40 mins Students to prepare oral presentation based on the following topics regarding Question 3.

- * You can use the following bullet proof outline to prepare for your presentation.
- * Remember to write the group members and topic chosen on the draft you hand in to Quercus!

Topic one:

- Describe the content of the graph (mention the variable of interest)
 - What does the x-, y-axis represent?
 - Describe the distribution (range, center, symmetry, skewness, number of points).
- How was one dot calculated:
 - How a single bootstrap sample is produced (e.g. size, with/without replacement)?
 - What statistic did you calculate from this particular bootstrap sample?
- How can the generated distribution of mean age be used for inference?
 - Since the observed data were generated ... (this was a key word from last week), we can ... (a key word from today's vocab list) from the observed data by sampling with replacement.
 - In other words, if the data resemble the ... (a key word from today's vocab list), the bootstrap samples will also resemble the (the same key word from today's list).
 - Using the statistic calculated from each bootstrap sample, we can obtain a distribution of sample statistic and it gives an estimate of the ... (a key phrase from today's vocab list) of the statistic.

Topic two:

- Rationale of using the bootstrap sampling distributions:
 - Does distribution of bootstrap sample statistic tend to capture the population value (mean/median)?
 - Where does the population value tend to be in the range of the bootstrap distribution?
- Construct the confidence interval
 - What is the range of values (in terms of percentile) taken to construct the 90% CI?
 - Describe how you did the above in R (are there ties? Was it easy or difficult to do this in R and why?)
- State the interval with reference to the data and variable (E.g. "A 90% CI for the mean (median) of the mother's age is").
- Interpret the interval you produced.
- (Bonus) Could you check if the interval produce is indeed the 90% CI? Why or why not?
 - Do you know the population parameter value (mean)?
 - Do you need to do more calculations?
 - How many times do you check if the population mean is captured by the CI?

Topic three:

- Describe how to produce the plot
 - How a single bootstrap sample is produced (e.g. number of data points used, with/without replacement)?
 - What statistic did you calculate from each bootstrap sample?
- Describe the content of the graph (mention the variable of interest)
 - What does the x-, y-axis represent?
 - Describe the shape of the distribution (range, center, symmetry, skewness, number of points).
- Rationale of using the bootstrap sampling distributions:

- Does distribution of bootstrap sample statistic tend to capture the population value (median)?
- Where does the population value tend to be in the range of the bootstrap distribution?
- Construct the confidence interval
 - What is the range of values (in terms of percentile) taken to construct the 99% CI?
 - Describe how you did the above in R (are there ties? Was it easy or difficult to do this in R and why?)
- State the interval with reference to the data and variable (E.g. "A 99% CI for the median of the mother's age is").
- Interpret the interval you produced.