How Bitcoin works?

Contect

A class in data structures

- Hash pointers
- Blockchain

Content

A class in data structures

- Hash pointers
- Blockchain
- Merkle trees

How to make the proof more efficient???

H(Data Block) + Di allows veryfing that Di belongs to Data Block

H(Data Block) + Di allows veryfing that Di belongs to Data Block

Can we acheive this?

D 3 D 4

D 5

D 6

D 7

D 8

If I don't have 2ⁿ data?

D1 D2 D3 D4 D5

Proof of membership

To show that Di belongs to the tree with the root Hp(Root):

- D_i
- Hp(Neighbours on the path to the root)

Total of log₂(n) hashes to verify that D_i belongs to the tree

Example: 1024 D_i each of size 1GB = Data Block of 1TB:

- Proof for D_i is of size -- 1GB (D_i) + $log_2(1024)$ = 10 hashes (2560 bits)
- An order of magnitude less that the size of the Data Block

Proof of non-membership

How to show that D *does not* belong to the tree with the root Hp(Root)?

Proof of non-membership

How to show that D *does not* belong to the tree with the root Hp(Root)?

Let's order the data in the leaves first!!!

Proof of non-membership

To show that D *does not* belong to the tree with root Hp(Root):

- Minimal *i* s.t. *D_i* < D
- Proof of membership for D_i and D_{i+1}
- Proof that D_i and D_{i+1} are Neighbours in the tree (how to do this???)

Since D_i y D_{i+1} are Neighbours in the tree, D does not fit inside

What happens in BitCoin?

Can I use trees to have a tamper-evident log?

BlockChain:

- Data in a single block = Merkle tree
- Blocks arranged in a blockchain

What happens in BitCoin?

What happens in BitCoin?

References

Reading:

- Chapter 1.3 of Narayana et. al.
- Chapter 11 of Programming Bitcoin (Jimmy Song)