Теорема

Если непрерывная функция, определенная на вещественном интервале принимает два значения, то она принимает и любое значение между ними.

Доказательство

Рассмотрим функцию g(x) = f(x) - C. Она непрерывна на отрезке [a,b] и g(a) < 0, g(b) > 0. Покажем, что существует такая точка $c \in [a,b]$, что g(c) = 0. Разделим отрезок [a,b] точкой x_0 на ва равных по длине отрезка, тогда либо $g(x_0) = 0$ и нужная точка $c = x_0$ найдена, либо $g(x_0) \neq 0$ и тогда на концах одного из полученных отрезков функция g(x) принимает значения разных знаков.

Обозначив полученный отрезок $[a_1,b_1]$, разделим его снова на два равных по длине отрезка и т.д. Тогда, либо через конечное число шагов придем к искомой точке c, либо получим последовательность вложенных отрезков $[a_n,b_n]$ по длине стремящихся к нулю и таких, что $g(a_n) < 0 < g(b_n)$. Пусть c — общая точка всех отрезков $[a_n,b_n]$, тогда $c = \lim a_n = \lim b_n$ и в силу непрерывности функции g(x): $g(c) = \lim g(a_n) = \lim g(b_n)$.

Поскольку $\lim g(a_n) \le 0 \le \lim g(b_n)$, получим, что g(c) = 0