Learning Hierarchical Metrical Structure Beyond Measures

ISMIR 2022 Poster Presentation

Junyan Jiang¹², Daniel Chin¹², Yixiao Zhang ¹³, Gus Xia¹²

jj2731@nyu.edu, daniel.chin@nyu.edu, yixiao.zhang@qmul.ac.uk, gxia@nyu.edu

¹ Music X Lab, NYU Shanghai ² Mohamed bin Zayed University of Artificial Intelligence ³ Centre for Digital Music, QMUL

Project Repository (7)

https://github.com/music-x-lab/Hierarchical-Metrical-Structure

All annotations, codes & pre-trained models are available!

Introduction

- Music contains strong-weak rhythmic pulses above measures
- Generative Theory of Tonal Music (GTTM) formally discussed the notation of hierarchical metrical structure using different number of dots to indicate metrical boundaries of different levels
- Metrical structure analysis is important for down-stream MIR, computer musicology and music generation tasks
- Previous hierarchical metrical structure analyzers are typically
 - Designed for low-level metrical layers
 - Designed for *monophonic*, *short* snippets (e.g., 8 bars)
 - Focusing on low-level syntax, ignoring high-level semantic properties of music

Task Formulation

Input: multi-voiced full-song score (multi-track MIDI file), with downbeat annotation

Output: 4-layer metrical structure labeling above measures

Binary Regularity

- Higher-level metrical structures are ambiguous and less stable
 - Hypermeter changes occurs much more often than meter changes
- Still, binary regularity is a very important inductive bias

16 bars																	
			8 b	ars			8 bars										
4 bars 4 bars									4 bars 4 bars								
2 b	2 bars		2 bars		2 bars		2 bars		2 bars		ars	2 b	ars	2 bars			
1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		

Method: Temporal Convolutional Network

• Dilations: 1, 2, 4, ..., 64 (strongly encourages information exchanges in the context of **binary regularity**)

Method: Conditional Random Field

• We allows binary irregularity (b, c) with a certain degree of penalty

Experiments & Main Results

- Dataset: 70 songs in RWC Pop (annotations available in the repo)
- Good results on full scores for pop songs
- Not satisfactory under simplified instrumentations (e.g., melody only, piano rearrangement)
- Lack of annotated training data limits the model's performance

Model	Level 1	Level 2	Level 3	Level 4
Proposed	$0.9848 \\ \pm 0.0215$	$0.9559 \\ \pm 0.0386$	$0.8880 \\ \pm 0.0889$	$0.6849 \\ \pm 0.1900$
Proposed w/o CRF	$0.9338 \\ \pm 0.0390$	0.8528 ± 0.0937	0.7971 ± 0.1276	0.6646 ± 0.0844
Rule	$0.9228 \\ \pm 0.0698$	0.8425 ± 0.1195	0.7485 ± 0.1536	$0.5185 \\ \pm 0.2656$
Oracle	0.9427 ± 0.1120	$0.7782 \\ \pm 0.2076$	0.5188 ± 0.1751	$0.4225 \\ \pm 0.1234$
Proposed (no drums)	$0.9868 \\ \pm 0.0174$	0.9519 ± 0.0346	$0.8803 \\ \pm 0.1023$	0.6611 ± 0.2170
Rule (no drums)	0.9312 ± 0.0660	0.8107 ± 0.1568	$0.7055 \\ \pm 0.2008$	$0.4823 \\ \pm 0.2239$
Proposed (mel. only)	0.7413 ± 0.2139	$0.6253 \\ \pm 0.2448$	$0.5551 \\ \pm 0.2536$	$0.3808 \\ \pm 0.2399$
Rule (mel. only)	0.6606 ± 0.1451	$0.4395 \\ \pm 0.1522$	0.3142 ± 0.1211	$0.1863 \\ \pm 0.1310$

Binary Irregularity Detection

	16 bars																					
	10 bars								8 bars						8 bars							
4 b	4 bars 6 bars						4 bars				4 bars				4 bars				4 bars			
2 bars	2 bars 2 bars		bars 2 bars		2 ba	ırs	2 bars															
1 1	1 1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Future Work

- Semi-supervised learning / self-supervised learning
- Audio metrical structure analysis
- End to end analysis with performance to score / audio beat tracking