A NOTE ON GMRES ALGORITHM

PANAYOT S. VASSILEVSKI

ABSTRACT. This notes describe a computational version of the GMRES (generalized minimum residual) algorithm.

1. Iterative methods, iterates, residuals, and minimum residual least-squares approach

We are interested in solving a given system of linear equations $A\mathbf{x} = \mathbf{b}$ with A being a general $n \times n$ non-symmetric matrix.

An iterative method generates a sequence of approximations (iterates), which successively approach the exact solution. If \mathbf{x} is an approximation, then $\mathbf{r} = \mathbf{b} - A\mathbf{x}$ is called residual. It is clear that if $\mathbf{r} = 0$, then the respective \mathbf{x} solves the problem $A\mathbf{x} = \mathbf{b}$. One way to measure the accuracy of an approximation \mathbf{x} to the exact solution $\mathbf{x}_* = A^{-1}\mathbf{b}$, is to measure the norm of the residual, $\|\mathbf{r}\|$. If for a certain accuracy ϵ , e.g., $\epsilon = 10^{-6}$, we have $\|\mathbf{r}\| \le \epsilon \|\mathbf{r}_0\|$, where $\mathbf{r}_0 = \mathbf{b} - A\mathbf{x}_0$ (and \mathbf{x}_0 is the initial iterate), then we declare the current iterate \mathbf{x} to be a good approximation to \mathbf{x}_* . Note that we cannot measure the exact error $\mathbf{x} - \mathbf{x}_*$ since we do not know the exact solution \mathbf{x}_* (this is what we want to find).

Any iterative method, starting with an arbitrary initial iterate \mathbf{x}_0 (typical choices are 0 or random vector), generates a sequence of successive iterates

$$\mathbf{x}_0, \ \mathbf{x}_1, \ \mathbf{x}_2, \ \ldots, \ \mathbf{x}_k, \ \ldots$$

and computes the corresponding residuals

$$\mathbf{r}_0, \ \mathbf{r}_1, \ \mathbf{r}_2, \ \ldots, \ \mathbf{r}_k, \ \ldots$$

so that $\|\mathbf{r}_k\| \mapsto 0$. In minimum residual algorithms, we have monotonicity, i.e.,

$$\|\mathbf{r}_0\| \ge \|\mathbf{r}_1\| \ge \|\mathbf{r}_2\| \ge \dots \|\mathbf{r}_k\| \ge \dots \mapsto 0.$$

This means that at every iteration step, we *improve* the approximation.

One way to achieve this is done as follows. Let \mathbf{x} be the current iterate and $\mathbf{r} = \mathbf{b} - A\mathbf{x}$ the respective residual. We choose a search direction \mathbf{p} (to be described later), and then we construct the new iterate as $\mathbf{x}_{new} = \mathbf{x} + \alpha \mathbf{p}$, where the parameter α is chosen so that we get a smaller residual $\mathbf{r}_{new} = \mathbf{b} - A(\mathbf{x} + \alpha \mathbf{p}) = \mathbf{r} - \alpha A\mathbf{p}$, than \mathbf{r} . To achieve this, we solve the minimization problem for $\alpha \in \mathbb{R}$,

$$\|\mathbf{r}_{new}\| = \|\mathbf{r} - \alpha A \mathbf{p}\| \mapsto \min.$$

Date: March 1, 2018-beginning; Today is February 18, 2019.

1991 Mathematics Subject Classification. 65F10, 65N20, 65N30.

Key words and phrases. nonsymmetric matrices, GMRES algorithm.

In fact, at iteration step $k \ge 1$, we keep the search directions that we have chosen so far, $\mathbf{p}_0, \ldots, \mathbf{p}_{k-1}$ and add one more \mathbf{p}_k . For example, at step k = 1, we have \mathbf{p}_0 and we add \mathbf{p}_1 . Then our new iterate will be

$$\mathbf{x}_{new} = \mathbf{x} + \alpha_1 \mathbf{p}_0 + \alpha_2 \mathbf{p}_1.$$

Then the new residual is

$$\mathbf{r}_{new} = \mathbf{b} - A(\mathbf{x} + \alpha_1 \mathbf{p}_0 + \alpha_2 \mathbf{p}_1) = \mathbf{r} - \alpha_1 A \mathbf{p}_0 - \alpha_2 A \mathbf{p}_1.$$

We can rewrite $\alpha_1 A \mathbf{p}_0 + \alpha_2 A \mathbf{p}_1 = [A \mathbf{p}_0, A \mathbf{p}_1] \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}$. Now let

$$P = [\mathbf{p}_1, \ \mathbf{p}_2], B = AP = [A\mathbf{p}_1, \ A\mathbf{p}_2], \text{ and } \mathbf{y} = \begin{bmatrix} \alpha_1 \\ \alpha_2 \end{bmatrix}.$$

Then

$$\mathbf{r}_{new} = \mathbf{r} - B\mathbf{y}.$$

We find α_1 and α_2 , i.e., the vector \mathbf{y} , by solving the *least-squares* problem

$$\|\mathbf{r} - B\mathbf{y}\| \mapsto \min$$
.

This minimization ensures the monotonicity $\|\mathbf{r}\| \geq \|\mathbf{r}_{new}\|$ (note that $\mathbf{r}_{new} = \mathbf{r}$ if $\alpha = 0$). We note that at step k, B is a $n \times (k+1)$ matrix. Initially, when k = 0, B has just one column.

Once, we solve the least squares problem, we have $\mathbf{x}_{new} = \mathbf{x} + P\mathbf{y}$, and $\mathbf{r}_{new} = \mathbf{r} - B\mathbf{y}$.

The choice of the next search direction \mathbf{p}_k is based on the most recent residual \mathbf{r} and the previous directions $\mathbf{p}_0, \ldots, \mathbf{p}_{k-1}$, using Gram-Schmidt. Assuming that we have already constructed $\mathbf{p}_0, \ldots, \mathbf{p}_{k-1}$ to be orthogonal set, we first compute

$$\widetilde{\mathbf{p}}_k = \mathbf{r} - c_0 \mathbf{p}_0 - c_1 \mathbf{p}_1 - \dots - c_{k-1} \mathbf{p}_{k-1},$$

for appropriate constants c_j , to be orthogonal to all previous search directions, and then normalize it, to get \mathbf{p}_k , i.e., $\mathbf{p}_k = \frac{\tilde{\mathbf{p}}_k}{\|\tilde{\mathbf{p}}_k\|}$. The constants are $c_j = \mathbf{p}_j^T \mathbf{r}$.

To summarize, the above procedure involves:

- matrix-vector products with A, e.g., in the computations of $A\mathbf{p}_j$, $j=1,\ldots,k$ which gives the columns of B. For large matrices A can be stored in CSR format. B is generally a dense but tiny matrix (k << n).
- solving by least-squares the problem $B\mathbf{y} = \mathbf{r}$. For this, we use the QR factorization of B (using Gram-Schmidt), i.e., B = QR, and we find \mathbf{y} from $R\mathbf{y} = Q^T\mathbf{r}$ using the fact that R is upper triangular $k \times k$ (i.e., small) matrix.
- Computing $\mathbf{x}_{new} = \mathbf{x} + P\mathbf{y}$ and $\mathbf{r}_{new} = \mathbf{r} B\mathbf{y}$, both involving matrix-vector operations with tiny matrices P and B (much fewer columns than rows).
- Gram-Schmidt is also used to generate \mathbf{p}_k from \mathbf{r} and the previous search directions $\mathbf{p}_0, \ldots, \mathbf{p}_{k-1}$.

A complete algorithm is presented in the next section.

2. Problem formulation

We assume that we have a given vector inner product, (\mathbf{u}, \mathbf{v}) , for example $(\mathbf{u}, \mathbf{v}) = \mathbf{v}^T \mathbf{u}$ and the corresponding norm $\|\mathbf{v}\| = \sqrt{(\mathbf{v}, \mathbf{v})}$.

For the GMRES algorithm, we need the following input:

- \max_{iter} : maximal number of iterations, e.g., $\max_{iter} = 1000$.
- ϵ : tolerance, e.g., $\epsilon = 10^{-6}$.
- m_{max} : maximal number of search directions, e.g., m = 50.
- \mathbf{x}_0 : initial iterate, e.g., $\mathbf{x}_0 = 0$, or a random vector.

The GMRES method generates at every iteration, a set of orthogonal vectors $\mathbf{p}_1, \ldots, \mathbf{p}_m, m \leq m_{\max}$ and computes the next iterate \mathbf{x}_{next} based on the current residual $\mathbf{r} = \mathbf{b} - A\mathbf{x}$, where \mathbf{x} is the current iterate, and the search vectors $\mathbf{p}_1, \ldots, \mathbf{p}_m$ as follows,

$$\mathbf{x}_{next} = \mathbf{x} + \sum_{k=1}^{m} \alpha_k \mathbf{p}_k.$$

The coefficient vector $\boldsymbol{\alpha} = (\alpha_k)_{k=1}^m$ is computed by solving the following least-squares problem

$$\|\mathbf{r} - A\left(\sum_{k=1}^{m} \alpha_k \mathbf{p}_k\right)\| \mapsto \min.$$

Introducing, the matrices $P = [\mathbf{p}_1, \ \mathbf{p}_2, \ \dots, \ \mathbf{p}_m]$ and B = AP, which is a $n \times m$ (rectangular) matrix, the above problem is equivalent to solving the least-squares problem

for which we can use the QR algorithm. It factorizes B as B = QR, where Q is $n \times m$ orthogonal matrix and R is an $m \times m$ upper triangular matrix. Then, the least-squares problem takes the form

$$R\boldsymbol{\alpha} = Q^T \mathbf{r}.$$

I.e., we compute $\alpha = (\alpha_k)_{k=1}^m$ by solving the above small $m \times m$ upper triangular system.

Once the coefficients $\alpha = (\alpha_k)_{k=1}^m$ are found, the next iterate is computed as

$$\mathbf{x}_{next} = \mathbf{x} + P\boldsymbol{\alpha} = \mathbf{x} + \sum_{k=1}^{m} \alpha_k \mathbf{p}_k.$$

The next residual is

$$\mathbf{r}_{next} = \mathbf{b} - A\mathbf{x}_{next} = \mathbf{r} - B\boldsymbol{\alpha}.$$

Before continuing with the iterations, we check if have reached the maximal number of allowed iterations steps, \max_{iter} , and if not, we check if we have reached the tolerance limit, i.e., we check if

$$\|\mathbf{r}_{next}\| \leq \epsilon \|\mathbf{r}_{initial}\|.$$

If not, we proceed with the iteration process. This is done as follows.

If $m < m_{\text{max}}$, we add one more vector to the previous set of search vectors by Gram-Schmidt, i.e, computing

$$\widetilde{\mathbf{p}}_{m+1} = \mathbf{r}_{next} - \sum_{k=1}^m (\mathbf{r}, \; \mathbf{p}_k) \mathbf{p}_k.$$

and then letting

$$\mathbf{p}_{m+1} = \frac{1}{\|\widetilde{\mathbf{p}}_{m+1}\|} \ \widetilde{\mathbf{p}}_{m+1}.$$

Then we set

- m := m + 1
- \bullet $\mathbf{r} := \mathbf{r}_{next}$
- $\bullet \ \mathbf{x} := \mathbf{x}_{next}.$

and repeat. If $m = m_{\text{max}}$, restart, i.e., we set m = 1, and let $\mathbf{p}_1 = \frac{1}{\|\mathbf{r}\|} \mathbf{r}$, where \mathbf{r} is the most recent residual, and then repeat the above procedure.

We summarize next the entire GMRES algorithm.

Algorithm 2.1 (GMRES algorithm).

- Input: A- $n \times n$ matrix, $\mathbf{b} \in \mathbb{R}^n$ right hand side vector.
- Tolerance: ϵ .
- Maximal number of GMRES iterations: max_{iter}.
- Maximal number of search directions: m_{max} .
- Memory for vectors: solution \mathbf{x} , residual \mathbf{r} , search vectors $\mathbf{p}_1, \ldots, \mathbf{p}_{m_{\max}}$.
- Memory for Q and R, Q is $n \times m_{\text{max}}$ array, and R is $m_{\text{max}} \times m_{\text{max}}$ array.
- Memory for the coefficient vectors $\boldsymbol{\alpha} = (\alpha_k) \in \mathbb{R}^{m_{\text{max}}}$ and the right-hand side vector $\boldsymbol{\beta} \in \mathbb{R}^{m_{\text{max}}}$ of the small problem with the upper triangular matrix R.

The algorithm proceeds as follows:

- Initiate: set initial iterate **x** (zero or random vector).
- Compute initial residual:

$$r = b - Ax$$
.

• Compute initial residual norm

$$\delta_0 = \|\mathbf{r}\|.$$

- Set i = 0.
- (Re)start: Set i := i + 1. Set m = 1 and choose (initial) search direction

$$\mathbf{p}_1 = \frac{1}{\|\mathbf{r}\|} \; \mathbf{r}.$$

- Set $P = \mathbf{p}_1$ and $B = A\mathbf{p}_1$ (one-column matrices).
- Loop:
 - (1) Solve the least-squares problem

$$\|\mathbf{r} - B\boldsymbol{\alpha}\| \mapsto \min$$
,

by first computing B = QR, the right-hand-side vector $\boldsymbol{\beta} = Q^T \mathbf{r}$, and then solving for $\boldsymbol{\alpha}$, $R\boldsymbol{\alpha} = \boldsymbol{\beta}$.

(2) Compute next iterate

$$\mathbf{x} := \mathbf{x} + P\boldsymbol{\alpha}.$$

(3) Compute next residual

$$\mathbf{r} := \mathbf{r} - B\boldsymbol{\alpha}.$$

(4) Compute residual norm

$$\delta = \|\mathbf{r}\|.$$

(5) Check for convergence, i.e., if

$$\delta < \epsilon \delta_0$$
.

If yes, exit.

- If $i + 1 = \max_{iter} exit$.
- If $m < m_{\text{max}}$, compute next search direction, by first computing

$$\mathbf{p}_{m+1} = \mathbf{r} - \sum_{k=1}^m (\mathbf{r}, \ \mathbf{p}_k) \mathbf{p}_k.$$

and its norm $\|\mathbf{p}_{m+1}\|$. The actual search direction is normalized, i.e.,

$$\mathbf{p}_{m+1} := \frac{\mathbf{p}_{m+1}}{\|\mathbf{p}_{m+1}\|}.$$

Augment the matrices P and B with one more column: $P := [P, \mathbf{p}_{m+1}]$ and $B := [B, A\mathbf{p}_{m+1}]$. Then set m := m+1 and repeat Loop.

• If $m = m_{\text{max}}$, go to (Re)start.

Department of Mathematics and Statistics, Portland State University, Portland, OR 97207

 $Email\ address: panayot@pdx.edu$