TD : Circuits numériques

TD1

Les bascules

Exercice N°1

Compléter la table de fonctionnement relative à chacune des bascules ci-dessous. En déduire la table simplifiée de chaque bascule.

Bascule JK

J	K	Q _(n)	$Q_{(n+1)}$	Transition
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

	J	K
3		
δ		
μ_0		
μ_1		

2. Bascule D

D	Q _(n)	$Q_{(n+1)}$	Transition
0	0		
0	1		
1	0		
1	1		

	D
3	
δ	
μ_0	
μ_1	

3. Bascule T

1	T	Q _(n)	Q _(n+1)	Transition
	0	0		
	0	1		
	1	0		
ı	1	1		

	T
3	
δ	
μ_0	
μ_1	

Exercice N°2

- 1. Pour les deux montages ci-après, tracer les chronogrammes des sorties Q1 et Q2 pour un signal d'horloge de 1 Hz. Q₁ et Q₂ sont nuls à t=0. Conclure.

 2. Quelles sont les fréquences de Q₁ et Q₂.

 3. Quel est le déphasage entre Q₁ et Q₂.

Circuit 1

Circuit 2

Exercice N°3

Etudier la fiche technique du circuit intégré DM7474M donnée ci-dessous puis faire un câblage permettant de réaliser un compteur asynchrone modulo 4.

Ordering Code: Order Number Package Number Package Description DM7474M M14A 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow DM7474N N14A 14 Lead Plastic Dual In Line Package (PDIP), JEDEC MS 001, 0.300" Wide

Connection Diagram

Function Table

	Inputs				Outputs	
	PR	CLR	CLK	D	Q	Q
	L	Н	Х	Х	Н	L
	Н	L	Х	×	L	н
	L	L	Х	×	Н	H
					(Note 1)	(Note 1)
	Н	Н	1	н	Н	L
	н	н	1	L	L	н
	Н	Н	L	х	Q_{Ω}	$\overline{\mathbf{q}}_{0}$
н	H = HIGH Logic Level					

H = HIGH Logic Level
X = Either LOW or HIGH Logic Level
L = LOW logic Level
T = Positive-going transition of the clock.
Q₀ = The output logic level of Q before the indicated input conditions were

NOTE 1: This configuration is nonstable; that is, it will not point when either the preset and/or clear inputs return to their inactive (HIGH) level.