Seminar 11: Effektstärke

MSc Albert Anoschin & Prof. Matthias Guggenmos Health and Medical University Potsdam

Effektstärkemaße

- Standardisierte Maße für die Stärke eines Mittelwertsunterschieds oder die Stärke eines Zusammenhangs.
- Ermöglichen Vergleichbarkeit zwischen Studien und Messungen.

Do men become addicted to internet gaming and women to social media? A metaanalysis examining gender-related differences in specific internet addiction

<u>Wenliang Su</u>^a ♀ ⊠, <u>Xiaoli Han</u>^a, <u>Hanlu Yu</u>^a, <u>Yiling Wu</u>^a, <u>Marc N. Potenza</u> b c d ♀ ⊠

Effektstärkemaße: Cohen's d für eine Einzelmessung

Sie untersuchen, ob Psychologie-Studierende intelligenter sind als die Allgemeinbevölkerung. Sie wissen, dass der durchschnittliche IQ in der Bevölkerung 100 beträgt. Sie messen den IQ in Ihrer Stichprobe von Psychologie-Studierenden und erhalten $\bar{x}=109$ und $\hat{\sigma}=15$. Berechnen Sie die Effektstärke d für die gefundene Mittelwertdifferenz!

$$d=rac{ar{x}-\mu_0}{\hat{\sigma}}$$

$$z=rac{x_i-\hat{\mu}}{\hat{\sigma}}$$

Grafische Darstellung eines "Effekts" von d = 0.6

Effekt eines Treatments (abhängige Gruppen)

Sie untersuchen, ob die Teilnahme am Statistik-Seminar tatsächlich die statistischen Kenntnisse verbessert. Dazu messen Sie die Punkte in einem Statistik-Testat zu Beginn (t1) und zum Ende des Semesters (t2). Berechnen Sie die Fffektstärke d!

id	T1 (B)	T2 (A)	Δx_i	$(\Delta x_i - \Delta \overline{x})^2$
1	47	51	4	$-1^2 = 1$
2	52	61	9	$4^2 = 16$
3	59	70	11	$6^2 = 36$
4	81	77	-4	$-9^2 = 81$
	$\bar{x} = 59.75$	$\bar{x} = 64.75$	$\Delta \bar{x} = 5$	$\Sigma = 134$

Abhängige Messungen

$$d=rac{ar{x}_A-ar{x}_B}{\hat{\sigma}_\Delta}\quad ext{mit}$$

$$\hat{\sigma}_{\Delta} = \sqrt{rac{1}{n-1}\sum \left(\Delta x_i - \Delta ar{x}
ight)^2}$$

$$\hat{\sigma}_{\Delta}=\sqrt{rac{134}{n-1}}=\sqrt{44.66}pprox 6.68$$

$$d=rac{5}{6.68}pprox 0.75$$

Effektstärke für Unterschiede zwischen zwei unabhängigen Gruppen

Sie untersuchen, ob Pessimisten neurotischer sind als Optimisten. Dazu nehmen Sie die Daten aus unserer Erhebung zum Handysuchtverhalten.

- 1. Benennen Sie UV und AV.
- 2. Berechnen Sie die Effektstärke d von Hand. Nutzen Sie die hier dargestellten deskriptiven Statistiken.

Unabhängige Messungen

$$d = rac{ar{x}_A - ar{x}_B}{\hat{\sigma}_{
m pooled}} \quad {
m mit}$$

$$\hat{\sigma}_{ ext{pooled}} = \sqrt{rac{(n_A-1)\hat{\sigma}_A^2 + (n_B-1)\hat{\sigma}_B^2}{n_A+n_B-2}}$$

Deskriptive Statistik ▼

	Neurotizismus		
	optimstisch	pessimistisch	
Gültig	11	6	
Fehlend	0	0	
Mittelwert	3.000	4.000	
Standardabweichung	0.949	0.447	
Varianz	0.900	0.200	
Minimum	1.500	3.500	
Maximum	4.500	4.500	

Effektstärke für Unterschiede zwischen zwei unabhängigen Gruppen

Unabhängige Messungen

$$d = rac{ar{x}_A - ar{x}_B}{\hat{\sigma}_{
m pooled}} \quad {
m mit}$$

$$\hat{\sigma}_{ ext{pooled}} = \sqrt{rac{(n_A-1)\hat{\sigma}_A^2 + (n_B-1)\hat{\sigma}_B^2}{n_A+n_B-2}}$$

Deskriptive Statistik ▼

	Neurotizismus		
	optimstisch	pessimistisch	
Gültig	11	6	
Fehlend	0	0	
Mittelwert	3.000	4.000	
Standardabweichung	0.949	0.447	
Varianz	0.900	0.200	
Minimum	1.500	3.500	
Maximum	4.500	4.500	

$$\Delta ar{x} = ar{x}_A - ar{X}_B = 4 - 3 = 1$$
 $\hat{\sigma}_{ ext{pooled}} = \sqrt{rac{(6-1)\cdot 0.2 + (11-1)\cdot 0.9}{6+11-2}} = 0.816$

$$\mathbf{d} = rac{1}{0.816} pprox \mathbf{1.22}$$

Effektstärken in JASP

Effektstärken sollten bei Signifikanztests immer berichtet werden. In JASP lassen sich für verschiedene Inferenztests Effektstärkemaße ausgeben. Neben dem p-Wert, der auf die statistische Signifikanz eines Effekts hinweist, sind Effektstärkemaße ein wichtiger Indikator für die praktische Bedeutsamkeit eines Effekts!

Umwandlung d ↔ r

- Effektstärkemaße lassen sich ineinander umrechnen.
- Das Effektstärkemaß Cohen's d für Gruppenunterschiede kann z.B. in das Effektstärkemaß für Zusammenhänge (Pearson's r) überführt werden!

$$r=rac{d}{\sqrt{d^2+4}}$$

$$d=rac{2r}{\sqrt{1-r^2}}$$