Midterm

Due 17 Dec 2018 at 4:00 p.m.

Quantum Information Theory 2018*1

¹Deep Quantum Labs, Skolkovo Institute of Science and Technology

December 13, 2018

Those interested in doing a theory thesis are personally encouraged to solve all of these problems analytically. Numerical examples are required. Working with others is cheating and will earn you a grade of zero.

Remark 0.1. We adhere to the notation conventions given in the attachment to the first homework sheet.

1 Matrix Product States

Problem 1. Write down the matrix product state for the n-party GHZ and n-party W-states. Let us define the two-point correlation as

$$C_{i,j}(\psi, A_i, A_j) = \langle \psi | A_i A_j | \psi \rangle - \langle \psi | A_i | \psi \rangle \langle \psi | A_j | \psi \rangle \tag{1}$$

Find $C(j \leq n) := C_{1,j}(\psi, X_1, X_j)$ for both GHZ- and W- where X is the familiar Pauli matrix. Using Mathematica, make a publication quality plot for some fixed n (e.g. label everything and create a caption explaining the plot).

2 Werner States

Problem 2. Define the Werner states acting on $\mathbb{C}_2 \otimes \mathbb{C}_2$ as

$$\rho_r = r|\phi^+\rangle\langle\phi^+| + \frac{1-r}{4}\mathbb{1}$$
(2)

where $\sqrt{2} |\phi^{+}\rangle = |00\rangle + |11\rangle$ is the standard Bell state and r takes only values in the real interval [0, 1]. Find (i) the matrix trace of ρ_r and (ii) the eigenvalues of ρ_r . The concurrence is

$$C(\rho) = \max\{\lambda_1 - \lambda_2 - \lambda_3 - \lambda_4, 0\} \tag{3}$$

where $\lambda_1 \geq \lambda_2 \geq \lambda_3 \geq \lambda_4$ Using part (ii) or otherwise, find $C(\rho_r)$.

^{*}Please report any typos etc. jacob.biamonte@qubit.org

3 Entanglement Time-Capacity

Definition 3.1. We will be working with the two-parameter Hamiltonian operator on $\mathcal{L}(\mathbb{C}_4)$

$$H(\beta, \gamma) = \beta X \otimes X - \gamma Y \otimes Y \tag{4}$$

where X, Y are the standard Pauli matrices.

Definition 3.2 (Entanglement velocity). Let $|\psi\rangle$ act on the bipartite complex euclidean space $\mathcal{A} \otimes \mathcal{B}$ for \mathcal{A} isomorphic to \mathcal{B} . The state-dependent-entanglement-velocity is

$$\Gamma(\tau) = \frac{d}{d\tau} E(\exp\{-iH\tau\} | \psi(0)\rangle)$$
 (5)

where

$$E(|\psi\rangle) = S(\operatorname{Tr}_{\mathcal{B}}|\psi\rangle\langle\psi|) \tag{6}$$

with S the standard von Neumann Entropy.

Problem 3. Now consider the Hamiltonian (4) time-evolving the initial state $|\psi(0)\rangle = |0\rangle \otimes |0\rangle$. Create a heat map $H(1, \gamma) \mapsto \Gamma(\tau)$ for $\gamma \in [0, 1]$, $\tau \in [0, 2\pi]$.

Compare this with a heat map found from acting on the initial state $\cos \theta |00\rangle + \sin \theta |11\rangle$ and hence fix $\gamma = 1/2$ and consider $\theta \in [0, 2\pi]$.

Compare and contrast these two maps, pointing out regions where entanglement is increasing/decreasing.

Problem 4 (Entanglement limit of H). We then consider the general form of single qubit states as

$$|\psi(\theta,\phi)\rangle = \cos\theta \,|0\rangle + e^{i\phi}\sin\theta \,|1\rangle$$
 (7)

where θ and ϕ take only real values. Calculate the following limit numerically for $H(\beta, 1)$

$$\max_{|\psi(\theta_1,\phi_1)\rangle\otimes|\psi(\theta_2,\phi_2)\rangle}\Gamma(\tau)|_{\tau\to 0} \tag{8}$$

and show numerically that it is upper bounded by 1.92.