ACMP202212322ent Project Exam Help Models & Computation

Lesson 9a: C

Presente https://eduassistpro.github.

Sasha Rubin School of Computer Science

- A contex-free grammar (CFG) generates strings by rewriting.

ASSIGNMENT PROPERTY OF THE PROP

https://eduassistpro.github. wise.

- The deprover solve a to the last sist_pr

Possible approaches...

1. Systematically search through all derivations (or all parse-trees) until you find one that derives w.

Assignment of the stop of the

2 https://eduassistpro.github.

- Systematically compute, for every substr

 A reporterminal of delivery (if a edu_assist_properties check if the start state is a edu_assist_properties whole string w.
 - The resulting algorithm takes polynomial time in the worst case, i.e., is acceptably fast.
 - This is the approach we will take today! It is called the CYK algorithm

Input: a CFG G and string w.

Output: 1 if the string w is generated by G, and 0 otherwise.

Assignment Project Exam Help Such that L(G) = L(G') and

² https://eduassistpro.github.

Skeptic

- Q. Wyd we diver malpert edu_assist_property A. In order to make the table small and easier to imple

E.g., the parse-trees of a grammar in CNF are binary trees!

Chomsky Normal Form

Definition

A grammar G is in Chomsky Normal Form (CNF) if every rule is in

Assignment Project Exam Help

https://eduassistpro.github.

In the next slides, we will give a 5-step algorithm that trevery change an equipment and CHORANDOR ASSIST_DI

- 1. START: Eliminate the start symbol from the R
- 2. TERM: Eliminate rules with terminals, except for rules $A \rightarrow a$
- 3. BIN: Eliminate rules with more than two variables
- 4. DEL: Eliminate epsilon productions
- 5. UNIT: Eliminate unit rules

- 1. Eliminate the start symbol from the RHS of all rules
- Assignment horospectribles an Help
 - 4. Eliminate epsilon productions
 - https://eduassistpro.github.

- 1. Eliminate the start symbol from the RHS of all rules
- Assignment how one of the carried examt Help
 - 4. Eliminate epsilon productions

 - https://eduassistpro.github.
 - Replace every terminal a on the RHS

- 1. Eliminate the start symbol from the RHS of all rules
- As significant equal to the productions of the productions of the productions are the productions of the productions of the productions of the production o
 - 5. Eli

For exhttps://eduassistpro.github.
it and create new variables $A_1, A_2, ..., A$

Add Wechattedu_assist_pr

:

$$A_{n-3} \to X_{n-2} A_{n-2}$$

 $A_{n-2} \to X_{n-1} X_n$

- 1. Eliminate the start symbol from the RHS of all rules
- Assignment horosectribles an Help
 - 4. Eliminate epsilon productions
 - 5. Eli https://eduassistpro.github.

For every rule of the form $U \to \varepsilon$ (except S_0

- Remove the rule.
 - WeChat edu_assist_pr $A \to \alpha'$ where α' is α with one or mor

the rule $A \to \epsilon$ if this rule has not already been removed.

- 1. Eliminate the start symbol from the RHS of all rules
- Assignment hor paper taribles $\stackrel{2.}{\text{Eliminate}}$ rules with terminals, except for rules $\stackrel{A}{\rightarrow}$ $\stackrel{a}{\text{Help}}$
 - 4. Eliminate epsilon productions
 - https://eduassistpro.github. For ea

 - Remove the rule $A \to R$ For ediquie With Example 4 edu_assist_pr (unless it was previously removed)

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_predu_ $A \rightarrow B \mid S$

 $A \to B \mid \epsilon$ $B \to b \mid \epsilon$

Assignment Project Exam Help

Step https://eduassistpro.github. $A \rightarrow a$:

Add We Chat edu_assist_property $A \rightarrow B \mid S$ $B \rightarrow b \mid \varepsilon$

 $N_a \rightarrow a$

Assignment $\Pr_{A \to B}^{S_0 \to S}$ Exam Help

https://eduassistpro.github.

PLANT EQU_ASSIS $\mathbf{S_1}
ightarrow \mathbf{SA}$ $A
ightarrow B \mid S$ $B
ightarrow b \mid arepsilon$ $N_a
ightarrow a$

Assignment Project Exam Help

https://eduassistpro.github.

Step 4 (DEL): Eliminate epsilon production

Add We hat edu_assist_production

13 / 32

Add We shat
$$S \to AS_1 \mid N_a$$

$$S_1 \to SA$$

$$A \to B \mid S \mid \varepsilon$$

$$B \to b$$

$$N_a \to a$$

Assignment Project Exam Help

https://eduassistpro.github.

Step 4 (DEL): Eliminate epsilon production

$$egin{array}{c} {\sf Add} & {\sf W}_0 {\sf eChat} \ {\sf edu_assist_pr} \ {\scriptstyle S \
ightarrow \ S_1 \
ightarrow \ S_2 \
ightarrow \ \$$

 $N_a \rightarrow a$

$$S_1 o SA \mid \mathbf{S}$$
 $A o B \mid S$
 $B o b$

14 / 32

 $S_0 \to S$

Assignment Project Exam Help

https://eduassistpro.github. Step 5 (UNIT): Eliminate unit rules S

Add WeChat edu_assist_pr $S \to AS_1 \mid N_aB \mid \mathbf{a} \mid \mathbf{SA}$ $S_1 \to SA \mid S$

15/32

 $A \to \mathbf{b} \mid S$

 $B \rightarrow b$ $N_a \rightarrow a$

 $B \rightarrow b$ $N_a \rightarrow a$

https://eduassistpro.github. Step 5 (UNIT): Eliminate unit rules S_0

Step 5 (UNIT): Eliminate unit rules
$$S_0$$

$$Add Weshat | edu_assist_pt$$

$$S \rightarrow AS_1 \mid N_aB \mid$$

$$S_1 \rightarrow \mathbf{AS_1} \mid \mathbf{N_aB} \mid \mathbf{a} \mid SA$$

$$A \rightarrow b \mid \mathbf{AS_1} \mid \mathbf{N_aB} \mid \mathbf{a} \mid \mathbf{SA}$$

16 / 32

Assignment Project Exam Help

 $A \rightarrow b \mid AS_1 \mid N_a$

https://eduassistpro.github.

AGMP 2022 12922 ent Project Exam Help

Lesson 9b: Membership problem for CFGs in C

Presente https://eduassistpro.github.

Sasha Rubin School of Computer Science

Membership problem for CFG in CNF

Input: a CFG G that is in CNF, and string w.

Output: 1 if the string p is generated by F and 0 otherwise P 1

SS19 ment P 10 CCT E X 2 m He

Table filling algorithm (aka Dynamic Programming)

- https://eduassistpro.github.
- The table records the solution to the subproble

 need to solve each subproblem once (aka me

 Main steps: define the subproblems, find the reasons of the subproblems.)
- Main steps: define the subproblems, find the reasons
 sure you solve each subproblem once.
- You will see this again in COMP3027:Algorithm Design
- The algorithm we will see is known as the CYK algorithm (Cocke-Younger-Kasami).

What are the subproblems?

Idea

Assignmente (energy w is built from a root, a left subtree, left subtree).

- The left (right) subtree is parse tree of a prefix (suffix) of w.
- https://eduassistpro.github.

generate which substrings of $\boldsymbol{w}.$

What are the entries in the table?

Given G in CNF, and a non-empty string $w = w_1 w_2 \cdots w_n$:

- Write table(i, j) for the set of variables A that generate the

Assignment Project Exam Help generally a support the will compute uble(i,j) for all $1 \le i < j \le n$.

– O n). I

https://eduassistpro.github.

Computing the table recursively

Assignmentale (i,j) using the following recursive procedure: Assignmentale (i,j) Other framework procedure: A w_i is a rule of the grammar.

2 hich https://eduassistpro.github.

Computing the table recursively

As $\underset{A}{\text{Sign}}$ Compute table(i,j) using the following recursive procedure: $\underset{A}{\text{Potential}}$ by $\underset{w_i}{\text{Compute}}$ is a rule of the grammar.

https://eduassistpro.github.

Q: WAddthWe@hat edu_assist_pr

- At each step, we call the procedure on "smaller" pr
- In what sense is table(i,k) and table(k+1,j) smaller than table(i,j)? The size of the intervals [i,k] and [k+1,j] is smaller than the size of the interval [i,j].

We want to avoid computing table entries more than once.

- So, before making a recursive call just check if the value has ASS130eptypeecomputed the lift of the value has each of the later and the lift of the later and the later

https://eduassistpro.github.

Can we write this with a bunch of loops?

Yes, but it is harder to read. See Sipser (edition 3) Theorem 7.16.

Assignment Project Exam Help

https://eduassistpro.github.

Add WeChat edu_assist_pro.github.

(pseudocode from "Introduction to the theory of computation" by Michael Sipser)

Can we fill the table by hand?

Yes, but this is best done by a computer!

```
Ass(g) Project Exam Help
(1,4) (2,5) (3,6) (4,7)
(https://eduassistpro.github.)
w_1 w_2 w_3 w_4 w_5
```

Q: Where do I put the entry table (i, j)

- horzottal co-viring = that point is assist_pr

- vertical co-ordinate = length of substring =

Q: What entries are needed to compute table(i, j)?

- You have to look at the pairs table(i, k), table(k + 1, j) for

 $k = i, \dots, j-1$; it's the right-angled triangle below table(i, j).

Q: In what order are the entries computed?

Row by row, bottom to top, left to right

25 / 32

Example

ignment Project Examp Help os://eduassistpro.github. fish with she eats ¹Ad²d WeChat edu_assist_pr Q: In what order are the entries computed?

- To compute an entry, you need the entries in the "right-angled triangle below it".
- Row by row, bottom to top, left to right

Example

- which can be split into "eats" from position 2 to 2,
- and "a fish" from position 3 to 4, and
- and $VP \rightarrow V$ NP is a rule, $V \in table(2,2)$, and $NP \in table(3,4)$.

Example

- which can be split into "eats a fish" from position 2 to 4,
- and "with a fork" from position 5 to 7, and
- and $VP \rightarrow VP$ PP is a rule, $VP \in table(2,4)$, and $PP \in table(5,7)$.

How efficient is this algorithm?

Time complexity

- Assignmental end check at most n splits,
 - So t
 - https://eduassistpro.github. rules, variables and terminals.

Aside Add We Chat edu_assist_properties of fixed G and varying W, the time is

- If the input is large (e.g., a compiling a very large program), then this complexity is too high. So, in this case, one uses restricted grammars for which there are faster algorithms, see COMP3109: Programming Languages and Paradigms

What if I want to compute a derivation?

You can adjust the algorithm to store more information in order to A Solution to the store A solution A

 $\dots w_j$.

- https://eduassistpro.github.

A discrepancy of the stack t A_i is the top-element of the stack t A_i if (A,i,j) is the top-element of the stack A_i and push the element (B,i,k)

 $A \to BC$, pop the stack, and push the element (B, i, k) followed by (C, k+1, j) onto the stack.

Good to know

 There is a machine-theoretic characterisation of context-free languages (pushdown automaton = NFA + stack).

Assignment of COMP2P2 to learn more! of see Sipser Chapter 2.21p is not context-free.

https://eduassistpro.github.

Where are we going?

Assignment Project Exam Help

Next week we start learning about an even more powerful model of com

the Thttps://eduassistpro.github.

This is the most powerful model of computation th and is a model of a general purpose computer.

Add WeChat edu_assist_pr