

American International University – Bangladesh (AIUB) Faculty of Engineering Department of Electrical and Electronic Engineering

	Final Assignment												
Course Name:	Microprocessor and Embedded Systems	Course Code:	EEE										
Semester:	Spring 2023-2024	Section:	J										
Faculty Name:	Engr. Md Shaoran Sayem												

Assignment No:	1F (individual submission consisting of 30 marks)
----------------	---

Submission Date: 10/05/2024 Due Date: 10/05/2024
--

Student Information:

Student Name:	MD	. SH	ОНА	NUI	R RA	HM.	AN S	НОІ	HAN				Section:	J
C4d o4 ID #-	2	2	-	4	6	0	1	3	-	1	A 1 D - 4	25.04.2024	D	CSE
Student ID #:	р	q	-	a	b	c	d	e	-	r	Assigned Date:	25.04.2024	Department:	CSE

Special Instruction: Questions may be copied from here through copy-paste. Online submission via TEAMS is needed. However, hardcopy must also be submitted.

Assessment Rubrics:

COs-PO	Excellent [19-20]	Proficient [15-18]	Good [11-14]	Acceptable [6-10]	Unacceptable [1-5]	No Response [0]	Secured Marks
CO3 P.a.4.C.	All the problems are solved correctly. The results are generated by combining all possible input patterns with appropriate outcomes. All necessary drawings and computations are shown correctly.	A few necessary drawings and	All the problems are solved correctly. The results are generated by combining all possible input patterns with appropriate outcomes. A few necessary drawings and computations are missing or wrong.	All the problems are not solved correctly. The results are generated by combining several wrong or less no of input patterns with in/appropriate outcomes. Some necessary drawings and computations are missing or wrong.	All the problems are not solved correctly. The results are generated by combining mostly wrong input patterns with inappropriate outcomes. Almost all the necessary drawings and computations are missing or wrong.	No responses at all or copied from others	
Commen	is				Total Marks (20)		

- 1. Find the baud rate for the three operating modes when the oscillator frequency, *fosc* = ac MHz (put side-by-side), and register data is, UBRRn = 010110101110. Calculate the baud error and comment on whether there will be any communication errors or not. Standard Baud rates are 300, 600, 1200, 2400, 4800, 9600, 14400,19200, 38400, 57600, 115200, 230400, ... bps.
- 2. Compute the duty cycle and sketch the waveform obtained at port D of the Arduino. Identify the modes of operation and compute the operating frequency of that mode based on the following program segment. Identify the Timer of the Arduino Microcontroller. The system clock frequency is rq MHz. Draw the relevant Proteus circuit diagram using and show its timing diagram. DDRD (1<<PD5); pinMode (5, OUTPUT); OCR0A = (200 ++ c); // Load a value in the OCR0A register а b OCROB= (100 ++ e); // Load value in the OCR0B register d а Configure TCCR0A and TCCR0B for mode and registers the pre-scaler COMOAO) TCCR0A = (1<< COMOB1) | (1 << (1 << WGM01)(1 << WGM00);TCCR0B = (1 << WGM02) | (1 << CS01) | (1 << CS00);
- 3. Compute the duty cycle and sketch the waveform obtained at port D of the Arduino. Identify the modes of operation and compute the operating frequency of that mode based on the following program segment. Identify the Timer of the Arduino Microcontroller. The system clock frequency is pq MHz.

```
DDRD |= (1<<PD5);
pinMode(5, OUTPUT);
OCROB= (150+a+b); // Load OCROB for setting its duty cycle
// Configure TCCROA and TCCROB registers for the mode and pre-scaler
TCCROA |= (1 << COMOB1) | (1<<WGMO1) | (1<<WGMO0);
TCCROB |= (1<<CSO2) | (1<<CSO0);</pre>
```

4. Design an *a*-bit shifter circuit for the listed shift functions provided in Table 1. Explain its operation for variouscases of select inputs.

Binary				Functions	of selection var	iables
Code	\boldsymbol{A}	В	D	F with $C_{in}=0$	F with $C_{in} = 1$	H
000	Input Data	Input Data	None	A-1	A	1's to the output Bus
0 0 1	R1	R1	R1	A+B	A+B+1	Shift Left with $I_L = 0$
010	R2	R2	R2	A-B-1	A-B	No Shift
011	R3	R3	R3	A	A+1	Circulate Left with Carry
100	R4	R4	R4	Ā	X	0's to the output Bus
101	R5	R5	R5	AX OR B	X	0's & 1's to the lower and upper nibbles
110	R6	R6	R6	A AND B	X	Circulate-Right with Carry
111	R7	R7	R7	A OR B	X	Shift Right with $I_R = 0$

Table 1: Functions of control variables

5. Design a (q + r)-bit shifter for the four shifting operations listed in the following Table:

Binary			The	function of selecti	on variables	
Code	A	В	D	$F with C_{in} = 0$	F with $C_{in} = 1$	Н
0 0	Input Data	Input Data	None	A	A+1	Shift Left with I _L =0
0 1	R1	R1	R1	A+B	A+B+1	Shift Right with I _R =0
10	R2	R2	R2	A+B'	A+B'+1	1's to the output Bus
11	R3	R3	R3	A-1	A	0's to the output Bus

6. Prepare a flow chart that will count the number of 1's in a register, R4 and then store the counts in register R6.

Determine the outputs of the R6 (in binary) and R4 (in decimal) registers as well as of the carry flag (C) after each clock cycle or timing state.

Timing Classes				R	4				С	R6
Timing States	1	1	0	1	0	0	1	1	0	0
T1										
T2										
T3										
T4										
T5										
T6										
T7										
T8										

7. Develop the control words in binary and hexadecimal formats using the information provided in Table 1 for the following micro-operations:

i.	Re←Ra+Rb	ii.	Rd←3(Re – 0)/3
iii.	Rq←SHL Rp	iv.	Output←Rc
v.	Rd←Rc	vi.	Rb←0
vii.	Rq←Input	viii.	Rq←Rp-Ra
ix.	Rr←SHR Rb	х.	Rc←CRC Rd

^{*} If any value of a-e goes above 7 then it should be assumed as 7.

The necessary bits for the control word are presented in Table 2.

Table 2: 16-bit control word sequence

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
A			B			D			$\boldsymbol{\mathit{F}}$		C_{in}		Н			

One example is shown as follows:

Micro-operation	A	В	D	F	C_{in}	Н	In Hex	
R5← CRC (R3+R4)	011	100	101	001	0	110	7296h	

8. Develop the control memory outputs for the sequence in Table 3 using the information listed in Table 1. To complete the memory outputs, use the microinstructions that you have developed in question no. 7.

Table 3: Control memory bit sequence

									ROM	outpu	its					
DO	M Add	lma a a		Control Word									Addres	SS	Mux Select	
KOI	vi Auc	iress	1	2	3	4	5	6	7	8	9	10	11	12	13	14
0	0	0														
0	0	1														
0	1	0														
0	1	1														
1	0	0														
1	0	1														
1	1	0														
1	1	1														

ID: 22-46013-1 P4-abcde-r

UBBRn= 010110101110 = 1454

Asynchronous Normal Made:

Error =
$$\frac{1200 - 1719}{1200} \times 100$$

= -43, 25 7. > ±27,

60, there will be a communication error

Agrichmons Double Speed Male

Error =
$$\frac{2400 - 3437}{2400} \times 100 = 43.20 > \pm 2\%$$

50, there will be a communication error

Gynchronous Mastermode

so there will be a communication Error

Garen,

WGCM01 = 1WGM00 = WGM02 = 1

ID: 22-46013-1 Pg-ab cde-r

OCROA =
$$(200 + a + b + c) = 200 + 4 + 6 + 0 = 210$$

OCROB = $(100 + d + e) = (100 + 1 + 3) = 114$

. : Mode of operation is Fast PWM 7 (111)

.: Mon - Inverting Mode

OCROA =
$$\frac{256D}{100} - 1$$

D = $\frac{(210+1)100}{256} = 82.42\frac{1}{2}$.

82.42% duty Cycle

For OCROB,

$$0 \cos \theta = \frac{256 D}{100} - 1$$

$$D = \frac{(114+1) \times 100}{256} = 44.92\%$$

Garon, fakio = ra MHz = 12MHz

$$\frac{\int_{0}^{4} \cos x p_{WM}}{\int_{0}^{4} \cos x p_{WM}} = \frac{\int_{0}^{4} \cos x p_{WM}}{\int_{$$

Operation frequency = 732.42 Hz

ID: 22-46013-1 pq-abcde-r

WGM01 = WGM00=1

.. Mode of operation is Fast PWM Mode 3(011)

.. No-inverting Mode

Duty ayde,

OCROB =
$$\frac{256D}{100} - 1$$

 $D = \frac{(160+1) \times 100}{256} = 62.89\%$

(Ton-) (Torr)

fuk_Id = Pa MHZ = 22MHz

.. Operating frequency is 1342.77HZ

solution: 4

a-bit shiften 4-bit shiften ID: 22-46013-1

ID: 22-46013-1
P4-abcde-r

Flowchart:

			C	Re						
Timing States	1	1	σ	l	Ø	0	1	1	0	0
7,	0	1	1	0		0	O	1	ı	
T ₂	0	0	1	1	O	1	0	0	1	2
T ₃	0	0	0	1	1	0		Ó	0	2
Tq	0	0	0	0	-	1	0	1	Ø	2
T ₅	0	0	σ	0	O		1	0	1	3
TG	0	0	0	0	0	0	١	1	0	3
T ₇	0	0	0	d	0	0	O	1	١	4
T ₈	0	0	Ø	0	0	Ø	0	0	1	5

ID: 22-46013-1 p4-abcde-r

Microoperation	A	В	D	F	Cin	41
R7 + R4+R7	100	111	111	00	0	000
R1 < 3 (R7-0)/3	111	000	001	000	σ	000
R2 4 54 L R2	010	010	010'	100	10	010
Output < R,	001	000	000	·O	Ü	000
$R_1 \leftarrow R_1$	001	000	001	000	0	000
R ₇ ← 0	000	000	111	000	0	000
R2 < Input	000	000	010	000	10	000
R2 - R2-R4	010	100	010	010	11	000
RI ESHR R7	111	111	001	100	0'	001
RI CRC RI	001	001	001	100	0	101

solution: 8

ROM Outputs														
		Control World								Address			Mux Select	
Address								5 6 7 9			u	12	13	14
0	0	.1	0	0	0	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	1	0	0	1	O	0	
١	0	0	0	6	0	0	0	0	0	t	0	0	1	0
١	1	ð	0	0	1	0	i	O	0	0	O	0	0	
0	0	O	0	1	0	1	1	0	0		0	1	0	
0	ı	б	6	0	0	0	Ø	0	0	0	0	0	1	1
ı	ð	ð	1	1	1	0	1	0	0	1			0	1
1	1	0	0	6	0	1	1	Ō	1	O	0	0	0	1
	0 1 1 0	dress 0 0 1 1 0 0 0 1	dress 1 0 0 1 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0	dress 1 2 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0	dress 1 2 3 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0	Control 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0	Control Waress 1 2 3 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control World dress 1 2 3 4 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control World O 0 1 0 0 0 0 0 0 0 O 1 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 I 0 0 0 0	Control World O 0 1 0 0 0 0 0 0 0 0 O 1 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 I 1 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 I 1 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 I 1 0 0 0 0 0 0 0 0 I 1 0 0 0 0 0 0 0 0 O 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0	Control World A O 0 1 0 0 0 0 0 0 0 0 0 O 1 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0 I 0 0 0 0	Control World Address 2 3 4 5 6 7 9 10 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Control World Address 1 2 3 9 5 6 7 9 10 11 12 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0	Control World Address Mux 1 2 3 4 5 6 7 9 10 11 12 13 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0