Manifolds II

January 6, 2025

Recall: Tangent Bundle

Given a chart (U,ϕ) about a point p, we have coordinates (x^1,\ldots,x^n) and a basis for T_qM of $\left(\frac{\partial}{\partial x^1}|_q,\ldots,\frac{\partial}{\partial x^n}|_q\right)$ for $q\in U$.

Then given $TM \xrightarrow{\pi} M$, we may write $v_q = v^i \frac{\partial}{\partial x^i}|_q$.

Definition:

For M a topological manifold. A (real) vector bndle of rank k over M is a topological space E with a surjective continuous map $\pi: E \to M$ such that

- 1. $\forall p \in M$, the fiber $\pi^{-1}(p) =: E_p$ is endowed with the structure of a (real) vector space of dimension k.
- 2. $\forall p \in M$, there exists a neighborhood U of p in M and a homeomorphism $\Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ called a local trivialization.

and $\Phi|_{E_a}: E_q \to \{q\} \times \mathbb{R}^k$ is a linear isometry.

Examples

- 1. $TM \stackrel{\pi}{\rightarrow} M$
- 2. $E = M \times \mathbb{R}^k$ with a global trivialization.
- 3. The Mobius bundle over S^1 . $\gamma: \mathbb{R}^2 \to \mathbb{R}^2$ by $(x,y) \mapsto (x+1,(-1)\cdot y)$. Then $\langle \gamma \rangle \cong \mathbb{Z}$ a subgroup acting freely and isometrically on \mathbb{R}^2 . Then $E = \mathbb{R}^2/\langle \gamma \rangle \stackrel{\pi}{\to} S^1 = \mathbb{R}/\mathbb{Z}$ by $\overline{(x,y)} \mapsto \overline{x}$ is a vector bundle.

IMAGE 1

• We want to show that $\pi^{-1}(U) \cong U \times \mathbb{R}$

$$\mathbb{R}^{2} \xrightarrow{q} E \qquad (x,y) \longmapsto \overline{(x,y)}$$

$$\downarrow^{\pi} \qquad \downarrow^{\pi} \qquad \downarrow^{\pi} \qquad \downarrow$$

$$\mathbb{R} \xrightarrow{\varepsilon} S^{1} \qquad x \longmapsto e^{(2\pi i)x}$$

Then let $p \in S^1$. We choose U a neighborhood of p such that U is evenly covered by ε . This means $\varepsilon^{-1}(U)$ is a disjoint union of open sets difeomorphic to U.

IMAGE 2

1

Let \tilde{U} be a component in $\pi^{-1}(U)$. Then $\pi_1^{-1}(\tilde{U}) \cong \tilde{U} \times \mathbb{R}$ and $\pi^{-1}(U)$ is diffeomorphic to $U \times \mathbb{R}$.

Definition: Transition Function

Take $E \xrightarrow{\pi} M$ with $U, V \subseteq M$ admitting trivializations $\phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$ and $\Psi : \pi^{-1}(V) \to V \times \mathbb{R}^k$. Let $w = U \cap V \neq \emptyset$.

$$\Phi \circ \Psi^{-1}: \qquad W \times \mathbb{R}^k \longrightarrow \pi^{-1}(W) \longrightarrow W \times \mathbb{R}^k$$

Then $\Phi \circ \Psi^{-1}|_{\{p\} \times \mathbb{R}^k}$ by $\{p\} \times \mathbb{R}^k \to \{p\} \times \mathbb{R}^k$ is a linear iso-

morphism.

 $\Phi \circ \dot{\Psi}^{-1}(p,v) = (p,\tau(p)v) \text{ by } \tau : p \mapsto \tau(p) \text{ and } \tau(p) \in GL(k,\mathbb{R}) \text{ gives a smooth map } W \to GL(k,\mathbb{R}).$

Definition:

Let $\{E_1, \ldots, E_k\}$ be a basis of \mathbb{R}^k . Then

$$\tau(p) \cdot E_i = \sum_j \tau(p)_i^j E_j$$

with $\tau(p) = (\tau(p)_i^j)$ and $\tau(p)_j^i \in \mathbb{R}$. It suffices to show each $\tau(*)_i^j$ mapping $W \to \mathbb{R}$ and $p \mapsto (\tau(p)_i^j)$ is smooth. Then if $\sigma(p,v) := \Phi \circ \Psi^{-1}(p,v)$, $\tau(p)_i^j = \pi_j(\sigma(p,E_i))$ and π_j is a projection to the j-th component in \mathbb{R}^k .

Lemma 10.6 (Vector Bundle Chart Lemma)

Given M a smooth manifold, suppose that $\forall p \in M$ we are given a vector space E_p of dimension k. Let $E = \coprod_{p \in M} E_p$ (as a set) and $\pi : E \to M$ a mapping E_p to p. Suppose also that we have

- 1. $\{U_{\alpha}\}_{\alpha\in A}$ an open cover of M with a countable subcover.
- 2. $\forall \alpha \in A$ we hav ea bijection $\Phi_{\alpha} : \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ such that $\Phi_{\alpha}|_{E_{p}} : E_{p} \to \{p\} \times \mathbb{R}^{k}$ is a linear isomorphism.
- 3. $\forall \alpha, \beta \in A \text{ with } U_{\alpha\beta} := U_{\alpha} \cap U_{\beta} \neq \emptyset \text{ we have a smooth map } \tau_{\alpha\beta} : U_{\alpha\beta} \to GL(k,\mathbb{R}) \text{ such that } \Phi_{\alpha} \circ \phi_{\beta}^{-1} : U_{\alpha\beta} \times \mathbb{R}^k \to U_{\alpha\beta} \times \mathbb{R}^k \text{ by } (p,v) \mapsto (p,\tau(p)v).$

Then $E \stackrel{\pi}{\to} M$ is a vector bundle.

Example (Whitney Sum):

Suppose we have $E' \stackrel{\pi'}{\to} M$ and $E'' \stackrel{\pi''}{\to} M$ two vector bundles over M. Define $E = E' \oplus E''$ a new vector bundle over M by $E_p = E_p' \oplus E_p''$. Let $\{U_\alpha\}_{\alpha \in A}$ be a countable open cover of M such that each U_α admits trivializations for E' and E''. Then for $\pi : E \to M$, define $\Phi_\alpha : \pi^{-1}(U_\alpha) \to U_\alpha \times \mathbb{R}^{k'} \times \mathbb{R}^{k''}$ by $(v', v'')_p \mapsto (p, \pi_2 \circ \Phi_\alpha^{-1}(v'), \pi_2 \circ \Phi_\alpha''(v''))$ where

$$\pi'(U_{\alpha}) \stackrel{\Phi'_{\alpha}}{\to} U_{\alpha} \times \mathbb{R}^{k'} \stackrel{\pi_2}{\to} \mathbb{R}^{k'}$$

Note that π_2 is the projection into the second component. Then $\tau: U_{\alpha\beta} \to G(k'+k'',\mathbb{R})$ by

$$p \mapsto \begin{pmatrix} \tau'(p) & 0 \\ 0 & \tau''(p) \end{pmatrix}$$

Example

For $\tau_{\alpha\beta}: U_{\alpha\beta} \to GL(k,\mathbb{R})$ by $p \mapsto \tau_{\alpha\beta}(p)$, we can write $U_{\alpha\beta\gamma} = U_{\alpha} \cap U_{\beta} \cup U_{\gamma}(\neq \varnothing)$ and get $\tau_{\alpha\beta} \cdot \tau_{\beta\gamma} = \tau_{\alpha\gamma}$. Note that this is $\Phi_{\alpha} \circ (\phi_{\beta}^{-1} \circ \phi_{\beta}) \circ \Phi_{\gamma}^{-1}$.

Without loss of generality, we assume each U_{α} is a chart for M. Then we want to show that we satisfy Lemma 1.35 from Lee

$$\pi^{-1}(U_{\alpha}) \stackrel{\Phi_{\alpha}}{\to} U_{\alpha \times \mathbb{R}^k} \stackrel{\phi_{\alpha} \times \mathrm{id}}{\to} \phi_{\alpha}(U_{\alpha}) \times \mathbb{R}^k \subseteq \mathbb{R}^{n+k}$$

 $(\pi^{-1}(U_{\alpha}) \cdot \tilde{\phi}_{\alpha} = (\phi_{\alpha} \times id) \circ \Phi_{\alpha})_{\alpha \in A}$ which satisfies (1). Since

$$\pi^{-1}(U_{\alpha}) \cap \pi^{-1}(U_{\beta}) = \pi^{-1}(U_{\alpha} \cap U_{\beta}) \to \phi_{\alpha}(U_{\alpha\beta}) \times \mathbb{R}^{K}$$

we have that (2) is satisfied. Finally, for (3),

$$\tilde{\phi_{\beta}} \circ \tilde{\phi_{\alpha}}^{-1} = (\Phi_{\beta} \circ (\phi_{\beta} \times id)) \circ ((\phi_{\alpha} \times id)^{-1} \circ \Phi_{\alpha}^{-1}) = \Phi_{\beta} \circ ((\phi_{\beta} \circ \phi_{\alpha}) \times id) \circ \Phi_{\alpha}^{-1}$$

gives $(x,c)\mapsto ((\phi_{\beta}\circ\phi_{\alpha}^{-1})x,(\Phi_{\beta}\circ\Phi_{\alpha}^{-1})\nu)$ a diffeomorphism.

(4) and (5) are trivial, and this is indeed a smooth manifold. Now we wish to show that it is a vector bundle. To show that $\pi: E \to M$ is smooth,

$$\pi^{-1}(U_{\alpha}) \xrightarrow{\pi} U_{\alpha}$$

$$\tilde{\phi}_{\alpha}^{-1} \uparrow \qquad \qquad \downarrow \phi_{\alpha}$$

$$\phi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{k} \qquad \phi_{\alpha}(U_{\alpha})$$
We have $\tilde{\phi}_{\alpha}^{-1} = (\phi_{\alpha} \times \mathrm{id})^{-1} \circ \Phi_{\alpha}^{-1}$.
$$\pi^{-1}(U_{\alpha}) \xrightarrow{\Phi_{\alpha}} U_{\alpha} \times \mathbb{R}^{k}$$

$$\tilde{\phi}_{\alpha}^{-1} \uparrow \qquad \qquad \downarrow \phi_{\alpha} \times \mathrm{id}$$

$$\phi_{\alpha}(U_{\alpha}) \times \mathbb{R}^{k} \qquad \phi_{\alpha}(U_{\alpha} \times \mathbb{R}^{k})$$

Definition: Section of a Bundle

A (smooth) section of $E \xrightarrow{\pi} M$ is a (smooth) map $\sigma : M \to E$ such that $\pi \circ \sigma = \mathrm{id}_M$.

 $\Gamma(E) = \{\text{smooth sections of } E \xrightarrow{\pi} M\} \text{ and } \Gamma(E) \text{ is a } C^{\infty}(M)\text{-module.}$

The zero section $Z: M \to E$ is given by $p \mapsto 0_p \in E_p$.

If *U* has a local trivialization, $\Phi : \pi^{-1}(U) \to U \times \mathbb{R}^k$.

$$\Phi: \qquad \pi^{-1}(U) \xrightarrow{\qquad \qquad } U \times \mathbb{R}^k \leftarrow \xrightarrow{\qquad \qquad \Phi^{-1} \qquad \qquad } (p, e_i)$$

$$U \qquad \qquad p \qquad \qquad D \qquad$$

Define $\sigma_i: U \to \pi^{-1}(U)$ by $\sigma_i = \Phi^{-1} \circ \tilde{e}_i$ gives

a local section that is non-zero on *U*.

 $\{\sigma_1, \dots, \sigma_n\}$ form a local frame on U (i.e. form a basis in $E_p, \forall p \in U$).