UNIVERSIDADE FEDERAL DE VIÇOSA – UFV CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS - CCE DEPARTAMENTO DE ENGENHARIA ELÉTRICA - DEL CURSO DE ENGENHARIA ELÉTRICA

2ª PROVA DE CIRCUITOS ELÉTRICOS II – ELT221 - PER VALOR: 35 PONTOS - DATA: 10/11/2020

(Prof. Tarcísio Pizziolo) - Horário: 14 h às 17 h

ALUNO:	Mat.:
--------	-------

QUESTÕES

1) (8 pts) Observe o circuito a seguir.

- a) (3 pts) Determine a função de transferência $H(s) = E_0(s)/E_1(s)$.
- **b**) (1 pt) Para $R_1 = R_2 = 10 \text{ k}\Omega$ e $C = 5 \mu\text{F}$, determine a função de transferência $H(jw) = E_0(jw)/E_1(jw)$.
- c) (2 pts) Esboçar assintoticamente em escala o gráfico de resposta em Amplitude de H(jw).
- d) (2 pts) Esboçar assintoticamente em escala o gráfico de resposta em Fase de H(jw).

2) (8 pts) Seja H(s) dada a seguir.

$$H(s) = \frac{10^6(s+10^{-1})}{s(s+10)(s^2+10^2s+10^4)}$$

- a) (3 pts) Construa assintoticamente o gráfico da resposta em Módulo do Diagrama de Bode para H(jw).
- b) (3 pts) Construa assintoticamente o gráfico da resposta em Fase do Diagrama de Bode para H(jw).
- c) (2 pts) Qual é faixa (Banda) de passagem para um filtro representado por H(jw)?

3) (8 pts) O gráfico da Resposta em Amplitude do Diagrama de Bode para um filtro é dado abaixo.

- a) (4 pts) Obter a função de transferência H(jw) para esse filtro.
- b) (4 pts) Construa assintoticamente o gráfico da resposta em Fase do Diagrama de Bode para H(jw).

4) (6 pts) O circuito dado abaixo representa um filtro ativo.

- a) (2 pts) Determine a função de transferência $H(s) = V_2(s)/V_1(s)$ desse filtro.
- b) (2 pts) Esboce seu gráfico de resposta em Módulo para H(jw).
- c) (2 pts) Qual é o tipo de filtro representado por esse circuito?

5) (5 pts) Um filtro *Butterworth* passa-baixa de 4^a ordem é mostrado a seguir com frequência de corte $w_c = 1$ rd/s.

- a) (3 pts) Utilizando resistores de $10 \text{ k}\Omega$ determine os fatores de escala de frequência e de amplitude para uma nova frequência de corte $w_c = 50 \text{ kHz}$.
- **b)** (2 pts) Construa o circuito com os novos valores dos elementos resistivos, capacitivos e indutivos para a nova frequência de corte $w_c = 50 \text{ kHz}$.