AIR FORCE FLIGHT DYNAMICS LAB WRIGHT-PATTERSON AFB OHIO F/6 13/13
'ANALYZE' - ANALYSIS OF AEROSPACE STRUCTURES WITH MEMBRANE ELEM--ETC(U)
DEC 78 V B VENKAYYA, V A TISCHLER AD-A065 633 UNCLASSIFIED AFFDL-TR-78-170 NL 1 OF 2 AD A085833

AD AO 65633

"ANALYZE" — ANALYSIS OF AEROSPACE STRUCTURES WITH MEMBRANE ELEMENTS

VIPPERLA B. VENKAYYA
VICTORIA A. TISCHLER
ANALYSIS AND OPTIMIZATION BRANCH
STRUCTURAL MECHANICS DIVISION

DECEMBER 1978

TECHNICAL REPORT AFFDL-TR-78-170 Final Report for May – August 1978

Approved for public release; distribution unlimited.

AIR FORCE FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABORATORIES AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433

NOTICE

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Information Office (10) and is releasable to the National Technical Information Service (NTIS). At NTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

VIPPERLA B. VENKAYYA

Project Engineer

Design & Analysis Methods Gp. Analysis & Optimization Branch CHARLES A. BAIR, Jr., Major, USAF Chief, Analysis & Optimization br. Structural Mechanics Division

FOR THE COMMANDER

RALPH L. KUSTER, Jr., Colonel, USAF Chief, Structural Mechanics Division

Copies of this report should not be returned unless return is required by security considerations, contractural obligations, or notice on a specific document.

AIR FORCE/56780/23 February 1979 - 350

UNCLASSIFIFE

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1.//	NO. 3 RECIPIENT'S CATALOG NUMBER
19 AFFDL-TR-78-170 /	(7)
	Final Report
ANALYZE - Analysis of Aerospace Structures	May - August 178
with Membrane Elements	6. PERFORMING ORG. REPORT NUMBER
	G. PENTONMING ORG. REPORT NUMBER
. AUTHOR(a)	8. CONTRACT OR GRANT NUMBER(a)
Vipperla B./Venkayya /	116/01/01/
Victoria A. /Tischler /	12401
PERFORMING ORGANIZATION NAME AND ADDRESS	10 PROCESS EL ENGUE DEGLECT TAGE
Air Force Flight Dynamics Laboratory	10. PROGRAM ELEMENT, PROJECT, TASK
	Proj. No. 2401
Analysis & Optimization Branch (FBR)	Task 240102
Wright-Patterson Air Force Base, OH	Work Unit 240102-08
. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Flight Dynamics Laboratory	December 1978 /
Air Force Flight Dynamics Laboratory Wright-Patterson Air Force Base, OH	3. NUMBER OF PAGES
	117 (72)
MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office	e) 15. SECURITY CLASS. (of this
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING
	SCHEDULE
	ited.
Approved for public release; distribution unlim	
Approved for public release; distribution unlim	
Approved for public release; distribution unliming. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different	
Approved for public release; distribution unlimited. 7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in the supplementary notes. 8. Supplementary notes.	t from Report)
Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, 11 differents.) B. SUPPLEMENTARY NOTES	t from Report)
Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Block 20, if diff	t from Report) ber)
Approved for public release; distribution unlimited. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different in Block 20, if diff	t from Report) ber)
7. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different Block 20, if d	es ANALYZE Avadrilateral, and a shear element formulations, program a comprehensive theoretical

012 070

ONCTA22111FD

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

300

70

03

2

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

Block 20 (cont'd)

ANALYZE is an in-house program and can be used on INTERCOM for problems up to 150 to 200 degrees of freedom and a comparable number of elements. This program is extremely useful in training engineers in the use of finite element programs, in the development of finite element models of large aerospace structures, and in research in structural analysis and optimization.

X

14126

FOREWORD

This report is prepared as part of an in-house effort under Project 2401, Task No. 240102, "Design and Analysis Methods for Aerospace Vehicle Structures," and Work Unit 24010208, "Automated Design of Advanced Aerospace Structures." The work was carried out in the Design and Analysis Methods Group of the Analysis & Optimization Branch (FBR), Structural Mechanics Division, Air Force Flight Dynamics Laboratory, Wright-Patterson AFB, Ohio.

The time period of the effort for this Technical Report is May 1978 - August 1978. The manuscript was originally released as AFFDL-FBR-TM-78-89 in August 1978.

RETURN TO BE THY CODES	TIS	The Section D
RSTREET TO BE AVAILABLE TO CODES	36	B_ff Section 🗖
NS FRIENT COURSE AST THY CODES	G. PENTY	0 0
HSTREET TO SELVING EST ITY CODES	311211	N
	PSIND TO	SPECIAL

TABLE OF CONTENTS

SECTION	TITLE	PAGE
1	INTRODUCTION	1
2	ANALYSIS	6
3	FINITE ELEMENTS	15
4	ORGANIZATION OF THE PROGRAM	27
5	DESCRIPTION OF THE SUBROUTINES	34
6	INPUT INSTRUCTIONS	47
7	OUTPUT DESCRIPTION	51
8	SAMPLE PROBLEM	55
	REFERENCES	58
APPENDIX A:	ESTIMATION OF CORE REQUIREMENTS	59
APPENDIX B:	LISTING OF THE PROGRAM	63
APPENDIX C:	LISTING OF THE SAMPLE DATA	91
APPENDIX D:	RESULTS OF THE SAMPLE PROBLEM ANALYSIS	95

LIST OF ILLUSTRATIONS

FIGURE		PAGE
1	CONTINUUM AND FINITE ELEMENT MODEL	2
2	ELEMENTS AND LOCAL COORDINATE SYSTEM	3
3	EXAMPLES OF UNIT DISPLACEMENT MODES	10
4	QUADRILATERAL OR SHEAR PANEL DIVIDED INTO FOUR TRIANGLES	10
5	FLOW CHART FOR PROGRAM ANALYZE	28
6	PARTITIONED ELEMENT STIFFNESS MATRIX AND ADDRESSES IN THE TOTAL STIFFNESS MATRIX	35
7	DISTRIBUTION OF NON-ZERO ELEMENTS IN THE STIFFNESS MATRIX	38
8	AERODYNAMIC PLANFORM AND PRIMARY STRUCTURAL ARRANGEMENT OF WING	56
9	FINITE ELEMENT REPRESENTATION OF A WING BOX	57

LIST OF TABLES

IABLE		
1	PROGRAM DESCRIPTION	· 46
2	RESULTS FROM ANALYZE AND NASTRAN	111

INTRODUCTION

The program "ANALYZE" was orginally developed for in-house studies in structural analysis and optimization. It is the basis for a number of programs such as "OPTSTAT" (1), OPTCOMP (2) and "DANALYZ" (3). "ANALYZE" has been used by the authors in their consultation work on a number of Air Force projects. It has also been used as a demonstration program in structural analysis courses at the University of Dayton and the Air Force Institute of Technology. This program was distributed earlier with makeshift input and output instructions. These instructions did not include details of the theory nor the internal organization of the program. The purpose of this report is to generate comprehensive documentation for the "ANALYZE" program.

The program is based on the displacement method of finite element analysis ⁽⁴⁻⁶⁾. In such an analysis the continuum is replaced by a discrete model consisting of a finite number of nodes connected by elements (See Figure 1). This discretization reduces the original differential equations of the continuum to a set of algebraic equations which can be solved much more readily on digital computers.

The program has basically four finite elements:

- 1. Bar (Axial Force Member)
- 2. Membrane Triangle
- 3. Membrane Quadrilateral
- 4. Shear Panel

The four elements and their local coordinate systems are shown in Figure 2.

The bar is a constant strain line element and is equivalent to a rod

(a) Continuum

FIG. 1: Continuum and Finite Element Model

(b) Finite Element Model

(a) Bar Element

(b) Triangular Membrane Element

FIG. 2: Elements and Local Coordinate System

element in the NASTRAN⁽⁷⁾ program. The membrane triangle is a constant strain plate element similar to TRMEM in NASTRAN. The membrane quadrilateral is constructed out of four (non-overlapping) constant strain membrane triangles (element 2) with a fictitious interior node. This interior node is later removed by static condensation. This element is similar to QDMEM2 in NASTRAN. The shear panel is also constructed out of four non-overlapping triangles with a fictitious interior node. However, only the shear energy is considered in determining the stiffness of this element. Although the formulation is somewhat different, this element gives comparable results to the NASTRAN SHEAR element or the so called Garvey shear panel⁽⁸⁾.

The basis for the derivation of the shear panel is empirical, and it is primarily intended to eliminate some of the difficulties encountered in using membrane triangles and quadrilaterals. For example, in beam problems (rectangular beams, I-beam, Box Beams including multicell wings and fuselage structures) the high stress gradients in the webs do not justify the use of constant strain triangles or quadrilaterals derived from these triangles. In fact, use of such elements for the webs (spars and ribs in wings) overestimates the stiffness by an order of magnitude. Aerospace engineers have offset this difficulty to a large extent by judicious use of membrane elements in conjunction with the shear panels. In fact the early finite element models of wings and fuselages consisted primarily of bars and shear panels. However, the present practice of using membrane triangles and quadrilaterals for the top and bottom skins, bars for the posts, spar and rib caps, and shear

panels for the spars and ribs eliminates to a large extent the need for determining the equivalent thicknesses and cross-sectional areas in the bars and shear panels model. The models consisting of these elements are most satisfactory for determining the primary load paths in built-up structures such as wings and fuselages. In addition the simplicity of these elements makes interpretation of the results easy and also keeps the analysis costs low because the stiffness matrices of these elements can be generated in a fraction of a second. The detailed formulation and additional information on these elements are given in Section 3.

In finite element analysis, a large proportion of the time is spent in the solution of the force displacement relations. The program uses standard Gaussian elimination with modifications to take into account the symmetry and sparseness characteristics of the stiffness matrix. The details of the solution scheme and storage of the stiffness matrix are given in Sections 2 and 5. "ANALYZE" is an incore program whose core requirements depend on the problem size, primarily measured in terms of the number of degrees of freedom and the size of the semi-bandwidth. However, the bandwidth per se is not considered in the program. With an available core of about 100K₈ one can solve problems of up to 300 to 400 degrees of freedom. With the full core of a machine like the CDC 6600, it is possible to solve problems of up to 1500 degrees of freedom and a comparable number of elements. The details of core requirements are discussed in Appendix A.

The program is written in standard ANSI Fortran IV.

2. ANALYSIS

In the finite element analysis the continuum is replaced by a discrete model consisting of a finite number of nodes connected by elements (members). The rationale in such an approximation is that the response between the nodes (i.e., in the elements) can be expressed as a function of the response at the nodes. The functional relationship between the two responses is approximated by various interpolation functions or shape functions. The type of functions depends on the complexity of the problem at hand. This discretization reduces the original differential equations of the continuum to a set of algebraic equations which can be solved much more readily on digital computers.

The equations of the finite element analysis can be derived conveniently by considering the strain energy of the deformed system. For example, if the elastic body is idealized by m finite elements connecting q nodes (See Figure 1), the strain energy of the ith element can be written as

$$\tau_{i} = \frac{1}{2} \int_{V_{i}} \int_{v_{i}}^{t^{*}} \int_{v_{i}}^{\varepsilon_{i}} dV$$
 (1)

where σ_i and ε_i are the stress and strain vectors and V_i is the volume of the element. For a linearly elastic body the relation between stress and strain can be written as

$$\sigma_{i} = E_{i} \quad \varepsilon_{i}$$
 (2)

^{*} Superscript t on a matrix represents transpose

where E_{i} is the symmetric matrix of material elastic constants. For typical plane stress problems the elastic constants matrix is of dimension 3x3. For an isotropic material in plane stress problems the elements of E are as follows:

$$E = \frac{E}{1-\mu^2} \begin{bmatrix} 1 & \mu & 0 \\ \mu & 1 & 0 \\ 0 & 0 & \frac{1}{2}(1-\mu) \end{bmatrix}$$
 (3)

where E and μ are the elastic modulus and poisson's ratio of the material respectively. For an orthotropic material the elastic constants matrix is given by

$$E = \frac{E_1}{1-\beta\mu^2} \begin{bmatrix} 1 & \mu\beta & 0 \\ \mu\beta & \beta & 0 \\ 0 & 0 & \frac{G}{E_1}(1-\beta\mu^2) \end{bmatrix}$$
 (4)

where E_1 and E_2 are the longitudinal and transverse moduli, respectively, in the directions of the material property axes. β is the ratio of transverse to longitudinal modulus (E_2/E_1). G and μ are the shear modulus and poisson's ratio respectively.

The essence of the finite element approximation is that the internal displacements of the elements are expressed as functions of the displacements of the discrete nodes to which they are connected. The local coordinate systems and the nodal degrees of freedom of the four elements are shown in Figure 2. The functional relationship between the element internal displacements and the discrete nodal displacements is given by

$$\mathbf{w}_{\mathbf{i}} = \phi_{\mathbf{i}} \mathbf{v}_{\mathbf{i}} \tag{5}$$

where the matrix w_i represents the displacements in the element which are functions of the spatial coordinates (x, y). The shape function ϕ_i is a rectangular matrix, and its elements are also functions of the spatial coordinates. The vector v_i represents the nodal displacements in the direction of the element degrees of freedom in the local coordinate system (Figure 2). Now the strain-displacement relations can be written as

$$\varepsilon_i = B w_i$$
 (6)

where $\underset{\sim}{B}$ is a differential operator. For a plane stress problem $\underset{\sim}{B}$ is given by

$$\tilde{B} = \begin{bmatrix} \frac{\partial}{\partial x} & 0 \\ 0 & \frac{\partial}{\partial y} \\ \frac{\partial}{\partial y} & \frac{\partial}{\partial x} \end{bmatrix}$$
(7)

Substitution of Equations 2, 5 and 6 in 1 gives the expression for strain energy in the following form

$$\tau_{i} = \frac{1}{2} v_{i}^{t} k_{i} v_{i}$$
(8)

where k_i is the element (member) stiffness matrix with respect to the discrete coordinates v and is given by

$$k_{i} = \int_{V_{i}} \phi_{i}^{t} g^{t} E_{i} g \phi_{i} dV$$
 (9)

An alternate but a convenient method of determining the elements of the member stiffness matrix is by invoking the principle of virtual work $^{(9)}$

which gives

$$1 \cdot k_{pq} = \int_{V_{i}} \sigma_{i}^{(p)^{t}} \varepsilon_{i}^{(q)^{h}} dV$$
 (10)

where $\sigma_i^{(p)}$ is the stress state due to the element displacement configuration in which v_p = 1 while all other v's are zero. Similarly $\varepsilon_i^{(q)}$ is the strain state due to the unit displacement configuration in the direction of the qth degree of freedom. These two conditions are shown in Figure 3 for the degrees of freedom 1 and 2 of the membrane triangle. It should be noted that besides assuming appropriate shape functions, the integration in Equations 9 or 10 is one of the difficult tasks in the case of complex elements in finite element analysis. However, for membrane elements this integration does not present any difficulties as will be seen in the next section. For more complex elements the usual practice is to adopt numerical integration schemes. (10,11)

From Equation 8 and Castigliano's first theorem, the relation between the element nodal forces and the displacements may be written as

$$s_{i} = \begin{bmatrix} \frac{\partial \tau_{i}}{\partial v_{j}} \end{bmatrix} = k_{i} v_{i}$$
(11)

where s_i is the element nodal force matrix corresponding to the displacement matrix v_i . Similar force-displacement relations for the total structure can be derived from the strain energy of the structure. The total strain energy Γ of the structure can be written as the sum of the energies of the individual components.

$$\Gamma = \sum_{i=1}^{m} \tau_{i} = \frac{1}{2} \sum_{i=1}^{m} v_{i}^{t} k_{i} v_{i}$$
 (12)

FIG. 3: Examples of Unit Displacement Modes

FIG. 4: Quadrilateral or Shear Panel Divided into Four Triangles

In general, for most structures, it is convenient to define a local coordinate system for each element and a global coordinate system for the total structure. In such a case the element and structure generalized coordinates can be related by

$$v_i = \mathbf{a}_i \mathbf{u} \tag{13}$$

where a_i is the compatibility matrix. Its elements can be determined by kinematic reasoning alone provided the structure is kinematically determinate. The matrix u is the generalized displacement vector of the structure in the global coordinate system. It is interesting to note that Equation 13 not only transforms element displacements from local to global coordinates but also gives information about how the elements are connected to the structure. From Equation 13 and the principle of virtual work it is easy to show that the transformation between the forces on the structure and the element internal forces is given by

$$P = a_i^t s_i$$
 (14)

where P is the force vector on the structure in the global coordinate system. The transformation given in Equation 14 is sometimes referred to as a contragradient transformation. (12)

Substitution of Equation 13 in 12 gives the expression for the total strain energy in the form

$$\Gamma = \frac{1}{2} u^{t} K u$$
 (15)

where K, the total stiffness matrix of the structure, is written as the sum of the component stiffness matrices.

$$K = \sum_{i=1}^{m} a_i^t k_i a_i$$
 (16)

Again using Castigliano's first theorem the relation between the generalized force matrix P corresponding to the displacement matrix u may be written as

$$P = \begin{bmatrix} \frac{\partial \Gamma}{\partial \mathbf{u_j}} \end{bmatrix} = K \mathbf{u}$$
 (17)

In most structural analysis problems the stiffness matrix K is sparsely populated. It is essential to take advantage of this fact in solving the load deflection equations (Equation 17), particularly in the case of problems with a large number of degrees of freedom where the cost of computation can be prohibitive otherwise. The "ANALYZE" program uses Gaussian elimination with modifications to take into account the symmetry and sparseness of the stiffness matrix.

Basically Gaussian elimination involves decomposition of the stiffness matrix by

$$K = L D L^{t}$$
 (18)

where \underline{L} is the unit lower triangular matrix and \underline{D} is a diagonal matrix. The advantage of this decomposition scheme is that the \underline{L} matrix retains some of the sparseness characteristics of \underline{K} which consequently reduces the numbers of computations. Also \underline{L} and \underline{D} can be assigned the same storage as \underline{K} .

The next step is the forward substitution by

$$L Y = P \tag{19}$$

where the matrix Y is given by

$$Y = D L^{t} u$$
 (20)

In Equation 19 the solution of \underline{Y} can be accomplished by simple forward substitution. Once \underline{Y} is obtained, \underline{u} can be solved by back substitution

using Equation 20. The last two steps together are generally referred to as Forward-Back Substitution (FBS). Solution of Equation 17 for multiple load vectors involves the decomposition of the stiffness matrix once and repetition of FBS as many times as there are load vectors.

With the help of these basic equations the steps in the finite element analysis can be outlined as follows:

- 1. Input information consists of
 - Geometry of the structure Node Coordinates Element Connections Section Properties
 - b. Material properties
 - c. Boundary conditions

 - e. Clues for appropriate (desired) output. d. Loading
 - 2. Element information consists of
- a. Determination of the local coordinate system for each element.
 - b. Selection of the appropriate shape functions (Equation 5).
 - c. Determination of the element stiffness matrix (Equation 9 or 10).
 - 3. Transformation of the element stiffness matrix to the global
 - coordinate system (Equation 16 without summation).
 - 4. Determination of the structure stiffness matrix by summation of
 - the component stiffnesses (Summation in Equation 16).
 - 5. Incorporation of the boundary conditions.
 - 6. Solution of the load-deflection equations (Equations 17, 18, 19, and 20).

- 7. Determination of the element displacements in their local coordinate system (Equation 13).
 - 8. Determination of the stresses in each element (Equations 6, 5, and 2).
- 9. Output the structure displacements, element stresses and other information such as element strain energies, etc.

The next section consists of the details of the stiffness matrix formulations for the four elements in this program.

3. FINITE ELEMENTS

The program "ANALYZE" has four elements as mentioned earlier. They are all membrane elements. These four elements are generally adequate for determining the primary load paths of most aircraft structures. However, for a detailed stress analysis of local areas, higher order elements may

Basically this element is an axial force member. Its primary use be necessary. is in two and three dimensional truss structures. It is also used BAR (ROD) ELEMENT extensively as spar and rib caps, posts around shear panels, stiffners and other line elements in aircraft structures. The local coordinate system of this element is shown in Figure 2. The positive x-axis is directed along the line joining the two ends. v_1 and v_2 represent the element end displacements. The corresponding two end forces are s₁ and s_2 . The displacement field in the element is assumed to be linear, which gives constant strain. For a linearly elastic material this

If w, the displacement at any point along the length of the bar, is assumption yields constant stress as well. (17)

given by

where a and b are two undetermined coefficients and x is the coordinate of the point in the local coordinate system, then the end displacements

 v_1 and v_2 are given by

re given by
$$\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} x_1 & 1 \\ x_2 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix}$$

(18)

where x_1 and x_2 are the coordinates of the two ends in the local coordinate system. Then the shape function (Equation 5) corresponding to this linear displacement field can be written as

$$\phi = \frac{1}{(x_1 - x_2)} \left[(x - x_2), -(x - x_1) \right]$$
 (19)

From the strain-displacement relations, the axial strain in the element is given by

$$\varepsilon_{\mathbf{X}} = \frac{\partial \mathbf{W}}{\partial \mathbf{X}} = \mathbf{a}$$
 (20)

From the principle of virtual work (Equation 10) the individual elements of the member stiffness matrix can be written as

$$k_{ij} = \int_{V} \sigma_{X}^{(i)} \varepsilon_{X}^{(j)} dV = (-1)^{i+j} \frac{AE}{L}$$
 (21)

where A is the cross-sectional area, L is the length of the member, and E is the modulus of elasticity of the material. The member stiffness matrix is given by

$$k_{\sim} = \frac{AE}{L} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
 (22)

The member force matrix is given by

$$s = k v \tag{23}$$

The stress in the member is given by

$$\sigma_{\mathbf{X}} = \mathbf{E} \ \varepsilon_{\mathbf{X}}$$
 (24)

or

$$\sigma = \frac{s_1}{A} = \frac{-s_2}{A} \tag{25}$$

The strain energy in the element is given by

$$\tau_{i} = \frac{1}{2} s^{t} v \tag{26}$$

or

$$\tau_{i} = \frac{1}{2} \sigma_{x} \varepsilon_{x} A L \tag{27}$$

TRIANGULAR MEMBRANE ELEMENT

The membrane triangle is the basic plate element in the program. It is used to construct the membrane quadrilateral as well as the shear panel with some modifications. The membrane triangle can be used effectively in all cases where the primary loading is inplane forces. These include top and bottom skins of aircraft wings, flanges of I and box beams when they are subjected to constant normal stresses (tension or compression) only and skins of sandwich construction. However, they are not suitable for situations where high stress gradients exist. For example, they are unsuitable for spars and ribs of wings and other lifting surfaces, webs of I and box beams and flat plates where the primary load is bending. If used in such cases, they overestimate the stiffness or generate singularity. Figure 2 shows the triangle elements with the local coordinate system. The generalized coordinates v_1 , v_2 , ---, v_6 represent the inplane displacements of the three nodes in the local coordinate system. The displacement field in the element is assumed to be linear. This gives constant strain in the element. For a linearly elastic material the stress in the element will also be constant.

The linear displacement field in the element can be represented by

$$w_x = a_1 x + b_1 y + c_1$$

 $w_y = a_2 x + b_2 y + c_2$ (28)

where w_x and w_y are the x-y displacements in the plane of the plate in the local coordinate system. a_1 , b_1 etc. are the six undetermined coefficients. Equation 28 can be written in matrix form as follows:

$$w = \begin{bmatrix} x & y & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \\ c_1 \\ a_2 \\ b_2 \\ c_2 \end{bmatrix}$$
 (29)

The six unknown coefficients can be uniquely determined by the six boundary conditions at the nodes.

$$\begin{bmatrix} v_1 \\ v_3 \\ v_5 \\ \hline v_2 \\ v_4 \\ v_6 \end{bmatrix} = \begin{bmatrix} x_1 & y_1 & 1 & 0 & 0 & 0 \\ x_2 & y_2 & 1 & 0 & 0 & 0 \\ x_3 & y_3 & 1 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & x_1 & y_1 & 1 \\ 0 & 0 & 0 & x_2 & y_2 & 1 \\ 0 & 0 & 0 & x_3 & y_3 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ b_1 \\ c_1 \\ \hline -a_2 \\ b_2 \\ c_2 \end{bmatrix}$$

$$(30)$$

where x_1 , y_1 , ----, x_3 and y_3 are the coordinates of the three nodes of the triangle in the local coordinate system. It should be noted that the

nodal displacements are grouped into x and y directions, so that the nodal coordinate matrix on the right hand side partitions into a diagonal matrix. The inversion of the partitioned diagonal matrix involves simply the inversion of the component matrix. Now the shape matrix ϕ is given by

$$\phi = x z^{-1} \tag{31}$$

where the matrix x is given by

$$x = \begin{bmatrix} x & y & 1 & 0 & 0 & \overline{0} \\ 0 & 0 & 0 & x & y & 1 \end{bmatrix}$$
 (32)

and the Z matrix is given by

$$Z = \begin{bmatrix} X & 0 \\ 0 & X \end{bmatrix}$$
 (33)

The coordinate matrix X is given by

$$\tilde{x} = \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$
(34)

It is interesting to note that each column of Z^{-1} represents a unit displacement mode: i.e. the j^{th} column of the inverse represents a displacement mode in which $v_j = 1$ while all other nodal displacements are zero (See Figure 3). This fact is used to advantage in determining the elements of the member stiffness matrix.

From linear strain-displacement relations the strains can be written

$$\varepsilon_{x} = \frac{\partial w_{x}}{\partial x} = a_{1} \tag{35}$$

$$\varepsilon_{y} = \frac{\partial w_{y}}{\partial y} = b_{2} \tag{36}$$

$$\varepsilon_{xy} = \frac{\partial w_x}{\partial y} + \frac{\partial w_y}{\partial x} = b_1 + a_2 \tag{37}$$

From the principle of virtual work (Equation 10) the elements of the member stiffness matrix can be written as

$$k_{ij} = \int_{V} \sigma^{(i)t} \varepsilon^{(j)} dV = \int_{V} \varepsilon^{(i)t} E \varepsilon^{(j)} dV$$
 (38)

where $g^{(i)}$ and $g^{(j)}$ are the stress and strain matrices corresponding to the unit displacement modes explained under Equation 34. Since the linear displacement variation implies constant strain, the integral in Equation 38 can be replaced by the volume of the element:

$$k_{ij} = \frac{1}{2} |X| t_{\varepsilon}^{(i)^{t}} E_{\varepsilon}^{(j)}$$
(39)

where |X| is the determinant of the nodal coordinate matrix which represents twice the area of the element and t is the thickness of the element. Now the stiffness matrix of the element is given by

$$k = \frac{1}{2} |x| t$$

$$\frac{\varepsilon}{\varepsilon}(1)^{t} = \varepsilon(1)^{t} = \varepsilon(2)^{t} = \varepsilon(1)^{t} = \varepsilon(6)^{t}$$

$$\frac{\varepsilon}{\varepsilon}(2)^{t} = \varepsilon(1)^{t} = \varepsilon(2)^{t} = \varepsilon(2)^{t} = \varepsilon(2)^{t}$$

$$\frac{\varepsilon}{\varepsilon}(6)^{t} = \varepsilon(1)^{t} = \varepsilon(6)^{t} = \varepsilon(2)^{t} = \varepsilon(6)^{t}$$

$$\frac{\varepsilon}{\varepsilon}(6)^{t} = \varepsilon(1)^{t} = \varepsilon(6)^{t} = \varepsilon(6)^{t}$$

$$\varepsilon(6)^{t} = \varepsilon(6)^{t} = \varepsilon(6)^{t}$$

The member force matrix is given by

$$s = k v \tag{41}$$

The stress matrix in the element is given by

$$\sigma = \mathbf{E} \, \varepsilon \tag{42}$$

The strain energy in the element is given by

$$\tau_{i} = \frac{1}{2} \operatorname{s}^{t} \operatorname{v}$$
 (43)

or

$$\tau_{i} = \frac{1}{4} |X| t \sigma^{t} \varepsilon$$
 (44)

The next important step in the evaluation of the stress state in an element is the selection of a suitable failure criteria because of the combined stresses (σ_x , σ_y , and σ_{xy}) in plate elements. The modified energy of distortion or Von-Mises criteria is adopted to determine the effective stress in an element. The effective stress is given by

$$\sigma_{\text{eff}} = (\sigma_{x}^{2} + \sigma_{y}^{2} - \sigma_{x} \sigma_{y} + 3\sigma_{xy}^{2})^{1/2}$$
 (45)

The margin of safety is evaluated by first determining the effective stress ratio (ESR)

ESR =
$$\left[\left(\frac{\sigma_{X}}{XX} \right)^{2} + \left(\frac{\sigma_{Y}}{YY} \right)^{2} - \left(\frac{\sigma_{X}\sigma_{Y}}{XXYY} \right) + \left(\frac{\sigma_{XY}}{ZZ} \right)^{2} \right]^{1/2}$$
 (46)

where XX and YY are the tension or compression allowable in the x and y directions, respectively, and ZZ is the shear allowable. Then the margin of safety (MS) is determined by

$$MS = \frac{1 - ESR}{ESR}$$
 (47)

If the user does not provide the allowable stress values, then default values of 60,000 psi for tension and compression allowables in both directions and 36,000 psi for the shear allowable are used.

QUADRILATERAL MEMBRANE ELEMENT

The quadrilateral element is most frequently used to represent membrane skins unless the corners etc. require the use of the triangular element.

Figure 4 shows the local coordinate system and the generalized coordinates (displacements) v_1 through v_8 . The element is assumed to be a flat plate, and all nodes are assumed to lie on a plane connecting the first three nodes (1, 2, and 3). In effect the warping in the element is ignored. This approximation results in an overestimation of the stiffness of a truly warped quadrilateral element. In most cases the effect of the approximation is small, and it can be further reduced by reducing the mesh size of the model in the regions of high warping. However, if the warp is too large, the quadrilateral should be broken up into two or more triangles.

As mentioned earlier, the stiffness of the quadrilateral element is determined by breaking it into four component triangles as shown in Figure 4. A fictitious node in the quadrilateral is located by averaging the coordinates of the four nodes as given by

$$x_5 = \frac{x_1 + x_2 + x_3 + x_4}{4} \tag{48}$$

$$y_5 = \frac{y_1 + y_2 + y_3 + y_4}{4} \tag{49}$$

The stiffness of the four triangles is then computed by Equation 40 in the local coordinate system shown in Figure 2c. Addition of the four stiffness matrices gives a 10 x 10 stiffness matrix with two degrees of freedom included for the fifth node. This fictitious node is later removed by static condensation before adding to the total structure. The procedure for static condensation is outlined next.

The force displacement relations of the 5 node quadrilateral are written as

$$R_0 = k_0 r_0$$
 (50)

where the subscript refers to the quadrilateral element with 5 nodes. Equation 50, partitioned to isolate the degrees of freedom of the fifth node, can be written as

$$\begin{bmatrix}
\frac{R}{2}I \\
\tilde{R}II
\end{bmatrix} = \begin{bmatrix}
K_{I,I} \\
\tilde{R}II,I
\end{bmatrix} - \begin{bmatrix}
K_{I,I} \\
\tilde{R}II,II
\end{bmatrix} \begin{bmatrix}
r_{I} \\
\tilde{r}II
\end{bmatrix}$$
(51)

Equation 51 can be written as two separate equations

$$R_{I} = k_{I,I} r_{I} + k_{I,II} r_{II}$$
(52)

$$R_{II} = k_{II,I} r_{II} + k_{II,II} r_{II}$$
(53)

Since the fifth node does not actually exist in the original model, no external forces can be applied to this node. This condition gives

$$r_{II} = -k_{II}^{-1}, II k_{II}, I r_{II}$$
 (54)

Substitution of Equation 54 in 52 gives

$$R_{I} = (k_{I,I} - k_{I,II} k_{II,II} k_{II,I}) r_{I}$$
(55)

From Equation 55 the stiffness matrix of the original quadrilateral can be written as

$$k = k_{II} - k_{I,II} k_{II,II}^{-1} k_{II,I}$$
 (56)

The stiffness as obtained by Equation 56 is added to the total structure after appropriate coordinate transformations to the global coordinate system.

When the structure displacements are determined, the fifth node displacements can be determined by Equation 54. Now the stresses in each triangle can be determined as before. The effective stress ratio is determined for each triangle separately (Equation 46), and then a weighted average is used in computing the effective stress ratio and the margin of safety. This weighted average is computed by

$$ESR = \frac{(ESR)_1 \Delta_1 + (ESR)_2 \Delta_2 + (ESR)_3 \Delta_3 + (ESR)_4 \Delta_4}{\Delta_1 + \Delta_2 + \Delta_3 + \Delta_4}$$
 (57)

where (ESR)₁ thru (ESR)₄ are the effective stress ratios of the four triangles. Δ_1 thru Δ_4 are the respective planform areas of the triangles. Now the margin of safety MS is computed as before by Eq. 47. SHEAR PANEL

As the name indicates, the shear panel is devised for the purpose of representing shear transmitting elements. For example in wing structures the top and bottom skins can be represented by membrane (triangle and quadrilateral) elements. If the same elements are used for spars and ribs, the resulting finite element model grossly overestimates the stiffness of the structure. What this means is that the displacements obtained by this model will be much smaller, or if this model is used for dynamic analysis, the frequencies of the structure will be much higher and cannot be matched with the results obtained from ground vibration tests. This behavior is due to the assumption of constant strain (stress) in the membrane element formulations. Most web elements in box or I-beams carry primarily shear and some normal stresses. In other words their deformation is primarily due to shear and not due to normal stresses.

assumption of constant stress (or strain) is not justified. To offset this difficulty, and yet preserve the simplicity of the constant strain elements, a shear panel was formulated (Reference 8) with the assumption that it carries only shear stresses. The bars and other membrane elements that surround the shear panel are supposed to carry the normal stresses. Such a situation does not actually exist in reality, and thus the shear panel is an empirical element. However, the models built on such an assumption appear to produce satisfactory results.

Until recently it was a common practice in aircraft companies to model wings, fuselages, and empennage structures simply by bars and shear panels to obtain primary load path information. In such idealizations it was a common practice to assign a third of the cross-sectional area as spar and rib caps and the remainder for the shear panels. It should be pointed out that every shear panel must be surrounded on all four sides by normal stress carrying elements such as bars or membrane or bending elements. If the natural model does not contain such an element on any side of the shear panel, a nominal (or fictitious) bar (post) must be provided. Otherwise the model will have a singularity.

The shear panel in "ANALYZE" is constructed out of four triangles with the fictitious node inside as in the membrane quadrilateral discussed earlier. However, the stiffness matrices of the component triangles are determined by considering only the shear strain energy (Equation 39).

$$k_{i,j} = \frac{1}{2} |X| + \epsilon_{xy}^{(i)} + \epsilon_{xy}^{(j)}$$
 (58)

where G is the shear modulus, and $\epsilon_{xy}^{(i)}$ and $\epsilon_{xy}^{(j)}$ are the shear strains due to the unit displacement modes discussed earlier. There is one point that must be made here. The shear stress (strain) in an element changes with the orientation of the reference axis. Thus the stiffness matrix of the element can be sensitive to the reference axis. For rectangular elements the shear strain energy would be the same regardless of which side is selected for the reference axis. However, for quadrilaterals the stiffness matrix does depend on the reference axis. The errors produced by such departures are usually not significant, but it is worthwhile to make note of the assumptions involved. The ANALYZE program has a provision for specifying any one of the four sides of the quadrilateral as the reference axis.

As in the quadrilateral element the shear stresses in all four triangles are determined separately but with respect to the same reference axis. Of course, the normal stresses in the shear panels have no meaning. The margin of safety is determined by a weighted average of the effective stress ratios(ESR) as in the quadrilateral. The strain energy is determined by considering only the shear stress and strain.

4. ORGANIZATION OF THE PROGRAM

The material presented in this section is intended either to help introduce changes into the program or to expand its scope for the specific needs of a researcher as the authors have done in the past ten years. The steps outlined at the end of Section 2 are summarized in the flow-chart in Figure 5. There are a total of 16 boxes in the flow-chart. Each of these boxes generally involves one or more subroutines. The subroutines that belong to each of these boxes are identified first, then the function of each subroutine will be discussed in the next section with the help of the equations given in Sections 2 and 3.

Box 1 - Input

Input in the present version of the "ANALYZE" program is not in subroutine form. However, the input statements are all at the beginning of the program, and thus they can be grouped into a single subroutine. Alternatively, one can generate an input routine of his own with provisions like one card per each element and a card for each node etc. For example, it is relatively easy to write a subroutine with NASTRAN type input. The description of the various arrays (See input instructions) and their dimension requirements given in Appendix A can be quite helpful in writing such an input routine.

Box 2 - Map Stiffness Matrix

This step involves a single subroutine called "POP". The purpose of this routine is simply to estimate the storage requirements of the stiffness matrix and to map its profile. The stiffness matrix is stored in a single array called SK. The elements of the matrix are stored columnwise

Figure 5. Flow Chart for Program "ANALYZE"

starting from the first non-zero element in the column to the diagonal element. Since the matrix is symmetric, only the upper triangle is stored.

Box 3 - Element Stiffness

There are four elements in the program. All of them require the subroutine "COORD". In addition all the plate elements require the routine "ELSTIC". The remaining subroutines are listed separately for each element.

i. Bar (Rod) Element:

The bar element is shown in Figure 2a with the local coordinate system and degrees of freedom. This element requires the subroutine "ELSTIF" which generates the bar stiffness matrix in the local coordinate system and also transforms it to the global coordinate system.

ii. Triangular Membrane Element:

The element and its local coordinate system are shown in Figure 2b.

The subroutine "PLSTIF" is the only other routine required by this element.

It generates the stiffness matrix of the triangle in the local coordinate system.

iii. Quadrilateral Membrane Element and Shear Panel

The elements and their local coordinate system are shown in Figure 2c. The subroutines "QDRLTL", "PLSTIF", "SUM", "CONDNS", "CHANGE" and "CRAMER" are the additional routines required by these elements. Together these subroutines generate the stiffness matrix of either the quadrilateral membrane or shear panel. The routine "QDRLTL" calls "PLSTIF", "SUM" and "CONDNS". The routine "PLSTIF" calls "CRAMER". Similarly "CONDNS" calls "CHANGE".

Box 4 - Transform

This step involves a single subroutine called "TRNSFM". It transforms the stiffness matrices of the triangles, quadrilaterals, and shear panels from the local to the global coordinate system.

Box 5 - Assemble

"ASEMBL" is the only subroutine used in this step. Its purpose is to add the element stiffness matrices to the total stiffness matrix of the structure. The steps 3 thru 5 form a loop in which all the element stiffness matrices are computed and assembled into the total stiffness matrix.

Box 6 - Boundaries

The routine called "BOUND2" eliminates the rows and columns of the stiffness matrix corresponding to the support degrees of freedom of the structure. In addition it also condenses the stiffness matrix.

Box 7 - Reduce Force

This step involves a routine called "REDUCE". It eliminates the rows of the force matrix corresponding to the support degrees of freedom.

Box 8 - Solution of the Force Deflection Equations

The routine "GAUSS" solves the load deflection equations by Gaussian elimination. A large percentage of the analysis time (80 to 90%) is spent in this routine, and its efficiency is extremely important in reducing the costs of the analysis. At the end of this step the displacements of the structure are available in condensed form (excluding boundary degrees of freedom) in the global coordinate system.

Box 9 - Total Energy

The total energy of the structure is computed by

$$W = \frac{1}{2} R^{t} r$$

The strain energy of the structure (U) is computed by adding the strain energies of the elements in step 14 (Box 14). A comparison of W and U provides an equilibrium check.

Boxes 10 and 11 - Restore Forces and Displacements

These two boxes use the same routine called "RESTOR". The purpose of this routine is to restore the force and deflection matrices to their original dimension to include the boundary degrees of freedom. Its purpose is essentially opposite to that of the routine "REDUCE" in Box 7.

Box 12 - Element Displacements

The routine "COORD" and "ELFORC" facilitate extraction and transformation of the element displacements from the global to the local coordinate system.

Box 13 - Element Forces

This step is not in all versions of "ANALYZE". Element forces are not necessary to compute stresses. However, this step can be restored if the element shear flows and other force information are necessary.

Box 14 - Element Stresses

The details of this step depend on the type of element.

i. Bar (Rod) Element:

The stress in this element is computed in the program itself. No additional routines are involved. At the same time the element strain energy is also computed.

ii. Triangular Membrane Element:

The subroutines "STRESS" and "CRAMER" are involved in this step. The routine "STRESS" calls "CRAMER". The purpose of this routine is to calculate stresses in the triangular element. In addition this routine calculates strain energy and the effective stress in the element (See Equations 44 and 45).

iii. Quadrilateral Membrane and Shear Panel

This step involves routines "ELSTIC", "QDRLTL", "PLSTIF", "SUM", "CONDNS", "CRAMER", "QLSTRS" and "STRESS". It should be noted that the routine "QDRLTL" calls "PLSTIF", "SUM and "CONDNS". "PLSTIF" in turn calls "CRAMER".

Box 15 - Stress Output

The instructions for the output of the table of stresses are in the main program. No subroutine is used for the output itself. The steps 12 thru 15 form a loop in which the stress information for all the elements is computed and printed in a table. This is one of the two main tables of output of this program. Explanation of this table is given in the section on output (Section 7).

Box 16 - Displacement Output

This step involves a single subroutine called "PRNTDR". This routine prints out the second important table of output which contains information about the nodes. This information includes the coordinates of the nodes, applied forces and the calculated displacements for each node. The detailed explanation of this table is given in the section on output (Section 7).

In addition to the above 16 steps there are instructions for weight computations and other details, and their purpose can be identified from the program. There are very few comment cards in the main body of the program and this omission is by design in order to avoid continuous updating. The user can incorporate his own comment cards with the help of the explanation given in this section.

5. DESCRIPTION OF THE SUBROUTINES

"ANALYZE" consists of the main program and 21 Subroutines. The main program has 260 cards. The length of the Subroutines varies from 15 to 62 cards. The total length of the program is under 1000 cards. A list of the Subroutines, the number of Cards in each Subroutine and other details are given in Table 1. The flow chart, Fig. 5, and the explanation in the previous section give details of the main program. The description of the Subroutines is given in the remainder of this section.

Subroutine "POP"

The purpose of Subroutine "POP" is to estimate the storage requirements of the stiffness matrix before actually determining it. This information can be generated from the element connections with the nodes. For example, if an element connects 4 nodes, and if each node has 3 degrees of freedom in the global coordinate system, then the stiffness matrix of the element would be of dimension 12 x 12. This matrix can be partitioned four ways, in both row and column directions as shown in Fig. 6. The location of these sixteen submatrices in the total stiffness matrix can be determined by the address of the nodes to which the element is connected. If the element is connected to the nodes MA, MB, MC, and MD, then the addresses of the element submatrices in the total stiffness matrix are shown in Fig. 6.

If all the elements are connected to all the nodes, then the stiffness matrix of the structure will be fully populated. The non-zero elements in the matrix are considered as population. Since most of the elements connect only a few nodes, the stiffness matrices are usually sparsely populated. Determining the profile of the stiffness matrix population is the essential function of the routine "POP".

	3MA-2			3MB-2			3MC-2			3MD-2		
3MA-2	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	+	+
3MB-2	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	+	+
3MC-2	+	+	+	+	+	+	+	+	+	+	+	+
and the	+	+	+	+	+	+	+	+	+	+	+	+
	+	+	+	+	+	+	+	+	+	+	+	+
3MD-2	+	+	+	+	+	+	+	+	+	+	+	+
op the st	+	+	+	+	+	+	+	+	+	+	+	+
מל פנינופ לה	de +	+	+	+	+	+	+	+	+	+	+	+

Fig. 6 Partitioned Element Stiffness Matrix and Addresses in the Total Stiffness Matrix

The distribution of the nonzero elements is dependent upon the way the nodes of the finite element model are numbered. Because of the symmetry of the stiffness matrix, only the lower or upper triangular matrix is considered. For the purpose of this discussion definitions of the following terms are in order. The gross population (P_{gross}) of the stiffness matrix is defined as the total number of elements in the upper triangle of the matrix. The net population (P_{net}) is the total number of non-zero elements in the upper triangle. Zeros resulting from transformations are not excluded from the net population. The apparent population ($P_{apparent}$) is the actual number of elements considered as nonzeros by a given solution scheme. From these definitions

$$P_{net} \stackrel{<}{=} P_{apparent} \stackrel{<}{=} P_{gross}$$
 (59)

For a given structure P_{gross} and P_{net} are invariant and are given by

$$P_{gross} = \frac{N(N+1)}{2}$$
 (60)

and

The quantity NR is given by

$$P_{\text{net}} = \frac{n (n + 1)}{2} \text{ (number of nodes)} + \sum_{i=1}^{m} \frac{n^2 [k_i (k_i - 1)]}{2} - r^2 (NR)$$
 (61)

where N is the total number of degrees of freedom of the structure, n is the number of degrees of freedom of each node (all the nodes are assumed to have the same number of degrees of freedom; when this is not true the necessary modification is simple), k_i is the number of nodes to which the i^{th} element is connected, and m is the number of elements in the structure.

$$NR = \sum_{i=1}^{p} (b_i - 1)$$
 (62)

where b_i is the number of elements connecting the same pair of nodes and p is the total number of pairs of directly connected nodes. If the structure consists of bar and/or beam elements only, NR is zero. For the example shown in Figure 6a, the value of NR is 3.

The quantity papparent is dependent on the nature of the solution scheme used. For Gaussian elimination with no pivoting (LDL^T) , $P_{apparent}$ may be defined as

Papparent
$$= \sum_{j=1}^{N} Q_j$$

Papparent $= \sum_{j=1}^{N} Q_j$

row number of the first nonzero

where $Q_j = j - R_j + 1$ and where R_j is the row number of the first nonzero element in the j^{th} column. The solution scheme is most efficient when Papparent = Pnet. However, in large practical structures this condition

The value of $P_{apparent}$ changes with the node numbering scheme of is difficult to attain. the finite element model. The example shown in Figure 7 illustrates this point. A seven node three dimensional bar structure (n = 3) is numbered in three different ways and the resulting effect on the respective stiffness matrices is shown. The non-zero elements are marked by (+). The populations for the three cases are also given in the same figure. $P_{apparent}$ represents the number of storage locations required for the stiffness matrix.

MATRIX FIGURE 7: DISTRIBUTION OF NONZERO ELEMENTS IN THE STIFFNESS

Subroutine "ELSTIC"

This routine generates the 3 \times 3 elastic constants matrix for a given material (see Eq. 3).

Subroutine "COORD"

This routine establishes the local coordinate system for all the elements and also determines the nodal coordinates in the local system. It generates the direction cosine matrix which will be used to transform the element stiffness matrices to the global coordinate system (see Eqs. 13 and 16).

i. Bar Element

The local coordinate system of the bar element is established by drawing a line between the two nodes MA and MB (see Fig. 2) connecting the bar. The direction cosines are determined by

$$X_{Comp} = X_{MA} - X_{MB}$$

$$Y_{Comp} = Y_{MA} - Y_{MB}$$

$$Z_{Comp} = Z_{MA} - Z_{MB}$$

$$L = (X_{\text{Comp}}^2 + Y_{\text{Comp}}^2 + Z_{\text{Comp}}^2)^{1/2}$$
 (65)

(64)

$$\mathcal{L}_{1} = \frac{x_{\text{Comp}}}{L} \quad m_{1} = \frac{y_{\text{Comp}}}{L} \quad n_{1} = \frac{z_{\text{Comp}}}{L}$$
 (66)

where X_{MA} , Y_{MA} and Z_{MA} are the three coordinates of the node MA in global coordinate system. The direction cosines ℓ_1 , m_1 , and m_1 become the first row of the 3 x 3 matrix A.

ii. Triangular Membrane Element

The local coordinate system of the triangular membrane element is established by assigning the local x-axis to the line joining nodes MA and MB. The direction cosines of this line are determined as in the case of the bar element. The plane of the plate is established by two unit vectors in the directions of the lines joining nodes MA-MB and MA-MC. If \hat{a} and \hat{b} are these two unit vectors, then the normal to the plane is obtained by

$$\hat{\mathbf{a}} \times \hat{\mathbf{b}} = \vec{\mathbf{c}} \tag{67}$$

Since \hat{a} and \hat{b} are not orthogonal vectors, \vec{c} is not a unit vector. The unit vector in this direction is given by

$$\hat{c} = \frac{\vec{c}}{|\vec{c}|} \tag{68}$$

The local z-axis is in the direction of the unit vector \hat{c} . Now the local y-axis is established by

$$\hat{c} \times \hat{a} = \hat{d} \tag{69}$$

The direction cosines of x and y become the first two rows of matrix $\overset{\text{A}}{\sim}$.

iii. Quadrilateral Membrane and Shear Panel

The local coordinate system of the quadrilateral membrane and the shear panel are established by a procedure similar to that of the triangle. The plane of the triangle connecting the three nodes MA, MB, and MC becomes the reference plane. Any warping in the quadrilaterals and shear panels is ignored. If there is too much warping in the quadrilaterals, it is better to divide them into two or more triangles or reduce the mesh size. In the case of excessively warped shear panels, the size of the grid must be

reduced. "ANALYZE" does not have a provision for determining the warp and the consequent kick forces.

The node MA of the element becomes the origin of the element local coordinate system and the coordinates of the remaining nodes are determined by expressions similar to the following:

$$x_{3} = (x_{MC} - x_{MA}) \ell_{1} + (Y_{MC} - Y_{MA}) m_{1} + (Z_{MC} - Z_{MA}) n_{1}$$

$$y_{3} = (x_{MC} - x_{MA}) \ell_{2} + (Y_{MC} - Y_{MA}) m_{2} + (Z_{MC} - Z_{MA}) n_{2}$$

This subroutine also determines the coordinates of the fictitious node needed to break the quadrilateral and shear panels into four triangles. This interior node is established by

$$x_{5} = \frac{x_{1} + x_{2} + x_{3} + x_{4}}{4}$$

$$y_{5} = \frac{y_{1} + y_{2} + y_{3} + y_{4}}{4}$$
(70)

where $x_1, x_2 \dots x_5$ and $y_1, y_2 \dots y_5$ are the coordinates of the five nodes (including the fictitious interior node) of the quadrilaterals and shear panels in the local coordinate system.

Subroutine "ELSTIF"

This subroutine determines the stiffness matrix of the bar by Eq. 22.

It also transforms the bar stiffness matrix to the global coordinate system by

$$K_{i} = a_{i}^{t} \quad k_{i} \quad a_{i}$$
 (71)

Subroutines "PLSTIF" and "CRAMER"

The routine "PLSTIF" determines the element stiffness matrix of the triangle in the local coordinate system. This is also the basic routine for determining the stiffness matrices of the four triangles of the quadrilateral and the shear panel.

"PLSTIF" first calls the routine "CRAMER", which determines the inverse of the matrix X by Cramer's rule. The matrix X is given by Eq. 34. The determinant of X represents twice the area of the triangle.

Then the "PLSTIF" subroutine determines the element stiffness matrix by Eq. 40. In determining the matrices $\varepsilon^{(i)}$ and $\varepsilon^{(j)}$, it takes advantage of the fact that the columns of Z^{-1} (see Eq. 33) represent unit displacement modes (see explanation under Eq. 34).

In computing the stiffness matrices of the triangles of the shear panels, "PLSTIF" considers only the shear strain energy. For example, in such a case, Eq. 40 becomes

$$k = \frac{1}{2} |x| t$$

$$\begin{bmatrix}
(1) & (1) & (1) & (2) & (1) & (6) \\
\varepsilon_{xy} G \varepsilon_{xy} & \varepsilon_{xy} G \varepsilon_{xy} - - - \varepsilon_{xy} G \varepsilon_{xy} \\
\vdots & & \vdots \\
(6) & (1) & (6) & (2) & (6) & (6) \\
\varepsilon_{xy} G \varepsilon_{xy} & \varepsilon_{xy} G \varepsilon_{xy} - - - \varepsilon_{xy} G \varepsilon_{xy}
\end{bmatrix}$$
(72)

Subroutine "QDRLTL"

This subroutine simply manages the routines "PLSTIF", "SUM", and "CONDNS" in computing the stiffness matrix of the quadrilateral membrane and shear panel. This routine also makes provision for assigning different sides as reference axis for the shear panels.

Subroutine "SUM"

This subroutine adds the four triangle stiffness matrices computed by "PLSTIF" to produce a 10×10 stiffness matrix (including two degrees of freedom for the interior node) for the quadrilateral or shear panel.

Subroutine "CONDNS"

This routine condenses the 10×10 quadrilateral or shear panel stiffness matrix to an 8×8 matrix. The condensation is done by using Eq. 56.

Subroutine "CHANGE"

This routine interchanges the rows and columns of the quadrilateral (or shear panel) stiffness matrix so that the element degrees of freedom are in ascending order before addition to the structure stiffness matrix. This step is necessary because the routine "ASEMBL" assumes that the element degrees of freedom are in ascending order.

Subroutine "TRNSFM"

This routine transforms the plate element stiffness matrices from the local to the global coordinate system by (see Eq. 16)

$$K_{i} = a_{i}^{t} \quad k_{i} \quad a_{i} \tag{73}$$

where K_{i} is the transformed element stiffness matrix of the i^{th} element.

Subroutine "ASEMBL"

This routine adds the element stiffness matrices to the total stiffness matrix.

$$K = \sum_{i=1}^{m} K_{i}$$
(74)

For an explanation of the rules of this addition see the description of subroutine "POP". It should be noted that only the upper half of the stiffness matrix is stored. This storage is columnwise starting with the first non-zero element above the diagonal.

Subroutine "PRINTK"

The purpose of this routine is to print the stiffness matrix (if desired) rowwise starting with the first non-zero element and proceeding to the diagonal.

Subroutine "BOUND2"

This routine eliminates the rows and columns corresponding to the constrained degrees of freedom and condenses the stiffness matrix.

Subroutine "REDUCE"

This routine eliminates the rows of the applied force matrix corresponding to the constrained degrees of freedom. It is assumed that each column of the force matrix represents an independent load condition.

Subroutine "GAUSS"

"GAUSS" solves the load deflection equations (Eq. 17) by Gaussian elimination. The first step of the solution is the decomposition of the stiffness matrix by Eq. 18. The next two steps represent forward and back substitution using Eqs. 19 and 20 respectively. For the solution of additional load vectors only the steps FBS have to be repeated. If "GAUSS" is entered with any value other than 0 for the parameter NDCOMP, only the last two steps will be executed. The matrices L and D are stored in place of the original stiffness matrix.

Subroutine "RESTOR"

This routine restores the displacement or force matrix to full size by assigning zero values to boundary degrees of freedom.

Subroutine "ELFORC"

This routine extracts the element displacements from the global coordinate system and transforms them to the local coordinate system by Eq. 13.

Subroutine "STRESS"

The purpose of the "STRESS" routine is to compute strains and stresses in the triangular element. It first calls the routine "CRAMER" which computes χ^{-1} (Eq. 34) by Cramer's rule. The strains in the element are then calculated by Eqs. 30 and 35 thru 37. The stresses in the element are computed by Eq. 2. Also it computes the strain energy and the effective stress in the element by Eqs. 1 and 45 respectively.

Subroutine "QLSTRS"

This routine prepares the data for computing stresses in the four triangles of the quadrilateral or shear panel elements. First it determines the interior node displacements from the corner node displacements using Eq. 54. Then it calls subroutine "STRESS" to compute the stresses in the four triangles. It adds the strain energy of the four triangles to obtain the total strain energy. It identifies the triangle with the largest effective stress and normalizes the effective stress of the three remaining triangles with respect to this largest value.

Subroutine "PRNTDR"

This subroutine prints out the table of node information. This includes the node number, its coordinates, applied forces, and the displacements.

NAME	NUMBER OF CARDS	CALLED FROM
ANALYZE	315	Main Program
POP	62	ANALYZE
ELSTIC	15	ANALYZE
COORD	44	ANALYZE
ELSTIF	21	ANALYZE
PLSTIF	46	ANALYZE, QDRLTL
CRAMER	19	PLSTIF, STRESS
QDRLTL	32	ANALYZE
SUM	23	QDRLTL, QLSTRS
CONDNS	36	QDRLTL, QLSTRS
CHANGE	25	CONDNS
TRNSFM	36	ANALYZE
ASEMBL	41	ANALYZE
PRINTK	15	ANALYZE
BOUND2	35	ANALYZE
REDUCE	18	ANALYZE
GAUSS	57	ANALYZE
RESTOR	28	ANALYZE
ELFORC	22	ANALYZE
STRESS	33	ANALYZE, QLSTRS
QLSTRS	65	ANALYZE
PRNTDR	39	ANALYZE
	analysis and confidential	
TOTAL	1027	

Table 1: Program Description

6. INPUT INSTRUCTIONS

Input for the programs is divided into a number of card sets. Each card set will consist of one or more cards. Only three Formats are used for input. An integer Format (1415), a floating point Format (6F10.0) and a mixed Format 3(F10.0,2I5). The first four card sets will each have one card regardless of the size of the problem. The number of cards required for the remaining card sets depends on the problem size. The first card set indicates the number of problems (structures) to be analyzed. If this number is more than one, the program assumes that the remaining card sets will be supplied for each problem one after the other. The next card set is for the title of the problem. Card set three defines the basic parameters like the number of elements, nodes etc. And set 4 defines the properties of a reference material. This material can be any one of the materials used. The remaining card sets define material properties (5 and 6), type of elements (7), element connections (8, 9, 10, 11), sizes of the elements (12), element-material identification (13), node coordinates (14), boundaries (15) and loading information (16 and 17).

INPUT INSTRUCTION DETAILS

CARD SET (FORMAT)	PARAMETER	DESCRIPTION
1 (14I5)	NSTR	Number of data sets
2 (8A10)	TITLE	An alphanumeric description of the problem to be solved.
3 (14I5)	MEMBS JOINTS NBNDRY LOADS	Number of elements Number of nodes Number of restrained degrees of freedom Number of loading conditions
	MM	MM[=2 Two dimensional problem =3 Three dimensional problem
398 S	NR	Variable used only for calculating the net population of the stiffness matrix. It has no other role in the program. See Section 5.
	INCHES	INCHES $\begin{bmatrix} = 1 \\ \neq 1 \end{bmatrix}$ Coordinate data is in inches
	KIPS	KIPS[=1] Applied forces are in kips f Applied forces are in pounds
	NMAT	Number of materials
	MSSTRS	MSSTRS = 0 Margin of safety calculated from default allowable stresses. #0 Margin of safety calculated from input allowable stresses.
4 (6F10.5)	EEE	YOUNG'S modulus/ 10^6 of one of the elements in psi.
	PMU	POISSON'S ratio of one of the elements.
	RHO	Density of one of the elements in lbs/in ³ .

CARD SET (FORMAT)	PARAMETER	DESCRIPTION									
IF MSSTRS	= 0, skip CARD SET 5.	110									
5 (6F10.5)	ALSTRS(I) I=1,,3*NMAT	Allowable stresses/10 ³ in tension, compression and shear for the I th material.									
<pre>IF NMAT ≠ 1, CARD SET 4 parameters can be for any of the materials. IF NMAT = 1, skip CARD SET 6.</pre>											
6 (6F10.5)	YOUNGM(I)	YOUNG'S modulus/10 ⁶ for the I th material in psi.									
	POISON(I)	POISSON'S ratio for the I th material.									
	RHO1(I) I=1,,NMAT	Density for the I th material in lbs/in ³ .									
7 (14I5)	NNODES(I),I≈1,,MEMBS	Element Type =2 BAR =3 TRIANCIE									
	NNODE (1)	=3 TRIANGLE =4 QUADRILATERAL MEMBRANE =5 SHEAR PANEL									
8 (14I5)	MA(I), I=1,,MEMBS	First node number of each element.									
9 (1415)	MB(I), I=1,,MEMBS	Second node number of each element.									
10 (1415)	MC(I), I=1,,MEMBS	Third node number of each element.									
11 (14I5)	MD(I), I=1,, MEMBS	Fourth node number of each element.									
NOTE: For bars leave $MC(I)$ and $MD(I)$ blank. For triangles leave $MD(I)$ blank. For each element let $MA(I)$ be the lowest node number and $MB(I)$ be the next lowest. For Quadrilaterals and Shear Panels, $MC(I)$ and $MD(I)$ are determined by continuing in the direction defined by $MA(I)$ and $MB(I)$.											
12 (6F10.5)	TH(I), I=1,,MEMBS	Thickness of each element. For a bar thickness is cross-sectional area.									
	IF NMAT =1, skip CARD SET 13.										
13 (1415)	MYOUNG(I), I=1,,MEMBS	Material number of each element.									

CARD SET (FORMAT)	PARAMETER	DESCRIPTION						
14	X(I)	X coordinate of the I th node.						
(6F10.5)	Y(I)	Y coordinate of the I th node.						
	Z(I) I=1,,JOINTS	Z coordinate of the I th node.						
	<pre>IF MM=2, only X(I) and Y(I) are input.</pre>							
15 (14I5)	<pre>IBND(I), I=1,,NBNDRY</pre>	Degree of freedom numbers of those nodes which are restrained. For node K the degree of freedom numbers are 3*K-2, 3*K-1, and 3*K for MM=3 and 2*K-1, 2*K for MM=2.						
16 (1415)	NJLODS(I), I=1,,LOADS	Number of load components in the \mathbf{I}^{th} loading condition.						
17 3(F10.0,2I5)	TFR(J)	Value of the load.						
	IM(J) IM(J)	Direction of the load = 1 x direction						
	JM(J) J=1,,NJLODS(I)	Number of the node where the load is applied.						

7. OUTPUT DESCRIPTION

The primary output of the program ANALYZE consists of two tables (items 6 and 8 of the output description details). The first table gives element information and the second table gives information about the nodes. The element information includes member number, thickness (cross-sectional area of the bars), planform area (length of a bar), element type, stress information, strain energy, and margin of safety. The information about the nodes includes node (joint) number, node coordinates, applied forces, and the resulting displacements. In addition to these two tables output 3a (coming from subroutine POP) gives important information about the population distribution of the stiffness matrix. The value of the apparent population is crucial in determining the dimension of the stiffness matrix (SK). This dimension must be at least as big as or bigger than this value.

Item 7 gives information about the total strain energy (U) and the work of the external forces (W) for the structure. This information can be very useful for an equilibrium check.

Item 4 gives the weight of the structure. The remaining information is not really very important to the user.

OUTPUT DESCRIPTION DETAILS

Output for Program ANALYZE consists of the following:

- Untitled echo of all input data except boundaries and applied loads.
- 2) Boundary data, i.e. contents of array IBND (CARD SET 15)
- 3) Output from Subroutine POP concerning the distribution of elements in the stiffness matrix. This information is generated before the stiffness matrix of the structure is assembled.
 - (a) Gross Population total number of elements in the upper triangle of the matrix.

Net Population = actual population of possible non-zero elements in the upper triangle of the stiffness matrix. This number would be correct only if NR is correct in CARD SET 3.

Apparent Population = actual number of elements considered as non-zero by a given solution scheme. Thus the apparent population represents the number of storage locations required for the stiffness matrix.

- (b) Starting Row Numbers for each column the number of the row where the first non-zero element occurs in each column.
- (c) Number of Diagonal Elements in Single Array Stiffness Matrix. For each Column I the actual number of elements, ID(I), in the upper triangular matrix up to and including that column, i.e.

$$ID(I) = \frac{I(I+3)}{2} - \sum_{j=1}^{I} b_j$$

where b_j is the row number given for Column I in (b). Thus for the last column, ILAST,

ID(ILAST) = Apparent Population

- 4) Weight of the structure
- 5) Boundary conditions applied to the stiffness matrix alter the arrays defined by (b) and (c) above, and thus they are reprinted.
- 6) Output for each element after analysis.
 - (a) MEMB Element Number
 - (b) THICK Thickness of the element. For a bar thickness is cross-sectional area.

- (c) AREA Area of the element. For a bar area is length.
- (d) TYPE Type is a composite number which describes the element type and material number. Type is defined as TYPE = NNODES(I)x10 + MYOUNG(I). See CARD SETS 7 and 13. Note: If the number of materials is greater than 10, TYPE is meaningless. If the number of materials is 1, MYOUNG(I)=1 for all I.
- (e) MA, MB, MC, MD defined in CARD SETS 8,9,10, and 11.
- (f) SIGMA-X ($\sigma_{\rm X}$), SIGMA-Y ($\sigma_{\rm y}$), SIGMA-XY ($\sigma_{\rm xy}$). Stresses in the x-y local coordinates of the element. EFSTR-1, EFSTR-2, EFSTR-3, EFSTR-4 Effective stresses in the element determined by the Von Mises Criterion.

The stress output varies per element type.

(i) BAR SIGMA-X only

(ii) TRIANGLE SIGMA-X, SIGMA-Y, SIGMA-XY, EFSTR-1

(iii) QUADRILATERAL MEMBRANE

The Quadrilateral membrane element is divided into 4 triangles for analysis. SIGMA-X, SIGMA-Y, SIGMA-XY are for that triangle with the maximum effective stress. This maximum effective stress is given as EFSTR-i for some i, $i=1,\ldots,4$. Then EFSTR-j, $j\neq i$, are defined as the ratio of the effective stress for triangle j to the maximum effective stress.

- (iv) SHEAR PANEL The Shear Panel is also divided into 4 triangles for analysis. SIGMA-XY (τ_{XY}) is for that triangle with the maximum effective stress. Then EFSTR-i, i=1,...,4 are as defined in (iii).
- (g) ENERGY Total strain energy in the element.
- (h) MS Margin of Safety for the element.

NOTE: If the number of loading conditions is greater than 1, output (f) and (h) are given continuously for each load case.

7) The total strain energy (U) of the structure and the work (W) of the external forces for each loading condition.

- 8) Output for each node after analysis.
 - (a) JOINT Node Number
 - (b) X, Y, Z x, y, and z coordinate of the node
 - (c) FORCE-X, FORCE-Y, FORCE-Z applied forces in the x, y, and z direction.
 - (d) DISPL-X, DISPL-Y, DISPL-Z Displacements in the x, y, and z direction.

NOTE: If the number of loading conditions is greater than 1, output (c) and (d) are given continuously for each load case.

8. SAMPLE PROBLEM

A three spar wing shown in Figure 8 is idealized by membrane quadrilaterals, shear panels, and bars (axial force members). The top and bottom skins are represented by membrane quadrilaterals and the spars and ribs by shear panels. In addition, the top and bottom nodes are connected by bar elements or posts. The root section of the wing is assumed to be fixed. The finite element model of the wing box is shown in Figure 8.

The wing is analyzed for two independent loads. These loading conditions are generated by simplified pressure distributions representative of a subsonic, forward-center-of-pressure loading, and a supersonic near-uniform-pressure loading. The material properties (aluminum) are given in Figure 9.

The results of the analysis are given in Appendix D. They are given in two tables. The first table gives element information. This includes sizes, connections, stresses, energies, and margins of safety. The second table gives information about nodes. This includes coordinates, applied loads, and displacements. For a detailed description of the complete output, see Section 7.

The wing was also analyzed by the NASTRAN program. Table 2 compares ANALYZE and NASTRAN z-displacements.

NOTE: ALL DIMENSIONS IN INCHES EXCEPT WHERE OTHERWISE NOTED

Figure 8. Aerodynamic Planform and Primary Structural Arrangement of Wing

Figure 9. Finite Element Representation of Wing Box

REFERENCES

- ¹Venkayya, V. B., and Tischler, V. A., "OPTSTAT A Computer Program for Optimal Design of Structures Subjected to Static Loads", AFFDL-TR-78-(in preparation).
- $^2 \mbox{Khot}, \mbox{ N. S., "Computer Program (OPTCOMP) for Optimization of Composite Structures for Minimum Weight Design", AFFDL-TR-76-149, February 1977.$
- ³Venkayya, V. B., et al, "DANALYZE Dynamic Analysis of Aerospace Structures with Membrane Elements", FBR-TM-78- (in preparation).
- ⁴Gallagher, R. H., "Finite Element Analysis Fundamentals", Prentice-Hall Inc., Englewood Cliffs, N.J., 1975.
- ⁵Przemieniecki, J. S., "Theory of Matrix Structural Analysis", McGraw-Hill, New York, 1968.
- ⁶Zienkiewicz, O. C., "The Finite Element Method in Engineering Science", McGraw Hill Co., London, 1971.
- 7 MacNeal, R. H., (Editor), "The NASTRAN Theoretical Manual, Levels 16 and 17", March 1976.
- ⁸Garvey, S. J., "The Quadrilateral Shear Panel", Aircraft Engineering, May 1951.
- ⁹Argyris, J. H., "Energy Theorems and Structural Analysis", Aircraft Engr., Vol. 26, pp. 347-356, 383-387, 394 (1954); Vol. 27, pp. 42-58, 80-94, 125-134, 145-158 (1955).
- ¹⁰Irons, B. M., "Engineering Application of Numerical Integration in Stiffness Method", AIAA Journal, Vol. 4, 1966, pp. 2035-2037.
- 11 Bathe, K. J. and Wilson, E. L., "Numerical Methods in Finite Element Analysis", Prentice-Hall, Inc., Englewood Cliffs, N.J., 1976.
- 12Hohn, F. E., "Elementary Matrix Algebra", The McMillan Company, New York, 1958.

APPENDIX A: ESTIMATION OF CORE REQUIREMENTS

The purpose of this appendix is to aid in the approximate estimation of core requirements for the program. These change with the problem size. For example with 100k₈ (120K bytes or 30K decimal) it is possible to solve problems of the size 250 to 300 degrees of freedom assuming that the nodes are numbered with reasonable care for an optimum stiffness profile (See the discussion under subroutine "POP" in Section 5). The dimensional requirements of various arrays are explained by comment cards at the beginning of the program. However, this section reiterates the importance of adjusting the dimensions of some important arrays.

The arrays can be grouped into nine types. The number of elements, degrees of freedom, loading conditions, the number of boundaries and the number of materials are some of the variables that affect the size of the arrays. The arrays must be dimensioned at least as big or bigger than the number of these variables in the problem. The arrays with fixed sizes (not affected by problem size) are dimensioned first. The total core requirement of these arrays is relatively small. Next, the arrays that depend on the number of materials are dimensioned. The third group consists of a single array IBND which is dimensioned according to the number of boundary conditions. The fourth group varies with the number of loading conditions. In this case the dimension of the single arrays is equal to the number of loading conditions. For rectangular arrays, the first dimension is fixed, and the second dimension represents the number of loading conditions. The fifth group varies with the number of elements. The sixth group depends on the number of nodes.

The number of degrees of freedom determines the dimensions of the seventh group. The number of degrees of freedom and the loading conditions determine the size of the eighth group of arrays. The first dimension of these arrays represents the degrees of freedom, and the second dimension represents the loading conditions. The SK matrix in the last group depends on the number of degrees of freedom and the profile of the total structure stiffness matrix which in turn depends on the ordering of the node numbers (See the discussion under subroutine "POP" in Section 5).

The preliminary estimate of the size of the SK array can be based on the estimation of the semi-bandwidth. This would be an upper bound for the dimension of SK. The actual dimension of SK can be determined after passing through the subroutine "POP". This routine gives a number for the apparent population of the stiffness matrix from the information of the element connections. SK must be dimensioned at least as big or bigger then the apparent population in order to solve the problem. Usually SK is the largest array in the program, and its size can be reduced by numbering the nodes for the optimum profile of the stiffness matrix. In absence of an adequate procedure for optimization of this profile, some sort of bandwidth optimization is acceptable. It should be noted that the value of the variable MAXSK (defined in the beginning of the program) should be the same as the dimension of SK. When the dimension of SK is changed, the value of MAXSK should also be changed.

The next largest arrays are FR and DR. They represent the applied force and the computed displacement matrix respectively. The dimension

of the arrays depends on the number of degrees of freedom and the independent loading conditions. The first dimension should be at least as big or bigger than the number of degrees of freedom of the problem. Similarly the second dimension is determined by the number of loading conditions. In addition the first dimension should be the same as the variable NNMAX defined in the beginning of the program. Whenever the dimensions of FR and DR are changed, NNMAX must also be changed accordingly.

The arrays ICOL and IDIAG depend on the number of degrees of freedom of the problem. Together they identify the profile of the stiffness matrix. For instance, ICOL(I) gives the row number of the first non-zero element in the I th column of the stiffness matrix. IDIAG(I) gives the address of the diagonal element of the I th column of the stiffness matrix in the single array SK.

The arrays MA, MB, MC and MD are assigned for element connections.

NNODES is for the type of elements. The array TH is for the sizes

(thickness of plate elements and cross-sectional area of bars) of the elements. The array MYOUNG identifies the material type of the elements. The remaining arrays are small and have minor influence on the core requirements.

Frequent Errors Encountered in Using "ANALYZE"

1. The element connections MA, MB, MC and MD must be specified by starting with the lowest node number for MA and the next lowest, but adjacent node number, for MB. MC and MD are then defined by continuing in the direction established by MA and MB. See the description of card sets 8, 9, 10, and 11 in the input instructions, Section 6.

- 2. The boundary degrees of freedom (IBND) must be in ascending order. See the description of card set 15 in Section 6, Input Instructions.
- 3. The first dimension of FR and DR must be the same as the value of the variable NNMAX (defined at the beginning of the program).
- 4. The value of MAXSK (defined at the beginning of the program) must be equal to or greater than the value of the apparent population given by the routine "POP". The dimension of the array SK must be equal to the value given for MAXSK.
- 5. The sides of the shear panels must be attached to one or more normal stress carrying elements such as posts (bars), membrane quadrilaterals or triangles.

THIS PAGE IS BEST QUALITY PRACTICABLE PROM OURY FURBLISHED TO DDC

APPENDIX B: LISTING OF THE PROGRAM

	PROGRAM A	ANALY	TE	74/74	OPT=1	FTN 4.6	+446	08/21/78	10.12.39	PAGE	1
1			PROGRA	M ANAL	YZE(INPUT	OUTPUT . TAR	E5=INPUT.T	APE6=OUTPU1	,	ANALYZE	2
	C									ANALYZE	3
	C		THE FO	LLOWING	G DIM ARE	FOR INTER	AL USE			ANALYZE	
								12) .XI(5) .F	TA(5), EE (3,3)		5
5		1	1				EKK(12,12)			ANALYZE	6
		97	,) , ALS (3) , 1		,		ANALYZE	7
	C						NUMBER OF	MATERIALS		ANALYZE	8
	COLUMN SACTOR					POISON(20)				ANALYZE	3
	C						S THE NUMB	FR OF MATER	TALS	ANALYZE	10
10					STRS (60)					ANALYZE	11
	C		THE FO	LLOWING	G DIM PER	TAIN TO THE	NUMBER OF	BOUND COND	(NBNDRY)	ANALYZE	12
			DIMENS	ION IB	ND (50)					ANALYZE	13
	C		THE FO	LLOWING	G DIM PER	TAIN TO THE	NUMBER OF	LOADING CO	NOITIONS (L)	ANALYZE	14
			DIMENS	ION ED	DR (12,5),	SSX (4,5), SS	Y (4,5), SSX	Y (4,5), SXY	51,KTR(5),	ANALYZE	15
15		1		EF	STRS (5),E	FFSTR(4,5)	EDR (12,5),	SX(5), SY(5)	. NJLOBS(5) .	ANALYZE	16
		2	2	ELI	EENG (5) . E	AGTOT(5),E	GSTR(5),ES	R(5),SFTH(5	5)	ANALYZE	17
	C		IF THE	NUMBER	R OF LOAD	ING CONDITY	ONS EXCEED	10. THEN C	HANGE THE	ANALYZE	18
	C		DIMENS	ION OF	EX. EY.	EXY IN SUBF	ROUTINE STR	ESS, ENGG I	N SUBROUTINE	ANALYZE	19
	C		OLSTRS	AND TI	DR1, TDR2	IN SUBROUT	INE RESTOR			ANALYZE	20
20	C		THE FO	LLOWING	G DIM PER	TAIN TO THE	NUMBER OF	ELEMENTS		ANALYZE	21
			BIMENS	ION MA	(160), MB(60) ,MC (16), MD(160),	TH(160), NNC	DES(160),	ANALYZE	22
		1	l	MY	OUNG (160)					ANALYZE	23
	C		THE FO	LLOWING	G DIM PER	TAIN TO THE	NUMBER OF	JOINTS		ANALYZE	24
			DIMENS	ION X	90),Y(90)	Z(90)				ANALYZE	25
25	C		THE FO	LL ING	DIM PERTA	IN TO THE	NUMBER OF DI	EG OF FREED	OM (NN)	ANALYZE	26
					IAG(270),					ANALYZE	27
	C						NUMBER OF	DEG OF FRE	EDOM (NN)	ANALYZE	28
	C					DING CONDIT	IONS (L)			ANALYZE	29
					(270,51,F					ANALYZE	30
30	C					TAINS TO TH	E TOTAL ST	IFFNESS MAT	RIX (SK)	ANALYZE	31
			DIMENS	ION SK	(9110)					ANALYZE	32
	C									ANALYZE	33
	C.	****	*****	*****	********	********	*********	• • • • • • • • • • • •	*****	ANALYZE	34
	c									ANALYZE	35
35	c		THIS P	ROGRAM	WAS DEVE	OPED				ANALYZE	36
	C									ANALYZE	37
	C					B. VENKA				ANALYZE	38
	C						ICS LABORA			ANALYZE	39
40	Č			WR	IGHT-PATT	KZON ATK	ORCE BASE	DATION OHIC	Last March 1980	ANALYZE	40
40	Č.									ANALYZE	41
	č									ANALYZE	42
	C		INTEGE							ANALYZE	43
	C					-	R.DR. IDIAG	TCOL		ANALYZE	44
45	·		NNMAX		s INC DIM	MSTON OF I	K,UK, IUIAG	, ICOL		ANALYZE	45
49	C				FOULL OF	CDEATED 1	HAN THE DI	M DE SK		ANALYZE	47
	C		MAXSK			GREATER	HAN THE DE	11 OF 3K		ANALYZE	48
			READ 15		NSTR					ANALYZE	49
		1				I = 1,8)				ANALYZE	50
50			FOPMAT							ANALYZE	51
					(TITLE(I)	I = 1.8)				ANALYZE	52
		77	FORMAT							ANALYZE	53
			KSTR=1							ANALYZE	54
			PEADIS	,2) ME	ABS, JOINT	NBNDRY . LO	ADS, MM, NR.	INCHES , KIP	S, NHAT, HSSTRS		55
55									S , NHAT , MSSTRS		56
					PMU, RHO					ANALYZE	57
			IF (RH	0 .LT.	.00001)	RHO = 0 . 1				ANALYZE	58

THIS PACE IN THE T QUALITY PRACTICABLE

	PROGRAM ANAL	YZF 74/74 CPT=1 FTN 4.6+446 11/01/78 13.47.24	PAGE	2
		DO 7793 I = 1. NMAT	ANALYZE	59
		KX = 3*(I-1) + 1	ANALYZE	60
60		ALSTRS(KX) = 60000.	ANALYZE	61
		ALSTRS(KX+1) = 60000.	ANALYZE	62
	7783	ALSTRS(KX+2) = 36000.	ANALYZE	63
		IF (MSSTRS .EQ. 0) GC TO 7782	ANALYZE	64
		KX = 3*NMAT	ANALYZE	65
F 5		READ(5,3) (ALSTRS(I), I = 1,KX)	ANALYZE	66
		00 7781 I = 1,KX	ANALYZE	67
		ALSTRS(I) = 1000.*ALSTRS(I)	ANALYZE	68
	7792	CONTINUE	ANALYZE	69
		ALS(1) = ALSTRS(1)	ANALYZE	70
70		ALS(2) = ALSTES(2)	ANALYZE	71
		ALS(3) = ALSTRS(3)	ANALYZE	72
		WRITE(6, 333) EFE, PMU, RHC, ALS(1), ALS(2), ALS(3)	ANALYZE	73
	5.5.5	FOFMAT(6F15.3)	ANALYZE	74
		IF (NMAT .LE. 1) GO TO 7777	ANALYZE	75
75		REAC(F, 3) (YCUNGM(I), FCISCN(I), FHC1(I), I = 1,NMAT)	ANALYZE	76
		00 7784 I = 1, NMAT	ANALYZE	77
		KX = 3*(I-1) + 1	ANALYZE	78
		WRITE(6, 333) YCUNGM(I), POISON(I), RHO1(I), ALSTRS(KX),	ANALYZE	79
	7701	1ALSTPS(KX+1), ALSTPS(KX+2)	ANALYZE	80
60		CONTINUE REAC(5,2)(NNCEES(I),I=1,MEMBS)	ANAL YZE	81 82
	,,,,,	READ(5,2)(M4(I),I=1,MEMBS)	ANALYZE	7777 1540
		REAC(5, 2) (MB(I), I=1, MEMBS)	ANALYZE	84
		READ(F,2)(MC(I),I=1,MEMBS)	ANALYZE	85
.5		READ(5,2) (MD(I), I=1, MEMBS)	ANALYZE	86
- 9		PEAD(5,3) (TH(I),I=1,MEMBS)	ANALYZE	87
		IF (NMAT .LE. 1) GO TO 7778	ANALYZE	88
		PEAD(F,2) (MYCLNG(I), I = 1, MEMBS)	ANALYZE	83
	7775	DO 5464 I=1,MEMBS	ANALYZE	90
90		IF (NMAT .EQ. 1) MYOUNG(I) = 1	ANALYZE	91
- 0		HRITE(6,33)I, NNCCES(I), MYCUNG(I), MA(I), MB(I), MC(I), MD(I), TH(I)	ANALYZE	92
	5464		ANALYZE	93
		FORMAT (715,4F1(,5)	ANALYZE	94
		FORMAT(14JF)	ANALYZE	95
95	2 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	EEF = FEE* (10.0**6)	ANALYZE	96
		E = EES	ANALYZE	97
		F1=1.0	ANALYZE	98
		IF (MM .LT. 3) GC TO 4	ANALYZE	99
		READ(5,3)(X(I),Y(I),7(I),I=1,JCINTS)	ANALYZE	1.00
100		GO TO 6	ANALYZE	101
	4	REAC (5,3) (X(1),Y(1),I=1,JOINTS)	ANALYZE	102
		DO 11 I=1, JOINTS	ANALYZE	103
	11	7(1)=0.0	AHALYZE	104
		FORMAT (6F10.5)	ANALYZE	105
105	6	CONTINUE	ANALYZE	106
		IF (INCHES .EQ. 1)GO TO 9	ANALYZE	107
	7000	FOPMAT (20x, 3F10.4)	ANALYZE	108
		DO 7 I=1, JCINTS	ANALYZE	109
		X(I)=X(I)*12.0	ANALYZE	110
110		Z(I)=Z(I)*12.0	ANALYZE	111
		Y(I)=Y(I)*12.0	ANALYZE	112
	9		ANALYZE	113
		WRITE(6,7000) (x(I), y(I), Z(I), I = 1, JOINTS)	ANALYZE	114
		NN=MM*JOINTS	ANALYZE	115

THIS PAGE IG THAT QUALITY PRACTICABLE PROM COPY PROBLEMS TO DOC

	PROGRAM ANAI	Y7E 74/74 OPT=1 FTN 4.6+446 08/21/78 10.12.39	PAGE	3
115		NM=NN-NBNDRY	ANALYZE	115
		READ(5,2) (IBNO(I),I=1,NBNDRY)	ANALYZE	117
		WRITF (6,5)	ANALYZE	118
	5	FORMAT(1H1,///2%,10HBOUNDARIES ///)	ANALYZE	119
		WRITE(6, 1009)(IBND(I), I=1, NBNDRY)	ANALYZE	120
120		DO 10 I=1,NN	ANALYZE	121
		DO 10 J=1,LOADS	ANALYZE	122
		OR(I,J)=0	ANALYZE	123
	10	FR(I, J)=0	ANALYZE	124
		READ(5, 2) (NJLOOS(I), I=1, LOADS)	ANALYZE	125
125		DO 21 J=1,LOADS	ANALYZE	126
	12	KH=NJLODS(J) IF(KH-3) 13, 13, 14	ANALYZE	127
	13		ANALYZE	129
	13	GO TO 15	ANALYZE	130
130	14	KX=3	ANALYZE	131
	15		ANALYZE	132
	16		ANALYZE	133
	-	DO 19 I=1,KX	ANALYZE	134
		KY=MM+JM(I)-MM+IM(I)	ANALYZE	135
135	19	FR(KY,J) = FR(KY,J) + TFR(I)	ANALYZE	136
		KH=KH-KX	ANALYZE	137
		IF(KH)21,21,12	ANALYZE	138
	21	CONTINUE	ANALYZE	139
		IF(KIPS .NE. 1)GO TO 666	ANALYZE	140
140		DO 17 I=1,NN	ANALYZE	141
		DO 17 J=1,LOADS	ANALYZE	142
		FR(I,J)=1000.0*FR(I,J)	ANALYZE	143
	666		ANALYZE	144
		CALL POP (HEMBS, JOINTS, MM, MA, MB, MC, MD, NNODES, ICOL, IDIAG, NONZRO, NR)	ANALYZE	145
145		IF(NONZRO .GT. MAXSK) GO TO 1000	ANALYZE	146
		00 8 I=1,NONZRO	ANALYZE	147
	•	SK(I) = 0	ANALYZE	148
		CÁLL ELSTIC(1.0,PMU,EE) DO 120 I=1.4	ANALYZE	149
150		MAA(I)=I	ANALYZE	151
150		M38(I)=I+1	ANALYZE	152
	120		ANALYZE	153
		MAA (4)=1	ANALYZE	154
		MBB (4) =4	ANALYZE	155
155		WEIGHT = 0.0	ANALYZE	155
		DO 400 L = 1.MEMBS	ANALYZE	157
		IF (NMAT .LE. 1) GO TO 20	ANALYZE	158
		KX = MYOUNG(L)	ANALYZE	159
		E = YOUNGM(KX)+10++6	ANALYZE	160
160		PMU = POISON(KX)	ANALYZE	161
		E1 = E/EEE	ANALYZE	162
		CALL ELSTIC(E1,PMU,EE)	ANALYZE	163
	20			164
	The state of the s	IF(NNODES(L) -3)102,100,124	ANALYZE	165
165	124	CALL ODRITL (EK, EKK, TH(L), QUAD, MA(L), MB(L), MC(L), MD(L), MAA, MBB, MCC,		165
		1XI, ETA, NNODES(L), EE, TRANG, 0) GO TO 101	ANALYZE	167
	100		ANALYZE	168
	100	CALL PLSTIF (EK , TH(L), TRIANG, 1,2,3 ,XI,ETA,EE,0.,0)	ANALYZE	170
170		QUAD = TRIANG	ANALYZE	171
2.0	101	CALL TRNSFH(EK,AA,B,C,MM,NNODES(L),12)	ANALYZE	172

THIS PAGE IS BEST QUALITY PRACTICABLE THOSE OOPY PARELSHED TO DOC

	0000044 4444	V7F 76.474 ODT-4 FTN 6 64666 00404.473 40.43 70	2455	
	PROGRAM ANAL	YZE 74/74 OPT=1 FTN 4.6+446 08/21/76 10.12.39	PAGE	•
		GO TO 103	ANALYZE	173
	102	CALL ELSTIF (AA, B, C, TH(L), MM, AL, E1)	ANALYZE	174
	102	QUAD = AL	ANALYZE	175
175	103		ANALYZE	175
113		FOF MAT (/1x, 6E15.5/)	ANALYZE	177
	30	IF (NMAT .LE. 1) GO TO 405	ANALYZE	178
		KX = MYOUNG(L)	ANALYZE	179
		RHO = RHO1(KX)	ANALYZE	180
180		IF(RH01(KX) .LE00001) RH0=0.1	ANALYZE	161
	405	WEIGHT = WEIGHT + TH(L)*QUAD*RHO	ANALYZE	182
		CONTINUE	ANALYZE	183
	100	WRITE(6,410) WEIGHT	ANALYZE	184
	410	FORMAT(1H0,10x,25HMEIGHT OF THE STRUCTURE =,E15.5)	ANALYZE	185
185		CONTINUE	ANALYZE	185
	C	CALL PRINTK(SK, IDIAG, NN)	ANALYZE	187
		CALL BOUND 2 (SK . I BND, NN . NBNDRY . IDIAG . I COL)	ANALYZE	188
		WRITE(6, 1009)(ICOL(I), I=1,NM)	ANALYZE	183
		WRITE(6, 1009) (IDIAG(I), I=1, NM)	ANALYZE	190
190		NONZRO=IDIAG(NM)	ANALYZE	191
	1009	FORMAT(1X, 10I13)	ANALYZE	192
		NDC OMP=0	ANALYZE	193
		CALL PEDUCE (FR, IBND, NN, NBNDRY, LOADS, NNMAX)	ANALYZE	194
		CALL GAUSS (SK, FR, DR, ICOL, IDIAG, LOADS, NM, NNMAX, NDCOMP)	ANALYZE	195
195		IF(NDCOMP.E3.10) GO TO 2000	ANALYZE	196
		CALL RESTOR (DR, IBND, NN, NBNDRY, LOADS, NNMAX)	ANALYZE	197
		CALL RESTOR (FR, IBND, NN, NBNDRY, LOADS, NNMAX)	ANALYZE	198
		00 112 I=1, NN	ANALYZE	199
		00 112 J=1,LOADS	ANALYZE	200
200	112	DR(I,J)=DR(I,J)/EEE	ANALYZE	201
		DO 180 I = 1.LCADS	ANALYZE	202
		ENGSTP(I) = 0.0	ANALYZE	203
		00 179 J = 1,NN	ANALYZE	204
		ENGSTR(I) = ENGSTR(I) + FR(J,I) + DR(J,I)	ANALYZE	205
205	179	CONTINUE	ANALYZE	206
		ENGSTP(I) = .5*ENGSTR(I)	ANALYZE	207
	180	CONTINUE	ANALYZE	208
		NPAGE=1	ANALYZE	209
		LINES = 1	ANALYZE	210
210		00 1501 I=1,LOADS	ANALYZE	211
	1501	ENGTOT(I)=0.	ANALYZE	212
		DO 300 L=1, MEMBS	ANALYZE	213
		IF (NMAT .LE. 1) GO TO 85	ANALYZE	214
		KX = MYOUNG(L)	ANALYZE	215
215		F = YOUNGM(KX) + 10 + 6	ANALYZE	216
		PMU = POISON(KX)	ANALYZE	217
		E1 = E/EEE	WHATASE	218
		CALL FLSTIC(E1,PMU,EE)	ANALYZE	219
		TYPE = NNODES(L)*10 + KX	ANALYZE	220
550		IF (MSSTRS .EQ. 0) GO TO 86	ANALYZE	221
		KY = 3*(KX-1) + 1	ANALYZE	223
		ALS(1) = ALSTRS(KY)	ANALYZE	223
		ALS(2) = ALSTRS(KY+1)	ANALYZE	224
		ALS(3) = ALSTRS(KY+2)	ANALYZE	225
225		GO TO 86	ANALYZE	226
		TYPE = NNODES(L)*10 + 1	ANALYZE	227
	86	IF((LINES+LOADS) .LT. 54 .AND. L .GT. 1)GO TO 84	ANALYZE	228
		LINES=1	ANALYZE	223

THIS PAGE IS BEST QUALITY PRACTICABLE

	PROGRAM ANALYZE 74/74 OPT=1 FTN 4.6+446 08/21/78 10.12.39	PAGE	5
	WRITE (6, 98) NPAGE	ANALYZE	230
230	NPAGE=NPAGE+1	ANALYZE	231
	WRITE(6,83)	ANALYZE	232
	84 CONTINUE	ANALYZE	233
	CALL COORD (MA(L), MB(L), MC(L), MD(L), X, Y, Z, AA, XI, ETA, AL, NNODES(L), 0)		234
	CALL ELFORC (AA, DR, EDR, MM, MA(L), MB(L), MC(L), MD(L), NNODES(L), LOADS.	ANALYZE	235
235	1NNMAX)	ANALYZE	236
	IF(NNODES(L) .LE. 3)GO TO 110	ANALYZE	237
	CALL QDRLTL(EK,EKK,TH(L),QUAD,MA(L),MB(L),MC(L),MD(L),MAA,MBB,MCC,		238
	1XI, ETA, NNODES (L), EE, TRANG, 1)	ANALYZE	239
	CALL GLSTRS (EDR, EDDR, XI, ETA, MAA, MBB, MCC, SX, SY, SXY, EFSTRS, E, PMU,	ANALYZE	240
240	1LOADS, SSX, SSY, SSXY, EFFSTR, KTR, EKK, ELEENG, SFTH, ALS, ESR, NNODES (L))	ANALYZE	241
	KX=KTP(1)	ANALYZE	242
	ELEENG(1)=ELEENG(1)*0.5*TH(L)	ANALYZE	243
	ENGTOT(1) = ENGTOT(1) + ELEENG(1)	ANALYZE	244
	IF (NNODES(L) .EQ. 5) GO TO 220	ANALYZE	245
245	WRITE(6, 87) L, TH(L), QUAD, TYPE, MA(L), MB(L), MC(L), MD(L), SSX(KX, 1),	ANALYZE	245
	1SSY(KX,1),SSXY(KX,1),(EFFSTR(I,1),I=1,4),ELEENG(1),SFTM(1)	ANALYZE	247
	222 IF(LOADS .EQ. 1)GO TO 300	ANALYZE	248
	DO 211 K=2,LOADS	ANALYZE	249
	KX=KTR(K)	ANALYZE	250
250	ELEENG(K) = ELEENG(K) +0.5+TH(L)	ANALYZE	251
	ENGTOT(K) = ENGTOT(K) +ELEENG(K)	ANALYZE	252
	IF (NNODES(L) .EQ. 5) GO TO 225	ANALYZE	253
	WRITE(6,95)SSX(KX,K),SSY(KX,K),SSXY(KX,K),(EFFSTR (I,K),I≠1,4),	ANALYZE	254
	1ELFENG(K), SFTM(K)	ANALYZE	255
255	GO TO 211	ANALYZE	255
	225 WRITE(6,82) SSXY(KX,K),(EFFSTR(I,K),I=1,4),ELEENG(K),SFTM(K)	ANALYZE	257
	211 CONTINUE	ANALYZE	258
	GO TO 300	ANALYZE	259
	220 WRITE(6,81) L,TH(L),QUAD,TYPE,MA(L),MB(L),MC(L),MD(L),	ANALYZE	260
260	1SSXY(KX, 1), (EFFSTR(I, 1), I=1, 4), EL EENG(1), SFTM(1)	ANALYZE	261
	GO TO 222	ANALYZE	262
	110 IF(NNODES(L) .LT. 3)GO TO 213	ANALYZE	263
	CALL STRESS(EDP,XI,ETA,1,2,3,SX,SY,SXY,EFSTRS,E,PMU,ALS,ESR,	ANALYZE	264
	1LOADS, ELEENG, TRIANG, 3)	ANALYZE	265
265	ELEENG(1) = ELEENG(1) +0.5+TH(L)	ANALYZE	266
	ENGTOT(1) = ENGTOT(1) + ELEENG(1)	ANALYZE	267
	SFTM(1) = (1.0 - ESR(1))/ESR(1)	ANALYZE	265
	WRITE(6,88) L,TH(L),TRIANG,TYPE,MA(L),MG(L),SX(1),SX(1),SY(1),	ANALYZE	269
	1SXY(1), EFSTRS(1), ELEENG(1), SFTM(1)	ANALYZE	270
270	IF(LOADS .EQ. 1)GO TO 300	ANALYZE	271
	DO 212 K=2,LOADS	ANALYZE	272
	SFTH(K) = (1.0 - ESR(K))/ESR(K)	ANALYZE	273
	ELEENG(K) = ELEENG(K) * 0.5*TH(L)	ANALYZE	274
	ENGTOT(K) = ENGTOT(K) +ELEENG(K)	ANALYZE	275
275	212 HRITE (6,94) SX(K), SY(K), SXY(K), EFSTRS (K), ELEENG(K), SFTM(K)	ANALYZE	275
	GO TO 300	ANALYZE	277
	213 DO 215 K=1, LOADS	ANALYZE	278
	SX(K)=E* (EDR(Z,K)-EDR(1,K))/AL	ANALYZE	279
	ELEENG(K) = (0.5*SX(K)**2/E)*AL*TH(L)	ANALYZE	280
280	ESF(K) = SQRT((SX(K)/ALS(1))**2)	ANALYZE	281
	SFTM(K) = (1.0 - ESR(K))/ESR(K)	ANALYZE	282
	IF (SX(K) .GE. 0.0) GO TO 215	ANALYZE	283
	$ESF(K) = SORT((SX(K)/ALS(2))^{+2})$	ANALYZE	284
285	SFTM(K) = (1.0 - ESR(K))/ESR(K)	ANALYZE	285
265	215 ENGTOT(K) = ENGTOT(K) +ELEENG(K)	ANALYZE	286

	PROGRAM ANALYZE 74/74 OPT=1 FTN 4.6+446 08/21/78 10.12.39	PAGE '	6
	WRITE(6,89) L,TH(L),AL,TYPE,MA(L),MB(L),SX(1),ELEENG(1)	ANALYZE	287
	IF(LOADS .EQ. 1)GO TO 300	ANALYZE	283
	DO 214 K=2,LOADS	ANALYZE	289
	214 HPITE(6,93)SX(K), ELEENG(K), SFTM(K)	ANALYZE	290
500	300 LINES=LINES+LOADS+1	ANALYZE	291
	DO 1503 KL=1,LOADS	ANALYZE	292
	1503 WRITE(6,1502)KL,ENGTOT(KL),ENGSTR(KL)	ANALYZE	293
	1502 FORMAT(///.30x,39HTHE TOTAL ENERGY FOR LOADING CONDITION .12.4H IS		294
	1 ,F12.4,2X,3H(U),10X,E12.4,3H(H))	ANALYZE	295
295	90 LINES=1	ANALYZE	295
	CALL PROTOR (FR, OF, X, Y, Z, NN, MM, LOADS, JOINTS, NPAGE, NNMAX)	ANALYZE	297
	A3 FOFMAT(1X,4HMEMB,2X,5HTHICK,3X,4HAREA,2X,4HTYPE,1X,2HMA,2X,2HMB,	ANALYZE	298
	12x,2HMC,2x,2HMD,3x,7HSIGMA-x,4x,7HSIGMA-Y,3x,8HSIGMA-xY,3x,	ANALYZE	299
	27HFFSTR-1,3x,7HEFSTR-2,3x,7HEFSTR-3,3x,7HEFSTR-4,4x,6HENERGY,	ANALYZE	300
300	36x, 2HMS)	ANALYZE	301
	81 FOFMAT(/I5,F7.3,F9.2,5I4,22X,E11.4,5E10.4,E10.3)	ANALYZE	302
	82 FORMAT (63x, 511.4, 5E10.4, E10.3)	ANALYZE	303
	87 FOFMAT(/I5, F7.3,F9.2,514,3E11.4,5E10.4,E10.3)	ANALYZE	304
	88 FOFMAT(/I5, F7.3,F9.2,4I4,4X,3E11.4,E10.4,30X,E10.4,E10.3)	ANALYZE	305
305	89 FOF MAT(/15, F7.3,F9.2,314,8x,E11.4,62x,E10.4,E10.3)	ANALYZE	306
	93 FOFMAT (41x, E11.4, 62x, E10.4, E10.3)	ANALYZE	307
	94 FOPMAT(41X, 3E11.4, F10.4, 30X, E10.4, E10.3)	ANALYZE	308
	95 FOFMAT (41X, 3E11.4,5E10.4, E10.3)	ANALYZE	309
	98 FOFMAT(1H1,120X,5HPAGE ,I3/)	ANALYZE	310
310	2000 IF(KSTR.EQ.NSTR) GO TO 1000	ANALYZE	311
	KSTR=KSTR+1	ANALYZE	312
	GO TO 1	ANALYZE	313
	1000 CONTINUE	ANALYZE	314
	STOP	ANALYZE	315
315	END	ANALYZE	316

SUBROUTIN	E POP	74/74 OPT=1 FTN 4.6+446 08/21/78 10.12.39	PAGE	1
1		SUBROUTINE POP(MMB,JN,MM,MA,MB,MC,MD,KTYPE,IC,ID,NZ,NR)	POP	2
		DIMENSION MA(1), MB(1), MC(1), MD(1), IC(1), ID(1), KT YPE(1)	POP	3
		IX(I,J)=I*(J-1)+1	POP	
1.5		NZ=0	POP	5
5		NL+MM=NN	POP	6
		NET=0	POP	7
* () X	10	DO 10 I=1,NN IC(I)=NN	POP	9
	10	DO 50 L=1, MMB	POP	10
10		NNODES=2	POP	11
177		ITPI=0	POP	12
		KX=IX(HM, MA(L))	POP	13
		KY=IX(MM,M9(L))	POP	14
	15	IF(IC(KY) .LT. KX) GO TO 18	POP	15
15		DO 19 I=1, HM	POP	16
		IC(KY)=KX	POP	17
	19		POP	18
	18	IF(KTYPE(L)-3)20,16,17	POP	13
	16	IF(ITRI .EQ. 1)GO TO 20	POP	20 21
20		KY=IX(MM,MC(L)) ITFI=1	POP	55
		NNODES=3	POP	23
		GO TO 15	POP	24
	17		POP	25
25		IF(ITRI .EQ. 1)GO TO 14	POP	25
		KY=IX(HM,MC(L))	POP	27
		ITRI=ITRI+1	POP .	28
		NNODES=4	POP .	29
		GO TO 15	POP	30
30	14	KY=IX(MM,MD(L))	POP	31
		ITPI=ITRI+1	POP	32
		GO TO 15	POP	33
	20	NET=NET+(MM**2)*((NNODES*(NNODES-1))/2) CONTINUE	POP	35
35	90	NET=NET-(HM*+2)*NR	POP 4	
,,		DO 30 I=1, NN, HM	POP	37
		IF(IC(I) .LT. I)GO TO 30	POP	. 38
		KX=I	POP	39
		DO 25 J=1,MM	POP	40
40		IC(KX)=I	POP	41
	25	KX=KX+1	POP	42
	30		POP	43
		DO 40 I=1,NN	POP	44
	4.0	NZ=NZ+(I-IC(I)+1) ID(I)=NZ	FOP	46
45	40	KX=(NN*(NN+1))/2	POP	47
		NET=NET+ (MM+(MM+1)*JN) /2	POP	48
		WRITE(6,2)	POP	49
		WRITE (6.3) KX. NET. NZ	POP .	50
50		WRITE(6,4)	POP	51
		WRITE(6,5)(IC(I),I=1,NN)	POP	52
		WRITE(6,6) .	POP	53
		WRITE(6, 5) (ID(I), I=1, NN)	POP	54
	2	FORMAT(1H1, ////20x, 16HGROSS POPULATION, 4x, 14HNET POPULATION,	POP	55
55		14X,19HAPPARENT POPULATION///)	POP	56
		FOPMAT(18X, 114, 118, 122//)	POP	57 58
	5	FORMAT(//2x,36HSTARTING ROW NUMBERS FOR EACH COLUMN///) FORMAT(5x,10112)	POP	59
		FORMAT (//2x,61HNUHBERS OF DIAGONAL ELEMENTS IN SINGLE ARRAYSTIFFNE		60
60	9	1SS MATRIX ///)	POP	61
		RETURN	POP	62
		ENO	POP	63

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDQ .____

S	SUBROUTINE	ELST	IC 7	4/74	OPT=1	FTN	4.6+446	08/21/78	10.12.39	PAGE	1
1			SUBROUT	INE EL	STIC(E,F	MU,EE)				ELSTIC	2
		14	DIMENSI	ON EE	(3.3)					ELSTIC	3
			PMU1 = :							ELSTIC	
			EE(1,1)						Made and the	ELSTIC	5
5			EE (2.1)	= E #F	PMU/PMU1					ELSTIC	. 6
			EE(3,1)							ELSTIC	7
			EE(2,2)							ELSTIC	8
			EE (3.2)	= 0.1)					ELSTIC	9
			EE (3, 3)	= E/	(2.*(1.0	+ PHU)			ELSTIC	10
10			DO 18 I							ELSTIC	11
			IP = I	1						ELSTIC	12
			DO 18 J	= IP	3					ELSTIC	13
		18	EE(I,J)							ELSTIC	14
		-	RETURN							ELSTIC	15
15			END							ELSTIC	16

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY PARALSHED TO DOG

THIS PAGE IS BEST CONCITY PRACTICALLY FROM OUT TO AND

SUE	ROUTINE C	COORD 74/74 OPT=1 FTN 4.6+446 08/21/78 10.12.39	PAGE	1
1	1172.3	SUBROUTINE COOPD(K1,K2,K3,K4,X,Y,Z,AA,XI,ETA,AL,NND,NO)	COORD	2
		DIMENSION X(1),Y(1),Z(1),AA(3,3),AB(3),XI(5),ETA(5)	COORD	3
	1177	XCOMP=X(K2)-X(K1)	COORD	i
		YCOMP=Y(K2)-Y(K1)	COORD	5
5	Africas.	ZCOMP=Z(K2)-Z(K1)	COORD	6
		AL=SQRT(XCOMP**2+YCOMP**2+ZCOMP**2)	COORD	7
	112.3	AA(1,1)=XCOMP/AL	COORD	8
		AA(1,2)=YCOMP/AL	COORD	9
		AA(1,3)=ZCOMP/AL	COORD	10
10		IF(NND .LT. 3)RETURN	COOFD	11
		XCOMP=X(K3)-X(K1)	COORD	12
		YCOMP=Y(K3)-Y(K1)	COORD	13
		ZCOMP=Z(K3) -Z(K1)	COORD	14
	5577.3	AL=SQRT(XCOMP**Z+YCOMP**Z+ZCOMP**Z)	COORD	15
15		AB(1)=XCOMP/AL	COORD	16
		AB(2)=YCOMP/AL	COORD	17
		AB(3)=ZCOMP/AL	COORD	18
		AL=SQRT((AA(1,2)+AB(3)-AA(1,3)+AB(2))++2+(AA(1,3)+AB(1)	COORD	19
		1-AA(1,1)*AB(3))**2+(AA(1,1)*AB(2)-AA(1,2)*AB(1))**2)	COORD	20
20		AA(2,1)=((AA(1,3)##2)#AB(1)-AA(1,1)#AA(1,3)#AB(3)-AA(1,1)#	COORD	21
		1AA(1,2)*AB(2)+(AA(1,2)**2)*AB(1))/AL	COORD	22
		AA(2,2)=((AA(1,1)**2)*AB(2)-AA(1,1)*AA(4,2)*AB(1)-AA(1,2)*	COORD	23
		2AA(1,3)*AB(3)+(AA(1,3)**2)*AB(2))/AL	COORD	24
		AA(2,3)=((AA(1,2)**2)*AB(3)-AA(1,2)*AA(1,3)*AB(2)-AA(1,1)*	COORD	25
25		3AA(1,3)*AB(1)+(AA(1,1)**2)*AB(3))/AL	COORD	26
		IF(NO .EQ. 1)RETURN	COORD	27
		XI(1)=0.0	COORD	28
		ETA(1)=0.0	COORD	29
		XI(2)=(X(K2)-X(K1))+AA(1,1)+(Y(K2)-Y(K1))+AA(1,2)+(Z(K2)-Z(K1))+AA	COORD	30
30		1(1,3)	COORD	31
		ETA(2)=0.0	COORD	32
		XI(3)=(X(K3)-X(K1))*AA(1,1)+(Y(K3)-Y(K1))*AA(1,2)+(Z(K3)-Z(K1))*AA	COORD	33
		1(1,3)	COORD	34
		ETA(3)=(X(K3)-X(K1))*AA(2,1)+(Y(K3)-Y(K1))*AA(2,2)+(Z(K3)-Z(K1))*A	COOFD	35
35		1A(2,3)	COORD	36
		IF(NNO .LE. 3)RETURN	COORD	37
		XI(4)=(X(K4)-X(K1))*AA(1,1)+(Y(K4)-Y(K1))*AA(1,2)+(Z(K4)-Z(K1))*AA		. 38
		1(1,3)	COORD	39
		ETA(4)=(X(K4)-X(K1))*AA(2,1)+(Y(K4)-Y(K1))*AA(2,2)+(Z(K4)-Z(K1))*A		40
40		1A(2,3)	COORD .	
		XI(5)=(XI(2)+XI(3)+XI(4)) /4.0	COORD	42
		ETA(5)=(ETA(3)+ETA(4))/4.0	COORD	43
		RETURN	COORD	44
		END	COORD	45

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FARMISHED TO DDG

	SUBROUTINE	ELST	IF 74/74	0PT=1	FTN 4.6+446	08/21/78	10.12.39	PAGE	1
1			SUBROUTINE !	ELSTIF (A.	B,C,AE,HM,AL,E)			ELSTIF	2
					2,12),0(12,12)			ELSTIF	3
			EK=AE*E/AL					ELSTIF	4
			DO 25 I=1, MI	H				ELSTIF	5
5			J=I+MM					ELSTIF	6
			B(1,1)=EK*A	(1, I)				ELSTIF	7
			B(1,J)= -B(1,I)				ELSTIF	8
			8(2,I) =-B(1,I)				ELSTIF	9
		25	B(2, J)=B(1,1	1)				ELSTIF	10
10			DO 26 I=1, M	H				ELSTIF	11
			DO 26 J=1, M	M				ELSTIF	12
		26	C(I, J)=A(1,1	[]*B(1,J)				ELSTIF	13
			00 36 I=1, MM	4				ELSTIF	14
			I1=I+MM					ELSTIF	15
15			DO 36 J=1, MM	H				ELSTIF	15
			J1=J+MM					ELSTIF	17
			C(I,J1)=-C()	[,J)				ELSTIF	18
			C(J1,I)=-C()	(L,I				ELSTIF	19
		36	C(I1,J1)=C(1	[,J)				ELSTIF	20
20			RETURN					ELSTIF	21
			END					ELSTIF	22

S	SUBROUTINE	PLSTIF	74/74	OPT=1	FTN 4.6+44	6 08	/21/78	10.12.39	B14.2.	PAGE	1
1		SUB	ROUTINE PI	LSTIFCEK	TH, TRIANG, M		EE,SHR	, NONORM)		PLSTIF	2
		DIM	ENSION EK	((12,12),	X(1),Y(1),EE	(3,3),				PLSTIF	3
		1	U(6),		A(3,3),E1(3),E2(3),AX	(3)			PLSTIF	4
		CAL	L CRAMER (A, TRIANG.	X,Y,MA,MB,MC					PLSTIF	5
5		00	20 I = 1.0	5						PLSTIF	6
	354343	DO	15 II = 1	, 6						PLSTIF	7
		15 U(I	I) = 0.0							PLSTIF	8
) = 1.0							PLSTIF	9
					A(1,2) *U(3)					PLSTIF	10
10					A(2,2)*U(4)					PLSTIF	11
		E1(A(1,2)*U(4)				+	PLSTIF	12
		1	A(2,	2)*U(3) 4	A(2,3) *U(5)	SERVICE TO SER				PLSTIF	13
		no	20 J = I,0	5						PLSTIF	14
		DO	16 II = 1	,6						PLSTIF	15
15		16 U(I	I) = 0.0							PLSTIF	16
) = 1.0							PLSTIF	17
					A(1,2)*U(3)					PLSTIF	18
					A(2,2)*U(4)					PLSTIF	19
					A(1,2)*U(4)	+ A(1,3)*U	(6) + A	(2,1)*(1)	+	PLSTIF	20
20		1			A(2,3) *U(5)					PLSTIF	21
			(I,J) = 0.							PLSTIF	22
			(NONORM .	EQ. 0) GC	TO 14					PLSTIF	23
			1)=SHR**2							PLSTIF	24
			2) = 2. * A X (PLSTIF	25
25					1)) *AX(1))					PLSTIF	26
					X(1)+E1(3)*A					PLSTIF	27
				-E2(1))*A	X(1) +E2(3)*A	X(2)				PLSTIF	28
			1) = 0.0							PLSTIF	29
			2) = 0.0							PLSTIF	30
30			1) = 0.0							PLSTIF	31
			2) = 0.0							PLSTIF	32
			18 K = 1,	3						PLSTIF	33
			K) = 0.0	700	1 77					PLSTIF	34 35
			17 L = 1,		100	**				PLSTIF	
35			K) = AX(K)	+ EE IK	CI-ES(C)	Jen				PLSTIF	36
		18 CON				11.5	N - 6-			PLSTIF	37 38
			19 K = 1,			400	4.			PLSTIF	39
					E1(K) *AX(K)		al .			PLSTIF	40
				KK (1, J)+	H*TRIANG		10			PLSTIF	41
40		20 CON	V				100			PLSTIF	4,2
			30 I = 1,9	,			,			PLSTIF	43
			= I + 1							PLSTIF	46
			30 J = IX							PLSTIF	45
45			URN = E	W (110)						PLSTIF	46
49		END								PLSTIF	47
		ENU									

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY PURPLISHED TO DDC

SUBROUT	INE CRAMER	74/74	OPT=1	FTN 4.6+446	08/21/78	10.12.39	PAGE	1
1	Suer	ROUTINE C	RAPER (A.T	RIANG, X, Y, MA, MB, MC	:1		CRAMER	2
	DIME	INSION A	3, 3) , X(1)	,Y(1)			CRAPER	3
				- Y (HC)) -Y (HA) *	X(MB) - X(MC)	1) +	CRAMER	4
	1	(XI	MB) *Y (MC)	- X(MC)+Y(MB))			CRAMER	5
5	A (1.	1) = Y(H	B) - Y(MC	Property of the state of the state of			CRAMER	6
. 111	A(2	1) = X(M	C) - X(MB)			CRAMER	7
	A (3	1) = X(M	B) +Y(MC)	- X(HC) +Y(HB)			CRAMER	8
	A(1.	2) = Y(M	C) - Y(MA)			CRAMER	9
		2) = X(H					CRAMER	10
10	A (3	2) = X(M	C) +Y (HA)	- X(HA) +Y(HC)			CRAMER	11
	A(1	3) = Y(M	A) - Y(MB)			CRAMER	12
	A (2	3) = X(M	B) - X(MA				CRAMER	13
	A (3	3) = X(M	A) *Y(HB)	- X(HB) +Y(HA)			CRAMER	14
	00 1	0 I = 1.	3				CRA MER	15
15	DO 1	10 J = 1.	3				CRAMER	15
		J) = A(I		G			CRAMER	17
		NG = (ABS					CRAMER	15
	RETU						CRAMER	19
	END						CRAMER	20

IS PAGE IS BEST QUALITY PRACTICABLE
OOFY TURNISHED TO DDC

,

s	UBROUTINE	OOR	LTL 74/74 OPT=1 FTN 4.6+446 08/21/78 10.12.39	PAGE	1
1			SUBROUTINE GORLTL (EK, EKK, TH, QUAD, MA, MB, MC, MD, MAA, MBB, MCC, XI, ETA,	QDRLTL	2
			1NNODES, EE, TRANG, NO)	QDRLTL	3
			DIMENSION EK(12,12), EKK(12,12), MAA(1), MBB(1), MCC(1), XI(5), ETA(5)	QDRLTL	
			1, EE (3,3), TRANG (1)	QDRLTL	5
5			DO 125 I=1,12	QDRLTL	6
			DO 125 J=1,12	QDRLTL	7
		125	EK(I,J)=0.	QDRLTL	8
	41.		NNR M = 0	QDRLTL	9
			SHR=1.0	QDELTL	10
10			IF(NNODES .LE. 4)GO TO 108	QDRLTL	11
			NNRM=1	QDRLTL	12
			IF(NNODES .EQ. 5)GO TO 108	QDRLTL	13
			IF(NNODES - 7)104,105,106	QDRLTL	14
		104	XCOMP=XI(3)-XI(2)	QDRLTL	15
15			YCOMP=ETA(3)-ETA(2)	QDRLTL	15
			GO TO 107	QDRLTL	17
	11.2	105	XCOMP=XI(4)-XI(3)	QDRLTL	18
			YCOMP=ETA(4)-ETA(3)	QDRLTL	19
			GO TO 107	QDRLTL	20
50		106	XCOMP=XI(4)-XI(1)	QDRLTL	21
			YCOMP=ETA(4)-ETA(1)	QDRLTL	22
		107		QDRLTL	23
			SHF = XCOM P/A LL	QDRLTL	24
		108		QURLTL	25
25			DO 130 I=1,4	QORLTL	26
			CALL PLSTIF (EKK, TH, TRIANG, MAA(I), MBB(I), MCC(I), XI, ETA, EE, SHR, NNRM)		27
			QUAD=QUAD+TRIANG	QUELTL	28
			TRANG(I)=TRIANG	QDRLTL	29
		130		QDRLTL	30
30			CALL CONDNS(EK, EKK, MA, MB, MC, MD, NO)	QDRLTL	31
			RETURN	ODELTL	32
			END	ODRLTL	33

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

Angelia Market Commencer of the

	SUBROUTINE	SUM	74/74 OPT=1	FTN 4.6+446	08/21/78	10.12.39	PAGE	1
1			SUBROUTINE SUM (EK, EKK	,MA,HB,MC)			SUM	2
			DIMENSION EK(12,12),E	(K(12,12),NA(3)			SUM	3
			M=2				SUM	4
			NA(1)=2*(MA-1)+1				SUM	5
5			NA(2)=2* (MB-1)+1				SUM	6
			NA(3)=2* (MC-1)+1				SUM	7
			I H= 0				SUM	
			DO 100 I=1,6				SUM	9
			JH=0				SUM	10
10			IF(I .LE. IH)GO TO 30				SUM	11
			IH=IH+M				SUM	12
			IHH=IH/M				SUM	13
			KX=NA(IHH)				SUM	14
		30	DO 90 J=1,6				SUM	15
15			IF(J .LE. JH)GO TO 60				SUM	16
			H+HL=HL				SUM	17
			I HH=HHI				SUM	18
			KY=NA(IHH)				SUM	19
		60	EK(KX,KY)=EK(KX,KY)+E	(K(I,J)			SUM	20
20		90	KY=KY+1				SUM	21
		100	KX=KX+1				SUM	22
			RETURN				SUM	23
			END				SUM	24

The second second second

SUB	ROUTI NE	COND	NS 74/74 OPT±1 FTN 4.6+446	08/21/78	10.12.39	PAGE	1
1			SUBROUTINE CONDNS (EK, EKK, MA, MB, MC, MD, NO)			CONDNS	2
			DIMENSION EK(12,12), EKK(12,12)			CONDNS	3
			DO 5 I=1,8			CONDNS	
			00 5 J=1,8			CONDNS	5
5		5	EKK(I, J) = 0.			CONDNS	6
			DET=EK(9,9)*EK(10,10)-EK(9,10)**2			CONDNS	7
	10000		AX=EK(9,9)			CONDNS	8
			EK(9,9)=EK(10,10)/DET			CONDNS	9
			EK(10,10) = AX/DET			CONDNS	10
10			EK(9,10) =-EK(9,10)/DET			CONDNS	11
			EK(10,9) = EK(9,10)			CONDNS	12
			K X = 0			CONDNS	13
			DO 10 I=9,10			CONDNS	14
			KX=KX+1			CONDNS	15
15			DO 10 J=1,8			CONCNS	16
			DO 10 K=9,10			CONDNS	17
		10	EKK(KX,J) = EKK(KX,J) + EK(I,K) + EK(K,J)			CONDNS	18
			IF(NO .EQ. 1)RETURN			CONDNS	19
			K X= 0			CONDNS	20
20			00 20 I=9,10			CONDNS	21
			KX=KX+1			CONDNS	22
			00 20 J=1,8			CONDNS	23
			EK(I,J)=EKK(KX,J)			CONDNS	24
		20	EKK(KX,J)=0			CONDNS	25
25			DO 30 I=1,8			CONDNS	26
	•		00 30 J=1,8			CONDNS	27
			DO 30 K=9,10			CONDNS	28
		30	EKK(I,J) = EKK(I,J) + EK(I,K) + EK(K,J)			CONDNS	29
			00 40 I=1,8			CONDNS	30
30			DO 40 J=1,8			CONDNS	31
		40	EK(I,J)=EK(I,J)-EKK(I,J)			CONDNS	32
			IF (MC .LT. MB) CALL CHANGE (EK. 3, 5, 4, 12, 12, 0	1)		CONDNS	33
			IF (MD .LT. MB) CALL CHANGE (EK., 3,7,4,12,12,0	1)		CONDNS	34
			IF (MD .LT. MC) CALL CHARGE LEK . 5, 7, 4,12, 12,0	1)		CONDNS	35
35			RETURN			CONDNS	36
			IF (MD aLT. MS) CALL CHANGE (EK. 3.7.4.12.12.0 IF (MD aLT. MC) CALL CHANGE (EK. 5.7.4.12.12.0 RETURN END			CONDNS	37

THIS PAGE IS BEST QUALITY PRACTICABLE

SUBROUTI	NE CHAN	GE 74/74 OPT=1	FTN 4.6+446	08/21/78	10.12.39	PAGE	1
1		SUBROUTINE CHANGE (EK	IX,IY,NND,M.L,IR)			CHANGE	2
		DIMENSION EK(M, L)				CHANGE	3
		KX=IX				CHANGE	
		KA=IA				CHANGE	5
5		M2=2*NND				CHANGE	6
		IF(IP .EQ. 1)M2=L				CHANGE	7
		00 10 I=1.2				CHANGE	8
		DO 5 J=1,M2				CHANGE	9
		AX=EK(KX,J)				CHANGE	10
10		EK(KX,J) = EK(KY,J)				CHANGE	11
	5	EK(KY, J) =AX				CHANGE	12
		KX=KX+1				CHANGE	13
	10	-				CHANGE	14
		IF(IR .EQ. 1)RETURN				CHANGE	15
15		KX=KX-2				CHANGE	16
		K4=K4-5				CHANGE	17
		DO 20 I=1,2				CHANGE	18
		DO 15 J=1.M2				CHANGE	19
		AX=EK(J,KX)				CHANGE	20
20		EK(J,KX) = EK(J,KY)				CHANGE	21
	15	EK(J,KY) =AX				CHANGE	22
		KX=KX+1				CHANGE	23
	20	KY=KY+1				CHANGE	24
		RETURN				CHANGE	25
25		ENC				CHANGE	26

May 2 to 10 to 10

SUE	ROUTINE TRNS	FH 74/74 OPT=1 FTN 4.6+446 08/21/78 10.12.3	9 PAGE	1
1		SUBROUTINE TRASFHIEK, AA. B.C. HH. NND. H)	TRNSFH	2
		DIMENSION EK(12,12), AA(3,3), B(M, M), C(M, M) M2=2*NND	TRNSFM	3
		M2=2*NND	TRNSFM	
		IF(NND . GT. 4) M2=8		,
5		M3=MM*NND	TONCEM	
	Jak 124	IF(NND .GT. 4) M3=4*MM	TONCEH	1
		DO 100 I=1,M2		
	A WORLD	JA=MM	TONCEM	9
		KA=0		10
10		I A=U		11
	. ON 384	UU 100 J=1,M3	TRNSFM	17
		B(I,J)=0.0	TRNSFM	13
		IF(J-JA) 90,90,80	TRNSFM	14
_		JA=JA+MM KA=KA+2	TRNSFM	15
15		NA-NA-C	IKMSFM	11
	100000	IA=IA+MM	TRNSFM	1
	90	JAN-3-1A	IKNSFM	1
		DO 100 K=1,2	TRNSFM	1
	100 000	KAH-KTKA	TRNSFM	2
20	100	B(I,J)=B(I,J)+EK(I,KAA)*AA(K,JAA)	TRNSFM	2
		DO 200 J=1,M3 JA=MM	TRNSFM	2
			TRNSFM	2
		KA=0 IA=0	TRNSFM	2
5		DO 200 I=1, M3	TRNSFM	2
,		C(I,J)=0.0	TRNSFM	2
		IF(I-JA) 190.190.180	TRNSFM	2
	180		TRNSFM	21
	100	KA=KA+2	TRNSFM TRNSFM	2
0		IA=IA+MM	TRNSFM	3
	190		TRNSFM	3
	180 184	DO 200 K-1 2	TRNSFM	3
		WAALUAWA	TRNSFH	30
	200	C(I, J)=C(I, J)+AA(K, JAA)+B(KAA, J)	TRNSFM	3
15	1 4 3 1	RETURN	TRNSFM	3
		END	TONCEH	37
		RABERTRA C(I,J)=C(I,J)+AA(K,JAA)*B(KAA,J) RETURN END	i knor n	31
		and the second s		
		Ser a		

THIS PAGE IS BEST QUALITY PRACTICABLES
FROM OUPY FURNISHED TO DDG

SUBROUTINE	ASEMBL	74/74	OPT=1	FTN 4.6+446	08/21/78	10.12.39	PAGE	1
1	. s	UBROUTINE AS	SEMBL (A.B	, MA , MB , MC , MD , MM , IO	.NNODES.H)		ASEMBL	2
	0	IMENSION A	1) .B(M.H)	. ID (1) . NA (4) , NAA (3)		ASEMBL	3
		X(I,J)=I+(J.		•			ASEMBL	4
	N	IND=NNODES					ASEMBL	5
5	I	FINND .GT.	4) NND=4				ASEMBL	5 6 7
	M	2=NND*HM					ASEMBL	7
	N	A(1) = IX (MM,	(AP				ASEMBL	8
	N	A(2)=IX (MM,	4B)				ASEMBL	9
)=IX(HM,HC)			ASEMBL	10
10		FINNODES . G!					ASEMBL	11
		FINNODES . L	E. 3160 T	0 5			ASEMBL	12
	0	0 4 I=1,3					ASEMBL	13
	K	X=1/3					ASEMBL	14
		Y=1/2					ASEMBL	15
15			LT. NACK	Y+3))GO TO 4			ASEMBL	16
		H=NA(KX+2)					ASEMBL	17
	N	A(KX+2) =NA((Y+3)				ASEMBL	18
	N	A(KY+3)=KH					ASEMBL	19
		ONTINUE					ASEMBL	20
20		0 10 I= 2, NN					ASEMBL	21
		AA (I-1) =NA ([)-NA(I-1) -MM			ASEMBL	22
		H=MM					ASEMBL	23
		AA=NA(1)					ASEMBL	24
		HH=1					ASEMBL	25
25		0 30 J=1, M2					ASEMBL	26
	_	FIJ .LE. KH	GO TO 15				ASEMBL	27
		HH=KHH+1					ASEMBL	28
		AA=NA (KHH)					ASEMBL	29
		H=KH+MM		7			ASEMBL	30
30		X=ID(IAA)-I	AA+NA (1)				ASEMBL	31
	2.5	Y=MM					ASEMBL	32
	D	0 25 I=1,J					ASEMBL	33
			OR. I .L	E. KY) GO TO 20			ASEMBL	34
		X=I/MM					ASEMBL	35
35	1.75	X=JX+NAA(KX					ASEMBL	36
		Y=KY+MM					ASEMBL	37
		(JX)=A(JX)+	3(I,J)	to be a to			ASEMBL	35
		X=JX+1		TO THE STATE OF TH			ASEMBL	39
		AA=IAA+1			2		ASEMBL	40
40		ETURN					ASEMBL	41
	E	ND					ASEMBL	42

su	BROUTINE	PRIN	TK 74/74	OPT=1	FTN 4.6+446	08/21/78	10.12.39	PAGE	1
			SUBROUTINE P	RINTK (SK.	IDIAG, NN)	M.81.4130058	WYTHOUGH	PRINTK	,
•			DIMENSION SK	(1). TOTAG	(1)	TIME STATE OF		PRINTK	3
			DO 80 I=1.NN					PRINTK	
			IF(I .GT. 1)					PRINTK	5
5			KX=1					PRINTK	6
			KY=1			or or on the		PRINTK	7
	10100		GO TO 70			D. 01 DO 180		PRINTK	8
		65	KX=IDIAG(I-1)+1				PRINTK	9
			KY=IDIAG(I)					PRINTK	10
10		70	WRITE (6. 3) I					PRINTK	11
	50-000	80	WRITE (6. 2) (S	K(K) . K=K)	(, KY)			PRINTK	12
		3	FORMAT(I4)	• • • • • • • • • • • • • • • • • • • •			- OTHER	PRINTK	13
		2	FORMAT (10X.1	0E12.41			14-31-07/10	PRINTK	14
	10/10/1		RETURN					PRINTK	15
15			END					PRINTK	16
						5 07 03 881 43	1. (1) 2.1431		

THIS PAGE IS BEST QUALITY PRACTICABLE FROM OUPY FURNISHED TO DDC

and the state of t

SUS	ROUTINE	NUOE	1D2 74/74 OPT=1 FTN 4.6+446 06/21/78	10.12.39	PAGE	1
1			SUBROUTINE BOUND2(A, IB, N, NB, ID, IC)		BOUNDS	2
			DIMENSION A(1), IB(1), ID(1), IC(1)		BOUND2	3
			IH=NB		BOUND2	4
			NH=N		BOUND2	5 6 7
5			DO 30 JA=1, NB		BOUNDS	6
			IA=IB(IH)		BOUNDS	
			IF(IA .GE. NH) GO TO 20		BOUND2	8
			KH=IA+1		BOUND2	9
			IF(IA .GT. 1) GO TO 5		BOUNDS	10
10			KX=1		BOUNDS	11
			JX=1		BOUNDS	12
			GO TO 6		BOUNDS	13
		5	JX=ID(IA)-ID(IA-1)		BOUNDS	14
			KX=ID(IA-1)+1		BOUND2	15
15		6	DO 10 I=KH, NH		BOUNDS	16
			KY=1		BOUNDS	17
			IF(IC(I) .LE. IA) GO TO 7		BOUNDS	18
			IC(I-1)=IC(I)-1		BOUND 2 BOUND 2	19
20			I1=I		BOUNDS	21
20			KY=0		BOUNDS	22
		•	GO TO 8 IC(I-1)=IC(I)		BOUNDS	23
		•	I1=I-1		BOUNDS	24
			K=IC(I)		BOUNDS	25
25		0	ID(I-1)=ID(I)-JX-KY		BOUND2	26
63			DO 10 J=K, I1		BOUNDS	27
			IF(J .EQ. IA) JX=JX+1		BOUNDS	28
			KXX=KX+JX		BOUNDS	29
			A(KX)=A(KXX)		BOUNDS	30
30		10			BOUNDS	31
30		20			BOUNDS	32
		20			BOUNDS	33
		30	CONTINUE		BOUNDS	34
			PETUEN		BOUNDS	35
35			END		BOUNDS	36
			THIS PAGE IS BEST QUALITY PRACTICABLE THIS PAGE IS BEST QUALITY PRACTICABLE THOSE COOPY THEM SHED TO DOG			

306	ROUTINE RE	UCE 74/74 OPT=1 FTN	08/21/78	10.12.39 PAGE	1
1		SUBROUTINE REDUCE (F.IB.N.	NB.L.NN)	100 100 100 100 100 100 100 100 100 100	
		DIMENSION F(NN,L) ,IB(1)	ALCOHOLY ACCOUNT AND TANK		2
		00 5 J=1,L		WEDOOL	3
		IH=NB		KEUUGE	
5		NH=N		REDUCE	5
	1	I=IB(IH)		REDUCE	6
		IF(I-NH) 2,4,4		REDUCE	7
	2	NH1=NH-1		REDUCE	
		00 3 K=I,NH1		REDUCE	9
10		K1=K+1		REDUCE	10
	3	F(K,J) =F(K1,J)	ency of the state of	REDUCE	11
		IH=IH-1		REDUCE	12
		NH=NH-1		REDUCE	13
		IF(IH.EQ.O) GO TO 5		REDUCE	14
15		GO TO1		REDUCE	15
•	5	CONTINUE	ALSON CONTRACTOR	REDUCE	16
		RETURN		REDUCE	17
		The state of the s		REDUCE	18
		END		REDUCE	19

THIS PAGE IS BEST QUALITY PRACTICABLE FROM OQPY FURNISHED TO DDC

REPORTED ALTERA ASSESSED NO STREET

SERVICE OF UNITARIES, AND DERBEE OF FRIEDRY WATER

SUBR	OUTINE GAUS	S 74/74 OPT=1 FTN 4.6+446 08/21/78 10.12.39	PAGE	1
1		SUBROUTINE GAUSS (A.F.D.IC.ID.L.N.NN.NDCOMP)	GAUSS	2
•		DIMENSION A(1), IC(1), ID(1), F(NN,L), D(NN,L)	GAUSS	3
		IF(NDCOMP .EQ. 1)GO TO 15	GAUSS	4
		DO 10 I=1.N	GAUSS	5
5		I 1= I - 1	GAUSS	6
9		DO 9 J=I•N	GAUSS	7
		IF(IC(J) •GT• I)GO TO 9		8
		IX=ID(J)-J+I	GAUSS	
		IF(I1 •EQ• 0)GO TO 8	GAUSS	9
		DO 7 K=1, I1	GAUSS	10
10			GAUSS	11
		IF(IC(J) .GT. K .OR. IC(I) .GT. K)GO TO 7	GAUSS	12
		KX=ID(I)-I+K	GAUSS	13
		KY=ID(J)-J+K	GAUSS	14
		KZ=IO(K)	GAUSS	15
15	7	A(IX)=A(IX)-(A(KX)*A(K7)* A(KY))	GAUSS	15
			GAUSS	17
		IF(I .Eq. J)GO TO 9	GAUSS	18
		KZ=IO(I)	GAUSS	19
		IF(A(KZ))5,6,5	GAUSS	20
20		A(IX) = A(IX) / A(KZ)	GAUSS	21
		CONTINUE	GAUSS	22
	10		GAUSS	23
	15		GAUSS	24
		DO 30 I=1,N	GAUSS	25
25		D(I,K)=F(I,K)	GAUSS	26
		I1=I-1	GAUSS	27
		IF(I1 .EQ. 0) GO TO 30	GAUSS	28
		DO 20 J=1,I1	GAUSS	29
		IF(IC(I) .GT. J)GO TO 20	GAUSS	30
30		IX=ID(I)-I+J	GAUSS	31
		D(I,K)=D(I,K)-A(IX)+D(J,K)	GAUSS	32
	20		GAUSS	33
	30	CONTINUE	GAUSS	34
	40	CONTINUE	GAUSS	35
35		00 70 I=1,N	GAUSS	35
		KX=ID(I)	GAUSS	37
		DO 70 K=1,L	GAUSS	38
	70	D(I,K)=D(I,K)/A(KX)	GAUSS	39
		DO 90 K=1,L	GAUSS	40
40		I X=N	GAUSS	41
		DO 90 I=2,N	GAUSS	42
		IX=IX-1	GAUSS	43
		I1=I-1	GAUSS	44
		KX=IX	GAUSS	45
45		DO 80 J=1,I1	GAUSS	46
		KX=KX+1	SAUSS	47
		IF(IC(KX) .GT. IX)GO TO 80	GAUSS	48
		KY=ID(KX)-KX+IX	GAUSS	49
		D(IX,K)=D(IX,K)-A(KY)*D(KX,K)	GAUSS	50
50	80	CONTINUE	GAUSS	51
	90	CONTINUE CONTINUE RETURN NDCOMP=10	GAUSS	52
	110	RETURN BEACHT STORES	GAUSS	53
	6	NDC OMP=10	GAUSS	54
		WRITE(6, 120) I	GAUSS	55
55	120	FORMAT(///2x,46HSTRUCTURE IS UNSTABLE, THE DEGREE OF FREEDOM =,15)	GAUSS	56
		RETURN	GAUSS	57
		END	GAUSS	58

THIS PAGE IS BEST QUALITY PRACTICATION
FROM QUEY FURNISHED TO DDC

		9.9	1 1 4 2 L			Greek of Miles			DECK PURE PUREN	
S	UBROUTINE	RESTOR	74/74	OPT=1	FTN	4.6+446	08/21/78	10.12.39	PAGE	1
			rar, toke.		de de la	EL MARKETT AND A				
1		SU	BROUTI NE	RESTOR	D, IB, N, N	B,L,NN)	ON THE LEVEL OF	PORTERIOR	RESTOR	2
		DI	MENSION D	(NN ,L) ,I	B(1).TOR	1(10), TDR2(1	0)	A R - 1 1 1 1 1 1 1 1 1	PESTOP	3
		NH:	=N-NB						RESTOR	4
			=1				DONE THE		DESTOR	5
5	08081		IB(IH)		10114	Jahanna (1971)		23004072	RESTOR	5
			(I.GT.NH)	GO TO 7					RESTOR	5
			2 K=1,L						RESTOR	
		TOF	21(K)=D(I	, K)					PESTOP	9
	090 41	2 0(1	[,K)=0.						RESTOR	10
10	0.540 47		1+1						RESTOR	11
			(J.GT.NH)	GO TO 5					RESTOR	12
			4 K=1,L						DECTOR	13
	1000 4 0 0		22(K)=D(J	,K)					RESTOR	14
	0.50	5 00	6 K=1,L						RESTOR	15
15	19974		J,K) =TOR	1(K)				A 191,400 1910	PESTOP	16
	UF CHE		R1 (K) = TDR	2(K)					RESTOR	17
	390 3 13		I.GE. NH)	GO TO 9					RESTOR	18
	0.80 730		[+1						RESTOR	19
	0.80 9.23		TO 3						RESTOR	20
20	0.80 473		8 K=1 , L						RESTOR	21
	38347	D(1	,K)=0.						RESTOR	22
	9	IF(IH.GE.NB	GO TO	LO				RESTOR	23
		I H=	IH+1						RESTOR	24
		NH=	NH+1						RESTOR	25
25		GO	TO 1						RESTOR	26
	1	O CON	ITINUE						RESTOR	27
		RET	URN						RESTOR	28
		END)						RESTOR	29

THIS PAGE IS BEST QUALITY PRACTICABLE FROM OOPY FURNISHED TO DDC

OF CHEMICAND AND TOTAL STATE OF

SUBROUTINE	FLFORC	74/74	OPT=1	FTN 4.6+446	08/21/78	10.12.39	PAGE	1
1	s	UBROUTINE E	LFORCIAA,	DR, EDR, HM, MA, MB, MC	, MD, NNOCES, LC	ADS, NN)	ELFORC	2
	0	INENSION AA	(3,31,OR(NN, LOADSI, EDR(12, L	OADS) . NCON (4)	GILL STONE STATE	ELFORC	3
	N	CON (1) = MM* (MA -1)+	1			ELFORC	4
	N	CON (2) = MM # (MB -1)+	1			ELFORC	5
5	I	FINNODES	.GE. 31 N	CON(3) = MM* (MC -1)+1		ELFORC	5
	I	FINNODES	.GE. 41 N	CON (4) = MM* (MD -1	1+1		ELFORC	7
	N	ND=NNODES					ELFORC	8
	I	FINND . GT.	4) NNC=4				ELFORC	9
	N	DSP=1					ELFORC	10
10	I	FINND .GT.	2) NDSP=2				ELFCRC	11
	D	0 86 K=1,LO	ADS				ELFORC	12
	K	H=1					ELFORC	13
	D	0 86 KK=1, N	ND				ELFORC	14
	0	0 86 I=1,ND	SP				ELFORC	15
15	- K	X=NCON (KK)					ELFORC	16
	E	DR (KH,K) = 0					ELFORC	17
	0	0 85 J=1, MH					ELFCRC	18
	E	DF (KH,K) = ED	R(KH,K)+A	A(I,J)*DR(KX,K)			ELFORC	19
	85 K	X=KX+1					ELFORC	20
20	86 K	H=KH+1					ELFORC	21
	R	ETURN					ELFORC	22
	E	ND					ELFORC	23

SUBROUT	INE STRE	SS 74/74	0PT=1	FTN 4.6+446	08/21/78	10.12.39	PAGE	1
1		SUBROUTINE S	TRESS (UV.	X, Y, MA, MB, MC, SX, S	Y,SXY,EFST,E,	P.ALS.ESR.	STRESS	2
		1		NG, TRIANG, NND)			STRESS	3
		DIMENSION UV	(12,L),X(11), Y(1), SX(1), SY	1),SXY(1),EX	10),EY(10),	STRESS	4
		1EXY(10), A(3,	3) ,	EFST (1) , ENG(1) , AL	S(3),ESR(1)		STRESS	5
5		CALL CRAMER	A, TRIANG,	X,Y,MA,MB,MC)			STRESS	5
		DO 30 K=1,L					STRESS	7
		EX(K) = 0					STRESS	8
		EY(K)=0.					STRESS	9
		EXY(K)=0.					STRESS	10
10		K X = 0					STRESS	11
		DO 20 I=1,3					STRESS	12
		IX=I +KX					STRESS	13
		EX(K) = EX(K) +	A(1, I) *UV	(IX,K)			STRESS	16
		EY(K)=EY(K)+	A(2,1) *UV	([X+1,K)			STRESS	15
15		EXY(K)=EXY(K)+A(2,I)*	UV(IX,K)+A(1,I)*(JV(IX+1,K)		STRESS	16
	20	KX=KX+1					STRESS	17
	30	CONTINUE					STRESS	18
		EMU=E/(1.0-P	** 2)				STRESS	19
		G=(0.5*E)/(1	.0+P)				STRESS	20
20		00 40 K=1,L					STRESS	21
		SX(K)=(EX(K)	+P*EY(K))	*EMU			STRESS	22
		SY(K)=(P*EX(K) +EY (K))	*EMU			STRESS	23
	40	SXY(K)=G*EXY	(K)				STRESS	24
		00 90 K=1,L					STRESS	25
25		AAX = ALS(1)					STRESS	25
		AAY = ALS(1)					STRESS	27
		AAXY = ALSI3)				STRESS	28
		IF (SX(K) .L					STRESS	29
		IF (SY(K) .L	T. 0.0) A	AAY = ALS(2)			STRESS	30
30		EFST (K) = SQRT	(SX(K) ** 2	+SY (K) **2-SX (K) *5	SY(K)+3.*(SXY	K) **2))	STRESS	31
		ENG(K)=(SX(K) *EX(K)+5	SY(K) FEY(K) +SXY(K)	*EXY(K))*TRIA	ING	STRESS	32
		IFINND .GT.	4) ENG (K) =	(SXY(K) *EXY(K))*1	RIANG		STRESS	33
		ESF(K) = SQR	TISXIKI	AAX) **2 + (SY(K)/	S** (YAAY)		STEESS	34
		1 - ((SX(K) *S	Y(K))/(AA	X*AAY)) + (SXY(K)	/AAXY) **2)		STRESS	35
35		IF (NND .GT.	4) ESR(K	() = ABS(SXY(K))/A	AXY		STRESS	36
	90	CONTINUE					STRESS	37
		RETURN					STRESS	38
		END					STRESS	39

THIS PAGE IS BEST QUALITY PRACTICABLE PROM COPY PURMISHED TO DDC

THE SOCRE PROBLEM OF THE PROPERTY OF THE PARTY OF THE PAR

SUBROUTINE	OLSTRS	74/74	0PT=1	FTN 4	6+446		08/21/78	10.12.39	PAGE	1
							400 BY 64		01.5700	
1								SXY, EFSTRS, E,	QLSTRS	2
		PMU, LOADS, SSX,							QLSTRS	3
		1CC(1),SX(1),S						MAA(1), MBB(1),	QLSTRS	4
										5
5		SSXY(4,LOADS),		LUADSI		EVVII	2,121,ENG	(1) , ENGG (10)	QLSTRS QLSTRS	7
		,ESP(1),SFTM(1 00 115 K=1,LOA							QLSTRS	8
		SFTM(K) = 0.0	.03						QLSTRS	9
		NG(K)=0.							QLSTRS	10
10		(X=0							QLSTRS	11
		00 115 I=9,10							OLSTRS	12
		(X=KX+1							OLSTRS	13
		DF (I,K) =0.							QLSTRS	14
		00 114 J=1.8							QLSTRS	15
15		DR(I,K) =EDR(I	,K) +EKK(K	X . J) *E	DR(J.K)				QLSTRS	16
		DR(I,K) = - EDR(QLSTRS	17
	115 0	CONTINUE							QLSTRS	18
	0	00 116 K=1,LOA	DS						QLSTRS	19
	ε	DDR(5,K)=EDR(9,K)						QLSTRS	20
20	116 E	DDR(6,K) = EDR(10,K)						QLSTRS	21
	K	(X=1							QLSTRS	22
		(Y=3							QLSTRS	23
		0.0 = DAU							QLSTRS	24
		00 200 I=1,4							QLSTRS	25
25		F(I .LT. 4)G0	TO 117						QLSTRS	26
		(X=1							QLSTRS	27
		(Y=7							QLSTRS	28
		00 119 J=1,2							QLSTRS	29
		00 118 K=1,LOA							QLSTRS	30
30		DDR (J,K) = EDR (QLSTRS	31
		DDR (J+2,K) =ED	R(KY,K)						QLSTRS	32
		(X=KX+1							QLSTRS	33
		(Y=KY+1				4001			QLSTRS	34
**		CALL STRESS (ED						2X1,EF21K2.	QLSTRS	35
35	1		LS,ESR,LO	AUS, EN	GG, I KIA	IG, NNU	And the second		QLSTRS	36 37
		DUAD = QUAD + 00 201 J=1,LOA							QLSTRS	38
		NG(J) = ENG(J) +							OLSTRS	39
		SX(I, J) = SX(J)							QLSTRS	40
40		(L) YZ= (L, I) YZ							QLSTRS	41
40		SXY(I,J)=SXY(QLSTRS	42
		FFSTR(I,J)=EF							QLSTRS	43
		F(NND .GT. 4)		J) = ABS	(L) YXZ)				QLSTRS	44
		SFTM(J) = SFTM							QLSTRS	45
45		CONTINUE	1 /						QLSTRS	46
	200 0	CONTINUE							QLSTRS	47
		00 205 J=1.LOA	DS						QLSTRS	48
	5	SFTM(J) = SFTM	(J)/QUAD						QLSTRS	49
	5	SFT4(J) = (1.0	- SFTM(-J	1) 1/SFT	M(J)				QLSTRS	50
50		AMAX=0.	•	*					QLSTRS	51
		00 204 I=1,4	4.1	771	V				QLSTRS	52
	1	FIAMAX .GT. E	FFSTR(I,J	1) 1 GO T					QLSTRS	53
		MAX=EFFSTR(I,	J)						QLSTRS	54
		(TF (J) = I							QLSTRS	55
55		CONTINUE							QLSTRS	56
		CONTINUE							QLSTRS	57
		00 210 J=1,LOA	DS						QLSTRS	58
		(X=KTR(J)							QLSTRS	59
		AMAX=EFFSTR (KX	,1)						QLSTRS	60
60		00 209 I=1,4							QLSTRS	61
		FFSTR(I,J)=EF		/AMAX					QLSTRS	62
		FFSTR(KX,J)=I	MAX						QLSTRS	63
		CONTINUE							QLSTRS	64
		RETURN							QLSTRS	65
65		END					CARL		OLSTRS	66
						- A . T VIII . L	Line and the second			

THIS PACE IS BEST QUALITY PRACTICABLE

SUBROUTINE	PEN	OP 74/74 OPT=1 FTN 4.6+446	08/21/78 10-12-39	PAGE	1
1		SUBROUTINE PRINTER (A.B.X.Y.Z.N.M.L.NJ.NP	, NN)	PRNTOR	2
		DIMENSION A (NN, L), B(NN, L), X(1), Y(1), Z(1)	PRNTDR	3
		NP=NP+1		PRNTOR	4
		LINES=1		PRNTOR	5
5		WRITE(6,1)NP		PRNTDR	6
		WRITE(6,2)		PRNTOR	7
		DO 10 I=1,NJ		PRNTDR	8
		IF (LINES+L-54)4,3,3		PRNTDR	9
	3	LINES=1		PRNTDR	10
10		WRITE(6, 1) NP		PRNTDR	11
		WRITE(6, 2)		PRNTOR	12
		NP=NP+1		PRNTDR	13
	4	KH=M*I		PRNTOR	14
		KHH=KH-M+1		PRNTDR	15
15		IF(M .LT. 3)GO TO 11		PRNTDR	16
		WRITE(6, 9) $I, x(I), Y(I), Z(I), (A(J,1), J=$	KHH,KH),(B(J,1),J=KHH,KH)	PRNTOR	17
		GO TO 12		PRNTDR	18
		WRITE(6, 5) I, $X(I)$, $Y(I)$, ($A(J,1)$, $J=KHH$,	KH), (B(J,1), J=KHH, KH)	PRNTDR	19
	12	IF(L .EQ. 1) GOTO 8		PRNTOR	50
20		00 7 K=2,L		PRNTOR	21
		IF(M .LT. 3)GO TO 13		PRNTDR.	22
		WRITE (6, 6) (A(J,K) ,J=KHH,KH), (B(J,K), J=KHH,KH)	PRNTOR	23
		GO TO 7		PRNTOR	24
		WRITE (6, 15) (A(J,K) ,J=KHH,KH), (B(J,K), J=KHH,KH)	PRNTDR	25
25	7	CONTINUE		PRNTDR	26
	8	LINES =LINES +L+1		PRNTDR	27
		IF(L .EQ. 1) LINES=LINES-1		PRNTDR	28
		CONTINUE		PRNTDR	29
		FORMAT (1H1, 120X, 5HPAGE , 13/)		PRNTDR	30
30	5	FOFMAT (1x,5HJOINT,8x,2H-X,8x,2H-Y,8x,		PRNTDR	31
		17x,7HFORCE-Y,7x,7HFORCE-Z,8x,7HDISPL-X,	10x,7HDISPL-Y,10x,	PRNTDR	32
		27HDISPL-Z//)		PRNTDR	33
	ò	FORMAT(/15,F14.3,F10.3,F10.3,F12.3,F14.	3,F14.3,1PE18.8,	PRNTDR	34
		11PE17.8, 1PE17.8)		PRNTDR	35
35		FORMAT(/I5,F14.3,F10.3,10X,F12.3,F14.3,		PRNTDR	36
		FORMAT(39X,F12.3,F14.3,F14.3,1PE18.8,1P		PRNTDR	37
	15	FORMAT (39X, F12.3, F14.3, 14X, 1PE18.8, 1PE1	7.81	PRNTDR	38
		PETURN		PRNTDR	39
		END		PRNTOR	40

THIS PAGE IS BEST QUALITY PRACTICABLE FROM OOPY FURNISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FARMLSHED TO DDC

APPENDIX C: LISTING OF THE SAMPLE DATA

1	V7F F	DEMO DE	ODI EM	INTER	MEDIAT	E COMPI	EXITY	WING					
ANAL 158	38	JEMU PR 30	2 2	3		MEDIATE COMPLE		2	1				
10.5		. 3		. 1			1)						
60.		0.	3	5.	6	0.	61	1.	.3	5.			
10.5		. 3		. 1		10.5		. 3			1		
3	3	4	4	4	t,	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4	4	4	4	4	4
4	4	4	4	4	4	4	4	4	4	4	4	4	4
4	4	4	4	14	1.	4	4	4	4	4	4	**	4
4	4	4	4	4	4	4	4	ē	5	5	5	5	5
5	5	5	5	5	5	5		5	5	5	5	5	5
5	5	5	5	5	5	5	5	5	5	5	5	5	5
5	5	5	5	5	5	Ē	2	2	2	2	2	S	2
5	2	5	2	2	2	S	2	2	5	2	2	S	2
2	2	2	2	5	2	5	2	2	2	2	2	5	2
5	5	2	2		-				-				•
1	2	3	4	5	6	7	4	1	?	11	12	13	14
15	16	19	20	21	22	23	24	25	26	29	30	31	32
33	34	35	36	39	40	41	42	43	44	45	46	4)	50
51	52	53	54	55	56	59	60	61	62	63	64	65	66
69.	70	71	72	73	74	75	75	1	.3	5	7	1	11
13	15	19	21	23	25	29	31	33	35	39	41	45	45
49	51	53	55	5)	61	63	65	69	71	73	75	1	19
29	39	49	59	€9	- 5	13	23	33	4.3	53	63	73	o,
17	2.7	37	47	5.7	67	77	1	3	5	7	9	11	13
15	17	19	21	23	25	27	20	31	3.3	35	37	31	41
43	45	47	4.3	51	53	55	57	59	61	63	65	61	89
71	73	75	77								41.		46
3	1.	5	5	7	24	25	10	11	12	13	32	15	16
17 35	18	21 37	22 3ê	23	42	43	44	45	46	47	48	51	52
53	36 54	55	56	57	58	61	62	63	64	65	66	67	68
71	72	73	74	75	76	77	78	2	4	5	8	2	12
14	16	20	22	24	35	30	32	34	36	40	42	1,1,	46
50	52	54	56	60	62	64	66	70	72	74	76	2	20
30	40	50	50	70	5	14	24	34	44	54	64	74	10
18	28	38	45	58	68	73	5	4	6	8	10	12	14
16	18	20	22	24	56	28	30	32	34	36	36	40	42
44	46	42	50	52	54	56	53	60	62	64	66	68	70
72	74	76	75										
11	12	1.3	1 4	15	16	17	13	21	55	23	Str	25	5.9
27	28	31	32	33	34	35	36	37	36	41	42	43	44
45	46	47	40	51	52	53	54	55	56	57	58	61	52
63	64	65	66	67	68	71	72 88	73	74	75	7 č	12	78
41	62	83	84	26	86	87 37	34	36	38	42	44	45	49
16 52	18	56	58	62	64	66	68	72	74	76	78	20	30
40	50	60	70	F 0	14	24	34	44	54	64	74	13	10
28	39	49	58	68	78	8.8	0	0	0	n	0	0	n
0	0	0	0	0	0	0	0	0 .	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	U	0	0	0
0	0	0	0			No.							
0	n	11	12	1.3	14	15	16	19	2.0	21	22	25	24
25	26	29	30	31	32	33	34	35	36	39	40	41	42
43	4 14	45	45	49	51	51	52	53	54	55	56	59	60
61	62	63	64	65	66	69	70	71	72	73	74	75	76
79	A O	91	53	6.3	34	85	86	3	5	7	4	11	13
15	17	21	23	25	27	31	33	35	37	41	4.5	45	47
51	53	55	57	61	63	65	67	71	73	75	77	11	29
39	43	59	69	73	13	23	33	43	53	63	73	83	0
27	37	47	57	67	77	87	0	0	0	3	0	0	0
0	0	0	0	0	n	0	0	0	0	0	0	9	0
		"		"	**				-			-	

THIS PAGE IS BEST QUALITY PRACTICABLE

			4			
0	0, 0	0				
. 0312	0,0312	. 0312	.0112	. # 312	.0312	
.9416	.0416	.0312	.0312	. 11.512	.0312	
. 9 364	.0 364	. 0 364	. 9354	. 0364	. 0364	
.0468	9 44 0 .	. 11 468	.0453	. 0 5 20	. 05 20	
. 9416	. 0416	. 0624	. 1624	. 0624	. 06 24	
.0624	.0624	.0468	. 146:	. 0676	.0576	
.0725	.0728	.07 20	.07 40	.0520	.05.50	
.0728	.0728	. 1335	.0936	. 1 11 49	• 1040	
.0520	.0520	.0780	.0730	. 1144	.1144	
.1196	.1196	.0468	.0468	.0884	.0884	
.1244	.124R	. 1494	.1474	.014	.019	
.019	.019	. 019	.019	.019	.019	
.019	.019	.019	.019	.019	.019	
.019	.019	.019	.019	.019	.019	
.019	.019	.019	.019	.022	.021	
.019	.019	. 025	.024	.019	.013	
.019	.038	.042	.048	.047	.039	
.031	.026	. 0.37	. 050	.058	.065	
.073	.101	.126	.019	.039	.044	
.053	.065	. 1179	.192	.100	.02	
.02	.02	.02	.02	.02	• 02	
.02	.02	.02	.02	.02	.02	
.02	.02	.02	.02	.02	.05	
.02	.02	.02	• 92	.02	.02	
.02	.02	.02	.02	.02	•02	
.02	.02	.02	.02	.02	• 02	
.02	.02					
	2 2 2		2 2 2	2 2		2 2
2	2 2 3	2 2 3	5 5 5			5 2
2	2 2 2					5 5
2	? ? ?	2 2 2				5 5
2	2 2	2 2 2	2 2 2			1 1
	1 1 1	1 1	1 1 1	1 1	1 1	1 1
1	1 1 1	1 1	1 1 1	1 1	. t 1	1 1
1	1 1 1	1 1 1	1 1 1	1 1		1 1
1	1 1 1	1 1	1 1 1	1 1		1 1
1	1 1 1	1 1	1 1 1		1 1	1 1
1	1 1 1	1 1 1	1 1	1 1	. 1 1	1 1
1	1 1 1					
63.500			63.5000			
70.833	90.0000	1.3130				
74 . 167	0 90.0000	1.500				
55.500						
92.8331	90.0000					
59.685					Contract of the Contract of th	
76.007						
82.746	0 82.1330					
39.6471	79.3120	1.2500	69.6470			
57.2650	77.6590					
63. 9920	74.9200	1.5320		- W		
70.962	72.071					
78.191						
85.6921	56.0500	1.4240				
51.032	65.3390	1.4330				
58 . 297	02.3690		Company of the compan			
65 . 8250						
73.6350					and the latest terminal to the second	
91.7381			St. Committee of the co			
44.7990						
52.6030	49.8180					
60.6310	46.5120					
63.0730	43.0830	1.9270				
77.7540	30.5250	1.7560				
38 . 5 65 0	40.6730	1.7420	30.5550	49.6763	-1.7420	
	,,,,,,,		45.9080	37.2670	-2.0020	

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

```
51. 355 9
                                                33.7320
  55.5551
              33.7 320
                          2.4530
                                                          -2.4580
                                    64 . 5230
  64.5219
              30.0670
                                               39.0670
                                                          -? . 1×70
                          2.1870
  13.83110
             26.2629
                          1.9220
                                    73.4300
                                               26.26.20
                                                          -1.9220
                                               28.3470
                                                          -1. 9960
  32.3310
             28.3470
                          1.8960
                                    32.3310
                                               24.7160
                                                          -2.2050
  41.2140
             24.7151
                          5. 3650
                                    41.2140
                          2.6510
                                    50.6200
                                               20.9530
                                                          -2.6510
  50.4200
             20.9530
                          2.3760
                                    59.3570
  59.9670
                                               17.0500
                                                          -2.3760
             17.0500
  69.8769
             13.0000
                          2.0520
                                    63.8760
                                               13.0000
                                                          -2.038U
                                               14.1730
                                                          -2.0730
             14.1 730
                          2.0730
                                    25.1560
  25.1660
                                    35.5830
                                               12.3040
                          2.4460
                                                          -2.4460
             12.3040
  35. FA31
  46.1F10
                          2.8270
                                    46.1310
                                               10.4030
                                                          -2.0270
             10.4030
                          2.5020
  56. 5640
                                    56. 3640
                                                9.4690
                                                          -2.5020
              E.46 17
                                                6.5000
  67.9388
              €.5000
                          2.1590
                                    67.9330
                                                          -2.1090
                          2.2500
                                    18.0000
                                                0.0000
                                                          -2.2500
  18.0000
              0.0000
                          2.6250
                                                0.0000
                                                          -2. E250
  30.0000
              0.0000
                                    30.0100
                                                0.0000
                                                          -3.0000
  42.0000
              0.0000
                          3.0000
                                    42.0000
  54.0000
                          2.6250
                                    54.0000
                                                0.0000
                                                          -2. £250
              0.0000
                                    66.0000
                          2.2500
                                                0.0000
                                                          -2.2500
  66.0000
              0.0000
                                                         245 246
                                                                    247
                                                                          243
            237 235
                       239 240
                                   241 242
                                              243 244
 235 236
                                        256
                                                  258
                                                         259
                                                               260
                                                                    261
                                                                          262
      250
                 252
                       253 254
                                   255
                                              257
 2149
            251
 263
      264
 142
      142
 .2905+02
                       .2905+02
                                          4 -. 280E+04
                                                                 5
                                     3
                                                           1
                    3
              3
                                             . 260F+04
- . 595F +04
              2
                    5
                       .113E+04
                                     3
                                                           1
                                                                 €.
 .595E+04
                       .113E+04
                                             .9095+02
                                                           3
                                                                 7
              2
                    5
                                           9 - . 978F+04
                                                           2
                    8 -. 987E+04
 . 309F+02
              3
                                                           2
              3
                    9
                       .987E+04
                                          10 .978E+04
                                                                10
 . 11 32 +04
                                          1 -. 738E+04
                                                           2
 . 11 3E +94
                   10 .295E+03
              3
                                     1
                                             .738E+04
                                                                 2
                                                           2
 .926E+93
              3
                   1 -,205E+03
                                     1
                                          2
 .926F+93
                       .175E+03
                                          11
                                             .1795+03
                                                           3
                                                                12
              3
                    2
                                             . 2535+03
                   13 .214E+03
                                         14
                                                           3
                                                                15
                                     3
 .2145+03
              3
                                         17 .2325+04
 . 2535+03
                   15 -. 568E+04
                                                           2
                                                                17
                                          18 -. 2325+04
                                                           2
                                                                16
 .102E+04
              3
                       .563E+04
                                     1
                   17
                       .231E+04
                                         19 -. 3465+03
                                                           2
                                                                19
 . 102F+04
                   1 0
                                     1
              3
                                            .9467+03
 .7235+03
                   19 -. 2315+04
                                         20
                                                           2
                                                                20
 .723E+03
                                             . 314E+03
                                                           3
                                                                22
                   20
                       +314E+03
                                          21
                                              .338E+03
                                                                25
                                                           3
 . 326E+13
              3
                   23
                       .326E+93
                                     3
                                         24
 . 335E+03
                   25 -. 417 =+14
                                         27
                                             . 166E+04
                                                           2
                                                                27
                      .407E+04
                                            -. 166E+04
                                                                28
 ·902E+13
              3
                   27
                                         28
                                     1
                                                                29
                                         29 -. 7135+03
                                                           2
 .902E+93
              3
                   23
                       .174E+04
                                     1
                   29 -. 174E+04
                                         30
                                             .7135+03
                                                                30
 .546E+0.5
              3
                      . 340E+03
                                              . 340F+03
                                     3
                                         31
                                                           3
                                                                32
·645E+03
                   30
              3
                                              .365E+03
 . 3525 +93
                   33
                       .352E+03
                                     3
                                         34
                                                           3
                                                                35
              3
.365E+03
                   36 -. 425E+04
                                         37
                                             . 174E+04
                                                                37
              3
                                     1
                      .425E+04
                                         38 -. 174F+04
                                                                38
                                                           2
 . 974E+03
              3
                   37
                                     1
                       . 182E+04
                                         39 -. 7435+03
                                                           2
                                                                39
 .974E+03
              3
                   30
                                            .743E+03
                                                                40
                   30
                      -. 182E+04
                                         49
 . 594E+113
                                     1
                                              . 365E+03
                                                               42
                      . 355E+03
                                         41
                                                           3
·634E+03
              3
                  40
                                     3
                       . 378E+03
                                     3
                                         44
                                             . 392E+03
                                                           3
                                                               45
. 378E+03
                   43
                                            .1525+04
                                                               47
 . 3928+93
                     -. 444 +04
                                         47
                   45
                                                           2
                                                                46
 .105E+94
              3
                  47
                      . 44E+04
                                     1
                                         48 -- 1922+04
. 105E+04
              3
                   44
                       . 153E+04
                                         49 -. 7735+03
                                                               49
                                            .77 3E+0 3
                                         50
                                                                50
                  49 -. 159E+04
.742E+03
              3
                                                                52
.742E+03
                   50
                       .390F+03
                                         51
                                             · 190E+03
                       .494E+03
                                                                55
. 474E+03
                   53
                                         54
                                             . 420E+03
              3
                                                               57
                                         57
                                            .1305+04
.420F+03
              3
                  56 -. 454E+94
                  57
                       .464E+04
                                         51 -- 1905+04
                                                           2
                                                               58
.112E+04
                       .229E+04
                                                                50
                                         59 -. 937F+03
                                                           S
. 112F+04
                  58
                                            . 9375+03
                                                               60
. 48 3F +93
              3
                  59 -. 2236+04
                                         60
                      .413E+03
. 453F+03
                  60
                                             . 4135+03
                                                           3
                                                               62
                                             . 3555+03
                       .391E+03
                                                                65
. 391F+93
                                         64
              3
                  63
                                     3
                                             . 124E+04
. 168F+01
                  66 -. 303E+04
                                         67
                                                               6.7
                       . 303E+04
                                         68 -. 174E+04
                                                               68
.804F+03
                  67
                                         69 -. 520L+03
                                                           2
                                                               69
                       .397E+04
. 904E+03
                  68
                  69 -. 307F+04
                                             · 520E+03
                                                           2
                                                               70
. 104F +04
              3
                                         70
                                              .433F+03
                      .4332+03
                  70
                                         71
. 104E+04
```

ALTERNATION OF THE PARTY OF THE

```
. 10 % + 4 5
 . 370F+95
                          .370F+03
                                         .5
                                              714
                                                                       75
                                                   . 262: +03
                     76
                         -. 137E+04
                                              77
                                                                  2
                                                                       77
 . 304F +0 5
                                         1
 . 4461 +113
                          . 137E+04
                                              73
                                                   .2625+03
                     77
 . 4466 +03
                3
                     78
 · 295E+92
                          .295E+02
                                                  -. 242F+04
                3
                                                                        .;
                      3
                                                   . 242++04
- . 50 2F. +0's
                2
                          .979E+03
                                         3
                                                                  1
                                                                        6
 .5026+04
                          .9795+03
                                                   . 55 32+02
                2
 .559F+92
                         -. 412E+04
                                                  -. 398F+04
                                                                  5
                                                                        9
                          .402E+04
                                              10
                                                  . 198E+04
                                                                  2
                                                                       10
 .474F+03
                3
                                         1
 .4741 +03
                3
                     1.0
                          . 351E+03
                                                  -. 126F+05
                                                                  2
                                                                        1
                                                   .1265+05
                                                                        2
 . 15 48 + 14
                3
                         -. 351E+03
                                         1
 .153L+04
                          .194E+03
                                                   . 1942+03
                3
                                              11
                                                                       12
                                                   .157F+03
                                                                       15
 . 1751 +03
                          .175E+03
                                         3
                                              11,
                                                                  3
                                                   . 6535+03
 . 1571 +03
                         -. 169E+04
                                         1
                                              17
                                                                  2
                                                                       17
                3
                     15
                                                  -.6535+03
                          . 150E+04
                3
                     17
                                         1
                                              15
                                                                       1 6
 . 325F +0 3
                          ·551E+04
                                              19
                                                  -.225E+04
                                                                       19
 . 325F +03
                3
                     15
                                         1
                                                   . 225E+0+
 . 1555.+04
                         -. F51E+04
                                              20
                                                                       20
                3
                     14
                                                   .347E+03
                          .347E+03
                                              21
                                                                       22
                     20
 . 155E+04
                3
 . 279F+03
                     23
                          . 270E+03
                                         3
                                              24
                                                   ·2136+03
                                                                  3
                                                                       25
                3
                                                   . 4965+03
                                                                       27
                                              27
 .2136+03
                3
                     26
                         -. 121E+04
                                         1
 . 311F +93
                          .121E+04
                                              35
                                                  -. 4955+03
                                                                       20
                     27
                3
                                                 -. 16 3E+04
                                                                       29
 .311E+93
                     28
                          .399E+04
                                              29
                                                                  2
                                              30
                                                   . 153F+04
                                                                       30
                3
                     23
                         -. 399E+04
                                         1
 .131E+94
 . 131E+04
                     30
                          . 375E+03
                                         3
                                              31
                                                   .375E+93
                                                                  3
                                                                       32
                .5
                                                   . 2305+03
                                              34
                                                                       35
                     33
                          .291E+03
                                         3
 . 291[+03
                3
                                                   .518E+03
 . 2305+03
                     35
                         -.127E+04
                                              37
                                                                       37
                                         1
                                                  -. 51AE+03
                                                                  2
                                                                       33
                                              35
 . 336F+03
                3
                     37
                          .127E+04
 . 3365+03
                3
                     33
                          . 416E+94
                                              33
                                                  -. 1705+04
                                                                       39
                                                   . 1705+04
                                                                       40
                         -. 418E+94
 . 1418 +04
                3
                     33
                                              41
 .1415+04
                     49
                         . L 02E+03
                                              41
                                                   . 4025+03
                                                                       42
                3
                                                   .2475.+03
                                                                       45
 . 31 3E + 0 3
                         .313E+03
                                                                  3
 .2475+03
                         -. 1325+04
                                              47
                                                   .5415+03
                                                                       47
                     45
                3
                                                                       48
 . 351F+03
                          .132E+04
                                              48
                                                  -.541E+03
                     47
                                                  - . 1775+04
                                              49
                                                                       49
 . 361E+93
                3
                     43
                          .4.33E+04
                                         1
 . 1595 +04
                                              51
                                                   . 177E+04
                                                                       50
                         -. 4 33E+04
                3
                                                   4305+03
                                                                       52
                          · 430E+03
                                              51
                                                                  3
 . 150++94
                3
                     50
                                         3
 . 334F +9 3
                3
                     53
                          .334E+03
                                         3
                                              54
                                                   .2545+03
                                                                       55
                                                   .5655+03
                                              57
                                                                       57
 . 2645 +03
                3
                     56
                         -.130E+04
                                         1
                                                                  2
                          . 135E+04
                                                  -. 5555+03
                                                                       58
 . 3866 +03
                     57
                3
                                         1
                                                                       59
 .385E+93
                          · 5305+04
                                              53
                                                  -,217E+04
                                                   .217E+04
                         -. 530E+04
                                                                  2
                                                                       60
 . 192[+04
                                              60
                3
                                         1
                     60
                          . 458E+03
                                              61
                                                   . 458E+03
                                                                  3
                                                                       62
 . 182E+04
                                                   .233E+03
                                                                       65
                                                                  3
                          .326E+03
                                         3
                                              64
 .326E+03
                3
                     6.5
 . 233E+93
                         -.9225+03
                                         1
                                              67
                                                   . 377E+03
                                                                       67
                3
                     60
                                              63
                                                  -. 377E+03
                                                                  2
                                                                       60
 . 287F+113
                3
                     67
                          . C22E+03
                                         1
 . 28 75 +03
                3
                     69
                          .715E+04
                                         1
                                              69
                                                  -. 1215+04
                                                                       69
                                                   . 1215+04
                                                                       70
 .2185+94
                3
                     69
                         -. 716E+04
                                              70
 . 218E+14
                     70
                          .484E+03
                                              71
                                                   .484E+03
                                                                       72
                3
                                                                       75
                                                   . 1946+03
. 310E+03
                     73
                          .310E+03
                                              74
                                                                  3
                                                   .360E+02
                         -.451E+03
                                              77
                                                                  2
                                                                       77
.1945+03
                     75
                3
                                         1
. 175E+93
               3
                     77
                          .4515+03
                                                  -. 850E+02
                                                                       78
                     78
.1755 +03
```

THIS PAGE IS BEST QUALITY PRACTICABLE
THIS PAGE IS BEST QUALITY PRACTICABLE
TO DDC

APPENDIX D: RESULTS OF THE SAMPLE PROBLEM ANALYSIS

	£	.162E+01	.162E+01	.769E-01	.769E-01	.959E+00 .113E+01	.959E+00	100E+00 .996E+00	1 00E+00 996E+00	.166E+00 695E-01	.168E+00 695E-01	.596E-01	.596E-01	.248E-01	.246E-01	422E-01	422E-01	306E-05
PAGE	ENERGY	.6297E+01	.6297E+01	.1295E+03	.1295E+03	.8417E+02	.8417E+02	.6326E+03	.6326E+03	.3905E+03	.3905E+03	.4990E+03	.4990E+03	.6557E+03	.6557E+03	.7416E+03 .	.7416E+03 -	.6621E+03 -
	EFSTR-4			.7833E+00	.7833E+00 .8513E+00	.4612E+05	.4612E+05	.6979E+00	.6397E+00	.5499E+05	.5499E+05	.7520E+00	.7520E+00	.9327E+00	.9327E+00	.9653E+00	.9853E+00	.8262E+00
	EFSTR-3			. 8299E+00	.8299E+00	. 70 33E+00	.7033E+00 .6495E+00	. 6949E+00	. 6949E+00	. 9235E+00	.9235E+00 .7550E+00	. 8560E+00	. 8560E+00	.6107E+05	.6107E+05	. 6673E+05	.6673E+05	.9551E+00 .6595E+05
	EFSTR-2			.6294E+05	.6294E+05	.4567E+00 .5601E+00	.4567E+00	.7853E+05 .3643E+05	.7853E+05	.8637E+00 .7840E+00	.8637E+00 .7840E+00	.6427E+05	.6427E+05	.9765E+00	.9765E+00	.8912E+00	.8912E+00	.6562E+05
	EFSTR-1	.2296E+05	.2296E+05	.63566+00	.8821E+00 .8356E+00	.6114E+00 .7730E+00	.6114£÷90 .7730E÷90	.9941E+00 .9579E+00	.9941E+00	.9576E+00 .7437E+05	.9576E+00 .7437E+05	.9258E+00	.9258E+00	.9226E+00	.9526E+00	.8819E+00	.8819E+00	.8748E+00
	SIGHA-XY	7223E+04	.7223E+04	.3225E+05	3225E+05 1865E+05	.1269E+05	1269E+05	.3984E+05	3984E+05	1147E+05 3445E+05	.1147E+05	.1393E+05	1393E+05	-1378E+03	.1378E+03	.1810E+05	1610E+05 3025E+04	7260E+04 2551E+05
	SIGMA-Y S	1072E+051321E+05 -	.1072E+05	2990E+05	.2990E+05 -	4576E+05 3900E+05	.4576E+05	4199E+05	.4199E+05	5376E+055036E+05 -	.5376E+05	6259E+05	.6259E+05 .	6248E+05	.6248E+05 -	5888E+05	.5888E+05 -	6501E+054980E+05 -
VIOLE IN THE PROPERTY OF THE P	SIGMA-X	.1150E+05 -	1150E+05	2799E+05 -	.2799E+05	1431E+05 -	.1431E+05 .8232E+02	3013E+05 -	.3013E+05 .1027E+05	5404E+041695E+05 -	.5404E+04 .1695E+05	6569E+04 -	. 6569E+04	2933E+04 -	.2933E+04 .4382E+04	.4674E+02 -	4674E+02	1214E+04 -
	9			=	12	13	1.	15	16	19	20	12	22	23	42	52	92	62
	HC.	==	12	13	2	15	16	11	1.6	21	22	23	54	52	56	27	28	31
	81	m	*	N	•	~	•	•	10	=	12	13	*	15	16	11	1.0	12
		-	~	m	•	r.	٠	-	•	-	N	=	12	13	:	15	16	19
	TYPE HA	32	32	2	74	24	24	3	24	24	2	24	74	24	42	24	45	74
	AREA T	9.28	9.20	28.51	28.51	48.79	48.79	70.24	70.24	96.12	96.12	99.62	89.62	103.28	103.28	107.18	107.18	104.16
	THICK	.031	.031	.031	.031	.031	.031	.042	.042	.031	.031	.031	.031	.036	.036	.036	.036	.036
	# HB	-	~	•	•	•	•	•	• 95	•	2	# #18 P.	2 AGR T	E RES	# Olla	E LITY	£ PRAC	TICAL

THIS PAGE IS BEST QUALITY PRACTICABLE FROM GOPY PARMISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE

,	SE SE	306E-05	162E+00 -+17E-01	162E+00 417E-01	167E+00 416E-01	167E+00 416E-01	160E+00 -160E+00	160E+00 -160E+00	142E+00 164E+00	142E+00 164E+00	241E+00 916E-01	241E+00 916E-01	270E+00 186E+00	270E+90 188E+00	262E+00 538E-01	262E+00 538E-01	221E+00	-,213E+00 -,221E+00
PAGE	ENERGY	.6621E+03	.1271E+04 .8438E+03	.1271E+04 .8438E+03	.1325E+04 .9878E+03	.1325E+04	.1457E+04 .7758E+03	.1457E+04 .7758E+03	.1096E+04	.1096E+04	.2196E+04	.2196E+04	.2448E+04	.2448E+04	.2452E+04	.2452E+04	.1586E+04	.1586E+04
	EFSTR-4	.8262E+00	.8400E+00	. 8400E+00	.7464E+05	.7464E+05	.7417E+05	.7417E+05	.8933E+00	.8933E+00	.8518E+00	.8518E +00	.8370E+05	.8370E+05	.8407E+05	.8407E+05	.8813E+00	.8813E+00
	EFSTR-3	.9551E+00	.9303E+00	.9303E+00	.9593E+00	.9593E+00	.9834E+00	.9834E+00	.9628E+00	.9628E+00	.9280E+00	.9280E+00	.9947E+00	.9947E+00	.9866E+00	.9866E+00	.9466E+00	.9466E+00
	EFSTR-2	.6562E+05	.7764E+05	.7764E+05	.9289E+00	.9289E+00	.9272E+00	.9272E+00	.7384E+05	.7384E+05	.8535E+05	.8535E+05	.9637E+00	.9637E+00	.9356E+00	.9356E+00	.8103E+05	.8103E+05
	EFSTR-1	.8748E+00	.9190E+00	.9190E+00	.9545E+00	.9545E+00 .9668E+00	.9426E+00	.9426E+00	.9307E+00	.9307E+00	.9263E+00	.9283E+00	.9700E+00	.9700E+00	.9486E+00	.9486E+00	.9351E+00	.9351E+00
	SIGHA-XY	.7260E+04	.8556E+04 4625E+04	8556E+04 .4625E+04	3260E+04 1670E+05	.3260E+04	.1344E+05	1344E+05	7545E+04 2319E+05	.7545E+04	.6317E+04	6317E+04	6116E+04 1896E+05	.6116E+04	.1163E+05	1163E+05	6196E+04	.6196E+04
	SIGMA-Y	.6501E+05	7808E+05	.7808E+05	7611E+05 6073E+05	.7611E+05	7057E+05	.7057E+05	7312E+05 6398E+05	.7312E+05	8523E+05 7137E+05	.8523E+05	8410E+05	.8410E+05	8168E+05 6656E+05	.8168E+05	8144E+05	.8144E+05
	SIGMA-X	.1214E+04 .1743E+04	3887E+04	.3887E+04	3478E+04 4866E+04	.3478E+04	2952E+03	.2952E+03	8957E+03	.8957E+03	1184E+04 3919E+04	.1184E+04 .3919E+04	2180E+04 3938E+04	.2180E+04 .3936E+04	1330E+03	.1330E+03	2290E+04 4952E+04	.2290E+04 .4952E+04
	9	30	31	32	33	36	35	36	39	0 4	;	42	£ 4	3	45	9	64	20
	Đ.	32	33	34	35	36	37	38	;	4	£ 4	3	4.5	9	1,	9	51	25
	8	22	23	54	52	56	22	28	31	32	33	36	35	36	37	3.8	7	45
		20	21	22	23	22	52	92	62	30	31	32	33	34	35	36	39	0.4
	YPE	24	24	24	24	45	45	24	45	24	45	42	45	42	45	42	45	24
	AREA TYPE HA	104.16	107.95	107.95	111.92	111.92	116.13	116.13	112.19	112.19	116.27	116.27	120.54	120.54	125.10	125.10	120.22	120.22
	THICK	.036	.047	790.	7.0.	140.	.052	• 052	.042	290.	. 162	.062	.062	. 162	.062	• 162	740.	240.
	HE HB	13	13	20	12	22	23	*2	52	92	12	92	62	30	31	32	2	*

PAGE 3		2E+04324E+00 1E+04218E+00	\$E+04369E+00	6E+04369E+00 4E+04310E+00	6E+04328E+00	6E+04328E+00 6E+04174E+00	1E+04200E+00 9E+04213E+00	1E+04200E+00 9E+04213E+00	0E+04310E+00 6E+04241E+00		0E+04318E+00 8E+04241E+00	318E+0 241E+0 364E+0 339E+0					
PEFSTR-4 ENERGY	88	.8143E+00 .3242E+04 .8438E+00 .2461E+04	.9795E+05 .4088E+04	.9795E+05 .4088E+04	.9430E+05 .3974E+04	.9430E+05 .3974E+04 .7821E+05 .2656E+04	.9316E+00 .1841E+04	.9316E+00 .1841E+04	.80%6E+80 .3730E+0%		.8046E+00 .3730E+04						
FSTR-3	. 9045E+00	.9045E+00	.9710E+00	.9710E+00	.9581E+00	.9581E+00	.9389E+00	.9389E+00	.8897E+00		.8897E+00	.9577E+00 .9577E+00	.91996+00 .91996+00 .95776+00 .95776+00	.8897E+00 .9199E+00 .9448E+00 .9448E+00 .957E+00 .959EE+00	.9957E+00 .9957E+00 .9448E+00 .9577E+00 .9596E+00 .9596E+00	.997E+00 .9199E+00 .9448E+00 .9577E+00 .9596E+00 .9299E+00 .9596E+00 .9596E+00	. 997E+00 . 9199E+00 . 957E+00 . 958E+00 . 959E+00 . 959E+00 . 959E+00 . 959E+00 . 959E+00 . 959E+00 . 959E+00 . 959E+00
FFSTR-2		0 .9767 £+05	0 .9409E+00	.9409E+00	0 .8944E+00	0 .8944E+00	0 .7955E+05 0 .7906E+05	0 .7955E+05	0 .9749E+05		0 .9749E+05 0 .8562E+05				.9749E+05 .856E+05 .9451E+00 .9307E+00 .9307E+00 .9176E+00	.9749E+05 .856EE+05 .9451E+00 .9307E+00 .9176E+00 .8774E+00 .8774E+00	.9749E+05 .9562E+05 .9451E+00 .9307E+00 .9176E+00 .9176E+00 .8774E+00 .7213E+05 .7505E+05
FFSTR-1		4 .9144E+00 4 .9146E+00	5 .9707E+00 5 .9770E+00	5 .9707E+00 5 .9770E+00	4 .9358E+00	4 .9358E+00	4 .9479E+00 5 .9589E+00	4 .9479E+00 5 .9589E+00	3 .9166E+00		3 .9106E+00						
SIGHA-XY		3706E+04 .6821E+04	1000E+05	.1000E+05	.8767E+04	8767E+04	4440E+04 1894E+05	.4440E+04	2650E+03		.2650E+03						
STGMA-Y	9870E+05	.9870E+05	9764E+05	.9764E+05	9273E+05 7785E+05	.9273E+05	6117E+05 7521E+05	.8117E+05	1002E+06 8885E+05		.1002E+06	.1002E+06 .8885E+05 9895E+05 8715E+05	.1002E+06 .8885E+05 9895E+05 6715E+05 .9895E+05	11 11	11 11	11 11 11	11 11 11
STGHA-X	• •	.2535E+04	2514E+04 5039E+04	.2514E+04	.6827E+03	6827E+03	4164E+04 7082E+04	.4164E+04	5741E+04 1017E+05		.5741E+04	!!					
Ş		. 52	53	25	25	95	66 1	9	- 61		29						
2	2 23	1 24	2 22	9 29	1 57	9 29	1 61	2 62	2 63	19							
T.	3	2 **	43 45	9	2 47	94	16 64	29 05	1 53	7 2		3 25					
A		24 24	45 4	74 24	45 45	45 4		42 51	15 24	75 24		42 53					
179							9										
APFA TYPE		124.61	129.17	129.17	134.06	134.06	128.26 42	128.26	132.92	132.92		137.60					
THTCK		. 066	.073	.073	.078	.078	.052	.052	.073	. 073		160.					
	32	36	2	30	39	2	7	24	2	:		2		5 9 5	9 9 5 9	5 5 5 5 5	5 5 5 5 5

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

						:1.	404	4.7 "			القيدين			_				
#	£	256E+00 213E+00	377E+00 350E+00	-,377E+00 -,350E+00	385E+00 275E+00	385E+00 275E+00	.284E+00	.284E+00	194E+00 177E+00	194E+00 177E+00	317E+00 298E+00	317E+00 296E+00	378E+00 274E+00	378E+00 274E+00	.346E+01	.624E+01	.132E+01	.120E+01
PAGE	ENERGY	.3337E+04 .3039E+04	.5646E+04	.5646E+04	.4783E+04 .3447E+04	.4783E+04 .3447E+04	.8280E+03	.8280E+03	.3488E+04 .3432E+04	.3488E+04 .3432E+04	.5562E+04	.5562E+04	.6185E+04	.6185E+04	.2660E+01	.1290E+01	.1103E+02	.1113E+02
	EFSTR-4	.7920E+00	.9623E+00	.9623E+00	.9009E+00	.9009E+00	.6361E+00	.6361E+00	.6164E+00	.6233E+00	.9606E+05	.9606E+05	.6100E+00	.6100E+00	.9111E+04	.4466E+00	.1524E+05	.6342E+00 .1000E+01
	EFSTR-3	.8643E+00	.9366E+00	.9366E+00 .9414E+00	.9344E+00	.9344E+00	.7597E+00	.7597E+00	.7451E+00	.7451E+00	.8914E+00	.8914E+00 .8545E+00	.7206E+00	.7206E+00	.7433E+00	.9310E+00	.9766E+00	.6342E+00
	EFSTR-2	.9098E+05	.9768E+00	.9768E+00	.1034E+06	.1034E+06	.5809E+05	.5809E+05	.9423E+05	.9423E+05	.8096E+00	.8096E+00	.1243E+06	.1243E+06	.1000E+01	.4466E+00	.1000E+01	.1918E+05
	EFSTR-1	.9116E+00	.9958E+05	.9958E+15	.9540E+00	.9540E+00 .8422E+05	.8564E+00	.8564E+00	.8348E+00	.8348E+00	.9402E+00	.9402E+00	.8307E+00	.8307E+00	.7004E+00	.6863E+04	.9795E+00	.6865E+00
	SIGHA-XY	.3685E+04 .1057E+05	1986E+05	.1986E+05	5026E+04	.5026E+04	.1264E+05	1264E+05	.1254E+05	1254E+05 5423E+04	.4519E+04	4519E+04	9329E+03	.9329E+03	9111E+04	6863E+04 -9370E+04	1524E+05	1918E+05
	SIGHA-Y	.9611E+05	9669E+05	.9669E+05	1055E+06 8353E+05	.1055E+06	5774E+05	.5774E+05	9825E+05	.9825E+05	1030E+06	.1030E+06	1330E+06	.1330E+06				
	SIGHA-X	.1190E+05	6871E+04 1044E+05	.6871E+04 .1044E+05	5142E+04	.5142E+04	8991E+04 1319E+05	.6991E+04 .1319E+05	1496E+05	.1496E+05	1676E+05 1743E+05	.1676E+05	1974E+05	.1974E+05				
	9	72	73	2	75	92	4	0.0	10	82		*	92	98	m	r.		6
		2	15	92	11	18	91	82	2	*	85	90	18		4	•	•	10
	M8 MC	3	65	99	19	89	2	72	2	2	2	92	2	28	~	•	•	•
		29	63	49	65	99	69	20	2	22	2	2	75	92	-	M	u,	-
	YPE	42	45	42	45	42	45	42	42	45	42	45	24	45	51	51	51	51
	AREA TYPE MA	127.77	107.85	107.85	86.21	86.21	154.48	154.48	133.04	133.04	111.00	111.00	88.43	88.43	17.86	20.63	20.63	17.86
	THICK	.078	*111*	*111•	.120	.120	190.	140.	. 088	. 086	.125	•125	.140	.140	.019	•110	•019	.019
	HE HB	25	23	4	22	98	25	2	23	3	19	29	5	\$	6	99	19	\$

			York	*****	200	7 204 7 7 9 9	(ATI) 1	Paud Para		THI FRO	SPAG	e is				RACTI	CABL	E
•	SE SE	.127E+01	.108E+01	.447E+01	.903E+00	.7 14E+01	.188E+01	.202E+01	.134E+02	.388E+01	.151E+01 .654E+00	.467E+01 .776E+01	.771E+01 .118E+02	.266E+01	.134E+01	.167E+02	.276E+01	.827E+00
PAGE	ENERGY	.9283E+01	.1358E+02 .1415E+02	.2087E+01	.1594E+02	.9479E+00	.6979E+01	.8448E+01	.4234E+00	.3136E+01	.1403E+02	.2950E+01	.1248E+01 .6005E+00	.5839E+01	.1923E+02	.3929E+00	.7365E+01	.3000E+02
	EFSTR-4	.9315E+00	.9722E+00	.6507E+04	.1861E+05	.5699E+00	. 8481E+00	.8690E+00	.3376E+00 .3182E+00	.6170E+00 .8510E+00	.8066E+00	.7288E+00	.5312E+04	.6622E+00 .8320E+00	. 8029E+00	.2275E+00 .4761E+00	. 100 0E + 01	
	EFSTR-3	.9886E+00	.9958E+00	.9660E+00	.9750E+00	. 9290E+00	.9775E+00	.1243E+05	. 27 09E+04	.9370E+60	.9715E+00 .9850E+00	.7198E+04	.4795E+88	.9446E+00 .9725E+00	.9710E+00 .9831E+00	. 2996E+04	. 7026E+00	.9714E+00
	EFSTR-2	.9315E+00 .1000E+01	.9722E+60	.1000E+01	.1000E+01	.5699E+00	.8481E+00	.8690E+00	.3378E+00	.6170E+00	.8968E+00	.7288E+00	.1000E+01	.6622E+00	.8029E+00	.2275E+00 .4761E+00	.1080E+05	.8250E+00 .8932E+00
	EFSTR-1	.1604E+05	.1711E+05	.9694E+00	.9780E+00	.5618E+04	.1324E+05	.9867E+00	.9210E+00	.9061E+04	.1558E+05	.9724E+00	.5420E+00	.1107E+05	.1677E+05	.9208E+00	.7305E+00 .6141E+00	.2110E+05
	SIGNA-XY	.1604E+05	.1711E+05	.6507E+04	.1861E+05	.5618E+04	.1324E+05	1243E+05 8234E+04	3760E+04 2709E+04	.9061E+04	.1558E+05	7198E+04 4738E+04	.5312E+04	.1107E+05	.1677E+05	2998E+04 3271E+04	.1080E+05	.2118E+05
	SIGHA-Y																	
	SIGMA-X																	
	ę	=	13	15	1.1	21	23	25	27	31	23	35	37	;	5	45	;	51
	J.	12	=	16	#	22	*2	56	28	32	*	36	38	42	:	9	3	55
		~	12	*	16	20	2	3.	92	30	32	*	36	9	45	3	9	50
	*	-	=	13	15	19	Z	23	22	82	31	33	35	39	3	3	\$	6
	TYPE	51	51	51	21	51	51	51	51	51	2	51	51	3	51	51	51	51
	AREA TYPE HA HB	16.53	20.33	21.64	20.02	20.42	25.08	26.68	24.64	24.71	30, 31	32.22	29,74	29.38	36.03	38.26	35.29	34.47
	THICK	.019	.019	•110	.019	.019	.019	. 119	.019	.019	.019	610.	.019	.019	610.	•110	•110	• 119
		69	2	=	22	2	2	22	2	=	2	2	:		20		:	

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

						. A	ser	• •				0011	J UND	LSHIEL	TOD	DC		
9	SE SE	.587E+00	.750E+01 .413E+02	.110E+01 .341E+01	.880E-01	.114E+00 977E-01	.788E+00	.263E-01	.127E-01 114E+00	.7 07E-01	.8 06E+00	.514E-01	.616E+00	.967E+00 .756E-01	.940E+00 .654E-01	.113E+01 .119E+00	.170E+01 .195E+00	.742E+01
PAGE	ENERGY	.4852E+02	.1920E+01	.2730E+02	.1128E+03	.1256E+03	.4682E+02	.1310E+03	.1769E+03	.1803E+03	.5165E+02	.1359E+03	.4006E+02	.6105E+02	.7717E+02	.8077E+02	.5432E+02	.8023E+01
	EFSTR-4	.8621E+00	.1000E+01	.1824E+05	.9016E+00	.9212E+00	.2047E+05	.3553E+05	.9731E+00	.9609E+00	. 2013E+05	.1000E+01	.2823E+05	. 2322E +05	.2351E+05	.2147E+05	.1719E+05	.1125E+00 .7158E+04 .7382E+00 .2773E+05
	EFSTR-3	.9799E+00	. 5473E+00 . 6239E+00	.8184E+00	.9840E+00	.9885E+00 .9933E+00	.9075E+00	.9140E+00	.9959E+00	.9947E+00	.9208E+00	.9265E+00	. 5628E+00	. 5580E+00			. 5268E+00	.1125E+00 .7382E+00
	EFSTR-2	.8621E+00	.5239E+04	.1000E+01	.9016E+00	.9212E+00	.1000E+01	.1000E+01	.9731E+00	.9609E+00	.1000E+01	.3446E+05	.1000E+01	.1000E+01	.1000E+01	.1000E+01	.1000E+01	.1000E+01
	EFSTR-1	.2382E+05	. 5939E+00	.8404E+00	.3399E+05	.3281E+05	.9171E+00 8774E+00	.9244E+00	.3507E+05	.3339E+05	.9299E+00	.9363E+00	.5030E+00	.5048E+00	.5100E+00	.5071E+00	.4849E+00	.7158E+04 .2163E+00 .2773E+05 .7138E+00
	SIGMA-XY	.2382E+05	.5239E+04	.1824E+05	.3399E+05	.3201E+05	.2047E+05	.3553E+05	.3507E+05	.3339E+05	.2013E+05	.3446E+05	.2823E+05	.2322E+05	.2351E+05	.2147E+05	.1719E+05	.7158E+04
	SIGMA-Y																	
	SIGMA-X																	
	9	53	55	57	61	63	9	67	2	73	75	11	19	53	39	64	29	69
	Ş	54	5.6	5.8	29	9	99	6.8	72	2	16	2	20	30	•	50	9	20
	8	25	25	26	9	9	49	99	20	72	2	26	2	20	30	4	20	9
	¥	51	53	55	56	61	63	65	69	7	2	75	-	19	52	39	6	56
	TYPE	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
	AREA TYPE HA	42.22	16.91	41.32	39.93	48.89	51.85	47.79	47.63	56.78	58.38	52.08	33.22	37.47	41.73	45.99	50.27	63.04
	THICK	• 019	.019	.019	.022	.021	•119	• 019	920.	.024	•110	•119	.019	.038	.0 42	9,0.	.047	.039
	HE HB	2		\$	6	96	91	92		*		*	16	8	8	100	101	102

100

'A2, 1	· .	•			16		1.2	41					S BES		LITY ODD		TICAL	LE
	¥	.155E+01	.101E+00 .230E+00	.163E+00 .173E+00	.142E+00 .210E+00	.122E+00 .114E+00	.134E+00	.220E+00 .561E-01	.364E+00	.401E+00 .790E-01	.936.+00 .13v.+01	.716E-01 .137E+01	.730E-01	.720E-01	.857E-01 .171E+01	.777E-01 .169E+01	260E-01	115E+00 .985E+00
PAGE	ENERGY	.5087E+02	.6008E+02	.2007E+03	.3165E+03	.4196E+03	.5054E+03	.5763E+03	.5173E+03	.6409E+03	.2270E+02	.1920E+03	.2496E+03	.3335E+03	.4366E+03	.5839E+03	.4269E+03	.5817E+03
	EFSTR-4	.7141E+00 .2108E+05	.3274E+05	.3590E+05	.3651E+05 .3336E+05	.3644E+05	.3587E+05	.3292E+05	. 2801E+05	.1000E+01	.2408E+05	.3838E+05	.3838E+05	.3824E+05	.3736E+05	.3705E+05	.3721E+05	.1000E+01
	EFSTR-3	.9775E+00 .7488E+00	.9441E+00 .9555E+00	.6957E+00 .7682E+00	.6964E+00	.7264E+00	.7331E+00	.7530E+00	.8377E+00	.8507E+00	. 5281E+00	.7191E+00 .5616E+00	.7155E+00 .5079E+00	.7214E+00	.7374E+00	.7628E+00	. 9367E+00	. 9358E+00
	EFSTR-2	.7141E+00 .1000E+01	.1008E+01	.1000E+01	.1000E+01	.1000E+01	.1000E+01	.1000E+01	.1000E+01	.2707E+05	.1000E+01	.1000E+01	.1000E+01	.1000E+01	.1000E+01	.1000E+01	.1000E+01	.4091E+05
	EFSTR-1	.1611E+05 .7273E+00	.9408E+00	.6549E+00	.6604E+00	.6974E+00	.7076E+00	.7315E+00 .7913E+00	.8269E+00	.6415E+00	.4719E+00	.6822E+00	.6823E+00	.6923E+00	.7126E+00	.7423E+00 .5213E+00	.9343E+00	.9334E+00
	SIGHA-XY	1611E+05	.3274E+05	.3590E+05	.3651E+05	.3644E+05	.3587E+05	.3292E+05	.2801E+05	.2707E+05	.2408E+05	.3838E+05	.3838E+05	.3824E+05	.3736E+05	.3705E+05	.3721E+05	.4091E+05
	SIGHA-Y																	
	SIGMA-X																	
	9	42	13	23	23	53	53	63	2	. E	11	27	37	;	21	19	2	18
	Ş	0	1	54	*	3	24	49	2	:	18	28	38		28	99	7.8	
	9	2	•	=	2	*	1	35	3	2	10	18	28	38	3	20	9	5
	ž	69	r.	13	2	33	£.	23	63	2	•	11	27	37	14	52	67	1
	TYPE	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51	51
	AREA TYPE HA	99.89	17.13	46.62	64.56	50.35	64.23	70.09	62.28	65.33	26.59	37.13	41.71	46.30	50.90	69.55	28.87	29.97
	THICK	•031	.028	.037	• 050	• 050	. 165		101.	.126	•101	. 038	*	. 053	. 165	.079	260.	.100
	8	63	1	9	9	20	2	2	10	=	15	13	1	15	16	11	2	61

THIS	PAGE	IS BEST QUALITY PRACTICABLE
-	MARY	FURNISHED TO DDC

					FHO	a our	1 80	ALLOID	THE TO	200								
•	MS.	.226E+11	.165E+11	.302E+11	.9436+10	.870E+10	.194E+11	.245E+11	.261E+11	.253E+11	.171E+11	.616E+11	.517E+11	.296E+11	.260E+11	.320E+11	. 4 06E+11	. 8 09E+11
PAGE	ENERGY	.1508E-19	.4186E-19	.7238E-20	.6253E-19	.1182E-18	.4540E-19	.3465E-19	.3436E-19 .1438E-19	.7126E-19	.2600E-19	.3986E-20	.6035E-20	.1511E-19 .1269E-19	.7624E-20	.5001E-20	.4179E-20 .7147E-20	.1707E-20
	EFSTR-4																	
	EFSTR-3																	
	EFSTR-2																	
	EFSTR-1																	
	SIGMA-XY																	
	SIGMA-Y																	
	SIGMA-X	2653E-05	4091E-05	1592E-05	5000E-05	7428E-05	4203E-05	-,3387E-05	-,3555E-05 -,2300E-05	5452E-05	-,3267E-05	1169E-05 9740E-06	1327E-05 1161E-05	2215E-05	1677E-05	1354E-05 1874E-05	1131E-05 1479E-05	6675E-06 7416E-06
	ş																	
	£																	
	8	2	•	9	40	10	12	14	16	18	20	22	54	56	28	30	32	36
	TYPE MA	-	•	2	_	σ.	=	13	15	11	19	2	23	52	72	52	31	33
	TYPE	12	21	22	12	21	21	21	21	12	27	21	12	22	22	21	21	21
	AREA	2.25	2.63	3.00	2.63	2.25	2.70	3.17	2.85	2.52	2.56	3.06	3.60	3.23	2.85	2.87	3.43	20.9
	THICK	.020	. 920	. 920	020.	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	.020	• 020
	HEHB	120	121	152	123	124	125	126	121	128	129	130	131	132	133	13	135	136

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

6	SE .	.606E+11	.492E+11	.532E+11	.848E+11	.179E+12	.100E+12	.202E+12	.233E+12	.419E+12	. 392E+12	.207E+12	.238E+12	.508E+12	.520E+12	.284E+13	.109E+13	. 448E+13
PAGE	ENERGY	.6008E-20	.3227E-20	.2165E-20 .3848E-20	.2704E-20	.3050E-21	.1359E-20	.2174E-21	.7364E-21	.2495E-21 .8148E-22	.1087E-21	.3103E-21	.2703E-21	.5033E-22	.4944E-22	.2500E-24	.1004E-22	.2856E-23 .7141E-24
	EFSTR-4																	
	EFSTR-3																	
	EFSTR-2																	
	EFSTR-1																	
	SIGMA-XY																	
	SIGHA-Y																	
	SIGMA-X	1321E-05 9909E-06	1032E-05	8462E-06	8648E-06	2682E-06 3353E-06	5978E-16	2549E-06	4711E-06	2508E-06	1530E-06	2729E-06	2717E-06	1377E-06	1071E-06	.7036E-08	4710E-07	2680E-07
	9																	
	¥																	
	9	36	38	4	42	:	9	*	50	25	*	36	28	9	62	3	99	99
	¥	35	37	66	3	3	\$	3	63	. 51	8	55	25	66	. 61	63	65	67
	TYPE	22	22	12	2	22	12	2	22	12	22	22	22	21	12	21	22	22
	AREA TYPE MA MB	3.61	3.16	3.17	3.80	4.45	3.99	3.51	3.48	4.16		4.37	3.04	3.79	4.53	5.30	4.75	4.19
	THICK	•020	.020	.020	.020	.020	• 020	. 820	. 920	.020	.020	.020	.020	. 920	. 0 20	.020	.020	.020
	HENS	137	138	139	3	=	142	3	1	155	3	141	1 8	149	150	151	152	153

						11		53. 41	Q . 7 75
10	MS.	.2 67E+13	.525E+13	.1 52E+13	.107E+14	~	.9. *		
PAGE 10	ENERGY	.1998E-25	.1693E-25	.9903E-23	0. .1490E-24 .107E+14	.1909E-25			
	EFSTR-4							(8)	9
	EFSTR-3							. 1632E+06(W)	.1340E+06(W)
	EFSTR-2								
	EFSTR-1							9	5
	EF							•1632E+06 (U)	•1340E+06 (U)
	SIGMA-XY								
								1 18	2 15
	SIGMA-Y							LOADING CONDITION 1 IS	THE TOTAL ENERGY FOR LOADING CONDITION 2 IS
	SIGMA-X	2249E-08	1906E-08	.4289E-07		.2150E-08		6 CON	00 9
	SIGN	122	-119	.395	0.559	.215		OADIN	OADIN
	9							FOR L	FOR
	¥							RGY	RGY
	8	1 70	22	2	2	7.8		ENE	ENE
	H	69 1	1 7	23	22			OTAL	OTAL
	TYPE	4.15 21	12 6	12 5	12	12		THE TOTAL ENERGY FOR	HE 1
	AREA TYPE HA	4.1	68.4	5.65	5.00	** 34			2
	THICK	.020	.020	.020	• 0 20	• 020			
	. M.	*	55	95	25	8			

THIS PAGE IS BEST QUALITY PRACTICABLE

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURMISHED TO DDC

JUIOT	*	†	7-	FORCE-X	FORCE - Y	FORCE-Z	OISPL-X	OISPL-Y	2-7dS10	
-	63.500	90.000	1,125	351.000	-12600.000	926.000	-1.53156595E-01 -5.12626745E-02	-3,37310884E-01 -3,47255404E-01	1.50853503E+01 1.44830153E+01	
	63.500	90.00	-1.125	-205.000	7360.000	926.000	1.53156595E-01 5.12626745E-02	3.37310884E-01 3.47255404E-01	1.50853503E+01 1.44030153E+01	
-	70.833	90.000	1.313	0.000	0.000	29.500	-1.68003833E-01 -4.39865366E-02	-3.64600013E-01 -3.51717978E-01	1.60655917E+01 1.47515352E+01	
	70.633	90.000	-1.313	0.000	0.000	29,000	1.68003833E-01 4.39865366E-02	3.64600013E-01 3.51717978E-01	1.60655917E+01 1.47515352E+01	
	78.167	90.000	1.500	-2420.000	-6960.000	1130.000	-2.11916646E-01 -6.02508514E-02	-4.68729580E-01 -4.36737902E-01	1.50078963E+01	
•	78.167	90.000	-1.500	2420.000	6960.000	1130.000	2.11916646E-01 6.02508514E-02	4.68729580E-01	1.70648982E+01	
•	85.500	90.000	1, 313	0.000	0.000	98-980	-1.87143175E-01 -4.46781197E-02	-3.97589127E-01 -3.61211376E-01	1.81325540E+01 1.52850121E+01	
•	95.500	90.000	-1.313	0000	0.000	90.900	1.87143175E-01 4.46781197E-02	3.97589127E-01 3.61211376E-01	1.81325540E+01 1.52850121E+01	KHOW
•	92.033	90.000	1.125	-9870.000	-9780.000	474.000	-1.84017545E-01 -4.66155072E-02	-3,99077236E-01 -3,38626999E-01	1.92776711E+01 1.55597196E+01	COPI
=	92.833	90.000	-1.125	9870.000	3980.000	1130.000	1.84017545E-01 4.66155072E-02	3.99077236E-01 3.38626999E-01	1.92778711E+01 1.55597198E+01	B CE THE
=	69.686	87.471	1.349	0.000	000000	178.000	-1.68393505E-01 -4.12649435E-02	-3.77052511E-01	1.51335589E+01 1.39597807E+01	
12	989-69	67.471	-1.349	0.000	0.000	178.000	1.68393505E-01 4.12649435E-02	3.77052511E-013.66040446E-01	1.51335589E+01 1.39597807E+01	
2	76.097	84.051	1.586	0.000	0.000	214.000	-2.07968475E-01	-4.7343669E-01 -4.44512470E-01	1.51675480E+01 1.34203495E+01	
=	76.097	94.851	-1.586	0.000	0.000	214.000	2.07968475E-01 5.65356821E-02	4.73436669E-01 4.44512470E-01	1.51675480E+01	
2	95.746	82°C 13	1.427	0.000	0.000	253.000	-1.84877630E-01 -4.44632377E-02	-4.24220570E-01 -3.86436603E-01	1.52133131E+01 1.28926685E+01	
2	82.746	82.133	-1.427	0.000	0.000	253.000	1.84877630E-01 4.44832377E-02	4.24220570E-01 3.86436603E-01	1.52133131E+01 1.28926685E+01	
	19.647	79.312	1,259	-5660,000	2320,000	1020,000 325,000	-1.66548864E-01	-3.88465419E-01 -3.49018684E-01	1.52287247E+01 1.23217341E+01	

THIS PAGE IS BEST QUALITY PRACTICABLE

JOINT	×	*	2.	FORCE-X	FORCE-Y	FORCE-Z	OISPL-X	DISPL-Y	DISPL-Z	
	89.647	79.312	-1.259	5680.000	-2320.000	1020.000	1.66548864E-01 3.91972815E-02	3.88455419E-01 3.49018684E-01	1.52287247E+01 1.23217341E+01	
13	57.266	77.669	1.279	2310.000	-946.000	723.000	-1.50103626E-01 -5.17496373E-02	-3.22284307E-01 -3.21113405E-01	1.08415205E+01 1.07102222E+01	
20	57.266	77.669	-1.279	-2310.000	946.000	723.000 1550.000	1.50103626E-01 5.17496373E-02	3.22284307E-01 3.21113405E-01	1.08415205E+01 1.07102222E+01	
ม	63.992	74.920	1.532	0.000	000000	314.000	-1.66550822E-01	-3.78524461E-01 -3.69407025E-01	1.09061029E+01 1.02800835E+01	
2	63,992	74.920	-1.532	0.000	0.000	314.000	1.66550822E-01 5.19120222E-02	3.78524461E-01 3.69407025E-01	1.09061029E+01 1.02800835E+01	
23	70.962	72.071	1.799	0.000	0.000	326.000	-1.92739326E-01 -5.85946987E-02	-4.65077469E-01 -4.41946078E-01	1.09137101E+01 9.79710603E+00	
2	70.962	72.071	-1.799	0.000	0.000	326.000	1.92739326E-01 5.85946987E-02	4.65077469E-01 4.41946078E-01	1.09137101E+01 9.79710603E+00	
22	78.191	69.116	1.617	0.000	0.000	336.000	-1.58157580E-01 -3.81557674E-02	-4-11940504E-01 -3-80672377E-01	1.09200094E+01 9.30515091E+00	
2	78.191	69.116	-1.617	0.000	0.000	338,000	1.58157580E-01 3.81557674E-02	4.11940504E-01 3.80672377E-01	1.09200094E+01 9.30515091E+00	
2	85.692	66.050	1.424	-4070.000	1660.000	902.000 311.000	-1.34610639E-01 -2.74908182E-02	-3.86352653E-01 -3.45888242E-01	1.08426840E+01 8.73800722E+00	
2	269.69	050*99	-1.424	4070.000	-1660.000	902.000	1.34810839E-01 2.74908182E-02	3.86352653E-01 3.45888242E-01	1.08426840E+01 8.73800722E+00	
8	51.032	65.339	1.433	1740.000 3990.000	-713.000	646.000	-1.44133543E-01 -6.58601383E-02	-2.96609892E-01 -3.04333605E-01	7.28959532E+00 7.48498407E+00	
30	51.032	65.339	-1.433	-1740.000	713.000	1310.000	1.44133543E-01 6.58601383E-02	2.96809892E-01 3.04333605E-01	7.28959532E+00 7.48498407E+00	
#	56.297	65,369	1.715	0.000	0000 •0	340.000	-1.51869900E-01 -5.51758216E-02	-3.44981522E-01	7.35327780E+00 7.12717600E+00	
25	56.297	65.369	-1.715	0.000	0.000	340.000	1.51869900E-01 5.51758216E-02	3.44981522E-01 3.37208706E-01	7.35327780E+00 7.12717600E+00	
8	929.69	59.291	2.012	0.000	0.0000	352.000	-1.67953885E-01	-4.26140523E-01 -4.08652457E-01	7.33441024E+00 6.69261135E+00	
*	929.999	59.291	-2.012	000000	0000.0	352.000 291.000	1.67953865E-01 5.57287692E-02	4.26140523E-01 4.08652457E-01	7.33441024E+00 6.69261135E+00	

THIS PAGE IS BEST QUALITY PRACTICABLE

01SPL-2	7.28909697E+00 6.24447656E+00	7.28909697E+00 6.24447656E+00	7.13862489E+00 5.70271391E+00	7.13862489E+00 5.70271391E+00	4.43436691E+00 4.78522101E+00	4.43438691E+00 4.78522101E+00	4.49810288E+00	4.49810288E+00 4.51417272E+00	4.46771253E+00 4.15762025E+00	4.46771253E+00 4.15762029E+00	4.39030667E+00 3.77680570E+00	4.39030667E+00	4.16278166E+00 3.28711508E+00	4-18278166E+00 3-28711588E+08	2.32438568E+00 2.71329020E+00	2.32438568E+00 2.71329028E+00	2.37590002E+00 2.51245255E+00
OISPL-Y	-3.76577355E-01 -3.49981104E-01	3.76577355E-01 3.49981104E-01	-3.57295406E-01 -3.19835301E-01	3.57295406E-01	-2,49846167E-01 -2,62488420E-01	2.49846167E-01 2.62488420E-01	-2.92457379E-01 -2.88891709E-01	2.92457379E-01 2.88831709E-01	-3.65573242E-01 -3.53593407E-01	3.65573242E-01 3.53593407E-01	-3.17475451E-01 -2.95573830E-01	3.17475451E-01 2.95573830E-01	-3.05230452E-01 -2.71275070E-01	3.05230452E-01 2.71275070E-01	-1.86543915E-01 -2.03050212E-01	1.8654 3915E-01 2.03050212E-01	-2.20334079E-01 -2.21283761E-01
OISPL-X	-1,31598297E-01 -3,10292813E-02	1.31598297E-01 3.10292813E-02	-1.09022986E-01	1.09022986E-01 1.82188447E-02	-1,27880637E-01 -6,63969885E-02	1.27880637E-01 6.63969885E-02	-1.30665075E-01 -5.32217253E-02	1.30665075E-01 5.32217253E-02	-1,39343030E-01	1.39343036E-01 5.06267100E-02	-9.89174689E-02	9.89174689E-02 2.03986747E-02	-7.54646233E-02 -4.84215299E-03	7.54646233E-02 4.84215299E-03	-1.05739666E-01 -6.20971554E-02	1.05739666E-01 6.20971554E-02	-1.03846760E-01 -4.74240236E-02
FORCE-Z	365.000	365,000	336.000	336.000	694,000	694.000	365.000	365.000	378.000	378,000	392.000	392.000	361,000	361,000	1500.000	1500.000	390.000
FORCE-Y	0.0000000000000000000000000000000000000	0.0000	1740.000	-1740.000	-743.000	17 00, 000	0.000	0.0000	0.0000000000000000000000000000000000000	0.000	0.000	0.0000	1820.000	-1820.000	-773.000	1770-000	0.000
FORCE-X	0.000	0.000	-4250.000	1270.000	1620.000	-1820.000	0.000	0.000	0.000	0.000	0000-0	000000	-4440.000	1320.000	1690.000	-1890,000	0.000
2-	1.807	-1.807	1.590	-1.590	1.587	-1.587	1.896	-1.898	2.225	-2.225	1.997	-1.997	1.756	-1.756	1.742	-1.742	2.082
†	56.100	56.100	52.787	52.787	53.006	53.006	49.818	49.818	46.512	46.512	43.083	43.083	39.525	39.525	+0.678	40.678	37.267
*	73,635	73,635	81.738	81.738	44.799	44.799	52.603	52.603	60.691	60.691	64.079	69.079	17.784	77.78	38.565	38.565	*6.90 €
JOINT	25	2	4	8	33	;	3	3	3	1	\$	*	5	:	\$	20	2

THIS PACE IS BEST QUALITY PRACTICABLE

FORCE-X	200
000000000000000000000000000000000000000	4.38 0.000 0 6.38 0.000 0
000 000	167 0.000 0 0.000 0 187 0.000 0
	-1300,000
-1900, 000 000 -565, 000 000 -937, 000	922 4640.000 -1900. 1360.000 -555. 896 2290.000 -937. 5300.000 -2170.
000 2170,000 000 2170,000 000 0,000	265 0.000 2170. 0.000 0.000 0.000
000 0 000	265 0.000 0.00
000 0 000	651 0.000 0.00 0.000 0.00
000 0 000	651 0.000 0.00 0.000 0.00
000 0 000	376 0.000 0.0 0.000 0.0
000 0 000	376 0.000 0.00 0.000 0.00
000 1240.000 000 377.000	086 -3030,000 1240,0 -922,000 377,0
000 -1240.000 000 -377.000	086 3030.000 -1240.0 922.000 -377.0

THIS PAGE IS BEST QUALITY PRACTICABLE FROM GOPY FURNISHED TO DDC

JOINT	*	†	7	FORCE-X	FORGE-Y	FORCE-Z	DISPL-x	DISPL-Y	DISPL-Z
\$	25,166	14,173	2.073	3070.000	-520.000	1040.000	-4.22288799E-02	-4.09255801E-02 -6.02115756E-02	1.50235366E-01 3.26853118E-01
22	25.166	14.173	-2.073	-3070.000	520.000 1210.000	1040.000	4.22288799E-02 3.46166534E-02	4.09255801E-02 6.02115756E-02	1.50235366E-01 3.26853118E-01
z	35.583	12.304	2.446	000000	000.0	433.000	-4.53298717E-02 -2.79621842E-02	-5.96720986E-02 -6.11086852E-02	2.19892172E-01 3.17463874E-01
2	35.583	12,304	-2.446	0.000	000 *0	433,000	4.53298717E-02 2.79621842E-02	5.96720986E-02 6.11086852E-02	2.19892172E-01 3.17463874E-01
E	+6.181	10.403	2.827	0.000	000000	370,000	-4.38219757E-02 -2.57691521E-02	-6.83518278E-02 -9.13801375E-02	2.50556125E-01 2.71681902E-01
2	.6.181	10.403	-2.827	0.000	000000	370.000 310.000	4.38219757E-02 2.57691521E-02	8.83518278E-02 9.13801375E-02	2.58556125E-01 2.71681902E-01
E	56.964	694.8	2.502	0.000	0.000	304.000	-1.98183986E-02 -2.48140918E-03	-5.92354093E-02 -5.57468272E-02	2.81201334E-01 2.49187955E-01
2	56.964	694.8	-2.502	0.000	0.000	304.000	1.98183986E-02 2.48140918E-03	5.92354093E-02 5.57468272E-02	2.81201334E-01 2.49187955E-01
2	67.938	005-9	2,169	-1370.000	262,000	446.000	-4.24715599E-03	-8.06102137E-02 -6.82306147E-02	1.86891812E-01 1.24812534E-01
2	67.938	6.500	-2.169	1370.000	-262.000	446.000	4.24715599E-03 -1.17652403E-02	8.06102137E-02 6.82306147E-02	1.86891812E-01 1.24812534E-01
2	10.000	0.000	2,250	0.000	0.000	0.000	••	• •	• • • • • • • • • • • • • • • • • • • •
=	18.000	0.00	-2.250	0.000	000000	0000	•••	•••	••
=	30.000	0.000	2.625	0.000	0000.0	0000		**	••
2	30.000	0.000	-2.625	0.000	0000.0	0000000	••	••	••
2	• 2• 000	0.000	3.000	0.000	0000.0	0.000	••	••	••
•	42.000	0.00	-3.000	900000	000000	000000	•••	••	••
2	54.000	000 •0	2.625	0.000	0000 0000	0000000	•••	••	••

THIS PAGE IS BEST QUALITY PRACTICABLE FROM COPY FURNISHED TO DDC

2-7 3 510			
	::	::	::
OISPL-Y	• •	•••	•••
DISPL-X	••	•••	•••
F0.2CE-7	0.000	0.000	0.000
F0275-Y	0.000	0.000	0.000
FORCE-X	0.00.0	0.000	0.000
2-	-2.625	2.250	
†	0.000	0.900	0.000
ř	54.030	66.000	66.010
JUINT	£	19	8

Z-DISPLACEMENTS

	LOAD	ACE #3	1010.01	05 "0
NODE NO		CASE #1	LOAD CA	
NODE NO	ANALYZE	NASTRAN	ANALYZE	NASTRAN
1*	15.085	15.170	14.483	14.595
	16.066	16.151	14.752	14.849
5	17.065	17.144	15.008	15.086
3 5 7	18.133	18.198	15.285	15.344
9	19.278	19.328	15.560	15.599
11	15.134	15.218	13.960	14.059
13	15.168	15.246	13.420	13.500
15	15.213	15.286	12.893	12.956
17	15.229	15.297	12.322	12.368
19	10.842	10.913	10.710	10.810
21	10.906	10.977	10.280	10.368
23	10.914	10.979	9.797	9.866
25	10.920	10.982	9.305	9.359
27	10.843	10.902	8.738	8.780
29	7.290	7.354	7.485	7.578
31	7.353	7.414	7.127	7.205
33	7.334	7.386	6.693	6.749
35	7.289	7.338	6.244	6.289
37	7.139	7.188	5.703	5.738
39	4.434	4.492	4.785	4.870
41	4.498	4.547	4.514	4.580
43	4.468	4.504	4.158	4.199
45	4.390	4.425	3.777	3.810
47	4.183	4.222	3.287	3.315
49	2.324	2.378	2.713	2.792
51	2.376	2.414	2.512	2.566
53	2.333	2.353	2.231	2.256
55	2.242	2.263	1.939	1.960
57	2.005	2.034	1.531	1.551
59	.940	.987	1.273	1.343
61	.971	.998	1.128	1.169
63	.926	.930	.922	.932
65	.833	.839	.729	.737
67	.597	.611	.429	.439
69	.150	.175	.327	.368
71	.220	.236	.317	.342
73	.259	.259	.272	.276
75 77	.281	.283	.249	.252
77	.187	.195	.125	.130

*Note: Results are given for nodes on the upper surface only.

The displacement pattern is identical on the lower surface.

TABLE 2: Results From ANALYZE and NASTRAN