# [1] Asymptotic complexity recapitulation, Graph representation

#### asymptotická horní mez

hodnota funkce "f" menší či rovna hodnotě funkce "g" (s konstantním faktorem)

$$f(n) \in \mathcal{O}(g(n))$$
  
$$(\exists c > 0)(\exists n_0)(\forall n > n_0): f(n) \le c \cdot g(n)$$

- asymptotická dolní mez
  - o hodnota funkce "f" větší či rovna hodnotě funkce "g" (s konstantním faktorem)

$$f(n) \in \Omega(g(n))$$
  
(\(\exists c > 0)(\exists n\_0)(\forall n > n\_0): \(c \cdot g(n) \leq f(n)\)

- asymptotická těsná mez
  - o hodnota obou funkcí je stejná (s konstantním faktorem)

$$f(n) \in \Theta(g(n))$$
  
(\(\exists c\_1, c\_2 > 0)(\exists n\_0)(\forall n > n\_0): c\_1 \cdot g(n) < f(n) < c\_2 \cdot g(n)

# Grafy

- graf = uspořádaná dvojice množiny vrcholů (vertices, nodes) a množiny hran (edges, arcs)
- G = (V. F)
  - V = množina vrcholů; E = množina hran

$$E \subseteq \binom{V}{2}$$

- příklad:
  - O V = {a,b,c,d,e}
  - $\circ$  E = {{a,b},{b,e},{e,c},{c,d},{d,a},{a,c},{b,d},{b,c}}

#### - neorientovaný graf (undirected)

- o hrany jsou neuspořádané dvojice vrcholů
- o např. E =
  {{a,b},{b,e},{e,c},{c,d},{d,a},{a,c},{b,d},{b,c}}



#### - orientovaný graf (directed, digraph)

- o hrany jsou uspořádané dvojice vrcholů
- o např.  $E = \{(b,a),(b,e),(c,e),(c,d),(a,d),(c,a),(b,d),(b,c)\}$



- o každé hraně je přiřazena číselná hodnota
- o často formalizováno funkcí w:  $E \rightarrow \mathbb{R}$
- o např.  $w({a,b}) = 1.1, w({b,e}) = 2.0,...$





- **stupeň vrcholu =** funkce vracející počet sousedů daného vrcholu (vrcholů spojených hranou)
  - deg(u) = |{e ∈ E | u ∈ e}
  - o viz předchozí obrázky deg(a) = 3, deg(e) = 2,...
  - o u orientovaného grafu se dále rozlišuje na indegree (vstupní) a outdegree (výstupní)

$$deg^+(u) = |\{e \in E \mid (\exists v \in V) : e = (v, u)\}|$$
  
 $deg^-(u) = |\{e \in E \mid (\exists v \in V) : e = (u, v)\}|$ 

- handshaking lemma (princip sudosti)
  - b každá hrana přispívá dvakrát jednak pro výchozí, druhak pro cílový vrchol
  - o mírně odlišná varianta pro orientované grafy

$$\sum_{v \in V} deg(v) = 2|E|$$

$$\sum_{v \in V} (deg^+(v) + deg^-(v)) = 2|E|$$

- úplný graf (complete graph)
  - o každé dva vrcholy jsou spojené hranou

$$|E| = {V \choose 2}$$

$$(\forall v \in V) : \deg(v) = |V| - 1$$



- cesta (path)
  - posloupnost vrcholů a hran ( $v_0$ ,  $e_1$ ,  $v_1$ ,...,  $e_t$ ,  $v_t$ ), kde se neopakují vrcholy a pro každé i = 1,2,...t platí, že  $e_i = \{v_{i-1}, v_i\} \in E(G)$
- kružnice (circuit) = uzavřená neorientovaná cesta
- **cyklus** = uzavřená orientovaná cesta



- souvislý graf (connected graph) = pro každou dvojici x a y existuje v grafu cesta z x do y



#### Stromy

- existuje mnoho ekvivalentních definic... G je **strom**, pokud:
  - o G je souvislý graf bez cyklů
  - o G je souvislý graf, kde se objeví cyklus, přidá-li se jakákoliv hrana
  - o G je souvislý graf, který se stane nesouvislým, odebere se kterákoliv hrana
  - G je souvislý graf s |V|-1 hranami
  - o G je graf, ve kterém jsou každé dva vrcholy spojeny pouze jednou cestou

- neorientovaný strom
  - o list (leaf) je vrchol se stupněm 1
- orientovaný strom
  - o list je vrchol bez výstupních hran
  - o kořen (root) je vrchol bez vstupních hran



### Reprezentace grafů

Matice sousednosti (adjacency matrix)

- Nechť G = (V,E) je graf s n vrcholy  $(v_1,... v_n)$ .
- Matice sousednosti je pak čtvercová matice A<sub>G</sub>, definovaná následovně:

$$A_{G} = (a_{i,j})_{i,j=1}^{n}$$

$$a_{i,j} = \begin{cases} 1 & \text{for } \{v_i, v_j\} \in E \\ 0 & \text{otherwise} \end{cases}$$

$$1 & 2 & 3 & 4 & 5$$

$$1 & 0 & 1 & 1 & 0 & 0$$





Laplaceova matice

$$L_{G} = \left(l_{i,j}\right)_{i,j=1}^{n}$$

$$l_{i,j} = \begin{cases} \deg(v_i) & \text{for } i = j \\ -1 & \text{for } \{v_i, v_j\} \in E \\ 0 & \text{otherwise} \end{cases}$$





#### Matice vzdálenosti (distance matrix)

- Stejné jako u předchozích matic, a dále pak funkce w (ohodnocení grafu).

$$\begin{aligned} A_{G} &= \left(a_{i,j}\right)_{i,j=1}^{n} \\ a_{i,j} &= \begin{cases} w(\{v_i, v_j\}) & \text{for } \{v_i, v_j\} \in E \\ 0 & \text{otherwise} \end{cases} \end{aligned}$$

#### Matice incidence

- Nechť G = (V,E) je graf, kde |V| = n, |E| = m.
- Matice incidence je matice typu {-1,0,1}<sup>n×m</sup>, definovaná takto:

$$(I)_{i,j} = \begin{cases} -1 & \text{for } e_j = (v_i, *) \\ +1 & \text{for } e_j = (*, v_i) \\ 0 & \text{otherwise} \end{cases}$$

Tj. každá hrana má -1 u výchozího vrcholu a +1 u koncového vrcholu. U neorientovaného grafu jsou u obou +1.





#### Seznam sousedů (adjacency list)

- pro každý vrchol grafu si udržujeme seznam jeho sousedů
- mohlo by to být např. pole ukazatelů P o velikosti n, kde P[i] ukazuje na spojový seznam indexů všech vrcholů, které jsou s vrcholem v<sub>i</sub> spojeny hranou



# Porovnání složitosti operací v jednotlivých reprezentacích

|                                                                            | Adjacency<br>Matrix                                                   | Laplacian<br>Matrix | Adjacency List                                                      | Incidence Matrix                                                                |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Storage                                                                    | $ V \cdot V \in O( V ^2)$                                             |                     | O( V + E )                                                          | $ V {\cdot} E \in O( V {\cdot} E )$                                             |
| Add vertex                                                                 | O( V  <sup>2</sup> )                                                  |                     | O( V )                                                              | $O( V  \cdot  E )$                                                              |
| Add edge                                                                   | O(1)                                                                  |                     |                                                                     | $O( V  \cdot  E )$                                                              |
| Remove vertex                                                              | O( V  <sup>2</sup> )                                                  |                     | O( E )                                                              | $O( V  \cdot  E )$                                                              |
| Remove edge                                                                | O(1)                                                                  |                     | O( V )                                                              | $O( V  \cdot  E )$                                                              |
| Query: are vertices u, v adjacent?                                         | O(1)                                                                  |                     | $deg(v) \in O( V )$                                                 | O( E )                                                                          |
| Query: get node degree of vertex v (=deg(v)), access all vertex neighbours | $ V  \in O( V )$                                                      | O(1)                | $deg(v) \in O( V )$                                                 | $ E  \in O( E )$                                                                |
| Remarks                                                                    | Slow to add or remove vertices, because matrix must be resized/copied |                     | When removing edges or vertices, need to find all vertices or edges | Slow to add or remove vertices and edges, because matrix must be resized/copied |

# Další grafové pojmy

- **DAG (directed acyclic graph)** = orientovaný graf bez cyklů



- **multigraf** / **pseudograf** = graf, v němž může existovat více stejnosměrných (rovnoběžných) hran mezi dvěma uzly, a také hrany, jejichž výchozí a cílový vrchol je tentýž



## Průchody grafem

**DFS** – Depth First Search (do hloubky)



BFS – Breadth First Search (do šířky)



#### Prioritní fronta (priority queue)

- insert operace s prioritou
- je-li priorita nového prvku nejnižší, je operace stejná jako push do klasické fronty
- je-li priorita nejvyšší, operace se chová jako push do zásobníku (stack)
- jak DFS, tak BFS se dají naimplementovat s pomocí prioritní fronty s danou prioritou prvku při jeho vkládání (priorita tedy může např. monotónně klesat)

Zdroj: https://cw.fel.cvut.cz/wiki/ media/courses/b4m33pal/2011pal01.pdf