CLAIMS

What is claimed is:

1	1. A process comprising:
2	in a substrate, forming a first isolation structure spaced-apart from a
3	second isolation structure;
4	forming an emitter stack between the first and second isolation
5	structures;
6	in the substrate, forming a self-aligned recess between the emitter
7	stack and the first isolation structure; and
8	forming a bipolar junction transistor between the first and second
9	isolation structures.
1	2. The process according to claim 1, further including:
2	implanting a self-aligned collector tap in the self-aligned recess.
1	3. The process according to claim 1, wherein forming a self-aligned
2	recess further includes:
3	patterning a mask that exposes a portion of the first isolation
4	structure, a portion of the emitter stack, and a portion of the substrate located
5	between the first isolation structure and the emitter stack; and
6	etching the self-aligned recess with an etch recipe that is more
7	selective to the first isolation structure and the emitter stack than to the
8	substrate.
1	4. The process according to claim 1, wherein forming a self-aligned
2	recess further includes:
3	patterning a mask that exposes a portion of the first isolation
4	structure, a portion of the emitter stack, and a portion of the substrate located
5	between the first isolation structure and the emitter stack; and

6		anisotropically etching the self-aligned recess with an etch recipe that	
7	is more selective to the first isolation structure and the emitter stack than to		
8	the substrate.		
1	5.	The process according to claim 1, wherein implanting a self-aligned	
2	collector tap in	the self-aligned recess includes:	
3		patterning a mask that exposes at least a portion of the first isolation	
4	structur	re and the emitter stack; and	
5		implanting a dopant into the substrate that is exposed by the self-	
6	aligned	recess.	
1	6.	The process according to claim 1, wherein implanting a self-aligned	
2	collector tap in the self-aligned recess includes:		
3		patterning a mask that exposes at least a portion of the first isolation	
4	structur	re and the emitter stack; and	
5		implanting a dopant into the substrate that is exposed by the recess,	
6	wherein	n implanting results in a P collector tap, a P- collector tap, a P	
7	collecto	or tap, a P+ collector tap, a P++ collector tap, an N collector tap, an	
8	N- coll	ector tap, an N collector tap, an N+ collector tap, and an N++	
9	collecto	or tap.	
. 1	7.	The process according to claim 1, wherein forming the bipolar	
2	junction transi	stor between the first and second isolation structures includes:	
3		in the substrate, forming an epitaxial layer;	
4		forming a polysilicon film above the epitaxial layer; and	
5		patterning the polysilicon film into emitter polysilicon.	
1	8.	The process according to claim 1, wherein forming the bipolar	
2	junction transi	stor between the first and second isolation structures includes:	
3		in the substrate, forming an epitaxial layer;	
4		forming a polysilicon film above the epitaxial layer;	

5		patterning the polysilicon film into emitter polysilicon; and
6	•	forming a spacer on the emitter stack.
1	9.	The process according to claim 1, wherein forming the bipolar
2	junction transi	stor between the first and second isolation structures includes:
3		in the substrate, implanting a collector structure;
4		in the substrate, forming an epitaxial layer;
5		forming a polysilicon film over the epitaxial layer; and
6		patterning the polysilicon film into emitter polysilicon, wherein the
7	emitter	polysilicon is disposed above the collector structure.
1	10.	The process according to claim 1, wherein forming an emitter stack
2 ,	includes:	
3		in the substrate, forming an epitaxial layer;
4		forming a polysilicon film above the epitaxial layer;
5		patterning the polysilicon film into emitter polysilicon, wherein
6	pattern	ing the polysilicon film into emitter polysilicon further includes:
7	•	patterning a hard mask above the polysilicon film.
1	11.	The process according to claim 1, wherein forming an emitter stack
2	includes:	
3		in the substrate, forming an epitaxial layer;
4		forming a dielectric layer above the epitaxial layer;
5		forming an emitter cut in the dielectric layer;
6		forming a polysilicon film above the epitaxial layer; and
7		patterning the polysilicon film into emitter polysilicon.
1	12.	The process according to claim 1, further including:
2		in the substrate, forming a buried layer.

1		13.	A bipolar junction transistor comprising:
2			in a substrate, a first isolation structure spaced apart from a second
3		isolatio	on structure;
4			an emitter stack disposed above the substrate and between the first
5		isolatio	on structure and the second isolation structure;
6			a recess disposed adjacent and between the emitter stack and the first
7		isolatio	on structure, wherein the recess exposes a collector tap.
	•		
1		14.	The bipolar junction transistor according to claim 13, further
2	includi	ng:	
3			a spacer disposed on the emitter stack, wherein the spacer extends on
4	one side thereof into the recess between the emitter stack and the first		
5		isolatio	on structure.
			•
1		15.	The bipolar junction transistor according to claim 13, further
2	includi	ng:	
3			a spacer disposed on the emitter stack, wherein the spacer extends on
4		one sid	le thereof into the recess between the emitter stack and the first
5		isolatio	on structure, and wherein the spacer is selected from an oxide, a
6		nitride	, an oxide first layer and a nitride second layer, a nitride first layer and
7		an oxi	de second layer, an oxide first layer and an oxide second layer, and a
8		nitride	first layer and a nitride second layer.
1		16.	The bipolar junction transistor according to claim 13, further
2	includ	ing:	
3			a spacer disposed on the emitter stack, wherein the spacer extends on
4		one sid	le thereof into the recess between the emitter stack and the first
5		isolati	on structure, and wherein the spacer is further disposed on the first
6		isolati	on structure and extends into the recess.

I	17.	The bipolar junction transistor according to claim 13, further
2	including:	
3		a buried layer disposed in the substrate between the first isolation
4	structu	are and the second isolation structure.
	8	
1	18.	The bipolar junction transistor according to claim 13, further
2	including:	
3		in the substrate, an epitaxial base layer disposed below the emitter
4	stack;	
5		a collector structure disposed in the substrate below the emitter stack;
6	and	
7		an intrinsic base structure disposed between the emitter stack and the
8	collect	tor structure.
		· ·
1	19.	The bipolar junction transistor according to claim 13, further
2	including:	
3		in the substrate, an epitaxial base layer disposed below the emitter
4	stack;	
5		a collector structure disposed in the substrate below the emitter stack;
6		a dielectric layer disposed above the substrate and below the emitter
7	stack,	wherein the dielectric layer includes an emitter cut disposed above the
8	collect	tor structure; and
9		an intrinsic base structure disposed between the emitter cut and the
0	collect	tor structure.
1	20.	The bipolar junction transistor according to claim 13, further
2	including:	
3		in the substrate, a collector tap disposed in the recess, wherein the
4	collect	tor tap is selected from a P collector tap, a P- collector tap, a P
5	collect	tor tan, a P+ collector tan, a P++ collector tan, an N collector tan, an

0	N- colle	N- collector tap, an N collector tap, an N+ collector tap, and an N++		
7	collecto	or tap.		
1	21.	The bipolar junction transistor according to claim 13, wherein the		
2	substrat	te includes a bipolar-complementary metal oxide semiconductor		
3	(BiCM	OS) structure.		
1	22.	The bipolar junction transistor according to claim 13, wherein the		
2	BJT is selected	from a monojunction BJT device and a heterojunction BJT device.		
1	23.	A bipolar junction transistor (BJT) layout comprising:		
2		an epitaxial base layer perimeter;		
3		an emitter stack perimeter disposed above the base layer perimeter;		
4	and			
5		a collector tap perimeter, wherein the emitter stack perimeter and the		
6	collecto	or tap perimeter share a co-linear first boundary.		
1	24.	The BJT layout according to claim 23, wherein the emitter stack		
2	perimeter and t	the epitaxial base layer perimeter intersect.		
1	25.	The BJT layout according to claim 23, wherein the collector tap		
2	perimeter shares a co-linear second boundary and a co-linear third boundary with			
3	the epitaxial ba	ase layer perimeter.		
1	26.	The BJT layout according to claim 23, further including:		
2		a base tap perimeter, wherein the base tap perimeter is enclosed by		
3	the epitaxial base layer perimeter.			