CURRENT AND MAGNETIC FIELD

Chan La-o-vorakiat \bullet (2015/2) \bullet King Mongkut's University of Technology Thonburi

Last Revision: February 1, 2016

Table of Contents

1	Charge in Motion and Current	
2	Magnetic Induction	1
3	Lorentz Force Law	-
4	Biot-Savart's Law	9
5	Ampere's Law	Ę
6	Homework	6

Figure 1.1

1 Charge in Motion and Current

- Charge creates electric field. Charge in motion (current) creates magnetic field.
- Definition of current

$$i = \frac{dq}{dt}$$

• Current comes in various shapes (Fig. ??): current density

$$I = \int \vec{J} \cdot d\vec{a}$$

• The conversion is done by dimension analysis.

$$q\vec{v} \propto \vec{I}dl \propto \vec{K}da \propto \vec{J}dV$$
 (1.1)

• Magnetostatic → current does not change with time

2 Magnetic Field

Consequences of the last two points of Table 1:

- 1. Magnetic field cannot diverge from a point but electric field can do.
- 2. Electric field cannot form a loop, but magnetic field can do.

3 Lorentz Force Law

Theorem 3.1 (Force on a Moving Charge q due to Magnetic Field).

$$\vec{F} = q(\vec{v} \times \vec{B}))$$

Example 3.1 (Mass Spectrometer). An ion (of mass m and charge e) is accelerated by the electric field due to potential difference V. Then the fast ion enters a chamber with uniform electric field \vec{B} perpendicular to the path of ion. The magnetic field causes the ion to move in a semicircle orbit. Find the distance of hitting the detector plate.

Table 1: Comparing Electrostatic E-field and Magnetostatic B-field

	$ec{E}$	$ec{B}$
name	electric field	magnetic field
unit	V/m	Teala or Gauss
interaction with charge	$ec{F}=qec{E}$	$\vec{F} = q(\vec{v} \times \vec{B})$
source	static charge	moving charge (static current)
charge	yes	has not found yet
flux	$\int ec{E} \cdot dec{a}$	$\int ec{B} \cdot dec{a}$
Line Integral $\int_i^f \vec{E}(\vec{B}) \cdot d\vec{s}$	Potential $V_i - V_f$	no special meaning
Surface Integral around a	$rac{q_{in}}{\epsilon_0}$	0
closed (Gaussian) surface $\oint \vec{E}(\vec{B}) \cdot d\vec{a}$	-0	
Line Integral around a	0	$\mu_0 I_{enc}$
closed (Amperian) loop $\oint \vec{E}(\vec{B}) \cdot d\vec{s}$		
moments	dipole moment $\vec{p} = q\vec{d}$	magnetic moment $\vec{\mu} = I\vec{a}$
interaction with moment	$ec{ au}=ec{p} imesec{E}$	$ec{ au}=ec{\mu} imesec{B}$
potential energy	$-ec{p}\cdotec{E}$	$-ec{\mu}\cdotec{B}$

Example 3.2 (Hall's Effect). A strip of semiconductor contains a free carrier of charge q and velocity v is located in magnetic field \vec{B} . The field deflects the charge and creates a voltage drop along the side of the semiconductor V. The buildup of charge at the sides of the conductors creates electric field that balance this magnetic force.

Figure 3.1: http://hyperphysics.phy-astr.gsu.edu/hbase/magnetic/hall.html

Lemma 3.1 (Force on a Current-Carrying Wire due to Magnetic Field).

$$d\vec{F} = I(d\vec{s} \times \vec{B}))$$

4 Biot-Savart's Law

Theorem 4.1 (Biot-Savart Law for a Line Current).

$$\vec{B} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \hat{r}}{r^2} = \frac{\mu_0 I}{4\pi} \int \frac{d\vec{s} \times \vec{r}}{r^3},$$

where \vec{r} is a vector from the current element to point P where we want to calculate the field. For other types of current sources (eqn. 1.1).

• Biot-Savart law is all you need to calculate magnetic field (similar to Coulomb's Law). But it usually leads to a very messy mathematics due to the cross product and an inverse cube dependent. Similar to electrostatics,

Figure 4.1: Current loop produces magnetic induction \vec{B} via Biot Savart law.

there are two more approaches: one is Gauss's Law like method (Ampere's Law), the other is potential method (to much for 104).

Example 4.1. Find magnetic field from a long straight section of current.

Example 4.2. Find magnetic induction from a current loop

5 Ampere's Law

Theorem 5.1 (Ampere's Law in integral Form).

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}$$

- Ampere's law is useful when you know partially about the answer but it's only limited to very few cases with very high symmetry. To list them all
 - 1. infinite wires
 - 2. infinite planes
 - 3. solenoids
 - 4. toroid

But still it is very handy when you want to recall some formula quickly.

6 Homework

Homework 1 (Magnetic Moment in a Uniform Field). (9 points) A rectangle current loop of current I is located in a uniform magnetic field as shown.

- (a) (3 points) What is the net force the loop according to the figure above.
- (b) (3 points) Show that the net torque on the above loop with respect to the center point c is

$$\tau = -IabB\sin\theta$$

(c) (3 points) Show that the torque vector is

$$\vec{\tau} = \vec{\mu} \times \vec{B},$$

where $\vec{\mu} = abI\hat{n}$, where \hat{n} is a normal vector from the plane of the current loop.

Homework 2. (10 points) A closed circular loop of radius a with current I is in a uniform magnetic field \vec{B} . Show that the total force is zero when (a) (3 points) the current loop is aligned perpendicular to \vec{B} . (show by symmetry only without doing the integral)(b) (7 points) with the loop at the angel θ to the direction of \vec{B} .

Figure 6.1

Hint: For the (b) part. First show that

$$d\vec{s} = -a\sin\phi d\phi \hat{x} + a\cos\phi d\phi \hat{y},$$

(See Fig 6.1c) and assume that \vec{B} is int the zy plane:

$$\vec{B} = B\cos\theta\hat{y} + B\sin\theta\hat{z}.$$

Note: Total force on magnetic dipole in a uniform magnetic field is zero. Analogously, total force on electric dipole in a uniform electric field is zero (HW1.3).

Homework 3. (15 points) A long cylinder conductor of radius a containing a long cylindrical hole of radius b. The axes of the cylinder and hole are parallel and are distance d apart; a current i is uniformly distributed over the cross section.

Figure 6.2

Show that (a) (5 points) magnetic field at the center of the hole is

$$B = \frac{\mu_0 Id}{2\pi (a^2 - b^2)}.$$

(b) (10 points) Magnetic field in the hole is

$$\vec{B} = \frac{\mu_0 Id}{2\pi(a^2-b^2)}\hat{z},$$

everywhere in the hole.

Homework 4. (20 points) Consider two infinite charge surfaces with opposite charge density of σ and $-\sigma$. The surfaces are separated by distance D and they move at the same direction with the same velocity v (Fig 6.3). Find

- (a) (5 points) electric force on a charge dq of the top plate due to the bottom plate
- (b) (5 points)magnetic force on a charge dq of the top plate due to the bottom plater
- (c) (5 points) Find the velocity that two forces are equal (d) (5 points) Use Wolfram Alpha to find the velocity, what is the input command?

Hint:

- 1. Use the conversion formula κ da = dq v
- 2. ϵ_0 is epsilon_0 and μ_0 is mu_0

Figure 6.3