1 Cross-Ratios

- 1. Definition: Let A, B, C three collinear points in this order. Then there exists exactly one other point $D \in AC$ so that $\frac{\overrightarrow{AB}}{\overrightarrow{BC}} = \frac{\overrightarrow{AD}}{\overrightarrow{CD}}$. In this case one says that B and D are harmonic conjugates with respect to A and C.
- 2. Definition: Let A, B, C, D be four collinear points in this order. Then one defines the cross-ratio $(A, B, C, D) = \frac{\overrightarrow{AB}}{\overrightarrow{BC}} : \frac{\overrightarrow{AD}}{\overrightarrow{CD}} = \frac{AB}{BC} : \frac{AD}{CD}$.
- 3. Pappus's Theorem: Let $(Ox_i \text{ for } i=1,\ldots,4 \text{ be four rays (forming a total angle of } <180)$ and $A_i, B_i \in (Ox_i \text{ so that } A_1, A_2, A_3, A_4 \text{ and } B_1, B_2, B_3, B_4 \text{ are collinear respectively.}$ Then $(A_1, A_2, A_3, A_4) = (B_1, B_2, B_3, B_4)$.

2 Polar Transformations

- 1. Let \mathcal{C} be a circle and A a point outside it. Let l be a line containing A, $l \cap \mathcal{C} = \{M, N\}$, and let B be the harmonic conjugate of A with respect to M and N. Find the locus of B, and denote it by p_A . This is called the polar of A with respect to \mathcal{C} .
- 2. $M \in p_A \iff MO^2 MA^2 = 2R^2 OA^2$, where O is the center of \mathcal{C} and R is its radius.
- 3. Prove that $B \in p_A \iff A \in p_B$.
- 4. Prove that one can define the polar for any point other than O.
- 5. Let l be a line not containing O. Then there is a point A so that $l = p_A$. This point is called the pole of l.
- 6. Prove that A, B, C are collinear $\iff p_A, p_B, p_C$ are concurrent.
- 7. Dual tranformation. Let \mathcal{C} be a projective configuration of points and lines (projective means that the only things that count are collinearities and concurrences). Choose a circle whose center is not among the points of \mathcal{C} . Then take the polar of each point and the pole of each line in \mathcal{C} . Then in the new configuration, all previous collinearities become concurrences and vice-versa. This is a very efficient method of simplifying problems.

Problems

1. Let \mathcal{C} be a circle and P a point outside it. A line l through P intersects \mathcal{C} in M and N. The tangents through M and N to \mathcal{C} intersect at Q. Prove that Q describes a line.

- 2. Let ABCD be a cyclic quadrilateral with circumcircle C. Let $AB \cap CD = \{U\}, BC \cap AD = \{V\}, AC \cap BD = \{T\}$. Prove that $UT = p_V$.
- 3. Let ABC be an acute triangle. The interior bisectors of $\angle B$ and $\angle C$ meet the opposite sides in L, M respectively. Prove that there is a point $K \in (BC)$ such that KLM is equilateral $\iff \angle A = 60$. (Romanian Selection Test, 1999)

3 Projective Transformation

The set of all points of intersections of parallel lines is called the line at infinity of the Euclidian plane. Let \prod be the projective plane, i.e. the union of the Euclidian plane with the line at infinity.

Let $l \in \Pi$ and $O \in \Pi \setminus l$. Consider a point V outside the projective plane. Take d a line containing O. Let a plane π through d, parallel to the plane determined by l and V. For each point $X \in \Pi$ let $Y = f(X) = VX \cap \pi$. Then this is called the projective transformation that sends l to infinity. The reason for this is quite obvious, i.e. for any $X \in l$ then f(Y) will be on the line to infinity of π . In this case one just says that one "throws l to infinity"

This method is very efficient, because the following properties imply that any two lines intersecting on l will be transformed into two parallel lines.

- 1. Prove that f takes lines to lines.
- 2. Prove that f invaries cross-ratios.

Problems

- 1. Let ABC be a triangle and M, N, P be three points on sides BC, CA, AB respectively. Let D, E, F be the harmonic conjugates of M, N, P with respect to the endpoints of the sides on which they are. Prove that D, E, F are collinear $\iff AM, BN, CP$ are concurrent.
- 2. Pappus's Theorem (come on, how many are there?). Let $a \cap b = \{P\}$ be two intersecting lines. Let $A_i \in a, B_i \in b$ for i = 1, 2, 3. Prove that A_iB_i intersect $\iff (P, A_1, A_2, A_3) = (P, B_1, B_2, B_3)$.
- 3. Guess what? Pappus Theorem, again... Let d_1, d_2 be two lines and $A_1, A_2, A_3 \in d_1$ and $B_1, B_2, B_3 \in d_2$ distinct points. If $\{U_i\} = A_j B_k \cap A_k B_j$ for any permutation $\{i, j, k\} = \{1, 2, 3\}$ then U_1, U_2, U_3 are collinear.
- 4. Let $U, V \in BC$ in triangle ABC. A line parallel to AC intersects AB, AU, AV in P, Q, R respectively. Find $\frac{PQ}{QR}$.

- 5. Let ABCD be a convex quadrilateral with $O = AD \cap BC$, $T = AC \cap BD$. We consider points P and Q on OT. Let be U and V the intersection points of the diagonals of AQPD and BQPC respectively. Let M and N be two points on (AD) and (BC). Prove that OT,MU si NV are concurrent if and only if AB,DC and MN are concurrent. (my problem, i.e.)
- 6. (My favorite...) Let $VA_1 ... A_n$ be a pyramid and $B_k \in (VA_k)$. Let $\{T_{i,j}\} = A_i B_j \cap A_j B_i$. Prove that if at least $1 + \binom{n-1}{2}$ of the points $T_{i,j}$ are coplanar then all points $T_{i,j}$ are coplanar. (County olympiad, Arad 1999. Proposed by Iani Mirciov)

Compiled by Andrei Jorza