Introduction Blood

Components of blood

- Blood –collection of fluid and cells
- Fluid component- plasma
- Cells- red cells, white cells and platelets

Components of blood

Separation of components

- -Collect blood samples in to a tube and centrifuge it
- -Cells go to bottom
- -Liquid component remains on top of the cell coloumn

Components of blood

- Red cells 45%
- Plasma 55%
- White cells less than 1%
- Plasma containing clotting factors
- Removal of fibrin and clotting factors from plasma results serum

- Packed cell volume _ haematocrit (PCV-Hct)
 - Height of red cell column as a percentage of total column
 - Done by using Winthrob tube and anticogulted blood
- Rate depends on
 - Number o red cells in plasma
 - Negative charge on red cells
 - Presence of ibrin and rouleaux formation

ESR

- Erythrocyte sedimentaion rate
- is the rate at which red blood cells sediment in a period of one hour
- Done using anticoagulated blood and wetergen tube

Haematopoiesis

Dr. K. Medagoda

Functions of Blood

- Blood performs a number of functions dealing with:
 - Substance distribution
 - Regulation of blood levels of particular substances
 - Body protection

Blood Functions: Distribution

• Blood transports:

- Oxygen from the lungs and nutrients from the digestive tract
- Metabolic wastes from cells to the lungs and kidneys for elimination
- Hormones from endocrine glands to target organs

Blood Functions: Regulation

• Blood maintains:

- Appropriate body temperature by absorbing and distributing heat to other parts of the body
- Normal pH in body tissues using buffer systems
- Adequate fluid volume in the circulatory system

Blood Functions: Protection

- Blood prevents blood loss by:
 - Activating plasma proteins and platelets
 - Initiating clot formation when a vessel is broken
- Blood prevents infection by:
 - Synthesizing and utilizing antibodies
 - Activating complement proteins
 - Activating WBCs to defend the body against foreign invaders

Components of Whole Blood

• Hematocrit

• Males: 47% ± 5%

• Females: 42% ± 5%

Formed elements in blood

- Formed elements comprise 45% of blood
- Erythrocytes, leukocytes, and platelets make up the formed elements
 - Only WBCs are complete cells
 - RBCs have no nuclei or organelles, and platelets are just cell fragments
- Most formed elements survive in the bloodstream for only a few days
- Most blood cells do not divide but are renewed by cells in bone marrow

Erythrocytes (RBCs)

- Biconcave disc
 - Folding increases surface area (30% more surface area)
 - Plasma membrane contains *spectrin*
 - Give erythrocytes their flexibility
- Anucleate, no centrioles, no organelles
 - End result no cell division
 - No mitochondria means they generate ATP anaerobically
 - Prevents consumption of O₂ being transported
- Filled with hemoglobin (Hb) 97% of cell contents
 - Hb functions in gas transport
 - $Hb + O_2 \longleftrightarrow HbO_2$ (oxyhemoglobin)
- Most numerous of the formed elements
 - Females: 4.3–5.2 million cells/cubic millimeter
 - Males: 5.2–5.8 million cells/cubic millimeter

Erythrocytes (RBCs)

Fate and Destruction of Erythrocytes

- The life span of an erythrocyte is 100–120 days
- Old erythrocytes become rigid and fragile, and their hemoglobin begins to degenerate
- Dying erythrocytes are engulfed by macrophages
- Heme and globin are separated
 - Iron is removed from the heme and salvaged for reuse
 - Stored as hemosiderin or ferritin in tissues
 - Transported in plasma by beta-globulins as *transferrin*

Haematopoiesis

- Formation of red cells, white cells and platelets
- Occurs in the bone marrow
 - -Medullary erythropoiesis
- Haematopoiesis blood cell formation
 - -Erythropoiesis formation of red cells
 - -Granulopoiesis- formation of white cells

Erythropoiesis – formation of red cells

- Occurs in the red bone marrow
 - Axial skeleton and girdles
 - Epiphyses of the humerus and femur
 - Marrow contains immature erythrocytes
 - Composed of reticular connective tissue

- Extra-medullary erythropoiesis
 - Formation of blood cells in the liver and spleen
 - Normally in fetal life
 - Abnormal in adult life
- Active marrow-red marrow
- Inactive marrow yellow marrow

- Bone marrow has
 - Myeloid series white cells producing precursors
 - erythroid series maturing red cells

- Normally
 - 75% of the marrow belongs to myeloid series
 - 25% erythroid series
- The difference reflects life span of the respective cells

- In children the marrow cavities of all bones actively produced blood cells
- By age 20 the marrow cavities of long bones become inactive.
 - Except humerus and femur

Erythropoiesis- cell series

 Multipotent uncommitted stem cells committed stem cells

Early erythroblast

Pronormoblast

Early normoblast

Late normoblast

Reticuloyte

Erythrocyte

Erythropoiesis- cell series

- Multipotent uncommitted stem cells
 - Can differentiate in to committed stem cells
- Committed stem cells
 - Differentiate in to various cells types
 - Erythroid cells
 - Granulocytes
 - Monoytes
 - Megakaryocytes

Normal red cell maturation involves

- 1. Successive increase in number of cells
- 2. Diminution of cell size
- 3. Reduction of nuclear size and condensation of chromatin
- 4. Extrusion of nucleus
- 5. Loss of cytoplasmic RNA
- 6. concurrent production of haemoglobin

Erythropoiesis- cell series

- Early erythroblast
 - Finely depressed chromatin and basophilic cytoplasm
- Pronormoblast
 - The earliest morphologically recognizable precursor of red cell series
 - Basophilic cytoplasm
 - Early condensation of chromatin

Erythropoiesis- cell series

- Early normoblast
 - Basophilic cytoplasm
 - Well marked condensation of chromatin
- Late normoblast
 - Haemoglobinisation
 - Marked nuclear condensation
 - Shred the nucleus to become a reticuloyte
- Reticuloyte
 - Immature red cell following extrusion of nucleus
 - Maturation takes 48-72 hours
- Erythrocyte mature red cell

- Reticuloyte
 - Immature red cell following extrusion of nucleus
 - Maturation takes 48-72 hours
 - Final 24hours in the circulation
- Contains
 - Polyribosomes, RNA and mitochondria
 - Gives polychromasia with Romanowsky staining

- Reticulocytes make up about 1 -2 % of all circulating erythrocytes
 - Reduced in marrow failure
 - Increased in when there is increased red cell production

Stages of Differentiation of Blood Cells

Erythropoiesis

- The developmental pathway consists of three phases
 - − Phase 1 − ribosome synthesis in early erythroblasts
 - Phase 2 hemoglobin accumulation in late erythroblasts and normoblasts
 - Phase 3 ejection of the nucleus from normoblasts and formation of reticulocytes
- Reticulocytes then become mature erythrocytes
 - Reticulocytes make up about 1 -2 % of all circulating erythrocytes

Regulation and Requirements for Erythropoiesis

- Circulating erythrocytes the number remains constant and reflects a balance between RBC production and destruction
 - Too few red blood cells leads to tissue hypoxia
 - Too many red blood cells causes undesirable blood viscosity
- Erythropoiesis is hormonally controlled and depends on adequate supplies of iron, amino acids, and B vitamins

Hormonal Control of Erythropoiesis

- Erythropoietin
 - A glycoprotein
 - Released from kidney and the liver
- Erythropoietin (EPO) release is triggered by:
 - Hypoxia due to decreased RBCs
 - Decreased oxygen availability
 - Increased tissue demand for oxygen
- Enhanced erythropoiesis increases the:
 - RBC count in circulating blood
 - Oxygen carrying ability of the blood

Erythropoietin Mechanism

Requirements for Erythropoiesis

- Erythropoiesis requires:
 - Proteins, lipids, and carbohydrates
 - Iron, vitamin B_{12} , and folic acid
 - Trace metals cobolt
 - Hormones androgens and thyroxine
 - interleukins
- The body stores iron in Hb (65%), the liver, spleen, and bone marrow
- Intracellular iron is stored in protein-iron complexes such as ferritin and hemosiderin
- Circulating iron is loosely bound to the transport protein transferrin