ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ

«МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Подкидышев Алексей Сергеевич Студент факультета инноваций и высоких технологий (группа 790)

Лабораторная работа 2.2.1

«Исследование взаимной диффузии газов»

Долгопрудный 17 мая 2018 г.

1 Описание работы

1.1 Цель, оборудование

Цель работы:

- 1. Регистрация зависимости концентрации гелия в воздухе от времени с помощью датчиков теплопроводности при разных начальных давлениях смеси газов;
- 2. Определение коэффициента диффузии по результатам измерений.

В работе используются:

Измерительная установка; форвакуумный насос; баллон с газом (гелий); манометр; источник питания; магазин сопротивлений; гальванометр; секундомер.

Рис. 1: Установка для исследования взаимной диффузии газов. Схема крана K6. Мостовая схема с датчиками теплопроводности для измерения разности концентраций газов.

1.2 Теория

Рассмотрим процесс выравнивания концентрации. Закон Фика:

$$j = -D \frac{\partial n}{\partial x}$$
 - Плотность потока

(Количество частиц, пересекающих единичную площадку в единицу времени) В нашем случае ввиду того что, а) объем соединительной трубки мал по сравнению с объемами сосудов, б) концентрацию газов внутри каждого сосуда можно считать постоянной по всему объему.

$$J = -DS \frac{n_1 - n_2}{l}$$

Изменение компонента в сосудах: $V_1 \Delta n_1 = -V_2 \Delta n_2$

С другой стороны $V_1\Delta n_1=J\Delta t$ и $V_1\frac{dn_1}{dt}=-DS\frac{n_1-n_2}{l};$ Аналогично $V_2\frac{dn_2}{dt}=DS\frac{n_1-n_2}{l}$

Тогда

$$\frac{d(n_1 - n_2)}{dt} = -\frac{n_1 - n_2}{l} \frac{V_1 + V_2}{V_1 V_2}$$

Проинтегрируем и получим, что

$$n_1 - n_2 = \Delta n = \Delta n_0 \cdot e^{-t/\tau} \tag{1}$$

$$\tau = \frac{V_1 V_2}{V_1 + V_2} \frac{l}{SD} \tag{2}$$

При заполнении сосудов смесями различного состава возникает «разбаланс» моста. При незначительном различии в составах смесей показания гальванометра, подсоединённого к диагонали моста, будут пропорциональны разности концентраций примеси. В процессе диффузии разность концентраций убывает по экспоненте, и значит по тому же закону изменяются во времени показания гальванометра

$$U = U_0 \exp(-t/\tau)$$

Для измерения концентраций в данной работе используется зависимость теплопроводности газовой смеси от ее состава. Количество тепла, передающееся от тонкой проволоки $R_{\rm mp}$, протянутой вдоль оси цилиндра с радиусом $R_{\rm m}$ к его стенке равна:

$$Q = \varkappa \cdot \frac{2\Pi L}{\ln \frac{R_{\rm u}}{r_{\rm np}}} \cdot (T_1 - T_2) \tag{3}$$

где \varkappa - теплопроводность; L - длина нити; T1, T2 - температура проволочки и стенки

2 Ход работы

2.1 Подготовка установки для измерения

Включим питание электрической схемы установки. Очистим установку от всех газов. Запустим воздух до рабочего давления $P_{\rm pa6}$. Сбалансируем мост. Заполним установку рабочей смесью и приступим к измерению: откроем соответствующие краны и снимем зависимость показания вольтметра от времени с помощью компьютера.

Рис. 2: Интерфейс программы обрабатывающей показания вольтметра от времени

2.2 Измерения

t, c	U, y.e	In(U/U ₀)
0,00	255,0	0,000
15,61	245,4	0,038
31,22	236,8	0,074
46,83	228,2	0,111
62,43	218,1	0,156
78,04	212,0	0,185
93,65	205,3	0,217
109,26	198,0	0,253
124,87	192,0	0,284
140,48	186,0	0,316
156,09	180,0	0,348
171,70	174,3	0,380
187,30	168,7	0,413
202,91	161,0	0,460
218,52	156,0	0,491
234,13	151,0	0,524
249,74	146,0	0,558
265,35	141,0	0,593
280,96	137,0	0,621
296,57	133,0	0,651
312,17	128,0	0,689
327,78	124,0	0,721
343,39	120,0	0,754
359,00	116,0	0,788

$_{\mathrm{t,c}}$	U, y.e	$\ln(\mathrm{u/U}_0)$
0,000	255,000	0,000
12,950	249,000	0,024
25,890	238,100	0,069
38,840	229,200	0,107
51,790	219,200	0,151
64,740	212,700	0,181
77,680	202,000	0,233
90,630	194,000	0,273
103,580	187,000	0,310
116,530	180,000	0,348
129,470	173,100	0,388
142,420	168,000	0,417
155,370	161,300	0,458
168,320	154,000	0,504
181,260	148,500	0,541
194,210	144,000	0,571
207,160	139,000	0,607
220,110	134,900	0,637
233,050	130,000	0,674
246,000	126,000	0,705
		· · · · · · · · · · · · · · · · · · ·

Рис. 3: 40 и 80 торр соответственно

t, c	U, y/e	$\ln(\mathrm{u/U}_{-}0)$
0,00	255,00	0,00
25,68	243,00	0,05
51,36	228,60	0,05
77,05	245,00	0,17
102,73	202,00	0,23
128,41	190,20	0,29
154,09	18,90	0,35
179,77	168,00	0,42
205,45	158,50	0,48
231,14	149,00	0,54
256,82	141,20	0,59
282,50	134,00	0,64
308,18	125,00	0,71
333,86	119,00	0,76
359,55	113,00	0,81
385,23	106,80	0,87
410,91	101,00	0,93
436,59	95,60	0,98
462,27	90,00	1,04
487,95	86,00	1,09
513,64	82,00	1,14
539,32	78,00	1,19
565,00	75,00	1,22

t, c	U, y.e	$\ln(\mathrm{U/U0})$
0	255	0
19,18	250	0,02
38,36	243,6	0,046
57,55	237	0,073
76,73	230	0,103
95,91	223,1	0,134
115,09	217	0,161
134,27	210	0,194
153,45	204,5	0,22
172,64	199	0,248
191,82	193	0,279
211	187	0,31
230,18	182	0,337
249,36	177	0,365
268,55	170	0,394
287,73	167	0,423
306,91	162	0,454
326,09	158	0,479
345,27	153	0,511
364,45	149	0,537
383,64	14434	0,569
402,82	140,2	0,598

Рис. 4: 120 торр и 160 торр соответственно

2.3 Графики

Рис. 5: 40 торр

Рис. 6: 80 торр

Рис. 7: 120 торр

Рис. 8: 160 торр

2.4 Исследование полученных результатов

Полученные данные:

P_0 , ropp	40	80	120	160
$1/P, \text{ Topp}^{-1}$	0,025	0,0125	0,008333	0,00625
$\sigma_{1/p}$, Topp^{-1}	0,011979	0,000521	0,004688	0,006771
a, c^{-1}	2,18	2,9	2,2	1,5
σ_a, c^{-1}	0,015	0,705	0,005	0,695
D, $10^{-3} \text{m}^2/c$	0,982	0,343	0,236	0,152
$\sigma_d, 10^{-3} \text{m}^2/c$	0,55375	0,08525	0,19225	0,27625

Таблица 1: Коэффициенты взаимных диффузий для разных давлений

Построим график зависимости коэффициента диффузии от обратного значения давления.

Рис. 9: График зависимости D(1/P)

$$\frac{dD}{d\left(\frac{1}{P}\right)} \equiv b$$

Аппроксимируя полученную зависимость, рассчитаем величину диффузии при атмосферном давлении и зная, что $b=(44\pm3)$ торр m/c. Получаем:

$$D_{\text{atm}} = 0.55 \frac{cm^2}{c}$$

2.5 Погрешности

$$\sigma_D = D \cdot \sqrt{\left(\frac{6V}{V}\right)^2 + \left(\frac{64S}{4S}\right)}$$

$$\mathcal{E}_D \approx 12.7\%$$

3 Вывод

3.1 Длина свободного пробега, размер молекулы

$$D_{\text{atm}} = 0.55 \pm 0.08 \; \frac{cm^2}{c}$$

Мы получили близкий к табличному значению результат $(D_{\text{табл}}=0.62~\text{cm}2\text{c}),~\text{c}$ небольшой погрешностью.

Оценим по полученным данным длину свободного давления λ и размер молекулы:

$$\lambda = 3D \cdot \sqrt{\frac{\mu}{3RT}} = (1.14 \pm 0.05) \cdot 10^{-7} \ m$$

$$\sqrt{\frac{kT}{P\lambda}} \simeq 10^{-10} \text{ m}$$

Вывод: мы проверили требуемые зависимости и нашли $D_0=0.55~{\rm cm}2/{\rm c}$ коэффициент взаимной диффузии гелия и воздуха при нормальном атмосферном давлении и комнатной температуре.