GRAPH NEURAL NETWORK (GNN)

Patrick Sorrel Mvoto Kongo

sorrel.mvoto@facsciences-uy1.cm Licencié en physique

Sous le mentorat de Steve Cabrel Teguia Kouam Master en Physique

Laboratoire de Pysique Atomique ,Moleculaire et Biophysique

Université de Yaoundé 1

Plan de travail

- 1 Intérêt de l'utilisation des GNN
- Principe de fonctionnement GNN
 - Graphe et extraction des données
 - Message et agrégation
 - Connexion et Couche de GNN
 - Embedding
 - Entraînement
- 3 Exemple de programme

- Intérêt de l'utilisation des GNN
- Principe de fonctionnement GNN
 - Graphe et extraction des données
 - Message et agrégation
 - Connexion et Couche de GNN
 - Embedding
 - Entraînement
- 3 Exemple de programme

Machine learning et graphe

Figure 1: type d'apprentissage automatique

Motivations

Challenges

Figure 2: challenges des GNN

- Complexité topologie
- Pas d'ordre évident pour les nœuds, pas de points de référence
- modélisation de la dynamique

Applications

Figure 3: exemples d'applications des GNN

Taches des GNN

- Recommandation d'images chez Pinterest
- Très large échelles
- Features multiples

Figure 4: recommandation en ligne

Taches des GNN

- Sélection de molécule pour antibiotiques
- prédiction de trafic routier

Figure 5: prédictions et sélection des molécules

- 1 Intérêt de l'utilisation des GNN
- Principe de fonctionnement GNN
 - Graphe et extraction des données
 - Message et agrégation
 - Connexion et Couche de GNN
 - Embedding
 - Entraînement
- Exemple de programme

- 1 Intérêt de l'utilisation des GNN
- Principe de fonctionnement GNN
 - Graphe et extraction des données
 - Message et agrégation
 - Connexion et Couche de GNN
 - Embedding
 - Entraînement

Exemple de programme

Graphe et extraction des données

Figure 6: exemple de graphes

Représentation d'un graphe

Graphe

représentation visuelle d'un ensemble d'objets et des relations qui existent entre ces objets.

Figure 7: exemples et partie d'un graphe

Graphe :matrice adjacente

Structure:

- La matrice adjacente $A = A_{i,j} \in \{0,1\}^{n \times n}$
 - $A_{i,j} = 1$ si $(i, j) \in E$, et 0 Sinon
- De manière facultative la représentation de la matrice des caractéristiques des nœuds/arêtes

$$A = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

Patrick Sorrel Myoto Kongo (sorrel.myoto@fac

Figure 8: représentation d'un graphe

- 1 Intérêt de l'utilisation des GNN
- Principe de fonctionnement GNN
 - Graphe et extraction des données
 - Message et agrégation
 - Connexion et Couche de GNN
 - Embedding
 - Entraînement
- Exemple de programme

Message et agrégation

phase de message passing

Consiste à propager l'information (ou le "message") entre les nœuds du graphe en utilisant les représentations des nœuds et des arêtes. Cette étape permet aux nœuds du graphe de communiquer et de partager de l'information.

Figure 9: propagation du message

Message et agrégation

phase d'agrégation

Consiste à agréger les informations mises à jour pour chaque nœud afin de calculer une représentation globale du graphe

Figure 10: agrégation

Message et agrégation

Figure 11: message et agrégation

- Intérêt de l'utilisation des GNN
- Principe de fonctionnement GNN
 - Graphe et extraction des données
 - Message et agrégation
 - Connexion et Couche de GNN
 - Embedding
 - Entraînement
- Exemple de programme

Connexion et couche de GNN

Figure 12: Connexion et couche

Connexion et couche de GNN

Connexion et couche

- Connexion: Cette étape consiste à agréger les embeddings des nœuds voisins pour mettre à jour l'embedding d'un nœud donné. Cela permet de propager l'information à travers le graphe
- Couche :(classiquement une couche fully-connected) est appliquée sur l'embedding résultant de l'étape de connexion. Cette couche permet d'apprendre de nouvelles représentations et caractéristiques.

- 1 Intérêt de l'utilisation des GNN
- Principe de fonctionnement GNN
 - Graphe et extraction des données
 - Message et agrégation
 - Connexion et Couche de GNN
 - Embedding
 - Entraînement
- 3 Exemple de programme

Embedding

- Embeddings = plongements
- Objectif : apprendre des représentations indépendantes des tâches
- On veut une représentation vectorielle des nœuds
 - similarité d'embedding = similarité dans le réseau (proximité, symétrie)
 - encoder l'information structurelle

Figure 13: embedding

- Intérêt de l'utilisation des GNN
- Principe de fonctionnement GNN
 - Graphe et extraction des données
 - Message et agrégation
 - Connexion et Couche de GNN
 - Embedding
 - Entraînement
- 3 Exemple de programme

Entraînement

Figure 14: modèle d'entraînements

- Intérêt de l'utilisation des GNN
- Principe de fonctionnement GNN
 - Graphe et extraction des données
 - Message et agrégation
 - Connexion et Couche de GNN
 - Embedding
 - Entraînement
- 3 Exemple de programme

Exemple de programme

Figure 15: représentation d'une GNN

Références

- (https://cedric.cnam.fr/vertigo/cours/RCP217/docs/RCP217-GraphML1.pdf)
- (https://www.keaipublishing.com/en/journals/aiopen)
- (https://cedric.cnam.fr/vertigo/cours/RCP217/docs/RCP217-GraphML2.pdf)
- (http://DataScientest.com)

Remerciement

Merci pour votre aimable attention sorrel.mvoto@facsciences-uy1.cm

