Computational Mechanics by Isogeometric Analysis

Dr. L. Dedè. A.Y. 2015/16

Exercises April 4, 2016: Solutions

NURBS-based Isogeometric Analysis: Galerkin method

1. Consider the MATLAB file $ex6_1.m$. The exact solution u is reported in the following for which we remark that $u \in C^{\infty}(\Omega)$.

Exact solution, $u = \sin(\pi x) \sin(\pi y)^2$

We notice that the computational domain $\Omega = (0,1)^2$ is represented by means of B–splines basis functions of polynomial order p=1 in both the parametric directions with a single mesh element. We consider a h-refinement procedure and compute the errors in norms L^2 and H^1 for different values of the mesh size h; we obtain that the convergence orders in h for the errors in norms L^2 and H^1 are 2 and 1, respectively (see the following figure, left).

As alternative, we perform a one level k-refinement for which we firstly elevate the order of the basis from p=1 to p=2 starting from the geometry with 1 mesh element and then insert the knots without repeating them. Then, we perform consecutive hrefinements while maintaining the basis functions globally C^1 -continuous in Ω . We obtain the convergence orders 3 and 2 for the errors in norms L^2 and H^1 , respectively (see the following figure, right).

p = 1, h-refinement

p=2, h-refinement (C^1 -cont. fncs.)

We consider now p-refinement procedures. The behavior of the errors in norms L^2 and H^1 vs. p are reported in the following figure starting from 1 mesh element (left) and 10×10 mesh elements (right) for p = 1.

2. Refer to the MATLAB file ex6_2.m to obtain the solution of the problem. Similar results of point 1 can be obtained by using suitable refinement procedures.

Exact solution, $u = \sin(\pi/6 x) \sin(\pi y)^2$

3. Refer to the MATLAB files ex6_3.m and ex6_display_nurbs_surface_anular.m.

Exact solution,
$$u = \frac{1}{3} (4 - x^2 - y^2) e^{x^2 + y^2 - 1}$$

We remark that already when considering a coarse mesh, the approximate solution u_h exhibits an asymmetrical behavior similarly to the exact solution u; this follows from the exact representation of the geometry allowed by NURBS at the coarsest level of discretization. See the example below.

Mesh with 2×2 elems.

Corresponding approximate solution u_h , p=2

4. Refer to the MATLAB file ex6_4.m.

Exact solution, $u = \sin(\pi x) \sin(\pi y) \sin(\pi z)$

5. Refer to the MATLAB files ex6_5.m and ex6_display_nurbs_solid.m. The approximate solution u_h obtained with polynomial order p=3 and $5\times 10\times 5$ mesh elements(the basis functions are globally C^2 -continuous in Ω) is reported in the following figures.

Contour surfaces of the solution u_h

Let us consider the problem with the Neumann data $\phi = 0$, yielding the exact solution \tilde{u} . We observe that already for a coarse mesh and polynomial order p = 2 the approximate solution \tilde{u}_h is able to capture the main features of the exact solution \tilde{u} by taking advantage of the exact geometric representation. See the example below.

Mesh with $5 \times 5 \times 5$ elems.

Approximate solution \tilde{u}_h for $\phi = 0$, p = 2; contour surfaces