habet Eystem Components Updates

Variables

· A: tensor containing the latent values of person 1,2,3,...,7 over time (e.g. a numerical value or vector sumarizing someouts Vocal Style or cognitive state). In a 2D comparent, each Value/embedding is a 2D vector containing position and velocity.

· X: matrix similar to A best with a single subject/actity (the common cause).

· C: Vector containing values of coordination over time. T' _____ Does not have to match T. In the code we index c to retrieve a subvector cartaining any the c values that match the times in As time scale. The number of timesteps in this subvector of C is T.

Updates

we update At using a modified Newtonian dynamics.

Traditional Neutonian organics

Proof = $Pos_{t-1}^{\rho} + Vel_{t-1}^{\rho}$ Well = $(1-C_t)Vel_{t-1}^{\rho} + C_t(\sum_{p \in P+lol}^{\rho} Vel_{t-1}^{\rho})$ Vel = $(1-C_t)Vel_{t-1}^{\rho} + C_t(\sum_{p \in P+lol}^{\rho} Vel_{t-1}^{\rho})$ Vel = $(1-C_t)Vel_{t-1}^{\rho} + C_tVel_{t}^{\chi}$ Velocity of the common cause t-1. The common cause affects subjects syndramously.

Example

For sampling, it's fine to us loops. For inference, we want to avoid them for fast computation. So we are going to develop over ceptates as mostrix/tensor operations.

In the log-prob function, we get a sample of the Variables in the model and we need to compute logprobabilities according to our update rules. So the values of A, C, and X will be given (a sample)

Let
$$P=3$$
 and $T=3$.

$$A = \begin{bmatrix} a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 \\ c_0 & c_1 & c_2 \end{bmatrix} P, \text{ where } a_{\xi} = [pos_{\xi}^{\alpha}, vel_{\xi}^{\alpha}]$$

1) Nou-common course conse.

With the auxiliary montrix of below, for each subject of we can create a tensor of entries comprised by the Sum of the values of the others, E.g. Alog=#[13+A2].

$$5 = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$$

Multiplying 5 with A along the second dimension, we get $\Sigma = \frac{5A}{2} = \frac{1}{2} \begin{bmatrix} bo+co & b_1+c_1 & b_2+c_2 \\ ao+co & a_1+c_1 & a_2+c_2 \\ ao+bo & a_1+b_1 & a_2+b_2 \end{bmatrix}$ this for the second part of Ea. I.

het's focus on the matrix $k[o] = \begin{bmatrix} pos_0 & pos_1 & pos_2 \\ velo & vel_1 & vel_2 \end{bmatrix}$ for a woment. het's define the following auxiliary tensors

Now we can use these matrices to update A[0] = $FA[0] + U\Sigma[0] = \begin{bmatrix} PoS_0^a + Velo \\ I - C_1 \end{bmatrix} Velo + \frac{C_1}{2} (Velo + Velo) (1 - C_2) Velo + \frac{C_2}{2} (Velo + Velo)$ $\hat{A}_{z}[0]$ $\hat{A}_{z}[0]$

Notice this is the matrix with the reptake equations for A[o]. We can now compare this (expected) with the original bample. Ultimately, the inference will learn how to generate better samples such that $A_{1:T}[i] \simeq \hat{A}[i]$ if $i \in P$ or $A_{1:T} \approx \hat{A}$.

We want to do the same for the other subjects (A[1] and A[2]). It turns out we can do FA + UZ directly provided that we iterate over the correct axes.

Note: VXIL Skipped t=0 which we can compute as Ao≈ pas

50)
$$log-prob = N(Ao; \mu_{a_0}, \sigma_a^2)$$

+= $N(A_{1:T}; \hat{A}, \sigma_a^2)$

2) Common cause case

We can just replace Σ with X but theres a contact. In the common cause case X affects A at the same time 8kp. So,

$$FA[O] + UX_{1:T} = \begin{bmatrix} PoS_0^a + Vel_0^a & PoS_1 + Vel_1 \\ (1-C_1)Vel_0^a + C_1Vel_1^x & (1-C_2)Vel_1^a + C_2Vel_2 \end{bmatrix}$$

We can use X[None, :] repeat (3, axis=s) such that X has the same shape as E and the computation works seamlessly.

For t=0, we have a blending in this case still but between pass and velx. So, an easter