

Gefördert durch:

Time Series Forecasting

1.2 Time Series Analysis Concepts

Mario Tormo Romero

Design IT. Create Knowledge.

What we'll cover in this video

- Types of Time Series Data
- Core Concepts:
 - Seasonality and Cyclical signals
 - Trends
 - Autoregressive signals
 - Stationarity and Unit roots
 - Endogenous vs. Exogenous Variables

Types of Time Series Data

Regular vs. Irregular Time Series

- Regular Time Series (Evenly spaced observations)
 - o Observations are collected at consistent intervals
 - Easier to model and align with standard forecasting techniques
 - Common in:
 - Weather monitoring
 - Energy consumption tracking
 - Financial time series (e.g., daily stock prices)
 - Uniform timestamps
- Irregular Time Series (Unevenly spaced observations)
 - Observations occur at uneven or event-driven intervals
 - May require resampling or special models
 - o Common in:
 - Medical events (e.g., when symptoms occur)
 - System logs and alerts
 - User activity data
 - Variable time gaps

Different Types of Time Series

Univariate vs. Multivariate | Simple vs. Multiple

	Simple	Multiple
Univariate	One variable, one entity over time. <i>E.g.:</i> Sales of one product	One variable, many entities. <i>E.g.:</i> Sales of many products over time
Multivariate	Several related variables for one entity. E.g.: Heart rate & blood pressure of one patient	Several related variables for many entities. <i>E.g.:</i> Vitals for multiple patients

Important: In multivariate time series, the variables are usually **interdependent** — meaning they influence or respond to each other.

If variables are unrelated and analyzed separately, it's better treated as **multiple univariate series**, even if recorded together.

Types of Time Series Data

Local vs Global Time Series

Local Forecasting

- Focuses on individual time series (usually univariate)
- Models trained separately for each series
- Captures specific local patterns and behaviors
- Examples: forecasting sales of a single product, weather for one city

Global Forecasting

- Uses one model across multiple related series (multiple univariate series)
- Learns shared patterns and relationships across series
- Helps improve accuracy by leveraging cross-series information
- Examples: forecasting demand for multiple stores, energy use across regions

HPI

Seasonal and cyclical signals

Seasonality

- Regular, repeating patterns that occur at fixed, known intervals.
- o Examples:
 - o Retail sales spikes every December.
 - Electricity usage peaking daily in the evenings.
- Key Feature: Frequency is predictable, tied to calendar or time intervals.

Cyclical signals

- Fluctuations that repeat over longer, irregular periods, often driven by economic or external factors.
- o Examples:
 - Economic expansions and recessions.
 - Commodity price cycles.
- Key Feature: No fixed period; cycles can vary in length and intensity.

HPI

Autoregressive (AR) Signals

 The current value of a time series depends on its own previous values.

• Example:

- AR(1) model today's value depends on yesterday's value plus some noise.
- Stock prices or temperature readings where past behavior influences the present.
- Key Feature: Captures persistence or momentum in data,
 making past observations predictive of future ones.

$$X_t = \phi X_{t-1} + \varepsilon_t$$

Stationarity

- A time series is **stationary** if its key statistical properties—mean, variance, and autocorrelation—stay constant over time.
- Stationarity means the data fluctuates around a constant average without long-term trends or changing volatility.
- Types of Stationarity:
 - Hard (Strict) Stationarity: The entire distribution
 of the series remains the same over time, meaning
 all statistical properties are constant. This is a strong
 condition and harder to satisfy.
 - Soft (Weak) Stationarity: Only the first two
 moments (mean and variance) and autocorrelation
 structure are constant over time. This is more
 common and sufficient for many models.

Stationarity

- Why is Stationarity Important?
 - Most time series models assume stationarity to make reliable forecasts.
 - Non-stationary data can lead to misleading or unstable predictions.

Examples:

- The daily returns of a stock (percentage changes in price) are often soft-stationary because their mean and variance remain stable.
- Raw stock prices are usually non-stationary.

Trends

- What is a Trend?
 - A long-term increase or decrease in the data over time.
 - Represents systematic, consistent changes that persist across periods.
 - Can be linear or nonlinear.
- Why Trends Matter
 - Trends affect the stationarity of a time series.
 - Detecting and modeling trends is essential for accurate forecasting.
 - Removing trends (detrending) is often necessary for some models.
- Examples
 - Global average temperature increasing over decades (upward trend).
 - Product lifecycle sales that rise and then decline (nonlinear trend).

Unit roots

- A unit root is a property that makes a time series nonstationary.
- It implies the series depends strongly on past values, leading to a random walk behavior.
- Example AR(1) $X_t = \phi X_{t-1} + \varepsilon_t$
 - $|\phi|>1$: Explosive the series diverges exponentially over time.
 - |φ|=1: Unit Root the series is a random walk, nonstationary.
 - $|\phi|$ <1: Stationary the series reverts to the mean over time.
- Example:
 - Stock prices: Often exhibit a unit root (φ≈1), leading to unpredictable, non-reverting behavior.

Exogenous and endogenous variables

- Endogenous Variables
 - Variables that are determined within the system being modeled.
 - In time series, the past values of the target variable itself are considered endogenous inputs.
 - Example: Predicting future energy consumption using its own historical values.
- Exogenous Variables (Exogenous Regressors)
 - Variables that are external to the system but still impact the target variable.
 - Also called covariates or external regressors.
 - Example: Forecasting sales by incorporating advertising spend, holidays, or weather data.
- Endogenous-only models rely solely on the internal dynamics of the series.
- Including exogenous variables can significantly improve forecasting when external factors influence the target.

What we've learnt

- Time series can be classified in multiple ways, including:
 - Regular vs. Irregular depending on the timing of observations.
 - Univariate vs. Multivariate based on the number of variables observed.
 - Simple vs. Multiple regarding the complexity or number of series analyzed together.
 - Local vs. Global whether modeling focuses on individual series or groups/collections.
- Understanding seasonality, cyclical signals, stationarity, and unit roots is essential for building effective models.
- Differentiating endogenous (internal) and exogenous (external) variables helps improve forecasting accuracy.