——— Data Mining——

### **Abalone Data**

| 2017110505김나형 | | 2017110526유혜림 | | 2017110530홍제연 |

### **INDEX**

1 분석 배경 및 목적

데이터 전처리 과정

- 1. 변수 단위 회귀
- 2. 비논리적 관측치 대체 및 제가
- 3. 변수 샘섬
- 4. 파생 변수 이상치 제가
- 5. 타깃 변수 범주화
- 6. 변수 선택 및 데이터 변환

3 모델링



# 분석 배경 및 목적

## 분석배경 및 목적 –



전복의 나이는 껍질의 윤문 수로 측정 But 과정이 복잡



대신, 길이와 무게로 전복의 성장 정도 추론 가능

## 분석 배경 및 목적

#### 전복 양식사업이활발한 Tasmania 지역 1차 산업 수산부의 데이터를 이용



**1.** 분석목적

- 1. 전복의 성장 정도 예측
- 2. 전복양식사업의이익창출을위한인사이트도출

## 분석 배경 및 목적 \_

2. 데이터 소개 구성: 4177행x9개변수

| 변수명            | 변수설명                      | 단위 |
|----------------|---------------------------|----|
| Sex            | 전복의 성별                    |    |
| Length         | 전복 껍질에서 가장 긴 부분의 길이       | mm |
| Diameter       | 전복 껍질에서 Length의 수직 방향의 길이 | mm |
| Height         | 전복 껍질과 속살을 포함한 전복의 두메     | mm |
| Whole weight   | 전복 전체의 무게                 | g  |
| Shucked weight | 내장을 제외한 전복 살의 무게          | g  |
| Viscera weight | 피를 제거한 내장의 무게             | g  |
| Shell weight   | 물기를 제귀한 껍질의 무게            | g  |
| Rings          | 전복의 껍질에 나타난 윤문 수          |    |





### 분석 배경 및 목적

2. 데이터 소개

윤문수에 따른 개체수의 <mark>불균형이 심함</mark>



## **2** 데이터 전처리 —

### 1. 변수 단위 회귀

| Length | Diameter |     | Viscera<br>weight | Shell<br>weight |
|--------|----------|-----|-------------------|-----------------|
| 0.455  | 0.365    | ••• | 0.1010            | 0.150           |
| 0.350  | 0.265    | ••• | 0.0485            | 0.070           |
|        |          |     |                   |                 |
| 0.625  | 0.485    |     | 0.2610            | 0.2960          |
| 0.710  | 0.555    | ••• | 0.3765            | 0.4950          |



X 200

| Length | Diameter |     | Viscera<br>weight | Shell<br>weight |
|--------|----------|-----|-------------------|-----------------|
| 91     | 73       | ••• | 20.2              | 30              |
| 70     | 53       | ••• | 9.7               | 14              |
|        |          |     |                   |                 |
| 125    | 97       |     | 52.2              | 59.2            |
| 142    | 111      | ••• | 75.3              | 99.0            |

### 2. 비논리적 관측치 제 개

- 전복의 두메 (Height)가 0인 경우 (2개)

| OBS  | Sex | Height | Whole weight | <br>Shell<br>weight | Rings |
|------|-----|--------|--------------|---------------------|-------|
| 1258 | I   | 0      | 25.3         | <br>23.0            | 8     |
| 3997 | I   | 0      | 26.8         | <br>70.1            | 6     |



| OBS  | Sex | Height | Whole<br>weight | <br>Shell<br>weight | Rings |
|------|-----|--------|-----------------|---------------------|-------|
| 1258 | I   | 23.208 | 25.3            | <br>23.0            | 8     |

1258행 같은 성별, 같은 Rings LH 평균으로 대체

3997햄 삭제

전복의 전체 무게 < 전복의 껍질 무게 논리적 오류

### **2** 데이터 전처리 -

### 2. 비논리적 관측치 제가

- 전복의 전체 무게 < 전복 살 무게 + 전복 내장 무게 + 전복 껍질 무게 인 경우 (159개)

| OBS  | Sex |     | Whole<br>weight | Shucked<br>Weight | Viscera<br>weight | Shell<br>weight | 살 + 내장 +껍질<br>무게의 합 |
|------|-----|-----|-----------------|-------------------|-------------------|-----------------|---------------------|
| 43   | I   | ••• | 14.0            | 6.3               | 4.7               | 4.0             | 15                  |
| 44   | I   |     | 8.4             | 5.1               | 3.0               | 2.4             | 10.5                |
|      |     |     |                 |                   |                   |                 |                     |
| 4047 | M   |     | 133.1           | 57.0              | 29.8              | 53.8            | 140.6               |
| 4144 | F   |     | 271.8           | 128.4             | 65.1              | 81.0            | 274.5               |

159개 **행 삭제** 논리적 오류

### 2. 비논리적 관측치 제가

- 그래프상 이상치 (3개)



| OBS  | Sex | Length |     | Height | Whole<br>weight | Shell<br>weight |
|------|-----|--------|-----|--------|-----------------|-----------------|
| 1175 | F   | 127    | ••• | 3      | 231.3           | 102.3           |
| 1418 | M   | 141    |     | 103    | 442             | 221.5           |
| 2052 | F   | 91     | ••• | 226    | 118.8           | 66.4            |

- ① 1175행: 두께(height)만 극히 작은 값을 보임
- ② 1418행: 원래 큰 전복으로 보이지만 무게(weight)가 특히 더 큰 값을 보임
- ③ 2052행: 두께(height)만 극히큰 값을 보임

2. 비논리적 관측치 제거

- 그래프상 이상치 (3개)

① 1175행: 성별이 점해진 전복 (Sex가 M,F임) 중 같은 rings 내 제 3사분위수 값으로 대체

②1418햄:제귀

③ 2052행: 성별이 정해진 전복 (Sex가 M,F임) 중 같은 rings 내 제 1사분위수 값으로 대체

| OBS  | Sex | Length |     | Height | Whole<br>weight | Shell<br>weight |
|------|-----|--------|-----|--------|-----------------|-----------------|
| 1175 | F   | 127    | ••• | 33     | 231.3           | 102.3           |
| 2052 | F   | 91     | ••• | 24     | 118.8           | 66.4            |

2. 비논리적 관측치 제가 - 그래프상 이상치 (3개)





이상치 대체 확인



### 2. 비논리적 관측치제개

- Length < Diameter 인 경우 (1개)
- Length : 전복의 껍질에서 가장 긴 길이



| OBS | Sex | Length | Diameter |  |
|-----|-----|--------|----------|--|
| 43  | I   | 37     | 75       |  |



| 0BS | Sex | Length | Diameter |  |
|-----|-----|--------|----------|--|
| 43  |     | 75     | 37       |  |

두 변수 값 교체

3. 변수 생성 | - Adult

#### Infant

- 실제로 어린 전복
- 나이가 많거나 크기가 큼에도 내장이 제대로 형성되지 않아 성별을 논할 수 없는 전복

Female, Male → Adult=1 Infant → Adult=0

→ 성별 결정 여부에 따라 내장의 무게를 비교해본 결과 치패의 내장 무게는 성별이 결정된 전복의 무게보다 덜 나가는 것을 확인



### 데이터 전처리 —

### 3. 변수 생성

| 변수명           | 변수 설명                            | 계산식                                                                                                                     |
|---------------|----------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Adult         | 전복의 성숙 (성인 여부)                   | Female, Male → 1 / Infant → 0                                                                                           |
| Volume        | 전복의 부Ⅱ                           | $\frac{4}{3} \times \pi \times \frac{\text{length}}{2} \times \frac{\text{diameter}}{2} \times \frac{\text{height}}{2}$ |
| Shell<br>size | 껍질의 크기<br>(껍질의 가장 긴 길이를 포함하는 단면) | $\pi \times \frac{\text{length}}{2} \times \frac{\text{diameter}}{2}$                                                   |
| Whole<br>Unit | 단위 부피당 전체 무게                     | Whole weight Volume                                                                                                     |
| Shucked unit  | 단위 부피당 고기(살)의무게                  | Shucked weight Volume                                                                                                   |

## 데이터 전처리 —

### 3. 변수 생성

| 변수명             | 변수 설명                     | 계산식                                  |
|-----------------|---------------------------|--------------------------------------|
| Viscera<br>Unit | 단위 부피당 내장의 무게             | Viscera weight Volume                |
| Shell<br>ratio  | 단위 면적 당 껍질의 무게            | Shell weight Shell size              |
| Weight ratio    | 전체 무게에서 내장과 살이 차지하는<br>비율 | Shucked weight+Viscera weight Volume |
| Size<br>growth  | 연 평균 껍질의 성장 정도            | Shell size (rings+1.5)               |

4. 파생 변수 이상치제거 - 전복의 부II (Volume), 단위 부II 당 내장 무게 (Viscera\_unit)





. 파생 변수 이상치 제거 - 단위 부피 당 전체 무게와 살의 무게 (Whole\_unit, Shucked\_unit)



5. 타깃 변수 범주화

Rings 2~9 → Status = 0 Rings 10~29 → Status = 1

Status 가 1인 전복은 성장 가능성이 ↓ → 양식을 제속해도 큰 이익을 참출하기 어려움



### **2** 데이터 전처리 -

5. 타깃변수범주화 - Status 별 빈도

| Frequency of Status |      |  |  |  |
|---------------------|------|--|--|--|
| 0                   | 1    |  |  |  |
| 1972                | 2039 |  |  |  |

범주 별 데이터 불균형이 비교적 해소됨



6. 변수 선택

- 삼관 계수 확인

기존변수중 'Sex ','Whole weight', 'Shucked weight', 'Viscera weight', 'Shell weight'

→ 파생변수들이 그 역할을 대신하고 있음

'Length', 'Diameter'

- → 상관관계 큼
- → 'Shell size' 변수 만들었음

'Volume'

→ 단위 변수들 만드는데 사용하여 제거



6. 변수 선택

- VIF 확인

|     | Height      | Weight<br>raito | Shell size      | Size<br>Growth  |
|-----|-------------|-----------------|-----------------|-----------------|
| VIF | 12.141628   | 44.071348       | 10.500820       | 5.049784        |
|     | Shell ratio | Whole unit      | Shucked<br>unit | Viscera<br>unit |
| VIF | 6.269821    | 116.675089      | 101.056129      | 25.574988       |

전복의 크기에 대한 정보는 Shell size로 알 수 있음

→ Height 제 귀

전체 무게에 대한 정보는 살, 내장, 껍질의 무게의 합으로 알 수 있음

→ Whole unit 제귀

Size growth 변수는 rings의 정보를 포함한 변수

→ Size growth 제귀

대부분의 변수가 다중 공선성이 매우 큼

6. 변수 선택

#### - 최종 변수

|               | VIF    |
|---------------|--------|
| (살+내장)무게의비율   | 2.4939 |
| 껍질의 크기        | 3.2120 |
| 단위 면적당 껍질의 무게 | 3.1628 |
| 단위부피당 살의 무게   | 1.8951 |
| 단위부피당 내장의 무게  | 1.3620 |

모든 변수 VIF < 10 임



## **2** 데이터 전처리 –

### 7. 데이터 변환

- 정규화

| OBS  | Adult | Weight<br>Ratio_sc |           |           | Shucked unit_sc |           | Status |
|------|-------|--------------------|-----------|-----------|-----------------|-----------|--------|
| 1    | 1     | 0.5981346          | 0.3160797 | 0.3023258 | 0.4892487       | 0.3419855 | 1      |
| 2    | 1     | 0.6591272          | 0.1676786 | 0.2369367 | 0.3770095       | 0.2955172 | 0      |
|      |       | 0.4780570          | 0.4304797 | 0.3200239 | 0.2125549       | 0.2089937 | 0      |
| 4105 | 1     |                    |           |           |                 |           |        |
| 4106 | 1     | 0.7517565          | 0.5567699 | 0.3804880 | 0.2348570       | 0.2256609 | 0      |

모든 연속형 변수의 값이 0~1 사이



로지스틱 모형 : 오즈 해석 등 모형 해석이 가능함.

랜덤 포레스트 모형 : 이상치에 덜 민감. 변수 중요도 확인

#### 평가지표

이익 도표는 로제스틱 모형을 평가하는 용도로만 사용하되, k급 교차검증으로 정확도를 구하여 두 모형을 비교함.

### . k걥 교차검증을 활용한 로지스틱 회귀 모형 구축

1. train: test = 8:2로 분리

test

2. 4겹 교차검증

| valid |       |       |       |
|-------|-------|-------|-------|
|       | valid |       |       |
|       |       | valid |       |
|       |       |       | valid |



0부터 1개시 0.025 단위로 cutoff 후보 값 만든 후, 평균 정확도가 가장 높았던 최적 cutoff값 도출.

| 교차 검증 결과    |            |  |  |  |  |
|-------------|------------|--|--|--|--|
| 최적 모형       | Full model |  |  |  |  |
| 최적 Cutoff 값 | 0.525      |  |  |  |  |
| 평균 정확도      | 0.7934     |  |  |  |  |

### . k겹 교차검증을 활용한 로지스틱 회귀 모형 구축

| 구축된 모형의 회귀계수    |         |     |  |  |  |
|-----------------|---------|-----|--|--|--|
| Intercept       | -1.9128 | *** |  |  |  |
| Adult           | 0.6830  | *** |  |  |  |
| Weight_ratio_sc | -4.4203 | *** |  |  |  |
| Shell_ratio_sc  | 6.8455  | *** |  |  |  |
| Shell_size_sc   | 5.5460  | *** |  |  |  |
| Shucked_unit_sc | -4.3082 | *** |  |  |  |
| Viscera_unit_sc | 3.3399  | *** |  |  |  |

#### -Test set 018-

|          | 실제 범주  |      |              |  |  |
|----------|--------|------|--------------|--|--|
|          | status | 0    | 1            |  |  |
| 예측<br>범주 | 0      | 318  | 70           |  |  |
|          | 1      | 89   | 325          |  |  |
| 점확도      | 민감     | 도    | <b>■01</b> 도 |  |  |
| 80.17%   | 78.13  | 3% 8 | 32.28%       |  |  |

### 2. 구축된 로지스틱 모형 평가

#### 전체 평균에 비해 십분위 0에 1.93배 높은 비율로 status=1 이 포함 되어있음

| decile | Predicted<br>Prob | % of<br>Status=1 | Cum % of<br>Status=1 | # of<br>Status=1 | % of Total<br>Status=1 | Cum # of<br>Status=1 | Cum % of<br>Total<br>Status=1 | Lift(%) | Cum Lif<br>t(%) |
|--------|-------------------|------------------|----------------------|------------------|------------------------|----------------------|-------------------------------|---------|-----------------|
| 0      | 97.24%            | 98.77%           | 98.77%               | 80               | 19.32%                 | 80                   | 19.32%                        | 193.24  | 193.24          |
| 1      | 89.78%            | 88.75%           | 93.79%               | 71               | 17.15%                 | 151                  | 36.47%                        | 171.50  | 182.37          |
| 2      | 81.04%            | 83.75%           | 90.46%               | 67               | 16.18%                 | 218                  | 52.66%                        | 161.84  | 175.52          |
| 3      | 71.93%            | 73.75%           | 86.29%               | 59               | 14.25%                 | 277                  | 66.91%                        | 142.51  | 167.27          |
| 4      | 58.35%            | 61.25%           | 81.30%               | 49               | 11.84%                 | 326                  | 78.74%                        | 118.36  | 157.49          |
| 5      | 45.74%            | 41.25%           | 74.64%               | 33               | 7.97%                  | 359                  | 86.71%                        | 79.71   | 144.52          |
| 6      | 30.59%            | 33.75%           | 68.81%               | 27               | 6.52%                  | 386                  | 93.24%                        | 65.22   | 133.20          |
| 7      | 18.21%            | 26.25%           | 63.49%               | 21               | 5.07%                  | 407                  | 98.31%                        | 50.72   | 122.89          |
| 8      | 8.67%             | 7.50%            | 57.28%               | 6                | 1.45%                  | 413                  | 99.76%                        | 14.49   | 110.84          |
| 9      | 2.92%             | 1.23%            | 51.62%               | 1                | 0.24%                  | 414                  | 100.00%                       | 2.42    | -               |
| total  | 50.45%            | 51.62%           | -                    | 414              | 100%                   | -                    | -                             | -       | -               |

### 2. 구축된 로제스틱 모형 평가

#### 입분위 0부터 입분위 4까지 구축된 로제스틱 모형이 평균 모형보다 더 효율적

| decile | Predicted<br>Prob | % of<br>Status=1 | Cum % of<br>Status=1 | # of<br>Status=1 | % of Total<br>Status=1 | Cum # of<br>Status=1 | Cum % of<br>Total<br>Status=1 | Lift(%) | Cum Lif<br>t(%) |
|--------|-------------------|------------------|----------------------|------------------|------------------------|----------------------|-------------------------------|---------|-----------------|
| 0      | 97.24%            | 98.77%           | 98.77%               | 80               | 19.32%                 | 80                   | 19.32%                        | 193.24  | 193.24          |
| 1      | 89.78%            | 88.75%           | 93.79%               | 71               | 17.15%                 | 151                  | 36.47%                        | 171.50  | 182.37          |
| 2      | 81.04%            | 83.75%           | 90.46%               | 67               | 16.18%                 | 218                  | 52.66%                        | 161.84  | 175.52          |
| 3      | 71.93%            | 73.75%           | 86.29%               | 59               | 14.25%                 | 277                  | 66.91%                        | 142.51  | 167.27          |
| 4      | 58.35%            | 61.25%           | 81.30%               | 49               | 11.84%                 | 326                  | 78.74%                        | 118.36  | 157.49          |
| 5      | 45.74%            | 41.25%           | 74.64%               | 33               | 7.97%                  | 359                  | 86.71%                        | 79.71   | 144.52          |
| 6      | 30.59%            | 33.75%           | 68.81%               | 27               | 6.52%                  | 386                  | 93.24%                        | 65.22   | 133.20          |
| 7      | 18.21%            | 26.25%           | 63.49%               | 21               | 5.07%                  | 407                  | 98.31%                        | 50.72   | 122.89          |
| 8      | 8.67%             | 7.50%            | 57.28%               | 6                | 1.45%                  | 413                  | 99.76%                        | 14.49   | 110.84          |
| 9      | 2.92%             | 1.23%            | 51.62%               | 1                | 0.24%                  | 414                  | 100.00%                       | 2.42    | -               |
| total  | 50.45%            | 51.62%           | -                    | 414              | 100%                   | -                    | -                             | -       | -               |

### 2. 구축된 로지스틱 모형 평가

#### 입분위이 부터 입분위 4까지 전체 데이터의 절반만으로도 Status=1인 전복을 78.74% 찾을 수 있음

|   | decile | Predicted<br>Prob | % of<br>Status=1 | Cum % of<br>Status=1 | # of<br>Status=1 | % of Total<br>Status=1 | Cum # of<br>Status=1 | Cum % of<br>Total<br>Status=1 | Lift(%) | Cum Lif<br>t(%) |
|---|--------|-------------------|------------------|----------------------|------------------|------------------------|----------------------|-------------------------------|---------|-----------------|
|   | 0      | 97.24%            | 98.77%           | 98.77%               | 80               | 19.32%                 | 80                   | 19.32%                        | 193.24  | 193.24          |
|   | 1      | 89.78%            | 88.75%           | 93.79%               | 71               | 17.15%                 | 151                  | 36.47%                        | 171.50  | 182.37          |
|   | 2      | 81.04%            | 83.75%           | 90.46%               | 67               | 16.18%                 | 218                  | 52.66%                        | 161.84  | 175.52          |
|   | 3      | 71.93%            | 73.75%           | 86.29%               | 59               | 14.25%                 | 277                  | 66.91%                        | 142.51  | 167.27          |
| Г | 4      | 58.35%            | 61.25%           | 81.30%               | 49               | 11.84%                 | 326                  | 78.74%                        | 118.36  | 157.49          |
|   | 5      | 45.74%            | 41.25%           | 74.64%               | 33               | 7.97%                  | 359                  | 86.71%                        | 79.71   | 144.52          |
|   | 6      | 30.59%            | 33.75%           | 68.81%               | 27               | 6.52%                  | 386                  | 93.24%                        | 65.22   | 133.20          |
|   | 7      | 18.21%            | 26.25%           | 63.49%               | 21               | 5.07%                  | 407                  | 98.31%                        | 50.72   | 122.89          |
|   | 8      | 8.67%             | 7.50%            | 57.28%               | 6                | 1.45%                  | 413                  | 99.76%                        | 14.49   | 110.84          |
|   | 9      | 2.92%             | 1.23%            | 51.62%               | 1                | 0.24%                  | 414                  | 100.00%                       | 2.42    | -               |
|   |        |                   |                  |                      |                  |                        |                      |                               |         |                 |

### 2. 구축된 로지스틱 모형 평가





### 3. k겹 교차검증을 활용한 랜덤 포레스트 모형 구축

1. 5겹 교차검증 (train:test=8:2)





| 교차 검증 결과  |        |  |  |  |  |
|-----------|--------|--|--|--|--|
| 1         | 0.7783 |  |  |  |  |
| 2         | 0.8105 |  |  |  |  |
| 3         | 0.7993 |  |  |  |  |
| 4         | 0.7930 |  |  |  |  |
| 5         | 0.7780 |  |  |  |  |
| 평균<br>정확도 | 0.7918 |  |  |  |  |

평균 정확도와 가장 유사, 이때의 혼돈행렬과 변수 중요도를 도출함

### 3. 구축된 랜덤 포레스트 모형 평가



#### -검증 데이터 이용-

|          | 실제 범주  |      |              |  |  |  |
|----------|--------|------|--------------|--|--|--|
|          | status | 0    | 1            |  |  |  |
| 예측<br>범주 | 0      | 299  | 96           |  |  |  |
|          | 1      | 71   | 336          |  |  |  |
| 점확도      | 민김     | 도    | <b>■01</b> 도 |  |  |  |
| 79.30%   | 6 81.0 | 3% 7 | 77.83%       |  |  |  |



## <u>4</u> 결론

### 1. 오즈 해석

점장 점체기 : status=1, 점장기 : status=0

| 변수명       | 성장 정체기 전복의<br>오즈 변화 |  |
|-----------|---------------------|--|
| 성별 정해진 전복 | 1.98 Ш              |  |

| 변수명                  | 한 단위 증가할 때<br>성장 정체기 전복의 오즈 변화 |  |  |
|----------------------|--------------------------------|--|--|
| 전체 무게 중<br>(살+내장) 비율 | 0.188 HH                       |  |  |
| 단위 면적 당<br>껍질 무게     | 1.104 비                        |  |  |
| 단위 부피 당<br>내장의 무게    | 0.996 HH                       |  |  |
| 단위 부피 당<br>내장의 무게    | 1.002 出                        |  |  |

※ 정규화 전으로 변환하여 오즈 변화 해석함



### 중요 변수 이익 도표 도출

| decile | adult  | shell_size | weight_ratio | shucked_unit | viscera_unit | shell_ratio |
|--------|--------|------------|--------------|--------------|--------------|-------------|
| 0      | 98.77% | 10008.34   | 56.09%       | 0.000407     | 0.000233     | 0.008985    |
| 1      | 96.25% | 9760.95    | 62.52%       | 0.000463     | 0.000249     | 0.007640    |
| 2      | 93.75% | 9127.77    | 64.06%       | 0.000473     | 0.000246     | 0.007073    |
| 3      | 91.25% | 8627.17    | 65.25%       | 0.000493     | 0.000256     | 0.006770    |
| 4      | 90.00% | 7765.13    | 65.57%       | 0.000514     | 0.000257     | 0.006427    |
| 5      | 76.25% | 7042.99    | 65.84%       | 0.000519     | 0.000262     | 0.006138    |
| 6      | 66.25% | 6204.43    | 66.10%       | 0.000517     | 0.000252     | 0.005700    |
| 7      | 33.75% | 5231.13    | 65.36%       | 0.000516     | 0.000255     | 0.005218    |
| 8      | 18.75% | 4194.96    | 65.73%       | 0.000544     | 0.000252     | 0.004738    |
| 9      | 6.17%  | 3014.78    | 67.39%       | 0.000600     | 0.000271     | 0.003862    |

-Test set 이용한 중요 변수 이익 도표-

- 1. 성별이 정해진 전복일수록
- 2. 껍질 면적이 클수록
- 3. 전체 무게 중 살과 내장의 비율이 감소할수록
- 4. 단위 부피당 살의 무게가 작을수록
- 5. 단위 면적당 껍질 무게가 클수록



성장 정체기 전복일 가능성이 높다.



3. 모형의 활용 제안

추가적으로 비용을 투자한 가치가 있음 성장기전복 양식을 중단하고 판매하는 것이 더 효율적

전복의 성장 정도 분류 모형



양식업자들이 특정 전복을 계속해서 양식할 지 판단할 근거 제공



4. 연구의 한계 및 향후 과제



41

\_\_\_\_ 감 사 합 니 다 ! \_\_\_\_

## 발표 들어주셔서 감사합니다

Q&A