- Please print on Green Paper and/or save on the M Drive alongside your examination paper. Mark if Bookwork (B), Unseen (U) or Synthesis (S) and include mark scheme. Please separate questions parts (a,b,c etc) with horizontal lines
- (2)
- (3)
- *(4)* This paper may be second marked so please produce clear, legible answers and mark schemes.

Answers by:

Module Code stating section (i.e. *PHY250 (a)*): Period of Examination: Autumn/Spring/Resit (delete as appropriate)

Year:

Question number:

* CUANGE PROBLEM 1 &

	CHANGE PROBLEM I 9		
<u>Part</u>	per wint phicial crea.	<u>Mark</u>	<u>B/U/S</u>
1	Total Liver sof the = L titul Meanined flux of all items in the a		
	set Kepler: a unit physical area:		
	$F = \frac{L}{4\pi d\rho} \cdot \frac{1}{(1+2)^2}$		
	For wolid angle:	:	
	et Suy, at reddift & 1 kpc corresponds		
	to O degrees:		
	$O = \frac{1}{d_A} \qquad d_A = \frac{d_P}{(1+2)}$		
	$O = \frac{l(1+2)}{dp}$		
	So, at 2, the stars in I rg. Kpc		į
	are uppend over 5 a rolid engle of:		
	$Q^2 = \frac{\ell^2 (1+2)^2}{d\rho^2}$		
	$\frac{1}{dp^{2}} = \frac{1}{4ndp^{2}} \cdot \frac{dp^{2}}{(1+z)^{2}}$ $\frac{1}{2} \cdot \frac{dp^{2}}{(1+z)^{2}} \cdot \frac{dp^{2}}{(1+z)^{2}}$		
	$=\frac{L}{4\pi\left(1+z\right)^{2}}$		

- Please print on Green Paper and/or save on the M Drive alongside your examination paper. Mark if Bookwork (B), Unseen (U) or Synthesis (S) and include mark scheme. Please separate questions parts (a,b,c etc) with horizontal lines This paper may be second marked so please produce clear, legible answers and mark schemes. (1)
- (2)
- (3)
- (4)

Module Code stating section (i.e. PHY250 (a)): Period of Examination: Autumn/Spring/Resit (delete as appropriate) Question number:

Notes for external examiner/marker:

Answers by: Year:

<u>Part</u>		<u>Mark</u>	B/U/S
2	I only have to worny when the		
	differente between de & d. is		
	greater then about 10%;		
	Oct de de 2 = dp 61+2)		
	$\frac{dL^2}{d\rho^2} = (1+2)^2$		
	$\frac{d^2}{d\rho^2} < 1.1$ $(1+2)^2 < 1.1$		
	1+2 = 1.049		
	2 < 0.049	-	
	V = 14642 Km/s		
	ZIG MPC		
	Winger?		
	The Lorna Supercluster of galaxies is 99 Mpc		
	away. To se I need to wormy about		
	which distance I need to me when		
	culturating the humanity of galocies in		
	the lower cluster?		

- Please print on Green Paper and/or save on the M Drive alongside your examination paper. Mark if Bookwork (B), Unseen (U) or Synthesis (S) and include mark scheme. Please separate questions parts (a,b,c etc) with horizontal lines
- (3)
- *(4)* This paper may be second marked so please produce clear, legible answers and mark schemes.

Module Code stating section (i.e. *PHY250 (a)*): Period of Examination: Autumn/Spring/Resit *(delete as appropriate)* Question number:

Answers by: Year:

Part		Mark	B/11/9
<u>- un</u>	$\left(\frac{\dot{a}}{a}\right)^2 = \frac{8\pi L}{3c^2} \sum_{i=1}^{\infty} \frac{\kappa c^2}{R_o^2} \cdot \frac{1}{a^2}$	<u>IVIAI K</u>	<u>B/O/3</u>
	$\mathcal{E}_{i} = \mathcal{E}_{i,o} \alpha$ $\mathcal{E}_{i,o} = \Omega_{i,o} \mathcal{E}_{e,o}$		
	= 10,0 Ec,0 a-3c		
	$\left(\frac{\dot{\alpha}}{a}\right)^2 = \frac{8\pi G}{3c^2} \mathcal{E}_{c,o} \sum_{\alpha \neq i,o} \alpha - \frac{\kappa c^2}{R_o^2} \cdot \frac{1}{\alpha^2}$		
	$H_o^2 = \frac{8\pi G}{3c^2} \epsilon_{c,o} = 2 \epsilon_{c,o} = \frac{3u_o^2c^2}{8\pi G}$		
	\\ \frac{a^2}{a^2} = \frac{\beta + \beta}{3\psi} - \frac{\beta u_0^2 \gamma^2}{8\psi \psi} \geq \frac{\beta u_0^2 \gamma^2}{8\psi \psi} \geq \frac{\beta u_0^2 \gamma^2}{8\psi \psi} \frac{\beta u_0^2 \gamma^2}{8\psi \psi} \frac{\beta u_0^2 \gamma^2}{8\psi \psi} \frac{\beta u_0^2 \gamma^2}{8\psi \psi} \frac{\beta u_0^2 \gamma^2}{8\psi \psi} \frac{\beta u_0^2 \gamma^2}{8\psi \psi} \frac{\beta u_0^2 \gamma^2}{8\psi \psi} \		1
	$= u_0^2 \sum \pi_{i,o} \alpha^{-x_i} - \frac{\kappa c^2}{R_0^2} \cdot \frac{1}{\alpha^2}$		
	$\dot{\alpha}^2 = N_0^2 \sum \Omega_{i,0} \alpha^{-3i+2} - \frac{Kc^2 \alpha^2}{N_0^2}$		
	SET -2K,0 = -Kc2 Won.2		
	$a^{2} = H_{0}^{2} \left[-\Omega_{m,0} a^{-3+2} + \Omega_{p,0} a^{-4+2} \right]$		
	+ 12,0 a2 + 21,0]		
	a= 40° [2 m,0 a-1 + 22p,0 a-2 + 52p,0 + 52d)	.0 a ²]

- Please print on Green Paper and/or save on the M Drive alongside your examination paper. Mark if Bookwork (B), Unseen (U) or Synthesis (S) and include mark scheme. Please separate questions parts (a,b,c etc) with horizontal lines
- (2)
- (3)
- This paper may be second marked so please produce clear, legible answers and mark schemes. (4)

Module Code stating section (i.e. PHY250 (a)):

Notes for external examiner/marker:

Period of Examination: Autumn/Spring/Resit (delete as appropriate)

Question number:

Answers by: Year:

Pe	<u>irt</u>		Mark	B/U/S
-	3	4 à = 10° [200,0 + 12 k,0]	<u> </u>	<u> </u>
		14 K = +1, SZK, 0 < 1		
	l _e	s) At small a, the matter and radiation		
		components dominate, but us a increuses		
		the term is brackets approaches & which		
		corresponds to da = \$\phi\$, meaning a		
		reaches a maximum. Beaute we con't		
		have an imaginary da, the only way		
		to continue is for a to elemence again,		
		who with the decrease a minor-cinage of		
		the inexerie.		į
35	标			
28				
			:	
Ц.	<u></u>			

- Please print on Green Paper and/or save on the M Drive alongside your examination paper. Mark if Bookwork (B), Unseen (U) or Synthesis (S) and include mark scheme.
- (2)
- Please separate questions parts (a,b,c etc) with horizontal lines (3)
- (4) This paper may be second marked so please produce clear, legible answers and mark schemes.

Module Code stating section (i.e. PHY250 (a)):

Period of Examination: Autumn/Spring/Resit (delete as appropriate)

Question number:

Answers by: Year:

<u>Part</u>		<u>Mark</u>	B/U/S
3	c) då = då, då		
	dt da de		
	za.ä		
	$\frac{d(\text{Rus}) = \text{Ho}^2 \left[-\Omega_{\text{mod}} \frac{d\alpha^{-1}}{dt} + \Omega_{\text{p,o}} \frac{d\alpha^{-2}}{dt} \right]}{dt}$		
	$\frac{d\alpha'}{dt} = \frac{d\alpha'}{da} \cdot \frac{d\alpha}{dt} = -\alpha^{-2} \dot{\alpha}$		
	$\frac{da^2}{dt} = \frac{da^2}{da} \cdot \frac{da}{dt} = 2a \dot{a}$		
	2 di a = 40° [-2m, 0 a 2 di + 2a di 29,0]		
	Za = Vo [Za 17,0 - 2m,0 a]		
	For the Accordation		
	2 a 27,0 - 2 m,0 a -2 > 0		
	Za 127,0 > @ 2m, a a - 2		
	a=1 2 s29,0 > s2m,0		
	20,0 > 2m,0		

- (1) Please print on Green Paper and/or save on the M Drive alongside your examination paper.
- (2) Mark if Bookwork (B), Unseen (U) or Synthesis (S) and include mark scheme.
- (3) Please separate questions parts (a,b,c etc) with horizontal lines
- (4) This paper may be second marked so please produce clear, legible answers and mark schemes.

Module Code stating section (i.e. *PHY250 (a)*): Period of Examination: Autumn/Spring/Resit (delete as appropriate)

Answers by: Year:

Question number:

<u>Part</u> Mark B/U/S $\frac{d}{da} \left(\frac{\dot{a}}{a} \right)^2 = \frac{8nC}{3c^2} \epsilon_0 a^{-3}$ 4 à = \\ \frac{3}{2} \\ \frac{2}{2} \\ a 2 da = \[\frac{84680}{22} dt \] Sa2 da = 8 x 6 E. E. $\frac{3}{3} \propto \frac{2}{3} \left[\alpha^{3} \right]' = \sqrt{\frac{8\pi G \epsilon_0}{3c^2}} \epsilon_0$ $\frac{2}{3} = \sqrt{\frac{8\pi G \epsilon_0}{3^2}} \epsilon_0$ Uo = 8H6E0 2 = 40 to Kora 110 = = = to to = 13.4 × 109 × 365.25 × 24 × 3600 s = 4.26×10175 No = 48.35 Km/s/Mpc

- Please print on Green Paper and/or save on the M Drive alongside your examination paper. Mark if Bookwork (B), Unseen (U) or Synthesis (S) and include mark scheme. Please separate questions parts (a,b,c etc) with horizontal lines (1)
- (2)
- (3)
- This paper may be second marked so please produce clear, legible answers and mark schemes. (4)

Notes for external examiner/marker:

Module Code stating section (i.e. *PHY250 (a)*): Period of Examination: Autumn/Spring/Resit (delete as appropriate)

Question number:

Answers by: Year:

<u>Part</u>	Mark	B/U/S
5	a, Redshifts are and cary to measure, and	
	c is well known, to these unt any	
	problems calculations the velocities of	
	high redshift objects.	
	As ruch, there must have been regitements	
	errors of an the distance estimates.	
	This would have arrive due to assumptions	
	in the intrince luminosities of standard	
	condles of riges of standard rulens.	
	b) Since to ~ 1 , a higher No implees a smaller to.	
	No	
	No implees a maller to.	
	4 40 is a factor of NAD NA	
	times longer, this implies	
	er to of 1 2 Cyr.	
	As well, and the of a Benchmark	
	model with 40 = 500 Km/s/Mpc	
	imples a Universe that is 2 Gyr	
	old.	
	There are rocks in your garden	
	older than that!	

- Please print on Green Paper and/or save on the M Drive alongside your examination paper. Mark if Bookwork (B), Unseen (U) or Synthesis (S) and include mark scheme.
- (2)
- Please separate questions parts (a,b,c etc) with horizontal lines (3)
- This paper may be second marked so please produce clear, legible answers and mark schemes. (4)

Module Code stating section (i.e. PHY250 (a)):

Period of Examination: Autumn/Spring/Resit (delete as appropriate)

Year:

Answers by:

Question number:

<u>Part</u>		A A	D#1/0
<u>ran</u>		<u>Mark</u>	B/U/S
1			
1			
1			
		ļ	
1	·		
	·	ļ	
		1	
1	· ·		
			l i
1			
		İ	
1			
1			
l			
		j	
l			
	·		
			ĺ
			1
		l	
	1		
			j
	 		1
			ŀ