Bias Estimation of Biological Reference Points Under Two-Parameter SRRs

Nick Grunloh

In collaboration with: Dr. E.J. Dick Dr. H. K.H. Lee

15 Aug 2022

Introduction

$$I_t = qB_te^{\epsilon} \quad \epsilon \sim N(0, \sigma^2)$$

$$\frac{dB(t)}{dt} = P(B(t); \theta) - Z(t)B(t)$$

$$RP:MSY,\ \frac{F_{MSY}}{M},\ \frac{B_{MSY}}{B_0}$$

Yield and Related Quantities

Introduction

$$\frac{F_{MSY}}{M} \in \mathbb{R}^+ \quad \frac{B_{MSY}}{B_0} \in (0,1)$$

Mangel et al. 2013, CJFAS:

■ BH Model:

$$F_{MSY} \in \mathbb{R}^+$$
 $\frac{B_{MSY}}{\bar{B}(0)} = \frac{1}{F_{MSY}/M+2}$

Similar Constraints for other Two-Parameter Curves

Introduction

$$\frac{F_{MSY}}{M} \in \mathbb{R}^+ \quad \frac{B_{MSY}}{B_0} \in (0,1)$$

Mangel et al. 2013, CJFAS:

■ BH Model:

$$F_{MSY} \in \mathbb{R}^+$$
 $\frac{B_{MSY}}{\bar{B}(0)} = \frac{1}{F_{MSY}/M+2}$

- Similar Constraints for other Two-Parameter Curves
- Three-Parameter Relationships Allow Independent RP Estimation

Schnute 1985, CJFAS

$$\frac{dB}{dt} = P(B; \theta) - (M + F)B$$

$$P(B; [\alpha, \beta, \gamma]) = \alpha B(1 - \beta \gamma B)^{\frac{1}{\gamma}}$$

$$\gamma = -1 \Rightarrow$$
 Beverton-Holt $\gamma \to 0 \Rightarrow$ Ricker $\gamma = 1 \Rightarrow$ Logistic

Introish Ideas list

- PT/Schaffer work (link)
- Computational Difficulties
- Schnute Space Filling
- Catch/Contrast

$$\frac{B_{MSY}}{B_0} = \frac{1 - \left(\frac{M + F_{MSY}}{\alpha}\right)'}{1 - \left(\frac{M}{\alpha}\right)^{\gamma}}$$

$$\alpha = (M + F_{MSY})\left(1 + \frac{\gamma F_{MSY}}{M + F_{MSY}}\right)^{1/\gamma}$$

$$\beta = \frac{1}{\gamma B_0}\left(1 - \left(\frac{M}{\alpha}\right)^{\gamma}\right)$$

Pella-Tomlinson Production Model

$$I(t) \sim LN(qB(t), \sigma^{2})$$

$$\frac{dB(t)}{dt} = R_{\theta}(B(t)) - F(t)B(t)$$

$$R_{\theta}(B) = \frac{rB}{\gamma - 1} \left(1 - \frac{B}{K}\right)^{\gamma - 1}$$

$$\theta = (r, K, \gamma)$$

 $\gamma = 2 \Rightarrow$ Schaefer Model

Pella-Tomlinson Production Model

$$I(t) \sim LN(qB(t), \sigma^{2})$$

$$\frac{dB(t)}{dt} = R_{\theta}(B(t)) - F(t)B(t)$$

$$R_{\theta}(B) = \frac{rB}{\gamma - 1} \left(1 - \frac{B}{K}\right)^{\gamma - 1}$$

$$\theta = (r, K, \gamma)$$

 $\gamma=2\Rightarrow$ Schaefer Model

Pella-Tomlinson Family of Curves

Reference Point Space

Catch

Rias •00000000

Results Idea List

- contrast
 - components
 - animated arrows and yeild curves
- flat
 - animated arrows and yeild curves

Conclusions

- Contrast story
- Importance of getting the computational details correct for moving to analysis of Delay Difference and age structure