

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

CANDIDATE NAME					
CENTRE NUMBER		CANE NUME	DIDATE BER		

772977723

CHEMISTRY 9701/42

Paper 4 Structured Questions

October/November 2009

1 hour 45 minutes

Candidates answer on the Question Paper.

Additional Materials: Data Booklet

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Section A

Answer all questions.

Section B

Answer all questions.

You may lose marks if you do not show your working or if you do not use appropriate units.

A Data Booklet is provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 20 printed pages and 4 blank pages.

DC (AT/CG) 14049/2 © UCLES 2009

[Turn over

Section A

For Examiner's Use

Answer all questions in the spaces provided.

(a)		scribe and explain qualitatively the trend in the solubilities of the sulfates of the up II elements.	е
		[3]
(b)	com	major ore of barium is barytes, $BaSO_4$. This is very unreactive, and so other barium pounds are usually made from the sulfide, BaS . This is obtained by heating the shed ore with carbon, and extracting the BaS with water.	
		$BaSO_4(s) + 4C(s) \longrightarrow BaS(s) + 4CO(g)$	
		en 250g of ore was heated in the absence of air with an excess of carbon, it wand that the CO produced took up a volume of 140 dm ³ at 450 K and 1 atm.	ıs
	(i)	Calculate the number of moles of CO produced.	
	(ii)	Calculate the number of moles of ${\rm BaSO_4}$ in the 250 g sample of the ore.	
	(iii)	Calculate the percentage by mass of BaSO ₄ in the ore.	
			 4]
		ι	. 1

(c) (i) Use the following data and data from the *Data Booklet* to construct a Born-Haber cycle and calculate the lattice energy of BaS.

For Examiner's Use

standard enthalpy change of formation of BaS(s)	–460 kJ mol ^{–1}
standard enthalpy change of atomisation of Ba(s)	+180 kJ mol ⁻¹
standard enthalpy change of atomisation of S(s)	+279 kJ mol ⁻¹
electron affinity of the sulfur atom	–200 kJ mol ^{–1}
electron affinity of the S ⁻ ion	+640 kJ mol ⁻¹

lattice energy =kJ mol	
Explain whether the magnitude of the lattice energy of BaS is likely to be greater o less than that of BaO.	(ii)
[4	
[Total: 11	

For Examiner's Use

(a)	Describe and differ.	d explain how	the basic	ities of ami	monia, ethyla	amine and	phenylamine
					\mathop{NH}_2		
		NH ₃	CH ₃ CH	H ₂ NH ₂			
	6	ammonia	ethyla	mine	phenylam	ine	
							[3]
(b)		v the use of ac eous solutions e.	=		<u>-</u>		
	halide	observation AgNO ₃ (aq) i		dilute N	ion when H ₃ (aq) is ded	concentra	ation when ated NH ₃ (aq) added
	chloride						
	bromide						
	iodide						
							[3]
(c)	Silver bromid	e is sparingly s	soluble in w	ater.			
	AgBr(s	s) 💳 Ag+(aq) + Br ⁻ (aq	$K_{sp} =$	5 × 10 ⁻¹³ m	iol ² dm ⁻⁶	
	(i) Calculate	e [Ag+(aq)] in a	saturated	aqueous so	olution of AgE	Br.	
					14 >=		2
				-	J (1/2		mol dm ⁻³
		d explain whe in pure water.	ther AgBr	will be less	or more sol	uble in 0.1	mol dm ⁻³ KBr
							[2]

2

For Examiner's Use

(d)	Silv	er ions form complexes with ammonia and with amines.
		$Ag^{+}(aq) + 2RNH_{2}(aq) \rightleftharpoons [Ag(RNH_{2})_{2}]^{+}(aq)$
	(i)	Write an expression for the $K_{\rm c}$ for this reaction, and state its units.
		K_{c} = units
		$K_{\rm c}$ has the numerical value of 1.7 × 10 ⁷ when R = H.
	(ii)	Using your expression for K_c calculate the [NH $_3$ (aq)] needed to change the [Ag $^+$ (aq)] in a 0.10 mol dm $^{-3}$ solution of silver nitrate to the value that you calculated in (c)(i) .
		$[NH_3(aq)] = \dots mol dm^{-3}$
	(iii)	Explain whether you would expect the $K_{\rm c}$ for the reaction where R = ${\rm C_2H_5}$ to be greater or less than that for the reaction where R = H.
		[5]
		[Total: 13]

3	Iron	metal and i	ts compound	ds are us	seful cataly	sts in certai	n reactions.			For Examiner's
((a)		n its catalyt t is a transitio			: wo properti	es of iron o	r its compo	ounds that	Use
									[2]	
((b)	Outline hor	ovided with a w you could ou should inc	use this	solution t	o find out th	ne concentra	ation of Fe ²	² +(aq) in a	
									[4]	
((c)		of the following							
		(i)	MnO ₄	+	S O ₂ +	H ₂ O →	Mn ²⁺ +	S O ₄ ²⁻ +	H+	
oxida	tion	numbers:								
		(ii)	Cr ₂ O ₇ ²	- +	NO ₂ +	H ⁺ →	Cr ³⁺ +	N O ₃ +	H ₂ O	
oxida	ition	numbers:							[6]	

peroxydisulfate(VI) ions. $2I^{-} + S_{2}O_{8}^{2-} \longrightarrow I_{2} + 2SO_{4}^{2-}$	For Examiner Use
[2]	
[Total: 14]	

(a)	What is meant by the term bond energy?	For Examiner's Use
(b)	Describe and explain what is observed when a red-hot wire is plunged into separate samples of the gaseous hydrogen halides HC <i>l</i> and HI. How are bond energy values useful in interpreting these observations?	
(c)	The following reaction occurs in the gas phase.	
	$3F_2(g) + Cl_2(g) \longrightarrow 2ClF_3(g), \qquad \Delta H_r^{\oplus} = -328 \text{ kJ mol}^{-1}$	
	Use these and other data from the $\it Data Booklet$ to calculate the average bond energy of the $\it Cl$ -F bond in $\it Cl$ F $_3$.	

[Total: 7]

4

5 (a) All the carbon atoms in benzene lie in the same plane. This means that they are *coplanar*, but this is not the case with cyclohexane.

By rotating the molecule around its several C–C bonds, all the carbon atoms in butane can be made to lie in the same plane, but this is not the case with methylpropane.

$$H_3C$$
 CH_2 CH_3 H_3C CH_3 butane CH_3 methylpropane

By considering the 3-dimensional geometry of the following five molecules, and allowing rotations around C–C bonds, decide whether or not the **carbon atoms** in each molecule **can be arranged** in a coplanar fashion. Then place a tick in the appropriate column in the table below.

(compound	all carbon atoms can be coplanar	not all carbon atoms can be coplanar
	Α		
	В		
	С		

C D E

[3]

(b) Methylbenzene can react with chlorine under different conditions to give the monochloro derivatives **F** and **G**.

For Examiner's Use

Suggest reagents and conditions for each reaction.
reaction I
reaction II
[2]

(c) Benzyl benzoate is a constituent of many perfumery products, and has also been used in the treatment of the skin condition known as scabies. It can be made from methylbenzene by the following route, which uses one of the chlorination reactions from (b).

For Examiner's Use

benzyl benzoate

(i) Draw the structural formula of the intermediate **H** in the box above.

(ii)	Suggest reagents and conditions for each reaction.	For
	reaction III	Examiner's Use
	reaction V	
	reaction VI	
(iii)	State the type of reaction occurring during	
	reaction III,	
	reaction V.	
	[6]	
	[Total: 11]	

6 Compounds **J** and **K** are isomers with the molecular formula C₅H₁₁NO, and they contain the same functional group.

For Examiner's Use

They may both be obtained from ethanol by the following routes.

(a) Draw the structural formulae of the lettered compounds **J** to **Q** in the boxes above. [7]

(b)	Sugg	gest reagents and conditions for the following.	Fo
	react	ion I	Exam. Us
	react	ion II	
		· N/	
	react	ion IV [3]	
(c)	Wha	t <i>type of reaction</i> is occurring in	
	react	ion IV,	
	react	ion VI?	
		[2]	
(d)	(i)	Name the functional group that is common to compounds ${f J}$ and ${f K}$.	
	(ii)	Name the functional group that is common to compounds N and P .	
		[2]	
		[Total: 14]	

Section B

For Examiner's Use

Answer all questions in the spaces provided.

)	Explain, using diagrams where appropriate, the types of interaction responsible for the primary, secondary and tertiary structure of a protein.
	primary structure
	secondary structure
	tertiary structure
	[6]

	17
)	Enzymes are particular types of protein molecule. Explain briefly how enzymes are able to help to break down molecules in the body.
	[2]
)	The graph below shows the effect of inhibition on an enzyme-catalysed reaction.
	reaction rate <i>V</i> ▲
	V _{max}
	substrate concentration [S]
	State the type of inhibition shown, giving a reason to support your answer.
	type of inhibition
	reason
	[2]

[Total: 10]

8	The residues from organohalogen pesticides are known to be a major cause of the decline in numbers of different birds of prey in many countries. These residues are concentrated in				
		s at the top of food chains.	Use		
	(a)	Analysis of the bodies of birds of prey show that the pesticide residues accumulate in the fatty tissues of the birds. This is because of the high partition coefficient between the fat in the tissues and water found in blood.			
		Explain what is meant by the term partition coefficient.			
		[2]			
	(b)	A particular pesticide has a partition coefficient of 8.0 between the solvent hexane and water. If a $25\mathrm{cm^3}$ sample of water containing 0.0050 g of the pesticide is shaken with a $25\mathrm{cm^3}$ sample of hexane, calculate the mass of pesticide that will dissolve in the hexane layer.			
		[2]			

(c) Compounds used as pesticides may contain bromine or chlorine.

What would be the difference in the ratio of the M: M+2 peaks if the pesticide contained one chlorine rather than one bromine atom?

(ii) If a given pesticide contains two chlorine atoms per molecule, deduce the relative heights of the M, M+2 and M+4 peaks.

[3]

(d) The following graph shows the occurrence of pesticide residues in the eggs of fish-eating birds of prey upstream and downstream of a paper mill at Castlegar on the Columbia River in Canada.

For Examiner's Use

Columbia River Basin

PCBs, the dioxin 2378TCDD, and the furan 2378TCDF all come from chemicals containing chlorine.

(i)	Suggest which compounds are present directly as a result of the paper mill.	
(ii)	By studying the data for 1994, suggest which chemical(s) come from sources of than the paper mill.	
(iii)	Compare the downstream data for 1994 with that for 1997. Suggest what might responsible for the change.	be
(iv)	A molecule of 2378TCDD contains four chlorine atoms. How many molecular i peaks would this compound show in its mass spectrum?	ion
		 [4]

[Total:11]

9 (a) Put the following items in order of **increasing** size. Use the number 1 to indicate the smallest and 3 to indicate the largest.

length of DNA molecule in a chromosome	nanosphere diameter	cell diameter

[2]

(b) Nanotechnology has an increasing range of uses across a number of fields including sport. For example, golf clubs are now being made using nanomaterials.

cross-section of golf club shaft with nanomaterial fill

Use the diagrams above and your knowledge of nanomaterials to suggest **two** properties of the new shafts. Explain your answers.

(i)	
(ii)	

[2]

For Examiner's Use

to the surface of windows and reflects heat whilst letting all light in the visible rathrough.		
	Sug	gest how this variable reflective property is possible using nano-sized particles.
		[2]
(d)	use	ough silver is well-known as a precious metal, its medicinal properties have been d for hundreds of years. In ancient Greece silver was used to purify water and until development of antibiotics, silver was important in the treatment of large wounds.
	(i)	What property of silver makes it useful for jewellery?
	(ii)	Suggest the property of silver that makes it useful in the treatment of large wounds.
	(iii)	Suggest why nano-sized silver particles are more useful in treating wounds.
		[3]
		[Total: 9]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of

