Infinity

Recall that the cardinality of a **finite** set is the number of elements in that set. Let |A| = n; then there is a bijection

$$c_A: \{1,2,\ldots,n\} \rightarrow A.$$

Let A and B be two **finite** sets. If A and B have the same number of elements, we can define a bijection $f: A \to B$ by

$$f(a) = (c_B \circ c_A^{-1})(a).$$

Two **finite** sets have the same number of elements when there exists a bijection between then.

Given two arbitrary sets A and B, then A has the same **cardinality** as B, written |A| = |B|, when $A \approx B$. Notice that this definition is for all sets, not just the finite ones.

A Set and its Powerset are never equivalent

Cantor showed that no function $f:A\to\wp A$ can be surjective, by showing that every such f misses a subset of A.

For any set A, $A \not\approx \wp A$

Proof: Assume that there exists a function $f: A \to \wp A$.

Now define $B \stackrel{\triangle}{=} \{x \in A \mid x \notin f(x)\}$, then clearly B is a subset of A. Assume f is surjective, then there exists b such that f(b) = B. Then either $b \in B$ or $b \notin B$:

 $b \in B$: then $b \notin f(b)$ by definition of B; since f(b) = B, we have $b \notin B$; Contradiction.

 $b \notin B$: since f(b) = B, by definition of B we have $b \notin f(b)$, so $b \in B$. Contradiction.

So there is no b such that f(b) = B, so f is not surjective, so f is certainly not bijective. So no bijection between A and $\wp A$ can exist.

So $N \not\approx \wp N \not\approx \wp(\wp N) \not\approx \wp(\wp(\wp N)) \dots$

Countable

A set A is **countable** when **A** is finite or $A \approx N$

The elements of a countable set A can be listed as a **finite** or **infinite** sequence of distinct terms: $A = \{a_0, a_1, a_2, a_3, \dots\}$

Example

The integers ${\it Z}$ are countable, since they can be listed as:

$$0, -1, 1, -2, 2, -3, 3, \dots$$

This 'counting' bijection $g:N \to Z$ is defined formally by

$$g(x) = \begin{cases} x/2, & x \text{ even} \\ -(x+1)/2, & x \text{ odd} \end{cases}$$

Notice that the bijection does not have to preserve the order!

${\cal Q}$ is countable

We can use the same approach to show that ${\cal Q}^+$ (the set of positive fractions) is countable:

But this mapping is only a surjection. . .

Better . . .

So Q^+ is countable

Using the same 'trick' as for Z, so is Q

Useful Statements

Let A be a non-empty set, and B be infinite and countable

These statements are equivalent:

- A is countable
- There exists a surjection from B to A
- There exists an **injection** from A to B

$\wp N$ is Uncountable

We already know that $N \not\approx \wp N$; so $\wp N$ is **uncountable**

Proof:

Through its characteristic function, a subset $V\subseteq N$ can be represented as a list of 0s and 1s as $v_0,v_1,v_2,v_3...$ where every $v_i=1$ if $i\in V$, and $v_i=0$ if $i\notin V$.

We will show that **any** list of subsets of N is incomplete, so misses a subset of N.

Let $V_0, V_1, V_2, V_3, V_4, \ldots$ be any infinite list of sets. We define the set W through its characteristic function $w_0, w_1, w_2, w_3...$ so that: $w_i = 1 - v_i^i$; then $W \subseteq N$ and $i \in W \iff i
otin V_i$, so $W
otin V_i$, for all $i \in N$.

So W is **not** in the list, which is therefore **incomplete**

The Diagonalisation Argument

We can represent this through the diagram:

W differs from each V_i on the diagonal.

R is not countable

Represent $a \in [0, 2] \subseteq \mathbb{R}$ via $a_0 a_1 a_2 a_3 \cdots$:

$$a = a_0 \times 2^0 + a_1 \times 2^{-1} + a_2 \times 2^{-2} + \cdots = S_{i=0}^{\infty} a_i 2^{-i}$$

Note that $1.5 = 11000 \cdots = 1011111\cdots$; dyadic rationals are of the form $\frac{n}{2^k}$, and end with a 0-tail (or 1-tail).

Assume [0, 2] is countable, and $[0, 2] = a^0, a^1, a^2, a^3, ...$

Note that $b \in [0,2]$ is not in the list; also, if $b_{2i} = 0$, then $b_{2i+1} = 1$, and if $b_{2i} = 1$, then $b_{2i+1} = 0$; so b is not dyadic.

13

We can also show that \wp $N \approx R$ (see notes).

Comparing Infinities

We will show that Q is insignificant, a **zero set**, in R.

We can count the rationals; let $Q = q_0, q_1, q_2, ...$ Cast an interval in R around each element of Q, by defining:

$$V_{\delta}^{i} \stackrel{\Delta}{=} (q_{i} - \delta \times 2^{-i}, q_{i} + \delta \times 2^{-i})$$
 $V_{\delta} \stackrel{\Delta}{=} \bigcup_{i=0}^{\infty} V_{\delta}^{i}$

Notice that $Q \subseteq V_{\delta}$. Remark that each V_{δ}^{i} is an interval of length $2 \times \delta \times 2^{-i} = 2^{-i+1}\delta$; we write $\|V_{\delta}^{i}\|$ for this length.

Now
$$0 < \sum_{i=0}^{\infty} ||V_{\delta}^{i}|| = \sum_{i=0}^{\infty} 2^{-i+1} \delta = 4\delta$$

So we can cover Q with a set of size 4δ , for any δ . Since we can make δ as small as we like, this essentially shows that $V=\lim_{\delta\to 0}V_\delta$ is negligible (also called a **null set**) in R. But since $Q\subseteq V$, so is Q.

So $|R|=|\wp N|$ is vastly greater that |Q|=|N|