1. Перехідні процеси біполярного ключа.

Процес перемикання біполярного транзистора визначається двома факторами: процесами накопичення та розсмоктування неосновних носіїв в базі, що формують струм колектора i_{κ} , та наявністю ємностей емітерного і колекторного переходів C_e і C_{κ} , які перезаряджаються при перемиканні. Якщо вхідна напруга U_{ex} дорівнює нулю, то транзистор закритий і струм колектора i_{κ} дорівнює незначному струму $i_{\kappa o}$ (рис. 6.1).

Рис. 6.1. Перехідні процеси в ключі на біполярному транзисторі.

напруги При подачі вхідної ступінчастої форми з'являється базовий струм I_{δ} такої ж форми. Якщо величина струму I_{δ} ϵ достатньою для транзистора введення зростаючий насичення, струм колектора буде прагнути до рівня βI_{δ} , де β – коефіцієнт підсилення струму транзистора. Нелінійний характер наростання i_{κ} визначається наявністю ємностей переходів база-емітер (C_e) і база-колектор Максимальне $(C_{\kappa}).$ значення i_{κ} обмежене опором R_{κ} і не перевищити може величини $I_{\kappa_{\rm Hac}} \approx E_{\kappa}/R_{\kappa}$.

Значення колекторного струму, в

той же час, визначається кількістю неосновних носіїв в базі. Тому, коли струм i_{κ} досягне величини $I_{\kappa \, hac}$, його зростання припиниться, але зростання числа носіїв заряду в базі триватиме до величини, яка відповідає струму I_{δ} . Таким чином, в базі транзистора накопичується надлишковий заряд неосновних носіїв, які беруть участі в створенні колекторного струму.

Як видно з діаграми, процес відкривання транзистора займає деякий інтервал часу $t_{6\kappa n}$. Зменшення цього часу на практиці досягається підвищенням в 1,5...3 рази базового струму, по відношенню до струму, достатньому для введення транзистора в насичення. Однак, збільшення базового струму в цьому випадку призводить до збільшення надлишкового заряду неосновних носіїв в базі, які після зняття вхідного сигналу (відключення струму I_{6}) продовжують підтримувати деякий час t_{p} колекторний струм незмінним. Відрізок часу t_{p} називають часом розсмоктування неосновних носіїв із бази. Тільки після видалення надлишкового заряду з бази починається процес зменшення колекторного струму до рівня $I_{\kappa o}$.

У швидкодіючих ключових схемах вживають заходів для зменшення t_p , і відповідно, $t_{\textit{викл}}$, в цілому.