apsis

Automated Hyperparameter Optimization Using Bayesian Optimization

Frederik Diehl

Andreas Jauch

March 10, 2015

AGENDA

Problem Description

Bayesian Optimization

apsis and its Architecture

Project Organisation

Performance Evaluation

MOTIVATION

Why Hyperparameter Optimization and why automating it?

- hyperparameter tuning often leads to huge performance gain
- "more of an art than a science"
- reproducibility of published results
- automatic methods might be better than humans
- ► provide ml algorithms to non-expert users

ML PROCESS OVERVIEW

FORMAL PROBLEM DESCRIPTION

 λ : hyperparameter vector $\lambda = (\lambda^{(1)}, ..., \lambda^{(n)})$

L(X, f): loss function evaluated for model f and dataset x

 $A_{\lambda}(X)$: learning algorithm with hyperparameter vector λ learning on dataset X

 X_{train} : training data, X_{valid} : validation data, X_{test} : test data

 $\Psi(\lambda)$: hyperparameter response function/surface

Hyperparameter Optimization Problem

$$\hat{\lambda} \approx \underset{\lambda \in \Lambda}{\operatorname{argmin}} \underbrace{\left(\underset{X_i \in X_{\text{valid}}}{\operatorname{mean}} \left(L(x_i, A_{\lambda}(X_{\text{train}}))\right)\right)}_{\Psi(\lambda)} \tag{1}$$

$$= \underset{\lambda \in \Lambda}{\operatorname{argmin}} \left(\Psi(\lambda)\right) \tag{2}$$

Project Organisation

- unknown, probably non-convex response surface Ψ
- ▶ no derivative-based optimization possible
- \blacktriangleright every evaluation of Ψ is expensive
- evaluation time of Ψ depends on individual value of λ
- ▶ low effective dimensionality of Ψ
- which dimensions are important is dataset dependent
- ► tree-structured configuration space¹

¹not addressed in *apsis* yet

STATE OF THE ART

- ► optimization still manual in many projects
- ▶ grid search most common method
 - often the only provided method by many ml frameworks
- random search
- ► Bayesian Optimization
 - ► code of Jasper Snoek et. al. Harvard/Toronto
 - ► whetlab bay opt in the cloud

BAYESIAN OPTIMIZATION

- ▶ approximate $\Psi(\lambda)$ by a *surrogate* function $M(\lambda) = y$
- surrogate function cheaper to evaluate than Ψ
- ightharpoonup interpret model to find minimization candidates for Ψ
- evaluate Ψ for promising candidates

BAYESIAN OPTIMIZATION FUNDAMENTALS

We need two design choices

- ► Surrogate Modelling Function Gaussian Processes
 - universal approximation
 - very flexible and have many useful properties
 - closed under sampling
- ► Acquisition Function
 - ► Probability of Improvement
 - ► Expected Improvement

ACQUISITION FUNCTION *u*

- measures the expected utility of evaluating the objective function at a point λ_{next}
- ▶ exploitation vs. exploration trade-off

OPTIMIZATION - SUCCESSIVELY UPDATING THE GP

1. find

$$\max_{\lambda}(u(\lambda)) = \lambda_{\text{next}}$$

max of acquisition

- 2. Evaluate M at λ_{next}
- 3. Update the GP

FITTING THE GP TO THE PROBLEM

by tuning the covariance!

► Squared Exponential Kernel

$$K_{\text{SE}}(\lambda, \lambda') = \exp\left(-\frac{1}{2l^2} \cdot \sum_{1..\dim(D)} (\lambda_d - \lambda'_d)^2\right)$$

► use Automatic Relevance Determination (ARD)

$$K_{\text{SE}}(\lambda, \lambda') = \theta_0 \cdot \exp\left(-\frac{1}{2} \cdot \sum_{1..\dim(D)} \left(\frac{1}{\theta_d^2} (\lambda_d - \lambda'_d)^2\right)\right)$$

with ARD vector θ

$$\theta = (\underbrace{\theta_0}_{\text{bias}}, \underbrace{\theta_1, \ldots, \theta_d}_{\text{dimension weights}})$$

HOW DO ACQUISITION FUNCTIONS LOOK LIKE?

Expected Improvement (EI)

$$u_{\mathrm{EI}}(\lambda) = \int_{-\infty}^{\infty} \max(\Psi(\lambda^*) - y, 0) \cdot p_{\mathrm{M}}(y|\lambda) \, dy$$

closed form solution for GPs available

$$u_{\text{EI}}(\lambda|M_t) = \sigma(\lambda) \cdot \left(\frac{f(\lambda^*) - \mu(\lambda)}{\sigma(\lambda)} \cdot \Phi(\lambda) + \phi(\lambda)\right)$$

► gradient analytically derived in *apsis* for more effective optimization

THE apsis TOOLKIT

Automated Hyperparameter Optimization Framework for

- random search
- ► Bayesian Optimization

as an open source framework featuring

- flexible architecture, ready to be extended for more optimizers
- ▶ ready for use with scikit-learn and theano
- ► implemented in Python

PROJECT OBJECTIVES

- open source implementation of state of the art research in Bayesian Optimization
- extendible project to encourage collaboration with other researchers
- easy integration with existing machine learning frameworks
- ► multi core support

apsis Architecture Overview

apsis CORE MODEL COMPONENTS

Parameter Definitions

► define the meta information for each hyperparameter

Candidates

- ► represent a specific hyperparameter vector and its value
- ► holds function value if available

Experiments

- ► represent an optimization object
- ► keeps track of finished and unfinished Candidates

USING apsis - EXPERIMENT ASSISTANTS

- ► single experiment interaction interface
- provides plots and result bookkeeping

USING apsis - LAB ASSISTANTS

- multiple experiments to compare different optimization techniques
- cross validation

EXTENSIVE EXPERIMENT TRACKING

- automated plot writing
- automated results writing
- write out information at every step

AUTOMATED PLOTTING

- plot function evaluations and best results
- ▶ plot confidence bars when using cross validation
- write out plots at every step

PARAMETER REPRESENTATION IN apsis

- ► different representation by parameter type
- various nominal and numeric types

NUMERIC PARAMETERS IN apsis

Warping Mechanism

- ▶ parameters are warped into [0,1] interval
- ▶ optimization core can assume a uniform and equal distribution in [0, 1] space
- warping can be user defined

Provided Warpings for

- ▶ normalization of arbitrary intervals [a, b] into [0, 1] space.
- ► asymptotic parameters, e.g. learning rate asymptotic at 0

NOMINAL PARAMETERS IN apsis

- ► generally supported in *apsis*
- ► no support in Bayesian Optimization
- ► GP kernels based on distance metrics between parameters

- interesting topic for further research
- no publications on this topic so far
- whetlab pretends to deal well with them but doesn't say how

EXPECTED IMPROVEMENT OPTIMIZATION

- ► gradient analytically derived²
- ▶ 1000 Steps Random Search for Initialization
- ► Several iterative optimization methods integrated
 - ► L-BFGS-B Bounded Low Memory Quasi Newton Method
 - ► BFGS Quasi Newton Method
 - ► Nelder-Mead
 - ► Inexact Newton with Conjugate Gradient Solver
 - ▶

Problem Description

²See our paper for derivation.

DEALING WITH GP HYPERPARAMETERS

- ► the GP surrogate model introduces new hyperparameter
 - ► not subject of optimization ⇒ hyper-hyperparameters
- optimization by maximum likelihood method
- integrating over these parameters in the acquisition function using Hybrid Monte Carlo sampling

apsis Project Set Up

- ► Open-Source project from the beginning
- ▶ MIT-License
- active issue tracking
- ► PEP-8 code styling convention
- Fully automated sphinx documentation build on every commit
- ▶ 90% test coverage
- ► clear commit messages

apsis GITHUB REPOSITORY

Check out http://github.com/FrederikDiehl/apsis!

ISSUE TRACKING AND DISCUSSION

UNIT TESTS

```
| Interest | Interest
```

- ▶ 90% overall test coverage
- ► 100% in most core components

GOOD CODE DOCUMENTATION

http://cloc.sourceforge.ne	t v 1.62	T=0.16 s (224.5	files/s, 33127.1	lines/s)
Language	files	blank	comment	code
Python	36	865	2039	2408
SUM:	36	865	2039	2408

- ▶ almost 50:50 ratio of code vs. doc
- documented according to sphinx standard

FULLY AUTOMATED DOCUMENTATION BUILD

▶ builds on every commit

Visit http://apsis.readthedocs.org

BRANIN HOO OPTIMIZATION

- ► random search finds better end result but bay opt is more stable
- ► similar performance as in other bay opt literature
- ▶ no other group publishes comparison to random search

OPTIMIZING ARTIFICIAL NOISE FUNCTION

One dimensional noise function with several smoothing variances

OPTIMIZING ARTIFICIAL NOISE FUNCTION

Minimization result on 3d noise by smoothing factor.

Breze MNIST Neural Network

Neural Network on MNIST using uniform parameters

Breze MNIST Neural Network (2)

Neural Network on MNIST using asymptotic parameters for learning rate and learning rate decay

TAKING THE PROJECT TO THE NEXT LEVEL - PROGRAM

- ▶ implement full multicore support
- ► implement a REST web-service to offer interoperability with any language
- ► improve integration of matplotlib

TAKING THE PROJECT TO THE NEXT LEVEL - BAYESIAN OPTIMIZATION

- ► deal with nominal parameters
- ► try replacing GPs with Student-t processes
- ► try to take tree structured configuration space into account
- account for evaluation cost depending on hyperparameter setting
- ▶ implement freeze-thaw optimization idea [2]
- ▶ automated learning of input warping [1]

Thank You!

REFERENCES I

Jasper Snoek, Kevin Swersky, Richard S Zemel, and Ryan P Adams.

Input warping for bayesian optimization of non-stationary functions.

arXiv preprint arXiv:1402.0929, 2014.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian optimization.

arXiv preprint arXiv:1406.3896, 2014.