УДК 551.71/.72 (477 + 470.22 + 470.323)

И.А. САМБОРСКАЯ

МИНЕРАЛОГО-ПЕТРОГРАФИЧЕСКИЕ ОСОБЕННОСТИ ЭНДЕРБИТОВ ВАСИЛЬКОВСКОГО КАРЬЕРА (СЕВЕРНАЯ ЧАСТЬ ОРЕХОВО-ПАВЛОГРАДСКОЙ СТРУКТУРЫ УКРАИНСКОГО ЩИТА)

Эндербиты Васильковского карьера по химическому составу соответствуют тоналитам и трондьемитам. Ромбический пироксен эндербитов представлен низкокальциевым высокожелезистым (f = 55, 17%) гиперстеном ($\text{En}_{44} \text{Wo}_2 \text{Fs}_{54}$). Плагиоклаз соответствует олигоклазу ($\text{An}_{20} \text{Ab}_{79} \text{Or}_1$) с антипертитовыми вростками калиевого полевого ишата. От палеоархейских эндербитов Днестровско-Бугского блока исследуемые эндербиты отличаются меньшим содержанием нормативного анортита.

ВВЕДЕНИЕ

Эндербиты являются характерной составной частью раннедокембрийских высокометаморфизованных комплексов Земли. В пределах Украинского щита (УЩ) они установлены на Побужье [1, 6, 7], Орехово-Павлоградской структуре (ОПС, Новопавловский участок) [8] и других участках. Они изучались И.С. Усенко, М.И. Безбородько, И.Б. Щербаковым, Н.П. Семененко, О.И. Слензаком, А.Г. Ткачуком, Е.В. Бибиковой, И.М. Лесной, С.Г. Кривдиком и другими исследователями, которые высказывали разные гипотезы по поводу генезиса этих пород. Эндербиты могли образоваться за счет разных за генезисом исходных полевошпатовых пород — андезитов, дащитов, риолитов, плагиогранитоидов (тоналитов, трондьемитов), основных кристаллосланцев.

Эндербито-гнейсы И эндербиты пользуются значительным распространением в новопавловской толще [4, 5]. Все они содержат гиперстен 5-30 %, плагиоклаз 20-60 % и кварц 5-50 %. В северной части ОПС останцы пород этой толщи сохранились среди мигматитов мезоархейского и палеопротерозойского возраста. Они слагают линейно вытянутые полосы шириной от 100 до 1500 м и протяженностью до 10-14 км и приурочены к узким вытянутым антиклинальным складкам. В составе Новопавловской толщи выделяются метаморфизованные ультрабазиты, амфиболиты и различные по составу гнейсы. Последние слагают до 2/3 ее разреза. Ее мощность в районе Васильковского профиля около 2000 м. Породы новопавловской толщи обнажаются в Васильковском карьере. Останцы эндербитов встречаются вместе с останцами тоналитов, двупироксеновых кристаллосланцев, пироксенитов и тоналитов в северной части карьера.

РЕЗУЛЬТАТЫ ИССЛЕДОВНИЯ И ИХ ОБСУЖДЕНИЕ Минералого-петрохимические особенности эндербитов Васильковского карьера

Эндербиты – крупнозернистые массивной текстуры, структура их аллотриоморфнозернистая (рис. 1, 2). Полосчатость их выражена слабо и наблюдается только в нескольких шлифах, проявлена в параллельном расположении биотита. Главным породообразующим минералом является плагиоклаз-микроантипертит (около 70 %). В ассоциации с ним находятся ромбический пироксен, содержание которого в шлифах варьирует от 0 до 10 %, кварц (5-20 %), присутствует в варьирующих количествах биотит (от 2 до 10 %).

Плагиоклаз представлен олигоклазом (An₂₀Ab₇₉Or₁). Химический состав его приведен в табл. 1. Кристаллы плагиоклаза имеют ксеноморфную и таблитчатую

форму. Он насыщен антипертитовыми вростками калиевого полевого шпата (КПШ) прямоугольной и бисерной форм. Иногда кристаллы плагиоклаза содержат округлые мелкие включения кварца. Многочисленные антипертитовые вростки КПШ располагаются параллельно спайности плагиоклаза. КПШ самостоятельных зерен в породе не образует. Ромбический пироксен наблюдается в виде ксеноморфных и призматических кристаллов (7 × 4 мм), слабо плеохроирует. По химическому составу он соответствует низкокальциевому высокожелезистому (f = 55,17 %) гиперстену $(En_{44}Wo_2Fs_{54})$ (табл. 1). Кварц присутствует в двух генерациях: мелкий (в основном это округлые включения в плагиоклазе) и крупный ксеноморфной формы (в межзерновом пространстве породы). Биотит формирует самостоятельные красновато-бурые таблитчатые кристаллы. Рудный минерал (магнетит, табл. 1) в межзерновом пространстве породы встречается очень редко, имеет изометричную и ксеноморфную формы зерен. Апатит имеет мелкие тонкопризматические кристаллы и расположен на границе между зернами других минералов. Местами встречаются небольшие участки породы, заполненные новообразованным минералом - амфиболом. Амфибол имеет зерна ксеноморфной формы, плеохроирует от светло-зеленого до зеленого цвета.

По химическому составу эндербиты относятся к нормальному петрохимическому ряду кислых пород натриевой и калиево-натриевой серий [2] (табл. 2). Характеризуются весьма высокой глиноземистостью (аl' = 2,14-3,50), коэффициент железистости (Кф) равен 64,06-72,13 %. В их нормативном составе (СІРW) (табл. 3) рассчитался нормативный кварц (14,44-23,30 %), ортоклаз (5,97-7,12 %), альбит (32,54-49,51 %), андезин (14,33-24,49 %), диопсид (0-4,58 %), гиперстен (8,79-11,63 %), магнетит (0,90-1,19%) и ильменит (0,23-0,76 %). По химическому составу эндербиты близки к ранее изученным палеоархейским тоналитам возрастом 3500 млн лет [9] (табл. 2).

На диаграмме О'Коннора-Баркера, построенной по соотношению нормативных анортита, альбита и ортоклаза (An-Ab-Or), фигуративные точки составов эндербитов Васильковского карьера попадают в поле тоналитов и одна точка (обр. 8/233а) – в поле трондьемитов (рис. 3). От эндербитов и эндербито-гнейсов Днестровско-Бугского блока [6, 10] эндербиты Васильковского карьера отличаются меньшим содержанием нормативного анортита. На диаграмме AFM точки составов исследуемых эндербитов расположены в поле известково-щелочных пород и близки к точкам состава

© И.А. Самборская 2010

Рис. 1. Эндербит (обр. 8/233а, с. Васильковка, карьер РДРСУ, северный забой). Платиоклаз содержит антипертитовые вростки КПШ. Николи !((а), николи + (б). Увел. 80.

Таблица 1. Результаты микрозондового анализа минералов из эндербита (обр. 8/233a) Васильковского карьера

Компонент, %	Минералы				
	Ортопироксен	Плагиоклаз	Магнетит		
SiO ₂	51,24	61,28	Не опр.		
TiO ₂	0,05	-	0,03		
Al ₂ O ₃	0,94	23,91			
FeO	31,82	. 0,47	92,73		
МпО	0,63	0,04	0,03		
MgO	14,47	0,02	-		
CaO	0,70	6,40	Не опр.		
Na₂O	Не опр.	7,02	Не опр.		
K ₂ O	0,04	0,24	Не опр.		
Cr ₂ O ₃	Не опр.	Не опр.	-		
NiO	Не опр.	Не опр.	Не опр.		
V ₂ O ₅	Не опр.	Не опр.	0,08		
Сумма	99,89	99,38	92,87		

Примечание. Микрозондовые анализы выполнены на приборе ЈХА-5 в ИГМР им. Н.П. Семененко НАН Украины, аналитик Л.В. Кануникова.

Рис. 2. Эндербит (обр. Щ-4, с. Васильковка, карьер РДРСУ, северный забой). Плагиоклаз содержит антипертитовые вростки КПШ. Николи il (а), николи + (б). Увел. 80.

Таблица 2. Химический состав пород из карьера с. Васильковка

Окислы, %	Номера анализов				
	1	2	3	4	
SiO ₂	68,28	63,50	64,91	66,76	
TiO₂	0,40	0,29	0,12	0,66	
Al ₂ O ₃	15,24	18,81	15,87	14,85	
Fe ₂ O ₃	2,03	0,44	0,10	0,72	
FeO	2,69	3,00	4,45	2,80	
MnO	0,03	0,02	0,03	0,05	
MgO	2,39	1,93	1,87	1,36	
CaO	3,49	5,12	4,25	4,95	
Na₂O	3,83	4,62	5,78	4,70	
K ₂ O	1,20	1,00	1,08	1,90	
Ѕобщ	0,02	0,05	0,02	Сл.	
P ₂ O ₅	0,14	0,18	0,25	0,18	
H ₂ O	0,07	0,04	0,11	0,01	
∏.n.n.	0,37_	0,81	0,90	0,76	
Сумма	100,18	99,81	99,74	99,70	
Na ₂ O/K ₂ O	3,20	4,62	5,40	2,47	
Na ₂ O+K ₂ O	5,03	5,62	6,86	6,60	
Кф	66,39	64,06	70,87	72,13	
al'	2,14	3,50	2,47	3,04	

Примечание. 1, 2, 3 – эндербит: 1 – обр. Щ-4; 2 – обр. Щ-8; 3 – обр. 8-233а; 4 – тоналит, обр. 99-163 [9]. Химические анализы выполнены в лаборатории ИГМР им. Н.П. Семененко НАН Украины.

эндербитов Днестровско-Бугского блока [6] и Новопавловского участка ОПС (скв. 3, гл. 119,4 м [3]) (рис. 4).

выводы

Эндербиты Васильковского карьера по химическому составу соответствуют тоналитам и трондьемитам. Ромбический пироксен эндербитов соответствует низкокальциевому высокожелезистому (f = 55,17 %) гиперстену ($En_{44}Wo_2Fs_{54}$). Плагиоклаз представлен олигоклазом ($An_{20}Ab_{79}Or_1$) с антипертитовыми вростками калиевого полевого шпата. От эндербитов и эндербитогнейсов Днестровско-Бугского блока эндербиты Васильковского карьера отличаются меньшим содержани-

Таблица 3. Нормативный состав пород (CIPW)

Норм.	Номера анализов				
минал	1	2	3	4	
Qtz	28,30	17,70	14,44	20,66	
Or	7,12	5,97	6,46	11,35	
Ab	32,54	39,52	49,51	40,20	
An	16,47	24,49	14,33	13,95	
Di	-	-	4,48	8,03	
Ну	11,63	9,16	8,79	3,10	
01		-	-	-	
Mt	1,19	0,90	1,14	1,00	
Ilm	0,76	0,56	0,23	1,27	
Ар	0,31	0,40	0,55	0,40	

Примечание. Привязки образцов даны в табл. 2. Символы минералов (здесь и на рис. 1–3): Ab – альбит, Amf – амфибол, An – андезин, Ap – апатит, Di – диопсид, Hy – гиперстен, Ilm – ильменит, Mt – магнетит, OI – оливин, Opx – ортопироксен, Or – ортоклаз, PI – плагиоклаз, Px – пироксен, Q – кварц.

ем нормативного анортита. Эндербиты Васильковского карьера находятся в одинаковой геологической позиции с ранее изученными палеоархейскими тоналитами и имеют близкий химический состав, что позволяет предполагать их близкую генетическую связь.

Рис. 3. Диаграмма An-Ab-Or O'Коннора-Баркера для: 1 — эндербитов Днестровско-Бугского района [6]; 2 — эндербитов Васильковского карьера; 3 — эндербит Новопавловского участка [3]; 4 ~ тоналит Васильковского карьера [9].

Рис. 4. Диаграмма AFM для эндербитов: 1 — Васильковского карьера, 2 — Днестровско-Бугского района [6]; 3 — Новопавловского участка [3]. Поля: I — толеитовая серия, II — известково-щелочная.

ЛИТЕРАТУРА

1. Бибикова Е.В. Древнейшие породы Земли: изотопная геохронология и геохимия изотопов // Мінерал. журн. – 2004. – 26. – № 3 – С. 13–20.

2. Классификация и номенклатура магматических горных пород: Справ. пособие / Богатиков О.А., Гоньшакова В.И., Ефремова С.В. и др. — М.: Недра, 1981. — 160 с.

3. Кривдік С.Г., Загнітко В.М., Томурко Л.Л. та ін. Геохімічні особливості ендербітів Українського щита та деякі міркування щодо їхнього петрогенезису // Минерал. журн. – 2006. – 28. – № 3 – С. 10–26.

- 4. Лобач-Жученко С.Б., Егорова Ю.С., Юрченко А.В. и др. Биотит-гранатовые гнейсы результат структурно-метаморфической переработки древних тоналитов: состав минералов, характеристика и возраст процесса (Васильковский участок Орехово-Павлоградской шовной зоны) // Мінерал. журн. 2009. Т. 31. № 1. С. 3—10.
- 5. Некряч А.И. Комплексное геолого-геофизическое изучение докембрийского складчатого пояса на приме-

ре Орехово-Павлоградской зоны Украинского щита // Геологическая съемка сложно дислоцированных комплексов / В.Д. Вознесенский, Н.В. Горлов, А.В. Доливо-Добровольский и др. – Л.: Недра, 1980. – С. 159–168.

6. Лесная И.М. Геохронология чарнокитоидов По-

бужья. – Киев: Наук. думка, 1988. – 136 с.

7. Щербак Н.П., Артеменко Г.В., Лесная И.М., Пономаренко А.Н. Геохронология раннего докембрия Украинского щита (архей). – Киев: Наук. думка, 2005. – 244 с.

8. Щербак Н.П., Бартницкий Е.Н., Бибикова Е.В. и др. Ранняя кора Украинского щита (состав и возраст) // Ранняя кора: ее состав и возраст). – М.: Наука, 1991. – С. 122–151.

9. Щербак Н.П., Бибикова Е.В., Лобач-Жученко С.Б., Артеменко Г.В, Пресняков С.Л. Палеоархей восточной части Украинского щита по данным U-Pb метода (3,6-3,2 млрд лет)// Мінерал. журнал. −2009. −31. −№ 3. −С. 3–10.

10. Щербаков И.Б. Петрография докембрийских пород центральной части Украинского щита. – Киев: Наук. думка, 1975. – 279 с.

РЕЗЮМЕ

Ендербіти Васильківського кар'єру за хімічним складом відповідають тоналітам і тронд'ємітам. Ромбічний піроксен ендербітів представлений низкокальцієвим високозалізистм (f = 55,17 %) гіперстеном ($En_{44}Wo_2Fs_{54}$). Плагіоклаз відповідає олігоклазу ($An_{20}Ab_{79}Or_1$) з антипертитовими вростками калієвого польового шпату. Від палеоархейських ендербітів Дністровсько-Бузького мегаблоку досліджувані ендербіти відрізняються меншим вмістом нормативного анортиту.

SUMMARY

Enderbites of Vassilkovka quarry for chemical composition correspond tonalites and trondjemites. Orthopyroxene enderbites concept to low-calcium highferriferouz (f = 55.17 %) hypersthene (En₄₄Wo₂Fs₅₄). Plagioclase presented oligoclase (An₂₀Ab₇₉Or₁) with antiperthitic ingrowths of potassium feldspar. From paleoarhean enderbites of Dniester-Bug megablock studied differ enderbites lower content of normative anorthite.

Институт геохимии, минералогии и рудообразования имени Н.П. Семененко НАН Украины, г. Киев

Поступила в редакцию 15.01.2010 г.