

Laboratorium 12 - Przykładowe kolokwium II

Wszystkie operacje na tablicach muszą być wykonywane za pomocą wskaźników. Operator [] można używać tylko przy deklarowaniu tablicy lub w parametrze funkcji. Jeżeli w treści zadania jest napisane że funkcja ma być rekurencyjna, to jeżeli nie będzie to nie będą przyznane punkty za tą funkcję.

Zadanie 1 - litery - 2 pkt.

Napisz rekurencyjną funkcję, która wypisze wszystkie możliwe ciągi liter składające się z liter: a, b, c, d, e, f. Litery w wypisanych ciągach nie mogą się powtarzać i każda następna litera ma być większa od poprzedniej (a<b<cd>e<f). Ciągi mają być wypisane dokładnie takiej kolejności jak w przykładzie.

Poprawne działanie programu:

abcd		
abce		
abcf		
abde		
abdf		
abef		
acde		
acdf		
acef		
adef		
bcde		
bcdf		
bcef		
bdef		
cdef		

Punktacja:

- 2 pkt poprawnie napisana funkcja rekurencyjna
- 1 pkt funkcja rekurencyjna wypisująca podane ciągi, ale w innej kolejności, niż to podano w przykładzie
- 1 pkt funkcja rekurencyjna wypisująca podane ciągi ale odwrotnie (tzn np. dcba)

Zadanie 2 - sortowanie studentów - 3 pkt.

Studenci Politechniki Bajtockiej muszą na 3 semestrze zaliczyć Matematykę Dyskretną u dr. Bajtazara. Dr Bajtazar pozwala na 5 podejść do egzaminu. Z egzaminu można otrzymać punkty z przedziału 0-50, ale liczone co 5 (czyli 0,5,10,15,20,...). Po zakończeniu semestru Politechnika Bajtocka wymaga złożenia raportu z wynikami egzaminu. Taki raport musi zawierać numery indeksów wszystkich studentów biorących udział w przedmiocie, ich wynik punktowy i ilości podejść do egzaminu. Wszystkie te informacje mają być ułożone w kolejności od największej liczby punktów do najmniejszej, a jeśli dwóch studentów ma taki sam wynik punktowy, to wcześniej na liście powinien się znajdować student, który mniej razy podchodził do egzaminu. Przy takiej samej ilości punktów i podejść, kolejność może być dowolna. Dr Bajtazar jest świetny z Matematyki Dyskretnej, ale sortowanie nie wychodzi mu najlepiej. Napisz program, który pomoże mu przygotować raport.

Grupa zaliczająca Matematykę Dyskretną u dr. Bajtazara ma 15 studentów. Numery indeksów studenów są z przedziału od 101 do 120. Wylosuj niepowtarzające się numery indeksów z zadanego zakresu. Wylosuj wyniki egzaminu i ilość podejść dla każdego studenta. Wyświetl wynik losowania w tabeli, gdzie każdy z wierszy zawiera kolejno: nr indeksu, punkty, ilość podejść. Następnie posortuj studentów zgodnie z wymaganiami raportu Politechniki Bajtockiej i wyświetl wynik w tej samej formie, co poprzednio. Wartości w każdej kolumnie mają być wyrównane do prawej.

Przykładowe działanie programu:

106	116	111	102	105	114	119	108	113	115	120	117	103	107	109
10	40	40	30	20	45	15	35	30	15	15	5	25	45	50
3	3	3	5	5	2	2	2	3	4	3	3	5	3	3
109	114	107	116	111	108	113	102	103	105	119	120	115	106	117
50	45	45	40	40	35	30	30	25	20	15	15	15	10	5
3	2	3	3	3	2	3	5	5	5	2	3	4	3	3

Punktacja:

- 0.5 pkt. wylosowanie punktów z egzaminu
- 0.5 pkt. wylosowanie niepowtarzających się numerów indeksów z podanego zakresu
- 0.5 pkt. wyświetlenie numerów studentów, punktów i podejść w podanym formacie
- 1.5 pkt. poprawnie napisana funkcja sortująca

Zadanie 3 - rekurencja na obrazie - 4 pkt.

Za pomocą funkcji read_bmp() z biblioteki bpm_io.c wczytaj piksele obrazu pp1_path.bmp do tablicy unsigned char image[ROWS][COLS].

Napisz funkcję rekurencyjną, która przejdzie się po obrazie przez określoną ilość punktów, idąc przez punkty o najmniejszej jasności (najniższe wartości) otaczający dany punkt i rozglądając się w każdym z 4 kierunków (góra dół lewo prawo).

Prototyp funkcji ma wyglądać następująco:

```
void make_path(unsigned char *photo, int row, int col, int points_count)
```

gdzie:

```
unsigned char *photo - wskaźnik na tablice z pikselami obrazu
int row - rząd od którego funkcja zaczyna przeszukiwanie
int col - kolumna od której funkcja zaczyna przeszukiwanie
int points_count - liczba punktów, przez które ma przejść funkcja
```

Każdy wybrany punkt oznacz na oryginalnym obrazie wartością 255. Wywołaj napisaną funkcję dla podanego obrazu i zapisz obraz wynikowy do pliku output.bmp.

Przykład działania programu dla punktu startowego (304, 58) 5280 po przejściu 5280 punktów:

Obraz wejściowy:

Obraz wynikowy:

Rysunek 1: Obraz wejściowy

Rysunek 2: Obraz wynikowy

Punktacja:

- 0.5 pkt wczytanie danych z pliku do tablicy, wywołanie funkcji powodującej zmiany na tablicy i zapis do pliku wyjściowego.
- 3.5 pkt napisanie funkcji rekurencyjnej poprawnie zaznaczającej ścieżkę
- 1 pkt napisanie funkcji rekurencyjnej zaznaczającej fragment ścieżki
- 1 pkt napisanie funkcji rekurencyjnej zaznaczającej ścieżkę i dodatkowe piksele