

MACHINE LEARNING BASIC ALGORITHMS

Nguyễn Ngọc Thảo – Nguyễn Hải Minh {nnthao, nhminh}@fit.hcmus.edu.vn

Outline

- Introduction to Machine learning
- ID3 Decision tree
- Naïve Bayesian classification

Acknowledgements

- This slide is mainly based on the textbook AIMA (3rd edition)
- Some parts of the slide are adapted from
 - Maria-Florina Balcan, Introduction to Machine Learning, 10-401,
 Spring 2018, Carnegie Mellon University
 - Ryan Urbanowicz, An Introduction to Machine Learning, PA CURE Machine Learning Workshop: December 17, School of Medicine, University of Pennsylvania

What is machine learning?

 Machine learning involves adaptive mechanisms that enable computers to learn from experience, learn by example and learn by analogy.

Types of machine learning

Types of machine learning

Source: https://www.ceralytics.com/3-types-of-machine-learning/

Machine learning algorithms

Regression Algorithms

Regularization Algorithms

Instance-based Algorithms

Dimensional Reduction Algorithms

Clustering Algorithms

Decision Tree Algorithms

Support Vector Machines

Association Rule Learning Algorithms

Artificial Neural Network Algorithms

Bayesian Algorithms

Ensemble Algorithms

Evolutionary Algorithms

Deep Learning Algorithms

Learning Classifier Systems

Supervised learning

 Learn a function that maps an input to an output based on examples, which are pairs of input-output values.

Supervised learning: Examples

Spam detection

							`
	"money	y'' ''pills''	"Mr."	bad spelling	known-sender	spam?	
	Y	Ν	Υ	Υ	N	Y	-
	Ν	Ν	Ν	Y	Y	N	
	N	Y	N	N	N	Y	
exar	nple 📉	Ν	Ν	N	Υ	N	label
	Ν	Ν	Y	Ν	Y	N	
	Y	Ν	Ν	Y	Ν	Y	
	Ν	Ν	Y	Ν	Ν	N	
						'	

Reasonable RULES

- Predict SPAM if unknown AND (money OR pills)
- Predict SPAM if 2money + 3pills 5 known > 0

Spam

Not Spam

Linearly separable

Supervised learning: Examples

Object detection

Indoor scene recognition

Handwritten digit recognition

Scene text recognition

Supervised learning: More examples

 Weather prediction: Predict the weather type or the temperature at any given location...

- Medicine: diagnose a disease (or response to chemo drug X, or whether a patient is re-admitted soon?)
 - Input: from symptoms, lab measurements, test results, DNA tests, ...
 - Output: one of set of possible diseases, or "none of the above"
 - E.g., audiology, thyroid cancer, diabetes, etc.

- Computational economics:
 - Predict if a user will click on an ad so as to decide which ad to show
 - Predict if a stock will rise or fall (with specific amounts)

Classification vs. Regression

- Train a model to predict a categorical dependent variable
- Case studies: predicting disease, classifying images, predicting customer churn, buy or won't buy, etc.

Vs.
Multiclass classification
vs.
Multilabel classification

Classification vs. Regression

- Train a model to predict a continuous dependent variable
- Case studies: predicting height of children, predicting sales, forecasting stock prices, etc.

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Unsupervised learning

- Infer a function to describe hidden structure from "unlabeled" data
 - A classification (or categorization) is not included in the observations.

Unsupervised learning: Examples

 Social network analysis: cluster users of social networks by interest (community detection)

Ref: Shevtsov, Alexander, et al. "Analysis of Twitter and YouTube during US elections 2020." arXiv e-prints (2020): arXiv-2010.

Semi-supervised learning

 The model is initially trained with a small amount of labeled data and a large amount of unlabeled data.

Reinforcement learning

• The agent learns from the environment by interacting with it and receives rewards for performing actions.

Learning to ride a bike requires trial and error, much like reinforcement learning. (Video courtesy of Mark Harris, who says he is "learning reinforcement" as a parent.) 18

Reinforcement learning: Example

Reinforcement learning: Examples

Machine learning and related concepts

Source: https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Machine learning and related concepts

ID3 Decision Tree

Learning agents – Why learning?

Unknown environments

 A robot designed to navigate mazes must learn the layout of each new maze it encounters.

Environment changes over time

- An agent designed to predict tomorrow's stock market prices must learn to adapt when conditions change from boom to bust.
- No idea how to program a solution
 - The task to recognizing the faces of family members

Learning element

- Design of a learning element is affected by
 - Which components is to be improved
 - What prior knowledge the agent already has
 - What representation is used for the components
 - What feedback is available to learn these components

- Type of feedback
 - Supervised learning: correct answers for each example
 - Unsupervised learning: correct answers not given
 - Reinforcement learning: occasional rewards

Supervised learning

- Simplest form: learn a function from examples
- Given a training set of N example input-output pairs

$$(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)$$

- where each y_i was generated by an unknown function y = f(x)
- Find a hypothesis h such that $h \approx f$
- To measure the accuracy of a hypothesis, give it a test set of examples that are different with those in the training set.

Supervised learning

- Construct h so that it agrees with f.
- The hypothesis h is **consistent** if it agrees with f on all observations.
- Ockham's razor: Select the simplest consistent hypothesis.

Supervised learning problems

• h(x) = the predicted output value for the input x

Regression vs. Classification

 Estimating the price of a house

- Will you pass or fail the exam?
 - 2 classes: Fail/Pass

- Is this an apple, an orange or a tomato?
 - 3 classes: Apple / Orange / Tomato

The wait@restaurant problem

Predicting whether a certain person will wait to have a seat in a restaurant.

The wait@restaurant problem

- The decision is based on the following attributes
 - **1. Alternate:** is there an alternative restaurant nearby?
 - 2. Bar: is there a comfortable bar area to wait in?
 - **3. Fri/Sat:** is today Friday or Saturday?
 - **4. Hungry:** are we hungry?
 - **5.** Patrons: number of people in the restaurant (None, Some, Full)
 - **6. Price:** price range (\$, \$\$, \$\$\$)
 - **7. Raining:** is it raining outside?
 - **8. Reservation:** have we made a reservation?
 - **9. Type:** kind of restaurant (French, Italian, Thai, Burger)
 - **10. WaitEstimate:** estimated waiting time (0-10, 10-30, 30-60, >60)

The wait@restaurant decision tree

Learning decision trees

- Divide and conquer: Split data into smaller and smaller subsets
- Splits are usually on a single variable

 After splitting up, each outcome is a new decision tree learning problem with fewer examples and one less attribute.

Learning decision trees

Splitting the examples by testing on attributes

ID3 Decision tree algorithm

- 1. The remaining examples are all positive (or all negative),
 - → DONE, it is possible to answer Yes or No.
 - E.g., in Figure (b), None and Some branches
- There are some positive and some negative examples → choose the best attribute to split them
 - E.g., in Figure (b), Hungry is used to split the remaining examples

ID3 Decision tree algorithm

- 3. No examples left at a branch \rightarrow return a default value.
 - No example has been observed for a combination of attribute values
 - The default value is calculated from the plurality classification of all the examples that were used in constructing the node's parent.
 - These are passed along in the variable parent examples
- 4. No attributes left but both positive and negative examples
 → return the plurality classification of remaining ones.
 - Examples of the same description, but different classifications
 - Usually an error or noise in the data, nondeterministic domain, or no observation of an attribute that would distinguish the examples.

ID3 Decision tree: Pseudo-code

```
function DECISION-TREE-LEARNING(examples, attributes, parent examples)
returns a tree
                                             No examples left
 if examples is empty
        then return PLURALITY-VALUE(parent examples)
  else if all examples have the same classification
                                                      remaining examples
        then return the classification
                                                       are all pos/all neg
  else if attributes is empty-
    then return PLURALITY-VALUE(examples)
                                                     No attributes left but
  else
                                                 examples are still pos & neg
```

ID3 Decision tree: Pseudo-code

```
function DECISION-TREE-LEARNING(examples, attributes, parent examples)
returns a tree
  else
    A \leftarrow argmax_{a \in attributes} IMPORTANCE(a, examples)
    tree \leftarrow a new decision tree with root test A
    for each value v_k of A do
        exs \leftarrow \{e : e \in examples \text{ and } e.A = v_k\}
        subtree \leftarrow DECISION-TREE-LEARNING(exs, attributes - A, examples)
        add a branch to tree with label (A = v_k) and subtree subtree
    return tree
```

Decision tree: Inductive learning

- Simplest: Construct a decision tree with one leaf for every example
 - → memory based learning
 - → worse generalization.

- Advanced: Split on each variable so that the purity of each split increases (i.e. either only yes or only no)
 - E.g., using Entropy to measure the purity of data

A purity measure with entropy

• Entropy is a measure of the uncertainty of a random variable V with values v_k .

An indicator of how messy your data is

$$H(V) = \sum_{k} P(v_k) \log_2 \frac{1}{P(v_k)} = -\sum_{k} P(v_k) \log_2 P(v_k)$$

- v_k is a class in V (e.g., yes/no in binary classification)
- $P(v_k)$ is the proportion of the number of elements in class v_k to the number of elements in V

A purity measure with entropy

- Entropy is maximal when all possibilities are equally likely.
- Entropy is zero in a pure "yes" (or pure "no") node.

Provost, Foster; Fawcett, Tom. Data Science for Business: What You Need to Know about Data Mining and Data-Analytic Thinking

Decision tree aims to decrease the entropy in each node.

The wait@restaurant training data

T = True, F = False

Example					At	tributes	3				Target
Literingie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Τ	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10–30	Т
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	Τ	Some	<i>\$\$</i>	Τ	T	Italian	0–10	Τ
X_7	F	T	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	<i>\$\$</i>	Τ	T	Thai	0–10	Т
X_9	F	Τ	T	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	Τ	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	Τ	Full	\$	F	F	Burger	30–60	T

$$H(S) = -\binom{6}{12}\log_2\binom{6}{12} - \binom{6}{12}\log_2\binom{6}{12} = 1$$

6 True, 6 False

Example					At	tributes	3				Target
Litering	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Τ	F	Τ	Some	\$\$	Τ	T	Italian	0–10	T
X_7	F	Τ	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Τ	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	Τ	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Τ	T	T	Full	\$	F	F	Burger	30–60	T

Calculate Average Entropy of attribute Alternate

$$AE_{Alternate} = P(Alt = T) \times H(Alt = T) + P(Alt = F) \times H(Alt = F)$$

$$AE_{Alternate} = \frac{6}{12} \left[-\left(\frac{3}{6}\log_2\frac{3}{6}\right) - \left(\frac{3}{6}\log_2\frac{3}{6}\right) \right] + \frac{6}{12} \left[-\left(\frac{3}{6}\log_2\frac{3}{6}\right) - \left(\frac{3}{6}\log_2\frac{3}{6}\right) \right] = 1$$

Example		_			At	tributes	3				Target
Little III pro	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWain
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Τ	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	Τ	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Τ	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	Τ	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	Τ	T	T	Full	\$	F	F	Burger	30–60	T

 Information Gain is the difference in entropy from before to after the set S is split on the selected attribute.

$$IG(Alternate, S) = H(S) - AE_{Alternate} = 1 - 1 = 0$$

Example					At	tributes	3				Target
Literijie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Τ	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	Τ	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	Τ	F	Full	\$\$\$	F	Τ	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	Τ	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	Τ	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	Τ	T	Full	\$	F	F	Burger	30–60	T

$$AE_{Bar} = \frac{6}{12} \left[-\left(\frac{3}{6}\log_2\frac{3}{6}\right) - \left(\frac{3}{6}\log_2\frac{3}{6}\right) \right] + \frac{6}{12} \left[-\left(\frac{3}{6}\log_2\frac{3}{6}\right) - \left(\frac{3}{6}\log_2\frac{3}{6}\right) \right] = 1$$

$$IG(Bar, S) = H(S) - AE_{Bar} = 1 - 1 = 0$$

Example					At	tributes	3				Target
Littering	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Τ	F	F	T	Some	\$\$\$	F	T	French	0–10	Τ
X_2	Τ	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	Τ
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	Τ	F	Τ	Some	\$\$	Τ	T	Italian	0–10	Τ
X_7	F	Τ	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	Τ	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Т	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	Т	Full	\$	F	F	Burger	30–60	T

$$AE_{Sat/Fri?} = \frac{5}{12} \left[-\left(\frac{2}{5}\log_2\frac{2}{5}\right) - \left(\frac{3}{5}\log_2\frac{3}{5}\right) \right] + \frac{7}{12} \left[-\left(\frac{4}{7}\log_2\frac{4}{7}\right) - \left(\frac{3}{7}\log_2\frac{3}{7}\right) \right] = 0.979$$

$$IG(Sat/Fri?, S) = H(S) - AE_{Sat/Fri?} = 1 - 0.979 = 0.021$$

Example					At	tributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	Τ
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	Τ	F	Τ	F	Full	\$\$\$	F	Τ	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

$$AE_{Hungry} = \frac{7}{12} \left[-\left(\frac{5}{7}\log_2\frac{5}{7}\right) - \left(\frac{2}{7}\log_2\frac{2}{7}\right) \right] + \frac{5}{12} \left[-\left(\frac{1}{5}\log_2\frac{1}{5}\right) - \left(\frac{4}{5}\log_2\frac{4}{5}\right) \right] = 0.804$$

$$IG(Hungry, S) = H(S) - AE_{Hungry} = 1 - 0.804 = 0.196$$

Example					At	tributes	3				Target
Larrest Ipro	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Τ	F	F	Τ	Some	\$\$\$	F	Τ	French	0–10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	Τ	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	Τ	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	Τ	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	Т	Τ	Τ	Τ	Full	\$\$\$	F	Τ	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

$$AE_{Raining} = \frac{4}{12} \left[-\left(\frac{2}{4}\log_2\frac{2}{4}\right) - \left(\frac{2}{4}\log_2\frac{2}{4}\right) \right] + \frac{8}{12} \left[-\left(\frac{4}{8}\log_2\frac{4}{8}\right) - \left(\frac{4}{8}\log_2\frac{4}{8}\right) \right] = 1$$

$$IG(Raining, S) = H(S) - AE_{Hungry} = 1 - 1 = 0$$

Example					At	tributes	3				Target
Larrest pre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	Τ	F	T	Τ	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	Τ	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	Τ	Thai	0–10	T
X_9	F	Τ	Τ	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

$$AE_{Reservation} = \frac{5}{12} \left[-\left(\frac{3}{5}\log_2\frac{3}{5}\right) - \left(\frac{2}{5}\log_2\frac{2}{5}\right) \right] + \frac{7}{12} \left[-\left(\frac{3}{7}\log_2\frac{3}{7}\right) - \left(\frac{4}{7}\log_2\frac{4}{7}\right) \right]$$

$$= 0.979$$

$$IG(Reservation, S) = H(S) - AE_{Reservation} = 1 - 0.979 = 0.021$$

Example					At	ttributes	3				Target
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	Т	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Т	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	<i>\$\$</i>	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

$$\begin{split} &AE_{Patron} \\ &= \frac{2}{12} \left[-\left(\frac{0}{2}\log_2\frac{0}{2}\right) - \left(\frac{2}{2}\log_2\frac{2}{2}\right) \right] + \frac{4}{12} \left[-\left(\frac{4}{4}\log_2\frac{4}{4}\right) - \left(\frac{0}{4}\log_2\frac{0}{4}\right) \right] \\ &+ \frac{6}{12} \left[-\left(\frac{2}{6}\log_2\frac{2}{6}\right) - \left(\frac{4}{6}\log_2\frac{4}{6}\right) \right] = 0.541 \end{split}$$

$$IG(Patron, S) = H(S) - AE_{Patron} = 1 - 0.541 = 0.459$$

Example					A	ttributes	3				Target
Larred Tyre	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_2	T	F	F	Τ	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	Τ	F	T	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	Τ	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Τ	Τ	F	Full	\$	Т	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

$$\begin{split} &AE_{Price} \\ &= \frac{6}{12} \left[-\left(\frac{3}{6}\log_2\frac{3}{6}\right) - \left(\frac{3}{6}\log_2\frac{3}{6}\right) \right] + \frac{2}{12} \left[-\left(\frac{2}{2}\log_2\frac{2}{2}\right) - \left(\frac{0}{2}\log_2\frac{0}{2}\right) \right] \\ &+ \frac{4}{12} \left[-\left(\frac{1}{4}\log_2\frac{1}{4}\right) - \left(\frac{3}{4}\log_2\frac{3}{4}\right) \right] = 0.770 \end{split}$$

 $IG(Price, S) = H(S) - AE_{Price} = 1 - 0.770 = 0.23$

Example					At	tributes	3				Target
1	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	Т	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	Т	Τ	F	Full	\$	Τ	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	Τ	Τ	Full	\$	F	F	Burger	30–60	T

$$\begin{split} AE_{Type} &= \frac{2}{12} \left[-\left(\frac{1}{2}\log_2\frac{1}{2}\right) - \left(\frac{1}{2}\log_2\frac{1}{2}\right) \right] + \frac{2}{12} \left[-\left(\frac{1}{2}\log_2\frac{1}{2}\right) - \left(\frac{1}{2}\log_2\frac{1}{2}\right) \right] \\ &+ \frac{4}{12} \left[-\left(\frac{2}{4}\log_2\frac{2}{4}\right) - \left(\frac{2}{4}\log_2\frac{2}{4}\right) \right] + \frac{4}{12} \left[-\left(\frac{2}{4}\log_2\frac{2}{4}\right) - \left(\frac{2}{4}\log_2\frac{2}{4}\right) \right] = 1 \\ &IG(Type, S) = H(S) - AE_{Type} = 1 - 1 = 0 \end{split}$$

Example					At	tributes	3				Target
Litering	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	Τ	Some	\$\$\$	F	T	French	0–10	Τ
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Τ	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	Τ	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	Τ
X_7	F	T	F	F	None	\$	Τ	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	Τ
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	Τ	Full	\$\$\$	F	Τ	ltalian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30–60	T

 $AE_{Est.waiting\ time}$

$$= \frac{6}{12} \left[-\left(\frac{4}{6}\log_2\frac{4}{6}\right) - \left(\frac{2}{6}\log_2\frac{2}{6}\right) \right] + \frac{2}{12} \left[-\left(\frac{1}{2}\log_2\frac{1}{2}\right) - \left(\frac{1}{2}\log_2\frac{1}{2}\right) \right] + \frac{2}{12} \left[-\left(\frac{1}{2}\log_2\frac{1}{2}\right) - \left(\frac{1}{2}\log_2\frac{1}{2}\right) \right] + \frac{2}{12} \left[-\left(\frac{0}{2}\log_2\frac{0}{2}\right) - \left(\frac{2}{2}\log_2\frac{2}{2}\right) \right] = 0.792$$

 $IG(Est.waiting\ time, S) = H(S) - AE_{Est.waiting\ time} = 1 - 0.792$

= 0.208

• Largest Information Gain (0.459) / Smallest Entropy (0.541)

achieved by splitting on Patrons.

Continue making new splits, always purifying nodes

ID3 Decision tree algorithm

Induced tree (from examples)

Performance measurement

- How do we know that h ≈ f?
 - 1. Use theorems of computational or statistical learning theory
 - 2. Try *h* on a new test set of examples
 - Use the same distribution over example space as training set

Learning curve = % correct on test set as a function of training set size

Quiz 01: ID3 decision tree

- The data represent files on a computer system. Possible values of the class variable are "infected", which implies the file has a virus infection, or "clean" if it doesn't.
- Derive decision tree for virus identification.

No.	Writable	Updated	Size	Class
1	Yes	No	Small	Infected
2	Yes	Yes	Large	Infected
3	No	Yes	Med	Infected
4	No	No	Med	Clean
5	Yes	No	Large	Clean
6	No	No	Large	Clean

Naïve Bayesian classification

Bayesian classification

- A statistical classifier performs probabilistic prediction, i.e., predicts class membership probabilities
- Foundation: Based on Bayes' Theorem

$$P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$$

Bayesian classification

Performance

 A simple Bayesian classifier (e.g., naïve Bayesian), has comparable performance with decision tree and selected neural networks.

Incremental

- Each training example can incrementally increase/decrease the probability that a hypothesis is correct
- That is, prior knowledge can be combined with observed data.

Standard

 Even when Bayesian methods are computationally intractable, they can provide a standard of optimal decision making against which other methods can be measured

The buying computer dataset

age	income	student	credit_rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	NO 61

Bayes' Theorem

- Total Probability Theorem: $P(B) = \sum_{i=1}^{M} P(B|A_i)P(A_i)$
- Let X be a data sample ("evidence") with unknown class label and H be a hypothesis that X belongs to class C
- Bayes' Theorem: $P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$
- Classification is to determine $P(H \mid X)$, the probability that the hypothesis H holds given the observed data sample X.

Bayes' Theorem

- **P**(**H**) (prior probability): the initial probability
 - E.g., X will buy computer, regardless of age, income, ...
- P(X): the probability that sample data is observed
 - E.g., X is 31..40 and has a medium income, regardless of the buying
- P(X | H) (likelihood): the probability of observing the sample
 X, given that the hypothesis holds
 - E.g., given that **X** will buy computer, the probability that **X** is 31..40 and has a medium income
- $P(H \mid X) = \frac{P(X \mid H)P(H)}{P(X)}$ (posterior probability)
 - E.g., given that X is 31..40 and has a medium income, the probability that X will buy computer

Bayes' Theorem

- Informally, $P(H \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid H)P(H)}{P(\mathbf{X})}$ can be viewed as posteriori = likelihood * prior / evidence
- X belongs to C_i iff the probability $P(C_i|X)$ is the highest among all the $P(C_k|X)$ for all the k classes

Practical difficulty

- Require initial knowledge of many probabilities
- Significant computational cost involved

Classification with Bayes' Theorem

- Let D be a training set of tuples and associated class labels
- Each tuple is represented by a *n*-attribute $\mathbf{X} = (x_1, x_2, ..., x_n)$
- Suppose there are m classes $C_1, C_2, ..., C_m$
- Classification is to derive the maximum posteriori $P(C_i|\mathbf{X})$ from Bayes' theorem

$$P(C_i \mid \mathbf{X}) = \frac{P(\mathbf{X} \mid C_i)P(C_i)}{P(\mathbf{X})}$$

• P(X) is constant for all classes, only $P(X | C_i)P(C_i)$ needs to be maximized.

Naïve Bayesian classification

- Class-conditional independence: There are no dependence relationships among the attributes
- The naïve Bayesian classification formula is written as

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^{n} P(x_k \mid C_i) = P(x_1 \mid C_i) \times P(x_2 \mid C_i) \times \dots \times P(x_n \mid C_i)$$

- A_k is categorical: $P(x_k \mid C_i)$ is the number of tuples in C_i having value x_k for A_k divided by $|C_{i,D}|$ (# of tuples of C_i in D)
- A_k is continuous: $P(x_k \mid C_i) = g(x_k, \mu_{C_i}, \sigma_{C_i})$ with the Gaussian distribution $g(x, \mu, \sigma) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- Count class distributions only → computation cost reduced

Naïve Bayesian classification: An example

P(buys_computer = "yes")	9/14
P(buys_computer = "no")	5/14

	buys_computer = "yes"	buys_computer = "no"
age = "<=30"	2/9	3/5
age = "31…40"	4/9	0/5
age = ">40"	3/9	2/5
income = "low"	3/9	1/5
income = "medium"	4/9	2/5
income = "high"	2/9	2/5
student = "yes"	6/9	1/5
student = "no"	3/9	4/5
credit_rating = "fair"	6/9	2/5
credit_rating = "excellent"	3/9	3/5

Naïve Bayesian classification: An example

age	income	student	credit_rating	buys_computer
<=30	medium	yes	fair	?

- $P(\mathbf{X}|C_i)$
 - $P(X \mid buys_computer = "yes") = 2/9 * 4/9 * 6/9 * 6/9 = 0.044$
 - $P(X \mid buys_computer = "no") = 3/5 * 2/5 * 1/5 * 2/5 = 0.019$
- $P(\mathbf{X}|C_i) * P(C_i)$
 - $P(X \mid buys_computer = "yes") * P(buys_computer = "yes") = 0.028$
 - $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.007$
- $P(C_i \mid \mathbf{X})$
 - $P(buys_computer = "yes" | \mathbf{X}) = 0.8$
 - $P(buys_computer = "no" | \mathbf{X}) = 0.2$

Therefore, X belongs to class ("buys_computer = yes")

Avoiding the zero-probability issue

 The naïve Bayesian prediction requires each conditional probability be non-zero.

$$P(\mathbf{X} \mid C_i) = \prod_{k=1}^n P(x_k \mid C_i)$$

- Otherwise, the predicted probability will be zero
- For example,

age	income	student	credit_rating	buys_computer
3140	medium	yes	fair	?

- $P(X \mid buys_computer = "no") = 0 * 2/5 * 1/5 * 2/5 = 0$
- Therefore, the conclusion is always **yes** regardless the value of $P(X \mid buys_computer = "yes")$

Avoiding the zero-probability issue

Laplacian correction (or Laplacian estimator)

$$P(C_i) = \frac{|C_i| + 1}{|D| + m}$$
 $P(x_k | C_i) = \frac{|x_k \cup C_i| + 1}{|C_i| + r}$

- where m is the number of classes, $|x_k \cup C_i|$ denotes the number of tuples contains both $A_k = x_k$ and C_i , and r is the number of values of attribute A_k
- The "corrected" probability estimates are close to their "uncorrected" counterparts

Naïve Bayesian classification: An example

P(buys_computer = "yes")	10/16
P(buys_computer = "no")	6/16

	buys_computer = "yes"	buys_computer = "no"
age = "<=30"	3/12	4/8
age = "31…40"	5/12	1/8
age = ">40"	4/12	3/8
income = "low"	4/12	2/8
income = "medium"	5/12	3/8
income = "high"	3/12	3/8
student = "yes"	7/11	2/7
student = "no"	4/11	5/7
credit_rating = "fair"	7/11	3/7
credit_rating = "excellent"	4/11	4/7

Naïve Bayesian classification: An example

age	income	student	credit_rating	buys_computer
3140	medium	yes	fair	?

- $P(\mathbf{X}|C_i)$
 - $P(X \mid buys_computer = "yes") = 5/12 * 5/12 * 7/11 * 7/11 = 0.070$
 - $P(X \mid buys_computer = "no") = 1/8 * 3/8 * 2/7 * 3/7 = 0.006$
- $P(\mathbf{X}|C_i) * P(C_i)$
 - $P(X \mid buys_computer = "yes") * P(buys_computer = "yes") = 0.044$
 - $P(X|buys_computer = "no") * P(buys_computer = "no") = 0.002$
- $P(C_i \mid \mathbf{X})$
 - $P(buys_computer = "yes" | \mathbf{X}) = 0.953$
 - $P(buys_computer = "no" | \mathbf{X}) = 0.047$

Therefore, X belongs to class ("buys_computer = yes")

Handling missing values

- If the values of some attributes are missing, these attributes are omitted from the product of probabilities
- As a result, the estimation is less accurate
- For example,

age	income	student	credit_rating	buys_computer
?	medium	yes	fair	?

Naïve Bayesian classification: Evaluation

Advantages

- Easy to implement
- Good results obtained in most of the cases
- Disadvantages
 - Class conditional independence → loss of accuracy
 - Practically, dependencies exist among variables, which cannot be modeled by Naïve Bayes
 - E.g., in medical records, patients' profile (age, family history, etc.), symptoms (fever, cough etc.), disease (lung cancer, diabetes, etc.)
- How to deal with these dependencies?
 - Bayesian Belief Networks

Quiz 02: Naïve Bayesian classification

- The data represent files on a computer system. Possible values of the class variable are "infected", which implies the file has a virus infection, or "clean" if it doesn't.
- Derive naïve Bayesian probabilities for virus identification in either cases, with or without Laplacian correction.

No.	Writable	Updated	Size	Class
1	Yes	No	Small	Infected
2	Yes	Yes	Large	Infected
3	No	Yes	Med	Infected
4	No	No	Med	Clean
5	Yes	No	Large	Clean
6	No	No	Large	Clean

THE END