# Olympiades Françaises de Mathématiques 2013-2014



# Envoi Numéro 1

## À renvoyer au plus tard le vendredi 15 novembre



Les consignes suivantes sont à lire attentivement :



Le groupe B est constitué des élèves nés en 1999 ou après, avec les exceptions suivantes :





- Les exercices classés « Groupe B »ne sont à chercher que par les élèves du groupe B.
- Les exercices classés « communs » sont à chercher par tout le monde.
- Les exercices classés « Groupe A » ne sont à chercher que par les élèves du groupe A.
- Les exercices doivent être cherchés de manière individuelle.
- Utiliser des feuilles différentes pour des exercices différents.
- Respecter la numérotation des exercices.







### Exercices du groupe B

Exercice 1. Soient A, B, C, D quatre points sur un même cercle. Notons A' et C' les projetés orthogonaux de A et C sur (BD), et B' et D' les projetés orthogonaux de B et D sur (AC). Montrer que A', B', C', D' sont cocycliques.

*Exercice 2.* Sur la diagonale [BD] d'un carré ABCD on a choisi un point E. Soient  $O_1$  et  $O_2$  les centres des cercles circonscrits aux triangles ABE et ADE respectivement. Montrer que  $AO_1EO_2$  est un carré.

Exercice 3. Un quadrilatère ABCD est inscrit dans un cercle. Ses diagonales se coupent au point K. Le cercle passant par A, B, K croise les droites (BC) et (AD) aux points M et N respectivement. Montrer que KM = KN.

#### **Exercices Communs**

Exercice 4. Soit ABC un triangle dont tous les angles sont aigus, et dont l'angle  $\widehat{B}$  est de 60 degrés  $(=\pi/3 \text{ radian})$ . Les hauteurs [AD] et [CE] se coupent au point H. Prouver que le centre du cercle circonscrit au triangle ABC est situé sur la bissectrice commune des angles  $\widehat{AHE}$  et  $\widehat{CHD}$ .

Exercice 5. A l'extérieur du triangle ABC on construit les deux points X et Y vérifiant :

- le triangle AXB est isocèle de base [AB];
- le triangle BYC est isocèle de base [BC];
- $-\widehat{AXB} + \widehat{BYC} = 180^{\circ}.$

Soit Z le milieu de [AC]. Montrer que les droites (XZ) et (YZ) sont perpendiculaires.



Exercice 6. Le sommet B d'un angle  $\widehat{ABC}$  se trouve à l'extérieur d'un cercle  $\omega$  tandis que les demidroites [BA) et [BC) le traversent. Soit K un point d'intersection du cercle  $\omega$  avec [BA). La perpendiculaire à la bissectrice de l'angle  $\widehat{ABC}$  passant par K recoupe le cercle au point P, et la droite (BC) au point M. Montrer que le segment [PM] est deux fois plus long que la distance entre le centre de  $\omega$  et la bissectrice de  $\widehat{ABC}$ .

### Exercices du groupe A

Exercice 7. Soit ABCD un quadrilatère convexe. On considère les deux quadrilatères convexes  $F_1$  et  $F_2$ , dont chacun a deux sommets opposés qui sont les milieux des diagonales [AC] et [BD], et dont les deux autres sommets sont les milieux des côtés opposés du quadrilatère ABCD. Montrer que les aires de  $F_1$  et de  $F_2$  sont égales si et seulement si au moins l'une des diagonales du quadrilatère ABCD le divise en triangles d'aires égales.



Exercice 8. Le cercle  $\omega$  passe par les sommets B et C du triangle ABC et coupe les côtés [AB] et [AC] aux points D et E respectivement. Les segments [CD] et [BE] se coupent en un point O. Soient M et N les centres des cercles inscrits dans les triangles ADE et ODE respectivement. Montrer que le milieu de l'arc DE (le plus petit des deux arcs) du cercle  $\omega$  se trouve sur la droite (MN).



Exercice 9. Un cercle de centre O est inscrit dans un quadrilatère ABCD dont les côtés ne sont pas parallèles. Montrer que le point O coïncide avec le point d'intersection des lignes médianes du quadrilatère si et seulement si  $OA \cdot OC = OB \cdot OD$ . (Une ligne médiane du quadrilatère est une droite reliant les milieux des côtés opposés.)



Fin