Learning Goals

- 1. Run Tophat/Bowtie alignments of reads to see what are expressed regions
- 2. Run EST/Transcripts to genome alignments to find genes
- 3. Run protein to genome alignments to find genes
- 4. Visualize these results in Browser (IGV)

Running RNASeq Alignments

- 1. Download sequence for genome, proteins, and RNAs
 - wget http://stajichlab.github.io/GenomeAnnotation/data/locus.tar.gz
- 2. Uncompress the file

```
tar zxf locus.tar.gz # uncompress the small dataset
```

3. Align the raw sequence reads against the genome locus with Bowtie/TopHat

bowtie2-build locus.fa locus # index the database
tophat locus RNASeq_locusonly.3H.fq # run the search
samtools index tophat_out/accepted_hits.bam

- Let's investigate that alignment file.
- Open IGV.
- Load locus.fa from the Genomes menu
- File Load the tophat_out/accepted_hits.bam
- $\bullet~$ File Load locus.fungidb.gff

Aligning ESTs to the genome

1. Align ESTs to genome with exonerate

```
exonerate -m e2g ESTs.fa locus.fa --showtargetgff > EST.aln.gff
```

• Now load this GFF into IGV to visualize

Aligning Proteins to the genome

5. Align proteins to genome with BLASTX

makeblastdb -in mory_proteins.fa -dbtype prot # format the db for BLAST
blastx -query locus.fa -db mory_proteins.fa -outfmt 6 # run BLASTX to find homologs
python blast2gff.py mory.BLASTX.tab BLASTX LGV_locus test > mory_proteins.BLASTX.gff

• Now load this GFF into IGV to visualize

6. Align proteins to genome with exonerate

exonerate -m p2g mory_proteins.fa locus.fa --showtargetgff > mory_proteins.aln.gff

• Now load this GFF into IGV to visualize

Practice with larger datasets

 $\label{lem:wget_http://stajichlab.github.io/GenomeAnnotation/data/big.tgz $$ tar zxf big.tgz $$$

wget http://www.fungidb.org/common/downloads/Current_Release/Fgraminearum_PH-1/fasta/data/Fi

- 1. Look in the new folder 'big'
- 2. there is a whole chromosome file now NcraOR74A_LGV.fa; Index this with bowtie2-build and run tophat
- 3. Use this file Ncra3H_ChrV_reads.fastq to align to the genome with tophat.
- 4. Load your new aligned bamfile reads (Step 3) and the genes in Ncra_OR74A_LGV.genes.gff
- 5. Use this file Nc5H-Trinity. fasta to align transcripts to the chromosome with exonerate
- Load the chromosome NcraOR74A_LGV.fa into IGV and load its annotations NcraOR74A_LGV.genes.gff
- 7. Use the downloaded file from another genome FungiDB-27_Fgraminearum_PH-1_AnnotatedProteins.fasta to align proteins to this chromosome with BLASTX
- You can try to run exonerate but it works better if you already have a subset of proteins that align to this chromosome as exonerate will try to align all proteins in the file (will take a while).
- 8. Load some of the alignments into IGV if you get it to work