CSE 2320 -	Homework 5	NAME:			
Total points: 1	.00 Topics: Recuri	rences , solved wi	th methods: Mas	ster Theorem, Tree, Substitution (induction	ո)
Convention:	[] means round	ded up and []	means rounded	l down.	
P1. (23 points) Use the tree and	table method to o	compute the 0 ti	me complexity for $T(N) = 5T(\lfloor N/4 \rfloor) + 2$	$2N^3$.
Assume T(0) =	= 1 and T(1) = 1. Fi	II in the table bel	ow and finish the	computations outside of it:	
Level	Argument/ Problem size	Cost of one node	Nodes per level	Cost of whole level	
0					
1					
2					_
i					
k= Leaf level. Write k as a					

Total tree cost calculation:	
------------------------------	--

T(N) = Θ(.....)

function of N.

Draw the tree. Show **levels 0,1,2** and the **leaves level**. Show the problem size T(...) as a label next to the node and inside the node show the local cost (cost of one node) as done in class. For the leaf level and level 2 it suffices to show a few nodes.

P2. (23 **points**) Use the tree and table method to compute the **O** time complexity for T(N) = 4T(N-5) + 7. Assume T(N) = 1 for all $0 \le N \le 4$. Assume N is a convenient value for your computations.

Fill in the table below and finish the computations outside of it:

Level	Argument/ Problem size	Cost of one node	Nodes per level	Cost of whole level
0				
1				
2				
i				
k= Leaf level. Write k as a function of N.				

Total tree cost calculation:
T(N) = \(\Theta(\ldots)\)

Draw the tree. Show **levels 0,1,2** and the **leaves level**. Show the problem size T(...) as a label next to the node and inside the node show the local cost (cost of one node) as done in class. For the leaf level and level 2 it suffices to show a few nodes.

P3. (**36 points**) Can you use the Master Theorem to solve the recurrences below? If yes, solve it with this method, if no, show why you cannot use it.

- a) $T(N) = 5T(|N/4|) + 2N^3$. Assume T(0) = 1 and T(1) = 1.
- b) T(N) = 4T(N/4) + d, for some constant d>0. Assume T(0) = 1 and T(1) = 1.
- c) T(N) = 6T(N/6) + 5N, Assume T(0) = 1 and T(1) = 1.
- d) $T(N) = 8T(N/2) + cN^3 lgN$, Assume T(0) = 1, and T(1) = 1.

P4. (4 **points**) Go to the Wikipedia webpage https://en.wikipedia.org/wiki/Master_theorem (analysis_of_algorithms). See section "Inadmissible equations" and list the equation and the reason why it does not satisfy the Master Theorem requirements.

P5. (14 points) Show that $T(N) = 5T(\lfloor N/4 \rfloor) + 2N^3 = \Theta(N^3)$ by showing that it is $O(N^3)$ and also $\Omega(N^3)$. Assume T(0) = 1 and T(1) = 1

- a) (9 points) Use the induction method to show O(N³). As done in class, start with the inductive step and then check and refine for enough low values of N until the inductive step can be applied (See lecture from Wed, Oct 11).
- b) (5 points) Use just the definition with c and n_0 to show that it is $\Omega(N^3)$. Assume that $T(N) \ge 0$, for all $N \ge 0$. You should not need to use induction. (It is easier without induction.)

Write your answers in a document called **2320_H5.pdf**. It can be hand-written and scanned, but it must be uploaded electronically. Submit just the 2320_H5.pdf.

Remember to include your name at the top.