ECE/PHY 235: Introduction to Solid State Electronics, Fall 2024 University of Wisconsin, Madison Homework #7, Instructor Ying Wang Due Friday, Nov 22th, 11:59 PM, by electronic upload

The drift and diffusion current;

- 1. An n-type silicon sample has a donor concentration of $N_D=10^{16}~cm^{-3}$ at room temperature (T=300 K). Assume the electron mobility is $\mu_n=1350~cm^2/Vs$.
 - a) Derive the expression for drift current density J_{drift}
 - b) If an electric field of E=100 V/cm is applied, calculate the drift current density.
 - c) Discuss how J_{drift} changes if the mobility is reduced due to increased doping to $N_D=10^{18}~cm^{-3}$ (assume $\mu_n=400~cm_2/Vs$) (hints: how the scattering gets affected when the population of dopants increases)
- 2. A p-type silicon sample has a hole concentration of 10^{17} cm⁻³. The diffusion coefficient for holes is $D_p=12$ cm²/s.
 - a) If the hole concentration varies linearly from 10^{17} cm⁻³ to 5×10^{16} cm⁻³ over a distance of 50 μ m, calculate the diffusion current density.
 - b) Compare this to the drift current density if an electric field of 10^3 V/cm is applied and the mobility for p-type silicon is 450 cm²/V·s.
- 3. A silicon sample has a non-uniform electron concentration given by $n(x)=5\times10^{15} \text{ cm}^{-3}+3\times10^{14} \text{ cm}^{-4}\cdot x$. The sample is also subjected to an electric field of E=50 V/cm. Assume $\mu_n=1350 \text{ cm}^2/\text{V}$ and diffusion coefficient Dn=35cm²/s.
 - a) Derive the total current density J_{total}=J_{drift}+J_{diff}
 - b) Calculate J_{drift} , J_{diff} , and J_{total} , at x=10 μ m.
 - c) Discuss the relative contributions of drift and diffusion currents to the total current.

Please upload a write-up of your solution as a single PDF file. Name the file "Lastname HW7.pdf"