UNIVERZA V LJUBLJANI FAKULTETA ZA MATEMATIKO IN FIZIKO

Finančna matematika - 1. stopnja

Anej Rozman

Verjetnost z mero

Zapiski po predavanjih doc. dr. Matije Vidmarja v študijskem letu 2023/2024.

Kazalo

1	Mera			2
	1.1	Merlji	vost in mere	2
		1.1.1	Merjlive mnozice	2
		1.1.2	Mere	3
		1.1.3	Merjlive preslikave in generirane σ -algebre	5
		1.1.4	Borelove mnozice na razsirjeni realni osi in Borelova merljivost	
			numericnih funkcij	8
		1.1.5	Argumenti monotonega razreda	9
		1.1.6	Lebesque-Stieltsove mere	10
	1.2	Integra	acija na merljivih prostorih	11
		1.2.1	Lebesqueov integral	11

1 Mera

1.1 Merljivost in mere

1.1.1 Merjlive mnozice

Definicija 1.1. Naj bo $\mathcal{A} \subset 2^{\Omega}$, torej $\mathcal{A} \in 2^{2^{\Omega}}$ Pravimo, da je \mathcal{A} zaprta za:

- 1. c^{Ω} (zaprta za komplemente v Ω) $\iff \forall A \in \mathcal{A} \Rightarrow \Omega \backslash A \in \mathcal{A}$
- 2. \cap (zaprta za preseke) \iff $A \cap A' \in \mathcal{A}$ kadarkoli $\{A, A'\} \subset \mathcal{A}$
- 3. \cup (zaprta za unije) $\iff A \cup A' \in \mathcal{A}$ kadarkoli $\{A, A'\} \subset \mathcal{A}$
- 4. \ (zaprta za razlike) \iff $A \setminus A' \in \mathcal{A}$ kadarkoli $\{A, A'\} \subset \mathcal{A}$
- 5. $\sigma \cap$ (zaprta za stevne preseke) $\iff \cap_{n \in \mathbb{N}} A_n \in \mathcal{A}$ kadarkoli je $(A_n)_{n \in \mathbb{N}}$ zaporedje v \mathcal{A}
- 6. $\sigma \cup$ (zaprta za stevne unije) $\iff \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{A}$ kadarkoli je $(A_n)_{n \in \mathbb{N}}$ zaporedje v \mathcal{A}

Definicija 1.2. (σ -algebra, pod- σ -algebra in algebra)

- 1. \mathcal{A} je σ -algebra na $\Omega \iff (\Omega, \mathcal{A})$ je merljiv prostor $\iff \emptyset \in \mathcal{A}$ in \mathcal{A} je zaprta za c^{Ω} in $\sigma \cup$. e je \mathcal{A} σ -algebra na Ω potem: A je \mathcal{A} -merljiva $\iff A \in \mathcal{A}$.
- 2. \mathcal{B} je pod- σ -algebra $\mathcal{A} \iff \mathcal{B} \subset \mathcal{A}$ in \mathcal{B} je σ -algebra na Ω .
- 3. \mathcal{A} je algebra na $\Omega \iff \emptyset \in \mathcal{A}$ in \mathcal{A} je zaprta za c^{Ω} in \cup .

Opomba 1.3. V primeru ko nimamo podane mnozice Ω lahko vzamemo $\Omega = \cup \mathcal{A}$ in velja $\mathcal{A} \subset 2^{\Omega}$.

Zgled 1.4. 2^{Ω} je σ -algebra na Ω in $\{\emptyset, \Omega\}$ je σ -algebra na Ω . Klicemo ju diskretna in trivialna σ -algebra.

Zgled 1.5. Naj bo $A \subset \Omega$. Potem je $\sigma_{\Omega} A := \{\emptyset, A, A^C, \Omega\}$ σ -algebra na Ω .

Zgled 1.6. $\sigma_{\Omega}^{ccc} := \{A \in 2^{\Omega} : A \text{ je stevna ali } \Omega \setminus A \text{ je stevna} \}$ je σ-algebra na Ω . To je oznaka za stevno kostevno σ-algebro na Ω . Seveda je $\sigma_{\Omega}^{ccc} = 2^{\Omega}$ razen ce Ω ni stevna.

Zgled 1.7. Naj bo \mathcal{P} particija Ω (torej $\mathcal{P} \subset 2^{\Omega}$ in \mathcal{P} je druzina paroma disjunktnih mnozic, ki pokrije Ω). Potem je $\sigma \mathcal{P} := \{ \cup R \mid R \subset P \text{ in } (R \text{ ali } P \setminus R \text{ je stevna}) \}$ je sigma algebra na Ω .

Trditev 1.8. Naj bo $\mathcal{A} \subset 2^{\Omega}$ zaprta za c^{Ω} in naj bo $\emptyset \in \mathcal{A}$. Potem je \mathcal{A} σ -algebra na Ω ce in samo ce je \mathcal{A} zaprta za $\sigma \cup$, in v tem primeru je \mathcal{A} zaprta za \cap in \cup in \setminus .

Dokaz. Sledi iz de Morganovih zakonov:

$$\bigcap_{n\in\mathbb{N}} A_n = \Omega \setminus (\bigcup_{n\in\mathbb{N}} (\Omega \setminus A_n))$$

$$\bigcup_{n\in\mathbb{N}} A_n = \Omega \setminus (\cap_{n\in\mathbb{N}} (\Omega \setminus A_n))$$

Zaprtost σ -algebre A na Ω za:

1.
$$\cap: A \cap B = A \cap B \cap \Omega \cap \Omega \cdots \in A$$

2.
$$\cup$$
: $A \cup B = A \cup B \cup \emptyset \cup \emptyset \cdots \in A$

3.
$$\langle A \rangle B = A \cap (\Omega \backslash B) \in \mathcal{A}$$

1.1.2 Mere

Definicija 1.9. (Mera) Naj bo (Ω, \mathcal{F}) merljiv prostor in $\mu : \mathcal{F} \to [0, \infty]$. μ je mera na (Ω, \mathcal{F}) natanko tedaj ko:

1. $\mu(\emptyset) = 0$

2. μ je stevno aditivna: za \forall zaporedje $(A_n)_{n\in\mathbb{N}}\subset\mathcal{F}$ paroma disjunktnih mnozic je $\mu(\cup_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}\mu(A_n)$

Za mero μ na (Ω, F) recemo da je:

- 1. koncna $\iff \mu(\Omega) < \infty$
- 2. verjetnostna mera $\iff \mu(\Omega) = 1$
- 3. σ -koncna $\iff \exists (A_n)_{n\in\mathbb{N}} \subset \mathcal{F} : \Omega = \bigcup_{n\in\mathbb{N}} A_n \text{ in } \mu(A_n) < \infty \ \forall n \in \mathbb{N}$

Definicija 1.10. (Merljiv prostor) (Ω, F, μ) je prostor z mero $\iff \mu$ je mera na (Ω, F)

Definicija 1.11. Ce je (Ω, F, μ) merljiv prostor. Potem za $A \in \mathcal{F}$ recemo:

- 1. A je μ -zanemarljiva $\iff \mu(A) = 0$
- 2. A je μ -trivialna $\iff \mu(A) = 0$ ali $\mu(\Omega \backslash A) = 0$

Ce imamo neko lastnost $P(\omega)$ v $\omega \in A$, potem:

- 1. $P(\omega)$ drzi μ -skoraj povsod v $\omega \in A \iff A_{\neg P} := \{\omega \in A : \neg P(\omega)\}$ je μ -zanemarljiva.
- 2. $P(\omega)$ drzi μ -skoraj gotovo v $\omega \in A \iff A_{\neg P} := \{\omega \in A : \neg P(\omega)\}$ je μ -zanemarljiva in μ je verjetnost.
- 3. P drzi μ -s.p. na $A \iff P(\omega)$ drzi μ -s.p. v $\omega \in A$.
- 4. $P \text{ drzi } \mu\text{-s.g. na } A \iff P(\omega) \text{ drzi } \mu\text{-s.g. v } \omega \in A.$

- **Zgled 1.12.** Nicelna mera na \mathcal{F} (torej preslikava $\mu(A) \to 0$, $\forall A \in \mathcal{F}$) je vedno mera na katerikoli σ -algebri.
- **Zgled 1.13.** Ce definiramo $c_{\Omega}: 2^{\Omega} \to [0, \infty]$ kot $c_{\Omega}(A) := |A|$ ce je A koncna podmnozica Ω in $c_{\Omega}(A) := \infty$ ca je neskoncna podmnozica Ω , je c_{Ω} tako imenovana stevna mera na Ω . Ko je Ω koncna in neprazna, potem je $\frac{c_{\Omega}}{|\Omega|}$ verjentostna mera na Ω .
- **Zgled 1.14.** Ce definiramo $\delta_x: 2^{\Omega} \to [0, \infty]$ za fiksen $x \in \Omega$, tako da za $A \in 2^{\Omega}, \delta_x(A) := 0$ ce $x \notin A$ in $\delta_x(A) := 1$ ce $x \in A$, potem je δ_x tako imenovana Diracova mera za x. Katerakoli podmnozica $\Omega \setminus \{x\}$ je δ_x -zanemarljiva.
- **Trditev 1.15.** (Lastnosti mere) Naj bo μ mera na merljivem prostoru (Ω, \mathcal{F}) . Potem velja naslednje:
 - 1. μ je aditivna: $\mu(A \cup B) = \mu(A) + \mu(B)$ kadarkoli $A \cap B = \emptyset$ in $\{A, B\} \in \mathcal{F}$.
 - 2. μ je monotona: $A \subset B$ in $\{A, B\} \in \mathcal{F} \Rightarrow \mu(A) \leq \mu(B)$.
 - 3. μ je zvezna od spodaj: $\mu(\bigcup_{n\in\mathbb{N}}A_n)=\uparrow -\lim_{n\to\infty}\mu(A_n)$ kadarkoli je $(A_n)_{n\in\mathbb{N}}$ narascajoce zaporedje v \mathcal{F} .
 - 4. μ je stevno subaditivna: $\mu(\bigcup_{n\in\mathbb{N}}A_n)\leq \sum_{n\in\mathbb{N}}\mu(A_n)$ kadarkoli je $(A_n)_{n\in\mathbb{N}}$ zaporedje v \mathcal{F} .
 - 5. Predpostavimo da je μ koncna. $\mu(\Omega \setminus A) = \mu(\Omega) \mu(A)$ za vse $A \in \mathcal{F}$. Se vec, μ je zvezna od zgoraj: $\mu(\cap_{n \in \mathbb{N}} A_n) = \downarrow -\lim_{n \to \infty} \mu(A_n)$ kadarkoli je $(A_n)_{n \in \mathbb{N}}$ padajoce zaporedje v \mathcal{F} .
 - 6. Za $A \in \mathcal{F}$ je $\mathcal{F}|_A := \{B \cap A : B \in \mathcal{F}\}$; potem je $\mu_A := \mu_{\mathcal{F}|_A}$ mera na $\mathcal{F}|_A$. Imenuje se restrikcija/skrcitev mere μ na A.
- Dokaz. 1. $(A, B, \emptyset, \emptyset, \cdots)$ je zaporedje medseboj disjunktnih mnozic v \mathcal{F} , torej po stevni aditivnosti velja $\mu(A \cup B \cup \emptyset \cup \cdots) = \mu(A) + \mu(B) + \mu(\emptyset) + \cdots = \mu(A) + \mu(B)$.
 - 2. $B = A \cup (B \setminus A)$ in uporabimo koncno aditivnost (1.).
 - 3. $(A_1, A_2 \setminus A_1, A_3 \setminus A_2, \cdots)$ je zaporedje paroma disjunktnih mnozic v \mathcal{F} z unijo $\cup_{n \in \mathbb{N}} A_n$. Uporabimo stevno aditivnost in za tem se koncno aditivnost.
 - 4. $(A_1, A_2 \setminus A_1, A_3 \setminus (A_1 \cup A_2), \cdots)$ je zaporedje paroma disjunktnih mnozic v \mathcal{F} z unijo $\bigcup_{n \in \mathbb{N}} A_n$. Uporabimo stevno aditivnost in za tem se monotonost (2.).
 - 5. Prvi del sledi iz koncne aditivnosti (1.). Za mnozici vzamemo $A \in \Omega$ in $B = \Omega \backslash A$. Dobimo $\mu(\Omega) = \mu(A) + \mu(\Omega \backslash A)$. Drugi del sledi iz zveznosti od spodaj (3.) tako da jo uporabimo na $(\Omega \backslash A_n)_{n \in \mathbb{N}}$. $\mu(\Omega) \mu(\cap_{n \in \mathbb{N}} A_n) = \mu(\bigcup_{n \in \mathbb{N}} \Omega \backslash A_n) = \lim_{n \to \infty} \mu(\Omega \backslash A_n) = \lim_{n \to \infty} \mu(\Omega) \mu(A_n) = \mu(\Omega) \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \mu(A_n)$.

6. Preveriti moramo, da je $\mathcal{F}|_A$ σ -algebra na A. Kasneje bomo videli da je $\mathcal{F}|_A = 2^A \cap \mathcal{F}$ in bo dokaz sledil iz tega.

Zgled 1.16. (Borel-Cantellijeva lema) Naj bo $(\Omega, \mathcal{F}, \mu)$ merljiv prostor in $(A_n)_{n \in \mathbb{N}}$ zaporedje v \mathcal{F} , da velja $\sum_{n \in \mathbb{N}} \mu(A_n) < \infty$. Potem je $\mu(\limsup_{n \to \infty} A_n) = 0$.

Dokaz.

Zgled 1.17. Ce je P vejretnost na (Ω, \mathcal{F}) , potem je $P^{-1}(\{0, 1\})$ pod- σ -algebra na \mathcal{F} . Tako imenovana P-trivialna σ -algebra.

1.1.3 Merjlive preslikave in generirane σ -algebre

Definicija 1.18. (Generirana σ -algebra) Naj bo $\mathcal{A} \subset 2^{\Omega}$; potem

$$\sigma_{\Omega}(\mathcal{A}) := \bigcap \{ \mathcal{F} \in 2^{2^{\Omega}} : \mathcal{F} \text{ je } \sigma\text{-algebra na } \Omega \text{ in } \mathcal{A} \subset \mathcal{F} \}$$

imenujemo σ -algebra generirana na Ω z \mathcal{A} . Je najmanjsa σ -algebra, ki vkljucuje druzino podmnozic \mathcal{A} .

Opomba 1.19. 2^{Ω} je gotovo σ -algebra na Ω , ki vsebuje \mathcal{A} , torej je $\sigma_{\Omega}(\mathcal{A})$ neprazna.

Za dve σ-algebri \mathcal{B}_1 in \mathcal{B}_2 na Ω je mnozica $\mathcal{B}_1 \vee \mathcal{B}_2 := \sigma_{\Omega} (\mathcal{B}_1 \cup \mathcal{B}_2)$ skupek \mathcal{B}_1 in \mathcal{B}_2 . Bolj splosno za druzino $(\mathcal{B}_{\lambda})_{\lambda \in \Lambda}$ σ-algebra na Ω pravimo, da je $\vee_{\lambda \in \Lambda} \mathcal{B}_{\lambda} := \sigma_{\Omega} (\cup_{\lambda \in \Lambda} \mathcal{B}_{\lambda})$ njen skupek.

Opomba 1.20. Razlog zakaj so generirane σ -algebre pomembne v teoriji mere je, ker le redko lahko eksplicitno podamo vse elemente σ -algebre, ki bi jo zeleli, ampak pogosto lahko eksplicitno podamo njene generatorje.

Definicija 1.21. (Zacetna in koncna struktura) Naj bo $f: \Omega \to \Omega'$. Za podano σ -algebro \mathcal{F}' na Ω' definiramo

$$\sigma^{\mathcal{F}'}(f) := f^{-1}(\mathcal{F}') := \{f^{-1}(A') : A' \in \mathcal{F}'\},$$

zacetno strukturo za f glede na \mathcal{F}' . (oziroma σ -algebra generirana z f glede na \mathcal{F}'). Za podano σ -algebro \mathcal{F} na Ω definiramo

$$\sigma_{\mathcal{F}}^{\Omega'}(f) := \{ A' \in 2^{\Omega'} : f^{-1}(A') \in \mathcal{F} \},$$

koncno strukturo za f na Ω' glede na \mathcal{F} .

Definicija 1.22. Za dano σ-algebro \mathcal{F}' na Ω' in σ-algebro \mathcal{F} na Ω pravimo da je f \mathcal{F}/\mathcal{F}' -merljiva preslikava $\iff f^{-1}(A') \in \mathcal{F}$ za vse $A' \in \mathcal{F}'$.

Opomba 1.23. 1. V notacijah $\sigma_{\Omega}(A)$ in $\sigma^{\mathcal{F}'}(f)$ spuscamo Ω in \mathcal{F}' kadar je to jasno iz konteksta. Torej pisemo preprosto $\sigma(A)$ in $\sigma(f)$.

2. V primeru ko je zaloga vrednosti f stevna in nimamo podane ne \mathcal{F}' ali Ω' za Ω' vazamemo Z_f in za \mathcal{F}' vazamemo $2^{\Omega'}$.

3. Izmed objektov, ki smo ju uvedli v definiciji 7. je zacetna struktura bolj sugestivna.

Definicija 1.24. Za dano σ -algebro \mathcal{F} na Ω in \mathcal{F}' na Ω' definiramo

$$\mathcal{F}/\mathcal{F}' := \{g \in \Omega'^{\Omega} : g \text{ je } \mathcal{F}/\mathcal{F}'\text{-merljiva}\}.$$

Zgled 1.25. Konstantna funkcija je vedno merljiva, ne glede na σ -algebro. Za poljubno σ -algebro \mathcal{F} na Ω je $id_{\Omega} \in \mathcal{F}/\mathcal{F}'$.

Definicija 1.26. (Indikator) Za $A \subset \Omega$ definiramo $\mathbb{1}_{A_{\Omega}} : \Omega \to \{0, 1\}$:

$$\mathbb{1}_{A_{\Omega}}(x) := \begin{cases} 1, & x \in A \\ 0, & \text{sicer} \end{cases}$$

Funkciji pravimo indikator mnozice A v Ω . Pisali bomo $\mathbb{1}_A$ in predvidevali da se Ω da razbrati iz konteksta.

Zgled 1.27. Naj bo $A \subset \Omega$. Potem $\sigma^{2^{\{0,1\}}}(\mathbb{1}_A) = \sigma_{\Omega}(A) = \{\emptyset, \Omega, A, \Omega \setminus A\}$. Ce je nadaljno \mathcal{F} σ -algebra an Ω potem je $\mathbb{1}_A \in \mathcal{F}/2^{\{0,1\}} \iff A \in \mathcal{F}$

Trditev 1.28. Naj bodo $\mathcal{F}, \mathcal{G}, \mathcal{H}$ σ -algebre (vsaka na svoji mnozici). Naj bo $f \in \mathcal{F}/\mathcal{G}$ in $g \in \mathcal{G}/\mathcal{H}$. Potem je $g \circ f \in \mathcal{F}/\mathcal{H}$. Z besedami to pomeni: kompozitumi merljivih preslikav so merljive preslikave.

Dokaz.
$$(g \circ f)^{-1}(H) = f^{-1}(g^{-1}(H))$$
 za $\forall H \in \mathcal{H}$

Trditev 1.29. (Lastnosti preslikav) Naj bo $f: \Omega \to \Omega'$.

- 1. Naj bo \mathcal{F}' σ -algebra na Ω' . $\sigma^{\mathcal{F}'}(f)$ je σ -algebra na Ω ; je najmanjsa σ -algebra \mathcal{F} na Ω da velja $f \in \mathcal{F}/\mathcal{F}'$.
- 2. Naj bo \mathcal{F} σ -algebra na Ω . $\sigma_{\mathcal{F}}^{\Omega'}(f)$ je σ -algebra na Ω' ; je najvecja σ -algebra \mathcal{F}' na Ω' da velja $f \in \mathcal{F}/\mathcal{F}'$.
- 3. Naj bo \mathcal{F}' σ -algebra na Ω' in \mathcal{F} σ -algebra na Ω , potem $f \in \mathcal{F}/\mathcal{F}' \iff \sigma^{\mathcal{F}'}(f) \subset \mathcal{F} \iff \sigma^{\Omega'}_{\mathcal{F}}(f) \supset \mathcal{F}'$.
- 4. Naj bo $\mathcal{A}' \subset 2^{\Omega'}$. $\sigma_{\Omega'}(\mathcal{A}')$ je najmanjsa σ -algebra na Ω' , ki ima \mathcal{A}' za svojo podmozico. Naj bo \mathcal{F} σ -algebra na Ω , potem je $f \in \mathcal{F}/\sigma_{\Omega'}(\mathcal{A}') \iff (f^{-1}(A') \in \mathcal{F}$ za vse $A' \in \mathcal{A}'$). Natancno zapisemo $\sigma^{\sigma_{\Omega'}(\mathcal{A}')}(f) = \sigma_{\Omega}(\{f^{-1}(A') : A' \in \mathcal{A}'\})$. V posebnem je $f^{-1}(\sigma_{\Omega'}(\mathcal{A}')) = \sigma_{\Omega}(f^{-1}(\mathcal{A}')$.

Dokaz. 1. $f^{-1}(\mathcal{F}')$ je σ-algebra na Ω : $\forall \emptyset : f^{-1}(\emptyset) \in f^{-1}(\mathcal{F}')$; za $A' \in \mathcal{F}'$ je $\Omega \setminus f^{-1}(A') = f^{-1}(\Omega \setminus A') \in f^{-1}\mathcal{F}'$; za zaporedje $(A_i)_{i \in \mathbb{N}}$ je $\bigcup_{i \in \mathbb{N}} f^{-1}(A'_i) = f^{-1}(\bigcup_{i \in \mathbb{N}} A'_i) \in f^{-1}(\mathcal{F}')$. Drugi del je jasen

- 2. Podoben dokaz kot 1.
- 3. krneki

4. prvi del je jasen. Drugi del: (\Rightarrow) : je jasna. (\Leftarrow) : $\sigma_{\mathcal{F}}^{\Omega'}(f) \subset A'$... napisi s skripte.

Opomba 1.30. Tocka 4 nam pove da je dovolj da dokazemo merljivo lastnost na mnozici generatorjev. Se en nacin zapisa $f \in \mathcal{F}/\sigma_{\Omega'}(\mathcal{A}') \iff (f^{-1}(A') \in \mathcal{F}$ za vse $A' \in \mathcal{A}'$). Natancno zapisemo $\sigma^{\sigma_{\Omega'}(\mathcal{A}')}(f) = \sigma_{\Omega}(\{f^{-1}(A') : A' \in \mathcal{A}'\})$ je $f^{-1}(\sigma_{\Omega'}(\mathcal{A}')) = \sigma_{\Omega}(f^{-1}(\mathcal{A}'))$, kar bomo interpretirali kot operacija dobivanja praslik in generiranih σ -algeber komutirati.

Definicija 1.31. Pisemo $\mathcal{A}|_A := \{A' \cap A : A' \in \mathcal{A}\}$ za sled \mathcal{A} na A.

Opomba 1.32. Ce je \mathcal{F} zaprta za \cap in $A \in \mathcal{F}$, potem je $\mathcal{F}|_A = \mathcal{F} \cap 2^A$.

Posledica 1.33. Naj bo $A \subset 2^{\Omega}$. Ce je $A \subset \Omega$, potem

$$\sigma_{\Omega}(\mathcal{A})|_{A} = \sigma_{A}(\mathcal{A}|_{A});$$

v primeru ce je A σ -algebra na Ω , potem je $A|_A$ σ -algebra na A.

Dokaz. Po prejsnji trditvi (1. tocka) je $\sigma_{\Omega}(\mathcal{A})|_{A} = \sigma^{\sigma_{\Omega}(\mathcal{A})}(id_{A})$ σ-algebra na A ki vsebuje $\mathcal{A}|_{A}$, torej velja $\sigma_{A}(\mathcal{A}|_{A}) \subset \sigma_{\Omega}(\mathcal{A}|_{A})$. Po (2.tocki) je $\mathcal{C} := \{C \in 2^{\Omega} : C \cap A \in \sigma_{A}(\mathcal{A}|_{A})\} = \sigma^{\Omega}_{\sigma_{A}(\mathcal{A}|_{A})}(id_{A})$ σ-algebra na Ω , ki vsebuje \mathcal{A} , torej $\sigma_{\Omega}(\mathcal{A}) \subset \mathcal{C}$, torej $\sigma_{\Omega}(\mathcal{A})|_{A} \subset \sigma_{A}(\mathcal{A}|_{A})$.

Zgled 1.34. Prepricaj se da je v zgledu 1.3 $\sigma_{\Omega} A = \sigma_{\Omega}(\{A\})$.

Zgled 1.35.

Zgled 1.36. ...

Opomba 1.37. Kako lahko v sposnem dolocimo $\sigma_{\Omega}(\mathcal{A})$? Zacnemo z \mathcal{A} karkoli kar mora biti v $\sigma_{\Omega}(\mathcal{A})$ da zadosca pogojem σ -algebre, vse komplemente, stevne unije, \emptyset , Ω in stevne unije teh itd. Po tem postopku dokazemo, da je to kar imamo σ -algebra.

Zgled 1.38. Naj bosta $\{E, F\} \subset 2^{\Omega}$. Potem mora $\sigma_{\Omega}(\{E, F\})$ vsebovati $\{\emptyset, E, F, E \setminus F, E \cap F, \dots\}$ (Particije na Ω inducirane z E, F). Torej $\sigma_{\Omega}(\{E, F\}) \supset \sigma_{\Omega}(\mathcal{P})$. Ampak $\sigma_{\Omega}(\mathcal{P})$ je σ -algebra na Ω , ki vsebuje $\{E, F\}$, torej $\sigma_{\Omega}(\{E, F\}) = \sigma_{\Omega}(\mathcal{P}) = \sigma \mathcal{P}$ iz zgleda 1.8.

Trditev 1.39. Naj bo $f: \Omega \to \Omega'$ in naj bo \mathcal{F} σ -algebra na Ω ter \mathcal{F}' σ -algebra na Ω' .

- 1. Ce je $A' \subset \Omega$ taksna, da $f: \Omega \to A'$, potem je $f \in \mathcal{F}/\mathcal{F}'$ natanko tedaj ko je $f \in \mathcal{F}/(\mathcal{F}'|_{A'})$.
- 2. $Za \ A \subset \Omega$, $ce \ je \ f \in \mathcal{F}/\mathcal{F}'$, $je \ f|_A \in (\mathcal{F}|_A)/\mathcal{F}'$.
- 3. Ce za zaporedje $(A_i)_{i\in\mathbb{N}}$ v \mathcal{F} , az katerega je $\Omega = \bigcup_{i\in\mathbb{N}} A_i$, velja $f|A_i \in (\mathcal{F}|_{A_i})/\mathcal{F}'$ za vsak $i \in \mathbb{N}$, potem $f \in \mathcal{F}/\mathcal{F}'$.

Dokaz. 1. Za $H' \in \mathcal{F}'$ je $f^{-1}(H') = f^{-1}(H' \cap A')$.

2. Za
$$F' \in \mathcal{F}'$$
 je $(f|_A)^{-1}(F') = A \cap f^{-1}(F') \in \mathcal{F}|_A$.

3. Za
$$F' \in \mathcal{F}'$$
 je $f^{-1}(F') = \bigcup_{i \in \mathbb{N}} f^{-1}(F') \cap A_i \underbrace{\bigcup_{i \in \mathbb{N}} A_i = \Omega}_{\bigcup_{i \in \mathbb{N}} A_i = \Omega} \underbrace{\bigcup_{i \in \mathbb{N}} \underbrace{(f|_{A_i})^{-1}(F')}_{\in \mathcal{F}|_{A_i} = \mathcal{F} \cap 2^{A_i} \subset \mathcal{F}}$

Opomba 1.40. Tocki 1. in 2. pomenita da se merljivost obnasa lepo pod omejitvami. Tocka 3. pa nam pove da je lahko merljivost preverjena "lokalno".

1.1.4 Borelove mnozice na razsirjeni realni osi in Borelova merljivost numericnih funkcij

Definicija 1.41. Naj bo $[-\infty, \infty] := \mathbb{R} \cup \{-\infty, \infty\}$ razsirjena realna os, opremljena z naravno relacijo \leq . Vpeljemo druzino mnozic $\mathcal{B}_{[-\infty,\infty]} := \sigma_{[-\infty,\infty]}(\{[-\infty,a]:a \in \mathbb{R}\})$, ki ji pravimo Borelova σ -algebra na $[-\infty,\infty]$. Za $A \subset [-\infty,\infty]$ vpeljemo druzino mnozic $\mathcal{B}_A = \mathcal{B}_{[-\infty,\infty]}|_A$, ki ji pravimo Borelova σ -algebra na A.

Opomba 1.42. Z $\mathcal{B}_{\mathbb{R}}$ oznacimo Lebesquovo mero. Funkcije, ki so merljive glede na $\mathcal{B}_{[-\infty,\infty]}$ na kodomeni, so nekako natanko tiste, ki se "lepo"obnasajo s stalisca integracije. Pričakovanje tega, kar sledi, nam je všeč tudi zato, ker na $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ lahko definiramo prijetno — netrivialno translacijsko invariantno — tako imenovano Lebesquovo mero. Prav tako lahko trdimo, da je reči, da je numerična preslikava f merljiva (z vidika merjenja zanimiva), treba vsaj izmeriti množice $\{f \leq a\} := f^{-1}[-\infty, a]$ za vsak $a \in \mathbb{R}$ (zlasti, ob malce predvidevanju vsebine drugega dela teh zapisov, za naključno spremenljivko X bi želeli biti sposobni reči, kaj je verjetnost dogodkov $\{X \leq a\}$ za $a \in \mathbb{R}$).

Zgled 1.43. Vsi intervali in stevne podmnozice $[-\infty, \infty]$ pripadajo $\mathcal{B}_{[-\infty,\infty]}$. Prav tako vse zaprte in odprte podmnozice $[-\infty, \infty]$ pripadajo $\mathcal{B}_{[-\infty,\infty]}$. Ce je $A \subset [-\infty, \infty]$ stevna, potem je $\mathcal{B}_A = 2^A$.

Definicija 1.44. Ce f slika v $[-\infty, \infty]$ (je numericna), potem:

- 1. $\sigma(f) = \sigma^{\mathcal{B}_{[-\infty,\infty]}}(f)$.
- 2. Za σ -algebro \mathcal{F} na D_f recemo da f je \mathcal{F} -merljiva $\iff f \in \mathcal{F}/\mathcal{B}_{[-\infty,\infty]}$.
- 3. Za $g: D_f \to [-\infty, \infty]; g \land f:= \min\{g, f\}, g \lor f:= \max\{g, f\}, f^+:= \max\{f, 0\}$ in $f^-:= \max\{-f, 0\}.$

Zgled 1.45. $\mathcal{B}_{\mathbb{R}} = \sigma_{\mathbb{R}}(\{(-\infty, a] : a \in \mathbb{R}\})$. Posledicno po trditvah 1.29 in 1.39 za σ -algebro \mathcal{F} na Ω in $f : \Omega \to \mathbb{R}$, f Borelovo merljiva $\iff f \in \mathcal{F}/\mathcal{B}_{\mathbb{R}} \iff \{f \leq a\} := f^{-1}((-\infty, a]) \in \mathcal{F}$ za $\forall a \in \mathbb{R}$.

Definicija 1.46. 1. $0 \cdot (+ - \infty) := 0$

2. $\infty + (-\infty) := 0$

Preostsanek aritmetike v $[-\infty, \infty]$ vpeljemo naravno, npr. $a \cdot \infty = sgn(a)\infty$ za $a \in [-\infty, \infty] \setminus \{0\}, a + \infty = \infty$ itd.

Trditev 1.47. Za $A \subset [-\infty, \infty]$ in $f : A \to [-\infty, \infty]$ zvezna ter $f \in \mathcal{B}_A \setminus \mathcal{B}_{[-\infty,\infty]}$. Ce je \mathcal{F} σ -algebra in $\{f, g\} \subset \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$, potem je $\{f + g, fg\} \subset \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$ in $\{\{f = g\}, \{f \subset g\}, \{f \leq g\}\} \subset \mathcal{F}$.

Dokaz. Brez dokaza.

Trditev 1.48. Naj bo \mathcal{F} σ -algebra in $(f_n)_{n\in\mathbb{N}}$ zaporedje v $\mathcal{F}\setminus\mathcal{B}_{[-\infty,\infty]}$. Potem je

 $\{sup_{n\in\mathbb{N}}f_n, inf_{n\in\mathbb{N}}f_n, limsup_{n\to\infty}f_n, liminf_{n\to\infty}f_n\} \subset \mathcal{F}\setminus\mathcal{B}_{[-\infty,\infty]}.$

Ce je $f_n \geq 0$ za $n \in \mathbb{N}$, je $\sum_{n \in \mathbb{N}} f_n \in \mathcal{F} \setminus \mathcal{B}_{[0,\infty]}$.

Dokaz. $\mathcal{B}_{[-\infty,\infty]} = \sigma_{[-\infty,\infty]}(\{[-\infty,a]: a \in \mathbb{R}\})$. Za $a \in \mathbb{R}$ $(sup_{n\in\mathbb{N}}f_n)^{-1}([-\infty,a]) = \{sup_{n\in\mathbb{N}}f_n \leq a\} = \{f_n \leq a \ \forall n \in \mathbb{N}\} = \bigcap_{n\in\mathbb{N}}f_n \leq a = \bigcap_{n\in\mathbb{N}}\underbrace{f_n^{-1}([-\infty,a])}_{\in\mathcal{F}:f_n\in\mathcal{F}\setminus\mathcal{B}_{[-\infty,\infty]}}$ Da je

 $\inf_{n\in\mathbb{N}} f_n \in \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$ utemeljimo tako, da zapisemo $\inf_{n\in\mathbb{N}} f_n = -\sup_{n\in\mathbb{N}} f_n$ in opazimo, da je $-id_{[-\infty,\infty]} \in \mathcal{B}_{[-\infty,\infty]} \setminus \mathcal{B}_{[-\infty,\infty]}$ limsup in liminf sta kombinaciji sup in inf. Koncno v primeru, da je $f_n \geq 0 \ \forall n \in \mathbb{N}$ je $\sum_{n\in\mathbb{N}} f_n = \lim_{n\to\infty} \sum_{k=1}^n f_k = \lim_{n\to\infty} \sum_{$

$$limsup_{n\to\infty}$$

$$\sum_{k=1}^{n} f_k$$
 Kar nam da ...
$$\Box$$
 $\in \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]} potrditvi1.36$

Posledica 1.49. Naj bo \mathcal{F} σ -algebra, potem je $\{max(f,g), min(f,g), f^+, f^-, |f|\} \subset \mathcal{F}\mathcal{B}_{[-\infty,\infty]}$ za $\{f,g\} \subset \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$. Poleg tega je $\{\{f_n konvergira, ko \ gre \ n \to \infty\}, \{f_n konvergira, k \ vred \infty\}, \{\lim_{n\to\infty} f_n = f_0\}\} \subset \mathcal{F}$ za vsako zaporedje $(f_n)_{n\in\mathbb{N}_0}$ v $\mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$.

Dokaz. Brez dokaza.

Zgled 1.50. Naj $f: \mathbb{R} \to \mathbb{R}$... Poglej v skripto. Pac primer kako ta trditev deluje.

1.1.5 Argumenti monotonega razreda

IDEJA: Zelimo dokazati tridtev, ki se tice vseh funkcij iz $\mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$. Najprej pokazemo trditev za $\mathbbm{1}_A, A \in \mathcal{F}$. \to izrek o monotonem razredu \to trditev velja v splosnem.

Definicija 1.51. Naj bo \mathcal{F} σ -algebra na Ω in $f : \to [0, \infty]$. f je \mathcal{F} -enostavna \iff $f \in \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$ in \mathcal{Z}_f je koncna.

Trditev 1.52. Naj bo (Ω, \mathcal{F}) merljiv prostor in $f : \Omega \to [0, \infty]$. f je \mathcal{F} -enostavna $\iff f = \sum_{i=1}^n c_i \mathbb{1}_{A_i}$ za neke $c_i \in [0, \infty)$, $A_i \in \mathcal{F}$, $i \in [n]$ za nek $n \in \mathbb{N}$. Naprej, ce je $f \in \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$, potem je min $(2^{-n}[2^n f], n)_{n \in \mathbb{N}}$ zaporedje \mathcal{F} -enostavnih funkcij, ki narascajo proti (\uparrow) f. (Celo enakomerno na vsaki mnozici na kateri je f omejena).

 $Dokaz. \ (\Rightarrow) : f = \sum_{\mathcal{Z}\setminus\{0\}} a \cdot \mathbb{1}_{\{f=a\}}, \{f=a\} \text{ pomeni } f^{-1}(\{a\}) \in \mathcal{F}. \ (\Leftarrow) : \text{Baje da}$ je ocitno Drugi del je jasen.

Opomba 1.53. 1. $f \in \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]} \iff f = 1 - \mathcal{F}$ -enostavnih funkcij.

2. $f \in \mathcal{F} \backslash \mathcal{B}_{[-\infty,\infty]} \iff f = \text{limita linearnih kombinacij indikatorjev mnozic iz } \mathcal{F}.$

Posledica 1.54. (izrek o monotonem razredu) Naj bo \mathcal{F} σ -algebra in $\mathcal{M} \subset \mathcal{F} \setminus \mathcal{B}_{[0,\infty]}$. Ce velja

- 1. $\mathbb{1}_A \in \mathcal{M} \ \forall A \in \mathcal{F}$
- 2. \mathcal{M} je konveksen stozec; tj. $af + g \in \mathcal{M} \ \forall a \in [0, \infty] \ \forall f \in \mathcal{M} \ \forall g \in \mathcal{M}$
- 3. \mathcal{M} zaprt za \uparrow limite; tj. $\lim_{n\to\infty} f_n \in \mathcal{M} \ \forall \ zaporedje \ (f_n)_{n\in\mathbb{N}} \ v \ \mathcal{M}$

Potem je $\mathcal{M} = \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$.

Dokaz. Po 1. in 2. \mathcal{M} vsebuje vse \mathcal{F} -enostavne funkcije. Vsaka funckija iz $\mathcal{F}\setminus\mathcal{B}_{[-\infty,\infty]}$ je po trditvi 1.41 ↑-limita \mathcal{F} -enostvnih funkcij in zato pripada \mathcal{M} po 3.

Trditev 1.55. (Doob-Dynkinova faktorizacijska lema) Naj bo $X: \Omega \to A$ in (A, A)

merljiv prostor. Potem je
$$Y \in X^{-1}(\mathcal{A}) \setminus \mathcal{B}_{[-\infty,\infty]} \iff \left(\exists h \in \mathcal{A} \setminus \mathcal{B}_{[-\infty,\infty]}, dajeY = \underbrace{h \circ X}_{h(X)} \right).$$

$$Dokaz. \ (\Leftarrow) : X \in X^{-1}(\mathcal{A}) \backslash \mathcal{A} \text{ in } h \in \mathcal{A} \backslash \mathcal{B}_{[-\infty,\infty]} \Rightarrow \text{(po trditvi 1.21)} \ h \circ X \in X^{-1}(\mathcal{A}) \backslash \mathcal{B}_{[-\infty,\infty]}.$$

$$(\Rightarrow) : \text{Dopisi}$$

Posledica 1.56. $\mathcal{M} = X^{-1}(\mathcal{A}) \setminus \mathcal{B}_{[0,\infty]}$

Za splosen $Y \in X^{-1}(\mathcal{A}) \backslash \mathcal{B}_{[-\infty,\infty]}$ je $\{Y^+, Y^-\} \subset X^{-1}(\mathcal{A}) \backslash \mathcal{B}_{[0,\infty]}$, zato po pravkar dokazanem obstoju h_+, h_- iz $X^{-1}(\mathcal{A}) \backslash \mathcal{B}_{[0,\infty]}$ sledi, da je . . .

Definicija 1.57. Naj bo $D \subset 2^{\Omega}$. D je Dynkinov (tudi λ -) sistem na $\Omega \iff \Omega \in D$ in $(B \setminus A \in D$ za $D \ni A \subset B \in D)$ in $(\bigcup_{i \in \mathbb{N}} A_i \in D \forall \uparrow \text{zaporedje}(A_i)_{i \in \mathbb{N}} vD)$. D je π -sistem $\iff D$ je zaprta za cap.

Zgled 1.58. $\{(-\infty, a] : a \in \mathbb{R}\}$ je π -sistem.

Trditev 1.59. Naj bo $D \subset 2^{\Omega}$. D je Dynkinov sistem na $\Omega \iff \Omega \in D$, D je zaprt za c^{Ω} , $\bigcup_{i \in \mathbb{N}} A_i \in D \forall$ zaporedje $(A_i)_{i \in \mathbb{N}}$ v D ki ima $A_i \cap A_j = \emptyset$ za $i \neq j$ iz \mathbb{N} .

... dopolni

1.1.6 Lebesque-Stieltsove mere

Izrek 1.60. (Lebesque-Stieltsove mere)

$$Dokaz$$
. pisi

Definicija 1.61. Meri μ iz izreka pravimo Lebesque-Stieltsova mera prirejena F in jo oznacimo z dF. ($\mathcal{L} := d(id_{\mathbb{R}})$ je Lebesquova mera na \mathbb{R} , ne obstaja razsiritev \mathcal{F} na mero na ($\mathbb{R}, 2^{\mathbb{R}}$)).

Trditev 1.62. Naj bo $F: \mathbb{R} \to \mathbb{R}$ nepadajoca in zvezna z desne. Mera dF je: σ -koncna; koncna $\iff F$ je omejena verjetnostna $\iff \lim_{\infty} F - \lim_{-\infty} F = 1$ Za $x \in \mathbb{R}$ je d $F(\{x\}) = F(x) - \underbrace{F(x-)}_{\text{leva limita } F \text{ } v \text{ } x}$

Dokaz. σ-koristnost: $\bigcup_{n\in\mathbb{Z}}(n,n+1]=\mathbb{R}\ dF((n,n+1])=F(n+1)-F(n)\leq\infty\forall n\in\mathbb{Z}$ poglej v skripto Od tod dobimo karakterizacijo koncnosti dF in kdaj je dF verjetnostna mera.

Za $x \in \mathbb{R}$ je $(x - \frac{1}{n}, x] \downarrow \{x\}$, ko gre $n \to \infty$ cez \mathbb{N} in zato je po zveznosti dF od zgoraj na mnozicah s koncno mero $dF(\{x\}) = \lim_{n \to \infty} dF((x - \frac{1}{n}, x]) = \lim_{n \to \infty} F(x) - F(x - \frac{1}{n})$.

Zgled 1.63. skripta

Zgled 1.64. skripta (Contorjeva mnozica)

1.2 Integracija na merljivih prostorih

Zgled 1.65. (nevem ce je zgled) Naj bo \mathcal{P} particija Ω in $\mu': \mathcal{P} \to [0, \infty)$ in $f': \mathcal{P} \to [0, \infty)$ (μ je mera na $\sigma_{\Omega}(\mathcal{P}) = \{ \cup Q : Q \in 2^{\mathcal{P}} \}; \ \mu(\cup Q) := \sum_{p \in Q} \mu'(p) \text{ za } Q \subset \mathcal{P} \}, \ (f: \Omega \to [0, \infty); f(\omega) = f'(p) \text{ za } \omega \in p \in \mathcal{P} \}$ Potem je $\sum_{p \in \mathcal{P}} f'(p) \cdot \mu'(p) = \sum_{r \in \mathcal{Z}_f} r \cdot \mu(\underbrace{\{f = r\}\}}_{f^{-1}(\{r\})}).$

tukej sta se dve interpretaciji tega

 $\sum_{p\in\mathcal{P}} f'(p)\mu'(p) = \int_a^b f(z)dz$ Riemann - Darbouxov integral odsekoma konstantne funckije $f:[a,b]\to[0,\infty)$.

1.2.1 Lebesqueov integral

Definicija 1.66. Naj bo $(\Sigma, \mathcal{F}, \mu)$ prostor z mero in $f \in \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$

• Ce je f \mathcal{F} -enostvna, potem je

$$\int f d\mu := \sum_{a \in \mathcal{Z}_f} a \cdot \mu(\underbrace{\{f = a\}}_{f^{-1}(\{a\})})$$

• Ce f ni \mathcal{F} -enostvna in $f \geq 0$ definirana, potem je

$$\int f d\mu := \sup \{ \int q d\mu : q \text{ je } \mathcal{F}\text{-enostvna in } q \leq f \}$$

• Ce f ni ≥ 0 , potem je

$$\int f d\mu := \int f^+ d\mu - \int f^- d\mu$$

 $\int f d\mu$ pravimo integral f proti μ (tudi pricakovana vrednost, ce je μ verjetnostna mera). Druge notacije za $\int f d\mu$ so $\mu[f] := \mu^x[f(x)] := \int f(x)\mu(dx)$.

Za
$$A \in \mathcal{F}$$
 pisemo $\mu[f;A] := \mu^x[f(x); x \in A] := \int_A f(x)\mu(dx) := \int f \mathbb{1}_A d\mu$.

Definicija 1.67. Integral f proti μ je dobro definiran $\iff \int f^+ d\mu \vee \int f^- d\mu < \infty$. f je μ -integrabilen $\iff \int f^+ d\mu \vee \int f^- d\mu < \infty$.

Definicija 1.68. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero.

$$\mathcal{L}^1(\mu) := \{ f \in \mathcal{F} \setminus \mathcal{B}_{\mathbb{R}} : f \text{ je } \mu \text{ integrabilna} \}.$$

Za $g: \Omega \to \mathbb{C}$ za katero je $\{\Re g, \Im g\} \subset \mathcal{L}^1(\mu)$ je $\int g d\mu := \int \Re g d\mu + i \int \Im g d\mu$.

Izrek 1.69. Naj bo $(\Omega, \mathcal{F}, \mu)$ prostor z mero. Integral ima sledece lastnosti.

- 1. Aditivnost: $\int (f+g)d\mu = \int f d\mu + \int g d\mu \ za \ \{f,g\} \subset \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]} \ take, \ da \ je \int f^{-1}d\mu \vee \int g^{-1}d\mu < \infty.$
- 2. Integral indikatorja: $\int \mathbb{1}_A d\mu = \mu(A)$ za $\forall A \in \mathcal{F}$. (V posebnem je $\int 0 d\mu = 0$ in torej $\int f d\mu = \int f^+ d\mu \int f^- d\mu$ za vse $f \in \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$)
- 3. Integrali, ki so nic, ki so koncni: Za $f \in \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$ je $\int f d\mu = 0 \iff \mu(f > 0) = 0$ (f je skoraj povsot glede na μ), Ce $\int f d\mu < \infty \Rightarrow \mu(f = \infty) = 0$ (f $< \infty$ skoraj povsot glede na μ .)
- 4. Trikotniska neenakost: $|\int f d\mu| \leq \int |f| d\mu$ za $\forall f \in \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$ za katere je $\int |f| d\mu < \infty$.
- 5. Integral ne vidi mnozic z mero 0: Ce je $\int f d\mu = \int g d\mu$ za $\{f, g\} \subset \mathcal{F} \setminus \mathcal{B}_{[-\infty,\infty]}$ za katere je f = g skoraj povsot glede na μ ($\mu(f \neq g) = 0$)
- 6. Monotonost:
- 7. Homogenost: