Kodutöö nr. 13

Joosep Näks ja Uku Hannes Arismaa

- 1. Leida otse, pööratavate elementide ruute järjest välja arvutades, kõik ruutjäägid mooduli 29 järgi.
- 2. Leida kõik ruutjäägid mooduli 31 järgi Euleri kriteeriumi abil.

Euleri kriteeriumi põhjal on Legendre'i sümbol $\left(\frac{a}{31}\right)$ kongruentne arvuga a^{15} mooduli 31 järgi ning arv a on ruutjääk parajasti siis kui $\left(\frac{a}{31}\right)=1$. Kui aga $a^{15}\equiv -1$, siis kuna $31\equiv 3\pmod 4$, saab lause 8.8 põhjal et $(-a)^{15} \equiv 1$ ehk on vaja leida vaid esimesed pooled a^{15} väärtused ning kui $\left(\frac{a}{31}\right) = -1$, siis

Ehk ruutjäägid on 1, 2, 4, 5, 7, 8, 9, 10, 14, 16, 18, 19, 20, 25, 28

- 3. Leida kõik ruutjäägid mooduli 37 järgi Legendre'i sümboli omaduste abil.
- 4. Millised järgmistest kongruentsidest on lahenduvad ja mitu lahendit neil on (kui üldse on):
- a) $x^2 \equiv -1 \pmod{103}$; c) $x^2 \equiv -8 \pmod{1999}$; e) $x^2 \equiv 2 \pmod{2020}$;
- b) $x^2 \equiv 8 \pmod{101}$; d) $x^2 \equiv 8 \pmod{2021}$; f) $x^2 \equiv 25 \pmod{2024}$

Antud kongruentsidel leidub lahendeid, kui vastavad Legendre'i sümbolite väärtused on 1. Leian sümbolite väärtused:

- a) 103 on algarv ja 103 \equiv 3 (mod 4) ehk lause 8.8 põhjal $\left(\frac{-1}{103}\right) = -1$ ning lahendeid ei leidu.
- b) 101 on algarv ja 101 $\equiv -3 \pmod 8$ ehk teoreemi 8.11 põhjal $\left(\frac{2}{101}\right) = -1$ ning teoreemi 8.8 põhjal
- $\left(\frac{8}{101}\right) = \left(\frac{2 \cdot 2^2}{101}\right) = \left(\frac{2}{101}\right) = -1$ ehk lahendeid ei leidu.
- c) 1999 on algary, 1999 $\equiv -1 \pmod{4}$ ja 1999 $\equiv -1 \pmod{8}$ ehk $\left(\frac{-1}{1999}\right) = -1$ ja $\left(\frac{2}{1999}\right) = 1$

ning kokku pannes $\left(\frac{-8}{1999}\right) = \left(\frac{-1}{1999}\right) \left(\frac{2\cdot 2^2}{1999}\right) = -1$ ehk lahendeid ei leidu.

- d) 2021 = $43\cdot 47$ ehk võrrandi saab teha kahest võrrandist koosnevaks süsteemiks, üks mooduli 43 ja teine mooduli 47 järgi. Vaatlen kõigepealt võrrandit mooduli 43 järgi. $43\equiv 3\pmod 8$ ehk $\left(\frac{8}{43}\right) = \left(\frac{2}{43}\right) = -1$ ehk sellel võrrandil lahendid puuduvad ning seega ka kogu võrrandi süsteemil ja algselt võrrandil lahendid puuduvad.
- e) $2020 = 2^2 \cdot 5 \cdot 101$ ehk võrrandi saab jagada kolmest võrrandist koosnevaks süsteemiks, üks mooduli 4, teine mooduli 5 ja kolmas mooduli 101 järgi. Vaatlen esiteks võrrandit mooduli 5 järgi. $5 \equiv -3 \pmod{8}$ ehk $\left(\frac{2}{5}\right) = -1$ ehk võrrandil puuduvad lahendid ning ka algsel võrrandil puuduvad lahendid.
 - f) $2024 = 2^3 \cdot 11 \cdot 23$ ehk võrrandi saab jällegi jagada võrrandisüsteemiks.

Uurin esiteks võrrandit mooduli $2^3=8$ järgi. Saan teisendada võrrandi kujule $x^2\equiv 1\pmod 8$ ning 8. nädala 8. ülesande tulemuse põhjal on sellel võrrandil 4 lahendit.

Järgmiseks uurin võrrandit mooduli 11 järgi. Teisendan võrrandi kujule $x^2 \equiv 3 \pmod{11}$ ning kuna $11 \equiv -1 \pmod{12}$, on $\left(\frac{3}{11}\right) = 1$ ehk lahendeid leidub. Kui mingi lahend b leidub, on ka -b lahend kuna

 $(-b)^2=b^2$ ning lause 2.9 põhjal on lahendeid ülimalt 2 ehk sellel võrrandil on 2 lahendit. Viimaks uurin võrrandit mooduli 23 järgi. Teisendan võrrandi kujule $x^2\equiv 2\pmod{23}$ ning kuna $23\equiv -1\pmod{8}$,

= 1 ehk lahendeid leidub ning eelmise võrrandiga samadel põhjustel on lahendeid 2 tükki.

Kokkuvõttes on võrrandisüsteemis esimesel võrrandil 4 lahendit ning teisel ja kolmandal 2 ehk HJT põhjal on süsteemil kokku $4 \cdot 2 \cdot 2 = 16$ lahendit.

- 5. Leida kõik algarvud p, mille korral -p on ruutjääk mooduli 11 järgi.
- 6. Olgu p>2 algarv. Tõestada, et iga algjuur mooduli p järgi on mitteruutjääk mooduli p järgi. Kas kehtib ka vastupidine väide? Miks?

Lemma 8.5 põhjal kui c on algjuur mooduli p>2 järgi siis $\left(\frac{c^k}{p}\right)=(-1)^k$ ehk $\left(\frac{c}{p}\right)=-1$ ehk c ei ole ruutjääk.

Järelduse 8.6 põhjal mooduli p>2 järgi leidub $\frac{p-1}{2}$ mitteruutjääki. Algjuuri leidub $\varphi(\varphi(p))=\varphi(p-1)$ tükki. Arvutusvalemi põhjal saab lahti teha

$$\varphi(n) = \varphi(p_1^{k_1} \cdot \ldots \cdot p_s^{k_s}) = p_1^{k_1 - 1} \cdot \ldots \cdot p_s^{k_s - 1}(p_1 - 1) \ldots (p_s - 1) = n \cdot \frac{p_1 - 1}{p_1} \cdot \ldots \cdot \frac{p_s - 1}{p_s}$$

Kuna p on paaritu algarv, on p-1 tegurite hulgas 2 ehk $\varphi(p-1)=(p-1)\cdot\frac{1}{2}\cdot\frac{p_2-1}{p_2}\cdot\ldots\cdot\frac{p_s-1}{p_s}$ mis tähendab et kui 2 on p-1 ainus tegur, on $\varphi(\varphi(p))=\frac{p-1}{2}$ ehk kuna kõik algjuured on mitteruutjäägid ja algjuuri ning mitteruutjääke on sama palju, siis ka kõik mitteruutjäägid on algjuured. Kuid üldjuhul on arvul p-1 ka muid tegureid peale 2, ning sel juhul on algjuuri vähem kui mitteruutjääke ehk iga mitteruutjääk ei pruugi algjuur olla.

- 7. Olgu p > 2 algarv. Tõestada, et 6 on ruutjääk mooduli p järgi parajasti siis, kui $p \equiv \pm 1, \pm 5 \pmod{24}$.
- 8. Olgu p>2 algarv ja r ruutjääk mooduli p järgi. Tõestada, et leidub teine ruutjääk s sama mooduli järgi nii, et s-r on mitteruutjääk. Näidata, et kui võtta $s=a^2,\,0\leq a\leq p-1$ arvu a juhuslikult valides, siis tõenäosus eelmainitud ruutjääki saada läheneb mooduli p suurenedes arvule $\frac{1}{2}$.

Oletame vastuväiteliselt et kui r on ruutjääk mooduli p järgi, siis iga teise ruutjäägi s puhul on ka s-r ruutjääk. See aga tähendab et kuna ka s-r on ruutjääk, saab selle võtta s asemele ehk ka (s-r)-r=s-2r on ruutjääk ning seda korrates saab et kõik arvud kujul s-nr on ruutjäägid. Algarvulise mooduli järgi on kõik arvud peale p kordsete pööratavad, ning p kordsed arvud ei ole ruutjäägid ehk r on ka pööratav arv. Seega saab võtta $n=sr^{-1}$ ja saada et $s-sr^{-1}r=0$ on ruutjääk, kuid 0 ei ole kunagi ruutjääk ehk saime vastuolu.

Tõenäosuse leidmiseks vaatan kõik variandid läbi. Kui arv a^2-r on mitteruutjääk siis $\frac{1-\left(\frac{a^2-r}{p}\right)}{2}=1$

ning vastasel juhul $\frac{1-\left(\frac{a^2-r}{p}\right)}{2}=0$ ehk kui kokku summeerida $\frac{1-\left(\frac{a^2-r}{p}\right)}{2}$ väärtused kõigi a väärtuste puhul, saab mitteruutjääkide koguse.