## Devoir surveillé n°15

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

## **Solution 1**

1. Soit  $x \in \mathbb{R}_+^*$ . La fonction  $t \mapsto \frac{1}{1+4t^2x^2}$  est continue sur  $\mathbb{R}_+$ . De plus,  $\frac{1}{4t^2x^2} \underset{t \to +\infty}{\sim} \frac{1}{4x^2} \cdot \frac{1}{t^2}$  est  $t \mapsto \frac{1}{t^2}$  est intégrable en  $+\infty$ . Par conséquent,  $t \mapsto \frac{1}{1+4t^2x^2}$  est intégrable sur  $\mathbb{R}_+$ . A fortiori,  $\int_0^{+\infty} \frac{\mathrm{d}t}{1+4t^2x^2}$  converge. De plus, en effectuant le changement de variable linéaire u = 2xt,

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1 + 4t^2 x^2} = \frac{1}{2x} \int_0^{+\infty} \frac{\mathrm{d}u}{1 + u^2} = \frac{1}{2x} \left[ \arctan(u) \right]_0^{+\infty} = \frac{\pi}{4x}$$

- 2. Soit  $x \in \mathbb{R}^*$ . Alors  $\frac{1}{1+4n^2x^2} \underset{n \to +\infty}{\sim} \frac{1}{4x^2} \cdot \frac{1}{n^2}$ . Or la série  $\sum \frac{1}{n^2}$  est une série à termes positifs convergente donc  $\sum \frac{1}{1+4n^2x^2}$  converge. La fonction F est donc définie sur  $\mathbb{R}^*$ . Il est de plus évident que F(-x) = F(x) pour tout  $x \in \mathbb{R}^*$  donc F est paire.
- **3.** Posons  $f_n: x \mapsto \frac{1}{1 + 4n^2x^2}$ .
  - La série  $\sum f_n$  converge simplement vers F sur ]a,b[.
  - Pour tout  $n \in \mathbb{N}^*$ ,  $f_n$  est de classe  $\mathcal{C}^1$  sur ]a, b[.
  - Soit  $n \in \mathbb{N}^*$ .

$$\forall x \in ]a, b[, f'_n(x) = -\frac{8n^2x}{(1+4n^2x^2)^2}$$

Ainsi

$$\forall x \in ]a,b[,\ |f_n'(x)| \leq \frac{8n^2b}{(1+4n^2a^2)^2}$$

Par conséquent

$$||f_n||_{\infty,]a,b[} \le \frac{8n^2b}{(1+4n^2a^2)^2}$$

Or  $\frac{8n^2b}{(1+4n^2a^2)^2} \sim \frac{b}{n\to +\infty} \frac{1}{2a^2} \cdot \frac{1}{n^2}$  et  $\sum \frac{1}{n^2}$  est une série à termes positifs convergente. On en déduit successivement que  $\sum \frac{8n^2b}{(1+4n^2a^2)^2}$  puis  $\sum \|f_n\|_{\infty,]a,b[}$  convergent. Ainsi  $\sum f_n$  converge normalement et, a fortiori, uniformément sur ]a,b[.

On peut alors conclure que F est de classe  $\mathcal{C}^1$  sur ]a,b[ pour tout  $(a,b) \in \mathbb{R}^2$  tel que 0 < a < b. Puisque le caractère  $\mathcal{C}^1$  est une notion locale, F est de classe  $\mathcal{C}^1$  sur  $\mathbb{R}_+^*$ .

**4.** Soient x > 0 et  $n \in \mathbb{N}^*$ . L'application  $t \mapsto \frac{1}{1 + 4t^2x^2}$  est décroissante sur  $\mathbb{R}_+^*$ . Notamment

$$\forall t \in [n-1, n], \ \frac{1}{1 + 4n^2x^2} \le \frac{1}{1 + 4t^2x^2}$$

1

Par croissance de l'intégrale,

$$\frac{1}{4n^2x^2} = \int_{n-1}^{n} \frac{\mathrm{d}t}{1 + 4n^2x^2} \le \int_{n-1}^{n} \frac{\mathrm{d}t}{1 + 4t^2x^2}$$

En utlisant la relation de Chasles,

$$F(x) = \sum_{n=1}^{+\infty} \frac{1}{1 + 4n^2 x^2} \le \sum_{n=1}^{+\infty} \int_{n-1}^{n} \frac{dt}{1 + 4t^2 x^2} = \int_{0}^{+\infty} \frac{dt}{1 + 4t^2 x^2}$$

5. L'application  $t \mapsto \frac{1}{1+4t^2x^2}$  est décroissante sur  $\mathbb{R}_+^*$  donc

$$\forall t \in [n, n+1], \ \frac{1}{1+4t^2x^2} \le \frac{1}{1+4n^2x^2}$$

En intégrant

$$\int_{n}^{n+1} \frac{\mathrm{d}t}{1 + 4t^{2}x^{2}} \le \int_{n}^{n+1} \frac{\mathrm{d}t}{1 + 4n^{2}x^{2}} = \frac{1}{1 + 4n^{2}x^{2}}$$

puis, par relation de Chasles,

$$\int_0^{+\infty} \frac{\mathrm{d}t}{1+4t^2x^2} \leq \sum_{n=0}^{+\infty} \frac{1}{1+4n^2x^2} = 1 + \mathrm{F}(x)$$

6. On a vu précédemment que

$$\forall x \in \mathbb{R}_+^*, \ \int_0^{+\infty} \frac{\mathrm{d}t}{1 + 4t^2 x^2} = \frac{\pi}{4x}$$

D'après les questions précédentes,

$$\forall x \in \mathbb{R}_+^*, \ \frac{\pi}{4x} - 1 \le F(x) \le \frac{\pi}{4x}$$

Puisque  $\frac{\pi}{4x} - 1 \underset{x \to 0^+}{\sim} \frac{\pi}{4x}$ ,  $F(x) \underset{x \to 0^+}{\sim} \frac{\pi}{4x}$ . De plus, F est positive par positivité de l'intégrale donc

$$\forall x \in \mathbb{R}_+^*, \ 0 \le F(x) \le \frac{\pi}{4x}$$

D'après le théorème des gendarmes,  $\lim_{t\to 0} F = 0$ .

7. Puisque pour tout  $n \in \mathbb{N}^*$ ,  $f_n : t \mapsto \frac{1}{1 + 4n^2x^2}$  est décroissante sur  $\mathbb{R}_+^*$ ,  $F = \sum_{n=1}^{+\infty} f_n$  est également décroissante sur  $\mathbb{R}_+^*$ (la convergence simple suffit).

REMARQUE. On aurait aussi pu arguer du fait que, d'après la question 3,

$$\forall x \in \mathbb{R}_+^*, \ F'(x) = \sum_{n=1}^{+\infty} f'_n(x) = -\sum_{n=1}^{+\infty} \frac{8nx}{(1+4n^2x^2)^2} \le 0$$

Comme F est paire, F est croissante sur  $\mathbb{R}_{+}^{*}$ .



- 8. Soit  $x \in \mathbb{R}_+^*$ . La fonction  $t \mapsto \frac{\sin t}{e^{2xt}-1}$  est continue sur  $\mathbb{R}_+^*$ . De plus,  $\frac{\sin t}{e^{2xt}-1} = \mathcal{O}(e^{-2xt})$  et  $t \mapsto e^{-2xt}$  est intégrable en  $+\infty$ . Enfin,  $\frac{\sin t}{e^{2xt}-1} = \frac{1}{2x}$  donc  $t \mapsto \frac{\sin t}{e^{2xt}-1}$  est prolongeable par continuité en  $0^+$ . On en déduit que  $t \mapsto \frac{\sin t}{e^{2xt}-1}$  est intégrable sur  $\mathbb{R}_+^*$ . Ainsi G est définie sur  $\mathbb{R}_+^*$ .
- **9.** Posons  $g(x,t) = \frac{\sin t}{e^{2xt} 1}$ . Soit  $a \in \mathbb{R}_+^*$ .
  - Pour tout  $x \in \mathbb{R}_+^*$ ,  $t \mapsto g(x,t)$  est continue par morceaux sur  $\mathbb{R}_+^*$ .
  - Pour tout  $t \in \mathbb{R}_+^*$ ,  $x \mapsto g(x,t)$  est continue sur  $\mathbb{R}_+^*$ .
  - Pour tout  $(x, t) \in [a, +\infty[$ ,

$$|g(x,t)| \le \frac{|\sin t|}{e^{2at} - 1} = \varphi(t)$$

Comme précédemment,  $\varphi(t) \sim \frac{1}{t \to 0^+} \frac{1}{2a}$  et  $\varphi(t) = \mathcal{O}(e^{-2at})$  donc  $\varphi$  est intégrable sur  $\mathbb{R}_+^*$ .

Puisque  $\mathbb{R}_+^* = \bigcup_{a \in \mathbb{R}_+^*} [a, +\infty[$ , G est continue sur  $\mathbb{R}_+^*$ .

**10. Première version.** Soit  $\alpha \in \mathbb{R}_+^*$ . Alors  $t \mapsto \sin(t)e^{-\alpha t}$  est continue (par morceaux) sur  $\mathbb{R}_+$  et  $\sin(t)e^{-\alpha t} = \mathcal{O}(e^{-\alpha t})$ . Or  $t \mapsto e^{-\alpha t}$  est intégrable sur  $\mathbb{R}_+$  donc  $t \mapsto \sin(t)e^{-\alpha t}$  également. On en déduit que  $I_{\alpha}$  converge. Par double intégration par parties,

$$\begin{split} \mathrm{I}_{\alpha} &= -\left[\cos(t)e^{-\alpha t}\right]_{0}^{+\infty} - \alpha \int_{0}^{+\infty} \cos(t)e^{-\alpha t} \; \mathrm{d}t \\ &= 1 - \alpha \left(\left[\sin(t)e^{-\alpha t}\right]_{0}^{+\infty} + \alpha \int_{0}^{+\infty} \sin(t)e^{-\alpha t} \; \mathrm{d}t\right) \\ &= 1 - \alpha^{2}\mathrm{I}_{\alpha} \end{split}$$

On en déduit que  $I_{\alpha} = \frac{1}{1 + \alpha^2}$ .

**Deuxième version.** Soit  $\alpha \in \mathbb{R}_+^*$ . Alors  $t \mapsto e^{it}e^{-\alpha t}$  est continue (par morceaux) sur  $\mathbb{R}_+$  et  $|e^{it}e^{-\alpha t}| = e^{-\alpha t}$  donc  $t \mapsto e^{it}e^{-\alpha t}$  est intégrable sur  $\mathbb{R}_+$ . De plus,

$$\int_0^{+\infty} e^{it} e^{-\alpha t} dt = \int_0^{+\infty} e^{(i-\alpha)t} dt = \frac{1}{i-\alpha} \left[ e^{(i-\alpha)t} \right]_0^{+\infty} = \frac{1}{\alpha-i} = \frac{\alpha+i}{\alpha^2+1}$$

En effet,  $|e^{it}e^{-\alpha t}| = e^{-\alpha t}$  donc  $\lim_{t \to +\infty} e^{(i-\alpha)t} = 0$ . Puisque  $\sin(t)e^{-\alpha t} = \operatorname{Im}(e^{it}e^{-\alpha t})$ ,  $I_{\alpha}$  converge et

$$I_{\alpha} = \operatorname{Im}\left(\frac{\alpha+i}{\alpha^2+1}\right) = \frac{1}{\alpha^2+1}$$

11. Soit  $(x,t) \in (\mathbb{R}_+^*)^2$ . Alors  $e^{-2xt} \in [0,1]$ . Par conséquent,

$$\sum_{n=1}^{+\infty} e^{-2nxt} = \sum_{n=1}^{+\infty} \left( e^{-2xt} \right)^n = \frac{e^{-2xt}}{1 - e^{-2xt}} = \frac{1}{e^{2xt} - 1}$$

puis

$$\frac{\sin t}{e^{2xt} - 1} = \sum_{n=1}^{+\infty} \sin(t)e^{-2nxt}$$

- 12. On va utiliser le théorème d'intégration terme à terme. Fixons  $x \in \mathbb{R}_+^*$  et posons  $f_n : t \mapsto \sin(t)e^{-2nxt}$ .
  - Pour tout  $n \in \mathbb{N}^*$ ,  $f_n$  est continue par morceaux sur  $\mathbb{R}_+^*$ .
  - Soit  $n \in \mathbb{N}^*$ . Pour tout  $t \in \mathbb{R}_+^*$ ,  $|f_n(t)| \le e^{-2nxt}$  donc  $f_n$  est intégrable sur  $\mathbb{R}_+^*$  (nx > 0).
  - La série de fonctions  $\sum f_n$  converge simplement sur  $\mathbb{R}_+^*$  vers la fonction  $t\mapsto \frac{\sin t}{e^{2tx}-1}$ .
  - La fonction  $t \mapsto \frac{\sin t}{e^{2tx} 1}$  est continue par morceaux sur  $\mathbb{R}_+^*$ .
  - Pour tout  $n \in \mathbb{N}^*$ , en utilisant l'inégalité  $|\sin t| \le |t|$  et une double intégration par parties,

$$\int_0^{+\infty} |h_n(t)| \, \mathrm{d}t \le \int_0^{+\infty} t e^{-2nxt} \, \, \mathrm{d}t = \frac{1}{4n^2 x^2}$$

La série  $\sum_{n\in\mathbb{N}^*}\frac{1}{n^2}$  converge donc il en est de même de la série  $\sum_{n\in\mathbb{N}^*}\int_0^{+\infty}|h_n(t)|\,\mathrm{d}t.$ 

Avec le théorème d'intégration terme à terme, on obtient via la question 10,

$$G(x) = \int_0^{+\infty} \frac{\sin t}{e^{2xt} - 1} dt = \sum_{n=1}^{+\infty} \int_0^{+\infty} \sin(t)e^{-2nxt} dt = \sum_{n=1}^{+\infty} \frac{1}{1 + 4n^2x^2} = F(x)$$

## Problème 1

1 Il est évident que  $\Delta(X^k) = kX^k$  pour tout  $k \in \mathbb{N}$ .

Soit 
$$P \in \mathbb{R}[X]$$
. Alors  $\Delta(P) = XP'$  donc  $\Delta^2(P) = X\Delta(P)' = X(P' + XP'') = \Delta(P) + XP''$ . Ainsi

$$XP'' = \Delta^2(P) - \Delta(P) = \Delta \circ (\Delta - Id)(P)$$

3 Pour tout  $k \in [0, n]$ ,  $\Delta(X^k) = kX^k \in \mathbb{R}_n[X]$ . Comme  $\Delta$  est linéaire et que  $(X^k)_{0 \le k \le n}$  est une base de  $\mathbb{R}_n[X]$ ,  $\Delta(\mathbb{R}_n[X]) \subset \mathbb{R}_n[X]$ .

Puisque  $\Delta(X^k) = kX^k$  pour tout  $k \in [0, n]$ , la matrice de  $\Delta$  dans la base canonique de  $\mathbb{R}_n[X]$  est  $D_n = \text{diag}(0, 1, 2, ..., n)$ .

5 D'après la question 2,

$$\forall P \in \mathbb{R}[X], \ \Phi(P) = \Delta \circ (\Delta - \mathrm{Id})(P) + a\Delta(P) = \Delta^2(P) + (a-1)\Delta(P)$$

Ainsi  $\Phi = \Delta^2 + (a-1)\Delta$ . Comme  $(\mathcal{L}(\mathbb{R}[X]), +, \circ)$  est un anneau,  $\Phi$  est une endomorphisme de  $\mathbb{R}[X]$ .

6 Evident.

[7] Comme  $\Phi_n = \Delta_n^2 + (a-1)\Delta_n$ , la matrice de  $\Phi_n$  dans la base canonique de  $\mathbb{R}_n[X]$  est  $D_n^2 + (a-1)D_n$  où  $D_n$  est la matrice de  $\Delta_n$  dans cette même base canonique. Comme  $D_n$  est diagonale, il en est de même de  $D_n^2 + (a-1)D_n$ . Ainsi  $\Phi_n$  est diagonalisable.

**8** Evident. On trouve  $\varphi_n = \Delta_n^2 + (a-1)\Delta_n + b \operatorname{Id}_{\mathbb{R}_n[X]}$ .

On rappelle que la matrice  $D_n$  de  $\Delta_n$  dans la base canonique de  $\mathbb{R}_n[X]$  est diag $(k)_{0 \le k \le n}$ . On en déduit que la matrice de  $\varphi_n$  dans cette base est diag $(k^2 + (a-1)k + b)_{0 \le k \le n}$ .

$$s^2 + (a-1)s + b = 0 (1)$$

10 Si l'équation (1) admet deux racines entières distinctes,  $P = X^2 + (a-1)X + b = (X - m_1)(X - m_2)$  avec  $(X - m_1) \wedge (X - m_2) = 1$ . D'après le lemme des noyaux,

$$\operatorname{Ker} \varphi_n = \operatorname{Ker} P(\Delta_n) = \operatorname{Ker} (\Delta_n - m_1 \operatorname{Id}_{\mathbb{R}_n[X]}) \oplus \operatorname{Ker} (\Delta_n - m_2 \operatorname{Id}_{\mathbb{R}_n[X]})$$

Comme la matrice de  $\Delta_n$  dans la base canonique de  $\mathbb{R}_n[X]$  est  $D_n = \operatorname{diag}(0, 1, \dots, n)$ ,  $\operatorname{Ker}(\Delta_n - m \operatorname{Id}_{\mathbb{R}_n[X]}) = \operatorname{vect}(X^m)$  pour tout  $m \in [0, n]$ .

On en déduit que  $\operatorname{Ker} \varphi_n = \operatorname{vect}(X^{m_1}, X^{m_2})$ .

11 Si l'équation (1) admet une racine entière  $m \in [0, n]$ ,  $\varphi_n = P(\Delta_n) = (\Delta_n - m \operatorname{Id}_{\mathbb{R}_n[X]})^2$ . La matrice de  $\varphi_n$  dans la base canonique de  $\mathbb{R}_n[X]$  est donc  $(D_n - m I_{n+1})^2 = \operatorname{diag}(((k-m)^2)_{0 \le k \le n})$ . On en déduit que  $\operatorname{Ker} \varphi_n = \operatorname{vect}(X^n)$ .

On montre de même que si l'équation (1) n'admet pas de racine entière dans [0, n], alors  $\ker \varphi_n = \{0\}$  (la matrice de  $\varphi_n$  dans la base canonique de  $\mathbb{R}_n[X]$  est diagonale à coefficients diagonaux non nuls).

Remarquons ensuite que  $\operatorname{Ker} \varphi = \bigcup_{n \in \mathbb{N}} \operatorname{Ker} \varphi_n$ .

- Si l'équation (1) n'admet pas de racine entière, alors Ker φ<sub>n</sub> = {0} pour tout n ∈ N. Ainsi Ker φ = {0} et dim Ker φ = 0.
- Si l'équation (1) admet une unique racine entière m, alors  $\operatorname{Ker} \varphi_n = \{0\}$  pour tout entier n < m et  $\operatorname{Ker} \varphi_n = \operatorname{vect}(X^m)$  pour tout entier  $n \ge m$ . Ainsi  $\operatorname{Ker} \varphi = \operatorname{vect}(X^m)$  et dim  $\operatorname{Ker} \varphi = 1$ .
- Si l'équation (1) admet deux racines entières distinctes  $m_1$  et  $m_2$ , alors, en supposant  $m_1 < m_2$ ,  $\operatorname{Ker} \varphi_n = \{0\}$  pour tout entier  $n < m_1$ ,  $\operatorname{Ker} \varphi_n = \operatorname{vect}(X^{m_1})$  pour tout entier n tel que  $m_1 \le n < m_2$  et  $\operatorname{Ker} \varphi_n = \operatorname{vect}(X^{m_1}, X^{m_2})$  pour tout entier  $n \ge m_2$ . Ainsi  $\operatorname{Ker} \varphi = \operatorname{vect}(X^{m_1}, X^{m_2})$  et  $\operatorname{dim} \operatorname{Ker} \varphi = 2$ .

$$x^2y'' + axy' + by = 0 (2)$$

$$u'' + (a-1)u' + bu = 0 (3)$$

13 L'équation différentielle (2) est une équation différentielle linéaire homogène d'ordre 2. De plus, elle est résolue sur les intervalles I et J.

L'ensemble des solutions de (2) sur I ou sur J est donc un  $\mathbb{R}$ -espace vectoriel de dimension 2.

14 Comme y est deux fois dérivable sur  $\mathbb{R}_+^*$ ,  $g = y \circ \exp l$ 'est également sur  $\mathbb{R}$ . Remarquons alors que pour tout  $x \in \mathbb{R}_+^*$ ,

$$y(x) = g(\ln x)$$
  $y'(x) = \frac{1}{x}g'(\ln x)$   $y''(x) = -\frac{1}{x^2}g'(\ln x) + \frac{1}{x^2}g''(\ln x)$ 

De plus,

$$\forall x \in \mathbb{R}^*_+, \ x^2 y''(x) + a x y'(x) + b y(x) = 0$$

ce qui donne

$$\forall x \in \mathbb{R}_+^*, -g'(\ln x) + g''(\ln x) + ag'(\ln x) + bg(\ln x) = 0$$

et, comme  $ln(\mathbb{R}_+^*) = \mathbb{R}$ ,

$$\forall t \in \mathbb{R}, \ g''(t) + (a-1)g'(t) + bg(t) = 0$$

Ainsi g est bien solution de l'équation différentielle (3) sur ℝ.

Comme g est deux fois dérivable sur  $\mathbb{R}$ , la fonction  $y = g \circ \ln$  est deux fois dérivable sur  $\mathbb{R}_+^*$ . De plus, pour tout  $t \in \mathbb{R}$ .

$$g(t) = y(e^t)$$
  $g'(t) = e^t y'(e^t)$   $g''(t) = e^t y'(e^t) + e^{2t} y''(e^t)$ 

et

$$\forall t \in \mathbb{R}, \ g''(t) + (a-1)g(t) + bg(t) = 0$$

ce qui donne

$$\forall t \in \mathbb{R}, \ e^t y'(e^t) + e^{2t} y''(e^t) + (a-1)e^t y'(e^t) + y(e^t) = 0$$

Comme  $\exp(\mathbb{R}) = \mathbb{R}_+^*$ , on en déduit que

$$\forall x \in \mathbb{R}_+^*, \ x^2 y''(x) + a x y'(x) + y(x) = 0$$

donc y est bien solution de (2) sur  $\mathbb{R}_+^*$ .

Supposons a = 3 et b = 1. L'équation caractéristique associée à (3) est alors  $r^2 + 2r + 1 = 0$ . Son unique racine est -1 donc les solutions de (3) sur  $\mathbb{R}$  sont les fonctions

$$t \mapsto (\lambda t + \mu)e^{-t}$$
, avec  $(\lambda, \mu) \in \mathbb{R}^2$ 

Les questions précédentes montrent alors que les solutions de (2) sur  $\mathbb{R}_+^*$  sont les fonctions

$$x \mapsto \frac{\lambda \ln(x) + \mu}{x}$$
, avec  $(\lambda, \mu) \in \mathbb{R}^2$ 

Supposons a=1 et b=4. L'équation caractéristique associée à (3) est alors  $r^2+4=0$ . Ses racines sont 2i et -2i donc les solutions à valeurs réelles de (3) sur  $\mathbb R$  sont les fonctions

$$t \mapsto \lambda \cos(2t) + \mu \sin(2t)$$
, avec  $(\lambda, \mu) \in \mathbb{R}^2$ 

Les questions précédentes montrent alors que les solutions de (2) sur  $\mathbb{R}_+^*$  sont les fonctions

$$x \mapsto \lambda \cos(2 \ln x) + \mu \sin(2 \ln x)$$
, avec  $(\lambda, \mu) \in \mathbb{R}^2$ 

Comme y est deux fois dérivable sur  $\mathbb{R}_{+}^{*}$ ,  $h = y \circ (-\exp)$  l'est également sur  $\mathbb{R}$ . Remarquons alors que pour tout  $x \in \mathbb{R}_{+}^{*}$ ,

$$y(x) = h(\ln(-x)) y'(x) = \frac{1}{x}h'(\ln(-x)) y''(x) = -\frac{1}{x^2}h'(\ln(-x)) + \frac{1}{x^2}h''(\ln(-x))$$

De plus,

$$\forall x \in \mathbb{R}_+^*, \ x^2 y''(x) + axy'(x) + by(x) = 0$$

ce qui donne

$$\forall x \in \mathbb{R}_{-}^{*}, -h'(\ln(-x)) + h''(\ln(-x)) + ah'(\ln(-x)) + bh(\ln(-x)) = 0$$

et, comme  $ln(\mathbb{R}_+^*) = \mathbb{R}$ ,

$$\forall t \in \mathbb{R}, \ h''(t) + (a-1)h'(t) + bh(t) = 0$$

Ainsi h est bien solution de l'équation différentielle (3) sur  $\mathbb{R}$ .

Réciproquement, on montre que, si h est solution de (3) sur  $\mathbb{R}$ , alors  $y: x \mapsto h(\ln(-x))$  est solution de (2) sur  $\mathbb{R}^*$ . Pour a = 1 et b = -4, les solutions de (3) sur  $\mathbb{R}$  sont les fonctions

$$t \mapsto \lambda e^{2t} + \mu e^{-2t}$$
, avec  $(\lambda, \mu) \in \mathbb{R}^2$ 

On en déduit que les solutions de (2) sur  $\mathbb{R}_{-}^{*}$  sont les fonctions

$$x \mapsto \lambda e^{2\ln(-x)} + \mu e^{-2\ln(-x)}$$
, avec  $(\lambda, \mu) \in \mathbb{R}^2$ 

ou encore les fonctions

$$x \mapsto \lambda x^2 + \frac{\mu}{r^2}$$
, avec  $(\lambda, \mu) \in \mathbb{R}^2$ 

Ce qui précède montre également que les solutions de (2) sur  $\mathbb{R}^*_-$  sont également les fonctions

$$x \mapsto \lambda x^2 + \frac{\mu}{r^2}$$
, avec  $(\lambda, \mu) \in \mathbb{R}^2$ 

Soit alors f une éventuelle solution de (2) de classe  $\mathcal{C}^2$  sur  $\mathbb{R}$ . Il existe alors  $(\alpha, \beta, \gamma, \delta) \in \mathbb{R}^4$  tel que

$$\forall x \in \mathbb{R}_+^*, \ f(x) = \alpha x^2 + \frac{\beta}{x^2}$$
 et  $\forall x \in \mathbb{R}_-^*, \ f(x) = \gamma x^2 + \frac{\delta}{x^2}$ 

f doit être continue en 0: elle doit notamment avoir une limite finie en 0, ce qui impose  $\beta = \delta = 0$ . Comme f est de classe  $\mathcal{C}^2$  sur  $\mathbb{R}$ , f'' doit être continue en 0, ce qui impose  $\alpha = \beta$ .

Réciproquement, on vérifie que les fonctions  $x \mapsto \lambda x^2$  avec  $\lambda \in \mathbb{R}$  sont bien solutions de (2) sur  $\mathbb{R}$ . Finalement l'ensemble des solutions de (2) sur  $\mathbb{R}$  est vect $(x \mapsto x^2)$ .

19 Soit  $\sum a_n x^n$  une série entière. Alors son rayon de convergence R est définie par

$$R = \sup\{r \in \mathbb{R}_+, (a_n r^n) \text{ est bornée}\} \in \mathbb{R}_+ \cup \{+\infty\}$$

$$x^2y'' + xy' + x^2y = 0 (4)$$

**20** Pour tout  $x \in ]-R, R[$ 

$$J_0(x) = \sum_{k=0}^{+\infty} c_k x^k$$

$$J'_0(x) = \sum_{k=1}^{+\infty} k c_k x^{k-1}$$

$$J'_0(x) = \sum_{k=2}^{+\infty} k(k-1) c_k x^{k-2}$$

Comme J<sub>0</sub> est solution de PBEquaDiffLG08 :rep :eq :4,

$$\forall x \in ]-R, R[, \sum_{k=2}^{+\infty} k(k-1)c_k x^k + \sum_{k=1}^{+\infty} kc_k x^k + \sum_{k=0}^{+\infty} c_k x^{k+2} = 0$$

ou encore

$$\forall x \in ]-R, R[, \sum_{k=2}^{+\infty} k(k-1)c_k x^k + \sum_{k=1}^{+\infty} kc_k x^k + \sum_{k=2}^{+\infty} c_{k-2} x^k = 0$$

et enfin

$$c_1 x + \sum_{k=2}^{+\infty} (k^2 c_k + c_{k-2}) x^k = 0$$

Par unicité du développement en série entière,  $c_1=0$  et  $c_k=-\frac{1}{k^2}c_{k-2}$  pour tout entier  $k\geq 2$ . On sait de plus que  $c_0=1$ . On en déduit par récurrence que  $c_{2k+1}=0$  et  $c_{2k}=\frac{(-1)^k}{4^k(k!)^2}$  pour tout  $k\in\mathbb{N}$ .

**21** On utilise la règle de d'Alembert. Pour  $x \in \mathbb{R}^*$ ,

$$\left| \frac{c_{2k+2} x^{2k+2}}{c_{2k} x^{2k}} \right| = \frac{x^2}{(2k+2)^2} \underset{k \to +\infty}{\longrightarrow} 0$$

On en déduit que le rayon de convergence de la série entière  $\sum c_k x^k$  est  $+\infty$ .

Supposons que  $(J_0, f)$  soit liée dans l'expace des fonctions de classe  $\mathcal{C}^2$  sur ]0, r[. Il existe donc  $(\alpha, \beta) \in \mathbb{R}^2$  non nul tel que

$$\forall x \in ]0, r[, \alpha J_0(x) + \beta f(x) = 0$$

Supposons  $\beta=0$ . Alors  $\alpha\neq 0$  car  $(\alpha,\beta)\neq (0,0)$ . On en déduit que  $J_0(x)=0$  pour tout  $x\in ]0,r[$ . Cela signifierait que  $c_k=0$  pour tout  $k\in \mathbb{N}$  par unicité du développement en série entière, ce qui contredit l'expression de  $c_{2k}$  trouvée précédemment. Ainsi  $\beta=0$  et donc

$$\forall x \in ]0, r[, f(x) = -\frac{\alpha}{\beta} J_0(x)$$

Comme  $J_0$  est continue en 0, elle est bornée au voisinage de 0 et donc f également.

23 Si  $\sum \beta_k x^k$  est solution, alors, en posant  $R = \min(R_\alpha, R_\beta) > 0$ , on obtient par produit de Cauchy,

$$\forall x \in ]-R, R[, \sum_{n=0}^{+\infty} \left(\sum_{k=0}^{n} \alpha_k \beta_{n-k}\right) x^n = 1$$

Par unicité du développement en série entière, on obtient :

$$\forall n \in \mathbb{N}, \ \sum_{k=0}^{n} \alpha_k \beta_{n-k} = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{sinon} \end{cases}$$

Comme  $\alpha_0 = 1$ , on en déduit le résultat voulu.

24 Puisque  $0 < r < R_{\alpha}$ , la suite  $(\alpha_k r^k)_{k \in \mathbb{N}}$  est bornée par définition du rayon de convergence. Il existe donc M > 0 tel que  $|\alpha_k r^k| \le M$  pour tout  $k \in \mathbb{N}$  i.e.  $|\alpha_k| \le \frac{M}{r^k}$  pour tout  $k \in \mathbb{N}$ .

$$\begin{cases} \beta_0 = 1 \\ \forall n \in \mathbb{N}^*, \ \sum_{k=0}^n \alpha_k \beta_{n-k} = 0 \end{cases}$$
 (5)

25 Il existe une unique  $(\beta_k)_{k\in\mathbb{N}}$  vérifiant (5) : c'est la suite définie par  $\beta_0=1$  et la relation de récurrence  $\beta_n=-\sum_{k=1}^n\alpha_k\beta_{n-k}$  pour tout  $n\in\mathbb{N}^*$ .

Remarquons qu'alors  $\beta_1 = -\alpha_1 \beta_0 = -\alpha_1$ . Mais alors,

$$|\beta_1| = |\alpha_1| \le \frac{M}{r^1} = \frac{M(M+1)^{1-1}}{r^1}$$

Supposons qu'il existe un entier  $n \ge 2$  tel que

$$\forall k \in [[1, n-1]], \ |\beta_k| \le \frac{M(M+1)^{k-1}}{r^k}$$

Par inégalité triangulaire,

$$\begin{split} |\beta_{n}| &= \left| \sum_{k=1}^{n} \alpha_{k} \beta_{n-k} \right| \\ &\leq \sum_{k=1}^{n} |\alpha_{k}| |\beta_{n-k}| \\ &= \sum_{k=0}^{n-1} |\alpha_{n-k}| |\beta_{k}| \\ &= |\alpha_{n}| + \sum_{k=1}^{n-1} |\alpha_{n-k}| |\beta_{k}| \\ &\leq \frac{M}{r^{n}} + \sum_{k=1}^{n-1} \frac{M}{r^{n-k}} \cdot \frac{M(M+1)^{k-1}}{r^{k}} \\ &= \frac{M}{r^{n}} + \frac{M^{2}}{r^{n}} \sum_{k=1}^{n-1} (M+1)^{k-1} \\ &= \frac{M}{r^{n}} + \frac{M^{2}}{r^{n}} \sum_{k=0}^{n-2} (M+1)^{k} \\ &= \frac{M}{r^{n}} + \frac{M^{2}}{r^{n}} \cdot \frac{(M+1)^{n-1} - 1}{(M+1) - 1} \\ &= \frac{M}{r^{n}} + \frac{M}{r^{n}} ((M+1)^{n-1} - 1) \\ &= \frac{M}{r^{n}} (M+1)^{n-1} \end{split}$$

On en déduit bien par récurrence forte que

$$\forall k \in \mathbb{N}^*, \ |\beta_k| \le \frac{M(M+1)^{k-1}}{r^k}$$

 $\boxed{\textbf{26}} \quad \text{En tant que série géométrique le rayon de convergence de la série entière} \\ \sum \frac{M(M+1)^{k-1}}{r^k} x^k \text{ est } \frac{r}{M+1}. \\ \text{La question} \\ \text{précédente permet alors d'affirmer que } \\ R_{\beta} \geq \frac{r}{M+1}.$ 

27 Pour tout  $x \in ]0, r[$ 

$$x^{2}y''(x) + xy'(x) + x^{2}y(x) = x^{2}\lambda''(x)J_{0}(x) + 2x^{2}\lambda'(x)J_{0}'(x) + x^{2}\lambda(x)J_{0}''(x) + x\lambda'(x)J_{0}(x) + x\lambda(x)J_{0}'(x) + x^{2}\lambda(x)J_{0}(x)$$

$$= \lambda(x)\left(x^{2}J_{0}''(x) + xJ_{0}'(x) + x^{2}J_{0}(x)\right) + x^{2}\lambda''(x)J_{0}(x) + 2x^{2}\lambda'(x)J_{0}'(x) + x\lambda'(x)J_{0}(x)$$

$$= x^{2}\lambda''(x)J_{0}(x) + 2x^{2}\lambda'(x)J_{0}'(x) + x\lambda'(x)J_{0}(x)$$

car  $J_0$  est solution de (4).

Par ailleurs, en posant  $z: x \mapsto xJ_0^2(x)\lambda'(x)$ , pour tout  $x \in ]0, r[$ ,

$$\begin{split} z'(x) &= J_0^2(x)\lambda'(x) + 2xJ_0'(x)J_0(x) + xJ_0^2(x)\lambda''(x) \\ &= J_0(x)\left(J_0(x)\lambda'(x) + 2xJ_0'(x) + xJ_0(x)\lambda''(x)\right) \\ &= J_0(x)\left(x^2y''(x) + xy'(x) + x^2y(x)\right) \end{split}$$

Si y est solution de (4) sur ]0, r[, z'] est donc nulle sur ]0, r[.

Réciproquement, supposons que z' est nulle sur ]0, r[. Posons  $w: x \mapsto x^2y''(x) + xy'(x) + x^2y(x)$ . Supposons qu'il existe  $a \in ]0, r[$  tel que  $w(a) \neq 0$ . Par continuité de w, w ne s'annulerait pas sur un intervalle ouvert non vide contenant a et inclus dans ]0, r[. Par conséquent,  $J_0$  serait nulle sur cet intervalle et donc  $J_0'$  également. On en déduirait que  $J_0(a) = J_0'(a) = 0$ . Par unicité de la solution d'un problème de Cauchy,  $J_0$  serait constamment nulle sur  $\mathbb{R}_+^*$ . Par continuité de  $J_0$  en  $J_0'$ 0, on aurait donc  $J_0'$ 1 absurde que  $J_0'$ 2 était nulle sur  $J_0'$ 3.

Comme  $J_0$  est développable en une série entière de rayon de convergence infini, on en déduit par produit de Cauchy que  $J_0^2$  également. De plus,  $J_0^2(0) = c_0^2 = 1$ .

**29**  $J_0^2$  est développable en série entière et  $J_0^2(0) = 1$  donc, d'après ce qui précède, il existe une série entière  $\sum_{k \in \mathbb{N}} \beta_k x^k$  de rayon de convergence r > 0 tel que

$$\forall x \in ]-r, r[, J_0^2(x) \sum_{k=0}^{+\infty} \beta_k x^k = 1$$

ou encore, comme  $\beta_0 = 1$ ,

$$\forall x \in ]-r, r[, xJ_0^2(x)\left(\frac{1}{x} + \sum_{k=1}^{+\infty} \beta_k x^{k-1}\right) = 1$$

En posant  $\lambda$ :  $\ln(x) + \sum_{k=1}^{+\infty} \frac{\beta_k}{k} x^k$  qui est bien de classe  $\mathcal{C}^2$  sur ]0, r[, on a donc

$$\forall x \in ]0, r[, xJ_0^2(x)\lambda'(x) = 1$$

Notamment,  $x \mapsto xJ_0^2(x)\lambda'(x)$  est de dérivée nulle sur ]0, r[. D'après la question  $27, x \mapsto \lambda(x)J_0(x)$  est solution de 4 sur ]0, r[.

Comme  $J_0$  est développable en une série entière de rayon de convergence infini, on obtient par produit de Cauchy, que  $\eta x \mapsto J_0(x) \sum_{k=1}^{+\infty} \frac{\beta_k}{k} x^k$  est développable en série entière de rayon de convergence supérieur ou égal à r. En posant  $R_\eta = r$ , on obtient bien que  $x \mapsto J_0(x)\lambda(x) = \eta(x) + J_0(x)\ln(x)$  est solution de 4 sur  $]0, R_\eta[$ .

Posons  $f: x \in ]0, R_{\eta}[ \mapsto \eta(x) + J_0(x) \ln(x)$ .  $\eta$  est continue en 0 comme somme d'une série entière de rayon de convergence  $R_{\eta} > 0$ . De même,  $J_0$  est continue en 0 de sorte que  $\lim_{t \to 0} J_0 = J_0(0) = 1$ . On en déduit que  $\lim_{t \to 0} f = -\infty$ . Notamment, f n'est pas bornée au voisinage de 0. D'après la question **22**, la famille  $(J_0, f)$  est libre. L'ensemble des solutions de 4 sur  $]0, R_{\eta}[$  étant un espace vectoriel de dimension 2,  $(J_0, f)$  en est donc une base. L'ensemble des solutions de 4 sur  $]0, R_{\eta}[$  est donc vect $(J_0, f)$ .