Statistical Inference I

Prof. Chin-Tsang Chiang

Scribe: Chi-Ning Chou

Lecture Notes 11

October 19, 2015

Lemma 1 (inversion theorem) Let X be a random variable with characteristic function $\phi_X(t)$ and $a, b \in \mathbb{R}$ with a < b, then

1. For any random variable X,

$$P(a < X < b) + \frac{1}{2}P(X = a) + \frac{1}{2}P(X = b) = \lim_{T \to \infty} \frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt$$

2. If X is a continuous random variable, then

$$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-itx} \phi_X(t) dt$$
 a.e.

Intuition (inversion theorem)

Inversion theorem provides a *isomorphism* between **distribution** and **characteristic function**.

Proof: The proof is divided into three steps. The first step introduce a integration tool for latter usage. The second step provides a clean form of the original term. The last step uses dominant theorem to show the convergence.

1. **claim**: $\int_0^\infty \frac{\sin \alpha x}{x} dx = \frac{\pi}{2} \text{sign}(\alpha)$

$$\int_0^\infty \frac{\sin \alpha x}{x} dx = \int_0^\infty \int_0^\infty \sin \alpha x \ e^{-ux} du dx$$
 (by Fubini's thm)
$$= \int_0^\infty \int_0^\infty \sin \alpha x \ e^{-ux} dx du$$

$$= \dots \text{ some change of integrals } \dots$$

$$= \frac{\pi}{2} \text{sign}(\alpha)$$

2. Consider

$$\frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_X(t) dt = \frac{1}{2\pi} \int_{-T}^{T} \int_{-\infty}^{\infty} \frac{e^{-ita} - e^{-itb}}{it} e^{itx} dF_X(x) dt$$

$$= \frac{1}{2\pi} \int_{-T}^{T} \int_{-\infty}^{\infty} \frac{\cos t(x-a) + i \sin t(x-a)}{it} e^{itx} dF_X(x) dt$$

$$- \frac{1}{2\pi} \int_{-T}^{T} \int_{-\infty}^{\infty} \frac{\cos t(x-b) + i \sin t(x-b)}{it} e^{itx} dF_X(x) dt$$

$$(\because \text{symmetry}) = \frac{1}{\pi} \int_{-\infty}^{T} \int_{-\infty}^{\infty} \frac{\sin t(x-a) - \sin t(x-b)}{t} dF_X(x) dt$$

$$(\text{by Fubini's thm}) = \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_X(x)$$

3. By dominant convergence theorem,

$$\frac{1}{2\pi} \int_{-T}^{T} \frac{e^{-ita} - e^{-itb}}{it} \phi_{X}(t) dt \xrightarrow{T \to \infty} \frac{1}{\pi} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$

$$= \frac{1}{\pi} \int_{x \in (-\infty,a)} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$

$$+ \frac{1}{\pi} \int_{x=a} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$

$$+ \frac{1}{\pi} \int_{x \in (a,b)} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$

$$+ \frac{1}{\pi} \int_{x=b} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$

$$+ \frac{1}{\pi} \int_{x \in (b,\infty)} \int_{0}^{T} \frac{\sin t(x-a) - \sin t(x-b)}{t} dt dF_{X}(x)$$
(by the tool in 1.)
$$= 0 + \frac{1}{2} P(X = a) + P(a < X < b) + \frac{1}{2} P(X = b) + 0$$

Theorem 2 Let $\{X_n\}$ be a sequence of random variables with characteristic functions $\phi_{X_n}(t)$. Suppose that

- $\lim_{n\to\infty} \phi_{X_n}(t) = \phi_X(t)$ for t in a neighborhood of 0.
- $\phi_X(t)$ is a characteristic function of some random variable X.

Then,

$$\lim_{n\to\infty} F_{X_n}(x) = F_X(x), \ \forall x \ such \ that \ F_X(x) \ is \ continuous$$

Remark: We don't have to worry about the discrete points since they must converge to the right value.

Intuition (convergence of characteristic function)

Theorem 2 tells us that if r.v.s converge in characteristic functions, then r.v.s also converge in distribution.

Remark: Tips for calculating MGF: consider the MGF of binomial distributed random variable X such that $f_X(x) = \binom{n}{x} p^x (1-p)^{n-x} \mathbf{1}_{0,1,\dots,n}$. We have

$$M_{X_n}(t) = \sum_{x=0}^n \binom{n}{x} p^x (1-p)^{n-x} e^{tx}$$

$$= \sum_{x=0}^n \binom{n}{x} (pe^t)^x (1-p)^{n-x}$$

$$= \sum_{x=0}^n \binom{n}{x} \frac{(pe^t)^x (1-p)^{n-x}}{[(pe^t) + (1-p)]^n} [(pe^t) + (1-p)]^n$$

$$(\text{set } p' = \frac{pe^t}{pe^t + (1-p)}) = \sum_{x=0}^n \binom{n}{x} p'^x (1-p')^{n-x} [(pe^t) + (1-p)]^n$$

$$= [(pe^t) + (1-p)]^n \sum_{x=0}^n \binom{n}{x} p'^x (1-p')^{n-x}$$

$$= [(pe^t) + (1-p)]^n$$