IMPORTING PACKAGES

LOADING DATASET

In [4]: N data=pd.read_csv("C:/Users/DELL/Downloads/creditcard.csv")
data

Out[4]:

	Time	V1	V2	V 3	V4	V5	V 6	V 7	V8	V 9	 V21	V22	V23
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.110474
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.101288 -
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.909412 -
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.190321 -
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.137458
284802	172786.0	-11.881118	10.071785	-9.834783	-2.066656	-5.364473	-2.606837	-4.918215	7.305334	1.914428	 0.213454	0.111864	1.014480 -
284803	172787.0	-0.732789	-0.055080	2.035030	-0.738589	0.868229	1.058415	0.024330	0.294869	0.584800	 0.214205	0.924384	0.012463 -
284804	172788.0	1.919565	-0.301254	-3.249640	-0.557828	2.630515	3.031260	-0.296827	0.708417	0.432454	 0.232045	0.578229	-0.037501
284805	172788.0	-0.240440	0.530483	0.702510	0.689799	-0.377961	0.623708	-0.686180	0.679145	0.392087	 0.265245	0.800049	-0.163298
284806	172792.0	-0.533413	-0.189733	0.703337	-0.506271	-0.012546	-0.649617	1.577006	-0.414650	0.486180	 0.261057	0.643078	0.376777

284807 rows × 31 columns

In [5]: | data.head()

Out[5]:

1	Time	V1	V2	V 3	V4	V 5	V6	V7	V8	V 9	 V21	V22	V23	V24	
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.110474	0.066928	
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.101288	-0.339846	
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.909412	-0.689281	-
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.190321	-1.175575	
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.137458	0.141267	_

5 rows × 31 columns

•

DATA EXPLORATION

```
In [6]: ▶ data.shape
          Out[6]: (284807, 31)
In [7]: M data.describe()
          Out[7]:
                                                                                                                                                                                                                                                                                                                                                                         ۷7
                                                                                  Time
                                                                                                                              V1
                                                                                                                                                                      V2
                                                                                                                                                                                                             V3
                                                                                                                                                                                                                                                    V4
                                                                                                                                                                                                                                                                                           V5
                                                                                                                                                                                                                                                                                                                                  V6
                                                                                                                                                                                                                                                                                                                                                                                                                 V8
                                         count 284807.000000 2.848070e+05 2.848070e+05 2.848070e+05
                                                                                                                                                                                                                       2.848070e-
                                         mean 94813.859575 3.919560e-15 5.688174e-16 -8.769071e-15 2.782312e-15 -1.552563e-15 2.010663e-15 -1.694249e-15 -1.927028e-16 -3.137024e
                                         std 47488.145955 1.958696e+00 1.651309e+00 1.516255e+00 1.415869e+00 1.380247e+00 1.332271e+00 1.237094e+00 1.194353e+00
                                             min
                                                                        0.000000 -5.640751e+01 -7.271573e+01 -4.832559e+01 -5.683171e+00 -1.137433e+02 -2.616051e+01 -4.355724e+01 -7.321672e+01 -1.343407e
                                           25% 54201.500000 -9.203734e-01 -5.985499e-01 -8.903648e-01 -8.486401e-01 -6.915971e-01 -7.682956e-01 -5.540759e-01 -2.086297e-01 -6.430976e
                                           50% 84692.000000 1.810880e-02 6.548556e-02 1.798463e-01 -1.984653e-02 -5.433583e-02 -2.741871e-01 4.010308e-02 2.235804e-02 -5.142873e
                                           75\% \quad 139320.500000 \quad 1.315642e + 00 \quad 8.037239e - 01 \quad 1.027196e + 00 \quad 7.433413e - 01 \quad 6.119264e - 01 \quad 3.985649e - 01 \quad 5.704361e - 01 \quad 3.273459e - 01 \quad 5.971390e - 01 \quad 5.704361e - 01 \quad 3.273459e - 01 \quad 5.70461e - 01 \quad 5.70
                                           max 172792 000000 2 454930e+00 2 205773e+01 9 382558e+00 1 687534e+01 3 480167e+01 7 330163e+01 1 205895e+02 2 000721e+01 1 559499e
                                      8 rows × 31 columns
```

```
In [8]: ▶ #printing the columns
             print('Columns Name:',list(data))
             print('Total Number of Columns: ',len(list(data)))
             Columns Name: ['Time', 'V1', 'V2', 'V3', 'V4', 'V5', 'V6', 'V7', 'V8', 'V9', 'V10', 'V11', 'V12', 'V13', 'V14', 'V15', 'V16', 'V17', 'V18', 'V19', 'V20', 'V21', 'V22', 'V23', 'V24', 'V25', 'V26', 'V27', 'V28', 'Amount', 'Class']
             Total Number of Columns: 31
 In [9]: ▶ #counting the number of genuine and fradulent Transactions
             n_genuine=data[data['Class']==0]
             n_fraud=data[data['Class']==1]
             #displaying the number of genuine and fraudulent Transcations
             print(' Genuine Transactions: ',len(n_genuine))
             print(' Fradulent Transactions: ',len(n_fraud))
              Genuine Transactions: 284315
              Fradulent Transactions: 492
print(outlierfraction)
             0.0017304750013189597
```

```
In [11]: | #plotting the pie plot of genuine and fraudulent transactions
    plt.pie([len(n_genuine),len(n_fraud)],labels=['Genuine','fraud'],radius=1)
    plt.show()
```



```
In [12]:  n_fraud.Amount.describe()
   Out[12]: count
                      492.000000
                      122.211321
            mean
                      256.683288
            std
                        0.000000
            min
            25%
                        1.000000
            50%
                        9.250000
            75%
                      105.890000
                     2125.870000
            max
            Name: Amount, dtype: float64
In [13]:  n_genuine.Amount.describe()
   Out[13]: count
                     284315.000000
            mean
                         88.291022
                        250.105092
            std
                          0.000000
            min
            25%
                          5.650000
            50%
                         22.000000
            75%
                         77.050000
            max
                      25691.160000
            Name: Amount, dtype: float64
```

SEPERATING DATA INTO X AND Y

```
In [14]: ▶
                                                                                 #here we put training data in x variable and target value in y variable
                                                                               x,y=data.iloc[:,:-1],data.iloc[:,-1]
  In [15]: N x.head()
                      Out[15]:
                                                                                                  Time
                                                                                                                                                              V1
                                                                                                                                                                                                                                                                V3
                                                                                                                                                                                                                                                                                                                   ۷4
                                                                                                                                                                                                                                                                                                                                                                     V5
                                                                                                                                                                                                                                                                                                                                                                                                                        V6
                                                                                                                                                                                                                                                                                                                                                                                                                                                                           ۷7
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             ٧8
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 V9 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  V21
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   V22
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        V23
                                                                                  0 \quad 0.0 \quad -1.359807 \quad -0.072781 \quad 2.536347 \quad 1.378155 \quad -0.338321 \quad 0.462388 \quad 0.239599 \quad 0.098698 \quad 0.363787
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       0.251412 -0.018307
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.277838 -0.110474
                                                                                    1 \\ 0.0 \\ 1.191857 \\ 0.266151 \\ 0.166480 \\ 0.448154 \\ 0.060018 \\ -0.082361 \\ -0.078803 \\ 0.085102 \\ -0.255425 \\ \dots \\ -0.069083 \\ -0.225775 \\ -0.638672 \\ 0.101288 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803 \\ -0.078803
                                                                                  2 1.0 -1.358354 -1.340163 1.773209 0.379780 -0.503198 1.800499 0.791461 0.247676 -1.514654 ...
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      0.524980 0.247998
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.771679 0.909412 -
                                                                                    3 \\ 1.0 \\ -0.966272 \\ -0.185226 \\ 1.792993 \\ -0.863291 \\ -0.010309 \\ 1.247203 \\ 0.237609 \\ 0.377436 \\ -1.387024 \\ \dots \\ -0.208038 \\ -0.108300 \\ 0.208038 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.108300 \\ -0.1083
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           0.005274 -0.190321 -
                                                                                    4 2.0 -1.158233 0.877737 1.548718 0.403034 -0.407193 0.095921 0.592941 -0.270533 0.817739
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         0.408542 -0.009431 0.798278 -0.137458
                                                                               5 rows x 30 columns
In [16]: Ŋ y.head()
                    Out[16]: 0
                                                                                                       0
                                                                           1
                                                                                                       0
                                                                           2
                                                                                                       0
                                                                           3
                                                                                                       0
                                                                           Name: Class, dtype: int64
```

SPLITTING OF DATA INTO TRAINING AND TESTING DATA

Building a Random Forest Classifier

EVALUATING THE MODEL

```
In [19]: M lables=['Valid','Fraud']
    conf_matrix=confusion_matrix(y_test,y_pred)

sns.heatmap(conf_matrix,xticklabels=lables,yticklabels=lables,annot=True,fmt='d')
    plt.title("Confusion Matrix")
    plt.ylabel("True class")
    plt.xlabel("Predicted class")
    plt.xlabel("Predicted class")
```



```
In [20]: M
from sklearn.metrics import classification_report,accuracy_score,precision_score,recall_score,f1_score
print("The model used is random Forest classifier")
acc=accuracy_score(y_test,y_pred)
print("The accuracy Score is {}".format(acc))
prec=precision_score(y_test,y_pred)
print("The precision Score is {}".format(prec))
rec=recall_score(y_test,y_pred)
print("The recall Score is {}".format(rec))
f1=f1_score(y_test,y_pred)
print("The f1 Score is {}".format(f1))
```

The model used is random Forest classifier
The accuracy Score is 0.9995084407741356
The precision Score is 0.9239130434782609
The recall Score is 0.7522123893805309
The f1 Score is 0.8292682926829267

LOGISTIC REGRESSION

```
In [23]: | lables=['Valid', 'Fraud'] conf_matrix=confusion_matrix(y_test,pred)

sns.heatmap(conf_matrix,xticklabels=lables,yticklabels=lables,annot=True,fmt='d')
plt.title("Confusion Matrix")
plt.ylabel("True class")
plt.xlabel("Predicted class")
plt.show()

71066 Confusion Matrix

71066 -60000
```



```
In [24]: M from sklearn.metrics import classification_report,accuracy_score,precision_score,recall_score,f1_score
    print("The model used is logistic regression classifier")
    acc=accuracy_score(y_test,pred)
    print("The accuracy Score is {}".format(acc))
    prec=precision_score(y_test,pred)
    print("The precision Score is {}".format(prec))
    rec=recall_score(y_test,pred)
    print("The recall Score is {}".format(rec))
    f1=f1_score(y_test,pred)
    print("The f1 Score is {}".format(f1))
```

The model used is logistic regression classifier
The accuracy Score is 0.9989607033510295
The precision Score is 0.7294117647058823
The recall Score is 0.5486725663716814
The f1 Score is 0.6262626262626262

LINEAR SVM


```
In [30]: M
    from sklearn.metrics import classification_report,accuracy_score,precision_score,recall_score,f1_score
    print("The model used is LinearSVC")
    acc=accuracy_score(y_test,y_predi)
    print("The accuracy Score is {}".format(acc))
    prec=precision_score(y_test,y_predi)
    print("The precision Score is {}".format(prec))
    rec=recall_score(y_test,y_predi)
    print("The recall Score is {}".format(rec))
    f1=f1_score(y_test,y_predi)
    print("The f1 Score is {}".format(f1))
```

The model used is LinearSVC
The accuracy Score is 0.9985112777730962
The precision Score is 0.64
The recall Score is 0.1415929203539823
The f1 Score is 0.2318840579710145

```
In [31]: M Algorithms=['RandomForest','Logisticregression','LinearSVM']
    Accuracy=[0.995,0.9987,0.9984]
    Precision=[0.946,0.611,0.6190]
    recall=[0.786,0.584,0.1150]
    final=pd.DataFrame({'Accuracy':Accuracy,'Algorithm':Algorithms,'Precision':Precision,'recall':recall})
    final
```

Out[31]:

		Accuracy	Algorithm	Precision	recall		
	0	0.9950	RandomForest	0.946	0.786		
	1	0.9987	Logisticregression	0.611	0.584		
	2	0.9984	LinearSVM	0.619	0.115		

```
In [32]: M sns.lineplot(x='Algorithm',y='Accuracy',data=final,palette='hot',label='Accuracy')
sns.lineplot(x='Algorithm',y='Precision',data=final,palette='hot',label='Precision')
sns.lineplot(x='Algorithm',y='recall',data=final,palette='hot',label='recall')
```

Out[32]: <matplotlib.axes._subplots.AxesSubplot at 0x17f2924c8c8>

