LABORATOR nr. 5 CALCUL NUMERIC

(titular de curs: prof. univ. dr. Bica Alexandru Mihai)

METODA APROXIMATIILOR SUCCESIVE PENTRU ECUATII NELINIARE

Metoda aproximatiilor succesive

Pentru rezolvarea numerica a ecuației f(x) = 0, cu $f: I \to \mathbb{R}$, iar $I \subset \mathbb{R}$ interval, prin metoda aproximatilor succesive, se rescrie ecuatia sub forma echivalenta $\varphi(x) = x$ pe un subinterval $[a,b] \subset I$ pe care este indeplinita conditia $|\varphi'(x)| \leq q < 1$, $\forall x \in [a,b]$. Astfel, se poate construi prin recurenta sirul aproximatilor succesive

$$x_{n+1} = \varphi(x_n), \quad n \in \mathbb{N}$$
 (1)

care converge catre unica solutie $x^* \in (a, b)$ a ecuatiei $\varphi(x) = x$. Din inegalitatea de estimare a posteriori a erorii,

$$|x_n - x^*| \le \frac{q}{1-q} \cdot |x_n - x_{n-1}|, \quad \forall n \in \mathbb{N}^*$$

se deduce urmatorul criteriu de oprire algoritmului iterativ dat in formula (1):

Pentru $\varepsilon>0$ dat se determina primul numar natural $n\in N^*$ pentru care are loc inegalitatea

$$|x_n - x_{n-1}| < \varepsilon$$

si se retine termenul x_n ca aproximatie a solutiei x^* .

La acest termen estimarea erorii este:

$$|x_n - x^*| < \frac{q}{1 - q} \cdot \varepsilon.$$

Algoritmul metodei aproximatiilor succesive

- I. Date de intrare:
- x_0 iteratia initiala (data de tip double)
- φ functia de variabila de tip double
- $\varepsilon > 0$ eroarea admisa (data de tip double)
- II. Date de iesire: n numarul de iteratii
- x_n ultima iteratie ce aproximeaza solutia cu eroarea admisa
- III. Pasii algoritmului
- 1. Calculeaza

$$x_1 = \varphi(x_0)$$

2. Pornind cu $n\geq 1,$ cat timp

$$|x_n - x_{n-1}| \ge \varepsilon$$

Calculeaza

$$x_{n+1} = \varphi\left(x_n\right)$$

3. Tipareste n, x_n . STOP.

Exemple numerice:

1. Folosind metoda aproximatiilor succesive sa se aproximeze solutia ecuatiei

$$x^4 - x - 1 = 0$$

situata in intervalul (1,2). Se va lua $\varepsilon=10^{-4}.$ Ecuatia se va pune in forma echivalenta

$$x = \varphi(x) = \sqrt[4]{x+1}.$$

2. Folosind metoda aproximatiilor succesive sa se aproximeze radacina reala a ecuatiei

$$x^3 - x - 1 = 0$$

luand succesiv $\varepsilon=10^{-4},\ \varepsilon=10^{-8},\ \varepsilon=10^{-12},\ \mathrm{pentru}$ a vedea numarul de iteratii necesare in fiecare caz. Se va lua $\varphi\left(x\right)=\sqrt[3]{x+1}$ si $x_0=1$.

Explicatie: Considerand $f(x) = x^3 - x - 1$, avem $f'(x) = 3x^2 - 1$, iar radacinile derivatei sunt $x = \pm \frac{1}{\sqrt{3}}$. Deoarece $f\left(-\frac{1}{\sqrt{3}}\right) < 0$, $f\left(\frac{1}{\sqrt{3}}\right) < 0$, $\lim_{x \to -\infty} f(x) = -\infty$, si $\lim_{x \to \infty} f(x) = \infty$, deducem ca ecuatia are o singura radacina reala (celelalte doua radacini sunt complexe conjugate) situata in intervalul $\left(\frac{1}{\sqrt{3}}, \infty\right)$. Acest interval fiind prea mare vom testa semnul valorilor f(1) si f(2), obtinand f(1) = -1 si f(2) = 5. Deci, radacina reala se gaseste in intervalul (1,2). Incercand sa rescriem ecuatia sunt forma $x = \varphi(x)$ observam ca reprezentarea echivalenta $x = x^3 + 1 = \varphi(x)$ nu este potrivita deoarece $\varphi'(x) = 3x^2$ si pe intervalul [1,2] avem $|\varphi'(x)| \ge 3$, $\forall x \in [1,2]$. Prin urmare, din rescrierea ecuatiei sub forma $x^3 = x + 1$, folosind bijectivitatea pe intervalul [1,2] a ambelor functii $g_1(x) = x^3$ si $g_2(x) = x + 1$, ajungem la egalitatea $x = \sqrt[3]{x+1}$. Deci, se va considera forma echivalenta a ecuatiei:

$$x = \varphi\left(x\right) = \sqrt[3]{x+1}$$

avand $\varphi'(x) = \frac{1}{3\sqrt[3]{(x+1)^2}} \le \frac{1}{3\sqrt[3]{4}} < 1$ si putem lua ca iteratie initiala orice punct din intervalul [1, 2], de exemplu $x_0 = 1$.

 $3.\ {\rm Folosind}$ metoda aproximati
ilor succesive sa se aproximeze radacina reala a ecuatiei

$$f(x) = x^5 - 5x + 1 = 0$$

situata in intervalul (0,1). Se va lua $\varphi\left(x\right)=\frac{1}{5}\cdot\left(x^{5}+1\right)$, $x_{0}=\frac{1}{2}$ si $\varepsilon=10^{-4}$. Explicatie: Din sirul de egalitati

$$x^{5} - 5x + 1 = 0 \iff 5x = x^{5} + 1 \iff x = \frac{1}{5} \cdot (x^{5} + 1)$$

deducem ca ecuatia se va pune in forma echivalenta

$$x = \varphi(x) = \frac{1}{5} \cdot \left(x^5 + 1\right)$$

si atunci $\varphi'(x) = x^4$ putand avea indeplinita conditia $|\varphi'(x)| \leq q < 1$ pe intervalul (0,1). Deoarece f(0) = 1, $f(\frac{1}{2}) = -\frac{47}{32}$ si f(1) = -3 deducem ca radacina ecuatiei se gaseste in intervalul $(0,\frac{1}{2})$. Se poate considera iteratia initiala $x_0 = \frac{1}{2}$.

4. Folosind metoda aproximatiilor succesive sa se aproximeze radacina reala a ecuatiei lui Kepler (ce apare in astronomie):

$$x = \sin x + 0.25$$

situata in intervalul $\left(\frac{\pi}{4}, \frac{\pi}{2}\right)$. Radacina se izoleaza folosind metoda sirului lui Rolle si injumatatirea intervalului, ajungand la iteratia initiala $x_0 = \frac{3\pi}{8} \simeq 1.1781$. Se va lua $\varphi(x) = \sin x + 0.25$, $\varepsilon = 10^{-4}$ si aplicand procedeul recurent (1) se va obtine $x_5 = 1.172$ cu o eroare mai mica decat 0.0016.

Metoda lui Heron

Pentru a > 0 sirul dat prin,

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right)$$

converge catre \sqrt{a} . Intr-adevar, la aplicarea metodei aproximatiilor succesive putem utiliza functia $\varphi\left(x\right)=\frac{1}{2}\left(x+\frac{a}{x}\right)$. Daca a>1 atunci se poate considera $\varphi:\left[\sqrt{a},a\right]\longrightarrow\mathbb{R},$ si avem $0\leq\varphi'\left(x\right)<\frac{1}{2}=q,$ $\forall x\in\left[\sqrt{a},a\right].$ Astfel, luand $x_{0}=a$ obtinem $\lim_{n\to\infty}x_{n}=x^{*}$ si

$$x^* = \frac{1}{2} \left(x^* + \frac{a}{x^*} \right)$$

adica, $x^* = \sqrt{a}$. Daca a < 1, atunci vom considera $\varphi : [\sqrt{a}, 1] \longrightarrow \mathbb{R}$, si in acest caz, $0 \le \varphi'(x) \le \frac{1-a}{2} \le \frac{1}{2} = q < 1$, $\forall x \in [\sqrt{a}, 1]$. Luand $x_0 = 1$ obtinem din nou $\lim_{n \to \infty} x_n = x^* = \sqrt{a}$.

Observam ca atunci cand a > 10 este indicat sa alegem ca iteratie initiala $x_0 = k$, unde k este numar intreg cu proprietatea

$$0 < k < \sqrt{a} < k + 1$$
.

Algoritmul lui Heron

- I. Date de intrare:
- a numarul din care se extrage radicalul (data de tip double)
- x_0 iteratia initiala (data de tip double)
- $\varepsilon > 0$ eroarea admisa (data de tip double)
- II. Date de iesire: n numarul de iteratii
- x_n ultima iteratie ce aproximeaza solutia cu eroarea admisa
- III. Pasii algoritmului

1. Calculeaza $x[0] := x_0$ si

$$x[1] := 0.5 \cdot \left(x[0] + \frac{a}{x[0]} \right)$$

2. Pornind cu $n \geq 1,$ cat timp

$$|x[n] - x[n-1]| \ge \varepsilon$$

Calculeaza

$$x[n+1] = 0.5 \cdot \left(x[n] + \frac{a}{x[n]}\right)$$

3. Tipareste n, x[n]; STOP.

Exemple numerice:

- 1. Sa se aproximeze valorile radicalilor $\sqrt{2}\sqrt{3}$, si $\sqrt{5}$ prin metoda lui Heron. Constanta a va lua pe rand valorile 2, 3 si 5. Se va lua ca iteratie initiala $x_0=a$ si de va considera succesiv $\varepsilon=10^{-4}$, $\varepsilon=10^{-8}$, $\varepsilon=10^{-12}$, pentru a vedea numarul de iteratii necesare in fiecare caz si evolutia termenilor din sirul aproximatiilor succesive.
- 2. Sa se aproximeze $\sqrt{\frac{1}{2}}$ prin metoda lui Heron. Se va considera $a=\frac{1}{2}$ si iteratia initiala $x_0=1$, luand succesiv $\varepsilon=10^{-4}$, $\varepsilon=10^{-8}$, $\varepsilon=10^{-12}$, pentru a vedea numarul de iteratii necesare in fiecare caz.