Лекция 10.

Свойство ковариации

Mem. Ковариацией случайных величин X и Y называется величина $cov(X,Y) = E((X-EX)(Y-EY)) = E(XY) - EX \cdot EY$

Ковариация является индикатором наличия направления связи между двумя случайными величинами

Пусть имеется $(X_1, Y_1), \ldots, (X_n, Y_n)$ случайных величин X и Y

Def. Выборочной ковариацией называется величина $\widehat{\operatorname{cov}}(X,Y) = \overline{xy} - \overline{x} \cdot \overline{y}$

По Закону Больших Чисел ясно, что $\widehat{\mathrm{cov}}(X,Y) \longrightarrow \mathrm{cov}(X,Y)$, поэтому выборочная ковариация является оценкой

Th. Выборочная ковариация является точечной состоятельной, но смещенной оценкой ковариации. Несмещенной оценкой будет $\frac{n}{n-1}\widehat{\operatorname{cov}}(X,Y)$

Ковариация и выборочная ковариация обладают свойствами

- 1. cov(X, Y) = cov(Y, X)
- 2. cov(X, a) = 0, где a = const
- 3. cov(X, bY) = b cov(X, Y)
- 4. cov(X + Y, Z) = cov(X, Z) + cov(Y, Z)
- 5. $cov(X, X) = D(X), \widehat{cov}(X, X) = D^*(X)$
- 6. $D(X + Y) = DX + DY + 2 \operatorname{cov}(X, Y)$

Nota. В дальнейшем под cov(X,Y) будет пониматься выборочная ковариация

Анализ модели линейной парной регрессии

Пусть при n экспериментах получены значения случайных величин X и Z: $(X_1, Z_1), \ldots, (X_n, Z_n)$ Пусть $X = \alpha + \beta Z + \varepsilon$ - теоретическая модель линейной регрессии, где ε - случайная величина, отражающая влияние невключенных факторов, нелинейность модели, ошибок измерений и просто случая.

Пусть построили с помощью метода наименьших квадратов выборочное уравнение линейной регрессии $\hat{X}=a+bZ$

Обозначим $\hat{\epsilon}_i = X_i - \hat{X}_i$ - экспериментальная ошибка, разница между наблюдаемыми значениями и вычисляемыми по модели

Тогда $X_i=\hat{X}_i+\hat{\varepsilon}_i$ или $X_i=a+bZ_i+\hat{\varepsilon}_i$, где a и b - точечные оценки параметров α и β

Свойства $\hat{\varepsilon}_i$:

1.
$$\overline{\hat{\varepsilon}_i} = 0$$

$$a = \overline{X} - b\overline{Z} \Longrightarrow a + b\overline{Z} = \overline{X} \Longrightarrow \overline{\hat{\epsilon}_i} = \overline{X_i - (a + bZ_i)} = \overline{X} - \overline{a + bZ_i} = \overline{X} - \overline{X} = 0$$

2. $\operatorname{cov}(\hat{X}, \hat{\varepsilon}) = 0$

$$b = \frac{\overline{xz} - \overline{x} \cdot \overline{z}}{\hat{\sigma}_z^2} = \frac{\text{cov}(X, Z)}{D(Z)} \Longrightarrow \text{cov}(X, Z) - bD(Z) = 0$$

$$\text{cov}(\hat{X}, \hat{\varepsilon}) = \text{cov}(a + bZ, X - a - bZ) = \text{cov}(bZ, X - bZ) = \text{cov}(bZ, x) - \text{cov}(bZ, bZ) = b \cdot \text{cov}(Z, X) - b^2D(Z) = b \cdot \text{cov}(Z, X) - bD(Z) = 0$$

Анализ дисперсии результата

 $\mathbf{Def.}\ D(X) = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ - дисперсия наблюдаемых значений

 $\mathbf{Def.}\ D(\hat{X}) = \frac{1}{n}\sum_{i=1}^n (\hat{X}_i - \overline{X})^2$ - дисперсия расчетных значений

 $\mathbf{Def.}\ D(\hat{\varepsilon}) = \frac{1}{n} \sum_{i=1}^{n} (\hat{\varepsilon}_i)^2$ - дисперсия остатков

Так как $X = \hat{X} + \hat{\varepsilon}$, $\operatorname{cov}(\hat{X}, \hat{\varepsilon}) = 0$, то $D(X) = D(\hat{X}) + D(\hat{\varepsilon}) + 2\operatorname{cov}(\hat{X}, \hat{\varepsilon}) = D(\hat{X}) + D(\hat{\varepsilon})$

Th.
$$D(X) = D(\hat{X}) + D(\hat{\varepsilon})$$

Очевидно, что качество модели будет тем лучше, чем меньше будет дисперсия остатков

Def. Коэффициентом детерминации R^2 называется величина $R^2 = \frac{D(\hat{X})}{D(X)}$ или $R^2 = 1 - \frac{D(\hat{\varepsilon})}{D(X)}$ *Nota.* Смысл R^2 - доля объясненной дисперсии, а $1 - R^2$ - доля необъясненной дисперсии Свойства:

- 1. $0 < R^2 < 1$
- 2. Если $R^2=1$, то $D(\hat{\varepsilon})=0\Longrightarrow\hat{\varepsilon}_i=\overline{\hat{\varepsilon}_i}=0$, то есть точки лежат строго на линии регрессии, модель идеальна
- 3. Если $R^2 = 0$, то $D(\hat{X}) = 0 \Longrightarrow \hat{X} = \overline{x}$, то есть получаем примитивную, ничего не объясняющую модель

Чем больше R^2 , тем лучше качество модели

Проверка гипотезы о значимости уравнения регрессии

Проверяется $H_0: R_{\text{теор}}^2 = 0$ (уравнение регрессии статистически не значимо) против $H_1: R_{\text{теор}}^2 \neq 0$

Th. Если
$$H_0$$
 верна, то $F = \frac{R^2(n-2)}{1-R^2} \in F(1,n-2)$

Пусть t_{α} - квантиль F(1,n-2) уровня $\alpha,$ тогда:

$$\begin{cases} H_0: R_{\text{теор}}^2 = 0 & \text{ если } F < t_{\alpha} \\ H_0: R_{\text{теор}}^2 \neq 0 & \text{ если } F \geq t_{\alpha} \end{cases}$$

Nota. Если $H_0: R_{\text{теор}}^2 = 0$, то $H_0: \beta = 0$

Связь между коэффициентом детерминации и коэффициентом линейной корреляции

1. $\sqrt{R^2} = r_{\hat{X},X}$ - коэффициент корреляции между \hat{X} и X

$$r_{\hat{X},X} = \frac{\operatorname{cov}(\hat{X},X)}{\sqrt{D(\hat{X})D(X)}} = \frac{\operatorname{cov}(\hat{X},\hat{X}+\hat{\varepsilon})}{\sqrt{D(\hat{X})D(X)}} = \frac{D(\hat{X}) + \operatorname{cov}(\hat{X},\hat{\varepsilon})}{\sqrt{D(\hat{X})D(X)}} = \sqrt{\frac{D(\hat{X})}{D(X)}} = R$$

2. $r_{\hat{X},X} = |r_{X,Z}|$

$$cov(\hat{X}, X) = cov(a + bZ, X) = b cov(Z, X)$$

$$D(\hat{X}) = D(a + bZ) = b^{2}D(Z)$$

$$r_{\hat{X}, X} = \frac{cov(\hat{X}, X)}{\sqrt{D(\hat{X})D(X)}} = \frac{b cov(Z, X)}{\sqrt{b^{2}D(Z)D(X)}} = \left| \frac{cov(X, Z)}{\sqrt{D(Z)D(X)}} \right| = |r_{X, Z}|$$

Следствие 1: в случае линейной парной регрессии коэффициент детерминации равен квадрату коэффициенту корреляции

Следствие 2: в случае линейной парной регрессии совпадают результаты проверки гипотез $H_0: R_{\text{Teop}}^2 = 0 \Longleftrightarrow H_0: r = 0 \Longleftrightarrow H_0: \beta = 0$

Теорема Гаусса-Маркова

Th. Пусть $X_i = \alpha + \beta Z_i + \varepsilon_i$ - теоретическая модель регрессии

X = a + bZ - модель, полученная по методу наименьших квадратов

Если выполнено условия:

- а) Случайные члены ε_i независимые случайные величины, имеющие одинаковое нормальное распределение $\varepsilon_i \in N(0, \sigma^2)$
- б) Случайные величины ε_i и Z_i независимы

Тогда a и b - состоятельные, несмещенные, эффективные оценки параметров α и β , то есть

- 1. Состоятельность: $a \xrightarrow[n \to \infty]{p} \alpha, b \xrightarrow[n \to \infty]{p} \beta$ 2. Несмещенность: $Ea = \alpha, Eb = \beta$
- 3. Наименьшая дисперсия, равная:

$$Da = \frac{\overline{z^2}\sigma^2}{nD(Z)}, Db = \frac{\sigma^2}{nD(Z)}$$

Nota. Если не выполняется условие а), то есть ошибки зависимы или имеют разную дисперсию, то оценки становятся неэффективными. Если не выполнено условие б), то оценки становятся смещенными и несостоятельными

Стандартные ошибки коэффициентов регрессии

Из теоремы видим, что Da и Db зависят от дисперсии σ^2 случайного члена. По экспериментальным ошибкам получаем оценку данной дисперсии:

$$D(\hat{\varepsilon}) = \frac{1}{n} \sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} \xrightarrow[n \to \infty]{p} \sigma^{2}$$

Однако эта оценка является смещенной: $E(D(\hat{\varepsilon})) = \frac{n-2}{n} \sigma^2$

$$E(D(\hat{\varepsilon})) = \frac{n-2}{n}\sigma^2$$

Поэтому несмещенной оценкой дисперсии σ^2 является величина $S^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{\varepsilon}_i^2$

Def. Величина S называется стандартной ошибкой регрессии

Смысл: характеризует разброс наблюдаемых значений вокруг линии регрессии

Nota. Заменим в теореме Гаусса-Маркова σ^2 на S^2 , получаем оценки дисперсий Da и Db: $S_a^2 = \frac{\overline{z^2}S^2}{nD(z)}, S_b^2 = \frac{S^2}{nD(Z)}$

$$S_a^2 = \frac{\overline{z^2}S^2}{nD(z)}, S_b^2 = \frac{S^2}{nD(Z)}$$

 $\mathbf{Def.}\ S_a$ и S_b называются стандартным ошибками коэффициентов регрессии

Прогнозирование регрессионных моделей

Пусть $X = \alpha + \beta Z + \varepsilon$ - теоретическая модель

 $\hat{X} = a + bZ$ - модель МНК, построенная по выборке объема n

С помощью данной модели надо дать прогноз значения X_p при заданном значении Z_p и оценить качество прогноза

Теоретическое значение - $X_p = \alpha + \beta Z_p + \varepsilon$, а точечный прогноз $\hat{X}_p = a + b Z_p$

Разность между ними $\Delta_p = \hat{X}_p - X_p$ называется ошибкой предсказания

Свойства Δ_p :

1.
$$E\Delta_p = 0$$

2.
$$D(\Delta_p) = \left(1 + \frac{1}{n} + \frac{(Z_p - \overline{z})^2}{nDZ}\right)\sigma^2$$

Заменив σ^2 на S^2 , получим стандартную ошибку прогноза: $S_{\Delta_p} = S\sqrt{1 + \frac{1}{n} + \frac{(Z_p - \overline{z})^2}{nDZ}}$

- 3. $D(\Delta_p) > \sigma^2$ то есть точность прогноза ограничена случайным членом ε
- 4. При $n \to \infty$ $D(\Delta_p) \stackrel{p}{\longrightarrow} \sigma^2$ качество модели тем лучше, чем больше объем выборки
- 5. Чем больше Z_p отклоняется от \overline{z} , тем хуже качество прогноза. Наилучшее качество в точке $Z_p = \overline{z}$: $D(\Delta_p) = \left(1 + \frac{1}{n}\right)\sigma^2$

Доверительные интервалы прогноза и коэффициентов уравнения линейной регрессии

Пусть t_γ - квантиль $|T_{n-2}|$ уровня γ

Тогда доверительные интервалы надежности γ для параметров α и β :

$$\alpha:(a-t_{\gamma}S_a;a+t_{\gamma}S_a)$$

$$\beta:(b-t_{\gamma}S_b;b+t_{\gamma}S_b)$$

Доверительный интервал для прогноза $X_p:(\hat{X}_p-t_\gamma S_{\Delta_p};\hat{X}_p+t_\gamma S_{\Delta_p})$