



#### Desenvolvimento de Sistemas Software

Aula Teórica 09: Modelação de comportamento / Máquinas de Estado

# \* 〇

#### Diagramas da UML 2.x



## Introdução aos Diagramas de Estado — Aplicação

- Os Diagramas de Estado permitem modelar o comportamento de um dado objecto/sistema de forma global.
- A ênfase é colocada no estado do objecto/sistema modelam-se todos os estados possíveis que o objecto/sistema atravessa em resposta aos eventos que podem ocorrer.
- Úteis para modelar o comportamento de um objecto de forma transversal aos use case do sistema.
- Devem utilizar-se para entidades/classes em que se torne necessário compreender o comportamento do objecto de forma global ao sistema.
- Nem todas as entidades/classes v\u00e3o necessitar de diagramas de estado.
- Úteis para modelar o comportamento do sistema como um todo (em particular a interface com o utilizador).



#### Diagramas de Estado

#### Notação base

• Estado — define uma possível estado do objecto (normalmente traduz-se em valores específicos dos seus atributos)



• Estado inicial — estado do objecto quando é criado



• Estado final – destruição do objecto



Transições — evento[guarda]/acção (todos são opcionais!)





## Maquina de Estados básica





#### Actividades internas





#### <u>Actividades internas</u>

• Actividades que não provocam transições de estado...

entry/acção

• "acção" é automaticamente executada quando o objecto entra no estado;

evento/acção

• "acção" é automaticamente executada se "evento" ocorrer (transição interna);

do/acção

• "acção" é continuamente executada enquanto o objecto estiver no estado;

evento/defer

• "evento" é deferido até o estado actual ser abandonado;

exit/acção

• "acção" é automaticamente executada quando o objecto sai do estado.



#### **Completion transitions**

- Sem eventos associados
- Acontecem de forma automática logo que possíveis.





#### Estados e estados compostos (super-estados)

• Super-estados — permitem estruturar os modelos



# \* 〇

#### **Eventos** when/after



## \* 〇

#### **Eventos** when/after





#### Transições vs. actividades internas





## Resumo da notação (até agora)

| apagada                                                | Estado                                               |
|--------------------------------------------------------|------------------------------------------------------|
| acesa after(2h) em descanso em ters/ turnOff after(5m) | Estado composto                                      |
| em descanso                                            | Estado submáquina                                    |
|                                                        | Pseudoestado incial                                  |
| →●                                                     | Estado final                                         |
| after(2h)                                              | Transição (evento [condição] / acção)                |
| on                                                     | Transição para o próprio (evento [condição] / acção) |
| on                                                     | Transição interna                                    |
| entry / turnOn()<br>exit / turnOff()                   |                                                      |



#### Diagramas de Estado (Statecharts)

#### Sumário

- Introdução aos Diagramas de Máquinas de Estado Aplicação
- Noções base: estados e transições
- Notação base
  - Estados
  - Pseudo-estado inicial
  - Pseudo-estado final
  - eventos when/after
  - Transições
- Actividades internas
- Estados simples vs estados Compostos