
Sequence Listing was accepted.

If you need help call the Patent Electronic Business Center at (866) 217-9197 (toll free).

Reviewer: Anne Corrigan

Timestamp: [year=2011; month=1; day=19; hr=11; min=15; sec=41; ms=273;]

Validated By CRFValidator v 1.0.3

Application No: 10561040 Version No: 2.0

Input Set:

Output Set:

Started: 2011-01-13 17:01:28.567

Finished: 2011-01-13 17:01:31.636

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 69 ms

Total Warnings: 23

Total Errors: 0

No. of SeqIDs Defined: 23

Actual SeqID Count: 23

Err	or code	Error Description
W	402	Undefined organism found in <213> in SEQ ID (1)
W	402	Undefined organism found in <213> in SEQ ID (2)
W	213	Artificial or Unknown found in <213> in SEQ ID (3)
W	213	Artificial or Unknown found in <213> in SEQ ID (4)
W	213	Artificial or Unknown found in <213> in SEQ ID (5)
W	213	Artificial or Unknown found in <213> in SEQ ID (6)
W	213	Artificial or Unknown found in <213> in SEQ ID (7)
W	213	Artificial or Unknown found in <213> in SEQ ID (8)
W	213	Artificial or Unknown found in <213> in SEQ ID (9)
W	213	Artificial or Unknown found in <213> in SEQ ID (10)
W	213	Artificial or Unknown found in <213> in SEQ ID (11)
W	402	Undefined organism found in <213> in SEQ ID (12)
W	402	Undefined organism found in <213> in SEQ ID (13)
W	402	Undefined organism found in <213> in SEQ ID (14)
W	402	Undefined organism found in <213> in SEQ ID (15)
W	402	Undefined organism found in <213> in SEQ ID (16)
W	402	Undefined organism found in <213> in SEQ ID (17)
W	402	Undefined organism found in <213> in SEQ ID (18)
W	402	Undefined organism found in <213> in SEQ ID (19)
W	402	Undefined organism found in <213> in SEQ ID (20)

Input Set:

Output Set:

Started: 2011-01-13 17:01:28.567

Finished: 2011-01-13 17:01:31.636

Elapsed: 0 hr(s) 0 min(s) 3 sec(s) 69 ms

Total Warnings: 23

Total Errors: 0

No. of SeqIDs Defined: 23

Actual SeqID Count: 23

Err	or code	Error Description	
W	402	Undefined organism found in <213> in SEQ ID (21	L)
W	402	Undefined organism found in <213> in SEQ ID (22	2)
W	402	Undefined organism found in <213> in SEQ ID (23	3)

SEQUENCE LISTING

<110> MIYAWAKI, ATSUSHI TSUTSUI, HIDEKAZU KARASAWA, SATOSHI <120> FLUORESCENT PROTEIN <130> P28994 <140> 10561040 <141> 2006-10-16 <150> PCT/JP04/08790 <151> 2004-06-16 <150> JP 2003-170330 <151> 2003-06-16 <160> 23 <170> PatentIn version 3.5 <210> 1 <211> 227 <212> PRT <213> Favia favus <400> 1 Met Ser Val Ile Thr Ser Glu Met Lys Met Glu Leu Arg Met Glu Gly 10 5 Ala Val Asn Gly His Lys Phe Val Ile Thr Gly Lys Gly Ser Gly Gln 20 25 Pro Phe Glu Gly Ile Gln Asn Met Asp Leu Thr Val Ile Glu Gly Gly 35 40 Pro Leu Pro Phe Ala Phe Asp Ile Leu Thr Thr Val Phe Asp Tyr Gly 50 55 60 Asn Arg Val Phe Val Lys Tyr Pro Glu Glu Ile Val Asp Tyr Phe Lys 75 70 65 Gln Ser Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ser Met Ser Tyr Glu 85 90

Asp Gly Gly Ile Cys Leu Ala Thr Asn Asn Ile Thr Met Lys Lys Asp 100 105 110

Gly Ser Asn Cy 115	ys Phe Val	Tyr Glu Ile 120	_	Gly Val Asn 125	Phe
Pro Ala Asn Gi 130	-	Met Gln Arg 135	Lys Thr Val I 140	Lys Trp Glu	Pro
Ser Thr Glu Ly	ys Met Tyr 150	Val Arg Asp	Gly Val Leu I 155	Lys Gly Asp	Val 160
Asn Met Ala Le	eu Leu Leu 165		Gly His Tyr <i>F</i> 170	Arg Cys Asp 175	Phe
Arg Thr Thr Ty	yr Lys Ala : 30	Lys Lys Val 185	Val Gln Leu E	Pro Asp Tyr 190	His
Phe Val Asp H:	is Arg Ile	Glu Ile Thr 200	_	Lys Asp Tyr 205	Asn
Lys Val Lys Le		His Ala Lys 215	Ala His Ser C	Gly Leu Pro	Arg
Leu Ala Lys 225					
<210> 2 <211> 684 <212> DNA <213> Favia fa	avus				
<220> <221> CDS <222> (1)(68	31)				
<400> 2 atg agt gtg at Met Ser Val II 1		Glu Met Lys			
gct gta aac gg Ala Val Asn Gl 20	ly His Lys				7
cct ttc gag gg Pro Phe Glu GI 35	-		Leu Thr Val 1		

cct ctt cct ttt gct ttc gat atc ctg aca aca gta ttc gat tac ggc 192

Pro	Leu 50	Pro	Phe	Ala	Phe	Asp 55	Ile	Leu	Thr	Thr	Val 60	Phe	Asp	Tyr	Gly	
		-		-		tac Tyr		_	_		-	-			_	240
_	_					tat Tyr			-	_	_	_	_		_	288
_				_		gcc Ala					_	_	_		_	336
	-		-		-	tat Tyr	-		-		-					384
	-				-	atg Met 135	_		_		-					432
				_		gtg Val	_	-			_	_		-	_	480
	_	_	_	_		caa Gln						_	_	_		528
_					_	aag Lys	_	_	_	_	_		_			576
		_		_		gag Glu			_		_	_	_			624
						cat His 215										672
_	gcc Ala	aag Lys	taa													684
<211 <212	<210> 3 <211> 23 <212> DNA <213> Artificial Sequence															
	<213> Artificial Sequence <220> <223> Description of Artificial Sequence: Synthetic															

<223> Description of Artificial Sequence: Synthetic primer

```
<220>
<221> modified_base
<222> (3)..(3)
<223> Inosine
<220>
<221> modified_base
<222> (9)..(9)
<223> Inosine
<220>
<221> modified_base
<222> (21)..(21)
<223> a, c, t, g, unknown or other
<400> 3
ggnwsbgtna ayggvcayda ntt
                                                                          23
<210> 4
<211> 27
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 4
aactggaaga attcgcggcc gcaggaa
                                                                          27
<210> 5
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<220>
<221> modified_base
<222> (11)..(11)
<223> Inosine
<220>
<221> modified_base
<222> (14)..(14)
<223> Inosine
<220>
<221> modified_base
<222> (20)..(20)
<223> Inosine
```

```
<400> 5
                                                                          23
tgccwtttgc nttngayatn ttg
<210> 6
<211> 35
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<220>
<221> modified_base
<222> (4)..(4)
<223> Inosine
<220>
<221> modified_base
<222> (15)..(15)
<223> Inosine
<220>
<221> modified_base
<222> (18)..(18)
<223> Inosine
<220>
<221> modified_base
<222> (21)..(21)
<223> Inosine
<400> 6
                                                                          35
gtcntcttyt gcacnacngg nccatydgva ggaaa
<210> 7
<211> 36
<212> DNA
<213> Artificial Sequence
```

```
<220>
<223> Description of Artificial Sequence: Synthetic
    primer

<220>
<221> modified_base
<222> (24)..(25)
<223> Inosine

<220>
<221> modified_base
<222> (29)..(30)
```

```
<223> Inosine
<220>
<221> modified_base
<222> (34)..(35)
<223> Inosine
<400> 7
ggccacgcgt cgactagtac gggnngggnn gggnng
                                                                          36
<210> 8
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 8
ttgtcaagat atcgaaagcg aacggcagag
                                                                          30
<210> 9
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 9
ggccacgcgt cgactagtac
                                                                          20
<210> 10
<211> 30
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
      primer
<400> 10
                                                                          30
gtccaccctc tacgactttg agttccatat
<210> 11
<211> 44
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: Synthetic
```

<400> 11

cccggatccg atgagtgtga ttacawcaga aatgaagatg gagc

44

<210> 12

<211> 227

<212> PRT

<213> Favia favus

<400> 12

Met Ser Val Ile Thr Ser Glu Met Lys Met Glu Leu Arg Met Glu Gly
1 5 10 15

Ala Val Asn Gly His Lys Phe Val Ile Thr Gly Lys Gly Ser Gly Gln 20 25 30

Pro Phe Glu Gly Ile Gln Asn Met Asp Leu Thr Val Ile Glu Gly Gly 35 40 45

Pro Leu Pro Phe Ala Phe Asp Ile Leu Thr Thr Val Phe His Tyr Gly 50 55 60

Asn Arg Val Phe Val Lys Tyr Pro Glu Glu Ile Val Asp Tyr Phe Lys 65 70 75 80

Gln Ser Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ser Met Ser Tyr Glu 85 90 95

Asp Gly Gly Ile Cys Leu Ala Thr Asn Asn Ile Thr Met Lys Lys Asp 100 105 110

Gly Ser Asn Cys Phe Val Tyr Glu Ile Arg Phe Asp Gly Val Asn Phe 115 120 125

Pro Ala Asn Gly Pro Val Met Gln Arg Lys Thr Val Lys Trp Glu Pro 130 135 140

Ser Thr Glu Lys Met Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Val 145 150 155 160

Asn Met Ala Leu Leu Gln Gly Gly Gly His Tyr Arg Cys Asp Phe \$165\$ \$170\$ \$175\$

Arg Thr Thr Tyr Lys Ala Lys Lys Val Gln Leu Pro Asp Tyr His

180 185 190

Phe Val Asp His Arg Ile Glu Ile Thr Ser His Asp Lys Asp Tyr Asn 195 200 205 Lys Val Lys Leu Tyr Glu His Ala Lys Ala His Ser Gly Leu Pro Arg 215 220 Leu Ala Lys 225 <210> 13 <211> 684 <212> DNA <213> Favia favus <220> <221> CDS <222> (1)..(681) <400> 13 atg agt gtg att aca tca gaa atg aag atg gag ctg cgt atg gaa ggc 48 Met Ser Val Ile Thr Ser Glu Met Lys Met Glu Leu Arg Met Glu Gly 10 gct gta aac ggg cac aag ttc gtg att aca ggg aaa gga agt ggc cag 96 Ala Val Asn Gly His Lys Phe Val Ile Thr Gly Lys Gly Ser Gly Gln 20 cct ttc gag gga ata cag aat atg gac ctg aca gtc ata gag ggc gga 144Pro Phe Glu Gly Ile Gln Asn Met Asp Leu Thr Val Ile Glu Gly Gly 35 40 45 cct ctt cct ttt gct ttc gat atc ctg aca aca gta ttc cat tac ggc 192 Pro Leu Pro Phe Ala Phe Asp Ile Leu Thr Thr Val Phe His Tyr Gly 50 55 240 aac cgg gta ttt gtc aaa tac cca gaa gaa ata gta gac tac ttc aag Asn Arg Val Phe Val Lys Tyr Pro Glu Glu Ile Val Asp Tyr Phe Lys cag tcg ttt cct gag ggt tat tct tgg gaa cga agc atg agt tac gaa 288 Gln Ser Phe Pro Glu Gly Tyr Ser Trp Glu Arg Ser Met Ser Tyr Glu 85 90 gac ggg gga att tgc ctc gcc aca aac aat ata acg atg aag aaa gac 336 Asp Gly Gly Ile Cys Leu Ala Thr Asn Asn Ile Thr Met Lys Lys Asp 100 105 ggc agc aac tgt ttt gtc tat gaa att cga ttt gat ggt gtg aac ttt 384

Gly Ser Asn Cys Phe Val Tyr Glu Ile Arg Phe Asp Gly Val Asn Phe

125

120

115

	-				_	_	_		_		_			gag Glu		432
				_			-	-			_	_		gat Asp	-	480
	_	-	-	-								-	-	gac Asp 175		528
_					-	_	_	-	_	_	_		-	tat Tyr		576
		-		-					-		-	_	-	tac Tyr		624
_	-	_	_				_		_				_	cca Pro		672
_	gcc Ala	_	taa													684
220																
<210 <211 <212	0> 14 l> 22 2> PI	27 RT	farn	1.5												
<210 <211 <212 <213	1> 22 2> PI 3> Fa	27 RT avia	favı	ıs												
<210 <211 <211 <211	l> 22 2> PH 3> Fa 0> 14	27 RT avia 4			Ser	Glu	Met	Lys	Met 10	Glu	Leu	Arg	Met	Glu 15	Gly	
<210 <211 <211 <211 <400 Met	1> 22 2> PI 3> Fa 0> 14 Ser	27 RT avia 4 Val	Ile	Thr 5					10							
<210 <211 <211 <211 <400 Met 1	l> 22 PI 2> PI 3> Fa 0> 14 Ser	27 RT avia 4 Val Asn	Ile Gly 20	Thr 5 His	Lys	Phe	Val	Ile 25	10 Thr	Gly	Lys	Gly	Ser 30	15	Gln	
<210 <211 <211 <400 Met 1 Ala	l> 22 2> PI 3> Fa 0> 14 Ser Val	27 RT avia 4 Val Asn Glu 35	Ile Gly 20	Thr 5 His	Lys	Phe Asn	Val Val 40	Ile 25	10 Thr	Gly	Lys Val	Gly Ile 45	Ser 30 Glu	15 Gly	Gln	

 ${\tt Gln \ Ser \ Phe \ Pro \ Glu \ Gly \ Tyr \ Ser \ Trp \ Glu \ Arg \ Ser \ Met \ Ser \ Tyr \ Glu}$

90 95

Asp Gly Gly Ile Cys Leu Ala Thr Asn Asn Ile Thr Met Lys Lys Asp 100 105 110

Gly Ser Asn Cys Phe Val Tyr Glu Ile Arg Phe Asp Gly Val Asn Phe 115 120 125

Pro Ala Asn Gly Pro Val Met Gln Arg Lys Thr Val Lys Trp Glu Pro 130 135 140

Ser Thr Glu Lys Met Tyr Val Arg Asp Gly Val Leu Lys Gly Asp Val 145 150 155 160

Asn Met Ala Leu Leu Gln Gly Gly Gly His Tyr Arg Cys Asp Phe \$165\$ \$170\$ \$175\$

Arg Thr Thr Tyr Lys Ala Lys Lys Val Val Gln Leu Pro Asp Tyr His 180 185 190

Phe Val Asp His Arg Met Glu Ile Thr Ser His Asp Lys Asp Tyr Asn 195 200 205

Lys Val Lys Leu Tyr Glu His Ala Lys Ala His Ser Gly Leu Pro Arg 210 215 220

Leu Ala Lys

225

<210> 15

<211> 684

<212> DNA

<213> Favia favus

<220>

<221> CDS

<222> (1)..(681)

<400> 15

atg agt gtg att aca tca gaa atg aag atg gag ctg cgt atg gaa ggc Met Ser Val Ile Thr Ser Glu Met Lys Met Glu Leu Arg Met Glu Gly 1 5 10 15

gct gta aac ggg cac aag ttc gtg att aca ggg aaa gga agt ggc cag

Ala Val Asn Gly His Lys Phe Val Ile Thr Gly Lys Gly Ser Gly Gln 20 25 30

96

cct	ttc	gag	gga	ata	cag	aat	gtg	gac	ctg	aca	gtc	ata	gag	ggc	gga	144
Pro	Phe	Glu	Gly	Ile	Gln	Asn	Val	Asp	Leu	Thr	Val	Ile	Glu	Gly	Gly	
		35					40					45				
cct	ctt	cct	ttt	gct	ttc	gat	atc	ctg	aca	aca	gta	ttc	cat	tac	ggc	192
Pro	Leu	Pro	Phe	Ala	Phe	Asp	Ile	Leu	Thr	Thr	Val	Phe	His	Tyr	Gly	
	50					55					60					
aac	cgg	gta	ttt	gtc	aaa	tac	cca	gaa	gaa	ata	gta	gac	tac	ttc	aag	240
Asn	Arg	Val	Phe	Val	Lys	Tyr	Pro	Glu	Glu	Ile	Val	Asp	Tyr	Phe	Lys	
65					70					75					80	
cag	tcg	ttt	cct	gag	ggt	tat	tct	tgg	gaa	cga	agc	atg	agt	tac	gaa	288
Gln	Ser	Phe	Pro	Glu	Gly	Tyr	Ser	Trp	Glu	Arg	Ser	Met	Ser	Tyr	Glu	
				85					90							