REFERENCES and SOURCES for HITRAN

(Last updated: 14 July 2011)

The reference 0 (zero) is used for all data surviving from the 1986 HITRAN Database. For further details, refer to: L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).

Subsequent articles describing HITRAN:

- L.S. Rothman, R.R. Gamache, R.H. Tipping, C.P. Rinsland, M.A.H. Smith, D.Chris Benner, V.Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. Massie, L.R. Brown, and R.A. Toth, "The HITRAN Molecular Database: Editions of 1991 and 1992," *JQSRT* 48, 469-507 (1992)
- L.S. Rothman, C.P. Rinsland, A. Goldman, S.T. Massie, D.P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. McCann, R.R. Gamache, R.B. Wattson, K. Yoshino, K.V. Chance, K.W. Jucks, L.R. Brown, V. Nemtchinov, and P. Varanasi, "The HITRAN Molecular Spectroscopic Database and HAWKS (HITRAN Atmospheric Workstation): 1996 Edition," *JOSRT* **60**, 665-710 (1998)
- L.S. Rothman, A. Barbe, D.Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001," *JQSRT* 82, 5-44 (2003)
- L.S. Rothman, D. Jacquemart, A. Barbe, C. Chris Benner, M. Birk, L.R. Brown, M.R. Carleer, C. Chackerian Jr., K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S.T. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The HITRAN 2004 molecular spectroscopic database," *JOSRT* **96**, 139-204 (2005)
- L.S. Rothman, I.E. Gordon, A. Barbe, D.Chris Benner, P.F. Bernath, M. Birk, et al, "The HITRAN 2008 molecular spectroscopic database," *JQSRT* **110**, 533-572 (2009).

H₂O [1] 161, 181, 171, 162, 182, 172

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, J.P. Chevillard, J. Brault, D.A. Ramsay, M. Vervloet, and J. Chauville, "The High-Resolution Spectrum of Water Vapor between 16500 and 25250 cm⁻¹," *J.Mol.Spectrosc.* **113**, 208-228 (1985); J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, and J.W. Brault, "The High-Resolution Spectrum of Water Vapor between 13 200 and 16 500 cm⁻¹," *J.Mol.Spectrosc.* **116**, 167-190 (1986).
- **2.** J.-Y. Mandin, J.P. Chevillard, J.-M. Flaud, and C. Camy-Peyret, "H₂¹⁶O: Line positions and intensities between 8000 and 9500 cm⁻¹: the second hexad of interacting vibrational states:

- {(050),(130),(031),(210),(111),(012)}," Can.J.Phys. **66,** 997 (1988).
- **3.** R.A. Toth, "Measurements of $H_2^{16}O$ Line Positions and Strengths: 11 610 to 12 861 cm⁻¹," *J.Mol.Spectrosc.* **166**, 176-183 (1994).
- **4.** J.P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, "H₂¹⁶O: line positions and intensities between 9500 and 11 500 cm⁻¹. The (041), (220), (121), (201), (102), and (003) interacting states," *Can.J.Phys.* **67**, 1065-1084 (1989).
- **5.** R.A. Toth, " v_2 band of $H_2^{16}O$: line strengths and transition frequencies," *JOSA* **B 8,** 2236-2255 (1991); R.A. Toth, " $2v_2 v_2$ and $2v_2$ bands of $H_2^{16}O$, $H_2^{17}O$, and $H_2^{18}O$: line positions and strengths," *JOSA* **B 10,** 1526-1544 (1993).
- **6.** Preliminary results from R.A. Toth, "Extensive measurements of H₂¹⁶O line frequencies and strengths: 5750-7965 cm⁻¹," *Appl.Opt.* **33**, 4851-4867 (1994).
- 7. J.-M. Flaud, C. Camy-Peyret, and R.A. Toth, "Water Vapor Parameters from Microwave to Medium Infrared," Pergamon Press, Paris (1981).
- **8.** J.-M. Flaud, C. Camy-Peyret, J.-P. Maillard, and G. Guelachvili, "The H₂O Spectrum between, 4200 and 5000 cm⁻¹," *J.Mol.Spectrosc.* **65**, 219-228 (1977).
- 9. J.-M. Flaud, C. Camy-Peyret, and J.-P. Maillard, "Higher ro-vibrational levels of H₂O deduced from high resolution oxygen-hydrogen flame spectra between 2800-6200 cm⁻¹," *Mol.Phys.* **32**, 499-521 (1976).
- 10. C. Camy-Peyret and J.-M. Flaud, J. Phys. Lett. 41, 23 (1980).
- **11.** J.-M. Flaud, C. Camy-Peyret, K.Narahari Rao, Da-Wun Chen, Yan-Shek Ho, and J.-P. Maillard, "Spectrum of Water Vapor between 8050 and 9370 cm⁻¹," *J.Mol.Spectrosc.* **75**, 339-362 (1979).
- 12. C. Camy-Peyret, J.-M. Flaud, and N. Papineau, "La Bande v_2 des espèces isotopiques $H_2^{17}O$ et $H_2^{18}O$," *C.R.Acad.Sc.Paris*, **t 290, Serie B**, 537-540 (1980).
- **13.** R.A. Toth, J.-M. Flaud, and C. Camy-Peyret, "Spectrum of $H_2^{18}O$ and $H_2^{17}O$ in the 5030 to 5640 cm⁻¹ region," *J.Mol.Spectrosc.* **67,** 185-205 (1977).
- **14.** R.A. Toth, V.D. Gupta, and J.W. Brault, "Line positions and strengths of HDO in the 2400-3300 cm⁻¹ region," *Appl.Opt.* **21**, 3337-3347 (1982).
- **15.** Estimate based on combination differences.
- **16.** M.P. Esplin, R.B. Wattson, and M.L. Hoke, "H₂O Line Position Measurements at 1000K," Paper ME04, Ohio State University International Symposium on Molecular Spectroscopy, June (1994).
- 17. Taken from Smithsonian Astrophysical Observatory balloon data, K. Chance and K. Jucks, Harvard-Smithsonian Center for Astrophysics, private communication (1994).
- **18.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JOSRT* **52**, 447-457 (1994).
- 19. R.B. Wattson, "Extended Water Databases Calculated by Direct Numerical Diagonalization," paper P2, Third HITRAN Spectroscopic Database Conference, Hanscom AFB, MA (1993).
- **20.** R.A. Toth, "HD¹⁶O, HD¹⁸O, and HD¹⁷O Transition Frequencies and Strengths in the v_2 Bands," *J.Mol.Spectrosc.* **162**, 20-40 (1993).
- **21.** R.A. Toth, " $v_1 v_2$, $v_3 v_2$, v_1 , and v_3 bands of $H_2^{16}O$: line positions and strengths," *JOSA* **B 10,** 2006-2029 (1993).
- **22.** J.P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, "H₂¹⁶O: line positions and intensities between 9500 and 11 500 cm⁻¹. The (041), (220), (121), (201), (102), and (003) interacting states," *Can.J.Phys.* **67**, 1065-1084 (1989). Line identified using D.W. Schwenke, "New H₂O Rovibrational Line Assignments," *J.Mol.Spectrosc.* **190**, 397-402 (1998).

- **23.** J.P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, "H₂¹⁶O: line positions and intensities between 9500 and 11 500 cm⁻¹. The (041), (220), (121), (201), (102), and (003) interacting states," *Can.J.Phys.* **67,** 1065-1084 (1989). Line identified using D.W. Schwenke, "New H₂O Rovibrational Line Assignments," *J.Mol.Spectrosc.* **190,** 397-402 (1998); L.P. Giver, C. Chackerian, Jr, and P. Varanasi, "Long-Path near-Infrared Line Intensities for H₂O," Proceedings of the 5th ASA Conference, page 141, Reims, France (1999).
- **24.** L.R. Brown, R.A. Toth, and M. Dulick, "Empirical Line Parameters of H₂¹⁶O near 0.94 μm: Positions, Intensities and Air-Broadening Coefficients," *J.Mol.Spectrosc.* **212**, 57-82 (2002).
- **25.** R.A. Toth, "Water vapor measurements between 590 and 2582 cm⁻¹: Line positions and strengths," *J.Mol.Spectrosc.* **190,** 379-396 (1998); R.A. Toth, "HDO and D₂O low pressure, long path spectra in the 600-3100 cm⁻¹ region I. HDO line positions and strengths," *J.Mol.Spectrosc.* **195,** 73-97 (1999); R.A. Toth, "Analysis of line positions and strengths of H₂¹⁶O ground and hot bands connecting to interacting upper states: (020), (100), and (001)," *J.Mol.Spectrosc.* **194,** 28-42 (1999).
- **26.** H. Partridge and D.W. Schwenke, "The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data," *J. Chem. Phys.* **106**, 4618-4639 (1997).
- **27.** C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, A. Bykov, O. Naumenko, L. Sinitsa, and B. Voronin, "Fourier-transform absorption spectrum of the H₂¹⁷O molecule in the 9711-11 335 cm⁻¹ spectral region: the first decade of resonating states," *JQSRT* **61,** 795-812 (1999).
- **28.** J.P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, "H₂¹⁸O: line positions and intensities between 9500 and 11 500 cm⁻¹. The (041), (220), (121), (201), (102), and (003) interacting states," *Can.J.Phys.* **65**, 777-789 (1987).
- **29.** P.F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Mérienne, C. Hermans, and A.C. Vandaele, "New water vapor line parameters in the 26000-13000 cm⁻¹ region," *JQSRT* **74,** 493-510 (2002); M.-F. Mérienne, A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, P.F. Coheur, R. Colin, S. Fally, and M. Bach, "Water vapor line parameters in the 13 000-9250 cm⁻¹ region," *JQSRT* **82,** 99-117 (2003).
- **30.** R.A. Toth, "Linelist of water vapor parameters from 500 to 8000 cm⁻¹," see http://mark4sun.jpl.nasa.gov/h2o.html.
- **31.** Same as Ref. 30, but these lines are doubled with the weaker unassigned line hidden beneath the stronger component.
- **32.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- **33.** R. Lanquetin, L.H. Coudert, and C. Camy-Peyret, "High-lying rotational levels of water: an analysis of the energy of the five first vibrational states," *J.Mol.Spectrosc.* **206,** 83-103 (2001).
- 34. Calculation from K.V. Jucks, private communication (2000).
- **35.** J.-M. Flaud, C. Piccolo, B. Carli, A. Perrin, L.H. Coudert, J.-L. Teffo, and L.R. Brown, "Molecular line parameters for the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) experiment," *Atmos. Oceanic Opt.* **16,** 172-181 (2003).
- **36.** M. Tanaka, J.W. Brault, and J. Tennyson, "Absorption spectrum of H₂¹⁸O in the 12,400 14,520 cm⁻¹ range," *J.Mol.Spectrosc.* **216,** 77-80 (2002).
- 37. J. Tennyson, University College London, private communication (2005).
- **38.** M.Tanaka, O. Naumenko, J. Brault, and J. Tennyson, "Fourier transform absorption spectra of $H_2^{18}O$ and $H_2^{17}O$ in the $3v+\delta$ and 4v polyad region," *J.Mol.Spectrosc.* **234,** 1-9 (2005).
- **39.** R. Tolchenov and J. Tennyson, "Water Line Parameters from Refitted Spectra constrained by empirical upper state levels: study of the 9500 14500 cm⁻¹ region," *JQSRT* **109**, 559-568

(2008).

- **40.** R.N. Tolchenov, O. Naumenko, N.F. Zobov, S.V. Shirin, O.L. Polyansky, J. Tennyson, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouvrier, and A.C. Vandaele, "Water vapour line assignments in the 9250-26 000 cm⁻¹ frequency range," *J.Mol.Spectrosc.* **233**, 68-76 (2005).
- **41.** B.A. Voronin, O.V. Naumenko, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouvrier, R.N. Tolchenov, A.C. Vandaele, and J. Tennyson, "HDO absorption spectrum above 11 500 cm⁻¹: Assignment and dynamics," *J.Mol.Spectrosc.* **244**, 87-101 (2007).
- **42.** R.J. Barber, J. Tennyson, G.J. Harris, R.N. Tolchenov, "A high-accuracy computed water line list," *Mon.Not.R.Astron.Soc.* **368**, 1087-1094 (2006).
- **43.** Line positions generated from the database of experimentally-determined energy levels, I.E. Gordon (2008).

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, J.P. Chevillard, J. Brault, D.A. Ramsay, M. Vervloet, and J. Chauville, "The High-Resolution Spectrum of Water Vapor between 16500 and 25250 cm⁻¹," *J.Mol.Spectrosc.* **113**, 208-228 (1985); J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, and J.W. Brault, "The High-Resolution Spectrum of Water Vapor between 13 200 and 16 500 cm⁻¹," *J.Mol.Spectrosc.* **116**, 167-190 (1986).
- 2. J.-Y. Mandin, J.P. Chevillard, J.-M. Flaud, and C. Camy-Peyret, " H_2^{16} O: Line positions and intensities between 8000 and 9500 cm⁻¹: the second hexad of interacting vibrational states: $\{(050),(130),(031),(210),(111),(012)\}$," *Can.J.Phys.* **66**, 997 (1988).
- 3. R.A. Toth, "Measurements of H_2^{16} O Line Positions and Strengths: 11 610 to 12 861 cm⁻¹," *J.Mol.Spectrosc.* **166**, 176-183 (1994).
- **4.** J.P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, "H₂¹⁶O: line positions and intensities between 9500 and 11 500 cm⁻¹. The (041), (220), (121), (201), (102), and (003) interacting states," *Can.J.Phys.* **67**, 1065-1084 (1989).
- **5.** R.A. Toth, " v_2 band of $H_2^{16}O$: line strengths and transition frequencies," *JOSA* **B 8**, 2236-2255 (1991); R.A. Toth, " $2v_2 v_2$ and $2v_2$ bands of $H_2^{16}O$, $H_2^{17}O$, and $H_2^{18}O$: line positions and strengths," *JOSA* **B 10**, 1526-1544 (1993).
- **6.** Preliminary results from R.A. Toth, "Extensive measurements of $H_2^{16}O$ line frequencies and strengths: 5750-7965 cm⁻¹," *Appl.Opt.* **33**, 4851-4867 (1994).
- **7.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).
- **8.** R.B. Wattson, "Extended Water Databases Calculated by Direct Numerical Diagonalization," paper P2, Third HITRAN Spectroscopic Database Conference, Hanscom AFB, MA (1993).
- **9.** C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, J.P. Chevillard, J. Brault, D.A. Ramsay, M. Vervloet, and J. Chauville, "The High-Resolution Spectrum of Water Vapor between 16500 and 25250 cm⁻¹," *J.Mol.Spectrosc.* **113**, 208-228 (1985); J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, and J.W. Brault, "The High-Resolution Spectrum of Water Vapor between 13 200 and 16 500 cm⁻¹," *J.Mol.Spectrosc.* **116**, 167-190 (1986). Intensity units corrected from HITRAN92 and HITRAN96 editions by L.P. Giver, C. Chackerian, Jr, and P. Varanasi, "Visible and Near-infrared H₂¹⁶O Line Intensity Corrections for HITRAN-96," *JQSRT* **66**, 101-105 (2000).
- 10. J.-Y. Mandin, J.P. Chevillard, J.-M. Flaud, and C. Camy-Peyret, "H₂¹⁶O: Line positions and

- intensities between 8000 and 9500 cm⁻¹: the second hexad of interacting vibrational states: {(050),(130),(031),(210),(111),(012)}," *Can.J.Phys.* **66**, 997 (1988). Intensity units corrected from HITRAN92 and HITRAN96 editions by L.P. Giver, C. Chackerian, Jr, and P. Varanasi, "Visible and Near-infrared H₂¹⁶O Line Intensity Corrections for HITRAN-96," *JQSRT* **66**, 101-105 (2000).
- 11. R.A. Toth, $3v_3 + v_2$ region (11661-12741 cm⁻¹), Jet Propulsion Laboratory, private communication (1990). Intensity units corrected from HITRAN92 and HITRAN96 editions by L.P. Giver, C. Chackerian, Jr, and P. Varanasi, "Visible and Near-infrared H_2^{16} O Line Intensity Corrections for HITRAN-96," *JQSRT* **66**, 101-105 (2000).
- 12. J.P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, "H₂¹⁶O: line positions and intensities between 9500 and 11 500 cm⁻¹. The (041), (220), (121), (201), (102), and (003) interacting states," *Can.J.Phys.* 67, 1065-1084 (1989). Intensity units corrected from HITRAN92 and HITRAN96 editions by L.P. Giver, C. Chackerian, Jr, and P. Varanasi, "Visible and Near-infrared H₂¹⁶O Line Intensity Corrections for HITRAN-96," *JQSRT* 66, 101-105 (2000).
- 13. R.A. Toth, "Water vapor measurements between 590 and 2582 cm⁻¹: Line positions and strengths," *J.Mol.Spectrosc.* 190, 379-396 (1998); R.A. Toth, "HDO and D₂O low pressure, long path spectra in the 600-3100 cm⁻¹ region I. HDO line positions and strengths," *J.Mol.Spectrosc.* 195, 73-97 (1999); R.A. Toth, "Analysis of line positions and strengths of H₂¹⁶O ground and hot bands connecting to interacting upper states: (020), (100), and (001)," *J.Mol.Spectrosc.* 194, 28-42 (1999).
- **14.** C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, A. Bykov, O. Naumenko, L. Sinitsa, and B. Voronin, "Fourier-transform absorption spectrum of the H₂¹⁷O molecule in the 9711-11 335 cm⁻¹ spectral region: the first decade of resonating states," *JQSRT* **61,** 795-812 (1999).
- **15.** L.R. Brown, R.A. Toth, and M. Dulick, "Empirical Line Parameters of H₂¹⁶O near 0.94 μm: Positions, Intensities and Air-Broadening Coefficients," *J.Mol.Spectrosc.* **212**, 57-82 (2002).
- **16.** Rescaled intensities of H. Partridge and D.W. Schwenke, "The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data," *J. Chem. Phys.* **106**, 4618-4639 (1997) as described in Ref.15 above. Observed intensities from J.P. Chevillard, J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, "H₂¹⁸O: line positions and intensities between 9500 and 11 500 cm⁻¹. The (041), (220), (121), (201), (102), and (003) interacting states," *Can. J. Phys.* **65**, 777-789 (1987) were used to determine the scaling factors.
- 17. P.F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Mérienne, C. Hermans, and A.C. Vandaele, "New water vapor line parameters in the 26000-13000 cm⁻¹ region," *JQSRT* 74, 493-510 (2002); M.-F. Mérienne, A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, P.F. Coheur, R. Colin, S. Fally, and M. Bach, "Water vapor line parameters in the 13 000-9250 cm⁻¹ region," *JQSRT* 82, 99-117 (2003).
- **18.** R.A. Toth, "Linelist of water vapor parameters from 500 to 8000 cm⁻¹," see http://mark4sun.jpl.nasa.gov/h2o.html.
- 19. Same as Ref. 18, but these lines are doubled with the weaker unassigned line hidden beneath the stronger component.
- **20.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- **21.** L.H. Coudert, "Line frequency and line intensity analysis of water vapor," *Mol.Phys.* **96,** 941-954 (1999).
- 22. J.C. Pearson, JPL, private communication (2000).

- 23. L.H. Coudert, Université Paris-Sud, private communication (2004).
- **24.** M. Tanaka, J.W. Brault, and J. Tennyson, "Absorption spectrum of $H_2^{18}O$ in the 12,400 14,520 cm⁻¹ range," *J.Mol.Spectrosc.* **216**, 77-80 (2002).
- 25. J. Tennyson, University College London, private communication (2005).
- **26.** M. Tanaka, O. Naumenko, J. Brault, and J. Tennyson, "Fourier transform absorption spectra of $H_2^{18}O$ and $H_2^{17}O$ in the $3v+\delta$ and 4v polyad region," *J.Mol.Spectrosc.* **234**, 1-9 (2005).
- 27. R. Tolchenov and J. Tennyson, "Water Line Parameters from Refitted Spectra constrained by empirical upper state levels: study of the 9500 14500 cm⁻¹ region," *JQSRT* **109**, 559-568 (2008).
- **28.** R.N. Tolchenov, O. Naumenko, N.F. Zobov, S.V. Shirin, O.L. Polyansky, J. Tennyson, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouvrier, and A.C. Vandaele, "Water vapour line assignments in the 9250-26 000 cm⁻¹ frequency range," *J.Mol.Spectrosc.* **233**, 68-76 (2005).
- **29.** B.A. Voronin, O.V. Naumenko, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouvrier, R.N. Tolchenov, A.C. Vandaele, and J. Tennyson, "HDO absorption spectrum above 11 500 cm⁻¹: Assignment and dynamics," *J.Mol.Spectrosc.* **244**, 87-101 (2007).
- **30.** L.H. Coudert, G. Wagner, M. Birk, Y.I. Baranov, W.J. Lafferty, and J.-M. Flaud, "The H₂¹⁶O molecule: Line position and line intensity analyses up to the second triad," *J.Mol.Spectrosc.* **251**, 339-357 (2008).
- **31.** L. Lodi and J. Tennyson, "A line list of allowed and forbidden rotational transition intensities for water," *JQSRT* **109**, 1219-1233 (2008).
- **32.** R.J. Barber, J. Tennyson, G.J. Harris, R.N. Tolchenov, "A high-accuracy computed water line list," *Mon.Not.R.Astron.Soc.* **368**, 1087-1094 (2006).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** S.D. Gasster, C.H. Townes, D. Goorvitch, and F.P.J. Valero, "Foreign-gas collision broadening of the far-infrared spectrum of water vapor," *JOSA* **B 5**, 593-601 (1988).
- 2. V.Ya. Ryadov and N.I. Furashov, *Opt. Spectrosc.* (USSR) **35**, 255-257(1973).
- **3.** R. Emery, "Atmospheric Absorption Measurements in the Region of 1 mm Wavelength," *Infrared Phys.* **12**, 65-79 (1972).
- **4.** R.B. Sanderson and N. Ginsburg, "Line Widths and Line Strengths in the Rotational Spectrum of Water Vapor," *JQSRT* **3**, 435-444 (1963).
- **5.** G.E. Becker and S.H. Autler, "Water Vapor Absorption of Electromagnetic Radiation in the Centimeter Wave-Length Range," *Phys. Rev.* **70**, 300-307 (1946).
- **6.** J.R. Rusk, "Line-Breadth Study of the 1.64-mm Absorption in Water Vapor," *J. Chem. Phys.* **42**, 493-500 (1965).
- **7.** H.J. Liebe and T.A. Dillon, "Accurate Foreign-Gas-Broadening Parameters of the 22-GHz H₂O Line from Refraction Spectroscopy," *J. Chem. Phys.* **50**, 727-732 (1969).
- **8.** L. Frenkel and D. Woods, "Microwave absorption by H₂O vapor and its mixtures with other gases between 100 and 300 Gc/s," *Proc IEEE* **54**, 498-505 (1966).
- **9.** J.E. Pearson, D.T. Llewellyn-Jones, and R.J. Knight, "Water Vapour Absorption near a Wavelength of 0.79 mm," *Infrared Phys.* **9,** 53-58 (1969).
- 10. V.Ya. Ryadov and N.I. Furashov, *Opt. Spectrosc.* (USSR) 24, 93-97 (1968).
- 11. C.P. Rinsland, A. Goldman, M.A.H. Smith, and V.Malathy Devi, "Measurements of Lorentz air-broadening coefficients and relative intensities in the $H_2^{16}O$ pure rotational and v_2 bands from

- long horizontal path atmospheric spectra," Appl. Opt. 30, 1427-1438 (1991).
- 12. B.E. Grossmann and E.V. Browell, "Spectroscopy of Water Vapor in the 720-nm Wavelength Region: Line Strengths, Self-Induced Pressure Broadenings and Shifts, and Temperature Dependence of Linewidths and Shifts," *J.Mol.Spectrosc.* 136, 264-294 (1989); B.E. Grossmann and E.V. Browell, "Water-Vapor Line Broadening and Shifting by Air, Nitrogen, Oxygen, and Argon in the 720-nm Wavelength Region," *J.Mol.Spectrosc.* 138, 562-595 (1989).
- 13. J.J. Remedios, D.Phil.thesis, Oxford University (1990); J.J. Remedios and J. Ballard, "Experimental Determinations of the Air- and N₂-broadened Line Widths of Strong Lines in the v₂ Band of H₂¹⁶O: Line Widths and their Temperature Dependences between 243K and 298K," to be published.
- **14.** R.R. Gamache and R.W. Davies, "Theoretical calculations of N₂-broadened halfwidths of H₂O using quantum Fourier transform theory," *Appl. Opt.* **22**, 4013-4019 (1983).
- **15.** R.R. Gamache and L.S. Rothman, "Temperature Dependence of N₂-Broadened Halfwidths of Water Vapor: The Pure Rotation and v₂ Bands," *J.Mol.Spectrosc.* **128**, 360-369 (1988).
- **16.** R.R. Gamache, scaled average values, unpublished data (1993).
- **17.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).
- **18.** R.A. Toth, "Air- and N₂-Broadening parameters of water vapor: 604 to 2271 cm⁻¹," *J.Mol.Spectrosc.* **201,** 218-243 (2000); R.A. Toth, "Air- and N₂-broadening parameters of HDO and D₂O, 709 to 1936 cm⁻¹," *J.Mol.Spectrosc.* **198,** 358-370 (1999); R.A. Toth, L.R. Brown, and C. Plymate, "Self-broadened widths and frequency shifts of water vapor lines between 590 and 2400 cm⁻¹," *JQSRT* **59,** 529-562 (1998). Default values as a function of the running index m were used for the temperature-dependence coefficient of γ_{air} , n_{air} .
- **19.** Same as Ref. 18, using temperature-dependence of widths from J.J. Remedios (Ref. 13 above); used measured values for specific transitions, L.R. Brown, JPL, private communication (2000).
- 20. Determined from average of many bands, L.R. Brown, JPL, private communication (2000).
- **21.** L.R. Brown, R.A. Toth, and M. Dulick, "Empirical Line Parameters of H₂¹⁶O near 0.94 μm: Positions, Intensities and Air-Broadening Coefficients," *J.Mol.Spectrosc.* **212**, 57-82 (2002).
- 22. Unassigned lines using default value 0.077 cm⁻¹/atm, L.R. Brown, JPL, private communication (2000).
- 23. R.R. Gamache and J. Fischer, "Calculated Halfwidths and Lineshifts of Water-vapor transitions in the 0.7 μm Region and a Comparison with Published Data," *J.Mol.Spectrosc.* **207**, 254-262 (2001).
- 24. R.A. Toth, "Linelist of water vapor parameters from 500 to 8000 cm⁻¹," measured values, see http://mark4sun.jpl.nasa.gov/h2o.html.
- **25.** Use of the semi-empirical coefficients of section 4.1 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines," *JQSRT* **96**, 205-239 (2005).
- **26.** Default value of 0.07 cm⁻¹/atm used for unassigned lines, D. Jacquemart, private communication (2004).
- 27. Use of air-widths of HD¹⁶O from Ref. 24 supposing no vibrational dependence.
- **28.** Use of the semi-empirical coefficients of section 4.2.1 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines," *JQSRT* **96**, 205-239 (2005).
- **29.** Use of the semi-empirical coefficients of section 4.2.2 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-

- induced frequency shifts of water-vapor absorption lines," *JQSRT* **96**, 205-239 (2005).
- **30.** Use of the semi-empirical coefficients of section 4.2.3 corresponding to Table 4 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines," *JQSRT* **96**, 205-239 (2005).
- **31.** Use of the semi-empirical coefficients of section 4.2.3 corresponding to Table 9 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines," *JQSRT* **96,** 205-239 (2005).
- **32.** Use of the semi-empirical coefficients of section 4.2.3 corresponding to Table 10 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines," *JQSRT* **96,** 205-239 (2005).
- **33.** L.P. Giver, B. Gentry, G. Schwemmer, and T.D. Wilkerson, "Water absorption lines, 931-961 nm: selected intensities, N₂-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air," *JQSRT* **27**, 423-436 (1982).
- **34.** V. Malathy Devi, D.C. Benner, C.P. Rinsland, M.A.H. Smith, and B.D. Sidney, "Diode Laser Measurements of air and nitrogen broadening in the v₂ bands of HDO, H₂¹⁶O, and H₂¹⁸O," *J.Mol.Spectrosc.* **117**, 403-407 (1986).
- 35. F.M. Nicolaisen, ASA workshop, paper 5.8, Moscow June 6-8, (1990).
- **36.** P. Cardinet, F. Sverin, A. Valentin, M.L. Claude, and A. Henri, "Wavenumber, intensity and width of water vapour lines in the region of 5.3 μm," *CR.Acad.Sc.Paris* **284**, 37-39 (1977).
- **37.** R.S. Eng, P.L. Kelley, A. Mooradian, A.R. Calawa, and T.C. Harman, "Tunable laser measurements of water vapor transitions in the vicinity of 5 μm," *Chem. Phys. Lett.* **19**, 524-528 (1973).
- 38. Y.S. Chang and J.H. Shaw, "Intensities and widths of H_2O lines between 1800 and 2100 cm⁻¹, *JQSRT* 18, 491-499 (1977).
- **39.** J.R. Izatt, H. Sakai, H., and W.S. Benedict, "Positions, intensities, and widths of water-vapor lines between 475 and 692 cm⁻¹, *JOSA* **59**, 19-26 (1969).
- **40.** M.M. Johnson and A.H. LaGrone, "Determination of atmospheric water-vapor densities from measurements of the 6943.8-Å absorption line strength," *Radio.Sci.* **8,** 407-410 (1973).
- **41.** F.A. Blum, K.W. Nill, P.L. Kelley, A.R. Calawa, and T.C. Harman, "Tunable infrared laser spectroscopy of atmospheric water vapour," *Science* **177**, 694-695 (1972).
- **42.** A. Bauer, M. Godon, and B. Duterage, "Self- and air-broadened linewidth of the 183 GHz absorption in water vapour," *JQSRT* **33**, 167-175 (1985).
- **43.** R.S. Eng, P.L. Kelley, A.R. Calawa, T.C. Harman, and K.W. Nill, "Tunable diode laser measurements of water vapour absorption line parameters," *Mol. Phys.* **28**, 653-664 (1974).
- 44. M.P. Arroyo and R.K. Hanson, 30th Aerospace Sciences Meetings & Exhibits paper AIAA 92-510, Reno NV, Jan. 6-9, (1992).
- **45.** B.G. Aggev, Yu.N. Ponomarev, B.A. Tikhomirov, and I.S. Tyryshkin, 1990 ASA workshop paper 5.9, Moscow June 6-8, (1990).
- **46.** T. Giesen, R. Schieder, G. Winnewisser, and K.M.T. Yamada, "Precise measurements of pressure broadening and shift for several H_2O lines in the v_2 band by argon, nitrogen, oxygen, and air," *J.Mol.Spectrosc.* **153**, 406-418 (1992).
- **47.** C.K.N. Patel, "Linewidth of tunable stimulated Raman scattering," *Phys.Rev.Lett.* **28,** 649-652 (1972).
- 48. T.G. Adiks, A.A. Vinogradova, and I.P. Malkov, "Measurement of the absorption line

- parameters of water vapor in the 5.8 μm region using a tunable laser diode spectrometer," *J.Appl.Spectrosc.* **45**, 778-781 (1986).
- **49.** V.Ya. Ryadov, N.I. Furashov, "The width of the water vapor absorption line λ =0.92 mm," *Radiophys.Quant.Electron.* **9,** 621-623 (1966).
- **50.** S. Adler-Golden, J. Lee, and N. Goldstein, "Diode laser measurements of temperature dependent line parameters for water vapor near 820 nm," *JQSRT* **48,** 527-535 (1992).
- 51. V.Y. Ryadov and N.I. Furashov, Radiophys. & Quantum Electron. 18, 256-266 (1975).
- **52.** N. Goldstein, S. Adler-Golden, J. Lee, and F. Bien, "Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser," *Appl. Opt.* **31,** 3409-3415 (1992).
- **53.** A. Adel, *Phys.Rev.* **71,** 806-808 (1947).
- **54.** K.M.T. Yamada, M. Harter, and T. Giesen, "Survey study of air-broadened water vapor lines in the v₂ band by high-resolution FTIR spectroscopy," *J.Mol.Spectrosc.* **157**, 84-94 (1993).
- 55. Z. Chu, T.D. Wilkerson, and U.N. Singh, "Water-vapor absorption line measurements in the 940-nm band by using a Raman-shifted dye laser," *Appl. Opt.* 32, 992-998 (1993).
- **56.** J.T. Bradley, PhD thesis, University of New York (1970).
- **57.** Q. Zou and P. Varanasi, "Laboratory measurement of the spectroscopic line parameters of water vapor in the 610-2100 and 3000-4050 cm⁻¹ regions at lower-tropospheric temperatures," *JOSRT* **82**, 45-98 (2003).
- **58.** R. Schermaul, R.C.M. Learner, D.A. Newnham, R.G. Williams, J. Ballard, N.F. Zobov, D. Belmiloud, and J. Tennyson, "The water vapor spectrum in the region 8600-15000 cm⁻¹: experimental and theoretical studies to a new spectral line database," *J.Mol.Spectrosc.* **208**, 32-42 (2001).
- **59.** P.L. Ponsardin and E.V. Browell, "Measurements of $H_2^{16}O$ linestrengths and air-induced broadenings and shifts in the 815-nm spectral region," *J.Mol.Spectrosc.* **185**, 58-70 (1997).
- **60.** J.-Y. Mandin, V. Dana, M. Badaoui, A. Barbe, A. Hamdouni, and J.J. Plateaux, "Measurements of pressure-broadening and pressure-shifting coefficients from FT spectra," *J.Mol.Spectrosc.* **164**, 328-337 (1994).
- 61. EUMETSAT H₂O database, ESA ESTEC contract No. 13312/99/NL/SF
- **62.** M.-F. Mérienne, A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, C., Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, "Water vapor line parameters in the 13000-9250 cm⁻¹ region," *JOSRT* **82,** 99-117 (2003).
- **63.** S. Fally, P.-F. Coheur, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Mérienne, C. Hermans, and A.C. Vandaele, "Water vapor line broadening and shifting by air in the 26000-13000 cm⁻¹ region," *JQSRT* **82,** 119-131 (2003).
- **64.** A. Lucchesini, S. Gozzini, and C. Gabbanini, "Water vapor overtones pressure line broadening and shifting measurements, *Eur. Phys. J.* **D 8**, 223-226 (2000).
- **65.** M.Yu. Tretyakov, V.V. Parshin, M.A. Koshelev, V.N. Shanin, S.E. Myasnikova, and A.F. Krupnov, "Studies of 183GHz water line: broadening and shifting by air, N₂ and O₂ and integral intensity measurements," *J.Mol.Spectrosc.* **218**, 239–245 (2003).
- 67. R.R. Gamache and J.-M. Hartmann, "An intercomparison of measured pressure-broadening and pressure-shifting parameters of water vapor," *Can.J. Chem.* 82, 1013-1027 (2004).
- **68.** R.R. Gamache, private communication; calculation using the complex Robert-Bonamy formalism (2004).
- **69.** Smoothed values from R.A. Toth, "Linelist of water vapor parameters from 500 to 8000 cm⁻¹," see http://mark4sun.jpl.nasa.gov/h2o.html.
- 70. S.D. Gasster, C.H. Townes, D. Goorvitch, and F.P.J. Valero, "Foreign-gas collision

- broadening of the far-infrared spectrum of water vapor," JOSA B 5, 593-601 (1988).
- **71.** D.W. Steyert, W.F. Wang, J.M. Sirota, N.M. Donahue, and D.C. Reuter, "Pressure broadening coefficients for rotational transitions of water in the 380-600 cm⁻¹ range," *JQSRT* **72**, 775-782 (2002).
- 72. V.G. Avetisov, A.I. Nadezhdinskii, A.N. Khusnutdinov, P.M. Omarova, and M.V. Zyrianov, "Diode laser spectroscopy of water vapor in 1.8 μm: line profile measurements," *J.Mol.Spectrosc.* **160**, 326-334 (1993).
- **73.** R.A. Toth, "Strengths and air-broadened widths of H_2O lines in the 2950-3400 cm⁻¹ region," *JOSRT* **13,** 1127-1142 (1973).
- 74. R.A. Toth, "Air- and N₂-Broadening parameters of water vapor: 604 to 2271 cm⁻¹," *J.Mol.Spectrosc.* **201**, 218-243 (2000).
- **75.** S.J. Davis, W.J. Kessler, and M. Bachmann, "Collisional broadening of absorption lines in water vapor and atomic iodine relevant to COIL diagnostics," Proceedings *SPIE* **3612**, 157-166 (1999).
- **76.** G. Cazzoli, C. Puzzarini, G. Buffa, and O. Tarrini, "Experimental and theoretical investigation on pressure-broadening and pressure-shifting of the 22.2 GHz line of water," *JOSRT* **105**, 438-449 (2007).
- 77. A. Jenouvrier, L. Daumont, L. Régalia-Jarlot, V.G. Tyuterev, M. Carleer, A.C. Vandaele, S. Mikhailenko, and S. Fally, "Fourier transform measurements of water vapor line parameters in the 4200-6600 cm⁻¹ region," *JQSRT* **105**, 326-355 (2007).
- **78.** G. Durry, V. Zeninari, B. Parvitte, T. Le Barbu, F. Lefevre, J. Ovarlez, and R.R. Gamache, "Pressure-broadening coefficients and line strengths of H₂O near 1.39 μm: application to the in situ sensing of the middle atmosphere with balloonborne diode lasers," *JQSRT* **94**, 387-403 (2005).
- 79. X. Liu, X. Zhou, J.B. Jeffries, and R.K. Hanson, "Experimental study of H₂O spectroscopic parameters in the near-IR (6940-7440 cm⁻¹) for gas sensing applications at elevated temperature," *JOSRT* **103**, 565-577 (2007).
- **80.** X. Liu, J.B. Jeffries, and R.K. Hanson, "Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra," *Meas.Sci.Technol.* **18**, 1185-1194 (2007).
- **81.** T. Seta, H. Hoshina, Y. Kasai, I. Hosako, C. Otani, S. Loßow, J. Urban, M. Ekström, P. Eriksson, and D. Murtagh, "Pressure broadening coefficients of the water vapor lines at 556.936 and 752.033 GHz," *JQSRT* **109**, 144-150 (2008).
- **82.** R.A. Toth, "Measurements and analysis (using empirical functions for widths) of air- and self-broadening parameters of H₂O," *JOSRT* **94**, 1-50 (2005).
- **83.** V.H. Payne, J.S. Delamere, K.E. Cady-Pereira, R.R. Gamache, J.-L. Moncet, E.J. Mlawer, and S.A. Clough, "Air-Broadened Half-Widths of the 22- and 183-GHz Water-Vapor Lines," *IEEE Trans. Geosci. Remote Sensing* **46**, 3601-3617 (2008).
- **84.** R.R. Gamache, "Lineshape parameters for water vapor in the 3.2-17.76 μm region for atmospheric applications," *J.Mol.Spectrosc.* **229**, 9-18 (2005).
- **85.** R.R. Gamache and A.L. Laraia, "N₂-, O₂-, and air-broadened half-widths, their temperature dependence, and line shifts for the rotation band of H₂¹⁶O," *J.Mol.Spectrosc.* **257**, 116-127 (2009).
- **86.** R.R. Gamache, " N_2 -, O_2 -, and air-broadened half-widths, their temperature dependence, and line shifts for the $3v_1+v_3$ and $2v_1+2v_2+v_3$ bands of $H_2^{16}O$," unpublished data, 2008.
- **87.** R.A. Toth, L.R. Brown, M.A.H. Smith, V. Malathy Devi, D. Chris Benner, and M. Dulick, "Air-broadening of H₂O as a function of temperature: 696-2163 cm⁻¹," *JQSRT* **101**, 339-366

(2006).

- **88.** G. Cazzoli, C. Puzzarini, G. Buffa, and O. Tarrini, "Pressure-broadening of water lines in the THz frequency region: Improvements and confirmations for spectroscopic databases: Part I," *JOSRT* **109**, 2820-2831 (2008).
- **89.** A. Bruno, G. Pesce, G. Rusciano, and A. Sasso, "Self-, Nitrogen-, and Oxygen-Broadening Coefficient Measurements in the v₁ Band of H₂O Using a Difference Frequency Generation Spectrometer at 3 μm," *J.Mol.Spectrosc.* **215**, 244-250 (2002).
- 90. N. Ibrahim, P. Chelin, J. Orphal, and Y.I. Baranov, "Line parameters of H₂O around 0.8 μm studied by tuneable diode laser spectroscopy," *JQSRT* **109**, 2523-2536 (2008).
- **91.** Polynomial fit of the values from Ref. [85] averaged as a function of J'' and asymptotic value of $\gamma_{air}(J''=50)=0.00839 \text{ cm}^{-1}\text{atm}^{-1}$.
- 92. Approximation of Ref. 25 with estimated exchange of vibrational quanta.
- 93. Approximation of Ref. 28 with estimated exchange of vibrational quanta.
- 94. Approximation of Ref. 29 with estimated exchange of vibrational quanta.
- 95. Approximation of Ref. 30 with estimated exchange of vibrational quanta.
- **96.** Approximation of Ref. 31 with estimated exchange of vibrational quanta.
- 97. Approximation of Ref. 32 with estimated exchange of vibrational quanta.

Half-widths (self)

- **1.** For perpendicular bands derived from R.A. Toth, L.R. Brown, and C. Plymate, "Self-broadened widths and frequency shifts of water vapor lines between 590 and 2400 cm⁻¹," *JOSRT* **59**, 529-562 (1998), for parallel bands from R.A. Toth, JPL, unpublished.
- 2. Unassigned lines using default value 0.444 cm⁻¹/atm, L.R. Brown, JPL, private communication (2000).
- **3.** R.A. Toth, "Linelist of water vapor parameters from 500 to 8000 cm⁻¹," measured values, see http://mark4sun.jpl.nasa.gov/data/spec/H2O.
- 4. Use of self-widths of $H_2^{16}O$ from Ref. 3 assuming no vibrational dependence.
- 5. Use of self-widths of HD¹⁶O from Ref. 3 assuming no vibrational dependence.
- **6.** Default value of 0.35 cm⁻¹/atm used for unassigned lines, D. Jacquemart, private communication (2004).
- 7. B.E. Grossmann and E.V. Browell, "Spectroscopy of Water Vapor in the 720-nm Wavelength Region: Line Strengths, Self-Induced Pressure Broadenings and Shifts, and Temperature Dependence of Linewidths and Shifts," *J.Mol.Spectrosc.* **136**, 264-294 (1989).
- **8.** L.P. Giver, B. Gentry, G. Schwemmer, and T.D. Wilkerson, "Water absorption lines, 931-961 nm: selected intensities, N₂-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air," *JOSRT* **27**, 423-436 (1982).
- 9. J.-Y. Mandin, J.-M. Flaud, and C. Camy-Peyret, "Measurements and calculations of self broadening coefficients of lines belonging to the v_2 band of $H_2^{\ 16}O$, *JQSRT* **23**, 351-370 (1980).
- **10.** F.M. Nicolaisen, 1990 ASA workshop, paper 5.8, Moscow June 6-8, (1990).
- **11.** V. Malathy Devi, B. Fridovich, G.D. Jones, and D.G.S. Snyder, "Intensities and half-widths for several H₂O v₂ lines in the region 1500-1523 cm⁻¹," *J.Mol.Spectrosc.* **111**, 114-118 (1985).
- **12.** R.S. Eng, P.L. Kelley, A. Mooradian, A.R. Calawa, and T.C. Harman, "Tunable laser measurements of water vapor transitions in the vicinity of 5 μm," *Chem. Phys. Lett.* **19,** 524-528 (1973).
- 13. R.S. Eng, and A.W. Mantz, "Tunable diode laser measurement of water vapor line parameters in the 10- to 15-µm spectral region," *J.Mol.Spectrosc.* **74**, 388-399 (1979).
- 14. Y. Ben Aryeh, "Line widths and intensities in the wings of the v_2 water vapor band at 400° K

- and 540°K," JQSRT 7, 211-224 (1967).
- **15.** J.R. Izatt, H. Sakai, H., and W.S. Benedict, "Positions, intensities, and widths of water-vapor lines between 475 and 692 cm⁻¹, *JOSA* **59**, 19-26 (1969).
- **16.** M.A. Guerra, M. Ketabi, A.Sanchez, M.S. Feld, and A. Javan, "Water vapor spectroscopy at 5 μm using a tunable SFR laser," *J.Chem.Phys.* **63**, 1317-1319 (1975).
- **17.** A. Bauer, M. Godon, and B. Duterage, "Self- and air-broadened linewidth of the 183 GHz absorption in water vapour," *JOSRT* **33**, 167-175 (1985).
- **18.** D. Mrowinski, "Refraction and absorption in atmospheric gases near the 22 GHz water vapour rotational line," *Z.Angew.Phys.* **29**, 323-330 (1970).
- **19.** J.A. Mucha, "Tunable diode laser measurements of water vapor line parameters in the 6-μm spectral region," *Appl.Spectrosc.* **36**, 141-147 (1982).
- **20.** R.S. Eng, P.L. Kelley, A.R. Calawa, T.C. Harman, and K.W. Nill, "Tunable diode laser measurements of water vapour absorption line parameters," *Mol. Phys.* **28**, 653-664 (1974).
- **21.** J.-Y. Mandin, C. Camy-Peyret, J.-M. Flaud, and G. Guelachvili, "Measurements and calculations of self-broadening coefficients of lines belonging to the $2v_2$, v_1 , and v_3 bands of $H_2^{16}O$," *Can.J.Phys.* **60**, 94-101 (1982).
- **22.** L. Frenkel and D. Woods, "Microwave absorption by H₂O vapor and its mixtures with other gases between 100 and 300 Gc/s," *Proc IEEE* **54**, 498-505 (1966).
- **23.** V.N. Markov, "Temperature dependence of self-induced pressure broadening and shift of the 643-550 line of the water molecule." *J.Molec.Spectrosc.* **164,** 233-238 (1994).
- **24.** J.-M. Hartmann, J. Taine, J. Bonamy, B. Labani, and D. Robert, "Collisional broadening of rotation-vibration lines for asymmetric-top molecules. II. H₂O diode laser measurements in the 400-900K range; calculations in the 300-2000K range," *J.Chem.Phys.* **86**, 144-156 (1987).
- **25.** A. Bauer, M. Godon, M. Kheddar, J.-M. Hartmann, J. Bonamy, and D. Robert, "Temperature and perturber dependences of water-vapor 380 GHz-line broadening," *JQSRT* **37**, 531-539 (1987).
- **26.** H.J. Liebe, M.C. Thompson, and T.A. Dillon, "Dispersion studies of the 22 GHz water vapor line shape I. The Lorentzian behavior," *JQSRT* **9**, 31-47 (1969).
- **27.** J.R. Rusk, "Line-Breadth Study of the 1.64-mm Absorption in Water Vapor," *J. Chem. Phys.* **42**, 493-500 (1965).
- **28.** A. Bauer, M. Godon, M. Kheddar, and J.-M. Hartmann, "Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz; calculations below 1000 GHz *JQSRT* **41**, 49-54 (1989).
- **29.** T. Kasuga, H. Kuze, and T. Shimizu, "Determinations of relaxation rate constants on the 22 GHz rotational transition of H₂O by coherent transient spectroscopy," *J. Chem. Phys.* **69**, 5195-5198 (1978).
- **30.** R. Emery, "Atmospheric Absorption Measurements in the Region of 1 mm Wavelength," *Infrared Phys.* **12,** 65-79 (1972).
- **31.** R.B. Sanderson, and N. Ginsburg, "Line widths and line strengths in the rotational spectrum of water vapor," *JQSRT* **3**, 435-444 (1963).
- **32.** A.F. Aushev, N.F. Borisova, E.S. Bykova, V.M. Osipov, and V.V. Tsukanov, "On the temperature dependence of the half-widths of the spectral lines of CO₂ and H₂O," *Opt.Spectrosc.* **68,** 700-701 (1990).
- **33.** S. Adler-Golden, J. Lee, and N. Goldstein, "Diode laser measurements of temperature dependent line parameters for water vapor near 820 nm," *JQSRT* **48,** 527-535 (1992).
- **34.** A.P. Godlevskii, and V.A. Kapitanov, "Changes in the line shapes of water vapor due to broadening by foreign gases," *J.Appl.Spectrosc.* **28,** 142-146 (1978).

- 35. J.J. Remedios, D.Phil.thesis, Oxford University (1990).
- **36.** C.H. Townes and F.R. Merritt, *Phys. Rev.* **70**, 558-559 (1946).
- **37.** M.P. Arroyo and R.K. Hanson, "Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser," *Appl.Opt.* **32**, 6104-6116 (1993).
- **38.** Q. Zou and P. Varanasi, "Laboratory measurement of the spectroscopic line parameters of water vapor in the 610-2100 and 3000-4050 cm⁻¹ regions at lower-tropospheric temperatures," *JOSRT* **82**, 45-98 (2003).
- **39.** D.W. Steyert, W.F. Wang, J.M. Sirota, N.M. Donahue, and D.C. Reuter, "Pressure broadening coefficients for rotational transitions of water in the 380-600 cm⁻¹ range, *JQSRT* **72**, 775-782 (2002).
- **40.** P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Mérienne, C. Hermans, and A.C. Vandaele, "New water vapor line parameters in the 26000-13000 cm⁻¹ region," *JQSRT* **74**, 493-510 (2002).
- **41.** K. Singh and J.J. O'Brien, "Intensities and self-broadening coefficients of weak water vapor lines in the 720-nm region determined by intracavity laser absorption spectroscopy," *J.Mol.Spectrosc.* **167**, 99-108 (1994).
- **42.** B.L. Upschulte and M.G. Allen, "Diode laser measurements of line strengths and self-broadening parameters of water vapor between 300 and 1000 K near 1.31 μm," *JQSRT* **59**, 653-670 (1998).
- **43.** S. Langlois, T.P. Birbeck, and R.K. Hanson, "Diode laser measurements of H₂O line intensities and self-broadening coefficients in the 1.4-μm region," *J.Mol.Spectrosc.* **163**, 27-42 (1994).
- **44.** V. Nagali, S.I. Chou, D.S. Baer, and R.K. Hanson, "Diode laser measurements of temperature dependent half-widths of H₂O transitions in the 1.4 μm region," *JQSRT* 57, 795-809 (1997).
- **45.** K.V. Chance, K. Park, and K.M. Evenson, "Pressure broadening of far infrared rotational transitions: 88.65 cm⁻¹ H₂O and 114.47 cm⁻¹ O₃," *JQSRT* **59**, 687-688 (1998).
- **46.** S.J. Davis, W.J. Kessler, and M. Bachmann, "Collisional broadening of absorption lines in water vapor and atomic iodine relevant to COIL diagnostics," Proceedings-of-the-SPIE --The-International-Society-for-Optical-Engineering. **3612**, 157-166 (1999).
- **47.** S. Fally, P.-F. Coheur, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Mérienne, C. Hermans, and A.C. Vandaele, "Water vapor line broadening and shifting by air in the 26000-13000 cm⁻¹ region," *JOSRT* **82**, 119-131 (2003).
- **48.** M. Lepère, A. Henry, A. Valentin, and C. Camy-Peyret, "Diode-Laser Spectroscopy: Line Profiles of H₂O in the Region of 1.39 μm," *J.Mol.Spectrosc.* **208**, 25–31 (2001).
- **49.** L. Moretti, A. Sasso, L. Gianfrani, and R. Ciurylo, "Collisional-Broadened and Dicke-Narrowed Lineshapes of ${\rm H_2}^{16}{\rm O}$ and ${\rm H_2}^{18}$ Transitions at 1.39 μ m," *J.Mol.Spectrosc.* **205,** 20–27 (2001).
- **50.** Smoothed values from R.A. Toth, "Linelist of water vapor parameters from 500 to 8000 cm⁻¹," see http://mark4sun.jpl.nasa.gov/data/spec/H2O.
- **51.** R.R. Gamache, unpublished data, average values of experimental data as a function of J'' (2000).
- **52.** R.R. Gamache, default values, unpublished data (2000).
- **53.** M.-F. Mérienne, A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, C., Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, "Water vapor line parameters in the 13000-9250 cm⁻¹ region," *JOSRT* **82**, 99-117 (2003).

- **54.** V.G. Avetisov, A.I. Nadezhdinskii, A.N. Khusnutdinov, P.M. Omarova, and M.V. Zyrianov, "Diode laser spectroscopy of water vapor in 1.8 μm: line profile measurements," *J.Mol.Spectrosc.* **160**, 326-334 (1993).
- 55. N. Goldstein, S. Adler-Golden, J. Lee, and F. Bien, "Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with an AlGaAs diode laser," *Appl. Opt.* **31,** 3409-3415 (1992).
- **56.** G. Cazzoli, C. Puzzarini, G. Buffa, O. Tarrini, "Experimental and theoretical investigation on pressure-broadening and pressure-shifting of the 22.2 GHz line of water," *JQSRT* **105**, 438-449 (2007).
- **57.** A. Jenouvrier, L. Daumont, L. Régalia-Jarlot, V.G. Tyuterev, M. Carleer, A.C. Vandaele, S. Mikhailenko, and S. Fally, "Fourier transform measurements of water vapor line parameters in the 4200-6600 cm⁻¹ region," *JOSRT* **105**, 326-355 (2007).
- **58.** G. Cazzoli, C. Puzzarini, G. Buffa, and O. Tarrini, "Pressure-broadening in the THz frequency region: The 1.113 THz line of water," *JQSRT* **109**, 1563-1574 (2008).
- **59.** M.A. Koshelev, M.Y. Tretyakov, G.Y. Golubiatnikov, V.V. Parshin, V.N. Markov, and I.A. Koval, "Broadening and shifting of the 321-, 325- and 380-GHz lines of water vapor by pressure of atmospheric gases," *J.Mol.Spectrosc.* **241,** 101-108 (2007).
- **60.** G.Y. Golubiatnikov, M.A. Koshelev, and A.F. Krupnov, "Pressure shift and broadening of 110-101 water vapor lines by atmosphere gases," *JQSRT* **109**, 1828-1833 (2008).
- **61.** N. Ibrahim, P. Chelin, J. Orphal, and Y.I. Baranov, "Line parameters of H₂O around 0.8 μm studied by tuneable diode laser spectroscopy," *JOSRT* **109**, 2523-2536 (2008).
- **62.** R.A. Toth, "Measurements and analysis (using empirical functions for widths) of air- and self-broadening parameters of H₂O," *JQSRT* **94**, 1-50 (2005).
- 63. D. Lisak, G. Rusciano, and A. Sasso, "An accurate comparison of lineshape models on H_2O lines in the spectral region around 3 μ m," *J.Mol.Spectrosc.* **227**, 162-171 (2004).
- **64.** G. Cazzoli, C. Puzzarini, G. Buffa, and O. Tarrini, "Pressure-broadening of water lines in the THz frequency region: Improvements and confirmations for spectroscopic databases: Part I," *JQSRT* **109**, 2820-2831 (2008).
- **65.** A. Bruno, G. Pesce, G. Rusciano, and A. Sasso, "Self-, Nitrogen-, and Oxygen-Broadening Coefficient Measurements in the v₁ Band of H₂O Using a Difference Frequency Generation Spectrometer at 3 μm," *J.Mol.Spectrosc.* **215**, 244-250 (2002).
- 66. R.R. Gamache and J.-M. Hartmann, "An intercomparison of measured pressure-broadening and pressure-shifting parameters of water vapor," *Can.J. Chem.* 82, 1013-1027 (2004).
- **67.** B.K. Antony and R.R. Gamache, "Self-broadened half-widths and self-induced line shifts for water vapor transitions in the 3.2-17.76 μm spectral region via complex Robert-Bonamy theory," *J.Mol.Spectrosc.* **243**, 113-123 (2007).
- **68.** B.K. Antony, S. Neshyba, and R.R. Gamache, "Self-broadening of water vapor transitions via the complex Robert-Bonamy theory," *JQSRT* **105**, 148-163 (2007).
- **69.** V.B. Podobedov, D.F. Plusquellic, and G.T. Fraser, "THz laser study of self-pressure and temperature broadening and shifts of water vapor lines for pressures up to 1:4 kPa," *JQSRT* **87**, 377–385 (2004).
- **70.** R. Tolchenov and J. Tennyson, "Water Line Parameters from Refitted Spectra constrained by empirical upper state levels: study of the 9500 14500 cm⁻¹ region," *JQSRT* **109**, 559-568 (2008).
- 71. Polynomial fit of the values from Ref. [85] averaged as a function of J'' and asymptotic value of $\gamma_{\text{self}}(J'' = 50) = 0.0400 \text{ cm}^{-1} \text{atm}^{-1}$.

Temperature dependence of air-broadened half-width

- 1. Unassigned lines using default value 0.68, R.R. Gamache and L.R. Brown, private communication (2000).
- **2.** R.A. Toth, "Linelist of water vapor parameters from 500 to 8000 cm⁻¹," see http://mark4sun.jpl.nasa.gov/data/spec/H2O.
- **3.** Unassigned lines using default value of 0.5, R.R. Gamache, B.K. Antony, P.R. Gamache, G. Wagner, and M. Birk, "Temperature Dependence of N₂-, O₂- and Air-broadened Half-widths of Water Vapor Transitions: Insight from Theory and Comparison with Measurement," The 9th HITRAN Database Conference, Harvard-Smithsonian Center for Astrophysics, Cambridge MA, USA (2006).
- **4.** n as a function of the rotational quantum numbers (vibrationally independent) from CRB calculations of rotation and v_2 band.
- 5. n as a function of J'' from Table 7 of the 2004 HITRAN paper.
- **6.** T.M Goyette and F.C. DeLucia, "The pressure broadening of the 31,3-22,0 transition of Water between 80 and 600 K," *J.Mol.Spectrosc.* **143**, 346-358, (1990).
- 7. B.E. Grossmann and E.V. Browell, "Spectroscopy of water vapor in the 720-nm wavelength region Line strengths, self-induced pressure broadenings and shifts, and temperature dependence of linewidths and shifts," *J.Mol.Spectrosc.* **136**, 264-294 (1989).
- **8.** A. Bauer, M. Godon, and B. Duterage, "Self- and air-broadened linewidth of the 183 GHz absorption in water vapor," *JQSRT* **33**, 167-175 (1985).
- **9.** A. Bauer, M. Godon, M. Kheddar, J.-M.. Hartmann, J. Bonamy, and D. Robert, "Temperature and perturber dependences of water-vapor 380 GHz-line broadening," *JQSRT* **37**, 531-539 (1987).
- **10.** A. Bauer, M. Godon, M. Kheddar, and J.-M. Hartmann, "Temperature and perturber dependences of water vapor line-broadening. Experiments at 183 GHz; calculations below 1000 GHz," *JQSRT* **41**, 49-54 (1989).
- **11.** S. Adler-Golden, J. Lee, and N. Goldstein, "Diode laser measurements of temperature dependent line parameters for water vapor near 820 nm," *JQSRT* **48**, 527-535, (1992).
- **12.** J.J. Remedios, PhD thesis University of Oxford (1990).
- **13.** Q. Zou and P. Varanasi, "Laboratory measurement of the spectroscopic line parameters of water vapor in the 950-2100 and 3000-4050 cm⁻¹ regions at lower-tropospheric temperatures," *JQSRT* **82,** 45-98 (2003).
- 14. P.L. Ponsardin and E.V. Browell, "Measurements of $H_2^{16}O$ linestrengths and air-induced broadenings and shifts in the 815-nm spectral region," *J.Mol.Spectrosc.* 185, 58-70 (1997).
- **15.** X. Liu, X. Zhou, J.B. Jeffries, and R.K. Hanson, "Experimental study of H₂O spectroscopic parameters in the near-IR (6940-7440 cm⁻¹) for gas sensing applications at elevated temperature," *JQSRT* **103**, 565-577 (2007).
- **16.** X. Liu, J.B. Jeffries, and R.K. Hanson, "Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra," *Meas.Sci.Technol.* **18**, 1185-1194 (2007).
- **17.** R.R. Gamache, "Line Shape parameters for water vapor in the 3.2 to 17.76 μm region for Atmospheric Applications," *J.Mol.Spectrosc.* **229**, 9-18 (2005).
- **18.** R.R. Gamache and A.L. Laraia, " N_2 -, O_2 -, and air-broadened half-widths, their temperature dependence, and line shifts for the rotation band of $H_2^{16}O$," *J.Mol.Spectrosc.* **257**, 116-127 (2009).
- 19. R.R. Gamache, " N_2 -, O_2 -, and air-broadened half-widths, their temperature dependence, and line shifts for the $3v_1+v_3$ and $2v_1+2v_2+v_3$ bands of $H_2^{16}O$," unpublished data, 2008.

Pressure shift (air)

- 1. Set to constant -0.0111 cm⁻¹/atm, L.R. Brown, JPL, private communication (2000).
- 2. Determined from average of many bands, L.R. Brown, JPL, private communication (2000).
- 3. L.R. Brown, R.A. Toth, and M. Dulick, "Empirical Line Parameters of H₂¹⁶O near 0.94 μm: Positions, Intensities and Air-Broadening Coefficients," *J.Mol.Spectrosc.* **212**, 57-82 (2002).
- **4.** R.R. Gamache and J. Fischer, "Calculated Halfwidths and Lineshifts of Water-vapor transitions in the 0.7 μm Region and a Comparison with Published Data," *J.Mol.Spectrosc.* **207**, 254-262 (2001).
- **5.** B.E. Grossmann and E.V. Browell, "Water-Vapor Line Broadening and Shifting by Air, Nitrogen, Oxygen, and Argon in the 720-nm Wavelength Region," *J.Mol.Spectrosc.* **138**, 562-595 (1989).
- **6.** R.A. Toth, "Linelist of water vapor parameters from 500 to 8000 cm⁻¹," measured values, see http://mark4sun.jpl.nasa.gov/data/spec/H2O.
- 7. Use of the semi-empirical coefficients of section 4.1 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines," *JQSRT* **96**, 205-239 (2005).
- **8.** Use of the semi-empirical coefficients of section 4.2.1 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines," *JQSRT* **96**, 205-239 (2005).
- **9.** Use of the semi-empirical coefficients of section 4.2.2 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines," *JQSRT* **96**, 205-239 (2005).
- **10.** Use of the semi-empirical coefficients of section 4.2.3 corresponding to Table 4 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines," *JQSRT* **96**, 205-239 (2005).
- **11.** Use of the semi-empirical coefficients of section 4.2.3 corresponding to Table 9 of D. Jacquemart, R.R. Gamache, and L.S. Rothman, "Semi-empirical calculation of air-broadened half-widths and air pressure-induced frequency shifts of water-vapor absorption lines," *JQSRT* **96,** 205-239 (2005).
- **12.** B.E. Grossmann and E.V. Browell, "Water-Vapor Line Broadening and Shifting by Air, Nitrogen, Oxygen, and Argon in the 720-nm Wavelength Region," *J.Mol.Spectrosc.* **138**, 562-595 (1989).
- **13.** L.P. Giver, B. Gentry, G. Schwemmer, and T.D. Wilkerson, "Water absorption lines, 931-961 nm: selected intensities, N₂-collision-broadening coefficients, self-broadening coefficients, and pressure shifts in air," *JOSRT* **27**, 423-436 (1982).
- **14.** T. Giesen, R. Schieder, G. Winnewisser, and K.M.T. Yamada, "Precise measurements of pressure broadening and shift for several H_2O lines in the v_2 band by argon, nitrogen, oxygen, and air," *J.Mol.Spectrosc.* **153**, 406-418 (1992).
- **15.** V.G. Avetisov, A.I. Nadezhdinskii, A.N. Khusnutdinov, P.M. Omarova, and M.V. Zyrianov, "Diode laser spectroscopy of water vapor in 1.8 μm: line profile measurements," *J.Mol.Spectrosc.* **160**, 326-334 (1993).
- **16.** K.M.T. Yamada, M. Harter, and T. Giesen, "Survey study of air-broadened water vapor lines in the v₂ band by high-resolution FTIR spectroscopy," *J.Mol.Spectrosc.* **157**, 84-94 (1993).
- 17. P.L. Ponsardin and E.V. Browell, "Measurements of $H_2^{16}O$ linestrengths and air-induced broadenings and shifts in the 815-nm spectral region," *J.Mol.Spectrosc.* 185, 58-70 (1997).
- 18. A. Lucchesini, S. Gozzini, and C. Gabbanini, "Water vapor overtones pressure broadening

- and shifting measurements," Eur. Phy. J. D8, 223-226 (2000).
- **19.** J.-Y. Mandin, V. Dana, M. Badaoui, A. Barbe, A. Hamdouni, and J.J. Plateaux, "Measurements of pressure-broadening and pressure-shifting coefficients from FT spectra," *J.Mol.Spectrosc.* **164**, 328-337 (1994).
- **20.** M.-F. Mérienne, A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, C., Clerbaux, P.-F. Coheur, R. Colin, S. Fally, and M. Bach, "Water vapor line parameters in the 13000-9250 cm⁻¹ region," *JQSRT* **82**, 99-117 (2003).
- **21.** S. Fally, P.-F. Coheur, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Mérienne, C. Hermans, and A.C. Vandaele, "Water vapor line broadening and shifting by air in the 26000-13000 cm⁻¹ region," *JOSRT* **82**, 119-131 (2003).
- **22.** M.Yu. Tretyakov, V.V. Parshin, M.A. Koshelev, V.N. Shanin, S.E. Myasnikova, and A.F. Krupnov, "Studies of 183GHz water line: broadening and shifting by air, N₂ and O₂ and integral intensity measurements," *J.Mol.Spectrosc.* **218**, 239–245 (2003).
- 23. R.R. Gamache and J.-M. Hartmann, "An intercomparison of measured pressure-broadening and pressure-shifting parameters of water vapor," *Can.J. Chem.* 82, 1013-1027 (2004)...
- **24.** R.R. Gamache, private communication; calculation using the complex Robert-Bonamy formalism (2004).
- **25.** Smoothed values from R.A. Toth, "Linelist of water vapor parameters from 500 to 8000 cm⁻¹," see http://mark4sun.jpl.nasa.gov/data/spec/H2O.
- **26.** Q. Zou and P. Varanasi, "Laboratory measurement of the spectroscopic line parameters of water vapor in the 610-2100 and 3000-4050 cm⁻¹ regions at lower-tropospheric temperatures," *JQSRT* **82**, 45-98 (2003).
- 27. R.S. Eng, P.L. Kelley, A. Mooradian, A.R. Calawa, and T.C. Harman, "Tunable laser measurements of water vapor transitions in the vicinity of 5 μm," *Chem. Phys. Lett.* **19**, 524-528 (1973).
- **28.** V.B. Podobedov, D.F. Plusquellic, and G.T. Fraser, "THz laser study of self-pressure and temperature broadening and shifts of water vapor lines for pressures up to 1:4 kPa," *JQSRT* **87**, 377–385 (2004).
- **29.** R.A. Toth, "Air- and N₂-Broadening parameters of water vapor: 604 to 2271 cm⁻¹," *J.Mol.Spectrosc.* **201**, 218-243 (2000).
- **30.** S.J. Davis, W.J. Kessler, and M. Bachmann, "Collisional broadening of absorption lines in water vapor and atomic iodine relevant to COIL diagnostics," Proceedings SPIE **3612**, 157-166 (1999).
- **31.** G. Cazzoli, C. Puzzarini, G. Buffa, and O. Tarrini, "Experimental and theoretical investigation on pressure-broadening and pressure-shifting of the 22.2 GHz line of water," *JOSRT* **105**, 438-449 (2007).
- **32.** X. Liu, J.B. Jeffries, and R.K. Hanson, "Measurements of spectral parameters of water-vapour transitions near 1388 and 1345 nm for accurate simulation of high-pressure absorption spectra," *Meas.Sci.Technol.* **18,** 1185-1194 (2007).
- **33.** M.A. Koshelev, M.Y. Tretyakov, G.Y. Golubiatnikov, V.V. Parshin, V.N. Markov, and I.A. Koval, "Broadening and shifting of the 321-, 325- and 380-GHz lines of water vapor by pressure of atmospheric gases," *J.Mol.Spectrosc.* **241**, 101-108 (2007).
- **34.** R.A. Toth, "Measurements and analysis (using empirical functions for widths) of air- and self-broadening parameters of H₂O," *JOSRT* **94**, 1-50 (2005).
- **35.** R.R. Gamache, " N_2 -, O_2 -, and air-broadened half-widths, their temperature dependence, and line shifts for the $3v_1+v_3$ and $2v_1+2v_2+v_3$ bands of $H_2^{16}O$," unpublished data, 2008.
- 36. R.R. Gamache and J.-M. Hartmann, "An intercomparison of measured pressure-broadening

- and pressure-shifting parameters of water vapor," Can.J.Chem. 82, 1013-1027 (2004).
- 37. R.R. Gamache and A.L. Laraia, " N_2 -, O_2 -, and air-broadened half-widths, their temperature dependence, and line shifts for the rotation band of $H_2^{16}O$," *J.Mol.Spectrosc.* **257**, 116-127 (2009).
- **38.** A. Jenouvrier, L. Daumont, L. Régalia-Jarlot, V.G. Tyuterev, M. Carleer, A.C. Vandaele, S. Mikhailenko, and S. Fally, "Fourier transform measurements of water vapor line parameters in the 4200-6600 cm⁻¹ region," *JQSRT* **105**, 326-355 (2007).

CO₂ [2] 626, 636, 628, 627, 638, 637, 828, 827, 838, 837

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** L.S. Rothman, R.L. Hawkins, R.B. Wattson, and R.R. Gamache, "Energy Levels, Intensities, and Linewidths of Atmospheric Carbon Dioxide Bands," *JQSRT* **48**, 537-566 (1992).
- **2.** Update to Ref. 1 (1994).
- 3. D.Chris Benner, College of William and Mary, private communication (1994).
- **4.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- 5. D.Chris Benner, College of William and Mary, private communication (2003).
- **6.** C.E. Miller and L.R. Brown, "Near Infrared Spectroscopy of Carbon Dioxide I. ¹⁶O¹²C¹⁶O Line Positions," *J. Molec. Spectrosc.* **228**, 329-354 (2004).
- 7. S.A.Tashkun, V.I.Perevalov, J.-L. Teffo, A.D. Bykov, and N.N. Lavrentieva, "CDSD-296, the carbon dioxide spectroscopic databank: version for atmospheric applications," XIV symposium on High Resolution Molecular Spectroscopy, Krasnoyarsk, Russia, July 6-11, 2003.
- **8.** Y. Ding, E. Bertseva, and A. Campargue, "The $2v_1 + 2v_3$ Triad of $^{12}CO_2$," *J.Molec.Spectrosc.* **212**, 219-222 (2002).
- **9.** C. Claveau, J.-L. Teffo, D. Hurtmans, A. Valentin, and R.R. Gamache, "Line Positions and Absolute Intensities in the Laser Bands of Carbon-12 Oxygen-17 Isotopic Species of Carbon Dioxide," *J. Molec. Spectrosc.* **193,** 15-32 (1999).
- **10.** A. Campargue, A. Charvat, and D. Permogorov, "Absolute intensity measurement of CO₂ overtone transitions in the near-infrared," *Chem. Phys. Letters* **223**, 567-572 (1994).
- **11.** R.A. Toth, L.R. Brown, C.E. Miller, V. Malathy Devi, and D.C. Benner, "Spectroscopic database of CO₂ line parameters: 4300-7000 cm⁻¹," *JQSRT* **109**, 906-921 (2008).
- **12.** V.I. Perevalov and S.A. Tashkun, "CDSD-296 (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications," 10th HITRAN Database Conference, Cambridge MA, USA (2008).
- **13.** B.V. Perevalov, V.I. Perevalov, and A. Campargue, "A (nearly) complete experimental linelist for ${}^{13}C^{16}O_2$, ${}^{16}O^{13}C^{18}O$, ${}^{16}O^{13}C^{17}O$, ${}^{13}C^{18}O_2$ and ${}^{17}O^{13}C^{18}O$ by high-sensitivity CW-CRDS spectroscopy between 5851 and 7045 cm⁻¹," *JQSRT* **109**, 2437-2462 (2008).
- **14.** B.V. Perevalov, A. Campargue, B. Gao, S. Kassi, S.A. Tashkun, and V.I. Perevalov, "New CW-CRDS measurements and global modeling of ¹²C¹⁶O₂ absolute line intensities in the 1.6 μm region," *J.Mol.Spectrosc.* **252**, 190-197 (2008).
- 15. V.I. Perevalov, Institute of Atmospheric Optics, private communication (2008).
- **16.** Updated and enlarged (in 2008), CDSD-2010 database described in S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov and N.N. Lavrentieva, "CDSD-1000, the high-temperature carbon dioxide spectroscopic databank," *JQSRT* **82**, 165-196 (2003). See ftp://ftp.iao.ru/pub/CDSD-2008/1000/
- **17.** S.A. Tashkun and V.I. Perevalov, "CDSD-Venus database, adapted for Venus conditions (750 K)," ftp://ftp.iao.ru/pub/CDSD-2008/Venus/

Intensities

0. L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith,

- "The HITRAN database: 1986 Edition," Appl. Opt. 26, 4058-4097 (1987).
- **1.** L.S. Rothman, R.L. Hawkins, R.B. Wattson, and R.R. Gamache, "Energy Levels, Intensities, and Linewidths of Atmospheric Carbon Dioxide Bands," *JQSRT* **48**, 537-566 (1992).
- 2. Update to Ref. 1 (1994).
- 3. D.Chris Benner, College of William and Mary, private communication (1994).
- **4.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JOSRT* **60**, 883-890 (1998).
- 5. D.Chris Benner, College of William and Mary, private communication (2003).
- **6.** V. Malathy Devi, D.C. Benner, C.P. Rinsland, and M.A.H. Smith, "Absolute Rovibrational Intensities of ¹²C¹⁶O₂ Absorption Bands in the 3090-3850 cm⁻¹ Spectral Region," *JQSRT* **60**, 741-770 (1998).
- 7. J. Henningsen and H. Simonsen, "The (22⁰1-00⁰0) Band of CO₂ at 6348 cm⁻¹: Linestrengths, Broadening Parameters, and Pressure Shifts," *J. Molec. Spectrosc.* **203**, 16-27 (2000).
- **8.** L.P. Giver, NASA Ames Research Center, private communication (1994).
- 9. L.P. Giver, C. Chackerian, Jr., M.N. Spencer, L.R. Brown, and R.B. Wattson, "The Rovibrational Intensities of the $(40^01) \leftarrow (00^00)$ Pentad Absorption Bands of $^{12}C^{16}O_2$ between 7284 and 7921 cm⁻¹," *J.Mol.Spectrosc.* **175**, 104-111 (1996).
- **10.** R.J. Kshirsagar, L.P. Giver, and C. Chackerian Jr, "Rovibrational Intensities of the $(00^{0}3) \leftarrow (10^{0}0)$ Dyad Absorption Bands of $^{12}C^{16}O_2$," *J.Molec.Spectrosc.* **199**, 230-235 (2000).
- **11.** R.J. Kshirsagar, L.P. Giver, C. Chackerian Jr, and L.R. Brown, "The Rovibrational Intensities of the 2v₃ Band of ¹⁶O¹²C¹⁸O at 4639 cm⁻¹," *JOSRT* **61**, 695-701 (1999).
- **12.** L.P. Giver, L.R. Brown, C. Chackerian Jr, and R.S. Freedman, "The rovibrational intensities of five bands of ¹²C¹⁶O₂ between 5218 and 5349 cm⁻¹," *JQSRT* **78**, 417-436 (2003).
- **13.** J.-Y. Mandin, V. Dana, J.-Y. Allout, L. Régalia, A. Barbe, and J.-J. Plateaux, "Line Intensities and Self-Broadening Coefficients in the 10012-10001 Band of ¹²C¹⁶O₂ Centered at 2224.657 cm⁻¹," *J.Molec.Spectrosc.* **170**, 604-607 (1995).
- **14.** J.-L. Teffo, C. Claveau, and A. Valentin, "Infrared Fundamental Bands of O¹³C¹⁷O Isotopic Variants of Carbon Dioxide," *JQSRT* **59**, 151-164 (1998).
- **15.** J.-L. Teffo, C. Claveau, Q. Kou, G. Guelachvili, A. Ubelmann, V.I. Perevalov, and S.A. Tashkun, "Line Intensities of $^{12}C^{16}O_2$ in the 1.2-1.4 µm Spectral Region," *J.Molec.Spectrosc.* **201**, 249-255 (2000).
- **16.** C. Claveau, J.-L. Teffo, D. Hurtmans, A. Valentin, and R.R. Gamache, "Line Positions and Absolute Intensities in the Laser Bands of Carbon-12 Oxygen-17 Isotopic Species of Carbon Dioxide," *J.Molec.Spectrosc.* **193**, 15-32 (1999).
- **17.** C. Claveau, J.-L. Teffo, D. Hurtmans, and A. Valentin, "Infrared Fundamental and First Hot Bands of O¹²C¹⁷O Isotopic Variants of Carbon Dioxide," *J.Molec.Spectrosc.* **189**, 153-195 (1998).
- **18.** S.A.Tashkun, V.I.Perevalov, J.-L. Teffo, A.D. Bykov, and N.N. Lavrentieva, "CDSD-296, the carbon dioxide spectroscopic databank: version for atmospheric applications," XIV symposium on High Resolution Molecular Spectroscopy, Krasnoyarsk, Russia, July 6-11, 2003.
- **19.** A. Campargue, D. Bailly, J.-L. Teffo, S. A. Tashkun, and V.I. Perevalov, "The v_1+5v_3 Dyad of $^{12}CO_2$ and $^{13}CO_2$," *J.Mol.Spec.* **193**, 204-212 (1999).
- **20.** R.A. Toth, L.R. Brown, C.E. Miller, V. Malathy Devi, and D.C. Benner, "Spectroscopic database of CO₂ line parameters: 4300-7000 cm⁻¹," *JQSRT* **109**, 906-921 (2008).
- **21.** V.I. Perevalov and S.A. Tashkun, "CDSD-296 (Carbon Dioxide Spectroscopic Databank): Updated and Enlarged Version for Atmospheric Applications," 10th HITRAN Database Conference, Cambridge MA, USA (2008).

- **22.** B.V. Perevalov, V.I. Perevalov, and A. Campargue, "A (nearly) complete experimental linelist for ${}^{13}C^{16}O_2$, ${}^{16}O^{13}C^{18}O$, ${}^{16}O^{13}C^{17}O$, ${}^{13}C^{18}O_2$ and ${}^{17}O^{13}C^{18}O$ by high-sensitivity CW-CRDS spectroscopy between 5851 and 7045 cm⁻¹," *JQSRT* **109**, 2437-2462 (2008).
- 23. Experimental intensities from: B.V. Perevalov, A. Campargue, B. Gao, S. Kassi, S.A. Tashkun, and V.I. Perevalov, "New CW-CRDS measurements and global modeling of ¹²C¹⁶O₂ absolute line intensities in the 1.6 μm region," *J.Mol.Spectrosc.* 252, 190-197 (2008).
- **24.** Theoretical intensities from: B.V. Perevalov, A. Campargue, B. Gao, S. Kassi, S.A. Tashkun, and V.I. Perevalov, "New CW-CRDS measurements and global modeling of ¹²C¹⁶O₂ absolute line intensities in the 1.6 μm region," *J.Mol.Spectrosc.* **252**, 190-197 (2008).
- 25. Updated and enlarged (in 2008), CDSD-2010 database described in S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov and N.N. Lavrentieva, "CDSD-1000, the high-temperature carbon dioxide spectroscopic databank," *JQSRT* 82, 165-196 (2003). See ftp://ftp.iao.ru/pub/CDSD-2008/1000/
- **26.** S.A. Tashkun and V.I. Perevalov, "CDSD-Venus database, adapted for Venus conditions (750 K)," ftp://ftp.iao.ru/pub/CDSD-2008/Venus/

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** L.S. Rothman, R.L. Hawkins, R.B. Wattson, and R.R. Gamache, "Energy Levels, Intensities, and Linewidths of Atmospheric Carbon Dioxide Bands," *JQSRT* **48**, 537-566 (1992).
- 2. R.A. Toth, L.R. Brown, C.E. Miller, V. Malathy Devi, and D.C. Benner, "Spectroscopic database of CO₂ line parameters: 4300-7000 cm⁻¹," *JQSRT* 109, 906-921 (2008). Supplemented with results of A. Predoi-Cross, A.R.W. McKellar, D. Chris Benner, V. Malathy Devi, R.R. Gamache, C.E. Miller, et al, "Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the 30013←00001 and 30012←00001 bands of CO₂ near 1600 nm," *Can.J.Phys.* 87, 517-535 (2009).
- 3. A. Predoi-Cross, A.R.W. McKellar, D. Chris Benner, V. Malathy Devi, R.R. Gamache, C.E. Miller, et al, "Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the $30013 \leftarrow 00001$ and $30012 \leftarrow 00001$ bands of CO_2 near 1600 nm," *Can.J.Phys.* 87, 517-535 (2009).
- **4.** Values are calculated based on the semi-empirical approach described in A.D. Bykov, N.N. Lavrentieva, and L.N. Sinitsa, "Calculation of CO₂ broadening and shift coefficients for high-temperature databases," *Atmos.OceanicOpt.* **13**, 1015-1019 (2000) and S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov and N.N. Lavrentieva"CDSD-1000, the high-temperature carbon dioxide spectroscopic databank," *JQSRT* **82**, 165-196 (2003).

Half-widths (self)

- **1.** L.S. Rothman, R.L. Hawkins, R.B. Wattson, and R.R. Gamache, "Energy Levels, Intensities, and Linewidths of Atmospheric Carbon Dioxide Bands," *JQSRT* **48**, 537-566 (1992).
- **2.** R.A. Toth, L.R. Brown, C.E. Miller, V. Malathy Devi, and D.C. Benner, "Spectroscopic database of CO₂ line parameters: 4300-7000 cm⁻¹," *JQSRT* **109**, 906-921 (2008).
- **3.** Values are calculated based on the semi-empirical approach described in A.D. Bykov, N.N. Lavrentieva, and L.N. Sinitsa, "Calculation of CO₂ broadening and shift coefficients for high-temperature databases," *Atmos.OceanicOpt.* **13,** 1015-1019 (2000) and S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov and N.N. Lavrentieva "CDSD-1000, the high-temperature

carbon dioxide spectroscopic databank," JQSRT 82, 165-196 (2003).

Temperature dependence of air-broadened half-width

- **1.** L.S. Rothman, R.L. Hawkins, R.B. Wattson, and R.R. Gamache, "Energy Levels, Intensities, and Linewidths of Atmospheric Carbon Dioxide Bands," *JQSRT* **48**, 537-566 (1992).
- 2. R.A. Toth, L.R. Brown, C.E. Miller, V. Malathy Devi, and D.C. Benner, "Spectroscopic database of CO₂ line parameters: 4300-7000 cm⁻¹," *JQSRT* **109**, 906-921 (2008). Supplemented with results of A. Predoi-Cross, A.R.W. McKellar, D. Chris Benner, V. Malathy Devi, R.R. Gamache, C.E. Miller, et al, "Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the 30013←00001 and 30012←00001 bands of CO₂ near 1600 nm," *Can.J.Phys.* **87**, 517-535 (2009).
- **3.** A. Predoi-Cross, A.R.W. McKellar, D. Chris Benner, V. Malathy Devi, R.R. Gamache, C.E. Miller, et al, "Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the 30013←00001 and 30012←00001 bands of CO₂ near 1600 nm," *Can.J.Phys.* **87,** 517-535 (2009).
- **4.** Values are calculated based on the semi-empirical approach described in A.D. Bykov, N.N. Lavrentieva, and L.N. Sinitsa, "Calculation of CO₂ broadening and shift coefficients for high-temperature databases," *Atmos.OceanicOpt.* **13**, 1015-1019 (2000) and S.A. Tashkun, V.I. Perevalov, J.-L. Teffo, A.D. Bykov and N.N. Lavrentieva "CDSD-1000, the high-temperature carbon dioxide spectroscopic databank," *JQSRT* **82**, 165-196 (2003).

Pressure shift (air)

- 1. V.M. Devi, D.C. Benner, C.P. Rinsland, and M.A.H. Smith, "Measurements of Pressure Broadening and Pressure Shifting by Nitrogen in the 4.3-μm Band of ¹²C¹⁶O₂," *JQSRT* **48**, 581-589 (1992).
- **2.** V.M. Devi, D.C. Benner, M.A.H. Smith, and C.P. Rinsland, "Air- and N2-Broadening Coefficients and Pressure-shift Coefficients in the ¹²C¹⁶O₂ laser bands," *JQSRT* **59**, 137-149 (1998).
- 3. R.A. Toth, L.R. Brown, C.E. Miller, V. Malathy Devi, and D.C. Benner, "Spectroscopic database of CO₂ line parameters: 4300-7000 cm⁻¹," *JQSRT* **109**, 906-921 (2008). Supplemented with results of A. Predoi-Cross, A.R.W. McKellar, D. Chris Benner, V. Malathy Devi, R.R. Gamache, C.E. Miller, et al, "Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the 30013←00001 and 30012←00001 bands of CO₂ near 1600 nm," *Can.J.Phys.* **87**, 517-535 (2009).
- **4.** A. Predoi-Cross, A.R.W. McKellar, D. Chris Benner, V. Malathy Devi, R.R. Gamache, C.E. Miller, et al, "Temperature dependences for air-broadened Lorentz half width and pressure-shift coefficients in the 30013←00001 and 30012←00001 bands of CO₂ near 1600 nm," *Can.J.Phys.* **87,** 517-535 (2009).
- **6.** J.-M. Hartmann, "A simple empirical model for the collisional spectral shift of air-broadened CO₂ lines," *JOSRT* **110**, 2019–2026 (2009).

O₃ [3] 666, 668, 686, 667, 676

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- 1. J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, and V.Malathy Devi, "Atlas of Ozone Spectral Parameters from Microwave to Medium Infrared," Academic Press, Inc. (1990).
- 2. J.-M. Flaud, C. Camy-Peyret, A. Perrin, V.Malathy Devi, A. Barbe, S. Bouazza, J.J. Plateaux, C.P. Rinsland, M.A.H. Smith, and A. Goldman, "Line Parameters for Ozone Hot Bands in the 3.3-µm Spectral Region," *J.Mol.Spectrosc.* **160**, 378-386 (1993).
- 3. V.Malathy Devi, A. Perrin, J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, and M.A.H. Smith, "Line positions and intensities for the $v_2 + 3v_3$ band of $^{16}O_3$ around 2.7 μ m," *J.Mol.Spectrosc.* 143, 381-388 (1990).
- **4.** S. Bouazza, A. Barbe, J.J. Plateaux, J.-M. Flaud, and C. Camy-Peyret, "The $3v_1$ and $v_1 + 3v_3 v_2$ Absorption Bands of ${}^{16}O_3$," *J.Mol.Spectrosc.* **160**, 371-377 (1993).
- **5.** C.P. Rinsland, M.A.H. Smith, V.Malathy Devi, A. Perrin, J.-M. Flaud, and C. Camy-Peyret, "The v_2 bands of $^{16}O^{17}O^{16}O$ and $^{16}O^{16}O^{17}O$: Line positions and intensities," *J.Mol.Spectrosc.* **149**, 474-480 (1991).
- **6.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JOSRT* **52**, 447-457 (1994).
- 7. H.M. Pickett and E.A. Cohen, Jet Propulsion Laboratory, private communication (1995).
- **9.** Calculated using Direct Numerical Diagonalization method, R.B. Wattson, Utah State University (Bedford), private communication (1995).
- 10. A. Perrin, Université Pierre et Marie Curie, private communication (1995).
- **11.** A. Barbe, M.R. De Backer-Barilly, Vl.G. Tyuterev, and S.A. Tashkun, "Observations of infrared bands of asymmetrical ozone isotopologues ¹⁶O¹⁶O¹⁸O and ¹⁶O¹⁸O," *Appl.Opt.* **42**, 5136-5139 (2003).
- **12.** G. Wagner, M. Birk, F. Schreier, and J.-M. Flaud, "Spectroscopic database for ozone in the fundamental spectral regions," *J. Geophys. Res.* **D107**, 4626 (2002).
- **13.** S. Mikhailenko, private communication (2002), using calculation based on S. Mikhailenko, A. Barbe, J. J. Plateaux and Vl. G. Tyuterev, "New Analysis of $2v_1 + v_2$, $v_1 + v_2 + v_3$, and $v_2 + 2v_3$ Bands of Ozone in the 2600–2900 cm⁻¹ Region," *J.Mol.Spectrosc.* **196,** 93-101 (1999); J.-M. Flaud, C. Camy-Peyret, V.M. Devi, C.P.Rinsland, M.A.H. Smith, "The v_1 and v_3 bands of $^{16}O_3$ line positions and intensities," *J.Mol.Spectrosc.* **124,** 209-217 (1987); J.-M. Flaud, C. Camy-Peyret, C.P.Rinsland, M.A.H. Smith, V.M. Devi, "Line parameters of $^{16}O_3$ in the 7-µm region.," *J.Mol.Spectrosc.* **134,** 106-112 (1989).
- **14.** J.-M. Flaud, C. Piccolo, B. Carli, A. Perrin, L. Coudert, J.-L. Teffo, and L.R. Brown, "Molecular line parameters for the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) experiment," *Atmos. Oceanic Opt.* **16,** 172-182 (2003); J.-M. Flaud, private communication (2004).
- **15.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- 16. S. Mikhailenko and A. Barbe, private communication, (2008). Calculation of the line positions was made by using Hamiltonian parameters from J.-M. Flaud, C. Camy-Peyret, V. Malathy Devi, C.P. Rinsland, M.A.H. Smith, "The v_1 and v_3 bands of $^{16}O_3$: Line positions and intensities," *J.Mol.Spectrosc.* 124, 209-217 (1987); J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland,

- M.A.H. Smith, V. Malathy Devi, "Line parameters for 16 O₃ bands in the 7-μm region," *J.Mol.Spectrosc.* **134**, 106-112 (1989); A. Barbe, A. Chichery, Vl.G. Tyuterev, S.A. Tashkun, S.N. Mikhailenko, "The 2ν₂ and 3ν₂-ν₂ bands of ozone," *Spectrochimica Acta Part A* **54**, 1935-1945 (1998); A. Barbe, S.N. Mikhailenko, J.-J. Plateaux, Vl.G. Tyuterev, "First study of the ν₂=3 dyad {(130), (031)} of ozone through the analysis of hot bands in the 2300-2600 cm⁻¹ region," *J.Mol.Spectrosc.* **187**, 70-74 (1998).
- 17. S. Mikhailenko and A. Barbe, private communication (2008). Calculation of the line positions was made by using Hamiltonian parameters from J.-M. Flaud, C. Camy-Peyret, V. Malathy Devi, C.P. Rinsland, M.A.H. Smith, "The v₁ and v₃ bands of ¹⁶O₃: Line positions and intensities," J.Mol. Spectrosc. 124, 209-217 (1987); J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, V. Malathy Devi, "Line parameters for ¹⁶O₃ bands in the 7-µm region," J.Mol.Spectrosc. 134, 106-112 (1989); A. Barbe, A. Chichery, Vl.G. Tyuterev, S.A. Tashkun, S.N. Mikhailenko, "The $2v_2$ and $3v_2$ - v_2 bands of ozone," Spectrochimica Acta Part A 54, 1935-1945 (1998); S. Bouazza, A. Barbe, S.N. Mikhailenko, J.-J. Plateaux, "Line positions and intensities of the $v_1+2v_2+v_3$ and $2v_2+2v_3$ bands of ${}^{16}O_3$," J.Mol. Spectrosc. 166, 365-371 (1994). 18. S. Mikhailenko and A. Barbe, private communication (2008). Calculation of the line positions was made by using Hamiltonian parameters from J.-M. Flaud, C. Camy-Peyret, V. Malathy Devi, C.P. Rinsland, M.A.H. Smith, "The v_1 and v_3 bands of ${}^{16}O_3$: Line positions and intensities," J.Mol. Spectrosc. 124, 209-217 (1987); J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, V. Malathy Devi, "Line parameters for ¹⁶O₃ bands in the 7-µm region," J.Mol.Spectrosc. 134, 106-112 (1989); S.N. Mikhailenko, A. Barbe, Vl.G. Tyuterev, L. Régalia, J.-J. Plateaux, "Line positions and intensities of the $v_1+v_2+3v_3$, v_2+4v_3 , and $3v_1+2v_2$ bands of ozone," J.Mol.Spectrosc. 180, 227-235 (1996).
- 19. S. Mikhailenko and A. Barbe, private communication (2008). Calculation of the line positions was made by using Hamiltonian parameters from J.-M. Flaud, C. Camy-Peyret, V. Malathy Devi, C.P. Rinsland, M.A.H. Smith, "The v_1 and v_3 bands of $^{16}O_3$: Line positions and intensities," *J.Mol.Spectrosc.* 124, 209-217 (1987); J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, V. Malathy Devi, "Line parameters for $^{16}O_3$ bands in the 7- μ m region," *J.Mol.Spectrosc.* 134, 106-112 (1989); A. Barbe, S.N. Mikhailenko, J.-J. Plateaux, "First observation of the v_2 =3 state of ozone: The (131) state through analysis of cold and hot bands. Study of v_2 behavior," *J.Mol.Spectrosc.* 184, 448-453 (1997).
- 20. S. Mikhailenko and A. Barbe, private communication (2008). Calculation of the line positions was made by using Hamiltonian parameters from A. Barbe, J.-J. Plateaux, Analysis of the 2v₁+2v₃ band of ozone: Line positions and intensities, "*JQSRT* 55, 449-455 (1996); A. Barbe, O.N. Sulakshina, J.-J. Plateaux, Vl.G. Tyuterev, S. Bouazza, Line positions and intensities of the 3v₁+v₃ band of ozone, "*J.Mol.Spectrosc.* 175, 296-302 (1996); A. Barbe, S.N. Mikhailenko, Vl.G. Tyuterev, A. Hamdouni, J.-J. Plateaux, "Analysis of the 2v₁+2v₂+v₃ band of ozone, "*J.Mol.Spectrosc.* 171, 583-588 (1995); A. Barbe, S.N. Mikhailenko, J.-J. Plateaux, Vl.G. Tyuterev, "Analysis of the 2v₁+v₂+2v₃ band of ozone," *J.Mol.Spectrosc.* 182, 333-341 (1997).

 21. S. Mikhailenko and A. Barbe, private communication (2008). Calculation of the line positions was made by using Hamiltonian parameters from J.-M. Flaud, C. Camy-Peyret, V. Malathy Devi, C.P. Rinsland, M.A.H. Smith, "The v₁ and v₃ bands of ¹⁶O₃: Line positions and intensities," *J.Mol.Spectrosc.* 124, 209-217 (1987); J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland,

M.A.H. Smith, V. Malathy Devi, "Line parameters for ¹⁶O₃ bands in the 7-um region,"

*J.Mol.Spectrosc.***134**, 106-112 (1989); S. Mikhailenko, A. Barbe, Vl.G. Tyuterev, "Extended analysis of line positions and intensities of ozone bands in the 2900-3400 cm⁻¹ region,"

- J.Mol.Spectrosc.215, 29-41 (2002).
- 22. S. Mikhailenko and A. Barbe, private communication (2008). Calculation of the line positions was made by using Hamiltonian parameters from J.-M. Flaud, C. Camy-Peyret, A. N'Gom, V. Malathy Devi, C.P. Rinsland, M.A.H. Smith, "The v₂ bands of ¹⁶O¹⁸O¹⁶O and ¹⁶O¹⁶O¹⁸O: Line positions and intensities," *J.Mol.Spectrosc.* 133, 217-223 (1989); A. Chichery, A. Barbe, Vl.G. Tyuterev, S.A. Tashkun, "High resolution IR spectra of ¹⁸O-enriched ozone: Band centers of ¹⁶O¹⁶O¹⁸O, ¹⁶O¹⁸O, ¹⁶O¹⁸O, and ¹⁶O¹⁸O, "*J.Mol.Spectrosc.* 205, 347-349 (2001).
- 23. S. Mikhailenko and A. Barbe, private communication (2008). Calculation of the line positions was made by using Hamiltonian parameters from J.-M. Flaud, C. Camy-Peyret, A. N'Gom, V. Malathy Devi, C.P. Rinsland, M.A.H. Smith, "The v₂ bands of ¹⁶O¹⁸O¹⁶O and ¹⁶O¹⁶O¹⁸O: Line positions and intensities," *J.Mol.Spectrosc.* 133, 217-223 (1989); M.-R. De Backer-Barilly, A. Barbe, Vl.G. Tyuterev, A. Chichery, M.-T. Bourgeois, "High-resolution infrared spectra of the ¹⁶O¹⁸O¹⁶O ozone isotopomer in the range 900-5000 cm⁻¹: Line positions," *J.Mol.Spectrosc.* 216, 454-464 (2002).
- **24.** Data taken from the Spectroscopy & Molecular Properties of Ozone (SMPO) database, http://smpo.iao.ru/en/, in July 2008. This ozone database is developed by researchers at the Université de Reims, Reims, France and at the Insitute of Atmosperic Optics in Tomsk, Russia.

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, and V.Malathy Devi, "Atlas of Ozone Spectral Parameters from Microwave to Medium Infrared," Academic Press, Inc. (1990).
- **2.** J.-M. Flaud, C. Camy-Peyret, A. Perrin, V.Malathy Devi, A. Barbe, S. Bouazza, J.J. Plateaux, C.P. Rinsland, M.A.H. Smith, and A. Goldman, "Line Parameters for Ozone Hot Bands in the 3.3-μm Spectral Region," *J.Mol.Spectrosc.* **160**, 378-386 (1993).
- 3. V.Malathy Devi, A. Perrin, J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, and M.A.H. Smith, "Line positions and intensities for the $v_2 + 3v_3$ band of $^{16}O_3$ around 2.7 μ m," *J.Mol.Spectrosc.* 143, 381-388 (1990).
- **4.** S. Bouazza, A. Barbe, J.J. Plateaux, J.-M. Flaud, and C. Camy-Peyret, "The $3v_1$ and $v_1 + 3v_3 v_2$ Absorption Bands of $^{16}O_3$," *J.Mol.Spectrosc.* **160**, 371-377 (1993).
- **5.** C.P. Rinsland, M.A.H. Smith, V.Malathy Devi, A. Perrin, J.-M. Flaud, and C. Camy-Peyret, "The v_2 bands of $^{16}O^{17}O^{16}O$ and $^{16}O^{16}O^{17}O$: Line positions and intensities," *J.Mol.Spectrosc.* **149**, 474-480 (1991).
- 6. H.M. Pickett and E.A. Cohen, Jet Propulsion Laboratory, private communication (1995).
- **9.** Calculated using Direct Numerical Diagonalization method, R.B. Wattson, Utah State University (Bedford), private communication (1995).
- **10.** G. Wagner, M. Birk, F. Schreier, and J.-M. Flaud, "Spectroscopic database for ozone in the fundamental spectral regions," *J. Geophys. Res.* **D107**, 4626 (2002).
- 11. S. Mikhailenko, private communication (2002), using calculation based on S. Mikhailenko, A. Barbe, J. J. Plateaux and Vl. G. Tyuterev, "New Analysis of $2v_1 + v_2$, $v_1 + v_2 + v_3$, and $v_2 + 2v_3$ Bands of Ozone in the 2600–2900 cm⁻¹ Region," *J.Mol.Spectrosc.* 196, 93-101 (1999); J.-M. Flaud, C. Camy-Peyret, V.M. Devi, C.P.Rinsland, M.A.H. Smith, "The v_1 and v_3 bands of $^{16}O_3$ line positions and intensities," *J.Mol.Spectrosc.* 124, 209-217 (1987); J.-M. Flaud, C. Camy-Peyret, C.P.Rinsland, M.A.H. Smith, V.M. Devi, "Line parameters of $^{16}O_3$ in the 7-µm region.,"

- J.Mol.Spectrosc. 134, 106-112 (1989).
- **12.** J.-M. Flaud, C. Piccolo, B. Carli, A. Perrin, L. Coudert, J.-L. Teffo, and L.R. Brown, "Molecular line parameters for the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) experiment," *Atmos. Oceanic Opt.* **16,** 172-182 (2003); J.-M. Flaud, private communication (2004).
- **13.** Rescale by dividing J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, and V.Malathy Devi, "Atlas of Ozone Spectral Parameters from Microwave to Medium Infrared," Academic Press, Inc. (1990) by the factor 1.04.
- **14.** Rescale by dividing J.-M. Flaud, C. Camy-Peyret, A. Perrin, V.Malathy Devi, A. Barbe, S. Bouazza, J.J. Plateaux, C.P. Rinsland, M.A.H. Smith, and A. Goldman, *J.Mol.Spectrosc.* **160**, 378-386 (1993) by the factor 1.04.
- **15.** Rescale by dividing V.Malathy Devi, A. Perrin, J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, and M.A.H. Smith, *J.Mol.Spectrosc.* **143**, 381-388 (1990) by the factor 1.04.
- **16.** Rescale by dividing S. Bouazza, A. Barbe, J.J. Plateaux, J.-M. Flaud, and C. Camy-Peyret, *J.Mol.Spectrosc.* **160,** 371-377 (1993) by the factor 1.04.
- **17.** Rescale by dividing C.P. Rinsland, M.A.H. Smith, V.Malathy Devi, A. Perrin, J.-M. Flaud, and C. Camy-Peyret, *J.Mol.Spectrosc.* **149**, 474-480 (1991) by the factor 1.04.
- **18.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- 19. S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from A. Barbe, S.N. Mikhailenko, J.-J. Plateaux, Vl.G. Tyuterev, "First study of the v_2 =3 dyad {(130), (031)} of ozone through the analysis of hot bands in the 2300-2600 cm⁻¹ region," *J.Mol.Spectrosc.* 187, 70-74 (1998).
- **20.** S.N. Mikhailenko and A. Barbe, private communication (2008). Transition moment parameters of the v_2+v_3 band from V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, M.A.H. Smith, "Line positions and intensities for the v_1+v_2 and v_2+v_3 bands of $^{16}O_3$," *J.Mol.Spectrosc.* **125**, 174-183 (1987) were used for calculation of line intensities for the $3v_2+v_3-2v_2$ band.
- **21.** S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from S. Bouazza, A. Barbe, S.N. Mikhailenko, J.-J. Plateaux, "Line positions and intensities of the $v_1+2v_2+v_3$ and $2v_2+2v_3$ bands of $^{16}O_3$," *J.Mol.Spectrosc.* **166**, 365-371 (1994).
- **22.** S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from S.N. Mikhailenko, A. Barbe, J.-J. Plateaux, Vl.G. Tyuterev, "New analysis of $2v_1+v_2$, $v_1+v_2+v_3$, and v_2+2v_3 bands of ozone in the 2600-2900 cm⁻¹ region," *J.Mol.Spectrosc.* **196**, 93-101 (1999).
- 23. S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from S.N. Mikhailenko, A. Barbe, J.-J. Plateaux, Vl.G. Tyuterev, "New analysis of $2v_1+v_2$, $v_1+v_2+v_3$, and v_2+2v_3 bands of ozone in the 2600-2900 cm⁻¹ region," *J.Mol.Spectrosc.* **196**, 93-101 (1999) and S. Bouazza, A. Barbe, S.N. Mikhailenko, J.-J. Plateaux, Line positions and intensities of the $v_1+2v_2+v_3$ and $2v_2+2v_3$ bands of ${}^{16}O_3$, "*J.Mol.Spectrosc.* **166**, 365-371 (1994)
- 24. S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from A. Barbe, J.-J. Plateaux, S. Bouazza, O.N. Sulakshina, S.N. Mikhailenko, Vl.G. Tyuterev, S.A. Tashkun, Experimental and theoretical study of absolute intensities of ozone spectral lines in the range 1850-2300 cm⁻¹," *JQSRT* 52, 341-355 (1994).

- 25. S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from S.N. Mikhailenko, A. Barbe, Vl.G. Tyuterev, L. Régalia, J.-J. Plateaux, Line positions and intensities of the $v_1+v_2+3v_3$, v_2+4v_3 , and $3v_1+2v_2$ bands of ozone," *J.Mol.Spectrosc.* **180**, 227-235 (1996).
- **26.** S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from A. Perrin, A.M. Vasserot, J.M. Flaud, C. Camy-Peyret, V. Malathy Devi, M.A.H. Smith, C.P. Rinsland, A. Barbe, S. Bouazza, J.-J. Plateaux, "The 2.5-μm bands of ozone: Line positions and intensities," *J.Mol.Spectrosc.* **149**, 519-529 (1991).
- 27. S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from S. Bouazza, S.N. Mikhailenko, A. Barbe, L. Régalia, Vl.G. Tyuterev, J.-J. Plateaux, "The $v_1+v_2+2v_3$ and v_2+3v_3 bands of $^{16}O_3$," *J.Mol.Spectrosc.* 174, 510-519 (1995).
- **28.** S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from A. Barbe, S.N. Mikhailenko, J.-J. Plateaux, "First observation of the v_2 =3 state of ozone: The (131) state through analysis of cold and hot bands. Study of v_2 behavior," *J.Mol.Spectrosc.* **184**, 448-453 (1997).
- 29. S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from A. Barbe, J.-J. Plateaux, "Analysis of the 2v₁+2v₃ band of ozone: Line positions and intensities," *JQSRT* 55, 449-455 (1996); A. Barbe, O.N. Sulakshina, J.-J. Plateaux, Vl.G. Tyuterev, S. Bouazza, "Line positions and intensities of the 3v₁+v₃ band of ozone," *J.Mol.Spectrosc.* 175, 296-302 (1996); A. Barbe, S.N. Mikhailenko, Vl.G. Tyuterev, A. Hamdouni, J.-J. Plateaux, Analysis of the 2v₁+2v₂+v₃ band of ozone," *J.Mol.Spectrosc.* 171, 583-588 (1995); A. Barbe, S.N. Mikhailenko, J.-J. Plateaux, Vl.G. Tyuterev, "Analysis of the 2v₁+v₂+2v₃ band of ozone," *J.Mol.Spectrosc.* 182, 333-341 (1997).
 30. S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from S. Mikhailenko, A. Barbe, Vl.G. Tyuterev, "Extended analysis of line positions and intensities of ozone bands in the 2900-3400 cm⁻¹ region," *J.Mol.Spectrosc.* 215, 29-41 (2002).
- **31.** S.N. Mikhailenko and A. Barbe, private communication (2008). Line intensities were calculated with transition moment parameters from A. Barbe, O.N. Sulakshina, J.-J. Plateaux, A. Hamdouni, S. Bouazza, "High-resolution infrared spectra of ozone in the 2300-2600 cm⁻¹ region," *J.Mol.Spectrosc.* **170**, 244-250 (1995); A. Barbe, J.-J. Plateaux, S. Bouazza, O.N. Sulakshina, S.N. Mikhailenko, Vl.G. Tyuterev, S.A. Tashkun, "Experimental and theoretical study of absolute intensities of ozone spectral lines in the range 1850-2300 cm⁻¹," *JQSRT* **52**, 341-355 (1994).
- 32. A. Barbe and M.-R. De Backer-Barilly, private communication (2007).
- **33.** Data taken from the Spectroscopy & Molecular Properties of Ozone (SMPO) database, http://smpo.iao.ru/en/, in July 2008. This ozone database is developed by researchers at the Université de Reims, Reims, France and at the Insitute of Atmosperic Optics in Tomsk, Russia.

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. R.R. Gamache and L.S. Rothman, "Theoretical N₂-broadened halfwidths of ¹⁶O₃," *Appl.Opt.*

- **24,** 1651-1655 (1985) scaled by 0.90 (N₂/air) ratio and increased by 9% as recommended by M.A.H. Smith, NASA Langley Research Center, private communication (1990).
- 2. Second order polynomial fit in J (used for J>35) by C.P. Rinsland, NASA Langley Research Center, private communication (1990).
- 3. Average values from Ref. 1 as a function of $J(J \le 35)$ used for lines not in database of Ref. 1.
- **4.** G. Wagner, M. Birk, F. Schreier, and J.-M. Flaud, "Spectroscopic database for ozone in the fundamental spectral regions," *J. Geophys. Res.* **D107**, 4626 (2002).
- 5. Use of values obtained for the v_3 band from Ref. 4.
- **6.** Use of values obtained for the v_1/v_2 bands from Ref. 4.
- 7. Third order polynomial fit in J for transitions where $J = K_a$ by I.E. Gordon (2008).
- **8.** J.-M. Flaud, C. Camy-Peyret, C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, A. Goldman, "Improved line parameters for ozone bands in the 10- μ m spectral region," *Appl. Opt.* **29**, 3667-3671 (1990). The polynomial expression in J'' from this article has been multiplied by a factor of 1.05 (I. Gordon, private communication, 2008).

Half-widths (self)

- **1.** C.P. Rinsland, J.-M. Flaud, A. Goldman, A. Perrin, C. Camy-Peyret, M.A.H. Smith, V. Malathy Devi, D.Chris Benner, A. Barbe, T.M. Stephen, and F.J. Murcray, "Spectroscopic Parameters for Ozone and Its Isotopes: Current Status, Prospects for Improvement, and the Identification of ¹⁶O¹⁶O¹⁷O and ¹⁶O¹⁷O¹⁶O Lines in Infrared Ground-based and Stratospheric Solar Absorption Spectra," *JQSRT* **60**, 803-814 (1998).
- 2. M.A.H. Smith, NASA Langley Research Center, private communication (2004).

Temperature dependence of air-broadened half-width

- **1.** Mean value of R.R. Gamache, "Temperature dependence of N₂-broadened halfwidths of ozone," *J.Mol.Spectrosc.* **114,** 31-41 (1985).
- **2.** G. Wagner, M. Birk, F. Schreier, and J.-M. Flaud, "Spectroscopic database for ozone in the fundamental spectral regions," *J. Geophys. Res.* **D107**, 4626 (2002).
- 3. Use of values obtained for the v_3 band from Ref. 2.
- **4.** Use of values obtained for the v_1/v_2 bands from Ref. 2.

Pressure shift (air)

1. Mean values of M.A.H. Smith, private communication (2004) based on V. Malathy Devi, D.C. Benner, M.A.H. Smith, and C.P. Rinsland, "Air-broadening and shift coefficients of O₃ lines in the v₂ band and their temperature dependence," *J.Mol.Spectrosc.* 182, 221-238 (1997); M.A.H. Smith, V. Malathy Devi, D.C. Benner, and C.P. Rinsland, "Temperature dependence of air-broadening and shift coefficients of O₃ lines in the v₁ band," *J.Mol.Spectrosc.* 182, 239-259 (1997); M.A.H. Smith, C.P. Rinsland, V. Malathy Devi, and E.S. Prochaska, "Measurements of pressure broadening and shifts of O₃ lines in the 3-μm region," *J.Mol.Spectrosc.* 164, 239-259 (1994); M.A.H. Smith, C.P. Rinsland, V. Malathy Devi, and E.S. Prochaska, "Erratum: Measurements of pressure broadening and shifts of O₃ lines in the 3-μm region" by M.A.H. Smith, C.P. Rinsland, V. Malathy Devi, and E.S. Prochaska," *J.Mol.Spectrosc.* 165, 596 (1994).

N₂O [4] 446, 456, 546, 448, 447

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- 1. G. Guelachvili, *Can.J.Phys.* **60**, 1334 (1982).
- **2.** R.A. Toth, "Line-frequency measurements and analysis of N_2O between 900 and 4700 cm⁻¹," *Appl.Opt.* **30**, 5289-5315 (1991).
- **3.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JOSRT* **52**, 447-457 (1994).
- **4.** J.W.C. Johns, Z. Lu, M. Weber, J.M. Sirota, and D.C. Reuter, "Absolute Intensities in the v_2 fundamental of N_2O at 17 μ m," *J.Mol.Spectrosc.* **177**, 203-210 (1996).
- **5.** L. Daumont, C. Claveau, M.R Debacker-Barrilly, A. Hamdouni, L. Régalia-Jarlot, J.-L. Teffo, S. Tashkun, and V.I. Perevalov, "Line intensities of ¹⁴N₂¹⁶O: the 10 micrometers region revisited," *JQSRT* **72**, 37-55 (2002).
- **6.** R.A. Toth, "Linelist of N₂O parameters from 500 to 7500 cm⁻¹," see http://mark4sun.jpl.nasa.gov/n2o.html.
- 7. L. Daumont, J. Vander Auwera, J.-L. Teffo, V.I. Perevalov, and S.A. Tashkun, "Line Intensity Measurements in ¹⁴N₂¹⁶O and their Treatment using the Effective Dipole Moment Approach," *J.Mol.Spectrosc.* **208**, 281-291 (2001).
- **8.** Line originally missing from R.A. Toth linelist (see Ref. 6 above).

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JOSRT* **52**, 447-457 (1994).
- 2. J.W.C. Johns, Z. Lu, M. Weber, J.M. Sirota, and D.C. Reuter, "Absolute Intensities in the v_2 fundamental of N_2O at 17 μ m," *J.Mol.Spectrosc.* **177**, 203-210 (1996).
- **3.** L. Daumont, C. Claveau, M.R Debacker-Barrilly, A. Hamdouni, L. Régalia-Jarlot, J.-L. Teffo, S. Tashkun, and V.I. Perevalov, "Line intensities of ¹⁴N₂¹⁶O: the 10 micrometers region revisited," *JOSRT* **72**, 37-55 (2002).
- **4.** L. Daumont, J. Vander Auwera, J.-L. Teffo, V.I. Perevalov, and S.A. Tashkun, "Line Intensity Measurements in ¹⁴N₂¹⁶O and their Treatment using the Effective Dipole Moment Approach," *J.Mol.Spectrosc.* **208**, 281-291 (2001).
- **5.** R.A. Toth, "Linelist of N₂O parameters from 500 to 7500 cm⁻¹," see http://mark4sun.jpl.nasa.gov/n2o.html.

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).
- 2. N. Lacome, A. Levy, and G. Guelachvili, "Fourier transform measurement of self-, N₂-, and O₂-broadening of N₂O lines: temperature dependence of linewidths," *Appl. Opt.* 23, 425-434

(1984).

3. Third-order polynomial fit of experimental results based on the three works: N. Lacome, A. Levy, and G. Guelachvili, "Fourier transform measurement of self-, N₂-, and O₂-broadening of N₂O lines: temperature dependence of linewidths," *Appl.Opt.* **23**, 425-434 (1984); R.A. Toth, "N₂- and air-broadened linewidths and frequency-shifts of N₂O," *JQSRT* **66**, 285-304 (2000); and V. Nemtchinov, C. Sun, and P. Varanasi, "Measurements of Line Intensities and Line Widths in the v₃-fundamental Band of Nitrous Oxide at Atmospheric Temperatures," *JQSRT* **83**, 267-284 (2004).

Half-widths (self)

1. Third-order polynomial fit of experimental results based on: R.A. Toth, "Line strengths (900-3600 cm⁻¹), self-broadened linewidths, and frequency shifts (1800-2660 cm⁻¹) of N₂O," *Appl. Opt.* **32**, 7326-7365 (1993).

Temperature dependence of air-broadened half-width

1. Fixed to a constant value of 0.75 based on the two works: N. Lacome, A. Levy, and G. Guelachvili, "Fourier transform measurement of self-, N₂-, and O₂-broadening of N₂O lines: temperature dependence of linewidths," *Appl. Opt.* **23**, 425-434 (1984); V. Nemtchinov, C. Sun, and P. Varanasi, "Measurements of Line Intensities and Line Widths in the v₃-fundamental Band of Nitrous Oxide at Atmospheric Temperatures," *JOSRT* **83**, 267-284 (2004).

Pressure shift (air)

1. R.A. Toth, "Linelist of N₂O parameters from 500 to 7500 cm⁻¹," see http://mark4sun.jpl.nasa.gov/n2o.html.

CO [5] 26, 36, 28, 27, 38, 37

Positions

- 1. G. Guelachvili, D. De Villeneuve, R. Farrenq, W. Urban, and J. Verges, "Dunham Coefficients for Seven Isotopic Species of CO," *J.Mol.Spectrosc.* **98**, 64-79 (1983); C.R. Pollock, F.R. Petersen, D.A. Jennings, and J.S. Wells "Absolute Frequency Measurements of the 2-0 Band of CO at 2.3 μm; Calibration Standard Frequencies from High Resolution Color Center Laser Spectroscopy," *J.Mol.Spectrosc.* **99**, 357-368 (1983).
- 2. R. Farrenq, G. Guelachvili, A.J. Sauval, N. Grevesse, and C.B. Farmer, "Improved Dunham Coefficients for CO from Infrared Solar Lines of High Rotational Excitation," *J.Mol.Spectrosc.* **149**, 375-390 (1991).
- **3.** T.D. Varberg and K.M. Evenson, "Accurate far-infrared rotational frequencies of carbon monoxide," *Astrophys.J.* **385**, 763-765 (1992).
- **4.** H.S.P. Müller, F. Schloder, J. Stutzki, and G Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists," *J.Mol.Struct.* **742**, 215-227 (2005). Data adopted in June 2010.

Intensities

- **1.** C. Chackerian and R.H. Tipping, "Vibration-Rotational and Rotational Intensities for CO Isotopes," *J.Mol.Spectrosc.* **99**, 431-449 (1983).
- **2.** D. Goorvitch, "Infrared CO Linelist for the $X^1\Sigma^+$ State," *Astrophys.J.Suppl.Ser.* **95**, 535-552 (1994).
- 3. J.W. Brault, L.R. Brown, C. Chackerian, Jr, R. Freedman, A. Predoi-Cross, and A.S. Pine, "Self-broadened 12 C 16 O line shapes in the v = 2 \leftarrow 0 band," *J.Mol.Spectrosc.* **222**, 220-239 (2003).
- **4.** K. Sung and P. Varanasi, "Intensities, collision-broadened half-widths, and collision-induced line shifts in the second overtone band of ¹²C¹⁶O" *JOSRT* **83**, 445-458 (2004).
- **5.** H.S.P. Müller, F. Schloder, J. Stutzki, and G Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists," *J.Mol.Struct.* **742**, 215-227 (2005). Data adopted in June 2010.

Half-widths (air)

- 1. T. Nakazawa and M. Tanaka, "Measurements of Intensities and Self- and Foreign gas broadened halfwidths of spectral Lines in the CO fundamental Band," *JQSRT* **28**, 409-416 (1982); values for transitions having $20 < |m| \le 33$ are extrapolated, while those for |m| > 34 are assumed to be constant (0.0400 cm⁻¹/atm).
- 2. Polynomial fit of several measurements (M.A.H. Smith, private communication, 2004). For details, see L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M. Carleer, C. Chackerian Jr, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The *HITRAN* 2004 Molecular Spectroscopic Database," *JQSRT* 96, 139-204 (2005).

Half-widths (self)

1. T. Nakazawa and M. Tanaka, "Measurements of Intensities and Self- and Foreign gas broadened halfwidths of spectral Lines in the CO fundamental Band," *JQSRT* **28**, 409-416 (1982); values for transitions having $20 < |m| \le 33$ are extrapolated, while those for |m| > 34 are

assumed to be constant (0.0460 cm⁻¹/atm).

2. Polynomial fit of several measurements (M.A.H. Smith, private communication, 2004). For details, see L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M. Carleer, C. Chackerian Jr, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The *HITRAN* 2004 Molecular Spectroscopic Database," *JQSRT* 96, 139-204 (2005).

Temperature dependence of air-broadened half-width

1. Polynomial fit of several measurements (M.A.H. Smith, private communication, 2004). For details, see L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M. Carleer, C. Chackerian Jr, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The *HITRAN* 2004 Molecular Spectroscopic Database," *JQSRT* 96, 139-204 (2005).

Pressure shift (air)

- 1. Q. Zou and P. Varanasi, "New laboratory data on the spectral line parameters in the 1-0 and 2-0 bands of $^{12}C^{16}O$ relevant to atmospheric remote sensing," JQSRT **75**, 63-92 (2002); for the 1-0 band, values for transitions having $-24 \ge m \ge 25$ are assumed to be constant (-0.003 cm⁻¹/atm). For the 2-0 band, values for transitions having $-23 \ge m \ge 24$ are assumed to be constant (-0.0055 cm⁻¹/atm).
- **2.** K. Sung and P. Varanasi, "Intensities, collision-broadened half-widths, and collision-induced line shifts in the second overtone band of $^{12}C^{16}O$," JQSRT **83**, 445-458 (2004); for the 3-0 band, values for transitions having $-24 \ge m \ge 26$ are assumed to be constant (-0.0075 cm⁻¹/atm).

CH₄ [6] 211, 311, 212, 312

Positions

- 0. The 1986 HITRAN article: Refs. numbers 46-52 therein are needed to document the 1991 methane linelist completely.
- 7. J.P. Champion, J.C. Hilico, C. Wenger, and L.R. Brown, "Analysis of the v₂/v₄ dyad of ¹²CH₄ and ¹³CH₄," *J.Mol.Spectrosc.* **133**, 256-272 (1989).
- 9. L.R. Brown, "Methane line parameters from 3700 to 4136 cm⁻¹," Appl. Opt. 27, 3275-3279
- 10. J.S. Margolis, "Measured line positions and strengths of methane between 5500 and 6180 cm⁻¹," Appl. Opt. 27, 4038-4051 (1988); J.S. Margolis, "Empirical values of the ground state energies for methane transitions between 5500 and 6150 cm⁻¹," *Appl. Opt.* **29**, 2295-2302 (1990).
- 11. M. Oldani, A. Bauder, J.C. Hilico, M. Loëte, and J.P. Champion, "Microwave Fourier Transform Spectroscopyu of Rovibrational Transitions in the v₂ - v₄ Dvads of Methane-C¹² and Methane-C¹³," *Europhys. Lett.* **4,** 29-33 (1987).
- 12. J.C. Hilico, M. Loëte, J.P. Champion, J.L. Destomes, and M. Bogey, "The millimeter-wave spectrum of methane," *J.Mol. Spectrosc.* **122,** 381-389 (1987).
- 13. O. Ouardi, "Intensités des bandes chaudes du methane dans la région de 8 microns," thesis, Université de Bourgogne (1988).
- 15. G. Tarrago, M. Delaveau, L. Fusina, and G. Guelachvili, "Absorption of ¹²CH₃D at 6-10 µm: triad v₃, v₅, v₆," J.Mol. Spectrosc. **126**, 149-158 (1987); for v₂, C. Chackerian, NASA Ames Research Center, unpublished (1990).
- 18. L.R. Brown and L.S. Rothman, "Methane line parameters for the 2.3-um region," Appl. Opt. **21,** 2425-2427 (1982).
- 19. L.R. Brown, "Empirical Lower State Energies of Methane at 2.5-µm," 3rd International Conference on Laboratory Research for Planetary Atmospheres (1991).
- **20.** G.S. Orton and A.G. Robiette, "A Line Parameter List for the v_2 and v_4 Bands of $^{12}CH_4$ and 13 CH₄, Extended to J' = 25 and its Application to Planetary Atmospheres," JOSRT 24, 81-95 (1980).
- 21. R.A. Toth, L.R. Brown, R.H. Hunt, and L.S. Rothman, "Line parameters of methane from 2385 to 3200 cm⁻¹," Appl. Opt. **20**, 932-935 (1981).
- 22. B. Bobin and K. Fox, "New analysis of v₃ of ¹²CH₄," *J.Chem.Phys.* 58, 1771-1773 (1973).
 23. N. Husson, G. Poussigue, A. Valentin, and C. Amiot, "Study of v₁+ v₄ band of ¹²CH₄ from 4,136 cm⁻¹ to 4,288 cm⁻¹," *Rev.Phys.Appl.* **7**, 267-278 (1972).
- 24. L.R. Brown, Jet Propulsion Laboratory, private communication (1981).
- 25. B. Bobin, "Interpretation de la Bande Harmonique 2v₃ du Methane ¹²CH₄ (de 5890 à 6107 cm⁻¹)," J.Phys. **33**, 345-352 (1972).
- 26. M. Dang-Nhu, G. Poussigue, G. Tarrago, A. Valentin, and P. Cardinet, "Etude de la Bande v₃ de ¹³CH₄ entre 2863 et 3132 cm⁻¹," *J.Phys.* **34**, 389-401 (1973).
- 28. C. Chackerian, Jr. and G. Guelachvili, "Ground-State Rotational Constants of ¹²CH₃D." J.Mol.Spectrosc. **84,** 447-456 (1980).
- 29. Estimated.
- 30. O. Ouardi, J.C. Hilico, M., Loëte, and L.R. Brown, "The hot bands of methane between 5 and 10 µm," J.Mol.Spectrosc. **180**, 311-322 (1996).
- 31. J.C. Hilico, J.-P. Champion, S. Toumi, Vl.G. Tyuterev, and S.A. Tashkun, "New Analysis of the Pentad System of Methane and Prediction of the (Pentad-pentad) Spectrum,"
- J.Mol.Spectrosc. 168, 455-476 (1994); J.C. Hilico, G.S. Baronov, D.K. Bronnikov, S.A.

- Gavrikov, I.I. Nikolaev, V.D. Rusanov, and Y.G. Filimonov, "High-resolution Spectroscopy of (Pentad Dyad) and (Octad Pentad) Hot Bands of Methane in a Supersonic Jet," *J.Mol.Spectrosc.* **161,** 435-444 (1993).
- 32. D.C. Benner, College of William and Mary, Unpublished data.
- **33.** J.C. Hilico, O. Robert, M. Loëte, S. Toumi, S.A. Pine, and L.R. Brown, "Analysis of the interacting octad system of ¹²CH₄," *J.Mol.Spectrosc.* **208,** 1-13 (2001).
- **34.** A. Predoi Cross, M. Brawley-Tremblay, L.R. Brown, V.M. Devi, and D.C. Benner, "Multispectrum analysis of ¹²CH₄ from 4100 to 4635 cm⁻¹: II. Air-broadening coefficients (widths and shifts)," *J.Mol.Spectrosc.* **236**, 201-215 (2006).
- **35.** J.M. Jouvard, B. Lavorel, J.-P. Champion, and L.R. Brown, "Preliminary analysis of the pentad of ¹³CH₄ from Raman and infrared spectra," *J.Mol.Spectrosc.*. **150,** 201-217 (1991).
- **36.** L.R. Brown, A. Nikitin, D.C. Benner, V.M. Devi, M.A.H. Smith, L. Fejard, J.-P. Champion, V.G. Tyuterev, and R.L. Sams, "Line intensities of CH₃D in the triad region: 6-10 μm," *J.Mol.Struct.* **695**, 181-188 (2004).
- **37.** A. Nikitin, J.-P. Champion, Vl.G. Tyuterev, L.R. Brown, G. Mellau, and M. Lock, "The infrared spectrum of CH₃D between 900 and 3200 cm⁻¹: extended assignment and modeling," *J.Mol.Struct.* **517,** 1-24 (2000); A. Nikitin, L.R. Brown, J.-P. Champion, L. Fejard, and Vl.G. Tyuterev, "Analysis of the CH₃D nonad from 2000 to 3300 cm⁻¹," *J.Mol.Spectrosc.* **216**, 225-251 (2002).
- **38.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- 39. L.R. Brown, JPL, private communication (2004).
- **40.** S. Albert, A. Bauerecker, V. Boudon, L.R. Brown, J.-P. Champion, M. Loëte, A. Nikitin, and M. Quack, "Global Frequency and Intensity Analysis of ¹²CH₄ in the 0-4800 cm⁻¹ region," *Chem. Phys.* **356**, 131–146 (2009).
- **41.** V. Lattanzi, A. Walters, J.C. Pearson, and B.J. Drouin, "THz spectrum of monodeuterated methane," *JQSRT* **109**, 580-586 (2008).
- **42.** O.N. Ulenikov, G.A. Onopenko, N.E. Tyabaeva, R. Anttila, S. Alanko, and J. Schroderus, "Rotational Analysis of the Ground State and the Lowest Fundamentals v_3 , v_5 , and v_6 of 13 CH₃D," *J.Mol.Spectrosc.* **201**, 9-17 (2000).
- **43.** A.V. Nikitin, J.-P. Champion, and L.R. Brown, "Preliminary analysis of CH₃D from 3250 to 3700 cm⁻¹," *J.Mol.Spectrosc.* **240**, 14-25 (2006).
- **44.** C. Boussin, B.L. Lutz, C. de Bergh, and A. Hamdouni, "Line intensities and self-broadening coefficients for the 3v₂ band of monodeuterated methane," *JQSRT* **60**, 501-514 (1998).

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **8.** L.R. Brown, M. Loëte, and J.C. Hilico, "Linestrengths of the v_2 and v_4 bands of $^{12}CH_4$ and $^{13}CH_4$," *J.Mol.Spectrosc.* **133**, 273-311 (1989).
- **9.** L.R. Brown, "Methane line parameters from 3700 to 4136 cm⁻¹," *Appl.Opt.* **27,** 3275-3279 (1988).
- 10. J.S. Margolis, "Measured line positions and strengths of methane between 5500 and 6180 cm⁻¹," *Appl.Opt.* 27, 4038-4051 (1988); J.S. Margolis, "Empirical values of the ground state energies for methane transitions between 5500 and 6150 cm⁻¹," *Appl.Opt.* 29, 2295-2302 (1990).
- 11. M. Oldani, A. Bauder, J.C. Hilico, M. Loëte, and J.P. Champion, "Microwave Fourier

- Transform Spectroscopy of Rovibrational Transitions in the v_2 v_4 Dyads of Methane- C^{12} and Methane- C^{13} ," *Europhys. Lett.* **4,** 29-33 (1987).
- **12.** J.C. Hilico, M. Loëte, J.P. Champion, J.L. Destomes, and M. Bogey, "The millimeter-wave spectrum of methane," *J.Mol.Spectrosc.* **122**, 381-389 (1987).
- **13.** O. Ouardi, "Intensités des bandes chaudes du methane dans la région de 8 microns," thesis, Université de Bourgogne, (1988).
- **16.** L.R. Brown, A. Nikitin, D.C. Benner, V.M. Devi, M.A.H. Smith, L. Fejard, J.-P. Champion, V.G. Tyuterev, and R.L. Sams, "Line intensities of CH₃D in the triad region: 6-10 μm," *J.Mol.Struct.* **695**, 181-188 (2004).
- **18.** L.R. Brown and L.S. Rothman, "Methane line parameters for the 2.3-μm region," *Appl.Opt.* **21,** 2425-2427 (1982).
- 19. L.R. Brown, "Empirical Lower State Energies of Methane at 2.5-μm," 3rd International Conference on Laboratory Research for Planetary Atmospheres (1991).
- **20.**O. Ouardi, J.C. Hilico, M., Loete, and L.R. Brown, "The hot bands of methane between 5 and 10 μm," *J.Mol.Spectrosc.* **180**, 311-322 (1996).
- **21.** L. Fejard, J.-P. Champion, J.M. Jouvard, L.R. Brown, and A.S. Pine, "The intensities of methane in the 3-5 μm region revisited," *J.Mol.Spectrosc.* **201**, 83-94 (2000).
- 22. D.C. Benner, College of William and Mary, Unpublished data.
- **23.** J.C. Hilico, J.-P. Champion, S. Toumi, Vl.G. Tyuterev, and S.A. Tashkun, "New Analysis of the Pentad System of Methane and Prediction of the (Pentad-pentad) Spectrum,"
- J.Mol.Spectrosc. 168, 455-476 (1994); J.C. Hilico, G.S. Baronov, D.K. Bronnikov, S.A.
- Gavrikov, I.I. Nikolaev, V.D. Rusanov, and Y.G. Filimonov, "High-resolution Spectroscopy of (Pentad Dyad) and (Octad Pentad) Hot Bands of Methane in a Supersonic Jet," *J.Mol.Spectrosc.*
- **161,** 435-444 (1993); J.C. Hilico, O. Robert, M. Loëte, S. Toumi, S.A. Pine, and L.R. Brown, "Analysis of the interacting octad system of ¹²CH₄," *J.Mol.Spectrosc.* **208,** 1-13 (2001).
- **24.** L.R. Brown, A. Nikitin, D.C. Benner, V.M. Devi, M.A.H. Smith, L. Fejard, J.-P. Champion, V.G. Tyuterev, and R.L. Sams, "Line intensities of CH₃D in the triad region: 6-10 μm," *J.Mol.Struct.* **695**, 181-188 (2004).
- **25.** L.R. Brown, A. Nikitin, D.C. Benner, V.M. Devi, M.A.H. Smith, L. Fejard, J.-P. Champion, V.G. Tyuterev, and R.L. Sams, "Line intensities of CH₃D in the triad region: 6-10 μm," *J.Mol.Struct.* **695**, 181-188 (2004).
- **26.** A. Nikitin, J.-P. Champion, Vl.G. Tyuterev, L.R. Brown, G. Mellau, and M. Lock, "The infrared spectrum of CH₃D between 900 and 3200 cm⁻¹: extended assignment and modeling," *J.Mol.Struct.* **517**, 1-24 (2000); A. Nikitin, L.R. Brown, J.-P. Champion, L. Fejard, and Vl.G. Tyuterev, "Analysis of the CH₃D nonad from 2000 to 3300 cm⁻¹," *J.Mol.Spectrosc.* **216**, 225-251 (2002).
- **27.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998). **28.** L.R. Brown, JPL, private communication (2004).
- **29.** S. Albert, A. Bauerecker, V. Boudon, L.R. Brown, J.-P. Champion, M. Loëte, A. Nikitin, and M. Quack, "Global Frequency and Intensity Analysis of ¹²CH₄ in the 0-4800 cm⁻¹ region," *Chem. Phys.* **356**, 131–146 (2009).
- **30.** V. Lattanzi, A. Walters, J.C. Pearson, and B.J. Drouin, "THz spectrum of monodeuterated methane," *JOSRT* **109**, 580-586 (2008).
- **31.** L.R. Brown, A. Nikitin, D.C. Benner, V.M. Devi, M.A.H. Smith, L. Fejard, J.-P. Champion, V.G. Tyuterev, and R.L. Sams, "Line intensities of CH₃D in the Triad region: 6-10 μm," *J.Mol.Struct.* **695-696**, 181-188 (2004).

- **32.** A.V. Nikitin, J.-P. Champion, and L.R. Brown, "Preliminary analysis of CH₃D from 3250 to 3700 cm⁻¹," *J.Mol.Spectrosc.* **240**, 14-25 (2006).
- **33.** C. Boussin, B.L. Lutz, C. de Bergh, and A. Hamdouni, "Line intensities and self-broadening coefficients for the $3v_2$ band of monodeuterated methane," *JQSRT* **60**, 501-514 (1998).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. C.P. Rinsland, V.Malathy Devi, M.A.H. Smith, and D.C. Benner, "Measurements of air-broadened and nitrogen-broadened Lorentz width coefficients and pressure shift coefficients in the v_4 and v_2 bands of $^{12}CH_4$," *Appl.Opt.* 27, 631-651 (1988).
- 2. Table IV of Ref. 1.
- **3.** V.Malathy Devi, C.P. Rinsland, M.A.H. Smith, and D.C.Benner, "Air-broadened Lorentz halfwidths and pressure induced line shifts in the v₄ band of ¹³CH₄," *Appl.Opt.* **27**, 2296-2308 (1988).
- 4. Table IV of Ref. 1, scaled by 0.95.
- **5.** V.Malathy Devi, C.P. Rinsland, D.C. Benner, M.A.H. Smith, and K.B. Thakur, "Absolute intensities and self-, N₂, and air-broadened Lorentz halfwidths for selected lines in the v₃ band of ¹²CH₃D from measurements with a tunable diode laser spectrometer," *Appl.Opt.* **25**, 1848-1853 (1986).
- 6. V.Malathy Devi, D.C. Benner, C.P. Rinsland, M.A.H. Smith, and K.B. Thakur, "Diode-Laser Measurements of Intensities and Halfwidths in the ν₆ Band of ¹²CH₃D," *J.Mol.Spectrosc.* **122**, 182-189 (1987).
- 19. D.C. Benner, V.Malathy Devi, C.P. Rinsland, and M.A.H. Smith, "Halfwidth and pressure-induced lineshift coefficients in the v₃, v₂+ v₄, v₃+ v₄ and v₁+v₄ bands of ¹²CH₄," 45th Ohio State University Symposium on Molecular Spectroscopy, p.105 (1990); D.C. Benner, C.P. Rinsland, and V.Malathy Devi, "Air-broadened halfwidths in the v₃ band of ¹²CH₄," 41st Symposium on Molecular Spectroscopy, p.63 (1986); D.C. Benner, V.Malathy Devi, M.A.H. Smith, and C.P. Rinsland, "Air-broadened and nitrogen-broadened halfwidth coefficients and pressure shifts in the v₃ band spectral region of ¹²CH₄," 43rd Symposium on Molecular Spectroscopy, p.171 (1988).
- **20.** V.Malathy Devi, D.C. Benner, M.A.H. Smith, and C.P. Rinsland, "Measurements of air-, N₂-, and O₂-broadened halfwidths and pressure-induced line shifts in the v₃ band of ¹³CH₄," *Appl.Opt.* **30,** 287-304 (1991); V.Malathy Devi, D.C. Benner, M.A.H. Smith, and C.P. Rinsland, "Measurements of air-, N₂-, and O₂-broadened halfwidths and pressure-induced line shifts in the v₃ band of ¹³CH₄: errata," *Appl.Opt.* **30,** 2928 (1991).
- **21.** M.A.H. Smith, C.P. Rinsland, V.M. Devi, and D.C. Benner, "Temperature-dependence of Broadening and Shifts of Methane Lines in the v₄ Band," *Spectrochimica Acta* **48A**, 1257-1272 (1992).
- **22.** V.M. Devi, C.P. Rinsland, M.A.H. Smith, and D.C. Benner, "Air-broadened Lorentz Halfwidths And Pressure-induced Line Shifts in the v₄ Band of ¹³CH₄," *Appl.Opt.* **27**, 2296-2308 (1988).
- **23.** D.C. Benner et al. unpublished data 2800 3000 cm⁻¹; D.C. Benner, V.M. Devi, M.A.H. Smith, and C.P. Rinsland, "Air-broadening, N₂-broadening, and O₂-broadening and Shift Coefficients in the v₃ Spectral Region of ¹²CH₄," *JQSRT* **50**, 65-89 (1993); V.M. Devi, D.C. Benner, M.A.H. Smith, et al. Measurements of Air-broadened, N₂-broadened, and O₂-broadened

- Half-widths and Pressure-induced Line Shifts in the v_3 Band of $^{13}CH_4$," *Appl.Opt.* **30,** 287-304 (1991).
- **24.** A.S. Pine, "Self-broadening, N₂-broadening, O₂-broadening, H₂-broadening, Ar-broadening, and He-broadening in the v₃ Band Q-branch of CH₄," *J.Chem.Phys.* **97,** 773-785 (1992).
- **25.** V.M. Devi, D.C. Benner, M.A.H. Smith, and C.P. Rinsland, "Temperature-dependence of Lorentz Air-broadening and Pressure-shift Coefficients of ¹²CH₄ Lines in the 2.3-μm Spectral Region," *JQSRT* **51,** 439-465 (1994).
- **26.** V.M. Devi, D.C. Benner, M.A.H. Smith, and C.P. Rinsland, "Measurements of Air-broadening and Pressure-shifting of Methane Lines in the 2.3-μm Region," *J.Mol.Spectrosc.* **157,** 95-111 (1993).
- 27. A. Predoi Cross, M. Brawley-Tremblay, L.R. Brown, V.M. Devi, and D.C. Benner, "Multispectrum analysis of ¹²CH₄ from 4100 to 4635 cm⁻¹: II. Air-broadening coefficients (widths and shifts)," *J.Mol.Spectrosc.* 236, 201-215 (2006).
- 28. CH₃D empirical fit of measurements reported in Ref. 30.
- **29.** L.R. Brown, J.S. Margolis, J.P. Champion, J.C. Hilico, J.M. Jouvard, M. Loëte, C. Chackerian, Jr, G. Tarrago, and D.C. Benner, "Methane and its Isotopes: Current Status and Prospects for Improvement," *JQSRT* **48,** 617-639 (1992).
- **30.** V.M. Devi, D.C. Benner, M.A.H. Smith, and C.P. Rinsland, "Measurements of air broadened width and air induced shift coefficients and line mixing in the v₅ band of ¹²CH₃D," *JQSRT* **68**, 135-161 (2001); V.M. Devi, D.C. Benner, M.A.H. Smith, C.P. Rinsland, and L.R. Brown," Measurements of air-broadened width and air-induced shift coefficients and line mixing in the v₆ band of ¹²CH₃D," *JQSRT* **68**, 1-41 (2001); V.M. Devi, D.C. Benner, M.A.H. Smith, C.P. Rinsland, and L.R. Brown, "Measurements of air broadening, pressure shifting and off diagonal relaxation matrix coefficients in the v₃ band of ¹²CH₃D," *J.Mol.Struct.* **517**, 455-475 (2000); V.M. Devi et al. (in preparation).
- 31. L.R. Brown, JPL, private communication (2004).
- **32.** Estimated broadening parameters described in L.R. Brown, D.C. Benner, J.-P. Champion, V.M. Devi, L. Fejard, R.R. Gamache, T. Gabard, J.C. Hilico, B. Lavorel, M. Loëte, G.C. Mellau, A. Nikitin, A.S. Pine, A. Predoi-Cross, C.P. Rinsland, O. Robert, R.L. Sams, M.A.H. Smith, S.A. Tashkun, and V.G. Tyuterev, "Methane line parameters in HITRAN," *JQSRT* **82**, 219-238 (2003) and L.R. Brown, "Empirical line parameters of methane from 1.1 to 2.1 μm," *JQSRT* **96**, 251-270 (2005).
- **33.** B.K. Antony, D.L. Niles, S.B. Wroblewski, C.M. Humphrey, T. Gabard, and R.R. Gamache, " N_2 -, O_2 and air-broadened half-widths and line shifts for transitions in the v_3 band of methane in the 2726- to 3200-cm⁻¹ spectral region," *J.Mol.Spectrosc.* **251**, 268-281 (2008).
- **34.** V. Malathy Devi, D. Chris Benner, M.A.H. Smith, C.P. Rinsland, and L.R. Brown, "Self-and N₂-broadening, pressure induced shift and line mixing in the v_5 band of 12 CH₃D using a multispectrum fitting technique," *JQSRT* **74**, 1-41 (2002).
- **35.** C. Boussin, B.L. Lutz, C. de Bergh, and A. Hamdouni, "Line intensities and self-broadening coefficients for the $3v_2$ band of monodeuterated methane," *JQSRT* **60**, 501-514 (1998).
- **36.** M.A.H. Smith, D. C. Benner, A. Predoi-Cross, and V. Malathy Devi, "Multispectrum analysis of 12 CH₄ in the ν_4 band: I. Air-broadened half widths, pressure-induced shifts, temperature dependences and line mixing," *JQSRT* **110**, 639-653 (2009).

Half-widths (self)

1. L.R. Brown, D.C. Benner, J.-P. Champion, V.M. Devi, L. Fejard, R.R. Gamache, T. Gabard, J.C. Hilico, B. Lavorel, M. Loëte, G.C. Mellau, A. Nikitin, A.S. Pine, A. Predoi-Cross, C.P.

- Rinsland, O. Robert, R.L. Sams, M.A.H. Smith, S.A. Tashkun, and V.G. Tyuterev, "Methane Line Parameters in HITRAN," *JQSRT* **82**, 219-238 (2003).
- L.R. Brown, JPL, private communication (2004); A. Predoi Cross, L.R. Brown, V.M. Devi, M. Brawley-Tremblay, and D.C. Benner, "Multispectrum analysis of ¹²CH₄ from 4100 to 4635 cm⁻¹: 1. Self-broadening coefficients (widths and shifts)," *J.Mol.Spectrosc.* 232, 231-246 (2005).
 Estimated broadening parameters described in L.R. Brown, D.C. Benner, J.-P. Champion,
- V.M. Devi, L. Fejard, R.R. Gamache, T. Gabard, J.C. Hilico, B. Lavorel, M. Loëte, G.C. Mellau, A. Nikitin, A.S. Pine, A. Predoi-Cross, C.P. Rinsland, O. Robert, R.L. Sams, M.A.H. Smith, S.A. Tashkun, and V.G. Tyuterev, "Methane line parameters in HITRAN," *JQSRT* **82**, 219-238 (2003) and L.R. Brown, "Empirical line parameters of methane from 1.1 to 2.1 μm," *JQSRT* **96**, 251-270 (2005).
- **4.** V. Malathy Devi, D. Chris Benner, M.A.H. Smith, C.P. Rinsland, and L.R. Brown, "Self- and N_2 -broadening, pressure induced shift and line mixing in the v_5 band of 12 CH₃D using a multispectrum fitting technique," *JQSRT* **74**, 1-41 (2002).
- 5. C. Boussin, B.L. Lutz, C. de Bergh, and A. Hamdouni, "Line intensities and self-broadening coefficients for the $3v_2$ band of monodeuterated methane," *JQSRT* **60**, 501-514 (1998).
- **6.** M.A.H. Smith, D. C. Benner, A. Predoi-Cross, and V. Malathy Devi, "Multispectrum analysis of ¹²CH₄ in the ν₄ band: I. Air-broadened half widths, pressure-induced shifts, temperature dependences and line mixing," *JQSRT* **110**, 639-653 (2009).

Temperature dependence of air-broadened half-width

- **1.** L.R. Brown, D.C. Benner, J.-P. Champion, V.M. Devi, L. Fejard, R.R. Gamache, T. Gabard, J.C. Hilico, B. Lavorel, M. Loëte, G.C. Mellau, A. Nikitin, A.S. Pine, A. Predoi-Cross, C.P. Rinsland, O. Robert, R.L. Sams, M.A.H. Smith, S.A. Tashkun, and V.G. Tyuterev, "Methane Line Parameters in HITRAN," *JQSRT* **82**, 219-238 (2003).
- 2. L.R. Brown, JPL, private communication (2004).
- **3.** Estimated broadening parameters described in L.R. Brown, D.C. Benner, J.-P. Champion, V.M. Devi, L. Fejard, R.R. Gamache, T. Gabard, J.C. Hilico, B. Lavorel, M. Loëte, G.C. Mellau, A. Nikitin, A.S. Pine, A. Predoi-Cross, C.P. Rinsland, O. Robert, R.L. Sams, M.A.H. Smith, S.A. Tashkun, and V.G. Tyuterev, "Methane line parameters in HITRAN," *JQSRT* **82**, 219-238 (2003) and L.R. Brown, "Empirical line parameters of methane from 1.1 to 2.1 μm," *JQSRT* **96**, 251-270 (2005).
- **4.** B.K. Antony, D.L. Niles, S.B. Wroblewski, C.M. Humphrey, T. Gabard, and R.R. Gamache, " N_2 -, O_2 and air-broadened half-widths and line shifts for transitions in the v_3 band of methane in the 2726- to 3200-cm⁻¹ spectral region," *J.Mol.Spectrosc.* **251**, 268-281 (2008).
- **5.** M.A.H. Smith, D. C. Benner, A. Predoi-Cross, and V. Malathy Devi, "Multispectrum analysis of 12 CH₄ in the ν_4 band: I. Air-broadened half widths, pressure-induced shifts, temperature dependences and line mixing," *JQSRT* **110**, 639-653 (2009).

Pressure shift (air)

- 1. L.R. Brown, D.C. Benner, J.-P. Champion, V.M. Devi, L. Fejard, R.R. Gamache, T. Gabard, J.C. Hilico, B. Lavorel, M. Loëte, G.C. Mellau, A. Nikitin, A.S. Pine, A. Predoi-Cross, C.P. Rinsland, O. Robert, R.L. Sams, M.A.H. Smith, S.A. Tashkun, and V.G. Tyuterev, "Methane Line Parameters in HITRAN," *JQSRT* 82, 219-238 (2003).
- 2. L.R. Brown, JPL, private communication (2004).
- **3.** Estimated broadening parameters described in L.R. Brown, D.C. Benner, J.-P. Champion, V.M. Devi, L. Fejard, R.R. Gamache, T. Gabard, J.C. Hilico, B. Lavorel, M. Loëte, G.C. Mellau,

- A. Nikitin, A.S. Pine, A. Predoi-Cross, C.P. Rinsland, O. Robert, R.L. Sams, M.A.H. Smith, S.A. Tashkun, and V.G. Tyuterev, "Methane line parameters in HITRAN," *JQSRT* **82**, 219-238 (2003) and L.R. Brown, "Empirical line parameters of methane from 1.1 to 2.1 μm," *JQSRT* **96**, 251-270 (2005).
- **4.** B.K. Antony, D.L. Niles, S.B. Wroblewski, C.M. Humphrey, T. Gabard, and R.R. Gamache, " N_2 -, O_2 and air-broadened half-widths and line shifts for transitions in the v_3 band of methane in the 2726- to 3200-cm⁻¹ spectral region," *J.Mol.Spectrosc.* **251**, 268-281 (2008).
- 5. C. Boussin, B.L. Lutz, C. de Bergh, and A. Hamdouni, "Line intensities and self-broadening coefficients for the $3v_2$ band of monodeuterated methane," JQSRT **60**, 501-514 (1998).
- **6.** M.A.H. Smith, D. C. Benner, A. Predoi-Cross, and V. Malathy Devi, "Multispectrum analysis of 12 CH₄ in the v_4 band: I. Air-broadened half widths, pressure-induced shifts, temperature dependences and line mixing," *JOSRT* **110**, 639-653 (2009).

O₂ [7] 66, 68, 67

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** G. Rouillé, G. Millot, R. Saint-Loup, and H. Berger, "High-Resolution Stimulated Raman Spectroscopy of O₂," *J.Mol.Spectrosc.* **154**, 372-382 (1992).
- **2.** P.H. Krupenie, "The Spectrum of Molecular Oxygen," *J.Phys.Chem.Ref.Dat.* **1,** 423-534 (1972).
- 3. Molecular Hamiltonian constants for the v''=0 and v'=0 of the $X\Sigma$ state are from G. Rouillé et al (Ref. 1).
- **4.** Molecular Hamiltonian constants for the v''=0 and v'=1 of the $X\Sigma$ state are from G. Rouillé et al (Ref. 1). Vibrational term values are from Krupenie (Ref. 2), upper vibrational state energy shifted to agree with band center of G. Rouillé et al for $(1 \leftarrow 0)$ band.
- 5. Molecular Hamiltonian constants for the v''=1 and v'=1 of the $X\Sigma$ state are from G. Rouillé et al (Ref. 1). Vibrational term values are from P.H. Krupenie (Ref. 2), upper vibrational state energy shifted to agree with band center of G. Rouillé et al for $(1 \leftarrow 0)$ band.
- **6.** M. Mizushima and S. Yamamoto, "Microwave Absorption Lines of $^{16}O^{18}O$ in its $(X\Sigma_g, v=0)$ State," *J.Mol.Spectrosc.* **148**, 447-452 (1991).
- 7. Molecular Hamiltonian constants for the v''=0 and v'=0 of the $X\Sigma$ state are from M. Mizushima and S. Yamamoto (Ref. 6). Vibrational term values are from P.H. Krupenie (Ref. 2).
- **8.** K.W. Hillig II, C.C.W. Chiu, W.G. Read, and E.A. Cohen, "The Pure Rotation Spectrum of $a^1\Delta_g O_2$," *J.Mol.Spectrosc.* **109**, 205-206 (1985).
- 9. T. Scalabrin, R.J. Saykally, K.M. Evenson, H.E. Radford, and M. Mizushima, "Laser Magnetic Resonance Measurement of Rotational transitions in the Metastable $a^1\Delta_g$ State of Oxygen," *J.Mol.Spectrosc.* **89**, 344-351 (1981).
- 10. J. Brault, Kitt Peak National Solar Observatory, private communication (1982).
- 11. Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from G. Rouillé et al (Ref. 1). For the v'=0 of the $a\Delta$ state, the constants of K.W. Hillig et al (Ref. 8) are used in the formalism of T. Scalabrin et al (Ref. 9). Vibrational term values are from Krupenie (Ref. 2). Upper vibrational state energy shifted by -0.002788 cm⁻¹ to agree with data of J. Brault (Ref. 10).
- 12. Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from G. Rouillé et al (Ref. 1). For the v'=1 of the $a\Delta_g$ state the constants of J. Brault (Ref. 10) are used. Vibrational term values are from P.H. Krupenie (Ref. 2). Upper vibrational state energy shifted by -0.050385 cm⁻¹ to agree with data of J. Brault (Ref. 10).
- 13. Molecular Hamiltonian constants for the v'=1 state of $X\Sigma$ are from G. Rouillé et al (Ref. 1). For the v'=0 of the $a\Delta_g$ state, the constants of K.W. Hillig et al (Ref. 8) are used in the formalism of T. Scalabrin et al (Ref. 9). Vibrational term values are from Krupenie (Ref. 2). Upper vibrational state energy shifted by -0.002788 cm⁻¹ to be consistent with the (0 \leftarrow 0) transitions.

 14. L. Herzberg and G. Herzberg, "Fine Structure of the Infrared Atmospheric Oxygen Bands," *Astrophys.J.* 105, 353 (1947).
- 15. Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from M. Mizushima and S. Yamamoto (Ref. 6). For the v'=0 of the $a\Delta_g$ state, the constants of Herzberg and Herzberg (Ref. 14) are used. Vibrational term values are from P.H. Krupenie (Ref. 2). Upper vibrational state energy shifted by +0.29573 cm⁻¹ to agree with data of J. Brault (Ref. 10).
- 16. M. Mizushima, L.R. Zink, and K.M. Evenson, "Rotational Structure of ¹⁶O₂, ¹⁶O¹⁷O, and

- $^{16}\mathrm{O}^{18}\mathrm{O}\left(X\Sigma_{\sigma}^{-}\right)$ from Laser Magnetic Resonance Spectra," *J.Mol.Spectrosc.* **107**, 395-404 (1984).
- 17. Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from M. Mizushima et al (Ref.
- 16). For the v'=0 of the $a\Delta_g$ state, the constants of L. Herzberg and G. Herzberg (Ref. 14) are used. Vibrational term values are from Krupenie (Ref. 2). Upper vibrational state energy shifted by +0.15634 cm⁻¹ to agree with data of J. Brault (Ref. 10).
- **18.** D.L. Albritton, W.J. Harrop, A.L. Schmeltekopf, and R.N. Zare, "Resolution of the Discrepancies Concerning the Optical and Microwave values for B_0 and D_0 of the $X \Sigma_g^-$ State of O_2 ," *J.Mol.Spectrosc.* **46**, 103-118 (1973).
- **19.** H. Babcock and L. Herzberg, "Fine Structure of the Red System of Atmospheric Oxygen Bands," *Astrophys.J.* **108**, 167-190 (1948).
- 20. W.S. Benedict, University of Maryland, private communication, 8/27/76.
- 21. Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from G. Rouillé et al (Ref. 1). For the v'=0 of the $b\Sigma$ state, the constants of D.L. Albritton (Ref. 18) are used. Vibrational and electronic term values are from Krupenie (Ref. 2). Dunham zero point energy correction applied to zero point energy of upper vibrational state.
- 22. Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from G. Rouillé et al (Ref. 1). For the v'=1 of the $b\Sigma$ state, the constants of D.L. Albritton (Ref. 18) are used. Vibrational and electronic term values are from P.H. Krupenie (Ref. 2). Dunham zero point energy correction applied to zero point energy of upper vibrational state.
- 23. Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from G. Rouillé et al (Ref. 1). For the v'=2 of the $b\Sigma$ state, the constants of D.L. Albritton (Ref. 18) are used. Vibrational and electronic term values are from Krupenie (Ref. 2). Dunham zero point energy correction applied to zero point energy of upper vibrational state.
- 24. Molecular Hamiltonian constants for the v''=1 state of $X\Sigma$ are from G. Rouillé et al (Ref. 1). For the v'=1 of the $b\Sigma$ state, the constants of D.L. Albritton (Ref. 18) are used. Vibrational and electronic term values are from Krupenie (Ref. 2). Dunham zero point energy correction applied to zero point energy of upper vibrational state.
- 25. Molecular Hamiltonian constants for the v''=1 state of $X\Sigma$ are from Rouillé et al. (Ref. 1). For the v'=0 of the $b\Sigma$ state, the constants of D.L. Albritton (Ref. 18) are used. Vibrational and electronic term values are from Krupenie (Ref. 2). Dunham zero point energy correction applied to zero point energy of upper vibrational state.
- **26.** Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from M. Mizushima and S. Yamamoto (Ref. 6). For the v'=0 of the $b\Sigma$ state, the constants of H. Babcock and L. Herzberg (Ref. 19) are used. Vibrational and electronic term values are from Krupenie (Ref. 2). Dunham zero point energy correction applied to zero point energy of upper vibrational state. Electronic term value is shifted by (-0.041-0.014) cm⁻¹, unknown reference.
- 27. Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from M. Mizushima and S. Yamamoto (Ref. 6). For the v'=1 of the $b\Sigma$ state, the constants of W.S. Benedict (Ref. 20) are used. Vibrational and electronic term values are from P.H. Krupenie (Ref. 2). Dunham zero point energy correction applied to zero point energy of upper vibrational state. Electronic term value is shifted by (-0.041-0.014) cm⁻¹, unknown reference.
- 28. Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from M. Mizushima and S. Yamamoto (Ref. 6). For the v'=2 of the $b\Sigma$ state, the constants from W.S. Benedict, University of Maryland (private communication) are used. Vibrational and electronic term values are from P.H. Krupenie (Ref. 2). Dunham zero point energy correction applied to zero point energy of upper vibrational state. Electronic term value is shifted by (-0.041-0.014) cm⁻¹, unknown reference.

- 29. Molecular Hamiltonian constants for the v''=0 state of $X\Sigma$ are from M. Mizushima and S. Yamamoto (Ref. 6). For the v'=1 of the $b\Sigma$ state, the constants of H. Babcock and L. Herzberg (Ref. 19) are used. Vibrational and electronic term values are from P.H. Krupenie (Ref. 2). Dunham zero point energy correction applied to zero point energy of upper vibrational state.
- **30.** R.L. Poynter and H.M. Pickett, "Submillimeter, Millimeter, and Microwave Spectral Line Catalogue," JPL Publication 80-23, Revision 1, (1981).
- **31.** Data from J. Brault and W.S. Benedict, analysis of Kitt Peak observations, private communication (1978).
- **32.** K. Minschwaner, G.P. Anderson, L.A. Hall, and K. Yoshino, "Polynomial Coefficients for Calculating O₂ Schumann-Runge Cross Sections at 0.5 cm⁻¹ Resolution," *J. Geophys. Res.* **97**, 10103-10108 (1992).
- **33.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).
- **34.** K. Yoshino and J.R. Esmond, Harvard-Smithsonian Center for Astrophysics, private communication (1994).
- **35.** L.R. Brown and C. Plymate, "Experimental Line Parameters of the Oxygen *A* Band at 760 nm," *J.Mol.Spectrosc.* **199**, 166-179 (2000).
- **36.** C. Camy-Peyret, private communication based on "High resolution balloon-borne spectroscopy within the O₂ A-band: observations and radiative transfer modeling," C. Camy-Peyret, S. Payan, P. Jeseck, Y. Té, and T. Hawat, Paper E4, Proceedings of the International Radiation Symposium, (2000).
- **37.** M.-F. Mérienne, A. Jenouvrier, B. Coquart, M. Carleer, S. Fally, R. Colin, A.C. Vandaele, and C. Hermans, "Improved dataset for the Herzberg band system of ¹⁶O₂," *J.Mol.Spectrosc.* **207,** 120 (2001).
- **38.** Blended lines from M.-F. Mérienne, A. Jenouvrier, B. Coquart, M. Carleer, S. Fally, R. Colin, A.C. Vandaele, and C. Hermans, "Improved dataset for the Herzberg band system of ¹⁶O₂," *J.Mol.Spectrosc.* **207**, 120 (2001).
- **39.** D.J. Robichaud, J.T. Hodges, P. Maslowski, L.Y. Yeung, M. Okumura, C.E. Miller, and L.R. Brown, "High-accuracy transition frequencies for the O₂ A-band," *J.Mol.Spectrosc.* **251**, 27-37 (2008).
- **40.** D.J. Robichaud, L.Y. Yeung, D.A. Long, D.K. Havey, J.T. Hodges, D. Lisak, C.E. Miller, M. Okumura, and L.R. Brown, "Experimental Line Parameters of the $b^1\Sigma_g^+ X^3\Sigma_g^-$ Band of Oxygen Isotopologues at 760 nm Using Frequency-Stabilized Cavity Ring-Down Spectroscopy," J. Phys. Chem. A, **113**, 13089-99 (2009).
- **41.** The Q2Q2 and Q2R1 lines that were missing from reference 40 above were calculated in 2009 using input parameters of Ref. 1 above.

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** R.R. Gamache, A. Goldman, and L.S. Rothman, "Improved Spectral Parameters for the Three Most Abundant Isotopomers of the Oxygen Molecule," *JOSRT* **59**, 495-509 (1998).
- **2.** K.J. Ritter and T.D. Wilkerson, "High Resolution Spectroscopy of the Oxygen A Band," *J.Mol.Spectrosc.* **121**, 1-19 (1987).
- **3.** L.P. Giver, R.W. Boese, and J.H. Miller, "Intensity Measurements, Self-Broadening Coefficients, and Rotational Intensity Distribution for Lines of the Oxygen B Band at 6880 Å,"

- JOSRT 14, 793-802 (1974).
- **4.** M.A. Mélières, M. Chenevier, and F. Stoeckel, "Intensity Measurements and Self-broadening coefficients in the γ Band of O₂ at 628 nm using Intracavity Laser-absorption Spectroscopy (ICLAS)," *JQSRT* **33**, 337-345 (1985).
- **5.** V.D. Galkin, "Electronic moment of the $b^1\Sigma_g^ X^3\Sigma_g^-$ transition of the oxygen band system," *Opt.Spektrosk.* (USSR) **47,** 266-271 (1979).
- **6.** Y.T. Hsu, Y.-P. Lee, and J.F. Ogilvie, "Linestrengths of the Band $a^1\Delta_g$ (v'=0) $X\Sigma_g^-$ (v"=0) of $^{16}O_2$," *Spectrochim.Acta* **48A**, 1227-1230 (1992).
- 7. K. Minschwaner, G.P. Anderson, L.A. Hall, and K. Yoshino, "Polynomial Coefficients for Calculating O₂ Schumann-Runge Cross Sections at 0.5 cm⁻¹ Resolution," *J. Geophys. Res.* 97, 10103-10108 (1992).
- **8.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JOSRT* **52**, 447-457 (1994).
- **9.** R.L. Poynter and H.M. Pickett, "Submillimeter, Millimeter, and Microwave Spectral Line Catalogue," JPL Publication 80-23, Revision 1, (1981).
- **10.** Data from J. Brault and W.S. Benedict, analysis of Kitt Peak observations, private communication (1978).
- **11.** W.J. Lafferty, A.M. Solodov, C.L. Lugez, and G.T. Fraser, "Rotational line strengths and self-pressure-broadening coefficients for the 1.27- μ m, $a^1\Delta_g$ $X\Sigma_g$, v = 0 0 band of O_2 ," *Appl.Opt.* **37**, 2264-2270 (1998).
- **12.** Intensity reduced by 15% from HITRAN96 values (Ref. 6 above), private communication, G.T. Fraser, NIST (2000).
- **13.** C. Camy-Peyret, private communication based on "High resolution balloon-borne spectroscopy within the O₂ A-band: observations and radiative transfer modeling," C. Camy-Peyret, S. Payan, P. Jeseck, Y. Té, and T. Hawat, Paper E4, Proceedings of the International Radiation Symposium, (2000).
- **14.** M.-F. Mérienne, A. Jenouvrier, B. Coquart, M. Carleer, S. Fally, R. Colin, A.C. Vandaele, C. Hermans "Improved dataset for the Herzberg band system of ¹⁶O₂," *J.Mol.Spectrosc.* **207**, 120 (2001).
- **15.** Blended lines, from M.-F. Mérienne, A. Jenouvrier, B. Coquart, M. Carleer, S. Fally, R. Colin, A.C. Vandaele, C. Hermans "Improved dataset for the Herzberg band system of ¹⁶O₂," *J.Mol.Spectrosc.* **207**, 120 (2001).
- **16.** D.J. Robichaud, J.T. Hodges, L.R. Brown, D. Lisak, P. Maslowski, L.Y. Yeung, M. Okumura, and C.E. Miller, "Experimental intensity and lineshape parameters of the oxygen Aband using frequency-stabilized cavity ring-down spectroscopy," *J.Mol.Spectrosc.* **248**, 1-13 (2008).
- 17. D.J. Robichaud, L.Y. Yeung, D.A. Long, D.K. Havey, J.T. Hodges, D. Lisak, C.E. Miller, M. Okumura, and L.R. Brown, "Experimental Line Parameters of the $b^1\Sigma_g^+ X^3\Sigma_g^-$ Band of Oxygen Isotopologues at 760 nm Using Frequency-Stabilized Cavity Ring-Down Spectroscopy," J. Phys. Chem. A, 113, 13089-99 (2009).
- **18.** Intensities calculated by Prof. Andrew Orr-Ewing based on the intensities measured in S.M. Newman, A.J. Orr-Ewing, D.A. Newnham, and J. Ballard, "Temperature and pressure dependence of line widths and integrated absorption intensities for the O_2 $a^1 \Delta_g X^3 \Sigma_g^-$ (0,0) transition," *J.Phys. Chem.A.* **104,** 9467 (2000).
- 19. Q2Q2 and Q2R1 lines missing from either reference 1 or 18 above were calculated in 2009 using input parameters of Ref. 1.

20. Intensities from Ref. 1 scaled according to S. Kassi, D. Romanini, A. Campargue, and B. Bussery-Honvault, "Very high sensitivity CW-cavity ring down spectroscopy: Application to the $a^1\Delta_g(0)-X^3\Sigma_g^-(1)$ O₂ band near 1.58 µm," *Chem.Phys.Lett.* **409**, 281-287 (2005).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** P.H. Krupenie, "The Spectrum of Molecular Oxygen," *J.Phys.Chem.Ref.Dat.* **1,** 423-534 (1972).
- **2.** L.P. Giver, R.W. Boese, and J.H. Miller, "Intensity Measurements, Self-Broadening Coefficients, and Rotational Intensity Distribution for Lines of the Oxygen B Band at 6880 Å," *JOSRT* **14,** 793-802 (1974).
- **3.** K.J. Ritter and T.D. Wilkerson, "High Resolution Spectroscopy of the Oxygen A Band," *J.Mol.Spectrosc.* **121,** 1-19 (1987).
- **4.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).
- **5.** L.R. Brown and C. Plymate, "Experimental Line Parameters of the Oxygen *A* Band at 760 nm," *J.Mol.Spectrosc.* **199**, 166-179 (2000).
- **6.** C. Camy-Peyret, private communication based on "High resolution balloon-borne spectroscopy within the O₂ A-band: observations and radiative transfer modeling," C. Camy-Peyret, S. Payan, P. Jeseck, Y. Té, and T. Hawat, Paper E4, Proceedings of the International Radiation Symposium, (2000).
- 7. D.J. Robichaud, J.T. Hodges, L.R. Brown, D. Lisak, P. Maslowski, L.Y. Yeung, M. Okumura, and C.E. Miller, "Experimental intensity and lineshape parameters of the oxygen Aband using frequency-stabilized cavity ring-down spectroscopy," *J.Mol.Spectrosc.* 248, 1-13 (2008).
- **8.** R.A. Washenfelder, G.C. Toon, J.-F. Blavier, Z. Yang, N.T. Allen, P.O. Wennberg, S.A. Vay, D.M. Matross, and B.C. Daube, "Carbon dioxide column abundances at the Wisconsin Tall Tower site," *J.Geophys.Res.* **111**, D22305 (2006).

Half-widths (self)

- **1.** W.J. Lafferty, A.M. Solodov, C.L. Lugez, and G.T. Fraser, "Rotational line strengths and self-pressure-broadening coefficients for the 1.27- μ m, $a^1\Delta_g$ $X\Sigma_g$, v = 0-0 band of O_2 ," *Appl.Opt.* **37,** 2264-2270 (1998).
- **2.** K. Minschwaner, G.P. Anderson, L.A. Hall, and K. Yoshino, "Polynomial Coefficients for Calculating O₂ Schumann-Runge Cross Sections at 0.5 cm⁻¹ Resolution," *J. Geophys. Res.* **97**, 10103-10108 (1992).
- **3.** L.R. Brown and C. Plymate, "Experimental Line Parameters of the Oxygen *A* Band at 760 nm," J.Mol.Spectrosc. 199, 166-179 (2000).
- **4.** D.J. Robichaud, J.T. Hodges, L.R. Brown, D. Lisak, P. Maslowski, L.Y. Yeung, M. Okumura, and C.E. Miller, "Experimental intensity and lineshape parameters of the oxygen Aband using frequency-stabilized cavity ring-down spectroscopy," *J.Mol.Spectrosc.* **248**, 1-13 (2008).
- **5.** R.A. Washenfelder, G.C. Toon, J.-F. Blavier, Z. Yang, N.T. Allen, P.O. Wennberg, S.A. Vay, D.M. Matross, and B.C. Daube, "Carbon dioxide column abundances at the Wisconsin Tall Tower site," *J. Geophys. Res.* **111**, D22305 (2006).

Temperature dependence of air-broadened half-width

- 1. L.R. Brown and C. Plymate, "Experimental Line Parameters of the Oxygen A Band at 760 nm," *J.Mol.Spectrosc.* **199**, 166-179 (2000).
- **2.** R.A. Washenfelder, G.C. Toon, J.-F. Blavier, Z. Yang, N.T. Allen, P.O. Wennberg, S.A. Vay, D.M. Matross, and B.C. Daube, "Carbon dioxide column abundances at the Wisconsin Tall Tower site," *J. Geophys. Res.* **111**, D22305 (2006).

Pressure shift (air)

- **1.** L.R. Brown and C. Plymate, "Experimental Line Parameters of the Oxygen *A* Band at 760 nm," *J.Mol.Spectrosc.* **199**, 166-179 (2000).
- **2.** D.J. Robichaud, J.T. Hodges, P. Maslowski, L.Y. Yeung, M. Okumura, C.E. Miller, and L.R. Brown, "High-accuracy transition frequencies for the O₂ A-band," *J.Mol.Spectrosc.* **251**, 27-37 (2008).
- **3.** R.A. Washenfelder, G.C. Toon, J.-F. Blavier, Z. Yang, N.T. Allen, P.O. Wennberg, S.A. Vay, D.M. Matross, and B.C. Daube, "Carbon dioxide column abundances at the Wisconsin Tall Tower site," *J. Geophys. Res.* **111**, D22305 (2006).

NO [8] 46, 56, 48

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. Same as Ref. 0.
- **2.** M.N. Spencer, C. Chackerian, Jr., L.P. Giver, and L.R. Brown, "The Nitric Oxide Fundamental Band: Frequency and Shape Parameters for Ro-vibrational Lines," *J.Mol.Spectrosc.* **165**, 506-524 (1994).
- **3.** V. Dana, J.-Y. Mandin, L.H. Coudert, M. Badaoui, F. LeRoy, G. Guelachvili, and L.S. Rothman, "λ-Splittings and Line Intensities in the 2 1 Hot Band of Nitric Oxide," *J.Mol.Spectrosc.* **165**, 525-540 (1994).
- **4.** L.H. Coudert, V. Dana, J.-Y. Mandin, M. Morillon-Chapey, R. Farrenq, and G. Guelachvili, "The Spectrum of Nitric Oxide between 1700 and 2100 cm⁻¹," *J.Mol.Spectrosc.* **172**, 435-448 (1995).
- 5. J.-Y. Mandin, V. Dana, L. Régalia, A. Barbe, and X. Thomas, "Λ-Splittings and Line Intensities in the First Overtone of Nitric Oxide," *J.Mol.Spectrosc.* **185**, 347-355 (1997); J.-Y. Mandin, V. Dana, L. Régalia, A. Barbe, and P. Von der Heyden, "Lambda-Splittings and Line Intensities in the 3 ← 1 Hot Band of ¹⁴N¹⁶O: The Spectrum of Nitric Oxide in the First Overtone Region," *J.Mol.Spectrosc.* **187**, 200-205 (1998).
- **6.** J.R. Gillis and A. Goldman, "Nitric oxide IR line parameters for the upper atmosphere," *Appl. Opt.* **21,** 1161-1163 (1982).
- 7. A. Goldman, private communication (2004), based on A. Goldman, L.R. Brown, W.G. Schoenfeld, M.N. Spencer, C. Chackerian, L.P. Giver, H. Dothe, C.P. Rinsland, L.H. Coudert, V. Dana and J.-Y. Mandin "Nitric oxide line parameters: review of 1996 HITRAN update and new results," *JOSRT* **60**, 825-838 (1998).
- **8.** A. Goldman, private communication (2006), based on A. Goldman, L.R. Brown, W.G. Schoenfeld, M.N. Spencer, C. Chackerian, L.P. Giver, H. Dothe, C.P. Rinsland, L.H. Coudert, V. Dana, and J.-Y. Mandin "Nitric oxide line parameters: review of 1996 HITRAN update and new results," *JQSRT* **60**, 825-838 (1998).
- **9.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JOSRT* **60**, 883-890 (1998).

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** J. Ballard, W.B. Johnston, B.J. Kerridge, and J.J. Remedios, "Experimental Spectral Line Parameters in the 1-0 Band of Nitric Oxide," *J.Mol.Spectrosc.* **127**, 70-82 (1988).
- **2.** M.N. Spencer, C. Chackerian, Jr., L.P. Giver, and L.R. Brown, "The Nitric Oxide Fundamental Band: Frequency and Shape Parameters for Ro-vibrational Lines," *J.Mol.Spectrosc.* **165**, 506-524 (1994).
- **3.** V. Dana, J.-Y. Mandin, L.H. Coudert, M. Badaoui, F. LeRoy, G. Guelachvili, and L.S. Rothman, "λ-Splittings and Line Intensities in the 2 1 Hot Band of Nitric Oxide," *J.Mol.Spectrosc.* **165**, 525-540 (1994).
- 4. L.H. Coudert, V. Dana, J.-Y. Mandin, M. Morillon-Chapey, R. Farreng, and G. Guelachvili,

- "The Spectrum of Nitric Oxide between 1700 and 2100 cm⁻¹," *J.Mol.Spectrosc.* **172**, 435-448 (1995).
- **5.** J.-Y. Mandin, V. Dana, L. Régalia, A. Barbe, and X. Thomas, "Λ-Splittings and Line Intensities in the First Overtone of Nitric Oxide," *J.Mol.Spectrosc.* **185**, 347-355 (1997); J.-Y. Mandin, V. Dana, L. Régalia, A. Barbe, and P. Von der Heyden, "Lambda-Splittings and Line Intensities in the 3 ← 1 Hot Band of ¹⁴N¹⁶O: The Spectrum of Nitric Oxide in the First Overtone Region," *J.Mol.Spectrosc.* **187**, 200-205 (1998).
- **6.** J.R. Gillis and A. Goldman, "Nitric oxide IR line parameters for the upper atmosphere," *Appl. Opt.* **21,** 1161-1163 (1982).
- **7.** A. Goldman, private communication (2004), based on A. Goldman, L.R. Brown, W.G. Schoenfeld, M.N. Spencer, C. Chackerian, L.P. Giver, H. Dothe, C.P. Rinsland, L.H. Coudert, V. Dana and J.-Y. Mandin "Nitric oxide line parameters: review of 1996 HITRAN update and new results," *JQSRT* **60**, 825-838 (1998).
- **8.** A. Goldman, private communication (2006), based on A. Goldman, L.R. Brown, W.G. Schoenfeld, M.N. Spencer, C. Chackerian, L.P. Giver, H. Dothe, C.P. Rinsland, L.H. Coudert, V. Dana, and J.-Y. Mandin "Nitric oxide line parameters: review of 1996 HITRAN update and new results," *JQSRT* **60**, 825-838 (1998).
- **9.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. J. Ballard, Rutherford Appleton Laboratory, private communication (1990).
- **2.** M.N. Spencer, C. Chackerian, Jr., L.P. Giver, and L.R. Brown, "The Nitric Oxide Fundamental Band: Frequency and Shape Parameters for Ro-vibrational Lines," *J.Mol.Spectrosc.* **165**, 506-524 (1994).
- **3.** M.-Y. Allout, V. Dana, J.-Y. Mandin, P. Von der Heyden, D. Décatoire, and J.-J. Plateaux, "Oxygen-Broadening Coefficients of First Overtone Nitric Oxide Lines," *JQSRT* **61,** 759-765 (1999); J.-Y. Mandin, V. Dana, L. Régalia, X. Thomas, and A. Barbe, "Nitrogen-Broadening in the Nitric Oxide First Overtone Band," *JQSRT* **66,** 93-100 (2000).
- **4.** Assumption of validity of J.-Y. Mandin, V. Dana, L. Régalia, X. Thomas, and A. Barbe, "Nitrogen-Broadening in the Nitric Oxide First Overtone Band," JQSRT **66,** 93-100 (2000) for other $\Delta v = 2$ transitions including forbidden sub-bands.
- **5.** C. Chackerian, Jr., R.S. Freedman, L.P. Giver, and L.R. Brown, "The NO Vibrational Fundamental Band: O₂-Broadening Coefficients," *J.Mol.Spectrosc.* **192,** 215-219 (1998); M.N. Spencer, C. Chackerian, Jr., L.P. Giver, and L.R. Brown, "The Nitric Oxide Fundamental Band: Frequency and Shape Parameters for Ro-vibrational Lines," *J.Mol.Spectrosc.* **165,** 506-524 (1994).
- 6. Assumption of validity of C. Chackerian, Jr., R.S. Freedman, L.P. Giver, and L.R. Brown, "The NO Vibrational Fundamental Band: O₂-Broadening Coefficients," *J.Mol.Spectrosc.* **192**, 215-219 (1998); M.N. Spencer, C. Chackerian, Jr., L.P. Giver, and L.R. Brown, "The Nitric Oxide Fundamental Band: Frequency and Shape Parameters for Ro-vibrational Lines," *J.Mol.Spectrosc.* **165**, 506-524 (1994) for other Δv transitions (except $\Delta v = 2$) including forbidden sub-bands.
- 7. A. Goldman, private communication (2006), based on A. Goldman, L.R. Brown, W.G.

Schoenfeld, M.N. Spencer, C. Chackerian, L.P. Giver, H. Dothe, C.P. Rinsland, L.H. Coudert, V. Dana, and J.-Y. Mandin "Nitric oxide line parameters: review of 1996 HITRAN update and new results," *JOSRT* **60**, 825-838 (1998).

Half-widths (self)

- 1. Polynomial fit of measurements from A. Pine, A.G. Maki, N.-Y. Chou, "Pressure broadening, lineshapes and intensity measurements in the 2 from 0 band of NO," *J.Mol.Spectrosc.* **114**, 132-147 (1985).
- **2.** A. Goldman, private communication (2006), based on A. Goldman, L.R. Brown, W.G. Schoenfeld, M.N. Spencer, C. Chackerian, L.P. Giver, H. Dothe, C.P. Rinsland, L.H. Coudert, V. Dana, and J.-Y. Mandin "Nitric oxide line parameters: review of 1996 HITRAN update and new results," *JQSRT* **60**, 825-838 (1998).

Temperature dependence of air-broadened half-width

- **1.** A. Goldman, private communication (2004), based on M.N. Spencer, C. Chackerian, Jr., L.P. Giver, and L.R. Brown, "Temperature Dependence of Nitrogen Broadening of the NO Fundamental Vibrational Band," *J.Mol.Spectrosc.* **181,** 307-315 (1997).
- **2.** A. Goldman, private communication (2006), based on A. Goldman, L.R. Brown, W.G. Schoenfeld, M.N. Spencer, C. Chackerian, L.P. Giver, H. Dothe, C.P. Rinsland, L.H. Coudert, V. Dana, and J.-Y. Mandin "Nitric oxide line parameters: review of 1996 HITRAN update and new results," *JQSRT* **60**, 825-838 (1998).

Pressure shift (air)

- **1.** M.N. Spencer, C. Chackerian, Jr., L.P. Giver, and L.R. Brown, "The Nitric Oxide Fundamental Band: Frequency and Shape Parameters for Ro-vibrational Lines," *J.Mol.Spectrosc.* **165**, 506-524 (1994).
- 2. A.S. Pine, J.W.C. Johns, and A.G. Robiette, " Λ -Doubling in the v = 2 \leftarrow 0 overtone band in the infrared spectrum of NO," *J.Mol.Spectrosc.* **74,** 52-69 (1979).

SO₂ [9] 626, 646

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** A. Goldman, F.J. Murcray, C.P. Rinsland, R.D. Blatherwick, S.J. David, F.H. Murcray, and D.G. Murcray, "Mt. Pinatubo SO₂ Column Measurements from Mauna Loa," *Geophys.Res.Lett.* **19**, 183-186 (1992).
- **2.** W.G. Mankin, M.T. Coffey, and A. Goldman, "Airborne Observations of SO₂, HCl, and O₃ in the Stratospheric Plume of the Pinatubo Volcano in July 1991," *Geophys.Res.Lett.* **19,** 179-182 (1991); also Ref.1.
- **3.** R.J. Corice, Jr., K. Fox, and G.D.T. Tejwani, " v_1+v_3 combination band of ${}^{32}S^{16}O_2$," *J.Chem.Phys.* **59**, 672-675 (1973).
- 4. A. Goldman, University of Denver, private communication (1992).
- 5. A. Pine, National Bureau of Standards, private communication.
- **6.** W.J. Lafferty, A.S. Pine, J.-M. Flaud, and C. Camy-Peyret, "The $2v_3$ Band of $^{32}S^{16}O_2$: Line Positions and Intensities," *J.Mol.Spectrosc.* **157**, 499-511 (1993).
- 7. W.J. Lafferty, G.T. Fraser, A.S. Pine, J.-M. Flaud, and C. Camy-Peyret, V. Dana, J.-Y. Mandin, A. Barbe, J.-J. Plateaux, S. Bouazza, "The $3v_3$ Band of ${}^{32}S^{16}O_2$ Line Positions and Intensities," *J.Mol.Spectrosc.* **154,** 51-60 (1992); J.-M. Flaud and W.J. Lafferty, " ${}^{32}S^{16}O_2$: a refined analysis of the $3v_3$ band and determination of equilibrium rotational constants," *J.Mol.Spectrosc.* **161,** 396-402 (1993).
- **8.** W.J. Lafferty, A.S. Pine, G. Hilpert, R.L. Sams, and J.-M. Flaud, "The v_1+v_3 and $2v_1+v_3$ Band Systems of SO₂: Line Positions and Intensities," *J.Mol.Spectrosc.* **176**, 280-286 (1996).
- **9.** J.-M. Flaud, A. Perrin, L.M. Salah, W.J. Lafferty, and G. Guelachvili, "A reanalysis of the (010), (020), (100) and (001) rotational levels of ³²S¹⁶O₂," *J.Mol.Spectrosc.* **160**, 272-278 (1993).
- 10. J. Henningsen, A. Barbe, and M.-R. De Backer-Barilly, "Revised molecular parameters for ³²SO₂ and ³⁴SO₂ from high resolution study of the infrared spectrum in the 7-8 μm wavelength region," *JOSRT* **109**, 2491-2510 (2008).
- **11.** W.J. Lafferty, J.-M. Flaud, E.H.A. Ngom, and R.L. Sams, "³⁴S¹⁶O₂: High-resolution analysis of the (0 3 0), (1 0 1), (1 1 1), (0 0 2) and (2 0 1) vibrational states; determination of equilibrium rotational constants for sulfur dioxide and anharmonic vibrational constants," *J.Mol.Spectrosc.* **253**, 51-54 (2009). The global fit that was performed in this work included results from W.J. Lafferty, J.-M. Flaud, R.L. Sams, and E.H. Abib Ngom, "High resolution analysis of the rotational levels of the (0 0 0), (0 1 0), (1 0 0), (0 0 1), (0 2 0), (1 1 0) and (0 1 1) vibrational states of ³⁴S¹⁶O₂," *J.Mol.Spectrosc.* **252**, 72-76 (2008).
- **12.** H.S.P. Müller, F. Schloder, J. Stutzki, and G. Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists," *J.Mol.Struct.* **742**, 215-227 (2005).

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** A. Goldman, F.J. Murcray, C.P. Rinsland, R.D. Blatherwick, S.J. David, F.H. Murcray, and D.G. Murcray, "Mt. Pinatubo SO₂ Column Measurements from Mauna Loa," *Geophys.Res.Lett.*

- **19,** 183-186 (1992).
- **2.** W.G. Mankin, M.T. Coffey, and A. Goldman, "Airborne Observations of SO₂, HCl, and O₃ in the Stratospheric Plume of the Pinatubo Volcano in July 1991," *Geophys.Res.Lett.* **19,** 179-182 (1991); also Ref.1.
- 3. W.J. Lafferty, A.S. Pine, J.-M. Flaud, and C. Camy-Peyret, "The 2v₃ Band of ³²S¹⁶O₂: Line Positions and Intensities," *J.Mol.Spectrosc.* **157**, 499-511 (1993).
- 4. W.J. Lafferty, G.T. Fraser, A.S. Pine, J.-M. Flaud, and C. Camy-Peyret, "The 3ν₃ Band of ³²S¹⁶O₂ Line Positions and Intensities," *J.Mol.Spectrosc.* **154**, 51-60 (1992); J.-M. Flaud and W.J. Lafferty, *J.Mol.Spectrosc.* **161**, 396-402 (1993).
- **5.** W.J. Lafferty, A.S. Pine, G. Hilpert, R.L. Sams, and J.-M. Flaud, "The v_1+v_3 and $2v_1+v_3$ Band Systems of SO₂: Line Positions and Intensities," *J.Mol.Spectrosc.* **176**, 280-286 (1996).
- **6.** J.R. Spencer, E. Lellouch, M.J. Richter, M.A. López-Valverde, K. Lea Jessup, T.K. Greathouse, and J.-M. Flaud, "Mid-infrared detection of large longitudinal asymmetries in Io's SO₂ atmosphere," *Icarus* **176**, 283-304 (2005).
- 7. P.M. Chu, S.J. Wetzel, W.J. Lafferty, A. Perrin, J.-M. Flaud, P. Arcas, and G. Guelachvili, "Line Intensities for the 8-µm Bands of SO₂," *J.Mol.Spectrosc.* **189**, 55-63 (1998).
- **8.** J. Henningsen, A. Barbe, and M.-R. De Backer-Barilly, "Revised molecular parameters for ³²SO₂ and ³⁴SO₂ from high resolution study of the infrared spectrum in the wavelength region," *JOSRT* **109**, 2491-2510 (2008).
- 9. J.-M. Flaud, W.J. Lafferty, and R.L. Sams, "Line Intensities for the v_1 , v_3 and $v_1 + v_3$ bands of ${}^{34}SO_2$," JOSRT, 110, 669-674 (2009).
- **10.** H.S.P. Müller, F. Schloder, J. Stutzki, and G. Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists," *J.Mol.Struct.* **742**, 215-227 (2005).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. O. Fleischmann, B. Sumpf, J. Waschull, and H.-D. Kronfeldt, "Self- and Air-Broadened Coefficients of Absorption Lines in the v_1 Band of SO_2 ," XIIIth International Conference on High Resolution Spectroscopy, Poznan, Poland, Sept. 1994.
- 2. J.-M. Flaud, private communication (2008).

Halfwidths (self)

1. J.-M. Flaud, private communication (2008).

Temperature dependence of air-broadened half-width

1. J.-M. Flaud, private communication (2008).

NO₂ [10] 646

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** C. Camy-Peyret, J.-M. Flaud, A. Perrin, and K.Narahari Rao, "Improved Line Parameters for the v_3 and $v_2+v_3-v_2$ Bands of $^{14}N^{16}O_2$," *J.Mol.Spectrosc.* **95,** 72-79 (1982).
- **2.** A. Perrin, J.-M. Flaud, C. Camy-Peyret, B. Carli, and M. Carlotti, "The far infrared spectrum of ¹⁴N¹⁶O₂ Electron spin-rotation and hyperfine Fermi contact resonances in the ground state," *Mol.Phys.* **63**, 791-810 (1988).
- **3.** A. Perrin, C. Camy-Peyret, J.-M. Flaud, and J. Kauppinen, "The v_2 Band of $^{14}N^{16}O_2$ Spin-Rotation Perturbations in the (010) State," *J.Mol.Spectrosc.* **130**, 168-182 (1988).
- **4.** A. Perrin, J.-M. Flaud, C. Camy-Peyret, A.-M. Vasserot, G. Guelachvili, A. Goldman, F.J. Murcray, and R.D. Blatherwick, "The v_1 , $2v_2$, and v_3 Interacting Bands of $^{14}N^{16}O_2$: Line Positions and Intensities," *J.Mol.Spectrosc.* **154**, 391-406 (1992).
- **5.** C. Camy-Peyret, J.-M. Flaud, and A. Perrin, "Improved Line Parameters for the v_3 and $v_2+v_3-v_2$ Bands of $^{14}N^{16}O_2$," *J.Mol.Spectrosc.* **95,** 72-79 (1982).
- **6.** A. Perrin, J.-M. Flaud, C. Camy-Peyret, A. Goldman, F.J. Murcray, R.D. Blatherwick, and C.P. Rinsland, "The v_2 and $2v_2$ - v_2 bands of $^{14}N^{16}O_2$: Electron Spin-Rotation and Hyperfine Contact Resonances in the (010) Vibration State," *J.Mol.Spectrosc.* **160**, 456-463 (1993).
- 7. J.-M. Flaud, C. Camy-Peyret, V.Malathy Devi, P.P. Das, and K.Narahari Rao, "Diode Laser Spectra of the v_2 Band of $^{14}N^{16}O_2$: The (010) State of NO_2 ," *J.Mol.Spectrosc.* **84**, 234-242 (1980).
- **8.** A. Cabana, M. Lauren, C. Pepin, and W.J. Lafferty, "High-Resolution Infrared Spectrum of the v_3 and $v_2+v_3-v_2$ Bands of $^{14}N^{16}O_2$," *J.Mol.Spectrosc.* **59**, 13-27 (1976).
- 9. V. Dana and J.-P. Maillard, "Analysis of the $v_1 + v_3$ Band of $^{14}N^{16}O_2$," *J.Mol.Spectrosc.* **71**, 1-14 (1978).
- 10. A. Perrin, Université Pierre et Marie Curie, private communication (1995).
- **11.** J.-Y. Mandin, V. Dana, A. Perrin, J.-M. Flaud, C. Camy-Peyret, L. Régalia, and A. Barbe "The $\{v_1+2v_2, v_1+v_3\}$ bands of $^{14}N^{16}O_2$: line positions and intensities; line intensities in the $v_1+v_2+v_3-v_2$ hot band," *J.Mol.Spectrosc.* **181,** 379-388 (1997).
- 12. T.M. Stephen, A. Goldman, A. Perrin, J.-M. Flaud, F. Keller, and C.P. Rinsland, "New High-Resolution Analysis of the $3v_3$ and $2v_1 + v_3$ Bands of Nitrogen Dioxide (NO₂) by Fourier Transform Spectroscopy," *J.Mol.Spectrosc.* 201, 134-142 (2000).

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. C. Camy-Peyret, J.-M. Flaud, A. Perrin, and K.Narahari Rao, "Improved Line Parameters for the v_3 and $v_2+v_3-v_2$ Bands of $^{14}N^{16}O_2$," *J.Mol.Spectrosc.* **95**, 72-79 (1982).
- 2. A. Perrin, J.-M. Flaud, C. Camy-Peyret, B. Carli, and M. Carlotti, "The far infrared spectrum of ¹⁴N¹⁶O₂ Electron spin-rotation and hyperfine Fermi contact resonances in the ground state," *Mol.Phys.* **63**, 791-810 (1988).
- 3. A. Perrin, C. Camy-Peyret, J.-M. Flaud, and J. Kauppinen, "The v_2 Band of $^{14}N^{16}O_2$ Spin-Rotation Perturbations in the (010) State," *J.Mol.Spectrosc.* **130**, 168-182 (1988).

- **4.** V.Malathy Devi, Palash P. Das, A. Bano, K.Narahari Rao, J.-M. Flaud, C. Camy-Peyret, and J.-P. Chevillard, "Diode Laser Measurements of Intensities, N_2 -Broadening, and Self-Broadening Coefficients of Lines of the v_2 Band of $^{14}N^{16}O_2$," *J.Mol.Spectrosc.* **88**, 251-258 (1981).
- **5.** A. Perrin, J.-M. Flaud, C. Camy-Peyret, A.-M. Vasserot, G. Guelachvili, A. Goldman, F.J. Murcray, and R.D. Blatherwick, "The v_1 , $2v_2$, and v_3 Interacting Bands of $^{14}N^{16}O_2$: Line Positions and Intensities," *J.Mol.Spectrosc.* **154**, 391-406 (1992).
- 6. A. Perrin, J.-M. Flaud, C. Camy-Peyret, A. Goldman, F.J. Murcray, R.D. Blatherwick, and C.P. Rinsland, "The v_2 and $2v_2$ - v_2 bands of $^{14}N^{16}O_2$: Electron Spin-Rotation and Hyperfine Contact Resonances in the (010) Vibration State," *J.Mol.Spectrosc.* **160**, 456-463 (1993).
- 7. J.-Y. Mandin, V. Dana, A. Perrin, J.-M. Flaud, C. Camy-Peyret, L. Régalia, and A. Barbe, "The $\{v_1+2v_2, v_1+v_3\}$ bands of $^{14}N^{16}O_2$: line positions and intensities; line intensities in the $v_1+v_2+v_3-v_2$ hot band," *J.Mol.Spectrosc.* **181**, 379-388 (1997).
- **8.** T.M. Stephen, A. Goldman, A. Perrin, J.-M. Flaud, F. Keller, and C.P. Rinsland, "New High-Resolution Analysis of the $3v_3$ and $2v_1 + v_3$ Bands of Nitrogen Dioxide (NO₂) by Fourier Transform Spectroscopy," *J.Mol.Spectrosc.* **201**, 134-142 (2000).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- 1. C. Camy-Peyret, University of Paris, private communication (1990).
- **2.** V. Dana, J.-Y. Mandin, M.-Y. Allout, A. Perrin, L. Régalia, A. Barbe, J.-J. Plateaux, and X. Thomas, "Broadening parameters of NO₂ lines in the 3.4 micron spectral region," *JQSRT* **57**, 445-457 (1997).
- 3. L.R. Brown, Jet Propulsion Laboratory, private communication (2004).
- **4.** D.C. Benner, T.A. Blake, L.R. Brown, V.M. Devi, M.A.H. Smith, and R.A. Toth, "Airbroadened parameters in the v_3 band of $^{14}N^{16}O_2$ using a multispectrum fitting technique," *J.Mol.Spectrosc.* **228**, 593-619 (2004).

Half-widths (self)

1. A. Perrin, J.-M. Flaud, C. Camy-Peyret, D. Hurtmans, M. Herman, and G. Guelachvili, "The v_2+v_3 and $v_2+v_3-v_2$ bands of $^{14}N^{16}O_2$: line positions and intensities," *J.Mol.Spectrosc.* **168**, 54-66 (1994).

Temperature dependence of air-broadened half-width

- **1.** V.Malathy Devi, B. Fridovich, G.D. Jones, D.G.S. Snyder, P.P. Das, J.-M. Flaud, C. Camy-Peyret, and K. Narahari Rao, "Tunable diode laser spectroscopy of NO₂ at 6.2 μm," *J.Mol.Spectrosc.* **93**, 179-195 (1982); V.Malathy Devi, B. Fridovich, G.D. Jones, D.G.S. Snyder and A. Neuendorffer. "Temperature dependence of the widths of N₂-broadened lines of the ν₃ band of ¹⁴N¹⁶O₂," *Appl.Opt.* **21**, 1537-1538 (1982); R.D. May and C.R. Webster, "Laboratory measurements of NO₂ line parameters near 1600 cm⁻¹ for the interpretation of stratospheric spectra," *Geophys.Res.Let.* **17**, 2157-2160 (1990).
- 2. L.R. Brown, Jet Propulsion Laboratory, private communication (2004).
- **3.** D.C. Benner, T.A. Blake, L.R. Brown, V.M. Devi, M.A.H. Smith, and R.A. Toth, "Airbroadened parameters in the v_3 band of $^{14}N^{16}O_2$ using a multispectrum fitting technique," *J.Mol.Spectrosc.* **228**, 593-619 (2004).

Pressure shift (air)

- 1. L.R. Brown, Jet Propulsion Laboratory, private communication (2004).
- 2. D.C. Benner, T.A. Blake, L.R. Brown, V.M. Devi, M.A.H. Smith, and R.A. Toth, "Airbroadened parameters in the v_3 band of $^{14}N^{16}O_2$ using a multispectrum fitting technique," J.Mol.Spectrosc. **228**, 593-619 (2004).

NH₃ [11] 4111, 5111

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** G. Guelachvili, A.H. Abdullah, N. Tu, K.Narahari Rao, Š. Urban, and D. Papoušek, "Analysis of high-resolution Fourier transform spectra of ¹⁴NH₃ at 3.0 μm," *J.Mol.Spectrosc.* **133**, 345-364 (1989).
- 2. Š. Urban, N. Tu, K.Narahari Rao, and G. Guelachvili, "Analysis of high-resolution Fourier transform spectra of ¹⁴NH₃ at 2.3 μm," *J.Mol.Spectrosc.* **133**, 312-330 (1989).
- 3. I. Kleiner, G. Tarrago, and L.R. Brown, "Positions and intensities in the 3 $v_2/v_2 + v_4$ vibrational system of ¹⁴NH₃ near 4 micron," *J.Mol.Spectrosc.* **173**, 120-145 (1995).
- **4.** L.R. Brown and J.S. Margolis, "Empirical line parameters of NH₃ from 4791 to 5294 cm⁻¹," *JOSRT* **56**, 283-294 (1996).
- 5. C. Cottaz, I. Kleiner, G. Tarrago, L.R. Brown, J.S. Margolis, P.L. Poynter, H.M. Pickett, T. Fouchet, and P. Drossart, "Line positions and intensities in the 2 v_2/v_4 vibrational system of ¹⁴NH₃ near 5 7 μ m," *J.Mol.Spectrosc.* **203**, 285-309 (2000).
- **6.** C. Cottaz, G. Tarrago, I. Kleiner, and L.R. Brown, "Assignments and intensities of ¹⁴NH₃ hot bands in the 5-8 μ m (3 v_2 v_2 , v_2 + v_4 v_2) and 4 μ m (4 v_2 v_2 , v_1 v_2 , v_3 v_2) regions," *J.Mol.Spectrosc.* **209**, 30-49 (2001).
- 7. C. Cottaz, 4-µm hot bands (thesis, U. Paris-Sud).
- **8.** Rotational, v_2 v_2 , and v_2 -ground state prediction via John Pearson, JPL (private communication, 2000).
- **9.** I. Kleiner, L.R. Brown, G. Tarrago, Q.-L. Kou, N. Picque, G. Guelachvili, V. Dana, and J.-Y. Mandin, "Line positions and intensities in the vibrational system v_1 , v_3 and 2 v_4 of ¹⁴NH₃ near 3 micron," *J.Mol.Spectrosc.* **193**, 46-71 (1999).
- 10. Same as Ref. 9 above, but upper-state level is unassigned due to mixing from perturbations.
- 11. Same as Ref. 5 above, but upper-state level is unassigned due to mixing from perturbations.

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- 1. Š. Urban and P. Pracna, unpublished results (1993).
- 2. Š. Urban, N. Tu, K. Narahari Rao, and G. Guelachvili, "Analysis of high-resolution Fourier transform spectra of ¹⁴NH₃ at 2.3 μm," *J.Mol.Spectrosc.* **133**, 312-330 (1989).
- 3. I. Kleiner, G. Tarrago, and L.R. Brown, "Positions and intensities in the 3 $v_2/v_2 + v_4$ vibrational system of ¹⁴NH₃ near 4 micron," *J.Mol.Spectrosc.* **173**, 120-145 (1995).
- **4.** L.R. Brown and J.S. Margolis, "Empirical line parameters of NH₃ from 4791 to 5294 cm⁻¹," *JOSRT* **56**, 283-294 (1996).
- **5.** C. Cottaz, I. Kleiner, G. Tarrago, L.R. Brown, J.S. Margolis, P.L. Poynter, H.M. Pickett, T. Fouchet, P. Drossart, "Line positions and intensities in the $2v_2/v_4$ vibrational system of ¹⁴NH₃ near 5 7 µm," *J.Mol.Spectrosc.* **203**, 285-309 (2000).
- 6. C. Cottaz, G. Tarrago, I. Kleiner, and L.R. Brown, "Assignments and intensities of $^{14}NH_3$ hot bands in the 5-8µm (3 v_2 v_2 , v_2 + v_4 v_2) and 4 µm (4 v_2 v_2 , v_1 v_2 , v_3 v_2) regions," *J.Mol.Spectrosc.* **209**, 30-49 (2001).

- 7. C. Cottaz, 4-µm hot bands (thesis, U.Paris-Sud).
- **8.** Rotational, v_2 v_2 , and v_2 -ground state prediction via John Pearson, JPL (private communication, 2000).
- **9.** I. Kleiner, L.R. Brown, G. Tarrago, Q.-L. Kou, N. Picque, G. Guelachvili, V. Dana, and J.-Y. Mandin, "Line positions and intensities in the vibrational system v₁, v₃ and 2 v₄ of ¹⁴NH₃ near 3 micron," *J.Mol.Spectrosc.* **193**, 46-71 (1999).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** Polynomial fit by L.R. Brown of data in A.S. Pine, V.N. Markov, G. Buffa, and O. Tarrini, " N_2 , O_2 , H_2 , Ar and He Broadening in the v_1 Band of NH_3 ," *JQSRT* **50**, 337-348 (1993).
- 2. V. Nemtchinov (thesis) SUNY, Stonybrook, NY (1998).
- **3.** H. Arou, M. Broquier, A. Picard-Persellini, J.P. Bouanich, M. Chevaliera, and S. Gherissi, "Absorption intensities, pressure-broadening and line mixing parameters of some lines of NH₃ in the v₄ band," *JQSRT* **60**, 1011-1023 (1998).

Half-widths (self)

1. L.R. Brown and D.B. Peterson, "An empirical expression for the pressure-broadening of ammonia from far infrared measurements," *J.Mol.Spectrosc.* **168**, 593-606 (1994).

HNO₃ [12] 146

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. A. Goldman and A.G. Maki, private communication (1990): high *J,K* extension of A.G. Maki, "High-Resolution Measurements of the ν₂ Band of HNO₃ and the ν₃ Band of trans-HONO," *J.Mol.Spectrosc.* 127, 104-111 (1988); A. Goldman, F.J. Murcray, R.D. Blatherwick, J.J. Kosters, D.G. Murcray, C.P. Rinsland, J.-M. Flaud, and C. Camy-Peyret, "Stratospheric HNO₃ Measurements from 0.002 cm⁻¹ Resolution Solar Occultation Spectra and Improved Spectroscopic Line Parameters in the 5.8-μm Region," *J.Geophys.Res.* 97, 2561-2567 (1992).
- **2.** A. Goldman, v_6 band, private communication (1990): originally generated by A.G. Maki, based on A.G. Maki and W.B. Olson, "Infrared Spectrum of the v_6 , v_7 , and v_8 Bands of NHO₃," *J.Mol.Spectrosc.* **133**, 171-181(1989).
- 3. A. Goldman, v_7 band, private communication (1990): originally generated as in Ref. 2.
- 4. A. Goldman, v_8 band, private communication (1990): originally generated as in Ref. 2.
- **5.** A. Goldman, University of Denver, private communication (1990): based on A. Goldman, J.B. Burkholder, C.J. Howard, R. Escribano, and A.G. Maki, "Spectroscopic Constants for the ν₉ Infrared Band of HNO₃," *J.Mol.Spectrosc.* **131,** 195-200 (1988).
- **6.** A. Goldman, $v_8 + v_9$ band, private communication (1990): originally generated by A.G. Maki, based on A. Maki, "Infrared Spectrum of the 1205-cm⁻¹ Band of HNO₃," *J.Mol.Spectrosc.* **136**, 105-108 (1989).
- 7. A. Perrin, O. Lado-Bordowsky, and A. Valentin, "The v_3 and v_4 interacting bands of HNO₃ line positions and line intensities," *Mol.Phys.* **67**, 249-270 (1989).
- **8.** A. Goldman, University of Denver, private communication (1992).
- 9. J.-C. Fontanella, A. Girard, L. Gramont, and N. Louisnard, "Vertical Distribution of NO, NO₂, and HNO₃ as Derived from Stratospheric Absorption Infrared Spectra," *Appl. Opt.* **14**, 825-839 (1975).
- **10.** A.G. Maki and J.S. Wells, "High-Resolution Measurement and Analysis of the Infrared Spectrum of Nitric Acid near 1700 cm⁻¹," *J.Mol.Spectrosc.* **82**, 427-434 (1980).
- **11.** A. Perrin, V. Jaouen, A. Valentin, J.-M. Flaud, and C. Camy-Peyret, "The v_5 and $2v_9$ Bands of Nitric Acid," *J.Mol.Spectrosc.* **157**, 112-121 (1993).
- **12.** A. Goldman, C.P. Rinsland, A. Perrin, and J.-M. Flaud, "HNO₃ Line Parameters: 1996 HITRAN Update and New Results," *JQSRT* **60**, 851-861 (1998).
- **13.** A. Perrin, "Recent Progress in the Analysis of HNO₃ Spectra," *Spectrochimica Acta A* **54**, 375-393 (1998).
- **14.** J.-M. Flaud, C. Piccolo, B. Carli, A. Perrin, L. Coudert, J.-L. Teffo, and L.R. Brown, "Molecular line parameters for the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) experiment," *Atmos. Oceanic Opt.* **16,** 172-182 (2003).
- **15.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- **16.** D.T. Petkie, P. Helminger, B.P. Winnewisser, M. Winnewisser, R.A.H. Butlet, K.W. Jucks, and F.C. De Lucia, "The simulation of infrared bands from the analyses of rotational spectra: the $2v_9 v_9$ and $v_5 v_9$ hot bands of HNO₃," *JQSRT* **92**, 129-141 (2005).
- **17.** J.-M. Flaud, G. Brizzi, M. Carlotti, A. Perrin, and M. Ridolfi, "MIPAS database: Validation of HNO₃ line parameters using MIPAS satellite measurements," *Atmos. Chem. Phys. Discuss.* **6,**

4251-4272 (2006).

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. A. Goldman and A.G. Maki, private communication (1990): high *J,K* extension of A.G. Maki, "High-Resolution Measurements of the ν₂ Band of HNO₃ and the ν₃ Band of trans-HONO," *J.Mol.Spectrosc.* 127, 104-111 (1988); A. Goldman, F.J. Murcray, R.D. Blatherwick, J.J. Kosters, D.G. Murcray, C.P. Rinsland, J.-M. Flaud, and C. Camy-Peyret, "Stratospheric HNO₃ Measurements from 0.002 cm⁻¹ Resolution Solar Occultation Spectra and Improved Spectroscopic Line Parameters in the 5.8-μm Region," *J.Geophys.Res.* 97, 2561-2567 (1992).
- 2. A. Goldman, v_6 band, private communication (1990): originally generated by A.G. Maki, based on A.G. Maki and W.B. Olson, "Infrared Spectrum of the v_6 , v_7 , and v_8 Bands of NHO₃," *J.Mol.Spectrosc.* **133**, 171-181 (1989).
- 3. A. Goldman, v_7 band, private communication (1990): originally generated as in Ref. 2.
- 4. A. Goldman, v_8 band, private communication (1990): originally generated as in Ref. 2.
- **5.** A. Goldman, University of Denver, private communication (1990): based on A. Goldman, J.B. Burkholder, C.J. Howard, R. Escribano, and A.G. Maki, "Spectroscopic Constants for the ν₉ Infrared Band of HNO₃," *J.Mol.Spectrosc.* **131,** 195-200 (1988).
- **6.** A. Goldman, $v_8 + v_9$ band, private communication (1990): originally generated by A.G. Maki, based on A. Maki, "Infrared Spectrum of the 1205-cm⁻¹ Band of HNO₃," *J.Mol.Spectrosc.* **136**, 105-108 (1989).
- 7. A. Perrin, O. Lado-Bordowsky, and A. Valentin, "The v_3 and v_4 interacting bands of HNO₃ line positions and line intensities," *Mol.Phys.* **67**, 249-270 (1989).
- **8.** Blended lines from Ref. 7.
- **9.** A. Perrin, V. Jaouen, A. Valentin, J.-M. Flaud, and C. Camy-Peyret, "The ν₅ and 2ν₉ Bands of Nitric Acid," *J.Mol.Spectrosc.* **157**, 112-121 (1993).
- **10.** A. Perrin, J.-M. Flaud, C. Camy-Peyret, V. Jaouen, R. Farrenq, G. Guelachvili, Q. Kou, F. LeRoy, M. Morillon-Chapey, J. Orphal, M. Badaoui, J.-Y. Mandin, and V. Dana, "Line Intensities in the 11- and 7.6-μm Bands of HNO₃," *J.Mol.Spectrosc.* **160**, 524-539 (1993).
- **11.** A. Goldman, C.P. Rinsland, A. Perrin, and J.-M. Flaud, "HNO₃ Line Parameters: 1996 HITRAN Update and New Results," *JQSRT* **60**, 851-861 (1998).
- **12.** J.-M. Flaud, C. Piccolo, B. Carli, A. Perrin, L. Coudert, J.-L. Teffo, and L.R. Brown, "Molecular line parameters for the MIPAS (Michelson Interferometer for Passive Atmospheric Sounding) experiment," *Atmos. Oceanic Opt.* **16,** 172-182 (2003).
- **13.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JOSRT* **60**, 883-890 (1998).
- **14.** D.T. Petkie, P. Helminger, B.P. Winnewisser, M. Winnewisser, R.A.H. Butlet, K.W. Jucks, and F.C. De Lucia, "The simulation of infrared bands from the analyses of rotational spectra: the $2v_9 v_9$ and $v_5 v_9$ hot bands of HNO₃," *JQSRT* **92**, 129-141 (2005).
- **15.** Intensities have been rescaled by multiplying by a factor of 1.067, Ref. 7
- 16. Intensities have been rescaled by multiplying by a factor of 1.067, Ref. 8
- 17. J.-M. Flaud, G. Brizzi, M. Carlotti, A. Perrin, and M. Ridolfi, "MIPAS database: Validation of HNO₃ line parameters using MIPAS satellite measurements," *Atmos. Chem. Phys. Discuss.* **6**, 4251-4272 (2006).

Half-widths (air)

- 1. R.D. May and C.R. Webster, "Measurements of the Line Positions, Intensities, and Collisional Air-broadening Coefficients in the HNO₃ 7.5-µm Band Using a Computer-controlled Tunable Diode Laser Spectrometer," *J.Mol.Spectrosc.* 138, 383-397 (1989).
- **2.** J.-M. Flaud, G. Brizzi, M. Carlotti, A. Perrin, and M. Ridolfi, "MIPAS database: Validation of HNO₃ line parameters using MIPAS satellite measurements," *Atmos. Chem. Phys. Discuss.* **6**, 4251-4272 (2006).

Half-widths (self)

- 1. Set to a constant value of 0.8 cm⁻¹/atm based on the works of L. Zu, P.A. Hamilton, and P.B. Davies, "Pressure broadening and frequency measurements of nitric acid lines in the 683 GHz region," *JQSRT* 73, 545-556 (2002) and P. Brockman, C.H. Bair, and F. Allario, "High resolution spectral measurement of the HNO₃ 11.3-μm band using tunable diode lasers," *Appl.Opt.* 17, 91-99 (1978).
- **2.** J.-M. Flaud, G. Brizzi, M. Carlotti, A. Perrin, and M. Ridolfi, "MIPAS database: Validation of HNO₃ line parameters using MIPAS satellite measurements," *Atmos. Chem. Phys. Discuss.* **6**, 4251-4272 (2006).

Temperature dependence of air-broadened half-width

1. J.-M. Flaud, G. Brizzi, M. Carlotti, A. Perrin, and M. Ridolfi, "MIPAS database: Validation of HNO₃ line parameters using MIPAS satellite measurements," *Atmos. Chem. Phys. Discuss.* **6**, 4251-4272 (2006).

OH [13] 61, 81, 62

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).
- **2.** A. Goldman, W.G. Schoenfeld, D. Goorvitch, C. Chackerian, Jr, H. Dothe, F. Mélen, M.C. Abrams, and J.E.A. Selby, "Updated Line Parameters for OH $X^2\Pi X^2\Pi$ (v'',v') Transitions," *JOSRT* **59**, 453-469 (1998).
- 3. J.R. Gillis, A. Goldman, G. Stark, and C.P. Rinsland, "Line Parameters for the $A^2\Sigma^+ X^2\Pi$ Bands of OH," *JQSRT* **68**, 225-230 (2000).
- **4.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- 5. Line positions generated by A. Goldman from the term values obtained through analyses of the solar emission spectrum by R. Colin and P. Bernath (2008).
- 6. Line positions calculated using constants from P.F. Bernath and R. Colin, "Revised molecular constants and term values for the $X^2\Pi_i$ and $B^2\Sigma^+$ states of OH," *J.Mol.Spectrosc.* **257**, 20-23 (2009).

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JOSRT* **52**, 447-457 (1994).
- **2.** A. Goldman, W.G. Schoenfeld, D. Goorvitch, C. Chackerian, Jr, H. Dothe, F. Mélen, M.C. Abrams, and J.E.A. Selby, "Updated Line Parameters for OH $X^2\Pi X^2\Pi (v'',v')$ Transitions," *JOSRT* **59**, 453-469 (1998).
- 3. J.R. Gillis, A. Goldman, G. Stark, and C.P. Rinsland, "Line Parameters for the $A^2\Sigma^+ X^2\Pi$ Bands of OH," *JQSRT* **68**, 225-230 (2000).
- **4.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** A. Schiffman and D.J. Nesbitt, "Pressure Broadening and Collisional Narrowing in OH (v=1-0) rovibrational transitions with Ar, He, O₂, and N₂," *J.Chem.Phys.* **100**, 2677-2689 (1994); values are reduced by 10% to make consistent with measured values at Smithsonian Astrophysical Observatory at 118 and 61 cm⁻¹.
- **2.** K.V. Chance, D.A. Jennings, K.M. Evenson, M.D. Vanek, I.G. Nolt, J.V. Radostitz, and K. Park, "Pressure Broadening of the 118.455 cm⁻¹ Rotational Lines of OH by H₂, He, N₂, and O₂," *J.Mol.Spectrosc.* **146**, 375-380 (1991); K. Park, L.R. Zinc, K.M. Evenson, K.V. Chance, and I.G. Nolt, "Pressure Broadening of the 83.869 cm⁻¹ Rotational Lines of OH by N₂, O₂, H₂, and He," *JQSRT* **55**, 285-287 (1996); A. Schiffman and D.J. Nesbitt, "Pressure Broadening and

Collisional Narrowing in OH (v=1-0) rovibrational transitions with Ar, He, O₂, and N₂," *J.Chem.Phys.* **100**, 2677-2689 (1994) - values reduced by 10% to make consistent with measured values at Smithsonian Astrophysical Observatory at 118 and 61 cm⁻¹. **3.** J.R. Gillis, A. Goldman, G. Stark, and C.P. Rinsland, "Line Parameters for the $A^2\Sigma^+ - X^2\Pi$ Bands of OH," *JQSRT* **68**, 225-230 (2000).

Temperature dependence of air-broadened half-width

1. A. Goldman, W.G. Schoenfeld, D. Goorvitch, C. Chackerian, Jr, H. Dothe, F. Mélen, M.C. Abrams, and J.E.A. Selby, "Updated Line Parameters for OH $X^2\Pi - X^2\Pi (v'',v')$ Transitions," *JOSRT* **59**, 453-469 (1998).

HF [14] 19

Positions

- 1. D.A. Jennings, K.M Evenson, L.R. Zink, C. Demuynck, J.L. Destombes, B. Lemoine, and J.W.C. Johns, "High-Resolution Spectroscopy of HF from 40 to 1100 cm⁻¹: Highly Accurate Rotational Constants," *J.Mol.Spectrosc.* **122**, 477-480 (1987); ($\Delta v = 0$).
- 2. G. Guelachvili, "Absolute Wavenumber Measurements of 1-0, 2-0, HF and 2-0, $H^{35}Cl$, $H^{37}Cl$ Absorption Bands," *Opt. Comm.* **19,** 150 (1976); ($\Delta v = 1,2,...$).
- 3. Difference
- **4.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).

Intensities

- **1.** R.H. Tipping, "Calculation of Spectroscopic Parameters for Diatomic Molecules of Atmospheric Interest," Final Report GL-TR-90-0127, Geophysics Laboratory (1990).
- **2.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).

Half-widths (air)

- 1. G. Bachet, *C. R. Acad. Sci. Paris* **274,** 1319 (1972); G. Bachet, "Etude sur les Elargissements par des Gaz Etrangers Comprimés des Raies du Spectre de Rotation Pure de la Molécule HF-II. Perturbation par les Molécules Linéaires Homopolaires," *JQSRT* **14,** 1285 (1974); (Δv =0).
- 2. A.S. Pine and J.P. Looney, " N_2 and Air Broadening in the Fundamental Bands of HF and HCl," *J.Mol.Spectrosc.* **122**, 41-55 (1987); (Δv =1).
- 3. R.E. Meredith and F.G. Smith, "Broadening of hydrogen fluoride lines by H₂, D₂, and N₂," *J.Chem.Phys.* **60**, 3388 (1974); overtone bands, measured at T=373 K for N₂; scaled to T=296 K using n = 0.5 and to air by $\gamma_{air} = 0.9 \gamma_{N_2}$.
- **4.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).

HCl [15] 15, 17

Positions

- **1.** J.A. Coxon and J.F. Ogilvie, "Precise potential-energy function for the $X^1\Sigma^+$ state of hydrogen chloride," *J.Chem.Soc.Faraday Trans. II* **78,** 1345-1362 (1982).
- **2.** G. Guelachvili, "Absolute Wavenumber Measurements of 1-0, 2-0, HF and 2-0, $H^{35}Cl$, $H^{37}Cl$ Absorption Bands," *Opt. Comm.* **19,** 150 (1976); ($\Delta v = 1,2,...$).
- **3.** Clayton, thesis (1977).
- 4. Difference
- **5.** D.U. Webb and K.Narahari Rao, "A Heated Absorption Cell for Studying Infrared Absorption Bands," *Appl.Opt.* **5,** 1461-1463 (1966).
- **6.** I.G. Nolt, J.V. Radostitz, G. DiLonardo, K.M. Evenson, D.A. Jennings, K.R. Leopold, M.D. Vanek, L.R. Zink, A. Hinz, and K.V. Chance, "Accurate rotational constants of CO, HCl, and HF: Spectral standards for the 0.3 to 6 THz (10 to 200 cm⁻¹) region," *J.Mol.Spectrosc.* **125**, 274-287 (1987).
- 7. H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- **8.** I.E. Gordon predictions using constants from J.A. Coxon and P.G. Hajigeorgiou, "The Radial Hamiltonians for the $X^1\Sigma^+$ and $B^1\Sigma^+$ States of HCl," *J.Mol.Spectrosc.* **203**, 49–64 (2000).

Intensities

- **1.** R.H. Tipping, "Calculation of Spectroscopic Parameters for Diatomic Molecules of Atmospheric Interest," Final Report GL-TR-90-0127, Geophysics Laboratory (1990).
- 2. E.W. Kaiser, "Dipole Moment and Hyperfine Parameters of H³⁵Cl and D³⁵Cl," *J. Chem. Phys.* 53, 1686-1703 (1970); data include a correction factor for partition sums.
- **3.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JOSRT* **60**, 883-890 (1998).

Half-widths (air)

1. A.S. Pine and J.P. Looney, "N₂ and Air Broadening in the Fundamental Bands of HF and HCl," *J.Mol.Spectrosc.* **122**, 41-55 (1987).

Half-widths (self)

1. A.S. Pine and A. Fried, "Self-broadening in the Fundamental Bands of HF and HCl," *J.Mol.Spectrosc.* **114,** 148-162 (1985).

Temperature dependence of air-broadened half-width

1. A.S. Pine and J.P. Looney, "N₂ and Air Broadening in the Fundamental Bands of HF and HCl," *J.Mol.Spectrosc.* **122**, 41-55 (1987).

Pressure shift (air)

1. A.S. Pine and J.P. Looney, "N₂ and Air Broadening in the Fundamental Bands of HF and HCl," *J.Mol.Spectrosc.* **122**, 41-55 (1987).

HBr [16] 19, 11

Positions

- **1.** P. Bernage and P. Niay, "High-Resolution Measurements on the Infrared Absorption 5-0 Band of Deuterium Bromide," *J.Mol.Spectrosc.* **63**, 317-321 (1976); P. Bernage, thesis, University of Lille (1976).
- 2. P. Niay, P. Bernage, C. Coquant, and A. Fayt, "Détermination directe des coefficients du potentiel de Dunham par une méthode de moindres carrés non linéaire appliquée aux nombres d'ondes des raies. Application au cas de la molécule HBr," *Can.J.Phys.* 55, 1829-1834 (1977).
- 3. Difference
- **4.** G. DiLonardo, L. Fusina, P. DeNatale, M. Inguscio, and M. Prevedelli, "The Pure Rotation Spectrum of HBr in the Submillimeter-Wave Region," *J.Mol.Spectrosc.* **148**, 86-92 (1991).
- **5.** M.T. Coffey, A. Goldman, J.W. Hannigan, W.G. Mankin, W.G. Schoenfeld, C.P. Rinsland, C. Bernardo, and D.W.T. Griffith, "Improved vibration-rotation (0-1) HBr line parameters for validating high resolution infrared atmospheric spectra measurements," *JQSRT* **60**, 863-867 (1998); A. Goldman, M.T. Coffey, J.W. Hannigan, W.G. Mankin, K. Chance, and C.P. Rinsland, "HBr and HI line parameters update for atmospheric spectroscopy databases," *JQSRT* **82**, 313-318 (2003).

Intensities

- **1.** C.B. Carlisle, H. Riris, L.G. Wang, G.R. Janik, T.F. Gallagher, A. Lopez Pineiro, and R.H. Tipping, "Measurement of High Overtone Intensities of HBr by Two-Tone Frequency-Modulation Spectroscopy," *J.Mol.Spectrosc.* **130**, 395-406 (1988).
- **2.** M.T. Coffey, A. Goldman, J.W. Hannigan, W.G. Mankin, W.G. Schoenfeld, C.P. Rinsland, C. Bernardo, and D.W.T. Griffith, "Improved vibration-rotation (0-1) HBr line parameters for validating high resolution infrared atmpspheric spectra measurements," *JQSRT* **60**, 863-867 (1998); A. Goldman, M.T. Coffey, J.W. Hannigan, W.G. Mankin, K. Chance, and C.P. Rinsland, "HBr and HI line parameters update for atmospheric spectroscopy databases," *JQSRT* **82**, 313-318 (2003).

Half-widths (air)

1. L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* 26, 4058-4097 (1987).

HI [17] 17

Positions

- 1. G. Guelachvili, P. Niay, and P. Bernage, "Fourier Transform High-Resolution Measurements on the $2\leftarrow0$, $3\leftarrow0$, $4\leftarrow0$, $5\leftarrow0$ Infrared Absorption Bands of HI and DI," *J.Mol.Spectrosc.* **85**, 253-270 (1981).
- 2. Difference
- 3. A. Goldman, K. Chance, M.T. Coffey, J.W. Hannigan, W.G. Mankin, C.P. Rinsland, "Improved line parameters for the $X^1\Sigma^+$ (0-0) and (0-1) bands of HI," *JQSRT* **60**, 869-874 (1998); A. Goldman, M.T. Coffey, J.W. Hannigan, W.G. Mankin, K. Chance, and C.P. Rinsland, "HBr and HI line parameters update for atmospheric spectroscopy databases," *JQSRT* **82**, 313-317 (2003).

Intensities

- 1. H. Riris, C.B. Carlisle, D.E. Cooper, L-G. Wang, T.F. Gallagher, and R.H. Tipping, "Measurement of the Strengths of 1←0 and 3←0 Transitions of HI Using Frequency Modulation Spectroscopy," *J.Mol.Spectrosc.* **146**, 381-388 (1991).
- 2. A. Goldman, K. Chance, M.T. Coffey, J.W. Hannigan, W.G. Mankin, C.P. Rinsland, "Improved line parameters for the $X^1\Sigma^+$ (0-0) and (0-1) bands of HI," *JQSRT* **60**, 869-874 (1998); A. Goldman, M.T. Coffey, J.W. Hannigan, W.G. Mankin, K. Chance, and C.P. Rinsland, "HBr and HI line parameters update for atmospheric spectroscopy databases," *JQSRT* **82**, 313-317 (2003).

Half-widths (air)

1. L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).

ClO [18] 56, 76

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** J.B. Burkholder, P.D. Hammer, C.J. Howard, A.G. Maki, G. Thompson and C. Chackerian Jr., "Infrared Measurements of the ClO Radical," *J.Mol.Spectrosc.* **124**, 139-161 (1987); A.Goldman, J.R. Gillis, C.P. Rinsland, and J.B. Burkholder, "Improved Line Parameters for the $X^2\Pi$ $X^2\Pi$ (1-0) Bands of ³⁵ClO and ³⁷ClO," *JQSRT* **52**, 357-359 (1994).
- **2.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimiter, Millimiter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** J.B. Burkholder, P.D. Hammer, C.J. Howard, and A. Goldman, "Infrared Line Intensity Measurements in the v = 0-1 Band of the ClO Radical," *J.Geophys.Res.* **94,** 2225-2234 (1989); A. Goldman, J.R. Gillis, C.P. Rinsland, and J.B. Burkholder, "Improved Line Parameters for the $X^2\Pi^{-2}\Pi(1-0)$ Bands of ³⁵ClO and ³⁷ClO," *JOSRT* **52,** 357-359 (1994).
- **2.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimiter, Millimiter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** J.B. Burkholder, P.D. Hammer, C.J. Howard, and A. Goldman, "Infrared Line Intensity Measurements in the v = 0-1 Band of the ClO Radical," *J.Geophys.Res.* **94,** 2225-2234 (1989); A. Goldman, J.R. Gillis, C.P. Rinsland, and J.B. Burkholder, "Improved Line Parameters for the $X^2\Pi^{-2}\Pi(1-0)$ Bands of ³⁵ClO and ³⁷ClO," *JOSRT* **52,** 357-359 (1994).
- **2.** A coarse approximation for transitions with J'' < 20.5 based on the linear fit to three measurements from J.J. Oh and E.A. Cohen, "Pressure broadening of ClO by N₂ and O₂ near 204 and 649 GHz and new frequency measurements between 632 and 725 GHz," JQSRT **52,** 151-156 (1994), and A. Bauer, M. Birk, G. Wagner, J.-M. Colmont, D. Priem, G. Wlodarczak, S. Buehler, A. Von Engeln, K. Kunzi, and A. Perrin, "Study on a spectroscopic database for millimeter and submillimeter wavelength," *Final report of ESA Nº1581/95/NL/CN* (1998).

Temperature dependence of air-broadened halfwidth

1. A coarse approximation for transitions with J''<20.5 based on the linear fit to three measurements from J.J. Oh and E.A. Cohen, "Pressure broadening of ClO by N₂ and O₂ near 204 and 649 GHz and new frequency measurements between 632 and 725 GHz," JQSRT 52, 151-156 (1994), and A. Bauer, M. Birk, G. Wagner, J.-M. Colmont, D. Priem, G. Wlodarczak, S. Buehler, A. Von Engeln, K. Kunzi, and A. Perrin, "Study on a spectroscopic database for millimeter and submillimeter wavelength," *Final report of ESA Nº1581/95/NL/CN* (1998).

OCS [19] 622, 624, 632, 623, 822

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. J.S. Wells, F.R. Petersen, A.G. Maki, and D.J. Sukle, "Heterodyne frequency measurements on the 11.6-μm band of OCS: new frequency/wavelength calibration tables for 11.6- and 5.8-μm OCS bands," *Appl.Opt.* **20,** 1676-1684 (1981).
- **2.** G. Guelachvili, "Nombres d'ondes absolus de la bande v_3 de $^{16}O^{12}C^{32}S$ par spectroscopie de Fourier," *Opt. Comm.* **30,** 361-363 (1979).
- **3.** A.G. Maki and J.S. Wells, "Wavenumber Calibration Tables from Heterodyne Frequency Measurements" NIST Special Publication 821 (1991).
- 4. L.R. Brown/A. Fayt, private communication (1997), for details see L.S. Rothman, A. Barbe, D.Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001," *JOSRT* 82, 5-44 (2003).
- **5.** L.R. Brown/A. Fayt, private communication (1997), for details see L.S. Rothman, A. Barbe, D.Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001," *JQSRT* **82**, 5-44 (2003).
- **6.** T.L. Tan, E.C. Looi, and K.K. Lee, "Hot-Band Spectrum of CO_2 near 700 cm⁻¹ and the v_1 Band of $OC^{34}S$," *J.Mol.Spectrosc.* **157**, 261-267 (1993).
- 7. M. Mürtz, P. Palm, W. Urban, and A.G. Maki, "More Sub-Doppler Heterodyne Frequency Measurements on OCS between 56 and 63 THz," *J.Mol.Spectrosc.* **204**, 281-285 (2000).
- **8.** Line positions calculated by L.R. Brown (2008) based on spectroscopic constants reported in S. Naïm, A. Fayt, H. Bredohl, J.F. Blavier, and I. Dubois, "Fourier Transform Spectroscopy of Carbonyl Sulfide from 3700 to 4800 cm⁻¹ and Selection of a Line-Pointing Program," *J.Mol.Spectrosc.* **192**, 91-101 (1998) and references therein.
- **9.** H.S.P. Müller, F. Schloder, J. Stutzki, and G Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists," *J.Mol.Struct.* **742**, 215-227 (2005).

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** G. Blanquet, J. Walrand, I. Hilgers, and D. Lambot, "Spectral Intensities in the v_1 Band of Carbonyl Sulfide and its Isotopic Species," *J.Mol.Spectrosc.* **140**, 295-300 (1990).
- **2.** L.R. Brown/A. Fayt, private communication (1997), for details see L.S. Rothman, A. Barbe, D.Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana,

- V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001," *JQSRT* 82, 5-44 (2003).
- **3.** L.R. Brown/A. Fayt, private communication (1997), for details see L.S. Rothman, A. Barbe, D.Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001," *JQSRT* **82**, 5-44 (2003).
- 4. L.R. Brown/A. Fayt, private communication (1997), for details see L.S. Rothman, A. Barbe, D.Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001," *JQSRT* 82, 5-44 (2003).
- **5.** L.R. Brown/A. Fayt, private communication (1997), for details see L.S. Rothman, A. Barbe, D.Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001," *JOSRT* **82**, 5-44 (2003).
- 6. L.R. Brown/A. Fayt, private communication (1997), for details see L.S. Rothman, A. Barbe, D.Chris Benner, L.R. Brown, C. Camy-Peyret, M.R. Carleer, K. Chance, C. Clerbaux, V. Dana, V.M. Devi, A. Fayt, J.-M. Flaud, R.R. Gamache, A. Goldman, D. Jacquemart, K.W. Jucks, W.J. Lafferty, J.-Y. Mandin, S.T. Massie, V. Nemtchinov, D.A. Newnham, A. Perrin, C.P. Rinsland, J. Schroeder, K.M. Smith, M.A.H. Smith, K. Tang, R.A. Toth, J. Vander Auwera, P. Varanasi, and K. Yoshino, "The HITRAN Molecular Spectroscopic Database: Edition of 2000 Including Updates through 2001," *JQSRT* 82, 5-44 (2003).
- **7.** D. Bermejo, J.L. Domenech, J. Santos, J.-P. Bouanich, and G. Blanquet, "Absolute Line Intensities in the 2v₃ Band of ¹⁶O¹²C³²S," *J.Mol.Spectrosc.* **185**, 26-30 (1997).
- **8.** Based on an average value between L. Régalia-Jarlot, A. Hamdouni, X. Thomas, P. Von der Heyden, and A. Barbe, "Line Intensities of the: v_3 , $4v_2$, $v_1 + v_3$, $3v_1$ and $2v_1 + 2v_2$ bands of $^{16}O^{12}C^{32}S$ molecule," *JQSRT* **74**, 455-470 (2002) and J. Vander Auwera, R. El Hachtouki, K. Amara, and A. Fayt, "Absolute Line Intensities for Carbonyl Sulfide near 4.85 μ m," Poster D23, Proceedings of the Eighteenth Colloquium on High Resolution Molecular Spectroscopy, Dijon, France, 8-12 Sept. 2003.
- 9. L. Régalia-Jarlot, A. Hamdouni, X. Thomas, P. Von der Heyden, and A. Barbe, "Line Intensities of the: v_3 , $4v_2$, $v_1 + v_3$, $3v_1$ and $2v_1 + 2v_2$ bands of $^{16}O^{12}C^{32}S$ molecule," *JQSRT* **74**, 455-470 (2002).
- **10.** J. Vander Auwera and A. Fayt, "Absolute line intensities for carbonyl sulfide from 827 to 2939 cm⁻¹," *J.Mol.Struct.* **780-781**, 134-141 (2006).
- 11. K. Sung, R.A. Toth, L.R. Brown, and T. Crawford, "Line strength measurements of carbonyl

sulfide ($^{16}O^{12}C^{32}S$) in the 2v₃, v₁+2v₂+v₃, and 4v₂+v₃ bands," *JQSRT* **110**, 2082-2101 (2009). **12.** R.A. Toth, K. Sung, L.R. Brown, and T. Crawford, "Line positions and strengths of 41 bands including 10 OCS isotopologues in the 3850-4200 cm⁻¹ region," *JQSRT* **111**, 1193–1208 (2010). **13.** H.S.P. Müller, F. Schloder, J. Stutzki, and G Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists," *J.Mol.Struct.* **742**, 215-227 (2005).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. Polynomial fit by C.P. Rinsland to the data of: J.-P. Bouanich, J. Walrand, S. Alberty, and G. Blanquet, "Diode-Laser Measurements of Oxygen-Broadened Linewidths in the v_1 Band of OCS," *J.Mol.Spectrosc.* **123**, 37-47 (1987).
- 2. A. Mouchet, G. Blanquet, P. Herbin, J. Walrand, C.P. Courtoy, and J.P. Bouanich "Diode Laser Measurements of N₂-Broadened line widths in the v₁ Band of OCS," *Can.J.Phys.* **63**, 527-531 (1985); J.P. Bouanich, G.Blanquet, J. Walrand, and C.P. Courtoy, "Diode Laser Measurements of Line Strengths and Collisional halfwidths in the v₁ Band of OCS at 298K and 200K," *JQSRT* **36**, 295-306 (1986); J.P. Bouanich, J. Walrand, S. Alberty, and G. Blanquet, "Diode Laser Measurements of Oxygen-Broadened line widths in the v₁ Band of OCS," *J.Mol.Spectrosc.* **123**, 37-47 (1987); J.C. Depannemaecker and J. Lemaire, "Measurement with a Double-Beam Spectrometer of Strengths and Half-widths of 2v₂ and 3v₂-v₂ OCS Lines," *J.Mol.Spectrosc.* **128**, 350-359 (1988).
- 3. L.R. Brown/A. Fayt, private communication (1997), based on Ref. 2 above.
- **4.** M.A. Koshelev and M.Y. Tretyakov, "Collisional broadening and shifting of OCS rotational spectrum lines," *JQSRT* **110**, 118-128 (2009).

Half-widths (self)

- 1. J.P. Bouanich, G.Blanquet, J. Walrand, and C.P. Courtoy, "Diode Laser Measurements of Line Strengths and Collisional halfwidths in the v_1 Band of OCS at 298K and 200K," *JQSRT* **36**, 295-306 (1986).
- **2.** S. Matton, F. Rohart, R. Bocquet, G. Mouret, D. Bigourd, A. Cuisset, and F. Hindle, "Terahertz spectroscopy applied to the measurement of strengths and self-broadening coefficients for high-J lines of OCS," *J.Mol.Spectrosc.* **239**, 182-189 (2006).
- **3.** M.A. Koshelev and M.Y. Tretyakov, "Collisional broadening and shifting of OCS rotational spectrum lines," *JQSRT* **110**, 118-128 (2009).

Temperature dependence of air-broadened half-width

1. J.P. Bouanich, G.Blanquet, J. Walrand, and C.P. Courtoy, "Diode Laser Measurements of Line Strengths and Collisional halfwidths in the v_1 Band of OCS at 298K and 200K," *JQSRT* **36**, 295-306 (1986).

H₂CO [20] 126, 136, 128

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** L.R. Brown, R.H. Hunt, and A.S. Pine, "Wavenumbers, Line Strengths, and Assignments in the Doppler-Limited Spectrum of Formaldehyde from 2700 to 3000 cm⁻¹," *J.Mol.Spectrosc.* **75**, 406-428 (1979).
- 2. L.R. Brown, Jet Propulsion Laboratory, private communication.
- 3. A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, "Absolute line intensities measurements and calculations for the 5.7 and 3.6 μ m bands of formaldehyde," *JQSRT* **110**, 700-716 (2009).

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- 1. A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, "Absolute line intensities measurements and calculations for the 5.7 and 3.6 μm bands of formaldehyde," *JQSRT* **110**, 700-716 (2009).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, "Absolute line intensities measurements and calculations for the 5.7 and 3.6 μ m bands of formaldehyde," *JQSRT* **110**, 700-716 (2009).

Temperature dependence of air-broadened half-width

1. A. Perrin, D. Jacquemart, F. Kwabia Tchana, and N. Lacome, "Absolute line intensities measurements and calculations for the 5.7 and 3.6 μm bands of formaldehyde," *JQSRT* **110**, 700-716 (2009).

HOCl [21] 165, 167

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. J.S. Wells, R.L. Sams, and W.J. Lafferty, "The High Resolution Infrared Spectrum of the v_1 Band of HOCl," *J.Mol.Spectrosc.* 77, 349-364 (1979).
- **2.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JOSRT* **52**, 447-457 (1994).
- **3.** J.-M. Flaud, M. Birk, G. Wagner, J. Orphal, S. Klee, and W.J. Lafferty, "The Far-Infrared Spectrum of HOCl: Line Positions and Intensities," *J.Mol.Spectrosc.* **191**, 362-367 (1998).
- **4.** W.J. Lafferty and W.B. Olson, "The High-resolution Infrared Spectra of the v_2 and v_3 Bands of HOCl," *J.Mol.Spectrosc.* **120**, 359-373 (1986).
- 5. J. Vander Auwera, J. Kleffmann, J.-M. Flaud, G. Pawelke, H. Buerger, D. Hurtmans, and R. Petrisse, "Absolute v₂ Line Intensities of HOCl by Simultaneous Measurements in the Infrared with a Tunable Diode Laser and Far-Infrared Region Using a Fourier Transform Spectrometer," *J.Mol.Spectrosc.* 204, 36-47 (2000).

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).
- **2.** J.-M. Flaud, M. Birk, G. Wagner, J. Orphal, S. Klee, and W.J. Lafferty, "The Far-Infrared Spectrum of HOCl: Line Positions and Intensities," *J.Mol.Spectrosc.* **191**, 362-367 (1998).
- **3.** J. Vander Auwera, J. Kleffmann, J.-M. Flaud, G. Pawelke, H. Buerger, D. Hurtmans, and R. Petrisse, "Absolute v₂ Line Intensities of HOCl by Simultaneous Measurements in the Infrared with a Tunable Diode Laser and Far-Infrared Region Using a Fourier Transform Spectrometer," *J.Mol.Spectrosc.* **204**, 36-47 (2000).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).
- **2.** J. H. Shorter, D. D. Nelson, and M. S. Zahniser, "Air-broadened linewidth measurements in the v_2 vibrational band of HOCl," *J.Chem.Soc.*, *Faraday Trans.* **93**, 2933-2935 (1997) measured the air-broadening for two lines in the v_2 band. The average of about 0.1 cm⁻¹/atm was used as a default for this band.

Temperature dependence of air-broadened half-width

1. K. Chance and L.S. Rothman, private communication (2000).

N₂ [22] 44

Positions

- **1.** C.P. Rinsland, R. Zander, A. Goldman, F.J. Murcray, D.G. Murcray, M.R. Gunson, and C.B. Farmer, "The Fundamental Quadrupole Band of ¹⁴N₂: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra," *J.Mol.Spectrosc.* **148**, 274-279 (1991).
- **2.** C.P. Rinsland, A. Goldman, and J.-M. Flaud, "Infrared Spectroscopic Parameters of COF₂, SF₆, ClO, N₂, and O₂," *JQSRT* **48**, 693-699 (1992).
- 3. A. Goldman, University of Denver, private communication (2008) based on A. Goldman, R.H. Tipping, Q. Ma, C.D. Boone, P.F. Bernath, Ph. Demoulin, F. Hase, M. Schneider, J.W. Hannigan, M.T. Coffey, and C.P. Rinsland, "On the line parameters for the $X^{1}\Sigma_{g}^{+}$ (1–0) infrared quadrupolar transitions of ${}^{14}N_{2}$," JQSRT 103, 168–174 (2007).

Intensities

- **1.** Ph. Demoulin, C.B. Farmer, C.P. Rinsland, and R. Zander, "Determination of Absolute Strengths of N₂ Quadrupole Lines from High-Resolution Ground-Based IR Solar Observations," *J. Geophys. Res.* **96**, 13003-13008 (1990); HITRAN'86 values scaled by 1.049.
- **2.** H. Li, and R.J. LeRoy, "Quadrupole moment function and absolute infrared quadrupolar intensities for N₂," *J. Chem. Phys.* **126**, 224301 (2007).

Half-widths (air)

- 1. C.P. Rinsland, NASA Langley Research Center, unpublished data.
- 2. A. Goldman, University of Denver, private communication (2008) based on A. Goldman, R.H. Tipping, Q. Ma, C.D. Boone, P.F. Bernath, Ph. Demoulin, F. Hase, M. Schneider, J.W. Hannigan, M.T. Coffey, and C.P. Rinsland, "On the line parameters for the $X^{1}\Sigma_{g}^{+}$ (1–0) infrared quadrupolar transitions of $^{14}N_{2}$," *JOSRT* 103, 168–174 (2007).

Halfwidths (self)

1. A. Goldman, University of Denver, private communication (2008) based on A. Goldman, R.H. Tipping, Q. Ma, C.D. Boone, P.F. Bernath, Ph. Demoulin, F. Hase, M. Schneider, J.W. Hannigan, M.T. Coffey, and C.P. Rinsland, "On the line parameters for the $X^{1}\Sigma_{g}^{+}$ (1–0) infrared quadrupolar transitions of ${}^{14}N_{2}$," *JQSRT* **103**, 168–174 (2007).

Temperature dependence of air-broadened half-width

1. A. Goldman, University of Denver, private communication (2008) based on A. Goldman, R.H. Tipping, Q. Ma, C.D. Boone, P.F. Bernath, Ph. Demoulin, F. Hase, M. Schneider, J.W. Hannigan, M.T. Coffey, and C.P. Rinsland, "On the line parameters for the $X^{1}\Sigma_{g}^{+}$ (1–0) infrared quadrupolar transitions of $^{14}N_{2}$," JQSRT 103, 168–174 (2007).

HCN [23] 124, 134, 125

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** P.K.L. Yin and K.Narahari Rao, "Bands of HCN at 14μ," *J.Mol.Spectrosc.* **42,** 385-392 (1972).
- 2. D.H. Rank, D.P. Eastman, B.S. Rao, and T.A. Wiggins, "Highly Precise Wavelengths in the Infrared. II. HCN, N₂O, and CO," *JOSA* **51**, 929-936 (1961).
- **3.** A.G. Maki, G.Ch. Mellau, S. Klee, M. Winnewisser, and W. Quapp, "High-Temperature Infrared Measurements in the Region of the Bending Fundamental of H¹²C¹⁴N, H¹²C¹⁵N, and H¹³C¹⁴N," *J.Mol.Spectrosc.* **202**, 67-82 (2000).
- **4.** A. Maki, W. Quapp, S. Klee, G.Ch. Mellau, and S. Albert, "Infrared Transitions of H¹²C¹⁴N and H¹²C¹⁵N between 500 and 10000 cm⁻¹," *J.Mol.Spectrosc.* **180,** 323-336 (1996).
- **5.** F. Maiwald, F. Lewen, V. Ahrens, M. Beaky, R. Gendriesch, A.N. Koroliev, A.A. Negirev, D.G. Paveljev, B. Vowinkel, and G. Winnewisser, "Pure Rotational Spectrum of HCN in the Terahertz Region: Use of a New Planar Schottky Diode Multiplier," *J.Mol.Spectrosc.* **202**, 166-168 (2000).
- **6.** V. Ahrens, F. Lewen, S. Takano, G. Winnewisser, S. Urban, A.A. Negirev, and A.N. Koroliev, *Z. Naturforsch.* **57 a**, 669-681 (2002).
- **7.** S. Thorwirth, H.S.P. Müller, F. Lewen, S. Brünken, V. Ahrens, and G. Winnewisser, *Ap.J.* **585,** L163-L165 (2003).
- **8.** Z. Zelinger, T. Amano, V. Ahrens, S. Brünken, F. Lewen, H.S.P. Müller, and G. Winnewisser, "Submillimeter-wave spectroscopy of HCN in excited vibrational states," *J.Mol.Spectrosc* **220**, 223-233 (2003).

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** A. Maki, W. Quapp, S. Klee, G.Ch. Mellau, and S. Albert, "The CN Mode of HCN: A Comparative Study of the Variation of the Transition Dipole and Herman-Wallis Constants for Seven Isotopomers and the Influence of Vibration-Rotation Interaction," *J.Mol.Spectrosc.* **174**, 365-378 (1995).
- **2.** A. Maki, W. Quapp, and S. Klee, "Intensities of Hot-Band Transitions: HCN Hot Bands," *J.Mol.Spectrosc.* **171**, 420-434 (1995).
- **3.** A.G. Maki, "Microwave Spectra of Molecules of Astrophysical Interest VI. Carbonyl Sulfide and Hydrogen Cyanide," *J.Phys. Chem. Ref. Data* **3**, 221-244 (1974).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. Polynomial fit by M.A.H. Smith, NASA Langley Research Center, using: C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, D.C. Benner, S.W. Sharpe, and R.L. Sams, "A multispectrum analysis of the v_1 band of $H^{12}C^{14}N$: Part II. Air- and N_2 -broadening, shifts and their temperature dependences," *JQSRT* 82, 343-362 (2003); V. Malathy Devi, D.C. Benner, M.A.H. Smith, C.P.

Rinsland, S.W. Sharpe, and R.L. Sams, "A multispectrum analysis of the 2v₂ spectral region of H¹²C¹⁴N: Intensities, broadening and pressure-shift coefficients," *JQSRT* **87**, 339-366 (2004).

2. C. Yang, J. Buldyreva, I.E. Gordon, F. Rohart, A. Cuisset, G. Mouret, R. Bocquet, and F. Hindle, "Oxygen, nitrogen and air broadening of HCN spectral lines at terahertz frequencies," *JQSRT* **109**, 2857-2868 (2008).

Half-widths (self)

1. Polynomial fit by M.A.H. Smith, NASA Langley Research Center, using: V. Malathy Devi, D.C. Benner, M.A.H. Smith, C.P. Rinsland, S.W. Sharpe, and R.L. Sams, "A multispectrum analysis of the v₁ band of H¹²C¹⁴N: Part I. Intensities, self-broadening and self-shift coefficients" *JQSRT* 82, 319-342 (2003); C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, D.C. Benner, S.W. Sharpe, and R.L. Sams, "A multispectrum analysis of the v₁ band of H¹²C¹⁴N: Part II. Air- and N₂-broadening, shifts and their temperature dependences," *JQSRT* 82, 343-362 (2003).

Temperature dependence of air-broadened half-width

1. Polynomial fit by M.A.H. Smith, NASA Langley Research Center, using: V. Malathy Devi, D.C. Benner, M.A.H. Smith, C.P. Rinsland, S.W. Sharpe, and R.L. Sams, "A multispectrum analysis of the $2v_2$ spectral region of $H^{12}C^{14}N$: Intensities, broadening and pressure-shift coefficients," *JOSRT* **87**, 339-366 (2004).

Pressure shift (air)

1. Polynomial fit by M.A.H. Smith, NASA Langley Research Center, using: C.P. Rinsland, V. Malathy Devi, M.A.H. Smith, D.C. Benner, S.W. Sharpe, and R.L. Sams, "A multispectrum analysis of the v_1 band of $H^{12}C^{14}N$: Part II. Air- and N_2 -broadening, shifts and their temperature dependences," *JQSRT* 82, 343-362 (2003); V. Malathy Devi, D.C. Benner, M.A.H. Smith, C.P. Rinsland, S.W. Sharpe, and R.L. Sams, "A multispectrum analysis of the $2v_2$ spectral region of $H^{12}C^{14}N$: Intensities, broadening and pressure-shift coefficients," *JQSRT* 87, 339-366 (2004).

CH₃Cl [24] 215, 217

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. P. Jensen, S. Brodersen, and G. Guelachvili, "Determination of A₀ for CH₃³⁵Cl and CH₃³⁷Cl from the v₄ Infrared and Raman Bands," *J.Mol.Spectrosc.* **88**, 378-393 (1981).
- 2. M. Betrencourt, M. Morillon-Chapey, G. Blanquet, and J. Walrand, "Diode-Laser Spectroscopy of Methyl Chloride Near 14 μm toward Its Detection in the Stratosphere," *J.Mol.Spectrosc.* **128**, 433-443 (1988).
- **3.** C. Chackerian, Jr., L.R Brown, N. Lacome, and G. Tarrago, "Methyl Chloride v_5 Region Line Shape Parameters and Rotational Constants for the v_2 , v_5 and $2v_3$ Vibrational Bands," *J.Mol.Spectrosc.* **191**, 148-157 (1998).
- **4.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- **5.** A. Nikitin, J.-P. Champion, and H. Burger, "Global analysis of ¹²CH₃³⁵Cl and ¹²CH₃³⁷Cl: simultaneous fit of the lower five polyads (0-2600 cm⁻¹)," *J.Mol.Spectrosc.* **230**, 174-184 (2005). **6.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Muller,
- "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998). Line parameters were taken in August 2010.

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. M. Dang-Nhu, G. Blanquet, J. Walrand, and F. Derie, "Spectral intensities in the v_3 -band of 13 CH₃ 35 Cl at 13μ m," *Mol.Phys.* **65**, 77-83 (1988).
- **2.** G. Blanquet, J. Walrand, and M. Dang-Nhu, "Spectral Intensities in the v_3 Band of 13 CH $_3$ Cl at 13 μ m," *J.Mol.Spectrosc.* **133**, 471-474 (1989).
- **3.** C. Chackerian, Jr., L.R Brown, N. Lacome, and G. Tarrago, "Methyl Chloride v_5 Region Line Shape Parameters and Rotational Constants for the v_2 , v_5 and $2v_3$ Vibrational Bands," *J.Mol.Spectrosc.* **191**, 148-157 (1998).
- **4.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998).
- **5.** A. Nikitin, J.-P. Champion, and H. Burger, "Global analysis of ¹²CH₃³⁵Cl and ¹²CH₃³⁷Cl: simultaneous fit of the lower five polyads (0-2600 cm⁻¹)," *J.Mol.Spectrosc.* **230**, 174-184 (2005).
- **6.** Intensities from Ref. 5 were scaled, so that the band strengths would match those from various experiments when available. In case no experimental information was available, bands were scaled to closely resemble the appearance of the PNNL spectrum (I. Gordon and D. Plutov) (2010).
- **7.** H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Muller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," *JQSRT* **60**, 883-890 (1998). Line parameters were taken in August 2010.

Half-widths (air)

0. L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L.

- Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** G. Blanquet, J. Walrand, and J.P. Bouanich, "Diode-Laser Measurements of O₂-Broadening Coefficients in the v₃ Band of CH₃³⁵Cl," *J.Mol.Spectrosc.* **159**, 137-141 (1993); G. Blanquet, J. Walrand, and J.P. Bouanich, "Diode-Laser Measurements of N₂-Broadening Coefficients in the v₃ Band of CH₃³⁵Cl," *J.Mol.Spectrosc.* **160**, 253-257 (1993); J.P. Bouanich, G. Blanquet, and J. Walrand, "Theoretical O₂ and N₂ Broadening Coefficients of CH₃Cl Spectral Lines," *J.Mol.Spectrosc.* **161**, 416-426 (1993).
- **2.** J.-P. Bouanich, private communication (2003), based on the work of J.-P. Bouanich, G. Blanquet, J.-C. Populaire, and J. Walrand, "N₂-Broadening for Methyl Chloride at Low Temperature by Diode-Laser Spectroscopy," *J.Mol.Spectrosc.* **208**, 72-78 (2001).

Half-widths (self)

1. C. Chackerian, Jr., L.R Brown, N. Lacome, and G. Tarrago, "Methyl Chloride v_5 Region Line Shape Parameters and Rotational Constants for the v_2 , v_5 and $2v_3$ Vibrational Bands," *J.Mol.Spectrosc.* **191**, 148-157 (1998).

Temperature dependence of air-broadened half-width

1. J.-P. Bouanich, G. Blanquet, J.-C. Populaire, and J. Walrand, "N₂-Broadening for Methyl Chloride at Low Temperature by Diode-Laser Spectroscopy," *J.Mol.Spectrosc.* **208**, 72-78 (2001).

Shift

1. Crude estimate of the shift based on comparison with the PNNL spectrum.

H₂O₂ [25] 1661

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- 1. J.J. Hillman, D.E. Jennings, W.B. Olson, and A. Goldman, "High-Resolution Infrared Spectrum of Hydrogen Peroxide: The v₆ Fundamental Band," *J.Mol.Spectrosc.* **117**, 46-59 (1986).
- 2. J. Hillman, NASA Goddard Space Flight Center, private communication.
- 3. A. Perrin, Univ. Paris, private communication (1997).
- **4.** A. Perrin, J.-M. Flaud, C. Camy-Peyret, R. Schermaul, M. Winnewisser, J.-Y. Mandin, V. Dana, M Badaoui, and J. Koput, "Line Intensities in the Far-Infrared Spectrum of H₂O₂," *J.Mol.Spectrosc.* **176**, 287-296 (1996).
- **5.** A. Perrin, A. Valentin, J.-M. Flaud, C. Camy-Peyret, L. Schriver, A. Schriver, and Ph. Arcas, "The 7.9μm band of hydrogen peroxide: line positions and intensities," *J.Mol.Spectrosc.* **171**, 358-373 (1995).

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. J.D. Rogers and J.J. Hillman, "Prediction of absolute infrared intensities for the fundamental vibrations of H₂O₂," *J.Chem.Phys.* **75**, 1085 (1981); ibid **76**, 4046 (1982); F.P.J. Valero, D. Goorvitch, F.S. Bonomo, and R.W. Boese, "Intensity of the hydrogen peroxide ν₆(b) band around 1266 cm⁻¹," *Appl.Opt.* **20**, 4097-4101 (1981); H. Niki, P.D. Maker, C.M. Savage, and L.P. Breitenbach, "An FTIR Study of the Mechanism for the Gas Phase Reaction between HO₂ Radicals," *Chem.Phys.Lett.* **73**, 43 (1980); J.J. Hillman, "On the Submillimeter Spectrum of Hydrogen Peroxide," *J.Mol.Spectrosc.* **95**, 236-238 (1982).
- 2. A. Perrin, Univ. Paris, private communication (1997).
- **3.** A. Perrin, J.-M. Flaud, C. Camy-Peyret, R. Schermaul, M. Winnewisser, J.-Y. Mandin, V. Dana, M Badaoui, and J. Koput, "Line Intensities in the Far-Infrared Spectrum of H₂O₂," *J.Mol.Spectrosc.* **176**, 287-296 (1996).
- **4.** S. Klee, M. Winnewisser, A. Perrin, and J.-M. Flaud, "Absolute line intensities for the v_6 band of H_2O_2 ," *J.Mol.Spectrosc.* **195**, 154-161 (1999).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- 1. V.Malathy Devi, C.P. Rinsland, M.A.H. Smith, D.C. Benner, and B. Fridovitch, "Tunable diode laser measurements of air-broadened linewidths in the ν_6 band of H₂O₂," *Appl.Opt.* **25**, 1844-1847 (1986).

Temperature dependence of air-broadened half-width

1. J.-M. Flaud, C. Piccolo, B. Carli, A. Perrin, L.H. Coudert, J.L. Teffo, and L.R. Brown, "Molecular line parameters for the MIPAS (Michelson Interferometer for Passive Atmospheric

Sounding) experiment," Atmos. Oceanic Opt. 16, 172-182 (2003).

C₂H₂ [26] 1221, 1231

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26,** 4058-4097 (1987).
- **1.** K.F. Palmer, M.E. Mickelson, and K.Narahari Rao, "Investigations of Several Infrared Bands of ¹²C₂H₂ and studies of the Effects of Vibrational Rotational Interactions," *J.Mol.Spectrosc.* **44**, 131-144 (1972).
- 2. J. Vander Auwera, D. Hurtmans, M. Carleer, and M. Herman, "The v₃ Fundamental in C₂H₂," *J.Mol.Spectrosc.* **157**, 337-357 (1993).
- **3.** J.J. Hillman, D.E. Jennings, G.W. Halsey, S. Nadler, and W.E. Blass, "An Infrared Study of the Bending Region of Acetylene," *J.Mol.Spectrosc.* **146**, 389-401 (1991).
- **4.** M. Weber, W.E. Blass, G.W. Halsey, J.J. Hillman, and W.C. Maguire, "l-Resonance effects in the v_5 , $2v_5$ - v_5 , and v_4 + v_5 - v_4 bands of C_2H_2 and $^{13}C^{12}CH_2$ near 13.7 µm," *Spectrochim.Acta* **48A**, 1203-1226 (1992).
- **5.** Y. Kabbadj, M. Herman, G. Di Lonardo, L. Fusina, and J.W.C. Johns, "The bending energy levels of C₂H₂," *J.Mol.Spectrosc.* **150**, 535-565 (1991).
- **6.** J. Plíva, "Spectrum of acetylene in the 5-micron region," *J.Mol.Spectrosc.* **44**, 145-164 (1972); D. Jacquemart, J.-Y. Mandin, V. Dana, L. Régalia-Jarlot, X. Thomas, P. Von der Heyden, "Multispectrum fitting measurements of line parameters for 5μm cold bands of acetylene," *JQSRT* **75**, 397-422 (2002); D. Jacquemart, J.-Y. Mandin, V. Dana, L. Régalia-Jarlot, J.J. Plateaux, D. Décatoire, and L.S. Rothman, "The spectrum of acetylene in the 5-μm region from new line parameter measurements," *JQSRT* **76**, 237-267 (2003).
- 7. C.P. Rinsland, A. Baldacci, and K.N. Rao, "Acetylene bands observed in carbon stars: a laboratory study and an illustrative example of its applications to IRC+10216," *Astrophys.J.Suppl.Ser.* 49, 487-513 (1982).
- 8. G. Di Lonardo, A. Baldan, G. Bramati, and L. Fusina, "The intrared spectrum of $^{12}C^{13}CH_2$: the bending states up to $v_4+v_5=4$," *J.Mol.Spectrosc.* **213**, 57-63 (2002).
- 9. Q. Kou, G. Guelachvili, M. Abbouti Temsamani, and M. Herman, "The absorption spectrum of C_2H_2 around v_1+v_3 : energy standards in the 1.5 μ m region and vibrational clustering," *Can.J.Phys.* **72**, 1241-1250 (1994).
- **10.** O.M. Lyulin, V.I. Perevalov, J.-Y. Mandin, V. Dana, F. Gueye, P. Von Der Heyden, X. Thomas, D. Décatoire, L. Regalia-Jarlot, D. Jacquemart, and N. Lacome, "Line intensities of acetylene: measurements in the 2.5-μm region and approach in the $\Delta P = 4$ and 6 series," *JQSRT* **103**, 496-523 (2007).
- 11. D. Jacquemart, N. Lacome, J.-Y. Mandin, V. Dana, O.M. Lyulin, and V.I. Perevalov, "Multispectrum fitting of line parameters for $^{12}C_2H_2$ in the 3.8-µm spectral region," *JQSRT* 103, 478-495 (2007).
- **12.** D. Jacquemart, N. Lacome, J.-Y. Mandin, V. Dana, H. Tran, F.K. Gueye, O.M. Lyulin, V.I. Perevalov, and L. Régalia-Jarlot, "The IR spectrum of ¹²C₂H₂: line intensity measurements in the 1.4 μm region and update of the databases," *JQSRT* **110,** 717-732 (2009).
- **13.** D. Jacquemart, N. Lacome, and J.-Y. Mandin, "Line intensities of $^{12}C_2H_2$ in the 1.3, 1.2, and 1 μ m spectral regions," *JQSRT* **110,** 733-742 (2009).
- 14. L. Gomez, D. Jacquemart, N. Lacome, and J.-Y. Mandin, "Line intensities of $^{12}C_2H_2$ in the 7.7 µm spectral region," *JQSRT* 110, 2102-2114 (2009).
- 15. L. Gomez, D. Jacquemart, N. Lacome, and J.-Y. Mandin, "New line intensity measurements

- for ¹²C₂H₂ and HITRAN format line list for applications," *JQSRT* **111**, 2256-2264 (2010).
- **16.** MEP 2005, CIPM recommended values for absorbing molecule ¹³C₂H₂, http://www.bipm.org/utils/common/pdf/mep/M-e-P C2H2 1.54.pdf.
- **17.** K. Nakagawa, M. de Labachelerie, Y. Awaji, and M. Kourogi, "Accurate optical frequency atlas of the 1.5-μm bands of acetylene," *J.Opt.Soc.Am.* **13**, 2708-2714 (1996).
- **18.** A. Jolly, Y. Benilan, E. Cané, L. Fusina, F. Tamassia, A. Fayt, S. Robert, M. Herman, "Measured integrated band intensities and simulated line-by-line spectra for C_2HD between 25 and 2.5 μ m, and new global vibration rotation parameters for the bending vibrations," *JQSRT* **111**, 2256-2264 (2010).
- **19.** H.S.P. Müller, F. Schloder, J. Stutzki, and G Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists," *J.Mol.Struct.* **742**, 215-227 (2005). Data taken in March 2011.

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** J.R. Podolske, M. Loewenstein, and P. Varanasi, "Diode Laser Line Strength Measurements of the $(v_4 + v_5)^0$ Band of $^{12}C_2H_2$," *J.Mol.Spectrosc.* **107**, 241-249 (1984).
- **2.** J. Vander Auwera, D. Hurtmans, M. Carleer, and M. Herman, "The v₃ Fundamental in C₂H₂," *J.Mol.Spectrosc.* **157**, 337-357 (1993).
- 3. M. Weber, Ph.D. thesis, University of Tennessee (1992).
- **4.** J.-Y. Mandin, V. Dana, and C. Claveau, "Line intensities in the v_5 band of acetylene $^{12}C_2H_2$," *JQSRT* **67**, 429-446 (2000).
- 5. D. Jacquemart, C. Claveau, J.-Y. Mandin, and V. Dana, "Line intensities of hot bands in the 13.6 μ m spectral region of acetylene $^{12}C_2H_2$," *JQSRT* **69**, 81-101 (2001).
- **6.** J. Vander Auwera, "Absolute Intensities Measurements in the v_4+v_5 Band of $^{12}C_2H_2$: Analysis of Herman-Wallis Effects and Forbidden Transitions," *J.Mol.Spectrosc.* **201**, 143-150 (2000).
- 7. D. Jacquemart, J.-Y. Mandin, V. Dana, L. Régalia-Jarlot, X. Thomas, P. Von der Heyden, "Multispectrum fitting measurements of line parameters for 5μm cold bands of acetylene," *JQSRT* **75**, 397-422 (2002); D. Jacquemart, J.-Y. Mandin, V. Dana, L. Régalia-Jarlot, J.J. Plateaux, D. Décatoire, and L.S. Rothman, "The spectrum of acetylene in the 5-μm region from new line parameter measurements," *JQSRT* **76**, 237-267 (2003).
- 8. D. Jacquemart, J.-Y. Mandin, V. Dana, L. Régalia-Jarlot, J.J. Plateaux, D. Décatoire, and L.S. Rothman, "The spectrum of acetylene in the 5-μm region from new line parameter measurements," *JQSRT* **76**, 237-267 (2003); D. Jacquemart, J.-Y. Mandin, V. Dana, C. Claveau, J. Vander Auwera, M. Herman, L.S. Rothman, L. Régalia-Jarlot, and A. Barbe, "The IR acetylene spectrum in HITRAN: update and new results," *JQSRT* **82**, 363-382 (2003).
- **9.** R. El Hachtouki and J. Vander Auwera, "Absolute Line Intensities in Acetylene: The 1.5-μm Region," *J.Mol.Spectrosc.* **216**, 355-362 (2002).
- **10.** O.M. Lyulin, V.I. Perevalov, J.-Y. Mandin, V. Dana, F. Gueye, P. Von Der Heyden, X. Thomas, D. Décatoire, L. Regalia-Jarlot, D. Jacquemart, and N. Lacome, "Line intensities of acetylene: measurements in the 2.5- μ m region and approach in the $\Delta P = 4$ and 6 series," *JQSRT* **103**, 496-523 (2007).
- 11. D. Jacquemart, N. Lacome, J.-Y. Mandin, V. Dana, O.M. Lyulin, and V.I. Perevalov, "Multispectrum fitting of line parameters for $^{12}C_2H_2$ in the 3.8- μ m spectral region," *JQSRT* 103, 478-495 (2007).

- 12. D. Jacquemart, N. Lacome, J.-Y. Mandin, V. Dana, H. Tran, F.K. Gueye, O.M. Lyulin, V.I. Perevalov, and L. Régalia-Jarlot, "The IR spectrum of $^{12}C_2H_2$: line intensity measurements in the 1.4 μ m region and update of the databases," *JQSRT* 110, 717-732 (2009).
- 13. D. Jacquemart, N. Lacome, and J.-Y. Mandin, "Line intensities of $^{12}C_2H_2$ in the 1.3, 1.2, and 1 µm spectral regions," *JOSRT* **110**, 733-742 (2009).
- 14. L. Gomez, D. Jacquemart, N. Lacome, and J.-Y. Mandin, "Line intensities of ¹²C₂H₂ in the 7.7 μm spectral region," *JOSRT* 110, 2102-2114 (2009).
- **15.** L. Gomez, D. Jacquemart, N. Lacome, and J.-Y. Mandin, "New line intensity measurements for ¹²C₂H₂ and HITRAN format line list for applications," *JQSRT* **111**, 2256-2264 (2010).
- **16.** A. Jolly, Y. Benilan, E. Cané, L. Fusina, F. Tamassia, A. Fayt, S. Robert, M. Herman, "Measured integrated band intensities and simulated line-by-line spectra for C_2HD between 25 and 2.5 μ m, and new global vibration rotation parameters for the bending vibrations," *JQSRT* **111**, 2256-2264 (2010).
- **17.** H.S.P. Müller, F. Schloder, J. Stutzki, and G Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists," *J.Mol.Struct.* **742**, 215-227 (2005). Data taken in March 2011.

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** V.Malathy Devi, D.C. Benner, C.P. Rinsland, M.A.H. Smith, and B.D. Sidney, "Tunable Diode Laser Measurements of N_2 and Air-Broadened Halfwidths: Lines in the $(v_4 + v_5)^0$ Band of $^{12}C_2H_2$ Near 7.4 μ m," *J.Mol.Spectrosc.* **114,** 49-53 (1985).
- 2. D. Lambot, G. Blanquet, and J.-P. Bouanich, "Diode laser measurements of collisional broadening in the ν₅ band of C₂H₂ perturbed by O₂ and N₂," *J.Mol.Spectrosc.* **136**, 86-92 (1989); J.-P. Bouanich, D. Lambot, G. Blanquet, and J. Walrand, "N₂- and O₂-broadening coefficients of C₂H₂ IR lines," *J.Mol.Spectrosc.***140**, 195-213. (1990); D. Jacquemart, J.-Y. Mandin, V. Dana, L. Régalia-Jarlot, J.J. Plateaux, D. Décatoire, and L.S. Rothman, "The spectrum of acetylene in the 5-μm region from new line parameter measurements," *JQSRT* **76**, 237-267 (2003).

Half-widths (self)

1. D. Jacquemart, J.-Y. Mandin, V. Dana, L. Régalia-Jarlot, X. Thomas, P. Von der Heyden, "Multispectrum fitting measurements of line parameters for 5μm cold bands of acetylene," *JQSRT* **75**, 397-422 (2002); D. Jacquemart, J.-Y. Mandin, V. Dana, L. Régalia-Jarlot, J.J. Plateaux, D. Décatoire, and L.S. Rothman, "The spectrum of acetylene in the 5-μm region from new line parameter measurements," *JOSRT* **76**, 237-267 (2003).

Temperature dependence of air-broadened half-width

1. J.-P. Bouanich, D. Lambot, G. Blanquet, and J. Walrand, "N₂- and O₂-broadening coefficients of C₂H₂ IR lines *J.Mol.Spectrosc.*140, 195-213 (1990); J.-P. Bouanich, G. Blanquet, J.-C. Populaire, and J. Walrand, "Nitrogen broadening of acetylene lines in the ν₅ band at low temperature," *J.Mol.Spectrosc.* 190, 7-14. (1998); J.-P. Bouanich, G. Blanquet, and J. Walrand, "Oxygen broadening of acetylene lines in the ν₅ band at low temperature," *J.Mol.Spectrosc.* 194, 269-277 (1999); D. Jacquemart, J.-Y. Mandin, V. Dana, L. Régalia-Jarlot, J.J. Plateaux, D. Décatoire, and L.S. Rothman, "The spectrum of acetylene in the 5-μm region from new line parameter measurements," *JOSRT* 76, 237-267 (2003).

Pressure shift (air)

1. A. Babay, M. Ibrahimi, V. Lemaire, B. Lemoine, F. Rohart, and J.-P. Bouanich, "Line frequency shifting in the ν₅ band of C₂H₂," *JQSRT* **59**, 195-202 (1998); D. Jacquemart, J.-Y. Mandin, V. Dana, L. Régalia-Jarlot, J.J. Plateaux, D. Décatoire, and L.S. Rothman, "The spectrum of acetylene in the 5-μm region from new line parameter measurements," *JQSRT* **76**, 237-267 (2003).

C₂H₆ [27] 1221

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. A. Goldman, M. Dang-Nhu, and J.P. Bouanich, "Ethane 3μm Spectral Clusters of Atmospheric Interest," *JQSRT* **41**, 17-21 (1989).
- 2. S.J. Daunt, W.E. Blass, G.W. Halsey, K. Fox, and R.J. Lovell, "High-Resolution Infrared Spectrum and Analysis of the v_9 Band of Ethane at 12.17 μ m," *J.Mol.Spectrosc.* **86,** 327-343 (1981).
- **3.** A.S. Pine and W.J. Lafferty, "Torsional Splittings and Assignments of the Doppler-Limited Spectrum of Ethane in the C-H Stretching Region," *J.Res.NBS* **87**, 237-256 (1982).
- **4.** C.P. Rinsland, N.B. Jones, B.J. Connor, J.A. Logan, N.S. Pougatchev, A. Goldman, F.J. Murcray, T.M. Stephen, A.S. Pine, R. Zander, E. Mahieu, and P. Demoulin, "Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane," *J. Geophys. Res.* **103**, 28,197-28,217 (1998).
- **5.** A.S. Pine and C.P. Rinsland, "The role of torsional hot bands in modeling atmospheric ethane," *JQSRT* **62**, 445-458 (1999).
- **6.** J. Vander Auwera, N. Moazzen-Ahmadi, and J.-M. Flaud, "Toward an accurate database for the 12 μm region of the ethane spectrum," *Ap.J.* **662**, 750-757 (2007).
- 7. M. Weber, D.C. Reuter, D.E. Jennings, W.E. Blass, and J.J. Hillman, "A spectral atlas of the ν_{12} fundamental of $^{13}C^{12}CH_6$ in the 12 μ m region," NASA Technical Memorandum 104601, Greenbelt; 1994.

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. A. Goldman, M. Dang-Nhu, and J.P. Bouanich, "Ethane 3μm Spectral Clusters of Atmospheric Interest," *JOSRT* **41**, 17-21 (1989).
- **2.** C.P. Rinsland, N.B. Jones, B.J. Connor, J.A. Logan, N.S. Pougatchev, A. Goldman, F.J. Murcray, T.M. Stephen, A.S. Pine, R. Zander, E. Mahieu, and P. Demoulin, "Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane." *J. Geophys. Res.* **103**, 28,197-28,217 (1998).
- **3.** A.S. Pine and C.P. Rinsland, "The role of torsional hot bands in modeling atmospheric ethane," *JOSRT* **62**, 445-458 (1999).
- **4.** J. Vander Auwera, N. Moazzen-Ahmadi, and J.-M. Flaud, "Toward an accurate database for the 12 μm region of the ethane spectrum," *Ap.J.* **662**, 750-757 (2007).
- 5. M. Weber, D.C. Reuter, D.E. Jennings, W.E. Blass, and J.J. Hillman, "A spectral atlas of the v_{12} fundamental of $^{13}C^{12}CH_6$ in the 12 μ m region," NASA Technical Memorandum 104601, Greenbelt; 1994.

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. A.S. Pine and S.C. Stone, "Torsional tunneling and A1-A2 splittings and air-broadening of

- the ^rQ0 and ^pQ3 subbranches of the v₇ band of ethane," *J.Mol.Spectrosc.* **175,** 21-30 (1996); C.P. Rinsland, N.B. Jones, B.J. Connor, J.A. Logan, N.S. Pougatchev, A. Goldman, F.J. Murcray, T.M. Stephen, A.S. Pine, R. Zander, E. Mahieu, and P. Demoulin, "Northern and southern hemisphere ground-based infrared spectroscopic measurements of tropospheric carbon monoxide and ethane," *J.Geophys.Res.* **103,** 28,197-28,217 (1998).
- **3.** A.S. Pine and C.P. Rinsland, "The role of torsional hot bands in modeling atmospheric ethane," *JQSRT* **62**, 445-458 (1999).
- **4.** J. Vander Auwera, N. Moazzen-Ahmadi, and J.-M. Flaud, "Toward an accurate database for the 12 μm region of the ethane spectrum," *Ap.J.* **662**, 750-757 (2007).

Half-widths (self)

1. J. Vander Auwera, N. Moazzen-Ahmadi, and J.-M. Flaud, "Toward an accurate database for the 12 μm region of the ethane spectrum," *Ap.J.* **662**, 750-757 (2007).

Temperature dependence of air-broadened half-width

- **1.** A.S. Pine and C.P. Rinsland, "The role of torsional hot bands in modeling atmospheric ethane," *JQSRT* **62**, 445-458 (1999).
- 2. J. Vander Auwera, N. Moazzen-Ahmadi, and J.-M. Flaud, "Toward an accurate database for the 12 μm region of the ethane spectrum," *Ap.J.* **662**, 750-757 (2007).

Pressure shift (air)

1. A.S. Pine and C.P. Rinsland, "The role of torsional hot bands in modeling atmospheric ethane," *JQSRT* **62**, 445-458 (1999).

PH₃ [28] 1111

Positions

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- 1. G. Tarrago, M. Dang-Nhu, and A. Goldman, "Analysis of Phosphine Absorption in the Region 9-10 μ m and High Resolution Line-by-Line Simulation of the ν_2 and ν_4 Bands," *J.Mol.Spectrosc.* **88,** 311-322 (1981).
- **2.** L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, and L. Sagui, "Line Intensities of the Phosphine Dyad at 10 μm," *J.Mol.Spectrosc.* **215**, 178-203 (2002).
- 3. G. Tarrago, N. Lacome, A. Levy, G. Guelachvili, B. Benzard, and P. Drossart, "Phosphine Spectrum at 4-5 μ m: Analysis and Line-by-Line Simulation of $2v_2$, $v_2 + v_4$, $2v_4$, v_1 , and v_3 Bands," *J.Mol.Spectrosc.* **154**, 30-42 (1992).
- **4.** R.A.H. Butler, L. Sagui, I. Kleiner, and L.R. Brown, "The absorption spectrum of phosphine (PH₃) between 2.8 and 3.7 μm: Line positions, intensities, and assignments," *J.Mol.Spectrosc.* **238**, 178-192 (2006).

Intensities

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, and L. Sagui, "Line Intensities of the Phosphine Dyad at 10 μm," *J.Mol.Spectrosc.* **215**, 178-203 (2002).
- 2. G. Tarrago, N. Lacome, A. Levy, G. Guelachvili, B. Benzard, and P. Drossart, "Phosphine Spectrum at 4-5 μ m: Analysis and Line-by-Line Simulation of $2v_2$, $v_2 + v_4$, $2v_4$, v_1 , and v_3 Bands," *J.Mol.Spectrosc.* **154**, 30-42 (1992).
- **3.** R.A.H. Butler, L. Sagui, I. Kleiner, and L.R. Brown, "The absorption spectrum of phosphine (PH₃) between 2.8 and 3.7 μm: Line positions, intensities, and assignments," *J.Mol.Spectrosc.* **238**, 178-192 (2006).

Half-widths (air)

- **0.** L.S. Rothman, R.R. Gamache, A. Goldman, L.R. Brown, R.A. Toth, H.M. Pickett, R.L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C.P. Rinsland, and M.A.H. Smith, "The HITRAN database: 1986 Edition," *Appl. Opt.* **26**, 4058-4097 (1987).
- **1.** L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, and L. Sagui, "Line Intensities of the Phosphine Dyad at 10 μm," *J.Mol.Spectrosc.* **215**, 178-203 (2002).
- 2. Scaled by 0.9 from the nitrogen-broadened widths in R.A.H. Butler, L. Sagui, I. Kleiner, and L.R. Brown, "The absorption spectrum of phosphine (PH₃) between 2.8 and 3.7 μ m: Line positions, intensities, and assignments," *J.Mol.Spectrosc.* 238, 178-192 (2006).

Half-widths (self)

- **1.** L.R. Brown, R.L. Sams, I. Kleiner, C. Cottaz, and L. Sagui, "Line Intensities of the Phosphine Dyad at 10 μm," *J.Mol.Spectrosc.* **215**, 178-203 (2002).
- **2.** R.A.H. Butler, L. Sagui, I. Kleiner, and L.R. Brown, "The absorption spectrum of phosphine (PH₃) between 2.8 and 3.7 μm: Line positions, intensities, and assignments," *J.Mol.Spectrosc.* **238**, 178-192 (2006).

Temperature dependence of air-broadened half-width

1. R.A.H. Butler, L. Sagui, I. Kleiner, and L.R. Brown, "The absorption spectrum of phosphine (PH₃) between 2.8 and 3.7 μm: Line positions, intensities, and assignments," *J.Mol.Spectrosc.* 238, 178-192 (2006).

COF₂ [29] 269

Positions

- 1. L.R. Brown and E.A. Cohen, "The C-O Stretch Regions of COF_2 : the Interaction of the v_1 , $2v_2$, and $2v_3 + v_6$ Bands," private communication (1991).
- 2. E.A. Cohen and W. Lewis-Bevan, "Further Measurements of the Rotational Spectrum of COF₂: Improved Molecular Constants for the Ground and v_2 States," *J.Mol.Spectrosc.* **148**, 378-384 (1991).
- **3.** C. Camy-Peyret, J.-M. Flaud, A. Goldman, F.J. Murcray, R.D. Blatherwick, F.S. Bonomo, D.G. Murcray, and C.P. Rinsland, "The v₄ Band of Carbonyl Fluoride," *J.Mol.Spectrosc.* 149, 481-490 (1991).
- **4.** A. Goldman, C.P. Rinsland, R.D. Blatherwick, and F.S. Bonomo, "Spectroscopic line parameters for the v₆ band of carbonyl fluoride," *Appl. Opt.* **29**, 1860-1863 (1990).
- 5. C.P. Rinsland, NASA Langley Research Center, private communication (1992).
- **6.** L.R. Brown, Jet Propulsion Laboratory, private communication (1992).
- 7. L.R. Brown, Jet Propulsion Laboratory, private communication (2001).

Intensities

- 1. L.R. Brown and E.A. Cohen, "The C-O Stretch Regions of COF_2 : the Interaction of the v_1 , $2v_2$, and $2v_3 + v_6$ Bands," private communication (1991).
- **2.** E.A. Cohen and W. Lewis-Bevan, "Further Measurements of the Rotational Spectrum of COF₂: Improved Molecular Constants for the Ground and v_2 States," *J.Mol.Spectrosc.* **148**, 378-384 (1991).
- **3.** C. Camy-Peyret, J.-M. Flaud, A. Goldman, F.J. Murcray, R.D. Blatherwick, F.S. Bonomo, D.G. Murcray, and C.P. Rinsland, "The v₄ Band of Carbonyl Fluoride," *J.Mol.Spectrosc.* **149**, 481-490 (1991).
- **4.** A. Goldman, C.P. Rinsland, R.D. Blatherwick, and F.S. Bonomo, "Spectroscopic line parameters for the v₆ band of carbonyl fluoride," *Appl.Opt.* **29**, 1860-1863 (1990).
- 7. L.R. Brown, Jet Propulsion Laboratory, private communication (2001).

Half-widths (air)

1. R.D. May, "Line Intensities and Collisional-broadening Parameters for the v_4 and v_6 Bands of Carbonyl Fluoride," *JQSRT* **48,** 701-712 (1992).

SF₆ [30] 29

Positions

- 1. C.P. Rinsland, L.R. Brown, and C.B. Farmer, "Infrared Spectroscopic Detection of Sulfur Hexafluoride (SF₆) in the Lower Stratosphere and Upper Troposphere," *J. Geophys. Res.* **95**, 5577-5585 (1990); B. Bobin, C.J. Borde, J. Borde, and C. Breant, "Vibration-Rotation Molecular Constants for the Ground and (v_3 =1) States of 32 SF₆ from Saturated Absorption Spectroscopy," *J. Mol. Spectrosc.* **121**, 91-127 (1987); B. Bobin, private communication (1990).
- 2. C.P. Rinsland, NASA Langley Research Center, private communication (1992).
- 3. O. Acef, C.J. Bordé, A. Clairon, G. Pierre, and B. Sartakov, "New Accurate Fit of an Extended Set of Saturation Data for the ν_3 Band of SF₆: Comparison of Hamiltonians in the Spherical and Cubic Tensor Formalisms," *J.Mol.Spectrosc.*199,188-204 (2000); V. Boudon, G. Pierre, "Rovibrational spectroscopy of sulphur hexafluoride: A review" *Recent Research Developments in Molecular Spectroscopy*, S.G. Pandalai, Editor, *Transworld Research Network*, Trivandrum, India 1, 25-55 (2002).
- **4.** The calculations were performed by V. Boudon (2008) with the HTDS software (http://icb.u-bourgogne.fr/OMR/SMA/SHTDS) using data reviewed in V. Boudon, G. Pierre, "Rovibrational spectroscopy of sulphur hexafluoride: A Review," in *Recent Research Developments in Molecular Spectroscopy*, S.G. Pandalai, Editor, *Transworld Research Network*, Trivandrum, India **1,** 25-55 (2002).
- 5. The calculations were performed by V. Boudon (2008) with the HTDS software (http://icb.u-bourgogne.fr/OMR/SMA/SHTDS) using data from V. Boudon, G. Pierre, H. Burger, "High Resolution Spectroscopy and Analysis of the v₄ Bending Region of SF₆ Near 615 cm⁻¹ *J.Mol.Spectrosc.* 205, 304–311 (2001).

Intensities

- **1.** C.P. Rinsland, L.R. Brown, and C.B. Farmer, "Infrared Spectroscopic Detection of Sulfur Hexafluoride (SF₆) in the Lower Stratosphere and Upper Troposphere," *J. Geophys. Res.* **95**, 5577-5585 (1990); K. Fox, *Opt. Comm.* **19**, 397-400 (1976); B. Bobin, private communication (1990).
- 2. O. Acef, C.J. Bordé, A. Clairon, G. Pierre, B. Sartakov, "New Accurate Fit of an Extended Set of Saturation Data for the ν_3 Band of SF₆: Comparison of Hamiltonians in the Spherical and Cubic Tensor Formalisms," *J.Mol.Spectrosc.* 199,188-204 (2000); V. Boudon, G. Pierre, "Rovibrational spectroscopy of sulphur hexafluoride: A review in recent research developments in molecular spectroscopy," S. G. Pandalai Editor, *Transworld Research Network*, Trivandrum, India 1,25-55 (2002).
- **3.** The calculations were performed by V. Boudon (2008) with the HTDS software (http://icb.u-bourgogne.fr/OMR/SMA/SHTDS) using data from K.C. Kim, W.B. Person, D. Seitz, and B.J. Krohn, "Analysis of the v₄ (615 cm⁻¹) region of the Fourier transform and diode laser spectra of SF₆," *J.Mol.Spectrosc.*, **76**, 322–340 (1979) and W.B. Person, and B.J. Krohn, "Coriolis intensity perturbations of the v₄ band of SF₆," *J.Mol.Spectrosc.*, **98**, 229–257 (1983).

Half-widths (air)

1. C.P. Rinsland, L.R. Brown, and C.B. Farmer, "Infrared Spectroscopic Detection of Sulfur Hexafluoride (SF₆) in the Lower Stratosphere and Upper Troposphere," *J. Geophys. Res.* **95**, 5577-5585 (1990); G.D.T. Tejwani and K. Fox, "Calculated self- and foreign-gas-broadened linewidths for SF₆," *JQSRT* **37**, 541-546 (1987).

Half-widths (self)

1. G.D.T. Tejwani and K. Fox, "Calculated self- and foreign-gas-broadened linewidths for SF₆," *JQSRT* **37**, 541-546 (1987).

Temperature dependence of air-broadened half-width

1. G.D.T. Tejwani and K. Fox, "Calculated self- and foreign-gas-broadened linewidths for SF₆," *JQSRT* **37**, 541-546 (1987).

H₂S [31] 121,141,131

Positions

- 1. A. Goldman and J.R. Gillis, "Line Parameters and Line by Line Calculations for Molecules of Stratospheric Interest," University of Denver Progress Report (1984).
- **2.** J.-M. Flaud, C. Camy-Peyret, and J.W.C. Johns, "The far infrared spectrum of hydrogen sulfide. The (000) rotational constants of H₂³²S, H₂³³S and H₂³⁴S," *Can.J.Phys.* **61**, 1462-1473 (1983).
- 3. L. Sinitsa, Institute of Atmospheric Optics (Tomsk), private communication (1994).
- **4.** L. Lechuga-Fossat, J.-M. Flaud, C. Camy-Peyret, and J.W.C. Johns, "The spectrum of natural hydrogen sulfide between 2150 and 2950 cm⁻¹," *Can.J.Phys.* **62**, 1889-1923 (1984).
- **5.** L.R. Brown, J.A. Crisp, D. Crisp, V. Naumenko, M.A. Smirnov, L.N. Sinitsa, and A. Perrin, "The Absorption Spectrum of H_2S between 2150 and 4260 cm⁻¹: Analysis of the Positions and Intensities in the First $[2v_2, v_1 \text{ and } v_3]$ and Second $[3v_2, v_1 + v_2 \text{ and } v_2 + v_3]$ Triad Region," *J.Mol. Spectrosc.* **188**, 148-174 (1998).

Intensities

- 1. A. Goldman and J.R. Gillis, "Line Parameters and Line by Line Calculations for Molecules of Stratospheric Interest," University of Denver Progress Report (1984).
- **2.** J.-M. Flaud, C. Camy-Peyret, and J.W.C. Johns, "The far infrared spectrum of hydrogen sulfide. The (000) rotational constants of H₂³²S, H₂³³S and H₂³⁴S," *Can.J.Phys.* **61**, 1462-1473 (1983).
- 3. L. Sinitsa, Institute of Atmospheric Optics (Tomsk), private communication (1994).
- **4.** L. Lechuga-Fossat, J.-M. Flaud, C. Camy-Peyret, and J.W.C. Johns, "The spectrum of natural hydrogen sulfide between 2150 and 2950 cm⁻¹," *Can.J.Phys.* **62**, 1889-1923 (1984).
- **5.** L.R. Brown, J.A. Crisp, D. Crisp, O. V. Naumenko, M.A. Smirnov, L.N. Sinitsa, and A. Perrin, "The Absorption Spectrum of H_2S between 2150 and 4260 cm⁻¹: Analysis of the Positions and Intensities in the First [$2v_2$, v_1 and v_3] and Second [$3v_2$, $v_1 + v_2$ and $v_2 + v_3$] Triad Region," *J.Mol. Spectrosc.* **188,** 148-174 (1998).

Half-widths (air)

- 1. A. Goldman and J.R. Gillis, "Line Parameters and Line by Line Calculations for Molecules of Stratospheric Interest," University of Denver Progress Report (1984).
- 2. J. Waschull, F. Kuhnemann, and B. Sumpf, "Self-, air- and Helium Broadening of the v_2 band of H_2S ," *J.Mol.Spectrosc.* **165**, 150-158 (1994).
- 3. B. Sumpf, I Meusel, and H.-D. Kronfeldt, "Self- and air-Broadening in the v_1 and v_3 bands of H_2S ," *J.Mol.Spectrosc.* **177**, 143-145 (1996).
- **4.** A. Kissel, B. Sumpf, H.-D. Kronfeldt, B.A. Tikhomirov, and Yu.N. Ponomarev, "Molecular-Gas-Pressure-Induced Line-Shift and Line-Broadening in the ν₂-Band of H₂S," *J.Mol.Spectrosc.* **216**, 345-354 (2002).
- 5. B. Sumpf, A. Kissel, and H.-D. Kronfeldt, "Line-Broadening and Line-Shift in the v_1 , v_3 , and $2v_2$ bands of H_2S ," in preparation.
- **6.** Average values of Refs 2-5.

Half-widths (self)

1. J. Waschull, F. Kuhnemann, and B. Sumpf, "Self-, air- and Helium Broadening of the v_2 band of H_2S ," *J.Mol.Spectrosc.* **165**, 150-158 (1994).

- **2.** B. Sumpf, I Meusel, and H.-D. Kronfeldt, "Self- and air-Broadening in the v_1 and v_3 bands of H₂S," *J.Mol.Spectrosc.* **177**, 143-145 (1996).
- 3. B. Sumpf, "Experimental Investigation of the Self-Broadening Coefficients in the $v_1 + v_3$ band of SO₂ and the $2v_2$ band of H₂S," *J.Mol.Spectrosc.* **181**, 160-167 (1997).
- 4. Average values of Refs 1-3.

Pressure shift (air)

- **1.** A. Kissel, B. Sumpf, H.-D. Kronfeldt, B.A. Tikhomirov, and Yu.N. Ponomarev, "Molecular-Gas-Pressure-Induced Line-Shift and Line-Broadening in the v₂-Band of H₂S," *J.Mol.Spectrosc.* **216**, 345-354 (2002).
- 2. B. Sumpf, A. Kissel, and H.-D. Kronfeldt, "Line-Broadening and Line-Shift in the v_1 , v_3 , and $2v_2$ bands of H_2S ," in preparation
- **3.** L.S. Rothman, D. Jacquemart, A. Barbe, D.C. Benner, M. Birk, L.R. Brown, M. Carleer, C. Chackerian Jr, K. Chance, L.H. Coudert, V. Dana, V.M. Devi, J.-M. Flaud, R.R. Gamache, A. Goldman, J.-M. Hartmann, K.W. Jucks, A.G. Maki, J.-Y. Mandin, S. Massie, J. Orphal, A. Perrin, C.P. Rinsland, M.A.H. Smith, J. Tennyson, R.N. Tolchenov, R.A. Toth, J. Vander Auwera, P. Varanasi, and G. Wagner, "The *HITRAN* 2004 Molecular Spectroscopic Database," *JOSRT* **96**, 139-204 (2005).

HCOOH [32] 126

Positions

- 1. A. Goldman, F.H. Murcray, D.G. Murcray, and C.P. Rinsland, "A Search for Formic Acid in the Upper Troposphere: A Tentative Identification of the 1105 cm⁻¹ v₆ band Q branch in High Resolution Balloon-borne Absorption Spectra," *Geophys.Res.Let.* 11, 307-310 (1984); A. Goldman and J.R. Gillis, "Line Parameters and Line-by-line Calculations for Molecules of Stratospheric Interest," Progress Report, Dept. of Physics, Univ. Denver (1984).
- **2.** A. Perrin, C.P. Rinsland, and A. Goldman, "Spectral parameters for the v_6 region of HCOOH and its measurement in the infrared tropospheric spectrum," *J. Geophys. Res.* **104**, 18,661-18,666 (1999).
- **3.** J. Vander Auwera, private communication (2004), based on J. Vander Auwera, "High-Resolution Investigation of the Far-Infrared Spectrum of Formic Acid," *J.Mol.Spectrosc.* **155**, 136-142 (1992).
- **4.** A. Perrin and J. Vander Auwera, "An improved database for the 9 μm region of the formic acid spectrum," *JOSRT* **108**, 363-370 (2007).
- **5.** A. Perrin, J. Vander Auwera, and Z. Zelinger, "High-resolution Fourier transform study of the v₃ fundamental band of *trans*-formic acid," *JOSRT* **110**, 743-755 (2009).

Intensities

- 1. A. Goldman, F.H. Murcray, D.G. Murcray, and C.P. Rinsland, "A Search for Formic Acid in the Upper Troposphere: A Tentative Identification of the 1105 cm⁻¹ v₆ band Q branch in High Resolution Balloon-borne Absorption Spectra," *Geophys.Res.Let.* 11, 307-310 (1984); A. Goldman and J.R. Gillis, "Line Parameters and Line-by-line Calculations for Molecules of Stratospheric Interest," Progress Report, Dept. of Physics, Univ. Denver (1984).
- 2. A. Perrin, C.P. Rinsland, and A. Goldman, "Spectral parameters for the v_6 region of HCOOH and its measurement in the infrared tropospheric spectrum," *J. Geophys. Res.* **104**, 18,661-18,666 (1999).
- **3.** J. Vander Auwera, private communication (2004), based on J. Vander Auwera, "High-Resolution Investigation of the Far-Infrared Spectrum of Formic Acid," *J.Mol.Spectrosc.* **155**, 136-142 (1992).
- **4.** A. Perrin and J. Vander Auwera, "An improved database for the 9 μm region of the formic acid spectrum," *JQSRT* **108**, 363-370 (2007); J. Vander Auwera, K. Didriche, A. Perrin, and F. Keller, "Absolute line intensities for formic acid and dissociation constant of the dimer," *J.Chem.Phys* **126**, 124311 (2007).
- **5.** A. Perrin, J. Vander Auwera, and Z. Zelinger, "High-resolution Fourier transform study of the v_3 fundamental band of *trans*-formic acid," *JQSRT* **110**, 743-755 (2009).

Half-widths (air)

- **1.** A. Goldman and J.R. Gillis, "Line Parameters and Line-by-line Calculations for Molecules of Stratospheric Interest," Progress Report, Dept. of Physics, Univ. Denver (1984).
- 2. A. Perrin and J. Vander Auwera, "An improved database for the 9 μ m region of the formic acid spectrum," *JQSRT* **108**, 363-370 (2007).

Half-widths (self)

1. A. Perrin, C.P. Rinsland, and A. Goldman, "Spectral parameters for the v_6 region of HCOOH and its measurement in the infrared tropospheric spectrum," *J. Geophys. Res.* **104**, 18,661-18,666

(1999).

2. A. Perrin and J. Vander Auwera, "An improved database for the 9 μm region of the formic acid spectrum," *JQSRT* **108**, 363-370 (2007). Note that the value takes into account the contribution from the dimer.

Temperature dependence of air-broadened half-width

1. A. Goldman, private communication (1996).

HO₂ [33] 166

Positions

- 1. C. Yamada, Y. Endo, and E. Hirota, "Difference frequency laser spectroscopy of the v_1 band of the HO₂ radical," *J.Chem.Phys.* **78**, 4379-4384 (1983).
- **2.** K. Nagai, Y. Endo, and E. Hirota, "Diode Laser Spectroscopy of the HO₂ v₂ Band," *J.Mol.Spectrosc.* **89**, 520-527 (1981).
- **3.** D.D. Nelson, Jr., and M.S. Zahniser, "Diode Laser Spectroscopy of the v₃ Vibration of the HO₂ Radical," *J.Mol.Spectrosc.* **150**, 527-534 (1991).
- **4.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).

Intensities

- **1.** M.S. Zahniser, K.E. McCurdy, and A.C. Stanton, "Quantitative Spectroscopic Studies of the HO₂ Radical: Band Strength Measurements for the v_1 and v_2 Vibrational Bands," *J.Phys.Chem.* **93**, 1065-1070 (1989).
- **2.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JOSRT* **52**, 447-457 (1994).

Half-widths (air)

- 1. D.D. Nelson and M.S. Zahniser "Air broadening measurements for the v_2 vibrational band of the hydroperoxyl radical," *J.Mol.Spectrosc.* **166,** 273-279 (1994).
- **2.** K. Chance, K.W. Jucks, D.G. Johnson, and W.A. Traub, "The Smithsonian Astrophysical Observatory Database SAO92," *JQSRT* **52**, 447-457 (1994).

O [34] 6

Positions

1. L.R. Zink, K.M. Evenson, F. Matsushima, T. Nelis, and R. L. Robinson, "Atomic oxygen fine-structure splittings with tunable far-infrared spectroscopy," *Astrophys.J.* **371**, L85-L86 (1991).

Intensities

1. H.M. Pickett, R.L. Poynter, E.A. Cohen, M.L. Delitsky, J.C. Pearson, and H.S.P. Müller, "Submillimeter, Millimeter, and Microwave Spectral Line Catalog," JPL Publication 800-23, rev. 4 (1996).

Half-widths (air)

1. Does not have the standard HITRAN definition of Lorentz air broadening, but a default value of 0.05 cm⁻¹/atm was appended.

CIONO₂ [35] 5646, 7646

Positions

1. W. Bell, G. Duxbury, and D.D. Stuart, "High-Resolution Spectra of the ν₄ Band of Chlorine Nitrate," *J.Mol.Spectrosc.* **152**, 283-297 (1992); A. Goldman, C.P. Rinsland, F.J. Murcray, R.D. Blatherwick, and D.G. Murcray, "High Resolution Studies of Heavy NOy Molecules in Atmospheric Spectra," *JQSRT* **52**, 367-377 (1994).

Intensities

1. A. Goldman, C.P. Rinsland, F.J. Murcray, R.D. Blatherwick, and D.G. Murcray, "High Resolution Studies of Heavy NOy Molecules in Atmospheric Spectra," *JQSRT* **52**, 367-377 (1994).

Half-widths (air)

1. A. Goldman, C.P. Rinsland, F.J. Murcray, R.D. Blatherwick, and D.G. Murcray, "High Resolution Studies of Heavy NOy Molecules in Atmospheric Spectra," *JQSRT* **52**, 367-377 (1994).

NO⁺ [36] 46

Positions

1. Positions based on a fit by D.R. Smith, AF Phillips Lab, using data of F.P. Billingsley, Chem. Phys. Lett. 23, 160-166 (1973), K.P. Huber and G. Herzberg, "Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules," Van Nostrand Reinhold Co., NY (1979), and D.R. Smith, E.R. Huppi, and R.M. Nadile, "Improved Rotational Constants for the Ground Electronic State of NO⁺ from Atmospheric Emission Spectra," private communication; D.R. Smith, E.R. Huppi, and J.O. Wise, "Observation of highly rotationally excited NO⁺ emissions in the themosphere," J. Atmos. Solar-Terrestrial Phys. 62, 1189-1198 (2000). 2. Positions based on a fit by I. Gordon (2006), using data of W.C. Ho, I. Ozier, D.T. Cramb, and M.C.L. Gerry, "Diode Laser Spectroscopy of the Vibrational Fundamental of NO⁺," J.Mol.Spectrosc. 149, 559-561 (1991); G. Hilpert, H. Linnartz, M. Havenith, J.J. ter Meulen, and W.L. Meerts, "Tunable infrared and far-infrared direct absorption spectroscopy of molecular ions in a supersonic jet expansion," Chem. Phys. Letters. 219, 384-388 (1994); M. López-Puertas, J.-M. Flaud, J. Peralta-Calvillo, B. Funke, and S. Gil-López, "NO⁺ fundamental and first hot rovibrational line frequencies from MIPAS/Envisat atmospheric spectra," J. Mol. Spectrosc. 237, 218-224 (2006); W.C. Bowman, E. Herbst, and F.C. De Lucia, "Millimeter and submillimeter spectrum of NO⁺," J. Chem. Phys. 77, 4261–4262 (1982); E. Miescher, "Rotationsanalyse der NO⁺-banden," *Helv. Phys. Acta* **29**, 135–144 (1956).

Intensities

1. H.-J. Werner and P. Rosmus, "Ab Initio Calculations of Radiative Transition Probabilities in the $X^1\Sigma^+$ Ground State of the NO⁺ Ion," *J.Mol.Spectrosc.* **96**, 362-367 (1982).

Half-widths (air)

1. Default value of 0.06 cm⁻¹/atm chosen, but applications are most likely not required to work in Lorentzian regime.

HOBr [37] 169, 161

Positions

1. E.A. Cohen, G.A. McRae, T.L. Tan, R.R. Friedl, J.W.C. Johns, and N. Noël, "The v₁ Band of HOBr," *J.Mol.Spectrosc.* **173**, 55-61 (1995).

Intensities

1. Y. Koga, H. Takeo, S. Kondo, M. Sugie, C. Matsumura, G.A. Rae, and E.A. Cohen, "The Rotational Spectra, Molecular Structure, Dipole Moment, and Hyperfine Constants of HOBr and DOBr," *J.Mol.Spectrosc.* **138**, 467-481 (1989).

Half-widths (air)

1. A constant value of $0.06 \text{ cm}^{-1}/\text{atm}$ has been assumed for the air-broadened halfwidth with a temperature-dependence coefficient n = 0.67.

C₂H₄ [38] 221, 231

Positions

- 1. I. Cauuet, J. Walrand, G. Blanquet, A. Valentin, L. Henry, Ch. Lambeau,
- M. DeVleeschouwer, and A. Fayt, "Extension to Third-Order Coriolis Terms of the Analysis of v_{10} , v_7 , and v_4 Levels of Ethylene on the Basis of Fourier Transform and Diode Laser Spectra," *J.Mol.Spectrosc.* **139**, 191-214 (1990); J. Legrand, M. Azizi, F. Herlemont, and A. Fayt, "Saturation Spectroscopy of C_2H_4 Using a CO_2 Laser Sideband Spectrometer," *J.Mol.Spectrosc.* **171**, 13-21 (1995); E. Rusinek, H. Fichoux, M. Khelkhal, F. Herlemont, J. Legrand, and A. Fayt, "Subdoppler study of the v_7 band of C_2H_4 with a CO_2 Laser Sideband Spectrometer," *J.Mol.Spectrosc.* 189, 64-73 (1998).
- 2. A.S. Pine, "Tunable laser survey of molecular air poluants," Final Report NSF/ASRA/DAR 78-24562, MIT, Lexington, MA (1980).
- **3.** M. Rotger, V. Boudon, and J. Vander Auwera, "Line positions and intensities in the v_{12} band of ethylene near 1450 cm⁻¹: An experimental and theoretical study," *JQSRT* **109**, 952-962 (2008).

Intensities

- 1. I. Cauuet, J. Walrand, G. Blanquet, A. Valentin, L. Henry, Ch. Lambeau,
- M. DeVleeschouwer, and A. Fayt, "Extension to Third-Order Coriolis Terms of the Analysis of v_{10} , v_7 , and v_4 Levels of Ethylene on the Basis of Fourier Transform and Diode Laser Spectra," *J.Mol.Spectrosc.* **139**, 191-214 (1990); W.E. Blass, L. Jennings, A.C. Ewing, S.J. Daunt, M.C. Weber, L. Senesac, S. Hager, J.J. Hillman, D.C. Reuter, and J.M. Sirota, "Absolute intensities in the v_7 band of ethylene: tunable laser measurements used to calibrate FTS broadband spectra," *JQSRT* **68**, 467-472 (2001).
- 2. A.S.Pine, "Tunable laser survey of molecular air poluants," Final Report NSF/ASRA/DAR 78-24562, MIT, Lexington, MA (1980); M. Dang-Nhu, A.S. Pine, A. Fayt, M. DeVleeschouwer, and C. Lambeau, "Les intensités dans la pentade v_{11} , $v_2 + v_{12}$, $2v_{10} + v_{12}$, v_9 et

Devices chouser, and C. Lambeau, Les intensites dans la pentade v_{11} , $v_2 + v_{12}$, $2v_{10} + v_{12}$, $v_{10} + v_{12} +$

3. M. Rotger, V. Boudon, and J. Vander Auwera, "Line positions and intensities in the v_{12} band of ethylene near 1450 cm⁻¹: An experimental and theoretical study," *JQSRT* **109**, 952-962 (2008).

Half-widths (air)

- 1. J.F. Brannon, Jr. and P. Varanasi, "Tunable Diode Laser Measurements on the 951.7393 cm⁻¹ Line of ¹²C₂H₄ at Planetary Atmospheric Temperatures," *JQSRT* 47, 237-242 (1992).
- **2.** M. Rotger, V. Boudon, and J. Vander Auwera, "Line positions and intensities in the v_{12} band of ethylene near 1450 cm⁻¹: An experimental and theoretical study," *JQSRT* **109**, 952-962 (2008).

Half-widths (self)

1. M. Rotger, V. Boudon, and J. Vander Auwera, "Line positions and intensities in the v_{12} band of ethylene near 1450 cm⁻¹: An experimental and theoretical study," *JQSRT* **109**, 952-962 (2008).

Temperature dependence of air-broadened half-width

1. J.F. Brannon, Jr. and P. Varanasi, "Tunable Diode Laser Measurements on the 951.7393 cm⁻¹ Line of ¹²C₂H₄ at Planetary Atmospheric Temperatures," *JQSRT* **47**, 237-242 (1992).

CH₃OH [39] 2161

Positions

- 1. L.H. Xu, R.M. Lees, P. Wang, L.R. Brown, I. Kleiner, and J.W.C. Johns, "New assignments, line intensities and HITRAN database for CH₃OH at 10 μm," *J.Mol.Spectrosc.* **228**, 453-470 (2004).
- **2.** H.S.P. Müller, S. Thorwirth, D.A. Roth, and G Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS," *A&A* **370**, L49-L52 (2001).

Intensities

- 1. L.H. Xu, R.M. Lees, P. Wang, L.R. Brown, I. Kleiner, and J.W.C. Johns, "New assignments, line intensities and HITRAN database for CH₃OH at 10 μm," *J.Mol.Spectrosc.* **228**, 453-470 (2004).
- **2.** H.S.P. Müller, S. Thorwirth, D.A. Roth, and G Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS," *A&A* **370**, L49-L52 (2001).

Half-widths (air)

1. L.H. Xu, R.M. Lees, P. Wang, L.R. Brown, I. Kleiner, and J.W.C. Johns, "New assignments, line intensities and HITRAN database for CH_3OH at 10 μm ," *J.Mol.Spectrosc.* **228**, 453-470 (2004).

Half-widths (self)

1. L.H. Xu, R.M. Lees, P. Wang, L.R. Brown, I. Kleiner, and J.W.C. Johns, "New assignments, line intensities and HITRAN database for CH₃OH at 10 μm," *J.Mol.Spectrosc.* **228**, 453-470 (2004).

Temperature dependence of air-broadened half-width

1. L.H. Xu, R.M. Lees, P. Wang, L.R. Brown, I. Kleiner, and J.W.C. Johns, "New assignments, line intensities and HITRAN database for CH_3OH at 10 μm ," *J.Mol.Spectrosc.* **228**, 453-470 (2004).

CH₃Br [40] 219, 211

Positions

- 1. D. Jacquemart, F. Kwabia Tchana, N. Lacome, and I. Kleiner, "A complete set of line parameters for CH₃Br in the 10-μm spectral region," *JQSRT* **105**, 264-302 (2007).
- **2.** F. Kwabia Tchana, I. Kleiner, J. Orphal, N. Lacome, and O. Bouba, "New analysis of the Coriolis-interacting v_2 and v_5 bands of $CH_3^{79}Br$ and $CH_3^{81}Br$," *J Mol Spectrosc* **228**, 441-452 (2004).

Intensities

- **1.** D. Jacquemart, F. Kwabia Tchana, N. Lacome, and I. Kleiner, "A complete set of line parameters for CH₃Br in the 10-μm spectral region," *JQSRT* **105**, 264-302 (2007).
- 2. F. Kwabia Tchana, D. Jacquemart, N. Lacome, I. Kleiner, and J. Orphal, "Absolute line intensities in methyl bromide: The 7-μm region," *J Mol Spectrosc* **235**, 132-143 (2006).

Halfwidths (air)

1. D. Jacquemart, F. Kwabia Tchana, N. Lacome, and I. Kleiner, "A complete set of line parameters for CH₃Br in the 10-μm spectral region," *JQSRT* **105**, 264-302 (2007).

Halfwidths (self)

1. D. Jacquemart, F. Kwabia Tchana, N. Lacome, and I. Kleiner, "A complete set of line parameters for CH₃Br in the 10-μm spectral region," *JQSRT* **105**, 264-302 (2007).

Temperature dependence of air-broadened half-width

1. D. Jacquemart and H. Tran, "Temperature dependence of self- and N₂-broadening coefficients for CH₃Br in the 10-μm spectral region," *JQSRT* **109**, 569-579 (2008).

CH₃CN [41] 2124

Positions

1. C.P. Rinsland, V. Malathy Devi, D. Chris Benner, T.A. Blake, R.L. Sams, L.R. Brown, I. Kleiner, A. Dehayem-Kamadjeu, H.S.P. Müller, R.R. Gamache, D.L. Niles, and T. Masiello, "Multispectrum analysis of the v₄ band of CH₃CN: Positions, intensities, self- and N₂-broadening, and pressure-induced shifts," *JQSRT* 109, 974-994 (2008).

Intensities

1. C.P. Rinsland, V. Malathy Devi, D. Chris Benner, T.A. Blake, R.L. Sams, L.R. Brown, I. Kleiner, A. Dehayem-Kamadjeu, H.S.P. Müller, R.R. Gamache, D.L. Niles, and T. Masiello, "Multispectrum analysis of the v₄ band of CH₃CN: Positions, intensities, self- and N₂-broadening, and pressure-induced shifts," *JQSRT* **109**, 974-994 (2008).

Halfwidths (air)

1. C.P. Rinsland, V. Malathy Devi, D. Chris Benner, T.A. Blake, R.L. Sams, L.R. Brown, I. Kleiner, A. Dehayem-Kamadjeu, H.S.P. Müller, R.R. Gamache, D.L. Niles, and T. Masiello, "Multispectrum analysis of the v₄ band of CH₃CN: Positions, intensities, self- and N₂-broadening, and pressure-induced shifts," *JQSRT* **109**, 974-994 (2008).

Halfwidths (self)

1. C.P. Rinsland, V. Malathy Devi, D. Chris Benner, T.A. Blake, R.L. Sams, L.R. Brown, I. Kleiner, A. Dehayem-Kamadjeu, H.S.P. Müller, R.R. Gamache, D.L. Niles, and T. Masiello, "Multispectrum analysis of the v_4 band of CH₃CN: Positions, intensities, self- and N₂-broadening, and pressure-induced shifts," *JQSRT* **109**, 974-994 (2008).

Temperature dependence of air-broadened half-width

1. C.P. Rinsland, V. Malathy Devi, D. Chris Benner, T.A. Blake, R.L. Sams, L.R. Brown, I. Kleiner, A. Dehayem-Kamadjeu, H.S.P. Müller, R.R. Gamache, D.L. Niles, and T. Masiello, "Multispectrum analysis of the v₄ band of CH₃CN: Positions, intensities, self- and N₂-broadening, and pressure-induced shifts," *JOSRT* **109**, 974-994 (2008).

Shifts

1. C.P. Rinsland, V. Malathy Devi, D. Chris Benner, T.A. Blake, R.L. Sams, L.R. Brown, I. Kleiner, A. Dehayem-Kamadjeu, H.S.P. Müller, R.R. Gamache, D.L. Niles, and T. Masiello, "Multispectrum analysis of the ν_4 band of CH₃CN: Positions, intensities, self- and N₂-broadening, and pressure-induced shifts," *JQSRT* **109**, 974-994 (2008).

CF₄ [42] 29

Positions

1. V. Boudon, Université de Bourgogne, private communication (2008).

Intensities

1. V. Boudon, Université de Bourgogne, private communication (2008).

Half-widths (air)

1. S. Höjer and R.D. May, "Air-Broadening Coefficients for the ν₃ Band of CF₄," *J.Mol.Spectrosc.* **178**, 139-142 (1996).

Half-widths (self)

1. Estimate (0.08 cm⁻¹atm⁻¹).

Temperature dependence of air-broadened half-width

1. S. Höjer and R.D. May, "Air-Broadening Coefficients for the ν₃ Band of CF₄," *J.Mol.Spectrosc.* **178**, 139-142 (1996).

CS [46] 22, 23, 24, 32

Positions

1. H.S.P. Müller, F. Schloder, J. Stutzki, and G. Winnewisser, "The Cologne Database for Molecular Spectroscopy, CDMS: a useful tool for astronomers and spectroscopists," *J.Mol.Struct.* **742**, 215-227 (2005). Data adopted in June 2011.

Intensities

1. S. Chandra, W.H. Kegel, R.J. Le Roy, and T. Hertenstein, "Einstein A-coefficients for Vibrotational Transitions in CS," *Astron. Astrophys. Suppl. Ser.* 114, 175-177 (1995). (Intensities obtained from conversion of Einstein A-coefficients.)

Half-widths (air)

1. G. Blanquet, J. Walrand, and J.-P. Bouanich, " N_2 Broadening of Carbon Disulfide $^{12}C^{32}S_2$ in the v_3 and v_3 - v_1 Bands," *J.Mol.Spectrosc.* **198**, 408-415 (1999). (Estimate obtained from extrapolating CS nitrogen-broadening parameters from CS_2 -nitrogen broadening parameters by comparing CO to CO_2 air-broadening parameters found in the HITRAN2008 database.)

Half-widths (self)

1. F. Misago, M. Lepère, J.-P. Bouanich, and G. Blanquet, "Self-broadening Coefficients in the v_3 - v_1 Band of CS_2 ," *J.Mol.Spectrosc.* **254,** 16-19 (2009). (Estimate obtained from extrapolating CS nitrogen-broadening parameters from CS_2 -nitrogen broadening parameters by comparing CO to CO_2 self-broadening parameters found in the HITRAN2008 database.)

Temperature dependence of air-broadened half-width

1. Default value of 0.75 chosen.

** Cross-section files **

- **1.** S.T. Massie, A. Goldman, D.G. Murcray, and J.C. Gille, "Approximate absorption cross sections of F12, F11, ClONO₂, N₂O₅, HNO₃, CCl₄, CF₄, F21, F113, F114, and HNO₄," *Appl.Opt.* **24**, 3426-3427 (1985).
- 2. A.H. McDaniel, C.A. Cantrell, J.A. Davidson, R.E. Shetter, and J.G. Calvert, "The Temperature Dependent, Infrared Absorption Cross Sections for the Chlorofluorocarbons: CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113, CFC-114, and CFC-115," *J.Atmos.Chem.* 12, 211-227(1991); S.T. Massie, A. Goldman, A.H. McDaniel, C.A. Cantrell, J.A. Davidson, R.E. Shetter, and J.G. Calvert, "Temperature Dependent Infrared Cross Sections for CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113, CFC-114, and CFC-115," NCAR Technical Note/TN-358+STR (1991).
- **3.** C.A. Cantrell, J.A. Davidson, A.H. McDaniel, R.E. Shetter, and J.G. Calvert, "Infrared Absorption Cross Sections for N₂O₅," *Chem.Phys.Lett.* **148**, 358-363 (1988).
- **4.** J.J. Orlando, G.S. Tyndall, A. Huang, and J.G. Calvert, "Temperature Dependence of the Infrared Absorption Cross Sections of Carbon Tetrachloride," *Geophys.Res.Lett.* **19,** 1005-1008 (1992).
- **5.** J. Ballard, W.B. Johnston, M.R. Gunson, and P.T. Wassell, "Absolute Absorption Coefficients of ClONO₂ Infrared Bands at Stratospheric Temperatures," *J. Geophys. Res.* **93**, 1659-1665 (1988).
- 6. J. Orphal, M. Morillon-Chapey, and G. Guelachvili, "High-Resolution Absorption Cross Sections of Chlorine Nitrate in the v₂ Band Region around 1292 cm⁻¹ at Stratospheric Temperatures," *J. Geophys. Res. D* **99**, 14549-14555 (1994).
- **7.** K. Yoshino, D.E. Freeman, and W.H. Parkinson, "High Resolution Absorption Cross-Section Measurements of N₂O at 295-299K in the Wavelength Region 170-222 nm," *Planet.Space Sci.* **32,** 1219-1222 (1984).
- 8. D.E. Freeman, K. Yoshino, J.R. Esmond, and W.H. Parkinson, "High Resolution Absorption Cross Sections Measurements of SO₂ at 213K in the Wavelength Region 172-240 nm," *Planet.Space Sci.* **32**, 1125-1134 (1984).
- **9.** Z.H. Li and P. Varanasi, "Measurement of the Absorption Cross-Sections of CFC-11 at Conditions Representing Various Model Atmospheres," *JQSRT* **52**, 137-144 (1994).
- **10.** P. Varanasi, V. Nemtchinov, Z. Li, and A. Cherukuri, "Spectral Absorption-coefficient Data on HCFC-22 and SF₆ for Remote Sensing Applications," *JQSRT* **52**, 323-332 (1994).
- **11.** P. Varanasi and V. Nemtchinov, "Thermal Infrared Absorption Coefficients of CFC-12 at Atmospheric Conditions," *JQSRT* **51**, 679-687 (1994).
- **12.** K. Smith, D. Newnham, M. Page, J. Ballard, and G. Duxbury, "Infrared Absorption Cross-sections and Integrated Absorption Intensities of HCF-134 and HCF-143a Vapour," *JQSRT* **59**, 437-451 (1998).
- **13.** K. Smith, D. Newnham, M. Page, J. Ballard, and G. Duxbury, "Infrared Band Strengths and Absorption Cross-Sections of HFC-32 Vapour," *JQSRT* **56**, 73-82 (1996).
- **14.** C. Clerbaux, R. Colin, P.C. Simon, and C. Granier, "Infrared Cross Sections and Global Warming Potentials of 10 Alternative Hydrohalocarbons," *J. Geophys. Res.* **98,** 10491-10497 (1993).
- 15. P. Varanasi, private communication (2000).
- **16.** Q. Zou, C. Sun, V. Nemtchinov, and P. Varanasi, "Thermal infrared absorption cross-sections of C₂F₆ at atmospheric temperatures," *JOSRT* **83**, 215-221 (2004).
- 17. A.C. Vandaele, C. Hermans, P.C. Simon, M. Carleer, R. Colin, S. Fally, M.F. Mérienne, A. Jenouvrier, and B. Coquart, "Measurements of the NO₂ absorption cross-section from 42000

- cm⁻¹ to 10000 cm⁻¹ (238-1000 nm) at 220 K and 294 K," JQSRT 59, 171-184 (1997).
- **18.** G. Wagner and M. Birk, "New infrared spectroscopic database for chlorine nitrate," *JQSRT* **82,** 443-460 (2003).
- 19. A.M. Bass and R.J. Paur, "UV absorption cross-sections for ozone: The temperature dependence," *J.Photochem.* 17, 141 (1981); A.M. Bass and R.J. Paur, "The ultraviolet cross-sections of ozone: I The measurements," Atmospheric Ozone, edited by C.S. Zerefos and A. Ghazi, pp. 606-610, D. Reidel, Dordrecht, 1985; R.J. Paur and A.M. Bass, "The ultraviolet cross-sections of ozone: II Results and temperature dependence," Atmospheric Ozone, edited by C. S. Zerefos and A. Ghazi, pp. 611-616, D. Reidel, Dordrecht, 1985.
- **21.** V. Nemtchinov and P. Varanasi, "Absorption cross-sections of HFC-134a in the spectral region between 7 and 12 μm," *JQSRT* **83**, 285-294 (2004).
- 22. V. Nemtchinov and P. Varanasi, "Thermal Infrared Absorption Cross-sections of CCl₄ needed for Atmospheric Remote-Sensing," *JQSRT* 82, 473-482 (2003).
- **23.** V. Nemtchinov and P. Varanasi, "Thermal infrared absorption cross-sections of CF₄ for atmospheric applications," *JQSRT* **82**, 461-472 (2003).
- 24. C.P. Rinsland, S.W. Sharpe, and R.L. Sams, "Temperature-dependent cross-sections in the thermal infrared bands of SF₅CF₃," *JOSRT* 82,483-490 (2003).
- **25.** C.A. Cantrell, J.A. Davidson, A.H. McDaniel, R.E. Shetter, and J.G. Calvert, "Temperature-dependent formaldehyde cross sections in the near-ultraviolet spectral region," *J.Phys. Chem.* **94**, 3902-3908 (1990).
- **26.** D.M. Wilmouth, T.F. Hanisco, N.M. Donahue, and J.G. Anderson, "Fourier Transform Ultraviolet Spectroscopy of the A ${}^2\Pi_{3/2}$ X ${}^2\Pi_{3/2}$ Transition of BrO," *J.Phys. Chem.* **103**, 8935-8945 (1999).
- 27. R.D. May and R.R. Friedl, "Integrated band intensities of HO₂NO₂ at 220 K," *JQSRT* 50, 257-266 (1993).
- **28.** G.D. Greenblatt, J.J. Orlando, J.B. Burkholder, and A.R. Ravishankara, "Absorption measurements of oxygen between 330 and 1140 nm," *J.Geo.Res.* **95**, 18577-18582 (1990).
- **29.** H. Kromminga, J. Orphal, P. Spietz, S. Voigt, and J.P. Burrows, "The temperature dependence (213-293 K) of the absorption cross-sections of OClO in the 340-450 nm region measured by Fourier-transform spectroscopy," *J.Photochemistry and Photobiology A: Chemistry* **157**, 149-160 (2003).
- **30.** J. Orphal, C.E. Fellows, and P.-M. Flaud, "The visible absorption spectrum of NO₃ measured by high-resolution Fourier-transform spectroscopy," *J. Geo. Res.* **108** (**D3**), 4077 (2003).
- **31.** G. Allen, J.J. Remedios, D.A. Newnham, K.M. Smith, and P.S. Monks, "High resolution mid-infrared cross-sections for peroxyacetyl nitrate (PAN) vapour," *Atmos. Chem. Phys. Discuss.* **4,** 5656-5681 (2004).
- **32.** C.P. Rinsland, S.W. Sharpe, and R.L. Sams, "Temperature-dependent infrared absorption cross-sections of methyl cyanide (acetonitrile)" *JQSRT* **96**, 271-280 (2005).
- **33.** C.P. Rinsland, V.M. Devi, T.A. Blake, R.L. Sams, S.Sharpe, and L. Chiou, "Quantitative measurement of integrated band intensities of benzene vapor in the mid-infrared at 278, 298, and 323 K," *JQSRT* **109**, 2511-2522 (2008).
- **34.** S. Fally, M. Carleer, and A.C. Vandaele, "UV Fourier transform absorption cross sections of benzene, toluene, meta-, ortho-, and para-xylene." *JQSRT* **110**, 766-782 (2009).
- **35.** C. Hermans, A.C. Vandaele, and S. Fally, "Fourier Transform measurements of SO₂ absorption cross sections: I. Temperature dependence in the 23 500 29 000 cm⁻¹ (345-425 nm) region," *JQSRT* **110**, 756-765 (2009); A.C. Vandaele, C. Hermans, and S. Fally, "Fourier

- Transform measurements of SO_2 absorption cross sections: II. Temperature dependence in the 29 000 44 000 cm⁻¹ (227-345 nm) region," *JOSRT* **110**, 2115-2126 (2009).
- **36.** G. Di Lonardo and G. Masciarelli, "Infrared cross-sections and integrated absorption intensities of HFC-125 and HFC-143a," *JQSRT* **66**, 129-142 (2000).
- 37. J.J. Harrison and P.F. Bernath, "Infrared absorption cross sections for propane (C_3H_8) in the 3 µm region," *JQSRT* **111**, 1282-1288 (2010).
- 38. J.J. Harrison, N.D.C. Allen, and P.F. Bernath, "Infrared absorption cross sections for ethane (C_2H_6) in the 3 µm region," *JOSRT* 111, 357-363 (2010).
- **39.** J.J. Harrison, N.D.C. Allen, and P.F. Bernath, "Infrared absorption cross sections for acetone (propanone) in the 3 μm region," *JOSRT* **112**, 53-58 (2011).
- **40.** K.A. Tereszchuk and P.F. Bernath, "Infrared absorption cross sections for acetaldehyde (CH₃CHO) in the 3 μm region," *JQSRT* **112**, 990-993 (2011).
- **41.** J.J. Harrison, N. Humpage, N.D.C. Allen, A.M. Waterfall, P.F. Bernath, and J.J. Remedios, "Mid-infrared absorption cross sections for acetone (propanone)," *JQSRT* **112**, 457-464 (2011).
- **42.** Data originally from A.M. Waterfall, "Measurement of organic compounds in the upper troposphere using infrared remote sensing," D.Phil. thesis, University of Oxford, 2004, is scaled in Ref. 41 above.
- **43.** N.D.C. Allen, J.J. Harrison, and P.F.Bernath, "Acetonitrile (CH₃CN) infrared absorption cross sections in the 3 μm region," *JQSRT* **112**, 1961-1966 (2011).
- **44.** K. Chance and J. Orphal, "Revised ultraviolet absorption cross sections of H₂CO for the HITRAN database," *JQSRT* **112**, 1509-1510 (2011).
- **45.** K. Le Bris and K. Strong, "Temperature-dependent absorption cross-sections of HCFC-142b," *JQSRT* **111**, 364-371 (2010).

** Collision Induced Absorption (CIA) files **

- **1.** K. Smith K and D. Newnham, "Near-infrared absorption cross sections and integrated absorption intensities of molecular oxygen (O₂, O₂-O₂, and O₂-N₂)," *J. Geophys. Res.* **105**, 7383-7396 (2000).
- 2. G. Orton, Jet Propulsion Laboratory, private communication (2011).
- 3. Y.I. Baranov, W.J. Lafferty, and G.T. Fraser, "Investigation of collision-induced absorption in the vibrational fundamental bands of O_2 and N_2 at elevated temperatures," *J.Mol.Spectrosc.* **233**, 160-163 (2005).
- **4.** W.J. Lafferty, A.M. Solodov, A. Weber, W.B. Olson, and J.-M. Hartmann, "Infrared collision-induced absorption by N₂ near 4.3 μm for atmospheric applications: measurements and empirical modeling," *Appl.Opt.* **35**, 5911-5917 (1996).
- **5.** H. Tran, C. Boulet, and J.-M. Hartmann, "Line mixing and collision-induced absorption by oxygen in the A band: Laboratory measurements, model, and tools for atmospheric spectra computations," *J. Geophys. Res.* **111,** D15210 (2006).
- **6.** M. Vangvichith, H. Tran, and J.-M. Hartmann, "Line-mixing and collision induced absorption for O₂-CO₂ mixtures in the oxygen A-band region," *JOSRT* **110**, 2212-2216 (2009).
- 7. M. Abel, L. Frommhold, X. Li, and K.L.C. Hunt, "Collision-Induced Absorption by H₂ Pairs: From Hundreds to Thousands of Kelvin," *J. Phys. Chem. A* (2011).
- 8. M. Abel, L. Frommhold, X. Li, and K. Hunt, "Infrared absorption by collisional H_2 -He complexes at temperatures up to 9,000 K and frequencies from 0 to 20,000 cm⁻¹," *J. Chem. Phys.* in press (2011).
- 9. G.D. Greenblatt, J.J. Orlando, J.B. Burkholder, and A.R. Ravishankara, "Absorption measurements of oxygen between 330 and 1140 nm," *J.Geophys.Res.* 95, 18577-18582 (1990).
 10. Christian Hermans, *et al.*, Belgian Institute of Space Aeronomy, see http://spectrolab.aeronomie.be/o2.htm (downloaded April, 2011).

Molecules and isotopologues in line-by-line portion of HITRAN

Molecule Number	Molecule	Isotopologue (AFGL notation)	Fractional Abundance	Spectral Coverage (cm ⁻¹)	Number of lines
1	H ₂ O	161 181 171 162 182 172	0.9973 1.999 10 ⁻³ 3.719 10 ⁻⁴ 3.107 10 ⁻⁴ 6.230 10 ⁻⁷ 1.158 10 ⁻⁷	$0-25233 \\ 0-14519 \\ 10-14473 \\ 0-22708 \\ 0-3825 \\ 1234-1599$	37432 9753 6992 5 13238 6 1611 175
2	CO ₂	626 636 628 627 638 637 828 827 838	0.9842 1.106 10 ⁻² 3.947 10 ⁻³ 7.339 10 ⁻⁴ 4.434 10 ⁻⁵ 8.246 10 ⁻⁶ 3.957 10 ⁻⁶ 1.472 10 ⁻⁶ 4.446 10 ⁻⁸	352 - 12785 $438 - 12463$ $0 - 11423$ $0 - 8271$ $489 - 6745$ $583 - 6769$ $491 - 8161$ $626 - 5047$ $4599 - 4888$	128170 49777 79958 19264 61 26737 64 2953 E 7118 821 121
3	O ₃	666 668 686 667 676	0.9929 3.982 10 ⁻³ 1.991 10 ⁻³ 7.405 10 ⁻⁴ 3.702 10 ⁻⁴	0-5787 $0-2768$ $1-2740$ $0-2122$ $0-2101$	249456 44302
4	N ₂ O	446 456 546 448 447	0.9903 3.641 10 ⁻³ 3.641 10 ⁻³ 1.986 10 ⁻³ 3.693 10 ⁻⁴	0 - 7797 $5 - 5086$ $4 - 4704$ $542 - 4672$ $550 - 4430$	33074 4222 4592 4250 47 1705
5	СО	26 36 28 27 38 37	0.9865 1.108 10 ⁻² 1.978 10 ⁻³ 3.679 10 ⁻⁴ 2.222 10 ⁻⁵ 4.133 10 ⁻⁶	$ \begin{array}{r} 3 - 8465 \\ 3 - 6279 \\ 3 - 6267 \\ 3 - 6339 \\ 3 - 6124 \\ 1807 - 6197 \end{array} $	917 780 760 728 \$ 712 580
6	CH ₄	211 311 212 312	0.9883 1.110 10 ⁻² 6.158 10 ⁻⁴ 6.918 10 ⁻⁶	0 - 9200 0 - 6070 7 - 6511 959 - 1695	212061 28793 66 45024 67 4213
7	O_2	66 68 67	0.9953 3.991 10 ⁻³ 7.422 10 ⁻⁴	0 - 15928 $1 - 15852$ $0 - 14537$	1431 674 4325 674 4325

Molecule Number	Molecule	Isotopologue (AFGL notation)	Fractional Abundance	Spectral Coverage (cm ⁻¹)	Number of lines	Total number
8	NO	46 56 48	0.9940 3.654 10 ⁻³ 1.993 10 ⁻³	0 - 9274 $1609 - 2061$ $1602 - 2039$	103701 699 679	105079
9	SO ₂	626 646	0.9457 4.195 10 ⁻²	0 - 4093 0 - 2501	72460 22661	95121
10	NO_2	646	0.9916	0 - 3075	104223	104223
11	NH ₃	446 456	0.9959 3.661 10 ⁻³	0 - 5295 0 - 5180	27994 1090	29084
12	HNO ₃	146	0.9891	0 - 1770	487254	487254
13	ОН	61 81 62	0.9975 2.000 10 ⁻³ 1.554 10 ⁻⁴	0 - 19268 0 - 329 0 - 332	30769 295 912	31976
14	HF	19	0.9998	41 – 11536	107	107
15	HC1	15 17	0.7576 0.2422	20 – 13459 20 – 10995	324 289	613
16	HBr	19 11	0.5068 0.4931	16 – 9759 16 – 9758	651 642	1293
17	HI	17	0.9998	12 - 8488	806	806
18	ClO	56 76	0.7559 0.2417	0 - 1208 0 - 1200	5721 5780	11501
19	OCS	622 624 632 623 822	0.9374 4.158 10 ⁻² 1.053 10 ⁻² 7.399 10 ⁻³ 1.880 10 ⁻³	0-4200 $0-4166$ $0-4056$ $0-4164$ $0-4046$	15618 6087 3129 2886 1641	29361
20	H ₂ CO	126 136 128	0.9862 1.108 10 ⁻² 1.978 10 ⁻³	0 - 3100 $0 - 73$ $0 - 48$	36120 563 367	37050
21	HOC1	165 167	0.7558 0.2417	1 - 3800 $1 - 3800$	8877 7399	16276
22	N ₂	44	0.9927	1992 – 2626	120	120
23	HCN	124 134 125	0.9851 1.107 10 ⁻² 3.622 10 ⁻³	0 - 3424 $2 - 3405$ $2 - 3420$	2955 652 646	4253
24	CH ₃ Cl	215 217	0.7489 0.2395	0 - 3173 0 - 3162	100293 95927	196220
25	H_2O_2	1661	0.9950	0 - 1731	126983	126983
26	C ₂ H ₂	1221 1231	0.9776 2.197 10 ⁻²	604 – 9890 613 – 6589	11055 285	11340

27	C_2H_6	1221	0.9770	706 - 3001	28439	28439
28	PH ₃	1111	0.9995	770 - 3602	20099	20099
Molecule Number	Molecule	Isotopologue (AFGL notation)	Fractional Abundance	Spectral Coverage (cm ⁻¹)	Number of lines	Total number
29	COF ₂	269	0.9865	725 - 2002	70601	70601
30	SF ₆	29	0.9502	580 – 996	2889065	2889065
31	H_2S	121 141 131	0.9499 4.214 10 ⁻² 7.498 10 ⁻³	2 - 4257 $5 - 4172$ $5 - 4099$	12330 4894 3564	20788
32	НСООН	126	0.9839	10 - 1890	62684	62684
33	HO ₂	166	0.9951	0 - 3676	38804	38804
34	0	6	0.9976	68 - 159	2	2
35	ClONO ₂	5646 7646	0.7496 0.2397	763 – 798 765 – 791	21988 10211	32199
36	NO ⁺	46	0.9940	1634 - 2531	1206	1206
37	HOBr	169 161	0.5056 0.4919	0 - 316 0 - 316	2177 2181	4358
38	C_2H_4	221 231	0.9773 2.196 10 ⁻²	701 - 3243 $2947 - 3181$	18097 281	18378
39	CH ₃ OH	2161	0.9859	0 - 1408	19897	19897
40	CH ₃ Br	219 211	0.5010 0.4874	794 – 1706 796 – 1697	18692 18219	36911
41	CH ₃ CN	2124	0.9739	890 – 946	3572	3572
42	CF ₄	29	0.9889	594 – 1313	60033	60033

Note: Rows highlighted in pink are for molecules that have been relegated to a sub-folder since they do not have sufficient hot bands included.

Uncertainty Codes used in HITRAN Database

Line	position and Pressure shift (cm ⁻¹)	Intensity, Halfwidths, and Temperature-dependence		
Code	Uncertainty Range	Code	Uncertainty Range	
0	≥1. or Unreported	0	Unreported or Unavailable	
1	≥0.1 and <1.	1	Default or Constant	
2	≥0.01 and <0.1	2	Average or Estimate	
3	≥0.001 and <0.01	3	≥ 20%	
4	≥0.0001 and <0.001	4	≥ 10% and < 20%	
5	≥0.00001 and <0.0001	5	≥ 5% and < 10%	
6	≥0.000001 and <0.00001	6	≥ 2% and < 5%	
7	≥0.0000001 and <0.000001	7	≥ 1% and < 2%	
8	≥0.00000001 and <0.0000001	8	< 1%	
9	≥0.000000001			