最优化理论与方法复习

基础与前沿研究院 谭兵

2018年12月28日

1 最优化问题与数学基础

1.1 数学基础

梯度:
$$L = \left(\frac{\partial f(\mathbf{X}^0)}{\partial x_1}, \frac{\partial f(\mathbf{X}^0)}{\partial x_2}, \cdots, \frac{\partial f(\mathbf{X}^0)}{\partial x_n}\right)^T$$

梯度方向是函数值上升的方向,负梯度方向是函数值下降的方向,沿梯度方向函数具有 最快的变化率。

常见梯度

- $\nabla (\boldsymbol{b}^T \boldsymbol{X}) = \boldsymbol{b}, \boldsymbol{b} = (b_1, b_2, \cdots, b_n)^T \in \boldsymbol{R}^n$
- $\nabla (\mathbf{X}^T \mathbf{A} \mathbf{X}) = \mathbf{A} \mathbf{X} + \mathbf{A}^T \mathbf{X}$

【注】:梯度法则:如果 $f(x): R^m \to R^p$,则梯度 $\nabla f(x) \in R^{m \times p}$.

Example 1. $f(x) = ||x - a||_2, a \in \mathbb{R}^2$, $\Re \mathcal{L} \nabla f(x) = \frac{x - a}{||x - a||_2}$.

Definition 1 (方向导数). 如果函数 z = f(x,y) 在点 P(x,y) 是可微分的,那么函数在该点沿任一方向的方向导数都存在,且有

$$\frac{\partial f}{\partial l} = \frac{\partial f}{\partial x}\cos\varphi + \frac{\partial f}{\partial y}\sin\varphi$$

其中 φ 为 x 轴到方向 l 的转角。

Example 2. 求函数 $z=xe^{2y}$ 在点 P(1,0) 处沿从点 P(1,0) 到点 Q(2,-1) 方向的方向导数.

Solution. 解: 这里方向 l 即为向量 $\overrightarrow{PQ} = \{1, -1\}$, 因此 x 轴到方向 l 的转角 $\varphi = -\frac{\pi}{4}$, 因为

$$\frac{\partial z}{\partial x} = e^{2y}, \quad \frac{\partial z}{\partial y} = 2xe^{2y}$$

所求方向导数

$$\frac{\partial z}{\partial l} = 1 \cdot \cos\left(-\frac{\pi}{4}\right) + 2 \cdot \sin\left(-\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$

【注】: f 在方向 P 处的方向导数: $\frac{\partial f}{\partial P} = \frac{(\nabla f)^T P}{\|P\|}$.

Definition 2 (Hesse 矩阵).

$$\nabla^2 f(\boldsymbol{X}) = \begin{pmatrix} \frac{\partial^2 f(\boldsymbol{X})}{\partial^2 x_1} & \frac{\partial^2 f(\boldsymbol{X})}{\partial x_2 \partial x_1} \\ \frac{\partial^2 f(\boldsymbol{X})}{\partial x_1 \partial x_2} & \frac{\partial^2 f(\boldsymbol{X})}{\partial^2 x_2} \end{pmatrix}$$

【注】: 设 $\phi(t) = f(\mathbf{X}^0 + t\mathbf{P})$,则

$$\phi'(t) = \nabla f \left(\boldsymbol{X}^0 + t \boldsymbol{P} \right)^T \boldsymbol{P}, \quad \phi''(t) = \boldsymbol{P}^T \nabla^2 f \left(\boldsymbol{X}^0 + t \boldsymbol{P} \right) \boldsymbol{P}$$

Theorem 1 (多元函数的 Taylor 展开).

$$f(\boldsymbol{X}) = f(\boldsymbol{X}^{0}) + \nabla f(\boldsymbol{X}^{0})^{T}(\boldsymbol{X} - \boldsymbol{X}^{0}) + \frac{1}{2}(\boldsymbol{X} - \boldsymbol{X}^{0})^{T} \nabla^{2} f(\boldsymbol{X})(\boldsymbol{X} - \boldsymbol{X}^{0}) + o(\|\boldsymbol{X} - \boldsymbol{X}^{0}\|^{2})$$

最优性条件

- (一阶必要条件): 若 X^* 是 f(X) 的局部极小点,则 $\nabla f(X^*) = 0$
- (二阶必要条件): 若 X^* 是 f(X) 的局部极小点,则 $\nabla^2 f(X^*)$ 半正定。
- (二阶充分条件): 若 $\nabla f(X^*) = 0$,且 $\nabla^2 f(X^*)$ 是正定矩阵,则 X^* 是 f(X) 的严格局部极小点。

Example 3. 证明, 若 X^* 是 f(X) 的局部极小点,则 $\nabla f(X^*) = 0$

证明.
$$\diamondsuit \mathbf{X} = \mathbf{X}^* - \alpha \nabla f(\mathbf{X}^*)$$

利用多元函数的一阶 Taylor 展开

$$f(\mathbf{X}) = f(\mathbf{X}^*) - \alpha \nabla f (\mathbf{X}^*)^T \nabla f (\mathbf{X}^*)$$
$$= f(\mathbf{X}^*) - \alpha \|\nabla f (\mathbf{X}^*)\|_2^2$$

由于 X^* 是局部极小值,那么

$$-\alpha \|\nabla f\left(\boldsymbol{X}^{\star}\right)\|_{2}^{2} = f(\boldsymbol{X}) - f(\boldsymbol{X}^{\star}) \ge 0$$

因此, $\|\nabla f(\mathbf{X}^*)\|_2^2 = 0$,即 $\nabla f(\mathbf{X}^*) = 0$

Example 4. 证明, 若 x^* 是凸优化中的局部极小点,则 x^* 是全局极小点。

证明. (反证法) 若 x^* 不是全局极小点,则存在 \bar{x} 是全局极小点。使得 $f(\bar{x}) < f(x^*)$.

令
$$z = \alpha \bar{x} + (1 - \alpha)x^*$$
, $\alpha \in (0, 1)$ 所以,

$$f(z) = f(\alpha \bar{x} + (1 - \alpha)x^*)$$

$$\leq \alpha f(\bar{x}) + (1 - \alpha)f(x^*)$$

$$\leq \alpha f(x^*) + (1 - \alpha)f(x^*)$$

$$\leq f(x^*)$$

当 $\alpha \to 0$, $z = \alpha \bar{x} + (1 - \alpha)x^* \in N(x^*)$,其中 $N(x^*)$ 表示 x^* 的某个邻域。即在 x^* 的某个局部邻域 $N(x^*)$ 中有 z,使得 $f(z) \le f(x^*)$,这与 x^* 是局部极小点矛盾。因此, x^* 是全局极小点。

1.2 凸集

Definition 3 (凸集). 若对任意的 $X^1, X^2 \in D$ 以及 $\alpha \in [0,1]$, 都有 $\alpha X^1 + (1-\alpha) X^2 \in D$, 则称 D 为凸集。

【注】:几何直观上,若集合 D 中任意两点的连线仍在 D 中,则称 D 为凸集。

Example 5. $D = \{X | AX \leq b, X \in \mathbb{R}^n, A \in \mathbb{R}^{m \times n}\}$ 是凸集。

Example 6. 若 $A, B \in \mathbb{R}^n$ 中的凸集,则 $A \cap B, A + B, A - B$ 也是凸集,但 $A \cup B$ 一般不是凸集。

Example 7. $C = \{x \in R^2_+ | x_1 x_2 \ge 1\}$,则 C 是凸集。

1.3 凸函数

Definition 4 (凸函数). 设 $f: \mathbf{D} \subset \mathbf{R}^n \to \mathbf{R}$, \mathbf{D} 是凸集, 若对任意的 $\mathbf{X}^1, \mathbf{X}^2 \in D$, 以及 $\alpha \in (0,1)$, 都有

$$f(\alpha \mathbf{X}^1 + (1 - \alpha)\mathbf{X}^2) \le \alpha f(\mathbf{X}^1) + (1 - \alpha)f(\mathbf{X}^2)$$

则称 f(X) 为 D 上的凸函数。

【注】: 从几何上看, 曲线上任意两点的连线在相应弧段的上方, 即弦在弧之上。

Example 8. 判断 $f(x) = \frac{1}{x^2}$ 是否为凸函数,答案,否,因为其定义域 $D = R - \{0\}$ 不是凸集。

【注】: 判断是否为凸函数, 首先应判断定义域是否为凸集。

Example 9. $f(x_1, x_2) = \frac{x_1^2}{x_2}$, $x_2 > 0$, 根据 *Hesse* 矩阵的各阶顺序主子式可以判断,它是一个 凸函数。

Example 10. $f(x) = \log(e^{x_1} + e^{x_2} + \dots + e^{x_n})$ 是凸函数。

Example 11. $f(x) = e^{x^T A x}$, 其中 A 是正定矩阵, 它是凸函数。

【注】: $f:R^n \to R^1$ 凸(凹), $g:R^1 \to R^1$ 凸增(凸减),则 h(x)=g(f(x)) 是凸函数。

Theorem 2. f(X) 在 D 上是凸函数的充要条件是对任意的 $X^1, X^2 \in D$, 都有

$$f\left(\boldsymbol{X}^{2}\right) \geq f\left(\boldsymbol{X}^{1}\right) + \nabla f\left(\boldsymbol{X}^{1}\right)^{T}\left(\boldsymbol{X}^{2} - \boldsymbol{X}^{1}\right)$$

Theorem 3. f(X) 在 D 上是凸函数的充要条件是 $\nabla^2 f(X)$ 是半正定矩阵。

【注】:二阶矩阵判断是否是正定矩阵,看顺序主子式均 ≥ 0 。

1.4 凸规划

$$\min f(\mathbf{X})$$
s.t.
$$g_i(\mathbf{X}) \ge 0 \quad (i = 1, 2, \dots, m)$$

$$h_j(\mathbf{X}) = 0 \quad (j = 1, 2, \dots, p)$$

若 f(X) 与 $-g_i(X)$ 都是凸函数, $h_i(X)$ 是线性函数, 则称其为凸规划。

Theorem 4. X^* 为上面问题的最优解的充要条件是, $\forall X \in S$, 有

$$(\boldsymbol{X} - \boldsymbol{X}^{\star})^T \nabla f(\boldsymbol{X}^{\star}) \ge 0$$

证明. 充分性:

$$f(\boldsymbol{X}) \ge f(\boldsymbol{X}^*) + \nabla f(\boldsymbol{X}^*)^T (\boldsymbol{X} - \boldsymbol{X}^*) \ge f(\boldsymbol{X}^*)$$

必要性:

若存在
$$X^0 \in S$$
, 使得 $(X^0 - X^*)^T \nabla f(X^*) < 0$, 则

$$f\left(\mathbf{X}^{\star} + \alpha \left(\mathbf{X}^{0} - \mathbf{X}^{\star}\right)\right) - f\left(\mathbf{X}^{\star}\right)$$

$$= \alpha \nabla f\left(\mathbf{X}^{\star}\right)^{T} \left(\mathbf{X}^{0} - \mathbf{X}^{\star}\right) + o\left(\alpha \left\|\mathbf{X}^{0} - \mathbf{X}^{\star}\right\|\right)$$

$$= \alpha \left(\left(\mathbf{X}^{0} - \mathbf{X}^{\star}\right)^{T} \nabla f\left(\mathbf{X}^{\star}\right) + \frac{o\left(\alpha \left\|\mathbf{X}^{0} - \mathbf{X}^{\star}\right\|\right)}{\alpha}\right)$$

$$\leq 0$$

这与 X^* 为最优解矛盾。

2 线性规划与单纯形法

2.1 基本可行解

基本解:令一些分量为 0,解出其他分量; 基本可行解:既是基本解,又是可行解。

Example 12. 🕸

$$x_1 + x_2 + x_3 = 2$$
$$x_1 + 2x_2 + 4x_3 = 6$$
$$x_1, x_2, x_3 \ge 0$$

的基本可行解

Solution.

【注】: 线性规划的顶点集和基本可行解集等价。

2.2 线性规划标准型

线性规划标准型的矩阵形式:

$$\min f(\mathbf{X}) = \mathbf{C}^T \mathbf{X}$$
s.t.
$$\mathbf{A} \mathbf{X} = b$$

$$\mathbf{X} \ge 0$$

$$\sum_{j=1}^{n} a_{pj} x_j + x_{n+p} = b_p \quad (x_{n+p} \ge 0 : 松弛变量)$$

$$\sum_{j=1}^{n} a_{qj} x_j - x_{n+q} = b_q \quad (x_{n+q} \ge 0 : 剩余变量)$$

$$\exists x_i \in \mathbf{R}, x_i = x_i^+ - x_i^- \quad (x_i^+, x_i^- \ge 0 : 自由变量)$$

Example 13. 将下面的规划化成标准型

$$\max f(\mathbf{X}) = x_1 - 2x_2 + 3x_3$$
s.t.
$$2x_1 - 7x_3 \le 0$$

$$3x_1 + 2x_2 \ge 0$$

$$x_1 + x_2 + x_3 = 5$$

$$x_1, x_2 \ge 0, x_3 \in R$$

Solution. 标准型为

$$\min f(\mathbf{X}) = -x_1 + 2x_2 - 3(x_3^+ - x_3^-)$$
s.t.
$$2x_1 - 7(x_3^+ - x_3^-) + x_4 = 0$$

$$3x_1 + 2x_2 - x_5 = 0$$

$$x_1 + x_2 + (x_3^+ - x_3^-) = 5$$

$$x_i \ge 0(i = 1, 2, 4, 5), x_3^+ > 0, x_3^- > 0$$

2.3 使用表格形式的单纯形法

最小值问题(最大化问题)的表格型单纯形法求解步骤:

1. 最后一行:
$$z_k - c_k = \max\{z_j - c_j\}$$
 $(z_k - c_k = \min\{z_j - c_j\})$

2. 选择对应的列作为主列

$$\frac{\bar{b}_r}{y_{ik}} = \min\left\{\frac{\bar{b}_i}{y_{ik}}|y_{ik} > 0\right\}$$

- 3. 选取交叉元素作为主元。
- 4. 直到所有判别数均 < 0 时停止(直到所有判别数均 > 0 时停止)

Example 14. 用单纯形法求解下列线性规划问题

$$\min f(\mathbf{X}) = x_2 - 3x_3 + 2x_5$$
s.t.
$$x_1 + 3x_2 - x_3 + 2x_5 = 7$$

$$-2x_2 + 4x_3 + x_4 = 12$$

$$-4x_2 + 3x_3 + 8x_5 + x_6 = 10$$

$$x_i \ge 0, \quad j = 1, \dots, 6$$

Solution. 迭代过程如下

P_1	P_2	P_3	P_4	P_5	P_6	b
1	3	-1	0	2	0	7
0	-2	4	1	0	0	12
0	-4	3	0	8	1	10
0	-1	3	0	-2	0	0
P_1	P_2	P_3	P_4	P_5	P_6	<u>b</u>
1	$\left rac{5}{2} \right $	0	$\frac{1}{4}$	2	0	10
0	$-\frac{1}{2}$	1	$\frac{1}{4}$	0	0	3
0	$-rac{1}{2} \\ -rac{5}{2}$	0	$-\frac{3}{4}$	8	1	1
0	$\frac{1}{2}$	0	$-\frac{3}{4}$	-2	0	-9
-						
P_1	P_2	P_3	P_4	P_5	P_6	<u>b</u>
$\left \frac{2}{5}\right $	1	0	$\frac{1}{10}$	$\frac{4}{5}$	0	4
$\frac{1}{5}$	0	1	$\frac{3}{10}$	$\frac{2}{5}$	0	5
1	0	0	$-\frac{1}{2}$	10	1	11
$-\frac{1}{5}$	0	0	$-\frac{4}{5}$	$-\frac{12}{5}$	0	-11

至此,所有判别数小于或等于零,故当前可行解为 $\boldsymbol{X}^*=(0,4,5,0,0,11)^T$,最优值为 $f\left(\boldsymbol{X}^*\right)=-11.$

2.4 两阶段法

基本思想:转换为标准形式后,问题中不包含需要的n阶单位矩阵,因此需要引进人工变量,用单纯形法求解。

Example 15.

$$\min x_1 - x_2$$
s.t.
$$-x_1 + 2x_2 + x_3 \le 2$$

$$-4x_1 + 4x_2 - x_3 = 4$$

$$x_1 - x_3 = 0$$

$$x_i > 0, i = 1 \sim 3$$

Solution. 引进人工变量 x_5, x_6 ,构造辅助线性规划

$$\begin{aligned} & \min & x_5 + x_6 \\ & s.t. \\ & -x_1 + 2x_2 + x_3 + x_4 = 2 \\ & -4x_1 + 4x_2 - x_3 + x_5 = 4 \\ & x_1 - x_3 + x_6 = 0 \\ & x_i > 0, i = 1 \sim 6 \end{aligned}$$

第一阶段

用单纯形法求解过程如下,极小化目标函数 $x_5 + x_6$

P_1	P_2	P_3	P_4	d_5	d_6	b
-1	2	1	1	0	0	2
-4	4	-1	0	1	0	4
1	0	-1	0	0	1	0
-3	4	-2	0	0	0	4
-1/2	1	1/2	1/2	0	0	1
-2	0	-3	-2	1	0	0
1	0	-1	0	0	1	0
-1	0	-4	-2	0	0	0
				· ·		

因为人工变量 x_5, x_6 是基变量,所以应该替换出(必须要使人工变量为非基变量)

P_1	P_2	P_3	P_4	d_5	d_6	b
0	1	0	1/2	0	1/2	1
0	0	-5	-2	1	2	0
1	0	-1	0	0	1	0
0	1	0	1/2	0	1/2	1
0	0	1	2/5	-1/5	-2/5	0
1	0	0	2/5	-1/5	3/5	0

第一阶段结束后,修改最后的单纯形表,去掉人工变量所在的列,把最后的判别数行按 照原来问题进行修正,其他不变。

第二阶段

极小化目标函数 $x_1 - x_2$

P_1	P_2	P_3	P_4	b
0	1	0	1/2	1
0	0	1	2/5	0
1	0	0	2/5	0
0	0	0	-1/10	-1

所以 $X^* = (0,1,0)^T$, $f(X^*) = -1$.

【注】:两阶段法的标准形非常重要,需要满足右端项 $b \ge 0$,且第一阶段的目标函数是加入的人工变量之和。第一阶段中,基变量对应的判别数都为 0.

3 对偶线性规划

3.1 对称形式

原规划

$$(P) \qquad \begin{array}{l} \min \quad C^T \boldsymbol{X} \\ s.t. \\ \boldsymbol{A} \boldsymbol{X} \geq b \\ \boldsymbol{X} \geq 0 \end{array}$$

对偶规划

$$(D) \qquad \begin{aligned} & \max \quad b^T \mathbf{W} \\ \mathbf{A}^T \mathbf{W} &\leq \mathbf{C} \\ \mathbf{W} &\geq 0 \end{aligned}$$

【注:】经验:对偶规划的系数好确定,无非就是需要确定变量和约束符号。口诀:变量符号 \rightarrow 看约束条件符号:小同大反;约束条件符号 \rightarrow 看变量符号:大同小反。

原(对偶)线性规划变换规则表

原规划 (对偶规划)	对偶规划 (原规划)
min	max
目标中系数	约束条件右端项
约束条件右端项	目标中系数
约束条件 ≥	变量≥
约束条件≤	变量 <
约束条件 =	变量无约束
变量 >	约束条件≤
变量 <	约束条件 ≥
变量无约束	约束条件 =

Example 16. 写出对偶线性规划

min
$$f(\mathbf{X}) = 8x_1 + 6x_2 + 3x_3 + 6x_4$$

s.t.
 $x_1 + 2x_2 + x_4 = 3$
 $3x_1 + x_2 + x_3 + x_4 = 6$
 $x_j \ge 0, j = 1, \dots, 4$

Solution.

$$\max g(\mathbf{W}) = 3w_1 + 6w_2 + 2w_3$$
s.t.
$$w_1 + 3w_2 \le 8$$

$$2w_1 + w_2 \le 6$$

$$w_2 + w_3 \ge 3$$

$$w_1 + w_2 + w_3 = 6$$

$$w_1 \ge 0, w_2 \le 0, w_3 \in R$$

3.2 一般问题的原始对偶理论

原始问题:

min
$$f(x)$$

s.t.
 $h_i(x) = 0, i = 1, 2, \dots, m$
 $g_i(x) \le 0, i = 1, 2, \dots, p$

Lagrange 函数

$$L(x, \lambda, \mu) = f(x) + \sum_{i=1}^{m} \lambda_i h_i(x) + \sum_{j=1}^{p} \mu_j g_j(x)$$

需要满足以下两个原则

$$L(x, \lambda, \mu) \le f(x), \quad \mu \ge 0.$$

关于 x 极小化 $L(x, \lambda, \mu)$

$$q(\lambda,\mu) = \min_x L(x,\lambda,\mu)$$

对偶问题:

$$\begin{cases} \max & q(\lambda, \mu) \\ s.t. \\ \mu \ge 0 \end{cases}$$

3.3 互补松弛性质

3.3.1 对称形式的对偶

对称形式的对偶定义如下:原问题

$$\begin{array}{ll}
\min & cx \\
s.t. & Ax \geqslant b \\
& x \geqslant 0
\end{array}$$

对偶问题

$$\begin{array}{ll}
\max & wb \\
s.t. & wA \leq 0 \\
& w \geqslant 0
\end{array}$$

Theorem 5. 设 $x^{(0)}$ 和 $w^{(0)}$ 分别是上面原问题和对偶问题的可行解,那么 $x^{(0)}$ 和 $w^{(0)}$ 都是最优解的充要条件是,对所有 i 和 i 成立

- 如果 $x_i^{(0)} > 0$, 就有 $w^{(0)}p_j = c_j$ (第 j 个约束等式成立)
- 如果 $A_i x^{(0)} > b_i$,就有 $w_i^{(0)} = 0$ (如果原问题最优解使得第 i 个约束不等式严格成立,就有对偶问题 $w_i^{(0)} = 0$)
- 如果 $w_i^{(0)} > 0$, 就有 $A_i x^{(0)} = b_i$
- 如果 $w^{(0)}p_j < c_j$ (称作松约束), 就有 $x_i^{(0)} = 0$

Example 17. 已知线性规划

$$\max f(X) = 3x_1 + 4x_2 + x_3$$
s.t.
$$x_1 + 2x_2 + x_3 \le 10$$

$$2x_1 + 2x_2 + x_3 \le 16$$

$$x_j \ge 0, j = 1, 2, 3$$

的最优解为 $X^* = (6,2,0)^T$, 求其对偶规划的最优解?

Solution. 对偶规划为

min
$$g(Y) = 10y_1 + 16y_2$$

s.t.
 $y_1 + 2y_2 \ge 3$
 $2y_1 + 2y_2 \ge 4$
 $y_1 + y_2 \ge 1$
 $y_i \ge 0, j = 1, 2$

设对偶规划的最优解为 $Y^* = (y_1^*, y_2^*)^T$, 由松弛定理得(因为 $x_3 = 0$, 那么对偶规划中去掉第三个不等式)

$$\begin{cases} y_1^{\star} + 2y_2^{\star} = 3 \\ 2y_1^{\star} + 2y_2^{\star} = 4 \end{cases} \Rightarrow y_1^{\star} = y_2^{\star} = 1$$

所以对偶规划的最优解为 $Y^* = (1,1)^T$.

Example 18. 原问题

min
$$2x_1 + 3x_2 + x_3$$

s.t.
 $3x_1 - x_2 + x_3 \ge 1$
 $x_1 + 2x_2 - 3x_3 \ge 2$
 $x_1, x_2, x_3 \ge 0$

对偶问题

$$\max w_1 + 2w_2$$
s.t.
$$3w_1 + w_2 \le 2$$

$$-w_1 + 2w_2 \le 3$$

$$w_1 - 3w_2 \le 1$$

$$w_1, w_2 \ge 0$$

设对偶问题的最优解为 $\overline{\boldsymbol{w}} = (\boldsymbol{w}_1, \boldsymbol{w}_2) = \left(\frac{1}{7}, \frac{11}{7}\right)$, 试求原问题的最优解。

Solution. 由于在最优解 \overline{w} 处,对偶问题的第三个约束成立严格不等式,因此在原问题中第三个变量 $x_3=0$,又由于 \overline{w} 的两个分量均大于令零,因此在原问题中前两个约束在最优解处成立等式,即

$$\begin{cases} 3x_1 - x_2 + x_3 = 1 \\ x_1 + 2x_2 - 3x_3 = 2 \end{cases}$$

把 $x_3 = 0$ 带入上述方程组, 得到

$$\begin{cases} 3x_1 - x_2 = 1 \\ x_1 + 2x_2 = 2 \end{cases}$$

解得 $x_1 = \frac{4}{7}, x_2 = \frac{5}{7}$, 因此原问题的最优解是

$$\overline{x} = (x_1, x_2, x_3)^{\mathrm{T}} = \left(\frac{4}{7}, \frac{5}{7}, 0\right)^{\mathrm{T}}$$

Example 19. 已知下面线性规划问题的最优解为 $X^* = (2, 2, 4, 0)^T$, 求其对偶规划的最优解。

$$\max 2x_1 + 4x_2 + x_3 + x_4$$
s.t.
$$x_1 + 3x_2 + x_4 \le 8$$

$$2x_1 + x_2 \le 6$$

$$x_2 + x_3 + x_4 \le 6$$

$$x_1 + x_2 + x_3 \le 9$$

$$x_i > 0, i = 1 \sim 4$$

Solution. 对偶问题为:

min
$$8w_1 + 6w_2 + 6w_3 + 9w_4$$

s.t.

$$w_1 + 2w_2 + w_4 \ge 2$$

$$3w_1 + w_2 + w_3 + w_4 \ge 4$$

$$w_3 + w_4 \ge 1$$

$$w_1 + w_3 \ge 1$$

$$w_i \ge 0 (i = 1, 2, 3, 4)$$

由于 x_1, x_2, x_3 均大于 0, 那么对偶问题的前三个约束等式严格成立,即

$$w_1 + 2w_2 + w_4 = 2$$
$$3w_1 + w_2 + w_3 + w_4 = 4$$
$$w_3 + w_4 = 1$$

将原问题的最优解代入原问题中,发现原问题的第四个约束条件的不等式严格成立,那么有 $w_4=0$.

综上, 求解得到 $w = (\frac{4}{5}, \frac{3}{5}, 1, 0)^T$, 最优值为 16.

3.4 对偶单纯形法

求解基本步骤:

$$k = \min\{i|b_i < 0\}$$

$$\frac{\sigma_l}{a_{kl}} = \min_{1 \le j \le n} \left\{ \frac{\sigma_j}{a_{kj}} | a_{kj} < 0 \right\}$$

Example 20. 用对偶单纯形法求解下面的问题

min
$$f(X) = x_1 + 2x_2$$

s.t.
 $x_1 + 2x_2 \ge 4$
 $x_1 \le 5$
 $3x_1 + x_2 \ge 6$
 $x_j \ge 0$, $j = 1 \sim 2$

Solution. 转换为下面的标准形

min
$$f(\mathbf{X}) = x_1 + 2x_2$$

s.t.
 $-x_1 - 2x_2 + x_3 = -4$
 $x_1 + x_4 = 5$
 $-3x_1 - x_2 + x_5 = -6$
 $x_j \ge 0$, $j = 1 \sim 5$

对偶单纯形法求解过程如下:

P_1	P_2	P_3	P_4	P_5	b
$\overline{-1}$	-2	1	0	0	-4
1	0	0	1	0	5
-3	-1	0	0	1	-6
-1	-2	0	0	0	0
P_1	P_2	P_3	P_4	P_5	b
1	2	-1	0	0	4
			-		
0	-2	1	1	0	1
0	-2 5	1 -3	1 0	0 1	1 6

这时 b>0,所以当前最优解为 $\boldsymbol{X}^*=(4,0,0,1,6)^T$,因此原规划问题的最优解为 $\boldsymbol{X}^*=(4,0)^T$. 对偶问题的最优解为 $\boldsymbol{W}^*=(1,0,0)^T$

【注】:对偶规划的最优解的第<math>l 个分量就是原规划最终单纯形表中剩余变量的判别数的相反数。

4 无约束最优化计算方法

4.1 基本思想

无约束优化问题:

$$\min_{X \in R^n} f(\boldsymbol{X})$$

新点 $X^{k+1} = X^k + t_k \mathbf{P}^k$,使得 $f\left(X^{k+1}\right) < f\left(X^k\right)$,其中 t_k 称为步长因子, \mathbf{P}^k 表示下降方向,下降方向需满足 $\nabla f\left(\mathbf{X}^k\right)^T \mathbf{P}^k < 0$.

【注】:后面的所有方法,就是在确定下降方向 P^k 和步长因子 t_k 确定步长因子 t_k ? 即选取使得

$$f\left(\boldsymbol{X}^{k}+t_{k}\boldsymbol{P}^{k}\right)=\min_{t}f\left(\boldsymbol{X}^{k}+t\boldsymbol{P}^{k}\right)$$

这时, t_k 称为最优步长。

【注】:求一元函数 $\varphi(t) = f\left(\mathbf{X}^k + t\mathbf{P}^k\right)$ 极小点的迭代法称为一维搜索, $\varphi'(t) = \nabla f\left(\mathbf{X}^k + t\mathbf{P}^k\right)^T\mathbf{P}^k$

Definition 5 (收敛速度). 设序列 $\{X^k\}$ 收敛于 X^* , 若

$$\lim_{k \to \infty} \frac{\left\| \boldsymbol{X}^{k+1} - \boldsymbol{X}^{\star} \right\|}{\left\| \boldsymbol{X}^{k} - \boldsymbol{X}^{\star} \right\|} = \beta$$

则 $0 < \beta < 1$,称 $\{X^k\}$ 为 β 线性收敛, $\beta = 0$ 时称为超线性收敛, $\beta = 1$ 时称为次线性收敛。 又若

$$\lim_{k \to \infty} \frac{\|\boldsymbol{X}^{k+1} - \boldsymbol{X}^{\star}\|}{\|\boldsymbol{X}^{k} - \boldsymbol{X}^{\star}\|^{p}} = \beta < +\infty$$

则称 $\{X^k\}$ 为 p 阶收敛。这里 $p \ge 1$.

Definition 6 (二次终止性). 一个算法用于求解具有正定矩阵的二次函数

$$f(X) = \frac{1}{2}X^T A X + b^T X + c$$

时,可以在有限步内达到它的极小点。

4.2 非精确一维搜索的三大准则

Goldstein 准则

$$\begin{cases} (i) f\left(\mathbf{X}^{k} + t_{k} \mathbf{P}^{k}\right) \leq f\left(\mathbf{X}^{k}\right) + \rho t_{k} \nabla f\left(\mathbf{X}^{k}\right)^{T} \mathbf{P}^{k} \\ (ii) f\left(\mathbf{X}^{k} + t_{k} \mathbf{P}^{k}\right) \geq f\left(\mathbf{X}^{k}\right) + (1 - \rho) t_{k} \nabla f\left(\mathbf{X}^{k}\right)^{T} \mathbf{P}^{k} \end{cases}$$

其中 $0 < \rho < 1$.

Wolfe 准则

$$\begin{cases} (i)f\left(\boldsymbol{X}^{k} + t_{k}\boldsymbol{P}^{k}\right) \leq f\left(\boldsymbol{X}^{k}\right) + \rho t_{k}\nabla f\left(\boldsymbol{X}^{k}\right)^{T}\boldsymbol{P}^{k} \\ (ii)\nabla f\left(\boldsymbol{X}^{k} + t_{k}\boldsymbol{P}^{k}\right)^{T}\boldsymbol{P}^{k} > \sigma\nabla f\left(\boldsymbol{X}^{k}\right)^{T}\boldsymbol{P}^{k} \end{cases}$$

其中 $\sigma \in (\rho, 1)$.

Armijo 准则

给定 $\beta \in (0,1)$, $\rho \in \left(0,\frac{1}{2}\right)$, $\tau > 0$, 设 m_k 是使得下式

$$f\left(\boldsymbol{X}^{k} + \beta^{m_{k}} \tau \boldsymbol{P}^{k}\right) \leq f\left(\boldsymbol{X}^{k}\right) + \rho \beta^{m_{k}} \tau \nabla f\left(\boldsymbol{X}^{k}\right)^{T} \boldsymbol{P}^{k}$$

成立的最小非负整数。

若令 $t_k = \beta^{m_k} \tau$, 其就是 Goldstein 准则中的第一个准则

$$f\left(\boldsymbol{X}^{k}+t_{k}\boldsymbol{P}^{k}\right)\leq f\left(\boldsymbol{X}^{k}\right)+\rho t_{k}\nabla f\left(\boldsymbol{X}^{k}\right)^{T}\boldsymbol{P}^{k}$$

为了保证算法收敛性,需要保证每次搜索方向 p_k 与其梯度方向 $-g_k = -\nabla f\left(\boldsymbol{X}^k\right)$ 成锐角。

4.3 0.618 法

区间选择准则: 原区间为 $[a_k, b_k]$, 0.382 处为 λ_k , 0.618 处为 μ_k .

- 若 $f(\lambda_k) > f(\mu_k)$,则新区间为 $[\lambda_k, b_k]$.
- 若 $f(\lambda_k) \leq f(\mu_k)$,则新区间为 $[a_k, \mu_k]$.

【注】: 口诀: 哪边大, 舍哪边。

4.4 最速下降法

求解

$$\min_{\boldsymbol{X} \in \boldsymbol{R}^n} f(\boldsymbol{X})$$

下降方向: $\mathbf{P}^k = -\nabla f(\mathbf{X}^k)$, 确定最优步长 t_k 使得

$$f\left(\boldsymbol{X}^{k}+t_{k}\nabla f\left(\boldsymbol{X}^{k}\right)\right)=\min_{t}f\left(\boldsymbol{X}^{k}+t\nabla f\left(\boldsymbol{X}^{k}\right)\right)$$

若 f(X) 具有二阶连续偏导数,由 Taylor 公式得

$$f\left(\mathbf{X}^{k}-t\nabla f\left(\mathbf{X}^{k}\right)\right) \approx f\left(\mathbf{X}^{k}\right)-t\nabla f\left(\mathbf{X}^{k}\right)^{T}\nabla f\left(\mathbf{X}^{k}\right)$$
$$+\frac{1}{2}t^{2}\nabla f\left(\mathbf{X}^{k}\right)^{T}\boldsymbol{H}\left(\mathbf{X}^{k}\right)\nabla f\left(\mathbf{X}^{k}\right)$$

其中 $H\left(\mathbf{X}^{k}\right)$ 是 $f(\mathbf{X})$ 在 \mathbf{X}^{k} 的 Hesse 矩阵。

令

$$\frac{df\left(\mathbf{X}^{k} - t\nabla f\left(\mathbf{X}^{k}\right)\right)}{dt} = -\nabla f\left(\mathbf{X}^{k}\right)^{T} \nabla f\left(\mathbf{X}^{k}\right)$$
$$+ t\nabla f\left(\mathbf{X}^{k}\right)^{T} \mathbf{H}\left(\mathbf{X}^{k}\right) \nabla f\left(\mathbf{X}^{k}\right) = 0$$

可得最优步长

$$t_k = \frac{\nabla f\left(\boldsymbol{X}^k\right)^T \nabla f\left(\boldsymbol{X}^k\right)}{\nabla f\left(\boldsymbol{X}^k\right)^T \boldsymbol{H}\left(\boldsymbol{X}^k\right) \nabla f\left(\boldsymbol{X}^k\right)} = \frac{\left(\boldsymbol{g}^k\right)^T \boldsymbol{g}^k}{\left(\boldsymbol{g}^k\right)^T \boldsymbol{H}^k \boldsymbol{g}^k}$$

由此得到第 k+1 步的迭代点为

$$oldsymbol{X}^{k+1} = oldsymbol{X}^k - rac{oldsymbol{\left(g^k
ight)}^Toldsymbol{g}^k}{oldsymbol{\left(g^k
ight)}^Toldsymbol{H}^koldsymbol{g}^k} oldsymbol{g}^k$$

【注】: $\varphi'(t) = \nabla f(\mathbf{X} + t\mathbf{P})^T\mathbf{P} = 0$,得 $(\mathbf{g}^{k+1})^T\mathbf{g}^k = 0$,因此,最速下降法存在据锯齿现象

Example 21. 用最速下降法求 $f(X) = (x_1 - 1)^2 + (x_2 - 1)^2$ 的极小点。

Solution.

$$\mathbf{g}^{k} = \nabla f(\mathbf{X}) = (2(x_{1} - 1), 2(x_{2} - 1))^{T}$$

$$\mathbf{H}^{k} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

$$\mathbf{X}^{0} = (0, 0)^{T}$$

$$t_{0} = \frac{(\mathbf{g}^{0})^{T} \mathbf{g}^{0}}{(\mathbf{g}^{0})^{T} \mathbf{H}^{0} \mathbf{g}^{0}} = \frac{1}{2}$$

$$X^{1} = X^{0} - t_{0} \mathbf{g}^{0} = (0, 0)^{T} - \frac{1}{2}(-2, -2)^{T} = (1, 1)^{T}$$

$$\nabla f(\mathbf{X}^{1}) = (0, 0)^{T}, \quad \|\nabla f(\mathbf{X}^{1})\| < \varepsilon$$

$$\mathbf{X}^{\star} = \mathbf{X}^{1}$$

4.5 牛顿法(二阶收敛)

基本思想:牛顿法是用一个二次函数去近似一个目标函数,然后精确的求出这个二次函数的极小点,以它作为目标函数极小点的近似值。

在点 X^k 处对目标函数按 Taylor 展开

$$f(\boldsymbol{X}) \approx q(\boldsymbol{X}) \triangleq f(\boldsymbol{X}^k) + \boldsymbol{g}(\boldsymbol{X}^k)^T (\boldsymbol{X} - \boldsymbol{X}^k) + \frac{1}{2} (\boldsymbol{X} - \boldsymbol{X}^k)^T \boldsymbol{H}(\boldsymbol{X}^k) (\boldsymbol{X} - \boldsymbol{X}^k)$$

$$oldsymbol{H}\left(oldsymbol{X}^k
ight)\left(oldsymbol{X}-oldsymbol{X}^k
ight)=-oldsymbol{g}\left(oldsymbol{X}^k
ight)$$

若 Hesse 矩阵正定,则

$$oldsymbol{X} - oldsymbol{X}^k = -oldsymbol{H}^{-1}\left(oldsymbol{X}^k
ight)oldsymbol{g}\left(oldsymbol{X}^k
ight)$$

则由上式解出来的 $X = X^{k+1}$, 就是二次函数 q(X) 的极小点,即

$$oldsymbol{X}^{k+1} = oldsymbol{X}^k - oldsymbol{H}^{-1}\left(oldsymbol{X}^k
ight)oldsymbol{g}\left(oldsymbol{X}^k
ight)$$

【注】: 当目标函数是正定二次函数时,牛顿法能够一次到达极小点(一步到位),具有二次终止性。

4.6 共轭梯度法: 共轭性与最速下降法的结合, 具有二次终止性

最速下降法存在锯齿现象,收敛速度慢;而牛顿法需要计算 Hesse 矩阵,计算量较大,而 共轭梯度法的收敛速度介于两者之间,无需计算 Hesse 矩阵,具有二次收敛性。

Definition 7 (共轭). 设 Q 是对称正定阵,如果 X 和 QY 正交,即

$$\boldsymbol{X}^T\boldsymbol{Q}\boldsymbol{Y}=0$$

则称 X 和 Y 关于 Q 共轭。

FR 共轭梯度法

$$egin{aligned} oldsymbol{X}^{k+1} &= oldsymbol{X}^k + t_k oldsymbol{P}^k \ &t_k = rac{-{(oldsymbol{g}^k)}^T oldsymbol{P}^k}{{(oldsymbol{P}^k)}^T oldsymbol{H}(oldsymbol{P}^k)} \ oldsymbol{P}^k &= \left\{ egin{aligned} -oldsymbol{g}^k, & k = 0 \ -oldsymbol{g}^k + rac{\left\|oldsymbol{g}^k
ight\|^2}{\left\|oldsymbol{g}^{k-1}
ight\|^2} oldsymbol{P}^{k-1}, & k > 0 \end{aligned}
ight.$$

Example 22. 用 FR 方法求解 $f(\mathbf{X}) = x_1^2 + 2x_2^2$, 取初始点 $\mathbf{X}^0 = (5,5)^T$.

Solution. 解:

$$oldsymbol{g} =
abla f(oldsymbol{X}) = (2x_1, 4x_2)^T, oldsymbol{H} =
abla^2 f(oldsymbol{X}) = \left(egin{array}{cc} 2 & 0 \ 0 & 4 \end{array}
ight)$$

第一次迭代

$$\mathbf{P}^{0} = -\mathbf{g}^{0} = (-10, -20)^{T}
\mathbf{X}^{1} = \mathbf{X}^{0} + t_{0}\mathbf{P}_{0} = \mathbf{X}^{0} - t_{0}\mathbf{g}_{0}
= (5, 5)^{T} + \frac{-(\mathbf{g}^{0})^{T}\mathbf{P}^{0}}{(\mathbf{P}^{0})^{T}\mathbf{H}\mathbf{P}^{0}} (-10, -20)^{T}
= (5, 5)^{T} + \frac{5}{18}(-10, -20)^{T}
= \left(\frac{20}{9}, -\frac{5}{9}\right)^{T}$$

第二次迭代

$$\begin{aligned} \boldsymbol{P}^{1} &= -\boldsymbol{g}^{1} + \alpha_{0} \boldsymbol{P}_{0} \\ &= \left(-\frac{40}{9}, \frac{20}{9} \right)^{T} + \frac{\|\boldsymbol{g}^{1}\|^{2}}{\|\boldsymbol{g}^{0}\|^{2}} (-10, -20)^{T} \\ &= \left(-\frac{40}{9}, \frac{20}{9} \right)^{T} + \frac{4}{81} (-10, -20)^{T} \\ &= \left(-\frac{400}{81}, \frac{100}{81} \right)^{T} \end{aligned}$$

$$X^{2} = X^{1} + t_{1}P^{1}$$

$$= \left(\frac{20}{9}, -\frac{5}{9}\right)^{T} + \frac{-(\mathbf{g}^{1})^{T} P^{1}}{(\mathbf{P}^{1})^{T} H P^{1}} \left(-\frac{400}{81}, \frac{100}{81}\right)^{T}$$

$$= \left(\frac{20}{9}, -\frac{5}{9}\right)^{T} + \frac{9}{20} \left(-\frac{400}{81}, \frac{100}{81}\right)^{T}$$

$$= (0, 0)^{T}$$

此时 $g^2 = 0$, 已达到极小点 $X^2 = (0,0)^T$.

此例验证了共轭梯度法的二次终止性。

【注】: 初始方向应为负梯度方向, 否则所产生的一般不为共轭方向。

4.7 拟牛顿法

基本思想:用一个矩阵来近似 Hesse 逆矩阵。

拟牛顿方程:

$$\mathbf{H}^{k+1}\mathbf{Y}^k = \mathbf{S}^k$$

秩 1 具有如下形式:

$$\boldsymbol{H}^{k+1} = \boldsymbol{H}^k + \Delta \boldsymbol{H}^k = \boldsymbol{H}^k + \lambda \boldsymbol{u} \boldsymbol{u}^T$$

秩 1 校正 (SR1)

$$oldsymbol{X}^{k+1} = oldsymbol{X}^k + t_k oldsymbol{P}^k \ oldsymbol{Y}^k riangleq oldsymbol{g}^{k+1} - oldsymbol{g}^k, \quad oldsymbol{S}^k riangleq oldsymbol{X}^{k+1} - oldsymbol{X}^k, \quad oldsymbol{Z}^k = oldsymbol{S}^k - oldsymbol{H}^k oldsymbol{Y}^k \ oldsymbol{H}^{k+1} = oldsymbol{H}^k + rac{oldsymbol{Z}^k \left(oldsymbol{Z}^k
ight)^T}{\left(oldsymbol{Y}^k
ight)^T oldsymbol{Z}^k} \ oldsymbol{P}^{k+1} = -oldsymbol{H}^{k+1} oldsymbol{g}^{k+1}$$

【注】:SR1 是一种共轭方向法,当然具有二次终止性。对于正定二次函数,SR1 方法至多 n 步终止。但是,不能保证 $P^k = -H^k q^k$ 是下降方向,即 H^k 不正定。

秩 2 具有如下形式:

$$\Delta \boldsymbol{H}^k = \lambda_1 \boldsymbol{u}_1 \boldsymbol{u}_1^T + \lambda_2 \boldsymbol{u}_2 \boldsymbol{u}_2^T$$

秩 2 校正公式(DFP 算法)

$$H^{k+1} = H^{k} + \frac{S^{k} (S^{k})^{T}}{(S^{k})^{T} Y^{k}} - \frac{H^{k} Y^{k} (H^{k} Y^{k})^{T}}{(H^{k} Y^{k})^{T} Y^{k}}$$

(正定遗传性): 若 H^0 是对称正定矩阵,则 DFP 校正公式所产生的 H^k 是对称正定矩阵。

【注】: 一般情况下, $H^0 = I_n$

【注】: DFP 本质上也是一种共轭方向法, 也具有二次收敛性。

Example 23. 用 DFP 算法求 $\min 2x_1^2 + x_2^2 - 4x_1 + 2$, 取 $\mathbf{X}^0 = (2,1)^T$

Solution.

$$g = \begin{pmatrix} 4(x_1 - 1) \\ 2x_2 \end{pmatrix}, \quad Q = \begin{pmatrix} 4 & 0 \\ 0 & 2 \end{pmatrix}, H^0 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

第一次迭代:

$$\boldsymbol{g}^{0} = (4,2)^{T}$$

$$\boldsymbol{P}^{0} = -\boldsymbol{H}^{0}\boldsymbol{g}^{0} = -\boldsymbol{g}^{0}$$

$$\boldsymbol{X}^{1} = \boldsymbol{X}^{0} + t_{0}\boldsymbol{P}^{0} = \boldsymbol{X}^{0} + \frac{-(\boldsymbol{g}^{0})^{T}\boldsymbol{P}^{0}}{(\boldsymbol{P}^{0})^{T}\boldsymbol{Q}\boldsymbol{P}^{0}}\boldsymbol{P}^{0} = \left(\frac{8}{9}, \frac{4}{9}\right)^{T}$$

第二次迭代:

$$\mathbf{g}^{1} = \left(-\frac{4}{9}, \frac{8}{9}\right)^{T}$$

$$\mathbf{S}^{0} = \mathbf{X}^{1} - \mathbf{X}^{0} = \left(-\frac{10}{9}, -\frac{5}{9}\right)^{T}$$

$$\mathbf{Y}^{0} = \mathbf{g}^{1} - \mathbf{g}^{0} = \left(-\frac{40}{9}, -\frac{10}{9}\right)^{T}$$

$$\mathbf{H}^{1} = \mathbf{H}^{0} + \frac{\mathbf{S}^{0} \left(\mathbf{S}^{0}\right)^{T}}{\left(\mathbf{S}^{0}\right)^{T} \mathbf{Y}^{0}} - \frac{\mathbf{Y}^{0} \left(\mathbf{Y}^{0}\right)^{T}}{\left(\mathbf{Y}^{0}\right)^{T} \mathbf{Y}^{0}}$$

$$= \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) + \frac{1}{18} \left(\begin{array}{cc} 4 & 2 \\ 2 & 1 \end{array}\right) - \frac{1}{17} \left(\begin{array}{cc} 16 & 4 \\ 4 & 1 \end{array}\right)$$

$$= \frac{1}{306} \left(\begin{array}{cc} 86 & -38 \\ -38 & 305 \end{array}\right)$$

搜索方向

$$P^1 = -H^1g^1 = \frac{4}{17}(1, -4)^T$$

步长

$$t_1 = \min_{\lambda} f(\boldsymbol{X}^1 + t\boldsymbol{P}^1)$$

从 X^1 出发沿 P^1 进行一维搜索。即

$$X^2 = X^1 + t_1 P^1 = (1,0)^T$$

第三次迭代:

$$\left\|\boldsymbol{g}^2\right\| = 0$$

迭代终止,所以 X^2 是极小点。

4.8 信赖域方法

前面的方法是先确定搜索方法,再确定步长,信赖域方法是先确定一个步长,再确定搜索方法。

实际下降量

$$\Delta f^k = f\left(\boldsymbol{X}^k\right) - f\left(\boldsymbol{X}^k + \boldsymbol{S}^k\right)$$

预测下降量

$$\Delta q^k = f\left(\boldsymbol{X}^k\right) - q^k\left(\boldsymbol{S}^k\right)$$

比值

$$r^k = \Delta f^k / \Delta q^k$$

它衡量二次模型近似目标函数的程度, r^k 越接近于 1,表示近似程度越好。

【注】:当 $r^k < 0$ 时,无效步; $(\frac{1}{4}, \frac{3}{4})$,不变; $(\frac{3}{4}, 1)$,扩大 h; $(0, \frac{1}{4})$,缩小 h。h 表示信赖 域半径。

【注】:简记口诀:比值大,扩大;比值小,缩小。

【注】: 在较强的假设下, 信赖域方法具有二阶收敛速度

5 最优性条件

5.1 无约束问题的极值条件

(必要条件): 若 \bar{x} 是局部极小点,则梯度 $\nabla f(\bar{x}) = 0$,且 Hesse 矩阵 $\nabla^2 f(\bar{x}) = 0$ 半正定。 (二阶充分条件): 若梯度 $\nabla f(\bar{x}) = 0$,且 Hesse 矩阵 $\nabla^2 f(\bar{x}) = 0$ 正定,则 \bar{x} 是局部极小点。

(**充要条件):** 设 f(x) 是定义在 \mathbb{R}^n 上的可微**凸函数**, $\bar{x} \in \mathbb{R}^n$,则 \bar{x} 是全局极小点的充分 必要条件是梯度 $\nabla f(\bar{x}) = 0$ 。

5.2 约束问题的极值条件

5.2.1 不等式约束优化问题的一阶最优性条件

下降方向满足: $\nabla f(\overline{x})^{\mathrm{T}}d < 0$

可行方向满足: $\overline{x} + \lambda d \in S$

考虑非线性规划问题:

min
$$f(x)$$

s. t. $g_i(x) \ge 0$, $i = 1, \dots, m$

这个问题的可行域

$$S = \{x | g_i(x) \ge 0, i = 1, \dots, m\}$$

K-T 条件:

$$\nabla f(\overline{x}) - \sum_{i=1}^{m} w_i \nabla g_i(\overline{x}) = 0$$

$$w_i g_i(\overline{x}) = 0, \quad i = 1, \dots, m$$

$$w_i \ge 0, \quad i = 1, \dots, m$$

Example 24.

min
$$(x_1 - 2)^2 + x_2^2$$

s. t. $x_1 - x_2^2 \ge 0$
 $-x_1 + x_2 \ge 0$

验证下列两点

$$x^{(1)} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \text{for} \quad x^{(2)} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

是否为 K-T 点。

Solution. 记

$$f(x) = (x_1 - 2)^2 + x_2^2$$
$$g_1(x) = x_1 - x_2^2$$
$$g_2(x) = -x_1 + x_2$$

目标函数和约束函数的梯度是

$$\nabla f(x) = \begin{bmatrix} 2(x_1 - 2) \\ 2x_2 \end{bmatrix}, \quad \nabla g_1(x) = \begin{bmatrix} 1 \\ -2x_2 \end{bmatrix}, \quad \nabla g_2(x) = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

先验证 $x^{(1)}$, 在这一点, $g_1(x) \ge 0$ 和 $g_2(x) \ge 0$ 都是起作用约束, 目标函数和约束函数的梯度分别是

$$\nabla f\left(x^{(1)}\right) = \begin{bmatrix} -4\\0 \end{bmatrix}, \quad \nabla g_1\left(x^{(1)}\right) = \begin{bmatrix} 1\\0 \end{bmatrix}, \quad \nabla g_2\left(x^{(1)}\right) = \begin{bmatrix} -1\\1 \end{bmatrix}$$

设

$$\begin{bmatrix} -4 \\ 0 \end{bmatrix} - w_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} - w_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

即

$$-4 - w_1 + w_2 = 0$$
$$-w_2 = 0$$

解此方程组得到

$$w_1 = -4, \quad w_2 = 0$$

由于 $w_1 < 0$, 因此 $x^{(1)}$ 不是 K-T 点。

在验证 $x^{(2)}$, $g_1(x) \ge 0$ 和 $g_2(x) \ge 0$ 都是起作用约束,目标函数和约束函数的梯度分别是

$$\nabla f\left(x^{(2)}\right) = \begin{bmatrix} -2\\2 \end{bmatrix}, \quad \nabla g_1\left(x^{(2)}\right) = \begin{bmatrix} 1\\-2 \end{bmatrix}, \quad \nabla g_2\left(x^{(2)}\right) = \begin{bmatrix} -1\\1 \end{bmatrix}$$

设

$$\begin{bmatrix} -2 \\ 2 \end{bmatrix} - w_1 \begin{bmatrix} 1 \\ -2 \end{bmatrix} - w_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

即

$$\begin{cases}
-2 - w_1 + w_2 = 0 \\
2 + 2w_1 - w_2 = 0
\end{cases}$$

解此方程组得到

$$w_1 = 0, \quad w_2 = 2$$

所以 $x^{(2)}$ 是 K-T 点。

Example 25.

min
$$f(x) \stackrel{\text{def}}{=} (x_1 - 1)^2 + x_2$$

s. t. $g_1(x) = -x_1 - x_2 + 2 \ge 0$
 $g_2(x) = x_2 \ge 0$

求满足 K-T 条件的点。

Solution. 目标函数和约束函数的梯度分别是

$$\nabla f(x) = \begin{bmatrix} 2(x_1 - 1) \\ 1 \end{bmatrix}, \quad \nabla g_1(x) = \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \quad \nabla g_2(x) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

K-T条件为

$$\nabla f(x) - \sum_{i=1}^{2} w_i \nabla g_i(x) = 0$$
$$w_i g_i(x) = 0, \quad i = 1, 2$$
$$w_i \geqslant 0, \quad i = 1, 2$$

即

$$2(x_1 - 1) + w_1 = 0$$

$$1 + w_1 - w_2 = 0$$

$$w_1(-x_1 - x_2 + 2) = 0$$

$$w_2x_2 = 0$$

$$w_1, w_2 \ge 0$$

解此方程组得到一组解

$$x_1 = 1, \quad x_2 = 0, \quad w_1 = 0, \quad w_2 = 1$$

因为 w_1 和 w_2 都是非负数, 因此得到 K-T 点

$$\overline{x} = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]$$

5.2.2 一般约束优化问题的一阶最优性条件

min
$$f(x)$$
, $x \in \mathbb{R}^n$
s. t. $g(x) \ge 0$
 $h(x) = 0$

Lagrange 函数

$$L(x, w, v) = f(x) - \sum_{i=1}^{m} w_i g_i(x) - \sum_{j=1}^{l} v_j h_j(x)$$

KKT 条件如下

 $abla_x L(x, w, v) = 0$ 原始最优化条件 $g_i(x) \ge 0$, $i = 1, \dots, m$ 原始可行性条件 $h_j(x) = 0$, $j = 1, \dots, l$ 原始可行性条件 $w_i g_i(x) = 0$, $i = 1, \dots, m$ 互补松弛条件 $w_i \ge 0$, $i = 1, \dots, m$ 对偶可行性条件

5.3 惩罚函数法

5.3.1 外点罚函数法

对于

$$\min f(\mathbf{X})$$
s.t.
$$g_i(\mathbf{X}) \ge 0, i = 1 \sim m$$

构造外点罚函数

$$P(\boldsymbol{X}, m_k) = f(\boldsymbol{X}) + m_k \sum_{i=1}^{m} (\min (g_i(\boldsymbol{X}), 0))^2$$

Example 26. 用外点罚函数法求解下列问题

min
$$f(x) = (x_1 - 1)^2 + x_2^2$$

s. t. $g(x) = x_2 - 1 \ge 0$

Solution. 定义罚函数

$$F(x,\sigma) = (x_1 - 1)^2 + x_2^2 + \sigma \left[\max \left\{ 0, -(x_2 - 1) \right\} \right]^2$$
$$= \begin{cases} (x_1 - 1)^2 + x_2^2, & x_2 \ge 1 \\ (x_1 - 1)^2 + x_2^2 + \sigma \left(x_2 - 1 \right)^2, & x_2 < 1 \end{cases}$$

用解析法求解

$$\min F(x,\sigma)$$

求偏导,得

$$\frac{\partial F}{\partial x_1} = 2(x_1 - 1)$$

$$\frac{\partial F}{\partial x_2} = \begin{cases} 2x_2, & x_2 \geqslant 1\\ 2x_2 + 2\sigma(x_2 - 1), & x_2 < 1 \end{cases}$$

令

$$\frac{\partial F}{\partial x_1} = 0, \quad \frac{\partial F}{\partial x_2} = 0$$

得到

$$\overline{x}_{\sigma} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ \frac{\sigma}{1+\sigma} \end{bmatrix}$$

 $\phi \sigma \to +\infty$, 得

$$\overline{x}_{\sigma} \to \overline{x} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

5.3.2 内点罚函数法

内点罚函数只适用于以下问题

min
$$f(x)$$

s. t. $g_i(x) \ge 0$, $i = 1, \dots, m$

定义障碍函数

$$G(x,r) = f(x) + rB(x)$$

其中 B(x) 是连续函数,当点 x 趋向于可行域边界时, $B(x) \to \infty$,r 是很小的正数。 **两种最重要的形式为**:

$$B(x) = \sum_{i=1}^{m} \frac{1}{g_i(x)}$$

及

$$B(x) = -\sum_{i=1}^{m} \log g_i(x)$$

Example 27. 用内点罚函数为求解

min
$$\frac{1}{12}(x_1+1)^3 + x_2$$

s. t. $x_1 - 1 \ge 0$
 $x_2 \ge 0$

Solution. 定义障碍函数

$$G(x, r_k) = \frac{1}{12} (x_1 + 1)^3 + x_2 + r_k \left(\frac{1}{x_1 - 1} + \frac{1}{x_2} \right)$$

下面用解析法求解问题

$$\begin{array}{ll}
\min & G\left(x, r_k\right) \\
s. \ t. & x \in S
\end{array}$$

令

$$\frac{\partial G}{\partial x_1} = \frac{1}{4} (x_1 + 1)^2 - \frac{r_k}{(x_1 - 1)^2} = 0$$
$$\frac{\partial G}{\partial x_2} = 1 - \frac{r_k}{x_2^2} = 0$$

解得

$$\overline{x}_{r_k} = (x_1, x_2) = \left(\sqrt{1 + 2\sqrt{r_k}}, \sqrt{r_k}\right)$$

当 $r_k \to 0$, $\overline{x}_{r_k} \to \overline{x} = (1,0)$, \overline{x} 是问题的最优解。