Sistemas Distribuídos

Resumo

Rafael Rodrigues

LEIC Instituto Superior Técnico 2022/2023

Contents

1	Intr	rodução	2
2	Rer	mote Procedure Call (RPC)	3
	2.1		3
3	Fun	ndamentos: Tempo	4
	3.1		4
			4
			4
		O v	4
	3.2	Relógios Lógicos	
			5
			5
4	Fun	ndamentos: Coordenação	6
4	4.1		6
	4.1		6
	4.2		6
	4.2	3	
		8	6
		4.2.2 Algoritmo "bully"	6
5	Rep	plicação	7
	5.1	Coerência fraca	7
		5.1.1 Gossip	7
		5.1.2 Bayou	7
	5.2	Coerência forte	7
			7
			7
			7

1 Introdução

Sistema Distribuído - Sistema de componentes software ou hardware localizados em computadores ligados em rede que comunicam e coordenam as suas ações através de troca de mensagens.

2 Remote Procedure Call (RPC)

2.1 Arquitetura cliente-servidor

- Servidores mantêm recursos e server pedidos de operações sobre esses recursos.
- Servidores podem ser clientes de outros servidores.
- Simples e permite distribuir sistemas centralizados muito diretamente.
- Limitado pela capacidade do servidor e pela rede que o liga aos clientes.

3 Fundamentos: Tempo

3.1 Sincronização de Relógios

- Externa relógios dos processos são sincronizados através de uma referência externa
- Interna relógios dos processos de um sistema sincronizam-se entre si

3.1.1 Algoritmo de Cristian

Os relógios dos clientes são sincronizados pelo relógio de um **servidor de tempo** (sincronização externa).

1. Servidor S lê o valor dos outros relógios.

$$T_{S_i} = T_{env_i} + T_{rec_i}/2$$

 $delta_i = T_S - T_i$
 $erro_i = \pm RTT_i/2$

2. Indica a todos os participantes para ajustarem o seu relógio (incluindo o seu). $ajuste_i = \overline{T} + delta_i$

Diferença máxima = Soma dos dois maiores valores de erro

3.1.2 Algoritmo de Berkeley

- 1. É escolhido um líder através de um processo de eleição.
- 2. O líder pergunta os tempos aos seus servidores.
- 3. O líder calcula o tempo de cada máquina tendo em atenção o RTT.
- 4. O líder calcula a média dos tempos, ignorando os outliers.
- 5. Envia o valor (positivo ou negativo) que cada máquina deve ajustar.

3.1.3 Network Time Protocol (NTP)

3.2 Relógios Lógicos

Relação happens-before/aconteceu-antes (\rightarrow)

- 1. se a e b são eventos do mesmo processo, se a ocorre antes de b, então $a \to b$
- 2. se aindica um evento envio de mensagem, e bo evento da receção dessa mensagem, então $a \to b$

Transitividade: se $a \to b$ e $b \to c$, então $a \to c$ **Eventos concorrentes**: se nem $a \to b$, nem $b \to a$, então $a \parallel b$

3.2.1 Lamport

- 1. se $a \to b$, então C(a) < C(b)
 - se os eventos ocorrerem no mesmo processo, e a ocorre antes de b, então C(a) < C(b)
 - se a for o evento envio de mensagem e b a sua receção, então C(a) < C(b)
- 2. o valor de C(e) nunca decresce
 - As correções ao relógio devem ser feitas sempre por incrementos

3.2.2 Vector clocks

- 1. se C(a) < C(b), então $a \to b$
 - $V_a < V_b$ se pelo menos um elemento de V_a for menor e nenhum for maior que V_b

4 Fundamentos: Coordenação

- 4.1 Exclusão Mútua
- 4.1.1 Algoritmo de Maekawa
- 4.2 Eleição de líder
- 4.2.1 Algoritmo baseado em anel
- 4.2.2 Algoritmo "bully"

5 Replicação

- 5.1 Coerência fraca
- 5.1.1 Gossip
- 5.1.2 Bayou
- 5.2 Coerência forte
- 5.2.1 Primary-backup
- 5.2.2 Replicação de máquina de estados
- 5.2.3 Registo distribuído coerente