Aula 4 (14/10/2022)

Nome: Adriel Bombonato Guidini Godinho

RA: 191011631

Segmentação de imagens coloridas

Segmentação de imagens é um tópico muito estudado em visão computacional e se trata na realização de um mapa de segmentação que isole um objeto ou ROI de interesse. Isso pode ser feito tanto com processamento de imagens como com redes neurais.

A segmentação por cores é um dos métodos que podem ser utilizados. É mais intuitivo o uso do modelo de representação de cores Lab, pois separa os diferentes tipos de cores pelo HUE. Porém, melhores resultados são obtidos com o RGB.

Tentamos obter um intervalo que representa a cor que queremos usar para classificar o objeto, isso se resumo a encontrar um vetor no espectro RGB que tome como base a cor selecionada para segmentação. Com isso, é configurado uma distância euclidiana que vai representar o intervalo aceitável.

In []: import cv2 import numpy as np

from matplotlib import pyplot as plt

In []: # Tipos de modelos de representação de cores presentes no Opencv flags = [i for i in dir(cv2) if i.startswith('COLOR_')]

print(flags[0:20]) ['COLOR_BAYER_BG2BGR', 'COLOR_BAYER_BG2BGR_EA', 'COLOR_BAYER_BG2BGR_VNG', 'COLOR_BAYER_BG2GRAY', 'COLOR_BAYER_BG2RGB', 'COLOR_BAYER_BG2RGBA', 'COLOR_BAYER_BG2RGB_EA', 'COLOR_BAYER_BG2RGB_VNG', 'COLOR_BAYER_BGGR2BGR', 'COLOR_BAYER_BGGR2BGR_EA', 'COLOR_BAYER_BGGR2BGR_VNG', 'COLOR_BAYER_BGGR2GRAY', 'COLOR_BAYER_BGGR2RGB', 'COLOR_BAYER

Segmentação por espaço de cores

Se trata em definir manualmente o intervalo de cor desejada para a segmentação. Logo em seguida, realizar uma máscara Bitwise-AND.

cor com valor ou brilho máximo é análogo a utilizar uma luz puramente branca em um objeto colorido.

ER_BGGR2RGBA', 'COLOR_BAYER_BGGR2RGB_EA', 'COLOR_BAYER_BGGR2RGB_VNG', 'COLOR_BAYER_GB2BGR', 'COLOR_BAYER_GB2BGRA']

HSV O sistema HSV, ou HSB, é descrito em Hue, Saturation e Value/Brightness. Ele se destaca pela facilidade de trocar de uma cor para outra alterando apenas um valor, o que facilita o entendimento do processo. Uma

Por conta da falta do sistema HSI no opency, HSV foi utilizado.

In []: # TODO: Pesquisar forma automática de identificar máscaras em uma imagem com slider

HSV: img = cv2.imread('images\\garrafa.jpeg')

kernel = np.ones((11,11), np.uint8)

img = cv2.medianBlur(img, 5) # Filtro na imagem para diminuir ruído img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # Para HSV

 $lowerLimit_hsv = (30, 25, 70)$ upperLimit_hsv = (89, 255, 255) # Realizar um Threshold na imagem hsv para obter apenas a cor desejada

mask_hsv = cv2.inRange(img_hsv, lowerLimit_hsv, upperLimit_hsv)

Intervalo de cor em hsv para ser usada na máscara

Dilatar e corroer a imagem como forma de considerar porções ignoradas da máscara mask_hsv = cv2.dilate(mask_hsv, kernel) mask_hsv = cv2.erode(mask_hsv, kernel)

Operação lógica entre as imagens para excluir tudo que não é a máscara na imagem img_segmented_hsv = cv2.bitwise_and(img, img, mask = mask_hsv)

BGR

O sistema RBG é muito conhecido e é representado por um cubo que varia em 3 eixos: **B**lue, **G**reen e **R**ed.

In []: #BGR: # Converter o valor dos limites para unsigned int

> green_light_hsv = np.uint8([[[lowerLimit_hsv[0], lowerLimit_hsv[1], lowerLimit_hsv[2]]]]) green_dark_hsv = np.uint8([[[upperLimit_hsv[0], upperLimit_hsv[1], upperLimit_hsv[2]]]]) # Intervalo de cor em BGR para ser usada na máscara

lowerLimit_BGR = cv2.cvtColor(green_light_hsv, cv2.COLOR_HSV2BGR) upperLimit_BGR = cv2.cvtColor(green_dark_hsv, cv2.COLOR_HSV2BGR) # Realizar um Threshold na imagem hsv para obter apenas a cor desejada mask_BGR = cv2.inRange(img, lowerLimit_BGR, upperLimit_BGR)

kernel = np.ones((11,11), np.uint8) # Dilatar e corroer a imagem como forma de considerar porções ignoradas da máscara mask_BGR = cv2.dilate(mask_BGR, kernel)

mask_BGR = cv2.erode(mask_BGR, kernel) # Operação lógica entre as imagens para excluir tudo que não é a máscara na imagem img_segmented_BGR = cv2.bitwise_and(img, img, mask = mask_BGR)

Lab

O espaço de cores CIELAB, ou Lab, expressa a cor em 3 diferentes formas. O L representa a porcentagem de Lightness, enquanto a e b cores únicas da visão humana: amarelo, vermelho, verde e azul. Lab tem a vantagem de ser mais perceptivamente linear que outros espaços de cores, o que significa que uma mudança de um valor produz uma mudança de percepção igualmente importante.

img_Lab = cv2.cvtColor(img, cv2.COLOR_BGR2Lab) # Intervalo de cor em BGR para ser usada na máscara

lowerLimit_Lab = cv2.cvtColor(lowerLimit_BGR, cv2.COLOR_BGR2Lab) upperLimit_Lab = cv2.cvtColor(upperLimit_BGR, cv2.COLOR_BGR2Lab) # Realizar um Threshold na imagem Lab para obter apenas a cor desejada mask_Lab = cv2.inRange(img_Lab, lowerLimit_Lab, upperLimit_Lab)

kernel = np.ones((11,11), np.uint8) # Dilatar e corroer a imagem como forma de considerar porções ignoradas da máscara mask_Lab = cv2.dilate(mask_Lab, kernel)

mask_Lab = cv2.erode(mask_Lab, kernel) # Operação lógica entre as imagens para excluir tudo que não é a máscara na imagem

img_segmented_Lab = cv2.bitwise_and(img, img, mask = mask_Lab)

Teste da Segmentação por espaço de cores A seguir está demonstrado a identificação de uma garrafa com 3 diferentes espaços de cor. sendo que de uma para outra, apenas foi convertido os valor para os devidos espaços, através do comando cv2.COLOR_XXX2XXX.

In []: # Converter imagem original para BGR img_RGB = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

Plotar todos os resultados titles = ['Imagem original', 'Segmentação HSV', 'Segmentação BGR', 'Segmentação Lab'] images = [img_RGB, img_segmented_hsv, img_segmented_BGR, img_segmented_Lab] for i in range(4): images[i] = cv2.cvtColor(images[i], cv2.COLOR_BGR2RGB)

plt.subplot(2,2,i+1),plt.imshow(images[i]) plt.title(titles[i]) plt.xticks([]),plt.yticks([])

plt.show() Imagem original

Segmentação BGR

Segmentação Lab

Conclusões

Alterar o espaço de cores também altera o resultado da segmentação. O espaço hsv teve o melhor resultado.