Chapter 5

Tree Searching Strategies

The Satisfiability Problem

If there are n variables $x_1, x_2, ..., x_n$, then there are 2^n possible assignments.

An instance:

A partial tree to determine the satisfiability problem.

We may not need to examine all possible assignments.

Hamiltonian Cycle Problem

A graph containing a Hamiltonian cycle.

The tree representation of whether there exists a Hamiltonian cycle.

Breadth-First Search (BFS)

8-puzzle problem

The breadth-first search uses a <u>queue</u> to hold all expanded nodes.

Depth-First Search (DFS)

e.g. sum of subset problem

$$S=\{7, 5, 1, 2, 10\}$$

\(\preceq\) S' \(\sigma\) S \(\text{s um of S'} = 9?

 A <u>stack</u> can be used to guide the depth-first search.

A sum of subset problem solved by depth-first search.

Hill Climbing

- A variant of <u>depth-first search</u>
 The method selects the locally optimal node to expand.
- e.g. 8-puzzle problem
 evaluation function f(n) = d(n) + w(n),
 where d(n) is the depth of node n
 w(n) is # of misplaced tiles in node n.

An 8-puzzle problem solved by a hill climbing method.

Best-First Search Strategy

- Combine <u>depth-first search</u> and <u>breadth-first</u> search.
- Select the node with the best estimated cost among all nodes.
- This method has a global view.

An 8-puzzle problem solved by a best-first search scheme.

Best-First Search Scheme

Step1: Form a one-element list consisting of the root node.

Step2: Remove the first element from the list. Expand the first element. If one of the descendants of the first element is a goal node, then stop; otherwise, add the descendants into the list.

Step3: Sort the entire list by the values of some estimation function.

Step4: If the list is empty, then failure. Otherwise, go to Step 2.

Branch-and-Bound Strategy

- This strategy can be used to efficiently solve optimization problems.
- e.g.

A multi-stage graph searching problem.

Personnel Assignment Problem

- A <u>linearly ordered</u> set of persons $P = \{P_1, P_2, ..., P_n\}$ where $P_1 < P_2 < ... < P_n$
- A partially ordered set of jobs J={J₁, J₂, ..., J_n}
- Suppose that P_i and P_j are assigned to jobs $f(P_i)$ and $f(P_j)$ respectively. If $f(P_i) \le f(P_j)$, then $P_i \le P_j$. Cost C_{ij} is the cost of assigning P_i to J_j . We want to find a feasible assignment with the minimum cost. i.e.

```
X_{ij} = 1 if P_i is assigned to J_j
X_{ij} = 0 otherwise.
```

• Minimize $\sum_{i,j} C_{ij} X_{ij}$

e.g. A partial ordering of jobs

$$\begin{array}{ccc} J_1 & & J_2 \\ \downarrow & \searrow & \downarrow \\ J_3 & & J_4 \end{array}$$

After topological sorting, one of the following topologically sorted sequences will be generated:
 J₁, J₂, J₃, J₄

$$J_1, \quad J_2, \quad J_4, \quad J_3$$
 $J_1, \quad J_3, \quad J_2, \quad J_4$
 $J_2, \quad J_1, \quad J_3, \quad J_4$
 $J_2, \quad J_1, \quad J_4, \quad J_3$

One of feasible assignments:

$$P_1 \rightarrow J_1$$
, $P_2 \rightarrow J_2$, $P_3 \rightarrow J_3$, $P_4 \rightarrow J_4$

A Solution Tree

 All possible solutions can be represented by a solution tree.

Cost Matrix

Cost matrix

Apply the bestfirst search scheme:

Only one node is pruned away.

Reduced Cost Matrix

Cost matrix

Jobs Persons	1	2	3	4
1	29	19	17	12
2	32	30	26	28
3	3	21	7	9
4	18	13	10	15

Reduced cost matrix

Jobs Persons	1	2	3	4	
1	17	4	5	0	(-12)
2	6	1	0	2	(-26)
3	0	15	4	6	(-3)
4	8	0	0	5	(-10)
		(-3)			

- A reduced cost matrix can be obtained: subtract a constant from each row and each column respectively such that each row and each column contains at least one zero.
- Total cost subtracted: 12+26+3+10+3 = 54
- This is a lower bound of our solution.

Branch-and-Bound for the Personnel Assignment Problem

Bounding of subsolutions:

The Traveling Salesperson Optimization Problem

- It is NP-complete.
- A cost matrix

j i	1	2	3	4	5	6	7	
1	∞	3	93				57	—
2	4	∞	77	42	21	16	34	
3	45	17	∞	36	16	28	25	
		90		∞		7	91	
5	28	46	88	33	∞	25	57	
6	3	88	18	46	92	∞	7	
7	44	26	33	27	84	39	∞	

5-22

A reduced cost matrix

j i	1	2	3	4	5	6	7	
1	∞	0	90	10	30	6	54	(-3)
2	0	∞	73	38	17	12	30	(-4)
3	29	1	∞	20	0	12	9	(-16)
4	32	83	73	∞	49	0	84	(-7)
5	3	21	63	8	∞	0	32	(-25)
6	0	85	15	43	89	∞	4	(-3)
7	18	0	7	1	58	13	∞	(-26)

Reduced: 84

Another reduced matrix

j	1	2	3	4	5	6	7	
<u>i</u>								
1	∞	0	83	9	30	6	50	
2	0	∞	66	37	17	12	26	
3	29	1	∞	19	0	12	5	
4	32	83	66	∞	49	0	80	
5	3	21	56	7	∞	0	28	
6	0	85	8	42	89	∞	0	
7	18	0	0	0	58	13	∞	
			(-7)	(-1)			(-4)	

Total cost reduced: 84 + 7 + 1 + 4 = 96 (lower bound)

The highest level of a decision tree:

• If we use arc 3-5 to split, the difference on the lower bounds is 17 + 1 = 18.

 A reduced cost matrix if arc (4,6) is included in the solution.

j	1	2	3	4	5	7
i						
1	∞	0	83	9	30	50
2	0	∞	66	37	17	26
3	29	1	∞	19	0	5
5	3	21	56	7	∞	28
6	0	85	8	\bigcirc	89	0
7	18	0	0	0	58	∞

Arc (6,4) is changed to be infinity since it cannot be included in the solution.

 The reduced cost matrix for all solutions with arc 4-6.

j i	1	2	3	4	5	7	
1	∞	0	83	9	30	50	
2	0	∞	66	37	17	26	
3	29	1	∞	19	0	5	
5	0	18	53	4	∞	25	(-3)
6	0	85	8	∞	89	0	
7	18	0	0	0	58	∞	

Total cost reduced: 96 + 3 = 99 (new lower bound).

A branch-and-bound solution of a traveling salesperson problem. $_{5-28}$

The 0/1 Knapsack Problem

Positive integers P₁, P₂, ..., P_n (profit)
 W₁, W₂, ..., W_n (weight)
 M (capacity)

Maximize
$$\sum_{i=1}^{n} P_i X_i$$
 subject to
$$\sum_{i=1}^{n} W_i X_i \le M \quad X_i = 0 \text{ or } 1, i = 1, ..., n.$$

The problem is modified:

Minimize
$$-\sum_{i=1}^{n} P_i X_i$$

 \bullet e.g. n = 6, M = 34

i 1 2 3 4 5 6
$$P_{i} = 6 = 10 = 4 = 5 = 6$$

$$W_{i} = 10 = 19 = 8 = 10 = 12 = 8$$

$$(P_{i}/W_{i} \ge P_{i+1}/W_{i+1})$$

• A feasible solution: $X_1 = 1$, $X_2 = 1$, $X_3 = 0$, $X_4 = 0$, $X_5 = 0$, $X_6 = 0$ - $(P_1+P_2) = -16$ (upper bound)

Any solution higher than -16 cannot be an optimal solution.

5-30

Relax the Restriction

Relax our restriction from $X_i = 0$ or 1 to $0 \le X_i \le 1$ (knapsack problem)

Let
$$-\sum_{i=1}^{n} P_i X_i$$
 be an optimal solution for $0/1$

knapsack problem and $-\sum_{i=1}^{n} P_i X_i'$ be an optimal

solution for knapsack problem.

Let
$$Y = -\sum_{i=1}^{n} P_i X_i$$
, $Y' = -\sum_{i=1}^{n} P_i X_i'$.
 $\Rightarrow Y' \leq Y$

Upper Bound and Lower Bound

We can use <u>the greedy method</u> to find an optimal solution for knapsack problem:

$$X_1 = 1$$
, $X_2 = 1$, $X_3 = 5/8$, $X_4 = 0$, $X_5 = 0$, $X_6 = 0$
- $(P_1 + P_2 + 5/8P_3) = -18.5$ (lower bound)
-18 is our lower bound (only consider integers)

$$\Rightarrow$$
 -18 \leq optimal solution \leq -16 optimal solution: $X_1 = 1$, $X_2 = 0$, $X_3 = 0$, $X_4 = 1$, $X_5 = 1$, $X_6 = 0$ $-(P_1+P_4+P_5) = -17$

0/1 knapsack problem solved by branch-and-bound strategy.

The A* Algorithm

- Used to solve optimization problems.
- Using the best-first strategy.
- If a feasible solution (goal node) is obtained, then it is optimal and we can stop.
- Cost function of node n : f(n)

$$f(n) = g(n) + h(n)$$

g(n): cost from root to node n.

h(n): estimated cost from node n to a goal node.

h*(n): "real" cost from node n to a goal node.

If we guarantee $h(n) \le h^*(n)$, then $f(n) = g(n) + h(n) \le g(n) + h^*(n) = f^*(n)$

An Example for A* Algorithm

A graph to illustrate A* algorithm.

Stop if the selected node is also a goal node.

Step 2: Expand node A.

$$g(D)=2+2=4$$

$$g(E)=2+3=5$$

$$h(D)=min{3,1}=1$$

$$h(E)=min\{2,2\}=2$$

$$f(D)=4+1=5$$

$$f(E)=5+2=7$$

Step 3: Expand node C.

$$g(F)=3+2=5$$
 $h(F)=min\{3,1\}=1$ $f(F)=5+1=6$ $g(G)=3+2=5$ $h(G)=min\{5\}=5$ $f(G)=5+5=10$

Step 4: Expand node D.

$$g(H)=2+2+1=5$$

 $g(I)=2+2+3=7$

$$h(H)=min{5}=5$$

 $h(I)=0$

Step 5: Expand node B.

$$g(J)=4+2=6$$

$$h(J)=min{5}=5$$
 $f(J)=6+5=11$

$$f(J)=6+5=11$$

Step 6: Expand node F.

$$g(K)=3+2+1=6$$
 $h(K)=min\{5\}=5$ $f(K)=6+5=11$
 $g(L)=3+2+3=8$ $h(L)=0$ $f(L)=8+0=8$

Node I is a goal node. Thus, the final solution is obtained.

The Channel Routing Problem

A channel specification

Illegal wirings:

 We want to find a routing which minimizes the number of tracks.

A Feasible Routing

7 tracks are needed.

An Optimal Routing

- 4 tracks are needed.
- This problem is NP-complete.

A* Algorithm for the Channel Routing Problem

Horizontal constraint graph (HCG).

 e.g. net 8 must be to the left of net 1 and net 2 if they are in the same track. Vertical constraint graph:

Maximum cliques in HCG: {1,8}, {1,3,7}, {5,7}. Each maximum clique can be assigned to a track. • f(n) = g(n) + h(n),

g(n): the level of the tree

h(n): maximal local density

root

A partial solution tree for the channel routing problem by using A* algorithm.

5-48