

Using the Iso-Seq Application on SMRT Link and BioConda

Elizabeth Tseng, PacBio

Why use Iso-Seq analysis?

ISO-SEQ ANALYSIS MAIN FEATURES

- No reference genome required
- No transcriptome assembly required
- Recovers full-length (5' to 3') transcripts
- Yields highly accurate (>99%) transcripts

ISOSEQ.HOW

HIFI READS FROM CCS

FULL-LENGTH READS HAVE 5' AND 3' PRIMERS

REMOVE CONCATEMERS AND POLY(A) TAILS

CLUSTER TO GET ISOFORMS

accuracy ≥99% and ≥2 FLNC read support

Low Quality (LQ): accuracy <99% and ≥2 FLNC read support

MAP AND COLLAPSE ISOFORMS

CCS REMOVE REFINE CLUSTER MAP & COLLAPSE

BENEFITS OF ISO-SEQ ANALYSIS APPLICATION

- High-quality transcripts
- Full-Length Non-concatemer reads
- –Mapped & collapsed isoforms
- -Removes artifacts
- Removes poly(A) tails

Iso-Seq Analysis Using pbBioConda

INSTRUCTIONS TUTORIAL

Follow the instructions tutorial for installing all the software needed.

- If you do not have an HPC server to install pbbioconda, you should have already:
 - Create an AWS account
 - Create an AWS Linux Instance to run Iso-Seq 3 Analysis Pipeline
 - Connect to your AWS Instance
- Upgrades and Install Software

DOWNLOAD THE DATA

https://downloads.pacbcloud.com/public/dataset/ISMB_workshop/

Index of /public/dataset/ISMB_workshop/isoseq3

	Name	<u>Last modified</u>	<u>Size</u>	<u>Description</u>
4	Parent Directory		-	
	results/	2020-09-23 07:31	-	
?	alz.ccs.bam	2020-06-15 11:52	84M	
?	<pre>isoseq_primers.fasta</pre>	2020-09-23 07:03	62	
	run.sh	2020-09-23 07:23	430	

Example:

\$ wget -nv https://downloads.pacbcloud.com/public/dataset/ISMB_workshop/isoseq3/alz.ccs.bam

SPECIFY ISO-SEQ PRIMERS

\$ more primers.fasta

>5p

GCAATGAAGTCGCAGGGTTGGG

>3p

GTACTCTGCGTTGATACCACTGCTT

INPUT CCS BAM FILE

```
$ samtools view -h alz.ccs.bam
```

וים לאכן בואכן בוא כן בוא כן בוא כן בוא כן בוא כן בוא כי

REFERENCE GENOME

\$ grep '>' hg38.fa # to list the headers per chromosome

```
>chr1 AC:CM000663.2 gi:568336023 LN:248956422 r1:Chromosome M5:6aef897c3d6ff0c78a ff06ac189178dd AS:GRCh38
>chr2 AC:CM000664.2 gi:568336022 LN:242193529 r1:Chromosome M5:f98db672eb0993dcfd abafe2a882905c AS:GRCh38
>chr3 AC:CM000665.2 gi:568336021 LN:198295559 r1:Chromosome M5:76635a41ea913a405d ed820447d067b0 AS:GRCh38
>chr4 AC:CM000666.2 gi:568336020 LN:190214555 r1:Chromosome M5:3210fecf1eb92d5489 da4346b3fddc6e AS:GRCh38
>chr5 AC:CM000667.2 gi:568336019 LN:181538259 r1:Chromosome M5:a811b3dc9fe66af729 dc0dddf7fa4f13 AS:GRCh38 hm:47309185-49591369
```


SOFTWARE INSTALLATION CHECK

Access to your conda environment

```
$ source activate <name of your environment>
```

Check your installation

```
$ isoseq3 --version
isoseq3 3.4.x
$ lima --version
lima 1.11.0
$ pbmm2 --version
pbmm2 1.3.0
```


ISO-SEQ WORKFLOW

Clustering / High-level Workflow

High-level Workflow

The high-level workflow depicts files and processes:

← Most SQ2 projects will directly give you ccs.bam now

ISO-SEQ WORKFLOW

- Use polished CCS reads
- Only full-pass ZMWs

- Barcoded and unbarcoded cDNA primer removal
- Orientation
- Unwanted primer combination removal

- PolyA tail trimming
- Concatemer removal
- Hierarchical, n*log(n) clustering, alignment of shorter to longer sequences
- Iterative cluster merging
- Generate consensus for each read cluster using QV guided PoA

• One consensus per read cluster

- Align to reference genome
- Remove redundancy

PRIMER REMOVAL & DEMULTIPLEXING

Command line:

```
lima --isoseq --dump-clips --peek-guess -j 24\
alz.ccs.bam isoseq primers.fasta alz.demult.bam
```

Input files:

```
alz.ccs.bam #HiFi reads
isoseq primers.fasta #Iso-Seq primers
```

Output files:

alz.demult.bam

Options:

- --isoseq #specialized isoseq option for lima
 --dump-clips # show the clipped primers
 --peek-guess # remove spurious false positive signal
- -j 24 # Number of threads to use

PRIMER REMOVAL & DEMULTIPLEXING

After completion, you will see the following files:

```
$ ls -ltrh
```

```
alz.demult.json
alz.demult.lima.clips
alz.demult.lima.counts
alz.demult.lima.guess
alz.demult.lima.report
alz.demult.lima.summary
alz.demult.5p--3p.bam
alz.demult.5p--3p.bam.pbi
alz.demult.5p--3p.subreadset.xml
```


TRIMMING POLY(A) TAILS AND CONCATEMER REMOVAL

Command line:

```
isoseq3 refine --require-polya\
alz.demult.5p--3p.bam\ isoseq_primers.fasta
alz.flnc.bam
```

Input files:

alz.demult.5p--3p.bam
isoseq primers.fasta

Output files:

alz.flnc.bam

Options:

--require-polya #if your transcripts have a polyA tail

TRIMMING POLY(A) TAILS AND CONCATEMER REMOVAL

After completion, you will see the following files:

\$ ls -ltrh

alz.flnc.bam

alz.flnc.bam.pbi

alz.flnc.consensusreadset.xml

alz.flnc.filter_summary.json

alz.flnc.report.csv

#isoseq3 refine reports

ISOFORMS

Command line:

isoseq3 cluster alz.polished.bam \
--verbose --use-qvs

Input files:

alz.flnc.bam

Output files:

alz.polished.bam

Options:

--verbose #if your transcripts have a polyA tail --use-qvs #Use CCS QVs, sets --poa-cov 100

ISOFORMS

After completion, you will see the following files:

\$ ls -ltrh

Because the ccs input is Polished, the isoseq3 cluster output is already polished!

alz.polished.bam
alz.polished.transcriptset.xml
alz.polished.cluster
alz.polished.cluster_report.csv
alz.polished.hq.bam
alz.polished.hq.bam.pbi
alz.polished.lq.bam
alz.polished.lq.bam
alz.polished.lq.bam
alz.polished.lq.bam.pbi
alz.polished.lq.bam.pbi
alz.polished.lq.bam.pbi
alz.polished.lq.bam.pbi
alz.polished.lq.fasta.qz
#low quality isoforms(<0.99)

MAP

Command line:

pbmm2 align hg38.fa alz.polished.hq.bam

alz.aligned.bam

-j 24 --preset ISOSEQ -sort --log-level INFO

Input files:

alz.polished.hq.bam
hg38.fa

Output files:

alz.aligned.bam

Options:

- -j 24 #Number of threads to use
- --preset ISOSEQ #select the alignment mode
- --sort #Generate sorted BAM file
- --log-level INFO #show progress

After completion, you will see the following files:

\$ ls -ltrh

alz.aligned.bam
alz.aligned.bam.bai

COLLAPSE

Command line:

isoseq3 collapse alz.aligned.bam alz.collapsed.gff

Input files:

alz.aligned.bam

Output files:

alz.collapsed.gff

COLLAPSE

After completion, you will see the following files:

\$ ls -ltrh

alz.collapsed.report.json
alz.collapsed.abundance.txt
alz.collapsed.read_stat.txt
alz.collapsed.group.txt
alz.collapsed.gff
alz.collapsed.fasta

#report, stats and list

ISO-SEQ ANALYSIS TERMINOLOGY

NAME	ABBR	EXPLANATION	
Full-Length Reads	FL Reads	CCS reads with 5' and 3' cDNA primers removed	
Full-Length, Non-Concatemer Reads	FLNC Reads	CCS reads with 5' and 3' cDNA primers, polyA tail, and concatemers removed	
High-Quality Isoforms	HQ Isoforms	Polished transcript sequences with predicted accuracy ≥99% & ≥2 FLNC	
Low-Quality Isoforms	LQ Isoforms	Polished transcript sequences with predicted accuracy <99% & ≥2 FLNC	

www.pacb.com

For Research Use Only. Not for use in diagnostic procedures. © Copyright 2020 by Pacific Biosciences of California, Inc. All rights reserved. Pacific Biosciences, the Pacific Biosciences logo, PacBio, SMRT, SMRTbell, Iso-Seq, and Sequel are trademarks of Pacific Biosciences. Pacific Biosciences does not sell a kit for carrying out the overall No-Amp Targeted Sequencing method. Use of these No-Amp methods may require rights to third-party owned intellectual property. BluePippin and SageELF are trademarks of Sage Science. NGS-go and NGSengine are trademarks of GenDx. FEMTO Pulse and Fragment Analyzer are trademarks of Agilent Technologies Inc.

All other trademarks are the sole property of their respective owners.