

TACTIO PROJECT PROPOSAL BY TEAM TOUCHÉ

AUSTIN KEENER

JOSEPH SPALL

JOSHUA OLDENBURG

JUAN ELIZONDO-VILLASIS

VARUN MADABUSHI

INTRODUCTION

- Humans rely heavily on their tactile senses to understand the weight, shape, and texture of the objects they hold
- Robots require tactile sensors to measure contact forces with objects they interact with
 - Tactile sensing can enable robots to more effectively grasp and interact with objects in the real world

PROBLEMS WITH EXISTING SOLUTIONS

STAG	Optical Sensors (GelSight)	SparkfunX Finger Sensor
 Many Wires Complex manufacturing method Market availability 	High CostSmall sensing areaMarket availability	Small sensing areaCannot locate contact force

TARGET AUDIENCE

- Our goal is to develop a platform for rapid development and prototyping of tactile sensing solutions
- Three target communities can benefit
 - **OResearchers**
 - **OStudents**
 - **OHobbyists**

DESIGN GOALS

- Chainable modular sensor units
 Simplifies design and wiring for users
- Flexible mounting configurations
 - OCan be easily retrofitted onto existing robots
- Easy third-party integration
 - OCompatible with popular ecosystems for electronics prototyping

DESIGN CONCEPT

Main Controller for collecting information to be sent to an Arduino or PC

SENSING SOLUTION

- Flex PCB allows film to deform
- Piezoresistive film (Velostat) changes resistance with strain
- Row-column pattern allows reading in 16 different points

DESIGN ALTERNATIVES - MATERIALS

- EX-STATIC
- OThin, inexpensive, and flexible conductive fabric
- OGood force localization
 - Poor magnitude response due to high conductivity
 - ONot compatible with stacked design due to very low resistance with no added strain
 - OEasy to short between fabric fibers

RIGID PCB CIRCUITS

MOSFET switches each column on to create this circuit with each row

Velostat film

R11

DESIGN ALTERNATIVES - SENSING

- Capacitive- Based on separation distance of two conductive elements
- → ○Good noise immunity
- CRelatively expensive
- Only works with certain materials

MICROCONTROLLER SELECTION

STM32F042 Features

Up to 14 keys

System Power supply 1.8 V internal regulator POR/PDR/PVD Xtal oscillators 32 kHz + 4~32 MHz Internal RC oscillators 40 kHz + 8 MHz Internal RC oscillator 48 MHz (auto trimming on ext. synchro) PLL Clock control Calendar RTC SysTick timer 2x watchdogs (independent and window) 16/24/28/30/38 I/Os Cyclic Redundancy Check (CRC)

32-Kbyte Flash memory 6-Kbyte SRAM HW parity checking Analog 48 MHz 20-byte backup data ARM Cortex-M0 CPU 1x 12-bit ADC 10 channels / 1 MSPS Temperature sensor Nested Vector Connectivity Interrupt Controller (NVIC) HDMI CEC SW debug 2x SPI (1x I2S mode) 1x PC with Fast-mode Plus Control 1x CAN 1x 16-bit motor control USB FS 2.0 (Xtal less) PWM Synchronized 2x USART AHB-Lite bus matrix AC timer with modem control 1x 32-bit timer 1x with LIN, smartcard, APB bus 4x 16-bit PWM timers IrDA) 5-channel DMA Touch-sensing

STM32F042 selected based on required peripherals (CAN and ADC), memory, cost, and pin count

FIRMWARE SOLUTION

- Microcontroller running C++ code
 for measurement and
 communication
- Planning to use Mbed OS 2, with
 STM32Cube as a fallback

COMMUNICATIONS

- Utilizes CAN 2.0, a multi-master 2-wire serial bus
- Up to 255 individually addressed nodes with automatic or user-controlled addressing
- Network controller manages network and polls sensors

DESIGN ALTERNATIVES - COMMUNICATIONS

Daisy-Chained UART

Advantages	Concerns
Automatic position-based node	Requires custom peripheral
addressing	implementation in firmware
No transceiver required	Requires timing coordination

SOFTWARE SOLUTION

- We will provide code to run on an Mbed development board to act as a CAN to USB bridge
- Desktop library to interact with and visualize the sensor

ANALYSIS FLOW

Due to packet size, single sensor readings are split into multiple frames

Polling

- Allow sensors to stabilize
- Lower RAM requirements of host for reconstruction

CURRENT STATUS - ELECTRICAL / MATERIALS

- Prototyped sensor
 - O2x flexible plastic sheet with 4 copper tape rows
 - OVelostat in the middle
 - OStack taped together at 90 deg angle
 - OModeling of Velostat for ADC range

CURRENT STATUS - ELECTRICAL

- Flex PCB
 - ODesigned in Autodesk EAGLE
 - OPerimeter tabs for soldered mounting
 - ORows for connection to rigid PCB
 - OWill be ordered when rigid is finished

CURRENT STATUS - ELECTRICAL

- Rigid PCB
 - ODesigned in Autodesk EAGLE
 - OSchematic nearing completion
 - OMajor components
 - STM32F0 MCU
 - Communication
 - Power
 - Safety
 - Driving Circuits

CURRENT STATUS - ELECTRICAL / FIRMWARE

 Bread-boarded circuit mimicking rigid PCB + flex PCB design

OWrote firmware to test...

- Reading Velostat with ADCs
- Driving rows with PFETs
- Printing to screen

Driving PFETs

STM32 MCU

CURRENT STATUS - COMMUNICATIONS

CAN bus testing with breadboard prototype using

MCP2562 transceiver

Logic analyzer capture of CAN packet

CURRENT STATUS - SOFTWARE

- Visualization using PyQT
- Parses messages from network controller
- Shows sensor force location and relative magnitude

POSSIBLE PROBLEMS / ISSUES

Issues	Severity
Flex PCB manufacturing	
General PCB turnaround	
Modeling Velostat force-resistance	
Tight time-line	
Mbed OS compatibility issue	

QUESTIONS?