Lab 03. Optimization

Introduction to Computer Vision, Lab 03.

Today

Gauss-Newton method

Approximate second derivative

$$x = \arg\min_{x} \| R(x) \|_2^2$$

Approximate R

$$||R(x_k + \Delta x)||_2^2 \approx ||R(x_k) + J_R \Delta x||_2^2$$

= $||R(x_k)||_2^2 + 2R(x_k)^T J_R \Delta x + \Delta x^T J_R^T J_R \Delta x$

– Optimal Δx satisfies

$$J_R^T J_R \Delta x + J_R^T R(x_k) = 0$$

Optimal direction

$$\Delta x = -(J_R^T J_R)^{-1} J_R^T R(x_k)$$

Optimal direction

$$\Delta x = -(J_R^T J_R)^{-1} J_R^T R(x_k)$$
$$= -(J_R^T J_R)^{-1} J_F^T$$

- Compared with Newton
 - Newton step: $\Delta x = -H_F^{-1}J_F^T$
 - Here use to $J_R^T J_R$ approximate Hessian H_F

- Advantage
 - No need to compute Hessian
 - Fast to converge
- Disadvantage
 - If $J_R^T J_R$ is singular, the algorithm becomes unstable

$$J(x)^{T} J(x) \Delta x = -J(x)^{T} R(x)$$
$$H \Delta x = g$$

- 1. 给定初始值 x_0 。
- 2. 对于第 k 次迭代,求出当前的雅可比矩阵 $J(x_k)$ 和误差 $f(x_k)$ 。
- 3. 求解增量方程: $H\Delta x_k = g$.
- 4. 若 Δx_k 足够小,则停止。否则,令 $x_{k+1} = x_k + \Delta x_k$,返回 2.

Fitting an ellipse

- We provide 753 3d points with noise.
- We want to fit these points using ellipse function.
- Ellipse function is:

$$\frac{x^2}{A^2} + \frac{y^2}{B^2} + \frac{z^2}{C^2} = 1$$

Fitting an ellipse

- You should solve this with Gauss-Newton method
- Let's see jupyter notebook now.
- If the provided functions restrict you, feel free to implement your own pipeline. But you should add clear comments to your own pipeline.

Questions?