Signs of S_0 : φ , *, N.

Preliminary definitions: (1) By an expression (of S_0) we mean any string built from the three signs of S_0 . (2) By the (formal) quotation of an expression, we mean the expression surrounded by stars. (3) By the norm of an expression, we mean the expression followed by its own (formal) quotation. Formation rules for (individual) designators

- (1) The quotation of any expression is a designator.
- (2) If E is a designator, so is 'NE' (i.e., 'N' followed by E).

 Alternative definition
- (1)' A designator is an expression which is either a quotation (of some other expression) or a quotation preceded by one or more 'N's.

Rules of designation in S_0

- R1. The quotation of an expression E designates E.
- R2. If E_1 designates E_2 , then $\lceil NE_1 \rceil$ designates the norm of E_2 . Definition of a sentence of S_0
- (1) A sentence of S_0 is an expression consisting of ' φ ' followed by a designator.

The semantical system S_P

For any property P, we define the semantical system S_P as follows:

- (1) The rules for designators, designation and sentence formation in S_P are the same as in S_0 .
- (2) The rule of truth for S_P is the following:
- R3. For any designator E, φE^{γ} is true in $S_P = \frac{1}{dt}$ the expression designated by E (in S_P) has the property P.

THEOREM 2.1. There exists an expression of S_0 , which designates itself. Proof. '*N*' designates 'N' [By Rule 1].

Hence 'N*N*' designates the norm of 'N' [By Rule 2] which is 'N*N*'. Thus 'N*N*' designates itself.

THEOREM 2.2. There exists a sentence G of S_0 , such that for any property P, G is true in $S_P \iff G$ has the property P.

PROOF. 'N* φ N*' designates ' φ N* φ N*' [By R1 and R2].

Thus G, viz., ' $\varphi N * \varphi N *$ ' is our desired sentence.

REMARK. G is, of course, the formalized version of 'W contains the norm of 'W contains the norm of'.' ' φ ' is but an abbreviation of 'W contains,' and 'N' abbreviates 'the norm of.'?

⁷ If we wished to construct a miniature system L_P which formalizes the diagonal function in the same way as S_P does the norm function, we take four signs, viz., ' φ ', '*', 'D', 'x', and the rules R_1 , (same as S_P), R_2 : If E_1 designates E_2 , then $\lceil DE_1 \rceil$ designates the diagonalization of E_2 (i.e., the result of replacing each occurrence of 'x' in E_2 by the quotation of E_2), R_3 : If E_1 designates E_2 , then $\lceil \varphi E_1 \rceil$ is a sentence and is true in L_P if and only if E_2 has the property P. Then the expression of Theorem 2.1, which designates itself, is 'D*Dx*', and the Tarski sentence (of Theorem 2.2) for P is ' $\varphi D*\varphi Dx*$ '.