Topic 9

- 9. System design (using WDM system as an example)
 - 9.1 Communication system structure and components
 - 9.2 Optical loss and optical dispersion
 - 9.3 Optical Power Budgeting
 - 9.4 Time Budgeting (discussed later)

Wavelength Division Multiplex (WDM) Systems

•A schematic of a simple DWDM System, and it has contained all necessary components

Multiple channel signals can be carried over a single optical fibre without interference, each using an individual wavelength

Optical Fibre

- Two key issues optical loss and optical dispersion
- Single mode fibres are used in DWDM networks to achieve a high total capacity
- Minimal loss can be obtained at ~1.55 μ m, very important for long distance communication
- Minimal dispersion can be obtained at ~1.3 μm

Optical Transmitter

Wavelength for optical source

The best wavelength is either 1.3 μ m or 1.55 μ m

- Optical source: a highly stabilized semiconductor emitter
 - i) Semiconductor LED: ~100nm
 - ii) Semiconductor LD:

$$BL \propto rac{L}{\Delta au} = rac{L}{L\Delta \lambda D} = rac{1}{\Delta \lambda D}$$

 $\Delta \tau = \mathbf{L} \Delta \lambda \mathbf{D}$

Allow for modulation of light source at a very high bit rate

Narrow line width: minimising dispersion,

Fabry-Perot Laser: ~ 1nm

DFB Laser: ~ 0.0001nm

VCSEL laser: <1 nm

Modulation Characteristics

LD – fast – if modulated above threshold LED – slow –spontaneous recombination

$$\begin{split} f \sim & 1/\tau_{stim}, & \tau_{stim} \sim & 10 ps, & f \sim & 100 GHz \\ f \sim & 1/\tau_{spon}, & \tau_{spon} \sim & 10 ns, & f \sim & 100 MHz \end{split}$$

Optical Receivers

High Sensitivity – Low noise

$$L_{\max} = \frac{10}{\alpha} \log(\frac{p_i}{N_p Bhc/\lambda})$$

$$BER = \frac{1}{2} \left[1 - erf\left(\frac{1}{2\sqrt{2}} \frac{S}{N}\right) \right]$$

- Speed limited by depletion region width and area of photo-detector
- Optical receivers have to be operated at high frequencies.
- (i) PIN photodiodes; or (ii) avalanche photo Diodes (APD) are typical optical receivers

Optical Amplifiers

- •Introduction of optical amplifiers has led to the 4th generation of optical communication systems.
- •By using an optical amplification scheme the total capacity of optical communication systems was tremendously increased.
- •Different optical amplification schemes are known. However, the most important optical amplifier is based on EDFA operating at a wavelength range of 1.55 um
- OAs can only amplify intensity, but cannot compensate for dispersion.
- Amplifiers can be used (i) prior to receivers to boost sensitivity
 (Receive Pre-amplification); (ii) after transmitter to boost power
 (Power amplification; (iii) in between instead of regenerators (In-line amplification)

Optical Dispersion(1)

Main mechanisms for optical dispersion:

- 1) Material dispersion
- 2) Wave guide dispersion
- 3) Modal dispersion: does not occur in single mode fibres

Optical Dispersion(2)

Material dispersion

A pulse consisting of different wavelengths each travelling at different speeds.

The spreading of the pulse due to material dispersion: (D_m: dispersion coefficient of material)

$$\Delta \delta = |D_m| \bullet \Delta \lambda \bullet L$$

Wave guide dispersion

Different refractive indices in the core and the cladding layers leads to a different propagation speed in the core and the cladding.

The spreading of the pulse due to waveguide dispersion: $\Delta \delta = |D_w| \cdot \Delta \lambda \cdot L$ (D_w: dispersion coefficient of waveguide)

$$\Delta \delta = |D_w| \bullet \Delta \lambda \bullet L$$

In both cases, optical broadening is related to the linewidth of optical source

Dispersion Limits

For a Gaussian pulse,

B: Bit-rate; L: distance

$$BL \propto \frac{L}{\Delta \tau}$$

$$\Delta \tau = \mathbf{L} \Delta \lambda \mathbf{D}$$

B (Chi+)

• For a fibre link, a maximum pulse broadening of 50% of a bit slot is permitted. $D_{total}(\lambda)=15$ ps/nm.km; A FP Laser $\Delta\lambda=1$ nm is used

$$BL = \frac{0.5}{\Delta \tau} L$$

Therefore, (1) $\Delta\lambda$ D_{total}(λ) = 15 ps/km; (2) BL ~33.3x10⁹ km/s

Want B in GBit (10⁹) and L in km (10³) So BL≤33.3 (Gbit/s.km)

ם (שטונ)	Distance (Kill)
0.01	3330
0.1	333
1	33.3
10	3.33
100	0.333
1000	0.0333

Distance (km)

• High bit-rate: sacrificing distance

Long distance: sacrificing bit-rate

Optical Power budget-1

The overall attenuation: the sum of the actual fibre attenuation plus the attenuation due to fibre connectors and fibre splices

Optical gain: Due to optical amplifiers

Attenuation and gain: expressed in terms of per kilometer:

Tx power - total loss+ amplification = margin + Rx sensitivity

- Optical power of the transmitter: -3dBm (0.5mW)
- Receiver sensitivity: -39.5dBm (112nW).

The system has a power budget of 36.5dB.

Overall loss:

14.5 + 14.8 + 15.9 + 13.1 + 18.1 + 8.4 = 84.8 (dB)

Overall amplification due to OAs:

$$9.9 + 12 + 11.6 + 7.0 + 11.5 = 52(dB)$$

- •This corresponds to a total loss of the system of 32.8dB which is smaller than the power budget
- •we get a margin of 3.7dB.

System Example

Single Mode Silica Fibre

Operating wavelength 1.55 μm at which wavelength D = 15 ps/nm.km α =0.2dB/km

Transmitter Fabry Perot laser

Launches 2dBm of power in fibre $\Delta\lambda$ =1nm

Detector

p-i-n photodiode
Time averaged optical power
to measure a bit as a function of
Bit-rate is shown in the graph

Loss Limits

Tx power - total loss+ amplification = margin + Rx sensitivity

```
@ < 0.01 \text{ Gbit/s Loss} + \text{Margin} = 62 \text{dBm} \rightarrow 310 \text{km (zero margin), 280 km (6 dB margin)}

@ 0.1 \text{ Gbit/s Loss} + \text{Margin} = 47 \text{dBm} \rightarrow 235 \text{ km (zero margin), 205 km (6 dB margin)}

@ 1 \text{ Gbit/s Loss} + \text{Margin} = 32 \text{dBm} \rightarrow 160 \text{ km (zero margin), 130 km (6 dB margin)}

@ 10 \text{ Gbit/s Loss} + \text{Margin} = 17 \text{dBm} \rightarrow 85 \text{ km (zero margin), 55 km (10 dB margin)}

@ 100 \text{ Gbit/s Loss} + \text{Margin} = 2 \text{dBm} \rightarrow 10 \text{ km (zero margin),}
```

Transmitter launches 2dBm of power

T9 Summary

Complex interplay between fibre dispersion and loss characteristics as a fn of wavelength and transmitter and receiver performance.

Required data rate, bit error rate, and link length will typically determine the wavelength of operation and result in either loss or dispersion being a limiting factor.

This in turn will determine the use of amplifiers or regenerators for long link lengths.

T9 Tutorial Questions

- T9.1 Sketch the loss and dispersion as a function of wavelength for a typical single mode fibre indicating key wavelengths
- T9.2 Define limits for a loss limited system, and a dispersion limited system

T9 Tutorial Questions

T9.3 An optical fibre link consists of a transmitter, a single mode optical fibre and a photodetector. The transmitter operates at 1.55 μ m, has a linewidth $\Delta\lambda$ of 1nm, launches a power Pmax = 10mW into the fibre, and transmits digital pulses with a 1:1 mark:space ratio at a rate of 1 Gbits/s. The fibre has a total optical loss (fibre only) α of 0.2 dB/km and a dispersion coefficient D of 15 ps/(km.nm). The detector detects all light which reaches the end of the link and requires a minimum power of Pmin = 0.1mW at this bit rate. Calculate the maximum length of the link if no margin is required for the system. Describe any assumptions made. If a margin of 18 dB is required for the system, calculate the maximum transmission distance.