ISLAMIC UNIVERSITY OF TECHNOLOGY (IUT) ORGANISATION OF ISLAMIC COOPERATION (OIC)

Department of Computer Science and Engineering (CSE)

MID SEMESTER EXAMINATION

WINTER SEMESTER, 2018-2019

DURATION: 1 Hour 30 Minutes

FULL MARKS: 75

4

4

5

CSE 4709: Machine Learning

Programmable calculators are not allowed. Do not write anything on the question paper.

There are 4 (four) questions. Answer any 3 (three) of them.

Figures in the right margin indicate marks.

- According to Tom Mitchel (1998), a computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T, as measured by P, improves with experience E. Identify T, P, and E for the following problems: A program that will tell which tweets will get retweets. 3 A program that will predict the traffic pattern at a busy intersection. 3 b) Briefly explain the steps of developing a machine learning application with a real life 14 example. What do you mean by feature vector? Suppose in a two class problem the feature vectors are 1+4normally distributed with a covariance matrix, $\Sigma = \begin{bmatrix} 1.2 & 0.4 \\ 0.4 & 1.8 \end{bmatrix}$. The mean vectors of the classes are, $\mu_1 = [0.5, 0.5]^T$ and $\mu_2 = [1.1, 1.5]^T$. The Mahalanobis distance from a vector xto the class mean is given by the equation, $d_i^2 = (x - \mu_i)^T \Sigma^{-1} (x - \mu_i)$. Classify the test point, $x = [1, 1]^T$ using Mahalanobis distance. $[\Sigma^{-1} = \begin{bmatrix} 0.9 & -0.2 \\ -0.2 & 0.6 \end{bmatrix}$ is given for your convenience.] 2. a) Consider a linear regression problem $y = w_1 x + w_0$, with a training set having m examples $(x_1, y_1), (x_2, y_2), \dots, (x_m, y_m)$. Suppose that we wish to minimize the mean fifth degree error (loss function) given by: $Loss = \frac{1}{m} \sum_{i=1}^{m} (y_i - w_1 x_i - w_0)^5$ Derive the equation to calculate the gradient with respect to the parameters w_1 and w_0 . i. 6
 - ii. Write the pseudo-code of the gradient descent algorithm for this problem. 6
 - b) Consider the following set of points: $\{(-2, -1), (1, 1), (3, 2)\}$
 - Find the least square regression line for the given data points.
 - Plot the given points and the regression line in the same rectangular system of axes.
 - What is the use of basis function in linear regression?
- What is overfitting problem? How does regularization solve the overfitting problem? Explain 3. 3+5with example. [Hint: Ridge regression]
 - What is logistic function? Why do you need to use logistic function in linear regression? 2+5Explain with example.
 - Explain the concept of bias-variance trade-off. What will be the effect on bias and variance if 5+5 we regularize the weights in linear/logistic regression model? Explain in brief.

4. a) Consider the dataset in Table 1. Grade, Bumpiness and Speed-limit are the features and Speed is label.

Table 1: Dataset for decision tree

SN	Grade	Bumpiness	Speed-limit	Speed
1	steep	bumpiness	yes	slow
2	steep	smooth	yes	slow
3	flat	bumpiness	no	fast
4	steep	smooth	no	fast

Answ	ver the followings:	
i.	Determine the entropy of Speed .	4
ii.	Which attribute should be selected as a root of the decision tree?	3
iii.	Construct the decision tree for this dataset based on information gain.	6

b) What do you mean by clustering? Consider the following sample points, 2+10 A(1,1), B(2,-2), C(2,3), D(3,3). Perform k-means clustering, show the calculation of distance matrix and group assignment matrix for two epochs only. [Assume k=2.]