ЛЕКЦІЯ 13Нормальні алгоритми Маркова

Теорія нормальних алгоритмів Вступ

Теорія нормальних алгоритмів (або алгорифмів, як називав їх творець теорії) була розроблена математиком

Андрієм Андрійовичем Марковим (1903-1979)

(молодшим)

наприкінці 1940-х — початку 1950-х рр. XX в.

Нормальні алгоритми Маркова є правилами :

перетворення слів у заданому алфавіті.

Тому вхідні дані і результати роботи цих алгоритмів— це слова в даному алфавіті.

Приклад.

Створити алгоритм $f(x): x \to y$.

1. x — рослина, y — тварина

x=«банан». Букву «н» замінюємо на «р»- y=«баран»

2. x – рослина, y – птах

x=«банан». Букву «н» замінюємо на «кл»- y=«баклан»

3. x – рослина, y – рослина

x=«банан».Букву «н» замінюємо на «клаж»-

y = «баклажан»

Підстановки Маркова

Алфавітом називається будь-яка **непуста множина**.

1. Елементи алфавіту називають *буквами*, а будь-які послідовності букв — *словами* в даному алфавіті.

Для зручності міркувань допускаються порожні слова (вони не мають у своєму складі жодної букви).

- 2. *Порожнє слово* будемо позначати Λ .
- 3. Якщо A й B два алфавіти, причому $A \subseteq B$, то алфавіт B називається *розширенням* алфавіту A.
- 4. Слова будемо **3а3ВИЧай** позначати латинськими буквами: P,Q,R (або цими ж буквами з індексами).

$$P_1, P_2, ..., P_n$$
 $Q_1, Q_2, ..., Q_n$ $R_1, R_2, ..., R_n$

Одне слово може бути складовою частиною іншого слова.

5. Тоді перше називається *підсловом* другого слова або входженням у друге слово.

Приклад.

Нехай A — український алфавіт.

У цьому алфавіті розглянемо такі слова:

$$P_1$$
 = параграф, P_2 = граф, P_3 = ра

$$P_1$$
 = параграф, P_2 = граф, P_3 = ра.

- Слово P_2 є підсловом слова P_1 .
- Слово P_3 є підсловом P_1 і P_2
- Слово P_3 входить двічі в P_1

Особливий інтерес представляє перше входження

АНАГРАМИ

Це слово означає, Що війни немає. Як зміниш буквам місце, -Повстане древнє місто. Мене розшукують усі, Коли дефект є в колесі. Шоферу кожному в біді Я можу стати у нагоді.

Заміниш місцями склади – Буду в лісі я рости. Лежу я на землі, Прибита до заліза, Як букви переставиш-В каструлю я полізу.

Не лама бааб локотуп, та пилаку ропося

делоМоць ротип веоць, а ротип лодмоця і мас цявів.

щераК сицяни в меніж, жін равежуль у біне. **Визначення 1.** Підстановкою Маркова в слові R називається операція, яка задається за допомогою впорядкованої пари підслів(P,Q), що полягає в наступному.

У заданому слові R знаходять перше входження підслова P (якщо таке ε) і, не змінюючи інших частин слова R, заміняють у ньому це входження підсловом Q.

Приклад.

$$R_1$$
=«пароплав» (P,Q)=(«плав», «воз») R_2 = «паровоз» R_1 =«укол» (P,Q)=(«кол», «хил») R_2 = «ухил» R_1 =«порода» (P,Q)=(«род», «год») R_2 = «погода» R_1 =«батрак» (P,Q)=(«трак», «тон») R_2 = «батон» R_1 =«арарат» (P,Q)=(«ар», «к») R_2 = «карат»

Результат підстановки Маркова

Визначення 2.Pезультатом застосування підстановки Маркова (P,Q) до слова R називається слово, отримане після заміни підслова P на підслово Q в слові R.

Якщо ж входження P в слово R не існує, то вважається, що підстановка Маркова $\left(P,Q\right)$ незастосовна до слова R.

Окремими випадками підстановок Маркова є підстановки з порожніми словами: $(\Lambda,Q), (P,\Lambda), (\Lambda,\Lambda).$

Формула підстановки (P,Q) .

Для позначення підстановки Маркова $\left(P,Q\right)$ використовується запис $P \to Q$. Його називають формулою підстановки $\left(P,Q\right)$.

Деякі підстановки $\left(P,Q\right)$ будемо називати заключними (зміст назви пояснимо дещо пізніше).

Для позначення таких підстановок будемо використовувати запис $P \to Q$, називаючи його формулою заключної підстановки.

Слово P називають *лівою частиною*, а Q — *правою частиною* у формулі підстановки.

Нормальні алгоритми і їх застосування до слів

Упорядкований скінченний <u>список</u> формул підстановок в алфавіті А називається схемою підстановок:

$$\downarrow \begin{cases} 1.P_1 \rightarrow Q_1 \\ 2.P_2 \rightarrow Q_2 \\ \dots \\ r.P_r \rightarrow Q_r \end{cases} \downarrow$$

Схема підстановок задає послідовність застосування підстановок до початкового слова

Дана схема задає алгоритм перетворення слів Цей алгоритм називають нормальний алгоритм Маркова.

Визначення 3. Нормальним алгоритмом (Маркова) в алфавіті A називають правило побудови послідовності

$$\left\{V_i\right\}_{i=0}^n$$

слів з алфавіту A, виходячи з початкового слова V_0 з цього алфавіту.

- 0. i = 0- початкове значення змінної послідовності.
- 1. Нехай задане початкове слово V_0
- 2. Виконаємо першу можливу підстановку зі списку формул підстановок: $P_k o Q_k$ при $1 \le k \le r$.

```
\begin{cases} 1: P_1 \to Q_1 \\ 2: P_2 \to Q_2 \\ \dots \\ r: P_r \to Q_r \end{cases}
```

- 3. У результаті підстановки побудовано слово V_1 для деякого i=1.
- 4. Відбувається аналіз умов завершення алгоритму.
- 5. Якщо умови завершення алгоритму не виконані, то переходимо до п.1 алгоритму із заміною початкового слова на слово $V_{i-1} \to V_i$.
- 6. Якщо умова завершення виконана, то алгоритм завершує свою роботу.

Умови завершення нормального алгоритму Маркова

У рамках даної лекції розглядаються дві умови завершення алгоритму Маркова:

нетермінальна та термінальна.

1. Нетермінальна умова. Якщо у списку підстановок нормального алгоритму немає формул, ліві частини яких входили б у V_i , то V_{i+1} вважають таким, що дорівнює V_i , і процес побудови послідовності вважають таким, що завершився.

$$V_{i+1} = V_i$$
; $V_{i+2} = V_{i+1} = V_i$;.....; $V_{i+n} = V_{i+n-1} = \dots = V_i$

2. Термінальна умова. Якщо в результаті чергової підстановки на даному кроці була застосована формула заключної підстановки, подальші кроки нормального алгоритму Маркова припиняються. $P \to Q$

Застосовність нормального алгоритму Маркова

Якщо процес побудови послідовності підстановок зупиняється, то розглянутий нормальний алгоритм застосовний до слова V_0 .

(тобто виконується або термінальна або нетермінальна умова зупинки)

Останній член W послідовності називається результатом застосування нормального алгоритму до слова V_0 .

Говорять, що нормальний алгоритм перетворює $\,V_0\,\,$ в W.

Правила для формального запису нормального алгоритму Маркова

Нехай задано алфавіт $A = \left\{a_1, a_2, ..., a_n\right\}$

Задано початкове слово $V_0 \subseteq A$

Нормальний алгоритм в алфавіті А задають послідовністю.

Послідовність V_i будемо записувати в такий спосіб:

Упорядкована схема підстановок
$$V_0\Rightarrow V_1 \ V_1\Rightarrow V_2 \ P_1\to Q_1 \ P_2\to Q_2 \ P_r\to Q_r$$
 де $V_0=V$ і $V_m=W$

Якщо ж алгоритм заданий у деякому розширенні $B = A \cup E$ алфавіту A , то говорять, що він є нормальним алгоритмом над A.

Розглянемо приклади нормальних алгоритмів.

Упорядкована схема підстановок $\begin{cases} P_1 \to Q_1 & \text{пріоритет 0} \\ P_2 \to Q_2 & \text{пріоритет 1} \end{cases}$ \vdots $P_r \to Q_r & \text{пріоритет } r$

Послідовність
$$V_i$$

$$V_0 \Rightarrow V_1$$

$$V_1 \Rightarrow V_2$$

$$V_2 \Rightarrow V_3$$

$$\cdots$$

$$V_{m-1} \Rightarrow V_m$$

$$\begin{split} V_0 &= \left(P_1 \, P_2 \, P_1 \right) \\ V_1 &= \left(Q_1 \, P_2 \, P_1 \right) \\ V_2 &= \left(Q_1 \, P_2 \, Q_1 \right) \\ V_3 &= \left(Q_1 \, Q_2 \, Q_1 \right) \end{split}$$

$V_0 = \left(P_1 \, P_2 \, P_1 \right)$ Приклад запису алгоритму

$$\begin{split} & \left(P_1 \: P_2 \: P_1\right) \Rightarrow \left(Q_1 \: P_2 \: P_1\right) \\ & \left(Q_1 \: P_2 \: P_1\right) \Rightarrow \left(Q_1 \: P_2 \: Q_1\right) \\ & \left(Q_1 \: P_2 \: Q_1\right) \Rightarrow \left(Q_1 \: Q_2 \: Q_1\right) \end{split}$$

Приклад 1. Нехай $A=\left\{a,b\right\}$ — алфавіт. $\left\{a\to\Lambda,\quad k=1\right\}$ Розглянемо наступну схему підстановок $\left\{bb\to\Lambda,\quad k=2\right\}$ нормального алгоритму в A:

Заданий цією схемою нормальний алгоритм працює так:

- 1. Виберемо початкове слово aababb і підстановку (k=1).
- 2. Проглядаємо слово зліва направо.
- 3. Шукаємо можливість підстановки з номером k.
- 4. Переходимо до п.3, якщо одержали нове слово.
- 5. Змінюємо k := k + 1. Переходимо до п.3.

Пункти 3-5 будемо виконувати поки не буде досягнута нетермінальна умова завершення

```
egin{aligned} egin{aligned} oldsymbol{a}ababb &\Rightarrow ababb \ oldsymbol{a}babb &\Rightarrow babb \ oldsymbol{b}bb &\Rightarrow b \end{aligned}
```

Приклад 2. Нормальний алгоритм в алфавіті $A = \{a, b, 1\}$ задамо схемою:

$$\begin{cases} a \to 1 \\ b \to 1 \end{cases}$$

Застосуємо його до слова abaabb.

```
\mathbf{a}baabbb \Rightarrow \mathbf{1}baabbb
\mathbf{1}baabbb \Rightarrow \mathbf{1}b\mathbf{1}abbb
\mathbf{1}b\mathbf{1}abbb \Rightarrow \mathbf{1}b\mathbf{1}\mathbf{1}bbb
\mathbf{1}b\mathbf{1}\mathbf{1}bbb \Rightarrow \mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}bbb
\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{b}bb \Rightarrow \mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}bb
\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{b}b \Rightarrow \mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}b
\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{b}b \Rightarrow \mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}
\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{b} \Rightarrow \mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}\mathbf{1}
```

До отриманого слова 1111111 жодна з підстановок даної схеми вже не застосовна. Отже, робота алгоритму завершена. (Нетермінальна зупинка)

Приклад 3. Нормальний алгоритм в алфавіті $A = \{a, b\}$ задано схемою:

$$\begin{cases} ab \to a, \\ b \to \Lambda, \\ a \to b \end{cases}$$

Проаналізуємо роботу алґоритму на слові abbbaaab.

```
egin{array}{lll} \mathbf{ab}\,bbaaab &\Rightarrow abbaaab \\ \mathbf{ab}\,baaab &\Rightarrow abaaab \\ \mathbf{ab}\,aaab &\Rightarrow aaaab \\ aaaab &\Rightarrow aaaa \\ \mathbf{aaa} &\Rightarrow baaa \\ \mathbf{baa} &\Rightarrow aaa \\ \mathbf{aaa} &\Rightarrow baa \\ \mathbf{baa} &\Rightarrow aa \\ \mathbf{aa} &\Rightarrow ba \\ \mathbf{baa} &\Rightarrow aa \\ \mathbf{aa} &\Rightarrow ba \\ \mathbf{ba} &\Rightarrow a \\ \mathbf{a} &\Rightarrow b \\ \mathbf{b} &\Rightarrow \Lambda. \end{array}
```

Якщо брати як V будь-які слова, складені з символів алфавіту A, легко дійти висновку, що даний алгоритм довільне слово перетворює в порожній рядок.

Нормально обчислювані функції і принцип нормалізації Маркова

Як і машини Тьюринга, нормальні алгоритми не здійснюють обчислень: вони лише перетворюють слова, заміняючи в них одні букви іншими за запропонованими їм правилами.

У свою чергу, ми пропонуємо їм такі правила, результати застосування яких ми можемо інтерпретувати як обчислення.

Розглянемо приклади, де числа представлені в кодуванні чисел для машини Тьюринга відповідною кількістю одиниць.

Приклад 4. В алфавіті $A = \{1\}$ задамо схему $1 \to .11$

Крапка перед одиницею означає, що дана заміна виконується заключно.

Проілюструємо роботу алгоритму.

1)
$$1 \rightarrow .11$$
 0+1=1

$$2)11 \rightarrow .111$$
 1+1=2

$$3)111 \rightarrow .1111$$
 2+1=3

.

Алгоритм приписує 1. Отже, алгоритм реалізує (обчислює) функцію слідування

$$S(x) = x + 1.$$

Отже, алгоритм Маркова здатний реалізувати функцію слідування в стилі машини Тьюринга.

Приклад 5. В алфавіті $A = \{1\}$ задамо схему: $11 \rightarrow 1$

Розглянемо роботу алгоритму з початковим словом 11111.

$$\begin{cases} 111111 \to 1111 & 4 \to 3 \\ 11111 \to 111 & 3 \to 2 \\ 111 \to 11 & 2 \to 1 \\ 11 \to 1 & 1 \to 0 \end{cases}$$

У результаті роботи алгоритму слово, що кодує число 4, перетворено в слово, що кодує число 0.

Алгоритм зупинився через відсутність формули підстановки з підходящою лівою частиною.

Отже, даний нормальний алгоритм Маркова реалізує нуль-функцію в стилі машини Тьюринга: 0(x) = 0.

Приклад 6. В алфавіті $A = \{\Lambda, 1\}$ задамо схему:

 $\Lambda 1 \rightarrow \Lambda$.

Нехай задане початкове слово 1111Л111.

Розглянемо роботу нормального алгоритму Маркова.

$$\begin{cases} 1111 \land 111 \rightarrow 1111 \land 11 \\ 1111 \land 11 \rightarrow 1111 \land 1 \\ 1111 \land 1 \rightarrow 1111 \end{cases}$$

У результаті роботи алгоритму слово, що кодує вхідні значення аргументів функції проектування $I_1^2(3,2)$ перетворено в слово 3, що є результатом роботи функції проектування.

Приклад 7. Дана функція

$$\varphi(111...1) = \begin{cases} 1, \ 1^{n+1} \mod 2 = \Lambda, \\ \Lambda, \ 1^{n+1} \mod 2 \neq 1^1 \end{cases}$$

де n – число в десятковій системі числення. Розглянемо нормальний алгоритм в алфавіті $A = \left\{1\right\}$ з наступною схемою:

$$11 \to \Lambda$$

Цей алгоритм працює за таким принципом: алгоритм послідовно стирає по дві одиниці.

- 1. Якщо число одиниць парне, тобто у числовому кодування задане непарне число, то результатом алгоритму буде Λ .
- 2. Якщо число одиниць непарне, тобто у числовому кодування задане парне число, то результатом алгоритму буде 0, що предсталене числовим кодом, як $1^1=1$.

Наприклад

```
\begin{array}{c} \mathbf{1111111} \Rightarrow \mathbf{11111} \\ \mathbf{11111} \Rightarrow \mathbf{111} \\ \mathbf{111} \Rightarrow \mathbf{1} \end{array}
```

 $6 \mod 2 = 0$

Вхідне число 6 є парним числом. Отже, результат роботи алгоритму 1.

Наступний приклад виконує перевірку 9.

```
\begin{array}{l} 11111111111 \Rightarrow 11111111 \\ 11111111 \Rightarrow 1111111 \\ 111111 \Rightarrow 11111 \\ 1111 \Rightarrow 11 \\ 11 \Rightarrow \Lambda \end{array}
```

Число 9 ділиться не на 2 без остачі. Отже слово, що ε результатом — Λ .

Обчислювана функція за Марковим

Фіксований алфавіт

Визначення 4. Функція f, задана на деякій множині слів алфавіту A, називається нормально обчислюваною у вхідному алфавіті, якщо кожне слово V в алфавіті A з області визначення функції f нормальний алгоритм Маркова перетворює в слово f(V).

Розширений алфавіт

Визначення 5. Функція f, задана на деякій множині слів алфавіту A, називається нормально обчислюваною, якщо існує таке розширення B даного алфавіту $\left(A\subseteq B\right)$ й такий нормальний алгоритм в B, що кожне слово V (в алфавіті A) з області визначення функції f цей алгоритм перетворює в слово f(V).

ПІДСУМОК

Таким чином, нормальні алгоритми прикладів 5-7 показують, що функції

$$S(x) = x + 1,$$

$$0(x) = 0,$$

$$I_m^n(x_1, ..., x_n) = x_m,$$

$$\varphi(x)$$

нормально обчислювані на вхідному алфавіті.

Відповідні нормальні алгоритми вдалося побудувати в тому ж самому алфавіті A, на словах якого були задані розглянуті функції.

Приклад алгоритму обчислюваної функції на розширеному алфавіті

Приклад 8. Побудуємо нормальний алгоритм для обчислення функції $S\left(x\right)=x+1$ у десятковій системі числення.

Представимо алфавіт цифрами $A = \{0,1,2,3,4,5,6,7,8,9\}.$

Нормальний алгоритм Маркова будемо будувати з використанням розширення

$$B = A \cup \{a, b\}.$$

Для реалізації алгоритму виберемо список формул підстановок.

Продовження прикладу 8.

Схема даного алгоритму має вигляд (читати по стовпцях):

1	$0b \rightarrow .1$	12	$a0 \rightarrow 0a$	23	$1a \rightarrow 1b$
2	$1b \rightarrow .2$	13	$a1 \rightarrow 1a$	24	$2a \rightarrow 2b$
3	$2b \rightarrow .3$	14	$a2 \rightarrow 2a$	25	$3a \rightarrow 3b$
4	$3b \rightarrow .4$	15	$a3 \rightarrow 3a$	26	$4a \rightarrow 4b$
5	$4b \rightarrow .5$	16	$a4 \rightarrow 4a$	27	$5a \rightarrow 5b$
6	$5b \rightarrow .6$	17	$a5 \rightarrow 5a$	28	$6a \rightarrow 6b$
7	$6b \rightarrow .7$	18	$a6 \rightarrow 6a$	29	$7a \rightarrow 7b$
8	$7b \rightarrow .8$	19	$a7 \rightarrow 7a$	30	$8a \rightarrow 8b$
9	$8b \rightarrow .9$	20	$a8 \rightarrow 8a$	31	$9a \rightarrow 9b$
10	$9b \rightarrow b0$	21	$a9 \rightarrow 9a$	32	$\Lambda \rightarrow a$
11	$b \rightarrow .1$	22	$0a \rightarrow 0b$		

Продовження прикладу 8.

Спробуємо застосувати алгоритм до порожнього слова $\Lambda.$

Зрозуміло, що на кожному кроці повинна застосовуватися **«остання»** формула даної схеми: $\Lambda \to a$ Отримуємо нескінченний процес:

$$\Lambda \Rightarrow a
a\Lambda \Rightarrow aa
aa\Lambda \Rightarrow aaa$$

• • • • • •

Це означає, що до порожнього слова даний алгоритм не застосовний.

Якщо застосувати тепер алгоритм до слова Λ 499, одержимо наступну послідовність слів:

Продовження прикладу 8.

$\Lambda 499 \Rightarrow a499$	$\Lambda \to a$
$a499 \Rightarrow 4a99$	$a4 \rightarrow 4a$
$4a99 \Rightarrow 49a9$	$a9 \rightarrow 9a$
$49a9 \Rightarrow 499a$	$a9 \rightarrow 9a$
$499a \Rightarrow 499b$	$9a \rightarrow 9b$
$499b \Rightarrow 49b0$	$9b \rightarrow b0$
$49b0 \Rightarrow 4b00$	$9b \rightarrow b0$
4b00 ⇒ .500	$4b \rightarrow .5$

У розглянутому прикладі нормальний алгоритм побудований в алфавіті B, що є істотним розширенням алфавіту A (тобто $A\subseteq B$ й $A\neq B$)

Даний алгоритм слова в алфавіті A перетворює знову в слова в алфавіті A. У такому випадку говорять, що алгоритм заданий над алфавітом A.

Приклад 7. В алфавіті $B = A \cup \{a,b\}$, що є розширенням алфавіту A, розглянемо нормальний алгоритм, що задається схемою (читати по стовпцях):

1	$0b \rightarrow b9$	11	$a0 \rightarrow 0a$	21	$0a \rightarrow 0b$
2	$1b \rightarrow .0$	12	$a1 \rightarrow 1a$	22	$1a \rightarrow 1b$
3	$2b \rightarrow .1$	13	$a2 \rightarrow 2a$	23	$2a \rightarrow 2b$
4	$3b \rightarrow .2$	14	$a3 \rightarrow 3a$	24	$3a \rightarrow 3b$
5	$4b \rightarrow .3$	15	$a4 \rightarrow 4a$	25	$4a \rightarrow 4b$
6	$ 5b \rightarrow .4 $	16	$a5 \rightarrow 5a$	26	$5a \rightarrow 5b$
7	$6b \rightarrow .5$	17	$a6 \rightarrow 6a$	27	$6a \rightarrow 6b$
8	$7b \rightarrow .6$	18	$a7 \rightarrow 7a$	28	$7a \rightarrow 7b$
9	$8b \rightarrow .7$	19	$a8 \rightarrow 8a$	29	$8a \rightarrow 8b$
10	$9b \rightarrow .8$	20	$a9 \rightarrow 9a$	30	$9a \rightarrow 9b$
				31	$\Lambda \to a$.

Дана схема дозволяє реалізувати нормальний алгоритм обчислення функції f(x) = x - 1.

Розв'язок

Перевіримо роботу алгоритму, застосувавши його до слова $\Lambda 3000$.

$$\Lambda 3000 \Rightarrow a3000$$
 $a3000 \Rightarrow 3a000$

$$a3 \rightarrow 3a$$

 $\Lambda \rightarrow a$

$$3a000 \Rightarrow 30a00$$

$$a0 \rightarrow 0a$$

$$30a00 \Rightarrow 300a0$$

$$a0 \rightarrow 0a$$

$$300a0 \Rightarrow 3000a$$

$$a0 \rightarrow 0a$$

$$3000a \Rightarrow 3000b$$

$$0a \rightarrow 0b$$

$$3000b \Rightarrow 300b9$$

$$0b \rightarrow b9$$

$$300b9 \Rightarrow 30b99$$

$$0b \rightarrow b9$$

$$30b99 \Rightarrow 3b999$$

$$0b \rightarrow b9$$
.

$$3b999 \Rightarrow .2999$$

$$3b \rightarrow .2$$

Принцип нормалізації Маркова

Творець теорії нормальних алгоритмів Андрій Андрійович Марков висунув гіпотезу, що одержала назву «Принцип нормалізації Маркова».

Згідно із принципом нормалізації

Для знаходження значень функції, заданої в деякому алфавіті, тоді й тільки тоді існує який-небудь алгоритм, коли функція нормально обчислювана.

Збіг класу всіх нормально обчислюваних функцій із класом усіх функцій, обчислюваних за Тьюрингом.

Поняття нормально обчислюваної функції рівносильне поняттю функції, обчислюваної за Тьюрингом, а разом з ним і поняттю частково рекурсивної функції.

Теорема 1. Будь-яка функція, обчислювана за Тьюрингом, буде також і нормально обчислюваною. Доведена також зворотна теорема.

Теорема 2. Будь-яка нормально обчислювана функція обчислювана за Тьюрингом.

Еквівалентність різних універсальних алгоритмічних моделей

Нами розглянуто три алгоритмічні моделі, кожна з яких уточнює поняття алгоритму, і з'ясовано, що всі ці моделі рівносильні між собою. Отже, вони описують один і той же клас функцій, тобто справедливою є наступна теорема.

Теорема 3. Наступні класи функцій (що задані на натуральних числах та набувають натуральних значень) збігаються:

- а)клас усіх функцій, обчислюваних за Тьюрингом;
- б)клас усіх частково рекурсивних функцій;
- в)клас усіх нормально обчислюваних функцій.

Можна відзначити, що існують ще й інші, менш відомі алгоритмічні моделі, і для них також доведена рівносильність із розглянутими теоріями.