Applying dynamic quantization

SCALABLE AI MODELS WITH PYTORCH LIGHTNING

Sergiy Tkachuk
Director, GenAl Productivity

Why use quantization?

Memory reduction

Why use quantization?

- Memory reduction
- CPU acceleration

Why use quantization?

- Memory reduction
- CPU acceleration
- Mobile inference

What is dynamic quantization?

- Reduce precision of weights and operations
- Improves inference speed
- Ideal for deployment on resourceconstrained devices

```
import torch
from torch.quantization
import quantize_dynamic
model_quantized = quantize_dynamic(
    model,
    {torch.nn.Linear},
    dtype=torch.qint8
```

Evaluating quantization impact

Performance comparison

• \(\neq \) Compare inference speed and memory footprint

Determine acceptable accuracy trade-offs

Decide on quantization suitability based on deployment needs

Comparing performance

```
import time
def measure_time(model, data_loader):
      model.eval() # Set model to evaluation mode
    start_time = time.time()
   for inputs in data_loader:
        _ = model(inputs)
    end_time = time.time()
    return end_time - start_time
original_time = measure_time(model, test_loader)
quant_time = measure_time(model_quant, test_loader)
print(f"Original Model Time: {original_time:.2f}s")
print(f"Quantized Model Time: {quant_time:.2f}s")
```

Let's practice!

SCALABLE AI MODELS WITH PYTORCH LIGHTNING

Implementing model pruning techniques

SCALABLE AI MODELS WITH PYTORCH LIGHTNING

Sergiy Tkachuk
Director, GenAl Productivity

When to use pruning?

• [] Helpful when deploying models to edge or embedded systems

• Can be combined with quantization for compound efficiency gains

What is model pruning?

- Removes less important connections in neural networks
- Leads to sparse models that are efficient to store and compute
- A common approach is L1 unstructured pruning

What is model pruning?

Understanding pruning masks

Pruning adds a binary mask to each targeted weight tensor.

- Mask = 1 --> weight kept.
- Mask = 0 --> weight set to 0 at forward time.

Weights are still stored in memory until the mask is removed.

Making pruning permanent

- By default, pruned weights remain part of the original tensor
- To finalize pruning, remove reparametrizations
- Converts sparse layer into standard layer with zeroed weights

```
Sequential(
  (fc): Linear(
    in_features=128, out_features=64,
    bias=True
    (weight): PrunedParam()
  )
) # Before prune.remove
```

```
import torch.nn.utils.prune as prune
prune.remove(model.fc, 'weight')

# Print model structure
print(model)
```

Evaluating pruning impact

- Compare original and pruned model performance
- Expect slight drops in accuracy but major size/memory savings
- Helps assess if the trade-off is acceptable for deployment

Let's practice!

SCALABLE AI MODELS WITH PYTORCH LIGHTNING

Exporting models with TorchScript

SCALABLE AI MODELS WITH PYTORCH LIGHTNING

Sergiy Tkachuk
Director, GenAl Productivity

What is TorchScript?

- Independent of Python
- Efficient in production
- Examples:
 - Deployment on mobile devices

What is TorchScript?

- Independent of Python
- Efficient in production
- Examples:
 - Deployment on mobile devices
 - High-performance inference in production systems

Converting models to TorchScript

Two methods for conversion:

- torch.jit.trace: Uses example inputs to trace execution
- torch.jit.script : Compiles the model by analyzing Python code

When to use:

- 1. Use trace for simpler models
- 2. Use script for models with control flow (e.g., loops)

```
import torch
import torch.nn as nn
class SimpleModel(nn.Module):
    def forward(self, x):
        return x * 2
model = SimpleModel()
scripted_model = torch.jit.script(model)
```

Saving and loading TorchScript models

- Saving the model:
 - torch.jit.save : Save the scripted model to a file
- Loading the model:
 - torch.jit.load : Load the model back for inference

```
# Save the model
torch.jit.save(scripted_mod,"model.pt")
# Load the model
loaded_model=torch.jit.load("model.pt")
```

Performing inference with TorchScript

- Steps:
 - Load the TorchScript model
 - Pass inputs to the model for predictions
 - Outputs are identical to PyTorch predictions

Example Input:

• Input Tensor: [1.0, 2.0, 3.0]

Example Output:

• Output Tensor: [2.0, 4.0, 6.0]

```
# Perform inference
input_arr = [1.0, 2.0, 3.0]
input_tensor = torch.tensor(input_arr)
output = loaded_model(input_tensor)
print(output)
```

TorchScript in a nutshell

- torch.jit.trace: Works for static models
- torch.jit.script : Handles dynamic control flow
- torch.jit.save : Saves the scripted model
- torch.jit.load : Reloads for inference

Let's practice!

SCALABLE AI MODELS WITH PYTORCH LIGHTNING

Recap: Scalable Al Models with PyTorch Lightning

SCALABLE AI MODELS WITH PYTORCH LIGHTNING

Sergiy Tkachuk
Director, GenAl Productivity

Building scalable models with PyTorch Lightning

- Neural network structuring
- Effective training logic
- LightningModule implementation

```
import lightning.pytorch as pl
import torch.nn as nn
class ClassificationModel(pl.LightningModule):
   def __init__(self, input_dim,
                 hidden_dim, num_class):
          # Initialize parent class
        super().__init__()
       # First layer
        self.layer1 = nn.Linear(input_dim,
                                hidden_dim)
       # Activation function
        self.relu = nn.ReLU()
       # Output layer
        self.layer2 = nn.Linear(hidden_dim,
                                num class)
```

Advanced techniques in PyTorch Lightning

- Data management and preprocessing
- Validation and testing methods
- Lightning callbacks optimization

```
from lightning.pytorch import Trainer
from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint
checkpoint = ModelCheckpoint(
    monitor='val_accuracy',
    save_top_k=2,
    mode='max')
early_stopping = EarlyStopping(
    monitor='val_accuracy',
    patience=5,
    mode='max')
```

Optimizing models for scalability

- Model quantization strategies
- Model pruning for efficiency
- TorchScript for deployment

```
import torch
import torch.nn as nn
class SimpleModel(nn.Module):
    def forward(self, x):
        return x * 2
scripted_model = torch.jit.script(SimpleModel())
torch.jit.save(scripted_mod,"model.pt") # Save the model
loaded_model=torch.jit.load("model.pt") # Load the model
```

Congratulations!

SCALABLE AI MODELS WITH PYTORCH LIGHTNING

