- 1. binary search. $O(n \log W)$.
- 2. Let d denote the divisor, we know $f(d) \triangleq \sum_{i=1}^n \lceil \frac{a_i}{d} \rceil \geq \sum_{i=1}^n \frac{a_i}{d}$. each $\lceil \cdot \rceil$ has additive error at most 1, so if we set $d = \frac{\sum_{i=1}^n a_i}{t}$, f(d) is an approximation for t with additive error O(n). if we maintain for each a_i the next value d s.t. $\lceil \frac{a_i}{d} \rceil$ will change (which can be computed in O(1)), then we need to test only O(n) subsequent d's to make sure $f(d) \leq t$. this can be maintained by heap in $O(n \log n)$ time.

For a fixed d, we can estimate $f(d) - \sum_{i=1}^{n} \frac{a_i}{d}$ by sampling $O(n^c)$ elements to get an $\tilde{O}(n^{1-\frac{c}{2}})$ additive approximation, by Chernoff bound (since $0 \le \frac{a_i \mod d}{d} < 1$). Set $c = \frac{2}{3}$ suffices. Then first perform $O(\log W)$ binary search steps (each step in sublinear time), then use heap to test a sublinear number of subsequent d's (notice that build a heap only takes O(n) time). $O(n + \log W \cdot n^{\epsilon})$, which is O(n) if we reduce W to poly(n) by standard techniques.

3. We can directly use the results for finding the m-th largest element in the union of n sorted arrays [2, 3, 4], and also get $O(n + \min\{n, m\} \log \frac{m}{\min\{n, m\}}) = O(n)$ time (since m = O(n)). see 004. Median of Two Sorted Arrays.

There's a simpler algorithm that finds the m-th largest element in the union of n sorted array in O(n+m) time, using linear-time median selection. Each round using O(n) time, we either reduce n by half, or decrease m by at least $\frac{n}{2}$.

Remark.

- 1. it's possible to perform only $O(\log n)$ binary search steps, by known techniques. (extract the first n largest elements in the union of n sorted arrays, after using the observation of Alg. 2, and then binary search on those n values.)
- 2. with clever implementation we don't need long long.
- 3. a related paper: [1].

Accepted Solutions Runtime Distribution

References

- [1] Zhanpeng Cheng and David Eppstein. Linear-time algorithms for proportional apportionment. In *International Symposium on Algorithms and Computation*, pages 581–592. Springer, 2014.
- [2] Greg N Frederickson and Donald B Johnson. Generalized selection and ranking (preliminary version). In *Proceedings of the twelfth annual ACM symposium on Theory of computing*, pages 420–428, 1980.
- [3] Greg N Frederickson and Donald B Johnson. The complexity of selection and ranking in X + Y and matrices with sorted columns. Journal of Computer and System Sciences, 24(2):197–208, 1982.
- [4] Greg N Frederickson and Donald B Johnson. Generalized selection and ranking: sorted matrices. SIAM Journal on computing, 13(1):14–30, 1984.