Analisi 1

UniVR - Dipartimento di Informatica

Fabio Irimie

Indice

1	Intr	Introduzione		
	1.1	Maggiorante	2	
	1.2	Minorante	2	
	1.3	Estremo superiore	2	
	1.4	Estremo inferiore	2	
2 Limiti			2	
	2.1	Osservazioni	3	
	2.2	Risultati utili per il calcolo dei limiti	4	
	2.3	Forme indeterminate	4	
	2.4	Esempi	4	
		2.4.1 Esempi di limiti irrazionali	5	

1 Introduzione

- 1.1 Maggiorante
- 1.2 Minorante
- 1.3 Estremo superiore
- 1.4 Estremo inferiore

2 Limiti

I limiti sono il calcolo infinitesimale, ovvero il calcolo che si occupa di studiare il comportamento di una funzione in un intorno di un punto.

Nelle definizioni che seguono, è data una funzione $f:A\to\mathbb{R}$ il cui dominio $A\subseteq\mathbb{R}$ è un insieme **non** limitato superiormente. (Questa ipotesi serve per definire i limiti per $x\to+\infty$)

Definizione 2.1

 $Sia\ L \in \mathbb{R}$. $Si\ dice\ che$

$$\lim_{x \to +\infty} f(x) = L$$

Se e solo se

$$\forall \epsilon > 0 \exists k > 0 \ t.c. \ \forall x \subset A^a,$$

$$x \ge k \to L - \epsilon \le f(x) \le L + \epsilon$$

(Notazione alternativa: $f(x) \to L \ per \ x \to +\infty$)

La condizione deve essere soddisfatta per ogni ϵ .

Esempio 2.1

$$\lim_{x\to +\infty}\frac{1}{x}=0$$

Sia dato $\epsilon>0$ arbitrario. Definisco $k:=\frac{1}{\epsilon}.$ sia dato x>0 arbitrario, supponiamo $x\geq k.$ Allora

$$0 - \epsilon \le 0 \le \frac{1}{x} \le \frac{1}{k} = \frac{1}{\frac{1}{2}} = \epsilon$$

Quindi, ho dimostrato che la definizione di limite è soddisfatta (con L=0).

^aIl dominio della funzione

Definizione 2.2

Si dice che

$$\lim_{x \to +\infty} f(x) = +\infty$$

Se e solo se

$$\forall M > 0 \ \exists k > 0 \ t.c. \ \forall x \in A,$$

$$x \ge k \to f(x) \ge M$$

(Notazione alternativa: $f(x) \to +\infty$ per $x \to +\infty$)

Definizione 2.3

Si dice che

$$\lim_{x \to +\infty} f(x) = -\infty$$

Se e solo se

$$\forall M > 0 \ \exists k > 0 \ t.c. \ \forall x \in A,$$

$$x \ge k \to f(x) \le -M$$

(Notazione alternativa: $f(x) \to -\infty$ per $x \to +\infty$)

Quindi, ho dimostrato che la definizione di limmite è soddisfatta (con L=0).

$$\lim_{x\to +\infty} x = +\infty$$

Sia dato M > 0 arbitrario. Definisco k := M.

Sia dato $x \ge k$. Allora $x \ge M$.

Quindi è verificata la definizione di limite.

2.1 Osservazioni

Non è detto che un limite esista.

Esempio 2.2

$$\lim_{x \to +\infty} \sin(x)$$

$$\lim_{x \to +\infty} \cos(x)$$

La funzione non entra in un intevallo limitato senza poi uscirne, quindi non esiste il limite.

Tuttavia, se una funzione ammette limite, allora esso è unico. La funzione dovrebbe entrare in entrambe le strisce e non uscirne più, ma questo non è possibile.

2.2 Risultati utili per il calcolo dei limiti

Teorema 1 (Algebra dei limiti) Sia $A \subseteq \mathbb{R}$ un insieme non limitato superiormente, f e g due funzioni. $A \to \mathbb{R}$. Supponiamo che i limiti

$$F := \lim_{x \to +\infty} f(x)$$

$$G := \lim_{x \to +\infty} g(x)$$

esistano e siano finiti. Allora

$$\lim_{x \to +\infty} (f(x) + g(x)) = F + G$$

$$\lim_{x \to +\infty} (f(x) \cdot g(x)) = F \cdot G$$

TODO

parzialmente al caso F o G siano infiniti, secondo le regole seguenti:

- $F + \infty = +\infty$, $F \infty = -\infty \ \forall F \in \mathbb{R}$
- $+\infty + \infty = +\infty$, $+\infty \infty = -\infty$
- $F \cdot \infty = \infty$, $\forall F \in \mathbb{R}, F \neq 0$
- $\infty \cdot \infty = \infty$
- $\frac{F}{\infty} = 0 \ \forall F \in \mathbb{R}$
- $\frac{F}{0} = \infty \ \forall F \in \mathbb{R}, \ F \neq 0$
- $\bullet \ \ \frac{0}{\infty} = 0$
- $\frac{\infty}{0} = \infty$

Il segno di ∞ è da determinare secondo la regola usuale.

2.3 Forme indeterminate

Sono dei casi in cui il teorema non si applica e tutto può succdere:

- \bullet $+\infty-\infty$
- $0 \cdot \infty$
- \bullet $\frac{0}{0}$
- $\frac{\infty}{1}$
- 1[∞]
- \bullet 0^0
- ∞^0

N.B.: in questo contesto, 0, ∞ TODO

2.4 Esempi

Esempio 2.3

$$\lim_{x \to +\infty} (x^2 + \frac{1}{x})$$

$$\underbrace{x^2}_{+\infty} + \underbrace{\frac{1}{x}}_{0} \to +\infty$$

 $Per \ x \to +\infty \ (per \ il \ teorema \ dell'algebra \ dei \ limiti)$

Esempio 2.4

$$\lim_{x \to +\infty} x^2 - x^3 = +\infty - \infty$$

$$\underbrace{x^3}_{+\infty} \left(\underbrace{\frac{1}{x}}_{0} - 1\right) \to -\infty$$

 $Per \; x \to +\infty$

Esempio 2.5
TODO

2.4.1 Esempi di limiti irrazionali