Meaning			Formulas
Number of trays	:	N	Aspen Process Optimisation
Height	:	Н	H = 0.5 N + 3
Tangent-to-tangent length		L	L = 0.5 N
Tangent to tangent length			Calculation for DWSTU Column:
Reflux ratio	:	RR	From Aspen Plus Simulation
Distillate		D [kg/s]	From Aspen Plus Simulation
Liquid flowrate		L [kg/s]	$L = R \cdot D$
Vapor flowrate top of	•	L [Kg/S]	$\Gamma = K \cdot D$
column	:	V [kg/s]	$V=D\cdot (1+RR)+F$
Column		Ou	
Vapor density	:	ρν [kg/m³]	From Aspen Plus Simulation
		<u>[Rg/III]</u> 	
Liquid density	:	[kg/m³]	From Aspen Plus Simulation
		[18/111]	I (0\ 0.5
Flow parameter	:	F_{LV}	$\frac{L}{V} \cdot \left(\frac{\rho_V}{\rho_L}\right)^{0.5}$
			-
Flooding capacity factor	:	$C_{\mathrm{sb,f}}$	$\log_{10} C_{\text{sb,f}} =$
			$-1.0262 - 0.63513 \cdot \log_{10}(F_{LV}) - 0.20097 \cdot \log_{10}(F_{LV})^{2}$
Flooding velocity	:	Uf	$u_{\rm f} = C_{\rm sb,f} \cdot 1.3 \cdot \left(\frac{\rho_{\rm V}}{\rho_{\rm L} - \rho_{\rm V}}\right)^{0.5}$
77 1 1		[ft/s]	$\langle \rho_L - \rho_V \rangle$
Vapor velocity	- :	uv	$u_V = 0.8 \cdot u_f$
Active area	:	Α	$A = \frac{V}{V}$
			$u_{V} = 0.8 \cdot u_{f}$ $A = \frac{V}{\rho_{V} \cdot u_{V}}$ $D = \left(\frac{4 \cdot A}{\pi}\right)^{\frac{1}{2}}$
Diameter		D	$-(4\cdot A)^{\frac{1}{2}}$
Diameter	•	Ъ	$D = \left(\frac{\pi}{\pi}\right)$
•		Po	
Lowest pressure :	:	[psig]	Aspen Plus Process Simulation
		[16]	For P_0 between 0 and 5: $P_d = 10$
		P_d	For P _o between 10 and 1000 psig:
Design Pressure :	:	[psig]	$P_{d} = \exp \{0.60608 + 0.91615[\ln(P_{o})] + 0.0015655[\ln(P_{o})]^{2}\}$
		[L2.9]	For P_0 bigger than 1000 psig: $P_d = 1.1 P_0$
Highest operating		To	
temperature	:	[°F]	Aspen Plus Process Simulation
		T _d	
Design temperature	:	[°F]	$T_d = T_o + 50 ^{\circ}F$
		L - J	For $-20 < T_d <= 200 : E_M = 30.2 \ 10^6$
		E_{M}	For $200 < T_d <= 400 : E_M = 29.5 \ 10^6$
Modulus of elasticity	:	[psi]	For $400 < T_d <= 650 : E_M = 28.3 \ 10^6$
		LI J	For $T_d > 650 : E_M = 26 \cdot 10^6$
			For $-20 < T_d <= 750 : S = 15000$
Maximum allowable		S	For $750 < T_d <= 800 : S = 14750$
stress	•	[psi]	For $800 < T_d \le 850 : S = 14200$
			For $850 < T_d \le 900 : S = 13100$
			For atmospheric or high pressures: H and L in inches
			$t_{E1} = \frac{0.22 ((D_i + t_{E1}) + 18) L^2}{S (D_i + t_{E1})^2}$
			$t_{E1} = {S(D_i + t_{E1})^2}$
			$t_{E2} = \frac{P_d \cdot D_i}{2 \cdot S \cdot E - 1.2 \cdot P_d}$
Wall thickness		to	$t_{E2} = \frac{1.2 \cdot \text{Pd}}{2 \cdot \text{S} \cdot \text{E} - 1.2 \cdot \text{Pd}}$
	•	t _E	$t_t = \frac{t_{E1} + t_{E2}}{2}$
Correction factor	•	tec	$t_t = {2}$
Total wall thickness	:	t _t	
		[in]	For vacuum operation: H and L in inches
			$P_{\rm d} \cdot L$ $V_{\rm e}$
			$t_{E} = 1.3 \cdot (D_{i} + t_{E}) \cdot \left(\frac{P_{d} \cdot L}{E_{M} \cdot (D_{i} + t_{E})}\right)^{0.4} \text{for } \frac{t_{E}}{D_{i}} \leq 0.05$
			$t_{EC} = L \cdot (0.18 \cdot D_i - 2.2) \cdot 10^{-5} - 0.19$
			$t_t = t_E + t_{EC} + 0.125$
Weight of shell and two		147	$W = \pi (D + t_S) (L + 0.8 D) t_S \rho_{carbon}$
heads	<u> </u>	W	L and D in inches , $\rho_{carbon} = 0.284 \text{ lb/in}^3$