3 - Histograma 22

3 HISTOGRAMA

3.1 Construção de Histograma

Exemplo (Adaptado de Werkema, cap. 6, pág. 167) Uma fábrica de azulejos recentemente começou a receber reclamações de seus clientes. A maioria das reclamações era relativa aos seguintes problemas:

- Os azulejos, ao serem manuseados, quebravam-se facilmente.
- O assentamento dos azulejos n\u00e3o produzia um resultado uniforme em rela\u00e7\u00e3o ao n\u00e1vel da parede.

Em vista dessa situação, o gerente de vendas da indústria decidiu formar um grupo de trabalho para estudar estes problemas. Na primeira fase do estudo, o grupo de trabalho concluiu que a produção de azulejos com espessura inadequada poderia ser a causa dos problemas relatados pelos clientes. Esta conclusão resultou do conhecimento dos seguintes fatos:

- Azulejos com espessura muito fina quebram-se facilmente.
- A falta de uniformidade na espessura dos azulejos provoca dificuldades durante o seu assentamento.

Sabe-se que os limites de especificação para a espessura dos azulejos são 5.0 ± 1.5 mm, ou seja, a espessura dos azulejos pode variar entre $3.5 \ e$ $6.5 \ mm$, sendo o valor nominal de especificação igual a $5.0 \ mm$. Para avaliar se estavam ocorrendo problemas com a espessura dos azulejos produzidos, o grupo decidiu retirar uma amostra aleatória dos azulejos fabricados pela empresa, medir a espessura destes azulejos e comparar os resultados obtidos com as especificações. Como a indústria emprega duas turmas de trabalho (turmas A e B) e pode haver diferença na qualidade dos azulejos produzidos por cada turma, foi utilizada uma estratificação, sendo então retirada uma amostra de $80 \ azulejos$ produzidos pela turma A e $80 \ pela$ turma B. Os dados coletados estão digitados no arquivo $Hist_ex.mtw$.

a) Responda:

Quais as reclamações dos Clientes? Quebra e falta de uniformidade no assentamento.

Quebra e falta de difficilitado no assertamento.

Os azulejos aceitáveis devem ter uma espessura de 3,5 a 6,5 mm. Estes são os valores de especificação: LIE (Limite Inferior de Especificação) e LSE (Limite Superior de Especificação).

Os azulejos são fabricados por _2 turmas de trabalho.

O plano amostral utilizado pelo grupo de trabalho foi amostragem estratificada de igual tamanho.

b) Abra o arquivo **Hist_ex. mtw.**

File \rightarrow Open worksheet \rightarrow em Examinar, siga as orientações do seu professor \rightarrow Hist_ex. mtw \rightarrow Abrir \rightarrow Ok.

A primeira coluna (C1) contém todas as medidas de espessura. A coluna seguinte (C2) serve para identificar a turma que produziu cada azulejo.

C)	Calcule as medidas descritivas utilizando todos os dados de espessura e complete: Tamanho da amostra: 160						
	Média aritmética: 4,8650 mm;						
	Desvio padrão: 1,2299 mm;						
	Coeficiente de variação: 25,28 %; Menor valor: 2,3 mm;						
	Primeiro quartil: 3,8 mm;						
	Mediana: <u>5,3</u> mm;						
	Terceiro quartil: 5,8 mm;						
	Valor máximo: 7 mm; Moda: 5,7 mm. Este valor repetiu 14 vezes.						
	ivioda. 3,7 Tilli. Este valor repetiu 14 Vezes.						
d)	Construa um gráfico de pontos utilizando todos os dados e responda: Qual é a forma						
	da distribuição das medidas de espessura dos azulejos produzidos pela fábrica?						
	Assimétrico à esquerda						
e)	Construa um histograma utilizando os dados de espessura dos 160 azulejos. Mostre						
	as freqüências acima de cada coluna e exiba no gráfico os limites de especificação.						
	Para isso, siga os passos:						
	 Selecione Graph → Histogram → Mantenha a opção Simple → Ok. 						
	2. Selecione a variável Espessura para o quadro <i>Graph variables</i> .						
i	Dando um título ao gráfico e mostrando a freqüência absoluta de cada classe						
	 Selecione Labels; Digite no quadro Title um título apropriado para o seu gráfico; 						
	 Selectione Data Labels → assinale Use y-value labels em Label Type; 						
	4. Clique Ok.						
	Tracando ao limitas do capacificação						
	Traçando os limites de especificação 1. Selecione Scale;						
	2. Selectione Reference Lines → Digite 3.5 6.5 na caixa referente à Show						

3. Clique $Ok. \rightarrow Ok$.

Responda:
e1) O histograma possui 20 classes;

references lines at data values;

- e2) O ponto médio da primeira classe é de 2,25 mm. A freqüência desta classe é de 1 mm. A freqüência desta classe é de 2,125 e 2,375 mm (posicione o mouse em cima da primeira coluna do histograma e solte)
- e3) O ponto médio da última classe é de 7 mm;
- e4) A largura da classe (diferença entre dois pontos médios consecutivos ou diferença entre o limite superior e inferior de qualquer classe) é de $_{-0.25}$ mm.
- f) O histograma não ficou da maneira desejada. Serão necessárias algumas modificações para que ele apresente um formato mais útil para a análise dos dados. Essas modificações serão feitas diretamente no gráfico.

Modifique o histograma fazendo exibir os limites de classe em vez dos pontos médios. Inicie a primeira classe com o limite inferior de 2 mm e faça a última classe

exibir o limite superior de 7,5 mm, com a largura de cada classe de 0,5 mm. Dê nome às linhas de referencia: LIE e LSE. Para isso, siga os passos:

Definindo os limites de classe

- No histograma pronto, posicione o cursor em qualquer valor do eixo dos x's. Clique com o botão direito do mouse e abra Edit x Scale → Binning;
- Selecione Cutpoint em Interval Type e dentre as opções de Interval Definition, selecione Midpoint/cutpoint positions e digite 2:7,5/0,5 no quadro correspondente → Ok;.
- 3. Se desejar saber os limites inferior e superior de uma determinada classe basta posicionar o cursor na classe desejada (retângulo) e esperar que sejam exibidos os limites do eixo dos x´s;
- 4. Para apresentar todos os limites no gráfico, clique uma vez com o botão direito do mouse em cima de qualquer valor do eixo dos x´s. Na caixa Edit X Scale, selecione Scale, e em Major Tick Positions, selecione Position of ticks e digite 2:7,5/0,5 no quadro correspondente → Ok.

Nomeando os limites de especificação:

LIE (Limite Inferior de Especificação) e LSE (Limite Superior de Especificação)

- 1. Clique uma vez, com o botão direito do *mouse*, em cima da referência 3,5 (número que aparece acima da linha vertical traçada). Selecione: *Edit X line Label:*3,5;
- Selecione Text e digite LIE (que significa Limite Inferior de Especificação) no lugar de 3,5 → Ok;
- Repita os processos acima para a referência 6,5 e digite LSE no quadro correspondente ao 6,5;
- 4. Clique Ok.

_								
_	_	0	-	\sim	-	ы	а	٠
٦	Н.	>	u			()	$\boldsymbol{\alpha}$	

- f1) O histograma anterior possuía 20 classes, o atual possui __1___ classes.
- f2) A classe com maior número de azulejos possui o limite inferior de _5,5 mm e o superior de _6 mm.
- f3) A primeira classe possui os limites: _2___ e _____e, enquanto que a última possui _7___ e 7,5__ mm.
- f4) Abaixo do limite inferior de especificação (LIE) temos <u>26</u> azulejos e acima do limite superior de especificação (LSE) temos <u>11</u>.
- f5) A proporção de azulejos abaixo do limite inferior de especificação é de 16,25% e a proporção de azulejos acima do limite superior de especificação é de 6,875 %.
- f6) A proporção de azulejos fora da especificação é de <u>23,12</u>%.
- f7) A proporção de azulejos fabricados de acordo com a especificação é de 76,875%.
- f8) A "espessura não adequada dos azulejos" pode ser considerada como uma causa influente dos problemas detectados? Sim (Sim/Não).
- f9) Justifique sua resposta.

16,25% dos azulejos produzidos estão abaixo do LIE que podem causar a quebra.

6,875% dos azulejos são produzidos acima do LSE, ou seja, a falta de uniformidade na produção pode causar os problemas no assentamento.

g) Calcule as medidas descritivas usuais para a espessura dos azulejos separada por turma e faça os respectivos histogramas (com os limites de especificação, com os valores das freqüências exibidos em cima de cada coluna e com os mesmos limites de classe do histograma anterior). Siga os passos:

- Selecione Stat → Basic Statistics;
- 2. Em *Display Descriptive Statistics*, selecione **Espessura** em *Variables* e Turma em *By variables (optional)*;
- 3. Selecione Graphs e marque a opção Histogram of data → Ok → Ok;
- 4. Clique uma vez com o botão direito do mouse em cima de qualquer valor do eixo dos x 's no histograma pronto. Selecione Edit X Scale → Binning. Escolha Cutpoint em Interval Type e dentre as opções de Interval Definition, selecione Midpoint/Cutpoint positions e digite 2:7,5/0,5 no quadro correspondente → Ok;
- 5. Caso deseje exibir os limites de cada classe, clique uma vez, com o botão direito do mouse, no eixo dos x's do histograma. Dentro da caixa Edit Scale selecione Scale, e em Major Tick Positions selecione Position of Ticks e digite 2:7,5/0,5 no quadro correspondente → Ok.
- 6. Para adicionar as linhas de especificação, clique com o botão direito do mouse no gráfico e selecione Add → Reference lines. Digite separando com espaço os valores 3,5 e 6,5 em Show reference lines at data values → Ok. Clique uma vez, com o botão direito do mouse, em cima da referência 3,5. Selecione Edit X line Label: 3,5. Selecione Text e digite LIE no lugar de 3,5 → Ok. Repita os processos anteriores para a referência 6,5 e digite LSE no quadro correspondente ao valor 6,5 → Ok.
- Clique novamente com o botão direito no gráfico e selecione Add → Data labels.
 Mantenha a opção Use y-value labels em Label Type → Ok.

Complete o quadro abaixo e responda às questões (lembre-se que as medidas estão na Session):

Quadro 3.1 Sumário das medidas de espessura para as turmas A e B

	Espessuras para as turmas				
Medidas	A	В			
Número de observações	80	80			
Menor valor	2,3	4,9			
1° Quartil	3,1	5,6			
Mediana	3,8	5,8			
3° Quartil	4,475	6.2			
Maior valor	5,9	7			
Média aritmética	3,8575	5,8725			
Moda	3,1; 3,5	5,7			
Desvio padrão	0,8706	0,4802			
Coeficiente de variação	22,57 %	8,18			

- Em média, qual turma produz azulejos com espessura maior?
- Qual turma produz azulejos mais homogêneos em torno da respectiva média?
 Justifique:
- Compare a espessura dos azulejos produzidos pelas duas turmas levando em consideração a proporção de azulejos fora de especificação produzidos por cada turma. A turma A produz 32,5 % abaixo do limite inferior de especificação e a turma B produz 13,75% acima do limite superior de especificação.

 Você considera que as duas turmas trabalham do mesmo modo ou existe diferença entre a qualidade dos azulejos produzidos pelas duas turmas? Justifique sua resposta.

Existe diferença. A turma A produz azulejos mais finos enquanto a turma B produz azulejos mais espessos. A variabilidade da turma A é maior do que da turma B.

 O problema de quebra dos azulejos parece ser comum aos azulejos produzidos pelas duas turmas de trabalho da empresa ou parece estar associado a uma turma específica? Por quê?

Está associado à turma A que produz 32,5% de azulejos abaixo do LIE.

3.2 Exercitando o que você aprendeu

Resolva o exercício

Apresentamos a seguir as notas finais de uma turma de Estatística, do semestre passado, com 60 alunos.

68	63	51	60	65	73	60	60	67	60	
62	49	60	52	61	79	41	60	60	64	
27	47	60	85	68	72	75	60	49	26	
65	68	70	65	60	75	49	29	74	61	
65	38	39	80	42	82	65	38	52	57	
53	70	82	76	82	97	31	96	77	75	

- a) Abra o arquivo Hist exp.mtw que contém os dados.
- Sintetize as notas finais desta turma calculando as medidas descritivas usuais e complete:

As notas finais dos^{60} alunos variaram de um mínimo de $_{26}$ a um máximo de $_{97}$, com média de $_{61,62}$, mediana de $_{61,5}$ e desvio padrão de $_{15,74}$ pontos. Os 25% melhores alunos ficaram com nota maior ou igual $_{72,75}$ e os 25% piores ficaram com nota menor ou igual a $_{52}$ pontos.

c) Construa e analise um gráfico de pontos para a variável nota de Estatística.

10 alunos obtiveram nota igual a 60 pontos. Somente 2 alunos obtiveram nota superior a 90 pontos.

18 alunos foram reprovados por terem obtido nota inferior a 60 pontos.

d) Construa um Ramo-e-folhas com um incremento de 10 pontos.

Stem-and-Leaf Display: Notas

```
Stem-and-leaf of Notas N = 60
Leaf Unit = 1,0
 3
      2
        679
 7
      3
        1889
 13
        127999
 18
      5 12237
      6 00000000011234555557888
(24)
      7
        00234555679
 18
 7
      Я
        02225
 2
      9
        67
```

d2) _____ alunos ficaram com 57 pontos ou menos;
d3) ____ alunos ficaram com 70 pontos ou mais;
d4) ____ alunos ficaram com nota de 60 a 68 pontos;
d5) ___ alunos ficaram com 39 pontos ou menos;
d6) A forma da distribuição das notas é: ____

e) Construa um histograma com o limite inferior da primeira classe igual a 20 pontos e a amplitude de classe igual a 10 pontos. Considerando que a nota mínima de aprovação é 60, coloque este limite de especificação no gráfico e calcule a porcentagem de alunos reprovados nessa disciplina de Estatística. Porcentagem de reprovação: 30 %

Obs.: Caso você tenha concluído o histograma sem usar a opção *Data Labels* dentro de *Labels*, para exibir as freqüências acima de cada coluna, você pode clicar na barra de ferramentas em: *Editor* → *Add* → *Data Labels* → *Ok*.