Contrôle du 13 décembre 2016 (durée 1h30)

Seuls documents autorisés : Notes personnelles manuscrites.

Les exercices sont indépendants.

A. Racines cubiques et factorisation

- **1.** Soit p un nombre premier congru à 1 modulo 3, et soit x un cube modulo p (i.e. il existe y tel que $y^3 \equiv x$ modulo p. Combien de racines cubiques a x modulo p?
- **2.** Même question modulo q nombre premier congru à 2 modulo 3.

Pour le reste de l'exercice, on pose N=pq avec p,q premiers distincts, différents de 2 et 3. Dans un premier temps on suppose p et q congrus à 1 modulo 3.

- **3.** On suppose que x est un cube modulo N et que $\operatorname{pgcd}(x,N)=1$. Combien x a-t-il de racines cubiques modulo N?
- **4.** On suppose que x est un cube modulo N et que pgcd(x, N) = 1. Montrer que la donnée de deux racines cubiques y et z de x modulo N peut dans certains cas permettre de factoriser de N. Avec quelle probabilité obtient-on une factorisation non triviale de N lorsque y et z sont des racines cubiques prises au hasard?
- 5. Montrer que la donnée d'un oracle calculant des racines cubiques modulo N permet de factoriser N en temps probabiliste polynomial.
- **6.** Que se passe-t-il si $p \equiv q \equiv 2 \mod 3$?
- 7. Que se passe-t-il si $p \equiv 1$ et $q \equiv 2$ modulo 3?

B. Algorithme d'Adleman

L'algorithme d'Adleman permet de calculer des logarithmes discrets dans un corps fini premier. On souhaite ici calculer des logarithmes discrets sur un corps fini non premier.

- 8. Déterminer l'ensemble \mathcal{B} des polynômes unitaires irréductibles sur \mathbb{F}_3 de degré inférieur ou égal à 2.
- 9. Montrer que le corps \mathbb{F}_{243} est de la forme $\mathbb{F}_3[\alpha]$, où α vérifie la relation $\alpha^5 = \alpha + 2$.
- 10. On donne l'expression de certaines puissances de α en polynômes u_i de degré \leq 6 en α :

certaines puissances de
$$\alpha$$
 en polynômes α $\alpha^{79} = u_1(\alpha) = \alpha^3 + 2\alpha^2 + 2\alpha + 1$ $\alpha^{98} = u_2(\alpha) = 2\alpha^4 + \alpha^3 + 2\alpha^2 + 1$ $\alpha^{103} = u_3(\alpha) = 2\alpha^4 + \alpha^3 + \alpha^2$ $\alpha^{111} = u_4(\alpha) = 2\alpha^4 + \alpha^2 + 2\alpha + 1$ $\alpha^{120} = u_5(\alpha) = \alpha^4 + 2$

Factoriser les polynômes $u_i(X)$ en produits d'éléments de \mathcal{B} .

- 11. En déduire des relations faisant intervenir les logarithmes des éléments de \mathcal{B} en base α .
- 12. Calculer les logarithmes des éléments de \mathcal{B} en base α .
- **13.** En déduire le logarithme de $\alpha^2 + 2$ en base α .