Import Required Libraries

```
# Importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# Configure plots
%matplotlib inline
sns.set(style="whitegrid")
```

Upload and Load Dataset

```
# Load the CSV file (change the name if your file is different)
df = pd.read_csv('Dataset .csv')

# Preview the data
df.head()
```

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	 Currency	Has Table booking	Has Online delivery	Is delivering now		Price range	Aggregate rating	
0	6317637	Le Petit Souffle	162	Makati City	Third Floor, Century City Mall, Kalayaan Avenu	Century City Mall, Poblacion, Makati City	Century City Mall, Poblacion, Makati City, Mak	121.027535	14.565443	French, Japanese, Desserts	 Botswana Pula(P)	Yes	No	No	No	3	4.8	Dark Green
1	6304287	Izakaya Kikufuji	162	Makati City	Little Tokyo, 2277 Chino Roces Avenue, Legaspi	Little Tokyo, Legaspi Village, Makati City	Little Tokyo, Legaspi Village, Makati City, Ma	121.014101	14.553708	Japanese	 Botswana Pula(P)	Yes	No	No	No	3	4.5	Dark Green
2	6300002	Heat - Edsa Shangri-La	162	Mandaluyong City	Edsa Shangri- La, 1 Garden Way, Ortigas, Mandal	Edsa Shangri-La, Ortigas, Mandaluyong City	Edsa Shangri-La, Ortigas, Mandaluyong City, Ma	121.056831	14.581404	Seafood, Asian, Filipino, Indian	 Botswana Pula(P)	Yes	No	No	No	4	4.4	Green
3	6318506	Ooma	162	Mandaluyong City	Third Floor, Mega Fashion Hall, SM Megamall, O	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.056475	14.585318	Japanese, Sushi	 Botswana Pula(P)	No	No	No	No	4	4.9	Dark Greer
4	6314302	Sambo Kojin	162	Mandaluyong City	Third Floor, Mega Atrium, SM Megamall, Ortigas	SM Megamall, Ortigas, Mandaluyong City	SM Megamall, Ortigas, Mandaluyong City, Mandal	121.057508	14.584450	Japanese, Korean	 Botswana Pula(P)	Yes	No	No	No	4	4.8	Dark Greer
5 rd	ows × 21 colum	ins																

Basic Information and Structure

- # Check the structure of the dataset
 df.info()
- # Check data types and null values
 df.isnull().sum()
- # Summary statistics

<class 'pandas.core.frame.DataFrame'> RangeIndex: 9551 entries, 0 to 9550

_	ernuex. 9551 entries, (
Data	columns (total 21 col	umns):	
#	Column	Non-Null Count	Dtype
0	Restaurant ID	9551 non-null	int64
1	Restaurant Name	9551 non-null	object
2	Country Code	9551 non-null	int64
3	City	9551 non-null	object
4	Address	9551 non-null	object
5	Locality	9551 non-null	object
6	Locality Verbose	9551 non-null	object
7	Longitude	9551 non-null	float64
8	Latitude	9551 non-null	float64
9	Cuisines	9542 non-null	object
10	Average Cost for two	9551 non-null	int64
11	Currency	9551 non-null	object
12	Has Table booking	9551 non-null	object
13	Has Online delivery	9551 non-null	object
14	Is delivering now	9551 non-null	object
15	Switch to order menu	9551 non-null	object
16	Price range	9551 non-null	int64
17	Aggregate rating	9551 non-null	float64
18	Rating color	9551 non-null	object
19	Rating text	9551 non-null	object
20	Votes	9551 non-null	int64
dtype	es: float64(3), int64(5), object(13)	

dtypes: float64(3), int64(5), object(13)

memory usage: 1.5+ MB

	Restaurant ID	Restaurant Name	Country Code	City	Address	Locality	Locality Verbose	Longitude	Latitude	Cuisines	 Currency	Has Table booking	Has Online delivery	Is delivering now	Switch to order menu	Price range	Aggregat ratin
count	9.551000e+03	9551	9551.000000	9551	9551	9551	9551	9551.000000	9551.000000	9542	 9551	9551	9551	9551	9551	9551.000000	9551.00000
unique	NaN	7446	NaN	141	8918	1208	1265	NaN	NaN	1825	 12	2	2	2	1	NaN	Nai
top	NaN	Cafe Coffee Day	NaN	New Delhi	Dilli Haat, INA, New Delhi	Connaught Place	Connaught Place, New Delhi	NaN	NaN	North Indian	 Indian Rupees(Rs.)	No	No	No	No	NaN	Nai
freq	NaN	83	NaN	5473	11	122	122	NaN	NaN	936	 8652	8393	7100	9517	9551	NaN	Nai
mean	9.051128e+06	NaN	18.365616	NaN	NaN	NaN	NaN	64.126574	25.854381	NaN	 NaN	NaN	NaN	NaN	NaN	1.804837	2.66637
std	8.791521e+06	NaN	56.750546	NaN	NaN	NaN	NaN	41.467058	11.007935	NaN	 NaN	NaN	NaN	NaN	NaN	0.905609	1.51637
min	5.300000e+01	NaN	1.000000	NaN	NaN	NaN	NaN	-157.948486	-41.330428	NaN	 NaN	NaN	NaN	NaN	NaN	1.000000	0.00000
25%	3.019625e+05	NaN	1.000000	NaN	NaN	NaN	NaN	77.081343	28.478713	NaN	 NaN	NaN	NaN	NaN	NaN	1.000000	2.50000
50%	6.004089e+06	NaN	1.000000	NaN	NaN	NaN	NaN	77.191964	28.570469	NaN	 NaN	NaN	NaN	NaN	NaN	2.000000	3.20000
75%	1.835229e+07	NaN	1.000000	NaN	NaN	NaN	NaN	77.282006	28.642758	NaN	 NaN	NaN	NaN	NaN	NaN	2.000000	3.70000
max	1.850065e+07	NaN	216.000000	NaN	NaN	NaN	NaN	174.832089	55.976980	NaN	 NaN	NaN	NaN	NaN	NaN	4.000000	4.90000

11 rows × 21 columns

Data Cleaning

```
# Drop duplicate records
df.drop_duplicates(inplace=True)

# Handle missing values (example: fill numeric with median)
numeric_cols = df.select_dtypes(include=np.number).columns
df[numeric_cols] = df[numeric_cols].fillna(df[numeric_cols].median())

# Optional: Clean whitespace from column names
df.columns = df.columns.str.strip()
```

Exploratory Data Analysis (EDA)

Correlation Heatmap (Numerical Features)

```
plt.figure(figsize=(12, 8))
sns.heatmap(df.corr(numeric_only=True), annot=True, cmap="coolwarm")
plt.title("Correlation Matrix")
plt.show()
```


Distribution of Categorical Columns

Importing necessary libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

Configure plots

```
%matplotlib inline
sns.set(style="whitegrid")
# The following cell attempts to load the data using pd.read csv
# Ensure the cell above with the import statement is run first.
# Load the CSV file (change the name if your file is different)
df = pd.read_csv('Dataset .csv')
# ... rest of the code
import matplotlib.pyplot as plt
import seaborn as sns
categorical_cols = df.select_dtypes(include='object').columns
for col in categorical_cols:
   if df[col].nunique() <= 15: # limit to avoid overplotting</pre>
       plt.figure(figsize=(10, 4))
       sns.countplot(data=df, x=col, order=df[col].value_counts().index)
       plt.title(f"Distribution of {col}")
       plt.xticks(rotation=45)
       plt.tight_layout()
```

print(f"Skipped '{col}' due to too many unique categories: {df[col].nunique()}")

plt.show()

else:


```
top_n = 10
col = 'Restaurant Name'

plt.figure(figsize=(10, 4))
top_vals = df[col].value_counts().nlargest(top_n)
sns.barplot(x=top_vals.index, y=top_vals.values)
plt.title(f"Top {top_n} Most Frequent {col}")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```



```
# If your dataset has a 'Date' column
# First, check the column names to ensure 'Date' exists
print(df.columns)
# If 'Date' exists and you want to proceed with datetime conversion and plotting:
# df['Date'] = pd.to_datetime(df['Date'], errors='coerce')
# plt.figure(figsize=(12,6))
# sns.lineplot(data=df, x='Date', y=df.columns[-1]) # Change y column accordingly
# plt.title("Trend Over Time")
# plt.xlabel("Date")
# plt.ylabel("Value")
# plt.tight layout()
# plt.show()
Index(['Restaurant ID', 'Restaurant Name', 'Country Code', 'City', 'Address',
       'Locality', 'Locality Verbose', 'Longitude', 'Latitude', 'Cuisines',
       'Average Cost for two', 'Currency', 'Has Table booking',
       'Has Online delivery', 'Is delivering now', 'Switch to order menu',
       'Price range', 'Aggregate rating', 'Rating color', 'Rating text',
       'Votes'],
      dtype='object')
```

```
print("☑ Cleaned data saved as 'Cleaned_Dataset.csv'")

☑ Cleaned data saved as 'Cleaned_Dataset.csv'

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

%matplotlib inline
sns.set(style="whitegrid")
```

Top 10 Cities with Most Restaurants

df.to_csv('Cleaned_Dataset.csv', index=False)

```
plt.figure(figsize=(10,5))
df['City'].value_counts().nlargest(10).plot(kind='bar', color='skyblue')
plt.title("Top 10 Cities with Most Restaurants")
plt.xlabel("City")
plt.ylabel("Number of Restaurants")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
```


Distribution of Aggregate Ratings

```
plt.figure(figsize=(8,5))
sns.histplot(df['Aggregate rating'], bins=10, kde=True, color='orange')
plt.title("Distribution of Aggregate Ratings")
plt.xlabel("Rating")
plt.ylabel("Frequency")
plt.tight_layout()
plt.show()
```


Rating Color Distribution

```
plt.figure(figsize=(6,4))
sns.countplot(data=df, x='Rating color', palette='Set2')
plt.title("Rating Color Distribution")
plt.tight_layout()
plt.show()
```

<ipython-input-16-377d9a1c264d>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(data=df, x='Rating color', palette='Set2')

Votes vs Aggregate Rating

```
plt.figure(figsize=(10,5))
sns.scatterplot(data=df, x='Aggregate rating', y='Votes', hue='Rating color')
plt.title("Votes vs Aggregate Rating")
plt.tight_layout()
plt.show()
```


Average Cost for Two Distribution

```
plt.figure(figsize=(10,5))
sns.histplot(df['Average Cost for two'], bins=30, color='green')
plt.title("Distribution of Average Cost for Two")
plt.tight_layout()
plt.show()
```


Top 10 Most Common Cuisines

```
plt.figure(figsize=(10,5))
df['Cuisines'].value_counts().nlargest(10).plot(kind='barh', color='purple')
plt.title("Top 10 Most Common Cuisines")
plt.xlabel("Count")
plt.tight_layout()
plt.show()
```


Price Range Distribution

```
plt.figure(figsize=(6,4))
sns.countplot(data=df, x='Price range', palette='pastel')
plt.title("Distribution of Price Ranges")
plt.tight_layout()
plt.show()
```

<ipython-input-20-3ea1c3d33024>:2: FutureWarning:

Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.

sns.countplot(data=df, x='Price range', palette='pastel')

Has Table Booking vs Rating

```
plt.figure(figsize=(7,4))
sns.boxplot(data=df, x='Has Table booking', y='Aggregate rating')
plt.title("Rating by Table Booking Availability")
plt.tight_layout()
plt.show()
```


Online Delivery by City (Top 5 Cities)

```
top_cities = df['City'].value_counts().nlargest(5).index
plt.figure(figsize=(10,5))
sns.countplot(data=df[df['City'].isin(top_cities)], x='City', hue='Has Online delivery')
plt.title("Online Delivery Availability in Top 5 Cities")
plt.tight_layout()
plt.show()
```

Online Delivery Availability in Top 5 Cities 4000 Has Online delivery No. Number of Restaurants per Country 3500 Yes plt.figure(figsize=(10,5)) df['Country Code'].value_counts().plot(kind='bar', color='teal') plt.title("Restaurants per Country Code") plt.xlabel("Country Code") plt.ylabel("Count") plt.tight_layout() plt.show() Restaurants per Country Code 8000 6000 Count 2000 Conntry Code 216 215 189 166 184 30 94 191 37

Switch to Order Menu Distribution

```
plt.figure(figsize=(6,4))
sns.countplot(data=df, x='Switch to order menu')
plt.title("Switch to Order Menu Count")
plt.tight_layout()
plt.show()
```