Proiect SCID

Plesa Diana Simona

Grupa: 2127

1. Rezolvarea temei de proiect pe hartie.

2. Implementarea inversorului CMOS

a) Schema electrica la nivel de tranzistor

Pentru ca timpul de crestere sa fie egal cu timpul de descrestere => $(W/L)_p = 3(W\backslash L)_n$

b) Circuitul de test cu verificarea funcționării

Atunci cand semnalul de intrare este 1 logic semnalul de iesire este 0 logic.

Atunci cand semnalul de intrare este 0 logic semnalul de iesire este 1 logic.

c) Măsurarea timpilor de tranziție și a timpului de propagare > Timpii de tranzitie

10%
$$\int_{00}^{\infty} V_{DD} = \int_{00}^{\infty} \frac{10}{100} * 1,2V = 0,12V$$

90% $\int_{00}^{\infty} V_{DD} = \int_{00}^{\infty} \frac{10}{100} * 1,2V = 1,08V$

$$T_{fall}$$
 = tb – ta = 60 ps

$$\tau_{\text{rise}}$$
 = tc – tb = 60 ps

> Timpul de propagare

$$50\% -> V_{DD} => \frac{50}{100} * 1.2V = 0.6V$$

$$\tau_{PHL}$$
 = td – tc = 30 ps

$$\mathcal{T}_{PLH}$$
 = tb – ta = 30 ps

3. Circuitul combinațional

a) Schema electrica

b) Circuitul de test cu verificarea funcționării

Cand A0 = 1 si A1 = 1 se transmite la iesire semnalul I3.

Cand A0 = 0 si A1 = 1 se transmite la iesire semnalul I2.

Cand A0 = 1 si A1 = 0 se transmite la iesire semnalul I1.

Cand A0 = 0 si A1 = 0 se transmite la iesire semnalul I0.

4. Circuitul secvențial

a) Schema electrica

b) Circuitul de test cu verificarea funcționării

Bistabilul D este un circuit logic secvențial activ pe frontul semnalului de tact (ascendent sau descendent în funcție de implementare). Circuitul are două intrări, o intrare de date (D) și o intrare de tact (ck) și două ieșiri, Q respectiv Qb. Funcționarea circuitului poate fi analizată dependent de semnalul de tact după cum urmează: la apariția frontului de tact ieșirea Q preia nivelul logic de la intrarea de date D, iar pe durata palierelor de 0 și de 1 bistabilul memorează starea actuală. În fiecare caz, ieșirea Qb este varianta negată a ieșirii Q.

5) Implementarea finala

a) Schema finală a automatului

b) Verificarea funcționalității circuitului

Din starea 001 automatul trece in starea 010.

Din starea 010 daca b=0 -> 010

daca b=1 -> 011

Din starea 011 daca a=1 -> 100

daca a=0 -> 110

Din starea 100 daca a=1 -> 100

daca a=0 -> 110

Din starea 110 -> 111

Din starea 111 -> 001

Automatul incepe din starea 111. Trece in starea 001 -> 010. Din starea 010 pentru ca b=0 trece in starea 010. Din 010 -> 011. Din 011, a=0, trece in starea 110. Din 110 -> 111 -> 001 -> 010. Din starea 010, b=1, trece in starea 011. Din starea 011, a=1, trece in starea 100. Din starea 100, a=0, trece in starea 110. Din starea 110 -> 111.