Universidad de Guadalajara

Thompson Rivers University Seminar

Introduction to Machine Learning

Dr. Carlos Villaseñor

Day 1 (Dr. Carlos Villaseñor)

- Exploring data with Pandas
- Introduction to machine learning (ML)
- Paradigms of learning
- Prototypical problems

Rest

- Linear Regression
- Regression performance metrics
- Scaling data and Polynomial regression
- Overfit and underfit

Rest

- Nonlinear regression (DT, SVM, KNN, MLP)
- Hyperparameter search

Day 2 (Dr. Carlos Villaseñor)

- Classification problem
- Logistic regression
- Nonlinear classification (DT, SVM, KNN, MLP)

Rest

- Classification metrics
 - Confusion matrix
 - Classification report

Rest

- Non supervised learning
 - Clustering techniques (Kmeans, Spectral clustering, DBSCAN)
 - Silhouette score
 - Dimensionality reduction (PCA, t-SNE)

Day 3 (Dr. Carlos Villaseñor)

- Introduction to neural networks
 - Biological neuron
 - Artificial neuron
 - Perceptron algorithm

Rest

- Gradient Descent
- Linear Neurons and Logistic neurons (MSE and BCE)
- One-layer Network (Softmax and CCE)
- How to model the last layer of a net

Rest

- Multi-layer Perceptron
- Keras/TensorFlow framework

Day 4 (Dr. Javier Gómez)

- Introduction to digital image processing
- Introduction to convolutional neural networks

Day 5 (Dr. José Hernández)

• Practice machine learning with a real problem

Course repository

https://github.com/Dr-Carlos-Villasenor/TRSeminar.git

Guidelines of the course

- The first to days of the course we are going to avoid the mathematical detail of the ML models, instead we are going to focus on the ML practice.
- In the third day, we are going to explore neural networks with some mathematical detail.
- I've included some random facts about Mexico!!.

Libraries to learn

https://pandas.pydata.org/

https://scikit-learn.org/

What to read after this lectures?

Bishop, C. M., & Nasrabadi, N. M. (2006). Pattern recognition and machine learning (Vol. 4, No. 4, p. 738). New York: springer.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.

Géron, A. (2022). Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. "O'Reilly Media, Inc."..

What to read after this lectures?

Goodfellow, I., Bengio, Y., & Courville, A. (2016). *Deep learning*. MIT press.

Haykin, S. (2009). *Neural networks* and learning machines, 3/E. Pearson Education India.

Stevens, E., Antiga, L., & Viehmann, T. (2020). *Deep learning with PyTorch*. Manning Publications.

Introducción a pandas

Pandas (**Pan**el **da**ta) is a Python library focused on Data manipulation an analysis. Pandas offers a data structure (DataFrame) and Time series.

Let's get hands on! Open TRS01_Pandas.ipynb from the repository.

Jericallas!

Jericalla is a Mexican dessert from the city of Guadalajara, it is made of egg, milk, vanilla, cinnamon and sugar.

Ask for one: "Quiero una jericalla"

• Develop a program that predicts if a person is overweighted

```
def overweight(mass_kg, height_m):
bmi = mass_kg / height_m**2
if bmi < 25:
    return True
else:
    return False</pre>
```


• Tom Mitchell definition:

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

Tom M. Mitchell Professor at the Carnegie Mellon University

Supervised learning

Non-supervised learning

Ambient ML system

Reinforcement learning

Prototypical problems

		Wished output	
		Categorical	Continuous
Paradigm	Supervised	Classification	Regression
	Non-supervised	Clustering	Dimensionality reduction

Tejuino

Tejuino is a cold fermented beverage made from corn and popularly consumed in the Mexican states of Jalisco, Colima, Nayarit and Oaxaca. Tejuino is usually made from corn dough, the same kind used for tortillas.

Let's take a rest!

Linear Regression

Let's get hands on! Open TRS02_Linear_regression.ipynb

Regression performance metrics

Consider a supervised dataset

$$x^{(i)} \in \mathbb{R}^n, y^{(i)} \in \mathbb{R}$$

$$D = \left\{ \left(x^{(1)}, y^{(1)} \right), \left(x^{(2)}, y^{(2)} \right), \dots, \left(x^{(p)}, y^{(p)} \right) \right\}$$

Mean Absolute Error (MAE)

MAE
$$(y, \hat{y}) = \frac{1}{p} \sum_{i=1}^{p} |y^{(i)} - \hat{y}^{(i)}|$$

Métricas de Desempeño en Regresión

Median Absolute Error (MedAE)

MedAE
$$(y, \hat{y})$$
 = median $(|y^{(1)} - \hat{y}^{(1)}|, \dots, |y^{(p)} - \hat{y}^{(p)}|)$

Mean Squared Error (MSE)

MAE
$$(y, \hat{y}) = \frac{1}{p} \sum_{i=1}^{p} (y^{(i)} - \hat{y}^{(i)})^2$$

Métricas de Desempeño en Regresión

Explained Variance Score (EVS)

$$EVS(y, \hat{y}) = 1 - \frac{var(y - \hat{y})}{var(y)}$$

• R2-score

$$R^{2}(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{p} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=1}^{p} (y^{(i)} - \overline{y})^{2}}$$

Correlation vs causality

Global Average Temperature vs. Number of Pirates

Linear regression

$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Loss
$$(y, \hat{y}) = \frac{1}{2p} \sum_{i=1}^{p} (y^{(i)} - \hat{y}^{(i)})^2$$

Standard scaler

MinMax scaler

Normalizing scaler

$$||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$$

The number of non-zero parameters

The size of the largest parameter

Polynomial Regression

Polynomial Regression

Let's get hands on! Open TRS04_Poly_reg.ipynb

Underfit and overfit

Proving generalization

- Train-set
- Test-set

Train/Test split

Samples	Train-Set	Test-Set
500	75%	25%
2000	80%	20%
10000	90%	10%
100000	98%	2%

Underfit and overfit

[0-1]	Case 1	Case 2	Case 3	Case 4
Train-set	High	Low	High	Low
Test-set	Low	Low	High	High
	Overfit	Underfit	Good Generalization	Miss-match
	Miss-match			

El día de los muertos

Cempasúchil flowers

Let's take a rest!

Non-linear regression

We will review the following ML models

- K Nearest Neighbors (KNN)
- Decision Tree (DT)
- Support Vector Machine (SVM)
- Multi-Layer Perceptron (MLP)

To be a user of these techniques we will experiment with their principal hyper-parameters.

Let's get hands on! Open TRS05_Non_linear_Reg.ipynb

K Nearest Neighbors (KNN)

K Nearest Neighbors (KNN)

- Hyper-parameters:
 - n_neighbors = número de vecinos,
 - weights: {'uniform', 'distance'},
 - algorithm: {'auto', 'ball_tree', 'kd_tree', 'brute'},
 - metric: {'euclidean', 'minkowski'}

Arboles de decisión

Decision Tree

Decision Tree

- Hyper-parameters:
 - max_depth
 - min_samples_split
 - min_samples_leaf

Support Vector Regressor (SVR)

Support Vector Regressor (SVR)

- Hyper-parameters:
 - kernel: {'linear', 'poly', 'rbf', 'sigmoid', 'precomputed'}
 - gamma: {'scale', 'auto'}
 - C: Regularization

Multi-Layer Perceptron(MLP)

FIGURE 4.1 Architectural graph of a multilayer perceptron with two hidden layers.

Multi-Layer Perceptron (MLP)

- Hyper-parameters:
 - hidden_layer_sizes = (100,)
 - activation: {'identity', 'logistic', 'tanh', 'relu'}
 - solver: {'lbfgs', 'sgd', 'adam'}
 - learning_rate: {'constant', 'invscaling', 'adaptive'}
 - max_iter: None

Real example of a regressor

Let's get hands on! Open TRS06_Reg_real_example.ipynb

