University of Asia Pacific (UAP)

Department of Computer Science and Engineering (CSE)

Course Outline

Program: Computer Science and Engineering (CSE)

Course Title: Peripheral and Interfacing Lab

Course Code: CSE 316

Semester: Fall-2020

Level: 6th Semester

Credit Hour: 1.5

Name & Designation of Teacher: Abdullah Al Omar, Lecturer

Office/Room: 7th Floor

Class Hours: TBA.

Consultation Hours: TBA.

e-mail: omar.cs@uap-bd.edu

Mobile: +8801676367070

Rationale: Required course in the CSE program.

Pre-requisite: CSE 210, CSE 312

Course Synopsis: This lab course is IoT-industry knowledge oriented. It

will cover the Interfacing basics. Students will learn about the interfacing components (e.g., Mini systems, sensors, Methodologies etc.). It will discuss the Arduino Environment Programming, Basic I/Os, IoT, HCI, Edge

Computing, BCI, Dependable computing.

Course Objective: The objectives of the course are to

1. introduce peripheral and interfacing basics.

- 2. explain the real world challenges and their solution related to Peripheral and Interfacing.
 - 3. provide the analogical view of different peripheral methods and techniques.
- 4. introduce the core of Arduino/Raspberry Pi environment and provide a hands on experience with several sensors.

Course Outcomes (CO) and their mapping with Program outcomes (PO) and Teaching-Learning Assessment methods:

CO No.	CO Statements: Upon successful completion of the course, students should be able to:	Correspo nding POs (Appendi x-1)	Bloom's taxonomy domain/leve 1 (Appendix- 2)	Delivery methods and activities	Assessment Tools
CO1	Describe different Interfacing tools/component/environment	1	1/Understan d	Live/Recorded video Lecture, Group discussion	Lab performance
CO2	Analyze problems (emphasize upon industry & real life problems) and develop well designed solution/idea using an IoT environment	3	1/Analyze & 2/Articulatio n	Live/Recorded video Lecture, Hands on experience with the IoT environment	Presentation
CO3	Use of modern and updated sensors of IoT environment	5 & 9	Apply	Hands on experience with the IoT environment	Project submission with the Documentation
CO4	Implement updated tools/methods to get themselves familiarize with industry	6,8,10,11, & 12	Apply	Hands on experience with the IoT environment	Project submission with the Documentation

Weighting COs with Assessment methods:

Assessment Type	% weight	CO ₁	CO2	CO ₃	CO ₄
Final Project	30%		10	10	10
Mid Term project	30%	05	05	10	10

Lab performance, Presentation	40%	05	15	10	10
Total	100%	10	30	30	30

Grading Policy: As per the approved grading policy of UAP (Appendix-3)

Course Content Outline and mapping with Cos

Weeks	Topic/Content	Course	Delivery methods	Reading
VVEEKS		Outcome	and activities	Materials
Week 1	Environment	CO 1	Lecture, Multimedia	Class lecture and
WCCK 1	Setup			slide (If provided)
	First project on	CO 1	Lecture, Multimedia	Referred Books,
Week 2	Arduino/Raspberry			Website-
	Pi Environment			www.Arduino.cc
Week 3	Arduino	CO 2	Lecture, Problem	Class lecture and
W CCR 3	Programming		Solving	slide (If provided)
Week 4	Arduino	CO 2	Lecture, Problem	Class lecture and
WCCK 4	Programming		Solving	slide (If provided)
	Project idea	CO 2		Referred Books,
Week 5	development and		Discussion	Website-
	Present			www.Arduino.cc
Week 6	Project	CO 2	Discussion	Referred Books
Week 0	development			
	Project			
Week 7	Submission			
		Mid Exa	am	
	Turken den stern	CO 3, CO 4	Lecture, Problem	Class lecture,
Week 8	Introducing		Solving	YouTube videos
	sensors			
	Turken den stern	CO 3, CO 4	Lecture, Problem	Class lecture,
Week 9	Introducing		Solving	YouTube videos
	sensors			
	Turken den stern	CO 3, CO 4	Lecture, Problem	Class lecture and
Week 10	Introducing		Solving, Group	Slide (If provided)
	sensors		Discussion	
	Project idea	CO 1, CO 2,	Discussion	
Week 11	development and	CO 3, CO 4		
	Presentation			
Week 12	Project Undeta 01	CO 1, CO 2,	Discussion	
Week 12	Project Update- 01	CO 3, CO 4		
				<u> </u>

Week 13	Project Update- 02	CO 1, CO 2, CO 3, CO 4	Discussion	
Week 14	Project Submission with the documentation			

Required Reference(s): 1. Programming Arduino: Getting Started with Sketches

by Simon Monk

2. Arduino: A Technical Reference: A Handbook for Technicians, Engineers, and Makers by J. M. Hughes

3. Arduino Cookbook by Michael Margolis

Recommended Reference(s): www.arduino.cc

Special Instructions:

- **Project submission rules** If you miss the due date then the full marks will be deducted respectively to the number of days you have missed. (It is maintained very strictly unless any very serious issue arises)
- **Plagiarism** of the assignments/documentation will be checked strictly
- Attendance- Minimum Required Attendance 80% to pass the course and to get a higher grade you need to attend all the classes. (For A+ 100% attendance is a must)

Prepared by	Checked by	Approved by	
(Course Teacher)	(Chairman, PSAC committee)	(Head of the Department)	

<u>Appendix-1:</u>
Washington Accord Program Outcomes (PO) for engineering programs:

No.	PO	Differentiating Characteristic
1	Engineering Knowledge	Breadth and depth of education and type of knowledge,
		both theoretical and practical
2	Problem Analysis	Complexity of analysis
3	Design/ development of solutions	Breadth and uniqueness of engineering problems i.e. the
		extent to which problems are original and to which
		solutions have previously been identified or codified
4	Investigation	Breadth and depth of investigation and experimentation
5	Modern Tool Usage	Level of understanding of the appropriateness of the tool
6	The Engineer and Society	Level of knowledge and responsibility
7	Environment and Sustainability	Type of solutions.
8	Ethics	Understanding and level of practice
9	Individual and Team work	Role in and diversity of team
10		T 1 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
10	Communication	Level of communication according to type of activities
44	7	performed
11	Project Management and Finance	Level of management required
		for differing types of activity
12	Lifelong learning	Preparation for and depth of Continuing learning.

Appendix-2

Bloom's Taxonomy (Taxonomy of Learning) 3 Domains (**1**) **(2)** (3) Cognitive **Psychomotor Affective** (Knowledge) (Skill) (Attitude) Remember **Imitation** Receiving Understand Manipulation Responding Apply Precision Valuing Analyze Articulation Organization Evaluate Naturalization Characterization Create

Appendix-3 UAP Grading Policy:

Numeric Grade	Letter Grade	Grade Point
80% and above	A+	4.00
75% to less than 80%	A	3.75
70% to less than 75%	A-	3.50
65% to less than 70%	B+	3.25
60% to less than 65%	В	3.00
55% to less than 60%	B-	2.75
50% to less than 55%	C+	2.50
45% to less than 50%	С	2.25
40% to less than 45%	D	2.00
Less than 40%	F	0.00