Soluciones inalámbricas Digi International - Electrocomponentes

Agenda

- Conectividad Cableado vs Inalámbrico
- Módulos RF Digi
- · Oferta DIGI International
- Trabajando con los módulos DIGI

XBee (900MHz)= 4 - 14Km @ 200 - 10Kbps XBee (2.4GHz)= 90m @ 250 Kbps Xbee PRO (2.4GHz)= 1600m @ 250 Kbps WiFi AdHoc (2.4GHz)= 100m @ 72Mbps

red	tanalasis	alcance	data nata	nodos	navlaad	tina da cabla	bussis ban m
rea	topologia	aicance	data rate	nodos	payload	tipo de cable	precio por m
Alámbricas							
RS232	punto-punto	15m	9600bps	1	sin límite	4p Belden 9504	u\$ 3/m
RS485	multipunto	12m/1200m	1000K/100Kbps	32	sin límite/ protocolo 1.5 p Belden 31		u\$ 4 /m
R5422	multipunto	1200m	100Kbps	32	sin límite/ protocolo	1.5 p Belden 3106A	u\$ 4 /m
CAN	multipunto	40/300/ 600/1000m	1000K/ 500K/ 100K/50Kbps	2048	64	2p Belden 3107A	u\$ 8 /m
ETHERNET	multipunto	100m	10/100/ 1000Mbps	1023 2K ST		STP Cat5 - Cat6	u\$ 3 -5 /m
MODBUS	multipunto	1000m	9600bps	32/247	252	1.5 p Belden 3106A	u\$ 4 /m
			Inalámb	oricas			
BLUETOOTH	pto-multipto	10m	1Mbps	8	2700		
WIFI	pto-multipto	100m	54Mbps	2007	2400		
802.15.4	pto-multipto	90/1600m	250Kbps	64000	1000 127		
ZIG BEE	mesh	120/3200m	250Kbps	64000	104		
DIGIMESH 2.4	mesh	90/1600m	250Kbps	500	250		
DIGIMESH 900	mesh	4/14km	200 /10Kbps	500	250		

Cable	Wireless			
El tipo de cable define el Ancho de banda	Hay tanto ancho de banda en el aire, que permite enviar mucha información o enviar información a muchas destinos, pero no al mismo tiempo.			
Layout del cableado puede ser complejo	Solo se debe tener en cuenta la distancia y los muros entre dispositivos			
Insertar nuevos dispositivos puede ser complejo	Inserción de dispositivos es simple y automático			
Punto a punto puede ser simple	Punto a punto es simple			
Multipunto con complejidad creciente en cableado y protocolo	Multipunto es simple			
Costo del cobre es significativo	El aire es GRATIS!!!!			
Velocidad de transmisión dependiente de la distancia y del cable	Velocidad de transmisión independiente de la frecuencia y la distancia			
Cambio de red implica cambio de cable y de hardware	Cambio de red implica cambio de módulos			
La falla en un nodo puede significar la pérdida de comunicación en todo el sistema	La falla de un nodo no afecta la comunicación en el sistema			

Módulos RF Digi International

Módulos XBee

- · Formato montaje superficial o enchufable
- Múltiples protocolos mismo formato
 - Protocolo DigiMesh
 - Protocolo punto a punto/multipunto
 - Protocolo 802.15.4
 - Protocolo ZigBee
 - Protocolo WiFi
- · Misma conexión (pin a pin compatible)
- · Intercambiabilidad entre módulos
- Cambio de protocolo por cambio de módulos
- · GPIO digitales, PWM y Entradas analógicas disponibles
- Múltiples tipos de Antenas

Características Módulo Xbee SMT

- Protocolo DigiMesh 865/868 MHz
- Protocolo ZigBee
- Protocolo WiFi
- Mismas características que su equivalente Xbee enchufable
- Mismas conexiones que su equivalente Xbee enchufable
- Este tipo de encapsulado incorpora una interfaz SPI

Tipos de antenas

Módulo con conector a antena externa RPSMA

Módulo con antena integrada "wire"
Radiación omnidireccional si está recta
y perpendicular al modulo

Módulo con conector a antena externa U.FL: se utiliza para montar la antena fuera del gabinete que contiene al módulo

Módulo con antena integrada en PCB

Antenas Módulo Xbee SMT

Antena U.FL

 Antena integrada al PCB, se debe seguir sugerencias de montaje

 Con conexión para conector de antena, se debe seguir sugerencias para el diseño del PCB

Interfaz a MCU

- Dispone de una interfaz asincrónica serie (y SPI en módulos WiFi y SMT)
- Puede conectarse con cualquier MCU
- Se comunica con comandos AT
- · Se comunica con comandos API
- MCU puede usar los recursos de I/O

Comunicación con comandos AT

Comunicación con comandos API

Comunicación con comandos AT

Pros

- · Simple
- Transparente, se recibe lo que se envía

Contras

- Se configura usando comandos AT
- Se debe entrar en modo comando para cambiar destino con un comando AT
- · No se indica en la recepción, el origen
- Modo comando es lento y tedioso

Comunicación con comandos API

Pros

- Simple cambio de destino
- · Hay indicación de origen y destino de un dato
- Datos pueden contener comandos AT
- Permite configurar remoto
- Permite monitorear remoto

Contras

- Se debe armar la trama para transmitir
- · Se debe leer toda la trama para llegar al dato

Modo bajo consumo - Sleep

- Es el modo de funcionamiento en el cual el módulo permanece inactivo. Solo una pequeña parte del módulo queda funcionando para sacarlo de este modo.
- el consumo es el especificado como Power Down y es el mínimo consumo del módulo.
- Es posible entrar a este modo a través de una entrada (puerto específico o por interfaz serie) o cíclicamente configurando con comandos AT
- el módulo no puede recibir o transmitir datos. Dependiendo de los protocolos, alguno o todos los módulos pueden trabajar en SLEEP. Solo aplicable a End Devices
- · Coordinadores y routers no pueden trabajar en modo Sleep.

Seguridad

- Se puede agregar seguridad a las comunicaciones encriptando la información
- Se utiliza encriptación 128AES
- Las tramas son desencriptadas y encriptadas nuevamente en cada nodo (en los saltos, en los routers y coordinadores)
- Sobre esta encriptación se puede aumentar la seguridad agregando nuevas claves (ZigBee)
- En WiFi se aplican los standards usados en la norma 802.11

Topologías

Topologías con Protocolos estandarizados

Red ZigBee - Mesh

Topologías con Protocolos propietarios

Punto-Punto

Comunicación con todos dentro del alcance:
Ej: 1 con 2, 3 con 4 u otra combinación

Punto-Multipunto

Comunicación 1 con todos dentro del alcance:
Usando broadcast

Mesh

Comunicación 5-1 fuera del alcance:

Con saltos 5-4, 4-1

Con saltos 5-4, 4-2, 2-1

Con saltos 5-4, 4-3, 3-2, 2-1

Etc....

Oferta módulos XBee

Comparativa WiFi - otros protocolos

Infraestructura instalada (red WiFi)
Alcance hasta 120m
Transferencia de datos hasta 65MBs
No soporta saltos (Mesh)

No require Infraestructura instalada Alcance hasta 15km Transferencia de datos hasta 250KBs Puede soportar saltos (Mesh)

Módulos Xbee Wi Fi

Aplicaciones para WiFi

Características XBee WiFi

Performance	WiFi (S6)	WiFi (S6B)		
Indoor/Urban Range	120m	120m		
standard	802.11b/g/n	802.11b/g/n		
Transient Power Out	802.11b: 16 dBm 802.11g: 16 dBm @ 6, 9, 12, 18 Mbps; 15 dBm @ 24, 36 Mbps; 14 dBm @ 48, 54 Mbps 802.11n: 16 dBm @ 6.5, 13, 19.5, 26 Mbps; 15 dBm @ 39, 52 Mbps; 14 dBm @ 58.5, 65 Mbps	Up to 16 dBm (40mW)		
RF data rate	802.11b: 1, 2, 5.5, 11 Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps 802.11n (<10% PER): -72 dBm @ 65 Mbps	802.11b: 1, 2, 5.5, 11 Mbps 802.11g: 6, 9, 12, 18, 24, 36, 48, 54 Mbps 802.11n: 6.5, 13, 19.5, 26, 39, 52, 58.5, 65 Mbps 802.11n (<10% PER): -72 dBm @ 65 Mbps		
Receive Sensitivity	802.11b (<8% PER): -97 dBm @ 1 Mbps; -93 dBm @ 2 Mbps; -89 dBm @ 11 Mbps 802.11g (<10% PER): -91 dBm @ 6 Mbps; -75 dBm @ 54 Mbps 802.11n (<10% PER): -72 dBm @ 65 Mbps	-93 to -71 dbm		
Operating Icc (TX)	260 m <i>A</i>	Up to 309 mA		
Operating Icc (RX)	140 m <i>A</i>	100 mA		
Icc Stand By	2uA	<6 u A		
Antena Option chip/wire/RPSMA/ U.FL		Through-Hole: PCB (Embedded), U.FL, RPSMA, Integrated Wire SMT: PCB (Embedded), U.FL, RF Pad		
Encryption	WPA-PSK and WPA2-PSK	WPA-PSK and WPA2-PSK		
<i>G</i> PIO	10	10		
Entradas Analógicas	4 (12b)	4 (12b)		

www.electrocomponentes.com

Oferta XBee para otros protocolos

Redes simples Alcance de la red limitada por el alcance del módulo Redes complejas Mayor alcance debido a la característica de la red Aplicaciones extendidas Indoor y Outdoor

Módulos XBee Punto-Multipunto

XBee Punto-Multipunto

Mayor alcance Banda Mundial Menor consumo Mayor tasa transferencia de datos Menor interferencia Antena mas pequeña

Comparativa 900MHz-2.4GHz

Soluciones SubGhz.	2.4 GHz			
Fortalezas				
Rango de comunicación- alcance de kilómetros fácilmente logrados.	Cobertura mundial - Un dispositivo para la mayoría de los mercados.			
Consumo de energía reducido- Vida útil de varios años.	Pequeño tamaño de la antena - Una antena para 2.4Ghz tiene 1/3 del tamaño de una antena para 900Mhz.			
Baja interferencia - Bandas utilizadas para aplicaciones propietarias de bajo ciclo de actividad.	Alta tasa de transmisión de datos - Mayores que 1Mbps.			
Debilidades				
Tamaño de antena - Una antena para una frecuencia de 433Mhz es de aprox. 17cm	Rango reducido - Pérdidas en el medio ambiente de aprox. 9dB mas que a 900Mhz.			
Baja tasa de transferencia de datos - Debido a la limitación del ancho de banda.	Aumento del consumo- Debido a la reducida eficiencia de los circuitos y complejidad del receptor.			
Cobertura - Casi mundial	Espectro con mucha polución - WIFI, Bluetooth, hornos microondas			

XBee Punto-Multipunto Propietario

Comparativa Punto Multipunto 900 MHz

Performance	PRO 900	PRO 868	PRO 900HP	XSC	PRO XSC	865/868LP SMT
Indoor/Urban Range	140 m	550 m	610 m	370 m	610 m	150 m
outdoor LoS	3 / 10 km	40 km	14 / 45 km	9,6 km	14 / 45 km	4 km
Transient Power Out	17dbm (50mW)	0 dbm (1mw) a 25dbm (315mw)	24dbm (250mW)	20dbm (100mW)	24dbm (250mW)	12 dbm (16mW)
RF data rate	156 kbps	24 kbps	200 kbps	10 kbps	10 - 20 kbps	hi data rate: 80 kbps lo data rate: 10 kbps
Receive Sensitivity	-100dbm	-112dbm	-101dbm	-106dbm	109dbm	hi data rate: -101dbm lo data rate: -106dbm
Operating Icc (TX)	210m <i>A</i>	800mA	230mA	265mA	215mA	48mA
Operating Icc (RX)	80m <i>A</i>	65m <i>A</i>	44mA	65mA	26mA	27mA
Icc Stand By	60u <i>A</i>	55u <i>A</i>	3uA	45uA	2,5uA	1,7uA
Antena Option	wire/RPSMA/ U.FL	wire/RPSMA/ U.FL	wire/RPSMA/ U.FL	wire/RPSMA/ U.FL	wire/RPSMA/ U.FL	U.FL/ RF pad/ PCB
Supported Network Topologies	Mesh/ point2point/ multipoint/ peer2peer	point2point/ multipoint/ peer2peer	Mesh/ point2point/ multipoint/ peer2peer/ repeater	Mesh/ point2point/ multipoint/ peer2peer	Mesh/ point2point/ multipoint/ peer2peer	Mesh/ point2point/ multipoint/ peer2peer
Encryption	128 AES	128 AES	128 AES	128 AES	128 AES	128 AES
GPIO	15	13	15	15	15	13
Entradas Analógicas	4 (10b)	6 (10b)	4 (10b)	4 (10b)	4 (10b)	4 (10b)

PRO 900 no recomendado para nuevos diseños. Usar PRO 900 HP

XBee 900 MHz programable

- Modelo XBee Pro 900HP y XBee Pro XSC
- MCU Freescale MC9508QE32
- 32KB Flash, 2KB RAM, FClk: 50MHz
- · Herramienta de desarrollo Codewarrior V10
- Programación vía BDM, UBDM, EBDM
- 10 GPIO (15 GPIO en SMT), 4 entradas analógicas (10bit), 1 PWM, puerto serial (asincrónico)

XBee Punto-Multipunto 802.15.4

Comparativa punto multipunto 2.4GHz

Performance	802.15.4	802.15.4 PRO
Indoor/Urban Range	30 m	90 m
outdoor LoS	90 m	1600 m
Transient Power Out	Odbm (1mW)	18dbm (63mW)
RF data rate	250 kbps	250 kbps
Receive Sensitivity	-92dbm	-100dbm
Operating Icc (TX)	45m <i>A</i>	215m <i>A</i>
Operating Icc (RX)	50m <i>A</i>	55m <i>A</i>
Icc Stand By	10u <i>A</i>	10u <i>A</i>
Antena Option	chip/wire/RPSMA/U.FL	chip/wire/RPSMA/U.FL
Supported Network Topologies	point2point/ multipoint/ peer2peer/ repeater	point2point/ multipoint/ peer2peer/ repeater
Encryption	128 AES	128 AES
GPIO	15	15
Entradas Analógicas	4 (10b)	4 (10b)

Xbee ZigBee y Mesh

Protocolo estandar Comunica con otras marcas Precisa un coordinador o maestro Bajo consumo solo en el end device Protocolo propietario Todos tienen la misma jerarquía Todos pueden estar en bajo consumo

Módulos XBee ZigBee

Xbee ZigBee

Comparativa Zig Bee

Performance	ZigBee	ZigBee Pro /Programmable	ZigBee SMT/ Programmable	ZigBee Pro SMT/ Programmable
Indoor/Urban Range	40 m	90 m	60 m	90 m
outdoor LoS	120 m	3200/1500 m	1200 m	3200 m
Transient Power Out	3dbm (2mW)	18dbm (63mW)	8dbm (6.3mW)	18dbm (63mW)
RF data rate	250 kbps	250 kbps	250 kbps	250 kbps
Receive Sensitivity	-96dbm	-102dbm	-102dbm	-102dbm
Operating Icc (TX)	45m <i>A</i>	220m <i>A</i>	45m <i>A</i>	45m <i>A</i>
Operating Icc (RX)	40m <i>A</i>	62m <i>A</i>	31m <i>A</i>	45m <i>A</i>
Icc Stand By	1uA	3,5u <i>A</i>	1,5u <i>A</i>	1,5u <i>A</i>
Antena Option	chip/wire/RPSMA/ U.FL	chip/wire/RPSMA/ U.FL	PCB/RF PAD/ U.FI	PCB/RF PAD/ U.FI
Supported Network Topologies	Mesh/ point2point/ multipoint/ peer2peer	Mesh/ point2point/ multipoint/ peer2peer	Mesh/ point2point/ multipoint/ peer2peer	Mesh/ point2point/ multipoint/ peer2peer
Encryption	128 AES	128 AES	128 AES	128 AES
<i>G</i> PIO	10	10	15	15
Entradas Analógicas	4 (10b)	4 (10b)	4 (10b)	4 (10b)

XBee ZigBee programable

- MCU Freescale MC9508QE32
- 32KB Flash, 2KB RAM, FClk: 50MHz
- Herramienta de desarrollo Codewarrior V10
- Programación vía BDM, UBDM, EBDM
- 10 GPIO (15 GPIO en SMT), 4 entradas analógicas (10bit), 1 PWM, puerto serial (asincrónico)
- Posee librerías y ejemplos

Módulo XBee DigiMesh

Módulo XBee DigiMesh

Menor consumo
Antena mas grande
Mayor alcance

Antena mas pequeña Frecuencia con mayor polución

Módulo XBee DigiMesh 2.4GHz

Comparativas DigiMesh 2.4GHz

Performance	DigiMesh	DigiMesh Pro
Indoor/Urban Range	30 m	90 m
outdoor LoS	90 m	1600 m
Transient Power Out	Odbm (1mW)	18dbm (63mW)
RF data rate	250 kbps	250 kbps
Receive Sensitivity	-92dbm	-100dbm
Operating Icc (TX)	45m <i>A</i>	250m <i>A</i>
Operating Icc (RX)	50m <i>A</i>	55m <i>A</i>
Icc Stand By	50u <i>A</i>	50u <i>A</i>
Antena Option	chip/wire/RPSMA/ U.FL	chip/wire/RPSMA/ U.FL
Supported Network Topologies	Mesh/ point2point/ multipoint/ peer2peer	Mesh/ point2point/ multipoint/ peer2peer
Encryption	128 AES	128 AES
<i>G</i> PIO	15	15
Entradas Analógicas	4 (10b)	4 (10b)

Módulo XBee DigiMesh 900MHz

Características Xbee DigiMesh 900Mhz

Performance	PRO 900	PRO 900HP / Prog	865/868LP SMT
Indoor/Urban Range	550 m	610 m	150 m
outdoor LoS	40 km	14 / 45 km	4km
Transient Power Out	0 dbm (1mw) a 25dbm (315mw)	24dbm (250mW)	12 dbm (16mW)
RF data rate	24 kbps	200 kbps	hi data rate: 80 kbps lo data rate: 10 kbps
Receive Sensitivity	-112dbm	-101dbm	hi data rate: -101dbm lo data rate: -106dbm
Operating Icc (TX)	800m <i>A</i>	230mA	62mA
Operating Icc (RX)	65m <i>A</i>	44mA	41mA
Icc Stand By	55u A	3uA	2,3mA
Antena Option	wire/RPSMA/ U.FL	wire/RPSMA/U.FL	U.FL/ RF pad/ PCB
Supported Network Topologies	Mesh/ point2point/ multipoint/ peer2peer	Mesh/ point2point/ multipoint/ peer2peer/ repeater	Mesh/ point2point/ multipoint/ peer2peer
Encryption	128 AES	128 AES	128 AES
<i>G</i> PIO	15	15	13
Entradas Analógicas	4 (10b)	4 (10b)	4 (10b)

PRO 900 no recomendado para nuevos diseños. Usar PRO 900 HP

				XBee® Fa	mily Fe	ature	s Compar	ison			
Protocol	Product	Certified Regions	Frequency	Positio ning	RF Line of Sight Range	Transmit Power	Receiver Sensitivity	Form Factor	RF Data Rate	Programmable Variant	Hard ware
IHH 802.11	XBee" Wi-Fi	US, CA, EU, AU, JP	2.4 GHz	Low-power serial to Wi-Fi b/g/n	N/A	+16 dBm	-93 to -71 d8m	Through- hole, SHT	1 to 72 Mbps	N/A	568
IEEE 802,15.4	XBer 1802.15.4	US, CA, EU, AU, BR, JP	2.4 GHz	Low-cost, low-power multipoint	300 ft / 90 m	0 d8m	-92 dBm		250 Kbps	N/A	51
$\Delta \Delta$	XBee-PRO* 802.15.4	US, CA, AU, BR	2.4 GHz	Extended-range multipoint	1 mile / 1.6 km	+18 dBm	-100 dBm	Through- hole	250 Kbps	N/A	51
Δ	X000-PRU- 802.15.A	US, CA, EU, AU, BR, JP	2.4 GHz	International/J" variant	2500 ft / 1 km	+10 dBm	-100 dBm		250 Kbps	N/A	Si
Multipoint Proprietary	XBee-PRO* XSC	US, CA, AU	900 MHz	Long-range multipoint for North America	9 m iles / 14,5 km	+24 d Bm	-107 to -109 dBm	Through-	10 Kbps or 20 Kbps	N/A	538
\Rightarrow	X8ee-PR0 868	Ð	868 MHz	Long-range multipoint for Europe	25 miles / 40 km	+25 d Bm	-112 dBm	hole	24 Kbps	N/A	55
	XBee® ZB SMT	US, CA, EU, AU, BR, JP	2.4 GHz	Surface mount, low-cost, low-power, ZigBee PRO Feature Set, EM357	4000 ft / 1.2 km	+8 d8m	-102 dBm	03:5	250 Kbps	32 KB Flash / 2 KB RAM	S2C
Zig8ee® PRO	XBee-PRO* Z8 SMT	US, CA, AU, BR	2,4 GHz	Extended-range, surface mount, ZigBee PRO Feature Set, EM357	2 mles / 3.2 km	+18 dBm	-101 dBm	SMT	250 Kbps	32 KB Flash / 2 KB RAM	S2C
Feature Set	X8ee* Z0	US, CA, EU; AU, BR, JP	2,4 GHz	Through-hole, low-cost, low-power, ZigBee PRO Feature Set, EM250	400 ft / 120 m	+3 dBm	-96 d8m		250 Kbps	N/A	52
$\rightarrow t \leftarrow$		US, CA, AU, BR	2.4 GHz	Extended-range, through-hole, ZigBee PRO Feature Set, EM250	2 mles / 3.2 km	+18 dBm	-102 dBm	Through- hole	250 Kbps	32 KB Flash / 2 KB RAM	528
	XBee-PRO® ZB	US, CA, EU, AU, BR, JP	2.4 GHz	International/'3" variant	5000 ft / 1.5 km	+10 d Bm	-102 dBm		250 Kbps	32 KB Flash / 2 KB RAM	S28
ZigBee ⁿ Smart Energy	XBee* SE	US, CA, EU, AU, BR, JP	2.4 GHz	Low-cost, low-power. ZigBee PRO Feature Set	400 ft / 120 m	+3 dBm	-96 dBm		250 Kbps	N/A	52
Public Profile		US, CA, AU, BR	2.4 GHz	Extended-sange ZigBee PRO Feature Set	2 mles / 3.2 km	+18 dBm	-102 dBm	Through- hole	250 Kbps	N/A	528
714.	XBee-PRO* SE	US, CA, EU, AU, BR, JP	2.4 GHz	International/'3" variant	5000 ft / 1.5 km	+10 d 8m	-102 dBm		250 Kbps	N/A	528
	XBee-PRO* 900HP	US, CA, AU, BR	900 MHz	Extended-range peer-to-peer mesh, sleeping routers	9 miles / 14.5 km	+24 dBm	-101 to -110 dBm	Through- hole	10 Kbps or 200 Kbps	32 KB Flash / 2 KB RAM	538
Digi Mesh ^a Proprietary	X0ee* 865/868LP	India, EU	865 MHz or 868 MHz	Low-power RF module for India (865 MHz) or Europe (868 MHz) with DigiMesh	2.5 miles / 4 km	+12 d Bm	-101 to -106 dBm	SMT	10 Kbps or 80 Kbps	32 KB Flash / 2 KB RAM	58
	XBee" DigiMesh" 2.4	US, CA, EU, AU, BR, JP	2.4 GHz	Low-cost, Low-power peer-to-peer mesh, sleeping routers	300 ft / 90 m	0 dBm	-92 d8m		250 Kbps	N/A	51
	XBee-PRO*	US, CA, AU, BR	2.4 GHz	Extended-range peer-to-peer mesh, sleeping routers	1 mile / 1.6 km	*18 dBm	-100 dBm	Through- hole	250 Kbps	N/A	51
2 2 2	Digi Mesh * 2.4	US, CA, EU, AU, BR, JP	2.4 GHz	International/'3" variant	3200 ft / 1 les	+10 dBm	-100 dlim		250 Kbps	N/A	51

Otros Modulos Digi

Módulos XCite - XStream

· Tienen mayor alcance - Están discontinuados - No ofrecen GPIO

Performance	Xcite	Xstream			
Frequency	900 MHz	900 MHz	2.4 GHz		
Indoor/Urban Range	90 m	450 m	180 m		
outdoor LoS	300 m	32 km	16 km		
Transient Power Out	6dbm (4mW)	20dbm (100mW)	17dbm (50mW)		
RF data rate [kbps]	38400 bps	19200 bps	19200 bps		
Receive Sensitivity	-108dbm	-110dbm	-105dbm		
Supply Voltage	5Vma×	5Vma×	5Vmax		
Operating Icc (TX)	55m <i>A</i>	140m <i>A</i>	150m <i>A</i>		
Operating Icc (RX)	55m <i>A</i>	50m <i>A</i>	80m <i>A</i>		
Icc Stand By	20u <i>A</i>	26uA	26u <i>A</i>		
Antena Option	RPSMA	internal or RPSMA-MMCX	internal or RPSMA-MMCX		
Supported Network Topologies	point2point/ multipoint/ peer2peer	point2point/ multipoint/ peer2peer	point2point/ multipoint/ peer2peer		
Re-design	Xbee Pro XSC	Xbee Pro XSC	Xbee Pro XSC		

Características Módulo XTend

Potencia de transmisión: 1 mW a 1 Watt (0 - 30 dBm), seleccionable por programa

Alcance Indoor/Urban: hasta 900 m

Alcance exterior LoS: hasta 64 km

Velocidad de transferencia de RF: 9,6 a 115,2 Kbps

Sensibilidad del receptor: -110 dBm (@ 9600 bps)

Encriptación: 256-bit AES

Topología de red: DigiMesh, peer-to-peer, point-to-point, point-to-

multipoint y repetidor

Manejo de error: por retransmisión y reconocimiento, múltiples

transmisiones

Interfaz Serie: UART: 3V - 5V

Herramientas

Placa de desarrollo XBee

RS-232

X-CTU: Herramienta de testeo y configuración

- · Es una aplicación basada en Windows
- Interactúa con el firmware de los módulos Digi RF

- Es gratuito. Se puede descargar de la pagina de Digi International (www.digi.com)
- Provee una interfaz gráfica intuitiva de fácil uso
- Permite ejecutar varios X-CTUs simultáneamente de manera de asociar cada X-CTU con un módulo en la red

X-CTU: Como herramienta de testeo

Permite testear en los módulos de RF

- El alcance
- Test de conexión
- · La detección otros módulos en la red
- · Leer entradas del módulo
- Ofrece una pantalla terminal para comunicarse con el módulo y configurarlo usando los comandos y paquetes de datos que se deberían enviar desde un MCU
- · El funcionamiento de una red de varios módulos
- Enviar y recibir datos entre módulos en una red

X-CTU: Como herramienta de configuración

Permite configurar en los módulos de RF

- Descargar la configuración
- · Cambiar la función
- · Leer, escribir y actualizar el firmware
- · Leer y modificar paramétros funcionales
- · Guardar y restaurar configuración
- · Configurar módulos de manera remota

Formato API

La trama se puede conformar usando DIGI API Frame Maker (utilidad online en

ftp1.digi.com/support/utilities/digi_apiframes2.htm)

ID Long cmd Datos Chequeo

ID (1 byte): Inicio de trama, 7E (hexadecimal)
Long (2 bytes): cantidad de bytes de Datos (excluye ID y Long)

cmd (1 byte): parte del bloque Datos, contiene el comando API

Chequeo (1 byte): complemento a 1 del resultado de la suma de todos los bytes de Datos (incluye cmd)

Formato API: DIGI API Frame Maker

Al abrir el programa aparece este cuadro, se debe llenar los campo con los valores deseados

Trabajando con los Modulos

Comunicación por comandos AT

Se puede configurar

- · Parámetros de RED y direccionamiento
- · Interfaz de RF
- Parámetros de seguridad
- · Parámetros de la interfaz serial
- Parámetros de modo bajo consumo (Sleep)
- Configurar GPIO (entradas digitales, analógicas, salidas y PWM)
- · Muestro y detección de cambios de entradas
- · Diagnóstico

Algunos comandos AT para RED y direccionamiento

- · ID: fija identificación de la Red
- · CH: muestra el canal usado
- DH/DL: fija dirección del remoto a trasmitir
- · SH/SL: muestra la dirección del módulo
- · JV: en el encendido busca al coordinador
- ND: busca los módulos conectados
- CI=12, modo loopback

Algunos comandos AT para interfaz de RF

· PL: nivel de potencia

PM: Opción de modo de potencia

Algunos comandos AT para Seguridad

- EE: habilita la encriptación de datos
- · EO: Opción de encriptación

Algunos comandos AT para Configurar interfaz serial

- BD: Baudrate
- NB: Paridad
- SB: Stop bits
- · AP: habilitar modo API
- · AO: configuración del modo API
- · FT: control de flujo
- RO: tiempo de paquetización

Algunos comandos AT para modo bajo consumo (Sleep)

- SM: modo de bajo consumo
- · SN: extiende el tiempo en modo SLEEP
- SO: opciones de modo SLEEP
- · SP: tiempo en modo SLEEP
- · ST: tiempo de modo activo luego de modo SLEEP

Algunos comandos AT para GPIO

- Dn: configura la puerta n como entrada digital, analógica, salida (depende de la puerta)
- Pn: configura la puerta n como entrada digital, salida o PWM (depende de la puerta)
- PR: habilita pullups internos
- · LT: tiempo de parpadeo del LED asociado
- · RP: periodo del PWM indicador de nivel del señal

Algunos comandos AT para Muestro y detección de cambios de entradas

- · IR: tiempo de muestreo
- · IC: detección de cambio
- · IS: pedido de una muestra
- V+: establece valor de alimentación por debajo del mismo se envía una transmisión de indicación

Algunos comandos AT para Diagnóstico

- · VR: versión de firmware
- HV: versión de hardware
- · DB: nivel de señal de la última recepción
- · %V: valor de la tensión de alimentación

Comunicación formato API

Formato API

Solo es aplicable a módulos con el firmware de modo API. En este modo se puede trabajar con comandos no definidos dentro de la lista de comandos AT como enviar/recibir datos a/de un remoto con indicación de la dirección del emisor y del receptor.

Permite incluir comandos AT dentro de la trama Datos para el resto de las funciones.

En los módulos WiFi, se puede trabajar a través de la interfaz SPI (no soporta comandos AT)

Formato API

La trama se puede conformar usando DIGI API Frame Maker (utilidad online en

ftp1.digi.com/support/utilities/digi_apiframes2.htm)

ID Long cmd Datos Chequeo

ID (1 byte): Inicio de trama, 7E (hexadecimal)
Long (2 bytes): cantidad de bytes de Datos (excluye ID y Long)

cmd (1 byte): parte del bloque Datos, contiene el comando API

Chequeo (1 byte): complemento a 1 del resultado de la suma de todos los bytes de Datos (incluye cmd)

Formato API: DIGI API Frame Maker

Al abrir el programa aparece este cuadro, se debe llenar los campo con los valores deseados

Formato API: DIGI API Frame Maker

Se elije el comando (1), el protocolo (2), se ingresa el comando AT (3) y los datos asociados al mismo (4 y 5). Una vez realizado esto se pulsa sobre Build Packet (6)

Formato API: DIGI API Frame Maker

Calcula la longitud de los datos, el checksum y muestra el frame en formato API

Formato API con comandos AT

En el envío de comandos AT al módulo, en el área de datos se incluye la estructura del comando AT En el ejemplo se configura el módulo para trabajar en modo Sleep (SM=4). Se espera respuesta de comando. En la respuesta, Datos = 0 indica OK

Configurar SM = 4

ID	Long	Cmd API	ID.frame	Cmd AT	Datos	Chequeo
7E	0005	80	01	53 4D	04	52

Respuesta

ID	Long	Cmd API	ID.frame	Cmd AT	Datos	Chequeo
7E	0005	88	01	53 4D	00	52

Formato API: Funcionamiento Remoto

Formato API: Funcionamiento Remoto

El formato API permite acceder de manera remota a cualquier dispositivo de la red. Se utilizan con comandos AT en la trama. Esto permite no solo configurar el remoto sino también leer entradas analógicas y digitales, escribir salidas y los PWM. Esto posibilita trabajar los remotos sin necesidad de tener un MCU. A continuación, configurar SM = 4

Configurar S	M = 4
--------------	-------

• • • • • • • • • • • • • • • • • • • •	.,	• • • • • • • • • • • • • • • • • • • •							
ID	Long	Cmd API	ID	Add (64b)	Add (16b)	Cmd Opt	Cmd AT	Datos	Chequeo
7E	0010	17	01	0013A2004079BE8C	40E9	02	53 4D	04	60
Res	puesta								
ID	Long	Cmd API	ID	Add (64b)	Add (16b)	Cmd AT	Datos Cl	nequeo	
7E	000F	97	01	0013A2004079BE8C	40E9	53 4D	00	E6	

X-CTU: Herramienta de testeo y configuración

- · Es una aplicación basada en Windows
- Interactúa con el firmware de los módulos Digi RF

- Es gratuito. Se puede descargar de la pagina de Digi International (<u>www.digi.com</u>)
- Provee una interfaz gráfica intuitiva de fácil uso
- Permite ejecutar varios X-CTUs simultáneamente de manera de asociar cada X-CTU con un módulo en la red

X-CTU: conectando con el módulo RF

Se puede abrir un X-CTU para cada módulo conectado a la PC. Se selecciona un puerto de comunicaciones. Si hay un módulo, este responde confirmando la comunicación con el programa.

XCTU: descargando configuración

X-CTU: Test de alcance y nivel de señal

Se puede medir el alcance usando dos módulos y ejecutando el X-CTU sobre uno de ellos, escogiendo la pestaña de Range Test. En el módulo remoto hay que ponerlo en loop-back (bridged)

X-CTU: Testeando una red Mesh

- · Iniciar el test de alcance
- Alejar el módulo remoto (jumper en loopback)
- Cuando se pierde la comunicación, insertar un nuevo módulo entre ambos módulos
- Al restablecerse la comunicación, el módulo intercalado funcionará como repetidor ampliando el alcance de trabajo

X-CTU: test de conexión

- Se puede realizar un test de conexión en una red
- Se cambia la identificación del cluster a modo loopback (CI :12)
- Luego, lo que el módulo transmite y es recibido inmediatamente

X-CTU: descubriendo Módulos

- Se puede descubrir módulos en una red usando el comando AT ND
- La información recibida está vinculada a la dirección de los módulos, la función, etc.

X-CTU: descubriendo nodos

X-CTU: descubriendo nodos

El módulo que se emplea para descubrir nodos debe estar en modo API (1).

- Con la pestaña de Modem Configuration seleccionada (2), clickear sobre Remote Configuration (3).
- Se abre una nueva ventana. En esta se debe abrir el puerto de comunicaciones (4).
- Una vez abierto, iniciar una acción de descubrimiento de Nodos (5).
- Luego de unos segundos se visualiza una lista con los nodos encontados (6).
- Se puede agregar nodos manualmente seleccionando desde Node List la opción Add (7).
- En la lista una nueva línea aparece, en esta se debe ingresar la dirección de 64 bits de módulo (8).
- Se inicia una nueva tarea de descubrimiento. Al finalizar, la lista es actualizada con el nuevo módulo adicionado visualizando su dirección de 16 bits (9)

X-CTU: descubriendo nodos

Nodos descubiertos (6)

Se ingresa la dirección (8)

Descubrir nodos nuevamente (9)

X-CTU: leyendo las entradas

Con una serie de comandos AT se puede:

- Habilitar GPIO como entradas digitales o analógicas
- Pedir una muestra para leer el estado de las mismas

X-CTU: comunicación transparente

X-CTU: comunicación transparente

- Esta comunicación es posible trabajando con módulos con roles configurados en su versión AT (Coordinador AT, Router AT, etc.)
- Lo que se escribe en un módulo (en azul) se recibe en otros módulos de la red apareciendo en rojo

X-CTU: Comunicación UNICAST

X-CTU: Comunicación UNICAST

- Determinar la dirección del módulo remoto (desde la pantalla de configuración o con comandos ATSH/SL)
- Cambiar la dirección destino en el coordinador escribiendo los valores SH/SL del remoto en DH/DL del coordinador (desde la pantalla de configuración o con comandos AT)

XCTU: descargando configuración

Se puede descargar los datos y parámetros del módulo. Como resultado, se obtiene el modelo, la función y la versión de firmware. Y a continuación como está parametrizado el módulo. En el siguiente ejemplo se pueden ver dos módulos con distintos parámetros relativos a su función.

XCTU: descargando configuración

X-CTU: leyendo configuración de un nodo

X-CTU: leyendo configuración de un nodo

Se puede leer y/o escribir la configuración de un nodo vía aire

- En la lista de nodos descubiertos seleccionar un nodo (1)
- En la ventana de Modem Configuration clickear sobre el botón de Read (2)
- Luego de la lectura se visualiza los parámetros del nodo (3)

X-CTU: cambio de función

X-CTU: cambio de función

- el cambio de función es aplicable a cualquier módulo
- luego de leer el rol del módulo con el botón de Read, se cambia el rol desde el panel central, en cada rol escogido se muestran los parámetros de fabrica para esa función, pero el módulo aún no asume la nueva función hasta que no se aplica. Esto se hace con el botón Write

X-CTU: actualización de firmware

Se actualiza el firmware del módulo RF pudiendo descargar el archivo desde internet o desde un archivo zip almacenado en el disco duro

XCTU: parametrizando al módulo

Se puede configurar el módulo, seleccionando el parámetro. Para que esto tenga efecto se debe transferir al módulo los cambios. Cada vez que se lea el módulo, se obtiene la última configuración almacenada.

XCTU: almacenando una configuración

Una configuración específica se puede almacenar como archivo y descargarla en otros módulos

X-CTU: restauración parámetros de fábrica

La configuración de fábrica para esa función se restablece con Restore y luego leyendo nuevamente con Read.

- Configurar Coordinador y Router (remoto) en modo API (y luego grabar)
- En el remoto, configurar un GPIO como entrada (3) y configurar "detectar cambio" escribiendo la máscara de bits de la entrada configurada (desde la pestaña Modem Configuration del X-CTU).
- · Grabar luego de cambiar la configuración
- El remoto transmitirá cuando detecte el cambio de la entrada

En el ejemplo, a continuación, se va a realizar un pedido de estado de las entradas a un módulo remoto usando comandos AT.

- 1- desde el DIGI API Frame Maker se arma la trama ingresando la función API (1), el protocolo (2), la dirección en 64 bits (3) y 16 bits (4) del módulo remoto y el comando AT (5).
- 2- se calcula la trama (cantidad de bytes y checksum) (6). La trama calculada (7) se debe copiar al X-CTU.
- 3- en la pantalla Terminal (8) del X-CTU se configura para ver HEX (9) y se abre la ventana Assembled Packet (10).
- 4- en la ventana Assembled packet ingresar la trama en HEX (11) calculada en DIGI API Frame (12) y se envía (13).
- 5- en la ventana terminal (14) se ve la trama transmitida al remoto en azul y la respuesta del remoto en rojo.

1-

Frame Type: 0x17	Remote AT Command 1	▼ APIN	node: API1 ▼ Device Type: ZigBee 2 ▼
FieldName	FieldValue	DataType	Description
Delimiter	7E	Byte	Start Delimiter
Length	000f	Word	Number of bytes between length and checksum fields.
API	17	Byte	Remote AT Command
FrameID	01	Byte	Identifies the UART data frame for the host to match with a subsequent response. If zero, no response is requested
64DestAddr	0013a2004079be8c 3	EUI64	Destination 64-bit (MAC/EUl64) address. The following addresses are also supported: 0x000000000000000 - Reserved for the coordinator. 0x0000000000FFFF - Broadcast address
16DestAddr	Sies 4	NWK16	Destination 16-bit network address, if known. Use 0xFFFE if the address is unknown, or if sending a broadcast. Other reserved addresses: 0xFFFC - broadcast to all routers; 0xFFFD - broadcast to all non-sleepy devices; 0xFFFD - broadcast to all devices including sleepy ED.
CmdOptions	00	Byte	0x02 - Apply changes on remote device. NOTE: If this bit is not set, an AC (or WR+FR) command must be sent before changes will take effect. All other bits must be set to zero.
AT Cmd	is 5	ATCmd	Command name of two ASCII characters.
AT CmdData		Variable	If present, set the register to this value. If absent, get the value of the register. String values should be terminated with a zero byte.
Checksum	4f	Byte	0xFF minus 8-bit sum of bytes between the length and checksum fields.
Packet	7E 00 0F 17 01 00 13 A2 00 40 79 BE 8C 5F E5 00 49 53 4F	Build Packet	6

2-

Muchas Gracias!

·Se debe entrar en modo comando para cambiar destino con un comando AT

