CS1231-Midterm 1, 2017

Name:

Matric Number:

Tutorial Group:

Seat Number:

1.

Yes.

p q r	$\mid \neg (p \lor q \lor \neg r)$	$r \rightarrow p$	$r \rightarrow q$	$ \mid \neg (p \lor q \lor \neg r) \land ((r \to p) \lor (r \to q)) $
T T T	F	T	T	F
T T F	F	T	T	F
T F T	F	T	F	F
T F F	F	T	T	F
F T T	F	F	T	F
F T F	F	T	T	F
F F T	T	F	F	F
F F F	F	T	T	F

$$\mathbf{2.} \ \, (\neg p \vee \neg q) \wedge (\neg p \vee \neg r) \equiv \neg p \vee (\neg q \wedge \neg r) \equiv \neg p \vee \neg (q \vee r) \equiv \neg (p \wedge (q \vee r)).$$

3.
$$\neg p \rightarrow q \equiv p \lor q$$
.

4. (a)(i)
$$\exists x, G(x) \land F(x)$$

(a)(ii)
$$\exists x, C(x) \land (G(x) \land F(x))$$

(b)(i)
$$\forall x, \neg G(x) \lor \neg F(x)$$

(b)(ii)
$$\forall x, C(x) \to (\neg G(x) \lor \neg F(x))$$

- **5.** False. For x = 0, one cannot find y so that xy = 1.
- **6.** (i) $\forall s \in Y \exists p \in X, B(p, s)$
- (ii) $\forall s \in Y \forall p \in X \forall q \in X, B(p,s) \land B(q,s) \rightarrow p = q$
- 7. $\forall s \in C \exists k \in H \forall n \in H, E(s) \to R(s,k) \land W(k) \land (R(s,n) \to n = k)$
- 8.
- 1. $f \to q$, (from (ii)) Specialization.
- $2. f ext{(iv)}$
- 3. : q (from 1, 2) Modus Ponens.
- 4. $a \wedge q \rightarrow m$ (i)
- 5. $\neg m$ (iii)
- 6. $\therefore \neg(a \land q) \equiv \neg a \lor \neg q$ (from 4, 5) Modus Tollen.
- 7. $\therefore \neg a$ (from 3,6) Elimination.
- 8. $\neg p \rightarrow a$ (from (ii)) Specialization.
- 9. $\therefore p \text{ (from 7, 8) Modus Tollen.}$