Module: Processus Stochastiques 2

Correction Epreuve Finale

Exercice 1 1/(2 pts) Soit X une v.a. réelle sur (Ω, \mathcal{F}, P) telle que $E(|X|) < +\infty$.

On a que $\forall B \in \mathcal{A} : \int_{B} E(X/\mathcal{A}) dP = \int_{B} X dP$. Mais $\mathcal{A} = \{\emptyset, \Omega\}$, donc:

- Si $B = \Omega$: $\int_{\Omega} E(X/\mathcal{A}) dP = \int_{\Omega} X dP = E(X) = E(X)P(\Omega) = E(X)\int_{\Omega} dP = \int_{\Omega} E(X) dP$
- Si $B = \emptyset$: $\int_{\emptyset} E(X/\mathcal{A}) dP = 0 = \int_{\emptyset} X dP = \int_{\emptyset} E(X) dP$

Donc $\forall B \in \mathcal{A} = \{\emptyset, \Omega\} : \int_B E(X/\mathcal{A}) dP = \int_B E(X) dP$, ainsi d'après le Lemme 1, $E(X/\mathcal{A}) = E(X)$ p.s.

2/ $Y_n = E(X/\mathcal{F}_n)$ où $(\mathcal{F}_n)_n$ est une filtration.

- (1 pts) $Y_n = E(X/\mathcal{F}_n)$ est \mathcal{F}_n -mesurable, ainsi $(X_n)_n$ est adaptée à la filtration $(\mathcal{F}_n)_n$.
- (1 pts) On a $E(|Y_n|) = E(|E(X/\mathcal{F}_n)|) \le E(E(|X|/\mathcal{F}_n))$ d'après l'inégalité de Jensen et $E(E(|X|/\mathcal{F}_n)) = E(|X|) < +\infty$ donc $E(|Y_n|) < +\infty$. D'où Y_n est intégrable $\forall n \ge 1$.
- (2 pts) Montrons que: $E(Y_{n+1}/\mathcal{F}_n) = Y_n$. On a $E(Y_{n+1}/\mathcal{F}_n) = E(E(X/\mathcal{F}_{n+1})/\mathcal{F}_n) = E(X/\mathcal{F}_n) = Y_n$ car $\mathcal{F}_n \subset \mathcal{F}_{n+1}$. Ainsi $Y_n = E(X/\mathcal{F}_n)$ est une martingale.

Exercice 2 1/ $Y_n = (-1)^n \cos(\pi X_n)$

- (0.5 pts) Y_n est fonction de X_n qui est \mathcal{F}_n -mesurable, ainsi $(Y_n)_n$ est adaptée à la filtration $(\mathcal{F}_n)_n$.
- (0.5 pts) On a $|Y_n| \le 1$ donc $E(|Y_n|) < +\infty$. D'où Y_n est intégrable $\forall n \ge 1$.
- (1 pts) Montrons que: $E(Y_{n+1}/\mathcal{F}_n) = Y_n$. On a

$$E(Y_{n+1}/\mathcal{F}_n) = E((-1)^{n+1}\cos(\pi X_{n+1})/\mathcal{F}_n) = E((-1)^{n+1}\cos(\pi X_n + \pi \xi_{n+1})/\mathcal{F}_n)$$

$$= (-1)^{n+1} \left[E(\cos(\pi X_n)\cos(\pi \xi_{n+1})/\mathcal{F}_n) - E(\sin(\pi X_n)\sin(\pi \xi_{n+1})/\mathcal{F}_n) \right]$$

$$= (-1)^{n+1}\cos(\pi X_n)E(\cos(\pi \xi_{n+1})) - (-1)^{n+1}\sin(\pi X_n)E(\sin(\pi \xi_{n+1}))$$

et
$$E(\cos(\pi \xi_{n+1})) = \cos(-\pi)\frac{1}{2} + \cos(\pi)\frac{1}{2} = -1$$
 aussi $E(\sin(\pi \xi_{n+1})) = 0$. Ainsi $E(Y_{n+1}/\mathcal{F}_n) = (-1)^{n+2}\cos(\pi X_n) = (-1)^n\cos(\pi X_n) = Y_n$.

2/ (1 pts) T est le temps d'entrée dans l'ensemble $\{-K,K\}$, donc T est un temps d'arrêt.

3/ (1 pts) On a $|X_n| \le n$, donc $E(|X_n^2 - n|) \le E(X_n^2) + n \le n^2 + n < \infty$. $X_n^2 - n$ est \mathcal{F}_n —mesurable.

$$E(X_{n+1}^{2} - (n+1)/\mathcal{F}_{n}) = E(X_{n+1}^{2}/\mathcal{F}_{n}) - (n+1)$$

$$= E(\xi_{n+1}^{2}/\mathcal{F}_{n}) + 2E(\xi_{n+1}X_{n}/\mathcal{F}_{n}) + E(X_{n}^{2}/\mathcal{F}_{n}) - (n+1)$$

$$= E(\xi_{n+1}^{2}) + 2X_{n}E(\xi_{n+1}) + X_{n}^{2} - (n+1)$$

$$= 1 + X_{n}^{2} - (n+1) = X_{n}^{2} - n$$

Donc $X_n^2 - n$ est une martingale.

4/ (1 pts) 2Kn peut être considérée comme une suite de 2K expériences de Bernouilli répétées n fois. Une condition nécessaire pour que T>2Kn est qu'aucune des n suites (de 2K) ne contiennes que des succés. Alors $P\left(T>2Kn\right) \leq \left[1-\left(\frac{1}{2}\right)^{2K}\right]^n \underset{n \to +\infty}{\longrightarrow} 0$

5/ (1 pts) Puisque $\{T > 2K(n+1)\} \subset \{T > 2Kn\}$ donc d'après le théorème de la continuité monotone séquentielle on a:

$$P(T = \infty) = P\left(\bigcap_{n=1}^{\infty} \{T > 2Kn\}\right) = \lim_{n \to \infty} P(T > 2Kn) = 0$$

6/ (1 pts) $E(|X_T^2 - T|) \le E(X_T^2) + E(T) \le K^2 + E(T)$ (car $X_T = \pm K$). Et

$$E(T) = \sum_{n=1}^{\infty} nP(T=n) = \sum_{n=0}^{\infty} \sum_{k=1}^{2K} (2Kn+k)P(T=2Kn+k)$$

$$\leq \sum_{n=0}^{\infty} \sum_{k=1}^{2K} 2K(n+1)P(T>2Kn) \leq 4K^2 \sum_{n=0}^{\infty} (n+1) \left[1 - \left(\frac{1}{2}\right)^{2K}\right]^n < \infty$$

car la série $\sum_{n=0}^{\infty} (n+1)r^n$ est convergente pour $r \in]-1,+1[$. Donc $E(|X_T^2-T|) < \infty$.

7/ (1 pts) Puisque $X_n^2 \le K^2$ sur $\{T > n\}$ donc $E\left(X_n^2 1_{\{T > n\}}\right) \le K^2 P\left(T > n\right) \to 0$ quand $n \to \infty$; de plus $E\left(n 1_{\{T > n\}}\right) \le E\left(T 1_{\{T > n\}}\right) \to_{n \to \infty} 0$ car T > n donc $E\left(\left(X_n^2 - n\right) 1_{\{T > n\}}\right) \to 0$ quand $n \to \infty$.

8/ Puisque $T < \infty$ p.s, $(X_T^2 - T)$ est intégrable et $\lim_{n \to \infty} E\left((X_n^2 - n) 1_{\{T > n\}}\right) = 0$. Donc d'après le théorème d'arrêt $E\left(X_T^2 - T\right) = E\left(X_1^2 - 1\right) = 0$, donc $E(T) = E(X_T^2) = K^2$.

Exercise 3 1/ (1 pts)
$$P(S_{12} > 120 / S_3 = 60) = P\left(\frac{S_{12}}{S_3} > 2\right) = P(9\mu + \sigma(W_{12} - W_3) > \log 2) = P\left(\frac{W_{12} - W_3}{\sqrt{9}} > \frac{\log 2 - 9\mu}{3\sigma}\right) = 1 - \phi(0.9) = 0.1841.$$

2/(1 pts) Soit M la médiane. $P(S_t \leq M) = 1/2$ et $P(S_t \leq M) = P(S_0 \exp(\mu t + \sigma W_t) < M) = P\left(W_t < \frac{\log M - (\log S_0 + \mu t)}{\sigma}\right) = \phi\left(\frac{\log M - (\log S_0 + \mu t)}{\sqrt{t}\sigma}\right) = 1/2$, $donc \frac{\log M - (\log S_0 + \mu t)}{\sqrt{t}\sigma} = 0$ et on obtient $M = S_0 e^{\mu t}$.

(1 pts) On $a \log S_t \rightsquigarrow \mathcal{N}(\log S_0 + \mu t, \sigma^2 t)$ donc $E(S_t) = \exp\left(\log S_0 + \mu t + \frac{\sigma^2 t}{2}\right)$. 3/ (2 pts)

$$E[S_t/\mathcal{F}_s] = E[S_0 \exp(\mu s + \sigma W_s) \exp(\mu (t - s) + \sigma (W_t - W_s)) / \mathcal{F}_s]$$

$$= E[S_s \exp(\mu (t - s) + \sigma (W_t - W_s)) / \mathcal{F}_s] = S_s E[\exp(\mu (t - s) + \sigma (W_t - W_s)) / \mathcal{F}_s]$$

$$= S_s E[\exp(\mu (t - s) + \sigma (W_t - W_s)) / \mathcal{F}_s] = S_s \exp\left[\left(\mu (t - s) + \sigma (W_t - W_s)\right) / \mathcal{F}_s\right]$$

4/ (0.5 pts) On aura $E[S_t/\mathcal{F}_s] = S_s \ si \ \mu = -\frac{\sigma^2}{2}$.

5/ (0.5 pts) Si $\mu = -\frac{\sigma^2}{2}$ la médiane $M = S_0 e^{\mu t}$ tend vers 0 exponentiellement quand t tend vers l'infinie, donc un inverstissement mauvais dans ce cas.