Regresión logística de Bridge y Lasso

```
set.seed(123456789)
```

Primero se cargan las librerías

```
library(ggplot2)
library(ggpubr)
library(dplyr)

Attaching package: 'dplyr'
The following objects are masked from 'package:stats':
   filter, lag

The following objects are masked from 'package:base':
   intersect, setdiff, setequal, union

library(glmnet) ## regresiones logisitcas

Loading required package: Matrix

Loaded glmnet 4.1-7
```

```
library(caret) ### bayes y knn
```

Loading required package: lattice

```
library(e1071) ## bayes
```

Cargamos los datos

```
datos <- read.table("./yeast.data",header = F)[,-1]</pre>
```

Creamos las funciones que vamos a necesitar, es decir las funciones de transformación

```
min.max.mean <- function(X) apply(X,2,function(x) (x-mean(x))/(max(x)-min(x)))
min.max.median <- function(X) apply(X,2,function(x) (x-median(x))/(max(x)-min(x)))
min.max <- function(X) apply(X,2,function(x) (x-min(x))/(max(x)-min(x)))
zscore <- function(X) apply(X,2,function(x) (x-mean(x))/sd(x))
12 <- function(X) apply(X,2,function(x) x/sqrt(sum(x^2)))</pre>
```

Para hacer las transformaciones, solamente necesitamos las variables numéricas.

```
datos <- as.data.frame(datos)
datos.numericos <- datos[, which(unlist(lapply(datos, is.numeric)))]
clase <- datos$V10 <- as.factor(datos$V10)
colnames(datos.numericos) <- paste0("Var", rep(1:8))</pre>
```

procedemos a crear una lista con todas las transformaciones

Descriptiva Gráfica

Al ser demasiadas variables, podemos realizar un melt

```
lista_graficos <- vector("list",length=length(datos.lista))
datos.melt <- lapply(datos.lista,reshape2::melt)

Using clase as id variables
Using clase as id variables</pre>
```

Podemos ver la cabecera de alguna transfomacion para ver el nombre nuevo de las variables

```
head(datos.melt$zscore)
```

```
clase variable
                      value
  \mathtt{MIT}
           Var1 0.58178524
1
2
  MIT
           Var1 -0.51071851
3 MIT
           Var1 1.01878674
  NUC
           Var1 0.58178524
5
  MIT
           Var1 -0.58355209
  CYT
           Var1 0.07195016
```

```
for(1 in 1:length(datos.melt)){
    X <- datos.melt[[1]]
    nombre <- names(datos.melt)[1]
    lista_graficos[[1]] <- ggplot(X,aes(y=value,fill=clase))+geom_boxplot()+ggtitle(nombre)+
}
names(lista_graficos) <- paste0("plot",1:length(datos.lista))</pre>
```


lista_graficos\$plot4

Así por ejemplo la normalización min-max es la mejor, puesto que no tenemos outliers Otra forma de ver la transfomración es mediante gráficos de densidad

```
for(l in 1:length(datos.melt)){
    X <- datos.melt[[1]]
    nombre <- names(datos.melt)[1]
    lista_graficos[[1]] <- ggplot(X,aes(x=value))+geom_density()+ggtitle(nombre)+xlab("")+yl
}
names(lista_graficos) <- paste0("plot",1:length(datos.lista))
lista_graficos$plot1</pre>
```


lista_graficos\$plot4

media

lista_graficos\$plot5

mediana

Sin embargo, al ver la densidad, no tenemos una transformacion uniforme.

corrplot::corrplot(cor(datos.numericos))

corrplot::corrplot(cor(datos.lista\$media[,-ncol(datos)]))

Partición de datos

para conjunto de datos podemos realizar el split

```
set.seed(123456789)
n <- nrow(datos)
idx <- sample(1:n,n*0.7)
datos.train.lista <- lapply(datos.lista, function(x) x[idx,])
datos.test.lista <- lapply(datos.lista, function(x) x[-idx,])</pre>
```

Ejemplo regresión logística

```
https://rstudio-pubs-static.s3.amazonaws.com/38437_18a39a6487134d67b5f5e0d47221ec8d.html https://rpubs.com/jkylearmstrong/logit_w_caret alpha=1 es lasso y 0 es ridge
```

```
accuracy[1] <- confusionMatrix(datos.test.lista$raw$clase,logisita.pred[[1]])$overall[1]
}
names(accuracy) <- names(datos.lista)

### Este valor lo tienen que guardar solamente haremos por accuracy y kappa
### tenemos que mirar el objeto matconf

set.seed(123456789)

### para conjunto de datos podemos realizar el split
### lasso 1 ridge 0
datos.train.lista <- lapply(datos.lista, function(x) x[idx,])
datos.test.lista <- lapply(datos.lista, function(x) x[-idx,])

cvfit_lasso <- cv.glmnet(as.matrix(datos.train.lista$raw[,-ncol(datos)]),as.numeric(datos.</pre>
```

Regresión logística de Ridge

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one

```
multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
```

```
ridge.pred <- vector("list",length = length(ridge.lista))
for(1 in 1:length(ridge.lista)){
    ridge.pred[[1]] <- predict(ridge.lista[[1]],datos.test.lista[[1]])
}
names(ridge.pred) <- names(ridge.lista)
    ridge.accuracy <- vector("numeric",length = length(datos.lista))

for(1 in 1:length(ridge.lista)){
    ridge.accuracy[1] <- confusionMatrix(datos.test.lista$raw$clase,ridge.pred[[1]])$overall
}
names(ridge.accuracy) <- names(datos.lista)
### Este valor lo tienen que guardar solamente haremos por accuracy y kappa
### tenemos que mirar el objeto matconf</pre>
```

Regresión de Lasso

```
set.seed(123456789)
  trControl <- trainControl(method = 'cv',</pre>
                            number = 5
  myfnlasso <- function(x) train(clase ~ ., data = x, method = "glmnet", trControl = trContr</pre>
  lasso.lista <- lapply(datos.train.lista,myfnlasso)</pre>
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one
multinomial or binomial class has fewer than 8 observations; dangerous ground
```

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning: from glmnet C++ code (error code -22); Convergence for 22th lambda value not reached after maxit=100000 iterations; solutions for larger lambdas returned

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

Warning in lognet(xd, is.sparse, ix, jx, y, weights, offset, alpha, nobs, : one multinomial or binomial class has fewer than 8 observations; dangerous ground

```
lasso.pred <- vector("list",length = length(lasso.lista))
for(l in 1:length(lasso.lista)){</pre>
```

```
lasso.pred[[1]] <- predict(lasso.lista[[1]],datos.test.lista[[1]])

names(lasso.pred) <- names(lasso.lista)
lasso.accuracy <- vector("numeric",length = length(datos.lista))

for(l in 1:length(lasso.lista)){
   lasso.accuracy[l] <- confusionMatrix(datos.test.lista$raw$clase,lasso.pred[[1]])$overall
}

names(lasso.accuracy) <- names(datos.lista)

### Este valor lo tienen que guardar solamente haremos por accuracy y kappa
### tenemos que mirar el objeto matconf</pre>
```

Knn

```
knn.accuracy <- vector("numeric",length = length(datos.lista))

for(1 in 1:length(knn.lista)){
   knn.accuracy[1] <- confusionMatrix(datos.test.lista$raw$clase,knn.pred[[1]])$overall[1]
}

names(knn.accuracy) <- names(datos.lista)

### Este valor lo tienen que guardar solamente haremos por accuracy y kappa
### tenemos que mirar el objeto matconf</pre>
```

Bayes

```
names(bayes.accuracy) <- names(datos.lista)

### Este valor lo tienen que guardar solamente haremos por accuracy y kappa
### tenemos que mirar el objeto matconf</pre>
```

Matriz

```
m <- cbind(accuracy,ridge.accuracy,lasso.accuracy,knn.accuracy,bayes.accuracy)
print(m)</pre>
```

	accuracy	ridge.accuracy	lasso.accuracy	knn.accuracy	bayes.accuracy
raw	0.5919283	0.5852018	0.5986547	0.5941704	0.4080717
zscore	0.5919283	0.5919283	0.5986547	0.5919283	0.5336323
12	0.5964126	0.5919283	0.5964126	0.5896861	0.4596413
media	0.5941704	0.5941704	0.5941704	0.5964126	0.5336323
mediana	0.5941704	0.5896861	0.5964126	0.5784753	0.4125561
min max	0.5941704	0.5919283	0.5986547	0.5964126	0.4125561