Assignment 3

by Neharika Jali

Submission date: 01-Sep-2018 01:35AM (UTC+0800)

Submission ID: 995498027

File name: Turnitin_Report_A3.pdf (513.09K)

Word count: 1066 Character count: 5750

Assignment 3_Turnitin Report

Sucheta Ravikanti 160040100 Swadha Sanghvi 16D070037 Neharika Jali 160040101

```
[output, input] = myMeanShiftSegmentation('../data/baboonColor.png', 0.5,
0.1, 10, 30, 250);
subplot(1, 2, 1), imshow((input)); title('Input Image');
subplot(1, 2, 2), imshow(mat2gray(output)); title('Segmented Image');
% [output1, input] = myMeanShiftSegmentation('../data/baboonColor.png',
0.5, 0.1, 3, 30, 50);
% [output2, input] = myMeanShiftSegmentation('../data/baboonColor.png',
0.5, 0.1, 6, 30, 100);
% [output3, input] = myMeanShiftSegmentation('../data/baboonColor.png',
0.5, 0.1, 10, 30, 150);
% [output4, input] = myMeanShiftSegmentation('../data/baboonColor.png',
0.5, 0.1, 15, 30, 250);
% subplot(2, 2, 1), imshow(mat2gray(output1)); title('Sigma space = 3');
% subplot(2, 2, 2), imshow(mat2gray(output2)); title('Sigma space = 6');
% subplot(2, 2, 3), imshow(mat2gray(output3)); title('Sigma space = 10');
% subplot(2, 2, 4), imshow(mat2gray(output4)); title('Sigma space = 15');
function [segmented image, input image] =
myMeanShiftSegmentation(path input, resizing factor, sigma color,
sigma_space, no_of_iter, no_of_nbs)
    input image = im2double(imread(path input));
    sigma = 0.5;
    smoothened image = imfilter(input image, fspecial('gaussian', 6*sigma,
sigma));
    resized image = imresize(smoothened image, resizing factor);
    [height, width, channels] = size(resized image);
    intensities image = reshape(resized image, [height*width, 3]);
    width_vector = reshape(repmat([1:width], height, 1), width*height, 1);
    height vector = repmat(transpose([1:height]), width, 1);
    vector = [intensities_image/sigma_color height_vector/sigma_space
width_vector/sigma_space];
    reference vector = vector;
    Z = vector;
    for i = 1:no of iter
        disp(i);
```

```
[Idx, D] = knnsearch(reference vector, reference vector, 'k',
no of nbs);
        for j = 1:height*width
            weights = \exp(-(D(j, :).^2));
            weights = transpose(weights);
            weights multiply = repmat(weights, 1, 3);
            denominator = sum(weights);
            numerator =
sum(weights_multiply.*reference_vector(uint16(Idx(j, :)), 1:3));
            Z(j, 1:3) = numerator/denominator;
        reference vector = Z;
    end
    segmented_image = zeros(height, width, channels);
    for k = 1:height*width
        i = uint16(reference vector(k, 4)*sigma space);
        j = uint16(reference vector(k, 5)*sigma space);
        segmented_image(i, j, :) = reference_vector(k, 1:3);
    end
    segmented image = imresize(segmented image, 2);
end
```

Mean Shift Segmentation

The given image has the given input image and the mean shift segmented image. It is clearly seen that the pixel values have converged to a mean intensity value and the segments can be seen clearly in the segmented image.

The parameters used to attain this image are given as below:

- Bandwidth for color or intensity (sigma_color) = 0.1
- Bandwidth for space (sigma_space) = 10
- Number of iterations = 30
- Number of neighbours in knnsearch = 200

On tinkering with the parameters, it is observed that

- Segments formed decrease on increasing the bandwidth parameter of color intensity
- The image becomes smooth in segments on increasing the spatial bandwidth parameter
- Increasing the number of iterations shows better convergence

The above observations can be proved using the results of the simulations below: Note that the other parameters are those from the best segmented image. The changed parameters are written for each image.

image has fine	en that the segments are decreasing on increasing the sigma colour value. The first e segments due to a smaller value of sigma space which allows a finer window for onvergence and better colour mixing.
Increasin	ng the bandwidth parameter of color intensity:

It is observed that the numbandwidth of space increa	ber of segments increase and ses.	are very fine in spatial do	omain as the
	sigma space of bar	ndwidth of space	:

As clearly seen, on increasing the number of iterations, the segments are formed better and there is a larger convergence seen due to the increased number of steps in gradient ascent and better convergence to the mean.

Increasing the number of iterations:

```
load('boat.mat')
input = im2double(imageOrig);
input = input./255.0;
%imtool(input)
EigenImage 1 = zeros(size(input));
EigenImage_2 = zeros(size(input));
min(min(input))
[dy, dx] = meshgrid(-1:1, -1:1);
Size = size(input);
vector = zeros(Size(1,1), Size(1,2), 15);
% parameters
sig = 0.01;
sigma = 3;
k = 0.03;
threshold = 0.015;
x = 3;
%%%% derivative matrix Ix and Iy
input = imgaussfilt(input, sig);
%imtool(input)
I_x = conv2(input, dx, 'same');
I_y = conv2(input, dy, 'same');
I_x2 = I_x.*I_x;
l_y2 = l_y.*l_y;
l_xy = l_x.*l_y;
%%%%% weight convolution matrix
dim = max(1, 5);
m = dim; n = dim;
[h1, h2] = meshgrid(-(m-1)/2 : (m-1)/2, -(n-1)/2 : (n-1)/2);
v = \exp(-(1.0)*(h1.^2 + h2.^2)/(2*sigma^2));
sum_weight = sum(sum(v));
v = v./sum_weight;
```

```
% structure tensor
I_X2 = conv2(I_x2, v, 'same');
I_Y2 = conv2(I_y2, v, 'same');
I_XY = conv2(I_xy, v, 'same');
% harris corner measure
for i = 1:Size(1,1)
   for j = 1:Size(1,2)
      C = [1, \overline{L}X2(i,j) + \overline{L}Y2(i,j), (\overline{L}X2(i,j))^*(\overline{L}Y2(i,j)) - (\overline{L}XY(i,j).^2)];
      Roots = roots(C);
     EigenImage_1(i,j) = min(Roots);
     EigenImage_2(i,j) = max(Roots);
   end
end
R = [X2.*]Y2 - [XY.*]XY - k*([X2.^2 + [Y2.^2 + 2*]X2.*]Y2);
output_Image = ordfilt2(R, x.^2, true(x));
final_image = (R == output_Image) & (R > threshold);
[row,col] = find(final_image);
figure, colormap(jet(10)), imshow(mat2gray(input)), hold on,
plot(col, row, 'r^', 'MarkerSize', 3.5)
imtool(mat2gray(final_image))
imtool((l_x))
imtool(l_y)
imtool(mat2gray(EigenImage_1))
imtool(mat2gray(EigenImage_2))
histogram(R)
```

Harris Corner Detection

Sucheta Ravikanti (160040100) Swadha Sanghvi (16D070037) Neharika Jali (160040101) The following two image represents the derivative along the y axis or the vertical derivative and the horizontal or the derivative along the x-axis of the given image respectively.

Vertical or derivative along y-axis:

Derivative Y axis

Horizontal or derivative along x-axis:

Derivative X axis

Image of the smaller and greater eigenvalue of the structure tensor evaluated at each pixel respectively:

Note: Please check the folder corresponding to the output Images for clearer images

Harris Cornerness Measure:

Histogram of the Harris Cornerness measure :

Post thresholding Image of the harris corner detection output:

Final Image with corners marked

Parameters used:

- Window size = 5X5 (Window deciding the weights of the neighbours)
- K = 0.03 (used in calculating the harris corner measure)
- Sigma_1 = 3 (Variance for the gaussian filter for smoothing the derivatives)
- Sigma_2 = 0.01 (Variance for the gaussian filter for smoothing the input image)

ORIGINALITY REPORT

1 %
SIMILARITY INDEX

5%

INTERNET SOURCES

11%

PUBLICATIONS

13%

STUDENT PAPERS

PRIMARY SOURCES

Submitted to University College London
Student Paper

3%

Submitted to Rochester Institute of Technology
Student Paper

3%

Submitted to Higher Education Commission Pakistan

3%

Student Paper

Internet Source

www.doria.fi

2%

Submitted to University of Central Lancashire
Student Paper

2%

Submitted to Indian Institute of Technology, Bombay

2%

Student Paper

Sofia Aberg. "An image warping approach to spatio-temporal modelling", Environmetrics, 12/2005

1%

Publication

Domen Močnik, Bulat Ibragimov, Lei Xing,

8	Tomaž glands f	Strojan, Bo Vrtovec. "S from registe Medica, 20	egmentation	on of par	otid	1%
9	Submitt Student Pap	ted to Unive	ersity of So	uthern C	alifornia	1%
10	Markov	cca. "Recon Conditions sion Model" 005	in the Clas	ssical Lin		1%
	le quotes le bibliography	Off Off	Exclu	de matches	Off	

Assignment 3

PAGE 1
PAGE 2
PAGE 3
PAGE 4
PAGE 5
PAGE 6
PAGE 7
PAGE 8
PAGE 9
PAGE 10
PAGE 11
PAGE 12
PAGE 13
PAGE 14