Abschlussprüfung Winter 2009/10 Lösungshinweise

IT-System-Elektroniker IT-System-Elektronikerin 1190

Ganzheitliche Aufgabe I Fachqualifikationen

Allgemeine Korrekturhinweise

Die Lösungs- und Bewertungshinweise zu den einzelnen Handlungsschritten sind als Korrekturhilfen zu verstehen und erheben nicht in jedem Fall Anspruch auf Vollständigkeit und Ausschließlichkeit. Neben hier beispielhaft angeführten Lösungsmöglichkeiten sind auch andere sach- und fachgerechte Lösungsalternativen bzw. Darstellungsformen mit der vorgesehenen Punktzahl zu bewerten. Der Bewertungsspielraum des Korrektors (z. B. hinsichtlich der Berücksichtigung regionaler oder branchenspezifischer Gegebenheiten) bleibt unberührt.

Zu beachten ist die unterschiedliche Dimension der Aufgabenstellung (nennen – erklären – beschreiben – erläutern usw.). Wird eine bestimmte Anzahl verlangt (z. B. "Nennen Sie fünf Merkmale …"), so ist bei Aufzählung von fünf richtigen Merkmalen die volle vorgesehene Punktzahl zu geben, auch wenn im Lösungshinweis mehr als fünf Merkmale genannt sind. Bei Angabe von Teilpunkten in den Lösungshinweisen sind diese auch für richtig erbrachte Teilleistungen zu geben. In den Fällen, in denen vom Prüfungsteilnehmer

- keiner der sechs Handlungsschritte ausdrücklich als "nicht bearbeitet" gekennzeichnet wurde,
- der 6. Handlungsschritt bearbeitet wurde,
- einer der Handlungsschritte 1 bis 5 deutlich erkennbar nicht bearbeitet wurde,

ist der tatsächlich nicht bearbeitete Handlungsschritt von der Bewertung auszuschließen.

Ein weiterer Punktabzug für den bearbeiteten 6. Handlungsschritt soll in diesen Fällen allein wegen des Verstoßes gegen die Formvorschrift nicht erfolgen!

Für die Bewertung gilt folgender Punkte-Noten-Schlüssel:

Note 1 = 100-92 Punkte Note 2 = unter 92 - 81 Punkte Note 3 = unter 81 - 67 Punkte Note 4 = unter 67 - 50 Punkte Note 5 = unter 50 - 30 Punkte Note 6 = unter 30 - 0 Punkte

aa) 6 Punkte

Medium	Realisierung der Verbindung mit	max. Entfernung ohne Repeater
Kupfer	z. B. STP CAT5 Leitung	100 m
Glas	z. B. LWL SM 10 µm	5.000 m
Luft	z.B.Antennen mit Richtfunkcharakteristik	mehrere km (antennenabhängig)

ab) 6 Punkte

Medium	Vorteil	Nachteil
Kupfer	 Montage am Patchfeld einfach Nur einfache Werkzeuge, Prüf- und Messmittel erforderlich 	 Potenzialausgleich erforderlich Repeater erforderlich Gegen Störeinstrahlung anfällig Umweg über Gebäude B erforderlich
Glas	 Abhörsicher Kein Potenzialausgleich erforderlich Gegen Störeinstrahlung unempfindlich Große Bandbreite 	Spezialwerkzeug erforderlichKeine kleinen Biegeradien möglich
Luft	Installationsaufwand gering Kein Potenzialausgleich erforderlich	 Nicht abhörsicher Freie Sicht zwischen Sender und Empfänger erforderlich Bandbreite begrenzt

ba) 2 Punkte

255 . 255 . 255 . 192

bb) 6 Punkte

Anzahl Teilnetze	4	
Anzahl Hosts je Teilnetz	62	
Netzwerk-ID des 2. Teilnetzes	192.168.11. <u>64</u>	
Erste Hostadresse im 2. Teilnetz	192.168.11. <u>65</u>	
Letzte Hostadresse im 2. Teilnetz	192.168.11. <u>126</u>	
Broadcastadresse des 2. Teilnetzes	192.168.11. <u>127</u>	

aa) 6 Punkte

ab) 2 Punkt

Maximal acht Geräte

ac) 3 Punkte

- Der ISDN-Bus kann ohne Abschlusswiderstände funktionieren.
- Es treten jedoch Störungen auf.

ba) 5 Punkte

bb) 2 Punkte

Anschluss über a/b-Wandler, der die analogen in digitale Signale umsetzt.

bc) 2 Punkt

DECT-Standard

aa) 2 Punkte

Persönlichkeitsschutz durch Schutz vor Datenmissbrauch und unberechtigtem Zugriff auf personenbezogene Daten durch Dritte

ab) 2 Punkte

Schutz vor Verlust oder ungewollter Veränderung von Daten

ba) 2 Punkte

Speicherung aller Änderungen ab der letzten inkrementellen Sicherung

bb) 2 Punkte

Speicherung aller Änderungen ab der letzten Volldatensicherung

ca) 5 Punkte

Von dem zu sichernden Datenbestand wird kontinuierlich ein Back-up auf Datenträgern verschiedenen Alters (Großvater, Vater, Sohn) erstellt. "Sohn"-Daten können mit den "Vater"-Daten und "Vater"-Daten mit den "Großvater"-Daten rekonstruiert werden.

cb) 7 Punkte

	Tage, an denen das Medium verwendet wird	Anzahl Medien die für ein Jahr benötigt werden
Sohnmedium	Für die ersten 4 Arbeitstage einer Woche	4
Vatermedium	Für den letzten Arbeitstag einer Woche	4
Großvatermedium	Für den letzten Arbeitstag eines Monats	12
	Gesamt:	20

a) 5 Punkte

	Eingang	Ausgang		
А	В	С	Ein	Aus
0	0	0		1
0	0	1		1
0	1	0	÷	1
0	1	1		
1	0	0		1
1	0	1		
1	1	0		
1	1	1	1	

ba) 1 Punkt

$$Ein = (ABC)$$

bb) 4 Punkte

$$Aus = \left(\overline{ABC}\right) \vee \left(\overline{ABC}\right) \vee \left(\overline{ABC}\right) \vee \left(\overline{ABC}\right) \vee \left(\overline{ABC}\right)$$

c) 2 Punkte

d) 5 Punkte

$$Aus = \overline{AB} \vee \overline{AC} \vee \overline{BC}$$

e) 3 Punkte

Eingänge des NAND-Gatters negieren

a) 6 Punkte

ba) 2 Punkt

PC-Arbeitsplatz:

$$\begin{split} I &= \frac{P}{U} = \frac{345 \ W}{230 \ V} = 1,5 \ A_{PC} + 1,5 \ A_{Monitor} + 0,5 \ A_{Druc \ ker} = 3,5 \ A \\ PC_{1-4} &= I_{PC-Arbeitsplatz} \cdot 4 = 3,5 \ A \cdot 4 = 14 \ A \end{split}$$

Nennstrom Leitungsschutzschalter: 16 A

bb) 2 Punkte

$$PC_{5-8} = I_{PC-Arbeitsplatz} \cdot 4 = 3,5 A \cdot 4 = 14 A$$

Nennstrom Leitungsschutzschalter: 16 A

ca) 2 Punkte

Reservestromkreise 8 und 9

cb) 4 Punkte

Schmelzsicherungen gegen Leitungsschutzschalter austauschen

d) 4 Punkte

- Leitungsschutzschalter B16 oder C16 (beide Lösungen sind je nach Begründung richtig)
- Auslösecharakteristik B für Standardschutz
- Auslösecharakteristik C bei hohen Einschaltströmen und Stromspitzen

aa) 4 Punkte

$$\Delta U = \frac{2 \cdot l \cdot I \cdot \cos \varphi}{\gamma \cdot A} = \frac{2 \cdot 23m \cdot 14A \cdot 0.9}{56 \cdot 1.5mm^2} = 6.9V$$

$$\Delta u = \frac{\Delta U \cdot 100}{U_N} = \frac{6.9V \cdot 100}{230V} = 3\%$$

Bei 23 m Leitungslänge, 1,5 mm2 Leitungsguerschnitt und 14 A Stromstärke wird der zulässige Spannungsfall nicht überschritten.

ab) 4 Punkte

$$\Delta U = \frac{2 \cdot l \cdot I \cdot \cos \varphi}{\gamma \cdot A} = \frac{2 \cdot 31m \cdot 14A \cdot 0.9}{56 \cdot 1.5mm^2} = 9.3V$$

$$\Delta u = \frac{\Delta U \cdot 100}{U_N} = \frac{9.3V \cdot 100}{230V} = 4\%$$

Bei 31 m Leitungslänge, 1,5 mm2 Leitungsquerschnitt und 14 A Stromstärke wird der zulässige Spannungsfall überschritten.

ba) 1 Punkt

Leitung mit 2,5 mm2 Querschnitt verwenden

bb) 2 Punkte

$$\Delta U = \frac{2 \cdot l \cdot I \cdot \cos \varphi}{\gamma \cdot A} = \frac{2 \cdot 31m \cdot 14A \cdot 0.9}{56 \cdot 2.5mm^2} = 5.58V$$

$$\Delta u = \frac{\Delta U \cdot 100}{U_N} = \frac{5.58V \cdot 100}{230V} = 2.4\%$$

- ca) 3 Punkte, 3 x 1 Punkt
 - VFD-Prinzip (Offline USV)
 - VFI-Prinzip (Online USV)
 - VI-Prinzip (Line-interactive USV)
- cb) 3 Punkte
 - VFI (Online USV)
 - Spannung und Freguenz werden durch Wechselrichter der USV neu erzeugt.
 - (Auch VI grundsätzlich möglich, da Verwendung eines Netzspannungsfilters)
- cc) 3 Punkte

$$P = 345 \text{ W} * 8 + 30 \% = 3.588 \text{ VA} = 3.6 \text{ kVA}$$