Limits (Lecture-12)

Engineering Calculus

School of Engineering and Applied Sciences Department of Mathematics Bennett University

Definition

Let f(x) be defined on (a,b) except possibly at $c \in (a,b)$. We say that $\lim_{x \to c} f(x) = L$ if, for every real number $\epsilon > 0$, there exists a real number $\delta > 0$ such that

$$0 < |x - c| < \delta \implies |f(x) - L| < \epsilon.$$

Example 1

$$\lim_{x \to 1} \left(\frac{3x}{2} - 1 \right) = \frac{1}{2}.$$

Solution: Let $\epsilon > 0$. Then we have to find $\delta > 0$ such that

$$|x-1| < \delta \implies |f(x) - L| = \left| \left(\frac{3x}{2} - 1 \right) - \frac{1}{2} \right| = \frac{3}{2} |x-1| < \epsilon.$$

Now, we have

$$|f(x) - L| = \frac{3}{2}|x - 1| < \epsilon \text{ whenever } |x - 1| < \delta = \frac{2}{3}\epsilon.$$

Example 2

Prove that
$$\lim_{x \to 2} f(x) = 4$$
, where $f(x) = \begin{cases} x^2 & x \neq 2\\ 1 & x = 2. \end{cases}$

Solution: Let $\epsilon > 0$ be given. Then we have to find a $\delta > 0$ such that

$$0 < |x - 2| < \delta \implies |f(x) - L| < \epsilon$$
.

Now,
$$|x^2 - 4| = |x + 2||x - 2| = |x - 2||x + 2 + 2 - 2| < |x - 2|(|x - 2| + 4) < \delta(\delta + 4) < 5\delta$$
. Choose $\delta = \frac{\epsilon}{5}$ and we are done.

Theorem

If limit exists, then it is unique.

Theorem (Sequential criteria of limits)

 $\lim_{x\to c} f(x) = L$ if and only if for any sequence $\{x_n\}$ with $x_n\to c$, we have $f(x_n)\to L$ as $n\to\infty$.

Example

Show that $\lim_{x\to 0} \sin\left(\frac{1}{x}\right)$ does not exist.

Solution: Consider the sequences $\{x_n\} = \left\{\frac{1}{n\pi}\right\}$, $\{y_n\} = \left\{\frac{1}{2n\pi + \frac{\pi}{2}}\right\}$. Then it is easy to see that $x_n, y_n \to 0$ and $\sin\left(\frac{1}{x}\right) \to 0$, $\sin\left(\frac{1}{y}\right) \to 1$.

Example

Let $f(x) = \frac{1}{x}$. Then $\lim_{x \to 0} f(x)$ does not exist.

Solution: Consider the sequence $\{x_n\}$ with $x_n = \frac{1}{n}$. Then $x_n \to 0$ but $f(x_n)$ diverges to infinity. Therefore, $\lim_{x \to 0} f(x)$ does not exist.

Theorem

Suppose $\lim_{x\to c} f(x) = L$ and $\lim_{x\to c} g(x) = M$, then

- (a) $\lim_{x \to c} (f(x) \pm g(x)) = L \pm M.$
- (b) $f(x) \le g(x)$ for all x in an open interval containing c. Then $L \le M$.
- (c) $(i) \lim_{x \to c} (fg)(x) = LM$ and (ii) when $M \neq 0$, $\lim_{x \to c} \frac{f}{g}(x) = \frac{L}{M}$.
- (d) (Sandwich) Suppose that h(x) satisfies $f(x) \le h(x) \le g(x)$ in an interval containing c, and L = M. Then $\lim_{x \to a} h(x) = L$.
- (e) If $\lim_{x \to c} f(x) = L$ then $\lim_{x \to c} |f(x)| = |L|$. But converse is not true.

Example

- (a) Consider $f: [0,1] \to [-1,1]$ as f(x) = -1 if $0 \le x < 1/2$ and f(x) = 1 if $1/2 \le x < 1$. Then $\lim_{x \to \frac{1}{3}} f(x)$ does not exist.
- (b) $\lim_{x\to 0} x^m = 0 \ (m > 0).$
- (c) $\lim_{x \to 0} x \sin x = 0.$

Theorem

Suppose f(x) is bounded in an interval containing c and $\lim_{x\to c} g(x) = 0$. Then $\lim_{x\to c} f(x)g(x) = 0$. but result does not hold if $\lim_{x\to c} g(x) \neq 0$.

Proof: Let $\epsilon > 0$, then there exist $\delta > 0$ such that

$$|x-c|<\delta \implies |g(x)|<\epsilon.$$

Also, there exist M > 0 such that $|f(x)| \le M$. Now, for $|x - c| < \delta$ we have

$$|fg| \le M \cdot \frac{\epsilon}{M} = \epsilon.$$

Example

 $\lim_{x \to 0} |x| \sin \frac{1}{x} = 0.$

Example

Show that (i) $\lim \sin x = 0$, and (ii) $\lim \cos x = 1$.

Solution: From the graph of the function $\sin x$, it is clear that

$$0 < x < \frac{\pi}{2} \Longrightarrow 0 < \sin x < x$$
, and $-\frac{\pi}{2} < x < 0 \Longrightarrow 0 < |\sin x| < |x|$.

Hence $\lim_{x\to 0} |\sin x| = 0$. Thus $\lim_{x\to 0} \sin x = 0$. Also, since $\cos x = 1 - 2\sin^2(x/2)$ and $\lim_{x \to 0} \sin(x/2) = 0$. Therefore $\lim_{x \to 0} \cos x = 1$. $r \rightarrow 0$

Result

Suppose $\lim_{x \to c} f(x) = b$ and $\lim_{y \to b} g(y) = a$. Then $\lim_{x \to c} g(f(x)) = a$.

One sided limits

Definition

Let f(x) is defined on (c, b). The right hand limit of f(x) at c is denoted by $\lim_{x \to c^+} f(x) = L$ and defined by: for given $\epsilon > 0$, there exists $\delta > 0$, such that

$$0 < x - c < \delta \implies |f(x) - L| < \epsilon$$
.

Similarly, the left hand limit of f(x) at b is denoted by $\lim_{x\to b^-} f(x) = L$ and defined by: for given $\epsilon > 0$, there exists $\delta > 0$, such that

$$b - \delta < x < b \implies |f(x) - L| < \epsilon.$$

Theorem

$$\lim_{x \to a} f(x) = L \text{ exists } \iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = L.$$

Limits at infinity and infinite limits

Definition

f(x) has limit L as x approaches $+\infty$, if for any given $\epsilon > 0$, there exists M > 0 such that

$$x > M \implies |f(x) - L| < \epsilon.$$

Similarly, f(x) has limit L as x approaches $-\infty$, if for any given $\epsilon > 0$, there exists M > 0 such that

$$x < -M \implies |f(x) - L| < \epsilon.$$

Example

- (a) $\lim_{x \to \infty} \frac{1}{x} = 0.$
 - **Solution:** For every $\epsilon > 0$, there exist $M = \frac{1}{\epsilon}$ such that $x > M \Rightarrow \frac{1}{x} < \epsilon$.
- (b) $\lim_{x \to -\infty} \frac{1}{x} = 0.$

Solution: For every $\epsilon > 0$, there exist $M = \frac{1}{\epsilon}$ such that $x < -M \Rightarrow \left| \frac{1}{x} \right| < \epsilon$.

- (c) $\lim_{x \to \infty} \sin x$ does not exist.
 - **Solution:** Choose $x_n = n\pi$ and $y_n = \frac{\pi}{2} + 2n\pi$. Then $x_n, y_n \to \infty$ and $\sin x_n = 0$, $\sin y_n = 1$. Hence the limit does not exist.

8/11

Definition (Horizontal Asymptote)

A line y = b is a horizontal asymptote of y = f(x) if either $\lim_{x \to \infty} f(x) = b$ or $\lim_{x \to -\infty} f(x) = b$.

Example

y = 1 is a horizontal asymptote for $f(x) = 1 + \frac{1}{x+1}$.

Definition (Infinite Limits)

A function f(x) approaches ∞ $(f(x) \to \infty)$ as $x \to c$ if, for every real B > 0, there exists $\delta > 0$ such that

$$0 < |x - c| < \delta \implies f(x) > B.$$

Similarly, A function f(x) approaches $-\infty$ ($f(x) \to -\infty$) as $x \to c$ if, for every real B > 0, there exists $\delta > 0$ such that

$$0 < |x - c| < \delta \implies f(x) < -B$$
.

Example

 $\lim_{x\to 0} \frac{1}{x^2} = \infty.$

Solution: For given B > 0, we can choose $\delta \le \frac{1}{\sqrt{B}}$. such that $|x| < \delta \implies \frac{1}{x^2} > B$.

Example

$$\lim_{x \to 0} \frac{1}{x^2} \sin\left(\frac{1}{x}\right)$$
 does not exist.

Solution: Choose a sequence $\{x_n\}$, $\{y_n\}$ such that $\frac{1}{x_n} = \frac{\pi}{2} + 2n\pi$ and $\frac{1}{y_n} = n\pi$. Then

$$x_n, y_n \to 0$$
 as $n \to \infty$ but $\lim_{n \to \infty} f(x_n) = \frac{1}{x_n^2} \to \infty$ and $\lim_{n \to \infty} f(y_n) = 0$.

Definition (Vertical Asymptote)

A line x=a is a vertical asymptote of y=f(x) if either $\lim_{x\to a^+}f(x)=\pm\infty$ or $\lim_{x\to a^-}f(x)=\pm\infty$.

Example

x = -2 is a vertical asymptote and y = 1 is a horizontal asymptote of $f(x) = \frac{x+3}{x+2}$.

