MAT3, termin 1 egzaminu 2020/21

- 1. 1. Skonstruować najmniejsze ciało $(F, +, \cdot)$, w którym wielomian $x^8 + x \in \mathbb{Z}_2[x]$ rozkłada się na czynniki liniowe.
 - 2. Znaleźć wszystkie elementy pierwotne w ciele $(F, +, \cdot)$.
 - 3. Znaleźć wielomian minimalny dowolnie wybranego elementu pierwotnego w ciele $(F,+,\cdot)$.
- 2. Dane jest przekształcenie $g: R^3 \times R^3 \to R$ zadane wzorem $g([x_1, x_2, x_3], [y_1, y_2, y_3]) = x_1y_1 + x_1y_3 + x_2y_2 + x_3y_1 + 2x_3y_3$.
 - 1. Sprawdzić że g jest iloczynem skalarnym w przestrzeni $R^3(\mathbb{R})$
 - 2. Znaleźć macierz Gramma $M_q(\mathcal{B})$ w bazie standardowej $\mathcal{B} = \{[1,0,0],[0,1,0],[0,0,1]\}$
 - 3. Przeprowadzić algorytm ortonormalizacji wektorów [1,-1,1]oraz [1,1,0]z iloczynem $g(\cdot,\cdot)$
- 3. Dane jest przekształcenie liniowe $F: \mathbb{R}_3[x] \to \mathbb{R}_2[x]$ takie, że $F(w(x)) = w(0)(x^2 + x) w(1)x + 2w(-1)$. Wyznacz
 - 1. macierz $M_{\mathcal{B}}^{\mathcal{A}}(F)$ przekształcenia F w bazach kanonicznych $\mathcal{A}=(x^3,x^2,x,1)$ i $\mathcal{B}=(x^2,x,1),$
 - 2. bazę i wymiar $\operatorname{Ker} F$,
 - 3. bazę i wymiar $\operatorname{Im} F$.
- 4. 1. Wskazać wszystkie, parami nieizomorficzne grupy abelowe rzędu n=1372.
 - 2. W pierścieniu $(Z_{2025}, +_{2025}, \cdot_{2025})$ znaleźć, jeśli istnieje element odwrotny $a^{-1} \in Z_{2025}$ do a = 448.
 - 3. Czy pierścień $(Z_{2025}, +_{2025}, \cdot_{2025})$ jest ciałem? Odpowiedź uzasadnić.
- 5. Dany mamy następujący układ równań liniowych nad ciałem $(Z_7, +_7, \cdot_7)$

Sprawdzić czy układ ma rozwiązanie w ciele $(Z_7, +_7, \cdot_7)$. Jeśli tak to wskazać bazę przestrzeni rozwiązań tego układu oraz określić jej wymiar.

- 6. Przekształcenie liniowe $F: R^3(\mathbb{R}) \to R^3(\mathbb{R})$ dane jest wzorem F(x,y,z) = (-x-y-z,-x-y+z,-x+y-z).
 - 1. Wyznacz wszystkie wartości własne przekształcenia F.
 - 2. Wyznacz bazę \mathcal{C} przestrzeni $R^3(\mathbb{R})$, składającą się z jak największej liczby wektorów własnych przekształcenia F.
 - 3. Wyznacz macierze $M_{\mathcal{C}}^{\mathcal{C}}(F)$, $M_{\mathcal{C}}^{\mathcal{E}}(\mathrm{id}_{R^3(\mathbb{R})})$ oraz $M_{\mathcal{E}}^{\mathcal{C}}(\mathrm{id}_{R^3(\mathbb{R})})$, gdzie $\mathcal{E} = ((1,0,0),(0,1,0),(0,0,1))$ jest bazą kanoniczną przestrzeni $R^3(\mathbb{R})$.

MAT3, termin 2 egzaminu 2020/21

1. Skonstruować ciało GF(32).

Które, i dlaczego, elementy ciała GF(32) spełniają równanie $x^{31} = 1$? Podać jakiego stopnia są wielomiany minimalne wszystkich elementów w ciele GF(32).

- 2. Dane są wektory u = [1, 1, -1, 0], v = [0, 0, 1, 1], w = [1, 1, 1, 1]. Niech W = $\mathcal{L}(u,v,w)$ będzie podprzestrzenią unitarną przestrzeni $R^4(\mathbb{R})$ ze standardowym iloczynem skalarnym $\langle [x_1, x_2, x_3, x_4], [y_1, y_2, y_3, y_4] \rangle = x_1y_1 + x_2y_2 + x_3y_3 + x_4y_4.$
 - 1. Znaleźć bazę ortonormalną przestrzeni W,
 - 2. Wyznaczyć rzut ortogonalny wektora z = [1, 2, 3, 4] na podprzestrzeń W.
- 3. Dane jest przekształcenie liniowe $F: M_2^2(\mathbb{R}) \to M_2^2(\mathbb{R})$ zadane wzorem F(X) = $A \cdot X$, gdzie $A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$.
 - 1. Wyznacz macierz $M_{\mathcal{E}}^{\mathcal{E}}(F)$ przekształcenia F, gdzie

$$\mathcal{E} = \left(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right)$$

jest bazą kanoniczną przestrzeni $M_2^2(\mathbb{R})$.

- 2. Wyznacz bazę i wymiar $\operatorname{Ker} F$ oraz $\operatorname{Im} F$.
- 3. Czy macierze $B=\left[\begin{array}{cc} -1 & 2 \\ -2 & 4 \end{array}\right]$ i $C=\left[\begin{array}{cc} 1 & 2 \\ -2 & -4 \end{array}\right]$ należą Im F? Odpowiedź uza-
- 4. Podać z produktem minimalnie ilu grup cyklicznych izomorficzna jest grupa

$$({1,5,7,11,13,17,19,23},\cdot_{24})$$

i wskazać ten produkt.

Obliczyć rzędy elementów w grupie ($\{1, 5, 7, 11, 13, 17, 19, 23\}, \cdot_{24}$).

W pierścieniu ($\mathbb{Z}_5[x], +, \cdot$) rozłożyć wielomian $x^3 + 3x + 1$ na czynniki nierozkladalne.

- 5. 1. Przedyskutować rozwiązywalność układu

liczb rzeczywistych w zależności od parametru $a \in \mathbb{R}$.

W przypadku układu oznaczonego podać rozwiązania, natomiast w przypadku układu nieoznaczonego podać liczbę parametrów od ilu zależy rozwiązanie.

2. Wiedząc, że A jest macierzą wymiaru $n \times n$ taką, że $A^3 = 0$ znaleźć macierz odwrotna do $B = I + A + A^2$, gdzie I oznacza macierz jednostkowa wymiaru $n \times n$. Odpowiedź należy uzasadnić.

Wskazówka: $a^3 \pm b^3 = (a \pm b)(a^2 \mp ab + b^2)$

6. Macierzą przekształcenia lin
iowego $F:R^3(\mathbb{R})\to R^3(\mathbb{R})$ w bazie standardowej jest

$$A = M(F) = \begin{bmatrix} -2 & 4 & 2 \\ 0 & 2 & 2 \\ 1 & -1 & 1 \end{bmatrix}.$$

- 1. Wyznacz wszystkie wartości własne oraz podprzestrzenie własne przekształcenia
- 2. Wyznacz macierz diagonalną D oraz odwracalną C takie, że $A = C \cdot D \cdot C^{-1}$.