MATH 202A: Homework 1

William Guss 26793499 wguss@berkeley.edu

August 26, 2016

Alekos, Julia, Branden.

1.

Theorem 1. Let X be a nonempty set and let $f, g: X \to R$ be bounded functions. Show that

$$\sup(f(x) + g(x)) \le \sup f(x) + \sup g(x)$$

Proof. Since X is non empty and the functions f, g are bounded then the function (f + g)(x) is bounded. Let u_f, u_g be the least upper bound of f(X) and G(X) respectively. These exist since f, g are bounded. Furthermore let u_{f+g} be the upperbound for (f+g).

Suppose $u_f + u_g < u_{f+g}$, let x_n^f and x_n^g be sequences in X which acheive $f(x_n^f) \to u_f$ and $g(x_n^g) \to u_g$ respectively, finally let y_n be the sequence which achieves $(f+g)(y_n) = u_{f+g}$. If $u_{f+g} > u_f + u_g$ then there is an N such that for all n > N $(f+g)(y_n) = f(y_n) + g(y_n) > u_f + u_g$ which is a contraction to u_f and u_g being an upperbound. \square

2. Lim suppy goodness.

Theorem 2. Let (a_n) and (b_n) be sequences in \mathbb{R} suppose neither $\limsup_{n\to\infty} a_n$ nor $\limsup_{n\to\infty} b_n$ equals $-\infty$. Show that

$$\lim \sup_{n \to \infty} a_n + b_n \le \lim \sup_{n \to \infty} a_n + \lim \sup_{n \to \infty} b_n.$$

Proof. Observe that a_n, b_n are isomorphically equivalent to $A : \mathbb{N} \to \mathbb{R}$ and $B : \mathbb{N} \to \mathbb{R}$.

Then if a_n and b_n are bounded above, then by the previous problem

$$\sup_{E \subset \mathbb{N}} A(n) + B(N) \le \sup_{E \subset \mathbb{N}} A(n) + \sup_{E \subset \mathbb{N}} B(N). \tag{1}$$

since A, B bounded below and above by the assumption of the problem. And for the the family of sets $E := E_n = \{n, n+1, \ldots\}$ the inequality holds so therefore

$$\lim \sup_{n \to \infty} a_n + b_n \le \lim \sup_{n \to \infty} a_n + \lim \sup_{n \to \infty} b_n.$$

Without loss of generality we check the other case by assuming that a_n is unbounded above. Then $a_n \to \infty$ and coorespondingly $\limsup a_n = \infty$. We then have that $\limsup a_n + \limsup b_n = \infty$ and for every $x \in \overline{\mathbb{R}}$, $x \le \infty$ and the inequality holds since $\limsup_{n \to \infty} a_n + b_n \in \overline{\mathbb{R}}$.

Consider the following example $a_n = (1, -1, 1, -1, 1, -1, ...)$ and $b_n = (-1, 1, -1, 1, -1, 1, -1, ...)$.

Proof. By construction $\limsup b_n = 1$, $\limsup a_n = 1$. However $a_n + b_n = 0$ for all n by construction. Therefore $\limsup 0 = 0 \le \limsup b_n + \limsup a_n$.

3. We show that the matching metric is a metric.

Proof. First $d: X \times X \to [0, \infty)$ since it is not possible for there to be a negative number of indices for which $x_n \neq y_n$ (doesn't make sense). Furthermore S^n is finite so there can be at most n indices for which x, y could disagree.

Second, d is semetric since the number of elements for which $x_j \neq y_j$ is equivalent to the number of elements for which $y_j \neq x_j$ by the symmetry of the equality relation on S.

Third, x = y if and only if for every $j \in \{1, ..., n\}$, $x_j = y_j$ if and only if the number of indices on which x and y agree is 0 if and only if d(x, y) = 0 if and only if x = y.

Fourth and finally, if $x, y, z \in X$ then suppose that d(x, z) + d(z, y) < d(x, y). Then there is a j such that $x_j \neq y_j$ but that $x_j = z_j = y_j$. If there not were such a j in this situation then x_j disagrees with z_j or y_j disagrees with z_j for every j and so the LHS is $2n > n \ge d(x, y)$. So such a j must exist and that is a contradition to d(x, z) + d(z, y) < d(x, y). Therefore the triangle equality holds for this metric. \square

4. Consider $\mathbb{N} \subset \mathbb{R}$.

Proof. We claim that $\lim_{\mathbb{R}} \mathbb{N} = \mathbb{N}$. Suppose there were $x \notin \mathbb{N}$ that was a limit point, then for every r > 0, there exists an $n \in B(r, x)$ with $n \in \mathbb{N}$. Take $r = \frac{\min\{x - \lfloor x \rfloor, \lceil x \rceil - x\}}{2}$. Then B(r, x) cannot contain any n since it is a strict subset of $(\lfloor x \rfloor, \lceil x \rceil)$. So x is not a limit point of \mathbb{N} and all of the limit points of \mathbb{N} are in \mathbb{N} .

Every point and only every point of \mathbb{N} is a limit point and \mathbb{N} is countable. \square

The set [0,1] is a closed set and so every point is a limit point and [0,1] is uncountable.

5. The set $E = \{x | x^2 < 2, \} \subset \mathbb{Q}$ is clopen.

Proof. If $E = [-\sqrt{2}, \sqrt{2}] \cap \mathbb{Q}$ then it is open since any rational $r \in E$ has the property that $\epsilon = \min\{d(r, -\sqrt{2}), d(r, \sqrt{2})\}$ gives a ball $B(\epsilon/2, r) \cap \mathbb{Q}$ which contains every element in E since it could not possibly contain $l > \sqrt{2}$ or $l < \sqrt{2}$ by definition of ϵ .

Now take a sequence of convergent rational numbers in E (which may converge outside of E. Suppose that it does converge outside of E. It must be the case that there is a $r > \sqrt{2}$ or $r < \sqrt{2}$ to which the sequence converges. Without loss of

generality assume that $r > \sqrt{2}$. Then take $\epsilon = r/2 + \sqrt{2}/2$. There must be an N so that all elements of the sequence with index greater than n are more than $\sqrt{2}$ since there exists rationals within ϵ of $r > \sqrt{2}$, but this contradicts the sequence being in E. Therefore E is closed.

6. The set $E = \{(x, y) \in \mathbb{R}^2 : x > 0, y > 0, xy > 1\}$ is open.

Proof. We show that f(x,y) = xy is continuous. It is obvious that the identity map id(x) = x, id(y) = y is continuous (take $\delta = \epsilon$). Furthermore it is obvious that f(x,y) = x, = y is continuous (take $\delta = \epsilon$) by effectively the same argument. Then the product of f(x,y) = x, f(x,y) = y is continuous.

Then the set $f(E) = (1, \infty)$ is open in \mathbb{R} and by continuity of f the preimage is open. That is E is open.

7. Graph goodness.

Theorem 3. If $f:[0,1] \to \mathbb{R}$ and f continuous then $G(f) = \{(x,y) \in [0,1] \times \mathbb{R} : y = f(x)\}$ is closed.

Proof. Since f is continuous, for any sequence (x_n) in [0,1], $x_n \to x$ implies $f(x_n) \to f(x)$. Let (x_n, y_n) be any convergent sequence from G(f). We wish to show that $(x_n, y_n) \to (x, y) \in G(f)$.

Since (x_n, y_n) a convergent sequence in \mathbb{R}^2 then x_n must be a convergent sequence in \mathbb{R} (it is not hard to see this since $|x_n - x|^2 < |x_n - x|^2 + |y_n - y|^2 < \epsilon$). However since $x_n \in [0, 1]$ and [0, 1] closed $x_n \to x \in [0, 1]$ and by the continuity of $f, y_n = f(x_n) \to f(x) = y$ such that $(x, y) \in G$.

This completes the proof.

8.

Theorem 4. Let (x_n) be a sequence of points in a metric space (X, ρ) , and let $z \in X$. Suppose that any subsequence of (x_n) has a sub-subsequence which converges to z. Then $x_n \to z$.

Proof. Suppose not, then there exists an $\epsilon > 0$ such that for all N, there exists an n > N such that $\rho(x_n, z) > \epsilon$. Take the subsequence n_j such that n_j is the first n > j where $\rho(x_n, z) > \epsilon$.

This sequence has a convergent subsequence j_p such that there exists an N for which all p>N gives $\rho(x_{n_{j_p}},z)<\epsilon$. This is a contradiction, and therefore the theorem holds.

9.

Theorem 5. Let (x_n) be a Cauchy sequence in (X, ρ) . Show that if some subsequence (x_{n_k}) converges, then (x_n) also converges.

Proof. If (x_n) is cauchy then for all $\epsilon > 0$ there exists an M such that for all p, q > M $\rho(x_p, x_q) < \epsilon/2$. Take M to be large enough that $\rho(x_{n_q}, x) < \epsilon/2$ by $x_{n_k} \to x$. By the triangle inequality, $\rho(x_m, x) \le \rho(x_m, x_{n_q}) + \rho(x_{n_q}, x) < \epsilon/2 + \epsilon/2 = \epsilon$. Therefore $x_n \to x$.

10.

Theorem 6. Any cauchy sequence is bounded.

Proof. Let (x_n) be a cauchy sequence. Pick any ϵ , then take N large enough such that for all n, m > N, $d(x_n, x_m) < \epsilon$. Then fix n. Let

$$R = \max\{d(x_1, x_n), \dots d(x_{n-1}, x_n), \epsilon\}.$$
 (2)

It is obvious that $\{x_l\} \subset B(R, x_n)$. This completes the proof.

11.

Theorem 7. Let (X, ρ) be a metric space and let $Y \subset X$. Let ρ' be the metric on Y defined by restricting ρ to Y. Show that if (Y, ρ') is complete then Y is a closed subset of X.

Proof. Suppose that Y does not contain all of its limit points. Then there is a sequence such that $y_n \to x \in X \setminus Y$. Then for every $\epsilon > 0$ there is an N such that for all n, m > N $\rho(y_n, x) < \epsilon/2$ and $\rho(y_m, x) < \epsilon/2$.

It follows that $\rho'(y_m, y_n) < \rho(y_n, x) + \rho(x, y_m) < \epsilon$ so y_n is cauchy in Y. Therefore by y complete, $y \to y \in Y$ which is a contradiction to $y_n \to x \in X \setminus Y$.

12.

Theorem 8. Let $f: X \to Y$. If G is the graph of f show that if f continuous then G is closed.

Proof. Define $F: X \to G$ as the function which takes x to (x, f(x)). Such a map is a bijection since every element of x is uniquely indexed in G by (x, .) and the definition of G says that for every $(x, f(x)) \in G$ there is an y in X namely x which maps to (x, f(x)) under X.

Then for any sequence in G there exists a $x_n \in X$ which cooresponds through F uniquely. So let x_n which converges then $F(x_n)$ converges in G since $F = id \times f$ is continuous. Therefore every sequence in G converges.

13.

Theorem 9. Let $d:(x,y)\mapsto |x-y|^{1/2}$. Then d is a metric and other things in the assignment.

Proof. The function $d = \sqrt{\circ}\rho$ where ρ is a metric. Therefore $d(a,b) = \sqrt{\circ}\rho(a,b) = \sqrt{\circ}\rho(b,a) = d(b,a)$. Furthermore $\sqrt{:}\mathbb{R}^+ \cup \{0\} \to \mathbb{R}^+ \cup \{0\}$ so $\sqrt{\circ}\rho$ is still positive definite. Finally we show the triangle inequality,

$$d(a,c) = \sqrt{\rho(a,b-b+c)} \le \sqrt{\rho a, b + \rho(b,c)} \tag{3}$$

and so we show $d(a,c)^2 = \rho(a,c) \le \rho(a,b) + \rho(b,c)$ implies by monotonicity of ρ that $d(a,c) \le d(a,b) + d(b,c)$.

Now we show that the metrics are not strongly equivalent. Suppose there were constants α, β such that for every $x, y \in X$ $\alpha d(x, y) \leq \rho(x, y) \leq \beta(x, y)$. Then $\alpha |\gamma| \leq |\gamma|^2 \leq \beta |\gamma|$ but clearly there exixts no β such that γ^2 never exceeds the line $\gamma\beta$ so the metrics are not strongly equivalent (although they are topologically equivalent.)

Now we show that cauchy in ρ if and only if cauchy in d. Pick $\epsilon > 0$ and $\delta = \epsilon^2 > 0$ then $d(x_m, x_n) < \delta$ if and only if $\rho(x_m, x_n) = d(x_m, x_n)^2 < \delta^2 = \epsilon$.

The set $\mathbb{R} \setminus A$ is closed under d and contains all of its limit points if and only if it is cauchy under d if and only if it is cauchy under ρ if and only if it contains it limits under ρ if and only if it is closed under ρ . Therefore A is open under ρ if and only if it is open under d.

14.

Theorem 10. If $f: X \to Y$ continuous and $K \subset X$ compact then f(K) compact.

Proof. If K compact then every sequence has a convergent subsequence. Take any sequence $y_n \in f(K)$ then clearly there is a sequence in K such that $f(x_n) = y_n$. Then take the subsequence of x_n which converges, say n_j . Then $f(x_{n_j}) \to f(x) \in f(K)$ (as $x \in X$) by continuity of f and $f(x_{n_j})$ is a subsequence of y_n . This completes the proof.

15.

Theorem 11. Let $f: K \to Y$ be continuous and $K \subset X$ compact, then f is uniformly continuous.

Proof. Since f is continuous then for any $\epsilon > 0$ for every x there is a $\delta(x)$ such that $\rho(x,y) < \delta(x)$ implies that $\rho'(fx,fy) < \epsilon$. Let \mathcal{V} be the family defined as

$$\mathcal{V} = (B(\delta(x), x))_{x \in K}. \tag{4}$$

This is clearly an open cover of K and by K compact there is a finite subcover indexed by a finite $\mathcal{F} \subset K$. Let

$$\delta = \min_{x \in \mathcal{F}} \delta(x). \tag{5}$$

It follows that any for every $x,y \in K$ such that $\rho(x,y) < \delta$, $\rho(x,y) < \delta(x)$ and $\rho(x,y) < \delta(y)$ and so $\rho'(fx,fy) < \epsilon$. Therefore f is uniformly continuous.