一、算法流程

1、数据流图

2、算法流程文字描述

- 2.1 视觉词汇表建立
 - 2.1.1 选取所有图像/随机选取图像
 - 2.1.2 计算 SIFT 特征
 - 2.1.3 对特征做 KMEANS 聚类,聚类中心作为视觉词汇
 - 2.1.4 保存词汇表以供使用
- 2.2 分层进行匹配得到图像表示
 - 2.2.1 分层分块计算 SIFT
 - 2.2.2 计算与词汇表中词汇距离(欧式距离)
 - 2.2.3 与距离最小(若干个)的词汇达成匹配
 - 2.2.4 加权匹配并拼接直方图(层数越大,权重越大)
 - 2.2.5 归一化
- 2.3 SVM 分类
 - 2.3.1 使用 k 折交叉验证进行 SVM 分类
 - 2.3.2 评估并保存模型参数以供使用

二、核心函数功能

1、从每个类别中随机抽取指定数量的图像并提取其 SIFT 特征

get_random_sift_features(data_dir, num_per_class=100)

参数	data_dir(str):数据总路径。
	num_per_class(int):每类抽取的用于构建视觉词表的图像数。默认为 100。
返回值	np.array(all_features)(ndarray):所有特征的 SIFT 描述符数组。用于词汇聚类。
注意	使用 random.sample(images, num_per_class)实现随机抽样;若类内图片不足
	num_per_class 张,则选取全部。

2、计算指定层 SIFT 特征描述符 extract_sift_features_v2(image_path, layer_id)

参数	image_path (str): 图片路径。		
	layer_id(int): 当前层号([0,L-1])。		
返回值	descriptors (list): SIFT 描述符列表,最大长度为当前层图像的块数		
	((2**(layer_id))**2)。		
注意	按维度从(0,0)开始等分,剩余边缘部分舍弃。		

3、直方图表示的软分配索引项获取 get_closest_cluster_indices(distances, k=5, like=50)

参数	distances(list): SIFT 特征与 K 个词汇之间的距离表。		
	k (int): 最多允许分配的词汇数。默认为 5。		
	like (int): 允许分配的词汇距离与最小距离的最大差值。默认为 50。		
返回值	closest_indices(list):可以平均分配的词汇项的索引。		

结合 2、3,利用 bag_of_words_representation_v3(image_path, visual_vocabulary, L=2)函数逐层计算 SIFT 特征描述符、比对词汇距离、选择最小的 x(<=k)个词汇平均分配到直方图中并依次拼接,返回最终标准化的 histogram 用于 SVM 分类。

三、函数参数分析

1、视觉词汇数 K

默认为 200。一定范围内, K 越大, 对图像描述越细粒度, 分类效果越准确。

2、特征层数 L

取值大于等于 1, 默认为 2。L 越大, 特征表示越细粒度, 越关注图像场景的局部信息。

四、实验结果

1、SIFT 提取示例

2、K 不变

(1) 改变训练视觉词汇的图像数

①选取全部图像提取 SIFT 特征得到聚类中心, L=1:

Performing image classification...
Accuracy: 0.6142697881828316
Accuracy: 0.5819397993311036
Accuracy: 0.5997770345596433
Accuracy: 0.6031215161649944
Accuracy: 0.5719063545150501
Cross-validation scores: [0.6142697881828316, 0.5819397993311036, 0.5997770345596433, 0.6031215161649944, 0.5719063545150501]
Mean accuracy: 0.5942028985507246
Saving model parameters...

②每类随机选取 100 张做聚类, L=1(略差于选取全部, 但差别不大):

	precision	recall	fl-score	support
0	0.46	0.46	0.46	46
1	0.75	0.92	0.83	52
	0.33	0.23	0.27	56
3	0.37	0.24	0.29	42
2 3 4 5	0.54	0.47	0.50	75
5	0.50	0.65	0.56	74
6	0.74	0.93	0.82	57
7	0.70	0.58	0.63	57
8	0.65	0.63	0.64	65
9	0.53	0.72	0.61	57
10	0.73	0.43	0.54	81
11	0.42	0.56	0.48	54
12	0.73	0.49	0.59	75
13	0.48	0.67	0.56	45
14	0.48	0.51	0.49	61
accuracy			0.56	897
macro avg	0.56	0.57	0.55	897
weighted avg	0.57	0.56	0.56	897

Accuracy: 0.5641025641025641 Cross-validation scores: [0.5808249721293199, 0.5774804905239688, 0.602006688963 2107, 0.6020066889632107, 0.5641025641025641] Mean accuracy: 0.5852842809364548

(2) 直方图表示的分配方式与层数 L

在上例基础上,改变分配方式为平均软分配,L=1:

	precision	n recall	f1-score	support
	0 0.28	0.30	0.29	43
	1 0.78	0.86	0.82	50
	2 0.30	0.26	0.28	50
	1 0.78 2 0.30 3 0.39	0.27	0.32	44
	4 0.45 5 0.58	0.40	0.41	57
	5 0.58	0.64	0.59	74
	6 0.80	0.94	0.86	64
	7 0.62	2 0.70	0.65	53
	8 0.5	0.61	0.55	62
	8 0.50 9 0.70	0.77	0.75	93
1	0.6	7 0.47	0.55	79
1	1 0.63	0.60	0.60	52
1	2 0.62	2 0.57	0.59	74
1	3 0.52	2 0.56	0.54	43
1	4 0.50	0.44	0.48	59
accurac	Y		0.58	897
macro av		0.56	0.55	897
weighted av		7 0.58	0.57	897

Cross-validation scores: [0.6098104793756968, 0.5919732441471572, 0.598662207357 8596, 0.6187290969899666, 0.5774804905239688]
Mean accuracy: 0.5993311036789297

有提升。

其他条件不变时,时间和平均准确率随 L 变化如下表:

Time/s / ACC/%	Avg_soft_5	Hard	Δ
L=1	586 / 59.93	504 / 58.24	82 / 1.69
L=2	1143 / 63.70	992 / 62.30	151 / 1.4
L=3	3704 / 63.95	3449 / 62.27	255 / 1.68

可以认为,在其他条件不变时,平均软分配带来的时间开销处于可接受范围内;对于 L 较小时对模型泛化能力改善效果最好;从 L=2 到 L=3 模型平均分类准确率提升不大。

(3) 聚类算法

直接 200 聚类大约 3 小时,minibatch 聚类(初始默认 kmeans++)10s:

Creating visual vocabulary...
Build vocab time 10.052483797073364
Saving model parameters...

Minibatch 下 L=1 的软分配结果:

Cross-validation scores: [0.6086956521739131, 0.6042363433667781, 0.599777034559 6433, 0.6176142697881828, 0.5942028985507246]
Mean accuracy: 0.6049052396878484

时间成本显著降低,分类性能几乎无影响。

(4) 分类算法

上述实验结果表明,当其他条件不变时(K=200,L=2,SOFT,Minbatch),使用单个 SVM 分类准确率 63.70%,若使用 5 个 SVM 组合的 Adaboost,此时分类准确率降低到 10%以下,考虑可能出现过拟合——在当前特征表示下,简单的分类器可以做出较好的效果。

(5) SVM 核

上述实验默认使用高斯核,若在其他条件不变情况下,使用线性核,此时分类准确率也降低到10%以下。

3、L 不变

L=2, SOFT, Minibatch	Vocab_time/s	Data_time/s	Mean_acc/%
K=50	3.83	1000	59.44
K=100	32.85	1010	61.65
K=200 (对照)	10.05	1143	63.70
K=300	16.71	1185	63.99
K=500	22.62	1535	64.59

可以进一步验证,Minibatch 不稳定(Vocab_time 与 K 值无明显相关关系)也表现在聚类时间上,但整体来讲较直接 kmeans 依旧能够显著降低词表构建时间成本,且对最终结果影响不大。

K 值在该条件下,与 Data_time 呈线性相关,但影响不是很大;在上述实验条件变化下,与准确率也呈线性相关。可以认为,本任务中,选取 K 在 200 及以上是合适的。

K 若继续扩大到 700/1000/1400(选取的用于构建词汇表的图像最大数),有如下结果:

L=2, SOFT, Minibatch	Vocab_time/s	Data_time/s	Mean_acc/%
K=700	35.97	1988	64.79
K=1000	51.77	3290	65.33
K=1400	74.88	4273	65.37

虽然准确率仍在提升,但速度放缓,时间代价也显著增加。综合来看 K=200 是合适的。

4、层级不做加权分配,只做简单累加

原来,我们为每个层级分配 1/(2**(L-1))的权重,当前层的特征是当前层检测到的特征减去更高一级的特征。而若我们不仔细做加权,只是简单地将每层检测到的特征做拼接,此时依旧满足层级高的特征在直方图中出现次数更多(因为在高层级出现的特征在低层级再次出现时会被重复统计),可以认为跟论文作者思路一致,但计算量相对较少。对比结果:

K=200, L=2, SOFT, Minbatch	Data_time/s	Mean_acc/%
原论文方法	1143	63.70
简单累加	1070	63.46

速度更快,准确率有所下降,但总体变化不大。

综上,在当前数据集下,考虑:每类随机选取 100 张构建词表,Minibatch K-means 做 K=200 聚类,层数 L=2,各层直方图软分配+简单累加拼接,SVM 选用高斯核(rbf)做图像分类。

	precision	recall	F1-score	accuracy
Macro avg	0.62	0.63	0.62	0.6388
Weight avg	0.64	0.64	0.63	

(注意,由于使用交叉验证筛选,没有按要求建议的数据集划分来实现模型训练。)