Minimal HW

Problem 1:

- a. Quixote Media had the largest annual revenue F.
- b. Nadir Software had the lowest net profit and Acme Computer had the largest annual revenue T.
- c. Acme Computer had the largest net profit or Quixote Media had the largest net profit T.
- d. If Quixote Media had the smallest net profit, then Acme Computer had the largest annual revenue **T** since the conclusion is true even if the condition is False.
- e. Nadir Software had the smallest net profit if and only if Acme Computer had the largest annual revenue **T** since the condition and conclusion are both True.

Problem 2:

- **p:** It is below freezing.
- q: It is snowing.
- a. It is below-freezing and snowing: $p \wedge q$.
- b. It is below freezing and not snowing: $p \wedge \neg q$.
- c. It is not below freezing and it is not snowing: $\neg p \wedge \neg q$.
- d. It is either snowing or below freezing: $q \vee p$.
- e. If it is below freezing, it is also snowing: p o q
- f. Either it is below freezing or snowing, but it is not snowing if it is below freezing: $(p \lor q) \land (p \to \neg q)$.
- g. That it is below freezing is necessary and sufficient for it to be snowing: $p \leftrightarrow q$.

Problem 3:

- a. $p o
 eg p : 2^1$ rows.
- b. $(p \vee \neg r)(q \vee \neg s) : 2^4$ rows.
- c. $qp \neg s \neg r \neg tu : 2^6$ rows.
- d. (prt) o (qt): 2^4 rows.

Problem 4:

р	eg p	$p \wedge \neg p$	$p \vee \neg p$	
Т	F	F	Т	
F	Т	F	Т	
р	q	p ee eg q	$(p \vee \neg q) \to q$	
Т	Т	Т	Т	
F	F	Т	F	
Т	F	Т	F	
F	T	F	Т	
р	q	p ee q	$p \wedge q$	$(p\vee q)\to (p\wedge q)$
Т	Т	Т	Т	Т
F	F	F	F	Т
Т	F	Т	F	F
г	т	т	г	г

р	q	p o q	eg q o eg p	$(p ightarrow q) \iff (\lnot q ightarrow \lnot p)$
Т	Т	Т	Т	Т
F	F	Т	Т	Т
Т	F	F	F	Т
F	Т	Т	Т	Т
р	q	p o q	q o p	(p o q) o (q o p)
Т	Т	Т	Т	Т
F	F	Т	Т	Т
Т	F	F	Т	Т
F	-	Т	F	F

Problem 5:

p1: I do not know.

p2: I do not know.

p3: No, not everyone wants coffee.

$$eg p3 \land
eg (p3 \lor p2 \lor p1)
ightarrow (
eg p3 \land p3) \lor (
eg p3 \land p2) \lor (
eg p3 \land p1)$$

 $F \lor (T \land p2) \lor (T \land p1) \equiv T$ so either p1 or p2 wants a coffee.

Problem 6:

a. $rich \wedge happy$ negation: $\neg rich \vee \neg happy$

b. $bicycle \lor run$ negation: $\neg bicycle \land \neg run$

c. $walks \lor takesbus$ negation: $\neg walks \land \neg takesbus$

d. $smart \wedge hardworking$ negation: $\neg smart \vee \neg hardworking$

Problem 7:

p	q	$p \wedge q$	p ee q	$(p \wedge q) \to p$	p o (p ee q)
Т	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т
Т	F	F	Т	Т	Т
F	F	F	F	Т	Т

$\neg p$	$\neg q$	p o q	eg p o (p o q)	$(p \wedge q) ightarrow \ (p ightarrow q)$	$\lnot(p o q) o p$	eg(p o q) o eg q
F	F	Т	Т	Т	Т	Т
Т	F	Т	Т	Т	Т	Т
F	Т	F	Т	Т	Т	Т
Т	Т	Т	Т	Т	Т	Т

Problem 8:

a. if p is true then the conditional statement/hypothesis is T since p is a conclusion and is true.

b. if p is true then $p \lor q$ is also true which is a conclusion of the conditional statement.

c. p o q must be false if only if q is false and p is true hence $\neg p o (p o q)$ which F o F is true.

d. $p \wedge q$ must be true if only if p and q is true. This makes p o q true.

e. $\neg(p
ightarrow q)$ must be true if p
ightarrow q is false. This makes p true which is the only case.

f. $\neg(p
ightarrow q)$ must be true if p
ightarrow q is false. This makes q false which is the only case.

Problem 9:

$$egin{aligned} (p
ightarrow r) \wedge (q
ightarrow r) &\equiv (pee q)
ightarrow r \ (
eg pee r) \wedge (
eg qee r) &\equiv (
eg p \wedge
eg q) ee r \ p \wedge
eg r \wedge q \wedge
eg r &\equiv
eg (
eg p \wedge q) \wedge
eg r \end{aligned}$$

Problem 10:

- P(x) can speak Russian.
- Q(x) knows the computer language C++
- a. There is a student at your school who can speak Russian and who knows C++: $\exists x (P(x) \land Q(x))$
- b. There is a student at your school who can speak Russian but who doesn't know C++: $\exists x (P(x) \land \neg Q(x))$
- c. Every student at your school either can speak Russian or knows C++: $\forall x (P(x) \lor Q(x))$
- d. No student at your school can speak Russian or knows C++: $\forall x \neg (P(x) \lor Q(x)) \equiv \forall x (\neg P(x) \land \neg Q(x))$

Problem 11:

- a. $\forall n(n^2 \geq 0)$: True since any integer squared is always positive.
- b. $\exists n(n^2=2)$: False since $\sqrt{2}$ is not an integer.
- c. $\forall n (n^2 \geq n)$: True since $n \times n$ will always be larger or equal to n
- d. $\exists n(n^2 < 0)$: False since a squared integer can not be negative at all.

Problem 12:

- P(x) consists of the integers 0,1,2,3,4
- a. $\exists x P(x) \colon P(0) \lor P(1) \lor P(2) \lor P(3) \lor P(4)$
- b. $\forall x P(x) \colon P(0) \wedge P(1) \wedge P(2) \wedge P(3) \wedge P(4)$
- c. $\exists x \neg P(x) : \neg P(0) \lor \neg P(1) \lor \neg P(2) \lor \neg P(3) \lor \neg P(4)$
- d. $\forall x \neg P(x) : \neg P(0) \land \neg P(1) \land \neg P(2) \land \neg P(3) \land \neg P(4)$
- e. $\neg \exists x P(x) : \neg (P(0) \lor P(1) \lor P(2) \lor P(3) \lor P(4))$
- f. $\neg \forall x P(x) : \neg (P(0) \land P(1) \land P(2) \land P(3) \land P(4))$

Problem 13:

- P(x) students in the class
- H(x) can speak Hindi
- F(x) friendly
- B(x) born in California
- M(x) been in a movie
- L(x) taken a course in logic programming
- a. $\exists x (P(x) \land H(x))$
- b. orall x(P(x) o F(x))
- c. $\exists x (P(x) \land \neg B(x))$
- d. $\exists x (P(x) \land M(x))$
- e. $\neg \forall x (\neg L(x))$

Problem 14:

- M(x,y) x has sent y an e-mail message (assume that all messages are received).
- T(x,y) x has telephoned y .

```
a. \neg M(Chou, Koko)
```

$$\texttt{b.} \ \neg (M(Arlene, Sarah) \lor T(Arlene, Sarah))$$

c.
$$\neg M(Deborah, Jose)$$

d.
$$\forall x M(x, Ken)$$

e.
$$\forall x \neg T(x, Nina)$$

f.
$$\forall x (T(x,Avi) \lor M(x,Avi))$$

g.
$$\exists x \forall y (x
eq y
ightarrow M(x,y))$$

h.
$$\exists x orall y (y
eq x
ightarrow (M(x,y) ee T(x,y))$$

i.
$$\exists x \exists y (x
eq y
ightarrow M(x,y) \wedge M(y,x))$$

j.
$$\exists x M(x,x)$$

k.
$$\exists x \forall y (x
eq y
ightarrow (\lnot M(x,y) \land \lnot T(x,y))$$

I.
$$\exists x orall y (x
eq y \wedge M(x,y) ee T(x,y))$$

m.
$$\exists x \exists y (x \neq y \land M(x,y) \lor T(x,y))$$

n.
$$\exists x \exists y (x
eq y \land \forall z ((x
eq z \land y
eq z) \rightarrow (M(x,z) \lor M(y,z) \lor T(x,z) \lor T(y,z)))$$

Minimal HW 4