

Algorithmik kontinuierlicher Systeme

Direkte Verfahren für Lineare Gleichungssysteme (Teil 3)

- Direkte Verfahren, d.h. solche, die in endlich vielen Schritten das exakte Ergebnis liefern (exakte Rechnung vorausgesetzt) basieren auf der Faktorisierung von A
 - $A = A_1 A_2$ dann ist Ax = b äquivalent zu $A_1 y = b$ und $A_2 x = y$
- LR-Zerlegung
- Pivotsuche

SS 2020

- Vorwärts/Rückwärts-Substitution für Dreiecksmatrizen: $O(n^2)$
- Gegen die Intuition, sollte man keine inversen Matrizen berechnen/verwenden, selbst wenn man mehrere Gleichungssysteme mit der gleichen Matrix lösen muss.
- Die Cramer'sche Regel ist nicht geeignet um Gleichungssysteme numerisch zu lösen.

Prof. U. Rüde - Algorithmik kontinuierlicher Systeme

- Spezialfälle
 - Bandmatrizen
 - sym. pos. def. Matrizen
- Erweiterungen
 - Elimination mit orthogonalen Matrizen
 - Householder-Reflektionen
 - Givens-Rotationen
 - Lösung von low-rank-modifizierten LGS

LR für nicht-voll-besetzte Matrizen (1)

- Bandmatrizen:
 - Beschränke die Elimination auf die Elemente, die innerhalb des Bandes und unterhalb der Diagonalen liegen
 - Aufwand bei Bandbreite einer Matrix der Ordnung n und Bandbreite m < n ist $O(m^2n)$
- Wichtiger Spezialfall: Tridiagonale Matrizen
- Speichersparende Datenstruktur entscheidend!

$\lceil b_1 \rceil$	c_1	0	• • •	0	0
a_1	$egin{array}{c} c_1 \ b_2 \ a_2 \end{array}$	c_2		0	0
0	a_2	b_3	•••	0	0
•		•	•••	•••	•
0	0	0	•••	b_{n-1}	
0	0	0	• • •	a_{n-1}	

LR für nicht-voll-besetzte Matrizen (2)

- Tridiagonale Matrizen
- Struktur der LR-Zerlegung:

$$\boldsymbol{L} = \begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ l_1 & 1 & 0 & & 0 & 0 & 0 \\ 0 & l_2 & 1 & \ddots & 0 & 0 & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 0 & 0 \\ 0 & 0 & 0 & \cdots & l_{n-1} & 1 \end{bmatrix} \quad \boldsymbol{R} = \begin{bmatrix} r_1 & c_1 & 0 & \cdots & 0 & 0 \\ 0 & r_2 & c_2 & & 0 & 0 & 0 \\ 0 & 0 & r_3 & \ddots & 0 & 0 & 0 \\ \vdots & & \ddots & \ddots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & r_{n-1} & c_{n-1} \\ 0 & 0 & 0 & \cdots & 0 & r_n \end{bmatrix}$$

Lösbar mit O(n) Operationen (genauer: je n-1 Div., Add. und Mult.)

$$r_1 = b_1, l_1 = a_1 / r_1, r_2 = b_2 - l_1 * c_1, ..., l_{n-1} = a_{n-1} / r_{n-1}, r_n = b_n - l_{n-1} * c_{n-1}$$

- Allgemeine dünn besetzte Matrizen: Fill-In
- Vorhandene Nullen in der Matrix werden durch die Elimination zerstört.
- Dies treibt die Zahl der Operationen und den Speicherbedarf nach oben
- Es wurden viele Algorithmen entwickelt, die den Fill-In durch eine geeignete Permutation der Matrix minimieren sollen: sog. sparse matrix solver.
- Lösungen für Spezialfälle:
 - Nested Dissection, Minimum Degree, ...
- Wenn solche Algorithmen für Parallelrechner entwickelt werden sollen, dann ist dies weiterhin ein heisses Forschungsthema

• Ist A symmetrisch, d.h. $A = A^T$ und positiv definit, dann kann man A faktorisieren in

$$A = L \cdot D \cdot L^{T}$$

dabei ist L das L der LR-Zerlegung D der Diagonalanteil von R.

• wg positiv definit: **D** hat in der Diagonale nur positive Elemente, Alternative:

$$\boldsymbol{A} = \boldsymbol{L} \cdot \boldsymbol{D} \cdot \boldsymbol{L}^{T} = \boldsymbol{L} \cdot \boldsymbol{D}^{\frac{1}{2}} \cdot \boldsymbol{D}^{\frac{1}{2}} \cdot \boldsymbol{L}^{T} = \widetilde{\boldsymbol{L}} \cdot \widetilde{\boldsymbol{L}}^{T}$$

 Im Algorithmus kann man ausnützen, dass die beiden Dreiecksfaktoren gleich sind, man braucht nur einen der beiden explizit berechnen und spart so grob die Hälfte der Operationen.

- Für die Cholesky-Zerlegung ist keine Pivotsuche nötig.
- Der Algorithmus ist auch ohne Pivotsuche stabil.
 - Es können keine 0-Pivots auftreten.
- André-Louis Cholesky, 1875 1918 (Geodät)

- Vorteile im Vergleich mit LR:
 - keine Pivotsuche notwendig,
 - Aufwand etwa halb so groß wie bei LR.
- Aber: funktioniert nur für symmetrisch positiv definite (SPD) Matrizen!

- Faktorisierungsmethode: $A = A_1A_2 : A_1y = b$ und $A_2x = y$
- LR-Zerlegung (mittels Gauss-Elimination /-scherung)
- Pivotisierung
- Aufwand: allgemein / Band / tridiagonal
- Cholesky-Verfahren

- Motivation:
 - Durch Gauss-Scherungen kann ein gut konditioniertes Gl.system in ein schlecht konditioniertes transformiert werden.
- Dies muss durch die (Spalten-) Pivotsuche verhindert werden ... was in kritischen Fällen nur bedingt funktioniert (siehe Spezialvorlesung "Algorithms of Num. Lin Alg.")
- Verwendet man Rotationen oder Spiegelungen zur Elimination anstelle der Gauss-Scherungen hat man
 - Bessere numerische Eigenschaften (da die Spiegelungen und Rotationen "längentreu" und "winkeltreu" sind)
 - Orthogonale Matrizen (Q^TQ=Id)
 - → QR-Zerlegung

Householder-Spiegelungen

Spiegelung an einer Geraden (\mathbb{R}^2), Ebene, (\mathbb{R}^3), Hyper-Ebene (\mathbb{R}^n):

Eine Hyper-Ebene wird durch einen senkrechten Vektor w beschrieben:

$$E_{w} = \{x : x \circ w = 0\}$$

$$H_{w} : x \mapsto x - \frac{2 \cdot w \circ x}{w \circ w} \cdot w$$

$$H_{w} = Id - \frac{2}{w \circ w} \cdot w \cdot w^{T}$$

QR: Transformationsmatrizen (2)

- Givens-Rotationen (Jacobi-Rotationen)
- Rotation in \mathbb{R}^2 :

$$\boldsymbol{J}_{\varphi}: \begin{bmatrix} x \\ y \end{bmatrix} \mapsto \begin{bmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Rotationen in \mathbb{R}^3 : Rotation um eine Achse. Givens-/Jacobi-Rotationen sind Rotationen um eine Koordinatenachse

$$\boldsymbol{J}_{21}(\varphi) = \begin{bmatrix} \cos\varphi & -\sin\varphi & 0 \\ \sin\varphi & \cos\varphi & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \boldsymbol{J}_{13}(\varphi) = \begin{bmatrix} \cos\varphi & 0 & \sin\varphi \\ 0 & 1 & 0 \\ -\sin\varphi & 0 & \cos\varphi \end{bmatrix} \quad \boldsymbol{J}_{32}(\varphi) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\varphi & -\sin\varphi \\ 0 & \sin\varphi & \cos\varphi \end{bmatrix}$$

QR: Transformationsmatrizen (3)

- Givens-Rotationen (Jacobi-Rotationen)
- Allgemein im \mathbb{R}^n : nur Rotation zweier Koordinaten

Ansätze:

- 1. mit einer Householder-Spiegelungen in einer Spalte Nullen einfügen (außer Diagonalelement)
 - → nach n-1 Schritten erhält man die Dreiecksmatrix R

- 2. Mit einer Givens-Rotationen ein Element (unterhalb der Diagonalen) zu Null machen
 - \rightarrow nach n(n-1)/2 Schritten erhält man die Dreiecksmatrix R

QR - Fakorisierung in der Praxis

- Inverse: $J_{ij}(\varphi)^{-1} = J_{ij}(-\varphi) = J_{ij}(\varphi)^T$; \boldsymbol{H}_{w} -1 = \boldsymbol{H}_{w} = \boldsymbol{H}_{w} T
- Givens-Rotationen und Householder-Spiegelungen benötigen keine Pivotsuche (die Vertauschung ist als Spezialfall enthalten)
 - ★ deshalb auch leichter parallelisierbar
- Spiegelungen und Rotationen erhalten (in der 2-Norm) die Kondition des Ausgangssystems (siehe später)
- Aufwand (arithmetische Op.) im Vergleich zu LR: etwa 2x (Householder-Spiegelungen) bzw. 4x (Givens-Rotationen)
 - Bei Givensrotationen gibt es eine Variante, die nur gleich teuer wie Householder ist.
 - Dazu muss man zusätzliche Skalierungen einführen: rationale Givensrotationen, siehe unten.

Bestimmung der Givens-Rotation (1)

2x2-Fall: Gesucht eine Rotationsmatrix so dass

$$\begin{bmatrix} c & -s \\ s & c \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix}$$
 wobei $c = \cos(\varphi), s = \sin(\varphi)$

d.h. Der Vektor
$$\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$$
 muss auf ein Vielfaches des

Einheitsvektors abgebildet (gedreht) werden.

1. Fall:
$$a_{11} > 0$$

$$c = \cos(\varphi) = \frac{a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}$$

$$Ra_{*_{1}}$$
 $S = \sin(\varphi) = \frac{-a_{21}}{\sqrt{a_{11}^{2} + a_{21}^{2}}}$

Bestimmung der Givens-Rotation (2)

2x2-Fall: Gesucht eine Rotationsmatrix so dass

$$\begin{bmatrix} c & -s \\ s & c \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} * & * \\ 0 & * \end{bmatrix}$$
 wobei $c = cos(\varphi), s = sin(\varphi)$

d.h. Der Vektor $\begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix}$ muss auf ein Vielfaches des

Einheitsvektors abgebildet (gedreht) werden.

2. Fall: $a_{11} < 0$

$$c = \cos(\varphi) = \frac{-a_{11}}{\sqrt{a_{11}^2 + a_{21}^2}}$$

$$s = \sin(\varphi) = \frac{a_{21}}{\sqrt{a_{11}^2 + a_{21}^2}}$$

Allgemeiner Fall:

$$J_{ij}(\varphi) = \begin{bmatrix} 1 & & & & & \\ & \ddots & & & \\ & & c & -s & \\ & & \ddots & \\ & & s & c & \\ & & & \ddots & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix} \leftarrow j$$

$$c = \cos(\varphi) = \frac{\sigma \cdot a_{jj}}{\sqrt{a_{jj}^2 + a_{ij}^2}}, \quad s = \sin(\varphi) = \frac{-\sigma \cdot a_{ij}}{\sqrt{a_{jj}^2 + a_{ij}^2}}, \quad \text{wobei} \quad \sigma = sign(a_{jj})$$

• A eine $m \times n$ - Matrix:

```
for j=1..nstar # nstar wie unten definiert for i=j+1..m

# bestimme c und s in J_{i,j} wie oben beschrieben

A = J_{i,j}A # aber nicht als Matrixmultiplikation

# dann ist das Element a_{i,j} = 0
```

- Reihenfolge so, dass einmal geschaffene 0-en nicht wieder zerstört werden.
 - $R = J_{m,n^*} \dots J_{2,1} A$ (hierbei ist $n^* = \min\{m-1,n\}$)
 - $A = J_{2,1}^{T} \dots J_{m,n}^{T} R = Q \cdot R$
 - Das Produkt aller Rotationen $J_{i,j}^T$ ist eine orthogonale $m \times m$ -Matrix.
 - In den meisten Anwendungen muss dieses Produkt nicht explizit mit berechnet werden.

QR mit Givens-Rotationen (2)

- Für die Lösung eines Gleichungssystems: Rechte Seite mit den Rotationen mit-transformieren.
- Aufwand: ca. 4× so hoch wie bei LR-Zerlegung.
- Verbesserung: rationale Givens-Rotationen
 - Rotationen werden durch eine Skalierung so modifiziert, dass die Diagonalelemente alle gleich 1 sind. Alle so erfolgten Skalierungen werden separat auf multipliziert: In dieser Variante kann man ca. die Hälfte des Rechenaufwandes sparen.
- Für die numerische Stabilität ist keine Pivotsuche nötig,
- QR ist stabiler und besser konditioniert als LR $\kappa_2(A) = \kappa_2(R) , \kappa_2(Q) = 1,$
- Häufig für m > n angewandt, also für überbestimmte Gleichungssysteme.
 - siehe später: Ausgleichsrechnung.

SS 2020

QR mit Householder-Spiegelungen (1)

- Eine QR-Zerlegung kann man auch mit Householder-Spiegelungen) anstelle von (Givens-) Rotationen erzeugen
- Dazu müssen n-1 Householder-Spiegelungen

$$\boldsymbol{H}_{j} = \boldsymbol{Id} - \frac{2}{\boldsymbol{w}_{j} \circ \boldsymbol{w}_{j}} \cdot \boldsymbol{w}_{j} \cdot \boldsymbol{w}_{j}^{T} \qquad \boldsymbol{H}_{j} \boldsymbol{x} = \boldsymbol{x} - \frac{2 \cdot \boldsymbol{w}_{j} \circ \boldsymbol{x}}{\boldsymbol{w}_{j} \circ \boldsymbol{w}_{j}} \cdot \boldsymbol{w}_{j}$$

- konstruiert werden, die in der j-ten Spalte die erforderlichen Nullen erzeugen
- Man kann hier mit einer einzigen Transformation gleich die ganze Spalte eliminieren, indem man den Vektor w_i "geeignet" wählt

QR mit Householder-Spiegelungen (2)

Householder Spiegelung mit $\mathbf{w}_1 = [a_{11} - || \mathbf{a}_{*1} ||, a_{21}, ..., a_{n1}]^T$ bildet die erste Spalte a_{*_1} auf $[\|a_{*_1}\|,0,...,0]^T$ ab.

QR mit Householder-Spiegelungen (3)

- Vorgehen wie bei LR-Zerlegung:
- 1. Householder-Spiegelung:

2. Householder-Spiegelung:

$$\boldsymbol{H}_{2}\boldsymbol{H}_{1}\boldsymbol{A} = \begin{bmatrix} * & * & * & \cdots & * \\ 0 & * & * & \cdots & * \\ 0 & 0 & * & & * \\ 0 & 0 & \vdots & \ddots & \vdots \\ 0 & 0 & * & \cdots & * \end{bmatrix}$$

SS 2020

QR mit Householder-Spiegelungen (4)

(n-1)-te Householder-Spiegelung:

Man setzt dann $R = H_{n-1} \cdots H_2 H_1 A$ und

$$Q = (H_{n-1} \cdots H_2 H_1)^{-1} = H_1 H_2 \cdots H_{n-2} H_{n-1}$$

... und alles passt!

Aufwand $O(n^3)$ (etwa doppelt so hoch wie bei LR)

Alston Scott Householder

Born: 5 May 1904 in Rockford, Illinois, USA

Died: 4 July 1993 in Malibu, California, USA

Director of the Oak-Ridge National Laboratory, 1948-1969

... Householder transformations are now routinely taught in courses throughout the world, as is the systematic use of norms in linear algebra, which he pioneered ...

QR für nicht quadratische Matrizen

- Die oben beschriebenen Verfahren kann man auch für nicht quadratische Matrizen durchführen
- Ergebnis falls m < n, (m=3)

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \cdots & a_{1m} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2m} \\ a_{31} & a_{32} & a_{33} & \cdots & a_{3m} \end{bmatrix} = \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} & \cdots & r_{1m} \\ 0 & r_{22} & r_{23} & \cdots & r_{2m} \\ 0 & 0 & r_{33} & \cdots & r_{3m} \end{bmatrix}$$

•
$$Q = J_{2,1}^T \cdot J_{3,1}^T \cdot J_{3,2}^T$$
 bzw. $Q = H_1 \cdot H_2$

QR für nicht quadratische Matrizen

• Ergebnis falls m > n, (n=3)

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{23} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} \end{bmatrix} = \begin{bmatrix} q_{11} & q_{12} & \cdots & q_{1n} \\ q_{21} & q_{22} & \cdots & q_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ q_{n1} & q_{n2} & \cdots & q_{nn} \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \\ \vdots & \vdots & 0 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{23} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \\ \vdots & \vdots & \vdots \\ q_{n1} & q_{n2} & q_{n3} \end{bmatrix} \cdot \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix} \quad \mathbf{Q} = \mathbf{J}_{2,1}^{T} \cdot \dots \cdot \mathbf{J}_{n,1}^{T} \cdot \mathbf{J}_{3,2}^{T} \cdot \dots \cdot \mathbf{J}_{n,2}^{T} \cdot \mathbf{J}_{4,3}^{T} \cdot \dots \cdot \mathbf{J}_{n,3}^{T}$$

$$\mathbf{Q} = \mathbf{H}_{1} \cdot \mathbf{H}_{2} \cdot \mathbf{H}_{3}$$

• in diesem Fall sind die Spalten
$$q_{n+1},...,q_m$$
 ohne Bedeutung (und werden meist weg gelassen)

QR Zerlegung und Orthonormalisierung

- Problem: Gegeben linear unabhängige Vektoren $\boldsymbol{b}_1, \boldsymbol{b}_2, \ldots, \boldsymbol{b}_k$
- Finde *orthonormale* Vektoren $u_1, u_2, ..., u_k$ so dass
 - $\Rightarrow \operatorname{span}\{u_1\} = \operatorname{span}\{b_1\},$
 - \rightarrow span $\{u_1, u_2\}$ = span $\{b_1, b_2\}$,

 - $span\{u_1, u_2, ..., u_k\} = span\{b_1, b_2, ..., b_k\}$
- Standard Verfahren (LinAlg): Gram-Schmidt-Verfahren

$$u_1 = \frac{b_1}{\|b_1\|}; \quad \widetilde{u}_2 = b_2 - (b_2 \circ u_1) \cdot u_1, u_2 = \frac{\widetilde{u}_2}{\|\widetilde{u}_2\|}; \quad \dots$$

QR Zerlegung und Orthonormalisierung

- Das Gram-Schmidt-Verfahren ist numerisch instabil
 - (das modifizierte Gram-Schmidt-Verfahren ist besser)

Noch besser ist: QR-Zerlegung von

• Dann:
$$b_1 = r_{11} q_1$$
,
 $b_2 = r_{12} q_1 + r_{22} q_2$,

q's haben per definition einheitslänge, mit kombinationsfaktoren aus R (wie gram schmidt)

$$\boldsymbol{b}_k = r_{1k} \boldsymbol{q}_1 + r_{2k} \boldsymbol{q}_2 + \ldots + r_{kk} \boldsymbol{q}_k,$$

Dies zeigt: Die (ersten k)-Spalten Q sind die gesuchten orthonormalen Vektoren

LGS mit ähnlicher Koeffizientenmatrix

Wie kann man ausnützen, dass zwei Gleichungssysteme

Ähnliche matritzer

"ähnliche" Koeffizientenmatrizen haben?

$$\begin{array}{ccc}
Ax & = & b \\
\widehat{A}\widehat{x} & = & \widehat{b}
\end{array}$$

- Problem: ohne weiteres Wissen muss die Zerlegung (LR oder QR) mit $O(n^3)$ Aufwand neu durchgeführt werden.
 - Möglichkeit 1: Eliminationsvorgang im Detail analysieren und prüfen, ob und welche Teile sich wieder verwenden lassen.

 Problemspezifische Betrachtung der änderungen
 - ... abhängig vom konkreten Problem und vom Geschick des Algorithmenentwicklers)
 - Für spezielle "Störungen" nutzen spezieller Formeln: Hier als Beispiel die Sherman-Morrison-Woodbury-Formel für Rang-1-Modifikationen. Häufige "störungsklassen" haben bereits verfahren

Sherman-Morrison-Woodbury-Formel

- Ist A nicht singulär, u und v Vektoren, so dass
- $v^T A^{-1} u \neq -1$, dann gilt: ird mit dem noten komponentent von v multipliziert und dann $(A + uv^T)$ ist nicht singulär $(A + uv^T)^{-1} = A^{-1} - \frac{A^{-1}uv^TA^{-1}}{(1 + v^TA^{-1}u)}$ (Sherman-Morrison-Woodbury-Formel)
- $A+uv^T$ ist eine Rang-1-Modifikation der Matrix A. Spezialfälle davon sind:
 - Modifikation eines einzelnen Elements von A
 - Modifikation einer einzelnen Spalte von A
 - Modifikation einer einzelnen Zeile von A
- Das Herleiten der Formel ist eine nette Übungsaufgabe.
- Die numerische Stabilität hängt von den Daten ab, muss also in jedem Einzelfall sicher gestellt werden.

Die Sherman-Morrison-Woodbury-Formel darf man nicht naiv anwenden:

Die Inverse von A wird natürlich **nicht** explizit berechnet, sondern nur ihre LR-Zerlegung A=LR (die wir ja schon kennen, weil wir ja annehmen dass Ax = b schon gelöst wurde):

$$(A + uv^{T})x = b$$

$$x = (A + uv^{T})^{-1}b = A^{-1}b - \frac{A^{-1}uv^{T}(A^{-1}b)}{1 + v^{T}A^{-1}u}$$

Also:

durch einmal Vorwärts-Rückwärtssubstitution

durch noch einmal Vorwärts-Rückwärtssubstitution

und dann ergibt sich die Lösung $x = p - \frac{qv^{T}p}{1 + v^{T}a}$

Man muss den algorithmus nicht auswendig kennen, aber anwenden können (also mit dem 2 maligen lösen)

Zusammenfassung

- Lineare Gleichungssysteme kann man direkt oder iterativ lösen
- Direkte Verfahren liefern nach endlich vielen Schritten das exakte Ergebnis (theoretisch, wenn Arithmetik exakt),
- sie basieren auf der Faktorisierung von A
 - $A = A_1 A_2$ dann ist Ax = b äquivalent zu $A_1 y = b$ und $A_2 x = y$
- LR-Zerlegung (mit Gauss-Scherung): Teilprobleme lösen durch Vorwärts-/ Rückwärts-Substitution
 - nur Pivotsuche garantiert (in den meisten Fällen) Stabilität
- QR-Zerlegung (mit Givens-Rot. oder Householder Sp.)
- Aufwand: LR- und QR-Zerlegung : $O(n^3)$ Lösung der Teilprobleme $O(n^2)$
- Spezialvorlesungen aus der Mathematik, oder im WS ANLA: "Algorithmen der numerischen Linearen Algebra"

Ende von VL 4