Ковальков Антон 577гр

Задача 1.

 $S \rightarrow aSa \mid aSaa \mid aSb \mid aSbb \mid a \mid b$

Будем использовать алгоритм приведённый в книге Серебрякова на 70ой странице. Для начала детерминизируем автомат \mathcal{A} .

Макросост.	сост НКА	0	1
Q_0	q_0,q_1	Q_1	Q_2
Q_1	q_3,q_2	Q_2	Q_3
Q_2	q_3	Q_4	Q_3
Q_3	q_0, q_1, q_4	Q_4	Q_2
Q_4	q_0, q_1, q_2, q_3	Q_1	Q_5
Q_5	q_0, q_1, q_3, q_4	Q_4	Q_5

Теперь определи граматику:

- 1. Нетерминалами граматики будут состояния автомата N=Q.
- 2. В качестве начального символа примем Q_0 . $S = Q_0$.
- 3. $Q_0 \rightarrow aQ_1 \mid a \mid bQ_2$
 - $Q_1 \rightarrow aQ_2 \mid bQ_3 \mid b$
 - $Q_2 \to bQ_3 \mid b$
 - $Q_3 \to aQ_4 \mid a \mid bQ_2$
 - $Q_4 \rightarrow aQ_1 \mid a \mid bQ_5 \mid b$
 - $Q_5 \rightarrow aQ_4 \mid a \mid bQ_5 \mid b$

Задача 2.

Построим автоматы для правил вывода для каждого нетерминала:

Для всех нетерминальных символов добавим эпсилон перходы из вершин A,B и S в начальные состояния соответствующих автоматов. Получим автомат распознающий язык L(G).

Задача 3.

Нет, грамматика G не явяется однозначной, так как слово abaaa можно вывести разными способами. Например: $S \to abaA \to abaaa$ и $S \to abaA \to abaaB \to abaaaS \to abaaa$.

Задача 4.

 $1. \ \forall i \neq j: a^i, a^j \in \{a^n\}$ выберем подслово $z = ab^i$. Получим, что $a^i \cdot z = a^i ab^i \in L$, а $a^j \cdot z = a^j ab^i \notin L$. Таким образом любые два элемента последовательности $\{a^n\}$ лежат в разных классах эквивалетности. И по теореме Майхилла — Нероуда язык не регулярный. 2. Допустим, что дополнение регулярный язык, тогда существует ДКА распознающий этот

язык. Доопределим всюду этот ДКА добавляя ещё одно непринимающее состояние и добавляя отсутствующее переходы. Теперь сделаем принимающие состояния непринимающими, а непринимающие принимающими. Таки образом мы построили автомат к дополнению дополнения, то есть к самому языку, а, по ранее доказаному этого автомата не существует.

Задача 5.

```
G:S	o aSbb\mid aSb\mid arepsilon. Докажем, что L\subset L(G). orall \omega inL, |\omega|=n\hookrightarrow \omega inL(G). n=0, arepsilon\in L(G)
```

Допустим выполнено для всех слов длины n-1, слово длины $n, \omega \in L$ можно представить в виде $a\omega_1 b$. По предположению индукции ω_1 выводится по правилам грамматики и, так как в грамматике есть правило $S \to aSb$, то ω тоже выводится.

Включение в обратную сторону очевидно.

Задача 1. Верно ли, что праволинейная грамматика G однозначна тогда и только тогда, когда построенный по ней автомат является детерминированным?

Задача 2. Назовём грамматику линейной, если в правой части её правил может быть не более одного нетерминала. Верно ли, что для любой линейной грамматики $G, L(G) \in \mathsf{REG}$?

Ещё раз напоминаю, что задачи, помеченные † являются дополнительными, поэтому списывать их из книжек – бессмысленное увеличение энтропии.

Определение 1. Для языка $L\subseteq \{\sigma_1,\sigma_2,\ldots,\sigma_n\}^*=\Sigma_n^*$ и языков $L_{\sigma_1},L_{\sigma_2},\ldots,L_{\sigma_n}\subseteq\Sigma_n^*$, подстановкой в L языков $L_{\sigma_1},\ldots,L_{\sigma_n}$ назовём язык L', такой что для всех слов $w=w[1]\ldots w[n]$ из языка L справедливо $L_{w[1]}L_{w[2]}\ldots L_{w[n]}\subseteq L'$

Задача 3^{\dagger} . Доказать, что регулярные языки замкнуты относительно операции подстановки.

Определение 2. Даны алфавиты Σ и Δ . Для языка $L \subseteq \Sigma \times \Delta$ определены операции проекции на Σ^* и Δ^* . Проекцией L на Σ^* называется язык $L_{\Sigma} = \{w \in \Sigma^* \mid \exists v \in \Delta^* : (w,v) \in L\}$. Проекция L на Δ^* определяется аналогичным образом.

Задача 4^{\dagger} . Доказать, что регулярные языки замкнуты относительно операции проекции.

Определение 3. Для языка $L_\Sigma\subseteq \Sigma^*,$ Δ -целиндром называется язык L, такой что $L=\{w\,|\,w=(u,v),u\in L_\Sigma,v\in\Delta^*\}$

Задача 5^{\dagger} . Показать, что Σ -проекция Δ -цилиндра L есть L. Доказать, что регулярные языки замкнуты относительно операции цилиндра.

Задача 6. На семинаре я «доказал», что грамматика $G: S \to aSb \mid SS \mid \varepsilon$ порождает язык правильных скобочных выражений с одним типом скобок – язык Дика D_1 . На самом деле, я дал доказательство только в одну сторону: что любое слово, выведенное из этой грамматики будет правильным скобочным выражением. После чего порадовавшись, что меня никто за руку не поймал, в назидание оставляю доказательство в другую сторону в качестве домашней задачи. Напомню, что мы договорились считать, что слово w является правильным скобочным выражением, если его скобочный итог d(w) равен нулю, и при этом скобочный итог любого префикса w неотрицательный. Скобочным итогом называется разница между числом открывающих и закрывающих скобок: $d(u) = |u|_a - |u|_b$.

Задача 7. Является ли грамматика G для языка D_1 из предыдущей задачи однозначной?