一、选择题

如图,在一圆形电流 /所在的平面内,选取一个同心圆形闭合回路 L,则由

安培环路定理可知

$$\oint \vec{B} \cdot d\vec{l} = 0$$
(A) \vec{L} , 且环路上任意一点 $\vec{B} = 0$

$$\oint \vec{B} \cdot d\vec{l} = 0$$

\$\bar{B}⋅d*\bar{l}*

120°

(B) [∠] , 且环路上任意一点 *B*≠0

$$\oint \vec{B} \cdot d\vec{l} \neq 0$$

(C) [∠] , 且环路上任意一点 *B*≠0

$$\oint \vec{B} \cdot d\vec{l} \neq 0$$

(D) , 且 环 路 上 任 意 一 点 B = 常 量

9. 2047: 如图,两根直导线 ab 和 cd沿半径方向被接到一个截面处处相等的铁环上,

稳恒电流 I 从 a 端流入而从 d 端流出,则磁感强度 \bar{B} 沿图中闭合路径 L 的积分 L

(C) $\mu_0 I/4$ (D) $2\mu_0 I/3$

- 10. 2060: 一电荷为 q 的粒子在均匀磁场中运动,下列哪种说法是正确的?
- (A) 只要速度大小相同, 粒子所受的洛伦兹力就相同
- (B) 在速度不变的前提下,若电荷 q 变为-q,则粒子受力反向,数值不变
- (C) 粒子进入磁场后, 其动能和动量都不变
- (D) 洛伦兹力与速度方向垂直,所以带电粒子运动的轨迹必定是圆[
- 11. 2062: 按玻尔的氢原子理论,电子在以质子为中心、半径为r的圆形轨道上运动。如果把这样一个原子放在均匀的外磁场中,使电子轨道平面与 \bar{B} 垂直,如图所示,则在r不变的情况下,电子轨道运动的角速度将:
 - (A) 增加 (B) 减小

Γ

- (C) 不变 (D) 改变方向
- (D) 改变方向 []
- 12. 2373: 一运动电荷 *q*, 质量为 *m*, 进入均匀磁场中,
- (A) 其动能改变,动量不变 (B) 其动能和动量都改变 (C) 其 动 能 不 恋 动 景 改 恋 (D) ‡
- 13. 2575: A、B两个电子都垂直于磁场方向射入一均匀磁场而作圆周运动。A电子的速率是 B电子速率的两倍。设 R_A , R_B 分别为 A电子与 B电子的轨道半径; T_A , T_B 分别为它们各自的周期。则

(A)
$$R_A: R_B=2, T_A: T_B=2$$
 (B) $R_A: R_B = \frac{1}{2}, T_A: T_B=1$

(C) $R_A : R_B = 1, T_A : T_B = \frac{-2}{2}$ (D) $R_A : R_B = 2, T_A : T_B = 1$

- 14. 2451: 一铜条置于均匀磁场中,铜条中电子流的方向如图所示。试问下述哪一种情况将会发生?
 - (A) 在铜条上 a、b两点产生一小电势差,且 $U_a > U_b$
 - (B) 在铜条上 a、b 两点产生一小电势差,且 $U_a < U_b$
 - (C) 在铜条上产生涡流
 - (D) 电子受到洛伦兹力而减速

	(A)	/的左端出现 N 极 (B) / 的左端出现 N 极					
	(C)	P的右端出现 N 极 (D) P的右端出现 N 极 []					
	24.	2608: 磁介质有三种,用相对磁导率με表征它们各自的特性时,					
	(A)	顺磁质 $\mu_r > 0$,抗磁质 $\mu_r < 0$,铁磁质 $\mu_r > > 1$					
	(B)	顺磁质 $\mu_r > 1$,抗磁质 $\mu_r = 1$,铁磁质 $\mu_r > > 1$					
	(C)	$ 顾磁质\mu_r > 1,抗磁质\mu_r < 1,铁磁质\mu_r > > 1$					
	(D)	顺 磁 质 μ_r <0 , 抗 磁 质 μ_r <1 , 铁 磁 质 μ_r >0					
	25.	2609: 用细导线均匀密绕成长为 I 、半径为 $a(I>>a)$ 、总匝数为 I 的螺线管,管内					
充满	相な	磁导率为µr 的均匀磁介质。若线圈中载有稳恒电流 1,则管中任意一点的					
	(A)	滋感强度大小为 $B = \mu_0 \mu_r NI$					
	(B)	滋感强度大小为 $B = \mu_r NI/l$					
	(C)	兹场强度大小为 $H=\mu_0 NI/I$					
	(D)	磁 场 强 度 大 小 为 $H = M / l$					
		2736: 顺磁物质的磁导率:					
		北真空的磁导率略小 (B) 比真空的磁导率略大					
	(C)	远小于真空的磁导率 (D) 远大于真空的磁导率					
		2145: 两根无限长平行直导线载有大小相等方向相反的电流 I, 并各以 dI/dt 的变					
化率		,一矩形线圈位于导线平面内(如图),则:					
	. ,	线圈中无感应电流 ————————————————————————————————————					
	` ′	线圈中感应电流为顺时针方向 — < /					
	` /	线圈中感应电流为逆时针方向					
_	(D)						
28. 2147: 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的							
涡流	,	电流)将					
涡流	(A)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加					
	(A)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对磁场 不起作用 (D) 使铜板中磁场 反向					
涡流	(A) (C)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对磁场 不起作用 (D)使铜板中磁场反向					
	(A) (C) 29.	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对磁场 不起作用 (D)使铜板中磁场反向 [] 2404一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是					
	(A) (C) 29. (A)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对磁场 不起作用 (D) 使铜板中磁场 反向 [] 2404一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是线圈绕自身直径轴转动,轴与磁场方向平行					
	(A) (C) 29. (A) (B)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加 对 磁 场 不 起 作 用 (D) 使 铜 板 中 磁 场 反 向 [] 2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 线圈绕自身直径轴转动,轴与磁场方向平行 线圈绕自身直径轴转动,轴与磁场方向垂直					
	(A) (C) 29. (A) (B) (C)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加 对 磁 场 不 起 作 用 (D) 使 铜 板 中 磁 场 反 向 [D]					
[(A) (C) 29. (A) (B)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加 对 磁 场 不 起 作 用 (D) 使 铜 板 中 磁 场 反 向 [] 2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 线圈绕自身直径轴转动,轴与磁场方向平行 线圈绕自身直径轴转动,轴与磁场方向垂直					
	(A) (C) 29. (A) (B) (C) (D)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对磁场不起作用 (D) 使铜板中磁场反向 [2404一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是线圈绕自身直径轴转动,轴与磁场方向平行线圈绕自身直径轴转动,轴与磁场方向垂直线圈平面垂直于磁场并沿垂直磁场方向平移 线圈 平面平行于磁场并沿垂直磁场方向平移 [
	(A) (C) 29. (A) (B) (C) (D) 30.	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对 磁场 不起 作用 (D) 使铜板中磁场 反向 [2404一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 线圈绕自身直径轴转动,轴与磁场方向平行 线圈绕自身直径轴转动,轴与磁场方向垂直 线圈平面垂直于磁场并沿垂直磁场方向平移 线圈 平面平行于磁场并沿垂直磁场方向平移 12493:如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感					
	(A) (C) 29. (A) (B) (C) (D) 30.	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对磁场不起作用 (D) 使铜板中磁场反向 [2404一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是线圈绕自身直径轴转动,轴与磁场方向平行线圈绕自身直径轴转动,轴与磁场方向垂直线圈平面垂直于磁场并沿垂直磁场方向平移线圈平面垂直于磁场并沿垂直磁场方向平移线圈平面垂直于磁场并沿垂直磁场方向平移 [2493:如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到?					
	(A) (C) 29. (A) (B) (C) (D) 30. 流流	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对 磁 场 不 起 作 用 (D) 使 铜 板 中 磁 场 反 向 [2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是线圈绕自身直径轴转动,轴与磁场方向平行线圈绕自身直径轴转动,轴与磁场方向垂直线圈平面垂直于磁场并沿垂直磁场方向平移 线 圈 平 面 平 行 于 磁 场 并 沿 垂 直 磁 场 方 向 平 移 [2493: 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到? 载流螺线管向线圈靠近					
	(A) (C) 29. (A) (B) (C) (D) 30. (A) (A) (B)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对磁场不起作用 (D) 使铜板中磁场反向 [2404一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是线圈绕自身直径轴转动,轴与磁场方向平行线圈绕自身直径轴转动,轴与磁场方向垂直线圈平面垂直于磁场并沿垂直磁场方向平移线圈平面垂直于磁场并沿垂直磁场方向平移线圈平面平行于磁场并沿垂直磁场方向平移 [2493:如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到?载流螺线管向线圈靠近载流螺线管高开线圈					
	(A) (C) 29. (A) (B) (C) (D) 30. (A) (B) (C)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对 磁 场 不 起 作 用 (D) 使 铜 板 中 磁 场 反 向 [2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 线圈绕自身直径轴转动,轴与磁场方向平行 线圈绕自身直径轴转动,轴与磁场方向垂直 线圈平面垂直于磁场并沿垂直磁场方向平移 线 圈 平 面 平 行 于 磁 场 并 沿 垂 直 磁 场 方 向 平 移 [2493: 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到? 载流螺线管向线圈靠近载流螺线管向线圈靠近载流螺线管向线圈靠近载流螺线管中电流增大					
[[应电	(A) (C) 29. (A) (B) (C) (D) 30. (A) (A) (B)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加对磁场不起作用 (D) 使铜板中磁场反向 [2404一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是线圈绕自身直径轴转动,轴与磁场方向平行线圈绕自身直径轴转动,轴与磁场方向垂直线圈平面垂直于磁场并沿垂直磁场方向平移线圈平面垂直于磁场并沿垂直磁场方向平移线圈平面平行于磁场并沿垂直磁场方向平移 [2493:如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到?载流螺线管向线圈靠近载流螺线管高开线圈					
	(A) (C) 29. (A) (B) (C) (D) 30. (A) (B) (C) (D)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加 对 磁 场 不 起 作 用 (D) 使 铜 板 中 磁 场 反 向 [2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 线圈绕自身直径轴转动,轴与磁场方向平行 线圈绕自身直径轴转动,轴与磁场方向垂直 线圈平面垂直于磁场并沿垂直磁场方向平移 线 圈 平 面 平 行 于 磁 场 并 沿 垂 直 磁 场 方 向 平 移 [2493: 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到? 载流螺线管向线圈靠近载流螺线管向线圈靠近载流螺线管中电流增大 载 流 螺 线 管 中 插 入 铁 芯					
[[应电	(A) (C) 29. (A) (B) (C) (D) 30. (A) (B) (C) (D)	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加 对 磁 场 不 起 作 用 (D) 使 铜 板 中 磁 场 反 向 [2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是线圈绕自身直径轴转动,轴与磁场方向平行线圈绕自身直径轴转动,轴与磁场方向垂直线圈平面垂直于磁场并沿垂直磁场方向平移 线 圈 平 面 平 行 于 磁 场 并 沿 垂 直 磁 场 方 向 平 移 [2493: 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到?载流螺线管向线圈靠近载流螺线管向线圈靠近载流螺线管向线圈靠近载流螺线管离开线圈载流螺线管电电流增大 载 流 螺 线 管 中 插 入 铁 芯 [2123: 如图所示,导体棒 AB 在均匀磁场 B中 绕通过 C点的垂直于棒长且沿磁场					
[应电	(A) (C) 29. (A) (B) (C) (D) 30. (A) (A) (B) (C) (D) 31.	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加 对 磁 场 不 起 作 用 (D) 使 铜 板 中 磁 场 反 向 [2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 线圈绕自身直径轴转动,轴与磁场方向平行 线圈绕自身直径轴转动,轴与磁场方向垂直 线圈平面垂直于磁场并沿垂直磁场方向平移 线 圈 平 面 平 行 于 磁 场 并 沿 垂 直 磁 场 方 向 平 移 [2493: 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到? 载流螺线管向线圈靠近载流螺线管离开线圈 载流螺线管中电流增大 载 流 螺 线 管 中 插 入 铁 芯 [2123: 如图所示,导体棒 AB 在均匀磁场 B中 绕通过 C 点的垂直于棒长且沿磁场					
[应电	(A) (C) 29. (A) (B) (C) (D) 30. (A) (B) (C) (D) 31.	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加 (D) 使 铜 板 中 磁 场 反 向 2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 线圈绕自身直径轴转动,轴与磁场方向平行 线圈绕自身直径轴转动,轴与磁场方向垂直 线圈平面垂直于磁场并沿垂直磁场方向平移 线 圈 平 面 平 行 于 磁 场 并 沿 垂 直 磁 场 方 向 平 移 2493: 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到?载流螺线管商线圈靠近载流螺线管商为缓圈 载流螺线管南线圈 载流螺线管中电流增大 载 流 螺 线 管 中 插 入 铁 芯 2123: 如图所示,导体棒 AB 在均匀磁场 B中 绕通过 C 点的垂直于棒长且沿磁场 OO′转动(角速度 © 与 B 同方向),BC的长度为棒长的 3,则					
[应电	(A) (C) 29. (A) (B) (C) (D) 30. (A) (B) (C) (D) 31.	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加 (D) 使 铜 板 中 磁 场 反 向 [D] 2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 线圈绕自身直径轴转动,轴与磁场方向平行 线圈绕自身直径轴转动,轴与磁场方向垂直 线圈 平面 平 行 于 磁 场 并 沿 垂 直 磁 场 方 向 平 移 [D] 2493: 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到? 载流螺线管向线圈靠近载流螺线管商线圈					
[应电	(A) (C) 29. (A) (B) (C) (D) 30. (A) (B) (C) (D) 31.	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加 (D) 使 铜 板 中 磁 场 反 向 2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 线圈绕自身直径轴转动,轴与磁场方向平行 线圈绕自身直径轴转动,轴与磁场方向垂直 线圈平面垂直于磁场并沿垂直磁场方向平移 线 圈 平 面 平 行 于 磁 场 并 沿 垂 直 磁 场 方 向 平 移 2493: 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到?载流螺线管商线圈靠近载流螺线管商为缓圈 载流螺线管南线圈 载流螺线管中电流增大 载 流 螺 线 管 中 插 入 铁 芯 2123: 如图所示,导体棒 AB 在均匀磁场 B中 绕通过 C 点的垂直于棒长且沿磁场 OO′转动(角速度 © 与 B 同方向),BC的长度为棒长的 3,则					
[应电	(A) (C) 29. (A) (B) (C) (D) 30. (A) (B) (C) (D) 31.	加速铜板中磁场的增加 (B) 减缓铜板中磁场的增加 (D) 使 铜 板 中 磁 场 反 向 [D] 2404 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 线圈绕自身直径轴转动,轴与磁场方向平行 线圈绕自身直径轴转动,轴与磁场方向垂直 线圈 平面 平 行 于 磁 场 并 沿 垂 直 磁 场 方 向 平 移 [D] 2493: 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感下列哪一种情况可以做到? 载流螺线管向线圈靠近载流螺线管商线圈					

心垂直于盘面的轴沿图示方向转动时,

- (A) 铜盘上有感应电流产生,沿着铜盘转动的相反方向流动
- (B) 铜盘上有感应电流产生,沿着铜盘转动的方向流动
- (C) 铜盘上产生涡流
- (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高
- (E) 铜盘上有感应电动势产生,铜盘中心处电势最高
- 33. 2156: 两个相距不太远的平面圆线圈, 怎样可使其互感系数近似为零? 设其中一线 圈的轴线恰通过另一线圈的圆心
 - (A) 两线圈的轴线互相平行放置
- (B) 两线圈并联
- (C) 两线圈的轴线互相垂直放置
- (D) 两线圈串联
- 34. 2417: 对于单匝线圈取自感系数的定义式为 $L = \Phi/I$ 。当线圈的几何形状、大小及 周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数 L
 - (A) 变大,与电流成反比关系
- (B) 变小
 - (C) 不变
- (D) 变 大 , 与 电 不
- 35. 2421: 已知一螺绕环的自感系数为 L。若将该螺绕环锯成两个半环式的螺线管,则 两个半环螺线管的自感系数
- (C)
- 36. 2752: 在真空中一个通有电流的线圈 a 所产生的磁场内有另一个线圈 b, a 和 b 相 对位置固定。若线圈 b中电流为零(断路),则线圈 b与 a间的互感系数:

可

- (A) 一定为零 (B) 一定不为零 (C) 可为零也可不为零, 与线圈 b 中电流无关

确

- (D) 是
- 不
- 能
- 定

37. 5138: 在一自感线圈中通过的电流 / 随时间 t 的变化规律如图(a)所示, 若以 / 的正 流向作为 \mathcal{E} 的正方向,则代表线圈内自感电动势 \mathcal{E} 随时间t变化规律的曲

- 38. 5141:有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为 n 和 2。 内充满均匀介质,其磁导率分别为 μ_1 和 μ_2 。设 r_1 : r_2 =1:2, μ_1 : μ_2 =2:1,当将两只螺线管 串联在电路中通电稳定后,其自感系数之比 $L_1:L_2$ 与磁能之比 $W_{m1}:W_{m2}$ 分别为:
 - (A) $L_1: L_2=1:1$, $W_{m1}: W_{m2}=1:1$ (B) $L_1: L_2=1:2$, $W_{m1}: W_{m2}=1:1$
- - (C) $L_1 : L_2 = 1 : 2$, $W_{m1} : W_{m2} = 1 : 2$ (D) $L_1 : L_2 = 2 : 1$, $W_{m1} : W_{m2} = 2 : 1$
- 39. 5159: 如图, 平板电容器(忽略边缘效应)充电时, 沿环路 L 的磁场强度 H的环流 与沿环路 L_2 的磁场强度 H 的环流两者,必有:

$$\oint_{I} \vec{H} \cdot d\vec{l}' > \oint_{I} \vec{H} \cdot d\vec{l}' \qquad \oint_{I_{2}} \vec{H} \cdot d\vec{l}' \qquad \oint_{I_{2}} \vec{H} \cdot d\vec{l}' = \oint_{I_{2}} \vec{H} \cdot d\vec{l}'$$
(A)
$$(B) \qquad (B) \qquad ($$

	中的电流由下向上,当线圈平行于导线向下运动时,线圈中的感应,当线圈以垂直于导线的速度靠近导线时,线圈中的感应电动势
	成=0)(设顺时针方向的感应电动势为正)。
`	34 :图示为三种不同的磁介质的 $B\sim H$ 关系曲线,其中虚线表示的是 B
	a、b、c 各代表哪一类磁介质的 B~H关系曲线 B/h
a 代表_	
b 代表_ c 代表	
	拒形线圈,它与 L 皆在纸面内,且 AB 边与 L
平行	$0 \xrightarrow{c} H$
	矩形线圈在纸面内向右移动时,线圈中感应电动势方向为
	矩形线圈绕 AD 边旋转,当 BC 边已离开纸面正向外运动时,线圈中原
的方向为	
	15: 半径为 a 的无限长密绕螺线管,单位长度上的匝数为 n ,通以交]围在管外的同轴圆形回路(半径为 r)上的感生电动势为
]固任官外的问轴圆形回路(平位为 r)工的恐生电幼务为 [6:桌子上水平放置一个半径 r=10 cm 的金属圆环,其电阻 R=1Ω。 λ
	的竖直分量为 5×10·5 T。那么将环面翻转一次,沿环流过任一横截面的
= .	VELLO EN TO THE PROPERTY OF TH
31. 213	34:金属杆 AB 以匀速 $ u$ =2 m/s 平行于长直载流导线运动,导线与 AB $ eq$
	1图所示。已知导线载有电流 I=40A,则此金属杆中的感应电
	,电势较高端为。(ln2 = 0.69)
	4: 金属圆板在均匀磁场中以角速度ω绕中心轴旋转,均匀磁场的方向 ³
	示。这时板中由中心至同一边缘点的不同曲线上总感应电动势的大小_
方向。	
	\times \times \times \times
	\wedge
$I \land M$	$N \longrightarrow C \longrightarrow b$
a	$A \rightarrow A \rightarrow$
	i i m l m l v i
	10' X X X X X X X X X X X X X X X X X X X
	33. 2508: 一导线被弯成如图所示形状, acb 为半径
<u> </u>	四分之三圆弧,直线段 Oa 长为 R 。若此导线放在匀强磁
	直图面向内。导线以角速度 ω 在图面内绕 O 点匀速转动,则此导线中的 z
	,电势最高的点是。
	[0: 如图所示,一段长度为 / 的直导线 MN, 水平放置在载电流为 / 的
	导线共面,并从静止由图示位置自由下落,则 / 秒末导线两端的
$U_{\scriptscriptstyle M} - U_{\scriptscriptstyle N} =$: °
	——— 59 : 无铁芯的长直螺线管的自感系数表达式为 $L=\mu_0 n^2 V$,其中 n 为 $\frac{1}{2}$
25 215	
	7 为噱线官的14A积。看着像GG绫9NNBL 3GGB1日成多9NN
上的匝数,	V为螺线管的体积。若考虑端缘效应时,实际的自感系数应 等于)此式给出的值。若在管内装上铁芯,则 Z 与电流。
上的匝数,	V 万螺线官的体积。看考虑蜥缘效应时,头际的自愿系数应。等于)此式给出的值。若在管内装上铁芯,则 L 与电流。

- 38. 2525: 一自感线圈中,电流强度在 0.002 s 内均匀地由 10 A 增加到 12 A,此过程中线圈内自感电动势为 400 V,则线圈的自感系数为 L=____。
- 39. 2338: 真空中两只长直螺线管 1 和 2,长度相等,单层密绕匝数相同,直径之比 d / d = 1/4。当它们通以相同电流时,两螺线管贮存的磁能之比为 $W_1/W_7=$ 。
- 40. 5149: 无限长密绕直螺线管通以电流 Λ, 内部 充满均匀、各向同性的磁介质,磁导率为μ。管上单位长度绕有 n 匝导线,则管内部的磁感 强度为________。
 - 41. 2339: 反映电磁场基本性质和规律的积分形式的麦克斯韦方程组为

$$\oint_{S} \vec{D} \cdot d\vec{S} = \int_{V} \rho \, dV \qquad \qquad \oint_{L} \vec{E} \cdot d\vec{I} = -\int_{S} \frac{\partial B}{\partial t} \cdot d\vec{S} \qquad \qquad (2)$$

$$\oint_{S} \vec{B} \cdot d\vec{S} = 0 \qquad \qquad \oint_{L} \vec{H} \cdot d\vec{I} = \int_{S} (\vec{J} + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S} \qquad \qquad (4)$$

试判断下列结论是包含于或等效于哪一个麦克斯韦方程式的。将你确定的方程式用代号填在相应结论后的空白处

- (1) 变化的磁场一定伴随有电场; _____
- (2) 磁感线是无头无尾的; _____
- (3) 电荷总伴随有电场。
- 42. 5160: 在没有自由电荷与传导电流的变化电磁场中, 沿闭合环路 /(设环路包围的

- 43. 0323: 图示为一圆柱体的横截面,圆柱体内有一均匀电场 \bar{E} , 其方向垂直纸面向内, \bar{E} 的大小随时间 t 线性增加,P 为柱体内与轴线相距为 r 的一点则:(1) P 点的位移电流密度的方向为______;(2) P 点感生磁场的方向为
- 44. 5161: 一平行板空气电容器的两极板都是半径为R的圆形导体片,在充电时,板间 电场强度的变化率为 dE/dt。若略去边缘效应,则两板间的位移电流为

三、计算题

- 1. 2251: 有一条载有电流 I的导线弯成如图示 abcda 形状。其中 ab、cd 是直线段,其余为圆弧。两段圆弧的长度和半径分别为 I、 R_1 和 I0、 R_2 0,两段圆弧共面共心。 I2 求圆心 I2 处的磁感强度 I3 的大小。
- 2. 2253: 一线电荷密度为 λ 的带电正方形闭合线框绕过其中心并垂直于其平面的轴以角速度 ω 旋转,试求正方形中心处的磁感强度的大小

[积分公式
$$\int \frac{\mathrm{d}x}{\sqrt{x^2 + a^2}} = \ln(x + \sqrt{x^2 + a^2})$$

- [积分公式 Vx + a] 3.0313:如图所示,电阻为 R、质量为 m、宽为 I 的矩形导电回路。从所画的静止位置开始受恒力 \overline{F} 的作用。在虚线右方空间内有磁感强度为 \overline{B} 且垂直于图面的 $X \times X \times X$ 均匀磁场。忽略回路自感。求在回路左边未进入磁场前,作为时间函 $X \times X \times X$ 数的速度表示式。
- 4. 2653: 假设把氢原子看成是一个电子绕核作匀速圆周运动的带电系统。已知平面轨道的半径为r,电子的电荷为e,质量为 m_e 。将此系统置于磁感强度为 \bar{B}_0 的均匀外磁场中,设 \bar{B}_0 的方向与轨道平面平行,求此系统所受的力矩 \bar{M} 。

- 5. 2054: 图所示为两条穿过y轴且垂直于x-y平面的平行长直导线的正视图,两条导线皆通有电流I,但方向相反,它们到x轴的距离皆为a。
 - (1) 推导出 x 轴上 P 点处的磁感强度 $\bar{B}(x)$ 的表达式;
 - (2) 求 P 点在 x 轴上何处时,该点的 B 取得最大值。

- 6. 2252: 绕铅直轴作匀角速度转动的圆锥摆,摆长为 /,摆球所带电荷为 q。求角速度 ω 为何值时,该带电摆球在轴上悬点为 /处的 O点产生的磁感强度沿竖直方向的分量值最大。
- 7. 2269:有一闭合回路由半径为 α 和b的两个同心共面半圆连接而成,如图。其上均匀分布线密度为 λ 的电荷,当回路以匀角速度 ω 绕过O点垂直于回路平面的轴转动时,求圆心O点处的磁感强度的大小。
- 8. 2569: 半径为 R 的薄圆盘均匀带电,总电荷为 q。令此盘绕通过盘心且垂直盘面的轴线匀速转动,角速度为 ω ,求轴线上距盘心 x 处的磁感强度的大小。

[积分公式
$$\int \frac{x^3}{(a^2 + x^2)^{3/2}} dx = \frac{x^2 + 2a^2}{(x^2 + a^2)^{1/2}} + C$$

- 9. 2139: 如图所示,真空中一长直导线通有电流 $I(t) = l_0 e^{\lambda t}$ (式中 l_0 、 λ 为常量,t为时间),有一带滑动边的矩形导线框与长直导线平行共面,二者相距 l_0 。矩形线框的滑动边与长直导线垂直,它的长度为 l_0 ,并且以匀速 $\bar{\nu}$ (方向平行长直导线)滑动。若忽略线框中的自感电动势,并设开始时滑动边与对边重合,试求任意时刻 l_0 在矩形线框 l_0 内的感应电动势 l_0 并讨论 l_0
- 10. 2150: 如图所示,两条平行长直导线和一个矩形导线框共面。且导线框的一个边与长直导线平行,他到两长直导线的距离分别为 r_1 、 r_2 。已知两导线中电流都为 $I=I_0\sin\omega t$,其中 I_0 和 ω 为常数, I_1 为时间。导线框长为 I_2 宽为 I_3 0,求导线框中的感应电动势。
- 11. 2407: 如图所示,一电荷线密度为 λ 的长直带电线(与一正方形线圈共面并与其一对 边平行)以变速率 v=v(t)沿着其长度方向运动,正方形线圈中的总电阻为 R,求 t 时刻方形线圈中感应电流 i(t)的大小(不计线圈自身的自感)。

- 12O 2409: 如图所示,**半径为 P 电荷线密度为 λ 的均匀带电圆环,里边有一半径为 P 总电阻为 P 的导体环,两环共面同心(P2>>P1),当大环以变角速度 $\omega = \omega(P)$ 绕垂直于环面的中心轴旋转时,求小环中的感应电流。其方向如何?
- 13. 2499: 无限长直导线,通以常定电流 I。有一与之共面的直角三角形线圈 ABC。已知 AC边长为 b,且与长直导线平行,BC边长为 a。若线圈以垂直于导线方向的速度 $\bar{\nu}$ 向右平移,当 B 点与长直导线的距离为 d 时,求线圈 ABC 内的感应电动势的大小和感应电动势的方向。

- 14. 2743: 一边长为 a 及 b 的矩形导线框,它的边长为 b 的边与一载有电流为 I 的长直导线平行,其中一条边与长直导线相距为 c, c>a, 如图所示。今线框以此边为轴以角速度 ω 匀速旋转,求框中的感应电动势 ε 。
- 15. 5554: 半径为 R 的长直螺线管单位长度上密绕有 n 匝线圈。在管外有一包围着螺线管、面积为 S 的圆线圈,其平面垂直于螺线管轴线。螺线管中电流 i 随时间作周期为 i 的变化,如图所示。求圆线圈中的感生电动势 i 。画出 i 一i 曲线,注明时间坐标。

- 16.0310: 如图所示,一长直导线通有电流 I, 其旁共面地放置一匀质金属梯形线框 abcda 已知: da=ab=bc=L,两斜边与下底边夹角均为 60° , d点与导线相距 I。今线框从静止开始自由下落 H高度,且保持线框平面与长直导线始终共面,求:
 - (1) 下落高度为 H的瞬间,线框中的感应电流为多少?
 - (2) 该瞬时线框中电势最高处与电势最低处之间的电势差为多少?
- 17. 2327: 一无限长竖直导线上通有稳定电流 I,电流方向向上。导线旁有一与导线共面、长度为 I 的金属棒,绕其一端 O在该平面内顺时针匀速转动,如图所示。转动角速度为 ω ,O点到导线的垂直距离为 n (n>I)。试求金属棒转到与水平面成 θ 角时,棒内感应电动势的大小和方向。
- 18. 2769: 由质量为 m、电阻为 R 的均匀导线做成的矩形线框,宽为 b,在 t=0 时由静止下落,这时线框的下底边在 y=0 平面上方高度为 h 处(如图所示)。 y=0 平面以上没有磁场; y=0 平面以下则有匀强磁场 \bar{B} ,其方向在图中垂直纸面向里。现已知在时刻 t= t1 和 t5 线框位置如图所示,求线框速度 v5 与时间 t1 的函数关系 (不计空气阻力,且忽略线框自感)。
- 19. 2509: 如图所示,一根长为 L 的金属细杆 ab 绕竖直轴 O_1O_2 以角速度 ω 在水平面内旋转。 O_1O_2 在离细杆 a 端 L/5 处。若已知地磁场在竖直方向的分量为 \bar{B} 。求 ab 两端间的电势差 U_a-U_b 。
- 20. 2742: 在半径为 R的圆柱形空间内,存在磁感强度为 \overline{B} 的均匀磁场, \overline{B} 的方向与圆柱的轴线平行。有一无限长直导线在垂直圆柱中心轴线的平面内,两线相距为 a, a>R, 如图所示。已知磁感强度随时间的变化率为 $\mathrm{d}B/\mathrm{d}t$, 求长直导线中的感应电动势 $\mathrm{\mathcal{E}}$,并说明其方向。


```
一、选择题
   1. 5666: D; 2. 2020: A; 3. 2353: E; 4. 2354: D; 5. 5468: C; 6. 5470: C;
   7. 2003: B; 8. 2046: B; 9. 2047: D; 10. 2060: B; 11. 2062: A; 12. 2373: C;
   13. 2451: A; 14. 2575: D; 15. 2784: C; 16. 2090: C; 17. 2381: A; 18. 2466:
D;
   19. 2016: D; 20. 2049: B; 21. 2292: B; 22. 2398: C; 23. 2400: B; 24. 2608:
C:
   25. 2609; D; 26. 2736; B; 27. 2145; B; 28. 2147; B; 29. 2404; B; 30. 2493;
```

Β; 31. 2123: A; 32. 2504: D; 33. 2156: C; 34. 2417: C; 35. 2421: D; 36. 2752: C:

37. 5138: D; 38. 5141: C; 39. 5159: C; 40. 2183: D; 41. 2790: A;

二、填空题

- 1. 2549: $1.26 \times 10^{-5} \text{ Wb}$
- 2. 5303: 0.5 T; *v*轴正方向
- $5.00 \times 10^{-5} \text{ T}$ 3. 2023:
- 4. 2026: $6.67 \times 10^{-7} \text{ T};$ $7.20 \times 10^{-7} \,\mathrm{A} \cdot \mathrm{m}^2$

$$\frac{\mu_0 I}{4} (\frac{1}{R_2} - \frac{1}{R_1}); \quad \underline{\text{垂直纸面向外}}; \quad \frac{\mu_0 I}{4} (\frac{1}{R_1^2} - \frac{1}{R_2^2})^{1/2}; \quad \frac{1}{2} \pi + \operatorname{arctg} \frac{R_2}{R_1}$$

6. 2562:
$$\mu_0 I/(4a)$$

$$f_m$$

- $qv\sinlpha$; 运动电荷速度矢量与该点磁感强度矢量所组成的平面 7. 2665:
- 8. 5310: 12.4 T

$$\underline{\mu_0 I}$$

- $4\pi R$ 9. 5481:
- 10. 2652: 相同; 不同

$$\mu_0$$
ih

- $2\pi R$ 11. 2710:
- 02分; 0 12. 0361:
- 13. 2065: 1:2; 1:2
- 匀速率圆周; 等距螺旋线 14. 2066: 匀速直线;
- $3.08 \times 10^{-13} \text{ J}$ 15. 2235:

16. 2457:
$$R_1 / R_2 = \sqrt{2}$$

- $4.48 \times 10^{-10} \,\mathrm{A}$ 17. 2581:
- 18. 2096:
- 9.34×10⁻¹⁹ Am² ; 相反 19. 2103:

20. 2387:
$$B_0 B a^3 / (\sqrt{\pi} \mu_0)$$

 $1.26 \times 10^{-3} \text{ J}$ 21. 2601:

22. 2630:
$$\frac{e}{2m}$$

$$\mu_0 I_{c1} = 1$$

- $\frac{\mu_0 I}{2R} (1 \frac{1}{\pi}) \quad ,$ 垂直纸面向里 23. 5125:
- 24. 2109: 0.226 T; 300 A/m 25. 2401: $I/(2\pi r)$; $\mu I/(2\pi r)$
- 26. 2676: =0; <0

29. 2615:
$$-\mu_0 n I_m \pi a^2 \omega \cos \omega t$$

30. 2616:
$$3.14 \times 10^{-6} \,\mathrm{C}$$

31. 2134:
$$1.11 \times 10^{-5} \,\mathrm{V}$$
; A 端

$$\frac{1}{2}B\omega R^2$$
 32. 2144: 相同(或²); 沿曲线由中心向外

$$\frac{5}{2}B\omega R^2$$
 ; O 点

$$-\frac{\mu_0 Ig}{\ln a + I}$$

$$34. 2510: \qquad -\frac{\mu_0 Ig}{2\pi} t \ln \frac{a+l}{a}$$

$$\oint_{\mathcal{L}} \vec{H} \cdot d\vec{l} = \int_{\mathcal{S}} (\vec{J} + \frac{\partial \vec{D}}{\partial t}) \cdot d\vec{S}$$

40. 5149:
$$\mu nI$$
; $\mu n^2 I^2 / 2$

42. 5160:
$$\iint_{S} \frac{\partial}{\partial t} \vec{D} \cdot d\vec{S} = -\iint_{S} \frac{\partial}{\partial t} \vec{B} \cdot d\vec{S} = -d\Phi_{m}/dt$$

44. 5161:
$$\varepsilon_0 \pi R^2 dE/dt$$

三、计算题

$$B_1 = \frac{\mu_0 I \, I_1}{4\pi R_1^2}$$
 , $B_2 = \frac{\mu_0 I \, I_2}{4\pi R_2^2}$.----4

分 两段直导线在 O 点产生的磁感强度为:

$$= \frac{\mu_0 I}{4\pi R_1 \cos \frac{l_1}{2R_1}} \left[-\sin \frac{l_1}{2R_1} + \sin \frac{l_2}{2R_2} \right]$$

$$B_3 = B_4$$

4分

$$B = B_1 + B_3 + B_4 - B_2$$

$$= \frac{\mu_0 I}{2\pi R_1 \cos \frac{l_1}{2R_1}} \left[-\sin \frac{l_1}{2R_1} + \sin \frac{l_2}{2R_2} \right] + \frac{\mu_0 I}{4\pi} \left(\frac{l_1}{R_1^2} - \frac{l_2}{R_2^2} \right) ---1$$

分 方向⊗-分

2. 2253: 解: 设正方形边长为 /, 则旋转的正方形带电框等效于一个半径为

的带有均匀面电流的圆带。圆带中半径为 r, 宽度为 dr 的圆环在中心产生的磁场为:

$$dB = \frac{\mu_0 dI}{2r} = 2 \frac{\beta \lambda \omega \, dx}{2\pi} = 2 \frac{\beta}{2\pi}$$

$$r = \left[\left(\frac{1}{2} \Lambda \right)^2 + x^2 \right]^{1/2} = 1 \frac{\beta}{2\pi}$$

$$B = \int_0^{\pi/2} \frac{8\lambda \omega \mu_0 / 2\pi}{2\left[\left(\frac{1}{2} \Lambda \right)^2 + x^2 \right]^{1/2}} \, dx$$

$$= \frac{4\lambda \omega \mu_0}{2\pi} \ln(x + \sqrt{\left(\frac{1}{2} \Lambda \right)^2 + x^2}) \Big|_0^{\pi/2} = \frac{2\lambda \omega \mu_0}{\pi} \ln(1 + \sqrt{2})$$

3.0313:解:当线圈右边进入均匀磁场后,产生感生电流,因而受到一磁力F'向左。

$$F' = IBI = (1/R)B^2 l^2 dx/dt = (1/R)B^2 l^2 v$$
______4 \(\frac{1}{2}\)

由
$$\vec{F} = m\vec{a}$$
 得: $F - F' = mdv/dt$ ______2 分

$$F - (B^2 l^2 / R)v = mdv/dt$$

积分得:
$$\int \frac{dv}{F/m - [B^2 l^2/(Rm)]v} = \int dt \Rightarrow \ln(\frac{F}{m} - \frac{B^2 l^2 v}{Rm}) = -\frac{B^2 l^2}{Rm}t + C$$

当 t=0, $\nu=0$, 则:

所以:
$$\ln(\frac{F}{m} - \frac{B^2 l^2 v}{Rm}) - \ln \frac{F}{m} = -\frac{B^2 l^2}{Rm} t$$

可得:
$$v = \frac{FR}{B^2 l^2} (1 - e^{-bt})$$
,
其中: $b = B^2 l^2 / (Rm)$ ______2分

4. 2653: 解:电子在 xz 平面内作速率为 v的圆周运动(如图),则:

$$\upsilon = \frac{e}{\sqrt{4\pi\varepsilon_0 r m_e}}$$
:.
$$T = \frac{2\pi r}{\upsilon} = \frac{2\pi r \sqrt{4\pi\varepsilon_0 r m_e}}{e}$$
:.
$$E$$
 运动的周期:
$$p_m = IS = \frac{e}{T}\pi r^2 = \frac{e^2}{4}\sqrt{\frac{r}{\pi\varepsilon_0 m_e}}$$
E子的轨道磁矩:

电子运动的周期:

$$T = \frac{2\pi r}{v} = \frac{2\pi r \sqrt{4\pi \varepsilon_0 r m_e}}{e} - \frac{2\pi r \sqrt{4\pi \varepsilon_0 r m_e}}{e}$$

$$p_{m} = IS = \frac{e}{T}\pi r^{2} = \frac{e^{2}}{4}\sqrt{\frac{r}{\pi\varepsilon_{0}m_{e}}}$$

则原子的轨道磁矩:

 \bar{P}_m 的方向与y轴正向相反------1分

设 \vec{B}_0 方向与x轴正向平行,则系统所受力矩 $\vec{M} = \vec{p}_m \times \vec{B}_0 = \frac{e^2 B_0}{4} \sqrt{\frac{r}{\pi \varepsilon_0 m_e}} \vec{k}$

5. 2054: 解: (1) 利用安培环路定理可求得 1 导线在 P 点产生的磁感强度的大小为:

2 导线在 P 点产生的磁感强度的大小为:

 \bar{B}_1 、 \bar{B}_2 的方向如图所示。P点总场:

$$B_{x} = B_{1x} + B_{2x} = B_{1} \cos \theta + B_{2} \cos \theta$$
$$B_{y} = B_{1y} + B_{2y} = 0$$

$$\frac{d B(x)}{d x} = 0$$
, $\frac{d^2 B(x)}{d x^2} < 0$ 时, $B(x)$ 最大。由此可得: $x = 0$ 处, B 有最大值-----3

6. 2252: 解:圆锥摆在 O处产生的磁感强度沿竖直方向分量 B 相当于圆电流在其轴上

 $I = \frac{q\omega}{2\pi} \,, \quad R = l \sin\theta \,, \quad R^2 = l^2 \sin^2\theta = l^2 (1 - \cos^2\theta) \,, \quad x = l(1 - \cos\theta) \,...$

分

用
$$\cos\theta = \frac{g}{\omega^2 l}$$

$$B = \frac{\mu_0 q (l\omega^2 + g)}{4\pi (2l^2)^{3/2} (l\omega^2 - g)^{1/2}}$$

$$\vdots$$

$$\frac{d B}{d \omega} = \frac{\mu_0 q (l^2 \omega^3 - 3l\omega g)}{4\pi (2l^2)^{3/2} (l\omega^2 - g)^{3/2}}$$

$$\frac{d B}{d \omega} = 0$$

$$\varphi \quad \frac{d B}{d \omega} = 0$$

$$\varphi \quad \frac{d B}{d \omega} = 0$$

$$\varphi \quad \frac{\sqrt{3g}}{\sqrt{l}}$$

$$-3 \%$$

7. 2269: 解: $B = B_1 + B_2 + B_3$, $B_1 \setminus B_2$ 分别为带电的大半圆线圈和小半圆线圈转动产生的磁感强度, B_1 为沿直径的带电线段转动产生的磁感强度

$$I_{1} = \frac{\pi \lambda \omega b}{2\pi}, \quad B_{1} = \frac{\mu_{0}I_{1}}{2b} = \frac{\mu_{0}\pi \lambda \omega b}{2b \cdot 2\pi} = \frac{\mu_{0}\lambda \omega}{4}$$

$$I_{2} = \frac{\pi \lambda \omega a}{2\pi}, \quad B_{2} = \frac{\mu_{0}I_{2}}{2a} = \frac{\mu_{0}\pi \lambda \omega a}{2a \cdot 2\pi} = \frac{\mu_{0}\lambda \omega}{4}$$

$$dI_{3} = 2\lambda \omega \, dr/(2\pi)$$

$$B_{3} = \int_{a}^{b} \frac{\mu_{0}\lambda \omega}{2\pi} \cdot \frac{dr}{r} = \frac{\mu_{0}\lambda \omega}{2\pi} \ln \frac{b}{a}$$

$$B = \frac{\mu_{0}\lambda \omega}{2\pi} (\pi + \ln \frac{b}{a}) \qquad 4$$

8. 2569: 解: 圆盘每秒转动次数为 $\omega/2\pi$, 圆盘上电荷面密度为 $\sigma=q/\pi R^2$, 在圆盘 上取一半径为 r, 宽度为 dr 的环带, 此环带所带电荷: $dq = \sigma \cdot 2\pi r dr$

此环带转动相当于一圆电流,其电流大小为 $dI = \omega dq/2\pi$ ______2 分

 $dB = \frac{\mu_0 r^2 dI}{2(r^2 + x^2)^{3/2}} = \frac{\mu_0 \sigma \omega}{2} \cdot \frac{r^3}{(r^2 + x^2)^{3/2}} dr$ -----4/j 它在 x 处产生的磁感强度为:

故 P 点处总的磁感强度大小为:

9. 2139: 解:线框内既有感生又有动生电动势。设顺时针绕向为 ε ,的正方向。由 $\varepsilon_i = -\frac{d\Phi}{dt}$ 出发,先求任意时刻 t 的 $\Phi(t)$

再求 $\Phi(t)$ 对 t 的导数: $\frac{\mathrm{d}\Phi(t)}{\mathrm{d}t} = \frac{\mu_0}{2\pi} \left(\ln \frac{a+b}{b} \right) \left(\frac{\mathrm{d}I}{\mathrm{d}t} x + I \frac{\mathrm{d}x}{\mathrm{d}t} \right) = \frac{\mu_0}{2\pi} I_0 \mathrm{e}^{-\lambda t} \nu (1-\lambda t) \ln \frac{a+b}{a}$

$$\varepsilon_{i} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = \frac{\mu_{0}}{2\pi} \nu I_{0} e^{-\lambda t} (\lambda t - 1) \ln \frac{a + b}{a}$$
4 /jj

 ε_{t} 方向: $\lambda t < 1$ 时, 逆时针; $\lambda t > 1$ 时, 顺时针------2 分 10. 2150: 解: 两个载同向电流的长直导线在如图坐标x处所产生的磁场为:

$$B = \frac{\mu_0}{2\pi} \left(\frac{1}{x} + \frac{1}{x - r_1 + r_2} \right)$$
 2 \(\frac{1}{x} \)

选顺时针方向为线框回路正方向,则

$$\varepsilon = -\frac{d\Phi}{dt} = -\frac{\mu_0 a}{2\pi} \ln \left[\frac{(r_1 + b)(r_2 + b)}{r_1 r_2} \right] \frac{dI}{dt} = -\frac{\mu_0 I_0 a \omega}{2\pi} \ln \left[\frac{(r_1 + b)(r_2 + b)}{r_1 r_2} \right] \cos \omega t$$
-----3

11. 2407: 解: 长直带电线运动相当于电流 $I= \nu(t) \cdot \lambda$ ______2 分

 $d\Phi = \frac{\mu_0}{2\pi} \cdot \frac{I}{a+x} a dx$ 正方形线圈内的磁通量可如下求出:

$$\Phi = \frac{\mu_0}{2\pi} I a \int_0^a \frac{dx}{a+x} = \frac{\mu_0}{2\pi} I a \cdot \ln 2$$
-----2 \(\frac{\frac{1}{2}}{2} \)

$$\left|\varepsilon_{i}\right| = \left|-\frac{\mathrm{d}\Phi}{\mathrm{d}t}\right| = \frac{\mu_{0}a}{2\pi} \left|\frac{\mathrm{d}I}{\mathrm{d}t}\right| \ln 2 = \frac{\mu_{0}}{2\pi} \lambda a \left|\frac{\mathrm{d}\nu(t)}{\mathrm{d}t}\right| \ln 2$$

$$\left|i(t)\right| = \frac{\left|\varepsilon_{i}\right|}{R} = \frac{\mu_{0}}{2\pi R} \lambda a \left|\frac{\mathrm{d}\nu(t)}{\mathrm{d}t}\right| \ln 2$$

$$= \frac{\mu_{0}}{2\pi R} \lambda a \left|\frac{\mathrm{d}\nu(t)}{\mathrm{d}t}\right| \ln 2$$

12. 2409: 解: 大环中相当于有电流: $I = \omega(t) \cdot \lambda r_2$ ______2 分

$$B = \mu_0 I/(2r_2) = \frac{1}{2}\mu_0 \omega(t) \lambda$$
 这电流在 O 点处产生的磁感应强度大小:

 $\Phi \approx \frac{1}{2} \mu_0 \omega(t) \lambda \pi r_1^2 \qquad -2 \, \mathcal{H}$ 以逆时针方向为小环回路的正方向,

$$\varepsilon_{i} = -\frac{\mathrm{d}\Phi}{\mathrm{d}t} = -\frac{1}{2}\pi\mu_{0}\lambda r_{1}^{2}\frac{\mathrm{d}\omega(t)}{\mathrm{d}t}, \qquad i = \frac{\varepsilon_{i}}{R} = -\frac{\pi\mu_{0}\lambda r_{1}^{2}}{2R}\cdot\frac{\mathrm{d}\omega(t)}{\mathrm{d}t}$$

方向: $d\omega(t)/dt>0$ 时, i为负值, 即 i为顺时针方向------1分

13. 2499: 解: 建立坐标系, 长直导线为v轴, BC边为x轴, 原点在长直导线上, 则 斜边的方程为: y = (bx/a) - br/a

式中r是t时刻B点与长直导线的距离。三角形中磁通量

$$\Phi = \frac{\mu_0 I}{2\pi} \int_r^{a+r} \frac{y}{x} dx = \frac{\mu_0 I}{2\pi} \int_r^{a+r} (\frac{b}{a} - \frac{br}{ax}) dx = \frac{\mu_0 I}{2\pi} (b - \frac{br}{a} \ln \frac{a+r}{r})$$

$$\varepsilon = -\frac{d\Phi}{dt} = \frac{\mu_0 Ib}{2\pi a} (\ln \frac{a+r}{r} - \frac{a}{a+r}) \frac{dr}{dt}$$

$$\varepsilon = \frac{\mu_0 Ib}{2\pi a} (\ln \frac{a+d}{d} - \frac{a}{a+d}) v$$

$$\xi = \frac{\mu_0 Ib}{2\pi a} (\ln \frac{a+d}{d} - \frac{a}{a+d}) v$$

$$\xi = \frac{\mu_0 Ib}{2\pi a} (\ln \frac{a+d}{d} - \frac{a}{a+d}) v$$

当 r=d时, 方向: ACBA(即顺时针) ---

如图所示,设 t=0 时线圈与长直导线共面,且活动的 b 边与长直导线相距最远,则在

时刻 t,该边与长直导线的距离为: $d=\sqrt{a^2+c^2+2ac\cos\omega t}$ ______3 分 线圈中的磁通量:

$$\varepsilon = -d\Phi/dt = \frac{\mu_0 Ib}{2\pi} \frac{ac\omega \sin \omega t}{a^2 + c^2 + 2ac\cos\omega t}$$

15. 5554: 解: 螺线管中的磁感强度: $B = \mu_0 ni$ ______2 分

 $\Phi = \mu_0 n \pi R^2 i$ 通过圆线圈的磁通量:

取圆线圈中感生电动势的正向与螺线管中电流正向相同,有:

$$\varepsilon_{i} = -\frac{\mathrm{d}\,\Phi}{\mathrm{d}\,t} = -\mu_{0} n\pi R^{2} \frac{\mathrm{d}\,i}{\mathrm{d}\,t}$$

16. 0310: 解: (1)由于线框垂直下落,线框所包围面积内的磁通量无变化,故感应电流:

$$I_i = 0$$
------2 分

(2) 设 dc 边长为 f' ,则由图可见: $f' = L + 2L\cos 60^\circ = 2L$ 取 $d \rightarrow c$ 的方向为 dc 边内感应电动势的正向,则:

 $\varepsilon_{dc} > 0$, 说明 cd 段内电动势的方向由 $d \rightarrow c$ ------2 分

因为 c 点电势最高,d 点电势最低,故: V_{cd} 为电势最高处与电势最低处之间的电势差-----1分

17. 2327: 解: 棒上线元 d/中的动生电动势为:

$$d\varepsilon = (\vec{\nu} \times \vec{B}) \cdot d\vec{l} = \omega l \frac{\mu_0 I}{2\pi (r_0 + l\cos\theta)} dl$$

金属棒中总的感生电动势为:

$$\varepsilon = \int_{0}^{L} d\varepsilon = \int_{0}^{L} \frac{\omega \mu_{0} I / \cos \theta}{2\pi \cos^{2} \theta (r_{0} + l \cos \theta)} d(l \cos \theta)$$

$$= \int_{0}^{L} \frac{\omega \mu_{0} I}{2\pi \cos^{2} \theta} (1 - \frac{r_{0}}{r_{0} + l \cos \theta}) d(l \cos \theta)$$

$$= \frac{\omega \mu_{0} I L}{2\pi \cos \theta} - \frac{\omega \mu_{0} I r_{0}}{2\pi \cos^{2} \theta} [\ln(r_{0} + L \cos \theta) - \ln r_{0}]$$

$$= \frac{\omega \mu_{0} I}{2\pi \cos \theta} [L - \frac{r_{0}}{\cos \theta} \ln(\frac{r_{0} + L \cos \theta}{r_{0}})]$$

$$= \frac{\omega \mu_{0} I}{2\pi \cos \theta} [L - \frac{r_{0}}{\cos \theta} \ln(\frac{r_{0} + L \cos \theta}{r_{0}})]$$

$$= \frac{\omega \mu_{0} I}{2\pi \cos \theta} [L - \frac{r_{0}}{\cos \theta} \ln(\frac{r_{0} + L \cos \theta}{r_{0}})]$$

方向由 O 指向另一端------2 分

18. 2769: 解: (1) 在线框进入磁场之前($0 \le t \le t_1$)线框作自由落体运动: v = gt

(2) 线框底边进入磁场后,产生感应电流,因而受到一磁力:

$$F = IbB = \frac{1}{R} \frac{d\Phi}{dt} bB = \frac{B^2 b^2}{R} \frac{dy}{dt} = \frac{B^2 b^2}{R} v$$
, (方向向上)-----2 分

线框运动的微分方程为:
$$mg - \frac{B^2b^2}{R}v = m\frac{\mathrm{d}v}{\mathrm{d}t}$$

令
$$K = \frac{B^2 b^2}{mR}$$
 , 求解上式, 注意到 $t = t_1$ 时 $v = v_1$, 得:
$$v = \frac{1}{K} [g - (g - Kv_1)e^{-K(t-t_1)}]$$
 $(t_1 \le t \le t_2)$ $v = v_2 = \frac{1}{K} [g - (g - Kv_1)e^{-k(t_2-t_1)}]$

(3) 当线框全部进入磁场后(t>t),通过线框的磁通量不随时间变化,线框回路不存在 $v = v_2 + g(t - t_2)$ 感生电流,磁力为零. 故线框在重力作用下作匀加速下落,

19. 2509: 解: *Ob*间的动生电动势:

$$\overline{Oa}$$
间的动生电动势:
$$\varepsilon_2 = \int\limits_0^{L/5} (\overline{\mathbf{v}} \times \overline{B}) \cdot d\overline{l} = \int\limits_0^{L/5} \omega B l dl = \frac{1}{2} \omega B (\frac{1}{5} L)^2 = \frac{1}{50} \omega B L^2$$
 _____4 点电势高于 O 点

$$U_a - U_b = \varepsilon_2 - \varepsilon_1 = \frac{1}{50} \omega B \mathcal{L}^2 - \frac{16}{50} \omega B \mathcal{L}^2 = -\frac{15}{50} \omega B \mathcal{L}^2 = -\frac{3}{10} \omega B \mathcal{L}^2$$
.....2 \(\frac{1}{2}\)

20. 2742: 解:由问题的轴对称性和轴向的无限长条件可知,感生涡漩电场的场强E在 垂直轴线的平面内,且与径向相垂直-----3分

如图所示, 选取过轴线而平行给定的无限长直导线的一条无限长直导线, 与给定的无限 长直导线构成闭合回路(在无限远闭合),则在过轴线的长直导线上,因 \tilde{E} 处处与之垂直,:电动势为零.

又在无限远处 $\dot{E}=0$,故此回路中的电动势就是给定的无限长直导线中的电动势 ε ---3

$$oldsymbol{\Phi} = rac{1}{2}\pi R^2 B$$
该回路的磁通量:

$$\varepsilon = -\mathrm{d} \Phi / \mathrm{d} t = -\frac{1}{2} \pi R^2 \, \mathrm{d} B / \mathrm{d} t$$
 由电磁感应定律有: ------2 分 の正方向如图所示------1 分

