1) Portrait

Condition: $g_{y} < -THRESHOLD$

$$a = (\cos \alpha, -\sin \alpha, 0)$$

$$b = (-\sin\alpha, -\cos\alpha, 0)$$

$$c = (0, 0, -1)$$

$$g = s \cdot a + t \cdot b + r \cdot c$$

$$g_x = s \cos \alpha - t \sin \alpha$$

$$g_y = -s \sin \alpha - t \cos \alpha$$

$$-t = g_x \sin \alpha + g_y \cos \alpha$$

$$s = g_x \cos \alpha - g_y \sin \alpha$$

$$tan\left(-\gamma\right)=s/t$$

2) Landscape Positive (Right)

Condition: $g_x > THRESHOLD$

 $a=(\sin\alpha,\cos\alpha,0)$

 $b=(\cos\alpha,-\sin\alpha,0)$

c = (0, 0, -1)

 $g = s \cdot a + t \cdot b + r \cdot c$

 $g_x = s \sin \alpha + t \cos \alpha$

 $g_y = s\cos\alpha - t\sin\alpha$

 $s = g_x \sin \alpha + g_y \cos \alpha$

 $t = g_x \cos \alpha - g_y \sin \alpha$

 $tan\left(-\gamma\right)=s/t$

3) Landscape Negative (Left)

Condition: $g_x < -THRESHOLD$

$$a = (-\sin \alpha, -\cos \alpha, 0)$$

$$b=(-\cos\alpha,\sin\alpha,0)$$

$$c = (0, 0, -1)$$

$$g = s \cdot a + t \cdot b + r \cdot c$$

$$g_x = -s \sin \alpha - t \cos \alpha$$

$$g_y = -s \cos \alpha + t \sin \alpha$$

$$-s = g_x \sin \alpha + g_y \cos \alpha$$

$$-t = g_x \cos \alpha - g_y \sin \alpha$$

$$tan\left(-\gamma\right)=s/t$$

4) Below Parallel (look at phone from above)

Condition: $\mathbf{g}_z < - \mathrm{THRESHOLD}$ and PARALLEL

 $a = (0, \cos \alpha, \sin \alpha)$

 $b = (0, \sin \alpha, -\cos \alpha, 0)$

c = (1, 0, 0)

 $g = s \cdot a + t \cdot b + r \cdot c$

 $g_x = r$

 $g_y = s\cos\alpha + t\sin\alpha$

 $g_z = s \sin \alpha - t \cos \alpha$

 $s = g_{\rm y} \cos \alpha + g_{\rm z} \sin \alpha$

 $t = g_{\rm y} \sin \alpha - g_{\rm z} \cos \alpha$

 $tan(\gamma) = s/t$

5) Below Orthogonal (look at phone from above)

Condition: $\mathbf{g}_z < - \mathrm{THRESHOLD}$ and $\mathrm{ORTHOGONAL}$

 $a = (\cos \alpha, 0, \sin \alpha)$

 $b = (\sin \alpha, 0, -\cos \alpha)$

c = (0, 1, 0)

 $g = s \cdot a + t \cdot b + r \cdot c$

 $g_x = s \cos \alpha + t \sin \alpha$

 $g_y = r$

 $g_z = s \sin \alpha - t \cos \alpha$

 $s = g_x \cos \alpha + g_z \sin \alpha$

 $t = g_{x} \sin \alpha - g_{z} \cos \alpha$

 $tan(-\gamma) = s/r$

6) Above Parallel Only (look at phone from below)

Condition: $g_z > THRESHOLD$

 $a = (0, \cos \alpha, \sin \alpha)$

 $b = (0, -\sin\alpha, \cos\alpha, 0)$

c = (1, 0, 0)

 $g = s \cdot a + t \cdot b + r \cdot c$

 $g_x = r$

 $g_y = s \cos \alpha - t \sin \alpha$

 $g_z = s \sin \alpha + t \cos \alpha$

 $s = g_{y} \cos \alpha + g_{z} \sin \alpha$

 $-t = g_y \sin \alpha - g_z \cos \alpha$

 $tan(\gamma) = s / t$

7) Top Down

Condition: $g_y > THRESHOLD$

 $a = (-\cos \alpha, \sin \alpha, 0)$

 $b=(\sin\alpha,\cos\alpha,0)$

c = (0, 0, -1)

 $g = s \cdot a + t \cdot b + r \cdot c$

 $g_x = -s \cos \alpha + t \sin \alpha$

 $g_y = s \sin \alpha + t \cos \alpha$

 $t = g_x \sin \alpha + g_y \cos \alpha$

 $-s = g_x \cos \alpha - g_y \sin \alpha$

 $tan\left(-\gamma\right)=s/t$

