Grandezas Físicas e Suas Classificações

mr.spoopy

1 Introdução

Na Física, utilizamos as **grandezas físicas** para descrever os fenômenos naturais e representar medições do mundo real. Toda medição envolve uma *quantidade numérica* e uma *unidade de medida*. Por exemplo, quando dizemos que um corpo tem massa de 50 kg, estamos lidando com uma grandeza física.

2 O que são Grandezas Físicas?

Grandezas físicas são propriedades mensuráveis de um sistema físico. Cada grandeza é expressa por um número seguido de uma unidade. Por exemplo:

• Tempo: 10 segundos

• Comprimento: 5 metros

• Temperatura: 25 graus Celsius

Essas medições são fundamentais para a ciência, engenharia e nosso dia a dia.

3 Sistema Internacional de Unidades (SI)

O Sistema Internacional de Unidades (SI) é o sistema padrão adotado em quase todos os países para a padronização das unidades de medida. Ele define sete grandezas fundamentais a partir das quais todas as outras são derivadas.

Grandezas Fundamentais e suas Unidades no SI

Grandeza Física	Unidade SI	Símbolo da Unidade
Comprimento	$_{ m metro}$	m
${f Massa}$	quilograma	kg
Tempo	$_{ m segundo}$	S
Corrente elétrica	$\operatorname{amp\`ere}$	A
Temperatura termodinâmica	kelvin	K
Quantidade de substância	mol	mol
Intensidade luminosa	$\operatorname{candela}$	cd

Tabela 1: Grandezas Fundamentais no Sistema Internacional

Grandezas Físicas Física Básica

4 Classificação das Grandezas Físicas

4.1 1. Quanto à Dependência de Outras Grandezas

a) Grandezas Fundamentais

São aquelas definidas de forma independente. Não dependem de outras grandezas. Ex: tempo, massa, comprimento.

b) Grandezas Derivadas

São aquelas que dependem de duas ou mais grandezas fundamentais. São obtidas por meio de operações matemáticas. Exemplos:

- Velocidade = comprimento / tempo (m/s)
- Força = massa \times aceleração (kg·m/s²)
- Área = comprimento \times comprimento (m^2)

4.2 2. Quanto à Natureza Física

a) Grandezas Escalares

Grandezas que são totalmente determinadas apenas por um valor numérico e unidade. Não têm direção nem sentido. Exemplos:

• Temperatura: 37 °C

• Massa: 10 kg

• Tempo: 2 h

b) Grandezas Vetoriais

Grandezas que possuem valor numérico, unidade, direção e sentido. São representadas por vetores. Exemplos:

• Força: 20 N para a direita

• Velocidade: 60 km/h para o norte

• Aceleração: 9,8 m/s² para baixo

4.3 3. Outras Classificações

Grandezas Extensivas e Intensivas (aplicado em Química e Termodinâmica)

- Extensivas: dependem da quantidade de matéria. Ex: massa, volume.
- Intensivas: não dependem da quantidade de matéria. Ex: temperatura, densidade.

5 Exemplos Práticos

- Um carro anda 100 km em 2 horas. Sua velocidade média é uma grandeza derivada vetorial.
- Uma pedra tem massa de 2 kg. Massa é uma **grandeza fundamental escalar**.
- A temperatura de um forno é 200 °C. Temperatura é uma grandeza escalar e fundamental.

Grandezas Físicas Física Básica

6 Unidades Derivadas

As unidades derivadas são combinações das unidades fundamentais. Veja alguns exemplos:

Grandeza Derivada	Unidade Derivada	Expressão SI
Velocidade	metro por segundo	m/s
${f A}$ celeraç $ ilde{f a}$ o	metro por segundo ao quadrado	$ m m/s^2$
Força	newton	$ m kg\cdot m/s^2$
${f Trabalho/Energia}$	joule	$N \cdot m$ ou $kg \cdot m^2/s^2$
Potência	watt	$\rm J/s$ ou $\rm kg\cdot m^2/s^3$

Tabela 2: Exemplos de Unidades Derivadas

7 Conclusão

O estudo das grandezas físicas é a base para compreender os fenômenos da natureza. Saber classificá-las corretamente permite interpretar melhor os resultados de experimentos, realizar cálculos com precisão e comunicar informações científicas de forma clara e padronizada. Dominar essas noções é fundamental para qualquer estudo em Física e em outras ciências.