Unit: Efficiency and level sets

Orange Mountains $f_1(x_1, x_2) \rightarrow \max$

Blue Mountains $f_1(x_1, x_2) \rightarrow \max$

Pareto optimization: All Definitions

Decision space $\mathbb S$, Feasible decision space $\mathcal X$

Objective functions $f_1: \mathbb{S} \to \mathbb{R}, f_2: \mathbb{S} \to \mathbb{R}, \ldots, f_m: \mathbb{S} \to \mathbb{R}$.

Or as a vector valued function: $\mathbf{f}(\mathcal{X}) \to \mathbb{R}^m$

Image of \mathcal{X} under f:

$$\mathcal{Y} = \mathbf{f}(\mathcal{X}) = \{ \mathbf{y} \in \mathbb{R}^m \mid \text{exists } x \in \mathcal{X} : \mathbf{f}(x) = \mathbf{y} \}$$

Pareto dominance:

$$\forall \mathbf{y}^1, \mathbf{y}^2 \in \mathbb{R}^m : \mathbf{y}^1 \prec \mathbf{y}^2 \Leftrightarrow \mathbf{y}^1 \leq \mathbf{y}^2 \wedge \mathbf{y}^1 \neq \mathbf{y}^2.$$

We define a preorder in the feasible decision space \mathcal{X} :

$$\forall \mathbf{x}^1, \mathbf{x}^2 \in \mathcal{X} : \mathbf{x}^1 \preceq \mathbf{x}^2 : \Leftrightarrow \mathbf{f}(\mathbf{x}^1) \leq \mathbf{f}(\mathbf{x}^2)$$

$$\mathbf{x}^1 \prec \mathbf{x}^2 : \Leftrightarrow \mathbf{f}(\mathbf{x}^1) \prec \mathbf{f}(\mathbf{x}^2) \prec$$

$$\leq: weak \ component \ wise \ order. \ In \ every \ component \ smaller \ or \ equal$$

Matthias Ehrgott: Multicriteria Optimization: Springer 2005 Open Access:

Emmerich, M. T., & Deutz, A. H. (2018). A tutorial on multiobjective optimization: fundamentals and evolutionary methods. *Natural computing*, *17*(3), 585-609. https://link.springer.com/article/10.1007/s11047-018-9685-y

Learning Goals

- Correct definition related to multiobjective optimization: Efficient set, Pareto front, weak efficient set, strict efficient set, strictly nondominated set, weakly non-dominated set.
- Shapes of Pareto fronts: Classification convex/concave and invariances
- 3. Identification of efficient sets based on contour plots and level sets

Pareto optimization: All Definitions

Efficient point: A point $x \in \mathcal{X}$ is called efficient, iff not exists $x' \in \mathcal{X}$ with $x' \prec x$

Efficient set \mathcal{X}_E : Set of all efficient points in \mathcal{X}

Nondominated point: A point $y\in \mathcal{Y}$ is called nondominated (or Pareto optimum), iff not exists $y'\in \mathcal{Y}$ with $y'\prec y$

Nondominated set or Pareto front \mathcal{Y}_N : The set of all nondominated points in \mathcal{Y} is called the Pareto front or nondominated set.

Weakly efficient and nondominated set

A point x is weakly efficient, if it there is no other point x' in \mathcal{X} with $f_1(x') < f_1(x) \wedge \ldots \wedge f_m(x') < f_m(x)$.

A point x is strictly efficient, if it there is no other point x' in \mathcal{X} with $x' \prec x$.

The weakly (strictly) efficient set \mathcal{X}_{wE} (\mathcal{X}_{sE}) is the set of all weakly (strictly) efficient points.

A point in $y \in \mathcal{Y}$ is called weakly non-dominated, iff there is no point in $y' \in \mathcal{Y}$ such that $y_1' < y_1 \wedge \ldots \wedge y_m' < y_m$.

The weakly non-dominated set \mathcal{Y}_{wN} is the set of all weakly nondominated solutions in \mathcal{Y} .

The weakly non-dominated set \mathcal{Y}_{wN} is the image of \mathcal{X}_{wE} under \mathbf{f} ,

that is $\mathcal{Y}_{wN} = \mathbf{f}(\mathcal{X}_{wE})$

Weak non-domination vs. non-domination

Consider the set $\mathcal{Y} = \{ \mathbf{y} \in \mathbb{R}^2 | 0 < y_1 < 1, 0 \le y_2 \le 1 \}$:

The non-dominated set \mathcal{Y}_N is empty, while \mathcal{Y}_{wN} is not.

Consider the closed square $\mathcal{Y} = \{\mathbf{y} \in \mathbb{R}^2 | 0 \leq y_1 \leq 1, 0 \leq y_2 \leq 1\}$

We have $\mathcal{Y}_N = \{0\}$ and $\mathcal{Y}_{wN} = \{y \in \mathcal{Y} | y_1 = 0 \lor y_2 = 0\}$

Convex and concave PF: precise definition

A Pareto front \mathcal{Y} is said to be convex, if $\mathcal{Y} \oplus \mathbb{R}^m_{\geq}$ is a convex set.

A Pareto front \mathcal{Y} is said to be concave if $\mathcal{Y} \oplus \mathbb{R}^m_{\leq}$ is a convex set.

... convex: monotonically decreasing, slope is increasing

... concave: " is decreasing (gets more negative)

Different shapes of Pareto fronts

Convex pareto front

Concave pareto front

PF that is neither convex nor concave. Disconnected Pareto front

Special points

Ideal vector: $y_k^I := \underline{y}_k := \min_{\mathbf{y} \in \mathcal{Y}} y_k$ Maximal point: $\overline{y}_k = \max_{\mathbf{y} \in \mathcal{Y}} y_k$

Nadir point: $y_k^N = \max_{\mathbf{y} \in \mathcal{Y}_N} y_k$

Computation of ideal point can be reduced to the solution of m single-objective optimization problems

The computation of the Nadir point is a very difficult problem and no efficient method for computing y^N is known for m > 2, yet.

f1

3-D Attainment surface, dominated space

3D Attainment surface: Useful for visualizing finite non-dominated sets in 3-D

^{&#}x27;Steps' into direction north to east.

3-D Attainment Surface, Continuous

The slope of the attainment surface is always in the direction north-northeast-east

Pareto front in three dimensons

0.2

Visualization of finite PF with 5 points.

3-D continuous Pareto fronts and approximations to them with 70 points.

Here maximization is considered: Dominance cones are the negative orthants

Optima seeking using contour plots

Contour plots help to localize optimizers of single-objective problems.

Often, they provide an intuition for reasoning about optima for higher dimensional functions.

A level set is informally defined as a set of arguments (variable settings) for which the function obtains the same value.

A contour is a connected part of a level set of a 2-dimensional function.

Finding efficient set using level sets (contours): Single objective optimization, linear case

Draw constraint boundaries $g_i(\mathbf{x}) = 0$ and contours for $f(\mathbf{c}) \equiv C$ for different constants C.

Hillclimbing in Multiobjective Landscapes

Orange Mountains $f_1(x_1, x_2) \rightarrow \max$

Blue Mountains $f_1(x_1, x_2) \rightarrow \max$

Finding efficient points using contour plots

Contour plots can sometimes be used to find efficient points in bi-objective optimization graphically.

Finding the efficient set in IR²: Example!!!!!

Indicate region that is dominated by $\hat{\mathbf{p}}_1$.

Finding the efficient set in IR²: Example

Take home messages

Important definitions in Pareto optimization are the (weakly, strictly) efficient set, Pareto front, ideal/nadir point, (feasible) decision/objective space

Pareto fronts can be convex or concave, connected or disconnected

Theorems on level sets can be used to identify (globally) efficient points analytically; they are useful for reasoning about the location of the efficient set;

Often optima occur at the constraint boundary; In particular, for linear problems this is the case. In 2-D countour plots can be used to identify efficient solutions at the boundary.

Additional Material

Level sets and curves

Level sets can be used to visualize \mathcal{X}_E , \mathcal{X}_{wE} and \mathcal{X}_{sE} for continuous spaces:

$$\mathcal{L}_{\leq}(f(\hat{\mathbf{x}})) = \{\mathbf{x} \in \mathcal{X} : f(\mathbf{x}) \leq f(\hat{\mathbf{x}})\} : \text{Level set}$$

$$\mathcal{L}_{=}(f(\hat{\mathbf{x}})) = \{\mathbf{x} \in \mathcal{X} : f(\mathbf{x}) = f(\hat{\mathbf{x}})\} : \text{Level curve}$$

$$\mathcal{L}_{<}(f(\hat{\mathbf{x}})) = \{\mathbf{x} \in \mathcal{X} : f(\mathbf{x}) < f(\hat{\mathbf{x}})\} : \text{Strict level set}$$

Draw the level set $\mathcal{L}_{\leq}(f(\mathbf{x}_0))$ for $f(\mathbf{x}) = |1 - \mathbf{x}|^2 = (x_1 - 1)^2 + (x_2 - 1)^2$ and $\mathbf{x}_0 = (1, 0)$ in the x_1, x_2 plane!

Finding Efficient Points by Level Sets: Example 1

Level sets can be used to determine whether $\hat{x} \in \mathcal{X}$ is (strictly, weakly) non-dominated or not.

The point \hat{x} cannot be nondominated! Why?

Answer: Dominating solutions are in the area where the two strict level sets intersect.

Finding Efficient Points by Level Sets: Example 2

Is \hat{x} efficient?

Answer: It is not possible to improve f_1 and f_2 at the same time relative to their values in $\hat{\mathbf{x}}$. Therefore, $\hat{\mathbf{x}}$ is efficient.

Level Sets

The point \hat{x} can only be efficient if its level sets intersect in level curves.

x is efficient
$$\Leftrightarrow \bigcap_{k=1}^m \mathcal{L}_{\leq}(f_k(\mathbf{x})) = \bigcap_{k=1}^m \mathcal{L}_{=}(f_k(\mathbf{x}))$$

The point \hat{x} can only be weakly efficient if its strict level sets do not intersect.

x is weakly efficient
$$\Leftrightarrow \bigcap_{k=1}^m \mathcal{L}_{<}(f_k(\mathbf{x})) = \emptyset$$

The point $\hat{\mathbf{x}}$ can only be strictly efficient if its level sets intersect in exactly one point.

x is strictly efficient
$$\Leftrightarrow \bigcap_{k=1}^m \mathcal{L}_{\leq}(f_k(\mathbf{x})) = \{\mathbf{x}\}$$

Proof: Theorem on efficient points

The point \hat{x} can only be efficient if its level sets intersect in level curves.

$$\hat{\mathbf{x}}$$
 is efficient $\Leftrightarrow \bigcap_{k=1}^m \mathcal{L}_{\leq}(f_k(\hat{x})) = \bigcap_{k=1}^m \mathcal{L}_{=}(f_k(\hat{x}))$

Proof:

 $\hat{\mathbf{x}}$ is efficient

 \Leftrightarrow there is no \mathbf{x} such that both $f_k(\mathbf{x}) \leq f_k(\hat{\mathbf{x}})$ for all $k = 1, \ldots, m$ and $f_k(\mathbf{x}) < f(\hat{\mathbf{x}})$ for at least one $k = 1, \ldots, m$

 \Leftrightarrow there is no $\mathbf{x} \in \mathcal{X}$ such that both $\mathbf{x} \in \cap_{k=1}^m \mathcal{L}_{\leq}(f(\hat{\mathbf{x}}))$ and $\mathbf{x} \in \mathcal{L}_{<}(f_j(\hat{\mathbf{x}}))$ for some j

$$\Leftrightarrow \bigcap_{k=1}^m \mathcal{L}_{\leq}(f_k(\widehat{x})) = \bigcap_{k=1}^m \mathcal{L}_{=}(f_k(\widehat{x}))$$