Classificadores Bagging, Boosting e Naïve Bayes

Stanley Robson de M. Oliveira

Bagging/Boosting

Naïve Bayes

Resumo da Aula

■ Bagging e Boosting:

- Comitês de classificadores;
- Bagging com Árvores de Decisão;
- Boosting;
- RandomForest.

□ Classificação Bayesiana:

- Arcabouço probabilístico;
- Classificador Naïve Bayes.

■ Medidas de Avaliação de Modelos:

- Hould-out, cross-validation, percentage split;
- Ajuste de hiperparâmetros;
- Medidas Clássicas.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

2

Comitês de Classificadores

Bagging e Boosting

- Métodos de aprendizado estatístico para solucionar problemas de classificação.
- ☐ Comitês de classificadores: vários classificadores ajustados aos dados e combinados para aumentar poder de predição.
- Bagging: implementação da estratégia de reamostragem bootstrap; um novo classificador por amostra.
- Boosting: classificadores ajustados em versões diferentes do conjunto de dados originais.

Por que funciona?

- □ Suponha que existam 25 classificadores base.
- □ Cada classificador com taxa de erro t = 0,35.
- ☐ Assuma independência entre os classificadores.

por exemplo, se eu disser um número, a próxima pessoa a chutar não vai tentar deixar próximo do meu

☐ Se a decisão do comitê é por maioria simples:

qual a probabilidade de 13,14,15,..., 25 (a maioria) errarem?

$$\sum_{i=13}^{25} {25 \choose i} t^i (1-t)^{25-i} = 0.06$$

☐ A probabilidade da **maioria errar** é menor do que cada classificador individualmente.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

5

Bagging

se f1 = V, f2 = V, $fT = F \rightarrow f = V$ (maioria simples)

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

6

Bagging ...

- ☐ Bagging = Bootstrap aggregating (Breiman, 1996).
- ☐ Procedimento para **reduzir a variância** de um método de aprendizado de máquina.
- Algoritmo:
 - 1. Criar *M* amostras bootstrap dos dados.
 - 2. Ajustar um modelo para cada amostra.
 - Tirar a média das predições (ou votos na classificação).
- □ Breiman, L. (1996). Bagging predictors. *Machine Learning*, 26(2), 123-140.

Variância versus Viés

Figura: Decomposição viés/variância

- □ Viés (**Bias**): maior parte é erro de treinamento; modelos mais complexos têm menor viés.
- □ Variância: variação em torno da média.
- Bagging: diminui somente a variância.

Bagging ...

■ Amostra com reposição:

Dados	1	2	3	4	5	6	7	8	9	10
Amostra 1	7	9	3	9	9	1	10	7	7	5
Amostra 2	2	5	8	10	2	3	6	3	7	7
Amostra 3	1	6	4	2	4	1	10	2	5	1

- \square Cada valor tem probabilidade $(1-\frac{1}{n})^n$ de **não** ser selecionado.
- □ Conjunto de dados = $1-(1-\frac{1}{n})^n$ dos dados originais.

$$\lim_{n \to \infty} 1 - \left(1 - \frac{1}{n}\right)^n \approx 1 - e^{-1} = 0.632$$

□ Isto é, em geral uma **amostra bootstrap** corresponde a aproximadamente 63% do conjunto original.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

9

Bagging: exemplo

Cada modelo em cada amostra gera classificadores diferentes.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

10

Taxa de Erro vs No. de Modelos

Fronteiras de Decisão

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

12

Árvore de Decisão

Exemplo: Árvore de Decisão

Combinando Árvores

• Azul: acordo (A)

• Verde: acordo (B)

• Cinza: empate

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

1.4

Fronteiras de Decisão ...

Bagged Decision Rule

Boosted Decision Rule

Linear

Bagging/Boosting

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

Por que com árvores de decisão? TABLE 10.1. Some characteristics of different learning methods. Key: A = good,

TABLE 10.1. Some characteristics of different learning methods. Key: $\triangle = good$, $\bullet = fair$, and $\nabla = poor$.

Characteristic	Neural Nets	SVM	Trees	MARS	k-NN, Kernels
Natural handling of data of "mixed" type	•	•	•	_	•
Handling of missing values	•	•	A	A	_
Robustness to outliers in input space	_	•	A	•	A
Insensitive to monotone transformations of inputs	V	. ▼	A	•	V 3
Computational scalability (large N)	•	▼	A	_	•
Ability to deal with irrelevant inputs	•	•	*	A	•
Ability to extract linear combinations of features	_	A		•	•
Interpretability	•	-		_	•
Predictive power	_	A	*		_

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

RandomForest

- □ Bagging é **geral**, mas o RandomForest é **específico** para **árvores de decisão**.
- □ Introduz duas fontes de variabilidade: "Bagging" e "seleção aleatória de atributos".
- Bagging: cada árvore é ajustada em uma amostra bootstrap.
- □ Seleção aleatória de atributos: **em cada nó**, o melhor split é escolhido de uma **amostra aleatória de** *m* atributos ao invés de todos.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

17

RandomForest vs Bagging

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

18

Taxa de Erro vs OOB

Taxa de Erro vs OOB ...

- OOB = Out Of the Bag. Em cada amostra bootstrap, algumas observações (1/3) ficam de fora.
- Estas observações podem ser usadas para avaliar o modelo, com acurácia próxima de um conjunto de teste.

Importância das Variáveis

Por meio das múltiplas árvores ajustadas é possível determinar as variáveis mais importantes.
 Índice Gini
 Entropia

AP-532: Preparacão de Dados para Mineracão de Dados – Aula 08

Hiperparâmetros

- ☐ Há dois parâmetros basicamente: **número de árvores** e **m** (variáveis aleatoriamente selecionadas para determinar o **split** no nó).
- Número de árvores >= 1000 já garante bons resultados.
- \square *m* pode ser utilizado como: $m = \sqrt{p}$ onde *p* é o número de atributos.
- □ m pode também pode ser determinado por validação cruzada.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

22

Hiperparâmetros ...

Boosting

Boosting

- ☐ Ideia: transformar múltiplos classificadores ruins em um único muito bom.
- ☐ Um classificador é considerado **ruim** se for levemente melhor que o **chute**.
- ☐ Modifica a distribuição dos dados.
- ☐ Em cada rodada, as classificações mais difíceis ganham maior peso.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

25

Boosting ...

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

26

Boosting: Exemplo

☐ Considere como classificador base: retas verticais ou horizontais.

Boosting: Exemplo ...

☐ Os pontos classificados errados têm seus pesos aumentados para a próxima fase.

Boosting: Exemplo ...

□ Na nova fase de classificação, devido aos pesos dos erros, a reta vertical foi deslocada, dando origem a novos erros.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

20

Boosting: Exemplo ...

☐ Na terceira tentativa, uma reta horizontal foi escolhida, dessa vez com menos erros.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

20

Boosting: Exemplo ...

□ Por fim, a combinação dos classificadores gera um classificador global muito superior, atribuindo pesos distintos a cada classificador.

Boosting ...

 Após várias interações com stumps (árvores com um nó) a taxa de erro cai e se estabiliza.

Fronteiras de Decisão

Boosted Decision Rule

Linear

Bagging/Boosting

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

33

Boosting ...

- **Boosting** tem um dos melhores desempenhos dentre os classificadores.
- Necessita de poucos ajustes.
- □ Procedimento embutido para seleção de variáveis
- ☐ Tem um desempenho, em geral, superior ao RandomForest.
- □ Quando o RandomForest se torna melhor? Facilmente paralelizável (Big Data).

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

34

Naïve Bayes

$$P(x_1,...,x_k|C) = P(x_1|C) \times P(x_2|C) \times ... \times P(x_k|C)$$

Classificação Bayesiana ...

- ☐ Um **arcabouço probabilístico** para solucionar problemas de classificação.
- □ Predição probabilística: Prediz hipóteses múltiplas que são ponderadas por suas probabilidades.
- □ Classificador Bayesiano: prediz a probabilidade que uma dada amostra pertence a uma determinada classe.
- ☐ Incremental: Cada amostra no conjunto de treinamento pode aumentar/diminuir a probabilidade de que uma hipótese é correta.

Classificador "Naïve Bayes"

☐ Suposição: independência de atributos

$$P(x_1,...,x_k|C) = P(x_1|C) \times P(x_2|C) \times ... \times P(x_k|C)$$

- □ Se o i-ésimo atributo for nominal: P(x_iIC) é estimado como a frequência relativa das amostras no i-ésimo atributo (x_i) que pertencem à classe C
- □ Se o i-ésimo atributo for **numérico**:
 P(x_i|C) é estimado através de uma **função de densidade**Gaussiana (Normal).
- ☐ Computacionalmente **fácil** em ambos os casos.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

37

Classificação Bayesiana

- Na Prática: requer conhecimento inicial de muitas probabilidades ⇒ significativo custo computacional.
- □ Probabilidade Condicional : $P(C \mid A) = \frac{P(A,C)}{P(A)}$

$$P(A \mid C) = \frac{P(A,C)}{P(C)}$$

□ Teorema de Bayes :

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

38

Classificador "Naïve Bayes": Exemplo

☐ Classes:

compra_computador = 'sim'
compra_computador = 'nao'

□ Amostra:

X = (Idade <= 30, Renda = media, Aluno = 'sim' Credito = 'normal') ?

	Idade	Renda	Aluno	Credito	Classe
	<=30	alta	nao	normal	nao
	<=30	alta	nao	excelente	nao
	3140	alta	nao	normal	sim
	>40	media	nao	normal	sim
,	>40	baixa	sim	normal	sim
	>40	baixa	sim	excelente	nao
	3140	baixa	sim	excelente	sim
	<=30	media	nao	normal	nao
	<=30	baixa	sim	normal	sim
	>40	media	sim	normal	sim
	<=30	media	sim	excelente	sim
	3140	media	nao	excelente	sim
	3140	alta	sim	normal	sim
	>40	media	nao	excelente	nao

Classificador "Naïve Bayes": Exemplo

P(C_i): P(compra_computador = "sim") = 9/14 = 0.643 P(compra_computador = "nao") = 5/14 = 0.357

Cálculo de P(XIC_i) para cada classe:

```
P(Idade = "<=30" | compra_computador = "sim") = 2/9 = 0.222
P(Idade = "<= 30" | compra_computador = "nao") = 3/5 = 0.6
P(Renda = "media" | compra_computador = "sim") = 4/9 = 0.444
P(Renda = "media" | compra_computador = "nao") = 2/5 = 0.4
P(Aluno = "sim" | compra_computador = "sim") = 6/9 = 0.667
P(Aluno = "sim" | compra_computer = "nao") = 1/5 = 0.2
P(Credito = "normal" | compra_computador = "sim") = 6/9 = 0.667
P(Credito = "normal" | compra_computador = "nao") = 2/5 = 0.4
```

X = (Idade <= 30, Renda = media, Aluno = 'yes', Credito = 'normal') ??

P(XIC_i): P(Xlcompra_computador = "sim") = $0.222 \times 0.444 \times 0.667 \times 0.667 = 0.044$ P(Xlcompra_computador = "nao") = $0.6 \times 0.4 \times 0.2 \times 0.4 = 0.019$

 $P(XIC_i)*P(C_i): P(XIcompra_computador = "sim") * P(compra_computador = "sim") = 0.028$ $P(XIcompra_computador = "nao") * P(compra_computador = "nao") = 0.007$

Portanto, X pertence a classe ("compra computador = sim").

Classificador "Naïve Bayes": Exemplo

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	ves	no	ves	non-mammals

A: attributes	tiplica todas as probabilidades
M: mammals	de todos os atributos
N: non-mammals	

$$P(A|M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$

$$P(A|N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$

$$P(A|M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$

$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

Give Birth	Can Fly	Live in Water	Have Legs	Class
yes	no	yes	no	?

O valor do atributo "Class" é mammals ou non-mammals?

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

Como estimar Probabilidades ?

Tid	Retorno Estado Civil		Renda Anual	Mentiu
1	Sim	Solteiro	125K	Nao
2	Nao	Casado	100K	Nao
3	Nao	Solteiro	70K	Nao
4	Sim	Casado	120K	Nao
5	Nao	Divorciado	95K	Sim
6	Nao	Casado	60K	Nao
7	Sim	Divorciado	220K	Nao
8	Nao	Solteiro	85K	Sim
9	Nao	Casado	75K	Nao
10	Nao	Solteiro	90K	Sim

Distribuição Normal:

$$P(A_{i} \mid c_{j}) = \frac{1}{\sqrt{2\pi\sigma_{ij}^{2}}} e^{\frac{(A-\mu_{ij})^{2}}{2\sigma_{ij}^{2}}}$$

Para cada par (A_i,c_i).

X(Renda=120; Classe=Nao)? Se Classe = Nao

> Média da amostra = 110 Variância da amostra = 2975

$$P(\text{Re } nda = 120 \mid Nao) = \frac{1}{\sqrt{2\pi}(54.54)} e^{-\frac{(120-110)^2}{2(2975)}} = 0.0072$$

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

Example of Naïve Bayes Classifier

Classe = (Retorno = Nao, Estado Civil = Casado, Renda = 120K)?

Classificador Naïve Bayes

P(Refund=NoINo) = 4/7 P(Refund=YeslYes) = 0 P(Refund=NolYes) = 1 P(Marital Status=SingleINo) = 2/7 P(Marital Status=DivorcedINo)=1/7 P(Marital Status=MarriedINo) = 4/7 P(Marital Status=SinglelYes) = 2/7 P(Marital Status=DivorcedlYes)=1/7 P(Marital Status=MarriedlYes) = 0

For taxable income:

P(Refund=YesINo) = 3/7

If class=No: sample mean=110 sample variance=2975 If class=Yes: sample mean=90 sample variance=25

P(XIClasse=Nao) = P(Retorno=NaolClasse=Nao)

× P(Casadol Classe=Nao)

× P(Renda=120Kl Class=Nao) $= 4/7 \times 4/7 \times 0.0072 = 0.0024$

P(XIClass=Yes) = P(Retorno=Naol Classe=Sim)

× P(Casadol Classe=Sim)

× P(Renda=120Kl Classe=Sim) $= 1 \times 0 \times 1.2 \times 10^{-9} = 0$

Como P(X|Nao)P(Nao) > P(X|Sim)P(Sim)

Portanto P(NaolX) > P(SimlX)

=> Classe = Nao.

Exercício - Naïve Bayes

Calcular a probabilidade, utilizando o Classificador Naïve Baves, para o problema de previsão de tempo: jogar tênis. X (Aspecto = Sol, Temp = Fria, Umidade = Elevada, Vento = Forte) = ?

,	•	•		•	,
Dia	Aspecto	Temp	Umidade	Vento	Joga Tênis
D1	Sol	Quente	Elevada	Fraco	Não
D2	Sol	Quente	Elevada	Forte	Não
D3	Nuvens	Quente	Elevada	Fraco	Sim
D4	Chuva	Amena	Elevada	Fraco	Sim
D5	Chuva	Fria	Normal	Fraco	Sim
D6	Chuva	Fria	Normal	Forte	Não
D7	Nuvens	Fria	Normal	Fraco	Sim
D8	Sol	Amena	Elevada	Fraco	Não
D9	Sol	Fria	Normal	Fraco	Sim
D10	Chuva	Amena	Normal	Forte	Sim
D11	Sol	Amena	Normal	Forte	Sim
D12	Nuvens	Amena	Elevada	Forte	Sim
D13	Nuvens	Quente	Normal	Fraco	Sim
D14	Chuva	Amena	Elevada	Forte	Não

O problema da Probabilidade Nula

☐ O Classificador Naïve Bayes requer que cada probabilidade condicional seja não nula.

$$P(X \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i)$$

□ Caso uma das probabilidades seja nula, usa-se a correção de Laplace:

Original: $P(A_i \mid C) = \frac{N_{ic}}{N_c}$

c: número de classes

Laplace: $P(A_i \mid C) = \frac{N_{ic} + 1}{N_o + c}$

p: probabilidade a priori

m - estimate : $P(A_i \mid C) = \frac{N_{ic} + mp}{N_o + m}$

m: parâmetro

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

4

Classificador "Naïve Bayes" ...

- ☐ Robusto com relação a ruídos (pontos isolados).
- Capacidade de lidar com valores "missing" ignorando a observação durante o cálculo de estimativa de probabilidade.
- ☐ Robusto com relação aos atributos irrelevantes.
- □ Na prática, se um modelo possui atributos independentes, o classificador bayesiano pode superar as árvores de decisão.
- ☐ Por outro lado, a **suposição de independência** pode não funcionar bem para alguns domínios.
- □ Solução: uso de outras técnicas, tais como Redes de Crença Bayesiana (BBN).

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

46

Medidas para Avaliação de Modelos de Classificação

Stanley Robson de M. Oliveira

Avaliação de Modelos - WEKA

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

Problema do Overfitting

Problema do Overfitting ...

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

50

O que fazer?

- □ Técnicas de reamostragem.
- □ Busca de medida **confiável** da acurácia.
- □ Ajuste de hiperparâmetros.

Validação Cruzada

- □ Técnica para avaliar a capacidade de generalização de um modelo, a partir de um conjunto de dados.
- □ Há diversas formas de particionamento: holdout, k-fold e leave-one-out.
- □ Também utilizada para escolha de hiperparâmetros.

Validação Cruzada (holdout)

- Consiste em dividir o conjunto de dados em dois conjuntos mutuamente exclusivos.
- □ Um conjunto para treinamento (estimação de parâmetros) e outro para teste (validação).
- □ Uma proporção muito comum é considerar 2/3 para treinamento e 1/3 para teste.
- Esta abordagem é indicada quando está disponível uma grande quantidade de dados.
- □ Caso o conjunto de dados seja pequeno, o erro calculado na predição pode sofrer muita variação.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

53

Validação Cruzada (k-fold)

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

54

Validação Cruzada (k-fold)...

□ A partir de 10 observações por *fold*, a estimativa por Validação Cruzada se estabiliza.

Validação Cruzada (leave-one-out)

- □ É um caso específico do k-fold, com k igual ao número total de dados N.
- Apresar de apresentar uma investigação completa sobre a variação do modelo, possui um alto custo computacional, sendo indicado para aplicações com poucos dados.
- □ KOHAVI, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In International joint Conference on Artificial Intelligence, 1995. v.14, p.1137-1145.

Percentage Split

- □ Observações podem aparecer múltiplas vezes, no treino e no teste.
- ☐ Geralmente são feitas mais repetições que k-fold cross-validation.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

57

Bootstrap

□ Amostras não selecionadas são utilizadas para avaliar a performance do modelo.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

EO

Ajuste de Hiperparâmetros

- Qual é o melhor número de vizinhos mais próximos?
- Se k pequeno: overfitting.
- Se k grande: modelo não sensível, muito geral.

Ajuste de Hiperparâmetros - WEKA

- 1. No Weka, selecione o conjunto de dados iris.arff.
- 2. Use o metaclassificador: **CVParameterSelection**:
 - 2.1. No parâmetro CVParameters edite os valores do parâmetro K, que será ajustado por validação cruzada.
 - No parâmetro classifier, selecione o classificador
 K-NN (lbk) classificador base.
- Execute o ajuste do parâmetro K utilizando a opção:
 Cross-validation (Folds = 10).
- 4. Qual foi o valor de **K** ajustado por validação cruzada?

Ajuste de Hiperparâmetros ...

□ Método:

- 1 Defina os hiperparâmetros candidatos.
- 2 Para cada conjunto de hiperparâmetros faça:
 - Reamostre os dados (CV, Bootstrap, etc);
 - Ajuste um modelo;
 - Obtenha predição e acurácia.
- 3 Agreque os resultados de acurácia (ex: média)
- 4 Com os hiperparâmetros escolhidos, ajuste um modelo usando todo o conjunto de dados.

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

Ajuste de Hiperparâmetros ...

					A
	Resam	pled accuracy (%)			
Cost	Mean	Std. error	% Tolerance	1.00 -	
0.25	70.0	0.0	-6.67	0.95	
0.50	71.3	0.2	-4.90	<u> </u>	
1.00	74.0	0.5	-1.33	B 0.90	
2.00	74.5	0.7	-0.63	0.90 – 0.805 – 0.800 –	
4.00	74.1	0.7	-1.20	are	
8.00	75.0	0.7	0.00	0.80	7
16.00	74.9	0.8	-0.13	0.75	/
32.00	72.5	0.7	-3.40	0.75	•
64.00	72.0	0.8	-4.07	0.70	T
128.00	72.0	0.8	-4.07	2^-2	

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

Recomendações

- □ Nenhum método de reamostragem é sempre o melhor.
- □ Se o conjuntos de dados é pequeno:
 - 1) Avaliação da performance: CV repetido.
 - 2) Escolha de modelos: Bootstrap (baixa variância).
- □ Se o conjuntos de dados é grande: não há grandes diferenças entre bootstrap e CV. Por eficiência computacional, escolha CV.

Medidas para Avaliação de Modelos

- □ Matriz de Confusão: um dos resultados de um classificador, após realizar o treinamento e o teste do modelo.
- □ Matriz de Confusão para um problema de duas classes:
 - Classe positiva (C.) Classe negativa (C₂)

Predita Tota1 C+ VP FN

Verdadeira C. FP VN **Total**

P + N

Os bons modelos apresentam altos valores na diagonal principal da Matriz (VP e VN) e baixos valores na diagonal secundária (FN e FP).

Medidas para Avaliação de Modelos

- 1. Taxa de Acerto (Acurácia)
 - □ Porcentagem de exemplos que foram classificados corretamente pelo classificador:

$$taxa \ de \ acerto = \frac{VP + VN}{P + N}$$

$$\frac{Predita}{C_{+} \quad C_{-} \quad Total}$$

$$Verdadeira \qquad C_{+} \quad VP \quad FN \quad P$$

$$C_{-} \quad FP \quad VN \quad N$$

$$Total \qquad P' \quad N' \quad P + N$$

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

65

Medidas para Avaliação de Modelos

- 2. Taxa de Erro: 1- Taxa de Acerto.
 - □ Definida como o complemento da **Taxa de Acerto**:

$$taxa\,de\,erro = \frac{FP + FN}{P + N}$$

1 1 1	Predita			
		C+	C.	Total
37 1 1 '	\mathbb{C}_{+}	VP	FN	P
Verdadeira	C.	FP	VN	N
Total		P'	N'	P + N

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

66

Medidas para Avaliação de Modelos

- 3. Sensitividade (Taxa de Verdadeiros Positivos)
 - □ Precisão da Classe C₊:

$$sensitividade = \frac{VP}{P}$$

$$\frac{Predita}{C_{+} C_{-} Total}$$

$$\frac{Verdadeira}{C_{+} VP FN P}$$

$$\frac{C_{-} VP FN P}{C_{-} FP VN N}$$

$$\frac{P'_{-} N'_{-} P + N_{-}}{P + N_{-}}$$

Medidas para Avaliação de Modelos

4. Especificidade

□ Precisão da Classe C_. : Taxa de Verdadeiros Negativos.

$$especificidade = \frac{VN}{N}$$

$$\frac{Predita}{C_{+} C_{-} Total}$$

$$Verdadeira C_{+} VP FN P$$

$$C_{-} FP VN N$$

$$Total P' N' P + N$$

Medidas para Avaliação de Modelos

5. Estatística Kappa

- □ Mede o **desempenho** do classificador [0, 1].
- □ É uma medida de concordância entre as classes preditas e observadas, que deduz o número esperado de acerto do classificador.

$$\kappa = \frac{p_o - p_e}{1 - p_e}$$

$$p_o = \frac{VP + VN}{P + N}$$

$$p_o = \frac{VP + VN}{P + N} \qquad p_e = \frac{(P'P) + (N'N)}{(P+N)^2}$$

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

Medidas para Avaliação de Modelos

5. Estatística Kappa

 Uma possível interpretação do desempenho dos modelos, a partir da Estatística Kappa, foi introduzida por Landis e Koch (1977):

Estatística Kappa	Qualidade
< 0,00	Péssima
0,00-0,20	Ruim
$0,\!21-0,\!40$	Razoável
0,41-0,60	Boa
0,61-0,80	Muito Boa
0,81 - 1,00	Excelente

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

Medidas para Avaliação de Modelos

6. Taxa de Verdadeiros Positivos

- □ True Positive Rate (**TPR**).
- □ Semelhante à medida **Sensitividade**.

$$TPR = \frac{VP}{P}$$

7. Taxa de Falsos Positivos

- □ False Positive Rate (**FPR**).
- \Box FPR = 1 Especificidade.

$$FPR = \frac{FP}{N}$$

Medidas para Avaliação de Modelos

8. Recall

número de documentos recuperados que são relevantes Número total de documentos que são relevantes

 $\text{recall} = \frac{|\{\text{relevant documents}\} \cap \{\text{retrieved documents}\}|}{|\{\text{total relevant documents}\}|}$

$$recall = TPR = \frac{VP}{P}$$

Medidas para Avaliação de Modelos

9. Precision

 $precision = \frac{\text{número de documentos recuperados que são relevantes}}{\text{Número total de documentos que são recuperados}}$

$$\text{precision} = \frac{|\{\text{relevant documents}\} \cap \{\text{retrieved documents}\}|}{|\{\text{retrieved documents}\}|}$$

$$precision = \frac{VP}{FP + VP}$$

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

73

Matriz de Confusão para 3 Classes

- Utilizando o software WEKA, selecione o dataset IRIS. Em seguida, construa uma árvore de decisão usando o algoritmo J48. Depois tente entender como foi feito o cálculo para as medidas a seguir:
 - Acurácia;
 - Erro;
 - Kappa;
 - Taxa de TP para cada Classe;
 - Taxa de FP para cada Classe;
 - Precisão para cada Classe.

Exercício: Dataset Pedra no Rim

☐ Considere a matriz de confusão abaixo, para avaliação de um classificador binário gerado.

☐ Calcular: Acurácia, Erro, Sensitividade, Especificidade, Kappa, Taxa de TP e Taxa de FP para cada Classe, Precisão para cada classes (Positiva e Negativa).

AP-532: Preparação de Dados para Mineração de Dados - Aula 08

74