Problem Set #1

Quiz, 5 questions

1 point

1

We are given as input a set of n requests (e.g., for the use of an auditorium), with a known start time s_i and finish time t_i for each request i. Assume that all start and finish times are distinct. Two requests conflict if they overlap in time --- if one of them starts between the start and finish times of the other. Our goal is to select a maximum-cardinality subset of the given requests that contains no conflicts. (For example, given three requests consuming the intervals [0,3], [2,5], and [4,7], we want to return the first and third requests.) We aim to design a greedy algorithm for this problem with the following form: At each iteration we select a new request i, including it in the solution-so-far and deleting from future consideration all requests that conflict with i.

Which of the following greedy rules is guaranteed to always compute an optimal solution?

At each iteration, pick the remaining request with the earliest finish time.
At each iteration, pick the remaining request with the fewest number of conflicts with other remaining requests (breaking ties arbitrarily).
At each iteration, pick the remaining request which requires the least time (i.e., has the smallest value of $t_i - s_i$) (breaking ties

At each iteration, pick the remaining request with the earliest start time.

1 point

2.

arbitrarily).

We are given as input a set of n jobs, where job j has a processing time p_j and a deadline d_j . Recall the definition of $completion\ times\ C_j$ from the Problem Set to lectures. Given a schedule (i.e., an ordering of the jobs), we define the lateness l_j of job j as the amount of time C_j-d_j after its deadline that the job completes, or as 0 if $C_j \leq d_j$. Our goal is to minimize the maximum lateness, $\max_j l_j$.

Which of the following greedy rules produces an ordering that minimizes the maximum lateness? You can assume that all processing times and deadlines are distinct.

None of the other answers are correct.
Schedule the requests in increasing order of processing time \boldsymbol{p}_j
Schedule the requests in increasing order of the product $d_j \cdot p_j$
Schedule the requests in increasing order of deadline d_{j}

1 point

3.

In this problem you are given as input a graph T=(V,E) that is a tree (that is, T is undirected, connected, and acyclic). A perfect matching of T is a $Problem\ Sets$ that $F\subset E$ of edges such that every vertex $v\in V$ is the endpoint of

Quiz, 5 questions

exactly one edge of F. Equivalently, F matches each vertex of T with exactly one other vertex of T. For example, a path graph has a perfect matching if and only if it has an even number of vertices.

Consider the following two algorithms that attempt to decide whether or not a given tree has a perfect matching. The degree of a vertex in a graph is the number of edges incident to it. (The two algorithms differ only in the choice of v in line 5.)

Algorithm A:

```
1 While T has at least one vertex:
2    If T has no edges:
3     halt and output "T has no perfect matching."
4    Else:
5      Let v be a vertex of T with maximum degree.
6      Choose an arbitrary edge e incident to v.
7      Delete e and its two endpoints from T.
8    [end of while loop]
9    Halt and output "T has a perfect matching."
```

Algorithm B:

```
1 While T has at least one vertex:
2    If T has no edges:
3     halt and output "T has no perfect matching."
4    Else:
5      Let v be a vertex of T with minimum non-zero degree.
6      Choose an arbitrary edge e incident to v.
7      Delete e and its two endpoints from T.
8    [end of while loop]
9    Halt and output "T has a perfect matching."
```

Is either algorithm correct?

Algorithm B always correctly determines whether or not a given tree graph has a perfect matching; algorithm A does not.
Neither algorithm always correctly determines whether or not a given tree graph has a perfect matching.
Algorithm A always correctly determines whether or not a given tree graph has a perfect matching; algorithm B does not.
Both algorithms always correctly determine whether or not a given tree graph has a perfect matching.

1 point 4.

		der an undirected graph $G=(V,E)$ where every edge $e\in E$ has a cost $c_e.$ Assume that all edge costs are positive and distinct. Let T be a
Quiz, 5 questions	minim vertex	um spanning tree of G and P a shortest path from the vertex s to the t . Now suppose that the cost of every edge e of G is increased by 1 ecomes c_e+1 . Call this new graph G' . Which of the following is true
		T may not be a minimum spanning tree but P is always a shortest $s\hbox{-} t$ path.
		T may not be a minimum spanning tree and P may not be a shortest $s-t$ path.
		T is always a minimum spanning tree and P is always a shortest $s\hbox{-} t$ path.
		T must be a minimum spanning tree but P may not be a shortest $s\hbox{-} t$ path.
	a conn	se T is a minimum spanning tree of the connected graph $G.$ Let H be nected induced subgraph of $G.$ (I.e., H is obtained from G by taking
	endpo about	subset $S\subseteq V$ of vertices, and taking all edges of E that have both ints in S . Also, assume H is connected.) Which of the following is true the edges of T that lie in H ? You can assume that edge costs are it, if you wish. [Choose the strongest true statement.]
		For every ${\cal G}$ and ${\cal H}$, these edges form a spanning tree (but not necessary minimum-cost) of ${\cal H}$
		For every G and H and spanning tree T_H of H , at least one of these edges is missing from T_H
		For every ${\cal G}$ and ${\cal H}$, these edges form a minimum spanning tree of ${\cal H}$
		For every ${\cal G}$ and ${\cal H}$, these edges are contained in some minimum spanning tree of ${\cal H}$

4/20/2018	Coursera Online Courses From Top Universities. Join for Free Coursera			
Problem Set #	I, David Bai , understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.			
Quiz, 5 questions	Learn more about Coursera's Honor Code			
	Submit Quiz			