Aufgabensammlung

Aufgabe 1

Erläutern Sie den Unterschied zwischen Modell- und Hyperparametern.

Aufgabe 2

Erläutern Sie die Begriffe Supervised und Unsupervised Learning.

Aufgabe 3

Definieren Sie den Begriff Feature Space.

Aufgabe 4

Nennen Sie die Formel der linearen Regression mit Polynom-Trick vom Grad 2 für die Eingabe $x \in \mathbb{R}^2$.

Aufgabe 5

Beschreiben Sie den Unterschied zwischen *Hard-Margin-* und *Soft-Margin-Classifier* in Bezug auf eine *Support Vector Machine (SVM)*. Welche Konsequenzen hat die Wahl des einen oder anderen für ihre Machine-Learning-Anwendung?

Aufgabe 6

Nennen Sie die Formel zur Vorhersage eines Datenpunktes $x \in \mathbb{R}^2$ mittels einer *Support Vector Machine (SVM)*.

Zeichnen Sie im *Feature Space* die *Entscheidungsgrenze* (*Decision Boundary*) des abgebildeten Entscheidungsbaums ein. Welcher Klasse wird der Datenpunkt mit den Merkmalen *petal length*=4.9 und *petal width*=1.73 zugewiesen?

Zeichnen Sie hier Ihre Lösung ein:

Aufgabe 8

Erläutern Sie die Schritte, die der Algorithmus *CART (Classification and Regression Trees)* durchläuft, um den nächsten Split eines *Decision Trees* zu finden.

Erläutern Sie wieso für einen Random Forest unkorrelierte Entscheidungsbäume benötigt werden.

Aufgabe 10

Nennen und beschreiben Sie zwei Maßnahmen, mit denen sichergestellt werden soll, dass für einen *Random Forest* unkorrelierte Bäume trainiert werden.

Aufgabe 11

Gegeben sei das folgende Datenset. Transformieren Sie die Daten in einen für das Training maschineller Lernverfahren geeigneten *Feature Space*. Beschreiben Sie ihr Vorgehen unter Benennung der durchgeführten Transformationen.

Alter (Jahre)	Einkommen (€)	Bildungsabschluss	Kredit (Label)
47	60k	M.Sc.	1
19	5000,00 €	Abitur	0
-	43000,00 €	B.Sc.	0
25	39000,00 €	M.Sc.	1
31	80000,00 €	M.Sc.	-

Gegeben seien die Ergebnisse einer Evaluierung verschiedener Machine Learning Modelle für die Prognose über eine Corona-Infektion. Für welches Modell würden Sie sich entscheiden? Begründen Sie Ihre Wahl.

Modell 1 Accuracy: 0,90

Patient (Zeile)/ Prediction (Spalte)	0	1
0	81	0
1	9	0

Modell 2 Accuracy: 0,80

Patient (Zeile)/ Prediction (Spalte)	0	1
0	67	14
1	4	5

Modell 3 Accuracy: 0,74

Patient (Zeile)/ Prediction (Spalte)	0	1
0	58	23
1	0	9

Aufgabe 13

Beschreiben Sie die Schritte, die zur Durchführung der *Principal Component Analysis (PCA)* notwendig sind, um die n Hauptkomponenten eines Datensets zu bestimmen.

Die Abbildung zeigt einen Ausschnitt aus dem MNIST-Datenset, welches mithilfe des Algorithmus t-Stochastic Neighbourhood Embedding auf zwei Dimensionen reduziert wurde. Welche Aussage können Sie über die Datenpunkte x_1 und x_2 treffen? Welche Bedeutung hat der Abstand zwischen x_3 und x_4 ? Begründen Sie Ihre Aussage anhand der Funktionsweise des t-SNE-Algorithmus.

Aufgabe 15

Das abgebildete Datenset soll mithilfe des k-Means-Algorithmus gruppiert werden. Halten Sie diese Wahl für sinnvoll? Begründen Sie Ihre Antwort unter Einbeziehung der Funktionsweise von k-Means und verschiedener Werte für den Hyperparameter k.

Wenden Sie den Algorithmus *Agglomerative Clustering* mit dem Unähnlichkeitsmaß *Single Linkage* (mit euklidischer Distanz) auf den gegebenen Datensatz an und vervollständigen Sie das zugehörige Dendogramm.

Aufgabe 17

Wieviele Modell-Paramter hat das abgebildete Neuronale Netz?

Bestimmen Sie den Gradient $\frac{\partial L}{\partial \omega}$ der Kostenfunktion L an der Stelle x_i . Gehen Sie dabei analog zur Backpropagation vor und notieren Sie die Zwischenschritte im gegebenen Berechnungs-Graph.

$$x_i = (1, 3), y_i = 2.3, \omega = (0.1, 0.1, 0.1)$$

$$f(x) = \omega_0 x_1^2 + \omega_1 x_2^2 + \omega_2 x_1 x_2$$

$$L = \frac{1}{N} \sum_{i=1}^{N} \left(y - f(x) \right)^2$$

$$\frac{\partial L}{\partial \omega_0} =$$

$$\frac{\partial L}{\partial \omega_1} =$$

$$\frac{\partial L}{\partial \omega_2} =$$

Führen Sie eine *Convolution* auf dem Bild unter Anwendung des gegebenen *Kernels* durch. Gehen Sie dabei von einem *Zero-Padding* von 1 entlang jeder Dimension und einer Schrittweite (*stride*) von ebenfalls 1 in jede Richtung aus.

	Kernel	
0	-1	0
-1	4	-1

-1

0

0	0	1	1	0
0	1	1	1	0
1	1	1	1	0
0	0	1	1	0
0	0	1	1	0

Bild

Ergebnis

Aufgabe 20

0

Wenden Sie ein 2x2 Max-Pooling auf das gegebene Bild mit einer Schrittweite (stride) von 2 in jede Richtung an.

7	3	8	0
5	5	9	0
5	5	1	10
3	4	0	0

