Relations & Functions

NAVNEET GOYAL

Topics

- Relations
- Representation of Relations
- n-ary Relations
- Equivalence relations
- Partially ordered set
- Totally ordered set
- Hasse diagrams
- Well ordered set
- Functions

Introduction

- Functions are important in many areas of Mathematics
- Elementary algebra starts to differ from arithmetic, when the concepts of a function is developed
- Calculus is study of functions, and of certain ways of associating new functions with a given one
- We start by talking about binary relations (generalization of functions)

- O A (binary) relation ρ from a set S to a set T is a rule that stipulates, given any element s of S and any element t of T, whether s bears a certain relationship to t (written s ρ t) or not (written s $-\rho$ t)
- A relation is the subset of the cartesian product of S & T.
- S= set of living males

T= set of living females

 ρ = is the son of

if s denotes a certain male and t denotes a certain woman, we write s ρ t if s is son of t, and s $-\rho$ t, otherwise

- Examples of Binary Relations:
- 1. Set of students and set of courses
- 2. Set of all cities of India and set of all states of India
- 3. $A=\{0,1,2\}$ & $B=\{a,b\}$

Functions as Relations:

f from A to B is a relation which assigns exactly one element of B to each element of A.

Relations are generalizations of Functions

- A relation on a set A is a relation from A to A.
- \circ A={1,2,3,4}. R={(a,b)|a divides b}

Problem:

```
R1 = \{(a, b) \mid a \le b\},

R2 = \{(a, b) \mid a > b\},

R3 = \{(a, b) \mid a = b \text{ or } a = -b\},

R4 = \{(a, b) \mid a = b\},

R5 = \{(a, b) \mid a = b + 1\},

R6 = \{(a, b) \mid a + b \le 3\}.
```

Which of these relations contain each of the pairs (1, 1), (1, 2), (2, 1), (1,-1), and (2, 2)?

O How many relations are there on a set A with n elements?

- Reflexive
- Symmetric
- Transitive

Reflexive

A relation R on a set A is called reflexive if (a, a) \subseteq R for every element a \subseteq A.

Consider the following relations on {1, 2, 3, 4}:

Which of these relations are reflexive?

Reflexive

A relation R on a set A is called reflexive if (a, a) \subseteq R for every element a \subseteq A.

```
R1 = \{(a, b) \mid a \le b\},

R2 = \{(a, b) \mid a > b\},

R3 = \{(a, b) \mid a = b \text{ or } a = -b\},

R4 = \{(a, b) \mid a = b\},

R5 = \{(a, b) \mid a = b + 1\},

R6 = \{(a, b) \mid a + b \le 3\}.
```

Which of these relations are reflexive?

Reflexive

A relation R on a set A is called reflexive if (a, a) \subseteq R for every element a \subseteq A.

```
R1 = \{(a, b) \mid a \le b\},

R2 = \{(a, b) \mid a > b\},

R3 = \{(a, b) \mid a = b \text{ or } a = -b\},

R4 = \{(a, b) \mid a = b\},

R5 = \{(a, b) \mid a = b + 1\},

R6 = \{(a, b) \mid a + b \le 3\}.
```

Which of these relations are reflexive?

Reflexive

A relation R on a set A is called reflexive if (a, a) \in R for every element a \in A. Is the Divides relation on a set of positive integers Reflexive?

All integers?

Symmetric

A relation R on a set A is called *symmetric* if $(b, a) \in R$ whenever $(a, b) \in R$, for all $a, b \in A$. A relation R on a set A such that for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$, then a = b is called *antisymmetric*.

Transitive

A relation R on a set A is called transitive if whenever $(a, b) \in R$ and $(b, c) \in R$, then $(a, c) \in R$, for all $a, b, c \in A$.

Anti-symmetric Property

A relation R on a set A such that for all $a,b \in A$, if $(a,b) \in R$ and $(b,a) \in R$, then a=b is called anti-symmetric.

Consider the following relations on {1, 2, 3, 4}:

$$R1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 4), (4, 1), (4, 4)\},$$

$$R2 = \{(1, 1), (1, 2), (2, 1)\},$$

$$R3 = \{(1, 1), (1, 2), (1, 4), (2, 1), (2, 2), (3, 3), (4, 1), (4, 4)\},$$

$$R4 = \{(2, 1), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)\},$$

$$R5 = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3), (3, 4), (4, 4)\},$$

$$R6 = \{(3, 4)\}.$$

Which of these relations are antisymmetric?

Anti-symmetric Property

A relation R on a set A such that for all $a,b \in A$, if $(a,b) \in R$ and $(b,a) \in R$, then a=b is called anti-symmetric.

R1 =
$$\{(a, b) \mid a \le b\}$$
,
R2 = $\{(a, b) \mid a > b\}$,
R3 = $\{(a, b) \mid a = b \text{ or } a = -b\}$,
R4 = $\{(a, b) \mid a = b\}$,
R5 = $\{(a, b) \mid a = b + 1\}$,
R6 = $\{(a, b) \mid a + b \le 3\}$.

Which of these relations are anitsymmetric?

Combining Relations

Union, Intersection, and difference of relations