

Probabilistic Graphical Models

01010001 Ω

Maximum likelihood learning of undirected GM

Eric Xing
Lecture 7, February 6, 2019

Reading: see class homepage

Recall: Learning Graphical Models

- Scenarios:
 - Completely observed GMs
 - directed
 - undirected
 - Partially or unobserved GMs
 - directed
 - undirected (an open research topic)
- Estimation principles:
 - Maximal likelihood estimation (MLE)
 - Bayesian estimation
 - Maximal conditional likelihood
 - Maximal "Margin"
 - Maximum entropy
- We use learning as a name for the process of estimating the parameters, and in some cases, the topology of the network, from data.

Recap: MLE for BNs

Assuming the parameters for each CPD are globally independent, and all nodes are fully observed, then the log-likelihood function decomposes into a sum of local terms, one per node:

$$\ell\left(\theta; D\right) = \log p(D \mid \theta) = \log \prod_{n} \left(\prod_{i} p(x_{n,i} \mid \mathbf{x}_{\pi_{i}}, \theta_{i}) \right) = \sum_{i} \left(\sum_{n} \log p(x_{n,i} \mid \mathbf{x}_{\pi_{i}}, \theta_{i}) \right)$$

$$\mathcal{O}_{ijk}^{ML} = \frac{n_{ijk}}{\sum_{i,j',k} n_{ij'k}}$$

MLE for undirected graphical models

- For <u>directed graphical models</u>, the log-likelihood decomposes into a sum of terms, one per family (node plus parents).
- For <u>undirected graphical models</u>, the log-likelihood does not decompose, because the normalization constant Z is a function of all the parameters

$$P(x_1, \dots, x_n) = \frac{1}{Z} \prod_{c \in C} \psi_c(\mathbf{x}_c) \qquad Z = \sum_{x_1, \dots, x_n} \prod_{c \in C} \psi_c(\mathbf{x}_c)$$

In general, we will need to do inference (i.e., marginalization) to learn parameters for undirected models, even in the fully observed case.

Log Likelihood for UGMs with tabular clique potentials

Sufficient statistics: for a UGM (V, E), the number of times that a configuration x (i.e., $X_{V}=x$) is observed in a dataset $D=\{x_1,...,x_N\}$ can be represented as follows:

$$m(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{n} \delta(\mathbf{x}, \mathbf{x}_{n})$$
 (total count), and $m(\mathbf{x}_{c}) \stackrel{\text{def}}{=} \sum_{\mathbf{x}_{V \setminus c}} m(\mathbf{x})$ (clique count)

In terms of the counts, the log likelihood is given by:

$$p(D|\theta) = \prod_{n} \prod_{\mathbf{x}} p(\mathbf{x} \mid \theta)^{\delta(\mathbf{x}, \mathbf{x}_n)}$$

$$\log p(D|\theta) = \sum_{n} \sum_{\mathbf{x}} \delta(\mathbf{x}, \mathbf{x}_n) \log p(\mathbf{x} \mid \theta) = \sum_{\mathbf{x}} \sum_{n} \delta(\mathbf{x}, \mathbf{x}_n) \log p(\mathbf{x} \mid \theta)$$

$$\ell = \sum_{\mathbf{x}} m(\mathbf{x}) \log \left(\frac{1}{Z} \prod_{c} \psi_c(\mathbf{x}_c)\right)$$

$$= \sum_{c} \sum_{\mathbf{x}_c} m(\mathbf{x}_c) \log \psi_c(\mathbf{x}_c) - N \log Z$$

lacktriangle There is a nasty log Z in the likelihood

Log Likelihood for UGMs with tabular clique potentials

Sufficient statistics: for a UGM (V, E), the number of times that a configuration x (i.e., $X_{V}=x$) is observed in a dataset $D=\{x_1,\ldots,x_N\}$ can be represented as follows:

$$m(\mathbf{x}) \stackrel{\text{def}}{=} \sum_{n} \delta(\mathbf{x}, \mathbf{x}_{n})$$
 (total count), and $m(\mathbf{x}_{c}) \stackrel{\text{def}}{=} \sum_{\mathbf{x}_{V \setminus c}} m(\mathbf{x})$ (clique count)

In terms of the counts, the log likelihood is given by:

$$\log p(D|\theta) = \sum_{c} \sum_{\mathbf{x}_{c}} m(\mathbf{x}_{c}) \log \psi_{c}(\mathbf{x}_{c}) - N \log Z$$

ightharpoonup There is a nasty log Z in the likelihood

Derivative of log Likelihood

Log-likelihood:

$$\ell = \sum_{c} \sum_{\mathbf{x}_{c}} m(\mathbf{x}_{c}) \log \psi_{c}(\mathbf{x}_{c}) - \mathcal{N} \log \mathbf{Z}$$

First term:

$$\frac{\partial \ell_1}{\partial \psi_c(\mathbf{x}_c)} = \frac{m(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)}$$

Second term:

$$\frac{\partial \log Z}{\partial \psi_c(\mathbf{x}_c)} = \frac{1}{Z} \frac{\partial}{\partial \psi_c(\mathbf{x}_c)} \left(\sum_{\widetilde{\mathbf{x}}} \prod_d \psi_d(\widetilde{\mathbf{x}}_d) \right)$$

Set the value of variables to X

$$= \frac{1}{Z} \sum_{\widetilde{\mathbf{x}}} \delta(\widetilde{\mathbf{x}}_{c}, \mathbf{x}_{c}) \frac{\partial}{\partial \psi_{c}(\mathbf{x}_{c})} \left(\prod_{d} \psi_{d}(\widetilde{\mathbf{x}}_{d}) \right)$$

$$= \sum_{\widetilde{\mathbf{x}}} \delta(\widetilde{\mathbf{x}}_{c}, \mathbf{x}_{c}) \frac{1}{\psi_{c}(\widetilde{\mathbf{x}}_{c})} \frac{1}{Z} \prod_{d} \psi_{d}(\widetilde{\mathbf{x}}_{d})$$

$$= \frac{1}{\psi_{c}(\mathbf{x}_{c})} \sum_{\widetilde{\mathbf{x}}} \delta(\widetilde{\mathbf{x}}_{c}, \mathbf{x}_{c}) \boldsymbol{p}(\widetilde{\mathbf{x}}) = \frac{\boldsymbol{p}(\mathbf{x}_{c})}{\psi_{c}(\mathbf{x}_{c})}$$

Conditions on Clique Marginals

Derivative of log-likelihood

$$\frac{\partial \ell}{\partial \psi_c(\mathbf{x}_c)} = \frac{\mathbf{m}(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)} - \mathbf{N} \frac{\mathbf{p}(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)}$$

Hence, for the maximum likelihood parameters, we know that:

$$p_{MLE}^*(\mathbf{x}_c) = \frac{m(\mathbf{x}_c)}{N} \stackrel{\text{def}}{=} \widetilde{p}(\mathbf{x}_c)$$

- In other words, at the maximum likelihood setting of the parameters, for each clique, the model marginals must be equal to the observed marginals (empirical counts).
- This doesn't tell us how to get the ML parameters, it just gives us a condition that must be satisfied when we have them.

MLE for undirected graphical models

- Is the graph decomposable (triangulated)?
- □ Are all the clique potentials defined on maximal cliques (not subcliques)? e.g., $ψ_{123}$, $ψ_{234}$ not $ψ_{12}$, $ψ_{23}$, ...

Are the clique potentials full tables (or Gaussians), or parameterized more compactly, e.g. $\psi_c(\mathbf{x}_c) = \exp\left(\sum_c \theta_k f_k(\mathbf{x}_c)\right)$

Decomposable?	Max clique?	Tabular?	Method
√	√	√	Direct
-	-	√	IPF
-	-	-	Gradient
-	-	-	GIS

Two Workhorse Algorithms

- Iterative Proportional Fitting (IPF)
 - For MRFs with tabular potentials

- Generalized Iterative Scaling (GIS)
 - For MRFs with features based potentials

Iterative Proportional Fitting (IPF)

From the derivative of the likelihood:

$$\frac{\partial \ell}{\partial \psi_c(\mathbf{x}_c)} = \frac{\mathbf{m}(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)} - \mathbf{N} \frac{\mathbf{p}(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)}$$

we can derive another relationship:

$$\frac{\widetilde{p}(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)} = \frac{p(\mathbf{x}_c)}{\psi_c(\mathbf{x}_c)}$$

in which ψ_c appears implicitly in the model marginal $p(\mathbf{x}_c)$.

- \square This is therefore a **fixed-point equation** for ψ_{c} .
 - Solving ψ_c in closed-form is hard, because it appears on both sides of this implicit nonlinear equation.
- The idea of IPF is to hold ψ_c fixed on the right hand side (both in the numerator and denominator) and solve for it on the left hand side. We cycle through all cliques, then iterate:

$$\psi_c^{(t+1)}(\mathbf{x}_c) = \psi_c^{(t)}(\mathbf{x}_c) \frac{\widetilde{p}(\mathbf{x}_c)}{p^{(t)}(\mathbf{x}_c)}$$
 Need to do inference here

Properties of IPF Updates

□ IPF iterates a set of fixed-point equations:

$$\psi_c^{(t+1)}(\mathbf{x}_c) = \psi_c^{(t)}(\mathbf{x}_c) \frac{\tilde{p}(\mathbf{x}_c)}{p^{(t)}(\mathbf{x}_c)}$$

- However, we can prove it is also a coordinate ascent algorithm (coordinates = parameters of clique potentials).
- Hence at each step, it will increase the log-likelihood, and it will converge to a global maximum.
- I-projection: finding a distribution with the correct marginals that has the maximal entropy

KL Divergence View

- IPF can be seen as coordinate ascent in the likelihood using the way of expressing likelihoods using KL divergences.
- We can show that maximizing the log likelihood is equivalent to minimizing the KL divergence (cross entropy) from the observed distribution to the model distribution:

$$\max \ell \Leftrightarrow \min KL(\widetilde{p}(x) || p(x | \theta)) = \sum_{x} \widetilde{p}(x) \log \frac{\widetilde{p}(x)}{p(x | \theta)}$$

Using a property of KL divergence based on the conditional chain rule: $p(x) = p(x_a)p(x_b/x_a)$:

$$KL(q(x_{a}, x_{b}) || p(x_{a}, x_{b})) = \sum_{x_{a}, x_{b}} q(x_{a})q(x_{b} | x_{a}) \log \frac{q(x_{a})q(x_{b} | x_{a})}{p(x_{a})p(x_{b} | x_{a})}$$

$$= \sum_{x_{a}, x_{b}} q(x_{a})q(x_{b} | x_{a}) \log \frac{q(x_{a})}{p(x_{a})} + \sum_{x_{a}, x_{b}} q(x_{a})q(x_{b} | x_{a}) \log \frac{q(x_{b} | x_{a})}{p(x_{b} | x_{a})}$$

$$= KL(q(x_{a}) || p(x_{a})) + \sum_{x_{a}} q(x_{a})KL(q(x_{b} | x_{a}) || p(x_{b} | x_{a}))$$

• or

IPF minimizes KL divergence

Putting things together, we have

$$KL(\widetilde{p}(\mathbf{x}) \parallel p(\mathbf{x} \mid \theta)) = KL(\widetilde{p}(\mathbf{x}_c) \parallel p(\mathbf{x}_c \mid \theta)) + \sum_{\mathbf{x}_a} \widetilde{p}(\mathbf{x}_c) KL(\widetilde{p}(\mathbf{x}_{-c} \mid \mathbf{x}_c) \parallel p(\mathbf{x}_{-c} \mid \mathbf{x}_c))$$

It can be shown that changing the clique potential ψ_c has no effect on the conditional distribution, so the second term in unaffected.

- To minimize the first term, we set the marginal to the observed marginal, just as in IPF.
 - Note that this is only good when the model is decomposable!
- We can interpret IPF updates as retaining the "old" conditional probabilities $p^{(t)}(\mathbf{x}_{-c}|\mathbf{x}_c)$ while replacing the "old" marginal probability $p^{(t)}(\mathbf{x}_c)$ with the observed marginal $\widetilde{p}(\mathbf{x}_c)$

Two Workhorse Algorithms

- Iterative Proportional Fitting (IPF)
 - For MRFs with tabular potentials

- Generalized Iterative Scaling (GIS)
 - For MRFs with features based potentials

Feature-based Clique Potentials

- So far we have discussed the most general form of an undirected graphical model in which cliques are parameterized by general "tabular" potential functions $\psi_c(\mathbf{x}_c)$.
- But for large cliques these general potentials are exponentially costly for inference and have exponential numbers of parameters that we must learn from limited data.
- One solution: change the graphical model to make cliques smaller. But this changes the dependencies, and may force us to make more independence assumptions than we would like.
- Another solution: keep the same graphical model, but use a less general parameterization of the clique potentials.
- This is the idea behind feature-based models.

Features

- □ Consider a clique \mathbf{x}_c of random variables in a UGM, e.g. three consecutive characters $c_1c_2c_3$ in a string of English text.
- How would we build a model of $p(c_1c_2c_3)$?
 - If we use a single clique function over $c_1c_2c_3$, the full joint clique potential would be huge: 26^3-1 parameters.
 - However, we often know that some particular joint settings of the variables in a clique are quite likely or quite unlikely. e.g. ing, ate, ion, ?ed, qu?, jkx, zzz,...
- A "feature" is a function which is vacuous over all joint settings except a few particular ones on which it is high or low.
 - For example, we might have $f_{ing}(c_1c_2c_3)$ which is 1 if the string is 'ing' and 0 otherwise, and similar features for '?ed', etc.
- We can also define features when the inputs are continuous. Then the idea of a cell on which it is active disappears, but we might still have a compact parameterization of the feature.

Features as Micropotentials

- By exponentiating them, each feature function can be made into a "micropotential". We can multiply these micropotentials together to get a clique potential.
- Example: a clique potential $\psi(c_1c_2c_3)$ could be expressed as:

$$\psi_{c}(c_{1}, c_{2}, c_{3}) = e^{\theta_{ing}f_{ing}} \times e^{\theta_{ing}f_{ing}} \times \dots$$

$$= \exp\left\{\sum_{k=1}^{K} \theta_{k}f_{k}(c_{1}, c_{2}, c_{3})\right\}$$

- This is still a potential over 26³ possible settings, but only uses K parameters if there are K features.
 - ullet By having one indicator function per combination of x_c , we recover the standard tabular potential.

Combining Features

- Each feature has a weight θ_k which represents the numerical strength of the feature and whether it increases or decreases the probability of the clique.
- The marginal over the clique is a generalized exponential family distribution, actually, a GLIM:

$$p(c_1, c_2, c_3) \propto \exp \begin{cases} \theta_{\text{ing}} f_{\text{ing}}(c_1, c_2, c_3) + \theta_{\text{?ed}} f_{\text{?ed}}(c_1, c_2, c_3) + \theta_{\text{qu?}} f_{\text{qu?}}(c_1, c_2, c_3) + \theta_{\text{zzz}} f_{\text{zzz}}(c_1, c_2, c_3) + \cdots \end{cases}$$

In general, the features may be overlapping, unconstrained indicators or any function of any subset of the clique variables:

$$\psi_c(\mathbf{x}_c) = \exp\left\{\sum_{i \in \mathcal{I}_c} \theta_k f_k(\mathbf{x}_{c_i})\right\}$$

How can we combine feature into a probability model?

Feature Based Model

• We can multiply these clique potentials as usual:
$$p(\mathbf{x}) = \frac{1}{Z(\theta)} \prod_{c} \psi_{c}(\mathbf{x}_{c}) = \frac{1}{Z(\theta)} \exp \left\{ \sum_{c} \sum_{i \in I_{c}} \theta_{k} f_{k}(\mathbf{x}_{c_{i}}) \right\}$$

 However, in general we can forget about associating features with cliques and just use a simplified form:

$$p(\mathbf{x}) = \frac{1}{Z(\theta)} \exp \left\{ \sum_{i} \theta_{i} f_{i}(\mathbf{x}_{c_{i}}) \right\}$$

- This is just our friend the exponential family model, with the features as sufficient statistics!
- Learning: recall that in IPF, we have $\psi_c^{(t+1)}(\mathbf{x}_c) = \psi_c^{(t)}(\mathbf{x}_c) \frac{p(\mathbf{x}_c)}{p^{(t)}(\mathbf{x}_c)}$
 - Not obvious how to use this rule to update the weights and features individually !!!

MLE of Feature Based UGMs

Scaled likelihood function

$$\ell^{\sim}(\theta; \mathcal{D}) = \ell(\theta; \mathcal{D}) / \mathcal{N} = \frac{1}{\mathcal{N}} \sum_{n} \log p(x_{n} | \theta)$$

$$= \sum_{x} \widetilde{p}(x) \log p(x | \theta)$$

$$= \sum_{x} \widetilde{p}(x) \sum_{i} \theta_{i} f_{i}(x) - \log Z(\theta)$$

- Instead of optimizing this objective directly, we attack its lower bound
 - □ The logarithm has a linear upper bound ...

$$\log Z(\theta) \le \mu Z(\theta) - \log \mu - 1$$

- This bound holds for all μ , in particular, for $\mu = Z^{-1}(\theta^{(t)})$
- Thus we have

$$\ell^{\sim}(\theta; D) \ge \sum_{x} \widetilde{p}(x) \sum_{i} \theta_{i} f_{i}(x) - \frac{Z(\theta)}{Z(\theta^{(t)})} - \log Z(\theta^{(t)}) + 1$$

Generalized Iterative Scaling (GIS)

Lower bound of scaled loglikelihood

$$\ell^{\sim}(\theta; \mathcal{D}) \ge \sum_{x} \widetilde{p}(x) \sum_{i} \theta_{i} f_{i}(x) - \frac{Z(\theta)}{Z(\theta^{(t)})} - \log Z(\theta^{(t)}) + 1$$

Define

$$\Delta \theta_i^{(t)} \stackrel{\text{def}}{=} \theta_i - \theta_i^{(t)}$$

$$\ell^{\sim}(\theta; D) \ge \sum_{x} \widetilde{p}(x) \sum_{i} \theta_{i} f_{i}(x) - \frac{1}{Z(\theta^{(t)})} \sum_{x} \exp\left\{\sum_{i} \theta_{i} f_{i}(x)\right\} - \log Z(\theta^{(t)}) + 1$$

$$= \sum_{i} \theta_{i} \sum_{x} \widetilde{p}(x) f_{i}(x) - \frac{1}{Z(\theta^{(t)})} \sum_{x} \exp\left\{\sum_{i} \theta_{i}^{(t)} f_{i}(x)\right\} \exp\left\{\sum_{i} \Delta \theta_{i}^{(t)} f_{i}(x)\right\} - \log Z(\theta^{(t)}) + 1$$

$$= \sum_{i} \theta_{i} \sum_{x} \widetilde{p}(x) f_{i}(x) - \sum_{x} p(x \mid \theta^{(t)}) \exp\left\{\sum_{i} \Delta \theta_{i}^{(t)} f_{i}(x)\right\} - \log Z(\theta^{(t)}) + 1$$

- Relax again
 - Assume $f_i(x) \ge 0$, $\sum_i f_i(x) = 1$
 - □ Convexity of exponential: $\exp(\sum_i \pi_i \mathbf{x}_i) \le \sum_i \pi_i \exp(\mathbf{x}_i)$
- We have:

$$\ell^{\sim}(\theta; \mathcal{D}) \ge \sum_{i} \theta_{i} \sum_{x} \widetilde{p}(x) f_{i}(x) - \sum_{x} p(x \mid \theta^{(t)}) \sum_{i} f_{i}(x) \exp(\Delta \theta_{i}^{(t)}) - \log \mathcal{Z}(\theta^{(t)}) + \mathbf{1} = \Lambda(\theta)$$

Lower bound of scaled loglikelihood

$$\ell^{\sim}(\theta; \mathcal{D}) \ge \sum_{i} \theta_{i} \sum_{x} \widetilde{p}(x) f_{i}(x) - \sum_{x} p(x \mid \theta^{(t)}) \sum_{i} f_{i}(x) \exp(\Delta \theta_{i}^{(t)}) - \log \mathcal{Z}(\theta^{(t)}) + \mathbf{1} = \Lambda(\theta)$$

- Take derivative:
- $\frac{\partial \Lambda}{\partial \theta_i}^{x} = \sum_{x} \widetilde{p}(x) f_i(x) \exp(\Delta \theta_i^{(t)}) \sum_{x} p(x \mid \theta^{(t)}) f_i(x)$
- Set to zero

$$e^{\Delta \theta_i^{(t)}} = \frac{\sum_{x} \widetilde{p}(x) f_i(x)}{\sum_{x} p(x \mid \theta^{(t)}) f_i(x)} = \frac{\sum_{x} \widetilde{p}(x) f_i(x)}{\sum_{x} p^{(t)}(x) f_i(x)} Z(\theta^{(t)})$$

- Update

where
$$p^{(t)}(x)$$
 is the unnormalized version of $p(x|\theta^{(t)})$

$$\theta_i^{(t+1)} = \theta_i^{(t)} + \Delta \theta_i^{(t)} \Rightarrow p^{(t+1)}(x) = p^{(t)}(x) \prod_i e^{\Delta \theta_i^{(t)} f_i(x)}$$

$$p^{(t+1)}(x) = \frac{p^{(t)}(x)}{Z(\theta^{(t)})} \prod_{i} \left(\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)} Z(\theta^{(t)}) \right)^{f_{i}(x)}$$

$$\Rightarrow \qquad = \frac{p^{(t)}(x)}{Z(\theta^{(t)})} \prod_{i} \left(\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)} \right)^{f_{i}(x)} \left(Z(\theta^{(t)}) \right)^{\sum_{i} f_{i}(x)}$$

$$= p^{(t)}(x) \prod_{i} \left(\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)} \right)^{f_{i}(x)}$$

$$= p^{(t)}(x) \prod_{i} \left(\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)} \right)^{f_{i}(x)}$$
Recall IPF:
$$\psi_{c}^{(t+1)}(\mathbf{x}_{c}) = \psi_{c}^{(t)}(\mathbf{x}_{c}) \frac{\tilde{p}(\mathbf{x}_{c})}{p^{(t)}(\mathbf{x}_{c})}$$
*Seric Xing @ CM

Summary

- IPF is a general algorithm for finding MLE of UGMs.
 - \square a fixed-point equation for $\psi_{\mathbb{C}}$ over single cliques, coordinate ascent
 - I-projection in the clique marginal space
 - Requires the potential to be fully parameterized
 - The clique described by the potentials do not have to be max-clique
 - □ For fully decomposable model, reduces to a single step iteration
- GIS
 - Iterative scaling on general UGM with feature-based potentials
 - □ IPF is a special case of GIS which the clique potential is built on features defined as an indicator function of clique configurations.

GIS: IPF:
$$p^{(t+1)}(x) = p^{(t)}(x) \prod_{i} \left(\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)} \right)^{f_{i}(x)} \qquad \psi_{c}^{(t+1)}(\mathbf{x}_{c}) = \psi_{c}^{(t)}(\mathbf{x}_{c}) \frac{\tilde{p}(\mathbf{x}_{c})}{p^{(t)}(\mathbf{x}_{c})}$$

$$\theta_{i}^{(t+1)} = \theta_{i}^{(t)} + \log \left(\frac{\sum_{x} \tilde{p}(x) f_{i}(x)}{\sum_{x} p^{(t)}(x) f_{i}(x)} \right)$$

Where does the exponential form come from?

Review: Maximum Likelihood for exponential family

$$\ell(\theta; D) = \sum_{x} m(x) \log p(x | \theta)$$

$$= \sum_{x} m(x) \left(\sum_{i} \theta_{i} f_{i}(x) - \log Z(\theta) \right)$$

$$= \sum_{x} m(x) \sum_{i} \theta_{i} f_{i}(x) - N \log Z(\theta)$$

$$\frac{\partial}{\partial \theta_{i}} \ell(\theta; D) = \sum_{x} m(x) f_{i}(x) - N \frac{\partial}{\partial \theta_{i}} \log Z(\theta)$$

$$= \sum_{x} m(x) f_{i}(x) - N \sum_{x} p(x | \theta) f_{i}(x)$$

$$\Rightarrow \sum_{x} p(x \mid \theta) f_i(x) = \sum_{x} \frac{m(x)}{N} f_i(x) = \sum_{x} \widetilde{p}(x \mid \theta) f_i(x)$$

• i.e., At ML estimate, the expectations of the sufficient statistics under the model must match empirical feature average.

Maximum Entropy

We can approach the modeling problem from an entirely different point of view. Begin with some fixed feature expectations:

$$\sum p(x)f_i(x) = \alpha_i$$

- Assuming expectations are consistent, there may exist many distributions which satisfy them. Which one should we select?
 - □ The most uncertain or flexible one, i.e., the one with maximum entropy.
- □ This yields a new optimization problem:

$$\max_{p} H(p(x)) = -\sum_{x} p(x) \log p(x)$$
s.t.
$$\sum_{x} p(x) f_{i}(x) = \alpha_{i}$$

$$\sum_{x} p(x) = 1$$
This is a variational definition of a distribution!

Solution to the MaxEnt Problem

To solve the MaxEnt problem, we use Lagrange multipliers:

$$L = -\sum_{x} p(x) \log p(x) - \sum_{i} \theta_{i} \left(\sum_{x} p(x) f_{i}(x) - \alpha_{i} \right) - \mu \left(\sum_{x} p(x) - 1 \right)$$

$$\frac{\partial L}{\partial p(x)} = 1 + \log p(x) - \sum_{i} \theta_{i} f_{i}(x) - \mu$$

$$p^{*}(x) = e^{\mu - 1} \exp \left\{ \sum_{i} \theta_{i} f_{i}(x) \right\}$$

$$Z(\theta) = e^{\mu - 1} = \sum_{x} \exp \left\{ \sum_{i} \theta_{i} f_{i}(x) \right\}$$

$$(\text{since } \sum_{x} p^{*}(x) = 1)$$

$$p(x|\theta) = \frac{1}{Z(\theta)} \exp \left\{ \sum_{i} \theta_{i} f_{i}(x) \right\}$$

- \square So feature constraints + MaxEnt \Rightarrow exponential family.
- Problem is strictly convex w.r.t. p, so solution is unique.

A more general MaxEnt problem

$$\min_{p} \operatorname{KL}(p(x) || h(x))$$

$$= \sum_{x} p(x) \log \frac{p(x)}{h(x)} = -\operatorname{H}(p) - \sum_{x} p(x) \log h(x)$$
s.t.
$$\sum_{x} p(x) f_{i}(x) = \alpha_{i}$$

$$\sum_{x} p(x) = 1$$

$$\Rightarrow p(x|\theta) = \frac{1}{Z(\theta)}h(x)\exp\left\{\sum_{i}\theta_{i}f_{i}(x)\right\}$$

Constraints from Data

- Where do the constraints α_i come from?
- Just as before, measure the empirical counts on the training data:

$$\alpha_i = \sum \frac{m(\mathbf{x})}{N} f_i(\mathbf{x}) = \sum \widetilde{p}(\mathbf{x}) f_i(\mathbf{x})$$

- This also ensures consistency automátically.
- Known as the "method of moments". (c.f. law of large numbers)
- We have seen a case of convex duality:
 - In one case, we assume exponential family and show that ML implies model expectations must match empirical expectations.
 - In the other case, we assume model expectations must match empirical feature counts and show that MaxEnt implies exponential family distribution.
 - ightharpoonup No duality gap \Rightarrow yield the same value of the objective

Geometric interpretation

All exponential family distribution:

$$\mathcal{E} = \left\{ p(x) : p(x|\theta) = \frac{1}{Z(\theta)} h(x) \exp\left\{ \sum_{i} \theta_{i} f_{i}(x) \right\} \right\}$$

All distributions satisfying moment constraints

$$\mathcal{M} = \left\{ p(x) : \sum_{x} p(x) f_i(x) = \sum_{x} \widetilde{p}(x) f_i(x) \right\}$$

Pythagorean theorem

$$KL(q \parallel p) = KL(q \parallel p_M) + KL(p_M \parallel p)$$

MaxEnt:

$$\min_{p} \operatorname{KL}(q \parallel h)$$

s.t. $q \in \mathcal{M}$
 $\operatorname{KL}(q \parallel h) = \operatorname{KL}(q \parallel p_{\mathcal{M}}) + \operatorname{KL}(p_{\mathcal{M}} \parallel h)$

$$\min_{p} \operatorname{KL}(\widetilde{p} \parallel p)$$
s.t. $q \in \mathcal{E}$

$$\operatorname{KL}(\widetilde{p} \parallel p) = \operatorname{KL}(p \parallel p) + \operatorname{KL}(p_{M} \parallel p)$$

$$\underset{\text{@fric Xing @}}{\bullet}$$

 \mathcal{M}

Summary

- Exponential family distribution can be viewed as the solution to an variational expression --- the maximum entropy!
- The max-entropy principle to parameterization offers a dual perspective to the MLE.

Case Study: Conditional Random Fields

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

- Models dependence between each state and the full observation sequence explicitly
 - More expressive than HMMs
- Discriminative model
 - Completely ignores modeling P(X): saves modeling effort
 - Learning objective function consistent with predictive function: P(Y|X)

Shortcomings of Hidden Markov Model (1): locality of features

- HMM models capture dependences between each state and only its corresponding observation
 - NLP example: In a sentence segmentation task, each segmental state may depend not just on a single word (and the adjacent segmental stages), but also on the (non-local) features of the whole line such as line length, indentation, amount of white space, etc.
- Mismatch between learning objective function and prediction objective function
 - ullet HMM learns a joint distribution of states and observations P(Y, X), but in a prediction task, we need the conditional probability P(Y|X)

Then, shortcomings of HMM (2): the Label bias problem

What the local transition probabilities say:

- State 1 almost always prefers to go to state 2
- State 2 almost always prefer to stay in state 2

The Label bias problem

Probability of path 1-> 1-> 1:

• $0.4 \times 0.45 \times 0.5 = 0.09$

Probability of path 2->2->2:

• 0.2 X 0.3 X 0.3 = 0.018

Other paths: 1-> 1-> 1: 0.09

Probability of path 1->2->1->2:

• 0.6 X 0.2 X 0.5 = 0.06

Other paths:

1->1->1: 0.09

2->2->2: 0.018

Probability of path 1->1->2:

• $0.4 \times 0.55 \times 0.3 = 0.066$

Other paths:

1->1->1: 0.09

2->2->2: 0.018

1->2->1->2: 0.06

• Although locally it seems state 1 wants to go to state 2 and state 2 wants to remain in state 2.

• why?

- Most Likely Path: 1-> 1-> 1
- State 1 has only two transitions but state 2 has 5:
 - Average transition probability from state 2 is lower

Label bias problem in MEMM:

• Preference of states with lower number of transitions over others

Solution:

Do not normalize probabilities locally

From local probabilities

Solution:

Do not normalize probabilities locally

From local probabilities to local potentials

• States with lower transitions do not have an unfair advantage!

From HMM to CRF

$$P(\mathbf{y}_{1:n}|\mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n})} \prod_{i=1}^{n} \phi(y_i, y_{i-1}, \mathbf{x}_{1:n}) = \frac{1}{Z(\mathbf{x}_{1:n}, \mathbf{w})} \prod_{i=1}^{n} \exp(\mathbf{w}^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_{1:n}))$$

- CRF is a partially directed model
 - Discriminative model like MEMM
 - \Box Usage of global normalizer Z(x) overcomes the label bias problem of MEMM
 - Models the dependence between each state and the entire observation sequence (like MEMM)

Conditional Random Fields

General parametric form:

$$P(\mathbf{y}|\mathbf{x}) = \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\sum_{k} \lambda_{k} f_{k}(y_{i}, y_{i-1}, \mathbf{x}) + \sum_{l} \mu_{l} g_{l}(y_{i}, \mathbf{x})))$$
$$= \frac{1}{Z(\mathbf{x}, \lambda, \mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x})))$$

where
$$Z(\mathbf{x}, \lambda, \mu) = \sum_{\mathbf{y}} \exp(\sum_{i=1}^{n} (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

CRFs: Inference

 \Box Given CRF parameters λ and μ , find the y^* that maximizes P(y|x)

$$\mathbf{y}^* = \arg\max_{\mathbf{y}} \exp(\sum_{i=1}^n (\lambda^T \mathbf{f}(y_i, y_{i-1}, \mathbf{x}) + \mu^T \mathbf{g}(y_i, \mathbf{x})))$$

- \Box Can ignore Z(x) because it is not a function of y
- Run the max-product algorithm on the junction-tree of CRF:

□ Given $\{(\mathbf{x}_d, \mathbf{y}_d)\}_{d=1}^N$, find λ^* , μ^* such that

$$\lambda*, \mu* = \arg\max_{\lambda,\mu} L(\lambda,\mu) = \arg\max_{\lambda,\mu} \prod_{d=1}^{N} P(\mathbf{y}_{d}|\mathbf{x}_{d},\lambda,\mu)$$

$$= \arg\max_{\lambda,\mu} \prod_{d=1}^{N} \frac{1}{Z(\mathbf{x}_{d},\lambda,\mu)} \exp(\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{d,i},\mathbf{x}_{d})))$$

$$= \arg\max_{\lambda,\mu} \sum_{d=1}^{N} (\sum_{i=1}^{n} (\lambda^{T} \mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{d,i},\mathbf{x}_{d})) - \log Z(\mathbf{x}_{d},\lambda,\mu))$$

Computing the gradient w.r.t λ:

Gradient of the log-partition function in an exponential family is the expectation of the sufficient statistics.

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) - \sum_{\mathbf{y}} \left(P(\mathbf{y} | \mathbf{x}_d) \sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_d) \right) \right)$$

$$\nabla_{\lambda}L(\lambda,\mu) = \sum_{d=1}^{N}(\sum_{i=1}^{n}\mathbf{f}(y_{d,i},y_{d,i-1},\mathbf{x}_{d}) - \underbrace{\sum_{\mathbf{y}}(P(\mathbf{y}|\mathbf{x}_{d})\sum_{i=1}^{n}\mathbf{f}(y_{i},y_{i-1},\mathbf{x}_{d})))}_{\mathbf{y}}$$
Computing the model expectations:

Requires exponentially large number of summations: Is it intractable?

$$\sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_d) \sum_{i=1}^n \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d)) = \sum_{i=1}^n (\sum_{\mathbf{y}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(\mathbf{y}|\mathbf{x}_d))$$

$$= \sum_{i=1}^n \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1}|\mathbf{x}_d)$$

Expectation of **f** over the corresponding marginal probability of neighboring nodes!!

- Tractable!
 - Can compute marginals using the sum-product algorithm on the chain

Computing marginals using junction-tree calibration:

Junction Tree Initialization:

$$\alpha^{0}(y_{i}, y_{i-1}) = \exp(\lambda^{T} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}_{d}) + \mu^{T} \mathbf{g}(y_{i}, \mathbf{x}_{d}))$$

After calibration:

$$P(y_i, y_{i-1}|\mathbf{x}_d) \propto \alpha(y_i, y_{i-1})$$

Also called forward-backward algorithm

$$\Rightarrow P(y_i, y_{i-1} | \mathbf{x}_d) = \frac{\alpha(y_i, y_{i-1})}{\sum_{y_i, y_{i-1}} \alpha(y_i, y_{i-1})} = \alpha'(y_i, y_{i-1})$$

Computing feature expectations using calibrated potentials:

$$\sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) P(y_i, y_{i-1} | \mathbf{x}_d) = \sum_{y_i, y_{i-1}} \mathbf{f}(y_i, y_{i-1}, \mathbf{x}_d) \alpha'(y_i, y_{i-1})$$

□ Now we know how to compute $r_{\lambda}L(\lambda,\mu)$:

$$\nabla_{\lambda} L(\lambda, \mu) = \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_{d}) - \sum_{\mathbf{y}} (P(\mathbf{y}|\mathbf{x}_{d}) \sum_{i=1}^{n} \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}_{d})) \right)$$

$$= \sum_{d=1}^{N} \left(\sum_{i=1}^{n} \left(\mathbf{f}(y_{d,i}, y_{d,i-1}, \mathbf{x}_{d}) - \sum_{y_{i}, y_{i-1}} \alpha'(y_{i}, y_{i-1}) \mathbf{f}(y_{i}, y_{i-1}, \mathbf{x}_{d}) \right) \right)$$

Learning can now be done using gradient ascent:

$$\lambda^{(t+1)} = \lambda^{(t)} + \eta \nabla_{\lambda} L(\lambda^{(t)}, \mu^{(t)})$$

$$\mu^{(t+1)} = \mu^{(t)} + \eta \nabla_{\mu} L(\lambda^{(t)}, \mu^{(t)})$$

 In practice, we use a Gaussian Regularizer for the parameter vector to improve generalizability

$$\lambda *, \mu * = \arg \max_{\lambda, \mu} \sum_{d=1}^{N} \log P(\mathbf{y}_d | \mathbf{x}_d, \lambda, \mu) - \frac{1}{2\sigma^2} (\lambda^T \lambda + \mu^T \mu)$$

- In practice, gradient ascent has very slow convergence
 - Alternatives:
 - Conjugate Gradient method
 - Limited Memory Quasi-Newton Methods

CRFs: some empirical results

Comparison of error rates on synthetic data

Data is increasingly higher order in the direction of arrow

CRFs achieve the lowest error rate for higher order data

CRFs: some empirical results

Parts of Speech tagging

model	error	oov error
HMM	5.69%	45.99%
MEMM	6.37%	54.61%
CRF	5.55%	48.05%
MEMM+	4.81%	26.99%
CRF ⁺	4.27%	23.76%

⁺Using spelling features

- Using same set of features: HMM >=< CRF > MEMM
- Using additional overlapping features: CRF+ > MEMM+ >> HMM

Other CRFs

- So far we have discussed only 1-dimensional chain CRFs
 - Inference and learning: exact
- We could also have CRFs for arbitrary
 - E.g: Grid CRFs
 - Inference and learning no longer tractable
 - Approximate techniques used
 - MCMC Sampling
 - Variational Inference
 - Loopy Belief Propagation
 - We will discuss these techniques SOON

Applications of CRF in Vision: Image Segmentation

Stereo Matching

Image Restoration

Application: Image Segmentation

 $\phi_i(y_i,x) \in \mathbb{R}^{\approx 1000}$: local image features, e.g. bag-of-words $\to \langle w_i, \phi_i(y_i,x) \rangle$: local classifier (like logistic-regression) $\phi_{i,j}(y_i,y_j) = \llbracket y_i = y_j \rrbracket \in \mathbb{R}^1$: test for same label $\to \langle w_{ij}, \phi_{ij}(y_i,y_j) \rangle$: penalizer for label changes (if $w_{ij} > 0$) combined: $\operatorname{argmax}_y p(y|x)$ is smoothed version of local cues

original

local classification

local + smoothness

Application: Handwriting Recognition

 $\phi_i(y_i, x) \in \mathbb{R}^{\approx 1000}$: image representation (pixels, gradients) $\rightarrow \langle w_i, \phi_i(y_i, x) \rangle$: local classifier if x_i is letter y_i

 $\phi_{i,j}(y_i,y_j) = e_{y_i} \otimes e_{y_j} \in \mathbb{R}^{26\cdot 26}$: letter/letter indicator $\rightarrow \langle w_{ij}, \phi_{ij}(y_i,y_j) \rangle$: encourage/suppress letter combinations

combined: $\operatorname{argmax}_y p(y|x)$ is "corrected" version of local cues

Application: Pose Estimation

 $\phi_i(y_i, x) \in \mathbb{R}^{\approx 1000}$: local image representation, e.g. HoG $\rightarrow \langle w_i, \phi_i(y_i, x) \rangle$: local confidence map

 $\phi_{i,j}(y_i,y_j) = good_fit(y_i,y_j) \in \mathbb{R}^1$: test for geometric fit $\rightarrow \langle w_{ij}, \phi_{ij}(y_i,y_j) \rangle$: penalizer for unrealistic poses

together: $\operatorname{argmax}_y p(y|x)$ is sanitized version of local cues

original

local classification

local + geometry

Feature Functions for CRF in Vision

- $\phi_i(y_i, x)$: local representation, high-dimensional $\rightarrow \langle w_i, \phi_i(y_i, x) \rangle$: local classifier
- $\phi_{i,j}(y_i, y_j)$: prior knowledge, low-dimensional $\rightarrow \langle w_{ij}, \phi_{ij}(y_i, y_j) \rangle$: penalize outliers

learning adjusts parameters:

- unary w_i : learn local classifiers and their importance
- binary w_{ij} : learn importance of smoothing/penalization

 $\mathop{\mathrm{argmax}}_y p(y|x)$ is cleaned up version of local prediction

Case Study: Image Segmentation

- Image segmentation (FG/BG) by modeling of interactions btw RVs
 - Images are noisy.
 - Objects occupy continuous regions in an image.

Input image

Pixel-wise separate optimal labeling

[Nowozin,Lampert 2012]

Locally-consistent joint optimal labeling

Y: labels

X: data (features)

S: pixels

 N_i : neighbors of pixel i

Discriminative Random Fields

- A special type of CRF
 - The unary and pairwise potentials are designed using local discriminative classifiers.
 - Posterior

$$P(Y \mid X) = \frac{1}{Z} \exp(\sum_{i \in S} A_i(y_i, X) + \sum_{i \in S} \sum_{j \in N_i} I_{ij}(y_i, y_j, X))$$

- Association Potential
 - Local discriminative model for site *i*: using logistic link with GLM.

$$A_i(y_i, X) = \log P(y_i | f_i(X)) \qquad P(y_i = 1 | f_i(X)) = \frac{1}{1 + \exp(-(w^T f_i(X)))} = \sigma(w^T f_i(X))$$

- Interaction Potential
 - Measure of how likely site i and i have the same label given X

$$I_{ij}(y_i, y_j, X) = ky_i y_j + (1 - k)(2\sigma(y_i y_j \mu_{ij}(X)) - 1))$$

(1) Data-independent smoothing term (2) Data-dependent pairwise logistic function

DRF Results

- Task: Detecting man-made structure in natural scenes.
 - Each image is divided in non-overlapping 16x16 tile blocks.
- An example

Logistic

MRF

DRF

- Logistic: No smoothness in the labels
- MRF: Smoothed False positive. Lack of neighborhood interaction of the data

Multiscale Conditional Random Fields

- Considering features in different scales
 - Local Features (site)
 - Regional Label Features (small patch)
 - Global Label Features (big patch or the wh
- The conditional probability P(L/X) is formulated by

$$P(L \mid X) = \frac{1}{Z} \prod_{s} P_{s}(L \mid X)$$

$$Z = \sum_{L} \prod_{s} P_{s}(L \mid X)$$

Multiscale Conditional Random Fields

He, X. et. al.: Multiscale conditional random fields for image labeling. CVPR 2004

Topic Random Fields

Spatial MPF over topic assignments
$$p(\mathbf{z}^d|\boldsymbol{\theta}^d,\sigma) = \frac{1}{A(\boldsymbol{\theta}^d,\sigma)} \exp\left[\sum_n \sum_k z_{nk}^d \log \theta_k^d + \sum_{n \sim m} \sigma I(z_n^d = z_m^d)\right]$$

T

TRF Results

Spatial LDA vs. Topic Random Fields

*

Summary

- Conditional Random Fields are partially directed discriminative models
- They overcome the label bias problem of MEMMs by using a global normalizer
- Inference for 1-D chain CRFs is exact
 - Same as Max-product or Viterbi decoding
- Learning also is exact
 - globally optimum parameters can be learned
 - Requires using sum-product or forward-backward algorithm
- CRFs involving arbitrary graph structure are intractable in general
 - E.g.: Grid CRFs
 - Inference and learning require approximation techniques
 - MCMC sampling
 - Variational methods
 - Loopy BP

