Example 4

In $\triangle ABC$, the angle bisector of $\angle A$ meets BC at D. Show that $AD^2 = AB \cdot AC - BD \cdot CD$.

Solution: Construct a circle that circumscribes the triangle as shown in the figure. Extend AD to meet the circle at E and connect BE.

Since $\angle E = \angle C$ (both face the same arc AB). $\angle 1 = \angle 2$, $\triangle ABE \sim \triangle ADC$ $AB \cdot AC = AD \cdot AE$ $BD \cdot DC = AD \cdot DE$ (1) -(2) :

$$\begin{split} AB \cdot AC - BD \cdot CD &= AD \cdot AE - AD \cdot DE \\ &= AD(AE - DE) = AD \cdot AD = AD^2 \\ \text{Therefore } AD^2 = AB \cdot AC - BD \cdot CD. \end{split}$$