Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhập

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi

Hệ số R²

Các tính chất của các ước

Dir đoán

Xác suất thống kê - Hồi quy tuyến tính đơn

Ngày 12 tháng 12 năm 2024

Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhập

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi

Hệ số R^2

Các tính chấ của các ước lương

Dư đoán

Ví dụ dẫn nhập

Cho bảng giá trị sau:

Х	1			5	7	9	10
У	2	6	8	10	14	18	20

Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhập

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi

Hệ số R²

Các tính chất của các ước lượng

Dư đoán

Ví dụ dẫn nhập

Cho bảng giá trị sau:

×	1	3	4	5	7	9	10
У	2	6	8	10	14	18	20

Dễ thấy giữa x và y có một mối liên hệ tuyến tính, cụ thể: y=2x.

Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhập

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi

Hệ số R²

Các tính chât của các ước lượng

Dư đoán

Ví dụ dẫn nhập

Cho bảng giá trị sau:

Х	1	3	4	5	7	9	10
У	2	6	8	10	14	18	20

Dễ thấy giữa x và y có một mối liên hệ tuyến tính, cụ thể: y=2x. Tuy nhiên, nếu bảng giá trị này có thay đổi nhỏ, chẳng hạn:

X	1	3	4	5	7	9	10
У	3	5	7	9	15	17	21

Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhập

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi

Hệ số R^2

Các tính chât của các ước lượng

Dự đoán

Ví dụ dẫn nhập

Cho bảng giá trị sau:

Х	1	3	4	5	7	9	10
У	2	6	8	10	14	18	20

Dễ thấy giữa x và y có một mối liên hệ tuyến tính, cụ thể: y=2x. Tuy nhiên, nếu bảng giá trị này có thay đổi nhỏ, chẳng hạn:

Х	1	3	4	5	7	9	10
У	3	5	7	9	15	17	21

thì mối quan hệ tuyến tính này không còn nữa.

Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhập

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi

Hệ số R²

Các tính chất của các ước lượng

Dư đoár

Ví dụ dẫn nhập

Cho bảng giá trị sau:

Х	1	3	4	5	7	9	10
У	2	6	8	10	14	18	20

Dễ thấy giữa x và y có một mối liên hệ tuyến tính, cụ thể: y=2x. Tuy nhiên, nếu bảng giá trị này có thay đổi nhỏ, chẳng hạn:

	Х	1	3	4	5	7	9	10
ſ	у	3	5	7	9	15	17	21

thì mối quan hệ tuyến tính này không còn nữa. Trong trường hợp này, ta có thể viết mối quan hệ giữa x và y như sau: $y=2x+\epsilon$, với ϵ là sai số nhỏ.

Mô hình hồi quy tuyến tính đơn

Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhậi

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi quy

Hệ số *R*

Các tính chất của các ước lượng

Dự đoán

Mô hình hồi quy tuyến tính đơn

Cho bộ dữ liệu gồm n điểm dữ liệu $\{(x_1, Y_1), (x_2, Y_2), \ldots, (x_n, Y_n)\}$. Mô hình tuyến tính đơn cho biết mối quan hệ tuyến tính giữa x_i và Y_i qua đẳng thức:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i \ \forall i \in \overline{1, n}$$

trong đó β_0, β_1 là các hằng số chưa biết, $(\epsilon_1, \epsilon_2, \dots, \epsilon_n)$ là các biến ngẫu nhiên độc lập, cùng phân phối, và thỏa

$$\mathbb{E}(\epsilon_i) = 0, \operatorname{Var}(\epsilon_i) = \sigma^2 > 0$$

Trong chương này, ta có thể giả sử rằng $(\epsilon_1, \ldots, \epsilon_n) \sim \mathcal{N}(0, \sigma^2)$.

Biến hồi quy và biến đáp ứng

Trong mô hình hồi quy, ta gọi $(x_1, x_2, ..., x_n)$ là các **biến hồi quy** và $(Y_1, Y_2, ..., Y_n)$ là các biến đáp ứng.

Ước lượng các tham số hồi quy

Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhập

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi

Hệ số R²

Các tính chất của các ước lương

Dư đoán

Ước lượng tham số hồi quy

Cho các điểm quan trắc $\{(x_1,y_1),\ldots(x_n,y_n)\}$, quan sát được từ mô hình hồi quy tuyến tính.

Ước lượng các tham số hồi quy

Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhập

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi

Hệ số R²

Các tính chấ của các ước lương

Dir đoán

Ước lượng tham số hồi quy

Cho các điểm quan trắc $\{(x_1,y_1),\ldots(x_n,y_n)\}$, quan sát được từ mô hình hồi quy tuyến tính.

• **Mục tiêu:** Tìm các giá trị ước lượng $\hat{\beta}_0, \hat{\beta}_1$ của β_0 và β_1 sao cho sai số là nhỏ nhất.

Ước lượng các tham số hồi quy

Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhập

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi quy

Hệ sô *F*

Các tính chất của các ước lượng

Ước lượng tham số hồi quy

Cho các điểm quan trắc $\{(x_1,y_1),\dots(x_n,y_n)\}$, quan sát được từ mô hình hồi quy tuyến tính.

- Mục tiêu: Tìm các giá trị ước lượng $\hat{\beta}_0, \hat{\beta}_1$ của β_0 và β_1 sao cho sai số là nhỏ nhất.
- Sai số: Với hai giá trị $\hat{\beta}_0, \hat{\beta}_1$, sai số (phần dư) thứ i được định nghĩa bởi $e_i = y_i \hat{y}_i$ với $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$, được gọi là giá trị phù hợp thứ i.

Phương pháp bình phương bé nhất

Phương pháp bình phương bé nhất là phương pháp tìm các giá trị ước lượng $\hat{\beta}_0, \hat{\beta}_1$ của β_0 và β_1 sao cho **tổng bình phương các sai số là nhỏ nhất**, tức đại lượng

$$SSR = \sum_{k=0}^{n} e_{k}^{2} = \sum_{k=0}^{n} (y_{k} - \hat{\beta}_{0} - \hat{\beta}_{1}x_{k})^{2}$$

là nhỏ nhất

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi quy

Hệ số R²

Các tính chất của các ước ượng

Dự đoán

Ước lượng cho β_0 và β_1

Phương pháp bình phương bé nhất cho ta hai giá trị ước lượng cho β_0 và β_1 được cho bởi công thức sau:

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})}{\sum_{k=1}^{n} (x_k - \bar{x})^2}$$

hay

$$\hat{\beta}_1 = \frac{n \sum_{k=1}^n x_k y_k - \left(\sum_{k=1}^n x_k\right) \left(\sum_{k=1}^n y_k\right)}{n \sum_{k=1}^n x_k^2 - \left(\sum_{k=1}^n x_k\right)^2}$$

Mô hình hồi quy tuyến tínl đơn

Ước lượng các tham số hồi quy

Hệ số R²

Các tính chất của các ước lượng

Dư đoán

Ước lượng cho σ^2

Ước lượng cho tham số σ^2 được cho bởi:

$$s^2 = \frac{\text{SSR}}{n-2} = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi quy

Hệ số R²

Các tính chất của các ước lượng

Dư đoán

Tổng kết

Đặt
$$S_{xx} = \sum_{k=1}^{n} (x_k - \bar{x})^2$$
, $S_{yy} = \sum_{k=1}^{n} (y_k - \bar{y})^2$ và $S_{xy} = \sum_{k=1}^{n} (x_k - \bar{x})(y_k - \bar{y})$. Khi đó,
$$\hat{\beta}_1 = \frac{S_{xy}}{S_{xx}}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$SSR = S_{yy} - \hat{\beta}_1 S_{xy}$$

$$s^2 = \frac{SSR}{R}$$

Mô hình hồi luy tuyến tính lơn

Ước lượng các tham số hồi quy

Hệ số R^2

Các tính chất của các ước lượng

Dư đoán

Hệ số R²

Hệ số R^2 được cho bởi công thức:

$$R^2 = 1 - \frac{\mathsf{SSR}}{\mathsf{SST}}$$

trong đó,

$$SSR = \sum_{k=1}^{n} (y_k - \hat{y}_k)^2$$

$$SST = \sum_{k=1}^{n} (y_k - \bar{y})^2$$

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi quy

Hệ số R^2

Các tính chất của các ước lượng

Dir đoán

Ý nghĩa của hệ số R^2

- ullet Hệ số R^2 được dùng để đánh giá mô hình hồi quy.
- Nhận xét: $R^2 \le 1$. Khi $R^2 \approx 1$ thì bộ dữ liệu có quan hệ tuyến tính manh.
- Khi $R^2 \approx 0$, thì bộ dữ liệu có quan hệ tuyến tính **yếu**, và $\hat{\beta}_0 \approx \bar{y}, \hat{\beta}_1 \approx 0$.
- Lưu ý: Hệ số R² có thể nhận giá trị âm.

Ước lượng các tham số hồi quy

Hệ số R^2

Các tính chất của các ước lượng

Dự đoán

Các tính chất của ước lượng cho β_0

- $\mathbb{E}(\hat{\beta}_0) = \beta_0$
- $\bullet \ \mathsf{Var}(\hat{\beta}_0) = \frac{\sigma^2}{\mathsf{S}_{\mathsf{xx}}} \left(\frac{1}{n} \sum_{k=1}^n x_k^2 \right)$
- Khoảng tin cậy $(1 \alpha) \cdot 100\%$ cho β_0 được cho bởi $[\hat{\beta}_0 \epsilon, \hat{\beta}_0 + \epsilon]$

với dung sai

$$\epsilon = t_{1-\alpha/2}^{n-2} \frac{s}{\sqrt{S_{xx}}} \sqrt{\frac{1}{n} \sum_{k=1}^{n} x_k^2}$$

trong đó, $t_{1-\alpha/2}^{n-2}$ là phân vị thứ $1-\frac{\alpha}{2}$ của phân phối Student với bâc tư do n-2.

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi quy

Hệ số R^2

Các tính chất của các ước lượng

Dự đoán

Các tính chất của ước lượng cho eta_1

- $\mathbb{E}(\hat{\beta}_1) = \beta_1$
- $Var(\hat{\beta}_1) = \frac{\sigma^2}{S_{xx}}$
- Khoảng tin cậy $(1 \alpha) \cdot 100\%$ cho β_1 được cho bởi $[\hat{\beta}_1 \epsilon, \hat{\beta}_1 + \epsilon]$

với dung sai

$$\epsilon = t_{1-\alpha/2}^{n-2} \frac{s}{\sqrt{S_{xx}}}$$

trong đó, $t_{1-\alpha/2}^{n-2}$ là phân vị thứ $1-\frac{\alpha}{2}$ của phân phối Student với bâc tư do n-2.

Ước lượng các tham số hồi quy

Hệ số R

Các tính chất của các ước lượng

Dự đoán

Dự đoán trung bình hay biến đáp ứng

Cho mô hình hồi quy

$$Y = \beta_0 + \beta_1 x + \epsilon, \epsilon \sim \mathcal{N}(0, \sigma^2)$$

Với điểm dữ liệu mới $x = x_0$, ta có thể thực hiện 2 cách sau:

- Dự đoán biến đáp ứng tương ứng: $Y_0 = \beta_0 + \beta_1 x_0 + \epsilon$
- Dự đoán trung bình: $\mu_{Y|x_0} = \beta_0 + \beta_1 x_0$

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi

Hê số $R^{'}$

Các tính chất của các ước lượng

Dư đoán

Khoảng tin cậy cho dự đoán của trung bình

Khoảng tin cậy $(1-\alpha)\cdot 100\%$ cho dự đoán của trung bình $\mu_{Y|x_0}$ được cho bởi

$$[\hat{y}_0 - \epsilon, \hat{y}_0 + \epsilon]$$

với dung sai
$$\epsilon = t_{1-\alpha/2}^{n-2} s \sqrt{\frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}}}$$
, và $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi

Hệ số R²

Các tính chất của các ước lượng

Dự đoán

Khoảng tin cậy cho dự đoán của biến đáp ứng

Khoảng tin cậy $(1-\alpha)\cdot 100\%$ cho dự đoán của biến đáp ứng $Y_0=\beta_0+\beta_1x_0+\epsilon$ được cho bởi

$$[\hat{y}_0 - \epsilon, \hat{y}_0 + \epsilon]$$

với dung sai
$$\epsilon = t_{1-\alpha/2}^{n-2} s \sqrt{1+\frac{1}{n}+\frac{(x_0-\bar{x})^2}{S_{xx}}}$$
, và $\hat{y}_0 = \hat{\beta}_0 + \hat{\beta}_1 x_0$.

Ví dụ minh họa

Xác suất thống kê - Hồi quy tuyến tính đơn

Dẫn nhập

Mô hình hồi quy tuyến tính đơn

Ước lượng các tham số hồi quy

Hệ số *R*'

Các tính chất của các ước lượng

Dư đoán

Ví dụ: Bài tập 6.1

Điểm thi giữa kì (x) và cuối kì (y) của một lớp có 9 sinh viên là như sau:

X	77	50	71	72	81	94	96	99	67
y	82	66	78	34	47	85	99	99	68

- (a) Ước lượng đường hồi quy tuyến tính.
- (b) Ước lượng điểm bài thi cuối kì của một sinh viên có điểm giữa kì là 85.
- (c) Tính s^2 .
- (d) Xây dựng khoảng tin cậy 95% cho β_0 .
- (e) Xây dựng khoảng tin cậy 95% cho β_1 .
- (f) Sử dụng giá trị s^2 , xây dựng khoảng tin cậy 95% cho $\mu_{Y|85}$