

Classical Mechanics and Special Relativity Course # PHY 204 Fall 2020

Prepared by Abu Mohammad Khan

Aitken Acceleration

- In this method, we will learn how to accelerate the convergence rate for a linear convergent function.
- That means, this method is for a function for which $\lambda = \text{constant} \neq 0$.
- Note that λ is defined as

$$\lambda = \lim_{k \to \infty} \frac{|x_{\star} - x_{k+1}|}{|x_{\star} - x_k|}$$

• For linear convergence, λ is a non-zero constant. So if λ is known, then x_\star can be found for a given k from the following relation

$$x_{\star} = \frac{x_{k+1} - \lambda x_k}{1 - \lambda} .$$

• But if λ is unknown, then it can be eliminated from the above equation by equating the nearest pairs of iteration points.

- We take three nearest iteration points: x_k , x_{k+1} and x_{k+2} .
- We compute λ using (x_k, x_{k+1}) and (x_{k+1}, x_{k+2}) to eliminate λ :

$$\lambda = \frac{x_{\star} - x_{k+2}}{x_{\star} - x_{k+1}} = \frac{x_{\star} - x_{k+1}}{x_{\star} - x_k} \text{ (since } \lambda \text{ is constant)}$$

• Solving for x_{\star} yields:

$$(x_{\star} - x_{k+2})(x_{\star} - x_{k}) = (x_{\star} - x_{k+1})^{2}$$

$$\Rightarrow x_{\star} = \frac{x_{k+2} x_{k} - x_{k+1}^{2}}{x_{k+2} - 2x_{k+1} + x_{k}}$$

$$\therefore x_{\star} = x_{k} - \frac{(x_{k+1} - x_{k})^{2}}{x_{k+2} - 2x_{k+1} + x_{k}}.$$

• Therefore, the iteration formula is:

$$\hat{x}_{k+2} = x_k - \frac{(x_{k+1} - x_k)^2}{x_{k+2} - 2x_{k+1} + x_k} .$$

• Using the forward difference notation, we can also write:

$$\Delta x_k \equiv x_{k+1} - x_k \implies (x_{k+1} - x_k)^2 = (\Delta x_k)^2.$$

$$x_{k+2} - 2x_{k+1} + x_k = (x_{k+2} - x_{k+1}) - (x_{k+1} - x_k)$$

$$= \Delta x_{k+1} - \Delta x_k$$

$$= \Delta (\Delta x_k)$$

$$= \Delta^2 x_k.$$

• Hence, we can also write the iteration formula as:

$$\hat{x}_{k+2} = x_k - \frac{(\Delta x_k)^2}{\Delta^2 x_k} .$$

• Starting from x_0 , every two iteration after (that is, every third iteration iteration point has been accelerated.

• Accelerated means that the iterated point become more close to x_{\star} .

iteration point has been accelerated.

• Accelerated means that the iterated point become more close to
$$x_{\star}$$
.

• $x_0 \to x_1 \to x_2 \xrightarrow{\text{accelerated}} \hat{x}_2$
 $x_2 \to x_3 \to x_4 \xrightarrow{\text{accelerated}} \hat{x}_4$
 $x_4 \to x_5 \to \hat{x}_6$

- Consider the sequence: $x_2 \to \hat{x}_2 \to x_2$. Here the first x_2 has been accelerated, the value is denoted by \hat{x}_2 . This new value now has been treated as x_2 and used to compute the 3rd iteration point x_3 .
- Now starting from x_2 , the third iteration point is x_4 , and will be iterated

- Example: Consider the function, $f(x) = \frac{1}{x} 0.5$.
- Clearly, f(2) = 0. Therefore, the root is $x_{\star} = 2.0$.
- Let's now construct g(x) to find the fixed point of g(x), such that f(x) = 0.
- We consider

$$g(x) = x + \frac{1}{16} f(x) = x + \frac{1}{16} \left(\frac{1}{x} - 0.5 \right).$$

- Clearly, $g(2) = 2 \Longrightarrow$ it is a fixed point of g(x).
- We check that:

$$\lambda = g'(x_{\star}) = \frac{dg}{dx}\Big|_{x=x_{\star}} = 1 + \frac{1}{16}\left(-\frac{1}{x^2}\right)\Big|_{x=2} = 0.984375 < 1.$$

• Since λ is close to one, it is linear convergence, but very slowly converging. And it will take a large number of iteration to converge to the fixed point.

- Let's start the iteration with $x_0=1.5$ which is close to $x_\star=2$.
- We choose to consider upto 7 sig.fig.

BRAC UNIVERSITY

• This means that the 8th digit will be rounded off and the error comparing the first 7 digits will be $0.000000 \cdots \approx 10^{-6}$.

$$x_0 = 1.5$$
 $x_1 = g(x_0) = 1.510417 \implies |x_1 - x_*| = 0.489583$
 $x_2 = g(x_1) = 1.520546 \implies |x_2 - x_*| = 0.479454$
 $x_3 = g(x_2) = 1.530400 \implies |x_3 - x_*| = 0.469600$
 $x_4 = g(x_3) = 1.539989 \implies |x_4 - x_*| = 0.460011$
 $\vdots : \vdots : \vdots : \vdots : \vdots$
 $x_{818} = g(x_{817}) = 1.9999999 \implies |x_{818} - x_*| = 0.0000000$

• We have to perform 818 iteration to get the error within 10^{-6} or matching upto 7 sig.fig.

We now apply Aitken acceleration:

$$x_{0} = 1.5$$

$$x_{1} = g(x_{0}) = 1.510417 \Rightarrow |x_{1} - x_{*}| = 0.489583$$

$$x_{2} = g(x_{1}) = 1.520546 \Rightarrow |x_{2} - x_{*}| = 0.479454$$

$$\hat{x}_{2} = x_{0} - \frac{(x_{1} - x_{0})^{2}}{x_{2} - 2x_{1} + x_{0}} = 1.877604 \Rightarrow |\hat{x}_{2} - x_{*}| = 0.122396$$

$$x_{3} = g(\hat{x}_{2}) = 1.879641 \Rightarrow |x_{3} - x_{*}| = 0.120359$$

$$x_{4} = g(x_{3}) = 1.881642 \Rightarrow |x_{4} - x_{*}| = 0.118358$$

$$\hat{x}_{4} = \hat{x}_{2} - \frac{(x_{3} - \hat{x}_{2})^{2}}{x_{4} - 2x_{3} + \hat{x}_{2}} = 1.992634 \Rightarrow |\hat{x}_{4} - x_{*}| = 0.007366$$

$$\vdots \qquad \vdots \qquad \vdots \qquad \vdots$$

$$\hat{x}_{8} = g(x_{7}) = 2.0000000 \Rightarrow |\hat{x}_{8} - x_{*}| = 0.0000000$$

• ONLY 8 iterations needed to get the same answer within 10^{-6} error bound.

Secant Method:

Recall the Newton's method of finding the root. The iteration is:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

- The above requires that at each iteration point, we need to calculate the first derivative and check if it is zero. This is a drawback. Moreover if $f'(x_k)$ is very small, then loss of significance may occur.
- To avoid this drawback, we replace $f'(x_k)$ by an easily computable function g_k which is approximately equal to $f'(x_k)$. This technique is known as the Quasi-Newton Method.
- In particular if we choose g_k to be the backward difference between the nearest iteration points, then it is called the Secant Method.
- There are other Quasi-Newton method, as for example, Steffensen's method, etc. which we will not discuss here.

• The backward difference for the nearest iteration points is

$$g_k = \frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}$$

Therefore the iteration formula for the Secant method become

$$x_{k+1} = x_k - \frac{f(x_k) (x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

- Clearly, the iteration starts with two initial values: x_0 and x_1 . So, the first iterated point is x_2 , and the iteration continues.
- Secondly, only one function to be evaluated per iteration (not two functions as in Newton's method).

• Example: $f(x) = \frac{1}{x} - 0.5$. Let's choose: $x_0 = 0.25$ and $x_1 = 0.5$.

k 	x_k	$\frac{ x_{\star} - x_k }{ x_{\star} - x_{k-1} }$
2	0.6875	0.75
3	1.01562	0.75
4	1.3540	0.65625
5	1.68205	0.492188
6	1.8973	0.322998
7	1.98367	0.158976
8	1.99916	0.0513488

- Here the convergence is very fast, and in 12 iteration ϵ_M is achieved.
- Since, the error ratio is decreasing, it is super linear convergence.

• Graphically, the Secant method looks as in the following:

• Finally, we state a theorem and end this chapter. Theorem 4.6 states that the order of convergence is $\frac{(1+\sqrt{5})}{2}=1.618\cdots$, if $f'(x_\star)\neq 0$ and for x_0 and x_1 sufficiently close to x_\star .

