Devoir à la maison n°04

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 - CCP DEUG 1993

Partie I

On pose pour $p \in \mathbb{N}^*$

$$H_p = \int_0^1 \frac{1 - (-1)^p x^{2p}}{1 + x^2} dx$$

1 Justifier que

$$H_p = \sum_{k=0}^{p-1} \frac{(-1)^k}{2k+1}$$

2 Justifier que

$$\lim_{p\to +\infty} \mathbf{H}_p = \frac{\pi}{4}$$

Partie II

3 On pose pour n ∈ \mathbb{N}

$$I_n = \int_0^{\frac{\pi}{2}} \frac{\sin(nx)}{\sin(x)} \, \mathrm{d}x$$

- **3.a** Justifier que I_n est bien défini.
- **3.b** Calculer $I_{2p+1} I_{2p-1}$ et en déduire la valeur de I_{2p+1} .
- **3.c** Calculer $I_{2p} I_{2p-2}$ et en déduire la valeur de I_{2p} .
- **3.d** Déterminer un lien entre H_p et I_{2p} et en déduire la limite de la suite (I_{2p}) .

 $\boxed{\textbf{4}} \text{ On pose pour } n \in \mathbb{N}$

$$J_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nx)}{\sin^2(x)} dx$$

1

- **4.a** Justifier que J_n est bien défini.
- **4.b** Montrer que $J_n J_{n-1} = I_{2n-1}$ et en déduire la valeur de J_n .

Partie III

On pose

$$K_1 = \int_0^{+\infty} \frac{\sin(x)}{x} \, dx$$

- $\boxed{\mathbf{5}}$ Montrer que K_1 est bien défini. On pourra procéder à une intégration par parties.
- 6 On définit la fonction

$$h: x \in \left]0, \frac{\pi}{2}\right] \mapsto \frac{1}{x} - \frac{1}{\sin(x)}$$

Montrer que h est prolongeable en une fonction de classe \mathcal{C}^1 sur $\left[0, \frac{\pi}{2}\right]$.

7 Montrer que

$$\lim_{n \to +\infty} \int_0^{\frac{\pi}{2}} h(x) \sin((2n+1)x) \, \mathrm{d}x = 0$$

8 En déduire la valeur de K₁.

Partie IV

De manière plus générale, on pose pour $n \in \mathbb{N}^*$,

$$K_n = \int_0^{+\infty} \frac{\sin^n(x)}{x^n} \, \mathrm{d}x$$

On suppose $n \ge 2$.

- **9** Montrer que K_n est bien défini.
- 10 10.a On suppose n pair. Montrer que $K_n \ge 0$.
 - **10.b** On suppose n impair. En écrivant K_n comme la somme d'une série vérifiant le critère spécial des séries alternées, montrer que $K_n \ge 0$.
- 11 On pose $g_n : x \mapsto \sin^n(x)$ et on se donne $k \in [0, n-1]$.
 - **11.a** Montrer que $g_n^{(k)}$ est bornée.
 - **11.b** Montrer que $g_n^{(k)}(x) = o(x^{n-1-k})$.
 - 11.c Montrer que

$$K_n = \frac{1}{(n-1)!} \int_0^{+\infty} \frac{g_n^{(n-1)}(x)}{x} dx$$

On pourra raisonner par récurrence.

12 | 12.a Montrer que pour tout $t \in \mathbb{R}$,

$$g_{2n}(t) = \frac{1}{2^{2n}} \sum_{k=0}^{2n} (-1)^{n+k} {2n \choose k} e^{i(2n-2k)t}$$

$$g_{2n+1}(t) = \frac{1}{2^{2n+1}i} \sum_{k=0}^{2n+1} (-1)^{n+k} {2n+1 \choose k} e^{i(2n+1-2k)t}$$

12.b En déduire que pour tout $t \in \mathbb{R}$,

$$\begin{split} g_{2n}^{(2n-1)}(t) &= (-1)^n \sum_{j=1}^n (-1)^j \binom{2n}{n-j} j^{2n-1} \sin(2jt) \\ g_{2n+1}^{(2n)}(t) &= (-1)^n \sum_{j=0}^n (-1)^j \binom{2n+1}{n-j} \left(j + \frac{1}{2}\right)^{2n} \sin((2j+1)t) \end{split}$$

12.c En déduire que

$$K_{2n} = \frac{(-1)^n \pi}{2(2n-1)!} \sum_{j=1}^n (-1)^j \binom{2n}{n-j} j^{2n-1}$$

$$K_{2n+1} = \frac{(-1)^n \pi}{2(2n)!} \sum_{j=0}^n \binom{2n+1}{n-j} \left(j + \frac{1}{2}\right)^{2n}$$

- 13 13.a Déterminer la limite de la suite de terme général $\int_{\pi}^{+\infty} \frac{\sin^n(x)}{x^n} dx$.
 - **13.b** Etudier le sens de variation de φ : $x \mapsto \frac{\sin(x)}{x}$ sur $]0,\pi]$. En déduire que (K_n) converge vers 0.

Partie V

On pose pour $n \in \mathbb{N}$

$$A_n = \int_0^{\frac{\pi}{2}} \sin^n(x) \, \mathrm{d}x$$

- 14 Déterminer le sens de variation de la suite (A_n) .
- 15 Déterminer une relation entre A_n et A_{n-2} .
- 16 En déduire que

$$\forall n \in \mathbb{N}^*, \ n\mathbf{A}_n\mathbf{A}_{n-1} = \frac{\pi}{2}$$

- 17 En déduire également que $A_n \underset{n \to +\infty}{\sim} A_{n-1}$ puis que $A_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.
- 18 Montrer que

$$\forall x \in]0,1], \ \frac{\sin(x)}{x} \ge 1 - x^2$$

19 Montrer que

$$K_{2p} \ge \int_0^1 \frac{\sin^{2p}(x)}{x^{2p}} dx$$

et en déduire que $K_{2p} \ge A_{4p+1}$.

20 Déterminer la nature de la série $\sum_{n \in \mathbb{N}} K_n$.