Qgis na Gestão Patrimonial de Infraestruturas (GPI) Município do Sabugal

Introdução do Qgis no SIG da câmara municipal do sabugal

Teve como motivação principal os custos elevados do software comercial

- O contrato de manutenção com a ESRI Portugal terminou em junho de 2011.
- O município já poupou cerca de 5000 euros só pelo não pagamento desse contrato em 3 anos.
- Uma licença global para 3 anos, com soluções equivalentes ao tridente qgis/grass/postgre sql, (embora com aplicações web específicas município) teria um custo de <u>40 000</u> euros, sendo necessário custear a manutenção posteriormente, de <u>7000</u> euros/ano.

Formação inicial

Bases de Dados Geográficas Open Source (PostgreSQL/PostGIS), pela Faunália em 2010 (Lisboa)
Iniciação SIG – Quantum GIS pela GIFF, em 2012 (Viseu)

para o

Qgis nos serviços municipais

A primeira versão utilizada foi o qgis 1.7 Wroclaw

Atualmente, temos o Qgis instalado em 21 utilizadores (versão 2.0.1 Dufour), ligados em rede ao servidor SIG

Temos projetos Qgis, para visualização, edição e análise de informação em vários serviços, designadamente:

- Ambiente (recolha de resíduos sólidos)
- Arqueologia
- Atividade cinegética e pesca
- Floresta
- Redes elétricas
- Redes de transporte (sinalética rodoviária)
- Saneamento básico
- Toponímia
- Turismo

Situação atual e migração da informação em shapefile para PostgreSQL/PostGIS

Definição dos "schemas" com base na estrutura orgânica do município

Definição de grupos e utilizadores

Situação atual e migração da informação em shapefile para PostgreSQL/PostGIS

Com o inicio da **iGPI**, a informação foi colocada no SGBD PostgreSQL/PostGIS, no servidor da câmara municipal do Sabugal. As tabelas correspondem genericamente aos *layers* existentes e foram agrupadas no *schema* "redes_aguas".

Foram atribuídas permissões distintas a vários utilizadores.

```
SOL pane
     ± ≡ est_elevatoria
                                                  url text,
     ± est_elevatorias_aguas
                                                  nome character varying(50),
     ± ≡ est_elevatorias_residuais
                                                  CONSTRAINT ligacoes indevidas pkey PRIMARY KEY (gid),
     ⊕ eta po
                                                  CONSTRAINT enforce_dims_the_geom CHECK (st_ndims(the_geom) = 2),
     ± ... s etar_fossa_septica
                                                  CONSTRAINT enforce_geotype_the_geom CHECK (geometrytype(the_geom) = 'POINT'::text OR the_g
     ±--- igacoes_indevidas
                                                  CONSTRAINT enforce srid the geom CHECK (st srid(the geom) = 3763)

<u>+</u> · · · solution ocorrencias_aguas

<u>★</u> pontos_entrega

     ± pontos recolha
                                                  OIDS=FALSE
     🛨 - 🔢 rda
     🛨 📰 rdar
                                                 ALTER TABLE redes aguas.ligacoes indevidas

    reservatorios

                                                  OWNER TO telmo;
     Trigger Functions (0)
                                                 GRANT ALL ON TABLE redes aguas.ligacoes indevidas TO telmo;
                                                 GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE redes aguas.ligacoes indevidas TO gpi;
      🛅 Views (0)
                                                 GRANT SELECT, UPDATE, INSERT, DELETE ON TABLE redes aguas.ligacoes indevidas TO alexandre;

<u>+</u> · · · ◆ redes_eletricas_comunicacoes

                                                 GRANT ALL ON TABLE redes aguas.ligacoes indevidas TO ana carreira;
± ⊗ redes transporte
± ··· ⊗ toponimia_enderecos
```


Situação atual e migração da informação em shapefile para PostgreSQL/PostGIS - GPI

Dados existentes

- 330 Km de rede de águas de abastecimento cadastradas, distribuídos por 71 aglomerados
- 180 Km de redes de águas residuais cadastrados, distribuídos por 46 aglomerados
 - 3841 contadores de agua (total de 11 997)
 - 46 instalações complementares (ETAS, ETAR, EE,....)

Redes de abastecimento de água (concelho do Sabugal)

Redes de águas residuais (concelho do Sabugal)

Análise da solução atual

Migração da informação para SGBD Postgre SQL/PostGIS

- Melhoria no rigor e atualidade dos dados
- Maior coerência, menor redundância
- Libertação de tempo para o gabinete de SIG
- Despertar dos serviços para o potencial das ferramentas de SIG
- Integração com ERP's existentes (ex: Sistema de Gestão de Águas)

Pontos fortes e fracos do Qgis (da nossa experiência)

- Interligação cada vez mais forte com PostgreSQL/PostGIS e GRASS
- Intuitivo e de fácil aprendizagem
- Constante evolução
- Facilidade na construção de formulários para inserção de dados
- Dificuldade de preparação de impressão, pelo menos para utilizadores mais básicos

Projetos Qgis/GPI Registo das roturas

Cadastro das roturas ocorridas na rede de abastecimento de águas, essencial para:

Conhecimento do estado de conservação da rede.

Cálculo das perdas reais de água

Os dois chefes das equipas de canalizadores têm permissões para editar os dados da camada "roturas"

Projetos Qgis/GPI - Ligações indevidas

Cadastro das situações em que as águas provenientes de algerozes, pátios etc, são canalizadas indevidamente para coletores da rede de aguas residuais.

O serviço de fiscalização gere estas ocorrências e notifica os munícipes (foi executado um *hyperlink* às notificações).

Projetos Qgis/GPI Verificação das caixas de visita (águas residuais)

Verificação e registo da profundidade das caixas, bem como dos problemas encontrados

iGPI - definição

iGPI - Iniciativa Nacional para a Gestão Patrimonial de Infraestruturas, foi uma iniciativa colaborativa destinada a apoiar todas as entidades gestoras de infraestruturas urbanas (redes de abastecimento de águas e de redes de águas residuais).

Foi coordenada pelo Laboratório Nacional de Engenharia Civil - **LNEC** apoiada pelo Instituto Superior Técnico - **IST** no desenvolvimento técnico e científico de metodologias e a **Addition**, **Lda** que assegurou a manutenção e suporte á utilização do software produzido e publicado em regime *open-*

source no âmbito do projeto AWARE-P.

- Participaram nesta iniciativa 18 entidades gestoras e teve uma duração de 16 meses.

Gestão Patrimonial de Infraestruturas (GPI) – Município do Sabugal

Qgis – modulo de GHydraulics

Foram selecionadas algumas redes prioritárias como Baraçal e Vale de Espinho (na imagem), onde posteriormente se executaram simulações hidráulicas (EPANET) para averiguar os problemas existentes.

Qgis – criação do modelo epanet

O primeiro passo é configurar as camadas que o *GHydraulics* vai utilizar para os nós, condutas e reservatórios.

Qgis – criação e exportação de ficheiro "inp" para EPANET

Criado o modelo EPANET (com diversos campos adicionados à tabela), procede-se à criação do ficheiro "inp".

EPANET

O EPANET é um software "open source" para simulação estáticas e dinâmicas de sistemas de distribuição

de água. Permite representar consumos, pressões, velocidades e outras variáveis.

Sem GHydraulics

Com GHydraulics

Qgis epanet (Oslandia) – modulo experimental

