### Queries and tables and views, oh my

IMPROVING QUERY PERFORMANCE IN POSTGRESQL



Amy McCarty
Instructor



### Query

```
SELECT *
FROM ...
```

- Table
  - Base table
  - Temporary table
- View
  - View
  - Materialized view



### **Base table**

| Describe | organized storage                                                          |
|----------|----------------------------------------------------------------------------|
| Contains | data                                                                       |
| Loaded   | extract, transform, load (ETL) process                                     |
| Source   | human resources program, client management system, survey collection, etc. |



### Temporary table

| Describe | organized (row and column) storage |
|----------|------------------------------------|
| Contains | data                               |
| Loaded   | query (transient)                  |
| Source   | existing base tables               |

```
CREATE TEMP TABLE my_temptable AS
SELECT *
FROM survey_monkey_results
WHERE survey_date >= '2019-01-01';
SELECT * FROM my_temptable
```

### Standard view

| Describe | stored query                 |
|----------|------------------------------|
| Contains | directions / view definition |
| Loaded   | never                        |
| Source   | existing base tables         |

### View utility

- Combine commonly joined tables
- Computed columns
  - Summary metrics
- Show partial data in a table
  - Show employees but hide salaries



### **Materialized view**

| Describe | stored query         | view  |
|----------|----------------------|-------|
| Contains | data                 | table |
| Loaded   | refresh process      | table |
| Source   | existing base tables | view  |

### Materialized view utility

- Same as view
  - Faster

### Summary of FROM clause references

| What              | Why                                      |
|-------------------|------------------------------------------|
| Table             | base storage                             |
| Temp table        | speeds query using big table             |
| View              | complicated logic or calculated fields   |
| Materialized view | complicated logic that slows performance |



### Information schema

- Provides metadata about database
- Exists in many databases
  - Postgres, SQL Server, MySQL

```
SELECT table_type
FROM information_schema.tables
WHERE table_catalog = 'orders_schema'
AND table_name = 'customer_table'
```

- BASE TABLE: base table
- LOCAL TEMPORARY: temporary table
- VIEW: view or materialized view



### Let's practice!

IMPROVING QUERY PERFORMANCE IN POSTGRESQL



# Row-oriented storage and partitions

IMPROVING QUERY PERFORMANCE IN POSTGRESQL

SQL

Amy McCarty
Instructor



### Database storage types

### Row oriented storage

Relation between columns retained

### Column-oriented storage

Relation between rows retained

| id | name  | species | age | habitat   | receive |
|----|-------|---------|-----|-----------|---------|
| 01 | Bob   | panda   | 2   | Asia      | 2018    |
| 02 | Sunny | zebra   | 3   | Africa    | 2018    |
| 03 | Beco  | zebra   | 10  | Africa    | 2017    |
| 04 | Coco  | koala   | 5   | Australia | 2016    |

### **Row-oriented**

### **Row-oriented storage**

• Relation between columns retained

| id | name | species | age | habitat | received |
|----|------|---------|-----|---------|----------|
| 01 | Bob  | panda   | 2   | Asia    | 2018     |

### Column-oriented

### Column-oriented storage

Relation between rows retained

| id | name  |
|----|-------|
| 01 | Bob   |
| 02 | Sunny |
| 03 | Beco  |
| 04 | Coco  |

| id | species |
|----|---------|
| 01 | panda   |
| 02 | zebra   |
| 03 | zebra   |
| 04 | koala   |

### Row-oriented storage

- One row stored in same location
- Fast to append or delete whole records
- Quick to return all columns
  - Slow to return all rows



### Reducing the rows

#### Reduce the number of rows

- WHERE filter
- INNER JOIN
- DISTINCT
- LIMIT

### Row-oriented database methods

#### **Partitions**

• Method of splitting one (parent) table into many, smaller (children) tables

#### Indexes

• Method of creating sorted column keys to improve search

### Using partitions and indexes

- Require set up and maintenance
- Existence known from database administrator or documentation

### **Partition structure**

#### Parent table

| id | name  | species | age | habitat       | received |
|----|-------|---------|-----|---------------|----------|
| 01 | Bob   | Panda   | 2   | Asia          | 2018     |
| 02 | Sunny | Zebra   | 3   | Africa        | 2018     |
| 03 | Beco  | Zebra   | 10  | Africa        | 2017     |
| 04 | Coco  | Macaw   | 5   | South America | 2016     |

#### Children tables

| id | name | species | age | habitat | received |
|----|------|---------|-----|---------|----------|
| 01 | Bob  | Panda   | 2   | Asia    | 2018     |

| id | name  | species | age | habitat | received |
|----|-------|---------|-----|---------|----------|
| 02 | Sunny | Zebra   | 3   | Africa  | 2018     |
| 03 | Beco  | Zebra   | 10  | Africa  | 2017     |

| id | name | species | age | habitat          | received |
|----|------|---------|-----|------------------|----------|
| 04 | Coco | Macaw   | 5   | South<br>America | 2016     |

- Parent table
  - Visible in database front end
  - Write queries
- Children tables
  - Not visible in database front end
  - Queries search

### **Partition structure**

#### Parent table

| id | name  | species | age | habitat       | received |
|----|-------|---------|-----|---------------|----------|
| 01 | Bob   | Panda   | 2   | Asia          | 2018     |
| 02 | Sunny | Zebra   | 3   | Africa        | 2018     |
| 03 | Beco  | Zebra   | 10  | Africa        | 2017     |
| 04 | Coco  | Macaw   | 5   | South America | 2016     |

#### Children tables

| id | name | species | age | habitat | received |
|----|------|---------|-----|---------|----------|
| 01 | Bob  | Panda   | 2   | Asia    | 2018     |

| id | name  | species | age | habitat | received |
|----|-------|---------|-----|---------|----------|
| 02 | Sunny | Zebra   | 3   | Africa  | 2018     |
| 03 | Beco  | Zebra   | 10  | Africa  | 2017     |

| id | name | species | age | habitat          | received |
|----|------|---------|-----|------------------|----------|
| 04 | Coco | Macaw   | 5   | South<br>America | 2016     |

```
SELECT species
FROM zoo_animals
WHERE habitat = 'Africa'
```

### **Partition overview**

#### What

Splitting of one table into many smaller tables

### Why

- Storage flexibility
- Faster queries

#### Where

- Common filter columns
  - Date, location

### Partition query assessment

#### **Query planner**



```
EXPLAIN

SELECT species

FROM zoo_animals

WHERE habitat = 'Africa'
```

#### **Query Plan**

```
Seq Scan on zoo_animals (cost=0.00..
17.70 rows=2 width=182)
Filter: (state_code = 15)
```

Cost (time) estimates

### Let's practice!

IMPROVING QUERY PERFORMANCE IN POSTGRESQL



## Using and creating indexes

IMPROVING QUERY PERFORMANCE IN POSTGRESQL



Amy McCarty
Instructor



### Index overview

#### What

- Method of creating sorted column keys to improve search
- Similar to book index
- Reference to data location

### Why

• Faster queries

#### Where

- Common filter columns
- Primary key

### Index example

| ingredient   | recipe                |
|--------------|-----------------------|
| tomatoes     | spaghetti & meatballs |
| green onions | fried rice            |
| eggs         | fried rice            |
| ground beef  | spaghetti & meatballs |
| pasta        | spaghetti & meatballs |
| rice         | fried rice            |
| soy sauce    | fried rice            |

```
SELECT *
FROM cookbook
WHERE recipe = 'fried rice'
```

### Index as a key and pointer

#### Index

| recipe                | pointer |
|-----------------------|---------|
| spaghetti & meatballs | _12     |
| spaghetti & meatballs | _15     |
| spaghetti & meatballs | _16     |
| fried rice            | _13     |
| fried rice            | _14     |
| fried rice            | _17     |
| fried rice            | _18     |

#### Table with index

| pointer | ingredient   | recipe                |
|---------|--------------|-----------------------|
| _12     | tomatoes     | spaghetti & meatballs |
| _13     | green onions | fried rice            |
| _14     | eggs         | fried rice            |
| _15     | ground beef  | spaghetti & meatballs |
| _16     | pasta        | spaghetti & meatballs |
| _17     | rice         | fried rice            |
| _18     | soy sauce    | fried rice            |

### Finding existing indexes

#### **PG\_TABLES**

- Similar to information\_schema
  - specific to Postgres
- Metadata about database



### Finding existing indexes

#### **PG\_TABLES**

- Similar to information\_schema
  - specific to Postgres
- Metadata about database

SELECT \* FROM pg\_indexes

| schemaname | tablename | indexname    | tablespace | indexdef                  |
|------------|-----------|--------------|------------|---------------------------|
| food       | dinner    | recipe_index | null       | CREATE INDEX recipe_index |

### Creating an index

| ingredient   | recipe                | serving_size |
|--------------|-----------------------|--------------|
| tomatoes     | spaghetti & meatballs | 4            |
| green onions | fried rice            | 2            |
| eggs         | fried rice            | 2            |
| ground beef  | spaghetti & meatballs | 4            |
| pasta        | spaghetti & meatballs | 4            |
| rice         | fried rice            | 2            |
| soy sauce    | fried rice            | 2            |

```
CREATE INDEX recipe_index
ON cookbook (recipe);
```

```
CREATE INDEX CONCURRENTLY recipe_index
ON cookbook (recipe, serving_size);
```

### To use or not to use

#### Use an index

- Large tables
- Common filter conditions
- Primary key

#### Avoid an index

- Small tables
- Columns with many nulls
- Frequently updated tables
  - Index will become fragmented
  - Writes data in two places

### Frequently updated tables

#### Index

### pointer recipe spaghetti & meatballs \_12 spaghetti & meatballs \_15 spaghetti & meatballs \_16 \_13 fried rice fried rice \_14 fried rice \_17 fried rice \_18 spaghetti & meatballs \_19

#### Table with index

|   | pointer | ingredient   | recipe                |
|---|---------|--------------|-----------------------|
| _ | _12     | tomatoes     | spaghetti & meatballs |
|   | _13     | green onions | fried rice            |
|   | _14     | eggs         | fried rice            |
|   | _15     | ground beef  | spaghetti & meatballs |
|   | _16     | pasta        | spaghetti & meatballs |
|   | _17     | rice         | fried rice            |
|   | _18     | soy sauce    | fried rice            |
| _ | _19     | basil        | spaghetti & meatballs |

### Index query assessment

### **Query planner**



EXPLAIN

**SELECT** \*

FROM cookbook

### **Query Plan**

```
Seq scan on cookbook (cost=0.00...22.70 rows = 1270 width = 36)
```

• Cost (time) estimates

### Let's practice!

IMPROVING QUERY PERFORMANCE IN POSTGRESQL



### Using columnoriented storage

IMPROVING QUERY PERFORMANCE IN POSTGRESQL



Amy McCarty
Instructor



### Column-oriented

### Column-oriented storage

Relation between rows retained

| id | name  | species | age | habitat   | receive |
|----|-------|---------|-----|-----------|---------|
| 01 | Bob   | panda   | 2   | Asia      | 2018    |
| 02 | Sunny | zebra   | 3   | Africa    | 2018    |
| 03 | Beco  | zebra   | 10  | Africa    | 2017    |
| 04 | Coco  | koala   | 5   | Australia | 2016    |

#### Stored as

| id | name  |
|----|-------|
| 01 | Bob   |
| 02 | Sunny |
| 03 | Beco  |
| 04 | Coco  |

| id | species |
|----|---------|
| 01 | panda   |
| 02 | zebra   |
| 03 | zebra   |
| 04 | koala   |

| id | age |
|----|-----|
| 01 | 2   |
| 02 | 3   |
| 03 | 10  |
| 04 | 5   |

### Analytics focus - a good fit

### Column-oriented storage properties

- One column stored in same location
- Quick to return all rows
- Fast to perform column calculations

### **Analytics focus**

- Counts, averages, calculations
- Reporting
- Column aggregations

#### Stored as

| id | name  |
|----|-------|
| 01 | Bob   |
| 02 | Sunny |
| 03 | Beco  |
| 04 | Coco  |

| id | species |
|----|---------|
| 01 | panda   |
| 02 | zebra   |
| 03 | zebra   |
| 04 | koala   |

| id | age |
|----|-----|
| 01 | 2   |
| 02 | 3   |
| 03 | 10  |
| 04 | 5   |

### Transactional focus - a poor fit

### Row relationships retained

- Slow to return all columns
- Slow to load data

#### **Transactional focus**

Fast insert and delete of records

#### Stored as

| id | name  |
|----|-------|
| 01 | Bob   |
| 02 | Sunny |
| 03 | Beco  |
| 04 | Coco  |

| id | species |
|----|---------|
| 01 | panda   |
| 02 | zebra   |
| 03 | zebra   |
| 04 | koala   |

| id | age |
|----|-----|
| 01 | 2   |
| 02 | 3   |
| 03 | 10  |
| 04 | 5   |

### Database examples

| Postgres | Citus Data, Greenplum, Amazon Redshift |
|----------|----------------------------------------|
| MySQL    | MariaDB                                |
| Oracle   | Oracle In-Memory Cloud Store           |
|          | Clickhouse, Apache Druid, CrateDB      |

### Information schema

### Reducing the columns

Use SELECT \* sparingly

```
SELECT column_name, data_type
FROM information_schema.columns
WHERE table_catalog = 'schama_name'
AND table_name = 'zoo_animals'
```

| column_name | data_type |
|-------------|-----------|
| id          | integer   |
| name        | text      |
| species     | text      |

### Information schema

### Reducing the columns

- Use SELECT \* sparingly
- Use the information schema

```
SELECT column_name, data_type
FROM information_schema.columns
WHERE table_catalog = 'schama_name'
AND table_name = 'zoo_animals'
```

| column_name | data_type |
|-------------|-----------|
| id          | integer   |
| name        | text      |
| species     | text      |

### Writing your queries

Examine each column in own query

| id | name  | species | age | habitat   | receive |
|----|-------|---------|-----|-----------|---------|
| 01 | Bob   | panda   | 2   | Asia      | 2018    |
| 02 | Sunny | zebra   | 3   | Africa    | 2018    |
| 03 | Beco  | zebra   | 10  | Africa    | 2017    |
| 04 | Coco  | koala   | 5   | Australia | 2016    |

```
-- Structure for column oriented

SELECT MIN(age), MAX(age)

FROM zoo_animals

WHERE species = 'zebra'
```

```
-- Structure for row-oriented

SELECT *

FROM zoo_animals

WHERE species = 'zebra'

ORDER BY age
```

### Let's practice!

IMPROVING QUERY PERFORMANCE IN POSTGRESQL

