

Dagens plan

- Repitisjon av bit-manipulering.
- · Lære litt om ADC.
- Kahoot(med premie).
- Pause 5 min.
- Gjennomgang av første oppgave.

Bit-operasjoner

Eller-operasjon:

- Setter en bit høy.
- Blir høy hvis en av inngangene er høye.
- Syntax: «|».

Og-operasjoner

- Setter en bit lav.
- Sammenligne to bitmasker.
- Blir høy hvis begge inngangene er høye.
- Syntax: «&».

Not-operasjoner

- Inverterer svare.
- Syntax: For bit «~» og for logikk «!».

XOR-operasjoner

- Toggle bit.
- Blir høy hvis en av inngangene er høye.
- Syntax: «^»

Bit-shifting

- Flytter bitene X antall steg i retningen man ønsker.
- Venstreskift brukes masse i kombinasjon med maskenavn for å få en god og leselig kode.
- Syntax: «<<», «>>»
- Ideellkode: #define LED1_bp 5 //PB5
- PORTB.OUT |= (1<<LED1_bp);

ADC: Analog til digital konvertering

- Hva er ADC?
 - Modul som konverter en analog verdi til en bit verdi.
- To ting å tenke på.
 - Hvor mange bit er ADCen min?
 - Ofte 8-bit eller 10-bit på AVR.
 - Høyere antall bit = Flere deler.
 - Hva er referansespenningen?
 - Setter maks måleverdi.
 - · Lavere referanse gir høyere oppløsning med samme bit mengde.

$$Oppl \&sning = \frac{V_{ref}}{Bitverdi} = \frac{1V}{1024} = 0.97mV \ per \ inkrement$$

8bit og 10bit

5V og 3.3V

$$\frac{5V}{255} = 0,0196V = 19,6mV \qquad \frac{5V}{1024} = 0,00488V = 4,88mV$$

$$\frac{5V}{1024} = 0,00488V = 4,88mV \qquad \frac{3.3V}{1024} = 0,00322V = 3,22mV$$

$$\frac{3.3V}{1024} = 0,00322V = 3,22mV$$

Analog til digital konvertering

ADC: Analog til digital konvertering

$$Oppløsning = \frac{V_{ref}}{Bitverdi} = \frac{3.3V}{1024} = 0,00322V = 3,22mV \ per \ inkrement$$

$$ADC0.RES = \frac{V_{in}}{V_{ref}} * 2^{bit} = \frac{2V}{3.3V} * 2^{10} = \frac{2V}{3.3V} * 1024 = 620$$

$$ADC0.RES = \frac{V_{in}}{V_{ref}} * 2^{bit} = \frac{2V}{3.3V} * 2^{8} = \frac{2V}{3.3V} * 255 = 154$$

$$ADC0.RES = \frac{V_{in}}{V_{ref}} * 2^{bit} = \frac{2V}{5V} * 2^{10} = \frac{2V}{5V} * 1024 = 409$$

Type	Bytes	Bits	Range
char	1	8	-128 -> 127
unsigned char	1	8	0 -> 255
short int	2	16	- 32768 -> +32767
unsigned short int	2	16	0 -> +65535
int	4	32	-2147483648 -> 2147483647
unsigned int	4	32	0 -> +4,294,967,295
long int	4	32	-2147483648 -> 2147483647
unsigned long	4	32	0 -> 4294967295
long long int	8	64	$-2^{63} -> 2^{63}-1$
unsigned long long	8	64	$0 - 2^{64} - 1$
float	4	32	Properties unspecified
double	8	64	Properties unspecified
long double	12	96	Properties unspecified

Kahoot!

Premien er et valgfritt extentionkort!

Pause: 5 minuter

Eksempel programmering!

