Introduction to Optimization HW 5

Training Neural Networks with SGD and Adagrad Methods

- 1. Take the neural network (NN) and the data from HW3 and implement SGD and Adagrad methods for this NN.
 - SGD: http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecture3.pdf, slide 76 + http://cs231n.github.io/optimization-1/.
 - Adagrad: http://cs231n.stanford.edu/slides/2017/cs231n_2017 lecture7.pdf, slides 29-31 + http://cs231n.github.io/neural-networks-3/.
 - Use Xavier random weight initialization for training the network:
 (http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture6.pdf
 , slide 48 +
 http://cs231n.github.io/neural-networks-2/#init
 , "Calibrating the variances with 1/sqrt(n)")
- 2. Train the network.
 - Find the optimal learning rate for the training
 (http://cs231n.github.io/neural-networks-3/#anneal, use exponential decay),
 i.e. optimize the following parameters: initial training rate, decay constant.
 Provide tables with the loss function values at epoch = 1000 for different parameters.
 - Find the optimal minibatch size.
 Plot the loss function value at epoch = 1000 vs. the batch size.
 - Study the influence of data reshuffling (after each epoch) on the training process.
 - For this exercise, you can optimize the parameters independently, i.e. first find the optimal learning rate (choose a reasonable minibatch size) and then the optimal minibatch size.
 - Consider both the training set and the test set (separately) in all your calculations.
- 3. Compare convergence of these methods with BFGS (plot the cost function value vs. epoch in semiology form).
 - Compare both the training set and the test set (separately).
 - In your comparison, consider both the loss and the run time.

Remark: The cost function should be divided by the number of samples to keep it independent of the data/batch size.