Chapter 2. Ring Theory

Hu Zheng Department of Mathematics, Zhejiang University

April 22, 2015

1 Basic Notions

Problem 1.1 (Kaplansky). If some element in a unital ring R has more than one right inverse, then it has infinitely many inverses.

Solution: Maybe we need first to find some examples to get a good handle of it...

• Suppose $R = M_n(k)$ for some field k.

Note that if rq = 1, then r = rqr, r(1 - qr) = 0.

Suppose $rq_1 = 1$, $rq_2 = 1$, then $r(q_1 - q_2) = 0$, and $r(q_1 + (q_1 - q_2)u) = 0$ for any u. We only need to find infinite us such that $(q_1 - q_2)u$ are all distinctive.

Problem 1.2. (1) Suppose L is a noncommutative field, and a is out of the center of L, then L is generated by all the congruent elements of a.

(2) Suppose L is a field and K its proper subfield, and $K^* = K - \{0\}$ is a normal subgroup of L^* , then K is contained in the center of L.

Solution:

2 Homeomorphism Theorems for Rings

3 Applications of Homomorphisms

4 Various Kinds of Integral Domains

Problem 4.1. Is x + 1 a unit in $\mathbb{Z}[x]$ and $\mathbb{Z}[[x]]$? Is $x^2 + 3x + 2$ irreducible in $\mathbb{Z}[x]$ and $\mathbb{Z}[[x]]$.

Solution: x+1 is not a unit in $\mathbb{Z}[x]$. But it's a unit in $\mathbb{Z}[[x]]$, and its inverse is $1-x+x^2-x^3+\cdots$.

 $x^2 + 3x + 2$ is not a unit in $\mathbb{Z}[x]$. But it is a unit in $\mathbb{Z}[[x]]$ as it equals (x+1)(x+2), and its inverse is $(1-x+x^2-\cdots)(1-2x+4x^2-\cdots)$.

Problem 4.2. Suppose f(x) is an irreducible polynomial of odd degree in \mathbb{Q} . α and β are different roots of f(x) in some extension of \mathbb{Q} . Prove that $\alpha + \beta \notin \mathbb{Q}$.

Solution: First let's ask why odd degree? Because in even degrees α and β can be congruent.