Encyclopedia of Mathematics

Robin Adams

December 21, 2022

Contents

1	\mathbf{Set}	Theory	5
	1.1	Primitive Notions	5
	1.2	Classes	5

4 CONTENTS

Chapter 1

Set Theory

1.1 Primitive Notions

Let there be sets.

Let there be a binary relationship between sets called *membership*, denoted \in . If $a \in b$ we say a is a *member* or *element* of b, or b contains a, and also write $b \ni a$. If this does not hold, we write $a \notin b$ or $b \not\ni a$.

1.2 Classes

We speak informally about *classes*. A *class* is determined by a unary predicate. We write $\{x : P(x)\}$ or $\{x \mid P(x)\}$ for the class determined by the predicate P.

Given a class $\mathbf{A} := \{x : P(x)\}$ and a set a, we say a is a member or element of the class \mathbf{A} or \mathbf{A} contains a, and write $a \in \mathbf{A}$ or $\mathbf{A} \ni a$, iff P(a). If this does not hold, we write $a \notin \mathbf{A}$ or $\mathbf{A} \not\ni a$.

We say that two classes **A** and **B** are *equal*, and write $\mathbf{A} = \mathbf{B}$, iff they have exactly the same members. When this does not hold, we write $\mathbf{A} \neq \mathbf{B}$.

Proposition Schema 1 For any classes A, B and C:

- \bullet A = A
- If A = B then B = A
- If A = B and B = C then A = C.