$$K = $105$$

$$d_1 = Ln\left(\frac{S_0}{K}\right) + \left(s + \frac{1}{2}c^2\right)^T = 0.106$$

$$d_{2} = \ln \left(\frac{S_{0}}{K}\right) + \left(3 - \frac{1}{2}G^{2}\right)T = d_{1} - GT = -0.094$$

LHS=
$$C + Ke^{-hT} = 8.02 + 105.e^{-0.05} = 8.02 + 99.88 = $107.90$$

RHS= $P + S_0 = $7.90 + $150 = 107.90

d) Call option Delta (Sc) = N(di) = 0.5422 Put aprian Delta (Op) = -N(-d1) = N(d1)-1= -0.4578 Kelation I/w me two - & c- &p=1 or ap= ac-1 e) Valatility (%) call Price (\$) 0%. 0.12 10%. 4.05 20% 8.02 30%. 11.98 40%. 15.90 50% 19.79 60% 23.63 70%. 27. 41 807. 31.13 90%.

34.77 100% 3 8. 33

- · The plot ahous a clear, nearly linear increase in call option price as valatility rises from 0.1. to 100%.
- · Higher volatility increases the option price as there is a greater chance the option will jirish in the money.
- · The relationship is noonstonic and nearly linear.

(FECS) =
$$S_0 N(d_1) - k e^{-hT}N(d_2)$$

 $P_E(S) = k e^{-hT}(N(Ed_2)) - S_0(N(-d_1))$
So is unrent stack price
 $P_E(S) = k e^{-hT}(N(Ed_2)) - S_0(N(-d_1))$
 $P_E(S) = N(-d_1)$
 $P_E(S$

$$d_1 = Ln \frac{\left(\frac{S_0}{K}\right) + \left(\frac{S + \frac{1}{2}G^2}{T}\right)}{GTT} \Rightarrow \frac{1}{2S}(d_1) = \frac{1}{S_0 GT}$$

$$80. \frac{\partial^{2}C}{\partial s^{2}} = \frac{1}{s_{0}GJZRT} e^{-\frac{d}{2}}$$

$$\frac{y_{annma}}{\partial S^{2}} + \frac{\partial^{2} P}{\partial S^{2}} = \frac{\partial}{\partial S} \left(-N(-d_{1}) \right) = -N'(-d_{1}) \frac{\partial}{\partial S} \left(-d_{1} \right)$$

$$= \frac{1}{S_{o}GJT} N'(-d_{1})$$
where $N'(-d_{1}) = \frac{1}{J_{2}\pi} e^{-(-d_{1})^{2}/2} = N'(d_{1})$

$$80 \frac{\partial^{2} P}{\partial S^{2}} = \frac{1}{S_{o}GJ_{2}\pi T} e^{-\frac{d_{1}^{2}}{2}}$$

For CAU

For CAU

For CAU

$$= -\frac{\partial C}{\partial t} = -\frac{\partial}{\partial t} \left(s_0 N(d_1) - k_c - n^t N(d_3) \right)$$

$$= -s_0 N'(d_1) \frac{\partial d_1}{\partial t} + k_0 e^{-n^t} \frac{\partial}{\partial t} N(d_2) + k_0 e^{-n^t} N(d_3)$$

$$+ k_0 e^{-n^t} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t} \right) \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t} \right)$$

$$= \left[-s_0 \cdot N'(d_1) + k_0 e^{-n^t} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t} \right) \right]$$

$$+ k(-n) e^{-n^t} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \right) \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t} \right)$$

$$+ k(-n) e^{-n^t} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \right) + k_0 e^{-n^t} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t} \right)$$

$$+ k(-n) e^{-n^t} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \right) + k_0 e^{-n^t} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t} \right) \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t} - \frac{\partial}{\partial t} \right)$$

$$+ k(-n) e^{-n^t} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} \right) + k_0 e^{-n^t} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} - \frac{\partial}{\partial t} - \frac{\partial}{\partial t} - \frac{\partial}{\partial t} \right)$$

$$= -k_0 e^{-n^t} \frac{\partial}{\partial t} \left(\frac{\partial}{\partial t} - \frac{\partial$$

Vega (for colleption)
$$\frac{\partial C}{\partial G} = \frac{\partial [S_0 N(d_1) - ke - nt N(d_2)]}{\partial G}$$

$$= S_0 N'(d_1) \cdot \frac{\partial d_1}{\partial G} - ke - nt N'(d_2) \frac{\partial d_2}{\partial G}$$

$$= S_0 N'(d_1) \frac{\partial d_1}{\partial G} - ke - nt N'(d_2) \frac{\partial (d_1 - GF)}{\partial G}$$

$$= S_0 N'(d_1) \frac{\partial d_1}{\partial G} - ke - nt N'(d_2) \frac{\partial d_1}{\partial G} + ke - nt N'(d_2) \cdot Jt$$

$$= (S_0 (N(d_1)) - ke - nt N'(d_2)) \frac{\partial d_1}{\partial G} + ke - nt N'(d_2) \cdot Jt$$

$$= (S_0 (N(d_1)) - ke - nt N'(d_2)) \frac{\partial d_1}{\partial G} + ke - nt N'(d_2) \cdot Jt$$

$$= ke - nt \cdot N'(d_2) Jt = S_0 N'(d_1) Jt = S_0 \cdot e^{-d_1} \frac{nt}{2\pi}$$

$$= ke - nt \cdot N'(d_2) Jt = S_0 N'(d_1) Jt = S_0 \cdot e^{-d_1} \frac{nt}{2\pi}$$

$$\frac{36.2721}{\sqrt{2\pi}}$$

to put option
$$\frac{\partial P}{\partial G} = \frac{\partial \left[K e^{-Nt} N(-d_2) - S_0 N(-d_1) \right]}{\partial G}$$

$$= K e^{-Nt} N'(-d_2) \cdot \left(-\frac{\partial d_2}{\partial G} \right) - S_0 N'(-d_1) \cdot \left(-\frac{\partial d_1}{\partial G} \right)$$

$$= S_0 N'(-d_1) \left(\frac{\partial d_1}{\partial G} \right) - K e^{-Nt} N'(-d_2) \frac{\partial d_1}{\partial G} + \mathcal{F}_{t} \cdot K e^{-Nt} N'(-d_2)$$

$$= \frac{S_0 N'(d_1) \int t}{\int 2 \pi} = \frac{S_0 e^{-d_1^2/2} \int t}{\int \frac{1}{2\pi}}$$

For put option
$$\frac{\partial C}{\partial x} = \frac{\partial [S_0(N(d_1)) - Xe^{-xt}N(d_2)]}{\partial x}$$

$$= \frac{\partial S_0(N'(d_1)) \partial d_1}{\partial x} - \frac{\partial C}{\partial x} - \frac{\partial C$$

 $= - x e^{-\lambda t} \cdot t \cdot N(d_2)$

Problem 2

- · Initial margin percentract = \$ 5000
- · Maintenance margin = \$ 4000
- · Current putures prize: \$70 per band
 - Centract size: 1000 barrels / contract
- · Number quantitaits: 10
- 1. Total enitial margin = \$5000 × 10 = \$5000
- 2. Daily margin balance! Tracked in Table below.
- 3. Margin call determination
 - · Day 2. \$ 20000 reprined to restore margin
 - · Day 3: \$ 2000 required to restore margin (Details intable)
- 4. Final margin balance = \$ 80000 (Details in Fable)
- 5. Total Loss = \$10000 (Details in Table)

Nate

- After each margin call, the balance is restored to the initial maryin reprisement of \$50000, from which the next day's gair/less is calculated.
- · Margin callons made nhen balance falls below the maintenance margin.

Day	Fuhua		total			· · · · · · · · · · · · · · · · · · ·
	Futues	Day gain/	total gain/hoss	Margin Balance	Mosgin Cal	1 Emplanation
0	\$70	4 —	4 - 1 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	\$50000	\$5 to 100	Initial Pecition with 10 contracts at \$ 5000each.
	\$ 72	\$ 20000	\$20000	\$70000	No	Price resedue to market ophnism (2g-demandspike). Isofit increase so mayin balance increase naturally No call needed.
2	\$68	-\$ 40000	-\$20000	\$30600	Yes \$20000	Price drapped due to overauppry warrier. Less braught margin Lelan required \$ 50000. You had to tap up
3	\$ 6 6	-\$20000	-\$40000	\$ 30000	Yes \$ 20000	Further price drap dreto weak dervard. Again, balance below \$8,0000- another mayin call.
ť					·	
4	\$69	\$30000	-\$10000	\$ 8 6000	No	Isice bounced back. Margin nay above reg. level non,
		is industrial				so no call.