ADL sous Python avec scientisttools

Duvérier DJIFACK ZEBAZE

Ce tutoriel a pour objectif de présenter rapidement les principales fonctionnalités offertes par le package « scientisttools » pour réaliser une Analyse Discriminante Linéaire.

Présentation des données

L'analyse discriminante linéaire fait partie des technique d'analyse discriminante prédictive. C'est une méthode prédictive où le modèle s'exprime sous la forme d'un système d'équations linéaires des variables explicatives. Il s'agit d'expliquer et de prédire l'appartenance d'un individu à une classe (groupe) prédéfinie à partir de ses caractéristiques mesurées à l'aide de variables prédictives.

Importation des données

memory usage: 3.8+ KB

None

Nous utilisons les données « alcool » (cf. fr_Tanagra_LDA_Python.pdf). Il s'agit de prédire le TYPE d'alcool (KIRSCH, MIRAB, POIRE) à partir de ses composants (butanol, méthanol, etc; 8 variables).

```
# Chargement des données
import pandas as pd
DTrain = pd.read_excel("./donnee/Eau_de_vie_LDA.xlsx",sheet_name="TRAIN")
print(DTrain.info())
## <class 'pandas.core.frame.DataFrame'>
## RangeIndex: 52 entries, 0 to 51
## Data columns (total 9 columns):
        Column Non-Null Count
                                Dtype
## ---
                _____
                                ____
##
   0
        TYPE
                52 non-null
                                object
##
    1
        MEOH
                52 non-null
                                float64
##
    2
        ACET
                52 non-null
                                float64
##
    3
        BU1
                52 non-null
                                float64
##
   4
        BU2
                52 non-null
                                float64
                52 non-null
##
   5
        ISOP
                                int64
##
    6
                52 non-null
                                float64
        MEPR
##
  7
        PRO1
                52 non-null
                                float64
        ACAL
                52 non-null
                                float64
## dtypes: float64(7), int64(1), object(1)
```

Distribution relative

Nous calculons la distribution relative des classes :

 ${\bf Table} \ {\bf 1} - {\rm Distribution} \ {\rm relative} \ {\rm des} \ {\rm classes}$

TYPE	p(k)
POIRE	0.3846154
KIRSCH	0.3269231
MIRAB	0.2884615

Les classes semblent assez équilibrées.

LDA

Modélisation avec scientisttools

Sage précaution avec les packages pour Python, nous affichons le numéro de la version de « scientisttools » utilisée dans ce tutoriel.

```
# version
import scientisttools
print(scientisttools.__version__)
```

0.0.9

Nous fonctionnons avec la version $\langle 0.0.9 \rangle$.

```
# Importation
from scientisttools.discriminant_analysis import LDA
```

On crée une instance de la classe LDA, en lui passant ici des étiquettes pour les lignes et les variables.

On estime le modèle en appliquant la méthode .fit de la classe LDA sur le jeu de données.

Entraînement du modèle

lda.fit(DTrain)

```
## LDA(features_labels=array(['MEOH', 'ACET', 'BU1', 'BU2', 'ISOP', 'MEPR', 'PRO1', 'ACAL'];
## dtype=object),
## row_labels=RangeIndex(start=0, stop=52, step=1), target=['TYPE'])
```

L'exécution de la méthode lda.fit(D) provoque le calcul de plusieurs attributs parmi lesquels lda.coef_. Ce champ nous intéresse particulièrement car il correspond aux coefficients des fonctions de classement.

```
# Coefficients des fonctions de score
print(lda.coef_)
```

Table 2 - Coefficients des fonctions de score

	KIRSCH	MIRAB	POIRE
MEOH	0.0034282	0.0290285	0.0333902
ACET	0.0063904	0.0164128	0.0075135
BU1	-0.0636813	0.4053900	0.3180471
BU2	-0.0008832	0.0713520	0.1149928
ISOP	0.0230822	0.0297634	-0.0084863
MEPR	0.0374935	-0.1289417	0.0617800
PRO1	0.0019711	-0.0054127	-0.0083181
ACAL	0.0661839	-0.2264238	-0.1303319

Le tableau est de dimension (8,3) puisque nous avons un problème à (K=3) classes (le nombre de modalités de la variable cible origine) et 8 descripteurs.

Il ne faut pas oublier les constantes (intercept) des fonctions linéaires :

```
# et les constantes pour chaque classe
print(lda.intercept_)
```

Table 3 - Constantes pour chaque classe

	KIRSCH	MIRAB	POIRE
Intercept	-5.016453	-18.84069	-24.76488

Inspection de l'objet LDA

— priors_ correspond à la distribution relative des classes.

```
# distribution des classes
print(lda.priors_)
```

Table 4 - Distribution relative pour chaque classe

POIRE	KIRSCH	MIRAB
0.3846154	0.3269231	0.2884615

— class_level_information_ correspond à la distribution absolue et relative des classes

distribution absolue et relative des classes
print(lda.class_level_information_)

 ${\bf Table}~{\bf 5}-{\rm Distribution~absolue~et~relative~pour~chaque~classe}$

n(k)	p(k)
20	0.3846154
17	0.3269231
15	0.2884615

— correlation_ratio_ correspond au rapport de corrélation $\eta^2(X,y)$ entre les variables explicatives et la variable expliquée.

Rapport de corrélation
print(lda.correlation_ratio_)

Table 6 - Rapport de correlation

	Sum. Intra	Sum. Inter	correlation ratio	F-stats	pvalue
MEOH	1970961.421	5002712.7092	0.7174	62.1861	0.0000
ACET	739580.168	21418.5587	0.0281	0.7095	0.4969
BU1	1774.842	4427.1503	0.7138	61.1126	0.0000
BU2	138470.430	12931.5223	0.0854	2.2880	0.1122
ISOP	105664.001	13363.0759	0.1123	3.0985	0.0541
MEPR	12039.049	5362.0975	0.3081	10.9121	0.0001
PRO1	16706890.649	3290219.6689	0.1645	4.8250	0.0122
ACAL	3241.144	67.3532	0.0204	0.5091	0.6042

— gmean_ indique les moyennes des variables conditionnellement aux classes

moyennes conditionnelles des variables
print(lda.gmean_)

 ${\bf Table} \ {\bf 7} - {\rm Moyennes} \ {\rm conditionnelles}$

	MEOH	ACET	BU1	BU2	ISOP	MEPR	PRO1	ACAL
KIRSCH	371.6765	203.0176	1.20	21.01765	81.58824	28.89412	790.7706	12.01176
MIRAB	934.2000	235.0667	20.20	13.56667	90.93333	29.40000	195.2667	12.35333
POIRE	1084.3500	185.2500	21.33	49.38000	118.05000	50.00000	317.4000	14.49500

— mean_ indique les moyennes des variables explicatives

moyennes des variables
print(lda.mean_)

Table 8 – Moyennes des variables

MEOH	ACET	BU1	BU2	ISOP	MEPR	PRO1	ACAL
808.0481	205.4288	14.42308	29.77692	98.30769	37.15769	436.925	13.06538

— std_ indique les écart types des variables explicatives

écarts types des variables print(lda.std_)

Table 9 – Ecart - types des variables

MEOH	ACET	BU1	BU2	ISOP	MEPR	PRO1	ACAL
369.782	122.1538	11.02759	54.48546	48.31008	18.47157	626.179	8.054347

— squared_mdist_ indique la matrice des distances (au carré) de Mahalanobis

```
# Matrice des distances (au carré) de Mahalanobis
print(lda.squared_mdist_)
```

 ${\bf Table} \ {\bf 10} - {\rm Ecart} \ {\bf \cdot} \ {\rm types} \ {\rm des} \ {\rm variables}$

	KIRSCH	MIRAB	POIRE
KIRSCH	0.00000	27.371480	36.048105
MIRAB	27.37148	0.000000	5.305086
POIRE	36.04810	5.305086	0.000000

Evaluation globale du modèle

Statistiques multivariées

Le test de significativité globale du modèle est basé sur l'écartement entre les barycentres conditionnels pour l'analyse discriminante.

```
# MANOVA Test
print(lda.manova_)
```

```
## Multivariate linear model

## ------

## TYPE Value Num DF Den DF F Value Pr > F

## Wilks' lambda 0.0667 16.0000 84.0000 15.0761 0.0000

## Pillai's trace 1.3213 16.0000 86.0000 10.4630 0.0000

## Hotelling-Lawley trace 8.1741 16.0000 65.2314 21.0816 0.0000

## Roy's greatest root 7.3868 8.0000 43.0000 39.7042 0.0000
```

Nous nous intéressons en particulier à la ligne relative à « Wilks' Lambda ».

Matrice de covariance

Matrice de covariance intra - classe

Elle est directement fournie par l'objet « scientisttools ».

Matrice de covariance intra - classe

print(lda.wcov_)

Table 11 - Matrice de covariance intra - classe

	MEOH	ACET	BU1	BU2	ISOP	MEPR	PRO1	ACAL
MEOH	40223.70	7653.79	299.53	-2522.68	3494.68	1340.45	7923.71	833.68
ACET	7653.79	15093.47	-110.07	148.73	293.41	223.27	14043.42	462.68
BU1	299.53	-110.07	36.22	22.44	70.24	21.94	272.53	3.35
BU2	-2522.68	148.73	22.44	2825.93	-431.05	-91.43	24116.53	-22.96
ISOP	3494.68	293.41	70.24	-431.05	2156.41	615.87	-1034.01	15.07
MEPR	1340.45	223.27	21.94	-91.43	615.87	245.69	305.22	2.41
PRO1	7923.71	14043.42	272.53	24116.53	-1034.01	305.22	340956.95	798.81
ACAL	833.68	462.68	3.35	-22.96	15.07	2.41	798.81	66.15

Matrice de covariance totale

La matrice de covariance totale est proposée par l'objet « scientisttools ».

```
# Matrice de covariance totale
print(lda.tcov_)
```

 ${\bf Table}\ {\bf 12}-{\rm Matrice}\ {\bf de}\ {\bf covariance}\ {\bf totale}$

	MEOH	ACET	BU1	$\mathrm{BU}2$	ISOP	MEPR	PRO1	ACAL
MEOH	136738.71	6617.58	3173.91	372.96	7655.13	3593.55	-65773.76	1082.73
ACET	6617.58	14921.54	-99.42	-146.49	74.84	51.91	12047.59	427.86
BU1	3173.91	-99.42	121.61	85.72	182.12	79.11	-2032.14	10.53
$\mathrm{BU}2$	372.96	-146.49	85.72	2968.67	-178.40	72.00	22370.96	-4.60
ISOP	7655.13	74.84	182.12	-178.40	2333.86	754.03	-3366.73	32.96
MEPR	3593.55	51.91	79.11	72.00	754.03	341.20	-731.99	14.04
PRO1	-65773.76	12047.59	-2032.14	22370.96	-3366.73	-731.99	392100.20	626.81
ACAL	1082.73	427.86	10.53	-4.60	32.96	14.04	626.81	64.87

Matrice de covariance inter - classe

La matrice de covariance inter - classe est proposée par l'objet « scientisttools ».

```
# Matrice de covariance inter - classe
print(lda.bcov_)
```

 ${\bf Table} \ {\bf 13} - {\bf Matrice} \ {\bf de} \ {\bf covariance} \ {\bf inter} \ {\bf -} \ {\bf classe}$

	MEOH	ACET	BU1	BU2	ISOP	MEPR	PRO1	ACAL
MEOH	96515.01	-1036.21	2874.38	2895.64	4160.46	2253.10	-73697.47	249.05
ACET	-1036.21	-171.93	10.65	-295.22	-218.58	-171.36	-1995.82	-34.82
BU1	2874.38	10.65	85.39	63.28	111.88	57.17	-2304.68	7.17
BU2	2895.64	-295.22	63.28	142.74	252.65	163.42	-1745.58	18.36
ISOP	4160.46	-218.58	111.88	252.65	177.46	138.15	-2332.72	17.89
MEPR	2253.10	-171.36	57.17	163.42	138.15	95.50	-1037.21	11.63
PRO1	-73697.47	-1995.82	-2304.68	-1745.58	-2332.72	-1037.21	51143.25	-172.00
ACAL	249.05	-34.82	7.17	18.36	17.89	11.63	-172.00	-1.27

Autres indicateurs: Lambda de Wilks, Transformation de RAO et de Bartlett.

Ces trois indicateurs sont retournés par l'objet « scientisttools ».

```
# MANOVA test
print(lda.global_performance_)
```

Table 14 – Performance globale

Stat	Value	p-value
Wilks' Lambda	0.0667132	NaN
Bartlett - C(16)	123.1845099	0
Rao - F(16,84)	15.0760641	0

Evaluation des contributions des variables

Mesurer l'impact des variables est crucial pour l'interprétation du mécanisement d'affectation. Pour l'analyse discriminante, il est possible de produire une mesure d'importance des variables basée sur leurs contributions à la discrimination. Concrètement, il s'agit simplement d'opposer les lambdas de Wilks avec ou sans la variable à évaluer.

Affichage des contributions sous Python

Ces résultats sont fournis directement par l'objet « scientisttools »

```
# Evaluation statistique
print(lda.statistical_evaluation_)
```

Table 15 – Contribution des variables

	Wilks L.	Partial L.	F(2, 42)	p-value
MEOH	0.1180	0.5655	16.1361	0.0000
ACET	0.0742	0.8997	2.3420	0.1086
BU1	0.0842	0.7925	5.4993	0.0076
BU2	0.0957	0.6971	9.1230	0.0005
ISOP	0.0723	0.9226	1.7618	0.1842
MEPR	0.0878	0.7599	6.6369	0.0031
PRO1	0.0924	0.7220	8.0843	0.0011
ACAL	0.0759	0.8792	2.8867	0.0669

Dans le tableau 15, nous distinguons le lambda de Wilks lorsque la variable est rétirée (Wilks L ; 0.1179746 si on retire la variable MEOH par exemple), le ratio entre le lambda global (0.0667132) et ce dernier (Partial L ; pour MEOH : 0.0667132 / 0.1179746 = 0.565488), et la statistique de test de significativité de l'écart (F = 16.1360671) qui suit une distribution de Fisher à (K-1=2) et (N-K-p+1=42).

Evaluation en Test

L'avaluation sur l'échantillon test est une approche priviligiée pour mesurer et comparer les performances des modèles de nature et de complexité différente. Dans cette section, nnous traitons la seconde feuille « TEST » comportant 50 observations de notre classeur Excel.

Importation des données

Nous chargeons la feuille « TEST ».

```
# chargement échantillon TEST
DTest = pd.read_excel("./donnee/Eau_de_vie_LDA.xlsx", sheet_name="TEST")
print(DTest.info())
## <class 'pandas.core.frame.DataFrame'>
## RangeIndex: 50 entries, 0 to 49
## Data columns (total 9 columns):
        Column Non-Null Count Dtype
## ---
## 0
       TYPE
               50 non-null
                                object
                                int64
##
   1
       MEOH
               50 non-null
## 2
       ACET
               50 non-null
                                int64
## 3
       BU1
               50 non-null
                                float64
## 4
       BU2
               50 non-null
                               float64
## 5
       ISOP
               50 non-null
                                int64
## 6
       MEPR
               50 non-null
                                int64
## 7
       PRO1
               50 non-null
                                int64
## 8
       ACAL
                50 non-null
                                float64
## dtypes: float64(3), int64(5), object(1)
## memory usage: 3.6+ KB
## None
```

Nous affichons pour vérification la distribution des classes.

 ${\bf Table} \ {\bf 16} - {\rm Distribution} \ {\rm relative} \ {\rm des} \ {\rm classes} \ {\rm -} \ {\rm TEST}$

TYPE	p(k)
POIRE	0.38
MIRAB	0.34
KIRSCH	0.28

Elle est similaire à celle de l'échantillon « TRAIN ».

Prédiction des classes sur l'échantillon d'apprentissage

Il y a deux étapes dans l'évaluation :

- 1. Effectuer la prédiction à partir de la matrice des explicatives de l'échantillon test;
- 2. Confronter les prédictions de l'étape 1 avec les classes observées.

Probabilité d'appartenance

L'objet « scientisttools » calcule les probabilités d'affectation aux classes avec predict_proba(). Elle permettent une analyse plus fine de la qualité du modèle, via la construction de la courbe ROC par exemple, dont le principe reste valable pour les problèmes multi - classes.

```
# Matrice X en Test
XTest = DTest[DTest.columns[1:]]
# Probabilité d'appartenance
print(lda.predict_proba(XTest).head(6))
```

```
## KIRSCH MIRAB POIRE
## 0 1.000000 1.535523e-08 4.487814e-10
## 1 0.999989 1.109717e-05 3.307808e-07
## 2 0.999997 2.730580e-06 2.193638e-08
## 3 0.999992 7.523981e-06 5.271811e-08
## 4 0.999862 1.116948e-04 2.673034e-05
## 5 1.000000 1.745132e-08 1.549001e-10
```

Classe d'appartenance

L'objet « scientisttools » calcule les classes d'appartenance avec la fonction predict(). Elle permet de produire les prédictions à partir de la matrice des explicatives en test.

```
# Prédiction sur XTest
y_pred = lda.predict(XTest)
```

On calcule la distribution d'appartenance

```
# Distribution des classes prédictes
import numpy as np
# print(np.unique(y_pred,return_counts=True))
y_pred.value_counts(normalize=False)
```

```
## predict
## MIRAB 19
## POIRE 16
## KIRSCH 15
## dtype: int64
```

19 observations ont été prédite « MIRAB », 16 « POIRE » et 15 « KIRSCH ».

Matrice de confusion et taux de bon classement

La matrice de confusion est issue de la confrontation entre ces prédictions et les classes observées. Nous faisons appel au module « metrics » de la librairie « scikit-learn ».

Figure 1 – Matrice de confusion

La fonction score() nous donne le taux de reconnaissance (ou taux de succès).

```
# Taux de succès
print(lda.score(XTest,DTest.TYPE))
```

0.82

Notre taux de succès est de 82%.

La fonction classification_report() génère un rapport sur les performances globales, mais aussi sur les reconnaissances par classe (rappel, précision et F-Measure[F1-Score])

```
# rapport
from sklearn.metrics import classification_report
print(classification_report(DTest.TYPE,y_pred))
```

##		precision	recall	f1-score	support
##					
##	KIRSCH	0.93	1.00	0.97	14
##	MIRAB	0.74	0.82	0.78	17
##	POIRE	0.81	0.68	0.74	19
##					
##	accuracy			0.82	50
##	macro avg	0.83	0.84	0.83	50
##	weighted avg	0.82	0.82	0.82	50

Nous retrouvons, entre autres le taux de succès de 82%.

Pour plus d'informations sur l'ADL sous scientisttools, consulter le notebook

 $https://github.com/enfantbenidedieu/scientisttools/blob/master/notebooks/lda_example.ipynb.\\$