## Applied Mechanics Department S V National Institute of Technology, Surat.

## B.Tech – I – [Division G To K] ODD SEMESTER 2019-20 ENGINEERING MECHANICS

## Topic: CG & MI - TUTORIAL- 2

Q1. Locate the centroid of the homogeneous bent wire in figure.



**Q2.** Determine the centroid of the wire OABCDO bent into the shape shown in the figure.



Q3. Find the centroid of the following shaded plane areas shown in figure



**Q4.** Find the centroid of the following shaded plane areas shown in figure.



**Q5.** A plane lamina is hung freely from point D in figure. Find the angle made by BD with the verticals.



**Q6.** Locate centroid for the volume shown in figure. All dimensions are in cm.



Q7. Find position of centroid of a composite lamina, with respect to origin O as shown in figure.[Ans: x = 41.37 mm, y = 20.09 mm]



**Q8.** Find the M.I. about the centroid axis in figure.



Fig. 6.E5 [All dimensions are in mm]

18. 
$$\bar{x} = 5 \text{ mm}, \bar{y} = 55 \text{ mm},$$
  
 $I_{xx} = 3.12 \times 10^6 \text{ mm}^4 \text{ and}$   
 $I_{yy} = 0.526 \times 10^6 \text{ mm}^4.$ 

**Q9.** Find the M.I. about the centroidal axis in figure.



Fig. 6.E8 [All dimensions are in cm]

Q10. Find the M.I about the centroidal axis in figure.



Fig. 6.E11

[Ans. 
$$I_{xx} = 28.51 \text{ m}^4 \text{ and } I_{yy} = 23.757 \text{ m}^4$$
]

**Q11.** Find the moment of inertia of solids shown in figure with respect to XX, YY, ZZ axes. Assume  $\rho = 7850 \text{ kg/m}^3$ .[Ans: Ixx = 41.127 x 10<sup>6</sup> mm<sup>4</sup>, Iyy = 21.976 x 10<sup>6</sup> mm<sup>4</sup>, Izz = 55.917 x 10<sup>6</sup> mm<sup>4</sup>, Ixy = 15.730 x 10<sup>6</sup> mm<sup>4</sup>, Iyz = 8.642 x 10<sup>6</sup> mm<sup>4</sup>, Izx = 4.404 x 10<sup>6</sup> mm<sup>4</sup>]



**Q12.** Find the mass moment of inertia about 'AA' for the solid shown in figure. Assume  $\rho = 7850 \text{ kg/m}^3$ . [Ans:  $I_{AA} = 111.231 \times 10^6 \text{ mm}^4$ ]



Q13. Determine the mass moments of inertia of the composite shown below with respect to the respect to the coordinate axes. (Density of steel =  $7850 \text{ kg/m}^3$  and density of Aluminium =  $4000 \text{ kg//m}^3$ .)[Ans. Ix =  $33644 \text{ Kg.cm}^2$ , Iy =  $620.35 \text{ Kg.cm}^2$ , Iz =  $33644 \text{ Kg.cm}^2$ ]



**Q14.** Determine the polar M.I. of the shaded area in a figure with respect to and axis through the origin.[Ans.



Fig. 6.E10 [All dimensions are in cm]

Ans. 1336 cm<sup>4</sup>