Vidar

TECHNICAL ANALYSIS REPORT

ZAYOTEM

Contents

CONTENTS		 	
DREVIEW/			1
	1		
SETUP.EXE ANALYSIS		 	2
Process Hollowing			
SOLUTION SUGGESTIONS		 	15
PREPARED BY			16

Preview

The Vidar malware was first discovered by security experts in 2018. This malware is designed to commit financial information theft and, like other similar malware, works to steal information by infecting users' computers.

Vidar is a software that specifically targets users with financial goals and aims to steal payment information as well as important information such as bank account information, money transfers and other financial transactions. For this, crypto wallets and internet browser try to collect all the personal information on the targeted computer by recording its history.

It may use methods such as spam emails, fake software updates, malicious websites, and online advertisements as distribution methods. It is known that there are different versions of Vidar and each version may show different features.

Since its discovery, the Vidar malware, along with its different versions, has infected many computers and has caused harm to many users by stealing financial information.

Setup.exe Analysis

Name	Setup.exe			
MD5	dcd26511183f2d7eb30678661a88b765			
SHA256	8f0d2909498e32a88ea7a3873958edd5456e0d9d3e766ce7c8bcc3			
	03f67d8984			
File Type	PE32 / EXE			

Şekil 1- API Resolution

As a result of API resolve with the GetModuleHandle and GetProcAddress APIs, the malicious has enabled executive, read-only, or read/write access to the specified virtual memory space by using the VirtualProtect API.

Şekil 2- Resolved file

The file titled "MZ", which the malware analyzes at runtime, was found.

```
1 unsigned int __cdecl sub_401000(int a1, int a2, unsigned int a3)
2 {
     unsigned int result; // eax
char v4; // [esp+7h] [ebp-5h]
unsigned int i; // [esp+8h] [ebp-4h]
3
4
 5
6
7
     for ( i = 0; i < a3; ++i )
8
       SetActiveWindow(hWnd);
9
       *(_BYTE *)(i + a2) = 2 * v4;

*(_BYTE *)(i + a2) = 2 * v4;
10
11
12
       result = i + 1;
13
14
    }
15
     return result;
16 }
```

Şekil 3- Analysis algorithm

Process Hollowing

Şekil 4- Seen that a process is started with the CreateProcess API.

The malware creates a "suspended" process using the "CreateProcess" API. The full path for this action is

"C:\\Windows\\Microsoft.NET\\Framework\\v4.0.3019\\AppLaunch.exe"

■	2756	0.01		87.65 MB	ice
vmtoolsd.exe	2848	0.09	1.2 kB/s	29.36 MB	ice
▷ 🧿 chrome.exe	2540	0.14	1.14 kB/s	123.64 MB	ice
Everything.exe	4024			15.85 MB	ice
	2984	0.35	36 B/s	54.69 MB	ice
■ VIDAR.exe	3296	0.01		1.04 MB	ice
■ AppLaunch.exe	3000			408 kB	ice
ProcessHacker.exe	2224	0.61		15.07 MB	ice

Şekil 5- AppLaunch.exe

It is seen that the malware allocates memory space in the process it created in the "suspend" state using the "VirtualAllocEx" API.

Şekil 6- Ayrılan bellek alanı

It is seen that it writes the executable file it parses to this memory area using the "WriteProcessMemory" API.

Şekil 7- WriteProcessMemory API'si sonrası bellek alanı

Şekil 8- ResumeThread API'sinin kullanılması

After the writing process is finished, the suspended process becomes active with the "ResumeThread" API and starts working.

Stage 2 Analysis

Name	-
MD5	c404e69187afab5fd694570220660576
SHA25	279fff770c6678a1839799bd83aa9ace0c78380b9f93bd4b4a689c245382
6	b4e6
File	PE32 / EXE
Туре	

Şekil 9- Decoding of ciphertexts

It uses the string "Nor again is there anyone who loves or pursues or desires to obtain pain of itself, because it is pain" and a unique key that it uses to decode each encrypted string.

Strings that the malware will use are decoded using this method.

Examples are given in Table-1 and Table-2.

Şekil 10- Using the LocalAlloc API

It can be seen that decoded string expressions are written to the allocated memory area using "LocalAlloc".

Şekil 11- Some browser directories used to collect information

It scans the directory to obtain malicious sensitive data. The directories it scanned are given in Table-1.

MicrosoftEdge\\Cookies	\\AppData\\Roaming\\FileZilla\\recentservers.xml		
\\Mozilla\\Firefox\\Profiles\\	\\Moonchild Productions\\Pale Moon\\Profiles\\		
\\Google\\Chrome\\User Data\\	\\Chromium\\User Data\\		
\\Amigo\\User Data\\	\\Torch\\User Data\\		
\\Comodo\\Dragon\\User Data\\	\\Epic Privacy Browser\\User Data\\		
\\Vivaldi\\User Data\\	\\CocCoc\\Browser\\User Data\\		
\\CentBrowser\\User Data\\	\\TorBro\\Profile\\		
\\Chedot\\User Data\\	\\7Star\\7Star\\User Data\\		
\\Microsoft\\Edge\\User Data\\	\\360Browser\\Browser\\User Data\\		
\Tencent\\QQBrowser\\User	\\Opera Software\\Opera Stable\\		
Data\\			
\\Opera Software\\Opera GX			
Stable\\			

Tablo 1-Browser directories

```
cmp dword ptr ds:[ebx+4],40
]b vidar_00413000.12E48F8
mov eax,dword ptr ds:[ebx]
push eax
push esi
call vidar_00413000.130EEE0
mov eax,dword ptr ds:[ebx+4],40
]b vidar_00413000.12E48F8
mov eax,dword ptr ds:[ebx]
push eax
push esi
call vidar_00413000.130EEE0

cmp dword ptr ds:[ebx+4],40
push eax
push esi
call vidar_00413000.130EEE0

cmp dword ptr ds:[ebx+4],40
jb vidar_00413000.130EEE0

cmp dwo
```

Şekil 12- Some wallet names used to collect information

EQUALWallet	BitAppWallet	iWallet	
Wombat	MewCx	GuildWallet	
RoninWallet	NeoLine	CloverWallet	
LiqualityWallet	Terra_Station	Keplr	
AuroWallet	PolymeshWallet	ICONex	
KardiaChain	EVER Wallet	Rabby	
Harmony	Coin98	Ledger Live	
Bitwarden	Leap Terra	Martian Wallet	
Petra Wallet	Pontem Wallet	Gero Wallet	
Eternl	Hashpack	OKX Web3 Wallet	
Exodus Web3 Wallet	Trust Wallet	Tronium	
Braavos	Enkrypt	Finnie	

Tablo 2-Crypto Wallets

The malware has been observed to target "password manager" applications to obtain sensitive data. These are given in Table-3.

KeePass Tusk	Trezor Password Manager			
KeePassXC-Browser	Microsoft AutoFill			

Tablo 3-Password Managers

It has been observed that the malware collects system information.

Şekil 13- Getting MachineGuid information

```
C745 DO 000000000

FF15 OC94F100

8B4D CO

mov ex,dword ptr ss:[ebp-40]

51

8D5D D4

E8 59180000

33C9

BB 10000000

B94D FC

mov dword ptr ss:[ebp-40]

mov ex,dword ptr ss:[ebp-40]

push ecx
lea ebx,dword ptr ss:[ebp-2C]

call vidar_00413000.EE56B0

xor ex,ex

mov ebx,10

mov dword ptr ss:[ebp-4],ecx
```

Şekil 14-Using the GetSystemInfo API

The malware obtains system information such as processor architecture, processor type, number of processors with the "GetSystemInfo" API.

Şekil 15-Using the GetCurrentHwProfileA API

Using the "GetCurrentHwProfileA" API, information about the hardware profile of the local computer is collected.

Network Analizi


```
| push 7CF | lea ecx,dword ptr ss:[ebp-8E0] | push eax | eax:&"<a href="https://doi.org/10.1002/172655">https://doi.org/10.1002/172655</a> | eax:&"<a href="https://doi.org/10.1002/172655">https://do
```

Şekil 18-Using the InternetReadFile API

The malicious reads the contents of the returned request using the "InternetReadFile" API.

The request sent fails because the C2 servers are down.

Şekil 19-C2 servers

http://116[.]203[.]11[.]45/408	https://steamcommunity.com/profiles/765611994785 03353
http://95[.]217[.]152[.]87:80	https://t.me/noktasina
http://95[.]217[.]152[.]87:80/epson.zip	

Tablo 3-URLs

YARA Rule

```
import "hash"
rule vidar_rule {
  meta:
    description = "This is a YARA rule"
    author = "Dilara Behar"
  strings:
    $watchthis = "watchthis"
    $epson_zip = "epson.zip"
    $caf_racer = "A caf\\? racer is a genre of sport motorcycles that
originated among British motorcycle enthusiasts of the early 1960s in
London"
                        "Mozilla\\/5\\.0
                                         \\(X11\\;
                                                    Linux
                                                             x86\\_64\\)
    $user_agent
AppleWebKit\\/537\\.36 \\(KHTML\\, like Gecko\\) Chrome\\/101\\.0\\.0\
Safari\\/537\\.36"
 $st="https:\\\\/\steamcommunity\\.com\\/profiles\\/76561199478503353"
 $update_zip="update.zip"
condition:
 hash.md5(0, filesize) == "dcd26511183f2d7eb30678661a88b765" or
 any of them
```

MITRE ATTACK TABLE

Reconnaissance	Execution	Discovery	Privilege Escalation	Defense Evasion	Credential Access	C&C	Collection
	T1106-Native API	T1083- File and Directory Discovery	T1055- Process Hollowing	T1055- Process Hollowing		T1573 - Encrypted Channel	T1005- Data from Local System
		T1087- Account Discovery				T1071- Application Layer Protocol	
		T1082- System Information Discovery					

Solution Suggestions

- Using antivirus software is one of the most effective methods for detecting and removing malware. Antivirus software can detect malware by scanning files and websites that you download or open on your computer.
- 2. By regularly updating your operating system and other software, you can ensure the security of your computer. Updates help close various security gaps.
- 3. When downloading files, be careful to download from trusted sources. Files downloaded from unknown or suspicious sources may contain malware.

PREPARED BY

Dilara BEHAR

https://www.linkedin.com/in/dilara-behar-0530b3195