DATA MODELS AND DATABASES

BILL HOWE, PHD
DIRECTOR OF RESEARCH, SCALABLE DATA ANALYTICS
UNIVERSITY OF WASHINGTON ESCIENCE INSTITUTE

HOW DO WE STORE DATA?

HOW DO WE STORE DATA?

What is the data model?

Al	IATONI	TONSUM	MARY-CO	OMBINED	ORFANI	NOTATION	l16_Phaeo_genome
###query	length	COG hit #1	e-value #1	identity #1	score #1	hit length #1	description #1
chr_4[480001-580000].287	4500						
chr_4[560001-660000].1	3556						
chr_9[400001-500000].503	4211	COG4547	2.00E-04	19	44.6	620	Cobalamin biosynthesis protein
chr_9[320001-420000].548	2833	COG5406	2.00E-04	38	43.9	1001	Nucleosome binding factor SPN
chr_27[320001-404298].20	3991	COG4547	5.00E-05	18	46.2	620	Cobalamin biosynthesis protein
chr_26[320001-420000].378	3963	COG5099	5.00E-05	17	46.2	777	RNA-binding protein of the Puf
chr_26[400001-441226].196	2949	COG5099	2.00E-04	17	43.9	777	RNA-binding protein of the Puf
chr_24[160001-260000].65	3542						
chr_5[720001-820000].339	3141	COG5099	4.00E-09	20	59.3	777	RNA-binding protein of the Puf
chr_9[160001-260000].243	3002	COG5077	1.00E-25	26	114	1089	Ubiquitin carboxyl-terminal hyc
chr_12[720001-820000].86	2895	COG5032	2.00E-09	30	60.5	2105	Phosphatidylinositol kinase and
chr_12[800001-900000].109	1463	COG5032	1.00E-09	30	60.1	2105	Phosphatidylinositol kinase and
chr_11[1-100000].70	2886						
chr_11[80001-180000].100	1523						

WHAT IS A DATA MODEL?

Three components:

- 1. Structures
- 2. Constraints
- 3. Operations

EXAMPLES

1. Structures

- rows and columns?
- nodes and edges?
- key-value pairs?
- a sequence of bytes?

2. Constraints

- all rows must have the same number of columns
- all values in one column must have the same type
- a child cannot have two parents

3. Operations

- find the value of key x
- find the rows where column "lastname" is "Jordan"
- get the next N bytes

WHAT IS A DATABASE?

A collection of information organized to afford efficient retrieval

ANOTHER VIEW

"When people use the word database, fundamentally what they are saying is that the data should be self-describing and it should have a schema. That's really all the word database means."

-- Jim Gray, "The Fourth Paradigm"

WHY WOULD I WANT A DATABASE?

1. Sharing

Support concurrent access by multiple readers and writers

2. Data Model Enforcement

Make sure all applications see clean, organized data

3. Scale

Work with datasets too large to fit in memory

4. Flexibility

Use the data in new, unanticipated ways

QUESTIONS TO CONSIDER

How is the data physically organized on disk?

What kinds of queries are efficiently supported by this organization, and what kinds are not?

How hard is it update the data, or add new data?

What happens when I encounter new queries that I didn't anticipate? Do I reorganize the data? How hard is that?

MOTIVATING RELATIONAL DATABASES

BILL HOWE, PHD

DIRECTOR OF RESEARCH, SCALABLE DATA ANALYTICS
UNIVERSITY OF WASHINGTON ESCIENCE INSTITUTE

QUESTIONS TO CONSIDER

How is the data physically organized on disk?

What kinds of queries are efficiently supported by this organization, and what kinds are not?

How hard is it update the data, or add new data?

What happens when I encounter new queries that I didn't anticipate? Do I reorganize the data? How hard is that?

HISTORICAL EXAMPLE: NETWORK DATABASES

Database: A collection of information organized to afford efficient retrieval

HISTORICAL EXAMPLE: HIERARCHICAL DATABASES

ONE VIEW

"Relational Database Management Systems were invented to let you use one set of data in multiple ways, including ways that are unforeseen at the time the database is built and the 1st applications are written."

- Curt Monash, analyst/blogger

RELATIONAL DATABASES (CODD 1970)

Everything is a table

Every row in a table has the same columns

Relationships are implicit: no pointers

Course	Student Id
CSE 344	223
CSE 344	244
CSE 514	255
CSE 514	244

Student Id	Student Name
223	Jane
244	Joe
255	Susan

DATABASE PHILOSOPHY

God made the integers; all else is the work of man.

- Leopold Kronecker, 19th Century Mathematician

Codd made relations; all else is the work of man.

- Raghu Ramakrishnan, DB text book author

RELATIONAL DATABASE HISTORY

Pre-Relational: if your data changed, your application broke.

Early RDBMS were buggy and slow (and often reviled), but required only 5% of the application code.

"Activities of users at terminals and most application programs should remain unaffected when the internal representation of data is changed and even when some aspects of the external representation are changed."

- Codd 1979

Key Ideas: Programs that manipulate tabular data exhibit an <u>algebraic structure</u> allowing reasoning and manipulation independently of physical data representation

KEY IDEA: "PHYSICAL DATA INDEPENDENCE"

physical data independence

files and pointers

```
FROM ncbi_sequences
WHERE seq =
'GATTACGATATTA';
```

```
f = fopen( 'table_file');
fseek(10030440);
while (True) {
  fread(&buf, 1, 8192, f);
  if (buf == GATTACGATATTA) {
    . . .
```

KEY IDEA: AN ALGEBRA OF TABLES

Other operators: aggregate, union, difference, cross product

KEY IDEA: ALGEBRAIC OPTIMIZATION

$$N = ((z*2)+((z*3)+0))/1$$

Algebraic Laws:

1. (+) identity: x+0=x

2. (/) identity: x/1 = x

3. (*) distributes: (n*x+n*y) = n*(x+y)

4. (*) commutes: x*y = y*x

Apply rules 1, 3, 4, 2:

N = (2+3)*z

two operations instead of five, no division operator

Same idea works with the Relational Algebra!

EQUIVALENT LOGICAL EXPRESSIONS; DIFFERENT COSTS

$$\sigma_{\rm p=knows}({\rm R})_{\bowtie {\rm o=s}} \left(\sigma_{\rm p=holdsAccount}({\rm R})_{\bowtie {\rm o=s}} \ \sigma_{\rm p=accountHomepage}({\rm R})\right)$$
 right associative

$$(\sigma_{p=knows}(R)_{\bowtie o=s} \sigma_{p=holdsAccount}(R))_{\bowtie o=s} \sigma_{p=accountHomepage}(R)$$

left associative

$$\sigma_{p1=knows \& p2=holdsAccount \& p3=accountHomepage} (R x R x R)$$

cross product

SAME LOGICAL EXPRESSION, DIFFERENT PHYSICAL ALGORITHMS

A = select(p=knows)

B = select(p=holdsAccount)

C = select(p=accountWebpage)

hA = hash(A)

AB = probe hA with B

hC = hash(C)

ABC = probe hC with AB

A = select(p=knows)

B = select(p=holdsAccount)

C = select(p=accountWebpage)

hB = hash(B)

AB = probe hB with A

hC = hash(C)

ABC = probe hC with AB

Which is faster?

ALGEBRAIC OPTIMIZATION MATTERS

BTC 2010 Dataset

3B quads 623 GB processed

PICASSO QUERY PLAN DIAGRAMS

KEY IDEA: DECLARATIVE LANGUAGES

Find all orders from today, along with the items ordered

SQL IS THE "WHAT" NOT THE "HOW"

Product(<u>pid</u>, name, price) Purchase(<u>pid</u>, <u>cid</u>, store) Customer(<u>cid</u>, name, city)

SELECT DISTINCT x.name, z.name
FROM Product x, Purchase y, Customer z
WHERE x.pid = y.pid and y.cid = y.cid and
x.price > 100 and z.city = 'Seattle'

It's clear WHAT we want, unclear HOW to get it

RELATIONAL ALGEBRA

ANOTHER EXAMPLE

R(subject, predicate, SELECT rl.subject object) FROM R rl, R r2, R r3 WHERE rl.predicate = 'knows' AND r2.predicate = 'holdsAccount' П rl.subject AND r3.predicate = 'accountHomepage' AND rl.object = r2.subject AND r2.object = r3.subject M left.object = right.subject M left.object = right.subject σ predicate= accountHomepage σ σ predicate=knows predicate=holdsAccount

KEY IDEA: "LOGICAL DATA INDEPENDENCE"

views

SELECT *
FROM my_sequences

logical data independence

physical data independence

files and pointers

```
FROM ncbi_sequences
WHERE seq =
'GATTACGATATTA';
```

```
f = fopen( 'table_file');
fseek(10030440);
while (True) {
  fread(&buf, 1, 8192, f);
  if (buf == GATTACGATATTA) {
```

• •

WHAT ARE VIEWS?

A view is just a query with a name
We can use the view just like a real table

Why can we do this?

Because we know that every query returns a relation:
We say that the language is "algebraically closed"

VIEW EXAMPLE

A view is a relation defined by a query

Purchase(customer, product, store) StorePrice(store, price)
Product(pname, price)

CREATE VIEW StorePrice AS SELECT x.store, y.price FROM Purchase x, Product y WHERE x.pid = y.pid

This is like a new table StorePrice(store,price)

HOW TO USE A VIEW?

Customer(<u>cid</u>, name, city)
Purchase(customer, product, store)
Product(<u>pname</u>, price)

A "high end" store is a store that sold some product over 1000. For each customer, find all the high end stores that they visit. Return a set of (customername, high-end-store) pairs.

SELECT DISTINCT z.name, u.store
FROM Customer z, Purchase u, StorePrice v
WHERE z.cid = u.customer
AND u.store = v.store
AND v.price > 1000

KEY IDEA: INDEXES

Databases are especially, but not exclusively, effective at "Needle in Haystack" problems:

- Extracting small results from big datasets
- Transparently provide "old style" scalability
- Your query will always* finish, regardless of dataset size.
- Indexes are <u>easily built</u> and <u>automatically used</u> when appropriate

```
CREATE INDEX seq_idx ON sequence(seq);
SELECT seq
  FROM sequence
WHERE seq = 'GATTACGATATTA';
```

IN-DATABASE ANALYTICS

BILL HOWE, PHD
DIRECTOR OF RESEARCH, SCALABLE DATA ANALYTICS
UNIVERSITY OF WASHINGTON ESCIENCE INSTITUTE

"There is no point in bringing data ... into the data warehouse environment without integrating it. If the data arrives at the data warehouse in an unintegrated state, it cannot be used to support a corporate view of data. And a corporate view of data is one of the essences of the architected environment."

- Inmon, 2005, "Building the Data Warehouse"

Not a good fit for analytics!

MATRIX ADDITION, VECTOR REPRESENTATION

```
A(row_number, row float[])
B(row_number, row float[])
```

SELECT A.row_number, A.vector + B.vector FROM A, B WHERE A.row_number = B.row_number;

MATRIX MULTIPLICATION

MATRIX MULTIPLICATION, VECTOR REPRESENTATION

A(row_number, row float[])

SELECT 1, array_accum(row_number, vector*v) FROM A;

$$\vec{x} \cdot \vec{y} = \Sigma_i x_i y_i$$

MATRIX TRANSPOSE, VECTOR REPRESENTATION

A(row_number, row float[])

```
SELECT S.col_number, array_accum(A.row_number, A.vector[S.col_number]) FROM A, generate_series(1,3) AS S(col_number) GROUP BY S.col_number;
```

generate_series is a table function

MATRIX MULTIPLICATION, SPARSE REPRESENTATION

```
A(row_number, column_number, value)
B(row_number, column_number, value)
```

```
SELECT A.row_number, B.column_number, SUM(A.value * B.value)
FROM A, B
WHERE A.column_number = B.row_number
GROUP BY A.row_number, B.column_number
```

ASIDE: USER-DEFINED FUNCTIONS AND TYPES

Scalar functions

```
SELECT myfunc(r.a, r.b)...
```

Aggregate functions

```
SELECT concat(r.s) ...
```

Table functions

SELECT ... FROM tablefunc(a,b)

EXPERIMENT DESIGN

CREATE VIEW design AS SELECT a.trial_id, floor (100 * random()) AS row_id FROM generate_series(1,10000) AS a (trial_id), generate_series(1,3) AS b (subsample_id)

CREATE VIEW trials AS
SELECT d.trial_id, AVG(a.values) AS avg_value
FROM design d, T
WHERE d.row_id = T.row_id
GROUP BY d.trial_id

src: Cohen et al., VLDB 2009

Prior to the implementation of this functionality within the DBMS, one Greenplum customer was accustomed to calculating the OLS by exporting data and importing the data into R for calculation, a process that took several hours to complete. They reported signicant performance improvement when they moved to running the regression within the DBMS. Most of the benet derived from running the analysis in parallel close to the data with minimal data movement.

src: Cohen et al., VLDB 2009

SLIDES CAN BE FOUND AT:

TEACHINGDATASCIENCE.ORG

