(i)	Printed Pages: 3	Roll No
------------	------------------	---------

Bachelor of Computer Applications 5th Semester (1129)

DISCRETE MATHEMATICAL STRUCTURE Paper: BCA-16-502

Time Allowed: Three Hours] [Maximum Marks: 65]

Note:— Attempt FIVE questions in all, including Q. 9 in Unit-V which is compulsory and taking ONE each from Unit-I to Unit-IV.

UNIT-I

1. (a) Find f o g, g o f, f o f and g o g compositions for the following functions:

$$f(x) = x^2 + 2$$
, $g(x) = 1 - \frac{1}{1 - x}$, $x \ne 1$.

- (b) Draw the graph of the function y = [x] 2, where [x] is the greatest integer < = x. 7,6
- 2. (a) Prove that $f: R \to R$ defined by $f(x) = x^2 + 3$ is neither one-one nor onto function.
 - (b) Let $A = \{1, 2, 3\}$, $B = \{4, 5\}$ and $C = \{1, 4\}$ be three sets. Find $A \times B$, $B \times A$, $A \times (B \cup C)$ and $(A \cap C) \times B$.

0948/FF-12502

1

Turn over

UNIT-II

- 3. (a) A sequence is defined by the recurrence relation $t_{n+1} = a t_n + b$ with $t_1 = 4$, $t_2 = 3.2$ and $t_3 = 2.04$. Find the values of a and b.
 - (b) Find the sequence (t_n) satisfying the recurrence relation $t_n = 2t_{n-1} + t_{n-2} 2t_{n-3}$, n > 0, and the initial conditions $t_0 = 1$, $t_1 = 2$ and $t_2 = 0$.
- 4. (a) A sequence is defined by the recurrence relation t_{n+1} = 0.6 t_n + 4 with t₀ = 7.
 Calculate the value of t₃ and the smallest value of n for which t_n > 9.7.
 - (b) Determine the generating function of the sequence:

 $0, 1, 2^2, 3^2, \ldots, n^2, \ldots$

UNIT—III

- 5. (a) For each of the following, either give an example, or prove there are none:
 - (i) A simple graph with 6 vertices, whose degrees are 2, 2, 2, 3, 4, 4.
 - (ii) A simple graph with 8 vertices, whose degrees are 0, 1, 2, 3, 4, 5, 6, 7.
 - (iii) A simple graph with degrees 1, 2, 2, 3.
 - (b) State Euler's formula for connected planar graphs. If a connected planar graph had 6 vertices and 9 edges then how many faces would it have?

 7,6

7,6

6. Calculate the single-source shortest paths from A to every other vertex in the following undirected, weighted graph:

- **UNIT—IV**
- What is a finite state machine? Why is it required? What 7. are the elements of FSM? Design an NFA which does not accept set of all strings with two consecutive zeros.
- What is an algorithm? What are its features? How do 8. you determine the time as well as space complexity of an 13 algorithm? Explain with examples.

UNIT-V (Compulsory Question)

- (a) Given that $A = \{2, 4\}$ and $B = \{x : x \text{ is a solution of } A = \{x : x \text{ is a solution of }$ 9. $x^2 + 6x + 8 = 0$. Are A and B disjoint sets ?
 - (b) Write the power set of the set $A = \{y : y \in N \text{ and } \}$ $1 \le y \le 3\}.$
 - (c) A Moore state machine usually has power states than the equivalent Mealy machine. (True/False)
 - (d) Define Travelling Salesman Problem.
 - (e) Define Recursive algorithm.
 - What is regular expression in Automata theory? (f)

$$3,5 \times 2 = 13$$