Assignment 3

Jiaqi Wang

November 21, 2023

1 5.9.1

Problem 1.1 Let (X, dist) be a metric space. Let $p \in X$ and assume that the sequence (a_n) is given by $a_n = p$ for every $n \in \mathbb{N}$. Prove that $\lim_{n \to \infty} a_n = p$.

Proof. To show that the sequence (a_n) converges to p, we need to show that

for all
$$\epsilon > 0$$
,
there exists $N > 0$,
for all $n > N$,
 $\operatorname{dist}(a_n, p) < \epsilon$.

Let $\epsilon > 0$. Choose N = 1. Take n > N, It holds that $\operatorname{dist}(a_n, p) = \operatorname{dist}(p, p) = 0 < \epsilon$. We conclude that $\lim_{n \to \infty} a_n = p$.

2 5.9.2

Problem 2.1 Let (x, dist) be a metric space and let $a : \mathbb{N} \to X$ be a sequence in X. Let $k \in \mathbb{N}$ and $p \in X$. Then the sequence (a_n) converges to p if and only if the sequence (a_{n+k}) converges to p.

Proof. To show that the sequence (a_n) converges to p if and only if the sequence (a_{n+k}) converges to p, we need to show both directions.

1. Forward direction:

Assume that the sequence (a_n) converges to p. It holds that (for all $\epsilon > 0$, there exists N > 0 for which n > N implies $\operatorname{dist}(a_n, p) < \epsilon$). We need to show that (for all $\epsilon > 0$, there exists N > 0 for which n > N implies $\operatorname{dist}(a_{n+k}, p) < \epsilon$).

$3 \quad 5.9.3$

Problem 3.1 Let $(V, \|\cdot\|)$ be a normed vector space. Let $a: \mathbb{N} \to V$ and $b: \mathbb{N} \to V$ be two sequences. Assume that the limit $\lim_{n \to \infty} a_n$ exists and is equal to $p \in V$ and that the limit $\lim_{n \to \infty} b_n$ exists and is equal to $q \in V$. Let $\lambda: \mathbb{N} \to \mathbb{R}$ be a real-valued sequence. Let $\mu \in \mathbb{R}$. Assume that $\lim_{n \to \infty} \lambda_n = \mu$. Prove that the limit $\lim_{n \to \infty} (a_n + b_n)$ exists and is equal to p + q.

Proof.

4 5.9.4

Problem 4.1 Let (X, dist) be a metric space and let $a : \mathbb{N} \to X$ be a bounded sequence in X. Let $p \in X$. Define also the sequence $s : \mathbb{N} \to \mathbb{R}$ by

$$s_k = \sup\{\operatorname{dist}(a_l, p) \mid l \in \mathbb{N}, l \ge k\}.$$

Show that $\lim n \to \infty a_n = p$ if and only if

$$\inf_{k\in\mathbb{N}} s_k = 0$$

Proof.