

Ayudantía 5 Estructuras Algebraicas

Profesor: Pedro Montero Ayudante: Sebastián Fuentes

21 de abril de 2023

Durante todo el curso A denotará un anillo conmutativo con unidad.

Problema 1. Sea G un grupo finito y $H \triangleleft G$ un subgrupo normal. Probar que G admite una serie de composición

$$G =: G_0 \triangleright G_1 \triangleright G_2 \triangleright \cdots \triangleright G_r = \{e\}$$

tal que $H = G_i$ para cierto $i \in \{0, ..., r\}$.

Indicación: Probar que si $K \leq L \leq G/H$, entonces $\pi^{-1}(L)/\pi^{-1}(K) \cong L/K$, donde $\pi: G \to G/H$ es la proyección al cociente. Para esto último, determinar el kernel de la composición $\pi^{-1}(L) \to L \to L/K$.

Problema 2. Sea A dominio de integridad, Fr(A) su cuerpo de fracciones y $\iota_A:A\hookrightarrow Fr(A),a\mapsto \frac{a}{1}$ el morfismo de inclusión asociado. Demuestre que Fr(A) satisface la siguiente propiedad universal: Para todo cuerpo K y todo $morfismo\ de\ anillos\ \varphi:A\hookrightarrow K\ inyectivo\ existe\ un\ único\ morfismo\ de\ anillos\ \varphi:\operatorname{Fr}(A)\to K\ tal\ que\ el\ siguiente$ diagrama es conmutativo:

Problema 3. Sea A anillo. Demuestre el Teorema del binomio:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k} \qquad \forall a, b \in A, \forall n \in \mathbb{N}$$

Indicación: Muestre primero la relación $\binom{n}{k+1} + \binom{n}{k} = \binom{n+1}{k+1}$.

Problema 4. Sea A un anillo y A[X] su anillo de polinomios. Sea $P(X) = a_n X^n + a_{n-1} X^{n-1} + \ldots + a_1 X + a_0 \in A[X]$

- 1. Muestre que P es nilpotente $\Leftrightarrow a_0, a_1, \dots, a_n$ son nilpotentes.
- 2. Pruebe que P es una unidad en $A[X] \Leftrightarrow a_0$ es una unidad en A y a_1, \ldots, a_n son nilpotentes. Indicación: Demuestre en primer lugar que si $x \in A$ es nilpotente entonces $1 + x \in A^{\times}$.
- 3. Demuestre que P es un divisor de cero \Leftrightarrow existe $a \neq 0$ en A tal que aP = 0.

Problema 5. Un anillo A (no necesariamente conmutativo) es Booleano si $x^2 = x$ para todo $x \in A$. En un anillo Booleano A, demuestre que

- 1. Muestre que todo anillo Booleano es conmutativo.
- 2. 2x = 0 para todo $x \in A$.
- 3. Todo ideal primo \mathfrak{p} es maximal, y A/\mathfrak{p} es un cuerpo con dos elementos.
- 4. Todo ideal finitamente generado en A es principal.

MAT214 UTFSM

Problema 6. Sea A un dominio entero. Decimos que A es un dominio euclideano si existe una función (euclideana) $\varphi: A\setminus\{0\} \to \mathbb{N}$ tal que para todos $a, b \in A$ con $b \neq 0$ existe una escritura (no necesariamente única)

$$a = bq + r$$
 donde $r = 0$, o bien $r \neq 0$ y $\varphi(r) < \varphi(b)$.

Demuestre que un dominio euclideano es un dominio de ideales principales.