

Universidad de San Carlos de Guatemala Análisis de Variable Compleja 1 Catedrático: Damián Ochoa

Auxiliar: Jorge Alejandro Rodriguez Aldana

Febrero 2020

Tarea 1

Problema 1. Demuestre geométricamente que si |z| = 1 entonces

$$\operatorname{Im}\left[\frac{z}{(z+1)^2}\right] = 0$$

A parte del círculo unitario, ¿qué otros puntos satisfacen la ecuación?

Solución

$$Arg(z) = \theta$$
$$Arg(z+1) = \phi$$

$$\beta + \phi = \theta$$

Por ángulos correspondientes:

$$\theta + \alpha = 180$$

$$2\beta + \alpha = 180$$

$$\therefore \ \phi = \frac{\theta}{2}$$

$$e^{i(\theta-2\phi)} = e^{i(\theta-\theta)} = e^0 = 1$$

Por otro lado:

$$\frac{z}{(z+1)^2} = \frac{|z|e^{i\theta}}{|z+1|^2 (e^{i\phi})^2}$$

$$= \frac{|z| e^{i\theta}}{|z+1|^2 e^{2i\phi}}$$

$$= \frac{|z|}{|z+1|^2} e^{i(\theta-2\phi)}$$

$$= \frac{|z|}{|z+1|^2} \in \mathbb{R}$$

Satisfacen la ecuación todos los z tales que $z=\bar{z}$. Para que el arg(z+1) sea la mitad de arg(z) necesariamente el triángulo formado entre z+1,z y 0 es isósceles que sucede solo en el círculo unitario y sobre el eje real.

Problema 2. Si $|\alpha| < 1$ y $|z| \le 1$, demuestre que

$$\left| \frac{z + \alpha}{1 + \overline{\alpha}z} \right| \le 1$$

y halle el caso de igualdad.

Solución

Por contradicción, supongamos que:

$$\left|\frac{\alpha+z}{1+\overline{\alpha}z}\right| > 1$$

$$\Leftrightarrow |\alpha+z| > |1+\overline{\alpha}z|$$

$$\Leftrightarrow |\alpha+z|^2 > |1+\overline{\alpha}z|^2$$

$$\Leftrightarrow (\alpha+z)(\overline{\alpha+z}) > (1+\overline{\alpha}z)(\overline{1+\overline{\alpha}z})$$

$$\Leftrightarrow (\alpha+z)(\overline{z}+\overline{\alpha}) > (1+\overline{\alpha}z)(1+\overline{z}\alpha)$$

$$\Leftrightarrow \alpha\overline{z} + \alpha\overline{\alpha} + z\overline{z} + z\overline{a} > 1+\overline{\alpha}z + \overline{z}\alpha + z\overline{z}\alpha\overline{\alpha}$$

$$\Leftrightarrow \alpha\overline{\alpha} + z\overline{z} > 1+z\overline{z}\alpha\overline{\alpha}$$

$$\Leftrightarrow |\alpha|^2 + |z|^2 > 1+|z|^2|\alpha|^2$$

$$\Leftrightarrow |\alpha|^2 - 1-|z|^2|\alpha|^2 + |z|^2 > 0$$

$$\Leftrightarrow |\alpha|^2 - 1-|z|^2(|\alpha|^2-1) > 0$$

$$\Leftrightarrow (1-|z|^2)(|\alpha|^2-1) > 0$$
Como $|z| \le 1, \Rightarrow |z|^2 \le 1, 0 \le 1-|z|^2$. Además $|\alpha| < 1, \Rightarrow |\alpha|^2 \le 1, |\alpha|^2 - 1 < 0$. Entonces:

Por tanto:

$$\left| \frac{\alpha + z}{1 + \overline{\alpha}z} \right| \le 1$$

 $\Leftrightarrow (1 - |z|^2)(|\alpha|^2 - 1) < 0$

(1)

 $(\rightarrow \leftarrow)$

La igualdad se alcanza cuando el |z| = 1

Problema 3. Si $z = \frac{1+i}{\sqrt{2}}$ calcule

$$(z^{1^2} + z^{2^2} + z^{3^2} + \dots + z^{12^2})(\frac{1}{z^{1^2}} + \frac{1}{z^{2^2}} + \frac{1}{z^{3^2}} + \dots + \frac{1}{z^{12^2}}).$$

Vemos que |z| = 1.

Por la notación de Euler:

$$z = \frac{1+i}{\sqrt{2}} = e^{i\pi/4}$$
$$z^{n^2} = e^{in^2\pi/4}$$

Vemos que el circulo unitario queda partido en arcos de $\pi/4$, y vamos avanzando de n^2 en n^2 . De esto, podemos usar notación modular:

$n \equiv 0 \bmod 8$	$n^2 \equiv 0^2 \equiv 0 \bmod 8$	1
$n \equiv 1 \mod 8$	$n^2 \equiv 1^2 \equiv 1 \bmod 8$	Z
$n \equiv 2 \bmod 8$	$n^2 \equiv 2^2 \equiv 4 \bmod 8$	-1
$n \equiv 3 \mod 8$	$n^2 \equiv 3^2 \equiv 1 \bmod 8$	Z
$n \equiv 4 \bmod 8$	$n^2 \equiv 4^2 \equiv 0 \bmod 8$	1
$n \equiv 5 \mod 8$	$n^2 \equiv 5^2 \equiv 1 \bmod 8$	Z
$n \equiv 6 \mod 8$	$n^2 \equiv 6^2 \equiv 4 \bmod 8$	-1
$n \equiv 7 \mod 8$	$n^2 \equiv 7^2 \equiv 1 \bmod 8$	Z

$$\left(z^{1^2} + z^{2^2} + z^{3^2} + z^{4^2} + \dots + z^{12^2}\right) = 3\left(z - 1 + z + 1\right)$$
$$= 6z = 6e^{i\frac{\pi}{4}}$$

$$\left(\frac{1}{z^{1^2}} + \frac{1}{z^{2^2}} + \frac{1}{z^{3^2}} + \frac{1}{z^{4^2}} + \dots + \frac{1}{z^{12^2}}\right) = 3\left(\frac{1}{z} - 1 + \frac{1}{z} + 1\right)$$
$$= 6\overline{z} = 6e^{-i\frac{\pi}{4}}$$

Por tanto:

$$\left(z^{1^2} + z^{2^2} + z^{3^2} + z^{4^2} + \dots + z^{12^2} \right) \left(\frac{1}{z^{1^2}} + \frac{1}{z^{2^2}} + \frac{1}{z^{3^2}} + \frac{1}{z^{4^2}} + \dots + \frac{1}{z^{12^2}} \right) = 36$$

Problema 4. Si a y b son números complejos, demuestre que

$$|1 + ab| + |a + b| \ge \sqrt{|a^2 - 1| \cdot |b^2 - 1|}.$$

Solución

$$|1 + ab| + |a + b| \ge |1 + ab + a + b|$$

 $\ge |1 + b + a(b+1)|$
 $\ge |(a+1)(b+1)|$

$$|1 + ab| + |a + b| \ge |(a + 1)(b + 1)| \tag{2}$$

Por otro lado:

$$\begin{aligned} |1+ab|+|-a-b| &\geq |1+ab-a-b| \\ |1+ab|+|(-1)(a+b)| &\geq |1-b+a(b-1)| \\ |1+ab|+|(-1)||(a+b)| &\geq |-(b-1)+a(b-1)| \\ |1+ab|+|(a+b)| &\geq |(a-1)(b-1)| \end{aligned}$$

$$|1 + ab| + |a + b| \ge |(a - 1)(b - 1)| \tag{3}$$

Multiplicando (2) y (3) tenemos:

$$(|1+ab|+|a+b|)^{2} \ge |(a+1)(b+1)||(a-1)(b-1)|$$

$$\ge |(a+1)(a-1)(b+1)(b-1)|$$

$$\ge |(a^{2}-1)(b^{2}-1)|$$

$$\ge |(a^{2}-1)||(b^{2}-1)|$$

$$|1+ab|+|a+b| \ge \sqrt{|(a^{2}-1)||(b^{2}-1)|}$$

Problema 5. El centroide G de un triángulo, es el punto donde se cruzan sus medianas. Si $a, b, c \in \mathbb{C}$ son los vértices de un triángulo, demuestre que

$$G = \frac{a+b+c}{3}.$$

Solución

Sean $a, b, c \in \mathbb{C}$, entonces son de la forma:

$$a = \alpha_1 + i\beta_1$$
$$b = \alpha_2 + i\beta_2$$
$$c = \alpha_3 + i\beta_3$$

Sean d, e, f los puntos medios de los lados $\vec{ba}, \vec{cb}, \vec{ca}$. Entonces:

$$d = \gamma_1 + i\omega_1 = \frac{a+b}{2}$$

$$e = \gamma_2 + i\omega_2 = \frac{c+b}{2}$$

$$f = \gamma_3 + i\omega_3 = \frac{a+c}{2}$$

$$(4)$$

Por lo que \vec{cd} , \vec{ae} , \vec{bf} son las medianas de los lados \vec{ba} , \vec{cb} , \vec{ca} respectivamente y G es el centroide por lo que: |bG|=2|fG|, |aG|=2|eG|, |cG|=2|dG|. Por lo que G=x+iy se puede escribir en función de los puntos a,b,c,d,e,f

$$|bG| = 2|fG|$$

$$2(x - \gamma_3) = \alpha_2 - x$$
 $2(x - \omega_3) = \beta_2 - y$
 $x = \frac{\alpha_2 + 2\gamma_3}{3}$ $y = \frac{\beta_2 + 2\omega_3}{3}$

Por lo que $G = \frac{\alpha_2 + 2\gamma_3}{3} + \frac{\beta_2 + 2\omega_3}{3}i = \frac{b + 2f}{3}$. Y análogamente se puede obtener $G = \frac{c + 2d}{3} = \frac{a + 2e}{3}$

Luego por estas igualdades se tiene que:

$$G = \frac{a+2e}{3}$$

$$G = \frac{c+2d}{3}$$

$$+ \qquad G = \frac{b+2f}{3}$$

$$3G = \frac{a+b+c+2(e+d+f)}{3}$$

Luego sumando las tres ecuaciones de (4): $d+e+f=\frac{2a+2b+2c}{2}=a+b+c$. Y sustituyendo en la ecuación obtenida anteriormente:

$$3G = \frac{a+b+c+2(a+b+c)}{3} = \frac{3(a+b+c)}{3} = a+b+c$$

$$G = \frac{a+b+c}{3}$$

Problema 6. Demuestre que

$$\cos \theta + \cos 3\theta + \cdots \cos(2n-1)\theta = \frac{\sin 2n\theta}{2\sin \theta}.$$

Solución

Se tiene que:

$$\frac{\sin(2n\theta)}{\sin(\theta)} = \frac{Im(e^{2in\theta})}{Im(e^{i\theta})} = \frac{\frac{1}{2i}(e^{2in\theta} - e^{-2in\theta})}{\frac{1}{2i}(e^{i\theta} - e^{-i\theta})} = \frac{a^{2n} - b^{2n}}{a - b}$$

Donde $a = e^{i\theta}$ y $b = e^{-i\theta}$, por lo que:

$$\frac{\sin(2n\theta)}{\sin(\theta)} = a^{2n-1} + a^{2n-2}b + \dots + ab^{2n-2} + b^{2n-1}$$

$$= e^{(i\theta)^{2n-1}} + e^{(i\theta)^{2n-2}}e^{-i\theta} + \dots + e^{(i\theta)^n}e^{(-i\theta)^{n-1}} + e^{(i\theta)^{n-1}}e^{(-i\theta)^n} + \dots + e^{i\theta}e^{(-i\theta)^{2n-2}} + e^{(-i\theta)^{2n-1}}$$

$$= e^{(i\theta)^{2n-1}} + e^{(i\theta)^{2n-3}} + \dots + e^{i\theta} + e^{-i\theta} + \dots + e^{i\theta}e^{(-i\theta)^{2n-2}} + e^{(-i\theta)^{2n-1}}$$

$$= (e^{(2n-1)i\theta} + e^{-(2n-1)i\theta}) + \dots + (e^{i\theta} + e^{-i\theta})$$

$$= 2(\cos\theta + \cos 3\theta + \dots + \cos(2n-1)\theta)$$

$$= 2(\cos\theta + \cos 3\theta + \dots + \cos(2n-1)\theta)$$

$$\frac{\sin(2n\theta)}{2\sin(\theta)} = \cos\theta + \cos 3\theta + \dots + \cos(2n-1)\theta$$

Problema 7. Considere el conjunto

$$C = \{ n \in \mathbb{N} | n = x^2 + y^2, \ x, y \in \mathbb{N} \}.$$

Demuestre que C es un conjunto cerrado bajo multiplicación.

$$C = \left\{ n \in \mathbb{N} | n = x^2 + y^2, x, y \in \mathbb{N} \right\}$$

Sea z un número complejo tal que $Re\left[z\right], Im\left[z\right] \in \mathbb{N},$ y w un número complejo tal que $Re\left[w\right], Im\left[w\right] \in \mathbb{N}$ tenemos que:

$$Re[z]^{2} + Im[z]^{2} = |z|^{2}$$

 $Re[w]^{2} + Im[w]^{2} = |w|^{2}$

De esto: $|z|^2, |w|^2 \in C$

$$|z|^{2}|w|^{2} = z\bar{z}w\bar{w}$$
$$= zwz\bar{w}$$
$$= |zw|^{2}$$

Definamos z = a + bi y w = c + di tenemos que:

$$zw = ac + adi + bci - bd$$

$$zw = (ac - bd) + (ad + bc) i$$

Ya que los valores de a,b,c,d pueden tomar cualquier valor $\in \mathbb{N}$ y por cerraduras en los \mathbb{N} es trivial ver que $Re\left[zw\right]=(ac-bd), Im\left[zw\right]=(ad+bc)\in \mathbb{N}$ entonces C es cerrado bajo la multiplicación.

Problema 8. Si $\xi \neq 1$ es raíz *n*-ésima de la unidad halle el valor de

$$(1-\xi)(1-\xi^2)\cdots(1-\xi^{n-1}).$$

Solución

Sea $z^n = 1$, se tiene que $z^n - 1 = 0$ Este polinomio tiene n raíces de la forma ξ_k con lo que se puede escribir:

$$z^{n} - 1 = (z - 1)(z - \xi)(z - \xi_{2})\dots(z - \xi_{n-1})$$
(5)

Pero ξ_k se puede escribir en la forma : $e^{\frac{2\pi i}{n}k}=e^{\left(\frac{2\pi i}{n}\right)^k}$

Con lo que se puede obtener la relación entre las raices:

$$\xi_{1} = e^{\left(\frac{2\pi i}{n}\right)}$$

$$\xi_{2} = e^{\left(\frac{2\pi i}{n}\right)^{2}} = \xi_{1}^{2}$$

$$\vdots$$

$$\xi_{n-1} = e^{\left(\frac{2\pi i}{n}\right)^{n-1}} = \xi_{1}^{n-1}$$

Por lo que (5) se vuelve de la forma:

$$z^{n} - 1 = (z - 1)(z - \xi_{1})(z - \xi_{1}^{2})\dots(z - \xi_{1}^{n-1})$$
(6)

Por otro lado:

$$z^{n} - 1 = (z - 1)(1 + z + z^{2} + \dots + z^{n-1})$$
(7)

De (6) y (7) se obtiene lo siguiente:

$$f(z) = (z - \xi_1)(z - \xi_1^2) \dots (z - \xi_1^{n-1}) = (1 + z + z^2 + \dots + z^{n-1})$$
(8)

Si se valua f(1) en (8) se obtiene la expresión pedida:

$$f(1) = (1 - \xi_1)(1 - \xi_1^2)\dots(1 - \xi_1^{n-1}) = (1 + 1 + 1^2 + \dots + 1^{n-1}) = n$$

$$(1-\xi)(1-\xi^2)\dots(1-\xi^{n-1})=n$$

Problema 9. Si $|a_i|<1$ y $\lambda_i\geq 0$ para $i=1,2,3,\cdots,n$ y $\lambda_1+\lambda_2+\cdots+\lambda_n=1$, demuestre que

$$|\lambda_1 a_1 + \lambda_2 a_2 + \cdots + \lambda_n a_n| < 1.$$

Como $|a_i| < 1$ entonces $\lambda_i |a_i| < \lambda_i$. De manera semejante:

$$\begin{split} |\lambda_i||a_i| &< \lambda_i \quad \text{porque } \lambda_i \geq 0 \\ |\lambda_i a_i| &< \lambda_i \\ Y &: \\ |\lambda_1 a_i| + |\lambda_2 a_2| + |\lambda_3 a_3| + \ldots + |\lambda_n a_n| < \lambda_1 + \lambda_2 + \lambda_3 + \ldots + \lambda_n = 1 \\ |\lambda_1 a_i| + \lambda_2 a_2 + \lambda_3 a_3 + \ldots + \lambda_n a_n| < 1 \end{split}$$

Problema 10. Halle los enteros positivos m y n más pequeños para los cuales

$$(1 + i\sqrt{3})^m = (1 - i)^n.$$

Solución

Queremos encontrar los menores valores de m y $n \in \mathbb{N}^+$ que cumplan:

$$\left(1 + i\sqrt{3}\right)^m = (1 - i)^n$$

Esto debe satisfacer:

$$\left[(1+3)^{1/2} e^{i \arctan \sqrt{3}} \right]^m = \left[(1+1)^{1/2} e^{-i \arctan(-1)} \right]^n$$
$$\left(2e^{\frac{i\pi}{3}} \right)^m = \left(\sqrt{2}e^{-\frac{i\pi}{4}} \right)^n$$

Tenemos entonces:

$$\frac{2^m}{2^{n/2}} \left(e^{\frac{im\pi}{3}} \right) \left(e^{\frac{in\pi}{4}} \right) = 1$$
$$z = 2^{m - \frac{n}{2}} e^{i\pi \left(\frac{m}{3} + \frac{n}{4} \right)} = 1$$

Esto quiere decir, que tiene que cumplirse que el argumento de z es congruente con 0 en módulo 2π . Y además, |z| debe ser 1:

$$\begin{cases} \pi \left(\frac{m}{3} + \frac{n}{4} \right) \equiv 0 \mod(2\pi) \\ 2^{m - \frac{n}{2}} = 1 = 2^0 \end{cases}$$

Resolviendo de la segunda:

$$m - \frac{n}{2} = 0$$
$$n = 2m$$

Sustituyendo en la primera, que al dividirla dentro de 2π el residuo tiene que ser cero, esto es, el resultado $\in \mathbb{N}$:

$$\frac{-\frac{5}{6}\pi m}{2\pi} \in \mathbb{N}$$
$$-\frac{5}{12}m \in \mathbb{N}$$

Por tanto m puede tomar cualquier valor de la forma 12p con $p \in \mathbb{N}$. El menor valor de m es 12; por tanto el menor valor de n es 24.

Problema 11. Demuestre que

$$\sin\frac{\pi}{n}\cdot\sin\frac{2\pi}{n}\cdots\sin\frac{(n-1)\pi}{n}=\frac{n}{2^{n-1}}.$$

Sabemos que:

$$\sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

De esto, partimos de:

$$\begin{split} \sin\frac{\pi}{n} \cdot \sin\frac{2\pi}{n} \cdots \sin\frac{(n-1)\pi}{n} &= \prod_{k=1}^{n-1} \sin\frac{\pi k}{n} \\ &= \prod_{k=1}^{n-1} \frac{e^{i\pi k/n} - e^{-i\pi k/n}}{2i} \\ &= \prod_{k=1}^{n-1} \frac{-i}{2} \left(e^{i\pi k/n} - e^{-i\pi k/n} \right) \\ &= \prod_{k=1}^{n-1} \frac{i}{2} \left(e^{-i\pi k/n} - e^{i\pi k/n} \right) \\ &= \prod_{k=1}^{n-1} \frac{i}{2} \left(e^{-i\pi k/n} \right) \left(1 - e^{i2\pi k/n} \right) \\ &= \frac{i^{n-1}}{2^{n-1}} \prod_{k=1}^{n-1} \left(e^{-i\pi k/n} \right) \left(1 - e^{i2\pi k/n} \right) \\ &= \frac{i^{n-1}}{2^{n-1}} \left(\exp\left\{ \sum_{k=1}^{n-1} -i\pi k/n \right\} \right) \prod_{k=1}^{n-1} \left(1 - e^{i2\pi k/n} \right) \\ &= \frac{i^{n-1}}{2^{n-1}} \left(\exp\left\{ \frac{-i\pi}{n} \frac{n(n-1)}{2} \right\} \right) \prod_{k=1}^{n-1} \left(1 - e^{i2\pi k/n} \right) \\ &= \frac{\exp\left\{ i\pi/2 \right\}^{n-1}}{2^{n-1}} \left(\exp\left\{ -i\pi \frac{(n-1)}{2} \right\} \right) \prod_{k=1}^{n-1} \left(1 - e^{i2\pi k/n} \right) \\ &= \frac{\exp\left\{ i\pi/2 \right\}^{n-1}}{2^{n-1}} \left(\exp\left\{ -i\pi \frac{(n-1)}{2} \right\} \right) \prod_{k=1}^{n-1} \left(1 - e^{i2\pi k/n} \right) \\ &= \frac{1}{2^{n-1}} \prod_{k=1}^{n-1} \left(1 - e^{i2\pi k/n} \right) \end{split}$$

Ahora, recordemos que

$$z^{n} - 1 = \prod_{k=0}^{n-1} (z - e^{i2\pi k/n})$$

De esto:

$$\frac{z^n - 1}{z - 1} = \prod_{k=1}^{n-1} (z - e^{i2\pi k/n})$$

Y, al valuar $\lim_{z\to 1}$, usando L'ohpital.

$$\lim_{z \to 1} \frac{z^n - 1}{z - 1} = \lim_{z \to 1} \frac{nz^{n-1}}{1}$$
$$\prod_{k=1}^{n-1} (1 - e^{i2\pi k/n}) = n$$

Problema 12. Suponga que una partícula se encuentra en el plano xy, esta se mueve una unidad hacia el este, luego se mueve la misma longitud hacia el norte, luego 1/2 de longitud anterior hacia el oeste, luego un 1/3 de la longitud previa al sur, luego 1/4 de la longitud previa al este y así sucesivamente. ¿Hacia qué punto converge esta espiral?

Solución

Podemos expresar esta espiral como una suma de vectores; o bien, como una suma de números complejos. Esta es de la siguiente manera:

$$0+1+1i-\frac{1}{2}-\frac{1}{3}i+\frac{1}{4}+\frac{1}{5}i-\cdots$$

Por tanto; separando parte real y parte imaginaria de esta suma tenemos:

$$\left(1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{6} + \frac{1}{8} \cdots\right) + \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots\right)i$$

Esto es:

$$1 - \left(\frac{1}{2} - \frac{1}{4} + \frac{1}{6} - \frac{1}{8} \cdots\right) + \left(\frac{1}{1} - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \cdots\right)i$$

Esto es:

$$1 - \sum_{n=1}^{\infty} \left(\frac{1}{2n}\right) (-1)^{n-1} + i \sum_{m=0}^{\infty} \left(\frac{1}{2m+1} (-1)^m\right)$$
$$1 - \frac{1}{2} \sum_{n=1}^{\infty} \left(\frac{1}{n}\right) (-1)^{n-1} + i \sum_{m=0}^{\infty} \left(\frac{1}{2m+1} (-1)^m\right)$$

Sabemos que al expandir en series las siguientes dos funciones tenemos:

$$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \dots$$
$$\arctan(z) = \sum_{n=0}^{\infty} \frac{(-1)^n z^{2n+1}}{2n+1} \qquad |z| \le 1 \qquad z \ne i, -i$$

Sea x = z = 1 tenemos:

$$\ln(2) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{k} 1^k = 1 - \frac{1^2}{2} + \frac{1^3}{3} - \dots$$
$$\arctan(1) = \sum_{n=0}^{\infty} \frac{(-1)^n 1^{2n+1}}{2n+1} = 1 - \frac{1^3}{3} + \frac{1^5}{5} - \frac{1^7}{7} + \dots$$

De esto podemos determinar que la espiral converge a:

$$1 - \frac{\ln(2)}{2} + i\arctan(1)$$

Es decir converge al punto $\left(1 - \frac{\ln(2)}{2}, i \arctan(1)\right)$

Problema 13. Sea z un número complejo tal que $|z| = \sqrt{2}$. Halle el máximo de

$$|(z^2-1)(z-1)|.$$

Sea z = a + bi, $|z|^2 = 2$ entonces por lo que $a^2 + b^2 = 2$.

Ahora operando:

$$|(z^2-1)(z-1)|$$

$$|(z+1)(z-1)^2|$$

$$|(z+1)||(z-1)|^2$$

$$|z+1|(z-1)(\overline{z-1})$$

$$(z\overline{z}-z-\overline{z}+1)|z+1|$$

$$(|z|^2 - 2Re(z) + 1)|z + 1|$$

$$(a^2+b^2-2a+1)\sqrt{a^2+2a+1+b^2}$$

Luego se sustituye $a^2 + b^2 = 2$:

$$(3-2a)(\sqrt{3+2a})$$

y se define f(a) como:

$$f(a) = (3 - 2a)\sqrt{3 + 2a}$$

Para encontrar el máximo de la función se deriva y se iguala a cero, los a_n para los que f'(a) = 0

$$f'(a) = -2\sqrt{3+2a} + \frac{3-2a}{\sqrt{3+2a}} = \frac{-2(3+2a)+3-2a}{\sqrt{3+2a}} = \frac{-3(2a+1)}{\sqrt{3+2a}} = 0$$

Se tiene a = -1/2

$$f''(-1/2) < 0$$

Por lo que f(a) tiene un máximo en $-\frac{1}{2}$

Valuando en f(a):

$$f(-1/2) = (3+1)(\sqrt{3-1}) = 4\sqrt{2}$$

Entonces f(a) tiene una máximo en $4\sqrt{2}$.

Problema 14.

- a) Dado $z \in \mathbb{C}$, demuestre que existen $\alpha, \beta \in \mathbb{C}$ con $|\alpha| = |\beta| = 1$ tales que $z = \alpha + \beta$ sí y solo sí $|z| \leq 2$.
- b) Dado $z \in \mathbb{C}$, demuestre que existen $\alpha, \beta \in \mathbb{C}$ con $|\alpha| = |\beta| = |\gamma| = 1$ tales que $z = \alpha + \beta + \gamma$ sí y solo sí $|z| \leq 3$.

Solución

(a)

$$\Rightarrow$$
 Si $z = \alpha + \beta$ entonces $|z| \le 2$:

Por desigualdad triangular:

$$|z| \le |\alpha| + |\beta|$$

$$|z| \le 1 + 1 = 2$$

$$|z| \leq 2$$

Problema 15. Demuestre que

$$\frac{\xi}{1+\xi^2} + \frac{\xi^2}{1+\xi^4} + \frac{\xi^3}{1+\xi} + \frac{\xi^4}{1+\xi^3} = 2,$$

si $\xi^5 = 1$.

Solución

Ya que $\xi^5 = 1$ tenemos que $\xi^6 = \xi \cdots$.

$$\frac{\xi}{1+\xi^2} + \frac{\xi^2}{1+\xi^4} + \frac{\xi^3}{1+\xi} + \frac{\xi^4}{1+\xi^3} =$$

$$\frac{\xi+\xi^5+\xi^2+\xi^4}{(1+\xi^2)(1+\xi^4)} + \frac{\xi^3+\xi+\xi^4+\xi^5}{(1+\xi)(1+\xi^3)} =$$

$$\frac{\xi+\xi^5+\xi^2+\xi^4}{\xi^5+\xi^4+\xi^2+\xi^6} + \frac{\xi^3+\xi+\xi^4+\xi^5}{1+\xi^3+\xi+\xi^4} =$$

$$\frac{\xi+\xi^2+\xi^4+\xi^5}{\xi^1+\xi^2+\xi^4+\xi^5} + \frac{\xi^1+\xi^3+\xi^4+\xi^5}{\xi^1+\xi^3+\xi^4+\xi^5} =$$

$$1+1=$$

$$=2$$

Problema 16. Sea n un entero positivo. Demuestre que existe un número complejo cuyo módulo es 1 y que es solución de la ecuación $z^n + z + 1 = 0$ si y solo si $n \equiv 2 \mod 3$.

Queremos demostrar:

$$\exists z \mid |z| = 1, z^n + z + 1 = 0 \Rightarrow n \equiv 2 \mod 3$$
 (Ida)

у

$$n \equiv 2mod3 \Rightarrow \exists z \mid |z| = 1, z^n + z + 1 = 0$$
 (Vuelta)

Ida:

Existe un $z=e^{i\theta}$ tal que es solución de $z^n+z+1=0.$ De esto:

$$e^{in\theta} + e^{i\theta} + 1 = 0 \tag{9}$$

Descomponiendo (9) en su parte real e imaginaria tenemos:

Parte imaginaria:

$$\sin(n\theta) + \sin(\theta) = 0$$

$$\sin(n\theta) = -\sin(\theta)$$

$$\sin(n\theta) = \sin(-\theta)$$

$$\sin(n\theta) = \sin(2\pi k - \theta)$$

$$k \in \mathbf{Z}$$

$$n = \frac{2\pi k}{\theta} - 1\tag{10}$$

Parte real:

$$\cos(n\theta) + \cos(\theta) + 1 = 0$$

$$\operatorname{Por}(10)$$

$$\cos\left(\left(\frac{2\pi k}{\theta} - 1\right)\theta\right) + \cos(\theta) = -1$$

$$\cos(2\pi k - \theta) + \cos(\theta) = -1$$

$$\cos(-\theta) + \cos(\theta) = -1$$

$$\cos\theta + \cos\theta = -1$$

$$\cos\theta = -\frac{1}{2}$$

$$\theta = \arccos\left(-\frac{1}{2}\right) = \frac{2}{3}\pi$$

$$\theta = \frac{2}{3}\pi\tag{11}$$

Ahora sustituyendo 11 en 10 tenemos:

$$n = \frac{2\pi k}{\frac{2}{3}\pi} - 1$$
$$= 3k - 1 \Rightarrow$$

 $n \equiv 2 mod 3$

Vuelta

Queremos demostrar, sabiendo que $n \equiv 2mod3$, existe alguna solución p_0 tal que |p| = 1 para la ecuación $z^n + z + 1 = 0$.

Plan: proponemos un número complejo p de módulo 1, lo valuamos en el lado izquierdo del polinomio y si este es igual a cero entonces era una solución, y queda demostrado.

Sea $p = e^{i\frac{2}{3}\pi}$

$$p^{n} + p + 1 = p^{3k-1} + p + 1$$

$$= e^{i\frac{2}{3}\pi(3k-1)} + e^{i\frac{2}{3}\pi} + 1$$

$$= e^{i\left(2\pi k - \frac{2}{3}\pi\right)} + e^{i\frac{2}{3}\pi} + 1$$

$$= \cos\left(2\pi k - \frac{2}{3}\pi\right) + i\sin\left(2\pi k - \frac{2}{3}\pi\right) + \cos\left(\frac{2}{3}\pi\right) + i\sin\left(\frac{2}{3}\pi\right) + 1$$

$$= \cos\left(-\frac{2}{3}\pi\right) + i\sin\left(-\frac{2}{3}\pi\right) + \cos\left(\frac{2}{3}\pi\right) + i\sin\left(\frac{2}{3}\pi\right) + 1$$

$$= \cos\left(\frac{2}{3}\pi\right) - i\sin\left(\frac{2}{3}\pi\right) + \cos\left(\frac{2}{3}\pi\right) + i\sin\left(\frac{2}{3}\pi\right) + 1$$

$$= 2\cos\left(\frac{2}{3}\pi\right) + 1$$

$$= 2\cos\left(\frac{2}{3}\pi\right) + 1$$

$$= -1 + 1 = 0$$

Problema 17. Resuelva para $z \in \mathbb{C}$ la ecuación:

$$|z - |z + 1|| = |z + |z - 1||.$$

Solución

$$|z - |z + 1|| = |z + |z - 1||$$

Ya que son módulos, son siempre positivos, podemos elevar al cuadrado sin perder soluciones

$$|z - |z + 1||^2 = |z + |z - 1||^2$$

$$(z - |z + 1|)\overline{(z - |z + 1|)} = (z + |z - 1|)\overline{(z + |z - 1|)}$$

$$(z - |z + 1|)(\overline{z} - |z + 1|) = (z + |z - 1|)(\overline{z} + |z - 1|)$$

$$(z - |z + 1|)(\overline{z} - |z + 1|) = (z + |z - 1|)(\overline{z} + |z - 1|)$$

$$(z - |z + 1|)(\overline{z} - |z + 1|) = (z + |z - 1|)(\overline{z} + |z - 1|)$$

$$|z|^2 + |z + 1|^2 - z|z + 1| - \overline{z}|z + 1| = |z|^2 + |z - 1|^2 + z|z - 1| + \overline{z}|z - 1|$$

$$|z + 1|^2 - |z - 1|^2 = z(|z - 1| + |z + 1|) + \overline{z}(|z - 1| + |z + 1|)$$

$$(z + 1)\overline{(z + 1)} - (z - 1)\overline{(z - 1)} = (z + \overline{z})(|z - 1| + |z + 1|) (Re(z))$$

$$(z + \overline{z}) = (|z - 1| + |z + 1|) (Re(z))$$

$$2(z + \overline{z}) = (|z - 1| + |z + 1|) (Re(z))$$

$$0 = (|z - 1| + |z + 1|) (Re(z)) - 2(Re(z))$$

$$0 = (Re(z)) ((|z - 1| + |z + 1|) - 2)$$

Llegamos a dos soluciones, Re(z) = 0 o |z-1| + |z+1| - 2 = 0. El primer caso nos dice que z = iy para $y \in \mathbb{R}$ es solución, por lo que todo el eje imaginario es solución; trabajemos ahora la segunda solución.

$$|z - 1| + |z + 1| = 2 \tag{12}$$

Observemos esto geométricamente:

Sin pérdida de la generalidad, no importando donde esté z, los puntos z, z+1 y z-1 son colineales y paralelos al eje real (ya que se hace una suma a z de un número puramente real de magnitud 1). Por tanto, necesariamente se tiene que cumplir la ley de cosenos en el triángulo formado por el origen y $z \pm 1$. Ya que conocemos la longitud del lado formado entre z+1 y z-1 (esta es 2: (z+1)-(z-1)=2 (el que el resultado sea real nos demuestra que ese lado es paralelo al eje real.), |2|=2). Entonces tenemos:

$$2^{2} = |z - 1|^{2} + |z + 1|^{2} - 2|z - 1||z + 1|\cos\left(\arg\left(\frac{z + 1}{z - 1}\right)\right)$$
(13)

Pero a su vez debe cumplirse (12), y ya que es una suma de módulos, puedo elevar al cuadrado sin perder soluciones, de (12) tenemos:

$$|z-1|^2 + 2|z-1||z+1| + |z+1|^2 = 2^2$$
(14)

Igualando (14)=(13) tenemos:

$$|z-1|^{2} + 2|z-1||z+1| + |z+1|^{2} = |z-1|^{2} + |z+1|^{2} - 2|z-1||z+1|\cos\left(\arg\left(\frac{z+1}{z-1}\right)\right)$$

$$2|z-1||z+1| = -2|z-1||z+1|\cos\left(\arg\left(\frac{z+1}{z-1}\right)\right)$$

$$\cos\left(\arg\left(\frac{z+1}{z-1}\right)\right) = -1$$

$$\Rightarrow$$

$$\arg\left(\frac{z+1}{z-1}\right) \equiv \pi mod 2\pi$$

Esto quiere decir que el ángulo entre z+1 y z-1 es llano, y el triángulo que se formaba ahora es una recta con los 3 puntos colineales; la única forma que eso pase es que Im(z)=0, ya que si contiene parte imaginaria los puntos z+1 y z-1 estarían fuera del eje real y no serían colineales con cero.

Además sabemos que se debe cumplir (12), de eso y la desigualdad triangular tenemos:

$$|z| + |-1| + |z| + |1| \ge 2$$

 $2|z| \ge 0$
 $|z| \ge 0$

Y también:

$$|z-1+z+1| \le 2$$
$$|2z| \le 2$$
$$|z| \le 1$$

Por tanto, ya que z es real: $-1 \le z \le 1$.

Por último probamos que de la región que logramos acotar (una recta real de -1 a 1) todos los elementos son solución. Sustituyendo 1 y -1 en (12) vemos que ambos son solución. Para -1 < z < 1 tenemos:

$$|z+1| = (z+1)$$
$$|z-1| = -(z-1)$$
$$|z-1| + |z+1| = (z+1) - (z-1) = 2$$

También son solución.

De todo esto concluimos:

Las soluciones de z son:

- Todo el eje imaginario
- Una recta cerrada real que va desde -1 hasta 1.

Problema 18. Considere un tetraedro regular inscrito en la esfera de Riemann. Encuentre la proyección estereográfica de sus vértices en el plano complejo. (El tetraedro debe ser considerado en una posición arbitraria).

Solución

Con un poco de investigación (o de geometría), encontramos que los vértices de un tetraedro inscrito en una uniesfera están dados por los puntos:

$$\langle v_1 | = (0, 0, 1)$$

$$\langle v_2 | = \left(\sqrt{\frac{8}{9}}, 0, -\frac{1}{3}\right)$$

$$\langle v_3 | = \left(-\sqrt{\frac{2}{9}}, \sqrt{\frac{2}{3}}, -\frac{1}{3}\right)$$

$$\langle v_4 | = \left(-\sqrt{\frac{2}{9}}, -\sqrt{\frac{2}{3}}, -\frac{1}{3}\right)$$

Nota: La notación $\langle \bullet |$ se utiliza para denotar vectores fila, y la notación $| \bullet \rangle$ para denotar vectores columna, por ejemplo, si $\langle x | = (x_1, x_2, x_3)$ entonces $| x \rangle = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$

Pero claro, esto no es una posición arbitraria. Sin embargo, podemos llegar a cualquier posición aplicando simples rotaciones.

Para hacer más sencillo el planteamiento, utilizaremos rotaciones solo al rededor de los ejes. Por lo tanto la máxima contidad de rotaciones a realizar para llegar a cualquier configuración deseada, será tres, una al rededor de cada eje.

Conocemos las matrices de rotación:

$$X = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{pmatrix}$$

$$Y = \begin{pmatrix} \cos \phi & 0 & \sin \phi \\ 0 & 1 & 0 \\ -\sin \phi & 0 & \cos \phi \end{pmatrix}$$

$$Z = \begin{pmatrix} \cos \gamma & -\sin \gamma & 0 \\ \sin \gamma & \cos \gamma & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Por tanto, cualquier configuración deseada puede darse con los puntos:

$$\begin{aligned} |p_1\rangle &= Z\left(Y\left(X\left|v_1\right\rangle\right)\right) \\ |p_2\rangle &= Z\left(Y\left(X\left|v_2\right\rangle\right)\right) \\ |p_3\rangle &= Z\left(Y\left(X\left|v_3\right\rangle\right)\right) \\ |p_4\rangle &= Z\left(Y\left(X\left|v_4\right\rangle\right)\right) \end{aligned}$$

Y luego, lo único que hace falta es calcular los puntos z_k en el plano complejo:

$$z_k = \frac{p_{k_1} + i p_{k_2}}{1 - p_{k_3}}$$

Con p_{k_j} la j-esima componente del vector $|p_k\rangle$