SAT-solving Linear Ordered Attribute Grammars

L. Thomas van Binsbergen¹, Jeroen Bransen², and Koen Claessen³

1 todo, todo@todo.co.uk
2 Utrecht University, Utrecht, The Netherlands, J.Bransen@uu.nl
3 todo, koen@chalmers.se

Abstract. A nice abstract here.

Keywords: Attribute Grammars, SAT-Solving

1 Introduction

2 Linear Ordered Attribute Grammars

An Attribute Grammar is a context-free grammar with inherited and synthesized attributes assigned to every non-terminal and a graph that represents dependencies between those attributes at the production level.

Definition 1. Attribute Grammar

An Attribute Grammar (AG) is a triple $\langle G, A, D \rangle$, where:

- Context-free grammar $G = \langle N, T, P, S \rangle$ contains a set of non-terminals N, a set of terminals T, a set of production rules P and a start symbol S. Every $p \in P$ is of the form $X_{p,0} \to X_{p,1} \dots X_{p,|p|}$, with $lhs(p) = X_{p,0}$ and $rhs(p) = X_{p,1}, \dots, X_{p,|p|}$, where each $X_{p,i} \in \{lhs(p)\} \cup rhs(p)$ is called a field of p and an occurrence of some non-terminal $X \in N$, i.e. $\exists (X \in N) \ (X_{p,i} = X)$.
- A set $A(X) = A_{inh}(X) \cup A_{syn}(X)$ is defined for all $X \in N$. From the attributes we infer the attribute occurrences gathered in the set $A_P(p) = A_{in}(p) \cup A_{out}(p)$, where $A_{in}(p)$ and $A_{out}(p)$ are the input and output occurrences of p respectively.

$$\begin{split} A_{in}(p) = & \{ \ X_{p,0} \cdot a \ \mid \ X \cdot a \in A_{inh}(lhs(p)) \ \} \\ & \cup \{ \ X_{p,i} \cdot a \ \mid \ X_{p,i} \in rhs(p), \ X = X_{p,i}, \ X \cdot a \in A_{syn}(X)) \ \} \end{split}$$

$$A_{out}(p) = \{ X_{p,0} \cdot a \mid X \cdot a \in A_{syn}(lhs(p)) \}$$

$$\cup \{ X_{p,i} \cdot a \mid X_{p,i} \in rhs(p), X = X_{p,i}, X \cdot a \in A_{inh}(X)) \}$$

- A dependency graph D(p) indicates that attribute a is used in the semantic function definition of attribute b when $(a \to b) \in D(p)$.

The definition of AGs given above is not a complete definition in the sense that it does not contain enough information to generate executable code from it - the actual semantic function definitions are missing, for example. However it contains all the information we need to define the problem of finding a static evaluation order for all Linear Ordered Attribute Grammars and deciding whether an AG is an LOAG.

Definition 2. Linear Ordered Attribute Grammars

A Linear Ordered Attribute Grammar (LOAG) is an AG that satisfies the following properties:

- For all $X \in N$ there exists a graph $R_X(x)$ that satisfies:
 - Totality: There must be an edge between every inherited and synthesized pair:

$$\forall (i \in A_{inh}(X), s \in A_{syn}(X))$$
$$(i \to s) \in R_X(X) \lor (s \to i) \in R_X(X)$$

- For all $p \in P$ there exists a graph $R_P(p)$ that satisfies:
 - Feasibility: The graph must include the dependencies, i.e.

$$D(p) \subseteq R_P(p)$$
.

• Consistency: The graph must be consistent with R_X , i.e.

$$\forall (X \in \{lhs(p)\} \cup rhs(p), X = X_{p,i})$$

$$((X \cdot a \to X \cdot b) \in R_X(X) \Rightarrow (X_{p,i} \cdot a \to X_{p,i} \cdot b))$$

• Orderability: The graph $R_P(p)$ must be acyclic.

Graph R_P serves the same purpose as graph ED_P from Kastens and from $R_X(X)$ we can infer Kastens' interfaces[1].

2.1 Satisfiability

Using the above definition for LOAGs we can define a Boolean Satisfiability Problem that determines whether an arbitrary AG is an LOAG.

Firstly, be defining a variable $x_{i,s}$ for every element of the Cartesian product $i \times s$, with $i \in A_{inh}(X)$ and $s \in A_{syn}(X)$ for all $X \in N$. Secondly, by saying $x_{a,b} = \top$ when $a = (X_{p,i} \cdot a')$, $b = (X_{p,i} \cdot b')$ and $(X_{p,i} \cdot a' \to X_{p,i} \cdot b') \in D_P(p)$ (feasibility). Thirdly, by assigning every variable \top or \bot (totality) under the constraints that the graph R_P the assignments imply is cycle free (orderability). Note that consistency is guaranteed by making sure that a variable represents the edge between attributes (non-terminal level) as well as the edges between all the occurrences of that edge (production level).

References

1. Kastens, U.: Ordered attributed grammars. Acta Informatica 13(3) (1980) 229–256