

目錄

ΔP-G 圖 ΔP-G 對數圖 ΔP-L 圖

結果討論

不同氣體流量的壓差 不同液體流量的壓差 不同塔的比較

*

實驗觀察 誤差分析

實驗建議

數據處理

L = 0, 1, 1.5, 2 LPM

操作條件及實驗參數

• 填充物: 拉西環 (7mm & 10mm)

• 塔高: 1.2m & 0.6m

	Column 1	Column 2	Column 3
填充物直徑(mm)	7	10	10
比表面積(m²/m³)	633	487	487
塔高(m)	1.2	1.2	0.6

- · 濕塔操作前已先將塔完全沖濕 (flooding), 才開始做實驗
- 將不同塔及不同氣、液流量下所得到的壓差,對氣、 液流量進行作圖
- loading point 及 flooding point的判讀:斜率變化驟變的點

數據處理 loading point 及 flooding point 的判讀

L=1 LPM					
G	ΔP	∆ G	$\Delta(\Delta P)$	Slope	∆(Slope)
LPM	mmH ₂ O	LPM	mmH ₂ O		
40	40.9	10	25.1	2.51	-0.1
50	66	10	24	2.4	0.9
60	90	10	33	3.3	0.1
70	123	10	34	3.4	1.2
80	157	10	45.5	4.55	0.5
90	202.5	10	50.5	5.05	1.6
100	253	5	33	6.6	1.4
105	286	5	26	5.2	27.6
110	312	2.5	82	32.8	
112.5	394				

- 以 column 1的液體流量 L=1 LPM 為例
- 找 loading point 時,透過計算兩點斜率,選擇斜率變化最大之處
- 找 flooding point, 則透過斜率變化, 因壓力急遽上升, 使斜率同時大增, 則此點為flooding point

不同液體流量的壓差一綜合

不同氣體流量的壓差不同塔的比較

- L = 0 LPM
- L = 1 LPM
- L = 1.5 LPM
- L = 2 LPM

△ loading point

) flooding point

• 當液體流量加大時,可觀察壓差隨之上升

100

G (LPM)

column 2

50

350

300

 $\begin{array}{l}
\left(\begin{array}{c} 250 \\ 250 \end{array} \right) \\
\left(\begin{array}{c} 250 \\ 150 \end{array} \right)$

100

50

• 液體流量的大小,與發生 flooding 或 loading 的順序無關

150

200

· Column由1至3,發生flooding時之氣流流速有跟著上升

結果討論 不同氣體 不同氣體

不同液體流量的壓差一次冪關係

不同氣體流量的壓差不同塔的比較

$log(\Delta P) - log(L)$ 圖

- $\Delta P \propto L^n$
- 取固定氣體流量G,作對數圖
- 取 fitting 後的 r² 值最高的四個進行討論

不同液體流量的壓差一次冪關係

結果討論

不同氣體流量的壓差不同塔的比較

column 1					
G (LPM)	40 50		60	70	
slope	0.8781	0.5059	0.3923	0.3853	
r ²	0.7641	0.8057	0.7458	0.8723	
column 2					
G (LPM)	50	100	110	120	
slope	0.2205	0.4244	0.4496	0.6490	
r ²	0.9724	0.9156	0.9511	0.9377	
column 3					
G (LPM)	60	80	100	110	
slope	0.4597	0.5753	0.7406	0.9045	
r ²	0.9459	0.9568	0.9071	0.9217	

$log(\Delta P) - log(L)$ 圖

- $\Delta P \propto L^n$
- slope = n, 液體流量對壓差的影響
- **塔1**: 隨著氣體流量增加,液體流量 對壓降的影響下降
- 塔2、3: 隨著氣體流量上升,液體流量的影響上升

不同液體流量的壓差 不同氣體流量的壓差一乾塔 不同塔的比較

LEGEND

- column 1
- column 2
- column 3

$$\Delta P = \frac{150\mu L}{D_p^2} \frac{(1 - \epsilon)^2}{\epsilon^3} v_s + \frac{1.75L\rho}{D_p} \frac{1 - \epsilon}{\epsilon^3} v_s |v_s|$$

$\Delta P - G$ 圖

- 填充物半徑增加,比表面積減少,壓降減少 (空隙度變大,阻力變小)
- 塔高減半,壓降減少

$\log(\Delta P)$ 一 $\log(G)$ 圖

- $\Delta P \propto G^n$
- **slope = n**: 氣體流量對壓差的影響程度,**空隙度**越小、**塔高**,氣體對壓差的影響越大

	column 1	column 2	column 3
n	1.7031	1.546	1.3875
r ²	0.9986	0.9926	0.9904

不同液體流量的壓差 不同氣體流量的壓差一綜合 不同塔的比較

LEGEND

- L = 0 LPM
- L = 1 LPM
- L = 1.5 LPM
- L = 2 LPM

\(\triangle \text{loading point}\)

flooding point

不同液體流量的壓差 不同氣體流量的壓差 不同塔的比較

	L (LPM)	loading point		flooding point	
		G (LPM)	$\Delta P \text{ (mmH}_2O)$	G (LPM)	$\Delta P \text{ (mmH}_2O)$
column 1	1	60	90	110	312
d = 7 mm	1.5	60	103	87	274
H = 1.2 m	2	40	64	65	205
column 2	1	120	102.5	170	246
d = 10 mm	1.5	100	84	140	235
H = 1.2 m	2	110	140	125	253
column 3	1	120	55.5	150	112
d = 10 mm	1.5	100	51	135	151
H = 0.6 m	2	90	61	110	127

- 由塔1及塔2的比較可知, 比表面積較大時, 在較低的氣體流量就會達到滿溢點
- 由塔2及塔3的比較,<mark>塔高越矮</mark>,達滿溢點的所需的流量相差不大,但達滿溢點時的<mark>壓差越小</mark>

450

不同液體流量的壓差 不同氣體流量的壓差 不同塔的比較

LEGEND

- column 1
- column 2
- column 3
- △ loading point
- O flooding point

- · 比較 column 1 & column 2: 填充物直徑小,更快達到loading point / flooding point
- 比較 column 2 & column 3:
 →塔高小,更快達到loading point / flooding point

不同液體流量的壓差 不同氣體流量的壓差 不同塔的比較-2.3塔

LEGEND

- column 2
- column 3

以氣體流量對**單位長度**壓差作圖 2,3 塔填充物相同,應有相同趨勢線 液體和氣體**低流量**時 profile **接近** 壓力計讀取位置可能造成誤差

實驗觀察

- 1. 負荷點現象不明顯,滿溢現象由下層隨著空氣流量增大往上
- 2. 為了怕找不到滿溢點,我們先把整個塔沖濕,避免往回做時有部分塔沒有濕,造成不可逆的情形。
- 3. C1塔水垢明顯,其他兩管比較沒有
- 4. 到達滿溢點時,壓力會一直上升,不會停下來
- 5. 第二個塔滿溢現象集中在中下層
- 6. 塔底部的水是連通系統

誤差討論

- 1. 實驗進行到一半的時候流量計會跑掉,造成誤差。
- 2. 水的注入不是噴灑式的,而是柱狀加入的,液體可能會有 channeling 的情形,沒辦法完全分散。
- 3. 氣體流量大時,壓力計讀值會一直跳動,不太穩定。
- 4. 每次取的點間格可能太大,滿溢點時氣體流量的點找的不夠精確。

實驗建議

希望流體的進入可以改為噴灑式的,實驗會比較精準。

填充塔最重要的是氣液混和的效果,希望實驗可以設計出量測混和效果的方法。

- 單操實驗課本&講義
- 模板: https://pptmon.com/happy-new-year/

Thanks for listening and Happy New Year!

