PCR Reaction Condition Guidelines

Primer Concentration	 Final primer concentration should be 100 - 500 nM, which is equivalent to ~100 to 250 ng of an 18- to 25-mer oligonucleotide primer in a 100-µl reaction volume. Primers should be salt-free and gel-purified.
Template Concentration	 When the concentration is known, the reaction should contain at least 10 DNA template molecules. Template A260/A280 ratios should be between 1.8 to 2.0. The recommended amount of DNA template is 25 to 100 ng per 100-µl reaction volume ()pfu polymerase may need ~250 ng genomic DNA), for amplifying single-copy chromosomal targets. Excessively high concentrations of starting DNA can inhibit amplification reactions (> 500-1000 ng). When amplifying lambda or plasmid PCR targets and multi-copy chromosomal genes, less DNA can be used. For example: 10 to 100 ng of DNA template per 100-µl reaction volume is generally recommended. For higher GC content, 1% to 10% DMSO may be added to relax secondary structures but should only be used when necessary. DMSO may increase error rate at higher concentrations (enzyme blends are more affected). Glycerol from 5% to 20% can also be used in high GC reactions. Glycerol has also been found to act as an enzyme stabilizer.
General Tips	 Avoid prolonged denaturing times as these can damage DNA templates and dNTPs, as well negatively affect certain PCR polymerases. For example: 2 to 5 minutes should be sufficient for an initial denaturing step in most applications. Denaturing temperatures should be between 92° to 95°C for most targets. Use the appropriate buffer and cycling parameters recommended by Stratagene for your particular polymerase. Polymerases are sensitive to Mg2+ concentration. Please follow guidelines in your user manual specific to your PCR enzyme regarding Mg2+.