

Figure 1: Comparison of the analytic solution ($\overline{}$) and numerical solution with $\Delta x = 100/2^{11} m$ (\bullet) for the soliton problem at t = 50s for all methods.

Figure 2: Convergence plots as measured by the L_1 norm for h (\triangle), u (\square) and G (\bigcirc) for the soliton problem for all methods.

Figure 3: Conservation plots as measured by C_1 for h (\triangle), uh (\square), G (\diamondsuit) and \mathcal{H} (\times) for the soliton problem for all methods.

Figure 4: Comparison of the analytic solution (-) and numerical solution with $\Delta x = 100/2^{10} m$ (-) for the lake at rest problem at t = 10s for all methods.

Figure 5: Convergence plots as measured by the L_1 norm for h (\triangle), u (\square) and G (\diamondsuit) for the lake at rest problem at t = 10s for all methods.

Figure 6: Error in conservation plots as measured by the C_1 norm for h (\triangle), u (\square) and G (\diamondsuit) for the lake at rest problem at t = 10s for all methods.