Nhận xét Bài kiểm tra giữa kỳ

Toán rời rạc (MAT3500 2, 2022-2023)

Hoàng Anh Đức BMTH, ĐHKHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

Ngày 31 tháng 3 năm 2023

• Với bài số 1,

- Một số bạn vẫn sai khi lập bảng chân trị ở phần (a).
- Một số bạn ở phần (b) chỉ đưa ra mệnh đề lôgic mà không giải thích gì thêm là tại sao bạn có mệnh đề đó.
- Một số bạn sử dụng các dấu + và trong bảng chân trị thay vì T và F . Mình đề nghị các bạn dùng T và F .
- Một số bạn viết $p \oplus \neg q$ và $p \to q$ dưới dạng các biểu thức chỉ sử dụng \neg , \wedge , \vee và sau đó lấy \wedge của hai biểu thức. Ý tưởng này không có vấn đề gì. Tuy nhiên, một số bạn viết $p \oplus \neg q \Leftrightarrow (\neg p \vee \neg q) \wedge (q \vee p)$, và điều này là không chính xác (lấy $p = \mathsf{F}$ và $q = \mathsf{F}$ thì vế trái là T và vế phải là F, do đó chúng không tương đương lôgic).

• Với bài số 2,

- Một số bạn viết "Với n=4, ∃(a,b)=(0,2) sao cho n=2a+5b". Chú ý rằng nếu bạn viết như trên thì a=0 và b=2, và do đó $n=2\times 0+5\times 2=10$ chứ không phải 4.
- Một số bạn vẫn không nắm được cách chứng minh bằng phương pháp quy nạp. Các bạn nên xem lại vì đây là kiến thức cơ bản.
- Một số bạn viết giả thiết quy nạp là k=2x+5y với $x\geq 2$. Tại sao các bạn có thể giả thiết như vậy? Cần xem lại phương pháp quy nạp.
- Một số bạn chứng minh bằng cách xét n chẵn và n lẻ $(n \ge 4)$. Nếu n chẵn thì chọn b=0 và theo định nghĩa của n luôn tồn tại a sao cho n=2a. Nếu n lẻ thì chọn b=1 và luôn tồn tại a sao cho n=2a+5=2(a+2)+1 với mọi $n\ge 4$. Một số bạn trong trường hợp n lẻ viết n=2k+1 với $k\ge 2$ mà không giải thích tại sao có $k\ge 2$? Về mặt ý tưởng giải bài, các bạn có thể làm như trên, nhưng cần cẩn thận khi lý luận và xét các trường hợp.
- Một số bạn chứng minh bằng quy nạp và ở bước quy nạp giả thiết P(k) đúng và chứng minh P(k+1) đúng bằng cách xét các trường hợp k chẵn và k lẻ. Nếu k=2a+5b lẻ thì b lẻ và do đó tồn tại v sao cho b=2v+1. Suy ra k+1=(2a+5b)+1=2a+5(2v+1)+1=2a+10v+6=2(a+3)+5(2v), và do đó P(k+1) đúng. Nếu k=2a+5b chẵn thì b chẵn và do đó b=2i với b=1, suy ra b=10 thể các bạn có thể giả thiết b=11? Nếu b=12 thì có được không? Về mặt ý tưởng giải bài, các bạn có thể làm như trên, nhưng cần cẩn thận khi lý luận và xét các trường hợp.
- Một số bạn chứng minh bằng quy nạp mạnh và ở bước quy nạp giả thiết P(j) đúng với $4 \le j \le k$ và chứng minh P(k+1) đúng bằng cách xét các trường hợp k+1 chẵn và k+1 lẻ. Với k+1 chẵn thì k+1=2i với số nguyên i nào đó thỏa mãn $4 \le i \le k$. Theo giả thiết quy nạp i=2a+5b với các số nguyên không âm a,b nào đó, và do đó k+1=2i=2(2a+5b)=2(2a)+5(2b). Với k+1 lẻ

- thì k+1=i+j với i chẫn, j lẻ, và $4\leq i\leq k$ và $4\leq j\leq k$. Theo giả thiết quy nạp, $i=2a_1+5b_1$ và $j=2a_2+5b_2$ với các số nguyên không âm a_1,a_2,b_1,b_2 và do đó $k+1=2(a_1+b_1)+5(a_2+b_2)$. Tuy nhiên, lý luận của bạn liệu có đúng với k=4? Nếu k=4 thì k+1=5 và theo lý luận trên, 5=k+1=i+j với $4\leq i\leq 5$ và $4\leq j\leq 5$. Điều này có đúng không?
- Một số bạn lý luận rằng với mọi $n \ge 4$ và $a, b \ge 0$, nếu n lẻ thì (*) n 5b với b là số lẻ luôn là một số chẵn và nếu n chẵn thì (**) n 5b với b là số chẵn luôn là một số chẵn. Liệu (*) và (**) có đúng khi n < 5b? (Chú ý rằng ở đây các bạn không chỉ ra cách lựa chọn b như thế nào, nghĩa là tôi có thể chọn b sao cho n < 5b thỏa mãn. Lúc này 2a = n 5b < 0 và do đó a < 0, trái với giả thiết của các bạn rằng $a \ge 0$.) Về mặt ý tưởng giải bài, các bạn có thể làm như trên, nhưng cần cẩn thận khi lý luận và xét các trường hợp.
- Một số bạn chứng minh bằng quy nạp yếu, ở bước cơ sở kiểm tra cho $P(4), \ldots, P(7)$ và ở bước quy nạp giả thiết k=2a+5b và chứng minh $k+1=2a_1+5b_1$ như sau. Với $b\geq 1$ và $a\geq 0$, chọn $a_1=a+3$ và $b_1=b-1$. Với $b\geq 0$ và $a\geq 2$, chọn $a_1=a-2$ và $b_1=b+1$. Các bạn chú ý rằng ở bước quy nạp cần giả thiết $k\geq 7$. Thêm vào đó, cần xét trường hợp b=0, a=1 và b=0, a=0, mặc dù các trường hợp này không thỏa mãn giả thiết $k\geq 7$ nhưng bạn cần chỉ rõ điều này dễ thấy là tất cả các trường hợp đều được xét.
- Một số bạn ở bước quy nạp giả sử k=2a+5b và viết k+1=2(a-2)+5(b+1) nhưng không xét điều kiên $a-2 \ge 0$.

• Với bài số 3,

- Phần lớn các bạn đều làm được câu (a).
- Ở câu (b), một số bạn "đoán" công thức tổng quát là $a_n = 3^n (-2)^n$ và chứng minh công thức đúng bằng quy nạp. Làm sao các bạn đoán được?

• Với bài số 4,

- Nhiều bạn chỉ viết "chọn C=..., k=...". Ở đây C,k là gì? Các bạn cần viết rõ ràng ra. Một số bạn viết là chọn C và k nhưng hoàn toàn không hiểu các hằng số này là gì. Nhiều bạn viết là chọn C và k sau đó viết ra bất đẳng thức và không nói gì thêm. Làm sao với C và k các bạn đã chọn mà các bạn có bất đẳng thức như vậy? Các bạn cần chứng minh.
- \mathring{O} câu (b), một số bạn viết (3n)! = 3!n!. Điều này không chính xác.
- Ở các câu (b) và (c), một số bạn chỉ viết "Ta thấy $(3n)!>6^n\forall n>3$ " và "Ta thấy $\forall n>3$ thì $\frac{2n^3+6n^2+4n}{6}< n^3$ " và không giải thích gì thêm? Những điều này không hoàn toàn hiển nhiên. Các bạn làm sao để "thấy" được?
- Ở câu (b), một số bạn viết $(3n)!=1(2\cdot 3)\dots((3n-2)\cdot (3n-1))(3n)$ và nói rằng tích này có $\frac{3n-2}{2}$ cặp và do đó $(3n!)\geq 6\frac{3n-2}{2}\geq 6n$ với $n\geq 6$ do $\frac{3n-2}{2}\geq n$ với $n\geq 6$. Trước tiên, nếu n lẻ, $\frac{3n-2}{2}$ không là số nguyên, do đó số "cặp" các bạn đề cập đến là không chính xác. Thêm nữa, ta cần chứng minh với 6^n chứ không phải 6n. Cuối cùng, dánh giá của các bạn có chính xác không? Một số bạn viết ra được $(3n)!\geq 6^{\frac{3n-2}{2}}$ nhưng không lý luận được tiếp.
- Ở câu (b), một số bạn chứng minh $(3n)! \ge 6^n$ bằng cách xét hai trường hợp n chẵn và n lẻ. Với n chẵn, $(3n)! = 1 \cdot (2 \cdot 3) \dots ((3n-2) \cdot (3n-1)) \cdot 3n$ và lý luận rằng có (3n-2)/2 tích $(2 \cdot 3), \dots, ((3n-2) \cdot (3n-1))$, suy ra $(3n)! \ge 6^{\frac{3n-2}{2}} > 6^n$ với mọi n > 5. Với n lẻ, $(3n)! = 1 \cdot (2 \cdot 3) \dots ((3n-1) \cdot (3n))$ và lý luận rằng có (3n-1)/2 tích $(2 \cdot 3), \dots, ((3n-1) \cdot (3n))$, suy ra $(3n)! \ge 6^{\frac{3n-1}{2}} > 6^n$ với mọi n > 5.
- Một số ban chứng minh $(3n)! > 6^n$ ở câu (b) bằng quy nap.