Hawking Area Theorem Intuition

Aarush Chaubey

May 2023

Because black holes are so massive, they are extremely, if not actually, perfect spheres. This means we can approximate with very high accuracy $SA=4\pi r^2$. We also know that $F_g=\frac{GMm}{r^2}$, so we know that the force due to gravity and surface area are related(made obvious by substitution).

If we say $SA \propto G^{\alpha}M^{\beta}c^{\gamma}$, we can use dimensional analysis to arrive at the following

$$m^2 = (\frac{m^3}{s^2 * kq})^{\alpha} (kg)^{\beta} (\frac{m}{s})^{\gamma}$$

The units of G can be found by $F_g=\frac{GMm}{r^2}=ma$ and solving for G in terms of a,M,r

Rearranging:

$$m^{2} = m^{3\alpha + \gamma}$$
$$s^{0} = s^{-2\alpha - \gamma}$$
$$kq^{0} = kq^{\beta - \alpha}$$

Solving the system gives: $\alpha=2,\beta=2,\gamma=-4$, yielding $SA\propto \frac{G^2M^2}{c^4}$ The actual formula for surface area is $A=\frac{16\pi G^2M^2}{c^4}$

Any increase in mass will result in a greater surface area, thus:

$$\frac{d(SA)}{dt} \geq 0$$