Fachpraktikum

Primzahltests modifiziert zum Testen von Polynomen auf Irreduzibilität

14.08.2019

Einleitung

▶ Primzahltests untersuchen: Welche Eigenschaften werden genutzt?

Einleitung

- ▶ Primzahltests untersuchen: Welche Eigenschaften werden genutzt?
- ▶ Übertragbarkeit auf Polynome über \mathbb{Z}_q bei festem $q \in \mathbb{P}$?

Satz von Fermat Ist p eine Primzahl, so gilt für alle $a\in\mathbb{N}$ mit $p\nmid a$: $a^{p-1}\equiv 1 \mod p$

Satz von Fermat

Ist p eine Primzahl, so gilt für alle $a\in\mathbb{N}$ mit $p\nmid a$: $a^{p-1}\equiv 1$ mod p

Algebra: $|(\mathbb{Z}_p)^*| = p-1$

Satz von Fermat

Ist p eine Primzahl, so gilt für alle $a\in\mathbb{N}$ mit $p\nmid a$: $a^{p-1}\equiv 1$ mod p

Algebra: $|(\mathbb{Z}_p)^*| = p-1$

Polynome: $|(\mathbb{Z}_q[x]/f)^*| = q^{deg(f)} - 1$ für irreduzible Polynome f

Fermat für Polynome

Ist f irreduzibel über \mathbb{Z}_q , so gilt für alle $a\in\mathbb{Z}_q[x]$ mit $f\nmid a$: $a^{q^{\deg(f)}-1}\equiv 1 \mod f$

Fermat für Polynome

Ist f irreduzibel über \mathbb{Z}_q , so gilt für alle $a\in\mathbb{Z}_q[x]$ mit $f\nmid a$: $a^{q^{deg(f)}-1}\equiv 1 \mod f$

Als Test auf Irreduzibilität: Gilt $a^{q^{deg(f)}-1} \not\equiv 1 \mod f$, dann ist f nicht irreduzibel.

Carmichael-Polynome

Definition

Ein Carmichael-Polynom ist ein zusammengesetztes Polynom f, sodass $a^{q^{deg(f)}-1} \equiv 1 \mod f$ für alle $a \in \mathbb{Z}_q[x]$ mit deg(ggT(a,f)) = 0

Carmichael-Polynome

Definition

Ein Carmichael-Polynom ist ein zusammengesetztes Polynom f, sodass $a^{q^{deg(f)}-1} \equiv 1 \mod f$ für alle $a \in \mathbb{Z}_q[x]$ mit deg(ggT(a,f)) = 0

Satz

Sei $f \in \mathbb{Z}_q[x]$. Wenn für alle f_i irreduzibel mit $f_i|f$ gilt, dass $f_i^2 \nmid f$ und $deg(f_i)|deg(f)$, dann ist f ein Carmichael-Polynom.

Carmichael-Polynome

Definition

Ein Carmichael-Polynom ist ein zusammengesetztes Polynom f, sodass $a^{q^{deg(f)}-1} \equiv 1 \mod f$ für alle $a \in \mathbb{Z}_q[x]$ mit deg(ggT(a,f)) = 0

Satz

Sei $f \in \mathbb{Z}_q[x]$. Wenn für alle f_i irreduzibel mit $f_i|f$ gilt, dass $f_i^2 \nmid f$ und $deg(f_i)|deg(f)$, dann ist f ein Carmichael-Polynom.

 \Rightarrow false-positives einfach zu finden

▶ Finde $s, u \in \mathbb{N}, u$ ungerade mit $p - 1 = 2^s u$

- Finde $s, u \in \mathbb{N}, u$ ungerade mit $p 1 = 2^s u$
- ▶ Wähle $a \in \mathbb{N}$

- Finde $s, u \in \mathbb{N}, u$ ungerade mit $p 1 = 2^s u$
- ▶ Wähle $a \in \mathbb{N}$
- ▶ Teste, ob $a^u \equiv 1 \mod p$

- Finde $s, u \in \mathbb{N}, u$ ungerade mit $p 1 = 2^s u$
- ▶ Wähle $a \in \mathbb{N}$
- ▶ Teste, ob $a^u \equiv 1 \mod p$
- Für $1 \le t < s$ teste, ob $a^{2^t u} \equiv -1 \mod p$

Finde $s, u \in \mathbb{N}, u$ ungerade mit $q^{deg(f)} - 1 = 2^s u$

- ▶ Finde $s, u \in \mathbb{N}, u$ ungerade mit $q^{deg(f)} 1 = 2^s u$
- ▶ Wähle $a \in \mathbb{Z}_q[x]$

- ▶ Finde $s, u \in \mathbb{N}, u$ ungerade mit $q^{deg(f)} 1 = 2^s u$
- ▶ Wähle $a \in \mathbb{Z}_q[x]$
- ▶ Teste, ob $a^u \equiv 1 \mod f$

- Finde $s, u \in \mathbb{N}, u$ ungerade mit $q^{deg(f)} 1 = 2^s u$
- ▶ Wähle $a \in \mathbb{Z}_q[x]$
- ▶ Teste, ob $a^u \equiv 1 \mod f$
- Für $1 \le t < s$ teste, ob $a^{2^t u} \equiv -1 \mod f$

Schwierigkeiten

Laufzeit:

► Sehr viele Allokationen; gelöst durch In-place-rechnen

Schwierigkeiten

Laufzeit:

- ► Sehr viele Allokationen; gelöst durch In-place-rechnen
- ▶ Potenzierung langsam, da *u* oft groß

Power-Residue Symbol

Legendre Symbol für Polynome

Definition

Für
$$d|q-1$$
 fest, $a,f\in\mathbb{Z}_q[x],f$ irreduzibel, $f\nmid a$: $(\frac{a}{f})_d\equiv a^{\frac{|f|-1}{d}} \mod f$

Power-Residue Symbol

Legendre Symbol für Polynome

Definition

Für
$$d|q-1$$
 fest, $a,f\in\mathbb{Z}_q[x],f$ irreduzibel, $f\nmid a$: $(\frac{a}{f})_d\equiv a^{\frac{|f|-1}{d}}\mod f$

Reziprozitätsgesetz

Seien f, g irreduzible Polynome. Dann gilt:

$$\left(\frac{g}{f}\right)_d = (-1)^{deg(f)deg(g)\frac{q-1}{d}} \cdot \left(\frac{f}{g}\right)_d$$

Jacobi Symbol

Verallgemeinerung des Power-Residue Symbols: *f* muss nicht irreduzibel sein.

Reziprozitätsgesetz

Seien f,g teilerfremde Polynome, q die Charakteristik von $\mathbb{Z}_q[x]$ und d ein Teiler von q-1. $sgn(f):=lc(f)^{\frac{q-1}{d}}$ Dann gilt:

$$\left(\frac{f}{g}\right)\cdot\left(\frac{g}{f}\right)^{-1}=(-1)^{\frac{q-1}{d}\cdot deg(f)\cdot deg(g)}\cdot sgn(f)^{deg(g)}\cdot sgn(g)^{-deg(f)}$$

Power-Residue Test

Nutze Reziprozitätsgesetz, um $(\frac{a}{f})_d$ zu berechnen

Power-Residue Test

- Nutze Reziprozitätsgesetz, um $(\frac{a}{f})_d$ zu berechnen
- ► Vergleiche Ergebnis mit der Definition

▶ Ein Durchlauf sehr schnell; vergleichbar mit isirreducible

- ▶ Ein Durchlauf sehr schnell; vergleichbar mit isirreducible
- ▶ Problem: gibt oft fälschlicherweise true aus

- ▶ Ein Durchlauf sehr schnell; vergleichbar mit isirreducible
- ▶ Problem: gibt oft fälschlicherweise true aus
- Abhängig von a

Pocklington

Pocklington Kriterium

Sei $N \in \mathbb{N}_{>1}$. Sei $a \in \mathbb{N}$, s.d. $a^{N-1} \equiv 1 \mod N$.

Sei p prim, p|N-1 und $p > \sqrt{N}-1$.

Wenn $ggT(a^{\frac{N-1}{p}}-1,N)=1$, dann ist N eine Primzahl.

Pocklington

Pocklington für Polynome

Sei f das zu testende Polynom und a ein Polynom, s.d. q Charakteristik des Rings, d der Grad von f. Falls $a^{q^d-1} \equiv 1 \mod f$ und

 $\exists p \in [q^{\frac{d}{2}}, \frac{q^{d-1}}{2}], \ p \text{ prim}, \ p|q^{d-1}: ggT(a^{\frac{q^{d-1}}{p}}-1, f) = 1, \text{ dann ist } f$ irreduzibel.

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c) \big| |K|^2 - 1 = (q^{deg(f)})^2 - 1$

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c)||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c)||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

Verschiedene Möglichkeiten aper zu berechnen:

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel \Rightarrow $per(c) ||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

Verschiedene Möglichkeiten a_{per} zu berechnen:

▶ rekursiv ⇒ Laufzeit!

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c) ||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

Verschiedene Möglichkeiten a_{per} zu berechnen:

- ▶ rekursiv ⇒ Laufzeit!
- explizit mit Matrix

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c)||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

Verschiedene Möglichkeiten aper zu berechnen:

- ▶ rekursiv ⇒ Laufzeit!
- explizit mit Matrix
- mit Lucas-Kette: bestimmte Form der Rekursionsgleichung gegeben, dafür einfache Formel, die Glieder explizit auszurechnen; rechnen im Ring

Lineare Rekursionsgleichung $(a_n)_n$ von Grad 2

Satz

$$\chi_c$$
 irreduzibel $\Rightarrow per(c)||K|^2 - 1 = (q^{deg(f)})^2 - 1$

Als Test auf Irreduzibilität: $a_{per} \neq a_0$ oder $a_{per+1} \neq a_1 \Rightarrow f$ nicht irreduzibel.

Verschiedene Möglichkeiten aper zu berechnen:

- ▶ rekursiv ⇒ Laufzeit!
- explizit mit Matrix
- ▶ mit Lucas-Kette: bestimmte Form der Rekursionsgleichung gegeben, dafür einfache Formel, die Glieder explizit auszurechnen; rechnen im Ring $((\mathbb{Z}_q[t]/f)[s])/(s^2 a \cdot s + b)$