Reinforcement Learning China Summer School

Game Theory Basics

Haifeng Zhang Institute of Automation, Chinese Academy of Sciences Aug 16, 2022

Outline

- Motivation and Normal-form Game
- Extensive-form Game and Imperfect Information
- Bayesian Game and Incomplete Information
- Nash Equilibrium and Variants
- Theoretical Results of Nash Equilibrium
- Repeated Game and Learning Methods
- Evolutionary Game Theory and Coalitional Game Theory

Outline

RIChille

RIChili

- Motivation and Normal-form Game
- Extensive-form Game and Imperfect Information
- Bayesian Game and Incomplete Information
- Nash Equilibrium and Variants
- Theoretical Results of Nash Equilibrium
 - Repeated Game and Learning Methods
- Evolutionary Game Theory and Coalitional Game Theory

China

China

Chine

Collective Decision Intelligence

Progress of Artificial Intelligence

Games in Reality

Rock, Scissors, Paper

Chess

Auction

Poker

History of Game Theory

1934, Stackelberg,Stackelberg Equilibrium[1]1950, Nash,Mixed Nash Equilibrium[2]

1967, **Harsanyi**, Bayesian Nash Equilibrium in Bayesian game[5] **1994**, Papadimitriou, PPAD[8]

1951, Brown,Fictitious Play in Repeated game[3]1965, Selten,Subgame Perfect Equilibrium in Extensive-form Game[4]

1973, Smith & Price,Evolutional Game Theory[6]1974, Aumann,Correlated Equilibrium[7]

Till now, 18 game theorists received Nobel Prize in Economics!

Elements of Game

- Players $N = \{1, 2, ..., n\}$
 - $N = \{1,2\}$
- Strategies (actions) $A = A_1 \times A_2 \times ... \times ...$
 - $A_1 = \{R, S, P\}$ $A_2 = \{R, S, P\}$

- Payoff (utility) $u = (u_1, u_2, ..., u_n), u_i: A \to \mathbb{R}$
 - $u_1: A_1 \times A_2 \to \mathbb{R}$
 - $u_2: A_1 \times A_2 \to \mathbb{R}$

Normal-form Game

More than 2 players

_		p_1	p_2	p_3
loint	R, R, R	0	-1	1
Joint Actions	R, R, S	1 .	^ک 1	0
Chir				

Rationality of Players

- Self-interested
 - Preference over game outcome
 - E.g. (paper, rock) is better than (rock, paper) for row player
- - Utility of (paper, rock) is 1 Utility of (rock, paper) is -1
- Objective
 - Act to maximize (expected) utility

Common Knowledge

Definition

 All the players know p, they all know that they know p, they all know that they all know that they know p, and so on

Example

- ×
 - Alice knows 'the weather is good'
 - Bob Knows 'the weather is good'
- X
 - Alice and Bob knows 'the weather is good' respectively
 - Alice and Bob knows 'the opposite knows the weather is good'
- √
- Alice and Bob are told 'the weather is good' together

Pure Strategy and Mixed Strategy

Pure Strategy

- $a_1 \in A_1 = \{Heads, Tails\}$
- $a_2 \in A_2 = \{Heads, Tails\}$

Matching Pennies

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

- Mixed Strategy: Probability Distribution over Pure Strategy
 - $a_1 = (x_H, x_T), x_H \in [0,1], x_T \in [0,1], x_H + x_T = 1$
 - $a_2 = (y_H, y_T), y_H \in [0,1], y_T \in [0,1], y_H + y_T = 1$
- Expected Utility
 - $EU_1 = x_H y_H u_1(H, H) + x_H y_T u_1(H, T) + x_T y_H u_1(T, H) + x_T y_T u_1(T, T)$
 - $EU_2 = x_H y_H u_2(H, H) + x_H y_T u_2(H, T) + x_T y_H u_2(T, H) + x_T y_T u_2(T, T)$
- Example
 - $a_1 = (0.1, 0.9), a_2 = (0.3, 0.7)$
 - $EU_1 = 0.32, EU_2 = -0.32$

Classic Games

- Zero-sum Game
 - $u_1(a) + u_2(a) = 0, \forall a \in A$
- Cooperative Game
 - $u_i(a) = u_j(a), \forall a \in A, i, j \in N$
- Coordination Game
 - Multiple Nash Equilibria Exist
- Social Dilemma [9]
 - Everyone suffers in an NE

Matching Pennies

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

Road Selection

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

Battle of Sex

	Party	Home
Party	10, 5	0, 0
Home	0, 0	5, 10

Prisoner's Dilemma

V	Cooperate	Defect
Cooperate	2, 2	0, 3
Defect	3, 0	1, 1

Outline

RIChili

- Motivation and Normal-form Game
- Extensive-form Game and Imperfect Information
- Bayesian Game and Incomplete Information
- Nash Equilibrium and Variants
- Theoretical Results of Nash Equilibrium
 - Repeated Game and Learning Methods
- Evolutionary Game Theory and Coalitional Game Theory

Extensive-form Game

- Game Tree
 - Node: decision point for a specified player
 - Edge: action decided by the player
 - · Leaf: outcome of the game with payoff

Strategies in Extensive-form Game

- Strategy Space
 - Player 1: {Left, Right}
 - Player 2: {(Left, Left), (Left, Right), (Right, Left), (Right, Right)}
 action in every node

Extensive-form vs. Normal-form

Equivalent Normal-form Game

	(Left, Left)	(Left, Right)	(Right, Left)	(Right, Right)
Left	1, 1	1, 1	0, 0	0, 0
Right	0, 0	1, 1	0, 0	1, 1

multiple step/state ↓ **dynamic**

Imperfect Information

- Imperfect Information Game
 - Some historical actions are invisible by other players
- Information Set
 - A set containing undistinguishable states, e.g. {b, c} is an information set for player 2
- Strategy Space
 - Player 1: {Left, Right}
 - Player 2: {Left, Right}
 action in every information set

Markov Game (or Stochastic Game)

- Game Definition
 - State space S
 - Action space $A = A_1 \times A_2 \times ... \times A_n$
 - Transition function $p: S \times A \rightarrow S$
 - Reward function $r: S \times A \to \mathbb{R}^n$
- Behavioral Strategy
 - Policy $\pi_i: S \times A_i \rightarrow [0,1]$
- Properties
 - Simultaneous action (Normal-form)
 - Multiple step/state (Extensive-form)
 - · Immediate reward
 - Randomness
 - Cycle

Interaction at time-step t

Summary of Strategy Representation

-100	Static Game (Single Step/state)	Dynamic Game (Multiple step/state)
Pure Strategy	$a_i \in A_i$	$\pi_i: S \to A_i \text{ or } \pi_i \in A_i^S$
Mixed Strategy	$a_i: A_i \to [0,1]$	$\pi_i: A_i^S \to [0,1]$
Behavioral Strategy	$a_i: A_i \to [0,1]$	$\pi_i: S \times A_i \to [0,1]$

Outline

PAChille

RIChili

- Motivation and Normal-form Game
- Extensive-form Game and Imperfect Information
- Bayesian Game and Incomplete Information
- Nash Equilibrium and Variants
- Theoretical Results of Nash Equilibrium
 - Repeated Game and Learning Methods
- Evolutionary Game Theory and Coalitional Game Theory

Example: Auction

Game Definition

- Players has private value v_1 , v_2
- Players decide biddings b_1 , b_2
- Player i with higher bidding b_i has utility $v_i b_i$
- The other player has utility 0
- Uncertainty of Private Value
 - $v_1 = 4, v_2 = 4$
 - $b_1 \in \{1,3\}, b_2 \in \{2,4\}$

•	v_1	=	4,	v_2	=	5
---	-------	---	----	-------	---	---

•
$$b_1 \in \{1,3\}, b_2 \in \{2,4\}$$

	$b_2 = 2$	$b_2 = 4$
$b_1 = 1$	0, 2	0, 0
$b_1 = 3$	1, 0	0, 0

	$b_2 = 2$	$b_2 = 4$
$b_1 = 1$	0, 3	0, 1
$b_1 = 3$	1, 0	0, 1

Players don't know the exact payoff matrix of the game!

Incomplete Information

- Recall the Elements of a Game
 - Players $N = \{1, 2, ..., n\}$
 - Action space $A = A_1 \times A_2 \times ... \times A_n$
 - Payoff functions $u = (u_1, u_2, ..., u_n), u_i: A \to \mathbb{R}$
- Incomplete Information Game
 - Players know: N and A
 - Players don't completely know: u
 - Criteria: whether players have private information when game starts
- Example
 - Auction
 - Mahjong
 - Werewolves of Miller's Hollow

Bayesian Game

- Basic Idea
 - Payoff function p_i is unknown, but the distribution of p_i is known
- Elements of Bayesian Game
 - Players $N = \{1, 2, ..., n\}$, action space $A = A_1 \times A_2 \times ... \times A_n$
 - Player type space $\Theta = \Theta_1 \times \Theta_2 \times ... \times \Theta_n$
 - Distribution over types $d: \Theta \rightarrow [0,1]$
 - Payoff functions $u = (u_1, u_2, ..., u_n), u_i: \Theta \times A \rightarrow \mathbb{R}$
- Strategy
 - Pure strategy $\pi_i: \Theta_i \to A_i$
 - Mixed strategy $\pi_i: \Theta_i \times A_i \rightarrow [0,1]$
- Example
 - $\Theta_1 = \{4\}, \Theta_2 = \{4,5\}$
 - d(4,4) = 0.3, d(4,5) = 0.7

		$b_2 = 2$	$b_2 = 4$
$v_2 = 4$ 0.3	$b_1 = 1$	0, 3	0, 1
3.8	$h_{*} = 3$	1 0	0 1

_		$b_2 = 2$	$b_2 = 4$
$v_2 = 5$	$b_1 = 1$	0, 2	0, 0
0.7	$b_1 = 3$	1, 0	0, 0

Dynamic Bayesian Game

- Belief System in Imperfect Information Extensive-form Game
 - Distribution over the states in an information set $b_i: S \to [0,1]$
- Strategy
 - Pure strategy $\pi_i: S \to A_i$
 - Behavioral strategy $\pi_i: S \times A_i \rightarrow [0,1]$

Summary of Game Representation

		Complete	Incomplete
Static		Normal-form Game, e.g. Prisoner's Dilemma	Bayesian Game, e.g. Auction
Dynamic	Perfect	Extensive-form Game, e.g. Chess	Texas Hold'em Poker
O	Imperfect	StarCraft	Mahjong

Dynamic Bayesian game

- Harsanyi Transformation
 - Incomplete Information → Imperfect Information
 - Introduce a nature player who decides the type of each player

Outline

- Chilir
- Motivation and Normal-form Game
- Extensive-form Game and Imperfect Information
- Bayesian Game and Incomplete Information
- Nash Equilibrium and Variants
- Theoretical Results of Nash Equilibrium
 - Repeated Game and Learning Methods
- Evolutionary Game Theory and Coalitional Game Theory

Game Solution Reasoning

- Best Response (BR)
 - Given $a_{-i} \in A_1 \times ... \times A_{i-1} \times A_{i+1} \times ... \times A_n$
 - a_i is best response to $a_{-i} \Leftrightarrow u_i(a_i, a_{-i}) \ge u_i(a_i', a_{-i})$, $\forall a_i' \in A_i$
- Dominant Strategy (DS)
 - a_i is dominant strategy \Leftrightarrow Given any a_{-i} , a_i is best response
- Example

Prisoner's Dilemma

	Cooperate (C)	Defect (D)
Cooperate (C)	2, 2	0, 3
Defect (D)	3, 0	1, 1

Game Solution Concept: Nash Equilibrium

Definition

• A joint strategy (or strategy profile) $a \in A$ is a Nash Equilibrium $\Leftrightarrow a_i$ is best response to a_{-i} holds for every player i

Example

Matching Pennies

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

Road Selection

	Left	Right
Left	1, 1	0, 0
Right	0, 0	1, 1

Battle of Sex

	Party	Home
Party	10, 5	0, 0
Home	0, 0	5, 10

Prisoner's Dilemma

	Cooperate	Defect
Cooperate	2, 2	0, 3
Defect	3, 0	1, 1

Pareto Optimality vs. Nash Equilibrium

- Pareto Optimality (PO)
 - A joint strategy (or strategy profile) $a \in A$ achieves Pareto optimality $\Leftrightarrow \nexists a' \in A$ s. t. $\textcircled{1} \forall i, u_i(a') \geq u_i(a), \textcircled{2} \exists i, u_i(a') > u_i(a)$
 - A Pareto optimality is not necessarily a Nash equilibrium
 - A Nash equilibrium is not necessarily a Pareto optimality

Chicken		,	Stay Hunt			Filsoner's Dilemina		
	С	D		С	D		С	D
С	3, 3	1, 4	С	3, 3	0, 2	С	2, 2	0, 3
D	4, 1	0, 0	D	2, 0	1, 1	D	3, 0	1, 1

Stan Hunt

C-D is PO and NE

Chicken

D-D is NE but not PO

C-C is PO but not NE

Drisonar's Dilamma

Mixed-Strategy Nash Equilibrium

Definition

- A mixed-strategy profile $(a_1, a_2, ..., a_n)$, $a_i \in PD(A_i)$ is a Nash Equilibrium $\Leftrightarrow a_i$ is best response to a_{-i} holds for every player i
- Example (Rock-Scissors-Paper)

•
$$a_1 = (1/3, 1/3, 1/3), a_2 = (1/3, 1/3, 1/3)$$

- $EU_1(a_1, a_2) = 0 \ge EU_1(a_1', a_2) = 0$, $\forall a_1' \in A_1$
- $EU_2(a_1, a_2) = 0 \ge EU_2(a_1, a_2') = 0$, $\forall a_2' \in A_2$

		1/3	1/3	1/3
1.		R	S	Р
1/3	R	0, 0	1, -1	-1, 1
1/3	⊘ S	-1, 1	0, 0	1, -1
1/3	Р	1, -1	-1, 1	0, 0

Nash Equilibrium in Extensive-form Game

Incredible Threat

	(Left, Left)	(Left, Right)	(Right, Left)	(Right, Right)
Left	1, 4 ?	1, 4	2, 2	2, 2
Right	0, 0	3, 3	0, 0	3, 3 ?

Subgame Perfect Nash Equilibrium (SPNE)

- Definition
 - An NE is SPNE ⇔ the NE holds in every subgame
- Solution
 - Backward induction: Right (Left, Right)

Bayesian Nash Equilibrium

- Recall Bayesian Game
 - Player type space $\Theta = \Theta_1 \times \Theta_2 \times ... \times \Theta_n$
 - Distribution over types $d: \Theta \rightarrow [0,1]$
 - Payoff functions $u = (u_1, u_2, ..., u_n), u_i: \Theta \times A \rightarrow \mathbb{R}$
- Strategy in Bayesian Game
 - Pure strategy $\pi_i: \Theta_i \to A_i$
 - Mixed strategy $\pi_i: \Theta_i \times A_i \rightarrow [0,1]$
- Bayesian Nash Equilibrium (BNE)
 - Assume each player i knows her own type $\theta_i \in \Theta_i$
 - Set expected utility $\mathbb{E}[u_i|\pi,\theta] = \sum_{a \in A} (\prod_{j \in N} \pi_j(\theta_j, a_j) u_i(\theta, a))$
 - π is BNE $\Leftrightarrow \pi_i \in \operatorname{argmax}_{\pi_i}$, $\sum_{\theta_{-i} \in \Theta_{-i}} d(\theta_i, \theta_{-i}) \mathbb{E}[u_i | \pi_i', \pi_{-i}, \theta_i, \theta_{-i}]$ holds for each player i with her own type θ_i

Bayesian Nash Equilibrium: Example

Auction

•
$$A_1 = \{1,3\}, A_2 = \{2,4\}, \Theta_1 = \{4\}, \Theta_2 = \{4,5\}, d(4,4) = 0.3, d(4,5) = 0.7$$

Strategy

•
$$\pi_1(4,1) = x, \pi_1(4,3) = 1 - x$$

•
$$\pi_2(4,2) = y_1, \pi_2(4,4) = 1 - y_1$$

•
$$\pi_2(5,2) = y_2, \pi_2(5,4) = 1 - y_2$$

0		
v_2	<u> </u>	4
		_
· ·	0.3	3

	$b_2 = 2$	$b_2 = 4$
$b_1 = 1$	0, 3	0, 1
$b_1 = 3$	1, 0	0, 1

Equilibrium

•
$$\mathbb{E}[u_1|\pi_1,\pi_2,4,4] = (1-x)y_1$$

•
$$\mathbb{E}[u_1|\pi_1,\pi_2,4,5] = (1-x)y_2$$

$$v_2 = 5$$
 0.7

	$b_2 = 2$	$b_2 = 4$
$b_1 = 1$	0, 2	0, 0
$b_1 = 3$	1, 0	0, 0

- $\mathbb{E}[u_2|\pi_1,\pi_2,4,4] = 3xy_1 + x(1-y_1) + (1-x)(1-y_1)$
- $\mathbb{E}[u_2|\pi_1,\pi_2,4,5] = 2xy_2$
- (x, y_1, y_2) satisfies $x = \operatorname{argmax}_{x} 0.3(1 x)y_1 + 0.7(1 x)y_2$ and $y_1 = \operatorname{argmax}_{y_1} 3xy_1 + x(1 y_1) + (1 x)(1 y_1)$ and $y_2 = \operatorname{argmax}_{y_2} 2xy_2$

Perfect Bayesian (Nash) Equilibrium

- Motivation
 - SPNE is not enough for some imperfect information game
 - Example: (L,R) is an SPNE but is incredible
- Recall Dynamic Bayesian Game
 - Belief function $b_i: S \to [0,1]$
 - Behavioral strategy $\pi_i: S \times A_i \rightarrow [0,1]$
- Perfect Bayesian Equilibrium (PBE) [10]
 - A strategy profile π with a belief system b is PBE
 - Sequential rationality
 - Each player has best expected utility in each information set following b and π
 - Consistency of beliefs with Strategies
 - Beliefs b are correct according to strategies π

Player 1

Summary of Nash Equilibrium

		Complete	Incomplete
Static		Nash Equilibrium	Bayesian Nash Equilibrium
Dynamic	Perfect	Subgame Perfect Nash Equilibrium	Perfect Bayesian Nash Equilibrium
	Imperfect		

- Harsanyi Transformation
 - Incomplete Information → Imperfect Information
 - Introduce a nature player who decides the type of each player

Outline

PAChille

RIChili

- Motivation and Normal-form Game
- Extensive-form Game and Imperfect Information
- Bayesian Game and Incomplete Information
- Nash Equilibrium and Variants
- Theoretical Results of Nash Equilibrium
 - Repeated Game and Learning Methods
- Evolutionary Game Theory and Coalitional Game Theory

Existence of Nash Equilibrium

- Nash's Theorem [2]
 - Every finite game has a mixed-strategy Nash equilibrium.
 - Proof: apply Brouwer's fixed point theorem.
- Brouwer's Fixed Point Theorem
 - Let D be a convex, compact subset of the Euclidean space. If $f: D \to D$ is continuous, then there exists $x \in D$ such that f(x) = x.
 - Proof: apply Sperner's lemma.
- Sperner's Lemma
 - Color the boundary using three colors in a legal way. No matter how the internal nodes are colored, there exists a tri-chromatic triangle. In fact an odd number of those.

Sperner's Lemma (2-D)

Lemma

There exists odd number of tri-chromatic triangles.

Ref: http://people.csail.mit.edu/costis/6896sp10/

Proof of Sperner's Lemma

Proof Sketch

Sperner's Lemma to Brouwer's Theorem

Proof Sketch

Brouwer's Theorem to Nash's Theorem

Proof Sketch

End-of-the-Line to Sperner's Lemma

PPAD Complexity Class

- PPAD-complete [11,12,13]
 - End-of-the-line
 - Sperner, Brouwer, Nash
- **Computational Complexity**
 - Poly-time algorithm not found

SPERNER

PPAD

PPAD

Outline

PAChille

PICHIL

- Motivation and Normal-form Game
- Extensive-form Game and Imperfect Information
- Bayesian Game and Incomplete Information
- Nash Equilibrium and Variants
- Theoretical Results of Nash Equilibrium
- Repeated Game and Learning Methods
- Evolutionary Game Theory and Coalitional Game Theory

Repeated Game

- Definition
 - A normal-form game is played over and again by the same players
 - The game repeated in each period is referred to as the stage game
- Example
 - Iterated Prisoners' Dilemma (IPD)
 - Reward: average or discounted
 - Memory: perfect recall

Memory

- Historical Behavior
 - At stage t, the action profile is a_t
 - Each player remembers the action profiles at last k stages
 - We say the players have *k*-memory
- Relation to Markov Game
 - Memory is regarded as state

1-memory							
	1	2	3		m		
P1	C	C	D		D		
P2	D	D	С		C		
Pn	D	С	D		С		
7		П	☆				

as state

1-memory

k-memory

	1	2	3	 m
P1	С	С	D	 D
P2	D	D	С	 С
Pn	D	C	D	 C

Tit-for-tat

- Idea [11]
 - The Tit-for-tat strategy copies what the other player previously choose.
 - Nice: start by cooperating.
 - Clear: be easy to understand and adapt to.
 - Provocable: retaliate against anti-social behavior.
 - Forgiving: cooperate when faced with pro-social play.

	С	D
С	2, 2	0, 3
D	3, 0	1, 1

Prisoner's Dilemma

	1	2	3	4	
P1	С	С	С	С	
P2	С	С	С	С	

	1	2	3	4	
P1	Ó	Ω	O	D	
P2	۵	O	D	O	

cooperate by playing strategy (C,C)

payoff =
$$2 + 2\gamma + 2\gamma^2 + 2\gamma^3 + \dots = 2\frac{\gamma^n - 1}{\gamma - 1} = \frac{2}{1 - \gamma}$$

a player deviates to defecting (D)

payoff =
$$3 + 0\gamma + 3\gamma^2 + 0\gamma^3 + ... = \frac{3}{1 - \gamma^2}$$

Win-stay, lose-shift

	С	D
С	2, 2	0, 3
D	3, 0	1, 1

- Idea [12]
 - Repeat if it was rewarded by 2 or 3

Prisoner's Dilemma

- Shift if it was punished by 0 or 1
- Advantage: tolerant, one round of mutual defection followed by a return to cooperation
- Disadvantage: fares poorly against inveterate defectors

>	1	2	3	4	
P1	O	D	O	O	
P2	D	D	O	C	

P2 deviates to defecting(D) initially

Payoff
$$> \frac{3}{1 - \gamma^2}$$

 1
 2
 3
 4
 ...

 P1
 C
 C
 D
 C
 ...

 P2
 C
 D
 D
 D
 ...

P2 is an inveterate defectors

payoff₁ = 2 + 0
$$\gamma$$
 + 1 γ ² + 0 γ ³ + ... = $\frac{1\gamma}{1 - \gamma^2}$ + 1
payoff₂ = 2 + 3 γ + 1 γ ² + 3 γ ³ + ... = $\frac{1}{1 - \gamma^2}$ + 1

Strategies in Iterated Prisoner's Dilemma

	С	D
С	2, 2	0, 3
D	3, 0	1, 1

Prisoner's Dilemma

Action profile at time t	:	l	Play	er 1	stra	ateg	ies	at tii	me i	t + 1	l wit	:h 1-	meı	mor	y)
$(a_1, a_2) = (C, C)$) C	С	С	С	С	С	С	С	D	D	D	D	D	D	D	D
$(a_1, a_2) = (C, D)$) C	С	С	С	D	D	D	D	С	С	С	С	D	D	D	D
$(a_1, a_2) = (D, C)$) C	С	D	D	С	С	D	D	С	С	D	D	С	С	D	D
$(a_1, a_2) = (D, D)$) C	D	С	D	С	D	С	D	С	D	С	D	С	D	С	D

Folk Theorem

- Game Setting
 - n-player infinitely-repeated game G = (N, A, u) with average reward
- Enforceable
 - A payoff profile r is **enforceable** if $r_i \ge v_i$, $v_i = \min_{s_{-i} \in S_{-i}} \max_{s_i \in S_i} u_i(s_{-i}, s_i)$
- Feasible
 - A payoff profile r is **feasible** if there exist rational, non-negative values α_a such that for all i, we can express r_i as $\sum_{a \in A} \alpha_a u_i(a)$, with $\sum_{a \in A} \alpha_a = 1$
- Folk Theorem
 - r is **feasible** and **enforceable** \Rightarrow r is the payoff in some Nash equilibrium

	C	D
С	2, 2	0, 3
D	3, 0	1, 1

Prisoner's Dilemma

$$(v_1, v_2) = (1, 1)$$

(-1, -1) is not enforceable, not feasible
(0.5, 2) is not enforceable, **feasible**
(5, 5) is **enforceable**, not feasible
(2, 2) is **enforceable**, **feasible**

Fictitious Play

Definition

 Each player plays a best response to assessed strategy of the opponent and observe the opponent's actual play and update beliefs.

Matching Pennies

	Heads	Tails
Heads	1, -1	-1, 1
Tails	-1, 1	1, -1

		Attitude .		
Round	1's action	2's action	1's beliefs	2's beliefs
0			(1.5, 2)	(2, 1.5)
1	Т	Т	(1.5, 3)	(2, 2.5)
2	Т	Н	(2.5, 3)	(2, 3.5)
3	Т	Н	(3.5 , 3)	(2, 4.5)
4	Н	H 10	(4.5, 3)	(3, 4.5)

Convergence of Fictitious Play

- Fictitious Play → Convergence
 - Each of the following are a sufficient conditions for the empirical frequencies of play to converge in fictitious play:
 - The game is zero sum;
 - The game is solvable by iterated elimination of strictly dominated strategies;
 - The game is a potential game;
 - The game is 2 n and has generic payoffs.
- Convergence → Nash Equilibrium
 - If the empirical distribution of each player's strategies converges in fictitious play, then it converges to a Nash equilibrium.
- Results in Extensive-form Game with Imperfect Information
 - Fictitious self-play converges to approximate Nash equilibrium [13]
 - AlphaStar for StarCraft [14]

No-regret Learning

- Regret
 - Let a^t be the action profile played at time t
 - Regret of player i for not playing action a'_i at time t is $R^t(a'_i) = u_i(a'_i, a^t_{-i}) u_i(a^t)$
 - Regret cumulated from time 1 to T is $CR^{T}(a_{i}') = \sum_{t=1}^{T} R^{t}(a_{i}')$
- Regret Matching
 - At each time step, each action is chosen with probability proportional to its cumulated regret: $\sigma_i^{t+1}(a_i) = \frac{CR^t(a_i)}{\sum_{a_i' \in A_i} CR^t(a_i')}$
 - Converge to correlated equilibrium
- No-regret learning in Extensive-form Game
 - Counterfactual Regret Minimization (CFR)
 - DeepStack for Texas Hold'em poker [15]

Outline

- A. Chili.
- Motivation and Normal-form Game
- Extensive-form Game and Imperfect Information
- Bayesian Game and Incomplete Information
- Nash Equilibrium and Variants
- Theoretical Results of Nash Equilibrium
 - Repeated Game and Learning Methods
- Evolutionary Game Theory and Coalitional Game Theory

Evolutional Game Theory

- Motivation
 - Nash equilibrium is static, the dynamic of strategy is not described
 - Players are not fully rational
- Basic Idea
 - Strategy is inherent and player can not select strategy by herself
 - Player with high payoff is has more chance to be reproduced
- Evolutionary Stable Strategy (ESS)
 - If almost every member of the population follows a strategy, no mutant (that is, an individual who adopts a novel strategy) can successfully invade.

Ref: https://plato.stanford.edu/entries/game-evolutionary/

Replicator Dynamics

Definition

- $\dot{x}_i = x_i [f_i(x) \phi(x)], \phi(x) = \sum_{j=1}^n x_j f_j(x)$
- x is distribution of types(strategies) over the population
- $f_i(x)$ is the fitness for type i in population x
- $\varphi(x)$ is the average fitness of the population

7	С	D
С	2, 2	0, 3
D	3, 0	1, 1

Prisoner's Dilemma

Replicator Dynamics: Experiment

• On a local interaction model [17]

Generation 4

Generation 5

Generation 6

Replicator Dynamics: Experiment

- On a local interaction model
 - T = 1.2, R = 1.1, P = 0.1, and S = 0 **Cooperate**

Replicator Dynamics: Experiment

On a local interaction model

Coalitional Game Theory

Definition

- N is a set of players indexed by i
- $v: 2^N \to \mathbb{R}$ associates with each coalition $S \subseteq N$ a payoff v(S), $v(\emptyset) = 0$

Question

- Which coalition will form?
- How to allocate payoff among coalition members?

Shapley Value

- Definition
 - $\varphi_i(N, v) = \frac{1}{N!} \sum_{S \subseteq N \setminus \{i\}} |S|! (|N| |S| 1)! [v(S \cup \{i\}) v(S)]$
- Property
 - Symmetry
 - $\varphi_i(N,v) = \varphi_j(N,v)$ if $v(S \cup \{i\}) = v(S \cup \{j\})$ for $\forall S, i, j \notin S$
 - Dummy Player
 - $\varphi_i(N, v) = 0$ if $v(S \cup \{i\}) = v(S)$ for $\forall S$
 - Additivity
 - $\varphi_i(N,v_1+v_2)=\varphi_i(N,v_1)+\varphi_i(N,v_2)$ for $\forall i$, where $(v_1+v_2)(S)=v_1(S)+v_2(S)$ for $\forall S$

Core

Definition

• A payoff vector x is in the **core** of a coalition game (N, v), iff $\forall S \subseteq N, \sum_{i \in S} x_i \ge v(S)$

Property

- A payoff vector in the core is a stable distribution of the grand coalition
- In some sense, core is a more stable solution concept than Nash equilibrium because every group of the players, rather than every single player, has no intention to deviate

Summary

Reference

- [1] Stackelberg, H. "Market Structure and Equilibrium. Translation into English, Bazin, Urch & Hill, Springer, 2011." (1934).
- [2] Nash, John. "Non-cooperative games." Annals of mathematics (1951): 286-295.
- [3] Harsanyi, John C. "Games with incomplete information played by "Bayesian" players, I–III Part I. The basic model." Management science 14.3 (1967): 159-182.
- [4] Selten. R. (1965), "Spieltheoretische Behandlung eines Oligopolmodells mit Nachfrageträgheit Teil I Bestimmung des dynamischen Preisgleichgewichts", Zeitschrift für die gesamte Staatswissenschaft 121: 301–24.
- [5] Brown, G.W. "Iterative Solutions of Games by Fictitious Play" In Activity Analysis of Production and Allocation, T. C. Koopmans (Ed.), New York (1951): Wiley.
- [6] Maynard-Smith, J.; Price, G. R. "The Logic of Animal Conflict". Nature (1973). 246 (5427): 15–18.
- [7] Aumann, Robert "Subjectivity and correlation in randomized strategies". Journal of Mathematical Economics (1974). 1 (1): 67–96.
- [8] Christos Papadimitriou "On the complexity of the parity argument and other inefficient proofs of existence". Journal of Computer and System Sciences (1994). 48 (3): 498–532.
- [9] Macy, Michael W., and Andreas Flache. "Learning dynamics in social dilemmas." Proceedings of the National Academy of Sciences 99.suppl 3 (2002): 7229-7236.
- [10] Fudenberg, Drew, and Jean Tirole. "Perfect Bayesian equilibrium and sequential equilibrium." journal of Economic Theory 53.2 (1991): 236-260.

Reference

- [11] Nowak, Martin A. and Sigmund, K. (1992). "Tit For Tat in Heterogenous Populations," Nature, 359: 250–253.
- [12] Nowak, Martin, and Karl Sigmund. "A strategy of win-stay, lose-shift that outperforms tit-for-tat in the Prisoner's Dilemma game." Nature 364.6432 (1993): 56-58.
- [13] Heinrich, Johannes, Marc Lanctot, and David Silver. "Fictitious self-play in extensive-form games." International Conference on Machine Learning. 2015.
- [14] Vinyals, Oriol, et al. "Grandmaster level in StarCraft II using multi-agent reinforcement learning." Nature 575.7782 (2019): 350-354.
- [15] Moravčík, Matej, et al. "Deepstack: Expert-level artificial intelligence in heads-up no-limit poker." Science 356.6337 (2017): 508-513.
- [16] Zhang, Haifeng, et al. "Bi-level Actor-Critic for Multi-agent Coordination." AAAI 2020.
- [17] Nowak, Martin A. and May, Robert M. "The Spatial Dilemmas of Evolution," International Journal of Bifurcation and Chaos (1993), 3: 35–78.