

Hypothesis Testing I

- Housekeeping:
 - HW grades to be posted soon
 - Next lecture we'll do a bit more on hypothesis testing and then start exam review
 - I'll be making this year's exam over the weekend and will review everything on it
- Today:
 - Recap a bit from last lecture
 - A different approach to hypothesis testing → Signal Detection Theory

Sampling Distributions

- Why We Test: From Uncertainty to Decision
 - We've spent time learning:
 - How data vary (probability).
 - How to summarize uncertainty (inference, confidence intervals).
 - How to simulate what "random" looks like (permutation tests).
 - How important is the difference?
 - Today marks a shift: inference becomes decision-making.
 - Framing question: When the world is noisy, how do we decide if something is "real"?

Summary

Concept	Question it answers	DS connection
p-value	"Is there signal beyond chance?"	Detects presence
Effect size	"How strong is the signal?"	Measures predictability
CI	"How stable is that estimate?"	Quantifies reliability

- Make sure the relationships you expect are real and stable
- Make sure you have enough data
- Make sure the effect is big enough to be meaningful
- Can this be answered with a classical statistical test, is machine learning even necessary?

Recap from Last Lecture

- Inference answers: What range of outcomes are plausible if nothing special is happening?
- Confidence intervals tell us how much wiggle room noise can explain.
- Permutation tests showed: random shuffling generates an expected "null" world.
- Effect size tells us how big the observed difference is — the practical impact beyond mere statistical detectability.
- Hypothesis testing formalizes that process into a repeatable, communicable decision rule.

Description \rightarrow Inference \rightarrow Action

Stage	Question	Data Science Example
Description (EDA)	What do we see?	Mean CTR = 3.2 %
Inference	What range is plausible?	3.2 % ± 0.4 % margin of error
Decision (Testing)	Should we act?	Launch new design?

- EDA → explore; Inference → quantify; Testing → decide.
- Testing becomes crucial when decisions have cost or risk.
- This mirrors the DS workflow: exploration → model → evaluation → deployment.

Why Formal Testing Exists

- Simulation builds intuition; formal testing provides standards (α levels, p-values).
- Science, healthcare, industry need a common protocol for uncertainty.
- Core ingredients we'll formalize next:
 - Competing claims → H₀ and H₁
 - Evidence → test statistic
 - Benchmark → sampling distribution
 - − Decision rule \rightarrow compare to α
 - Goal = defensible decisions that balance error.

Hypothesis Tests Have the Same Core

- For any test → Define two competing claims
 - H_o ("null"): no real effect, pattern due to noise
 - H₁ ("alternative"): a real effect exists
- Collect data → compute a test statistic
- Assume H₀ is true → know what results are typical by chance
- Compare our observed statistic to that "null" world
- Decide: is this result too extreme to attribute to noise?

Competing Explanations

- H₀: status quo, "nothing special happening"
- H₁: there's an effect, difference, or association
- Example:
 - A/B test: H_o = mean CTR A = mean CTR B
 - H₁ = mean CTR_A ≠ mean CTR_B
- Always phrase in terms of population parameters, not samples.
- You can test
 - directional (one-tailed) → greater than | less than
 - non-directional (two-tailed) claims → not equal to

How Far Do Our Data Deviate from Ho

- Sampling distribution = distribution of the test statistic if we repeated sampling infinitely under H_o.
 - Permutation tests showed this empirically now we model it analytically.
- Tails of the distribution = "rare" outcomes under H_o.
- The test statistic summarizes the evidence against H_0 .
- It could be a mean difference, a correlation, a count ratio, etc.
- The statistic converts data → single number reflecting deviation.
- Large |statistic| ⇒ data are far from what H_o predicts.
- Each test type defines its own statistic (t, z, χ^2 , F...).

Sampling Distribution of H_0

How Surprising is Our Result?

- The p-value = probability of observing a test statistic as extreme (or more) than ours if H_0 were true.
- Small p \rightarrow result is rare under H₀ \rightarrow stronger evidence against H₀.
- Important: p ≠ "probability H₀ is true."
- Convention: $\alpha = 0.05$ (arbitrary, not sacred).
- Decision rule:
 - − If $p < \alpha \rightarrow$ reject H₀ (evidence for effect).
 - − If $p \ge \alpha \rightarrow$ fail to reject H₀ (insufficient evidence).
- p-values quantify surprise, not truth. Even a small p doesn't make H₀ impossible — just implausible

Sampling Distribution of H_0

The Decision Framework Intro

- Each curve (H_o and H₁) shows what your test statistic (like a difference in means) would look like if you ran the experiment many times.
- The x-axis is the value of that test statistic (e.g., the difference between conversion rates in Group A and Group B).
- The y-axis is the probability density of getting that value, assuming H_0 or H_1 is true.
- They are distributions of possible sample outcomes, not a histogram of your actual data

Threshold and alpha

- A decision threshold (vertical line) is the value of the test statistic that marks the cutoff for rejecting H_0 .
 - Everything to the right of the threshold = "significant" (reject H_o).
 - Everything to the left = "not significant" (fail to reject H₀).
- Alpha (α) Type I Error: Probability of rejecting H_o when it's true.
 - Interpretation: False positive seeing a "significant" effect that's really just noise.
 - In the plot:
 - The blue (or right) shaded tail under the H₀ curve beyond the decision threshold.
 - Represents results so extreme that you'd call them "significant," even though H₀ was true.
 - Typical value: α = 0.05 → willing to be wrong 5% of the time when no real effect exists.
 - Analogy: You raise a false alarm "There's a fire!" when there isn't.

Beta, power

- Beta (β) Type II Error
- Definition: Probability of failing to reject H_0 when H_1 is actually true.
- Interpretation: False negative missing a real effect.
- In the plot:
 - The red shaded area under the H₁ curve to the left of the decision threshold.
 - Represents cases where the true effect exists, but your data don't look extreme enough to detect it.
- Analogy: You miss a real signal "No fire," when smoke detectors were right.
- Power = 1β
 - The proportion of the H₁ curve to the right of the threshold (correct rejections of H₀).
 - Represents your ability to detect a true effect when it exists.
 - Increases when:
 - The true effect size is larger (H₁ curve moves farther from H₀).
 - Sample size is larger (distributions get narrower).
 - You relax α (allow more false positives).

 α and β trade off: reducing false alarms (smaller α) increases missed detections (larger β).

Summary

Region	True World	Decision	Probability	Meaning
Left of threshold under H₀	H₀ true	Fail to reject H₀	1 – α	Correct "no effect" call
Right tail under H₀	H₀ true	Reject H₀	α	False positive
Left tail under H ₁	H₁ true	Fail to reject H₀	β	Missed detection
Right of threshold under H ₁	H ₁ true	Reject H₀	1 – β	Correct detection (power)

Every Decision Has a Cost

- Hypothesis testing forces explicit trade-offs:
 - Type I error (α): false alarm → acting on noise.
 - − Type II error (β): missed detection ⇒ ignoring a real effect.
- Each context values these errors differently.
- No test eliminates error we choose how much risk to tolerate.

Hypothesis Tests & Medical Tests

- Statistical world: H₀ vs H₁.
- Diagnostic world: "no disease" vs "disease present."

Reality	Decision: Positive (Reject H ₀)	Decision: Negative (Fail to Reject H ₀)
No disease (H ₀)	Type I error (α) \rightarrow False Positive	1 – α → True Negative
Disease present (H ₁)	1 − β → True Positive	Type II error (β) → False Negative

Quantifying Our Decisions

		Predicted	
		Positive Negative	
Predictive	Positive	True Positive TP	False Negative FN
Pred	Negative	False Positive FP	True Negative TN

- Sensitivity = 1β = ability to catch true positives.
 - In hypothesis testing, this is power.
- Specificity = 1α = ability to correctly reject false alarms.
- False Positive Rate (FPR) = α .
- False Negative Rate (FNR) = β .

Threshold Shift the Balance

- The decision threshold (critical value) controls α and β .
- Move it right \rightarrow fewer false positives $(\downarrow \alpha)$ but more misses $(\uparrow \beta)$.
- Move it left \rightarrow catch more signals $(\downarrow \beta)$ but risk more false alarms $(\uparrow \alpha)$.
- In A/B tests, fraud detection, or classification, this is your cutoff.
- Choosing it = choosing what kind of mistake you can live with.

ROC: Seeing All Thresholds at Once

- ROC (Receiver Operating Characteristic) curve = plots all thresholds.
- x-axis: False Positive Rate (α).
- y-axis: True Positive Rate $(1-\beta)$ = Sensitivity.
- Each point = one possible decision threshold.
 - Area Under Curve (AUC): overall ability to separate signal from noise.
- Hypothesis testing \rightarrow picks one α ; ROC \rightarrow shows all α - β trade-offs.

Choosing the Right Balance

- Upper-left corner = perfect classifier (FPR = 0, TPR = 1).
- Diagonal line = random guessing (AUC = 0.5).
- Higher curve \rightarrow better separation between H₀ and H₁.
- In practice, the optimal threshold depends on:
 - Cost of false alarms vs misses.
 - Base rates (how common the positive class is).
- Same logic as choosing α and β in testing.

Summary

- α , β , power, sensitivity, and specificity all describe uncertainty under noise.
- Thresholds are how we turn uncertainty into action.
- ROC curves generalize hypothesis testing to many thresholds.
- Next: applying these ideas to real-world models and interpreting statistical significance vs practical value.

The t-Test: Hypothesis Testing

- The t-test is just one implementation of our hypothesistesting logic.
- Example: compare two sample means (A vs. B).
- Null (H_0): no difference $\rightarrow \mu_a = \mu_\beta$.
- Alternative (H₁): difference exists \rightarrow $\mu_a \neq \mu_{\beta}$.
- Compute test statistic:

$$t = rac{ar{x}_A - ar{x}_B}{SE_{ ext{diff}}}$$

Each Test Is a Binary Classifier

- Each hypothesis test is a binary decision: "signal" or "no signal."
- "Reject H₀" = predict "signal present."
- "Fail to reject H₀" = predict "no signal."

Reality	Decision: Reject H₀	Decision: Fail to Reject H₀
H₀ true	Type I (α)	Correct (1−α)
H ₁ true	Correct (1–β)	Type II (β)

 Think of every t-test as a one-point classifier on the ROC curve — one threshold, one trade-off

Changing α = Changing the Threshold

- t-tests "reject" when |t| exceeds the critical value.
- Smaller $\alpha \rightarrow$ threshold moves further into the tail \rightarrow fewer false positives, more misses.
- Larger $\alpha \rightarrow$ threshold moves closer to center \rightarrow catch more signals, risk more false alarms.
- Same logic applies in all domains (disease detection, fraud alerts, etc.).
- Setting $\alpha = 0.05$ is arbitrary you're just choosing a point on a trade-off curve

What if We Varied α ?

- You could, in theory, move the decision threshold (t-critical) around (α):
 - − If you set $\alpha = 0.10 \rightarrow$ smaller threshold \rightarrow more rejections (higher power, more false alarms).
 - − If you set $\alpha = 0.01 \rightarrow$ larger threshold \rightarrow fewer rejections (lower power, fewer false alarms).
- In practice, a t-test gives you one decision at one false-positive tolerance α = 0.05
- But mathematically, we can imagine sliding that α threshold up and down, just like changing a classifier threshold.
- Each setting gives us a different trade-off between false alarms (α) and missed detections (β).
 The curve that traces all those trade-offs is the ROC curve — it's the t-test generalized.
- So power analysis is just ROC analysis in disguise we're studying how well our test separates signal from noise."

