Examenul de bacalaureat național 2020 Proba E. c) Matematică M st-nat

Test 14

Filiera teoretică, profilul real, specializarea științe ale naturii

- Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu.
- Timpul de lucru efectiv este de 3 ore.

SUBIECTUL I (30 de puncte)

- 1. Arătati că numerele $\sqrt{11} \sqrt{5}$, $\sqrt{6}$ și $\sqrt{11} + \sqrt{5}$ sunt termeni consecutivi ai unei progresii 5p
- 2. Se consideră funcția $f:(-1,1)\to\mathbb{R}$, $f(x)=\ln\frac{1+x}{1-x}$. Demonstrați că funcția f este impară. 5p
- 3. Rezolvați în mulțimea numerelor reale ecuația $4^x + 2^x = \frac{3}{4}$. 5p
- **4.** Determinati numărul de submultimi ordonate cu 3 elemente ale multimii {1,3,5,7}. **5p**
- **5p 5.** În reperul cartezian xOy se consideră punctele A(-1,-2), B(0,3) și C(-1,2). Determinați ecuația dreptei AD, știind că ABCD este paralelogram.
- **6.** Triunghiul ABC are AB = 10 și AC = 5. Arătați că $\sin C = 2\sin B$.

SUBIECTUL al II-lea

1. Se consideră matricea $A(a) = \begin{pmatrix} 1 & 2 & -1 \\ -2 & -3 & 0 \\ 2 & 4 & a \end{pmatrix}$ și sistemul de ecuații $\begin{cases} x+2y-z=-1 \\ -2x-3y=1 \\ 2x+4y+az=-2 \end{cases}$ este număr real.

este număr real.

- a) Arătați că $\det(A(a)) = a + 2$, pentru orice număr real a. **5p**
- **b)** Pentru a = 0, determinați inversa matricei A(a). 5p
- **5p** c) Pentru $a \neq -2$, rezolvați sistemul de ecuații.
 - 2. Pe mulțimea numerelor reale se definește legea de compoziție asociativă x * y = 5(x+2)(y+2)-2.
- a) Arătați că x*(-2) = -2, pentru orice număr real x. **5p**
- **b**) Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \frac{e^x 10}{5}$. Demonstrați că f(x+y) = f(x) * f(y), pentru orice numere reale $x \neq y$.
- c) Determinați numărul real x, astfel încât x*x*x=23.

SUBIECTUL al III-lea (30 de puncte)

- **1.** Se consideră funcția $f: \mathbb{R} \to \mathbb{R}$, $f(x) = \sqrt{x^2 + 4x + 5} x 2$.
- **a**) Arătați că $f'(x) = \frac{x+2}{\sqrt{x^2+4x+5}} 1, x \in \mathbb{R}$. **5**p
- b) Demonstrați că axa Ox este asimptotă orizontală spre $+\infty$ la graficul funcției f. 5p
- c) Demonstrați că imaginea funcției f este intervalul $(0,+\infty)$. 5p
 - **2.** Se consideră funcțiile $f:(0,+\infty) \to \mathbb{R}$, $f(x) = \frac{x^3 x 1}{x^2(x+1)}$ și $F:(0,+\infty) \to \mathbb{R}$, $F(x) = \frac{x^2 + 1}{x} \ln(x+1)$.
- a) Arătați că funcția F este o primitivă a funcției f. 5p
- **b)** Calculați $\int_{1}^{\infty} (x+1) f(x) dx$. 5p
- c) Determinați numărul real a, a > 1, astfel încât $\int_{0}^{a} f(x) dx = \frac{1}{2} \ln \frac{a+1}{2}$. 5p