## Arc Length Function

(riven a function f(t) and starting point (a, f(a)). the arclength function str) is defined:

\* this is just the "arc-length so far" function \*

Example Find the arc length function for the curve  $Y=x^2-\frac{1}{8}\ln x$  taking (1,1) as the starting point.  $\frac{dy}{dx}=2x-\frac{1}{8x}$ 

Are length: 
$$S(x) = \int_{1}^{X} \sqrt{1 + (2t - \frac{1}{8t})^{2}} dt$$
  
=  $\int_{1}^{X} \sqrt{1 + (4t^{2} - \frac{1}{2} + \frac{1}{64t^{2}})} dt$   
=  $\int_{1}^{X} \sqrt{4t^{2} + \frac{1}{2} + \frac{1}{64t^{2}}} dt$  this factors:  
=  $\int_{1}^{X} \sqrt{4t^{2} + \frac{1}{2} + \frac{1}{64t^{2}}} dt$   $(2t + \frac{1}{8t})^{2}$   
=  $\int_{1}^{X} 2t + \frac{1}{8t} dt$   $(2t + \frac{1}{8t})^{2}$ 

8

Now we could use our arc length function.

Arc Length from 
$$x=1$$
 to  $x=5$ :  $s(5)=25+\frac{1}{8}\ln 5-1$   
(1  $x=1$  to  $x=7$ :  $s(7)=49+\frac{1}{8}\ln 7-1$ 





$$\pi r_2(l+l_1) - \pi r_1 l_1 = \pi r_2 l + \pi r_2 l_1 - \pi r_1 l_1$$

T(((litl)) by

similartriangles

Now let's go back to our estimation of surface area.

- · We want to take an "infinite" # of bands to estimate surface area.
- · As this happens, their width becomes infinitely thin.



2TCrl

$$l = length of line = \sqrt{1 + (f'(x))^2} dx$$

Surface Area = 
$$\int_{a}^{b} 2\pi f(x) \sqrt{1 + (f'(x))^{2}} dx$$