Relazione di Laboratorio 1 - Pendolo Quadrifilare

Iallorenzi Michele - Wallout Francesco

May 12, 2022

1 Introduzione

L'esperimento verte sullo studio del moto del pendolo quadrifilare. Questo pendolo è composto da x fili che sorreggono un pezzo di legno. Questi servono per mantenere il pendolo stabile, in modo che faccia le sue oscillazioni su un piano. Inoltre possiamo ... Lo scopo dell'esperienza è studiare i moti del pendolo quando non siamo nel regime delle piccole oscillazioni, cercando di capire come varia il periodo del pendolo in funzione dell'angolo di oscillazione.

2 Esperienza

2.1 Strumenti

- Pendolo Quadrifilare
- Cronometro
- Fotocellula (per contare le oscillazioni e la velocità istantanea)

2.2 Misurazione

Posizionare il grave ad un ampiezza abbastanza grande per permettere al pendolo di oscillare il più a lungo possibile, facendo selle oscillazioni uniformi. Appena parte il moto del pendolo, bisogna far partire il cronometro ed aspettare che la "bandiera" del pendolo (che serve a registrare la velocità ed il numero delle oscillazioni) non registri più nessun oscillazione.

2.3 Calcoli

Per calcolare l'ampiezza delle oscillazioni, assumiamo trascurabile l'attrito con l'aria e ricaviamoci la relazione energetica fondamentale:

$$mgl(1 - cos\theta_0) = \frac{1}{2}mv_0^2 \tag{1}$$

ovvero che l'energia potenziale nel punto di massima altezza è la stessa energia (cinetica) nel punto di massima velocità. Si ricava che:

$$\theta_0 = \arccos(1 - \frac{v_0^2}{2al})\tag{2}$$

. Una volta ottenuto l'angolo, bisogna inserirlo nell'equazione del periodo del pendolo, che si può sviluppare secondo un espansione del seno:

$$T = 2\pi \sqrt{\frac{l}{g}} \left(1 + \frac{1}{16}\theta_0^2 + \frac{11}{3072}\theta_0^2\right) \tag{3}$$

. Nel codice abbiamo inserito solamente il primo sviluppo $(\frac{1}{16}\theta_0^2)$, cercando di fare un fit con una "sorta di parabola" (un po' più schiacciata rispetto alla classica $y=x^2$), ma quanti sviluppi ci servono per fare il fit e quanti se ne possono studiare? Se l'incertezza che viene misurata ad un determinato sviluppo n, è più piccola dell'incertezza misurata in quello sviluppo, allora si può dire che è sufficiente studiare la funzione T (nell'equazione 3) allo sviluppo n-esimo. ... Sappiamo che la velocità di un qualsiasi pendolo reale, diminuisce nel tempo, quindi presenta uno smorzamento esponenziale secondo questa funzione:

$$v(t) = v_0(0)e^{-\lambda t} \tag{4}$$

. Più avanti vedremo come calcolare il tempo di smorzamento $\tau = \frac{1}{\lambda}$

3 Elaborazione dei dati

3.1 Grafico

Il grafico della funzione velocità, considerando il parametro velocità iniziale, si descrive attraverso una curva esponenziale. Facendo un fit con le misure prese in laboratorio, abbiamo ottenuto questo grafico: ... Il χ^2 di questo grafico è ...

Il modello del periodo, in funzione dell'angolo di oscillazione, verrebbe una parabola del secondo grado (in accordo con le considerazioni sull'ordine degli sviluppi del seno). Il risultato è: ...

4 Conclusioni