

*Present Value is the financial equivalent to "a bird in the hand is worth two in the bush"

*The value of a pound in your pocket is worth more than a pound in a years time.

*You arrive at the present value of a pound by using a discount rate to discount it to the present day value

- *The higher the discount rate, the lower the Present Value
- *The Discount Rate is your desired Rate of Return or Hurdle Rate to judge whether or not to invest in the opportunity.

- *If you invest your £1 today, it can be earning a return for you
- *If you have to wait a year for that £1, then you miss the opportunity of earning that return

*We have discovered how to calulate a discount rate using the Capital Asset Pricing Model and the Weighted Average Cost of Capital

- *Present Value can be represented in a formula
- *FV = Future Value
- *r = Rate of Return
- *n= number of periods

$$*PV = FV/(1+r)^n$$

- *We can of course turn this around to calculate Future Value
- *FV = Future Value
- *I = Investment Amount
- *R = Interest Rate
- *t = Number of Years

$$*FV = Ix(1+Rt)$$

- *Present Value is important because it allows us to calculate values in DCF modelling that take into account the time value of money.
- *It enables a value to be arrived at by considering just the discount rate and the number of periods

- *The PV calculation is also very useful when evaluating investment opportunities
- *It enables direct comparison of different opportunities and enables us to set hurdle rates that we require the investment return to exceed.

- *You should be aware that discount rates can vary for different investments
- *In the real world investment returns may be eroded by inflation which reduces the value of money and this is very difficult to factor into the discount calculation.

