Geometría y Topología

Convocatoria ordinaria de Geometría III (20/01/2023)¹

Nombre:		
mombre:		

- 1. (2,5 puntos) Contesta a dos de los tres siguientes apartados:
 - (i) Razona si la siguiente afirmación es verdadera o falsa: "En un espacio afín 3-dimensional la intersección de tres planos distintos o es vacía, o un punto o una recta afín".
 - (ii) Razona qué movimiento rígido resulta al componer un giro con una simetría axial en un plano euclídeo.
 - (iii) Enuncia y demuestra el Teorema de Thales.
- 2. **(2,5 puntos)** En \mathbb{R}^3 se consideran los planos $\Pi \equiv -x y + z = 1$, $\Pi' \equiv x + y + z = -1$ y las rectas $r = (-1, 0, 0) + L\{(1, 1, 0)\}, r' = (0, 0, -1) + L\{(1, 0, 1)\}.$
 - (i) Prueba la existencia de una afinidad $f: \mathbb{R}^3 \to \mathbb{R}^3$ que verifique, $f(\Pi) = \Pi'$ y f(r) = r'. Determina sus ecuaciones en el sistema de referencia usual.
 - (ii) Demuestra que r y r' se cruzan y calcula la distancia entre ellas.
- 3. (2,5 puntos) En \mathbb{R}^3 y respecto del sistema de referencia euclídeo usual, calcula las ecuaciones de la simetría axial con deslizamiento, $f: \mathbb{R}^3 \to \mathbb{R}^3$, que verifica f(0,0,0) = (1,1,2) y $\vec{f}(1,1,0) = (1,1,0)$.
- 4. (2,5 puntos) En \mathbb{R}^3 se consideran, el punto F=(0,0,1), el plano Π de ecuación x-z=0 y el conjunto

$$\mathcal{Q} = \{ p \in \mathbb{R}^3 \mid d(p, F) = d(p, \Pi) \}.$$

Prueba que $\mathcal Q$ es una cuádrica y clasifícala.

¹Tiempo del examen: 3 horas