LINEAR ALGEBRA (MT-121)

CHAPTER 5

DETERMINANTS

Determinants

- 1 The **determinant** of $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is ad bc. Singular matrix $A = \begin{bmatrix} a & xa \\ c & xc \end{bmatrix}$ has det = 0.
- 2 Row exchange reverses signs $PA = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} c & d \\ a & b \end{bmatrix}$ has $\det PA = bc ad = -\det A$.
- 3 The determinant of $\begin{bmatrix} xa + yA & xb + yB \\ c & d \end{bmatrix}$ is x(ad bc) + y(Ad Bc). Det is linear in row 1 by itself.
- 4 Elimination $EA = \begin{bmatrix} a & b \\ 0 & d \frac{c}{a} b \end{bmatrix}$ $\det EA = a \left(d \frac{c}{a} b \right) = \text{product of pivots} = \det A.$
- 5 If A is n by n then 1, 2, 3, 4 remain true: $\det = 0$ when A is singular, $\det \operatorname{reverses} \operatorname{sign}$ when rows are exchanged, $\det \operatorname{is linear in row 1}$ by itself, $\det = \operatorname{product of the pivots}$. Always $\det BA = (\det B)(\det A)$ and $\det A^T = \det A$. This is an amazing number.

Using Determinant to find Inverse

$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \quad \text{has inverse} \quad A^{-1} = \frac{\mathbf{1}}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

If det
$$A = 2$$
 then det $A^{-1} = \frac{1}{2}$.

$$\det\begin{bmatrix}1 & 0 \\ 0 & 1\end{bmatrix} = 1 \quad \text{and} \quad \det\begin{bmatrix}0 & 1 \\ 1 & 0\end{bmatrix} = -1.$$

- (1) Determinants give A^{-1} and $A^{-1}b$ (this formula is called **Cramer's Rule**).
- (2) When the edges of a box are the rows of A, the volume is $|\det A|$.
- (3) For n special numbers λ , called **eigenvalues**, the determinant of $A \lambda I$ is zero.

The Properties of Determinant

- 1 The determinant of the n by n identity matrix is 1.
- 2 The determinant changes sign when two rows are exchanged (sign reversal):

Check:
$$\begin{vmatrix} c & d \\ a & b \end{vmatrix} = - \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
 (both sides equal $bc - ad$).

3 The determinant is a linear function of each row separately

multiply row 1 by any number
$$t$$
 det is multiplied by t
$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$
add row 1 of A to row 1 of A' :
then determinants add
$$\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$

- 4 If two rows of A are equal, then $\det A = 0$.
- 5 Subtracting a multiple of one row from another row leaves det A unchanged.

$$\begin{vmatrix} a & b \\ c - \ell a & d - \ell b \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix}.$$

The Properties of Determinant

6 A matrix with a row of zeros has $\det A = 0$.

Row of zeros

$$\begin{vmatrix} 0 & 0 \\ c & d \end{vmatrix} = 0$$
 and $\begin{vmatrix} a & b \\ 0 & 0 \end{vmatrix} = 0$.

7 If A is triangular then $\det A = a_{11}a_{22}\cdots a_{nn} = product of diagonal entries.$

Triangular

$$\begin{vmatrix} a & b \\ 0 & d \end{vmatrix} = ad$$
 and also $\begin{vmatrix} a & 0 \\ c & d \end{vmatrix} = ad$.

8 If A is singular then $\det A = 0$. If A is invertible then $\det A \neq 0$.

Singular

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 is singular if and only if $ad - bc = 0$.

9 The determinant of AB is $\det A$ times $\det B$: |AB| = |A| |B|.

Product rule

10 The transpose A^{T} has the same determinant as A.

Permutations and cofactors

- 1 2 by 2: ad bc has 2! terms with \pm signs. n by n: $\det A$ adds n! terms with \pm signs.
- 2 For n = 3, det A adds 3! = 6 terms. Two terms are $+a_{12}a_{23}a_{31}$ and $-a_{13}a_{22}a_{31}$. Rows 1, 2, 3 and columns 1, 2, 3 appear once in each term.
- 3 That minus sign came because the column order 3, 2, 1 needs one exchange to recover 1, 2, 3.
- 4 The six terms include $+a_{11}a_{22}a_{33}-a_{11}a_{23}a_{32}=a_{11}(a_{22}a_{33}-a_{23}a_{32})=a_{11}(cofactor C_{11})$.
- 5 Always det $A = a_{11}C_{11} + a_{12}C_{12} + \cdots + a_{1n}C_{1n}$. Cofactors are determinants of size n 1.

(8)

$$A = \begin{bmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2 \end{bmatrix} \quad \text{has} \quad \det A = 5.$$

We can find this determinant in all three ways: pivots, big formula, cofactors.

- 1. The product of the pivots is $2 \cdot \frac{3}{2} \cdot \frac{4}{3} \cdot \frac{5}{4}$. Cancellation produces 5.
- **2.** The "big formula" in equation (8) has 4! = 24 terms. Only five terms are nonzero:

$$\det A = 16 - 4 - 4 - 4 + 1 = 5.$$

The 16 comes from $2 \cdot 2 \cdot 2 \cdot 2$ on the diagonal of A. Where do -4 and +1 come from? When you can find those five terms, you have understood formula (8).

3. The numbers 2, -1, 0, 0 in the first row multiply their cofactors 4, 3, 2, 1 from the other rows. That gives $2 \cdot 4 - 1 \cdot 3 = 5$. Those cofactors are 3 by 3 determinants. Cofactors use the rows and columns that are *not* used by the entry in the first row. Every term in a determinant uses each row and column once!

Cofactors

$$\det A = a_{11} (a_{22}a_{33} - a_{23}a_{32}) + a_{12} (a_{23}a_{31} - a_{21}a_{33}) + a_{13} (a_{21}a_{32} - a_{22}a_{31}).$$
(10)

Those three quantities in parentheses are called "cofactors". They are 2 by 2 determinants, from rows 2 and 3. The first row contributes the factors a_{11} , a_{12} , a_{13} . The lower rows contribute the cofactors C_{11} , C_{12} , C_{13} . Certainly the determinant $a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$ depends linearly on a_{11} , a_{12} , a_{13} —this is Rule 3.

The cofactor of a_{11} is $C_{11} = a_{22}a_{33} - a_{23}a_{32}$. You can see it in this splitting:

The cofactor expansion is $\det A = a_{11}C_{11} + a_{12}C_{12} + \cdots + a_{1n}C_{1n}$.

We are still choosing one entry from each row and column. Since a_{11} uses up row 1 and column 1, that leaves a 2 by 2 determinant as its cofactor.

Cramer's Rule, Inverses and Volumes

- $\mathbf{1} \ \mathbf{A}^{-1}$ equals $\mathbf{C}^{\mathbf{T}} / \det \mathbf{A}$. Then $(A^{-1})_{ij} = \operatorname{cofactor} \mathbf{C}_{ji}$ divided by the determinant of A.
- **2 Cramer's Rule** computes $x = A^{-1}b$ from $x_j = \det(A \text{ with column } j \text{ changed to } b) / \det A$.
- 3 Area of parallelogram = |ad-bc| if the four corners are (0,0),(a,b),(c,d), and (a+c,b+d).
- **4 Volume of box** = $|\det A|$ if the rows of A (or the columns of A) give the sides of the box.
- 5 The cross product $w = u \times v$ is det $\begin{bmatrix} i & j & k \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{bmatrix}$. Notice $v \times u = -(u \times v)$. Notice $w \times u = -(u \times v)$. Notice $w \times u = -(u \times v)$. Notice $w \times u = -(u \times v)$.

Cramer's Rule with Example

CRAMER'S RULE If det A is not zero, Ax = b is solved by determinants:

$$x_1 = \frac{\det B_1}{\det A}$$
 $x_2 = \frac{\det B_2}{\det A}$... $x_n = \frac{\det B_n}{\det A}$

The matrix B_j has the jth column of A replaced by the vector b.

Solving $3x_1 + 4x_2 = 2$ and $5x_1 + 6x_2 = 4$ needs three determinants:

$$\det A = \begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \quad \det B_1 = \begin{bmatrix} 2 & 4 \\ 4 & 6 \end{bmatrix} \quad \det B_2 = \begin{bmatrix} 3 & 2 \\ 5 & 4 \end{bmatrix}$$

Those determinants of A, B_1, B_2 are -2 and -4 and 2. All ratios divide by $\det A = -2$:

Find
$$x = A^{-1}b$$
 $x_1 = \frac{-4}{-2} = 2$ $x_2 = \frac{2}{-2} = -1$ Check $\begin{bmatrix} 3 & 4 \\ 5 & 6 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$

Area of a Triangle

Figure 5.1: General triangle; special triangle from (0,0); general from three specials.

The triangle with corners (x_1, y_1) and (x_2, y_2) and (x_3, y_3) has area = $\frac{\text{determinant}}{2}$:

Area of triangle
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix}$$

$$\frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix} \quad \text{Area} = \frac{1}{2} \begin{vmatrix} x_1 & y_1 \\ x_2 & y_2 \end{vmatrix} \quad \text{when } (x_3, y_3) = (0, 0).$$

Why is $\frac{1}{2}|x_1y_2 - x_2y_1|$ the area of this triangle? We can remove the factor $\frac{1}{2}$ for a parallelogram (twice as big, because the parallelogram contains two equal triangles). We now prove that the parallelogram area is the determinant $x_1y_2 - x_2y_1$. This area in Figure 5.2 is 11, and therefore the triangle has area $\frac{11}{2}$.

Figure 5.2: A triangle is half of a parallelogram. Area is half of a determinant.

Proof that a parallelogram starting from (0,0) has area = 2 by 2 determinant.

The Cross Product

DEFINITION The *cross product* of $u = (u_1, u_2, u_3)$ and $v = (v_1, v_2, v_3)$ is a vector

(10)

This vector $u \times v$ is perpendicular to u and v. The cross product $v \times u$ is $-(u \times v)$.

Properties of the Cross Product

Property 1 $v \times u$ reverses rows 2 and 3 in the determinant so it equals $-(u \times v)$.

Property 2 The cross product $u \times v$ is perpendicular to u (and also to v). The direct proof is to watch terms cancel, producing a zero dot product:

$$\mathbf{u} \cdot (\mathbf{u} \times \mathbf{v}) = u_1(u_2v_3 - u_3v_2) + u_2(u_3v_1 - u_1v_3) + u_3(u_1v_2 - u_2v_1) = 0.$$
(11)

The determinant for $u \cdot (u \times v)$ has rows u, u and v (2 equal rows) so it is zero.

Property 3 The cross product of any vector with itself (two equal rows) is $u \times u = 0$.

When u and v are parallel, the cross product is zero. When u and v are perpendicular, the dot product is zero. One involves $\sin \theta$ and the other involves $\cos \theta$:

$$\|u \times v\| = \|u\| \|v\| |\sin \theta|$$
 and $|u \cdot v| = \|u\| \|v\| |\cos \theta|$. (12)

Example 7 u = (3, 2, 0) and v = (1, 4, 0) are in the xy plane, $u \times v$ goes up the z axis:

$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & 2 & 0 \\ 1 & 4 & 0 \end{vmatrix} = 10\mathbf{k}$$
. The cross product is $\mathbf{u} \times \mathbf{v} = (\mathbf{0}, \mathbf{0}, \mathbf{10})$.

The length of $u \times v$ equals the area of the parallelogram with sides u and v. This will be important: In this example the area is 10.

Example 8 The cross product of u = (1, 1, 1) and v = (1, 1, 2) is (1, -1, 0):

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 1 \\ 1 & 1 & 2 \end{vmatrix} = \mathbf{i} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = \mathbf{i} - \mathbf{j}.$$

This vector (1, -1, 0) is perpendicular to (1, 1, 1) and (1, 1, 2) as predicted. Area $= \sqrt{2}$.

Example

Example 9 The cross product of i = (1, 0, 0) and j = (0, 1, 0) obeys the *right hand rule*. That cross product $k = i \times j$ goes up not down:

Thus $i \times j = k$. The right hand rule also gives $j \times k = i$ and $k \times i = j$. Note the cyclic order. In the opposite order (anti-cyclic) the thumb is reversed and the cross product goes the other way: $k \times j = -i$ and $i \times k = -j$ and $j \times i = -k$. You see the three plus signs and three minus signs from a 3 by 3 determinant.

The definition of $u \times v$ can be based on vectors instead of their components:

Triple Product = determinant = volume

Since $u \times v$ is a vector, we can take its dot product with a third vector w. That produces the *triple product* $(u \times v) \cdot w$. It is called a "scalar" triple product, because it is a number. In fact it is a determinant—it gives the volume of the u, v, w box:

Triple product
$$(\boldsymbol{u} \times \boldsymbol{v}) \cdot \boldsymbol{w} = \begin{vmatrix} w_1 & w_2 & w_3 \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix} = \begin{vmatrix} u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \\ w_1 & w_2 & w_3 \end{vmatrix}$$
. (13)

We can put w in the top or bottom row. The two determinants are the same because _____ row exchanges go from one to the other. Notice when this determinant is zero:

 $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{w} = 0$ exactly when the vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$ lie in the same plane.

First reason $u \times v$ is perpendicular to that plane so its dot product with w is zero.

Second reason Three vectors in a plane are dependent. The matrix is singular (det = 0).

Third reason Zero volume when the u, v, w box is squashed onto a plane.