Autoregressive model of order 1 (AR1)

Parametrization

The autoregressive model of order 1 (AR1) for the Gaussian vector $\mathbf{x} = (x_1, \dots, x_n)$ is defined as:

$$x_1 \sim \mathcal{N}(0, (\tau(1-\rho^2))^{-1})$$

 $x_i = \rho x_{i-1} + \epsilon_i; \quad \epsilon_i \sim \mathcal{N}(0, \tau^{-1}) \quad i = 2, \dots, n$

where

$$|\rho| < 1$$

Hyperparameters

The precision parameter κ is represented as

$$\theta_1 = \log(\kappa)$$

where κ is the marginal precision,

$$\kappa = \tau (1 - \rho^2).$$

The parameter ρ is represented as

$$\theta_2 = \log\left(\frac{1+\rho}{1-\rho}\right)$$

and the prior is defined on $\theta = (\theta_1, \theta_2)$.

Specification

The AR1 model is specified inside the f() function as

```
f(<whatever>, model="ar1", values=<values>, hyper = <hyper>)
```

The (optional) argument values is a numeric or factor vector giving the values assumed by the covariate for which we want the effect to be estimated. See the example for RW1 for an application.

Hyperparameter spesification and default values

```
{
m doc} Auto-regressive model of order 1 (AR(1))
```

hyper

```
theta1
```

```
hyperid 14001
name log precision
short.name prec
prior loggamma
param 1 5e-05
initial 4
fixed FALSE
to.theta function(x) log(x)
from.theta function(x) exp(x)
```

theta2

hyperid 14002

```
name logit lag one correlation
         short.name rho
         prior normal
         param 0 0.15
         initial 2
         fixed FALSE
         to.theta function(x) log((1 + x) / (1 - x))
         from.theta function(x) 2 * \exp(x) / (1 + \exp(x)) - 1
     theta3
         hyperid 14003
         name mean
         short.name mean
         prior normal
         param 0 1
         initial 0
         fixed TRUE
         to.theta function(x) x
         from.theta function(x) x
constr FALSE
nrow.ncol FALSE
augmented FALSE
aug.factor 1
aug.constr
n.div.by
n.required FALSE
set.default.values FALSE
pdf ar1
Example
In this exaple we implement an ar1 model observed with Poisson counts
#simulate data
n = 100
rho = 0.8
prec = 10
## note that the marginal precision would be
marg.prec = prec * (1-rho^2)
E=sample(c(5,4,10,12),size=n,replace=T)
eta = as.vector(arima.sim(list(order = c(1,0,0), ar = rho), n = n,sd=sqrt(1/prec)))
y=rpois(n,E*exp(eta))
data = list(y=y, z=1:n, E=E)
```

```
## fit the model
formula = y~f(z,model="ar1")
result = inla(formula,family="poisson", data = data, E=E)
```

Notes

A third hyperparameter θ_3 is **experimental**, and the *mean* of the AR1 process. By default this parameter is fixed to the be zero.