What is claimed is:

1. A method of reducing proliferative capacity of a cell comprising contacting said cell with a compound or a salt thereof or a stereoisomer of compound I that has the formula:

$$R^{2}$$

$$R^{3}$$

$$R^{3}$$

$$R^{2}$$

$$R^{2}$$

$$R^{3}$$

$$R^{4}$$

I

where R¹ and R⁴ are independently -L-A where L is a linking group having the formula:

where n is 1-3; and each R5 is independently H, Me, OH, or OMe;

$$\begin{pmatrix} R^5 R^5 \end{pmatrix}_{Y}$$

where R5 is as before and Y is O, S, SO, SO2, NH, NMe, or NCOMe;

$$\begin{array}{c}
\left(R^{5}R^{5}\right)_{Y} \\
\left(R^{5}R^{5}\right)_{X}
\end{array}$$

10

15

$$\begin{array}{c}
\mathbb{R}^6 \\
\mathbb{R}^7
\end{array}$$

$$\mathbb{R}^9 \quad \mathbb{R}^8$$

where R⁶, R⁷, R⁸, and R⁹ are independently H, OMe, OEt, halogen, or Me;

and A is a compound of the formula:

where m is 0-5 and R6 is halogen, NH₂, NO₂, CN, OMe, SO₂NH₂, amidino, guanidino, or Me;

where o is 0-1; p is 0-2; q is 1-2 provided that when o + q is 2, in which case a pyrrolidine or pyrrole ring is indicated, or 3, in which a piperidine or pyridine ring is indicated; r is 0-3; R⁷ is H or Me; R⁸ is independently Me, NO₂, OH, CH₂OH or halogen, and when r is 2-3, two adjacent R8 substituents are -(CH=CH)2- or -(CH2)4- to form an annulated six-membered ring;

5

10

15

where R⁹ is independently H, Me, and when R9 is O; s is 0-1; Z is CH₂, O, NH, NMe, NEt, N(Me)₂, N(Et)₂, or NCO₂Et;

where Q is N, CH, NMe, or NEt; X is O, S, NH, NMe or NEt; R^{10} and R^{11} are independently H, Me, CH_2CO_2Et , R^{10} and R^{11} taken together are -(CH=CH)₂- or -(CH₂)₄-

where t is 1-4 4; u is 0-4, and R\2 is independently Me, OH,

15

The fact of the fa

5

10

15

20

NO₂.

- 2. The method of claim 1 wherein the cell is a mammalian cell.
- 3. The method of claim 1, wherein the cell is a human cell.
- 4. The method of claim 1, wherein the cell is a cancer cell.
- 5. The method of claim 1, wherein said malignant cell is a breast cancer cell, a prostate cancer cell, liver cancer cell, a pancreatic cancer cell, a lung cancer cell, a brain cancer cell, an ovarian cancer cell, a uterine cancer cell, a testicular cancer cell, a skin cancer cell, a leukemia cell, a head and neck cancer cell, an esophageal cancer cell, a stomach cancer cell, a colon cancer cell, a retinal cancer cell, a bladder cancer cell, an anal cancer cell and a rectal cancer cell.
- 6. A method of reducing telemeric extension comprising administering a compound of claim 1 to a telemerase in the presence of a telemerase substrate.
 - 7. The method of claim 6, where the telomerase is in a cell.
- 8. The method of claim 1, wherein said compound further promotes apoptosis.
 - 9. The method of claim 1, wherein said compound further promotes apoptosis in a cell.

- 5
- 11. wherein the compound is N,N'-bis(2-The method of claim 1, piperdinoethyl)-3,4,9,10-perylenetetracarboxylic acid diimide.
- 12. The method of claim 1/ wherein the compound is N,N'-bis(2dimethylaminoethyl)-3,4,9,10-perylenetetracarboxylic acid diimide.
- 10

A compound of the formula

13.

where R¹ and R⁴ are independently -L-A where L is a linking group having the formula:

15

T.

where n is 1-3; and each R5 is independently H, Me, OH, or OMe;

$$\begin{array}{c}
\begin{pmatrix}
R^5 & R^5 \\
2
\end{pmatrix}
\end{array}$$

where R5 is as before and Y is O, S, SO, SO2, NH, NMe, or NCOMe;

$$\begin{array}{c}
\begin{pmatrix}
R^5 & R^5 \\
2
\end{pmatrix}
Y
\begin{pmatrix}
R^5 & R^5 \\
2
\end{pmatrix}
X$$

where R5 and Y are as before and X is CH₂, O, S, SO, SO₂, NH, NMe, or NCOMe;

$$\mathbb{R}^6$$
 \mathbb{R}^7

where R⁶, R⁷, R⁸, and R⁹ are independently H, OMe, OEt, halogen, or Me;

and A is a compound of the formula:

where m is 0-5 and R6 is halogen, NH₂, NO₂, CN, OMe, SO₂NH₂, amidino, guanidino, or Me;

where o is 0-1; p is 0-2; q is 1-2 provided that when o + q is 2, in which case a pyrrolidine or pyrrole ring is indicated, or 3, in which a piperidine or pyridine ring

5

10

15

10

15

is indicated; r is 0-3; R⁷ is H or Me; R⁸ is independently Me, NO₂, OH, CH₂OH or halogen, and when r is 2-3, two adjacent R8 substituents are -(CH=CH)2- or -(CH2)4- to form an annulated six-membered ring;

$$R^9$$
 R^9 S

where R⁹ is independently H, Me, and when R9 is O; s is 0-1; Z is CH₂, O, NH, NMe, NEt, N(Me)₂, N(Et)₂, or NCO₂Et;

where Q is N, CH, NMe, or NEt; X is O, S, NH, NMe or NEt; R¹⁰ and R¹¹ are independently H, Me, CH₂CO₂Et, R¹⁰ and R¹¹ taken together are -(CH=CH)₂- or -(CH₂)₄-

where t is 1-4 4; u is 0-4, and R12 is independently Me, OH,

 CO_2R^{13} , $CON(R^{13})_2$, SO_3H , $SO_2N(R^{13})_2$, CN, $CH(CO_2R^{13})_2$, $CH(CON(R^{13})_2)_2$, $N(R^{13})_2$, or $N(R^{13})_3$ where R^{13} is H, Me, Et, or CH_2CH_2OH ; and

 R^2 , R^2 , R^2 , R^2 , R^3 , R^3 , R^3 , R^3 are each independently H, OMe, halogen, or NO₂.

14. A method of reducing proliferative capacity of a cell comprising contacting said cell with a compound having the formula II or a salt thereof or a stereoisomer of said compound:

$$\begin{array}{c}
\stackrel{R}{\longrightarrow} c \stackrel{R}{\longrightarrow} c
\end{array}$$

II

where C is -CH=CH-, (CH=CH)₂-, -(CH=CH)₃-, p-phenylene, o-phenylene, p-phenylene-CH=CH-, or o-phenylene-CH=CH-; B is O, S, or NR, and R is r Me or Et.

15

10

5

- 15. The method of claim 14, wherein the cell/is a mammalian cell.
- 16. The method of claim 14, wherein the cell is a human cell.
- 17. The method of claim 14, wherein the cell is a cancer cell.

20

18. The method of claim 14, wherein said cancer cell is a breast cancer cell, a prostate cancer cell, liver cancer cell, a pancreatic cancer cell, a lung cancer cell, a brain cancer cell, an ovarian cancer cell, a uterine cancer cell, a testicular cancer cell, a skin cancer cell, a leukemia cell, a head and neck cancer cell, an esophageal cancer cell, a

5

- 19. A method of reducing telomeric extension comprising administering a compound of claim 14, to a telomerase in the presence of a telomerase substrate.
 - 20. The method of claim 19, where telomerase is in a cell.
- 21. The method of claim 14, wherein said compound further promotes apoptosis in a cell.
 - 22. The method of claim 14, wherein the compound is a carbocyanine.
 - 23. The method of claim 22, wherein the carbocyanine is 3,3'-diethyloxadicarbocyanine (DODC).
 - 24. A method for identifying a candidate compound that inhibits telomerase activity, comprising the steps:
 - a) obtaining the three-dimensional structure of a selected compound; and
 - b) determining the complementarity of the compound to telomere DNA G-quadruplex

wherein a compound that exhibits at least 75% of the favourable intermolecular interaction energy of the perylene diimide 2-d(TTAGGG)₄ complex structure is indicated to inhibit telomerase activity.

- 25. A method of identifying a telomerase inhibitor comprising:
 - a) contacting a compound with DNA G-quadruplex; and
 - b) determining the melting point of the DNA G-quadruplex

wherein a compound exhibiting an increase in melting point of said quadruplex, relative to unbound DNA G-quadruplex, is indicated to inhibit telomerase activity.

25

10

15

20

- a) preparing a DNA G-quadruplex/dye complex wherein the dye is bound with the G-quadruplex;
- b) contacting said complex with a candidate compound; and
- c) determining displacement of said dye in the complex by said candidate, wherein displacement of the dye identifies the candidate as a telomerase inhibitor.

27. A method of identifying a telomerase inhibitor comprising:

a) contacting a candidate compound to be identified as a telomerase inhibitor with DNA G-quadruplex; and

b) determining the fluorescence or UV/VIS spectrum of the compound wherein an increase or decrease of the UV/VIS absorption or fluorescence emission intensity of said compound relative to the UV/VIS absorption or fluorescence emission intensity in the absence of DNA-G-quadruplex indicates telomerase inhibitory

28. A compound of the formula:

activity of the compound.

$$\begin{array}{ccc}
& & & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
& & & \\
&$$

in which C is -CH=CH-, -(CH=CH)₂-, (CH=CH)₃-, p-phenylene, o-phenylene, p-phenylene-CH=CH-, or o-phenylene-CH=CH-; B is Q, S, or NR, and R is Me or Et. Additional Claims:

- 29. The method of claim 1, wherein the mitotic division of a cell is inhibited.
- 30. The method of claim 14, wherein the mitotic division of a cell is inhibited.

31. A compound of claim 28, having the structure:

5 32. The method of claim 14, having the structure:

33. A compound of claim 13, having the formula:

34. The method of claim 1, having the formula:

35. The compound of claim 13, having the formula:

36. The method of claim 1, having the structure:

5

10

15