Øving 11 IFYX1000

Oppgave 1

To klosser A og B med identisk masse m svinger i identiske fjærer med fjærkonstant k. Begge klossene er nedsenket i den samme væsken som gir opphav til en bremsende kraft $F_D=bv$, der v er klossens fart og dempingskonstanten b oppfyller $\frac{b}{2m}<\sqrt{\frac{k}{m}}$.

Kloss A svinger horisontalt, mens kloss B svinger vertikalt. Se figuren under.

- a) Hvilke påstander er riktige?
- A. Svingefrekvensen til A er større enn svingefrekvensen til B.
- B. Svingefrekvensen til A er mindre enn svingefrekvensen til B.
- C. Klossene har samme svingefrekvens.
- D. Svingefrekvensen øker med økende demping (økende verdi for b)
- E. Svingefrekvensen avtar med økende demping (økende verdi for b)
- F. Svingefrekvensen er uavhengig av dempingen (verdien på b)
- b) Hva er fjærforlengelsen for kloss B når den henger helt i ro (dvs. hvor mye strekkes fjæra på grunn av klossens tyngde)?
- c) Ved t=0 dras kloss A ut til en amplitude A og slippes med null startfart. Hva blir uttrykket for utsvinget x(t) for klossen?

Oppgave 2

En lastecontainer som henger i en kabel fra en heisekran kan ansees som en svakt dempet pendel der pendelutslaget (vinkelen mellom lasten og vertikalretningen) er gitt ved

$$\theta(t) = \theta_0 e^{-at} \cos(\omega t),$$

der θ_0 er startutslaget ved t=0 og a er en positiv dempingskonstant som skal bestemmes. Se figuren under.

Lasten begynner å pendle fra en startvinkel $\theta_0=10^\circ$ med null starfart. Etter $10~{
m s}$ er det maksimale vinkelutslaget redusert til $7,0^\circ$. Bestem verdien av dempingskonstanten a.

Oppgave 3

En kloss med masse m som er nedsenket i en væske med dempingskonstant b, svinger horisontalt i en fjær med fjærkonstant k. Klossen påvirkes av en periodisk ytre kraft $F(t) = F_0 \sin(\omega t)$, der kraftas vinkelfrekvens ω kan justeres. Se figuren under.

La A_{\max} være klossens amplitude når ω er lik systemets resonansfrekvens ω_0 . Systemets dempingskonstant er gitt ved $b=\frac{1}{5}\cdot m\omega_0$.

Hva blir amplituden når $\omega=rac{\omega_0}{2}$ ("halvveis til resonansfrekvensen")? Uttrykk svaret ved $A_{
m max}$.

Oppgave 4

Figuren under viser resonanskurven for et dempet svingesystem i form av en masse m som svinger i en fjær, som påvirkes av en periodisk ytre kraft $F(t)=F_0\sin(\omega t)$. Kurven viser amplituden $A(\omega)$ som funksjon av vinkelfrekvensen ω til den ytre kraften.

Graden av demping i systemet bestemmes av dempingskoeffisienten $\frac{b}{2m}$. Bestem verdien for $\frac{b}{2m}$ ut fra figuren. [Hint: Les av amplitudeverdier for $\omega=0$ og $\omega=\omega_0$, og bruk uttrykket for $A(\omega)$. Merk at du kun skal finne forholdet $\frac{b}{2m}$; ikke b og m separat.]