Computer Graphics and Visualization

Dr Wojciech Pałubicki

Computer graphics in a nutshell

- Images generated with computers
- In this course we focus on 3D rendering

Films, special effects

Films, special effects

Computer Games

Simulations

ANIMATION OF DEVELOPMENT

University of Calgary

Simulations

Simulations

CAD & CAM Design

Architecture

Data Visualization

Medical Imaging

Education

Applications

Rendering specifications

Fundamental specifications for rendering are OpenGL and Direct3D

What will you learn

- Fundamental theory of computer graphics
- Rendering pipeline (how to generate 2D images from 3D scenes)
- OpenGL
- Experience with C++
- Fundamental elements of **GLSL**, a programming language executed on the graphics card

Passing Computer graphics

- Multiple choice tests (50%) plus max. 1-2 bonus points for lab exercises (n-2 best tests are taken into account)
- Semester project (50%) 1/4 research presentation + 3/4 project (minimum 15%)
- More details in the labs (e.g. dates)
- Information will be available: MS Teams and https://wp.faculty.wmi.amu.edu.pl/GRK.html

How to express 3D objects mathematically?

Face

Face

For example: (0, 1, 0) (0, 0, 1) (1, 0, 0)

Face

For example: (0, 1, 0) (0, 0, 1) (1, 0, 0) or (0, 1, 0) (1, 0, 0) (0, 0, -1)

Face

For example: (0, 1, 0) (0, 0, 1) (1, 0, 0) or (0, 1, 0) (1, 0, 0) (0, 0, -1)

Vertex buffer stores vertex information a(0, 1, 0) e(-1, 0, 0) d(0, 0, -1) b(0, 0, 1) c(1, 0, 0)

Vertex buffer stores vertex [(0,1,0), (0,0,1), (1,0,0), (0,0,-1), (-1,0,0)]information a(0, 1, 0) e(-1, 0, 0) d(0, 0, -1) b(0, 0, 1) c(1, 0, 0)

For example: (0, 1, 2)

For example: (0, 1, 2) or (0, 2, 3)

Vertex buffer stores vertex [(0,1,0), (0,0,1), (1,0,0), (0,0,-1), (-1,0,0)]information a(0, 1, 0) e(-1, 0, 0) d(0, 0, -1) b(0, 0, 1) c(1, 0, 0)

Triangles

bottom of the pyramid

Triangles

bottom of the pyramid

Triangles - coplanarity

Triangles - coplanarity

Triangles - coplanarity

World of polygons (triangles)

World of polygons (triangles)

http://www.jeroenbackx.com/

Translation of vertices?

Vertex transformations

Vertex transformations

Vertex transformations

• $f: X \to Y$

• $f: X \to Y$

Vector-valued functions $\mathbb{R}^n = \{(x_1, ..., x_n) : x_1, ..., x_n \in \mathbb{R}\}$

 $f: \mathbb{R}^3 \to \mathbb{R}^2$

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 \\ 3x_3 \end{bmatrix}$$

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 \\ 3x_3 \end{bmatrix}$$

$$f\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right)$$

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 \\ 3x_3 \end{bmatrix}$$

$$f\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}1+2\cdot1\\3\cdot1\end{bmatrix}$$

$$f: \mathbb{R}^3 \to \mathbb{R}^2$$

$$f\left(\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}\right) = \begin{bmatrix} x_1 + 2x_2 \\ 3x_3 \end{bmatrix}$$

$$f\left(\begin{bmatrix}1\\1\\1\end{bmatrix}\right) = \begin{bmatrix}1+2\cdot1\\3\cdot1\end{bmatrix} = \begin{bmatrix}3\\3\end{bmatrix}$$

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \cdot s_x \\ y \cdot s_y \end{bmatrix}$$

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \cdot 2 \\ y \cdot 1 \end{bmatrix}$$

$$f(\vec{b}) = \begin{bmatrix} 1 \cdot 2 \\ 0 \cdot 1 \end{bmatrix} = \begin{vmatrix} 2 \\ 0 \end{vmatrix}$$

$$f(\vec{b}) = \begin{bmatrix} 1 \cdot 2 \\ 0 \cdot 1 \end{bmatrix} = \begin{vmatrix} 2 \\ 0 \end{vmatrix}$$

$$f(\vec{c}) = \begin{bmatrix} -1 \cdot 2 \\ 0 \cdot 1 \end{bmatrix} = \begin{vmatrix} -2 \\ 0 \end{vmatrix}$$

Scaling

$$f(\vec{c}) = \begin{bmatrix} -1 \cdot 2 \\ 0 \cdot 1 \end{bmatrix} = \begin{vmatrix} -2 \\ 0 \end{vmatrix}$$

Scaling

$$f(\vec{a}) = \begin{bmatrix} 0 \cdot 2 \\ 1 \cdot 1 \end{bmatrix} = \begin{vmatrix} 0 \\ 1 \end{vmatrix}$$

Scaling - XY

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \cdot 0.5 \\ y \cdot 0.5 \end{bmatrix}$$

Scaling - XY

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \cdot 0.5 \\ y \cdot 0.5 \end{bmatrix}$$

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x + T_x \\ y + T_y \end{bmatrix}$$

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x+1 \\ y \end{bmatrix}$$

$$f(\vec{b}) = \begin{bmatrix} x+1 \\ y \end{bmatrix} = \begin{vmatrix} 2 \\ 0 \end{vmatrix}$$

$$f(\vec{b}) = \begin{bmatrix} 1+1\\0 \end{bmatrix} = \begin{vmatrix} 2\\0 \end{vmatrix}$$

$$f(\vec{a}) = \begin{bmatrix} 0+1\\1 \end{bmatrix} = \begin{vmatrix} 1\\1 \end{vmatrix}$$

$$f(\vec{c}) = \begin{bmatrix} -1+1\\0 \end{bmatrix} = \begin{vmatrix} 0\\0 \end{vmatrix}$$

Translation - XY

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x - 1 \\ y - 1 \end{bmatrix}$$

Translation - XY

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x - 1 \\ y - 1 \end{bmatrix}$$

Polar coordinates :

$$x = r \cdot \cos(\theta)$$

$$y = r \cdot \sin(\theta)$$

Polar coordinates:

$$x = r \cdot \cos(\theta)$$

$$y = r \cdot \sin(\theta)$$

$$x' = r \cdot \cos(\theta + \delta)$$

$$y' = r \cdot \sin(\theta + \delta)$$

Polar coordinates :

$$x = r \cdot \cos(\theta)$$

$$y = r \cdot \sin(\theta)$$

$$x' = r \cdot \cos(\theta + \delta) = r \cos(\theta) \cos(\delta) - r \sin(\theta) \sin(\delta)$$

$$y' = r \cdot \sin(\theta + \delta) = r \sin(\theta) \cos(\delta) + r \cos(\theta) \sin(\delta)$$

Polar coordinates :

$$x = r \cdot \cos(\theta)$$

$$y = r \cdot \sin(\theta)$$

$$x' = r \cdot \cos(\theta + \delta) = r \cos(\theta) \cos(\delta) - r \sin(\theta) \sin(\delta)$$

$$y' = r \cdot \sin(\theta + \delta) = r \sin(\theta) \cos(\delta) + r \cos(\theta) \sin(\delta)$$

$$x' = x \cdot \cos(\delta) - y \cdot \sin(\delta)$$

$$y' = x \cdot \sin(\delta) + y \cdot \cos(\delta)$$

$$\Theta = 90^{\circ}$$

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \cdot \cos(\theta) - y \cdot \sin(\theta) \\ x \cdot \sin(\theta) + y \cdot \cos(\theta) \end{bmatrix}$$
-x
$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \cdot \cos(\theta) - y \cdot \sin(\theta) \\ x \cdot \sin(\theta) + y \cdot \cos(\theta) \end{bmatrix}$$
+x

$$\Theta = 90^{\circ}$$

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \cdot \cos(\theta) - y \cdot \sin(\theta) \\ x \cdot \sin(\theta) + y \cdot \cos(\theta) \end{bmatrix}$$

$$f(\vec{b}) = \begin{bmatrix} 1 \cdot 0 - 0 \cdot 1 \\ 1 \cdot 1 + 0 \cdot 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
-x
$$\frac{\cot(-1, 0)}{\cot(-1, 0)}$$
+x

-у

$$\Theta = 90^{\circ}$$

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \cdot \cos(\theta) - y \cdot \sin(\theta) \\ x \cdot \sin(\theta) + y \cdot \cos(\theta) \end{bmatrix}$$

$$f(\vec{a}) = \begin{bmatrix} 0 \cdot 0 - 1 \cdot 1 \\ 0 \cdot 1 + 1 \cdot 0 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$
-x
$$\frac{\cot(0, 1)}{\cot(0, 1)} + \cot(0)$$

-у

$$\theta = 90^{\circ}$$

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x \cdot \cos(\theta) - y \cdot \sin(\theta) \\ x \cdot \sin(\theta) + y \cdot \cos(\theta) \end{bmatrix}$$

$$f(\vec{c}) = \begin{bmatrix} -1 \cdot 0 - 0 \cdot 1 \\ -1 \cdot 1 + 0 \cdot 0 \end{bmatrix} = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$c(-1, 0)$$

$$+x$$

How to apply transformations instantaneously

How to apply transformations instantaneously?

Transformation Matrices: Associative

- Let x be a vertex
- A and B transformation matrices and C the product of A and B
- Then A(Bx) = (AB)x = Cx

Transformation Matrices: Associative

- Let x be a vertex
- A and B transformation matrices and C the product of A and B
- Then A(Bx) = (AB)x = Cx
 - > applies transformations in a single Matrix-vector multiplication
- If we have a scene composed of millions of vertices this is a significant optimization

 $T: \mathbb{R}^n \to \mathbb{R}^m$

$$T(\vec{x}) = A\vec{x}$$

 $T: \mathbb{R}^2 \to \mathbb{R}^2$

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$

$$T(\vec{x}) = B\vec{x}$$

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$

$$T(\vec{x}) = B\vec{x} = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Matrix-Vector Product as a Transformation

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$

$$T(\vec{x}) = B\vec{x} = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 - x_2 \\ 3x_1 + 4x_2 \end{bmatrix}$$

Matrix-Vector Product as a Transformation

$$T: \mathbb{R}^2 \to \mathbb{R}^2$$

$$B = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix}$$

$$T(\vec{x}) = B\vec{x} = \begin{bmatrix} 2 & -1 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 - x_2 \\ 3x_1 + 4x_2 \end{bmatrix}$$

$$T\left(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}\right) = \begin{bmatrix} 2x_1 - x_2 \\ 3x_1 + 4x_2 \end{bmatrix}$$

Scaling 2D

Scaling matrix:
$$\begin{bmatrix} s_{\chi} & 0 \\ 0 & s_{\gamma} \end{bmatrix}$$

$$P = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x \cdot x + 0 \cdot y \\ 0 \cdot x + s_y \cdot y \end{bmatrix} = \begin{bmatrix} s_x \cdot x \\ s_y \cdot y \end{bmatrix}$$

Rotation 2D

Rotation matrix: $\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$

$$P = \begin{bmatrix} \cos(\Pi/4) & -\sin(\Pi/4) \\ \sin(\Pi/4) & \cos(\Pi/4) \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \cdot 0 & -0 \cdot 1 \\ 1 \cdot 1 + 0 \cdot 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$P' = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$P' = \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_x x \\ s_y y \end{bmatrix}$$

$$P' = \begin{bmatrix} s_{x} & 0 \\ 0 & s_{y} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_{x}x \\ s_{y}y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$P' = \begin{bmatrix} s_{x} & 0 \\ 0 & s_{y} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_{x}x \\ s_{y}y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$P'' = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$P' = \begin{bmatrix} s_{x} & 0 \\ 0 & s_{y} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_{x}x \\ s_{y}y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$P'' = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta)s_x x - \sin(\theta)s_y y \\ \sin(\theta)s_x x + \cos(\theta)s_y y \end{bmatrix}$$

$$P' = \begin{bmatrix} s_{x} & 0 \\ 0 & s_{y} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_{x}x \\ s_{y}y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$P'' = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta)s_{x}x - \sin(\theta)s_{y}y \\ \sin(\theta)s_{x}x + \cos(\theta)s_{y}y \end{bmatrix}$$

This is identical to (associative multiplication of matrices)

$$P'' = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} s_{\chi} & 0 \\ 0 & s_{\gamma} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$P' = \begin{bmatrix} s_{\chi} & 0 \\ 0 & s_{y} \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} s_{\chi}x \\ s_{y}y \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix}$$

$$P'' = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(\theta)s_x x - \sin(\theta)s_y y \\ \sin(\theta)s_x x + \cos(\theta)s_y y \end{bmatrix}$$

This is identical to (associative multiplication of matrices)

$$P'' = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \cdot \begin{bmatrix} s_x & 0 \\ 0 & s_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos(\theta)s_x x - \sin(\theta)s_y y \\ \sin(\theta)s_x x + \cos(\theta)s_y y \end{bmatrix}$$

Translation

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x + T_x \\ y + T_y \end{bmatrix}$$

Translation

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x + T_x \\ y + T_y \end{bmatrix}$$
 it is impossible to express such a transformation with 2D matrix multiplications

Translation

$$f\left(\begin{bmatrix} x \\ y \end{bmatrix}\right) = \begin{bmatrix} x + T_x \\ y + T_y \end{bmatrix}$$
 it is impossible to express such a transformation with 2D matrix multiplications

Hence, we embed 2D space in 3D where the third coordinate will be equal to 1. Our 2D space resides in the z = 1 plane.

$$\begin{bmatrix} x \\ y \end{bmatrix} \rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Geometric interpretation of 2D translation

Translation $T(T_x, T_y)$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Translation $T(T_x, T_y)$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Resulting in:

$$x' = x + 1 \cdot T_x$$
$$y' = y + 1 \cdot T_y$$
$$1 = 1$$

Scaling, Rotation and Translation in 2D

$$S(s_x, s_y) = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad T(T_x, T_y) = \begin{bmatrix} 1 & 0 & T_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$T(T_x, T_y) = \begin{bmatrix} 1 & 0 & I_x \\ 0 & 1 & T_y \\ 0 & 0 & 1 \end{bmatrix}$$

$$R(\theta) = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

How to apply transformations instantaneously

1. Translation to origin: $T(-x_0, -y_0)$

- 1. Translation to origin: $T(-x_0, -y_0)$
- 2. Rotation with angle θ : $R(\theta)$

- 1. Translation to origin: $T(-x_0, -y_0)$
- 2. Rotation with angle θ : $R(\theta)$
- 3. Translation to point P_0 : $T(x_0, y_0)$

- 1. Translation to origin: $T(-x_0, -y_0)$
- 2. Rotation with angle θ : $R(\theta)$
- 3. Translation to point P_0 : $T(x_0, y_0)$

$$M = T(x_0, y_0) R(\theta) T(-x_0, -y_0)$$

- 1. Translation to origin: $T(-x_0, -y_0)$
- 2. Rotation with angle θ : $R(\theta)$
- 3. Translation to point P_0 : $T(x_0, y_0)$

$$M = T(x_0, y_0) R(\theta) T(-x_0, -y_0)$$

$$M = \begin{bmatrix} 1 & 0 & x_0 \\ 0 & 1 & y_0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & -x_0 \\ 0 & 1 & -y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 1. Translation to origin: $T(-x_0, -y_0)$
- 2. Rotation with angle θ : $R(\theta)$
- 3. Translation to point P_0 : $T(x_0, y_0)$

$$M = T(x_0, y_0) R(\theta) T(-x_0, -y_0)$$

$$M = \begin{bmatrix} \cos(\theta) & -\sin(\theta) & -\cos(\theta) x_0 + \sin(\theta) y_0 + x_0 \\ \sin(\theta) & \cos(\theta) & \sin(\theta) x_0 - \cos(\theta) y_0 + y_0 \\ 0 & 0 & 1 \end{bmatrix}$$

- 1. Translation to origin: $T(-x_0, -y_0)$
- 2. Rotation with angle θ : $R(\theta)$
- 3. Translation to point P_0 : $T(x_0, y_0)$

$$M = T(x_0, y_0) R(\theta) T(-x_0, -y_0)$$

• Mulitplication of 2 matrices: 3 (*) and 2 additions (+) for each element → 3 x 9 = 27 (+ are much less computationally intensive than * so we ignore their cost)

- Mulitplication of 2 matrices: 3 (*) and 2 additions (+) for each element → 3 x 9 = 27 (+ are much less computationally intensive than * so we ignore their cost)
- Matrix-vector multiplication \rightarrow 3 x 3 = 9

- Mulitplication of 2 matrices: 3 (*) and 2 additions (+) for each element → 3 x 9 = 27 (+ are much less computationally intensive than * so we ignore their cost)
- Matrix-vector multiplication \rightarrow 3 x 3 = 9, but we have a special case

$$\bullet \begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

- Mulitplication of 2 matrices: 3 (*) and 2 additions (+) for each element → 3 x 9 = 27 (+ are much less computationally intensive than * so we ignore their cost)
- Matrix-vector multiplication \rightarrow 3 x 3 = 9, but we have a special case

- Mulitplication of 2 matrices: 3 (*) and 2 additions (+) for each element → 3 x 9 = 27 (+ are much less computationally intensive than * so we ignore their cost)
- Matrix-vector multiplication \rightarrow 3 x 3 = 9, but we have a special case

• → 4 operations per vertex

- Let N be the number of transformations
- Let k be the number of vertices

- Let N be the number of transformations
- Let k be the number of vertices
- Then the number of total multiplications is: (N-1)*27 + 4*k

- Let N be the number of transformations
- Let k be the number of vertices
- Then the number of total multiplications is: (N-1)*27 + 4*k
- Compare to the naïve approach: N*k*2

World space transformation

View (eye) space transformation

Define a "view frustum" that contains all visible objects

View (eye) space transformation

Projection transformation

Project scene inside the view frustum onto a "projection plane"

Clipping

Clipping

Clipping

Object Space

Object Space World Space

Object Space

World Space

View Space

Object Space

World Space

View Space

Clip Space

Object Space

World Space

View Space

Clip Space

Screen/Window Space