Technische Universität Wien

Institut für Automatisierungs- und Regelungstechnik

SCHRIFTLICHE PRÜFUNG zur VU Modellbildung am 01.07.2013

Arbeitszeit: 120 min

Name:						
Vorname(n):						
Matrikelnummer:						Note:
	Aufgabe	1	2	3	Σ	
	erreichbare Punkte	9	10	13	32	
	erreichte Punkte					

Bitte ...

- ... tragen Sie Name, Vorname und Matrikelnummer auf dem Deckblatt ein,
- ... rechnen Sie die Aufgaben auf separaten Blättern, nicht auf dem Angabeblatt,
- ... beginnen Sie für eine neue Aufgabe immer auch eine neue Seite,
- ... geben Sie auf jedem Blatt den Namen sowie die Matrikelnummer an und
- ... begründen Sie Ihre Antworten ausführlich.

Viel Erfolg!

Abbildung 1: Einfacher Mechanismus.

Die dargestellte Trägerkonstruktion setzt sich aus vier gleichen Balken zusammen, die starr miteinander verbunden sind. Jeder der Balken weist die Masse m und die Länge a auf. Die Breite ist jeweils vernachlässigbar klein. Die Erdbeschleunigung wirkt in negativer \mathbf{e}_y -Richtung. Die Trägerkonstruktion ist einerseits an ihrem linken Ende drehbar an einem Auflager A befestigt und andererseits am Punkt B an einem als masselos angenommenen Seil aufgehängt. Es wirken zwei externe Kräfte mit Beträgen $f_{ext,1}$ und $f_{ext,2}$. Bearbeiten Sie die nachfolgenden Aufgabenstellungen:

- a) Berechnen Sie die Position des Schwerpunktes der Trägerkonstruktion in Form 2 P. der Koordinaten s_x und s_y .
- b) Das Seil ist gemäß Abbildung 1 über zwei reibungsfreie Umlenkrollen mit einer Masse m_A verbunden. Berechnen Sie für $x_B = \frac{3a}{2}$ die erforderliche Größe der Masse m_A , sodass sich der gesamte Mechanismus im statischen Gleichgewicht befindet. Berechnen Sie weiters die Kräfte im Auflager A in \mathbf{e}_x und \mathbf{e}_y -Richtung.
- c) Nehmen Sie nun an, dass anstatt der beiden Umlenkrollen feststehende Zylinder für die Führung des Seiles verwendet werden. Der Haftreibungskoeffizient zwischen Seil und Zylindern sei μ_H . Die Masse m_A weise jenen Wert auf, bei dem sich das System entsprechend der Aufgabenstellung aus dem vorigen Unterpunkt b) im statischen Gleichgewicht befindet. Berechnen Sie den zulässigen Bereich für den Abstand x_B in der Form $x_{B,min} \leq x_B \leq x_{B,max}$, sodass das System nach wie vor im statischen Gleichgewicht ist (das Seil nicht rutscht). **Hinweis:** Nehmen Sie an, dass bei einer Verschiebung des Aufhängepunktes B auch die feststehenden Zylinder um den gleichen Betrag mitverschoben werden, d.h. die Seilkraft im Punkt B wirkt immer in \mathbf{e}_y -Richtung.

Hinweise:

- Bitte fertigen Sie gegebenenfalls saubere Skizzen zu Ihren Berechnungen an, sodass alle verwendeten Größen klar und deutlich ersichtlich sind.
- Ein um einen feststehenden Zylinder geführtes masseloses Seil mit dem Umschlingungswinkel α rutscht nicht, wenn $f_{S1}e^{-\mu_H\alpha} \leq f_{S2} \leq f_{S1}e^{\mu_H\alpha}$ erfüllt ist.
- $\cos(45^\circ) = \sin(45^\circ) = \frac{1}{\sqrt{2}}$

2. Im folgenden Beispiel wird die Badewanne aus Abbildung 2 betrachtet. Diese ist bis $10 \,\mathrm{P.}$ zur Höhe h mit Wasser gefüllt. Am Boden der Wanne befindet sich ein Abflussrohr mit der konstanten Querschnittsfläche A_1 .

Abbildung 2: Mit Wasser gefüllte Badewanne.

a) Berechnen Sie ausgehend von der Bernoulli-Gleichung (1) eine Vereinfachung 1 P. | für stationäre Strömungen einer inkompressiblen Flüssigkeit,

$$\frac{\partial v}{\partial t} + \frac{1}{2} \frac{\partial}{\partial \xi} v^2 + \frac{1}{\rho} \frac{\partial p}{\partial \xi} + g \frac{\partial z}{\partial \xi} = 0.$$
 (1)

b) Berechnen Sie den aus der Wanne abfließenden Volumenstrom q_1 und bestimmen Sie weiters eine Differentialgleichung für den Füllstand h(t) in der Form $\frac{d}{dt}h(t) = f(h(t))$.

Hinweis: Nehmen Sie an, dass der Umgebungsdruck p_0 konstant ist und vernachlässigen Sie die Länge des Abflussrohrs. Bei der Berechnung soll v_2 nicht vernachlässigt werden.

- c) Ermitteln Sie die stationäre Wärmestromdichte \dot{q}_a durch die Wand der Badewanne für ein 1-dimensionales Wärmeleitproblem. Die Badewanne hat die Wandstärke L und eine homogene und temperaturunabhängige Wärmeleitfähigkeit λ . Das gesamte Wasser in der Badewanne hat die Wassertemperatur $T_W(t)$ und die Außentemperatur T_A ist konstant. Die Wärmeübertragung an den Kontaktflächen Wasser-Wand und Wand-Luft wird als ideal angenommen. Hinweis: Stellen Sie sich den Mantel der Badewanne abgewickelt vor und lösen Sie das 1-dimensionale Wärmeleitproblem.
- d) Im nächsten Schritt soll mithilfe der Wärmeleitgleichung der Abkühlvorgang 3 des Wassers beschrieben werden. Die für die Wärmeleitung relevante Oberfläche der Wand wird mit A_W bezeichnet. Die Dichte ρ und die spezifische Wärmekapazität c_p des Wassers sind ebenfalls temperatur- und ortsunabhängig. Bestimmen Sie den Zeitpunkt t_1 , an dem die Wassertemperatur T_1 erreicht ist, wenn die Anfangsbedingung der Wassertemperatur mit $T_W(0) = T_0$ gegeben ist und dafür $T_0 > T_1 > T_A$ gilt.

Hinweis: Nehmen Sie für diese Aufgabe an, dass der Ablauf geschlossen ist, d. h. $q_1 = 0$ und vernachlässigen Sie die Wärmeübertragung an der Wasseroberfläche und der Luft.

3. Betrachten Sie das in Abbildung 3 dargestellte mechanische System. In weiterer 13 P. Folge sollen die für eine Auswertung der Euler-Lagrange Gleichungen mit den generalisierten Koordinaten q_1 und q_2 benötigten Terme berechnet werden.

Abbildung 3: Mechanisches System.

Die beiden Pendelstäbe weisen die Längen l_1 und l_2 , Massen m_1 und m_2 sowie die Massenträgheitsmomente Θ_1 und Θ_2 bezüglich ihres Schwerpunktes um die \mathbf{e}_z -Achse auf. Die Schwerpunkte S_1 und S_2 befinden sich jeweils in der Mitte der Pendelstäbe. Zwischen Stab 1 und 2 wirkt eine nichtlineare Drehfeder mit dem Drehmoment $M_f(q_2) = c_1 q_2^3$ und der Konstanten $c_1 > 0$. Am Ende des Stabes 2 wirkt eine externe eingeprägte Kraft f_e in \mathbf{e}_x -Richtung. Die Erdbeschleunigung wirkt in negativer \mathbf{e}_y -Richtung.

- a) Stellen Sie die Ortsvektoren vom Ursprung 0 des in Abbildung 3 eingezeichneten Koordinatensystems zu den Schwerpunkten S_1 und S_2 der Pendelstäbe auf. Ermitteln Sie weiters die Schwerpunktsgeschwindigkeiten.
- b) Berechnen Sie die kinetische Energie der beiden Pendelstäbe in Abhängigkeit 2 P. der generalisierten Koordinaten q_1 und q_2 bzw. deren zeitlicher Ableitungen.
- c) Bestimmen Sie die potentielle Energie der beiden Pendelstäbe in Abhängigkeit 2 P. der generalisierten Koordinaten q_1 und q_2 .
- d) Berechnen Sie die potentielle Energie V_f der Drehfeder. 2 P.
- e) Geben Sie allgemein die Bewegungsgleichungen des betrachteten Systems in 2 P. Form der Euler-Lagrange Gleichungen an. Setzen Sie dabei vorerst $f_e = 0$. **Hinweis:** Sie müssen die Euler-Lagrange Gleichungen nicht explizit auswerten. Beschreiben Sie aber alle auftretenden Größen und geben Sie an wie sich diese aus den in den vorigen Unterpunkten ermittelten Ergebnissen berechnen lassen.
- f) Betrachten Sie nun den Fall einer allgemeinen Kraft $f_e \neq 0$. Geben Sie deutlich 3 P. an, welche zusätzlichen Terme dadurch in den im vorigen Unterpunkt angegebenen Bewegungsgleichungen des Systems dazukommen. Berechnen Sie diese zusätzlichen Beiträge zufolge von $f_e \neq 0$ explizit.

Hinweis: Bitte setzen Sie jeweils alle bekannten Größen ein und vereinfachen Sie die Ausdrücke soweit wie möglich. Insbesondere führt in den Unterpunkten 3a)-3d) sowie 3f) eine nur allgemeine Angabe von Berechnungen ohne explizite Auswertung zu Punkteabzug.