Summary of symmetry calculations

July 29, 2021

Contents

1	$hydons_model$	5
2	Lotka_Volterra	7

4 CONTENTS

Chapter 1

hydons_model

Run 01_05PM_26_July-2021

Degree in tangential ansätze: 1

The system of ODEs is given by:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2},$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}.$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2$$

Run 01_09PM_26_July-2021

Degree in tangential ansätze: 1

The system of ODEs is given by:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2},$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}.$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2$$

$Run~01_21PM_26_July-2021$

Degree in tangential ansätze: 1

The system of ODEs is given by:

$$\begin{split} \frac{\mathrm{d}y_1}{\mathrm{d}t} &= \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2}, \\ \frac{\mathrm{d}y_2}{\mathrm{d}t} &= \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}. \end{split}$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2$$

Run 04_01PM_28_July-2021

Degree in tangential ansätze: 1 The system of ODEs is given by:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2},$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}.$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2,$$

$$X_2 =$$

Run 11_15AM_29_July-2021

Degree in tangential ansätze: 1 The system of ODEs is given by:

$$\frac{\mathrm{d}y_1}{\mathrm{d}t} = \frac{ty_1 + y_2^2}{-t^2 + y_1 y_2},$$
$$\frac{\mathrm{d}y_2}{\mathrm{d}t} = \frac{ty_2 + y_1^2}{-t^2 + y_1 y_2}.$$

The calculated generators are:

$$X_1 = (t) \partial t + (y_1) \partial y_1 + (y_2) \partial y_2$$

Chapter 2

Lotka_Volterra

Run 01_19PM_26_July-2021

Degree in tangential ansätze: 1

The system of ODEs is given by:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = N\left(-Pb + a\right),$$
$$\frac{\mathrm{d}P}{\mathrm{d}t} = P\left(Nc - d\right).$$

The calculated generators are:

$$X_1 = (1) \partial t$$

$Run~01_29PM_26_July-2021$

Degree in tangential ansätze: 1

The system of ODEs is given by:

$$\frac{\mathrm{d}N}{\mathrm{d}t} = N\left(-Pb + a\right),$$
$$\frac{\mathrm{d}P}{\mathrm{d}t} = P\left(Nc - d\right).$$

The calculated generators are:

$$X_1 = (1) \partial t$$