Design of FIR Filters using Frequency Sampling method

I.Nelson
SSN College of Engineering

Design of FIR filter using Frequency Sampling method

Let h(n) be the filter coefficients of an FIR filter and H(k) is the DFT of h(n). Then we have,

$$h(n) = \frac{1}{N} \sum_{k=0}^{N-1} H(k) e^{j2\pi kn/N} \qquad ; \quad n = 0,1,\dots,N-1 \qquad \dots (1)$$
and

$$H(k) = \sum_{n=0}^{N-1} h(n) e^{-j2\pi kn/N} \qquad ; k = 0,1,\dots,N-1 \qquad \dots (2)$$

The DFT samples H(k) for an FIR sequence can be regarded as samples of the filter z- transform evaluated at N points equally spaced around the unit circle.

i.e.,
$$H(k)=H(z)|_{z=e^{j2\pi k/N}}$$
(3)

The transfer function H(z) of an FIR filter with impulse response is given by,

$$H(z) = \sum_{n=0}^{N-1} h(n) z^{-n}$$
(4)

Substituting (1) in (4) we get,

$$H(z) = \sum_{n=0}^{N-1} \left[\frac{1}{N} \sum_{k=0}^{N-1} H(k) e^{j2\pi k n/N} \right] z^{-n}$$

$$= \sum_{k=0}^{N-1} \frac{H(k)}{N} \sum_{n=0}^{N-1} \left(e^{j2\pi k/N} z^{-1} \right)^{n}$$

$$= \sum_{k=0}^{N-1} \frac{H(k)}{N} \left(\frac{1 - \left(e^{j2\pi k/N} z^{-1} \right)^{N}}{1 - e^{j2\pi k/N} z^{-1}} \right)$$

$$= \frac{1 - z^{-N}}{N} \sum_{k=0}^{N-1} \frac{H(k)}{1 - e^{j2\pi k/N} z^{-1}}$$
(5)

> We know,

$$H(e^{j\omega})|_{\omega=\frac{2\pi k}{N}} = H(e^{j2\pi k/N}) = H(k)$$
(6)

i.e., H(k) is the k^{th} DFT component obtained by sampling the frequency response $H(e^{j\omega})$.

Frequency response of FIR filter:

The frequency response of the FIR filter can be obtained by setting $z=e^{j\omega}$ in (5), we get,

$$H(e^{j\omega}) = \frac{1 - e^{-j\omega N}}{N} \sum_{k=0}^{N-1} \frac{H(k)}{1 - e^{j2\pi k/N}} e^{-j\omega}$$

$$= \frac{e^{-j\omega N/2} (e^{j\omega N/2} - e^{-j\omega N/2})}{N} \sum_{k=0}^{N-1} \frac{H(k)}{1 - e^{-j(\omega - 2\pi k/N)}}$$

$$= \frac{e^{-j\omega N/2}}{N} \sum_{k=0}^{N-1} \frac{H(k) (e^{j\omega N/2} - e^{-j\omega N/2})}{e^{-j(\omega - 2\pi k/N)/2} (e^{j(\omega - 2\pi k/N)/2} - e^{-j(\omega - 2\pi k/N)/2})}$$

$$= \frac{e^{-j\omega N/2}}{N} \sum_{k=0}^{N-1} \frac{H(k) \sin(\omega N/2)}{e^{-j\omega N/2}} \frac{H(k) \sin(\omega N/2)}{\sin((\omega N/2) - \pi k/N)}$$

$$= \frac{e^{-j\omega N/2}}{N} \sum_{k=0}^{N-1} \frac{H(k) e^{-j\pi k/N}}{\sin((\omega N/2) - \pi k/N)}$$

$$\sin ce$$
, $\sin \left(\frac{\omega N}{2} - k\pi\right) = (-1)^k \sin \left(\frac{\omega N}{2}\right)$

$$H(e^{j\omega}) = \frac{e^{-j\omega\frac{N-1}{2}}}{N} \sum_{k=0}^{N-1} \frac{H(k)(-1)^k e^{-j\pi k/N} \sin N\left(\frac{\omega}{2} - \frac{\pi k}{N}\right)}{\sin\left(\frac{\omega}{2} - \frac{\pi k}{N}\right)}$$
....(7)

Design:

Based on the set of samples that we choose from the frequency response, there are two types of design.

Type 1design:

The frequency samples of the desired response $H_d(e^{j\omega})$ are determined using the relation,

$$H(k) = H_d(e^{j\omega})|_{\omega = \frac{2\pi}{N}k}$$
 ; $k = 0,1,...,N-1$ (8)

The frequency samples can be expressed in the form,

$$H(k) = |H(k)|e^{j\theta(k)}$$
(9)

For linear phase,

The filter coefficients h(n) can be obtained by finding IDFT of H(k), i.e.,

If h(n), the impulse response of the filter is to be a real valued signal, the frequency samples H(k) must satisfy the symmetry requirement.

for N odd or even,

$$H(N-k) = H^*(k)$$
; $k=0,1,....N-1$ (12)
and also for N even, $H(N/2)=0$

With the frequency response H(k), the magnitude response is an even function,

$$|H(k)| = |H(N-k)|$$
 $k=0,1,.....N-1$ (13)

and the phase is an odd function

$$\theta(k) = -\theta(N-k)$$
 $k=0,1,......N-1$ (14)

Replacing k by (N-k) in (10), we get

$$\theta(N-k) = -\left(\frac{N-1}{N}\right)\pi(N-k)$$
$$= -(N-1)\pi + \left(\frac{N-1}{N}\right)\pi k$$

To satisfy the requirements of (14), $\theta(k)$ for N odd is given by

$$\theta(k) = \begin{cases} -\left(\frac{N-1}{N}\right)\pi k & ; & k = 0,1,\dots,\frac{N-1}{2} \\ (N-1)\pi - \left(\frac{N-1}{N}\right)\pi k & ; & k = \frac{N+1}{2},\dots,N-1 \end{cases} \dots (15)$$

Similarly for N even,

$$\theta(k) = \begin{cases} -\left(\frac{N-1}{N}\right)\pi k & ; & k = 0,1,\dots,\frac{N}{2} - 1\\ (N-1)\pi - \left(\frac{N-1}{N}\right)\pi k & ; & k = \frac{N}{2} + 1,\dots,N - 1\\ 0 & ; & k = \frac{N}{2} \end{cases} \dots (16)$$

Substituting (15) in (9), we get for N odd,

$$H(k) = \begin{cases} |H(k)| e^{-j(N-1)\pi k/N} & ; & k = 0,1,\dots,\frac{N-1}{2} \\ |H(k)| e^{j\left[(N-1)\pi - \left(\frac{N-1}{N}\right)\pi k\right]} & ; & k = \frac{N+1}{2},\dots,N-1 \end{cases} \dots (17)$$

Substituting (16) in (9), we get for N even,

$$H(k) = \begin{cases} |H(k)| e^{-j(N-1)\pi k/N} & ; \quad k = 0,1,...., \frac{N}{2} - 1 \\ |H(k)| e^{j\left[(N-1)\pi - \left(\frac{N-1}{N}\right)\pi k\right]} & ; \quad k = \frac{N}{2} + 1,...., N - 1 \\ 0 & ; \quad k = \frac{N}{2} \end{cases}$$
 (18)

If the filter is to be linear phase, then h(n) must satisfy the symmetry condition,

$$h(n) = h(N-1-n)$$
(19)

Using this symmetry condition and symmetry condition of H(k) the filter coefficients can be written as,

for Nodd

$$h(n) = \frac{1}{N} \left\{ H(0) + 2 \sum_{k=1}^{\frac{N-1}{2}} \text{Re} \left[H(k) e^{j2\pi kn/N} \right] \right\} \qquad \dots (20)$$

for N even

$$h(n) = \frac{1}{N} \left\{ H(0) + 2 \sum_{k=1}^{\frac{N}{2} - 1} \text{Re} \left[H(k) e^{j2\pi kn/N} \right] \right\} \qquad \dots (21)$$

The system function of the filter is given by,

$$H(z) = \sum_{n=0}^{N-1} h(n) z^{-n} \qquad \dots (22)$$

Type 2 design

The frequency samples of the desired response $H_d(e^{j\omega})$ are determined using the relation,

$$H(k) = H_d(e^{j\omega})|_{\omega = \frac{2\pi}{N}(k+\frac{1}{2})}$$
; $k = 0,1,...,N-1$ (23)

The filter coefficients h(n) can be obtained by finding IDFT of H(k), i.e.,

$$h(n) = \frac{1}{N} \sum_{k=0}^{N-1} H(k) e^{j2\pi kn/N} \qquad ; \qquad n = 0,1,\dots,N-1$$
 (24)

If h(n), the impulse response of the filter is to be a real valued signal, the frequency samples H(k) must satisfy the symmetry requirement.

for N odd,

$$H(N-k-1)=H^*(k)$$

$$k = 0, 1, \dots, \frac{N-1}{2} - 1$$

$$H\left(\frac{N-1}{2}\right)=0$$

for N even

$$H(N-k-1)=H^*(k)$$

$$k = 0,1,\dots,\frac{N}{2} - 1$$

Using this symmetry condition and symmetry condition of H(k) the filter coefficients can be written as,

for N odd

$$h(n) = \frac{2}{N} \sum_{k=1}^{\frac{N-3}{2}} \text{Re} \left[H(k) e^{j\pi n(2k+1)/N} \right]$$

for N even

$$h(n) = \frac{2}{N} \sum_{k=1}^{\frac{N-2}{2}} \text{Re} \left[H(k) e^{j\pi n(2k+1)/N} \right]$$

