Random Vectors

- Definition/Characterization
- Transformed Random Vectors
- Properties and Diagonalization of Covariance Matrices
- Characteristic Function of Random Vectors
- Gaussian Random Vectors
- Complex Gaussian Random Vectors

Random Vectors

Notations/Definitions/Relationships:

$$m{X} \triangleq [X_1, X_2, \dots, X_n]^T, \quad m{x} \triangleq [x_1, x_2, \dots, x_n]^T$$
 $\{m{X} \leq m{x}\} \triangleq \{X_1 \leq x_1, \dots, X_n \leq x_n\}$

$$F_{\mathbf{X}}(\mathbf{x}) \triangleq P[\mathbf{X} \leq \mathbf{x}], \text{ (simply joint CDF of } \{X_i\})$$

$$f_{\mathbf{X}}(\mathbf{x}) \triangleq \frac{\partial^n F_{\mathbf{X}}(\mathbf{x})}{\partial x_1 \partial x}, \text{ (simply joint pdf of } \{X_i\})$$

$$P[B] = \int_{\mathbf{X} \in B} f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x}$$
$$F_{\mathbf{X}}(\mathbf{x}) = \int_{-\infty}^{\mathbf{x}} f_{\mathbf{X}}(\mathbf{x}') d\mathbf{x}'$$

$$F_{\mathbf{X}|B}(\mathbf{x}|B) \triangleq P[\mathbf{X} \le \mathbf{x}|B] = \frac{P[\mathbf{X} \le \mathbf{x}, B]}{P[B]}, \quad (P[B] \ne 0)$$

• For an event space $\{B_i: i=1,\ldots,n\}$,

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = \sum_{i=1}^{n} F_{\boldsymbol{X}|B_i}(\boldsymbol{x}|B_i) P[B_i]$$

$$f_{\mathbf{X}}(\mathbf{x}) = \sum_{i=1}^{n} f_{\mathbf{X}|B_i}(\mathbf{x}|B_i) P[B_i], \text{ where } f_{\mathbf{X}|B_i}(\mathbf{x}|B_i) \triangleq \frac{\partial^n F_{\mathbf{X}|B_i}(\mathbf{x}|B_i)}{\partial x_1 \dots \partial x_n}$$

• Joint distributions/densities of $\boldsymbol{X} = [X_1, \dots, X_n]^T$ and $\boldsymbol{Y} = [Y_1, \dots, Y_m]^T$:

$$F_{\boldsymbol{X}\boldsymbol{Y}}(\boldsymbol{x},\boldsymbol{y}) \triangleq P[\boldsymbol{X} \leq \boldsymbol{x}, \boldsymbol{Y} \leq \boldsymbol{y}]$$

where $\boldsymbol{x} = [x_1, \dots, x_n]^T$, $\boldsymbol{y} = [y_1, \dots, y_m]^T$

$$F_{\boldsymbol{X}}(\boldsymbol{x}) = F_{\boldsymbol{X}\boldsymbol{Y}}(\boldsymbol{x}, \boldsymbol{\infty})$$

$$f_{XY}(x,y) = \frac{\partial^{n+m} F_{XY}(x,y)}{\partial x_1 \dots \partial x_n \partial y_1 \dots \partial y_m}$$

$$f_{\mathbf{X}}(\mathbf{x}) = \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} f_{\mathbf{X}\mathbf{Y}}(\mathbf{x}, \mathbf{y}) dy_1 \dots dy_m$$

Expectation Vector:

$$\boldsymbol{\mu} = \boldsymbol{\mu}_{\boldsymbol{X}} = E[\boldsymbol{X}] = [\mu_1, \dots, \mu_n]^T$$

$$\mu_i \triangleq \int_{-\infty}^{\infty} \dots \int_{-\infty}^{\infty} x_i f_{\boldsymbol{X}}(x_1, \dots, x_n) dx_1 \dots dx_n = \int_{-\infty}^{\infty} x_i f_{X_i}(x_i) dx_i$$

ullet Correlation Matrix (real symmetric for real $oldsymbol{X}$):

$$\mathbf{R} \triangleq E[\mathbf{X}\mathbf{X}^T]$$
 where $R_{ij} = E[X_iX_j]$

• Covariance Matrix (real symmetric for real X):

$$\boldsymbol{K} \triangleq E[(\boldsymbol{X} - \boldsymbol{\mu})(\boldsymbol{X} - \boldsymbol{\mu})^T] = \boldsymbol{R} - \boldsymbol{\mu}\boldsymbol{\mu}^T$$
where $K_{ii} = \sigma_i^2$, $K_{ij} = \text{Cov}(X_i, X_j) = E[(X_i - \mu_i)(X_j - \mu_j)] = K_{ji}$

• If K_X is diagonal, $\{X_i\}$ are uncorrelated; If R_X is diagonal, $\{X_i\}$ are orthogonal.

- Vector Cross Correlation: $R_{XY} = E[XY^T]$
- Vector Cross-Covariance: $K_{XY} = E[(X \mu_X)(Y \mu_Y)^T]$
- $\bullet \ R_{XY} = K_{XY} + \mu_X \mu_Y^T$
- For real $n \times 1$ random vectors \boldsymbol{X} and \boldsymbol{Y} ,

$$K_{XY} = \mathbf{0}$$
 or $E[XY^T] = \mu_X \mu_Y^T \Rightarrow X \& Y$ are uncorrelated $E[XY^T] = \mathbf{0} \Rightarrow X \& Y$ are orthogonal $f_{XY}(x,y) = f_X(x)f_Y(y), \ \forall (x,y) \Rightarrow X \& Y$ are independent

• Independence always implies uncorrelatedness, but the converse is not generally true except multidimensional Gaussian.

ullet For real n imes 1 random vectors $oldsymbol{X}$ and $oldsymbol{Y}$, if $oldsymbol{Z} = oldsymbol{X} + oldsymbol{Y}$, then

 $egin{aligned} \mu_{oldsymbol{Z}} &= \mu_{oldsymbol{X}} + \mu_{oldsymbol{Y}} \ R_{oldsymbol{Z}} &= R_{oldsymbol{X}} + R_{oldsymbol{X}oldsymbol{Y}} + R_{oldsymbol{Y}oldsymbol{X}} + R_{oldsymbol{Y}} \ \mu_{oldsymbol{Z}} \mu_{oldsymbol{Z}}^{\ T} &= \mu_{oldsymbol{X}} \mu_{oldsymbol{X}}^{\ T} + \mu_{oldsymbol{X}} \mu_{oldsymbol{X}}^{\ T} + \mu_{oldsymbol{Y}} \mu_{oldsymbol{Y}}^{\ T} \ \\ K_{oldsymbol{Z}} &= K_{oldsymbol{X}} + K_{oldsymbol{X}oldsymbol{Y}} + K_{oldsymbol{Y}oldsymbol{X}} + K_{oldsymbol{Y}} \ \end{bmatrix}$

ullet For $oldsymbol{Z} = oldsymbol{X} + oldsymbol{Y}$ where $oldsymbol{X}$ and $oldsymbol{Y}$ are uncorrelated,

$$egin{aligned} R_{oldsymbol{Z}} &= R_{oldsymbol{X}} + R_{oldsymbol{X}oldsymbol{Y}} + R_{oldsymbol{Y}oldsymbol{X}} + R_{oldsymbol{Y}oldsymbol{X}} \ K_{oldsymbol{Z}} &= K_{oldsymbol{X}} + K_{oldsymbol{Y}} \end{aligned}$$

pdf of a Transformed Random Vector

• For n real functions $y_i = g_i(x_1, x_2, \ldots, x_n)$, $i = 1, \ldots, n$, with functionally independent $\{g_i(\cdot)\}$ (i.e., there exists no function $H(y_1, \ldots, y_n)$ that is identically zero), how to find $f_{\mathbf{Y}}(\mathbf{y})$?

Suppose from $\{y_i = g_i(\cdot)\}$, we obtain a single solution vector \mathbf{x} with $x_i = \phi_i(y_1, \dots, y_n)$, $i = 1, \dots, n$, then

$$\begin{aligned} f_{\mathbf{Y}}(\mathbf{y}) &= f_{\mathbf{X}}(\mathbf{x}) |\tilde{J}| = f_{\mathbf{X}}(\mathbf{x}) / |J| \\ \text{where} \quad \tilde{J} &= \begin{vmatrix} \frac{\partial \phi_1}{\partial y_1} & \cdots & \frac{\partial \phi_1}{\partial y_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial \phi_n}{\partial y_1} & \cdots & \frac{\partial \phi_n}{\partial y_n} \end{vmatrix} = \begin{vmatrix} \frac{\partial g_1}{\partial x_1} & \cdots & \frac{\partial g_1}{\partial x_n} \\ \vdots & \vdots & \vdots \\ \frac{\partial g_n}{\partial x_1} & \cdots & \frac{\partial g_n}{\partial x_n} \end{vmatrix}_{\mathbf{x}}^{-1} = J^{-1}. \end{aligned}$$

• Check and include valid ranges of $\{y_i\}$ in the pdf of **Y**.

• If there are r solutions (roots) $\{x^{(i)}: i=1,\ldots,r\}$, where $x^{(i)}=[x_1^{(i)},\ldots,x_n^{(i)}]^T$ with $x_k^{(i)}=\phi_k^{(i)}(y_1,\ldots,y_n)$, then

$$f_{\mathbf{Y}}(\mathbf{y}) = \sum_{i=1}^{r} f_{\mathbf{X}}(\mathbf{x}^{(i)}) |\tilde{J}_{i}| = \sum_{i=1}^{r} f_{\mathbf{X}}(\mathbf{x}^{(i)}) / |J_{i}|$$
where $\tilde{J}_{i} = \begin{vmatrix} \frac{\partial \phi_{1}^{(i)}}{\partial y_{1}} & \cdots & \frac{\partial \phi_{1}^{(i)}}{\partial y_{n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial \phi_{n}^{(i)}}{\partial y_{1}} & \cdots & \frac{\partial \phi_{n}^{(i)}}{\partial y_{n}} \end{vmatrix} = \begin{vmatrix} \frac{\partial g_{1}}{\partial x_{1}} & \cdots & \frac{\partial g_{1}}{\partial x_{n}} \\ \vdots & \vdots & \vdots \\ \frac{\partial g_{n}}{\partial x_{1}} & \cdots & \frac{\partial g_{n}}{\partial x_{n}} \end{vmatrix}_{\mathbf{x}^{(i)}}^{-1}.$

• Check and include valid ranges of $\{y_i\}$ in the pdf of **Y**.

• Example: $\mathbf{X} = [X_1, X_2, X_3]^T$, $\mathbf{Y} = [Y_1, Y_2, Y_3]^T$ $Y_1 = X_1^2 - X_2^2$, $Y_2 = X_1^2 + X_2^2$, $Y_3 = X_3$ $f_{\mathbf{X}}(\mathbf{x}) = (2\pi)^{-3/2} \exp[-\frac{1}{2}(x_1^2 + x_2^2 + x_3^2)]$, $f_{\mathbf{Y}}(\mathbf{y}) = ?$

There are 4 roots, $oldsymbol{x}^{(1)}$, $oldsymbol{x}^{(2)}$, $oldsymbol{x}^{(3)}$, $oldsymbol{x}^{(4)}$, where

$$x_1^{(1)} = \sqrt{(y_1 + y_2)/2}, \quad x_2^{(1)} = \sqrt{(y_2 - y_1)/2}, \quad x_3^{(1)} = y_3$$
 $x_1^{(2)} = \sqrt{(y_1 + y_2)/2}, \quad x_2^{(2)} = -\sqrt{(y_2 - y_1)/2}, \quad x_3^{(2)} = y_3$
 $x_1^{(3)} = -\sqrt{(y_1 + y_2)/2}, \quad x_2^{(3)} = \sqrt{(y_2 - y_1)/2}, \quad x_3^{(3)} = y_3$
 $x_1^{(4)} = -\sqrt{(y_1 + y_2)/2}, \quad x_2^{(4)} = -\sqrt{(y_2 - y_1)/2}, \quad x_3^{(4)} = y_3$

For the roots to be real, $y_2 > 0$ and $y_2 > |y_1|$. The Jacobian is

$$J = \begin{vmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \\ \frac{\partial y_3}{\partial x_1} & \frac{\partial y_3}{\partial x_2} & \frac{\partial y_3}{\partial x_3} \end{vmatrix} = \begin{vmatrix} 2x_1 & -2x_2 & 0 \\ 2x_1 & 2x_2 & 0 \\ 0 & 0 & 1 \end{vmatrix} = 8x_1x_2$$

Substituting the solutions gives $|J_1| = |J_2| = |J_3| = |J_4| = 4\sqrt{y_2^2 - y_1^2}$. Thus,

$$f_{\mathbf{Y}}(\mathbf{y}) = \sum_{i=1}^{4} f_{\mathbf{X}}(\mathbf{x}^{(i)})/|J_i| = \frac{(2\pi)^{-3/2}}{\sqrt{y_2^2 - y_1^2}} \exp[-\frac{1}{2}(y_2 + y_3^2)], \ y_2 > 0, \ y_2 > |y_1|$$

and $f_{\mathbf{Y}}(\mathbf{y}) = 0$ outside the above region.

• For $Y \triangleq AX + b$ where X is a continuous random vector, A is an invertible deterministic matrix and b is a deterministic vector,

$$\mu_{Y} = A\mu_{X} + b$$

$$R_{Y} = AR_{X}A^{T} + (A\mu_{X})b^{T} + b(A\mu_{X})^{T} + bb^{T}$$

$$K_{Y} = AK_{X}A^{T}$$

$$f_{Y}(y) = \frac{1}{|\det(A)|}f_{X}(A^{-1}(y - b))$$

Linear Algebra

- An $n \times n$ real matrix M is positive semidefinite (p.s.d) if $z^T M z \ge 0$, $\forall z$.
- If $z^T M z > 0$ for all $z \neq 0$, M is positive definite (p.d.).
- The eigenvalues of an $n \times n$ matrix M are those numbers λ for which the characteristic equation $M\phi = \lambda\phi$ has a solution $\phi \neq 0$. The column vector $\phi = [\phi_1, \phi_2, \dots, \phi_n]^T$ is called an eigenvector. Eigenvectors are often normalized to $\phi^T \phi = 1$.
- Theorem: λ is an eigenvalue of the square matrix M iff $det(M \lambda I) = 0$.
- Two $n \times n$ matrices \boldsymbol{A} and \boldsymbol{B} are called *similar* if there exists an $n \times n$ matrix \boldsymbol{T} with $\det(\boldsymbol{T}) \neq 0$ such that $\boldsymbol{T}^{-1}\boldsymbol{A}\boldsymbol{T} = \boldsymbol{B}$.
- Theorem: An $n \times n$ matrix M is similar to a diagonal matrix iff M has n linearly independent eigenvectors.

- Theorem: Let M be a real symmetric matrix with eigenvalues $\lambda_1, \ldots, \lambda_n$. Then M has n mutually orthogonal unit eigenvectors ϕ_1, \ldots, ϕ_n .
- Theorem: Let M be a real symmetric matrix with eigen values $\lambda_1,\ldots,\lambda_n$. Then M is similar to the diagonal matrix $\mathbf{\Lambda} \triangleq \mathrm{diag}\{\lambda_1,\ldots,\lambda_n\}$ under the transformation $\mathbf{U}^{-1}M\mathbf{U} = \mathbf{\Lambda}$ where \mathbf{U} is a matrix whose columns are the ordered orthogonal unit eigenvectors $\boldsymbol{\phi}_i$, $i=1,\ldots,n$ of M, i.e., $\mathbf{U} = [\boldsymbol{\phi}_1,\ldots,\boldsymbol{\phi}_n]$. Moreover, $\mathbf{U}^T\mathbf{U} = \mathbf{I}$ (thus $\mathbf{U}^{-1} = \mathbf{U}^T$), so $\mathbf{U}^T\mathbf{M}\mathbf{U} = \mathbf{\Lambda}$.
- Unitary matrix $\Leftrightarrow \boldsymbol{A}^T \boldsymbol{A} = \boldsymbol{I}$.
- ullet A real symmetric matrix $oldsymbol{M}$ is p.d. iff all its eigenvalues are positive.
- Theorem: Let M be a real symmetric matrix with largest eigenvalue λ_1 . The maximum of the quadratic form $u^T M u$ subject to ||u|| = 1 (unit sphere) is λ_1 and it occurs when $u = \phi_1$, the unit eigenvector associated with λ_1 .

Properties and Eigen-Decomposition of Covariance Matrices

- ullet A covariance matrix $oldsymbol{K}$ is at least p.s.d. When $oldsymbol{K}$ is full-rank, then $oldsymbol{K}$ is p.d.
- ullet Since $oldsymbol{K}$ is real symmetric, it can be easily diagonalized by $oldsymbol{U}$ whose columns are eigenvectors of $oldsymbol{K}$.
- A p.d. covariance matrix K has all positive eigenvalues, and consequently $\det(K) = \prod_{i=1}^n \lambda_i > 0$. Note that p.s.d of K means $\lambda_i \geq 0$. Thus, when K is full-rank, it is p.d.
- Eigen decomposition: $oldsymbol{K} = oldsymbol{U} oldsymbol{\Lambda} oldsymbol{U}^T$,

$$m{U} = [m{\phi}_1, m{\phi}_2, \cdots, m{\phi}_n]$$
, $m{\Lambda} = \mathsf{diag}\{\lambda_1, \lambda_2, \cdots, \lambda_n\}$, $m{U}^T m{U} = m{I}$,

where λ_i is eigen-value associated with the eigen-vector ϕ_i .

- Find $\{\lambda_i\}$ from $\det(\boldsymbol{K} \lambda \boldsymbol{I}) = 0$.
- Using each λ_i , find ϕ_i from $(K \lambda_i I)\phi_i = 0$ and $\|\phi_i\|^2 = 1$.

Whitening Transformation

ullet For a n imes 1 random vector $oldsymbol{X}$ with covariance matrix $oldsymbol{K_X}$, its whitening transformation is given by

$$Y = \Lambda_X^{-1/2} U_X^H X$$

such that $oldsymbol{K_Y} = oldsymbol{I}$ where columns of $oldsymbol{U_X}$ are eigen vectors of $oldsymbol{K_X}$ and

$$oldsymbol{\Lambda_X}^{-1/2} riangleq \operatorname{diag}(\lambda_1^{-1/2}, \lambda_2^{-1/2}, \cdots, \lambda_n^{-1/2})$$

with λ_i being the eigen-value associated with the *i*th eigen-vector (*i*th column of U_X).

- Steps:
 - Eigen-decomposition of $K_{m{X}}$: $K_{m{X}} = U_{m{X}} \Lambda_{m{X}} U_{m{X}}{}^H$
 - Y=AX \Rightarrow $K_Y=AK_XA^H=AU_X\Lambda_XU_X{}^HA^H.$ So a solution for A is $A=(U_X\Lambda_X{}^{1/2})^{-1}=\Lambda_X{}^{-1/2}U_X{}^{-1}$ and $U_X{}^{-1}=U_X{}^H.$
- useful in signal processing algorithms and performance analysis

• Example: Find a transformation $\boldsymbol{Y} = \boldsymbol{D}\boldsymbol{X}$ such that $\boldsymbol{Y} = [Y_1, Y_2]^T$ is a Normal random vector with uncorrelated components of unity variance while $\boldsymbol{X} = [X_1, X_2]^T$ is a zero-mean Normal random vector with covariance matrix $\boldsymbol{K}_{\boldsymbol{X}}$ given by

$$\boldsymbol{K_X} = \left[\begin{array}{cc} 3 & -1 \\ -1 & 3 \end{array} \right].$$

. Solution: E[X] = 0 and E[Y] = DE[X] = 0. Thus, $R_X = K_X$ and $R_Y = K_Y$.

Consider the eigen-decomposition $K_X = U\Lambda U^T$ where $\Lambda = \mathrm{diag}([\lambda_1,\ \lambda_2])$ and $U = [\phi_1,\ \phi_2]$. Here, $\{\lambda_i\}$ are eigenvalues and $\{\phi_i\}$ are the unit eigenvectors of K_X .

Define
$$\Lambda^{1/2} = \text{diag}([\lambda_1^{1/2}, \ \lambda_2^{1/2}])$$
. Then $\Lambda^{-1/2} = \text{diag}([\lambda_1^{-1/2}, \ \lambda_2^{-1/2}])$. Next, $E[YY^T] = DK_XD^T = DU\Lambda^{1/2}\Lambda^{1/2}U^TD^T = I$.

Then, $m{K_Y} = m{I}$ is achieved by $m{D} = (m{U} m{\Lambda}^{1/2})^{-1} = m{\Lambda}^{-1/2} m{U}^T$. (note: $m{U}^{-1} = m{U}^T$)

Next, from $\det(\mathbf{K}_{\mathbf{X}} - \lambda \mathbf{I}) = 0$, we find $\lambda_1 = 4$ and $\lambda_2 = 2$. Hence,

$$\mathbf{\Lambda} = \begin{bmatrix} 4 & 0 \\ 0 & 2 \end{bmatrix}, \quad \mathbf{Z} = \mathbf{\Lambda}^{-1/2} = \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{\sqrt{2}} \end{bmatrix}$$

$$(\boldsymbol{K}_{\boldsymbol{X}} - \lambda_1 \boldsymbol{I})\boldsymbol{\phi}_1 = \boldsymbol{0} \text{ with } ||\boldsymbol{\phi}_1|| = 1 \quad \Rightarrow \quad \boldsymbol{\phi}_1 = [1/\sqrt{2}, \ -1/\sqrt{2}]^T$$

$$(\mathbf{K}_{X} - \lambda_{2}\mathbf{I})\phi_{2} = \mathbf{0} \text{ with } ||\phi_{2}|| = 1 \quad \Rightarrow \quad \phi_{2} = [1/\sqrt{2}, \ 1/\sqrt{2}]^{T}$$

$$\boldsymbol{U} = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$
. Hence, $\boldsymbol{D} = \boldsymbol{\Lambda}^{-1/2} \boldsymbol{U}^T = \frac{1}{\sqrt{2}} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$.

(You can double-check if $m{D}m{K}m{D}^T = m{I}$.)

Correlated Random Vector

- ullet Suppose random vector $m{X}$ has $m{\mu_X}=m{0}$ and $m{K_X}=m{I}$. How to generate random vector $m{Y}$ from $m{X}$ such that $m{\mu_Y}=m{b}$ and $m{K_Y}=m{Q}$?
- ullet To obtain $\mu_{oldsymbol{Y}}=oldsymbol{b}$, consider $oldsymbol{Y}=AX+oldsymbol{b}$.
- Apply eigen-decomposition to $m{K_Y}$: $m{Q} = m{U_Y} m{\Lambda_Y} m{U_Y}^T = m{U_Y} m{\Lambda_Y}^{1/2} m{\Lambda_Y}^{1/2} m{U_Y}^T$.
- ullet As $m{K_Y} = m{A}m{K_X}m{A}^T = m{A}m{A}^T$, we can obtain $m{A} = m{U_Y}m{\Lambda_Y}^{1/2}$
- useful in generating correlated random vectors in computer simulation

• Example: Suppose Z is a 2×1 random vector with mean vector $\mu_Z = [1,1]^T$ and covariance matrix $K_Z = I$. Find a transformation from Z to X such that X has zero mean vector and covariance matrix K_X given by

$$K_X = \begin{bmatrix} 3 & -1 \\ -1 & 3 \end{bmatrix}.$$

.Solution:

We consider the transformation $X = A(Z - \mu_Z)$, which yields E[X] = 0.

Next,
$$K_{\boldsymbol{X}} = AK_{\boldsymbol{Z}}A^T = AA^T$$
.

Suppose $\{\lambda_1, \lambda_2\}$ are eigenvalues and $\{\phi_1, \phi_2\}$ are the unit eigenvectors of K_X . Define

$$m{U} = [m{\phi}_1, \ m{\phi}_2]$$
, $m{\Lambda} = \mathrm{diag}([\lambda_1, \ \lambda_2])$, and $m{\Lambda}^{1/2} = \mathrm{diag}([\lambda_1^{1/2}, \ \lambda_2^{1/2}])$. Then, we have $m{K}_{m{X}} = m{U} m{\Lambda} m{U}^T = m{U} m{\Lambda}^{1/2} m{\Lambda}^{1/2} m{U}^T$

By comparing the two equations of $m{K}_{m{X}}$, we have $m{A} = m{U} m{\Lambda}^{1/2}$.

Numerical details are given below.

From
$$\det(\boldsymbol{K}_{\boldsymbol{X}} - \lambda \boldsymbol{I}) = 0$$
, we find $\lambda_1 = 4$ and $\lambda_2 = 2$. Hence, $\boldsymbol{\Lambda}^{1/2} = \begin{bmatrix} 2 & 0 \\ 0 & \sqrt{2} \end{bmatrix}$

$$(\boldsymbol{K}_{\boldsymbol{X}} - \lambda_1 \boldsymbol{I})\boldsymbol{\phi}_1 = \boldsymbol{0} \text{ with } ||\boldsymbol{\phi}_1|| = 1 \quad \Rightarrow \quad \boldsymbol{\phi}_1 = [1/\sqrt{2}, \ -1/\sqrt{2}]^T$$

$$(\boldsymbol{K}_{\boldsymbol{X}} - \lambda_2 \boldsymbol{I})\boldsymbol{\phi}_2 = \boldsymbol{0} \text{ with } ||\boldsymbol{\phi}_2|| = 1 \quad \Rightarrow \quad \boldsymbol{\phi}_2 = [1/\sqrt{2}, \ 1/\sqrt{2}]^T$$

Thus, we obtain

$$A = U\Lambda^{1/2} = \begin{bmatrix} \sqrt{2} & 1 \\ -\sqrt{2} & 1 \end{bmatrix}.$$

(You can double-check if $m{A}m{A}^T = m{K}_{m{X}}$.)

Simultaneous Diagonalization of Two Covariance Matrices

• Consider an $n \times 1$ real-valued random vector $\mathbf{X} = \mathbf{S} + \mathbf{N}$ and an $n \times n$ real-valued deterministic matrix \mathbf{A} .

Let
$$X' = AX$$
.

- ullet Then, $oldsymbol{X'} = oldsymbol{S'} + oldsymbol{N'}$ where $oldsymbol{S'} = oldsymbol{AS}$ and $oldsymbol{N'} = oldsymbol{AN}$.
- ullet $K_{X'}=K_{S'}+K_{S'N'}+K_{N'S'}+K_{N'}$ where $K_{X'}=AK_XA^T$, $K_{S'}=AK_SA^T$, $K_{N'}=AK_NA^T$
- $R_{S'N'} = E[ASN^TA^T] = AR_{SN}A^T$
- $\bullet \ \ \boldsymbol{\mu_{S'}}\boldsymbol{\mu_{N'}}^T = \boldsymbol{A}\boldsymbol{\mu_{S}}\boldsymbol{\mu_{N}}^T \boldsymbol{A}^T$
- $\bullet \ \ \boldsymbol{K_{S'N'}} = \boldsymbol{R_{S'N'}} \boldsymbol{\mu_{S'}}\boldsymbol{\mu_{N'}}^T = \boldsymbol{AK_{SN}}\boldsymbol{A}^T$
- ullet If S and N are uncorrelated, i.e., $K_{SN}=0$, then $K_{S'N'}=0$.
- ullet With uncorrelated $oldsymbol{S}$ and $oldsymbol{N}$, $oldsymbol{K_{X'}} = oldsymbol{K_{S'}} + oldsymbol{K_{N'}}$.
- If $K_{S'}$ and $K_{N'}$ are desired to be diagonal matrices, then A must simultaneously diagonalize K_S and K_N through AK_SA^T and AK_NA^T .

Simultaneous Diagonalization of Two Covariance Matrices

• Theorem: Let $\mathbf P$ and $\mathbf Q$ be $n \times n$ real symmetric matrices. If $\mathbf P$ is positive definite, then there exists a $n \times n$ matrix $\mathbf V = [\mathbf v_1, \mathbf v_2, \dots, \mathbf v_n]$ which achieves

$$\mathbf{V}^T \mathbf{P} \mathbf{V} = \mathbf{I}$$

and

$$\mathbf{V}^T \mathbf{Q} \mathbf{V} = \mathbf{\Lambda} = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$$

The real number $\lambda_1, \ldots, \lambda_n$ satisfy the generalized eigenvalue equation

$$\mathbf{Q}\mathbf{v}_i = \lambda_i \mathbf{P}\mathbf{v}_i$$
 .

The numbers λ_i and vectors \mathbf{v}_i for $i=1,\ldots,n$ are sometimes called generalized eigenvalues and eigenvectors.

Procedure for diagonalizing two matrices ${\bf P}$ and ${\bf Q}$ simultaneously

- Calculate the eigenvalues $\{\lambda_i\}$ of $\mathbf{P}^{-1}\mathbf{Q}$ from $\mathbf{P}^{-1}\mathbf{Q}\mathbf{v}_i = \lambda_i\mathbf{v}_i$ by using $\det(\mathbf{P}^{-1}\mathbf{Q} \lambda \mathbf{I}) = 0$.
- Calculate unnormalized eigenvectors \mathbf{v}_i' for $i=1,\ldots,n$ by solving

$$(\mathbf{P}^{-1}\mathbf{Q} - \lambda_i \mathbf{I})\mathbf{v}_i' = \mathbf{0};$$

- Find constants $\{K_i\}$ such that $\mathbf{v}_i \triangleq K_i \mathbf{v}_i'$ satisfies $\mathbf{v}_i^T \mathbf{P} \mathbf{v}_i = 1$, $i = 1, \dots, n$. Then, $\mathbf{V} = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ which yields $\mathbf{V}^T \mathbf{P} \mathbf{V} = \mathbf{I}$ and $\mathbf{V}^T \mathbf{Q} \mathbf{V} = \mathrm{diag}\{\lambda_1, \dots, \lambda_n\}$.
- Note: Any real symmetric, positive definite matrix \mathbf{P} can be factored as $\mathbf{P} = \mathbf{C}\mathbf{C}^T$, and $\mathbf{C}^{-1}\mathbf{P}[\mathbf{C}^T]^{-1} = \mathbf{I}$, $\mathbf{C}^T\mathbf{P}^{-1}\mathbf{C} = \mathbf{I}$.

ullet Example: Simultaneous diagonalization of two covariance matrices $oldsymbol{P}$ and $oldsymbol{Q}$:

$$m{P} = \left[egin{array}{ccc} 2 & 1 \\ 1 & 2 \end{array}
ight], \quad m{Q} = \left[egin{array}{ccc} 3 & -1 \\ -1 & 3 \end{array}
ight]$$

$$\mathbf{P}^{-1} = \frac{1}{3} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}, \quad \mathbf{P}^{-1}\mathbf{Q} = \begin{bmatrix} \frac{7}{3} & \frac{-5}{3} \\ \frac{-5}{3} & \frac{7}{3} \end{bmatrix}.$$

The eigenvalues: $\det(\boldsymbol{P}^{-1}\boldsymbol{Q} - \lambda \boldsymbol{I}) = 0 \Rightarrow \lambda_1 = 4$ and $\lambda_2 = 2/3$. Unnormalized eigenvectors: $(\boldsymbol{P}^{-1}\boldsymbol{Q} - \lambda_i\boldsymbol{I})\boldsymbol{v}_i' = 0$, $i = 1, 2 \Rightarrow \boldsymbol{v}_1 = K_1[1, 1]^T$ and $\boldsymbol{v}_2 = K_2[1, -1]^T$ Next, we find K_1 and K_2 from $\boldsymbol{v}_i^T\boldsymbol{P}\boldsymbol{v}_i = 1, i = 1, 2$ as follows:

$$\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} K_1^2 = 1 \implies K_1 = \pm 1/\sqrt{6}$$

$$\begin{bmatrix} 1 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 \\ -1 \end{bmatrix} K_2^2 = 1 \implies K_2 = \pm 1/\sqrt{2}$$

Thus, using $K_1=1/\sqrt{6}$ and $K_2=1/\sqrt{2}$, the matrix ${m V}=[{m v}_1,{m v}_2]$ is given by

$$oldsymbol{V} = \left[egin{array}{cc} rac{1}{\sqrt{6}} & rac{1}{\sqrt{2}} \ rac{1}{\sqrt{6}} & -rac{1}{\sqrt{2}} \end{array}
ight].$$

It is easily verified that $V^T P V = I$ and $V^T Q V = \text{diag}(4, 2/3)$.

Multidimensional Gaussian Law

• $X = [X_1, \dots, X_n]^T$ is a Gaussian random vector with $E[X] = \mu$ and a p.d. covariance matrix K if its pdf is

$$f_{\mathbf{X}}(\mathbf{x}) = \frac{1}{\sqrt{(2\pi)^n \det(\mathbf{K})}} \exp\left[-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{K}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right]$$

- Let $X \sim N(\mu_X, K_X)$ with p.d. K_X . For a non-singular $n \times n$ transformation A, $Y \triangleq AX \sim N(\mu_Y, K_Y)$ where $\mu_Y = A\mu_X$ and $K_Y = AK_XA^T$.
- Let $X \sim N(\mu_X, K_X)$ with p.d. K_X . For $Y \triangleq AX + b$ where A is non-singular, $Y \sim N(\mu_Y, K_Y)$ where $\mu_Y = A\mu_X + b$ and $K_Y = AK_XA^T$.
- For $X \sim N(\mu_X, K_X)$ with p.d. K_X and a rank m matrix A_{mn} , $(m \leq n)$, $Y \triangleq A_{mn}X + b \sim N(\mu_Y, K_Y)$ where $\mu_Y = A_{mn}\mu_X + b$ and $K_Y = A_{mn}K_XA_{mn}^T$.
- Let $X \sim N(\mu_X, K_X)$ with p.d. K_X . There exists a nonsingular $n \times n$ matrix C (e.g., with $CC^T = K$) such that under the transformation $Y = C^{-1}X$, Y_1, \ldots, Y_n are independent.

Characteristic Functions of Random Vectors

• Define $\boldsymbol{w} = [w_1, \dots, w_n]^T$. Then, C.F. of $\mathbf{X} = [X_1, \dots, X_n]^T$ is

$$\boxed{\Psi_{\boldsymbol{X}}(\boldsymbol{w}) \triangleq E[e^{j\boldsymbol{w}^T\boldsymbol{X}}]} = \int_{-\infty}^{\infty} f_{\boldsymbol{X}}(\boldsymbol{x})e^{j\boldsymbol{w}^T\boldsymbol{x}}d\boldsymbol{x} \quad \text{(simply joint C.F.)}$$

(n-dimensional Fourier transform of $f_{\mathbf{X}}(\mathbf{x})$, except a sign reversal)

ullet The pdf of $oldsymbol{X}$ is

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{(2\pi)^n} \int_{-\infty}^{\infty} \Psi_{\boldsymbol{X}}(\boldsymbol{w}) e^{-j\boldsymbol{w}^T\boldsymbol{x}} d\boldsymbol{w}.$$

• The C.F. for the normal random vector $\mathbf{X} = [X_1, \dots, X_n]^T$ is:

$$\Phi_{\mathbf{X}}(\boldsymbol{\omega}) = \exp(j\boldsymbol{\omega}^T \boldsymbol{\mu} - \frac{1}{2} \boldsymbol{\omega}^T \mathbf{K} \boldsymbol{\omega}),$$

where $\boldsymbol{\omega} = [\omega_1, \dots, \omega_n]^T$, $\boldsymbol{\mu}$ is the mean vector, and \mathbf{K} is the covariance matrix.

Complex Random Variables

 $\bullet X = X_R + jX_I$

CDF of
$$X$$
: $F_X(x) \triangleq F_{X_R,X_I}(x_R,x_I) = P[X_R \leq x_R, X_I \leq x_I]$

pdf of
$$X$$
: $f_X(x) \triangleq f_{X_R,X_I}(x_R,x_I) = \frac{\partial^2 F_X(x_R,x_I)}{\partial x_R \partial x_I}$

- Mean: $\mu_X = E[X] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x_R + jx_I) f_X(x_R, x_I) dx_R dx_I$
- Autocorrelation: $R_X \triangleq E[XX^*]$
- Autocovariance: $K_X \triangleq E[(X \mu_X)(X \mu_X)^*] = R_X |\mu_X|^2$

Complex Random Vectors

- $\mathbf{Z} = \mathbf{U} + j\mathbf{V}$ (U and V are real-valued $N \times 1$ random vectors)
- Mean vector: $E[\mathbf{Z}] = E[\mathbf{U}] + jE[\mathbf{V}]$
- Covariance Matrix: $\mathbf{C}_{\mathbf{Z}} = E[(\mathbf{Z} E[\mathbf{Z}])(\mathbf{Z} E[\mathbf{Z}])^H]$ (Hermitian symmetric, i.e., $\mathbf{C}_{\mathbf{Z}} = \mathbf{C}_{\mathbf{Z}}^H$)
- Correlation Matrix: $\mathbf{R}_{\mathbf{Z}} = E[\mathbf{Z}\mathbf{Z}^H] = \mathbf{C}_{\mathbf{Z}} + E[\mathbf{Z}] \ E[\mathbf{Z}]^H$, $(\mathbf{R}_{\mathbf{Z}} = \mathbf{R}_{\mathbf{Z}}^H)$
- Pseudo-Covariance Matrix: $\tilde{\mathbf{C}}_{\mathbf{Z}} = E[(\mathbf{Z} E[\mathbf{Z}])(\mathbf{Z} E[\mathbf{Z}])^T]$ (Pseudo-Covariance matrix is skew-Hermitian, i.e., $\mathbf{A}^H = -\mathbf{A}$)
- ullet A complex random vector ${f Z}$ is called **proper** if ${f ilde{C}_{f Z}}={f 0}$.

$$\begin{split} \tilde{\mathbf{C}}_{\mathbf{Z}} &= \mathbf{0} \Rightarrow \mathbf{C}_{\mathbf{U}} = \mathbf{C}_{\mathbf{V}} \& \ \mathbf{C}_{\mathbf{U}\mathbf{V}} = -\mathbf{C}_{\mathbf{V}\mathbf{U}} \\ \mathbf{C}_{\mathbf{Z}} &= 2\mathbf{C}_{\mathbf{U}} + j2\mathbf{C}_{\mathbf{V}\mathbf{U}}, \quad \mathbf{C}_{\mathbf{U}} = \mathbf{C}_{\mathbf{V}} = \frac{1}{2}\Re[\mathbf{C}_{\mathbf{Z}}], \\ \mathbf{C}_{\mathbf{V}\mathbf{U}} &= -\mathbf{C}_{\mathbf{U}\mathbf{V}} = \frac{1}{2}\Im[\mathbf{C}_{\mathbf{Z}}] \\ \text{and for } \mathbf{X} &= \begin{bmatrix} \mathbf{U} \\ \mathbf{V} \end{bmatrix}, \text{ we have } \mathbf{C}_{\mathbf{X}} = \begin{bmatrix} \mathbf{C}_{\mathbf{U}} & \mathbf{C}_{\mathbf{U}\mathbf{V}} \\ -\mathbf{C}_{\mathbf{U}\mathbf{V}} & \mathbf{C}_{\mathbf{U}} \end{bmatrix}. \end{split}$$

Complex Gaussian Vectors

• Suppose a real random vector $\mathbf x$ of dimension $2N \times 1$ can be partitioned into two $N \times 1$ vectors as $\mathbf x = \left[egin{array}{c} \mathbf u \\ \mathbf v \end{array} \right]$ and $\mathbf x$ has the pdf

$$\mathbf{x} \sim N \left(\begin{bmatrix} \mu_{\mathbf{u}} \\ \mu_{\mathbf{v}} \end{bmatrix}, \begin{bmatrix} \mathbf{C}_{\mathbf{u}\mathbf{u}} & \mathbf{C}_{\mathbf{u}\mathbf{v}} \\ \mathbf{C}_{\mathbf{v}\mathbf{u}} & \mathbf{C}_{\mathbf{v}\mathbf{v}} \end{bmatrix} \right).$$

- Define $\mathbf{z} = \mathbf{u} + j\mathbf{v}$. Then the pdf of \mathbf{z} can be given by the pdf of \mathbf{x} .
- If $\mathbf{C_{uu}} = \mathbf{C_{vv}}$, $\mathbf{C_{uv}} = -\mathbf{C_{vu}}$, then \mathbf{z} has the complex multivariate Gaussian pdf, i.e., $\mathbf{z} \sim \mathrm{CN}(\mu_{\mathbf{z}}, \mathbf{C_{z}})$ as

$$p(\mathbf{z}) = \frac{1}{\pi^N \det(\mathbf{C}_{\mathbf{z}})} \exp\left[-(\mathbf{z} - \mu_{\mathbf{z}})^H \mathbf{C}_{\mathbf{z}}^{-1} (\mathbf{z} - \mu_{\mathbf{z}})\right]$$
where
$$\mu_{\mathbf{z}} = \mu_{\mathbf{u}} + j\mu_{\mathbf{v}}$$

$$\mathbf{C}_{\mathbf{z}} = 2(\mathbf{C}_{\mathbf{u}\mathbf{u}} + j\mathbf{C}_{\mathbf{v}\mathbf{u}})$$