# 智能制造大数据技术实践

Practices of Big Data Technology in Intelligent Manufacturing

课程实践:TEP仿真实验

**Practice Part: TEP Simulation** 

胡文凯 wenkaihu@cug.edu.cn



### 实验目标

- □ 了解工业过程数据特点和典型质量问题,练习并掌握工业数据分析常用方法
- □ 掌握数据预处理方法,包括数据平滑、离群点检测和处理、数据变换、数据缩 减等
- □ 熟悉常用的数据可视化工具,能够运用不同方法对数据进行可视化分析,并观察数据特征
- □ 掌握数据基本统计和关联度分析方法
- □ 掌握其他数据处理与分析方法,如回归分析、分类分析等

### 实验总体安排

- > 线上讲解
  - □ 总体任务安排介绍和TEP模型学习
- > 线下实验
  - □ 数据预处理和可视化仿真实验
  - □ 参数预测仿真实验
  - □ 故障诊断仿真实验

### > 模型介绍

根据实际化学反应过程,美国 Eastman 公司开发了开放的化学模型模拟平台-TEP仿真平台。其生成数据具有时变性、强耦合、非线性等特点,被广泛应用于复杂系统的控制和故障诊断测试。

#### TE过程包括五个部分:

- 1) 反应器
- 2) 冷凝器
- 3) 压缩机
- 4) 分离器
- 5) 解吸塔

depts.washington.edu/control/LARRY/T E/download.html#Basic TE Code



### > 模型介绍

利用Matlab的TEP\_Model生成不同故障的过程信号。该过程共有11个操纵变量(XMV1~11), 41个测量变量,有6种运行模式。

反应起始物包括四种: A、C、D、E

目标生产物:G、H

副产物: F

$$A(g) + C(g) + D(g) \rightarrow G(g)$$
 Product1, 产品 1  
 $A(g) + C(g) + E(g) \rightarrow H(g)$  Product2, 产品 2  
 $A(g) + E(g) \rightarrow F(Iiq)$  Byproduct, 副产品  $3D(g) \rightarrow 2F(Iiq)$  Byproduct, 副产品

表1 TE化工过程操作模式

| 操作模式 | 产品中G和H比值 | G/H 的生产率(流 11)      |
|------|----------|---------------------|
| 1    | 1:1      | 7038kg/h 和 7038kg/h |
| 2    | 1:9      | 1408kg/h和 12669kg/h |
| 3    | 9:1      | 1000kg/h 和 1111kg/h |
| 4    | 1:1      | 最大值                 |
| 5    | 1:9      | 最大值                 |
| 6    | 9:1      | 最大值                 |
|      |          | ·                   |

### > 模型介绍

利用Matlab的TEP\_Model生成不同故障的过程信号。该过程共有11个操纵变量(XMV1~11), 41个测量变量,有6种运行模式。

#### 表3 22个过程变量的信息

表2 52个过程信号的信息

|   | 代号                   |
|---|----------------------|
| 1 | 控制变量<br>(XMV1~11)    |
| 2 | 过程变量<br>(XMEAS1~22)  |
| 3 | 成分变量<br>(XMEAS23~41) |

| 变量名  | 变量含义       | 基础值     | 单位           | 低报警限    | 高报警限    |
|------|------------|---------|--------------|---------|---------|
| Fl   | A物料流量      | 0.25052 | kscmh        | 0.15758 | 0.34291 |
| F2   | D 物料流量     | 3664.0  | kg/h         | 3557.1  | 3765.9  |
| F3   | E 物料流量     | 4509.3  | kg/h         | 4394.7  | 4627.3  |
| F4   | A、C 混合物料流量 | 9.3477  | kscmh        | 9.1050  | 9.5833  |
| F5   | 回收流量       | 26.902  | kscmh        | 26.287  | 27.517  |
| F6   | 反应釜进料流量    | 42.339  | kscmh        | 41.666  | 42.989  |
| P7   | 反应釜压力      | 2705.0  | kP a gauge   | 2685.0  | 2726.3  |
| LS   | 反应釜液位      | 75.00   | %            | 73.43   | 76.60   |
| T9   | 反应釜温度      | 120.40  | $^{\circ}$ C | 120.34  | 120.45  |
| Pr10 | 放空率        | 0.3372  | kscmh        | 0.3734  | 0.3003  |
| T11  | 产品分离器温度    | 80.109  | $^{\circ}$ C | 80.771  | 79.401  |
| L12  | 产品分离器液位    | 50.000  | %            | 46.834  | 53.025  |
| P13  | 产品分离器压力    | 2633.7  | kP a gauge   | 2612.9  | 2655.9  |
| F14  | 产品分离器出口流量  | 25.160  | m³/h         | 22.068  | 28.304  |
| L15  | 汽提塔液位      | 50.000  | %            | 46.836  | 53.081  |
| P16  | 汽提塔压力      | 3102.2  | kP a gauge   | 3084.3  | 312.4   |
| F17  | 汽提塔出口流量    | 22.949  | m³/h         | 21.104  | 24.710  |
| TIS  | 汽提塔温度      | 65.731  | $^{\circ}$ C | 64. 462 | 67.245  |
| F19  | 汽提塔蒸汽流量    | 230.31  | kg/h         | 201.64  | 266.39  |
| T21  | 反应釜冷却水出口温度 | 94.599  | °C           | 94.220  | 94.990  |
| T22  | 分凝器冷却水出口温度 | 77.297  | $^{\circ}$   | 76.493  | 78.066  |

#### 表4 19个成分变量的信息

| 变量号       | 描述   | 流号 | 基本模式值   | 单位   |
|-----------|------|----|---------|------|
| XMEAS(23) | 成分A  | 6  | 32.188  | mol% |
| XMEAS(24) | 成分B  | 6  | 8.8933  | mo1% |
| XMEAS(25) | 成分 C | 6  | 26.383  | mo1% |
| XMEAS(26) | 成分D  | 6  | 6.8820  | mol% |
| XMEAS(27) | 成分E  | 6  | 18.776  | mo1% |
| XMEAS(28) | 成分F  | 6  | 1.6567  | mol% |
| XMEAS(29) | 成分 A | 9  | 32.958  | mo1% |
| XMEAS(30) | 成分B  | 9  | 13.823  | mo1% |
| XMEAS(31) | 成分 C | 9  | 23.978  | mol% |
| XMEAS(32) | 成分D  | 9  | 1.2565  | mo1% |
| XMEAS(33) | 成分E  | 9  | 18.579  | mol% |
| XMEAS(34) | 成分F  | 9  | 2.2633  | mo1% |
| XMEAS(35) | 成分 G | 9  | 4.8436  | mo1% |
| XMEAS(36) | 成分H  | 9  | 2.2986  | mol% |
| XMEAS(37) | 成分D  | 11 | 0.01787 | mo1% |
| XMEAS(38) | 成分E  | 11 | 0.83570 | mol% |
| XMEAS(39) | 成分F  | 11 | 0.09858 | mo1% |
| XMEAS(40) | 成分 G | 11 | 53.724  | mo1% |
| XMEAS(41) | 成分H  | 11 | 43.828  | mol% |

### > 模型介绍

#### TEP模型中有20个预设故障,包括15种已知故障和5种未知的故障。

表5 故障类型

| 故障序号    | 故障原因    |
|---------|---------|
| 1~ 7    | 物料阶跃型变化 |
| 8 ~12   | 随机变换    |
| 13      | 慢偏移     |
| 14, 15  | 粘住      |
| 16 ~ 20 | 未知故障    |

表6 故障具体原因

| 变量号 | 变量名                   | 类型   |
|-----|-----------------------|------|
| 1   | A/C 进料比率, B 成分不变(流 4) | 阶跃   |
| 2   | B 成分,A/C 进料比率不变(流 4)  | 阶跃   |
| 3   | D 的进料温度(流 2)          | 阶跃   |
| 4   | 反应器中冷却水的入口温度          | 阶跃   |
| 5   | 冷凝器中冷却水的入口温度          | 阶跃   |
| 6   | A 进料损失 (流 1)          | 阶跃   |
| 7   | C 存在压力损失-可用性降低(流 4)   | 阶跃   |
| 8   | A、B、C 进料成分(流 4)       | 随机变量 |
| 9   | D 的进料温度(流 2)          | 随机变量 |
| 10  | C 的进料温度(流 2)          | 随机变量 |
| 11  | 反应器中冷却水的入口温度          | 随机变量 |
| 12  | 冷凝器中冷却水的入口温度          | 随机变量 |
| 13  | 反应动态                  | 慢偏移  |
| 14  | 反应器冷却水阀门              | 粘住   |
| 15  | 冷凝器冷却水阀门              | 粘住   |
| 16  | 未知                    | 未知   |
| 17  | 未知                    | 未知   |
| 18  | 未知                    | 未知   |
| 19  | 未知                    | 未知   |
| 20  | 未知                    | 未知   |

- > 原始数据生成
  - □ 导入模态初始数据
  - □ 模态初始化
  - □ 运行TE模型
  - □ 打开对应模态simulink模块
    - 设置仿真总时间
    - 设置故障类型
    - 设置故障加入时间



- > 原始数据生成
  - □ 导入模态初始数据
  - □ 模态初始化
  - □ 运行TE模型
  - □ 打开对应模态simulink模块
    - 设置仿真总时间
    - 设置故障类型
    - 设置故障加入时间



## 任务1:数据预处理和可视化仿真实验

### ▶ 主要任务安排如下:

- □ 数据基本统计分析
  - 对原始数据进行可视化分析,分析典型数据质量问题(噪声、离群点等),比较不同变量间的 统计值差异
- □ 数据清洗
  - 对比不同的方法在数据预处理的差异,并根据数据特征进行对应操作(如噪声问题,根据数据 分布选择用合适的方法去噪声)
- □ 数据变换
  - 对数据采用不同的归一化方法,并通过可视化方法对比其差异性
  - 采用主元分析,对数据进行降维处理

## 任务1: 数据预处理和可视化仿真实验

### > 可视化图标示例

□ 通过统计分析和数据可视化,观察数据特征以及分布情况

#### plot()画出时序特征



#### histogram()画出数据分布



## 任务1: 数据预处理和可视化仿真实验

- > 可视化图标示例
  - □ 通过统计分析和数据可视化,观察数据特征以及分布情况

#### boxplot()画出箱体图



## 任务1:数据预处理和可视化仿真实验

### > 数据去噪示例

□ 根据数据特征,选用不同去噪声方法

wdenoise()小波变换去噪声



## 任务1: 数据预处理和可视化仿真实验

### > 数据归一化示例



## 任务1: 数据预处理和可视化仿真实验

### ▶ PCA降维示例



### 任务2: 参数预测仿真实验

#### ▶ 主要任务安排如下:

- □ 关联关系分析
  - 通过计算协方差、相关系数等相关性指标,计算变量的关联度,并通过可视化方法展示出来, 找出强关联变量
- □ 回归分析
  - 1)选择某种成分变量(如A物料、C物料等),根据关联关系分析,确定其相关过程测量变量
  - 2) 采用回归分析方法,建立其他解释变量关于该成分变量的预测模型
  - 3) 采用不同性能指标对分析模型进行评价,分析并对比不同回归模型性能

### 任务2: 参数预测仿真实验

> 变量相关性分析示例

□ 计算协方差(Covariance)、相关系数(Correlation Coefficient)等相关性指标,

用图将结果可视化



## 任务2: 参数预测仿真实验

- > 变量散点图及回归建模示例
  - □ 采用最小二乘方法,建立回归模型



### 任务3: 故障诊断仿真实验

- > 主要任务安排如下:
  - □ 设定不同故障类型,故障类型选择不少于5个,获得带有故障标签的数据集
  - □ 设计仿真实验
    - 选择合适的分类算法
    - 对数据进行划分,包括训练集和测试集
    - 在训练集上,训练分类器
    - 在测试集上,测试分析已训练好的分类器的性能
    - 考虑交叉验证等方法,对比不同分类算法用于故障诊断的效果

## 任务3: 故障诊断仿真实验

- > 故障诊断性能评价可视化图表示例
  - □ 利用分类算法,完成TEP模型的故障诊断,并用尝试以下图表分析诊断性能



图 ROC曲线



图 混淆矩阵

### 报告要求

- □ 实验报告要图文并茂,对于实验结果可以用图和表格表示,同时要采用文字来解释和说明,注意对图和表格要进行编号和引用
- □ 实验报告排版规范美观,注意字体、字号、字距等的调整,避免出现前后不一致的情况, 注意调整图表位置,使排版紧凑。
- □ 在实验报告最后要附上代码,且代码中要有一定注解。
- □ 实验分析和报告要独立完成