Assignment 4

Devansh Jain, 190100044

30th Oct 2021

Contents

1 Clustering																												
	1.1	CS 335	K	Me	ans	s Ir	np	len	ner	nta	tic	n					•										•	1
2	Ker	nel desi	igı	n a	\mathbf{nd}	K	er	ne	liz	ed	l c	lu	\mathbf{st}	er	in	g												2
	2.1	CS 337:	: I	$^{\circ}$ ro	vin	g ŀ	(er	nel	l V	ali	di	ty																2
	2.2	CS 337:	· S	Sim	ple	K	ern	el	De	sig	ζn																	2
		(i)																										2
		(ii)																										

190100044 Assignment 4

1 Clustering

1.1 CS 335 KMeans Implementation

190100044 Assignment 4

2 Kernel design and Kernelized clustering

2.1 CS 337: Proving Kernel Validity

We are going to use the following property of kernels from Lecture slides (Lecture 11):

$$K(x,y) = \sum_{d=1}^{r} \alpha_d(x^T y)^d$$
 where $\alpha_d \ge 0$ is a kernel $(r \text{ can be } \infty)$

Another property of kernels which we are going to use is:

$$K(x,y)$$
 is a kernel $\implies K'(x,y) = f(x)f(y)K(x,y)$ is also a kernel Corresponding feature map, $\phi'(x) := f(x)\phi(x)$

An important property of exponential function which we are going to exploit is:

$$\exp(x) = \sum_{k=0}^{\infty} \frac{x^k}{k!}$$

Using the above properties, we can conclude that $\exp(\alpha x^T y)$ where $\alpha \geq 0$ is a kernel.

Now, if take
$$\alpha = \frac{1}{\sigma^2}$$
 and $f(x) = \exp\left(-\frac{x^Tx}{2\sigma^2}\right)$, we get:
$$K_{\alpha}(x,y) = \exp\left(-\frac{||x-y||^2}{2\sigma^2}\right) = \exp\left(-\frac{x^Tx}{2\sigma^2}\right) \exp\left(-\frac{y^Ty}{2\sigma^2}\right) \exp\left(\frac{x^Ty}{\sigma^2}\right)$$
 is a kernel. Hence, proved.

2.2 CS 337: Simple Kernel Design

- (i)
- (ii)