생체인식보안

얼굴 인식 #2

01. CNN 모델 형성

트레이닝 데이터에서 특징점 추출을 위해 VGG의 CNN 모델을 사용한다.

Layer (type)	Output Shape	Param #
zero_padding2d (ZeroPaddin	g2 (None, 226, 226, 3)	0
conv2d_14 (Conv2D)	(None, 1, 1, 4096)	16781312
dropout_1 (Dropout)	(None, 1, 1, 4096)	0
conv2d_15 (Conv2D)	(None, 1, 1, 2622)	10742334
flatten (Flatten)	(None, 2622)	0
activation (Activation)	(None, 2622)	0
Total params: 145,002,878 Trainable params: 145,002,8 Non-trainable params: 0	378	
<pre>model = build_model() model.load_weights(pa model.summary()</pre>		s.h5')

모델은 총 16개의 복합 레이어로 구성되어 있으며, 'vgg_face_weights.h5' 파일을 이용해 모델 학습에 가중치를 더한다.

```
model = Sequential()
model.add(ZeroPadding2D((1,1),input_shape=(IMAGE_WIDTH, IMAGE_HEIGHT, 3)))
model.add(Convolution2D(64, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1.1)))
model.add(Convolution2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(256, (3, 3), activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1.1)))
model.add(Convolution2D(512, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, (3, 3), activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, (3, 3), activation='relu'))
model.add(ZeroPadding2D((1,1)))
model.add(Convolution2D(512, (3, 3), activation='relu'))
model.add(MaxPooling2D((2,2), strides=(2,2)))
model.add(Convolution2D(4096, (7, 7), activation='relu'))
model.add(Dropout(0.5))
model.add(Convolution2D(4096, (1, 1), activation='relu'))
model.add(Dropout(0.5))
model.add(Convolution2D(2622, (1, 1)))
                                                  전체 CNN 모델
model.add(Flatten())
model.add(Activation('softmax'))
```

01. CNN 모델 형성

CNN 모델은 기존 VGG 얼굴 인식 모델을 참고해 구성했다.

CNN 레이어층에 기학습된 'vgg_face_weights' 가중치를 더하고 model의 input과 output을 연결해 face_descriptor 모델을 형성한다.

```
from tensorflow.keras.models import Model
face_descriptor = Model(inputs=model.layers[0].input, outputs=model.layers[-2].output)
```

확인 차 트레이닝 데이터셋을 불러와 이미지를 255로 나눠 스케일을 조정하고, 이미지의 크기를 resize 한다.

위에서 생성한 CNN 모델 (face_descriptor) 을 이용해 트레이닝 데이터의 predict를 구하고 이 특징점 결과값들을 embedding_vector에 담는다.

```
tmpPath = "./Face_Training/0124_0002.BMP"
tmp_image = image_load(tmpPath)
tmp_image = (tmp_image / 255.).astype(np.float32)
tmp_image = cv2.resize(tmp_image, (IMAGE_WIDTH, IMAGE_HEIGHT), cv2.INTER_AREA)
embedding_vector = face_descriptor.predict(np.expand_dims(tmp_image, axis=0))[0]
```

01. Load Image

02. 데이터 전처리

def image_load(imagePath):

- 전체 데이터 영역에서 얼굴 부분만 추출해 학습에 이용하기 위해 데이터 전처리를 한다.
- 데이터의 전처리는 haarcascade_frontalface_default.xml 모듈을 이용하며, 전체 사진에서 얼굴 영역만 파악할 수 있다.

```
global cropped_face
    cascPath = "haarcascade_frontalface_default.xml"
    faceCascade = cv2.CascadeClassifier(cascPath)

# image = cv2.imread(imagePath, cv2, IMREAD_GRAYSCALE)
    image = cv2.imread(imagePath)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(
    gray,
    scaleFactor=1.1,
    minSize=(15, 15))

for (x, y, w, h) in faces:
    cropped_face = image[y:y+h, x:x+w]

return cropped_face
# cv2, imshow("Face Detected", image)
# cv2, waitKey(0)
```

1. cv2를 사용해 데이터를 BGR2GRAY로 변환하고, 얼굴의 최소 영역이 될 사이즈를 지정한다.

2. 얼굴 영역으로 추출된 부분만 크롭해 그 결과를 반환한다.

03. 특징점 추출

```
# 이미지를 350개의 카테고리로 분류
nb_classes = 350

label= []
embeddings = np.zeros((nb_classes+3, 2622))

i = 0

for filename in train_order:
    category = filename.split(" ")[0]
    imagePath = path + '/02_face_training/' + filename
        image = image_load(imagePath)
        image = (image / 255.).astype(np.float32)
        image = cv2.resize(image, (IMAGE_WIDTH, IMAGE_HEIGHT), cv2.INTER_AREA)

# face_descriptor 모델에서 나온 특징점들을 저장
    embeddings[i]= face_descriptor.predict(np.expand_dims(image, axis=0))[0]
    i += 1
```

- 1. 트레이닝 데이터를 불러온다.
- 2. image 데이터의 타입과 크기를 변환해 저장한다.
- 3. face_descriptor 모델을 이용해 얻게 된 특징점 결과 값을 embeddings 배열에 넣고, label 배열에 트레이닝 데이터의 라벨을 저장한다.

```
# 훈련데이터셋 형성
train_data = [embeddings, label]
(X, Y) = (train_data[0], train_data[1])
```

특징점이 담긴 embeddings와 label을 train_data로 지정한다.

03. 특징점 추출

이렇게 특징점들을 저장할 경우, 각 특징점들 간의 distance를 구해 face recognition을 수행할 수 있다.

```
def distance(emb1, emb2):
    return np.sum(np.square(emb1 - emb2))
```

```
import matplotlib.pyplot as plt
plt.figure(figsize=(8,3))
plt.suptitle(f'Distance = {distance(embeddings[9], embeddings[10]):.2f}')
plt.subplot(121)
plt.imshow(image_load(path +'02_face_training/0004_0001.BMP'))
plt.subplot(122)
plt.imshow(image_load(path +'02_face_training/0004_0002.BMP'))
plt.figure(figsize=(8,3))
plt.suptitle(f'Distance = {distance(embeddings[0], embeddings[5]):.2f}')
plt.subplot(121)
plt.imshow(image_load(path +'02_face_training/0001_0001.BMP'))
plt.subplot(122)
plt.imshow(image load(path +'02 face training/0002 0002.BMP'))
plt.figure(figsize=(8,3))
plt.suptitle(f'Distance = {distance(embeddings[8], embeddings[12]):.2f}')
plt.subplot(121)
plt.imshow(image_load(path +'02_face_training/0003_0002.BMP'))
plt.subplot(122)
plt.imshow(image_load(path +'02_face_training/0005_0001.BMP'))
```


03. 특징점 추출

동일인물일 경우 Distance가 0.17이다.


```
# 10개의 데이터마다 train과 test 세트로 분리
train_idx = np.arange(nb_classes+3) % 10 != 0
test_idx = np.arange(nb_classes+3) % 10 == 0

X_train = embeddings[train_idx]
X_test = embeddings[test_idx]

targets = np.array(label)

y_train = Y[train_idx]
y_test = Y[test_idx]
```

분류 학습을 위해 10개의 데이터마다 train과 test로 데이터를 분리한다.

다른 인물일 경우 Distance가 0.46, 0.39로 값이 상대적으로 크다.

02. Data Training

01. SVM을 이용한 훈련

SVM은 기계학습 분야 중 하나로, 패턴 인식과 자료 분석을 이용한 지도학습 모델이다. 주로 분류와 회귀 분석을 위해 사용된다. 카테고리 중 하나에 속한 데이터의 집합이 주어졌을 때, 데이터 집합을 바탕으로 새로운 데이터의 선형 분류 모델을 생성한다.

```
# 3번의 cross validation을 통해 training set score 교차 검증
from sklearn.model_selection import cross_val_score
from sklearn.svm import LinearSVC

# SVM으로 학습 데이터 훈련
svc = LinearSVC(C = 10)
svc.fit(X_train, y_train_label)
y_pred = svc.predict(X_test)

print("Accuracy on training set : ", cross_val_score(svc, X_train, y_train_label, cv=3))
print("Accuracy on test set: {:.2f}".format(svc.score(X_test_scale, y_test_label))))
```

svc = LinearSVC()로 sklearn의 선형 SVM 모델을 이용하며, 3번의 cross validation을 통해 training set을 교차 검증한다.

```
Accuracy on training set: {:.2f} [0.93650794 0.94920635 0.93333333] Accuracy on test set: {:.2f} 0.9333333333333333
```

3번의 training set 교차 검증 정확도는 평균 0.933, test set의 정확도는 0.93이 나왔다.

02. Data Training

02. KNN을 이용한 훈련

KNN 역시 기계학습 분야 중 하나로, 지도학습 모델이다. 주로 분류와 회귀 분석을 위해 사용된다. 이전의 SVM과 동일한 방식으로 sklearn의 KNN 모델을 import해 학습에 사용하였다.

```
# KNN으로 학습 데이터 훈련
from sklearn.neighbors import KNeighborsClassifier

knn = KNeighborsClassifier(n_neighbors=1, metric='euclidean')
knn.fit(X_train, y_train_label)

print("Accuracy on training set: {:.2f}".format(knn.score(X_train, y_train_label)))
print("Accuracy on test set: {:.2f}".format(knn.score(X_test, y_test_label)))
```

Accuracy on training set: 0.99 Accuracy on test set: 0.90

학습 결과 KNN 모델의 training set Accuracy는 0.99이며, test set Accuracy는 0.90이다.

최종 스코어

```
from sklearn.metrics import accuracy_score, recall_score, precision_score, f1_score

print("accuracy: {:.2f}".format(accuracy_score(y_test_label, y_pred)))
print("Precision: {:.2f}".format(precision_score(y_test_label, y_pred, average = 'micro')))
print("Recall: {:.2f}".format(recall_score(y_test_label, y_pred, average = 'micro')))
print("F1-score: {:.2f}".format(f1_score(y_test_label, y_pred, average = 'micro')))
```

Accuracy	0.93
F1_score	0.93
Recall	0.93
Precision	0.93

최종 데이터 훈련 결과 모델의 테스트 정확도는 0.93이다.

01. 테스트 데이터 전처리

```
test_embed = np.zeros((700, 2622))

i = 0
for filename in order_list:
    imagePath = path + '/02_face_test/' + filename

test_image = image_load(imagePath)
    test_image = (test_image / 255.).astype(np.float32)
    test_image = cv2.resize(test_image, (IMAGE_WIDTH, IMAGE_HEIGHT), cv2.INTER_AREA)

test_embed[i] = face_descriptor.predict(np.expand_dims(test_image, axis=0))[0]
    test_data.append(np.array(test_image))
    i += 1
```

주어진 테스트 데이터도 동일하게 전처리한 후, 각 인물의 특징점을 추출해 저장한다.

02. 예측 결과 출력

```
svc_predict = svc.predict(test_embed)
knn_predict = knn.predict(test_embed)
```

SVM 분류 결과와, KNN 분류 결과를 각각 예측한다.

```
import csv
f = open(path + 'face_result_svc.csv', 'w', newline='')
wr = csv.writer(f)

wr.writerow(['Image', 'Answer'])
for i in range(len(svc_predict)):
    wr.writerow([i+1, svc_predict[i]+1])

f.close()
```

```
f = open(path + 'face_result_knn.csv', 'w', newline='')
wr = csv.writer(f)

wr.writerow(['Image', 'Answer'])
for i in range(len(knn_predict)):
    wr.writerow([i+1, knn_predict[i]+1])

f.close()
```

이후 모델의 예측 결과를 각각 다른 csv 파일에 export 한다.

KNN

SVM

KNN과 SVM 모두 전반적으로 높은 정확도를 보였지만, 테스트 데이터의 정확도가 SVM이 더 높았으며 실제 예측 결과를 육안으로 비교했을 때 SVM의 분류 결과가 더 정확했다.

모델이 데이터를 분류하지 못했을 경우에는 직전에 분류한 데이터의 결과값이 한 번 더 기록되는 듯 했다. 분류를 못한 얼굴 테스트 데이터의 경우 측면이나 로우 앵글과 같이 학습 데이터와 주어진 각도가 다른 경우인 것을 확인했다.

KNN

SVM

04. Evaluation

01. 평가

기존 1차에서 사용한 단순 CNN 모델의 평과 결과 전체 중 132/700의 얼굴 데이터만을 맞추었다. 이를 VGG 모델의 가중치를 이용해 특징점을 학습한 결과, Accuracy가 개선된 것을 확인할 수 있었다.

다만, 모델의 얼굴 영역을 찾아 크롭하고, 그 사진에서 얼굴의 특징점을 찾아냈더니 측면 얼굴의 경우 인식을 잘 하지 못했다. 얼굴에서 특징점을 구한 후 그 정보를 바탕으로 Normalization 하고, 이미지의 중심점을 변환하고 학습을 진행하면 측면 이미지 탐지에서 더 나은 성능을 낼 수 있지 않을까 한다.