# Solución Numérica de la Ecuación de Calor por el Método de las Diferencias Finitas

Miguel Antonio Caro Candezano<sup>1</sup>, Boris Lora Castro<sup>1</sup>, Valdemir Garcia Ferreira<sup>2</sup>

<sup>1</sup>Departamento de Matemáticas de la Universidad del Atlántico, Colombia

<sup>2</sup>Departamento de Matemática Aplicada e Estatística, ICMC - USP

Julio de 2008

#### Abstract

In this report, we present the numerical solution of the heat equation by using the finite difference method. Particularly, we employ an explicit and implicit schemes with different values of the stability parameter. The numerical results are compared with analytical solutions.

Keywords: Ecuación de calor, método de diferencias finitas, método explícito, método implícito, soluciones numéricas.

## 1 Introducción

Existen diferentes método para resolver Ecuaciones Diferenciales Parciales (EDP) y Ecuaciones Diferenciales Ordinarias (EDO), entre ellos se encuentra el Método de las Diferencias Finitas (MDF), el cual consiste en introducir una malla  $^1$  sobre una región  $\Omega$  y aproximar las derivadas del problema planteado por medio de técnicas de aproximación de las derivadas como lo es, por ejemplo, la descomposición en serie de Taylor de la función. Ahora tomemos la descomposición en serie de Taylor de la función U en los puntos x + h y x - h, después sumamos como es habitual en estos casos para hallar una expresión tanto de la primera como de la segunda derivada de la función, entre otras, así tenemos lo siguiente

$$U(x+h) \approx U(x) + hU'(x) + \frac{h^2}{2!}U''(x) + \frac{h^2}{3!}U'''(x) + \dots$$
 (1)

$$U(x-h) \approx U(x) - hU'(x) + \frac{h^2}{2!}U''(x) - \frac{h^2}{3!}U'''(x) + \dots$$
 (2)

$$U(x+h) + U(x-h) = 2U(x) + h^2 U''(x) + O(h^4),$$
(3)

 $<sup>^1</sup>$ Sea U(x,t) una función de x y de t, subdividiremos el plano x-t en un conjunto de rectángulos iguales de lados  $\delta x$  y  $\delta t$  respectivamente, de tal manera que cada punto de los ejes OX y OY están definidos respectivamente por  $x_i=ih,h=\delta x,i=\ldots-1,0,1,\ldots$ ,  $y_j=jk,k=\delta y,j=0,1,\ldots$ , así cada punto de la grilla tendrá coordenadas  $(x_i,y_j)=(ih,jk)$ . Ver Fig.1.

En (3) el error es de al menos  $h^4$ .

De lo anterior podemos deducir que al sumar (1) y (2) tenemos

$$U''(x) = \frac{1}{h^2} [U(x+h) - 2U(x) + U(x-h)]$$
(4)

con un error de  $h^2$ .

Ahora de (2) restemos (3), obtenemos la denominada diferencia central

$$U'(x) = \frac{1}{2h}[U(x+h) - U(x-h)]$$
 (5)

también con un error de  $h^2$ .

Definimos la "diferencia para adelante" por

$$U'(x) = \frac{1}{h}[U(x+h) - U(x)] \tag{6}$$

y la **diferencia "diferencia para atrás"** por

$$U'(x) = \frac{1}{h}[U(x) - U(x - h)] \tag{7}$$

A continuación veamos la aplicación del MDF en una EDO con un problema de Cauchy:

$$\begin{cases} u''(x) + \mu u(x) &= f(x), \quad a \le x \le b, \quad \mu = cte \\ u(a) = \alpha, \quad u(b) &= \beta \end{cases}$$
 (8)

Introducimos una malla continua en el segmento [a, b],  $a = x_0, x_1, \dots, x_N = b$ , representemos la segunda derivada de u(x), aproximadamente por (3), teniendo en cuenta que  $u_n = u(x_n)$ :

$$u''(x_n) \approx \frac{u_{n-1} - 2u_n + u_{n+1}}{h^2}, \quad h = x_{n+1} - x_n$$
 (9)

esta aproximación se puede utilizar en cada nodo  $x_n, 1 \le n \le N-1$ , haciendo la sustitución en (8) y representado  $f(x_n) = f_n$ , tenemos

$$\frac{u_{n-1} - 2u_n + u_{n+1}}{h^2} + \mu u_n = f_n, \ 1 \le n \le N - 1 \tag{10}$$

esto es un sistema de N-1 ecuaciones algebraicas cuyas incógnitas son las soluciones aproximadas en cada retículo de la malla, el número de soluciones  $u_n, 0 \le n \le N$  es igual a N+1, es decir, una más que el número de ecuaciones en el sistema (8), faltarían dos ecuaciones que pueden ser suplidas por las condiciones en los extremos

$$u_0 = u(x_0) = a, (11)$$

$$u_N = u(x_N) = b (12)$$

Con el sistema de ecuaciones completo, podemos resolverlo por diferentes métodos numéricos (Gauss-sin Pivoteo, por ejemplo).

## 2 Formulación del problema

Un ejemplo clásico de una EDP del tipo parabólico es la ecuación de la distribución de calor(Difusión) en una barra de longitud L con las particularidades siguientes:

- La barra esta aislada totalmente en sus extremos.
- La distribución de la temperatura es uniforme en las secciones rectas.
- El material que compone a la barra es homogéneo.

La ecuación de distribución de calor tiene la siguiente forma

$$\frac{\partial U}{\partial t} = \mu \frac{\partial^2 U}{\partial x^2}, \ 0 < x < L, \ t > 0, \mu - \text{cte.}$$
 (13)

donde la solución a esta ecuación es la temperatura U a una distancia X del extremo de la barra delgada después de un tiempo T, la solución es una función que depende de dos variables U(x,t),  $\mu$  es el coeficiente de distribución de calor.

## 3 El Método Explicito

El Método Explicito consiste en calcular los valores desconocidos de u en un t=k cualquiera a partir de los valores conocidos de u para valores anteriores de t, los valores de u son conocidos en t=0, j=0 gracias a las condiciones iniciales. Veamos como queda (13), cuando  $\mu=1$  utilizando MDF, para j=0:

$$\frac{u_{i,j+1} - u_{i,j}}{k} = \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} \tag{14}$$

teniendo en cuenta que  $x_i = ih$ ,  $i = 0, 1, 2, \dots, y_j = jk$ ,  $j = 0, 1, 2, \dots$  al operar (14) tenemos

$$u_{i,j+1} = \frac{k}{h^2} (u_{i+1,j} - 2u_{i,j} + u_{i-1,j}) + u_{i,j}$$
(15)

Sea  $r = \frac{k}{h^2}$ , entonces (15) toma la forma

$$u_{i,j+1} = ru_{i-1,j} + (1-2r)u_{i,j} + ru_{i+1,j}$$
(16)

La ecuación (16) se denomina **fórmula explícita** o **modelo explícito** para la solución de una EDP usando MDF. El Método explicito es convergente siempre que  $0 < r \le \frac{1}{2}$  o que  $k \le \frac{h^2}{2}$ . [3]

En la siguiente página encontramos un modelo gráfico del Método Explícito e Implícito en forma de celulas.



Figure 1: Célula reticular para el Método Explícito



Figure 2: Célula reticular para el Método Implícito

Resolveremos una EDP parabólica utilizando para ello el denominado **método explícito** para diferentes valores de r como se indican en las respectivas tablas de datos. Los resultados numéricos fueron obtenidos a partir de programas hecho en el lenguaje de programación C++, en los anexos se encuentran los códigos de los programas.

El problema es el siguiente:

#### Problema 1.

$$\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}, \ 0 < x < 1, \ t > 0, \tag{17}$$

$$U(x,t) = 0$$
, si  $x = 0$  y  $x = 1$ ,  $\forall t > 0$  (18)

$$U(x,0) = \begin{cases} 2x, & 0 \le x \le 1/2\\ 2(1-x), & 1/2 \le x \le 1 \end{cases}$$
 (19)

donde (18) son las condiciones en la frontera, (19) son las denominadas condiciones iniciales. La solución analítica para el problema descrito anteriormente es

$$U(x,t) = \frac{8}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2} (\sin \frac{n\pi}{2}) (\sin n\pi x) exp(-n^2\pi^2 t)$$
 (20)

A continuación, en la siguiente página, mostramos las soluciones numéricas del Problema 1. para diferentes valores de  $r^2$ . El **error** lo definimos por la siguiente fórmula [4]

$$error = \frac{|U(x_i, y_j) - U(x, y)|}{U(x, y)} \times 100.$$
 (21)

La **Diferencia** se define por la resta entre el valor numérico de la función  $U(x_i, y_j)$  obtenido por el MDF y el valor analítico de la misma U(x, y).

 $<sup>^{2}</sup>$ Los resultados numéricos de los problemas analizados y presentados en este trabajo son para los siguientes casos: r = 0.48, r = 0.50, r = 0.30, r = 0.70. En las Tablas **Dif** significa **Diferencia**.

Tabla 1: Resultados Numéricos del Problema 1. aplicando el Método Explícito.

|     |     | Caso  | 1. 1.r | = 0.30, h =                              | 0.1, k = 0                           | .0030  |        |
|-----|-----|-------|--------|------------------------------------------|--------------------------------------|--------|--------|
| i   | j   | х     | t      | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error  |
| 1   | 2   | 0.100 | 0.006  | 0.2000                                   | 0.2000                               | 0.0000 | 0.0069 |
| 2   | 2   | 0.200 | 0.006  | 0.4000                                   | 0.3996                               | 0.0004 | 0.1024 |
| 3   | 2   | 0.300 | 0.006  | 0.6000                                   | 0.5941                               | 0.0059 | 0.9865 |
| 4   | 2   | 0.400 | 0.006  | 0.7640                                   | 0.7570                               | 0.0070 | 0.9218 |
| 5   | 2   | 0.500 | 0.006  | 0.8320                                   | 0.8252                               | 0.0068 | 0.8250 |
|     |     |       |        |                                          |                                      |        |        |
|     |     |       |        |                                          |                                      |        |        |
| 1   | 10  | 0.100 | 0.030  | 0.1829                                   | 0.1812                               | 0.0016 | 0.9081 |
| 2   | 10  | 0.200 | 0.030  | 0.3512                                   | 0.3484                               | 0.0028 | 0.8046 |
| 3   | 10  | 0.300 | 0.030  | 0.4890                                   | 0.4857                               | 0.0033 | 0.6724 |
| 4   | 10  | 0.400 | 0.030  | 0.5803                                   | 0.5770                               | 0.0032 | 0.5621 |
| 5   | 10  | 0.500 | 0.030  | 0.6123                                   | 0.6091                               | 0.0032 | 0.5193 |
|     |     |       |        |                                          |                                      |        |        |
| 1 : | :   | :     | :      | :                                        | :                                    | :      | :      |
| 1   | 30  | 0.100 | 0.090  | 0.1033                                   | 0.1030                               | 0.0002 | 0.2409 |
| 2   | 30  | 0.200 | 0.090  | 0.1964                                   | 0.1960                               | 0.0005 | 0.2376 |
| 3   | 30  | 0.300 | 0.090  | 0.2704                                   | 0.2698                               | 0.0006 | 0.2334 |
| 4   | 30  | 0.400 | 0.090  | 0.3179                                   | 0.3171                               | 0.0007 | 0.2301 |
| 5   | 30  | 0.500 | 0.090  | 0.3342                                   | 0.3335                               | 0.0008 | 0.2288 |
|     |     |       |        |                                          |                                      |        |        |
| 1:  | 1 : | :     | :      | :                                        | :                                    | :      | 1 : 1  |
| 1   | 38  | 0.100 | 0.114  | 0.0814                                   | 0.0813                               | 0.0001 | 0.0758 |
| 2   | 38  | 0.200 | 0.114  | 0.1548                                   | 0.1547                               | 0.0001 | 0.0752 |
| 3   | 38  | 0.300 | 0.114  | 0.2130                                   | 0.2129                               | 0.0002 | 0.0744 |
| 4   | 38  | 0.400 | 0.114  | 0.2504                                   | 0.2502                               | 0.0002 | 0.0738 |
| 5   | 38  | 0.500 | 0.114  | 0.2633                                   | 0.2631                               | 0.0002 | 0.0736 |

|     |    | Caso  | 1. 2.r | = 0.48, h =                              | 0.1, k = 0                           | .0048  |        |
|-----|----|-------|--------|------------------------------------------|--------------------------------------|--------|--------|
| i   | j  | х     | t      | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_i})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error  |
| 1   | 1  | 0.100 | 0.005  | 0.2000                                   | 0.2000                               | 0.0000 | 0.0010 |
| 2   | 1  | 0.200 | 0.005  | 0.4000                                   | 0.3999                               | 0.0001 | 0.0300 |
| 3   | 1  | 0.300 | 0.005  | 0.6000                                   | 0.5970                               | 0.0030 | 0.4987 |
| 4   | 1  | 0.400 | 0.005  | 0.8000                                   | 0.7686                               | 0.0314 | 4.0841 |
| 5   | 1  | 0.500 | 0.005  | 0.8080                                   | 0.8436                               | 0.0356 | 4.2254 |
|     |    |       |        |                                          |                                      |        |        |
| :   | :  | : :   | :      | :                                        | :                                    | :      | : :    |
| 1   | 5  | 0.100 | 0.024  | 0.1898                                   | 0.1891                               | 0.0007 | 0.3766 |
| 2   | 5  | 0.200 | 0.024  | 0.3754                                   | 0.3658                               | 0.0096 | 2.6170 |
| 3   | 5  | 0.300 | 0.024  | 0.5093                                   | 0.5141                               | 0.0048 | 0.9356 |
| 4   | 5  | 0.400 | 0.024  | 0.6261                                   | 0.6146                               | 0.0115 | 1.8742 |
| 5   | 5  | 0.500 | 0.024  | 0.6389                                   | 0.6504                               | 0.0115 | 1.7648 |
|     |    |       |        |                                          |                                      |        |        |
| :   | :  | : :   | :      | :                                        | :                                    | :      | : :    |
| 1   | 20 | 0.100 | 0.096  | 0.0969                                   | 0.0971                               | 0.0002 | 0.2344 |
| 2   | 20 | 0.200 | 0.096  | 0.1827                                   | 0.1847                               | 0.0020 | 1.1016 |
| 3   | 20 | 0.300 | 0.096  | 0.2536                                   | 0.2542                               | 0.0006 | 0.2441 |
| 4   | 20 | 0.400 | 0.096  | 0.2956                                   | 0.2989                               | 0.0033 | 1.1113 |
| 5   | 20 | 0.500 | 0.096  | 0.3135                                   | 0.3143                               | 0.0008 | 0.2501 |
|     |    |       |        |                                          |                                      |        |        |
| 1 : | :  | : :   | :      | :                                        | :                                    | :      | :      |
| 1   | 25 | 0.100 | 0.120  | 0.0756                                   | 0.0766                               | 0.0010 | 1.3250 |
| 2   | 25 | 0.200 | 0.120  | 0.1446                                   | 0.1458                               | 0.0011 | 0.7712 |
| 3   | 25 | 0.300 | 0.120  | 0.1980                                   | 0.2006                               | 0.0027 | 1.3266 |
| 4   | 25 | 0.400 | 0.120  | 0.2340                                   | 0.2359                               | 0.0018 | 0.7728 |
| 5   | 25 | 0.500 | 0.120  | 0.2447                                   | 0.2480                               | 0.0033 | 1.3276 |

|   | Caso 3. $r = 0.50, h = 0.1, k = 0.0050$ |       |       |                                          |                                      |        |        |  |  |  |  |
|---|-----------------------------------------|-------|-------|------------------------------------------|--------------------------------------|--------|--------|--|--|--|--|
| i | j                                       | x     | t     | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error  |  |  |  |  |
| 1 | 1                                       | 0.100 | 0.005 | 0.2000                                   | 0.2000                               | 0.0000 | 0.0014 |  |  |  |  |
| 2 | 1                                       | 0.200 | 0.005 | 0.4000                                   | 0.3998                               | 0.0002 | 0.0382 |  |  |  |  |
| 3 | 1                                       | 0.300 | 0.005 | 0.6000                                   | 0.5966                               | 0.0034 | 0.5693 |  |  |  |  |
| 4 | 1                                       | 0.400 | 0.005 | 0.8000                                   | 0.7667                               | 0.0333 | 4.3469 |  |  |  |  |
| 5 | 1                                       | 0.500 | 0.005 | 0.8000                                   | 0.8404                               | 0.0404 | 4.8099 |  |  |  |  |
|   | :                                       |       | :     | :                                        |                                      | :      | :      |  |  |  |  |
| 1 | 6                                       | 0.100 | 0.030 | 0.1875                                   | 0.1812                               | 0.0063 | 3.4570 |  |  |  |  |
| 2 | 6                                       | 0.200 | 0.030 | 0.3438                                   | 0.3484                               | 0.0046 | 1.3281 |  |  |  |  |
| 3 | 6                                       | 0.300 | 0.030 | 0.5000                                   | 0.4857                               | 0.0143 | 2.9338 |  |  |  |  |
| 4 | 6                                       | 0.400 | 0.030 | 0.5625                                   | 0.5770                               | 0.0145 | 2.5161 |  |  |  |  |
| 5 | 6                                       | 0.500 | 0.030 | 0.6250                                   | 0.6091                               | 0.0159 | 2.6058 |  |  |  |  |
|   | :                                       | :     | :     | •                                        | •                                    |        | :      |  |  |  |  |
| 1 | 18                                      | 0.100 | 0.090 | 0.10490                                  | 0.1030                               | 0.0019 | 1.8338 |  |  |  |  |
| 2 | 18                                      | 0.200 | 0.090 | 0.18978                                  | 0.1960                               | 0.0062 | 3.1551 |  |  |  |  |
| 3 | 18                                      | 0.300 | 0.090 | 0.27466                                  | 0.2698                               | 0.0049 | 1.8188 |  |  |  |  |
| 4 | 18                                      | 0.400 | 0.090 | 0.30708                                  | 0.3171                               | 0.0101 | 3.1715 |  |  |  |  |
| 5 | 18                                      | 0.500 | 0.090 | 0.33951                                  | 0.3335                               | 0.0060 | 1.8096 |  |  |  |  |
| : | :                                       | :     | :     | :                                        |                                      | :      | :      |  |  |  |  |
| 1 | 24                                      | 0.100 | 0.120 | 0.07764                                  | 0.0766                               | 0.0010 | 1.3101 |  |  |  |  |
| 2 | 24                                      | 0.200 | 0.120 | 0.14044                                  | 0.1458                               | 0.0053 | 3.6490 |  |  |  |  |
| 3 | 24                                      | 0.300 | 0.120 | 0.20325                                  | 0.2006                               | 0.0026 | 1.3085 |  |  |  |  |
| 4 | 24                                      | 0.400 | 0.120 | 0.22724                                  | 0.2359                               | 0.0086 | 3.6506 |  |  |  |  |

| i<br>1 | i  | Caso 3. $\mathbf{r} = 0.50, \ \mathbf{h} = 0.1, \ \mathbf{k} = 0.0050$<br>i $\mathbf{x}$ t $\mathbf{u}(\mathbf{x}_1, \mathbf{t}_1)$ $\mathbf{U}(\mathbf{x}, \mathbf{t})$ Dif Er. |       |                                          |                                      |        |        | i   |     | Case  | )4. r | = 0.70, h =                              | 0.1, K = 0                           | .0070  |        |
|--------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------------------|--------------------------------------|--------|--------|-----|-----|-------|-------|------------------------------------------|--------------------------------------|--------|--------|
| 1      |    | x                                                                                                                                                                                | t     | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error  | i   | j   | x     | t     | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error  |
|        | 1  | 0.100                                                                                                                                                                            | 0.005 | 0.2000                                   | 0.2000                               | 0.0000 | 0.0014 | 1   | 1   | 0.100 | 0.007 | 0.2000                                   | 0.2000                               | 0.0000 | 0.022  |
| 2      | 1  | 0.200                                                                                                                                                                            | 0.005 | 0.4000                                   | 0.3998                               | 0.0002 | 0.0382 | 2   | 1   | 0.200 | 0.007 | 0.4000                                   | 0.3992                               | 0.0008 | 0.212  |
| 3      | 1  | 0.300                                                                                                                                                                            | 0.005 | 0.6000                                   | 0.5966                               | 0.0034 | 0.5693 | 3   | 1   | 0.300 | 0.007 | 0.6000                                   | 0.5911                               | 0.0089 | 1.491  |
| 4      | 1  | 0.400                                                                                                                                                                            | 0.005 | 0.8000                                   | 0.7667                               | 0.0333 | 4.3469 | 4   | 1   | 0.400 | 0.007 | 0.8000                                   | 0.7475                               | 0.0525 | 7.023  |
| 5      | 1  | 0.500                                                                                                                                                                            | 0.005 | 0.8000                                   | 0.8404                               | 0.0404 | 4.8099 | 5   | 1   | 0.500 | 0.007 | 0.7200                                   | 0.8112                               | 0.0912 | 11.24  |
|        |    |                                                                                                                                                                                  |       |                                          |                                      |        |        | · . |     |       |       |                                          |                                      |        |        |
| 1:1    | :  | : :                                                                                                                                                                              | :     | :                                        | : :                                  | :      | :      | 1:  | l : | :     | :     | :                                        | :                                    | :      | :      |
| 1      | 6  | 0.100                                                                                                                                                                            | 0.030 | 0.1875                                   | 0.1812                               | 0.0063 | 3.4570 | 1   | 5   | 0.100 | 0.035 | 0.1328                                   | 0.1741                               | 0.0413 | 23.73  |
| 2      | 6  | 0.200                                                                                                                                                                            | 0.030 | 0.3438                                   | 0.3484                               | 0.0046 | 1.3281 | 2   | 5   | 0.200 | 0.035 | 0.4576                                   | 0.3335                               | 0.1242 | 37.24  |
| 3      | 6  | 0.300                                                                                                                                                                            | 0.030 | 0.5000                                   | 0.4857                               | 0.0143 | 2.9338 | 3   | 5   | 0.300 | 0.035 | 0.2268                                   | 0.4630                               | 0.2362 | 51.01  |
| 4      | 6  | 0.400                                                                                                                                                                            | 0.030 | 0.5625                                   | 0.5770                               | 0.0145 | 2.5161 | 4   | 5   | 0.400 | 0.035 | 0.8898                                   | 0.5481                               | 0.3417 | 62.34  |
| 5      | 6  | 0.500                                                                                                                                                                            | 0.030 | 0.6250                                   | 0.6091                               | 0.0159 | 2.6058 | 5   | 5   | 0.500 | 0.035 | 0.1860                                   | 0.5778                               | 0.3918 | 67.80  |
|        |    |                                                                                                                                                                                  |       |                                          |                                      |        |        |     |     |       |       |                                          |                                      |        |        |
| 1:1    | :  |                                                                                                                                                                                  | :     | :                                        | :                                    | :      | :      | :   | 1 : | :     | :     | :                                        |                                      | :      | :      |
| 1      | 18 | 0.100                                                                                                                                                                            | 0.090 | 0.10490                                  | 0.1030                               | 0.0019 | 1.8338 | 1   | 8   | 0.100 | 0.056 | 0.5529                                   | 0.1436                               | 0.4093 | 285.00 |
| 2      | 18 | 0.200                                                                                                                                                                            | 0.090 | 0.18978                                  | 0.1960                               | 0.0062 | 3.1551 | 2   | 8   | 0.200 | 0.056 | -0.582                                   | 0.2735                               | 0.8551 | 312.58 |
| 3      | 18 | 0.300                                                                                                                                                                            | 0.090 | 0.27466                                  | 0.2698                               | 0.0049 | 1.8188 | 3   | 8   | 0.300 | 0.056 | 1.6757                                   | 0.3771                               | 1.2985 | 344.31 |
| 4      | 18 | 0.400                                                                                                                                                                            | 0.090 | 0.30708                                  | 0.3171                               | 0.0101 | 3.1715 | 4   | 8   | 0.400 | 0.056 | -1.209                                   | 0.4439                               | 1.6526 | 372.26 |
| 5      | 18 | 0.500                                                                                                                                                                            | 0.090 | 0.33951                                  | 0.3335                               | 0.0060 | 1.8096 | 5   | 8   | 0.500 | 0.056 | 2.2456                                   | 0.4670                               | 1.7786 | 380.82 |
|        |    |                                                                                                                                                                                  |       |                                          |                                      |        |        |     |     |       |       |                                          |                                      |        |        |
| 1:1    | :  |                                                                                                                                                                                  | :     | :                                        | :                                    | :      | :      | :   | 1 : | :     | :     | :                                        |                                      | :      | :      |
| 1      | 24 | 0.100                                                                                                                                                                            | 0.120 | 0.07764                                  | 0.0766                               | 0.0010 | 1.3101 | 1   | 11  | 0.100 | 0.077 | -2.355                                   | 0.1171                               | 2.4718 | 2111.4 |
|        | 24 | 0.200                                                                                                                                                                            | 0.120 | 0.14044                                  | 0.1458                               | 0.0053 | 3.6490 | 2   | 11  | 0.200 | 0.077 | 5.0544                                   | 0.2227                               | 4.8317 | 2169.3 |
| 3      | 24 | 0.300                                                                                                                                                                            | 0.120 | 0.20325                                  | 0.2006                               | 0.0026 | 1.3085 | 3   | 11  | 0.300 | 0.077 | -6.582                                   | 0.3067                               | 6.8883 | 2246.2 |
| 4      | 24 | 0.400                                                                                                                                                                            | 0.120 | 0.22724                                  | 0.2359                               | 0.0086 | 3.6506 | 4   | 11  | 0.400 | 0.077 | 8.6683                                   | 0.3606                               | 8.3077 | 2303.9 |
| 5      | 24 | 0.500                                                                                                                                                                            | 0.120 | 0.25123                                  | 0.2480                               | 0.0032 | 1.3075 | 5   | 11  | 0.500 | 0.077 | -8.454                                   | 0.3793                               | 8.8329 | 2329.4 |



Figure 3: Tablas de comparación entre las soluciones analíticas y aproximadas por el Método Explícito

Ahora analicemos un problema similar al Problema 1. pero empleando derivadas en las condiciones de frontera

#### Problema 2.

$$\frac{\partial U}{\partial t} = \frac{\partial^2 U}{\partial x^2}, \ 0 < x < 1, \ t > 0, \tag{22}$$

$$U(x,0) = 1, \ 0 \le x \le 1 \tag{23}$$

$$\begin{cases} \frac{\partial U}{\partial x} = U, & x = 0, \, \forall t \\ \frac{\partial U}{\partial x} = -U, & x = 1, \, \forall t \end{cases}$$
(24)

Usemos el MDF en el problema y expresemos las condiciones de frontera mediante las **diferencias** centrales, de tal manera que (22) queda así

$$u_{i,j+1} = u_{i,j} + r(u_{i-1,j} - 2u_{i,j} + u_{i+1,j}).$$
(25)

Apliquemos (25) para x = 0, cuando i = 0

$$u_{0,j+1} = u_{0,j} + r(u_{-1,j} - 2u_{0,j} + u_{1,j}). (26)$$

Para la condición de frontera en x=0, en términos del MDF es

$$\frac{u_{1,j} - u_{-1,j}}{2h} = u_{0,j}. (27)$$

De (25) y (26) eliminamos  $u_{-1,j}$ , y la expresión en este caso es

$$u_{0,j+1} = u_{0,j} + 2r(u_{1,j} - (1+h)u_{0,j}). (28)$$

Actuamos de la misma manera con la otra condición del valor de frontera en x=1, cuando i=10

$$u_{10,j+1} = u_{10,j} + r(u_{9,j} - 2u_{10,j} + u_{11,j}),$$
(29)

también eliminamos el valor  $u_{11,j}$ , el cual no existe según el planteamiento de nuestro problema, por eso expresemos (24) usando MDF

$$\frac{u_{11,j} - u_{9,j}}{2h} = -u_{10,j},\tag{30}$$

así tenemos que al excluir  $u_{11,j}$  de (30), tenemos

$$u_{10,j+1} = u_{10,j} + 2r(u_{9,j} - (1+h)u_{10,j}). (31)$$

Podemos resumir la expresión en diferencias del Problema 2. en estas tres expresiones

$$\begin{cases}
 u_{i,j+1} = u_{i,j} + r(u_{i-1,j} - 2u_{i,j} + u_{i+1,j}) \\
 u_{0,j+1} = u_{0,j} + 2r(u_{1,j} - (1+h)u_{0,j}). \\
 u_{10,j+1} = u_{10,j} + 2r(u_{9,j} - (1+h)u_{10,j})
\end{cases}$$
(32)

La solución analítica del Problema 2. es

$$U(x,t) = 4\sum_{n=1}^{\infty} \left\{ \frac{\sec \alpha_n}{(3+4\alpha_n^2)} \exp\left(-4\alpha_n^2 t\right) \cos(2\alpha_n (x-\frac{1}{2})) \right\}$$
 (33)

 $\alpha_n$  son las raíces positivas de

$$\alpha \tan \alpha = \frac{1}{2} \tag{34}$$

Hay que tener presente que tanto en el Problema 1. como en el Problema 2., con respecto a  $x=\frac{1}{2}$ , existe una simetría, la cual facilita, en este caso en particular, el cálculo numérico.

Se ha demostrado que el esquema utilizado para el Problema 2. es convergente [3] siempre que

 $r \leq \frac{1}{2+h\delta x}$ . En la siguiente página mostramos las Tablas que muestran los resultados numéricos para el Problema

Tabla 2: Resultados Numéricos del Problema 2. aplicando el Método Explicito.

|   |     | Caso   | 1. r = | 0.30, h = 0                              | 0.1, k = 0.0                         | 030    |       |
|---|-----|--------|--------|------------------------------------------|--------------------------------------|--------|-------|
| i | j   | x      | t      | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error |
| 0 | 1   | 0.0000 | 0.0030 | 0.9400                                   | 0.9411                               | 0.0011 | 0.11  |
| 1 | 1   | 0.1000 | 0.0030 | 1.0000                                   | 0.9930                               | 0.0070 | 0.70  |
| 2 | 1   | 0.2000 | 0.0030 | 1.0000                                   | 0.9998                               | 0.0002 | 0.02  |
| 3 | 1   | 0.3000 | 0.0030 | 1.0000                                   | 1.0000                               | 0.0000 | 0.00  |
| 4 | 1   | 0.4000 | 0.0030 | 1.0000                                   | 1.0000                               | 0.0000 | 0.00  |
| 5 | 1   | 0.5000 | 0.0030 | 1.0000                                   | 1.0000                               | 0.0000 | 0.00  |
|   |     |        |        |                                          |                                      |        |       |
|   | 1 : | :      | :      | :                                        |                                      | :      | :     |
| 0 | 10  | 0.0000 | 0.0300 | 0.8308                                   | 0.8311                               | 0.0002 | 0.03  |
| 1 | 10  | 0.1000 | 0.0300 | 0.9021                                   | 0.9018                               | 0.0003 | 0.03  |
| 2 | 10  | 0.2000 | 0.0300 | 0.9496                                   | 0.9488                               | 0.0008 | 0.08  |
| 3 | 10  | 0.3000 | 0.0300 | 0.9772                                   | 0.9761                               | 0.0011 | 0.12  |
| 4 | 10  | 0.4000 | 0.0300 | 0.9906                                   | 0.9893                               | 0.0013 | 0.13  |
| 5 | 10  | 0.5000 | 0.0300 | 0.9944                                   | 0.9931                               | 0.0013 | 0.13  |
|   |     |        |        |                                          |                                      |        |       |
| : | :   | :      | :      |                                          | :                                    | :      | :     |
| 0 | 34  | 0.0000 | 0.1020 | 0.7148                                   | 0.7150                               | 0.0002 | 0.03  |
| 1 | 34  | 0.1000 | 0.1020 | 0.7800                                   | 0.7800                               | 0.0000 | 0.00  |
| 2 | 34  | 0.2000 | 0.1020 | 0.8316                                   | 0.8313                               | 0.0002 | 0.03  |
| 3 | 34  | 0.3000 | 0.1020 | 0.8688                                   | 0.8683                               | 0.0004 | 0.05  |
| 4 | 34  | 0.4000 | 0.1020 | 0.8912                                   | 0.8906                               | 0.0006 | 0.06  |
| 5 | 34  | 0.5000 | 0.1020 | 0.8987                                   | 0.8981                               | 0.0006 | 0.07  |
|   |     |        |        |                                          |                                      |        |       |
| : | :   | :      | :      | :                                        | :                                    | :      | :     |
| 0 | 68  | 0.0000 | 0.2040 | 0.5995                                   | 0.5999                               | 0.0004 | 0.07  |
| 1 | 68  | 0.1000 | 0.2040 | 0.6543                                   | 0.6546                               | 0.0003 | 0.05  |
| 2 | 68  | 0.2000 | 0.2040 | 0.6979                                   | 0.6981                               | 0.0002 | 0.03  |
| 3 | 68  | 0.3000 | 0.2040 | 0.7297                                   | 0.7298                               | 0.0001 | 0.02  |
| 4 | 68  | 0.4000 | 0.2040 | 0.7489                                   | 0.7490                               | 0.0001 | 0.01  |
| 5 | 68  | 0.5000 | 0.2040 | 0.7554                                   | 0.7554                               | 0.0001 | 0.01  |
|   |     |        |        |                                          |                                      |        |       |

|     |    | Casc   | 2. r = | 0.48, h = 0                              | 0.1, k = 0.0                         | 048    |       |
|-----|----|--------|--------|------------------------------------------|--------------------------------------|--------|-------|
| i   | j  | x      | t      | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error |
| 0   | 1  | 0.0000 | 0.0048 | 0.9040                                   | 0.9264                               | 0.0224 | 2.42  |
| 1   | 1  | 0.1000 | 0.0048 | 1.0000                                   | 0.9850                               | 0.0150 | 1.53  |
| 2   | 1  | 0.2000 | 0.0048 | 1.0000                                   | 0.9986                               | 0.0014 | 0.14  |
| 3   | 1  | 0.3000 | 0.0048 | 1.0000                                   | 0.9999                               | 0.0001 | 0.01  |
| 4   | 1  | 0.4000 | 0.0048 | 1.0000                                   | 1.0000                               | 0.0000 | 0.00  |
| 5   | 1  | 0.5000 | 0.0048 | 1.0000                                   | 1.0000                               | 0.0000 | 0.00  |
|     |    |        |        |                                          |                                      |        |       |
| 1 : | :  | :      | :      | :                                        | :                                    | :      | :     |
| 0   | 5  | 0.0000 | 0.0240 | 0.8372                                   | 0.8467                               | 0.0095 | 1.12  |
| 1   | 5  | 0.1000 | 0.0240 | 0.9227                                   | 0.9172                               | 0.0055 | 0.60  |
| 2   | 5  | 0.2000 | 0.0240 | 0.9569                                   | 0.9610                               | 0.0041 | 0.43  |
| 3   | 5  | 0.3000 | 0.0240 | 0.9887                                   | 0.9841                               | 0.0046 | 0.46  |
| 4   | 5  | 0.4000 | 0.0240 | 0.9949                                   | 0.9942                               | 0.0007 | 0.07  |
| 5   | 5  | 0.5000 | 0.0240 | 1.0000                                   | 0.9968                               | 0.0032 | 0.32  |
|     |    |        |        |                                          |                                      |        |       |
| :   | :  | :      | :      | :                                        | :                                    | :      | :     |
| 0   | 21 | 0.0000 | 0.1008 | 0.7144                                   | 0.7165                               | 0.0021 | 0.30  |
| 1   | 21 | 0.1000 | 0.1008 | 0.7828                                   | 0.7817                               | 0.0011 | 0.14  |
| 2   | 21 | 0.2000 | 0.1008 | 0.8317                                   | 0.8331                               | 0.0014 | 0.17  |
| 3   | 21 | 0.3000 | 0.1008 | 0.8716                                   | 0.8701                               | 0.0015 | 0.17  |
| 4   | 21 | 0.4000 | 0.1008 | 0.8917                                   | 0.8924                               | 0.0007 | 0.08  |
| 5   | 21 | 0.5000 | 0.1008 | 0.9016                                   | 0.8999                               | 0.0017 | 0.19  |
|     |    |        |        |                                          |                                      |        |       |
| :   | :  | :      | :      | :                                        | :                                    | :      | :     |
| 0   | 42 | 0.0000 | 0.2016 | 0.6020                                   | 0.6024                               | 0.0004 | 0.06  |
| 1   | 42 | 0.1000 | 0.2016 | 0.6563                                   | 0.6573                               | 0.0010 | 0.15  |
| 2   | 42 | 0.2000 | 0.2016 | 0.7007                                   | 0.7010                               | 0.0003 | 0.04  |
| 3   | 42 | 0.3000 | 0.2016 | 0.7320                                   | 0.7328                               | 0.0008 | 0.11  |
| 4   | 42 | 0.4000 | 0.2016 | 0.7519                                   | 0.7521                               | 0.0002 | 0.03  |
| 5   | 42 | 0.5000 | 0.2016 | 0.7578                                   | 0.7585                               | 0.0007 | 0.10  |

|   |    | Caso   | 3. r = | 0.50, h = 0                              | 0.1, k = 0.0                         | 050    |       |
|---|----|--------|--------|------------------------------------------|--------------------------------------|--------|-------|
| i | j  | x      | t      | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error |
| 0 | 1  | 0.0000 | 0.0050 | 0.9000                                   | 0.9250                               | 0.0250 | 2.70  |
| 1 | 1  | 0.1000 | 0.0050 | 1.0000                                   | 0.9841                               | 0.0159 | 1.62  |
| 2 | 1  | 0.2000 | 0.0050 | 1.0000                                   | 0.9984                               | 0.0016 | 0.16  |
| 3 | 1  | 0.3000 | 0.0050 | 1.0000                                   | 0.9999                               | 0.0001 | 0.01  |
| 4 | 1  | 0.4000 | 0.0050 | 1.0000                                   | 1.0000                               | 0.0000 | 0.00  |
| 5 | 1  | 0.5000 | 0.0050 | 1.0000                                   | 1.0000                               | 0.0000 | 0.00  |
|   |    |        |        |                                          |                                      |        |       |
| : | :  | :      | :      | :                                        | :                                    | :      | :     |
| 0 | 4  | 0.0000 | 0.0200 | 0.8691                                   | 0.8585                               | 0.0106 | 1.24  |
| 1 | 4  | 0.1000 | 0.0200 | 0.9170                                   | 0.9286                               | 0.0116 | 1.24  |
| 2 | 4  | 0.2000 | 0.0200 | 0.9775                                   | 0.9695                               | 0.0080 | 0.83  |
| 3 | 4  | 0.3000 | 0.0200 | 0.9875                                   | 0.9891                               | 0.0016 | 0.16  |
| 4 | 4  | 0.4000 | 0.0200 | 1.0000                                   | 0.9967                               | 0.0033 | 0.33  |
| 5 | 4  | 0.5000 | 0.0200 | 1.0000                                   | 0.9985                               | 0.0015 | 0.15  |
|   |    |        |        |                                          |                                      |        |       |
| : | :  | :      | :      | :                                        | :                                    | :      | :     |
| 0 | 20 | 0.0000 | 0.1000 | 0.7260                                   | 0.7176                               | 0.0085 | 1.18  |
| 1 | 20 | 0.1000 | 0.1000 | 0.7741                                   | 0.7828                               | 0.0086 | 1.10  |
| 2 | 20 | 0.2000 | 0.1000 | 0.8416                                   | 0.8342                               | 0.0074 | 0.89  |
| 3 | 20 | 0.3000 | 0.1000 | 0.8646                                   | 0.8713                               | 0.0067 | 0.77  |
| 4 | 20 | 0.4000 | 0.1000 | 0.9007                                   | 0.8936                               | 0.0071 | 0.79  |
| 5 | 20 | 0.5000 | 0.1000 | 0.8952                                   | 0.9011                               | 0.0059 | 0.65  |
|   |    |        |        |                                          |                                      |        |       |
| : | :  | :      | :      | :                                        | :                                    | :      | :     |
| 0 | 41 | 0.0000 | 0.2050 | 0.5868                                   | 0.5989                               | 0.0121 | 2.02  |
| 1 | 41 | 0.1000 | 0.2050 | 0.6631                                   | 0.6535                               | 0.0096 | 1.47  |
| 2 | 41 | 0.2000 | 0.2050 | 0.6868                                   | 0.6970                               | 0.0102 | 1.46  |
| 3 | 41 | 0.3000 | 0.2050 | 0.7370                                   | 0.7285                               | 0.0085 | 1.16  |
| 4 | 41 | 0.4000 | 0.2050 | 0.7385                                   | 0.7477                               | 0.0092 | 1.24  |
| 5 | 41 | 0.5000 | 0.2050 | 0.7622                                   | 0.7541                               | 0.0081 | 1.07  |

|    |    | Ca     | so 4. r | = 0.70, h =                              | 0.1, k = 0                           | .0070   |          |
|----|----|--------|---------|------------------------------------------|--------------------------------------|---------|----------|
| i  | j  | x      | t       | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif     | Error    |
| 0  | 1  | 0.0000 | 0.0070  | 0.8600                                   | 0.9122                               | 0.0522  | 5.72     |
| 1  | 1  | 0.1000 | 0.0070  | 1.0000                                   | 0.9752                               | 0.0248  | 2.55     |
| 2  | 1  | 0.2000 | 0.0070  | 1.0000                                   | 0.9958                               | 0.0042  | 0.43     |
| 3  | 1  | 0.3000 | 0.0070  | 1.0000                                   | 0.9996                               | 0.0004  | 0.04     |
| 4  | 1  | 0.4000 | 0.0070  | 1.0000                                   | 1.0000                               | 0.0000  | 0.00     |
| 5  | 1  | 0.5000 | 0.0070  | 1.0000                                   | 1.0000                               | 0.0000  | 0.00     |
|    |    |        |         |                                          |                                      |         |          |
| 1: | :  | :      | :       | :                                        | :                                    | :       | :        |
| 0  | 3  | 0.0000 | 0.0210  | 0.7576                                   | 0.8554                               | 0.0978  | 11.44    |
| 1  | 3  | 0.1000 | 0.0210  | 0.9941                                   | 0.9256                               | 0.0685  | 7.40     |
| 2  | 3  | 0.2000 | 0.0210  | 0.9314                                   | 0.9673                               | 0.0359  | 3.71     |
| 3  | 3  | 0.3000 | 0.0210  | 1.0000                                   | 0.9879                               | 0.0121  | 1.22     |
| 4  | 3  | 0.4000 | 0.0210  | 1.0000                                   | 0.9961                               | 0.0039  | 0.39     |
| 5  | 3  | 0.5000 | 0.0210  | 1.0000                                   | 0.9981                               | 0.0019  | 0.19     |
| T. |    |        |         |                                          |                                      |         |          |
| 1: | :  | :      | :       | :                                        | :                                    | :       | :        |
| 0  | 15 | 0.0000 | 0.1050  | -62.0875                                 | 0.7113                               | 62.7987 | 8829.33  |
| 1  | 15 | 0.1000 | 0.1050  | 56.4138                                  | 0.7759                               | 55.6379 | 7170.53  |
| 2  | 15 | 0.2000 | 0.1050  | -46.6049                                 | 0.8270                               | 47.4319 | 5735.09  |
| 3  | 15 | 0.3000 | 0.1050  | 40.5358                                  | 0.8639                               | 39.6718 | 4592.03  |
| 4  | 15 | 0.4000 | 0.1050  | -33.2094                                 | 0.8862                               | 34.0956 | 3847.51  |
| 5  | 15 | 0.5000 | 0.1050  | 32.9599                                  | 0.8936                               | 32.0663 | 3588.42  |
| T. |    |        |         |                                          |                                      |         |          |
| 1: | :  | :      | :       | l :                                      | :                                    | l :     | :        |
| 0  | 29 | 0.0000 | 0.2030  | -234318                                  | 0.6009                               | 234319  | 38992788 |
| 1  | 29 | 0.1000 | 0.2030  | 212842                                   | 0.6557                               | 212841  | 32458883 |
| 2  | 29 | 0.2000 | 0.2030  | -195210                                  | 0.6993                               | 195211  | 27913594 |
| 3  | 29 | 0.3000 | 0.2030  | 181872                                   | 0.7310                               | 181871  | 24878652 |
| 4  | 29 | 0.4000 | 0.2030  | -173483                                  | 0.7503                               | 173484  | 23123068 |
| 5  | 29 | 0.5000 | 0.2030  | 170616                                   | 0.7567                               | 170615  | 22546964 |



Figure 4: Cuadros de comparación entre las soluciones analíticas y aproximadas por el Método Explícito para el Problema 2.

En la tabla anterior observamos que para el caso r=0.70, el proceso es divergente.

## 4 El Método Implicito Crank-Nicolson

Este método consiste en analizar la EDP en el punto  $(ih, (j + \frac{1}{2})k)$  y aproximar la derivada con respecto al tiempo por la **diferencia central** y la derivada con respecto a x por la media de las diferencias centrales en los niveles de tiempo j, j+1. Según este método el problema (13) se expresa en MDF así:

$$\frac{u_{i,j+1} - u_i, j}{k} = \frac{1}{2} \left( \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{h^2} + \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} \right). \tag{35}$$

Al operar (35) tenemos

$$-ru_{i-1,j+1} + (2+2r)u_{i,j+1} - ru_{i+1,j+1} = ru_{i-1,j} + (2-2r)u_{i,j} + ru_{i+1,j}, r = \frac{k}{h^2}$$
 (36)

Del lado izquierdo de (36) hay tres valores desconocidos y del lado derecho tres conocidos. Para cada valor de t>0, o j>1, se forman N ecuaciones simultaneas con N incógnitas, este sistema puede ser resuelto, por ejemplo, por el Método de Gauss sin pivoteo. (Dibujar la célula)

Ahora resolvemos el Problema 1. por el método Crank-Nicolson; en la siguiente página mostramos los resultados numéricos para los distintos casos de r determinados en las anteriores tablas.

Tabla 3: Resultados Numéricos del Problema 1. aplicando el Método Implícito.

|   |    | Cas    | o 1. r= | = 0.30, h = 0                            | 0.1, k = 0.0                         | 0030   |         |
|---|----|--------|---------|------------------------------------------|--------------------------------------|--------|---------|
| i | j  | x      | t       | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error   |
| 1 | 1  | 0.1000 | 0.0030  | 0.1995                                   | 0.2000                               | 0.0005 | 0.2354  |
| 2 | 1  | 0.2000 | 0.0030  | 0.3981                                   | 0.4000                               | 0.0019 | 0.4698  |
| 3 | 1  | 0.3000 | 0.0030  | 0.5929                                   | 0.5995                               | 0.0066 | 1.0978  |
| 4 | 1  | 0.4000 | 0.0030  | 0.7736                                   | 0.7856                               | 0.0120 | 1.5255  |
| 5 | 1  | 0.5000 | 0.0030  | 0.9016                                   | 0.8764                               | 0.0252 | 2.8773  |
| : |    | :      | :       | :                                        | :                                    | :      | :       |
| 1 | 6  | 0.1000 | 0.0180  | 0.1770                                   | 0.1954                               | 0.0183 | 9.3795  |
| 2 | 6  | 0.2000 | 0.0180  | 0.3435                                   | 0.3816                               | 0.0381 | 9.9848  |
| 3 | 6  | 0.3000 | 0.0180  | 0.4874                                   | 0.5430                               | 0.0557 | 10.2494 |
| 4 | 6  | 0.4000 | 0.0180  | 0.5953                                   | 0.6561                               | 0.0608 | 9.2634  |
| 5 | 6  | 0.5000 | 0.0180  | 0.6549                                   | 0.6972                               | 0.0423 | 6.0700  |
| : |    |        |         | •                                        | •                                    | :      | :       |
| 1 | 11 | 0.1000 | 0.0330  | 0.1410                                   | 0.1770                               | 0.0359 | 20.3029 |
| 2 | 11 | 0.2000 | 0.0330  | 0.2714                                   | 0.3394                               | 0.0680 | 20.0451 |
| 3 | 11 | 0.3000 | 0.0330  | 0.3809                                   | 0.4720                               | 0.0911 | 19.3023 |
| 4 | 11 | 0.4000 | 0.0330  | 0.4606                                   | 0.5594                               | 0.0989 | 17.6717 |
| 5 | 11 | 0.5000 | 0.0330  | 0.5037                                   | 0.5901                               | 0.0864 | 14.6436 |
| : | :  | :      | :       | :                                        | :                                    | :      | :       |
| 1 | 15 | 0.1000 | 0.0450  | 0.1156                                   | 0.1593                               | 0.0437 | 27.4318 |
| 2 | 15 | 0.2000 | 0.0450  | 0.2222                                   | 0.3040                               | 0.0818 | 26.9190 |
| 3 | 15 | 0.3000 | 0.0450  | 0.3113                                   | 0.4201                               | 0.1088 | 25.9009 |
| 4 | 15 | 0.4000 | 0.0450  | 0.3758                                   | 0.4954                               | 0.1196 | 24.1373 |
| 5 | 15 | 0.5000 | 0.0450  | 0.4106                                   | 0.5215                               | 0.1109 | 21.2652 |

|     |    | Cas    | o 2. r = | = 0.48, h = 0.48                         | 0.1, k = 0.0                         | 0048   |         |
|-----|----|--------|----------|------------------------------------------|--------------------------------------|--------|---------|
| i   | j  | x      | t        | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error   |
| 1   | 1  | 0.1000 | 0.0048   | 0.1993                                   | 0.2000                               | 0.0007 | 0.3389  |
| 2   | 1  | 0.2000 | 0.0048   | 0.3973                                   | 0.3999                               | 0.0026 | 0.6499  |
| 3   | 1  | 0.3000 | 0.0048   | 0.5898                                   | 0.5970                               | 0.0072 | 1.2092  |
| 4   | 1  | 0.4000 | 0.0048   | 0.7619                                   | 0.7686                               | 0.0067 | 0.8688  |
| 5   | 1  | 0.5000 | 0.0048   | 0.8579                                   | 0.8436                               | 0.0143 | 1.6922  |
| T.  |    |        | _        |                                          |                                      |        |         |
| :   | :  |        |          |                                          | :                                    |        |         |
| 1   | 5  | 0.1000 | 0.0240   | 0.1756                                   | 0.1891                               | 0.0135 | 7.1315  |
| 2   | 5  | 0.2000 | 0.0240   | 0.3391                                   | 0.3658                               | 0.0267 | 7.2965  |
| 3   | 5  | 0.3000 | 0.0240   | 0.4770                                   | 0.5141                               | 0.0371 | 7.2208  |
| 4   | 5  | 0.4000 | 0.0240   | 0.5746                                   | 0.6146                               | 0.0400 | 6.5085  |
| 5   | 5  | 0.5000 | 0.0240   | 0.6194                                   | 0.6504                               | 0.0310 | 4.7622  |
|     |    |        |          |                                          |                                      |        |         |
| :   | :  |        | :        | :                                        | :                                    | :      | :       |
| 1   | 9  | 0.1000 | 0.0432   | 0.1389                                   | 0.1620                               | 0.0231 | 14.2364 |
| 2   | 9  | 0.2000 | 0.0432   | 0.2660                                   | 0.3092                               | 0.0433 | 13.9879 |
| 3   | 9  | 0.3000 | 0.0432   | 0.3700                                   | 0.4275                               | 0.0575 | 13.4496 |
| 4   | 9  | 0.4000 | 0.0432   | 0.4416                                   | 0.5044                               | 0.0628 | 12.4537 |
| 5   | 9  | 0.5000 | 0.0432   | 0.4739                                   | 0.5311                               | 0.0572 | 10.7737 |
| Ť   |    | 0.000  | 0.0.00   | 0.2.00                                   | 0.000                                | 0.00.1 |         |
| :   | :  | :      | :        | :                                        | :                                    | :      | :       |
| 1   | 17 | 0.1000 | 0.0816   | 0.0832                                   | 0.1119                               | 0.0287 | 25.6877 |
| 2   | 17 | 0.1000 | 0.0816   | 0.0832                                   | 0.1119                               | 0.0287 | 25.6877 |
| 3   | 17 | 0.2000 | 0.0816   | 0.1590                                   | 0.2129                               | 0.0539 | 24.6839 |
| 4   | 17 | 0.3000 | 0.0816   | 0.2207                                   | 0.2931                               | 0.0723 | 23.6810 |
| 5   | 17 | 0.4000 | 0.0816   | 0.2630                                   | 0.3446                               |        | 23.6810 |
| _ 5 | 17 | 0.5000 | 0.0816   | 0.2820                                   | 0.3623                               | 0.0804 | 22.1768 |

|     |     | Cas    | o 3. r= | = 0.50, h = 0                            | 0.1, k = 0.0                         | 0050   |         |
|-----|-----|--------|---------|------------------------------------------|--------------------------------------|--------|---------|
| i   | j   | x      | t       | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error   |
| 1   | 1   | 0.1000 | 0.0050  | 0.1993                                   | 0.2000                               | 0.0007 | 0.3488  |
| 2   | 1   | 0.2000 | 0.0050  | 0.3972                                   | 0.3998                               | 0.0026 | 0.6626  |
| 3   | 1   | 0.3000 | 0.0050  | 0.5895                                   | 0.5966                               | 0.0071 | 1.1920  |
| 4   | 1   | 0.4000 | 0.0050  | 0.7608                                   | 0.7667                               | 0.0059 | 0.7700  |
| 5   | 1   | 0.5000 | 0.0050  | 0.8536                                   | 0.8404                               | 0.0132 | 1.5667  |
|     |     |        |         |                                          |                                      |        |         |
| 1:  | :   | :      | :       | :                                        | :                                    | :      | :       |
| 1   | 4   | 0.1000 | 0.0200  | 0.1836                                   | 0.1935                               | 0.0099 | 5.1057  |
| 2   | 4   | 0.2000 | 0.0200  | 0.3563                                   | 0.3766                               | 0.0203 | 5.3891  |
| 3   | 4   | 0.3000 | 0.0200  | 0.5042                                   | 0.5334                               | 0.0291 | 5.4602  |
| 4   | 4   | 0.4000 | 0.0200  | 0.6105                                   | 0.6418                               | 0.0313 | 4.8731  |
| 5   | 4   | 0.5000 | 0.0200  | 0.6590                                   | 0.6808                               | 0.0218 | 3.2038  |
|     |     |        |         |                                          |                                      |        |         |
| 1 : | :   | :      | :       | :                                        | :                                    | :      | :       |
| 1   | 12  | 0.1000 | 0.0600  | 0.1130                                   | 0.1382                               | 0.0252 | 18.2645 |
| 2   | 12  | 0.2000 | 0.0600  | 0.2159                                   | 0.2631                               | 0.0472 | 17.9370 |
| 3   | 12  | 0.3000 | 0.0600  | 0.2997                                   | 0.3626                               | 0.0628 | 17.3302 |
| 4   | 12  | 0.4000 | 0.0600  | 0.3569                                   | 0.4267                               | 0.0697 | 16.3473 |
| 5   | 12  | 0.5000 | 0.0600  | 0.3822                                   | 0.4488                               | 0.0665 | 14.8286 |
|     |     |        |         |                                          |                                      |        |         |
| 1:  | 1 : | :      | :       | :                                        | :                                    | :      | :       |
| 1   | 20  | 0.1000 | 0.1000  | 0.0666                                   | 0.0933                               | 0.0267 | 28.6218 |
| 2   | 20  | 0.2000 | 0.1000  | 0.1273                                   | 0.1776                               | 0.0502 | 28.2939 |
| 3   | 20  | 0.3000 | 0.1000  | 0.1767                                   | 0.2444                               | 0.0677 | 27.7122 |
| 4   | 20  | 0.4000 | 0.1000  | 0.2103                                   | 0.2873                               | 0.0770 | 26.8120 |
| 5   | 20  | 0.5000 | 0.1000  | 0.2252                                   | 0.3021                               | 0.0769 | 25.4701 |

| Caso 4. $r = 0.70, h = 0.1, k = 0.0070$ |    |        |        |                                          |                                      |        |         |  |  |  |
|-----------------------------------------|----|--------|--------|------------------------------------------|--------------------------------------|--------|---------|--|--|--|
| i                                       |    |        | t.     |                                          |                                      | Dif    | Error   |  |  |  |
|                                         | j  | x      | -      | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ |        |         |  |  |  |
| 1                                       | 1  | 0.1000 | 0.0070 | 0.1991                                   | 0.2000                               | 0.0008 | 0.4209  |  |  |  |
| 2                                       | 1  | 0.2000 | 0.0070 | 0.3965                                   | 0.3992                               | 0.0027 | 0.6749  |  |  |  |
| 3                                       | 1  | 0.3000 | 0.0070 | 0.5867                                   | 0.5911                               | 0.0044 | 0.7486  |  |  |  |
| 4                                       | 1  | 0.4000 | 0.0070 | 0.7504                                   | 0.7475                               | 0.0029 | 0.3877  |  |  |  |
| 5                                       | 1  | 0.5000 | 0.0070 | 0.8149                                   | 0.8112                               | 0.0037 | 0.4540  |  |  |  |
|                                         |    |        |        |                                          |                                      |        |         |  |  |  |
| :                                       | :  | :      | :      | :                                        | :                                    | :      | :       |  |  |  |
| 1                                       | 5  | 0.1000 | 0.0350 | 0.1662                                   | 0.1741                               | 0.0079 | 4.5455  |  |  |  |
| 2                                       | 5  | 0.2000 | 0.0350 | 0.3186                                   | 0.3335                               | 0.0149 | 4.4577  |  |  |  |
| 3                                       | 5  | 0.3000 | 0.0350 | 0.4433                                   | 0.4630                               | 0.0196 | 4.2390  |  |  |  |
| 4                                       | 5  | 0.4000 | 0.0350 | 0.5273                                   | 0.5481                               | 0.0208 | 3.7969  |  |  |  |
| 5                                       | 5  | 0.5000 | 0.0350 | 0.5604                                   | 0.5778                               | 0.0175 | 3.0220  |  |  |  |
|                                         |    |        |        |                                          |                                      |        |         |  |  |  |
| :                                       | :  | :      | :      | :                                        | :                                    | :      | :       |  |  |  |
| 1                                       | 13 | 0.1000 | 0.0910 | 0.0895                                   | 0.1020                               | 0.0125 | 12.2943 |  |  |  |
| 2                                       | 13 | 0.2000 | 0.0910 | 0.1705                                   | 0.1940                               | 0.0235 | 12.1169 |  |  |  |
| 3                                       | 13 | 0.3000 | 0.0910 | 0.2356                                   | 0.2671                               | 0.0315 | 11.8020 |  |  |  |
| 4                                       | 13 | 0.4000 | 0.0910 | 0.2785                                   | 0.3140                               | 0.0355 | 11.3149 |  |  |  |
| 5                                       | 13 | 0.5000 | 0.0910 | 0.2952                                   | 0.3302                               | 0.0350 | 10.5901 |  |  |  |
|                                         |    |        |        |                                          |                                      |        |         |  |  |  |
| :                                       | :  | :      | :      | :                                        | :                                    | :      | :       |  |  |  |
| 1                                       | 20 | 0.1000 | 0.1400 | 0.0513                                   | 0.0629                               | 0.0116 | 18.3896 |  |  |  |
| 2                                       | 20 | 0.2000 | 0.1400 | 0.0978                                   | 0.1197                               | 0.0218 | 18.2221 |  |  |  |
| 3                                       | 20 | 0.3000 | 0.1400 | 0.1352                                   | 0.1647                               | 0.0295 | 17.9261 |  |  |  |
| 4                                       | 20 | 0.4000 | 0.1400 | 0.1598                                   | 0.1936                               | 0.0338 | 17.4705 |  |  |  |
| 5                                       | 20 | 0.5000 | 0.1400 | 0.1694                                   | 0.2036                               | 0.0342 | 16.7954 |  |  |  |



Figure 5: Cuadros de comparación entre las soluciones analíticas y aproximadas por el Método Implícito para el Problema 1.

E Problema 2., puede ser resuelto aplicando el método **Crank-Nicolson**, teniendo en cuenta que la expresión en MDF se ve así:

$$\frac{u_{i,j+1} - u_{i,j}}{k} = \frac{1}{2} \left( \frac{u_{i+1,j+1} - 2u_{i,j+1} + u_{i-1,j+1}}{h^2} + \frac{u_{i+1,j} - 2u_{i,j} + u_{i-1,j}}{h^2} \right)$$
(37)

Recordemos que expresamos la segunda derivada con respecto a x mediante la media de las derivadas centrales, después de algunas transformaciones tenemos:

$$-ru_{i-1,j+1} + (2+2r)u_{i,j+1} - ru_{i+1,j+1} = ru_{i-1,j} + (2-2r)u_{i,j} + ru_{i+1,j}.$$
 (38)

Si colocamos i = 0 tenemos de (38)

$$-ru_{-1,j+1} + (2+2r)u_{0,j+1} - ru_{1,j+1} = ru_{-1,j} + (2-2r)u_{0,j} + ru_{1,j}.$$
(39)

De (39) observamos que tenemos valores desconocidos como  $u_{-1,j}$  y  $u_{-1,j+1}$ , para eliminarlos utilizamos las condiciones de frontera en x = 0 tanto para j como para j + 1 (también usando diferencias centrales),

$$\frac{u_{1,j} - u_{-1,j}}{2h} = u_{0,j},\tag{40}$$

$$\frac{u_{1,j+1} - u_{-1,j+1}}{2h} = u_{0,j}. (41)$$

De lo anterior sigue

$$u_{-1,j} = u_{1,j} - 2hu_{0,j}, (42)$$

У

$$u_{-1,j+1} = u_{1,j+1} - 2hu_{0,j+1}. (43)$$

Con (39), (40) y (41) eliminamos los valores ficticios  $u_{-1,j}$  y  $u_{-1,j+1}$ .

Por idea, algo parecido ocurre cuando x = 1, realizando un análisis similar podemos eliminar los valores ficticios para i = N, en (39) tales como  $u_{N+1,j}$  y  $u_{N+1,j+1}$ .

En la siguiente página mostramos los resultados numéricos para el Problema 2. aplicando **Crank-Nicolson**.

 ${\bf Tabla}\ 4:\ {\bf Resultados}\ {\bf Numéricos}\ {\bf del}\ {\bf Problema}\ {\bf 2.}\ {\bf aplicando}\ {\bf el}\ {\bf M\'etodo}\ {\bf Impl\'icito}.$ 

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  | Caso 1. $r = 0.30, h = 0.1, k = 0.0030$ |    |        |        |                                          |                                      |        |        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----|--------|--------|------------------------------------------|--------------------------------------|--------|--------|
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | i                                       | j  | x      | t      | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  | 0                                       | 1  | 0.0000 | 0.0030 | 0.9537                                   | 0.9411                               | 0.0126 | 1.3376 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   |                                         | 1  | 0.1000 | 0.0030 | 0.9946                                   | 0.9930                               | 0.0015 | 0.1557 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  | _                                       | 1  | 0.2000 | 0.0030 | 0.9994                                   | 0.9998                               | 0.0004 | 0.0399 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | 3                                       | 1  | 0.3000 | 0.0030 | 0.9999                                   | 1.0000                               | 0.0001 | 0.0072 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   |                                         | _  |        |        |                                          |                                      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | 5                                       | 1  | 0.5000 | 0.0030 | 1.0000                                   | 1.0000                               | 0.0000 | 0.0005 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   |                                         |    |        |        |                                          |                                      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | 1 :                                     | :  | :      | :      | :                                        | :                                    | :      | :      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | 0                                       | 5  | 0.0000 | 0.0150 | 0.8794                                   | 0.8755                               | 0.0039 | 0.4480 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   |                                         | 5  | 0.1000 | 0.0150 | 0.9478                                   | 0.9444                               | 0.0033 | 0.3540 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  | 2                                       | 5  | 0.2000 | 0.0150 | 0.9814                                   | 0.9802                               | 0.0012 | 0.1220 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | 3                                       | 5  | 0.3000 | 0.0150 | 0.9944                                   | 0.9945                               | 0.0001 | 0.0103 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   |                                         |    | 0.4000 | 0.0150 | 0.9984                                   | 0.9988                               | 0.0004 | 0.0424 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  | 5                                       | 5  | 0.5000 | 0.0150 | 0.9989                                   | 0.9996                               | 0.0007 | 0.0720 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  |                                         |    |        |        |                                          |                                      |        |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  | 1                                       | :  | :      | :      | :                                        | :                                    | :      | :      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | 0                                       | 34 | 0.0000 | 0.1020 | 0.7130                                   | 0.7150                               | 0.0021 | 0.2887 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | _                                       | 34 | 0.1000 | 0.1020 | 0.7776                                   | 0.7800                               | 0.0024 |        |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                  |                                         | 34 | 0.2000 | 0.1020 | 0.8278                                   | 0.8313                               | 0.0035 | 0.4258 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | 3                                       |    | 0.3000 |        |                                          |                                      | 0.0055 | 0.6347 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | _                                       | _  |        |        | 0.8822                                   |                                      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | 5                                       | 34 | 0.5000 | 0.1020 | 0.8859                                   | 0.8981                               | 0.0122 | 1.3556 |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   |                                         |    |        |        |                                          |                                      |        |        |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | :                                       |    | :      | :      | :                                        | :                                    | :      | :      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                   | 0                                       | 67 | 0.0000 | 0.2010 | 0.5948                                   | 0.6030                               | 0.0082 | 1.3648 |
| 3         67         0.3000         0.2010         0.7207         0.7335         0.0128         1.7474           4         67         0.4000         0.2010         0.7373         0.7528         0.0156         2.0694 | _                                       | 67 |        | 0.2010 | 0.6488                                   | 0.6580                               | 0.0092 | 1.3914 |
| 4         67         0.4000         0.2010         0.7373         0.7528         0.0156         2.0694                                                                                                                  |                                         |    |        |        |                                          |                                      | 0.0107 |        |
|                                                                                                                                                                                                                         | 3                                       |    | 0.3000 |        |                                          |                                      |        |        |
| 5         67         0.5000         0.2010         0.7404         0.7593         0.0189         2.4935                                                                                                                  |                                         |    |        |        |                                          |                                      |        |        |
|                                                                                                                                                                                                                         | 5                                       | 67 | 0.5000 | 0.2010 | 0.7404                                   | 0.7593                               | 0.0189 | 2.4935 |

|    | Caso 1. $r = 0.48, h = 0.1, k = 0.0048$ |        |        |                                          |                                      |        |        |  |
|----|-----------------------------------------|--------|--------|------------------------------------------|--------------------------------------|--------|--------|--|
| i  | j                                       | x      | t      | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error  |  |
| 0  | 1                                       | 0.0000 | 0.0048 | 0.9337                                   | 0.9264                               | 0.0073 | 0.7899 |  |
| 1  | 1                                       | 0.1000 | 0.0048 | 0.9890                                   | 0.9850                               | 0.0040 | 0.4042 |  |
| 2  | 1                                       | 0.2000 | 0.0048 | 0.9982                                   | 0.9986                               | 0.0004 | 0.0401 |  |
| 3  | 1                                       | 0.3000 | 0.0048 | 0.9997                                   | 0.9999                               | 0.0002 | 0.0249 |  |
| 4  | 1                                       | 0.4000 | 0.0048 | 0.9999                                   | 1.0000                               | 0.0001 | 0.0053 |  |
| 5  | 1                                       | 0.5000 | 0.0048 | 1.0000                                   | 1.0000                               | 0.0000 | 0.0027 |  |
|    |                                         |        |        |                                          |                                      |        |        |  |
| :  | :                                       | :      | :      | :                                        | :                                    | :      | :      |  |
| 0  | 3                                       | 0.0000 | 0.0144 | 0.8815                                   | 0.8778                               | 0.0037 | 0.4189 |  |
| 1  | 3                                       | 0.1000 | 0.0144 | 0.9498                                   | 0.9465                               | 0.0033 | 0.3504 |  |
| 2  | 3                                       | 0.2000 | 0.0144 | 0.9828                                   | 0.9815                               | 0.0013 | 0.1355 |  |
| 3  | 3                                       | 0.3000 | 0.0144 | 0.9950                                   | 0.9951                               | 0.0000 | 0.0046 |  |
| 4  | 3                                       | 0.4000 | 0.0144 | 0.9986                                   | 0.9990                               | 0.0004 | 0.0396 |  |
| 5  | 3                                       | 0.5000 | 0.0144 | 0.9991                                   | 0.9997                               | 0.0006 | 0.0557 |  |
|    |                                         |        |        |                                          |                                      |        |        |  |
| :  | :                                       | :      | :      | :                                        | :                                    | :      | :      |  |
| 0  | 11                                      | 0.0000 | 0.0528 | 0.7863                                   | 0.7853                               | 0.0010 | 0.1281 |  |
| 1  | 11                                      | 0.1000 | 0.0528 | 0.8562                                   | 0.8551                               | 0.0011 | 0.1295 |  |
| 2  | 11                                      | 0.2000 | 0.0528 | 0.9078                                   | 0.9072                               | 0.0006 | 0.0677 |  |
| 3  | 11                                      | 0.3000 | 0.0528 | 0.9421                                   | 0.9425                               | 0.0004 | 0.0443 |  |
| 4  | 11                                      | 0.4000 | 0.0528 | 0.9606                                   | 0.9626                               | 0.0019 | 0.2018 |  |
| 5  | 11                                      | 0.5000 | 0.0528 | 0.9650                                   | 0.9691                               | 0.0040 | 0.4148 |  |
| ١. |                                         |        |        |                                          |                                      |        |        |  |
| 1: | :                                       | :      | :      | :                                        | :                                    | :      | :      |  |
| 0  | 42                                      | 0.0000 | 0.2016 | 0.5972                                   | 0.6024                               | 0.0052 | 0.8661 |  |
| 1  | 42                                      | 0.1000 | 0.2016 | 0.6515                                   | 0.6573                               | 0.0057 | 0.8746 |  |
| 2  | 42                                      | 0.2000 | 0.2016 | 0.6943                                   | 0.7010                               | 0.0067 | 0.9521 |  |
| 3  | 42                                      | 0.3000 | 0.2016 | 0.7248                                   | 0.7328                               | 0.0080 | 1.0933 |  |
| 4  | 42                                      | 0.4000 | 0.2016 | 0.7423                                   | 0.7521                               | 0.0098 | 1.2979 |  |
| 5  | 42                                      | 0.5000 | 0.2016 | 0.7466                                   | 0.7585                               | 0.0119 | 1.5698 |  |

| Caso 1. $r = 0.50, h = 0.1, k = 0.0050$ |    |        |        |                                          |                                      |        |        |
|-----------------------------------------|----|--------|--------|------------------------------------------|--------------------------------------|--------|--------|
| i                                       | j  | x      | t      | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_i})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error  |
| 0                                       | 1  | 0.0000 | 0.0050 | 0.9317                                   | 0.9250                               | 0.0067 | 0.7294 |
| 1                                       | 1  | 0.1000 | 0.0050 | 0.9883                                   | 0.9841                               | 0.0042 | 0.4290 |
| 2                                       | 1  | 0.2000 | 0.0050 | 0.9980                                   | 0.9984                               | 0.0004 | 0.0369 |
| 3                                       | 1  | 0.3000 | 0.0050 | 0.9997                                   | 0.9999                               | 0.0003 | 0.0271 |
| 4                                       | 1  | 0.4000 | 0.0050 | 0.9999                                   | 1.0000                               | 0.0001 | 0.0061 |
| 5                                       | 1  | 0.5000 | 0.0050 | 1.0000                                   | 1.0000                               | 0.0000 | 0.0031 |
| :                                       | :  | :      | :      | :                                        | :                                    | :      | :      |
| 0                                       | 3  | 0.0000 | 0.0150 | 0.8791                                   | 0.8755                               | 0.0035 | 0.4030 |
| 1                                       | 3  | 0.1000 | 0.0150 | 0.9477                                   | 0.9444                               | 0.0033 | 0.4030 |
| 2                                       | 3  | 0.2000 | 0.0150 | 0.9816                                   | 0.9802                               | 0.0014 | 0.1421 |
| 3                                       | 3  | 0.3000 | 0.0150 | 0.9945                                   | 0.9945                               | 0.0000 | 0.0005 |
| 4                                       | 3  | 0.4000 | 0.0150 | 0.9984                                   | 0.9988                               | 0.0004 | 0.0409 |
| 5                                       | 3  | 0.5000 | 0.0150 | 0.9990                                   | 0.9996                               | 0.0006 | 0.0602 |
| :                                       | :  | :      | :      | :                                        |                                      | :      | :      |
| 0                                       | 20 | 0.0000 | 0.1000 | 0.7166                                   | 0.7176                               | 0.0010 | 0.1368 |
| 1                                       | 20 | 0.1000 | 0.1000 | 0.7817                                   | 0.7828                               | 0.0011 | 0.1405 |
| 2                                       | 20 | 0.2000 | 0.1000 | 0.8325                                   | 0.8342                               | 0.0017 | 0.2071 |
| 3                                       | 20 | 0.3000 | 0.1000 | 0.8684                                   | 0.8713                               | 0.0029 | 0.3323 |
| 4                                       | 20 | 0.4000 | 0.1000 | 0.8890                                   | 0.8936                               | 0.0046 | 0.5171 |
| 5                                       | 20 | 0.5000 | 0.1000 | 0.8941                                   | 0.9011                               | 0.0069 | 0.7674 |
| :                                       | :  | :      | :      | :                                        | :                                    | :      | :      |
| 0                                       | 40 | 0.0000 | 0.2000 | 0.5991                                   | 0.6040                               | 0.0049 | 0.8077 |
| 1                                       | 40 | 0.1000 | 0.2000 | 0.6537                                   | 0.6591                               | 0.0054 | 0.8145 |
| 2                                       | 40 | 0.2000 | 0.2000 | 0.6967                                   | 0.7029                               | 0.0062 | 0.8870 |
| 3                                       | 40 | 0.3000 | 0.2000 | 0.7273                                   | 0.7348                               | 0.0075 | 1.0202 |
| 4                                       | 40 | 0.4000 | 0.2000 | 0.7450                                   | 0.7541                               | 0.0092 | 1.2137 |
| 5                                       | 40 | 0.5000 | 0.2000 | 0.7494                                   | 0.7606                               | 0.0112 | 1.4711 |

|      | Caso 1. $r = 0.70, h = 0.1, k = 0.0070$ |        |        |                                          |                                      |        |        |  |
|------|-----------------------------------------|--------|--------|------------------------------------------|--------------------------------------|--------|--------|--|
| i    | j                                       | x      | t      | $\mathbf{u}(\mathbf{x_i}, \mathbf{t_j})$ | $\mathbf{U}(\mathbf{x}, \mathbf{t})$ | Dif    | Error  |  |
| 0    | 1                                       | 0.0000 | 0.0070 | 0.9135                                   | 0.9122                               | 0.0014 | 0.1492 |  |
| 1    | 1                                       | 0.1000 | 0.0070 | 0.9814                                   | 0.9752                               | 0.0062 | 0.6379 |  |
| 2    | 1                                       | 0.2000 | 0.0070 | 0.9960                                   | 0.9958                               | 0.0002 | 0.0232 |  |
| 3    | 1                                       | 0.3000 | 0.0070 | 0.9991                                   | 0.9996                               | 0.0005 | 0.0457 |  |
| 4    | 1                                       | 0.4000 | 0.0070 | 0.9998                                   | 1.0000                               | 0.0002 | 0.0178 |  |
| 5    | 1                                       | 0.5000 | 0.0070 | 0.9999                                   | 1.0000                               | 0.0001 | 0.0098 |  |
| Г. — |                                         |        |        |                                          |                                      |        |        |  |
| 1 :  | :                                       | :      | :      | :                                        | :                                    | :      | l :    |  |
| 0    | 8                                       | 0.0000 | 0.0560 | 0.7808                                   | 0.7799                               | 0.0009 | 0.1164 |  |
| 1    | 8                                       | 0.1000 | 0.0560 | 0.8505                                   | 0.8495                               | 0.0011 | 0.1246 |  |
| 2    | 8                                       | 0.2000 | 0.0560 | 0.9026                                   | 0.9018                               | 0.0008 | 0.0851 |  |
| 3    | 8                                       | 0.3000 | 0.0560 | 0.9377                                   | 0.9376                               | 0.0001 | 0.0122 |  |
| 4    | 8                                       | 0.4000 | 0.0560 | 0.9574                                   | 0.9582                               | 0.0008 | 0.0829 |  |
| 5    | 8                                       | 0.5000 | 0.0560 | 0.9630                                   | 0.9649                               | 0.0019 | 0.1972 |  |
|      |                                         |        |        |                                          |                                      |        |        |  |
| :    | :                                       | :      | :      | :                                        | :                                    | :      | :      |  |
| 0    | 15                                      | 0.0000 | 0.1050 | 0.7108                                   | 0.7113                               | 0.0004 | 0.0626 |  |
| 1    | 15                                      | 0.1000 | 0.1050 | 0.7755                                   | 0.7759                               | 0.0004 | 0.0542 |  |
| 2    | 15                                      | 0.2000 | 0.1050 | 0.8263                                   | 0.8270                               | 0.0007 | 0.0846 |  |
| 3    | 15                                      | 0.3000 | 0.1050 | 0.8626                                   | 0.8639                               | 0.0013 | 0.1492 |  |
| 4    | 15                                      | 0.4000 | 0.1050 | 0.8840                                   | 0.8862                               | 0.0022 | 0.2464 |  |
| 5    | 15                                      | 0.5000 | 0.1050 | 0.8902                                   | 0.8936                               | 0.0034 | 0.3776 |  |
| .    |                                         |        |        |                                          |                                      |        |        |  |
| :    | :                                       | :      | :      | :                                        | :                                    | :      | :      |  |
| 0    | 29                                      | 0.0000 | 0.2030 | 0.5984                                   | 0.6009                               | 0.0025 | 0.4217 |  |
| 1    | 29                                      | 0.1000 | 0.2030 | 0.6530                                   | 0.6557                               | 0.0027 | 0.4137 |  |
| 2    | 29                                      | 0.2000 | 0.2030 | 0.6962                                   | 0.6993                               | 0.0031 | 0.4436 |  |
| 3    | 29                                      | 0.3000 | 0.2030 | 0.7273                                   | 0.7310                               | 0.0037 | 0.5079 |  |
| 4    | 29                                      | 0.4000 | 0.2030 | 0.7457                                   | 0.7503                               | 0.0045 | 0.6059 |  |
| 5    | 29                                      | 0.5000 | 0.2030 | 0.7511                                   | 0.7567                               | 0.0056 | 0.7395 |  |



Figure 6: Cuadros de comparación entre las soluciones analíticas y aproximadas por el Método Implícito para el Problema 2.

## 5 Conclusión

En este artículo, Nosotros mostramos numéricamente que para valores del parámetro de estabilidad  $r \leq \frac{1}{2}$ , el método es estable(útil), en cambio para  $r > \frac{1}{2}$  el proceso es divergente. El método implicito es convergente para cualquier r, teoricamente, sin embargo para r grandes, el método genera soluciones oscilatorias.

## 6 Agradecimientos

Queremos agradecer al profesor Valdemir Garcia Ferreira por todos los consejos y sugerencias hechas durante la realización de este trabajo. Extendemos nuestros agradecimientos también a la Universidad del Atlántico por el apoyo prestado.

## Bibliografía

- [1] N.N. Kalitkin, "Chislennie Metodi", Nauka, Moskva, 1978.
- [2] G.U. Marchuk, "Metodi vuichislitelnoi matematiki", Nauka, Moskva 1977.
- [3] G.D. Smith, "Numerical Solution of Partial Differential Equations. Finite Difference Methods". Third Edition. Oxford Applied Mathematics and Computing Science Series. UK, 2005.
- [4] V. Garcia Ferreira, "Introducao À Solucao Numérica de Equacoes Diferenciais Parciais com Aplicacoes Em Dinamica dos Fluidos". Cursillo Universidad del Atlántico. 2007.

### 7 Anexos

A continuación presentamos los programas hechos y compilados en C++ (Borland C++ V. 4.0), los cuadros fueron representados mediante el programa GNUPLOT.

\\PROGRAMA QUE HALLA NUMERICAMENTE MEDIANTE MDF LA SOLUCION DEL PROBLEMA 1. POR EL METODO EXPLICITO

```
\label{eq:stdio} \begin{tabular}{ll} \#include &<stdio>\\ \#include &<conio>\\ \#include &<conio>\\ \#include &<math.h>\\ \#define Pi 3.141592653589\\ using namespace std;\\ //r=0.48 explicito048.txt\\ //r=0.50 explicito050.txt\\ //r=0.70 explicito070.txt\\ //r=0.30 explicito030.txt\\ //funcion u(x,t) aproximada long double U(double x, double t) \\ \{long double z; int i; z=0; for (i=1; i;70;i++) \\ z = z+8/(Pi*Pi)*1/(i*i)*sin(Pi*i/2)*sin(i*Pi*x)*exp(-Pi*Pi*t*i*i); \\ \} \end{tabular}
```

```
return(z);
//fin funcion aproximada
///Main program
main ()
FILE *f;
f=fopen ("explicito070.txt", "w+");
int i,j,N,T,l,c;
float s1,s2,s3,r,h,k,x,xx,t,error,diferencia;
float zz;
float u[11][101];
r=0.70;
h=0.1;
k=r*h*h;
N=10;
T=50;
fprintf(f,"r=\%4.2f, h=\%4.2f, k=\%6.4f \ n ",r,h,k);
error \n ");
                                                    error \n ");
for (l=0;l<=N+1;l++) //valores de U con las condiciones iniciales
x=l*h;
if ((x>=0 ) & (x<= 0.5))
printf("%d %d %5.3f %5.3f %6.4f %6.4f %6.4f %6.4f \n",1,0,x,0.0,u[1][0],u[1][0],0.0,0.0);
}//fin del if
if ((x>0.5) \& (x<=1))
u[l][0]=2*(1-x);
fprintf(f, "%d %d %5.3f %5.3f %6.4f %6.4f %6.4f %6.4f \n ",l,0,x,0.0,u[l][0],u[l][0],0.0,0.0);
printf("%d %d %5.3f %5.3f %6.4f %6.4f %6.4f %6.4f \n",l,0,x,0.0,u[l][0],u[l][0],0.0,0.0);
} //fin del if
} //fin del for
fprintf(f,"%d %d %5.3f %5.3f %6.4f %6.4f %6.4f \n",l,0,x,0.0,u[l][0],u[l][0],0.0,0.0);
for (j=0;j;=100;j++)
u[0][j]=u[10][j]=0;
t = (j+1)*k;
for (i=0;i< N+1;i++)
i\hat{f} ((i==0) || (i==10))
x=i*h;
printf("%d %d %5.3f %5.3f %6.4f %6.4f %6.4f %6.4f \n",i,j+1,x,t,u[i][j],u[i][j],0.0,0.0);
else
{
\dot{x}=i*h;
t=(j+1)*k;
s1=u[i-1][j];
s2{=}u[i][j];
s3=u[i+1][j];
u[i][j+1]=r*s1+(1-2*r)*s2+r*s3;
zz=U(x,t);
diferencia = fabs(zz-u[i][j+1]);
\operatorname{error=fabs}((u[i][j+1]-zz)/zz)^*100;
fprintf(f, "\%d \%d \%5.3f \%5.3f \%6.4f \%6.4f \%6.4f \%6.4f \%n", i, j+1, x, t, u[i][j+1], zz, diferencia, error);\\
printf("%d %d %5.3f %5.3f %6.4f %6.4f %6.4f %6.4f \n",i,j+1,x,t,u[i][j+1],zz,diferencia,error);
} // fin del for i
}/fin del for j
fclose(f);
printf("fin del programa ");
```

```
while
((c = getchar()) != '\n' & & c != EOF); } ///fin del programa
```

```
#include<stdio>
#include<conio>
#include<iostream>
\#include<math.h>
#<br/>define Pi3.141592653589
using namespace std;
// funcion original
double foriginal(double xx)
double t,zz;
t = cos(xx);
if (\cos(xx)!=0)
zz = xx*tan(xx)-0.5;
return(zz);
else {
printf("Division por cero\n"); exit(0); }
////
/// primera derivada de la solucion analitica
double fderivada(double xx )
double t,zz;
t = \cos(xx);
if (t==0)
printf("hay un error\n"); exit(1); }
else {
zz=tan(xx)+xx/(pow(cos(xx),2));
return(zz);
\H///Metodo de Newton para hallar la solución numérica de xtanx=1/2
double Newton( int n )
int j;
double u1,u2,epsilon,zz,x1,x2;
double c,u3;
n=n-1;
c=(2*n+1)*Pi/2.0-Pi/180.0;
epsilon=0.001;
j=0;
x2=c;
do
x1=x2;
u2=foriginal(x1);
u3=fderivada(x1);
x2=x1-u2/u3;
j = j + 1;
u1 = fabs(x2-x1);
} while(u1;epsilon);
zz=x2;
return(zz);
}//fin de la funcion newton///
long double U(double xx, double tt)
double alpha,z; int i;
z=0;
for (i=1;i<10;i++)
alpha=Newton(i);
z = 1/(\cos(alpha)*(3+4*pow(alpha,2))) * exp(-4*pow(alpha,2)*tt)*cos(2*alpha*(xx-0.5))+z;
```

```
z=z*4;
return(z);
/////fin funcion analitica
///Main program
main ()
FILE *f;
f=fopen("explicitobvp030.txt","w+");
int i,j,N,T,l,m,c;
double s1,s2,s3,s4,s5,s6,s7,s8,r,h,k,x,xx,t,error,diferencia;
double zz,zzz:
float u[11][101];
r=0.30;
h=0.1;
k=r*h*h;
j=0;
N=10;
T=100;
fprintf(f,"PARA EL CASO CUANDO BVP CON DERIVADAS PARCIALES\n"); fprintf(f,"r=%4.2f, h=%6.4f,k=%6.k\n",r,h,k);
fprintf(f,"i j x t U[i,j] Uanalitica diferencia error \n");
printf("i j x t U[i,j] Uanalitica diferencia error \n");
////vienen las condiciones iniciales for (l=0; l<11; l++)
x=l*h;
s5=u[l][0]=1.0;
zzz=1.0;
diferencia=fabs(zzz-s5);
error=(diferencia)/zzz*100;
fprintf(f, "%d %d %6.4f %6.4f %6.4f %6.4f %6.4f %4.2f \n", l,0,x,0.0,s5,zzz,diferencia,error);
printf(``\%d \%d \%6.4f \%6.4f \%6.4f \%6.4f \%4.2f \ \ '', \ l,0,x,0.0,s5,zzz,diferencia,error);
for (j=0; j<=T-1; j++)
///calculamos los valores en la frontera
\begin{array}{l} {\rm s7=u[0][j];s8=u[1][j];} \\ {\rm u[0][j+1]=u[0][j]+2*_r*(u[1][j]-(1+h)*u[0][j]);} \end{array}
s5=u[0][j+1];
t=(j+1)*k;//ojo con la t
l=1;//un nuevo contador sirve cuando se vaya a buscar los valores simetricos
u[10][j+1]=u[10][j]+2*r*(u[9][j]-(1+h)*u[10][j]);
s6=u[10][j+1];
for (i=0;i< N+1;i++)
{
\dot{x}=i*h;
if (i==0)
zzz=U(x,t);
diferencia=fabs(zzz-s5);
error=(diferencia)/zzz*100;
if (i==10)
zzz=U(x,t);
diferencia=fabs(zzz-s6);
error=(diferencia)/zzz*100;
if ((i<5) && (i!=0))
s1=u[i-1][j];
s2=u[i][j];
s3=u[i+1][j];
u[i][j+1]=s2+r*(s1-2*s2+s3);

s4=u[i][j+1];
```

```
if (i==5)
s1{=}u[i\text{-}1][j];
s2=u[i][j];
s3=u[i+1][j];

u[i][j+1]=s2+r*(s1-2*s2+s3);
s4=u[i][j+1];
if ((i>5) && (i!=N))
{
m=i-2*l;
u[i][j+1]=u[m][j+1];
l=l+1;
s4=u[i][j+1];
zzz=U(x,t);
diferencia = fabs(zzz-u[i][j+1]);
error=diferencia/zzz*100;

fprintf(f, "%d %d %6.4f %6.4f %6.4f %6.4f %6.4f %4.2f \n", i,j+1,x,t,u[i][j+1],zzz,diferencia,error);

printf("%d %d %6.4f %6.4f %6.4f %6.4f %6.4f %4.2f \n", i,j+1,x,t,u[i][j+1],zzz,diferencia,error);
} // FIN DEL FOR PRINCIPAL DEL I
}//FIN DEL FOR PRINCIPAL DE J
fclose(f);
\begin{array}{l} printf("fin\ del\ programa");\\ while((c=getchar())\ !=\ '\ 'n'\ \&\&\ c\ !=EOF); \end{array}
} ///fin del programa
```

```
#include<iostream>
#include<stdlib>
#include<stdio>
#define Pi 3.141592653589
using namespace std;
///funcion u(x,t) aproximada
long double U(double x, double t)
long double z; int i;
z=0:
for (i=1; i<20;i++)
z = z+8/(Pi*Pi)*1/(i*i)*sin(Pi*i/2)*sin(i*Pi*x)*exp(-Pi*Pi*t*i*i);
int main()
int i,j,c,l,s;
FILE *f1;
int N=5;
float r=0.70;
float h=0.1;
float k=r*h*h;
\label{eq:bounds} \begin{array}{ll} \text{float a} [20][20], b[20][20], A[20], B[20], x, xx, differencia, error, t, zzz; \\ f=fopen("implicito070.txt", "w+"); \end{array}
fprintf(f1,"PARA EL CASO IMPLICITO CRANCK NICHOLSON BVP \n");
fprintf(f1,"r=\%3.2f, h=\%3.2f,k=\%5.3f\n",r,h,k);
fprintf(f1," i j x t U[i,j] Uanalitica diferencia error \n");
printf("PARA EL CASO IMPLICITO CRANCK NICHOLSON BVP r=%3.2f, h=%3.2f\n",r,h);
printf(" i j x t U[i,j] Uanalitica diferencia error \n");
for (i=0;i<=2*N+1;i++) {
x=i*h;
if ((x>=0) \& (x<=0.5)) {
a[i][0]=2*x;
a[10-i][0]=a[i][0];
zzz=a[i][0];
diferencia=fabs(zzz-a[i][0]);
fprintf(f1,"\ \%d\ \%d\ \%6.4f\ \%6.4f\ \%6.4f\ \%6.4f\ \%6.4f\ \%6.4f\ (n",\ i,0,x,0.0,a[i][0],zzz,diferencia,error);
printf(" %d %d %6.4f %6.4f %6.4f %6.4f %6.4f \n", i,0,x,0.0,a[i][0],zzz,diferencia,error);
//fin del if
///////// por simetria tenemos
if ((x>0.5 ) & (x<1))
zzz=a[10-i][0];
diferencia=fabs(zzz-a[i][0]);
error=diferencia/zzz*100;
fprintf(f1," %d %d %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f \n", i,0,x,0.0,a[i][0],zzz,diferencia,error);
printf(" %d %d %6.4f %6.4f %6.4f %6.4f %6.4f \n", i,0,x,0.0,a[i][0],zzz,diferencia,error);
//fin del if
if (x==1)
zzz=a[10-i][0];
diferencia=fabs(zzz-a[i][0]);
error=0:
fprintf(f1," %d %d %6.4f %6.4f %6.4f %6.4f %6.4f \n", i,0,x,0.0,a[i][0],zzz,diferencia,error);
printf(" %d %d %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f \n", i,0,x,0.0,a[i][0],zzz,diferencia,error);
///fin del for i para llenarlos valores iniciales
for (j=0; j<20;j++) {
for (i=1;i< N+1;i++) {
```

```
if (i==1) {
b[i][i]=4.0;
b[i][i+1]=-1;
rellena de ceros el lado derecho
for (l=i+2;l< N+1;l++)
b[i][l]=0.0;
b[i][N+1] = (2-2*r)*a[i][j]+r*a[i+1][j];
printf("\n");
fprintf(f,"\n");
if ((i>1) && (i!=N)) {
if(i>2) {
///rellena de ceros el lado izquierdo
for (l=1;l< i-1;l++)
\dot{b}[i][l]=0.0;
b[i][i-1]=-1;
b[i][i]=4.0;
b[i][i+1]=-1;
for (l=i+2;l< N+1;l++)
b[i][l]=0.0;
b[i][N+1] = r*a[i-1][j] + (2-2*r)*a[i][j] + r*a[i+1][j];
}//fin del if i>1
if (i==N)
for (l=1;l< i-1;l++)
b[i][l]=0.0;
b[i][N-1]=-2.0*r;
b[i][N]=(2+2*r);
b[i][N+1] = r*a[i-1][j] + (2-2*r)*a[i][j] + r*a[i+1][j];
//a[i-1][j]+a[i+1][j];
printf("\n");
} }///fin del for I=1,N
printf("\n");
////METODO GAUSS SIN PIVOTEO-METOD PROGONKA//// ///-
                                                                                                                                 -//// ///apli-
camos progonka directa A[1]=-b[1][2]/b[1][1];
B[1]=b[1][N+1]/b[1][1];
for (i=2;i< N+1;i++)
if (i!= N)
A[i]=-b[i][i+1]/(b[i][i]+b[i][i-1]*A[i-1]);
B[i] = (b[i][N+1]-b[i][i-1]*B[i-1])/(b[i][i]+b[i][i-1]*A[i-1]);
//ahora hallamos las soluciones
//printf("\n");
xx=B[N];
//las soluciones son los elementos del vector a[i][j] a[N][j+1]=xx;
printf( "a[%d][%d]= %6.4f \n",N,j+1,a[N][j+1]);
l=N-1;
while (l>0) {
s=10-1;
xx=A[l]*xx+B[l];
a[l][j+1]=xx;
a[s][j+1]=xx;
fprintf(f1, "a[%d][%d]= %6.4f \n",l,j+1,a[s][j+1]);
printf( "a[%d][%d]= %6.4f \n",l,j+1,a[l][j+1]);
l=l-1;
}
```

```
printf("\n");
t=k*(j+1);
for (i=0;i<2*N+1;i++) //ahora escribe las soluciones en el archivo de texto
x=i*h;
if ((i==0) || (i==2*N))
printf(" %d %d %6.4f %6.4f %6.4f %6.4f %6.4f \n", i,j+1,x,t,0.0,0.0,0.0,0.0);
fprintf(f1," %d %d %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f \n", i,j+1,x,t,0.0,0.0,0.0,0.0);
zzz=U(x,t);
diferencia=fabs(zzz-a[i][j+1]);
error=diferencia/zzz*100;
fprintf(f1," %d %d %6.4f %6.4f %6.4f %6.4f %6.4f %6.4f \n", i,j+1,x,t,a[i][j+1],zzz,diferencia,error);
printf("\ \%d\ \%d\ \%6.4f\ \%6.4f\ \%6.4f\ \%6.4f\ \%6.4f\ \%6.4f\ \%6.4f\ (n",i,j+1,x,t,a[i][j+1],zzz,diferencia,error);
}//fin del j principal fclose(f);
fclose(f1);
while (c = getchar()) != '\n' \&\& c != EOF);
  \PROGRAMA QUE HALLA NUMERICAMENTE MEDIANTE MDF LA SOLUCION DEL PROBLEMA 2. POR EL METODO
                                                             IMPLICITO
#include<iostream>
#include<stdlib>
#include<stdio>
#define Pi 3.141592653589
using namespace std;
//programa con el metodo Crank-Nicholson para bvp con derivadas double foriginal(double xx)
double t,zz;
t = cos(xx);
if (\cos(xx)!=0)
zz = xx*tan(xx)-0.5;
return(zz);
printf("Division por cero \n");
exit(0);
////
/// primera derivada de la solucion analitica
double fderivada(double xx )
double t,zz;
t = \cos(xx);
if (t==0)
printf("hay un error\n");
exit(1);
else
zz=tan(xx)+xx/(pow(cos(xx),2));
return(zz);
double Newton( int n )
int j;
double u1,u2,epsilon,zz,x1,x2;
```

double c,u3;

```
n=n-1;
c=(2*n+1)*Pi/2.0-Pi/180.0;
epsilon=0.001;
j=0;
x2=c;
do
x1=x2;
u2=foriginal(x1);
u3=fderivada(x1);
x2=x1-u2/u3;
j=j+1;
u1 = fabs(x2-x1);
while(u1>epsilon);
zz=x2;
return(zz);
//fin de la funcion newton/// //la siguiente procedura halla el valor de la funcion analitica en un punto long double U(double xx, double
double alpha,z; int i;
z=0;
for (i=1;i;10;i++) {
alpha=Newton(i);
z = 1/(\cos(alpha)*(3+4*pow(alpha,2))) * exp(-4*pow(alpha,2)*tt)*cos(2*alpha*(xx-0.5))+z;
}
z=z*4;
return(z);
/////fin funcion analitica
main ()
FILE *f;
f=fopen("imptobvpder070.txt","w+");
int\ i,j,N,T,l,m,c,s,ls,jj;
double s1,s2,s3,s4,s5,s6,r,h,k,x,xx,t,error,diferencia;
{\it double\ zz, zzz;}
float u[11][101],b[8][8],A[8],B[8];
r=0.70;
h=0.1;
k=r*h*h;
j=0;
N=5;
fprintf(f,"PARA EL CASO IMPLICITO CRANK-IMPLICITO CON BVP CON DERIVADAS PARCIALES\n");
fprintf(f,"r=\%5.3f,\,h=\%5.3f,k=\%6.4f\backslash n",r,h,k);\\
///vienen las condiciones iniciales
for (l=0; l<11;l++)
x=l*h;
u[l][0]=1.0;
zzz=1.0;
diferencia=fabs(zzz-u[l][0]);
error=(diferencia)/zzz*100;
fprintf(f," %d %d %6.4f %6.4f %6.4f %6.4f %6.4f %5.3f \n", l,0,x,0.0,u[l][0],zzz,diferencia,error);
printf("-\%d-\%d-\%d-\%6.4f-\%6.4f-\%6.4f-\%6.4f-\%5.3f n", 1,0,x,0.0,u[l][0],zzz,diferencia,error);
//printf("\n");
for (j=0;j<100;j++)//ciclo del j principal
for (i=0; i< N+1; i++)
if (i==0)
b[i][i]=1+r+r*h;
b[i][i+1]=-r;
```

```
///rellena de ceros el lado derecho
for (l=i+2;l< N+1;l++)
b[i][l]=0.0;
b[i][N+1] = r*u[1][j] + (1-r-r*h)*u[0][j];
if ((i>0)&& (i!=N))
if(i>1)
///rellena de ceros el lado izquierdo for (l=0;l<i-1;l++)
b[i][l]=0.0;
b[i][i-1] = -r;
b[i][i]=2+2*r;
b[i][i+1] = -r;
for (l=i+2;l<N+1;l++) //llena de ceros el lado derecho {
b[i][l]=0.0;
\mathbf{b}[\mathbf{i}][\mathbf{N}+1] = \mathbf{r}^*\mathbf{u}[\mathbf{i}-1][\mathbf{j}] + (2-2^*\mathbf{r})^*\mathbf{u}[\mathbf{i}][\mathbf{j}] + \mathbf{r}^*\mathbf{u}[\mathbf{i}+1][\mathbf{j}];
\frac{1}{1} //fin del if i>1 if (i==N)
for (l=0;l<N-1;l++)
b[i][l]=0.0;
b[i][N-1]=-2.0;
b[i][N]=4.0;
b[i][N+1] = r^*u[i-1][j] + (2-2^*r)^*u[i][j] + r^*u[i+1][j];
\dot{}///\mathrm{fin} del for I=1,N
//ahora usemos el metod progonka
A[0]=-b[0][1]/b[0][0];
B[0]=b[0][N+1]/b[0][0];
for (i=1;i< N+1;i++)
if (i!= N) {
A[i]=-b[i][i+1]/(b[i][i]+b[i][i-1]*A[i-1]);
\mathbf{\hat{B}[i]} \! = \! (\mathbf{b[i][N+1]} \! - \! \mathbf{b[i][i-1]} \! * \! \mathbf{B[i-1]}) / (\mathbf{b[i][i]} \! + \! \mathbf{b[i][i-1]} \! * \! \mathbf{A[i-1]});
//ahora hallamos las soluciones xx=B[N];
//las soluciones son los elementos del vector a[i][j] jj=j+1;
u[N][jj]=xx;
u[2*N][jj]=xx;
l=N-1;
while (l>-1)
s=10-1;
xx{=}A[l]*xx{+}B[l];
u[l][jj]=xx;
u[s][jj]=xx;
l=l-1;
t=k*(jj);
for (i=0;i<2*N+1;i++) {
x=i*h;
zzz=U(x,t);
diferencia=fabs(zzz-u[i][jj]);
error=(diferencia)/zzz*100;
fprintf(f," %d %d %6.4f %6.4f %6.4f %6.4f %6.4f \n", i,jj,x,t,u[i][jj],zzz,diferencia,error);
printf("\%d\%d\%6.4f\%6.4f\%6.4f\%6.4f\%6.4f\%6.4f\%6.4f\%n", i,jj,x,t,u[i][jj],zzz,diferencia,error);\\
```