

Universidade Federal Do Paraná – UFPR Matemática Industrial Modelos Matemáticos Em Finanças

ANÁLISE DE CARTEIRAS DE INVESTIMENTOS: MODELOS MATEMÁTICOS APLICADOS

Autoras: Mariana Ferreira e Kauane Batista Professor: Luiz Carlos Matioli

RESUMO

Este trabalho utiliza modelos matemáticos fundamentados na teoria de Markowitz para otimização de carteiras de investimento, analisando três abordagens: Modelo de Média Variância, Modelo de Índice Único e Modelo com Ativo Livre de Risco, considerando cenários com e sem vendas a descoberto. Os resultados mostram que o desempenho dos modelos variam conforme o perfil de risco e retorno desejado. O estudo destaca a importância e a eficiência da diversificação de ativos e das ferramentas matemáticas na gestão de portfólios.

Palavras-chave: Retorno; carteira ótima; investimento; modelo de Markowitz.

1 INTRODUÇÃO

Ao adentrar o mundo dos investimentos, um dos conceitos fundamentais a ser explorado é o de carteiras de investimento. Uma carteira, ou portfólio, de investimento é composto por ativos financeiros nos quais um investidor aplica seus recursos, podendo incluir apenas um ativo ou uma variedade de ativos diversos. Independentemente do tipo de investimento, o principal objetivo é alcançar o retorno esperado, minimizando os riscos associados.

O economista Henry Markowitz desenvolveu um modelo matemático, conhecido como **Modelo de Markowitz**, que é utilizado para analisar o comportamento das carteiras. Este modelo maximiza a rentabilidade ao mesmo tempo que minimiza os riscos, proporcionando um retorno eficiente na administração de portfólios.

Neste artigo, criamos uma carteira e analisamos a fronteira eficiente utilizando o Modelo de Markowitz, seguindo os parâmetros estabelecidos em nossos investimentos.

2 MÉTODOLOGIA

2.1 Modelo De Markowitz

No inicio da década de 50, Henry Markowitz introduziu um modelo para a construção de portifólios com ativos diversificados, denominado como **Modelo de Markowitz**. O modelo retorna a **Carteira eficiente**, que representa a combinação de ativos que maximiza os retornos esperados para um determinado nível de risco.

2.1.1 Modelo de média Variância

O modelo de Markowitz utiliza alguns conceitos fundamentais da estatística para determinar as variaveis, que são dadas por

$$\overline{R} = \frac{1}{n} \sum_{i=1}^{n} R_i, \qquad i \in (1, 2, ..., n)$$
 (1)

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (R_i - \overline{R})^2$$
 (2)

$$\sigma = \sqrt{\sigma^2} \tag{3}$$

- O \overline{R} denota o *retorno médio* de um ativo, que é calculado com a média simples (ou ponderada) dos retornos individuais R_i de cada ativo i dentro de um intervalo de tempo n. Em nosso caso o n representa os meses, mas pode representar dias/anos/etc.
- A variância σ^2 indica uma medida de dispersão, e o σ é o desvio padrão (ou risco). Ambos indicam o grau de volatilidade associada aos retornos de um ativo, então quanto maior a variância ou o desvio padrão, maior o risco.

2.1.2 Combinação de ativos

Um portifolio pode ser composto por 100 % de investimento em um único ativo ou por uma combinação de ativos. As composições das carteiras podem variar muito devido ao fato de existirem diferentes tipos de investidores que assumem diferentes níveis de risco.

Dada uma carteira com os valores das porcentagem investida em cada ativo i, podemos calcular o *Retorno médio*, a *Variância* e a *Covariância* da carteira:

$$\overline{R_c} = \sum_{i=1}^n x_i \overline{R_i},\tag{4}$$

$$\sigma_c^2 = \sum_{i=1}^n \sum_{j=1}^n x_i x_j \sigma_{ij} \tag{5}$$

$$\sum_{i=1}^{n} x_i = 1 \tag{6}$$

- O $\overline{R_c}$ denota o *retorno médio da carteira*, que depende exclusivamente do retorno médio de cada ativo R_i e sua participação x_i na carteira;
- A variância σ_c^2 de uma carteira reflete o risco associado à carteira, que depende também da covariância;
- A covariância σ_{ij} é uma medida entre dois ativos A_i e A_j , que mostra como os retornos dos ativos variam em conjunto, indicando se tendem a se mover na mesma direção (positiva) ou em direções opostas (negativa). Para calculá-la, considera-se os retornos individuais $R_{1i}, ..., R_{ni}$ e $R_{1j}, ..., R_{nj}$, ao longo de um período n (período diário/mensal/anual/ etc.), bem como as médias \overline{R}_i e \overline{R}_j desses retornos:

$$\sigma_{ij} = \frac{1}{n} \sum_{k=1}^{n} \left(R_{ki} - \overline{R_i} \right) \left(R_{kj} - \overline{R_j} \right) \qquad i, j = 1, 2, ..., n \quad i \neq j$$
 (7)

• A condição $\sum_{i=1}^{n} x_i = 1$ indica que a soma das porcentagens investidas em cada ativo i (x_i) deve ser igual a 1.

Com as definições mencionadas, o modelos da *Média variância de Markowitz* que retorna a carteira de menor risco para um dado conjunto de ativos, é formulado da seguinte maneira

Min
$$\sigma_c^2$$

s.a. $\sum_{i=1}^n x_i = 1$ (8)
 $x_i \ge 0$.

Onde $x_i \ge 0$ indica que não permitimos venda a descoberto, isso será detalhado mais adiante.

Podemos também reescrever o problema em uma forma matricial, partindo da expressão:

$$\sigma_c^2 = \sum_{i=1}^n \sum_{j=1}^n x_i x_j \sigma_{ij},$$

que pode ser representada como:

$$\sigma_c^2 = \mathbf{X}^{ op} egin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \ dots & dots & \ddots & dots \ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix} \mathbf{X}$$

onde X é o vetor das porcentagens da carteira e Q é a matriz de covariância. Com a restrição de que o total investido deve ser igual a 1, o vetor $\mathbf{e}^{\top} = \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$. Assim o problema pode ser reformulado como:

$$\begin{aligned} & \text{Min } X^T Q X \\ & \text{s.a.} \quad e^T X = 1 \\ & \quad X > 0 \end{aligned} \tag{9}$$

2.1.3 Coeficiênte de correlação

Para determinadas análises é necessário padronizar a covariância, que mede o grau de relação entre os retornos dos ativos de um portifólio. Para isso, utilizamos o *coeficiente de correlação* denotado por ρ_{ij} . Esse coeficiente é calculado com a razão entre a covariância dos ativos i e j, e o produto do desvio padrão desses ativos. Seus valores variam entre -1 e 1, sendo definido como

$$\rho_{ij} = \frac{\sigma_{ij}}{\sigma_i \, \sigma_j} \qquad -1 \le \rho_{ij} \ge 1 \tag{10}$$

O coeficiente de correlação para ativos não correlacionados, é próximo de zero e atua como ponto médio entre a correlação perfeita ($\rho=1$) e a correlação negativamente perfeita ($\rho=-1$). A combinação de ativos negativamente correlacionados diminui o risco resultante. Esse é o princípio central na teoria de Markowitz, que mostrou que, ao diversificar a carteira, o investidor pode reduzir o risco total de forma eficiente.

2.1.4 Venda a descoberto

Vender a descoberto é uma estratégia que consiste na venda de uma ação que você não possui em carteira, ou seja, esta ação não exige nenhum capital inicial, investidores vendem ações que não possui com a intenção de recomprar mais barato em um futuro próximo. Matemáticamente significa que as componentes x_i podem assumir valores negativos.

Reescrevendo o Modelo de Markowitz com vendas a descoberto, temos

$$\begin{aligned} & \text{Min } X^T Q X \\ & \text{s.a.} \quad e^T X = 1 \\ & \quad X \in \mathbb{R}^n. \end{aligned} \tag{11}$$

2.2 Fronteira Eficiente

A fronteira eficiente é representada graficamente como uma linha curva, que conecta os pontos que representam diferentes combinações de ativos. Ela mostra a relação entre *Retorno* (no eixo vertical) e o *Risco* (no eixo horizontal) de uma carteira de investimentos, como podemos observar na Figura 1.

A fronteira eficiente auxilia os investidores a visualizarem de forma ampla a combinação ideal de ativos que maximiza a rentabilidade de acordo com um certo nível de risco. Na formulação de fronteiras eficiente podemos atribuir diferentes hipóteses, como a permissão (ou não) de venda a descoberto, ou até mesmo a introdução de um ativo livre de risco.

Figura 1 — fronteira eficiente [Edwin J. Elton, 2010]

2.2.1 Ativo livre de risco

Até o momento, consideramos portifólios com ativos de risco. Um *ativo livre de risco* consiste em um investimento com a taxa de retorno R_f previsível, isto é, o risco do ativo é nulo $(\sigma_f = 0)$.

Vamos supor que um investidor deseja aplicar seus fundos em uma carteira C e em um ativo livre de risco. Com essa pressuposição, podemos determinar o *retorno esperado* $\overline{R_p}$ da combinação do ativo sem risco e a carteira de risco C:

$$\overline{R_p} = R_f + \left(\frac{\overline{R_c} - R_f}{\sigma_c}\right) \sigma_p \tag{12}$$

Onde

• σ_p é o risco da combinação do ativo livre de risco e a carteira C, descrito como

$$\sigma_p = X \,\sigma_c \tag{13}$$

• O $\overline{R_c}$ é o retorno médio e σ_c o risco da carteira C.

Podemos concluir que o $Retorno\ esperado\ \overline{R_p}$ é uma equação linear, com coeficiente angular dado por

$$\theta = \frac{\overline{R_c} - R_f}{\sigma_c} \tag{14}$$

Portanto, o problema de otimização com permissão de venda a descoberto pode ser descrito como:

Maximizar
$$\frac{\overline{R_c} - R_f}{\sigma_c}$$
s.a.
$$\sum_{i=1}^n x_i = 1,$$

$$x_i \in \mathbb{R}.$$
 (15)

A solução para esse problema pode ser encontrada resolvendo o sistema linear:

$$\begin{cases}
\overline{R_{1}} - R_{f} = \sigma_{11}z_{1} + \sigma_{12}z_{2} + \dots + \sigma_{1n}z_{n}, \\
\overline{R_{2}} - R_{f} = \sigma_{21}z_{1} + \sigma_{22}z_{2} + \dots + \sigma_{2n}z_{n}, \\
\vdots \\
\overline{R_{n}} - R_{f} = \sigma_{n1}z_{1} + \sigma_{n2}z_{2} + \dots + \sigma_{nn}z_{n},
\end{cases} (16)$$

onde z_i é uma variável auxiliar definida como $z_i = \lambda x_i$, com λ sendo uma constante. Após resolver o sistema, podemos determinar as proporções da carteira ótima por:

$$x_i = \frac{z_i}{\sum_{j=1}^n z_j}. (17)$$

Essa abordagem confirma que, ao incluir um ativo livre de risco, o investidor pode alcançar uma combinação que maximiza o retorno esperado para um dado nível de risco. Além disso, a solução resulta em uma linha tangente à fronteira eficiente, representando o conjunto ótimo de carteiras.

2.3 Modelo De Indice Unico

O *Modelo de índice único* proposto por Sharpe (1963), oferece uma alternativa simplificada do modelo de Markowitz, reduzindo significativamente o número de cálculos necessários para estimar a matriz de covariâncias. Este modelo parte da ideia de que o comportamento de cada ativo está relacionado ao desempenho do mercado como um todo, correlacionando os retornos dos ativos ao retorno de um índice de mercado.

No Modelo de índice único, o retorno R_i de um ativo i é descrito como

$$R_i = \alpha_i + \beta_i R_m + \epsilon_i, \tag{18}$$

onde:

- α_i : Componente que não depende do mercado, e reflete variações específicas do ativo;
- β_i : Mede a sensibilidade de R_i relacionada as variações no índice de mercado R_m ;
- ϵ_i : Termo de erro aleatório, independente do mercado.

Uma característica fundamental do modelo é que o termo aleatório ϵ_i tem esperança nula e variância $\sigma_{\epsilon_i}^2$, sendo também independente dos termos de erro de outros ativos.

Para a variância do retorno de um ativo, considera-se:

$$\sigma_i^2 = \beta_i^2 \sigma_m^2 + \sigma_{\epsilon_i}^2,\tag{19}$$

onde

- σ_m^2 é a variância do retorno do mercado;
- E a variância $\sigma_{e_i}^2 = \frac{1}{n} \sum_{j=1}^n \left[R_{ij} (\alpha_i + \beta_i R_{mj}) \right]^2$;

A covariância entre dois ativos i e j é dada por:

$$\sigma_{ij} = \beta_i \beta_j \sigma_m^2, \tag{20}$$

indicando que a única fonte de correlação entre os ativos é a sua relação com o mercado. Ao generalizar o modelo para uma carteira de n ativos, podemos calcular o beta e o retorno médio da carteira como uma média ponderada dos betas e alfas individuais:

$$\beta_c = \sum_{i=1}^n x_i \beta_i, \quad \alpha_c = \sum_{i=1}^n x_i \alpha_i, \tag{21}$$

com o retorno esperado da carteira sendo:

$$R_c = \alpha_c + \beta_c R_m, \tag{22}$$

e sua variância calculada por:

$$\sigma_c^2 = \beta_c^2 \sigma_m^2 + \sum_{i=1}^n x_i^2 \sigma_{\epsilon_i}^2. \tag{23}$$

O Modelo de Índice Único é uma ferramenta prática para estimar o risco e retorno de carteiras em mercados financeiros, especialmente quando o número de ativos é elevado.

3 DADOS UTILIZADOS

Criamos uma carteira com dados coletados no site Investing.com, neste site avaliamos os dados históricos de 10 ativos diversos desde **15.10.2022 até 15.10.2024.** Os ativos selecionados representam diferentes setores como energia, varejo, alimentos e bancos.

PETR4	BBDC3	RAIL3	ABEV3	CPLE6	GOAU4	JBSS3	LREN3	MRVE3	RADL3
3.86	0.84	-4.50	-1.53	-0.69	-4.3	6.13	4.93	3.31	-2.47
-8.53	-7.31	-8.47	1.71	-2.3	4.1	-9.63	7.14	-3.08	-7.51
8.25	26.1	-1.35	11.05	3.37	-0.54	3.8	28.28	11	-0.14
-1.70	0.51	6.90	1.49	8.49	-0.19	4.49	6.25	0.75	7.67
0.90	1.05	5.12	-1.3	2.42	-0.56	11.89	-3.69	-3.47	2.43
-6.48	-7.23	-1.79	-4.86	-0.11	2.94	23.04	-14.42	3.28	-1.99
15.49	-2.85	-9.43	-2.72	-5.05	2.82	9.02	-9.72	-13.99	-6.2
-15.42	3.72	-2.46	-0.72	-5.87	2.27	-6.76	8.51	2.23	2.74
-0.77	-9.97	-1.47	-3.82	0.89	2.02	-1.58	-1.56	-3.3	5.3
8.62	-10.37	0.48	-4.73	-2.22	-8.75	-5.94	-7.86	-29.83	-13.95
3.70	11.65	0.22	5.53	9.51	5.64	7.32	7.49	16.13	5.06
3.37	16.35	2.64	6.45	12.75	7.74	15.88	33.52	17.21	8.84
0.29	-2.79	-2.23	-1.91	-2.73	-7.35	10.97	-8.51	-22.68	-6.41
8.45	-4.26	2.10	-5.27	3.46	-5.67	-1.9	-15.25	-6.07	0.51
2.67	-10.74	-3.83	-6.86	3.59	-12.13	-2.02	-14.51	-18.27	-5.14
5.35	1.55	4.68	-3.57	0.84	16.33	7.56	-6.25	20.14	-1.92
20.46	11.83	6.63	6.94	11.73	5.44	9.77	3.71	14.78	4.48
10.21	7	5.69	1.77	-7.48	-1.24	-6.15	22.79	40	12.11
12.95	4.97	4.87	-1.19	15.56	-1.44	0.28	-4.41	12.85	7.9
-7.09	1.96	4.96	7.02	-1.56	-5.18	-6.98	-10.22	8.14	7.8
-3.18	-7.64	-2.29	-1.98	-9.27	-13.18	-4.43	-13.78	-15.95	-8.66
6.41	-2.33	-1.24	-5.92	-1.77	11.72	-8.69	5.62	-7.63	4.68
-8.10	-1.98	-4.37	-3.99	-2.1	-5.26	-0.27	-10.75	-11.53	3.14
2.22	-17.22	-12.10	-0.5	13.57	26.57	-8.08	-25.08	-15.62	-12.39

Tabela 1 — Tabela de variações das ações

4 MODELO DA MÉDIA VARIÂNCIA

Aplicando o Modelo da Média Variância dos ativos PETR4, BBDC3, RAIL3, ABEV3, CPLE6, GOAU4, JBSS3, LREN3, MRVE3, RADL3, e mostrando o resultado em (SVD) e (CVD).

4.1 Modelo De Média-Variância Com Sem Venda A Descoberto (SVD)

No modelo SVD, esses pesos indicam a alocação de capital em cada ativo, onde as ações como BBDC3, CPLE6, e outros ativos têm peso zero, refletindo que eles não são escolhidos como parte da carteira ótima para maximizar o retorno dado o risco.

Ativo	Peso
PETR4	0.0646
BBDC3	0.0000
RAIL3	0.3567
ABEV3	0.3568
CPLE6	0.0000
GOAU4	0.1525
JBSS3	0.0694
LREN3	0.0000
MRVE3	0.0000
RADL3	0.0000

Tabela 2 — Pesos dos ativos na carteira ótima

Retorno ótimo
0.3450

O primeiro gráfico apresenta a alocação de 100% do capital em cada ativo, juntamente com a carteira ótima. Já a segunda imagem ilustra a fronteira eficiente.

Podemos visualizar graficamente a carteira ótima (em verde), enquanto as demais carteiras (em azul) representam a distribuição de 100% do capital em cada ação.

Aqui podemos visualizar a fronteira efiente (em traço verde).

4.2 Modelo De Média-Variância Com Venda A Descoberto (CVD)

O modelo CVD (com venda a descoberto) permite que o investidor possa vender ativos que não possui, ou seja, os pesos dos ativos podem ser negativos. Isso oferece maior flexibilidade, pois o investidor pode apostar contra certos ativos, o que é comum em estratégias como short selling.

Essa tabela abaixo seguem a contextualização do item anterior, esses pesos também indicam a alocação de capital em cada ativo, porém as ações como BBDC3, CPLE6, e outros ativos têm peso zero, refletindo que eles não são escolhidos como parte da carteira 'otima para maximizar o retorno dado o risco assim como em o item anterior.

Ativo	Peso (%)
PETR4	6.45
BBDC3	0.00
RAIL3	35.67
ABEV3	35.68
CPLE6	0.00
GOAU4	15.25
JBSS3	6.95
LREN3	0.00
MRVE3	0.00
RADL3	0.00

Tabela 3 — Pesos dos Ativos na Carteira Ótima

Retorno ótimo
0.1322

No gráfico é possível visualizar o retorno médio. A programação quadrática é resolvida da mesma maneira em (CVD), mas agora a solução pode incluir ativos com pesos negativos, diferente do (SVD).

5 ATIVO LIVRE DE RISCO

Apesar do nome, na prática, nenhum ativo é completamente livre de risco. Fatores como inflação, instabilidade política e mudanças macroeconômicas podem afetar até os instrumentos mais seguros, mas, para fins práticos, ativos de alta confiança são considerados "livres de risco" para análises financeiras.

Utilizaremos como ativo livre (LFT030129=STNC) (Tesouro Selic) com o mesmo período dos retornos.

 $livres = [\ 0.0114,\ 0.0092,\ 0.0119,\ 0.0088,\ 0.0109,\ 0.0110,\ 0.0106,\ 0.0120,\ 0.0093,\ 0.0105,\ 0.0091,\ 0.0081,\ 0.0106,\ 0.0068,\ 0.0091,\ 0.0089,\ 0.0106,\ 0.0109,\ 0.0083,\ 0.0091,\ 0.0093,\ 0.0093,\ 0.0093,\ 0.0091]$

5.1 Ativo Livre De Risco Sem Venda A Descoberto (SVD)

O modelo utiliza a covariância dos retornos entre os ativos para calcular o risco da carteira e o retorno esperado de cada possível alocação de ativos. A função teta(x) é otimizada usando o método de programação quadrática, respeitando a restrição de que a soma das alocações de ativos deve ser 1.

	Descrição	Valor (%)	
Re	torno Ótimo	0.6375	

Tabela 4 — Retorno Ótimo da Carteira Tangente

5.2 Ativo Livre De Risco Com Venda A Descoberto (CVD)

A otimização é feita novamente pela função minimize da biblioteca scipy, mas agora o modelo leva em conta que a carteira pode ser composta por ativos comprados e vendidos.

O gráfico gerado neste caso é similar ao anterior, mas com a possibilidade de alocações negativas. A diferença está na flexibilidade maior para manipular o risco e o retorno da carteira, uma vez que as vendas a descoberto podem ser usadas para melhorar a performance da carteira, principalmente quando os ativos com maior risco são vendidos para aumentar o retorno.

6 MODELO DE ÍNDICE ÚNICO (MIU)

• O beta é utilizado para entender como o ativo se comporta frente a variações no mercado (representado, por exemplo, pelo Índice Bovespa). Um beta maior que 1 significa que o ativo tende a se mover mais intensamente que o mercado (ativo mais volátil), enquanto um beta menor que 1 significa que o ativo tende a ser menos volátil que o mercado.

Ativos	Beta
PETR4	0.61005735
BBDC3	1.51412156
RAIL3	0.54377751
ABEV3	0.59678587
CPLE6	0.59955566
GOAU4	0.53387171
JBSS3	0.63927528
LREN3	1.98783678
MRVE3	2.5034698
RADL3	0.90603109

• Retornos médios de cada ativo (R1):

Ativos	Ri
PETR4	2.58041667
BBDC3	0.11833333
RAIL3	-0.46833333
ABEV3	-0.37125
CPLE6	1.87625
GOAU4	0.90833333
JBSS3	1.98833333
LREN3	-0.74041667
MRVE3	-0.06666667
RADL3	0.245

				Cova	riância				
66.2113	29.2348	10.4993	11.5228	11.5763	10.3081	12.3432	38.3814	48.3373	17.4938
29.2348	89.4173	26.0586	28.5989	28.7316	25.5839	30.6350	95.2601	119.9700	43.4183
10.4993	26.0586	25.5357	10.2709	10.3186	9.1881	11.0022	34.2114	43.0857	15.5931
11.5228	28.5989	10.2709	21.5421	11.3245	10.0838	12.0747	37.5464	47.2858	17.1132
11.5763	28.7316	10.3186	11.3245	44.9165	10.1306	12.1307	37.7207	47.5052	17.1926
10.3081	25.5839	9.1881	10.0838	10.1306	75.6236	10.8018	33.5882	42.3008	15.3091
12.3432	30.6350	11.0022	12.0747	12.1307	10.8018	72.5249	40.2196	50.6524	18.3316
38.3814	95.2601	34.2114	37.5464	37.7207	33.5882	40.2196	196.2906	157.5043	57.0024
48.3373	119.9700	43.0857	47.2858	47.5052	42.3008	50.6524	157.5043	243.8536	71.7885
17.4938	43.4183	15.5931	17.1132	17.1926	15.3091	18.3316	57.0024	71.7885	46.8275

• Alfa dos ativos:

Ativos	Alfa
PETR4	2.21011185
BBDC3	-0.80073845
RAIL3	-0.79840628
ABEV3	-0.73349902
CPLE6	1.51231971
GOAU4	0.58427321
JBSS3	1.60029324
LREN3	-1.94703359
MRVE3	-1.58627284
RADL3	-0.30496087]

• Variância dos Ativos

Ativos	Variância
PETR4	55.41386297
BBDC3	22.90494872
RAIL3	16.95701048
ABEV3	11.20929688
CPLE6	34.48756569
GOAU4	67.35456539
JBSS3	60.66843432
LREN3	81.6489891
MRVE3	62.02355274
RADL3	23.01158027]

• Modelo de Índice Único (MIU) com resultados (SVD) e (CVD)

Retorno SVD 0.2829570416871781
Variância SVD 14.880258187221317
Risco SVD 3.8574937702116014

Retorno CVD 0.4568752351759316

Variância CVD 8.346687169075812

Risco CVD 2.889063372284487

7 CONSIDERAÇÕES FINAIS

Neste trabalho, revisamos abordagens matemáticas para a formação de portifólios de investimento, em destaque as técnicas baseadas na teoria de Markowitz e suas variações. As análises realizadas mostram que a escolha do modelo mais adequado depende diretamente das condições de mercado e do perfil do investidor. Por exemplo, enquanto o Modelo da Média Variância Sem Vendas a Descoberto apresentou o maior retorno, ele também devolveu o maior nível de risco, sendo mais indicado para investidores dispostos a aceitar altas volatilidades.

Entretanto, o Modelo com Ativo Livre de Risco demonstrou maior estabilidade em cenários com e sem vendas a descoberto, apresentando opções que equilibram risco e retorno de forma eficiente.

Dessa forma, os resultados reforçam a importância da formação dos portifólios, de acordo com os objetivos de cada investidor, uma vez que cada implementação entrega uma carteira eficiente dentro de seus próprios parâmetros. Com isso, este trabalho não apenas amplia a compreensão sobre a aplicação da teoria de Markowitz, mas também destaca a relevância de decisões estratégicas na gestão de investimentos.

REFERÊNCIAS

- [1] ELTON, Edwin J. et al. **Moderna teoria de carteiras e análise de investimentos**. Rio de Janeiro: Editora Elsevier, 2012.
- [2] GONÇALVES, Cleber Junior. et al. **Seleção de carteira através do Modelo de Markowitz** para pequenos investidores, IX Simpep, São Paulo, 2002.
- [3] GUEDES, Márcio Pereira. Redução do risco em um portifólio internacional: uma aplicação prática do Modelo de Mrkowitz, Dissertação de mestrado, São Paulo, 1995.
- [4] ZANINI, Francisco Antônio. As teorias de carteira de Markowitz e de Sharpe: Uma aplicação no mercado brasileiro de ações entre julho/95 e junho/2000. São Paulo: Editora Mackenzie, 2021. Disponível em: https://doi.org/10.1590/1678-6 9712005/administracao.v6n2p38-64
- [5] ROMANI, Guiliana. Otimização de Portfólio. PUC-Rio. Disponível em: https://www.maxwell.vrac.puc-rio.br/55986/55986_3.PDF.
- [6] MATIOLI, Luis Carlos. Aulas Ministradas. Universidade Federal do Paraná, 2024.

8 CÓDIGOS UTILIZADOS

Implementação Computacional com Média Variância Sem Venda a Descoberto (SVD)

Implementação Computacional com Média Variância Sem Venda a Descoberto (SVD

```
retornos = [índices de carteira mostrados em Indicador 1];
Q = cov(retornos, 1);
[m,n] = size(retornos);
X_0 = zeros(n,1);
[CART_OTM, SC_OTM] = qp(X_0, 2 * Q, [], ones(1, n), 1,
zeros(n, 1), []);
RM_ATIVOS = (sum(retornos)') / n;
SC_ATIVOS = sqrt(diag(Q));
RC_OTM = RM_ATIVOS' * CART_OTM;
for i = 1:n
   plot(SC_ATIVOS(i), RM_ATIVOS(i), 'r*')
   hold on
end
plot(sqrt(SC_OTM), RC_OTM, 'b+');
title ('Risco vs Retorno dos Ativos e da Carteira Ótima');
xlabel('Risco (Desvio Padrão)');
ylabel ('Retorno Médio');
hold off
```

Implementação Computacional com Média Variância Sem Venda a Descoberto (CVD)

```
retornos = [
                                                 4.93
    3.86 0.84
               -4.50
                       -1.53
                              -0.69
                                     -4.3
                                            6.13
                                                        3.31
                                                              -2.47;
    -8.53 - 7.31 - 8.47
                              -2.3
                                      4.1
                                            -9.63 7.14
                                                        -3.08 - 7.51;
                       1.71
                              3.37
    8.25
          26.1
                -1.35
                       11.05
                                      -0.543.8
                                                  28.28 11
                                                              -0.14;
    -1.700.51
                6.90
                       1.49
                              8.49
                                      -0.194.49
                                                  6.25
                                                        0.75
    0.90
          1.05
                5.12
                       -1.3
                              2.42
                                      -0.56 11.89 -3.69 -3.47 2.43;
    -6.48 - 7.23 - 1.79
                       -4.86
                              -0.11
                                      2.94
                                            23.04 -14.42 3.28
    15.49 -2.85 -9.43
                       -2.72
                              -5.05 2.82
                                            9.02 -9.72 -13.99 -6.2;
    -15.42 \ 3.72 \ -2.46
                       -0.72 -5.87
                                       2.27 -6.76 8.51
                                                         2.23
                                                                2.74;
    -0.77 - 9.97 - 1.47
                       -3.82
                              0.89
                                      2.02 - 1.58 - 1.56 - 3.3
                                                                5.3;
    8.62
          -10.370.48
                        -4.73
                               -2.22
                                       -8.75 -5.94 -7.86 -29.83 -13.95;
    3.70
                                                       16.13
          11.65 0.22
                       5.53
                              9.51
                                      5.64
                                            7.32
                                                  7.49
    3.37
          16.35 2.64
                       6.45
                              12.75
                                     7.74
                                            15.88 33.52 17.21
    0.29 - 2.79 - 2.23
                       -1.91
                              -2.73
                                      -7.35\ 10.97\ -8.51\ -22.68\ -6.41;
    8.45
         -4.26 2.10
                       -5.27
                              3.46
                                      -5.67 - 1.9 - 15.25 - 6.07
                                                                 0.51;
    2.67
          -10.74 - 3.83
                       -6.86
                               3.59
                                      -12.13 -2.02 -14.51 -18.27 -5.14;
    5.35
         1.55 4.68
                       -3.57
                                      16.33 7.56 -6.25
                                                         20.14
                              0.84
                                                                -1.92;
    20.46 11.83 6.63
                       6.94
                              11.73
                                      5.44
                                            9.77
                                                  3.71
                                                        14.78
                                                                4.48;
    10.21 7
                5.69
                       1.77
                              -7.48
                                     -1.24 - 6.15 22.79 40
                                                                12.11;
    12.95 4.97
                4.87
                       -1.19
                              15.56
                                                 -4.41 12.85
                                     -1.440.28
    -7.091.96
                4.96
                       7.02
                              -1.56
                                     -5.18 -6.98 -10.22 8.14
                                                                7.8;
    -3.18 - 7.64 - 2.29
                              -9.27
                                      -13.18 -4.43 -13.78 -15.95 -8.66;
                       -1.98
                                                   5.62 -7.63
    6.41
         -2.33 -1.24
                       -5.92
                              -1.77
                                     11.72 -8.69
                                                   -10.75 -11.53 3.14;
    -8.10 - 1.98 - 4.37
                       -3.99
                              -2.1
                                      -5.26 - 0.27
    2.22 -17.22 -12.10 -0.5
                               13.57 26.57 -8.08 -25.08 -15.62 -12.39
];
Q = cov(retornos, 1);
[m,n] = size(retornos);
X_0 = zeros(n, 1);
[ CART_OTM , SC_OTM ] = qp ( X_0 ,2* Q ,[] ,
ones (1 , n ) ,1 ,[] ,[] ,[] ,[] ,[]);
RM_ATIVOS = (sum(retornos)') / n
SC\_ATIVOS = sqrt(diag(Q))
RC_OTM = RM_ATIVOS' * CART_OTM
```

for i = 1:n

```
plot(SC_ATIVOS(i), RM_ATIVOS(i), 'r*')
hold on
end
plot(sqrt(SC_OTM), RC_OTM, 'b+');

title('Risco vs Retorno dos Ativos e da Carteira Ótima');
xlabel('Risco (Desvio Padrão)');
ylabel('Retorno Médio');
hold off
```

Implementação Computacional com Ativo Livre de Risco Sem Venda a Descoberto (SVD)

```
import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt
retornos = np.array([
    [3.86, 0.84, -4.50, -1.53,
   -0.69, -4.3, 6.13, 4.93, 3.31, -2.47],
    [-8.53, -7.31, -8.47, 1.71,
   -2.3, 4.1, -9.63, 7.14, -3.08, -7.51],
   [8.25, 26.1, -1.35, 11.05, 3.37,
   -0.54, 3.8, 28.28, 11, -0.14],
   [-1.70, 0.51, 6.90, 1.49, 8.49,
   -0.19, 4.49, 6.25, 0.75, 7.67],
    [0.90, 1.05, 5.12, -1.3, 2.42,
   -0.56, 11.89, -3.69, -3.47, 2.43],
    [-6.48, -7.23, -1.79, -4.86, -0.11,
   2.94, 23.04, -14.42, 3.28, -1.99
    [15.49, -2.85, -9.43, -2.72, -5.05, 2.82, 9.02, -9.72, -13.99, -6.2]
    [-15.42, 3.72, -2.46, -0.72,
   -5.87, 2.27, -6.76, 8.51, 2.23, 2.74],
    [-0.77, -9.97, -1.47, -3.82,
   0.89, 2.02, -1.58, -1.56, -3.3, 5.3
    [8.62, -10.37, 0.48, -4.73, -2.22,
   -8.75, -5.94, -7.86, -29.83, -13.95],
    [3.70, 11.65, 0.22, 5.53,
   9.51, 5.64, 7.32, 7.49, 16.13, 5.06],
    [3.37, 16.35, 2.64, 6.45,
   12.75, 7.74, 15.88, 33.52, 17.21, 8.84],
    [0.29, -2.79, -2.23, -1.91,
   -2.73, -7.35, 10.97, -8.51, -22.68, -6.41],
    [8.45, -4.26, 2.10, -5.27,
   3.46, -5.67, -1.9, -15.25, -6.07, 0.51],
   [2.67, -10.74, -3.83, -6.86, 3.59,
   -12.13, -2.02, -14.51, -18.27, -5.14],
    [5.35, 1.55, 4.68, -3.57,
   0.84, 16.33, 7.56, -6.25, 20.14, -1.92],
    [20.46, 11.83, 6.63, 6.94, 11.73, 5.44, 9.77, 3.71, 14.78, 4.48],
    [10.21, 7, 5.69, 1.77, -7.48,
   -1.24, -6.15, 22.79, 40, 12.11],
    [12.95, 4.97, 4.87, -1.19,
   15.56, -1.44, 0.28, -4.41, 12.85, 7.9],
    [-7.09, 1.96,
   4.96, 7.02, -1.56, -5.18, -6.98, -10.22, 8.14, 7.8],
    [-3.18, -7.64, -2.29,
```

```
-1.98, -9.27,
    -13.18, -4.43, -13.78, -15.95, -8.66],
    [6.41, -2.33,
    -1.24, -5.92, -1.77, 11.72,
    -8.69, 5.62, -7.63, 4.68],
    [-8.10, -1.98,
    -4.37, -3.99, -2.1, -5.26, -0.27, -10.75, -11.53, 3.14],
    [2.22, -17.22,
    -12.10, -0.5, 13.57, 26.57,
    -8.08, -25.08, -15.62, -12.39]
])
livre = np.array([0.0114, 0.0092, 0.0119,
0.0088, 0.0109, 0.0110, 0.0106, 0.0120, 0.0093, 0.0105,
0.0091, 0.0081, 0.0106, 0.0068, 0.0091,
0.0089, 0.0106, 0.0109, 0.0083, 0.0091, 0.0093, 0.0093, 0.0083, 0.0091])
nomes_ativos = ["PETR4", "BBDC3", "RAIL3",
"ABEV3", "CPLE6", "GOAU4", "JBSS3", "LREN3", "MRVE3", "RADL3"]
retorno_livre_risco = np.mean(livre, axis=0)
Q = np.cov(retornos, rowvar=False)
m, n = retornos.shape
RM_ativos = np.mean(retornos, axis=0)
x0 = np.ones(n) / n
Rf = retorno livre risco
e = np.ones(n)
def teta(x):
    risco = np.sqrt(np.dot(x.T, np.dot(Q, x)))
    retorno = np.dot(RM_ativos.T, x) - Rf
    return -retorno / risco
def restricao(x):
    return np.sum(x) - 1
limites = [(0, None) for _ in range(n)]
resultado = minimize(teta, x0, constraints={'type': 'eq',
'fun': restricao}, bounds=limites)
x_tangente = resultado.x
```

```
vteta = -resultado.fun
Sigma_t = np.sqrt(np.dot(x_tangente.T, np.dot(Q, x_tangente)))
R_t = np.dot(RM_ativos.T, x_tangente)
S_ativos = np.sqrt(np.diag(Q))
Sig_c = np.linspace(0, 5, 100)
R_c = Rf + vteta * Sig_c
risco_frontal = []
retorno_frontal = []
for k in np.linspace(R_t, max(RM_ativos) * 1.5, 100):
    def func_frontal(x):
        return np.sqrt(np.dot(x.T, np.dot(Q, x)))
        {'type': 'eq', 'fun': restricao},
        \{'type': 'eq', 'fun': lambda x, k=k: np.dot(RM_ativos.T, x) - k
    ]
    resultado = minimize(func_frontal,
    x0, constraints=restricoes, bounds=limites)
    if resultado.success:
        CART_OTM = resultado.x
        risco_frontal.append(np.sqrt(np.dot
        (CART_OTM.T, np.dot(Q, CART_OTM))))
        retorno_frontal.append(np.dot
        (RM_ativos.T, CART_OTM))
plt.figure(figsize=(10, 8))
plt.plot(Sig_c, R_c,
label='Reta Tangente', color='blue')
for i in range(n):
    plt.plot(S_ativos[i], RM_ativos[i], 'r*')
    plt.text(S_ativos[i], RM_ativos[i],
    nomes_ativos[i], fontsize=7, ha='right')
plt.plot(Sigma_t, R_t, 'g*',
label='Carteira Tangente')
plt.text(Sigma_t, R_t,
'Carteira Tangente',
fontsize=7, ha='left', color='green')
plt.plot(risco_frontal,
retorno_frontal, 'm--',
```

```
label='Fronteira Eficiente')

plt.title('Risco vs Retorno')
plt.xlabel('Risco')
plt.ylabel('Retorno')
plt.grid(True)
plt.legend()
plt.show()
```

Implementação Computacional com Ativo Livre de Risco Com Venda a Descoberto (CVD)

```
import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt
nomes_ativos = ["PETR4", "BBDC3",
"RAIL3", "ABEV3", "CPLE6", "GOAU4",
"JBSS3", "LREN3", "MRVE3", "RADL3"]
retornos = np.array([
    [3.86, 0.84, -4.50, -1.53,
    -0.69, -4.3, 6.13, 4.93, 3.31, -2.47],
    [-8.53, -7.31, -8.47, 1.71,
    -2.3, 4.1, -9.63, 7.14, -3.08, -7.51],
    [8.25, 26.1, -1.35, 11.05, 3.37,
    -0.54, 3.8, 28.28, 11, -0.14],
    [-1.70, 0.51, 6.90, 1.49, 8.49,
    -0.19, 4.49, 6.25, 0.75, 7.67],
    [0.90, 1.05, 5.12, -1.3, 2.42,
    -0.56, 11.89, -3.69, -3.47, 2.43],
    [-6.48, -7.23, -1.79, -4.86,
    -0.11, 2.94, 23.04, -14.42, 3.28, -1.99],
    [15.49, -2.85, -9.43, -2.72,
    -5.05, 2.82, 9.02, -9.72, -13.99, -6.2],
    [-15.42, 3.72, -2.46, -0.72,
    -5.87, 2.27, -6.76, 8.51, 2.23, 2.74],
    [-0.77, -9.97, -1.47, -3.82,
    0.89, 2.02, -1.58, -1.56, -3.3, 5.3
    [8.62, -10.37, 0.48, -4.73,
    -2.22, -8.75, -5.94, -7.86, -29.83, -13.95],
    [3.70, 11.65, 0.22, 5.53,
    9.51, 5.64, 7.32, 7.49, 16.13, 5.06],
    [3.37, 16.35, 2.64, 6.45, 12.75, 7.74, 15.88, 33.52, 17.21, 8.84],
    [0.29, -2.79, -2.23, -1.91,
    -2.73, -7.35, 10.97, -8.51, -22.68, -6.41],
    [8.45, -4.26, 2.10, -5.27,
    3.46, -5.67, -1.9, -15.25, -6.07, 0.51],
    [2.67, -10.74, -3.83, -6.86,
    3.59, -12.13, -2.02, -14.51, -18.27, -5.14],
    [5.35, 1.55, 4.68, -3.57,
    0.84, 16.33, 7.56, -6.25, 20.14, -1.92],
    [20.46, 11.83, 6.63, 6.94,
    11.73, 5.44, 9.77, 3.71, 14.78, 4.48],
    [10.21, 7, 5.69, 1.77, -7.48,
```

```
-1.24, -6.15, 22.79, 40, 12.11],
    [12.95, 4.97, 4.87, -1.19,
    15.56, -1.44, 0.28, -4.41, 12.85, 7.9],
    [-7.09, 1.96, 4.96, 7.02,
    -1.56, -5.18, -6.98, -10.22, 8.14, 7.8],
    [-3.18, -7.64, -2.29, -1.98,
    -9.27, -13.18, -4.43, -13.78, -15.95, -8.66],
    [6.41, -2.33, -1.24, -5.92,
    -1.77, 11.72, -8.69, 5.62, -7.63, 4.68],
    [-8.10, -1.98, -4.37, -3.99,
    -2.1, -5.26, -0.27, -10.75, -11.53, 3.14],
    [2.22, -17.22, -12.10, -0.5,
    13.57, 26.57, -8.08, -25.08, -15.62, -12.39]
])
livre = np.array([0.0114, 0.0092,
0.0119, 0.0088, 0.0109, 0.0110,
0.0106, 0.0120, 0.0093, 0.0105,
            0.0091, 0.0081,
            0.0106, 0.0068, 0.0091, 0.0089, 0.0106,
            0.0109, 0.0083, 0.0091, 0.0093,
            0.0093, 0.0083, 0.0091])
retorno_livre_risco = np.mean(livre)
Q = np.cov(retornos, rowvar=False)
m, n = retornos.shape
RM_ativos = np.mean(retornos, axis=0)
x0 = np.ones(n) / n
limites = [(None, None) for _ in range(n)]
def teta(x):
    risco = np.sqrt(np.dot(x.T, np.dot(Q, x)))
    retorno = np.dot(RM_ativos.T, x) - retorno_livre_risco
    return -retorno / risco
def restricao(x):
    return np.sum(x) - 1
resultado = minimize(teta, x0,
constraints={'type': 'eq', 'fun': restricao}, bounds=limites)
x_tangente = resultado.x
```

```
vteta = -resultado.fun
Sigma_t = np.sqrt(np.dot(x_tangente.T, np.dot(Q, x_tangente)))
R_t = np.dot(RM_ativos.T, x_tangente)
S_ativos = np.sqrt(np.diag(Q))
Sig_c = np.linspace(0, 5, 100)
R_c = retorno_livre_risco + vteta * Sig_c
risco frontal = []
retorno_frontal = []
for k in np.linspace(R_t, max(RM_ativos) * 1.5, 100):
    def func_frontal(x):
        return np.sqrt(np.dot(x.T, np.dot(Q, x)))
    restricoes = [
        {'type': 'eq', 'fun': restricao},
        {'type': 'eq', 'fun':
        lambda x, k=k: np.dot(RM_ativos.T, x) - k}
    1
    resultado = minimize(func_frontal,
    x0, constraints=restricoes, bounds=limites)
    if resultado.success:
        CART_OTM = resultado.x
        risco_frontal.append(np.sqrt(np.dot(CART_OTM.T,
        np.dot(Q, CART_OTM))))
        retorno_frontal.append(np.dot(RM_ativos.T,
        CART_OTM))
plt.figure(figsize=(10, 8))
plt.plot(Sig_c, R_c,
label='Reta Tangente', color='blue')
for i in range(n):
    plt.plot(S_ativos[i], RM_ativos[i], 'r*')
    plt.text(S_ativos[i],
    RM_ativos[i], nomes_ativos[i], fontsize=7, ha='right')
plt.plot(Sigma_t, R_t,
'g*', label='Carteira Tangente')
plt.text(Sigma_t, R_t,
'Carteira Tangente',
fontsize=7, ha='left', color='green')
```

```
plt.plot(risco_frontal,
  retorno_frontal, 'm--', label='Fronteira Eficiente')

plt.title('Risco vs Retorno')
plt.xlabel('Risco')
plt.ylabel('Retorno')
plt.grid(True)
plt.legend()
plt.show()
```

Implementação Computacional com Modelo de Índice Único (MIU)

```
\begin{verbatim}
import numpy as np
livres = [
    0.0114, 0.0092, 0.0119, 0.0088,
    0.0109, 0.0110, 0.0106, 0.0120, 0.0093, 0.0105,
    0.0091, 0.0081, 0.0106, 0.0068,
    0.0091, 0.0089, 0.0106, 0.0109, 0.0083, 0.0091,
    0.0093, 0.0093, 0.0083, 0.0091
retornos = np.array([
    [3.86, 0.84, -4.50,
    -1.53, -0.69, -4.3, 6.13, 4.93, 3.31, -2.47],
    [-8.53, -7.31, -8.47,
    1.71, -2.3, 4.1, -9.63, 7.14, -3.08, -7.51
    [8.25, 26.1, -1.35,
    11.05, 3.37, -0.54, 3.8, 28.28, 11, -0.14],
    [-1.70, 0.51, 6.90,
    1.49, 8.49, -0.19, 4.49, 6.25, 0.75, 7.67],
    [0.90, 1.05, 5.12,
    -1.3, 2.42, -0.56, 11.89, -3.69, -3.47, 2.43],
    [-6.48, -7.23, -1.79,
    -4.86, -0.11, 2.94, 23.04, -14.42, 3.28, -1.99],
    [15.49, -2.85, -9.43,
    -2.72, -5.05, 2.82, 9.02, -9.72, -13.99, -6.2],
    [-15.42, 3.72, -2.46,
    -0.72, -5.87, 2.27, -6.76, 8.51, 2.23, 2.74],
    [-0.77, -9.97, -1.47,
    -3.82, 0.89, 2.02, -1.58, -1.56, -3.3, 5.3],
    [8.62, -10.37, 0.48,
    -4.73, -2.22, -8.75, -5.94, -7.86, -29.83, -13.95],
    [3.70, 11.65, 0.22, 5.53,
    9.51, 5.64, 7.32, 7.49, 16.13, 5.06],
    [3.37, 16.35, 2.64, 6.45,
    12.75, 7.74, 15.88, 33.52, 17.21, 8.84],
    [0.29, -2.79, -2.23, -1.91,
    -2.73, -7.35, 10.97, -8.51, -22.68, -6.41],
    [8.45, -4.26, 2.10, -5.27,
    3.46, -5.67, -1.9, -15.25, -6.07, 0.51],
    [2.67, -10.74, -3.83, -6.86,
    3.59, -12.13, -2.02, -14.51, -18.27, -5.14],
    [5.35, 1.55, 4.68, -3.57, 0.84,
```

```
16.33, 7.56, -6.25, 20.14, -1.92],
    [20.46, 11.83, 6.63, 6.94, 11.73, 5.44, 9.77, 3.71, 14.78, 4.48],
    [10.21, 7, 5.69, 1.77, -7.48,
    -1.24, -6.15, 22.79, 40, 12.11],
    [12.95, 4.97, 4.87, -1.19, 15.56, -1.44, 0.28, -4.41, 12.85, 7.9],
    [-7.09, 1.96, 4.96, 7.02, -1.56,
    -5.18, -6.98, -10.22, 8.14, 7.8],
    [-3.18, -7.64, -2.29, -1.98,
    -9.27, -13.18, -4.43, -13.78, -15.95, -8.66],
    [6.41, -2.33, -1.24, -5.92,
    -1.77, 11.72, -8.69, 5.62, -7.63, 4.68],
    [-8.10, -1.98, -4.37, -3.99,
    -2.1, -5.26, -0.27, -10.75, -11.53, 3.14],
    [2.22, -17.22, -12.10, -0.5,
    13.57, 26.57, -8.08, -25.08, -15.62, -12.39]
])
ibovespa = np.mean(retornos, axis=1)
# Mantendo o código original
m, n = retornos.shape
RM_mercado = np.mean(ibovespa)
VAR mercado = np.var(ibovespa)
RM_ativos = np.mean(retornos, axis=0).reshape(-1, 1)
VAR_ativos = np.var(retornos, axis=0).reshape(-1, 1)
# (a) Cálculo dos betas
B = np.zeros((n, 1))
for i in range(n):
    C = np.cov(retornos[:, i], ibovespa)
    B[i] = C[0, 1] / VAR\_mercado
print("Betas dos ativos:")
print(B)
# (b) Cálculo da matriz de covariâncias
Q = np.zeros((n, n))
for i in range(n):
    for j in range(n):
        if i == j:
            Q[i, j] = VAR_ativos[i]
        else:
            Q[i, j] = B[i] * B[j] * VAR_mercado
print("Matriz de Covariâncias (Q):")
print(Q)
# (c) Calculando o retorno médio de cada ação
RET_MED_ativos = np.zeros(n)
```

```
for i in range(n):
    RET_MED_ativos[i] = np.mean(retornos[:, i])
print("Retornos médios de cada ativo (Ri):")
print(RET_MED_ativos)
# (d) Cálculo do alpha das ações
A = np.zeros(n)
for i in range(n):
    A[i] = RET_MED_ativos[i] - B[i] * RM_mercado
print("Alpha dos ativos:")
print(A)
# (e) Calcular a variância dos erros
VAR_e = np.zeros(n)
for i in range(n):
    erro = np.zeros(m)
    for j in range(m):
        erro[j] = retornos[j, i] - (A[i] + B[i] * ibovespa[j])
    VAR_e[i] = np.mean(erro**2)
print("Variância dos erros (e_i):")
print(VAR_e)
```

Implementação Computacional com Modelo de Índice Único (MIU) com resultados (SVD) e (CVD)

```
import numpy as np
from scipy.optimize import minimize
livres = [
    0.0114, 0.0092, 0.0119, 0.0088,
    0.0109, 0.0110, 0.0106, 0.0120, 0.0093, 0.0105,
    0.0091, 0.0081, 0.0106, 0.0068,
    0.0091, 0.0089, 0.0106, 0.0109, 0.0083, 0.0091,
    0.0093, 0.0093, 0.0083, 0.0091
1
retornos = np.array([
    [3.86, 0.84, -4.50, -1.53, -0.69, -4.3,
    6.13, 4.93, 3.31, -2.47],
    [-8.53, -7.31, -8.47, 1.71, -2.3, 4.1,
    -9.63, 7.14, -3.08, -7.51],
    [8.25, 26.1, -1.35, 11.05, 3.37, -0.54,
    3.8, 28.28, 11, -0.14
    [-1.70, 0.51, 6.90, 1.49, 8.49, -0.19,
    4.49, 6.25, 0.75, 7.67],
    [0.90, 1.05, 5.12, -1.3, 2.42, -0.56,
    11.89, -3.69, -3.47, 2.43],
    [-6.48, -7.23, -1.79, -4.86, -0.11,
    2.94, 23.04, -14.42, 3.28, -1.99],
    [15.49, -2.85, -9.43, -2.72, -5.05,
    2.82, 9.02, -9.72, -13.99, -6.21,
    [-15.42, 3.72, -2.46, -0.72, -5.87,
    2.27, -6.76, 8.51, 2.23, 2.74],
    [-0.77, -9.97, -1.47, -3.82, 0.89,
    2.02, -1.58, -1.56, -3.3, 5.3
    [8.62, -10.37, 0.48, -4.73, -2.22,
    -8.75, -5.94, -7.86, -29.83, -13.95],
    [3.70, 11.65, 0.22, 5.53, 9.51, 5.64, 7.32,
    7.49, 16.13, 5.06],
    [3.37, 16.35, 2.64, 6.45, 12.75, 7.74,
    15.88, 33.52, 17.21, 8.84],
    [0.29, -2.79, -2.23, -1.91, -2.73, -7.35,
    10.97, -8.51, -22.68, -6.41
    [8.45, -4.26, 2.10, -5.27, 3.46, -5.67,
    -1.9, -15.25, -6.07, 0.51],
    [2.67, -10.74, -3.83, -6.86, 3.59,
    -12.13, -2.02, -14.51, -18.27, -5.14],
    [5.35, 1.55, 4.68, -3.57, 0.84, 16.33,
    7.56, -6.25, 20.14, -1.92],
    [20.46, 11.83, 6.63, 6.94, 11.73,
```

```
5.44, 9.77, 3.71, 14.78, 4.48],
    [10.21, 7, 5.69, 1.77, -7.48, -1.24,
    -6.15, 22.79, 40, 12.11],
    [12.95, 4.97, 4.87, -1.19, 15.56,
    -1.44, 0.28, -4.41, 12.85, 7.9],
    [-7.09, 1.96, 4.96, 7.02, -1.56,
    -5.18, -6.98, -10.22, 8.14, 7.8],
    [-3.18, -7.64, -2.29, -1.98, -9.27,
    -13.18, -4.43, -13.78, -15.95, -8.66],
    [6.41, -2.33, -1.24, -5.92, -1.77,
    11.72, -8.69, 5.62, -7.63, 4.68],
    [-8.10, -1.98, -4.37, -3.99, -2.1,
    -5.26, -0.27, -10.75, -11.53, 3.14],
    [2.22, -17.22, -12.10, -0.5, 13.57,
    26.57, -8.08, -25.08, -15.62, -12.39]
])
ibovespa = np.mean(retornos, axis=1)
m, n = retornos.shape
RM_mercado = np.mean(ibovespa)
VAR_mercado = np.var(ibovespa)
B = np.zeros((n, 1))
for i in range(n):
    C = np.cov(retornos[:, i], ibovespa)
    B[i] = C[0, 1] / VAR\_mercado
Q = np.zeros((n, n))
for i in range(n):
    for j in range(n):
        if i == j:
            Q[i, j] = np.var(retornos[:, i])
        else:
            Q[i, j] = B[i] * B[j] * VAR_mercado
RET_MED_ativos = np.mean(retornos, axis=0)
def objetivo(x, Q):
    return x.T @ Q @ x
def restricao iqualdade(x):
    return np.sum(x) - 1
def restricao_lb(x):
```

return x

```
x0 = np.ones(n) / n
res_cvd = minimize(objetivo, x0, args=(Q),
constraints={'type': 'eq', 'fun': restricao_igualdade})
x1 = res cvd.x
Ret_cart_cvd_periodo = retornos @ x1
Ret_cart_cvd = np.mean(Ret_cart_cvd_periodo)
Var cart cvd = x1.T @ Q @ x1
Risco_cart_cvd = np.sqrt(Var_cart_cvd)
bounds = [(0, None) for _ in range(n)]
res_svd = minimize(objetivo, x0, args=(Q),
constraints={'type': 'eq', 'fun': restricao_igualdade}, bounds=bounds)
x2 = res_svd.x
Ret_cart_svd_periodo = retornos @ x2
Ret_cart_svd = np.mean(Ret_cart_svd_periodo)
Var\_cart\_svd = x2.T @ Q @ x2
Risco_cart_svd = np.sqrt(Var_cart_svd)
print("Carteira Ótima (Com Venda a Descoberto):")
print(f"Retorno da Carteira CVD: {Ret cart cvd}")
print(f"Variância da Carteira CVD: {Var_cart_cvd}")
print(f"Risco da Carteira CVD: {Risco_cart_cvd}")
print("\nCarteira Ótima (Sem Venda a Descoberto):")
print(f"Retorno da Carteira SVD: {Ret_cart_svd}")
print(f"Variância da Carteira SVD: {Var_cart_svd}")
print(f"Risco da Carteira SVD: {Risco_cart_svd}")
```