Estimating Viability

Nora Mitchell February 21, 2015

Symbol	Definition
n ₁₁	number of inividuals with $homozygous(p)$ genotype
n_{12}	number of individuals with heterozygous genotype
n_{22}	number of individuals with $homozygous(q)$ genotype
w_{11}	fitness of $homozygous(p)$ genotype
<i>W</i> ₁₂	fitness of heterozygous genotype
W ₂₂	fitness of $homozygous(q)$ genotype

Genotype	A_1A_1	A_1A_2	A_2A_2
Number in zygotes	$n_{11}^{(z)}$	$n_{12}^{(z)}$	$n_{22}^{(z)}$
Viability	w_{11}	<i>W</i> ₁₂	W ₂₂
Number in adults	$n_{11}^{(a)} = w_{11} n_{11}^{(z)}$	$n_{12}^{(a)} = w_{12} n_{12}^{(z)}$	$n_{22}^{(a)} = w_{22} n_{22}^{(z)}$

$$w_{ij} = \frac{n_{ij}^{(a)}}{n_{ij}^{(z)}}$$

Genotype	A_1A_1	A_1A_2	A_2A_2
Relative viability	<u>w₁₁</u> w ₁₂	1	w ₂₂ w ₁₂

Numerical example

Genotype	A_1A_1	A_1A_2	A_2A_2
Number in zygotes	208	372	243
Viability	w_{11}	w_{12}	W ₂₂
Number in adults	147	206	92

$$w_{ij} = \frac{n_{ij}^{(a)}}{n_{ij}^{(z)}}$$

Numerical example

Genotype	A_1A_1	A_1A_2	A_2A_2
Number in zygotes	212	372	243
Viability	0.71	0.55	0.38
Number in adults	147	206	92

$$w_{ij} = \frac{n_{ij}^{(a)}}{n_{ij}^{(z)}}$$

Genotype	A_1A_1	A_1A_2	A_2A_2
Relative viability	<u>w₁₁</u> w ₁₂	1	w ₂₂ w ₁₂

Genotype	A_1A_1	A_1A_2	A_2A_2
Relative viability	0.71 0.55	1	0.38 0.55

Genotype	A_1A_1	A_1A_2	A_2A_2
Relative viability	1.29	1	0.69

Pattern	Description
Directional	$w_{11} > w_{12} > w_{22}$
	or
	$w_{11} < w_{12} < w_{22}$
Disruptive	$w_{11} > w_{12}, \ w_{22} > w_{12}$
Stabiliizing	$w_{11} < w_{12}, \ w_{22} < w_{12}$

Genotype	A_1A_1	A_1A_2	A_2A_2
Relative viability	1.29	1	0.69

Project 3

Project 3 looks at the peppered moth, *Biston betularia* and two of its morphs, *typica* and *carbonaria*

Kettlewell (1955)

		typica	carbonaria
Dorset	Released	486	473
	Recaptured	62	30
Birmingham	Released	137	447
	Recaptured	18	123

Dorset

${\sf Birmingham}$

Questions

- 1. What are the **absolute** viabilities of *typica* and *carbonaria* in each location?
- 2. What is the viability of *typica* **relative** to *carbonaria* in each location?
- 3. If you assume that the fitnesses remain constant and that viability selection is the only evolutionary force acting on the populations, what will the long-term outcome of selection in each location be?
- 4. How confident are you in your answer to #3?
- 5. Is the fitness of typica relative to carbonaria in either location consistent with the corresponding relative fitness estimate that Haldane obtained?

How do we do this in a Bayesian context?

- 1. Estimate absolute viabilities.
- 2. Apply formula to calculate relative viabilities..

JAGS code for non-destructive sampling:

```
n.11.adult \sim dbin(w.11, n.11.zygote)
```

 $n.12.adult \sim dbin(w.12, n.12.zyogte)$

 $n.22.adult \sim dbin(w.22, n.22.zygote)$

Hints

- Model the number of survivors for each phenotype separately in each population. Assume that the number of survivors is drawn from a binomial distribution with a probability equal to its absolute viability and a sample size equal to the number of moths released.
- ▶ Use uniform priors on the absolute fitnesses: dunif(0, 1).
- ▶ Estimate the relative fitnesses within JAGS so that you get both the posterior mean and 95 % credible intervals.
- Make the estimates separately for each location.

References

► Kettlewell, Henry Bernard Davies. "Selection experiments on industrial melanism in the Lepidoptera." Heredity 9 (1955): 323-342.