Introduction to Data Science 5

Overview

Optimisation of parameters in J48

Comparing (variants) of classifiers

Evaluation with the t-test

WEKA's Experimenter

000	weka.gui.GenericObjectEditor	O O O Information
Weka.classifiers.trees.J48 About Class for generating a pruned or unpruned C4. More		NAME weka.classifiers.trees.J48 SYNOPSIS Class for generating a pruned or unpruned C4.5 decision tree. For more information, see
	Capabilities	Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA.
binarySplits	False \$	OPTIONS
collapseTree	True \$	debug If set to true, classifier may output additional info to the console.
		minNumObj The minimum number of instances per leaf.
confidenceFactor	0.25	confidenceFactor The confidence factor used for pruning (smaller values incur more
debug	False 🗘	pruning).
minNumObj	2	binarySplits Whether to use binary splits on nominal attributes when building the trees.
Milivumosj		seed The seed used for randomizing the data when reduced-error pruning is used.
numFolds	3	numFolds Determines the amount of data used for reduced-error pruning. One fold is used
reducedErrorPruning	False \$	for pruning, the rest for growing the tree.
savelnstanceData	False \$	saveInstanceData Whether to save the training data for visualization.
SaveinstanceData	Faise	unpruned Whether pruning is performed.
seed	1	subtreeRaising Whether to consider the subtree raising operation when pruning.
subtreeRaising	True 🗘	collapseTree Whether parts are removed that do not reduce training error.
unpruned	False	useMDLcorrection Whether MDL correction is used when finding splits on numeric attributes.
unpruneu		
useLaplace	False \$	useLaplace Whether counts at leaves are smoothed based on Laplace.
useMDLcorrection	True	reducedErrorPruning Whether reduced-error pruning is used instead of C.4.5 pruning.
Open	Save OK Cancel	

Pruning

Pruning

Pruning reduces the complexity of the decision tree

complex tree (unpruned)

Less complex tree (pruned)

Model complexity

A pruned decision tree is less complex, than an unpruned one

Less complex models tend to generalise better (= perform better on unseen data), provided that they are sufficiently complex to capture the structure of the data

kNN versus decision tree

In the kNN classifier, the k parameter tunes the complexity

In the decision tree classifier, pruning tunes the complexity

Increasing k or pruning: less complexity Decreasing k or pruning: more complexity

Comparing (variants) of classifiers

Parameter optimisation (example, see also p.149 WEKA book)

Model selection / parameter optimisation

Significant differences?

Validation performance is an average score

In case of 10-fold cross validation, it is an average of the scores over 10 folds

So, each validation performance has a standard deviation associated with it

To decide if two scores (averages) differ, you need to perform a statistical test

t-test and p-value

p=0.05 means: in 1 of 20 experiments you wrongly declare a difference to be significant

p=pvalue means: in 1 of 1/pvalue experiments you wrongly declare a difference to be significant

WEKA Experimenter

In total 100 runs (10 x 10cv experiments) will be performed

Required Reading

Bouckaert, R.R. & Frank, E. (2004). Evaluating the Replicability of Significance Tests for Comparing Learning Algorithms. In H. Dai, R. Srikant, & C. Zhang (Eds.), Advances in Knowledge Discovery and Data Mining, Volume 3056 of the series Lecture Notes in Computer Science pp 3–12. Springer.

http://www.cs.waikato.ac.nz/~eibe/pubs/bouckaert_and_frank.pdf