Powers and Roots

(i)
$$a^0 = 1$$
; $a \neq 0$

(ii)
$$a^m a^n = a^{m+n}$$

(iii)
$$\frac{a^m}{a^n} = a^{m-n}$$

(iv)
$$(ab)^m = a^m b^m$$

(v)
$$\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}$$
 (vi) $\left(a^m\right)^n = a^{mn}$

$$(vi) \quad \left(a^m\right)^n = a^{mn}$$

(vii)
$$a^{-m} = \frac{1}{a^m}$$

(viii)
$$\sqrt[n]{ab} = \sqrt[n]{a} \sqrt[n]{b}$$

(ix)
$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

(x)
$$a^{\frac{m}{n}} = \sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$$

2. Logarithms

$$e = \lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = 2.71828182846 \dots$$

(i)
$$\log_a 1 = 0$$

(ii)
$$\log_a a = 1$$

(iii)
$$\log_a(mn) = \log_a m + \log_a n$$

(iv)
$$\log_a \left(\frac{m}{n}\right) = \log_a m - \log_a n$$

(v)
$$\log_a(m^n) = n \log_a m$$

(vi)
$$\log_b a = \frac{1}{\log_a b}$$

(vii)
$$\log_{(a^k)}(m) = \frac{1}{k} \log_a m$$

(viii)
$$\log_a m = \log_b m \cdot \log_a b$$
 where $b > 0$ and $b \neq 1$

(ix)
$$\log_a m = \frac{\log_b m}{\log_b a}$$

$$(x) \quad x^{\log_a y} = y^{\log_a x}$$

(xi)
$$x = x^{\log_a a} = a^{\log_a x}$$

(xii)
$$x = e^{\ln x} = \ln e^x$$

Product Formulas

(a)
$$(a+b)^2 = a^2 + 2ab + b^2$$

(b)
$$(a-b)^2 = a^2 - 2ab + b^2$$

(c)
$$(a+b)^3 = a^3 + 3a^2b + 3ab^2 + b^3$$

(d)
$$(a-b)^3 = a^3 - 3a^2b + 3ab^2 - b^3$$

Factoring Formulas

(a)
$$a^2 - b^2 = (a - b)(a + b)$$

(b)
$$a^3 - b^3 = (a - b)(a^2 + ab + b^2)$$

(c)
$$a^3 + b^3 = (a+b)(a^2 - ab + b^2)$$

(d)
$$a^{2n} - b^{2n} = (a^n - b^n)(a^n + b^n)$$

(e)
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + a^{n-3}b^2 + ... + ab^{n-2} + b^{n-1})$$

Formulas for summation

1.
$$1+2+...+n=\frac{n(n+1)}{2}$$

2.
$$1+3+...+(2n-1)=n^2$$

3.
$$2+4+...+(2n)=n(n+1)$$

4.
$$1^2 + 2^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

5.
$$1^3 + 2^3 + ... + n^3 = \frac{n^2 (n+1)^2}{4}$$

Definition of Trigonometric Functions

$$\sin \theta = \frac{\text{opp}}{\text{hyp}}$$
 $\csc \theta = \frac{\text{hyp}}{\text{opp}}$

$$\cos \theta = \frac{\text{adj}}{\text{hyp}}$$
 $\sec \theta = \frac{\text{hyp}}{\text{adj}}$

$$\tan \theta = \frac{\text{opp}}{\text{adj}}$$
 $\cot \theta = \frac{\text{adj}}{\text{opp}}$

Trigonometric Functions of common angles

θ	0	30	45	60	90
sinθ	0	1 2	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
cosθ	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1 2	0
tanθ	0	$\frac{1}{\sqrt{3}}$	1	√3	-

Signs of Trig Functions by Quadrant (Quadrant rule)

Signs of Trig Function by Quadrant

Important Identities

(i) Pythagorean Identities

$$\sin^2 x + \cos^2 x = 1$$
$$1 + \tan^2 x = \sec^2 x$$
$$1 + \cot^2 x = \csc^2 x$$

(ii) Even-Odd Identities

$$\sin(-x) = -\sin x$$
$$\cos(-x) = \cos x$$
$$\tan(-x) = -\tan x$$

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$\tan(x+y) = \frac{\tan(x) + \tan(y)}{1 - \tan(x)\tan(y)}$$

$$\tan(x-y) = \frac{\tan(x) - \tan(y)}{1 + \tan(x)\tan(y)}$$

Double Angle Formulas

$$\sin 2x = 2\sin x \cos y$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$= 2\cos^2 x - 1$$

$$= 1 - 2\sin^2 x$$

$$\tan(2x) = \frac{2\tan(x)}{1 - \tan^2(x)}$$

$$\sin(2x) = \frac{1 - \tan^2(x)}{1 - \tan^2(x)}$$
$$\sin(2x) = \frac{2\tan(x)}{1 + \tan^2(x)}$$

$$\cos 2x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

Power-Reducing/Half Angle Formulas

$$\sin^{2}(x) = \frac{1 - \cos(2x)}{2}$$
$$\cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$
$$\tan^{2}(x) = \frac{1 - \cos(2x)}{1 + \cos(2x)}$$

Product-to-Sum Formulas

$$\sin(x)\sin(y) = \frac{1}{2} \left[\cos(x-y) - \cos(x+y)\right]$$

$$\cos(x)\cos(y) = \frac{1}{2} \left[\cos(x-y) + \cos(x+y)\right]$$

$$\sin(x)\cos(y) = \frac{1}{2} \left[\sin(x+y) + \sin(x-y)\right]$$

$$\cos(x)\sin(y) = \frac{1}{2} \left[\sin(x+y) - \sin(x-y)\right]$$

Sum-to-Product Formulas

$$\sin(x) + \sin(y) = 2\sin\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\sin(x) - \sin(y) = 2\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)$$

$$\cos(x) + \cos(y) = 2\cos\left(\frac{x+y}{2}\right)\cos\left(\frac{x-y}{2}\right)$$

$$\cos(x) - \cos(y) = -2\sin\left(\frac{x+y}{2}\right)\sin\left(\frac{x-y}{2}\right)$$

Multiple Angle Formulas

$$\sin 3x = 3\sin x - 4\sin^3 x$$
$$\cos 3x = 4\cos^3 x - 3\cos x$$

$$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

Multiple Angle Formulas

$$\sin 3x = 3\sin x - 4\sin^3 x$$

$$\cos 3x = 4\cos^3 x - 3\cos x$$

$$\tan 3x = \frac{3\tan x - \tan^3 x}{1 - 3\tan^2 x}$$

Relations to Hyperbolic functions

 $\sin ix = i \sin hx$

 $\cos ix = \cos hx$

secix = sechx

cscix - i cschx

tan ix = i tan hx

 $\cot ix = -i \cot hx$

Linear Equation in One Variable

$$ax + b = 0$$

$$x = -\frac{b}{a}$$

Quadratic Equation

$$ax^2 + bx + c = 0$$

Roots:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Discriminant: $D = b^2 - 4ac$

If D > 0 then Roots are real and distinct

If D = 0 then Roots are real and equal

If D < 0 then Roots are complex conjugates

1) FORMULAE

(a)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

(c)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

(e)
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}$$

(b)
$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

(d) $\lim_{x \to 0} \frac{\ln(1+x)}{x} = 1$

$$\lim_{x \to 0} \frac{m(x+x)}{x} = 1$$

(f)
$$\lim_{x \to \infty} \frac{\sin x}{x} = 0$$

(g)
$$\lim_{x\to 0} (1+x)^{1/x} = e$$

(i)
$$\lim_{x \to \infty} \left(1 + \frac{1}{x} \right)^x = e$$
(k)
$$\lim_{x \to \infty} (x)^{1/x} = 1$$

(h)
$$\lim_{x\to 0} (1+ax)^{1/x} = e^a$$

$$\lim_{x\to\infty} \left(1 + \frac{a}{x}\right)^x = e^a$$

$$(1) \quad \lim_{x \to 0} (x)^x = 1$$

2) BASIC

(i)
$$\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$$

(ii)
$$\lim_{x \to a} [f(x) \pm g(x)] = \lim_{x \to a} f(x) \pm \lim_{x \to a} g(x)$$

(iii)
$$\lim_{x \to a} [f(x)g(x)] = \lim_{x \to a} f(x) \lim_{x \to a} g(x)$$

(iv)
$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \lim_{x \to a} f(x)$$
 provided $\lim_{x \to a} g(x) \neq 0$

(v)
$$\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]^n$$

(vi)
$$\lim_{x\to a} \left[\sqrt[n]{f(x)} \right] = \sqrt[n]{\lim_{x\to a} f(x)}$$

3) DERIVATIVE

(i)
$$\frac{d}{dx} \left[x^n \right] = n x^{n-1}$$

(ii)
$$\frac{d}{dx} \left[a^x \right] = a^x \ln(a)$$

(iii)
$$\frac{d}{dx} \left[e^x \right] = e^x$$

(iv)
$$\frac{d}{dx}[\log_a x] = \frac{1}{x \ln(a)}$$

$$(\mathbf{v}) \quad \frac{d}{dx}[\ln x] = \frac{1}{x}$$

(vi)
$$\frac{d}{dx}[\sin x] = \cos x$$

(vii)
$$\frac{d}{dx}[\cos x] = -\sin x$$

(viii)
$$\frac{d}{dx}[\tan x] = \sec^2 x$$

(ix)
$$\frac{d}{dx}[\cot x] = -\csc^2 x$$

(x)
$$\frac{d}{dx}[\sec x] = \sec x \tan x$$

(xi)
$$\frac{d}{dx}[\csc x] = -\csc x \cot x$$

(xii)
$$\frac{d}{dx} \left[\sin^{-1} x \right] = \frac{1}{\sqrt{1 - x^2}}$$

(xiii)
$$\frac{d}{dx} \left[\cos^{-1} x \right] = \frac{-1}{\sqrt{1 - x^2}}$$

(xiv)
$$\frac{d}{dx} \left[\tan^{-1} x \right] = \frac{1}{1+x^2}$$

(xv)
$$\frac{d}{dx} \left[\sec^{-1} x \right] = \frac{1}{x\sqrt{x^2 - 1}}$$

(xvi)
$$\frac{d}{dx} \left[\csc^{-1} x \right] = \frac{-1}{x\sqrt{x^2 - 1}}$$

(xvii)
$$\frac{d}{dx} \left[\cot^{-1} x \right] = \frac{-1}{1+x^2}$$

(xviii)
$$\frac{d}{dx}[\sin hx] = \cos hx$$

(xix) $\frac{d}{dx}[\cos hx] = \sin hx$

(xx) Product rule:
$$\frac{d}{dx}[f(x)g(x)] = f(x)g'(x) + g(x)f'(x)$$

(xxi) Quotient rule:
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) - f(x)g'(x)}{\left[g(x) \right]^2}$$

(xxii) Chain rule:
$$\frac{d}{dx} [f(g(x))] = f'(g(x))g'(x)$$

Definite integral

1.
$$\int_{a}^{b} f(x)dx = [F(x)]_{a}^{b} = F(b) - F(a)$$

$$2. \qquad \int_a^b f(x)dx = \int_a^b f(t)dt$$

3.
$$\int_a^b f(x)dx = -\int_b^a f(x)dx$$

4.
$$\int_a^b f(x)dx = \int_a^c f(x)dx + \int_c^b f(x)dx \text{ where } a < c < b$$

5.
$$\int_0^a f(x)dx = \int_0^a f(a-x)dx$$

6.
$$\int_{-a}^{a} f(x)dx = \begin{cases} 2\int_{0}^{a} f(x) dx, \\ 0, \end{cases}$$

7.
$$\int_0^{2a} f(x) dx = \begin{cases} 2 \int_0^a f(x) dx, \\ 0, \end{cases}$$

if
$$f(-x) = f(x)$$
; Even function
if $f(-x) = -f(x)$; Odd function

$$if f(2a-x) = f(x)$$
$$if f(2a-x) = -f(x)$$

<u>c formulae</u>

$$\int k \, dx = kx + C$$
4.
$$\int \frac{1}{x} dx = \ln(x) + C$$
{for positive values of x only}
$$\int x^n \, dx = \frac{x^{n+1}}{n+1} + C$$
5.
$$\int \frac{c}{ax+b} \, dx = \frac{c}{a} \ln(ax+b) + C$$

$$\int (ax+b)^n dx = \frac{(ax+b)^{n+1}}{a(n+1)} + C$$
(for $n \neq -1$)

onential and Log

 $\int \ln x dx = x \ln x - x + C$

1.
$$\int e^x dx = e^x + C$$
2.
$$\int a^x dx = \frac{a^x}{\ln a} + C$$
1.
$$\int \ln x dx = x \ln x - x + C$$
2.
$$\int \log_a x dx = x \log_a x - \frac{x}{\log a} + C$$

2.

igonometry

1.

1.	$\int \sin x dx = -\cos x + C$	2.	$\int \cos x dx = \sin x + C$
3.	$\int \tan x dx = -\ln(\cos x) + C$ $= \ln(\sec x) + C$	4.	$\int \cot x dx = \ln(\sin x) + C$
	$\int \sec x dx = \ln(\sec x + \tan x) + C$		$\int \csc x dx = -\ln(\csc x + \cot x) + C$
5.	$= \log \tan \left(\frac{\pi}{4} + \frac{x}{2} \right) + C$	6.	$= \log \tan \frac{x}{2}$

igonometry

 $\int \sin x \, dx = -\cos x + C$

 $\int \sec x \tan x \, dx = \sec x + C$

3.
$$\int \tan x \, dx = -\ln(\cos x) + C$$

$$= \ln(\sec x) + C$$
4.
$$\int \cot x \, dx = \ln(\sin x) + C$$

$$\int \sec x \, dx = \ln(\sec x + \tan x) + C$$

$$= \log \tan \left(\frac{\pi}{4} + \frac{x}{2}\right) + C$$
6.
$$\int \csc x \, dx = -\ln(\csc x + \cot x) + C$$

$$= \log \tan \frac{x}{2}$$
7.
$$\int \sec^2 x \, dx = \tan x + C$$
8.
$$\int \csc^2 x \, dx = -\cot x + C$$

8.

10.

2.

 $\int \cos x \, dx = \sin x + C$

Algebraic

1.

7.

9.

$$\int \overline{\sqrt{a^2}}$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} + C$$

$$\int \frac{1}{\sqrt{a^2}}$$

$$\int \frac{1}{\sqrt{a^2}}$$

$$\int \frac{1}{x\sqrt{x^2 - a^2}} dx = \frac{1}{a} \sec^{-1} \left(\frac{x}{a}\right) + C$$

5.
$$\int \sqrt{x^2 - a^2} \, dx = \frac{x}{2} \sqrt{x^2 - a^2} - \frac{a^2}{2} \cosh^{-1} \left(\frac{x}{a} \right)$$
7.
$$\int \frac{1}{\sqrt{x^2 + a^2}} \, dx = \ln(x + \sqrt{x^2 + a^2}) + C$$

9.
$$\int \sqrt{a^2 + x^2} dx = \frac{x}{2} \sqrt{(a^2 + x^2)} + \frac{a^2}{2} \sinh^{-1} \left(\frac{x}{a}\right)$$

1.

2.

3.

 $\int \sinh x dx = \cosh x + C$

 $\int \cosh x dx = \sinh x + C$

 $\int \tanh x dx = \ln (\cosh x) + C$

$$\int \sqrt{a^2 - x^2} \, dx = \frac{x}{2} \sqrt{(a^2 - x^2)} + \frac{a^2}{2} \sin^{-1} \left(\frac{x}{a}\right)$$

4.

5.

6.

4.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left(\frac{a + x}{a - x} \right)$$
6.
$$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \log \left(\frac{x - a}{x + a} \right)$$

8. $\int \frac{1}{\sqrt{x^2 - a^2}} dx = \ln(x + \sqrt{x^2 - a^2}) + C$

 $\int \csc x \cot x \, dx = -\csc x + C$

4.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right)^{-1} \frac{dx}{a} = \frac{1}{a} \tanh^{-1} \left(\frac{x}{a} \right)$$

2.
$$\int \frac{dx}{a^2 + x^2} = \frac{1}{a} \tan^{-1} \left(\frac{x}{a} \right) = \frac{-1}{a} \cot^{-1} \left(\frac{x}{a} \right)$$
4.
$$\int \frac{dx}{a^2 - x^2} = \frac{1}{2a} \log \left(\frac{a + x}{a - x} \right) = \frac{1}{a} \tanh^{-1} \left(\frac{x}{a} \right)$$

 $\int \operatorname{cosec} hx dx = \ln \left(\tanh \frac{x}{2}\right) + C$

 $\int \operatorname{sech} x dx = \tan^{-1}(\sinh x) + C$

 $\int \coth x dx = \ln (\sinh x) + C$

$$\frac{-1}{a}\cot^{-1}\left(\frac{x}{a}\right)$$

$$\cot^{-1}\left(\frac{x}{a}\right)$$

$$\frac{1}{2}\tanh^{-1}\left(\frac{x}{a}\right)$$

Special function

1.	$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C$
2.	$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C$
3.	$\int \cos ax \cosh bx dx = \frac{1}{a^2 + b^2} (a \sin ax \cosh bx + b \cos ax \sinh bx) + C$
4.	$\int \sin ax \cosh bx dx = \frac{1}{a} \left(b \sin ax \sinh bx - a \cos ax \cosh bx \right) + C$

BASICS

	0	<u>π</u>	$\frac{\pi}{4}$	<u>π</u>	<u>π</u> 2	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{1}{\sqrt{2}}$	<u>√3</u> 2	1	0	-1	0
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	1 2	0	-1	0	-1
tan	0	$\frac{1}{\sqrt{3}}$	1	√3	•	0		0

1.
$$sin(-x) = -sinx$$

2.
$$cos(-x) = cosx$$

3.
$$sin(x + y) = sinx cosy + cosx siny$$

4.
$$sin(x - y) = sinx cosy - cosx siny$$

5.
$$cos(x + y) = cosx cosy - sinx siny$$

6.
$$cos(x - y) = cosx cosy + sinx siny$$

7.
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

8.
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

Special function

1.	$\int e^{ax} \sin bx dx = \frac{e^{ax}}{a^2 + b^2} (a \sin bx - b \cos bx) + C$
2.	$\int e^{ax} \cos bx dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) + C$
3.	$\int \cos ax \cosh bx dx = \frac{1}{a^2 + b^2} (a \sin ax \cosh bx + b \cos ax \sinh bx) + C$
4.	$\int \sin ax \cosh bx dx = \frac{1}{a^2 + b^2} (b \sin ax \sinh bx - a \cos ax \cosh bx) + C$

BASICS

	0	<u>π</u>	$\frac{\pi}{4}$	<u>π</u>	<u>π</u> 2	π	$\frac{3\pi}{2}$	2π
sin	0	1 2	$\frac{1}{\sqrt{2}}$	<u>√3</u> 2	1	0	-1	0
cos	1	<u>√3</u> 2	$\frac{1}{\sqrt{2}}$	1 2	0	-1	0	-1
tan	0	$\frac{1}{\sqrt{3}}$	1	√3	∞	0		0

1.
$$sin(-x) = -sinx$$

2.
$$cos(-x) = cosx$$

3.
$$sin(x + y) = sinx cosy + cosx siny$$

4.
$$sin(x - y) = sinx cosy - cosx siny$$

5.
$$cos(x + y) = cosx cosy - sinx siny$$

6.
$$cos(x - y) = cosx cosy + sinx siny$$

7.
$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

8.
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

9. (i)
$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

(iii)
$$sin(\pi - x) = sinx$$

(v)
$$\sin(\pi + x) = -\sin x$$

(vii)
$$\sin(2\pi - x) = -\sin x$$

(ii)
$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

(iv)
$$\cos(\pi - x) = -\cos x$$

(vi)
$$cos(\pi + x) = -cosx$$

(viii)
$$cos(2\pi - x) = cosx$$

10.
$$tan(x + y) = \frac{tanx + tany}{1 - tanx tany}$$

11.
$$tan(x - y) = \frac{tanx - tany}{1 + tanx tany}$$

12.
$$\tan\left(\frac{\pi}{4} + x\right) = \frac{1 + \tan x}{1 - \tan x}$$

13.
$$\tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan x}{1 + \tan x}$$

14.
$$cot(x + y) = \frac{\cot x \cot y + 1}{\cot y + \cot x}$$

15.
$$\cot(x - y) = \frac{\cot x \cot y + 1}{\cot y - \cot x}$$

16.
$$\sin 2x = 2\sin x \cos x = \frac{2 \tan x}{1 + \tan^2 x}$$

17.
$$\cos(2x) = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x = \frac{1 - \tan^2 x}{1 + \tan^2 x}$$

18.
$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$

19.
$$\sin^2 x = 1 - \cos^2 x$$

20.
$$\cos^2 x = 1 - \sin^2 x$$