Artificial Intelligence: Introduction to Natural Language Processing

Menu

- Bag of word model
- n-gram models
- Linguistic features for NLP

Languages

Artificial

- Smaller vocabulary
- Simple syntactic structures
- Non-ambiguous
- Not tolerant to errors (ex. Syntax error)

Natural

- Large and open vocabulary (new words everyday)
- Complex syntactic structures
- Very ambiguous
- Robust (ex. forgot a comma, a word... still OK)

Question Answering: IBM's Watson

Won Jeopardy on February 16, 2011!

WILLIAM WILKINSON'S
"AN ACCOUNT OF THE PRINCIPALITIES OF
WALLACHIA AND MOLDOVIA"
INSPIRED THIS AUTHOR'S
MOST FAMOUS NOVEL

Who is Bram Stoker? (Dracula)

Information Extraction

Subject: curriculum meeting

Date: January 15, 2012

To: Dan Jurafsky

Hi Dan, we've now scheduled the curriculum meeting.

It will be in Gates 159 tomorrow from 10:00-11:30.

-Chris

Create new Calendar entry

Event: Curriculum mtg

Date: Jan-16-2012

Start: 10:00am

End: 11:30am

Where: Gates 159

Information Extraction & Sentiment Analysis

Attributes:

zoom
affordability
size and weight
flash
ease of use

Size and weight

- √ nice and compact to carry!
- since the camera is small and light, I won't need to carry around those heavy, bulky professional cameras either!
- the camera feels flimsy, is plastic and very light in weight you have to be very delicate in the handling of this camera

Machine Translation

Fully automatic

Enter Source Text:

这不过是一个时间的问题.

Translation from Stanford's Phrasal:

This is only a matter of time.

Helping human translators

Where we are today

mostly solved

Good progress by Deep Learning Question answering (QA)

Q. How effective is ibuprofen in reducing fever in patients with acute

febrile illness?

Why is NLP hard?

"At last, a computer that understands you like your mother"

- Because it is ambiguous:
 - The computer understands you as well as your mother understands you.
 - The computer understands that you like (love) your mother.
 - The computer understands you as well as it understands your mother.

Another Example of Ambiguity

- Even simple sentences are highly ambiguous
- "Get the cat with the gloves"

And Even More Examples of Ambiguity

- Iraqi Head Seeks Arms
- Ban on Nude Dancing on Governor's Desk
- Juvenile Court to Try Shooting Defendant
- Teacher Strikes Idle Kids
- Kids Make Nutritious Snacks
- British Left Waffles on Falkland Islands
- Red Tape Holds Up New Bridges
- Bush Wins on Budget, but More Lies Ahead
- Hospitals are Sued by 7 Foot Doctors
- Stolen Painting Found by Tree
- Local HS Dropouts Cut in Half

NLP vs Speech Processing

- Natural Language Processing
 - = automatic processing of written texts
 - 1. Natural Language Understanding
 - □ Input = text
 - 2. Natural Language Generation
 - Output = text
- Speech Processing
 - = automatic processing of speech
 - Speech Recognition
 - Input = acoustic signal
 - 2. Speech Synthesis
 - Output = acoustic signal

Remember these slides?

History of AI

- Another big "hype" ... Expert Systems (70s mid 80s)
 - people realized that general-purpose problem solving (weak methods) do not work for practical applications
 - systems need specific domain-dependent knowledge (strong methods)
 - development of knowledge-intensive, rule-based techniques
 - major expert systems
 - MYCIN (1972): expert system to diagnose blood diseases
 - In the industry (1980s): First expert system shells and commercial applications.
 - HUMANS need to write the rules by hand...

History of AI

- More powerful CPUs-> usable implementation of neural networks
- Big data -> Huge data sets are available to learn from
 - document repositories in NLP, datasets in ML, billions on images for image retrieval, billions of genomic sequences, ...
- □ [@] Rules are now learned automatically!
- AI adopts the Scientific Method

History of AI

- The era of Deep Learning (2010-today)
 - Development of "deep neural networks"
 - Trained on massive data sets
 - Use of GPU for computations
 - Use of "generic networks" for many applications

The Ancient Land of NLP (aka GOFAI) (circa A.D. 1950...mid 1980)

Rule-based NLP (circa A.D. 1950...mid 1980)

Rules hand-written by linguists
 French English
 NP NP
 Noun Adjective Adjective Noun black cat
 State of the art until early 2000's – e.g. Systran
 Expensive to create maintain and adapt

Symbolic methods / Linguistic approach / Knowledge-rich approach

- Cognitive approach
- Rules are developed by hand in collaboration with linguists

1st Invasion of NLP, from ML (mid 1980 - circa 2010)

Statistical NLP (mid 1980 - circa 2010) Machine Learning Feature Extraction **Applications** Model (designed by hand) Sentiment tokenisation Decision trees Classification Neural networks stemming **Entity Extraction** Naïve Bayes classifier Part-of-Translation Syntactic speech parsing tagging K-means clustering lopic Modelino ...

Statistical methods / Machine Learning / Knowledge-poor method

- Engineering Approach
- Rules are developed automatically (using machine learning)
- But the linguistic features are hand-engineered and fed to the ML model
- Applications: Information Retrieval, Predictive Text / Word Completion,
 Language Identification, Text Classification, Authorship Attribution...

Statistical NLP (mid 1980 - circa 2010)

linguistic features are hand-engineered and fed to the ML model

2nd Invasion of NLP, by Deep Learning (circa 2010-today)

Deep Language Processing (circa 2010-today)

Deep Neural Networks applied to NLP problems

- Rules are developed automatically (using machine learning)
- And the linguistic features are found automatically!

Menu

- n-gram models
- Linguistic features for NLP

Bag-of-word Model (BOW)

A simple model where word order is ignored

	used	in	many	app	lications:
--	------	----	------	-----	------------

- NB spam filter seen in class a few weeks ago
- Information Retrieval (eg. google search)

	to	1
But has severe limits to understand meaning	of tax	/ +
but has severe limits to understand meaning	01 162	\ 1

Maybe we should take word order into account...

Word	Freq.
Mary	2
apples	1
did	2
eat	1
John	1
kill	1
like	1
not	1
to	1

Limits of BOW Model

word order is ignored ==> meaning of text is lost.

Word	Freq.			
Mary	2			
apples	1			
did	2			
eat	1			
John	1			
kill	1			
like	1			
not	1			
to	1			

n-grams take [a bit of] word order into account

Menu

- Introduction
- Bag of word models
- Linguistic features for NLP

n-gram Model

- An n-gram model is a probability distribution over <u>sequences</u> of events (grams/units/items)
- models the order of the events
- Used when the past sequence of events is a good indicator of the next event to occur in the sequence
- i.e. To predict the next event in a sequence of event
- E.g.:
 - next move of player based on his/her past moves
 - left right right up ... up? down? left? right?
 - next base pair based on past DNA sequence
 - AGCTTCG ... A? G? C? T?
 - next word based on past words
 - Hi dear, how are ... helicopter? laptop? you? magic?

What's a Language Model?

- A Language model is a n-gram model over word/character sequences
- ie: events = words or events = character
- P("I'd like a coffee with 2 sugars and milk") ≈ 0.001
- P("I'd hike a toffee with 2 sugars and silk") ≈ 0.000000001

Applications of Language Models

- Speech Recognition
- Statistical Machine Translation
- Language Identification
- Spelling correction
 - He is trying to <u>fine</u> out.
 - He is trying to <u>find</u> out.
- Optical character recognition / Handwriting recognition

•••

In Speech Recognition

Given: Observed sound - O

Find: The most likely word/sentence - 5*

51: How to recognize speech. ?

52: How to wreck a nice beach.?

53: ...

- Goal: find most likely sentence (S*) given the observed sound (O) ...
- ie. pick the sentence with the highest probability: $S^* = \underset{s_{cl}}{\operatorname{argmaxP}}(S \mid O)$
- We can use Bayes rule to rewrite this as:

$$S^* = \underset{S \in L}{\operatorname{argmax}} \frac{P(O \mid S)P(S)}{P(O)}$$

Since denominator is the same for each candidate S, we can ignore it for the argmax: $S^* = \operatorname{argmax} P(O|S) \times P(S)$

S∈L

Acoustic model -Probability of the possible
phonemes in the language +
Probability of ≠ pronunciations

Language model -- P(a sentence)
Probability of the candidate
sentence in the language

In Speech Recognition

In Statistical Machine Translation

Assume we translate from fr[foreign] to English i.e.: (en|fr)

"Shannon Game" (Shannon, 1951)

"I am going to make a collect ..."

Predict the next word/character given the n-1 previous

words/characters.

1st approximation

- each word has an equal probability to follow any other
 - with 100,000 words, the probability of each word at any given point is .00001
- but some words are more frequent then others...
 - "the" appears many more times, than "rabbit"

2nd approximation: unigrams

- take into account the frequency of the word in some training corpus
 - at any given point, "the" is more probable than "rabbit"
- but does not take word order into account. This
 is the bag of word approach.
 - □ "Just then, the white ..."
- so the probability of a word also depends on the previous words (the history)

$$P(w_n | w_1 w_2 ... w_{n-1})$$

n-grams

- "the large green ______."
 - □ "mountain"? "tree"?
- "Sue swallowed the large green ______."
 - "pill"? "broccoli"?
- Knowing that Sue "swallowed" helps narrow down possibilities
- i.e., going back 3 words before helps
- But, how far back do we look?

Bigrams

first-order Markov models

$$P(w_n|w_{n-1})$$

- N-by-N matrix of probabilities/frequencies
- N = size of the vocabulary we are using

		2 nd word						
		a	aardvark	aardwolf	aback		zoophyte	zucchini
	a	0	0	0	0		8	5
	aardvark	0	0	0	0		0	0
	aardwolf	0	0	0	0		0	0
	aback	26	1	6	0		12	2
	•••		:					
	zoophyte	0	0	0	_1		0	0
(zucchini	0	0	0	3		0	0

Trigrams

second-order Markov models

$$P(w_n|w_{n-1}w_{n-2})$$

- N-by-N-by-N matrix of probabilities/frequencies
- N = size of the vocabulary we are using

Why use only bi- or tri-grams?

- Markov approximation is still costly with a 20 000 word vocabulary:
 - bigram needs to store 400 million parameters
 - trigram needs to store 8 trillion parameters
 - using a language model > trigram is impractical

Building n-gram Models

- Data preparation:
 - Decide on training corpus
 - Clean and tokenize
 - How do we deal with sentence boundaries?
 - I eat. I sleep.
 - □ (I eat) (eat I) (I sleep)
 - <s>I eat </s> <s> I sleep </s>
 - □ (<s> I) (I eat) (eat </s>) (<s> I) (I sleep) (sleep </s>)

Example 1:

- in a training corpus, we have 10 instances of "come across"
 - 8 times, followed by "as"
 - □ 1 time, followed by "more"
 - □ 1 time, followed by "a"
- so we have:
 - P(as | come across) = $\frac{C(\text{come across as})}{C(\text{come across})} = \frac{8}{10}$
 - \square P(more | come across) = 0.1
 - \square P(a | come across) = 0.1
 - P(X | come across) = 0 where X ≠ "as", "more", "a"

Building n-gram Models

- 2. Count words and build model
 - Let $C(w_1...w_n)$ be the frequency of n-gram $w_1...w_n$

$$P(w_{n} | w_{1}...w_{n-1}) = \frac{C(w_{1}...w_{n})}{C(w_{1}...w_{n-1})}$$

3. Smooth your model (see later)

Example 2:

P(on eat) =	.16	P(want I) =	.32	P(eat to) =	.26
P(some eat) =	.06	P(would I) =	.29	P(have to) =	.14
P(British eat) =	.001	P(don't I) =	.08	P(spend to)=	.09
P(I <s>) =</s>	.25	P(to want) =	.65	P(food British) =	.6
P(I'd <s>) =</s>	.06	P(a want) =	.5	P(restaurant British	15. = (1

P(I want to eat British food)

```
= P(I|\langle s \rangle) \times P(want|I) \times P(to|want) \times P(eat|to) \times P(British|eat) \times P(food|British)
= .25 \times .32 \times .65 \times .26
```

= .000008

x .001

x .6

Remember this slide...

Be Careful: Use Logs

if we really do the product of probabilities...

```
\Box argmax<sub>cj</sub> P(c_j) \prod P(w_i | c_j)
```

- □ we soon have numerical underflow...
- \square ex: $0.01 \times 0.02 \times 0.05 \times ...$
- so instead, we add the log of the probs

```
 = \operatorname{argmax}_{c_j} \log(P(c_j)) + \sum_{i=1}^{n} \log(P(w_i|c))
```

$$\square$$
 ex: $\log(0.01) + \log(0.02) + \log(0.05) + ...$

45

Some Adjustments

- product of probabilities... numerical underflow for long sentences
- so instead of multiplying the probs, we add the log of the probs

```
P(I \ want \ to \ eat \ British \ food) \\ = log(P(I|<s>)) + log(P(want|I)) + log(P(to|want)) + log(P(eat|to)) + log(P(British|eat)) + log(P(food|British)) \\ = log(.25) + log(.32) + log(.65) + log(.26) + log(.001) + log(.6)
```

Problem: Data Sparseness

- What if a sequence never appears in training corpus? P(X)=0
 - "come across the men" --> prob = 0
 - "come across some men" --> prob = 0
 - "come across 3 men" --> prob = 0
- The model assigns a probability of zero to unseen events ...
- probability of an n-gram involving unseen words will be zero!
- Solution: smoothing
 - decrease the probability of previously seen events
 - so that there is a little bit of probability mass left over for previously unseen events

Remember this other slide...

Be Careful: Smooth Probabilities

- normally: $P(w_i \mid c_j) = \frac{(frequency of w_i in c_j)}{total number of words in c_j}$
- what if we have a $P(w_i|c_j) = 0...?$
 - ex. the word "dumbo" never appeared in the class SPAM?
 - then P("dumbo" | SPAM) = 0
- so if a text contains the word "dumbo", the class SPAM is completely ruled out!
- to solve this: we assume that every word always appears at least once (or a smaller value)
 - ex: add-1 smoothing:

$$P(w_i \mid c_j) = \frac{(frequency of w_i in c_j) + 1}{total number of words in c_j + size of vocabulary}$$

44

Add-one Smoothing

- Pretend we have seen every n-gram at least once
- Intuitively:
 - new_count(n-gram) = old_count(n-gram) + 1
- The idea is to give a little bit of the probability space to unseen events

Add-one: Example

unsmoothed bigram counts (frequencies):

2 nd wor	d
---------------------	---

										_	
			I	want	to	eat	Chinese	food	lunch		Total
1		I	8	1087	0	13	0	0	0		C(I)=3437
	-	want	3	0	786	0	6	8	6		C(want)=1215
_		to	3	0	10	860	3	0	12		C(to)=3256
word		eat	0	0	2	0	19	2	52		C(eat)=938
		Chinese	2	0	0	0	0	120	1		C(Chinese)=213
1st		food	19	0	17	0	0	0	0		C(food)=1506
		lunch	4	0	0	0	0	1	0		C(lunch)=459
	` [
											N=10,000

- Assume a vocabulary of 1616 (different) words
 - V = {a, aardvark, aardwolf, aback, ..., I, ..., want,... to, ..., eat, Chinese, ..., food, ..., lunch, ..., zoophyte, zucchini}
 - |V| = 1616 words
- And a total of N = 10,000 bigrams (~word instances) in the training corpus

Add-one: Example

unsmoothed bigram counts:

2nd word

'n	
WOI	
Ist (

	I	want	to	eat	Chinese	food	lunch	 Total
I	8	1087	0	13	0	0	0	C(I)=3437
want	3	0	786	0	6	8	6	C(want)=1215
to	3	0	10	860	3	0	12	C(to)=3256
eat	0	0	2	0	19	2	52	C(eat)=938
Chinese	2	0	0	0	0	120	1	C(Chinese)=213
food	19	0	17	0	0	0	0	C(food)=1506
lunch	4	0	0	0	0	1	0	C(lunch)=459
								N=10,000

unsmoothed bigram conditional probabilities:

	I	want	to	eat	Chinese	food	lunch	 Total
I	0.002	0.316	0	0.0037	0	0	0	
	(8/3437)							
want	0.0025	0	0.647	0	0.0049	0.0066	0.0049	
			(786/1215)		(6/1215)			
to	0.0009	0	0.0030	0.264	0.0009	0	0.0037	
eat	0	0	0.002	0	0.020	0.002	0.0554	
Chinese	0.0094	0	0	0	0	0.56	0.0047	
food	0.0126	0	0.0113	0	0	0	0	
lunch	0.0087	0	0	0	0	0.0002	0	

note:

$$P(II) = \frac{8}{10000}$$

$$P(I | I) = \frac{8}{3437}$$

Add-one, more formally

$$P_{Add1}(w_1 w_2 ... w_n) = \frac{C(w_1 w_2 ... w_n) + 1}{N + B}$$

N: size of the corpus i.e. nb of n-gram tokens in training corpus

B: number of "bins"
i.e. nb of <u>different</u> n-gram types
i.e. nb of cells in the matrix
e.g. for bigrams, it's (size of the vocabulary)²

Add-one: Example (con't)

add-one smoothed bigram counts:

	I	want	to	eat	Chinese	food	lunch	 Total
I	8 9	1087	1	14	1	1	1	3437
		1088						C(I) + V = 5053
want	3 4	1	787	1	7	9	7	C(want) + V = 2831
to	4	1	11	861	4	1	13	C(to) + V = 4872
eat	1	1	23	1	20	3	53	C(eat) + V = 2554
Chinese	3	1	1	1	1	121	2	C(Chinese) + V = 1829
food	20	1	18	1	1	1	1	C(food) + V = 3122
lunch	5	1	1	1	1	2	1	C(lunch) + V = 2075
								total = 10,000
								$N+ V ^2 = 10,000 + (1616)^2$
								= 2,621,456

add-one bigram conditional probabilities:

	I	want	to	eat	Chinese	food	lunch	
I	.0018 (9/5053)	.215	.00019	.0028	.00019	.00019	.00019	
want	.0014	.00035	.278	.00035	.0025	.0031	.00247	
to	.00082	.0002	.00226	.1767	.00082	.0002	.00267	
eat	.00039	.00039	.0009	.00039	.0078	.0012	.0208	

Add-delta Smoothing

- every previously unseen n-gram is given a low probability
- but there are so many of them that too much probability mass is given to unseen events
- instead of adding 1, add some other (smaller) positive value δ

PaddD(W1 W2 ... Wn) =
$$\frac{C (W_1 W_2 ... W_n) + \delta}{N + \delta B}$$

- most widely used value for δ = 0.5
- better than add-one, but still...

Factors of Training Corpus

Size:

- the more, the better
- but after a while, not much improvement...
 - bigrams (characters) after 100's million words
 - trigrams (characters) after some billions of words

Genre (adaptation):

 training on cooking recipes and testing on aircraft maintenance manuals

Example: Language Identification

- hypothesis: texts that resemble each other (same author, same language) share similar character/word sequences
 - In English character sequence "ing" is more probable than in French
- Training phase:
 - construction of the language model
 - with pre-classified documents (known language/author)
- Testing phase:
 - apply language model to unknown text

Example: Language Identification

- bigram of characters
 - characters = 26 letters (case insensitive)
 - possible variations: case sensitivity,
 punctuation, beginning/end of sentence marker, ...

Example: Language Identification

1. Train a character-based language model for Italian:

	Α	В	С	D		У	z
Α	0.0014	0.0014	0.0014	0.0014		0.0014	0.0014
В	0.0014	0.0014	0.0014	0.0014		0.0014	0.0014
С	0.0014	0.0014	0.0014	0.0014		0.0014	0.0014
D	0.0042	0.0014	0.0014	0.0014		0.0014	0.0014
E	0.0097	0.0014	0.0014	0.0014		0.0014	0.0014
							0.0014
У	0.0014	0.0014	0.0014	0.0014		0.0014	0.0014
Z	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014

2. Train a character-based language model for Spanish:

	Α	В	С	D		У	z
A	0.0014	0.0014	0.0014	0.0014		0.0014	0.0014
В	0.0014	0.0014	0.0014	0.0014		0.0014	0.0014
С	0.0014	0.0014	0.0014	0.0014		0.0014	0.0014
D	0.0042	0.0014	0.0014	0.0014		0.0014	0.0014
E	0.0097	0.0014	0.0014	0.0014		0.0014	0.0014
							0.0014
У	0.0014	0.0014	0.0014	0.0014		0.0014	0.0014
Z	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014	0.0014

- 3. Given a unknown sentence "che bella cosa" is it in Italian or in Spanish?
 P("che bella cosa") with the Italian LM
 P("che bella cosa") with the Spanish LM
- 4. Highest probability → language of sentence

Google's Web 1T 5-gram model

- 5-grams
- generated from 1 trillion words
- 24 GB compressed
 - Number of tokens: 1,024,908,267,229
 - Number of sentences: 95,119,665,584
 - Number of unigrams: 13,588,391
 - Number of bigrams: 314,843,401
 - Number of trigrams: 977,069,902
 - Number of fourgrams: 1,313,818,354
 - Number of fivegrams: 1,176,470,663
- See discussion: http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html
- See Google Ngram Viewer: http://en.wikipedia.org/wiki/Google Ngram Viewer

Problem with n-grams

- Natural language is not linear
- there may be long-distance dependencies.
 - Syntactic dependencies
 - The man next to the large oak tree near ... is tall.
 - The men next to the large oak tree near ... are tall.
 - Semantic dependencies
 - The <u>bird</u> next to the large oak tree near ... <u>flies</u> rapidly.
 - The man next to the large oak tree near ... talks rapidly.
 - World knowledge
 - Michael Jackson, who was featured in ..., is <u>buried</u> in California.
 - Michael Bublé, who was featured in ..., is <u>living</u> in California.
 - **...**
- More complex models of language are needed to handle such dependencies.

Menu

- Introduction
- Bag of word model
- n-gram models
- Linguistic features for NLP

Linguistic features used for what?

linguistic features are hand-engineered and fed to the ML model

Syntactic Parsing

- Assign the right part of speech (NOUN, VERB, ...) to individual words in a text
- Determine how words are put together to form correct sentences
 - The/DET rose/NOUN is/VERB red/ADJ.
 - Is/VERB red/ADJ the/DET rose/NOUN.

English Parts-of-Speech

- Open (lexical) class words
 - new words can be added easily
 - nouns, main verbs, adjectives, adverbs
 - some languages do not have all these categories

Smurf talk on youtube:

https://www.youtube.com/watch?v=7BPx-vl8G00

- Closed (functional) class words
 - generally function/grammatical words
 - □ aka stop words
 - ex. the, in, and, over, beyond...
 - relatively fixed membership
 - prepositions, determiners, pronouns, conjunctions, ...

Syntax

 How parts-of-speech are organised into larger syntactic constituents

Main Constituents:

```
    S: sentence
        The boy is happy.

    NP: noun phrase
        the little boy from Paris, Sam Smith, I,

    VP: verb phrase
        eat an apple, sing, leave Paris in the night

    PP: prepositional phrase in the morning, about my ticket
    AdjP: adjective phrase
        really funny, rather clear

    AdvP: adverb phrase
        slowly, really slowly
```

A Parse Tree

 a tree representation of the application of the grammar to a specific sentence.

a CFG consists of

- set of non-terminal symbols
 - constituents & parts-of-speech
 - □ S, NP, VP, PP, D, N, V, ...
- set of terminal symbols
 - words & punctuation
 - □ cat, mouse, nurses, eat, ...
- a non-terminal designated as the starting symbol
 - sentence S
- a set of re-write rules
 - having a single non-terminal on the LHS and one or more terminal or non-terminal in the RHS
 - □ S --> NP VP
 - □ NP --> Pro
 - □ NP --> PN
 - □ NP --> D N

An Example

Lexicon:

PP --> Prep NP

to Chicago, to I ??

```
N --> flight | trip | breeze | morning // noun
                                                                //
  V --> is | prefer | like
     verb
                                                        //
  Adj --> direct | cheapest | first
     adjective
                                                                //
   Pro --> me | I | you | it
     pronoun
                                          // proper noun
  PN --> Chicago | United | Los Angeles
                                                                //
  D --> the | a | this
     determiner
                                                                //
  Prep --> from | to | in
     preposition
                                                                //
  Conj --> and | or | but
     conjunction
Grammar:
                                                        // I +
   S \longrightarrow NP VP
     prefer United
  NP --> Pro | PN | D N | D Adj N // I, Chicago, the morning
  VP --> V | V NP | V NP PP
                                                // is, prefer +
     United,
```

Parsing

- parsing:
 - □ goal:
 - assign syntactic structures to a sentence
 - □ result:
 - (set of) parse trees
- we need:
 - □ a grammar:
 - description of the language constructions
 - a parsing strategy:
 - how the syntactic analysis are to be computed

Parsing Strategies

- parsing is seen as a search problem through the space of all possible parse trees
 - bottom-up (data-directed): words --> grammar
 top-down (goal-directed): grammar --> words

 - breadth-first: compute all paths in parallel
 - depth-first: exhaust 1 path before considering another
 - Heuristic search

Example: John ate the cat

- Bottom-up parsing / breadth first
 - 1. John ate the cat
 - 2. PN ate the cat
 - 3. PN V the cat
 - 4. PN V ART cat
 - 5. PN V ART N
 - 6. NP V ART N
 - 7 NP V NP
 - 8. NP VP
 - 9. **S**

- Top-down parsing / depth first
 - 1. **S**
 - 2. NP VP
 - 3. PN VP
 - 4. John VP
 - 5. John V NP
 - 6. John ate NP
 - John ate ART N
 - 8. John ate the N
 - John ate the cat

Depth-first vs Breadth-first

the cat eats the mouse.

 depth-first: exhaust 1 path before considering another

- breadth-first:
 - compute 1 level at a time
- Heuristic search:
 - e.g. preference to shorter rules

Grammar:

- (1) $S \longrightarrow NP VP$
- (2) $S \longrightarrow VP$
- (3) $S \longrightarrow Aux NP VP$
- (4) NP --> Det N PP
- (5) NP -- > Det N
- (6) PP -- > Prep N

•••

Lexicon:

- (10) Det --> the
- (11) N --> cat
- (12) VB --> eats

Summary of Parsing Strategies

	Depth First	Breath First	Heuristic Search
Top down	✓	✓	√
Bottom up	✓	✓	✓

Problem: Multiple parses

- Many possible parses for a single sentence happens very often...
 - Prepositional phrase attachment (PP-attachment)
 - We painted the wall with cracks.
 - The man saw the boy with the telescope.
 - I shot an elephant in my pyjamas.
 - Conjunctions and appositives
 - Maddy, my dog, and Samy
 - -- > (Maddy, my dog), and (Samy)
 - -- > (Maddy), (my dog), and (Samy)
- These phenomena can quickly increase the number of possible parse trees!

PP attachment: The man saw the boy with the telescope.

The man saw the boy with the telescope

Correct parse 1

Probabilistic Parsing

"One morning I shot an elephant in my pyjamas. How he got into my pyjamas, I don't know."

G. Marx, Animal Crackers, 1930.

- Sentences can be very ambiguous...
 - A non-probabilistic parser may find a large set of possible parses
 - --> need to pick the most probable parse one from the set

Example of a PCFG

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \rightarrow P NP$	1.0	NP → astronomers	0.1
$VP \rightarrow V NP$	0.7	$NP \rightarrow ears$	0.18
$VP \rightarrow VP PP$	0.3	$NP \rightarrow saw$	0.04
$P \rightarrow with$	1.0	$NP \rightarrow stars$	0.18
$V \rightarrow saw$	1.0	NP → telescopes	0.1

- Intuitively, P(VP → V NP) is:
 - the probability of expanding VP by a V NP, as opposed to any other rules for VP
- So for:
 - □ VP: $\forall i \sum_{i} P(VP ---> B) = .7 + .3 = 1$
 - □ NΠ: $\forall i \sum_{i} P(NP --> B) = .4 + .1 + .18 + .04 + .18 + .1 = 1$

Probability of a parse tree

- Product of the probabilities of the rules used in subtrees
- Ex: "Astronomers saw stars with ears."

$$P(t_1) = 1x.1x.7x1x.4x.18x1x1x.18$$

= .0009072

$$P(t_2) = 1x.1x.3x.7x1x1x.18x1x.18$$

= .0006804

Stones of NLU Semantic interpretation: Lexical Semantics: an kissed Jane. What is the Contextual/world meaning/semantic knowledge interpretation relations between rsing individual words? expanded representation: Chair: person? Furniture? ence Compositional pet: cheetah possess verb phrase Semantics: What is the meaning of phrases and noun phrase experience object love sentences? verb noun The chair's leg is broken person: jane erson: tarzan YOU ARE HERE! Jan kissed kiss object agent Semantic interpretation lips instrument internal representation: location location jungle person: jane person: tarzan kiss object agent To: question answerer, database query handler, instrument lips translator, etc.

source: Luger (2005)

Semantic Interpretation

- Map sentences to some representation of its meaning
 - e.g., logics, knowledge graph, embedding...
- 1 Lexical Semantics
 - i.e., Meaning of individual words
- Compositional Semantics
 - i.e., Meaning of combination of words

Lexical Semantics

- ie. The meaning of individual words
 - A word may denote different things (ex. chair)
 - The meaning/sense of words is not clear-cut
 - E.g. Overlapping of word senses across languages

Word Sense Disambiguation (WSD)

- Determining which sense of a word is used in a specific sentence
 - I went to the <u>bank</u> of Montreal and deposited 50\$.
 - I went to the <u>bank</u> of the river and dangled my feet.

WSD as a Classification Problem

- WSD can be viewed as typical classification problem
 - use machine learning techniques (ex. Naïve Bayes classifier, decision tree) to train a system
 - that learns a classifier (a function f) to assign to unseen examples one of a fixed number of senses (categories)

Input:

- Target word: The word to be disambiguated
- Features?

Output:

Most likely sense of the word

Features for WSD

- intuition:
 - sense of a word depends on the sense of surrounding words
- ex: bass = fish, musical instrument, ...

Surrounding words	Most probable sense		
river	fish		
violin	instrument		
salmon	fish		
play	instrument		
player	instrument		
striped	fish		

 So use a window of words around the target word as features

Features for WSD

- Take a window of n words around the target word
- Encode information about the words around the target word
 - An electric guitar and <u>bass</u> player stand off to one side, not really part of the scene, just as a sort of nod to gringo expectations perhaps.

Naïve Bayes WSD

- Goal: choose the most probable sense s* for a word given a vector
 V of surrounding words
- Feature vector V contains:
 - Features: words [fishing, big, sound, player, fly, rod, ...]
 - □ Value: frequency of these words in a window before & after the target word [0, 0, 0, 2, 1, 0, ...]
- Bayes decision rule:
 - $\neg s^* = \operatorname{argmax}_{s_k} P(s_k | V)$
 - where:
 - S is the set of possible senses for the target word
 - s_k is a sense in S
 - V is the feature vector

Naive Bayes WSD

$$s^* = \underset{s_k}{\operatorname{argmax}} \left[\log P(s_k) + \sum_{j=1}^n \log P(v_j | s_k) \right]$$

- Training à Naïve Bayes classifier
 - = estimating $P(v_j|s_k)$ and $P(s_k)$ from a sense-tagged training corpus
 - = finding the most likely sense k

$$P(v_{j} | s_{k}) = \frac{count(v_{j}, s_{k})}{\sum_{t} count(v_{t}, s_{k})}$$

Nb of occurrences of feature j over the total nb of features appearing in windows of S_k

$$P(s_k) = \frac{count(s_k)}{count(word)}$$

Nb of occurrences of sense k over nb of all occurrences of ambiguous word

Example

Training corpus (context window = ±3 words):

... Today the World Bank/BANK1 and partners are calling for greater relief...
... Welcome to the Bank/BANK1 of America the nation's leading financial institution...
... Welcome to America's Job Bank/BANK1 Visit our site and...

...Web site of the European Central Bank/BANK1 located in Frankfurt...
...The Asian Development Bank/BANK1 ADB a multilateral development finance...

...lounging against verdant banks/BANK2 carving out the... ...for swimming, had warned her off the banks/BANK2 of the Potomac. Nobody...

Trainina:

P(the BANK1) = P(world BANK1) = P(and BANK1) =	5/30 1/30 1/30		P(the BANK2) = P(world BANK2) = P(and BANK2) =	3/12 0/12 0/12
P(off BANK1) = 1/12	0 /20	0/30	P(off BA	NK2) =

P(Potomac|BANK1) = 0/30 P(Potomac|BANK2) = 1/12

P(BANK1) = 5/7

P(BANK2) = 2/7

- Disambiguation: "I lost my left shoe on the banks of the river Nile."
 - Score(BANK1)=log(5/7) + log(P(shoe|BANK1))+log(P(on|BANK1))+log(P(the|BANK1)) ...
 - Score(BANK2)=log(2/7) + log(P(shoe|BANK2)+log(P(on|BANK2))+log(P(the|BANK2)) ...

Example (with add 0.5 smoothing)

Training corpus (context window = ±3 words):

```
...Today the World Bank/BANK1 and partners are calling for greater relief...
...Welcome to the Bank/BANK1 of America the nation's leading financial institution...
...Welcome to America's Job Bank/BANK1 Visit our site and...
       ...Web site of the European Central Bank/BANK1 located in Frankfurt...
...The Asian Development Bank/BANK1 ADB a multilateral development finance...
       ...lounging against verdant banks/BANK2 carving out the...
...for swimming, had warned her off the banks/BANK2 of the Potomac. Nobody...
Assume V = 50
 Training:
                                                                                                                                                              (5+.5) / (30+.5V)
(1+.5) / 55
(1+.5) / 55
                                                                                                                                                                                                                                                                                     P(the|BANK2) = (3+.5) / (12 + .5V)

P(world|BANK2) = (0+.5) / 37

P(and|BANK2) = (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5) / (0+.5)
                         P(the|BANK1) = P(world|BANK1) =
                         P(and|BANK1) =
                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (0+.5) /
                         P(off|BANK1) =
                                                                                                                                                                                                                          (0+.5) / 55
                                                                                                                                                                                                                                                                                                                                                                                                               P(off|BANK2) =
                                      (1+.5)/37
      P(Potomac|BANK1) = 37
                                                                                                                                                              (0+.5) / 55
                                                                                                                                                                                                                                                                                                                                                   P(Potomac|BANK2) = (1+.5) /
                        P(BANK1) = 5/7
P(BANK2) = 2/7
```

- Disambiguation: "I lost my left shoe on the banks of the river Nile."
 - \Box Score(BANK1)=log(5/7) + log(P(shoe|BANK1))+log(P(on|BANK1))+log(P(the|BANK1)) ...
 - Score(BANK2)=log(2/7) + log(P(shoe|BANK2))+log(P(on|BANK2))+log(P(the|BANK2)) $^{90}_{...}$

Stages of NL Understanding

source: Luger (2005)

Compositional Semantics

- The cat eats the mouse = The mouse is eaten by the cat.
- Goal:
 - map an expression into a knowledge representation
 - a representation of context-independent, literal meaning
 - e.g. first-order predicate logic, conceptual graph, embedding...
 - □ to assign semantic roles (different from grammatical roles):
 - Semantic roles: Agent, Patient, Instrument, Time, Location, ...
 - Grammatical roles: subject, direct object, ...
- E.g.
 - The child hid the candy under the bed.

Some Difficulties

- Syntax is not enough
 I ate spaghetti with a fork.
 I ate spaghetti with my sister.
 I ate spaghetti with meat balls.
 I ate spaghetti with lots of appetite.
 ...
 - Gun = instrument that can kill
 - Metal gun... a gun made out of metal
 - Water gun... a gun made out of water?
 - Fake gun... it is a gun anyways? Can it kill?
 - General Kane... person but General Motors ... corporation
- Parallel problems to syntactic ambiguity
 - Happy [cats and dogs] live on the farm
 - [Happy cats] and dogs live on the farm
- Quantifier Scoping
 - Every man loves a woman.
 - \forall m (\exists f man(m) \land woman(f) \land loves(m, f))
 - \exists f(\forall m man(m) \land woman(f) \land loves(m, f))

Stages of NLU

source: Luger (2005)

Discourse Analysis

- In logics: $A \wedge B \wedge C \Leftrightarrow C \wedge B \wedge A$
- Not in NL:
 - John visited Paris. He bought Mary some expensive perfume. Then he flew home. He went to Walmart. He bought some underwear.
 - John visited Paris. Then he flew home. He went to Walmart. He bought Mary some expensive perfume. He bought some underwear.
- Humans infer relations between sentences that may not be explicitly stated in order to make a text coherent.
 - (?) I am going to Concordia. I need butter.

Examples of Discourse Relations

CONDITION

SEQUENCE

CONTRAST

CAUSE

assignment.

RESULT

blink.

PURPOSE

code.

ELABORATION

mathematician living in

If it rains, I will go out.

Do this, then do that.

This is good, but this is better.

Because I was sick, I could not do my

Click on the button, the red light will

To use the computer, get an access

The solution was developed by Alan Turing.

Turing was a great

Great Britain. He was an

atheist as well as gay.

Another Classification Problem, again!

- Discourse tagging can be viewed as typical classification problem
 - use machine learning techniques (ex. Naïve Bayes classifier, decision tree) to train a system
 - that learns a classifier to assign to unseen sentences one of a fixed number of discourse relations (categories)

Input:

- Sentence Ex. If it rains, I will go out.
- Features?
 - Connectives such as "if", "however", "in conclusion"
 - Tense of verb (future, past)
 - ...
- Output:
 - Most likely relation in the sentence (none, condition, contrast, purpose, ...)

Stages of NLU

source: Luger (2005)

Pragmatics

- goes beyond the literal meaning of a sentence
- tries to explain what the speaker is really expressing
- understanding how people use language socially
 - E.g.: figures of speech, ...
 - □ E.g.: Could you spare some change?

Stages of NLU

source: Luger (2005)

Using World Knowledge

- Using our general knowledge of the world to interpret a sentence/discourse
- E.g.:

```
The trophy would not fit in the brown suitcase because ... 
 ... <u>it</u> was too big. 
 ... <u>it</u> was too small.
```

The professor sent the student to see the principal because...

...he wanted to see him.

...<u>he</u> was throwing paper balls in class.

...<u>he</u> could not take it anymore.

Ex: Silence of the lambs...

Current Research area: see Winograd Schema Challenge

Summary of NLU

source: Luger (2005)

Recap

linguistic features are hand-engineered and fed to the ML model

Remember these slides?

History of AI

- Another big "hype" ... Expert Systems (70s mid 80s)
 - people realized that general-purpose problem solving (weak methods) do not work for practical applications
 - systems need specific domain-dependent knowledge (strong methods)
 - development of knowledge-intensive, rule-based techniques
 - major expert systems
 - MYCIN (1972): expert system to diagnose blood diseases
 - In the industry (1980s): First expert system shells and commercial applications.
 - HUMANS need to write the rules by hand...

History of AI

- The rise of Machine Learning (1980s 2010)
 - More powerful CPUs-> usable implementation of neural networks
 - Big data -> Huge data sets are available to learn from
 - document repositories in NLP, datasets in ML, billions on images for image retrieval, billions of genomic sequences, ...
 - □ [⊕] Rules are now learned automatically!
 - AI adopts the Scientific Method

History of AI

- The era of Deep Learning (2010-today)
 - Development of "deep neural networks"
 - Trained on massive data sets
 - Use of GPU for computations
 - Use of "generic networks" for many applications

(to see in a few classes)

