CMSC 141 AUTOMATA AND LANGUAGE THEORY CONTEXT-FREE LANGUAGES

Mark Froilan B. Tandoc

September 24, 2014

Non-Regular Languages

- Not all languages are regular
 - e.g. $\{a^n b^n : n > 0\}$
- ► There are many other non-regular languages that can be very useful
- We need something more powerful than finite automata that can express non-regular languages

WHAT'S WRONG WITH FAS?

- We can only have finite number of states where we can store information, hence, finite memory.
- ► A more powerful machine needs more (theoretically infinite) memory
- ▶ One simple storage we can use is a *stack*

STACK

- A stack is a data structure with some basic operations
 - PUSH, store data to the top of the stack.
 - POP, read and remove data from the top of the stack,
 - PEEK/TOP, to just read data from the top of the stack, and
 - NOP, or no operation

Pushdown Automata (PDA)

- Addition of stack for storage increases the power of the automaton
- We can assume that the stack size is unbounded, giving us infinite memory

The class of languages PDAs recognize are called Context-Free Languages (CFL)

- ▶ Idea is to push a's while we are reading them, and pop them one by one for every matching b.
- We accept the string if we ended up at the bottom of the stack after reading the whole input

BOTTOM OF THE STACK

Often times, a special marker Z is placed at the bottom of the stack

- ▶ If (a, Z) or (a, a), then push a
- ▶ If (b, a), then pop
- If (ε, Z) , then accept the string

- ▶ If (a, Z) or (a, a), then push a
- If (b, a), then pop
- If (ε, Z) , then accept the string

$$a, a; aa \qquad b, a; \varepsilon$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

SYNTAX

(current symbol on tape, symbol on top of the stack; replacement symbols for the top)

aaabbb

a

aaabb<mark>b</mark>

FORMAL DEFINITION OF PDA

$$M = \{Q, \Sigma, \Gamma, \delta, q_0, Z, F\}$$

- $ightharpoonup Q
 ightarrow ext{finite set of states}$
- $\blacktriangleright \ \Sigma \to \mathsf{input} \ \mathsf{alphabet}$
- $ightharpoonup \Gamma
 ightarrow ext{stack alphabet}$
- ullet $\delta
 ightarrow$ transition function
- $q_0 \rightarrow \text{start/initial state}$
- ightharpoonup Z
 ightarrow initial/bottom stack symbol
- $ightharpoonup F
 ightarrow ext{set} ext{ of final/accepting states}$

Transition Function

 δ takes as argument a triple $\delta(q, a, X)$ where:

- ightharpoonup q is a state in Q
- a is either an input symbol in Σ or $a = \varepsilon$
- \triangleright X is a stack symbol that is a member of Γ

The output is a finite set of pairs (p, γ) , where p is the new state, and γ is the string of stack symbols to replace X

Instantaneous Description for PDA

SYNTAX

(current state, remaining input, stack contents)

EXECUTION OF AABB

$$(q_0, aabb, Z) \vdash (q_1, abb, aZ) \vdash (q_1, bb, aaZ) \vdash (q_2, b, aZ) \vdash (q_2, \varepsilon, Z) \vdash (q_3, \varepsilon, Z)$$

ACCEPTANCE IN PDAS

- A PDA accepts a string x by final state if (q_0, x, Z) eventually leads to $(p, \varepsilon, ?)$ for some final state p
- A PDA accepts a string x by empty stack if (q_0, x, Z) eventually leads to $(p, \varepsilon, \varepsilon)$
- ► A PDA accepts a language *L* if every string in *L* is accepted and every other string is rejected
- ► The two forms of acceptance in PDAs are shown to be equivalent. That is one can be converted to the other

EXAMPLES/EXERCISES

Construct PDAs for the following languages:

```
• \{a^nb^{2n}: n>0\} =
\{abb, aabbbb, aaabbbbbb, ...\}
```

- ▶ palindromes =
 {a, b, aa, bb, aaa, bbb, aba, bab, ...}
- equal number of a's and b's (in any order) =
 {ab,ba,aabb,abab,baba,bbaa,...}
- ▶ balance pair of parentheses =
 {(), (()), ()(), ((())), (())(), ...}

REFERENCES

- Previous slides on CMSC 141
- M. Sipser. Introduction to the Theory of Computation. Thomson, 2007.
- ▶ J.E. Hopcroft, R. Motwani and J.D. Ullman. Introduction to Automata Theory, Languages and Computation. 2nd ed, Addison-Wesley, 2001.
- ► E.A. Albacea. Automata, Formal Languages and Computations, UPLB Foundation, Inc. 2005
- JFLAP, www.jflap.org
- Various online LATEX and Beamer tutorials