DERWENT-ACC-NO: 2004-069660

DERWENT-WEEK: 200410

COPYRIGHT 2005 DERWENT INFORMATION LTD

TITLE: Printing system gives

priority to printing conditions

setup in photo-direct

printer, when printing conditions

in print job file received

from digital still camera, is different

INVENTOR: AICHI, T; GOTO, F; SAKAMOTO, K; TANAKA, T; YAMADA, A; YANO, K

PRIORITY-DATA: 2002JP-0163433 (June 4, 2002)

PATENT-FAMILY:

PUB-NO PUB-DATE

LANGUAGE MAIN-IPC PAGES

• JP 2004013350 A January 15, 2004

G06F 003/12 N/A024

US 20030222985 A1 December 4, 2003

N/AH04N 005/225 038

INT-CL (IPC): B41J029/38, G06F003/12,
H04N005/225, H04N005/76,

H04N005/91

ABSTRACTED-PUB-NO: US20030222985A

BASIC-ABSTRACT:

NOVELTY - A transmission unit in a photo-direct (PD) printer, transmits printer function information to a digital still camera (3012), after establishing communication between printer and camera. When the printing conditions in a print job file received from the camera in response, is different from the currently set printing conditions of the printer, priority is given to the printer conditions set up in the printer.

DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for the following:

- (1) print control method; and
- (2) photo-direct printer.

USE - Printing system.

ADVANTAGE - Prevents degradation in print image caused by mismatching between designated print conditions and print conditions of the printer by printing under print conditions of the printer and not a wording to the actual printing conditions designated by the digital camera.

DESCRIPTION OF DRAWING(S) - The figure shows the block diagram of a photo-direct printer.

printer controller 3000

print engine 3004

power connector 3009

digital camera 3012

printer.

----- KWIC -----

Basic Abstract Text - ABTX (1):

NOVELTY - A transmission unit in a photo-direct (PD) printer, transmits printer function information to a digital still camera (3012), after establishing communication between printer and camera. When the printing conditions in a print job file received from the camera in response, is different from the currently set printing conditions of the printer, priority is given to the printing conditions set up in the

(19) 日本国特許庁(JP)

(12) 公 開 特 許 公 報(A)

(11)特許出願公開番号

特開2004-13350 (P2004-13350A)

(43) 公開日 平成16年1月15日(2004.1.15)

(51) Int.C1.7		FI			テーマコード (参考)				
GO6F	3/12	G06F	3/12	W		2 C C	61		
B41J	29/38 5/225 5/76	B41J	29/38 5/225 5/76	Z F E	5B021 5C022 5C052				
HO4N		HO4N							
HO4N		HO4N							
HO4N	5/91	HO4N	5/91	Н	5CO53				
			審査請求	未請求	請求項	の数 9	ΟL	(全 24	頁)
(21) 出願番号		特願2002-163433 (P2002-163433)	(71) 出願人	0000010	007				
(22) 出願日		平成14年6月4日 (2002.6.4)		キヤノン株式会社					
				東京都大田区下丸子3丁目3〇番2号 100076428					
			(74) 代理人						
					大塚	康徳			
			(74) 代理人	1001129					
				弁理士		司郎			
			(74) 代理人	1001150					
				弁理士		康弘			
			(74) 代理人	1001168					
			() · ·		木村	秀二			
			(72) 発明者		史博				
					東京都大田区下丸子3丁目30番2号 キ				
				ヤノン	ヤノン株式会社内				
							最新	8頁に統	<

(54) 【発明の名称】記録システム及びその記録制御方法とフォトダイレクト印刷装置

(57)【要約】

【課題】各メーカごとのデジタルカメラに対応できるフォトダイレクトプリンタでは、フォトダイレクトプリンタカメラに対して与えられる機能情報を理解できず、そのプリンタ装置の有していない機能を用いた印刷指示が与えられる可能性がある。

【解決手段】デジタルカメラ(DSC)3012からPDプリンタ装置1000に画像データを送信して記録する際、PDプリンタ装置とDSCに実装されたアプリケーション(NCDP)による通信手順の確立後、PDプリンタ装置からDSCに、そのPDプリンタ装置が有しているCapabilityを纏めて送信するが、そのCapabilityにDSC側で理解できない事項があればそれを無視し、PDプリンタ装置側でも、そのDSCからのプリントジョブで実行できないものがあれば、PDプリンタ装置の有する機能を優先させて記録する

【選択図】 図25

【特許請求の範囲】

【請求項1】

撮像装置と記録装置とを汎用インターフェースを介して直接接続し、前記撮像装置から前 記記録装置に画像データを送信して記録する記録システムであって、

前記記録装置と前記撮像装置に実装されたアプリケーションによる通信手順の確立後、前記記録装置から前記撮像装置に前記記録装置が有している機能情報を纏めて送信する送信手段と、

前記送信手段により送信された前記機能情報に前記撮像装置で判別不能な情報が含まれている場合、前記撮像装置において当該情報を無視する情報無視手段と、

前記機能情報に基づいて前記撮像装置で作成された記録情報を前記記録装置で処理する際、前記記録装置の記録機能と整合しない記録機能がある場合、当該記録装置の有している記録機能を優先させて処理するように制御する制御手段と、を有することを特徴とする記録システム。

【請求項2】

前記機能情報は、前記記録装置のCapabilityを含むことを特徴とする請求項1に記載の記録システム。

【請求項3】

前記機能情報はスクリプトで記述されていることを特徴とする請求項1又は2に記載の記録システム。

【請求項4】

前記汎用インターフェースはUSBであることを特徴とする請求項1に記載の記録システム。

【請求項5】

前記撮像装置はデジタルカメラであり、前記記録装置はプリンタ装置であることを特徴と する請求項1乃至4のいずれか1項に記載の記録システム。

【請求項6】

撮像装置と記録装置とを汎用インターフェースを介して直接接続し、前記撮像装置から前記記録装置に画像データを送信して記録する記録システムの記録制御方法であって、

前記記録装置と前記撮像装置に実装されたアプリケーションによる通信手順の確立後、前記記録装置から前記撮像装置に前記記録装置が有している機能情報を纏めて送信する送信工程と、

前記送信工程で送信された前記機能情報に前記撮像装置で判別不能な情報が含まれている場合、前記撮像装置において当該情報を無視する情報無視工程と、

前記機能情報に基づいて前記撮像装置で作成された記録情報を前記記録装置で処理する際、前記記録装置の記録機能と整合しない記録機能がある場合、当該記録装置の有している記録機能を優先させて処理するように制御する工程と、

を有することを特徴とする記録制御方法。

【請求項7】

前記機能情報は、前記記録装置のCapabilityを含むことを特徴とする請求項6に記載の記録制御方法。

【請求項8】

前記機能情報はスクリプトで記述されていることを特徴とする請求項6又は7に記載の記録制御方法。

【請求項9】

撮像装置と汎用インターフェースを介して直接接続し、前記撮像装置からの画像データを 受信して印刷するフォトダイレクトプリンタ装置であって、

前記プリンタ装置と前記撮像装置に実装されたアプリケーションによる通信手順の確立後、前記撮像装置に前記プリンタ装置が有している機能情報を纏めて送信する送信手段と、前記機能情報に基づいて前記撮像装置で作成された記録情報を受信する受信手段と、

前記受信手段で受信した前記記録情報に含まれる記録機能が、当該プリンタ装置の有して

1/25/05, EAST Version: 2.0.1.4

20

30

20

いる記録機能と整合しているか否かを判定する判定手段と、

前記判定手段により整合していないと判定された前記記録機能よりも当該プリンタ装置の 有している記録機能を優先させて処理するように制御する制御手段と、

を有することを特徴とするフォトダイレクトプリンタ装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、デジタルカメラなどの撮像装置と記録装置とを有する記録システム及びその記 録制御方法とフォトダイレクト印刷装置に関するものである。

[0002]

【従来の技術】

近年、簡単な操作で画像を撮影してデジタル画像データに変換できるデジタルカメラ(撮 像装置)、所謂、デジカメが広く使用されるようになってきている。このようなカメラで 撮影した画像を印刷して写真として使用する場合には、通常、一旦、その撮影されたデジ タル画像データを、デジタルカメラからPC(コンピュータ)に取り込み、そのPCで画 像処理を行った後、そのPCからカラープリンタに出力して印刷するのが一般的である。

[0003]

これに対して最近は、PCを介することなく、直接、デジタルカメラからカラープリンタ にデジタル画像データを伝送して印刷することができるカラープリントシステムや、デジ タルカメラに搭載され、撮像した画像を記憶しているメモリカードを、直接、カラープリ ンタに装着し、そのメモリカードに記憶されている、撮影された画像を印刷できる、所謂 フォトダイレクト(PD)プリンタ等も開発されている。

[0004]

【発明が解決しようとする課題】

特に、デジタルカメラから直接プリンタに画像データを伝送して印刷する場合は、デジタ ルカメラは各メーカごとにその仕様や操作方法などが異なっているため、各種メーカのデ ジタルカメラに対応できるフォトダイレクトプリンタ装置の出現が望まれている。

[0005]

また、このような各メーカごとのデジタルカメラに対応できるフォトダイレクトプリンタ では、フォトダイレクトプリンタカメラに対して与えられる機能情報を理解できず、その プリンタ装置の有していない機能を用いた印刷指示が与えられる可能性がある。例えば、 デジタルカメラから指示されたサイズ或いは種類の用紙と、実際にプリンタにセットされ ている用紙のサイズ或いは種類が異なる場合が発生する虞がある。そのような場合は、記 録画像の形成に支障をきたすことが考えられる。

[0006]

本発明は上記従来例に鑑みてなされたもので、インターフェースに依存しない画像データ の転送及び記録指示を行うことにより、各社の撮像装置からの画像データを受信して記録 できる記録システム及びその記録制御方法とフォトダイレクト印刷装置を提供することを 目的とする。

[0007]

40

また本発明の目的は、撮像装置から指示された記録条件が、記録装置が実際に有している 条件と異なる場合に、当該記録装置の有している条件で記録することにより、記録条件の 不整合による記録画像の劣化を防止した記録システム及びその記録制御方法とフォトダイ レクト印刷装置を提供することにある。

[0008]

【課題を解決するための手段】

上記目的を達成するために本発明の記録システムは以下のような構成を備える。即ち、 撮像装置と記録装置とを汎用インターフェースを介して直接接続し、前記撮像装置から前 記記録装置に画像データを送信して記録する記録システムであって、

前記記録装置と前記撮像装置に実装されたアプリケーションによる通信手順の確立後、前

記記録装置から前記撮像装置に前記記録装置が有している機能情報を纏めて送信する送信手段と、

前記送信手段により送信された前記機能情報に前記撮像装置で判別不能な情報が含まれている場合、前記撮像装置において当該情報を無視する情報無視手段と、

前記機能情報に基づいて前記撮像装置で作成された記録情報を前記記録装置で処理する際、前記記録装置の記録機能と整合しない記録機能がある場合、当該記録装置の有している記録機能を優先させて処理するように制御する制御手段と、を有することを特徴とする。 【0009】

上記目的を達成するために本発明の記録制御方法は以下のような工程を備える。即ち、 撮像装置と記録装置とを汎用インターフェースを介して直接接続し、前記撮像装置から前 記記録装置に画像データを送信して記録する記録システムの記録制御方法であって、

前記記録装置と前記撮像装置に実装されたアプリケーションによる通信手順の確立後、前記記録装置から前記撮像装置に前記記録装置が有している機能情報を纏めて送信する送信工程と、

前記送信工程で送信された前記機能情報に前記撮像装置で判別不能な情報が含まれている場合、前記撮像装置において当該情報を無視する情報無視工程と、

前記機能情報に基づいて前記撮像装置で作成された記録情報を前記記録装置で処理する際、前記記録装置の記録機能と整合しない記録機能がある場合、当該記録装置の有している記録機能を優先させて処理するように制御する工程と、

を有することを特徴とする。

[0010]

上記目的を達成するために本発明のフォトダイレクトプリンタ装置は以下のような構成を 備える。即ち、

撮像装置と汎用インターフェースを介して直接接続し、前記撮像装置からの画像データを 受信して印刷するフォトダイレクトプリンタ装置であって、

前記プリンタ装置と前記撮像装置に実装されたアプリケーションによる通信手順の確立後、前記撮像装置に前記プリンタ装置が有している機能情報を纏めて送信する送信手段と、前記機能情報に基づいて前記撮像装置で作成された記録情報を受信する受信手段と、

前記受信手段で受信した前記記録情報に含まれる記録機能が、当該プリンタ装置の有している記録機能と整合しているか否かを判定する判定手段と、

前記判定手段により整合していないと判定された前記記録機能よりも当該プリンタ装置の有している記録機能を優先させて処理するように制御する制御手段と、を有することを特徴とする。

[0011]

【発明の実施の形態】

以下、添付図面を参照して本発明の好適な実施の形態を詳細に説明する。

[0012]

図 1 は、本発明の実施の形態に係るフォトダイレクトプリンタ装置(以下、 P D プリンタ装置) 1 0 0 0 の概観斜視図である。この P D プリンタ装置 1 0 0 0 は、ホストコンピュータ(P C)からデータを受信して印刷する通常の P C プリンタとしての機能と、メモリカードなどの記憶媒体に記憶されている画像データを直接読取って印刷したり、或いはデジタルカメラからの画像データを受信して印刷する機能を備えている。

[0013]

図1において、本実施の形態に係るPDプリンタ装置1000の外殻をなす本体は、ケースM1001、上ケース1002、アクセスカバー1003及び排出トレイ1004の外装部材を有している。また、下ケース1001は、PDプリンタ装置1000の略下半部を、上ケース1002は本体の略上半部をそれぞれ形成しており、両ケースの組合せによって内部に後述の各機構を収納する収納空間を有する中空体構造をなし、その上面部及び前面部にはそれぞれ開口部が形成されている。さらに、排出トレイ1004は、その一端部が下ケース1001に回転自在に保持され、その回転によって下ケース1001の前面

20

30

10

部に形成される開口部を開閉させ得るようになっている。このため、記録動作を実行させる際には、排出トレイ1004を前面側へと回転させて開口部を開成させることにより、ここから記録シートが排出可能となると共に、排出された記録シートを順次積載し得るようになっている。また、排紙トレイ1004には、2枚の補助トレイ1004a,1004bが収納されており、必要に応じて各トレイを手前に引き出すことにより、用紙の支持面積を3段階に拡大、縮小させ得るようになっている。

[0014]

アクセスカバー1003は、その一端部が上ケース1002に回転自在に保持され、上面に形成される開口部を開閉し得るようになっており、このアクセスカバー1003を開くことによって本体内部に収納されている記録ヘッドカートリッジ(不図示)あるいはインクタンク(不図示)等の交換が可能となる。なお、ここでは特に図示しないが、アクセスカバー1003を開閉させると、その裏面に形成された突起がカバー開閉レバーを回転させるようになっており、そのレバーの回転位置をマイクロスイッチなどで検出することにより、アクセスカバーの開閉状態を検出し得るようになっている。

[0015]

また、上ケース1002の上面には、電源キー1005が押下可能に設けられている。また、上ケース1002の右側には、液晶表示部1006や各種キースイッチ等を備える人作パネル1010が設けられている。この操作パネル1010の構造は、図2を参照には、液晶表示部1000の構造は、図2を参照に対している。1007は自動給送部で、記録シートを装置本体内へと自動的に給送める。1008は紙間選択レバーで、プリントへッドと記録シートとの間隔を調明能なアダプる。1009はカードスロットで、ここにメモリカードを装着可能なアダプタが挿入され、このアダプタを介してメモリカード(PC)としては、例えばコンパクラッシュ(登録商標)メモリカード(PC)としては、例えばコンパクリフラッシュ(登録商標)メモリカード(PC)とフラッシュ(登談商表示部)で、スマートメディア、メモリスティック等がある。1011はビューワ(液温表示部)で、このPDプリンタトしたい画像を検索する場合などに、1コマ毎の画像やインデックス画像の中からプリントしたい画像を検索する場合などに、1コマ毎の画像やインデックス画像などを表示するのに使用される。1012は後面には、パーソナルコンピュータ(PC)を接続するためのUSBコネクタが設けられている。

[0016]

図2は、本実施の形態に係るPDプリンタ装置1000の操作パネル1010の概観図である。

[0017]

図において、液晶表示部1006には、その左右に印刷されている項目に関するデータを各種設定するためのメニュー項目が表示される。ここに表示される項目としては、例えば、印刷したい範囲の先頭写真番号、指定コマ番号(開始コマ指定/印刷コマ指定)、印刷を終了した範囲の最後の写真番号(終了)、印刷部数(部数)、印刷に使用する用紙(記録シート)の種類(用紙種類)、1枚の用紙に印刷するかどうかの指定(日付印刷)、写真を補正して印刷するかどうかの指定(日付印刷)、写真を補正して印刷するかどうかの指定(画像補正)、印刷に必要な用紙枚数の表示(用紙和数)等がある。これら各項目は、カーソルキー2001を用いて選択、或いは指定さ印刷、2002はモードキーで、このキーを押下する毎に、印刷の種類(インデックスの利の表示でき、これに応じてLED2003の対。2002はモードキーで、このキーを押下する毎に、プリントへッドのクリーニング等、プリンタのメンテナンスを行わせるためのキーである。2005は印刷開始を指示する時、或いはメンテナンスの設定を確立する際に押下される。

[0018]

50

10

30

次に図3を参照して、本実施の形態に係るPDプリンタ装置1000の制御に係る主要部の構成を説明する。尚、この図3において、前述の図面と共通する部分は同じ記号を付与して、それらの説明を省略する。

[0019]

図3において、3000は制御部(制御基板)を示している。3001はASIC(専用 カスタムLSI)を示し、その構成は図4のブロック図を参照して詳しく後述する。30 O 2 は D S P (デジタル信号処理プロセッサ)で、内部に C P U を有し、後述する各種制 御処理及び、輝度信号(RGB)から濃度信号(CMYK)への変換、スケーリング、ガ ンマ変換、誤差拡散等の画像処理等を担当している。3003はメモリで、DSP300 2のСР Uの制御プログラムを記憶するプログラムメモリ3003 a、及び実行時のプロ グラムを記憶するRAMエリア、画像データなどを記憶するワークメモリとして機能する メモリエリアを有している。3004はプリンタエンジンで、ここでは、複数色のカラー インクを用いてカラー画像を印刷するインクジェットプリンタのプリンタエンジンが搭載 されている。3005はデジタルカメラ(DSC)3012を接続するためのポートとし てのUSBコネクタである。3006はビューワ1011を接続するためのコネクタであ る。3008はUSBハブ(USB HUB)で、このPDプリンタ装置1000がPC 3010からの画像データに基づいて印刷を行う際には、PC3010からのデータをそ のままスルーし、USB3021を介してプリンタエンジン3004に出力する。これに より、接続されているPC3010は、プリンタエンジン3004と直接、データや信号 のやり取りを行って印刷を実行することができる(一般的なPCプリンタとして機能する)。3009は電源コネクタで、電源3011により、商用ACから変換された直流電圧 を入力している。PC3010は一般的なパーソナルコンピュータ、3011は前述した メモリカード(PCカード)、3012はデジタルカメラ(DSC:Digital S till Camera) である。

[0020]

尚、この制御部 3 0 0 0 とプリンタエンジン 3 0 0 4 との間の信号のやり取りは、前述した U S B 3 0 2 1 又は I E E E 1 2 8 4 バス 3 0 2 2 を介して行われる。

[0021]

図4は、ASIC3001の構成を示すプロック図で、この図4においても、前述の図面と共通する部分は同じ記号を付与して、それらの説明を省略する。

[0022]

4001はPCカードインターフェース部で、装着されたPCカード3011に記憶されている画像データを読取ったり、或いはPCカード3011へのデータの書き込み等を行う。4002はIEEE1284インターフェース部4002は、デッタルカメラ3012或いはPCカード3011に記憶されている画像データを印刷してカード3011に記憶されている画像データを印刷がある。4003はUSBインターフェース部で、PC3010データの間でのデータのやり取りを行う。4005は提作パネル・インターフェース部で、アC3010データの間でのデータのやり取りを行う。4005は操作パネル・インターフェース部で、インターフェース部で、インターフェース部で、インターフェース部で、グロ1011への画像データの表示を制御している。4007は各種スイッチやLED40の9等との間のインターフェースを制御するインターフェース部である。4008はCPUインターフェース部で、DSP3002との間でのデータのやり取りの制御を行っている。4010はこれら各部を接続する内部バス(ASICバス)である。

[0023]

以上の構成に基づく動作概要を以下に説明する。

[0024]

<通常のPCプリンタモード>

これはPC3010から送られてくる印刷データに基づいて画像を印刷する印刷モードで

20

30

ある。

[0025]

このモードでは、 P C 3 O 1 O からのデータが U S B コネクタ 1 O 1 3 (図 3)を介して入力されると、 U S B N ブ 3 O O 8、 U S B 3 O 2 1を介して直接プリンタエンジン 3 O 0 4 に送られ、 P C 3 O 1 O からのデータに基づいて印刷が行われる。

[0026]

<PCカードからの直接プリントモード>

P C カード 3 0 1 1 がカードスロット 1 0 0 9 に装着或いは脱着されると割り込みが発生し、これにより D S P 3 0 0 2 は P C カード 3 0 1 1 が装着されたか或いは脱着(取り外された)されたかを検知できる。 P C カード 3 0 1 1 が装着されると、その P C カード 3 0 1 1 に記憶されている圧縮された(例えば J P E G 圧縮)画像データを読込んでメモリ 3 0 0 3 に記憶する。次に操作パネル 1 0 1 を使用して、その格納した画像データの印刷が指示されると、圧縮された画像データを解凍してメモリ 3 0 0 3 に格納し、 R G B 信号から Y M C K 信号への変換、ガンマ補正、誤差拡散等を実行してプリンタエンジン 3 0 0 4 で印刷可能な記録データに変換し、 I E E E 1 2 8 4 インターフェース部 4 0 0 2 を介してプリンタエンジン 3 0 0 4 に出力することにより印刷を行う。

[0027]

<カメラからの直接プリントモード>

図 5 は本実施の形態に係る P D プリンタ装置 1 0 0 0 とデジタルカメラ 3 0 1 2 とを接続した状態を示す図である。

[0028]

図において、ケーブル 5 0 0 0 0 は、 P D プリンタ装置 1 0 0 0 のコネクタ 1 0 1 2 と接続されるコネクタ 5 0 0 1 と、デジタルカメラ 3 0 1 2 の接続用コネクタ 5 0 0 3 と接続するためのコネクタ 5 0 0 2 とを備えており、また、デジタルカメラ 3 0 1 2 は、内部のメモリに保存している画像データを、接続用コネクタ 5 0 0 3 を介して出力可能に構成されている。なお、デジタルカメラ 3 0 1 2 の構成としては、内部に記憶手段としてのメモリを備えるものや、取外し可能なメモリを装着するためのスロットを備えたものなど、種々の構成を採用することができる。このように、図 5 に示すケーブル 5 0 0 0 を介して P D プリンタ装置 1 0 0 0 とデジタルカメラ 3 0 1 2 とを接続することにより、デジタルカメラ 3 0 1 2 からの画像データを直接 P D プリンタ装置 1 0 0 0 で印刷することができる。

ここで図5に示すように、PDプリンタ装置1000にデジタルカメラ3012が接続された場合は、操作パネル1010の表示部1006にはカメラマークのみが表示され、操作パネル1010における表示及び操作が無効になり、又ビューワ1011への表示も無効になる。従って、これ以降はデジタルカメラ3012でのキー操作及びデジタルカメラ3012の表示部(不図示)への画像表示のみが有効になるので、ユーザはそのデジタルカメラ3012を使用して印刷指定を行うことができる。

[0030]

本実施の形態では、複数のメーカのデジタルカメラを接続してプリントすることができる PDプリンタ装置を提供することを目的とし、本実施の形態に係るPDプリンタ装置10 40 00とデジタルカメラとを接続してプリントを行なう場合の通信規約について詳しく説明 する。

[0031]

本実施の形態においては、PDプリンタ装置とデジタルカメラとの間の通信制御を汎用ファイル、汎用フォーマットを用いて行い、インターフェースに依存しないNCDP(New Camera Direct Print)を提案する。

[0032]

図6は、このNCDPの構成の一例を示す図である。

[0033]

図において、600はUSBによるインターフェース、601はブルーツース(Blue 50

tooth)によるインターフェースを示している。602はNCDPによるシステムを構築する際に組込まれるアプリケーションレイヤを示している。603は既存のプロトコル及びインターフェースを実行するためのレイヤで、ここではPTP(PictureTransfer Protocol),SCSI及びブルーツースのBIP(Basic Image Profile),USBインターフェース等が実装されている。本実施の形態に係るNCDPは、このようなプロトコルレイヤ等のアーキテクチャが実装されていて、その上にアプリケーションとして実装されることが前提である。ここではPDプリンタ装置1000は、USBホスト、カメラ3012はUSBスレーブとして規定されており、図6に示すように、それぞれ同じNCDP構成となっている。

[0034]

10

図7は、本実施の形態に係るNCDPによる、PDプリンタ装置1000とデジタルカメラ(DSC)3012との間での通信手順の流れを説明する図である。

[003.5]

ここでは、図5に示すようにUSBケーブル5000によりPDプリンタ装置1000と DSC3012とが接続されたことが検知されると、これら機器間での通信が可能になる 。これにより、これら機器に実装されているアプリケーションが実行されてNCDPによ る手順710への移行が開始される。702はNCDPの初期状態を示し、ここでは互い の機種がNCDPを実行可能かどうかを判断し、可能であればNCDPによる手順710 に移行している。もしここで、DSC3012がNCDPを実装していない場合には、N CDPによる通信制御は実行されない。こうしてNCDPに移行した後、703で示すよ うに、DSC3012から「基本手順」による画像データの転送/印刷が指示されると、 DSC3012から画像ファイルをPDプリンタ装置1000に転送して印刷する簡易印 刷モードに移行する。また704で示すように、DSC3012から「推奨手順」による 画像データの転送/印刷が指示されると、DSC3012とPDプリンタ装置1000と の間で各種ネゴシエーションを行ってその印刷条件等を決定した後、画像ファイルをDS C3012からPDプリンタ装置1000に転送して印刷するより多彩な印刷モードに移 行する。また705は「拡張手順」による指示がDSC3012によりなされると、例え ばDPOF,XHTML-print,SVG等の高度レイアウト機能、及び各社ベンダ ーユニークな仕様での印刷を行うモードが設定される。尚、この「拡張手順」による詳細 仕様に関しては、DSCのメーカ各社個別の拡張仕様鸖で規定されるので、ここでは特に 説明しない。尚、これら「基本手順」及び「推奨手順」による画像印刷に関しては、図9 乃至図11を参照して後述する。

[0036]

図8は、本実施の形態に係るNCDPにおいてプリントを行うために規定したコマンドを説明する図である。

[0037]

図8において、「対応モード」はDSC3012から指示される、前述した「基本手順」、「推奨手順」及び「拡張手順」に対応している。「推奨手順」では全てのコマンドが使用できるのに対し、「基本手順」は簡易印刷モードであるため、NCDPへの移行及びその終了、「基本手順」、「推奨手順」及び「拡張手順」の各モードへの移行コマンド及びカメラ3012からの画像データの取得及びカメラ3012よりの印刷命令のみが使用可能である。尚、「拡張手順」では、NCDPへの移行及びその終了、「基本手順」、「推奨手順」及び「拡張手順」の各モードへの移行コマンドだけが用いられるように記載されているが、前述のように、各社の仕様に応じて他のコマンドが用いられても良いことはいうまでもない。

[0038]

以下、前述した「基本手順」及び「推奨手順」による画像印刷について説明する。 【0039】

図9は、「基本手順」による画像印刷を行う場合のNCDPの通信手順を説明する図である。この「基本手順」は、DSCからPDプリンタ装置1000に対して1枚の画像ファ

(9)

イルを転送して印刷するだけの簡易印刷モードであり、対応している画像フォーマットとしては、例えばVGAサイズ(640×480画素)のRGB画像、VGAサイズ(640×480画素)のJPEG画像とし、画像ファイルサイズとしては約1Mバイト以下としている。DSC3012はPDプリンタ装置1000がサポートしている画像フォーマットで送信する。この場合はエラーハンドリグは実行しない。

[0040]

まず900で、PDプリンタ装置1000からDSC3012に対してNCDPへの移行を指示するコマンド(NCDPStart)を送信する。ここでDSC3012がNCDPを実装していればOKが返送される(901)。尚、このNCDPの確認手順を行う場合の一例としてPTPを用いた場合の具体例に関しては、図14を参照して詳しく後述する。

[0041]

こうして互いにNCDPが実装されていることが確認されると、PDプリンタ装置100 Oからモードに移行するように命令(Procedure Start)がDSC 3012 に送信される(902)。これに対して903で、DSC3012から簡易印刷モードで . ある「基本手順」が送られてくると、これ以降は「基本手順」による印刷モードに移行す る。この場合は、DSC3012における操作により印刷したい画像が選択されて印刷が 指示されると、印刷の開始を指示するコマンド(JobStart)がDSC3012か ら P D プリンタ装置 1 0 0 0 に送られる(9 0 4)。これにより P D プリンタ装置 1 0 0 Oは簡易印刷モードとなり、DSC3O12に対してコマンド(GetImage)を送 信してJPEG画像を要求する(905)。これによりDSC3012からJPEG画像 がPDプリンタ装置1000に送信され(906)、PDプリンタ装置1000における 印刷処理が開始される。こうして、指示された画像の印刷が終了すると印刷ジョブの終了 を示すコマンド(JobEnd)がPDプリンタ装置1000からDSC3012に送信 される(907)。これに対してDSC3012から肯定応答(OK)が返送されると(9 0 8) 、この「基本手順」による印刷処理が完了する。尚、この「基本手順」でやり取 りするかどうかに関しても、DSCとPDプリンタ装置の双方のCapabilityで 決定される。

[0042]

図10は、「推奨手順」による画像印刷を行う場合のNCDPの通信手順を説明する図で、前述の図9と共通する手順には同じ番号を付して、その説明を省略する。この「推奨手順」では、PDプリンタ装置1000吐DSC3012との間でのネゴシエーションを前提とした「より多彩な印刷」モードが設定でき、複数枚の写真印刷やレイアウト印刷が可能になる。また、エラーハンドリングも実行可能となる。

[0043]

図10において、図9の場合と同様にして、互いにNCDPが実装されていることを確認した後、この場合では、DSC3012から「推奨手順」が指示される(910)。この後はこの「推奨手順」による手順が実行される。まず911で示すように、PDプリンタ装置1000は、自機の備えている機能及び用紙設定等を含む機能をCapability情報として全てDSC3012に伝える。このCapability情報は、スクリプト形式(テキスト)でDSC3012に送信される。

[0044]

このCapability情報の一例を図12に示す。

[0045]

図12に示すように、このCapability情報は、印刷可能な用紙の種類及びサイズ、印刷品位、画像データのフォーマット、日付印刷の有無、ファイル名印刷の有無、レイアウト、画像補正の有無、更にはオプションとして、各カメラメーカの仕様に対応した機能の有無等の情報を含んでいる。

[0046]

このように Capability情報をスクリプト表記とすることにより、他の通信プロ 50

30 -

トコルのアーキテクチャへの移植を簡単にし、このような機能情報のやり取りを、より標準化し易くしている。尚、このスクリプト表記はXML準拠であっても良い。

[0047]

このような C a p a b i l i t y 情報を受信した D S C 3 0 1 2 のユーザは、その P D プリンタ装置 1 0 0 0 が備えている 機能の内のいずれを使用して印刷を行うかを判定して印刷したい画像を選択すると共に、その画像の印刷条件をその P D プリンタ装置 1 0 0 0 のの有している機能の中から選択して決定する。こうして印刷したい画像及び印刷条件なタを選出 0 0 0 が B C a r t) が P D プリンタ装置 1 0 0 0 に送られる。これにより P D プリンタ装置 1 0 0 0 から、その画像データを要求するコマンド(G e t I m a g e x n) が発行され(9 1 2) 、それに応答をひるであるコマンド(G e t I m a g e x n) が発行され(9 1 2) 、それに応答なる画像データが、 P D プリンタ装置 1 0 0 0 が 受信可能な可像の目のに対して複数の画像データを送信できるようになっているのは、例えば 2 × 2 等のレイアウト印刷が指定されている場合は、1 枚の用紙に対して 4 枚分の画像データを送信できるようになっているのは、例えば 2 × 2 等のレイアウト印刷が指定されている場合は、1 枚の用紙に対して 4 枚分の画像データを送信されるの目ののから D S C 3 0 1 2 の終了を示すコマンド(J o b E n d)が P D プリンタ装置 1 0 0 0 から D S C 3 0 1 2 に送信される(9 0 7)。これに対して D S C 3 0 1 2 から肯定応答(O K)が返送されると(9 0 8)、再び、この「推奨手順」による、次に画像の選択・印刷処理に移行する

[0048]

図 1 1 は、前述の「推奨手順」による画像印刷を行う場合の N C D P の通信手順において、 P D プリンタ装置 1 0 0 0 でエラーが発生した場合の通信手順を説明する図で、前述の図 1 0 と共通する手順には同じ番号を付して、その説明を省略する。

[0049]

この例では、「推奨手順」での印刷処理の実行中に、PDプリンタ装置1000において給紙エラーが発生した場合の例を示している。この場合には914で、PDプリンタ装置1000からDSC3012に対して給紙エラーを示すステータス情報(Status)が送信される。これに対してDSC3012のユーザによる判断に基づいて、その印刷処理を継続するか(JobAbort)を示すコマンドがPDプリンタ装置1000に送信される(915)。これによりPDプリンタ装置1000では、中止の場合はその印刷処理を中止してプリントジョブの終了通知(JobEnd)を送信して印刷を中止する。或いは継続が指示された場合には、その給紙エラーの修復を待って、印刷処理を継続するように動作する。

[0050]

次に、前述した処理手順を図13のフローチャートを参照して説明する。

[0051]

図13は、図7に示す処理手順を説明するフローチャートである。

[0052]

まずステップS1で、デジタルカメラ(DSC)3012とPDプリンタ装置1000との間の通信を確立し(700)、ステップS2で、これら機器がNCDPを実装済みかどうかを判定し、実装済みであればNCDPに移行する。次にステップS3に進み、DSC3012からの手順指示を受信して、その指示された手順に移行する。ここで「基本手順」が指示された時はステップS5に進み、「基本手順」による印刷理を実行する。また「推奨手順」が指示された時はステップS6からステップS7に進み、前述した「推奨手順」による印刷処理を実行する。更に「拡張手順」が指示された時はステップS8からステップS9に進み、各ベンダーに応じた「拡張手順」による印刷処理を実行する。それ以外の場合はステップS10に進み、このPDプリンタ装置1000とDSC3012とによる独自のモードでの印刷を実行する。

[0053]

次に上述したNCDPにおける各種コマンド(図8)を、汎用のPTPを用いて実現した 50

(PTPによるラッパー)例を説明する。尚、本実施の形態では、PTPを用いたNCD Pの場合で説明するが本発明はこれに限定されるものではなく、例えば、他のインターフ ェース、他のクラス(СІаѕѕ)上でダイレクトプリントサービスAPIを実装しても 良い。

[0054]

[NCDPStart]

図14は、NCDP手順の開始を指示する命令(NCDPStart)をPTPアーキテ クチャを用いて実現した例を説明する図である。

[0055]

P D プリンタ装置 1 0 0 0 と D S C 3 0 1 2 とが物理的に接続された後、まず 1 4 0 0 で 、PDプリンタ装置1000からDSC3012に対してGetDevicelnfoが 送信され、DSC3012に対して、その保持しているオブジェクトに関する情報が要求 される。これに対してDSC3012は、DeviceInfo Datasetにより 、DSC3012に保持しているオブジェクトに関する情報をPDプリンタ装置1000 に送信する。次に1402で、OpenSessionにより、DSC3012をリソー スとして割り当て、必要に応じてデータオブジェクトにハンドルをアサインしたり、特別 な初期化を行うための手順の開始要求が発行されてDSC3012から肯定応答(OK) が返送されるとPTPでの通信が開始される。次に1403で、DSC3012に対して スクリプト形式の全てのハンドルを要求する(Storage ID: FFFFFF,

Object Type: Script)と、これに対して1404で、DSC30 12に保持されている全てのハンドルリストが返送される。次に1405,1406にお いて、PDプリンタ装置1000から「番目のオブジェクトハンドルの情報を取得する。 ここで、このオブジェクトに、DSC3012の識別を示すキーワード(例えば「山」) が含まれていると、次に1407において、PDプリンタ装置1000からオブジェクト 情報の送信を指示して(SendObiectlnfo)、それに対して肯定応答(OK) を受信すると、SendObjectにより、オブジェクト情報をPDプリンタ装置1 000からDSC3012に対して送信する。ここで、このオブジェクトには、前述のキ ーワードに対する応答キーワード(合言葉)として例えば「川」が含まれている。

[0056]

このようにして、PDプリンタ装置1000とDSC3012の双方が互いに接続相手を 認識できることになり、これ以降はNCDPによる手順(図7の710)に移行すること ができる。このようにファイルの受渡しができるトランスポートレイヤーであればキーワ ードの受渡しを確実に行うことができる。即ち、本実施の形態のNCDPにユニークなコ マンド等を追加することなく、キーワードを交換することができる。尚、ここでキーワー ドとしては、上述の例に限定されるものでなく、同じキーワードであっても良い。またこ のキーワードによるネゴシエーションを行う時間を短縮するために、スクリプト形式のハ ンドルの最初にこのキーワードを入れておくことにより、互いの機器を確認するのに要す る時間を短縮できる。

[0057]

[ProcedureStart]

図15は、DSC3012からの、モードへの移行手順を指示する命令を受信して、その モードに移行するための命令(ProcedureStart)をPTPアーキテクチャ を用いて実現した例を説明する図である。

[0058]

ここではまず1501で、PDプリンタ装置1000がサポートしている手続「基本手順 」、「推奨手順」、「拡張手順」をDSC3012に通知するためにSendObiec tInfoにより、DSC3012に対して送信したいオブジェクト情報があることを伝 える。これに対して肯定応答(OK)がDSC3012から送られてくると、1502で SendObjectによりオブジェクトを送信する旨をDSC3012に伝え、次の1 503のObjectDataで、このPDプリンタ装置1000がサポートしている手 50

続に関する情報を送信する。次に1504で、DSC3012からPDプリンタ装置1000に対して、GetObject動作を起動したい(プッシュモードに移行)旨を伝える。これにより1505で、PDプリンタ装置1000からオブジェクト情報に関する情報を受信する旨が伝えられると(GetObjectInfo)、1506で、ObjectInfo Datasetにより、その情報が返送され、次に1507で、そのオブジェクト情報を指定してオブジェクト情報そのものが要求されると、Object Datasetにより、DSC3012が使用する手続(「基本」、「推奨」、「拡張」等)をPDプリンタ装置1000に知らせる(1508)。

[0059]

これにより、 D S C 3 O 1 2 から P D プリンタ装置 1 O O O に対して、画像の印刷モード 10 を指定することができる。

[0060]

[NCDPEnd]

図 I 6 は、本実施の形態に係る N C D P における通信制御手順を終了する命令(N C D P E n d)を P T P アーキテクチャを用いて実現した例を説明する図である。

[0061]

この手順では、1600において、PDプリンタ装置1000からDSC3012に対して送信したいオブジェクト情報があることを伝え、ObjectDataにより、DSC3012に対してNCDPのモードから抜けることを通知する。これに対して肯定応答(OK)を受信すると、1601でC1oseSessionを送信して、この通信を終了させる。これによりNCDPによる通信手順を終了する。

[0062]

'[Capability]

図17は、本実施の形態に係るNCDPにおける、PDプリンタ装置1000の機能をDSC3012に通知するCapability命令における通信手順をPTPアーキテクチャを用いて実現した例を説明する図である。

[0063]

この手順では、1700において、PDプリンタ装置1000からDSC3012に対して送信したいオブジェクト情報があることをSendObjectInfoにより伝える。そして1701で、SendObjectによりDSC3012に対してオブジェクト情報の伝送を伝え、続くObject Dataにより、PDプリンタ装置1000が有している機能をスクリプト(Script)形式(図12)でDSC3012に送信する

[0064]

[Get Image]

図 1 8 は、本実施の形態に係る N C D P における、 P D プリンタ装置 1 0 0 0 が D S C 3 0 1 2 に保持されている画像データ(J P E G 画像)を取得する(G e t I m a g e)通信手順を P T P アーキテクチャを用いて実現した例を説明する図である。

[0065]

まず 1 8 0 0 で、 D S C 3 0 1 2 が保持しているオブジェクトに関する情報を要求すると、 1 8 0 1 で、そのオブジェクトに関する情報(O b j e c t D a t a s e t)が D S C 3 0 1 2 から P D プリンタ装置 1 0 0 0 に送られる。次に、 1 8 0 2 で、そのオブジェクトを指定して取得要求(G e t O b j e c t)を発行すると、 1 8 0 3 で、その要求された画像ファイル(O b j e c t D a t a s e t)が D S C 3 0 1 2 から P D プリンタ装置 1 0 0 0 に対して送信される。この様にして P D プリンタ装置 1 0 0 0 は、 D S C 3 0 1 2 から所望の画像ファイルを取得することができる。

[0066]

[StatusSend]

図 1 9 は、本実施の形態に係る N C D P における、 P D プリンタ装置 1 0 0 0 から D S C 3 0 1 2 に対してエラー状態などを通知する (S t a t u s S e n d) 通信手順を P T P

アーキテクチャを用いて実現した例を説明する図である。

[0067]

まず 1 9 0 0 で、 P D プリンタ装置 1 0 0 0 から D S C 3 0 1 2 に対して送信したいオブジェクト情報がある旨を S e n d O b j e c t l n f o により通知する。そして 1 9 0 1 で、そのオブジェクト情報に関する情報セット(O b j e c t D a t a s e t)を D S C 3 0 1 2 に送信し、 D S C 3 0 1 2 からの肯定応答(O K)に対して、 P D プリンタ装置 1 0 0 0 におけるエラー等のステータス情報を S e n d O b j e c t および O b j e c

Datasetにより送信する。

[0068]

10

[PageEnd]

図 2 0 は、本実施の形態に係る N C D P における、 P D プリンタ装置 1 0 0 0 から D S C 3 0 1 2 に対して、 1 ページのプリント処理が終了したことを通知する(P a g e E n d) 通信手順を P T P アーキテクチャを用いて実現した例を説明する図である。

[0069]

[JobEnd]

図21は、本実施の形態に係るNCDPにおける、PDプリンタ装置1000からDSC3012に対して、プリントジョブが終了したことを通知する(JoeEnd)通信手順をPTPアーキテクチャを用いて実現した例を説明する図である。図20,図21においては、図19の1900万至1901の手順実行後、図20の1910で、PDプリンタ装置1000からDSC3012に対して印刷ジョフが終了したことが通知される。

[0070]

[JobStart]

図22は、本実施の形態に係るNCDPにおける、DSC3012からPDプリンタ装置1000に対して、プリントジョブの開始を通知する(JobStart)通信手順をPTPアーキテクチャを用いて実現した例を説明する図である。

[0071]

まず2200において、DSC3012からPDプリンタ装置1000に対してRequestObjectTransferを送り、PDプリンタ装置1000がGetObjectTransferを送り、PDプリンタ装置1000がGetObjectTransferを送り、PDプリンタ装置1000がGetObjectInfoが発行されると、DSC3012は送信したいオブジェクト情報に関する情報を送信し、これに対してPDプリンタ装置1000からオブジェクト情報が要求されると(GetObject:2203)、2204で、ObhectDatasetを送信して、DSC3012からPDプリンタ装置1000に対して印刷命令を発行する。

[0072]

[JobAbort]

図 2 3 は、本実施の形態に係る N C D P における、 D S C 3 O 1 2 から P D プリンタ装置 40 1 O O O に対してプリント中止命令を発行する(J o b A b o r t)通信手順を P T P アーキテクチャを用いて実現した例を説明する図である。

[0073]

[JobContinue]

図24は、本実施の形態に係るNCDPにおける、DSC3012からPDプリンタ装置1000に対してプリント再開命令を発行する(JobContinue)通信手順をPTPアーキテクチャを用いて実現した例を説明する図である。

[0074]

図 2 3 及 び 図 2 4 に おいて、 図 2 2 の 2 2 0 0 乃至 2 2 0 3 の 手順を実行した後、 図 2 3 の 2 3 0 1 で、 D S C 3 0 1 2 から P D プリンタ 装置 1 0 0 0 に対して 印刷中止命令が発

--

行され、図24の2401では、DSC3012からPDプリンタ装置1000に対して 印刷再開命令が通知される。

[0075]

[Capabilityの自由裁量]

次に本実施の形態に係る特徴部分であるPDプリンタ装置1000とDSC3012との間での通信手順と、PDプリンタ装置1000とDSC3012における処理について説明する。

[0076]

本実施の形態では、PDプリンタ装置1000に接続されるDSC3012は、各メーカで製造された不特定のデジタルカメラが接続されることを前提としているため、例えばPDプリンタ装置1000からDSCに対して、そのPDプリンタ装置1000が有している全ての情報をCapabilityとしてDSCに送信しても、そのDSCは、そのCapabilityの内容を全て或いはある一部を理解できない可能性がある。その様な場合には、PDプリンタ装置1000が意図していない印刷条件が記述されたプリントジョブファイルがDSCから送られてくることになり、このような場合に、そのプリントジョブファイルで指示された通りの印刷条件で印刷を行うと、その印刷された画像そのものが全く価値のないものとなる虞がある。そこで本実施の形態では、このような状態で発生し得る問題点を解決することを目的としている。

[0077]

図 2 5 は、図 1 1 に示す「推奨手順」における C a p a b i l i t y のやり取りの手順を 20 説明する図である。

[0078]

図において、▲1▼で、前述したようにPDプリンタ装置1000からDSC3012に対してCapabilityがスクリプト表記で送信される。DSC3012はこのCapabilityを解釈し、理解できない事項があればそれを無視する。次に▲2▼で、DSC3012のユーザは、このDSC3012のUIを使用して印刷したい画像ファイルや印刷条件(用紙種類、用紙サイズ、画像品位等)を指定する。これによりプリントジョブを指定するプリントジョブアイルをDSC3012からPDプリンタ装置1000に送信する。これを受信したPDプリンタ装置1000は、そのプリントジョブファイルに記述されている内容を解析し、次に▲4▼で受信した画像ファイルを、そのプリントジョブファイルで指定された印刷条件で印刷する。こうして印刷が終了すると▲5▼において、プリントジョブが終了したことをDSC3012に通知する。

[0079]

尚、ここで、PDプリンタ装置1000にセットされている用紙サイズが「L判」であるのに対して、DSC3012から受信したプリントジョブファイルのCapabilityの用紙サイズに「A4判」が指定されていた場合、PDプリンタ装置1000におけるCapabilityにおける記載を自由裁量として判定する。即ち、その画像データをそのまま「A4判」サイズで「L判」の用紙に印刷しようとすると、画像の一部しか印刷できないことになるため、PDプリンタ装置1000は、DSC3012からのCapabilityで記述されている用紙サイズに関する事項を無視し、実際にPDプリンタ装置1000に装着されている用紙サイズ(ここでは「L判」を優先させて印刷する。これによりPDプリンタ装置1000は、その画像データを「L判」サイズに縮小して、その装着されている「L判」サイズの用紙に印刷する。

[0080]

これは例えば、印刷対象の用紙の種類(普通紙、特殊用紙等)に関しても同様で、DSC3012からのCapabilityで指示された種類の用紙が存在しない場合には、実際に装着されている用紙の種類を優先させる。これにより、その用紙の種類に適合した画像処理を行って、その用紙の種類に応じて最適な画像を印刷することができる。

[0081]

50

30

図 2 6 は、上述の「推奨手順」での処理手順における D S C 3 O 1 2 での処理を説明するフローチャートである。

[0082]

まずステップS21で、PDプリンタ装置1000からCapabilityを受信するとステップS22に進み、そのCapabilityを解析する。ここで、理解できない事項があればそれを無視する。次にステップS23に進み、印刷指示画面(UI)をカメラ3012の表示部に表示し、ステップS24で、そのUI画面を使用して、ユーザによる印刷指示が入力される。こうして印刷指示が入力されるとステップS25に進み、UIを使用して設定された印刷対象画像ファイル及び各種印刷条件などを記述したプリントジョブファイルをPDプリンタ装置1000に送信する。続いてステップS27で、そのプリントジョブファイルに記述されている画像ファイルをPDプリンタ装置1000送信する。

[0083]

図27は、上述の「推奨手順」での処理手順におけるPDプリンタ装置1000での処理を説明するフローチャートである。

[0084]

まずステップS31で、前述の図26のステップS26、S27で、DSC3012から送信されたプリントジョブファイルを受信する。そしてステップS32に進み、そのプリントジョブファイルを関析する。そしてステップS33に進み、その指定された回刷する画像ファイルを特定する。そしてステップS33に進み、その指定された理解できない事項があるかどうかを判定し、もし理解できない事項があればステップS33に進み、その事項を無視する。ステップS34に進み、その事項を無視する。ステップS36に進み、プリントジョブファイルで記述された印刷条件が、そのPDプリンタ装置1000における現在の印刷条件と異なるかを判定する。これは例えば、前述したように、プリントジョブに装着されている用紙イプ或いは用紙タイプが、PDプリンタ装置1000における。ここで異なる場合はステップS37に進み、そのプリントジョブアイルで指定された印刷条件を優先させ、ステップS38で、アDプリンタ装置1000により印刷可能な印刷条件を優先させ、ステップS38で、その印刷条件に基づいてプリントジョブファイルで指定された印刷を実行する。

[0085]

以上説明したようにして、例えば完全にCompatibilityを有していないPDプリンタ装置1000とDSC3012との間でも、その時点で最適と判断される印刷条件で、DSC3012からの画像を印刷することができる。

[0086]

なお本発明は、複数の機器(例えばホストコンピュータ、インターフェース機器、リーダ、プリンタなど)から構成されるシステムに適用しても、一つの機器からなる装置(例えば、複写機、ファクシミリ装置など)に適用してもよい。

[0087]

また、本発明の目的は、前述した実施形態の機能(カメラ側で行われる処理、プリンタ側で行われる各種印刷処理)を実現するソフトウェアのプログラムコードを記録した記憶媒体(または記録媒体)を、システムあるいは装置に供給し、そのシステムあるいは装置のコンピュータ(またはCPUやMPU)が記憶媒体に格納されたプログラムコードを読み出し実行することによっても達成される。この場合、記憶媒体から読み出されたプログラムコード自体が前述した実施形態の機能を実現することになり、そのプログラムコードではより、前述した実施形態の機能が実現されるだけでなく、そのプログラムコードの指示に基づき、コンピュータ上で稼働しているオペレーティングシステム(OS)などが実際の処理の一部または全部を行い、その処理によって前述した

50

40

実施形態の機能が実現される場合も含まれる。

[0088]

さらに、記憶媒体から読み出されたプログラムコードが、コンピュータに挿入された機能拡張カードやコンピュータに接続された機能拡張ユニットに備わるメモリに書込まれた後、そのプログラムコードの指示に基づき、その機能拡張カードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行い、その処理によって前述した実施形態の機能が実現される場合も含まれる。

[0089]

以上説明したように本実施の形態によれば、PDプリンタ装置をUSBホストにDSCをスレープに設定し、印刷動作に入る前に、PDプリンタ装置が有しているCapability情報に基づいて最適な印刷モードを決定して印刷を行わせることができる。

[0090]

またこの Capability情報の送信をスクリプトにより行うことにより、他の通信プロトコルへの移植が容易になり、標準化し易くなる。

[0091]

また、デバイス間の通信手順は汎用ファイル、汎用フォーマットを用いて行い、その上位レイヤに、本実施の形態に係るアプリケーションの通信手順レイヤを規定することにより、各種インターフェース仕様に依存しない通信手順を規定することができる。

[0092]

【発明の効果】

以上説明したように本発明によれば、インターフェースに依存しない画像データの転送及び記録指示を行うことにより、各社の撮像装置からの画像データを受信して記録できる。 【0093】

また本発明によれば、撮像装置から指示された記録条件が、記録装置が実際に有している 条件と異なる場合に、当該記録装置の有している条件で記録することにより、記録条件の 不整合による記録画像の劣化を防止できるという効果がある。

【図面の簡単な説明】

- 【図1】本発明の実施の形態に係るPDプリンタ装置の概観斜視図である。
- 【図2】本実施の形態に係るPDプリンタ装置の操作パネルの概観図である。

【図3】本実施の形態に係るPDプリンタ装置の制御に係る主要部の構成を示すブロック図である。

【図4】本実施の形態に係るPDプリンタ装置のASICの構成を示すブロック図である

【図5】本実施の形態に係るPDプリンタ装置とデジタルカメラとを接続した状態を示す図である。

【図6】本実施の形態に係るNCDPを実装したPDプリンタ装置とデジタルカメラのソフトウェア構成を説明する概念図である。

【図7】本実施の形態に係るNCDP通信手順の概要を説明する図である。

【図8】本実施の形態に係るNCDPにおけるコマンドを説明する図である。

【図9】本実施の形態に係るNCDPにおける「基本手順」による印刷手順を説明する図である。

【図10】本実施の形態に係るNCDPにおける「推奨手順」による印刷手順を説明する図である。

【図11】本実施の形態に係るNCDPにおける「推奨手順」におけるエラー発生時の印刷手順を説明する図である。

【図12】本実施の形態に係るNCDPで送信されるCapabilityの一例を説明する図である。

【図13】本実施の形態に係るNCDP通信手順の概要を説明するフローチャートである

50

10

20

30

【図14】NCDP手順の開始を指示する命令(NCDPStart)をPTPアーキテクチャを用いて実現した例を説明する図である。

【図15】 N C D P 手順において、カメラから各手順への移行命令を受取る(P r o c e d u r e S t a r t)手順を P T P アーキテクチャを用いて実現した例を説明する図である。

【図16】NCDP手順の終了を指示する命令(NCDPEnd)をPTPアーキテクチャを用いて実現した例を説明する図である。

【図17】NCDP手順においてPDプリンタ装置からカメラに対してCapabili tyを送信する命令(Capability)をPTPアーキテクチャを用いて実現した 例を説明する図である。

【図18】 N C D P 手順において、 P D プリンタ装置からカメラに保持されている画像ファイルを取得する命令(G e t I m g e)の手順を P T P アーキテクチャを用いて実現した例を説明する図である。

【図19】NCDP手順において、PDプリンタ装置からカメラに対してエラーステータスを送信する命令(StatusSend)の手順をPTPアーキテクチャを用いて実現した例を説明する図である。

【図20】NCDP手順において、PDプリンタ装置からカメラに対して1ページの印刷終了を送信する命令(PageEnd)の手順をPTPアーキテクチャを用いて実現した例を説明する図である。

【図21】NCDP手順において、PDプリンタ装置からカメラに対して印刷ジョブの終了命令(JobEnd)を発行する手順をPTPアーキテクチャを用いて実現した例を説明する図である。

【図22】 N C D P 手順において、カメラから P D プリンタ装置に対して印刷命令の発行(JobStart)する手順を P T P アーキテクチャを用いて実現した例を説明する図である。

【図23】NCD-P手順において、カメラからPDプリンタ装置に対して印刷の中止命令(JobAbort)を発行する手順をPTPアーキテクチャを用いて実現した例を説明する図である。

【図24】NCDP手順において、カメラからPDプリンタ装置に対して印刷再開命令(JobContinue)を発行する手順をPTPアーキテクチャを用いて実現した例を 説明する図である。

【図25】本実施の形態に係るDSCとPDプリンタ装置との間での「推奨手順」によるデータのやり取りを説明する図である。

【図26】本実施の形態に係るDSCにおける「推奨手順」での印刷指示を説明するフローチャートである。

【図27】本実施の形態に係るPDプリンタ装置における「推奨手順」での印刷処理を説明するフローチャートである。

20

【図1】

[図2]

[図3]

【図4】

Camera ProcedureStart 902 NCDP 開始 "基本手順" ~~ 903 基本手順開始 基本手順開始 写真選択 IDLE JobStart ~904 印刷開始 印刷中 Get Image ~ 905 "ImageData"~906 印制完了 JobEnd ~907 "OK" ~~ 908

[図10]

[図11]

【図12】

1/25/05, EAST Version: 2.0.1.4

【図25】

【図26】

【図27】

フロントページの続き

(72)発明者 矢野 健太郎

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

(72)発明者 山田顕季

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

(72)発明者 愛知孝郎

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

(72)発明者 田中達也

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

(72)発明者 坂本和弥

東京都大田区下丸子3丁目30番2号 キヤノン株式会社内

Fターム(参考) 20061 AP03 AP04 AP06 AP10 HJ08 HN27 HP08 HQ20

5B021 AA30 BB05 DD17 DD18

5C022 AA11 AA13 AC42

5C052 AA12 AB02 DD02 EE02

5C053 FA04 FA07 LA01 LA03