Introduction

Boston University CS 506 - Lance Galletti

Data Science

- Collection of methods and tools that allow for extracting knowledge from data
- Cross-disciplinary:
 - Math
 - Statistics
 - Computer Science
 - Domain Expertise
- Know what you don't know!

at time to

Model:

Heat Distribution Creatures

f(x, y, t) => temperature

VS

"Heat Diffusion"

Which theory should we use? How to distinguish or unify them?

Scientific perspective: look at what each theory anticipates!

If you can equally well explain every outcome, how can you have a definitive / deterministic anticipation of events?

If you're equally good at explaining every outcome, you have zero knowledge.

In a class just like this one, imagine playing the following game...

I announce "(2, 4, 6) follows the rule".

Here are the examples submitted by one of the participants:

- (2, 4, 3) -> NO
- (6, 8, 10) -> YES
- (1, 3, 5) -> YES

After which, they proceed to write down their hypothesized rule. Would you have wanted to try more examples? If so, which and for what reason?

Let's take a poll:

```
A. (100, 102, 104)
```

- B. (5, 7, 9)
- C. (1, 2, 3)

Challenges of Data Science:

- Not all examples contribute similar amounts of information
- A set of examples may not always be representative of the underlying rule
- There may be infinitely many rules that match the examples provided

So Data Science is VERY DIFFICULT!!!

Positive Examples VS Negative Examples

assuming the hypothesis h is (x, x+2, x+4) which type of examples are the following:

- (2, 4, 3)
- (6, 8, 10)
- **•** (1, 3, 5)

- Both positive and negative examples can falsify a hypothesis
- Tendency to choose positive ones over negative ones

Let's take a poll:

```
A. (100, 102, 104)
```

- B. (5, 7, 9)
- C. (1, 2, 3)

The rule was (a < b < c).

If you only tried positive examples of either (x, x + 2, x+4) or (x, 2x 3x) you would only get confirmation.

For reference, this exercise was first introduced by Wason P.C in 1960 as part of a journal in experimental psychology.

i've heard the rhetoric from both sides... time to do my own research on the real truth

Types of Data - Records

m-dimensional points / vectors

Example: (name, age, balance) -> ("John", 20, 100)

Types of Data - Records

m-dimensional points / vectors

Example: (name, age, balance) -> ("John", 20, 100)

age

Types of Data - Graphs

Nodes connected by edges

Example:

Types of Data - Images

Types of Data - Images

Types of Data - Images

Types of Data - Text

Types of Data - Strings

DNA seq (ATGCCGTA...) -> list of characters

Types of Data - Time Series

List of data at specific intervals of time

Types of Learning

- Unsupervised Learning
- Supervised Learning

Goal: Find interesting structure in the data

Goal: Find interesting structure in the data

This type of unsupervised learning is referred to as clustering

Dataset: Collection of Articles

Question: Are these articles covering the same topics?

Goals:

- 1. Better understand / describe the data
 - a. Data exploration / visualization step
 - b. Recommender Systems (similar users might be recommended the same things, emails similar to those marked as spam could be spam etc.)
- 2. Provide sensible defaults to missing values
 - a. Data preprocessing step

Supervised Learning

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

Supervised Learning

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

cricket chirps / min	temperature
10	40
5	37
17	53
55	103
40	78

This type of supervised learning is referred to as regression

age	tumor size	malignant
20	12	0
22	15	1
47	20	1
59	2	1

age	tumor size	malignant
20	12	0
22	15	1
47	20	1
59	2	1

age	tumor size	malignant
20	12	0
22	15	1
47	20	1
59	2	1

age	tumor size	malignant
20	12	0
22	15	1
47	20	1
59	2	1

This type of supervised learning is referred to as classification

Data Processing

- What data should and shouldn't be used for the task?
- What to do with missing data?
- What to do with inconsistent data?
- What assumptions are you making with the transformations of the data?

Exploratory Data Analysis

- Describe, contextualize, and visualize the data
- What might be related to what you're trying to predict?
- Are there imbalances in the data?

Feature Extraction

- Are the features provided by the dataset the best features to use for the task?
- What other features can be extracted?
- Should existing features be transformed?

Finding the right model

- Ask what and who the model is used / intended for
 - Is it just the general trend that is important of the exact predictions that are important?
 - Is this a problem that **needs** predictive tools to solve?
- The success of this step depends entirely on the work done in previous steps
 - remember: **garbage in, garbage out!** (it's all about the data)
- Is your model easy to explain?
- When your model fails, can you explain why?