Lesson 4.6 Initial Values of Linear Functions

Where a linear function crosses the y-axis is considered its initial value. One way to find the initial value of a linear function is to solve the equation for when the input, or x, equals 0. Use the formula y = mx + b, where m represents the rate of change and b represents the initial value of the linear function, to solve.

input	output
2	6
4	12
6	18

$$\frac{18-6}{6-2}=\frac{12}{4}=3$$

 $\frac{18-6}{6-2} = \frac{12}{4} = 3$ Step 1: Find the rate of change for the function table.

$$6 = (3)(2) + b$$

6 = (3)(2) + b **Step 2:** Substitute values of x, y, and m in the linear equation. the linear equation.

$$6-6 = 6-6+b$$

 $b = 0$

Step 3: Solve for b to find the initial value of the function.

Find the initial value of each function.

Ι.

input	output
3	8
7	12
12	17

input	output
27	3
54	6
90	10

input	output
6	2
10	7
12	12

input	output
2	2
5	14
7	22

3.

input	output
I	9
5	27
10	45