Introduction to Soft Robotics

Autumn 2021

Instructors: Ahmad Rafsanjani, Jonas Jørgensen, Xiaofeng Xiong

SDU &

Tutorial 1: Bendlabs sensor

SDU Biorobotics

bendlabs One Axis

Sensor Specifications

- Dimensions: 100mm x 7.62mm x 1.27mm (3.94in x 0.30in x 0.05in)
- Average Sensitivity: 0.274 pF/°
- Repeatability: 0.18°

4-channel Logic Level Converter

- Life Cycle: >1M cycles

Electrical Specifications

- Sensitivity: 0.016° LSB Voltage: 1.62 3.63V
- Output: I2C

Figure 1. Bendlabs sensor – Logic Level Converter – Arduino connection diagram

Code Information

Arduino libraries

- → Download ads Arduino driver at GitHub Link
- → Copy folder ads driver into Arduino/Libraries folder
- → Open the *ads.h* file located at *ads_driver* folder
- → Change the command ADS_DFU_CHECK(1) to ADS_DFU_CHECK(0)
- → Save the changes
- → Download SoRo_Tutorial_1 sketch at GitHub Link

Arduino Calibration

- → Compile and Upload SoRo_Tutorial_1 sketch at Arduino Uno Device
- → Open the serial monitor
- → Put the Bendlabs sensor in the 0° position
- → Type 0 and press Enter
- → Put the Bendlabs sensor in the 90° position
- → Type 9 and press Enter

Tutorial 2: MPX5100 Integrated Silicon Pressure Sensor

MPX5100, 0 to 100 kPa, Differential, Gauge, and Absolute, Integrated, Pressure Sensor

V_{out}	Output Voltage		
GND	Ground		
Vs	Voltage Supply		
DNC	Do not connect		

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure range ⁽¹⁾ Gauge, differential: MPX5100G/MPXV5100G Absolute: MPX5100AP	P _{OP}	0 15		100 115	kPa
Supply voltage ⁽²⁾	V _S	4.75	5.0	5.25	V _{DC}
Supply current	lo	_	7.0	10	mAdc

Figure 1. MPX5100DP Pinout (top view), Pin functions, and mechanical and electrical specifications

Figure 2. MPX5100DP - Arduino connection diagram

Nominal Transfer Value:

 $V_{OUT} = V_S (P \times 0.009 + 0.04)$ ± (Pressure Error x Temp. Mult. x 0.009 x V_S) $V_S = 5.0 \text{ V} \pm 0.25 \text{ V}$

Figure 8. Transfer function (MPX5100D, MPX5100G, MPXV5100G)

Figure 9. Temperature error multiplier (MPX5100D, MPX5100G, MPXV5100G)

Figure 10. Pressure error band (MPX5100D, MPX5100G, MPXV5100G)

Code Information

Arduino Calibration and plotting

```
//Pressure sensor calibration factors MPX5100 Series Integrated Silicon Pressure Sensor analog input (0 to 100 kPa) Vout=Vs(P * 0.009 + 0.04), Vs=5V = 1024, P = const float SensorOffset = 4.44; //pressure sensor offset const float SensorGain = 0.109; // pressure sensor proportional relation

// read the input on analog pin 1:
float pressure_sensorValue = (analogRead(PRESSURE_SENSOR)*SensorGain-SensorOffset); //Do maths for calibration
```

```
Serial.print(sample[0]);  // Angle data
Serial.print(",");
Serial.print(pressure_sensorValue);  // pressure data in kpa
Serial.print(",");
Serial.println(resistance_sensorValue);  // Stretch data
```


Tutorial 3: Conductive Rubber Cord Sensor

SDU Biorobotics

TECHNICAL DETAILS

Length: approximately 1 meter = 39 inches Diameter: 2mm

Resistance: 350-400 ohms per inch / 140 - 160 ohms per centimeter

Figure 1. Conductive Rubber Cord Sensor – Arduino connection diagram

Code Information

Arduino Calibration and plotting

```
//Pressure sensor calibration factors

const float SensorOffset2 = 330; //pressure sensor offset
const float SensorGain2 = 337590; // pressure sensor proportional relation

// read the input on analog pin 0:
float resistance_sensorValue = (SensorGain2/analogRead(RUBBER_SENSOR)-SensorOffset2); //Do maths for calibration
```

```
Serial.print(sample[0]);  // Angle data
Serial.print(",");
Serial.print(pressure_sensorValue);  // pressure data in kpa
Serial.print(",");
Serial.println(resistance_sensorValue);  // Stretch data
```

