Fiche synthèse sur les limites des suites

Récurrence

Soit une propriété P(n) définie sur \mathbb{N} . Si la propriété P(n) vérifie les deux conditions suivantes :

- Initialisation : P(n) est vraie pour un entier n_0 . (n_0 désigne un entier naturel).
- Hérédité : si la propriété P(k) est vraie pour un nombre $k \ge n_0$, alors P(k+1) est vraie.
- Conclusion : La propriété P(n) est vraie au premier rang n_0 , et elle héréditaire, donc P(n) elle est vraie pour tout entier naturel, c'est dire(on annonce la propriété).

Comportement global d'une suite équivaut à l'étude du signe $u_{n+1} - u_n$

On dit qu'une suite (u_n) définie sur \mathbb{N} est :

- croissante si est seulement si, $\forall n \in \mathbb{N}, u_{n+1} \geq u_n$.
- décroissante si est seulement si, $\forall n \in \mathbb{N}, u_{n+1} \leq u_n$.
- Une suite est dite monotone lorsqu'elle est croissante ou décroissante.

Trois méthodes pour étudier la monotonie , algébrique, fonctionnelle ou par récurrence.

Limite d'une suite géométrique

Soit q un réel et n un entier naturel. La limite de la suite géométrique q^n est :

- si q > 1 alors $\lim_{n \to +\infty} q^n = +\infty$
- si q = 1 alors $\lim_{n \to +\infty} q^n = 1$
- si -1 < q < 1 alors $\lim_{n \to +\infty} q^n = 0$
- si $q \leqslant -1$ alors $\lim_{n \to +\infty} q^n$ n'existe pas.

Limite d'une somme de suites									
$\operatorname{Si} \lim_{n \to +\infty} u_n =$	ℓ	ℓ	ℓ	$+\infty$	$-\infty$	$+\infty$			
$\operatorname{et} \lim_{n \to +\infty} v_n =$	ℓ′	$+\infty$	$-\infty$	+∞	$-\infty$	$-\infty$			
alors $\lim_{n \to +\infty} (u_n + v_n) =$	$\ell + \ell'$	+∞	$-\infty$	$+\infty$	$-\infty$	F.I			

Limite d'un produit de suites

$\operatorname{Si} \lim_{n \to +\infty} u_n =$	ℓ	$\ell > 0$	$\ell < 0$	$\ell > 0$	$\ell < 0$	0	
		ou $+\infty$	ou $-\infty$	ou $+\infty$	ou $-\infty$		
$\operatorname{et} \lim_{n \to +\infty} v_n =$	ℓ'	$+\infty$	$+\infty$	$-\infty$	$-\infty$	$-\infty$ ou $+\infty$	
alors $\lim_{n \to +\infty} (u_n \times v_n) =$	<i>ℓℓ′</i>	$+\infty$	$-\infty$	$-\infty$	$+\infty$	F.I	

Limite d'un quotient de suites

$\operatorname{Si} \lim_{n \to +\infty} u_n =$	ℓ	ℓ	$\ell > 0$	$\ell > 0$	$\ell < 0$	$\ell < 0$	$-\infty$ ou $+\infty$	0
$\operatorname{et} \lim_{n \to +\infty} v_n =$	$\ell \neq 0$		$\begin{vmatrix} 0 & \text{et} \\ v_n > 0 \end{vmatrix}$		$\begin{vmatrix} 0 & \text{et} \\ v_n > 0 \end{vmatrix}$		$-\infty$ ou $+\infty$	0
$alors \lim_{n \to +\infty} \left(\frac{u_n}{v_n} \right) =$	$\frac{\ell}{\ell'}$	0	+∞	$-\infty$	$-\infty$	$+\infty$	FI	FI

Suite majorée, minorée et bornée

On dit qu'une suite (u_n) définie sur \mathbb{N} est :

- majorée si, il existe un réel M tel que, $\forall n \in \mathbb{N}, u_n \leq M$. M majorant de (u_n) .
- minorée si, il existe un réel m tel que, $\forall n \in \mathbb{N}, u_n \geqslant m$. m minorant de (u_n) .
- bornée lorsqu'elle est majorée et minorée.

Théorème de convergence monotone

- Si une suite (u_n) est **croissante** et **majorée**, alors (u_n) **converge**.
- Si une suite (u_n) est décroissante et minorée alors (u_n) converge.
- Si une suite (u_n) est croissante et non majorée, alors (u_n) diverge vers $+\infty$.
- Si Une suite (u_n) est décroissante et non minorée, alors (u_n) diverge vers $-\infty$.

Théorème de comparaison

- Si (u_n) et (v_n) sont deux suites telles que, à partir d'un certain rang $u_n\leqslant v_n \text{ et } \lim_{n\to +\infty}u_n=+\infty, \text{ alors } \lim_{n\to +\infty}v_n=+\infty$
- Si (u_n) et (v_n) sont deux suites telles que, à partir d'un certain rang $u_n \leqslant v_n$ et $\lim_{n \to +\infty} u_n = -\infty$, alors $\lim_{n \to +\infty} v_n = -\infty$

Théorème des gendarmes (ou d'encadrement)

Soit (u_n) , (v_n) et (w_n) trois suites telles que, à partir d'un certain rang $u_n \leq v_n \leq w_n$.

Si (u_n) et (w_n) convergent vers le réel ℓ , alors (v_n) converge vers ℓ .