Detection of Correlation Reversal Manipulation via Benford's Law and Random Forest

Benford's Law (Statistical Analysis)

From a given data:

"The more horsepower we have, the more miles per gallon we get."

Q: Is this true?

Random Forest (Machine Learning)

Poj Netsiri 2025

Using Benford's Law to Detect Manipulation

Chi-square = 74.3017, p-value = 0.0000000000006

Criteria: Chi-square > 30.58 and p < 0.0001

Classified as **manipulated** (anomaly and extreme)

Using Random Forest to Detect Manipulation

Using Benford's Law to Detect Correlation Reversal

Using Random Forest to Detect Correlation Reversal

Evaluation of Random Forest Classifier and Regressor

```
=== Random Forest Classification Evaluation ===
    precision recall f1-score support

0 0.83 1.00 0.91 5
1 1.00 0.88 0.93 8
```

=== Random Forest Regression Evaluation ===

R² Score : 0.6643

Mean Squared Error : 4.1079

Mean Absolute Error: 1.7576

Conclusion

- 1. Benford's law can detect data manipulation and correlation reversal.
- 2. Random Forest Algorithm can also detect data manipulation and correlation reversal.
- 3. Random Forest could approximate original data better than Benford's law (84% vs. 45%).
- 4. The original data was manipulated to show positive correlation between HP and MPG while still p < 5%.