8.2 Energiemethode zur Lösung der Differentialgleichung y'' = f(y): Man multipliziert die Gleichung mit 2y' und benutzt $(y'^2)' = 2y'y''$.

Behandle das Anfangswertproblem $y'' = 2e^y, y(0) = 0, y'(0) = -2$ auf diese Weise.

Bedingung y'(0) = -2, y(0) = 0 einsetzen:

$$\begin{array}{rcl}
\Leftrightarrow & c &=& 1 - e^0 = 0 \\
\Rightarrow & y' &=& -2e^{\frac{1}{2}y}
\end{array}$$

Substitution mit $z = y'^{-1}$:

Rücksubstitution von $z = y'^{-1}$:

$$\Leftrightarrow \qquad \qquad y' = -\frac{1}{\frac{1}{2}x+c}$$

Bedingung y'(0) = -2 einsetzen:

$$\Leftrightarrow \qquad \qquad -\frac{1}{0+c} = -2$$

$$\Leftrightarrow \qquad \qquad c = \frac{1}{2}$$

$$\Rightarrow \qquad \qquad y'(x) = -\frac{2}{(x+1)} \qquad | \text{ integrieren} |$$

$$\Leftrightarrow \qquad \qquad y(x) = -2 \int \frac{1}{(x+1)} dx$$

Substitution mit $u = x + 1 \Rightarrow dx = 1du$:

Rücksubstitution von u = x + 1:

$$\Leftrightarrow \qquad y(x) = -2\ln(x+1) + c$$

Bedingung y(0) = 0 einsetzen:

$$\Leftrightarrow -2\ln(x+1) + c = 0$$

$$\Leftrightarrow c = 0$$

$$\Rightarrow y(x) = -2\ln(x+1)$$

8.3 Auf Grund des Gravitationsgesetzes beschreibt das Anfangswertproblem

$$m\ddot{r} = -\gamma \frac{Mm}{r^2}, \quad r(0) = R, \quad \dot{r}(0) = v_0$$

Die Flugbahn eines Körpers der Masse m zur Erde hin bzw. von der Erde weg. Dabei ist r(t) der Abstand des Körpers vom Erdmittelpunkt zur Zeit t, M die Erdmasse, und die Gravitationskonstante ist mit γ bezeichnet.

(a) Forme geeignet um, und führe die Differentialgleichung in eine Differentialgleichung erster Ordnung über (vgl. Aufgabe 8.2); die entstehende Gleichung muss nicht gelöst werden. Berücksichtige die Anfangsbedingungen.

$$\Leftrightarrow \qquad \qquad \ddot{r} \quad = \quad -\gamma M r^{-2}$$

Energiemethode anwenden:

Bedingungen $r(0) = R, \dot{r} = v_0$ einsetzen:

$$\Leftrightarrow \qquad 2\gamma M(R^{-1}+c) = v_0^2 \\ \Leftrightarrow \qquad c = \frac{v_0^2}{2\gamma M} - \frac{1}{R}$$

c einsetzen:

$$\Leftrightarrow 2\gamma M(r^{-1} + \frac{v_0^2}{2\gamma M} - \frac{1}{R}) = \dot{r}^2$$

$$\Leftrightarrow v_0^2 - \frac{2\gamma M}{R} = \dot{r}^2 - \frac{2\gamma M}{r}$$

(b) Es soll die kleinste Geschwindigkeit v_0 (Fluchtgeschwindigkeit von der Erde, zweite kosmische Geschwindigkeit) ermittelt werden, für die die Bewegung bis ins Unendliche reicht, also nicht umkehrt. Dem entsprechen die beiden Forderungen $r(t) \to \infty$ und $\dot{r}(t) \to 0$ für $t \to \infty$.

$$(M = 5.97 \cdot 10^{24} kg, \gamma = 6.673 \cdot 10^{-11} m^3 kg^{-1} s^{-2}, R = 6.370 \cdot 10^6 m)$$

$$\Leftrightarrow v_0^2 - \frac{2\gamma M}{R} = \lim_{t \to \infty} \dot{r}^2 - \frac{2\gamma M}{r}$$

$$\Leftrightarrow v_0^2 - \frac{2\gamma M}{R} = 0 - 0$$

$$\Leftrightarrow v_0 = \sqrt{\frac{2\gamma M}{R}}$$

Werte einsetzen:

$$\Rightarrow$$
 $v_0 \approx 11183.8932 \frac{m}{s} = 1.1183 \cdot 10^4 \frac{m}{s}$

- (c) Löse das Anfangswertproblem, falls v_0 die zweite kosmische Geschwindigkeit ist.
- 8.4 gegeben sei die Differentialgleichung

$$(*) \quad y' = \sqrt{y}$$

- (a) Bestimme eine Lösung von (*) zum Anfangswert y(2) = 1. Ist diese eindeutig?
- (b) Finde mindestens drei Lösungen von (*) zum Anfangswert y(0) = 0.
- (c) Skizziere das durch die Differentialgleichung gegebene Richtungsfeld und trage die gefundenen Lösungen ein.
- (d) Erfüllt die rechte Seite von (*) eine Lipschitz-Bedingung?
- 8.5 Bestimme die allgemeine Lösung des Differentialgleichungssystems $y' = \begin{pmatrix} 1 & 2 \\ 3 & 2 \end{pmatrix} y$.

Berechne die Lösung zum Anfangswert $y(0)=\begin{pmatrix}1\\0\end{pmatrix}$