Действительный анализ

Прислано Надеждой Лауфер (nadenkam@mail.ru)

IV семестр

Аннотация

Свои пожелания, дополнения и замечания просьба направлять по указанному email-адресу. К сожалению, текст далеко не всегда связен и понятен, поэтому большая просьба к читателям — принять посильное участие в его улучшении. Администрация портала dmvn.mexmat.net надеется, что в дальнейшем эти конспекты примут более завершённый вид. Не судите пока строго. Хочется верить, что это начало пути.

Лекция 1.

Определение. S — полукольцо множеств, если:

 $\emptyset \in S;$ S замкнуто относительно операции \bigcap ; и если $A_1 \in A$, и $A_1,A\in S$, то $A=\bigcup_{i=1}^n A_i,\, A_i\in S$.

Определение. Кольцо — непустое семейство множеств, замкнутое относительно \bigcap . Обозначается R, Δ, \bigcap .

Задача 1. Замкнутость относительно \setminus , \cap .

Задача 2. Кольцо является полукольцом.

Задача 3. Какие пары операций на множествах дают определения, эквивалентные кольцу.

Все множества семейства — подмножества множества Х.

Если X входит в класс, назовем его единицей.

Определение. Кольцо с единицей — алгебра множеств.

Определение. Если кольцо замкнуто относительно счётных объединений, назовем его δ - кольцом. δ - кольцо с единицей — δ - алгебра.

Определение. Кольцо, порожденное данным семейством — минимальное кольцо, содержащее данное семейство.

R(S) — минимальное кольцо, порожденное S.

Теорема. $\forall A \in R(S)$

$$A = \bigcup_{j=1}^{n} B_j$$

 \triangle

$$B = \bigcup_{i=1}^{k} C_i, \ C_i \in S.$$

$$A \cap B = \bigcup_{i,j} (B_i \cap C_i)$$

$$A \cap B = \bigcup_{i,j} (B_i \cap C_i)$$

 $A\setminus B=\bigcup_j\ (B_j\setminus B)=\bigcup_j\bigcap_i\ (B_j\setminus C_i),\ B_j\setminus C_i$ принадлежит рассматриваемому семейству.

 $A\Delta B=(A\setminus B)\bigcup\left(B\setminus A\right)\Rightarrow$ семейство замкнуто относительно $\Delta.$

Mepa

$$m: \mathcal{A} \to [0; +\infty); \ \mathcal{A}$$
 — семейство множеств, $m(A \bigcup B) = m(A) + m(B)$ $m(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} m(A_i) \ (\delta$ -аддитивность) $m: S \to [0; +\infty), \ S$ — полукольцо

Теорема. Существует единственное продолжение меры $m:S \to [0;+\infty)$ на R(S) m', причем если m δ -аддитивна, то $m'-\delta$ -аддитивна на кольце.

$$A \in R(S), A = \bigcup_{j=1}^{n} B_j, B_j \in S$$

 $m'(A) \doteq \sum_{j=1}^{n} m B_j$

Проверим, что m' не зависит от представления.

$$A = \bigcup_{i=1}^k C_i$$
 — другое представление.

$$A = \bigcup_{j,i} (B_j \cap C_i), \ B_j \cap C_i \in S$$

$$m'(A) = \sum_{j=1}^n m(B_j) = \sum_{j=1}^n \sum_{i=1}^k m(B_j \cap C_i) = \sum_{i=1}^k m(C_i) \implies \sum_{i=1}^k m(C_i) = m'(A)$$

Пусть есть второе продолжение m''

$$m''(A) = \sum_{j=1}^n m''(B_j) = \sum_{j=1}^n m(B_j) = m'(A) \Rightarrow m''$$
 совпадает с m' .

Проверка аддитивности:

$$A = \bigcup_{j=1}^{n} A_j$$

$$A = \bigcup_{i=1}^{m} B_i, \ Bi \in S$$

$$A_j = \bigcup_{k=1}^{k_j} B_{j,k}$$

$$m'(A) = \sum_{i} \sum_{j,k} m(B_{j,k} \cap B_i) = \sum_{j} \sum_{k,i} m(B_{j,k} \cap B_i) = \sum_{j} m'(A_j)$$
 (*)

Проверим δ -аддитивность.

$$A = \bigcup_{j=1}^{\infty} A_j, \ A_j = \bigcup_{k=1}^{k_j} B_{j,k}$$

Далее пишем (*), только там пользуемся δ -аддитивностью m.

Задача 4. На полукольце прямоугольников площадь — δ -аддитивная мера.

Теорема (полуаддитивность меры).

$$A\subset \bigcup_{i=1}^\infty A_i$$
, тогда $m(A)\leqslant \sum_{i=1}^\infty m(A_i)$

$$(m-\delta$$
-аддитивна)

Λ

$$B_1 = A \cap A_1, B_2 = (A \cap A_2) \setminus B_1$$

$$B_i = (A \cap A_i) \setminus \bigcup_{k=1}^{i-1} B_k$$

$$A = \bigcup_{i=1}^{\infty}$$

$$mA = \sum_{i=1}^m B_i \leqslant mA_i \; (B_i \subset A_i \; \text{в силу монотонности меры})$$

Внешняя мера

 ${\bf X}$ - основное множество, S - полукольцо.

$$E \subset \bigcup_i P_i, P_i \in S$$

Тогда
$$\mu^*(E) = \inf_{\bigcup P_i \supset E} \sum_{j=1}^{\infty} m P_i$$

Свойства внешней меры:

1) полуаддитивность

$$E \subseteq \bigcup_{j=1}^{\infty} E_j \Rightarrow \mu^*(E) \leqslant \sum_{j=1}^{\infty} \mu^*(E_j)$$

Доказательство: приближенно с точностью $\varepsilon/2^j \ \forall \ E_j$

$$\mu^*(E_j) + \varepsilon/2^i > \sum_{i=1}^{\infty} m P_{j,i} \; ; \; \bigcup_{i,i} P_{j,i} - \text{покрытие} \; .$$

$$\mu^*(E_j) \leqslant \sum_{i,j} m P_{j,i} \leqslant \sum_j \mu^*(E_j) + \varepsilon$$

Так как это верно $\forall \varepsilon$, то $\mu^*(E_i) \leqslant \sum_i \mu^*(E_i)$

Определение. Внутренняя мера $\mu_*(E) = mX - \mu^*(X \setminus E)$

Определение. Измеримое множество

(1)
$$\mu_*(E) = \mu^*(E)$$

$$(2) \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \setminus E) \forall A$$

Лекция 2.

$$\mu^* E = \inf_{\bigcup_{k=1}^{\infty} \supset E} \sum_{k=1}^{\infty} m P_k, \ P_k \in S.$$

Задача. Определить μ^* для покрытий $\bigcup_{k=1}^{\infty} \supset E$, эквивалентных исходному.

Если $A \in R(S)$, то $\mu^*(A) = m'(A)$

$$A \subset \bigcup_{k=1}^{\infty} P_k \quad m'(A) \leqslant \sum_k m P_k \Rightarrow m'(A) \leqslant \mu^*(A)$$

Так как
$$A \in R(S)$$
, то $A = \bigcup_{i=1}^{n} A_i, A_i \in S$.

$$m'(A) = \sum_{i=1}^n mA_i \geqslant \mu^*(A),$$
 (т.к. $\bigcup_{i=1}^n A_i$ — одно из покрытий $A)$

Далее будем считать, что есть функция λ , определенная на всех подмножествах X и обладающая свойствами внешней меры μ^* :

- 1) $\lambda(\emptyset) = 0$
- 2) $A \subset B \Rightarrow \lambda(A) \leqslant \lambda(B)$
- 3) $A = \bigcup_{i=1}^{\infty} \Rightarrow \lambda(A) \leqslant \sum_{i=1}^{\infty} \lambda(A_i)$

 $E\subset X$ называется λ -измеримым, если $\forall A\quad \lambda(A)=\lambda(A\bigcap E)+\lambda(A\setminus E)$

Теорема. Семейство множеств, измеримых по Каратеодори, образует δ -алгебру множеств, и внешняя мера λ является δ -аддитивной мерой на этой алгебре.

Задача. Для проверки того, что семейство является алгеброй, достаточно проверить его замкнутость относительно дополнения и \bigcup .

Замкнутость относительно дополнения видна из определения:

 $\lambda(A) \ = \ \lambda \ (A \bigcap E) \ + \ \lambda(A \bigcap (X \setminus E)),$ т.е. выполнение равенства для Е влечет за собой выполнение равенства для $X \setminus E$

Проверка замкнутости относительно []:

$$\lambda(A \cap (E_1 \cup E_2)) + \lambda(A \setminus (E_1 \cup E_2)) = \lambda(A \cap (E_1 \cup E_2) \cap E_1) + \lambda(A \cap (E_1 \cup E_2) \setminus E_1) + \lambda(A \setminus (E_1 \cup E_2)) = \lambda(A \cap E_1) + \lambda(A \setminus E_1) = \lambda(A).$$

Индуктивно доказывается замкнутость относительно любого конечного количества объединений:

$$\lambda(E_1 \cup E_2) = \lambda(E_1) + \lambda(E_2)$$

$$E = \bigcup_{i=1}^{\infty} E_i, \quad S_n = \bigcup_{i=1}^n E_i$$

$$\lambda(A) = \lambda(A \cap S_n) + \lambda(A \setminus S_n) \geqslant \sum_{i=1}^n \lambda(A \cap E_i) + \lambda(A \setminus \bigsqcup_{i=1}^\infty E_i) \Rightarrow$$
$$\lambda(A) \geqslant \sum_{i=1}^\infty \lambda(A \cap E_i) + \lambda(A \setminus \bigsqcup_{i=1}^\infty E_i) \geqslant \lambda(A \cap E) + \lambda(A \setminus E) \geqslant \lambda(A),$$

т.е. все неравенства можно заменить на равенства.

 δ -аддитивность: возьмем в качества A само E. Получим:

$$\lambda(E) = \sum_{i=1}^{\infty} \lambda(E_i)$$

$$E = \bigcup_{i=1}^{\infty} \lambda(E_i)$$

$$E = \bigcup_{i=1}^{\infty} E_i = E_1 \bigcup (E_2 \setminus E_1) \bigcup \ldots \bigcup (E_i \setminus \bigcup_{k=1}^{i-1}) \bigcup \ldots =$$

$$E_1 \bigsqcup (E_2 \setminus E_1) \bigsqcup \ldots \bigsqcup (E_i \setminus \bigcup_{k=1}^{i-1} E_k) \bigsqcup \ldots \Rightarrow$$
 получается δ -алгебра.

Применяя определение Каратеодори к μ^* , будем называть получившийся класс множеств **множествами**, измеримыми по Лебегу.

Если
$$\lambda(E) = 0 \Rightarrow E$$
 — измеримо.

Определение. Мера называется полной, если при $\delta(E)=0$ \forall $E_1\subset E$ имеем $\delta(E_1)=0$

Для множеств, имеримых по Лебегу, μ^* обозначается μ .

Определение. Наименьшая δ –алгебра множеств, содержащая все открытые множества, называется **борелевской** алгеброй. Каждое множество — борелевским множеством.

 \mathfrak{F} — замкнутые множества, \mathfrak{Y} — открытые множества.

 \mathfrak{F}_{σ} — объединение, \mathfrak{Y}_{δ} — пересечение.

 $\mathcal{F}_{\sigma\delta}, \mathcal{Y}_{\delta\sigma}$

 λ определяем на подмножествах метрического пространства.

Мера λ называется **метрической**, если $\forall A, B \ \rho(A, B) > 0$ имеем:

$$\lambda (A \bigsqcup B) = \lambda(A) + \lambda(B)$$

$$\rho(A,B) = \inf_{x \in A, y \in B} \rho(x,y).$$

Лемма. X — метрическое пространство, λ — метрическая мера, E \in G, G — открытое, $E_k = \{x \in E: \ \rho(x,x\setminus G)\geqslant 1/k\} \Rightarrow \lim_{k\to\infty} \lambda E_k = \lambda E$

Очевидно, что $\lim_{k\to\infty}\lambda E_k\leqslant \lambda E$, т.к. E_k — последовательность расширяющихся множеств.

Обозначим $D_k = E_{k+1} \setminus E_k$.

$$\rho(D_{k+1}, E_k)$$

$$x \in E_k, \ y \in D_{k+1}, \ z \in X \backslash G$$

$$\frac{1}{k} \leqslant \rho(x, z) \leqslant \rho(z, y) + \rho(y, x)$$

$$\rho(y,x) \geqslant \frac{1}{k} - \frac{1}{k+1} - \varepsilon > \alpha > 0$$

Тогда имеем: $\rho(D_{k+1}, E_k) > 0$

$$\lambda(E)\leqslant \lambda(E_k)+\sum_{i=k}^\infty\lambda(D_i)\Rightarrow$$

$$\lambda(E)\leqslant \lim_{k\to\infty}\lambda(E_k)\quad \text{(если ряд сходится)}$$

$$\rho(D_{k+1},D_{k-1})>0$$

$$\sum_{i=k}^\infty\lambda(D_i)=\sum_{i=2t}+\sum_{i=2t+1}$$
 Хотя бы один ряд сходится к $+\infty$. Допустим, что $\sum_{i=1}^\infty\lambda(D_{2k})=+\infty$
$$\lambda(E_{2k+1})\to k\to\infty+\infty, \text{но тогда } \lim_{k\to\infty}1=+\infty \Rightarrow \lim_{k\to\infty}\lambda E_k\geqslant\lambda E$$

Теорема. Если λ — внешняя метрическая мера, то класс борелевых множеств входит в δ -алгебру λ -измеримых множеств.

Достаточно доказать для замкнутых множеств.

$$E$$
 — замкнуто, A — произвольное множество, $G = X \setminus E$

$$B_k = \{ x \in A : \rho(x, E) \geqslant \frac{1}{k} \}$$

$$\lim_{k\to+\infty} \lambda B_k = \lambda(A\setminus E)$$
 (по лемме)

В силу метричности λ :

$$\lambda(B_k \bigsqcup (A \cap E)) = \lambda(B_k) + \lambda(A \cap E), \quad \lambda(B_k \bigsqcup (A \cap E)) \leq \lambda(A)$$

$$\lambda(A) \geqslant \lambda(A \setminus E) + \lambda(A \cap E)$$

m, m'

$$\lambda(A) \leqslant \lambda(A \setminus E) + \lambda(A \cap E)$$
 в силу полуаддитивности

$$\Rightarrow \lambda(A) = \lambda(A \setminus E) + \lambda(A \cap E)$$

Покажем, что в \mathbb{R}^* μ^* является метрической, если $\rho(E_1, E_2) = \alpha > 0$. (В покрытии будем использовать k-мерные интервалы диаметром меньше $\alpha/2$. Тогда покрытие разделяется, и при переходе к inf получим аддитивность)

Если мера определена на δ -алгебре борелевских множеств, будем называть её борелевской.

Лекция 3.

$$\mu^*(E) = \inf_{\bigcup P_k \supset E} \sum_{k=1}^\infty m(P_k)$$

$$\mu^* = m'$$
 для элементов кольца
$$E \subset R(S)$$
 Покажем, что E входит в класс измеримых множеств.
Обозначим $\mathcal{M} -$ класс измеримых множеств.
$$\forall A \ \mu^*(A) = \mu^*(A \bigcap E) + \mu^*(A \setminus E) \ (\text{надо доказать})$$

 $A \subset \bigcup_{i=1}^{\infty} P_k \quad \sum_{k=1}^{\infty} m P_k < \mu^*(A) + \varepsilon$ (выбираем такое покрытие)

$$\mu^*(A)\leqslant \mu^*(A\bigcap E)+\mu^*(A\setminus E) \text{ в силу полуаддитивности}$$

$$\mu^*(A\bigcap E)+\mu^*(A\setminus E)\leqslant \sum_{k=1}^\infty \mu^*(P_k\bigcap E)+\mu^*(P_k\setminus E)=\sum_{k=1}^\infty (m'(P_k\bigcap E)+m'(P_k\setminus E))=\sum_{k=1}^\infty mP_k\leqslant \mu^*(A)+\varepsilon$$

$$\mu^*(A\bigcap E)+\mu^*(A\setminus E)\leqslant \mu^*(A)+\varepsilon$$
 В пределе при $\varepsilon\to 0$
$$\mu^*(A\cap E)+\mu^*(A\setminus E)\leqslant \mu^*(A)$$

Значит, выполнено равенство Каратеодори.

Пример неизмеримого множества

 $E = \{x_{\alpha}\},$ где x_{α} — рациональная точка на единичной окружности, повёрнутая на угол α .

Покажем, что E — неизмеримо. Построенная мера инвариантна относительно сдвига r_n , причем $\bigcup_{n=1}^{\infty} E + r_n = T$. Если E измеримо и имеет меру $a, \{E + r_n\}$ также имеет меру a. Т.е. $\sum_{n=1}^{\infty} a = 1$, а это невозможно.

Непрерывность меры Лебега

$$\{E_k\}$$
 $E_k \subset E_{k+1}$

Определение. Мера непрерывна, если $\lim_{k\to\infty} \mu E_k = \mu(\bigcup_{k=1}^{\infty})$ $\bigcup_{k=1}^{\infty} E_k = E_1 \bigsqcup (E_2 \setminus E_1) \bigsqcup \ldots \bigsqcup (E_k \setminus E_{k-1})$ $\mu(\bigcup_{k=1}^{\infty}) = \mu E_1 + \sum_{k=1}^{\infty} \mu(E_k \setminus E_{k-1}) = \mu E_1 + \sum_{k=1}^{\infty} (\mu E_k - \mu E_{k-1}) = \mu E_1 + \sum_{k=1}^{\infty} \mu(E_k \setminus E_k) = \mu E_1 +$ $\lim_{k\to\infty}\mu(E_k)$

Свойство непрерывности \Leftrightarrow δ -аддитивности.

 $+\infty$; $\{E_k\}, E_k \supset E_{k+1}$; тогда $\lim_{k\to\infty} \mu\left(E_k\right) = \mu\left(\bigcap_{k=1}^{\infty} E_k\right)$ (доказывается переходом к дополнению)

Задача. Пример, показывающий существенность условия $\mu E <$ $+\infty$

Регулярность внешней меры

Внешняя мера λ регулярна, если \forall $A \subset X \; \exists B \in M : B$ — измерима по Каратеодори и $A \subset B$ т.ч. $\lambda(A) = \lambda(B)$.

Покажем, что мера, построенная конструкцией Лебега (мера μ^*), регулярна.

$$\mu^*(A) + \frac{1}{i} \geqslant \sum_{k=1}^{\infty} m P_{i,k} \geqslant$$

$$(\forall i \exists \bigcup_k P_{i,k} \supset A \quad B = \bigcap_{i=1}^{\infty} \bigcup_{k=1}^{\infty} P_{i,k})$$

$$\geqslant \mu(\bigcup_{k=1}^{\infty} P_{i,k}) \geqslant \mu^*(B) \quad \forall i \in \mathbb{N} \Rightarrow \mu^* A \geqslant \mu B$$

Очевидно, что $\mu^*A\leqslant \mu^*B\Rightarrow \mu^*A=\mu B$

В случае \mathbb{R}^n $B = \bigcap_{i=1}^{\infty} \bigcup_{k=1}^{\infty} P_{i,k} \in \mathcal{Y}_{\delta}$

(если в качестве элементов полукольца — интервалы)

Для приближения с точностью до ε можно взять открытое множество $E\subset \bigcup_k P_k$

$$\mu F_{\varepsilon} + \varepsilon \leqslant \mu E \leqslant \mu G_{\varepsilon} - \varepsilon$$
 для Е — измеримого множества

И в \mathbb{R}_n это — достаточное условие измеримости

Внутренняя мера
$$E \subset X : \mu_*(E) = mX - \mu^*(X \setminus E)$$

Множество Е измеримо по Лебегу, если $\mu^*(E) = \mu_*(E)$, то есть $mX = \mu^*(E) + \mu^*(X \setminus E)$

Покажем, что это определение эквивалентно определению Каратеодори:

- 1) опр. Каратеодори ⇒ опр. Лебега (очевидно)
- 2) опр. Каратеодори ← опр. Лебега:

$$mX = \mu^*(E) + \mu^*(X \setminus E)$$

$$A \in \mathcal{M}, \quad \mu^*(E) = \mu(A) \quad (\exists \text{ Takoe } E \subset A)$$

$$X \setminus E \subset B$$
, $B \in \mathcal{M}$, $\mu^*(X \setminus E) = \mu B$

$$A \bigcup B = X$$

$$mX = \mu^*(E) + \mu^*(X \setminus E) = \mu A + \mu B$$

$$\mu X = \mu A + \mu B - \mu (A \cap B) \Rightarrow \mu (A \cap B) = 0$$

$$A \setminus E \subset A \cap B \Rightarrow A \setminus E$$
 — измеримо

 $E = A \setminus (A \setminus E)$ как разность измеримых множеств

F - монотонная неубывающая функция

В качестве кольца: $[\alpha; \beta)$

$$m([\alpha, \beta)) = F(\beta) - F(\alpha)$$

$$F(x) = \{m([0; x)), x > 0\}$$

$$0, \quad x = 0$$

Теорема. Мера m, таким образом, δ -аддитивна на полукольце

 $[\alpha,\beta) \Leftrightarrow F$ непрерывна слева (F(t-0)-F(t))

Необх.

$$\mu E_n = F(t) - F(t - \frac{1}{n}) \xrightarrow[k \to \infty]{} 0$$

 $\lim_{n \to \infty} \mu E_n = 0$ (т.е. F(t) непрерывна слева по опр. Гейне)

Дост.
$$[\alpha; \beta) = \bigsqcup_{i=1}^{\infty} [\alpha_i, \beta_i]$$

$$\sum_{n=1}^{k} (F(\beta_n) - F(\alpha_n)) \leqslant F(b) - F(a)$$

$$F(b) - F(b - \delta) < \varepsilon$$
 (в силу непрерывности слева)

$$F(\alpha_n) - F(\alpha_n - \delta_n) < \frac{\varepsilon}{2n}$$

Выберем конечное покрытие $[\alpha, b-\delta]$

$$F(b-\delta)-F(a) \leqslant \sum_{n=1}^{N} (F(\beta_n) - F(\alpha_n - \beta_n)) \leqslant \sum_{n=1}^{\infty} (F(\beta_n) - F(\alpha_n - \beta_n))$$

$$F(b) - \varepsilon - F(a) \leqslant \sum_{n=1}^{\infty} (F(\beta_n) - F(\alpha_n)) + \sum_{n=1}^{\infty} \frac{\varepsilon}{2^n}$$

В пределе при $\varepsilon \to 0$

$$\sum_{n=1}^{\infty} (F(\beta_n) - F(\alpha_n)) \geqslant F(b) - F(a)$$

Полученная конструкцией Лебега в этом случае мера называется мерой Лебега — Стильтьеса.

Измеримые функции

$$\sum_{k} y_{k} \mu E_{k}$$

$$E_k = \{x : y_{k-1} \leqslant f(x) \leqslant y_k\}$$

Надо, чтобы E_k были измеримыми.

Определение. $\mu - \delta$ -аддитивная мера, $\mathcal{M} -$ класс измеримых множеств; $f: X \to \mathbb{R} -$ измерима, если $\forall c \ E_c = \{x \in X, f(x) < C\} \in (M)$

Задача. Доказать, что будут измеримы множества, у которых $f(X) \leqslant C, f(X) > C, f(X) \geqslant C$ для f(x) – измеримых.

Лекция 4.

f — измерима, если $\{x \in X : f(x) < C\}$ — измеримо. В качестве эквивалентного определения можно принять \leq , >, \geqslant , но нельзя принять = .

Лемма. f, g — измеримы $\Rightarrow \{f(x) < g(x)\}$ — измеримо.

Доказательство.

$$Q=r_k, \quad \{f(x) < g(x)\} = igcup_{k=1}^\infty \{f(x) < r_k < g(x)\}$$
 $\{f(x) < r_k < g(x)\}$ — измеримо $\Rightarrow \quad igcup_{k=1}^\infty \{f(x) < r_k < g(x)\}$ — измеримо.

Лемма. f — измерима $\Rightarrow f + a, af$ — измерима.

Теорема. g,f — измеримы $\Rightarrow g+f,\ gf,\ f/g$ — измеримы. Доказательство. $\{f+g< C\}=\{f(x)<-g(x)+C\}$ — измеримо $\{f^2(x)< C\}=\{-\sqrt{C}< f(x)<\sqrt{C}\}$ — измеримо $fg=\frac{(f+g)^2-(f-g)^2}{4}\Rightarrow fg$ — измеримо $\frac{f}{g}=f\cdot\frac{1}{g}$ (считаем,что $g\neq 0$)

Надо доказать, что $\{\frac{1}{g(x)} < C\}$ — измеримо. Для этого необходимо рассмотреть множества $\{g(x)>0\}$ и g(x)<0 и случаи знака $C.\diamond$

Пусть есть последовательность $\{f_n\}$.

 $\{\sup_n f_n(x) > C\} = \bigcup_n \{f_n(x) > C\}, \text{ т.e } \sup_n f_n(x) \text{ измерим.}$ $\{\inf_n f_n(x) < C\} = \bigcup_n \{f_n(x) < C\}, \text{ т.e } \inf_n f_n(x) \text{ измерим.}$ $\overline{\lim_{n \to \infty}} f_n(x) = \inf_m (\sup_{n \geqslant m} f_n(x)) \Rightarrow \overline{\lim_{n \to \infty}} f_n(x) - \text{ измерим.}$ $\underline{\lim_{n \to \infty}} f_n(x) = \sup_n (\inf_n f_n(x)) \Rightarrow \underline{\lim_{n \to \infty}} f_n(x) - \text{ измерим.}$ А тогда и $\lim_{n \to \infty} f_n(x) = f(x) - \text{ измерим.}$

Множество, где $f_n(x)$ сходится, измеримо (т.к. на нем выполнено равенство верхнего и нижнего предела).

 $(X, \mathcal{M}, \mu), \;\; \mu \; - \;$ полная $\; \delta -$ аддитивная мера. Если $\; \mu A \; = \; 0, \;\; E \; - \;$ измеримо, то $\; E \bigcup A \;$ и $\; E \backslash A \; - \;$ измеримы. Это верно и в другую сторону. Во всех утверждениях можно считать функцию п.в.

Определение. f — простая функция, если f принимает конечное число значений, т.е. $f(x) = a_k, \ x \in E_k, \ \bigsqcup_{k=1}^n E_k = E.$

Будут иметься в виду измеримые простые функции. Для простых функций в определении достаточно $\{x\in X: f(x)=C\}\in \mathcal{M}, \quad f(x)=\sum_{k=1}^n a_k\chi_{E_k}(x)$

Теорема. $\forall f$ — измеримой $\exists \{f_k(x)\}$, т.ч. $f(x) = \lim_{k \to \infty} f_k(x) \ \forall x \in E$. Причем, если $f(x) \geqslant 0$, то $\{f_k(x)\}$ можно выбрать монотонно неубывающей.

$$f_k(x) = \begin{cases} \frac{l-1}{2^k}, & \frac{l-1}{2^k} \leqslant f(x) < \frac{l}{2^k} \\ k, & f(x) \geqslant k \end{cases}$$

Эта последовательность поточечно сходится к f, т.к. $\mid f(x) - f_k(x) \mid < 1/2^k$ $\exists \ \mathcal{K} > f(x) : \forall x > \mathcal{K}_n$

$$f_k(x) \leqslant f_{k+1}(x)$$

Если f(x) — произвольного знака, $f(x)=f^+(x)-f^-(x)$, где $f^+(x)=max\{f(x),0\}$ — измерима, если f — измерима.

Для f^+ и f^- применяем предыдущую часть теоремы, и берем затем разность этих последовательностей.

Определение. $f_k \xrightarrow{\mu} f$, если $\forall \varepsilon > 0$ $\mu\{|f_k(x) - f(x)| \geqslant \varepsilon\} \xrightarrow[k \to \infty]{} 0$

Теорема. $\lim_{k\to\infty} f_k(x) \stackrel{\text{п.в.}}{=} f(x) \Rightarrow f_k \stackrel{\mu}{\to} f$

Доказательство.

0

$$B_n(\varepsilon) = \bigcup_{k=n}^{\infty} A_k(\varepsilon), \ A_k(\varepsilon) = \{x : |f_k - f| \geqslant \varepsilon\}$$

 $B(\varepsilon) = \bigcap_{n=1}^{\infty} B_n(\varepsilon) \Rightarrow \text{ если } x \in B(\varepsilon), \text{то получ. расход.} \Rightarrow \mu(B(\varepsilon)) =$

 B_n убывает с ростом $n \Rightarrow$ монотонная последовательность.

По свойству непрерывности меры $\mu(B_n(\varepsilon)) \xrightarrow[n \to \infty]{} \mu(B(\varepsilon)) = 0$ $\mu(A_n(\varepsilon)) \leqslant \mu(B_n(\varepsilon)) \xrightarrow[n \to \infty]{} 0$

Задача. Построить пример последовательности, сходящейся по мере, но не сходящейся п.в.

Задача. (теорема Риса) $f_k \xrightarrow{\mu} f \Rightarrow$ можно выделить сходящуюся п.в. подпоследовательность.

Теорема. (Егорова)

$$f_n(x) o f(x)$$
 п.в. на E $orall \delta>0$ E_δ : $\mu(E_\delta)<\delta$ $f_n(x)\rightrightarrows f(x)$ на $Eackslash E_\delta$ (при условии $\mu E<\infty$)

Доказательство. Рассмотрим множества $B(\varepsilon)$, построенные в предыдущей теореме, только в этот раз $\varepsilon_k \to 0$

$$\mu(B_n(\varepsilon_k)) \xrightarrow[n \to \infty]{} 0; \quad \mu(B_n(\varepsilon_k)) < \frac{\delta}{2^k}; \quad \mu E_\delta \leqslant \sum_k \frac{\delta}{2^k} = \delta$$

$$E_\delta = \bigcup_{k=1}^\infty B_{n_k}(\varepsilon_k)$$

$$|f_n(x) - f(x)| < \varepsilon_k, \ n > n_k$$

Теорема. (Лузина о С-свойстве) Если функция измерима на отрезке $E \Rightarrow \forall \delta > 0 \; \exists$ замкнут. $F_{\delta} : f \mid_{F_{\delta}}$ — непрерывна, $\mu(E \setminus F_{\delta}) < \delta$ $(\mu\{g(x) \neq f(x)\} < \delta, g(x)$ — непрерывна)

Доказательство. Следует из теоремы Егорова и теоремы о приближении $f_k(x) \to f, \{f_k(x)\}$ — последовательность простых функций.

 $\forall f_k \; \exists \, F_k$ — измерим., откр., $\; \mu(E \backslash F_\delta) < \delta/2^{k+1} \;$ и f_k непрерывна на F_k относительно F_k .

$$\mu(E \setminus \bigcup_{k=1}^{\infty} F_k) < \delta/2.$$

Выбросив множество меры $\delta/2$, получим на оставшемся замкнутом множестве $f_k(x) \rightrightarrows f(x)$, и f(x) получится непрерывной на замкнутом множестве.

Доказать в обратную сторону. Задача.

Интеграл Лебега

 $(X,(M),\mu)$, μ полагаем полной.

Определяем интеграл Лебега на измеримом множестве E для $f(x) \geqslant$ 0

Определение.

$$(L) \int_{E} f d\mu = \sup_{E = \bigcup_{k=1}^{n} E_k} \left(\sum_{k=1}^{n} \inf_{x \in E_k} f(x) \mu E_k \right)$$

Задача. Если f — простая, принимающая значения a_k на E_k , тогда $(L)\int\limits_E f d\mu = \sum\limits_k a_k \mu E_k$

Лекция 5.

$$(X,(M),\mu)$$

$$\mu - \delta$$
-конечна, если $X = \bigcup_{i=1}^{\infty} X_i, \ \mu X_i < +\infty$

$$\mu-\delta$$
-конечна, если $X=\bigcup_{i=1}^{\infty}X_i,\ \mu X_i<+\infty$ $(L)\int\limits_E f d\mu=\sup\limits_{E=\bigcup_j E_j}\left(\sum\limits_j (\inf\limits_{x\in E_j} f(x))\mu E_j\right),$ для меры и $f(x)$ разрешено принимать значение $+\infty$

Если интеграл принимает значение ∞ , мы не будем говорить, что функция интегрируема.

Определение. Суммируемая функция — интегрируемая по Лебегу с конечным значением интеграла.

Утверждение Если f(x) измерима и $f(x) \ge 0$ (на измеримом множестве) и суммируема, то тогда f(x) конечна и суммируема, то тогда f(x) конечна п.в.

$$\{x \in E: f(x) = +\infty\} = E \setminus (\bigcup_{N=1}^{\infty} \{f(x) < N\}) \quad \Rightarrow \\ \{x \in E: f(x) = +\infty\} - \text{измеримо} \Rightarrow \\ \mu \ \{x \in E: f(x) = +\infty\} = 0$$

$$\begin{split} E_1 \subset E, E_1 &- \text{измеримо, } f(x) \geqslant 0 \Rightarrow \\ \int_{E_1} f d\mu \leqslant \int_E f d\mu \\ f(x) \leqslant g(x) \Rightarrow \int_E f d\mu \leqslant \int_E g d\mu \\ f(x) &= a_j, \; x \in E_j \; (f(x) - \text{простая функция}) \end{split}$$

Тогда
$$(L)\int_E f d\mu = \sum_{j=1}^n a_j \mu E_j$$

Это можно считать определением интеграла для простой неотрицательной функции.

f,g — простые функции

$$f(x) = a_j, \quad x \in E_j$$

$$g(x) = b_i, \quad x \in E_i$$

Тогда:

1.
$$\int_{E} (f+g)d\mu = \sum_{i} \sum_{j} (a_{j}+b_{i}) \mu(E_{j} \cap E'_{i}) = \int_{E} f d\mu + \int_{E} g d\mu$$

2.
$$\int_{E} (cf) d\mu = c \int_{E} f d\mu$$

3.
$$E = E_1 \bigcup E_2$$
 $\int_{E_1} f d\mu + \int_{E_2} f d\mu = \int_{E_1} f d\mu$

Теорема (о вычислении интеграла Лебега через простые функции)

 $f(x)\geqslant$ на Е - измер., $f_k(x)\nearrow f(x),\{f_k(x)\}-$ последовательность простых измеримых функций.

Тогда
$$(L)\int_E f d\mu = \lim_{k\to\infty}\int_E f_k d\mu$$

•

$$f_k(x) \leqslant f(x)$$

$$(L) \int_{E} f_{k} d\mu \leqslant (L) \int_{E} f d\mu \Rightarrow \lim_{k \to \infty} (L) \int_{E} f_{k} d\mu \leqslant (L) \int_{E} f d\mu$$

Докажем неравенство в другую сторону

$$\inf_{x \in E_j} f(x) = a_j, E = \bigcup_{j=1}^n E_j$$
$$\lim_{k \to \infty} f_k(x) \geqslant a_j \quad \forall x \in E_j$$

Возьмем $\varepsilon > 0$

$$A_{jk} = \{ x \in E_j : f_k(x) > a_j - \varepsilon \}$$

$$E_j = \bigcup_i A_{jk} \quad ($$
так как $lim_{k \to \infty} f_k \geqslant a_j)$

 $A_{jk}\subset A_{j(k+1)}$ (так как f_k — монотонная), то есть это монотонно растущая последовательность \Rightarrow (по непрерывности меры) $\mu A_{jk}\xrightarrow[k\to\infty]{}\mu E_j$

$$\begin{split} &\int_{E_j} f_k d\mu \geqslant \int_{A_{jk}} f_k d\mu > (a_j - \varepsilon) \mu A_{jk} \\ &\lim_{k \to \infty} \int_{E_j} f_k d\mu \geqslant a_j \mu E_j \end{split}$$

Получаем $\lim_{k\to\infty}\int_E f_k d\mu\geqslant \sum_j a_j\mu E_j$, так как разбиение произвольно, то $\lim_{k\to\infty}\int_E f_k d\mu\geqslant \sup_{\bigcup_{j=1}^n E_j=E}\sum_j a_j\mu E_j=(L)\int_E f d\mu$

Предельным переходом получаем для $f,g\geqslant 0$

$$1. \int_{E} (f+g)d\mu = \int_{E} f d\mu + \int_{E} g d\mu$$

2.
$$\int_E cfd\mu = c\int_E fd\mu$$

3.
$$\int_{E_1} f d\mu + \int_{E_2} f d\mu = \int_{E_1 \cup E_2} f d\mu f d\mu$$
, $E_1 \cap E_2 = \emptyset$

Значение интеграла не зависит от значения f(x) на множестве меры 0.

Определим интеграл Лебега для функций любого знака $f=f^++f^-$

$$f^+ = max\{f(x); 0\}, \quad f^- = max\{f(x); 0\}$$

Если
$$f$$
 — изм. $\Rightarrow f^+, f^-$ — измер.

$$(L)\int_E f d\mu = ($$
по определению)
 $(L)\int_E f^+ d\mu - (L)\int_E f^- d\mu$

Говорим, что интеграл существует, если хотя бы один из этих двух интегралов (от f^+ и f^-) конечен.

f называют интегрируемой, если оба интеграла, входящие в определение, конечны.

Свойства интеграла Лебега.

- 1. $\mu E = 0 \Leftrightarrow \int_E f d\mu = 0$
- 2. $f \sim g \; (f \; \text{и} \; g \; \text{совпадают п.в.}) \Rightarrow \; \text{существует}(L) \int_E f d\mu$
- \Leftrightarrow существует $(L)\int_{E}gd\mu$ и $(L)\int_{E}fd\mu=(L)\int_{E}gd\mu$
- 3. $f(x) \leq g(x) \Rightarrow \int_E f d\mu \leq \int_E g d\mu$
- 4. f(x) интегрируемая $\Rightarrow f(x)$ конечна п.в. $(f(x) \in L(E)))$
- 5. $E_1\subset E, \int_E fd\mu$ существует $\Rightarrow \int_{E_1} fd\mu$ существует (f суммир. на $E\Rightarrow f$ суммир. на E_1)
 - 6. f измерима на $E,\ f\in L(X)\Leftrightarrow |f|\in L(E)$

$$|f| = f^+ + f^-$$

$$|\int_{E} f d\mu| \le \int_{E} f^{+} + \int_{E} f^{-} d\mu = \int_{E} |f| d\mu$$

- 7. f,g— измеримы на $E \; |f(x)| \leqslant |g(x)| \; \text{п.в.} \; \Rightarrow \int_E |f| d\mu \leqslant \int_E |g| d\mu$
- 8. $\int_{E} (cf) d\mu = c \int_{E} f d\mu$
- 9. $\int_{E_1} f d\mu + \int_{E_2} f d\mu = \int_{E_1 \bigcup E_2} f d\mu \ (E_1 \bigcap E_2 = \varnothing)$

10.
$$\int_{E} (f+g)d\mu = \int_{E} f d\mu + \int_{E} g d\mu$$

Если f и g суммир. $\Rightarrow f + g$ суммируемы

$$|f + g| \leqslant |f| + |g|$$

11. $f(x)\geqslant 0$ на $E,\ m\leqslant g(x)\leqslant M$ п.в. на $E,\ {
m Torga}\ m\int_E f d\mu\leqslant M\int_E f d\mu$

Предельный переход под знаком интеграла

$$f(x) = \sum_{k=1}^{\infty} f_k(x), \ f_k(x) \geqslant 0$$

Тогда
$$(L)\int_E f\mu = \sum_{k=1}^{\infty} (L)\int_E f_k d\mu$$

$$\oint \sum_{k=1}^{N} f_k(x) \leqslant f(x)$$

$$\sum_{k=1}^{N} (L) \int f_k(x) d\mu \leqslant (L) \int_E f d\mu$$

$$\sum_{k=1}^{\infty} (L) \int f_k d\mu \leqslant (L) \int_E f d\mu$$

Докажем неравенство в другую сторону:

$$f_{k_j} \nearrow_{j o \infty} f_k, \ f_{k_j}$$
 — простые функции

$$(*)$$
 $S_j = \sum_{k=1}^{j} f_{k_j} \leqslant \sum_{k=1}^{j} f_k \leqslant \sum_{k=1}^{\infty} f_k = f$

$$\lim_{j\to\infty} S_j(x) \leqslant f(x)$$

Фиксируем n. Пусть j > n

$$S_j\geqslant \sum_{k=1}^n f_{k_j}; lim_{j o\infty}S_j(x)\geqslant \sum_{k=1}^n f_k(x)$$
 $orall$ фиксированных n

$$\lim_{i\to\infty} S_i(x) \geqslant \sum_{k=1}^{\infty} f_k(x) = f(x)$$

Значит,
$$\lim_{j\to\infty} S_j(x) = f(x)$$

Тогда
$$(L) \int f d\mu = \lim_{j\to\infty} \int_E S_j d\mu \leqslant \sum_{k=1}^{\infty} \int_E f_k d\mu$$

$$\int_{E} S_{j} d\mu < \sum_{k=1}^{j} \int_{E} f_{k} d\mu \ \blacklozenge$$

Следствие. $f(x) = \sum_{k=1}^{\infty} f_k(x), \ f_k \geqslant 0,$ и сходится $\sum_{k=1}^{\infty} \int_E f_k d\mu \Rightarrow \sum_{k=1}^{\infty} f_k(x)$ сходится п.в.

Верно, т.к. если $\int_E f d\mu$ конечен, то f конечен п.в.

Задача. Пусть $\mathbf{R} = \{r_n\}$, доказать, что $\sum_{k=1}^{\infty} \frac{1}{k^2 \sqrt{x-r_k}}$ сходится п.в.

Лекция 6.

$\delta-$ аддитивность интеграла Лебега

$$E = \bigcup_{k=1}^{\infty} E_k, E_k$$

f, инт. для f имеет смысл

Тогда
$$\int_E f d\mu = \sum_{k=1}^\infty \int_{E_k} f d\mu$$

Задача. Из правой части не следует, что интеграл слева существует

Доказательство. Сначала докажем для неотрицательныхъ функций $f\geqslant 0,\ f=\sum_{k=1}^{\infty}f\dot{\chi}_{E_k}$

Так как этот ряд можно почленно интегрировать, получаем требуемое равенство. Если f(x) любого знака, то $f=f^++f^-$, далее примен. доказанную часть теоремы для f^+ и f^- (примен., так как предполагается, что интегрирование слева имеет смысл)

 $f_k \nearrow f$ п.в., $f_k \geqslant 0$, измерим. (на измеримом множестве $E) \Rightarrow \lim_{k \to \infty} \int_E f_k d\mu = \int_E f d\mu$

Доказательство. Ясно, что $\lim_{k\to\infty}\int_E f_k d\mu \leqslant \int_E f d\mu$

Если $\exists k: \int_E f_k d\mu = +\infty$, то будет равенство. Оставшуюся часть доказательства можно провести в предположении: $\int_E f_k d\mu$ конечен $\Rightarrow f_k$ кон. п.в.

Пусть f_k кон. вне F_k , $\mu F_k = 0$

 F_0 — множество, на котором не имеет места монотонная сходимость

На $E\left(\bigcup_{k=0}^{\infty} F_k\right) f_k \nearrow f$ и все f_k конечны

Значит,
$$f = f_1 + \sum_{k=1}^{\infty} (f_{k+1} - f_k) E \left(\bigcup_{k=0}^{\infty} F_k\right)$$

 $\int_{E} f d\mu = \int_{E} f_{1} d\mu + \sum_{k=1}^{\infty} \int_{E} (f_{k+1} - f_{k}) d\mu = \sum_{k=1}^{\infty} (\int_{E} f_{k+1} d\mu - \int_{E} f_{k} d\mu) + \int_{E} f_{1} d\mu$

$$\lim_{k\to\infty} \int_E f_k d\mu = \int_E f d\mu$$

Теорема Б. Леви.

$$f_k(x) \nearrow f(x)$$
 п.в. $f_k \in L(E) \Rightarrow \lim_{k \to \infty} \int_E f_k d\mu = \int_E f d\mu$

 \Diamond Переходим к $f_k - f_1 \nearrow f - f_1$

$$\lim_{k\to\infty} (\int_E f_k - \int_E f_1) = \int_E f d\mu - \int_E f_1 d\mu \blacklozenge$$

Следствие. Если в условиях теоремы Б. Леви $\int_E f_k d\mu \leqslant C \Rightarrow f$ кон. п.в. и интегрируема.

Если $\lim_{k\to\infty}\int_E f_k d\mu = +\infty \Rightarrow f$ неинтегрируема.

Теорема Фату. $f_k \to f$ п.в. на $E,\ f_k(x)\geqslant 0.$ Тогда $\int_E f d\mu\leqslant \lim_{k\to\infty}\int_E f_k d\mu$

Задача. Показать, что этих условий недостаточно для выполнения равенства

Доказательство. $\varphi_k(x) = \inf_{n \geqslant k} f_n(x)$. Это монотонно \nearrow последовательность.

$$\varphi_k(x) \nearrow f(x) \ \varphi_k(x) \leqslant f_k(x)$$

$$\int_{\mathbb{R}} f d\mu = \lim_{k \to \infty} \int_{\mathbb{R}} \varphi_k d\mu \leqslant \underline{\lim} \int_{\mathbb{R}} f_k d\mu$$

Теорема Лебега.

$$\begin{split} f_k(x) &\longrightarrow f(x) \; |f_k(x)| \leqslant \varphi(x) \in L(E) \; \Rightarrow \int_E f d\mu = \lim_{k \to \infty} \int f_k d\mu \\ \lozenge \; |f_k(x)| \leqslant \varphi(x) \Rightarrow (x) f(x) \; - \; \text{интегрируема}. \end{split}$$

Сначала докажем для $f_k(x) \geqslant 0$

$$\int_E f d\mu \leqslant \varliminf_{k\to\infty} \int_E f_k d\mu \leqslant \int_E \varphi d\mu \ \text{по теореме } \Phi \text{ату}.$$

$$\varphi - f_k \geqslant 0$$

$$\begin{split} &\int_{E} \varphi d\mu - \int_{E} f d\mu \leqslant \underline{\lim}_{k \to \infty} \int_{E} (\varphi - f_{k}) d\mu \leqslant \int_{E} \varphi d\mu - \overline{\lim}_{k \to \infty} \int_{E} f_{K} d\mu \Rightarrow \\ &\int_{E} f d\mu \geqslant \overline{\lim}_{k \to \infty} \int_{E} f_{k} d\mu \Rightarrow \int_{E} f d\mu = \lim_{k \to \infty} f_{k} d\mu \\ &- \varphi(x) \leqslant f_{k}(x) \leqslant \varphi(x) \end{split}$$

$$0 \leqslant f_k(x) + \varphi(x) \leqslant 2\varphi(x)$$

Доказанная часть применима к этой последовательности: $\lim_{k\to\infty}(\int_E f_k d\mu + \int_E \varphi d\mu) = \int_E (f+\varphi) d\mu$ \blacklozenge

Задача. Показать, что в теореме Леви условие интегрируемости нельзя заменить на условие существенной интегрируемости

Задача. Доказать, что $\lim_{n\to\infty}\int_0^\infty \frac{1}{(1+x/n)^n x^{1/n}}=1$ (обосновать предельный переход под знаком интеграла)

Задача. $\mu E < \infty, f(x) \geqslant C.$ Доказать, что верна теорема Лебега.

Определение. Срезка f(x)

$$f^{N}(x) = \begin{cases} f(x), & |f(x)| \leq N \\ N, & f(x) > N \\ -N, & f(x) < -N \end{cases}$$

$$\int_E f d\mu = \lim_{N \to \infty} \int_E f^N d\mu, \text{ так как } |f^N| \leqslant f \in L(E)$$

Если $f\geqslant 0$, то кон. $\lim_{N\to\infty}\int_E f^N d\mu$ — условие существования $\int_E f d\mu$. Это следует из теоремы Леви.

Теорема. Если
$$f$$
 — интегрируема на E , то $\int_E |f-f^N| d\mu \xrightarrow[N \to \infty]{} 0$ $\Diamond f - f^N = f^+ - (f^N)^+ - (f^- - (f^N)^-)$

Применим утверждение для положительной и отрицательной части функции и получим требуемое утверждение. ♦

Лемма.
$$E\subset [a,b],\ E$$
 измерима. \Rightarrow $(\mathfrak{M})\int_a^b\chi_Edx=\mu(E)=(L)\int_{[a,b]}\chi_Ed\mu$ \Diamond Пусть E — открытое множество, $E=G=\bigcup_n(\alpha_n,\beta_n)$ $\chi_G(x)=\lim_{k\to\infty}(\bigcup_{n=1}^k(\alpha_n,\beta_n))$

По теореме Б. Леви предельным переходом получаем требуемую формулу. Переходом к дополнению получим такое утверждение для замкнутых множеств. ◆

$$E$$
 — измерим., $\{F_k\}$ — замкнут.

$$F_k \subset F_{k+1} \subset \ldots \subset E$$

 $\mu(E \bigcup_k F_k) = 0$ (так как для измеримого множества возможно приближение с любой точностью)

$$\chi_E = \chi_A + \chi_{\bigcup_k F_k} \ (A = E \ \bigcup_k F_k)$$

$$\chi_E = \chi_A + \lim_{k \to \infty} \chi_{F_k}, \ \chi_{F_k} \nearrow \chi$$

Применим теорему Б. Леви (или теорему о неотрицательных функциях). Интеграл Мак–Шейна и Лебега совпадают для χ_A и $\chi_{\bigcup_k F_k} \Rightarrow$ они совпадают для χ_E

Теорема. На отрезке прямой интеграл Мак-Шейна совпадает с интегралом Лебега.

 \Diamond Докажем сперва для неотрицательных функций. $f_k \nearrow f, f_k$ — простые

Интегралы f_k совпадают. Применим теорему Леви и получим совпадение пределов.

Если f — произвольного знака, то $f = f^+ + f^-$. Если f интегрируема по Лебегу $\Rightarrow f^+, f^-$ интегрируемы по Лебегу. $\Rightarrow f^+, f^-$ интегрируемы по Мак-Шейну $\Rightarrow f$ интегрируема по Мак-Шейну $\Rightarrow |f|$ интегрируема по Мак-Шейну $\Rightarrow f^+, f^-$ интегрируемы по Мак-Шейну $\Rightarrow f^+, f^-$ интегрируемы по Лебегу $\Rightarrow f$ интегрируема по Лебегу. \spadesuit

Теорема. Если некоторые интегралы сходятся абсолютно на отрезке \Rightarrow функция интегрируема по Лебегу.

Задача. Привести пример того, что обратное неверно.

Задача. Обобщить утверждение теоремы для всей прямой.

Лекция 7.

Определение. $f \in N[a,b]$ интегрируема по Ньютону, если существует F(x):F'(x)=f(x)

$$(N) \int_a^b f dx = F(b) - F(a)$$

Интеграл Лебега не покрывает интеграл Ньютона.

Теорема. Неопределенный интеграл Лебега дифф. п.в. F(x) =

$$(L)\int_a^x f d\mu \Rightarrow F'(x) = f(x)$$
 (п.в.)

$$f \in L[a,b]$$

 $L(X, \mathcal{M}, \mu)$ — пространство Лебега, состоящее из классов эквивалентных функций.

$$f \sim g \Leftrightarrow \mu\{x \in X: f(x) \neq g(x)\} = 0$$

$$\rho(f,g) = 0 \Leftrightarrow f = g$$

$$\rho(f,g) = \in_x |f - g| d\mu$$
 — метрика $\Rightarrow L(X, \mathcal{M}, \mu)$

$$\gamma \in \mathcal{L}$$

 $\int_x |f-f^N| d\mu \xrightarrow[N \to \infty]{} 0$, то есть каждая измеримая функция может быть с любой точностью приближена ограниченной функцией (по метрике).

$$\forall \varepsilon > 0 \; \forall f \in \mathcal{L} \; \; \exists |g_{\varepsilon}(x)| < A : \; \rho(f, g_{\varepsilon}) < \varepsilon$$

Если верна теорема Лузина, то ограниченную функцию можно приближать непрерывными, ограниченными той же константой. То есть $\exists \varphi$ непрерывная, $\mu\{g_{\varepsilon} \neq \varphi\} < \varepsilon/A, |\varphi(x)| < A$

Докажем для отрезка:
$$\int_a^b |g_\varepsilon(x)-\varphi(x)|d\mu < 2A\varepsilon/A = 2\varepsilon$$

$$\forall f \in \mathcal{L} \quad \exists \varphi \ \rho(f, \varphi) < 3\varepsilon$$

Определение. $f_n \xrightarrow{L} f \Leftrightarrow \rho(f_n,f) \xrightarrow{n \to \infty}$ (сходимость в метрике)

Теорема. (неравенство Чебышева)

$$f \in L(E) \Rightarrow \mu\{x \in E : |f(x)| \geqslant C\} \leqslant \frac{1}{c}(L) \int_{E} |f| d\mu$$

$$E_c = x \in E : |f(x) \geqslant C|$$

$$c\mu E_c = \int_{E_c} c d\mu \leqslant \int_{E_0} |f| d\mu \leqslant \int_{E} |f| d\mu$$

Утверждение.
$$f_n \in L(E), \int_E |f-f_n| d\mu \xrightarrow[n \to \infty]{} 0 \Rightarrow f_n \xrightarrow{\mu} f$$

Доказательство.
$$\forall \varepsilon > 0 \ \mu\{x \in E : |f(x) - f_n(x)| \geqslant \varepsilon\} \leqslant \frac{1}{\varepsilon} \int_E |f - f_n| d\mu \xrightarrow[n \to \infty]{} 0$$

Задача. Связь сходимости в метрике с другими видами сходимости

Задача.
$$\mu\{x\in E:|f(x)\geqslant C|\}=\mathrm{Q}(\tfrac{1}{c}),c\to\infty$$
 Если $f(x)$ суммируема на E , то $\mu\{x\in E:|f(x)\geqslant C|\}=\mathrm{Q}(\tfrac{1}{c}),c\to\infty$ ∞

Пример измеримой несуммируемой функции, для которой это выполнено.

 $L(X,\mathcal{M},\mu)$ — нормированное пространство с нормой $\|f\|=\int_E|f|d\mu$, при условии, что элементы пространства — классы эквивалентности (иначе нет условия $\|x\|=0 \Leftrightarrow x=0,0$ в нашем пространстве соответствует классу эквивалентности)

Можно рассматривать L^p — пространство функций, интегрируемых р раз по Лебегу.

$$f\in L(E)\Rightarrow f\in L(E')\ \forall E'\subset E,E'\in \mathfrak{M}$$

$$\varphi(E)=\int_{E_1}fd\mu -\text{неопределенный интеграл Лебега}$$
 $\varphi-$ аддитивная функция

Определение. $(X, \mathcal{M}), \ \mathcal{M} - \delta$ -алгебра

 φ — аддитивная функция множества, если

$$\varphi: \mathcal{M} \to \mathbb{R}$$
 и является δ -аддитивной : $\varphi(\bigcup_{k=1}^\infty E_k) = \sum_{k=1}^\infty \varphi(E_k)$

$$E_1 \subset E_2 \subset \ldots \subset E_k \subset_{E_{k+1}} \subset \ldots$$

 $\varphi(\bigcup_{k=1}^\infty E_k)=\lim_{k\to\infty} \varphi(E_k)$ — доказывается так же, как непрерывность меры.

$$A_1 = E_1, A_2 = E_2 E_1, \dots, A_k = E_k E_{k-1}$$

$$\bigcup_{k=1}^{\infty} E_k = \bigcup_{k=1}^{\infty} A_k$$

$$\varphi(\bigcup_{k=1}^{\infty}) = \sum_{k=1}^{\infty} \varphi(A_k)$$

$$E_1 \supset E_2 \supset \dots \supset E_k \supset E_{k+1} \supset \dots$$

$$\varphi(\bigcap_{k=1}^{\infty} E_k) = \lim_{k \to \infty} \varphi(E_k)$$

Док. переходом к дополнению (не нужно оговаривать конечность меры)

 $\varphi \geqslant 0$ E_k — последовательность множеств.

$$\underline{\lim}_{k\to\infty} E_k = \bigcup_k \bigcap_{n\geqslant k} E_n$$

$$\varphi(\underline{\lim}_{k\to\infty}) \leqslant \underline{\lim}_{k\to\infty} \varphi(E_k) \leqslant \overline{\lim}_{k\to\infty} \varphi(E_k) \leqslant \varphi(\overline{\lim}_{k\to\infty} E_k)$$

$$A_k = \bigcap_{n\geqslant k} E_n \nearrow_{k\to\infty}$$

$$\varphi(\underline{\lim}_{k\to\infty} E_k) = \underline{\lim}_{k\to\infty} \varphi(A_k) \leqslant \underline{\lim}_{k\to\infty} (\varphi(E_k))$$

Вторая часть доазательства аналогично переходом к \searrow последовательности или переходом к дополнению.

 $(X, \mathcal{M}), \varphi$ — аддитивная функция.

Определение. $\bar{\mathrm{V}}(E,\varphi)$ — верхняя вариация относительно φ

$$\bar{\mathbf{V}} = \sup_{A \subset E} \varphi(A), A \in \mathcal{M}$$

$$V = -\inf_{A \subset E} \varphi(A), A \in \mathcal{M}$$
 — нижняя вариация

Полная вариация: $V = \bar{\mathrm{V}}(E) + \underline{\mathrm{V}}(E)$

Из определения следует, что $\varphi(\varnothing)=0$

$$V(E, q) = \bar{V}(E, -\varphi)$$

$$\varphi(E)=\int_E f d\mu$$
, тогда $\bar{\mathbf{V}}E=\int_E f^+ d\mu$, $\underline{\mathbf{V}}(E)=\int_E f^- d\mu$

$$V(E) = \int_{E} |f| d\mu$$

Покажем, что $\mathbf{V}, \mathbf{\bar{V}}, V$ — аддитивные функции множества

1.
$$E = \bigcup_{k=1}^{\infty}, E_k \in \mathcal{M}$$

$$H_k = E_k \left(\bigcup_{n=1}^{k-1} E_n \right) \quad E = \bigcup_{k=1}^{\infty} H_k$$

$$A \subset E \ A = \bigcup_{k=1}^{\infty} (A \cap H_k) \ A \cap H_k \subset E_k \Rightarrow$$

$$\varphi(A) = \sum_{k=1}^{\infty} \varphi(A \cap H_k) \leqslant \sum_{k=1}^{\infty} \bar{\mathbf{V}} E_k$$
, переходя к sup по A , полу-

чаем: $\underline{V}(E) \leqslant \sum_{k=1}^{\infty} \overline{V}(E_k)$ — полуаддитивность.

То же вернодля $\bar{\mathrm{V}}(E)\Rightarrow$ верно для V(E)

2. Проверим конечность V, \bar{V}, V . Достаточно доказать для V:

Предположим, что $\exists E: V(E) = +\infty$

$$E = E_1 \supset E_2 \supset E_3 \supset \ldots \supset E_k \supset \ldots, |\varphi(E_k)| \geqslant k-1$$

$$V(E_k) = +\infty$$

Строим: для E_1 это выполнено.

Так как
$$V(E_k) = +\infty \Rightarrow \exists A \subset E_k : |\varphi(E_k)| \geqslant |\varphi(E_k)| + k$$

$$|\varphi(A E_k)| \geqslant |\varphi(A)| - |\varphi(E_k)| \geqslant k$$

$$V(E_k) \leqslant V(A) + V(E_k | A) \Rightarrow V(A) | V(E_k | A) = \infty$$

В качестве E_k возьмем то из них, на котором вариация — ∞

Так как это \searrow последовательность, $\varphi(\bigcap_k E_k) = \lim_{k \to \infty} \varphi(E_k) =$

 $\infty \Rightarrow$ противоречие с конечностью φ

3. Докажем противоположное неравенство:

Полагаем $E = \bigcup_{k=1}^{\infty} E_k$

докажем:
$$\bar{\mathrm{V}}(E)\geqslant\sum_{k=1}^{\infty}\bar{\mathrm{V}}(E_k)$$
 - ε

Устремим ε к нулю, получим:

$$\bar{V}(E) \geqslant \sum_{k=1}^{\infty} \bar{V}(E_k)$$

Разложение Жордана.

$$\varphi(E) = \bar{V}(E) - \underline{V}(E)$$

Доказательство.

$$A \subset E \quad \varphi(E) = \varphi(A) + \varphi(E \setminus A)$$

$$\varphi(A) = \varphi(E) - \varphi(E \setminus A)$$

Переходим к sup и получаем

$$\bar{V}(E) = \varphi(E) - \inf_{A \subset E} \varphi(E \setminus A) = \varphi(E) + \underline{V}(E)$$

Лекция 8.

 $(X, \mathcal{A}, \mathcal{M})$

 $\varphi:A o\mathbb{R}$ — аддитивная функция.

 φ абсолютно непрерывна относительно $\mu,$ если $\forall E\in\mathcal{A}$ $\mu E=0$ имеем $\varphi(E)=0$

Определение. φ сингулярна относительно μ , если $\exists z \in \mathcal{A}, \ \mu z = 0$, т. что $\varphi(A)=0$, если $A \cap z=\varnothing$ (или $\forall A \varphi(A)=\varphi(A \cap z)$)

Задача.

- 1. φ абсолютно непрерывна и сингулярна $\Rightarrow \varphi \equiv 0$
- 2. линейная комбинация абсолютно непрерывных (сингулярных) функций абсолютно непрерывна (сингулярна)
- 3. φ абсолютно непрерывна (сингулярна) $\Leftrightarrow V, \bar{V}, \bar{V}$ абсолютно непрерывны (сингулярны)
- 4. φ_k последовательность абсолютно непрерывных (сингулярных) аддитивных функций, φ её предел (т.е. $\varphi(A) = \lim_{k \to \infty} \varphi_k(A) \ \forall A \in \mathcal{A}$) $\Rightarrow \varphi$ абсолютно непрерывна (сингулярна)

 $\varphi(E) = \int_E f d\mu$ — абсолютно непрерывная функция

Далее рассматриваем все на $E,\ \mu E<\infty$

Утверждение. φ — абсолютно непрерывна относительно $\mu\Leftrightarrow$ $\forall \varepsilon >0$

$$\exists \delta > 0 \; \forall A: \; \mu A < \delta \Rightarrow \Rightarrow |\varphi(A)| < \varepsilon$$

Необходимость. $\mu A=0, \mu A<\delta \ \forall \delta>0,$ тогда $\varphi(A)<\varepsilon \ \forall \varepsilon>0$

Достаточность. Предположим φ — абсолютно непрерывна и утверждение не выполнено. Сначала докажем для $\varphi \geqslant 0$.

$$\exists \varepsilon : \ \delta_k = \frac{1}{2^k}, \mu A_k < \frac{1}{2^k}, \varphi(A_k) \geqslant \varepsilon$$

$$\overline{\lim}(A_k) = \bigcap_{m=1}^{\infty} \bigcup_{k \geqslant m} A_k$$

$$\mu \overline{\lim} A_k = \mu(\bigcap_{m=1}^{\infty} \bigcup_{k \geqslant m} A_k) \leqslant \mu(\bigcup_{k \geqslant m} A_k) \leqslant \sum_{k \geqslant m} \mu A_k < \sum_{k \geqslant m} \frac{1}{2^k} = \frac{1}{2^{m-1}} \Rightarrow 0$$

То есть $\mu A = 0$ (так как не зависит от m)
$$\varphi(\overline{\lim}(A_k)) \geqslant \overline{\lim}_{k \to \infty} \varphi(A_k) \geqslant \varepsilon \text{ (было доказано для } \varphi \geqslant 0)$$

То есть получаем противоречие $(\mu A = 0 \ \varphi(A) \geqslant \varepsilon)$

Теперь докажем для φ произвольной.

Если φ абсолютно пепрерывна $\Rightarrow V$ абсолютно пепрерывна.
$$|\varphi(A)| \leqslant V(A) < \varepsilon \Rightarrow \text{ выполнено утверждение}$$

Задача. φ сингулярна относительно μ на $E \Leftrightarrow \forall \varepsilon > 0 \ \exists A \subset F:$

$$\mu A < \varepsilon$$

$$V(E \setminus A, \varphi) < \varepsilon$$

Теорема Хана. $\mu E < \infty, \varphi - \text{ аддитивная мера. Тогда } \exists P \subset E \lor A \subset P \ \varphi(A) \geqslant 0, \forall A \subset E \setminus P \ \varphi(A) \leqslant 0$

Доказательство.
$$V(P) = 0 \text{ равносильно первой части утверждения}$$

$$\bar{V}(E \setminus P) = 0 \Leftrightarrow \exists P \subset E \lor A \subset E \setminus P \ \varphi(A) \leqslant 0$$

Докажем утверждение для вариации

Замечание: если $V(P) = 0, \ \bar{V}(E \setminus P) = 0, \ \text{то } \bar{V}(E) = \bar{V}(P)$

$$E \supset A_k : \varphi(A_k) > \bar{V}(E) - 1/2^k \Rightarrow (\exists \text{ такое } A_k \text{ по определению } \bar{V})$$

$$\bar{V}(A_k) > \bar{V}(E) - 1/2^k \Rightarrow \bar{V}(E \setminus A_k) < 1/2^k$$

$$\varphi(A_k) \ \bar{V}(A_k) - \bar{V}(E) - 1/2^k$$

$$\bar{V}(A_k) - \bar{V}(E) - 1/2^k$$

$$\bar{V}(A_k) < \bar{V}(E) - 1/2^k$$

$$\bar{V}(E \setminus A_k) = \bar{V}(\bigcap_{m=1}^{\infty} \bigcup_{k \geqslant m} (E \setminus A_k)) \leqslant \bar{V}(\bigcup_{k \geqslant m} (E \setminus A_k))$$

$$\leqslant \sum_{k=m}^{\infty} \bar{V}(E \setminus A_k) < \sum_{k=1}^{\infty} \frac{1}{2^k} = \frac{1}{2^{m-1}} \to 0$$

$$V(E \setminus A_k) < 1/2^k$$

$$\bar{V}(E \setminus P) = 0$$

Теорема. (об обобщенном разложении Хана)

$$arphi(A)\geqslant 0, \mu$$
 — мера, тогда $\forall a>0$ $E=Z\bigcup(\bigcup_{k=1}^\infty E_k), \mu Z=0, E_k:$ \forall $A\in E_k$ выполнено

$$a(k-1)\mu A \leqslant \varphi(A) \leqslant ak\mu A$$

Достаточно доказать при a=1 (иначе от φ переходим к φ/a)

Рассмотрим $\varphi - \mu$ – функция множества.

$$\exists P=E^+:\ \forall A\ \subset E^+: \varphi(A)\geqslant \mu(A)\ \Pi$$
усть $E\setminus P=E^-:\ \forall A\ \subset E^-: \varphi(A)\leqslant \mu(A)$

Пусть $E^- = E_1$

 $\varphi - 2\mu$. Применяем к ней предыдущую теорему.

$$E^+ \to E^{++} \quad \varphi(A) \geqslant 2\mu(A)$$

 $\searrow E^{+-} \quad \mu A \leqslant \varphi(A) \leqslant 2\mu A$

$$E \xrightarrow{k-1} E \xrightarrow{k} E \xrightarrow{k} \varphi(A) \geqslant k\mu(A)$$

$$E \xrightarrow{k} (k-1)\mu A \leqslant \varphi(A) \leqslant k\mu(A)$$

$$Z = \bigcap_{k=1}^{\infty} E \underbrace{+ + \ldots +}_{k}$$

$$\mu(z)\leqslant \frac{\varphi(Z)}{k}\xrightarrow[k\to\infty]{}0\Rightarrow \mu Z=0$$

Теорема. (о разложении Лебега) φ — аддитивная функция на $E,\ \mu-\delta$ -конечна. Тогда существует однозначное представление $\varphi:\ \lambda+\delta,\$ где α — абсолютно непрерывна, δ -сингулярна. Причем $\alpha(A)=\int_A f d\mu,\ f$ определено однозначно $\delta(A)=\varphi(A\bigcap Z),\$ где Z — фиксирована, $\mu Z.$ Если $\varphi\geqslant 0,\$ то $f\geqslant 0$

 \Diamond Сначала рассмотрим случай $\mu < \infty$

Применим обобщенную теорему Хана для последовательности $a_m = 1/2^m$

$$\begin{split} E &= Z^m \bigcup (\bigcup_{k=1}^{\infty} E_k^m) \\ \frac{k-1}{2^m} \mu A &\leqslant \varphi(A) \leqslant \frac{k}{2^m} \mu A, \ A \subset E_k^m \\ [a,b] \quad b &< c \quad [c,d] \end{split}$$

$$a\mu A\leqslant \varphi(A)\leqslant b\mu A, c\mu A\leqslant \varphi(A)\leqslant d\mu A\Rightarrow \mu A=0$$
 Имеем $E_k^m\subset E_{2k-2}^{m+1}\bigcup E_{2k-1}^{m+1}\bigcup E_{2k}^{m+1}\bigcup E_{2k+1}^{m+1}\bigcup Y^m$ $Z=(\bigcup Z^m)\bigcup (\bigcup Y^m), \mu Z=0$

$$f_m(x) = \begin{cases} (k-1)/2^m, & \mathbf{x} \in E_k^m \setminus Z \\ z, & \mathbf{x} \in Z \end{cases}$$

$$|f_{m+1}(x) - f_m(x)| \leq 1/2^m, & f_m \Rightarrow f$$

$$A \subset E, \ A - \text{произвольное}$$

$$A \cap E_k^m$$

$$\varphi(A) = \varphi(A \cap Z) + \sum_k \varphi(A \cap (E_k^m \setminus Z)) \leqslant$$

$$\varphi(A \cap Z) + \sum_k \varphi(A \cap E_k^m) \geqslant \int_A f_m d\mu + \varphi(A \cap Z)$$

$$\leqslant \int_A f_m d\mu + 1/2^m \mu(A)$$

$$\varphi(A) = \varphi(A \cap Z) + \int_A f d\mu, \int_A f_m d\mu = \sigma, \int_A f d\mu = \alpha$$

$$\varphi = \sigma_1 + \alpha_1 = \sigma_2 + \alpha_2 \Rightarrow \alpha_1 - \alpha_2 = \sigma_2 - \sigma_1 \equiv 0$$

(функция одновременно абсолютно непрерывна и сингулярна)

Лекция 9.

Теорема верна и в случае, когда $\mu(E)$ δ конечна

$$E = \bigcup_i E_i, \ \mu E_i < \infty$$

Применим первую часть теоремы к E_i .

$$A\subset E, \varphi(A)=\sum_i \varphi(A\bigcap E_i)=\sum_i \int_{A\bigcap E_i} f_i d\mu+\varphi(Z\bigcap A),\ Z=\bigcup_i Z_i,\ f_i$$
— суммируема, φ — неотрицательная.

Если φ — любого знака \Rightarrow пользуемся разложением Жордана и применяем предыдущую часть теоремы

$$arphi=ar{
m V}-ar{
m V}$$
 $arphi(A)=lpha(A)+\sigma(A)$ $\sigma(A\bigcap Z)=arphi(A\bigcap Z)\Rightarrow\sigma(A)=arphi(A\bigcap Z)$ f опр. однозначно
$$\int_A f_1 d\mu=\int_A f_2 d\mu\Rightarrow \int_A (f_1-f_2)d\mu=0\Rightarrow$$
 $(A^+=\{x:\ f_1-f_2\geqslant 0\},\ A^-=\{x:\ f_1-f_2\leqslant 0\}+$ используем неравенство Чебышева)

Теорема Радона-Никодима.

Каждый заряд φ представим однозначным образом как $\int_A f d\mu = \varphi(A), \ f$ — суммируемая функция.

Заряд — абсолютно непрерывная δ –аддитивная функция. На прямой f — производная φ . В общем случае f называют производной Радона-Никодима от φ : $fd\mu=d\varphi$

Абсолютная непрерывность $\forall \varepsilon>0 \; \exists \delta>0 \; \mu A<\delta \Rightarrow |\int_A f d\mu|<\varepsilon$

Задача. Построить $\varphi(A)^A = \int_A f d\mu$ и доказать непрерывность построения δ по ε и f.

Рассмотрим случай прямой и меры Лебега:

Определение. $F \in VB$ (ограниченной вариации), если конечна $V_a^b F = \sup_p \sum_{i=1}^n |F(x_i) - F(x_{i-1})| \quad P: \ a = x_0 < x_1 < \ldots < x_n = b$

$$F = V_a^x(F) - (V_a^x(F) - F(x))$$

$$V_a^x(F) |\triangle F(I)| \leqslant V_I(F)$$

$$\frac{(\bar{\mathbf{V}} + \mathbf{Y} + (\bar{\mathbf{V}} - \mathbf{Y}))}{F = \frac{V_a^x(F) + F(x)}{2} - \frac{V_A^x(F) - F(x)}{2}}$$
According to a helip, dynkling tokki (

Абсолютно - непр. функция точки (AC)

 $F \in AC(E)$, если $\forall \varepsilon \exists \delta > 0$: $\forall \{(\alpha_i, \beta_i)\}, \alpha_i, \beta_i \in E, (\alpha_i, \beta_i) \cap (\alpha_j, \beta_j) = \emptyset$ $\emptyset, i \neq j$

$$\sum_{i} (\beta_{i} - \alpha_{i}) < \delta \Rightarrow \sum_{i} |F(\beta_{i}) - F(\alpha_{i})| < \varepsilon$$

Опр. для конечного набора интервалов и для счетного равносим. (если 1 интервал ⇒ равномерн. непрерывность)

 $F \in AC \Rightarrow F$ равномерно непрерывна на $E \Rightarrow$ непрерывна в каждой точке E (по множеству)

f непрерывна на $[a,b],\ E\subset [a,b]\ f\in AC(E)\Rightarrow f\in$ Задача. $AC(\overline{E})$

$$AC\subset VB$$

 $\varepsilon=1$. Нашли δ_1 из определения AC. Разбили на конечное число отрезков длины $< \delta$.

На каждом отрезке функция ограниченной вариации, значит, ограниченной вариации и на [a, b].

Теорема $F \in AC([a,b]) \Rightarrow V_a^x(F) \in AC([a,b])$ $\{\alpha_i,\beta_i\}_i$ $\sum_i |F(\beta_i)-\beta_i|$ $|F(\alpha_i)| < \delta \quad V_{\alpha_i}^{\beta_i}(F) < \frac{\varepsilon}{2^i}$

Находим разбиение p_i внутри (α_i, β_i) .

$$V_{\alpha_i}^{\beta_i}(F) - \frac{\varepsilon}{2^i} < \sum p_i$$

$$\sum_{i} V_{\alpha_{i}}^{\beta_{i}} - \varepsilon < \sum_{i} \sum p_{i} < \varepsilon$$

$$\sum_{i} V_{\alpha_i}^{\beta_i} < 2\varepsilon \Rightarrow V_a^x \in AC([a,b])$$

Следствие. $F \in AC \Rightarrow \varphi_F$ абсолютно непрерывна

Задача — Линейная комбинация функций из AC — функция из AC

 ${\cal F}$ — разность монотонных функций из AC. Значит, док. для монотонн. ${\cal F}$

$$\mu E = 0, E \text{ покр. } (\alpha_i, \beta_i) \quad \sum (\beta_i - \alpha_i) < \delta$$

$$\varphi(E) \leqslant \varphi(\bigcup_i (\alpha_i, \beta_i)) \leqslant \sum_i \varphi([\alpha_i, \beta_i]) = \sum_i F(\beta_i) - F(\alpha_i) < \varepsilon \Rightarrow$$

$$\varphi(E) = 0$$

Теорема. $F(x) = \int_a^x f d\mu \Leftrightarrow F(x) \in AC$

Необходимость. F'(x)=f(x) п.в., если есть предст. $F(x)=\int_a^x f d\mu$ (в обратную сторону докажем позднее)

$$F(x) - F(a) = \int_a^x f d\mu \Rightarrow F(x) \in AC$$

Достаточность. $F \to \varphi_F \quad \varphi$ абсолютно непрерывна $\Rightarrow \varphi([0,x]) = F(x) - F(a) = \int_a^x f d\mu$

Определение. $F\in ACG[a,b],$ если $[a,b]=\bigcup_{i=1}^{\infty}$ и $F\in AC(E_i)$ и F непрерывна на [a,b]

Задача. F'(x) существует на $[a,b] \Rightarrow F \in ACG[a,b]$

Задача. F'(x) существует на $[a,b] \not\Rightarrow F \in AC, F \in VB$ (привести соответствующие примеры)

$$f \in L[a, b] \Leftrightarrow \exists F \in AC : F'(x) = f(x)$$

fна [a,b] — интегрируемая в смысле Дантуа—Хинчина. $\Leftrightarrow \exists F \in ACG[a,b]: F'(x) = f(x)$ п.в.

Задача (*)

- 1. $f \in \mathcal{H}[a,b] \Rightarrow f$ интегрируема по Дантуа-Хинчину
- 2. Показать, что этот класс шире класса интегрируемых по K -х функций.

Определение. Интеграл Дантуа–Хинчина (D) $\int_a^b f d\mu \stackrel{def}{=} F(b) - F(a)$

Надо доказать корректность определения, т.е. если F'(x)=0 п.в. $\Rightarrow F(x)\equiv C$

N—**свойство Лузина.** F (действ.) опр. на E–изм обладает N– свойством, если $\mu E=0 \Rightarrow \mu(F(E_1))=0, E_1 \subset E$

Теорема $F\in AC(E)\Rightarrow F$ обладает N–свойством, $E\subset [a,b]$ Достаточно доказать теорему для замкнутого множества $\mu A=0$

$$\begin{split} A \subset \bigcup_i (\alpha_i, \beta_i) & \sum_i [\beta_i - \alpha_i] < \delta \\ F([\alpha_i, \beta_i] \bigcap A) \subset [\inf_{x \in [\alpha_i, \beta_i] \cap E} F(x), \sup_{x \in [\alpha_i, \beta_i] \cap E} F(x)] = |F(x_i) - F(y_i)|, \\ x_i, y_i \in [\alpha_i, \beta_i] & \mu(F(A)) \subset \sum_i |F(x_i) - F(y_i)| < \varepsilon \Rightarrow \mu(F(A)) = 0 \end{split}$$

Лекция 10.

Определение. F — действительная функция, опр. в окрестности точки x

$$\frac{\overline{\lim}_{n\to\infty}}{\frac{F(x+h)-F(x)}{h}} = \overline{D}F(x)$$

$$\underline{\lim}_{n\to\infty}\frac{F(x+h)-F(x)}{h} = \underline{D}F(x)$$

Производные числа Дини — это правый и левый верхний и

нижние пределы (F(x+h)-F(x))/h

$$D^{+}F(x) = \overline{\lim}_{n \to +0} \frac{F(x+h) - F(x)}{h}$$

$$D_{+}F(x) = \underline{\lim}_{n \to +0} \frac{F(x+h) - F(x)}{h}$$

$$D^{-}F(x) = \overline{\lim}_{n \to -0} \frac{F(x+h) - F(x)}{h}$$

$$D_{-}F(x) = \underline{\lim}_{n \to -0} \frac{F(x+h) - F(x)}{h}$$

Задача. Пример непрерывной $F: D^+F = D^-F = +\infty, \ D_+F(X) = D_-F(x) = -\infty$ на множестве положительной меры (изобразить график)

Теорема. $F \in ACG([a,b]), D_+F(x) \geqslant C$ п.в. $\Rightarrow F$ [a,b]

Доказательство.

Фиксируем произвольное $\varepsilon > 0$. Введем функцию $g(x) = F(x) + \varepsilon x$ $D_+ g(x) = D_+ F(x) + \varepsilon > 0$

Задача. Линейная комбинация ACG-функций — ACG-функция.

Значит, (факт из задачи) $g \in ACG([a,b]) \Rightarrow g$ обладает N-свойством.

Пусть E-множество, где не выполнено условие D: g(x) > 0

 $\mu E = 0$ (т.к. условие выполнено п.в.) $\Rightarrow g N$

Предположим, что g не является монотонно возрастающей $\exists x_1, x_2 \in [a,b], \ x_1 < x_2, \ g(x_1) > g(x_2)$

$$\exists y_0 \not\in g(E) \ \mu g(E) = 0$$

$${x: g(x) = y_0}$$
 — замкнут., т.к.

$$g$$
 — непрерывная $\Rightarrow \exists x_0$ — самая прав.,
$$\frac{g(x_0+h)-g(x_0)}{h}\leqslant 0$$

$$D_+g(x_0) \leqslant 0$$
 — противоречие

То есть, если
$$x_1 < x_2 \Rightarrow g(x_1) < g(x_2)$$

$$F(x_1) + \varepsilon x_1 \leqslant F(x_2) + \varepsilon x_2$$

$$F(x_1) \leqslant F(x_2)$$
 (в пределе при $\varepsilon \to 0$)

Замечание. Можно восп. D^+

Следствие. $F \in ACG([a,b])$

$$F'(x) = 0$$
 п.в. $\Rightarrow F(x) = const$

Значит, интеграл Дантуа—Хинчина с помощью формулы $(D) \int_a^b f =$ F(b) - F(a) определен однозначно.

Если
$$G'(x) = f(x) \Rightarrow (F(x) - G(x))' = 0$$
 п.в. $\Rightarrow F(b) - F(a) = G(b) - G(a) \ (F(x) - G(x) = const$ п.в.)

Доказать, что если $F \in VB$, то F' кон. существует п.в. Достаточно показать это для монотонно возрастающих функций.

f не убывает на $[a,b] \Rightarrow f'$ сущ. п.в. $f' \in L[a,b]$ и $\int_a^b f' d\mu \leqslant f(b-0) - f(a+0)$

 $\{I\}$ — семейство, покр. E в смысле Витали

$$\exists \{I_i\}$$
 — конечное число, I_i : (если E — огранич.)

Нужно доказать совпадение производных чисел Дини. Покажем, что совпадают $D^+f(x)$ и $D_-f(x)$, то есть $\mu^*(A \cap (\bigcup_i I_i)) > \mu^*(E) - \varepsilon$

$$D^+f(x) D_-f(x) \mu\{x: D^+f(x) > D^-f(x)\} = 0$$

$$A = A_{rs} = \{x : D^+ f(x) > r > s > D_- f(x)\}$$

Докажем, что $\mu A = 0$.

Предположим, что $\mu^*A > 0$. Найдем G — откр...

$$G \supset A, \ \mu G < \mu^* A + \varepsilon$$

$$G\supset A,\ \mu G<\mu^*A+\varepsilon$$

$$\frac{-f(x)+f(x-h)}{-h}< S\ \text{по некоторой подпоследовательности }h$$

[x-h,x] для таких h обр. покрытие Витали

$$[x - h, x] \subset G - -// - -// - -$$

Выберем конечное число отрезков $[x_k - h_k, x_k]$

$$\frac{-f(x_k) + f(x_k - h_k)}{-h_k} < S \ \mu^*(A \cap (\bigcup_k [x_k - h_k, x_k])) > \mu^*(A) - \varepsilon$$

$$f(x_k) - f(x_k - h_k) < sh_k$$

$$\sum_{k} (f(x_k) - f(x_k - h_k)) < s \sum_{k} h_k \leqslant s \mu G \leqslant s(\mu^* A + \varepsilon)$$

Используем второе неравенство: $B = A \cap (\bigcup_{k} [x_k - h_k, x_k])$

$$\frac{f(x+k)-f(x)}{k} > r \exists$$
 подпоследовательность h_k

$$[x, x+k] \subset \bigcup_k [x_k - h_k, x_k]$$

Берем эти отрезки. Ои покрывают B в смысле Витали. Выберем $[x'_i, x'_i + k_i]$ — конечное число отрезков, для которых выполнено: $\frac{f(x'_i + k_i) - f(x'_i)}{k_i} > r$ $f(x'_i + k_i) - f(x'_i) > k_i r$

$$f(x_i' + k_i) - f(x_i') > k_i r$$

$$\sum_{i} (f(x_i' + k_i) - f(x_i')) > r \sum_{i} k_i >$$

$$\mu * (B \cap (\bigcup [x'_i, x'_i + k_i])) > \mu^*(B) - \varepsilon > \mu^*(A) - 2\varepsilon$$

$$> r(\mu^*A - 2\varepsilon)$$

$$\sum_{k} (f(x_k) - f(x_k - n_k)) > \sum_{i} (f(x_i + k_i) - f(x_i))$$
, так как f — мо-

нотонная

$$s\mu^*(A) + s\varepsilon > r\mu^*(A) + 2r\varepsilon$$

$$s\mu^*(A)\geqslant r\mu^*(A)\quad s\geqslant r$$
 — противоречие.

$$\Rightarrow \mu^* A = 0$$

Это верно для любой пары производных чисел (доказывается аналогично) ⇒ все производные числа Дини совпадают п.в.

Докажем неравенство теоремы: $f_k(x)=\frac{f(x+1/k)-f(x)}{1/k}$ $\xrightarrow[k\to\infty]{f'(x)}$ f(x) продолж. справа от в конст. f(b-0)

$$f(x) = f(b-0) \ \forall x \geqslant b$$

$$f_k(x) \geqslant 0$$

По теореме Фату $\int_a^b f' d\mu \leqslant \underline{\lim}_{k \to \infty} \int_a^b f_k d\mu = \lim_{k \to \infty} k (\int_b^{b+1/k} f dx - \int_a^b f(x) d\mu = \lim_{k \to \infty} f(x) d\mu$ $\int_{a}^{a+1/k} f dx = f(b-0) - f(a-0)$

Равенство $\int_a^b f' d\mu = f(b) - f(a)$ выполняется тогда и только тогда, когда f — абсолютно непрерывна.

 $f \in AC, \ f'(x) = g(x)$ п.в. (сущ. п.в. , т.к. $f \in AC$) $\int_a^b f' d\mu = f(b) - f(b) \int_a^b f' d\mu = f(b) - f(b)$ $f(a) \Leftrightarrow g$ интегрируема по Лебегу (можно взять за эквивалентное определение)

Лекция 11.

Сравнение интеграла Римана-Стилтьеса с интегралом Лебега-Стильтьеса

$$(RS) \int_a^b f dg$$

$$a = x_0 < x_1 < x_2 < \ldots < x_{i-1} < x_i < x_i < \ldots < x_n = b$$

P — разбиение отрезка

$$M_i = \sup_{x \in [x_{i-1}, x_i]} f(x), \ m_i = \inf_{x \in [x_{i-1}, x_i]} f(x)$$

g берем непрерывной слева.

Верхняя сумма Дарбу. $U(f, g, P) = \sum_{i=1}^{n} M_{i} g(\triangle_{i})$

Нижняя сумма Дарбу.
$$L(f,g,P) = \sum_{i=1}^{n} m_i g(\triangle_i)$$

Если $\inf U = \sup L$, то \exists интеграл Римана–Стильтьеса, равный этой величине.

Если $\exists \int_a^b f dg$, то можно взять последовательность разбиений $P_k, P_k \subset P_{k+1}$ и получить интеграл как $\sigma(P_k) \to 0$ предел при $k \to \infty$ сумм Дарбу.

Теорема. В случае существования интеграла Римана–Стильтьеса $(LS)\int_a^b f d\mu_g$

Доказательство.

$$U_k(x) = M_i, \ x \in [x_{i-1}, x_i)$$

$$L_k(x) = m_i, \ x \in [x_{i-1}, x_i)$$

$$U(f, g, P_k) = (LS) \int_a^b U_k d\mu_g \to (RS) \int_a^b f df$$

$$L(f, g, P_k) = (LS) \int_a^b L_k d\mu_g \nearrow$$

$$U_k \searrow U$$

$$L_k \nearrow L$$

$$U_k(x) \geqslant U(x) \geqslant (x) \geqslant f(x) \geqslant L(x) \geqslant L_k(x)$$

По теореме Б. Леви можно переходить к пределу под знаком интеграла Лебега.

$$(LS) \int_{a}^{b} U d\mu_{g} = (LS) \int_{a}^{b} L d\mu_{g}$$

$$(LS) \int_{a}^{b} (U - L) d\mu_{g} = 0 \Rightarrow U - L = 0 \ \mu_{g} \Rightarrow U(x) = f(x) = L(x)$$

$$(LS) \int_{a}^{b} f d\mu_{g} = (LS) \int_{a}^{b} U d\mu_{g} = (LS) \int_{a}^{b} \mu_{g} = (RS) \int_{a}^{b} f dg$$

Теорема будет верна для $g \in VB$ (педст. в виде разности двух монотонных функций)

Задача (*). Интеграл не зависит от представления g (но будем ист. представление $\bar{\mathrm{V}}$ - V)

Теорема Фубини

$$(X, S, \mu_x)$$
 (Y, T, μ_y)
 $X \times Y$
 $A \in S, B \in T$ $C = A \times B$
 $\mu(C) \stackrel{\text{def}}{=} \mu_x A \times \mu_y B$

Задача $C = A \times B, A \in S, B \in T, \{C\}$ образует полукольцо.

Мера определена на полукольце \to определим её на минимальном кольце \to с помощью конструкции Лебега определим $\mu^* \to$ с помощью определения Каратеодори определим класс измеримых множеств.

Получим меру, называемую производной мер μ_x и μ_y на $X\times Y,\; \mu=\mu_x\times \mu_y$

Проверим σ –аддитивность меры на полукольце $C=\bigcup_{k=1}^{\infty},\quad C_k=A_k\times B_k$

$$\mu C=\mu_x A \times \mu_y B=\int_x \chi_A(x) \mu_y B d\mu_x=\int_x \sum_k \chi_{A_k} \mu_y B_k d\mu_x=\sum_k \mu_x A_k \mu_y B_k$$
 $f(x,y)$ определена на $X\times Y$ — измерим., неотриц.

Тогда $\int_{X \times Y} f(x,y) d\mu = \int_X (\int_Y f(x,y) d\mu_y) d\mu_x$, если имеет смысл левая часть.

Считаем: f(x,y) измерима при фиксированном x на Y для п.в. y Тогда $F(x) = \int_Y f(x,y) d\mu_y$ имеет смысл и предполагается измеримой.

Сначала докажем теорему для характеристической функции $\chi_A(x,y)$ измеримого множества относительно $\mu=\mu_x\times\mu_y.$

Сначала рассмотрим $A = A' \times A$ ".

Для такой χ_A — очевидно. $(\chi_{\text{элемента кольца}} = \sum \chi_{\text{элемента полукольца}})$

Лемма. \forall измеримого A $\exists B_{n_k}$ — последовательность элементов кольца, $B_{n_k} \uparrow B_n, \ B_{n_k} \downarrow B, \ n \to \infty$ и $\mu B = \mu A, \ Bsupset A$

Доказательство.

$$\mu A = \inf_{\bigcup P_i \supset A} \sum_{i=1}^{\infty} \mu P_i$$

$$\mu A + 1/n > \sum_{i=1}^{\infty} \mu P_i \geqslant \mu(\bigcup_i P_i)$$

Хотим, чтобы $B_n \supset B_{n+1}$

$$(\bigcup_{i} P_{i}) \cap (\bigcup_{k} P'_{k}) = \bigcup_{i \mid k} (P_{i} \cap P'_{k})$$

Пользуясь этим, получим $\mu A + 1/n > \mu(B_n)$

$$\lim_{n\to\infty} \mu B_n = \mu(\bigcap_{n=1}^{\infty} D_n) = \mu B = \mu A$$

$$B_{n_k} = \bigcup_{i=1}^k P_i$$

Итак, для $\chi_{B_{n_k}}$ теорема Фубини верна.

$$A_x = \{y : (x, y) \in A\}$$

$$\int_{Y \vee Y} \chi_{B_n}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y \vee Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to \infty} \int_{Y} \chi_{B_{n,k}}(x,y) d\mu = \lim_{k \to$$

$$\int_X \underbrace{\left(\int_Y \chi_{B_{n_k}}(x,y) d\mu_y\right) d\mu_x}_{\text{монот. посл. функций}} = \left(\Pi_{\text{рименяем теорему Б. Леви}\right) = \int_X (\lim_{k \to \infty} \int_Y \chi_{B_{n_k}}(x,y) \mu_y) d\mu_x$$

$$\int_{X \times Y} \chi_{B_n}(x,y) d\mu = \int_X \lim_{k \to \infty} \mu_y(B_{n_k}) f\mu_x = \int_X \mu_y(B_n)_x d\mu_x =$$

$$\int_{X\times Y} \chi_{B_n}(x,y) d\mu = \int_X \lim_{k\to\infty} \mu_y(B_{n_k}) f\mu_x = \int_X \mu_y(B_n)_x d\mu_x = \int_X (\int_Y \chi_{B_n}(x,y) d\mu_y) d\mu_x$$

Докажем для χ_{B_n} . Аналогичен переход $\chi_{B_n} \to \chi_B$

$$A = B \setminus (B \setminus A)$$

$$\chi_A = \chi_B - \chi_{B \setminus A}, \quad \mu(B \setminus A) = 0$$

Докажем теорему Фубини для любого измеримого множества ме-

$$C \subset B', \mu C = \mu B' = 0$$
 (аналогично B' - изм. оболочка)

Для B' теорема доказана.

$$\int_{X\times Y} \chi_C(x,y) d\mu = \int_{X\times Y} \chi_{B'} d\mu = \int_X (\int_Y \chi_{B'} d\mu_y) d\mu_x = 0 \Rightarrow \int_Y \chi_{B'} d\mu_y = 0$$

$$\mu_y B_x' = 0 \Rightarrow \mu C_x = 0$$

$$\int_{X\times Y} \chi_C(x,y) d\mu = 0$$

$$\int_{Y} (\int_{Y} \chi_{C}(x, y) d\mu_{y}) d\mu_{x} = 0$$

Лекция 12.

$$X \times Y \ \mu_x \times \mu_y \ f(x,y) \geqslant 0$$

$$\int_{X\times Y} f(x,y)d\mu = \int_X (\int_Y f(x,y)d\mu_y)d\mu_x$$

Уже доказано для χ_A, A измеримо.

Меры μ_x и μ_y предполагаются полными. Так как доказано для характреристических функций \Rightarrow доказано для простых функций.

$$f_n(x,y) \nearrow f(x,y), \ f_n$$
 — простые функции

$$\int_{X \times Y} f_n(x, y) d\mu = \int_X (\int_Y f_n(x, y) d\mu_y) d\mu_x$$

Выбрасываем множество меры 0 для каждого n, где $f_n(x,y)$ неизм.

по у и берем их объединение. Затем применяем теорему Леви.

Для неотрицательных функций торема Фубини доказана.

Теорема Фубини: f — измеримая функция, f интегрируема по Ле-

бегу на $X \times Y$ (интеграл конечен). Тогда $\int_{X \times Y} f(x,y) d\mu = \int_X (\int_Y f(x,y) d\mu_y) d\mu_x$

f(x,y) изм. для п.в. x, и интеграл по у конечен для п.в. х

 $\int_X f(x,y)d\mu_y$ интегрируема по x

(в предположении конечности левой части формулы)

$$f = f^+ f^-$$

Пример существенности условия конечности левой части формулы.

$$f(x,y) = \frac{xy}{(x^2+y^2)^2}, x \in [-1,1], y \in [-1,1]$$

Эта функция не интегрируема по Лебегу как функция двух переменных.

Пространство $L_p(X,(M),\mu)$

$$1 \leqslant p \leqslant +\infty$$

$$||f_p|| = (\int_X |f|^p d\mu)^{1/p} < +\infty$$

Уже рассматривали $L_1 = L$

 $\|f\| = 0 \Leftrightarrow f = 0$ — это все функции, равные 0 п.в. (эквивалентны нулевой функции)

Элементы L_p — классы эквивалентности функций.

Проверим свойства нормы: $\|\lambda f\|_p = |\lambda| \|f\|_p$ — очевидно.

Если 1 , то сопр. показатель <math>q п определению — число, удовлетворяющее свойству 1/p + 1/q = 1

$$q = p/(p-1)$$

Докажем неравенство Гёльдера.

$$f\in L_p,g\in L_1$$
, тогда $\int_X|fg|d\mu\leqslant \|f\|_p\|g\|_q$ $ab\leqslant \int_0^a x^{p-1}dx+\int_0^b y^{q-1}dy$ $ab\leqslant q^p/p+b^q/q$

Применим это к доказательству неравенства Гёльдера.

$$a=rac{|f(x)|}{\|f\|_p}, b=rac{|g(x)|}{\|g\|_q}$$
 $\int_X rac{|f(x)|\cdot|g(x)|}{\|f\|_p\|g\|_q} \leqslant rac{1}{p}\int_X rac{|f(x)|^p}{\|f\|_p} d\mu + rac{1}{q}\int_X rac{|g(x)|^q}{\|g\|_q} d\mu$ Упрощаем и получаем неравенство Гёльдера.

Доказательство неравенства Минковского.

$$||f+g||_p \le ||f||_p + ||g||_p, \ p \ge 1$$

$$\begin{split} &|f+g|^p \leqslant \int_X |f+g|^{p-1}|f| d\mu + \int_X |f+g|^{p-1}|g| d\mu \leqslant \\ &\leqslant (\int_X |f+g|^{(p-1)} \cdot \frac{p}{p-1})^{1-1/p} \cdot (\int_X |f|^p)^{1/p} + (\int_X |f+g|^p)^{1-1/p} \cdot (\int_X |g|^p)^{1/p} \end{split}$$

Если $\int_X |f+g| d\mu=0$, то это очевидно.

$$|f(x) + g(x)|^p \le 2^p \max |f(x)^p, |g(x)^p|| \le 2^p (|f(x)|^p + |g(x)|^p)$$

Тогда, сокращая на $\int_X |f+g|^p d\mu$, получаем неравенство Минковского (оно же неравенство треугольника для $\|\cdot\|$)

$$f_n \xrightarrow{L_p} f$$

Связь разных сходимостей.
$$\mu x \in X: |(f_n-f)(x)|>\varepsilon \leqslant \frac{\int_X |f_n-f| d\mu}{\varepsilon^p} = \frac{\|f_n-f\| p^p}{\varepsilon}$$

Значит, сходимость в $L_p \Rightarrow$ сходимость по мере (обратное неверно)

Задача. Выяснить связь сходимости в L_p с другими сходимостями

Теорема. L_p — полное пространство

Докажем, что L_p — полное пространство (в предположении, что $\mu - \delta$ -конечна)

Пусть f_n удовлетворяет условию Коши. Покажем, что $f_n \to f$ поточечно п.в.

Найдем
$$n_k : ||f_{n_k} - f_n||_p < 1/2^k \forall n \geqslant n_k$$

Определим подпоследовательности f_{n_k} ; $n_k < n_{k+1} < \dots$

Возьмем множество, на котором μ конечна.

$$(X = \bigcup_{k=1}^{\infty} E_k, \mu E_k < \infty)$$
. Возьмем E_k)

Тогда
$$\int |f_{n_k} - f_{n_{k+1}}| d\mu \leqslant ||f_{n_k} - f_{n_{k+1}}|| \cdot c \leqslant c \cdot \frac{1}{2^k}$$

(Неравенство Гёльдера)

Ряд из интегралов сходится ⇒

$$|f_{n_1}(x)| + \sum_{k=1}^{\infty} |f_{n_{k+1}}(x) - f_{n_k}(x)|$$
 сходится п.в.

Тогда ряд
$$f_{n_1}(x) + \sum_{k=1}^{\infty} (f_{n_{k+1}}(x) - f_{n_k}(x))$$
 сходится абсолютно.

Его частичные суммы — f_{n_k} .

Значит, $f_{n_k}(x) \to \int_X |f_{n_k} - f_{n_l}| d\mu \xrightarrow[l \to \infty]{l>k} \int_X |f_{n_k} - f|^p d\mu \leqslant \varepsilon$ (по теореме Фату)

$$||f_{n_k} - f_{n_l}||_p < 1/2^k, \ n_k < n \leqslant n_{k+1}$$

Тогда
$$||f_n - f||_p \le ||f_n - f_{n_k}||_p + ||f_{n_k} - f|| < 2\varepsilon$$

Лекция 13.

 $f X E_k$ влечет удовлетворение условия Коши на X

$$L_p, 1$$

Можно определить L_{∞}

Существенный супремум $ess \sup_{x} |f(x)| = \inf\{C : \mu |f(x)| > C = 0\} =$ ||f|| в L_{∞} .

Элементы L_{∞} — классы эквивалентных функций.

$$f \sim g \Leftrightarrow f = g$$

Задача Проверить свойство нормы.

Пространство
$$L_o$$
 — пространство всех измеримых функций $L_0(x): \ \rho(f,g) = \int_X \frac{|f-g|}{1+|f-g|} d\mu \quad \mu X < \infty$ Задача 1. Проверить $\rho(f,g)_{L_0}$ — метрика.

Сходимость относительно $\rho(f,g) \Leftrightarrow$ сходимость по Задача 2. мере

В L_2 можно ввести скалярное произведение $(f,g)=\int_X f(g)d\mu$ (для комплексных функций)

 L_2 — полное пространство со скалярным произведением. (то есть гильбертово пространство)

$$(f,g) \leqslant ||f|| \cdot ||g||$$

Определение. Метрическое протранство называется сепарабельным, если в нем найдется счетное всюду плотное множество.

Докажем, что $L_p([a,b])$ сепарабельно. В качестве счетного множества берем множество всех многоленов с рациональными коэффициентами. Покажем, что оно всюду плотно в L_p . Для L_1 ясно (применим теорему о приближении непрерывной функцией функции интеграла по Лебегу, затем применим теорему Вейерштрасса о приближении многочленами, затем приблизим полиномом с рациональными коэффицитнтами)

Для $L_p:\,f\geqslant 0\quad f_n$ — простые. По теореме Б.Леви $\|f_n-f\|_p\to 0$

Простые функции — линейные комбинации характеристических функций. Приближение полиномами хар. функций изм. множеств. Измеримое пространство приближается открытым множеством. Открытое множество — счетное объединение интервалов. Приближение характеристической функцией конечного числа интервалов (выбр. счетное число интервалов суммарной длины $< \varepsilon$). Значит, надо приближать характеристической функцией инт. с точностью до varepsilon. Затем применить теорему Вейерштрасса.

Свойства гильбертова пространства.

$$f$$
 и g ортогональны, если $(f,g)=0$

$$||f|| = \sqrt{(f,f)}$$

Можно рассматривать ортонормированные системы (О.Н.С.)

X — гильбертово пространство, f — его элемент.

$$\{e_n\}$$
 — O

Коэффициенты Фурье $\hat{f}_n = (f, e_n)$

Теорема. $f\in X,X$ — гильбертово пространство. Тогда $\|f-\sum_{k=1}^n\alpha_ke_k\|^2$ — минимально, если $\alpha_k=\hat{f_k}$

Доказательство.

$$(f-\sum_{k=1}^n \alpha_k e_k, f-\sum_{k=1}^n \alpha_k e_k) = \|f\|^2 + \sum_{k=1}^n |\alpha_k - \hat{f_k}|^2 - \sum_{k=1}^n |\hat{f_k}|^2, min$$
 получается при $\alpha_k = \hat{f_k}$

Получаем равенство:

$$\|f-\sum_{k=1}^n\hat{f}_ke_k\|^2=\|f\|^2-\sum_{k=1}^n|\hat{f}_k|^2$$
, т.к. левая часть $\geqslant 0$, то $\|f\|^2\geqslant\sum_{k=1}^n|\hat{f}_k|^2$

Переходим к пределу при $n \to \infty$, получим неравенство Бесселя:

$$||f||^2 \geqslant \sum_{k=1}^{\infty} |\hat{f}_k|^2$$

Если ряд Фурье сходится к функции, то

$$\left\|f
ight\|^2\geqslant\sum_{k=1}^{\infty}|\hat{f}_k|^2$$
 — равенство Парсеваля.

Равенство Парсеваля ⇔ сходимости ряда Фурье к своей функции

Теорема (Мермера). Коэффициенты Фурье по ограниченной (поточечно) ортонормированной системе в L_1 стремятся к нулю. (при $n \to \infty$)

$$L_2(x) \mu X < \infty$$

$$\{e_n\} |e_n(x)| \leqslant M \quad \forall x \in X \ \forall n$$

$$\hat{f}_k = \int f e_k d\mu$$

$$orall arepsilon > 0 \exists N: \int_X |f_N - f| d\mu < arepsilon \ (f_N - ext{cpeзкa})$$

 $f_N \in L_2(x) \Rightarrow$ для f_N выполнено неравенство Бесселя, т.е. коэффициенты Фурье $\to 0$.

$$\begin{split} |\hat{f}_k| &= |\int_I f e_k d\mu| \leqslant |\int_X (f-f_N) e_k d\mu| + |\int_X f_N e_k d\mu| \leqslant \int_X |f-f_N| d\mu + \\ |\hat{f_N}^k| &\leqslant \frac{\varepsilon}{2M} \cdot M + \varepsilon/2 = \varepsilon. \quad k \geqslant n_o \end{split}$$

О.Н.С. не ограничена в совокупности в $L_2([0,1])$

$$\chi_0 = 1$$

$$\chi_1 = \begin{cases} 1, & \chi \in [0, 1/2) \\ -1, & \chi \in (1/2, 0] \end{cases}$$

$$\chi_2 = \begin{cases} \sqrt{2}, & \chi \in [0, 1/4) \\ -\sqrt{2}, & \chi \in (1/4, 1/2) \\ --//-- \end{cases}$$

$$\chi_3 = \begin{cases} --//-- & \sqrt{2}, & \chi \in (1/2, 3/4) \\ -\sqrt{2}, & \chi \in (3/4, 1] \end{cases}$$
Далее определим функции от $2^k, \dots, 2^{k+1} - 1$

$$\chi_{2^k} = \begin{cases} 2^{(k/2)}, & \chi \in [0, 1/2^{k+1}) \\ -2^{k/2}, & \chi \in (1/2^{k+1}, 1/2^k) \\ --//-- & \end{cases}$$

Далее сдвигаем. В точках разрыва — как среднее арифметическое пределов или по непрерывности справа.

Теорема Риса-Фишера.

 $\{e_k\}$

0

$$\sum_{k=1}^{\infty} |c_k|^2 < \infty \quad (\{c_k\} \in L_2) \Rightarrow \exists f \in X : c_k = \hat{f}_k$$
 по системе $\{e_k\}$

И можно выбрать f так, чтобы выполнялось равенство Парсеваля.

Доказательство.
$$T_n = \sum_{k=1}^n c_k e_k$$

 T_n удовлетворяет условию Коши: $||T_n - T_m||^2 - \sum_{k=m+1}^n |c_k|^2 \xrightarrow[m,n\to\infty]{}$

Значит, $T_n \to f$

 $(f, e_k) = (f - T_n, e_k) + (T_n, e_k) =$ (по неравенству Коши–Бун.) $(f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f - T_n, e_k) + (f - T_n, e_k) + (f - T_n, e_k) = (f - T_n, e_k) + (f$ $T_n, e_k) + c_k$

$$(f-T_n,e_k)\to 0 \ n\to \infty$$

$$(f, e_k) = c_k$$

Т.к. $T_n \to f$, выполнено равенство Парсеваля (т.к. T_n — частные суммы ряда Фурье)

$$\{e_n\}$$
 полная, если $(f,e_n) = 0 \forall n \ f = 0$

Задача. Полнота эквивалентна равенству Парсеваля $\forall f$

Признаки сходимости ряда Фурье.

Признак Дини:
$$\frac{f(x+t)+f(x-t)-2S}{t}\in L(o,\delta) \text{ в т. } x$$

ряд Фурье по тригонометрической сумме сходится к S (наиболее часто встречается S = f(x))

$$S = \frac{f(x+0) + f(x-0)}{2}$$