```
+ Code — + Text
```

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

df = pd.read_csv(r'https://github.com/YBI-Foundation/Dataset/raw/main/Customer%20Segmentation.csv')

#df = pd.read_csv(r'C:\Users\YBI foundation\Desktop\Customer Segmentation.csv)

#df = pd.read_csv(r'/content/Customer Segmentation.csv')

df.head()
```

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	Male	19	15	39
1	2	Male	21	15	81
2	3	Female	20	16	6
3	4	Female	23	16	77
4	5	Female	31	17	40

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199

Data columns (total 5 columns):

		- / -	
#	Column	Non-Null Count	Dtype
0	CustomerID	200 non-null	int64
1	Gender	200 non-null	object

```
      2
      Age
      200 non-null int64

      3
      Annual Income (k$)
      200 non-null int64

      4
      Spending Score (1-100)
      200 non-null int64
```

dtypes: int64(4), object(1)
memory usage: 7.9+ KB

df.describe()

	CustomerID	Age	Annual Income (k\$)	Spending Score (1-100)
count	200.000000	200.000000	200.000000	200.000000
mean	100.500000	38.850000	60.560000	50.200000
std	57.879185	13.969007	26.264721	25.823522
min	1.000000	18.000000	15.000000	1.000000
25%	50.750000	28.750000	41.500000	34.750000
50%	100.500000	36.000000	61.500000	50.000000
75%	150.250000	49.000000	78.000000	73.000000
max	200.000000	70.000000	137.000000	99.000000

df.columns

df.shape

(200, 5)

```
x = df[['Age','Spending Score (1-100)']].values
```

```
x.shape
```

(200, 2)

Х

```
array([[19, 39],
       [21, 81],
       [20, 6],
      [23, 77],
      [31, 40],
      [22, 76],
      [35, 6],
      [23, 94],
      [64, 3],
      [30, 72],
      [67, 14],
      [35, 99],
      [58, 15],
      [24, 77],
      [37, 13],
       [22, 79],
      [35, 35],
      [20, 66],
      [52, 29],
      [35, 98],
      [35, 35],
      [25, 73],
       [46, 5],
      [31, 73],
      [54, 14],
      [29, 82],
      [45, 32],
      [35, 61],
      [40, 31],
      [23, 87],
      [60, 4],
      [21, 73],
```

wcss = []

sns.set()

```
[53, 4],
            [18, 92],
            [49, 14],
            [21, 81],
            [42, 17],
            [30, 73],
            [36, 26],
            [20, 75],
            [65, 35],
            [24, 92],
            [48, 36],
            [31, 61],
            [49, 28],
            [24, 65],
            [50, 55],
            [27, 47],
            [29, 42],
            [31, 42],
            [49, 52],
            [33, 60],
            [31, 54],
            [59, 60],
            [50, 45],
            [47, 41],
            [51, 50],
            [69 46]
from sklearn.cluster import KMeans
for i in range(1,11):
 kmeans = KMeans(n_clusters=i, init='k-means++', random_state=122529)
 kmeans.fit(x)
 wcss.append(kmeans.inertia_)
```

```
plt.plot(range(1,11),wcss)
plt.title('The Elbow Point Graph')
plt.xlabel('Number of CLusters')
plt.ylabel('WCSS')
plt.show()
```


kmeans = KMeans(n_clusters=5, init='k-means++', random_state=122529)

```
#return a label for each point based on their cluster
y = kmeans.fit_predict(x)
```

У

```
0, 1, 0, 1, 3, 1, 0, 1, 3, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 3, 1,
0, 1], dtype=int32)

plt.figure(figsize=(8,8))
plt.scatter(x[y==0,0], x[y==0,1], s=50, c='green', label='Cluster 1')
plt.scatter(x[y==1,0], x[y==1,1], s=50, c='red', label='Cluster 2')
plt.scatter(x[y==2,0], x[y==2,1], s=50, c='yellow', label='Cluster 3')
plt.scatter(x[y==3,0], x[y==3,1], s=50, c='violet', label='Cluster 4')
plt.scatter(x[y==4,0], x[y==4,1], s=50, c='blue', label='Cluster 5')

plt.scatter(kmeans.cluster_centers_[:,0], kmeans.cluster_centers_[:,1], s=100, c='cyan', label='Centroids')

plt.title('Customer Groups')
plt.xlabel('Age')
plt.ylabel('Spending Score')
plt.show()
```


✓ 0s completed at 20:45

×