기계학습(Machine Learning)?

목차

- 기계학습(Machine Learning)?
- 학습방법에 따른 분류
- 알고리즘에 따른 분류

기계학습(Machine Learning)?

● 기계학습(Machine Learning)

- ➤ 인공지능(Artificial Intelligence)분야, 1950년대 연구 시작
- ▶ 빅 데이터 분석과 Deep Learning 이슈로 최근 새롭게 조명
- ➤ data에 내재된 패턴, 규칙, 의미 등을 알고리즘을 기반으로 컴퓨터가 스스로 학습하고, 이를 토대로 new data 결과 예측 프로그래밍

학습방법에 따른 분류

● 학습방법에 따른 기계학습 분류

- ➤ 지도학습((supervised learning)
 - ✓ 학습데이터가 정해짐
 - ✔ 예 : 동물 인식(cat, dog) : 레이블이 있는 상태에서 학습
- ➤ 비지도학습((unsupervised learning)
- 월마트. ✓ 특정 레이블이 없는 상태 : 구글 뉴스(유사한 뉴스 그룹핑)
- 넷플릭스. ✓ 레이블이 없는 데이터를 학습하여 패턴 인식 : 유사단위 그룹핑
 - ▶강화학습(reinforcement learning)
 - ✓ 지도학습 + 비지도학습
 - ✓ 기본 입출력 정보 제공, 출력 결과에 보수(reward) 정보 제공

알파고.

테트리스 강화학습 예제.

Supervised learning

- ▶ 일반적인 문제
- ▶이미지 레이블링
- ▶이메일 ham/spam 분류
- ▶ 시험 점수 예측

• Training data set

▶ 레이블이 정해진 값(y)

X	у
2,6,5	1
3,7,4	2
3,6,9	3

● 데이터 셋 유형에 따른 Regression 분류

➤ 연속형(0~100): Liner regression

pass and non-pass : Logistic regression(classification)

➤ A,B,C,D,F: multi label 분류

회기분석은

데이터량이 아주 많을 때

성능이 나온다.

트랜드 분석용.

Linear regression

▶ 공부시간과 점수 관계

hours	score
10	90
9	80
5	50
3	30

Logistic regression(classification)

hours	score	5/1	Regres	ssion
10 9 5 3	pass pass fail fail		x= 7	0.73

multi label classification

hours	score	Regression
10	Α	
9	В	
5	D	x= 7
3	F	

multi label classification

- 데이터들을 정해진 몇 개의 부류(class)로 대응시키는 문제

분류 함수

- 학습 데이터를 잘 분류할 수 있는 함수
- 수학적 함수일 수도 있고, 규칙일 수도 있음

분류기(classifier)

 분류모델 알고리즘이 적용된 함수를 이용하여 데이터를 분류하는 프로그램

● classification 모델 알고리즘

- 결정트리(decision tree) 알고리즘
- 최근접이웃 K-근접이웃 (K-nearest neighbor, KNN) 알고리즘
 - 서포트 벡터 머신(Support Vector Machine, SVM) 경사하강법
 - 임의 숲(random forest) 임의숲/에이다부스트 두개는 앙상블 모델
 - 에이다부스트(AdaBoost) 하나의 좋은 예측기가 < 많은 평범한 예측기
 - 확률 그래프 모델 (probabilistic graphical model)

● 혼돈(confusion) 매트릭스 : 예측치와 관측치 비교 표

관측치

		NO	YES	
예 측 치	NO	참 부정(TN)	거짓 긍정(FP)	
	YES	거짓 부정(FN)	참 긍정(TP)	

비지니스 목적에 따라 정밀도나 재현율 뭐가중요한지...ㅎ..

정분류율(Accuracy) : 알고리즘의 성능평가 척도 오분류율(Inaccuracy) : 알고리즘의 오차 비율

정확률(Precision): 알고리즘이 Yes로 판단한 것 중에서 실제로 Yes인 비율 재현율(Recall): 실제값이 Yes인 것 중에서 알고리즘이 Yes로 판단한 비율

F 측정치(F measure) : 정확률과 재현율을 동시에 고려하는 측정치

- 과적합(overfitting)과 부적합(underfitting)
 - 과적합
 - ✓ 학습 데이터에 대해서 지나치게 잘 학습된 상태
 - ✓ 오류나 잡음을 포함할 개연성이 큼
 - ✓ 학습되지 않은 데이터에 대해 좋지 않은 성능을 보일 수 있음
 - 부적합
 - ✓ 학습 데이터를 충분히 학습하지 않은 상태

● 모델 성능평가 방법

- K-겹 교차검증(k-fold cross-validation)
 - ✓ 전체 데이터를 k 등분
 - ✓ 각 등분을 한번씩 테스트 데이터로 사용하여, 성능 평가
 - ✓ 평가 결과 평균값 선택

데이터를 한꺽번에 학습시키면 경사하강때 오차가생김.

데이터를 쪼개서 학습 ->더 일반적인 데이터

● 비지도학습

- 컴퓨터에게 답을 알려줄 수 없다.
- 훈련용 데이터를 통해 함수를 추론할 수 없다
- 컴퓨터가 알아서 분류를 하고, 의미 있는 값 제공
- 예측 등이 아닌, 데이터가 어떻게 구성되어 있는지 밝히는데 목적

Reinforcement learning

- - 이름 그대로 자신이 수행한 행동에 대하여 보상값을 받아 조금씩 좋은 방향으로 행동을 강화시키는 학습방법
 - 현재 상태에서 최적의 행동을 계산을 통해 결정하지 않고, 여러 번의 시행착오에 기반한 경험에 의해 각 상태에서의 최적의 행동을 조금씩 학습해 나간다.
 - 스스로 경험을 통해 자율적으로 학습

observation

알고리즘에 따른 분류

● 알고리즘에 따른 기계학습 분류

	분류	알고리즘	적용분야
회귀모델	회귀모델	선형회귀, 회귀트리(CART)	수치예측
		로지스틱회귀	분류측
		최근접 이웃(kNN)	
도		나이브 베이즈(NB)	분류예측
		결정트리(DT)	
	블랙박스모델	앙상블(랜덤 포레스트(RM), XGBoost) 서포트 벡터 머신(SVM)	다중 용도
비	군집모델	K평균 군집화	군집 예측
지 도	연관모델	연관규칙	연관 예측
강 화	인공신경망	ANN, DNN, CNN, RNN	다중 용도

인공신경/딥신경/이미지분석/?