Sistemas de monitorización de latencias en redes de visibilidad

J. Álvaro Garrido López

Universidad de Granada

Tutores: Javier Díaz y Miguel Jiménez

Trabajo de Fin de Grado

September 10, 2019

Índice

- 1 Introducción
- 2 Estado de la técnica
- 3 Implementación
- 4 Resultados
- 5 Conclusiones

Redes de visibilidad y aplicaciones

¿ Qué son las redes de visibilidad?

Son la infraestructura en una red que permite la monitorización de la misma, con el fin de conocer el estado sobre su rendimiento y de detectar posibles fallos de seguridad.

See every bit, byte, and packet®

Contexto

- Volúmenes ingentes de datos
- Preocupación por la seguridad
- Servicios de altas prestaciones (telecom y finance)
- Necesidad de controlar constante y eficientemente el tráfico
- Auge del Big Data
- Ingredientes perfectos para que se requiera de una recopilación, distribución y entrega de datos eficaz y escalable.
- De este punto parte la visibilidad en redes.

- Estado de la técnica sobre captura eficiente
- Aplicaciones comerciales y libres para visibilidad
- Análisis sobre las características de las tecnologías encontradas
- Evaluación del funcionamiento lógico de tecnologías

Objetivos (II)

- Diseño y desarrollo del sistema. Favorecer escalabilidad y flexibilidad
- Integración de los componentes hardware y software
- Integración de un sistema de alerting

Estado de la técnica

- Mediante peticiones SNMP
- A través de **gestión directa** del tráfico (e.g. mediante **TAP**)
- Gestión del tráfico por flujos (e.g. sflow)

Métodos para implementar visibilidad (II)

La figura que hablamos con snmp, flow o extracción directa de tráfico + dispositivos hw de captura/análisis 1 slide

- Divisores ópticos. Dividen el haz de luz en varios caminos.
 No consumen electricidad
- **SPAN**. Puerto en un *switch* a donde se replica el tráfico. Existe pérdida de paquetes
- TAP. Replican el tráfico asegurando 0 pérdida de paquetes
- Agregadores. Agregan el flujo de tráfico de diferentes puertos en uno escogido

Implementación

Gestión del tráfico basado en flujos

¿Qué es un flujo?

Es una secuencia de paquetes que comparten las mismas propiedades que son enviados entre un *host* emisor y un receptor. Por ejemplo, en una emisión de *streaming*, los paquetes son enviados por el servidor forman parte del mismo flujo.

Pruebas preliminares (II)

Tecnologías existentes

- NetFlow. Propietaria de CISCO. Necesario exportar flujos cada cierto tiempo
- sflow. Tecnología compatible con múltiples fabricantes.
 Datagramas enviados en tiempo real. Más recomendado para visibilidad

A pesar de escoger **sflow** por su mayor compatibilidad, y comprobar sus virtudes, nos interesa la opción más escalable y versátil. Por tanto, descartamos trabajar con gestión del tráfico por flujos.

- **libpcap**. Biblioteca por defecto en Linux. Búffer lineal. Tamaño reducido
- pf_ring ZC. Búffer circular con DMA
- **Sniffer 10G**. Tecnología propietaria 10G. Depende de *hardware* específico del fabricante.

Escogemos **pf_ring** por ser mayoritariamente de código abierto, versátil, y no depender de *hardware* específico.

Filtrado

Almacenamiento

Visibilidad

Setup final

Resultados

fitrados, visualizacion de latencias, setups utilizados, etc..

Resultados

fitrados, visualizacion de latencias, setups utilizados, etc..

Resultados

fitrados, visualizacion de latencias, setups utilizados, etc..

Conclusiones

Hemos construido una herramienta que:

- Integra soluciones a diferentes niveles para construir una herramienta para medir latencias y otras estadísticas
- Es posible sustituir componentes de la misma para satisfacer necesidades más específicas, por la alta escalabilidad y flexibilidad del sistema
- Permite implementar visibilidad en una red
- Permite mucho trabajo futuro
- Ya tiene asignada una futura aplicación en el mercado (Seven)

- Apoyo hardware para filtrado (FPGA)
- Creación de campos para medición de latencias con mayor precisión

Referencias

John Smith (2012)
Title of the publication

Journal Name 12(3), 45 – 678.

