

FuZhou Qingda Education

教师姓名	沈炜炜	学生姓名	马灿威	首课时间	20181111	本课时间	20181111	
学习科目	数学	上课年级	高一	教材版本		人教 A 版		
课题名称	高一必修一期中复习							
重点难点	分类讨论;含刻	多数问题						

-、集合

- 1.1 (福州三中高一半期考) 已知全集 $U = \{-2, -1, 2, 3, 4\}$ 集合 $A = \{-1, 2, 3\}$, $B = \{-2, 2\}$,则

- 1.2 (福州三中高一半期考) 设集合 $M = \{x \in \mathbb{R} | x 1 < 0\}, N = \{y | y = x^2, x \in \mathbb{R}\}, 则 M \cap$
- 1.3(格致中学高一半期考)已知集合 $M = \{-2 \le x \le 5\}$, $N = \{x | a + 1 \le x \le 2a + 1\}$. (1) 若 a = 3, 求 $M \cap (\mathbb{C}_{\mathbb{R}}N)$; (2) 若 $M \cup N = M$, 求实数 a 的取值范围.

二、 指数对数幂函数

运 算

- A. c < b < a
- B. c < a < b
- C. a < b < c
- 2.2【2016 师大附中 13】已知 $2^a = 3$, $3^b = 7$, 则 $\log_7 56 =$ ______.(结果用 a, b 表示)

2.3【2015 福州八中 14】(本小题满分 10 分)计算:
$$(1)\ (2\frac{3}{5})^0 + 2^{-2} \cdot (2\frac{1}{4})^{-\frac{1}{2}} + (\frac{25}{36})^{0.5} + \sqrt{(-2)^2}$$

$$(2)\frac{1}{2}\lg\frac{32}{49} - \frac{4}{3}\lg\sqrt{8} + \lg\sqrt{245}$$

FuZhou Qingda Education

- 2.4【2016 福州三中 15】(本小题满分 10 分)根据已知条件,求下列各式的值.
- (1) 已知 $a = 2^{-1}$, $b = 3^{\sqrt{2}}$, 求 $4a^{\frac{2}{3}}b^{-\frac{1}{3}} \div \left(-\frac{2}{3}a^{-\frac{1}{3}}b^{-\frac{1}{3}}\right)$ 的值;(2)已知 $f(x) = 3^x$,求 $f(\log_3 2) + f(2)$ 的值

与二次函数的复合

- 2.5【2015 福州三中 14】已知 a > 0 且 $a \neq 1$,函数 $f(x) = a^{-x^2-2x-3}$ 存在最小值,且最小值为 16,则 a = .
- 2.6【2016 师大附中 18】(本小题满分 12 分) 已知函数 f(x) 为 \mathbb{R} 上的偶函数. $x \leq 0$ 时 $f(x) = 4^{-x} a \cdot 2^{-x} (a > 0)$
- (I) 求函数 f(x) 在 $(0, +\infty)$ 上的解析式; (II) 求函数 f(x) 在 $(0, +\infty)$ 上的最小值.

- 2.7【2016 福州三中 17】(本小题满分 12 分) 已知函数 $f(x) = \log_3 9x \cdot \log_3 x + 2, x \in [\frac{1}{9}, 3]$.
- (1) 求 f(x) 最小值和最大值;
- (2) 若不等式 f(x) 2m + 1 > 0 恒成立, 求实数 m 的取值范围.

三、 函数零点问题, 函数模型

	日函数 $f(x) = \begin{cases} e^x + a, x \\ 2x - 1, x \end{cases}$			
	B. $(-1, +\infty)$,
3.2 (15-16 八中) 若元	$\dot{\mathcal{T}} x^2 - 2mx + 4 = 0 \dot{\mathcal{T}}$	的两根满足一根大于 1,	一根小于 1 ,则 m f	り取值范围
是				(
A. $(-\infty, -\frac{5}{2})$		B. $(\frac{5}{2}, +\infty)$		
C. $(-\infty, -2) \cup (2, +\infty)$	$\infty)$	D. $(-\frac{5}{2}, +\infty)$		
3.3(16-17 三中)设置	首数 $f(x) = ax^2 + bx + c$,	$(a>0,b,c\in\mathbb{R})$.		
(1) 若 $f(1) = c$, $f(x)$	$(k,+\infty)$ 单调递增,	求实数 k 的取值范围;		
(2) 若 $f(1) = -\frac{a}{2}$, \bar{z}	求证: 函数 $f(x)$ 在 $(0,2)$) 内至少有一个零点.		

- 3.4(16-17 三中)某城市现有人口 300 万,而汽车保有量为 100 万辆,已知汽车保有量每年以 21% 递增,而人口每年以 10% 递增.
- (1) 写出该城市人口 y (单位: 万) 关于从现在起经过的年数 x 的函数关系式;
- (2) 问该城市经过多少年人均将拥有一辆汽车?(精确到个位).

参考数据: $\lg 3 = 0.4771$, $\lg 11 = 1.041$, $\lg 21 = 1.322$

四、函数的相关性质

定义域、分段函数

- 4.1(福州高级中学 16-17 高一期中考)已知函数 f(x+1) = 2x+5,则 $f(3) = \dots$
- A. 5

- 4.2【2016.11 福高高一期中考】函数 $f(x) = \sqrt{\log_{\frac{1}{3}}(x-2)} + \frac{1}{2x-5}$ 的定义域为______.
- 4.3(福高 2016 2017 学年第一学期期中考试)设函数 $f(x) = \begin{cases} x^{\frac{1}{2}}, x > 0 \\ (\frac{1}{2})^x 1, x \leq 0 \end{cases}$,已知 f(a) > 1,则 a

A. (-1,1)

B. $(-\infty, -1) \cup (1, +\infty)$

C. $(-\infty, -2) \cup (0, +\infty)$

D. $(1, +\infty)$

奇偶性与单调性

- 4.4 (福建师大附中 15-16 高一期中考,6)下列函数中,既是偶函数又在 (0, +∞) 单调递增的函数是...(
 - A. $y = x^3$

- B. y = |x| + 1 C. $y = -x^2 + 1$ D. $y = 2^{-|x|}$

)

- 4.5 (福州八中 15-16 高一期中考,2) 设偶函数 f(x) 的定义域为 \mathbb{R} , 当 $x \in [0, +\infty)$ 时,f(x) 是增函数,
- A. $f(\pi) > f(-3) > f(-2)$

B. $f(\pi) > f(-2) > f(-3)$

C. $f(\pi) < f(-3) < f(-2)$

- D. $f(\pi) < f(-2) < f(-3)$
- 4.6(福建师大附中 16-17 高一期中考,7)已知定义在 $\mathbb R$ 上的函数 f(x) 在 $(-\infty,2)$ 内为减函数,且 f(x+2) 为偶函数,则 f(-1), f(4), $f(\frac{11}{2})$ 的大小为......()
- A. $f(4) < f(-1) < f(\frac{11}{2})$

B. $f(-1) < f(4) < f(\frac{11}{2})$

C. $f(-1) > f(4) > f(\frac{11}{2})$

- D. $f(4) > f(\frac{11}{2}) > f(-1)$
- 4.7 (福州高级中学 16-17 高一期中考,11) 定义在 \mathbb{R} 上的偶函数 f(x), 当 $x \in [1,2]$ 时, f(x) < 0 且 f(x)增函数,给出下列四个结论:
 - (1) f(x) 在 [-2,-1] 上单调递增;
 - (2) 当 $x \in [-2, -1]$ 时,有 f(x) < 0;

 - (3) f(-x) 在 [-2,-1] 上单调递减; (4) |f(x)| 在 [-2,-1] 上单调递减. 其中正确的结论
- 是......(
- A. (1)(3)

B. (2)(4)

- C.(2)(3)
- 4.8 (福州格致中学 16-17 高一期中考,10) 若 $f(x) = -x^2 + 2ax$ 与 $g(x) = \frac{a}{x+1}$ 在区间 [1,2] 上都是减 函数,则实数 a 的取值范围 \dots
- A. $(-1,0) \cup (0,1)$
- B. $(-1,0) \cup (0,1]$ C. (0,1)

- 4.9 (福建师大附中 16-17 高一期中考,15) 定义在 ℝ 上的奇函数 f(x) 满足 f(x-2) = f(x+2),且当 $x \in (-1,0), \ \mathbb{H}, \ f(x) = 2^x + \frac{1}{5}, \ \mathbb{M} \ f(\log_2 20) = \underline{\hspace{1cm}}.$

FuZhou Qingda Education

4.10(福州格致中学 16-17 高一期中考,14)已知定义在 $\mathbb R$ 上的奇函数 f(x),当 x>0 时 $f(x)=x^2+x-1$,那么 x<0 时, f(x)=_______.

- 4.11(福州八中 2015—2016 高一上学期期中考试 23) 设 f(x) 是定义在 \mathbb{R} 上的奇函数,且对任意 $a,b\in\mathbb{R}$,当 $a+b\neq 0$ 时,都有 $\frac{f(a)+f(b)}{a+b}>0$
- (1) 若 a > b, f(a) 与 f(b) 的大小关系;
- (2) 若 $f(9^x 2 \cdot 3^x) + f(2 \cdot 9^x k) > 0$ 对任意 $x \in [0, \infty)$ 恒成立,求实数 k 的取值范围.

- 4.12 (福建师大附属中学 2016-2017 高一年级期中考试 19) 定义在 $(0, +\infty)$ 的函数 f(x) 满足下面三个条件:
- ①对任意正数 a,b, 都有 f(a) + f(b) = f(ab);
- ②当 x > 1 时, f(x) < 0;
- $\Im f(2) = -1.$
- (I) 求 f(1) 的值;
- (II) 试用单调性定义证明: 函数 f(x) 在 $(0,+\infty)$ 是减函数;
- (III) 求满足 f(3x+1) > 2 的 x 的取值集合.

FuZhou Qingda Education

- 4.13 (福州市高级中学 2016-2017 高一上期中 22) 已知函数 $f(x) = x^2 2ax + 5(a > 1)$
- (I) 若 f(x) 的定义域和值域均是 [1,a], 求实数 a 的值;
- (II) 若 f(x) 在区间 $[4, +\infty)$ 上是增函数,且对任意的 $x \in [1, a+2]$,都有 $f(x) \le 0$,求实数 a 的取值范围;
- (III) 若 $g(x)=2^x+\log_2 x+1$,且对任意的 $x\in[0,1]$,都存在 $f(x_0)=g(x)$ 成立,求实数 a 的取值范围.