NucE497: Reactor Fuel Performance

Lecture 21: Final Project Assignment

Muhammet Ayanoglu

Mechanical end Nuclear Engineering
February 27, 2017

What we discussed so far...

- Module-1: Fuel basics
- Purpose of the fuel and types of fuel
 Heat transport
 Fission, heat generation, fission products
- · M bublise on a trive and this called had ding
 - Fuel fabrication

What we discussed so far...

- Module-1: Fuel basics
- Module-2: Heat transport
- Intro to heat transport and the heat equation Analytical solution of the heat equation
 - Numerical solution of the heat equation
 - 1D solution of the heat equation using Matlab
 - 2D solution of the heat equation using Matlab
 - Coolant temperature change, power generation, and melting

What we discussed so far...

- Module-1: Fuel basics
- Module-2: Heat transport
- Module-3: Mechanical Behavior
 - Introduction to solid mechanics
 - Thermomechanics, thermal expansion
 - Analytical solutions of the mechanics equations
 - Solving equations in 1D numerically
 - Solving in multiple dimension with FEM
 - Summary of fuel performance codes

Project goal

The goal of this project is to create a simple fuel performance code and use it to investigate different cases.

You will have the option to create a 1.5D code, a 2D RZ code with smeared pellets, or a 2D RZ code with discrete pellets.

You will model a fuel rodlet with ten UO2 pellets and surrounded by a zircaloy cladding:

Pellet and Clad geometry:

Operating conditions:

• The power will linearly increase for 3 hrs before reaching its maximum value, resulting from a fission rate of 2.75×10¹³ neutron/cm²s. Power will hold there for 2 years.

The linear heat rate will vary axially according to the equation:

$$LHR\left(\frac{z}{Z_o}\right) = LHR^o \cos\left[\frac{\pi}{2\gamma}\left(\frac{z}{Z_o} - 1\right)\right] = LHR^o F\left(\frac{z}{Z_o}\right)$$

Where

- LHR⁰ is the centerline linear heat rate (z = Z0)
- $\gamma = (Z_{ex} + Z_o)/Z_o$ where Z_{ex} is the extrapolation distance
- γ ≈ 1.3

Operating conditions:

$$T_{cool,in} = 580 \text{ K},$$

 $\dot{m} = 0.25 \text{ kg/s}$
 $C_{pw} = 4200 \text{ J/kgK}$

The coolant temperature along the length of the rodlet using the equation from slide 18 of lecture 7:

$$T_{cool} - T_{cool}^{in} = \frac{2\gamma}{\pi} \frac{Z_0 L H R^0}{\dot{m} C_{pw}} \left(\sin\left(\frac{\pi}{2\gamma}\right) + \sin\left(\frac{\pi}{2\gamma} \left(\frac{z}{Z_0} - 1\right)\right) \right)$$

You will investigate three different cases:

Case A: Fuel, clad and gap properties are burnup independent

Case B: Fuel, clad and gap properties are burnup dependent

Case C: Simulation of loss of coolant accident

Case A: Fuel, clad and gap properties are burnup independent

Assumptions

- Properties of the fuel, cladding and gap are independent of burnup,
- Thermal conductivity should change with temperature,
- You should consider the impact of thermal expansion on the gap size.

Stop once your result reaches steady-state. Choose a reasonable constant time step size.

Output:

- ➢ Plot T vs. radius for the bottom pellet and the 5th pellet from the bottom of the same plot.
- Compare against the analytical solution to make sure your solution makes sense.
- > Turn in your data file!

Case B: Fuel, clad and gap properties are burnup dependent

Assumptions

- Properties of the fuel, cladding and gap are burnup dependent:
 - Swelling
 - Fission gas release
 - Burnup dependent thermal conductivity.

Choose a time step size that gives your reasonable results without taking too MPB uctions on how to incorporate these will be given in class as we learn about them!

Output:

Run your simulation for 2 years and

- ➢ Plot To and Ts vs. time on the same plot for bottom pellet and the 5th pellet from the bottom pellet.
- ➤ Also indicate on your plot at what time these two pellets came in contact with the cladding.
- > Turn your data files with these three quantities as a function of time.

Case C: Simulation of LOCA

Simulate a loss of coolant accident with your code after 2 years of steady operation modeled in Part 2.

Output

- ➤ If the coolant flow rate drops to 1×10⁻³ kg/s, will the fuel melt?
- How low must the coolant flow rate go for the fuel to melt after 6 hours?
- > Turn in an image file showing the temperature profile throughout the fuel pellet when it reaches the melting temperature after six hours.

Specific Requirements for the approaches

Specific Requirements for the approaches

2D in Matlab:

The details of your simulation are:

- Use a max element size of 1/10 the radius
- Use the iterative method from the homework to include the closing of the gap.
- Use the analytical method to determine the centerline temperature for the iterations.

Specific Requirements for the approaches

2D Discrete Pellets in MOOSE:

- Additional directions are provided with the files. Follow them. Do this as soon as possible to make sure you can get the code up and running.
- Three meshes are provided that are all interchangeable in the code.
- One is for smeared pellets, one for discrete pellets but a coarse mesh, and one for discrete pellets with a fine mesh.
- Your final results should use the discrete fine mesh, if possible. If not, you may be allowed to use the discrete coarse mesh (talk to Dr. Tonks).
- You will output your temperature profiles using VectorPostProcessors, as done in the
 example file. You will then need to plot the files in Matlab, Excel, or something similar.
- Make images of your solution using Paraview (makes the best images) or Peacock.

Deliverables

- Indicate your choice of creating a 1.5D, 2D smeared pellet, or 2D discrete pellet code
- A report presenting your results and summarizing your approach
- Several data files from your simulations (outlined above)
- One image file from your results for part 3 (more detail given above)

Requirements for the Final Report

Formatting requirements:

- No more than 4 pages
- 11 point font
- 1 inch margins on all sides
- To be turned in as a PDF file (you can use any program to write the report)

Section requirements:

- You must have the following sections:
 - Abstract
 - Introduction
 - Case 1
 - Case 2
 - o Case 3
 - Conclusions
- You may have the following sections (they don't count towards the four pages):
 - References
 - Appendix