Otra vez vectores:

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

8 de febrero de 2024

L.A. Núñez (UIS)

Agenda

- Escalares y Vectores
- Algebra de Vectores
- Vectores linealmente independientes
- Productos de vectores
 - Producto escalar
 - Producto vectorial
 - Producto triple o mixto
- Recapitulando
- Para la discusión

Escalares y Vectores

• Escalares: cantidades las cuales se representan con UN solo número. Ese número será el mismo en todos los sistemas de coordenadas. Los escalares son independientes del sistema de coordenadas.

Escalares y Vectores

- Escalares: cantidades las cuales se representan con UN solo número.
 Ese número será el mismo en todos los sistemas de coordenadas.
 Los escalares son independientes del sistema de coordenadas.
- Vectores: requieren de UN número, UNA dirección y UN sentido.
 Esas características (módulo, dirección y sentido) se preservarán en todos los sistemas de coordenadas.
 Los vectores son independientes del sistema de coordenadas.
 - Vectores Deslizantes
 - Vectores Atados

Vectores deslizantes

CONSTRUIMOS FUTURO

Vectores atados

Figura: Vectores atados

Algebra de Vectores

Las propiedades (obvias) del álgebra de vectores son:

- La suma de vectores:
 - es cerrada $\mathbf{a} + \mathbf{b} = \mathbf{c}$,
 - es conmutativa $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$,
 - es asociativa $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$,
 - tiene un único elemento neutro $\mathbf{0} + \mathbf{a} = \mathbf{a} + \mathbf{0} = \mathbf{a}, \ \forall \ \mathbf{a},$
 - existe un elemento simétrico -a (uno para cada vector) tal que $\mathbf{0} = \mathbf{a} \mathbf{a} \equiv \mathbf{a} + (-\mathbf{a}),$
 - es distributiva respecto a la multiplicación por números: $\alpha (\mathbf{a} + \mathbf{b}) = \alpha \mathbf{a} + \alpha \mathbf{b}$.

Algebra de Vectores

Las propiedades (obvias) del álgebra de vectores son:

- La suma de vectores:
 - es cerrada $\mathbf{a} + \mathbf{b} = \mathbf{c}$,
 - es conmutativa $\mathbf{a} + \mathbf{b} = \mathbf{b} + \mathbf{a}$,
 - es asociativa $(\mathbf{a} + \mathbf{b}) + \mathbf{c} = \mathbf{a} + (\mathbf{b} + \mathbf{c})$,
 - tiene un único elemento neutro $\mathbf{0} + \mathbf{a} = \mathbf{a} + \mathbf{0} = \mathbf{a}, \ \forall \ \mathbf{a},$
 - existe un elemento simétrico -a (uno para cada vector) tal que $\mathbf{0} = \mathbf{a} \mathbf{a} \equiv \mathbf{a} + (-\mathbf{a}),$
 - es distributiva respecto a la multiplicación por números: $\alpha (\mathbf{a} + \mathbf{b}) = \alpha \mathbf{a} + \alpha \mathbf{b}$.
- La multiplicación de números por vectores:
 - es conmutativa $\mathbf{a}\alpha = \alpha \mathbf{a}$,
 - es asociativa $\alpha(\beta \mathbf{a}) = (\alpha \beta) \mathbf{a}$,
 - es distributiva $(\alpha + \beta)$ $\mathbf{a} = \alpha \mathbf{a} + \beta \mathbf{a}$.

Vectores linealmente independientes

• Tres vectores $\mathbf{a}, \mathbf{b}, \mathbf{c}$ son *linealmente independientes* en \mathbb{R}^3 si se cumple que:

$$\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \quad \Rightarrow \quad \alpha = \beta = \gamma = \mathbf{0}.$$

Vectores linealmente independientes

• Tres vectores $\mathbf{a}, \mathbf{b}, \mathbf{c}$ son linealmente independientes en \mathbb{R}^3 si se cumple que:

$$\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \quad \Rightarrow \quad \alpha = \beta = \gamma = \mathbf{0}.$$

• Si no se cumple lo anterior diremos que uno de los vectores será linealmente dependiente y por lo tanto se podrá expresar como combinación lineal de los otros dos. Si por ejemplo $\gamma \neq 0$, entonces:

$$\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \Rightarrow \mathbf{c} = -\frac{\alpha}{\gamma} \mathbf{a} - \frac{\beta}{\gamma} \mathbf{b} \Rightarrow \mathbf{c} = \bar{\alpha} \mathbf{a} + \bar{\beta} \mathbf{b}.$$

Vectores linealmente independientes

• Tres vectores $\mathbf{a}, \mathbf{b}, \mathbf{c}$ son linealmente independientes en \mathbb{R}^3 si se cumple que:

$$\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \quad \Rightarrow \quad \alpha = \beta = \gamma = \mathbf{0}.$$

• Si no se cumple lo anterior diremos que uno de los vectores será linealmente dependiente y por lo tanto se podrá expresar como combinación lineal de los otros dos. Si por ejemplo $\gamma \neq 0$, entonces:

$$\alpha \mathbf{a} + \beta \mathbf{b} + \gamma \mathbf{c} = \mathbf{0} \Rightarrow \mathbf{c} = -\frac{\alpha}{\gamma} \mathbf{a} - \frac{\beta}{\gamma} \mathbf{b} \Rightarrow \mathbf{c} = \bar{\alpha} \mathbf{a} + \bar{\beta} \mathbf{b}.$$

• Cuando un vector ${\bf c}$ se pueda expresar en términos de dos vectores linealmente independientes, ${\bf a}$ y ${\bf b}$, por ejemplo: ${\bf c}=\xi^1{\bf a}+\xi^2{\bf b}$, diremos que ${\bf a}$ y ${\bf b}$ forman una base para todos los vectores coplanares a éstos.

Producto escalar

Denominaremos producto escalar de dos vectores $\bf a$ y $\bf b$ a un escalar cuyo valor será igual al producto de los módulos multiplicado por el coseno del ángulo que ellos forman:

$$\zeta = \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}.$$

• El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.

- El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,

- El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,
- El producto escalar es distributivo: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.

- El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,
- El producto escalar es distributivo: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.
- La multiplicación por un número: $\bar{\zeta} = \alpha \zeta = |\alpha| (\mathbf{a} \cdot \mathbf{b}) = (\alpha \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\alpha \mathbf{b}) = |\alpha \mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = |\mathbf{a}| |\alpha \mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}.$

- El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,
- El producto escalar es distributivo: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.
- La multiplicación por un número: $\bar{\zeta} = \alpha \zeta = |\alpha| (\mathbf{a} \cdot \mathbf{b}) = (\alpha \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\alpha \mathbf{b}) = |\alpha \mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = |\mathbf{a}| |\alpha \mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}.$
- Designaldad de Cauchy-Schwarz: $\mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, $(\mathbf{a} \cdot \mathbf{b})^2 = (|\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle})^2 \Rightarrow (\mathbf{a} \cdot \mathbf{b})^2 \leq |\mathbf{a}|^2 |\mathbf{b}|^2 \Leftrightarrow \mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, ya que: $0 \leq \cos^2(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} \leq 1$.

- El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,
- El producto escalar es distributivo: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.
- La multiplicación por un número: $\bar{\zeta} = \alpha \zeta = |\alpha| (\mathbf{a} \cdot \mathbf{b}) = (\alpha \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\alpha \mathbf{b}) = |\alpha \mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = |\mathbf{a}| |\alpha \mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}.$
- Designaldad de Cauchy-Schwarz: $\mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, $(\mathbf{a} \cdot \mathbf{b})^2 = (|\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle})^2 \Rightarrow (\mathbf{a} \cdot \mathbf{b})^2 \leq |\mathbf{a}|^2 |\mathbf{b}|^2 \Leftrightarrow \mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, ya que: $0 \leq \cos^2(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} \leq 1$.
- El teorema del coseno. Si $\mathbf{c} = \mathbf{a} + \mathbf{b} \Rightarrow$ $\mathbf{c} \cdot \mathbf{c} = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) \Rightarrow |\mathbf{c}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}| |\mathbf{b}| \cos(\theta),$

- El producto escalar de un vector consigo mismo, es positivo: $\zeta = \mathbf{a} \cdot \mathbf{a} = |\mathbf{a}|^2 \ge 0$, y sólo será nulo si \mathbf{a} es el vector nulo.
- El producto escalar es conmutativo: $\zeta = \mathbf{a} \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{a}$,
- El producto escalar es distributivo: $\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{c}$.
- La multiplicación por un número: $\bar{\zeta} = \alpha \zeta = |\alpha| (\mathbf{a} \cdot \mathbf{b}) = (\alpha \mathbf{a}) \cdot \mathbf{b} = \mathbf{a} \cdot (\alpha \mathbf{b}) = |\alpha \mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = |\mathbf{a}| |\alpha \mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}.$
- Designaldad de Cauchy-Schwarz: $\mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, $(\mathbf{a} \cdot \mathbf{b})^2 = (|\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle})^2 \Rightarrow (\mathbf{a} \cdot \mathbf{b})^2 \leq |\mathbf{a}|^2 |\mathbf{b}|^2 \Leftrightarrow \mathbf{a} \cdot \mathbf{b} \leq |\mathbf{a}| |\mathbf{b}|$, ya que: $0 \leq \cos^2(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} \leq 1$.
- El teorema del coseno. Si $\mathbf{c} = \mathbf{a} + \mathbf{b} \Rightarrow$ $\mathbf{c} \cdot \mathbf{c} = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) \Rightarrow |\mathbf{c}|^2 = |\mathbf{a}|^2 + |\mathbf{b}|^2 + 2|\mathbf{a}| |\mathbf{b}| \cos(\theta),$
- Perpendicularidad: $\mathbf{a} \perp \mathbf{b} \Rightarrow \theta_{\langle \mathbf{a}, \mathbf{b} \rangle} = \frac{\pi}{2}$ $\Rightarrow \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = 0$.

el producto vectorial tiene como resultado otro vector: $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ (realmente un pseudovector) con:

• El módulo de ${\bf c}$, será: $|{\bf c}|=|{\bf a}|\,|{\bf b}|\,{\rm sen}(\theta)_{\langle {\bf a},{\bf b}\rangle}$. El módulo de ${\bf c}$ representa el área del paralelogramo cuyos lados están formados por ${\bf a}$ y ${\bf b}$.

el producto vectorial tiene como resultado otro vector: $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ (realmente un pseudovector) con:

- El módulo de ${\bf c}$, será: $|{\bf c}|=|{\bf a}|\,|{\bf b}|\,{\rm sen}(\theta)_{\langle {\bf a},{\bf b}\rangle}$. El módulo de ${\bf c}$ representa el área del paralelogramo cuyos lados están formados por ${\bf a}$ y ${\bf b}$.
- tendrá como dirección la perpendicular al plano que forman a y b, y con sentido positivo cuando la multiplicación de a x b corresponda al sentido antihorario.

el producto vectorial tiene como resultado otro vector: $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ (realmente un pseudovector) con:

- El módulo de ${\bf c}$, será: $|{\bf c}|=|{\bf a}|\,|{\bf b}|\,{\rm sen}(\theta)_{\langle {\bf a},{\bf b}\rangle}$. El módulo de ${\bf c}$ representa el área del paralelogramo cuyos lados están formados por ${\bf a}$ y ${\bf b}$.
- tendrá como dirección la perpendicular al plano que forman a y b, y con sentido positivo cuando la multiplicación de a x b corresponda al sentido antihorario.
- El producto vectorial es anticonmutativo. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$,

el producto vectorial tiene como resultado otro vector: $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ (realmente un pseudovector) con:

- El módulo de ${\bf c}$, será: $|{\bf c}|=|{\bf a}|\,|{\bf b}|\,{\rm sen}(\theta)_{\langle {\bf a},{\bf b}\rangle}$. El módulo de ${\bf c}$ representa el área del paralelogramo cuyos lados están formados por ${\bf a}$ y ${\bf b}$.
- tendrá como dirección la perpendicular al plano que forman a y b, y con sentido positivo cuando la multiplicación de a x b corresponda al sentido antihorario.
- El producto vectorial es anticonmutativo. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$,
- El producto vectorial es distributivo respecto a la suma. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$.

el producto vectorial tiene como resultado otro vector: $\mathbf{c} = \mathbf{a} \times \mathbf{b}$ (realmente un pseudovector) con:

- El módulo de ${\bf c}$, será: $|{\bf c}|=|{\bf a}|\,|{\bf b}|\,{\rm sen}(\theta)_{\langle {\bf a},{\bf b}\rangle}$. El módulo de ${\bf c}$ representa el área del paralelogramo cuyos lados están formados por ${\bf a}$ y ${\bf b}$.
- tendrá como dirección la perpendicular al plano que forman a y b, y con sentido positivo cuando la multiplicación de a x b corresponda al sentido antihorario.
- El producto vectorial es anticonmutativo. $\mathbf{a} \times \mathbf{b} = -\mathbf{b} \times \mathbf{a}$,
- El producto vectorial es distributivo respecto a la suma. $\mathbf{a} \times (\mathbf{b} + \mathbf{c}) = \mathbf{a} \times \mathbf{b} + \mathbf{a} \times \mathbf{c}$.
- Dos vectores serán colineales si su producto vectorial se anula.

$$\mathbf{a} \parallel \mathbf{b} \ \Rightarrow \ \theta_{\langle \mathbf{a}, \mathbf{b} \rangle} = 0 \ \Rightarrow \ |\mathbf{c}| = |\mathbf{a} \times \mathbf{b}| = |\mathbf{a}| \, |\mathbf{b}| \operatorname{sen}(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle} = 0.$$

Si el módulo del vector es cero, obvio que es el vector nulo. Ahora bien, también de aquí deducimos que:

$$\mathbf{c} = \mathbf{a} \times \mathbf{b} \ \Rightarrow \ \mathbf{c} \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = \mathbf{c} \cdot \mathbf{b} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{b} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = \mathbf{b} \cdot \mathbf{b} = \mathbf{b}$$

El número (pseudoescalar) que proviene de la multiplicación:

$$V = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = |\mathbf{c}| |(\mathbf{a} \times \mathbf{b})| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}.$$

• Representa el volumen del paralelepípedo cuyos lados son los vectores \mathbf{a}, \mathbf{b} y \mathbf{c} . Donde $|\mathbf{a} \times \mathbf{b}|$ es el área de la base y la altura la proyección del vector \mathbf{c} sobre la perpendicular al plano de la base que es, $|\mathbf{c}| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}$.

El número (pseudoescalar) que proviene de la multiplicación:

$$V = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = |\mathbf{c}| |(\mathbf{a} \times \mathbf{b})| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}.$$

- Representa el volumen del paralelepípedo cuyos lados son los vectores $\mathbf{a}, \mathbf{b} \ \mathbf{y} \ \mathbf{c}$. Donde $|\mathbf{a} \times \mathbf{b}|$ es el área de la base y la altura la proyección del vector \mathbf{c} sobre la perpendicular al plano de la base que es, $|\mathbf{c}| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}$.
- Es cíclico respecto a sus factores.

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}$$
.

El número (pseudoescalar) que proviene de la multiplicación:

$$V = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = |\mathbf{c}| |(\mathbf{a} \times \mathbf{b})| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}.$$

- Representa el volumen del paralelepípedo cuyos lados son los vectores $\mathbf{a}, \mathbf{b} \ \mathbf{y} \ \mathbf{c}$. Donde $|\mathbf{a} \times \mathbf{b}|$ es el área de la base y la altura la proyección del vector \mathbf{c} sobre la perpendicular al plano de la base que es, $|\mathbf{c}| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}$.
- Es cíclico respecto a sus factores.

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}$$
.

Se anula cuando se repite alguno de sus factores.

$$(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (\mathbf{a} \times \mathbf{a}) \cdot \mathbf{c} = (\mathbf{b} \times \mathbf{b}) \cdot \mathbf{c} = 0$$
. Claramente, si $(\mathbf{a} \times \mathbf{b}) \perp \mathbf{a} \Rightarrow (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = 0$.

El número (pseudoescalar) que proviene de la multiplicación:

$$V = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = |\mathbf{c}| |(\mathbf{a} \times \mathbf{b})| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}.$$

- Representa el volumen del paralelepípedo cuyos lados son los vectores \mathbf{a}, \mathbf{b} y \mathbf{c} . Donde $|\mathbf{a} \times \mathbf{b}|$ es el área de la base y la altura la proyección del vector \mathbf{c} sobre la perpendicular al plano de la base que es, $|\mathbf{c}|\cos(\theta)_{\langle \mathbf{c},\mathbf{a} \times \mathbf{b} \rangle}$.
- Es cíclico respecto a sus factores. $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}$.
- Se anula cuando se repite alguno de sus factores.
 - $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (\mathbf{a} \times \mathbf{a}) \cdot \mathbf{c} = (\mathbf{b} \times \mathbf{b}) \cdot \mathbf{c} = 0$. Claramente, si $(\mathbf{a} \times \mathbf{b}) \perp \mathbf{a} \Rightarrow (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = 0$.
- Si los tres vectores \mathbf{a}, \mathbf{b} y \mathbf{c} son coplanares (linealmente dependientes) entonces: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0$.

El número (pseudoescalar) que proviene de la multiplicación:

$$V = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = |\mathbf{c}| |(\mathbf{a} \times \mathbf{b})| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}.$$

- Representa el volumen del paralelepípedo cuyos lados son los vectores \mathbf{a} , \mathbf{b} y \mathbf{c} . Donde $|\mathbf{a} \times \mathbf{b}|$ es el área de la base y la altura la proyección del vector \mathbf{c} sobre la perpendicular al plano de la base que es, $|\mathbf{c}| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}$.
- Es cíclico respecto a sus factores. $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = (\mathbf{c} \times \mathbf{a}) \cdot \mathbf{b} = (\mathbf{b} \times \mathbf{c}) \cdot \mathbf{a}$.
- Se anula cuando se repite alguno de sus factores. $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{a} = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{b} = (\mathbf{a} \times \mathbf{a}) \cdot \mathbf{c} = (\mathbf{b} \times \mathbf{b}) \cdot \mathbf{c} = 0$. Claramente,
 - $\mathsf{si} \, \left(\boldsymbol{a} \times \boldsymbol{b} \right) \bot \boldsymbol{a} \ \Rightarrow \ \left(\boldsymbol{a} \times \boldsymbol{b} \right) \cdot \boldsymbol{a} = 0.$
- Si los tres vectores \mathbf{a}, \mathbf{b} y \mathbf{c} son coplanares (linealmente dependientes) entonces: $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = 0$.
- Tres vectores $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} \neq 0$, son linealmente independientes y forman una base levógira (contraria al giro de las manecillas del reloj) si $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} < 0$ y dextrógira (la convencional base de la mano derecha) si $(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} > 0$.

 Vectores geométricos (módulo, dirección, sentido): dezlizantes y atados

- Vectores geométricos (módulo, dirección, sentido): dezlizantes y atados
- Algebra (obvia) de vectores: suma y multiplicación por un número

- Vectores geométricos (módulo, dirección, sentido): dezlizantes y atados
- Algebra (obvia) de vectores: suma y multiplicación por un número
- **3** Independencia lineal α **a** + β **b** + γ **c** = **0** \Rightarrow $\alpha = \beta = \gamma = 0$.

- Vectores geométricos (módulo, dirección, sentido): dezlizantes y atados
- Algebra (obvia) de vectores: suma y multiplicación por un número
- **3** Independencia lineal α **a** $+ \beta$ **b** $+ \gamma$ **c** = **0** $\Rightarrow \alpha = \beta = \gamma = 0$.
- Producto escalar $\zeta = \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}$. Geometría (ángulo entre vectores), perpendicularidad, Teorema del coseno, Teorema de Pitágoras.

- Vectores geométricos (módulo, dirección, sentido): dezlizantes y atados
- Algebra (obvia) de vectores: suma y multiplicación por un número
- **3** Independencia lineal α **a** + β **b** + γ **c** = **0** \Rightarrow $\alpha = \beta = \gamma = 0$.
- Producto escalar $\zeta = \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}$. Geometría (ángulo entre vectores), perpendicularidad, Teorema del coseno, Teorema de Pitágoras.
- **o** Producto vectorial: Orientación de Planos, Pseudovector $\mathbf{c} = \mathbf{a} \times \mathbf{b}$

- Vectores geométricos (módulo, dirección, sentido): dezlizantes y atados
- 2 Algebra (obvia) de vectores: suma y multiplicación por un número
- **3** Independencia lineal α **a** + β **b** + γ **c** = **0** $\Rightarrow \alpha = \beta = \gamma = 0$.
- Producto escalar $\zeta = \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)_{\langle \mathbf{a}, \mathbf{b} \rangle}$. Geometría (ángulo entre vectores), perpendicularidad, Teorema del coseno, Teorema de Pitágoras.
- **5** Producto vectorial: Orientación de Planos, Pseudovector $\mathbf{c} = \mathbf{a} \times \mathbf{b}$
- Triple producto mixto: Volumen, pseudoescalares: $V = \mathbf{c} \cdot (\mathbf{a} \times \mathbf{b}) = |\mathbf{c}| |(\mathbf{a} \times \mathbf{b})| \cos(\theta)_{\langle \mathbf{c}, \mathbf{a} \times \mathbf{b} \rangle}$.

Para la discusión

1 Dada una base ortonormal $\{\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}\}$ y los siguientes vectores:

$$\mathbf{a} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}, \quad \mathbf{b} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}, \quad \mathbf{c} = \hat{\mathbf{i}} - \hat{\mathbf{k}}.$$

Queremos comprobar si $\{a, b, c\}$ forman una base.

Para la discusión

1 Dada una base ortonormal $\{\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}}\}$ y los siguientes vectores:

$$\mathbf{a} = 3\hat{\mathbf{i}} + 2\hat{\mathbf{j}} + \hat{\mathbf{k}}\,,\quad \mathbf{b} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}} + \hat{\mathbf{k}}\,,\quad \mathbf{c} = \hat{\mathbf{i}} - \hat{\mathbf{k}}\,.$$

Queremos comprobar si $\{a, b, c\}$ forman una base.

② Si el conjunto de vectores $\{\mathbf{a},\mathbf{b},\mathbf{c}\}$ del ejemplo anterior forman una base, podemos expresar otros vectores en términos de esta base. Tomemos, por ejemplo, los vectores: $\mathbf{d} = \hat{\mathbf{i}} + 2\hat{\mathbf{j}}$ y $\mathbf{e} = 3\hat{\mathbf{i}} - 2\hat{\mathbf{j}}$, expresemos estos dos vectores en términos de $\{\mathbf{a},\mathbf{b},\mathbf{c}\}$.