Extended traffic

Big-O Blue - Lecture 10: Bellman-Ford

Tóm tắt đề bài

Tóm tắt đề bài

- Cho n giao lộ, giao lộ thứ i có một độ bận rộn (busyness) là b[i].
- Có m đường đi một chiều giữa các giao lộ, trọng số của cạnh nối từ u đến v là (b[v] – b[u])³
- Có q truy vấn, mỗi truy vấn phải in ra chi phí nhỏ nhất khi đi từ giao lộ 1 đến giao lộ f nào đó. Nếu không thể di chuyển đến f hoặc chi phí đi đến f bé hơn 3, in ra '?'

Mô tả Input/Output

Input

Có nhiều bộ test. Mỗi bộ test có định dạng:

- Dòng đầu tiên là số nguyên n $(1 \le n \le 200)$
- Dòng thứ 2 chứa n số nguyên b[i] $(1 \le b[i] \le 20)$
- Dòng thứ 3 chứa số cạnh m
- m dòng tiếp theo, mỗi dùng chứa 2 số u, v
- Dòng tiếp theo chứa số nguyên q là số truy vấn
- q dòng tiếp theo, mỗi dòng chứa số nguyên f là đỉnh cần tính chi phí từ 1 đến f

Output

Với mỗi bộ test in ra "Case C:" ở dòng đầu tiên. Với mỗi truy vấn, in ra trên 1 dòng là kết quả cần tìm.

Giải thích ví dụ

Ví dụ (test case 1)

Input	Output
5	Case 1:
678910	3
6	4
12	
2 3	
3 4	
15	
5 4	
4 5	
2	
2 4	
5	

- Truy vấn 1: cách đi tốt nhất là 1 → 2 → 3 → 4, chi phí là 3
- Truy vấn 2: cách đi tốt nhất là 1 → 2 → 3 → 4 → 5, chi phí là 4

Ví dụ (test case 2)

Input	Output
2	Case 2:
10 10	?
1	
1 2	
1	
2	

Chỉ có thể đi đến 2 theo cạnh (1, 2) với chi phí là 0. Kết quả nhỏ
 hơn 3 nên in ra ?

Hướng dẫn giải

Nhận xét

- Phát biểu lại bài toán: tìm đường đi ngắn nhất từ đỉnh 1 đến các đỉnh còn lại.
 Nếu không tồn tại đường đi hoặc đường đi nhỏ hơn 3 thì in ra?.
- Trọng số của cạnh (u, v) là (b[v] b[u])³
- → Trọng số có thể âm hoặc dương tùy ý
- > Không thể sử dụng Dijkstra, chỉ có thể dùng thuật toán Bellman-Ford

Ví dụ 1 (test case 1)

Input	Output
5	Case 1:
678910	3
6	4
1 2	
2 3	
3 4	
15	
5 4	
4 5	
2	
4	
5	

• Kết quả dist[i] là giá trị màu đỏ trong đồ thị

Ví dụ 2 (trường hợp sai của Bellman)

Input	Output
1	Case 1:
	?
5	?
1 1 2 3 10	
5	
1 2	
2 3	
3 4	
4 2	
4 5	
2	
4	
5	

- Theo kết quả Bellman-Ford, ta thu được dist[5] = 327, nhưng kết quả mong muốn là ?
- Có thể lặp vô số lần trong chu trình âm (2, 3, 4) để chi phí thành âm vô cùng, sau đó đi ra đỉnh 5 để thu được kết quả là ?

Ý tưởng

- Chạy Bellman lần 1 để tìm đường đi ngắn nhất (theo lý thuyết) từ 1 đến các đỉnh khác
- Chạy Bellman lại lần 2, với mỗi cạnh u, v nếu dist[v] > dist[u] + w
- → Kết luận v bị ảnh hưởng bởi chu trình âm nào đó
- → Gán dist[v] = -INF

Các bước giải (đối với 1 testcase)

B1: Đọc số đỉnh n, mảng b

B2: Đọc số cạnh m, đọc vào từng cạnh u, v, tính w = $(b[v] - b[u])^3$

B3: Thực hiện Bellman-Ford

- Chạy Bellman lần 1 theo thuật toán cơ bản
- Chạy Bellman lần 2, nếu dist[v] > dist[u] + w thì cập nhật dist[v] = -INF

B4: Đọc số truy vấn q

B5: Đọc từng truy vấn f

- Nếu dist[f] = INF hoặc dist[f] < 3 thì in ra ?
- Ngược lại in ra dist[f]

Độ phức tạp: O(t * (n * m + q)) với t là số lượng testcase

Mã giả

Mã giả

```
#Main():
Read t
For tc = 1 \rightarrow t
 read empty line #python
 read n
 read array b
 read m
 graph = []
 for I = 1 \rightarrow m
   read u, v
   w = (b[v] - b[u])^3
   add Edge(u,v,w) to graph
```

```
Bellman (1, n, m)
Print('Case ' + tc + ':\n')
Read q
For I = 1 \rightarrow q
 read f
 if dist[f] == INF \mid \mid dist[f] < 3:
  print('?')
 else
   print(dist[f])
```

Mã giả

```
Function Bellman(s, N, M):
 dist = [INF] * (N+1)
 dist[s] = 0
 for I = 1 \rightarrow N-1
   for j = 1 \rightarrow M
   u, v, w = graph[j]
    if dist[u] != INF and dist[u] + w < dist[v]:
      dist[v] = dist[u] + w
 for I = 1 \rightarrow N-1
   for j = 1 \rightarrow M
   u, v, w = graph[j]
    if dist[u] != INF and dist[u] + w < dist[v]:
      dist[v] = -INF
```

Thank you