Deccan Education Society's

Navinchandra Mehta Institute of Technology and Development

CERTIFICATE

This is to certify that Mr. Mehul Parihar of M.C.A.

Semester I with Roll No. C22091 has completed. Practicals of

ADVANCED DATABASE SYSTEMS under my supervision in this college during the year 2022 -2023.

СО	R1 (Attendance)	R2 (Performance during lab session)	R3 (Innovation in problemsolving technique)	R4 (Mock Viva)	R5 (Variation in implementation of learned topics on projects)
CO1					
CO2					
CO3					
CO4					

Practical-in-charge

Head of Department MCA Department (NMITD)

Index

Sr.No	Title	Date	Sign
1	Implementation of different types of Partitions: Range, List and composite partitions.	28-01-2022	
2	Implementation of Analytical queries like Roll_UP, CUBE, First, Last , Lead ,Lag,Rank AND Dense Rank	09-02-2022	
3	Implementation of ORDBMS concepts like ADT(Abstract Data Types), Reference	16-02-2022	
4	Implementation of ETL transformation with Pentaho like Copy data from Source (Table/Excel/Oracle) and store it to Target (Table/Excel/ Oracle), Adding sequence, Adding Calculator Concatenation of two fields Splitting of two fields Number Range String Operations Sorting data Implement the merge join transformation on tables Implement data validations on the table data.	18-02-2022	
5	Introduction to R programming and Data acquisition Install packages , Loading packages Data types, checking type of variable, printing variable and objects (Vector, Matrix, List, Factor, Data frame, Table) cbind-ing and rbind-ing Reading and Writing data. setwd(), getwd(), data(), rm(),	23-02-2022	

	Attaching and Detaching data. Reading data from the consol. Loading data from different data sources.(CSV, Excel).		
6	Implementation of Data preprocessing techniques like, Naming and Renaming variables, adding a new variable. Dealing with missing data. Dealing with categorical data. Data reduction using subsetting	02-03-2022	
7	Implementation and analysis of Classification algorithms like Naive Bayesian, K-Nearest Neighbor, ID3, C4.5	11-03-2022	
8	Implementation and analysis of Apriori Algorithm using Market Basket Analysis.	16-03-2022	
9	Implementation and analysis of clustering algorithms like K-Means , Agglomerative	19-03-2022	

1. Implementation of different types of Partitions: Range, List and composite partitions.

Partition:

```
create table sales_range
2 (salesman_id number(5),
3 salesman_name varchar2(30),
 4 sales_amount number(10),
5 sales_date date)
6 partition by
 range(sales_date) 7 (
8 partition sales_jan2000 values less
than(to_date('01/02/2000','dd/mm/yyyy')), 9 partition sales_feb2000 values
less than(to_date('01/03/2000','dd/mm/yyyy')), 10 partition sales_mar2000
values less than(to_date('01/04/2000','dd/mm/yyyy')), 11 partition
sales_apr2000 values less than(to_date('01/05/2000','dd/mm/yyyy')) 12
)enable row movement;
Table created.
SQL> insert into sales range values(1,'Vinit
Wani',5000,to_date('23/02/2000','dd/mm/yyyy')); 1 row created.
SQL> insert into sales_range values(2,'Ajay
ASH',10000,to_date('29/01/2000','dd/mm/yyyy')); 1 row created.
SQL> insert into sales range values(3,'Aditya
```

Narkar',50000,to_date('23/03/2000','dd/mm/yyyy')); 1 row created.

SQL> insert into sales_range values(4,'Omkar

Jadhav',100000,to_date('01/04/2000','dd/mm/yyyy')); 1 row created.

SQL> insert into sales_range values(5,'Shashikumar

Singh',6000,to_date('15/04/2000','dd/mm/yyyy')); 1 row created.

SQL> insert into sales_range values(6,'Mahendra shign

dhoni',45000,to_date('15/03/2000','dd/mm/yyyy'));

1 row created.

SQL> insert into sales_range values(7,'Ishan

Kishan',66000,to_date('30/04/2000','dd/mm/yyyy')); 1 row created.

SQL> insert into sales_range values(8,'Ravichandran Ashivin',25000,to_date('19/02/2000','dd/mm/yyyy'));

1 row created.

SQL> select * from sales_range;

SALESMAN_ID SALESMAN_NAME SALES_AMOUNTSALES_DAT

2	Ajay ASH	10000	29-JAN-00
1	Vinit Wani	5000	23-FEB-00
8	Ravichandran Ashivin	25000	19-FEB-00
3	Aditya Narkar	50000	23-MAR-00
6	Mahendra shign dhoni	45000	15-MAR-00
4	Omkar Jadhav	100000	01-APR-00
5	suryakumar yadav	6000	15-APR-00
7	Ishan Kishan	66000	30-APR-00

8 rows selected.

SALESMAN_ID

SQL> select * from sales_range partition (sales_jan2000);

SALESMAN_ID SALESMAN_NAME SALES_AMOUNT SALES_DAT

2 Ajay ASH 10000 29-JAN-00

SQL> select * from sales_range partition (sales_feb2000);

SALESMAN_ID SALESMAN_NAME SALES_AMOUNT SALES_DAT

1 Vinit Wani 5000 23-FEB-00

8 Ravichandran 25000 19-FEB-00 Ashivin

SQL> select * from sales_range partition (sales_mar2000);

SALESMAN_NAME SALES_AMOUNT SALES_DAT

3 Aditya Narkar 50000 23-MAR-00

6 Mahendra shign dhoni 45000 15-MAR-00

SQL> select * from sales range partition (sales apr2000);

SALESMAN_ID SALESMAN_NAME SALES_AMOUNT SALES_DAT

4 Omkar Jadhav 100000 01-APR-00

5 suryakumar yadav 6000 15-APR-00

7 Ishan Kishan 66000 30-APR-00

```
SQL> create table employee11
2 (emp_no integer primary
key, 3 emp_name
varchar2(20),
4 salary integer)
5 partition by
range(emp_no) 6 (
7 partition e1 values
than(105), 8 partition e2 values
less than(110) 9)
10;
Table created.
SQL> insert into employee11 values(101, kl
rahul',20000); 1 row created.
SQL> insert into employee11 values(102, 'shikar
dhawan',19000); 1 row created.
SQL> insert into employee11 values(103, 'Rishab
Pant',30000); 1 row created.
SQL> insert into employee11 values(104, bhuwaneshwar
kumar',15000); 1 row created.
SQL> insert into employee11 values(105, 'hardik
pandaya',35000); 1 row created.
```

SQL> insert into employee11 values(106, kurnal pandaya', 12000); 1 row created.

SQL> insert into employee11 values(107, 'ravindra jadeja',50000); 1 row created.

SQL> insert into employee11 values(108,'bumraha',55000); 1 row created.

SQL> select * from employee11;

EMP_NO	EMP_NAME	SALARY
101	kl rahul	20000
102	shikar dhawan	19000
103	Rishab Pant	30000
104	bhuwaneshwar kumar	15000
105	hardik pandaya	35000
106	kurnal pandaya	12000
107	ravindra jadeja	50000
108	bumraha	5500 0

8 rows selected.

SQL> select * from employee11 partition (e1);

EMP_NO	EMP_NAME	SALARY
101	kl rahul	20000
102	shikar dhawan	19000
103	Rishab Pant	30000
104	bhuwaneshwar kumar	15000

SQL> select * from employee11 partition (e2);

EMP_NO	EMP_NAME	SALARY
105	hardik pandaya	35000
106	kurnal pandaya	12000
107	ravindra jadeja	50000
108	bumraha	55000

```
SQL> create table
sales_list 2
 (salesman_id number(5),
3 salesman_name varchar2(30),
4 sales_state varchar2(20),
5 sales_amount number(10),
6 sales_date date)
7 partition by list (sales_state)
8 (partition sales_west values ('andheri',
'borivali'), 9 partition sales_harbur values
('vashi', 'panvel'),
10 partition sales_cental values
('dadar', 'thane'), 11 partition sales_other
values (default)
12)
13 enable row movement
14;
Table created.
SQL> insert into sales_list values(1,'Vinit
Wani', 'dadar', 25000, to_date('23/02/2000', 'dd/mm/yyy
y'));
1 row created.
SQL> insert into sales_list values(2,'Ajay
ASH', 'andheri', 35000, to_date('13/08/2000', 'dd/mm/yyyy')); 1 row created.
SQL> insert into sales_list values(3,'Aditya
Narkar', 'vashi', 15000, to_date('08/06/2000', 'dd/mm/yyyy')); 1 row created.
```

SQL> insert into sales_list values(4,'Omkar Jadhav','ghatkopar',55000,to_date('17/09/2000','dd/mm/yyy y'));

1 row created.

SQL> insert into sales_list values(5,'Sanjay patil','thane',5000,to_date('16/05/2000','dd/mm/yyyy')); 1 row created.

SQL>

SQL> select * from sales_list;

SALESMAN_ID	SALESMAN_NAME	SALES_STATE	SALES_AMOUNT	SALES_DAT
1	Vinit Wani	dadar	25000	23-FEB- 00
2	Ajay ASH	andheri	35000	13-AUG-00
3	Aditya Narkar	vashi	15000	08-JUN- 00
4	Omkar Jadhav	ghatkopa r	15000	17-SEP- 00
5	Sanjay patil	thane	15000	16-MAY- 00

6 rows selected.

SQL> select * from sales_list partition (sales_west);

SALESMAN_ID	SALESMAN_NAME	SALES_STATE	SALES_AMOUNT	SALES_DAT
2	Ajay ASH	andheri	35000	13-AUG-00

hash(salesman_id) 7

partitions 4

Table created.

8;

SQL> insert into sales_hash values(101,'Sam',5000,18); 1 row created.

SQL> insert into sales_hash values(102,'Ram',50000,50); 1 row created.

SQL> insert into sales_hash values(103,'Riya',25000,36); 1 row created.

SQL> insert into sales_hash values(104,'chinmay',35000,49); 1 row created.

SQL> insert into sales_hash values(105,'Mitesh',45000,17); 1 row created.

SQL> insert into sales_hash values(106,'Ajay',15000,1); 1 row created.

SQL> insert into sales_hash values(107,'Nikhil',85000,53); 1 row created.

SQL> select * from sales_hash;

SALESMAN_ID SALESMAN_NAME SALES_AMOUNT WEAK_NO

104	chinma y	35000	49
102	Ram	50000	50
103	Riya	25000	36
105	Mitesh	45000	17
107	Nikhil	85000	53
101	Sam	5000	18
106	Ajay	15000	1

7 rows selected.

2. Implementation of Analytical queries like Roll_UP, CUBE, First, Last , Lead ,Lag,Rank AND Dense Rank

```
SQL>Create table
ssb1 (emp_no
integer, dep_no
integer, bdate date,
salary integer,
comm integer,
job
varchar2(10));
SQL>insert into ssb1
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&jo
b'); Enter value for emp_no: 101
Enter value for dep_no: 10
Enter value for bdate: 12-jan-
82 Enter value for salary:
22000 Enter value for comm:
1000 Enter value for job:
clerk
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(101,10,'12-jan-82',22000,1000,'clerk')
```

```
SQL>insert into ssb1
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&jo
b'); Enter value for emp_no: 102
Enter value for dep_no: 10
Enter value for bdate: 13-feb-
83 Enter value for salary:
33000 Enter value for comm:
2000 Enter value for job:
clerk
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(102,10,'13-feb-83',33000,2000,'clerk')
1 row created.
SQL> insert into ssb1
2
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 103
Enter value for dep_no: 10
Enter value for bdate: 14-mar-
84 Enter value for salary:
44000 Enter value for comm:
200
Enter value for job: clerk
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(103,10,'14-mar-84',44000,200,'clerk')
1 row created.
```

```
SQL> insert into ssb1
2
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 104
Enter value for dep_no: 20
Enter value for bdate: 15-apr-
87 Enter value for salary:
55000 Enter value for comm:
3000 Enter value for job:
manager
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(104,20,'15-apr-87',55000,3000,'manager')
1 row created.
SQL> insert into ssb1
2
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 105
Enter value for dep_no: 20
Enter value for bdate: 14-jun-
82 Enter value for salary:
38000 Enter value for comm:
4500 Enter value for job:
manager
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(105,20,'14-jun-82',38000,4500,'manager')
1 row created.
```

```
SQL> insert into ssb1
2
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 106
Enter value for dep_no: 20
Enter value for bdate: 15-
aug-88 Enter value for salary:
44000 Enter value for comm:
500 Enter value for job:
manager
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(106,20,'15-aug-88',44000,500,'manager')
1 row created.
SQL> insert into ssb1
2
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 107
Enter value for dep_no: 10
Enter value for bdate: 31-
dec-81 Enter value for salary:
58000 Enter value for comm:
8000 Enter value for job:
manager
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(107,10,'31-dec-81',58000,8000,'manager')
1 row created.
```

SQL> insert into ssb1

2

values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');

Enter value for emp_no: 108

Enter value for dep_no: 20

Enter value for bdate: 25-jul-

88 Enter value for salary:

49000 Enter value for

comm: 700 Enter value for

job: clerk

old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')

new 2: values(108,20,'25-jul-88',49000,700,'clerk')

1 row created.

SQL> select * from ssb1;

JOB	COMM	SALARY	DEP_NO BDATE	EMP_NO
clerk	1000	22000	10 12-JAN-82	101
clerk	2000	33000	10 13-FEB-83	102
clerk	200	44000	10 14-MAR-84	103
manager	3000	55000	20 15-APR-87	104
manager	4500	38000	20 14-JUN-82	105
manager	500	44000	20 15-AUG-88	106
manager	8000	58000	10 31-DEC-81	107
clerk	700	49000	20 25-JUL-88	108

8 rows selected.

SQL> SELECT

dep_no,job,count(*),sum(salary) 2 from
ssb1

3 group by rollup(dep_no,job);

	DEP_NO	JOB	COUNT(*)	SUM(SALARY)
-				
	10	clerk	3	99000
	10	manager	1	58000
	10		4	157000
	20	clerk	1	49000
	20	manager	3	137000
	20		4	186000
			8	343000

7 rows selected.

SQL> select

dep_no,job,sum(salary) 2 from

ssb1

3 where dep_no in(10,20)

4 group by dep_no, rollup(job);

DEP_NO JOB SUM(SALARY)

10 clerk

9900

0

10 manager 58000

10 157000

20 clerk 49000

20 | P a g

20 manager 137000

20 186000

```
6 rows selected.
```

```
SQL> SELECT
```

```
dep_no,job,count(*),sum(salary) 2 from
ssb1
```

3 group by job,rollup(dep_no);

10 clerk 3 99000

20 clerk 1 49000

clerk 4 148000

10 manager 1 58000

20 manager 3

13700

0

manager 4 195000

6 rows selected.

SQL> SELECT

```
dep_no,job,count(*),sum(salary) 2 from
ssb1
```

3 group by dep_no, rollup(job);

DEP_NO JOB COUNT(*) SUM(SALARY)

10 clerk 3 99000

10 manager 1 58000

10 4 157000

20 clerk 1 49000

22 | P a g

20 manager 3 137000

20 4 186000

6 rows selected.

SQL> SELECT

dep_no,job,count(*),sum(salary) 2 from
ssb1

3 group by cube(dep_no,job);

8 343000

clerk 4 148000

manager 4 195000

10 4 157000

10 clerk 3 99000

10 manager 1 58000

20 4 186000

20 clerk 1 49000

20 manager 3 137000

9 rows selected.

SQL> select emp_no,dep_no,salary,comm,

2 rank() over(partition by dep_no order by salary)as Rank from ssb1;

EMP_NO DEP_NO SALARY COMM RANK

101 10 2200 1000 1 0 102 10 3300 2000 2

103	10	4400 0	200	3
107	10	5800 0	8000	4
105	20	3800 0	4500	1
106	20	4400 0	500	2
108	20	4900 0	700	3
104	20	5500 0	3000	4

8 rows selected.

SQL> update ssb1

- 2 set salary=33000
- 3 where emp_no=101;

1 row updated.

SQL> update ssb1

- 2 set salary=44000
- 3 where emp_no=105;

1 row updated.

SQL> select emp_no,dep_no,salary,comm,

2 rank() over(partition by dep_no order by salary)as Rank from ssb1;

EMP_NO DEP_NO SALARY COMM RANK

101	10	3300 0	100 0	1
102	10	3300 0	200 0	1

103 10 4400 200 3

107	10	5800 0	8000	4
105	20	4400 0	4500	1
106	20	4400 0	500	1
108	20	4900 0	700	3
104	20	5500 0	3000	4

8 rows selected.

SQL> select emp_no,dep_no,salary,comm,

2 dense_rank() over(partition by dep_no order by salary)as Rank from ssb1;

EMP_NO DEP_NO SALARY COMM RANK

8 rows selected.

SQL> select emp_no,bdate,

2 lead(bdate,1) over(order by bdate)

MCA Sem I	ADBMS	C22091
as"next" 3 from ssb1;		

EMP NO BDATE next

107 31-DEC-81 12-JAN-82

101 12-JAN-82 14-JUN-82

105 14-JUN-82 13-FEB-83

102 13-FEB-83 14-MAR-84

103 14-MAR-84 15-APR-87

104 15-APR-87 25-JUL-88

108 25-JUL-88 15-AUG-88

106 15-AUG-88

8 rows selected.

SQL> select emp_no,bdate,

2 lead(bdate,1) over(order by bdate)

as"next" 3 from ssb1 where dep_no=10;

EMP_NO BDATE next

107 31-DEC-81 12-JAN-82

101 12-JAN-82 13-FEB-83

102 13-FEB-83 14-MAR-84

103 14-MAR-84

SQL> select dep_no,salary,

2 max(salary)keep(DENSE_RANK FIRST ORDER

BY comm) 3 over(PARTITION BY dep_no)"max"

4 from ssb1;

DEP_NO SALARY max

8 rows selected.

SQL> select * from ssb1;

EMP_NO DEP_NO BDATE SALARY COMM JOB

101	10 12-JAN-82	33000	1000 clerk
102	10 13-FEB-83	33000	2000 clerk
103	10 14-MAR- 84	44000	200 clerk
104	20 15-APR- 87	55000	3000 manager
105	20 14-JUN-82	44000	4500 manager
106	20 15-AUG- 88	44000	500 manager
107	10 31-DEC- 81	58000	8000 manager
108	20 25-JUL-88	49000	700 clerk

8 rows selected.

SQL> select dep_no,salary,

```
2 max(salary)keep(DENSE_RANK FIRST ORDER
BY salary) 3 over(PARTITION BY dep_no)"max"
4 from ssb1;
```

DEP_NO SALARY max

8 rows selected.

SQL> select dep_no,salary,

2 max(salary)keep(DENSE_RANK FIRST ORDER BY salary desc) 3 over(PARTITION BY dep_no)"max" 4 from ssb1;

DEP_NO SALARY max

10 5800 58000 0 10 4400 58000 0 10 3300 58000 10 3300 58000 0 20 4400 55000 0

8 rows selected.

SQL> select dep_no,salary,

2 max(salary)keep(DENSE_RANK LAST ORDER

BY salary) 3 over(PARTITION BY dep_no)"max"

4 from ssb1;

DEP_NO SALARY max

10	5800 0	58000
10	4400 0	58000
10	3300 0	58000
10	3300 0	58000
20	4400 0	55000
20	4400 0	55000
20	4900 0	55000
20	5500 0	55000

8 rows selected.

SQL> select dep_no,salary,

2 max(salary)keep(DENSE_RANK LAST ORDER BY

salary desc) 3 over(PARTITION BY dep_no)"max"

34 | P a g

MCA Sem I	ADBMS	C22091
4 from ssb1;		
35 P a g		

DEP_NO SALARY max

10	5800 0	33000
10	4400 0	33000
10	3300 0	33000
10	3300 0	33000
20	4400 0	44000
20	4400 0	44000
20	4900 0	44000
20	5500 0	44000

8 rows selected.

Create table

ssb1 (emp_no

integer, dep_no

integer, bdate

date, salary

integer, comm

integer, job

varchar2(10));

insert into ssb1

values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&jo

b'); Enter value for emp_no: 101

Enter value for dep_no: 10

Enter value for bdate: 12-jan-

82 Enter value for salary:

22000 Enter value for comm:

1000

```
Enter value for job: clerk
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(101,10,'12-jan-82',22000,1000,'clerk')
insert into ssb1
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&jo
b'); Enter value for emp_no: 102
Enter value for dep_no: 10
Enter value for bdate: 13-feb-
83 Enter value for salary:
33000 Enter value for comm:
2000 Enter value for job:
clerk
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(102,10,'13-feb-83',33000,2000,'clerk')
1 row created.
insert into ssb1
2 2 values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 103
Enter value for dep_no: 10
Enter value for bdate: 14-mar-
84 Enter value for salary:
44000 Enter value for comm:
200
Enter value for job: clerk
old 2: 2 values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: 2 values(103,10,'14-mar-84',44000,200,'clerk')
2 values(103,10,'14-mar-84',44000,200,'clerk')
```

```
ERROR at line 2:
ORA-00926: missing VALUES keyword
SQL> insert into ssb1
2
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 103
Enter value for dep_no: 10
Enter value for bdate: 14-mar-
84 Enter value for salary:
44000 Enter value for comm:
200
Enter value for job: clerk
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(103,10,'14-mar-84',44000,200,'clerk')
1 row created.
SQL> insert into ssb1
2
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 104
Enter value for dep_no: 20
Enter value for bdate: 15-apr-
87 Enter value for salary:
55000 Enter value for comm:
3000 Enter value for job:
manager
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
```

new 2: values(104,20,'15-apr-87',55000,3000,'manager')

39 | Pag

MCA Sem I	ADBMS	C22091
1 row created.		
40 P a g		
- 1 3		

```
SQL> insert into ssb1
2
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 105
Enter value for dep_no: 20
Enter value for bdate: 14-jun-
82 Enter value for salary:
38000 Enter value for comm:
4500 Enter value for job:
manager
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(105,20,'14-jun-82',38000,4500,'manager')
1 row created.
SQL> insert into ssb1
2
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 106
Enter value for dep_no: 20
Enter value for bdate: 15-
aug-88 Enter value for salary:
44000 Enter value for comm:
500 Enter value for job:
manager
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(106,20,'15-aug-88',44000,500,'manager')
1 row created.
```

SQL> insert into ssb1

2 values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');

```
Enter value for emp_no: 107
Enter value for dep_no: 10
Enter value for bdate: 31-
dec-81 Enter value for salary:
58000 Enter value for comm:
8000 Enter value for job:
manager
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(107,10,'31-dec-81',58000,8000,'manager')
1 row created.
SQL> insert into ssb1
2
values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job');
Enter value for emp_no: 108
Enter value for dep_no: 20
Enter value for bdate: 25-jul-
88 Enter value for salary:
49000 Enter value for
comm: 700 Enter value for
job: clerk
old 2: values(&emp_no,&dep_no,'&bdate',&salary,&comm,'&job')
new 2: values(108,20,'25-jul-88',49000,700,'clerk')
1 row created.
SQL> select * from ssb1;
  EMP_NO DEP_NO BDATE SALARY COMM JOB
```

101 10 12-JAN-82 22000 1000 clerk

```
102
                          2000 clerk
      10 13-FEB-83 33000
103
      10 14-MAR-
                 44000
                            200 clerk
      84
104
      20 15-APR- 55000 3000 manager
      87
105
      20 14-JUN-82 38000 4500 manager
106
      20 15-AUG- 44000
                          500 manager
      88
      10 31-DEC- 58000 8000 manager
107
108
      20 25-JUL-88 49000
                           700 clerk
```

8 rows selected.

SQL> SELECT

dep_no,job,count(*),sum(salary) 2 from
ssb1

3 group by rollup(dep_no,job);

10 clerk 3 99000

10 manager 1 58000

10 4 157000

20 clerk 1 49000

20 manager 3 137000

20 4 186000

8 343000

7 rows selected.

SQL> select

dep_no,job,sum(salary) 2 from

3 where dep_no in(10,20)

```
4 group by dep_no, rollup(job);
```

DEP_NO JOB SUM(SALARY)

-

10 clerk

9900

0

10 manager 58000

10 157000

20 clerk 49000

20 manager 137000

20 186000

6 rows selected.

SQL> SELECT

dep_no,job,count(*),sum(salary) 2 from

ssb1

3 group by job,rollup(dep_no);

10 clerk 3 99000

20 clerk 1 49000

clerk 4 148000

10 manager 1 58000

20 manager 3

13700

0

manager 4 195000

6 rows selected.

```
2 from ssb1
```

3 group by dep_no, rollup(job);

10 clerk 3 99000

10 manager 1 58000

10 4 157000

20 clerk 1 49000

20 manager 3 137000

20 4 186000

6 rows selected.

SQL> SELECT

dep_no,job,count(*),sum(salary) 2 from
ssb1

3 group by cube(dep_no,job);

8 343000

clerk 4 148000

manager 4 195000

10 4 157000

10 clerk 3 99000

10 manager 1 58000

20 4 186000

20 clerk 1 49000

20 manager 3 137000

9 rows selected.

SQL> select emp_no,dep_no,salary,comm,

2 rank() over(partition by dep_no order by salary)as Rank from ssb1;

EMP_NO DEP_NO SALARY COMM RANK

8 rows selected.

SQL> update ssb1

2 set salary=33000

3 where emp_no=101;

1 row updated.

SQL> update ssb1

2 set salary=44000

3 where emp_no=105;

| Pag

1 row updated.

SQL> select emp_no,dep_no,salary,comm,

2 rank() over(partition by dep_no order by salary)as Rank from ssb1;

EMP_N	NO DE	P_NO S	SALARY	COMM	RANK
101	10	3300 0	1000	1	
102	10	3300 0	2000	1	
103	10	4400 0	200	3	
107	10	5800 0	8000	4	
105	20	4400 0	4500	1	
106	20	4400 0	500	1	
108	20	4900 0	700	3	
104	20	5500	3000	4	

8 rows selected.

SQL> select emp_no,dep_no,salary,comm,

0

2 dense_rank() over(partition by dep_no order by salary)as Rank from ssb1;

	EMP_N	O DE	:P_NO S	ALARY	СОММ	RANK
-						
	101	10	3300 0	100 0	1	
	102	10	3300 0	200 0	1	
	103	10	4400 0	200	2	
	107	10	5800	800	3	

0 0 105 20 4400 450 1 0 0 106 20 4400 500 1

8 rows selected.

SQL> select emp_no,bdate,
2 lead(bdate,1) over(order by bdate)
as"next" 3 from ssb1;

EMP_NO BDATE next

107 31-DEC-81 12-JAN-82

101 12-JAN-82 14-JUN-82

105 14-JUN-82 13-FEB-83

102 13-FEB-83 14-MAR-84

103 14-MAR-84 15-APR-87

104 15-APR-87 25-JUL-88

108 25-JUL-88 15-AUG-88

106 15-AUG-88

8 rows selected.

SQL> select emp_no,bdate,
2 lead(bdate,1) over(order by bdate)

as"next" 3 from ssb1 where dep_no=10;

EMP_NO BDATE next

107 31-DEC-81 12-JAN-82

101 12-JAN-82 13-FEB-83

102 13-FEB-83 14-MAR-84

103 14-MAR-84

SQL> select dep_no,salary,

2 max(salary)keep(DENSE_RANK FIRST ORDER

BY comm) 3 over(PARTITION BY dep_no)"max"

4 from ssb1;

DEP_NO SALARY max

8 rows selected.

20

SQL> select * from ssb1;

0

EMP_NO DEP_NO BDATE SALARY COMM JOB

101 10 12-JAN-82 33000 1000 clerk 103 10 14-MAR- 44000 200 clerk 84

```
104 20 15-APR-87 55000 3000 manager
105 20 14-JUN-82 44000 4500 manager
106 20 15-AUG-88 44000 500 manager
107 10 31-DEC-81 58000 8000 manager
108 20 25-JUL-88 49000 700 clerk
```

8 rows selected.

SQL> select dep_no,salary,

2 max(salary)keep(DENSE_RANK FIRST ORDER

BY salary) 3 over(PARTITION BY dep_no)"max"

4 from ssb1;

DEP_NO SALARY max

8 rows selected.

SQL> select dep_no,salary,

0

2 max(salary)keep(DENSE_RANK FIRST ORDER BY

4 from ssb1;

```
DEP_NO SALARY max
```

8 rows selected.

SQL> select dep_no,salary,

2 max(salary)keep(DENSE_RANK LAST ORDER

BY salary) 3 over(PARTITION BY dep_no)"max"

4 from ssb1;

DEP_NO SALARY max

10 5800 58000 0 10 4400 58000 0 10 3300 58000 0 10 3300 58000 20 4400 55000 0 20 4400 55000 0 20 4900 55000 0 20 55000 55000

8 rows selected.

SQL> select dep_no,salary,

2 max(salary)keep(DENSE_RANK LAST ORDER BY salary desc) 3 over(PARTITION BY dep_no)"max"

4 from ssb1;

DEP_NO SALARY max

8 rows selected.

3. Implementation of ORDBMS concepts like ADT(Abstract Data Types), Reference

Inheritance

Referencing and Dereference

```
SQL> create or replace type ANIMAL_TY as
object 2 (Breed varchar2(25),
3 Name varchar2(25),
4 BirthDate DATE);
5 /
Type created.
SQL> create table ANIMAL of ANIMAL_TY;
Table created.
SQL> insert into ANIMAL VALUES(
2 ANIMAL_TY('MULE','FRANCES','01-APR-02'));
1 row created.
SQL> insert into ANIMAL VALUES(
2 ANIMAL_TY('DOG','BENJI','03-APR-01'));
1 row created.
```

SQL> select REF(A) from	om ANIMAL A;
REF(A)	
460000	
000028020994132603A C66010003	ADF248ECA8DB91CBD1CA91D4E3210848E0AE41ABA97502CEB5282
460001	
SQL> create table KEE	PER
2 (KeeperName varch	ar2(25),
3 AnimalKept REF AN	IIMAL_TY);
Table created.	
SQL> describe KEEPE	R;
Name	Null? Type
KEEPERNAME	VARCHAR2(25)
ANIMALKEPT	REF OF ANIMAL_TY
SQL> insert into	
KEEPER 2 select	
'CATHERINE',	
3 REF(A)	
4 from ANIMAL A	
5 where Name='BENJ	ן';
62 P a g	

1 row created.

SQL> select * from KEEPER;

KEEPERNAME

ANIMALKEPT

CATHERINE

000022020894132603ADF248ECA8DB91CBD1CA91D4E3210848E0AE41ABA97502

CEB5282C66

SQL> set describe

depth 2; SQL> describe

KEEPER;

Name Null? Type

KEEPERNAME VARCHAR2(25)

ANIMALKEPT REF OF

ANIMAL_TY BREED VARCHAR2(25)

NAME VARCHAR2(25)

BIRTHDATE DATE

SQL> select

KeeperName, DEREF (K. Animal Kept) 2

from KEEPER K;

KEEPERNAME

63 | P a g

MCA Sem I	ADBMS	C22091
64 P a g		

MCA Sem I	ADBMS	C22091
DEREF(K.ANIMALKEPT)(BI	REED, NAME, BIRTHDATE)	
CATHERINE		

ANIMAL_TY('DOG', 'BENJI', '03-APR-01')

Inheritance

```
SQL> create or replace type PERSON_TY
as object 2 (ssn number,
3 Name varchar2(25),
4 gender char(1),
5 static function show_super(person_obj in person_ty) return
varchar2, 6 member function show return varchar2)
7 commit
8 /
Type created.
SQL> commit;
Commit complete.
SQL> create or replace type TEACHER_TY UNDER
PERSON_TY 2 (d_of_joining DATE,
3 salary number(7,2),
4 courses_taught varchar2(50),
5 OVERRIDING member function show return
varchar2); 6 /
Type created.
SQL> create or replace type STUDENT_TY UNDER
PERSON_TY 2 (grade char(1),
3 yr_of_comp varchar2(20),
```

```
4 courses_taken varchar2(50),
5 OVERRIDING member function show return
varchar2); 6 /
Type created.
SQL> create type body PERSON_TY as
2 -- static function that can be called by subtypes
3 static function show_super(person_obj in person_ty) return
varchar2 is 4 begin
5 return
'SSN:'||TO_CHAR(person_obj.ssn)||',Name:'||person_obj.Name||',Gender:'||person_obj.gen
der;
6 end;
7 -- function that can be overriden by
subtypes 8 member function show return
varchar2 is
9 begin
10 return person_ty.show_super(SELF);
11 end;
12 end;
13 /
Type body created.
SQL> create type body STUDENT_TY as
2 OVERRIDING member function show return
varchar2 is 3 begin
4 return person_ty.show_super(SELF)||'--
Grade:'||grade||',Yr_Of_Comp:'||yr_of_comp||',Courses Taken:'||courses_taken;
5 end;
6 end:
```

7 /

Type body created.

SQL> create or replace type body TEACHER_TY as

2 OVERRIDING member function show return

varchar2 is 3 begin

4 return person_ty.show_super(SELF)||'-Date_of_Joining:'||d_of_joining||',Salary:'||TO_CHAR(salary)||

5 ',Courses Taught:'||courses_taught;

6 end;

7 end;

8 /

Type body created.

Create an Object Table

SQL> create table person_obj_table of PERSON_TY;

Table created.

Insert Data into Object Table

SQL> insert into person_obj_table values(PERSON_TY(1,'Ajay','M'));

1 row created.

SQL> insert into person_obj_table values(PERSON_TY(2,'Rushi','M'));

1 row created.

Inserting into TEACHER TY obj

SQL> insert into person_obj_table values(TEACHER_TY(1,'Aditya','M','20 JAN 2022',20000,'CG,DS'));

1 row created.

Selecting Data from Object Table

SQL> select p.show() from person_obj_table p;

P.SHOW()

SSN:1,Name:Ajay,Gender:

M

SSN:2,Name:Rushi,Gende

r:M

SSN:1,Name:Aditya,Gender:M--Date_of_Joining: 20-JAN-22,Salary:20000,Courses Taught

:CG,DS

5. Implementation of ETL transformation with Pentaho Open SQL Command prompt

Enter user-name:

Ajay Enter

password:

Connected to:

Oracle Database 11g Enterprise Edition Release 11.2.0.1.0 - Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

Open spoon from F drive

Double click to spoon:

A window will popup

Click on cancel:

Click Close:

For Creating New Transformation:

Copy data from Source (Table/Excel/ Oracle) and store it to Target

Step 1:

Create table in SQL Plus Command Prompt

```
SQL> create table emp26
2 (
3 emp_no numeric(5),
4 fname varchar2(10),
5 lname varchar2(10),
6 salary numeric(5),
7 comm numeric(5)
8 );
Table created.
```

Insert Values Into the tables:

```
SQL> insert into emp26 values(01, 'Ajay','Ash',50000,500);

1 row created.

SQL> insert into emp26 values(02, 'Rushi','Zore',55000,800);

1 row created.

SQL> insert into emp26 values(03, 'Aditya','Narkar',60000,1000);

1 row created.

SQL> insert into emp26 values(04, 'Omkar','Jadhav',65000,400);

1 row created.

SQL> insert into emp26 values(05, 'Ashish','Lad',70000,600);

1 row created.
```

Show Table Values And Commit:

```
SQL> Select * from emp26;
   EMP NO FNAME
                     LNAME
                                                  COMM
                                     SALARY
        1 Ajay
                     Ash
                                     50000
                                                   500
        2 Rushi
                     Zore
                                      55000
                                                   800
        3 Aditya
                   Narkar
                                     60000
                                                  1000
        4 Omkar
                     Jadhav
                                     65000
                                                   400
                                      70000
        5 Ashish
                                                   600
                     Lad
SQL> commit;
Commit complete.
```

Step 2:

Open Pentaho Then Select table input and drag:

Double click on table input:

This message will come which show there is no error till now Select the table which you had made in SQL command prompt

Step 3:

Select on table output and drag It:

Double Click On Table Output:

Please check Truncate table and Specify database fields Go On Database Field And Click on Get fields:

Step 4:

Execute The Command:

Click On Debug:

Click On Quick Launch:

Display Of Output Table emp26OP:

Rows of step: Table output (5 rows)

	<u> </u>					
# ^	EMP_NO	FNAME	LNAME	SALARY	COMM	
1	5	Ashish	Lad	70000	600	
2	4	Omkar	Jadhav	65000	400	
3	3	Aditya	Narkar	60000	1000	
4	2	Rushi	Zore	55000	800	
5	1	Ajay	Ash	50000	500	

Step: 5
Display Of Output Table emp26OP In SQL Plus:

```
SQL> Select * from emp260P;
no rows selected
SQL> Select * from emp260P;
    EMP_NO FNAME
                      LNAME
                                     SALARY
                                                  COMM
         1 Ajay
                      Ash
                                      50000
                                                   500
         2 Rushi
                                      55000
                                                   800
                      Zore
        3 Aditya
                      Narkar
                                      60000
                                                  1000
        4 Omkar
                      Jadhav
                                                   400
                                      65000
         5 Ashish
                      Lad
                                      70000
                                                   600
```

Adding Sequence:

SQL> select	SQL> select * from empaddseq26;										
EMP_NO	FNAME	LNAME	SALARY	COMM	VALUENAME						
5	Ashish	Lad	70000	600	1						
4	Omkar	Jadhav	65000	400	2						
3	Aditya	Narkar	60000	1000	3						
	Rushí	Zore	55000	800	4						
1	Ajay	Ash	50000	500	5						
	3 3										
SQL>											

Adding Calculator:

SQL> Select * from emp26;

EMP_NO	FNAME	LNAME	SALARY	COMM	TOTAL
1	Ajay	Ash	50000	500	50500
2	Rushi	Zore	55000	800	55800
3	Aditya	Narkar	60000	1000	61000
4	Omkar	Jadhav	65000	400	65400
5	Ashish	Lad	70000	600	70600
SQL>					

Concatenation of two fields:

SQL> sele	SQL> select * from empconcate26;										
EMP_NO) FNAME	LNAME	SALARY	COMM	FULL_NAME						
2	l Ajay	Ash	50000	500	Ajay	-Ash					
	2 Rushi	Zore	55000	800	Rushi	-Zore					
	3 Aditya	Narkar	60000	1000	Aditya	-Narkar					
	4 Omkar	Jadhav	65000	400	Omkar	-Jadhav					
	5 Ashish	Lad	70000	600	Ashish	-Lad					

Splitting of two fields:

For Splitting Any Field we have to take concate table:

SQL> Select * from split78;								
	EMP_NO	FNAME	LNAME	SALARY	COMM	F_NAME	L_NAME	
	1	 Ajay	 Ash	50000	500	 Ajay	 Ash	
	2	Rushi	Wani	55000	800	Rushi	Wani	
	3	Aditya	Narkar	60000	1000	Aditya	Narkar	
	4	Omkar	Jadha v	65000	400	Omkar	Jadha v	
	5	Ashish	Lad	70000	600	Ashish	Lad	

Number Range:

SQL> Sel	SQL> Select * from empnorange26;						
EMP_NO	FNAME	LNAME	SALARY	COMM	RANGE		
1	Ajay	Ash	50000	500	Noob		
2	Rushi	Wani	55000	800	Noob		
3	Aditya	Narkar	60000	1000	Standard		
4	Omkar	Jadhav	65000	400	Pro		
5	Ashish	Lad	70000	600	Unknow		
					n		

String Operations:

```
SQL> select * from empupplo;
    EMP_NO FNAME
                       LNAME
                                       SALARY
                                                     COMM
         1 ajay
                       ASH
                                        50000
                                                       500
         2 rushi
                       ZORE
                                        55000
                                                       800
         3 aditya
                                                      1000
                       NARKAR
                                        60000
         4 omkar
                       JADHAV
                                                      400
                                        65000
         5 ashish
                       LAD
                                        70000
                                                      600
```

Sorting data:

SQL> Select * from empsort26;								
EMP_NO FNAME	LNAME	SALARY	COMM					
5 Ashish	Lad	70000	600					
4 Omkar	Jadhav	65000	400					
3 Aditya	Narkar	60000	1000					
2 Rushi	Zore	55000	800					
1 Ajay	Ash	50000	500					

6. Introduction to R programming and Data acquisition
Install packages , Loading packages
Data types, checking type of variable, printing variable and objects
(Vector, Matrix, List, Factor, Data frame, Table) cbind-ing and rbind-ing

Reading and Writing data. setwd(), getwd(), data(), rm(),

Attaching and Detaching data.

Reading data from the consol.

Loading data from different data sources.(CSV, Excel).

Source code:

```
> setwd("C:/Users/admin/Desktop/R-prog")
> getwd()
[1] "C:/Users/admin/Desktop/R-prog"
> dir()
character(
0)
> x < -2
> X
[1] 2
> print(x)
[1] 2
> is.character(x)
[1] FALSE
> is.integer(x)
[1] FALSE
> is.numeric(x)
[1] TRUE
```

```
> y<-"5.25"
> as.integer(y)
[1] 5
> x < -c(11.3,27.5,33.8)
> y<-vector("logical", length=10)
> length(x)
[1] 3
> length(y)
[1] 10
> y < -c(4,5,6,10)
> 5*x
[1] 56.5 137.5 169.0
> x*y
[1] 45.2 137.5 202.8 113.0
a < -c(2,4,6)
> b < -c(1,3,5)
> a*b
[1] 2 12 30
> a^b
[1] 2 64 7776
> m < -matrix(c(11,12,13,55,60,65,66,72,78),nrow=3,ncol=3)
> dim(m)
[1] 3 3
> m
   [,1][,2][,3]
[1,] 11 55 66
[2,] 12 60 72
[3,] 13 65 78
> attributes(m)
```

90 | P a g

```
$dim
[1] 3 3
> m < -matrix(c(11,12,13,55,60,65,66,72,78),nrow=3,ncol=3,byrow = TRUE)
> x < -c(1,2,3)
> y < -c(11,12,13)
> cbind(x,y)
   ху
[1,] 1 11
[2,] 2 12
[3,] 3 13
> rbind(x,y)
[,1] [,2] [,3]
x 1 2 3
y 11 12 13
> n < -matrix(c(4,5,6,14,15,16,24,25,26),nrow=3,ncol=3)
> q<-m+n
> q
   [,1][,2][,3]
[1,] 15 26 37
[2,] 60 75 90
[3,] 72 88 104
> o < -matrix(c(4,5,6,14,15,16),nrow=3,ncol=2)
> 0
   [,1][,2]
[1,] 4 14
[2,] 5 15
[3,] 6 16
> r<-m %*% o
```

```
> r
   [,1][,2]
[1,] 182 542
[2,] 910 2710
[3,] 1092 3252
> mdash<-t(m)
> mdash
   [,1] [,2] [,3]
[1,] 11 55 66
[2,] 12 60 72
[3,] 13 65 78
> s<-matrix(c(4,5,6,14,15,16,24,25,26), nrow=3,ncol=3,byrow=TRUE)
> s
  [,1] [,2] [,3]
[1,] 4 5 6
[2,] 14 15 16
[3,] 24 25 26
> dt<-det(s)
> dt
[1] 1.110223e-14
> x<-list(1,"p",TRUE,3+4i)
> X
[[1]]
[1] 1
[[2]]
[1] "p"
[[3]]
```

92 | Pag

```
[1] TRUE
[[4]]
[1] 3+4i
> student_names<-c("Vinit","Ajay","Aditya")</pre>
> position<-c("First","Second","Third")</pre>
student_id<-c(1,2,3)
> data<-data.frame(student_id,student_names,position)</pre>
> data
 student_id student_names position
1
        1 Vinit
                         First
2
                Ajay Second
        2
3
        3
              Aditya
                       Third
> data$student_id
[1] 1 2 3
> data$student_names
                           "Aditya"
[1] "Vinit" "Ajay"
> nrow(data)
[1] 3
> ncol(data)
[1] 3
> names(data)
[1] "student_id" "student_names" "position"
> smoke <- matrix(c(51,43,22,92,28,21,68,22,9),ncol=3,byrow=TRUE)
> colnames(smoke) <- c("High","Low","Middle")</pre>
> rownames(smoke) <- c("current","former","never")</pre>
> smoke <- as.table(smoke)
> smoke
```

```
High Low Middle
current 51 43
                  22
former
         92 28
                  21
                   9
        68 22
never
> install.packages("XLConnect")
 package 'rJava' successfully unpacked and MD5 sums checked
 package 'XLConnect' successfully unpacked and MD5 sums checked
 The downloaded binary packages are in
         C:\Users\admin\AppData\Local\Temp\Rtmp2PJ2uC\downloaded_packages
 > library(XLConnect)
 XLConnect 1.0.5 by Mirai Solutions GmbH [aut],
   Martin Studer [cre].
   The Apache Software Foundation [ctb, cph] (Apache POI),
   Graph Builder [ctb, cph] (Curvesapi Java library),
   Brett Woolridge [ctb, cph] (SparseBitSet Java library)
 https://mirai-solutions.ch
 https://github.com/miraisolutions/xlconnect
> install.packages("readxl")
The downloaded binary packages are in
        C:\Users\admin\AppData\Local\Temp\Rtmp2PJ2uC\downloaded_packages
> library(readxl)
> install.packages("writexl")
WARNING: Rtools is required to build R packages but is not currently installed.
he appropriate version of Rtools before proceeding:
https://cran.rstudio.com/bin/windows/Rtools/
Installing package into 'C:/Users/admin/Documents/R/win-library/4.1'
(as 'lib' is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.1/writexl_1.4.0.zip'
Content type 'application/zip' length 351347 bytes (343 KB)
downloaded 343 KB
package 'writexl' successfully unpacked and MD5 sums checked
> library(writexl)
```


> dataT <- read.table("mfile.csv", sep =",", header = T)

>dataT

Name Roll Div

Percentile 1 Vinit 134 B

85

- 2 Ajay 5 A 72
- 3 Aditya 89 B 83
- 4 Omkar 44 A 62
- 5 Aadarsh 128 B 89
- > dim(dataT
-)[1]54
- >head(dataT, 2)

Name Roll Div

Percentile 1 Vinit 134 B

85

- 2 Ajay 5 A 72
- >tail(dataT, 2)

Name Roll Div Percentile

4 Omkar 44 A 62

95 | Pag

5 Aadarsh 128 B 89

> dataX <- XLConnect:: readWorksheetFromFile("mfile.xlsx",sheet=1)

>dataX

Name Roll Div

Percentile 1 Vinit 134 B

85

- 2 Ajay 5 A 72
- 3 Aditya 89 B 83
- 4 Omkar 44 A 62
- 5 Aadarsh 128 B 89

7.Implementation of Data preprocessing techniques like, Naming and Renaming variables, adding a new variable. Dealing with missing data. Dealing with categorical data. Data reduction using subsetting

Source code:

setwd("C:/Users/admin/Desktop/R-prog")

> install.packages("dplyr")

Error: unexpected input in "install.packages(""

> data2 = read.table(file="naming_var_table.csv", sep = ",")

> data2

V1 V2 V3 V4

1 NA v1 v2 v3

2 1 101 Hrushi 50000

3 2 102 Ajay 55000

4 3 103 Aditya 45000

5 4 104 Omkar 60000

6 5 105 Aadarsh 52000

> data2 = read.csv(file="naming_var_table.csv", col.names=c("Sno",
"NAME","SALARY"))

Warning message:

In read.table(file = file, header = header, sep = sep, quote = quote, :

header and 'col.names' are of different lengths

1	Α	В	С	D	E	
		v1	v2	v3		
	1	101	Hrushi	50000		
	2	102	Ajay	55000		
	3	103	Aditya	45000		
	4	104	Omkar	60000		
	5	105	Aadarsh	52000		

```
> data2 = read.csv(file="naming_var_table.csv", col.names=c("Rno", "Sno",
"NAME", "SALARY"))
> data2
 Rno Sno
          NAME SALARY
1 1 101 Hrushi 50000
2 2 102 Ajay 55000
3 3 103 Aditya 45000
4 4 104 Omkar 60000
5 5 105 Aadarsh 52000
> NA + 4
[1] NA
> V <- c(1,2,NA,3)
> median(v)
Error in median(v): object 'v' not found
> median(V)
[1] NA
> median(V, na.rm = T)
[1] 2
> is.na(V)
[1] FALSE FALSE TRUE FALSE
> naVals <- is.na(V)
> V[!naVals]
[1] 1 2 3
> V[complete.cases(V)]
[1] 1 2 3
> dataC <- read.csv(file ="naming_var_table.csv")</pre>
> > dataC
Error: unexpected '>' in ">"
> dataC <- read.csv(file ="naming_var_table.csv")</pre>
```

>

> dataC

X v1 v2 v3

1 1 101 Hrushi 50000

2 2 102 Ajay 55000

3 3 103 Aditya 45000

4 4 104 Omkar 60000

5 5 105 Aadarsh 52000

> dataCompleteCases <- dataC[complete.cases(dataC),]</pre>

> dataCompleteCases

X v1 v2 v3

1 1 101 Hrushi 50000

2 2 102 Ajay 55000

3 3 103 Aditya 45000

4 4 104 Omkar 60000

5 5 105 Aadarsh 52000

IMPUTATION:

> install.packages("Hmisc")

```
package 'htmltools' successfully unpacked and MD5 sums checked
package 'base64enc' successfully unpacked and MD5 sums checked
package 'Hmisc' successfully unpacked and MD5 sums checked

The downloaded binary packages are in

C:\Users\admin\AppData\Local\Temp\RtmpOqs57t\downloaded_packages
```

> library(Hmisc)

Loading required package: lattice

Loading required package: survival

Loading required package: Formula

Loading required package: ggplot2

```
Attaching package: 'Hmisc'
The following objects are masked from 'package:base':
  format.pval, units
> x <- impute(x, fun = mean)
> x
     2 3 4 5
                     6
                        7
1.0 2.0 3.0 2.8* 4.0 4.0 2.8*
> x <- impute(x, fun = median)
> x
     2 3 4 5
  1
                    6
                        7
1.0 2.0 3.0 2.8* 4.0 4.0 2.8*
> x = c(1,2,3,NA,4,4,NA)
> gender_vector <- c("Male", "Female", "Female", "Male", "Male")</pre>
> class(gender_vector)
[1] "character"
> factor_gender_vector <-factor(gender_vector)</pre>
```

> salary <- c(103200, 106200, 150200, 10606, 10390, 14070, 10220)
> gender <- c("male", "male", "transgender",
+ "female", "male", "female", "transgender")

> employee<- data.frame(age, salary, gender)

> class(factor_gender_vector)

> age <- c(40, 49, 48, 40, 67, 52, 53)

[1] "factor"

```
> employee
 age salary
             gender
1 40 103200
                 male
2 49 106200
                 male
3 48 150200 transgender
4 40 10606
               female
5 67 10390
                male
6 52 14070
               female
7 53 10220 transgender
> wfact = cut(employee$age, 3, labels=c('Young', 'Medium', 'Aged'))
> table(wfact)
wfact
Young Medium Aged
   4
        2
             1
> wfact = cut(employee$salary, 2, labels=c('Below Lakh', 'Above Lakh'))
> table(wfact)
wfact
Below Lakh Above Lakh
             3
     4
```

8. <u>Implementation and analysis of Classification algorithms like</u> Naive Bayesian, K-Nearest Neighbor, ID3, C4.5

Decision Tree

> install.packages("party")

```
package 'party' successfully unpacked and MD5 sums checked
 The downloaded binary packages are in
          C:\Users\admin\AppData\Local\Temp\RtmpOqs57t\downloaded
 _packages
 > library(party)
 Loading required package: grid
 Loading required package: mvtnorm
 Loading required package: modeltools
 Loading required package: stats4
 Loading required package: strucchange
 Loading required package: zoo
 Attaching package: 'zoo'
 The following objects are masked from 'package:base':
      as.Date, as.Date.numeric
Loading required package: sandwich
> print(head(readingSkills))
nativeSpeaker age shoeSize
score 1
          yes 5 24.83189
32.29385
2
     yes 6 25.95238 36.63105
3
      no 11 30.42170 49.60593
4
     yes 7 28.66450 40.28456
5
     yes 11 31.88207 55.46085
6
     yes 10 30.07843 52.83124
> input.dat <- readingSkills[c(1:105),
+
+ ]
>png(file = "decision_tree.png")
> output.tree <- ctree(
+ nativeSpeaker ~ age + shoeSize + score,
+ data = input.dat)
```

```
> plot(output.tree)
> dev.off(
) null
device
```

Output:

Classificati

on: Naive

Bayes

```
>install.packages("e1071")
>install.packages("klaR")
>install.packages("caret")
> library(e1071)
Attaching package: 'e1071'
The following object is masked from 'package:Hmisc':
    impute
> library("klaR")
Loading required package: MASS
> library("caret")
Attaching package: 'caret'
The following object is masked from 'package:survival':
    cluster
> library(ggplot2)
```

- > data(iris)
- > head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width

- 1 5.1 3.5 1.4 0.2
- 2 4.9 3.0 1.4 0.2
- 3 4.7 3.2 1.3 0.2
- 4 4.6 3.1 1.5 0.2
- 5 5.0 3.6 1.4 0.2
- 6 5.4 3.9 1.7 0.4

Specie

s 1

setosa

- 2 setosa
- 3 setosa
- 4 setosa
- 5 setosa
- 6 setosa
- > unique(iris\$Species)
- [1] setosa versicolor virginica

Levels: setosa versicolor

virginica

> pairs(iris[1:4], main="Iris Data (red=setosa,green=versicolor,blue=virginica)", pch=21, bg=c("red","green3","blue")[unclass(iris\$Species)])

>index = sample(nrow(iris), floor(nrow(iris) * 0.7)) #70/30 split.

> train = iris[index,] test = iris[-index,]

Error: unexpected symbol in "train = iris[index,] test"

>index = sample(nrow(iris), floor(nrow(iris) * 0.7))

> train = iris[index,]

>test = iris[-index,]

> xTrain = train[,-5]

>yTrain = train\$Species

> xTest = test[,-5]

>yTest = test\$Species

> model = train(xTrain,yTrain,'nb',trControl=trainControl(method='cv',number=10))

> model

Naive

Bayes

105 samples

```
4 predictor
3 classes: 'setosa', 'versicolor', 'virginica'
No pre-processing
Resampling: Cross-Validated (10 fold)
Summary of sample sizes: 95, 95, 94, 94, 93,
95, ... Resampling results across tuning
parameters:
usekernel Accuracy Kappa
FALSE 0.9500000
0.9244616
 TRUE 0.9409091 0.9105376
Tuning parameter 'fL' was
Tuning parameter 'adjust'
was held constant at a
value of 1 Accuracy was
used to select the optimal
model using the largest
value.
The final values used for the
model were fL = 0,
usekernel = FALSE and
adjust = 1.
> prop.table(table(predict(model$finalModel,xTest)$class,yT
     est)) yTest
       setosa versicolor
setosa 0.3111111
```

0.0000000

versicolor 0.0000000 0.4000000
virginica 0.0000000
0.0000000 yTest

virginica

setosa

0.000000

0

versicolor 0.0000000

virginica 0.2888889

K nearest Neighbour

```
> install.packages("class")
 WARNING: Rtools is required to build R packages but is not currently installed.
  the appropriate version of Rtools before proceeding:
 https://cran.rstudio.com/bin/windows/Rtools/
 Installing package into 'C:/Users/admin/Documents/R/win-library/4.1'
 (as 'lib' is unspecified)
 trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.1/class_7.3-20.zip'
 Content type 'application/zip' length 108279 bytes (105 KB)
 downloaded 105 KB
 package 'class' successfully unpacked and MD5 sums checked
 The downloaded binary packages are in
          C:\Users\admin\AppData\Local\Temp\RtmpOqs57t\downloaded_packages
> library(class)
> df <- data(iris)
> head(iris)
Sepal.Length Sepal.Width
1
     5.1
            3.5
2
     4.9
            3.0
3
     4.7
            3.2
     4.6
            3.1
4
5
     5.0
            3.6
     5.4
            3.9
6
                      Species
Petal.Length
1Petal: Midth 0.2 setos
     1.4
2
           0.2 setos
                  а
3
     1.3
            0.2 setos
                 а
     1.5
           0.2 setos
4
                  а
5
     1.4
            0.2 setos
                  а
6
     1.7
           0.4 setos
                 а
> ran <- sample(1:nrow(iris), 0.9 * nrow(iris))
> nor <-function(x) { (x -min(x))/(max(x)-min(x)) }
>
```

```
> iris_norm <- as.data.frame(lapply(iris[,c(1,2,3,4)], nor))
```

> summary(iris_norm)

Sepal.Length Sepal.Width

Min.: 0.0000 Min.: 0.0000

1st Qu.:0.2222 1st

Qu.:0.3333

Median: 0.4167 Median: 0.4167

Mean: 0.4287 Mean: 0.4406

3rd Qu.:0.5833 3rd

Qu.:0.5417 Max. :1.0000

Max. :1.0000

Petal.Length Petal.Width

Min.: 0.0000 Min.: 0.00000

1st Qu.:0.1017 1st

Qu.:0.08333

Median: 0.5678 Median: 0.50000

Mean: 0.4675 Mean: 0.45806

3rd Qu.:0.6949 3rd

Qu.:0.70833 Max. :1.0000

Max. :1.00000

> iris_train <- iris_norm[ran,]

> iris_test <- iris_norm[-ran,]

> iris_target_category <- iris[ran,5]

> iris_test_category <- iris[-ran,5]> library(class)

>pr <- knn(iris_train,iris_test,cl=iris_target_category,k=13)

> tab <- table(pr,iris_test_category)

>accuracy <- function(x){sum(diag(x)/(sum(rowSums(x)))) * 100}

> accuracy(ta

b) [1] 100

9. Implementation and analysis of Apriori Algorithm using Market Basket Analysis.

Source code:

```
> setwd("C:/Users/admin/Desktop/R-prog")
> install.packages("arules")
WARNING: Rtools is required to build R packages but is not currently ir
the appropriate version of Rtools before proceeding:
https://cran.rstudio.com/bin/windows/Rtools/
Installing package into 'C:/Users/admin/Documents/R/win-library/4.1'
(as 'lib' is unspecified)
trying URL 'https://cran.rstudio.com/bin/windows/contrib/4.1/arules_1.7
Content type 'application/zip' length 2665642 bytes (2.5 MB)
downloaded 2.5 MB
package 'arules' successfully unpacked and MD5 sums checked
The downloaded binary packages are in
        C:\Users\admin\AppData\Local\Temp\Rtmp2jmGpw\downloaded_package
> library(arules)
Loading required package: Matrix
Attaching package: 'arules'
The following objects are masked from 'package:base':
    abbreviate, write
>
```

Shopping basket.csv:

1	Α	В	С	D	Е	F	(
1	item1	item2	item3	item4	item5	item6	
2	yes	yes	yes	no	yes	no	
3	yes	yes	yes	no	no	no	
4	yes	no	no	yes	no	yes	
5	yes	no	yes	yes	no	no	
6	no	yes	yes	yes	no	no <u> </u>	
7							

> length(shopping)

[1] 6

> dim(shopping)

[1] 5 6

> rules<- apriori(shopping)

Apriori

Parameter specification:

confidence minval smax arem aval originalSupport maxtime support minlen maxlen target ext

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 0

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[14 item(s), 5 transaction(s)] done

[0.00s]. sorting and recoding items ... [14 item(s)] done

[0.00s]. creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 4 5 6 done

[0.00s]. creating S4 object ... done [0.00s].

Warning message:

Column(s) 1, 2, 3, 4, 5, 6 not logical or factor. Applying default discretization (see '? discretizeDF').

>inspect(rules)

Ihs rhs support confidence coverage lift

count [1] $\{\}$ => $\{\text{item1= Yes}\}\ 0.8\ 0.8$

1.0 1.000000 4

[2] {}	=> {item6=No} 0.8 0.8	1.0	1.000000 4
[3] {}	=> {item5=No} 0.8 0.8	1.0	1.000000 4
[4] {item5=Yes	<pre>></pre>	1.0	0.2 2.500000 1
[5] {item5=Yes	<pre>></pre>	1.0	0.2 2.500000 1
[6] {item5=Yes	` ,	1.0	0.2 2.500000 1
[7] {item5=Yes	=> {item1= Yes} 0.2	1.0	0.2 1.250000 1
[8] {item5=Yes	=> {item6=No} 0.2	1.0	0.2 1.250000 1
[9] {item3= No}	=> {item6= Yes} 0.2	1.0	0.2 5.000000 1
[10] {item6= Yes]	•	1.0	0.2 5.000000 1
[11] {item3= No}	=> {item2=No} 0.2	1.0	0.2 2.500000 1
[12] {item3= No}	=> {item4=Yes} 0.2	1.0	0.2 1.666667 1
[13] {item3= No}	=> {item1= Yes} 0.2	1.0	0.2 1.250000 1
[14] {item3= No}	=> {item5=No} 0.2	1.0	0.2 1.250000 1
[15] {item6= Yes]		1.0	0.2 2.500000 1
[16] {item6= Yes]		1.0	0.2 1.666667 1
[17] {item6= Yes]	,	1.0	0.2 1.250000 1
[18] {item6= Yes]		1.0	0.2 1.250000 1
[19] {item1= No}	=> {item2= Yes} 0.2	1.0	0.2 5.000000 1
[20] {item2= Yes]	•	1.0	0.2 5.000000 1
[21] {item1= No}	=> {item3=yes} 0.2	1.0	0.2 2.500000 1
[22] {item1= No}	=> {item4=Yes} 0.2	1.0	0.2 1.666667 1
[23] {item1= No}	=> {item6=No} 0.2	1.0	0.2 1.250000 1
[24] {item1=	=> {item5=No} 0.2	1.0	0.2 1.250000 1

115 | P a

MCA Sem I		ADBMS	C22091
No.	}		
[25]	{item2= Yes}	=> {item3=yes} 0.2 1.0 0.2 2.500000 1	
[26]	{item2= Yes}	=> {item4=Yes} 0.2 1.0 0.2 1.666667 1	
[27]	{item2= Yes}	=> {item6=No} 0.2 1.0 0.2 1.250000 1	
[28]	{item2= Yes}	=> {item5=No} 0.2 1.0 0.2 1.250000 1	

[29] {item2=Yes} => {item3=Yes} 0.41.0	0.4	2.500000 2
[30] {item3=Yes} => {item2=Yes} 0.4 1.0	0.4	2.500000 2
[31] {item2=Yes} => {item4=No} 0.4 1.0	0.4	2.500000 2
[32] {item4=No} => {item2=Yes} 0.4 1.0	0.4	2.500000 2
[33] {item2=Yes} => {item1= Yes} 0.41.0	0.4	1.250000 2
[34] {item2=Yes} => {item6=No} 0.4 1.0	0.4	1.250000 2
[35] {item3=Yes} => {item4=No} 0.4 1.0	0.4	2.500000 2
[36] {item4=No} => {item3=Yes} 0.41.0	0.4	2.500000 2
[37] {item3=Yes} => {item1= Yes} 0.41.0	0.4	1.250000 2
[38] {item3=Yes} => {item6=No} 0.4 1.0	0.4	1.250000 2
[39] {item4=No} => {item1= Yes} 0.41.0	0.4	1.250000 2
[40] {item4=No} => {item6=No} 0.4 1.0	0.4	1.250000 2
[41] {item2=No} => {item4=Yes} 0.4 1.0	0.4	1.666667 2
[42] {item2=No} => {item1= Yes} 0.41.0	0.4	1.250000 2
[43] {item2=No} => {item5=No} 0.4 1.0	0.4	1.250000 2
[44] {item3=yes} => {item4=Yes} 0.4 1.0	0.4	1.666667 2
[45] {item3=yes} => {item6=No} 0.4 1.0	0.4	1.250000 2
[46] {item3=yes} => {item5=No} 0.4 1.0	0.4	1.250000 2
[47] {item4=Yes} => {item5=No} 0.6 1.0	0.6	1.250000 3
[48] {item2=Yes,item5=Yes} => {item3=Yes} 0.2	1.0	0.2 2.500000 1
[49] {item3=Yes,item5=Yes} => {item2=Yes} 0.2	1.0	0.2 2.500000 1
[50] {item2=Yes,item5=Yes} => {item4=No} 0.2	1.0	0.2 2.500000 1
[51] {item4=No,item5=Yes}=> {item2=Yes} 0.2	1.0	0.2 2.500000 1
[52] {item2=Yes,item5=Yes} => {item1= Yes} 0.2	1.0	0.2 1.250000 1
[53] {item1= Yes,item5=Yes} => {item2=Yes} 0.2	1.0	0.2 2.500000 1
[54] {item2=Yes,item5=Yes} => {item6=No}	1.0	0.2 1.250000

0.2

[56]	{item3=Yes,item5=Y es}	=> {item4=No} 0.2	1.0	0.2	2.500000 1
[57]	{item4=No,item5=Ye s}	=> {item3=Yes} 0.2	1.0	0.2	2.500000 1
[58]	{item3=Yes,item5=Y es}	=> {item1= Yes} 0.2	1.0	0.2	1.250000 1
[59]	{item1= Yes,item5=Yes}	=> {item3=Yes} 0.2	1.0	0.2	2.500000 1
[60]	{item3=Yes,item5=Y es}	=> {item6=No} 0.2	1.0	0.2	1.250000 1
[61]	{item5=Yes,item6=N o}	=> {item3=Yes} 0.2	1.0	0.2	2.500000 1
[62]	{item4=No,item5=Ye s}	=> {item1= Yes} 0.2	1.0	0.2	1.250000 1
[63]	{item1= Yes,item5=Yes}	=> {item4=No} 0.2	1.0	0.2	2.500000 1
[64]	{item4=No,item5=Ye s}	=> {item6=No} 0.2	1.0	0.2	1.250000 1
[65]	{item5=Yes,item6=N o}	=> {item4=No} 0.2	1.0	0.2	2.500000 1
[66]	{item1= Yes,item5=Yes}	=> {item6=No} 0.2	1.0	0.2	1.250000 1
[67]	{item5=Yes,item6=N o}	=> {item1= Yes} 0.2	1.0	0.2	1.250000 1
[68]	{item3= No,item6= Yes}	=> {item2=No} 0.2	1.0	0.2	2.500000 1
[69]	{item2=No,item3= No}	=> {item6= Yes} 0.2	1.0	0.2	5.000000 1
[70]	{item2=No,item6= Yes}	=> {item3= No} 0.2	1.0	0.2	5.000000 1
[71]	{item3= No,item6= Yes}	=> {item4=Yes} 0.2	1.0	0.2	1.666667 1
[72]	{item3= No,item4=Yes}	=> {item6= Yes} 0.2	1.0	0.2	5.000000 1
[73]	{item4=Yes,item6= Yes}	=> {item3= No} 0.2	1.0	0.2	5.000000 1
[74]	{item3= No,item6= Yes}	=> {item1= Yes} 0.2	1.0	0.2	1.250000 1
[75]	{item1= Yes,item3= No}	=> {item6= Yes} 0.2	1.0	0.2	5.000000 1
[76]	{item1= Yes,item6= Yes}	=> {item3= No} 0.2	1.0	0.2	5.000000 1

[77]	{item3= No,item6= Yes}	=> {item5=No} 0.2	1.0	0.2	1.250000 1
[78]	{item3= No,item5=No}	=> {item6= Yes} 0.2	1.0	0.2	5.000000 1
[79]	{item5=No,item6= Yes}	=> {item3= No} 0.2	1.0	0.2	5.000000 1
[80]	{item2=No,item3= No}	=> {item4=Yes} 0.2	1.0	0.2	1.666667 1
[81]	{item3= No,item4=Yes}	=> {item2=No} 0.2	1.0	0.2	2.500000 1
[82]	{item2=No,item3= No}	=> {item1= Yes} 0.2	1.0	0.2	1.250000 1

[83]	{item1= Yes,item3= No}	=> {item2=No}	0.2	1.0	0.2	2.500000 1
[84]	{item2=No,item3= No}	=> {item5=No}	0.2	1.0	0.2	1.250000 1
[85]	{item3= No,item5=No}	=> {item2=No}	0.2	1.0	0.2	2.500000 1
[86]	{item3= No,item4=Yes}	=> {item1= Yes}	0.2	1.0	0.2	1.250000 1
[87]	{item1= Yes,item3= No}	=> {item4=Yes}	0.2	1.0	0.2	1.666667 1
[88]	{item3= No,item4=Yes}	=> {item5=No}	0.2	1.0	0.2	1.250000 1
[89]	{item3= No,item5=No}	=> {item4=Yes}	0.2	1.0	0.2	1.666667 1
[90]	{item1= Yes,item3= No}	=> {item5=No}	0.2	1.0	0.2	1.250000 1
[91]	{item3= No,item5=No}	=> {item1= Yes}	0.2	1.0	0.2	1.250000 1
[92]	{item2=No,item6= Yes}	=> {item4=Yes}	0.2	1.0	0.2	1.666667 1
[93] {item4=Yes,item6= Yes} => {item2=No} 0.2					0.2	2.500000 1
[94] {item2=No,item6= Yes} => {item1= Yes} 0.2					0.2	1.250000 1
[95] {item1= Yes,item6= Yes} => {item2=No} 0.2					0.2	2.500000 1
[96] {	(item2=No,item6= Yes	s} => {item5=No) 0.2	1.0	0.2	1.250000 1
[97] {	(item5=No,item6= Yes	s} => {item2=No) 0.2	1.0	0.2	2.500000 1
[98] { 0.2	(item4=Yes,item6= Ye	s} => {item1= }	'es}	1.0	0.2	1.250000 1
[99] { 0.2	(item1= Yes,item6= Ye	es} => {item4=}	'es}	1.0	0.2	1.666667 1
[100] 0.2	{item4=Yes,item6= Y	es} => {item5=l	No}	1.0	0.2	1.250000 1
[101] 0.2	{item5=No,item6= Ye	es} => {item4=Y	es}	1.0	0.2	1.666667 1
[102] 0.2	{item1= Yes,item6= Y	/es} => {item5=	:No}	1.0	0.2	1.250000 1
[103] 0.2	{item5=No,item6= Ye	es} => {item1= \	es}	1.0	0.2	1.250000 1

MCA Sem I	ADBMS	C22091

[104] {item1= No,item2= Yes} => {item3=yes} 0.2	1.0	0.2	2.500000 1
[105] {item1= No,item3=yes} => {item2= Yes} 0.2	1.0	0.2	5.000000 1
[106] {item2= Yes,item3=yes} => {item1= No} 0.2	1.0	0.2	5.000000 1
[107] {item1= No,item2= Yes} => {item4=Yes} 0.2	1.0	0.2	1.666667 1
[108] {item1= No,item4=Yes} => {item2= Yes} 0.2	1.0	0.2	5.000000 1
[109] {item2= Yes,item4=Yes} => {item1= No} 0.2	1.0	0.2	5.000000 1

[110] {item1= No,item2= Yes}	=> {item6=No	}0.2	1.0	0.2	1.250000 1
[111] {item1= No,item6=No}	=> {item2= Yes}	0.2	1.0	0.2	5.000000 1
[112] {item2= Yes,item6=No}	=> {item1= No}	0.2	1.0	0.2	5.000000 1
[113] {item1= No,item2= Yes}	=> {item5=No	}0.2	1.0	0.2	1.250000 1
[114] {item1= No,item5=No}	=> {item2= Yes}	0.2	1.0	0.2	5.000000 1
[115] {item2= Yes,item5=No}	=> {item1= No}	0.2	1.0	0.2	5.000000 1
[116] {item1= No,item3=yes}	=> {item4=Yes}	0.2	1.0	0.2	1.666667 1
[117] {item1= No,item4=Yes}	=> {item3=yes}	0.2	1.0	0.2	2.500000 1
[118] {item1= No,item3=yes}	=> {item6=No	}0.2	1.0	0.2	1.250000 1
[119] {item1= No,item6=No}	=> {item3=yes}	0.2	1.0	0.2	2.500000 1
[120] {item1= No,item3=yes}	=> {item5=No	}0.2	1.0	0.2	1.250000 1
[121] {item1= No,item5=No}	=> {item3=yes}	0.2	1.0	0.2	2.500000 1
[122] {item1= No,item4=Yes}	=> {item6=No	}0.2	1.0	0.2	1.250000 1
[123] {item1= No,item6=No}	=> {item4=Yes}	0.2	1.0	0.2	1.666667 1
[124] {item1= No,item4=Yes}	=> {item5=No	}0.2	1.0	0.2	1.250000 1
[125] {item1= No,item5=No}	=> {item4=Yes}	0.2	1.0	0.2	1.666667 1

[reached 'max' / getOption("max.print") -- omitted 450 rows]

>rules<-

apriori(shopping,parameter=list(support=0.5,conf=0.7))

Apriori

Parameter specification:

confidence minval smax arem aval

0.7 0.1 1 none FALSE

originalSupport maxtime support minlen

maxlen TRUE 5 0.5 1 10

target ext

rules

TRUE

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 2

set item appearances ...[0 item(s)] done [0.00s].

set transactions ...[12 item(s), 5 transaction(s)] done

[0.00s]. sorting and recoding items ... [6 item(s)] done

[0.00s]. creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 done

[0.00s]. writing ... [31 rule(s)] done

[0.00s]. creating S4 object ... done

[0.00s].

Warning message:

Column(s) 1, 2, 3, 4, 5, 6 not logical or factor. Applying default discretization (see '? discretizeDF').

>inspect (rules)

lhs	rhs	suppor	t con	fidence	e cove	rage lift	coun	t
[1] {}	=> {iten	n1=yes}	8.0	0.80	1.0	1.0000	4	
[2] {}	=> {iten	n3=yes}	8.0	0.80	1.0	1.0000	4	
[3] {}	=> {iten	n6=no}	8.0	0.80	1.0	1.0000	4	
[4] {}	=> {iten	n5=no}	8.0	0.80	1.0	1.0000	4	
[5] {item2 {item3		•		0.6	1.00	0.6 1.2	2500	3
[6] {item3 {item2		•		0.6	0.75	0.8 1.2	2500	3
[7] {item2	:=yes} =>	> {item6:	=no}	0.6	1.00	0.6 1.2	2500	3
[8] {item6	=no} =>	{item2=	yes}	0.6	0.75	0.8 1.2	2500	3
[9] {item4	=yes} =>	> {item5:	=no}	0.6	1.00	0.6 1.2	2500	3
[10] {items {item4=ye	•	•		0.6	0.75	0.8 1.25		3

MCA Sem I	ADBMS	C21130

[11] {item1=yes} =>	0.6	0.75	0.8	3
{item3=yes}			0.9375	
[12] {item3=yes} =>	0.6	0.75	0.8	3
{item1=yes}			0.9375	

[13] {item1=yes} => {item6=no}	0.6	0.75	0.8 0.9375	3
[14] {item6=no} => {item1=yes}	0.6	0.75	0.8 0.9375	3
[15] {item1=yes} => {item5=no}	0.6	0.75	0.8 0.9375	3
[16] {item5=no} => {item1=yes}	0.6	0.75	0.8 0.9375	3
[17] {item3=yes} => {item6=no}	0.8	1.00	0.8 1.2500	4
[18] {item6=no} => {item3=yes}	0.8	1.00	0.8 1.2500	4
[19] {item3=yes} => {item5=no}	0.6	0.75	0.8 0.9375	3
[20] {item5=no} => {item3=yes}	0.6	0.75	0.8 0.9375	3
[21] {item6=no} => {item5=no}	0.6	0.75	0.8 0.9375	3
[22] {item5=no} => {item6=no}	0.6	0.75	0.8 0.9375	3
[23] {item2=yes,				
item3=yes} => {item6=no}	0.6	1.00	0.6 1.2500	3
[24] {item2=yes,				
item6=no} => {item3=yes}	0.6	1.00	0.6 1.2500	3
[25] {item3=yes,				
item6=no} => {item2=yes}	0.6	0.75	0.8 1.2500	3
[26] {item1=yes,				
item3=yes} => {item6=no} (0.6	1.00	0.6 1.2500	3
[27] {item1=yes,				
item6=no} => {item3=yes}	0.6	1.00	0.6 1.2500	3
[28] {item3=yes,				
item6=no} => {item1=yes} (0.6	0.75	0.8 0.9375	3
[29] {item3=yes,				
$item6=no$ => { $item5=no$ } (0.6	0.75	0.8 0.9375	3
[30] {item3=yes,				
$item5=no$ => { $item6=no$ } (0.6	1.00	0.6 1.2500	3
[31] {item5=no,				
item6=no} => {item3=yes} (0.6	1.00	0.6 1.2500	3

```
Apriori
```

```
Parameter specification:
```

confidence minval smax arem aval

0.7 0.1 1 none FALSE

originalSupport maxtime support minlen

maxlen TRUE 5 0.5 2 5

target ext

rules

TRUE

Algorithmic control:

filter tree heap memopt load sort verbose

0.1 TRUE TRUE FALSE TRUE 2 TRUE

Absolute minimum support count: 2

```
set item appearances ...[0 item(s)] done [0.00s].
```

set transactions ...[12 item(s), 5 transaction(s)] done

[0.00s]. sorting and recoding items ... [6 item(s)] done

[0.00s]. creating transaction tree ... done [0.00s].

checking subsets of size 1 2 3 done

[0.00s]. writing ... [27 rule(s)] done

[0.00s]. creating S4 object ... done

[0.00s].

Warning message:

Column(s) 1, 2, 3, 4, 5, 6 not logical or factor. Applying default discretization (see '? discretizeDF').

> inspect(rules)

lhs rhs support confidence coverage lift count

[1] {item2=yes} => 0.6 1.00 0.6 1.2500 3 {item3=yes}

106 | Pag

[2] {item3=yes} => {item2=yes}

0.6 0.75 0.8 1.2500 3

[3] {item2=yes} => {item6=no}	0.6	1.00	0.6 1.2500	3
[4] {item6=no} => {item2=yes}	0.6	0.75	0.8 1.2500	3
[5] {item4=yes} => {item5=no}	0.6	1.00	0.6 1.2500	3
[6] {item5=no} => {item4=yes}	0.6	0.75	0.8 1.2500	3
[7] {item1=yes} => {item3=yes}	0.6	0.75	0.8 0.9375	3
[8] {item3=yes} => {item1=yes}	0.6	0.75	0.8 0.9375	3
[9] {item1=yes} => {item6=no}	0.6	0.75	0.8 0.9375	3
[10] {item6=no} => {item1=yes}	0.6	0.75	0.8 0.9375	3
[11] {item1=yes} => {item5=no}	0.6	0.75	0.8 0.9375	3
[12] {item5=no} => {item1=yes}	0.6	0.75	0.8 0.9375	3
[13] {item3=yes} => {item6=no}	8.0	1.00	0.8 1.2500	4
[14] {item6=no} => {item3=yes}	8.0	1.00	0.8 1.2500	4
[15] {item3=yes} => {item5=no}	0.6	0.75	0.8 0.9375	3
[16] {item5=no} => {item3=yes}	0.6	0.75	0.8 0.9375	3
[17] {item6=no} => {item5=no}	0.6	0.75	0.8 0.9375	3
[18] {item5=no} => {item6=no}	0.6	0.75	0.8 0.9375	3
[19] {item2=yes,				
item3=yes} => {item6=no}	0.6	1.00	0.6 1.2500	3
[20] {item2=yes,				
item6=no} => {item3=yes}	0.6	1.00	0.6 1.2500	3
[21] {item3=yes,				
item6=no} => {item2=yes}	0.6	0.75	0.8 1.2500	3
[22] {item1=yes,				
item3=yes} => {item6=no}	0.6	1.00	0.6 1.2500	3
[23] {item1=yes,				
item6=no} => {item3=yes}	0.6	1.00	0.6 1.2500	3
[24] {item3=yes,				

item6=no => {item1=yes} 0.6 0.75 0.8 0.9375 3 [25] {item3=yes,

10. Implementation and analysis of clustering algorithms like K-Means , Agglomerative

Source code:

K-MEANS

- > setwd("C:/Users/admin/Desktop/R-prog")
- > head(iris)

Sepal.Length Sepal.Width Petal.Length

- 1 5.1 3.5 1.4
- 2 4.9 3.0 1.4
- 3 4.7 3.2 1.3
- 4 4.6 3.1 1.5
- 5 5.0 3.6 1.4
- 6 5.4 3.9 1.7

Petal.Width Species

- 1 0.2 setosa
- 2 0.2 setosa
- 3 0.2 setosa
- 4 0.2 setosa
- 5 0.2 setosa
- 6 0.4 setosa
- > library(ggplot2)
- > ggplot(iris, aes(Petal.Length, Petal.Width, color = Species)) + geom_point()

- > set.seed(20)
- > risCluster <- kmeans(iris[, 3:4], 3, nstart = 20)
- > irisCluster <- kmeans(iris[, 3:4], 3, nstart = 20)
- > irisCluster

K-means clustering with 3 clusters of sizes 50, 48, 52

Cluster means:

Petal.Length Petal.Width

- 1 1.462000 0.246000
- 2 5.595833 2.037500
- 3 4.269231 1.342308

Clustering vector:

[148] 2 2 2

Within cluster sum of squares by cluster:

[1] 2.02200 16.29167 13.05769

(between_SS / total_SS = 94.3 %)

Available components:

- [1] "cluster" "centers" "totss"
- [4] "withinss" "tot.withinss" "betweenss"
- [7] "size" "iter" "ifault"
- > table(irisCluster\$cluster, iris\$Species)

setosa versicolor virginica

- 1 50 0 0
- 2 0 2 46
- 3 0 48 4
- > irisCluster\$cluster <- as.factor(irisCluster\$cluster)</pre>
- > ggplot(iris, aes(Petal.Length, Petal.Width, color = irisCluster\$cluster)) +
 geom_point()

114 | P a g

Agglomerative Clustering

> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width

- 1 5.1 3.5 1.4 0.2
- 2 4.9 3.0 1.4 0.2
- 3 4.7 3.2 1.3 0.2
- 4 4.6 3.1 1.5 0.2
- 5 5.0 3.6 1.4 0.2
- 6 5.4 3.9 1.7 0.4

Species

- 1 setosa
- 2 setosa
- 3 setosa
- 4 setosa
- 5 setosa
- 6 setosa
- > clusters <- hclust(dist(iris[, 3:4]))
- > plot(clusters)

- > clusterCut<- cutree(clusters, 3)
- > table(clusterCut, iris\$Species)

clusterCut setosa versicolor virginica

- 150 0 0
- 2 0 21 50
- 3 0 29 0
- > clusters <- hclust(dist(iris[,3:4]), method = 'average')
- > plot(clusters)

> clusterCut <- cutree(clusters, 3)

> table(clusterCut, iris\$Species)

clusterCut setosa versicolor

2 0 45 1

3 0 5 49

 $> ggplot(iris, \, aes(Petal. Length, \, Petal. Width, \, color = iris\$Species)) + \\ \qquad geom_point(alpha$

Warning message:

Use of `iris\$Species` is discouraged. Use `Species` instead.

