Active Manifolds: Dimension Reduction via Nonlinear Spaces

Zachary del Rosario

May 26, 2016

The Curse of Dimensionality

Understanding $f: \mathbb{R}^m \to \mathbb{R}$

Figure: Execution time scales exponentially with dimension.

Solution: Reduce m

Active Subspaces

Find linear subspaces in the domain $\mathcal{D} \subseteq \mathbb{R}^m$ along which $f(\mathbf{x})$ does not change appreciably, and ignore those directions, roughly

$$\mathbf{W}^T \nabla f(\mathbf{x}) \approx 0$$
, for all $\mathbf{x} \in \mathcal{D}$. (1)

More details available in Reference [Constantine, 2015]. New idea: Allow $\mathbf{W} = \mathbf{W}(\mathbf{x})$ to vary in parameter space.

Active Manifolds

Approximate Equation 1 above at a set of sample points x_i . Parameterizing $\boldsymbol{W}(\boldsymbol{x})$ on α in a linear fashion yields $\boldsymbol{M}^T \alpha$. Add an L1 term for sparsity, and constrain to have a minimum L2 norm.

min.
$$\|\boldsymbol{M}^T \boldsymbol{\alpha}\|_2 + \beta \|\boldsymbol{\alpha}\|_1$$

s.t. $\|\boldsymbol{\alpha}\|_2 \geqslant 1$. (2)

Each α defines a manifold; we successively reparameterize to find orthogonal α until we fill the space.

Paul Constantine (2015)

Active Subspaces: Emerging Ideas for Dimension Reduction in Parameter Studies

Publisher SIAM Philadelphia