Chapter 9-10 Confidence Intervals and Hypothesis Testing

Type 2 Error, Power

Statistics

Mehmet Güray Güler, PhD

Last updated 22.07.2020

Type 1 Error (α)

- Any other way to decrease type 1 error? (other than increasing n)
- We may change the limits of the critical regions.
- For example change them to
 - $\bar{X} > 73$
 - $\bar{X} < 63$
- . Is that OK?
 - Then, you make almost no error if you reject H0
 - Calculate!

•
$$\alpha = P\left(\frac{\bar{X}-\mu}{0.45} < \frac{63-68}{0.45} \middle| \mu = 68\right) + \left(\frac{\bar{X}-\mu}{0.45} > \frac{73-68}{0.45} \middle| \mu = 68\right) = 0$$
 Any problem?

- However, what happens if you don't reject H_0
- Then you purchase the cases whose
 - μ is 66 mm
 - or whose μ is 70 mm.
- This is something you don't want!!!
- Let's illustrate this

- Consider the case where you decided that $\mu=68mm$ even if the real parameter is $\mu=70mm$
- Hence you decided to purchase a large amount of these cases.
- Find the probability of this situation, i.e.
 - P(buy a large amount of cases when in fact $\mu = 70 \ mm$)
 - =P(Do not reject H0 $|\mu = 70$)
 - =P(63 $\leq \bar{X} \leq$ 73 | $\mu =$ 70 mm)

• =P(63
$$\leq \bar{X} \leq$$
 73 | μ = 70)

• =
$$P\left(\frac{63-\mu}{0.45} \le \frac{\bar{X}-\mu}{0.45} \le \frac{73-\mu}{0.45} \middle| \mu = 70\right)$$

• =
$$P\left(\frac{63-\mu}{0.45} \le \frac{\bar{X}-\mu}{0.45} \le \frac{73-\mu}{0.45} \middle| \mu = 70\right)$$

• =
$$P\left(\frac{63-70}{0.45} \le \frac{\bar{X}-70}{0.45} \le \frac{73-70}{0.45} \middle| \mu = 70\right)$$

- = $P(-15.55 \le Z \le 6.66) = 1$
- This probability is 1!!!

- Hence, if you change your rejection region from
 - $\bar{X} > 69 \text{ or } \bar{X} < 67$
 - to
 - $\bar{X} > 73 \text{ or } \bar{X} < 63$
- Then, if the real $\mu = 70~mm$ and if you don't reject the hypothesis, then you are almost always making an error!
- This error is indeed type 2 error:
 - Do not reject H0 when it is not true.
- Recall that H_0 : $\mu = 68$ and we calculated the following:
 - $\beta = P(Do not reject H0 | \mu = 70)$

- In order to calculate β , we need to specify a particular value for μ
 - " H_0 is not true" is not sufficient to calculate a probability.
 - In the previous example we calculate it for $\mu = 70$
- Hence we define β as $\beta(\mu)$ in order to indicate that it depends on the value of selected μ .
- Set the critical region to original one ($\bar{X} > 69$ or $\bar{X} < 67$) and calculate β for the following:
 - the true mean is $\mu = 70$
 - the true mean is $\mu = 66$
 - the true mean is $\mu=68.5$

Probability of a Type II Error

Let's now calculate β , the probability of committing a type II error, assuming that the true value of $\mu = 70$, for the case n=64.

$$\beta = P(\text{type IIerror} | \mu = 70) = P(67 \le \overline{X} \le 69 | \mu = 70)$$

$$= P(\frac{67-70}{0.45} \le Z \le \frac{69-70}{0.45}) \approx P(-6.67 \le Z \le -2.22) \approx 0.0132.$$

Probability of a Type II Error

Now calculate it for $\mu = 66$, that is:

 H_0 : $\mu = 68 \text{ vs } H_1$: $\mu = 66 \text{ with } n = 64$.

$$b(70) = P(\text{type} | m = 66) = P(67 \pm \bar{X} \pm 69 | m = 66)$$

$$= P(\frac{67 - 66}{0.45} \pm Z \pm \frac{69 - 66}{0.45}) * P(2.22 \pm Z \pm 6.67) * 0.0132.$$

Probability of a Type II Error

$$H_0: M = 68$$
 vs. $H_1: M = 68.5$
 H_0
 H_1
 \overline{X}

$$b(68.5) = P(\text{type} \text{Timerror} | m = 68.5) = P(67 \text{ £ } \overline{X} \text{ £ 69} | m = 68.5)$$
$$= P(\frac{67 - 68.5}{0.45} \text{ £ } Z \text{ £ } \frac{69 - 68.5}{0.45}) \gg P(-3.33 \text{ £ } Z \text{ £ 1.11}) \gg 0.866.$$

- We can generalize this to see that β values will be the same when μ is equal distance from 68 (H_0 : $\mu = 68$).
- We also note that β
 - becomes smaller as $|\mu 68|$ increases, i.e., μ gets away from 68.
 - becomes larger as $|\mu 68|$ decreases, i.e., μ gets closer to 68.
- This is understandable as it becomes more and more difficult to identify the difference between two means when $|\mu-68|$ nears zero, causing the probability of a type II error to increase.

Type 1 and Type 2 Errors

- For fixed sample size, when one error type increases, the other error type decreases.
- An increase in the sample size n will reduce both α and β .

- Good to control the probability of these two types of errors.
- Unfortunately, for a given sample size, we can NOT control both
- We use a hypothesis testing procedure that controls the probability of a type I error and guarantees that it cannot exceed a given small probability α .

• Example (Cont.d): For the previous example, instead of the critical region $\bar{X} < 67$ and $\bar{X} > 69$, what is probability of type 1 error if we are given $\alpha = 0.05$.

Solution

- Let the critical region be $\overline{X} < c_1$ and $\overline{X} > c_2$
- First find the critical region given $\alpha = 0.05$, i.e.,
 - Find c_1 and c_2 such that, given H0 is true, the following must hold:
 - $P(\bar{X} < c_1) + P(\bar{X} > c_2) = 0.05$

- Since they are symmetric we have
 - $P(\bar{X} > c_2) = 0.025$
- Using CLT and $\sigma_{\bar{X}}=0.45$ we have
 - $c_2 = \mu + z_{0.025} \times 0.45 = 68.74$
- Similarly we can find $c_1 = 67.26$
- Now calculate $P(type\ 1\ error)$
 - = $P(reject H_0|H_0is true)$
 - = $P(\bar{X} > 68.74 \text{ or } \bar{X} < 67.26 | \mu = 68)$
 - = $P(\bar{X} > 68.74 | \mu = 68) + P(\bar{X} < 67.26 | \mu = 68)$
 - \bullet =0.025 + 0.025 = 0.05

- Well, in fact α value that we used since the beginning is nothing but type 1 error.
- Now calculate β when the real $\mu=70$
- $\beta(70) = P(67.26 < \bar{X} < 68.74 | \mu = 70)$
- Using CLT and $\sigma = 0.45$ we have

• =
$$P\left(\frac{67.26 - \mu}{0.45} \le \frac{\bar{X} - \mu}{0.45} \le \frac{68.74 - \mu}{0.45} \middle| \mu = 70\right)$$

• =
$$P\left(\frac{67.26-70}{0.45} \le \frac{\bar{X}-70}{0.45} \le \frac{68.74-70}{0.45}\right) = 0.0026$$

• Hence probability of type 2 error is very small for this example.

Power of a Test

• DEFINITION. $1-\beta = \text{Power of the test}$ = $P(\text{Reject } H_0 \text{ when } H_0 \text{ is false})$

- Power of the test = The probability of **correctly** rejecting a false H_0 .
- It is the power of the test to differentiate between two hypotheses
 - If two hypotheses are close, then the power will be low.

Power of a Test

- $1-\beta = \text{Power of the test} = P(\text{Reject } H_0 \text{ when } H_0 \text{ is false})$
- A good testing procedure should have
- 1. A small level of significance (α value), and
- 2. A large power (1- β value) when the deviation from the value specified by H_0 is significantly large.
- For the previous example, the power of the test is $1 \beta = 0.9974$

Power of a Test

- $1-\beta = \text{Power of the test} = P(\text{Reject } H_0 \text{ when } H_0 \text{ is false})$
- You should now practice the calculation of the power of this test for other values of μ under H_1 .
- In particular calculate $1-\beta(67.5)$ to see how it is done in EXCEL.
- EXERCISE. Prepare a simple EXCEL sheet for calculating the power of the test in Example 2 for many different values of of μ under H_1 . Then graph the power function $1-\beta(\mu)$ against μ values.

Testing $\mu = \mu_0$ versus $\mu = \mu_0 + \delta$

- When testing H_0 : $\mu = \mu_0$ against H_1 : $\mu = \mu_0 + \delta$, for $\delta > 0$ when σ is given, we can use the Z-test.
- For given α, β, δ the needed sample size is: $n \gg \frac{(z_a + z_b)}{\sigma^2}$

Sometimes we need the number of experiments to be made for a given value of type 1 and type 2 error values. For the **single** mean case, tt is given by the above formula.

Testing μ_1 - μ_2 = d_0 versus μ_1 - μ_2 = d_0 + δ

- When testing H_0 : $\mu_1 \mu_2 = d_0$ against H_1 : $\mu_1 \mu_2 = d_0 + \delta$, when σ is given.
- we can use the *Z*-test, taking the sample size as: $n \gg \frac{(z_a + z_b)^2 (S_1^2 + S_2^2)}{2^2}$

Sometimes we need the number of experiments to be made for a given value of type 1 and type 2 error values. For the **two population** case, tt is given by the above formula. $\frac{\beta}{\alpha/2}$