Semi-Custom IC Design Flow

1. Folder Setup

- o Create a new folder with the name of the experiment.
- o Inside this folder, create another folder named simulation.
- Right-click in the simulation folder and select Open in Terminal.

2. Create Source Code File

- Type the command: gedit source_counter.v
- o This opens the text editor.
- Write the Verilog program in this file, save and close it.

3. Create Testbench Code File

- Type the command: gedit testbench_counter.v
- o Write the testbench code in this file, save and close it.

4. Setup Environment

- Execute the following commands to set up the environment:
 - csh
 - source /home/install/cshrc

5. Choose One of the Following Procedures

 After setting up the environment, proceed with either the Single-Step Procedure or the Multi-Step Procedure.

5.1 Single-Step Procedure

• In the terminal, run the following command:

```
xrun source_counter.v testbench_counter.v -access +rwc -gui
```

- In the Design Browser 1 window, select counter_test.v file and click on the Waveform icon on the right top (Send to Waveform).
- In the Waveform 1 window, click on Run.

5.2 Multi-Step Procedure

- Execute the command: nclaunch -new
- In the Incisive tool, perform the following steps:
 - Click on Multiple Step.
 - In the "Open Design Directory" window, select Create cds.lib file.
 - Click Save. In the "New cds.lib File" dialog box, select Don't include default library (Verilog design) (3rd option) and click OK.
 - In the NClaunch window (left side), select the source code file and click the second icon (Verilog Compiler) in tools.
 - Repeat the above step for the testbench code file.
 - On the right side, click on + next to the worklib folder, select the counter file, and click the third icon (Launch Elaborator) in tools.
 - Repeat the above step with the counter_test file.
 - Click + next to the snapshots folder.
 - Select worklib counter_test:module, and click the fourth icon (Launch Simulator) in tools.
 - In the Design Browser 1 window, select counter_test, click on the Waveform icon on the right top (Send to Waveform).
 - In the **Waveform 1** window, click on **Run**.

6. Synthesis Process

- Navigate to the experiment folder and create a new folder named synthesis.
- Copy the source code file into the synthesis folder.
- Open the terminal in the synthesis folder and execute the following command: gedit input_constraints.sdc
- o Type the **constraints code** in the editor, save, and close the file.
- o Execute the following command: *gedit script.tcl*
- Type the **script code**, save, and close the file.

7. Cadence Genus Flow

- o Open Cadence Design Suite and enter the command: genus
- o In the terminal, execute the command: *source script.tcl*
- o In the **Genus** window:
 - Click on + next to Layout and select Schematic to view the gate-level diagram.
 - Select Timing, then Debug Timing, and click OK.
 - Check the Slack column all values should be positive. Review Total Paths and Failing Paths (if any slack is negative, it indicates failing paths).
 - To adjust slack, modify the **Period** in the **timing_contraints** file.
 - Under the Path List, right-click on any path and select Show Timing
 Path Analyzer.
 - Go to the Synthesis folder and review the Area Report File, Gate
 Report File, and Netlist Report File.