

Introduction

Project Overview

- Purpose and goal of analysis
- Background information

Individual Comparisons

- Graph database
- NoSQL database
- SQL database

Group Comparison

- Group analysis and results
- Alternative methods & conclusions

Team Members

Justin Albano
Stephen Jones
Dominick Tournour

Introduction

Purpose & Goals

- Analyze a group of databases from each major category of databases in use today
- Select the best from each group and then compare them head-to-head

Introduction

Design of Experiments

- The specifics of the analysis for each database category varied, but some commonalities exist:
 - Use of algorithms common to the use cases of each domain
 - Generally read-intensive algorithms
 - Both algorithm, and the data set on which the algorithms were executed, varied

Scope & Constraints

- All selected databases are open source
 - Allows the analyst to obtain a free version
 - Allows the analyst to see details that would otherwise be hidden

Graph Database

- Selected databases:
 - 1. Neo4j
 - 2. OrientDB

Property Graphs

- A graph containing nodes and edges
- Nodes contain properties (key-value pairs)
- Relationships contain properties
- Relationships are named and directed, originating and terminating at a node

Selected Queries

- 1. Friend-of-friends: obtain all the friends of a single person in the database, repeated for every person
- 2. **Get property**: obtain a single property from each node in the graph, similar to obtaining the name of each person in the database

Conceptual Data Sizes

Actual Data Sizes

Node count	Relationships	Node count	Relationships
1,000	maximum 50 per node	1,000	10,009
10,000	maximum 50 per node	10,000	100,486
100,000	maximum 50 per node	100,000	1,001,176
1,000,000	maximum 50 per node	1,000,000	10,015,575

Data set generator

Implementation-agnostic data set

OrientDB

Results

- Neo4j was only able to a create a graph using the first two data sets
- OrientDB was only about to create a graph using the first three data sets

Results

- All differences were found to be statistically significant to 95% confidence:
 - Pairwise comparisons were conducted

$$(c\downarrow 1, c\downarrow 2) = x \mp z\downarrow 1 - \alpha/2 \ s/\sqrt{n}$$

All resulting confidence intervals did not contain the value 0

Effects of Caching

- Neo4j clearly cached a large amount of data, which resulted in outliers
- These outliers were not discarded, since they were valid data

Effects of Caching

Conclusion

- Although Neo4j was not able to complete as many experiments as OrientDB, it is nonetheless the selected winner:
 - Although OrientDB scales better, the group comparison is in the range of small or medium data sets, thus this advantage is mute in the group comparison
 - In the pairwise experiments, Neo4j completely outperformed OrientDB

Selected: Neo4j

NoSQL Database

- Non-relational structure
- Typically distributed system
- Scale extremely well
- Do not typically make ACID guarantees; instead focus on availability through BASE

Data Models

- Key-value Store
- Document Store
- Column Family
- Graph Database

Selected Databases

- 1. Redis v2.8.19
- 2. MongoDB v2.4.9

Yahoo! Cloud Serving Benchmark (YCSB) Tool

1. Automates development of consistent data sets and workloads

5. Highly extensible

Command-line parameters

Source: B.F. Cooper. "Yahoo! Cloud Serving Benchmark". Yahoo! Inc. 2010. Web. http://labs.yahoo.com/files/ycsb-v4.pdf>

Selected Workloads

Core YCSB Workloads A, B and F

Workload	Operations	Application Example
A – Update heavy	Read: 50% Update: 50%	Session store recording recent actions in a user session
B – Read heavy	Read: 95% Update: 5%	Photo tagging; add a tag is an update, but most operations are to read tags
F – Read-Modify- Write	Read: 50% Read-Modify- Write: 50%	User database, where user records are read and modified by the user or to record user activity.

Data Size Tiers

Tier	Identifier	No. records	No. operations
1	1k	1,000	1,000
2	10k	10,000	1,000
3	100k	100,000	10,000
4	1M	1,000,000	100,000

Experiment Design Summary

- Execution-time Performance Comparison
- Two Databases
- Three Workloads
- Four Data Size Tiers
- 30 Repetitions of each Workload

Results

- Redis completed all workloads in approx. 50% of the time MongoDB required
- MongoDB could not load the largest data set size

Results

- All differences were found to be statistically significant to 95% confidence:
 - Difference of means method for comparing alternatives was conducted:

$$s \downarrow x = \sqrt{s} \downarrow 1 \uparrow 2 /n \downarrow 1 + s \downarrow 2 \uparrow 2 /n \downarrow 2$$
 $(c \downarrow 1, c \downarrow 2) = x \mp z \downarrow 1 - \alpha/2 \ s \downarrow x$

 All resulting confidence intervals did not contain the value 0, thus no evidence to suggest that the difference is not statistically significant

Effect of Redis Backups to HDD

- For large quantities of data modification operations, Redis regularly backed up data to HDD, which affected execution time
- These outliers were not discarded, since they were valid data

Effect of Redis Backups to

Conclusion

- Redis had a significantly shorter execution time for all database sizes and all workloads
- Redis could also handle larger quantities of data than MongoDB
 - Difference is statistically significant

Selected: Redis

Relational Database

- Databases being compared
 - MySQL
 - PostgreSql

Tables

- Database contains multiple tables.
- Relating tables to one another with using primary and foreign keys.
- Each table contains multiple values (columns).
- Multiple rows in each table represent multiple entries.

Orde	erTable
Client_ID	Order_ID
varchar(200)	varchar(200) [P]

ClientTable

Client_ID Email Address

varchar(200) [P] varchar(200) varchar(200)

(a)

(b)

Produ	uctTable
Description	Product_ID
varchar(200)	varchar(200) [P]
((c)

	OrderProductT	able	
Order_Number	Order_ID	Count	Product_D
varchar(200) [P]	varchar(200)	INT	varchar(200)

(d)

Database Configurations

Small: 1,000 cumulative rows between all tables

Medium: 10,000 cumulative rows between all tables

Large: 100,000 cumulative rows between all tables

Extra-Large: 1,000,000 cumulative rows between all tables

	OrderTable	ClientTable	OrderProductTable	ProductTable	Total
Small	100	10	880	10	1,000
Medium	1,000	100	8,800	100	10,000
Large	10,000	1,000	88,000	1,000	100,000
Extra-Large	100,000	10,000	880,000	10,000	1,000,000

Queries

- 1. Select all information from OrderTable
- 2. Select all Orders and order them from higher to lowest count.
- 3. Find the number of orders per Client and order them most to least.
- 4. Update all orders where count is greater than 5 to have a count value of 5.
- 5. Nested selects to use all tables together in one large query. In the end will get the description of all items ordered from a certain email

Results Per Configuration

Small Configuration

Query 5 Query Query Query 4 Query 4 3

Medium Configuration

Results Per Configuration

Large Configuration

Extra-Large Configuration

Execution Times

Resu	lts (ms)	Que	ery 1	Que	ery 2	Que	ery 3	Que	ery 4	Que	ry 5
		Average	Std_dev	Average	Std_dev	Average	Std_dev	Average	Std_dev	Average	Std_dev
Small	MySQL	0.3111	0.0578	5.324	0.484	0.417	0.0869	1.8029	0.496	2.437	0.4869
Siliali	PostgreSql	1.7188	0.246	4.3544	2.962	2.057	0.648	6.8869	0.6693	3.956	0.418
Medium	MySQL	1.1638	0.143	43.385	3.741	1.687	4.827	14.884	4.8275	25.785	6.103
Wiedium	PostgreSql	4.2004	1.050	23.3558	2.260	7.889	1.588	54.049	4.636	10.956	4.802
Largo	MySQL	9.5801	0.96	577.222	37.485	13.331	4.95	140.835	15.914	245.69.2	28.411
Large	PostgreSql	34.676	18.66	332.849	21.491	32.316	15.481	702.753	108.56	75.779	16.489
Extra	MySQL	128.172	11.333	6919.29	188.94	129.734	16.63	1921.8	197.812	2855.03	586.81
Large	PostgreSql	109.229	16.19	3070.22	220.214	103.039	16.6.07	11682.4	463.33	478.169	50.6203

Confidence Intervals

			SMALL						MEDIUM		
	1	2	3	4	5		1	2	3	4	5
diff mean	-1.4077	0.9696	-1.6405333	-5.0840333	-1.5194	diff mean	-3.0365667	20.0293	-6.2017667	-39.164533	14.8286667
s1	0.05786138	0.48416829	0.08699061	0.49607253	0.48695474	s1	0.14367457	3.74162801	0.33955193	4.82753966	6.10397871
s2	0.24640586	2.96288942	0.64832588	0.66935132	0.41818448	s2	1.05066035	2.26021275	1.58804054	4.63669502	4.89024493
n	30	30	30	30	30	n	30	30	30	30	30
alpha	0.9	0.9	0.9	0.9	0.9	alpha	0.9	0.9	0.9	0.9	0.9
alpha/2	0.95	0.95	0.95	0.95	0.95	alpha/2	0.95	0.95	0.95	0.95	0.95
zscore	1.64	1.64	1.64	1.64	1.64	zscore	1.64	1.64	1.64	1.64	1.64
sx	0.04621103	0.54812203	0.11942833	0.15210952	0.11718976	sx	0.19360867	0.79808817	0.2964888	1.22207583	1.42797119
c1	-1.4837104	0.0680195	-1.8369755	-5.3342312	-1.71216	c1	-3.3550246	18.7165618	-6.6894473	-41.174669	12.4798631
c2	-1.3316896	1.8711805	-1.4440912	-4.8338354	-1.32664	c2	-2.7181087	21.3420382	-5.714086	-37.154397	17.1774703
90% confident?	? MySQL	PostgreSql	MySQL	MySQL	MySQL	90% confident?	MySQL	PostgreSql	MySQL	MySQL	PostgreSql
		(a)						(b)	,	•	
		()						(0)	'		
			LARGE						EXTRA LARGE	:	
	1	2	LARGE 3	4	5		1	2	EXTRA LARGE	Ξ 4	5
diff mean	1 -25 0962	2 244 3724	3	4 -561 9179	5 169 912933	diff mean	1 18 9420333	2 3849 0727	3	4	5 2376 86337
diff mean s1	1 -25.0962 0.96001755	2 244.3724 37 4858281	-18.9849		169.912933	diff mean	1 18.9420333 11.3338099	3849.0727	3 26.6946667	4 -9761.1279	5 2376.86337 586.810748
s1	0.96001755	37.4858281	3 -18.9849 4.95006133	15.9141059	169.912933 28.4114854	s1	11.3338099	3849.0727 188.948944	3 26.6946667 16.6309695	4 -9761.1279 197.81299	586.810748
s1 s2	0.96001755 18.6643443	37.4858281 21.4918064	3 -18.9849 4.95006133 15.4819725	15.9141059 108.565214	169.912933 28.4114854	s1 s2	11.3338099 16.1901422	3849.0727 188.948944 220.214926	3 26.6946667	4 -9761.1279 197.81299	586.810748 50.6203151
s1 s2 n	0.96001755 18.6643443 30	37.4858281 21.4918064 30	3 -18.9849 4.95006133 15.4819725 30	15.9141059 108.565214 30	169.912933 28.4114854 16.4890806 30	s1 s2 n	11.3338099 16.1901422 30	3849.0727 188.948944 220.214926 30	3 26.6946667 16.6309695 16.6073732 30	4 -9761.1279 197.81299 463.333366 30	586.810748 50.6203151 30
s1 s2 n alpha	0.96001755 18.6643443 30 0.9	37.4858281 21.4918064 30 0.9	3 -18.9849 4.95006133 15.4819725 30 0.9	15.9141059 108.565214 30 0.9	169.912933 28.4114854 16.4890806 30 0.9	s1 s2 n alpha	11.3338099 16.1901422 30 0.9	3849.0727 188.948944 220.214926 30 0.9	3 26.6946667 16.6309695 16.6073732 30 0.9	4 -9761.1279 197.81299 463.333366 30 0.9	586.810748 50.6203151 30 0.9
s1 s2 n alpha alpha/2	0.96001755 18.6643443 30 0.9 0.95	37.4858281 21.4918064 30 0.9 0.95	3 -18.9849 4.95006133 15.4819725 30 0.9	15.9141059 108.565214 30 0.9 0.95	169.912933 28.4114854 16.4890806 30 0.9 0.95	s1 s2 n alpha alpha/2	11.3338099 16.1901422 30 0.9 0.95	3849.0727 188.948944 220.214926 30 0.9 0.95	3 26.6946667 16.6309695 16.6073732 30 0.9 0.95	4 -9761.1279 197.81299 463.333366 30 0.9 0.95	586.810748 50.6203151 30 0.9 0.95
s1 s2 n alpha	0.96001755 18.6643443 30 0.9	37.4858281 21.4918064 30 0.9 0.95 1.64	3 -18.9849 4.95006133 15.4819725 30 0.9	15.9141059 108.565214 30 0.9 0.95 1.64	169.912933 28.4114854 16.4890806 30 0.9 0.95 1.64	s1 s2 n alpha	11.3338099 16.1901422 30 0.9 0.95 1.64	3849.0727 188.948944 220.214926 30 0.9 0.95 1.64	3 26.6946667 16.6309695 16.6073732 30 0.9 0.95 1.64	4 -9761.1279 197.81299 463.333366 30 0.9 0.95 1.64	586.810748 50.6203151 30 0.9 0.95 1.64
s1 s2 n alpha alpha/2 zscore	0.96001755 18.6643443 30 0.9 0.95 1.64 3.41213219	37.4858281 21.4918064 30 0.9 0.95 1.64	3 -18.9849 4.95006133 15.4819725 30 0.9 0.95 1.64 2.9675724	15.9141059 108.565214 30 0.9 0.95 1.64 20.0330265	169.912933 28.4114854 16.4890806 30 0.9 0.95 1.64	s1 s2 n alpha alpha/2 zscore	11.3338099 16.1901422 30 0.9 0.95 1.64	3849.0727 188.948944 220.214926 30 0.9 0.95 1.64	3 26.6946667 16.6309695 16.6073732 30 0.9 0.95 1.64 4.29105267	4 -9761.1279 197.81299 463.333366 30 0.9 0.95 1.64 91.9796693	586.810748 50.6203151 30 0.9 0.95 1.64
s1 s2 n alpha alpha/2 zscore sx	0.96001755 18.6643443 30 0.9 0.95 1.64 3.41213219 -30.708658	37.4858281 21.4918064 30 0.9 0.95 1.64 7.88899032	3 -18.9849 4.95006133 15.4819725 30 0.9 0.95 1.64 2.9675724 -23.866122	15.9141059 108.565214 30 0.9 0.95 1.64 20.0330265 -594.8693	169.912933 28.4114854 16.4890806 30 0.9 0.95 1.64 5.99750582	s1 s2 n alpha alpha/2 zscore sx	11.3338099 16.1901422 30 0.9 0.95 1.64 3.60821263	3849.0727 188.948944 220.214926 30 0.9 0.95 1.64 52.9768242 3761.93358	3 26.6946667 16.6309695 16.6073732 30 0.9 0.95 1.64 4.29105267	4 -9761.1279 197.81299 463.333366 30 0.9 0.95 1.64 91.9796693 -9912.421	586.810748 50.6203151 30 0.9 0.95 1.64 107.534378 2199.98506
s1 s2 n alpha alpha/2 zscore sx c1	0.96001755 18.6643443 30 0.9 0.95 1.64 3.41213219 -30.708658 -19.483742	37.4858281 21.4918064 30 0.9 0.95 1.64 7.88899032 231.396166 257.348634	3 -18.9849 4.95006133 15.4819725 30 0.9 0.95 1.64 2.9675724 -23.866122	15.9141059 108.565214 30 0.9 0.95 1.64 20.0330265 -594.8693	169.912933 28.4114854 16.4890806 30 0.9 0.95 1.64 5.99750582 160.047914	s1 s2 n alpha alpha/2 zscore sx c1	11.3338099 16.1901422 30 0.9 0.95 1.64 3.60821263 13.0070517 24.877015	3849.0727 188.948944 220.214926 30 0.9 0.95 1.64 52.9768242 3761.93358	3 26.6946667 16.6309695 16.6073732 30 0.95 1.64 4.29105267 19.6365131 33.7528202	4 -9761.1279 197.81299 463.333366 30 0.9 0.95 1.64 91.9796693 -9912.421 -9609.8348	586.810748 50.6203151 30 0.9 0.95 1.64 107.534378 2199.98506
s1 s2 n alpha alpha/2 zscore sx c1 c2	0.96001755 18.6643443 30 0.9 0.95 1.64 3.41213219 -30.708658 -19.483742	37.4858281 21.4918064 30 0.9 0.95 1.64 7.88899032 231.396166 257.348634	3 -18.9849 4.95006133 15.4819725 30 0.9 0.95 1.64 2.9675724 -23.866122 -14.103678	15.9141059 108.565214 30 0.9 0.95 1.64 20.0330265 -594.8693 -528.9665	169.912933 28.4114854 16.4890806 30 0.9 0.95 1.64 5.99750582 160.047914 179.777953	s1 s2 n alpha alpha/2 zscore sx c1 c2	11.3338099 16.1901422 30 0.9 0.95 1.64 3.60821263 13.0070517 24.877015	3849.0727 188.948944 220.214926 30 0.9 0.95 1.64 52.9768242 3761.93358 3936.21182	3 26.6946667 16.6309695 16.6073732 30 0.95 1.64 4.29105267 19.6365131 33.7528202 PostgreSql	4 -9761.1279 197.81299 463.333366 30 0.9 0.95 1.64 91.9796693 -9912.421 -9609.8348	586.810748 50.6203151 30 0.9 0.95 1.64 107.534378 2199.98506 2553.74168

Regression Analysis (Query 5)

		Lin	ear Regression				
Regression Statistics							
R	0.99991						
R Square	0.99982						
Adjusted R Square	0.99973						
s '	22.81337						
Total number of observations	4						
		A =- 13	3.8889 + 0.0029 * B				
ANOVA							
	d.f.	SS	MS	F	p-level		
Regression	1.	5,763,630.11817	5,763,630.11817	11,074.32317	0.00009		
Residual	2.	1,040.89975	520.44988				
Total	3.	5,764,671.01792					
	Coefficients	Standard Error	LCL	UCL	t Stat	p-level	H0 (5%) rejected?
Intercept	-13.8889	13.68742	-72.78112	45.00331	-1.01472	0.41703	No
ъ.	0.00207	0.00003	0.00275	0.0000	105 22464	0.00000	Voo

	Coefficients	Standard Error	LCL	UCL	t Stat	p-level	H0 (5%) rejected?
Intercept	-13.8889	13.68742	-72.78112	45.00331	-1.01472	0.41703	No
В	0.00287	0.00003	0.00275	0.00298	105.23461	0.00009	Yes
T (5%)	4.30265						
LCL - Lower value of a relia	ble interval (LCL)						
UCL - Upper value of a relia	able interval (UCL)					

Resid	Residuals						
	Observation		Predicted Y	Res	sidual	Standard Residuals	S
		1	-11.02256		13.46009	0.72261	1
		2	14.7745		11.01056	0.59111	1
		3	272.74516	-	27.05232	-1.45231	1
		4	2,852.45167		2.58167	0.1386	36

Linear Regression				
Regression Statistics				
R	0.99871			
R Square	0.99742			
Adjusted R Square	0.99613			
s '	14.0777			
Total number of observations	4			
A = 12.4078 + 0.0005 * B				

ANOVA					
	d.f.	SS	MS	F	p-level
Regression	1.	153,227.11194	153,227.11194	773.16505	0.00129
Residual	2.	396.36327	198.18163		
<u>Total</u>	3.	153,623.47521			

	Coefficients	Standard Error	LCL	UCL	t Stat	p-level	H0 (5%) rejected?
Intercept	12.40775	8.44625	-23.93352	48.74903	1.46903	0.27958	No
В	0.00047	0.00002	0.0004	0.00054	27.80585	0.00129	Yes
T (5%)	4.30265						
LCL - Lower value of a reliable interval (LCL)							
UCL - Upper value of a reliable interval (UCL)							

Residuals					
Observation		Predicted Y	Residual	Standard Residuals	
	1	12.87511	-8.91818	-0.77587	
	2	17.08131	-6.12491	-0.53286	
	3	59.14332	16.63658	1.44736	
	4	479.76346	-1.59349	-0.13863	

$$-13.8889 + 0.0029x = 12.4078 + 0.0005x$$

 $.0024x = 26.2967$
 $x = 10,956.9 \Rightarrow 10,957$

Regression Analysis

Execution Time Comparisons

Execution Time Comparisons

Conclusion

- MySQL and PostgreSql were both able to perform the queries on all four sizes of the database
 - MySQL was significantly better (90%) at the lower sizes
 - PostgreSql started to become more efficient after about 100,000 rows depending on the query
 - Small dataset for final comparison favored MySQL.

Selected: MySQL

Group of Databases

- Databases being compared
 - MySQL
 - Neo4j
 - Redis

Group Dataset

- Common dataset
 - 1,000 people
 - 1,000 interests to choose from
 - 100 places of work
 - Suggestions of coworkers
 - Each person has 10 interests
 - Each person has worked at 5 jobs

Database Layouts

- MySQL
 - Use of table structure. People, Interest, Work, Employee, and Relationship Tables.
- Redis
 - Use of key-value pairs. Lists of data saved for each persons workplace and interest and list of workers saved for each workplace.
 - Slight repetition of data.
- Neo4j
 - Use of nodes and relationships. People and Interests are nodes. Relationships link people to other people and people to interests

Group Queries

- 1. Get all interests of a person
 - Simple NoSQL query to simply get all of a persons interests.
- 2. Recommend interests based on interests of coworkers
 - Graphing Query that must relate coworkers and interest of those coworkers together.
- 3. Obtain all coworkers and common place of work
 - Relational Query that returns the workplace of an employee along with all people who worked at that workplace.

Average Execution Times

EMBRY-RIDDLE AERONAUTICAL UNIVERSITY

Conclusion

- NoSQLQuery
 - Graph database is significantly faster than NoSQI and SQL. NoSQL is significantly faster than SQL. All done at 95% confidence
- Graph Query
 - Graph database is significantly faster than NoSQI and SQL. Both done at 95% confidence
- Relational Query
 - Graph database is significantly faster than NoSQI and SQL. NoSQL is significantly faster than SQL. All done at 95% confidence.

Selected: Neo4j

Alternative Methods

Analytical Modeling

- For example, graph operations can be divided into micro-, micro-, and algorithmic operations, and the execution of the higher-level operations are a function of the execution of lower-level operations
 - Reading a vertex, edge, or property: R
 - Get all neighbors via incoming, outgoing, both edges: 2nR, n≡coun t↓neighbors

Simulation

- For transactional databases, the transactions of write, update, etc. can be simulated
 - Test how well a database will operate in the deployment environment
 - Provide a base-line for trade-off analysis between transactional databases

Final Conclusions

- Databases are essential components of many software applications
- Multitudes of database types and end products exist
- Performance analysis is important and required to determine an appropriate application solution
- Graph, NoSQL and relational database types have been analyzed and compared both in isolation and in a final combined comparison through statistical analysis and empirical experimentation
- Neo4j (graph), MySQL (SQL) and Redis (NoSQL) products were individual "best-in-class" performers
- Neo4j (graph) consistently outperformed MySQL and Redis for read-centric queries executed in the combined performance comparison; Redis consistently came in second place
- Alternative methods of performance analysis are possible but were not explored