

# Morphology

- Hit and Fit
- Dilation and Erosion
- Closing and Opening
- Compound Operations
- Boundary Detection

Input

Output

# CST455: Digital Image Processing Dr. S K Vipparthi, CSE, MNIT Jaipur



- ☐ Morphology operates like the other neighborhood processing methods by applying a kernel to each pixel in the input.
- In morphology, the kernel is denoted a *structuring element and contains '0's and '1's*.
- ☐ You can design the structuring element as you please, but normally the pattern of '1's form a box or a disk.



Fig. Three examples of the uses of morphology.

- (a) Removing small objects.
- (b) Filling holes.
- (c) Isolating objects





Fig. Two types of structuring elements at different sizes



#### Hit

- ☐ For each '1' in the structuring element we investigate whether the pixel at the same position in the image is also a '1'.
- If this is the case for just one of the '1's in the structuring element we say that the structuring element hits the image at the pixel position in question (the one on which the structuring element is centered). This pixel is therefore set to '1' in the output image. Otherwise it is set to '0'.

#### Fit

- ☐ For each '1' in the structuring element we investigate whether the pixel at the same position in the image is also a '1'.
- If this is the case for all the '1's in the structuring element we say that the structuring element fits the image at the pixel position in question (the one on which the structuring element is centered). This pixel is therefore set to '1' in the output image. Otherwise it is set to '0'.





| Position | SE    | Fit | Hit |
|----------|-------|-----|-----|
| A        | $S_1$ | No  | Yes |
| A        | $S_2$ | No  | Yes |
| В        | $S_1$ | No  | Yes |
| В        | $S_2$ | No  | No  |
| C        | $S_1$ | Yes | Yes |
| C        | $S_2$ | Yes | Yes |
| D        | $S_1$ | No  | No  |
| D        | $S_2$ | No  | No  |



#### **Dilation**

Applying Hit to an entire image is denoted Dilation and is written as

$$g(x, y) = f(x, y) \oplus SE$$



Fig. Dilation of the binary image using S1



- ☐ The term dilation refers to the fact that the object in the binary image is increased in size.
- ☐ In general, dilating an image results in objects becoming bigger, small holes being filled, and objects being merged.
- How big the effect is depends on the size of the structuring element.
- ☐ It should be noticed that a large structuring element can be implemented by iteratively applying a smaller structuring element.



Fig. Dilation with different sized structuring elements



#### **Erosion**

Applying Fit to an entire image is denoted Erosion and is written as

$$g(x, y) = f(x, y) \ominus SE$$







Fig. Erosion with different sized structuring elements



# **Compound Operations Closing**

$$g(x, y) = f(x, y) \bullet SE = (f(x, y) \oplus SE) \ominus SE$$



Fig. Closing of the binary image using *S1* 





Fig. Closing performed using 7 ×7 box-shaped structuring elements



# **Opening**

$$g(x, y) = f(x, y) \circ SE = (f(x, y) \ominus SE) \oplus SE$$



Fig. Opening of the binary image using S1





Fig. Opening performed using a 7×7 box-shaped structuring element



Fig. Filtering a binary image where both holes and small noisy objects are present



# **Application: Boundary Detection** $g(x, y) = f(x, y) - (f(x, y) \ominus SE)$

$$g(x, y) = f(x, y) - (f(x, y) \ominus SE)$$



Fig. Boundary detection







