Reference: George Coulouris, Jean Dollimore and Tim Kindberg, "Distributed Systems Concepts and Design", Fifth Edition, Pearson Education, 2012

□ Peer To Peer Middleware

 To provide mechanism to access data resources anywhere in network

Functional Requirements :

- Simplify construction of services across many hosts in wide network
- > Add and remove resources at will
- Add and remove new hosts at will
- Interface to application programmers should be simple and independent of types of distributed resources

- □ Peer To Peer Middleware (contd)
 - Non-Functional Requirements :
 - Global Scalability
 - Load Balancing
 - > Optimization for local interactions between neighboring peers
 - Accommodation to highly dynamic host availability
 - Security of data in an environment simplify construction of services across many hosts in wide network
 - Anonymity, deniability and resistance to censorship

- □ Peer To Peer Middleware (contd)
 - Global scalability, dynamic host availability and load sharing and balancing across large numbers of computers pose major design challenges.
 - Design of Middleware layer
 - Knowledge of locations of objects must be distributed throughout network
 - Use of replication to achieve this

- □ Routing Overlays
 - Responsible for locating nodes and objects
 - Implements a routing mechanism in the application layer
 - □ Separate from any other routing mechanisms such as IP routing
 - Ensures that any node can access any object by routing each request through a sequence of nodes
 - □ Exploits knowledge at each node to locate the destination

□ GUIDs

- 'pure' names or opaque identifiers
 - □ Reveal nothing about the locations of the objects
 - Building blocks for routing overlays
- Computed from all or part of the state of the object using a function that deliver a value that is very likely to be unique. Uniqueness is then checked against all other GUIDs
- Not human readable

- □ Tasks of a routing overlay
 - Routing Request to Objects: Client submits a request including the object GUID, routing overlay routes the request to a node at which a replica of the object resides
 - Insertion of Objects: A node introduces a new object by computing its GUID and announces it to the routing overlay
 - Deletion of Objects: Clients can remove an object
 - Node addition and removal: Nodes may join and leave the service

- □ Types of Routing Overlays
 - DHT Distributed Hash Tables
 - DHT GUIDs are stored based on the hash value □ (128 bit hash value using SHA-1 algorithm)
 - DOLR Distributed Object Location and Routing
 - DOLR is a layer over the DHT that maps GUIDs and address of nodes at which replicas of objects are located. put() and get() APIs
 - DOLR GUIDs host address is notified using the Publish() operation

P2P Vs Distributed Processing

Peer to Peer

- Millions of nodes cooperate to achieve a common goal
- Distribution of resources are usually explicit but location not known
- WAN based
- Home rather than enterprise based resource servers
- No overall management insecure resources
- Intermittent connectivity probabilistic access
- Application level protocols

No fundamental difference

Distributed Processing

- Smaller numbers of nodes cooperate
- May provide a single virtual machine concept with transparent distribution
- Mostly LAN based
- Within a single or a few enterprises
- Managed system resources can be more trusted
- Tries to provide deterministic access to resources
- Middleware protocols supporting application level interaction

Summary

- □ Napster immutable data, unsophisticated routing
- □ Current mutable data, routing overlays, sophisticated algorithms
- □ Internet or company intranet support
- □ Distributed Computing (SETI)

Summary

□ Benefits of Peer-to-Peer Systems

- Ability to exploit unused resources (storage, processing) in the host computers
- Scalability to support large numbers of clients and hosts with load balancing of network links and host computer resources
- Self-organizing properties of the middleware platforms reduces costs

Summary

- **□** Weaknesses of Peer-to-Peer Systems
 - Costly for the storage of mutable data compared to trusted, centralized service
 - Can not yet guarantee anonymity to hosts

Thank You