#### Министерство науки и высшего образования Российской Федерации



Калужский филиал

федерального государственного бюджетного образовательного учреждения высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)»

(КФ МГТУ им. Н.Э. Баумана)

# ФАКУЛЬТЕТ ИУК «Информатика и управление» КАФЕДРА ИУК5 «Информатика и вычислительная техника»

# Лабораторная работа №2

# «Метод главных компонент и кластеризация»

# ДИСЦИПЛИНА: «Проектирование программного обеспечения»

| Выполнил: студент гр. ИУК4-11М | (подпись) | _ ( _ | Сафронов Н.С.            |  |  |
|--------------------------------|-----------|-------|--------------------------|--|--|
| Проверил:                      | (подпись) |       | Потапов А.Е.<br>(Ф.И.О.) |  |  |
| Дата сдачи (защиты):           |           |       |                          |  |  |
| Результаты сдачи (защиты):     | я оценка: |       |                          |  |  |

Калуга, 2024

**Цель работы:** формирование практических навыков создания интеллектуальных систем с обучением без учителя (unsupervised learning).

Задачи: подготовить данные для эксперимента. Выполнить анализ при помощи метода главных компонент. Выполнить кластеризацию при помощи методов K-Means и агломеративного. Проанализировать эффективность вариации гиперпараметров моделей и применения композиции методов.

# Результаты выполнения работы

Отмасштабируем выборку с помощью StandardScaler с параметрами по умолчанию и понизим размерность с помощью PCA.

```
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

pca = PCA(n_components=0.9, random_state=RANDOM_STATE).fit(X_scaled)
X_pca = pca.transform(X_scaled)
```

Рисунок 1 – Масштабирование и понижение размерности выборки

# Вопрос 1:

Какое минимальное число главных компонент нужно выделить, чтобы объяснить 90% дисперсии исходных (отмасштабированных) данных?

**Рисунок 2** — Форма результата понижения размерности методом главных компонент

Таким образом, в результате понижения размерности было выделено 65 главных компонент.

Ответ: 65.

# Вопрос 2:

Сколько процентов дисперсии приходится на первую главную компоненту? Округлите до целых процентов.

```
round(float(pca.explained_variance_ratio_[0] * 100))
51
```

**Рисунок 3** — Результат получения дисперсии первой главной компоненты **Ответ:** 51.



**Рисунок 4** — Визуализация данных в проекции на первые две главные компоненты

# Вопрос 3:

Если все получилось правильно, Вы увидите сколько-то кластеров, почти идеально отделенных друг от друга. Какие виды активности входят в эти кластеры?

**Ответ:** 2 кластера: (ходьба, подъем вверх по лестнице, спуск по лестнице) и (сидение, стояние, лежание).

```
kmeans = KMeans(n_clusters=n_classes, n_init=100, random_state=RANDOM_STATE)
kmeans.fit(X_pca)
cluster_labels = kmeans.labels_
```

**Рисунок 5** – Кластеризация методом KMeans

```
from matplotlib.colors import ListedColormap
labels = [
'ходьба', 'подъем вверх по лестнице',
    'спуск по лестнице', 'сидение', 'стояние', 'лежание'
colors = plt.cm.viridis(np.linspace(0, 1, 6))
cmap = ListedColormap(colors)
fig, ax = plt.subplots()
ax.scatter(X_pca[:, 0], X_pca[:, 1], c=cluster_labels, cmap=cmap, s=20)
handles = []
for i, color in enumerate(colors):
    handle = plt.Line2D([0], [0], marker='o', color=color, label=labels[i-1])
handles.append(handle)
ax.legend(handles=handles)
<matplotlib.legend.Legend at 0x764939bb7d40>
      лежание
      ⊸ ходьба
      подъем вверх по лестнице
       спуск по лестнице
         сидение
 40
 20
```

**Рисунок 6** – Визуализация кластеризации методом KMeans

| tab = pd.crosstab(y, cluster_labels, margins=True) tab.index = ['ходьба', 'подъем вверх по лестнице', |          |          |          |          |          |          |       |  |  |
|-------------------------------------------------------------------------------------------------------|----------|----------|----------|----------|----------|----------|-------|--|--|
|                                                                                                       | cluster1 | cluster2 | cluster3 | cluster4 | cluster5 | cluster6 | все   |  |  |
| ходьба                                                                                                | 0        | 903      | 741      | 78       | 0        | 0        | 1722  |  |  |
| подъем вверх по лестнице                                                                              | 0        | 1241     | 296      | 5        | 2        | 0        | 1544  |  |  |
| спуск по лестнице                                                                                     | 0        | 320      | 890      | 196      | 0        | 0        | 1406  |  |  |
| сидение                                                                                               | 1235     | 1        | 0        | 0        | 450      | 91       | 1777  |  |  |
| стояние                                                                                               | 1344     | 0        | 0        | 0        | 562      | 0        | 1906  |  |  |
| лежание                                                                                               | 52       | 5        | 0        | 0        | 329      | 1558     | 1944  |  |  |
| все                                                                                                   | 2631     | 2470     | 1927     | 279      | 1343     | 1649     | 10299 |  |  |

Рисунок 7 – Составы полученных кластеров

# Вопрос 4:

Какой вид активности отделился от остальных лучше всего в терминах простой метрики, описанной выше?

**Рисунок 8** — Максимальная доля объектов в классе, отнесенных к кластеру **Ответ:** перечисленные варианты не подходят.

Воспользуемся методом локтя:



Рисунок 9 — Величина инерции для различного количества кластеров

```
d = {}
for k in range(2, 6):
    i = k - 1
    d[k] = (inertia[i] - inertia[i + 1]) / (inertia[i - 1] - inertia[i])
d

{2: np.float64(0.1734475356009401),
    3: np.float64(0.41688555755864765),
    4: np.float64(0.9332198909748659),
    5: np.float64(0.6297014287707848)}
```

**Рисунок 10** — Значение метрики разности для различных значений количества кластеров

## Вопрос 5:

Какое количество кластеров оптимально выбрать, согласно методу локтя?

Выбираем наименьшее значение метрики разности.

#### Ответ: 2.

```
metrics.adjusted_rand_score(y, cluster_labels)

0.4198070012602345

metrics.adjusted_rand_score(y, ag.labels_)

0.49362763373004886
```

**Рисунок 11** – Значение ARI для KMeans и агломеративной кластеризации

#### Вопрос 6:

Отметьте все верные утверждения.

KMeans имеет меньшую метрику, следовательно справился хуже.

ARI опирается на пары объектов и оценивает, находятся ли они в одном кластере или в разных кластерах в двух сравниваемых разбиениях (истинном и предсказанном).

Если разбиение произведено случайным образом, вероятность того, что одна и та же пара объектов попадет в один и тот же кластер в двух разных разбиениях, очень низка. Поэтому вклад этих пар в итоговый индекс также будет низким, что и приводит к значению ARI, близкому к нулю.

#### Ответ:

• Согласно ARI, KMeans справился с кластеризацией хуже, чем Agglomerative Clustering

- Для ARI не имеет значения какие именно метки присвоены кластерам, имеет значение только разбиение объектов на кластеры
- В случае случайного разбиения на кластеры ARI будет близок к нулю

#### Воспользуемся методом опорных векторов:

Рисунок 12 – Метод опорных векторов

# Вопрос 7

Какое значение гиперпараметра С было выбрано лучшим по итогам кросс-валидации?

#### Ответ: 0.1.

Определим вид активности для тестовой выборки и сравним с заданными значениями.



**Рисунок 13** — Сравнение результата метода опорных векторов и исходных данных (матрица неточностей)

## Вопрос 8:

Какой вид активности SVM определяет хуже всего в терминах точности? Полноты?

Точность равняется отношению соответствующего диагонального элемента матрицы неточностей и суммы всей строки класса. Полнота — отношению диагонального элемента матрицы и суммы всего столбца класса

Таким образом, наименьшее значения точности у сидения:

$$Precision = \frac{426}{491} = 0.86$$

Наименьшее значения полноты у стояния:

Recall = 
$$\frac{517}{589}$$
 = 0.88

Ответ: по точности – у сидения, по полноте – у стояния.

```
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
pca = PCA(n_components=0.9, random_state=RANDOM_STATE)
X_train_pca = pca.fit_transform(X_train_scaled)
X_test_pca = pca.transform(X_test_scaled)
svc = LinearSVC(random_state=RANDOM_STATE)
svc params = {"C": [0.001, 0.01, 0.1, 1, 10]}
best_svc_pca = GridSearchCV(svc, svc_params, n_jobs=4, cv=3, verbose=1)
best_svc_pca.fit(X_train_pca, y_train)
itting 3 folds for each of 5 candidates, totalling 15 fits
        GridSearchCV
 ▶ best_estimator_: LinearSVC
         LinearSVC
best_svc_pca.best_params_, best_svc_pca.best_score_
 ({'C': 0.1}, np.float64(0.8983982658750974))
 round(100 * (best_svc_pca.best_score_ - best_svc.best_score_))
 -4
```

**Рисунок 14** – Обучение РСА на обучающей выборке и применение к основной, настройка гиперпараметра С

# Вопрос 9:

Какова разность между лучшим качеством (долей верных ответов) на кросс-валидации в случае всех 561 исходных признаков и во втором случае, когда применялся метод главных компонент? Округлите до целых процентов.

Ответ: 4.

## Вопрос 10:

Выберите все верные утверждения.

best\_svc.score(X\_test\_scaled, y\_test)
0.9619952494061758

best\_svc\_pca.score(X\_test\_pca, y\_test)
0.9192399049881235

Рисунок 15 – Значение точности для РСА и простой модели

Как мы можем заметить, значения отличаются менее чем на 10%.

РСА используется для визуализации многомерных данных, так как сводит их к двум или трем измерениям, что удобно для отображения на графиках. РСА основан на вычислении собственных значений и собственных векторов ковариационной матрицы данных, что делает его линейным методом. Это вычислительно менее затратный процесс по сравнению с t-SNE.

РСА строит новые признаки (главные компоненты) как линейные комбинации исходных признаков. Каждая главная компонента — это взвешенная сумма исходных признаков, где веса (коэффициенты) определяются как направления максимальной вариации в данных. Эти линейные комбинации могут не иметь явного физического смысла или легко интерпретируемого значения. Например, если в исходных данных есть признаки, такие как «вес» и «рост», РСА может создать компоненту, которая представляет собой нечто вроде  $0.5 \times$  "вес" +  $0.7 \times$  "рост", что не всегда легко объяснить в реальном мире.

# Ответ:

- PCA можно использовать для визуализации данных, однако для этой задачи есть и лучше подходящие методы, например, tSNE. Зато PCA имеет меньшую вычислительную сложность
- РСА строит линейные комбинации исходных признаков, и в некоторых задачах они могут плохо интерпретироваться человеком

**Вывод**: в ходе выполнения лабораторной работы были получены практические навыки создания интеллектуальных систем с обучением без учителя (unsupervised learning).