Planche nº 16. Calculs de primitives et d'intégrales

* très facile ** facile *** difficulté moyenne **** difficile **** très difficile I : Incontournable T : pour travailler et mémoriser le cours

Exercice nº 1. (T) (utilisation d'un formulaire de primitives)

Calculer les primitives des fonctions suivantes sans se soucier de l'intervalle :

1)
$$3x^3 - 7x\sqrt[3]{x} + 3\sqrt{x} - \frac{1}{x} - \frac{4}{(\sqrt[4]{x})^7} + \frac{2}{x\sqrt{x}} - \frac{1}{x^2} + \frac{1}{4x^3} + \frac{1}{4x^4}$$
 2) $(x-1)e^{x^2-2x}$

3)
$$\frac{x}{(x^2-1)^3}$$

5) $\frac{2x+1}{(x^2-1)^3}$
6) $\frac{2}{(x^2-1)^3}$

5)
$$\frac{2x+1}{\left(\sqrt[3]{x^2+x+1}\right)^2}$$
 6) $\frac{2}{\sqrt{1-4x^2}}$

7)
$$\frac{1}{1+4x^2}$$
 8) $\frac{1}{4+x^2}$

9)
$$\frac{1}{x^2 + x + 1}$$
 10) $\frac{1}{x \ln x}$ 11) $\frac{1}{1 + e^{-x}}$ 12) $\frac{\sin^2(x/2)}{x - \sin x}$

13)
$$\frac{\sin^2(x/2)}{(x-\sin x)^3}$$
14)
$$\frac{\left(\frac{x}{e}\right)^x \ln x}{\left(\frac{x}{e}\right)^x \ln x}$$

Exercice nº 2. (T) (intégration par parties pour trouver des primitives)

Calculer les primitives des fonctions suivantes sans se soucier de l'intervalle :

1)
$$\ln x$$
 2) $x \ln x$ 3) $\ln(x+1)$ 4) Arcsin x 5) Arctan x

1)
$$\ln x$$
 2) $x \ln x$
 3) $\ln(x+1)$
 4) $\operatorname{Arcsin} x$
 5) $\operatorname{Arctan} x$

 6) $\operatorname{Arccos} x$
 7) xe^{-x}
 8) $(x^2 - 3x + 1) e^x$
 9) $(1 - x)e^{-2x}$
 10) $\ln(1 + x^2)$

 11) $e^{\operatorname{Arccos} x}$
 12) $\cos x \ln(1 + \cos x)$
 13) $\frac{xe^x}{(x+1)^2}$
 14) $x^n \ln x \ (n \in \mathbb{N})$

 15) $e^{\alpha x} \cos(\alpha x) \ ((\alpha, \alpha) \in (\mathbb{R}^*)^2)$
 16) $\sin(\ln x) \cot(\ln x)$
 17) $x^2 e^x \sin x$
 18) $\sqrt{1 - x^2}$

15)
$$e^{ax} \cos(\alpha x)$$
 ((a, α) \in (\mathbb{R}^*)²) **16)** $\sin(\ln x)$ et $\cos(\ln x)$ **17)** $x^2 e^x \sin x$ **18)** $\sqrt{1-x^2}$

Exercice nº 3. (T) (primitives de fonctions du type $x \mapsto 1/(ax^2 + bx + c)$)

Calculer les primitives des fonctions suivantes sans se soucier de l'intervalle :

1)
$$\frac{1}{2x^2+5x+2}$$
 2) $\frac{1}{4x^2-4x+1}$ 3) $\frac{1}{x^2+2x+2}$ 4) $\frac{1}{x^2+x+1}$ 5) $\frac{1}{x^2-2x\cos\theta+1}$, $\theta\notin\pi\mathbb{Z}$.

Exercice no 4. (T) (fractions rationnelles en sinus, cosinus et tangente)

Calculer les primitives des fonctions suivantes sans se soucier de l'intervalle :

1)
$$\frac{1}{\sin x}$$
 2) $\frac{1}{\cos x}$ 3) $\frac{1}{\tan x}$ 4) $\frac{1}{2 + \sin^2 x}$ 5) $\frac{\cos(3x)}{\sin x + \sin(3x)}$ 6) $\frac{1}{\cos^4 x + \sin^4 x}$

Exercice no 5. (I)

On pose
$$I = \int_0^{\pi/2} \frac{\cos x}{\cos x + \sin x} dx$$
 et $J = \int_0^{\pi/2} \frac{\sin x}{\cos x + \sin x} dx$. Calculer I et J.

Exercice no 6. (T) (ch, sh et th ...)

Calculer les primitives des fonctions suivantes sans se soucier de l'intervalle :

1)
$$\frac{1}{\cosh x}$$
 2) $\frac{1}{\sinh x}$ 3) $\frac{1}{\tan x}$ 4) $\cosh^3 x$
5) $\cosh^4 x$ 6) $\frac{\cosh^3 x}{1 + \sinh x}$ 7) $\sqrt{\cosh x - 1}$ 8) $\frac{\tan x}{1 + \cosh x}$
9) $\frac{1}{1 - \cosh x}$

Exercice nº 7. (T) (avec des racines)

Calculer les primitives des fonctions suivantes sans se soucier de l'intervalle :

1)
$$\frac{1}{\sqrt{2x-x^2}}$$
 (transformation canonique).

2)
$$\frac{1}{\sqrt{1+x}+\sqrt{1-x}}$$
 (quantité conjuguée puis poser $u=\sqrt{1+x}$ et $v=\sqrt{1-x}$).

3)
$$\frac{\sqrt{1+x^6}}{x}$$
 (poser $u = x^6$ et $v = \sqrt{1+u}$).

Exercice nº 8. (I)

Calculer les intégrales suivantes (a, b réels donnés, p et q entiers naturels donnés)

1)
$$\int_{1/a}^{a} \frac{\ln x}{x^2 + 1} dx \ (a > 0)$$
2)
$$\int_{1/a}^{2\pi} \cos(nx) \cos(ax) dx$$

$$\mathbf{2)} \int_0^{2\pi} \cos(px) \cos(qx) \ dx \ \mathrm{et} \int_0^{2\pi} \cos(px) \sin(qx) \ dx \ \mathrm{et} \int_0^{2\pi} \sin(px) \sin(qx) \ dx \ ((p,q) \in \mathbb{N}^2).$$

3)
$$\int_{a}^{b} \sqrt{(x-a)(b-x)} dx$$

4)
$$\int_{-2}^{2} (|x-1|+|x|+|x+1|+|x+2|) dx$$

5)
$$\int_{1/2}^{2} \left(1 + \frac{1}{x^2}\right) Arctan x dx$$

$$6) \int_0^{\pi} \frac{x \sin x}{1 + \cos^2 x}$$

Exercice nº 9.

Calculer $f(x) = \int_0^1 Max(x,t) dt$. Représenter graphiquement la fonction f.

Exercice nº 10. (I) (Intégrales de Wallis)

Pour n entier naturel, on pose $W_n = \int_0^{\pi/2} \sin^n x \ dx$.

- 1) Calculer W_0 et W_1 .
- 2) Déterminer une relation entre W_n et W_{n+2} .
- 3) En déduire W_{2n} et W_{2n+1} en fonction de n.

Exercice nº 11. (I)

Pour n entier naturel, on pose $I_n = \int_0^{\pi/4} \tan^n x \, dx$.

- 1) Calculer I_0 et I_1 . Trouver une relation entre I_n et I_{n+2} . En déduire I_n en fonction de n.
- 2) Montrer que I_n tend vers 0 quand n tend vers $+\infty$, et en déduire les limites des suites (u_n) et (v_n) définies par :

$$u_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{k} \ (n \in \mathbb{N}^*) \ \mathrm{et} \ \nu_n = \sum_{k=1}^n \frac{(-1)^{k-1}}{2k-1}.$$