

Modificações Timer

DISPOSITIVOS LÓGICOS PROGRAMÁVEIS II (DLP029007)

Matheus Pires Salazar, Rhenzo Hideki Silva Kajikawa

Sumário

1. Introdução	3
2. Resolução	
2.1. Adicionar o centesimo	
2.2. Adicionar PLL	
2.3. Modificar contadores para o BCD	
2.4. Modificar para o LFSR	
2.5. Comparativos	
3. Conclusão	

1. Introdução

No relatório será apresentado o desenvolvimento de um relógio digital, utilizando diferentes metodos e evoluções do código, começando com um clock de 50MHz e posteriormente utilizando um PLL para a geração de um sinal de clock de 10 kHz.

2. Resolução

2.1. Adicionar o centesimo

A primeira parte do projeto foi a adição do centésio de segundo. Inicialmente foi-se dado um código para ser adaptado. O código trabalhado tinha os contadores de segundos e de minutos.

A implementação teve 2 etapas. Primeiramente ajustando o código que foi dado em aula e o adaptando para adicionar mais uma contagem , sendo essa os centisegundos . A segunta parte foi corrigir a contagem do clock , isso ocorreu pois o código original contava para o ciclo de 50 MHz seria igual a 1 segundo, porém agora seria necessário contar valores abaixo de 1 segundo , e como queriamos contra o centisegundo a adaptação foi dividir os contadores que geravam 1 segundo por 100 , dessa forma foi possível obter o centésimo de segundo.

Esta parte foi a adição do centésio de segundo.

A visualização do rtl ficou da seguinte maneira:

Figura 1: Fonte: Elaborada pelo autor

Visualização do .do para testar o código

Figura 2: Fonte: Elaborada pelo autor

2.2. Adicionar PLL

A segunda parte do projeto foi a implementação da componente que converte o clock de 50MHz para 10KHz. A adição do PLL foi dada da seguinte forma :

Compilar o código, seguir na aba ipcatalog e procurar pelo elemento ALTPLL

Figura 3: Fonte: Elaborada pelo autor

Selecionando o elemente ALTPLL será aberto uma aba nova, nesta aba serão configuradas os elementos para ser gerado o pll desejado. Primeiramente colaca-se a frequência correta de entrada em inclk0 input.

Figura 4: Fonte: Elaborada pelo autor

Após colocar a frênquencia de entrada correta , é colocado na terceira pagina das configurações em "Output clock", nessa aba é necessário selecionar "Enter output clock frequency" para ajustar a frequência deseja, no caso deste projeto foi decidida a frequência de 10 MHz

Figura 5: Fonte: Elaborada pelo autor

Após a selecionar a frequência de saída , pula-se para a ultima etapa e seliciona-se tanto os arquivos com final .cmp e .vhd

Figura 6: Fonte: Elaborada pelo autor

Desta forma é gerado o arquivo PLL , que deverá ser inserido no top-level do código do projeto desejado.

Abaixo parte do código gerado , nele é possivel ver os parâmetros para a converção de clock que ocorre

```
GENERIC MAP (
bandwidth_type => "AUTO",
clk0_divide_by => 5000,
clk0_duty_cycle => 50,
clk0_multiply_by => 1,
clk0_phase_shift => "0",
compensate_clock => "CLKO",
inclk0_input_frequency => 20000,
```

Após inserir o pll o novo RTL ficou desta maneira:

Figura 7: Fonte: Elaborada pelo autor

Uma visualização do .do sendo executado para vizualizar o funcionamento do pll

Figura 8: Fonte: Elaborada pelo autor

2.3. Modificar contadores para o BCD

Nesta etapa do projeto foi desejada a remoção dos conversores BCD vistos nos RTLs anteriores.

Para a adaptação do projeto foi primeiramente necessário remover os conversores Bin2BCD. Após esta remoção foi feita uma adaptação no código de contagem timer , esta que envolveu ao invés de contar-se os valores de unidade e decimais juntos , foi alterado para contagens separadas.

Desta forma as contagens sairam de forma separada em unidade e decimal dos centisegundos , segundos e minutos. Dessa forma cumprindo o requisito da parte 3.

Abaixo está o RTL da parte 3 , nele é possivel ver que houve a remoção dos conversores.

Figura 9: Fonte: Elaborada pelo autor

Figura 10: Fonte: Elaborada pelo autor

Figura 11: Fonte: Elaborada pelo autor

2.4. Modificar para o LFSR

A quartar parte é remover os contadores e substitui-los por LFSR

Figura 12: Fonte: Elaborada pelo autor

2.5. Comparativos

Como pedido , foi analizada as diferenças entres os resultados feitos nas diferentes partes.

	Binario	Binario	BCD	BCD
	50M	FreqGrupo	FreqGrupo	FreqGrupo LFSR
LE	262	249	86	73
Register	124	129	37	37

3. Conclusão

A partir da implementação das diferentes partes foi possível analizar a otimização dos sistemas.

A utilização e redução de elementes mostra diretamente como a otimização pode afetar o espaço oculpado pelo código.

A primeira etapa do Binario transicionando da primeira parte para a utilização do PLL reduzil a utilização de alguns elementos lógicos.

A transição da segunda parte para a terceira foi a maior otimização , evitar códigos que convertem binário para BCD economizaram vários elementos lógicos.

A terceita para quarta teve uma leve otimização , optando por não utilizar um contador convencional mas sim um contador LFSR