T0-Charakteristische Längen und kosmische Skalen in der T0-Theorie

1 Charakteristische Skalen L_0 , E_0 , m_0 , T_0

1.1 Definition in natürlichen Einheiten ($\hbar = c = 1$)

Größe	Dimension	Beziehung
Energie E_0	[E] = GeV	$E_0 = 1/\xi$
Masse m_0	[m] = GeV	$m_0 = E_0$
Länge L_0	$[L] = GeV^{-1}$	$L_0 = 1/E_0 = \xi$
Temperatur T_0	[E] = GeV	$T_0 \sim E_0$

Table 1: T0-Charakteristische Größen in natürlichen Einheiten.

$$\xi = \frac{4}{3} \times 10^{-4} \implies E_0 = 1/\xi = 7500 \,\text{GeV} \implies L_0 = \xi$$

1.2 Umrechnung in SI-Einheiten

$$1 \,\mathrm{GeV}^{-1} = \hbar c = 1.973 \times 10^{-16} \,\mathrm{m}$$

$$L_0 = \xi \cdot \hbar c = 4/3 \times 10^{-4} \cdot 1.973 \times 10^{-16} \,\mathrm{m} \approx 2.63 \times 10^{-20} \,\mathrm{m}$$

1.3 Physikalische Bedeutung

- \bullet L_0 ist die fundamentale "Korngröße" der Raumzeit.
- E_0 und m_0 repräsentieren die zugehörigen Energien/Massen.
- T_0 ist die charakteristische Temperatur des ξ -Feldes.

2 Kosmische Länge L_{cosmic} und CMB-Bezug

2.1 Definition

$$L_{\rm cosmic} \sim \frac{c}{H_0} \sim 10^{26} \, {\rm m}$$

2.2 CMB-Energiedichte

$$\rho_{\rm CMB} = \frac{\pi^2}{15} (k_B T_{\rm CMB})^4 \approx 4.0 \times 10^{-14} \,\mathrm{J/m}^3$$

Die Verbindung zur T0-Länge:

$$L_0^{\text{eff}} = \left(\frac{\xi}{\rho_{\text{CMB}}}\right)^{1/4} \sim 10^{-4} \,\text{m}$$

2.3 Verbindung über ξ -Hierarchie

$$\frac{L_{\rm cosmic}}{L_0} \sim \xi^{-N} \quad \Rightarrow \quad L_{\rm cosmic} \sim L_0 \, \xi^{-N}, \quad N \approx 30$$

3 Prozentuale Abweichung von der Hubble-Länge

$$\Delta_{\%} = \frac{L_H - L_{\text{cosmic}}}{L_H} \times 100\% \approx 4\%$$

4 Bemerkenswerter Zusammenhang

- Die Zahl $\xi \sim 4/3 \times 10^{-4}$ erscheint sowohl in der T0-Länge als auch in der CMB-Skala.
- Die mikroskopische Skala L_0 und die kosmische Skala $L_{\rm cosmic}$ sind über Potenzen von ξ verbunden.
- \bullet Dies legt nahe, dass ξ eine Brücke zwischen mikroskopischen und kosmischen Skalen darstellt.

5 Zusammenfassung

- T0-Charakteristische Skalen: $L_0 = \xi \approx 2.63 \times 10^{-20} \,\mathrm{m}, E_0 = m_0 = 1/\xi, T_0 \sim E_0.$
- Kosmische Länge $L_{\rm cosmic} \sim 10^{26}\,{\rm m}$ über Potenzen von ξ aus T0 ableitbar.
- Prozentuale Abweichung zur Hubble-Länge ca. 4%.
- \bullet ξ verknüpft mikroskopische und kosmische Skalen hierarchisch.

6 Zweite Herleitung: Charakteristische Länge r_0

6.1 Definition von r_0 aus der vereinfachten Lagrangedichte

In manchen Herleitungen der T0-Theorie wird eine charakteristische Länge r_0 direkt aus der Lagrangedichte des ξ -Feldes definiert:

$$\mathcal{L} \sim \frac{1}{2} (\partial_{\mu} \xi)^2 - V(\xi), \quad V(\xi) = \frac{\xi^2}{2r_0^2} + \dots$$
 (1)

Die Minimierung der Wirkung liefert dann eine natürliche Längenskala:

$$r_0 = \sqrt{\frac{\langle \xi^2 \rangle}{V(\xi)}} \sim \text{Charakteristische Länge der } \xi\text{-Fluktuationen.}$$
 (2)

Diese Definition ist unabhängig von kosmologischen Parametern und ergibt eine **mikroskopische Skala**, die der T0-Länge L_{T0} entspricht, also:

$$r_0 \sim L_{T0} = \frac{\hbar c}{E_0} \approx 2.63 \cdot 10^{-20} \,\mathrm{m}.$$
 (3)

6.2 Herleitung von r_0 in Bezug auf die Plancklänge

Alternativ kann r_0 über die Plancklänge $L_{\rm Planck}$ hergeleitet werden, wobei ξ als dimensionslose Hierarchie-Konstante dient:

$$r_0 \sim \sqrt{\xi} L_{\text{Planck}} \quad \Rightarrow \quad r_0 \sim 10^{-20} \,\text{m}.$$
 (4)

Damit bestätigt sich, dass r_0 auf derselben Größenordnung liegt wie L_{T0} , jedoch aus einer anderen theoretischen Ausgangslage:

- Erste Kette: L_{T0} direkt aus 3D-Raumgeometrie und ξ .
- \bullet Zweite Kette: r_0 aus Lagrangedichte bzw. Plancklänge.

6.3 Zusammenhang zu kosmischen Längen L_0

Auch über r_0 lässt sich die Hierarchie zwischen mikroskopischer und kosmischer Skala ausdrücken:

$$\frac{L_0}{r_0} \sim 10^{46} \sim \xi^{-1} \text{ bis } \xi^{-2} \quad \text{(analog zu } L_0/L_{T0}\text{)}.$$
 (5)

Fazit: r_0 liefert eine konsistente zweite Beweiskette, die unabhängig vom direkten geometrischen Ansatz ist, aber auf dieselben mikroskopischen Längenordnungen wie L_{T0} kommt und die kosmische Hierarchie über ξ reproduziert.