Accelerated Prediction of Perovskite Material Properties with Classical Machine Learning and Graph Neural Network

Zhihao Dong, Yujin Ji, Youyong Li*

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, PR China

*Corresponding author: Youyong Li, E-mail: ligroup2023@vip.163.com

Supporting Information

 Table S1. Feature ID and Attribute Names for Pearson Correlation Analysis.

No	Property	Unit	
1	Atomic number		
2	Atomic radius	pm	
3	Atomic radius by Rahm	pm	
4	Atomic volume	cm ³ /mol	
5	Atomic weight		
6	Dipole polarizability	a.u.	
7	Electron affinity	eV	
8	Number of electrons		
9	Pauling's scale of		
	electronegativity		
10	Group in periodic table		
11	First ionization energy	eV	
12	Mass number		
13	Mendeleev's number		
1 /	Metallic radius with 12 nearest	pm	
14	neighbors		
1.5	Molar heat capacity @ 25 C, 1	J/(mol K)	
15	bar		
16	Number of neutrons	Number of neutrons	
17	Period in periodic table	Period in periodic table	
18	Pettifor scale		
19	Proton affinity	kJ/mol	
20	Number of protons		
21	Van der Waals radius		

Table S1. Cross-validation MAE errors of formation energy

No	ANN	SVR	RF	GBDT
1	0.367114	0.271016	0.251597	0.242682
2	0.375722	0.26937	0.252829	0.245718
3	0.36726	0.274309	0.255171	0.243964
4	0.384651	0.278298	0.257878	0.249249
5	0.363926	0.275315	0.254205	0.246797

Figure S1. Scatterplot of predictions of perovskite formation energy by classical machine learning models. (a). ANN (b). SVR (c). RF (d) GBDT

Figure S2. Scatterplot of predictions of perovskite volume by classical machine learning models. (a). ANN (b). SVR (c). RF (d) GBDT

Figure S3. Scatterplot of predictions of perovskite density by classical machine learning models. (a). ANN (b). SVR (c). RF (d) GBDT

Figure S4. Train and test set metrics and feature importance for prediction formation energy of classical machine learning models. (a). MAE (b). RMSE (c). R² (d). Feature importance, r for atomic radius, N for atomic number, En for electronegativity, D for dipolar polarizability, and "other" to represent the sum of any additional properties.

Figure S5. Train and test set metrics and feature importance for prediction volume of classical machine learning models. (a). MAE (b). RMSE (c). R² (d). Feature importance, r for atomic radius, N for atomic number, En for electronegativity, D for dipolar polarizability, and "other" to represent the sum of any additional properties.

Figure S6. Train and test set metrics and feature importance for prediction density of classical machine learning models. (a). MAE (b). RMSE (c). R² (d). Feature importance, r for atomic radius, N for atomic number, En for electronegativity, D for dipolar polarizability, and "other" to represent the sum of any additional properties.