Machine Learning Homework 1

RAPPAPORT Gabrielle

September 14, 2019

1 Question 1

We are given the following constraints:

$$\forall i \in \{1, ..., n\}, a_i^T x \ge b_i$$

We assume that:

$$\exists M : a_i^T x \geq M \text{ and } \forall i \in \{1, ..., n\}, b_i \geq M$$

We want to model the requirement that at least k of the constraints are satisfied. Let's introduce the binary variable:

$$\forall i \in \{1, ..., n\}, y_i \in \{0, 1\} \text{ such as } \sum_{i=1}^n y_i \le k$$

We can reformulate our constraints as:

$$\forall i \in \{1, ..., n\}, a_i^T x \ge b_i (1 - y_i) + M.y_i$$

This means that:

$$y_i = 0 \Rightarrow a_i^T x \ge b_i$$
, the i^e constraint is satisfied $y_i = 1 \Rightarrow a_i^T x \ge M$, the i^e constraint is not satisfied

Finally, we obtain the following model:

$$a_i^T x \ge b_i (1 - y_i) + M.y_i, \forall i \in \{1, ..., n\}$$

$$\sum_{i=1}^n \le k$$

$$y_i \in \{0, 1\}$$

2 Question 2

2.1 Question a

We want to solve the classical least square problem:

min
$$\sum_{i=1}^{n} (y_i - \beta_0 + \beta^T . x_i)^2$$

We name β_0^* and β^* the optimal solutions.

To solve this problem, we will use the matrix representation. We name :

$$\overline{\beta} = \begin{pmatrix} \beta_0 * \\ \beta^* \end{pmatrix}$$
 and $\overline{X} = \begin{pmatrix} 1 & x_1 & \cdots & x_d \end{pmatrix}$

Which give us the equivalent problem:

$$\sum_{i=1}^{n} (y_i - \beta_0 - \beta^{\top} x_i)^2 = \|y - \overline{X} \cdot \overline{\beta}\|_2^2$$
$$= (y - \overline{X} \overline{\beta})^{\top} (y - \overline{X} \overline{\beta})$$

To find the minimum we find B which cancels the derivative.

$$\begin{split} &\frac{\partial}{\partial\overline{\beta}} \left\{ (y - \overline{X}\overline{\beta})^{\top} (y - \overline{X}\overline{\beta}) \right\} \\ &= \frac{\partial}{\partial\overline{\beta}} \left\{ (y^{\top} - (\overline{X}\overline{\beta})^{\top}) (y - \overline{X}\overline{\beta}) \right\} \\ &= \frac{\partial}{\partial\overline{\beta}} \left\{ y^{\top} y - y^{\top} \overline{X}_{\overline{\beta}} - (\overline{X}\overline{\beta})^{\top} y + \overline{\beta}^{\top} \overline{X}^{\top} \overline{X}\overline{\beta} \right\} \\ &= -2 \overline{X}^{\top} y + 2 \overline{X}^{\top} \overline{X}\overline{\beta} \\ &= -2 \overline{X}^{\top} (y - \overline{X}\overline{\beta}) \end{split}$$

Then:

$$-2\overline{X}^{\top}(y - \overline{X}\overline{\beta}) = 0 \Leftrightarrow \beta = \left(\overline{X}^{\top}\overline{X}\right)^{-1}\overline{X}^{T}y$$

2.2 Question b

We want to solve the following problem effectively:

$$\min \sum_{n=1}^{m} \left| y_i - \beta_0 - \beta^\top x_i \right|$$

Since we are adding positive elements, we know that:

$$\min \sum_{n=1}^{m} |y_i - \beta_0 - \beta^{\top} x_i| = \sum_{i=1}^{m} \min |y_i - \beta_0 - \beta^{\top} x_i|$$

We know that:

$$\min |y_i - \beta_0 - \beta^\top x_i| \Leftrightarrow$$

$$\min z_i$$
s.t.
$$\begin{vmatrix} z_i \ge y_i - \beta_0 - \beta^\top x_i \\ z_i \ge -y_i + \beta_0 + \beta^\top x_i \end{vmatrix}$$

This finally gives us the linear program, which is the most efficient way to solve the problem :

$$\min \sum_{i=1}^{n} z_{i}$$
s.t.
$$\begin{vmatrix} z_{i} \geq y_{i} - \beta_{0} - \beta^{\top} x_{i}, \ \forall i \\ z_{i} \geq -y_{i} + \beta_{0} + \beta^{\top} x_{i}, \ \forall i \end{vmatrix}$$

2.3 Question c

In this question, we want to model that at most k of the d coefficient $\beta_1, ..., \beta_d$ have non zero values.

To do so, we will use the big-M method. We introduce, a constant M big enough and new binary variables a_i such as:

$$\beta_i \neq 0 \Rightarrow a_i = 0$$

We obtain the following linear problem:

$$\min \sum_{i=1}^{n} z_{i}$$
s.t.
$$z_{i} \geq y_{i} - \beta_{0} - \beta^{\top} x_{i}, \forall i$$

$$z_{i} \geq -y_{i} + \beta_{0} + \beta^{\top} x_{i}, \forall i$$

$$\beta_{i} \leq M.a_{i}$$

$$\beta_{i} \geq -M.a_{i}$$

$$\sum_{i=1}^{d} a_{i} \leq k$$

$$a_{i} \in \{0,1\}, \forall i$$

2.4 Question d

We want to formulate the *Robust Linear Regression Problem* as an integer programming problem:

min Median(
$$|y_1 - \beta_0 - \beta^T x_1|, ..., |y_n - \beta_0 - \beta^T x_n|$$
)
where $n = 2k + 1$

Since the number of elements $|y_i - \beta_0 - \beta^T x_i|$ is odd, the median is $|y_{k+1} - \beta_0 - \beta^T x_{k+1}|$, therefore we want to minimize $c = |y_{k+1} - \beta_0 - \beta^T x_{k+1}|$.

It means that we want to minimize c such as c is bigger than the first k+1 elements. This gives us the following linear program :

$$\begin{aligned} & \text{min } c \\ & \text{s.t.} & \begin{vmatrix} c & & \geq h_i - M(1-z_i), \, \forall i \\ & h_i & & \geq y_i - \beta_0 - \beta^T x_i, \, \forall i \\ & h_i & & \geq -y_i + \beta_0 + \beta^T x_i, \, \forall i \\ & \sum_{i=1}^n z_i & = k & \text{ATTENTION : k+1 } -> \text{Les k+1 contraintes sont v\'erifi\'ees.} \\ & z_i \in \{0,1\}, \, \forall i \end{aligned}$$

3 Question 3

September 14, 2019

1 Exercice 3

```
[2]: #import Pkg
#Pkg.add("JuMP")
#Pkg.add("Gurobi")

using JuMP, Gurobi, DataFrames, CSV, Random, LinearAlgebra

[3]: #using Pkg
#Pkg.add("PyPlot")
using PyPlot
```

2 Question a

• Model for the l0-regularization

- [4]: regularized_regression_10 (generic function with 1 method)
 - Model for the l1-regularization

- [6]: regularized_regression_l1 (generic function with 1 method)
 - Model for the l2-regularization

```
[7]: function regularized_regression_12(y, X, ρ)

M = 10000

n,m = size(X)
model = Model(solver = GurobiSolver(TimeLimit=45))

@variable(model, β[1:m])

@objective(model, Min, sum((y - X*β).^2) + ρ*sum(β.^2))

sol = solve(model)

return (getobjectivevalue(model), getvalue(β))
end
```

[7]: regularized_regression_12 (generic function with 1 method)

2.1 Question b

```
[]: sparseX2 = CSV.read("sparseX2.csv")
sparseY2 = CSV.read("sparseY2.csv")
```

Creation of the validation, training and testing sets.

```
[9]: function split_data(X, y, val, test)
        n = size(X, 1)
        index = shuffle([i for i in 1:n])
        size_validation = floor(Int,val*n)
        size_test = floor(Int,(val+test)*n)
        ind_validation = index[1:size_validation]
        ind_test = index[size_validation+1:size_test]
        ind_train = index[size_test+1:n]
        X_validation = X[ind_validation, :]
        X_test = X[ind_test, :]
        X_train = X[ind_train, :]
        y_validation = y[ind_validation, :]
        y_test = y[ind_test, :]
        y_train = y[ind_train, :]
       return (
            convert(Matrix, X_validation),
            convert(Matrix, X_test),
            convert(Matrix, X_train),
            convert(Matrix, y_validation),
            convert(Matrix,y_test),
            convert(Matrix,y_train)
   end
```

[9]: split_data (generic function with 1 method)

```
[]: (
    X_validation,
    X_test,
    X_train,
    y_validation,
    y_test,
    y_train
) = split_data(sparseX2, sparseY2, 0.25, 0.25)
```

We choose ρ as the value that gives the best mean squared prediction error on the validation set.

```
[12]: function mean_square_error(y_actual, y_predicted)
    return sum((y_actual - y_predicted).^2)
end
```

[12]: mean_square_error (generic function with 1 method)

```
[13]: function compute_error_10(\rho, X, y) objective, \beta = regularized_regression_10(y_train, X_train, \rho) error = mean_square_error(y, X * \beta) return error end
```

[13]: compute_error_10 (generic function with 1 method)

```
[14]: function compute_error_l1(\rho, X, y) objective, \beta = regularized_regression_l1(y_train, X_train, \rho) error = mean_square_error(y, X * \beta) return error end
```

[14]: compute_error_l1 (generic function with 1 method)

```
[15]: function compute_error_12(\rho, X, y) objective, \beta = regularized_regression_12(y_train, X_train, \rho) error = mean_square_error(y, X * \beta) return error end
```

[15]: compute_error_12 (generic function with 1 method)

```
[]: \rho_{-10} = \text{vcat}([0.001, 0.01, 0.1], [i \text{ for } i=1:30])

\text{errors}_{-10} = \text{zeros}(\text{length}(\rho_{-10}))

for i in 1:length(errors_{-10})

\text{errors}_{-10}[i] = \text{compute}_{-10}[i], X_{-10}[i], X_{-10}[i]

end
```

[17]: plot(ρ_10 , errors_10)


```
[43]: \rho_{\text{optimal}} = \rho_{12} [\text{argmin(errors}]
```

Academic license - for non-commercial use only

[43]: 4.0

Compute $||y - X\beta||^2$ on the testing set using the β 's from l0-regularized, l1-regularized linear regression, l2- regularized linear regression, and standard linear regression ($\rho = 0$)

```
[50]: 10\_error = compute\_error\_10(\rho\_optimal\_10, X\_test, y\_test)
```

```
Optimize a model with 200 rows, 200 columns and 400 nonzeros
Model has 5050 quadratic objective terms
Variable types: 100 continuous, 100 integer (100 binary)
Coefficient statistics:
 Matrix range
                   [1e+00, 1e+04]
                   [3e+00, 3e+02]
  Objective range
  QObjective range [2e-02, 3e+02]
  Bounds range
                   [1e+00, 1e+00]
                   [0e+00, 0e+00]
 RHS range
Found heuristic solution: objective 0.0000000
Presolve time: 0.00s
Presolved: 200 rows, 200 columns, 400 nonzeros
```

Presolved model has 5050 quadratic objective terms Variable types: 100 continuous, 100 integer (100 binary)

Root relaxation: objective -9.524350e+02, 981 iterations, 0.03 seconds

Nodes		Current	Node	le Objective Bounds		1	Work	
Expl Unexpl		Obj Dept	h Int	:Inf Incumben	t BestBd	Gap	It/Node	Time
0	0	-952.43503	0	78 0.00000	-952.43503	-	-	0s
H O	0			-309.6583805	-952.43503	208%	-	0s
H O	0			-413.9725003	-952.43503	130%	-	0s
0	0	-952.43503	0	78 -413.97250	-952.43503	130%	-	0s
Н О	0			-631.5297179	-952.43503	50.8%	-	0s
Н О	0			-631.8148568	-952.43503	50.7%	-	0s
0	2	-952.43503	0	78 -631.81486	-952.43503	50.7%	-	0s
H 744	552			-632.3423572	-884.06346	39.8%	27.2	1s
Н 2792	1173			-632.3758008	-847.67096	34.0%	28.1	3s
H 2810	1186			-632.4516075	-846.68895	33.9%	28.1	3s
Н 2816	1190			-633.1807952	-846.68895	33.7%	28.1	3s
5002	2258	-725.62254	28	75 -633.18080	-828.40078	30.8%	28.1	5s
Н 5971	2722			-633.3912979	-822.42464	29.8%	28.0	5s
12034	5283	-670.01060	32	72 -633.39130	-799.96555	26.3%	27.8	10s
H14090	6176			-633.5924643	-794.95228	25.5%	28.0	12s
17025	7198	-706.92109	28	77 -633.59246	-788.03072	24.4%	27.9	15s
24809	9817	-741.81739	26	79 -633.59246	-774.31503	22.2%	27.5	20s
H27145	10533			-633.6506843	-771.17807	21.7%	27.4	21s
31627	11967	-714.26739	27	74 -633.65068	-766.26198	20.9%	27.3	25s
39822	14334	-682.52802	28	69 -633.65068	-758.31175	19.7%	27.3	30s
H40251	14434			-633.9829945	-757.89283	19.5%	27.3	30s
H40311	14393			-634.6981061	-757.78877	19.4%	27.2	30s
47551	16181	-706.87827	30	75 -634.69811	-751.93922	18.5%	27.1	35s
54518	17681	-746.29602	27	78 -634.69811	-746.33075	17.6%	27.0	40s
61880	19284	-650.50638	34	68 -634.69811	-741.44961	16.8%	26.9	45s

Explored 62113 nodes (1674274 simplex iterations) in 45.00 seconds Thread count was 4 (of 4 available processors)

Solution count 10: -634.698 -633.983 -633.651 ... -631.815

Time limit reached

Best objective -6.346981061123e+02, best bound -7.413865505370e+02, gap 16.8093%

[U+250C] Warning: Not solved to optimality, status: UserLimit
[U+2514] @ JuMP /Users/gabriellerappaport/.julia/packages/JuMP/I7whV/src/solvers.

ightharpoolubers.iphi.212

[50]: 16.229156793039543

[53]: $|11_error = compute_error_11(\rho_optimal_11, X_test, y_test)$

Academic license - for non-commercial use only Optimize a model with 200 rows, 200 columns and 400 nonzeros Model has 5050 quadratic objective terms Coefficient statistics:

[1e+00, 1e+00] Matrix range Objective range [3e+00, 3e+02] QObjective range [2e-02, 3e+02] Bounds range [0e+00, 0e+00] RHS range [0e+00, 0e+00]

Presolve removed 100 rows and 0 columns

Presolve time: 0.00s

Presolved: 100 rows, 200 columns, 200 nonzeros Presolved model has 5050 quadratic objective terms

Ordering time: 0.00s

Barrier statistics:

Free vars : 199

AA' NZ : 9.900e+03 Factor NZ : 1.219e+04

Factor Ops: 1.092e+06 (less than 1 second per iteration)

Threads

	Obje	Resid	dual			
Iter	Primal	Dual	Primal	Dual	Compl	Time
0	2.14000000e+06	0.0000000e+00	0.00e+00	2.12e+03	1.01e+06	0s
1	2.07540565e+06	-9.51734680e+02	2.95e-07	2.12e-03	1.04e+04	0s
2	2.20304958e+03	-9.51573018e+02	1.57e-10	1.10e-06	1.58e+01	0s
3	-7.31306591e+02	-8.85413674e+02	2.99e-09	1.22e-07	7.71e-01	0s
4	-8.25442948e+02	-8.40833167e+02	4.43e-10	2.05e-08	7.70e-02	0s
5	-8.35758966e+02	-8.37264584e+02	1.84e-10	2.22e-09	7.53e-03	0s
6	-8.36690413e+02	-8.36776719e+02	2.40e-10	2.70e-09	4.32e-04	0s
7	-8.36734721e+02	-8.36739711e+02	2.97e-10	4.46e-09	2.49e-05	0s
8	-8.36736224e+02	-8.36736451e+02	1.49e-10	1.39e-09	1.13e-06	0s
9	-8.36736252e+02	-8.36736254e+02	1.53e-11	2.18e-10	5.73e-09	0s

Barrier solved model in 9 iterations and 0.02 seconds Optimal objective -8.36736252e+02

[53]: 20.376884563437116

[47]: $12_{\text{error}} = \text{compute_error_}12(\rho_{\text{optimal_}}12, X_{\text{test}}, y_{\text{test}})$

Academic license - for non-commercial use only Optimize a model with 0 rows, 100 columns and 0 nonzeros Model has 5050 quadratic objective terms

Coefficient statistics:

Matrix range [0e+00, 0e+00]
Objective range [3e+00, 3e+02]
QObjective range [2e-02, 3e+02]
Bounds range [0e+00, 0e+00]
RHS range [0e+00, 0e+00]

Presolve time: 0.00s

Presolved: 0 rows, 100 columns, 0 nonzeros

Presolved model has 5050 quadratic objective terms

Ordering time: 0.00s

Barrier statistics:

Free vars : 199

AA' NZ : 4.851e+03 Factor NZ : 4.950e+03

Factor Ops: 3.284e+05 (less than 1 second per iteration)

Threads : 1

	Obje	Resid	dual			
Iter	Primal	Dual	Primal	Dual	Compl	Time
0	0.0000000e+00	0.0000000e+00	0.00e+00	2.40e+02	0.00e+00	0s
1	-2.79969317e+02	-2.54327433e+01	3.26e-08	2.00e+02	0.00e+00	0s
2	-5.91843984e+02	-1.50106285e+02	4.64e-08	1.43e+02	0.00e+00	0s
3	-8.22895664e+02	-4.23828169e+02	6.84e-08	7.68e+01	0.00e+00	0s
4	-9.16833998e+02	-9.16833396e+02	9.32e-08	7.70e-05	0.00e+00	0s
5	-9.16833985e+02	-9.16833985e+02	6.72e-14	7.72e-11	0.00e+00	0s

Barrier solved model in 5 iterations and 0.01 seconds Optimal objective -9.16833985e+02

[47]: 180.90945992777353

```
[64]: println(" 10 error: ", 10_error)
println(" 11 error: ", 11_error)
println(" 12 error: ", 12_error)
```

10 error: 16.229156793039543 rho = 3, error 42

11 error: 20.376884563437116 ordinary least square: rho

12 error: 180.90945992777353 = 0 baseline: avg(concat (train validation)