Affine Transformations

Production Computer Graphics
Eric Shaffer

Objectives

Understand what affine transformations are

• ...and why they are not linear transformations

Review how to represent an affine transformation as a matrix

- ...and composite transformations
- ...and inverse transformations

Review homogeneous coordinates

Understand how to intersect transformed objects

Know how to use instancing

Affine Transformations

We will review:

- Rotation
- Scaling
- Translation
- Reflection

All linear functions are affine functions

Linear functions keep the origin fixed

Affine functions need not do so

So...to include translation we use affine transformations

...and we're going to use homogeneous coordinates...

Homogeneous Coordinates

- Cartesian coordinates are often used in Euclidean Geometry
- Homogeneous coordinates are used in Projective Geometry
- Map between a 2D Cartesian point and a homogeneous point $(x,y,w) \Leftrightarrow \left(\frac{x}{w},\frac{y}{w}\right)$ • w=0 corresponds to a point at infinity Homogeneous Cartesian
- Mapping generalizes directly to 3D Cartesian points

What does (wX,wY,w) form in projective space?

The (x, y) plane is embedded at W = 1 in the (X, Y, W) coordinate system.

3D Translation

$$T(d_{x}, d_{y}, d_{z}) = \begin{pmatrix} 6 & 1 & 0 & 0 & d_{x} & 0 \\ \hat{e} & 0 & 1 & 0 & d_{y} & 0 \\ \hat{e} & 0 & 0 & 1 & d_{z} & 0 \\ \hat{e} & 0 & 0 & 0 & 1 & 0 \end{pmatrix}$$

3D Scaling

$$S(a,b,c) = \begin{matrix} \stackrel{\circ}{e} & a & 0 & 0 & 0 & \stackrel{\circ}{u} \\ \stackrel{\circ}{e} & 0 & b & 0 & 0 & \stackrel{\circ}{u} \\ \stackrel{\circ}{e} & 0 & 0 & c & 0 & \stackrel{\circ}{u} \\ \stackrel{\circ}{e} & 0 & 0 & 0 & 1 & \stackrel{\circ}{u} \end{matrix}$$

3D Rotation

$$R_{x}(q) = \begin{pmatrix} \dot{e} & 1 & 0 & 0 & 0 & \dot{u} \\ \dot{e} & 0 & \cos q & -\sin q & 0 & \dot{u} \\ \dot{e} & 0 & \sin q & \cos q & 0 & \dot{u} \\ \dot{e} & 0 & 0 & 0 & 1 & \dot{u} \end{pmatrix} \begin{pmatrix} \dot{e} & \cos q & 0 & \sin q & 0 & \dot{u} \\ \dot{e} & 0 & 1 & 0 & 0 & \dot{u} \\ \dot{e} & 0 & 0 & 0 & 1 & \dot{u} \end{pmatrix} \begin{pmatrix} \dot{e} & \cos q & 0 & \sin q & 0 & \dot{u} \\ \dot{e} & 0 & 1 & 0 & 0 & \dot{u} \\ \dot{e} & 0 & 0 & 0 & 1 & \dot{u} \end{pmatrix}$$
$$\begin{pmatrix} \dot{e} & \cos q & -\sin q & 0 & 0 & \dot{u} \\ \dot{e} & \sin q & \cos q & 0 & 0 & \dot{u} \\ \dot{e} & 0 & 0 & 0 & 1 & \dot{u} \end{pmatrix}$$
$$\begin{pmatrix} \dot{e} & \cos q & -\sin q & 0 & 0 & \dot{u} \\ \dot{e} & \sin q & \cos q & 0 & 0 & \dot{u} \\ \dot{e} & 0 & 0 & 0 & 1 & \dot{u} \end{pmatrix}$$

Pick an axis to rotate around (x, y, or z)

3D Rotation

- Pick an axis to rotate around (x, y, or z)
- Looking along the negative axis, the rotation is counter-clockwise

3D Reflection

Composing Transformations

Non-uniform scaling and rotation do not commute

Composing Transformations

Rotation and translation do not commute

Composing Transformations

Rotations do not commute

Inverse Transformations

Generally easy to construct

- For translation and rotation → just negate the terms in the matrix
- For scaling \rightarrow transform diagonal entries to their reciprocals

If we have
$$Tv = T_n T_{n-1} ... T_1 v$$
 then $T^{-1} = T_1^{-1} ... T^{-1}_{n-1} T^{-1}_n$
 $T^{-1} T v = v$

Intersecting Transformed Objects

- Apply inverse set of transformations to the ray
- Intersect inverse transformed ray with untransformed object
- Compute the normal at the hit point
- Use hit point to compute hit point on transformed object
- Use normal to compute normal on transformed object

Intersecting Transformed Objects

Intersecting Transformed Objects

To transform the ray

- Assume matrix T transforms the object
- Assume original ray is o + td
- The inverse transformed ray is then T-1o+tT-1d

Note that **d** is a vector

- It should be unaffected by translation
- Use a homogenous coordinate of 0 in d

Finding the Hit Point

- p = hit point for transformed ray and untransformed object
- p' = hit point for original ray and transformed object
- If the hit point p occurs at t₀ then the hit point p' occurs at t₀
 - Just calculate the point p' using t₀ and the original ray
- Proof:

$$p = o^{0} + t_{0}d^{0} = T^{-1}o + t_{0}T^{-1}d$$

$$Tp = TT^{-1}o + t_{0}TT^{-1}d = o + t_{0}d = p^{0}$$

Transforming Normals

- Let n be the normal on the untransformed object
 - Found at hit point with inverse transformed ray
- Let n' be the normal on the transformed object: $\mathbf{n'} = (\mathbf{T}^{-1})^T \mathbf{n}$
- If you only use uniform scaling and rotations (T⁻¹)^T=T

- Use homogeneous coordinate of 0
- Normalize n' after you find it

Instancing

- Keep a single original geometric model
- Create instance models which consist of
 - Reference to original model
 - Inverse transformation matrix
 - Material

Grids and Transformed Objects

- Store references to instances just as you would normal objects
 - For a mesh this would be references to individual triangles
 - ...and references to a material and inverse transformation matrix
- How can you compute the bounding box for the instances?
 - Why do you need the bounding box?
 - What information do you need to compute it?

Grids and Transformed Objects

