Formulario Di Segnali

- 1. Sistemi lineari tempo invarianti
- 1. 1. Proprietà delle funzioni delta
 - (a) Proprietà dell' area

$$\sum_{k=-\infty}^{\infty} \delta_{n-k} = 1$$

$$\int_{-\infty}^{\infty} \delta(t)dt = 1$$
(1)

(b) Proprietà della singola componente

$$x_n \delta_{n-k} = x_k \delta_{n-k}$$

$$x(t)\delta(t-\tau) = x(\tau)\delta(t-\tau) \tag{2}$$

2. Scomposizione di un segnale mediante funzione delta Nel caso di segnali discreti, si può far uso della delta di Kronecker

$$x_n = \sum_{k=-\infty}^{\infty} x_k \delta_{n-k} \tag{3}$$

Per i segnali tempo continui si fa uso della delta di Dirac

$$x(t) = \int_{-\infty}^{\infty} x(\tau)\delta(t-\tau)d\tau \tag{4}$$

3. $Sistemi\ lineari$ Sia L un' applicazione lineare sullo spazio delle funzioni, allora

$$L(x_1(t) + \alpha x_2(t)) = L(x_1(t)) + \alpha L(x_2(t))$$
(5)

4. $Sistemi \ tempo \ invarianti$ Un sistema tempo invariante è un sistema che lascia passare i ritardi

$$x(t-\tau) \to L \to y(t-\tau) \quad \forall \tau \in \mathbb{R}$$
 (6)

5. Risposta di un sistema LTI ad un ingresso x(t)Sia h(t) la risposta del sistema all' impulso $\delta(t)$, allora

$$y(t) = x(t) * y(t) = \int_{-\infty}^{\infty} x(t)h(t-\tau)d\tau$$
 (7)

6. Proprietà della convoluzione

(a) Proprietà associativa

Permette le aggregazioni o le disgregazioni di blocchi in serie tra di loro

$$x(t) * [h(t) * g(t)] = [x(t) * h(t)] * g(t)$$
(8)

(b) Proprietà distributiva

Permette le aggregazioni o le disgregazioni di blocchi in parallelo tra di loro

$$x(t) * [h(t) + g(t)] = x(t) * h(t) + x(t) * g(t)$$
(9)

(c) Proprietà commutativa

Permette di concludere che il ruolo di segnale in ingresso e risposta all' impulso di un sistema LTI sono interscambiabili

$$x(t) * h(t) = h(t) * x(t)$$
 (10)

Come conseguenza vi è la **proprietà del ritardo** che vale solo per sistemi LTI, cioè se y(t) = x(t) * h(t), allora vale che

$$x(t - t_x) * h(t - t_h) = y(t - t_x - t_h)$$
(11)

TIPO DI ESERCIZIO: CONVOLUZIONE DI RETTANGOLI

Calcolare

$$y(t) = \left[rect\left(\frac{t + \frac{T}{2}}{T}\right) - rect\left(\frac{t - \frac{T}{2}}{T}\right)\right] * 2rect\left(\frac{t - \frac{3T}{2}}{3T}\right)$$

Per procedere conviene sempre scrivere i rettangoli come generiche funzioni. Ad esempio assegniamo

$$f(t) = rect\left(\frac{t}{T}\right) \Rightarrow f\left(t + \frac{T}{2}\right) = rect\left(\frac{t + \frac{T}{2}}{T}\right) \qquad f\left(t - \frac{T}{2}\right) = rect\left(\frac{t - \frac{T}{2}}{T}\right)$$

$$g(t) = rect\left(\frac{t}{3T}\right) \Rightarrow g\left(t - \frac{3T}{2}\right) = rect\left(\frac{t - \frac{3T}{2}}{3T}\right)$$

Pertanto il nostro problema iniziale può essere scritto come

$$y(t) = \left[f\left(t + \frac{T}{2}\right) - f\left(t - \frac{T}{2}\right) \right] * 2g\left(t - \frac{3T}{2}\right)$$

Facendo uso della proprietà distributiva, posso moltiplicare la g all' interno della parentesi

$$y(t) = 2\left[f\left(t + \frac{T}{2}\right) * g\left(t - \frac{3T}{2}\right) - f\left(t - \frac{T}{2}\right) * g\left(t - \frac{3T}{2}\right)\right]$$

Il $passaggio\ chiave$, arrivati a questo punto, è definire una funzione

$$z(t) = f(t) * q(t)$$

in modo da poter utilizzare la proprietà del ritardo e poter riscrivere

$$y(t) = 2 [z(t - T) - z(t - 2T)]$$

Plottiamo la z(t) e i suoi ritardi e l'esercizio è finito. Il grosso dell' esercizio era nel ricondursi ad una forma più semplice usando $la\ proprietà\ del\ ritardo.$

Può essere utile ricordare il seguente disegno che rappresenta la convoluzione tra due segnali rettangolari

2. Trasformata di Fourier

1. Risposta in frequenza

Sia h(t) la risposta all' impulso di un sistema LTI, allora la sua risposta in frequenza sarà

$$H(f) = \int_{-\infty}^{\infty} h(t)e^{-j2\pi ft}dt \tag{12}$$

2. Risposta di una sinusoide in ingresso

Consideriamo

$$Asin(2\pi f_0 t) = \Im \left[A e^{-j2\pi f_0 t} \right]$$

allora l'uscita y(t) del sistema sarà data da

$$y(t) = \Im \left[Ae^{-j2\pi f_0 t} \int_{-\infty}^{\infty} h(t)e^{-j2\pi f t} dt \right] = A|H(f)|\sin(2\pi f_0 t + \angle H(f))$$
 (13)

3. Trasformate di Fourier utili

$$\delta(t) \xrightarrow{\mathscr{F}} 1$$

$$1 \xrightarrow{\mathscr{F}} \delta(f)$$

$$rect\left(\frac{t}{T}\right) \xrightarrow{\mathscr{F}} Tsinc(Tf)$$

$$Ae^{-j2\pi f_0 t} \xrightarrow{\mathscr{F}} A\delta(f - f_0)$$

$$Asin(2\pi f_0 t) \xrightarrow{\mathscr{F}} \frac{Aj}{2}\delta(f + f_0) - \frac{Aj}{2}\delta(f - f_0)$$

$$Acos(2\pi f_0 t) \xrightarrow{\mathscr{F}} \frac{A}{2}\delta(f + f_0) + \frac{A}{2}\delta(f - f_0)$$

4. Il seno cardinale

Il seno cardinale è così definito

$$sinc(x) = \frac{sin(\pi x)}{\pi x} \tag{14}$$

l' area di un seno cardinale vale

$$\int_{-\infty}^{\infty} T sinc(Tf) df = T \tag{15}$$

In oltre, il seno cardinale converge ad una delta di Dirac per $T\to\infty$

Formulario Probabilità e Statistica

1. Definizioni basilari

1. Probabilità del' unione

la si usa nei casi in cui esca scritto "almeno", in quel caso di fa riferimento ad una unione di insieme

$$P(A \cup B) = P(A) + P(B) - P(A, B) \Leftrightarrow A \cap B \neq \emptyset$$
 (16)

2. Probabilità condizionata

$$P(A|B) = \frac{P(A,B)}{P(B)} \tag{17}$$

3. probabilità congiunta

La si usa nei casi in cui gli eventi accadono simultaneamente oppure siano in qualche modo dipendenti

 $4.\ Eventi\ indipendenti$

Un evento è indipendente se

$$P(A|B) = P(A) \quad \Leftrightarrow \quad P(A,B) = P(A)P(B) \tag{18}$$

5. Teorema di Bayes

$$P(B|A) = \frac{P(B)P(A|B)}{P(A)} \tag{19}$$

6. Probabilità totale

Siano dati A e B in modo tale che

$$B = \bigcup_k B_k \qquad \bigcap_k (A \cap B_k) = \emptyset$$

allora vale il seguente risultato

$$P(A \cap B) = \sum_{k} P(A \cap B_k) = \sum_{k} P(A|B_k)P(B_k)$$
(20)

2. variabili casuali discrete e continue

2.1 Variabili casuali discrete

Nel caso discreto si assegna ad una funzione $P_X(x_i)$ il valore di probabilità di ogni evento semplice x_i

1. Proprietà fondamentale

$$\sum_{k=-\infty}^{\infty} P_X(x_k) = 1 \tag{21}$$

2. funzione di ripartizione

Nel caso discreto indica la probabilità che valori minori rispetto ad un evento a possano essere risultato dell' esperimento

$$F_X(a) = P_X(X < a) = \sum_{k = -\infty}^{a} P_X(x_k)$$
 (22)

La funzione di ripartizione è monotona crescente ed è tale per cui $F_X(-\infty)=0$ e $F_X(\infty)=1$

3. Probabilità multidimensionale (caso 2D)

Se un esperimento dipende da più variabili casuali discrete x_i e y_j allora è possibile estendere a questo caso le due precedenti proprietà

(a)
$$\sum_{i=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} P_{XY}(x_i, y_i) = 1$$

(b) Probabilità marginale

Indica la probabilità che si verifichi un evento se si fissa una delle variabili casuali discrete

$$P_{XY}(x_i) = \sum_{j=-\infty}^{\infty} P_{XY}(x_i, y_j)$$
(24)

(23)

(c) Probabilità condizionata

Applicando la definizione di probabilità condizionata

$$P(x_i|y_j) = \frac{P_{XY}(x_i, y_i)}{P_{XY}(y_j)} = \frac{P_{XY}(x_i, y_i)}{\sum_i P_{XY}(x_i, y_j)}$$
(25)

2.2 Variabili casuali continue

1. Densità di probabilità

Nel caso di variabili casuali discrete non si può assegnare un valore di probabilità ad un punto. Si sceglie di assegnare una densità di probabilità

$$f_X(x) = \frac{P(x < X \le x + dx)}{dx}$$

$$0 \le f_X(x) \le 1$$
(26)

2. Probabilità

$$P(a \le X \le B) = \int_{a}^{b} f_X(x)dx \tag{27}$$

Vale la solita proprietà

$$\int_{-\infty}^{\infty} f_X(x) dx = 1$$

3. Funzione di ripartizione

$$F_X(x) = P_X(X < x) = \int_{-\infty}^x f_X(\tilde{x}) d\tilde{x}$$
 (28)

La funzione di ripartizione è una funzione integrale pertanto

$$f_X(x) = \frac{dF_X(x)}{dx} \tag{29}$$

Poiché la funzione di ripartizione è una primitiva di $f_X(x)$ vale anche

$$P_X(a < X < b) = \int_a^b f_X(x) dx = F_X(b) - F_X(a)$$
(30)

(a) Percentile

Il percentile indica gli eventi che hanno al più un dato valore di probabilità. Ad esempio, il 10° percentile di un dato esperimento lo si può calcolare usando

$$F_X(x) = \frac{10}{100} \tag{31}$$

(b) **Mediana**

La mediana è il 50° percentile e divide la densità di probabilità in due zone ad area pari a 0.5. L'evento $x \in X$ che rappresenta la mediana lo si calcola come

$$F_X(x) = \frac{1}{2} \tag{32}$$

4. Generalizzazione in più variabili Se si hanno più variabili casuali che concorrono nello stesso esperimento allora

$$f(x_1...x_n) = \frac{P(x_1 < X_1 \le x_1 + dx_1, ..., x_n < X_n \le x_n + dx_n)}{dx_1...dx_n}$$
(33)

nelle due variabili invece

$$f_{XY}(x,y) = \frac{P(x < X \le x + dx, y < Y \le y + dy)}{dxdy}$$
(34)

Assegnato il dovuto dominio di integrazione, la probabilità sarà

$$P = \iint_{\Omega} f_{XY}(x, y) dx dy \tag{35}$$

è possibile definire la probabilità marginale

$$P(x_i) = \int_{-\infty}^{\infty} f(x_i, y) dy \quad x_i \in \mathbb{R}$$
 (36)

La densità di probabilità condizionata sarà invece

$$f(x|y) = \frac{f(x,y)}{f(y)} = \frac{P(x < X \le x + dx, y < Y \le y + dy)}{dxdy \frac{P(y < Y \le y + dy)}{dy}}$$
(37)

Si osservi che tecnicamente i dy si semplificano. Una **tipologia di esercizi** (Bellini - 1.14) usano questo risultato.

"Sia $f(x) = 1 - \frac{x}{2}$, calcolare f(x|X>1)". Usando la formula precedente si ha

$$f(x|X > 1) = \frac{P(x < X \le x + dx, X > 1)}{dxP(X > 1)}$$

Sappiamo calcolarci P(X > 1)

$$P(X > 1) = \int_{-\infty}^{\infty} 1 - \frac{x}{2} dx = \frac{1}{4}$$

Dunque

$$f(x|X > 1) = \frac{P(x < X \le x + dx, X > 1)}{dx \cdot \frac{1}{4}} = 4f(x) \qquad se \quad 1 < x < 2$$

 $5. \ \ Condizione \ di \ indipendenza \ statistica$

La condizione di indipendenza statistica di due variabili casuali X, Y risulta essere data da

$$f_{X,Y}(x,y) = f_X(x)f_Y(y) \tag{38}$$

Il grafico di questa funzione in 2 variabili conserva la shape della $f_Y(y)$ scorrendo le x, mentre conserva la shape della $f_X(x)$ scorrendo le y

2.3 Trasformazioni di variabili casuali

- 1. Caso discreto ed eventi X e Y indipendenti Sia Z = g(X, Y) una trasformazione di variabili casuali discrete. Si procede in questo modo
 - (a) Si definisce la

$$Z = g(X, Y)$$

(b) Si costruisce lo spazio degli eventi congiunti (x_i, y_i) .

La probabilità totale dell' evento Z sarà data da

$$P(Z) = \sum_{i} \sum_{k} P(x_i, y_i) \delta(g(x_i, y_i) - z)$$
(39)

2. Caso continuo per $g: \mathbb{R} \to \mathbb{R}$ monotona

Supponiamo Y=g(X),con $g:\mathbb{R}\to\mathbb{R}$ monotona crescente o decrescente. Se è nota a priori la ddp dell' evento X, allora è possibile ricavare anche la stessa (e anche la ripartizione ddp scritta con l'evento Y.

Detta

$$X = g_I(Y)$$

la funzione inversa di g, allora:

(a) nel caso si vogliano trovare le funzioni di ripartizione, se g(X) è monotona crescente si ha

$$F_Y(y) = F_X(g_I(y)) \tag{40}$$

Se invece la funzione g è monotona decrescente

$$F_Y(y) = 1 - F_X(g_I(y))$$
 (41)

(b) se invece si vuole la ddp riscritta con l'evento y la formula generale è la seguente

$$f_Y(y) = \frac{f_X(g_I(y))}{|g'(g_I(y))|} \tag{42}$$

quindi assicurarsi sempre di avere

- i. la f_X (solitamente è un dato) e la Y = g(X)
- ii. la derivata di g, cioè g'(x)
- iii. la funzione inversa $g_I(y)$ che poi dovrà essere sostituita.
- (c) Esiste una formula più comoda data da Manzoni

$$F_Y(y) = P(Y \le y) = P(g(x) \le y) = P(x \le g_I(y)) = F_X(g_I(y)) \tag{43}$$

Derivando si ottiene

$$f_Y(y) = \frac{\partial F_Y}{\partial y} = f_X(g_I(y)) \left| \frac{\partial}{\partial y} g_I(y) \right|$$
 (44)

3. Caso continuo per $g: \mathbb{R} \to \mathbb{R}$ generica Se una funzione g non è biunivoca, ma è localmente invertibile, per calcolare la $f_Y(y)$ è necessario dividere il problema e sommare tutti i risultati che si ottengono. In generale, detto l'i-esimo intervallo di locale monotonia, si ha

$$f_Y(y) = \sum_i \frac{f_X(g_I(y))}{|g'(g_I(y))|} \tag{45}$$

4. $Caso\ g: \mathbb{R}^n \to \mathbb{R}\ solo\ somme\ di\ v.c.$ Sia $Z=f(X_1,...,X_n),$ allora

$$f_Z(z) = x_1(z) * x_2(z) * \dots * x_n(z)$$
 (46)

Distribuzioni

$1.\ Distribuzione\ esponenziale$

La distribuzione esponenziale è una distribuzione del tipo

$$f_T(t) = \frac{1}{\tau} e^{-\frac{t}{\tau}} \tag{47}$$

2. Distribuzione gaussiana

Assegnati i valori μ e σ detti rispettivamente media e varianza, la gaussiana è assegnata da

$$N(\mu, \sigma^2) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (48)

La gaussiana ha anche definita la funzione Q

$$Q(x_0) = 1 - F(x_0) = \int_{x_0}^{\infty} N(\mu, \sigma^2) dx$$

In oltre vanno considerati gli **intervalli di confidenza** che sono intervalli simmetrici centrati nell' asse di simmetria della gaussiana $(x = \mu)$. Scostamenti di $\pm \sigma$ coprono il 70% di probabilità degli eventi, mentre $\pm 2\sigma$ copre il 95% e $\pm 3\sigma$ copre il 99,7%.

$3. \ \textit{Funzione binomiale}$

La funzione binomiale si chiede: Date N prove ripetute (lanci di dadi o monete, tentativi...) e data la probabilità p che un evento possa accadere ad ogni singola prova, qual è la probabilità che esso si verifichi k volte?

$$P_N(k) = \binom{N}{k} p^k (1-p)^{N-K}$$
(49)

Per $N \to \infty$ la distribuzione binomiale (che è discreta) tende ad una gaussiana che possiede

$$\mu = pN$$
$$\sigma = \sqrt{Np(1-p)}$$

plot della binomiale con N=50 e $p=\frac{1}{6}$

Normalizzare la gaussiana per N fornisce la **frequenza relativa**, cioè una distribuzione che segna gli intervalli di confidenza con cui si percepisce p.

$$\eta = \frac{K}{N} \tag{50}$$

Anche la frequenza relativa tende ad una distribuzione gaussiana con

$$\mu = p$$

$$\sigma = \frac{\sqrt{p(1-p)}}{\sqrt{N}}$$

Per ultimo definiamo *incertezza relativa* come la quantità che mi rivela di quanto sbaglio la misura di probabilità per ogni singolo evento.

$$\varepsilon = -\frac{\sigma}{p} \tag{51}$$

per piccole probabilità l'espressione diventa

$$\varepsilon = \frac{1}{\sqrt{Np}}$$