РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ ИМЕНИ ПАТРИСА ЛУМУМБЫ

Факультет физико-математических и естественных наук

Кафедра «Математического моделирования и искусственного интеллекта»

Методы машинного обучения для анализа временных рядов и панельных данных Лабораторная работа №1 «Введение в регрессионный анализ и анализ временных рядов»

Студент

Шуплецов Александр Андреевич

Группа

НФИбд01-22

Москва

2024

Упражнение 1.1

<u>Парная регрессия (линейная модель)</u> $y = b_0 + b_1 x$

Оцениваем значимость коэффициентов b_0 , b_1 при lpha=0.01 (это значение в Gretl определено изначально разработчиками и его не надо специально вводить)

- H_0 : коэффициент незначим
- H_1 : коэффициент значим

Хлеб:

Модель 1: МНК, использованы наблюдения 1-190 Зависимая переменная: DWBREAD

const	Коэффициен т 3,88185	0,295		<i>t-</i> <i>cтатистика</i> 13,13	<i>p-значени</i> <0,0001	e ***
PBREAD	-0,0751086	0,0139	9167	-5,397	<0,0001	***
Среднее завис. пер Сумма кв. остатко R-квадрат F(1, 188) Лог. правдоподоб Крит. Шварца	ов 604 0,1 29, ие -379	48684 ,7198 34151 12782 ,5837 ,6615	Ст. о Испр Р-зн Крит	откл. завис. пе ошибка моделі рав. R-квадрат ачение (F) г. Акаике г. Хеннана-Ку	и 1, 0, 2	922317 793487 129545 ,02e-07 63,1675 65,7981

Уравнение регрессии имеет вид

$$DWBREAD = 3,8818$$
 - 0,0751086 $PBREAD$ (0,295710) (0,0139167)

p-значение у коэффициентов $b_0, b_1 < 0,0001$, поэтому принимаем гипотезу H_1 для b_0, b_1 (коэффициенты значимы с вероятностью 99%).

p-значение для F статистики p = 2,02e - 07.

Коэффициент детерминации R^2 =0,134151, Исправ. R^2 = 0,129545.

Картофель:

Модель 1: МНК, использованы наблюдения 1-111 Зависимая переменная: DPOTAT

	Коэффицие	н Ст. ог	иибка	t-	р-значени	е
	m			статистика		
const	8,32844	1,77	700	4,687	< 0,0001	***
PPOTAT	-0,282803	0,163	3483	-1,730	0,0865	*
Среднее завис. пер	ремен 5,3	51351	CT. o	откл. завис. пе	ерем 4,	705217
Сумма кв. остатко	ов 237	0,227	CT. o	ошибка модел	и 4,	663175
R-квадрат	0,0	26720	Испр	рав. R-квадрат	г 0,	017791
F(1, 109)	2,9	92416	Р-зн	ачение (F)	0,	086486
Лог. правдоподоби	ие —327	,3994	Крит	г. Акаике	65	8,7987

Крит. Шварца 664,2178 Крит. Хеннана-Куинна 660,9971 Уравнение регрессии имеет вид

$$DPOTAT = 8,32844 - 0,282803 PPOTAT$$

$$(1,77700) (0,163483)$$

p-значение у коэффициента $b_0 < 0,0001$, поэтому принимаем гипотезу H_1 для b_0 (коэффициент значим с вероятностью 99%), p-значение у коэффициента b1 = 0,0865, коэффициент значим с вероятностью 90%

p-значение для F статистики p = 0.086486, модель значима с вероятностью 90%.

Коэффициент детерминации $R^2 = 0.026720$, Исправ. $R^2 = 0.017791$.

Модель имеет низкий R-квадрат. Это означает, что существуют другие факторы, которые сильно влияют на зависимую переменную.

Макароны:

Модель 1: МНК, использованы наблюдения 1-122 Зависимая переменная: DMACAR

	Коэффициен	н Ст. ог	иибка	t-	р-значени	e
	m			статистика		
const	1,90819	$0,27\epsilon$	5090	6,911	<0,0001	***
PMACAR	-0,0259644	0,011	1167	-2,336	0,0212	**
Среднее завис. пер	ремен 1,3	06967	Ст. о	ткл. завис. пер	рем 1,	122595
Сумма кв. остатко	ов 145	5,8561	Ст. о	шибка модели	и 1,	102482
R-квадрат	0,0	43482	Испр	рав. R-квадрат	0,	035511
F(1, 120)	5,4	55078	Р-зна	ачение (F)	0,	021171
Лог. правдоподоб	ие —184	,0051	Крит	. Акаике	37	72,0101
Крит. Шварца	377	,6182	Крит	. Хеннана-Ку	инна 37	74,2880

Уравнение регрессии имеет вид

$$DMACAR = 1,90819 - 0,0259644 PMACAR$$
 (0,276090) (0,0111167)

p-значение у коэффициента $b_0 < 0.0001$, поэтому принимаем гипотезу $\mathbf{H_1}$ для b_0 (коэффициент значим с вероятностью 99%), p-значение у коэффициента b1 = 0.0212, коэффициент значим с вероятностью 95%

p-значение для F статистики p = 0,021171, модель значима с вероятностью 95%.

Коэффициент детерминации $R^2 = 0.043482$, Исправ. $R^2 = 0.035511$.

Модель имеет низкий R-квадрат. Это означает, что существуют другие факторы, которые сильно влияют на зависимую переменную.

Яйца:

Модель 1: МНК, использованы наблюдения 1-148 Зависимая переменная: DEGGS

	Коэффициен	Cm. ou	иибка	t-	р-значе	ние
	m		C	статистика		
const	28,3630	7,18	152	3,949	0,000	1 ***
PEGGS	-3,98353	3,03	115	-1,314	0,190	8
Среднее завис. пер	ремен 19,0	00000	Ct. or	гкл. завис. пе	ерем	11,01823
Сумма кв. остатко	в 176	37,36	Ст. ог	шибка модел	И	10,99108
R-квадрат	0,01	11691	Испра	ав. R-квадра	Γ	0,004922
F(1, 146)	1,72	27113	Р-зна	чение (F)		0,190841
Лог. правдоподоби	ие -563	,7645	Крит.	Акаике		1131,529
Крит. Шварца	113	7,523	Крит.	Хеннана-Ку	/инна	1133,965

DEGGS = 28,3630 - 3,98353 * PEGGS

(7,18152) (3,03115)

Модель в целом незначима, так как P-значение = 0,190841, нет оснований отвергать гипотезу H0 (модель незначима).

Молоко:

Модель 1: МНК, использованы наблюдения 1-160 Зависимая переменная: DMILK

	Коэффициен	Ст. ош	ибка	t-	р-значе	ние
	m			статистика		
const	2,45359	1,023	74	2,397	0,017	7 **
PMILK	0,0104310	0,0494	975	0,2107	0,833	4
Среднее завис. пер	ремен 2,66	5625	Ст. о	ткл. завис. пер	рем	2,382273
Сумма кв. остатко	902,	,1074	Ст. о	шибка модели	1	2,389464
R-квадрат	0,00	0281	Испр	ав. R-квадрат		-0,006046
F(1, 158)	0,04	4410	Р-зна	ачение (F)		0,833364
Лог. правдоподоби	-365,	3949	Крит	. Акаике		734,7899
Крит. Шварца	740,	,9402	Крит	. Хеннана-Ку	инна	737,2873

DMILK = 2,45359 + 0,0104310 * PMILK

(1,02374) (0,0494975)

Снова заметим, что модель в целом незначима, так как Р-значение = 0,833364.

1.2. Оценим кривые Энгеля для каждого продукта

Кривые Энгеля отражают зависимость потребления определенного товара от дохода потребителя. Проверяем, соответствует ли кривая Энгеля для каждого товара уравнению прямой.

Хлеб:

Модель 1: МНК, использованы наблюдения 1-190 Зависимая переменная: DWBREAD

	Коэффициен	Cm. ou	иибка	t-	р-значени	!e
	m		CI	патистика		
const	2,19572	0,161	177	13,62	< 0,0001	***
INCOME	1,16600e-05	3,9374	1e-06	2,961	0,0035	***
Среднее завис. пер	ремен 2,44	18684	Ст. от	кл. завис. по	ерем 1,	,922317
Сумма кв. остатко	в 667	,2859	Ст. ош	ибка модел	ш 1,	,883983
R-квадрат	0,04	14567	Испра	в. R-квадра	т 0,	,039485
F(1, 188)	8,76	59471	Р-знач	ение (F)	0,	,003458
Лог. правдоподоби	-388	,9368	Крит.	Акаике	73	81,8736
Крит. Шварца	788	,3676	Крит.	Хеннана-Ку	уинна 73	84,5042

DWBREAD = 2,19572 + 1,16600e-05 * INCOME

(0,161177) (3,93741e-06)

Р-значение уравнения = 0,003458, уравнение в целом значимо с вероятностью 99%.

Р-значение коэффициента при b1 = 0,0035, коэффициент значим с вероятностью 99%.

Можно утверждать, что при увеличении дохода на 1 рубль спрос домохозяйств на хлеб увеличится на 1,16600e-05 кг.

Картофель:

Модель 1: МНК, использованы наблюдения 1-111 Зависимая переменная: DPOTAT

	Коэффициен	Ст. ошибка	t-	р-значение	
	m		статистика	ı	
const	5,30380	0,507469	10,45	< 0,0001	***
INCOME	2,17313e-06	1,08459e-05	0,2004	0,8416	
Среднее завис. пер	ремен 5,35	1351 Ст. с	откл. завис. п	ерем 4,70	05217
Сумма кв. остатко	в 2434	1,401 Ст. о	ошибка модел	ти 4,72	25881
R-квадрат	0,00	0368 Исп	рав. R-квадра	т -0,00	08803

F(1, 109)	0,040146	Р-значение (F)	0,841569
Лог. правдоподобие	-328,8821	Крит. Акаике	661,7641
Крит. Шварца	667,1832	Крит. Хеннана-Куинна	663,9625

DPOTAT = 5,30380 + 2,17313e-06 * INCOME

(0.507469) (1.08459e-05)

Модель незначима в целом, так как P-значение = 0.841569.

P-значение при переменной INCOME также крайне высокое, доход не влияет на спрос домохозяйств на картофель.

Макароны:

Модель 1: МНК, использованы наблюдения 1-122 Зависимая переменная: DMACAR

	Коэффициен	Cm. o	шибка	t-	р-значен	ue
	m		C	статистика	!	
const	0,689011	0,12	6350	5,453	< 0,000	***
INCOME	3,08065e-05	4,5712	26e-06	6,739	< 0,000	***
Среднее завис. пер	ремен 1,30)6967	Ct. or	гкл. завис. по	ерем	1,122595
Сумма кв. остатко	в 110,	,6202	Ст. ог	шибка модел	и (0,960123
R-квадрат	0,27	4558	Испра	ав. R-квадра	т (0,268512
F(1, 120)	45,4	1631	Р-зна	чение (F)		5,88e-10
Лог. правдоподоби	ие —167,	,1375	Крит.	Акаике	3	338,2750
Крит. Шварца	343.	,8830	Крит.	Хеннана-Ку	уинна З	340,5528

DMACAR = 0,689011 + 3,08065e-05 * INCOME

(0,126350) (4,57126e-06)

Р-значение уравнения = 5,88e-10, уравнение в целом значимо с вероятностью 99%.

Р-значение коэффициента при b1 = <0,0001, коэффициент значим с вероятностью 99%.

Можно утверждать, что при увеличении дохода на 1 рубль спрос домохозяйств на макароны увеличится на 3,08065е-05 кг.

Яйца:

Модель 1: МНК, использованы наблюдения 1-148 Зависимая переменная: DEGGS

	Коэффициен	Ст. ошибка	t-	р-значение	
	m		статистика		
const	17,4289	1,02846	16,95	< 0,0001	***

INCOME	6,83244e-05	2,29717e-05	2,974	0,0034 ***	
Среднее завис. пер	ремен 19,0	00000 Ст.	откл. завис. пер	ем 11,01823	j
Сумма кв. остатко	в 1682	26,46 Ст.	ошибка модели	10,73544	ļ
R-квадрат	0,05	7130 Исп	рав. R-квадрат	0,050672)
F(1, 146)	8,84	6373 Р-зн	начение (F)	0,003437	1
Лог. правдоподоби	re −560,	2816 Кри	т. Акаике	1124,563	j
Крит. Шварца	1130	0,558 Кри	т. Хеннана-Куи	нна 1126,999)

DEGGS = 17,4289 + 6,83244e-05 * INCOME

(1,02846) (2,29717e-05)

Р-значение уравнения = 0,003437, уравнение в целом значимо с вероятностью 99%.

Р-значение коэффициента при b1 = 0,0034, коэффициент значим с вероятностью 99%.

Можно утверждать, что при увеличении дохода на 1 рубль спрос домохозяйств на яйца увеличится на 6,83244e-05 кг.

Молоко:

Модель 1: МНК, использованы наблюдения 1-160 Зависимая переменная: DMILK

	Коэффициен т	Cm. ou		t- статистика	р-значен	ue
const	2,51186	0,219	551	11,44	<0,0001	***
INCOME	6,88912e-06	5,0920	6e-06	1,353	0,1780	
Среднее завис. пер Сумма кв. остатко	в 892	55625 ,0271	Ст. о	ткл. завис. пер шибка модели	и 2	2,382273
R-квадрат F(1, 158)	,	11452 30376		ав. R-квадрат чение (F)),005195),178016
Лог. правдоподоби Крит. Шварца	те —364	,4960 ,1423	Крит	. Акаике . Хеннана-Ку	7	732,9920 735,4894

DMILK = 2,51186 + 6,88912e-06 * INCOME

(0,219551) (5,09206e-06)

Модель незначима в целом, так как P-значение = 0,178016.

P-значение при переменной INCOME также крайне высокое, доход не влияет на спрос домохозяйств на молоко.

Упражнение 1.3. Оценка модели САРМ по американским данным

rj = IBM, rf = RKFREE, rm = MARKET

Продолжаем использовать модель парной регрессии:

$$y = b0 + b1*x$$

Построим модель с помощью метода наименьших квадратов, где Y = IBM - RKFREE, X = MARKET - RKFREE:

Модель 1: МНК, использованы наблюдения 1-120 Зависимая переменная: Y

	Коэффициен	Ст. ошибка	t -	р-значение	
	m		статистика		
const	-0,00048959	0,00464003	-0,1055	0,9161	
	4				
X	0,456821	0,0675477	6,763	< 0,0001	***
Среднее завис. пе	ремен 0,00)2778 Ct.	откл. завис. по	ерем 0,0	59299
Сумма кв. остатко	ов 0,30	01558 Ст.	ошибка модел	и 0,0	50553
R-квадрат	0,27	9333 Исп	грав. R-квадра	0,2	73226
F(1, 118)	45,7	'3725 Р-зі	начение (F)	5,4	9e-10
Лог. правдоподоб	бие 188.	,9045 Kpi	іт. Акаике	-373	,8090
Крит. Шварца	-368,	,2340 Кри	т. Хеннана-Ку	инна -371	,5450

Уравнение регрессии имеет вид

$$Y = -0.000489594 + 0.456821 X$$

(0.00464003) (0.0675477)

Уравнение модели САМР имеет вид:

$$IBM$$
-RKFREE = $-0.000489594 + 0.456821(MARKET$ -RKFREE) (0.00464003) (0.0675477)

p-значение при переменной X <0,0001 — переменная значима с вероятностью 99%.

p-значение для F статистики p = 5,49e - 10, модель значима с вероятностью 99%.

р-значение при константе больше 0,1 – коэффициент незначим.

Коэффициент детерминации R^2 = 0,279333, Исправ. R^2 = 0,273226

Так как b1 является значимым, то доходность бумаги компании IBM зависит от доходности общего рыночного портфеля ценных бумаг.

Экономически можно интерпретировать так: коэффициент b1 в нашем случае меньше 1, это значит, что акции IBM достаточно стабильны к изменениям на рынке. Они не реагируют на рыночные колебания сильнее, чем средний актив.

Упражнение 1.4. Оценка кривой Филлипса

1.4.1

Модель 2: МНК, использованы наблюдения 1958-1969 (T = 12) Зависимая переменная: Y

	Коэффици	ен Ст.	ошибка	t-	р-значение	е
	m			статистика		
const	-0,25943	7 1,0	00864	-0,2572	0,8022	
X1	20,5879	4,0	57948	4,400	0,0013	***
Среднее завис. по	еремен 4,	,066667	Ст. о	ткл. завис. пе	рем 1,2	271601
Сумма кв. остатк	ов 6,	,058842	Ст. о	шибка модел	и 0, [′]	778386
R-квадрат	0,	,659360	Испр	ав. R-квадрат	0,0	625296
F(1, 10)	19	9,35654	Р-зна	чение (F)	0,0	001336
Лог. правдоподоб	бие −12	2,92694	Крит	. Акаике	29	,85387
Крит. Шварца	30	0,82368	Крит	. Хеннана-Ку	инна 29	,49481
параметр rho	0,	,513773	Стат	. Дарбина-Уо	гсона 0,0	639368
Уравнение регрессии им	леет вил: V =	0.2	259437 ⊣	- 20	5879 * 1/X	
э равнение регрессии их	тест вид. т =	- 0,2	137 4 31	20,	3017 1/1	
		(1,00	0864)	(4,	67948)	

Коэффициент b1 является значимым с 99% вероятностью, так как р-значение = 0,0013. Уравнение в целом также значимо с 99% вероятностью, так как р-значение = 0,001336.

3. Дайте экономическую интерпретацию полученному результату.

Экономически результаты можно интерпретировать так: при уменьшении уровня безработицы на один процент, на 20,5879% увеличится почасовая заработная плата. Результаты подтверждают теорию Филипса, увеличение часовой заработной платы зависит от уровня безработицы обратно пропорционально, то есть существует краткосрочная обратная корреляция между инфляцией и безработицей.

4. Снижался ли, согласно полученному результату, уровень инфляции при увеличении уровня безработицы?

Как можно заметить, согласно полученному уравнению, увеличение уровня безработицы приводит к замедлению роста заработной платы, что указывает на снижение инфляции в экономике США в период с 1958 по 1969 годы.

1.4.2

Модель 1: МНК, использованы наблюдения 1-29 Зависимая переменная: Y

	Коэффициен	Cm. ou	иибка	t-	р-значени	2
	m			статистика		
const	111,948	1,98	500	56,40	< 0,0001	***
X1	-71,4192	16,2	827	-4,386	0,0002	***
Среднее завис. пер	ремен 103	,3138	Ct. c	откл. завис. пер	рем 1,	766903
Сумма кв. остатко	в 51,0)4351	CT. o	ошибка модели	ı 1,	374955
R-квадрат	0,41	6075	Исп	рав. R-квадрат	0,	394448
F(1, 27)	19,2	23881	Р-зн	ачение (F)	0,0	000158
Лог. правдоподоби	ие —49,3	34727	Кри	г. Акаике	10	2,6945
Крит. Шварца	105	,4291	Кри	г. Хеннана-Куг	инна 10	3,5510

Уравнение регрессии имеет вид:
$$Y = 111,948 - 71,4192 * 1/X$$
 (1,98500) (16,2827)

Коэффициент b1 является значимым с 99% вероятностью, так как p-значение = 0,0002. Уравнение в целом также значимо с 99% вероятностью, так как p-значение = 0,000158.

3. Дайте экономическую интерпретацию полученному результату.

Экономически результаты можно интерпретировать так: Результаты подтверждают теорию Филипса, существует краткосрочная обратная корреляция между инфляцией и безработицей. Чем больше уровень безработицы, тем медленнее растет инфляция.

4. Снижался ли, согласно полученному результату, уровень инфляции при увеличении уровня безработицы?

В данном случае уровень инфляции не снижается при увеличении уровня безработицы, так как увеличение X приводит к увеличению Y и к росту инфляции.

Упражнение 2.1

1. Оцените параметры уравнения множественной регрессии

PRICE = β 0+ β 1 GREEN + β 2 NOSTALKS + β 3 DISPERSE + ϵ .

Модель 1: МНК, использованы наблюдения 1-200 Зависимая переменная: PRICE

	Коэффиц	иен Ст.	ошибка	t-	р-значені	ıe
	m			статистик	ca	
const	40,7613	5,	32784	7,651	<0,0001	***
GREEN	0,13759	8 0,00	709935	19,38	<0,0001	***
NOSTALKS	-1,3572	6 0,1	50822	-8,999	<0,0001	***
DISPERSE	-0,34528	33 0,1	29656	-2,663	0,0084	***
Среднее завис. пе	еремен 9	0,09500	CT.	откл. завис. 1	перем 2	9,47439
Сумма кв. остатко	OB 4	17230,75	CT.	ошибка моде	ели 1	5,52331
R-квадрат	(),726799	Исп	рав. R-квадр	оат О	,722617
F(3, 196)	_	73,8070	Р-зн	ачение (F)	5	5,71e-55
Лог. правдоподоб	бие —8	30,2360	Кри	т. Акаике	1	668,472
Крит. Шварца		681,665	Кри	т. Хеннана-И	Суинна 1	673,811

PRICE =
$$40,7613 + 0,137598 * GREEN - 1,35726 * NOSTALKS - 0,345283 * DISPERSE$$
(5,32784) (0,00709935) (0,150822) (0,129656)

2. Проверьте адекватность регрессии в целом и значимость коэффициентов регрессии по отдельности.

р-значение уравнения < 0,01 – уравнение значимо в целом с 99% вероятностью.

р-значения всех переменных также меньше 0,01 – все переменные значимы с 99% вероятностью.

Также у модели достаточно высокий исправленный R-квадрат (0,722617).

Средняя абсолютная процентная ошибка (МАРЕ) 14,721 – хорошее качество модели

Тест Вайта (White) на гетероскедастичность -

Нулевая гипотеза: гетероскедастичность отсутствует

Тестовая статистика: LM = 13,5837

р-значение = Р(Хи-квадрат(9) > 13,5837) = 0,137925

Как можно заметить, гетерескедастичность не наблюдается в нашей модели.

Метод инфляционных факторов

Минимальное возможное значение = 1.0

Значения > 10.0 могут указывать на наличие мультиколлинеарности

GREEN 1,017

NOSTALKS 1,141

DISPERSE 1,159

Мультиколлинеарности также нет.

Вывод: модель адекватна, коэффициенты значимы.

3. Дайте интерпретацию полученным результатам.

Если длина стеблей спаржи в одном пучке (GREEN) увеличивается на одну сотую дюйма, то относительная цена (PRICE) увеличивается в среднем на 0,137598 условных единиц.

Если количество стеблей спаржи в одном пучке (NOSTALKS) увеличивается на 1, то относительная цена (PRICE) уменьшается в среднем на 1,35726 условных единиц.

Если разброс в размере стеблей (DISPERSE) увеличивается на одну единицу, то относительная цена пучка уменьшается в среднем на 0,345283 единиц.

Упражнение 2.2. Зависимость заработной платы от способностей индивида, его образования и образования его родителей в США (линейная модель)

2.2.1. Зависимость длительности образования от способностей и длительности обучения родителей

1. С помощью данных файла data 2.2.gdt оцените параметры уравнения множественной регрессии $S = \beta 0 + \beta 1$ ASVABC + $\beta 2$ SM + ϵ .

Модель 1: МНК, использованы наблюдения 1-540 Зависимая переменная: S

	Коэффициен	Ст. ошибка	t-	р-значение	
	m		статистика		
const	4,35718	0,577870	7,540	<0,0001	***
ASVABC	0,128631	0,0106034	12,13	<0,0001	***
SM	0,227710	0,0388214	5,866	<0,0001	***

Среднее завис. перемен	13,67222	Ст. откл. завис. перем	2,555863
Сумма кв. остатков	2346,569	Ст. ошибка модели	2,090401
R-квадрат	0,333547	Исправ. R-квадрат	0,331065
F(2, 537)	134,3793	Р-значение (F)	4,81e-48
Лог. правдоподобие	-1162,895	Крит. Акаике	2331,789
Крит. Шварца	2344,664	Крит. Хеннана-Куинна	2336,825

 $S = 4,35718 + 0,128631* ASVABC + 0,227710 * SM + \epsilon$.

(0.577870) (0.0106034) (0.0388214)

2. Проверьте адекватность регрессии в целом и значимость коэффициентов регрессии по отдельности.

р-значение уравнения < 0,01 — уравнение значимо в целом с 99% вероятностью.

р-значения всех переменных также меньше 0,01 – все переменные значимы с 99% вероятностью.

Исправ. R-квадрат (0,331065) не является высоким, значит существуют другие факторы, влияющие на зависимую переменную.

Средняя абсолютная процентная ошибка (МАРЕ) 12,202 – хорошее качество модели

Метод инфляционных факторов

Минимальное возможное значение = 1.0

Значения > 10.0 могут указывать на наличие мультиколлинеарности

ASVABC 1,152

SM 1,152

Мультиколлинеарность отсутствует.

Тест Вайта (White) на гетероскедастичность -

Нулевая гипотеза: гетероскедастичность отсутствует

Тестовая статистика: LM = 10,337

р-значение = P(Xи-квадрат(5) > 10,337) = 0,0662316

Присутствует гетероскедастичность с 90% вероятностью.

Модель 2: МНК, использованы наблюдения 1-540 Зависимая переменная: S

Робастные оценки стандартных ошибок (с поправкой на гетероскедастичность), вариант HC1

	Коэффициен	Ст. ошибка	t-	р-значение	
	m		статистика		
const	4,35718	0,606997	7,178	< 0,0001	***
ASVABC	0,128631	0,0108685	11,84	< 0,0001	***
SM	0.227710	0.0413820	5.503	< 0.0001	***

Среднее завис. перемен	13,67222	Ст. откл. завис. перем	2,555863
Сумма кв. остатков	2346,569	Ст. ошибка модели	2,090401
R-квадрат	0,333547	Исправ. R-квадрат	0,331065
F(2, 537)	119,6031	Р-значение (F)	1,09e-43
Лог. правдоподобие	-1162,895	Крит. Акаике	2331,789
Крит. Шварца	2344,664	Крит. Хеннана-Куинна	2336,825

Как можно заметить, поправка на гетерескедастичность незначительно увеличила рзначение, тем не менее, можно сделать общий вывод, что модель в целом адекватна и все переменные в ней — значимые.

3. Исходя из полученных результатов сделайте вывод, какие факторы влияют на длительность обучения индивида. Дайте интерпретацию полученным результатам.

Способности школьника (ASVABC) и количество лет обучения матери (SM) влияют на длительность обучения индивида.

При увеличении способностей школьника на 1 условную единицу кол-во лет обучения в среднем увеличивается на 0,128631 лет.

При увеличении количества лет обучения матери индивида кол-во лет обучения индивида уменьшается в среднем на 0,22771 лет.

При условии нулевых значений независимых переменных кол-во лет обучения индивида в среднем составит 4,35718 лет.

2.2.2. Зависимость заработной платы от способностей и образования индивида

С помощью данных файла data 2.2.gdt оцените параметры уравнения множественной регрессии EARN = β 0 + β 1 S + β 2 ASVABC + ϵ .

Модель 3: МНК, использованы наблюдения 1-540 Зависимая переменная: EARNINGS

	Коэффициен	Ст. ошибн	ca t-	р-значение	?
	m		статистика	!	
const	-20,5329	3,59502	-5,711	< 0,0001	***
S	1,76657	0,262150	6,739	< 0,0001	***
ASVABC	0,311208	0,0735111	4,233	< 0,0001	***
Среднее завис. пер	емен 19,7	1924 C1	г. откл. завис. п	ерем 14	,60151
Сумма кв. остатко	в 9214	l6,36 Ст	с. ошибка модел	и 13	,09942
R-квадрат	0,19	8148 Ис	справ. R-квадра	т 0,1	95162
F(2, 537)	66,3	4997 P-	значение (F)	1,	78e-26
Лог. правдоподоби	-2153	3,909 Kr	оит. Акаике	43	13,818
Крит. Шварца	4326	5,693 Kr	оит. Хеннана-Ку	уинна 43	18,854

EARN =
$$-20,5329 + 1,76657 * S + 0,311208 * ASVABC + \epsilon$$

(3,59502) (0,262150) (0,0735111)

2. Проверьте адекватность регрессии в целом и значимость коэффициентов регрессии по отдельности.

р-значение уравнения < 0,01 – уравнение значимо в целом с 99% вероятностью.

р-значения всех переменных также меньше 0,01 – все переменные значимы с 99% вероятностью.

Исправ. R-квадрат (0,195162) не является высоким, значит существуют другие факторы, влияющие на зависимую переменную.

Метод инфляционных факторов

Минимальное возможное значение = 1.0

Значения > 10.0 могут указывать на наличие мультиколлинеарности

S 1,410

ASVABC 1,410

Мультиколлеарность отсутствует

Средняя абсолютная процентная ошибка (МАРЕ) 55,294 — неудовлетворительное качество модели

Тест Вайта (White) на гетероскедастичность -

Нулевая гипотеза: гетероскедастичность отсутствует

Тестовая статистика: LM = 32,2606

р-значение = P(Xи-квадрат(5) > 32,2606) = 5,27537e-06

Также в модели присутствует гетероскедастичность

Модель 4: МНК, использованы наблюдения 1-540 Зависимая переменная: EARNINGS Робастные оценки стандартных ошибок (с поправкой на гетероскедастичность), вариант HC1

	Коэффициен	Ст. ошибка	t -	р-значение	
	m		статистика		
const	-20,5329	4,10869	-4,997	< 0,0001	***
S	1,76657	0,358034	4,934	< 0,0001	***
ASVABC	0,311208	0,0744864	4,178	<0,0001	***
Среднее завис. пер	мент 10.7°	1924 Ст.	откл. завис. пе	may 1/1	60151
	*			1 '	
Сумма кв. остатко	в 9214	-6,36 Ст.	ошибка модел	и 13,	09942
R-квадрат	0,198	8148 Исі	трав. R-квадрат	г 0,1	95162
F(2, 537)	41,53	3051 Р-з	начение (F)	1,7	70e-17
Лог. правдоподоби	re -2153	,909 Kpi	ит. Акаике	431	13,818
Крит. Шварца	4326	5,693 Kpi	ит. Хеннана-Ку	инна 431	18,854

Как можно заметить, поправка на гетерескедастичность незначительно увеличила рзначение, тем не менее, можно сделать общий вывод, что модель в целом значима и все переменные в ней — значимые, тем не менее, качество модели — неудовлетворительное.

3. Исходя из полученных результатов сделайте вывод, какие факторы влияют на заработную плату индивида. Дайте интерпретацию полученным результатам.

Так как все коэффициенты значимы и само уравнение регрессии значимо, заработная плата индивида (EARNINGS) зависит от количества лет обучения индивида (S) и от интеллектуальных способностей индивида по совокупности тестов (ASVABC).

При увеличении обучения индивида на 1 год его почасовая заработная плата увеличивается в среднем на 1,76657 единиц её измерения.

При увеличении уровня интеллектуальных способностей индивида по результатам совокупности тестов на одну единицу почасовая заработная плата индивида увеличивается в среднем на 0,311208 единиц её измерения.

Упражнение 2.3. Зависимость потребления основных видов товаров от их цен и доходов домохозяйств (по данным RLMS)

1. По данным файла data 2.3.gdt оцените зависимость потребления одного из видов товаров Y от его цены P и дохода домохозяйства I: $Y = \beta 0 + \beta 1 P + \beta 2 I + \epsilon$.

Я выберу молоко.

 $buymilk_b = b0 + b1 * pr_milk + b2 * inc$

Модель 1: МНК, использованы наблюдения 1-3335 (n = 2127) Исключено пропущенных или неполных наблюдений: 1208 Зависимая переменная: buymilk_b

	Коэффициен	Cm. ou	иибка	t-	р-значені	ie
	m		C	статистика	ı	
const	3,34220	0,072	5235	46,08	<0,0001	***
pr_milk	-0,00213311	0,0008	39833	-2,540	0,0112	**
inc	5,18039e-06	3,1630	5e-06	1,638	0,1016	
Среднее завис. пер	ремен 3,36	8806	Ст. от	кл. завис. п	ерем 2	,682983
Сумма кв. остатко	ов 152:	37,92	CT. OI	пибка модел	пи 2	,678462
R-квадрат	0,00	4305	Испра	ав. R-квадра	т 0	,003367
F(2, 2124)	4,59	1247	Р-знач	чение (F)	0	,010241
Лог. правдоподоби	ие —5112	2,193	Крит.	Акаике	1	0230,39
Крит. Шварца	102	47,37	Крит.	Хеннана-К	уинна 1	0236,60

Уравнение регрессии имеет вид:

buymilk_b = $3,34220 - 0,00213311 * pr_milk + 5,18039e-06 * inc$

(0.0725235) (0.000839833) (3.16305e-06)

2. Проверьте адекватность регрессии в целом и значимость коэффициентов регрессии по отдельности

Р-значение - 0,010241, в целом модель значима с 95% вероятностью.

Р-значение при переменной pr_milk - 0,0112, переменная значима с 95% вероятностью

Р-значение при переменной inc - 0,1016, переменная незначима.

Исправленный R-квадрат - 0,003367, что крайне мало.

Минимальное возможное значение = 1.0

Значения > 10.0 могут указывать на наличие мультиколлинеарности

pr_milk 1,000 inc 1,000

 $VIF(j) = 1/(1 - R(j)^2)$, где R(j) - это коэффициент множественной корреляции

между переменной ј и другими независимыми переменными

Мультиколлеарности нет.

Тест Вайта (White) на гетероскедастичность -

Нулевая гипотеза: гетероскедастичность отсутствует

Тестовая статистика: LM = 6,10866

р-значение = Р(Хи-квадрат(5) > 6,10866) = 0,295789

Гетероскедастичности тоже нет.

В целом можно сделать вывод, что модель адекватна, цена молока влияет на его покупки, а вот доход семьи – нет.

3. Оцените вашу регрессию по более однородной выборке. Например, можно выбрать наблюдения, относящиеся к одному федеральному округу, и/или одной первичной единице отбора, и/или одному типу населенного пункта. Дайте экономическую интерпретацию полученным результатам. Можно включить в регрессию цену товаров — субститутов или комплиментов.

Сделаем выборку ограниченной только центральным регионом.

Модель 2: МНК, использованы наблюдения 1-322 (n = 213) Исключено пропущенных или неполных наблюдений: 109 Зависимая переменная: buymilk_b

	Коэффициен	Ст. оши	бка	t-	р-значен	ие
	m		cmar	пистика		
const	3,19490	0,33009	2 9	9,679	< 0,0001	***
pr_milk	0,000600258	0,009831	97 0,	06105	0,9514	
inc	1,24364e-05	1,35972e	-05 0	,9146	0,3614	
Среднее завис. пе	ремен 3,40	1408	Ст. откл.	завис. пе	рем 2	2,665671
Сумма кв. остатко	ов 1500	0,379	Ст. ошиб	ка моделі	и 2	2,672950

R-квадрат	0,004016	Исправ. R-квадрат	-0,005469
F(2, 210)	0,423431	Р-значение (F)	0,655354
Лог. правдоподобие	-510,1412	Крит. Акаике	1026,282
Крит. Шварца	1036,366	Крит. Хеннана-Куинна	1030,358

 $buymilk_b = 3,19490 + 0,000600258 * pr_milk + 1,24364e-05 * inc$

(0,330092) (0,00983197) (1,35972e-05)

Как можно заметить, данная модель стала плохой — Все Р-значения стали значительно больше 0,1, а исправленный R-квадрат и вовсе ушел в минус. Это означает, что независимые переменные не объясняют зависимую.

Упражнение 2.4. Моделирование продаж одежды

1. Оцените параметры уравнения множественной регрессии sales = $\beta 0 + \beta 1$ hoursw + $\beta 2$ ssize + ϵ .

Модель 1: МНК, использованы наблюдения 1-400 Зависимая переменная: sales

	Коэффициен	Ст. ошибн	ka t-	р-значение	
	m		статистик	а	
const	5133,59	321,693	15,96	<0,0001	***
hoursw	37,5284	2,83722	13,23	<0,0001	***
ssize	-22,1446	1,62507	-13,63	<0,0001	***
Среднее завис. пер	ремен 633-	4,751 C	г. откл. завис. г	перем 37.	39,344
Сумма кв. остатко	3,54	le+09 C	г. ошибка моде	ли 298	35,371
R-квадрат	0,36	55804 И	справ. R-квадра	ат 0,3	62609
F(2, 397)	114	,4947 P-	значение (F)	5,3	51e-40
Лог. правдоподоби	-376	6,662 K ₁	оит. Акаике	753	39,323
Крит. Шварца	755	1,297 K ₁	оит. Хеннана-К	уинна 754	14,065

sales = 5133,59 + 37,5284 * hoursw - 22,1446 * ssize

(321,693) (2,83722) (1,62507)

Р-значение модели очень низкое, модель значима с 99% вероятностью. Р-значения независимых переменных также низкие — все переменные значимы с 99% вероятностью.

Исправленный R-квадрат не очень большой – существуют другие факторы, влияющие на зависимую переменную.

Средняя абсолютная процентная ошибка (MAPE) 45,705 — качество модели — удовлетворительное

Метод инфляционных факторов

Минимальное возможное значение = 1.0

Значения> 10.0 могут указывать на наличие мультиколлинеарности

VIF(j) = 1/(1 - R(j)^2), где R(j) - это коэффициент множественной корреляции между переменной j и другими независимыми переменными

Мультиколлеарности нет.

Можно сделать вывод, что модель достаточно качественная, так как все переменные значимые и МАРЕ достаточно низкая.

3. Влияет ли общее число отработанных часов и размер магазина на продажи в расчете на квадратный метр (и каким образом)?

Общее число отработанных часов и размер магазина влияют на продажи в расчете на квадратный метр таким образом:

Продажи магазина в расчете на квадратный метр в среднем уменьшаются на 22,1446 гульдена, при увеличении площади магазина на один квадратный метр.

При увеличении общего числа отработанных часов продажи в расчете на квадратный метр увеличиваются в среднем на 37,5284 гульдена.

4. Улучшится ли качество подгонки регрессии при включении в модель переменной nown переменной npart? Поэкспериментируйте и с включением других переменных.

Модель 3: МНК, использованы наблюдения 1-400 Зависимая переменная: sales

	Коэффициен	ı Ст. ошибка	t t-	р-значение	?
	m		статистика	ı	
const	4175,02	411,993	10,13	< 0,0001	***
hoursw	37,0192	2,79793	13,23	< 0,0001	***
ssize	-23,8549	1,66811	-14,30	< 0,0001	***
npart	816,719	224,372	3,640	0,0003	***
Среднее завис. пер	ремен 633	4,751 Ст.	откл. завис. п	ерем 37.	39,344
Сумма кв. остатко	в 3,42	2е+09 Ст.	ошибка модел	ти 29-	40,352
R-квадрат	0,3	86337 Ист	трав. R-квадра	т 0,3	881688
F(3, 396)	83,	10161 Р-зі	начение (F)	1,0	02e-41
Лог. правдоподоби	-376	0,079 Кри	ит. Акаике	75	28,158
Крит. Шварца	754	4,124 Kpi	ит. Хеннана-К	уинна 753	34,481
	_				

Средняя абсолютная процентная ошибка (МАРЕ) 45,553

Как можно заметить, P-значение и MAPE немного уменьшились — качество модели увеличилось, также исправленный R-квадрат стал больше — тоже хороший показатель.

Теперь давайте добавим nown:

Модель 5: МНК, использованы наблюдения 1-400 Зависимая переменная: sales

	Коэффициен	н Ст. ошибк	a t-	р-значение	
	m		статистик	a	
const	5451,14	387,504	14,07	< 0,0001	***
hoursw	39,5100	3,13938	12,59	< 0,0001	***
ssize	-22,6041	1,65275	-13,68	< 0,0001	***
nown	-380,265	259,534	-1,465	0,1437	
Среднее завис. пер	ремен 633	34,751 Ст.	. откл. завис. п	перем 373	39,344
Сумма кв. остатко	ов 3,5	2е+09 Ст.	ошибка моде	ли 298	81,069
R-квадрат	0,3	69223 Ис	прав. R-квадра	ат 0,3	64445
F(3, 396)	77,	26587 P-з	начение (F)	2,3	30e-39
Лог. правдоподоби	ие —376	55,580 Kp	ит. Акаике	753	39,160
Крит. Шварца	755	55,126 Kp	ит. Хеннана-К	уинна 754	45,483
-	_	(

Средняя абсолютная процентная ошибка (МАРЕ) 45,725

Как можно заметить, пусть P-значение и MAPE также стали меньше, а R-квадрат увеличился, тем не менее, с переменной прагт модель оказалась лучше.

Попробуем включить в модель переменную nfull, логично, если с этой переменной модель станет лучше.

Модель 11: МНК, использованы наблюдения 1-400 Зависимая переменная: sales

	Коэффициен	Ст. ошибк	a t-	р-значение	
	m		статистика	ı	
const	4457,21	362,809	12,29	< 0,0001	***
hoursw	32,4565	3,09176	10,50	< 0,0001	***
ssize	-22,5292	1,60131	-14,07	< 0,0001	***
nfull	651,818	171,168	3,808	0,0002	***
Среднее завис. пер	ремен 6334	1 ,751 Ст.	. откл. завис. п	ерем 373	39,344
Сумма кв. остатко	в 3,41	е+09 Ст.	. ошибка модел	ли 293	35,866
R-квадрат	0,38	8208 Ис	прав. R-квадра	т 0,3	83573
F(3, 396)	83,7	5947 Р-з	начение (F)	5,5	56e-42
Лог. правдоподоби	-3759	9,468 Kp	ит. Акаике	752	26,937
Крит. Шварца	7542	2,903 Kp	ит. Хеннана-К	уинна 753	33,260
144 2642 11071124 1100114		(NAADE) AG	E 4 4		

Средняя абсолютная процентная ошибка (МАРЕ) 46,544

R^2 снова увеличился, но MAPE стала меньше, тем не менее, с 99% вероятностью nfull влияет на зависимую переменную.

7. Если Radj 2 при включении дополнительной переменной увеличивается, то модель при включении этой переменной становится лучше?

Исправленный R^2 (adjusted) учитывает количество переменных. Если этот показатель увеличивается, модель становится лучше с добавлением новых переменных.

Упражнение 2.5. Моделирование продаж мороженого

1. Оцените параметры уравнения множественной регрессии cons = β 0 + β 1 income + β 2 price + β 3 temp + ϵ .

Модель 1: МНК, использованы наблюдения 1-30 Зависимая переменная: cons

	Коэффициен	Ст. оши	бка	t-	р-значе	ние	
	m		cman	пистика			
const	0,197315	0,27021	6 0,	7302	0,471	8	
income	0,00330776	0,001171	.42 2	,824	0,009	0 **	**
price	-1,04441	0,83435	57 –	1,252	0,221	8	
temp	0,00345843	0,000445	547 7	,762	<0,000)1 **	* *
Среднее завис. пе	ремен 0,35	9433 (Ст. откл. :	завис. пер	рем	0,0657	91
Сумма кв. остатко	ов 0,03	35273 (Ст. ошибі	са модели	1	0,0368	33
R-квадрат	0,71	8994 I	Исправ. R	-квадрат		0,6865	70
F(3, 26)	22,1	7489 I	Р-значени	e (F)		2,45e-	07
Лог. правдоподоб	бие 58,6	51944 I	Крит. Ака	ике	-	-109,23	89
Крит. Шварца	-103,	6341 I	Крит. Хен	інана-Куі	инна -	-107,44	59
cons = 0,197315 + 0,00330776 * income - 1,04441 * price + 0,00345843 * temp							
(0,270216) $(0,6)$	00117142)	(0,834	357)	(0,0004	45547)		

Как можно заметить, модель значима с 99 вероятностью, так как P-значение меньше 0.01, также переменные income и temp значимы с 99 вероятностью, а вот переменная price незначима.

Также у модели достаточно высокий исправленный R^2.

Средняя абсолютная процентная ошибка (МАРЕ) 6,8982 — отличное качество модели.

Метод инфляционных факторов

Минимальное возможное значение = 1.0

Значения > 10.0 могут указывать на наличие мультиколлинеарности

income 1,144
price 1,036
temp 1,144

Мультиколлинеарности нет.

В целом можно сделать вывод, что модель адекватна, доход и температура влияют на потребление мороженного, а вот его цена скорее всего нет.

Если средний еженедельный доход семьи увеличивается на 1 доллар, то потребление мороженного на одного покупателя увеличивается на $0.00330776~\mathrm{пинты}$.

Если средняя температура в градусах фаренгейта увеличивается на 1, то потребление мороженного на одного покупателя увеличивается на 0,00345843 пинты.

Упражнение 3.1. Анализ временных рядов.

В файлах Alum 2012_22.gdt, Brent 2012_22.gdt, Gas 2012_22.gdt, Gold 2012_22.gdt,

Silver 2012_22.gdt представлены данные (в формате Gretl.gdt) котировок на момент закрытия дневных сессий алюминия, нефти, газа, золота и серебра из базы данных мировых фондовых рынков с 2012 по 2022 г.г.

Для всех котировок из представленных файлов выполнить следующее:

- 1. Построить график временного ряда и визуально проанализировать его;
- 2. Построить коррелограмму и проанализировать поведение функций АСF, РАСF;
- 3. Подобрать наилучшую модель ARIMA(p,k,q) и обосновать выбор этой наилучшей модели;
- 4. Построить прогноз динамики временного ряда с использованием наилучшей модели.
- 5. Оформить отчет по результатам упражнения 3.1 в Word-файле. Alum (алюминий)
- 1. Построить график временного ряда и визуально проанализировать его;

На графике есть признаки цикличности, что может быть обусловлено сезонными факторами.

2. Построить коррелограмму и проанализировать поведение функций АСF, РАСF;

Большинство лагов находятся внутри доверительных интервалов, что говорит о слабой автокорреляции.

3. Подобрать наилучшую модель ARIMA(p,k,q) и обосновать выбор этой наилучшей модели;

Подберем разные параметры модели ARIMA

1, 0, 0:

Модель 4: ARMA, использованы наблюдения 1-2793 Зависимая переменная: CLOSE

Коэффициен Ст. ошибка z р-значение т

phi_1	0,999915	не определено	не определено	не определено
Среднее завис. пере Среднее инноваций R-квадрат Лог. правдоподобие Крит. Шварца	0,334 0,994	1315 Ст. о 1221 Испј 1,43 Криг	откл. завис. пе откл. инноваци рав. R-квадрат г. Акаике г. Хеннана-Ку	28,47667 0,994221 26646,86
AR Корень 1	Действител ьная часть 1,0001	Мнимая часть 0,0000	<i>Модуль</i> 0 1,0001	<i>Частота</i> 0,0000

Средняя абсолютная процентная ошибка (МАРЕ) 0,92677— отличное качество модели Отвергаем эту модель, так как показатели при переменной не определены. 1, 1, 0:

Модель 5: ARIMA, использованы наблюдения 2-2793 (T = 2792) Зависимая переменная: (1-L) CLOSE Стандартные ошибки рассчитаны на основе Гессиана Коэффициен Ст. ошибка р-значение Z. phi_1 -0.02087120,0189316 -1.1020,2703 Среднее завис. перемен 0,157593 Ст. откл. завис. перем 28,48184 Среднее инноваций 0,160896 Ст. откл. инноваций 28,47098 0,994225 R-квадрат 0,994225 Исправ. R-квадрат 26627,53 Лог. правдоподобие -13311,76Крит. Акаике

Крит. Хеннана-Куинна

26631,81

		Действител	Мнимая	Модуль	Частота
AR		ьная часть	часть		
7111	Корень 1	-47,9130	0,0000	47,9130	0,5000

26639,40

Крит. Шварца

Средняя абсолютная процентная ошибка (МАРЕ) 0,92683— отличное качество модели Тем не менее, также отвергаем эту модель, так как p-значение при переменной больше 0,1. 0, 1, 1:

Модель 6: ARIMA, использованы наблюдения 2-2793 (T = 2792) Зависимая переменная: (1-L) CLOSE Стандартные ошибки рассчитаны на основе Гессиана Коэффициен Ст. ошибка z p-значение m theta_1 -0,0202897 0,0186764 -1,086 0,2773

	0.157502		20 40104
Среднее завис. перемен	0,157593	Ст. откл. завис. перем	28,48184
Среднее инноваций	0,160873	Ст. откл. инноваций	28,47115
R-квадрат	0,994225	Исправ. R-квадрат	0,994225
Лог. правдоподобие	-13311,78	Крит. Акаике	26627,56
Крит. Шварца	26639,43	Крит. Хеннана-Куинна	26631,85

	Де	йствител	Мнимая	Модуль	Частота
	ЬН	іая часть	часть		
MA					
Ко	рень 1	49,2862	0,000	49,2862	0,0000

Снова заметим, что р-значение больше 0,1 – отвергаем эту модель.

1, 1, 1:

Модель 7: ARIMA, использованы наблюдения 2-2793 (T = 2792) Зависимая переменная: (1-L) CLOSE Стандартные ошибки рассчитаны на основе Гессиана

Станд	Стандартные ошиоки рассчитаны на основе т ессиана						
	Коэффициен	Cm. ou	ибка	z	р-значе	гние	
	m						
phi_1	-0,713217	0,190	748	-3,739	0,000)2 ***	
theta_1	0,687590	0,197	360	3,484	0,000)5 ***	
Среднее завис. пер	ремен 0,15	57593	Ст. от	гкл. завис. пе	рем	28,48184	
Среднее инноваци	ий 0,15	59690	Ст. от	гкл. инноваці	ий	28,45818	
R-квадрат	0,99	94230	Испра	ав. R-квадрат	Γ	0,994228	
Лог. правдоподоби	ие —133	10,51	Крит.	Акаике		26627,02	
Крит. Шварца	266	44,82	Крит.	Хеннана-Ку	инна	26633,45	
*		,			инна	,	

		Действител	Мнимая	Модуль	Частота
		ьная часть	часть		
AR					
	Корень 1	-1,4021	0,0000	1,4021	0,5000
MA	-				
	Корень 1	-1,4544	0,000	1,4544	0,5000

Средняя абсолютная процентная ошибка (MAPE) 0,92672— отличное качество р-значения при переменных низкие, они значимы с 99% вероятностью, модель удовлетворительна.

Модель 1, 1, 1 – лучшая, так как в ней значимы переменные и средняя абсолютная процентная ошибка показала отличное качество.

4. Построить прогноз динамики временного ряда с использованием наилучшей модели

Для 95% доверительных интервалов, z(0,025) = 1,96

Набл.	CLOSE	прогнозиро вание	ст. ошибка	95% доверительный интервал
2794	не	2435,62	28,4582	(2379,84, 2491,39)
	определено			
2795	не	2436,60	39,7336	(2358,73, 2514,48)
	определено			
2796	не	2435,90	48,7521	(2340,35,2531,45)
	определено			
2797	не	2436,40	56,1601	(2326,33, 2546,47)
	определено			
2798	не	2436,04	62,8169	(2312,92,2559,16)
	определено			
2799	не	2436,30	68,7560	(2301,54, 2571,06)
	определено			
2800	не	2436,12	74,2721	(2290,55,2581,69)
	определено			
2801	не	2436,25	79,3721	(2280,68, 2591,81)
	определено			
2802	не	2436,15	84,1864	(2271,15,2601,16)
	определено			
2803	не	2436,22	88,7245	(2262, 32, 2610, 12)
	определено			

Brent (нефть)

1. Построить график временного ряда и визуально проанализировать его;

График демонстрирует значительные колебания цены на нефть, что является характерным для этого рынка.

2. Построить коррелограмму и проанализировать поведение функций АСF, РАСF;

Большинство лагов находятся внутри доверительных интервалов, что говорит о слабой автокорреляции.

3. Подобрать наилучшую модель ARIMA(p,k,q) и обосновать выбор этой наилучшей модели;

1, 1, 0:

Модель 2: ARIMA, использованы наблюдения 2-3368 (T = 3367) Зависимая переменная: (1-L) CLOSE						
Стандартны	е ошибки расс	читаны на основе Гесси	ана			
Коэф	фициен Ст. о	шибка z p	-значение			
phi_1 -0,0	<i>m</i> 256707 0,017	72302 -1,490	0,1363			
Среднее завис. перемен	-0,005426	Ст. откл. завис. перем	и 1,402769			
Среднее инноваций	-0,005576	Ст. откл. инноваций	1,402109			
R-квадрат	0,997057	Исправ. R-квадрат	0,997057			
Лог. правдоподобие	-5915,536	Крит. Акаике	11835,07			
Крит. Шварца	11847,32	Крит. Хеннана-Куинг	на 11839,45			

Действител Мнимая Модуль Частота ьная часть часть Корень 1 -38,9550 0,0000 38,9550 0,5000 Р-значение выше 0,1 — модель неудовлетворительна.

0, 1, 1:

Модель 6: ARIMA, использованы наблюдения 2-3368 (T = 3367) Зависимая переменная: (1-L) CLOSE

Стандартные ошибки рассчитаны на основе Гессиана

Коэффициен Ст. ошибка z р-значение

m

theta_1 -0,0280208 0,0180078 -1,556 0,1197

C	0.005426	C	1 402760
Среднее завис. перемен	-0,005426	Ст. откл. завис. перем	1,402769
Среднее инноваций	-0,005593	Ст. откл. инноваций	1,402067
R-квадрат	0,997057	Исправ. R-квадрат	0,997057
Лог. правдоподобие	-5915,435	Крит. Акаике	11834,87
Крит. Шварца	11847,11	Крит. Хеннана-Куинна	11839,25

Действител Мнимая Модуль Частота ьная часть часть
МА
Корень 1 35,6878 0,0000 35,6878 0,0000

Р-значение выше 0,1 – модель неудовлетворительна.

1, 1, 1:

Модель 7: ARIMA, использованы наблюдения 2-3368 (T = 3367)

Зависимая переменная: (1-L) CLOSE

Стандартные ошибки рассчитаны на основе Гессиана

Коэффициен Ст. ошибка z р-значение m phi_1 0,652921 0,146681 4,451 <0,0001 *** theta_1 -0,689496 0,140022 -4,924 <0,0001 ***

Среднее завис. перемен	-0,005426	Ст. откл. завис. перем	1,402769
Среднее инноваций	-0,006041	Ст. откл. инноваций	1,400937
R-квадрат	0,997062	Исправ. R-квадрат	0,997061
Лог. правдоподобие	-5912,724	Крит. Акаике	11831,45
Крит. Шварца	11849,81	Крит. Хеннана-Куинна	11838,01

		Действител	Мнимая	Модуль	Частота
		ьная часть	часть		
AR					
	Корень 1	1,5316	0,0000	1,5316	0,0000
MA					
	Корень 1	1,4503	0,0000	1,4503	0,0000

Средняя абсолютная процентная ошибка (МАРЕ) 1,3856 – отличное качество

Все переменные значимы с 99% вероятностью. Выбираем эту модель.

4. Построить прогноз динамики временного ряда с использованием наилучшей

модели.

Для 95% доверительных интервалов, z(0,025) = 1,96

Набл.	CLOSE	прогнозиро вание	ст. ошибка	95% доверительный интервал
3369	не	93,8279	1,40094	(91,0821, 96,5736)
	определено			
3370	не	93,8460	1,94533	(90,0333,97,6588)
	определено			
3371	не	93,8579	2,34879	(89,2544, 98,4615)
	определено			
3372	не	93,8657	2,68184	(88,6094, 99,1220)
	определено			
3373	не	93,8707	2,97171	(88,0463, 99,6952)
	определено			
3374	не	93,8740	3,23203	(87,5394, 100,209)
2255	определено	02.07.62	2 450 60	(05.0500.100.650)
3375	не	93,8762	3,47068	(87,0738, 100,679)
225	определено	00.055	2 <02.70	(0.5.540.2.404.44.5)
3376	не	93,8776	3,69258	(86,6403, 101,115)
2277	определено	02.0705	2.00105	(0< 222< 101.524)
3377	не	93,8785	3,90105	(86,2326, 101,524)
2270	определено	02.0701	4.000.41	(05.0464, 101.010)
3378	не	93,8791	4,09841	(85,8464, 101,912)
	определено			

1. Построить график временного ряда и визуально проанализировать его;

На графике можно заметить циклы резкого роста и падения цен, а также колебания, предположительно связанные с сезонностью.

2. Построить коррелограмму и проанализировать поведение функций АСF, РАСF;

Большинство лагов находятся внутри доверительных интервалов, что говорит о слабой автокорреляции.

3. Подобрать наилучшую модель ARIMA(p,k,q) и обосновать выбор этой наилучшей модели;

1, 1, 0:

AR

Корень 1

Модель 3: ARIMA, использованы наолюдения 2-3385 ($1 = 3384$)							
	Зависимая	перемені	ная: (1-	L) CLOSE			
Станд	артные ошибн	ки рассчі	итаны н	на основе Ге	ссиана		
Коэффициен Ст. ошибка z р-значение							
	m						
phi_1	-0,0648790	0,0171	532	-3,782	0,0	002	***
Среднее завис. пер	ремен 0,00	00941	Ст. от	кл. завис. пе	ерем	0,1	22057
Среднее инноваци	ий 0,00	1000	Ст. от	кл. инновац	ий	0,1	21785
R-квадрат	0,99	1549	Испра	в. R-квадрат	Γ	0,9	91549
Лог. правдоподоби	ие 232	3,311	Крит.	Акаике		-464	2,622
Крит. Шварца	-4630	0,368	Крит.	Хеннана-Ку	инна	-463	88,241
	Действител ьная часть	. Мнил част		Модуль	Час	тота	

0,0000

15,4133

0,5000

-15,4133

Средняя абсолютная процентная ошибка (MAPE) 2,0505 — отличное качество 0, 1, 1:

Модель 4: ARIMA, использованы наблюдения 2-3385 (T = 3384) Зависимая переменная: (1-L) CLOSE Стандартные ошибки рассчитаны на основе Гессиана							
	Коэффициен	Cm. o	шибка	z	р-знач	чение	
theta_1	m -0,0608405	0,016	55874	-3,668	0,00	002	***
Среднее завис. пер	оемен 0,00	00941	Ст. о	ткл. завис. по	ерем	0,1	22057
Среднее инноваци	й 0,00	01000	CT. o	ткл. инновац	ий	0,1	21801
R-квадрат	0,99	91546	Испр	ав. R-квадра	Γ	0,9	91546
Лог. правдоподоби	re 232	2,865	Крит	. Акаике		-464	1,730
Крит. Шварца	-462	9,476	Крит	. Хеннана-Ку	/инна	-463	37,349
	Действител ьная часть		имая сть	Модуль	Часп	пота	

Средняя абсолютная процентная ошибка (MAPE) 2,0498 — отличное качество модели 1, 1, 1:

16,4364

MA

Корень 1

Модель 5: ARIMA, использованы наблюдения 2-3385 (T = 3384) Зависимая переменная: (1-L) CLOSE

0,0000

16,4364

0,0000

Станда	Стандартные ошиоки рассчитаны на основе 1 ессиана					
	Коэффициен	Cm. oun	ıбка z	<i>p</i> -	значение	
	m					
phi_1	-0,302059	0,1470	-2,0)54	0,0400	**
theta_1	0,236071	0,1493	35 1,5	81	0,1139	
Среднее завис. пер	ремен 0,00	00941	Ст. откл. заг	вис. перем	0,12	22057
Среднее инноваци	й 0,00	0990	Ст. откл. ин	новаций	0,12	21751
R-квадрат	0,99	1554	Исправ. R-к	вадрат	0,99	91551
Лог. правдоподоби	ie 232	4,262	Крит. Акаиг	ке	-464	2,525
Крит. Шварца	-462	4,144	Крит. Хенна	ана-Куинн	ıa −463	5,954

		Действител	Мнимая	Модуль	Частота
		ьная часть	часть		
AR					
	Корень 1	-3,3106	0,0000	3,3106	0,5000
MA					
	Корень 1	-4,2360	0,000	4,2360	0,5000

P-значение theta_1 показывает, что переменная незначима, модель неудовлетворительна

Сравнив модели, определим, что лучшие показатели имеет модель 0, 1, 1 (более низкая МАРЕ, ниже стандартные ошибки)

4. Построить прогноз динамики временного ряда с использованием наилучшей модели.

Для 95% доверительных интервалов, z(0,025) = 1,96

Набл.	CLOSE	прогнозиро вание	ст. ошибка	95% доверительный интервал
3386	не	6,15493	0,121801	(5,91620, 6,39365)
	определено			
3387	не	6,15493	0,167095	(5,82743,6,48243)
	определено			
3388	не	6,15493	0,202499	(5,75804,6,55182)
	определено			
3389	не	6,15493	0,232575	(5,69909,6,61077)
	определено			
3390	не	6,15493	0,259184	(5,64694,6,66292)
	определено			
3391	не	6,15493	0,283305	(5,59966, 6,71020)
	определено			
3392	не	6,15493	0,305527	(5,55611,6,75375)
	определено			
3393	не	6,15493	0,326240	(5,51551,6,79435)
	определено			
3394	не	6,15493	0,345713	(5,47734,6,83251)
	определено			

3395 не 6,15493 0,364147 (5,44121, 6,86864) определено

Gold(золото):

1. Построить график временного ряда и визуально проанализировать его;

Визуально можно заметить сильные колебания, предположительно, они связаны с сезонностью.

2. Построить коррелограмму и проанализировать поведение функций АСF, РАСF;

Большинство лагов находятся внутри доверительных интервалов, что говорит о слабой автокорреляции.

-0.0247012

phi_1

3. Подобрать наилучшую модель ARIMA(p,k,q) и обосновать выбор этой наилучшей модели; 1, 1, 0:

Модель 2: ARIMA, использованы наблюдения 2-3385 (T = 3384) Зависимая переменная: (1-L) CLOSE Стандартные ошибки рассчитаны на основе Гессиана Коэффициен Ст. ошибка z p-значение m

0,0171868

-1,437

0,1507

Среднее завис. перемен	0,058126	Ст. откл. завис. перем	13,34810
Среднее инноваций	0,059495	Ст. откл. инноваций	13,34218
R-квадрат	0,997238	Исправ. R-квадрат	0,997238
Лог. правдоподобие	-13569,40	Крит. Акаике	27142,79
Крит. Шварца	27155,05	Крит. Хеннана-Куинна	27147,17

		Действител	Мнимая	Модуль	Частота
		ьная часть	часть		
AR	Корень 1	-40,4839	0,0000	40,4839	0,5000

Р-значение больше 0,1 – модель неудовлетворительная.

0, 1, 1:

Модель 3: ARIMA, использованы наблюдения 2-3385 (T = 3384) Зависимая переменная: (1-L) CLOSE

Стандартные ошибки рассчитаны на основе Гессиана

Коэффициен Ст. ошибка z р-значение т
theta 1 −0.02/3751 0.01706/2 −1.428 0.1532

theta_1 -0,0243751 0,0170642 -1,428 0,1532

Среднее завис. перемен 0,058126 Ст. откл. завис. перем 13,34810 Среднее инноваций 13,34223 0,059510 Ст. откл. инноваций R-квадрат 0,997238 Исправ. R-квадрат 0,997238 Крит. Акаике Лог. правдоподобие -13569,4127142.82 Крит. Шварца Крит. Хеннана-Куинна 27155,07 27147,20

Действител Мнимая Модуль Частота ьная часть часть
МА
Корень 1 41,0255 0,0000 41,0255 0,0000

Средняя абсолютная процентная ошибка (МАРЕ) 0,6048 – качество модели отличное

Р-значение больше 0,1 – модель неудовлетворительная.

1, 1, 1:

Модель 4: ARIMA, использованы наблюдения 2-3385 (T = 3384) Зависимая переменная: (1-L) CLOSE

Стандартные ошибки рассчитаны на основе Гессиана

Коэффициен Ст. ошибка z р-значение m phi_1 -0,175202 0,540691 -0,3240 0,7459 theta_1 0,150423 0,542854 0,2771 0,7817

Среднее завис. перемен 0,058126 13,34810 Ст. откл. завис. перем Среднее инноваций 0,059328 Ст. откл. инноваций 13,34202 R-квадрат 0,997238 Исправ. R-квадрат 0,997238 Лог. правдоподобие 27144,72 -13569,36Крит. Акаике Крит. Шварца 27163,10 Крит. Хеннана-Куинна 27151,29

		Действител М	нимая	Модуль	Частота
		ьная часть ч	асть		
AR					
	Корень 1	-5,7077	0,0000	5,7077	0,5000
MA	-				
	Корень 1	-6,6479	0,0000	6,6479	0,5000
Средняя абсолют	гная процен	тная ошибка (MAPE	0,60481	– качество мод	дели отличное

Р-значения сильно больше 0,1 – модель неудовлетворительная.

2, 2, 0:

Модель 6: ARIMA, использованы наблюдения 3-3385 (T = 3383) Зависимая переменная: (1-L)^2 CLOSE Стандартные ошибки рассчитаны на основе Гессиана

Стандартные ошиоки рассчитаны на основе т ессиана								
	Коэффиц	иен (Ст. оші	<i>ібка</i>	z	р-значе	ние	
	m							
phi_1	-0,69112	25	0,01616	512	-42,76	< 0,000)1	***
phi_2	-0,34082	20	0,01616	506	-21,09	< 0,000)1	***
Среднее завис. пер	емен –(0,001	685	Ст. отк	л. завис. п	ерем	19,1	0944
Среднее инновации	й –(0,005	998	Ст. отк	л. инноваі	ций	15,3	9102
R-квадрат	(),996	337	Испран	з. R-квадра	т	0,99	6336
Лог. правдоподоби	ie –	4048	3,94	Крит.	Акаике		2810	03,88
Крит. Шварца		28122	2,26	Крит. 2	Хеннана-К	уинна	2811	10,45

		Действител	Мнимая	Модуль	Частота
		ьная часть	часть		
AR					
	Корень 1	-1,0139	-1,3806	1,7129	-0,3508
	Корень 2	-1,0139	1,3806	1,7129	0,3508

Средняя абсолютная процентная ошибка (МАРЕ) 0,73507 – качество модели отличное

Здесь р-значения меньше 0,01 — переменные значимы с 99% вероятностью, эту модель мы и будем считать оптимальной.

4. Построить прогноз динамики временного ряда с использованием наилучшей модели.

Для 95% доверительных интервалов, z(0,025) = 1,96

Набл.	CLOSE	прогнозиро вание	ст. ошибка	95% доверительный интервал
3386	не	1784,17	15,3910	(1754,00, 1814,33)
	определено	•	,	, , , , , ,
3387	не	1790,30	25,3516	(1740,61,1839,99)
	определено			
3388	не	1796,09	37,0400	(1723,49,1868,69)
	определено			
3389	не	1800,83	51,6764	(1699,55,1902,12)
	определено			
3390	не	1806,41	67,1291	(1674,84, 1937,99)
	определено			
3391	не	1811,77	83,9746	(1647,19,1976,36)
	определено			
3392	не	1817,00	102,209	(1616,68,2017,33)
	определено			
3393	не	1822,40	121,484	(1584,29,2060,50)
	определено			
3394	не	1827,72	141,874	(1549,65,2105,79)
	определено			
3395	не	1833,04	163,312	(1512,95,2153,12)
	определено			

Silver (серебро)

1. Построить график временного ряда и визуально проанализировать его;

На графике можно заметить циклы резкого роста и падения цен, а также колебания, предположительно связанные с сезонностью.

2. Построить коррелограмму и проанализировать поведение функций АСF, РАСF;

Большинство лагов находятся внутри доверительных интервалов, что говорит о слабой автокорреляции.

3. Подобрать наилучшую модель ARIMA(p,k,q) и обосновать выбор этой наилучшей модели 1, 1, 0:

Модель 2: ARIMA, использованы наблюдения 2-3391 (T = 3390) Зависимая переменная: (1-L) CLOSE

Стандартные ошибки рассчитаны на основе Гессиана Коэффициен Ст. ошибка р-значение Z, phi_1 -0.1048070,0171342 -6.117<0,0001 Среднее завис. перемен -0,001854Ст. откл. завис. перем 0,363177 Среднее инноваций -0.002039Ст. откл. инноваций 0,361140 0,995236 Исправ. R-квадрат 0,995236 **R**-квадрат -1357,526Лог. правдоподобие Крит. Акаике 2719,051 Крит. Шварца 2731,308 Крит. Хеннана-Куинна 2723,433

Действител Мнимая Модуль Частота ьная часть часть

AR
Корень 1 -9,5413 0,0000 9,5413 0,5000
Средняя абсолютная процентная ошибка (МАРЕ) 1,0826 — отличное качество модели

0, 1, 1:

Модель 3: ARIMA, использованы наблюдения 2-3391 (T = 3390) Зависимая переменная: (1-L) CLOSE Стандартные ошибки рассчитаны на основе Гессиана Коэффициен Ст. ошибка z р-значение						
theta $_1$ -0 ,	<i>m</i> 100944 0,	0167138	-6,040	<0,0001	***	
Среднее завис. перемен Среднее инноваций R-квадрат Лог. правдоподобие Крит. Шварца	-0,00185 -0,00205 0,99523 -1358,20 2732,65	3 Ст. о 4 Испр 0 Крит	ткл. завис. перткл. инноваци оав. R-квадрат с. Акаике с. Хеннана-Кур	йй 0,3 0,9 27	363177 361212 995234 20,400 24,782	
, ,	ствител я часть	Мнимая часть	Модуль	Частота		
МА Корень 1 Средняя абсолютная процентная	9,9065	0,0000	,	,		
Модель удовлетворительна.						

1	1	1 •	
ϫ,	ı,	Τ.	

Модель 4: ARIMA, использованы наблюдения 2-3391 (T = 3390)							
Зависимая переменная: (1-L) CLOSE							
Стандартные ошибки рассчитаны на основе Гессиана							
		Коэффициен	Cm. o	шибка	z	р-значение	
		m				-	
phi_1		-0,198791	0,14	3715	-1,383	0,1666	
theta_1		0,0949021	0,14	5753	0,6511	0,5150	
Среднее завис. перемен			2020 5237 7,316	Ст. от: Испра Крит.	Ст. откл. завис. перем 0,363 Ст. откл. инноваций 0,361 Исправ. R-квадрат 0,9952 Крит. Акаике 2720,		
Крит. Ш	варца	2739	2739,018 Крит		Хеннана-Куі	инна 2727,204	
		Действител ьная часть		имая сть	Модуль	Частота	
AR							
	Корень 1	-5,0304	_	0,0000	5,0304	0,5000	
MA							
	Корень 1	-10,5372),	0,0000	10,5372	0,5000	

Р-значения переменных больше 0,1- модель неудовлетворительна.

Сравнив результаты трех моделей, выберем модель 0, 1, 1.

4. Построить прогноз динамики временного ряда с использованием наилучшей модели.

Для 95% доверительных интервалов, z(0,025) = 1,96

Набл.	CLOSE	прогнозиро вание	ст. ошибка	95% доверительный интервал
3392	не	21,6665	0,361212	(20,9585, 22,3744)
	определено			
3393	не	21,6665	0,485733	(20,7144, 22,6185)
	определено			
3394	не	21,6665	0,584293	(20,5213, 22,8117)
	определено			
3395	не	21,6665	0,668476	(20,3563,22,9766)
	определено			
3396	не	21,6665	0,743184	(20,2098,23,1231)
	определено			
3397	не	21,6665	0,811040	(20,0768,23,2561)
	определено			
3398	не	21,6665	0,873640	(19,9542, 23,3788)
	определено			
3399	не	21,6665	0,932046	(19,8397, 23,4932)
	определено			
3400	не	21,6665	0,987002	(19,7320, 23,6009)
	определено			
3401	не	21,6665	1,03905	(19,6299, 23,7030)
	определено			