Simulation experiments for hide-and-seek with different seeker distribution update strategies

Tirtharaj Dash

January 18, 2020

1 Setup

We perform some simulation experiments for Hide-and-Seek with three different **seeker distribution** update strategies:

- (1) **No update:** No update of the seeker distribution (leads to hide-and-seek with replacement results).
- (2) **Uniform update:** Open a box, distribute its probability mass to every other unopened boxes, make its probability 0 (hide-and-seek without replacement).
- (3) **Hot-cold update:** The seeker updates its probability distribution based on whether it opened a cold box or a hot box. A cold box is a box for which the performance of a box (perf) is less than the cold threshold (θ_c) and a hot box is a box with performance greater than a hot threshold (θ_h) . We devise the following procedure for update:
 - 1. Open a box i
 - 2. If $perf(i) \ge \theta_h$: distribute its probability mass to all the unopened boxes in its neighbors.
 - 3. If $perf(i) \leq \theta_c$: distribute its probability mass to all the unopened boxes except its neighbors.
 - 4. If none of 2 or 3: distribute its probability mass to all the unopened boxes.
 - 5. Repeat 1–4 until the hider is found.

The seeker update strategy (3) requires that the hider distribution falls into some continuity assumption. That is: the probability mass of a neighborhood of a box are in monotonic relationship to the probability of that box. This is a realistic demand and clauses which are related with each other are monotonic in their performance in some fashion. We construct such a hider distribution (H) with the following code¹.

2 Experiments

Parameter setting The experiments are performed for number of boxes $n = \{1000, 2000, 3000\}$. The maximum hiding trials is set at 1000. We call it a **failure**, if the hider is not found within n searches by using the seeker distribution. The neighborhood size (nbd) is varied as $\{1,2,3\}$. For all the experiments reported here, we define performance of a box by: $perf(i) = \frac{h_i}{\max(h_1,\dots,h_n)}$, where $H = \{h_1,\dots,h_n\}$ is the hider distribution. The thresholds are fixed at $\theta_h = 0.80$ and $\theta_c = 0.4$. The proportion of boxes that have high probability mass (spikes in H) is fixed at 10%.

 $^{^{1} \}verb|https://github.com/tirtharajdash/multimodalGaussianDistro|$

Results The mean and standard deviations of misses are calculated only for successful runs i.e. the hider was found by the seeker within maximum of n look-ups. Otherwise, it was treated as a failure and this result was not included for statistics. Below, we report results for each seeker update strategies.

choiceUpdS	SuccessRate	mean(misses)	sd(misses)
n = 1000			
1	0.622	439.738	279.218
2	1.000	499.379	279.060
$3 \ (nbd = 1)$	1.000	486.041	271.251
$3 \ (nbd = 2)$	1.000	458.027	269.987
$3 \ (nbd = 3)$	1.000	479.270	279.110
n = 2000			
1	0.635	859.123	571.302
2	1.000	1022.204	595.486
$3 \ (nbd = 1)$	1.000	963.457	550.133
$3 \ (nbd = 2)$	1.000	961.946	551.028
$3 \ (nbd = 3)$	1.000	968.335	564.515
n = 3000			
1	0.652	1303.462	854.176
2	1.000	1473.717	865.756
$3 \ (nbd = 1)$	1.000	1436.214	801.100
$3 \ (nbd = 2)$	1.000	1396.195	840.066
$3 \ (nbd = 2)$	1.000	1464.990	840.695

Figure 1: Average number of misses: H is a multimodal distribution with 10% spikes, and S is updated using three different update strategies (1: no update, 2: without replacement, 3: update using θ_h and θ_c) using three different neighborhood structures $\{1,2,3\}$.

Interpretation The results suggest that the threshold based seeker update strategy (3):

- Reduces the average number of misses in comparison with search without replacement for which the expected number of misses is $\frac{n-1}{2}$ (i.e. choiceUpdS= 2 in tables).
- For the seeker updat type (3), best neighborhood size is found to be 2.
- Increasing the neighborhood size of a box increases the average number of misses in almost all the cases.