Pattern recognition of particle trajectories in hexagonal geometry drift detectors

John Van Atta

California Polytechnic State University-San Luis Obispo

Drift Detectors

- High energy particles ionize gas inside chamber
- Electric field causes ions to drift to sensor pads
- 3-D "voxels"
- Reconstruct reaction trajectory

NIFFTE

Heavy element fission

Particles move in straight lines

Few daughter particles

Hexagonal voxels

Overview of the Task

- Separate tracks
 - Human easy
 - Ambiguities challenge computers
- Written in Python
 - Matplotlib
 - iPython notebook

Other Recognition Methods

- Hough Transform
 - Similar to principal component analysis
- Follow-your-nose
 - Start outside, work inwards
- Both have limitations

Code Classes

Voxel

- Basic data unit
- Functions as a 3-D pixel

Trajectory

- Two voxel lists: spine and flesh
- Direction only based on spine

Event

- Stores all voxels and trajectories
- Unused voxels as orphans

Heart of the Algorithm

- Build spines
 - Neighbors to find candidates
 - Gradient and directionality to choose best ones
- Repeat until all voxels used
- Merge trajectories
 - Match directions
 - Check endpoints

Successful Matches

Overall Statistics (100 events)

- Orphans are one measure of algorithm's success
- Several threshold parameters can be adjusted

Room for Improvement

Looking Forward

- 3-D linear least squares fit
 - Get a direction vector
 - Calculate momenta from energy gradient
- Apply to more data

Incorporate into NIFFTE framework