12. Metalogic for SL

- 1. Metalogic for SL
- 1.1 A Meta-refresher
- 1.2 Soundness of System SND

Righteous Throat-clearing

Soundness: the proof itself

1.3 Completeness of System SND

Completing our terminology

Proof Sketch

The completely straightforward part

Stage 3: The completely tedious part

a. A Meta-refresher

12. Metalogic for SL

► As we have seen, Sentential Natural Deduction allows us to derive a conclusion from a set of premises:

- ► As we have seen, Sentential Natural Deduction allows us to derive a conclusion from a set of premises:
 - 1.) valid argument: conclusion on last line, in scope of just premises

- ► As we have seen, Sentential Natural Deduction allows us to derive a conclusion from a set of premises:
 - 1.) valid argument: conclusion on last line, in scope of just premises
 - 2.) tautology: on last line in scope of NO premises

- As we have seen, Sentential Natural Deduction allows us to derive a conclusion from a set of premises:
 - 1.) valid argument: conclusion on last line, in scope of just premises
 - 2.) tautology: on last line in scope of NO premises
 - two logically equivalent sentences: (i) their biconditional is a tautology or (ii) derive one from the other and vice versa (which mirrors biconditional introduction!)

- ► As we have seen, Sentential Natural Deduction allows us to derive a conclusion from a set of premises:
 - 1.) valid argument: conclusion on last line, in scope of just premises
 - 2.) tautology: on last line in scope of NO premises
 - 3.) two logically equivalent sentences: (i) their biconditional is a tautology or (ii) derive one from the other and vice versa (which mirrors biconditional introduction!)
- ▶ But our derivations are justified only if system SND is *sound*

- ► As we have seen, Sentential Natural Deduction allows us to derive a conclusion from a set of premises:
 - 1.) valid argument: conclusion on last line, in scope of just premises
 - 2.) tautology: on last line in scope of NO premises
 - 3.) two logically equivalent sentences: (i) their biconditional is a tautology or (ii) derive one from the other and vice versa (which mirrors biconditional introduction!)
- ▶ But our derivations are justified only if system SND is *sound*
- And guaranteed to have a derivation for every valid argument only if system SND is complete

A tale of three turnstiles: one semantic; two syntactic

Double Turnstile ⊨: logical entailment (indexed to our choice of semantics, i.e. the truth-tables for our connectives)

A tale of three turnstiles: one semantic; two syntactic

- Double Turnstile ⊨: logical entailment (indexed to our choice of semantics, i.e. the truth-tables for our connectives)
- ▶ Single Turnstile Tree \vdash_{STD} : tree-validity in STD (i.e. premises and negated conclusion as root of a tree whose branches all close—recall that this means that $\Gamma \cup \{\sim \Theta\}$ is tree-inconsistent)

A tale of three turnstiles: one semantic; two syntactic

- Double Turnstile ⊨: logical entailment (indexed to our choice of semantics, i.e. the truth-tables for our connectives)
- ▶ Single Turnstile Tree \vdash_{STD} : tree-validity in STD (i.e. premises and negated conclusion as root of a tree whose branches all close—recall that this means that $\Gamma \cup \{\sim \Theta\}$ is tree-inconsistent)
- ▶ Single Turnstile Natural \vdash_{SND} : derivability in SND

▶ " $\Gamma \models \Theta$ " means that Γ logically entails Θ Whenever the premises in Γ are true, the conclusion Θ is true

- ▶ " $\Gamma \models \Theta$ " means that Γ logically entails Θ Whenever the premises in Γ are true, the conclusion Θ is true
- ► Equivalently: there is no truth-value assignment (TVA) s.t. Γ is satisfied while Θ is false

- ▶ " $\Gamma \models \Theta$ " means that Γ logically entails Θ Whenever the premises in Γ are true, the conclusion Θ is true
- ► Equivalently: there is no truth-value assignment (TVA) s.t. Γ is satisfied while Θ is false
- ▶ Equivalently, this means that $\Gamma \cup \{\sim \Theta\}$ is unsatisfiable: no TVA satisfies the premises and negated conclusion

- ▶ " $\Gamma \models \Theta$ " means that Γ logically entails Θ Whenever the premises in Γ are true, the conclusion Θ is true
- ► Equivalently: there is no truth-value assignment (TVA) s.t. Γ is satisfied while Θ is false
- ▶ Equivalently, this means that $\Gamma \cup \{\sim \Theta\}$ is unsatisfiable: no TVA satisfies the premises and negated conclusion
- ▶ We'll use this last fact A LOT in our proof that SND is complete!

▶ By proving that our derivation system is sound, we show that SND derivations are 'safe' (they never lead us astray)

▶ By proving that our derivation system is sound, we show that SND derivations are 'safe' (they never lead us astray)

• **Sound**: If $\Gamma \vdash_{SND} \Theta$, then $\Gamma \vDash \Theta$

- ▶ By proving that our derivation system is sound, we show that SND derivations are 'safe' (they never lead us astray)
 - **Sound**: If $\Gamma \vdash_{SND} \Theta$, then $\Gamma \vDash \Theta$
 - (syntactic to semantic: i.e. we chose 'good' rules!)

- ▶ By proving that our derivation system is sound, we show that SND derivations are 'safe' (they never lead us astray)
 - **Sound**: If $\Gamma \vdash_{SND} \Theta$, then $\Gamma \vDash \Theta$
 - (syntactic to semantic: i.e. we chose 'good' rules!)
- ► By proving that SND is *complete*, we show truth tables are not needed to demonstrate validity: SND derivations suffice

- ▶ By proving that our derivation system is sound, we show that SND derivations are 'safe' (they never lead us astray)
 - **Sound**: If $\Gamma \vdash_{SND} \Theta$, then $\Gamma \vDash \Theta$
 - (syntactic to semantic: i.e. we chose 'good' rules!)
- ► By proving that SND is *complete*, we show truth tables are not needed to demonstrate validity: SND derivations suffice
 - Complete: If $\Gamma \models \Theta$, then $\Gamma \vdash_{SND} \Theta$

- ▶ By proving that our derivation system is sound, we show that SND derivations are 'safe' (they never lead us astray)
 - **Sound**: If $\Gamma \vdash_{SND} \Theta$, then $\Gamma \vDash \Theta$
 - (syntactic to semantic: i.e. we chose 'good' rules!)
- ► By proving that SND is *complete*, we show truth tables are not needed to demonstrate validity: SND derivations suffice
 - Complete: If $\Gamma \models \Theta$, then $\Gamma \vdash_{SND} \Theta$
 - (logical entailment is fully covered by our syntactic rules)

- ▶ By proving that our derivation system is sound, we show that SND derivations are 'safe' (they never lead us astray)
 - **Sound**: If $\Gamma \vdash_{SND} \Theta$, then $\Gamma \vDash \Theta$
 - (syntactic to semantic: i.e. we chose 'good' rules!)
- ► By proving that SND is *complete*, we show truth tables are not needed to demonstrate validity: SND derivations suffice
 - Complete: If $\Gamma \vDash \Theta$, then $\Gamma \vdash_{SND} \Theta$
 - (logical entailment is fully covered by our syntactic rules)
 - (Means: we wrote down *enough* rules!)

Recall that to prove the soundness and completeness of our tree system STD, we proved the contrapositive of these statements

- Recall that to prove the soundness and completeness of our tree system STD, we proved the contrapositive of these statements
 - vs. With SND, we'll proceed directly

- Recall that to prove the soundness and completeness of our tree system STD, we proved the contrapositive of these statements
 - vs. With SND, we'll proceed directly
- ightharpoonup With trees, our premise set Γ was finite

- Recall that to prove the soundness and completeness of our tree system STD, we proved the contrapositive of these statements
 - vs. With SND, we'll proceed directly
- ightharpoonup With trees, our premise set Γ was finite
 - vs. Here, we'll let Γ be infinite. Although of course, whenever we talk about an SND derivation, this derivation must have a FINITE premise set $\Delta \subseteq \Gamma$ (i.e. a finite list of SL wffs justified by ':PR')

- Recall that to prove the soundness and completeness of our tree system STD, we proved the contrapositive of these statements
 - vs. With SND, we'll proceed directly
- ightharpoonup With trees, our premise set Γ was finite
 - vs. Here, we'll let Γ be infinite. Although of course, whenever we talk about an SND derivation, this derivation must have a FINITE premise set $\Delta \subseteq \Gamma$ (i.e. a finite list of SL wffs justified by ':PR')
- ► Is this finiteness restriction a limitation of trees?

- Recall that to prove the soundness and completeness of our tree system STD, we proved the contrapositive of these statements
 - vs. With SND, we'll proceed directly
- ightharpoonup With trees, our premise set Γ was finite
 - vs. Here, we'll let Γ be infinite. Although of course, whenever we talk about an SND derivation, this derivation must have a FINITE premise set $\Delta \subseteq \Gamma$ (i.e. a finite list of SL wffs justified by ':PR')
- ► Is this finiteness restriction a limitation of trees?
- Not in practice: no valid SL argument ever requires infinitely-many premises to entail its conclusion (PS 12 #4)

ightharpoonup Let Γ be a possibly infinite set of premises; Θ a conclusion

- ▶ Let Γ be a possibly infinite set of premises; Θ a conclusion
- ▶ Recall: a TVA assigns 'True' or 'False' to the (infinitely-many) SL atomic wffs

- ▶ Let Γ be a possibly infinite set of premises; Θ a conclusion
- ▶ Recall: a TVA assigns 'True' or 'False' to the (infinitely-many) SL atomic wffs
- ▶ In the case where Γ is finite, its premises contain finitely-many atomic wffs, so we can restrict a TVA to a row of a truth table

- ▶ Let Γ be a possibly infinite set of premises; Θ a conclusion
- ▶ Recall: a TVA assigns 'True' or 'False' to the (infinitely-many) SL atomic wffs
- ▶ In the case where Γ is finite, its premises contain finitely-many atomic wffs, so we can restrict a TVA to a row of a truth table
- ▶ An argument is **semantically invalid** if there is a TVA that makes each wff in Γ true but which makes Θ false

- ▶ Let Γ be a possibly infinite set of premises; Θ a conclusion
- ▶ Recall: a TVA assigns 'True' or 'False' to the (infinitely-many) SL atomic wffs
- ▶ In the case where Γ is finite, its premises contain finitely-many atomic wffs, so we can restrict a TVA to a row of a truth table
- ▶ An argument is **semantically invalid** if there is a TVA that makes each wff in Γ true but which makes Θ false
- ▶ In this case we write $\Gamma \nvDash \Theta$

- ▶ Let Γ be a possibly infinite set of premises; Θ a conclusion
- ▶ Recall: a TVA assigns 'True' or 'False' to the (infinitely-many) SL atomic wffs
- ▶ In the case where Γ is finite, its premises contain finitely-many atomic wffs, so we can restrict a TVA to a row of a truth table
- \blacktriangleright An argument is **semantically invalid** if there is a TVA that makes each wff in Γ true but which makes Θ false
- ▶ In this case we write $\Gamma \nvDash \Theta$
- ▶ If there is no such TVA, then $\Gamma \vDash \Theta$

SND derivability for infinitely-many premises

ightharpoonup Θ is SND-derivable from Γ provided there is an SND derivation:

- ightharpoonup Θ is SND-derivable from Γ provided there is an SND derivation:
 - 1.) whose starting premises Δ are a finite subset of Γ

- ightharpoonup Θ is SND-derivable from Γ provided there is an SND derivation:
 - 1.) whose starting premises Δ are a finite subset of Γ
 - 2.) in which Θ appears on its own in the final line

- ightharpoonup Θ is SND-derivable from Γ provided there is an SND derivation:
 - 1.) whose starting premises Δ are a finite subset of Γ
 - 2.) in which Θ appears on its own in the final line
 - 3.) where Θ is directly next to the main scope line, i.e. only in the scope of the $\Delta\text{-premises}$

- ightharpoonup Θ is SND-derivable from Γ provided there is an SND derivation:
 - 1.) whose starting premises Δ are a finite subset of Γ
 - 2.) in which Θ appears on its own in the final line
 - 3.) where Θ is directly next to the main scope line, i.e. only in the scope of the $\Delta-premises$
- ▶ In this case, we write $\Gamma \vdash_{SND} \Theta$ (also: $\Delta \vdash_{SND} \Theta$)

- ightharpoonup Θ is SND-derivable from Γ provided there is an SND derivation:
 - 1.) whose starting premises Δ are a finite subset of Γ
 - 2.) in which Θ appears on its own in the final line
 - 3.) where Θ is directly next to the main scope line, i.e. only in the scope of the $\Delta-premises$
- ▶ In this case, we write $\Gamma \vdash_{SND} \Theta$ (also: $\Delta \vdash_{SND} \Theta$)
- ▶ If no such derivation exists, then we say that Θ is NOT SND-derivable from Γ , and we write $\Gamma \nvdash_{SND} \Theta$

12. Metalogic for SL

b. Soundness of System SND

► Subgoal: given any line in an SND derivation, show that the well-formed formula (wff) on that line is entailed by the premises or assumptions accessible from that line

- ► Subgoal: given any line in an SND derivation, show that the well-formed formula (wff) on that line is entailed by the premises or assumptions accessible from that line
- ▶ Let " P_k " be the wff on line k, i.e. the k-th wff in our derivation

- ► Subgoal: given any line in an SND derivation, show that the well-formed formula (wff) on that line is entailed by the premises or assumptions accessible from that line
- ▶ Let " P_k " be the wff on line k, i.e. the k-th wff in our derivation
- Let " Γ_k " be the set of premises/assumptions accessible on line k, i.e. the set of open assumptions/premises in whose scope P_k lies

- ► Subgoal: given any line in an SND derivation, show that the well-formed formula (wff) on that line is entailed by the premises or assumptions accessible from that line
- ▶ Let " P_k " be the wff on line k, i.e. the k-th wff in our derivation
- Let " Γ_k " be the set of premises/assumptions accessible on line k, i.e. the set of open assumptions/premises in whose scope P_k lies
- ▶ **Subgoal**: given a wff P_k on line k, show that $\Gamma_k \models P_k$

- ► Subgoal: given any line in an SND derivation, show that the well-formed formula (wff) on that line is entailed by the premises or assumptions accessible from that line
- ▶ Let " P_k " be the wff on line k, i.e. the k-th wff in our derivation
- Let " Γ_k " be the set of premises/assumptions accessible on line k, i.e. the set of open assumptions/premises in whose scope P_k lies
- ▶ **Subgoal**: given a wff P_k on line k, show that $\Gamma_k \models P_k$
- ► (like with soundness for trees, we reason "from the top down")

Recall that SND derivations are defined recursively: from a (possibly empty) set of premises, we have a finite number of rules to add a line

- Recall that SND derivations are defined recursively: from a (possibly empty) set of premises, we have a finite number of rules to add a line
 - These ways include reiteration and an intro and elimination rule for each of our five connectives

- Recall that SND derivations are defined recursively: from a (possibly empty) set of premises, we have a finite number of rules to add a line
 - These ways include reiteration and an intro and elimination rule for each of our five connectives
- ► Hence: do induction on the number of lines in an SND derivation

- Recall that SND derivations are defined recursively: from a (possibly empty) set of premises, we have a finite number of rules to add a line
 - These ways include reiteration and an intro and elimination rule for each of our five connectives
- ► Hence: do induction on the number of lines in an SND derivation
- ► Show that the base case has the property (line #1)

- Recall that SND derivations are defined recursively: from a (possibly empty) set of premises, we have a finite number of rules to add a line
 - These ways include reiteration and an intro and elimination rule for each of our five connectives
- ▶ Hence: do induction on the number of lines in an SND derivation
- ► Show that the base case has the property (line #1)
- ▶ Induction hypothesis: assume the property holds for all lines $\leq k$.

- Recall that SND derivations are defined recursively: from a (possibly empty) set of premises, we have a finite number of rules to add a line
 - These ways include reiteration and an intro and elimination rule for each of our five connectives
- ▶ Hence: do induction on the number of lines in an SND derivation
- ► Show that the base case has the property (line #1)
- ▶ Induction hypothesis: assume the property holds for all lines $\leq k$.
- ► Induction step: show the property holds for line #k+1 (by considering all possible ways line #k+1 could arise)

Let's get Righteous!

► Say that a line i of a derivation is **righteous** just in case $\Gamma_i \models P_i$, i.e. just in case the set of assumptions/premises accessible from i semantically entail the wff on that line.

Let's get Righteous!

Say that a line i of a derivation is **righteous** just in case $\Gamma_i \models P_i$, i.e. just in case the set of assumptions/premises accessible from i semantically entail the wff on that line.

► Call a derivation *righteous* if every line in it is righteous

Let's get Righteous!

► Say that a line i of a derivation is **righteous** just in case $\Gamma_i \models P_i$, i.e. just in case the set of assumptions/premises accessible from i semantically entail the wff on that line.

► Call a derivation *righteous* if every line in it is righteous

Our goal is to prove that every derivation in SND is righteous!

ightharpoonup Let Γ be any set of SL wffs (possibly infinite)

- Let Γ be any set of SL wffs (possibly infinite)
- ▶ If $\Gamma \vdash_{SND} \mathcal{P}$, then by definition there is a derivation whose (finitely-many) premises Δ belong to Γ , such that \mathcal{P} occurs on the final line and lies in the scope of Δ (i.e. $\Delta \vdash_{SND} \mathcal{P}$)

- Let Γ be any set of SL wffs (possibly infinite)
- ▶ If $\Gamma \vdash_{SND} \mathcal{P}$, then by definition there is a derivation whose (finitely-many) premises Δ belong to Γ , such that \mathcal{P} occurs on the final line and lies in the scope of Δ (i.e. $\Delta \vdash_{SND} \mathcal{P}$)
- ▶ Then by righteousness, $\Delta \models \mathcal{P}$

- Let Γ be any set of SL wffs (possibly infinite)
- ▶ If $\Gamma \vdash_{SND} \mathcal{P}$, then by definition there is a derivation whose (finitely-many) premises Δ belong to Γ , such that \mathcal{P} occurs on the final line and lies in the scope of Δ (i.e. $\Delta \vdash_{SND} \mathcal{P}$)
- ► Then by righteousness, $\Delta \models \mathcal{P}$
 - i.e. any TVA that makes Δ true must make $\mathcal P$ true

- Let Γ be any set of SL wffs (possibly infinite)
- ▶ If $\Gamma \vdash_{SND} \mathcal{P}$, then by definition there is a derivation whose (finitely-many) premises Δ belong to Γ , such that \mathcal{P} occurs on the final line and lies in the scope of Δ (i.e. $\Delta \vdash_{SND} \mathcal{P}$)
- ▶ Then by righteousness, $\Delta \models \mathcal{P}$
 - i.e. any TVA that makes Δ true must make $\mathcal P$ true
- ▶ So there is no truth-value assignment that makes all the sentences in Γ true while making \mathcal{P} false, so $\Gamma \vDash \mathcal{P}$ as well

- ► Let Γ be any set of SL wffs (possibly infinite)
- ▶ If $\Gamma \vdash_{SND} \mathcal{P}$, then by definition there is a derivation whose (finitely-many) premises Δ belong to Γ , such that \mathcal{P} occurs on the final line and lies in the scope of Δ (i.e. $\Delta \vdash_{SND} \mathcal{P}$)
- ▶ Then by righteousness, $\Delta \models \mathcal{P}$
 - i.e. any TVA that makes Δ true must make $\mathcal P$ true
- ► So there is no truth-value assignment that makes all the sentences in Γ true while making \mathcal{P} false, so $\Gamma \models \mathcal{P}$ as well
- ▶ So we will have shown **Soundness**: If $\Gamma \vdash_{SND} \mathcal{P}$, then $\Gamma \models \mathcal{P}$

▶ Base case: for any SND derivation, show that $\Gamma_1 \vDash \mathcal{P}_1$.

- ▶ Base case: for any SND derivation, show that $\Gamma_1 \vDash \mathcal{P}_1$.
- ▶ Proof: Γ_1 is the set of premises accessible at line #1, which comprises exactly the wff \mathcal{P}_1

- ▶ Base case: for any SND derivation, show that $\Gamma_1 \vDash \mathcal{P}_1$.
- ▶ Proof: Γ_1 is the set of premises accessible at line #1, which comprises exactly the wff \mathcal{P}_1
- ► (recall that every premise of a derivation lies in its own scope—

- ▶ Base case: for any SND derivation, show that $\Gamma_1 \vDash \mathcal{P}_1$.
- ▶ Proof: Γ_1 is the set of premises accessible at line #1, which comprises exactly the wff \mathcal{P}_1
- ► (recall that every premise of a derivation lies in its own scope
 - i.e. these premises be gettin' high off their own supply)

- ▶ Base case: for any SND derivation, show that $\Gamma_1 \vDash \mathcal{P}_1$.
- ▶ Proof: Γ_1 is the set of premises accessible at line #1, which comprises exactly the wff \mathcal{P}_1
- ► (recall that every premise of a derivation lies in its own scope
 - i.e. these premises be gettin' high off their own supply)
- ► Clearly, $\mathcal{P}_1 \vDash \mathcal{P}_1$, so $\{\mathcal{P}_1\} \vDash \mathcal{P}_1$

- ▶ Base case: for any SND derivation, show that $\Gamma_1 \vDash \mathcal{P}_1$.
- ▶ Proof: Γ_1 is the set of premises accessible at line #1, which comprises exactly the wff \mathcal{P}_1
- (recall that every premise of a derivation lies in its own scope—
 i.e. these premises be gettin' high off their own supply)
- ▶ Clearly, $\mathcal{P}_1 \vDash \mathcal{P}_1$, so $\{\mathcal{P}_1\} \vDash \mathcal{P}_1$
- ► So line #1 is righteous (i.e. $\Gamma_1 \models \mathcal{P}_1$)

▶ Induction Hypothesis: Assume that every line i for $1 < i \le k$ is righteous (i.e. that $\Gamma_i \models \mathcal{P}_i$)

- ▶ Induction Hypothesis: Assume that every line i for $1 < i \le k$ is righteous (i.e. that $\Gamma_i \models \mathcal{P}_i$)
- ▶ Induction step: Consider line #k+1; show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$

- ▶ Induction Hypothesis: Assume that every line i for $1 < i \le k$ is righteous (i.e. that $\Gamma_i \models \mathcal{P}_i$)
- ▶ Induction step: Consider line #k+1; show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- ▶ We have 12 cases to consider! 11 of these arise from our 11 SND-sanctioned rules for extending a derivation.

- ▶ Induction Hypothesis: Assume that every line i for $1 < i \le k$ is righteous (i.e. that $\Gamma_i \models \mathcal{P}_i$)
- ▶ Induction step: Consider line #k+1; show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- ► We have 12 cases to consider! 11 of these arise from our 11 SND-sanctioned rules for extending a derivation.
- ▶ What is the 12th case?? (We could say 13, but that is BAD LUCK)

► Case 1: \mathcal{P}_{k+1} is a premise (:PR) or a subproof assumption (:AS). Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$

- ► Case 1: \mathcal{P}_{k+1} is a premise (:PR) or a subproof assumption (:AS). Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- ▶ Either way, $\mathcal{P}_{k+1} \in \Gamma_{k+1}$ (since every premise and assumption lies within its own scope)

- ► Case 1: \mathcal{P}_{k+1} is a premise (:PR) or a subproof assumption (:AS). Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- ▶ Either way, $\mathcal{P}_{k+1} \in \Gamma_{k+1}$ (since every premise and assumption lies within its own scope)
- ► So given a TVA that makes every sentence in Γ_{k+1} true, this TVA must make \mathcal{P}_{k+1} true

- ► Case 1: \mathcal{P}_{k+1} is a premise (:PR) or a subproof assumption (:AS). Show that $\Gamma_{k+1} \models \mathcal{P}_{k+1}$
- ▶ Either way, $\mathcal{P}_{k+1} \in \Gamma_{k+1}$ (since every premise and assumption lies within its own scope)
- ► So given a TVA that makes every sentence in Γ_{k+1} true, this TVA must make \mathcal{P}_{k+1} true
- ► So $\Gamma_{k+1} \models \mathcal{P}_{k+1}$; so this case be righteous!

► Case 2: \mathcal{P}_{k+1} arises from an application of rule R, reiteration

- ▶ Case 2: \mathcal{P}_{k+1} arises from an application of rule R, reiteration
- lacktriangle Then wff \mathcal{P}_{k+1} appears on an earlier line #i as the wff \mathcal{P}_i

- ▶ Case 2: \mathcal{P}_{k+1} arises from an application of rule R, reiteration
- ▶ Then wff \mathcal{P}_{k+1} appears on an earlier line #i as the wff \mathcal{P}_i
- ▶ By the induction hypothesis, line #i is righteous, so $\Gamma_i \models \mathcal{P}_i$.

- ▶ Case 2: \mathcal{P}_{k+1} arises from an application of rule R, reiteration
- ▶ Then wff \mathcal{P}_{k+1} appears on an earlier line #i as the wff \mathcal{P}_i
- ▶ By the induction hypothesis, line #i is righteous, so $\Gamma_i \models \mathcal{P}_i$.
 - -Hence, we also have $\Gamma_i \vDash \mathcal{P}_{k+1}$ (since $\mathcal{P}_i = \mathcal{P}_{k+1}$)

- ▶ Case 2: \mathcal{P}_{k+1} arises from an application of rule R, reiteration
- ▶ Then wff \mathcal{P}_{k+1} appears on an earlier line #i as the wff \mathcal{P}_i
- ▶ By the induction hypothesis, line #i is righteous, so $\Gamma_i \models \mathcal{P}_i$.
 - -Hence, we also have $\Gamma_i \vDash \mathcal{P}_{k+1}$ (since $\mathcal{P}_i = \mathcal{P}_{k+1}$)
- ▶ To apply rule R, \mathcal{P}_{k+1} must lie to the right of line #i's rightmost scope line $\Rightarrow \Gamma_i \subseteq \Gamma_{k+1}$ (i.e., all of the premises/assumptions accessible at line #i must also be accessible at line #k+1).

- ▶ Case 2: \mathcal{P}_{k+1} arises from an application of rule R, reiteration
- ▶ Then wff \mathcal{P}_{k+1} appears on an earlier line #i as the wff \mathcal{P}_i
- ▶ By the induction hypothesis, line #i is righteous, so $\Gamma_i \models \mathcal{P}_i$.
 - -Hence, we also have $\Gamma_i \vDash \mathcal{P}_{k+1}$ (since $\mathcal{P}_i = \mathcal{P}_{k+1}$)
- ▶ To apply rule R, \mathcal{P}_{k+1} must lie to the right of line #i's rightmost scope line $\Rightarrow \Gamma_i \subseteq \Gamma_{k+1}$ (i.e., all of the premises/assumptions accessible at line #i must also be accessible at line #k+1).
- ▶ Since $\Gamma_i \vDash \mathcal{P}_{k+1}$ and $\Gamma_i \subseteq \Gamma_{k+1}$, we have $\Gamma_{k+1} \vDash \mathcal{P}_{k+1}$

- ▶ Case 2: \mathcal{P}_{k+1} arises from an application of rule R, reiteration
- ▶ Then wff \mathcal{P}_{k+1} appears on an earlier line #i as the wff \mathcal{P}_i
- ▶ By the induction hypothesis, line #i is righteous, so $\Gamma_i \models \mathcal{P}_i$.
 - -Hence, we also have $\Gamma_i \vDash \mathcal{P}_{k+1}$ (since $\mathcal{P}_i = \mathcal{P}_{k+1}$)
- ▶ To apply rule R, \mathcal{P}_{k+1} must lie to the right of line #i's rightmost scope line $\Rightarrow \Gamma_i \subseteq \Gamma_{k+1}$ (i.e., all of the premises/assumptions accessible at line #i must also be accessible at line #k+1).
- ▶ Since $\Gamma_i \vDash \mathcal{P}_{k+1}$ and $\Gamma_i \subseteq \Gamma_{k+1}$, we have $\Gamma_{k+1} \vDash \mathcal{P}_{k+1}$
- ▶ Draw a schematic derivation to better understand $\Gamma_i \subseteq \Gamma_{k+1}$!

▶ Case 3: $\mathcal{P}_{k+1} := (\mathcal{Q} \& \mathcal{R})$ arises from an application of rule & I

- ▶ Case 3: $\mathcal{P}_{k+1} := (\mathcal{Q} \& \mathcal{R})$ arises from an application of rule & I
- ightharpoonup Then on two earlier lines #h and #j, $\mathcal Q$ and $\mathcal R$ appear, respectively

- ▶ Case 3: $\mathcal{P}_{k+1} := (\mathcal{Q} \& \mathcal{R})$ arises from an application of rule & I
- lacktriangle Then on two earlier lines #h and #j, $\mathcal Q$ and $\mathcal R$ appear, respectively
- ▶ By the IH, both of these lines are righteous, so $\Gamma_h \vDash Q$ and $\Gamma_j \vDash R$

- ▶ Case 3: $\mathcal{P}_{k+1} := (\mathcal{Q} \& \mathcal{R})$ arises from an application of rule & I
- lacktriangle Then on two earlier lines #h and #j, $\mathcal Q$ and $\mathcal R$ appear, respectively
- ▶ By the IH, both of these lines are righteous, so $\Gamma_h \vDash \mathcal{Q}$ and $\Gamma_j \vDash \mathcal{R}$
- ightharpoonup By rule & I, both these lines must be accessible on line #k+1

- ▶ Case 3: $\mathcal{P}_{k+1} := (\mathcal{Q} \& \mathcal{R})$ arises from an application of rule & I
- lacktriangle Then on two earlier lines #h and #j, $\mathcal Q$ and $\mathcal R$ appear, respectively
- ▶ By the IH, both of these lines are righteous, so $\Gamma_h \vDash Q$ and $\Gamma_j \vDash R$
- ▶ By rule & I, both these lines must be accessible on line #k+1
- ▶ So $\Gamma_h \cup \Gamma_j \subseteq \Gamma_{k+1}$ (i.e. both Γ_h and Γ_j are subsets of Γ_{k+1})

- ▶ Case 3: $\mathcal{P}_{k+1} := (\mathcal{Q} \& \mathcal{R})$ arises from an application of rule & I
- lacktriangle Then on two earlier lines #h and #j, $\mathcal Q$ and $\mathcal R$ appear, respectively
- ▶ By the IH, both of these lines are righteous, so $\Gamma_h \vDash \mathcal{Q}$ and $\Gamma_j \vDash \mathcal{R}$
- ▶ By rule & I, both these lines must be accessible on line #k+1
- ▶ So $\Gamma_h \cup \Gamma_j \subseteq \Gamma_{k+1}$ (i.e. both Γ_h and Γ_j are subsets of Γ_{k+1})
- ▶ Hence, any TVA that satisfies Γ_{k+1} must satisfy both Γ_h and Γ_j , and hence satisfy $\mathcal Q$ and also satisfy $\mathcal R$

- ▶ Case 3: $\mathcal{P}_{k+1} := (\mathcal{Q} \& \mathcal{R})$ arises from an application of rule & I
- lacktriangle Then on two earlier lines #h and #j, $\mathcal Q$ and $\mathcal R$ appear, respectively
- ▶ By the IH, both of these lines are righteous, so $\Gamma_h \vDash \mathcal{Q}$ and $\Gamma_j \vDash \mathcal{R}$
- ▶ By rule & I, both these lines must be accessible on line #k+1
- ▶ So $\Gamma_h \cup \Gamma_j \subseteq \Gamma_{k+1}$ (i.e. both Γ_h and Γ_j are subsets of Γ_{k+1})
- ▶ Hence, any TVA that satisfies Γ_{k+1} must satisfy both Γ_h and Γ_j , and hence satisfy $\mathcal Q$ and also satisfy $\mathcal R$
- ▶ Thus, any TVA that satisfies Γ_{k+1} satisfies $(Q \& \mathcal{R})$

- ▶ Case 3: $\mathcal{P}_{k+1} := (\mathcal{Q} \& \mathcal{R})$ arises from an application of rule & I
- lacktriangle Then on two earlier lines #h and #j, $\mathcal Q$ and $\mathcal R$ appear, respectively
- ▶ By the IH, both of these lines are righteous, so $\Gamma_h \vDash \mathcal{Q}$ and $\Gamma_j \vDash \mathcal{R}$
- ▶ By rule & I, both these lines must be accessible on line #k+1
- ▶ So $\Gamma_h \cup \Gamma_j \subseteq \Gamma_{k+1}$ (i.e. both Γ_h and Γ_j are subsets of Γ_{k+1})
- ▶ Hence, any TVA that satisfies Γ_{k+1} must satisfy both Γ_h and Γ_j , and hence satisfy $\mathcal Q$ and also satisfy $\mathcal R$
- ▶ Thus, any TVA that satisfies Γ_{k+1} satisfies (Q & R)
- ▶ So $\Gamma_{k+1} \models \mathcal{P}_{k+1}$

► Case 4: \mathcal{P}_{k+1} arises from an application of rule & E I'm about to eliminate this proof, son!

- ► Case 4: \mathcal{P}_{k+1} arises from an application of rule & E I'm about to eliminate this proof, son!
- ▶ Then there is an earlier line #h of the form $\mathcal{P}_{k+1} \& \mathcal{Q}$ or $\mathcal{Q} \& \mathcal{P}_{k+1}$

- ► Case 4: \mathcal{P}_{k+1} arises from an application of rule & E I'm about to eliminate this proof, son!
- ▶ Then there is an earlier line #h of the form $\mathcal{P}_{k+1} \& \mathcal{Q}$ or $\mathcal{Q} \& \mathcal{P}_{k+1}$
- ▶ By the IH, line #h is righteous, so $\Gamma_h \models \mathcal{P}_h$

- ► Case 4: \mathcal{P}_{k+1} arises from an application of rule & E I'm about to eliminate this proof, son!
- ▶ Then there is an earlier line #h of the form $\mathcal{P}_{k+1} \& \mathcal{Q}$ or $\mathcal{Q} \& \mathcal{P}_{k+1}$
- ▶ By the IH, line #h is righteous, so $\Gamma_h \models \mathcal{P}_h$
- ▶ Since line #h is accessible at line #k+1, $\Gamma_h \subseteq \Gamma_{k+1}$

- ► Case 4: \mathcal{P}_{k+1} arises from an application of rule & E I'm about to eliminate this proof, son!
- ▶ Then there is an earlier line #h of the form $\mathcal{P}_{k+1} \& \mathcal{Q}$ or $\mathcal{Q} \& \mathcal{P}_{k+1}$
- ▶ By the IH, line #h is righteous, so $\Gamma_h \models \mathcal{P}_h$
- ▶ Since line #h is accessible at line #k+1, $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ So any TVA that satisfies Γ_{k+1} also satisfies Γ_h and thereby makes true \mathcal{P}_h

- ► Case 4: \mathcal{P}_{k+1} arises from an application of rule & E I'm about to eliminate this proof, son!
- ▶ Then there is an earlier line #h of the form $\mathcal{P}_{k+1} \& \mathcal{Q}$ or $\mathcal{Q} \& \mathcal{P}_{k+1}$
- ▶ By the IH, line #h is righteous, so $\Gamma_h \models \mathcal{P}_h$
- ▶ Since line #h is accessible at line #k+1, $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ So any TVA that satisfies Γ_{k+1} also satisfies Γ_h and thereby makes true \mathcal{P}_h
- ▶ By the truth conditions for conjunctions, any TVA that satisfies \mathcal{P}_h satisfies both conjuncts, in particular \mathcal{P}_{k+1}

- ► Case 4: \mathcal{P}_{k+1} arises from an application of rule & E I'm about to eliminate this proof, son!
- ▶ Then there is an earlier line #h of the form $\mathcal{P}_{k+1} \& \mathcal{Q}$ or $\mathcal{Q} \& \mathcal{P}_{k+1}$
- ▶ By the IH, line #h is righteous, so $\Gamma_h \models \mathcal{P}_h$
- ▶ Since line #h is accessible at line #k+1, $\Gamma_h \subseteq \Gamma_{k+1}$
- ▶ So any TVA that satisfies Γ_{k+1} also satisfies Γ_h and thereby makes true \mathcal{P}_h
- ▶ By the truth conditions for conjunctions, any TVA that satisfies \mathcal{P}_h satisfies both conjuncts, in particular \mathcal{P}_{k+1}
- ► So $\Gamma_{k+1} \models \mathcal{P}_{k+1}$ and line #k+1 is righteous

▶ Case 8: \mathcal{P}_{k+1} arises from rule \supset I, which involves a subproof!

- ▶ Case 8: \mathcal{P}_{k+1} arises from rule \supset I, which involves a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of the form $\mathcal{Q} \supset \mathcal{R}$ (draw derivation to define terms)

- ▶ Case 8: \mathcal{P}_{k+1} arises from rule \supset I, which involves a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of the form $\mathcal{Q} \supset \mathcal{R}$ (draw derivation to define terms)
- ▶ NTS: $\Gamma_{k+1} \vDash \mathcal{Q} \supset \mathcal{R}$ given that $\Gamma_h \vDash \mathcal{Q}$ and $\Gamma_j \vDash \mathcal{R}$, by Ind. Hyp.

- ▶ Case 8: \mathcal{P}_{k+1} arises from rule \supset I, which involves a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of the form $\mathcal{Q} \supset \mathcal{R}$ (draw derivation to define terms)
- ▶ NTS: $\Gamma_{k+1} \vDash \mathcal{Q} \supset \mathcal{R}$ given that $\Gamma_h \vDash \mathcal{Q}$ and $\Gamma_j \vDash \mathcal{R}$, by Ind. Hyp.
- ▶ Proceed by cases: either Γ_{k+1} satisfies Q or it doesn't:

- ▶ Case 8: \mathcal{P}_{k+1} arises from rule \supset I, which involves a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of the form $\mathcal{Q} \supset \mathcal{R}$ (draw derivation to define terms)
- ▶ NTS: $\Gamma_{k+1} \vDash Q \supset \mathcal{R}$ given that $\Gamma_h \vDash Q$ and $\Gamma_j \vDash \mathcal{R}$, by Ind. Hyp.
- ▶ Proceed by cases: either Γ_{k+1} satisfies Q or it doesn't:
- ▶ If Γ_{k+1} does not satisfy Q, then it trivially satisfies $Q \supset \mathcal{R}$

- ▶ Case 8: \mathcal{P}_{k+1} arises from rule \supset I, which involves a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of the form $\mathcal{Q} \supset \mathcal{R}$ (draw derivation to define terms)
- ▶ NTS: $\Gamma_{k+1} \vDash Q \supset \mathcal{R}$ given that $\Gamma_h \vDash Q$ and $\Gamma_j \vDash \mathcal{R}$, by Ind. Hyp.
- ▶ Proceed by cases: either Γ_{k+1} satisfies Q or it doesn't:
- ▶ If Γ_{k+1} does not satisfy \mathcal{Q} , then it trivially satisfies $\mathcal{Q} \supset \mathcal{R}$
- ▶ Otherwise, Γ_{k+1} satisfies \mathcal{Q} . Since $\Gamma_j \subseteq \Gamma_{k+1} \cup \{\mathcal{Q}\}$, this means that Γ_j is satisfied in this case. Then since line #j is righteous, we have $\Gamma_{k+1} \cup \{\mathcal{Q}\} \vDash \mathcal{R}$. So in this case, Γ_{k+1} satisfies $\mathcal{Q} \supset \mathcal{R}$ as well.

- ▶ Case 8: \mathcal{P}_{k+1} arises from rule \supset I, which involves a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of the form $\mathcal{Q} \supset \mathcal{R}$ (draw derivation to define terms)
- ▶ NTS: $\Gamma_{k+1} \vDash Q \supset \mathcal{R}$ given that $\Gamma_h \vDash Q$ and $\Gamma_j \vDash \mathcal{R}$, by Ind. Hyp.
- ▶ Proceed by cases: either Γ_{k+1} satisfies Q or it doesn't:
- ▶ If Γ_{k+1} does not satisfy \mathcal{Q} , then it trivially satisfies $\mathcal{Q} \supset \mathcal{R}$
- ▶ Otherwise, Γ_{k+1} satisfies \mathcal{Q} . Since $\Gamma_j \subseteq \Gamma_{k+1} \cup \{\mathcal{Q}\}$, this means that Γ_j is satisfied in this case. Then since line #j is righteous, we have $\Gamma_{k+1} \cup \{\mathcal{Q}\} \models \mathcal{R}$. So in this case, Γ_{k+1} satisfies $\mathcal{Q} \supset \mathcal{R}$ as well.
- ► So in either case, $\Gamma_{k+1} \vDash \mathcal{P}_{k+1}$

Case 9: Negation Introduction

▶ Case 8: \mathcal{P}_{k+1} arises from rule \sim I, using a subproof!

Case 9: Negation Introduction

- ▶ Case 8: P_{k+1} arises from rule \sim I, using a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of form $\sim \mathcal{Q}$; draw derivation to define lines

Case 9: Negation Introduction

- ▶ Case 8: P_{k+1} arises from rule \sim I, using a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of form $\sim \mathcal{Q}$; draw derivation to define lines
- ▶ NTS: $\Gamma_{k+1} \vDash \sim Q$ given that $\Gamma_h \vDash Q$, $\Gamma_j \vDash \mathcal{R}$ and $\Gamma_m \vDash \sim \mathcal{R}$ (by IH)

- ▶ Case 8: P_{k+1} arises from rule ~I, using a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of form $\sim \mathcal{Q}$; draw derivation to define lines
- ▶ NTS: $\Gamma_{k+1} \vDash \sim Q$ given that $\Gamma_h \vDash Q$, $\Gamma_j \vDash \mathcal{R}$ and $\Gamma_m \vDash \sim \mathcal{R}$ (by IH)
- ▶ Notice that Γ_j and Γ_m are both subsets of $\Gamma_{k+1} \cup \{Q\}$

- ▶ Case 8: P_{k+1} arises from rule \sim I, using a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of form $\sim \mathcal{Q}$; draw derivation to define lines
- ▶ NTS: $\Gamma_{k+1} \vDash \sim Q$ given that $\Gamma_h \vDash Q$, $\Gamma_j \vDash \mathcal{R}$ and $\Gamma_m \vDash \sim \mathcal{R}$ (by IH)
- ▶ Notice that Γ_j and Γ_m are both subsets of $\Gamma_{k+1} \cup \{Q\}$ Hence, $\Gamma_{k+1} \cup \{Q\}$ entails both \mathcal{R} and $\sim \mathcal{R}$ as well.

- ▶ Case 8: P_{k+1} arises from rule ~I, using a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of form $\sim \mathcal{Q}$; draw derivation to define lines
- ▶ NTS: $\Gamma_{k+1} \vDash \sim Q$ given that $\Gamma_h \vDash Q$, $\Gamma_j \vDash \mathcal{R}$ and $\Gamma_m \vDash \sim \mathcal{R}$ (by IH)
- ▶ Notice that Γ_j and Γ_m are both subsets of $\Gamma_{k+1} \cup \{Q\}$ Hence, $\Gamma_{k+1} \cup \{Q\}$ entails both \mathcal{R} and $\sim \mathcal{R}$ as well.

Thus, any TVA that satisfies $\Gamma_{k+1} \cup \{Q\}$ must make both \mathcal{R} and $\sim \mathcal{R}$ true, which is impossible (i.e. there can be no such TVA).

- ▶ Case 8: \mathcal{P}_{k+1} arises from rule ~I, using a subproof!
- $ightharpoonup \mathcal{P}_{k+1}$ must be of form $\sim \mathcal{Q}$; draw derivation to define lines
- ▶ NTS: $\Gamma_{k+1} \vDash \sim Q$ given that $\Gamma_h \vDash Q$, $\Gamma_i \vDash \mathcal{R}$ and $\Gamma_m \vDash \sim \mathcal{R}$ (by IH)
- ▶ Notice that Γ_j and Γ_m are both subsets of $\Gamma_{k+1} \cup \{Q\}$

Hence, $\Gamma_{k+1} \cup \{Q\}$ entails both \mathcal{R} and $\sim \mathcal{R}$ as well.

Thus, any TVA that satisfies $\Gamma_{k+1} \cup \{Q\}$ must make both \mathcal{R} and $\sim \mathcal{R}$ true, which is impossible (i.e. there can be no such TVA).

 $\Rightarrow \Gamma_{k+1} \cup \{Q\}$ is unsatisfiable. Hence, $\Gamma_{k+1} \vDash \sim Q$

12. Metalogic for SL

c. Completeness of System SND

► We will appeal to two distinct notions of consistency throughout

- We will appeal to two distinct notions of consistency throughout
- ► One is **semantic**: this is the notion we are already familiar with:

- We will appeal to two distinct notions of consistency throughout
- ► One is **semantic**: this is the notion we are already familiar with: there is a TVA that **satisfies** every sentence in the set

- We will appeal to two distinct notions of consistency throughout
- ➤ One is semantic: this is the notion we are already familiar with: there is a TVA that satisfies every sentence in the set
- We introduce a new syntactic notion of consistency relative to our SND derivation system:

- We will appeal to two distinct notions of consistency throughout
- ► One is **semantic**: this is the notion we are already familiar with: there is a TVA that **satisfies** every sentence in the set
- We introduce a new syntactic notion of consistency relative to our SND derivation system:
 - a set of SL wffs is **SND-consistent** provided that you can't derive contradictory sentences from it in SND

- ▶ We will appeal to two distinct notions of consistency throughout
- ► One is **semantic**: this is the notion we are already familiar with: there is a TVA that **satisfies** every sentence in the set
- We introduce a new syntactic notion of consistency relative to our SND derivation system:
 - a set of SL wffs is **SND-consistent** provided that you can't derive contradictory sentences from it in SND
- ► Core proof idea: we'll show that if a set of sentences is consistent-in-SND, then it is also semantically consistent (i.e. satisfiable). So by the contrapositive: if a set is unsatisfiable, then it is inconsistent-in-SND.

▶ Recall: a set of SL sentences is satisfiable provided there is a TVA that makes all of them true

Recall: a set of SL sentences is satisfiable provided there is a TVA that makes all of them true

► This is a *semantic* notion of consistency

▶ Recall: a set of SL sentences is satisfiable provided there is a TVA that makes all of them true

- ► This is a *semantic* notion of consistency
- ► i.e. truth-functionally consistent

► Recall: a set of SL sentences is **satisfiable** provided there is a TVA that makes all of them true

- ► This is a *semantic* notion of consistency
- ▶ i.e. truth-functionally consistent
- ► Contrast this with the syntactic notion of **consistency in SND**:

ightharpoonup Let Γ be a (possibly infinite) set of SL wffs

- ightharpoonup Let Γ be a (possibly infinite) set of SL wffs
- ▶ Inconsistent-in-SND: from premises in Γ , we can derive contradictory formulas R and $\sim R$ in the scope of the main scope line (i.e. these premises)

- ightharpoonup Let Γ be a (possibly infinite) set of SL wffs
- ▶ Inconsistent-in-SND: from premises in Γ , we can derive contradictory formulas R and $\sim R$ in the scope of the main scope line (i.e. these premises)
- Consistent-in-SND: Γ is not SND-inconsistent, i.e. there is no derivation from premises in Γ resulting in contradictory formulas within the main scope

- ightharpoonup Let Γ be a (possibly infinite) set of SL wffs
- ▶ Inconsistent-in-SND: from premises in Γ , we can derive contradictory formulas R and $\sim R$ in the scope of the main scope line (i.e. these premises)
- Consistent-in-SND: Γ is not SND-inconsistent, i.e. there is no derivation from premises in Γ resulting in contradictory formulas within the main scope
- ► Other words we might use for these concepts: SND-inconsistent, derivationally-inconsistent, SND-consistent, etc.

- ightharpoonup Let Γ be a (possibly infinite) set of SL wffs
- ▶ Inconsistent-in-SND: from premises in Γ , we can derive contradictory formulas R and $\sim R$ in the scope of the main scope line (i.e. these premises)
- Consistent-in-SND: Γ is not SND-inconsistent, i.e. there is no derivation from premises in Γ resulting in contradictory formulas within the main scope
- ► Other words we might use for these concepts: SND-inconsistent, derivationally-inconsistent, SND-consistent, etc.
- ▶ Just remember: this syntactic notion has nothing to do with truth value assignments!

▶ Goal: prove the completeness of SL: for every SL wff \mathcal{P} and every set Γ of SL sentences, if $\Gamma \models \mathcal{P}$ then $\Gamma \vdash \mathcal{P}$

- ▶ Goal: prove the completeness of SL: for every SL wff \mathcal{P} and every set Γ of SL sentences, if $\Gamma \models \mathcal{P}$ then $\Gamma \vdash \mathcal{P}$
- ▶ So assume that $\Gamma \models \mathcal{P}$.

- ▶ Goal: prove the completeness of SL: for every SL wff \mathcal{P} and every set Γ of SL sentences, if $\Gamma \models \mathcal{P}$ then $\Gamma \vdash \mathcal{P}$
- ▶ So assume that $\Gamma \models \mathcal{P}$.
- Recall from week 5: this means that \(\Gamma\cup \{\simeq P\}\) is semantically inconsistent (i.e. unsatisfiable): no TVA satisfies the premises and negated conclusion

- ▶ Goal: prove the completeness of SL: for every SL wff \mathcal{P} and every set Γ of SL sentences, if $\Gamma \models \mathcal{P}$ then $\Gamma \vdash \mathcal{P}$
- ▶ So assume that $\Gamma \models \mathcal{P}$.
- ▶ Recall from week 5: this means that $\Gamma \cup \{\sim P\}$ is semantically inconsistent (i.e. unsatisfiable): no TVA satisfies the premises and negated conclusion
- ▶ We now appeal to a Consistency lemma that is the heart of the enterprise: any SND-consistent set of SL sentences is satisfiable (i.e. semantically consistent)

► Consistency lemma: any SND-consistent set of SL sentences is satisfiable

- ► Consistency lemma: any SND-consistent set of SL sentences is satisfiable
- ► Contrapositive of CL: any set of SL sentences that is Unsatisfiable is SND-Inconsistent

- ► Consistency lemma: any SND-consistent set of SL sentences is satisfiable
- ► Contrapositive of CL: any set of SL sentences that is Unsatisfiable is SND-Inconsistent
- ▶ From $\Gamma \vDash \mathcal{P}$ we know that $\Gamma \cup \{\sim \mathcal{P}\}$ is unsatisfiable

- ► Consistency lemma: any SND-consistent set of SL sentences is satisfiable
- ► Contrapositive of CL: any set of SL sentences that is Unsatisfiable is SND-Inconsistent
- ▶ From $\Gamma \vDash \mathcal{P}$ we know that $\Gamma \cup \{\sim \mathcal{P}\}$ is unsatisfiable
- ▶ So by the contrapositive of CL, we see that $\Gamma \cup \{\sim P\}$ is SND-inconsistent

- ► Consistency lemma: any SND-consistent set of SL sentences is satisfiable
- ► Contrapositive of CL: any set of SL sentences that is Unsatisfiable is SND-Inconsistent
- ▶ From $\Gamma \vDash \mathcal{P}$ we know that $\Gamma \cup \{\sim \mathcal{P}\}$ is unsatisfiable
- ▶ So by the contrapositive of CL, we see that $\Gamma \cup \{\sim P\}$ is SND-inconsistent
- ▶ This means that we can derive a pair of contradictory sentences R and $\sim R$ from $\Gamma \cup \{\sim P\}$! So using the power of negation elimination, we can derive P from Γ , i.e. $\Gamma \vdash P$. So we are 'done'!

▶ Claim: if $\Gamma \cup \{\sim P\}$ is **SND-inconsistent**, then $\Gamma \vdash P$

- ► Claim: if $\Gamma \cup \{\sim P\}$ is **SND-inconsistent**, then $\Gamma \vdash P$
- ▶ Proof: starting with (finitely-many) premises Δ from Γ , introduce $\sim P$ as a subproof assumption for negation elimination

- ▶ Claim: if $\Gamma \cup \{\sim P\}$ is **SND-inconsistent**, then $\Gamma \vdash P$
- ▶ Proof: starting with (finitely-many) premises Δ from Γ , introduce $\sim P$ as a subproof assumption for negation elimination
- ► Since $\Gamma \cup \{\sim P\}$ is SND-inconsistent, we can derive a contradictory pair R and $\sim R$ within the scope of wffs in $\Delta \cup \{\sim P\}$

- ▶ Claim: if $\Gamma \cup \{\sim P\}$ is **SND-inconsistent**, then $\Gamma \vdash P$
- ▶ Proof: starting with (finitely-many) premises Δ from Γ , introduce $\sim P$ as a subproof assumption for negation elimination
- ► Since $\Gamma \cup \{\sim P\}$ is SND-inconsistent, we can derive a contradictory pair R and $\sim R$ within the scope of wffs in $\Delta \cup \{\sim P\}$
- ▶ Then discharge this assumption $\sim P$ by negation elimination, writing P, now in the scope of Δ . So $\Delta \vdash P$

- ▶ Claim: if $\Gamma \cup \{\sim P\}$ is **SND-inconsistent**, then $\Gamma \vdash P$
- ▶ Proof: starting with (finitely-many) premises Δ from Γ , introduce $\sim P$ as a subproof assumption for negation elimination
- ► Since $\Gamma \cup \{\sim P\}$ is SND-inconsistent, we can derive a contradictory pair R and $\sim R$ within the scope of wffs in $\Delta \cup \{\sim P\}$
- ▶ Then discharge this assumption $\sim P$ by negation elimination, writing P, now in the scope of Δ . So $\Delta \vdash P$
- ▶ Since $\Delta \subseteq \Gamma$, we have $\Gamma \vdash \mathcal{P}$

Core subgoal: Prove consistency lemma (book's 6.4.2)

➤ So all we have to do is prove the **consistency lemma**: any SND-consistent set of SL sentences is satisfiable

Core subgoal: Prove consistency lemma (book's 6.4.2)

- ➤ So all we have to do is prove the **consistency lemma**: any SND-consistent set of SL sentences is satisfiable
- ► We'll prove this lemma in three 'stages':

- ➤ So all we have to do is prove the **consistency lemma**: any SND-consistent set of SL sentences is satisfiable
- We'll prove this lemma in three 'stages':
- ► The first two are straightforward: given an SND-consistent set Γ , we construct a **superset** Γ * that is *maximally SND-consistent*

- ➤ So all we have to do is prove the **consistency lemma**: any SND-consistent set of SL sentences is satisfiable
- ► We'll prove this lemma in three 'stages':
- ► The first two are straightforward: given an SND-consistent set Γ , we construct a **superset** Γ * that is *maximally SND-consistent*
- ▶ In the third stage, we show that any maximally SND-consistent set is satisfiable: we use maximal consistency to construct a TVA that satisfies every sentence in Γ^*

- ► So all we have to do is prove the **consistency lemma**: any SND-consistent set of SL sentences is satisfiable
- ► We'll prove this lemma in three 'stages':
- ► The first two are straightforward: given an SND-consistent set Γ , we construct a **superset** Γ * that is *maximally SND-consistent*
- ▶ In the third stage, we show that any maximally SND-consistent set is satisfiable: we use maximal consistency to construct a TVA that satisfies every sentence in Γ^*
- ▶ Since by construction $\Gamma \subseteq \Gamma^*$, this TVA satisfies Γ as well.

- ➤ So all we have to do is prove the **consistency lemma**: any SND-consistent set of SL sentences is satisfiable
- ► We'll prove this lemma in three 'stages':
- ► The first two are straightforward: given an SND-consistent set Γ , we construct a **superset** Γ * that is *maximally SND-consistent*
- ▶ In the third stage, we show that any maximally SND-consistent set is satisfiable: we use maximal consistency to construct a TVA that satisfies every sentence in Γ^*
- ▶ Since by construction $\Gamma \subseteq \Gamma^*$, this TVA satisfies Γ as well.
- ► (The idea in the third stage is similar to what we did with trees: use a syntactic consistency property to construct a TVA that satisfies a set of wffs: with trees we had 'complete open branches'; here we have maximal-SND-consistency)

- ► So all we have to do is prove the **consistency lemma**: any SND-consistent set of SL sentences is satisfiable
- ► We'll prove this lemma in three 'stages':
- ► The first two are straightforward: given an SND-consistent set Γ , we construct a **superset** Γ * that is *maximally SND-consistent*
- ▶ In the third stage, we show that any maximally SND-consistent set is satisfiable: we use maximal consistency to construct a TVA that satisfies every sentence in Γ^*
- ▶ Since by construction $\Gamma \subseteq \Gamma^*$, this TVA satisfies Γ as well.
- ► (The idea in the third stage is similar to what we did with trees: use a syntactic consistency property to construct a TVA that satisfies a set of wffs: with trees we had 'complete open branches'; here we have maximal-SND-consistency)
- ► The third stage comprises a tedious lemma and induction! PS12 problems 2 and 3 provide practice with this tedium!

12 c 7

 \blacktriangleright A set Γ^* of SL wffs is maximally SND-consistent provided that:

- \blacktriangleright A set Γ^* of SL wffs is maximally SND-consistent provided that:
 - 1.) Γ^* is SND-consistent (i.e. can't derive contradictory sentences)

- \blacktriangleright A set Γ^* of SL wffs is maximally SND-consistent provided that:
 - 1.) Γ^* is SND-consistent (i.e. can't derive contradictory sentences)
 - 2.) adding any additional wff to Γ^* would result in an SND-inconsistent set

- ightharpoonup A set Γ^* of SL wffs is maximally SND-consistent provided that:
 - 1.) Γ^* is SND-consistent (i.e. can't derive contradictory sentences)
 - 2.) adding any additional wff to Γ^* would result in an SND-inconsistent set
- ▶ i.e. for any $P \notin \Gamma^*$, $\{P\} \cup \Gamma^*$ is SND-inconsistent

- \blacktriangleright A set Γ^* of SL wffs is maximally SND-consistent provided that:
 - 1.) Γ^* is SND-consistent (i.e. can't derive contradictory sentences)
 - 2.) adding any additional wff to Γ^* would result in an SND-inconsistent set
- ▶ i.e. for any $P \notin \Gamma^*$, $\{P\} \cup \Gamma^*$ is SND-inconsistent
- Motivation: it is straightforward (but tedious) to show that a maximally SND-consistent set is semantically consistent

- ightharpoonup A set Γ^* of SL wffs is maximally SND-consistent provided that:
 - 1.) Γ^* is SND-consistent (i.e. can't derive contradictory sentences)
 - 2.) adding any additional wff to Γ^* would result in an SND-inconsistent set
- ▶ i.e. for any $P \notin \Gamma^*$, $\{P\} \cup \Gamma^*$ is SND-inconsistent
- Motivation: it is straightforward (but tedious) to show that a maximally SND-consistent set is semantically consistent
 - Moreover, every SND-consistent set is a subset of a maximally SND-consistent set.

- \blacktriangleright A set Γ^* of SL wffs is maximally SND-consistent provided that:
 - 1.) Γ^* is SND-consistent (i.e. can't derive contradictory sentences)
 - 2.) adding any additional wff to Γ^* would result in an SND-inconsistent set
- ▶ i.e. for any $P \notin \Gamma^*$, $\{P\} \cup \Gamma^*$ is SND-inconsistent
- Motivation: it is straightforward (but tedious) to show that a maximally SND-consistent set is semantically consistent
 - Moreover, every SND-consistent set is a subset of a maximally SND-consistent set.
 - So we piggyback on an appropriate Γ^* to show that any SND-consistent set Γ is also satisfiable

Stage 1: Constructing Γ^*

 \blacktriangleright Let Γ be an SND-consistent set of SL wffs (possibly infinite)

Stage 1: Constructing \(\Gamma^*\)

- \blacktriangleright Let Γ be an SND-consistent set of SL wffs (possibly infinite)
- ► To construct Γ^* , we first **enumerate** the SL wffs, so that every SL wff is associated with a unique positive integer $\{1, 2, 3, ...\}$

- ightharpoonup Let Γ be an SND-consistent set of SL wffs (possibly infinite)
- ► To construct Γ^* , we first **enumerate** the SL wffs, so that every SL wff is associated with a unique positive integer $\{1, 2, 3, ...\}$
- ▶ Then consider the first wff 'A' in our enumeration. If A can be added to Γ without the resulting set being SND-inconsistent, then let $\Gamma_1 := \Gamma \cup \{A\}$.

- \blacktriangleright Let Γ be an SND-consistent set of SL wffs (possibly infinite)
- ► To construct Γ^* , we first **enumerate** the SL wffs, so that every SL wff is associated with a unique positive integer $\{1, 2, 3, ...\}$
- ▶ Then consider the first wff 'A' in our enumeration. If A can be added to Γ without the resulting set being SND-inconsistent, then let $\Gamma_1 := \Gamma \cup \{A\}$.
- ▶ Otherwise, let $\Gamma_1 := \Gamma$ (so that Γ_1 stays SND-consistent)

- \blacktriangleright Let Γ be an SND-consistent set of SL wffs (possibly infinite)
- ► To construct Γ^* , we first **enumerate** the SL wffs, so that every SL wff is associated with a unique positive integer $\{1, 2, 3, ...\}$
- ▶ Then consider the first wff 'A' in our enumeration. If A can be added to Γ without the resulting set being SND-inconsistent, then let $\Gamma_1 := \Gamma \cup \{A\}$.
- ▶ Otherwise, let $\Gamma_1 := \Gamma$ (so that Γ_1 stays SND-consistent)
- ▶ Then, proceed to the second wff in our enumeration. If it can be added to Γ_1 without the new set being SND-inconsistent, let Γ_2 be the result. Otherwise, let $\Gamma_2 := \Gamma_1$

- \blacktriangleright Let Γ be an SND-consistent set of SL wffs (possibly infinite)
- ► To construct Γ^* , we first **enumerate** the SL wffs, so that every SL wff is associated with a unique positive integer $\{1, 2, 3, ...\}$
- ▶ Then consider the first wff 'A' in our enumeration. If A can be added to Γ without the resulting set being SND-inconsistent, then let $\Gamma_1 := \Gamma \cup \{A\}$.
- ▶ Otherwise, let $\Gamma_1 := \Gamma$ (so that Γ_1 stays SND-consistent)
- ▶ Then, proceed to the second wff in our enumeration. If it can be added to Γ_1 without the new set being SND-inconsistent, let Γ_2 be the result. Otherwise, let $\Gamma_2 := \Gamma_1$
- ightharpoonup T* is the result of 'doing' this procedure for every SL wff

- ightharpoonup Let Γ be an SND-consistent set of SL wffs (possibly infinite)
- ► To construct Γ^* , we first **enumerate** the SL wffs, so that every SL wff is associated with a unique positive integer $\{1, 2, 3, ...\}$
- ▶ Then consider the first wff 'A' in our enumeration. If A can be added to Γ without the resulting set being SND-inconsistent, then let $\Gamma_1 := \Gamma \cup \{A\}$.
- ▶ Otherwise, let $\Gamma_1 := \Gamma$ (so that Γ_1 stays SND-consistent)
- ▶ Then, proceed to the second wff in our enumeration. If it can be added to Γ_1 without the new set being SND-inconsistent, let Γ_2 be the result. Otherwise, let $\Gamma_2 := \Gamma_1$
- ightharpoonup T* is the result of 'doing' this procedure for every SL wff
- ightharpoonup More precisely, $ho^* := \bigcup_{k=1}^{\infty}
 ho_k$

► Analogy: we can enumerate words by length, using their alphabetical order to break ties

- ► Analogy: we can enumerate words by length, using their alphabetical order to break ties
- ► Can do the same for SL wffs by stipulating an 'alphabetical order':

- ► Analogy: we can enumerate words by length, using their alphabetical order to break ties
- ► Can do the same for SL wffs by stipulating an 'alphabetical order':
- ► \sim , \vee , &, \supset , \equiv , (,), 0, 1, ..., 9, A, B, ..., Z

- ► Analogy: we can enumerate words by length, using their alphabetical order to break ties
- ► Can do the same for SL wffs by stipulating an 'alphabetical order':
- ► \sim , \vee , &, \supset , \equiv , (,), 0, 1, ..., 9, A, B, ..., Z
- ► Each symbol is assigned an **index** between '10' and '55'

- ► Analogy: we can enumerate words by length, using their alphabetical order to break ties
- ► Can do the same for SL wffs by stipulating an 'alphabetical order':
- ► \sim , \vee , &, \supset , \equiv , (,), 0, 1, ..., 9, A, B, ..., Z
- ► Each symbol is assigned an **index** between '10' and '55'
- ► Then each SL wff corresponds to a unique positive integer, constructed by replacing each symbol in the wff with its index, from left to right.

- ► Analogy: we can enumerate words by length, using their alphabetical order to break ties
- ► Can do the same for SL wffs by stipulating an 'alphabetical order':
- ► \sim , \vee , &, \supset , \equiv , (,), 0, 1, ..., 9, A, B, ..., Z
- ► Each symbol is assigned an **index** between '10' and '55'
- ► Then each SL wff corresponds to a unique positive integer, constructed by replacing each symbol in the wff with its index, from left to right.
- ▶ So with our ordering, 'A' is the first wff; 'B' the second ...up to Z, and then we hit $\sim A$ (\mapsto 1030), then $\sim B$ (\mapsto 1031), etc.

Stage 2: Γ^* is maximally SND-consistent

► This requires proving two claims (from definition of M-SND-C):

Stage 2: [* is maximally SND-consistent

► This requires proving two claims (from definition of M-SND-C):

1.) Γ^* is consistent in SND

Stage 2: Γ^* is maximally SND-consistent

- ► This requires proving two claims (from definition of M-SND-C):
 - 1.) Γ^* is consistent in SND
 - 2.) Adding any additional wff to Γ^* would result in an SND-inconsistent set

Stage 2: Γ^* is maximally SND-consistent

- ► This requires proving two claims (from definition of M-SND-C):
 - 1.) Γ^* is consistent in SND
 - 2.) Adding any additional wff to Γ^* would result in an SND-inconsistent set

► We prove these in turn

ightharpoonup Assume for *reductio* that Γ^* is inconsistent in SND

- ightharpoonup Assume for *reductio* that Γ^* is inconsistent in SND
- ▶ Then there would be an SND derivation with finite premise set $\Delta \subset \Gamma^*$ that derives a contradictory pair R and $\sim R$

- ightharpoonup Assume for *reductio* that Γ^* is inconsistent in SND
- ► Then there would be an SND derivation with finite premise set $\Delta \subset \Gamma^*$ that derives a contradictory pair R and $\sim R$
- ▶ Since Δ is finite, there exists some $k \in \mathbb{N}$ s.t. $\Delta \subset \Gamma_k$. So then this Γ_k would be SND-inconsistent.

- ightharpoonup Assume for *reductio* that Γ^* is inconsistent in SND
- ► Then there would be an SND derivation with finite premise set $\Delta \subset \Gamma^*$ that derives a contradictory pair R and $\sim R$
- ▶ Since Δ is finite, there exists some $k \in \mathbb{N}$ s.t. $\Delta \subset \Gamma_k$. So then this Γ_k would be SND-inconsistent.
- \blacktriangleright Yet, we constructed each Γ_k such that each is SND-consistent:

- ightharpoonup Assume for *reductio* that Γ^* is inconsistent in SND
- ► Then there would be an SND derivation with finite premise set $\Delta \subset \Gamma^*$ that derives a contradictory pair R and $\sim R$
- ▶ Since Δ is finite, there exists some $k \in \mathbb{N}$ s.t. $\Delta \subset \Gamma_k$. So then this Γ_k would be SND-inconsistent.
- \blacktriangleright Yet, we constructed each Γ_k such that each is SND-consistent:
 - In general, if P_k is the k-th sentence in our enumeration, then Γ_{k+1} is $\Gamma_k \cup \{P_k\}$ provided that $\Gamma_k \cup \{P_k\}$ is SND-consistent; otherwise, Γ_{k+1} equals Γ_k (so SND-consistent either way)

- \blacktriangleright Assume for *reductio* that Γ^* is inconsistent in SND
- ► Then there would be an SND derivation with finite premise set $\Delta \subset \Gamma^*$ that derives a contradictory pair R and $\sim R$
- ▶ Since Δ is finite, there exists some $k \in \mathbb{N}$ s.t. $\Delta \subset \Gamma_k$. So then this Γ_k would be SND-inconsistent.
- \blacktriangleright Yet, we constructed each Γ_k such that each is SND-consistent:
 - In general, if P_k is the k-th sentence in our enumeration, then Γ_{k+1} is $\Gamma_k \cup \{P_k\}$ provided that $\Gamma_k \cup \{P_k\}$ is SND-consistent; otherwise, Γ_{k+1} equals Γ_k (so SND-consistent either way)
- ▶ Hence, Γ^* must be SND-consistent, on pain of *reductio*

- \blacktriangleright Assume for *reductio* that Γ^* is inconsistent in SND
- ► Then there would be an SND derivation with finite premise set $\Delta \subset \Gamma^*$ that derives a contradictory pair R and $\sim R$
- ▶ Since Δ is finite, there exists some $k \in \mathbb{N}$ s.t. $\Delta \subset \Gamma_k$. So then this Γ_k would be SND-inconsistent.
- \blacktriangleright Yet, we constructed each Γ_k such that each is SND-consistent:
 - In general, if P_k is the k-th sentence in our enumeration, then Γ_{k+1} is $\Gamma_k \cup \{P_k\}$ provided that $\Gamma_k \cup \{P_k\}$ is SND-consistent; otherwise, Γ_{k+1} equals Γ_k (so SND-consistent either way)
- ▶ Hence, Γ^* must be SND-consistent, on pain of *reductio*
- ► (note: the book's proof, p. 256, is way more complicated than necessary...)

ightharpoonup Assume for *reductio* that Γ^* weren't maximally SND-consistent, despite being SND-consistent

- ightharpoonup Assume for *reductio* that Γ^* weren't maximally SND-consistent, despite being SND-consistent
- ▶ i.e. assume it is not the case that for all additional wff, adding it to Γ^* would result in an SND-inconsistent set

- ightharpoonup Assume for *reductio* that Γ^* weren't maximally SND-consistent, despite being SND-consistent
- ▶ i.e. assume it is not the case that for all additional wff, adding it to Γ^* would result in an SND-inconsistent set
 - \Rightarrow there exists a wff $\mathcal Q$ that we could add to Γ^* while preserving SND-consistency (i.e. there would be some wff that we neglected that could make Γ^* an even 'bigger' SND-consistent set)

- ightharpoonup Assume for *reductio* that Γ^* weren't maximally SND-consistent, despite being SND-consistent
- ▶ i.e. assume it is not the case that for all additional wff, adding it to Γ^* would result in an SND-inconsistent set
 - \Rightarrow there exists a wff $\mathcal Q$ that we could add to Γ^* while preserving SND-consistency (i.e. there would be some wff that we neglected that could make Γ^* an even 'bigger' SND-consistent set)
- ▶ Yet, Q would appear in our enumeration as some wff P_k , 'considered' at the k-th stage of our construction of Γ^* .

- Assume for *reductio* that Γ^* weren't maximally SND-consistent, despite being SND-consistent
- ▶ i.e. assume it is not the case that for all additional wff, adding it to Γ^* would result in an SND-inconsistent set
 - \Rightarrow there exists a wff $\mathcal Q$ that we could add to Γ^* while preserving SND-consistency (i.e. there would be some wff that we neglected that could make Γ^* an even 'bigger' SND-consistent set)
- ▶ Yet, Q would appear in our enumeration as some wff P_k , 'considered' at the k-th stage of our construction of Γ^* .
- ► So if Q isn't in Γ^* , then this is because adding it 'would have' made $\Gamma_k \subset \Gamma^*$ SND-inconsistent.
 - So $\{Q\} \cup \Gamma^*$ must be SND-inconsistent (reductio!)

- Assume for *reductio* that Γ^* weren't maximally SND-consistent, despite being SND-consistent
- ▶ i.e. assume it is not the case that for all additional wff, adding it to Γ^* would result in an SND-inconsistent set
 - \Rightarrow there exists a wff $\mathcal Q$ that we could add to Γ^* while preserving SND-consistency (i.e. there would be some wff that we neglected that could make Γ^* an even 'bigger' SND-consistent set)
- ▶ Yet, Q would appear in our enumeration as some wff P_k , 'considered' at the k-th stage of our construction of Γ^* .
- ► So if Q isn't in Γ^* , then this is because adding it 'would have' made $\Gamma_k \subset \Gamma^*$ SND-inconsistent.
 - So $\{Q\} \cup \Gamma^*$ must be SND-inconsistent (reductio!)
- lacktriangle So we can't add any $\mathcal Q$ to Γ^* while preserving SND-consistency $_{12.c.13}$

► Maximal Consistency Lemma: any set that is maximally—SND—consistent is satisfiable

- ► Maximal Consistency Lemma: any set that is maximally—SND—consistent is satisfiable
- ▶ So there exists a TVA that satisfies every sentence in Γ^* . We construct this TVA, calling it " \mathcal{I} " (the book calls it \mathbf{A}^*)

- ► Maximal Consistency Lemma: any set that is maximally-SND-consistent is satisfiable
- ▶ So there exists a TVA that satisfies every sentence in Γ^* . We construct this TVA, calling it " \mathcal{I} " (the book calls it \mathbf{A}^*)
- ▶ Proof idea: since Γ^* is M-SND-C, for any wff \mathcal{Q} , either $\mathcal{Q} \in \Gamma^*$ or $\sim \mathcal{Q} \in \Gamma^*$ (you're either in the club or your 'nemesis' is!)

- ► Maximal Consistency Lemma: any set that is maximally—SND—consistent is satisfiable
- ▶ So there exists a TVA that satisfies every sentence in Γ^* . We construct this TVA, calling it " \mathcal{I} " (the book calls it \mathbf{A}^*)
- ▶ Proof idea: since Γ^* is M-SND-C, for any wff \mathcal{Q} , either $\mathcal{Q} \in \Gamma^*$ or $\sim \mathcal{Q} \in \Gamma^*$ (you're either in the club or your 'nemesis' is!)

This holds in particular for each atomic wff

- ► Maximal Consistency Lemma: any set that is maximally-SND-consistent is satisfiable
- ▶ So there exists a TVA that satisfies every sentence in Γ^* . We construct this TVA, calling it " \mathcal{I} " (the book calls it \mathbf{A}^*)
- ▶ Proof idea: since Γ^* is M-SND-C, for any wff \mathcal{Q} , either $\mathcal{Q} \in \Gamma^*$ or $\sim \mathcal{Q} \in \Gamma^*$ (you're either in the club or your 'nemesis' is!)

 This holds in particular for each atomic wff
- ▶ Define the TVA \mathcal{I} such that $\mathcal{I}(B) = True$ iff atomic $B \in \Gamma^*$

- ► Maximal Consistency Lemma: any set that is maximally—SND—consistent is satisfiable
- ▶ So there exists a TVA that satisfies every sentence in Γ^* . We construct this TVA, calling it " \mathcal{I} " (the book calls it \mathbf{A}^*)
- ▶ Proof idea: since Γ^* is M-SND-C, for any wff \mathcal{Q} , either $\mathcal{Q} \in \Gamma^*$ or $\sim \mathcal{Q} \in \Gamma^*$ (you're either in the club or your 'nemesis' is!)

 This holds in particular for each atomic wff
- ▶ Define the TVA \mathcal{I} such that $\mathcal{I}(B) = True$ iff atomic $B \in \Gamma^*$
- ▶ Then by the recursive structure of SL wffs, $\mathcal{I}(\mathcal{Q}) = True$ iff $\mathcal{Q} \in \Gamma^*$

ightharpoonup To induct on SL, we first show some constraints on Γ^* membership

- ightharpoonup To induct on SL, we first show some constraints on Γ^* membership
- ▶ Basically, Γ^* is like a club with a bouncer who enforces maximal consistency. Before the bouncer lets a wff into Γ^* , he checks who else is in the club

- ightharpoonup To induct on SL, we first show some constraints on Γ^* membership
- ▶ Basically, Γ^* is like a club with a bouncer who enforces maximal consistency. Before the bouncer lets a wff into Γ^* , he checks who else is in the club
- ▶ Membership Lemma for club Γ^* : if \mathcal{P} and \mathcal{Q} are SL wffs, then:

- ightharpoonup To induct on SL, we first show some constraints on Γ^* membership
- ▶ Basically, Γ^* is like a club with a bouncer who enforces maximal consistency. Before the bouncer lets a wff into Γ^* , he checks who else is in the club
- ▶ Membership Lemma for club Γ^* : if \mathcal{P} and \mathcal{Q} are SL wffs, then: a.) $\sim \mathcal{P} \in \Gamma^*$ if and only if $\mathcal{P} \notin \Gamma^*$

- ightharpoonup To induct on SL, we first show some constraints on Γ^* membership
- ▶ Basically, Γ^* is like a club with a bouncer who enforces maximal consistency. Before the bouncer lets a wff into Γ^* , he checks who else is in the club
- ▶ Membership Lemma for club Γ^* : if \mathcal{P} and \mathcal{Q} are SL wffs, then:
 - a.) $\sim \mathcal{P} \in \Gamma^*$ if and only if $\mathcal{P} \notin \Gamma^*$
 - b.) $P \& Q \in \Gamma^*$ if and only if both $P \in \Gamma^*$ and $Q \in \Gamma^*$

- ightharpoonup To induct on SL, we first show some constraints on Γ^* membership
- ▶ Basically, Γ^* is like a club with a bouncer who enforces maximal consistency. Before the bouncer lets a wff into Γ^* , he checks who else is in the club
- ▶ Membership Lemma for club Γ^* : if \mathcal{P} and \mathcal{Q} are SL wffs, then:
 - a.) $\sim \mathcal{P} \in \Gamma^*$ if and only if $\mathcal{P} \notin \Gamma^*$
 - b.) $\mathcal{P} \& \mathcal{Q} \in \Gamma^*$ if and only if both $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$
 - c.) $P \lor Q \in \Gamma^*$ if and only if either $P \in \Gamma^*$ or $Q \in \Gamma^*$

- ightharpoonup To induct on SL, we first show some constraints on Γ^* membership
- ▶ Basically, Γ^* is like a club with a bouncer who enforces maximal consistency. Before the bouncer lets a wff into Γ^* , he checks who else is in the club
- ▶ Membership Lemma for club Γ^* : if \mathcal{P} and \mathcal{Q} are SL wffs, then:
 - a.) $\sim \mathcal{P} \in \Gamma^*$ if and only if $\mathcal{P} \notin \Gamma^*$
 - b.) $\mathcal{P} \& \mathcal{Q} \in \Gamma^*$ if and only if both $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$
 - c.) $P \lor Q \in \Gamma^*$ if and only if either $P \in \Gamma^*$ or $Q \in \Gamma^*$
 - d.) $P \supset Q \in \Gamma^*$ if and only if either $P \notin \Gamma^*$ or $Q \in \Gamma^*$

- ightharpoonup To induct on SL, we first show some constraints on Γ^* membership
- ▶ Basically, Γ^* is like a club with a bouncer who enforces maximal consistency. Before the bouncer lets a wff into Γ^* , he checks who else is in the club
- ▶ Membership Lemma for club Γ^* : if \mathcal{P} and \mathcal{Q} are SL wffs, then:
 - a.) $\sim \mathcal{P} \in \Gamma^*$ if and only if $\mathcal{P} \notin \Gamma^*$
 - b.) $\mathcal{P} \& \mathcal{Q} \in \Gamma^*$ if and only if both $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$
 - c.) $P \lor Q \in \Gamma^*$ if and only if either $P \in \Gamma^*$ or $Q \in \Gamma^*$
 - d.) $\mathcal{P} \supset \mathcal{Q} \in \Gamma^*$ if and only if either $\mathcal{P} \notin \Gamma^*$ or $\mathcal{Q} \in \Gamma^*$
 - e.) $\mathcal{P} \equiv \mathcal{Q} \in \Gamma^*$ iff either (i) $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$ or (ii) $\mathcal{P} \notin \Gamma^*$ and $\mathcal{Q} \notin \Gamma^*$

- ightharpoonup To induct on SL, we first show some constraints on Γ^* membership
- ▶ Basically, Γ^* is like a club with a bouncer who enforces maximal consistency. Before the bouncer lets a wff into Γ^* , he checks who else is in the club
- ▶ Membership Lemma for club Γ^* : if \mathcal{P} and \mathcal{Q} are SL wffs, then:
 - a.) $\sim \mathcal{P} \in \Gamma^*$ if and only if $\mathcal{P} \notin \Gamma^*$
 - b.) $\mathcal{P} \& \mathcal{Q} \in \Gamma^*$ if and only if both $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$
 - c.) $\mathcal{P} \lor \mathcal{Q} \in \Gamma^*$ if and only if either $\mathcal{P} \in \Gamma^*$ or $\mathcal{Q} \in \Gamma^*$
 - d.) $\mathcal{P} \supset \mathcal{Q} \in \Gamma^*$ if and only if either $\mathcal{P} \notin \Gamma^*$ or $\mathcal{Q} \in \Gamma^*$
 - e.) $\mathcal{P} \equiv \mathcal{Q} \in \Gamma^*$ iff either (i) $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$ or (ii) $\mathcal{P} \notin \Gamma^*$ and $\mathcal{Q} \notin \Gamma^*$
- ► Notice how these syntactic constraints mirror truth-conditions!

- ightharpoonup To induct on SL, we first show some constraints on Γ^* membership
- ▶ Basically, Γ^* is like a club with a bouncer who enforces maximal consistency. Before the bouncer lets a wff into Γ^* , he checks who else is in the club
- ▶ Membership Lemma for club Γ^* : if \mathcal{P} and \mathcal{Q} are SL wffs, then:
 - a.) $\sim \mathcal{P} \in \Gamma^*$ if and only if $\mathcal{P} \notin \Gamma^*$
 - b.) $\mathcal{P} \& \mathcal{Q} \in \Gamma^*$ if and only if both $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$
 - c.) $P \lor Q \in \Gamma^*$ if and only if either $P \in \Gamma^*$ or $Q \in \Gamma^*$
 - d.) $\mathcal{P} \supset \mathcal{Q} \in \Gamma^*$ if and only if either $\mathcal{P} \notin \Gamma^*$ or $\mathcal{Q} \in \Gamma^*$
 - e.) $\mathcal{P} \equiv \mathcal{Q} \in \Gamma^*$ iff either (i) $\mathcal{P} \in \Gamma^*$ and $\mathcal{Q} \in \Gamma^*$ or (ii) $\mathcal{P} \notin \Gamma^*$ and $\mathcal{Q} \notin \Gamma^*$
- ▶ Notice how these syntactic constraints mirror truth-conditions!
- ▶ Moral: We all want to belong, but sometimes our enemies get in the way!

► To prove the membership lemma's cases (a)-(e), we'll use another lemma (hint: it's lemmas all the way down):

- ► To prove the membership lemma's cases (a)-(e), we'll use another lemma (hint: it's lemmas all the way down):
- ▶ The Door: if $\Gamma \vdash P$, and Γ^* is a maximally SND-consistent superset of Γ , then $P \in \Gamma^*$ (mnemonic: " $\Gamma \vdash P$ " pushes P through the door!)

- ► To prove the membership lemma's cases (a)-(e), we'll use another lemma (hint: it's lemmas all the way down):
- ▶ The Door: if $\Gamma \vdash P$, and Γ^* is a maximally SND-consistent superset of Γ , then $P \in \Gamma^*$ (mnemonic: " $\Gamma \vdash P$ " pushes P through the door!)
- ▶ Proof: first, assume that $\Gamma \vdash P$ (we'll use this fact below)

- ► To prove the membership lemma's cases (a)-(e), we'll use another lemma (hint: it's lemmas all the way down):
- ▶ The Door: if $\Gamma \vdash P$, and Γ^* is a maximally SND-consistent superset of Γ , then $P \in \Gamma^*$ (mnemonic: " $\Gamma \vdash P$ " pushes P through the door!)
- ▶ Proof: first, assume that $\Gamma \vdash P$ (we'll use this fact below)
- ▶ Next, assume for *reductio* that $P \notin \Gamma^*$. Then since Γ^* is maximally SND-consistent, $\Gamma^* \cup \{P\}$ must be inconsistent in SND.

- ► To prove the membership lemma's cases (a)-(e), we'll use another lemma (hint: it's lemmas all the way down):
- ▶ The Door: if $\Gamma \vdash P$, and Γ^* is a maximally SND-consistent superset of Γ , then $P \in \Gamma^*$ (mnemonic: " $\Gamma \vdash P$ " pushes P through the door!)
- ▶ Proof: first, assume that $\Gamma \vdash P$ (we'll use this fact below)
- ▶ Next, assume for *reductio* that $P \notin \Gamma^*$. Then since Γ^* is maximally SND-consistent, $\Gamma^* \cup \{P\}$ must be inconsistent in SND.
- ► Hence, by negation introduction, $\Gamma^* \vdash \sim P$

- ► To prove the membership lemma's cases (a)-(e), we'll use another lemma (hint: it's lemmas all the way down):
- ▶ The Door: if $\Gamma \vdash P$, and Γ^* is a maximally SND-consistent superset of Γ , then $P \in \Gamma^*$ (mnemonic: " $\Gamma \vdash P$ " pushes P through the door!)
- ▶ Proof: first, assume that $\Gamma \vdash P$ (we'll use this fact below)
- ▶ Next, assume for *reductio* that $P \notin \Gamma^*$. Then since Γ^* is maximally SND-consistent, $\Gamma^* \cup \{P\}$ must be inconsistent in SND.
- ► Hence, by negation introduction, $\Gamma^* \vdash \sim P$
- ▶ By assumption, $\Gamma \vdash P$, so also $\Gamma^* \vdash P$, since $\Gamma \subseteq \Gamma^*$

- ► To prove the membership lemma's cases (a)-(e), we'll use another lemma (hint: it's lemmas all the way down):
- ▶ The Door: if $\Gamma \vdash P$, and Γ^* is a maximally SND-consistent superset of Γ , then $P \in \Gamma^*$ (mnemonic: " $\Gamma \vdash P$ " pushes P through the door!)
- ▶ Proof: first, assume that $\Gamma \vdash P$ (we'll use this fact below)
- ▶ Next, assume for *reductio* that $P \notin \Gamma^*$. Then since Γ^* is maximally SND-consistent, $\Gamma^* \cup \{P\}$ must be inconsistent in SND.
- ► Hence, by negation introduction, $\Gamma^* \vdash \sim P$
- ▶ By assumption, $\Gamma \vdash P$, so also $\Gamma^* \vdash P$, since $\Gamma \subseteq \Gamma^*$
- ▶ So Γ^* derives both P and $\sim P$. Reductio! (since Γ^* is M-SND-C)

- ► To prove the membership lemma's cases (a)-(e), we'll use another lemma (hint: it's lemmas all the way down):
- ▶ The Door: if $\Gamma \vdash P$, and Γ^* is a maximally SND-consistent superset of Γ , then $P \in \Gamma^*$ (mnemonic: " $\Gamma \vdash P$ " pushes P through the door!)
- ▶ Proof: first, assume that $\Gamma \vdash P$ (we'll use this fact below)
- ▶ Next, assume for *reductio* that $P \notin \Gamma^*$. Then since Γ^* is maximally SND-consistent, $\Gamma^* \cup \{P\}$ must be inconsistent in SND.
- ▶ Hence, by negation introduction, $\Gamma^* \vdash \sim P$
- ▶ By assumption, $\Gamma \vdash P$, so also $\Gamma^* \vdash P$, since $\Gamma \subseteq \Gamma^*$
- ▶ So Γ^* derives both P and $\sim P$. Reductio! (since Γ^* is M-SND-C)
- ▶ Hence, if $\Gamma \vdash P$ and $\Gamma \subseteq \Gamma^*$, then P must belong to Γ^*

► Case (a): $\sim P \in \Gamma^*$ if and only if $P \notin \Gamma^*$

- ► Case (a): $\sim P \in \Gamma^*$ if and only if $P \notin \Gamma^*$
- ► Two directions to prove:

- ► Case (a): $\sim P \in \Gamma^*$ if and only if $P \notin \Gamma^*$
- ► Two directions to prove:

 \Rightarrow : Assume $\sim P \in \Gamma^*$. Then if P were in Γ^* , we could derive contradictory sentences.

- ► Case (a): $\sim P \in \Gamma^*$ if and only if $P \notin \Gamma^*$
- ► Two directions to prove:
 - \Rightarrow : Assume $\sim \mathcal{P} \in \Gamma^*$. Then if \mathcal{P} were in Γ^* , we could derive contradictory sentences.
 - So since Γ^* is SND-consistent, we must have $\mathcal{P} \notin \Gamma^*$

- ► Case (a): $\sim P \in \Gamma^*$ if and only if $P \notin \Gamma^*$
- ► Two directions to prove:
 - \Rightarrow : Assume $\sim P \in \Gamma^*$. Then if P were in Γ^* , we could derive contradictory sentences.

So since Γ^* is SND-consistent, we must have $\mathcal{P} \notin \Gamma^*$ \Leftarrow : Assume $\mathcal{P} \notin \Gamma^*$. Then adding \mathcal{P} to Γ^* results in an SND-inconsistent set. Hence, there is some finite subset $\Delta \subset \Gamma^*$ s.t. $\Delta \cup \{\mathcal{P}\}$ is SND-inconsistent (i.e. derives contradictory sentence pair).

- ► Case (a): $\sim P \in \Gamma^*$ if and only if $P \notin \Gamma^*$
- ► Two directions to prove:
 - \Rightarrow : Assume $\sim \! \mathcal{P} \in \Gamma^*.$ Then if \mathcal{P} were in $\Gamma^*,$ we could derive contradictory sentences.

So since Γ^* is SND-consistent, we must have $\mathcal{P} \notin \Gamma^*$ \Leftarrow : Assume $\mathcal{P} \notin \Gamma^*$. Then adding \mathcal{P} to Γ^* results in an SND-inconsistent set. Hence, there is some finite subset $\Delta \subset \Gamma^*$ s.t. $\Delta \cup \{\mathcal{P}\}$ is SND-inconsistent (i.e. derives contradictory sentence pair).

▶ So by negation introduction, $\Delta \vdash \sim P$

Membership Lemma: Case (a)

- ► Case (a): $\sim P \in \Gamma^*$ if and only if $P \notin \Gamma^*$
- ► Two directions to prove:
 - \Rightarrow : Assume $\sim \mathcal{P} \in \Gamma^*$. Then if \mathcal{P} were in Γ^* , we could derive contradictory sentences.

So since Γ^* is SND-consistent, we must have $\mathcal{P} \notin \Gamma^*$

 \Leftarrow : Assume $\mathcal{P} \notin \Gamma^*$. Then adding \mathcal{P} to Γ^* results in an

SND-inconsistent set. Hence, there is some finite subset $\Delta \subset \Gamma^*$

- s.t. $\Delta \cup \{\mathcal{P}\}$ is SND-inconsistent (i.e. derives contradictory sentence pair).
- ▶ So by negation introduction, $\Delta \vdash \sim P$
- ▶ So by The Door lemma, $\sim P \in \Gamma^*$

▶ See the book for cases (b) (P & Q) and (d) $(P \supset Q)$

▶ See the book for cases (b) (P & Q) and (d) $(P \supset Q)$

► Case (c) is PS12 #2: $P \lor Q \in \Gamma^*$ if and only if either $P \in \Gamma^*$ or $Q \in \Gamma^*$

 \blacktriangleright See the book for cases (b) $(\mathcal{P}\ \&\ \mathcal{Q})$ and (d) $(\mathcal{P}\supset\mathcal{Q})$

▶ Case (c) is PS12 #2: $\mathcal{P} \lor \mathcal{Q} \in \Gamma^*$ if and only if either $\mathcal{P} \in \Gamma^*$ or $\mathcal{Q} \in \Gamma^*$

▶ We skip case (e) $(P \equiv Q)$ because . . .

 \blacktriangleright See the book for cases (b) $(\mathcal{P}\ \&\ \mathcal{Q})$ and (d) $(\mathcal{P}\supset\mathcal{Q})$

▶ Case (c) is PS12 #2: $\mathcal{P} \lor \mathcal{Q} \in \Gamma^*$ if and only if either $\mathcal{P} \in \Gamma^*$ or $\mathcal{Q} \in \Gamma^*$

▶ We skip case (e) $(P \equiv Q)$ because . . .

 \blacktriangleright See the book for cases (b) $(\mathcal{P}\ \&\ \mathcal{Q})$ and (d) $(\mathcal{P}\supset\mathcal{Q})$

▶ Case (c) is PS12 #2: $\mathcal{P} \lor \mathcal{Q} \in \Gamma^*$ if and only if either $\mathcal{P} \in \Gamma^*$ or $\mathcal{Q} \in \Gamma^*$

▶ We skip case (e) $(P \equiv Q)$ because ... YOLO

▶ Goal: construct a TVA $\mathcal I$ that satisfies the M-SND-C set Γ^*

▶ Goal: construct a TVA \mathcal{I} that satisfies the M-SND-C set Γ^* Suffices to construct \mathcal{I} s.t. $\mathcal{I}(\mathcal{Q}) = True$ iff $\mathcal{Q} \in \Gamma^*$, $\forall \mathcal{Q} \in SL$. Say that a wff is "clubbin'" whenever it meets this property

- ▶ Goal: construct a TVA \mathcal{I} that satisfies the M-SND-C set Γ^* Suffices to construct \mathcal{I} s.t. $\mathcal{I}(\mathcal{Q}) = True$ iff $\mathcal{Q} \in \Gamma^*$, $\forall \mathcal{Q} \in SL$. Say that a wff is "clubbin" whenever it meets this property
- ▶ Define \mathcal{I} such that $\mathcal{I}(B) = True$ iff atomic $B \in \Gamma^*$

- ▶ Goal: construct a TVA \mathcal{I} that satisfies the M-SND-C set Γ^* Suffices to construct \mathcal{I} s.t. $\mathcal{I}(\mathcal{Q}) = True$ iff $\mathcal{Q} \in \Gamma^*$, $\forall \mathcal{Q} \in SL$. Say that a wff is "clubbin'" whenever it meets this property
- ▶ Define \mathcal{I} such that $\mathcal{I}(B) = True$ iff atomic $B \in \Gamma^*$
- ▶ Base case: each atomic wff is true on \mathcal{I} iff it belongs to Γ^* (i.e. the atomics be clubbin')

- ▶ Goal: construct a TVA \mathcal{I} that satisfies the M-SND-C set Γ^* Suffices to construct \mathcal{I} s.t. $\mathcal{I}(\mathcal{Q}) = True$ iff $\mathcal{Q} \in \Gamma^*$, $\forall \mathcal{Q} \in SL$. Say that a wff is "clubbin'" whenever it meets this property
- ▶ Define \mathcal{I} such that $\mathcal{I}(B) = True$ iff atomic $B \in \Gamma^*$
- ▶ Base case: each atomic wff is true on \mathcal{I} iff it belongs to Γ^* (i.e. the atomics be clubbin')
- ► (Strong) **Induction hypothesis**: assume every SL wff with 1 to *k*-many connectives is clubbin'

- ▶ Goal: construct a TVA \mathcal{I} that satisfies the M-SND-C set Γ^* Suffices to construct \mathcal{I} s.t. $\mathcal{I}(\mathcal{Q}) = True$ iff $\mathcal{Q} \in \Gamma^*$, $\forall \mathcal{Q} \in SL$. Say that a wff is "clubbin'" whenever it meets this property
- ▶ Define \mathcal{I} such that $\mathcal{I}(B) = True$ iff atomic $B \in \Gamma^*$
- ▶ Base case: each atomic wff is true on \mathcal{I} iff it belongs to Γ^* (i.e. the atomics be clubbin')
- ► (Strong) **Induction hypothesis**: assume every SL wff with 1 to *k*-many connectives is clubbin'
- ► Induction step: show that an arbitrary SL wff with k+1-many connectives is clubbin'

► Need to show **TWO** directions!:

- ► Need to show **TWO** directions!:
- ▶ Base case: each atomic wff is true on \mathcal{I} iff it belongs to Γ^*

- ► Need to show **TWO** directions!:
- ▶ Base case: each atomic wff is true on \mathcal{I} iff it belongs to Γ^*
- ▶ Recall that we defined \mathcal{I} such that $\mathcal{I}(B) = True$ iff atomic $B \in \Gamma^*$

- ► Need to show **TWO** directions!:
- ▶ Base case: each atomic wff is true on \mathcal{I} iff it belongs to Γ^*
- ▶ Recall that we defined \mathcal{I} such that $\mathcal{I}(B) = True$ iff atomic $B \in \Gamma^*$
- ► So both directions are met by construction

- ► Need to show TWO directions!:
- ▶ Base case: each atomic wff is true on \mathcal{I} iff it belongs to Γ^*
- ▶ Recall that we defined \mathcal{I} such that $\mathcal{I}(B) = True$ iff atomic $B \in \Gamma^*$
- ► So both directions are met by construction
- ▶ We proceed to do induction using our SL induction schema: an arbitrary sentence \mathcal{P} with k+1-many connectives has one of five forms, coming from our five connectives.

▶ Case 1: \mathcal{P} has the form $\sim \mathcal{Q}$, where since \mathcal{Q} has k-connectives, it is clubbin by the IH (i.e. $\mathcal{I}(\mathcal{Q}) = 1$ if and only if $\mathcal{Q} \in \Gamma^*$)

- ▶ Case 1: \mathcal{P} has the form $\sim \mathcal{Q}$, where since \mathcal{Q} has k-connectives, it is clubbin by the IH (i.e. $\mathcal{I}(\mathcal{Q}) = 1$ if and only if $\mathcal{Q} \in \Gamma^*$)
- ► NTS: (i) (the \Rightarrow direction) if $\mathcal{I}(\mathcal{P}) = True$ then $\mathcal{P} \in \Gamma^*$ and (ii) (the \Leftarrow direction) if $\mathcal{P} \in \Gamma^*$, then $\mathcal{I}(\mathcal{P}) = True$

- ▶ Case 1: \mathcal{P} has the form $\sim \mathcal{Q}$, where since \mathcal{Q} has k-connectives, it is clubbin by the IH (i.e. $\mathcal{I}(\mathcal{Q}) = 1$ if and only if $\mathcal{Q} \in \Gamma^*$)
- NTS: (i) (the \Rightarrow direction) if $\mathcal{I}(\mathcal{P}) = True$ then $\mathcal{P} \in \Gamma^*$ and (ii) (the \Leftarrow direction) if $\mathcal{P} \in \Gamma^*$, then $\mathcal{I}(\mathcal{P}) = True$ (Alternative (ii): show contrapositive: if $\mathcal{I}(\mathcal{P}) = \emptyset$, then $\mathcal{P} \notin \Gamma^*$)

- ▶ Case 1: \mathcal{P} has the form $\sim \mathcal{Q}$, where since \mathcal{Q} has k-connectives, it is clubbin by the IH (i.e. $\mathcal{I}(\mathcal{Q}) = 1$ if and only if $\mathcal{Q} \in \Gamma^*$)
- NTS: (i) (the \Rightarrow direction) if $\mathcal{I}(\mathcal{P}) = True$ then $\mathcal{P} \in \Gamma^*$ and (ii) (the \Leftarrow direction) if $\mathcal{P} \in \Gamma^*$, then $\mathcal{I}(\mathcal{P}) = True$ (*Alternative (ii)*: show contrapositive: if $\mathcal{I}(\mathcal{P}) = \emptyset$, then $\mathcal{P} \notin \Gamma^*$)
- \Rightarrow if $\mathcal{I}(\mathcal{P})=1$, then $\mathcal{I}(\mathcal{Q})=\emptyset$. Since \mathcal{Q} is clubbin', we have $\mathcal{Q}\notin\Gamma^*$.

- ▶ Case 1: \mathcal{P} has the form $\sim \mathcal{Q}$, where since \mathcal{Q} has k-connectives, it is clubbin by the IH (i.e. $\mathcal{I}(\mathcal{Q}) = 1$ if and only if $\mathcal{Q} \in \Gamma^*$)
- NTS: (i) (the \Rightarrow direction) if $\mathcal{I}(\mathcal{P}) = True$ then $\mathcal{P} \in \Gamma^*$ and (ii) (the \Leftarrow direction) if $\mathcal{P} \in \Gamma^*$, then $\mathcal{I}(\mathcal{P}) = True$ (*Alternative (ii)*: show contrapositive: if $\mathcal{I}(\mathcal{P}) = \emptyset$, then $\mathcal{P} \notin \Gamma^*$)
- \Rightarrow if $\mathcal{I}(\mathcal{P})=1$, then $\mathcal{I}(\mathcal{Q})=\emptyset$. Since \mathcal{Q} is clubbin', we have $\mathcal{Q}\notin\Gamma^*$. By Membership lemma (a), $\sim \mathcal{Q}\in\Gamma^*$, so $\mathcal{P}\in\Gamma^*$

- ▶ Case 1: \mathcal{P} has the form $\sim \mathcal{Q}$, where since \mathcal{Q} has k-connectives, it is clubbin by the IH (i.e. $\mathcal{I}(\mathcal{Q}) = 1$ if and only if $\mathcal{Q} \in \Gamma^*$)
- NTS: (i) (the \Rightarrow direction) if $\mathcal{I}(\mathcal{P}) = True$ then $\mathcal{P} \in \Gamma^*$ and (ii) (the \Leftarrow direction) if $\mathcal{P} \in \Gamma^*$, then $\mathcal{I}(\mathcal{P}) = True$ (*Alternative (ii)*: show contrapositive: if $\mathcal{I}(\mathcal{P}) = \emptyset$, then $\mathcal{P} \notin \Gamma^*$)
- \Rightarrow if $\mathcal{I}(\mathcal{P})=1$, then $\mathcal{I}(\mathcal{Q})=\emptyset$. Since \mathcal{Q} is clubbin', we have $\mathcal{Q}\notin\Gamma^*$. By Membership lemma (a), $\sim \mathcal{Q}\in\Gamma^*$, so $\mathcal{P}\in\Gamma^*$
- \Leftarrow if $P \in \Gamma^*$, then $\sim Q \in \Gamma^*$. So by Membership lemma (a), $Q \notin \Gamma^*$.

- ▶ Case 1: \mathcal{P} has the form $\sim \mathcal{Q}$, where since \mathcal{Q} has k-connectives, it is clubbin by the IH (i.e. $\mathcal{I}(\mathcal{Q}) = 1$ if and only if $\mathcal{Q} \in \Gamma^*$)
- NTS: (i) (the \Rightarrow direction) if $\mathcal{I}(\mathcal{P}) = True$ then $\mathcal{P} \in \Gamma^*$ and (ii) (the \Leftarrow direction) if $\mathcal{P} \in \Gamma^*$, then $\mathcal{I}(\mathcal{P}) = True$ (Alternative (ii): show contrapositive: if $\mathcal{I}(\mathcal{P}) = \emptyset$, then $\mathcal{P} \notin \Gamma^*$)
- \Rightarrow if $\mathcal{I}(\mathcal{P})=1$, then $\mathcal{I}(\mathcal{Q})=\emptyset$. Since \mathcal{Q} is clubbin', we have $\mathcal{Q}\notin\Gamma^*$. By Membership lemma (a), $\sim \mathcal{Q}\in\Gamma^*$, so $\mathcal{P}\in\Gamma^*$
- \Leftarrow if $\mathcal{P} \in \Gamma^*$, then $\sim \mathcal{Q} \in \Gamma^*$. So by Membership lemma (a), $\mathcal{Q} \notin \Gamma^*$. Since \mathcal{Q} is clubbin', we have $\mathcal{I}(\mathcal{Q}) = \emptyset$.

- ▶ Case 1: \mathcal{P} has the form $\sim \mathcal{Q}$, where since \mathcal{Q} has k-connectives, it is clubbin by the IH (i.e. $\mathcal{I}(\mathcal{Q}) = 1$ if and only if $\mathcal{Q} \in \Gamma^*$)
- NTS: (i) (the \Rightarrow direction) if $\mathcal{I}(\mathcal{P}) = True$ then $\mathcal{P} \in \Gamma^*$ and (ii) (the \Leftarrow direction) if $\mathcal{P} \in \Gamma^*$, then $\mathcal{I}(\mathcal{P}) = True$ (Alternative (ii): show contrapositive: if $\mathcal{I}(\mathcal{P}) = \emptyset$, then $\mathcal{P} \notin \Gamma^*$)
- \Rightarrow if $\mathcal{I}(\mathcal{P})=1$, then $\mathcal{I}(\mathcal{Q})=\emptyset$. Since \mathcal{Q} is clubbin', we have $\mathcal{Q}\notin\Gamma^*$. By Membership lemma (a), $\sim\mathcal{Q}\in\Gamma^*$, so $\mathcal{P}\in\Gamma^*$
- \Leftarrow if $\mathcal{P} \in \Gamma^*$, then $\sim \mathcal{Q} \in \Gamma^*$. So by Membership lemma (a), $\mathcal{Q} \notin \Gamma^*$. Since \mathcal{Q} is clubbin', we have $\mathcal{I}(\mathcal{Q}) = \emptyset$. So by the truth conditions for negation, $\mathcal{I}(\mathcal{P}) = 1$

▶ Need to show: \mathcal{P} be clubbin', i.e. $\mathcal{I}(\mathcal{P}) = True$ iff $\mathcal{P} \in \Gamma^*$, where \mathcal{P} is arbitrary SL wff with k+1-many connectives

- ▶ Need to show: \mathcal{P} be clubbin', i.e. $\mathcal{I}(\mathcal{P}) = True$ iff $\mathcal{P} \in \Gamma^*$, where \mathcal{P} is arbitrary SL wff with k+1-many connectives
- ► Induction hypothesis: assume every SL wff with 1 to k-many connectives is clubbin'

- ▶ Need to show: \mathcal{P} be clubbin', i.e. $\mathcal{I}(\mathcal{P}) = True$ iff $\mathcal{P} \in \Gamma^*$, where \mathcal{P} is arbitrary SL wff with k+1-many connectives
- ► Induction hypothesis: assume every SL wff with 1 to k-many connectives is clubbin'
- ▶ Case 2: \mathcal{P} has the form $\mathcal{Q} \& \mathcal{R}$

- ▶ Need to show: \mathcal{P} be clubbin', i.e. $\mathcal{I}(\mathcal{P}) = True$ iff $\mathcal{P} \in \Gamma^*$, where \mathcal{P} is arbitrary SL wff with k+1-many connectives
- ► Induction hypothesis: assume every SL wff with 1 to k-many connectives is clubbin'
- ▶ Case 2: \mathcal{P} has the form $\mathcal{Q} \& \mathcal{R}$
- ▶ Case 3 is PS12 #3: \mathcal{P} has the form $\mathcal{Q} \vee \mathcal{R}$

- ▶ Need to show: \mathcal{P} be clubbin', i.e. $\mathcal{I}(\mathcal{P}) = True$ iff $\mathcal{P} \in \Gamma^*$, where \mathcal{P} is arbitrary SL wff with k+1-many connectives
- ► Induction hypothesis: assume every SL wff with 1 to k-many connectives is clubbin'
- ▶ Case 2: \mathcal{P} has the form $\mathcal{Q} \& \mathcal{R}$
- ▶ Case 3 is PS12 #3: \mathcal{P} has the form $\mathcal{Q} \vee \mathcal{R}$
- ► Case 4: \mathcal{P} has the form $\mathcal{Q} \supset \mathcal{R}$ (see book p.260!)

- ▶ Need to show: \mathcal{P} be clubbin', i.e. $\mathcal{I}(\mathcal{P}) = True$ iff $\mathcal{P} \in \Gamma^*$, where \mathcal{P} is arbitrary SL wff with k+1-many connectives
- ► Induction hypothesis: assume every SL wff with 1 to k-many connectives is clubbin'
- ▶ Case 2: \mathcal{P} has the form $\mathcal{Q} \& \mathcal{R}$
- ▶ Case 3 is PS12 #3: \mathcal{P} has the form $\mathcal{Q} \vee \mathcal{R}$
- ▶ Case 4: \mathcal{P} has the form $\mathcal{Q} \supset \mathcal{R}$ (see book p.260!)
- ▶ Case 5: \mathcal{P} has the form $\mathcal{Q} \equiv \mathcal{R}$ (we'll do this case if and only if we accomplish all other goals in our lives)

▶ If we actually make it this far, give hints on PS12 completeness question $(R \lor Q)!$ or do Case (d), which is most analogous

- ▶ If we actually make it this far, give hints on PS12 completeness question $(R \lor Q)!$ or do Case (d), which is most analogous
- ► If the people don't want these hints, then clearly they're already complete!

- ▶ If we actually make it this far, give hints on PS12 completeness question $(R \lor Q)!$ or do Case (d), which is most analogous
- ► If the people don't want these hints, then clearly they're already complete!
- "The customer is always right!"

- ▶ If we actually make it this far, give hints on PS12 completeness question $(R \lor Q)!$ or do Case (d), which is most analogous
- ► If the people don't want these hints, then clearly they're already complete!
- "The customer is always right!"
- ► (Schematize this sentence in quantifier logic)