University of Toronto Scarborough Department of Computer & Mathematical Sciences

STAB52H3 Introduction to Probability

Term Test 1 October 17, 2020

Duration: 60 minutes

Examination aids allowed: Open notes/books, scientific calculator.

Question:	1	2	3	4	5	Total
Points:	20	20	20	20	20	100
Score:						

- 1. (20 points) Consider a probability space and three (jointly) independent events A, B, C with probabilities $\mathbb{P}(A) = 1/2$, $\mathbb{P}(B) = 1/3$, $\mathbb{P}(C) = 1/4$. Find the value of $\mathbb{P}((A \cup B) \cap C)$.
- 2. (20 points) Consider $n \geq 3$ persons, among them are Tom and Ben, who are arranged randomly in a row (say from left to right). What is the probability that Tom and Ben are NOT next to each other?
- 3. (20 points) Consider a medical condition C and two associated symptoms S_1 and S_2 . The prevalence of this condition in the population is 10%, and any person with the condition can show none, one, or both symptoms, with probabilities: $\mathbb{P}(S_1|C) = 30\%$, $\mathbb{P}(S_2|C) = 70\%$, $\mathbb{P}(S_1 \cap S_2|C) = 20\%$. The symptoms can also appear in individuals without the condition with equal probability $P(S_1|C^c) = P(S_2|C^c) = 5\%$, and in this case the symptoms are conditionally independent, i.e. $P(S_1 \cap S_2|C^c) = P(S_1|C^c) \times P(S_2|C^c)$. Find the conditional probability $\mathbb{P}(C|S_1 \cap S_2^c)$, i.e. the probability of having the condition if you only show symptom S_1 , but not S_2 .
- 4. (20 points) Consider the experiment of independently flipping a fair coin 4 times. Define the RV X to be the length of the *longest streak of Heads*, i.e. the maximum number of Heads appearing in a row. If there are no Heads in the outcome, then set the value of X equal to 0. Find the probability mass function (PMF) of X.
- 5. Suppose $X \sim \text{Binomial}(n, p)$.
 - (a) (13 points) Show that for k < n, we have the identity

$$\frac{\mathbb{P}(X=k+1)}{\mathbb{P}(X=k)} = \frac{n-k}{k+1} \frac{p}{1-p}.$$

(b) (7 points) Show that as long as k > (n+1)p-1 we have

$$\mathbb{P}(X=k) > \mathbb{P}(X=k+1).$$

(Remark: This method can be used to show that the probability $\mathbb{P}(X = k)$ is maximized when k is near np.)

Page 2 of 2 Total marks: 100