

Scanned by TapScanner

|   | mo | 1 | 2  | 3  | , . 0 | -> CO |  |
|---|----|---|----|----|-------|-------|--|
| - |    |   | 23 | 43 |       | -3    |  |

Vidi se da ato n-00 => C-3 tj. genevaluo

$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = C$$

Zaključuje se daje notacijom velikom O zapravo definisana (govnja granica složenosti! (asimptotska!) Le coin de opisuse visine

f(n) je asimptotski (n - oc) ograničeno sa c. g(n)

Nap. 12 razavanje složenosti pomoću notacije o dobija se unid c

Napomena: ponačanjih algoritma za velike ujednosti n.

Ocito je da more podojati bestonarno mnogo fia g(n) za data funkcija f(n).

Nipr. 20 out fin f(n) poued izbourd fje 20 g(n) =  $n^2$  mognice je izabati i fje g(n) =  $n^3$ ; g(n) =  $n^4$  itd. ali

Neke osobine notacije O: acy se = simbolički upokologe.

Ako vrijedi  $f_1(n) = O(g(n))$   $f_2(n) = O(g(n))$   $f_3(n) = O(g(n))$ 

 $f_1(n) + f_2(n) = O(g(n))$ tada je:

f(n) = O(g(n)) i g(n) = O(h(n)) =>. Ako vnjedi f(n) = O(h(n))tada je:

 $an^k = O(n^k)$ · Vrijedi:

logan = O(logbn), za bilo koje a,b>0
i b≠1 · Vnjedi:

f(m) = O(f(m)). Vrijedi:

Za duje nenegatione funkcije f: N > R i g: N > R kažemo da je:

 $f(n) = \int 2(g(n))$ 

pozitivne konstante c i no tako da postoje unitedi

 $f(n) \geqslant c \cdot g(n) \geqslant 0$ 

n>no siako



Notacija vein 2 definite donju granicu složenosti

Neke gardine notacije s2:

· Ako unjedi tada je:

$$f(n) = \Omega(g(n)) \quad g(n) = \Omega(h(n))$$

$$f(n) = \Omega(h(n))$$

· Anjedi:

$$f(n) = \int 2(f(n))$$

Prize

$$f(n) = 3n^2 + 5n + 1$$

pp cret

$$g(n) = n^2$$

$$3n^2 + 5n + 1 > c \cdot n^2 /: n^2$$

$$3+\frac{5}{n}+\frac{1}{n^2}>3=c$$

n > no= 1

 $c = 3, n_0 = 1$ 

3 = 5 < 3n+5 + 2 + 2n + 2n

Lidmin o



des. (male C)

2a duje nenegatione funkcije  $f: N \rightarrow R$ ;  $g: N \rightarrow R$ katemo da je:  $f(n) = \sigma(g(n))$ 

ako za siaku pozitivnu konstantne c postoji konstanta no tako da je:  $f(n) \leq c \cdot g(n)$ 

za siako n>no.

Primjer: Pokazadi da unjedi:  $2n = \sigma(n^2)$  i  $2n^2 \neq \sigma(n^2)$ 

| 1  |   | 1   |
|----|---|-----|
| (( | - | . 1 |
| () |   | . 1 |

| Ac. + 1.                              |                                                |
|---------------------------------------|------------------------------------------------|
| rismplotska notacija                  | Relativna busina vasta                         |
| Asimptotska notacija $f(n) = O(g(n))$ | Relativnia brania vasta  vast f(n) ≤ rast g(n) |
| $f(n) = \Omega(g(n))$                 | vast f(n) > vast g(n)                          |
| $f(n) = \Theta(g(n))$                 | vast $f(n) \approx vast g(n)$                  |
| f(n) = o(g(n))                        | vast f(n) « vast g(n)                          |

asimptotske frunkcije vremena izušavaja: rime Funkcija funkcija konstantna funkcija linearna kvadvatna funkcija Kubma funkcija logantamska funkcija log n eksponencijalna funkcija n. log n n log n nlogn T(n) logn

Primjer: Pokazati da unijedi:

$$\frac{1}{2}n^2 - 3n = \Theta(n^2)$$

Rješenje: Potrebno je odrediti pozitivne konstante c1, c2 i no takve da vnjedi za zve n≥no:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

$$I: \frac{1}{2} - \frac{3}{n} \leq C_2$$

$$\frac{1}{2} - \frac{3}{n} \leq \frac{1}{2} = c_2$$

$$\text{Sue } n > n_0 = 1$$

Dakle, desna nejednakost unjedi za  $c_2 = \frac{1}{2}$ ;  $n_0 = 1$   $(n > n_0 = 1)$ 

$$II: c_1 \leq \frac{1}{2} - \frac{3}{n}$$

c, mora biti pozitivua const. =>

$$\frac{1}{2} - \frac{3}{n} > 0 \Rightarrow \frac{1}{2} > \frac{3}{n} / 2n \Rightarrow n > 6 \Rightarrow$$

$$\begin{array}{c} \Rightarrow \frac{n > n_{o} = 7}{n > n_{o}} \\ \hline 1 \\ \frac{1}{n} < \frac{1}{n_{o}} \\ \hline -\frac{3}{n} > -\frac{3}{n_{o}} \\ \hline -\frac{3}{n} > \frac{1}{2} \\ \hline -\frac{3}{n_{o}} > \frac{1}{2} \\ \hline -\frac{3}{$$

Dakle, lijeva strana nejedniakosti vrijedi

$$c_1 = \frac{1}{14}$$
;  $n_0 = 7$   $(n > n_0) \neq 7$ 



8.

Primjer Pokazati da je tačno:  $6n^{3} \neq 0 (n^{2})$ Pr suprotno: postoje konstante  $c_{1},c_{2}$  i  $n_{0}$ :  $c_{1}n^{2} \leq 6n^{3} \leq c_{2}n^{2}$ ? cuo je ck!  $6n^{3} \leq c_{2}n^{2} / 2a \quad n > n_{0}$   $n \leq \frac{c_{2}}{6} \Rightarrow \text{sto je } \perp \text{ jev je } c_{2} \text{ const.}$   $clok je n proizvoljno velik prirodni bioj <math>(n \rightarrow \infty)$ .

Dz. Potrebno je sormalnom desinicijom notacije (9) dokazati sljedeće asimptotske relacije:

(a) 
$$n^3 + n^2 - 1 = 0$$
 ( $n^3$ )

(b) 
$$2n^2 + n - 1 = O(n^2)$$

$$C$$
  $n \cdot log n = O(n^2)$ 

(e) 
$$17 n \log n - 23n - 10 = \Theta(n \log n)$$

$$f) \quad n^{\log n} = \sigma(2^n)$$

$$(9) \quad \sin n = O(1)$$

Tabela 2.5 Klasa O(1) $O(\log n)$  $O(n \log n)$ veličina ulaza  $O(n^2)$  $O(n^3)$  $O(2^{n})$ n 3.32  $10^{2}$ 33.2  $10^{3}$ 1024 10  $0.1 \, \mu sec$  $0.3 \mu sec$  $3.3 \mu sec$ 10 μsec 100 μsec 1 msec 6.64  $10^{4}$ 664  $10^{30}$  $10^{6}$  $10^{2}$  $0.1 \, \mu sec$ 3.17·10<sup>15</sup> god.  $0.7 \, \mu sec$ 66.4 μsec 1 msec 0.1 sec 9.97  $9.97 \cdot 10^3$  $10^{301}$  $10^{6}$  $10^{9}$  $10^{3}$ 3.17·10<sup>286</sup> god.  $0.1 \, \mu sec$ l µsec 1 msec 1.67 min 0.1 sec  $10^{3010}$ 13.3  $133 \cdot 10^3$  $10^{8}$  $10^{12}$  $10^{4}$  $0.1 \, \mu sec$ 1.3 µsec 13.3 msec 0.17 min 1.16 dana  $10^{30103}$  $10^{10}$  $10^{15}$ 16.6  $1.66 \cdot 10^6$ 105  $0.1 \, \mu sec$ 1.7 µsec 0.16 sec 16.7 min 3.17 god.  $10^{301030}$  $10^{18}$  $10^{12}$ 19.93  $19.93 \cdot 10^6$ 106  $0.1 \, \mu sec$ 2 µsec 2 sec 1.16 dana 3170.9 god.

Iz tabele 2.5 možemo vidjeti da npr. algoritmi složenosti  $O(n^3)$  za veličinu ulaza  $10^5$  praktično imaju samo teoretski značaj, jer je potrebno više od 3 godine da bi se algoritam te složenosti izveo. Ili, na primjer, za veličinu ulaza  $10^6$ , potrebno je više od 3170 godina. Još kompleksnija situacija je sa eksponencijalnim algoritmima, koji imaju složenost npr.  $O(2^n)$ . Iz tabele 2.5 možemo vidjeti da je već za veličinu ulaza  $10^3$  potrebno izvršiti  $10^{301}$  operacija, dok bi za izvođenje tolikog broja operacija bilo potrebno  $3.17 \cdot 10^{286}$  godina. To je nezamislivo mnogo vremena. Dakako, još kompleksnija situacija je za veličine ulaza  $10^5$  ili  $10^6$ . Da bi dobili dojam o veličini nekih vremenskih intervala prikazanih u tabeli 2.5, spomenimo npr. da je starost planete Zemlje oko  $4,5 \cdot 10^9$  godina. Ili npr. procjenjuje se da je ukupan broj atoma u svemiru između  $10^{78}$  i  $10^{81}$ .