CSED601 Dependable Computing Lecture 1

Jong Kim
Dept. of CSE
POSTECH

Copyright, 2018© JKim POSTECH HPC

References

- Anh Nguyen-Tuong, University of Virginia http://www.cs.virginia.edu/~zw4j/cs656/DependableComputin g.ppt
- Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl Landwehr, Basic Concepts and Taxonomy of Dependable and Secure Computing, IEEE Transactions on Dependable and Secure Computing, Vol. 1, No. 1, Jan-Mar 2004.

Goals

 Understanding basic concepts and terminology associated with dependable computing

• View current events and OS concepts with "dependability optic"

Rapid

A fatal exception 0E has occurred at 0028:C0011E36 in UXD UMM(01) + 00010E36. The current application will be terminated.

- * Press any key to terminate the current application.
- * Press CTRL+ALT+DEL again to restart your computer. You will lose any unsaved information in all applications.

Press any key to continue _

Systems and Software

TiVo Series2 DVR 140 Hour capacity drive

Designed exclusively for driving pleasure:

the BMW Z4.

Titan IVB Launch - USAF Photo

Consequences of Failure

- Injury or loss of life
- Environmental damage
- Damage to or loss of equipment
- Financial loss:
 - Theft
 - Useless or defective mass-produced equipment
 - Loss of production capacity or service
 - Loss of business reputation, customer base

Consequences of Failure

- Loss of revenue
 - Software bugs: \$200 billion/year (SCC)
 - Note: recent worms and viruses
 - 1 hour of downtime costs (InternetWeek, 2000):
 Brokerage operations \$6,450,000/hr
 Credit card auth. \$2,600,000/hr
 Ebay (1 outage/22hrs) \$225,000/hr
 Home Shopping Channel \$113,000/hr
 Airline reservation ctr \$89,000/hr
 ATM services fee \$14,000/hr
 - Note: Ebay (22 hrs, 1999)
 - \$4 Billion Market Cap loss

Facets of dependability

- De jure and de facto taxonomy (Laprie)
 - Reliability → continuity of correct service
 - Availability → readiness for usage
 - Safety → no catastropic consequences
 - Security → prevention unauthorized access
 - Integrity, Confidentiality
 - Maintainability → repair and modification

Customers *must* identify the dependability requirements of their system and developers must design so as to achieve them

POSTECH CSED601 Fa18 9

Historical Evolution of Concerns

- 40's: ENIAC
 - 18K vacuum tubes → failed ~ every 7 mns
 - 18K multiplies/minute → 7 mns ~ one program execution

Need RELIABILITY

- 60's: Interactive systems
 - + AVAILABILITY
- 70's: F-8 Crusader, MD-11, Patriot missile defense + **SAFETY**
- 90's-today: Internet, E-commerce, Grid/Web services
 - + SECURITY

Terminology

- We need to be able to communicate in a precise manner:
 - Researchers
 - Developers
 - Customers
- There are everyday notions of these terms
- The public has an interest
- But public terminology is imprecise

Reliability

Rel(t) = Probability that the system will operate correctly in a specified operating environment up until time t

Mean Time To Failure MTTF = Expected Value[Rel(*t*)]

- Note that *t* is important
- If a system only needs to operate for ten hours at a time, then that is the reliability target

Recoverability

Rec(t) = Probability that the system will operate correctly at time t after failure

Mean Time To Repair:

MTTR = Expected Value[Rec(t)]

Availability

$$A(t) =$$
 Probability that the system will be operational at time t

$$E[A(t)] = MTTF / (MTTF + MTTR)$$

- Literally, readiness for service
 - Only applies when you ask for a service
- Admits the possibility of brief outages
- Fundamentally different concept than Reliability

Nines of availability

# 9 ′ s	%	Downtime / year	Systems
2	99%	~5000 mns	General web site
3	99.9%	~500 mns	Amazon.com
4	99.99%	~50 mns	Enterprise server
5	99.999%	~5 mns	Telephone System
6	99.9999%	~30 sec	Phone switches

Caveats: How measured? What does it mean to be operational?

Reliability vs. Availability

- They are not the same.....
- Example:

A system that fails, on average, once per hour but which restarts automatically in ten milliseconds is not very reliable but is highly available

Availability = 0.9999972

Design Tradeoffs

• How to make availability approach 100%?

MTTF → infinity (high reliability)
MTTR → zero (fast recovery)

Subtleties

- Which has higher availability?
 - Two 4.5 hour outage / year
 - 1 mn outage / day

- For an Internet-base company such as EBay or AOL, which would be more desirable? Why?
- For an autonomous rover?

Safety

Absence of:

Catastrophic consequences on the users or the environment

- Are commercial aircraft "safe"?
- They crash very occasionally. How many crashes are too many?
- Are cars "safe"? They crash quite a lot

45K deaths/yr; 900/week = 2 fully loaded Boeing 747/week

Risk

• Risk is the expected loss per unit time

Risk =
$$\sum$$
 pr(accident_i) x cost(accident_i)

• Safety is expressed as an acceptable level of loss

Reliability vs. Availability vs. Safety

- They are not the same.....
- Example:
 - A system that is turned off is not very reliable, is not very available, but is probably very safe
- In practice, safety often involves specific intervention

Confidentiality

Absence of:

Absence of unauthorized disclosure of information

- Microsoft source code vs. Linux source code
- Web browsing
- Operating Systems Security Model
 - Files, Memory
- Medical records
- Credit card transaction records
- School grades

Integrity

Absence of:

Absence of improper system state alterations

- Operating systems
 - Files, memory, network packets
- Linux kernel backdoor attempt
- Database records
- Your bank account
- File transfer
- Did I really get the right version of software XYZ?

•

Security

- Security is a combination of attributes:
 - Integrity
 - Confidentiality
 - Availability

- Under different circumstances, these attributes are more or less important:
 - Denial of service is an availability issue
 - Exposure of information is a confidentiality issue

Maintainability

Ability to undergo repairs and modifications

- Maintenance
- Evolution
- Composition
- Manageability

KISS
(Keep It Simple Stupid)
POSTECH CSED601 Fa18 25

Recap

- Software part of a system
- Facets of dependability
 - Reliability
 - Availability
 - Safety
 - Security (confidentiality, integrity)
 - Maintainability