पेपर-2 PAPER-2

PART I: PHYSICS

SECTION – 1 : (One or more options correct Type)

खण्ड – 1: (एक या अधिक सही विकल्प प्रकार)

This section contains **8 multiple choice questions**. Each question has four choices (A), (B), (C) and (D) out of which **ONE or MORE** are correct. इस खण्ड में **8 बहुविकल्प प्रश्न** हैं । प्रत्येक प्रश्न में चार विकल्प (A), (B), (C) और (D) हैं, जिनमें से **एक या अधिक सही** हैं ।

- 1. Using the expression $2d \sin \theta = \lambda$, one calculates the values of d by measuring the corresponding angles θ in the range 0 to 90° . The wavelength λ is exactly known and the error in θ is constant for all values of θ . As θ increases from 0° ,
 - (A) the absolute error in *d* remains constant.
 - (B) the absolute error in d increases.
 - (C) the fractional error in d remains constant.
 - (D) the fractional error in d decreases.

व्यंजक $2d \sin \theta = \lambda$ का उपयोग करते हुए हम θ को माप कर d का मान जानना चाहते हैं । θ का मान 0 व 90° के बीच में है । तरंग दैर्ध्य का मान हमें परिशुद्धत: ज्ञात है तथा θ के मापने में त्रुटि, θ के सभी मानों के लिए समान है । जैसे θ का मान 0° से बढ़ता है तब

- (A) d में निरपेक्ष त्रुटि स्थिर रहती है ।
- (B) d में निरपेक्ष त्रुटि बढ़ती है ।
- (C) d में भिन्नात्मक त्रुटि स्थिर रहती है ।
- (D) d में भिन्नात्मक त्रुटि घटती है ।

ANSWER: D

- 2. Two non-conducting spheres of radii R_1 and R_2 and carrying uniform volume charge densities $+\rho$ and $-\rho$, respectively, are placed such that they partially overlap, as shown in the figure. At all points in the overlapping region,
 - (A) the electrostatic field is zero.
 - (B) the electrostatic potential is constant.
 - (C) the electrostatic field is constant in magnitude.
 - (D) the electrostatic field has same direction.

दो अचालक R_1 तथा R_2 त्रिज्या वाले गोलों को क्रमशः $+\rho$ व $-\rho$ एकसमान आयतन आवेश घनत्व से आवेशित किया गया है । इन गोलों को चित्र में दर्शाए अनुसार इस प्रकार जोड़ कर रखा गया है कि वे आंशिक रूप से अतिछादित हैं । अतिछादित क्षेत्र के प्रत्येक बिंदु पर

- (A) स्थिर वैद्युत क्षेत्र शून्य है ।
- (B) स्थिर वैद्युत विभव अचर है ।
- (C) स्थिर वैद्युत क्षेत्र का परिमाण अचर है ।
- (D) स्थिर वैद्युत क्षेत्र की दिशा एकसमान है ।

ANSWER: CD

- The figure below shows the variation of specific heat capacity (C) of a solid 3. as a function of temperature (T). The temperature is increased continuously from 0 to 500 K at a constant rate. Ignoring any volume change, the following statement(s) is (are) correct to a reasonable approximation.
 - (A) the rate at which heat is absorbed in the range 0-100 K varies linearly with temperature T.
 - heat absorbed in increasing the temperature from 0-100 K is less than the heat (B) required for increasing the temperature from 400-500 K.
 - (C) there is no change in the rate of heat absorption in the range 400-500 K.
 - the rate of heat absorption increases in the range 200-300 K.

चित्र में किसी ठोस की विशिष्ट ऊष्मा धारिता (C) का तापमान (T) पर निर्भरता को दर्शाया गया है । तापमान में 0 से 500 K तक समान दर से संतत वृद्धि होती है । मान कर कि आयतन में परिवर्तन उपेक्षनीय है, निम्न प्रकथन में कौन सा (से) तर्कसंगत सन्निकट सही है (हैं) ?

- (A) 0-100 K के बीच, अवशोषित ऊष्मा की दर तापमान पर रैखिक आश्रितता दिखाएगी ।
- 0-100 K तक तापमान को बढ़ाने पर अवशोषित ऊष्मा, 400-500 K तापमान के बीच बढ़ाने की ऊष्मा की तुलना में कम है।
- (C) अवशोषित ऊष्मा की दर 400-500 K तापमान के बीच अपरिवर्तित है ।
- (D) ऊष्मा अवशोषण की दर 200-300 K तापमान के बीच बढ़ रही है ।

ANSWER: ABCD or BCD

- 4. The radius of the orbit of an electron in a Hydrogen-like atom is 4.5 a_0 , where a_0 is the Bohr radius. Its orbital angular momentum is $\frac{3h}{2\pi}$. It is given that h is Planck constant and R is Rydberg constant. The possible wavelength(s), when the atom de-excites, is (are) एक हाइंड्रोजन-समान परमाणु के इलेक्ट्रॉन कक्ष की त्रिज्या $4.5~a_0$ है जहाँ a_0 बोर त्रिज्या है । इस इलेक्ट्रॉन का कक्षीय कोणीय संवेग $\frac{3h}{2\pi}$ है । दिया है कि h प्लांक नियतांक व R रिडबर्ग नियतांक है । परमाणु के व्युत्तेजित होने पर उत्सर्जित विकिरण के तरंगदैर्ध्य की संभावनाएँ हैं
 - (A) $\frac{9}{32R}$
- (B) $\frac{9}{16R}$ (C) $\frac{9}{5R}$ (D) $\frac{4}{3R}$

- 5. Two bodies, each of mass M, are kept fixed with a separation 2L. A particle of mass m is projected from the midpoint of the line joining their centres, perpendicular to the line. The gravitational constant is G. The correct statement(s) is (are)
 - (A) The minimum initial velocity of the mass m to escape the gravitational field of the two bodies is $4\sqrt{\frac{GM}{L}}$.
 - (B) The minimum initial velocity of the mass m to escape the gravitational field of the two bodies is $2\sqrt{\frac{GM}{L}}$.
 - (C) The minimum initial velocity of the mass m to escape the gravitational field of the two bodies is $\sqrt{\frac{2GM}{L}}$.
 - (D) The energy of the mass m remains constant.

दो पिंडों जिनमें प्रत्येक का द्रव्यमान M है, के बीच की दूरी को 2L स्थिर रखा गया है । इन पिंडों के केन्द्रों को जोड़ने वाली रेखा के मध्य बिन्दु से, एक m द्रव्यमान का कण लम्बवत् प्रक्षेपित किया जाता है । गुरुत्वाकर्षण नियतांक G है । सही प्रकथन है (हैं)

- (A) दो पिंडों के गुरुत्वाकर्षण क्षेत्र से पलायन के लिए द्रव्यमान m का न्यूनतम प्रारंभिक वेग $4\sqrt{\frac{GM}{L}}$ है ।
- (B) दो पिंडों के गुरुत्वाकर्षण क्षेत्र से पलायन के लिए द्रव्यमान m का न्यूनतम प्रारंभिक वेग $2\sqrt{\frac{GM}{L}}$ है ।
- (C) दो पिंडों के गुरुत्वाकर्षण क्षेत्र से पलायन के लिए द्रव्यमान m का न्यूनतम प्रारंभिक वेग $\sqrt{\frac{2GM}{L}}$ है ।
- (D) द्रव्यमान m की ऊर्जा सदैव स्थिर रहती है।

ANSWER: BD

- 6. A particle of mass m is attached to one end of a mass-less spring of force constant k, lying on a frictionless horizontal plane. The other end of the spring is fixed. The particle starts moving horizontally from its equilibrium position at time t=0 with an initial velocity u_0 . When the speed of the particle is $0.5 \ u_0$, it collides elastically with a rigid wall. After this collision,
 - (A) the speed of the particle when it returns to its equilibrium position is u_0 .
 - (B) the time at which the particle passes through the equilibrium position for the first time is $t = \pi \sqrt{\frac{m}{k}}$.
 - (C) the time at which the maximum compression of the spring occurs is $t = \frac{4\pi}{3} \sqrt{\frac{m}{k}}$.
 - (D) the time at which the particle passes through the equilibrium position for the second time is $t=\frac{5\pi}{3}\sqrt{\frac{m}{k}}$.

घर्षणहीन क्षेतिज तल पर पड़ी हुई k बल स्थिरांक की द्रव्यमान रहित सिंग्रंग के एक सिरे से m द्रव्यमान का कण जुड़ा हुआ है । इस सिंग्रंग का दूसरा सिरा बद्ध है । यह कण अपनी साम्यावस्था से समय t=0 पर प्रारंभिक क्षेतिज वेग u_0 से गतिमान हो रहा है । जब कण की गति 0.5 u_0 होती है, यह एक दृढ़ दीवार से प्रत्यास्थ संघट्ट करता है । इस संघट्ट के बाद

- (A) जब कण अपनी साम्यावस्था में लौटता है इसकी गति u_0 होती है ।
- (B) जब कण अपनी साम्यावस्था से पहली बार गुजरता है वह समय $t=\pi\sqrt{\frac{m}{k}}$ है ।
- (C) जब रिंप्रग में संपीडन अधिकतम होता है वह समय $t = \frac{4\pi}{3} \sqrt{\frac{m}{k}}$ है ।
- (D) जब कण अपनी साम्यावस्था से दूसरी बार गुजरता है वह समय $t = \frac{5\pi}{3} \sqrt{\frac{m}{k}}$ है ।

- 7. A steady current I flows along an infinitely long hollow cylindrical conductor of radius R. This cylinder is placed coaxially inside an infinite solenoid of radius 2R. The solenoid has n turns per unit length and carries a steady current I. Consider a point P at a distance r from the common axis. The correct statement(s) is (are)
 - (A) In the region 0 < r < R, the magnetic field is non-zero.
 - (B) In the region R < r < 2R, the magnetic field is along the common axis.
 - (C) In the region R < r < 2R, the magnetic field is tangential to the circle of radius r, centered on the axis.
 - (D) In the region r > 2R, the magnetic field is non-zero. एक R त्रिज्या के अनंत लम्बे खोखले चालक बेलन की लंबाई में एक स्थिर धारा I बह रही है । इस बेलन को 2R त्रिज्या की अनंत परिनालिका के अन्दर समाक्ष रखा गया है । इस परिनालिका में n लपेटे प्रति इकाई लम्बाई में है व एक स्थिर धारा I है । एक बिन्दु P के लिए जो समाक्ष से r दूरी पर है, कौन सा (से) प्रकथन सही है (हैं)
 - (A) 0 < r < R में, चुंबकीय क्षेत्र शून्य नहीं है ।
 - (B) R < r < 2R में, चुंबकीय क्षेत्र की दिशा समाक्ष की दिशा में है ।
 - (C) R < r < 2R में, चुंबकीय क्षेत्र r त्रिज्या के वृत्त से स्पर्शरेखीय है जिसका केंद्र समाक्ष पर है ।
 - (D) r > 2R में, चुंबकीय क्षेत्र शून्य नहीं है ।

- 8. Two vehicles, each moving with speed u on the same horizontal straight road, are approaching each other. Wind blows along the road with velocity w. One of these vehicles blows a whistle of frequency f_1 . An observer in the other vehicle hears the frequency of the whistle to be f_2 . The speed of sound in still air is V. The correct statement(s) is (are)
 - (A) If the wind blows from the observer to the source, $f_2 > f_1$.
 - (B) If the wind blows from the source to the observer, $f_2 > f_1$.
 - (C) If the wind blows from observer to the source, $f_2 < f_1$.
 - (D) If the wind blows from the source to the observer, $f_2 < f_1$.

दो वाहन, जिनमें प्रत्येक की गित u है, एक ही सीधी क्षैतिज सड़क पर एक दूसरे की ओर आ रहे हैं । वायु सड़क की दिशा में w के वेग से बह रही है । इनमें से एक वाहन f_1 आवृत्ति की सीटी बजाता है । दूसरे वाहन में बैठे हुए प्रेक्षक को सीटी f_2 आवृत्ति की सुनाई देती है । निश्चल वायु में ध्वनि की गति V है । सही प्रकथन है (हैं)

- (A) यदि वायु प्रेक्षक से स्रोत की दिशा में बहती है, $f_2 > f_1$ ।
- यदि वायु स्रोत से प्रेक्षक की दिशा में बहती है, $f_2 > f_1$ ।
- (C) यदि वायु प्रेक्षक से स्रोत की दिशा में बहती है, $f_2 < f_1$ ।
- (D) यदि वायु स्रोत से प्रेक्षक की दिशा में बहती है, $f_2 < f_1$ ।

SECTION – 2 : (Paragraph Type)

खण्ड – 2 : (अनुच्छेद प्रकार)

This section contains 4 paragraphs each describing theory, experiment, data etc. Eight questions relate to four paragraphs with two questions on each paragraph. Each question of a paragraph has **only one correct answer** among the four choices (A), (B), (C) and (D). इस खण्ड में सिद्धांतों, प्रयोगों और ऑकड़ों आदि को दर्शाने वाले **4 अनुच्छेद** हैं । चारों अनुच्छेदों से संबंधित **आठ प्रश्न** हैं, जिनमें से हर अनुच्छेद पर दो प्रश्न हैं । किसी भी अनुच्छेद में हर प्रश्न के चार विकल्प (A), (B), (C) और (D) हैं जिनमें से केवल एक ही सही है ।

Paragraph for Questions 9 and 10 प्रश्न 9 और 10 के लिए अनुच्छेद

A point charge Q is moving in a circular orbit of radius R in the x-y plane with an angular velocity ω . This can be considered as equivalent to a loop carrying a steady current $\frac{Q\omega}{2\pi}$.

A uniform magnetic field along the positive z-axis is now switched on, which increases at a constant rate from 0 to B in one second. Assume that the radius of the orbit remains constant. The application of the magnetic field induces an emf in the orbit. The induced emf is defined as the work done by an induced electric field in moving a unit positive charge around a closed loop. It is known that, for an orbiting charge, the magnetic dipole moment is proportional to the angular momentum with a proportionality constant γ .

x-y तल में R त्रिज्या की वृत्तीय कक्षा में एक Q बिन्दू आवेश ω कोणीय गति से परिक्रमा कर रहा है । इसे लूप में बहती $\frac{Q\omega}{2\pi}$ अपरिवर्ती धारा के तुल्य माना जा सकता है । अब एक एकसमान चुंबकीय क्षेत्र को धनात्मक z-दिशा में चालू करते हैं जिसका मान 0 से B तक एक सैकिण्ड में एकसमान दर से बढ़ता है । यह मानिये कि इस दौरान कक्ष की त्रिज्या स्थिर रहती है । चुंबकीय क्षेत्र के लगाने से कक्ष में एक emf प्रेरित होता है । एक प्रेरित विद्युत क्षेत्र द्वारा इकाई धन आवेश को संवृत्त लूप के चारों ओर घुमाने में किये गये कार्य की मात्रा को प्रेरित विद्युतवाहक बल (emf) कहा जाता है । यह ज्ञात है कि जब एक आवेश एक कक्ष में परिभ्रमण करता है तब उसका चुंबकीय द्विध्रुव आघूर्ण उसके कोणीय संवेग के आनुपातिक होता है जिसका आनुपातिक स्थिरांक १ है।

The magnitude of the induced electric field in the orbit at any instant of time during the time interval of the magnetic field change is चुंबकीय क्षेत्र के परिवर्तन के दौरान कक्ष में किसी विशेष क्षण पर प्रेरित विद्युत क्षेत्र का मान है

(A)
$$\frac{BR}{4}$$

(B)
$$\frac{BR}{2}$$
 (C) BR

ANSWER: B

10. The change in the magnetic dipole moment associated with the orbit, at the end of the time interval of the magnetic field change, is जिस समय अन्तराल में चुंबकीय क्षेत्र में परिवर्तन हो रहा है, उस अन्तराल के अन्त में, आवेश के कक्ष से संबंधित चुंबकीय द्विध्रुव आघूर्ण में परिवर्तन है

(A)
$$-\gamma BQR^2$$

(A)
$$-\gamma BQR^2$$
 (B) $-\gamma \frac{BQR^2}{2}$ (C) $\gamma \frac{BQR^2}{2}$ (D) γBQR^2

(C)
$$\gamma \frac{BQR^2}{2}$$

(D)
$$\gamma BQR^2$$

ANSWER: B

Paragraph for Questions 11 and 12 प्रश्न 11 और 12 के लिए अनुच्छेद

The mass of a nucleus $_Z^AX$ is less than the sum of the masses of (A-Z) number of neutrons and Z number of protons in the nucleus. The energy equivalent to the corresponding mass difference is known as the binding energy of the nucleus. A heavy nucleus of mass M can break into two light nuclei of masses m_1 and m_2 only if $(m_1+m_2) < M$. Also two light nuclei of masses m_3 and m_4 can undergo complete fusion and form a heavy nucleus of mass M' only if $(m_3+m_4) > M'$. The masses of some neutral atoms are given in the table below:

एक नाभिक $_{Z}^{A}X$ का द्रव्यमान (A-Z) न्यूट्रॉनों एवं Z प्रॉटोनों के द्रव्यमानों के योग से कम होता है । द्रव्यमानों की कमी के समतुल्य ऊर्जा को बंधन ऊर्जा कहते हैं । एक द्रव्यमान M का भारी नाभिक m_1 एवं m_2 द्रव्यमानों के दो हलके नाभिकों में विघटित हो सकता है, यदि $(m_1+m_2)< M$ । तथा m_3 एवं m_4 द्रव्यमानों के दो हलके नाभिक पूर्ण संलयन करके, एक M' द्रव्यमान का भारी नाभिक बना सकते हैं, यदि $(m_3+m_4)>M'$ । कुछ परमाणुओं के द्रव्यमान नीचे टेबल में दिये गये हैं :

^{1}H	1.007825 <i>u</i>	^{2}H	2.014102 <i>u</i>	^{3}H	3.016050 <i>u</i>	$_{2}^{4}He$	4.002603 u
$\frac{6}{3}Li$	6.015123 <i>u</i>	$\frac{7}{3}Li$	7.016004 <i>u</i>	$^{70}_{30}Zn$	69.925325 u	⁸² ₃₄ Se	81.916709 u
$^{152}_{64}Gd$	151.919803 <i>u</i>	$^{206}_{82}Pb$	205.974455 u	$^{209}_{83}Bi$	208.980388 u	$^{210}_{84}Po$	209.982876 u

 $(1 \ u = 932 \ MeV/c^2)$

- 11. The correct statement is
 - (A) The nucleus ${}_{3}^{6}Li$ can emit an alpha particle.
 - (B) The nucleus $^{210}_{84}Po$ can emit a proton.
 - (C) Deuteron and alpha particle can undergo complete fusion.
 - (D) The nuclei $^{70}_{30}Zn$ and $^{82}_{34}Se$ can undergo complete fusion.

सही प्रकथन है

- (A) नाभिक ⁶Li एक ऐल्फा कण उत्सर्जित कर सकता है ।
- (B) नाभिक 210 Po एक प्रोटॉन उत्सर्जित कर सकता है ।
- (C) ड्यूटरॉन और ऐल्फा कण पूर्ण संलयन कर सकते हैं।
- (D) नाभिक $_{30}^{70}Zn$ एवं नाभिक $_{34}^{82}Se$ पूर्ण संलयन कर सकते हैं ।

ANSWER: C

12. The kinetic energy (in keV) of the alpha particle, when the nucleus $^{210}_{84}Po$ at rest undergoes alpha decay, is

जब विरामावस्था में नामिक $^{210}_{84}Po$ ऐल्फा-क्षय करता है, तब ऐल्फा कण की गतिज ऊर्जा (keV) में) होती है

- (A) 5319
- (B) 5422
- (C) 5707
- (D) 5818

Paragraph for Questions 13 and 14 प्रश्न 13 और 14 के लिए अनुच्छेद

A small block of mass 1 kg is released from rest at the top of a rough track. The track is a circular arc of radius $40 \ m$. The block slides along the track without toppling and a frictional force acts on it in the direction opposite to the instantaneous velocity. The work done in overcoming the friction up to the point Q, as shown in the figure below, is $150 \ J$. (Take the acceleration due to gravity, $g = 10 \ m \ s^{-2}$).

एक रूक्ष पथ के उच्चतम बिन्दु से एक $1\ kg$ द्रव्यमान के गुटके को विरामावस्था से छोड़ा जाता है । यह पथ $40\ m$ त्रिज्या का वृत्तीय चाप है । गुटका अपने पथ पर बिना लुढ़के हुए सरकता है । इस गुटके पर एक घर्षण बल तात्क्षणिक वेग की विपरीत दिशा में लगता है । चित्र में दर्शाये अनुसार, बिन्दु Q तक आने के लिए घर्षण को अतिक्रम करने के लिए $150\ J$ कार्य करना पड़ता है । (गुरुत्वीय त्वरण g का मान = $10\ m\ s^{-2}$ लीजिए)

- **13.** The speed of the block when it reaches the point Q is जब गुटका बिन्दु Q पर पहुँचता है, इसकी गति है
 - (A) $5 ms^{-1}$
- (B) 10 ms^{-1}
- (C) $10\sqrt{3}ms^{-1}$
- (D) 20 ms^{-1}

ANSWER: B

- **14.** The magnitude of the normal reaction that acts on the block at the point Q is बिन्द Q पर, गुटके पर लगने वाले अभिलंब बल का परिमाण है
 - (A) 7.5 N
- (B) 8.6 *N*
- (C) 11.5 N
- (D) 22.5 N

Paragraph for Questions 15 and 16 प्रश्न 15 और 16 के लिए अनुच्छेद

A thermal power plant produces electric power of $600 \ kW$ at $4000 \ V$, which is to be transported to a place 20 km away from the power plant for consumers' usage. It can be transported either directly with a cable of large current carrying capacity or by using a combination of step-up and step-down transformers at the two ends. The drawback of the direct transmission is the large energy dissipation. In the method using transformers, the dissipation is much smaller. In this method, a step-up transformer is used at the plant side so that the current is reduced to a smaller value. At the consumers' end, a step-down transformer is used to supply power to the consumers at the specified lower voltage. It is reasonable to assume that the power cable is purely resistive and the transformers are ideal with a power factor unity. All the currents and voltages mentioned are rms values. एक तापीय विद्युत संयंत्र 600 kW की शक्ति 4000 V पर उत्पादित करता है, जो 20 km की दूरी पर उपभोक्ताओं के उपयोग के लिए ले जायी जाती है । इसको या तो उच्च धारा वहन-क्षमता वाले केबिल से भेजा जा सकता है या दोनों सिरों पर उच्चायी व अपचायी ट्रान्सफॉर्मर का प्रयोगकर किया जा सकता है । प्रत्यक्ष प्रेषण का दोष यह है कि इसमें ऊर्जा का क्षय बहुत अधिक होता है जबिक ट्रान्सफॉर्मर के उपयोग के तरीके में क्षय बहुत कम होता है । इस तरीके में एक उच्चायी ट्रान्सफॉर्मर संयंत्र की ओर लगाया जाता है जिससे धारा का मान कम हो जाए । उपभोक्ता के सिरे में अपचायी ट्रान्सफॉर्मर का प्रयोग किया जाता है जिससे उपभोक्ताओं को एक विशेष कम वोल्ट पर विद्युत शक्ति दी जा सके । यह माना जा सकता है कि केबिल शुद्ध प्रतिरोधित है तथा ट्रान्सफॉर्मर आदर्श हैं, व उनका शक्ति गुणांक एक है । उल्लिखित समस्त धाराओं व वोल्टताओं का माप rms मान में है ।

15. If the direct transmission method with a cable of resistance $0.4~\Omega~km^{-1}$ is used, the power dissipation (in %) during transmission is यदि ऐसे केबिल का उपयोग किया जाए जिसका प्रतिरोध $0.4~\Omega~km^{-1}$ है तब प्रत्यक्ष प्रेषण की स्थिति में शक्ति क्षय (% में) है

(A) 20

(B) 30

(C) 40

(D) 50

ANSWER: B

16. In the method using the transformers, assume that the ratio of the number of turns in the primary to that in the secondary in the step-up transformer is 1:10. If the power to the consumers has to be supplied at 200 V, the ratio of the number of turns in the primary to that in the secondary in the step-down transformer is ट्रान्सफॉर्मर के प्रयोग करने वाली विधि में, यह मानें कि उच्चायी ट्रान्सफॉर्मर के प्राथमिक व द्वितीयक में लपेटों की संख्या का अनुपात 1:10 है । यदि विद्युत शक्ति, उपभोक्ताओं को 200 V पर दी जाती है तो अपचायी ट्रान्सफॉर्मर में प्राथमिक व द्वितीयक के लपेटों की संख्या का अनुपात है

(A) 200:1

(B) 150:1

(C) 100:1

(D) 50:1

SECTION – 3: (Matching List Type)

खण्ड – 3 : (सुमेलन सूची प्रकार)

This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C) and (D) out of which ONLY ONE is correct. इस खण्ड में 4 बहुविकल्प प्रश्न हैं । प्रत्येक प्रश्न में सुमेलन सूची है । सूचियों के लिए कोड के विकल्प (A), (B), (C) और (D) हैं जिनमें से केवल एक सही है ।

17. Match List I with List II and select the correct answer using the codes given below the lists:

List I		List II				
P. Boltzmann constant	1.	$[ML^2T^{-1}]$				
Q. Coefficient of viscosity	2.	$[ML^{-1}T^{-1}]$				
R. Planck constant	3.	$[MLT^{-3}K^{-1}]$				
S. Thermal conductivity	4.	$[ML^2T^{-2}K^{-1}]$				
सूची I को सूची II से सुमेलित	कीजिए और	र सूचियों के नीचे	दिये गये	ा कोड का	प्रयोग	करके
संही उत्तर चुनिये:						
 -						

	सूची I		सूची II
P.	बोल्ट्समान नियतांक	1.	$[ML^2T^{-1}]$
Q.	श्यानता गुणांक	2.	$[ML^{-1}T^{-1}]$
R.	प्लांक नियतांक	3.	$[MLT^{-3}K^{-1}]$
S.	ऊष्मा चालकता	4.	$[ML^2T^{-2}K^{-1}]$

Codes:

	P	Q	R	S
(A)	3	1	2	4
(B)	3	2	1	4
(C)	4	2	1	3
(D)	4	1	2	3

ANSWER: C

18. A right angled prism of refractive index μ_1 is placed in a rectangular block of refractive index μ_2 , which is surrounded by a medium of refractive index μ_3 , as shown in the figure. A ray of light 'e' enters the rectangular block at normal incidence. Depending upon the relationships between μ_1 , μ_2 and μ_3 , it takes one of the four possible paths 'ef', 'eg', 'eh' or 'ei'.

एक μ_1 अपवर्तनांक के समकोण प्रिज्म को μ_2 अपवर्तनांक के आयताकार ब्लाक में रखा गया है । पूर्ण व्यवस्था μ_3 अपवर्तनांक के माध्यम से चित्र में दर्शाए अनुसार घिरी हुई है । प्रकाश की किरण 'e' आयताकार ब्लॉक पर अभिलंबवत आपितत होती है । μ_1 , μ_2 और μ_3 के मानों पर निर्भर होती हुई प्रकाश की किरण चार संभव पथों 'ef', 'eg', 'eh' या 'ei' में से एक लेती है ।

Match the paths in List I with conditions of refractive indices in List II and select the correct answer using the codes given below the lists: सनी । में दिशे गरो पशें को सनी । की अपवर्तनांक की शर्तों से समेलित कीजिए और सनिशों

सूची I में दिये गये पथों को सूची II की अपवर्तनांक की शर्तों से सुमेलित कीजिए और सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये :

List I / सूची I

P.
$$e \rightarrow f$$

Q.
$$e \rightarrow g$$

R. $e \rightarrow h$

S. $e \rightarrow i$

List II / सूची II

1.
$$\mu_1 > \sqrt{2} \; \mu_2$$

$$2. \qquad \mu_2 > \mu_1 \text{ and/एवं } \mu_2 > \mu_3$$

3.
$$\mu_1 = \mu_2$$

4.
$$\mu_2 < \mu_1 < \sqrt{2} \ \mu_2 \ \text{and/एवं} \ \mu_2 > \mu_3$$

Codes:

	P	Q	R	5
(A)	2	3	1	4
(B)	1	2	4	3
(C)	4	1	2	3
(D)	2	3	4]

ANSWER: D

19. Match List I of the nuclear processes with List II containing parent nucleus and one of the end products of each process and then select the correct answer using the codes given below the lists:

सूची I में कुछ नाभिकीय प्रक्रियाएँ दी गई हैं । सूची II में इन प्रक्रियाओं के जनक नाभिक व एक अंतिम नाभिकीय खंड दिए गए हैं । सूचियों के नीचे दिये गए कोड का प्रयोग करके सही उत्तर चुनिए :

List I / सूची I

- P. Alpha decay ऐल्फा-क्षय
- Q. β^+ decay β^+ क्षय
- R. Fission विखंडन
- S. Proton emission प्रोटॉन उत्सर्जन

List II / सूची II

- 1. ${}^{15}_{8}O \rightarrow {}^{15}_{7}N + \dots$
- 2. ${}^{238}_{92}U \rightarrow {}^{234}_{90}Th + \dots$
- 3. ${}^{185}_{83}Bi \rightarrow {}^{184}_{82}Pb + \dots$
- 4. ${}^{239}_{94}Pu \rightarrow {}^{140}_{57}La + \dots$

Codes:

P Q R S

- (A) 4 2 1 3
- (B) 1 3 2 4
- (C) 2 1 4 3
- (D) 4 3 2 1

ANSWER: C

20. One mole of a monatomic ideal gas is taken along two cyclic processes $E \rightarrow F \rightarrow G \rightarrow E$ and $E \rightarrow F \rightarrow H \rightarrow E$ as shown in the PV diagram. The processes involved are purely isochoric, isobaric, isothermal or adiabatic.

एक एक-परमाणुक आदर्श गैस के एक मोल को, चित्र में दर्शाय PV आरेख के अनुसार दो चक्रीय प्रक्रमों $E \rightarrow F \rightarrow G \rightarrow E$ व $E \rightarrow F \rightarrow H \rightarrow E$ में ले जाया जाता है । संबद्धित प्रक्रम शुद्धत: समआयतिनक, समदाबी, समतापीय या रुद्धोष्म है ।

Match the paths in List I with the magnitudes of the work done in List II and select the correct answer using the codes given below the lists.

सूची I में दिये गये पथों को सूची II में किये गये कार्य के परिमाण के साथ सुमेलित कीजिए और सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये ।

*	List I / सूची I		List II / सूची II
P.	$G \rightarrow E$	1.	$160 P_0 V_0 ln2$
Q.	$G \rightarrow H$	2.	$36 P_0 V_0$
R.	$F \rightarrow H$	3.	$24 P_0 V_0$
S.	$F \rightarrow G$	4.	$31 P_0 V_0$
Cod	des :		
	P Q R S		

ANSWER: A

(A) 4 (B) 4

(D) 1

(C) 3 1 2

PART II: CHEMISTRY

SECTION – 1 : (One or more options correct Type)

खण्ड – 1: (एक या अधिक सही विकल्प प्रकार)

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which **ONE or MORE** are correct. इस खण्ड में **8 बहुविकल्प प्रश्न** हैं । प्रत्येक प्रश्न में चार विकल्प (A), (B), (C) और (D) हैं, जिनमें से एक या अधिक सही है ।

- **21.** The correct statement(s) about O_3 is(are)
 - (A) *O-O* bond lengths are equal.
 - (B) Thermal decomposition of O_3 is endothermic.
 - (C) O_3 is diamagnetic in nature.
 - (D) O_3 has a bent structure.
 - O_3 के संदर्भ में सही वक्तव्य है (हैं)
 - (A) O-O आबंधों की लंबाई बराबर है ।
 - (B) O3 का तापीय वियोजन ऊष्माशोषी है ।
 - (C) O3 प्रतिचुंबकीय है ।
 - (D) O_3 की संरचना बंकित होती है ।

ANSWER: ACD

22. In the nuclear transmutation

$${}_{4}^{9}$$
Be + X \longrightarrow ${}_{4}^{8}$ Be + Y (X, Y) is(are)

(A) (γ, n)

(B) (p, D)

(C) (n, D)

(D) (γ, p)

निम्नलिखित नाभिकीय तत्वांतरण

$${}_{4}^{9}$$
Be + X \longrightarrow ${}_{4}^{8}$ Be + Y

में (X, Y) है/हैं

(A) (γ, n)

(B) (p, D)

(C) (n, D)

(D) (γ, p)

23. The carbon-based reduction method is NOT used for the extraction of

(A) $tin from SnO_2$

(B) iron from Fe_2O_3

(C) aluminium from Al_2O_3

(D) magnesium from $MgCO_3 \cdot CaCO_3$

धातुओं के निष्कर्षण में कार्बन आधारित अपचयक विधि का प्रयोग किन अयस्कों में नहीं होता है ?

(A) SnO_2 से टिन

(B) Fe_2O_3 से आयरन

(C) Al_2O_3 से ऐलुमिनियम

(D) $MgCO_3 \cdot CaCO_3$ से मैग्नीशियम

ANSWER: CD

24. The thermal dissociation equilibrium of $CaCO_3(s)$ is studied under different conditions.

 $CaCO_3(s)$ \rightleftharpoons $CaO(s) + <math>CO_2(g)$

For this equilibrium, the correct statement(s) is(are)

- (A) ΔH is dependent on T
- (B) K is independent of the initial amount of $CaCO_3$
- (C) K is dependent on the pressure of CO_2 at a given T
- (D) ΔH is independent of the catalyst, if any

CaCO₃(ठोस) के ऊष्मीय विघटन की साम्यावस्था का अध्ययन विभिन्न अवस्थाओं में किया गया ।

 $CaCO_3(s)$ \iff $CaO(s) + CO_2(g)$

इस साम्यावस्था के लिये, सही प्रकथन है (हैं)

- (A) ΔH तापमान पर निर्भर करता है ।
- (B) साम्यावस्था स्थिरांक (K) CaCO3 के प्रारम्भिक परिमाण पर निर्भर नहीं करता है ।
- (C) K नियत तापमान पर CO_2 के दाब पर निर्भर करता है ।
- (D) △H उत्प्रेरक (अगर हो) के प्रभाव पर निर्भर नहीं करता है ।

ANSWER: ABD

- **25.** The K_{sp} of Ag_2CrO_4 is 1.1×10^{-12} at 298 K. The solubility (in mol/L) of Ag_2CrO_4 in a $0.1 \, MAgNO_3$ solution is
 - (A) 1.1×10^{-11}
- (B) 1.1×10^{-10} (C) 1.1×10^{-12}
- (D) 1.1×10^{-9}

 K_{sp} (Ag_2CrO_4) का मान 298~K पर $1.1 \times 10^{-12}~$ है $+0.1~M~AgNO_3$ के विलयन में Ag_2CrO_4 की विलेयता मोल/लीटर में है

- (A) 1.1×10^{-11}
- (B) 1.1×10^{-10} (C) 1.1×10^{-12} (D) 1.1×10^{-9}

ANSWER: B

26. In the following reaction, the product(s) formed is(are)

निम्नलिखित अभिक्रिया के उत्पाद/उत्पादों को बताएँ

Q

R

S

(A) **P** (major)

(B) Q (minor)

(C) R (minor)

(D) S (major)

P (मुख्य)

Q (गीण)

R (गोण)

S (मुख्य)

ANSWER: BD

27. The major product(s) of the following reaction is(are)

ANSWER: B

28. After completion of the reactions (I and II), the organic compound(s) in the reaction mixtures is(are)

रासायनिक अभिक्रियाओं (I और II) के पूरे होने के बाद रासायनिक मिश्रण में कार्बनिक योगिक (योगिकों) को बताएँ ।

$$H_3C$$
 CH_2Br H_3C CBr_3 Br_3C CBr_3 BrH_2C CH_2Br H_3C ONa $CHBr_3$ P Q R S T U

- (A) Reaction I: P and Reaction II: P
- (B) Reaction I : U, acetone and Reaction II : Q, acetone
- (C) Reaction I: T, U, acetone and Reaction II: P
- (D) Reaction I: R, acetone and Reaction II: S, acetone
- (A) अभिक्रिया I: P और अभिक्रिया II: P
- (B) अभिक्रिया I: U, एसीटोन और अभिक्रिया II: Q, एसीटोन
- (C) अभिक्रिया I: T, U, एसीटोन और अभिक्रिया II: P
- (D) अभिक्रिया I: R, एसीटोन और अभिक्रिया II: S, एसीटोन

ANSWER: C

SECTION – 2 : (Paragraph Type) खण्ड – 2 : (अनुच्छेद प्रकार)

This section contains 4 paragraphs each describing theory, experiment, data etc. Eight questions relate to four paragraphs with two questions on each paragraph. Each question of a paragraph has only one correct answer among the four choices (A), (B), (C) and (D). इस खण्ड में सिद्धांतों, प्रयोगों और आँकड़ों आदि को दर्शाने वाले 4 अनुच्छेद हैं । चारों अनुच्छेदों से संबंधित आठ प्रश्न हैं, जिनमें से हर अनुच्छेद पर दो प्रश्न हैं । किसी भी अनुच्छेद में हर प्रश्न के चार विकल्प (A), (B), (C) और (D) हैं जिनमें से केवल एक ही सही है ।

Paragraph for Questions 29 and 30 प्रश्न 29 एवं 30 के लिये अनुच्छेद

A fixed mass 'm' of a gas is subjected to transformation of states from K to L to M to N and back to K as shown in the figure

एक गैस के निश्चित द्रव्यमान 'm' की अवस्था परिवर्तन K से L से M से N तथा वापस K में चित्र द्वारा दिखाई गई है

- 29. The succeeding operations that enable this transformation of states are
 - (A) Heating, cooling, heating, cooling
- (B) Cooling, heating, cooling, heating
- (C) Heating, cooling, cooling, heating (D) Cooling, l क्रिमिक परिचालन जो इन अवस्था परिवर्तनों में सहायक हैं, वह है
- (D) Cooling, heating, heating, cooling
- (A) गर्म, ठंडा, गर्म, ठंडा करने पर
- सहायक ह, वह ह (B) ठंडा, गर्म, ठंडा, गर्म करने पर
- (C) गर्म, ठंडा, ठंडा, गर्म करने पर
- (D) ठंडा, गर्म, गर्म, ठंडा करने पर

ANSWER: C

- 30. The pair of isochoric processes among the transformation of states is
 - (A) K to L and L to M

(B) L to M and N to K

(C) L to M and M to N

(D) M to N and N to K

अवस्था परिवर्तनों की स्थितियों में समआयतनिक प्रक्रम युग्म है

(A) K से L और L से M

(B) L से M और N से K

(C) L से M और M से N

(D) M से N और N से K

ANSWER: B

Paragraph for Questions 31 and 32 प्रश्न 31 एवं 32 के लिये अनुच्छेद

The reactions of Cl_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two (different) oxoacids of chlorine, \boldsymbol{P} and \boldsymbol{Q} , respectively. The Cl_2 gas reacts with SO_2 gas, in presence of charcoal, to give a product $\emph{\textbf{R}}$. $\emph{\textbf{R}}$ reacts with white phosphorus to give a compound $\emph{S}.$ On hydrolysis, \emph{S} gives an oxoacid of phosphorus, T.

Cl, गैस तनु और सांद्र NaOH के जलीय विलयन द्वारा क्रमशः ठंडे और गर्म अवस्था में अभिक्रिया कर दो (भिन्न) क्लोरीन के ऑक्सो-अम्ल के सोडियम लवण, $m{P}$ और $m{Q}$ देते हैं । $Cl_2(g)$ चारकोल की उपस्थिति में $SO_2(g)$ से अभिक्रिया कर उत्पाद \mathbf{R} देता है । \mathbf{R} सफेद फास्फोरस द्वारा अभिक्रिया कर यौगिक S देता है । S की जल-अपघटन क्रिया फास्फोरस का एक आक्सोअम्ल T देती है ।

- 31. P and Q, respectively, are the sodium salts of
 - (A) hypochlorus and chloric acids
- (B) hypochlorus and chlorus acids
- (C) chloric and perchloric acids \boldsymbol{P} और \boldsymbol{Q} क्रमश: इनके सोडियम लवण हैं
- chloric and hypochlorus acids (D)
- (A) हाइपोक्लोरस और क्लोरिक अम्ल
- (B) हाइपोक्लोरस और क्लोरस अम्ल
- (C) क्लोरिक और परक्लोरिक अम्ल
- (D) क्लोरिक और हाइपोक्लोरस अम्ल

ANSWER: A

- **32.** *R*, *S* and *T*, respectively, are
 - (A) SO_2Cl_2 , PCl_5 and H_3PO_4
 - (B) SO_2Cl_2 , PCl_3 and H_3PO_3 (C) $SOCl_2$, PCl_3 and H_3PO_2 (D) $SOCl_2$, PCl_5 and H_3PO_4
 - R, S और T क्रमश: हैं
 - (A) SO_2Cl_2 , PCl_5 और H_3PO_4
 - (C) SOCl₂, PCl₃ और H₃PO₂
- (B) SO₂Cl₂, PCl₃ और H₃PO₃
- (D) SOCl₂, PCl₅ और H₃PO₄

Paragraph for Questions 33 and 34 प्रश्न 33 एवं 34 के लिये अनुच्छेद

An aqueous solution of a mixture of two inorganic salts, when treated with dilute HCl, gave a precipitate (P) and a filtrate (Q). The precipitate P was found to dissolve in hot water. The filtrate (Q) remained unchanged, when treated with H_2S in a dilute mineral acid medium. However, it gave a precipitate (\mathbf{R}) with H_2S in an ammoniacal medium. The precipitate R gave a coloured solution (S), when treated with H_2O_2 in an aqueous NaOH medium.

दो अकार्बनिक लवणों के एक मिश्रण का जलीय विलयन तन् HCl अम्ल द्वारा अपचयन कर एक अवक्षेप (P) और एक फिल्ट्रेट (Q) देता है । अवक्षेप P गर्म जल में घुलनशील है । फिल्ट्रेट (Q) तनु खनिज अम्लीय माध्यम में H_2S द्वारा विवेचन कर अपरिवर्तित रहता है, किन्तु एमोनिकल माध्यम में H_2S के साथ अवक्षेप (R) देता है । अवक्षेप R के साथ जलीय NaOH माध्यम तथा H_2O_2 की अभिक्रिया रंगीन विलयन ($m{S}$) देती है ।

The precipitate *P* contains

- (A) Pb^{2+}
- (B) Hg_2^{2+} (C) Ag^+
- (D) Hg^{2+}

अवक्षेप P में उपस्थित है

- (A) Pb^{2+}
- (B) Hg_2^{2+}
- (C) Ag^+
- (D) Hg^{2+}

ANSWER: A

- **34.** The coloured solution S contains
 - (A) $Fe_2(SO_4)_3$
- (B) $CuSO_{A}$
- (C) $ZnSO_{\Delta}$
- (D) Na_2CrO_4

रंगीन विलयन \$ में उपस्थित है

- (A) $Fe_2(SO_4)_3$
- (B) $CuSO_4$
- (C) $ZnSO_4$ (D) Na_2CrO_4

ANSWER: D

Paragraphs for Questions 35 and 36 प्रश्न 35 एवं 36 के लिये अनुच्छेद

P and Q are isomers of dicarboxylic acid $C_4H_4O_4$. Both decolorize Br_2/H_2O . On heating, P forms the cyclic anhydride.

Upon treatment with dilute alkaline $KMnO_4$, P as well as Q could produce one or more than one from S, T and U.

 ${m P}$ और ${m Q}$ एक डाइकार्बोक्सिलिक अम्ल $C_4H_4O_4$ के दो समावयवी हैं । दोनों Br_2/H_2O को रंगहीन करते हैं । गर्म करने पर ${m P}$ चक्रीय एनहाइड़ाइड बनाता है ।

तनु क्षारीय $KMnO_4$ द्वारा P और Q अलग-अलग अभिक्रिया कर एक अथवा एक से अधिक यौगिक S. T अथवा U बना सकते हैं ।

- 35. Compounds formed from P and Q are, respectively
 - (A) Optically active S and optically active pair (T, U)
 - (B) Optically inactive S and optically inactive pair (T, U)
 - (C) Optically active pair (T, U) and optically active S
 - (D) Optically inactive pair (T, U) and optically inactive S P और Q द्वारा बने यौगिक क्रमश: हैं
 - (A) ध्रुवण घूर्णक S एवं ध्रुवण घूर्णक युग्म (T, U)
 - (B) ध्रवण निष्क्रिय S एवं ध्रवण निष्क्रिय युग्म (T, U)
 - (C) ध्रुवण घूर्णक युग्म (T, U) एवं ध्रुवण घूर्णक S
 - (D) ध्रवण निष्क्रिय युग्म (T, U) एवं ध्रवण निष्क्रिय S

ANSWER: B

36. In the following reaction sequences V and W are, respectively

निम्नलिखित अभिक्रिया अनुक्रमों में, V और W क्रमश: हैं

$$Q \xrightarrow{\text{H}_2/\text{Ni}} V$$
+ $V \xrightarrow{\text{AlCl}_3 \text{ (anhydrous)}} \xrightarrow{\text{1. Zn-Hg/HCl}} W$

(B)
$$U$$
 and/और W

(C)
$$V \circ O$$
 and/और W

(D)
$$U$$
 and/और U CH2OH

SECTION – 3 : (Matching List Type)

खण्ड - 3: (सुमेलन सूची प्रकार)

This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C) and (D) out of which ONLY ONE is correct. इस खण्ड में 4 बहुविकल्प प्रश्न हैं । प्रत्येक प्रश्न में सुमेलन सूची है । सूचियों के लिए कोड के विकल्प (A), (B), (C) और (D) हैं जिनमें से केवल एक सही है ।

37. Match the chemical conversions in List I with the appropriate reagents in List II and select the correct answer using the code given below the lists:

सूची I में दिये गये रासायनिक रूपांतरणों को सूची II में दिए गये उपयुक्त अभिकर्मकों के साथ सुमेलित कीजिए तथा सूचियों के नीचे दिए गये कोड का प्रयोग करके सही उत्तर चुनिये :

	List I /सूची I		· List II /सूची II
P.	→cı ————————————————————————————————————	1.	(i) $Hg(OAc)_2$; (ii) $NaBH_4$
Q.	→ONa →OEt	2.	NaOEt
R.	OH OH	3.	Et-Br
S.	OH OH	4.	(i) BH ₃ ; (ii) H ₂ O ₂ /NaOH

Codes:

38. The unbalanced chemical reactions given in List I show missing reagent or condition (?) which are provided in List II. Match List I with List II and select the correct answer using the code given below the lists:

सूची I में लिखित असंतुलित अभिक्रियाओं में अप्रदर्शित अभिकर्मक/अवस्थाएँ सूची II में दी गई हैं । सूची I को सूची II से सुमेलित कीजिए तथा सूचियों के नीचे दिए गये कोड का प्रयोग करके सही उत्तर चुनिये:

List I /सूची I

List II /सूची II

P.
$$PbO_2 + H_2SO_4 \xrightarrow{?} PbSO_4 + O_2 + \text{ other product /अन्य उत्पाद} 1. NO$$

Q.
$$Na_2S_2O_3 + H_2O \xrightarrow{?} NaHSO_4 + \text{ other product/अन्य उत्पाद}$$
 2. I_2

R.
$$N_2H_4 \xrightarrow{?} N_2$$
 + other product/अन्य उत्पाद 3. Warm/गर्म

S.
$$XeF_2 \xrightarrow{?} Xe + \text{ other product/अन्य उत्पाद}$$
 4. Cl_2

Codes:

- (A) 4 2 3 1
- (B) 3 2 1 4
- (C) 1 4 2 3
- (D) 3 4 2 1

ANSWER: D

39. The standard reduction potential data at 25 °C is given below.

मानक अपचायक विभव 25 °C पर निम्नलिखित हैं।

$$E^{\circ}(Fe^{3+}, Fe^{2+}) = +0.77 V;$$

$$E^{\circ}(Fe^{2+}, Fe) = -0.44 V$$

$$E^{\circ}(Cu^{2+}, Cu) = +0.34 V;$$

$$E^{\circ}(Cu^{+}, Cu) = +0.52 V$$

$$E^{\circ}[O_{2}(g) + 4H^{+} + 4e^{-} \rightarrow 2H_{2}O] = +1.23 V;$$

$$E^{\circ}[O_{2}(g)+2H_{2}O+4e^{-}\rightarrow 4OH^{-}]=+0.40 V$$

$$E^{\circ}(Cr^{3+}, Cr) = -0.74 V;$$

$$E^{\circ}(Cr^{2+}, Cr) = -0.91 V$$

Match E° of the redox pair in List I with the values given in List II and select the correct answer using the code given below the lists:

सूची I में दिये गये रेडाक्स युग्मों को सूची II में दिये गये अपचायक विभव से सुमेलित कीजिए तथा सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये :

List I /सूची I

List II /सूची II

P.
$$E^{\circ}(Fe^{3+}, Fe)$$

1.
$$-0.18 V$$

Q.
$$E^{\circ}(4H_2O \Longrightarrow 4H^+ + 4OH^-)$$

2.
$$-0.4 V$$

R.
$$E^{\circ}(Cu^{2+} + Cu \rightarrow 2Cu^{+})$$

3.
$$-0.04 V$$

S.
$$E^{\circ}(Cr^{3+}, Cr^{2+})$$

4.
$$-0.83 V$$

Codes:

- 3 (A) 4 1 2
- (B) 2 3 4 1
- (C) 1 2 3 4
- (D) 3 4 1

ANSWER: D

40. An aqueous solution of X is added slowly to an aqueous solution of Y as shown in List I. The variation in conductivity of these reactions is given in List II. Match List I with List II and select the correct answer using the code given below the lists:

List I

- P. $(C_2H_5)_3N + CH_3COOH$
 - Y
- Q. KI $(0.1M) + AgNO_3 (0.01M)$
 - K .
- $R. CH_3COOH + KOH$ X Y
- S. NaOH + HI
 X Y

List II

- 1. Conductivity decreases and then increases
- 2. Conductivity decreases and then does not change much
- 3. Conductivity increases and then does not change much
- 4. Conductivity does not change much and then increases

X के जलीय विलयन में क्रमश: Y का जलीय विलयन धीरे-धीरे डाला जाता है, जैसे सूची I में दिखाया गया है । इन अभिक्रियाओं से उत्पन्न चालकता की भिन्नता सूची II में दी गई है । सूची I को सूची II से सुमेलित कीजिए तथा सूचियों के नीचे दिये गये कोड का प्रयोग करके सही उत्तर चुनिये :

सूची I

- P. $(C_2H_5)_3N + CH_3COOH$
 - X
- Y
- Q. KI $(0.1M) + AgNO_3 (0.01M)$ X Y
- R. CH₃COOH + KOH
 - \mathbf{X} \mathbf{Y}
- S. NaOH + HI
 - \mathbf{X} \mathbf{Y}

सूची II

- 1. चालकता घटती है और तत्पश्चात् बढ़ती है ।
- 2. चालकता घटती है और तत्पश्चात् अधिक परिवर्तित नहीं होती ।
- 3. चालकता बढ़ती है और तत्पश्चात् अधिक परिवर्तित नहीं होती ।
- 4. चालकता अधिक परिवर्तित नहीं होती और तत्पश्चात् बढ़ती है ।

Codes:

- P Q R S
- (A) 3 4 2 1
- (B) 4 3 2 1
- (C) 2 3 4 1
- (D) 1 4 3 2

PART III: MATHEMATICS

SECTION - 1: (One or more options correct Type)

खण्ड - 1: (एक या अधिक सही विकल्प प्रकार)

This section contains 8 multiple choice questions. Each question has four choices (A), (B), (C) and (D) out of which ONE or MORE are correct.

इस खण्ड में 8 बहुविकल्प प्रश्न हैं । प्रत्येक प्रश्न में चार विकल्प (A), (B), (C) और (D) हैं, जिनमें से एक या अधिक सही हैं।

- **41.** Let $w = \frac{\sqrt{3} + i}{2}$ and $P = \{w^n : n = 1, 2, 3, ...\}$. Further $H_1 = \{z \in \mathbb{C} : \text{Re } z > \frac{1}{2}\}$ and $H_2 = \left\{ z \in \mathbb{C} : \operatorname{Re} z < \frac{-1}{2} \right\}$, where \mathbb{C} is the set of all complex numbers. If $z_1 \in P \cap H_1$, $z_2 \in P \cap H_2$ and O represents the origin, then $\angle z_1 O z_2 =$

- (B) $\frac{\pi}{6}$ (C) $\frac{2\pi}{3}$ (D) $\frac{5\pi}{6}$

माना कि $w = \frac{\sqrt{3} + i}{2}$ तथा $P = \{w^n : n = 1, 2, 3, ...\}$. इसके अतिरिक्त

 $H_1 = \left\{ \mathbf{z} \in \mathbb{C} : \operatorname{Re} z > \frac{1}{2} \right\}$ तथा $H_2 = \left\{ \mathbf{z} \in \mathbb{C} : \operatorname{Re} z < \frac{-1}{2} \right\}$, जहाँ \mathbb{C} सिम्मश्र संख्याओं का समुच्चय है । यदि $z_1 \in P \cap H_1, z_2 \in P \cap H_2$ तथा O मूलिबन्दु प्रदर्शित करता है, तब $\angle z_1 O z_2 =$

- (A) $\frac{\pi}{2}$

- (B) $\frac{\pi}{6}$ (C) $\frac{2\pi}{3}$ (D) $\frac{5\pi}{6}$

ANSWER: CD

42. If $3^x = 4^{x-1}$, then x =

(A)
$$\frac{2 \log_3 2}{2 \log_3 2 - 1}$$

(A) $\frac{2 \log_3 2}{2 \log_3 2 - 1}$ (B) $\frac{2}{2 - \log_2 3}$ (C) $\frac{1}{1 - \log_4 3}$ (D) $\frac{2 \log_2 3}{2 \log_2 3 - 1}$

यदि $3^{x} = 4^{x-1}$, तब x =

(A)
$$\frac{2 \log_3 2}{2 \log_3 2 - 1}$$

(A) $\frac{2 \log_3 2}{2 \log_2 2 - 1}$ (B) $\frac{2}{2 - \log_2 3}$ (C) $\frac{1}{1 - \log_4 3}$ (D) $\frac{2 \log_2 3}{2 \log_2 3 - 1}$

ANSWER: ABC

- **43.** Let ω be a complex cube root of unity with $\omega \neq 1$ and $P = [p_{ij}]$ be a $n \times n$ matrix with $p_{ij} = \omega^{i+j}$. Then $P^2 \neq 0$, when n =

(A) 57 (B) 55 (C) 58 (D) 56 इकाई का एक सम्मिश्र घनमूल ω लीजिये, जहाँ $\omega \neq 1$ तथा $P = [p_{ij}]$ एक $n \times n$ आव्यूह लीजिये, जहाँ $p_{ij} = \omega^{i+j}$ । तब, $P^2 \neq 0$, जब n =

- (A) 57
- (B) 55
- (C) 58
- (D) 56

ANSWER: BCD

- **44.** The function f(x) = 2|x| + |x + 2| ||x + 2| 2|x|| has a local minimum or a local maximum at x =
 - (A) -2
- (B) $\frac{-2}{3}$ (C) 2
- (D) $\frac{2}{3}$

फलन f(x) = 2|x| + |x+2| - ||x+2| - 2|x|| का एक स्थानीय न्यूनतम या एक स्थानीय अधिकतम जिन x के मान पर है, वह हैं

- (A) -2
- (B) $\frac{-2}{3}$ (C) 2 (D) $\frac{2}{3}$

ANSWER: AB

45. For $a \in \mathbb{R}$ (the set of all real numbers), $a \neq -1$,

$$\lim_{n \to \infty} \frac{(1^a + 2^a + \dots + n^a)}{(n+1)^{a-1} [(na+1) + (na+2) + \dots + (na+n)]} = \frac{1}{60}$$
Then $a =$

(A) 5

- (B) 7
- (C) $\frac{-15}{2}$ (D) $\frac{-17}{2}$

 $a \in R$ (सभी वास्तविक संख्याओं का समुच्चय), $a \neq -1$, के लिए

$$\lim_{n \to \infty} \frac{(1^a + 2^a + \dots + n^a)}{(n+1)^{a-1} [(na+1) + (na+2) + \dots + (na+n)]} = \frac{1}{60}$$
तब a =

(A) 5

- (B) 7
- (C) $\frac{-15}{2}$
- (D) $\frac{-17}{2}$

ANSWER: B

46. Circle(s) touching x – axis at a distance 3 from the origin and having an intercept of length $2\sqrt{7}$ on y – axis is (are)

(A)
$$x^2 + y^2 - 6x + 8y + 9 = 0$$

(B)
$$x^2 + y^2 - 6x + 7y + 9 = 0$$

(C)
$$x^2 + y^2 - 6x - 8y + 9 = 0$$

(D)
$$x^2 + y^2 - 6x - 7y + 9 = 0$$

x – अक्ष को मूलिबन्दु से 3 दूरी पर स्पर्श करने वाला (वाले) तथा y – अक्ष पर $2\sqrt{7}$ अंत:खंड बनाने वाला(वाले) वृत्त है (हैं)

(A)
$$x^2 + y^2 - 6x + 8y + 9 = 0$$

(B)
$$x^2 + y^2 - 6x + 7y + 9 = 0$$

(C)
$$x^2 + y^2 - 6x - 8y + 9 = 0$$

(D)
$$x^2 + y^2 - 6x - 7y + 9 = 0$$

ANSWER: AC

47. Two lines $L_1: x=5, \frac{y}{3-\alpha} = \frac{z}{-2}$ and $L_2: x=\alpha, \frac{y}{-1} = \frac{z}{2-\alpha}$ are coplanar. Then α can take value(s)

(A) 1

- (B) 2
- (C) 3
- (D) 4

दो रेखाएँ $L_1: x=5, \frac{y}{3-\alpha}=\frac{z}{-2}$ तथा $L_2: x=\alpha, \frac{y}{-1}=\frac{z}{2-\alpha}$ समतलीय हैं । तब α का मान हो सकता है

(A) 1

- (B) 2
- (C) 3
- (D) 4

ANSWER: AD

48. In a triangle PQR, P is the largest angle and $cos\ P=\frac{1}{3}$. Further the incircle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)

- (A) 16
- (B) 18
- (C) 24
- (D) 22

त्रिभुज PQR, में P बृहत्तम कोण है तथा $\cos P = \frac{1}{3}$ । इसके अतिरिक्त त्रिभुज का अंत:वृत्त भुजाओं PQ, QR तथा RP को क्रमश: N, L तथा M पर इस तरह स्पर्श करता है कि PN, QL तथा RM की लम्बाइयाँ क्रमागत सम पूर्णसंख्याएँ हैं । तब त्रिभुज की भुजा (भुजाओं) की सम्भावित लम्बाई (लम्बाइयाँ) है (हैं)

- (A) 16
- (B) 18
- (C) 24
- (D) 22

ANSWER: BD

SECTION – 2 : (Paragraph Type) खण्ड – 2: (अनुच्छेद प्रकार)

This section contains 4 paragraphs each describing theory, experiment, data etc. Eight questions relate to four paragraphs with two questions on each paragraph. Each question of a paragraph has only one correct answer among the four choices (A), (B), (C) and (D). इस खण्ड में सिद्धांतों, प्रयोगों और आँकड़ों आदि को दर्शाने वाले 4 अनुच्छेद हैं । चारों अनुच्छेदों से संबंधित आठ प्रश्न हैं, जिनमें से हर अनुच्छेद पर दो प्रश्न हैं । किसी भी अनुच्छेद में हर प्रश्न के चार विकल्प (A), (B), (C) और (D) हैं जिनमें से केवल एक ही सही है ।

Paragraph for Questions 49 and 50 प्रश्न 49 एवं 50 के लिये अनुच्छेद

Let $S = S_1 \cap S_2 \cap S_3$, where

$$\begin{split} S_1 &= \{z \in \mathbb{C} : |z| < 4\}, \quad S_2 = \left\{z \in \mathbb{C} : Im\left[\frac{z-1+\sqrt{3}\ i}{1-\sqrt{3}\ i}\right] > 0\right\} \text{ and } \\ S_3 &= \{z \in \mathbb{C} : Re\ z > 0\}. \end{split}$$

माना कि $S = S_1 \cap S_2 \cap S_3$, जहाँ

$$\begin{split} S_1 &= \{z \in \mathbb{C} : |z| < 4\}, \quad S_2 = \left\{z \in \mathbb{C} : Im \left[\frac{z - 1 + \sqrt{3} \; i}{1 - \sqrt{3} \; i} \right] > 0 \right\} \; \mathrm{तथा} \\ S_3 &= \{z \in \mathbb{C} : Re \; z > 0\}. \end{split}$$

49. Area of S =S का क्षेत्रफल =

(A)
$$\frac{10\pi}{3}$$

(B)
$$\frac{20\pi}{3}$$

(C)
$$\frac{16\pi}{3}$$

(B)
$$\frac{20\pi}{3}$$
 (C) $\frac{16\pi}{3}$ (D) $\frac{32\pi}{3}$

ANSWER: B

50.
$$\min_{z \in S} |1 - 3i - z| =$$

(A)
$$\frac{2-\sqrt{3}}{2}$$

(B)
$$\frac{2+\sqrt{3}}{2}$$

(C)
$$\frac{3-\sqrt{3}}{2}$$

(A)
$$\frac{2-\sqrt{3}}{2}$$
 (B) $\frac{2+\sqrt{3}}{2}$ (C) $\frac{3-\sqrt{3}}{2}$ (D) $\frac{3+\sqrt{3}}{2}$

ANSWER: C

Paragraph for Questions 51 and 52 प्रश्न 51 एवं 52 के लिये अनुच्छेद

A box B_1 contains 1 white ball, 3 red balls and 2 black balls. Another box B_2 contains 2 white balls, 3 red balls and 4 black balls. A third box B_3 contains 3 white balls, 4 red balls and 5 black balls.

एक पेटी B_1 में 1 सफेद गेंद, 3 लाल गेंदें तथा 2 काली गेंदें हैं । एक दूसरी पेटी B_2 में 2 सफेद गेंदें, 3 लाल गेंदें तथा 4 काली गेंदें हैं । एक तीसरी पेटी B_3 में 3 सफेद गेंदें, 4 लाल गेंदें तथा 5 काली गेंदें हैं।

51. If 1 ball is drawn from each of the boxes B_1 , B_2 and B_3 , the probability that all 3 drawn balls are of the same colour is

यदि पेटियों B_1, B_2 तथा B_3 में प्रत्येक से 1 गेंद निकाली जाती है, तब निकाली गई सभी 3 गेंदों के एक ही रंग के होने की प्रायिकता है :

(A)
$$\frac{82}{648}$$

(B)
$$\frac{90}{648}$$

(B)
$$\frac{90}{648}$$
 (C) $\frac{558}{648}$ (D) $\frac{566}{648}$

(D)
$$\frac{566}{648}$$

ANSWER: A

52. If 2 balls are drawn (without replacement) from a randomly selected box and one of the balls is white and the other ball is red, the probability that these 2 balls are drawn from box B_2 is

यदि 2 गेंदें एक यादृच्छिक चयनित पेटी से (बिना प्रतिस्थापन के) निकाली जाती हैं तथा एक गेंद सफेद व दूसरी गेंद लाल निकलती है, तब इन 2 गेंदों की पेटी B_2 से निकलने की प्रायिकता है:

(A)
$$\frac{116}{181}$$

(B)
$$\frac{126}{181}$$

(C)
$$\frac{65}{181}$$

(B)
$$\frac{126}{181}$$
 (C) $\frac{65}{181}$ (D) $\frac{55}{181}$

ANSWER: D

Paragraph for Questions 53 and 54 प्रश्न 53 एवं 54 के लिये अनुच्छेद

Let $f:[0,1]\to\mathbb{R}$ (the set of all real numbers) be a function. Suppose the function f is twice differentiable, f(0)=f(1)=0 and satisfies $f''(x)-2f'(x)+f(x)\geq e^x, x\in[0,1]$. माना कि $f:[0,1]\to\mathbb{R}$ (सभी वास्तविक संख्याओं का समुच्चय) एक फलन है । मान लीजिये फलन f दो बार अवकलनीय है, f(0)=f(1)=0 तथा $f''(x)-2f'(x)+f(x)\geq e^x, x\in[0,1]$ को संतुष्ट करता है ।

53. Which of the following is true for 0 < x < 1? निम्न में से कौन 0 < x < 1 के लिए सत्य है ?

$$(A) \quad 0 < f(x) < \infty$$

(B)
$$-\frac{1}{2} < f(x) < \frac{1}{2}$$

(C)
$$-\frac{1}{4} < f(x) < 1$$

(D)
$$-\infty < f(x) < 0$$

ANSWER: D

54. If the function $e^{-x} f(x)$ assumes its minimum in the interval [0, 1] at $x = \frac{1}{4}$, which of the following is true?

यदि फलन $e^{-x} f(x)$, अंतराल [0, 1] में अपना न्यूनतम मान $x = \frac{1}{4}$ पर लेता है, तब निम्न में से कौन सत्य है ?

(A)
$$f'(x) < f(x)$$
, $\frac{1}{4} < x < \frac{3}{4}$

(B)
$$f'(x) > f(x)$$
, $0 < x < \frac{1}{4}$

(C)
$$f'(x) < f(x)$$
, $0 < x < \frac{1}{4}$

(D)
$$f'(x) < f(x)$$
, $\frac{3}{4} < x < 1$

ANSWER: C

Paragraph for Questions 55 and 56

प्रश्न 55 एवं 56 के लिये अनुच्छेद

Let PQ be a focal chord of the parabola $y^2 = 4ax$. The tangents to the parabola at Pand Q meet at a point lying on the line y = 2x + a, a > 0.

माना कि PQ परवलय $y^2 = 4ax$ की एक नाभीय जीवा है । बिन्दुओं P तथा Q पर परवलय की स्पर्श रेखाएँ एक बिन्दु पर मिलती हैं जो कि रेखा y=2x+a, a>0 पर स्थित है ।

55. Length of chord PQ is

जीवा PO की लम्बाई है:

- (A) 7a
- (B) 5a
- (C) 2a
- (D) 3*a*

ANSWER: B

- **56.** If chord PQ subtends an angle θ at the vertex of $y^2 = 4ax$, then $\tan \theta =$ यदि जीवा PQ, $y^2 = 4ax$ के शीर्ष पर कोण θ अंतरित करती है तब $\tan \theta$ =
 - (A) $\frac{2}{3}\sqrt{7}$

- (B) $\frac{-2}{3}\sqrt{7}$ (C) $\frac{2}{3}\sqrt{5}$ (D) $\frac{-2}{3}\sqrt{5}$

ANSWER: D

SECTION – 3 : (Matching list Type) खण्ड – 3: (सुमेलन सूची प्रकार)

This section contains 4 multiple choice questions. Each question has matching lists. The codes for the lists have choices (A), (B), (C) and (D) out of which **ONLY ONE** is correct. इस खण्ड में 4 बहुविकल्प प्रश्न हैं । प्रत्येक प्रश्न में सुमेलन सूची है । सूचियों के लिए कोड़ के विकल्प (A), (B), (C) और (D) हैं जिनमें से केवल एक सही है ।

57. A line L: y = mx + 3 meets y – axis at E(0, 3) and the arc of the parabola $y^2 = 16x$, $0 \le y \le 6$ at the point $F(x_0, y_0)$. The tangent to the parabola at $F(x_0, y_0)$ intersects the y-axis at $G(0, y_1)$. The slope m of the line L is chosen such that the area of the triangle *EFG* has a local maximum.

Match List I with List II and select the correct answer using the code given below the

एक रेखा L: y = mx + 3, y - 3क्ष के बिन्दु E(0,3) तथा परवलय के चाप $y^2 = 16x, 0 \le y \le 6$ के बिन्दु $F(x_0, y_0)$ पर मिलती है । परवलय की बिन्दु $F(x_0, y_0)$ पर स्पर्शी y-अक्ष को बिन्दु $G(0, y_1)$ पर काटती है । रेखा L की प्रवणता m ऐसी चुनी जाती है कि त्रिभुज EFG के क्षेत्रफल का एक स्थानीय अधिकतम है ।

सूची I को सूची II से सुमेलित कीजिए तथा सूचियों के नीचे दिए गए कोड का प्रयोग करके

सही	उत्तर	: चुंनि	ये :	S,			
		Ü		List I /सूची I	Lis	t II /सू	वी II
P.	m =				1.	$\frac{1}{2}$	
Q.	Ma	aximu	m are	ea of ΔEFG is / ΔEFG का महत्तम क्षेत्रफल है	2.	4	
R.	\mathcal{Y}_0	=			3.	2	
S.	y_1	==			4.	1	
Cod	es:						
	P	Q	R	\mathbf{S}			
(A)	4	1	2	3			
(B)	3	4	1	2			
(C)	1	3	2	4			
(D)	1	3	4	2			

ANSWER: A

58. Match List I with List II and select the correct answer using the code given below the lists:

P.
$$\left(\frac{1}{y^2} \left(\frac{\cos(tan^{-1}y) + y \sin(tan^{-1}y)}{\cot(\sin^{-1}y) + \tan(\sin^{-1}y)}\right)^2 + y^4\right)^{1/2}$$
 takes value 1. $\frac{1}{2} \sqrt{\frac{5}{3}}$

Q. If
$$\cos x + \cos y + \cos z = 0 = \sin x + \sin y + \sin z$$
 then

possible value of $\cos \frac{x-y}{2}$ is

R. If
$$\cos\left(\frac{\pi}{4} - x\right)\cos 2x + \sin x \sin 2x \sec x = \cos x \sin 2x \sec x +$$

$$\cos\left(\frac{\pi}{4} + x\right)\cos 2x \text{ then possible value of } \sec x \text{ is}$$
3. $\frac{1}{2}$

S. If
$$\cot \left(\sin^{-1} \sqrt{1-x^2}\right) = \sin \left(\tan^{-1} \left(x\sqrt{6}\right)\right)$$
, $x \neq 0$, then possible value of x is

सूची I को सूची II से सुमेलित कीजिए तथा सूचियों के नीचे दिए गए कोड का प्रयोग करके सही उत्तर चुनिये :

R. यदि
$$cos\left(\frac{\pi}{4} - x\right)cos\ 2x + sin\ x\ sin\ 2x\ sec\ x = cos\ x\ sin\ 2x\ sec\ x$$
 3. $\frac{1}{2}$ $+ cos\left(\frac{\pi}{4} + x\right)\cos\ 2x\ तब\ sec\ x$ का सम्भावित मान है

S. यदि
$$\cot \left(\sin^{-1} \sqrt{1 - x^2} \right) = \sin \left(\tan^{-1} \left(x \sqrt{6} \right) \right), x \neq 0,$$
 तब x का सम्भावित मान है

Codes:

ANSWER: B

59. Consider the lines $L_1: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+3}{1}$, $L_2: \frac{x-4}{1} = \frac{y+3}{1} = \frac{z+3}{2}$ and the planes $P_1: 7x+y+2z=3$, $P_2: 3x+5y-6z=4$. Let ax+by+cz=d be the equation of the plane passing through the point of intersection of lines L_1 and L_2 , and perpendicular to planes P_1 and P_2 .

 $\label{eq:linear_limit} \mbox{Match L ist} - \mbox{I with L ist} - \mbox{II and select the correct answer using the code given below the lists:}$

रेखाएँ $L_1: \frac{x-1}{2} = \frac{y}{-1} = \frac{z+3}{1}$, $L_2: \frac{x-4}{1} = \frac{y+3}{1} = \frac{z+3}{2}$ तथा समतल $P_1: 7x+y+2z=3$, $P_2: 3x+5y-6z=4$ लीजिये । माना कि ax+by+cz=d, रेखाओं L_1 व L_2 के प्रतिच्छेद बिन्दु से गुजरने वाला तथा समतल P_1 व P_2 के लम्बवत, समतल का समीकरण है । सूची - I को सूची - II से सुमेलित कीजिए तथा सूचियों के नीचे दिए गए कोड़ का प्रयोग करके सही उत्तर चुनिये :

List I /सूची I

List II /सूची II

13

- P. a =
 - 1.
- Q. b =

2. -3

R. c =

3. 1

S. d =

4. -2

Codes:

- P Q R S
- (A) 3 2 4 1
- (B) 1 3 4 2
- (C) 3 2 1 4
- (D) 2 4 1 3

•	Match List $-I$ with List $-II$ and select the correct answer using the code given be $\textbf{List} - I$		the lists st – II
	P. Volume of parallelepiped determined by vectors \vec{a} , \vec{b} and \vec{c} is 2. Then the volume of the parallelepiped determined by vectors $2(\vec{a} \times \vec{b})$, $3(\vec{b} \times \vec{c})$ and $(\vec{c} \times \vec{a})$ is		100
	Q. Volume of parallelepiped determined by vectors \vec{a} , \vec{b} and \vec{c} is 5. Then the volume of the parallelepiped determined by vectors $3(\vec{a} + \vec{b}), (\vec{b} + \vec{c})$ and $2(\vec{c} + \vec{a})$ is	2.	30
	R. Area of a triangle with adjacent sides determined by vectors \vec{a} and \vec{b} is 20. Then the area of the triangle with adjacent sides determined by vectors $(2\vec{a} + 3\vec{b})$ and $(\vec{a} - \vec{b})$ is	3.	24
	S. Area of a parallelogram with adjacent sides determined by vectors \vec{a} and \vec{b} is 30. Then the area of the parallelogram with adjacent sides determined by vectors $(\vec{a} + \vec{b})$ and \vec{a} is	4.	60
	सूची — I को सूची — II से सुमेलित कीजिए तथा सूचियों के नीचे दिए गए कोड करके सही उत्तर चुनिये :	का	प्रयोग
	सूची – I	सू	ची – II
	$P. \ \text{सदिशों} \ \overrightarrow{a}, \ \overrightarrow{b} \ \text{तथा} \ \overrightarrow{c} \ \vec{\mathbf{g}}$ ारा निर्धारित समांतर षट्फलक का आयतन 2	1.	100
	है । तब सिंदशों $2(\overrightarrow{a} \times \overrightarrow{b})$, $3(\overrightarrow{b} \times \overrightarrow{c})$ तथा $(\overrightarrow{c} \times \overrightarrow{a})$ द्वारा निर्धारित समांतर षट्फलक का आयतन है		
	Q . सिंदशों \overrightarrow{a} , \overrightarrow{b} तथा \overrightarrow{c} द्वारा निर्धारित समांतर षट्फलक का आयतन 5 है ।	2.	30
	तब सदिशों $3(\vec{a}+\vec{b}), (\vec{b}+\vec{c})$ तथा $2(\vec{c}+\vec{a})$ द्वारा निर्धारित समांतर षट्फलक का आयतन है		
	R. एक त्रिभुज का क्षेत्रफल, जिसकी संलग्न भुजाएँ सदिशों \vec{a} तथा \vec{b} द्वारा	3.	24
	निर्धारित है, 20 है । तब सदिशों $(2\vec{a} + 3\vec{b})$ तथा $(\vec{a} - \vec{b})$ द्वारा निर्धारित संलग्न भूजाओं वाले त्रिभुज का क्षेत्रफल है		
	S. एक समांतर चतुर्भुज का क्षेत्रफल जिसकी संलग्न भुजाएँ सदिशों \vec{a} तथा \vec{b} द्वारा निर्धारित हैं, 30 है । तब सदिशों (\vec{a} + \vec{b}) तथा \vec{a} द्वारा निर्धारित संलग्न भुजाओं वाले समांतर चतुर्भुज का क्षेत्रफल है	4.	60
	Codes *		
	P Q R S (A) 4 2 3 1		
	P Q R S (A) 4 2 3 1 (B) 2 3 1 4 (C) 3 4 1 2 (D) 1 4 3 2		
	(D) 1 4 3 2		

ANSWER: C