

Lecture 14A
Compressed Sensing

Lab + Frequency challenge

• Lab 4

- Make sure you get good signal -- like the one I recorded
- Think of detecting bursts -- a robust method will lead to good results in the last part

Frequency challenge

- Beacon in 5th floor, around 144.280MHz using 1ppb accurate GPSDO. Accurate up to 1/100 Hz.
- Transmits my callsign in morse code 5 times then 2 minutes break.
- Submit frequency on bcourses by Thursday 04/07
- You can only use the rtl-sdr to participate -- no cheating!
- Closest submission will win a radio!

Radios

 https://inst.eecs.berkeley.edu/~ee123/ sp16/radio.html

 Jon Tamir will take over my office hours today starting 4:15-5:15

Compressive Sampling

Anything

Q: What is the rate you need to sample at?

A: At least Nyquist!

Compressive Sampling

Something

Q: What is the rate you need to sample at?

A: Maybe less than Nyquist....

Image Compression

Images are compressible
Standard approach: First collect, then compress

Image Compression

Medical images are compressible Standard approach: First collect, then compress

Compressed Sensing

Medical images are compressible
Standard approach: First collect, then compress

Compressed Sensing

Medical images are compressible Standard approach: First collect, then compress

Example I: Audio

Raw audio: 44.1Khz, 16bit, stereo = 1378 Kbit/sec

MP3: 44.1Khz, 16bit, stereo = 128 Kbit/sec

10.76 fold!

Example II: Images

Raw image (RGB): 24 bit/pixel

JPEG: 1280x960, normal = 1.09 bit/pixel

22 fold!

Example III: Videos

Raw Video: (480x360)p x 24b/p x 24fps + 44.1Khz x 16b x 2 = 98,578 Kb/s

MPEG4: 1300 Kb/s

75 fold!

Compression

Almost all compression algorithm use transform coding

mp3: DCT

JPEG: DCT

JPEG2000: Wavelet

MPEG: DCT & time-difference

Sparse Transform

Sparse Transform

sorted coefficients

Sparse Transform

What sparsifying transform would you use here?

200

250

100

S p a r s i t y & Compressibility

Sparsity and Noise

Sparsity and Noise

Transform Sparsity

not sparse

Transform Sparsity and Denoising

DL Donoho, I Johnstone Biometrika 1994;81(3):425-55

Transform Sparsity and Denoising

DL Donoho, I Johnstone Biometrika 1994;81(3):425-55

Transform Sparsity and Denoising

DL Donoho, I Johnstone Biometrika 1994;81(3):425-55

More Sparse Transforms

Sparsity and Compression

Only need to store non-zeros

From Samples to Measurements

- Shanon-Nyquist sampling
 - -Worst case for ANY bandlimited data

- Compressive sampling (CS)
 - "Sparse signals statistics can be recovered from a small number of non-adaptive linear measurements"
 - -Integrated sensing, compression and processing.
 - Based on concepts of incoherency between signal and measurements

Desktop scanner/ digital camera sensing

- x∈\mathbb{M}N is a signal
 - Make N linear measurements

MRI Fourier Imaging

- x∈\mathbb{R}^N is a signal
 - Make N linear measurements

Arbitrary sensing

- x∈\mathbb{R}^N is a signal
 - Make N linear measurements

- x∈\mathbb{N} is a K-sparse signal (K<<N)
 - Make M (K<M<<N) incoherent linear projections

• Given $y = \Phi x$ find x

- Under-determined
- But there's hope, x is sparse!

• Given $y = \Phi x$ find x

Under-determined

But there's hope, x is sparse!

• Given $y = \Phi x$ find x

- Under-determined
- But there's hope, x is sparse!

minimize $||x||_2$

s.t.
$$y = \Phi x$$

WRONG!

• Given $y = \Phi x$ find x

- **Under-determined**
- But there's hope, x is sparse!

minimize $||x||_0$

s.t.
$$y = \Phi x$$

HARD!

• Given $y = \Phi x$ find x

- **Under-determined**
- But there's hope, x is sparse!

s.t.
$$y = \Phi x$$

need M ≈ K log(N) <<N
Solved by linear-programming

Geometric Interpretation

