305343 - คอมพิวเตอร์และการสื่อสารข้อมูล

อ.สุชัยศรี ใลออน ภาคต้น ปีการศึกษา 2554 สัปดาห์ที่ 14

วัตถุประสงค์

- รู้จักเทคนิควิธีการสื่อสัญญาณแอนะล็อก
- รู้จักวิธีการกล้ำสัญญาณแอนะล็อก
- เข้าใจนิยามอัตราบิต และอัตราบอค ที่ใช้ในการสื่อสารข้อมูล
- รู้จักเทคนิคการแปลงสัญญาณดิจิทัลไปเป็นแอนะล็อก
- สามารถคำนวณเกณฑ์การวัดผลการสื่อสารข้อมูลได้

305343 – 1/2554

Outline

- Analog Transmission
 - Analog transmission concept
 - Modulation of Analog Signals
 - Modulation of Digital Data
- Data Communication Measurements

Analog Transmission

- เทคนิคและวิธีการที่จะจัดส่งข้อมูลแอนะล็อก
- อาศัยพลังงานไฟฟ้าช่วยนำพาสัญญาณแอนะล็อกให้ เคลื่อนย้ายจากผู้ส่งไปยังผู้รับ
- ขบวนการหรือขั้นตอนในการเพิ่มพลังงานไฟฟ้า เรียกว่า การมอดูเลต (Modulation) หรือการกล้ำสัญญาณ
- พลังงานไฟฟ้าซึ่งมีความถี่และขนาดของคลื่นสูงและคงที่
 เรียกว่า สัญญาณคลื่นพาห์ (Carrier Signal)

Signal Modulation

Amplitude Modulation (AM)

• การกล้ำแอมพลิจูค

305343 - 1/2554

- การสร้างสัญญาณที่มีการเปลี่ยนแปลงขนาดของคลื่น
- สัญญาณที่ได้จะมีขนาดของคลื่นเปลี่ยนไปตามขนาดของ สัญญาณข้อมูล

Type of Analog Modulation

305343 – 1/2554

AM Example

305343 – 1/2554 7 3

5

-

Frequency Modulation (FM)

- การกล้ำความถื่
- การสร้างสัญญาณที่มีการเปลี่ยนแปลงความถี่ของคลื่น
- สัญญาณที่ได้จะมีความถิ่งองสัญญาณเปลี่ยนไปตาม ความถิ่งองสัญญาณข้อมูล

305343 – 1/2554

Phase Modulation (PM)

• การกล้ำเฟส

305343 - 1/2554

- การสร้างสัญญาณที่มีการเปลี่ยนกลับเฟสของคลื่น
- สัญญาณที่ได้จะมีการเปลี่ยนกลับเฟสทุกครั้งที่มุมเฟสของ สัญญาณข้อมูลต่างจากมุมเฟสของสัญญาณคลื่นพาห์ 180
 องศา

FM Example

305343 – 1/2554 10

PM Example

สัญญาณ PM ที่ได้

305343 - 1/2554

Transmission via Analog medium

13 305343 - 1/2554

Bit Rate & Baud Rate

- Bit rate = จำนวนทิตต่อวินาที
- Baud rate = จำนวนหน่วย สัญญาณต่อวินาที

- ต.ย. ถ้าแต่ละหน่วยสัญญาณแอนะล็อกประกอบขึ้นจากบิต จำนวน 4 บิต ถ้าในหนึ่งวินาที่สามารถส่งสัญญาณแอนะล็อกได้ 100 หน่วยสัญญาณ
 - อัตราบอด (Baud rate) = baud/s
 - อัตราบิต (Bit rate) =

Digital-to-Analog Modulation Method

305343 - 1/2554

Amplitude Shift Keying (ASK)

- การเปลี่ยนขนาดของสัญญาณกลื่นพาห์ตามบิตข้อมูล
- ลักษณะของสัญญาณที่ได้
 - เมื่อค่าบิตของสัญญาณข้อมูลมีค่าเป็น 1 ขนาดของสัญญาณคลื่นพาห์จะสูงขึ้นกว่าปกติ
 - เมื่อค่าบิตของสัญญาณข้อมูลมีค่าเป็น () ขนาดของสัญญาณคลื่นพาห์จะท่ำลงกว่าปกติ
- กำหนดให้กลุ่มของบิตแทนสัญญาณแอนะล็อก ณ ค่าระดับแอม พลิจูดใดๆ
- กลุ่มของบิตที่ใช้ขึ้นอยู่กับจำนวนค่าระดับสัญญาณ
- การแทนกลุ่มของบิตจะเริ่มต้นจากบิตที่มีนัยสำคัญต่ำสุด

ASK Example 1

- 00110110
- กำหนดให้มี 4 ระดับสัญญาณ คือ A_1, A_2, A_3, A_4
- จำนวนบิตที่ใช้แทนแต่ละระดับสัญญาณ = 2 บิต

17 305343 - 1/2554

ASK Example 1

305343 - 1/2554

อ้างอิง: รปภาพจากหนังสือ Understanding Data Communications and Network ของ Shav W.

ASK Example 2

• 10110

Frequency Shift Keying (FSK)

- การเปลี่ยนความถึ่งองสัญญาณคลื่นพาห์ตามบิตข้อมูล
- ลักษณะของสัญญาณที่ได้
 - เมื่อค่าบิตของสัญญาณข้อมูลมีค่าเป็น 0 ความถี่ของสัญญาณคลื่นพาห์จะสูงขึ้น กว่าปกติ
 - เมื่อค่าบิตของสัญญาณข้อมูลมีค่าเป็น 1 ความถี่ของสัญญาณคลื่นพาห์จะต่ำลง กว่าปกติ
- กำหนดให้
 - บิต 0 แทนสัญญาณแอนะล็อกที่มีความถี่สูง
 - บิต 1 แทนสัญญาณแอนะล็อกที่มีความถี่ต่ำ

FSK Example 1

• 01001

อ้างอิง: รูปภาพจากหนังสือ Understanding Data Communications and Network ของ Shay W.

FSK Example 2

Phase Shift Keying (PSK)

- การเปลี่ยนเฟสของสัญญาณคลื่นพาห์ตามบิตข้อมูล
- ลักษณะของสัญญาณที่ได้
 - เมื่อมีการเปลี่ยนแปลงจากบิต 1 → 0 หรือจากบิต 0 → 1 เฟส ของสัญญาณคลื่นพาห์จะเปลี่ยนไป 180 องศา (กรณีใช้แบบ 2 เฟส: 2-PSK)
- การเปลี่ยนเฟสจะอ้างอิงจากสัญญาณก่อนหน้า

PSK Example

• 10110

305343 - 1/2554

24

Constellation Diagram

• PSK อาจเรียก 2-PSK หรือ binary PSK

ความสัมพันธ์ระหว่างเฟสกับค่าของบิต

แผนภาพแสดงกลุ่มของตำแหน่งจำนวนบิต

25 305343 - 1/2554

4-PSK (or Q-PSK)

ใช้ 2 บิตต่อ 1 baud (n)

26 305343 - 1/2554

Quadrature Amplitude Modulation (QAM)

- การกล้ำสัญญาณควอเครเจอร์-แอมพลิจูค (คิวเอเอ็ม)
- เทคนิคการมอดูเลตที่ใช้วิธี ASK และ PSK รวมกัน
- กลุ่มของบิตที่กำหนดแทนสัญญาณที่มีการเปลี่ยนทั้งแอม พลิจูคและเฟส

4-QAM and 8-QAM

QAM Example

- 001010100011101000011110
- สมมติใช้
 - -2 ระดับสัญญาณ คือ A_1,A_2
 - การเปลี่ยนแปลงเฟส 4 ระดับ คือ 0, 1/(4f), 2/(4f), 3/(4f) (หรือ 0, 90, 180, 270)

305343 - 1/2554

29

QAM Example

305343 - 1/2554

QAM Example

Data Rate Limits

- ขีดจำกัดอัตราข้อมูล
- ความสามารถในการส่งข้อมูลได้สูงสุดผ่านช่องสัญญาณการ สื่อสาร วัดเป็นบิตต่อวินาที (bits per second: bps)
- ปัจจัยการกำหนดอัตราข้อมูล
 - แบนด์วิดท์ที่รองรับ (Available Bandwidth: BW)
 - ระดับของสัญญาณ (Signal Level: L)
 - คุณภาพช่องสัญญาณ (ระดับสัญญาณรบกวน: Noise)

Available Bandwidth

- ช่องสื่อสารแบบไม่จำกัดแถบความถี่ (Low-pass channel)
 - สามารถส่งผ่านข้อมูลดิจิทัลได้
- ช่องสื่อสารแบบผ่านแถบความถี่จำกัด (Band-pass channel)
 - ต้องแปลงสัญญาคิจิทัลไปเป็นแอนะล็อกก่อนการส่ง
 - แบนค์วิคท์ที่ต้องการน้อยสุค(BW_{\min}) สำหรับอัตราบิต n bps ควรเป็น เท่าใด
 - 1^{st} ชาร์โมนิก: $BW_{\text{min}} = n/2$ Hz
 - 3^{rd} ฮาร์โมนิก: $BW_{\text{min}} = n/2 + 3n/2 = 2n \text{ Hz}$
 - 5^{th} ชาร์โมนิก: $BW_{min} = n/2 + 3n/2 + 5n/2 = 9n/2 \text{ Hz}$

33

Signal Levels

16 bits sent in 1 s.

ภาพ a

ภาพ b

34

Level 1 b. A digital signal with four levels

Amplitude

Level 4

Level 3

Level 2

305343 - 1/2554

อ้างอิง: รปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.

305343 - 1/2554

Pulse Rate vs. Bit Rate

- พัลส์ (Pulse)
 - เวลาที่ใช้ส่งผ่านหนึ่งสัญลักษณ์
- หนึ่งสัญลักษณ์
 - แทนด้วย 1 หรือ 2 หรือ n บิต
- อัตราพัลส์ (Pulse Rate)
 - จำนวนพัลส์ต่อวินาที

The # of Bits/sec vs. The required BW

- ขีดจำกัดอัตราข้อมูลคำนวนได้จาก
 - ทฤษฎีของ Nyquist
 - สำหรับช่องสัญญาณในอุคมคติ (Noiseless Channel)
 - ทฤษฎีของ Shannon
 - สำหรับช่องสัญญาณที่มีสัญญาณรบกวน (Noise Channel)

Noiseless Channel

- สำหรับช่องสัญญาณที่ไม่มีสัญญาณรบกวน
- จะเรียกว่า Nyquist Bit Rate
- Nyquist ได้กำหนดสูตรในการคำนวณอัตราบิตสูงสุดที่เป็นไป ได้ในทางทฤษฎี

$$= 2 \times BW \times \log_2 L \qquad (bps)$$

305343 – 1/2554

Data Rate Limits Example 1

 ช่องสัญญาณการสื่อสารมีแบนค์วิคท์ 2 MHz, SNR = 31 ให้หา อัตราบิต และระคับสัญญาณที่เหมาะสม

อัตราบิตที่เหมาะสมควรน้อยกว่าอัตราบิตสูงสุด 🗲

Noise Channel

- สำหรับช่องสัญญาณที่มีสัญญาณรบกวน
- จะเรียกว่า Shannon Capacity
- Claude Shannon ได้กำหนดสูตรในการคำนวณอัตราบิตสูงสุดที่ เป็นไปได้ในทางทฤษฎี

$$= BW \times \log_2(1 + SNR) \quad (bps)$$

SNR: Signal-to-Noise ratio คืออัตราส่วนกำลังสัญญาณต่อกำลังสัญญาณรบกวน

305343 – 1/2554 38

Data Rate Limits Example 2

 ถ้าช่องสัญญาณการสื่อสารมีแบนค์วิคท์ 2 MHz และ SNR_{dB} = 36 เคซิเบล แล้วอัตราบิตสูงสุคเท่ากับ?

$$SNR_{dB} = 10 \log_{10} SNR$$

$$\Rightarrow SNR =$$

305343 - 1/2554

Bandwidth for D-to-A Modulation

- ASK: BW_{min} = (1+d) x อัตราบอด , (d มีค่าต่ำสุด 0) = อัตราบอด
- FSK: $BW_{\min} =$ อัตราบอด + ค่าความแตกต่างของสองสัญญาณคลื่นพาห์ = อัตราบอด + $(f_{c1} f_{c0})$
- PSK: $BW_{\min} = BW_{\min}$ Vol ASK
- QAM: $BW_{\min} = BW_{\min}$ Vol ASK uat PSK

305343 – 1/2554 41

FSK Bandwidth Example

• ให้หาแบนด์วิดท์ต่ำสุดสำหรับ FSK ที่ค่าความแตกต่างของความถี่ 3,000 Hz ของการสื่อสารสองทางครึ่งอัตรา (Half Duplex)

• ของสื่อสารสองทางเต็มอัตรา (Full Duplex)

ASK Bandwidth Example

• ให้หาแบนด์วิดท์ต่ำสุดสำหรับ ASK ของการสื่อสารสองทางครึ่งอัตรา (Half Duplex)

• ของสื่อสารสองทางเต็มอัตรา (Full Duplex)

305343 - 1/2554

อ้างอิง: รูปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.

42

Bandwidth for

Modulation of an Analog Signal

- แบนด์วิดท์ของสัญญาณ AM
 - = สองเท่าของแบนค์วิคท์ของสัญญาณข้อมูล
- แบนด์วิดท์ของสัญญาณ FM
 - = สิบเท่าของแบนค์วิคท์ของสัญญาณข้อมูล
- แบนด์วิดท์ของสัญญาณ PM
 - = แบนค์วิคท์ของสัญญาณ FM

Throughput

- ปริมาณงาน
- ปริมาณบิตข้อมูลที่สามารถส่งผ่านเอนทิตีใดๆ (bps)

305343 - 1/2554 45

Wavelength (λ)

- ความยาวคลื่น: ระยะทางสัญญาณเคลื่อนที่ไปในหนึ่งคาบเวลา
 - = Propagation speed x Period
 - = Propagation speed / Frequency

Propagation Speed & Time

- Propagation Speed: อัตราเร็วการแพร่กระจายสัญญาณ(บิตข้อมูล) ผ่าน สื่อในหนึ่งวินาที (m/s)
- Propagation Time: เวลาที่สัญญาณ(บิตข้อมูล) ใช้ในการเคลื่อนที่ ระหว่างจุดของตัวกลางสื่อสัญญาณ (s)

$$= t_2 - t_1 = d /$$
Propagation speed

305343 - 1/2554 46

Bandwidth Delay Product

- ปริมาตร (Volume) = แบนค์วิคท์ x คีเลย์
- Sender
 Receiver

 After 1 s
 1st bit

 After 2 s
 2nd bit
 1st bit

 After 3 s
 3rd bit
 2nd bit
 1st bit

 After 4 s
 4th bit
 3rd bit
 2nd bit
 1st bit

 After 5 s
 5th bit
 4th bit
 3rd bit
 2nd bit
 1st bit

305343 - 1/2554

อ้างอิง: รูปภาพจากหนังสือ Data Communications and Networking ของ Forouzn B.