ECU1 Dynamic Design Ammar Hassan Abdelhakim

• Components State Machine

DIO State Machine

CAN State Machine

ADC State Machine

Speed Control State Machine

Door Control State Machine

Light Control State Machine

• ECU1 State Machine

ECU1 STATE MACHINE

• ECU1 Sequence Diagram

• ECU1 CPU LOAD

Assuming execution time for each task is 1ms

$$cpu_{load} = \frac{\sum task_execution_time}{hyperperiod}$$

$$hyperperiod = LCM(tasks'periods) = 20 ms$$

Task	Execution_time	Number of exec
Speed sensor	1ms	4
Door sensor	1ms	2
Switch sensor	1ms	1

$$cpu_{load} = \frac{1 \times 4 + 1 \times 2 + 1}{20} = 35\%$$

BUS LOAD

```
Assume the followings:

CAN frame number of bits = 125

CAN speed = 1MBit/s

Then

Bit time = 1 us

Frame time = 1us x 125 = 125 us

Total frames in 1 sec = 1 / 5ms + 1 / 10ms + 1 / 20ms

= 200 + 100 + 50 = 350 frames

Total busy time in bus in 1 sec = Total frames in 1 sec x

Frame time

= 350 x 125us=43.750ms

Bus load = (43.750 / 1000) x 100 = 4.375%
```