Answers to 4(a):

n=p*q=35; phi=(p-1)*(q-1)=4*6=24; as e=5;

 $e^*d = 1 \mod 24 \rightarrow e^*d = 24^*k + 1$, where k are integers; we need to find a value of d that satisfy this equation. By guessing k = 1, 2, etc, we can work out the smallest integer of d that satisfy this equation is 5.

Take the first letter, 17,

M=17^d mod 35 = 17⁵ mod 35 = 17*17*17*17 mod 35 = (17*17 mod 35) *17*17*17 mod 35 = (9*17 mod 35)*17 *17 mod 35 = (13*17 mod 35)*17 mod 35 = (11*17) mod 35 = 12, so the first letter in the received message is 'm'.

M=19⁵ mod 35 =24 \rightarrow 'y'.

M=7^5 mod 35 =7 \rightarrow 'h'.

M=9^5 mod 35 =4 \rightarrow 'e'. ... and so on, you can work out the message is: 'my heart'.

Answers to 4(b) and 4(c):

Basically, public-key cryptosystems are computationally very expensive, much more expensive than symmetric cryptosystems. The larger the plaintexts the longer the encryption/decryption times, and the longer the key sizes, the longer the encryption/decryption times too.