JPEG Image Compression

Multimedia Databases SS23 (Exercises)

Prof. Dr. Harald Kosch / Prof. Dr. Mario Döller

Tutors: Kanishka Ghosh Dastidar, Alaa

Alhamzeh

Outline

- JPEG Baseline Process
- Pre-processing
- Forward Discrete Cosinus Transformation (F-DCT)
- Quantization
- Entropy Coding

Task 1.1: JPEG compression algorithm

- Baseline Process
 - Goal: Reversible (but lossy) compression

Task 1.2

- Pre-processing:
 - Image scale + Blocks formation: divide the image into blocks of equal/specific size: Lossless.
 - Color space conversion: Lossless.
 - Subsampling: remove less significant details: Lossy
- DCT: Transform the image to frequency domain: Lossy
- Quantization: Remove less significant details: Lossy
- Entropy Removal: Remove redundancy: Lossless

Task 2: Pre-processing: Image Scale

- DCT can only work with blocks of size 8x8
 - Image dimensions must be divisible by 8
- Missing pixels are completed as follows
 - Extra columns on the right contain same value as furthermost column
 - Extra rows below contain same value as the last row of the image
 - Missing block on the bottom right contains same value as the last pixel of image

Task 2.1: Pre-processing: Color Space

- Conversion from RGB to YUV (YC_bC_r)
- Separates luma from chroma
 - Luma (luminance): Y, isolated
 - Chroma (Chrominance): two color-difference components
 - C_b blue luma
 - C_r red luma
- Enable data-reduction, through the fact:
 - Human perception is less sensitive to changes in color than light intensity

Task 2.2: Pre-processing: Subsampling

Data reduction

- Keep all luma coefficients
- Discard parts of chroma coefficients
- Given by a ratio: X:a:b
 - X: Reference
 - a: num of C_b or C_r per odd line
 - b: num of C_b or C_r per even line
- 4:4:4 → no changes

Task 2.3: Pre-processing: Blocks Formation

- Image must be divided into blocks of MCU (Min Coded Units): 8x8
- But: Subsampling drops chroma coefficients
 - So there might not be enough elements
 - 4:4:4 makes no changes \rightarrow MCU = 8 x 8
 - 4:2:0 contains 50% in each dimension → MCU = 16 x 16
 - →Image width/height must be divisible by 16 (or scaled)

Task 3.1: DCT: Discrete Cosinus Transform.

- DCT translates image information of space domain (visible form of representation) into frequency domain
 - Applied on 8x8 blocks
 - MUST be reversible
 - No data reduction during transformation, but basis for further processing
- Frequency Domain:
 - Frequency is the rate at which pixel values change over spatial distance
- Color Variance → Frequency
 - · A: Low, B: Moderate, C: High

- Transformation helps separating less important from more important information.
 - Human eye ist most sensitive to low frequencies than high frequencies.

Task 3.2 and 3.3: F-DCT: Coefficients

- Image is divided into 8x8 blocks
 - Each is considered as discrete signal with 64 coefficients
- Two types of coefficients
 - DC:DCT(0,0) Gives the basic hue of the image
 - AC: The other 63 coefficients
 - Represent color change across the block
- Further parts (higher frequencies) are the more useful parts for compression.

Task 4.1: Quantization

Quantization is performed by:

- Divide each element in the transformed matrix F(u,v) by the corresponding element in the quantization matrix
- Round to nearest integer value

Quantization matrix is influential

- Not standartized, but recommendations are provided
- Quantization tables for chroma and luma based on subjective experiments involving human visual system

```
    162.3
    40.6
    20.0
    72.3
    30.3
    12.5
    -19.7
    -11.5

    30.5
    108.4
    10.5
    32.3
    27.7
    -15.5
    18.4
    -2.0

    -94.1
    -60.1
    12.3
    -43.4
    -31.3
    6.1
    -3.3
    7.1

    -38.6
    -83.4
    -5.4
    -22.2
    -13.5
    15.5
    -1.3
    3.5

    -31.3
    17.9
    -5.5
    -12.4
    14.3
    -6.0
    11.5
    -6.0

    -0.9
    -11.8
    12.8
    0.2
    28.1
    12.6
    8.4
    2.9

    4.6
    -2.4
    12.2
    6.6
    -18.7
    -12.8
    7.7
    12.0

    -10.0
    11.2
    7.8
    -16.3
    21.5
    0.0
    5.9
    10.7
```

```
16
          24
                40
                      51
                            61
14
    19
          26
                            55
    24
                57
                            56
22
    29
          51
                87
                            77
37
    56
              109
                     103
               104
                     113
78
         103
               121
                     120
                           101
                     103
```

DCT matrix F(u,v))

Quantization matrix Q(u,v)

Task 4.1: Quantization

Advantages

- Compression: Save bits by restricting value range
 - Reduce frequency components that are neglibible for the image information

Disadvantages

- Less possible values → worst quality
 - Lossy operation
- Quantization error (noise) occurs → edge artifacts

Task 5.1: Entropy Coding

Purpose of entropy coding

- Last step of JPEG compression
- Reduce redundancy in quantized coefficients
- Lossless

Main contribution of RLE to data compression

- Run-length encoding helps reducing data by compressing series of identical bits
- A block must be handled first by a zig-zag scan

Task 5.1: Entropy Coding: Zig-Zag

- The Zig-Zag scan maps an 8x8 matrix to a 1x64 vector
 - Group low frequency coefficients at vector's front and high frequency coefficients at bottom.

Task 5.2: Entropy Coding: Different Coding

- DC- and AC-coefficients are entropy coded differently
- RLE (and zig-zag) is applied only for AC coefficients
 - Due quantization step, the 1x64 vectors have a lot of zeros in them
 - Keeps skip and value, where skip is the number of zeros and value is the next non-zero component.

Task 5.3: Entropy Coding: Different Coding

- For DC coefficients:
 - Difference between the coefficients of neighboring blocks is used for getting higher compression rates
 - Neighboring DC coefficients are similar
 - Differences between them are very small

$$\Rightarrow$$
 10, 5, -3, 5, ...

