RAČUNARSKE MREŽE

07 - IPv4

Anatomija IPv4 adrese

- IPv4 adresa 32 bita, dotted decimal reprezentacija
- Dva dijela network i host
- Dva načina razgraničavanja network i host dijela:
 - 1. prefix length broj bita koji pripadaju network dijelu

```
192.168.10.1 /24
```

2. subnet maska – 32 bita – jedinice network, nule host 192.168.10.1 255.255.255.0

Binarna -> dotted decimal notacija

Pozicioni brojni sistemi, osnova br.sistema

Dotted decimal -> binarna notacija

Convert Decimal to Binary

Decimal IPv4 address 172.16.4.20

Separate and convert each decimal number separately

Binary IPv4 address 10101100 0001000000010000010100

Primjer:

Primjer:

Dva dijela – network i host

Tipovi IP adresa

• network, broadcast, host

Tipovi IP adresa (2)

network, broadcast, host

Tipovi IP adresa (3)

network, broadcast, host

Primjer

172.16.20.0/25

Network address 172 . 16. 20. 0 /25 10101100.00010000.00010100.00000000 |------Network ------|- host -| 0+0+0+0+0+0+0+0=0 Network address = 172.16.20.0

Step 1

Step 2

Step 4

Tipovi komunikacije

- Unicast (1 -> 1)
- Broadcast (1 -> svima) limited (svojoj) i directed (određenoj)
- Multicast (1 -> grupi)

Rezervisani adresni opsezi

 Ne mogu se koristiti sve adrese iz čitavog opsega (0.0.0.0 – 255.255.255.255)

ype of Address	Usage	Reserved IPv4 Address Range	RFC
ost Address	used for IPv4 hosts	0.0.0.0 to 223.255.255.255	790
ulticast ddresses	used for multicast groups on a local network	224.0.0.0 to 239.255.255.255	1700
eperimental ddresses	used for research or experimentation cannot currently be used for hosts in IPv4 networks	240.0.0.0 to 255.255.255.254	1700 3330

Dodjeljivanje IP adresa

- Na početku postojanja Interneta adrese je dodeljivala organizacija koja se zvala Internet Network Information Center (InterNIC).
- InterNIC više ne postoji, njega je nasledila organizacija Internet Assigned Numbers Authority (IANA).
- IANA dodeljuje Regionalnim Internet Registrima (RIR) delove IP adresnog prostora, da ih oni dodeljuju u regionima za koje su zaduženi.
- RIR registri su:
 - RIPE Réseaux IP Européens
 - ARIN American Registry for Internet Numbers
 - APNIC Asia Pacific Network Informations Centre
 - LACNIC Latin American and Caribbean IP Address Registry
 - AfriNIC African RIR

ISP

- IANA organizacija zadužena za dodjeljivanje adresa
- ISP (*Internet Service Provider*) omogućavaju pristup na Internet dodjeljivajući dobijene adrese (6-8, više po potrebi)
- Troslojna, hijerarhijska organizacija (pouzdanost, brzina, cijena)

Javne i privatne adrese (2)

Javne i privatne adrese

- Blokovi privatnih adresa:
- **-** 10.0.0.0 **-** 10.255.255.255 (10.0.0.0 /8)
- **-** 172.16.0.0 **-** 172.31.255.255 (172.16.0.0 /12)
- **-** 192.168.0.0 **-** 192.168.255.255 (192.168.0.0 /16)

Privatne adrese moraju biti jedinstvene samo na toj mreži!

Pristup Internetu? => NAT

Specijalne IPv4 adrese

- Ne mogu se dodijeliti hostovima:
- Network i broadcast adrese prva i posljednja adresa u mreži
- 2. Default route (0.0.0.0) rezervisan cijeli blok 0.0.0.0/8
- 3. Loopback (127.0.0.1) specijalna adresa za slanje samom sebi; rezervisan cijeli blok 127.0.0.0/8
- Link-local adrese (169.254.0.0/16) operativni sistem dodjeljuje ove adrese hostovima automatski kad nije dostupna IP konfiguracija; ne mogu se koristiti na javnoj mreži
- 5. TEST-NET adrese (192.0.2.0/24) za svrhe učenja i predavanja; mogu se koristiti na javnoj mreži
- 6. Multicast i eksperimentalne adrese (na jednom od prethodnih slajdova)

Statičko adresiranje hosta

Dinamičko adresiranje hosta

Assigning Dynamic Addresses

Prevaziđeno IPv4 adresiranje

classful vs. classless adresiranje (ograničenja, zaostaci)

IP Address Classes

Address Class	1st octet range (decimal)	1st octet bits (green bits do not change)	Network(N) and Host(H) parts of address	Default subnet mask (decimal and binary)	Number of possible networks and hosts per network
A	1-127**	00000000- 01111111	N.H.H.H	255.0.0.0	128 nets (2^7) 16,777,214 hosts per net (2^24-2)
В	128-191	10000000- 10111111	N.N.H.H	255.255.0.0	16,384 nets (2^14) 65,534 hosts per net (2^16-2)
С	192-223	11000000- 11011111	N.N.N.H	255.255.255. <mark>0</mark>	2,097,150 nets (2^21) 254 hosts per net (2^8-2)
D	224-239	11100000- 11101111	NA (multicast)		
E	240-255	11110000- 111111111	NA (experimental)		

^{**} All zeros (0) and all ones (1) are invalid hosts addresses.

Classless Interdomain Routing (CIDR)

- Classfull adresiranje: koristi default subnet masku za adresu koja pripada nekoj klasi. Nedostatak je što se, bez obzira na stvarne potrebe, troši preveliki broj IP adresa.
- Classless Interdomain Routing (CIDR) je uveden kao mehanizam koji poboljšava iskoristivost adresnog prostora i skalabilnost rutiranja. Kod CIDR-a su za razliku od tradicionalne podjele mreža na klase, te su mreže predstavljene IP adresom i brojem bitova u subnet maski.

Logičko I (ANDing)

 \bullet 1 & 1 = 1, 1 & 0 = 0, 0 & 1 = 0, 0 & 0 = 0

- Ruter upotrebljava ANDing odredišne adrese pristiglog paketa i subnet maske da bi odredio odredišnu mrežu
- Host upotrebljava ANDing radi utvrđivanja da li je željeno odredište na njegovoj mreži ili da šalje default gateway-u

VLSM – Variable Length Subnet Masking

 Obezbjeđenje što bolje iskoristivosti dodijeljenog adresnog prostora

- Ako sve podmreže imaju identične dužine mrežne maske-dosta IP adresa se neće iskoristiti
- VLSM:
 - jedna mreža se može podijeliti na podmreže različitih dužina
 - kreirati podmreže za postojeće podmreže

VLSM prednosti

- efikasnije korišćenje adresnog prostora
- fleksibilnija preraspodjela adresa
- skalabilan rast mreže i dodavanje novih adresa

Testiranje mrežnog sloja - ping

- ICMP protokol, ICMP Echo Request & Reply, mjerenje intervala
- ping 127.0.0.1 testiranje TCP/IP protokol steka na hostu
- ping default gateway-a testiranje konekcije na LAN-u
- ping remote hosta testiranje konekcije prema remote LAN-u

Testiranje mrežnog sloja - traceroute (tracert)

- testiranje putanje
- gdje je greška, * ispis greške

ICMPv4

- Internet Control Message Protocol
- Ne čini IP protokol pouzdanim, već samo obavještava o greškama
- control & error poruke, koriste ga ping i traceroute
- Vrste ICMPv4 poruka:
- Host confirmation (npr. Echo Reply)
- Unreachable Destination or Service
 - kodovi: 0 net unreachable, 1 host unreachable (0,1 ruter)
 - 2 protocol unreachable, 3 port unreachable (2,3 host)
- Time Exceeded (TTL = 0)
- Route Redirection (poruka hostovima da postoji bolja putanja za traženo odredište)
- Source quench (poruka hostovima da uspore slanje)

IPv6 – razlozi za korištenje

- Projected RIR Address Pool Exhaustion Dates:
 - APNIC (Asia Pacific): 19-Apr-2011
 - RIPENCC (Euroasia): 14-Sep-2012
 - LACNIC (Latin America): 10-Jun-2014
 - ARIN (North America): 24-Sep-2015
 - AFRINIC (Africa): 28-Nov-2018

IPv6 – poboljšanja

- Osim znatno većeg adresnog prostora, iskoristila se prilika da se poprave i neke druge loše stvari protokola IPv4!
- Novi samo novi protokol, već skup protokola (npr. ICMPv6)
- Bitna poboljšanja:
 - Adresiranje autokonfiguracija
 - Mobilnost i sigurnost IPsec obavezan
 - Jednostavnije zaglavlje rutiranje efikasnije, ne postoje broadcast domeni, fragmentacija onemogućena!
 - Bogatstvo tranzicije sa IPv4 na IPv6 :
 - dual stack istom interfejsu dodijeljena i IPv4 i IPv6 adresa
 - Tuneli IPv6 paket se enkapsulira u IPv4 paket (IPv4 mreža zapravo most između IPv6 ostrva)

IPv4 header vs. IPv6 header

Reprezentacija adrese

- 128 bita
- x:x:x:x:x:x:x, x 16-bitno heksadecimalno polje
- Vodeće nule su opcionalne
- Uzastopne nule mogu da se predstave kao ::, ali samo jednom u adresi!
- Primjeri:
- 2031:0000:130F:0000:0000:09C0:876A:130B Ekvivalentno - 2031:0:130F::9C0:876A:130B, Ali ne može 2031::130F::09C0:876A:130B

- > 0:0:0:0:0:0:0:0
 → ::