ROZMAITOŚCI RÓŻNICZKOWALNE. LISTA 4.

Potoki pól wektorowych

- 1. Znajdź trajektorie pól wektorowych $X(x,y)=-y\frac{\partial}{\partial x}+x\frac{\partial}{\partial y},\ Y(x,y)=x\frac{\partial}{\partial x}-y\frac{\partial}{\partial y},\ Z(x,y)=(-y-x)\frac{\partial}{\partial x}+(x-y)\frac{\partial}{\partial y}$ na płaszczyźnie. Czy są to pola zupełne? Opisz (lokalne?) półgrupy dyfeomorfizmów generowane przez te pola.
- 2. Pole X znika w punkcie p. Uzasadnij, że jeśli φ^X_t jest potokiem tego pola, to $\varphi^X_t(p) = p$ dla dowolnego t, dla którego lewa strona jest określona.
- 3. Sprawdź, że $\varphi_t(x,y) = (e^t x, e^t y)$ jest jednoparametrową grupą dyfeomorfizmów płaszczyzny R^2 . Znajdź pole wektorowe będace generatorem tej grupy. Zrób to samo dla $\psi_t(x,y) = (x+t,y+2xt+$
- 4. Czy dwie różne trajektorie pola X moga się przecinać?
- 5. X jest polem zupełnym na rozmaitości M. Uzasadnij, że jeśli c jest stałą, to pole cX jest też zupełne. Wyraź potok φ_t^{cX} polacX przy pomocy potoku φ_t^X pola X.
- 6. Wiadomo, że na spójnej rozmaitości M dowolne dwa różne punkty należą do wnętrza trajektorii pewnego pola wektorowego X (specjalnie dobranego dla tych dwóch punktów). Korzystając z tego faktu uzasadnij, że dowolne dwa punkty $p \neq q$ spójnej rozmaitości M zawierają się w pewnym spójnym otoczeniu mapowym $U \subset M$ (z atlasu maksymalnego).
- 7. Podaj przykład pola wektorowego na R^2 posiadającego trajektorię, która przy $t \to \infty$ spiralnie zbliża się do ustalonego okręgu na R^2 , też będącego trajektorią tego pola. Wskazówka: może być wygodne wyrażenie takiego pola we współrzędnych biegunowych.
- 8. Podaj przykład pola wektorowego na R^2 niezupełnego.
- 9. Podaj przykłady gładkich rodzin dyfeomorfizmów $\{\varphi_t\}_{t\in R}$, np. dla R^2 , które nie są jednoparametrowymi grupami dyfeomorfizmów.

Derywacje i komutator

- 10. Uzasadnij, że jeśli X,Y są polami wektorowymi na rozmaitości M, to operator $XY: C^{\infty}M \to$ $C^{\infty}M$ na ogół nie jest derywacja. Przy jakich założeniach na X i Y operator ten jest derywacja w punkcie $p \in M$?
- 11. Wyprowadź podane na wykładzie algebraiczne własności komutatora.
- 12. Sprawdź, że potoki pól wektorowych na R^2 :

$$X(x,y) = \begin{pmatrix} -y \\ x \end{pmatrix}, \ Y(x,y) = \begin{pmatrix} x \\ y \end{pmatrix}$$

komutuja, a następnie sprawdź, że komutator tych pól jest polem zerowym.

13. Uzasadnij, że gdy f jest dyfeomorfizmem, to [df(X), df(Y)] = df([X, Y]).

Pochodna Liego

- 14. Uzasadnij, że jeśli X jest polem wektorowym na \mathbb{R}^n o stałych wspólczynnikach, zaś Y jest dowolnym polem, to pochodna Liego L_XY jest równa pochodnej kierunkowej D_XY w każdym punkcie $x \in \mathbb{R}^n$.
- 15. Wyprowadź następujące własności pochodnej Liego:
 - (a) $L_XY = -L_YX$; (b) $L_X[Y, Z] = [L_XY, Z] + [Y, L_XZ]$;

 - (c) $L_X(Y+Z) = L_XY + L_XZ$; (d) $L_{X+Y}Z = L_XZ + L_YZ$; (e) $L_X(fY) = Xf \cdot Y + f \cdot L_XY$; (f) $L_{fX}Y = f \cdot L_XY Yf \cdot X$.
- 16. Znajdź ogólną lokalną postać dwóch komutujących pól wektorowych na otoczeniu punktu $p \in M$, w którym pole X jest niezerowe. Wskazówka: wyprostuj lokalnie pole X oraz znajdź ogólna postać komutujacego z nim pola Y.
- 17. [Pochodna Liego z różniczki funkcji] Określmy $L_X(df)$ poprzez $L_X(df)(p)(Y) := d/dt|_{t=0} df \circ d\varphi_t^X(Y) \text{ dla } Y \in T_pM.$
 - (a) Uzasadnij, że $L_X(df)(p)$ jest funkcjonałem liniowym na T_pM .
 - (b) Uzasadnij, że $L_X(df) = d(Xf)$.