Решение краевой задачи для ОДУ 2-ого порядка

- 1. Дана ОДУ 2-ого порядка (по варианту) и его точное решение
- 2. Поставить краевую задачу с условиями І рода
- 3. На заданном отрезке построить равномерную сетку
- 4. Найти численное решение краевой задачи на построенной сетке
 - а. методом редукции (сведения к двум задачам Коши)
 - б. методом конечных разностей
 - в. методом стрельбы

Замечание. Получаемые задачи Коши решать методом Рунге-Кутты из 5работы

- 5. Получить решения для двух значений шага и построить
 - 1. Графики точного и полученных решений на отрезке
 - 2. Графики ошибок на заданном отрезке
- 6. Построить график зависимости фактической точности от величины шага. График дополнить линией h^p , где p порядок метода
- 7. Внести в начальное условие возмущение. Построить график зависимости нормы ошибки от величины возмущения при фиксированном шаге.

На 10 баллов

- 8. Изменить краевые условия задачи на условия III рода
 - I. На левой границе
 - II. На правой границе

Замечание. Коэффициенты линейной комбинации выбрать самостоятельно

9. Построить графики п.4 и п.5 для новой задачи

Варианты

1.
$$x^2(x+1)y'' - y' - 2y = \frac{1}{x^2}$$
 $x \in [0.2,1]$ $y_{\text{точное}} = 1 + \frac{1}{x}$

2.
$$y'' + y' \cos x + y \sin x = 1 - \sin x$$
 $x \in [0, \frac{\pi}{2}]$ $y_{\text{точное}} = \sin x$

3.
$$y'' - y' \sin x + y \cos x = 1 - \cos x$$
 $x \in [0, \frac{\pi}{2}]$ $y_{\text{точное}} = \cos x$

4.
$$y'' + (1 + \sin^2 x)y' + y\cos^2 x = 3e^x$$
 $x \in [0,1]$ $y_{\text{TOUHOE}} = e^x$

5.
$$xy'' + 2y' - 2xy = -e^x$$
 $x \in [0.2,1]$ $y_{\text{точное}} = \frac{e^x}{x}$

6.
$$y'' + xy' + y + \frac{2}{\cos^2 x} = \frac{x}{\cos^2 x}$$
 $x \in [0,1]$ $y_{\text{точное}} = \operatorname{tg} x$

7.
$$(e^x + 1)y'' - y' - ye^x = e^x$$
 $x \in [0,1]$ $y_{\text{точное}} = e^x - 1$

8.
$$y'' - y' \operatorname{tg} x + 3y = \sin x$$
 $x \in [0, \frac{\pi}{2}]$ $y_{\text{точное}} = \sin x$

9.
$$y'' + 4xy' + y(4x^2 + 3) = e^{-x^2}$$
 $x \in [0,1]$ $y_{\text{TOMHOR}} = e^{-x^2}$

10.
$$2x(x+2)y'' + (2-x)y' + 2y = \sqrt{x}$$
 $x \in [1,2]$ $y_{\text{точное}} = \sqrt{x}$

11.
$$(x^2+6)xy''-4(x^2+3)y'+7xy=x^4$$
 $x \in [0,1]$ $y_{\text{tothoe}} = x^3$

12.
$$(2x^2 + x)y'' + 2(x+1)y' - y = \frac{1}{x}$$
 $x \in [0.2,1]$ $y_{\text{точное}} = \frac{1}{x}$

13.
$$xy'' - (2x+1)y' + (x+2)y = x^2e^x$$
 $x \in [0,1]$ $y_{\text{TOMHOR}} = x^2e^x$

14.
$$xy'' - (2x+1)y' + 3y = e^{2x}$$
 $x \in [0,1]$ $y_{\text{точное}} = e^{2x}$

15.
$$xy'' + y' + 2y = \ln x$$
 $x \in [1, 2]$ $y_{\text{точное}} = \ln x$

16.
$$y'' + x^2y' + y \operatorname{tg}^2 x = e^x (x^2 + \operatorname{tg}^2 x + 1)$$
 $x \in [0,1]$ $y_{\text{to-shoe}} = e^x$

17.
$$y'' + xy' + y \sin^2 x = \cos x(x - 0.5 \sin 2x)$$
 $x \in [0,1]$ $y_{\text{TOPHOE}} = \sin x$

18.
$$y'' + e^{2x}y' + y\cos x = e^{2x} + x\cos x$$
 $x \in [0,1]$ $y_{\text{toutoe}} = x$

19.
$$y'' + xy' + yx^3 = x^5 + 2x^2 + 2$$
 $x \in [0,1]$ $y_{\text{tothoe}} = x^2$

20.
$$y'' + e^{2x}y' + y\cos x = e^{2x}(2e^{2x} + \cos x + 4)$$
 $x \in [0,1]$ $y_{\text{точное}} = e^{2x}$

21.
$$y'' + x^3y' + y\cos x = e^x(\cos x + x^3 + 1)$$
 $x \in [0,1]$ $y_{\text{torthoe}} = e^x$

22.
$$y'' + y' \sin x + y \sin x = x^2 \sin x + 2x \sin x + 2$$
 $x \in [0,1]$ $y_{\text{tothoe}} = x^2$

23.
$$y'' + y'\sqrt{x} + ye^x = e^x(e^x + \sqrt{x} + 1)$$
 $x \in [0,1]$ $y_{\text{точное}} = e^x$

24.
$$y'' + y' \cos x + ye^x = e^x (\cos x + e^x + 1)$$
 $x \in [0,1]$ $y_{\text{точное}} = e^x$

25.
$$y'' + x^2y' + xy = 4x^2 + 6x$$
 $x \in [0,1]$ $y_{\text{tothoe}} = x^3$

26.
$$y'' - (x^2 - 1)y' + 2xy = 2(1 + x) - (x^2 + 2x)e^{-x}$$
 $x \in [0,1]$ $y_{\text{toution}} = x^2 - e^{-x}$

27.
$$y'' - (\cos x)y' + 2y = 2(1 - \sin x)\cos^2 x$$
 $x \in [0,1]$ $y_{\text{TOMHOO}} = \sin^2 x$

28.
$$y'' - (x^3 - 2)y' + 3x^2y = x^2(6+x)$$
 $x \in [0,1]$ $y_{\text{touhoe}} = x^3$

29.
$$y'' - xy' + 3y = 6x$$
 $x \in [0,1]$ $y_{\text{точное}} = x^3 + 1$