Homework 5

Due date May 28, 2018

Section 7.1

- **38.** Two events E_1 and E_2 are called **independent** if $p(E_1 \cap E_2) = p(E_1)p(E_2)$. For each of the following pairs of events, which are subsets of the set of all possible outcomes when a coin is tossed three times, determine whether or not they are independent.
 - a) E_1 : tails comes up with the coin is tossed the first time; E_2 : heads comes up when the coin is tossed the second time.
- **b)** E_1 : the first coin comes up tails; E_2 : two, and not three, heads come up in a row.
- c) E_1 : the second coin comes up tails; E_2 : two, and not three, heads come up in a row.

(We will study independence of events in more depth in Section 7.2.)

Section 7.2

- **24.** What is the conditional probability that exactly four heads appear when a fair coin is flipped five times, given that the first flip came up tails?
- **34.** Find each of the following probabilities when *n* independent Bernoulli trials are carried out with probability of success *p*.
 - a) the probability of no successes
 - **b**) the probability of at least one success
 - c) the probability of at most one success
 - **d**) the probability of at least two successes

Section 7.3

- **14.** Suppose that E, F_1 , F_2 , and F_3 are events from a sample space S and that F_1 , F_2 , and F_3 are pairwise disjoint and their union is S. Find $p(F_2 \mid E)$ if $p(E \mid F_1) = 2/7$, $p(E \mid F_2) = 3/8$, $p(E \mid F_3) = 1/2$, $p(F_1) = 1/6$, $p(F_2) = 1/2$, and $p(F_3) = 1/3$.
- **22.** Suppose that we have prior information concerning whether a random incoming message is spam. In particular, suppose that over a time period, we find that *s* spam messages arrive and *h* messages arrive that are not spam.
 - a) Use this information to estimate p(S), the probability that an incoming message is spam, and $p(\overline{S})$, the probability an incoming message is not spam.
 - **b)** Use Bayes' theorem and part (a) to estimate the probability that an incoming message containing the word w is spam, where p(w) is the probability that w occurs in a spam message and q(w) is the probability that w occurs in a message that is not spam.

Section 7.4

...

- **18.** Suppose that X and Y are random variables and that X and Y are nonnegative for all points in a sample space S. Let Z be the random variable defined by $Z(s) = \max(X(s), Y(s))$ for all elements $s \in S$. Show that $E(Z) \leq E(X) + E(Y)$.
 - **38.** Suppose that the number of cans of soda pop filled in a day at a bottling plant is a random variable with an expected value of 10,000 and a variance of 1000.
 - a) Use Markov's inequality (Exercise 37) to obtain an upper bound on the probability that the plant will fill more than 11,000 cans on a particular day.
 - **b)** Use Chebyshev's inequality to obtain a lower bound on the probability that the plant will fill between 9000 and 11,000 cans on a particular day.

ciiipty.

48. What is the expected number of balls that fall into the first bin when *m* balls are distributed into *n* bins uniformly at random?