Assignment 6 Problem Three

Michael Cai

March 6, 2016

3. Let D be the region bounded by $y=\sqrt{x}$, y=2-x, and the x-axis. Let E be the solid formed by revolving D about the line y = 4. What is the volume of E?

The plot (was unable to load the graphic) shows the two functions plotted as well as the line y=4. The way to calculate the volume of the solid that is revolved about the line y=4 is to split the problem into two smaller problems. The whole solid is comprised of two separate portions from the intervals [0, 1] and [1, 2] since the two functions intersect at the point x=1. The cross-sections of this solid will look like washers, which are a larger disk with a smaller disk cut out of the middle.

For the interval [0,1] the radius of the larger disk - let's call it R_1 - is formed by the distance between y=4 and y=0, thus $R_1=4$. The radius of the smaller disk - let's call it r_1 - is formed by the distance between y=4 and $y=\sqrt{x}$, thus $r_1=4-\sqrt{x}$. For the interval [1,2] the radius of the larger disk, R_2 , is formed by the distance between y = 4 and y = 0, thus $R_2 = 4$, and the radius of the smaller disk, r_2 , is formed by the distance between y = 4 and y = 2 - x, thus $r_2 = 4 - (2 - x) = 2 + x$.

formed by the distance between
$$y=4$$
 and $y=2-x$, thus $r_2=4-(2-x)=2+x$. Therefore the volume of the entire solid can be calculated as:
$$\int_0^1 \pi(4)^2 - \pi(4-\sqrt{x})^2 dx + \int_1^2 \pi(4)^2 - \pi(2+x)^2 dx = \pi \int_0^1 16 - (16-8\sqrt{x}+x) dx + \pi \int_1^2 16 - (4+4x+x^2) dx = \pi \left[\frac{16}{3}x^{\frac{3}{2}} - \frac{1}{2}x^2\right]_0^1 + \pi \left[12x - 2x^2 - \frac{1}{3}x^3\right]_1^2 = \frac{17\pi}{2}$$