

AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1. (Currently amended) A compound comprising the formula:

(I)

wherein:

R₁ is a polymeric residue;Y₁ is O, S or NR₄;M is O, S or NR₅;E₁ isE₂₋₄ are independently H, E₁ or

(a) is zero or one;

(m) is zero or a positive integer;

(n) and (p) are independently 0 or a positive integer;

Y₂₋₃ are independently O, S or NR₁₀;R₂₋₁₀ are independently selected from the group consisting of hydrogen,

C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ hetero-alkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

D₁ and D₂ are independently OH,

or a terminal branching group;

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

J is NR₁₂ or

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₈ NR₁₇;

R₁₁₋₁₇ R₁₇₋₁₄ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls,

C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B_1 and B_2 are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

provided that E_{2-4} are not all H and

D_1 and D_2 are both not OH

2. (Original) The compound of claim 1, wherein R, further comprises a capping group A, selected from the group consisting of hydrogen, NH_2 , OH, CO_2H , C_{1-6} moieties and

3. (Original) A compound of claim 2, comprising the formula:

4. (Currently Amended) The compound of claim 1, wherein said terminal branching group comprises the formula:

wherein

E_{35} is

E_{36-38} are independently H, E_{35} or

(n) and (p) are independently 0 or a positive integer;

Y_{2-3} are independently O, S or NR_{10} ;

R_{6-10} are independently selected from the group consisting of hydrogen, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} hetero-alkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;

D'_1 and D'_2 are independently OH,

wherein (v) and (t) are independently 0 or a positive integer up to about 6;

L₁ and L₂ are independently selected bifunctional linkers;

Y₄₋₇ are independently selected from the group consisting of O, S and NR₁₇ NR₁₇;

R₁₁₋₁₇ R₁₇₋₁₄ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ hetero-alkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group;

B₁ and B₂ are independently selected from the group consisting of leaving groups, OH, residues of hydroxyl-containing moieties or amine-containing moieties;

E₄₅ is

E₄₆₋₄₈ are independently H, E₄₅ or

wherein

D'',₁ and D'',₂ are independently OH,

or

wherein at least one of D₁', D₂', D₃', and D₄', is not OH.

5. (Previously amended) The compound of claim 3, wherein Y₁ is O.

6. (Original) The compound of claim 1, wherein R₁ comprises a polyalkylene oxide residue.

7. (Original) The compound of claim 6, wherein R₁ comprises a polyethylene glycol residue.

8. (Original) The compound of claim 3, wherein R₁ comprises a polyethylene glycol residue.

9. (Original) The compound of claim 6, wherein R₁ is selected from the group consisting of
 $-C(=Y_6)-(CH_2)_r-O-(CH_2CH_2O)_x-A,$
 $-C(=Y_6)-Y_7-(CH_2)_r-O-(CH_2CH_2O)_x-A,$
 $-C(=Y_6)-NR_{23}-(CH_2)_r-O-(CH_2CH_2O)_x-A,$
 $-(CR_{24}R_{25})_e-O-(CH_2)_r-O-(CH_2CH_2O)_x-A,$
 $-NR_{23}-(CH_2)_r-O-(CH_2CH_2O)_x-A,$
 $-C(=Y_6)-(CH_2)_r-O-(CH_2CH_2O)_x-(CH_2)_rC(=Y_6)-,$
 $-C(=Y_6)-Y_7-(CH_2)_r-O-(CH_2CH_2O)_x-(CH_2)_rY_7-C(=Y_6)-,$
 $-C(=Y_6)-NR_{23}-(CH_2)_r-O-(CH_2CH_2O)_x-(CH_2)_rNR_{23}-C(=Y_6)-,$
 $-(CR_{24}R_{25})_e-O-(CH_2)_r-O-(CH_2CH_2O)_x-(CH_2)_rO-(CR_{24}R_{25})_e-, and$
 $-NR_{23}-(CH_2)_r-O-(CH_2CH_2O)_x-(CH_2)_rNR_{23}-$

wherein: Y_6 and Y_7 are independently O, S or NR_{23} ;
 x is the degree of polymerization;
 R_{23} , R_{24} and R_{25} are independently selected from among H, C_{1-6} alkyls, C_{3-12} branched alkyls, C_{3-8} cycloalkyls, C_{1-6} substituted alkyls, C_{3-8} substituted cycloalkyls, aryls, substituted aryls, aralkyls, C_{1-6} heteroalkyls, substituted C_{1-6} heteroalkyls, C_{1-6} alkoxy, phenoxy and C_{1-6} heteroalkoxy;
 e and f are independently zero, one or two; and
A is a capping group.

10. (Original) The compound of claim 9, wherein R_i comprises $-O-(CH_2CH_2O)_x$ and x is a positive integer so that the weight average molecular weight is at least about 20,000.

11. (Original) The compound of claim 3, wherein R_i has a weight average molecular weight of from about 20,000 to about 100,000.

12. (Original) The compound of claim 3, wherein R_i has a weight average molecular weight of from about 25,000 to about 60,000.

13. (Original) A compound of claim 3, comprising the formula

14. (Original) The compound of claim 13, wherein D₁ is

15. (Original) The compound of claim 13, wherein D₁ is

16. (Original) The compound of claim 1, wherein L₁ is (CH₂CH₂O)₂.

17. (Original) The compound of claim 1, wherein L₂ is selected from the group consisting of -CH₂- , - CH(CH₃)-, -CH₂C(O)NHCH(CH₃)-, -(CH₂)₂-, -CH₂C(O)NHCH₂-, -(CH₂)₂-NH-, -(CH₂)₂-NH-C(O)(CH₂)₂NH- and -CH₂C(O)NHCH(CH₂CH(CH₃)₂)-.

18. (Original) A compound of claim 1, selected from the group consisting of:

and

wherein R_1 is a PEG residue and D is selected from the group consisting of:

and

where B is a residue of an amine or a hydroxyl-containing drug.

19. (Original) A compound of claim 18, wherein B is a residue of a member of the group consisting of: daunorubicin, doxorubicin; *p*-aminoaniline mustard, melphalan, Ara-C (cytosine arabinoside), leucine-Ara-C, and gemcitabine

20. (Original) A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 1, wherein D₁ is a residue of a biologically active moiety.

21. (Original) A method of treatment, comprising administering to a mammal in need of such treatment an effective amount of a compound of claim 18.

22. (Original) The compound of claim 1, wherein Ar comprises the formula:

wherein R₁₁ and R₁₈₋₂₀ are individually selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ hetero-alkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy.

23. (Original) The compound of claim 22, wherein R₁₁ and R₁₈₋₂₀ are each H or CH₃.

24. (Previously amended) A method of preparing a polymer conjugate, comprising: reacting a compound of the formula (VIII):

wherein

(v) and (t) are independently 0 or a positive integer up to about 6;

J is NR₁₂ or

L₁ and L₂ are independently selected bifunctional linkers;

Y_{4,5} are independently selected from the group consisting of O, S and NR₁₇;

R₁₁₋₁₇ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ hetero-alkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

Ar is a moiety which when included in Formula (I) forms a multi-substituted aromatic hydrocarbon or a multi-substituted heterocyclic group; and

B' is a residue of a hydroxyl- or an amine-containing moiety;

with a compound of the formula (IX):

wherein

E_{6-8} are independently H, E₅ or

D₃ and D₄ are independently OH, a leaving group which is capable of reacting with an unprotected amine or hydroxyl or a terminal branching group;

R₁ is a polymeric residue;

Y₁ is O, S or NR₄;

M is O, S or NR₅;

(a) is zero or one;

(m) is 0 or a positive integer;

(n) and (p) are independently 0 or a positive integer;

Y_{2,3} are independently O, S or NR₁₀; and

R₂₋₁₀ are independently selected from the group consisting of hydrogen, C₁₋₆ alkyls, C₃₋₁₂ branched alkyls, C₃₋₈ cycloalkyls, C₁₋₆ substituted alkyls, C₃₋₈ substituted cycloalkyls, aryls, substituted aryls, aralkyls, C₁₋₆ heteroalkyls, substituted C₁₋₆ hetero-alkyls, C₁₋₆ alkoxy, phenoxy and C₁₋₆ heteroalkoxy;

provided that E₆₋₈ are not all H;

under conditions sufficient to cause a polymeric conjugate to be formed.