

PVsyst - Simulation report

Grid-Connected System

Project: Sim00

Variant: BIFACIAL_Row9

Unlimited Trackers with backtracking

System power: 57.7 kWp

NREL BEST Field - United States

PVsyst research

PVsyst research

Author

National renewable energy laboratory (United states)

Variant: BIFACIAL_Row9

PVsyst V7.3.4

VC3, Simulation date: 06/16/23 09:08 with v7.3.4

National renewable energy laboratory (United states)

Project summary

Geographical Site Situation Meteo data

NREL BEST FieldLatitude39.74 °NDENVER/CENTENNIAL [GOLDEN - NREL]United StatesLongitude-105.17 °WNREL BEST Field - TMY

Altitude 1765 m Time zone UTC-7

Monthly albedo values

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sep.	Oct.	Nov.	Dec.
Albedo	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.20	0.20

System summary

Grid-Connected System Unlimited Trackers with backtracking

PV Field Orientation

Orientation

Tracking algorithm

Near Shadings

No Shadings

OrientationTracking algorithmTracking horizontal axisAstronomic calculation

Backtracking activated

System information

PV Array Inverters

Nb. of modules144 unitsNb. of units3 unitsPnom total57.7 kWpPnom total72.0 kWac

Pnom ratio 0.801

User's needs
Unlimited load (grid)

Results summary

Produced Energy 120370 kWh/year Specific production 2088 kWh/kWp/year Perf. Ratio PR 88.36 %

Table of contents

Project and results summary					
General parameters, PV Array Characteristics, System losses					
Main results	5				
Loss diagram	6				
Predef. graphs	7				

Variant: BIFACIAL Row9

PVsyst V7.3.4

VC3, Simulation date: 06/16/23 09:08 with v7.3.4

National renewable energy laboratory (United states)

General parameters

Grid-Connected System Unlimited Trackers with backtracking

PV Field Orientation

Orientation Tracking algorithm **Backtracking array** Tracking horizontal axis Astronomic calculation Nb. of trackers

Backtracking activated Unlimited trackers

Sizes

Tracker Spacing 5.70 m 2.00 m Collector width Ground Cov. Ratio (GCR) 35.1 % Left inactive band 0.02 m Right inactive band 0.02 m Phi min / max. -/+ 50.0 °

10 units

Backtracking strategy

Phi limits for BT -/+ 68.9 ° Backtracking pitch 5.70 m Backtracking width 2.00 m

Models used

Transposition Perez Diffuse Imported Circumsolar with diffuse

Near Shadings User's needs Horizon Free Horizon No Shadings Unlimited load (grid)

Bifacial system

2D Calculation Model

unlimited trackers

Bifacial model definitions Bifacial model geometry Tracker Spacing 5.70 m Ground albedo 0.20 Tracker width 2.04 m Bifaciality factor 87 % 5.0 % **GCR** 35.8 % Rear shading factor 10.0 % Axis height above ground 1.50 m Rear mismatch loss

> Shed transparent fraction 0.0 %

PV Array Characteristics

PV module Inverter Manufacturer Sunpreme Manufacturer

Fronius USA Model Bifi 400 Wp 150 cells Bifacial Model Symo Advanced 24.0-3 480

(Original PVsyst database) (Custom parameters definition)

Unit Nom. Power 400.4 Wp Unit Nom. Power 24.0 kWac Number of PV modules Number of inverters 3 * MPPT 0.57 3 units 144 units Nominal (STC) 57.7 kWp Total power 72.0 kWac 9 Strings x 16 In series Operating voltage 200-800 V

Modules

At operating cond. (50°C) Pnom ratio (DC:AC) 0.80 **Pmpp** 54.3 kWp 703 V U mpp

77 A **Total PV power** Total inverter power

Nominal (STC) 58 kWp Total power 72 kWac 144 modules Number of inverters 3 units Total Module area 294 m² Pnom ratio 0.80

Cell area 246 m²

I mpp

PVsyst V7.3.4

Project: Sim00

Variant: BIFACIAL_Row9

National renewable energy laboratory (United states)

VC3, Simulation date: 06/16/23 09:08 with v7.3.4

Array losses

Thermal Loss factor DC wiring losses

Module temperature according to irradiance Global array res.

 DC wiring losses
 Module Quality Loss

 Global array res.
 149 mΩ
 Loss Fraction

-0.8 %

Uc (const) 20.0 W/m²K Loss Fraction 1.5 % at STC

Uv (wind) 0.0 W/m²K/m/s

Module mismatch losses Strings Mismatch loss

Loss Fraction 2.0 % at MPP Loss Fraction 0.2 %

IAM loss factor

Incidence effect (IAM): Fresnel smooth glass, n = 1.526

0°	30°	50°	60°	70°	75°	80°	85°	90°
1.000	0.998	0.981	0.948	0.862	0.776	0.636	0.403	0.000

PVsyst research

PVsyst research

Variant: BIFACIAL_Row9

PVsyst V7.3.4

VC3, Simulation date: 06/16/23 09:08 with v7.3.4

National renewable energy laboratory (United states)

Main results

System Production

Produced Energy

120370 kWh/year

Specific production Perf. Ratio PR 2088 kWh/kWp/year

88.36 %

Normalized productions (per installed kWp)

Balances and main results

	GlobHor	DiffHor	T_Amb	Globinc	GlobEff	EArray	E_Grid	PR
	kWh/m²	kWh/m²	°C	kWh/m²	kWh/m²	kWh	kWh	ratio
January	81.2	28.03	1.69	113.6	107.0	5891	5748	0.877
February	108.6	32.46	-0.42	150.1	143.5	8056	7875	0.910
March	142.7	55.33	5.08	184.2	176.5	9841	9612	0.905
April	197.1	56.45	9.87	264.6	256.4	14157	13837	0.907
May	195.2	72.55	13.83	247.6	238.7	13018	12708	0.890
June	209.8	67.86	21.86	269.0	260.2	13921	13587	0.876
July	211.3	68.73	24.14	267.7	259.0	13792	13457	0.872
August	194.5	68.72	23.50	251.5	242.6	12952	12640	0.872
September	155.8	43.00	20.31	211.5	204.4	10907	10648	0.873
October	126.1	30.14	12.96	177.1	170.4	9222	9007	0.882
November	84.5	25.42	9.39	119.9	113.5	6145	5997	0.868
December	74.1	23.40	5.14	105.9	99.1	5389	5254	0.861
Year	1781.0	572.09	12.35	2362.6	2271.2	123291	120370	0.884

Legends

06/16/23

GlobHor Global horizontal irradiation

DiffHor Horizontal diffuse irradiation

T_Amb Ambient Temperature

Globlnc Global incident in coll. plane

GlobEff Effective Global, corr. for IAM and shadings

EArray Effective energy at the output of the array

E_Grid Energy injected into grid PR Performance Ratio

PVsyst V7.3.4

Project: Sim00 Variant: BIFACIAL Row9

National renewable energy laboratory (United states)

VC3, Simulation date: 06/16/23 09:08 with v7.3.4

Variant: BIFACIAL_Row9

National renewable energy laboratory (United states)

VC3, Simulation date: 06/16/23 09:08 with v7.3.4

