MECHANICS

$v_{x0} + a_x t$	a = acceleration
	E = energy
$x = x_0 + v_{x0}t + \frac{1}{2}a_xt^2$	F = force
$v_x^2 = v_{x0}^2 + 2a_x(x - x_0)$	f = frequency
$v_x - v_{x0} + 2u_x(x - x_0)$	h = height
$\nabla \vec{E} = \vec{E}$	I = rotational inertia
$\vec{a} = \frac{\sum \vec{F}}{m} = \frac{\vec{F}_{net}}{m}$	J = impulse
m m	K = kinetic energy
= dp	k = spring constant
$\vec{F} = \frac{d\vec{p}}{dt}$	$\ell = length$
	L = angular momentum
$\vec{J} = \int \vec{F} dt = \Delta \vec{p}$	m = mass
	P = power
$\vec{p} = m\vec{v}$	p = momentum
	r = radius or distance
$\left \vec{F}_f \right \le \mu \left \vec{F}_N \right $	T = period
131-1171	t = time
$\Delta E = W = \int \vec{F} \cdot d\vec{r}$	U = potential energy
	v = velocity or speed
$K = \frac{1}{2}mv^2$	W = work done on a system
2	x = position
dE	μ = coefficient of friction
$p = \frac{dE}{dt}$	θ = angle
	$\tau = \text{torque}$
$\rho = \vec{F} \cdot \vec{v}$	ω = angular speed
	α = angular acceleration
$\Delta U_g = mg\Delta h$	ϕ = phase angle
2	
$a_c = \frac{v^2}{r} = \omega^2 r$	$\vec{F}_{s} = -k\Delta \vec{x}$
r	
$\vec{\tau} = \vec{r} \times \vec{F}$	$U_{s} = \frac{1}{2}k(\Delta x)^{2}$
1 - 7 ~ 1	2
$\bar{\alpha} = \frac{\sum \vec{\tau}}{I} = \frac{\vec{\tau}_{net}}{I}$	$x = x_{\max} \cos(\omega t + \phi)$
$\alpha = \frac{1}{I} = \frac{ne}{I}$	
	$T = \frac{2\pi}{\omega} = \frac{1}{f}$
$I = \int r^2 dm = \sum mr^2$	ω f
,	m
$\sum m_i x_i$	$T_s = 2\pi \sqrt{\frac{m}{k}}$
$x_{cm} = \frac{\sum m_i x_i}{\sum m_i}$	<u> </u>
2 1	$T_p = 2\pi \sqrt{\frac{\ell}{g}}$
$v = r\omega$	\sqrt{g}
_	Gm.m.
$\vec{L} = \vec{r} \times \vec{p} = I\vec{\omega}$	$\left \vec{F}_G \right = \frac{Gm_1m_2}{r^2}$
1 - 2	
$K = \frac{1}{2}I\omega^2$	$U_G = -\frac{Gm_1m_2}{r}$
	r
$\omega = \omega_0 + \alpha t$	
1 .	
$\theta = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2$	
2	

ELECTRICITY	AND MAGNETISM
$\left \vec{F}_E \right = \frac{1}{4\pi\varepsilon_0} \left \frac{q_1 q_2}{r^2} \right $	A = area $B = magnetic field$ $C = capacitance$
$\vec{E} = \frac{\vec{F}_E}{q}$	d = distance $E = electric field$
$\oint \vec{E} \cdot d\vec{A} = \frac{Q}{\varepsilon_0}$	$\mathcal{E} = \text{emf}$ $F = \text{force}$ $I = \text{current}$
$E_{x} = -\frac{dV}{dx}$	I = current J = current density L = inductance $\ell = \text{length}$
$\Delta V = -\int \vec{E} \cdot d\vec{r}$	n = number of loops of wire per unit length N = number of charge carriers
$V = \frac{1}{4\pi\varepsilon_0} \sum_{i} \frac{q_i}{r_i}$	P = power $Q = charge$
$U_E = qV = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}$	q = point charge R = resistance
$\Delta V = \frac{Q}{C}$	 r = radius or distance t = time U = potential or stored energy
$C = \frac{\kappa \varepsilon_0 A}{d}$	V = electric potential v = velocity or speed $\rho =$ resistivity
$C_p = \sum_{i} C_i$	Φ = flux κ = dielectric constant
$\frac{1}{C_s} = \sum_{i} \frac{1}{C_i}$ $I = \frac{dQ}{dt}$	$\begin{split} \vec{F}_M &= q\vec{v} \times \vec{B} \\ \oint \vec{B} \cdot d\vec{\ell} &= \mu_0 I \end{split}$
:	$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I d\vec{\ell} \times \hat{r}}{r^2}$
$R = \frac{\rho\ell}{A}$	$\vec{F} = \int I \ d\vec{\ell} \times \vec{B}$
$\vec{E} = \rho \vec{J}$	$B_s = \mu_0 nI$
$I = Nev_d A$	$\Phi_B = \int \vec{B} \cdot d\vec{A}$
$I = \frac{\Delta V}{R}$	$\mathcal{E} = \oint \vec{E} \cdot d\vec{\ell} = -\frac{d\Phi_B}{dt}$
$R_{s} = \sum_{i} R_{i}$	$\mathcal{E} = -L\frac{dI}{dt}$
$\frac{1}{R} = \sum \frac{1}{R}$	$U_L = \frac{1}{2}LI^2$

 $P = I\Delta V$

TABLE OF INFORMATION DEVELOPED FOR 2012

All Date of the second	
CONSTANTS AN	ID CONVERSION FACTORS
Proton mass, $m_p = 1.67 \times 10^{-27} \text{ kg}$	Electron charge magnitude, $e = 1.60 \times 10^{-19} \text{ C}$
Neutron mass, $m_n = 1.67 \times 10^{-27} \text{ kg}$	1 electron volt, 1 eV = 1.60×10^{-19} J
Electron mass, $m_e = 9.11 \times 10^{-31} \text{ kg}$	Speed of light, $c = 3.00 \times 10^8$ m/s
Avogadro's number, $N_0 = 6.02 \times 10^{23} \text{ mol}^{-1}$	Universal gravitational constant, $G = 6.67 \times 10^{-11} \text{ m}^3/\text{kg} \cdot \text{s}^2$
Universal gas constant, $R = 8.31 \text{ J/(mol-K)}$	Acceleration due to gravity at Earth's surface, $g = 9.8 \text{ m/s}^2$
Boltzmann's constant, $k_B = 1.38 \times 10^{-23} \text{ J/K}$	
1 unified atomic mass unit,	$1 \text{ u} = 1.66 \times 10^{-27} \text{ kg} = 931 \text{ MeV/}c^2$
Planck's constant,	$h = 6.63 \times 10^{-34} \text{ J} \cdot \text{s} = 4.14 \times 10^{-15} \text{ eV} \cdot \text{s}$
	$hc = 1.99 \times 10^{-25} \text{ J} \cdot \text{m} = 1.24 \times 10^3 \text{ eV} \cdot \text{nm}$
Vacuum permittivity,	$\epsilon_0 = 8.85 \times 10^{-12} \mathrm{C}^2 / \mathrm{N} \cdot \mathrm{m}^2$
Coulomb's law constant,	$k = 1/4\pi\epsilon_0 = 9.0 \times 10^9 \text{ N·m}^2/\text{C}^2$
Vacuum permeability,	7
Magnetic constant,	$k' = \mu_0 / 4\pi = 1 \times 10^{-7} \text{ (T·m)/A}$
1 atmosphere pressure,	. 12

	meter,	m	mole,	mol	watt,	W	farad,	F
	kilogram,	kg	hertz,	Hz	coulomb,	C	tesla,	T
UNIT	second,	S	newton,	N	volt,	V	degree Celsius,	°C
SYMBOLS	ampere,	Α	pascal,	Pa	ohm,	Ω	electron-volt,	eV
	kelvin,	K	joule,	J	henry,	Н		

PREFIXES						
Factor	Prefix	Symbol				
10 ⁹	giga	G				
10 ⁶	mega	M				
10 ³	kilo	k				
10-2	centi	c				
10^{-3}	milli	m				
10^{-6}	micro	μ				
10 ⁻⁹	nano	n				
10-12	pico	р				

VALUES	OF TRIG	ONOME	TRIC FU	NCTIONS	FOR CO	OMMON A	ANGLES
θ	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	1/2	3/5	$\sqrt{2}/2$	4/5	$\sqrt{3}/2$	1
$\cos \theta$	1	$\sqrt{3}/2$	4/5	$\sqrt{2}/2$	3/5	1/2	0
$\tan \theta$	0	$\sqrt{3}/3$	3/4	1	4/3	$\sqrt{3}$	∞

The following conventions are used in this exam.

- I. Unless otherwise stated, the frame of reference of any problem is assumed to be inertial.
- II. The direction of any electric current is the direction of flow of positive charge (conventional current).
- III. For any isolated electric charge, the electric potential is defined as zero at an infinite distance from the charge.
- IV. For mechanics and thermodynamics equations, W represents the work done on a system.