#### 1

#### DISEÑO DE BLOQUES COMPLETOS AL AZAR : DBCA

Conocido como diseño de doble vía, se aplica cuando el material es heterogéneo. las unidades experimentales homogéneas se agrupan formando grupos homogéneos llamados bloques.

Tratamientos A, B, C, D, E

Bloque I: BAECD

Bloque II: CBDEA

Bloque III: B E A D C

Bloque IV: D C A E B

Las fuente de variación para el análisis estadístico son:

Fuentes Grados de libertad

Tratamiento (t-1) = 4

Bloques (r-1) = 3Error (t-1)(r-1)=12

#### Características:

- 1. Las unidades experimentales son heterogéneas.
- 2. Las unidades homogéneas están agrupadas formando los bloques.
- 3. En cada bloque se tiene un numero de unidades igual al numero de tratamientos (bloques completos)
- 4. Los tratamientos están distribuidos al azar en cada bloque.
- 5. El numero de repeticiones es igual al numero de bloques.

#### **MODELO**

Cada observación del experimento es expresada mediante una ecuación lineal en los parámetros, el conjunto conforma el modelo para el diseño de bloques completos al azar :

 $\mu$  = Parámetro, efecto medio

τ<sub>i</sub> = Parámetro, efecto del tratamiento I

 $\beta_i$  = Parámetro, efecto del bloque j

ε<sub>ii</sub> = valor aleatorio, error experimental de la u.e. i,j

Yij = Observación en la unidad experimental

## ESTIMACIÓN DE PARÁMETROS por Minimos cuadrados del error

$$\sum \hat{\tau}_i = 0$$
;  $\sum \hat{\beta}_i = 0$ 

$$\hat{\mu} = \overline{Y}_{..}$$

$$\hat{\tau}_i = \overline{Y}_{i.} - \overline{Y}_{..}$$

$$\hat{\boldsymbol{\beta}}_{i} = \overline{\mathbf{Y}}_{.i} - \overline{\mathbf{Y}}_{.i}$$

El error en cada unidad experimental puede ser encontrado por diferencia:

$$\varepsilon_{ij} = Y_{ij} - \overline{Y}_{i.} - \overline{Y}_{.j} + \overline{Y}_{..}$$

## **SUMAS DE CUADRADOS**

SC total = 
$$\sum \sum (Y_{ij} - \overline{Y}_{..})^2 = \sum \sum Y_{ij}^2 - \frac{...}{rt}$$

SC trat. = 
$$\sum \sum (\overline{Y}_{i.} - \overline{Y}_{..})^2 = \sum \frac{Y^2}{r} - \frac{Y^2}{rt}$$

SC bloque 
$$=\sum \sum (\overline{Y}_{,j} - \overline{Y}_{,.})^2 = \sum \frac{.j}{t} - \frac{..}{rt}$$
  
SC error  $=\sum \sum \epsilon_{ij}^2 = \sum \sum Y_{ij}^2 - \sum_i \frac{i.}{r} - \sum_j \frac{.j}{t} + \frac{..}{rt}$ 

 $Y^2$ 

 $\frac{\cdot\cdot\cdot}{rt}$  es el termino de corrección (TC) de las sumas de cuadrados, en las expresiones de sumas de cuadrados se acostumbra colocar sólo TC, por ejemplo:

SC TOTAL = 
$$\sum \sum Y_{ij}^2 - TC$$

## APLICACIÓN: Estudio de Variedades forrajeras en Camote.

Se realizo un ensayo de 4 nuevas variedades forrajeras (V1, V2, V3 y V4) frente a una variedad ya conocida. Se dispuso realizar el ensayo en la epoca de verano en Selva. Cada parcela de 10 m2 con un total de 15 parcelas. Se formaron bloques de 5 parcelas homogeneas.

Se midio el peso fresco y seco y se registro el peso en kilos.

|     | V1   | Y.j  |      |      |      |       |
|-----|------|------|------|------|------|-------|
|     | 17.9 | 7.0  | 19.8 | 15.2 | 12.7 | 72.6  |
| П   | 20.8 | 5.9  | 16.7 | 21.0 | 14.2 | 78.6  |
| Ш   | 21.4 | 4.2  | 16.7 | 8.8  | 11.5 | 62.6  |
| Yi. | 60.1 | 17.1 | 53.2 | 45.0 | 38.4 | 213.8 |

El objetivo es comparar las nuevas variedades entre ellas y con el testigo.

#### CALCULO DE SUMAS DE CUADRADOS

Termino de corrección =  $TC = (213.8)^2/15$ 

SC\_Variedades = 
$$\frac{(17.1)^2 + ... + (38.4)^2}{3}$$
 - TC

SC\_Bloques =  $\frac{(72.6)^2 + ... + (62.6)^2}{5}$  - TC

SC\_Total =  $\frac{(17.9)^2 + ... + (38.4)^2}{5}$  - TC

SC\_error Exp. = SC\_total - (SC\_Variedades + SC\_Bloques)
Resultados del ANVA:

Variable: Follaje

| Fuente    | Gl       | SC       | CM      | Fc    | Pr > F |
|-----------|----------|----------|---------|-------|--------|
| bloque    | 2        | 26.1333  | 13.0666 | 1.51  | 0.2785 |
| variedad  | 4        | 364.0440 | 91.0110 | 10.49 | 0.0029 |
| Error     | 8        | 69.4000  | 8.6750  |       |        |
| Corrected | Total 14 | 459.5773 |         |       |        |

## Comparación de grupos mediantes contrastes.

## Contrastes ortogonales

Contraste 1: Testigo vs V1, V2, V3, V4

Contraste 2: V1, V2 vs V3, V4

Contrate 3: V1 vs V2

Contrate 4: V3 vs V4

|     | V1   | Testigo | V2   | V3   | V4   | $(\sum_i c_{ki} Y_{i.})^2$ | $r\sum_{i}c_{ki}^{2}$ | SC    |
|-----|------|---------|------|------|------|----------------------------|-----------------------|-------|
| C1  | -1   | 4       | -1   | -1   | -1   | 16460.89                   | 60                    | 274.3 |
| C2  | -1   | 0       | -1   | 1    | 1    | 894.01                     | 12                    | 74.5  |
| C3  | -1   | 0       | 1    | 0    | 0    | 47.61                      | 6                     | 7.9   |
| C4  | 0    | 0       | 0    | -1   | 1    | 43.56                      | 6                     | 7.2   |
| Yi. | 60.1 | 17.1    | 53.2 | 45.0 | 38.4 |                            |                       | 364.0 |

Mediante estos contrastes, se hace las comparaciones, por ejemplo C1 significa probar el testigo vs los demás, C2 significa comparar las variedades "1" y "2" frente a "3" y "4",. El análisis se realizara mediante el ANVA.

| Fuente |    |        |       |         |       |       |
|--------|----|--------|-------|---------|-------|-------|
| S      | GI | SC     | CM    | Fc      | F0.05 | F0.01 |
| C1     | 1  | 274.34 | 274.3 | 31.6 ** | 5.32  | 11.26 |
| C2     | 1  | 74.5   | 74.5  | 8.6 *   |       |       |
| C3     | 1  | 7.94   | 7.94  | 0.9 ns  |       |       |
| C4     | 1  | 7.26   | 7.26  | 0.8 ns  |       |       |
| Error  | 8  | 69.4   | 8.675 |         |       |       |

#### Prueba de Friedman's para dos vias de clasificacion

Friedman (1937) propuso una prueba para datos sin distribución conocida, cuadno estos corresponden a un diseño de bloques completos al azar.

- 1. Asignar un valor de jerarquía (Rango) a la respuesta de los tratamientos dentro de cada bloque de menor a mayor.
- 2. Obtener la suma de los rangos para cada tratamiento.
- 3. Probar la hipótesis nula de que las poblaciones dentro de un bloque son idénticas contra la opción que al menos un tratamiento viene de una población que tiene una diferente ubicación. El criterio es:

Sin empates:

$$\chi^2 cal = \frac{12}{bt(t+1)} \sum_{i} r_{i}^2 - 3b(t+1)$$

los valore 12 y 3 no dependen del tamaño del experimento.

con empates:

Hallar previamente los valores para el ajuste:

$$A_1 = \sum_{i=1}^{b} \sum_{j=1}^{t} r_{ij}^2$$
  $C_1 = bt(k+1)^2/4$ 

Valor de Chi-cuadrada para la prueba

$$\chi^{2} cal = \frac{(t-1)}{A_{1} - C_{1}} \left[ \sum_{i=1}^{t} r_{i}^{2} - b C_{1} \right]$$

con t-1 grados de libertad.

t = numero de tratamientos

b = numero de bloques

Se acepta la hipotesis planteada si el valor de Chi-cuadrada calculada es menor que el valor tabular con (t-1) grados de libertad.

## Comparaciones multiples.

Las comparaciones se realizan con la suma de los rangos de cada tratamiento.

Si "Ri" representa la suma de los rangos del tratamiento "i" que es r<sub>i.</sub>

Entonce la diferencia es significativa si:

$$|R_i - R_j| > LSD = t_{\alpha(b-1)(t-1)} \sqrt{\frac{2(b A_1 - \sum R_i^2)}{(b-1)(t-1)}}$$

con t-1 grados de libertad.

Ejemplo:

| Bloques | T1  | T2  | T3  | T4  | T5  | T6  |
|---------|-----|-----|-----|-----|-----|-----|
| 1       | 4.4 | 3.3 | 4.4 | 6.8 | 6.3 | 6.4 |
| 2       | 5.9 | 1.9 | 4   | 6.6 | 4.9 | 7.3 |
| 3       | 6   | 4.9 | 4.5 | 7   | 5.9 | 7.7 |
| 4       | 4.1 | 7.1 | 3.1 | 6.4 | 7.1 | 6.7 |

#### Valores de los rangos

|         | <u> </u> |     |     |    |      |    |
|---------|----------|-----|-----|----|------|----|
| Bloques | T1       | T2  | T3  | T4 | T5   | T6 |
| 1       | 2.5      | 1   | 2.5 | 6  | 4    | 5  |
| 2       | 4        | 1   | 2   | 5  | 3    | 6  |
| 3       | 4        | 2   | 1   | 5  | 3    | 6  |
| 4       | 2        | 5.5 | 1   | 3  | 5.5  | 4  |
|         | 12.5     | 9.5 | 6.5 | 19 | 15.5 | 21 |

Chi-Cuadrado = 
$$(12/(4*6*7))*(12.5^2 + ... + 15.5^2) - 3(4)7 = 11.07$$
  
Chi Tabular (5 gl)  $0.05 = 11.1$ 

## Aplicación por computadora, programa R

Prueba de Friedman's

. . . . . . . . . . . . . . .

Chi Cuadrado: 8.8

P-valor : 0.06629764

. . . . . . . . . . . . .

Alpha : 0.05

t-Student: 2.306004 LSD: 5.648533

Comparación de tratamientos

Grupos, Tratamientos y Suma de rangos

| a  | V1      | 13 |
|----|---------|----|
| ab | V2      | 12 |
| ab | V3      | 10 |
| bc | V4      | 7  |
| С  | Testigo | 3  |

Se observa una similitud rerspecto a la prueba parametrica.

Manualmente con el excel seria:

Datos experimentales:

| bloque | V1   | Testigo | V2   | V3   | V4   |
|--------|------|---------|------|------|------|
| 1      | 17.9 | 7       | 19.8 | 15.2 | 12.7 |
| 2      | 20.8 | 5.9     | 16.7 | 21   | 14.2 |
| 3      | 21.4 | 4.2     | 16.7 | 8.8  | 11.5 |

Rangos por bloque:

|         | V1 | Testigo | V2 | V3 | V4 |
|---------|----|---------|----|----|----|
| bloque1 | 4  | 1       | 5  | 3  | 2  |
| bloque2 | 4  | 1       | 3  | 5  | 2  |
| bloque3 | 5  | 1       | 4  | 2  | 3  |
| Ri      | 13 | 3       | 12 | 10 | 7  |

## Resultados estadisticos:

| Α                     | SUMSQ(B19:F21)            | 165   |
|-----------------------|---------------------------|-------|
| Sum(R <sup>2</sup> i) | SUMSQ(B22:F22)            | 471   |
| t0.05(8)              | TINV(0.05,8)              | 2.306 |
| LSD                   | C26*SQRT(2*(3*C24-C25)/8) | 5.649 |

Ejercicio: Realice la prueba de Friedman para los siguientes datos:

Utilice metodo sin empates.

#### Datos observados

| Bloques | T1  | T2  | Т3  | T4  | T5  | T6  |
|---------|-----|-----|-----|-----|-----|-----|
| 1       | 4.4 | 3.3 | 4.4 | 6.8 | 6.3 | 6.4 |
| 2       | 5.9 | 1.9 | 4   | 6.6 | 4.9 | 7.3 |
| 3       | 6   | 4.9 | 4.5 | 7   | 5.9 | 7.7 |
| 4       | 4.1 | 7.1 | 3.1 | 6.4 | 7.1 | 6.7 |

# Valores de los rangos

| Bloques | T1   | T2  | T3  | T4 | T5   | T6 |
|---------|------|-----|-----|----|------|----|
| 1       | 2.5  | 1   | 2.5 | 6  | 4    | 5  |
| 2       | 4    | 1   | 2   | 5  | 3    | 6  |
| 3       | 4    | 2   | 1   | 5  | 3    | 6  |
| 4       | 2    | 5.5 | 1   | 3  | 5.5  | 4  |
|         | 12.5 | 9.5 | 6.5 | 19 | 15.5 | 21 |

Chi-Cuadrado = 
$$(12/(4*6*7))*(12.5^2 + ... + 15.5^2) - 3(4)7 = 11.07$$
  
Chi Tabular (5 gl)  $0.05 = 11.1$ 

| Α                     | 363      |
|-----------------------|----------|
| Sum(R <sup>2</sup> i) | 1331     |
| t0.05(15)             | 2.131451 |
| LSD                   | 8.561254 |