Matrizes Vetores e Geometria Analítica - Lista 1 Prof. Dr Helton Hideraldo Bíscaro

- 1. Sejam u, v e w vetores de um espaço vetorial qualquer. Mostre que se u + v = u + w, então v = w;
- 2. Mostre que, para todo espaço vetorial V, o vetor nulo e é único;
- 3. Mostre que cada vetor $u \in V$ admite um único vetor simétrico -u;
- 4. Seja $V=\mathbb{R}^2$. Se $u=(x1,x2)\in V$ e $v=(y1,y2)\in V$, então V , com as operações de adição:

$$u + v = (x1 + y1, x2 + y2)$$

e multiplicação por escalar

$$\alpha u = (\alpha^2 x 1, \alpha^2 x 2)$$

é um espaço vetorial sobre R?

5. Seja $V=\mathbb{R}^2$. Se $u=(x1,x2)\in V$ e $v=(y1,y2)\in V$, então V , com as operações de adição:

$$u + v = (x1 + y1, x2 + y2)$$

e multiplicação por escalar

$$\alpha u = (-\alpha x1, -\alpha x2)$$

é um espaço vetorial sobre R?

- 6. Seja $V=\mathbb{R}^3.$ Verifique quais dos subconjuntos abaixo são subespaços de V
 - (a) $W = \{(x, y, z) \in V : x + y + z = 0\};$
 - (b) $W = \{(x, y, z) \in V : x?y?z\};$
 - (c) $W = \{(x, y, z) \in V : x?3z = 0\};$
 - (d) $W = \{(x, y, z) \in V : x \in \mathbb{Z}\};$
 - (e) $W = \{(x, y, z) \in V : x2 + y2 + z2 \le 1\};$
 - (f) $W = \{(x, y, z) \in V : x \ge 0\};$
 - (g) $W = \{(x, y, z) \in V : xy = 0\};$
 - (h) $W = \{(x, y, z) \in V : x = z^2\}.$
- 7. Sejam V um espaço vetorial sobre $\mathbb R$ e W_1,W_2 subespaços de V. Mostre que $W1\cup W2$ é um subespaço de V se, e somente se, $W1\subseteq W2$ ou $W2\subseteq W1$.