Chapter 4 - Radom Variables and Distributions STAT 251

Lecture 8
Discrete Random Variables

Dr. Lasantha Premarathna

Chapter 4 - Learning Outcomes

- Notations
- Discrete Random Variables
- Continuous Random Variables
- Probability mass function (pmf)
- Probability density function (pdf)
- The Mean, the Variance and the Standard Deviation
- Cumulative Distribution Function (cdf)
- Max and Min of Independent Random Variables

Random Variable

- A random variable (rv) X is a function defined on the sample space S, assigning a number x = X(w) to each outcome w in the sample space.
- Random variables are defined by uppercase letters such as X, Y, \ldots If the random variable is X, then the lower case letter x represents a possible value of the random variable.

A fair coin is flipped 3 times

- equally likelys, fair coin.

 1/8 for any outcome.
- Let X be the number of heads in 3 flips
- Then the sample space S is $S = \{ HHH, HHT, HTH, HTT, THH, THT, TTH, TTT \}$

Random var: e.f.
$$N^2$$
 of heads N^2 N^2 of heads N^2 N^2

Two types of random variables

• Discrete random variable

Possible values are either finite set or an infinite sequence of values.

Continuous random variable

Possible values are in an interval on the number line or all numbers in a collection of intervals.

For a continuous random variable X, P(X=c)=0 for any possible value c.

Any random variable whose possible values are 0 and 1 is called **Bernouli** random variable.

Probability Mass Function (pmf)

• Probability mass function (pmf) of a discrete random variable X, is defined as

$$f(x) = P(X = x)$$
 for all possible values of X

- f(x) gives the probability of each possible value x of the rv X. It has the following properties.

Consider the example 1. Obtain the pmf of X, number of heads in 3 flips of a fair coin $- S = \{ HHH, HTH, THH, HHT, TTH, TTT, TTT \}$.

pmf of X can be given in a table

or we can give the pmf of X as a function

×	f(x) = P(X = x)	 y	fly) = P(Y=y)
0	1/8	 -10	0 -3
 ι	3/8	-2	0.5
 7	3 (&	5	0.2
3	1/8.		5f(x)=1.1
	Z f(x) = 9	- Not	PMFC

Y is a random variable with pmf f(y) such that

y	-3	0	1	5
f(y) = P(Y = y)	k	0.4	3k	2k

Answer the following questions

$$\bullet$$
 find k

$$P(Y \ge 0)$$
 of

$$T(1 \ge 0) \quad 0 \in C$$

$$P(Y < 0) \quad \emptyset \ . \ \ \, \bigcup$$

Cumulative distribution function (cdf) of a discrete rv

The cumulative distribution function (cdf) of a discrete random variable X with pmf f(x) is defined as

$$F(x) = P(X \le x) = \sum_{k \le x} f(k),$$
 for all real x

The cumulative distribution function (cdf)) of a random variable X is denoted by F(x) which is the probability that X is less than or equal to some x.

In many applications we work with 1 - F(x) instead of F(x). Notice that 1 - F(x) = P(X > x) and therefore gives the probability that X will exceed the value x.

Consider example 1. The pmf of the rv X, number of heads in 3 flips of a fair coin

$$f(x) = \begin{cases} 1/8 & ; x = 0 \\ 3/8 & ; x = 1 \\ 3/8 & ; x = 2 \\ 1/8 & ; x = 3 \end{cases}$$

Then the cdf of X is

Example 4 - Graph of cdf of X

Mean of a discrete random variable

• Mean/Expectation /Expected value of a discrete random variable X with pmf f(x) is

$$\mu = E(X) = \sum_{x} x f(x)$$

- ullet Expectation can be interpreted as the long run average of X over hypothetical repetitions of the experiment.
- Expected value of some function g(X) corresponding to the random variable X with pmf f(x) is

Variance and Standard deviation of a discrete ry

Consider the discrete random variable X with pmf f(x)

• Variance of X is

$$\sigma^2 = \text{Var}(X) = E[(X - \mu)^2] = \sum_x (x - \mu)^2 f(x)$$

• standard deviation of X is (i_{V}, g_{C})

$$\sigma = \mathrm{SD}(X) = \sqrt{\mathrm{Var}(\mathbf{X})}$$

• Following formula is often used to calculate the variance

$$\operatorname{Var}(X) = E(X^2) - [E(X)]^2$$
 ; will give the proof later

Calcule the mean & variance of the random variable X, the number of heads in 3 flips of a fair coin

From example 2, we know that the pmf of X can be given as follows

m e a	I I N	
٥	x 1/8	
Ţ	× 3/8	-318
2	×3/8	- 616
3	× 1/8	3/8
		= 12 18
		= 1.5.

\boldsymbol{x}	f(x) = P(X = x)
0	1/8
1	3/8
2	3/8
3	1/8
	$\sum f(x) = 1$
	•

_
Variance.
18 (0-1.5)2
+
3/8(1-1.5) ² 3/8(2-(.5) ²
18 (7-(.2)
18 (3-1.5)2· 0.75·

Example 5 (contd.)

Mean =
$$\mu = E(X) = \sum_{x} x f(x)$$

Variance =
$$\sigma^2 = \text{Var}(X) = \sum_x (x - \mu)^2 f(x)$$

Example 5 (contd.)

Variance calculation: Method 2

$$\begin{split} E(X^2) &= \sum_x x^2 f(x) \\ &= (0 \times \frac{1}{8}) + (1^2 \times \frac{3}{8}) + (2^2 \times \frac{3}{8}) + (3^2 \times \frac{1}{8}) \\ &= 24/8 \\ &= 3 \end{split}$$

Variance =
$$\sigma^2 = \text{Var}(X) = E(X^2) - [E(X)]^2$$

= $3 - (1.5)^2$
= $3 - (1.5)^2$
= 0.75

It's easier to use the formula $\text{Var}(X) = E(X^2) - [E(X)]^2$ for hand calculation.

- 4 ロ ト 4 部 ト 4 章 ト 4 章 ト - 章 - 夕久(*)

Before the next class ...

Visit the course website at canvas.ubc.ca

- Review the Lecture 8 and related sections in the text book
- Next class

Chapter 4: Continuous Random Variables