ИДЗ №3

Криволинейные интегралы. Тройные интегралы.

Задача 1. Вычислить криволинейные интегралы.

- 1.1. а) Вычислить $\int\limits_{AB} \frac{e^{3y}}{\sqrt{1+e^{2y}}} \, ds$, где AB дуга кривой $x=1+e^y$, заключенная между точками A(2;0) и $B(3;\ln 2)$,
- b) Вычислить $\int\limits_{L} \left(x + \frac{y}{4}\right)^{-3} dx + \sqrt{y} \ e^{-\left(x/4 + y/16\right)} dy \,, \quad \text{где} \quad L \text{ломаная} \quad \text{с} \quad \text{вершинами}$ A(-2;0), B(-4;0), C(-8;16).
- 1.2. а) Вычислить $\int_{AB} \left(4x^4y + 2x^2y^3 + 3y^5\right) ds$, где AB полуокружность $y = \sqrt{2x x^2}$.
- b) Вычислить $\int\limits_{L}^{AB} (x+5y) \, dx + (-x+4y) \, dy \,, \qquad \text{где} \qquad L \text{четверть} \qquad \text{окружности}$ $\begin{cases} x = 4 \cos t \\ y = 4 \sin t \end{cases} \left(0 \le t \le \frac{\pi}{2} \right).$
- 1.3. а) Вычислить $\int\limits_{AB} \frac{6xy^4-4xy^3}{\sqrt{1+4x^2y^4}} \, ds$, где AB дуга кривой $y=\frac{4}{4x^2+1}$, заключенная между точками $A(0\,;4)$ и $B\left(\frac{1}{2}\,;\,2\right)$,
- b) Вычислить $\int_{L}^{\sqrt{x}-\frac{y}{3}} dx + y e^{(x/3-y/9)} dy$, где L ломаная с вершинами A(4;0), B(3;0), C(6;9).
- 1.4. а) Вычислить $\int\limits_{AB} \frac{\left(x^2+1\right)}{\left(y^2+1\right)\sqrt{10+9xy-9x^2}}\,ds$, где AB дуга кубической параболы $y=x^3+3x$, заключенная между точками $A(0\,;0)$ и $B(1\,;4)$,
- b) Вычислить $\int_{L} (3x^2 + y^2) dx + (xy 5) dy$, где L дуга параболы $y = 3x x^2$, расположенная выше оси OX и пробегаемая по часовой стрелке.
- 1.5. а) Вычислить $\int\limits_{AB} \frac{y}{\sqrt{(1+x)^4+4}} \, ds$, где AB дуга гиперболы $y=2+\frac{2}{x+1}$, заключенная между точками A(-3;1) и B(-2;0),
- b) Вычислить $\int_{L} (x^2 + y^2) dx + (xy + 6) dy$, где L дуга параболы $y = -3x x^2$, расположенная выше оси OX и пробегаемая по часовой стрелке.

- а) Вычислить $\int\limits_{AB} \frac{y^2 \sin \left(\frac{\pi}{4} + 3x\right)}{\sqrt{10 9y^2}} \, ds \; , \; \text{где } AB \; \text{- дуга кривой } y = \sin \left(\frac{\pi}{4} + 3x\right), \; \text{заключенная}$ между точками $A\left(-\frac{\pi}{12};1\right)$ и $B\left(\frac{\pi}{6};-1\right),$
- b) Вычислить $\int_{L} (-4x^2 + y^2) dx + (xy + 3) dy$, где L дуга кривой $y = -2x x^2$, расположенная выше оси OX и пробегаемая по часовой стрелке.
- 1.7. а) Вычислить $\int\limits_{AB} \frac{y^2-3y+5}{\sqrt{1+e^{2y}}}\,ds$, где AB дуга кривой $x=2+e^y$, заключенная между точками $A(3\,;0)$ и $B(e^2+2\,;2)$,
- b) Вычислить $\int\limits_{L} \frac{x \ dx y \ dy}{x^2 + y^2}$, где L пробегаемая против часовой стрелки часть окружности $\begin{cases} x = 2\cos t \\ y = 2\sin t \end{cases} \left(\pi \le t \le \frac{3\pi}{2}\right).$
- 1.8. а) Вычислить $\int\limits_{AB} \frac{2xy}{\sqrt{5-4y}} \, ds$, где AB дуга параболы $y=1-x^2$, заключенная между точками A(1;0) и B(3;-8),
- b) Вычислить $\int_{L} (x^2 y^2) dx + xy dy$, где L отрезок прямой от точки A(1;1) до B(3;4).
- 1.9. а) Вычислить $\int\limits_{AB} \frac{y}{\sqrt{(2+x)^4+1}} \, ds$, где AB дуга гиперболы $y=1+\frac{1}{x+2}$, заключенная между точками A(-3;0) и $B\left(-\frac{5}{2};-1\right)$,
- b) Вычислить $\int_{L} (16x-4y) dx + (y-4x) dy$, где L четверть окружности $\begin{cases} x=\cos t \\ y=\sin t \end{cases} \left(0 \le t \le \frac{\pi}{2}\right)$, пробегаемая против часовой стрелки.
- 1.10. а) Вычислить $\int\limits_{AB} \frac{arctg\ x}{y}\ ds$, где AB дуга кривой $y=\frac{1}{4}\Big(e^{2x}+e^{-2x}\Big)$, заключенная между точками A и B с абсциссами 0 и 1 соответственно,
- b) Вычислить $\int_{L} (2x+y)dx + (2y-3)dy$, где L-ломаная с вершинами $A\left(\frac{1}{3};0\right)$, $B\left(\frac{1}{3};1\right)$, $C\left(\frac{2}{3};3\right)$.
- 1.11. а) Вычислить $\int_{AB} (x^3y 3xy^3) ds$, где AB полуокружность $y = \sqrt{4x x^2}$,
- b) Вычислить $\int\limits_{L} \left(x^2-2xy\right) dx + \left(-2xy+y^2\right) dy$, где L-дуга параболы $y=x^2$ $\left(-1 \le x \le 1\right)$, пробегаемая в направлении возрастания x.

- 1.12. а) Вычислить $\int\limits_{AB} \frac{y^2 \cos \left(4x \frac{2\pi}{3}\right)}{\sqrt{17 16y^2}} \, ds \; , \quad \text{где} \quad AB \; \; \text{дуга} \quad \text{кривой} \quad y = \sin \left(4x \frac{2\pi}{3}\right),$ заключенная между точками $A\left(\frac{\pi}{6}\,;\,0\right)$ и $B\left(\frac{5\pi}{24}\,;\,1\right),$
- b) Вычислить $\int_{L} x e^{y} dx + xy dy$, где L дуга параболы $y = x^{2}$ от точки A(1;1) до B(2;4).
- 1.13. а) Вычислить $\int\limits_{AB} (x+2)\sqrt{4y+5}\ ds$, по дуге параболы $y=x^2+4x+3$, заключенная между точками A(-1;0) и B(1;8),
- b) Вычислить $\int_{L} \frac{(x+y-1)dx+(x-y)dy}{(x+y)^2}$, где L отрезок прямой от точки A(0;2) до B(1;3).
- 1.14. а) Вычислить $\int_{AB} \frac{2xy}{\sqrt{17-4y}} \, ds$, где AB дуга параболы $y=4-x^2$, заключенная между точками A(3;-5) и B(5;-21),
- b) Вычислить $\int_{L} e^{x+y} dx + y dy$, где L ломаная с вершинами O(0;0), A(4;0), B(0;2).
- 1.15. а) Вычислить $\int\limits_{AB} \frac{2xy^2}{\sqrt{1+4x^2y^4}} \, ds$, где AB дуга кривой $y=\frac{1}{1+x^2}$, заключенная между точками $A(0\,;1)$ и $B\left(1\,;\frac{1}{2}\right)$,
- b) Вычислить $\int_{L} (2x+y) dx + \left(2y-\frac{3}{5}\right) dy$, здесь L ломаная ABC, причем A(2;0), B(2;3), C(4;5).
- 1.16. а) Вычислить $\int\limits_{AB} \sqrt{256x^2 + 81y^2} \ ds$, где AB дуга эллипса $\frac{x^2}{9} + \frac{y^2}{16} = 1$, расположенная в первом квадранте,
- b) Вычислить $\int\limits_{L} (x-y) \, dx + (y-x) \, dy$, где L- пробегаемая против часовой стрелки четверть окружности $\begin{cases} x = 3\cos t \\ y = 3\sin t \end{cases} \left(0 \le t \le \frac{\pi}{2} \right).$
- 1.17. а) Вычислить $\int\limits_{AB} \frac{y}{\sqrt{1+\left(x+1\right)^4}} \, ds$, где AB дуга кривой $x+1=\frac{1}{y-2}$, заключенная между точками $A\left(-2;1\right)$ и $B\left(-\frac{3}{2};0\right)$,
- b) Вычислить $\int_L x \ln y \, dx + \frac{x^2}{2y} dy$, где L отрезок прямой от точки $A(1\,;e)$ до $B(\,2\,;2e)$.

- 1.18. а) Вычислить $\int\limits_{AB} \frac{xy^3}{\sqrt{16x^2+64y^2}}\,ds$, где AB дуга гиперболы $\frac{x^2}{8}-\frac{y^2}{4}=1$, заключенная между точками $A\left(2\sqrt{2}\;;0\right)$ и $B\left(\frac{5\sqrt{2}}{2}\;;\frac{3}{2}\right)$,
- b) Вычислить $\int\limits_{L} (9x+y)\,dx-x\,dy$, здесь L- пробегаемая против часовой стрелки часть окружности $\begin{cases} x=2\cos t \\ y=2\sin t \end{cases} \left(0 \le t \le \frac{\pi}{2}\right).$
- 1.19. а) Вычислить $\int\limits_{AB} 2x\,\sqrt{4\,y+17}\,\,ds$, по дуге параболы $y=x^2-4$, заключенной между точками $A(0\,;-4)$ и $B(2\,;0)$,
- b) Вычислить $\int\limits_{L} \left(10-y\right) dx + x \ dy$, где L арка циклоиды $\begin{cases} x=5 \left(t-\sin t\right) \\ y=5 \left(1-\cos t\right) \end{cases} \left(0 \le t \le 2\pi\right)$.
- 1.20. a) Вычислить $\int_{AB} (3x^2 2x)y \, ds$ по полуокружности $y = \sqrt{2x x^2}$,
- b) Вычислить $\int_L \frac{(x+y+2)\,dx-(2x+y)\,dy}{(x+y)^2}$, где L-отрезок прямой от точки A(-1;-2) до B(0;-4).
- 1.21. а) Вычислить $\int_{AB} (x+1)\sqrt{4y-3} \ ds$, по дуге параболы $y=x^2+2x+2$, заключенной между точками A(1;5) и B(3;17),
- b) Вычислить $\int\limits_{L} (x+2y) dx + (x+y) dy$, здесь L- пробегаемый против часовой стрелки полуэллипс $\begin{cases} x=2\cos t \\ y=3\sin t \end{cases} (0 \le t \le \pi).$
- 1.22. а) Вычислить $\int\limits_{AB} \frac{y^2 \cos \left(2x + \frac{\pi}{3}\right)}{\sqrt{5 4y^2}} \, ds \; , \quad \text{где} \quad AB \text{-} \quad \text{дуга} \quad \text{синусоиды} \quad y = \sin \left(2x + \frac{\pi}{3}\right),$ заключенная между точками $A \left(\frac{\pi}{6} \; ; \frac{\sqrt{3}}{2}\right)$ и $B \left(\frac{\pi}{12} \; ; 1\right),$
- b) Вычислить $\int_L \left(x+\frac{y}{2}\right)^{-2} dx + y \ e^{-\left(x/2+y/4\right)} dy$, где L-ломаная с вершинами $A(-1\,;\,0)\,,\,B(-2\,;\,0)\,,\,C(-4\,;\,4)\,.$
- 1.23. а) Вычислить $\int\limits_{AB} \frac{(x+1)\ln(x+1)}{3y}\,ds$, где AB дуга кривой $y=\frac{1}{6}\Big(e^{3x}+e^{-3x}\Big)$, заключенная между точками A и B с абсциссами 0 и 1 соответственно,
- b) Вычислить $\int_{L} 2xy \ dx x^2 \ dy$, здесь L дуга параболы $x = 2y^2$ от точки A(0;0) до B(2;1).

- 1.24. а) Вычислить $\int\limits_{AB} \sqrt{9x^2 + y^2} \ ds$, по дуге эллипса $x^2 + \frac{y^2}{3} = 1$, расположенной в первом квадранте,
- b) Вычислить $\int\limits_{L} (x-y)^2\,dx + (x+y)^2\,dy$, где L ломаная с вершинами $O(0\,;0)$, $A(2;0), B(4\,;2)$.
- 1.25. а) Вычислить $\int\limits_{AB} \frac{xy\left(1-8y^2\right)}{\sqrt{x^2+y^2}}ds$, где AB дуга гиперболы $\frac{x^2}{4}-\frac{y^2}{4}=1$, заключенная между точками $A(2\,;0)$ и $B\!\left(\frac{5}{2}\,;\frac{3}{2}\right)$,
- b) Вычислить $\int\limits_{L} x^2 y \ dx xy^2 \ dy$, здесь L- пробегаемая против часовой стрелки окружность $\begin{cases} x = 3\cos t \\ y = 3\sin t \end{cases} \ \left(0 \le t \le 2\pi\right).$
- 1.26. а) Вычислить $\int\limits_{AB} \frac{arctg\ x}{y}\ ds$, где AB дуга кривой $y=\frac{1}{4}\Big(e^{2x}+e^{-2x}\Big)$, заключенная между точками A и B с абсциссами 0 и 1 соответственно,
- b) Вычислить $\int_{L} (2x+y)dx + (2y-3)dy$, где L-ломаная с вершинами $A\left(\frac{1}{3};0\right)$, $B\left(\frac{1}{3};1\right)$, $C\left(\frac{2}{3};3\right)$.

Задача 2.

Вычислить с помощью формулы Грина криволинейный интеграл. Область интегрирования ограничена контуром L, пробегаемым в положительном направлении.

2.1. a)
$$\int_{L} \left(\frac{1}{y} \cos \frac{x}{y} + xy^2 + e^y \right) dx + \left(x^2 y - \frac{x}{y^2} \cos \frac{x}{y} \right) dy , \quad L - \text{ треугольник } c \text{ вершинами } A(3;3), B(3;1), C(6;2),$$
 b)
$$\int_{L} \left(y \, 3^{xy} - 4y \right) dx + \left(x \, 3^{xy} + 2x \, \right) dy , \quad L - \text{ окружность } x^2 + y^2 = x .$$

2.2. а)
$$\int_{L} \left(x^2y + xe^{\left(x^2 - y^2\right)}\right) dx + \left(e^y + x - ye^{\left(x^2 - y^2\right)}\right) dy$$
, L – контур, образованный кривыми $y = -2x^2$, $x = y^2$,

b)
$$\int_{L} \left(x^2 y - \frac{y}{x^2} tg \frac{y}{5x} \right) dx + \left(\frac{1}{x} tg \frac{y}{5x} - xy^2 \right) dy$$
, L – окружность $x^2 + y^2 = 2y$.

2.3.
$$\int\limits_{L} \left(\frac{8x}{y} + y \arcsin \left(\frac{xy}{50} \right) \right) dx + \left(x \arcsin \left(\frac{xy}{50} \right) - e^{x^2 + y} \right) dy \,, \quad L - \text{прямоугольник c вершинами}$$
 $A(0\,;\,2),\,B(0\,;\!4),\,C(2\,;\,4),\,D(2\,,\,2),$

b)
$$\int_{L} \left(x^2 y + 3 - x \sqrt{x^2 - y^2} \right) dx + \left(y + y \sqrt{x^2 - y^2} \right) dy$$
, L – окружность $x^2 + y^2 = 5$.

2.4.
$$\int_{L} \frac{y^2 e^{xy} + 6x}{y} dx + \left(x e^{xy} + e^{\left(x^2 + y\right)}\right) dy$$
, L – прямоугольник с вершинами

$$A(0;1), B(0;3), C(-1;3), D(-1,1),$$

b)
$$\int_{L} \left(y - x e^{(x^2 + y^2)} \right) dx + \left(3x - y e^{(x^2 + y^2)} \right) dy$$
, L – окружность $x^2 + y^2 = 9y$.

2.5. a)
$$\int_{L} \left(\frac{y}{x^2 y^2 + 7} + \frac{3x}{y} \right) dx + \left(e^{x^2 + y} + \frac{x}{x^2 y^2 + 7} \right) dy$$
, L – прямоугольник с вершинами

$$A(0;1), B(0;3), C(\sqrt{2};3), D(\sqrt{2},1),$$

b)
$$\int_{L} (xy + x\cos(x^2 + y^2)) dx + (y\cos(x^2 + y^2) + x^2y) dy$$
, $L - \text{окружность } x^2 + y^2 = 16$.

2.6. a)
$$\int_{L} \left(2x+2y+x\sqrt{9-x^2+y^2}\right) dx + \left(xy-y\sqrt{9-x^2+y^2}\right) dy$$
, L – окружность $x^2+y^2=9$.

b)
$$\int_{L} (3^{\sin x} - xy^2) dx + (x^2y + e^{y^3}) dy$$
, L – треугольник с вершинами $A(1;0)$, $B(4;0)$, $C(4;3)$.

2.7. a)
$$\int_{L} \left(x^2 + x\sqrt{3 + x^2 + y^2}\right) dx + \left(y\sqrt{3 + x^2 + y^2} + x + e^y\right) dy$$
, L – контур, образованный

кривыми
$$y = -x^2$$
, $x = y^2$,

b)
$$\int_{L} \left(xy + x e^{(x^2 + y^2 + 3)} \right) dx + \left(y^2 + y e^{(x^2 + y^2 + 3)} \right) dy$$
, L – окружность $x^2 + y^2 = 3y$.

2.8. a)
$$\int_{L} \left(\frac{2xy}{x^2y+3} + x^2y \right) dx + \left(\frac{x^2}{x^2y+3} + x \right) dy, \quad L - \text{ контур, образованный кривыми}$$
$$y = 2x^2 \quad x = y^2.$$

b)
$$\int_{L} \left(-x^2y + x\sqrt{5 - x^2 - y^2}\right) dx + \left(y\sqrt{5 - x^2 - y^2} + xy^2\right) dy$$
, L – окружность $x^2 + y^2 = 4y$.

2.9. a)
$$\int_{L} \frac{6y + 4x \ln x - 2x \ln y}{y} dx + \frac{xy^2 + x^2 \ln y - 2x^2 \ln x}{y^2} dy$$
, L – треугольник с вершинами $A(4;3), B(5;5), C(6;4)$,

b)
$$\int_{L} \left(-x^2y + x\sqrt{4 + x^2 + y^2}\right) dx + \left(y\sqrt{4 + x^2 + y^2} + xy^2\right) dy$$
, L – окружность $x^2 + y^2 = 8y$.

2.10. a)
$$\int_L \left(\frac{12x}{y} + x e^{\left(x^2 + y^2\right)}\right) dx + \left(e^{x^2} + y e^{\left(x^2 + y^2\right)}\right) dy$$
, L – прямоугольник с вершинами $A(0;6)$, $B(0;8)$, $C(1;8)$, $D(1,6)$,

b)
$$\int\limits_{L} \left(x^2 y + \sqrt{\frac{y}{x}} \right) dx + \left(\sqrt{\frac{x}{y}} + xy^2 \right) dy , \quad L - \text{окружность } x^2 + y^2 = 6 .$$

2.11. а)
$$\int_L \left(x^2 + 7y + x\sqrt{x^2 - y^2}\right) dx + \left(e^{y^2} + x - y\sqrt{x^2 - y^2}\right) dy$$
, L – треугольник с вершинами $A(8;1), B(9;3), C(10;2)$,

b)
$$\int_{L} \left(x^2 3^{(x^3+y^3)} - 4y\right) dx + \left(y^2 3^{(x^3+y^3)} + e^y + 2x\right) dy$$
, L – окружность $x^2 + y^2 = 10y$.

2.12. a)
$$\int_{L} \left(xy e^{x^2 y} + xy^2 \right) dx + \left(\frac{x^2}{2} e^{x^2 y} + e^y \right) dy$$
, $L - \text{окружность } x^2 + y^2 + 5x = 0$,

b)
$$\int\limits_{L} \left(\frac{1}{x} \ln \frac{x}{y} + e^y + x \right) dx + \left(3x - \frac{1}{y} \ln \frac{x}{y} \right) dy , \qquad L - \text{треугольник c вершинами}$$
 $A(1;2), B(4;2), C(3;5).$

2.13. a)
$$\int_{L} \left(x^3 + x \sqrt{4 + x^2 + y^2} + y \right) dx + \left(y \sqrt{4 + x^2 + y^2} + 5xy \right) dy$$
, L – окружность $x^2 + y^2 = 6$,

b)
$$\int_{L} (x \operatorname{arctg}(x^2 + y^2) - 3xy) dx + (y \operatorname{arctg}(x^2 + y^2) + e^x) dy$$
, $L - \text{прямоугольник с вершинами}$ $A(2;0), B(6;0), C(6;4), D(2,4)$.

2.14. a)
$$\int_{L} \left(\frac{4x}{y} \ln x - \frac{2x}{y} \ln y + e^y \right) dx + \left(\frac{x^2}{y^2} \ln y - \frac{2x^2}{y^2} \ln x \right) dy$$
, L – треугольник с вершинами $A(4;1), B(4;5), C(8;3)$,

b)
$$\int\limits_{L} \left(x^2 + x \sqrt{9 - x^2 + y^2} - y^2 \right) dx + \left(xy - y\sqrt{9 - x^2 + y^2} + xy^2 \right) dy, \ L - \text{окружность } x^2 + y^2 = x.$$

2.15. a)
$$\int_L \left(\sqrt{\frac{y}{x}} \ln(xy) + e^y \right) dx + \left(\sqrt{\frac{x}{y}} \ln(xy) + \sin y \right) dy$$
, L – треугольник с вершинами $A(2;1), B(2;5), C(4;3)$,

b)
$$\int_L \left(x^2 y + \frac{x}{x^2 - y^2 + 8} \right) dx + \left(x - \frac{y}{x^2 - y^2 + 8} \right) dy , \qquad L - \text{ контур, образованный кривыми}$$

$$x^2 = -2y , x = y^2 ,$$

2.16. a)
$$\int_{L} \left(\frac{y^2}{2} \cos(xy^2) - 2x^2y \right) dx + \left(xy \cos(xy^2) + 2xy^2 \right) dy$$
, L – окружность $x^2 + y^2 = 6x$.

b)
$$\int_{L} \left(\sqrt{\frac{y}{x}} - y^2 \right) dx + \left(\sqrt{\frac{x}{y}} + \sin y \right) dy$$
, L – треугольник с вершинами $A(4;1), B(4;5), C(8;3)$.

2.17. а)
$$\int_L \left(x^2 e^{\left(x^3+y^3\right)}+x^2 y\right) dx + \left(y^2 e^{\left(x^3+y^3\right)}+x\right) dy$$
, L – контур, образованный кривыми $y=-8x^2$, $x=y^2$,

b)
$$\int_{L} \frac{4x \ln x - 4x \ln y + 6x}{y} dx + \left(e^{x^2} - \frac{x^2}{y^2} \ln \frac{x^2}{y^2}\right) dy, \qquad L - \text{прямоугольник с вершинами}$$
 $A(0;4), B(0;6), C(2;6), D(2,4).$

2.18. a)
$$\int_{L} (2xy \arcsin(x^2y+1) - x^2y) dx + (x^2 \arcsin(x^2y+1) + xy^2) dy$$
,

L – окружность $x^2 + y^2 = 4x$,

b)
$$\int_{L} \left(e^{y} - \frac{y}{x^{2}} tg \frac{y}{5x}\right) dx + \left(\frac{1}{x} tg \frac{y}{5x} + e^{y^{2}}\right) dy$$
, L – треугольник с вершинами $A(3;0)$, $B(3;2)$, $C(6;1)$.

2.19. a)
$$\int_{L} \frac{y+y^2(xy+2)}{xy+2} dx + \frac{x+8x(xy+2)}{(xy+2)} dy$$
, L – окружность $x^2+y^2=x$.

b)
$$\int_L \left(x \sqrt{3 + x^2 - y^2} + x e^y \right) dx + \left(xy - y \sqrt{3 + x^2 - y^2} + x y^2 \right) dy$$
, L – треугольник с вершинами $A(1;1)$, $B(1;5)$, $C(2;3)$.

2.20. а)
$$\int_L (x \sin(x^2 + y^2) + e^y) dx + (y^3 + y \sin(x^2 + y^2)) dy$$
, L – треугольник с вершинами $A(2;-2)$, $B(2;0)$, $C(4;1)$.

2.21. a)
$$\int_{L} \left(e^{x^2} + x\sqrt{5 + x^2 + y^2}\right) dx + \left(y\sqrt{5 + x^2 + y^2} + x\right) dy$$
, L – окружность $x^2 + y^2 = -4y$.

b)
$$\int\limits_{L} \left(\frac{2xy}{x^2y+7} + 4x^2y \right) dx + \left(\frac{x^2}{x^2y+7} + xy-7 \right) dy \,, \qquad L \quad - \quad \text{прямоугольник} \quad \text{с} \quad \text{вершинами}$$

$$A(1;1), B(5;1), C(5;4), D(1,4).$$

2.22. a)
$$\int_{L} \left(x \arccos \frac{x^2 + y^2}{20} + e^y \right) dx + \left(y \arccos \frac{x^2 + y^2}{20} + e^{2y} \right) dy$$
, L – треугольник с вершинами $A(-1;2)$, $B(-1;4)$, $C(-2;3)$,

b)
$$\int\limits_L \left(e^x-y^2+x\,2^{\left(x^2+y^2\right)}\right)dx+\left(e^{2y}+x+y\,2^{\left(x^2+y^2\right)}\right)dy\;,\;\;L-\;$$
контур, образованный кривыми
$$y=2x^2\;,\;y=4x\;.$$

2.23. a)
$$\int_{L} \left(2x + x\sqrt{4 - x^2 + y^2} + 2y\right) dx + \left(xy - y\sqrt{4 - x^2 + y^2}\right) dy$$
, L – окружность $x^2 + y^2 = 4$,

b)
$$\int\limits_{L} \!\! \left(xy\,e^{x^2y} - 2xy + y^3 \right) dx + \left(e^{2y} + \frac{x^2}{2}\,e^{x^2y} \right) dy \,, \qquad L - \text{ треугольник } \mathbf{c} \text{ вершинами}$$

$$A(1;2), B(4;3), C(1;5).$$

2.24. a)
$$\int_{L} \left(\frac{y^2}{2} \cos(xy^2) + \frac{x+3y}{2} \right) dx + \left(4xy + xy \cos(xy^2) \right) dy$$
, $L - \text{окружность } x^2 + y^2 = 3$,

b)
$$\int\limits_{L} \!\! \left(x\,\sqrt{x^2+y^2-4}-ye^x\right) dx + \left(y\sqrt{x^2+y^2-4}+2x\right) dy \,, \quad L - \text{прямоугольник c вершинами}$$
 $A(0\,;1),\,B(0\,;6),\,C(4\,;6),\,D(4\,,1).$

2.25. a)
$$\int_{L} \left(\frac{1}{y} \cos \frac{x}{y} + e^{y} + xy^{2} \right) dx + \left(x e^{y} + x^{3} - \frac{x}{y^{2}} \cos \frac{x}{y} \right) dy$$
, L – треугольник с вершинами $A(1;1), B(6;1), C(3;4)$,

b)
$$\int_{L} \left(x^2 y + \frac{x}{x^2 + y^2 + 4} \right) dx + \left(x + \frac{y}{x^2 + y^2 + 4} \right) dy , \qquad L - \text{ контур, образованный кривыми}$$
$$y^2 = x , y = x^3 ,$$

2.26. a)
$$\int_{L} \left(\frac{4x}{y} \ln x - \frac{2x}{y} \ln y + e^y\right) dx + \left(\frac{x^2}{y^2} \ln y - \frac{2x^2}{y^2} \ln x\right) dy$$
, L – треугольник с вершинами $A(4;1)$, $B(4;5)$, $C(8;3)$,

b)
$$\int_{L} \left(x^2 + x \sqrt{9 - x^2 + y^2} - y^2 \right) dx + \left(xy - y\sqrt{9 - x^2 + y^2} + xy^2 \right) dy$$
, L – окружность $x^2 + y^2 = x$.

Задача 3. Вычислить объем тела, ограниченного указанными поверхностями:

3.1.
$$z = 0$$
, $z = 2x$, $x + y = 3$, $x = \sqrt{\frac{y}{2}}$.

3.2.
$$x = 0$$
, $y = 0$, $z = 0$, $x + y = 2$, $y = \sqrt{1-z}$.

3.3.
$$z = 0$$
, $y = 0$, $z = 1 - x^2$, $y = 3 - x$.

3.4.
$$x = 1$$
, $z = 0$, $x = y^2$, $z = 2 - x$.

3.5.
$$z = 0$$
, $z = 1 - y$, $y = x^2$.

3.6.
$$x = 0$$
, $y = 0$, $z = 0$, $x + y = 1$, $z = x^2 + 3y^2$.

3.7.
$$z=0$$
, $y=0$, $x=0$, $y+z=1$, $x=y^2+1$.

3.8.
$$x=0$$
, $y=0$, $z=0$, $x=1$, $x+y=2$, $z=x^2+\frac{y^2}{2}$.

3.9.
$$z=0$$
, $z=1-y^2$, $x=y^2$, $x=2y^2+1$.

3.10.
$$z = 0$$
, $y = x^2$, $z = \sqrt{1-y}$.

3.11.
$$z=0$$
, $y=0$, $z=x^2$, $y=1-x$.

3.12.
$$x=0$$
, $z=0$, $z=y^2$, $2x+y=2$.

3.13.
$$z = 0$$
, $x = 0$, $y = 1$, $z = \sqrt{y}$, $y = x$.

3.14.
$$z = 0$$
, $z = y$, $y = \sqrt{1 - x^2}$.

3.15.
$$z = 0$$
, $z = x$, $y^2 = 1 - x$.

3.16.
$$x=1$$
, $z=0$, $z=\sqrt{y}$, $y=x$.

3.17.
$$z = 0$$
, $y = 2x$, $x = 1$, $z = y^2$.

3.18.
$$y = 1$$
, $z = 0$, $y = x$, $z = x^2$.

3.19.
$$z = 0$$
, $z = x$, $x = \sqrt{1 - y^2}$.

3.20.
$$z = 0$$
, $y = 0$, $x = 0$, $x + y = 1$, $z = x^2 + y^2$.

3.21.
$$z = 0$$
, $x = 0$, $z = y^2$, $2x + 3y = 6$.

3.22.
$$y = 0$$
, $z = 0$, $z = x^2$, $3x + 2y = 6$.

3.23.
$$z = 0$$
, $y = 1$, $z = x^2 + y^2$, $y = x^2$.

3.24.
$$z = 0$$
, $z = 5x$, $y = \sqrt{9 - x^2}$.

3.25.
$$z = 0$$
, $x = 0$, $y = 0$, $z = 2x^2 + 3y^2$, $x + y = 1$.

3.26.
$$x = 0$$
, $y = 0$, $z = 0$, $x + y = 2$, $y = \sqrt{1 - z}$.

Задача 4. Тело V задано ограничивающими его поверхностями, μ - плотность. Найти массу тела.

4.1.
$$64(x^{2} + y^{2}) = z^{2}, \quad x^{2} + y^{2} = 4,$$
$$y = 0, \quad z = 0 \quad (y \ge 0, \quad z \ge 0),$$
$$\mu = 5(x^{2} + y^{2})/4.$$

4.2.
$$x^{2} + y^{2} + z^{2} = 4, \quad x^{2} + y^{2} = 1,$$
$$(x^{2} + y^{2} \le 1), \quad x = 0 \quad (x \ge 0);$$
$$\mu = 4|z|.$$

4.3.
$$x^{2} + y^{2} = 1, \quad x^{2} + y^{2} = 2z,$$
$$x = 0, \quad y = 0, \quad z = 0 \quad (x \ge 0, \quad y \ge 0);$$
$$\mu = 10x.$$

$$x^2 + y^2 = \frac{16}{49}z^2$$
, $x^2 + y^2 = \frac{4}{7}z$,

4.4.
$$x = 0, y = 0, (x \ge 0, y \ge 0);$$

 $\mu = 80 yz.$

4.5.
$$x^{2} + y^{2} + z^{2} = 1, \quad x^{2} + y^{2} = 4z^{2},$$
$$x = 0, \quad y = 0, \quad (x \ge 0, \quad y \ge 0, \quad z \ge 0);$$
$$\mu = 20z.$$

4.6.
$$36(x^{2} + y^{2}) = z^{2}, \quad x^{2} + y^{2} = 1,$$
$$x = 0, \quad z = 0 \quad (x \ge 0, \quad z \ge 0),$$
$$\mu = \frac{5}{6}(x^{2} + y^{2}).$$

$$x^{2} + y^{2} + z^{2} = 16$$
, $x^{2} + y^{2} = 4$,
4.7. $(x^{2} + y^{2} \le 4)$.

4.7.
$$(x^2 + y^2 \le 4);$$

 $\mu = 2|z|.$

$$x^2 + y^2 = 4$$
, $x^2 + y^2 = 8z$,

4.8.
$$x = 0, y = 0, z = 0 (x \ge 0, y \ge 0);$$

 $\mu = 5x.$

$$x^{2} + y^{2} = \frac{4}{25}z^{2}, \quad x^{2} + y^{2} = \frac{2}{5}z,$$

4.9.
$$x = 0, y = 0, (x \ge 0, y \ge 0);$$

 $\mu = 28xz.$

$$x^{2} + y^{2} + z^{2} = 4, \quad x^{2} + y^{2} = z^{2},$$
4.10. $x = 0, \quad y = 0, \quad (x \ge 0, \quad y \ge 0, \quad z \ge 0);$

$$\mu = 6z.$$

$$25(x^2 + y^2) = z^2$$
, $x^2 + y^2 = 4$,

4.11.
$$x = 0$$
, $y = 0$, $z = 0$
 $(x \ge 0, y \ge 0, z \ge 0)$,
 $\mu = 2(x^2 + y^2)$.

$$x^2 + y^2 + z^2 = 9$$
, $x^2 + y^2 = 4$,

4.12.
$$(x^2 + y^2 \le 4), y = 0 (y \ge 0);$$

 $\mu = |z|.$

4.13.
$$x^2 + y^2 = 1$$
, $x^2 + y^2 = 6z$,
 $x = 0$, $y = 0$, $z = 0$ $(x \ge 0, y \ge 0)$;
 $\mu = 90y$.

$$x^{2} + y^{2} = \frac{1}{25}z^{2}, \quad x^{2} + y^{2} = \frac{1}{5}z,$$
4.14.
$$x = 0, \quad y = 0, \quad (x \ge 0, \quad y \ge 0);$$

$$\mu = 14yz.$$

$$x^{2} + y^{2} + z^{2} = 4, \quad x^{2} + y^{2} = 9z^{2},$$
4.15. $x = 0, \quad y = 0, \quad (x \ge 0, \quad y \ge 0, \quad z \ge 0);$

$$\mu = 10z.$$

$$9(x^2 + y^2) = z^2$$
, $x^2 + y^2 = 4$,

4.16.
$$x = 0$$
, $y = 0$, $z = 0$
 $(x \ge 0, y \ge 0, z \ge 0)$,
 $\mu = 5(x^2 + y^2)/3$.

$$x^{2} + y^{2} + z^{2} = 4,$$

4.17. $x^{2} + y^{2} = 1, (x^{2} + y^{2} \le 1);$

$$\mu = |z|$$
.

$$x^2 + y^2 = 1$$
, $x^2 + y^2 = z$,

4.18.
$$x = 0, y = 0, z = 0,$$

 $(x \ge 0, y \ge 0);$
 $\mu = 10y.$

$$x^{2} + y^{2} = \frac{1}{49}z^{2}, \quad x^{2} + y^{2} = \frac{1}{7}z,$$

4.19.
$$x = 0, y = 0, (x \ge 0, y \ge 0);$$

 $\mu = 10xz.$

$$x^2 + y^2 + z^2 = 4$$
, $x^2 + y^2 = 4z^2$,

4.20.
$$x = 0, y = 0, (x \ge 0, y \ge 0, z \ge 0);$$

 $\mu = 10z.$

4.21.
$$16(x^{2} + y^{2}) = z^{2}, \quad x^{2} + y^{2} = 1,$$
$$x = 0, \quad y = 0, \quad z = 0 \quad (x \ge 0, \quad y \ge 0, \quad z \ge 0),$$
$$\mu = 5(x^{2} + y^{2}).$$

4.22.
$$x^{2} + y^{2} + z^{2} = 16,$$

 $\mu = |z|.$ $x^{2} + y^{2} = 4 \quad (x^{2} + y^{2} \le 4);$

$$x^{2} + y^{2} = 4$$
, $x^{2} + y^{2} = 4z$,
4.23. $x = 0$, $y = 0$, $z = 0$ $(x \ge 0, y \ge 0)$; $\mu = 5y$.

$$x^{2} + y^{2} = z^{2}, \quad x^{2} + y^{2} = z,$$
4.24. $x = 0, \quad y = 0, \quad (x \ge 0, \quad y \ge 0);$

$$\mu = 35 yz.$$

4.25.
$$x^2 + y^2 + z^2 = 1$$
, $x^2 + y^2 = z^2$,
 $x = 0$, $y = 0$, $(x \ge 0, y \ge 0, z \ge 0)$;
 $\mu = 32z$.

$$x^{2} + y^{2} = \frac{16}{49}z^{2}, \quad x^{2} + y^{2} = \frac{4}{7}z,$$

4.26.
$$x = 0, y = 0, (x \ge 0, y \ge 0);$$

 $\mu = 80 yz.$