Automates finis et expressions rationnelles Corrigé partiel de la feuille de travaux dirigés n°2

16 février 2009

1. a) On obtient l'automate non-déterministe :

δ	ε	a	b
$\rightarrow 1$	2,7		
2	3,4		
3		5	
4			6
5	2,7		
6	2,7		
7		8	
8	9		
9			10
10	11		
← 11	12		
12	13, 14		
13		15	
14			16
← 15	12		
← 16	12		

b) On obtient l'automate non-déterministe :

δ	ε	a	b
$\rightarrow 1$	2,8		
2	3,5		
3			4
4	3,5		
5	6,8		
6		7	
7	2, 6, 8		
8		9	
9	10		
10			11
11	12		
← 12	13		
13	14, 15		
14		16	
15			17
← 16	13		
← 17	13		

2. a) On calcule d'abord la fermeture par des ε -transitions :

δ	$\varepsilon - fermeture$
1	1, 2, 3, 4, 7
2	2, 3, 4
3	3
4	4
5	2, 3, 4, 5, 7
6	2, 3, 4, 6, 7
7	7
8	8,9
9	9
10	10, 11, 12, 13, 14
11	11, 12, 13, 14
12	12, 13, 14
13	13
14	14
15	12, 13, 14, 15
16	12, 13, 14, 16

Ensuite on déterminise

δ	$\mid a \mid$	fermeture	b	fermeture
1, 2, 3, 4, 7	5,8	2, 3, 4, 5, 7, 8, 9	6	2, 3, 4, 6, 7
2, 3, 4, 5, 7, 8, 9	5,8	2, 3, 4, 5, 7, 8, 9	6, 10	2, 3, 4, 6, 7, 10, 11, 12, 13, 14
2, 3, 4, 6, 7	5,8	2, 3, 4, 5, 7, 8, 9	6	2, 3, 4, 6, 7
2, 3, 4, 6, 7, 10, 11, 12, 13, 14	5, 8, 15	2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 15	6, 16	2, 3, 4, 6, 7, 12, 13, 14, 16
2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 15	5, 8, 15	2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 15	6, 10, 16	2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 16
2, 3, 4, 6, 7, 12, 13, 14, 16	5, 8, 15	2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 15		2, 3, 4, 6, 7, 12, 13, 14, 16
2, 3, 4, 6, 7, 10, 11, 12, 13, 14, 16	5, 8, 15	2, 3, 4, 5, 7, 8, 9, 12, 13, 14, 15	6, 16	2, 3, 4, 6, 7, 12, 13, 14, 16

Il suffit de rénuméroter et marquer les états spéciaux (initial et d'acceptation) pour obtenir l'automate résultat :

δ	a	b
$\rightarrow 1$	2	3
2	2	4
3	2	3
← 4	5	6
← 5	5	7
← 6	5	6
← 7	5	6

b) On calcule d'abord la fermeture par des ε -transitions :

δ	$\varepsilon - fermeture$
1	1, 2, 3, 5, 6, 8
2	2, 3, 5, 6, 8
3	3
4	3, 4, 5, 6, 8
5	5, 6, 8
6	6
7	2, 3, 5, 6, 7, 8
8	8
9	9, 10
10	10
11	11, 12, 13, 14, 15
12	12, 13, 14, 15
13	13, 14, 15
14	14
15	15
16	13, 14, 15, 16
17	13, 14, 15, 17

Ensuite on déterminise

δ	a	fermeture	b	$\mid fermeture$
1, 2, 3, 5, 6, 8	7,9	2, 3, 5, 6, 7, 8, 9, 10	4	3, 4, 5, 6, 8
2, 3, 5, 6, 7, 8, 9, 10	7,9	2, 3, 5, 6, 7, 8, 9, 10	4,11	3, 4, 5, 6, 8, 11, 12, 13, 14, 15
3, 4, 5, 6, 8	7,9	2, 3, 5, 6, 7, 8, 9, 10	4	3,4,5,6,8
3, 4, 5, 6, 8, 11, 12, 13, 14, 15	7, 9, 16	2, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16	4,17	3, 4, 5, 6, 8, 13, 14, 15, 17
2, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16	7, 9, 16	2, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16	4, 11, 17	3, 4, 5, 6, 8, 11, 12, 13, 14, 15, 17
3, 4, 5, 6, 8, 13, 14, 15, 17	7, 9, 16	2, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16	4,17	3, 4, 5, 6, 8, 13, 14, 15, 17
3, 4, 5, 6, 8, 11, 12, 13, 14, 15, 17	7, 9, 16	2, 3, 5, 6, 7, 8, 9, 10, 13, 14, 15, 16	4, 17	3, 4, 5, 6, 8, 13, 14, 15, 17

Il suffit de rénuméroter et marquer les états spéciaux (initial et d'acceptation) pour obtenir l'automate résultat :

a	b
2	3
2	4
2	3
5	6
5	7
5	6
5	6
	2 2 2 5 5 5

On remarque qu'on vient d'obtenir le même automate qu'en a). Ceci est le fruit du hasard (car ces automates ne sont pas minimales) et ceci malgré le fait qu'il s'agit bien de deux expressions rationnelles pour le même langage.

3

3. Le tableau des $r_{i,j}^k$ se présente ainsi :

k	k = 0	k=1	k=2	k=3
$r_{1,1}^{k}$	ε			
$r_{1,2}^{k}$	0	0	0(00)*	$0(00)^* + 0^*1((0+1)0^*1)^*(0+1)(00)^*$
$r_{1,3}^{k}$	1	1	0*1	0*1((0+1)0*1)*
$r_{2,1}^{k}$	0			
$r_{2,2}^{k}$	ε	$\varepsilon + 00$		
$r_{2,3}^{k}$	1	1 + 01		
$r_{3,1}^{k}$	Ø		-	
$r_{3,2}^{k}$	Σ	Σ	$(0+1)(00)^*$	
$r_{3,3}^{k}$	ε	ε	$\varepsilon + (0+1)0^*1$	

Ce qui permet de conclure que l'expression rationnelle cherchée est :

$$L(A) = r_{12}^3 + r_{13}^3 = 0(00)^* + 0^*1((0+1)0^*1)^*(0+1)(00)^* + 0^*1((0+1)0^*1)^*$$