

Факультет программной инженерии и компьютерной техники Основы профессиональной деятельности

Лабораторная работа №4 Вариант 2022

Преподаватель:

Покид Александр Сергеевич

Выполнил:

Андросов Иван Сергеевич

P3110

Санкт-Петербург 2021

Задание:

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

23F:	+ 0200	24D:	EE0B	6E3:	AC01
240:	EE18	24E:	AE09	6E4:	F307
241:	AE14	24F:	0C00	6E5:	6E09
242:	0700	250:	D6E3	6E6:	F205
243:	0C00	251:	0800	6E7:	F004
244:	D6E3	252:	0700	6E8:	4E06
245:	0800	253:	6E05	6E9:	4C01
246:	4E12	254:	EE04	6EA:	4E05
247:	EE11	255:	0100	6EB:	CE01
248:	AE0E	256:	ZZZZ	6EC:	AE02
249:	0C00	257:	YYYY	6ED:	EC01
24A:	D6E3	258:	XXXX	6EE:	0A00
24B:	0800	259:	0C9E	6EF:	F363
24C:	4E0C			6F0:	0010

2

Программа:

		I	1	
Адрес	Код	мнемоника	расшифровка	Режим адресации
	команды			
1				

23F	0200	CLA	Очистка аккумулятора, старт программы	безадресная
240	EE18	ST (IP+24)	AC -> 259	Прямая относительная
241	AE14	LD (IP+20)	RAM(256) -> AC	Прямая относительная
242	0700	INC	AC + 1 -> AC	безадресная
244	0C00	PUSH	AC -> -(SP)	безадресная
243	D6E3	CALL 6E3	SP – 1 -> SP IP -> (SP) 6E3 -> IP	Прямая абсолютная
245	0800	POP	(SP)+ -> AC	безадресная
246	4E12	ADD (IP + 18)	RAM(259) + AC -> AC	Прямая относительная
247	EE11	ST (IP + 17)	AC -> 259	Прямая относительная
248	AE0E	LD (IP + 14)	RAM(257) -> AC	Прямая относительная
249	0C00	PUSH	AC -> -(SP)	безадресная
24A	D6E3	CALL 6E3	SP – 1 -> SP IP -> (SP) 6E3 -> IP	Прямая абсолютная
24B	0800	POP	(SP)+ -> AC	безадресная
24C	4E0C	ADD (IP + 12)	RAM (259) + AC -> AC	Прямая относительная
24D	EEOB	ST (IP + 11)	AC -> 259	Прямая относительная
24E	AE09	LD (IP + 9)	RAM(258) -> AC	Прямая относительная
24F	0C00	PUSH	AC -> -(SP)	безадресная
250	D6E3	CALL 6E3	SP - 1 -> SP IP -> (SP) 6E3 -> IP	Прямая абсолютная
251	0800	POP	(SP)+ -> AC	безадресная
252	0700	INC	AC + 1 -> AC	безадресная
253	6E05	SUB (IP + 5)	AC – RAM(259) -> AC	Прямая относительная
254	EE04	ST (IP + 4)	AC -> 259	Прямая относительная
255	0100	HLT	Конец программы	безадресная
256	ZZZZ	Число Z		
257	YYYY	Число Ү		
258	XXXX	Число X		

259	BUFF	Буффер, он же	
		результат	

6E3	AC01	LD	SXT_CR(0, 7) -> BR,	Косвенная
			BR + SP -> DR,	относительная, со
			DR -> AR; MEM(AR) -> DR	смещением (SP)
			(равносильно LD	
			переменная)	
6E4	F307	BPL 07	IF N==0 THEN 6EC -> IP	Команда ветвления
6E5	6E09	SUB (IP + 9)	AC – RAM(6EF) -> AC	Прямая относительная
6E6	F205	BMI 05	IF N==1 THEN 6EC -> IP	Команда ветвления
6E7	F004	BEQ 04	IF Z==1 THEN 6EC -> IP	Команда ветвления
6E8	4E06	ADD (IP + 6)	RAM(6EF) + AC -> AC	Прямая относительная
6E9	4C01	ADD	SXT_CR(0, 7) -> BR,	Косвенная
			BR + SP -> DR,	относительная, со
			DR -> AR; MEM(AR) -> DR	смещением (SP)
			(равносильно ADD	
			переменная)	
6EA	4E05	ADD (IP + 5)	RAM(6F0) + AC -> AC	Прямая относительная
6EB	CE01	JUMP (IP + 1)	6ED -> IP	Прямая относительная
6EC	AE02	LD (IP + 2)	RAM(6EF) -> AC	Прямая относительная
6ED	EC01	ST	SXT_CR(0, 7) -> BR,	Косвенная
			BR + SP -> DR,	относительная, со
			DR -> AR; MEM(AR) -> DR	смещением (SP)
			(равносильно ST	
			переменная)	
6EE	0A00	RET	(SP)+ -> IP, возврат из	безадресная
			подпрограммы	
6EF	F363	-3229		
6F0	0010	16		

Описание программы:

1. Задача программы вычислить результат (R) для следующей функции:

$$R = f(x) - f(z+1) - f(y) + 1$$

Где

$$f(x) = \begin{cases} x \ge 0 : -3229 \\ x < 0 : \begin{cases} x > -3229 : 2x + 16 \\ x \le -3229 : -3229 \end{cases}$$

2. Область представления:

X, Y, Z, A, B, R - 16-разрядные целые знаковые числа, представимые в дополнительном коде.

3. Область допустимых значений исходных данных и результата (для текущих А, В):

R: [-3 256; 6 473]

X, Y, Z: [-32 768; 32 767]

4. Расположение в памяти ЭВМ программы, исходных данных и результата:

6ЕГ - А здесь содержится первая константа;

6F0 - В здесь содержится вторая константа;

256-258 - Z, Y, X соответственно, параметры функции

259 – R содержит результат выполнения программы;

5. Адрес первой выполняемой команды в основной программе: 23F; Адрес последней выполняемой команды в основной программе: 255;

Адрес первой выполняемой команды в подпрограмме: 6E3 Адрес последней выполняемой команды в подпрограмме: 6EE

Алгоритм (сокращенной) работы подпрограммы на примере Z на языке Java:

```
AC - аккумулятор;

Z - число находящееся в ячейке 7FF (вершина стека)

+ 3229 ~ SUB 0XF363

- 3229 ~ ADD 0XF363

AC = Z;

if(AC <= -3229 || AC >= 0) {

Z = -3229;

} else {

Z = 2Z + 16;

}

AC = Z;
```

График зависимости выдаваемых значений подпрограммы от поступаемых значений:

График возращаемых значений в X = [-3228; -1] прерывен, потому что с каждым увеличением X на единицу, функция возращает значение, превосходящее предыдущее на 2 единицы.

ТРАССИРОВКА:

Следуя формулам программы, введя значения

 $Z = 0001_{16} = 1_{10}$,

 $Y_{0x257} = FFF1_{16} = -15_{10}$,

 $X_{0x258} = 0001_{16} = 1_{10}$

в результате работы подпрограммы мы получим

f(Z + 1) = -3229,

$$f(Y) = -14,$$

$$f(X) = -3229;$$

и ожидаем общий результат программы, сохраненный в ячейке 0х0259 (он же останется в АС по завершению) -3229 + 3229 + 14 + 1 = 15_{10} = **000F**₁₆

Проведем трассировку:

Адрес	Значение	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адрес	Знач.
23F	0200	23F	0000	000	0000	000	0000	0000	004	0100		
23F	0200	240	0200	23F	0200	000	023F	0000	004	0100		
240	EE18	241	EE18	259	0000	000	0018	0000	004	0100	259	0000
241	AE14	242	AE14	256	0001	000	0014	0001	000	0000		
242	0700	243	0700	242	0700	000	0242	0002	000	0000		
243	0C00	244	0C00	7FF	0002	7FF	0243	0002	000	0000	7FF	0002
244	D6E3	6E3	D6E3	7FE	0245	7FE	D6E3	0002	000	0000	7FE	0245
6E3	AC01	6E4	AC01	7FF	0002	7FE	0001	0002	000	0000		
6E4	F307	6EC	F307	6E4	F307	7FE	0007	0002	000	0000		
6EC	AE02	6ED	AE02	6EF	F363	7FE	0002	F363	008	1000		
6ED	EC01	6EE	EC01	7FF	F363	7FE	0001	F363	008	1000	7FF	F363
6EE	0A00	245	0A00	7FE	0245	7FF	06EE	F363	008	1000		
245	0800	246	0800	7FF	F363	000	0245	F363	008	1000		
246	4E12	247	4E12	259	0000	000	0012	F363	008	1000		
247	EE11	248	EE11	259	F363	000	0011	F363	800	1000	259	F363
248	AE0E	249	AE0E	257	FFF1	000	000E	FFF1	008	1000		
249	0C00	24A	0C00	7FF	FFF1	7FF	0249	FFF1	008	1000	7FF	FFF1
24A	D6E3	6E3	D6E3	7FE	024B	7FE	D6E3	FFF1	008	1000	7FE	024B
6E3	AC01	6E4	AC01	7FF	FFF1	7FE	0001	FFF1	008	1000		
6E4	F307	6E5	F307	6E4	F307	7FE	06E4	FFF1	008	1000		
6E5	6E09	6E6	6E09	6EF	F363	7FE	0009	0C8E	001	0001		
6E6	F205	6E7	F205	6E6	F205	7FE	06E6	0C8E	001	0001		
6E7	F004	6E8	F004	6E7	F004	7FE	06E7	0C8E	001	0001		
6E8	4E06	6E9	4E06	6EF	F363	7FE	0006	FFF1	008	1000		
6E9	4C01	6EA	4C01	7FF	FFF1	7FE	0001	FFE2	009	1001		
6EA	4E05	6EB	4E05	6F0	0010	7FE	0005	FFF2	008	1000		

6EB	CE01	6ED	CE01	6EB	06ED	7FE	0001	FFF2	008	1000		
6ED	EC01	6EE	EC01	7FF	FFF2	7FE	0001	FFF2	008	1000	7FF	FFF2
6EE	0A00	24B	0A00	7FE	024B	7FF	06EE	FFF2	800	1000		
24B	0800	24C	0800	7FF	FFF2	000	024B	FFF2	800	1000		
24C	4EOC	24D	4E0C	259	F363	000	000C	F355	009	1001		
24D	EEOB	24E	EEOB	259	F355	000	000B	F355	009	1001	259	F355
24E	AE09	24F	AE09	258	0001	000	0009	0001	001	0001		
24F	0C00	250	0C00	7FF	0001	7FF	024F	0001	001	0001	7FF	0001
250	D6E3	6E3	D6E3	7FE	0251	7FE	D6E3	0001	001	0001	7FE	0251
6E3	AC01	6E4	AC01	7FF	0001	7FE	0001	0001	001	0001		
6E4	F307	6EC	F307	6E4	F307	7FE	0007	0001	001	0001		
6EC	AE02	6ED	AE02	6EF	F363	7FE	0002	F363	009	1001		
6ED	EC01	6EE	EC01	7FF	F363	7FE	0001	F363	009	1001	7FF	F363
6EE	0A00	251	0A00	7FE	0251	7FF	06EE	F363	009	1001		
251	0800	252	0800	7FF	F363	000	0251	F363	009	1001		
252	0700	253	0700	252	0700	000	0252	F364	008	1000		
253	6E05	254	6E05	259	F355	000	0005	000F	001	0001		
254	EE04	255	EE04	259	000F	000	0004	000F	001	0001	259	000F
255	0100	256	0100	255	0100	000	0255	000F	001	0001		

Результат оказался равен ожидаемому. Программа расшифрована верно.

Вывод:

В процессе выполнения данной лабораторной работы я лучше познакомился с разными режимами адресации, в особенности косвенной относительной адресации со смещением относительно регистра SP, также мною был изучен способ организации подпрограмм, передача параметров и получение результата работы подпрограммы.

Трассировка 2

Числа:

X = 0x8000

Y = OxABAB

Z = 0x2222

все числа попадают в диапазон (-inf; -3229] [0; +inf)

соответственно подпрограмма будет возвращать -3229 во всех случах,

значит функция программы будет выглядеть вот так:

$$R = -3229 - (-3229) - (-3229) + 1 = 3229 + 1 = 3230$$

значит ожидается, что результат Res в ячейке 0x259 будет равен 3230_{10} , или в шестнадцатеричной CC: $0C9E_{16}$.

Проведем трассировку:

Адрес	Знач.	IP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адрес	Знач.
23F	0200	23F	0000	000	0000	000	0000	0000	004	0100		
23F	0200	240	0200	23F	0200	000	023F	0000	004	0100		
240	EE18	241	EE18	259	0000	000	0018	0000	004	0100	259	0000
241	AE14	242	AE14	256	2222	000	0014	2222	000	0000		
242	0700	243	0700	242	0700	000	0242	2223	000	0000		
243	0C00	244	0C00	7FF	2223	7FF	0243	2223	000	0000	7FF	2223
244	D6E3	6E3	D6E3	7FE	0245	7FE	D6E3	2223	000	0000	7FE	0245
6E3	AC01	6E4	AC01	7FF	2223	7FE	0001	2223	000	0000		
6E4	F307	6EC	F307	6E4	F307	7FE	0007	2223	000	0000		
6EC	AE02	6ED	AE02	6EF	F363	7FE	0002	F363	008	1000		
6ED	EC01	6EE	EC01	7FF	F363	7FE	0001	F363	008	1000	7FF	F363
6EE	0A00	245	0A00	7FE	0245	7FF	06EE	F363	008	1000		
245	0800	246	0800	7FF	F363	000	0245	F363	008	1000		
246	4E12	247	4E12	259	0000	000	0012	F363	008	1000		
247	EE11	248	EE11	259	F363	000	0011	F363	008	1000	259	F363
248	AE0E	249	AE0E	257	ABAB	000	000E	ABAB	008	1000		
249	0C00	24A	0C00	7FF	ABAB	7FF	0249	ABAB	008	1000	7FF	ABAB
24A	D6E3	6E3	D6E3	7FE	024B	7FE	D6E3	ABAB	800	1000	7FE	024B

6E3	AC01	6E4	AC01	7FF	ABAB	7FE	0001	ABAB	800	1000		
6E4	F307	6E5	F307	6E4	F307	7FE	06E4	ABAB	800	1000		
6E5	6E09	6E6	6E09	6EF	F363	7FE	0009	B848	800	1000		
6E6	F205	6EC	F205	6E6	F205	7FE	0005	B848	008	1000		
6EC	AE02	6ED	AE02	6EF	F363	7FE	0002	F363	008	1000		
6ED	EC01	6EE	EC01	7FF	F363	7FE	0001	F363	800	1000	7FF	F363
6EE	0A00	24B	0A00	7FE	024B	7FF	06EE	F363	800	1000		
24B	0800	24C	0800	7FF	F363	000	024B	F363	800	1000		
24C	4EOC	24D	4EOC	259	F363	000	000C	E6C6	009	1001		
24D	EEOB	24E	EEOB	259	E6C6	000	000B	E6C6	009	1001	259	E6C6
24E	AE09	24F	AE09	258	8000	000	0009	8000	009	1001		
24F	0C00	250	0C00	7FF	8000	7FF	024F	8000	009	1001	7FF	8000
250	D6E3	6E3	D6E3	7FE	0251	7FE	D6E3	8000	009	1001	7FE	0251
6E3	AC01	6E4	AC01	7FF	8000	7FE	0001	8000	009	1001		
6E4	F307	6E5	F307	6E4	F307	7FE	06E4	8000	009	1001		
6E5	6E09	6E6	6E09	6EF	F363	7FE	0009	8C9D	800	1000		
6E6	F205	6EC	F205	6E6	F205	7FE	0005	8C9D	008	1000		
6EC	AE02	6ED	AE02	6EF	F363	7FE	0002	F363	008	1000		
6ED	EC01	6EE	EC01	7FF	F363	7FE	0001	F363	008	1000	7FF	F363
6EE	0A00	251	0A00	7FE	0251	7FF	06EE	F363	008	1000		
251	0800	252	0800	7FF	F363	000	0251	F363	800	1000		
252	0700	253	0700	252	0700	000	0252	F364	800	1000		
253	6E05	254	6E05	259	E6C6	000	0005	0C9E	001	0001		
254	EE04	255	EE04	259	0C9E	000	0004	0C9E	001	0001	259	0C9E
255	0100	256	0100	255	0100	000	0255	0C9E	001	0001		

Результат равен ожидаемому. Программа расшифрована верно.