Elaborazione dei Segnali

Lezione 8

Classificazione dei sistemi a tempo discreto

Risposta all'impulso

Risposta in frequenza

Classificazione dei sistemi a tempo discreto

Relazione ingresso-uscita

Esistono diversi modi per classificare i sistemi a tempo discreto, ma tutti dipendono dalla relazione ingresso-uscita:

$$y(n) = L[x(n)]$$

- relazione matematica che definisce le modalità con cui il sistema elabora un segnale d'ingresso, x(n), al fine di fornirne una versione y(n) opportunamente modificata.
- □ I sistemi a tempo discreto possono essere classificati in base all'espressione matematica dell'operatore L [·].

Sistemi lineari

Sono sistemi che soddisfano il principio di sovrapposizione degli effetti:

$$L[\alpha_1 x_1(n) + \alpha_2 x_2(n)] = \alpha_1 L[x_1(n)] + \alpha_2 L[x_2(n)]$$

dove α_1 e α_2 sono due numeri reali arbitrari.

Sistemi tempo invarianti o stazionari

La stazionarietà implica che il segnale in uscita dal sistema dipende solamente dalla forma del segnale in ingresso ed è indipendente dagli istanti di tempo in cui il segnale viene applicato al sistema:

$$L[x(n)] = y(n) \implies L[x(n-n_0)] = y(n-n_0) \quad \forall n_0$$

- \square Se l'ingresso viene ritardato (o anticipato) di una quantità n_0 , allora anche l'uscita viene ritardata (o anticipata) della stessa quantità.
- In pratica, il sistema ha un comportamento che non cambia con il tempo.

Sistemi tempo invarianti o stazionari

- □ Relazione I/O: y(n) = x(n) + x(n-1)
- U Verifichiamo la linearità. Siano $x_1(n)$ e $x_2(n)$ due generici segnali a tempo discreto all'ingresso del sistema:

$$L[x_1(n)] = x_1(n) + x_1(n-1)$$
 $L[x_2(n)] = x_2(n) + x_2(n-1)$

Calcoliamo:

$$L[\alpha_{1}x_{1}(n) + \alpha_{2}x_{2}(n)] = \alpha_{1}x_{1}(n) + \alpha_{2}x_{2}(n) + \alpha_{1}x_{1}(n-1) + \alpha_{2}x_{2}(n-1) =$$

$$= \alpha_{1}[x_{1}(n) + x_{1}(n-1)] + \alpha_{2}[x_{2}(n) + x_{2}(n-1)]$$

$$\alpha_{1}L[x_{1}(n)] + \alpha_{2}L[x_{2}(n)] = \alpha_{1}[x_{1}(n) + x_{1}(n-1)] + \alpha_{2}[x_{2}(n) + x_{2}(n-1)]$$

☐ I due termini sono uguali, quindi il sistema è lineare.

□ Relazione I/O:

$$y(n) = x(n) + x(n-1)$$

□ Verifichiamo la stazionarietà:

$$L[x(n-n_0)] = x(n-n_0) + x(n-n_0-1)$$
$$y(n-n_0) = x(n-n_0) + x(n-n_0-1)$$

☐ I due termini sono uguali, quindi il sistema è stazionario.

☐ Relazione I/O:

$$y(n) = \sqrt{x(n)}$$

□ Verifichiamo la linearità. Siano $x_1(n)$ e $x_2(n)$ due generici segnali a tempo discreto all'ingresso del sistema:

$$L[x_1(n)] = \sqrt{x_1(n)}$$
 $L[x_2(n)] = \sqrt{x_2(n)}$

☐ Calcoliamo:

$$L[\alpha_1 x_1(n) + \alpha_2 x_2(n)] = \sqrt{\alpha_1 x_1(n) + \alpha_2 x_2(n)}$$

$$\alpha_1 L[x_1(n)] + \alpha_2 L[x_2(n)] = \alpha_1 \sqrt{x_1(n)} + \alpha_2 \sqrt{x_2(n)}$$

I due termini sono diversi, quindi il sistema non è lineare.

□ Relazione I/O:

$$y(n) = \sqrt{x(n)}$$

□ Verifichiamo la stazionarietà:

$$L[x(n-n_0)] = \sqrt{x(n-n_0)}$$

$$y(n-n_0) = \sqrt{x(n-n_0)}$$

☐ I due termini sono uguali, quindi il sistema è stazionario.

- □ Relazione I/O: $y(n) = x(n) \cdot n$
- U Verifichiamo la linearità. Siano $x_1(n)$ e $x_2(n)$ due generici segnali a tempo discreto all'ingresso del sistema:
- Calcoliamo:

$$L[x_1(n)] = x_1(n) \cdot n \qquad \qquad L[x_2(n)] = x_2(n) \cdot n$$

$$L[\alpha_1 x_1(n) + \alpha_2 x_2(n)] = [\alpha_1 x_1(n) + \alpha_2 x_2(n)]n = \alpha_1 x_1(n)n + \alpha_2 x_2(n)n$$

$$\alpha_1 L[x_1(n)] + \alpha_2 L[x_2(n)] = \alpha_1 x_1(n)n + \alpha_2 x_2(n)n$$

☐ I due termini sono uguali, quindi il sistema è lineare.

□ Relazione I/O:

$$y(n) = x(n) \cdot n$$

Verifichiamo la stazionarietà:

$$L[x(n-n_0)] = x(n-n_0) \cdot n$$
$$y(n-n_0) = x(n-n_0) \cdot (n-n_0)$$

☐ I due termini sono differenti, quindi il sistema non è stazionario.

Sistemi causali

Sono i sistemi in cui la risposta corrente, y(n), non dipende dai valori futuri dell'ingresso, cioè da termini del tipo $x(n+n_0)$, dove n_0 é una costante intera qualsiasi e strettamente positiva $(n_0 > 0)$.

- \square Relazione I/O: y(n) = x(2n)
- Il sistema non è causale, perché la sequenza di uscita y(n) dipende dai valori futuri di x(n).
 - Ad esempio, $y(2) = x(4) \rightarrow$ per calcolare l'uscita y nell'istante 2 devo conoscere il valore dell'ingresso x all'istante 4 (successivo).
- □ Relazione I/O: y(n) = x(n) + x(n-1)
- □ Il sistema è causale, perché la sequenza di uscita y(n) dipende dal valore corrente dell'ingresso x(n) e dal suo valore assunto nell'istante di tempo precedente x(n-1).

Sistemi con e senza memoria

I sistemi senza memoria sono i sistemi per cui la risposta corrente, y(n), dipende solo dal valore dell'ingresso nel medesimo istante di tempo n, e non da termini dell'ingresso negli istanti di tempo precedenti.

- ☐ Il sistema y(n)=3x(n) é senza memoria
- I sistemi y(n) = 2x(n) 3x(n-1) e y(n) = 3x(n-3) sono con memoria perché per fornire il campione di uscita in un generico istante n, devono necessariamente immagazzinare i valori che il segnale di ingresso ha assunto in alcuni istanti di tempo precedenti.
 - La memoria del sistema nei due casi precedenti è 1 e 3, rispettivamente.
- □ Il sistema $y(n) = \sum_{k=0}^{N} \alpha_k x(n-k)$ ha memoria pari a N.
 - Se $N<\infty$, il sistema è a memoria finita, altrimenti è a memoria infinita.

Risposta all'impulso di sistemi LTI

Definizione della risposta all'impulso

Un generico segnale x(n) a tempo discreto può essere rappresentato come una combinazione lineare di delta numeriche:

$$x(n) = \sum_{i = -\infty}^{+\infty} x(i) \delta(n - i)$$

- Si consideri un generico sistema LTI caratterizzato dalla relazione I/O: y(n)=L[x(n)].
- □ Applicando la trasformazione L [·] al segnale x(n) espresso come combinazione lineare di delta numeriche, si ottiene:

$$y(n) = L[x(n)] = L\left[\sum_{i=-\infty}^{+\infty} x(i)\delta(n-i)\right]$$

Definizione della risposta all'impulso

$$y(n) = L[x(n)] = L\left[\sum_{i=-\infty}^{+\infty} x(i)\delta(n-i)\right]$$

L'operatore L e la sommatoria sono entrambi lineari, quindi l'ordine può essere scambiato:

$$y(n) = L[x(n)] = \sum_{i=-\infty}^{+\infty} x(i)L[\delta(n-i)]$$

- $\mathbf{x}(i)$ è costante in $\mathbf{n} \rightarrow$ esce dall'operatore L.
- Definendo $h(n) = L[\delta(n)]$ come risposta all'impulso del sistema, e sfruttando la proprietà di stazionarietà secondo cui $h(n-n_0) = L[\delta(n-n_0)]$, si ottiene:

Definizione della risposta all'impulso

$$y(n) = \sum_{i=-\infty}^{+\infty} x(i)h(n-i) = x(n)*h(n)$$

- Tutti i sistemi LTI possono essere espressi in forma non ricorsiva
- ☐ Separando nella sommatoria i termini con indice positivo e negativo (e usando la proprietà commutativa della convoluzione), otteniamo:

$$y(n) = x(n) * h(n) = \sum_{i=-\infty}^{-1} h(i)x(n-i) + \sum_{i=0}^{+\infty} h(i)x(n-i)$$

Sistema causale

- ☐ L'uscita del sistema è composta da due contributi:
 - effetto dei campioni del segnale già entrati nel sistema all'istante $n \rightarrow$ parte causale dell'uscita
 - effetto di tutti i campioni del segnale x(n) che entreranno nel sistema in istanti successivi rispetto a $n \rightarrow parte anticausale dell'uscita$
- Se il sistema è causale, il primo termine deve essere identicamente nullo \rightarrow la risposta all'impulso è nulla per istanti di tempo n<0:

$$y(n) = \sum_{i=0}^{+\infty} h(i) x(n-i)$$

L'uscita dipende solo dal valore corrente del segnale di ingresso e dai campioni già entrati nel sistema negli istanti precedenti.

Risposta in frequenza di sistemi LTI

Definizione di risposta in frequenza

Consideriamo un generico sistema LTI, caratterizzato da una risposta all'impulso h(n), e con in ingresso un generico segnale x(n):

$$y(n) = \sum_{i=-\infty}^{+\infty} x(i)h(n-i) = x(n)*h(n)$$

- \square Ipotesi: x(n) e h(n) trasformabili mediante DTFT
- \square Applicando la DTFT a y(n), otteniamo:

$$Y(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} y(n)e^{-j\omega n}$$

Definizione di risposta in frequenza

 \square Sostituendo l'espressione di y(n) come convoluzione tra x(n) e h(n):

$$Y(e^{j\omega}) = \sum_{n=-\infty}^{+\infty} \left(\sum_{i=-\infty}^{+\infty} h(i)x(n-i) \right) e^{-j\omega n} = \sum_{i=-\infty}^{+\infty} \left(h(i) \sum_{n=-\infty}^{+\infty} x(n-i) e^{-j\omega n} \right)$$

 \square Effettuando il cambio di variabile m=n-i nella sommatoria interna:

$$Y(e^{j\omega}) = \sum_{i=-\infty}^{+\infty} \left(h(i) \sum_{m=-\infty}^{+\infty} x(m) e^{-j\omega(m+i)}\right) = \left(\sum_{i=-\infty}^{+\infty} h(i) e^{-j\omega i}\right) \left(\sum_{m=-\infty}^{+\infty} x(m) e^{-j\omega m}\right) = H(e^{j\omega}) \cdot X(e^{j\omega})$$

La DTFT del segnale in uscita è pari al prodotto delle DTFT del segnale in ingresso e della risposta all'impulso del sistema LTI.

Definizione di risposta in frequenza

☐ La funzione:

$$H(e^{j\omega}) = \sum_{i=-\infty}^{+\infty} h(i)e^{-j\omega i} = DTFT[h(n)]$$

è detta risposta in frequenza del sistema LTI.

☐ Può essere definita come:

$$H(e^{j\omega}) = \frac{Y(e^{j\omega})}{X(e^{j\omega})}$$

- ☐ La risposta in frequenza:
 - \blacksquare è una funzione complessa della variabile ω
 - soddisfa le proprietà dalla DTFT

Risposta a esponenziali complessi

Consideriamo un sistema descritto dalla convoluzione lineare discreta:

$$y(n) = x(n) * h(n) = \sum_{i=-\infty}^{+\infty} h(i)x(n-i)$$

Si suppone di avere all'ingresso il segnale: $x(n) = e^{j\omega_0 n}$ con ω_0 costante:

$$y(n) = x(n) * h(n) = \sum_{i = -\infty}^{+\infty} h(i) e^{j\omega_0(n-i)} = e^{j\omega_0 n} \sum_{i = -\infty}^{+\infty} h(i) e^{-j\omega_0 i}$$

DTFT di h(n) valutata in ω_0

Risposta a esponenziali complessi

$$y(n) = e^{j\omega_0 n} \sum_{i=-\infty}^{+\infty} h(i) e^{-j\omega_0 i} = e^{j\omega_0 n} \cdot H(e^{j\omega_0}) =$$
$$= \left| H(e^{j\omega_0}) \cdot e^{j\omega_0 n + j\phi \left[H(e^{j\omega_0}) \right]} \right|$$

- □ Le sinusoidi complesse possono essere interpretate come autofunzioni dei sistemi LTI.
- \square Quello che conta nella valutazione nella risposta del sistema LTI è la risposta in frequenza valutata solo nella pulsazione $ω_0$ della sinusoide complessa in ingresso al sistema.

Risposta a sequenze sinusoidali

Consideriamo un sistema descritto dalla convoluzione lineare discreta:

$$y(n) = x(n) * h(n) = \sum_{i=-\infty}^{+\infty} h(i)x(n-i)$$

con h(n) reale.

- Si suppone di avere all'ingresso il segnale: $x(n) = \cos(\omega_0 n + \theta)$, con ω_0 e θ costanti.
- □ Usando la relazione di Eulero:

$$x(n) = \cos(\omega_0 n + \theta) = \frac{e^{j\omega_0 n + j\theta} + e^{-j\omega_0 n - j\theta}}{2}$$

Risposta a sequenze sinusoidali

☐ Sfruttando il risultato ricavato in precedenza:

$$x(n) = e^{j\omega_0 n} \quad \Longrightarrow \quad y(n) = \left| H(e^{j\omega_0}) \cdot e^{j\omega_0 n + j\phi \left[H(e^{j\omega_0}) \right]} \right|$$

si ottiene:

$$x_{1}(n) = \frac{1}{2} e^{j\theta} e^{j\omega_{0}n} \implies y_{1}(n) = \frac{1}{2} e^{j\theta} |H(e^{j\omega_{0}})| \cdot e^{j\omega_{0}n + j\phi[H(e^{j\omega_{0}})]}$$

$$x_{2}(n) = \frac{1}{2} e^{-j\theta} e^{-j\omega_{0}n} \implies y_{2}(n) = \frac{1}{2} e^{-j\theta} |H(e^{-j\omega_{0}})| \cdot e^{-j\omega_{0}n + j\phi[H(e^{-j\omega_{0}})]}$$

□ La risposta del sistema all'ingresso sinusoidale è quindi:

$$y(n) = \frac{1}{2} e^{j\theta} |H(e^{j\omega_0}) \cdot e^{j\omega_0 n + j\phi[H(e^{j\omega_0})]} + \frac{1}{2} e^{-j\theta} |H(e^{-j\omega_0}) \cdot e^{-j\omega_0 n + j\phi[H(e^{-j\omega_0})]}$$

Risposta a sequenze sinusoidali

Ricordando le proprietà di simmetria della trasformata di segnali reali (modulo pari e fase dispari):

$$y(n) = \frac{1}{2} e^{j\theta} |H(e^{j\omega_0}) \cdot e^{j\omega_0 n + j\phi[H(e^{j\omega_0})]} + \frac{1}{2} e^{-j\theta} |H(e^{-j\omega_0}) \cdot e^{-j\omega_0 n + j\phi[H(e^{-j\omega_0})]} =$$

$$= \frac{1}{2} e^{j\theta} |H(e^{j\omega_0}) \cdot e^{j\omega_0 n + j\phi[H(e^{j\omega_0})]} + \frac{1}{2} e^{-j\theta} |H(e^{j\omega_0}) \cdot e^{-j\omega_0 n - j\phi[H(e^{j\omega_0})]} =$$

$$= \frac{1}{2} |H(e^{j\omega_0}) |[e^{j\theta} \cdot e^{j\omega_0 n + j\phi[H(e^{j\omega_0})]} + e^{-j\theta} e^{-j\omega_0 n - j\phi[H(e^{j\omega_0})]}] =$$

$$= |H(e^{j\omega_0}) \cos(\omega_0 n + \theta + \phi[H(e^{j\omega_0})])$$