Submission Date: **29.10.2025**

1 Linear Regression

Housing prices in Freiburg are through the roof! The following table shows the cost of buying a house in the Freiburg area given its age in years and its constructed area in square meters.

Age [years]	Area $[m^2]$	Price [€]
1	50.73	523,902.67
42	41.83	$325,\!104.45$
13	46.54	434,919.86
25	58.27	575,719.18
63	72.53	$629,\!274.54$
15	51.47	$390,\!576.98$

Using Python:

- 1. Use linear regression to find the weights ($\boldsymbol{w} = [w_{\text{age}}, w_{\text{area}}]$) for the age and area inputs ($\boldsymbol{x} = [x_{\text{age}}, x_{\text{area}}]$) respectively, in order to predict the price of a house (\hat{y}). Use the analytic solution and do not use a bias term.
- 2. What would the predicted cost of a house (\hat{y}) that was built 10 years ago and that has an area of $50.0\,\mathrm{m}^2$ be?
- 3. If the real value of a 10 year old, $50.0\,\mathrm{m}^2$ house is 427,451.10 \in , what are the least-squares and L_1 losses with respect to your prediction?

2 Logistic Regression

1. Starting from negative loglikelihood (binary cross entropy loss), derive the update rule for w for gradient descent. Ignore the bias term for the moment.

Negative loglikelihood:

$$J = -\sum_{n=1}^{N} y_n \log p_n + (1 - y_n) \log(1 - p_n) \tag{1}$$

with $p_n = h_{\boldsymbol{w}}(\boldsymbol{x}_n) = \mathrm{P}(y = 1 \mid X = \boldsymbol{x}_n; \ \boldsymbol{w}) = \sigma(\boldsymbol{x}_n)$

For sigmoid use

$$\sigma(\boldsymbol{x}_n) = \frac{\mathrm{e}^{\boldsymbol{x}_n \boldsymbol{w}}}{1 + \mathrm{e}^{\boldsymbol{x}_n \boldsymbol{w}}} \tag{2}$$

which is equivalent to $\frac{1}{1+\mathrm{e}^{-\boldsymbol{x}_n\boldsymbol{w}}}$ (try it).

- 2. What is Gradient Descent?
 Why do we use it for logistic regression?
- 3. Using the data from the following table, perform *one* step of gradient descent. Consider the initial parameters to be $\boldsymbol{w}_0 = [0,\,0,\,0]^\mathsf{T}$ and a learning rate of $\alpha = 0.25$.

x_1	x_2	y
-5	0	0
-3	-2	0
2	5	1
4	1	1

Note: Think about a good way to include the bias in the data, instead of deriving its update rule on its own.

4. Using the learned weights $\pmb{w}_1,$ predict the probability P(y = 1 | X = [-1, 1]^T)