IE 598: Final Project Deep Residual Learning for Image Recognition

Team Members: Anish Shenoy
Dhruv Gelda
Joshua Schiller
Pramod Srinivasan

University of Illinois at Urbana-Champaign

11/16/2016 Dhruv Gelda

Difficulty in Training Deeper Networks - I

Prediction

Difficulty in Training Deeper Networks - II

Degradation of 110 layer network

No. of Layers	Test accuracy
20 Layer	90.61
32 Layer	88.22
44 Layer	87.49
56 Layer	85.81
110 Layer	9.98

How ResNets provide a solution ?

Plain Network

H(x) is the desired mapping that is to be learnt

Residual Network

New network learns the residual F(x)

- Network has same depth but with no extra parameter
 - Pushing the residual to zero is easier

Constructing a Residual Network (ResNet)

Performance on CIFAR - 10

Architecture	Test accuracies (paper)	Test accuracies (our)
20 Layer	91.25	91.53
32 Layer	92.49	92.66
44 Layer	92.83	92.2
56 Layer	93.03	92.30
110 Layer	93.57	93.59

Exploring Beyond Simple Residual Networks

Residuals of Residual Networks - I

Motivation

Is there any benefit to fitting residual layers to a residual?

Procedure

Shortcut paths added to bypass blocks of modules

Results

- Shallower and deeper networks perform best
- Residuals of residuals appear to cause overfitting of the model

Potential Reasons

- Shallower models have less adjustable parameters
- Longer shortcuts might have less effect on the model

Residuals of Residual Networks - II

Motivation

Is there any benefit to fitting residual layers to a residual?

Procedure

Shortcut paths added to bypass blocks of modules

Results

- Shallower and deeper networks perform best
- Residuals of residuals appear to cause overfitting of the model

Potential Reasons

- Shallower models have less adjustable parameters
- Longer shortcuts might have less effect on the model

Initialization by Sequential Addition of Blocks

Motivation

Is it possible to get a better initialization by pretraining a subset of the model layers beforehand?

Methodology

Sequentially added blocks of 5 modules

Results

- Top-down performed worse
- Bottom-up had no effect

Potential Reasons

Shallower layers might be more plastic than deeper ones

Thank you for listening!

Questions?

References

- [1] He, Kaiming, et al. "Deep residual learning for image recognition." arXiv preprint arXiv:1512.03385 (2015).
- [2] Zhang, Ke, et al. "Residual Networks of Residual Networks: Multilevel Residual Networks." arXiv preprint arXiv:1608.02908 (2016).
- [3] He, Kaiming, et al. "Identity mappings in deep residual networks." *arXiv* preprint arXiv:1603.05027 (2016).
- [4] Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." *arXiv* preprint arXiv:1409.1556(2014).