

CS208 (Semester 1) Week 1: Propositional Logic

Dr. Robert Atkey

Computer & Information Sciences

Propositional Logic, Part 1 Syntax

Atomic Statements

Propositional Logic is concerned with statements that make assertions (about the world, or about some "situation"):

- 1. "It is raining"
- 2. "I am in Glasgow"
- **3.** "Version 2.1 of *libfoo* is installed"
- **4.** "The number in cell (3,3) is 7"

usually, we abbreviate these: R, G, $foo_{2.1}$, $C_7^{3,3}$

These are called *atomic statements* or *atoms*.

Compound Statements

- **1.** $R \rightarrow G$ if it is raining, I am in Glasgow
- **2.** $\neg R \rightarrow \neg G$ if it is not raining, then I am not in Glasgow
- 3. $\neg foo_{2.1} \lor \neg foo_{2.0}$ either version 2.1 or 2.0 of libfoo is not installed
- **4.** $C_7^{3,3} \wedge C_8^{3,4}$ *cell* (3, 3) *contains* 7, *and cell* (3, 4) *contains* 8

Formulas

... are built from *atomic propositions* A, B, C, \cdots , and the *connectives* \wedge ("and"), \vee ("or"), \neg ("not"), and \rightarrow ("implies").

As a grammar:

$$P, Q ::= A \mid P \land Q \mid P \lor Q \mid \neg P \mid P \rightarrow Q$$

where A stands for any atomic proposition.

Typically, formulas are written done in a "linear" notation, like in algebra. This is because it is more compact...

$$(S \vee R) \wedge \neg S$$

 $((S \vee R) \wedge \neg S) \to R$

University of Strathclyde Science

Ambiguity

For compactness, we write out formulas "linearly":

$$(S \lor R) \land \neg S \ ((S \lor R) \land \neg S) \to R$$

However, this is ambiguous. What tree does this represent?

$$S \vee R \wedge \neg S \to R$$

we disambiguate with parentheses:

$$((S \vee R) \wedge \neg S) \rightarrow R$$

Could put parentheses around every connective, but this is messy.

Disambiguation

1. Runs of \land , \lor , \rightarrow associate to the right:

$$P_1 \wedge P_2 \wedge P_3 \wedge P_4$$
 is same as $P_1 \wedge (P_2 \wedge (P_3 \wedge P_4))$

2. For any binary connective inside another, require parentheses:

$$(P_1 \vee P_2) \wedge P_3 \ good \qquad P_1 \vee P_2 \wedge P_3 \ bad$$

3. For a binary connective under a \neg , require parentheses:

$$\neg P \land Q$$
 is not the same as $\neg (P \land Q)$

4. We don't put parentheses around a \neg :

$$\neg(P \land Q)$$
 good $(\neg(P \land Q))$ bad

Atkey CS208 - Week 1 - page 9 of 51

Formula	Connective	Subformulas
$A \wedge B$		
$A \wedge B \wedge C$		
$\neg(A \land B)$		
$A \to B \to C \to D$		
$B \to C \to D$		

Formula	Connective	Subformulas
$A \wedge B$	\wedge	A and B
$A \wedge B \wedge C$		
$\neg(A \land B)$		
$A \to B \to C \to D$		
$B \to C \to D$		

Formula	Connective	Subformulas
$A \wedge B$	\wedge	A and B
$A \wedge B \wedge C$	\wedge	A and B \wedge C
$\neg(A \land B)$		
$A \to B \to C \to D$		
$B \to C \to D$		

Formula	Connective	Subformulas
$A \wedge B$	\wedge	A and B
$A \wedge B \wedge C$	\land	A and B \wedge C
$\neg(A \land B)$	_	$A \wedge B$
$A \to B \to C \to D$		
$B \to C \to D$		

Formula	Connective	Subformulas
$A \wedge B$	\wedge	A and B
$A \wedge B \wedge C$	\land	A and B \wedge C
$\neg(A \land B)$	_	$A \wedge B$
$A \to B \to C \to D$	\rightarrow	A and $B \to C \to D$
$B \to C \to D$		

Formula	Connective	Subformulas
$A \wedge B$	\wedge	A and B
$A \wedge B \wedge C$	\land	A and B \wedge C
$\neg(A \land B)$	_	$A \wedge B$
$A \to B \to C \to D$	\rightarrow	A and B \rightarrow C \rightarrow D
$B \to C \to D$	\rightarrow	B and $C \rightarrow D$

Formula	Connective	Subformulas
$(A \wedge B) \vee (B \wedge C)$		
$A \vee B \vee C$		
$A \vee B \wedge C$		

Formula	Connective	Subformulas
$(A \land B) \to (A \lor B)$	\rightarrow	$(A \wedge B)$ and $(A \vee B)$
$(A \land B) \lor (B \land C)$		
$A \vee B \vee C$		
$A \vee B \wedge C$		

Formula	Connective	Subformulas
$(A \land B) \to (A \lor B)$	\rightarrow	$(A \wedge B)$ and $(A \vee B)$
$(A \wedge B) \vee (B \wedge C)$	\vee	$(A \land B)$ and $(A \lor B)$ $(A \land B)$ and $(B \land C)$
$A \vee B \vee C$		
$A \vee B \wedge C$		

Formula	Connective	Subformulas
	\rightarrow	$(A \wedge B)$ and $(A \vee B)$
$(A \wedge B) \vee (B \wedge C)$	\vee	$(A \wedge B)$ and $(B \wedge C)$
$A \vee B \vee C$	\vee	A and B \vee C
$A \vee B \wedge C$		

Split into: *a)* toplevel connective;*b)* immediate subformulas

Formula	Connective	Subformulas
$(A \land B) \to (A \lor B)$	\rightarrow	$(A \wedge B)$ and $(A \vee B)$
$(A \land B) \to (A \lor B)$ $(A \land B) \lor (B \land C)$	\vee	$(A \wedge B)$ and $(A \vee B)$ $(A \wedge B)$ and $(B \wedge C)$
$A \vee B \vee C$	\vee	A and B \vee C
$A \vee B \wedge C$?	?

Last one is ambiguous! $A \vee (B \wedge C)$ or $(A \vee B) \wedge C$?

Summary

Propositional Logic formulas comprise:

- 1. Atomic propositions
- **2.** Compound formulas built from \land , \lor , \rightarrow , \neg

Formulas are "really" trees, but we write them linearly.

We use parentheses to disambiguate.

Propositional Logic, Part 2 Semantics

Truth Values

We define the semantics of formulas in terms of **truth values**:

- ▶ T meaning "true", also written 1, \top , t, true;
- ▶ F meaning "false", also written $0, \perp, f$, false.

Truth Values

We define the semantics of formulas in terms of **truth values**:

- ▶ T meaning "true", also written 1, \top , t, true;
- ▶ F meaning "false", also written $0, \perp$, f, false.
- ➤ Other collections of truth values are possible (e.g., "unknown", or values between 0 and 1)
- ► The truth values mean whatever we want them to mean:
 - Current or no current on a wire
 - Package is installed or not installed
 - Grid cell is filled or not

Meaning is Compositional

The Meaning of a Formula is Defined In Terms of its Parts

Meaning is Compositional

The Meaning of a Formula is Defined In Terms of its Parts

To work out the meaning of P \wedge Q:

- 1. Work out the meaning of P
- 2. Work out the meaning of Q
- **3.** Combine using the meaning of \wedge and similar for \rightarrow , \vee , \neg .

Meaning is Compositional

The Meaning of a Formula is Defined In Terms of its Parts

To work out the meaning of P \wedge Q:

- 1. Work out the meaning of P
- 2. Work out the meaning of Q
- **3.** Combine using the meaning of \wedge and similar for \rightarrow , \vee , \neg .

This recipe leaves us to determine:

- 1. What is the meaning of an atom A?
- **2.** What is the meaning of \rightarrow , \land , \lor , \neg ?

Valuations

An assignment of truth values to atomic propositions is called a **valuation**. We use the letter v to stand for valuations.

For an atom A, we write v(A) for the value assigned to A by v.

Valuations

An assignment of truth values to atomic propositions is called a **valuation**. We use the letter v to stand for valuations.

For an atom A, we write v(A) for the value assigned to A by v.

Example

$$v = \{A : T, B : F, C : T\}$$

So:
$$v(A) = T$$

 $v(B) = F$
 $v(C) = T$

Example Valuations

- 1. $v = \{S : T, R : F\}$ "It is sunny (v(S) = T). It is not raining (v(R) = F)"
- 2. $v = \{S : F, R : T\}$ "It is not sunny (v(S) = F). It is raining (v(R) = T)"
- 3. $\nu = \{S:T,R:T\}$ "It is sunny $(\nu(S) = T)$. It is raining $(\nu(R) = T)$ "

Example Valuations

- 1. $v = \{S : T, R : F\}$ "It is sunny (v(S) = T). It is not raining (v(R) = F)"
- 2. $v = \{S : F, R : T\}$ "It is not sunny (v(S) = F). It is raining (v(R) = T)"
- 3. $v = \{S : T, R : T\}$ "It is sunny (v(S) = T). It is raining (v(R) = T)"

Intuition: Valuations describe "states of the world"

Notes on Writing Valuations

- 1. Two valuations are equal if they assign the same truth values to the same atoms.
 - Order of writing them down doesn't matter.
- 2. Each atom can only be assigned one truth value.
- 3. Every relevant atom must be assigned some truth value.

Semantics of the Connectives

Formula	is true when
$P \wedge Q$	both P and Q are true
$P \vee Q$	at least one of P or Q is true
$\neg P$	P isn't true
$P \to Q$	if P is true, then Q is true
	otherwise it is false.

Semantics of the Connectives I

Р	Q	$P \wedge Q$
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

P	Q	$P \vee Q$
F	F	F
F	Т	Т
Т	F	Т
Т	Т	Т

Semantics of the Connectives II

P	¬Р
F	Т
Т	F

P	Q	$P \to Q$
F	F	Т
F	Т	Т
Т	F	F
Т	Т	Т

University of Strathclyde Science

Truth Assignment

For a formula P and a valuation v, we write

 $\llbracket P \rrbracket v$

to mean "the truth value of P at the valuation ν ".

University of Strathclyde

Truth Assignment

For a formula P and a valuation v, we write

$$\llbracket P \rrbracket v$$

to mean "the truth value of P at the valuation ν ".

$$[\![A]\!]\nu = \nu(A)$$

$$[\![P \land Q]\!]\nu = [\![P]\!]\nu \land [\![Q]\!]\nu$$

$$[\![P \lor Q]\!]\nu = [\![P]\!]\nu \lor [\![Q]\!]\nu$$

$$[\![\neg P]\!]\nu = \neg [\![P]\!]\nu$$

$$[\![P \to Q]\!]\nu = [\![P]\!]\nu \to [\![Q]\!]\nu$$

$$[\![(A \lor B) \land \neg A]\!]\nu$$

$$= [(A \lor B) \land \neg A]v$$

=
$$[A \lor B]v \land [\neg A]v$$

$$[(A \lor B) \land \neg A]v$$

$$= [A \lor B]v \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land \neg [A]v$$

$$[(A \lor B) \land \neg A]v$$

$$= [A \lor B]v \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land \neg [A]v$$

$$= (v(A) \lor v(B)) \land \neg v(A)$$

$$[(A \lor B) \land \neg A]v$$

$$= [A \lor B]v \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land \neg [A]v$$

$$= (v(A) \lor v(B)) \land \neg v(A)$$

$$= (F \lor T) \land \neg F$$

$$[(A \lor B) \land \neg A]v$$

$$= [A \lor B]v \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land \neg [A]v$$

$$= (v(A) \lor v(B)) \land \neg v(A)$$

$$= (F \lor T) \land \neg F$$

$$= T \land \neg F$$

$$[(A \lor B) \land \neg A]v$$

$$= [A \lor B]v \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land \neg [A]v$$

$$= (v(A) \lor v(B)) \land \neg v(A)$$

$$= (F \lor T) \land \neg F$$

$$= T \land \neg F$$

$$= T \land T$$

$$[(A \lor B) \land \neg A]v$$

$$= [A \lor B]v \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land [\neg A]v$$

$$= ([A]v \lor [B]v) \land \neg [A]v$$

$$= (v(A) \lor v(B)) \land \neg v(A)$$

$$= (F \lor T) \land \neg F$$

$$= T \land \neg F$$

$$= T \land T = T$$

Semantics of a Formula

For a formula P, its *meaning* is the collection of all valuations ν that make $\mathbb{P} = \mathbb{T}$.

For example,

$$\llbracket (A \lor B) \land \neg A \rrbracket = \{ \{A : F, B : T\} \}$$

To compute sets of valuations, we will use truth tables.

Summary

- 1. Semantics defines the *meaning* of formulas.
- 2. We use truth values T and F.
- **3.** A valuation v assigns truth values to atoms.
- **4.** We extend that assignment to whole formulas: [P]v.
- **5.** The meaning of P is the set of valuations that make it true.

Propositional Logic, Part 3

Truth Tables, Satisfiability, and Validity

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F			
F	Т			
Т	F			
Т	Т			

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F	F		
F	Т			
Т	F			
Т	Т			

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F	F		
F	Т	T		
Т	F			
Т	Т			

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F	F		
F	Т	T		
Т	F	T		
Т	Т			

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F	F		
F	Т	T		
Т	F	T		
Т	Т	T		

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F	F	Т	
F	Т	T		
Т	F	T		
Т	Т	T		

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F	F	Т	
F	Т	T	Т	
Т	F	T		
Т	Т	Т		

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F	F	Т	
F	Т	T	Т	
Т	F	T	F	
Т	Т	T		

Truth table for $(A \vee B) \wedge \neg A$

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F	F	Т	
F	Т	T	Т	
Т	F	T	F	
Т	Т	Т	F	

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F	F	Т	F
F	Т	Т	Т	
Т	F	T	F	
Т	Т	Т	F	

A	В	$\begin{array}{ c c }\hline (1)\\A\lor B\end{array}$	② - ^	
		AVD	¬'A	$(A \lor B) \land \neg A$
F	F	F	Т	F
F	Т	T	Т	Т
Т	F	T	F	
Т	Т	T	F	

A	В	$A \vee B$	2	\bigcirc \bigcirc
		$A \vee B$	$\neg A$	$(A \lor B) \land \neg A$
F	F	F	Т	F
F	Т	Т	Т	Т
Т	F	Т	F	F
Т	Т	Т	F	

A	В	$\begin{vmatrix} \textcircled{1} \\ A \lor B \end{vmatrix}$	② ¬A	
F	F	F	Т	F
F	Т	Т	Т	Т
Т	F	T	F	F
Т	Т	Т	F	F

Propositional Logic, Part 3: Truth Tables, Satisfiability, and Validity

Truth table for $(A \lor B) \land \neg A$

Α	В	$A \vee B$	$\neg A$	$(A \lor B) \land \neg A$
F	F	F	Т	F
F	Т	Т	Т	Т
Т	F	Т	F	F
Т	Т	Т	F	F

- 1. Row for every valuation
- 2. Intermediate columns for the subformulas
- 3. Final column for the whole formula

A	В	$A \vee B$	$\neg A$	$(A \vee B) \wedge \neg A$
F	F	F	Т	F
F	Т	Т	Т	Т
Т	F	Т	F	F
Т	Т	Т	F	F

Read off the truth value assignments:

- **1.** For $v = \{A : F; B : F\}$: $[(S \lor R) \land \neg S]v = F$.
- **2.** For $v = \{A : F; B : T\}$: $[(S \lor R) \land \neg S]v = T$.
- 3. For $v = \{A : T; B : F\}$: $[(S \lor R) \land \neg S]v = F$.
- **4.** For $v = \{A : T; B : T\}$: $[(S \lor R) \land \neg S]v = F$.

Propositional Logic, Part 3: Truth Tables, Satisfiability, and Validity

Truth table for $(A \lor B) \land \neg A$

A	В	$A \vee B$	$\neg A$	$(A \lor B) \land \neg A$
F	F	F	Т	F
F	Т	Т	Т	Т
Т	F	Т	F	F
Т	Т	Т	F	F

The semantics of a formula can be read off from the lines of the truth table that end with T:

$$\llbracket (A \lor B) \land \neg A \rrbracket = \{\{A : F; B : T\}\}\$$

Satisfiability

A formula P is **satisfiable** if there **exists at least one** valuation ν such that $[P]\nu = T$.

Satisfiability

A formula P is **satisfiable** if there **exists at least one** valuation ν such that $[P]\nu = T$.

Alternatively: there is at least one row in the truth table that ends with T.

Satisfiability

A formula P is **satisfiable** if there **exists at least one** valuation ν such that $[P]\nu = T$.

Alternatively: there is at least one row in the truth table that ends with T.

Alternatively: the semantics of P contains at least one valuation.

Validity

A formula P is **valid** if **for all** valuations v, we have [P]v = T.

Validity

A formula P is **valid** if **for all** valuations v, we have [P]v = T.

Alternatively: all rows in the truth table end with T.

Validity

A formula P is **valid** if **for all** valuations v, we have [P]v = T.

Alternatively: all rows in the truth table end with T.

Alternatively: the semantics of P consists of all possible valuations.

Validity

A formula P is **valid** if **for all** valuations v, we have $[\![P]\!]v = T$.

Alternatively: all rows in the truth table end with T.

Alternatively: the semantics of P consists of all possible valuations.

A valid formula is also called a *tautology*.

Sunny and Rainy

Is the formula $(S \vee R) \wedge \neg S$

- 1. Satisfiable?
- 2. Valid?

Is the formula $(S \vee R) \wedge \neg S$

1. Satisfiable?

Yes.
$$v = \{S : F, R : T\}$$

2. Valid?

Sunny and Rainy

Is the formula $(S \vee R) \wedge \neg S$

1. Satisfiable?

Yes.
$$v = \{S : F, R : T\}$$

2. Valid?

No:
$$v = \{S : T, R : F\}$$
 is a counterexample

Is the formula $(S \vee R) \wedge \neg S$

1. Satisfiable?

Yes.
$$v = \{S : F, R : T\}$$

2. Valid?

No:
$$v = \{S : T, R : F\}$$
 is a counterexample

Is the formula $((S \vee R) \wedge \neg S) \rightarrow R$

- 1. Satisfiable?
- 2. Valid?

Is the formula $(S \vee R) \wedge \neg S$

1. Satisfiable?

Yes.
$$v = \{S : F, R : T\}$$

2. Valid?

No:
$$v = \{S : T, R : F\}$$
 is a counterexample

Is the formula $((S \vee R) \wedge \neg S) \rightarrow R$

1. Satisfiable?

Yes.
$$v = \{S : T, R : F\}$$

2. Valid?

Is the formula $(S \vee R) \wedge \neg S$

1. Satisfiable?

Yes.
$$v = \{S : F, R : T\}$$

2. Valid?

No:
$$v = \{S : T, R : F\}$$
 is a counterexample

Is the formula $((S \vee R) \wedge \neg S) \rightarrow R$

1. Satisfiable?

Yes.
$$v = \{S : T, R : F\}$$

- 2. Valid?
 - Yes. (need to check the truth table)

An observation

If a valuation ν makes a formula P true, then it makes $\neg P$ false.

$$\llbracket \mathsf{P}
rbracket \mathsf{v} = \mathsf{T}$$

$$\Leftrightarrow$$

$$[\![P]\!]\nu = \mathsf{T} \qquad \Leftrightarrow \qquad [\![\neg P]\!]\nu = \mathsf{F}$$

Propositional Logic, Part 3: Truth Tables, Satisfiability, and Validity

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable.

Propositional Logic, Part 3: Truth Tables, Satisfiability, and Validity

Satisfiability vs Validity

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

P valid

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

P valid

$$\Leftrightarrow$$
 for all ν , $[P]\nu = T$

by definition

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

P valid

$$\Leftrightarrow$$
 for all v , $[P]v = T$

$$\Leftrightarrow$$
 for all v , $\llbracket \neg P \rrbracket v = F$

by definition

by above observation

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

P valid

$$\Leftrightarrow$$
 for all v , $\llbracket P \rrbracket v = \mathsf{T}$

$$\Leftrightarrow$$
 for all v , $\neg P v = F$

$$\Leftrightarrow$$
 for all ν , not ($\llbracket \neg P \rrbracket \nu = T$)

by definition

by above observation

T is not F

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

P valid

$$\Leftrightarrow$$
 for all v , $\llbracket P \rrbracket v = \mathsf{T}$ by definition

$$\Leftrightarrow$$
 for all v , $[\neg P]v = F$ by above observation

$$\Rightarrow$$
 for all ν , not ($\llbracket \neg P \rrbracket \nu = T$) T is not F

$$\Leftrightarrow$$
 does not exist v such that $\llbracket \neg P \rrbracket v = \mathsf{T}$ "for all, not" \equiv "not exists"

P valid

A formula P is valid exactly when $\neg P$ is not satisfiable. *Proof.*

	, vana	
\Leftrightarrow	for all v , $[\![P]\!]v = T$	by definition
\Leftrightarrow	for all v , $\llbracket \neg P \rrbracket v = F$	by above observation
\Leftrightarrow	for all ν , not ($\llbracket \neg P \rrbracket \nu = T$)	T is not F
\Leftrightarrow	does not exist ν such that $[\![\neg P]\!] \nu = T$	"for all, not" ≡ "not exists"
\Leftrightarrow	¬P not satisfiable	by definition

A formula P is valid exactly when $\neg P$ is not satisfiable.

Consequence: Counterexample finding

- ▶ If we get a valuation satisfying $\neg P$, it is a **counterexample** to the validity of P.
- ▶ If we do not find any valuation satisfying $\neg P$, then P is valid.
- So we can reduce the problem of determining validity to finding satisfying valuations.

Summary

- Truth tables enable mass production of meaning
- Satisfiability: at least one valuation makes it true.
- Validity: every valuation makes it true.
- Satisfiability and Validity related via negation.

Propositional Logic, Part 4 Entailment

University of Strathclyde

Entailment

Entailment is a relation between some assumptions:

$$P_1, \ldots, P_n$$

and a conclusion:

Q

Entailment

Entailment is a relation between some assumptions:

$$P_1, \ldots, P_n$$

and a conclusion:

Ç

What we want to capture is:

If we assume P_1 , ..., P_n are all true, then it is safe to conclude Q.

Is it safe?

If we assume

it is sunny

then is it safe to conclude

it is sunny

University of Strathclyde

Is it safe?

If we assume

it is sunny

then is it safe to conclude

it is sunny

Yes!

University of Strathclyde

Is it safe?

If we assume

it is sunny

then is it safe to conclude

it is sunny

Yes! There are two cases:

- 1. It is sunny (i.e., v(Sunny) = T)
- **2.** It isn't sunny (i.e., v(Sunny) = F)

Is it safe?

If we assume

it is sunny

then is it safe to conclude

it is sunny

Yes! There are two cases:

- 1. It is sunny (i.e., v(Sunny) = T)
- 2. It isn't sunny (i.e., v(Sunny) = F)

But we are assuming "it is sunny", so the second case doesn't matter.

Propositional Logic, Part 4: Entailment

Is it safe?

If we assume

nothing

then is it safe to conclude

it is sunny

University of Strathclyde

Is it safe?

If we assume

nothing

then is it safe to conclude

it is sunny

No!

University of Strathclyde

Is it safe?

If we assume

nothing

then is it safe to conclude

it is sunny

No! There are two cases:

- 1. It is sunny (i.e., v(Sunny) = T)
- **2.** It isn't sunny (i.e., v(Sunny) = F)

Is it safe?

If we assume

nothing

then is it safe to conclude

it is sunny

No! There are two cases:

- 1. It is sunny (i.e., v(Sunny) = T)
- **2.** It isn't sunny (i.e., v(Sunny) = F)

But we are making no assumptions, so either "world" is possible: it might not be sunny.

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

No!

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

No! There are four cases:

- 1. It is sunny and raining
- 2. It is sunny and not raining
- **3.** It is not sunny, but is raining
- 4. It is not sunny and not raining

Is it safe?

If we assume

it is raining

then it is safe to conclude:

it is not sunny

No! There are four cases:

- 1. It is sunny and raining
- 2. It is sunny and not raining
- **3.** It is not sunny, but is raining
- 4. It is not sunny and not raining

Is it safe?

If we assume

it is raining and if it is raining it is not sunny

then is it safe to conclude:

it is not sunny

Is it safe?

If we assume

it is raining and if it is raining it is not sunny

then is it safe to conclude:

it is not sunny

Yes!

Is it safe?

If we assume

it is raining and if it is raining it is not sunny

then is it safe to conclude:

it is not sunny

Yes! There are four cases:

- 1. It is sunny and raining
- 2. It is sunny and not raining
- **3.** It is not sunny, but is raining
- 4. It is not sunny and not raining

If we assume

it is raining and if it is raining it is not sunny

then is it safe to conclude:

it is not sunny

- 1. It is sunny and raining
- 2. It is sunny and not raining
- **3.** It is not sunny, but is raining
- 4. It is not sunny and not raining

If we assume

it is raining and if it is raining it is not sunny

then is it safe to conclude:

it is not sunny

- 1. It is sunny and raining
- 2. It is sunny and not raining
- **3.** It is not sunny, but is raining
- 4. It is not sunny and not raining

Is it safe?

If we assume

nothing

then is it safe to conclude:

it is sunny or not sunny

University of Strathclyde

Is it safe?

If we assume

nothing

then is it safe to conclude:

it is sunny or not sunny

Yes!. There are two cases:

- 1. It is sunny
- 2. It is not sunny

Is it safe?

If we assume

nothing

then is it safe to conclude:

it is sunny or not sunny

Yes!. There are two cases:

- 1. It is sunny
- 2. It is not sunny

In either case the conclusion is true: $A \vee B$ requires at least one of A or B to be true.

If we assume

it is sunny and it is not sunny

then is it safe to conclude:

the moon is made of spaghetti

If we assume

it is sunny and it is not sunny

then is it safe to conclude:

the moon is made of spaghetti

Yes!

If we assume

it is sunny and it is not sunny

then is it safe to conclude:

the moon is made of spaghetti

- 1. it is sunny, and the moon is made of spaghetti
- 2. it is not sunny, and the moon is made of spaghetti
- 3. it is sunny, and the moon is not made of spaghetti
- 4. it is not sunny, and the moon is not made of spaghetti

Is it safe?

If we assume

it is sunny and it is not sunny

then is it safe to conclude:

the moon is made of spaghetti

- 1. it is sunny, and the moon is made of spaghetti
- 2. it is not sunny, and the moon is made of spaghetti
- 3. it is sunny, and the moon is not made of spaghetti
- 4. it is not sunny, and the moon is not made of spaghetti

If we assume

it is sunny and it is not sunny

then is it safe to conclude:

the moon is made of spaghetti

- 1. it is sunny, and the moon is made of spaghetti
- 2. it is not sunny, and the moon is made of spaghetti
- 3. it is sunny, and the moon is not made of spaghetti
- 4. it is not sunny, and the moon is not made of spaghetti

Entailment

In general, we have n assumptions P_1, \ldots, P_n and conclusion Q.

We are going to say:
$$P_1, ..., P_n \models Q$$

Read as $P_1, ..., P_n$ entails Q

if:

for all "situations" (i.e., valuations) that make **all** the assumptions P_i true, the conclusion Q is true.

Entailment

With more symbols

for all valuations v, if, for all i, $[\![P_i]\!]v = T$, then $[\![Q]\!]v = T$.

In terms of Semantics

every valuation in all $\llbracket P_i \rrbracket$ is also in $\llbracket Q \rrbracket$ (in set theory symbols: $(\llbracket P_1 \rrbracket \cap \cdots \cap \llbracket P_n \rrbracket) \subseteq \llbracket Q \rrbracket$).

Entailment vs Validity

If we have no assumptions, then:

 $\models P$

exactly when

for all ν . $[P]\nu = T$

exactly when

P is valid

Deduction Theorem

$$P_1, \ldots, P_n, P \models Q$$
 exactly when $P_1, \ldots, P_n \models P \rightarrow Q$

All these statements are equivalent:

- 1. $P_1, \ldots, P_n, P \models Q$
- 2. for all v, if all $P_i v = T$ and $P_i v = T$, then $Q_i v = T$
- 3. for all v, if all $[P_i]v = T$, then (if [P]v = T, then [Q]v = T)
- **4.** for all v, if all $P_i v = T$, then $P \to Q v = T$
- 5. $P_1, \ldots, P_n \models P \rightarrow Q$

Entailment vs satisfiability

So, it is the case that

$$P_1,\ldots,P_n\models Q$$

exactly when

$$\models P_1 \to \cdots \to P_n \to Q$$

exactly when

$$P_1 \to \cdots \to P_n \to Q$$
 is valid

exactly when

$$\neg(P_1 \rightarrow \cdots \rightarrow P_n \rightarrow Q)$$
 is not satisfiable

Summary

- Entailment defines safe deductions.
- Relationship with Validity
- ▶ Relationship with "→" (Deduction Theorem)
- Relationship with Satisfaction.