Future Earth-To-Geosynchronous Orbit Technology Requirements For **Transportation Systems**

FINAL BRIEFING April, 1979 N90-70116

(NASA-CR-180090) TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO-GEOSYNCHRONOUS ORRIT TRANSPURTATION SYSTEMS Final Report (Boeing Aerospace Co.) 80 p

Unclas 00/12 0234043

CONTRACT NAS 1-15301 LANGLEY RESEARCH CENTER

BOEING AEROSPACE COMPANY

Final Oral Report

- NASAA ANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS ---- BOEING

TR-7

- STUDY OVERVIEW
- MIDTERM/NORMAL GROWTH SUMMARY
- ACCELERATED TECHNOLOGY ASSESSMENT
- VEHICLE SET DEFINITION & COMPARISONS
- **COSTS**
- FINDINGS

Study Overview

Organization & Manning

Study Overview

Objectives, Tasks & Issues

- NASA/LANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRÖNOUS ORBIT TRANSPORATION SYSTEMS ---- BOEING

TR-65

STUDY OBJECTIVE:

"IDENTIFY TECHNOLOGY AREAS CRITICAL TO THE DEVELOPMENT OF FUTURE TRANSPORTATION SYSTEMS OR WHICH OFFER SIGNIFICANT COST & PERFORMANCE ADVANTAGES"

FOUR TASKS:

1st Half

◆ DEFINE NORMAL TECHNOLOGY GROWTH

DEFINE EARTH-TO-GEO TRANSPORTATION SYSTEM

2nd Half

• APPLY ACCELERATED GROWTH TECHNOLOGY

• EVALUATE ACCELERATED GROWTH

SIDE ISSUES:

PRIORITY CARGO PAYLOAD COST OPTIMIZATION

SHUTTLE CONSTRAINED POTY COMPARISON

ELECTRIC VS CHEMICAL LCOTV

HILV WINGED VS BALLISTIC

Study Overview — Key Groundrules

— NASA/LANGLEY RESEARCH CENTER ———— TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS ——— BOEING

TR-24

FOTAL TRANSPORTATION SYSTEM - PRIORITY CARGO & HEAVY LIFT - EARTH TO GEO

0661 001

ALL ELEMENTS REUSABLE

SPACE BASING - DEPOT @ 500 KM

KSC LAUNCH SITE: LEO BASE @ 28.5°; GEO - EQUATORIAL

MISSION MODEL SPECIFIED

HEAVY LIFT PAYLOAD - 227 METRIC TONS

PRIORITY CARGO PAYLOAD SIZE(S) TO BE COST OPTIMIZED

PAYLOAD DENSITY = 100 KG/M3

RETURN PAYLOADS:

SSTO - 100%; HLLV - 10%; POTV - 75%; LCOTV - NONE

ALL WINGED VEHICLES VTO - HL @ 165 KNOTS RE-ENTRY TRIM CORRIDERS: SSTO 30⁰ - 60⁰; HHLV 35⁰ - 60⁰

SSTO - 2000 KM X-RANGE

SSTO OMS SIZED FOR 93 X 186 KM INSERTION

■ T/W @ LIFTOFF = 1.3, MAX ACCELERATION = 3g

CH₄ = HYDROCARBON FUEL

Technology Forecasting

--- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS - NASA/LANGLEY RESEARCH CENTER

TRE

PREVIOUS SSTO STUDIES & JPL FORECAST FORM DATA BASE

NEFD

- UPDATING
- "NORMALIZATION"
- EXPANSION TO INCLUDE NEW VEHICLES/REQUIREMENTS

SPACE BASING

METHODOLOGY:

- UNDERSTAND EXISTING DATA BASE
- IN HOUSE CONSULTATION
- OUTSIDE CONTACTS IN SELECTED AREAS

Normal Growth Technology Summary

TR-38 SSTO HHLV POTV	SST0	HHLV	POTV	LCOTV
-Improved RSI	×	×		
-"Advanced Composites"	×	×	.	×
-Titanium Honeycomb	×	×		
PROPULSION				
-SSME Two-Position Nozzle	×	×		
-Hydrocarbon Booster Engine	×	×		
	×	` ×	×	
-LOX/LH2 RCS	×	×	×	
-50 CM ION Thruster				×
 POWER, PWR, CONV., PWR, DIST. 				
-APU Driven Generators/Pumps	, ×	×		
-8000 PSI Hydraulics	×	×		
-High Voltage/Solid State Elec. Power	×	×	×	×
-GaAs Solar Arrays/Annealable				×
S UBSYSTEMS				
-Improved Avionics	×	×	×	×
-Improved Landing Gear	×	×		
-2nd Generation Shuttle				
Crew Accommodations	×			
Environmental Control	×	×		
-CCV/FBW Flight Control System	×	×		

Propulsion

- NASAALANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

TH

- SSME 2 POSITION NOZZLE E = $50/150 \, l_{\rm Sp}$ = $450/465 \, \triangle$ WGT = 173. KG (383 lb) \triangle COST = \$50M DDT&E
- HYDROCARBON BOOSTER ENGINE
- "ASE" TYPE ENGINE

I_{SP} = 476 (E = 400) THRUST = 88,964N. (20Klb) WEIGHT = 206.4 KG (455 lb) COST = \$250M DDT&D

- LOX/LH₂ RCS I_{SD} = 427 COST
- COST \$46M DDT&E
- 50 CM ION THRUSTER
- ZERO NPSH BOOST PUMPS FOR ASE, 18 KG (40 LB)/ENGINE

Hydrocarbon Engine

NASA/LANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO-GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

EXPANDER BLEED CYCLE - CHA FUEL

HYDROGEN COOLING & TURBO PUMP DRIVE

4250 PSIA

50 ◆ EXIT DIAMETER ■ 87 Inches

328 SEA LEVEL --- 361 VACUUM

867, 700 S. L. — 955, 000 VACUUM THRUST (Ibs) -

6,680 lbs DRY WEIGHT .

• T/W • 143

LENGTH

170 INCHES

POWER HEAD DIAM. - 98 INCHES

TB0

250 STARTS (50% REFURBISHMENT)

DDT&E

\$570M

Structures/TPS

– NASA/LANGLEY RESEARCH CENTER — TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS —

TR-2

- IMPROVED RSI
- METALLIC TPS NOT USED
- ADVANCED COMPOSITES
- 70% WEIGHT FACTOR VS ALUMINUM
- "100%" UTILIZATION
- TITANIUM HONEYCOMBS
- TITANIUM H/C USED FOR ALL LH₂ TANKS IN LAUNCH VEHICLES

- NASA/LANGLEY RESEARCH CENTER ——— TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO-GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS —

TH-6/

- IMPROVED RSI
- 3000°F REUSE LIMIT @ 20 LB/FT³ (Current Li 2200, redline @ 2700°F & weighs 22 lb/ft³) (Leading edges, etc)
- 2300°F REUSE LIMIT @ 7.5 LB/FT³ (Current Li 900, 2300°F @ 9 lb/ft³)
- 2000⁰F REUSE LIMIT @ 7.5 LB/FT³ (Current coating limit @ 1200⁰F) (Flexible Blanket)
- TILE RSI \$200-400/TILE

(Current - \$400-700/tile + \$50 installation)

● FLEXIBLE RSI

(Current - \$50/ft²)

Power Conversion & Distribution

- NASA/LÀNGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS --

Ę

- APU DRIVEN GENERATORS/PUMPS
- **ELIMINATE LAUNCH VEHICLE FUEL CELLS**
- 8,000 PSI HYDRAULICS
- 30% WEIGHT REDUCTION
- HIGH VOLTAGE/SOLID STATE ELECTRICAL POWER SYSTEM
- 40% WEIGHT REDUCTION
- GaAS SOLAR ARRAYS

Subsystems

TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

TRA

● AVIONICS

- LOWER WEIGHT, LESS POWER, SAME COST
- IUS REFERENCE FOR OTV'S, SHUTTLE REFERENCE FOR LAUNCH VEHICLES
- LAND ING GEAR
- NEW SHOCK/STRUT DESIGN USING COMPOSITES, IMPROVED TIRES 2.8% LANDING WGT.
- CREW ACCOMMODATIONS/ECS
- 2ND GENERATION SHUTTLE LOWER WEIGHT
- ▶ FLIGHT CONTROL SYSTEM
- CCV CAPABILITY SHUTTLE BASED WEIGHTS

Solar Array

JM T		Liu µm GaAs Mass (g/m ²)	110.0	51.9	43.9	18.2	110.0	334.0	38/ 1	1.+00					
10 µm Titanium		Approx Area Factor	1.0	0.96	0.96	0.20	1.0		v (15%)	1	POWER	270.6 w/m ²	246.0 w/m ²	234. 1 w/m² 186. 7 w/m²	2.06 g/w or kg/kw
- rechnology regulnements for fulure earth-to-seostinchronous orbit in Anstonation stratems 50μm - 10 μm Titanium -	120 µm 1 — —	L 50 µm Thickness (mil)	2.0	0.4	0.4	0.4	2.0		TOLERANCES & INSTALLATION (15%)		EFFICIENCY F			17.3% 2 13.8% 1	п
TS FOR FUTURE EAR		g/m²/mil	55	135, 13	114.3	227. 1	22	SUBTOTAL	TOLERANCE	ı		₅ °C]			0 384, 1 g/m ² 186, 7 w/m ²
TECHNOLOGY NEGUINEMEN	FILM, GaAs BLANKE	MATERIAL	BORO SILICATE MICROSHEET	GaAs	TITANIUM	COPPER	MICROSHEET					FICIENCY (AM-0, 25 ⁰ C)	ORMANCE FACTORS	RADATION GRADATION	MASS-TO-POWER RATIO
TR-38	ANNEALABLE, THIN FILM, GaAS BLANKET	COMPONENT	COVER	SOLAR CELL	SUBSTRATE	INTERCONNECTS	BACKING/SHIELDING					BASIC CELL EFFICIENCY	BLANKET PERFORMANCE	THERMAL DEGRADATION RADIATION DEGRADATION	MA

Ion Thruster

- NASA/LANGLEY RESEARCH CENTER ----- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS TR-68

50 CM/SHAG OPTICS - LARGEST SINGLE CATHODE DESIGN EXTRAPOLATION OF 30 CM THRUSTER TECHNOLOGY

ARGON PROPELLANT

THRUST	Ħ	.7 Newtons (. 16 lb)	
lsp	u	10,000	
INPUT POWER	H	46 kw @ 2513 Beam Voltage	•
EFFICIENCY	u	82%	
LIE		6000 Hrs. @ Beam Current = 16 Am	
WEIGHT	n	20 KG (44, 1 lb)	
REFURBISHMENT	n	50% of Initial Cost (10 rebuilds ma	<u>a</u>
REQUIREMENTS			
COST	11	\$25M DDT&E	

SSTO - Design Requirements & Issues

NASA/LANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS --

TR-2

REQUIREMENTS:

- 100 KG/M³ PAYLOAD DENSITY 100% RETURN - SIZE TO BE COST OPTIMIZED
- OMS SIZED FOR 500 KM FROM 93 X 186 KM INSERTION
- VERTICAL TAKEOFF @ T/W = 1.3 HORIZONTAL LANDING @ 165 KNOTS
- SINGLE STAGE DUAL FUEL
- 9.1 METHANE ENGINE PROPELLANT FACTION
- Z000KM X-RANGE (REENTRY TRIM 30⁰ 60⁰)
- MINIMUM ORBIT STAY TIME

ISSUES:

- PAYLOAD SIZE
- ▶ PAYLOAD BAY CONFIGURATION & ACCESS
- AERO CONFIGURATION/CG
- STRUCTURAL SIMPLICITY & HIGH VOLUMETRIC EFFICIENCY
- ENGINE SIZE SELECTION

SSTO - Design Concept

SSTO Configuration

(30,000 LB) 1, 188, 571 KG (2, 620, 800 LB) 767,438 KG (1,692,200 LB) (525, 500 LB) 2,207,936 KG (4,868,500 LB) — TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS 238, 322 KG 13,605 KG PROP. WT. -SSME's - INCL. F **INERT WEIGHT** PROP. WT. -CH4 ENGINES (100% RETURN) /38.4m GLOW /125.8 ft. P/L WT. - NASA/LANGLEY RESEARCH CENTER -44 ft. DIA.

ર્

62. 1m 203. 8 ft.

HLLV

Design Requirements & Issues

NASA/LANGLEY RESEARCH CENTER ------ TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

TR-63

REQUIREMENTS:

- 227 M.T. TO 500 KM & 28.50 INCLINATION 10% RETURN
- 100 KG/M² PAYLOAD DENSITY
- TWO STAGE-PARALLEL BURN WITH X-FEED (LH2 & LOX)
- VERTICAL TAKEOFF @ T/W 1.3 HORIZONTAL LANDING @ 165 KNOTS
- HEAT SINK BOOSTER AIRBREATHING FLYBACK SYSTEM
- UNMANNED VEHICLES
- 500 MISSION LIFE
- MINIMUM ORBIT STAY TIME

ISSUES:

- PAYLOAD BAY CONFIGURATION & ACCESS
- ASCENT MATED CONFIGURATION LOADS, CG, TVC
- AERO CONFIGURATION
- GROUND MATING

HLLV

Design Concept

ALUMI NUM/TITANI UM NON-PRESSURIZED COMPOSITES USED RETRACTABLE SUBSONIC, TRIM CANARD STRUCTURE WITH FITANIUM H/C DEPLOYABLE AIRBREATHER LCH4 TANK - TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS LH2 TANK **ALUMI NUM** ALUMINUM LO2 TANK ENGINES 2160 m/sec (7100 ft/sec) STAGING VELOCITY ALL PROPELLANT USED BY ORBITER ENGINES DURING BOOST CARRIED SITE USING AIRBREATHER ENGINES BOOSTER FLIES BACK TO LAUNCH ORBITER SSME NOZZLES EXTEND PARALLEL BURN, CROSSFEED HEAT SINK BOOSTER · NASA/LANGLEY RESEARCH CENTER — T/W @ L.O. - 1.3 CONFIGURATION AT STAGING IN BOOSTER

NTERNALLY

13 CH4 ENGINES

20

8 SSME'S

HLLV

Orbiter Design Concept

- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS ADVANCED COMPOSITE NON-PRESSURIZED STRUCTURE NASA/LANGLEY RESEARCH CENTER

RSI TPS

T/W = 1 AT STAGING

500 FLIGHT LIFE

LO₂/LH₂ RCS & OMS

■ WING/CANARD SIZED FOR LANDING

AFT BODY PAYLOAD BAY
SQUARE CROSS-SECTION
SUBSONIC TRIM
18 m x 11 m x 11 m
CANARD
100 kg/m
(RETRACTABLE)

HYDROGEN TANK ALUMINUM LOX TANK TITANIUM H/C SSME'S W/DUAL POSITION NOZZLES (A_E = 50/150

7

AFT BODY FLAP

EXTENDABLE

HLLV Configuration

HLLV Orbiter Configuration

HLLV Booster Configuration

POTV - Design Requirements & Issues

- NASA/LANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS ----- BOEING

TH-26

REQUIREMENTS:

- SPACE BASED @ 500 KM
- GEO DESTINATION EQUATORIAL
- 75% RETURN PAYLOAD
- · TRIP TIME-T/W SUITABLE FOR MANNED MISSION
- **▶** 50 MISSION VEHICLE LIFE/I0 MISSION ENGINE LIFE

ISSUES:

- SINGLE VERSUS TWO STAGE
- PAYLOAD SIZE
- SPACE BASED TECHNOLOGY

Space Basing

- NASA/LANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO-GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

TR-2

- PAYLOAD HANDLING
- PROPELLANT CONDITIONING, STORAGE & TRANSFER
- OTV SERVICE & MAINTENANCE INCLUDING ENGINE CHANGEOUT
- ► LCOTV SPACE FAB & ASSY
- REDUCED STRUCTURAL REQUIREMENTS ON OTV'S
- VEHICLE INTERFACE BURDEN

POTV - Design Concept

POTV Configuration

MASAA ANGLEY RESEARCH CENTER --- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

TH-33

96,839 KG (213,530 LB) 78,413 KG · (172,900 LB) 6,045 KG (13,330 LB) 12,381 KG (27,300 LB) PROP. - MAINSTAGE-INCL. FPR P/L WEIGHT (75% RETURN) GROSS WEIGHT INERT WEIGHT

T/W @ STARTBURN 0, 187

LCOTV

Design Requirements & Issues

NASA/LANGLEY RESEARCH CENTER ----- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS --

TR-6

REQUIREMENTS:

- ▶ PAYLOAD TO MATCH HLLV
- NO RETURN PAYLOAD
- NO TRIP TIME CONSTRAINT
- SPACE ASSEMBLED/SPACE BASED

ISSUES:

- VEHICLE CONFIGURATION
- IS, TRIP TIME, NUMBER OF THRUSTERS, BEAM CURRENT
- EFFECTIVE THRUST USAGE

LCOTV - Design Concept

- NASALANGLEY RESEARCH CENTER ----- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO-GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS ------ BOEING 1R-107

"HIGH" ASPECT RATIO, MAIN AXIS POP

- ARGON FUELED ION THRUSTERS (IS = 8,000)
 - 5×10^{-5} (180 day trip time)
- CONCENTRATION RATIO 1, SIMPLE SOLAR ARRAY

LCOTV Configuration

153 Newtons (34 lb)

TOTAL THRUST

5.1 x 10⁻⁵ g's

Mission Requirements

TR-41

ENS BOEING	•	ENTS (MAX)	154 853 MT	252 1,352 MT	13 3010 MT	74 16, 686 MT
ON SYST		IREM	+ +	+ .+		+ +
ORBIT TRANSPORATIO	N LEADING	REQUIREMENTS	1,319 32 0	2,888 108 259 MT	56 29, 860 MT 1 33 MT	609 138, 018 MT 15 - 3, 400 MT
RE EARTH-TO-GEOSYNCHROWOUS	INDUSTRIALIZATIO		TOTAL FLTS - ANNUAL FLT RATE ANNUAL PAYLOAD	TOTAL FLTS - ANNUAL FLT RATE ANNUAL PAYLOAD	TOTAL FLTS - TOTAL PAYLOAD - ANNUAL FLT RATE ANNUAL PAYLOAD	TOTAL FLTS - TOTAL PAYLOAD - ANNUAL FLT RATE - ANNUAL PAYLOAD -
NASA/LAWGLEY RESEARCH CENTER TECHNOLOGY REGUIREMENTS FOR FUTURE EARTH-TO-GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS BOEING	SCENARIO: 1990-2005 TIME FRAME - EARLY SPACE INDUSTRIALIZATION LEADING TO SPS DEPLOYMENT	MISSION ROLE	GEO MANNED SORTIESGEO SATELLITECREW TRANSFERS	POTV PAYLOADSLEO SATELLITESCREW TRANSFERS	LARGE UNMANNEDCARGO TO GEO	LCOTV PAYLOADS.OTV DELIVERY & REFURBOTV PROPELLANTHEAVY LIFT TO LEO
NASA/LANGLEY RESEARCH CENTER	SCENARIO: 1990-2005 TIME FRAN TO SPS DEPLOYMENT	VEHICLE	PRIORITY CARGO OTV	PRIORITY CARGO LAUNCH VEHICLE	LARGE CARGO OTV	HEAVY LIFT LAUNCH VEHICLE

Fleet Sizing

- NASAA ANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

TR-58

GROUNDRULES:

- BASELINE 2 SHIFTS/DAY, 5 DAYS/WEEK, 50 WEEKS/YR = 4000 HR/YR
- 3 SHIFTS/DAY AVAILABLE ON TEMPORARY BASIS
- MAX. VEHICLE FLIGHT RATE/YR = 4000/VEHICLE TURNAROUND TIME
- AVAILABLE VEHICLES (EXCLUDES VEHICLES BEING OVERHAULED) FLEET SIZED TO MEET MAXIMUM YEARLY FLIGHT RATE WITH
- VEHICLE UNDERGOING UNSCHEDULED MAINTENANCE FOR UP TO 3 MO'S. FLEET ALSO SIZED TO MEET MAXIMUM FLIGHT RATE WITH ONE

RESULTS:

	HLLV	SST0	TC01V	POTV
FLEET SIZE:	m	∞	El	5
MAX. FLT RATE/YR:	74	.252	13	154
TOTAL NO. FLTS:	609	2888	26	1319

TR-6

■ METHODOLOGY

- DDT&E & TFU DEVELOPED USING BOEING PCM
- OPERATIONS LABOR COSTS BASED ON HHLV, SPS & SHUTTLE DERIVATIVE STUDIES

KEY GROUNDRULES

- 1977 DOLLARS
- CONTRACTOR CHARGES WITHOUT FEE
- ONLY PROGRAM SUPPORT BASED ON SHUTTLE USER CHARGES
 - INDIRECT COSTS BASED ON TYPICAL INDUSTRY CHARGES PROPELLANT COSTS BASED ON JSC ESTIMATES
- $LH_2 = \$.731/lb$ $LO_2 = \$.018/lb$ $CH_4 = \$.188/lb$

Total System

Cost Summary

- TECHNOLOGY REOUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS ----- BOEING - NASA/LANGLEY RESEARCH CENTER TR-56

			OPERATIONS 56%	TOTAL
MILLIONS OF DOLLARS	41, 892. 87	9, 794. 35 277. 62 3, 705. 85 4, 390. 29	1, 420. 59 8, 827. 00 658. 89 211. 54	7, 956. 56 23, 271. 52 10, 524. 41 12, 747. 12
PROGRAM PHASE	TOTAL PROGRAM	DDT&E PRGM, MANAGEMENT ENGINEERING MANUFACTURING	PRODUCTION PRGM, MANAGEMENT SYST, ENGINEERING	MANUFACTURING OPERATIONS OPERATIONS SUPPORT LAUNCH SUPPORT

PRODUCTION $\left\langle 21\% \right\rangle$

DDT&E 23%

System Costs — Another Slice

Findings

- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

TR-78

- GOOD REFERENCE VEHICLE SET AND DATA BASE
- SPACE BASING ATTRACTIVE FOR POTV
- SPACE BASED POTV SINGLE STAGE
- LARGE SPACE BASED POTV CAN BE EFFICIENTLY OFFLOADED
- SHUTTLE CONSTRAINT ON POTV——SMALL PENALTY
- PRIORITY CARGO P/L OPTIMIZATION SENSITIVE TO SSTO & MISSION REQM'TS
- PRIORITY CARGO COSTS LARGE SHARE OF TOTAL
- DELTA V FOR 500 KM MISSION TOUGH ON SSTO WITH HIGH SENSITIVITY TO SIZE
- HLLV STILL EFFICIENT AT RELATIVELY LOW MISSION REQUIREMENTS
- CHEMICAL LCOTV BEATS SOLAR ELECTRIC IN THIS SCENARIO
- SOLAR ELECTRIC REQUIRES MISSION SCENARIO WHICH ALLOWS VEHICLE AMORTIZATION TO BEAT CHEMICAL
- OPEN ISSUES:
- SPACE BASE DEFINITION/COSTS
- ALTERNATE VEHICLE CONFIGURATIONS

Accelerated Technology Summary

TR-81				
ACCELERATED TECHNOLOGY ITEMS	SSTO	HEEV	POTV	LCOTV
	,			
IMPROVED SSME	×	×		
DUAL FUEL/DUAL EXPANDER ENGINE	×	×		
ALTERNATIVE OTV ENGINE			×	
SLUSH PROPELLANTS	×	×		
INTEGRATEDLOX/LH ₂ SUBSYSTEMS	×	×	×	
IMPROVED AVIONICS	×	×	×	
COMPOSITE STRUCTURES	×	×		
METALLIC TPS	×	×		
CCV CONFIGURATIONS	×	×		·
SILICON VS GAAS SOLAR ARRAY				· ×
ION THRUSTER OPTIONS				×
DIRECT POWER PROCESSING				×

Accelerated Technology Long Life SSME

- NASA/LANGLEY RESEARCH CENTER ----- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

TR-80

- LIFE IMPROVED TO 250 CYCLES
- NO PERFORMANCE IMPROVEMENT
- NO IMPACT ON WEIGHT/GEOMETRY
- DDT&E = \$370 M
- SAVINGS

SSTO -- \$1261 M HLLV - \$ 474 M

FINDINGS:

- GOOD BUY FOR SSTO IF NO DUAL/FUEL/DUAL EXPANDER DEVELOPMENT
- NOT JUSTIFIED FOR HLLV

Accelerated Technology Dual Fuel/Dual Expander Engine

NASA/LANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

DUAL FUEL/DUAL EXPANDER — A COMPLEX, HIGH PRESSURE ENGINE THAT CAN OPERATE IN TWO MODES:

BOOSTER MODE BURNING TWO FUELS AT MODERATE ISP AND HIGH THRUST UPPER STAGE MODE BURNING HYDROGEN WITH HIGH EXPANSION RATIO (HIGH Isp), AND REDUCED THRUST 8

VACUUM 1, 275, 200 390. 5 60. 5	409,900
SEA LEVEL 1, 150, 000 352. 2 60. 5	
MODE 1: Thrust (1b) Isp E	MODE 11: Thrust (1b) Isp

CHAMBER PRESSURES: HYDROCARBON - 6000 PSI

HYDROGEN - 3000 PSI

9700 158 Length (inches) Weight (lbs)

Exit Diameter (inches)

COSTS: \$1.22 BÍLLION DDT&E; \$18.5 MILLION TFU

Dual Fuel/Dual Expander Engine Accelerated Technology

INGLEY RESEARCH CENTER ----- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

KEY ADVANTAGE IS THRUST-TO-WEIGHT RATIO & COSTS FOR DUAL FUEL PROPULSION

CH4/SSME PAIR DF/DE

92.2 34.8 118.6 T W [MODE 1 (S. L)*
| MODE 2 (VAC)

(However, in a one-on-one comparison with CH4 engine -10% disadvantage Sizing point ~ 30% improvement in engine weight

\$18.5 Million \$24.3 Million

COSTS (TFU)

COST BENEFITS

SST0

HILV

\$2.067 Million (Net, includes DDT&E)

\$ 531 Million*

Net loser by \$687 million if DDT&E included.

FINDINGS

BEATS A PAIR OF ENGINES (CH₄ + SSME) ON ALL COUNTS. PERFORMANCE - COST⁴ - WEIGHT

PERFORMANCE -

LOSES ON A ENGINE-TO-ENGINE BASIS ON ALL COUNTS

NOT JUSTIFIABLE FOR TWO STAGE SYSTEM

Accelerated Technology Alternate OTV Engine

NASA/LANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

INSTALLED WEIGHT DELTA +173 lbs 1200 cycles \$.8 Million 125 Million 40,000 lbs 466.9 1267 lbs CHAMBER PRESSURE-500 psi 99 PLUG CLUSTER CONCEPT Isp WEIGHT TFU COST THRUST

COST IMPACT

DDT&E COST

INCREASE OF 2 MILLION LCC

- FINDINGS
- A COST PUSH
- **ADVANTAGES**

LENGTH (NOT A SPACE BASED ISSUE), LOW THRUST CAPABILITY, REDUNDANCY, MAINTAINABILITY

"ASE" Type or New OTV Engine

----- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

TR-89

"ASE" TYPE OR NEW OTV ENGINE WAS ASSUMED AS NORMAL GROWTH

■ IF RL10 IIB HAD BEEN CALLED NORMAL:

	RL10 11B	"ASE" TYPE ENGINE
THRUST	15,000 LB	20,000 LB
CHAMPER PRESSURE	400 PS1	2,000
AREA RATIO	205	400
ISP	457	473
WEIGHT	442 LB	454
LIFE	190 CYCLES	09
TFU COST	\$1.25	\$1,83 M
DDT&E COST	\$50	\$250 M

COST BENEFIT OF NEW ENGINE

\$305 MILLION (5% of LCC)

FINDINGS

RL10 DERIVATIVE COULD BE A GOOD BUY IN A REDUCED MISSION MODEL

Accelerated Technology "Slush" Propellants

TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS NASA/LANGLEY RESEARCH CENTER

SLUSH HYDROGEN ONLY:

"SLUSH" LOX WOULD REQUIRE INSULATED TANK

ALL LOX TANKS ARE SMALL AND HAVE HIGH VOLUMETRIC EFFICIENCY

(INSTEAD OF DENSITY) SINCE INERTIAL LOADS RATHER THAN BURNOUT PRESSURE SIZE TANK WALLS. LOX TANK WEIGHTS MORE SENSITIVE TO PROPEL LANT MASS

SIGNIFICANT GROUND FACILITY IMPACT FOR "SLUSH" LOX AS COMPARED TO SLUSH LH2

SLUSH HYDROGEN IMPACT:

LENGTH (INCHES) - 220 WGT (LB) -3860 -3316 - 160 ORBITER BOOSTER HLLV: **SST0**:

COST IMPACTS:

(PROPELLENT COST DELTA OF 25% BASED ON Lerc/Martin Study) \$-300 MILLION (INCLUDES +\$50M DDT&E) (NO DDT&E DELTA \$+67.8 MILLION

Accelerated Technology Slush Propellants

EFFICIENCY (AERO-SHAPED) AND SIGNIFICANT HYDROGEN VOLUME. FINDINGS: PAYS ONLY FOR VEHICLES WITH TANKS OF LOW VOLUMETRIC

Integrated "Oxygen-Hydrogen" Subsystems Accelerated Technology

NASAA ANGLEY RESEARCH CENTER ----- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

NORMAL GROWTH - INDEPENDENT OXYGEN/HYDROGEN FUELED SUBSYSTEMS

ACCELERATED TECHNOLOGY - SYNERGISTIC INTEGRATION OF THESE **SUBSYSTEMS**

COMMON STORAGE TANKS

COMMON SERVICE INTERFACE

COMMON RESERVES

| Design Price = Long Feed Lines, Different Conditioning Reqm'ts, Conflicting Duty Cycles, Cascading Failure Modes, Interrelated Development Planning/Risks)

A Cost \$M	-434	-30	-102
Propellant A (lbs)	-928	$\begin{bmatrix} -189 \\ -1192 \end{bmatrix}$	-132
Dry Wgt A (Ib)	-2090	HLLV Booster -1205 Orbiter -2336	-119
IMPACT	SST	HLLV (B	POTV

FINDINGS

MODERATE PAYOFF BASED ON COST BENEFITS

SIGNIFICANT OPERATIONAL ADVANTAGE TO SPACE-BASED POTY - SINGLE POINT REFUELING

Accelerated Technology Avionics

- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

CHARACTER ISTICS:

% REDUCTION

POWER WEIGHT

POTV SSTO HLLV

15% 25%

NO COST IMPROVEMENT/NO DDT&E PENALTY NO RELIABILITY IMPROVEMENT

COST BENEFITS:

\$18.5 MILLION \$411.0 MILLION

\$9.2 MILLION POTV SSTO HLLV

FIND INGS:

- IMPROVEMENT ABOVE NORMAL GROWTH MARGINAL EXCEPT FOR SSTO
 - RELIABILITY IMPROVEMENT COULD BE MORE SIGNIFICANT

Accelerated Technology Composite Structures

— TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS — VASA/LANGLEY RESEARCH CENTER

H.H.

- CHARACTERISTICS:
- ALL COMPOSITE DESIGN IS METAL SUBSTITUTION FOR NORMAL GROWTH IMPROVED WGT FRACTION BY 10% (TO 40% TOTAL REDUCTION)
- EXPANDED APPLICATION TO PROPELLENT LINES
- REDUCED FAB AND DDT&E COSTS TO "STATE OF ART" LEVELS
- IMPROVED PROPERTIES NOT CONSIDERED
- COST BENEFIT:

SSTO — \$3,112 MILLION HLLV — 986 MILLION

FINDINGS:

MOST IMPORTANT TECHNOLOGY AREA!

Accelerated Technology Metallic TPS

— NASA/LÄNGLEY RESEARCH CENTER ——— TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

1H-8

CHARACTERISTICS

TEMP LIMITS OF 1600⁰F — 1800⁰F (LRSI SUBSTITUTE) 300 ENTRY LIFE NO WEIGHT REDUCTION ASSUMED INSTALLED UNIT COST UP BY A FACTOR OF 2

■ OPERATIONAL ASSUMPTIONS

PER FLIGHT TPS SPARES & TURNAROUND REPAIR REDUCED BY POST FLIGHT TPS INSPECTION REDUCED BY 50% TOTAL TURNAROUND FLOW TIME NOT AFFECTED REDUCED OVERHAUL COSTS

COST BENEFIT:

SSTO \$76 MILLION NO DDT&E DELTA \$16 MILLION

► FINDINGS:

MARGINAL IF COST IMPROVEMENT ONLY JUSTIFICATION

CCV Configuration — No Vertical Tail Accelerated Technology

SSTO WGT As (Ib) NORMAL GROWTH NASA/LANGLEY RESEARCH CENTER ----- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS CONFIGURATION REVISIONS (BASED ON LARC STUDIES)

FLT. CONTROLS AND BODY TIE IN.	SURFACE (RETRACTABLE) + 450				- 1,234	TOTA! - 13 570
 REMOVE VERTICAL TAIL, ASSOCIATED ADD WING TIP AFRO TRIM SHRFACES 	 ADD SUBSONIC FORWARD YAW SI 	 ADJUST RCS FOR ADDITIONAL DUTY CYCLE & ALTITUDE REQM'T. 	 ADD LANDING CHUTE OR ALTERNA 	 ADJUST WING SWEEP FOR FAVORABLE CG IMPACT 	 ADJUST GROWTH 	

COST BENEFITS:

SSTO - \$1,652 MILLION HLLV - 412 MILLION

FINDINGS:

- IMPORTANT TECHNOLOGY AREA -- IN ADDITION TO COST IMPACT THIS ITEM
 - MOVES CG FORWARD HELPING AERO PROBLEM IN PITCH AXIS MAKES VEHICLE EASIER TO INSPECT, HANDLE & SERVICE
- OPENS UP CONFIGURATIONS OTHER THAN 2-STAGE BELLY-TO-BELLY + X-FEED ON COLD SIDE REDUCES IMPACT ON GROUND EQUIPMENT & FACILITIES

Accelerated Technology Solar-Electric

- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO-GEOSYNCHRONOUS ORBIT TRANSPORATION SYS NASA/LANGLEY RESEARCH CENTER

TR-11

- SOLAR ARRAY
 NORMAL GROWTH REVISED TO SILICON SOLAR ARRAY
- 2 cm cell, 2 mil covers, 427 g/m², 197.7 W/m²
 - GAAS ACCELERATED TECHNOLOGY
- Thin Film, 2 mil covers, 384 g/m², 234.1 W/m²
 - Cost up by 50%
- THRUSTER OPTIONS
- 100 cm (39 kb), 80 amp beamp current
- 100 cm with mission life (50 kg), 150 amp beam current 100 cm with mission life and self-regulating characteristics
 - 100 cm with mission life and self-regulating characte (50 kg), 150 amp beam per unit
- POWER PROCESSING OPTION
- Direct Open Loop Power from Array

Accelerated Technology Solar-Electric

- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

COST SUMMARY (\$ Millions)

•								
GaAs Array	100 cm Long Life	Thruster Direct	Power Processing	3,236	296	1,911	728	88
Baseline	w/J00 cm	Thruster	w/Long Life	3,348	617	1,963	191	96
	Baseline	with 100 cm	Thrusters	3,492	463	1,964	1,063	26
		GaAs Replaces	Silicon	3,334	394	2,009	930	35
•			New Baseline	3,276	388	110N 1,930	OPERATIONS 958	LANT 98
				TOTAL LCC	DDT&E	PRODUCI	OPERATI	PROPELLANT

GaAs - reduced overal size offset by higher array cost.

by increased DDT&E and higher production costs Thruster Improvements - improvements in thrust density/efficiency offset

due to prod. rate sensitivity except for:

self-regulating feature which allows open loop direct solar array power supply

FINDINGS -

This vehicle requires production oriented technology - not performance

Accelerated Technology Life Cycle Costs Benefits Summary*

NASA/LANGLEY RESEARCH CENTER ----- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS

13.98 19.98

LIFE CYCLE COST DELTA \$ x 10⁰

TOTAL	-4098	-2598	-2064	-1735	-566	-300	-438	-112	(+2)	(+28)	(+216)	(+72)	-386
LCOTV	l	1		1	1			1	1	(+28)	(+216)	(+72)	-386
РОТУ	1		1	1	-102		-18	1	(+5)	1	1	1	1
HLLV	986-	-531	-412	-474	-30	[-	6-	-36	1	1	-	1	
SSTO	-3112	-2067	-1652	-1261	-434	-300	-411	92-				1	
TECHNOLOGY	Composite Structures	Dual Expander Engine	Eliminate Vertical Tail	Extended Life SSME	Integrated Subsystems	Slush LH ₂	Improved Avionics	Metallic TPS	Plus Cluster Engine	Gallium Arsenide Array	100 cm Thruster	Long Life Thruster	Direct Power Processing

*These data reflect the benefit when each 'tem is evaluated "by itself" on the reference vehicles.

Accelerated Technology Impact On SSTO

SSTO Configuration ACCELERATED TECHNOLOGY

(275, 200 LB) (30,000 LB) PRO. WT.-INCL FPR 1,065,216 KG (2,348,800 LB) 1, 203, 628 KG (2, 654, 000 LB) - TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS -13,605 KG 124, 807 KG (100% RETURN) **INERT WEIGHT** P/L WT. **CLOW** 9.8 m Dia.-(32.1 ft) NASA/LANGLEY RESEARCH CENTER -

. 47.9 m - (157.3 ft)

当

SSTO — Characteristics & Weights Accelerated Technology - NASALANGLEY RESEARCH CENTER —— TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO GEOSYNCHRONDUS ORBIT TRANSPORATION SYSTEMS

KG (LB)	(21, 160)	(82,480)	(32,800)	•	(8,520)	•	(49,350)	•	(15,300)	(23,240)	(232, 850)	(1,470)	(000,000)		(077,70)	(086,6)	(2,480)	(20,650)		1,065,216 (2,348,800)	1, 203, 628 (2, 654, 000)
KG	9,596	37,406	14,875		3,864	•	22,381	•	6,939	10,540	105,601	199	13,605		3,524	4,526	1, 124	9,365		1,065,216	1, 203, 628
	AEROSURFACES	BODY	INDUCED ENVIRON.	PROTECTION	LANDING & AUX.	SYSTEMS	PROPULS ION-ASCENT/	RCS/OMS	SYSTEMS	MARGIN	DRY	PERSONNEL	PAYLOAD-ASCENT	(100 % RETURN)	RESIDUALS & RESERVES	INFLIGHT LOSSES	PROPELLANT - RSC	PROPELLANT - OMS	PROPELLANT-ASCENT	INCL FPR	's' GROSS LIFTOFF
(FT ²)	(3, 562)	(1,817)	(423)	(450)	(66)	(24)	(342)	(6, 520)		(878)			0 99) ·	_	(lb/ft ²)	(42.0)	(15.0)	(8 29)	0.0	
_m ²	331	169	39	45	∞	2.2	35	909		83	•	S % B.L.	3	. 99	, 3	KG/m ²	205	9	221	100	
AREAS (FT ²) WEIGHTS	WING - REFERENCE	WING - EXPOSED	ELEVON	CANARD	WING TIPLETS - EACH	YAW VENTRAL	BODY FLAP - STOWED	PLANFORM - FLAP	٠.	BODY BASE		LONGITUDINAL CG'S	FNTBV			LOADING	ENTRY PI ANEORM-	FIAD EXT	I AND ING (BEE WING +	CANARD)	

Accelerated Technology Impact On HLLV

EASIER VEHICLE TO HANDLE, HOUSE & MAINTAIN

LESS ENGINES 21 VS 15₅₉

HLLV Configuration ACCELERATED TECHNOLOGY

- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS NASA/LANGLEY RESEARCH CENTER — TR-102

2,757,098 KG (6,079,400 LB) 4,225,080 KG (9,316,300 LB) (490,000 LB) 1,245,760 KG (2,746,900 LB) 222,222 KG P/L WT. (10% RETURN) OLOW - EXCL, P/L **C** LOW BLOW

HLLV Orbiter Configuration

ACCELERATED TECHNOLOGY

- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS NASA/LANGLEY RESEARCH CENTER --

HLLV Orbiter Characteristics & Weights ACCELERATED TECHNOLOGY

TEMS ROFING	-	(LB)	(33,610)	(137,000)	(46,500)	(15,440)	(80,830)		(23.890)	(30,010)		(367,280)	· · ·		(490,000)		(6,350)	(18, 270)	(001,9)	34, 500)		(2, 311, 400)	(3, 236, 900)
ORATIONSYS		KG	15,243	62, 131	21,088	7,002	36,658		10,835	13,610		166,567	i	1	222, 222		4,240	8, 286	2,766	15,647		1,048,254	1,467,982
TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHBONOUS ORBIT TRANSPORATION SYSTEMS		WEIGHIS	AEROSURFACES	BODY	INDUCED ENVIR. PROTECT.	LANDING & AUX, SYST.	PROPULSION-ASCENT	RCS/0MS	SYSTEMS	MARGIN		DRY	PERSONNEL	1	PAYLOAD-ASCENT	(10% RETURN)	RESIDUALS & RESERVES	INFLIGHT LOSSES	PROPELLANT - RCS	PROPELLANT - OMS	PROPELLANT-ASCENT	INCL, FPR	0LOW I,
REQUIREMENTS FOR FI	1,27,		(5, 327)	(2,593)	(299)	(450)	(142)	<u> </u>	(281)	(686)	(11.949)	(1,537)	•	% B.L		ر ا 3	71.9		(I R/FT2)	VEDVI 1-7	(35.9)	•	(73.8)
TECHNOLOGY I	2	٤	495	241	6 5	42	13	3.3	X	35	D 1, 110	143							KC/M2		175	!	360
WASAA ANGLEY RESEARCH CENTER		AKEAS	WING - REFERENCE	WING - EXPOSED	ELEVON	CANARD	WING TIPLETS - EACH	YAW VENTRAL	BODY FLAP - STOWED	BODY FLAP - EXTENDED	PLANFORM - FLAP EXTENDED 1, 110	BODY BASE		LONGITUDINAL CG'S		ENIKY	TANDING		DADING	-	ENTRY PLANFORM-FLAP	EXT.	LANDING (REF WING + CANARD)

HLLV Booster Configuration ACCELERATED TECHNOLOGY

– TECHNOLOGY REGUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS — WASA/LANGLEY RESEARCH CENTER

TR-10

- 37.5 m

_69.7 m _ (228.6 ft)

(122.9 ft)

HLLV

Booster Characteristics & Weights Accelerated Technology

STEMS BOEING	(FB)	(53, 740)	(165, 400)	(19,940)	,	(18, 370)	•	(168, 540)	•	(18,730)	(33, 130)	(477 850)	10/0 114		· · ·	(32, 660)	(54, 350)	(2,690)	(64, 950)	(5,446,900)	(000,020,31	(0,017,400)	٠.	
WSPORATION SY.	KG	24, 372	75,011	9,043		8,331		76,436	•	8,494	15,025	216 712	1011	t t		14,812	24,648	1,220	29,456	2,470,250	2 757 009	, 171,070		
- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS	WEIGHTS	AEROSURFACES	BODY	INDUCED ENVIR.	PROTECTION	LANDING & AUX.	SYSTEMS	PROPULS ION-ASCENT/	RCS/FLYBACK	SYSTEMS	MARGIN	DRV		PERSONNEL	PAYLOAD-ASCENT	RESIDUALS & RESERVES	INFLIGHT LOSSES	PROPELLANT-RCS	FUEL-FLYBACK	PROPELLANT-ASCENT 3	WOIN	•		64
PEOUIREMENTS FOR FL	(Ft ²)	(6,046)	(3,279)	(725)	(400)	(191)	(04)	(456)	(222)	(11,514)	•	(1,232)	- a		71.1		/11h/f# ²)			(50.2)	(89.3)		(79, 2)	
ECHNOLOGY !	² E	295	305	<i>L</i> 9	37	15	3.7	42	42	1,070	•	114	טן ני	3			La/m2	MJ/III		245	43		387	
- NASA/LANGLEY RESEARCH CENTER T	TR-35 AREAS	WING - REFERENCE	WING - EXPOSED	ELEVON	CANARD	TAIL	RUDDER/S PD BRAKE	BODY FLAP - STOWED	BODY FLAP - EXTENDED	PLANFORM - FLAP	EXTENDED	BODY BASE	PONGITIBINAL CE'S		ENTRY	LANDING		CABING	ENTRY PLANFORM-FLAP	EXT.	START FLYBACK(REF. WING	+ CANARD)	LANDING (REF, WING +	CANARD)

Accelerated Technology Impact on POTV

- INTEGRATED LOX/LH₂ SUBSYSTEMS ALLOW SINGLE POINT REFUELING
- THIS VEHICLE WELL PAST ANY PERFORMANCE THRESHOLDS!

POTV Configuration Accelerated Technology

— TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS —

GROSS WEIGHT	96,579 KG	(212,957 LB
P/L WEIGHT (75% RETURN)	12,322 KG	(27, 170 LB
RESERVES - MPS/APS/EPS	500 KG	(1, 102 LB
MAINSTAGE PROPELLANT - MPS	78,530 KG	(173, 160 LB
INERT WEIGHT	5,227 KG	(11,525 LB
T/W @ STARTBURN = 0, 188		

POTV Weights

JASA/LANGLEY RESEARCH CENTER TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS	FOR FUTURE EART	H-TO-GEOSYNCHRONO	US ORBIT TRANSPORATION	ON SYSTEMS BOEIN	≷
TR-86	NORMAI	NORMAL GROWTH	ACCELERATE	ACCELERATED TECHNOLOGY	· >-
WEIGHTS	KG	(LB)	KG	(LB)	1
STRUCTURES & MECHANISMS THERMAL CONTROL MAIN PROPULSION SYSTEM (MPS) AUX. PROPULSION SYSTEM (APS) ELECT. POWER SYSTEM (EPS) AVIONICS MARGIN DRY	1,307 487 753 429 79 213 327 3.595	(2,881) (1,075) (1,660) (1,660) (1,645) (175) (1721) (7,927)	1,315 490 753 389 60 183 3,508	(2, 899) (1, 080) (1, 660) (857) (132) (703)	
PAYLOAD (75% RETURN) RESIDUAL FLUIDS & GASES RESERVES - MPS/APS/EPS INFLIGHT LOSSES	12, 141 880 561 237	(26,770) (1,941) (1,238) (522)	12,322 874 500 238	(27, 170) (1, 928) (1, 102) (524)	•
NOMINAL PROP EPS NOMINAL PROP APS MAINSTAGE PROP MPS GROSS	20 587 78,531 96,552	(173, 160) (212, 897)	20 587 78, 530 96, 579	(173, 160) (212, 957)	•

Accelerated Technology Impact On LCOTV

NASA/LANGLEY RESEARCH CENTER ---- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS ---

Dry Wgt. Down By ~ 7-1/2%

Glow Delta ~ 7%

Thrust Delta ~ 7%

Vehicle "Problem"
Basically Unchanged

LCOTV Configuration Accelerated Technology

LCOTV Characteristics and Weights

LEY RESEARCH CENTER TECHNOLOGY REQUIREMEN	VTS FOR FUTURE	EARTH-TO-GEOSYNC	TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS
TR-99	•		
	NORMAL	NORMAL GROWTH	ACCELERATED TECHNOLOGY
WEIGHTS	<u>K</u>	(18)	KG (LB)
STRUCTURE	4,057	(8,946)	_
POWER GEN.	26,831	(59, 162)	22,212 (48,977)
PROPULSION	11,671	(25, 735)	-
PROPELLANT SYSTEM	2,217	(4,888)	2,005 (4,421)
THERMAL CONTROL	377	(831)	68 (150)
AVIONICS	220	(1,147)	_
GROWTH*	9,339	(20, 593)	(11,
DRY	55,012	(121,301)	34,739 (76,600)
PROPELLANT	29,744	(65,586)	26,901 (59,317)
RESERVES	892	(1,967)	(1,
PAYLOAD	227,000	(500,535)	(500
START BURN	312,648	(686, 389)	289, 424 (638, 180)
ADDAV ADEA	7 7 VIV	_m 2	A1 A05 m ²
	11 071 11/	-	== C/+ 4++
NO. OF THRUSTERS	506	-	26
lsp	8,000		8,000
TOTAL THRUST	145 N		135 N
*Minimum 10% - Maximum 25%	6 72		

SSTO — Cost Summary (\$ IN MILLIONS)

MANUFACIUK ING 1, 3/3, 38

HLLV — Cost Summary (\$ IN MILLIONS)

NASA/LANGLEY RESEARCH CENTER TECHNOLOGY REOUIREMENTS FOR	CHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS	ORBIT TRANSPORATION SYSTEMS B
TR-92	NIOPMAI TECH	ANV TECH
	NOWING I FOIL	ADV. ICOI.
TOTAL PROGRAM	13,346,41	10, 992, 75
DDT&E	6, 243, 87	4.618.50
PROGRAM MANAGEMENT	172.63	154, 19
ENGINEERING	2,411,08	1,308,47
MANUFACTURING	2,825.81	2,412.35
TEST	834, 35	743.49
PRODUCTION	2,252.21	1, 937, 59
PROGRAM MANAGEMENT	183, 17	161, 45
SUSTAINING ENGINEERING	51.92	44.49
MANUFACTURING	2.017.13	1, 731, 64
PROD. TOOLING & S.T.E.	590,84	500,35
FLT. HARDWARE & SPARES	1,426.28	1, 222, 29
OPERATIONS	4,850,33	4, 436, 66
OPERATIONS SUPPORT	2,968,43	2, 705, 12
PROGRAM SUPPORT	442, 30	447.63
SPARES PROCUREMENT	2,526, 13	2.257.49
LAUNCH SUPPORT	1,881,90	1,731,54
OPERATIONS	1,378.78	1,281,03
PROPELLANT	503, 11	450.51
• COST/FLT =	\$7.96 M	\$7. I8 M
• COST/LB =	\$15. 93	\$14.59
◆ ADVANCED TECHNOLOGY SAVINGS: \$2,353.66 M	/INGS: \$2,353.66 M	
	7.6	

POTV — Cost Summary (* IN MILLIONS)

TR-94	ALODAAL TEST	TOTAL MAY
	NOKWAL IECH.	ADV. IECH.
TOTAL PROGRAM	7, 101, 37	6, 447. 79
DDT&E	437.26	11 577
PROGRAM MANAGEMENT	5.67	6.44
ENGINEERING	313.52	322, 17
MANUFACTURING	61,71	55, 30
TEST	56.36	59.21
PRODUCTION	114.66	104, 58
PROGRAM MANAGEMENT	15,58	14.59
SUSTAINING ENGINEERING	2.34	2. 10
MANUFACTURING	96. 74	87.89
PROD. TOOLING & S.T.E.	32,57	30, 17
FLT. HARDWARE & SPARES	64.17	57.73
OPERATIONS	6.549.45	5,900.10
OPERATIONS SUPPORT	288. 16	271, 96
PROGRAM SUPPORT	44.40	41, 59
SPARES PROCUREMENT	243.76	230, 37
LAUNCH SUPPORT	6, 261. 29	5,628,14
OPERATIONS	213.75	213.75
PROPELLANT	6,047.54	5,414.39
• COST/FLT =	\$4.97M	\$4.29M
· • COST/LB (LEO TO GEO)	= \$62.36	\$53,56
◆ ADVANCED TECHNOLOGY 'SAVINGS:	/INGS: \$653.58 M	
	75	

LCOTV — Cost Summary

(\$ IN WILLIONS)

ANGLEY RESEARCH CENTER TECHNOLOGY REOUIREMENTS FI	TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS	ORBIT TRANSPORATION SYSTEMS B(
	NORMAL TECH.	ADV. TECH.
TOTAL PROGRAM	3, 276.06	3,236.08
DDT&E	387.93	. 596, 42
PROGRAM MANAGEMENT	12.54	23.59
ENGINEERING	150.86	292.07
MANUFACTURING	128, 18	130,38
TEST	96, 35	150,38
PRODUCTION	1,930,12	1,911,38
PROGRAM MANAGEMENT	70, 74	84.48
SUSTAINING ENGINEERING	51.81	61,50
MANUFACTURING	1,807,57	1,765,35
PROD. TOOLING & S.T.E.	194, 51	164.20
FLT. HARDWARE & SPARES	1,613.06	1,601.15
OPERATIONS	958.01	728, 33
OPERATIONS SUPPORT	574.78	355, 53
PROGRAM SUPPORT .	122, 20	90.11
SPARES PROCUREMENT	452, 58	265.42
LAUNCH SUPPORT	383, 23	372.80
OPERATIONS	285.00	285.00
PROPELLANT	98.23	87.80
• COST/FLT	\$17. II M	\$13.01 M
COST/L B (LEO TO GEO) ADVANCED TECHNOLOGY SAVES	* \$39.0	\$26.01 M

Total System Cost Summary (* IN MILLIONS)

NA ANGLEY RESEARCH CENTER TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS	ENTS FOR FUTURE EARTH TO GEOSYNCHRON	IOUS ORBIT TRANSPORATION SYSTEMS BO
	NORMAL TECH.	ADV. TECH.
TOTAL PROGRAM	41, 636. 73	33,327.27
DDT&E	9, 783, 53	8,638,80
PROGRAM MANAGEMENT	277.82	249, 73
ENGINEERING	3, 708.97	3,771, 14
MANUFACTURING	4,385.84	3, 355, 19
TEST	1,407.47	1, 262, 74
PRODUCTION	8,542.05	6, 183, 23
PROGRAM MANAGEMENT	696.69	444.40
SUSTAINING ENGINEERING	193, 35	159, 10
MANUFACTURING	7,701.72	5, 579, 73
PRDD. TOOLING & S. T. E.	2, 200. 79	1, 297, 24
FLT. HARDWARE & SPARES	5,500.93	4, 282, 49
OPERATIONS	23,311, 15	18, 505, 24
OPERATIONS SUPPORT	10,531,56	7, 193.06
PROGRAM SUPPORT	2, 185, 65	2, 156, 53
SPARES PROCUREMENT	8,345.91	5,036,53
LAUNCH SUPPORT	12, 779, 59	11, 312, 18
OPERATIONS	5,054.71	4,778.65
PROPELLANT	7, 724. 88	6,533.53

ADVANCED TECHNOLOGY SAVINGS: \$8,309.64 M

Findings

- NASA/LANGLEY RESEARCH CENTER --- TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH TO GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS --

TR-11

- ACCELERATED TECHNOLOGY PAYS OFF 20% OF SYSTEM LCC ESPECIALLY FOR LAUNCH VEHICLES — SSTO!
- COMPOSITES ENGINES AVIONICS CRITICAL COMPONENTS SO DOES NORMAL GROWTH!
- COMPOSITE STRUCTURES MOST IMPORTANT TECHNOLOGY
- DUAL EXPANDER-DUAL FUEL ENGINE CRITICAL FOR SSTO
- CCV NO VERTICAL TAIL HAS EXCELLENT POTENTIAL
- EXTENDED LIFE ENGINES HAVE GREAT VALUE
- ACCELERATED TECHNOLOGY PUTS SSTO IN ATTRACTIVE CATEGORY
- TECHNOLOGY PAY OFF HIGHEST ON SSTO AND SINCE SSTO \$\$ WERE LARGE PERCENT OF TOTAL SOME BIAS EXISTS
- HLLV IMPACT LESS DRAMATIC THAN SSTO BUT STILL SUBSTANTIAL - 18% REDUCTION IN LCC; 10% IN COST/FLT
- ▶ IMPACT ON OTV'S WAS NOT AS SIGNIFICANT

Findings

- NASA/LANGLEY RESEARCH CENTER ——— TECHNOLOGY REQUIREMENTS FOR FUTURE EARTH-TO-GEOSYNCHRONOUS ORBIT TRANSPORATION SYSTEMS-TR-110

TECHNOLOGY ANSWER SENSITIVE TO VEHICLE CONCEPT/CONFIGURATION

HORIZONTAL T.O. SSTO

TPS/STRUCTURES

LESS THAN TWO-STAGE HLLV

REDUCED SIZE HLLV

- (INCREASED SENSITIVITY TO TECHNOLOGY

BALLISTIC HLLV

TPS/STRUCTURES

THERMAL CONTROL/ MAINTENANCE FREE DESIGN SHUTTLE TENDED-SPACE BASED OTV -

AERO-ASSISTED OTV

TPS/GUIDANCE

GROUND BASED OTV

STRUCTURES/THERMAL CONTROL

"LOW G" CHEMICAL LCOTV

PROPULSION