

Compléments sur les groupes

Je me s	ouviens	
	1.1	Loi de composition interne
	1.2	Structure de groupe
	1.3	Morphisme de groupes
	1.4	Les entiers
Cours		
2	Sous-	groupe engendré par une partie
3		lude: le groupe $(\mathbb{Z}/n\mathbb{Z},+)$
4		pes monogène et groupes cycliques
5		e d'un élément dans un groupe
Exercio	es	
Exe	ercices e	et résultats classiques à connaître
		ntre d'un groupe
		ous-groupes de $(\mathbb{R},+)$
Exe		
		plàmes d'antrainement

Je me souviens

1.1 Loi de composition interne

- 1. Qu'est-ce qu'une loi de composition interne?
- 2. Comment noter une loi de composition interne?
- 3. Que signifient :
 - associatif?
 - commutatif?
 - élément neutre? Comment le note-t-on?
 - inversible?
- 4. Soit E un ensemble, muni d'une loi de composition interne *. On suppose l'existe d'un élément neutre noté e. Soit a et b deux éléments de E, inversibles. Est-ce que (a*b) est inversible?
- 5. Pour un élément a et un entier n, qu'est-ce que a^n ?
- 6. Qu'est-ce qu'une **partie stable** de E pour *?

1.2 Structure de groupe

- 7. C'est quoi, un groupe?
- 8. Donner des exemples de groupes.
- 9. Comment définir le **groupe produit** de deux groupes?
- 10. C'est quoi, un sous-groupe?
- 11. Quels sont les deux sous-groupes triviaux de (G, *)?

1.3 Morphisme de groupes

- 12. Qu'est-ce qu'un morphisme de groupe?
- 13. Donner des exemples de morphismes de groupes.

On considère $f:(G,*)\to (H,\cdot)$ un morphisme de groupe.

- 14. Quelle est l'image du neutre, de l'inverse, par f?
- 15. Que dire de l'image (directe) d'un sous-groupe par f?
- 16. Que dire de l'image réciproque d'un sous-groupe par f?
- 17. C'est quoi, le noyau de f? Quel lien avec l'injectivité de f?
- 18. C'est quoi, l'image de f? Quel lien avec la surjectivité de f?
- 19. Qu'est-ce qu'un **isomorphisme** de groupes.
- 20. Comment montrer qu'une application est un isomorphisme?

1.4 Les entiers

- 21. Que désigne \mathbb{Z} ? $7\mathbb{Z}$?
- 22. Énoncer le théorème de la division euclidienne dans \mathbb{Z} .

2 Sous-groupe engendré par une partie

<u>Proposition.</u> Une intersection de sous-groupes est un sous-groupe : si $(H_i)_{i \in I}$ une famille de sous-groupes de (G, *), alors $\bigcap_{i \in I} H_i$ est un sous-groupe de G.

<u>Définition</u>. Soit (G,*) un groupe et A une partie de G. On appelle sous-groupe engendré par A le plus petit sous-groupe H de (G,*) qui contient A.

Remarque. On note $\langle A \rangle$ le sous-groupe engendré par A, mais cette notation n'est pas dans le programme officiel.

Remarque. La définition signifie que H est le sous-groupe de (G,*) engendré par A si et seulement si :

- H est un sous-groupe de (G,*)
- A ⊂ H
- Pour tout sous-groupe K de (G,*), $A \subset K \implies H \subset K$

<u>Définition.</u> La partie A de (G,*) est dite **génératrice de** G lorsque le sous-groupe de (G,*) engendré par A est G.

Remarque. On peut décrire le sous-groupe engendré par A: C'est l'ensemble des éléments de G qui s'écrivent sous la forme :

$$a_1^{\varepsilon_1} * \cdots * a_n^{\varepsilon_n}$$

où $n \in \mathbb{N}, a_1, \ldots, a_n \in A, \varepsilon_1, \ldots, \varepsilon_n = \pm 1.$

Lorsque G est commutatif et noté additivement, le sous-groupe engendré par A est l'ensemble des éléments qui s'écrivent sous la forme :

$$k_1a_1 + \cdots + k_pa_p$$

où $p \in \mathbb{N}$, $a_1, \ldots, a_p \in A$ sont distincts, et $k_1, \ldots, k_p \in \mathbb{Z}$. Ce ne sont pas tout à fait des combinaisons linéaires, puisque les « scalaires » sont ici entiers.

3 Interlude : le groupe $(\mathbb{Z}/n\mathbb{Z},+)$

Proposition. Pour $n \in \mathbb{N}$, la relation de **congruence modulo** n sur \mathbb{Z} est définie par :

$$a \equiv b [n] \iff a - b \in n\mathbb{Z}$$

C'est une relation d'équivalence.

Remarque. Si n = 0, il s'agit simplement de l'égalité. Si n = 1, tous les entiers sont en relation.

Proposition. Pour $n \ge 2$, il y a exactement n classes d'équivalences :

$$\{\overline{0},\overline{1},\ldots,\overline{n-1}\}$$

Définition. On note $\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$, appelé « \mathbb{Z} sur $n\mathbb{Z}$ ».

Remarque. On a bien $\operatorname{Card} (\mathbb{Z}/n\mathbb{Z}) = n$.

<u>Proposition.</u> Pour $n \ge 2$, il existe une unique loi de groupe sur $\mathbb{Z}/n\mathbb{Z}$, encore notée +, pour laquelle l'application $k \mapsto \overline{k}$ soit un morphisme de groupes, i.e. :

$$\forall a, b \in \mathbb{Z}, \ \overline{a+b} = \overline{a} + \overline{b}$$

Remarque. Muni de cette loi, $(\mathbb{Z}/n\mathbb{Z}, +)$ est donc bien un groupe commutatif.

Exemple. Construire la table de la loi + dans $\mathbb{Z}/4\mathbb{Z}$.

Corollaire. Pour $n \in \mathbb{N}^*$, $\overline{a} \in \mathbb{Z}/n\mathbb{Z}$ et $k \in \mathbb{Z}$,

$$k \cdot \overline{a} = \overline{ka}$$

Théorème.

Soit n entier ≥ 2 . Alors $(\mathbb{Z}/n\mathbb{Z}, +)$ est engendré par chaque \overline{k} , où $k \in \{0, \dots, n-1\}$ est premier avec n.

Exemple. Donner la liste des éléments qui engendrent $(\mathbb{Z}/12\mathbb{Z}, +)$.

4 Groupes monogène et groupes cycliques

Exemple-proposition. Les sous-groupes de $(\mathbb{Z},+)$ sont les $H=n\mathbb{Z}$, où $n\in\mathbb{N}$.

Proposition. Le sous-groupe de (G,*) engendré par a est

$$\langle a \rangle = \{ a^n, \ n \in \mathbb{Z} \}$$

Il est toujours commutatif.

<u>Définition</u>. Soit (G, *) un groupe. On dit que G est **monogène** s'il est engendré par un seul élément, appelé **générateur de** G:

$$\exists x \in G, \ G = \langle x \rangle$$

Lorsque G est monogène et fini, on dit que G est un **groupe cyclique**.

Exemple.

- $(\mathbb{Z}, +)$ est monogène, car $\mathbb{Z} = \langle 1 \rangle$, mais n'est pas fini.
- $(\mathbb{Z}/n\mathbb{Z}, +)$ est cyclique car $\mathbb{Z}/n\mathbb{Z} = \langle \overline{1} \rangle$ et de cardinal n.

Théorème.

Deux situations se présentent : un groupe monogène est isomorphe à $(\mathbb{Z},+)$ lorsqu'il est infini, et isomorphe à $(\mathbb{Z}/n\mathbb{Z},+)$ lorsqu'il est de cardinal n.

Corollaire. Pour tout $n \in \mathbb{N}^*$, (\mathbb{U}_n, \times) et $(\mathbb{Z}/n\mathbb{Z}, +)$ sont isomorphes.

5 Ordre d'un élément dans un groupe

<u>Définition</u>. Soit (G, *) un groupe et $a \in G$. On dit que a **est d'ordre fini** si le sous-groupe $\langle a \rangle$ qu'il engendre est de cardinal fini, appelé **l'ordre de** a.

Remarque. On note ordre(a) l'ordre de a, mais cette notation n'est pas dans le programme officiel.

Rappel. Si a est un élément d'ordre d de G, l'application :

$$\phi_a: \mathbb{Z} \to G \\
k \mapsto a^k$$

est un morphisme de groupes, avec $\operatorname{Im}(\phi_a) = \langle a \rangle$ et $\operatorname{Ker} \phi_a = d\mathbb{Z}$.

De plus, l'application :

$$\begin{array}{cccc} \phi_a : \ \mathbb{Z}/d\mathbb{Z} & \to & \langle a \rangle \\ \overline{k} & \mapsto & a^k \end{array}$$

est un isomorphisme de groupes.

Théorème.

Si a est un élément d'ordre $d \in \mathbb{N}^*$ dans un groupe (G,*), alors :

$$\langle a \rangle = \{e, a, a^2, \dots, a^{d-1}\}$$

et:

$$\operatorname{ordre}(a) = \operatorname{Min}\{k \in \mathbb{N}^*, \ a^k = e\}$$

Corollaire. On conserve les notations précédentes. Alors, pour tout $n \in \mathbb{Z}$:

$$a^n = e \iff d \mid n$$

Théorème.

Soit (G, \star) un groupe fini. Alors tous ses éléments sont d'ordre fini.

Plus précisément, pour tout $a \in G$:

$$ordre(a) \mid Card(G)$$

c'est-à-dire que $a^{\operatorname{Card}(G)} = e$.

<u>Corollaire</u>. Tout groupe fini dont le cardinal est premier est cyclique, et engendré par chacun de ses éléments différent du neutre.

Exercices et résultats classiques à connaître

Le centre d'un groupe

11.1

Soit (G, \star) un groupe. On définit son **centre** comme l'ensemble des éléments de G qui commutent avec tous les éléments de G:

$$C = \{g \in C, \; \forall h \in G, \; g \star h = h \star g\}$$

Montrer que C est un sous-groupe de (G, \star) .

Les sous-groupes de $(\mathbb{R},+)$

11.2

Montrer que, si G est un sous-groupe de $(\mathbb{R},+)$, alors il est soit de la forme $\alpha \mathbb{Z}$ avec $\alpha \in \mathbb{R}$, soit dense dans \mathbb{R} . Dans le cas où $G \neq \{0\}$, on s'intéressera à $\alpha = \text{Inf}(G \cap \mathbb{R}_+^*)$ et on discutera selon que $\alpha > 0$ ou $\alpha = 0$.

11.10

de groupes.

11.12

Déterminer tous les morphismes de groupes de $(\mathbb{Q}, +)$ dans $(\mathbb{Z}, +)$. 11.3

11.11 Soit G et G' deux groupes notés additivement, et $f: G \to G'$ un morphisme

 $x \mapsto a * x$

(a) Montrer que, pour tout $x \in G$ et tout $n \in \mathbb{N}$, f(nx) = nf(x). 11.4 (b) Est-ce encore vrai lorsque $n \in \mathbb{Z}$?

Soit $n \in \mathbb{N}^*$. On considère $\mathbb{U}_n = \{z \in \mathbb{C}, z^n = 1\}$ l'ensemble des racines n-èmes de l'unité. Montrer que (\mathbb{U}_n, \times) est un groupe.

(c) Comment s'écrivent ces résultats lorsque les groupes sont notés multiplicativement?

Soit E un ensemble non vide, $a \in E$. On considère :

 $H = \{ f \in \mathfrak{S}(E), \ f(a) = a \}$

l'ensemble des permutations de E fixant a. Montrer que (H, \circ) est un groupe.

11.1311.6 Démontrer que la matrice :

 $\mathrm{SL}_n(\mathbb{K}) = \{ M \in \mathcal{M}_n(\mathbb{K}), \, \det(M) = 1 \}$

est un groupe pour la multiplication.

est d'ordre fini dans $GL_2(\mathbb{R})$.

 $H = \{x + y\sqrt{3}, \ x, y \in \mathbb{Z}, \ x^2 - 3y^2 = 1\}$

est un sous-groupe de (\mathbb{R}^*, \times) .

Déterminer le sous-groupe de $(\mathbb{Z}, +)$ engendré par $\{-27, 12, 18\}$.

Montrer que le sous-groupe de (\mathbb{C}^*, \times) engendré par $\{i = e^{i\frac{\pi}{2}}, j = e^{i\frac{2\pi}{3}}\}$ est \mathbb{U}_{12} , l'ensemble des racines 12-ièmes de l'unité.

11.14

Voici la liste des éléments de \mathfrak{S}_3 :

Dans \mathfrak{S}_{10} , déterminer l'ordre de :

d'ordre fini, et calculer cet ordre.

 $\{\mathrm{Id}, (12), (13), (23), (123), (132)\}$

(14378)(257)

Soit (G, *) un groupe commutatif. On considère g_1, g_2 deux élements d'ordre

 d_1, d_2 respectivement. On suppose que $d_1 \wedge d_2 = 1$. Montrer que $g_1 * g_2$ est

 $\begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix}$

Indiquer pour chaque élément son ordre.

est bijective.

11.5

Montrer que :

11.7

Montrer que :

11.8

11.9

Petits problèmes d'entrainement

11.16

Soit (G, \star) un groupe, et \mathfrak{S} l'ensemble des permutations de G. On rappelle que (\mathfrak{S}, \circ) est un groupe. Pour $g \in G$, on définit :

$$\phi_g: G \to G
h \mapsto g \star h \star g^{-1}$$

- (a) Montrer que $\phi: g \mapsto \phi_g$ est un morphisme de (G, \star) dans (\mathfrak{S}, \circ) .
- (b) Caractériser les éléments du noyau de ϕ .

11.17

(a) Soit (G,*) un groupe. Pour tout $g \in G$, on note :

$$\phi_g: G \to G \\
x \mapsto g * x$$

Montrer que $g \mapsto \phi_g$ est un morphisme de groupes de (G,*) dans (\mathfrak{S}_G, \circ) , et qu'il est injectif.

- (b) En déduire que tout groupe fini ayant n éléments se plonge dans \mathfrak{S}_n , c'est-à-dire est isomorphe à un sous-groupe de \mathfrak{S}_n .
- (c) Dans le cas où n=4, identifier dans \mathfrak{S}_4 un sous-groupe isomorphe à $\mathbb{Z}/4\mathbb{Z}$ et un autre isomorphe à $(\mathbb{Z}/2\mathbb{Z})^2$.

11.18

Pour $n \in \mathbb{N}^*$, \mathfrak{S}_n désigne le groupe symétrique, c'est-à-dire l'ensemble des permutations de $[\![1,n]\!]$.

(a) Montrer que, pour tout $\sigma \in \mathfrak{S}_n$ et tout $a_1, \ldots, a_k \in [1, n]$ distincts :

$$\sigma \circ (a_1 \quad a_2 \quad \dots \quad a_k) \circ \sigma^{-1} = (a_{\sigma(1)} \quad a_{\sigma(2)} \quad \dots \quad a_{\sigma(k)})$$

On rappelle que la notation $(a_1 \ a_2 \ \dots \ a_k)$ désigne la permutation γ telle que $\gamma(a_i) = a_{i+1}$ avec $\gamma(a_k) = a_1$, les autres éléments étant laissés invariants.

(b) En déduire qu'il n'y a que deux morphismes de groupes de (\mathfrak{S}_n, \circ) dans (\mathbb{C}^*, \times) : le morphisme constant égal à 1, et la signature.

11.19

On note $GL_2(\mathbb{Z})$ l'ensemble des matrices carrées d'ordre 2 à coefficients dans \mathbb{Z} dont le déterminant vaut 1 ou -1.

- (a) Soit M une matrice carrée d'ordre 2 à coefficients entiers. Montrer que si M est inversible et que M^{-1} est à coefficients entiers, alors $\det(M) = \pm 1$.
- (b) Montrer que $(GL_2(\mathbb{Z}), \times)$ est un groupe.
- (c) On considère $A = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & -1 \\ 1 & -1 \end{pmatrix}$. Calculer l'ordre de A, de B et de AB. Que peut-on en conclure?