Skråplan

Simon Bakken-Jantasuk

$21.\ desember\ 2022$

Innhold

1		oduksjon	2
			2
	1.2	Oppsummering	2
2	Teo	ri	2
3	Fremgangsmåte		4
		Målinger	4
4	Resultat		5
	4.1	Python: akselerasjon	5
	4.2	Python: bevegelse	5
\mathbf{T}_{i}	abe	ller	
	1	strekning (cm) \dots	4

1 Introduksjon

1.1 Hensikt

 $1.\,$ Undersøke bevegelsen til en boks som beveger seg opp et skråplan

1.2 Oppsummering

Undersøkte bevegelsen til en boks, og har funnet ut at \mathbf{Utstyr}

- 1. Gradskive
- 2. Boks
- 3. Fjær
- 4. Linjal

2 Teori

a)

Figur 1: I ro, så har vi normalkraft og gravitasjonskraft

b)

Vi vet at,

$$\mu = \frac{R}{N}$$

Hvor $G_x = R$

$$R = G\sin\phi \wedge N_y = G\cos\phi$$

Det vil si,

$$\mu = \frac{mg\sin\phi}{ma\cos\phi}$$

Vi vet at,

$$\tan\phi = \frac{\sin\phi}{\cos\phi}$$

Da vet vi at,

$$\mu = \tan \phi, Q.E.D$$

Figur 2: I bevegelse opp: normalkraft, gravitasjonskraft og friksjonkraft

c)

Uttrykk for akselerasjonen blir,

$$\Sigma F = ma$$

$$\vec{G}_x + \vec{R}_x = ma_x$$

$$a_x = \frac{\vec{G}_x + \vec{R}_x}{m}$$

Vi vet at,

$$G_x = mg\sin\phi \wedge R_x = \mu mg\cos\phi$$

Da blir,

$$a_x = \frac{mg\sin\phi + \mu mg\cos\phi}{m}$$
$$a_x = g(\sin\phi + \mu\cos\phi)$$

d)

For et legeme som beveger seg ned et skråplan,

$$a_x = g(\sin\phi - \mu\cos\phi)$$

Her så blir R negativ.

e)

Ifølge formelen så er $a_{opp}-a_{ned}=\mu 2g\cos\phi,$ men dersom vi ikke bruker dette som utgangspunkt

Men a_{opp} og a_{ned} , så får vi,

$$g(\sin\phi + \mu\cos\phi) - g(\sin\phi - \mu\cos\phi) = 2\mu g\cos\phi$$

$$\mu = \frac{a_{opp} - a_{ned}}{2g\cos\phi}, Q.E.D$$

Dette er lov fordi vi har brukt a_{opp} og a_{ned} som utgangspunkt.

Fremgangsmåte 3

- 1. Velger en vinkel ϕ
- 2. Bruker fjæren for å skyte opp boksen
- 3. Gjentar (2) flere ganger
- 4. Tar målinger av (3)

3.1 Målinger

Vinkel $\phi=9^{\circ}\pm0.1^{\circ}$ Lengden av boksen er $25\times10^{-2}~\mathrm{cm}$

Tabell 1: strekning (cm)

81

84

 S_1 S_2 S_3 S_4 S_5 S_6 S_7 S_8 S_9 S_{10} S_{11} 82

81

85

84

85

84

81

85

85

4 Resultat

4.1 Python: akselerasjon

```
from math import *
g = 9.81 \# m/s^2
friksjonsKonstant = 0.17
def akselerasjon(vinkel, retning):
 if retning == "opp":
   return g * (sin(vinkel) + friksjonsKonstant * cos(vinkel))
 elif retning == "ned":
   return g * (sin(vinkel) - friksjonsKonstant * cos(vinkel))
 else:
   raise ValueError("Retningene må være opp eller ned")
akselerasjonOpp = round(akselerasjon(radians(9), "opp"),20)
akselerasjonNed = round(akselerasjon(radians(9), "ned"),20)
print(akselerasjonOpp)
print(akselerasjonNed)
def friksjonTall(vinkel, akselerasjonOpp, akselerasjonNed):
   return tan(vinkel), (akselerasjonOpp - akselerasjonNed)/(2*g*
       print(friksjonTall(radians(9),akselerasjonOpp, akselerasjonNed))
```

```
Output:
3.1817899476551763
-0.11254574356584655
(0.15838444032453627, 0.17)
```

4.2 Python: bevegelse

```
from pylab import *

g = 9.81
angle = radians(9)
mu = 0.17

x = 0
v = 0

strekning = []
tid = []
```

```
t = 1
while t <= 10:
    a = g * (sin(angle) + mu * cos(angle))
    v = v + a * t
    x = v * t + 1/2 * a * t ** 2
    strekning.append(x)
    tid.append(t)
    t = t + 1

plot(tid, strekning)
show()</pre>
```