Matière : Physique-Chimie

Unité : Transformations nucléaires

Niveau : TCS

Heure: 6H

Leçon N°3: Principe d'inertie Durée 6h00

Fiche Pédagogique

Prérequis	Compétences visées	Savoir et savoir-faire	Outils di-
			dactiques
- Notions de forces	- Comprendre le concept de centre	- Définir et localiser le centre d'inertie	- Table à
- Vecteurs et opérations	d'inertie	d'un solide	coussin d'air
vectorielles	- Identifier un système isolé ou pseudo-	- Identifier les forces appliquées sur un	- Autopor-
- Notion de mouvement	isolé	système	teur
- Concepts de vitesse et de	- Appliquer le principe d'inertie	- Caractériser un référentiel galiléen	- Dispositif
trajectoire	- Analyser les mouvements dans	- Utiliser la relation barycentrique	d'enregistrement
- Géométrie de base	différents référentiels	- Analyser les mouvements d'un solide	
	- Utiliser la relation barycentrique		

Situation-problème:

Un joueur lance un palet de curling sur le terrain. On observe que son centre d'inertie garde un mouvement rectiligne uniforme tant qu'il ne heurte aucun obstacle.

- 1. Qu'est-ce qu'un centre d'inertie? Comment trouver sa position?
- 2. Comment caractériser le mouvement du palet?
- 3. Quel principe physique explique ce phénomène?
- 4. Un mouvement nécessite-t-il toujours des forces?

Déroulement				
Eléments du	Activités o			
cours	Enseignant	Apprenant	Evaluation	
I- Centre d'inertie d'un corps solide :	 - Présenter la situation-problème - Inviter les apprenants à formuler des hypothèses - Guider la réflexion sur le mouvement 	 Analyser la situation Proposer des hypothèses Participer à la discussion collective Le centre d'inertie est un point parti- 	Evaluation diagnostique	
I-1. Activité 1	du palet - Démonstration avec l'autoporteur	culier du solide - Le mouvement peut continuer sans		
I-2. Définition du centre d'inertie G :	- Analyse des trajectoires - Définition du centre d'inertie	force - Les forces se compensent - Observer les trajectoires - Comparer les mouvements - Noter les observations - Déduire les caractéristiques du centre d'inertie		
II Principe d'inertie: 1 Activité 2 : 2 Système isolé et pseudoisolé :	 Expérience avec l'autoporteur Inventaire des forces Définition des systèmes isolés/pseudoisolés 	 Identifier les forces Calculer la somme vectorielle Caractériser le mouvement 	Évaluation formative	
3 Enoncé du principe d'inertie :				
III Relation barycentrique 1 Définition de centre de masse d'un système matériel : 2 Relation barycentrique :	-Présentation des systèmes matériels - Démonstration de la relation - Exercices d'application	-Comprendre la relation - Appliquer aux cas simples - Résoudre des exercices	Formative et sommative	
3 Exercice d'application :				