NEW SYLLABUS:

Cour	18CSE3	Co urs		Cour			L	T	P	C
se Cod e	57T	e Na me	BIOMETRICS	se Categ ory	Е	Professional Elective	3	0	0	3

Pre- requisite Courses	Nil		Co- requisite Courses	Ni	I	Progressive Courses	Nil
Course O	ffering	Compu	ter science		Data Book / Codes/Standards	Nil	

			eai ng	rni	Program Learning Outcomes (PLO)				∌S											
		1	2	3	1		2	3	4	5	6	7	8	9	10	1 1	1 2	<i>1 3</i>	1 4	1 5
	At the end of this course, learners will be able to:	Thinking (Blo	Expected Proficiency (%)		-	J SILL) C	Analysis, Design, Research	\circ	society & Culture	Environment & Sustainability		Individual & Team Work	Communication	70	Life Long Learning	- NAC	2 - 021	F3U-3
CL R-1	Gain knowledge of authentication using biometrics.				-															
CL R-2	Identify the basics of biometric traits, sensors and data acquisition										.1									
CL R-3					+						1									

	Design of biometric security systems									
CL R-4	Gain knowledge on pattern recognition systems									
CL R-5	Analyze various feature extraction and matching techniques for different biological traits.									
CL R-6	Explore the real time application of biometrics									

		Learni ng Program Learning Outco					m	es											
		1	2	3		1	2	3	4	5 (6 7	7 8	9	10	1	1 2	3	1 4	<i>1 5</i>
Course Learning Outcomes (CLO):	At the end of this course, learners will be able to:	Thinking (Blo	Proficiency (Attainment (ring K	n An	z Dev	Analysis, Design, Research Modern Tool Usage	\$ C11) e	Ethics	Individual & Team Work	cation	Project Mgt. & Finance	Life Long Learning		130 - 2	PSU – 3
CL O- 1 :	Acquire the knowledge on various biometric traits (Define the basics of Biometric traits)	1	8	85		Η	-	-	-	-		-	-	-	-	-	1	<i>-</i>	
CL O- 2 :	Acquire the ability to identify pattern recognition system and its features (Analyze the various pattern recognition system and its features)	1	7 5	80			Η		M		-	-	-	-	-	-	_	-	 -
CL O- 3 :	Understand the basic ideas about physical and hehaviourial biometric traits .	1	8 5			Н	-	-	M	_		_	-	-	-	-	_	-	 -
CL O- 4 :	Apply the knowledge of biometrics on developing identification system.	2	8				-	Н	_	-			M	1 -	-	-	-	-	- -
CL O- 5 :	Apply the knowledge for designing biometric systems (Develop a Design for biometric systems)	3	7 5	8 5				Н	r	-		-	M	1 -	-	-	-	-	-
CL O- 6 :	Utilize the knowledge on authentication systems for real time security applications (Incorporate the knowledge on developing authentication systems for real world	4	8	8 5		-	-	Н	<i>T</i> -	_	- 1	M	L	_	-	-	-	-	-

security applications)	

Note: Modified content in red is the corrected CLO.

Existing Course Outcome	Course Outcome as per AICTE Exam
	Reforms
CO1: Acquire the knowledge on various	Define the basics of various biometric traits
biometric traits	
CO2: Acquire the ability to identify pattern	Analyse the various pattern recognition system
recognition system and its features	and its features
CO3: Understand the basic ideas about	Demonstrate the basic ideas of physical and
physical and behavioural biometric traits	behavioural biometric traits
CO4: Apply the knowledge of biometrics on	Apply the knowledge of biometrics on
developing identification system.	developing identification system (no change)
CO5: Apply the knowledge for designing	Develop the design for biometric system
biometric systems	
CO6: Acquire the knowledge on authentication	Incorporate the knowledge on developing
systems for real time security applications	authentication systems for real world security
	applications

	ratio nour)	9	9	9	9	9
S-	SLO -1	Introduction of biometric systems	Biometrics Sensors and Data Acquisition		Biometric system authentication	Biometric Authenticatio n Applications
1	SLO -2	Biometric functionalitie s: verification, identification	acquisition and	Sources of multiple evidence	physiological and behavioral properties of biometric system,	access control like a lock or an airport check-in area
S-	SLO -1	The design cycle of biometric systems	Biometrics Pre- processing	Acquisition sequence	Software biometrics systems	immigration and naturalization
2	DLO	Building blocks of a generic biometric system	The related biometrics preprocessi ng technologie s	Processing sequence	Hardware biometrics systems	welfare distribution
S-	-1	Introduction to unimodal	Image restoration	Fusion level	Security of biometric systems	military application

3		system				
	SLO -2	Introduction to Multimoda l biometric system	Image segmentati o n	Sensor level fusion		banking, e.g., check cashing, credit card, ATM
	SLO -1	Biometric system errors	Pattern extraction and classificatio n	Feature level fusion	Attacks at the user interface	computer login; intruder detection; smart card
S- 4	SLO -2	Performance measures	Pattern classificatio n	Score level fusion	impersonation ,obfuscation, spoofing	multi-media Communicatio n; WWW and an electronic purse
		Image processing basics	Fingerprint Recognition and acquisition	Rank level fusion	Attacks on biometric processing	sensor fusion; decision fusion
S- 5	1	what is image, acquisition, type, point operations, Geometric transformatio	Fingerprint features, matching and synthesis	Decision level fusion	Attacks on system module and interconnections	categorization : e.g., age and gender
S- 6		First and second derivative	Face recognition and acquisition	Features Matching and Decision Making	Counter measure: Biometric template security	industrial automation
	SLO -2	steps in edge detection, smoothening, enhancement,	T	Feature matching: null and alternative	Countermeasure:spoofdecte ction	gesture interpretation;

		thresholding,	And	Hypothesis		
		_	Ana matching	h0, h1, Error		
		iocaii2aiion,	maiching	type I/II,		
				* *		
				Matching		
				score		
				distribution,		
				FM/FNM,		
				ROC curve,		
				DET curve,		
				FAR/FRR		
				curve.		
		Robert's	Iris	Introduction	Challenges in biometric	
		method,	recognition	to Various		efficient
	-1	Sobel's	and	matching	falsepositives	enrollment
		method,	acquisition	methods:		
		Perwitts				
S-7			Iris			
		Laplacian of	Segmentati			
		Gaussian,	•	LDA	Developing Tools for	audio-visual
	_	Zero crossing	0 n,	LDIT	1 0 0	tracking
	_	Zero crossing			Comparing jinger prints	ir dening
			on and			
			matching			
		Low level		PCA,		
		feature	Ear	Eigen	Enhancing pattern when data	
		extraction,	recognition	vectors	is minimum	stock market;
		Describing		and		
		image motion		values,		
				2D- PCA,		
				generalizatio		
S-8				n to p-dim,		
		High level		covariance	Biometric failures in special	
		feature	Ear	and	cases like(too much moisture	on-line
	-2	extraction	detection	correlation,	*	shopping
		,Template		algebra of	read)	116
		matching		PCA,		
		maioning		´		
				projection of data		
0.0						
S-9		Hough	Hand	Introduction	Mini project: Einecommist	a a man a a t
				to decision		compact embedded
	- 1	transform for		theory and	i ace aciection	systems
		lines	features	their		
				examples		
		Hough				other

SLO	transform for	palmprint	Explanation	Mini project:signature ,iris	commercialize
-2	circles and	features	_	detection	d services
	ellipses		examples		

	1.	James wayman,Anilk.Jain		
		,ArunA.Ross ,KarthikNandakumar,	4.	Guide to
		—Introduction to. Biometrics,		Sharathl
		Springer, 2011		Andrew
Learning	2.	Mark S.Nixon, Alberto S.Aguado,		Connell,
_		Feature Extraction and image	5.	Pattern (
Resources		processing for computer vision, Third		Duda, D
		Edition, , Elsevier 2012		Hart, Wi
	3.	Digital Image Processing using	6.	Shimon
		MATIAD Day Dafa al C Care ala-		T.1 4:4

3. Digital Image Processing using MATLAB, By: Rafael C. Gonzalez, Richard Eugene Woods, 2nd Edition, Tata McGraw-Hill Education 2010

- 4. Guide to Biometrics, By: Ruud M. Bolle, SharathPankanti, Nalini K. Ratha, Andrew W. Senior, Jonathan H. Connell, Springer 2009
- 5. Pattern Classification, By: Richard O. Duda, David G.Stork, Peter E. Hart, Wiley 2007
- 6. Shimon K.Modi, —Biometrics in Identity Management: concepts to applications, Artech House 2011

Learning Assessment											
	Bloom'sLev el of Thinking	Continuous Learning Assessment (50% weightage)								Final	
		CLA – 1 (10%)		CLA – 2 (15%)		CLA – 3 (15%)		CLA – 4 (10%)#		Examination (50% weightage)	
		Theor	Practic	Theor	Practic	Theor	Practic	Theor	Practic	Theor	Practic
		y	e	у	e	у	e	у	e	у	e
Leve 11	Remember	20 %	-	20 %	-	20 %	-	20 %	-	20%	-
	Understand										
Leve	Apply	20 %	-	20 %	-	20 %	-	20 %	-	20%	-
12	Analyze										
Leve 13	Evaluate	60 %	-	60 %	-	60 %	-	60 %	-	60%	-
	Create										
	Total	100 %		100 %		100 %		100 %		100 %	

CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers				
Experts from Industry	Experts from Higher Technical Institutions	Internal Experts 1. Dr. C. Malathy, SRMIST		
1. Raghuraghavendra s, Chief Executive Officer at Forensic & Biometric Investigation Services FBIS Chennai, Tamil Nadu, India Chennai Area, India	1. Dr. J.DhaliaSweetlin Designation: Assistant Professor [Sr Grade] Madras Institute of Technology, MIT Road, RadhaNagar, Chromepet, Chennai, Tamil Nadu 600044, India. Email: jdsweetlin@mitindia.edu Area of Specialization: Image Processing, Soft Computing			
		2. M.Gayathri, SRMIST 3.Ms.Meenakshi/IT Dept,SRMIST		