QUIZ 1

DISCRETE MATHEMATICS FOR COMPUTER SCIENCE

(Maximum Marks: 40 Time allowed: ONE hour)

h	(a) State Well-Ordering Principle.	1 mark.
	(b) State the Principle of Mathematical Induction.	(1 ma(k)
	(c) State the relationship between Well-Ordering Principle and Induction.	(3 marks)
	(d) Using Well-Ordering Principle, show that, for positive integers a and b. I uniques quasi r such that	
	$n = qb + r$, where $0 \le n \le b-1$.	(5 marks)
2	Give combinatorial proof for the following entities	
	$\binom{n}{m}\binom{n}{k}-\binom{n}{k}\binom{n-k}{m-k}$	(Z murks)
	(b) $\binom{n}{m} \binom{n-m}{k} = \binom{n}{k} \binom{n-k}{m}$	(2 marks)
	(c) $\sum_{j=0}^{\infty} {m \choose j} {n \choose k+j} - {m+n \choose m+k}$	(2 marks)
	(d) $\binom{n}{p}$ $\binom{n}{q} = \sum_{k=0}^{n} \binom{n}{k} \binom{n-k}{p-k} \binom{n-p}{q-k}$	(3 marks)
3	 (a) Use generating function technique to derive a closed from formula he the a^{re} ber. 	CATALAN num- (4 marks)
	(b) Simplify $\sum_{k=0}^{\infty} \frac{1}{k+1} \binom{n}{k}$ using generating functions bechnique.	(2 marks)
	(c) Show that any set of 10 two-digit numbers has two our causty depose was with security.	ne of their elements (4 marks)
4.	(a) Count the number of paths in XY-plane from (0.0) to (m.s.) where m and n are per a path consists of series of steps where in each step year series can be the righ appeard. (No mores to the left or down a allowed).	nitive integers. Here it or more our unit (2 marks)
	(b) How many solutions are there to the equation.	
	$x_1+x_2+x_3+x_4+x_5-21$ where $x_i\geq 2$ for $i=1,2,3,4,3$, and to the inequality	(2 marks)
	$x_1 + x_2 + x_3 \le 11$ where x_i 's are positive.	
	(c) flow many strongs with 7 or more characters can be hersed from the braces in	
	EVERGREEN.	