Y-Autoencoders: disentangling latent representations via sequential-encoding

Massimiliano Patacchiola* University of Edinburgh

mpatacch@ed.ac.uk

Patrick Fox-Roberts Snap Inc.

pfoxroberts@snap.com

Edward Rosten Snap Inc.

erosten@snap.com

arxiv

19/08/08, Yonggyu Kim

Y-AutoEncoder

Y-AEs generally represent **explicit information** via discrete latent units, and **implicit information** vias continuous units.

Conditional AutoEncoder

cAEs often struggle disentangling the latent representation,

Because there is no effective regularization to enforce an effect.

VAEs

VAEs rarely include discrete units due to the inability to apply backpropagation through those layers.

GANs & VAEs

GANs are notoriously difficult to train, and may suffer of mode collapse when the state space is implicitly multimodal.

Model

Ablation Study

Method	Accuracy (%)	SSIM	MSE
cAE	10.6 ± 0.1	0.87	17.52
cAE + regularizer	66.9 ± 17.5	0.55	26.43
adversarial-AE [21]	43.4 ± 10.5	0.57	27.4
cVAE [15]	96.7 ± 1.6	0.50	27.05
beta-VAE [12]	99.7 ± 0.1	0.42	30.43
Y-AE + ablation [our]	90.5 ± 2.9	0.59	27.38
Y-AE [our]	99.5 ± 0.1	0.37	42.99

