ASSIGNMENT 3 EM ALGORITHM

Initial setting:

Initial means and variance were selected randomly.

1) Initial Mean: [[25.87791226 24.19551948 4.74058781]]

2) Initial Variance: [[7.28042205 7.28042205 7.28042205]]

It took 9 iterations to converge.

Number of iterations: 9

With the highest log likelihood of -9584.40855420643

Log likelihood list: [-24422.58895704028, -19025.234151545843,

-18082.85128263917, -14810.766252835705, -11542.57288518026,

-9742.031291395982, -9584.480954409542, -9584.408590459887,

-9584.40855420643]

Initialization strategy used:

Initial K Gaussian means by randomly selecting K initial data points and selecting the initial K variances randomly which is multiple of overall data variance.

Table 1.1 Parameters for different initialization(K=3)

SN	Initial Mean	Initial	Final Mean	Final	Loglikelihood	Iterations
		Variance		Variance		
1	[24.73527387,	[2.69092665,	[25.49940413,	[0.99875855,	-9584.40855	15
	15.40178278,	2.69092665,	15.45688924,	0.96765949,		
	15.05798473]	2.69092665]	5.51203542]	1.03078067]		
2	[4.36735471,	[2.99862498,	[5.51203542,	[1.03078067,	-9584.40855	7
	26.10750806,	2.99862498,	25.49940413,	0.99875855,		
	23.91932875]	2.99862498]	15.45688924]	0.96765949]		
3	[8.05613952,	[8.10780226,	[15.45688924,	[0.96765949,	-9584.40855	9
	5.03300826,	8.10780226,	5.51203542,	1.03078067,		
	23.89400827]	8.10780226]	25.49940413]	0.99875855]		

Table 1.1 Parameters for different initialization(K=3)

S	Initial mean	Initial	Final mean	Final variance	loglikelihood	iterations
N		variance				
1	[26.01410786	[4.74517866	[25.46542571	[0.93055071	-9504.3932	80
	16.6350372	4.74517866	15.45688924	0.96765949		
	14.22529361	4.74517866	5.51203542	1.03078067		
	26.40312823]	4.74517866]	8.5773826]	1.38451662]		
2	[25.80282293	[6.03090481	[2.54994041	[9.98758273	-9563.5572	26
	4.73193109	6.03090481	5.51203542	1.03078058		
	24.91775332	6.03090481	9.64310789	9.30055251		
	24.57384755]	6.03090481]	1.54568893]	9.67659257]		
3	[26.31454591	[9.54985087	[16.02286035	[0.67059413	-9503.6618	53
	6.54516764	9.54985087	15.06276693	0.80140099		
	27.09746192	9.54985087	25.49940413	0.99875855		
	5.01390968]	9.54985087]	5.51203542]	1.03078068]		

Table 1.2 Parameters for different initialization(K=4)

Observations:

The EM algorithm is run on different initialization parameters. For less number of clusters (K=3 Table 1.1) algorithm converges with less number of iteration as compared to large number of clusters (K=4 Table 1.2).

Next Step (Variance = 1):

Initial variance is [1. 1. 1.]. It remains constant as final variance is [1. 1. 1.]. The mean values are as following.

SN	Initial mean	Final mean	Loglikelihood	Iteration
1	[6.67052548	[25.49940413	-9587.3653	26
	6.23213941	5.51203541		
	6.25556869]	15.45688923]		
2	[2.78281581	[5.51203541	-9587.3738	6
	5.93774529	15.45688923		
	26.08622784]	25.49940413]		
3	[15.68066654	[15.45688923	-9587.3738	3
	25.87349446	25.49940413		
	6.47415114]	5.51203541]		

Table 1.3 Parameter for different initialization(K=3)

Which is better?

Consider SN 1 from table 1.3 It took 26 iterations to converge with the initial variance of [1. 1. 1.]

For the same mean value: [6.67052548 6.23213941 6.25556869]. considering random variance value: [7.67788792 7.67788792 7.67788792]. It takes 39 iterations to converge. (following output)

(Note: To get this result you can uncomment the code and comment the random value generator line)

Initial Mean: [[6.67052548 6.23213941 6.25556869]] Initial Variance: [[7.67788792 7.67788792 7.67788792]] Final Mean: [[25.49940413 5.51203542 15.45688924]] Final Variance 0: [[0.99875855 1.03078067 0.96765949]]

Number of iterations: 39

So, Initializing variance to 1. And updating only means in M-step converges faster because difference between initial value and true value is high (initial - true).