ECUACIONES

DIFERENCIALES

ORDINARIAS

$$\frac{\mathrm{d}x}{\mathrm{d}t} = a(y-x) \qquad \frac{\mathrm{d}y}{\mathrm{d}t} = x(b-z) - y \qquad \frac{\mathrm{d}z}{\mathrm{d}t} = xy - cz$$

APUNTES DEL CURSO
2018-2019 IMPARTIDO
POR ANTONIO SANCHEZ

Rafael Sánchez

Revisión del 1 de febrero de 2019 a las 00:48.

Índice general

0.	Notación	5
Ι	Primer parcial	7
1.	Introducción a las ecuaciones diferenciales 1.1. Idea intuitiva	12 13
II	Segundo parcial	17
II	I Tercer parcial	19
I	V Apéndices	21
2.	Índices	23

ÍNDICE GENERAL

Capítulo 0

Notación

- $\blacksquare \ \mathcal{P} \equiv f(x) = g(x), \, \mathcal{P}$ es una ecuación.
- $\mathbf{y} = f(x)$, \mathbf{y} es una variable dependiente.
- $\blacksquare \ \frac{\mathrm{d}y}{\mathrm{d}x}=y',$ derivada de y respecto de x.

Parte I Primer parcial

Capítulo 1

Introducción a las ecuaciones diferenciales

1.1. Idea intuitiva

Definición 1 (Ecuacion diferencial de primer orden). Sea $\mathbf{y} = f(x)$, una ecuación diferencial de primer orden es una ecuación de la forma: $\mathbf{y}' = F(x, \mathbf{y})$.

Sea g(x) una función de x, diremos que es solución cuando la ecuación diferencial se cumpla para $\mathbf{y} = g(x)$.

Veamos unos ejemplos típicos.

Ejemplo 1

Consideramos $\mathcal{P} \equiv x'(t) = 2x(t)$ (o alternativamente $\mathbf{x}' = 2\mathbf{x}$)

Vemos que es una ecuación diferencial de primer orden ya que sigue la definición anterior. Es sencillo ver que $F(t, \mathbf{x}) = 2\mathbf{x} = 2x(t)$. Queremos hallar que funciones resuelven P

Además, observamos que si $x(t) = e^{2t}$, entonces $x'(t) = 2e^{2t} = 2x(t)$ y por tanto $x(t) = e^{2t}$ es una solución de P.

Si pensamos con más cuidado también observamos que $x(t) = 7e^{2t}$ también satisface P.

Nos interesaría entonces hallar una **solución general**, que con una sola ecuación englobe todas las soluciones. Aunque de momento no podemos justificarlo, si tomamos $x(t) = ae^{2t} \mid a \in \mathbb{R}$ entonces se cumple que $x'(t) = 2ae^{2t} = 2x(t)$ y por tanto es la solución general de P.

Del ejemplo anterior surgen problemas llamados problema de valor inicial, donde hallando la solución general y sabiendo la imagen de un punto t_0 por medio de x(t) podemos determinar el parámetro y encontrar una solución explícitamente. Como continuación al ejemplo anterior consideremos el sistema:

$$\begin{cases} x'(t) = 2x(t) \\ x(0) = 8 \end{cases}$$

Para resolverlo, hallamos la solución general $x(t) = ae^{2t}$ y sustituimos la segunda ecuación. $x(0) = ae^0 = 8 \implies a = 8$.

Ejemplo 2

Consideramos $\mathcal{P} \equiv x'(t) = 3(x(t))^{2/3}$., queremos hallar la solución para x(0) = 0.

Empezamos hallando soluciones a la ecuación, en este caso $x(t) = t^3$ y x(t) = 0 resuelven la ecuación. Nuestro sistema sería:

$$\begin{cases} x'(t) = 3(x(t))^{2/3} \\ x(0) = 0 \end{cases}$$

Sin embargo, tanto $x(t) = t^3 \mid t = 0$ como x(t) = 0 resuelven P. No podemos hablar de la solución puesto que hay dos.

En los dos ejemplos anteriores tenemos una ecuación diferencial de la forma $\mathbf{x}' = F(t, \mathbf{x}), f(\mathbf{x}) = 2\mathbf{x}$ y $f(\mathbf{x}) = 3\mathbf{x}^{2/3}$ respectivamente. Sin embargo, en la segunda tenemos dos soluciones para x(0) = 0. Al observar las gráficas de las dos funciones se ve la razón a simple vista, la segunda no es derivable en 0.

Ejemplo 3 (Crecimiento de una población)

Consideramos $\mathcal{P} \equiv \mathbf{x}' = \lambda \mathbf{x}$. (λ típicamente es natalidad o mortalidad).

Sabiendo que modela el crecimiento de una población en función del tiempo, podemos aproximar (veremos por qué más adelante) $\frac{\Delta x}{\Delta t} \sim \frac{\mathrm{d}x}{\mathrm{d}t} = \mathbf{x}'$. Por tanto (como es una tasa, se entiende que el tiempo tiende a 0 para hallarla):

$$\frac{\Delta x}{\Delta t} \sim \frac{\mathrm{d}x}{\mathrm{d}t} = \lambda \cdot \mathbf{x} \implies \lambda = \lim_{t \to 0} \frac{\mathbf{x}'}{\mathbf{x}}$$

El crecimiento de una población de organismos lo suficientemente grandes no se ve representada por la ecuación anterior debido a la limitación de recursos. Interesaría por tanto modelizar la ecuación teniendo esto en cuenta. Para ello utilizaremos el parámetro L como el límite al que tendería la población con los recursos existentes.

Ejemplo 4 (Crecimiento de una población con limitación de recursos)

Consideramos $\mathcal{P} \equiv \mathbf{x}' = a(1-\frac{\mathbf{x}}{L})\mathbf{x}$ con a>0. De esta forma cuando $\mathbf{x}<< L$ o $\mathbf{x}>> L$, tenemos prácticamente la ecuación del ejemplo anterior. Si $\mathbf{x}\sim L$ entonces la población apenas crece/decrece. Para encontrar soluciones a esta ecuación no hace falta resoverla, basta graficarla. Partimos de $\mathbf{x}'=f(t,\mathbf{x})=a(1-\frac{\mathbf{x}}{L})\mathbf{x}$.

Es fácil ver que \mathbf{x}' es una parábola, que corta al eje X en 0 y L. Además, se indica con (») la dirección en la que se mueve x(t) conforme avanza t. Tanto 0 como L son puntos de equilibrio, repulsor (inestable) y atractor (estable) respectivamente.

Habiendo encontrado las soluciones de la funcion anterior, nos preguntamos como varía la población frente al tiempo. Más adelante veremos formalmente como representar \mathbf{x} frente a t. Sin embargo, podemos razonar el aspecto de la función. Sabemos que tiene que corregirse cerca de L, y que si $\mathbf{x} \ll L$ entonces tiene un crecimiento parecido al exponencial. Por tanto, podría tener el aspecto de la figura 1.1. De este gráfico podemos deducir varias cosas. Para empezar, sabemos que $\mathbf{x}''(t_0) = 0$ tiene solución para la curva c_2 ya que tiene un punto de inflexión. Además, observamos disintos tipos de crecimiento en función del valor de x(0) por lo que tendría sentido intentar determinar para qué valores x_0 obtenemos el crecimiento de c_1 y para cuáles el de c_2 .

Ejercicio propuesto 1. ¿Para qué valores de x_0 se dan los diferentes crecimientos de c_1 y c_2 ?. Sugerencia: Considerar el problema de valor inicial con $x''(t_0) = 0$.

Figura 1.1: Población - Tiempo

1.2. Método de separación de variables

Esta sección trata sobre el primer método de resolución de ecuaciones diferenciales. Antes de definir el método formalmente vamos a ver un ejemplo.

Ejemplo 5 (Resolución sencilla)

Sea $\mathcal{P} \equiv \mathbf{y}' = x\mathbf{y}$. Halla las soluciones de la ecuación. $\mathbf{y}' = \frac{\mathrm{d}y}{\mathrm{d}x}$, con esta igualdad podemos hacer manipulaciones sin justificar (de momento).

$$\frac{\mathrm{d}y}{\mathrm{d}x} = x\mathbf{y} \implies \frac{dy}{\mathbf{y}} = x\mathrm{d}x \implies \int \frac{dy}{\mathbf{y}} = \int x\mathrm{d}x \implies \log|\mathbf{y}| = \frac{x^2}{2} + C \implies |\mathbf{y}| = e^{x^2/2 + C} = e^C \cdot e^{x^2/2}$$
$$\mathbf{y} = \pm e^C \cdot e^{x^2/2} = ke^{x^2/2} \mid k \in \mathbb{R}$$

Esta resolución se conoce como método de separación de variables.

Ejercicio propuesto 2. Resolver
$$\mathcal{P} \equiv \mathbf{x}' = a(1 - \mathbf{x}/L)\mathbf{x}$$
 con $x(0) = 0$.

Vamos a generalizar el método por medio de la siguiente proposición.

Proposición 1 (Método de separación de variables). Sea F(x) una primitiva de f(x) y G(y) una primitiva de g(y), es decir, $\frac{dF}{dx} = f(x)$ y $\frac{dG}{dy} = g(y)$, con y = f(x). Y sea una ecuación $\mathcal{P} \equiv \frac{dy}{dx} = \frac{f(x)}{g(y)}$, entonces las soluciones de \mathcal{P} cumplen:

$$G(y(x)) = F(x) + C \mid C \ constante.$$

Demostración.

Por la regla de la cadena:

$$\frac{\mathrm{d}}{\mathrm{d}x}G(y(x)) = \frac{\mathrm{d}G}{\mathrm{d}\mathbf{y}}(y(x)) \cdot \frac{\mathrm{d}y}{\mathrm{d}x}(x)$$

Como $\frac{dG}{d\mathbf{y}} = g(\mathbf{y})$ y $\frac{dy}{dx} = \frac{f(x)}{g(\mathbf{y})}$ por hipóstesis:

$$\frac{\mathrm{d}G}{\mathrm{d}\mathbf{y}}(y(x)) \cdot \frac{\mathrm{d}y}{\mathrm{d}x}(x) = g(y(x)) \cdot \frac{f(x)}{g(y(x))} = f(x) = \frac{\mathrm{d}}{\mathrm{d}x}F(x)$$

Es decir:

$$\frac{\mathrm{d}}{\mathrm{d}x}G(y(x)) = \frac{\mathrm{d}}{\mathrm{d}x}F(x) \implies \frac{\mathrm{d}}{\mathrm{d}x}G(y(x)) - \frac{\mathrm{d}}{\mathrm{d}x}F(x) = 0 \implies G(y(x)) - F(x) = \mathcal{C} \implies G(y(x)) = F(x) + \mathcal{C}$$

Observación 1. La prosposición anterior está incompleta, faltaría ver que condiciones tienen que cumplir f(x) y g(y). Para completarla tenemos que considerar la existencia de primitivas y la condición de que C sea constante.

- Ya que tenemos que usar que F(x) y G(y) son primitivas, basta pedir que tanto f(x) y g(y) sean continuas. Esto garantiza que F(x) y G(y) son ambas C^1
- Si $h'(x) = 0 \implies h(x)$ constante en cada intervalo en que está definida (pues \mathbb{R} es conexo). Si $h : \mathbb{R} \to \mathbb{R}$ entonces h(x) es constante. Como \mathcal{C} surge de integrar 0 a la derecha de la ecuación, podemos afirmar que $\mathcal{C} = h(x)$ y por tanto constante.

1.3. Significado geométrico de la ecuación diferencial ordinaria

Vamos a analizar una ecuación diferencial de forma gráfica para interpretarla geométricamente. Consideramos $\mathbf{y}' = f(x, (y))$. Supongamos que \mathbf{y} tiene la gráfica de la figura 1.2a. Entonces, $\mathbf{y}'(x_0) = \tan \theta$, que

es la pendiente de la recta tangente a la gráfica de \mathbf{y} en x_0 . Esto es cálculo elemental, lo que nos interesa es saber algo de la función \mathbf{y} cuando sabemos algo de \mathbf{y}' .

Ilustramos en la figura 1.2b entonces la casuística de conocer $\mathcal{P} \equiv \mathbf{y}' = f(x, \mathbf{y})$. En este caso, nos preguntamos que aspecto podría tener \mathbf{y} para que fuera solución de \mathcal{P} . Como conocemos $y'(x_0)$, podemos considerar que \mathcal{S} es un semento paralelo a la recta tangente de la gráfica en x_0 . Es fácil ver que \mathcal{C}_1 no puede ser solución de \mathcal{P} pues $\mathcal{C}'_1(x_0) \neq y'(x_0)$. Sin embargo, es evidente que \mathcal{C}_2 sí resuelve \mathcal{P} .

Si repetimos el procedimiento de determinar como son las pendientes (como acabamos de hacer para x_0) para todos los puntos, hallamos el campo de pendientes.

Ejemplo 6 (Hallar un campo de pendientes)

Sea $\mathcal{P} \equiv \mathbf{x}' = t^2 + \mathbf{x}^2$, es decir, $f(t, \mathbf{x}) = t^2 + \mathbf{x}^2$. Si queremos hallar qué pendiente se le asigna al punto $p = (1/\sqrt{2}, 1/\sqrt{2})$ evaluamos la función f, f(p) = 1. Por tanto, la función \mathbf{x} que soluciona \mathcal{P} tiene tangente

con pendiente 1 en $t = 1/\sqrt{2}$.

De hecho, es lógico pensar que a cualquier punto que cumpla $t^2 + \mathbf{x}^2 = 1$ se le asignará una pendiente de 1 a su recta tangente. Este conjunto de puntos conforman la **isoclina** de pendiente 1.

De forma general, para una constante c dada (en este ejemplo necesariamente no negativa pues $f(t, \mathbf{x})$ es suma de cuadrados), podemos definir la isoclina de pendiente c:

$$ISO_c = \{(t, \mathbf{x}) \mid f(t, \mathbf{x}) = c\}$$

Volviendo a nuestro ejemplo, las isoclinas van a ser curvas que cumplan $t^2 + \mathbf{x}^2 = c$ para un c dado.

Hemos representado las isoclinas junto con un pequeño segmento de pendiente c para disintos valores de c. Como las isoclinas cumplen que $t^2 + \mathbf{x}^2 = c$, estas son las circumferencias de radio \sqrt{c} con c > 0. Podemos observar tambien que $ISO_0 = \{(0,0)\}$ e $ISO_{c<0} = \emptyset$.

Sin

Llamamos a la gráfica con pequeños segmentos campo de pendientes y por tanto, una función que resuelva \mathcal{P} tiene que ser tangente al segmento del punto por el que pase.

embargo, los campos de pendientes permiten ver cómo es la función a grandes rasgos. En nuestro ejemplo parece indicar que $x(t) \uparrow \infty$, pero no sabemos si lo hace de forma asintótica $(x(t) \uparrow \infty \text{ en } t \text{ finito})$, o x(t) crece a infinito cuando $t \to \infty$.

Esto no puede resolverse gráficamente y veremos como resolverlo de forma analítica más adelante.

1.4. Ecuaciones diferenciales y problemas geométricos

 $\boldsymbol{\chi}$

Gracias a la relación de la derivada con la tangencia de funciones, podemos plantear problemas geométricos en forma de ecuación diferencial.

1.4.1. Trayectorias ortogonales

De la recta tagente a un punto surge el concepto de recta normal a ese punto, que no es más que la recta perpendicular a la tangente y que pasa por dicho punto. Para ver como se relacionan estas dos rectas vamos a hacer un análisis simple. Diremos que dos curvas son ortogonales si en el punto de cruce las rectas tangentes a cada curva son perpendiculares entre sí.

p = (x, y)

De la figura 1.3 vemos que la pendiente de C es $pend_C = \tan(\theta)$. Asimismo, $pend_{C^{\perp}} = \tan(\omega)$ y $\omega = \theta - \pi/2$. A partir de aquí desarrollamos:

$$\tan(\omega) = \frac{\sin(\theta - \pi/2)}{\cos(\theta - \pi/2)} = \frac{-\cos(\theta)}{\sin(\theta)} = -\frac{1}{\tan(\theta)}$$

y por tanto,

$$pend_C \cdot pend_{C^{\perp}} = -1 \tag{1.1}$$

Nuestro objetivo es que dada una familia de curvas fam_C , podamos encontrar una $(familia\ de)$ curva que sea ortogonal a todas las de la familia en los puntos de cruce.

Supongamos que la familia original satisface una ecuación diferencial ordinaria $\mathbf{y_1'} = f(x, \mathbf{y_1})$. Queremos encontrar otra ecuación que defina a la ortogonal.

Figura 1.3: Relaciones entre curvas ortogonales

Como fam_C sigue una EDO (ecuacion diferencial ordinaria), podemos afirmar que $pend_C = \mathbf{y_1'} = f(x, \mathbf{y_1})$. Usando 1.1, $pend_{C^{\perp}} = \frac{-1}{f(x, \mathbf{y_1})}$. Pero además, si C^{\perp} sigue una EDO, está dada por una función $\mathbf{y_2} = y_2(x)$ y entonces $\mathbf{y_2'} = \frac{-1}{f(x, \mathbf{y_1})}$.

Concluimos con que dada fam_C descrita por $\mathbf{y}' = f(x, \mathbf{y})$, podemos encontrar $fam_{C^{\perp}}$ que satisface:

$$\mathbf{y}' = -\frac{1}{f(x, \mathbf{y})}$$

Ejemplo 7 (Familia ortogonal a otra dada)

Consideramos la familia: $x^2 - y^2 = c \mid c \neq 0$

Para cada c, eso define \mathbf{y} implícitamente en función de x.

 $x^2 - y^2 = c$ para distintos valores de c.

(También puede verse como las curvas de nivel del paraboloide hiperbólico)

Para hallar la familia de curvas ortogonales vamos a seguir una serie de pasos:

1. Encontrar una EDO que cumplan esas curvas.

$$x^2 - \mathbf{y}^2 = c \rightarrow \frac{\mathrm{d}}{\mathrm{d}x}(x^2 - y^2 = c) \rightarrow 2x - 2\mathbf{y}\mathbf{y}' = 0 \implies \mathbf{y}' = \frac{x}{\mathbf{y}} = f(x, \mathbf{y})$$

2. Econtrar la EDO para trayectorias ortogonales.

$$\mathbf{y}' = -\frac{1}{f(x, \mathbf{y})} = -\frac{\mathbf{y}}{x}$$

3. Resolver la ecuación anterior

$$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{\mathbf{y}}{x} \implies -\frac{\mathrm{d}y}{\mathbf{v}} = \frac{\mathrm{d}x}{x} \implies \log|y| = \log|x| + C$$

es decir,

$$|\mathbf{y}| = \frac{e^{\mathcal{C}}}{|x|} \implies |x\mathbf{y}| = e^{\mathcal{C}} \implies x\mathbf{y} = k : k = e^{\mathcal{C}} \lor k = e^{-\mathcal{C}} \implies \mathbf{y} = \frac{k}{x}$$

Con la solución general podemos representar parte de la familia:

En azul posibles soluciones para disintos valores de k, en negro la familia original Se observa que son curvas ortogonales a la familia original.

Parte II Segundo parcial

Parte III Tercer parcial

Parte IV

Apéndices

Capítulo 2

Índices

Lista de definiciones

1.	Definición (Ecuacion diferencial de primer orden)
1.	Ejemplo
2.	Ejemplo
3.	Ejemplo (Crecimiento de una población)
4.	Ejemplo (Crecimiento de una población con limitación de recursos)
1.	Ejercicio propuesto
5.	Ejemplo (Resolución sencilla)
2.	Ejercicio propuesto
6.	Ejemplo (Hallar un campo de pendientes)
7.	Ejemplo (Familia ortogonal a otra dada)

Lista de teoremas

3.	Ejemplo (Crecimiento de una población)	10
4.	Ejemplo (Crecimiento de una población con limitación de recursos)	10
5.	Ejemplo (Resolución sencilla)	11
6.	Ejemplo (Hallar un campo de pendientes)	12
7.	Ejemplo (Familia ortogonal a otra dada)	14

28 LISTA DE TEOREMAS

Lista de ejemplos

3.	Ejemplo (Crecimiento de una población)	10
4.	Ejemplo (Crecimiento de una población con limitación de recursos)	10
5.	Ejemplo (Resolución sencilla)	11
6.	Ejemplo (Hallar un campo de pendientes)	12
7.	Ejemplo (Familia ortogonal a otra dada)	14

30 LISTA DE EJEMPLOS

Lista de ejercicios

3.	Ejemplo (Crecimiento de una población)	10
	Ejemplo (Crecimiento de una población con limitación de recursos)	
5.	Ejemplo (Resolución sencilla)	11
6.	Ejemplo (Hallar un campo de pendientes)	12
7.	Ejemplo (Familia ortogonal a otra dada)	14