-Hot 码)LD 脚,有:

$$LDasprg = \overline{Nand} \cdot \overline{Y}_5$$

产生 X 的异或逻辑为:

$$X = Y \oplus OD$$

对于待测信号,记 Model=0 时的 Y 为 Y_0 ,Model=1 时的 Y 为 Y_1 ,则总电路的待测信号应有:

$$Y = Y_0 \cdot \overline{Model} + Y_1 \cdot Model$$

实际上,由于手动输入的信号在 FPGA 板上是通过拨码开关代替的,考虑到直接同上式接线会导致 Input 无视 CLK 信号,在 CLK 低电平期间改变拨码开关状态同样会直接导致 Y 的改变。因此,使 Input 经过了一个 D 锁存器的寄存,锁存器的时钟信号与 CLK 同步。(验证表明,这是必不可少的!! 因为没按 CLK 的时候换 Input 开关状态也计入信号检测,直接导致信号判断为不相等!)

3. 电路原理图

首先给出 Model=0 (预置信号模式)的电路图。

预定序列序列发生器:

待测信号序列发生器:

SD(二进制码实现):

SD(One-Hot 码实现):

待测信号产生合块(动态+手动):

综合可得,总电路如下:

总电路(二进制码实现):

封装后的二进制码电路如下:

总电路(One-Hot 码实现):

(由于 One-Hot 码电路未要求模块化,故未模块化实现)

4. 仿真

在此说明,仿真均是利用 Model=0 时的功能仿真。方便起见,直接采用了未合并的电路(即为加入 Model 与 Input 信号的电路)进行仿真。

4.1 二进制码实现

功能仿真:

可以观察到,在相同波形(111001)后的一个周期后,Z 跃变为1。延迟了两个周期分别是由输出端的D 触发器、信号输入端自行设计的D 触发器引起的。实验中并没有要求综合两种功能,所以如果不附加功能,应是一个周期的延迟。功能仿真正确。

时序仿真:

可以观察到,Y信号约延迟 CLK 信号 6.924ns,Z信号约延迟 CLK 信号 7.325ns。OD、Z 均无毛刺产生,毛刺主要集中在Y的波形上。以第一个毛刺为例,是在138 低位芯片从Y5 转到Y6 时形成的,而此时高位芯片的Y6 脚为低。观察发现毛刺出现时,不工作的芯片上均有工作芯片对应脚相反的信号。故推测毛刺的形成是两片138 芯片之间使能端间不同步,产生竞争-冒险导致的。也因而,同样用于序列发生器的OD 波形上没有毛刺产生。同时,对照延迟信息:

	Data Port	Clock Port	Rise	Fall	Clock Edge	Clock Reference
1	OD	CLK	7.107	7.118		CLK
2	Υ	CLK	7.078	6.954	Rise	CLK
3	Z	CLK	7.312	7.407	Rise	CLK

发现均与全部毛刺的产生时间无法对应。因此可以排除 CLK 产生毛刺的假设。同样可以发现,毛刺的产生对 Z 的判断没有影响。

4.2 One-Hot 码实现

功能仿真:

分析同二进制码电路, 功能正确。

时序仿真:

可以观察到,Y信号约延迟CLK信号 6.883ns,Z信号约延迟CLK信号 6.44ns。毛刺的分

析同二进制码电路。

5. 管脚分配

管脚分配如下。其中,为便于实现静态验证,CLK 接到按键 J14 上。

	▼ «» E	dit X V PIN_C3					
	Node Name	Direction	Location	I/O Bank	VREF Group	I/O Standard	Reserved
	CLK	Input	PIN_J14	5	B5_N0	2.5 V (default)	
	CLKo	Output	PIN_B4	8	B8_N0	2.5 V (default)	
	Input	Input	PIN_R16	5	B5_N0	2.5 V (default)	
	Model	Input	PIN_N13	5	B5_N0	2.5 V (default)	
0	Modelo	Output	PIN_C3	8	B8_N0	2.5 V (default)	
0	OD	Output	PIN_A4	8	B8_N0	2.5 V (default)	
	Υ	Output	PIN_B5	8	B8_N0	2.5 V (default)	
	Z	Output	PIN_A5	8	B8_N0	2.5 V (default)	
	< <new node="">></new>						

6. 验证方案

预置序列验证(1011011011100100)时,仅需将开关 SW7 断开,按动按钮 KEY0 产生单次静态脉冲作为 CLK 验证。手动输入序列验证时,将开关 SW7 闭合,同时改变开关 SW0 的状态后按动按钮产生单次静态脉冲。SW0 断开时按动按钮等效于输入"0",闭合时按动按钮等效于输入"1"。

手动输入序列验证时,输入不同的序列信号,观察是否能正常实现功能。

三、实验记录(记录实验具体步骤、原始数据、实验过程、实验中遇到的故障现象、排除故障的过

程和方法等)

实验步骤: 首先利用脉冲按钮进行静态验证。静态验证时,输入信号的获取同上文。改变输入信号后按下按钮,信号输入不正确时,计数器跳转回 0。循环输入正确信号"0 111001 0 111001"时,代表检测正确的 LED 灯能够正确亮灯。静态验证结果符合功能。

再利用双踪示波器进行动态验证。利用信号源产生频率 1kHz、高电平 5V、低电平 0V 的方波作为 CLK 信号,将功能调整至 Model=0(预置信号),显示(CLK,Y)、(Y,Z)波形,记录结果。

波形说明,连续 CLK 信号输入时,Y 循环输出"1011011011100100"信号,Z 在延迟后输出跃变为"1"。动态验证结果符合功能。

经检验,该电路能够自启动(输入信号错误时计数器归零)。

遇到的问题及解决方法:同上文,实验中无问题。

四、实验仪器

FPGA 板,易派箱

五、实验小结(总结实验完成情况,对设计方案和实验结果做必要的讨论,简述实验收获和体会)

本次实验周期较长,从验收的两周前就开始了。也因此,这次实验所设计的功能较为完善。

这次实验中遇到的一个困难是自行输入信号进行验证。

首先,是输入信号与 CLK 信号同步的问题。虽然如上文所说,利用一个 D 锁存器解决了这个困难,但实际上在自行验证的时候,错误的现象仅仅是输出信号几乎一直不变,完全想不到是哪里出错了。最后错误的排查也不是通过实验排查的,是检查电路时,灵光一闪,突然感觉到这里有问题才查出来的。事实上,这个错误是可以通过实验排查的,因为在并没有动 CLK 按钮时,拨动拨码开关,计数器会直接清零。这说明,连出计数器很重要!

其次,自行验证时设计验证方案也是一个困难。本次实验对全方位均有较高要求,对设 计电路的能力也有较大提升。

六、参考资料

《数字逻辑设计实践 2023 年教学计划 A_V1.0》