8. Set Theory

Definition 8.1. (1) A set is a collection of distinct objects. The objects are called elements. If A is a set and x is an element in A, then we write $x \in A$. If x does not belong to A, then we write $x \notin A$.

- (2) Let A and B be sets. We say B is a subset of A, or B is contained in A, and write $B \subseteq A$, if for all $x \in B$ we have $x \in A$. If $B \subseteq A$ and there is some $x \in A$ such that $x \notin B$, then we say B is a proper subset of A and write $B \subseteq A$.
- (3) Two sets A and B are called equal and we write A = B, if they have the same elements, or in other words, $A \subseteq B$ and $B \subseteq A$.
- (4) The set that contains no element is called empty set. We denoted it by \emptyset .

Remark 8.2. We can describe a set using set notation. For instance we can list the elements in the set as in $A = \{1, 2, 3\}$ or $\mathbb{N} = \{1, 2, 3, \ldots\}$. Or we may describe a set of elements that satisfy a certain property P, e.g. $\{x \in \mathbb{N} : x \text{ satisfies } P\}$.

Example 8.3. (1) $\mathbb{N} = \{1, 2, 3, \dots\}$ denotes the set of natural numbers. Then $10 \in \mathbb{N}$ and $1/2 \notin \mathbb{N}$.

- (2) $\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$ denotes the set of integers.
- (3) $\mathbb{Q} = \{\frac{a}{b} : a, b \in \mathbb{Z}, b \neq 0\}$ denotes the set of rational numbers.
- $(4) \mathbb{N} \subsetneq \mathbb{Z} \subsetneq \mathbb{Q}$
- (5) $\{x \in \mathbb{N} : x < 5\} = \{1, 2, 3, 4\}$
- (6) $\{x \in \mathbb{Z} : x^2 + x = 2\} = \{1, -2\}$
- (7) $\{3n: n \in \mathbb{N}\}\$ describes the set of natural numbers that are multiples of 3.
- (8) Let A be a set. Then $\emptyset \subseteq A$ and $A \subseteq A$.

Definition 8.4. Let A and B be sets.

(1) The union of A and B is the set

$$A \cup B := \{x : x \in A \text{ or } x \in B\}$$

(2) The intersection of A and B is the set

$$A \cap B := \{x : x \in A \text{ and } x \in B\}$$

(3) The complement of B relative to A is the set

$$A \setminus B := \{x : x \in A \text{ and } x \notin B\}$$

Example 8.5. (1) $\{1,2,3\} \cup \{3,4,5\} = \{1,2,3,4,5\}$

- (2) $\{1,2,3\} \cap \{3,4,5\} = \{3\}$
- (3) $\{1,2,3\} \setminus \{3,4,5\} = \{1,2\}$
- $(4) \mathbb{N} \cup \{-n : n \in \mathbb{N}\} = \mathbb{Z} \setminus \{0\}$
- $(5) \{2n: n \in \mathbb{N}\} \cap \{3n: n \in \mathbb{N}\} = \{6n: n \in \mathbb{N}\}\$

Definition 8.6. If the intersection of two sets A and B is empty, then A and B are called disjoint.

Example 8.7. (1) The alphabet and \mathbb{Z} are disjoint sets.

(2) The even and the odd integers are disjoint, that is, $\{2n : n \in \mathbb{Z}\} \cap \{2n+1 : n \in \mathbb{Z}\} = \emptyset$.

Definition 8.8. Let I be a set, and for each $i \in I$, let A_i be a set. Then

- $(1) \bigcup_{i \in I} A_i := \{x : x \in A_i, \text{ for some } i \in I\}.$
- $(2) \bigcap_{i \in I}^{i \in I} A_i := \{x : x \in A_i, \text{ for all } i \in I\}.$

The set I is called index set.

Example 8.9. (1) Let $A_n := \{0, ..., n\}$, for all $n \in \mathbb{N}$. We claim that $\bigcup_{n \in \mathbb{N}} A_n = \mathbb{N}$. Clearly $A_n \subseteq \mathbb{N}$, for all $n \in \mathbb{N}$ and so $\bigcup_{n \in \mathbb{N}} A_n \subseteq \mathbb{N}$. On the other hand, if $x \in \mathbb{N}$, then $x \in A_x$, and so $\mathbb{N} \subseteq \bigcup_{n \in \mathbb{N}} A_n$. This proves the claim.

(2) Let $A_n := \{k \in \mathbb{N} : k \geq n\}$, for all $n \in \mathbb{N}$. We claim that $\bigcap_{n \in \mathbb{N}} A_n = \emptyset$.

Assume $\bigcap_{n\in\mathbb{N}} A_n \neq \emptyset$ and let $x \in \bigcap_{n\in\mathbb{N}} A_n$. Then $x \in A_n$, for all $n \in \mathbb{N}$. Since $A_0 = \mathbb{N}$, it follows that $x \in \mathbb{N}$. But then $x \notin A_{x+1}$, which is a contradiction, and therefore $\bigcap_{n\in\mathbb{N}} A_n = \emptyset$.

Definition 8.10. Let A be a set. Then

$$\mathcal{P}(A) := \{X: \ X \subseteq A\},\$$

the set of all subsets of A, is called power set of A.

Example 8.11. Let $A = \{0, 1, 2\}$. Then

$$\mathcal{P}(A) = \{\emptyset, \{0\}, \{1\}, \{2\}, \{0, 1\}, \{0, 2\}, \{1, 2\}, A\}.$$