Mathematics for Computer Science Linear Algebra

Lecture 20: General linear transformations

Andrei Krokhin

April 18, 2021

Linear maps

Definition

Let V and W be vector spaces. A function $T:V\to W$ is called a linear map, or a linear transformation from V to W if, for all $\mathbf{u},\mathbf{v}\in V,k\in\mathbb{R}$,

$$T(\mathbf{u} + \mathbf{v}) = T(\mathbf{u}) + T(\mathbf{v}) \text{ and } T(k\mathbf{u}) = k \cdot T(\mathbf{u}).$$

If V = W then T is called a linear operator on V.

Recall:

- The linear maps from \mathbb{R}^n to \mathbb{R}^m are precisely the matrix transformations, i.e. the maps of the form $T_A(\mathbf{x}) = A\mathbf{x}$, where A is an $m \times n$ matrix.
- ullet This can be generalised to all finite-dimensional vector spaces V and W.
- Key observation: if B = {v₁,..., v_n} is a basis in V and T is a linear map from V, then v = k₁v₁ + ... + k_nv_n implies T(v) = k₁T(v₁) + ... + k_nT(v_n). To rephrase: images of basis vectors uniquely determine a linear map.

Examples: inner product and evaluation maps

Let V be an inner product space. Fix any vector $\mathbf{v}_0 \in V$ and consider the map

$$T(\mathbf{x}) = \langle \mathbf{x}, \mathbf{v}_0 \rangle.$$

This is a linear map from V to \mathbb{R}^1 .

Indeed, the properties of inner product guarantee that

$$T(k\mathbf{u}) = \langle k\mathbf{u}, \mathbf{v}_0 \rangle = k\langle \mathbf{u}, \mathbf{v}_0 \rangle = kT(\mathbf{u}),$$

$$T(\mathbf{u} + \mathbf{v}) = \langle \mathbf{u} + \mathbf{v}, \mathbf{v}_0 \rangle = \langle \mathbf{u}, \mathbf{v}_0 \rangle + \langle \mathbf{v}, \mathbf{v}_0 \rangle = T(\mathbf{u}) + T(\mathbf{v}).$$

Consider the space $F(-\infty,\infty)$ of all functions from $\mathbb R$ to $\mathbb R$. Fix sample points x_1,\ldots,x_n and consider the (evaluation) map

$$T(f) = (f(x_1), \ldots, f(x_n)).$$

It is straightforward to check that this is a linear map from $F(-\infty,\infty)$ to \mathbb{R}^n .

Examples: differentiation and integration maps

Let $C^1(-\infty,\infty)$ be the space of all functions $f \in F(-\infty,\infty)$ with continuous first derivative f'. Then the following is a linear map from $C^1(-\infty,\infty)$ to $C(-\infty,\infty)$:

$$D(f) = f'$$
.

Indeed, by rules of differentiation, we have

$$D(f+g) = (f+g)' = f'+g' = D(f)+D(g)$$
 and $D(kf) = (kf)' = kf' = kD(f)$.

The following map from $C(-\infty,\infty)$ to $C^1(-\infty,\infty)$ is also linear:

$$J(f) = \int_0^x f(t) dt.$$

For example, if $f(x) = x^2$ then $J(f) = \int_0^x t^2 dt = \frac{t^3}{3} \Big|_0^x = \frac{x^3}{3}$.

The linearity of the map J follows immediately from the rules of integration.

Kernel and range of a linear map

Definition

If $T: V \to W$ is a linear map then

- the set $ker(T) = \{ \mathbf{x} \in V \mid T(\mathbf{x}) = \mathbf{0} \}$ is called the kernel of T, and
- the set $range(T) = \{ \mathbf{y} \in W \mid T(\mathbf{x}) = \mathbf{y} \text{ for some } \mathbf{x} \in V \}$ is the range of T.

Exercise: Prove that ker(T) is a subspace of V and range(T) is a subspace of W.

Example: For a matrix transformation $T_A : \mathbb{R}^n \to \mathbb{R}^m$,

- $ker(T_A)$ is the null space of A, and $dim(ker(T_A)) = nullity(A)$, and
- $range(T_A)$ is the column space of A, and $dim(range(T_A)) = rank(A)$.

Recall the dimension theorem for matrices:

• if a matrix A has size $m \times n$ then rank(A) + nullity(A) = n.

Theorem (Dimension theorem for linear maps)

For any linear map $T: V \rightarrow W$, if V is finite-dimensional then

$$dim(ker(T)) + dim(range(T)) = dim(V).$$

One corollary from the dimension theorem is this:

For any linear operator T on \mathbb{R}^n , TFAE:

- T is injective (equivalently, $ker(T) = \{0\}$),
- ② T is surjective, i.e. $range(T) = \mathbb{R}^n$.

Both conditions are equivalent to the invertibility of A, where A is s.t. $T = T_A$.

Consider the vector space \mathbb{R}^{∞} of all infinite sequences $(x_1, x_2, \dots, x_n, \dots)$.

Do the implications (1) \Rightarrow (2) and (2) \Rightarrow (1) hold for linear operators on \mathbb{R}^{∞} ?

No, consider the "shift" operators T_{ℓ} and T_r :

$$T_{\ell}(x_1, x_2, \dots, x_n, \dots) = (x_2, x_3, \dots, x_n, \dots)$$

 $T_{r}(x_1, x_2, \dots, x_n, \dots) = (0, x_1, x_2, \dots, x_n, \dots)$

Consider the differentiation map $D: C^1(-\infty,\infty) \to C(-\infty,\infty)$.

- What is ker(D)?
 We have D(f) = f' = 0 iff f is a constant function.
 Hence, ker(D) is the set of all constant functions.
 One basis of ker(D) is {1}, the constant function f(x) = 1.
- What is range(D)?

 We know from calculus that, for any function $f \in C(-\infty, \infty)$, we have

$$\frac{d}{dx}\int_0^x f(t)\,dt = f(x).$$

Hence, each function $f \in \mathcal{C}(-\infty, \infty)$ can be represented as

$$f = D(g)$$
 where $g(x) = \int_0^x f(t) dt$, i.e. $g = J(f)$.

So, $range(D) = C(-\infty, \infty)$.

Eigenvalues and eigenvectors

Definition

Let T be a linear operator on a vector space V. A non-zero vector $\mathbf{v} \in V$ is called an eigenvector of T if $T(\mathbf{v}) = \lambda \mathbf{v}$ for some scalar λ . In this case, λ is called an eigenvalue of T and \mathbf{v} is an eigenvector corresponding to λ .

Example: Let $C^{\infty}(-\infty,\infty)$ be the space of all infinitely differentiable functions (i.e. functions f such that the n-th derivative $f^{(n)}$ exists for all n) and consider the differentiation operator D on $C^{\infty}(-\infty,\infty)$.

- A number λ is an eigenvalue of D if $D(f) = f' = \lambda f$ for some function $f \neq 0$.
- Solving the differential equation $f'(x) = \lambda f(x)$, get $f(x) = ce^{\lambda x}$, c constant
- Hence, every number $\lambda \in \mathbb{R}$ is an eigenvalue of D, with a corresponding eigenvector $f(x) = e^{\lambda x}$.
- Moreover, each eigenspace of D is 1-dimensional, with basis $e^{\lambda x}$.

Matrices for linear transformations

We know:

• If T is a linear map from \mathbb{R}^n to \mathbb{R}^m and $\mathbf{e}_1, \dots, \mathbf{e}_n$ is the standard basis in \mathbb{R}^n , then $T = T_A$, i.e. $T(\mathbf{x}) = A\mathbf{x}$, where

$$A = [T(\mathbf{e}_1)| \dots | T(\mathbf{e}_n)].$$

How do we generalise this from standard to arbitrary bases?

- Let $T: V \to W$ be a linear map, and let dim(V) = n and dim(W) = m.
- Fix a basis $B = \{\mathbf{u}_1, \dots, \mathbf{u}_n\}$ in V and a basis $B' = \{\mathbf{v}_1, \dots, \mathbf{v}_m\}$ in W.
- Let

$$[T]_{B',B} = [(T(\mathbf{u}_1))_{B'} | \dots | (T(\mathbf{u}_n))_{B'}].$$

- This matrix $[T]_{B',B}$ is called the matrix of T relative to the bases B and B'.
- It can be checked directly that $[T]_{B',B}(\mathbf{x})_B = (T(\mathbf{x}))_{B'}$ for any $\mathbf{x} \in V$, where $(\mathbf{x})_B$ is the coordinate vector of \mathbf{x} in basis B, and similarly for $(T(\mathbf{x}))_{B'}$.

Consider the linear map $T:\mathbb{R}^2 \to \mathbb{R}^3$ given by

$$T(x_1,x_2)=(x_2, -5x_1+13x_2, -7x_1+16x_2).$$

What is the matrix of T relative to the bases $B = \{\mathbf{u_1} = (3,1), \mathbf{u_2} = (5,2)\}$ and $B' = \{\mathbf{v_1} = (1,0,-1), \mathbf{v_2} = (-1,2,2), \mathbf{v_3} = (0,1,2)\}$?

A direct computation shows that $T(\mathbf{u}_1) = (1, -2, -5)$ and $T(\mathbf{u}_2) = (2, 1, -3)$. Expressing these vectors via B', we get (check!)

$$T(\mathbf{u}_1) = \mathbf{v}_1 - 2\mathbf{v}_3$$
 and $T(\mathbf{u}_2) = 3\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3$.

Hence, we have

$$[T]_{B',B} = [(T(\mathbf{u}_1))_{B'} | (T(\mathbf{u}_2))_{B'}] = \begin{pmatrix} 1 & 3 \\ 0 & 1 \\ -2 & -1 \end{pmatrix}.$$

Change of basis

Consider the special case when V=W and let B,B^\prime be two bases of V. Apply the formula

$$[T]_{B',B} = [(T(\mathbf{u}_1))_{B'} | \dots | (T(\mathbf{u}_n))_{B'}].$$

to the linear map T = I, i.e. the identity map on $V(I(\mathbf{x}) = \mathbf{x})$. Then we have

$$[I]_{B',B} = [(\mathbf{u}_1)_{B'} | \dots | (\mathbf{u}_n)_{B'}].$$

This matrix, usually denoted by $P_{B\to B'}$, corresponds to the change of basis in V. It is called a transition matrix from B to B' and we have $P_{B\to B'}(\mathbf{x})_B = (\mathbf{x})_{B'}$.

An algorithm for computing $P_{B\to B'}$:

- Form the matrix [B'|B].
- Use elementary row operations to transfrom it to reduced row echelon form.
- The resulting matrix is $[I|P_{B\to B'}]$

Find the transition matrices $P_{B\to B'}$ and $P_{B'\to B}$ for the following bases in \mathbb{R}^2 :

$$B = {\mathbf{u}_1 = (1,0), \ \mathbf{u}_2 = (0,1)} \text{ and } B' = {\mathbf{u}'_1 = (1,1), \ \mathbf{u}'_2 = (2,1)}.$$

We have

$$[B'|B] = \left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{array}\right) \rightsquigarrow \left(\begin{array}{cc|c} 1 & 2 & 1 & 0 \\ 0 & -1 & -1 & 1 \end{array}\right) \rightsquigarrow \left(\begin{array}{cc|c} 1 & 0 & -1 & 2 \\ 0 & 1 & 1 & -1 \end{array}\right)$$

Hence,

$$P_{B o B'}=\left(egin{array}{cc} -1 & 2 \ 1 & -1 \end{array}
ight)$$
 and we also have $P_{B' o B}=\left(egin{array}{cc} 1 & 2 \ 1 & 1 \end{array}
ight)$

What are the coordinates of $\mathbf{x} = (2, -3)$ relative to the basis B' ?

Since B is the standard basis, we have $(\mathbf{x})_B = \mathbf{x}$, so

$$(\mathbf{x})_{B'} = P_{B \to B'}(\mathbf{x})_B = \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -8 \\ 5 \end{pmatrix}$$

Change of basis and similarity of matrices

For a linear operator T on V and a basis B of V, we write $[T]_B$ instead of $[T]_{B,B}$. If B and B' are different bases of V, how are the matrices $[T]_B$ and $[T]_{B'}$ related?

Theorem

Let $T: V \to V$ be a linear operator and let B and B' be bases of V. Then

$$[T]_{B'} = P^{-1}[T]_B P$$

where $P = P_{B' \rightarrow B}$ and $P^{-1} = P_{B \rightarrow B'}$.

Recall: any matrices related as $[T]_B$ and $[T]_{B'}$ above are called *similar*.

Any similarity relationship $A' = P^{-1}AP$ can be interpreted in this way:

If $A = [T]_B$ for abasis B then $A' = [T]_{B'}$ for another basis B' and $P = P_{B' \to B}$.

From this perspective, diagonalisation of a square matrix A = search for a basis B' such that the matrix $[T_A]_{B'}$ (of the operator T_A relative to basis B') is diagonal.

Consider the linear operator $T = T_A$ on \mathbb{R}^2 where

$$A = \left(\begin{array}{cc} 1 & 1 \\ -1 & 4 \end{array}\right).$$

In other words, $A = [T]_B$ where B is the standard basis in \mathbb{R}^2 .

Consider the basis $B'=\{\mathbf{u}_1'=(1,1),\ \mathbf{u}_2'=(2,1)\}$ (same as in previous example).

We found in the previous example:

$$P_{B o B'}=\left(egin{array}{cc} -1 & 2 \ 1 & -1 \end{array}
ight) \ \ {
m and} \ \ P_{B' o B}=\left(egin{array}{cc} 1 & 2 \ 1 & 1 \end{array}
ight).$$

From the previous slide, we have

$$[T]_{B'}=P_{B\to B'}[T]_BP_{B'\to B}=P_{B\to B'}AP_{B'\to B}=\begin{pmatrix}2&0\\0&3\end{pmatrix}.$$

In particular, B' is a basis that diagonalises the matrix A.

What we learnt today

- General linear maps
- Kernel, range, and eigenvalues/vectors of a linear map
- Matrix of a linear map relative to bases
- Change of basis and similarity of matrices

Gilbert Strang's "big picture" of Linear Algebra

