

ELETRICIDADE GERAL:

- Resistores

Prof. Kleber Lima da Silva kleber.lima@sp.senai.br

Plano de Aula

Objetivo da Aula: obter conhecimentos sobre o componente eletrônico resistor

Conteúdo:

- Definição
- Características
- Codificação
- Resistores especiais

O que é um Resistor?

 Componente eletrônico que apresenta resistência a passagem de corrente elétrica.

- Funções:
 - Limitar a corrente elétrica
 - Reduzir e dividir tensões

Resistência Elétrica

Oposição que um material apresenta ao fluxo de corrente elétrica Unidade de medida: Ohm (Ω)

Denomin	ação	Símbolo	Valor em Ω			
Múltiplos	megohm	ΜΩ	10 ⁶ Ω			
	quilohm	kΩ	10 ³ Ω			
Unidade	ohm	Ω	-			
Submúltiplos	miliohm	mΩ	$10^{-3} \Omega$			
	microhm	μΩ	$10^{-6} \Omega$			

Resistor Fixo

Características Fundamentais:

- Resistência Fixa Valor nominal $[\Omega]$
- Tolerância [%]
- Potência de Dissipação Nominal [W]

Características Secundárias:

- Coeficiente de temperatura [ppm/°C]
- Tensão máxima de operação [V]
- Encapsulamento: Through Hole (PTH) / SMD

Aplicações: uso geral

Tipos:

Filme carbono, filme metálico, óxido metálico, fio enrolado (wirewound)

Valor Nominal

Valor especificado pelo fabricante; Padronizado pela IEC-63

Resistores de 4 faixas, ≥5% de tolerância:

Série E6	1.0				1.5				2.2				3.3				4.7				6.8			
Série E12	1.0		1.2		1.5		1.8		2.2		2.7		3.3		3.9		4.7		5.6		6.8		8.2	
Série E24	1.0	1.1	1.2	1.3	1.5	1.6	1.8	2.0	2.2	2.4	2.7	3.0	3.3	3.6	3.9	4.3	4.7	5.1	5.6	6.2	6.8	7.5	8.2	9.1

Resistores de 5 ou 6 faixas, <5% de tolerância:

Série E96:

1.00, 1.02, 1.05, 1.07, 1.10, 1.13, 1.15, 1.18, 1.21, 1.24, 1.27, 1.30, 1.33, 1.37, 1.40, 1.43, 1.47, 1.50, 1.54, 1.58, 1.62, 1.65, 1.69, 1.74, 1.78, 1.82, 1.87, 1.91, 1.96, 2.00, 2.05, 2.10, 2.15, 2.21, 2.26, 2.32, 2.37, 2.43, 2.49, 2.55, 2.61, 2.67, 2.74, 2.80, 2.87, 2.94, 3.01, 3.09, 3.16, 3.24, 3.32, 3.40, 3.48, 3.57, 3.65, 3.74, 3.83, 3.92, 4.02, 4.12, 4.22, 4.32, 4.42, 4.53, 4.64, 4.75, 4.87, 4.99, 5.11, 5.23, 5.36, 5.49, 5.62, 5.76, 5.90, 6.04, 6.19, 6.34, 6.49, 6.65, 6.81, 6.98, 7.15, 7.32, 7.50, 7.68, 7.87, 8.06, 8.25, 8.45, 8.66, 8.87, 9.09, 9.31, 9.53, 9.76

Tolerância

Devido ao processo de fabricação ser sujeito a imprecisões

Indica a variação do valor nominal; pode ser positiva ou negativa

Resistência Nominal (Ω)	Tolerância (%)	Variação (Ω)	Valor Real do Componente (Ω)
220 Ω	±5 %	±11 Ω	209 Ω - 231 Ω
1000 Ω	±2 %	±20 Ω	980 Ω - 1020 Ω
56 Ω	±1 %	±0,56 Ω	55,44 Ω - 56,56 Ω
470 kΩ	±10 %	±47 kΩ	$423 k\Omega$ - $517 k\Omega$

Potência Nominal – Watt [W]

É o limite de dissipação térmica do componente

Está relacionado diretamente com a corrente que passa pelo resistor

Valores comuns: 1/8W; 1/4W; 1/2W; 1W; 2W...

$$P = I . V$$

*Regra prática: usar resistor de potência nominal de pelo menos o dobro que o valor calculado para o circuito → para evitar altas temperaturas

Simbologia

Resistores Fixos - Tipos

Filme carbono: uso geral, tolerâncias de 5 e 10%

Filme metálico: maior precisão, tolerâncias a partir de 0,01%

Fio enrolado: altas potências, tolerâncias de 5 e 10%

SMD ou SMT: montagens automatizadas, tolerâncias a partir de 0,01%

Como comprar?

- √ Tipo
- ✓ Resistência nominal
- √ Percentual de tolerância
- √ Potência nominal

Exemplos:

- 1. Resistor de filme metálico $100\Omega \pm 5\% 1/4W$
- 2. Resistor de fio $0,47\Omega \pm 5\%$ 10W
- 3. Resistor SMD 330k Ω ±1% 1/10W

Codificação em Resistores

Escrita numérica completa:

Escrita numérica abreviada:

Código de cores:

Código de Cores

Semelhante aos resistores de 5 faixas

A 6^a faixa representa o coeficiente de temperatura:

COR	COEFICIENTE
Marrom	100 ppm
Vermelho	50 ppm
Laranja	15 ppm
Amarelo	25 ppm

Exercícios

Qual o código para 4 faixas:

- q. 470 Ω ±10%
- r. 12 kΩ ±5%
- s. 6,8 Ω ±20%
- t. 2,7 MΩ ±5%
- u. 220 kΩ ±5%

Qual o código para 5 faixas:

- v. 1350 Ω ± 2%
- w. $680 \text{ k}\Omega \pm 1\%$
- x. 17,8 $\Omega \pm 2\%$
- y. 348 Ω ±1%
- z. 732 k Ω ±1%

Resistores Especiais

Resistores para aplicações específicas

Não possuem valor de resistência fixa

Potenciômetros

São Resistores Variáveis

Aplicações: controle de parâmetros eletroeletrônicos externamente

Trimpots

São Resistores Ajustáveis

Aplicações: calibração de circuitos eletroeletrônicos

Resistores Dependente de Luz

FIESP SESI SENAI IRS

São chamados de LDR

Aplicações: sensores de presença luminosa

Resistores Dependente de Tensão

São chamados de Varistores ou MOVs

Aplicações: proteção contra surtos de tensão

Termistores

Resistores sensíveis à temperatura

NTC – R decresce com o aumento da temperatura

PTC – R aumenta com o aumento da temperatura

Recapitulando...

O que é um resistor e quais suas funções?

Quais suas principais características e como especificá-lo?

Quais os valores de cada cor no código de cores?

Quais os tipos de resistores especiais e suas aplicações?

Resistores

"Grandes almas sempre encontraram forte oposição de mentes medíocres" - Albert Einstein

Prof. Kleber Lima da Silva kleber.lima@sp.senai.br