

General information

Designation

Fluorinated ethylene propylene (Unfilled)

Tradenames

Dyneon

Typical uses

Valves; electrical components and equipment for chemical plant.

Composition overview

Compositional summary

Copolymer of hexafluoropropylene and tetrafluoroethylene

Material family Base material Polymer code Plastic (thermoplastic, semi-crystalline)
FEP (Fluorinated ethylene propylene)

FEP

Composition detail (polymers and natural materials)

Composition detail (polymers and natural management) Polymer	aterials) 100			%
Price Price	* 9.7	_	14.7	USD/lb
Physical properties				
Density	0.0766	-	0.0784	lb/in^3
Mechanical properties				
Young's modulus	0.0487	-	0.0512	10^6 psi
Yield strength (elastic limit)	* 2.16	-	2.48	ksi
Tensile strength	2.7	-	3.1	ksi
Elongation	250	-	330	% strain
Compressive modulus	* 0.0487	-	0.0512	10^6 psi
Compressive strength	* 2.09	-	2.31	ksi
Flexural modulus	0.0798	-	0.0947	10^6 psi
Flexural strength (modulus of rupture)	* 3.78	-	4.35	ksi
Shear modulus	* 0.0169	-	0.0178	10^6 psi
Bulk modulus	* 0.138	-	0.145	10^6 psi
Poisson's ratio	* 0.432	-	0.45	
Shape factor	3.6		5 4	1.07
Hardness - Vickers Hardness - Rockwell M	* 4.5 * 29	-	5.1 31	HV
Hardness - Rockwell R	29 40	-	50	
Fatigue strength at 10^7 cycles	* 1.02	-	1.32	ksi
Mechanical loss coefficient (tan delta)	* 0.113	_	0.119	KSI
Mechanical ioss coemcient (tan delta)	0.113		0.119	
Impact & fracture properties				
Fracture toughness	* 1.35	-	3.8	ksi.in^0.5
Impact strength, notched 23 °C	0.361	-	0.367	BTU/in^2
Impact strength, unnotched 23 °C	* 0.361	-	0.367	BTU/in^2
Thermal properties				
Melting point	507	-	547	°F
Glass temperature	* 178	-	205	°F
Heat deflection temperature 0.45MPa	* 246	-	322	°F

Heat deflection temperature 1.8MPa	* 120	-	180	°F
Maximum service temperature	385	-	419	°F
Minimum service temperature	-337	-	-319	°F
Thermal conductivity	0.14	-	0.151	BTU

Thermal conductivity 0.14 - 0.151 BTU.ft/hr.ft^2.°F Specific heat capacity 0.241 - 0.251 BTU/lb.°F Thermal expansion coefficient 46.1 - 58.3 µstrain/°F

Electrical properties

Electrical resistivity
3.3e23 - 3e24 μohm.cm
Dielectric constant (relative permittivity)
2 - 2.2
Dissipation factor (dielectric loss tangent)
2.85e-4 - 3.15e-4
Dielectric strength (dielectric breakdown)
500 - 599 V/mil

Optical properties

Refractive index 1.34 - 1.35
Transparency Transparent

Magnetic properties

Magnetic type Non-magnetic

Bio-data

RoHS (EU) compliant grades?

Food contact

Yes

Absorption & permeability

 Water absorption @ 24 hrs
 0.005
 - 0.01
 %

 Water vapor transmission
 0.101
 - 0.244
 g.mm/m².day

 Permeability (O2)
 249
 - 303
 cc.mil/day.(100.in^2).atm

Processing properties

Limited use Polymer injection molding Polymer extrusion Limited use Polymer thermoforming Unsuitable % Linear mold shrinkage 3 6 ٥F Melt temperature 552 759 °F Mold temperature 122 392 4.99 Molding pressure range 20 ksi

Durability

Water (fresh) Excellent Excellent Water (salt) Excellent Weak acids Strong acids Excellent Excellent Weak alkalis Strong alkalis Excellent Organic solvents Excellent Oxidation at 500C Unacceptable UV radiation (sunlight) Good

Flammability Non-flammable

Primary production energy, CO2 and water

Embodied energy, primary production * 9.29e4 - 1.02e5 BTU/lb CO2 footprint, primary production * 11.7 - 12.9 lb/lb NOx creation * 0.0346 - 0.0382 lb/lb

SOx creation	* 0.104	-	0.115	lb/lb
Water usage	* 1.53e4	_	1.69e4	in^3/lb

Processing energy, CO2 footprint & water

Polymer extrusion energy	* 2.52e3	-	2.79e3	BTU/lb
Polymer extrusion CO2	* 0.44	-	0.486	lb/lb
Polymer extrusion water	* 134	-	201	in^3/lb
Polymer molding energy	* 8.54e3	-	9.44e3	BTU/lb
Polymer molding CO2	* 1.49	-	1.65	lb/lb
Polymer molding water	* 362	-	543	in^3/lb
Coarse machining energy (per unit wt removed)	* 233	-	258	BTU/lb
Coarse machining CO2 (per unit wt removed)	* 0.0407	-	0.0449	lb/lb
Fine machining energy (per unit wt removed)	* 492	-	544	BTU/lb
Fine machining CO2 (per unit wt removed)	* 0.0859	-	0.0949	lb/lb
Grinding energy (per unit wt removed)	* 780	-	863	BTU/lb
Grinding CO2 (per unit wt removed)	* 0.136	-	0.15	lb/lb

Recycling and end of life

Recycle
Embodied energy, recycling
CO2 footprint, recycling
Bornell Control of the Control of th

Recycle fraction in current supply

Downcycle

Combust for energy recovery Heat of combustion (net)

Combustion CO2

Landfill

Biodegrade

Recycle mark

1			
* 3.15e4	-	3.48e4	BTU/lb
* 3.97	-	4.39	lb/lb
0.672	-	0.742	%
✓			
×			
* 2.01e3	-	2.12e3	BTU/lb
* 0.859	-	0.903	lb/lb
✓			
×			

Geo-economic data for principal component

Principal component

Fluorocarbon

Links

ProcessUniverse

Producers

Reference

Shape