import numpy as np import matplotlib.pyplot as plt from scipy.stats import gaussian_kde from scipy.special import erf from IPython.display import Markdown as md Vactь 1 B этой части будем работать с выборками из 100 и 1000 элементов. Ввес в 1000 Hормальное распределение — $\mathcal{N}_n(\mu, \sigma^2)$ Укажем параметры распределения: imean = 0 stdDeviation = 1 Coздаём выборки с нормальным распределением: inormal1 = np.random.normal(mean, stdDeviation, size=A) normal2 = np.random.normal(mean, stdDeviation, size=B) Bычисляем выборочное среднее и дисперсию для обеих выборок: inMean1 = np.mean(normal1) nvar1 = np.var(normal1) nvar2 = np.var(normal2) iprint(f"For normal1 we get\nMean={nMean1}, Variance={nVar1}\n' print(f"For normal2 we get\nMean={nMean2}, Variance={nVar2}\n' print(f"For normal2 we get\nMean2, Variance={nVar2}\n' print(f"For norm	едём переменные:
Нормальное распределение — $\mathcal{N}_n(\mu,\sigma^2)$ Укажем параметры распределения: mean = 0 stdDeviation = 1 Coздаём выборки с нормальным распределением: normal1 = np.random.normal(mean, stdDeviation, size=A) normal2 = np.random.normal(mean, stdDeviation, size=B) Вычисляем выборочное среднее и дисперсию для обеих выборок: nMean1 = np.mean(normal1) nVar1 = np.var(normal1) nVar2 = np.war(normal2) nVar2 = np.var(normal2) print(f"For normal1 we get\nMean={nMean1}, Variance={nVar1}\n' print(f"For normal2 we get\nMean={nMean2}, Variance={nVar2}\n' For normal1 we get Mean=0.094128859513765, Variance=0.9391666166735465 For normal2 we get Mean=0.015163284030549576, Variance=1.001279984159398 Cpавним полученные величины: md(""" \$Normal\ distribution\ \mathcal{{N}}_n\\mu, \sigma^2)\$ Quantity Description n={:d} n={:d} Theoretical value :	
normal2 = np.random.normal(mean, stdDeviation, size=B) Вычисляем выборочное среднее и дисперсию для обеих выборок: nMean1 = np.mean(normal1) nVar1 = np.var(normal1) nMean2 = np.mean(normal2) nVar2 = np.var(normal2) rrint(f"For normal1 we get\nMean={nMean1}, Variance={nVar1}\n' print(f"For normal2 we get\nMean={nMean2}, Variance={nVar2}\n' For normal1 we get Mean=0.094128859513765, Variance=0.9391666166735465 For normal2 we get Mean=0.015163284030549576, Variance=1.001279984159398 Cpaвним полученные величины: md(""" \$Normal\ distribution\ \mathcal{{N}}_n(\mu, \sigma^2)\$ Quantity Description n={:d} n={:d} Theoretical value	
For normal1 we get Mean=0.094128859513765, Variance=0.9391666166735465 For normal2 we get Mean=0.015163284030549576, Variance=1.001279984159398 Сравним полученные величины: md(""" \$Normal\ distribution\ \mathcal{{N}}_n(\mu, \sigma^2)\$ Quantity Description n={:d} n={:d} Theoretical value : \$\$\mu(X_n)\$\$ Mean of \$X_n\$ {:.6f} \$\$\mu	n")
Quantity Description n={:d} n={:d} Theoretical value	
\$\$D[X_n]\$\$ Variance of \$X_n\$ $\{:.6f\}$ \$\$\""".format(A, B, nMean1, nMean2, mean, nVar1, nVar2, stdDeviate Normal distribution $\mathcal{N}_n(\mu,\sigma^2)$ Quantity Description n=100 n=1000 Theoretical value	nu={:.3f}\$\$ S\sigma ^2={:.3f}\$\$
$\mu(X_n)$ Mean of X_n 0.094129 0.015163 $\mu=0.000$ $D[X_n]$ Variance of X_n 0.939167 1.001280 $\sigma^2=1.000$ Посчитаем квантили уровней 0.5 и 0.99 для созданных выборок. $ \text{nQuantile11} = \text{np.quantile(normal1, 0.5)} $ $\text{nQuantile12} = \text{np.quantile(normal1, 0.99)} $	
<pre>nQuantile21 = np.quantile(normal2, 0.5) nQuantile22 = np.quantile(normal2, 0.99) print(f"For normal1 we get\n0.5-quantile={nQuantile11}, 0.99-quantile=f">np.quantile11</pre> print(f"For normal2 we get\n0.5-quantile=f">nQuantile21 print(f"For normal2 we get\n0.5-quantile=f">nQuantile21 print(f"For normal2 we get\n0.5-quantile=2.1032769838657 For normal2 we get 0.5-quantile=0.05919447813211716, 0.99-quantile=2.2686366828971	<pre>rquantile={nQuantile22}\n")</pre>
Резюмируем полученные результаты:	\$\$x_{{0.5}}={:.3f}\$\$ ⁻ } \$\$x_{{0.99}}={:.3f}\$\$
QuantileDescriptionn=100n=1000Theoretical value $x_{0.5}$ 0.5-quantile of X_n 0.0554960.059194 $x_{0.5}=0.000$ $x_{0.99}$ 0.99-quantile of X_n 2.1032772.268637 $x_{0.99}=2.326$ Построим гистограммы для созданных выборок:	
<pre>fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12.5, 4)) plt.setp((ax1, ax2), xlabel="quantity", ylabel="frequency") l = 10 ax1.hist(normal1, bins=50, color="#6134eb") ax1.set_title("Normal distibution of set of %d elements" % A) ax1.set_xlim(-1, 1) ax2.hist(normal2, bins=50, color="#a834eb") ax2.set_title("Normal distibution of set of %d elements" % B) ax2.set_xlim(-1, 1)</pre>	
Normal distibution of set of 100 elements 6 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	Normal distribution of set of 1000 elements
<pre>def nCDF(t): return (1 + erf(t/(2**0.5)))*0.5 nTheoreticDomain = np.linspace(-1, 1, A) nTheoreticCDFY = nCDF((nTheoreticDomain - mean)/stdDeviation) normal1CopyX = np.copy(normal1) normal2CopyX = np.copy(normal2) normal1CopyX.sort() normal2CopyX.sort()</pre>	$\Phi\left(\frac{x-\mu}{\sigma}\right) = \frac{1}{2} \left\{ 1 + erf\left(\frac{1}{\sqrt{2}} \frac{x-\mu}{\sigma}\right) \right\}$
<pre>normal1CopyY = np.arange(0, 1, 1/A) normal2CopyY = np.arange(0, 1, 1/B) asymptoteY = np.ones(A) plt.figure(dpi=100) plt.title("Normal CDF comparison") plt.plot(nTheoreticDomain, asymptoteY, color="#adadad", linest plt.plot(nTheoreticDomain, nTheoreticCDFY, color="#cbf542", laplt.plot(normal1CopyX, normal1CopyY, color="#6134eb", label=ft") plt.plot(normal1CopyX, normal1CopyY, color="#6134eb", label=ft")</pre>	Label="Theoretic result") 5"Set of {A} with normal dist.")
plt.plot(normal2CopyX, normal2CopyY, color="#a834eb", label=f" plt.xlim(-1, 1) plt.ylim(0, 1.05) plt.xlabel("x") plt.ylabel("Probability of X < x") plt.legend() plt.show() print() Normal CDF comparison 1.0	
0.8 - × × × V × Jo 0.6 - 0.8 - 0.8 - 0.8 - 0.6 - 0.4 -	
0.2 - Theoretic result — Set of 100 with normal — Set of 1000 with nor	mal dist. 7.5 10.0
Также изобразим графики функций плотностей вероятности. Теоретичес def nPDF(mean, stdDeviation, domain): z = ((domain - mean) / stdDeviation)**2 u = 1/(stdDeviation * (2 * np.pi)**0.5) return u * np.exp(-0.5*z)	ская функция плотности вероятности имеет вид $\Pi(\mu,\sigma,x) = \frac{d\Phi(\tau)}{d\tau} \bigg _{\tau = \frac{x-\mu}{\sigma}} = \frac{1}{\sigma\sqrt{2\pi}} exp \Big\{ - \Big(\frac{x-\mu}{\sqrt{2}\sigma}\Big)^2 \Big\}$
nTheoreticPDFY = nPDF(mean, stdDeviation, nTheoreticDomain) plt.figure(dpi=100) plt.title("Exponential PDF comparison") normal1PDFY = gaussian_kde(normal1CopyX).evaluate(normal1CopyX) normal2PDFY = gaussian_kde(normal2CopyX).evaluate(normal2CopyX) plt.plot(nTheoreticDomain, nTheoreticPDFY, color="#cbf542", law plt.hist(normal1, bins=50, density=True, color="#6134eb", all plt.plot(normal1CopyX, normal1PDFY, color="#6134eb", label=f"% plt.hist(normal2, bins=50, density=True, color="#a834eb", all plt.plot(normal2CopyX, normal2PDFY, color="#a834eb", label=f"% plt.xlim(-1, 1) plt.xlim(-1, 1) plt.xlabel("x") plt.ylabel("P(x)") plt.legend() plt.show() print()	Label="Theretic result") hlpha=0.2) Set of {A} with normal dist.") hlpha=0.2)
Description Exponential PDF comparison 0.40 - 0.35 - 0.30 - 0.25 -	
0.25 - Theretic result Set of 100 with norm Set of 1000 with norm O.15 - 0.05 - 0.00 -	
	7.5 10.0
Coздадим выборки с экспоненциальным распределением: exp1 = np.random.exponential(scale, size=A) exp2 = np.random.exponential(scale, size=B) Вычислим выборочное среднее и дисперсию для обеих выборок: eMean1 = np.mean(exp1) eVar1 = np.var(exp1) eMean2 = np.mean(exp2)	
<pre>eMean2 = np.mean(exp2) eVar2 = np.var(exp2) print(f"For exp1 we get\nMean={eMean1}, Variance={eVar1}\n") print(f"For exp2 we get\nMean={eMean2}, Variance={eVar2}\n") For exp1 we get Mean=0.773903776744732, Variance=0.6043046316163234 For exp2 we get Mean=0.9509320510621883, Variance=0.8597547350912321</pre>	
Сравним полученные величины:	S\lambda ^{{-2}}={:.3f}\$\$
$D[X_n]$ Variance of Y_n 0.604305 0.859755 $\lambda^{-2}=1.000$ Вычислим квантили порядка 0.5 и 0.99 для созданных выборок: eQuantile11 = np.quantile(exp1, 0.5) eQuantile12 = np.quantile(exp1, 0.99) eQuantile21 = np.quantile(exp2, 0.5) eQuantile22 = np.quantile(exp2, 0.99) epint(f"For exp1 we get\n0.5-quantile={eQuantile11}, 0.99-quantile11 = np.quantile11 = n	
<pre>print(f"For exp2 we get\n0.5-quantile={eQuantile21}, 0.99-quantile</pre>	antile={eQuantile22}\n") 16017
Quantity Meaning n={:d} n={:d} Theoretical value	\$\$y_{{0.5}} = \ln(2)\cdot\\lambda ^{{-1}} = {:.3f}\$\$
$y_{0.99}$ 0.99-quantile of Y_n 0.658410 0.658410 $y_{0.99}=\ln(100)\cdot\lambda^{-1}$: Изобразим гистограммы полученных выборок: fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(12.5, 4)) plt.setp((ax1, ax2), xlabel="quantity", ylabel="frequency") ax1.hist(exp1, bins=50,color="#78bf3d")	=4.605
<pre>ax1.set_title("Exponential distibution of set of %d elements" ax1.set_xlim(0, 1) ax2.hist(exp2, bins=50, color="#c73085") ax2.set_title("Exponential distibution of set of %d elements" ax2.set_xlim(0, 1) print() Exponential distibution of set of 100 elements 14</pre>	
12 - 10 - 8 - 6 - 4 -	80 - Company of the state of th
4 2 4 6 8 1 quantity На одном графике покажем функции экспоненциального распределения	20 — 2 — 4 — 6 — 8 — 10 — 4
<pre>eTheoreticDomain = np.linspace(0, 1, A) eTheoreticCDFY = 1 - np.exp(-parameter * eTheoreticDomain) exp1CopyX = np.copy(exp1) exp2CopyX = np.copy(exp2) exp1CopyX.sort() exp1CopyX.sort() exp1CopyY = np.arange(0, 1, 1/A) exp2CopyX = np.arange(0, 1, 1/A)</pre>	
<pre>exp2CopyY = np.arange(0, 1, 1/B) plt.figure(dpi=100) plt.title("Exponential CDF comparison") plt.plot(eTheoreticDomain, eTheoreticCDFY, color="#3060c7", laplt.plot(eTheoreticDomain, asymptoteY, color="#adadad", linest plt.plot(exp1CopyX, exp1CopyY, color="#78bf3d", label=f"Set of plt.plot(exp2CopyX, exp2CopyY, color="#c73085", label=f"Set of plt.xlim(0, 1) plt.ylim(0, 1.05) plt.xlabel("y")</pre>	style="dashed", linewidth=1) of {A} with exp. dist.")
<pre>plt.ylabel("Probability of Y < y") plt.legend() plt.show() print() Exponential CDF comparison 1.0</pre>	
0.8 - X V V V V V V V V V V V V V V V V V V	
0.2 — Theretic result — Set of 100 with ex — Set of 100 with ex — Set of 100 with ex у	хр. dist. 10 вероятности экпоненциального распределения вычисляется по формуле
eTheoreticPDFY = parameter * np.exp(-parameter * eTheoreticDor plt.figure(dpi=100) plt.title("Exponential PDF comparison") exp1PDFY = gaussian_kde(exp1CopyX).evaluate(exp1CopyX) exp2PDFY = gaussian_kde(exp2CopyX).evaluate(exp2CopyX) plt.plot(eTheoreticDomain, eTheoreticPDFY, color="#3060c7", laplt.plot(exp1CopyX, exp1PDFY, color="#78bf3d", label=f"Set of	label="Theretic result") {A} with exp. dist.")
<pre>plt.plot(exp2CopyX, exp2PDFY, color="#c73085", label=f"Set of plt.xlim(0, 1) plt.xlabel("y") plt.ylabel("P(y)") plt.legend() plt.show() print()</pre> Exponential PDF comparison	(B) with exp. dist.")
1.0 -	
0.4 - 0.2 - 0.0 - 2 4 6 8	10
гораздо быстрее, чем функция распределения.	ов поточечно нивелируется абсолютная погрешность измерений, то есть $\Delta(ilde{x}_n) o 0$ при $n o +\infty,$ носительной) погрешности к нулю означает приближение экспериментальных данных к теоретическим, что и наблюдается на построенных графиках. Кроме того, последовательность функций плотности вероятности поточечно стремится к своему теоретическому зна
Часть 2 По заданию на прямоугольнике $\mathbb{L} \subset \mathbb{R}^2$ со сторонами H=10, W=30 равнорасположения точек. Введём необходимые переменные и вычислим диагональ прямоугольни 4, B, C = 100, 1000, 10000 H, W = 10, 30 diagonal = (H**2 + W**2)**0.5	номерно распределены пары $q_1,q_2,\cdots,q_n\in\mathbb{R}^2 imes\mathbb{R}^2$ $(n=100,1000,10000)$ точек. Равномерное распределение точек означет равномерное распределение расстояний между ними. Именно поэтому будем работать с выборкой расстояний между точками, абстраги
Coздадим выборки расстояний и вычислим их среднее значение: distancesA = np.random.uniform(0, diagonal, A) distancesB = np.random.uniform(0, diagonal, B) distancesC = np.random.uniform(0, diagonal, C) averageA = np.average(distancesA) averageB = np.average(distancesB) averageC = np.average(distancesC)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$Avg(D_n)$ 17.108574 16.024730 15.875225 Построим фукнции распределения для трёх выборок. distancesDomainA = np.linspace(0, diagonal, A) distancesDomainB = np.linspace(0, diagonal, B) distancesDomainC = np.linspace(0, diagonal, C) distancesACopy = np.copy(distancesA) distancesBCopy = np.copy(distancesB) distancesCCopy = np.copy(distancesC)	
<pre>distancesACopy.sort() distancesBCopy.sort() distancesCCopy.sort() distancesAY = np.arange(0, 1, 1/A) distancesBY = np.arange(0, 1, 1/B) distancesCY = np.arange(0, 1, 1/C)</pre> : plt.figure(dpi=100) plt.title("Distances CDF comparison")	
<pre>plt.plot(distancesACopy, distancesAY, color="#edc13b", label=" plt.plot(distancesBCopy, distancesBY, color="#3beda0", label=" plt.plot(distancesCCopy, distancesCY, color="#5f3bed", label=" plt.xlim(0, diagonal) plt.ylim(0, 1) plt.xlabel("distance") plt.ylabel("frequency") plt.legend() plt.show() print()</pre>	f"Set of {B}")
0.6 - 0.4 - 0.2 -	
	30
0.0 0 5 10 15 20 25 distance Изобразим плотности вероятности выборок: plt.figure(dpi=100) plt.title("Distances PDF comparison") dAY = gaussian_kde(distancesACopy).evaluate(distancesACopy) dBY = gaussian_kde(distancesBCopy).evaluate(distancesBCopy)	
0 5 10 15 20 25 distance Изобразим плотности вероятности выборок: plt.figure(dpi=100) plt.title("Distances PDF comparison") dAY = gaussian_kde(distancesACopy).evaluate(distancesACopy) dBY = gaussian_kde(distancesBCopy).evaluate(distancesBCopy) dCY = gaussian_kde(distancesCCopy).evaluate(distancesCCopy) averageY = np.ones(len(distancesDomainC)) / diagonal plt.plot(distancesDomainA, dAY, color="#edc13b", label=f"Set opt.plot(distancesDomainB, dBY, color="#3beda0", label=f"Set opt.plot(distancesDomainC, dCY, color="#5f3bed", label=f"Set opt.plot(distancesDomainC)]	of {B}")

Результаты

В процессе выполнения этапа 2 индивидуальнго задания были изучены способы построения функции распределения и плотности вероятности для выборок с нормальным, экспоненциальным и равномерным распределением. Была проанализирована зависимость точности приближения от количества экспериментов.

Индивиуальное задание

Выполнил студент 2 курса учебной группы НММ-02-22

Мулин Иван

Цели

Этап № 2. Методы оценки статических характеристик, связанных с распределением пользователей на плоскости