微分積分学・同演習 A

演習問題 5

- 1^{\dagger} $f(x)=x^{lpha}$ (lpha は任意の実数) とするとき , $f'(x)=lpha x^{lpha-1}$ が成立することを示せ *1 .
- 2. 次の関数の導関数を求めよ.m,n は任意の自然数とし,p,q は任意の実数とする.

(1)
$$(1+x)^m(2-x)^n$$
 (2) $e^{px}(\cos qx + \sin qx)$ (3) $(\sin px)^m(\cos qx)^n$

3. 次の関数の導関数を求めよ.

(1)
$$x\sqrt{\frac{a-x}{a+x}}$$
 (2) $\sqrt[3]{1-x^2+3x^4}$ (3) $\frac{\sin x}{\sqrt{a^2\cos^2 x+b^2\sin^2 x}}$

 4^{\dagger} 次の関数の x=0 における微分係数を求め、原点で微分可能かどうかを判定せよ・

(1)
$$y = |x|$$
 (2) $y = x^{1/3}$ (3) $y = \sqrt{x^2 + x^4}$ (4) $y = \begin{cases} x \operatorname{Arctan}(1/x) & (x \neq 0) \\ 0 & (x = 0) \end{cases}$

5. 対数微分法により次の関数を微分せよ.

(1)
$$\frac{(x+1)^2}{(x+2)^3(x+3)^4}$$
 (2) $\sqrt{\frac{(a+x)(b+x)}{(a-x)(b-x)}}$ (3) $e^{\sqrt{x}}$ (4) x^x

 6^{\dagger} 次の関数は x=0 で連続であるが , 微分係数を持たないことを示せ .

$$(1) \ f(x) = \begin{cases} x \sin(1/x) & (x \neq 0) \\ 0 & (x = 0) \end{cases} \quad (2) \ f(x) = \begin{cases} x \frac{e^{1/x} - e^{-1/x}}{e^{1/x} + e^{-1/x}} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$$

7. 次の関数の逆関数を求めよ.ただし ad-bc=1 とする.

(1)
$$\frac{ax+b}{cx+d}$$
 (2) $\frac{e^x-e^{-x}}{2}$ (3) $\frac{e^x-e^{-x}}{e^x+e^{-x}}$

8. 次の逆三角関数の値を求めよ.

(1) Arcsin
$$\frac{1}{2}$$
 (2) Arctan $\sqrt{3}$ (3) Arctan(2 + $\sqrt{3}$)

9. 逆三角関数に関して,次の恒等式が成り立つことを示せ.ただし a>b>0 とする.

(1) Arctan
$$\frac{1}{2}$$
 + Arctan $\frac{1}{3} = \frac{\pi}{4}$ (2) Arctan $\frac{b}{a}$ + Arctan $\frac{a-b}{a+b} = \frac{\pi}{4}$

⁵月16日分(凡例:無印は基本問題, †は特に解いてほしい問題,*は応用問題)

講義用 HP: http://www2.math.kyushu-u.ac.jp/~h-nakashima/lecture/2017C.html

^{*1} 対数微分法を用いる.