

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 1T - parte 1: Nível RT e Sistemas Digitais

Classificação dos Sistemas Digitais quanto à aplicação (tipos de processadores), níveis de abstração, o nível RT

Professores: Cristina Meinhardt & José Luís Güntzel

{cristina.meinhardt, j.guntzel}@ufsc.br

Onde São Encontrados os Sistemas Digitais?

Onde São Encontrados os Sistemas Digitais?

Os produtos eletrônicos (Consumer Electronics)

Propósito Geral

Onde São Encontrados os Sistemas Digitais?

Propósito Geral

Onde São Encontrados os Sistemas Digitais?

Onde São Encontrados os Sistemas Digitais?

iPad3: um Produto de Eletrônica de Consumo

iPad3: um Produto de Eletrônica de Consumo

A5X CPU
"Apple Silicon"

CPU A5X: Apple Multiprocessor System on a Chip (MPSoC)

Classificação dos Sistemas Digitais Quanto à Aplicação

1. Processadores de Propósito Geral (General-Purpose Processors – GPPs ou ainda, CPUs)

- Podem ser programados para executar (virtualmente) qualquer algoritmo
- Aplicações são implementada via software
- Conjunto de instruções genérico
- Hardware otimizado para cada instrução separadamente (mas não um algoritmo ou uma classe de algoritmo)

Intel core i7
Cada Core contém 1 GPP + caches privadas

Fonte: https://www.yourdictionary.com/core-i7

Classificação dos Sistemas Digitais Quanto à Aplicação

2. Processadores Dedicados ou Blocos Aceleradores (Single-Purpose Processors)

- Projetados para executar somente um algoritmo específico (uma aplicação)
- A aplicação é implementada via hardware
- Alta eficiência energética & execução em tempo real
- Exemplos: codecs de fotos e vídeos (jpeg, MPEG, H.264/AVC, VP9, HEVC), codecs de áudio, cifradores/decifradores (criptografia) etc

Tegra 2 (Nvidia)

Fonte: https://www.bdti.com/InsideDSP/2011/10/20/NvidiaQualcomm

Classificação dos Sistemas Digitais Quanto à Aplicação

3. Processadores Dedicados a uma Classe de Aplicações (Application-Specific Instruction-Set Processors -ASIPs)

- Podem ser programados para executar uma função ou um algoritmo pertencente a uma determinada classe.
- A aplicação é implementada via software, usando um hardware semi dedicado
- Conjunto de instruções otimizadas para uma classe de aplicação
- Exemplos: GPUs, Digital Signal Processors (DSPs)

Tegra 2 (Nvidia)

Fonte: https://www.bdti.com/InsideDSP/2011/10/20/NvidiaQualcomm

Níveis de Abstração: o nível lógico

Característica: 1 fio por sinal

Elementos: portas lógicas, latches e flip-flops (mostrados

explicitamente ou não)

Níveis de Abstração: o nível lógico

Característica: 1 fio por sinal

Elementos: portas lógicas, latches e flip-flops (mostrados

explicitamente ou não)

Atenção: pode haver diversos "mapeamentos" para um dado circuito lógico! Por exemplo, a forma atual de se implementar um circuito usa **portas CMOS**.

Níveis de Abstração: o nível lógico

e o nível elétrico (considerando transistores MOS...)

Níveis de Abstração: o nível lógico

Característica: 1 fio por sinal

Elementos: portas lógicas, latches e flip-flops (mostrados

explicitamente ou não)

Níveis de Abstração: o nível RT (Register-Transfer)

Sistemas Digitais e Níveis de Abstração

Matéria	Nível de abstração	Componentes
Circuitos Digitais	Lógico	Portas lógicasLatchesFlip-flops
Sistemas Digitais	RT (register-transfer)	 Somadores Subtratores ULAs (= unidades funcionais compostas) Registradores Memórias Multiplexadores Decodificadores Bloco de controle

Sistemas Digitais e Níveis de Abstração

Sistemas Digitais e Níveis de Abstração

Universidade Federal de Santa Catarina Centro Tecnológico

Departamento de Informática e Estatística Ciências da Computação & Engenharia Eletrônica

Sistemas Digitais

INE 5406

Aula 1T - parte 1: Nível RT e Sistemas Digitais

Classificação dos Sistemas Digitais quanto à aplicação (tipos de processadores), níveis de abstração, o nível RT

Professores: Cristina Meinhardt & José Luís Güntzel

{cristina.meinhardt, j.guntzel}@ufsc.br