Copyrighted Materials Copyright © 2020 American Association of State Highway and Transportation Officials (AASHTO) Retrieved from app.knovel.com

INDEX

Abutments and retaining walls	parapets13-15
See Earth Pressure, 11-19	post-tensioning5-23
backfill11-7	railings13-15
bearing resistance11-21	seismic design14-85
conventional walls and abutments11-20	tension tie5-93
drainage11-35	Anchored walls11-44
dynamic load allowance3-34	anchor pullout capacity11-47
expansion and contraction joints11-21	anchor stressing and testing11-54
extreme event limit state11-18	anchors11-47, 11-50
general considerations11-19	bearing resistance11-46
integral abutments11-20	construction and installation
loading11-19	corrosion protection11-54
movement and stability11-21	drainage11-55
overturning11-24	dynamic load allowance3-34
passive resistance11-24	earth pressure3-133
protection2-4	facing11-52
reinforcement11-20	loading11-45
safety against structural failure11-25	movement and stability11-45
seismic design11-25	passive resistance11-50
sliding11-24	safety against soil failure11-46
subsurface erosion11-24	safety against structural failure11-50
transitions	seismic design11-53
wingwalls11-20	vertical wall elements
Aeroelastic instability	Anchors5-256
aeroelastic phenomena3-59	Angles
control of dynamic responses3-60	floorbeam/stringer end connection6-285
wind tunnel tests3-60	shelf6-285
Alkali–silica reactive aggregates 5-264	thickness of metal6-285
Aluminum	Annual frequency of collapse
camber	geometric probability3-166
coefficient of thermal expansion7-6	probability of aberrancy3-163
culverts12-8	probability of collapse3-167
effective area7-39	vessel frequency distribution3-162
fracture7-24	Approximate methods of analysis
local buckling7-48	beam-slab bridges4-29
minimum thickness7-34	decks4-22
net section7-39	effective flange width4-54
nondestructive testing7-32	effective length factor4-49
orthotropic decks See Orthotropic aluminum	equivalent strip widths for slab-type bridges .4-48
decks	moment magnification4-14, 4-16
shear and torsion7-56	seismic lateral load distribution4-62
slenderness ratios7-32	truss and arch bridges4-49
tensile resistance	Arches
unit weight3-21	arch ribs5-247
welding procedures and requirements7-31	effective length factor4-16
Anchor bolts	minimum reinforcement5-248
bearings14-84	moment magnification4-16
elastomeric bearings3-109	splices
deck joints14-18	steel, diaphragms6-79
seismic design14-85	Backfill See Abutments and retaining walls
Anchorages	Barriers
anchored walls11-45	anchorage3-109
bearings14-84	seismic forces3-109
deck joints14-18	Basic requirements of structural dynamics
design live loads13-11	damping4-78
footings10-54	distribution of masses4-77
geometry	natural frequencies4-78

stiffness4-78	rock10-83
Beam ledges	semiempirical procedures10-68
design for bearing5-112	spread footings
design for flexure and horizontal force5-108	Bicycles
design for punching shear5-108	deck joint provisions14-17
design for shear5-107	railing
design of hanger reinforcement5-110	Bolted connections6-285
Beam-slab bridges	bearing-type connections 6-286, 6-288
moment and shear4-35	eccentric6-285
special loads with other traffic4-47	edge distance6-290
Bearing area	end distance6-290
brackets5-105	holes6-288
concrete5-54	maximum pitch for stitch bolts6-289
fasteners6-295	maximum spacing for sealing bolts6-289
post-tensioning anchorage5-113	minimum number of bolts6-285
Bearing plates See Bearings	minimum spacing and clear distance6-289
Bearing stiffeners6-208	minimum weld6-285
axial resistance6-209	nuts6-84
bearing resistance6-209	slip-critical connections 6-285, 6-288
effective section6-209	washers 6-84, 6-287
projecting width6-208	Bolted splices
steel6-370	compression members6-304
Bearing-type connections6-286	fillers6-311
Bearings	flange splices6-308
See Disc bearings, Elastomeric bearings, Pot	flexural members6-304
bearings, and Railing	tension members6-304
anchor bolts14-84	web splices6-305
anchorage14-84	Bolts
applicability14-41	bearing resistance
bearing plates 5-67, 5-113	combined tension and shear6-297
bronze or copper alloy sliding surfaces14-77	effective bearing area6-295
characteristics14-37	fatigue resistance6-296
curved sliding surfaces14-50	gauge6-95, 6-289
design criteria14-41	materials8-21
disc bearings14-78	minimum number in a connection6-285
elastomeric bearings 14-57, 14-68	prying action6-296
fabrication, installation, testing and shipping	shear resistance 6-286, 6-290, 6-303
14-41	size6-288
force effects resulting from restraint of movement	slip resistance6-291
at the bearing14-38	tensile resistance 6-286, 6-296, 6-303
guides and restraints14-80	Box girders
horizontal force and movement14-38	analysis4-36
launching bearings5-242	effective flange width4-59
load plates14-83	live load distribution factors4-36
metal rocker and roller bearings14-43	wind bracing4-62
moment	wind load distribution4-62
movements and loads14-6	Bracing
other bearing systems14-82	See Diaphragms and cross-frames, and Lateral
pot bearings	bracing
PTFE sliding surfaces14-45	box sections4-62
seismic provisions for bearings14-41	connections
special design provisions14-43	glued laminated timber girders8-37
suitability14-37	portal bracing8-37
tapered plates14-84	sawn wood beams8-36
uplift	slenderness ratio 6-96, 6-109
Bearing resistance	sway bracing 8-37

temporary	4-62, 5-210, 6-71	Camber	
trusses	6-83	aluminum structures	7-31
wood trusses	8-37	concrete structures 5-44, 5-121, 5	5-141, 5-242
Brackets and corbels		glued laminated timber girders	8-37
alternative to strut-and-tie mo	odel5-105	steel structures	
Braking force	3-35	stress laminated decks	8-37
Bridge scour	See Scour	wood structures	8-12
Bridge site arrangement		wood trusses	8-37
traffic safety	2-4	Cantilever retaining walls	11-36
Bridge testing	4-90	corrosion protection	11-44
Bronze or copper alloy sliding s	urfaces	drainage	11-44
clearances and mating surfac		earth pressure	3-128
coefficient of friction	14-78	facing	11-38
limit on load	14-78	loading	11-36
materials	14-77	movement	11-36
Built-up members		overall stability	11-36
noncomposite sections	6-121	safety against structural failure	11-38
perforated plates	6-96, 6-122	seismic design	11-39
steel tension members	6-96	soil failure	11-36
Bundled reinforcement		vertical wall elements	11-38
development length	5-183	Cantilever slabs	
number of bars in a bundle	5-171	cantilever length	3-28
splices	5-190	design3-28, 4-23, 9-9	9, 13-4, 13-5
termination	5-171	reinforcement, concrete boxes	5-223
ties	5-173	strip width	4-24
Buoyancy	3-44	thickness	13-9
Buried structures		wheel load position	3-28
bearing resistance and stabili	ty 12-19	Cast metal	
corner backfill for metal pipe	arches12-20	cast iron	
corrosive and abrasive condit		cast steel and ductile iron	
differential settlement of back		malleable castings	6-34
embankment installations	12-21	Cast-in-place box culverts and arches	
end treatment		cast-in-place structures	
flexibility limits and construc		concentrated loads	
flexible culverts constructed		construction and installation	
footing settlement		design moment for box culverts	
hydraulic design		distribution of concentrated loads in s	
loading		culverts	
minimum soil cover		embankment and trench conditions	
minimum spacing of pipe		loads and live load distribution	
safety against soil failure		minimum cover for precast box struct	
scour		minimum reinforcement	
service limit state		other installations	
settlement		precast box structures	
soil envelope		safety against structural failure	
tolerable movement		service limit state	
trench installations		soil structure interaction	
unbalanced loading		Cast-in-place girders and box and T-bear	
uplift	12-19	bottom flange	
Cables		bottom slab reinforcement in box gird	
bridge strand		deck slab reinforcement in T-beams/b	
bright wire			
epoxy-coated wire		effective flange width	
galvanized wire		flange and web thickness	
modulus of elasticity		reinforcement	
Caissons	See Drilled shafts	top flange	5-223

web5-223	Compression flange proportions6-368
Cast-in-place pilesSee Concrete piles	Compression members
Cast-in-place voided slab superstructures	concrete
compressive zones in negative moment area5-207	hollow rectangular compression members5-51
cross-section dimensions5-206	steel6-99
drainage of voids5-208	steel composite members6-128
general design requirements5-207	steel noncomposite members6-109
minimum number of bearings5-207	wood8-33
solid end sections5-207	Compressive resistance
Centrifugal forces3-34	concrete5-48
Charpy V-notch test	steel6-99
temperature zones6-64	steel composite members6-128
Clearances2-5	steel noncomposite members6-109
drilled shafts10-129	wood8-33
highway horizontal2-6	Concrete
highway vertical2-5	air-entrained 5-260, 5-263
navigational2-5	bearing resistance5-30, 5-53, 5-252
pedestrian bridges2-6	bearings5-242
piles10-87	box girders See Concrete box girders
railroad overpass2-6	camberSee Camber
Coefficient of thermal expansion	coefficient of thermal expansion5-17
aluminum7-6	combined force effects
concrete5-17	compressive strength5-15
steel6-30	cover5-167, 5-265, 9-14
wood9-30	creep5-17
Combination railing13-12	culverts
design live loads13-12	deck slabs
geometry13-12	extreme event limit state 5-32, 5-33, 5-291
Combined force effects	formwork See Concrete formwork
concrete 5-49, 5-55	modulus of elasticity 5-20, 5-291
steel 6-99, 6-129, 6-245	modulus of rupture5-20
wood8-35	pilesSee Concrete piles
Compact sections	Poisson's ratio5-20
nominal flexural resistance 6-178, 6-231	properties5-15
Composite box girders4-36, See also Box girders	shrinkage5-19
bracing6-80	slabs See Concrete slabs
design conditions6-215	stress limits See Concrete stress limits
diaphragms	strut-and-tie method5-85
fatigue6-215	tensile strength5-21
lateral bracing6-80	T-beams
live load distribution factors4-36	Concrete box girders
wind effects4-62	effective flange width4-59
Composite sections	effective flange width4-55
concrete deck stresses6-138	live load distribution factors4-36
concrete-encased shapes 6-130, 6-278	Concrete culverts
concrete-filled tubes	bottom slab5-210
modular ratio6-138	confinement reinforcement5-147
sequence of loading6-137	dimensions, minimum5-210
steel6-128	distribution reinforcement5-206
Compression chords	dynamic load allowance3-34
continuity6-315	seismic effects
lateral bracing6-83	top slab5-210
splices	web thickness
Compression flange flexural resistance6-183	Concrete deck slabs
lateral torsional buckling resistance . 6-186, 6-361	Concrete formwork See Stay-in-place formwork
local buckling resistance	bedding of panels

creep and shrinkage control		Cone Penetration Test	
depth		Connections	
reinforcement	9-13	See Bolted connections, Splices, and	welded
Concrete piles	5 106 5 252	connections	6.202
anchorage		block shear rupture resistance	
cast-in-place piles		bolted connections	
embedment		rigid frame connections	
end region		splices	
pile dimensions		welded connections	6-298
precast prestressed piles	5-254	Connectors	
precast reinforced piles	5-254	lacing bars6-9	6, 6-130
reinforcement	5-197, 5-205	tie plates6-9	6, 6-130
reinforcing steel	5-256	Constructibility	
seismic requirements	5-205	dead load deflections	6-167
shells for cast-in-place piles		deck placement	6-163
spacing of transverse reinforcement		flexure6-16	
splices		shear	
structural resistance		Continuously braced compression flanges	
tensile stresses, precast piles		Continuously braced tension flanges	
tolerance		Corrosion	0 330
uplift		prestressing systems, concrete5-2	2 5 265
Concrete slabs		steel structures	
abrasion		Constructibility	0-/1
		•	2 14
application of empirical design		design objectives	
composite action		Continuous spans loading	3-28
concrete cover		Corrosion	1.4.40
design conditions		bearings	
design of cantilever slabs		MSE facing	
distribution reinforcement		piles	
edge support		Corrosion protection	
effective length		alternative coating	
effective width		metallic coating	8-23
empirical design		Corrugated metal decks	
minimum depth and cover	9-7	composite action	
precast deck slabs on girders	9-14	distribution of wheel loads	
reinforcement	5-206, 9-11	Cover plates	6-214
segmental construction	9-15	end requirements	6-214
shear	5-58	CPT See Cone Penetrat	tion Test
skewed bridges	4-49	cohesionless soils	10-115
skewed decks		Creep effect5-1	7, 5-122
slab bridges		Cross-section proportion limits	,
stay-in-place formwork		flange proportions	6-222
stay-in-place formwork		web proportions	
top slab, box girders		Culverts	
traditional design		additional provisions for culverts	5-248
uplift and slip of deck slabs		aluminum	
Concrete stress limits	7 32	design for flexure	
service stresses	5 125		
		design for shear in slabs of box culverts	
stress limits for concrete		location, length, and waterway area	
temporary stresses before losses	3-123	seismic effects	
Concrete T-beams	<i>c.ca</i>	Curbs and sidewalks	
negative moment reinforcement	3-3/	end treatment of separation railing	
Concrete-filled tubes	6.202	sidewalks	13-13
circular tubes		Curved structures	1 / 15
rectangular tubes	6-283	deck joints	
		deflections	2-12

I-6	AASHTO	O LRFD Bridge Design Specifications, Ninth Editi	ON, 2020
single girder superstructures	4-18	isotropic plate model	4-68
Curved tendons		live loads	
effects of curved tendons	5-150	live load effects on grids	
in-plane force effects		longitudinal edges	
out-of-plane force effects		orthotropic plate model	
Dead loads	5 155	stay-in-place formwork	
load factors	17 5-220	traditional design	
unit weight of materials		transverse edges	
	3-21		
Deck analysis	0.6	unfilled composite grids	
loadingmethods of analysis		Deep beams	3-224
· ·	9-6		5 11
Deck joints	14.10	concrete	
adjustment		criteria	
anchors		span-to-depth ratios	2-13
armor		Deformations	
bolts		axial deformation	
bridging plates		concrete	
closed joints		steel	6-168
compression and cellular seals	14-21	Deformed bars and deformed wire in tension	
design requirements	14-16	tension development length	5-180
fabrication	14-18	Deformed bars in compression	
field splices	14-19	compressive development length	5-183
geometry	14-14	modification factors	
installation		Depth of the web in compression	
joint seals		at plastic moment	6-407
location of joints		in the elastic range	
maintenance		Design lane load	
materials		Design lanes	
modular bridge joint systems		width	3-22
movements during construction		Design objectives	
number of joints		bridge aesthetics	2-15
open joints		constructibility	
plank seals		economy	
poured seals		safety	
protection		serviceability	
requirements		Design philosophy	
selection		ductility	
		limit states	
sheet and strip sealsstructural design		operational importance	
ě .			
temporary supports		redundancy	
waterproofed joints		Design tandem	
Deck overhang design		Design truck	3-24
decks supporting concrete parapet railin		Development of reinforcement	5 156
decks supporting post-and-beam railing		basic requirements	
design cases		bonded strand	
resistance to punching shear		bundled bars	
stay-in-place formwork		deformed bars and deformed wire in tension	
Decks See Deck joints, and Deck overha		5-180	
applicability		development by mechanical anchorages	
concrete appurtenances		flexural reinforcement	
deck drainage		modification factors 5-181, 5-183	
distribution of wheel loads	4-26	prestressing strand	5-143
edge supports	9-5	shear reinforcement	
empirical design		standard hooks in tension	5-184
inelastic analysis		welded wire fabric	
interface action		Diaphragms and cross-frames	

aluminum structures7-34	group resistance in strong soil over	
concrete structures 5-243	soil	
steel arches6-79	horizontal movement	
steel box girders6-76	horizontal resistance	
steel I-girders6-72	lateral stability	
steel structures6-71	reinforcement	
steel trusses6-79, 6-316	resistance in cohesive Soils	
Disc bearings	service limit state design	10-132
elastomeric disc14-79	settlement	10-132
materials14-79	shaft resistance	10-130
shear resisting mechanism14-80	side resistance	10-144
steel plates14-80	spacing	10-129
suitability14-37	strength limit state	10-48
Discretely braced compression flanges 6-354	structural resistance	10-150
Discretely braced tension flanges6-355	tip resistance 10-140, 1	10-142, 10-145
Distortion-induced fatigue	transverse reinforcement	10-151
lateral connection plates6-61	Driven piles	
orthotropic decks6-61, 9-29	design of	10-33
Distribution of load	Ductility	1-5
cantilever slabs4-24	Ductility requirements	
concrete slabs4-24	reinforcing bars	5-22
exterior beams4-39, 4-44	Ducts	
interior beams4-35, 4-36, 4-38, 4-42	bundling	5-148
skewed bridges4-40, 4-46	curvature, minimum	5-23
steel grid flooring4-24	ducts at deviation saddles	
transverse floorbeams4-41	grouting 5-24	1, 5-150, 5-236
trusses4-49	materials	
wheel loads through earth fills3-25	size of ducts	
wood flooring4-23	spacing	5-148
Dowels	Durability	
concrete columns 5-253	concrete cover	5-167, 5-265
concrete interface5-204	materials	2-8
pile anchorage5-196, 5-253	self-protecting measures	
wood decks9-32, 9-38	Dynamic analysis	
Downdrag 10-101, 10-102, 10-131, 10-136	analysis for collision loads	
determination of pile loads10-88	analysis for earthquake loads	
settlement due to	basic requirements	
Drainage	inelastic dynamic responses	
sound barrier15-2, 15-10	Dynamic load allowance	
spandrel fill	buried components	3-34
Drilled shafts	deck joints	
battered shafts	wood components	
buckling10-150	Earth loads	
clearance 10-129	sound barrier	15-5
combined side and tip resistance	steel tunnel liner plate	
definition	Earth pressure	
design of	active	
diameter	anchored walls	
embedment into cap	at-rest	
enlarged bases	buried structures	
estimation of resistance in IGMs10-129, 10-131	cantilevered walls	
estimation of resistance in rock	compaction	
group resistance	downdrag	
group resistance in cohesionless soil 10-148	effect of earthquake	
group resistance in cohesive soil10-148	equivalent-fluid method	
	lateral earth pressure	3-118

modular walls3-138	liquefaction design requirements	10-34
MSE walls3-136	load combinations 3-1	10, 3-17
passive3-123	prestressing steel	5-123
presence of water3-117	railing	13-5
reduction due to earth pressure3-151	sound barrier	15-3
surcharge loads3-142	steel structures	6-37
Earthquake effects See Seismic loads	wood structures	8-31
Economy	Extreme limit states	10-51
alternative plans2-15	Eyebars	
Edge distance6-290	factored resistance	6-96
Edge supports, slabs5-205, 9-5, 9-8, 9-17	packing	6-97
Effective area	proportions	
aluminum7-39	Fasteners See Bolts, and Cor	
perforated plates6-315	countersunk	
welds6-300	Fatigue	
Effective flange width	distortion-induced	6-60
box girders4-59	load-induced	6-38
cast-in-place multicell superstructures4-59	Fatigue and fracture limit state	1-4, 9-5
orthotropic steel decks4-59	aluminum structures	
segmental box beams and CIP box beams4-55	concrete structures	
Effective length	decks 9-1	
slabs9-10	elastomeric bearings	
span7-32	load combinations	
Effective plastic moment	modular bridge joint systems	
all other interior-pier sections6-374	prestressing steel	
interior-pier sections6-373	reinforcing bars	
Effective width	steel structures	
concrete slabs6-139	welded or mechanical rebar splices	
orthotropic decks9-28	Fatigue design	
Elastic dynamic responses	cycles	6-57
wind-induced vibration4-79	deck joints	
Elastomeric bearings	elastomeric bearings	
anchorage3-109	metal grid decks	
combined compression and rotation14-65	orthotropic decks	9-28
compressive deflection	steel webs	
compressive stress	Fatigue load	
design method A14-68	approximate methods	
design method B14-57	frequency	
movements and loads	load distribution for fatigue	
Elastomeric padsSee Elastomeric bearings	refined methods	
Emergency responder access to sound barriers15-2	FHWA Gates Formula	
End distance	Filled and partially filled grid decks	.10 105
End requirements	design requirements	9-18
bolted ends6-215	fatigue and fracture limit state	
welded ends	Fillet-welded connections	
Engineering News formula10-106	effective throat	6-300
Erosion control	size of weld	
Expansion See Coefficient of thermal expansion	Flange-strength reduction factors	0 500
Expansion devices for sound barriers15-4	hybrid factor	6-150
Exterior stringers	web load-shedding factor	
capacity4-32	Flexibility limits and construction stiffness	0 1.71
distribution factors4-32	corrugated metal pipe and structural plate	
Extreme event limit state	structures	12-13
abutments, piers, and walls11-18	spiral rib metal pipe and pipe arches	
concrete structures5-32, 5-33, 5-291	steel tunnel liner plate	
drilled shafts	thermoplastic pipe	
urmou sharts10-124	uiciiiopiasuc pipe	14-14

Flexural members	dimensions
concrete5-37, 5-40	marking8-12
steel 6-229, 6-230, 6-370	Groove-welded connections
wood8-31	complete penetration6-299
Flexural resistance	partial penetration6-299
composite members6-278	Grout
noncomposite steel members6-248	joints5-208
steel6-244, 6-372	prestressing ducts 5-24, 5-150, 5-236
wood	Guides and restraints
Footings	attachment of low-friction material 14-82
critical section for flexure5-250	contact stress
development of reinforcement5-252	design basis
distribution of moment reinforcement5-250	design loads
loads and reactions5-249	geometric requirements14-81
moment in footings	load location14-81
reactions	materials
resistance factors	Gusset plates
shear in slabs and footings5-58, 5-251	Gravel
stepped5-249	unit weight3-21
transfer of force at base of column5-252	Gravity loads
Foundation design	design vehicular live load3-23
seismic design forces3-111	fatigue load
	pedestrian loads
Foundation investigation	rail transit load
1 0 1	Groundwater
Free-standing abutments 11-144	
design for displacement	effects and buoyancy
Friction	Ground-mounted sound barriers
angle for dissimilar materials3-123 coefficient	Grout
	joints
Friction forces	High load multirotational (HLMR) bearings 14-12
forces	curved sliding surface bearings
post-tensioning tendons5-132	disc bearings
General zone 5-158	pot bearings
blister and rib reinforcement5-166	Holes6-288
design methods	bolted connections
design principles5-160	chains
deviation saddles5-167	long-slotted holes
diaphragms5-166	oversize holes6-288
intermediate anchorages5-164	pin holes6-97, 6-98
multiple slab anchorages5-119	short-slotted holes
responsibilities	size6-288
special anchorage devices5-164	type6-288
tie-backs5-164	Hollow rectangular compression members
Geometry	hoops5-176
large deflection theory4-13	rectangular stress block limitations5-52
small deflection theory4-12	spacing of reinforcement5-175
Geophysical tests	splices5-176
soil and rock10-12	ties5-175
Glued laminated decks	wall slenderness ratio5-51
deck tie-downs	Hooks and bends
interconnected decks9-31	basic hook development length5-184
noninterconnected decks9-32	hooked-bar tie requirements5-185
thermal expansion9-30	minimum bend diameters5-170
Glued laminated timber See Wood	modification factors5-185
bracing 8-37	seismic hooks5-170
camber8-37	standard hooks5-169

Horizontal wind pressure	bundled bars	5-190
wind pressure on structures3-52	non-contact splices	5-190
wind pressure on vehicles3-58	spiral reinforcement	5-173
Hydraulic analysis	Large deflection theory	
approaches2-22	approximate methods	4-14
bridge foundations2-20	moment magnification	
bridge waterway2-20	refined methods	
stream stability2-19	Lateral bracingSee Bracing, and Diaphragn	ns and
Hydrology and hydraulics2-17	cross-frames	
drainage2-23	steel	6-369
hydraulic analysis2-19	straight I-sections	
hydrologic analysis2-18	trusses	
site data2-18	Lateral clearance	
Ice loads3-61	sound barrier	15-2
adhesion3-66	Lateral-torsional buckling (LTB)	
combination of forces3-65	resistance	
crushing and flexing3-63	Lightweight concrete See Co.	
dynamic ice forces on piers3-62	development length	
effective ice strength3-62	development length	
hanging dams and ice jams3-66	resistance factors	
ice and snow load3-68	shear resistance	
slender and flexible piers3-66	shear resistance	
small streams	unit weight	
static ice loads on piers3-66	Limit statesSee Extreme event limit	
IdealizationSee Mathematical modeling	Fatigue and fracture limit state, Service	
IGMs	state, and Strength limit state	, 1111111
Impact	resistance factors	10-29
Inelastic dynamic responses	sound barriers	
plastic hinges and yield lines4-80	Live loads See Distribution o	
Influence of plan geometry	application	
curved structures4-17	bicycle loads	
plan aspect ratio4-17	braking force	
Instantaneous losses	centrifugal forces	
anchorage set5-130	continuous spans loading	
elastic shortening5-134	deck overhang load	
friction5-130	decks and box culverts	
posttensioned members 5-130, 5-133	design lane load	
pretensioned members	design tane roaddesign tandem	
Interconnected decks	design truck	
	dynamic load allowance	
panels parallel to traffic9-31 panels perpendicular to traffic9-31	gravity loads	
1 1 1		
Interior beams	live load deflection	
distribution factors	multiple presence	
Intermediate Geo Materials	tire contact area	
Interaction systems	vehicular collision force	
Keys	Load factors	
construction joints5-209	abutments, piers, and walls	
precast decks	buried structures	
segmental bridges 5-240, 5-244	combinations 3-9	
Laboratory tests	construction loads 3-19,	
geophysical tests	definition	
in-situ tests	jacking	
rock tests	post-tensioning	3-20
soil tests	Load-induced fatigue	
Lacing bars 6-96, 6-130	application6-38, 7-10, 7-11	
Lap splices5-190	design criteria	6-39

Index I-11

detail categories6-40	Maintenance access to sound barriersSee
fatigue resistance6-56	Emergency responder and maintenance access to
Loads	sound barriers
Local zone5-158	Materials6-30
bearing resistance5-113	aluminum and plate structures12-8
dimensions of local zone5-112	aluminum sheet, plate, and shapes7-6
responsibilities 5-159	bolts, nuts, and washers6-32
special anchorage devices5-114	bronze or copper alloy sliding surfaces 14-77
Location features	cables6-35
bridge site arrangement2-4	cement5-16
environment2-6	concrete5-15, 12-8
route location2-3	disc bearings
Long-span structural plate structures12-28	elastomer14-58, 14-70
acceptable special features12-31	glued laminated timber8-12
backfill protection12-38	metal fasteners and hardware8-21
balanced support12-37	pins, rollers, and rockers6-32
construction and installation12-34, 12-39	pot bearings14-52
continuous longitudinal stiffeners	precast concrete pipe
cross-section	precast concrete structures12-8
cut-off (toe) walls	preservative treatment
end treatment design	prestressing steel
footing design	PTFE sliding surface
footing reactions in arch structures	reinforcing steel
foundation design	sawn lumber 8-6
hydraulic protection	stainless steel 6-34
hydraulic uplift	steel pipe and structural plate structures 12-8
mechanical and chemical requirements 12-31	steel reinforcement
reinforcing ribs12-31	structural steels
	studishear connectors 6-33
relieving slabs	thermoplastic pipe
safety against structural failure	weld metal
scour 12-38	
seam strength	Mathematical modeling
section properties	equivalent members
service limit state	geometry
service requirements	modeling boundary conditions
settlement limits	structural material behavior4-11
shape control	Mechanically stabilized earth walls See MSE walls
soil envelope design	Metal decks9-15
standard shell end types	analysis4-27
thrust	corrugated metal decks9-29
wall area12-31	limit states
Longitudinal stiffeners	metal grid decks
moment of inertia and radius of gyration6-213	orthotropic aluminum decks9-28
projecting width6-212	orthotropic steel decks
Long-slotted holes6-288	superposition of local and global effects 9-25
Loss of prestress	Metal fasteners and hardware
approximate lump sum estimate5-135	corrosion protection8-23
creep losses 5-139	drift pins and bolts8-22
instantaneous losses 5-130	fasteners 8-21
losses for deflection calculations 5-141	minimum requirements8-21
refined estimate5-136	nails and spikes8-22
relaxation losses5-141	prestressing bars8-22
shrinkage losses5-137	shear plate connectors8-22
total prestress loss 5-129	spike grids8-22
	split ring connectors8-22
	toothed metal plate connectors8-22

Metal pipe, pipe arch, and arch structures	Modular bridge joint systems (MBJS)
construction and installation12-28	design stress range14-31
handling and installation12-27	distribution of wheel loads14-27
resistance to buckling12-26	fatigue limit state design requirements14-29
safety against structural failure12-24	loads and load factors14-25
seam resistance12-27	performance requirements14-24
section properties12-25	strength limit state design requirements14-28
smooth lined pipe12-27	testing and calculation requirements14-25
stiffeners12-28	Modular ratio
thrust12-25	long-term6-138
wall resistance	short-term6-138
Methods of analysisSee Dynamic analysis,	Modulus of elasticity
Mathematical modeling, and static analysis	cables4-74
Micropiles10-152	concrete
axial compressive resistance10-159	prestressing steel5-23
axial tension resistance10-161	reinforcing steel5-22
battered10-153	steel6-30
corrosion and deterioration10-163	wood piles8-21
definition	Moment redistribution
design of	approximate procedure4-75
design requirements	concrete
determination of loads10-153	refined method
downdrag	steel
estimation of grout-to-ground bond resistance	Mononobe–Okabe analysis11-144
10-156	MSE walls 11-55
estimation of tip resistance in rock10-157	abutments
extreme event limit state	bearing resistance 11-66
ground water table and bouyancy10-155	boundary between active and resistant zones
groups in cohesionless soil10-154	11-79
groups in cohesive soil	concentrated dead loads
grout-to-steel bond	corrosion issues for MSE facing11-61
horizontal foundation movement10-154	
	design life considerations
lateral squeeze	design tensile resistance
load test	drainage
nearby structures	dynamic load allowance
nominal axial compression resistance of single	earth pressure3-136
10-155	external stability11-97
nominal horizontal resistance of single and	facing
groups	facing reinforcement connections
nominal uplift resistance of a single micropile	geosynthetic reinforcements . 11-90, 11-94, 11-95
10-158	hydrostatic pressures
nominal uplift resistance of groups10-158	internal stability 3-137, 11-99
plunge length transfer load10-162	lateral displacement11-62
resistance of groups in compression10-158	loading 11-61, 11-64, 11-68
scour10-155	minimum front face embedment11-59
service limit state design10-154	minimum length of soil reinforcement11-58
settlement	obstructions in the reinforced soil zone11-111
settlement due to downdrag10-154	overall stability11-66
spacing, clearance, embedment10-153	overturning11-66
strength limit state design10-154	reinforcement/facing connection design11-94
strength limit states10-50	reinforcement pullout11-79, 11-81
structural resistance10-159	reinforcement strength11-84
through embankment fill10-153	safety against soil failure11-64
tolerable movements10-154	safety against structural failure11-68
types10-152	seismic design11-97
uplift	settlement 11-61

sliding11-65	load effects in piers11-35
special loading conditions11-106	protection 2-4, 2-5, 3-176, 11-35
steel reinforcements	reinforcement spacings5-203
structure dimensions11-57	scour11-36
subsurface erosion11-106	seismic design3-107, 5-197
traffic loads and barriers11-109	ship collision force3-170
Multiple presence of live load3-22	Pile bents
Multispan bridges	pile tolerance5-249
general4-81	Pile foundations
multimode spectral method4-84	nominal lateral resistance10-122
selection of method4-80	Pile structural resistance
single-mode methods of analysis4-81	buckling 10-123
single-mode spectral method4-81	lateral stability10-123
uniform load method4-83	Piles
Noncompact sections	α-Method10-107
nominal flexural resistance6-181, 6-232	β-Method10-108
Noncomposite sections	λ-Method
built-up members6-121	batter
channels, angles, tees, and bars6-269	definition
circular tubes6-253	design requirements
I- and H-shaped members6-248	determination of loads
Nondestructive testing	determination of nominal bearing resistance
aluminum7-32	10-102
Nordlund/Thurman Method10-110	downdrag
Operational importance1-7	drivability analysis
Orthotropic aluminum decks	driven
approximate analysis9-28	driven to hard rock
limit states9-28	driven to soft rock
Orthotropic deck superstructures6-323	dynamic testing
effective width of deck6-325	embedment into cap10-87
superposition of global and local effects 6-325	groups in cohesive soil
Orthotropic decksSee Orthotropic aluminum	horizontal foundation movement
decks, and Orthotropic steel decks	lateral squeeze10-95
Orthotropic steel decks	length estimates for contract documents 10-97
design9-25	minimum penetration10-126
detailing requirements9-26	nearby structures
wearing surface9-20	nominal axial resistance change after driving
wheel load distribution9-20	10-99
Oversize holes6-288	nominal bearing resistance10-126
Painting	Nordlund/Thurman Method in cohesionless soils
box sections 6-215	
slip-critical joints6-293	probe
Parapets	resistance of groups in compression 10-118
Pedestrian loads3-32	service limit state design10-89
Pedestrian railing8-23, 13-9	settlement
design live loads13-10	settlement due to downdrag
geometry 13-9	spacing10-93
Perforated plates	static analysis
effective area6-315	static load test
Permanent loads	strength limit state design
dead loads	structural resistance
earth loads3-21	tip resistance in cohesive soils
Piers	tolerable movements
barge collision force3-173	uplift due to expansive soils
collision walls	uplift resistance of groups
facing	uplift resistance of groups
11 30	upint resistance of single10-119

wave equation analysis	10-105	lifting devices	5-211
Pin-connected plates		preservice conditions	
packing	6-98	Precast deck bridges	
pin plates		cast-in-place closure joints	5-209
proportions		design	
Pins		longitudinal construction joints	
holes	6-97, 6-98	longitudinally post-tensioned precast d	
length	·	post-tensioning	
location		shear transfer joints	
materials		shear-flexure transfer joints	
minimum size pin for eyebars		structural overlay	
resistance		transversely joined precast decks	
Pipes		Precast prestressed piles	
flexibility factor		concrete quality	5-255
Plank decks See Wood decks		pile dimensions	
Plastic	una deck systems	reinforcement	
polyethylene pipes (PE)	12-9	Precast RC three-sided structures	
polyvinyl chloride (PVC)		concrete	
Plastic moment		concrete cover for reinforcement	
Point bearing piles	0-401	crack control	
on rock	10.06	deflection	
Poisson's Ratio	10-90	design	
intact rock	10.28	footing design	
Polytetrafluorethylene sliding surfa		geometric properties	
See PTF		materials	
	E stiding surfaces	minimum reinforcement	
Portal and sway bracing	6 216	reinforcement	
deck truss spans		resistance factors	
through-truss spans	0-310		
Post-tensioned anchorage zones	5 22	scour	
anchorages and couplers		shear transfer in joints	
bursting forces		span length	
compressive stresses		structural backfill	12-95
design of local zones		Precast reinforced piles	5.054
design of the general zone		pile dimensions	
edge tension forces		reinforcing steel	
limitations of application		Prefabricated modular wallsSee Ear	•
Pot bearings		abutments	
elastomeric disc		bearing resistance	
geometric requirements		drainage	11-118
materials	_	dynamic load allowance	3-34
piston		earth pressure	
pot		limitations	
sealing rings		loading	
suitability		module members	
reinforcement		movement at the service limit state	
rotation		overall stability	
seismic provisions	14-67	overturning	
shape factor	14-57, 14-72	passive resistance and sliding	11-116
shear deformation	14-64, 14-74	safety against soil failure	11-115
shear modulus	14-58, 14-70	safety against structural failure	11-116
stability	14-66, 14-76	seismic design	11-117
suitability		sliding	
Precast beams		subsurface erosion	
concrete strength	5-211	Preservative treatment for wood	
detail design		fire retardant treatment	8-24
extreme dimensions		inspection and marking	

requirement for treatment8-23	application of previously tested systems	. 13-8
treatment chemicals8-23	approach railings	.13-6
Prestressed concrete	end treatment	
buckling5-121	geometry 1	3-15
concrete cover9-14	height of traffic parapet or railing	.13-9
construction load, formwork9-13	materials	.13-4
crack control 5-121	new systems	.13-9
curved tendons5-23	protection of users	2-4
design concrete strengths5-121	test specimens 1	3-20
eccentric prestressing5-48	Railroad	
prestress loses5-129	rail transit load	3-32
reinforcement limits5-198	rails, dead load weight	.3-21
section properties5-121	Redundancy	1-6
service stresses5-125	Rectangular stress block limitations	
stress limitations for prestressing steel5-122	approximate method	5-52
stresses due to imposed deformation5-122	refined method	
tendon confinement5-147	Refined method6	5-374
tendons with angle points or curves5-121	nominal moment-rotation curves6	5-376
Prestressing steel	Refined methods of analysis	
concrete cover9-14	arch bridges	4-73
corrosion protection5-260, 5-265	beam-slab bridges	
materials5-22	cable-stayed bridges	
modulus of elasticity5-23	cellular and box bridges	
stress at nominal flexural resistance5-37	decks	
Pretensioned anchorage zones	general	4-67
confinement reinforcement5-147	suspension bridges	
factored bursting resistance5-146	truss bridges	
Probability of aberrancy	Reinforced concrete pipe1	
approximate method3-163	bearing resistance1	
statistical method3-163	bedding factor1	
Protective coatings5-265	circumferential reinforcement1	
Provisional ducts and anchorages	concrete cover1	2-61
bridges with internal ducts5-236	construction and installation1	2-68
provision for future dead load or deflection	crack width control1	2-59
adjustment5-236	development of quadrant mat reinforcement l	2-66
Provisions for structure types5-228	direct design method1	
arches5-247	flexural resistance1	2-57
beams and girders5-210	indirect design method1	2-64
segmental construction5-224	live loads1	2-54
slab superstructures5-205	loading1	2-50
PTFE sliding surfaces14-45	loads and pressure distribution	
attachment14-49	maximum reinforcement without stirrups 1	
coefficient of friction14-48	minimum reinforcement1	
contact pressure14-47	pipe fluid weight1	2-54
dimples14-45	pipe ring analysis1	2-57
filler	process and material factors1	
mating surface14-46, 14-49	safety against structural failure	
minimum thickness14-46	service limit state	2-54
PTFE surface	shear resistance12-61, 1	2-62
stainless steel mating surfaces14-47	standard installations1	2-50
PVC pipesSee Plastic	stirrup anchorage1	
Railing	stirrup embedment1	
See Bicycle railing, Combination railing,	Reinforcement See Spacing of reinforce	
Pedestrian railing, and Traffic railing	anchorage5	
Railing design	closed stirrups5	
anchorages13-17	compression members	

corrosion protection5-260	load test10-83
crack control5-55	mass deformation10-26
development length5-183	mass strength10-21
distribution, slabs5-206	semiempirical procedures10-83
external tendon supports5-156	sound barrier15-8
footings5-250	Rocker bearings
hollow rectangular compression members5-175	alignment14-43
hooks and bends5-169	contact stresses
limits 5-197, 5-256	geometric requirements14-44
materials5-22	materials6-32
modulus of elasticity5-22	suitability14-37
posttensioned anchorage zones5-156	Roller bearings
pretensioned anchorage zones5-146	alignment14-43
seismic requirements5-197	contact stresses
shrinkage and temperature5-174	geometric requirements14-44
spacing of reinforcement5-171	materials6-32
spacing, longitudinal reinforcement 5-57, 5-97,	minimum diameter6-32
5-171, 5-224	suitability14-37
spacing, transverse reinforcement 5-63, 5-172,	Route location2-3
5-173, 5-197, 5-201, 5-202, 5-205, 5-235,	waterway and floodplain crossings2-3
5-255, 5-256	Sawn lumber
special applications5-22	base resistance8-7
spirals and ties5-50	bracing8-36
tendon confinement	modulus of elasticity8-7
transverse reinforcement . 5-61, 5-62, 5-63, 5-172,	moisture content8-7
5-174	Scour2-21, 10-51, 10-100, 11-36
Reinforcing steel	buried structures12-20
Relieving slabs	change in foundations3-46
Resistance factors	long-span structural plate structures12-38
abutments, piers, and walls11-15	micropiles
aluminum structures	piers11-36
buried structures	precast RC three-sided structures12-93
concrete structures5-198	water loads
driven piles10-47	Sealing rings
geotechnical resistance of axially loaded	rings with circular cross-sections14-55
micropiles10-51	rings with rectangular cross-sections14-55
geotechnical resistance of drilled shafts10-50	Section transitions
seismic zones 3 and 45-32	Sectional design model
steel6-36	combined shear and torsion5-77
structural resistance of axially loaded micropiles	determination of β and θ
10-51	longitudinal reinforcement5-75
wood structures	nominal shear resistance 5-67, 5-232
Retaining walls See Abutments and retaining walls	sections near supports5-66
Rigid frame connections	Segmental bridge analysis5-225
webs6-313	analysis of the final structural system5-225
Roadway	construction analysis5-225
width 3-22, 13-12	erection analysis
Roadway drainage	final structural system4-65
design storm2-23	longitudinal analysis4-64
discharge from deck drains2-24	strut-and-tie models
drainage of structures2-24	transverse analysis
type, size and number of drains2-23	Segmental bridge design
	alternative construction methods5-245
Rock properties analytic method10-83	cantilever construction methods5-243
erodibility	construction loads
11101111au011at 11ccus1U-8	CIEED AND SHIJIKAYE

deck joints9-15	multispan bridges	4-80
design5-226	single-span bridges	4-80
design details5-243	Seismic zone 1	3-109
design of construction equipment5-244	Seismic zone 2	
details for cast-in-place construction 5-241	Seismic zones 3 and 4	
details for precast construction5-240	column and pile bent design forces.	3-114
effective flange width	foundation design forces	
force effects due to construction tolerances. 5-242	inelastic hinging forces	
incrementally launched construction5-242	modified design forces	
launching bearing5-242	pier design forces	
	piers with two or more columns	
launching tendons		
length of top flange cantilever5-238	single columns and piers	
loads	Service limit states 1-4, 9-5, 10-29	
minimum flange thickness5-237	abutments, piers, and walls	
minimum web thickness5-237	aluminum structures	
overall cross-section dimensions 5-238	concrete structures	
post-tensioning5-236	construction load combinations	
prestress losses5-231	decks	
provisional ducts and anchorages5-235	elastomeric bearings	
resistance factors5-230	load combinations	
seismic design5-239	prestressing steel	
span-by-span construction5-242	sound barrier	15-3
substructures5-247	steel structures	6-35
tensile stresses at joint locations5-125, 5-127	wood structures	8-30
thermal effects during construction5-230	Service limit state design	
types of segmental bridges5-239	micropiles	10-154
Segmental bridge substructures	piles	
construction load combinations5-247	spread footings	
longitudinal pier reinforcement5-247	Serviceability	
Seismic design	deformations	2-10
acceleration coefficient3-70	durability	
column connections	inspectability	
concrete columns5-196, 5-197	maintainability	
confinement length5-204	rideability	
construction joints5-204	utilities	
elastomeric bearings	widening	
	<u> </u>	
hold-down devices	Settlement	
importance categories3-106	force effects	
lateral load distribution	foundations	
longitudinal restrainers	group	10-135
seismic performance zones3-107	long-span structural plate structures	
soil liquefaction	MSE walls	
temporary bridges/stage construction3-115	single-drilled shaft	
volumetric ratio for confinement5-205	Settlement Analyses	
wall-type piers5-203	Shaft load tests	10-147
Seismic loads	Shaft loads	
combination of seismic force effects3-108	determination of	10-131
design forces3-109	Shear and torsion	
direction3-108	aluminum	7-56
orthogonal forces3-108	brackets	5-104
response modification factors3-107	concrete5-	58, 5-64, 5-67
seismic zone 13-109	corbels	
seismic zone 2	interface shear transfer—shear frict	
seismic zones 3 and 4	longitudinal reinforcement	
Seismic requirements	prestressed concrete	
minimum displacement requirements4-87	reinforcement, seismic design	
minimum displacement requirements	reministration, scientic design	

skewed bridges		deformation	10-18
slabs and footings	5-251	determination 1	11-7, 12-6
steel		drained strength of cohesive soils	10-16
torsional resistance	5-77	drained strength of granular soils	10-16
transfer and development lengths	5-61	envelope backfill soils	12-7
transverse reinforcement	5-77	foundation soils	12-7
Shear connectors	6-197	informational needs	10-8
cover and penetration	6-199	laboratory tests	10-11
design force	9-4	semiempirical procedures	10-81
fatigue resistance	6-199	sound barrier	15-8
nominal shear force	9-4	strength	10-15
permanent load contraflexure	6-200	subsurface exploration	10-8
pitch		undrained strength of cohesive soils	
strength limit state		unit weight	
studs		Soil–structure interaction systemsSee	
transverse spacing		Solid web arches	
types		Sound barrier	
Shear keys		corrosion protection	15-10
Shear resistance		definition	
concrete	5-67	drainage	
concrete-encased shapes		earth loads	
concrete-filled tubes	6-283	extreme event limit state	
prestressed concrete		foundation design	
steel		functional requirements	
wood		ground-mounted	
Ship collision force		limit states and resistance factors	
Shock transmission unit (STU)		movement and stability at the service lin	
4-5, 4-87, 14		movement and shading at the service in	
Short-slotted holes	•	seismic desgin	
Shrinkage		structure-mounted	
Sidewalks		vehicular collision forces	
curb height	12 13-13	wind load	
railing		Sound barrier installation	
thickness of plank decks		on existing bridges	15-5
Skewed bridges	27	Spacing of reinforcement	
deck joints14-	.15 14-21	bundled bars	5-171
live load distribution 4-40, 4		cast-in-place concrete	
skewed decks		couplers in posttensioning tendons	
Slab bridges		curved posttensioning ducts	
Slab superstructures	3-200	maximum spacing of prestressing tendor	
cast-in-place solid slab superstructures	5-205	ducts in slabs	
cast-in-place voided slab superstructures		maximum spacing of reinforcing bars	
precast deck bridges		minimum spacing of reinforcing bars	
Slabs		multilayers	
Slenderness effects and limits	Tele slabs	post-tensioning ducts not curved in the h	
concrete	5 47	plane5-1	
ice load, piers		precast concrete	
Slenderness ratios See Aluminum		pretensioning strand	
Slip-critical connections	0-283	splices	3-1/1
Soil bearing resistance	10.00	Spike laminated decks	0.20
plate load tests		deck tie-downs	
two-layered soil system in drained loadi		panel decks	
two-layered soil system in undrained loa	_	Splices	
G '11'		See Bolted splices, Splices of bar reint	orcement
Soil liquefaction	4-11	and Splices of welded wire fabric	F 100
Soil properties		bar reinforcement	5-190

Index I-19

bolted splices6-304	box-section flexural members See Steel box-
reinforcement, deck slabs9-14	section flexural members
welded splices6-312	camber See Camber
welded wire fabric5-194	closed voids in structures6-221
Splices of bar reinforcementSee Lap splices	coefficient of thermal expansion6-30
bars in compression5-192	combined force effects 6-99, 6-129, 6-245
detailing5-190	dimension and detail requirementsSee Steel
end-bearing splices5-193	dimension and detail requirements
lap splices5-190	extreme event limit state6-37
lap splices in compression5-192	fracture6-146
lap splices in tension5-191	I-girders See Steel I-section flexural members
mechanical connections5-191	I-section flexural members See Steel I-section
mechanical/welded splices in compression5-193	flexural members
mechanical/welded splices in tension 5-192	I-section proportioningSee Steel I-section
reinforcement in tension5-191	proportioning
tension tie members5-192	modulus of elasticity6-30
welded splices5-191	net section6-86
Splices of welded wire fabric	orthotropic decks See Decks and Orthotropic
deformed wire in tension5-194	steel decks
smooth wire in tension5-194	piles
Spread footings10-52	slenderness ratios6-108
bearing depth10-52	spiral rib pipes12-107
bearing resistance at the service limit state 10-67	tension membersSee Steel tension members
bearing stress distributions	thickness of metal6-31, 6-285
design of10-32	tunnel liner plateSee Steel tunnel liner plate
effective footing dimensions10-53	web crippling6-411
groundwater and10-54	Steel box-section flexural members6-215
nearby structures and	access and drainage6-221
safety against geotechnical failure at the strength	access holes6-76, 6-221
limit state	bearings
service limit state design	compact sections 6-231
settlement of footings on cohesionless soils 10-56	constructibility
settlement of footings on cohesive soils 10-62	cross-section proportion limits6-222
settlement or rock	fatigue and fracture limit state6-227
tolerable movements 10-54	flange-to-web connections6-221
SPTSee Standard Penetration Test	flexural resistance of compression flange
cohesionless soils	6-233, 6-235
St. Venant torsion	flexural resistance of tension flange .6-234, 6-238
aluminum7-52	flexural resistance—negative flexure6-233
Stainless steel	
Standard Penetration Test	flexural resistance—positive flexure6-231 live load distribution factor6-222
Static analysisSee Approximate methods	noncompact sections
of analysis, <i>and</i> Refined methods of analysis	painting
analysis for temperature gradient4-75	service limit state
approximate methods	shear connectors
influence of plan geometry4-17	shear resistance
moment redistributon4-74	stiffeners
refined methods of analysis4-67	strength limit state6-229
stability4-75	stress determinations6-217
Static load test	Steel dimension and detail requirements6-65
Stay-in-place formwork See Concrete formwork	dead load camber6-65
concrete formwork9-13	diaphragms and cross-frames6-71
deck overhangs9-5	effective length of span6-65
steel formwork9-13	lateral bracing6-79
Steel	minimum thickness of steel6-71
bearing stiffeners6-370	pins6-83

Steel I-girders See Steel I-section flexural members	safety against structural failure12-91
Steel I-section flexural members 6-135	seam strength12-91
compact sections6-178	section properties12-91
composite sections6-137	wall area12-91
composite sections in negative flexure and	Stiffened webs
noncomposite6-175	end panels6-196
composite sections in positive flexure6-174	nominal resistance6-194
constructibility6-160	Stiffeners See Longitudinal stiffeners and
cover plates6-214	Transverse intermediate stiffeners
ductility requirement6-182	bearing stiffeners6-208
flange stresses and member bending moments	longitudinal compression-flange stiffeners 6-240
6-142	longitudinal stiffeners6-210
flange-strength reduction factors6-150	rigid frame connections6-314
flexural resistance 6-178, 6-193	structural plate culverts12-42
flowcharts for design6-382	transverse intermediate stiffeners6-204
hybrid sections6-139	web stiffeners6-240
minimum deck reinforcement—negative flexure	wood decks 9-31, 9-38
6-144	StirrupsSee Transverse reinforcement
net section fracture6-146	Stream pressure
noncompact sections6-181	lateral3-45
noncomposite sections6-139	longitudinal3-44
service limit state6-167	Strength limit state1-4, 9-6, 10-32, 10-40, 12-10
shear connectors6-197	abutments, piers, and walls11-9
steel I-section proportioning6-157	aluminum structures7-8
stiffeners6-204	concrete structures 5-29, 5-33, 5-291
stiffness6-141	drilled shafts
strength limit state6-172	driven piles
variable web depth members6-139	flexure
web bend-buckling resistance6-147	load combinations3-17
wind effect on flanges4-60	micropiles10-33
Steel I-section proportioning	modular bridge joint systems14-28
flange proportions6-158	prestressing steel5-123
web proportions6-157	railing13-5
Steel orthotropic decks	resistance factors6-36
See Decks and Orthotropic steel decks	shear connectors
Steel piles	sound barrier
axial compression6-330	spread footings
buckling6-330	stability5-32
combined axial compression and flexure6-330	steel structures
compressive resistance6-330	wood structures8-30
maximum permissible driving stresses6-330	Strength limit state design
structural resistance6-328, 10-123	micropiles
Steel tension members6-86	piles
built-up members6-96	spread footings
eyebars6-96	Stress laminated decksSee Decks and Wood decks
limiting slenderness ratio6-95	and deck systems
net area	camber8-37
pin-connected plates6-97	deck tie-downs
tensile resistance6-86	holes in laminations
Steel tunnel liner plate	nailing9-33
•	staggered butt joints
buckling12-91 construction stiffness12-91	stressing9-33
earth loads	thermal expansion
	Stressing
grouting pressure	•
loading	corrosion protection
1040111917-89	design redunements

prestressing materials9-35	anchorage of tie5-93
prestressing system9-33	proportioning of tension ties5-93
railings9-37	strength of tie
Structural material behavior	Thermal forces
elastic behavior4-11	temperature gradient
elastic versus inelastic behavior4-11	temperature zones6-64, 14-59
inelastic behavior4-12	uniform temperature3-153
Structural plate box structures	Thermoplastic pipes12-74
concrete relieving slabs	flexibility limit
construction and installation	Through-girder spans6-314
footing reactions	Tie plates6-96, 6-130
geometric requirements	Timber
loading	
	Timber floors See Wood decks and deck systems
movements 12-44	Timber piles
plastic moment resistance	Tire contact area
safety against structural failure	Tolerable Movements and Movement Criteria. 10-30
service limit state	Traffic lanes
soil cover factor	width
stiffeners	Traffic railing
Structure-Mounted Sound Barriers15-4	design forces
Strut-and-tie model	railing design13-8
crack control reinforcement5-97	railing system13-5
general zone5-98, 5-291	test level selection criteria13-6
nodes5-100	Traffic safety
struts5-100	geometric standards2-5
ties5-101	protection of structures2-4
Substructures	protection of users2-4
design5-281, 6-379	road surfaces2-5
frictional forces, launched girders5-242	vessel collisions2-5
vessel collision2-5	Transverse intermediate stiffeners
Superimposed deformations	moment of inertia6-205
creep3-157	projecting width6-204
differential shrinkage3-157	Transverse reinforcement
settlement3-158	compression members 5-172, 5-199, 5-201, 5-204
temperature gradient3-156	flexural members5-174
uniform temperature3-153	piles 5-197, 5-255, 5-256
Superstructure design5-279	Trusses6-314
Surcharge loads	camber6-315, 8-37
live load surcharge3-149	diaphragms6-79, 6-315
point, line and strip loads—restrained walls 3-143	factored resistance6-323
reduction of surcharge3-150	gusset plates6-316
strip loads—flexible walls	half through-trusses6-323
uniform surcharge	lateral bracing6-83, 8-37
Temporary stresses before losses	load distribution 4-49
compression stresses	members
tension stresses	portal and sway bracing6-316, 8-37
Tendon confinement	•
wobble effect in slabs5-150	secondary stresses
Tensile resistance	splices
	working lines and gravity axes6-316
aluminum	Unfilled grid decks composite with reinforced
wood	concrete slabs
Tension flange yielding6-365	design9-19
Tension members	fatigue limit state9-19
concrete5-55	Uplift
wood8-35	bearings14-36, 14-80
Tension ties	group resistance10-150

ice loads3-6	61 Web proportions6-368
load test10-15	webs with longitudinal stiffeners 6-158, 6-222
micropiles10-15	webs without longitudinal stiffeners 6-157, 6-222
pile anchorage5-19	
resistance of a single drilled shaft10-14	
resistance of pile groups10-12	20 factored resistance6-298
resistance of single piles10-1	
spread footings10-	
Vehicular collision force3-3	seal welds6-301
protection of structures3-3	size of fillet welds6-300
vehicle and railway collision with structures .3-4	Welded wire fabric
Vehicular live load	bend diameter5-170
multiple presence of live load3-2	transverse reinforcement5-62
number of design lanes3-2	Welding Welding
Vertical wind pressure3-:	procedures for aluminum7-31
Vessel collision3-15	requirements for aluminum7-31
annual frequency of collapse3-16	61 weld metal
barge bow damage length3-17	74 Widening
barge collision force on pier3-17	73 exterior beams2-14
damage at the extreme limit state3-17	74 substructure2-14
design collision velocity3-10	
design vessel3-10	
impact force3-1	
impact force, substructure design3-17	•
impact force, superstructure design3-17	
importance categories3-10	
owner's responsibility3-10	
protection of substructures3-17	
ship bow damage length3-17	
ship collision force on pier3-17	
ship collision force on superstructure3-1	
ship collision with bow3-17	
ship collision with deck house3-17	
ship collision with mast3-17	
vessel collision energy3-10	
Washers 6-84, 6-28	
Water loads	Wood
buoyancy3-4	44 bracing8-36
drag coefficient3-4	
scour3-4	
static pressure3-4	
stream pressure3-4	
wave load3-4	
Wearing surface	flexure8-31
chip seal9-4	
orthotropic decks9-2	
plant mix asphalt9-3	
unit weight	
wood decks9-3	
Web bend-buckling resistance	shear
webs with longitudinal stiffeners6-14	
webs without longitudinal stiffeners6-14	
Web local yielding6-4	
Web plastification factors	deck tie-downs
compact web sections6-35	
noncompact web sections	

Index I-23

load distribution	9-30
plank decks	9-30, 9-39
shear design	
skewed decks	
spike laminated decks	
stress laminated decks	
thermal expansion	
wearing surfaces	
Wood piles	
modulus of elasticity	
resistance	
structural resistance	
Yield moment	
Yield strength	
composite columns	6-130
fasteners, wood structures	
prestressing steel	
reinforcing steel	
steel tunnel liner	
structural steel	
transverse reinforcement	