Exercise and Homework 5

Exercise 5 1-bit Approximate Adder

Energy consumption of 1 - bit exact adder of different memristors for different values of a, b, c

Energy consumption in memristors

a	b	С	á	a1 (JJ)	b1 (pJ)	c (pJ)	s1 (pJ)	s2 (pJ)
	0	0	0	368.4	97.664	292.61	575.31	820.33
	0	0	1	460.36	83.098	589.28	334.38	577.2
	0	1	0	225.2	478.48	135.11	520.98	581.88
	0	1	1	154.63	404.52	625.63	381.94	314.33
	1	0	0	421.41	375.3	157.12	439.51	676.16
	1	0	1	353.78	311.2	662.34	298.78	349.99
	1	1	0	489.23	481.12	437.62	380.49	178.42
	1	1	1	583.5	409.41	618.22	140.01	141.03
								1.5925nJ

We put the total energy consumption for different bit values in the function "ExactAdder"

```
def ExactAdder(a, b, c):
         if a == 0 and b == 0 and c == 0:
            5=0
            c out=0
            energy consumption = 2153
        elif a==0 and b==0 and c==1:
            5=1
            c out=0
            energy consumption = 2043
         elif a==0 and b==1 and c==0:
            S=1
            c out=0
            energy consumption = 1941
        elif a==0 and b==1 and c==1:
            5=0
            c out=1
            energy consumption = 1881
        elif a==1 and b==0 and c==0:
            5=1
            c out=0
            energy consumption = 2069
        elif a==1 and b==0 and c==1:
            5=0
            c out=1
            energy consumption = 1976
        elif a==1 and b==1 and c==0:
            5=0
            c out=1
            energy consumption = 1966
        elif a==1 and b==1 and c==1:
            5=1
            c out=1
            energy consumption = 1892
        return s, c_out, energy consumption #in pJ
```

Then we calculate the total Energy
Consumption for adding the two images

```
add_approx,max_Nbit_adder, total_energy = MyAdder(Y_einstein,Y_cap)
plt.imshow(add_approx, cmap = "gray")
print(max_Nbit_adder.max())
print(Y_einstein.max())
print(Y_cap.max())
print()
print()
print()
print("The total energy consumed for this operation is: "+str(total_energy) + " pJ")
print("or "+str(round(total_energy/10**9,2))+" mJ")
```

255.0 255.0

The total energy consumed for this operation is: 5852819534 pJ

Homework 5

Regulations

Always compress your files in ".zip" and no other zipping format!!

Only **One** from the group should upload.

Add the group member names as the name of the zip file.

Make a group of 2 for this assignment.

Tasks

- Make a 3 bit approximate adder for the first algorithm on LtSpice and upload the circuit in a zip file.
- We have provided different 1-bit algorithms which each have different steps and memristor architecture. Calculate the value of Cout, Sout and Energy consumption of the different 1-bit algorithms to calculate the PSNR and Similarity Index of the Einstein image.

(Note: Some energy consumptions have already been calculated and put in "merge[ABC].csv" files in the algorithms folders)