

EV2274A

- Micro control unit
 - NXP MPC5744
 - ISO26262 ASIL-D integrity level
 - 200MHz
 - 2.5M Flash
 - 384K SRAM
 - Float Point Capability
- (SBC) MC33CFS6500 microprocessor
- Inputs
 - 15 Analog Inputs
 - 21 Digital Inputs
 - 4 Frequency Inputs
 - 3 Wake-up Inputs
- OTP: 12KB, 10KB Optional

- Outputs
 - 10 High-Side Drivers (2 of which could be configured as PWM outputs)
 - 18 Low Side Drivers (4 of which could be configured as PWM outputs)
- 9-32V Operating Voltage
- Communication
 - 3 CAN 2.0B
- Sensor 5V Supply: 5 channels
- Environmental
 - Operating temperature: -40°C to +110°C
 - ISO16750 Compliant
- Simulink Model Based Design

Date	Version	Note
	V1.0	
Nov. 11, 2019	V1.6	Section 3.1
		Parts update
		Section 4.7
		Bootloader Reset
May 11, 2020	V1.7	Contact info update
Feb 02, 2021	V2.0	Updated connector part
		number
Mar 31, 2021	V2.1	Temperature update
		Updated the part No. of
		connector parts
Jun 17, 2021	V2.2	Format optimization
Sep 28, 2021	V2.3	Format Update

Contact us:

Web: http://www.ecotron.ai

Email: info@ecotron.ai

support@ecotron.ai

Address: 13115 Barton Rd, STE H

Whittier, CA, 90605

United States

Tel: +1 562-758-3039

+1 562-713-1105

Table of Contents

CHAPTER 1 GENERAL INFORMATION	4
1.1 Introduction 1.1.1 Functionality 1.1.2 Material 1.1.3 Harness Connector 1.1.4 Chip Information 1.1.5 Power Supply	
1.2 System Block Diagram	8
CHAPTER 2 INTERFACE DESCRIPTION	
2.2 Pin Description	12
2.2.1 Analog Signal Input	
2.2.2 Digital Signal Input	13
2.2.3 Frequency Signal Input	
2.2.4 High Voltage Interlock	
2.2.5 Low-side Driver	
2.2.6 High-side Driver	
2.2.7 CAN Bus	
2.2.9 5V Output	
2.2.10 OTP	
CHAPTER 3 TECHNICAL PERFORMANCE	24
3.1 Electrical Characteristics	24
3.2 Electrical Performance Standard	25
3.3 Environmental Standards	26
3.4 EMC Test Standard	27
CHAPTER 4 INSTALLATION REQUIREMENTS	28

Chapter 1 General Information

1.1 Introduction

VCU (Vehicle Control Unit) is the master controller for electric vehicles.

VCU receives the sensors and driver input signals, including pedal inputs, vehicle speed signals, and other inputs, manages the system energy, commands the driver demanded torque to powertrain, coordinates vehicle components, achieves fault diagnosis, and determines the overall vehicle drivability.

VCU plays a critical and supervisory role in the vehicle control network, or CAN bus-based network.

1.1.1 Functionality

EV2274A has the following functions:

Table 1 EV2274A Features

Table 1 EV22/4A Features
Feature
1 Key switch (KEYON)
2 Hardwire wakeup (DI21, DI22)
4 Power supply (BATT)
5 5V Outputs
3 CAN Bus ports: CANA support wake up at any frame, CANB
support wake up at specific frame
1 LIN Bus port: support wake up
14 Digital signal inputs: 7 channels active high, 7 channels
active low
15 Analog signal inputs: 5 channels of 0-5V voltage input, 2
channels of 0-5V resistance input, and 8 channels of 0-32V
voltage input
4 Frequency signal inputs
10 High-side driver outputs: 2 configurable as PWM outputs
18 Low-side driver outputs: 4 configurable as PWM outputs
Hardware watchdog
Default minimum task period: 1ms, can be customized and
modified according to customer needs

1.1.2 Material

The shell of VCU is formed by aluminum die-casting and assembled with silicone rubber. There is no special treatment or plating on the outside of the shell, no sharp burrs and sharp edges. The nominal dimensions of the VCU shell are as follows (excluding the female end of the VCU connector, in mm):

Figure 1 VCU Shell Size

The appearance of the shell is as follows:

Figure 2 VCU Shell Appearance

Copyright ECOTRON LLC
All Rights Reserved

The socket model used for disassembling the shell: Torx T15. The product identification label is affixed to the VCU shell, which contains the product identification code, customer information, date, batch number, serial number, etc.

1.1.3 Harness Connector

VCU uses the world-renowned "TE connectivity" brand connector, which is a qualified product that meets the automotive safety level and has 121 pins. The specific models of the connectors are as follows.

Table 2 Harness Connector Info

	Table 2 Harriess Conflector IIIIO									
#	Name	Part number	Supplier	URL						
1	PCB Pin Seat	1746979-1	TE	https://www.te.com/usa-en/product-1746979- 1.html						
2	81P Housing	1473244-1	TE	https://www.te.com/usa-en/product-1473244- 1.html						
3	40P Housing	1473252-1	TE	https://www.te.com/usa-en/product-1473252- 1.html						
4	81P Cover Assembly	1473247-1	TE	https://www.te.com/usa-en/product-1473247- 1.html						
5	40P Cover Assembly	1473255-1	TE	https://www.te.com/usa-en/product-1473255- 1.html						
6	81P TPA	368382-1	TE	https://www.te.com/usa-en/product-368382- 1.html						
7	40P TPA	368388-1	TE	https://www.te.com/usa-en/product-368388- 1.html						
8	Terminal (wire diameter 0.2-0.35)	5-968220-1 (968220-1)	TE	https://www.te.com/usa-en/product-5-968220- 1.html (https://www.te.com/usa-en/product-968220- 1.html)						
9	Terminal (wire diameter 0.5-0.75)	5-968221-1 (968221-1)	TE	https://www.te.com/usa-en/product-5-968221- 1.html (https://www.te.com/usa-en/product-968221- 1.html)						
10	Terminal (wire diameter 0.75-1.0)	Terminal (wire 964286-2 TE		https://www.te.com/usa-en/product-964286- 2.html						
11	Terminal (wire diameter 1.5-2.5)	964273-2	TE	https://www.te.com/usa-en/product-964273- 2.html						

Harness connector is shown below:

Figure 3 Harness Connector and Pin Distribution Diagram

1.1.4 Chip Information

Table 3 Chip Info

Feature	Detail
Micro Control Core	32-bit NXP SPC5744P
Maximum Frequency	200MHZ
Flash	2.5MB
SRAM	384KB
SPI Serial EEPROM	64KB
Floating Point Capability	Yes
SBC Microprocessor	MC33CFS6500

1.1.5 **Power Supply**

EV2274A requires 4 channels of continuous power supplies (pin1, pin3, pin116, and pin 119), and the VCU is powered on through the key switch (pin59).

Two 5A fuses, one in series with pin1 and pin3, and the other in series with pin116 and pin119 are recommended for EV2274A power supply.

1.2 System Block Diagram

Figure 4 System Block Diagram

Chapter 2 Interface Description

2.1 Pin Definition

Table 4 Pin Definition

Signal Name	PIN	Function	Interface Description	Note								
Power Supply												
BATT	1 3 116 119	Power Supply	Power Supply 12V/24V	9-32V								
5V2	51	5V Sensor Supply 2	External Sensor 5V Power Supply	5V ± 2%, Maximum 200mA								
5V3	41	5V Sensor Supply 3	External Sensor 5V Power Supply	5V ± 2%, Maximum 200mA								
5V4	49	5V Sensor Supply 4	External Sensor 5V Power Supply	5V ± 2%, Maximum 50mA								
5V5	69	5V Sensor Supply 5	External Sensor 5V Power Supply	5V ± 2%, Maximum 50mA								
5V6	6	5V Sensor Supply 6	External Sensor 5V Power Supply	5V ± 2%, Maximum 50mA								
PGND	2 4 5 120 121	Ground	Power Ground									
GND	48 50 60 70 74 75	Signal Ground	External 5V Sensor Ground									
74 75 Analog Input												
AI03	16	Analog Input 03	Analog Signal Input 0~32V	12-Bit Precision								
AI04	35	Analog Input 04	Analog Signal Input 0~32V	12-Bit Precision								
AI05	17	Analog Input 05	Analog Signal Input 0~32V	12-Bit Precision								
AI09	71	Analog Input 09	Analog Signal Input 0~32V	12-Bit Precision								
Al11	24	Analog Input 11	Analog Signal Input 0~32V	12-Bit Precision								
AI16	22	Analog Input 16	Analog Signal Input 0~32V	12-Bit Precision								
AI18	23	Analog Input 18	Analog Signal Input 0~32V	12-Bit Precision								
AI06	36	Analog Input 06	Analog Signal Input 0~5V	12-Bit Precision								
AI07	18	Analog Input 07	Analog Signal Input 0~5V	12-Bit Precision								
AI08	37	Analog Input 08	Analog Signal Input 0~5V	12-Bit Precision								
Al12	62	Analog Input 12	Analog Signal Input 0~5V	12-Bit Precision								
AI15	20	Analog Input 15	Analog Signal Input 0~5V	12-Bit Precision								
Al17	79	Analog Input 17	Analog Signal Input 0~5V	12-Bit Precision								
Al19	61	Analog Input 19	Analog Signal Input 0~5V	12-Bit Precision								
		High Vo	ltage Interlock Signal									

Copyright ECOTRON LLC
All Rights Reserved

	l .	T									
AI20	72	High Voltage Interlock Signal Input	Analog Signal Input 0~32V	12-Bit Precision							
HSO06	98	High Voltage Interlock Signal Output	High-Side Output 06	Rated 0.5A, Peak 1A							
	1	Po	wer-On Signal								
KEYON	59	Key Input Signal	Digital Signal Input 0~BATT								
DI21	40	AC Charging Wake-Up Signal	Digital Signal Input 0~BATT								
DI22	81	DC Charging Wake-Up Signal	Digital Signal Input 0~BATT								
Digital Input											
DI07	43	Digital Input 07	Digital Signal Input 0~BATT	Active High							
DI10	65	Digital Input 10	Digital Signal Input 0~BATT	Active High							
DI13	26	Digital Input 13	Digital Signal Input 0~BATT	Active High							
DI15	45	Digital Input 15	Digital Signal Input 0~BATT	Active High							
DI16	63	Digital Input 16	Digital Signal Input 0~BATT	Active High							
DI17	67	Digital Input 17	Digital Signal Input 0~BATT	Active High							
DI18	68	Digital Input 18	Digital Signal Input 0~BATT	Active High							
DI01	42	Digital Input 01	Digital Signal Input 0~BATT	Active Low							
DI02	52	Digital Input 02	Digital Signal Input 0~BATT	Active Low							
DI03	53	Digital Input 03	Digital Signal Input 0~BATT	Active Low							
DI04	38	Digital Input 04	Digital Signal Input 0~BATT	Active Low							
DI12	21	Digital Input 12	Digital Signal Input 0~BATT	Active Low							
DI08	31	Digital Input 08	Digital Signal Input 0~BATT	Active Low							
DI09	25	Digital Input 09	Digital Signal Input 0~BATT	Active Low							
		Fre	equency Input								
DI31/ SPEED1	64	Frequency Input 1	Frequency/Digital Signal 0~BATT	Frequency Input Range 20Hz-2KHz / Active High							
DI32/ SPEED2	47	Frequency Input 2	Frequency/Digital Signal 0~BATT	Frequency Input Range 20Hz-2KHz / Active High							
DI33/ SPEED3	66	Frequency Input 3	Frequency/Digital Signal 0~BATT	Frequency Input Range 20Hz-2KHz / Active Low							
DI34/ SPEED4	8	Frequency Input 4	Frequency/Digital Signal 0~BATT	Frequency Input Range 20Hz-2KHz / Active Low							
		С	Output Signal								
HSO01	108	High-Side Output 01	Rated 0.5A, Peak 1A								
HSO02	100	High-Side Output 02	Rated 0.5A, Peak 1A								
HSO03	107	High-Side Output 03	Rated 1A, Peak 3A								
HSO04	99	High-Side Output 04	Rated 1A, Peak 3A								
HSO05	106	High-Side Output 05	Rated 1A, Peak 3A								
HSO07	94	High-Side Output 07	Rated 3A, Peak 5A								
HSO10	114	High-Side Output 10	Rated 3A, Peak 5A								
HSO08	86	High-Side Output 08	Rated 1A, Peak 3A	Can be configured as PWM output, frequency range 20Hz-2KHz							
HSO14	85	High-Side Output 14	Rated 1A, Peak 3A	Can be configured as PWM output, frequency range							

LSO01	95	Low-Side Output 01	Rated 0.5A, Peak 1A	20Hz-2KHz		
LSO06	96	Low-Side Output 06	Rated 0.5A, Peak 1A			
LSO07	110	Low-Side Output 07	Rated 0.5A, Peak 1A			
LSO08	89	Low-Side Output 08	Rated 0.5A, Peak 1A			
LSO10	111	Low-Side Output 10	Rated 0.5A, Peak 1A			
LSO12	103	Low-Side Output 12	Rated 0.5A, Peak 1A			
LSO13	88	Low-Side Output 13	Rated 0.5A, Peak 1A			
LSO02	109	Low-Side Output 02	Rated 1A, Peak 3A			
LSO04	101	Low-Side Output 04	Rated 1A, Peak 3A			
LSO09	112	Low-Side Output 09	Rated 1A, Peak 3A			
LSO11	102	Low-Side Output 11	Rated 1A, Peak 3A			
LSO15	104	Low-Side Output 15	Rated 1A, Peak 3A			
LSO14	113	Low-Side Output 14	Rated 3A, Peak 5A			
LSO16	105	Low-Side Output 16	Rated 3A, Peak 5A			
LSO03	SO03 90 Low-Side Output 03		Rated 0.5A, Peak 1A	Can be configured as PWM output, frequency range 20Hz-2KHz		
LSO17	93 Low-Side Output 17		Rated 0.5A, Peak 1A	Can be configured as PWM output, frequency range 20Hz-2KHz		
LSO18	92	Low-Side Output 18	Rated 0.5A, Peak 1A	Can be configured as PWM output, frequency range 20Hz-2KHz		
LSO19	91	Low-Side Output 19	Rated 0.5A, Peak 1A	Can be configured as PWM output, frequency range 20Hz-2KHz		
		Serial Com	nmunication Interface			
CANA_H	56	CANA_H	Include 1200hm Terminal	Support Any Frame Wake-Up		
CANA_L	55	CANA_L	Resistance	Support Any Traine Wake Op		
CANB_H	57	CANB_H	Not Include 1200hm Terminal	Support Specific Frame Wake-Up		
CANB_L	76	CANB_L	Resistance	Support specific traine wake op		
CANC_H	54	CANC_H	Include 1200hm Terminal			
CANC_L	73	CANC_L	Resistance			
CAN_SHILD1	58	CAN Shielded Wire				
CAN_SHILD2	77	CAN Shielded Wire				
LIN1	78	LINBUS		Support Wake-Up		
		In	nternal Signal			
Al28		Collect Power Supply BATT Voltage		12-Bit Precision		

Note: The high-side/low-side output current data is tested with standard loads and is only for reference. In real life, situations such as inrush current in load may cause misjudgment for fault diagnosis.

2.2 Pin Description

2.2.1 Analog Signal Input

Description

The analog input channel circuits have similar structures, including EMC capacitors, pull-up/pull-down resistors and first-order low-pass filter circuit.

Main difference:

- Resistance of pull-up/pull-down resistor
- Pull-up voltage
- Filter time constant

Figure 5 Schematic of Analog Signal Input Channel

Table 5 Analog Signal Input Channel Parameter

Note: 1) "--" = Not installed 2) U_B = BATT voltage 3) Al28 gathers BATT voltage signal

Pin #	AI	EMC Capacitor	Pull Up Resistor		Pull down Resistor	Series Resistor	Divided Voltage Resistor	Filter Capacitor	Operation Range		Input Range		Conditions / Remarks
		(F)	to U _B (Ohm)	to 5V (Ohm)	to GND (Ohm)	(Ohm)	(Ohm)	(F)	V _{low}	V _{high}	Min	Max	
20	AI15	100n				22k		1n	0V	5V	0V	5V	
61	Al19	100n				22k		1n	0V	5V	0V	5V	
62	Al12	100n	-	-		22k		1n	0V	5V	0V	5V	
79	Al17	100n	-	-		22k		1n	0V	5V	0V	5V	
37	AI08	100n				22k		1n	0V	5V	0V	5V	

36	AI06	100n		10k		22k		1n	0V	5V	0V	5V	
18	AI07	100n	-	10k	-	22k	-	1n	0V	5V	0V	5V	
16	AI03	100n	1	1	-	22k	3.48k	1n	0V	32V	0V	32V	
35	AI04	100n	1	1	-	22k	3.48k	1n	0V	32V	0V	32V	
17	AI05	100n	1	1	1	22k	3.48k	1n	0V	32V	0V	32V	
71	AI09	100n	1	1	1	22k	3.48k	1n	0V	32V	0V	32V	
24	Al11	100n	1	1	1	22k	3.48k	1n	0V	32V	0V	32V	
22	Al16	100n	1	1	1	22k	3.48k	1n	0V	32V	0V	32V	
23	Al18	100n	1	1	1	22k	3.48k	1n	0V	32V	0V	32V	
72	AI20	100n	-	-	-	22k	3.48k	1n	0V	32V	0V	32V	
	AI28					22k	3.48k	10n	0V	32V	0V	32V	

2.2.2 Digital Signal Input

Description

The digital input channel circuits have similar structures, including EMC capacitors, pull-up/pull-down resistors, voltage divider resistors, and a first-order low-pass filter.

Main difference:

- Resistance of pull-up/pull-down resistor
- Selection of pull up/down resistor
- Filter time constant

Figure 6 Schematic of Digital Signal Input Channel

Table 6 Digital Signal Input Channel Parameter

Note: 1) "--" = Not installed 2) U_B = BATT voltage 3) KEYON only for key signal, DI21, DI22 only for hardwire wake-up signal 4) Digital input DI31, DI32, DI33, DI34 can be configured as frequency input SPEED1, SPEED2, SPEED3, SPEED4

Pin #	DI	EMC Capacitor	Filter Capacitor	Pull Up	Pull Up Resistor		Series Resistor	Divided Voltage Resistor					Conditions/ Remarks
		(F)	(F)	to U _B (Ohm)	to 5V(Ohm)	(Ohm)	(Ohm)	(Ohm)	V_{low}	V_{high}	Min	Max	
43	DI07	10n	100p			10k	100k	33k	5V	8.5V	0V	U _B	
65	DI10	10n	100p			10k	100k	33k	5V	8.5V	0V	U_B	
26	DI13	10n	100p			10k	100k	33k	5V	8.5V	0V	U_B	
45	DI15	10n	100p			10k	100k	33k	5V	8.5V	0V	U _B	
63	DI16	10n	100p			10k	100k	33k	5V	8.5V	0V	U _B	
67	DI17	10n	100p	-	-	10k	100k	33k	5V	8.5V	0V	U _B	
68	DI18	10n	100p			10k	100k	33k	5V	8.5V	0V	U _B	
42	DI01	10n	100p	10k	1	1	100k	33k	5V	8.5V	٥٧	U _B	
52	DI02	10n	100p	10k	-	1	100k	33k	5V	8.5V	0V	U _B	
53	DI03	10n	100p	10k	1	1	100k	33k	5V	8.5V	٥٧	U _B	
38	DI04	10n	100p	10k	-	1	100k	33k	5V	8.5V	0V	U _B	
21	DI12	10n	100p	10k			100k	33k	5V	8.5V	0V	U _B	
31	DI08	10n	100p	10k			100k	33k	5V	8.5V	0V	U _B	
25	DI09	10n	100p	10k			100k	33k	5V	8.5V	0V	U _B	
64	DI31	10n	100p			10k	100k	33k	5V	8.5V	0V	U _B	
47	DI32	10n	100p			10k	100k	33k	5V	8.5V	0V	U _B	
66	DI33	10n	100p	10k			100k	33k	5V	8.5V	0V	U _B	
8	DI34	10n	100p	10k			100k	33k	5V	8.5V	0V	U _B	
40	DI21	10n	100p			10k	100k	33k	5V	8.5V	0V	U _B	Wakeup Signal
81	DI22	10n	100p			10k	100k	33k	5V	8.5V	0V	U _B	Wakeup Signal
59	KEYON	10n	100p			10k	100k	33k	5V	8.5V	0V	U _B	Wakeup Signal

2.2.3 Frequency Signal Input

Description

The frequency input channel circuits have similar structures, including EMC capacitors, pull-up/pull-down resistors, voltage divider resistors and a first-order low-pass filter circuit.

Main difference:

- Resistance of pull-up/pull-down resistor
- Pull-up or pull-down
- Filter time constant

Schematic

Figure 7 Schematic Diagram of Frequency Signal Input Channel

	Pin#	SPEED	EMC Capacitor	Filter Capacitor	Pull Up Resistor		Pull Down Resistor	Series Resistor	Divided Voltage Resistor		ation old for Signal	Input Range	
			(F)	(F)	to U _B (Ohm)	to 5V(Ohm)	(Ohm)	(Ohm)	(Ohm)	V_{low}	V_{high}	Min	Max
Γ	64	SPEED1	10n	100p			10k	100k	33k	5V	8.5V	0V	U_{B}
Γ	47	SPEED2	10n	100p			10k	100k	33k	5V	8.5V	0V	U_{B}
	66	SPEED3	10n	100p	10k			100k	33k	5V	8.5V	0V	$U_{\rm B}$
	8	SPEED4	10n	100p	10k			100k	33k	5V	8.5V	0V	UB

Table 7 Frequency Signal Input Channel Parameter

Note:

- 1) "--" = Not installed.
- 2) $U_B = BATT \text{ voltage}$.
- 3) Frequency input SPEED1, SPEED2, SPEED3, SPEED4 can be configured as digital input DI31, DI32, DI33, DI34.
- 4) The frequency and duty cycle reference values of the frequency signal input channel are shown in the following table (test conditions: BATT=12V, pulse input amplitude=10V, pulse input offset=5V):

Table 8 Frequency Signal Input Channel Frequency and Duty Cycle Reference Value

Input	Detection	Input duty	Detection	Input duty	Detection	Input duty	Detection
Frequency	frequency	cycle	duty cycle	cycle	duty cycle	cycle	duty cycle
100Hz	100Hz	10.0%	9.91%	50.0%	49.96%	90.0%	89.90%
1000Hz	1000Hz	10.0%	9.52%	50.0%	49.60%	90.0%	89.52%
2000Hz	2000Hz	10.0%	9.12%	50.0%	49.12%	90.0%	89.12%

2.2.4 High Voltage Interlock

Description

In vehicle's high-voltage interlock inspection circuit, the VCU can output a high-level signal to the circuit through the 98-pin high-side channel. At the same time, the VCU detects the feedback signal in the circuit through the 72-pin analog input channel to check the security and integrity of the vehicle circuit.

If the high-voltage interlock is not used, the 98-pin can be used as a normal high-side output channel, and the 72-pin can be used as a 0-32V analog input channel.

Figure 8 Schematic Diagram of High Voltage Interlock

Table 9 High Voltage Interlock Parameter

Din #	HVIL	Resistor (Ohm)	Conditions / Remarks	
Pin #	HVIL	R2/(R1+R2)		
98	HVIL_Out: HVIL signal output		HSO06	
72	HVIL_In: HVIL signal feedback	3.48k/(22k+3.48k)	AI20	

2.2.5 Low-side Driver

Description

The low-side driver is a low-side switch controlled by SPI and GPIO. All of it channels have fault diagnosis function.

Main difference:

- Driving current
- With or without PWM function

Schematic

Figure 9 Schematic Diagram of Low-Side Driver Channel

Table 10 High-Side Driver Channel Parameter

Pin #	LSO	EMC Capacitor	Output Current	Free Wheeling Diode	Conditions / Remarks
		(F)	Max		
95	LSO01		1A	No	
96	LSO06		1A	No	
110	LSO07		1A	No	
89	LSO08		1A	No	
111	LSO10		1A	No	
103	LSO12		1A	No	
88	LSO13		1A	No	
109	LSO02		3A	No	
101	LSO04		3A	No	
112	LSO09		3A	No	
102	LSO11		3A	No	
104	LSO15		3A	No	
113	LSO14		5A	Yes	
105	LSO16		5A	Yes	
90	LSO03	100p	1A	No	OPWM Configurable
93	LSO17	100p	1A	No	OPWM Configurable
92	LSO18	100p	1A	No	OPWM Configurable
91	LSO19	100p	1A	No	OPWM Configurable

Copyright ECOTRON LLC
All Rights Reserved

Note:

- 1. "--" = Not installed
- 2. Before using, all low-side driver channels need to use the module in chapter 3.10.9 of the "EcoCoder User Manual" to set **PWR12V DRVP to 1**.
- 3. The total load of all low-side driver channels should not exceed 5A.

Fault diagnosis of low-side driver

magnosis of low side differ					
Low-Side Driver Channel	Fault				
EOW SIDE BIVE! CHAIME!	Disable	Enable			
LSO01、LSO02、LSO03、LSO04、LSO06、					
LSO07、LSO08、LSO09、LSO10、LSO11、	•No load	•Short to power supply			
LSO12 、LSO13 、LSO14 、LSO15 、LSO16 、	Short to ground	Short to power supply			
LSO17、LS018、LSO19					

Note:

- 1) Please refer to Chapter 3.8 of "EcoCoder Instruction Manual" for the usage of the fault diagnosis function.
- 2) The low-side drive channels have short-circuit protection. When it is enabled, if a channel is short-circuited to the ground, it will automatically activate the short-circuit protection function. This function may cause the channel to have a fault code jump phenomenon in this case, which is normal.
- 3) When LSO03 and LSO17-19 are configured as OPWM, the reference values of frequency and duty cycle are shown in the following table (test conditions: BATT = 12V, load = 24Ohm, duty cycle is all calculated as positive duty cycle).

Table 11 LSO OPWM Frequency and Duty Cycle Reference Value

Set	Output	Set Duty	Output Duty	Set Duty	Output Duty	Set Duty	Output Duty
Frequency	Frequency	Cycle	Cycle	Cycle	Cycle	Cycle	Cycle
100Hz	100Hz	10.0%	9.6%	50.0%	49.6%	90.0%	89.6%
1000Hz	1000Hz	10.0%	10.4%	50.0%	50.4%	90.0%	90.4%
2000Hz	2000Hz	10.0%	10.8%	50.0%	50.6%	90.0%	90.8%

2.2.6 High-side Driver

Description

The high-side driver is a high-side switch controlled by GPIO. All of its channels have fault diagnosis function.

Main difference:

- Driving current
- With or without PWM function
- Current leakage
- With or without freewheeling diode

Figure 10 Schematic Diagram of High-Side Driver Channel

Table 12 High-Side Driver Channel Parameter

Pin #	HSO	EMC Capacitor	Output current	Leakage Current	Free Wheeling	Conditions / Remarks
		(F)	Max (A)	Max (μA)	Diode	
108	HSO01	10n	1	5	No	
100	HSO02	10n	1	5	No	
98	HSO06	10n	1	5	No	
107	HSO03	10n	3	5	No	
99	HSO04	10n	3	5	No	
106	HSO05	10n	3	5	No	
94	HSO07	10n	5	10	No	
114	HSO10	10n	5	10	No	
86	HSO08	10n	3	5	No	OPWM Configurable
85	HSO14	10n	3	5	No	OPWM Configurable

Note:

- 1. Before using, all high-side driver channels need to use the module in chapter 3.10.9 of the "EcoCoder User Manual" to set **PWR12V_DRVP to 1**.
- 2. The total load of all high-side driver channels should not exceed 5A.

Fault diagnosis of high-side driver

High-side driver channel	Fault			
riigii-side driver chamier	Disable	Enable		
HSO01、HSO02、HSO03、HSO04、		•No load		
HSO05、HSO06、HSO07、HSO08、	 Short to power supply 	Short to ground		
HS010、HSO14		Short to power supply		

Note:

- 1) Please refer to Chapter 3.8 of "EcoCoder Instruction Manual" for the usage of the fault diagnosis function.
- 2) When HSO08 and HSO14 are configured as OPWM, the reference values of frequency and duty cycle are shown in the following table (test conditions: BATT = 12V, load = 24Ohm, duty cycle is all calculated as positive duty cycle).

Table 13 HSO OPWM Frequency And Duty Cycle Reference Value

Set	Output	Set duty	Output duty	Set duty	Output duty	Set duty	Output duty
Frequency	frequency	cycle	cycle	cycle	cycle	cycle	cycle
100Hz	100Hz	10.0%	10.4%	50.0%	50.4%	90.0%	90.4%
1000Hz	1000Hz	10.0%	11.2%	50.0%	51.2%	90.0%	91.2%
2000Hz	2000Hz	10.0%	11.2%	50.0%	52.8%	90.0%	92.8%

2.2.7 **CAN Bus**

Description

CAN interface circuit is used for communication between VCU and other vehicle electronic controllers, and the communication speed can reach 1Mbit/s. CANA interface is integrated in the power chip. CANA supports any frame wake-up function, and CANB supports a specific frame wake-up function.

Figure 11 CAN Bus Schematic

Table 14 CAN Bus Parameter

Pin#	CAN	EMC Capacitor C_1 , C_2 (F)	R ₁ , R ₂ (Ohm)	Choke L	Conditions / Remarks
56	CANA H	47p	60	Yes	Support ISO11898-5, support CAN wake-up
55	CANA L	47p	60	163	function in any frame
57	CANB H	47p		Yes	Support ISO11898-5, support CAN specific
76	CANB L	47p		163	frame wake-up
54	CANC H	47p	60	Yes	Support ISO11898-5
73	CANC L	47p	60	162	3upport 13011696-5

2.2.8 LIN Bus

Description

LIN (Local Interconnect Network) bus supports master/slave node communication mode. LIN bus has the function of short-circuit protection to the power supply and supports wake-up function.

Figure 12 LIN Bus Schematic

Table 15 LIN Bus Parameter

		EMC Capacitor	Pull Up Resistor	Pull Down Resistor	Series Resistor	Conditions /
Pin#	LIN	(F)	to U _B	to GND	(Ohm)	Remarks
	(1)	(Ohm)	(Ohm)	(Ollill)	Kemarks	
78	LIN1	10n	6.1k		1	

2.2.9 **5V Output**

Description

The 5V voltage output channel can provide 5V power supply voltage for external sensors and has the following functions:

- Accurate 5V output for internal IC power supply
- 5 Channels of sensor 5V power supply output
- Invert connection protection, short circuit protection, over-temperature protection

Table 16 5V Sensor Power Output Parameter

Pin #	Supply Voltage	I _{max} (mA)	Output Voltage			
51	5V supply voltage 2	200	5V±2%			
41	5V supply voltage 3	200	5V±2%			
49	5V supply voltage 4	50	5V±2%			
69	5V supply voltage 5	50	5V±2%			
6	5V supply voltage 6	50	5V±2%			

2.2.10 **OTP**

Description

OTP (One Time Programmable) is a memory type of MCU. OTP means after the program is burned into the MCU, it cannot be changed and erased. The OTP area of EV2274A is 12KB, 2K of them have been occupied by the factory flashing product identification code. Thus, users have 10K OTP area to use.

Chapter 3 Technical Performance

3.1 Electrical Characteristics

Item	Design Specifications
Operating Voltage	DC 12 V / 24v (9~32v)
Operating Temperature	-40 °C ~85 °C
Working Humidity	0~95%, No Condensation
Storage Temperature	-40 °C ~85 °C
Quiescent Current	<1mA
Rated Power Consumption	3 W (Not Including Load)
Protection Level	IP67
Weight	≤ 700g
Controller Size	207×150×42mm
Material	Die-Cast Aluminum
Shell	Equipped With Waterproof Breathable Valve, Good Heat Dissipation

3.2 Electrical Performance Standard

Item	Test Standard
Direct Current Supply Voltage	ISO 16750-2
Overvoltage (12V, High Temperature)	ISO 16750-2
Slow Decrease and Increase of Supply Voltage	ISO 16750-2
Superimposed Alternating Voltage	ISO 16750-2
Reversed Voltage	ISO 16750-2
Low Voltage Reset Features	ISO 16750-2
Low Voltage Start Features	ISO 16750-2
Open Circuit Tests – Single Line Interruption	ISO 16750-2
Open Circuit Tests – Multiple Line Interruption	ISO 16750-2
Short Circuit Protection	ISO 16750-2
Withstand Voltage	ISO 16750-2
Insulation Resistance	ISO 16750-2

3.3 Environmental Standards

Item	Test Standard
Waterproof (IP67)	IEC/EN 60529
Dustproof (IP67)	ISO 20653
Salt Spray Leakage Function and Corrosion Test	ISO 16750-4
Mechanical Shock Test	ISO 16750-3
Vibration Test	ISO 16750-3
Drop Test	ISO 16750-3
Temperature Shock	ISO 16750- 4
Electrical Operation at Circulating Ambient Temperature	ISO 16750-4
High and Low Temperature Operation Experiment	ISO 16750-4
High and Low Temperature Experiment	ISO 16750-4
Temperature and Humidity Cycle	IEC 60068-2-30
Constant Temperature and Humidity	ISO 16750-4

3.4 EMC Test Standard

Item	Test Standard
Voltage Transient Emissions Test	ISO7637-2
Conducted Emission (CE-V)	CISPR25
Conducted Emission (CE-C)	CISPR25
Radiation Emission (RE-ALSE)	CISPR25
Radiation Immunity Experiment (I/O)-ICC	ISO7637-3
Radiation Immunity Experiment (BCI-Substitution Method)	ISO11452-4
Radiation Immunity Experiment (RI)	ISO11452-2
Low Frequency Magnetic Field Immunity	ISO11452-8
ESD	GMW3097

Chapter 4 Installation Requirements

It is recommended to install the VCU in the cockpit. If the OEM wants to assemble the VCU in another location, Ecotron's engineers and the OEM's engineers should evaluate the corresponding installation location together.

The precautions for VCU installation are as follows:

- 1. The VCU and wiring harness installation should be firm and reliable, and there should be no looseness. Avoid supporting the wiring harness by VCU. At the same time, the arrangement of the VCU wiring harness should prevent and protect all wires in the wiring harness from damage due to wear and to overheat.
- 2. Try to avoid installing in places where dust is easy to gather. A large amount of dust accumulation will affect the reliability of VCU work.
- 3. VCU should keep away from the location where the temperature of the shell itself may exceed 85°C. At the same time, it is necessary to prevent the surrounding parts from releasing heat to the VCU.
- 4. Avoid installing the VCU in locations where oil, moisture, and water droplets are likely to splash on it.
- 5. Avoid the possibility of additional mechanical shock and external impact due to the installation position and fixing method of the VCU and avoid installing the VCU at the resonance point of the car body.
- 6. Avoid installing the VCU where it may come into contact with the battery or other parts that are prone to seepage of acid and alkaline solutions and near the VCU power terminal.
- 7. VCU should be installed in the horizontal and vertical position according to the connector downwards and maintain a certain angle to prevent water from entering the connector. In the horizontal direction, the recommended installation angle is -170° to -10°, as shown in Figure 13 below. In the vertical direction, the recommended installation angle is -170° -10°, as shown in Figure 14 below.

Figure 13 Horizontal Installation Angle

Figure 14 Vertical Installation Angle

Ecotron recommends using the six installation points on the VCU for installation and fixation. It is recommended to use metal materials such as aluminum alloy for the mounting bracket. The housing should have a reliable electrical connection with the vehicle body through the bracket. If other materials are used, the customer must ensure that they can meet the requirements of VCU for vibration, heat dissipation, temperature, EMC, etc. If there is any deviation, it needs to be confirmed with Ecotron.

The VCU system adopts Ground through the vehicle's body. The specific requirement is to directly connect the ground wire in the wiring harness to the vehicle's body and ensure reliable electrical connections.