

Numerical Optimization

Robotics and Intelligent Systems MAE 345, Princeton University, 2015

- Gradient search
- Gradient-free search
 - Grid-based search
 - Random search
 - Downhill simplex method
- Monte Carlo evaluation
- Simulated annealing
- Genetic algorithms
- Particle swarm optimization

Copyright 2015 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/MAE345.html

Numerical Optimization

- Previous examples with simple cost function, J, could be evaluated analytically
- What if J is too complicated to find an analytical solution for the minimum?
- ... or J has multiple minima?
- Use numerical optimization to find local and/or global solutions

Two Approaches to Numerical Minimization

1) Slope and curvature of surface

- a) Evaluate gradient , $\partial J/\partial u$, and search for zero
- b) Evaluate Hessian, $\partial^2 J/\partial u^2$, and search for positive value

$$\left(\frac{\partial J}{\partial \mathbf{u}}\right)_{o} = \frac{\partial J}{\partial \mathbf{u}}\Big|_{\mathbf{u}=\mathbf{u}_{0}} = starting \ guess$$

$$\left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n} = \left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n-1} + \Delta \left(\frac{\partial J}{\partial \mathbf{u}}\right)_{n} = \frac{\partial J}{\partial \mathbf{u}}\Big|_{\mathbf{u}=\mathbf{u}_{n}} such \ that \quad \left|\frac{\partial J}{\partial \mathbf{u}}\right|_{n} < \left|\frac{\partial J}{\partial \mathbf{u}}\right|_{n-1}$$

... until gradient is close enough to zero

2) Evaluate cost, J, and search for smallest value

$$J_o = J(\mathbf{u}_o) = starting \ guess$$

$$J_1 = J_o + \Delta J_1(\mathbf{u}_o + \Delta \mathbf{u}_1) \ such \ that \quad J_1 < J_o$$

$$J_2 = J_1 + \Delta J_2(\mathbf{u}_1 + \Delta \mathbf{u}_2) \ such \ that \quad J_2 < J_1$$

Stop when difference between J_n and J_{n-1} is negligible

3

Gradient/Hessian Search to Minimize a Quadratic Function

Cost function, gradient, and Hessian matrix

$$J = \frac{1}{2} (\mathbf{u} - \mathbf{u}^*)^T \mathbf{R} (\mathbf{u} - \mathbf{u}^*), \quad \mathbf{R} > \mathbf{0}$$

$$= \frac{1}{2} (\mathbf{u}^T \mathbf{R} \mathbf{u} - \mathbf{u}^T \mathbf{R} \mathbf{u}^* - \mathbf{u}^{*T} \mathbf{R} \mathbf{u} + \mathbf{u}^{*T} \mathbf{R} \mathbf{u}^*)$$

$$\frac{\partial J}{\partial \mathbf{u}} = (\mathbf{u} - \mathbf{u}^*)^T \mathbf{R} = \mathbf{0} \text{ when } \mathbf{u} = \mathbf{u}^*$$

$$\frac{\partial^2 J}{\partial \mathbf{u}^2} = \mathbf{R} = \text{symmetric constant} > \mathbf{0}$$

Guess a starting value of u, u_o

$$\left| \frac{\partial J}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}_o} = (\mathbf{u}_o - \mathbf{u}^*)^T \mathbf{R} = (\mathbf{u}_o - \mathbf{u}^*)^T \frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}_o}$$
$$(\mathbf{u}_o - \mathbf{u}^*)^T = \frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_o} \mathbf{R}^{-1} \quad (row)$$

Solve for u*

$$\mathbf{u}^* = \mathbf{u}_o - \mathbf{R}^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_o} \right]^T \quad (column)$$

4

Optimal Value of Quadratic Function Found in a One Step

$$\mathbf{u}^* = \mathbf{u}_o - \mathbf{R}^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_o} \right]^T$$

$$= \mathbf{u}_o - \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}_o} \right]^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_o} \right]^T$$

- Gradient establishes general search direction
- Hessian fine-tunes direction and tells exactly how far to go

5

Numerical Example

Cost function and derivatives

$$J = \frac{1}{2} \left\{ \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{pmatrix} 1 \\ 3 \end{bmatrix} \right]^T \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{pmatrix} 1 \\ 3 \end{bmatrix} \right\}$$
$$\left(\frac{\partial J}{\partial \mathbf{u}} \right)^T = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} - \begin{pmatrix} 1 \\ 3 \end{bmatrix} \right]^T \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}; \quad \mathbf{R} = \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}$$

First guess at optimal control

· Derivatives at starting point

$$\begin{vmatrix} \frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_0} = \begin{bmatrix} \begin{pmatrix} 4 \\ 7 \end{pmatrix} - \begin{pmatrix} 1 \\ 3 \end{bmatrix} \end{bmatrix}^T \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix} = \begin{pmatrix} 11 \\ 42 \end{pmatrix}$$

$$\mathbf{R} = \begin{bmatrix} 1 & 2 \\ 2 & 9 \end{bmatrix}$$

 Solution from starting point

$$\mathbf{u}^* = \mathbf{u}_o - \mathbf{R}^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \bigg|_{\mathbf{u} = \mathbf{u}_o} \right]^T$$

$$\mathbf{u}^* = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}^* = \begin{pmatrix} 4 \\ 7 \end{pmatrix} - \begin{bmatrix} 9/5 & -2/5 \\ -2/5 & 1/5 \end{bmatrix} \begin{pmatrix} 11 \\ 42 \end{pmatrix}$$
$$= \begin{pmatrix} 4 \\ 7 \end{pmatrix} - \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

6

Newton-Raphson Iteration

- Many cost functions are not quadratic
- However, the surface is well-approximated by a quadratic in the vicinity of the optimum, u*

$$J(\mathbf{u}^* + \Delta \mathbf{u}) \approx J(\mathbf{u}^*) + \Delta J(\mathbf{u}^*) + \Delta^2 J(\mathbf{u}^*) + \dots$$
$$\Delta J(\mathbf{u}^*) = \Delta \mathbf{u}^T \frac{\partial J}{\partial \mathbf{u}}\Big|_{\mathbf{u} = \mathbf{u}^*} = 0$$
$$\Delta^2 J(\mathbf{u}^*) = \Delta \mathbf{u}^T \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}^*} \right] \Delta \mathbf{u} \ge 0$$

Optimal solution requires multiple steps

7

Newton-Raphson Iteration

Newton-Raphson algorithm is an iterative search using both the gradient and the Hessian matrix

Difficulties with Newton-Raphson Iteration

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \Big|_{\mathbf{u} = \mathbf{u}_k} \right]^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_k} \right]^T$$

- · Good when close to the optimum, but ...
- Hessian matrix (i.e., the curvature) may be
 - Hard to estimate, e.g., large effects of small errors
 - Locally misleading, e.g., wrong curvature
- Gradient searches focus on local minima

c

Steepest-Descent Algorithm Multiplies Gradient by a Scalar Constant

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \frac{\varepsilon}{\varepsilon} \left[\frac{\partial J}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_k} \right]^T$$

- Replace Hessian matrix by a scalar constant
- Gradient is orthogonal to equal-cost contours

Choice of Steepest- Descent Constant

If gain is too small Convergence is slow

If gain is too large Convergence oscillates or may fail

Solution: Make gain adaptive

11

Optimal Steepest-Descent Constant

- Use optimal gain on each iteration
- Find optimal step size by evaluating cost, J, for intermediate solutions (with same dJ/du)
- Adjustment rule (partial) for
 - Starting estimate, J_o
 - 1st estimate, J_1 , using ϵ
 - 2^{nd} estimate, J_2 , using 2ε
 - If $J_2 > J_1$
 - Quadratic fit through 3 points to find best ε and use for next iteration

- 3rd estimate using 4ε
- · etc.

Gradient Search Issues

Steepest Descent

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \varepsilon \left[\left. \frac{\partial J}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}_k} \right]^T$$

Newton Raphson

$$\mathbf{u}_{k+1} = \mathbf{u}_k - \left[\frac{\partial^2 J}{\partial \mathbf{u}^2} \bigg|_{\mathbf{u} = \mathbf{u}_k} \right]^{-1} \left[\frac{\partial J}{\partial \mathbf{u}} \bigg|_{\mathbf{u} = \mathbf{u}_k} \right]^{T}$$

- Need to evaluate gradient (and possibly Hessian matrix)
- · Not global: gradient searches focus on local minima
- Convergence may be difficult with "noisy" or complex cost functions

13

Gradient-Free Search: Grid-Based Search

Gradient-Free Search:Random Search

Three-Parameter Grid Search

- Regular spacing
- Fixed resolution
- Trials grow as m^n , where
 - n =Number of parameters
 - m = Resolution

Three-Parameter Random Field Search

Variable spacing and resolution
Arbitrary number of trials
Random space-filling

17

Directed (Structured) Search for Minimum Cost

Continuation of grid-based or random search
Localize areas of low cost
Increase sampling density in those areas

Directed (Structured) Search for Minimum Cost

Interpolate or extrapolate from one or more starting points

19

Downhill Simplex Search (Nelder-Mead Algorithm)

- Simplex: N-dimensional figure in control space defined by
 - N+1 vertices
 - -(N+1) N/2 straight edges between vertices

Search Procedure for Downhill Simplex Method

- Select starting set of vertices
- Evaluate cost at each vertex
- Determine vertex with largest cost (e.g., J₁ at right)

- Project search from this vertex through middle of opposite face (or edge for N = 2)
- Evaluate cost at new vertex (e.g., J₄ at right)
- Drop J_1 vertex, and form simplex with new vertex
- · Repeat until cost is small

Humanoid Walker optimized via Nelder-Mead http://www.youtube.com/watch?v=BcYPLR_j5dg

21

Monte Carlo Evaluation of Systems and Cost Functions

- Multiple evaluations of a function with uncertain parameters using
 - Random number generators, and
 - Assumed or measured statistics of parameters
- Not an exhaustive evaluation of all parameters

Monte Carlo Evaluation of Systems and Cost Functions

- Example: 2-D quadratic function with added Gaussian noise
- Each trial generates a different result $(\sigma_z = 4)$

[X,Y] = meshgrid(-8:.5:8); Z = X.^2 + Y.^2; Z1 = Z + 4*randn(33); surf(X,Y,Z1) colormap hsv alpha(.4)

[X,Y] = meshgrid(-8:.5:8);
Z = X.^2 + Y.^2;
Z1 = Z + 4*randn(33);
surf(X,Y,Z1)
colormap hsv
alpha(.4)

Effect of Increasing Noise on Cost Function

Iso-Cost Contours Lose Structure with Increasing Noise

Effect of Averaging on Noisy Cost Function

Estimating the Probability of Coin Flips

Single coin

- Exhaustive search: Correct answer in 2 trials
- Random search (20,000 trials)

21 coins

- Exhaustive search: Correct answer in $n^m = 2^{21} = 2,097,152$ trials
- Random search (20,000 trials)


```
% Single coin
  x = [];
prob = round(rand);
  for k = 1:20000
     prob = round(rand) * (1/(k + 1)) + prob * (k/(k+1));
            = [x prob];
  end
  plot(x), grid
% 21 coins
  y = [];
prob = round(rand);
for k = 1:20000
     for j = 1:21
       coin(j) = round(rand);
     score = sum(coin);
     if score > 10
       result = 1;
     else result = 0;
end
     prob = result * (1/(k + 1)) + prob * (k/(k+1));
           = [y prob];
  figure
  plot(y), grid
```

27

Random Search Excels When There are Many Uncertain Parameters

Single coin

- Exhaustive search: Correct answer in 2 trials
- Random search (20,000 trials)

21 coins

- Exhaustive search: Correct answer in $n^m = 2^{21} = 2,097,152$ trials
- Random search (20,000 trials)

Physical Annealing

- Produce a strong, hard object made of crystalline material
 - High temperature allows molecules to redistribute to relieve stress, remove dislocations
 - Gradual cooling allows large, strong crystals to form
 - Low temperature "working" produces desired crystal structure and shape

Simulated Annealing Algorithm

- Goal: Find global minimum among local minima
- Approach: Randomized search, with convergence that emulates physical annealing
 - Evaluate cost, J_k
 - Accept if $J_k < J_{k-1}$
 - Accept with probability Pr(E) if $J_k > J_{k-1}$
- Probability distribution of energy state, E
 (Boltzmann Distribution)

T: Temperature

 Algorithm's "cooling schedule" accepts many bad guesses at first, fewer as iteration number, k, increases

Application of Annealing Principle to Search

- If cost decreases $(J_2 < J_1)$, always accept new point
- If cost increases (J₂ > J₁), accept new point with probability proportional to Boltzmann factor

 As search progresses, decrease kT, making probability of accepting a cost increase smaller

Realistic Bird Flight Animation by SA http://www.youtube.com/watch?v=SoM1nS3uSrY **SA Face Morphing**http://www.youtube.com/watch?v=SP3nQKnzexs

21

Combination of Simulated Annealing with Downhill Simplex Method

- Introduce random "wobble" to simplex search
 - Add random components to costs evaluated at vertices
 - Project new vertex as before based on modified costs
 - With large *T*, this becomes a random search
 - Decrease random components on a "cooling" schedule
- Same annealing strategy as before
 - If cost decreases $(J_2 < J_1)$, always accept new point
 - If cost increases $(J_2 > J_1)$, accept new point probabilistically
 - As search progresses, decrease T

$$J_{1_{SA}} = J_1 + \Delta J_1(rng)$$

$$J_{2_{SA}} = J_2 + \Delta J_2(rng)$$

$$J_{3_{SA}} = J_3 + \Delta J_3(rng)$$
... = ...

Genetic Coding, Recombination, and Mutation

Broad Characteristicsof Genetic Algorithms

- Search based on the coding of a parameter set, not the parameters themselves
- Search evolves from a population of points
- "Blind" search, i.e., without gradient
- Probabilistic transitions from one control state to another
- Control parameters assembled as genes of a single chromosome strand (Example: four 4-bit parameters)

Progression of a Genetic Algorithm

Most fit chromosome evolves from a sequence of reproduction, crossover, and mutation

- Initialize algorithm with *N* (even) random chromosomes, *c_n* (two 8-bit genes or parameters in example)
- Evaluate <u>fitness</u>, F_n, of each chromosome
- Compute total fitness, F_{total}, of chromosome population

$$F_{total} = \sum_{n=1}^{N} F_n$$

Bigger F is better

- Reproduce N additional copies of the N originals with probabilistic weighting based on relative fitness, F_n/F_{total}, of originals (Survival of the fittest)
- Roulette wheel selection:
 - $\operatorname{Pr}(\boldsymbol{c}_n) = \boldsymbol{F}_n / \boldsymbol{F}_{total}$
 - Multiple copies of most-fit chromosomes
 - No copies of least-fit chromosomes

						S	taı	rti	ng	j S	e	t				
	1	1	0	1	0	0	1	0	0	1	1	1	0	1	1	0
	1	0	1	1	0	1	1	0	1	1	0	1	1	0	0	0
	0	1	1	1	1	1	1	0	0	1	0	0	0	1	1	1
	0	0	0	1	0	1	1	0	0	1	0	1	1	1	1	(
								••	•••							
ļ	1	0	0	1	0	0	1	0	0	1	1	1	0	1	1	1
	0	0	1	1	0	1	1	0	1	1	0	1	1	0	0	1
	1	1	1	1	1	1	1	0	0	1	0	0	0	1	1	1
	0	1	0	1	0	1	1	0	0	1	0	1	1	1	1	Ī

					R	ep	rc	od	uc	e	d S	Se	t			
C ₁₀	0	1	0	1	0	1	1	0	0	1	0	1	0	1	0	0
C ₁₀	0	1	0	1	0	1	1	0	0	1	0	1	0	1	0	0
C ₁₀	0	1	0	1	0	1	1	0	0	1	0	1	0	1	0	0
c ₁	1	1	0	1	0	0	1	0	0	1	1	1	0	1	1	0
								••	•••							
C ₁₃	1	1	0	1	0	0	1	0	0	1	1	1	1	0	1	0
C ₁₇	1	0	1	1	0	1	1	0	1	1	0	1	1	0	0	0
C ₁₅	0	1	1	1	1	1	1	0	0	1	0	0	1	0	0	1
c ₂₂	0	0	1	1	0	1	1	0	1	1	0	1	1	0	0	1

Reproduction Eliminates Least Fit Chromosomes Probabilistically

Starting Set

Reproduced Set

37

Genetic Algorithm: Crossover

Arrange N new chromosomes in N/2 pairs chosen at random

Interchange tails that are cut at random locations

10	0	1	0	1	0	1	1	0	1	1	0	1	1	0	0	0
17																
10	0	1	0	1	0	1	1	0	0	1	0	1	0	0	0	1
22	0	0	1	1	0	1	1	0	1	1	0	1	1	1	0	0
								•••	•••							
13	1	1	0	1	0	0	1	0	0	1	1	1	0	1	1	0
01	1	1	0	1	0	0	1	0	0	1	1	1	1	0	1	0
15	0	1	1	1	0	1	1	0	0	1	0	1	0	1	0	0
10	0	1	0	1	1	1	1	0	0	1	0	0	1	0	0	1

Head

Tail

Crossover Creates New Chromosome Population Containing Old Gene Sequences

Reproduced Set

Crossover Set

39

Genetic Algorithm: Mutation

Flip a bit, 0 -> 1 or 1 -> 0, at random every 1,000 to 5,000 bits

Crossover Set

Mutated Set

40

Create New Generations By Reproduction, Crossover, and Mutation Until Solution Converges

Chromosomes narrow in on best values with advancing generations

F_{max} and **F**_{total} increase with advancing generations

Open Genetic Algorithm Toolbox

http://www.mathworks.com/matlabcentral/fileexchange/37998-open-genetic-algorithm-toolbox

41

Comments on GA

GA Mona Lisa http://www.youtube.com/watch?v=rGt3iMAJVT8

- Short, fit genes tend to survive crossover
- Random location of crossover
 - produces large and small variations in genes
 - interchanges genes in chromosomes
- Multiple copies of best genes evolve
- Alternative implementations
 - Real numbers rather than binary numbers
 - Retention of "elite" chromosomes
 - Clustering in "fit" regions to produce elites

G10	0	1	0	1	0	1	1	0	1	1	0	1	1	0	0	0
C 17	1	0	1	1	0	1	1	0	0	1	0	1	0	1	0	0
CID																
C22	0	0	1	1	0	1	1	0	1	1	0	1	1	1	0	0
														•		
C ₁₃	1	1	0	1	0	0	1	0	0	1	1	1	0	1	1	0
	.1	1	0	1	0	0	1	0	0	1	1	1	1,	0	1	0
C15	0	1	1	1	0	1	1	0	a	1	0	1	0	1	0	a
C15	0	1	0	1	1	1	1	0	0	1	0	0	1	0	0	1

42

Particle Swarm Optimization

- Converse of the GA: Uses multiple cost evaluations to guide parameter search directly
- Stochastic, population-based algorithm
- Search for optimizing parameters modeled on social behavior of groups that possess cognitive consistency
- Particles = Parameter vectors
- Particles have position and velocity
- Projection of own best (Local best)
- Knowledge of swarm's best
 - Neighborhood best
 - Global best

Peregrine Falcon Hunting Starlings in Rome https://www.youtube.com/watch?v=V-mCuFYfJdl

43

Particle Swarm Optimization

Find $\min_{\mathbf{u}} J(\mathbf{u}) = J * (\mathbf{u}^*)$

Jargon: $argmin J(\mathbf{u}) = \mathbf{u}^*$

i.e., argument of J that minimizes J

Recursive algorithm to find best particle or configuration of particles

u: Parameter vector ~ "Position" of the particles

v: "Velocity" of u

 $dim(\mathbf{u}) = dim(\mathbf{v}) = Number of particles$

Particle Swarm Optimization

- · Local best: RNG, downhill simplex, or SA step for each particle
- · Neighborhood best: argmin of closest n neighboring points
 - Global best: argmin of all particles

$$\begin{aligned} \mathbf{u}_k &= \mathbf{u}_{k-1} + a\mathbf{v}_{k-1} \\ \mathbf{v}_k &= b\mathbf{v}_{k-1} + c\Big(\mathbf{u}_{best_{local_{k-1}}} - \mathbf{u}_{k-1}\Big) + d\Big(\mathbf{u}_{best_{neighborhood_{k-1}}} - \mathbf{u}_{k-1}\Big) + e\Big(\mathbf{u}_{best_{global_{k-1}}} - \mathbf{u}_{k-1}\Big) \end{aligned}$$

 \mathbf{u}_0 : Starting value from random number generator

$$\mathbf{v}_0$$
: Zero

a, b, c, d: Search tuning parameters

45

Particle Swarm Optimization

Particle Swarm Toolboxes

http://www.mathworks.com/matlabcentral/fileexchange/7506 http://www.mathworks.com/matlabcentral/fileexchange/25986-another-particle-swarm-toolbox

Comparison of Algorithms in Caterpillar Gait-Training Example

Next Time: Dynamic Optimal Control

Supplemental Material

49

Cost Function and Gradient Searches

Evaluate J and search for smallest value

$$\begin{split} J_o &= J\left(\mathbf{u}_o\right) = starting \ guess \\ J_1 &= J_o + \Delta J_1 \left(\mathbf{u}_o + \Delta \mathbf{u}_1\right) such \ that \quad J_1 < J_o \\ J_2 &= J_1 + \Delta J_2 \left(\mathbf{u}_1 + \Delta \mathbf{u}_2\right) such \ that \quad J_2 < J_1 \end{split}$$

Stop when difference between J_n and J_{n-1} is negligible

- J is a scalar
- J provides no search direction
- Evaluate ∂J/∂u and search for zero

... until gradient is close enough to zero

- ∂J/∂u is a vector
- 31/2 indicates feasible search direction

Comparison of SA, DS, and GA in Designing a PID Controller: ALFLEX Reentry Test Vehicle

Motoda, Stengel, and Miyazawa, 2002

51

Parameter Uncertainties and Touchdown Requirements for ALFLEX Reentry Test Vehicle

Category	Number of parameters
Mass parameters	5
Aerodynamics	27
Actuator dynamics	9
Sensor dynamics and error	38
Atmospheric condition	6
Initial condition and error at release	18

Touchdown states	Requirement
Position, ^a m	X > 0, Y < 18
Velocity, m/s	$V_G < 62, \dot{Z} < 3$
Attitude, deg	$\Theta < 23, \Phi < 10, \Psi < 8$
Side slip, deg	$ \beta_G < 8$

ALFLEX Pitch Attitude Control Logic

53

Comparison of SA, DS, and GA in Designing a PID Controller

Table 2 Comparison of t	hree optimiz	ation method	ls
Parameter	Simulated annealing	Downhill- simplex	Genetic algorithm
Best design vector d*			
K_f	0.866	2.95	0.423
K_P	3.88	4.33	4.11
K_I	1.04	2.24	1.08
K_D	3.05	3.31	3.18
Total simulation number	31,998	13,604	121,552
Number of evaluated design vectors	66	51	745

Table 3	Results of 10,000 Monte Carlo evaluations
	using optimized design parameters

Method	Cost function J	[Confidence interval]
Simulated annealing	0.0135	[0.012, 0.016]
Downhill-simplex	0.0278	[0.025, 0.031]
Genetic algorithm	0.0133	[0.012, 0.015]

Genetic Algorithm Applications

GA Mona Lisa, 2

http://www.youtube.com/watch?v=A8x4Lyj33Ro&NR=1

Learning Network Weights for a Flapping Wing Neural-Controller http://www.youtube.com/watch?v=BfY4jRtcE4c&feature=related

Virtual Creature Evolution

http://www.youtube.com/watch?v=oquKOVfzGfk&NR=1

Evolution of Locomotion

http://www.youtube.com/watch?v=STkfUZtR-Vs&feature=related

55

Examples of ParticleSwarm Optimization

Robot Swarm Animation

http://www.youtube.com/watch?v=RLIA1EKfSys

Swarm-Bots Finding a Path and Retrieving Objecthttp://www.youtube.com/watch?v=Xs_Y22N1r_A

Learning Robot Control System Gains

http://www.youtube.com/watch?v=itf8NHF1bS0&feature=related

Parabolic and Phased-Array Radar Antenna Patterns

57

Phased-Array Antenna Design Using Genetic Algorithm or Particle Swarm Optimization

Phased-Array Antenna Design Using Genetic Algorithm

59

Phased-Array Antenna Design Using Particle Swarm Optimization

Comparison of Phased-Array Antenna Designs

61

Summary of Gradient-Free Optimization Algorithms

- Grid search
 - Uniform coverage of search space
- Random Search
 - Arbitrary placement of test parameters
- Downhill Simplex Method
 - Robust search of difficult cost function topology
- Simulated Annealing
 - Structured random search with convergence feature
- Genetic Algorithm
 - Coding of the parameter set
- Particle Swarm Optimization
 - Intuitively appealing, efficient heuristic