Going further in reinforcement learning

Guillaume Lozenguez

@imt-lille-douai.fr

Q-Learnin: the basics

- ▶ Iterative update on (State, Action) interest.
- Q-value equation:

$$Q(s^t,a) = (1-lpha)Q(s^t,a) + lpha\left(r + \gamma \max_{a^* \in A}Q(s^{t+1},a^*)
ight)$$

Parrameters:

 α - learning rate ; ϵ - thexploration-Exploitation ratio ; γ - discount factor

Q-Learnin: Game 421 (Single PLayer)

- lacksquare State Space: Horizon $\in [2,0]$, Dice $\in [1,6] imes 3$: (\sim 168 états)
- ightharpoonup Action Space: **Keep** or **Roll** each dice 2^3 : (8 actions)
- ightharpoonup Potentially 168 imes 8 imes 168 Transition.
- Game score (unique final reward): [0 (2-2-1), 800 (4-2-1)]
- ► Random policy score : ~170

Correction: <u>playerQ.py (raw file)</u>

Q-Learnin: Game 421 (Single PLayer)

With **500** steps of **500** games:

 $ightharpoonup \alpha: 0.1; \qquad \epsilon: 0.1; \qquad \gamma: 0.99$

Convergence: effect of the learning rate

With **500** steps of **500** games:

 $\sim \alpha : 0.01;$

 $\epsilon: 0.1; \qquad \gamma: 0.99$

Convergence: effect of the exploration ratio

With **500** steps of **500** games:

 $ightharpoonup \alpha: 0.01; \qquad \epsilon: 0.6; \qquad \gamma: 0.99$

Playing with the parameters:

- Generated rapidly "good" policies
- Converge on maximal and stable Q values (an indicator for optimal policy)
- ▶ Be reactive to system modification (recovery) (no more equiprobable dice for instance)

Optimize Q-Learning:

A first solution: use dynamic parameters

► Balance **learning rate** and **exploration ratio** by taking into account known and unknown areas:

Typically: Count the number of performed transitions, for each couple of (state, action)

Problem: The dynamic will depend on other parameters

Danger: Quid of the recovery mode

Optimize Q-Learning:

A second solution: use expert kownledge

▶ Drive the exploration with an expert knowledge.

Typically: initialize the Q(s, a) with coherent value to take advantage of exploitation from the very beginning.

Problem: calibrate the "weight" of the initial knowledge.

Danger: Wrong initialization could slow down the learning process.

Model-based learning (the other RL technic)

Main Idea:

- Random trajectories (a lot)
- Until each transition is visited several times.
- Compute an optimal policy.

Potentially:

- Require driving exploration
- Only incomplete exploration can be performed

Markov Decision Process

MDP: $\langle S, A, T, R \rangle$:

S: set of system's states

A : set of possible actions

 $T: S \times A \times S \rightarrow [0, 1]$: transitions

 $R: S \times A \rightarrow R: cost/rewards$

Optimal policy:

The policy π^* maximizing Bellman

Solving MDP: Value Iteration

Input: an **MDP:** $\langle S, A, T, R
angle$; precision error: ϵ ; discount factor γ ; initial V(s)

1. Repeat until the **maximal delta** < ϵ

For each state $s \in S$

- Search the action a^st maximizing the Bellman Equation
- Update $\pi(s)$ and V(s) by considering action a^*
- Compute the delta value between the previous and the new V(s)

Output: an optimal π^* and associated **V-values**.

$$V^\pi(s) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') imes V^\pi(s')$$

Application to 421

Python implementation - <u>playerMDP.py</u>: solver= MDP() solver.learnModel(Engine()) solver.valueIteration() player= PiPlayer(solver.policy()) Learning phase: Estimate t and r: <u>10 000</u> simulations for each couple (s, a) Value iteration: <u>3</u> iterations (directed and finit game) Average score (100 000 games): ~338 (To notice: decreasing the learning phase impact the average score) Let's play to a more complicated game: Zombie Dice....