

1/57

Summary

This work brings to HoTT

- connections, curvature, and vector fields
- the index of a vector field
- a theorem in dimension 2 that total curvature = total index

3 / 57

$\mathsf{Classical} \to \mathsf{HoTT}$

Let M be a smooth, oriented 2-manifold without boundary, F_A the curvature of a connection A on the tangent bundle, and X a vector field with isolated zeroes x_1, \ldots, x_n .

$$\frac{1}{2\pi} \int_{M} F_{A} = \sum_{i=1}^{n} \operatorname{index}_{X}(x_{i}) = \chi(M)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\sum_{\text{faces } F} \flat_{F} = \sum_{\text{faces } F} L_{F}^{X}$$

Classical index

Near an isolated zero there are only three possibilities: index 0, 1, -1.

Index is the winding number of the field as you move clockwise around the zero.

5 / 57

Poincaré-Hopf theorem

The total index of a vector field is the Euler characteristic.

Examples:

Rotation: index +1 at each pole = 2

Height: index +1 at each pole = 2

Gauss-Bonnet theorem

Total curvature divided by 2π is the Euler characteristic.

Curvature in 2D is a function $F_A: M \to \mathbb{R}$.

 $\int_M F_A$ sums the values at every point.

Positive and negative curvature cancel: 0

Constant curvature 1, area 4π : **2**

7 / 57

Plan

- Combinatorial manifolds
- Torsors and classifying maps
- Connections and curvature
- Vector fields
- Main theorem

Thank you!

Examples

Each face contributes $\flat_F = H_R$, a 1/4-rotation. Total: 2.

For total index one obtains +1 from F_{wrg} , +1 from F_{ybo} , +0 from others. Total: 2.

55 / 57

HoTT background

Symmetry,

Bezem, M., Buchholtz, U., Cagne, P., Dundas, B. I., and Grayson, D. R., (2021-) https://github.com/UniMath/SymmetryBook.

Q Central H-spaces and banded types, Buchholtz, U., Christensen, J. D., Flaten, J. G. T., and Rijke, E. (2023) arXiv:2301.02636

Nilpotent types and fracture squares in homotopy type theory, Scoccola, L. (2020)
MSCS 30(5). arXiv:1903.03245

9 / 57

Classical proof

[26.2] The difference $\Re(\Delta) - 2\pi \Im_F(s)$ can be found by summing over the edges K_j the change $\Phi(K_j)$ in the illustrated angle $\angle Fw_{\parallel}$ i.e., the rotation of \mathbf{w}_{\parallel} relative to \mathbf{F} .

Figure: Needham, T. (2021) Visual Differential Geometry and Forms.

- The classical proof is discrete-flavored.
- " $\angle Fw_{||}$ " looked a lot like a pathover.
- Hopf's Φ is defined on edges, not loops. We imitated that too.

Combinatorial manifolds

56 / 57

Manifolds in HoTT

- Recall the classical theory of simplicial complexes
- Define a **realization** procedure to construct types

11 / 57

12 / 57

Simplicial complexes

Definition

An abstract simplicial complex M of **dimension** *n* is an ordered list of sets $M \stackrel{\text{def}}{=} [M_0, \dots, M_n]$ consisting of

- a set M_0 of vertices
- sets M_k of subsets of M_0 of cardinality k+1
- downward closed: if $F \in M_k$ and $G \subseteq F$, |G| = i + 1 then $G \in M_i$

We call the truncated list

 $M_{\leq k} \stackrel{\text{def}}{=} [M_0, \dots, M_k]$ the *k*-skeleton of Μ.

Pay off all our assumptions 2: no boundary, commutativity

Definition

Let F_1, \ldots, F_n be the faces of \mathbb{M} , $v_i : F_i$ be designated vertices, and $\partial F_i : v_i = v_i$ be the triangular boundaries. The **total swirling** is

 $X_{\text{tot}} \stackrel{\text{def}}{=} \sigma_{\partial F_1} + \cdots + \sigma_{\partial F_n}$

- We assume that this expression involves every edge once in each direction.
- S^1 is commutative, hence **complete cancellation**.

53 / 57

Consequence

$$\operatorname{tr}_F \stackrel{\text{def}}{=} \operatorname{tr}(\partial F)$$
 : $T_1 =_{BS^1} T_1$ curvature

$$\psi_F \stackrel{\text{def}}{=} \psi(\partial F) \qquad : \text{id} =_{(T_1 =_{BS^1} T_1)} \text{tr}_F \quad \text{flatness}
X_F \stackrel{\text{def}}{=} X(\partial F) \qquad : \text{tr}_F(X_1) =_{T_1} X_1 \quad \text{swirling}$$

$$X_F \stackrel{\text{def}}{=} X(\partial F)$$
 : $\operatorname{tr}_F(X_1) =_{T_1} X_1$ swirling

$$L_F^X \stackrel{\text{def}}{=} \flat_F(X_1) \cdot X_F : (X_1 =_{T_1} X_1)$$
 flattened swirling

These can all be totaled in S^1 to give

$$\begin{aligned} \operatorname{tr}_{\mathsf{tot}} & \stackrel{\mathsf{def}}{=} \sum_{i} \rho_{\partial F} = \operatorname{\mathsf{base}} \\ \flat_{\mathsf{tot}} & \stackrel{\mathsf{def}}{=} \sum_{i} \flat_{\partial F} = \operatorname{\mathsf{refl}}_{\mathsf{base}} \\ \flat_{\mathsf{tot}} & \stackrel{\mathsf{def}}{=} \sum_{i} \flat_{\partial F} + \sigma_{\partial F} = \sum_{i} \flat_{\partial F} \end{aligned}$$

So in our lingo: the total flatness equals the total flattened swirling.

Pay off all our assumptions 1: torsor structure, vector field

$$T_1$$

 $T_{13}T_{32}X_2$

 $T_{13}X_{3}$

X₁₃:

 $T_{13}T_{32}X_{21}$:

 $T_{13}X_{32}$:

- Def: $\alpha_i \stackrel{\text{def}}{=} s(-, X_i) : T_i \stackrel{\sim}{\to} S^1$ (trivialization on 0-skeleton).
- Def: $\rho_{ji} \stackrel{\text{def}}{=} \alpha_j(T_{ji}(X_i))$ is the rotation of T_{ji} .

$$\begin{array}{ccc} T_i & \xrightarrow{T_{ji}} & T_j \\ \text{base} \mapsto X_i \nearrow \alpha_i & & & \downarrow \alpha_j \nearrow \text{base} \mapsto X_j \\ S^1 & & & \downarrow S^1 \end{array}$$

• Lemma: $\rho_{ij} = -\rho_{ji}$ because **in** T_j : $\rho_{ii} + \rho_{ii} + X_i = \rho_{ii} + T_{ii}X_i = T_{ii}(\rho_{ii} + X_i) = T_{ii}T_{ii}X_i = X_i.$

51 / 57

Simplicial complexes

Example

The complete simplex of dimension n, denoted $\Delta(n)$, is the set $\{0,\ldots,n\}$ and its power set. The (n-1)-skeleton $\Delta(n)_{\leq (n-1)}$ is denoted $\partial \Delta(n)$ and will serve as a combinatorial (n-1)-sphere.

$$\Delta(1)$$
 is visually $0 \bullet - 1$, $\partial \Delta(1)$ is visually $0 \bullet 1$,

$$\Delta(2)$$
 is visually $0 \xrightarrow{1} 2$, $\partial \Delta(2)$ is visually $0 \xrightarrow{1} 2$

13 / 57

Pay off all our assumptions 1: torsor structure, vector field (cont.)

 T_1

 $T_{13}T_{32}T_{21}X_1$

 $T_{13}T_{32}X_2$

 $T_{13}X_3$

 $T_{13}T_{32}X_{21}$:

 $T_{13}X_{32}$:

- Define σ_{ji} def = α_j(X_{ji}) : ρ_{ji} =_{S¹} base,.
 Paths of the form (a =_{S¹} base) can be added:

•
$$+: (a = base) \times (b = base) \rightarrow (a + b = base).$$

- $p+q=(p+b)\cdot q$.
- Lemma: $\sigma_{ii} + \sigma_{ji} = \text{refl}_{\text{base}}$.
- Proof: apd(X)(refl) = refl $\implies X_{ii} \cdot T_{ii} X_{ii} = \text{refl}_{X_i}$ $\implies \sigma_{ij} + \sigma_{ji} = \text{refl}_{\text{base}} (T_{ij} \text{ just})$ translates X_{ii} to cat with X_{ii}).

Homotopy realization: dimension 0

We will realize simplicial complexes by means of a sequence of pushouts.

Base case: the realization \mathbb{M} of a 0-dimensional complex M is M_0 .

In particular the 0-sphere $\partial \Delta(1) \stackrel{\text{def}}{=} \partial \Delta(1)_0$.

Homotopy realization: dimension 1

For a 1-dim complex $M\stackrel{\mathsf{def}}{=} [M_0, M_1]$ the realization is given by

$$M_{1} \times \partial \Delta(1) \xrightarrow{pr_{1}} M_{1}$$

$$A_{0} \downarrow \qquad \qquad \downarrow^{*_{\mathbb{M}_{1}}} \downarrow^{*_{\mathbb{M}_{1}}}$$

$$M_{0} = \mathbb{M}_{0} \xrightarrow{} \mathbb{M}_{1}$$

Main theorem

49 / 57

Homotopy realization: dimension 1

For example the simplicial 1-sphere $\partial \Delta(2) \stackrel{\text{def}}{=} \underbrace{0}^{1}$ is given by

Simplifying swirling

Swirling involves concatenating dependent paths. Can we simplify that?

16 / 5

Symbolic version

47 / 57

Index

$$\operatorname{tr}_F \stackrel{\operatorname{def}}{=} \operatorname{tr}(\partial F)$$
 : $T_1 =_{BS^1} T_1$ curvature $\emptyset_F \stackrel{\operatorname{def}}{=} \emptyset(\partial F)$: $\operatorname{id} =_{(T_1 =_{BS^1} T_1)} \operatorname{tr}_F$ flatness $X_F \stackrel{\operatorname{def}}{=} X(\partial F)$: $\operatorname{tr}_F(X_1) =_{T_1} X_1$ swirling

(Recall that T_1 being an S^1 -torsor means we can use subtraction to obtain an equivalence $s(-, X_1) : T_1 \xrightarrow{x \mapsto x - X_1} S^1$.)

Definition

The **flattened swirling** of the vector field X on the face F is the loop

$$L_F^X \stackrel{\mathsf{def}}{=} \flat_F(X_1) \cdot X_F : (X_1 =_{T_1} X_1).$$

The **index** of the vector field X on the face F is the integer I_F^X such that $\mathsf{loop}^{I_F^X} =_{S^1} (L_F^X) - X_1$.

Homotopy realization: dimension 1

Or the 1-skeleton of the octahedron \mathbb{O} :

$$\{\{w,g\},\ldots\} \times \{0,1\} \longrightarrow \{\{w,g\},\ldots\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\{w,g,\ldots\} \longrightarrow \mathbb{O}_1$$

17 / 57

Homotopy realization: dimension 2

To realize $M \stackrel{\text{def}}{=} [M_0, M_1, M_2]$ use $\partial \Delta(1), \partial \Delta(2)$:

$$M_{1} \times \partial \Delta(1) \xrightarrow{pr_{1}} M_{1}$$

$$A_{0} \downarrow \qquad \qquad \downarrow^{*_{M_{1}}} \downarrow^{*_{M_{1}}}$$

$$M_{0} = \mathbb{M}_{0} \xrightarrow{h_{1}} \mathbb{M}_{1} \xrightarrow{h_{2}} \mathbb{M}_{2}$$

$$A_{1} \uparrow \qquad \qquad \downarrow^{h_{2}} \uparrow^{*_{M_{2}}}$$

$$M_{2} \times \partial \Delta(2) \xrightarrow{pr_{1}} M_{2}$$

Homotopy realization: dimension 2

The full octahedron \mathbb{O} :

$$\{\{w,g\},\ldots\}\times\{0,1\} \xrightarrow{-\operatorname{pr}_1} \{\{w,g\},\ldots\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

19 / 57

An example of **swirling** and **index** at this face.

- Denote by X_1 this vector $X(v_1): T_1$.
- Say T_{21} is trivial. Denote the transported vector as thinner.
- Say T₃₂ rotates clockwise. Denote the twice-transported vector as dashed.
- Say T₁₃ is trivial. The thrice-transported vecor is dotted.

45 / 57

Homotopy realization: dimension 2

The **link** of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

A **combinatorial manifold** is a simplicial complex all of whose links are* simplicial spheres.

This will be our model of the tangent space.

*the (classical) geometric realization is homeomorphic to a sphere

- X on e₁₂ is red, etc.
- We translated all pathover data to the end of the loop.
- (Reminds me of scooping ice cream towards the last fiber.)
- The total pathover X(∂F) is called the swirling X_F of X at the face F.

20 / 57

An example of **swirling** and **index** at this face.

- Denote by X_1 this vector $X(v_1)$: T_1 .
- Say T_{21} is trivial. Denote the transported vector as thinner.

•

43 / 57

Combinatorial manifolds ↔ smooth manifolds

Theorem (Whitehead (1940))

Every smooth n-manifold has a compatible structure of a **combinatorial manifold**: a simplicial complex of dimension n such that the link is a combinatorial (n-1)-sphere, i.e. its geometric realization is an (n-1)-sphere.

https://ncatlab.org/nlab/show/triangulation+theorem

Counterexample: Wikipedia says this is a simplicial complex, but we can see it fails the link condition:

21 / 57

An example of **swirling** and **index** at this face.

- Denote by X₁ this vector
 X(v₁): T₁.
- Say T_{21} is trivial. Denote the transported vector as thinner.
- Say T₃₂ rotates clockwise. Denote the twice-transported vector as dashed.

Torsors

44 / 57

What type families $\mathbb{M} \to \mathcal{U}$ will we consider? Families of **torsors**, also called **principal bundles**.

 V_2 T_2 e_{12} e_{23} V_1 e_{31} V_3

An example of **swirling** and **index** at this face.

 T_3

41 / 57

Torsors

Let G be a (higher) group.

Definition

- A **right** G-**object** is a type X equipped with a homomorphism $\phi: G^{op} \to \operatorname{Aut}(X)$.
- X is furthermore a G-torsor if it is inhabited and the map $(\operatorname{pr}_1,\phi):X\times G\to X\times X$ is an equivalence.
- The inverse is (pr_1, s) where $s: X \times X \to G$ is called **subtraction** (when G is commutative).
- ullet Let BG be the type of G-torsors.
- Let G_{reg} be the G-torsor consisting of G acting on itself on the right.

Reminder: pathovers

- Recall pathovers (dependent paths).
- There is an asymmetry: we pick a fiber to display π, the path over p.
- Dependent functions map paths to pathovers: $apd(X)(p) : tr_p(X(a)) = X(b)$ (simply denoted X(p)).

39 / 57

Next goal: define the index of a vector field on a face by computing $X(\partial F)$ around a face.

Facts

- **1** $\Omega(BG, G_{reg}) \simeq G$ and composition of loops corresponds to multiplication in G.
- \bigcirc BG is connected.
- $\mathbf{3} \ 1 \& 2 \implies BG \text{ is a } \mathsf{K}(G,1).$

See the Buchholtz et. al. H-spaces paper for more.

25 / 57

How to map into BS^1

To construct maps into BS^1 we **lift** a family of **mere circles**.

 $BS^1 \longrightarrow \mathsf{BAut}(S^1) \stackrel{\mathsf{def}}{=} \sum_{Y:\mathcal{U}} ||Y = S^1||_{-1} \longrightarrow \mathcal{U}$ families of:

We will assume we have such a lift when we need it. (Remark: the lift is a choice of **orientation**.)

Other names:

- $\mathsf{BAut}(S^1) = BO(2) = \mathsf{EM}(\mathbb{Z},1)$ (where $\mathsf{EM}(G,n) \stackrel{\mathsf{def}}{=} \mathsf{BAut}(\mathsf{K}(G,n))$)
- $BS^1 = BSO(2) = K(\mathbb{Z}, 2)$

Connections and curvature

Vector fields

27 / 57

Connections

Connections are extensions of a bundle to higher skeleta.

Vector fields

Let $\mathcal{T}:\mathbb{M} o BS^1$ be an oriented tangent bundle on a 2-dim realization of a combinatorial manifold.

- Our bundles of mere circles can only model nonzero tangent vectors.
- A global section of this family would be a trivialization of T, so that's not a good definition.

- Our solution:

 A **vector field** is a term $X: \prod_{m:\mathbb{M}_1} Tm$.

 It models a classical **nonvanishing** vector field on the 1-skeleton.
 - We model classical zeros by omitting the faces.

The definition of a connection

Definition

If $\mathbb{M} \stackrel{\text{def}}{=} \mathbb{M}_0 \stackrel{\imath_0}{\to} \cdots \stackrel{\imath_{n-1}}{\to} \mathbb{M}_n$ is the realization of a combinatorial manifold and all the triangles commute in the diagram:

- The map f_k is a k-bundle on \mathbb{M} .
- The pair given by the map f_k and the proof $f_k \circ \imath_{k-1} = f_{k-1}$, i.e. that f_k extends f_{k-1} is called a k-connection on the (k-1)-bundle f_{k-1} .

35 / 57

Recall link

The **link** of a vertex w in a 2-complex is: the sets not containing w but whose union with w is a face.

Define **the tangent bundle** on a combinatorial manifold to be $T_0 \stackrel{\text{def}}{=} \text{link} : \mathbb{M}_0 \to \text{BAut}(S^1).$

29 / 57

The definition of curvature

Definition (cont.)

An extension consists of M_2 -many extensions to faces:

Here's the outer square for a single face F:

$$\begin{array}{ccc}
M_2 \times \partial \Delta(2) & \xrightarrow{\mathsf{pr}_1} & M_2 \\
& & \downarrow & & \downarrow \\
\mathbb{M}_1 & \xrightarrow{} & \mathbb{M}_2 \\
& & \downarrow & & \downarrow \\
& & & \downarrow & \downarrow \\
& \downarrow & \downarrow \\
& \downarrow & \downarrow & \downarrow \\$$

$$\begin{cases}
F \} \times \partial \Delta(2) \xrightarrow{pr_1} \{F\} \\
 & \stackrel{\mathbb{A}_1}{\downarrow} \qquad \downarrow \\
 & \mathbb{M}_1 \xrightarrow{b_F} \mathcal{U}
\end{cases}$$

 $T_1(\partial(F))$ is the curvature at the face F and the filler \flat_F : id $= T_1(\partial F)$ is called a flatness structure for the face F.

The distinction between the path b_F and the endpoint $T_1(\partial(F))$ is small enough to be confusing.

Connections on the tangent bundle

An extension T_1 of T_0 to M_1 is called a connection on the tangent bundle.

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

We will define T_1 on the edge wb, so we need a term

 $T_1(wb)$: link(w) = $BAut(S^1)$ link(b).

We imagine tipping:

 $T_1(g: link(w)) \stackrel{\text{def}}{=} w: link(b), \ldots$

Use this method to define T_1 on every edge.

31 / 57

Extending T_1 to a face

Let H_{wbr} : refl_w =_{w=MW} $\partial(wbr)$ be the filler homotopy of the face.

 \mathcal{T}_2 must live in $\mathcal{T}_1(\mathsf{refl}_w) =_{(\mathsf{link}(w) =_{\mathsf{BAut}(S^1)}\mathsf{link}(w))} \mathcal{T}_1(\partial(wbr)) = R$

 T_2 must be a homotopy H_R : id = R between automorphisms of link(w).

For example, a path $H_R(g)$: g = Rg = o. Choose go.

33 / 57

$T_1: \mathbb{M}_1 \to \mathsf{BAut}(S^1)$ extending link

Denote the path $wb \cdot br \cdot rw$ by $\partial(wbr)$. Consider $T_1(\partial(wbr))$:

We come back rotated by 1/4 turn. Call this rotation $R: \operatorname{link}(w) =_{BAut(S^1)} \operatorname{link}(w)$.

Original inspiration

