主題:CH15Electron Transport and Oxidative Phosphorylation教師:洪錦堂日期:2014/04/15(星期二)撰稿組:士軒、文儒、沛庭、冠輔審稿組:慕雲、致凱、家瑋、祥元

一、前言

前面章節介紹糖解作用、檸檬酸循環製造出電子攜帶者 NADH和 FADH2,這章節介紹如何將 NADH和 FADH2中的還 原力轉化成能量,並儲存於 ATP的高能磷酸鍵。

電子傳遞鏈、氧化磷酸化都是在膜上進行。因原核生物沒有胞器,所以細菌的電子傳遞鏈、氧化磷酸化反應都是在細胞膜上進行。 動物的這兩種反應是在粒線體內膜上進行,植物的葉綠體在白天也 可進行這兩種反應。

二、粒線體簡介

- 1.粒線體的功能
- A、檸檬酸循環 TCA cycle
- B、脂肪酸氧化 Fatty Acid Oxidation
- C、電子傳遞鏈 Electron Transport
- D、氧化磷酸化 Oxidative Phosphorylation

(以下部分上課時沒有說明)

2.粒線體外膜:

具通透性,因為膜上有一種穿孔蛋白 Porin 繞成一圈形成通道,分子量 5000 以下的物質可自由進出

3.粒線體膜間腔 Intermembrane space(IMS)

在內膜與外膜之間,和細胞質環境相似,具高濃度氫離子,低 pH 值。

4.粒線體內膜

沒有 Porin 構造,對於大部分的小分子不具通透性(包含氫離子),物質的運輸只能靠 transporter。是電子傳遞鏈之所在。

5.基質(Matrix)

檸檬酸循環、脂質、胺基酸部分代謝的場所,具低濃度氫離子。

6 粒線體基質中的 DNA 可以轉譯 37 個基因,其中 13 個是電子傳遞練的酵素,但 粒線體中至少要有數十種酵素,其他不足的酵素由細胞核 DNA 轉錄、細胞質中 轉譯再運送到粒線體。

三、還原物質 NADH 及 FADH2來源:

在有氧環境下,一 mole 葡萄糖可轉換成 10 mole NADH 及 2 mole FADH₂,分別來自以下六個脫氫步驟(Dehydrogenation Step):

- → Step 6 of Glycolysis (2 NADH)
- → Conversion of Pyruvate to Acetyl-CoA (1 NADH x 2)
- → Step 3,4,8 of TCA Cycle (3 NADH x2)
- \rightarrow Step 6 of TCA Cycle (1 FADH₂ x2)

x 2 的原因: 1 Glucose 可產生 2 Pyruvate

四、電子傳遞鏈:

電子傳遞者(electron carrier)分以下四種,電子傳遞鏈中每個複合體都含多個電子傳遞者。

- ◆ Flavoprotein:分為 FAD 和 FMN 兩種,皆含有 flavin 以接受、放出 e-和 H+, 一個分子可接受/放出一個或兩個 e-或 H+(看是在什麼部位決定),是 Complex I 和 II 初始電子接受者。
- ◆ Iron-sulfur proteins:鐵硫蛋白,有很多種類,比方說 NADH: Ubiquinone oxidoreductase。中心為鐵和周圍蛋白質的 Cys 的硫原子相連接,具同數目的 S 和 Fe 原子。一個分子可以接受/放出一個 e⁻,藉 Fe²⁺→Fe³⁺ + e⁻ 攜帶電子。
- ◆ Coenzyme Q:又稱 Ubiquinone,簡寫 Co Q或 Q。為脂溶性小分子,所以可以在粒線體內膜中自由移動,進行電子輸送,他將 complex I, II 的電子傳送到 III。和 Flavoprotein 一樣,一個分子可以接受或放出一個或兩個 e-或 H+。接收兩電子後,形成醇類 ubiquinol,如下圖。

◆ Cytochromes:細胞色素,以鐵離子+porphyrin 進行電子攜帶,因為環上所接 heme 不同,分為 a、b、c 三種,有不同的可見光吸收光譜,並可藉由吸收光譜判斷其為氧化態或還原態。一個分子可接受/放出一個 e-。在粒線體內移動。

五、電子傳遞者的標準還原電位:

- 1. 電子傳遞由還原電位低的地方到還原電位高的地方
- 2. Complex II 不釋能,故無還原電位變化

六、電子傳遞鏈(Electron Transport Chain, ETC)

1.意義:將糖解作用、TCA Cycle 等反應產生的 NADH 及 FADH₂ 的還原力轉換成能量,儲存於 ATP 的高能磷酸鍵。NADH 及 FADH₂ 會使粒線體內膜的酵素將 H⁺ 打入膜間腔,而膜間腔的 H⁺ 要回到粒線體基質時,便會啟動 ATP Synthase,製造出 ATP。

2.四種酵素複合體與其電子傳遞方向

(1) Complex I : NADH \rightarrow CoQ

(2) Complex II : Succinate \cdot FADH₂ \rightarrow CoQ

(3) Complex III : $CoQ \rightarrow cyt c$ (4) Complex IV : $cyt c \rightarrow O_2$

3. Complex I (NADH dehydrogenase, NADH-CoQ reductase)

- (1) Complex I 由 FMN 和 Fe-S cluster 組成,包含 45 種 polypeptides。
- (2) Complex I 內部的電子傳遞路徑是 NADH → FMN → Fe-S → Co enzyme

- (3) N side 表示 negative 的 matrix
 P side 表示 positive 的 intermembrane space
- (4) NADH→NAD⁺可以傳遞**兩個電子**,每兩個電子經過 Complex I,就有<u>四個 H⁺</u>由 N side 打入 P side(注意 Fe-S 一次只能傳送 1 個電子)
 NADH + Q + 5H⁺_N = NAD⁺ + QH₂ + 4 H⁺_P
- (5)I→III→IV 路徑:

Co-Q可以將電子由 Complex I 傳遞到 Complex III,再由 cyt c 傳遞到 Complex IV

4. Complex II (Succinate dehydrogenase, Succinate-CoQ reductase)

- (1)Complex II 由 FAD 和 Fe-S cluster 組成
- (2)Complex II 內部的電子傳遞路徑是 succinate→FAD→Fe-S→Co-Q (succinate 丟掉電子變成 fumarate)
- (3)可以傳遞<u>四個電子</u>,但是因為沒有能量產生, 所以<u>沒有 H⁺被打出</u>
- (4)Glycerol-3-phosphate dehydrogenase 以及 Fatty acyl-CoA dehydrogenase 和 Complex II 很相似 是 electron- transferring flavoprotein (ETF),傳 遞路徑都是 FAD→Fe-S→Co Q,沒有 H⁺打出,亦無能量生成

(5)位於真核細胞粒線體內膜上,同時參與 TCA Cycle (Step 6°)與電子傳遞鏈。 (6)Ⅱ→Ⅲ→Ⅳ 路徑:

Co-Q 可以將電子由 Complex II 傳遞到 Complex III 再由 cyt c 傳遞到 Complex IV

5.Complex III (Coenzyme Q-Cytochrome c reductase) (上課時僅簡單帶過)

- (1)Complex III 由 Fe-S cluster、Cyt b、Cyt c(吸收峰為波長 400nm,成紅色)組成,其中 Cyt b 位電位高低分成 b_L和 b_H
- (2)Complex III 內部的電子傳遞過程有個 Q cycle,由兩個半反應組成:
- a.(左圖) $QH_2 + Q + Cyt c_1$ (oxidized) $\rightarrow Q^- + Q + 2H_p^+ + Cyt c_1$ (reduced)

 QH_2 上的一個電子轉移到 Fe-S 在轉移到 $Cyt c_1$,打出兩個 H^+

 QH_2 上另外一個電子經由 b_L 到 b_H 路徑傳回 Q, 使 Q變成 Q^T

b.(右圖)QH₂+ \cdot Q⁻+2H_N⁺+ Cyt c₁(oxidized) \rightarrow QH₂+2H_p⁺+ Q + Cyt c₁(reduced)

 QH_2 上的一個電子轉移到 Fe-S 在轉移到 $Cyt c_1$,打出兩個 H^+

 QH_2 上另外一個電子經由 b_L 到 b_H 路徑傳回 Q^- ,使 Q^- 成為 QH_2 (rereduced)

總反應: $QH_2 + 2Cyt c_1(oxidized) + 2H_N^+ \rightarrow Q + 2Cyt c_1(reduced) + 4H_p^+$

(3)Complex III 共傳遞出去兩個電子,四個 H⁺從 N side 打出到 P side

6.Complex IV (Cytochrome c oxidase)

- (1)由兩個 heme(a 和 a₃)和兩個 Cu(Cu_A 和 Cu_B)組成
- (2)Complex IV 的電子傳遞過程:

Cyt c
$$\rightarrow$$
 Cu_A \rightarrow a \rightarrow a₃ \rightarrow Cu_B \rightarrow O₂

- (3)Complex IV 共傳遞出兩個電子,打出兩個 H^+ (圖中是為了讓 O_2 變成整數,所以是原本的兩倍)
- (4)四個電子和四個 H⁺(從基質來)用來還原一個 O₂ 形成兩個 H₂O

7.Summary

Complex	I	II	III	IV
傳遞電子	NADH→C ₀ Q	Succinate→CoQ	CoQ→Cyt c	Cyt $c \rightarrow O_2$
阻斷	Rotenone	-	Antimycin A	CN, CO

七、ATP的合成

I. Chemiosmotic coupling

1. 電子傳遞鏈建立了質子梯度,而此質子驅動力(proton-motive force, pmf)可促使 ATP 的合成。

2. NADH 和 Succinate 可以輸出的 H⁺ 數量不同:

若電子從 NADH 開始傳,最後可運輸 10 個 H⁺進入粒腺體膜間腔

(Complex I \rightarrow III \rightarrow IV, 4+4+2=10)

從電子從 Succinate 開始,最後可運輸 6 個 H^{\dagger} 進入粒腺體膜間腔

(Complex II \rightarrow III \rightarrow IV , 0+4+2=6)

- 3. 製造一個 ATP 需要 4 個 H^+ $\left\{\begin{array}{l}$ 運輸 ADP \rightarrow 1 H^+ (將 H_2PO_4 運輸進基質) 合成 ATP \rightarrow 3 H^+
- 4. 一個氧氣分子接受一對電子對
- 5. P/O 比:電子傳遞鏈中所傳遞的每對電子所能產生的 ATP 數。
- 6. P/O=可以運輸多少 H^+ 進入膜間腔/生成一個ATP需要 4個 H^+

 $\begin{array}{ccc}
\text{NADH} & \rightarrow & 10/4=2.5 \\
\text{Succinate} & \rightarrow & 6/4=1.5
\end{array}$

II. Complex V (ATP Synthase) (F₀F₁ Complex)

1. ATP 合成酶由兩部分組成---- F₁和 F₀ (此處 o 表示 oligomycin)

$$\int F1 \rightarrow 3(\alpha+\beta)+\gamma+\delta+\epsilon$$
,合成 ATP (γ: rotor)
Fo \rightarrow a+b₂+c₁₀₋₁₂ ,H⁺在粒線體內膜上的通道(b: stator)

2. Binding change mechanism (O,T,L conformation)

三個 β 次單元在不同位置,構形會不一樣,因而功能也不相同。質子驅動力驅使 ATP 合成酶 F_1 的 γ 轉動,連帶著連接於其上的 $\alpha\beta$ pair 也跟著轉動,因此當 $\alpha\beta$ pair 和 δ 擠壓到時, $\alpha\beta$ pair 就會發生構形的改變。而 β 的構形改變的過程就能趨使 ADP 和 Pi 合成為 ATP。

Loose(L): αβ pair 接 ADP + P_i

Tight (T): αβ pair 接 ATP

Open (O): αβ pair 接 nothing

Step 1°3°5°: Subunit 逆時針轉 120°, 三

個 Dimer 構型改變 T → O: ATP release

O \rightarrow L: bind ADP + P_i

Step 2 4 6 :

 $L \rightarrow T : ATP formation$

III. Major Inner Membrane Transport System

- 1. Adenine nucleotide translocase: 同時將一個 ATP⁴ 運輸進膜間腔、ADP³ 運輸進基質(此為一個自發反應,由於膜外帶正電,四個負電向外三個負電向內,可平衡電位差。)
- 2. Adenine nucleotide translocase 將四個負電荷 帶出基質,但是只帶進三個負電荷
 - = 淨運出一負電荷
 - = 淨運進一個 H⁺
- 3. 質子驅動力使基質中帶很多負電,所以驅使 Adenine nucleotide translocase 運作
- 4. Phosphate translocase 將 H_2PO_4 ⁻ 和 H^+ 同 時運輸進粒線體基質, H_2PO_4 ⁻ 的磷酸根可 作為將ADP合成ATP的材料。

 (ATP合成會消耗4個 H^+ ,真正用在合成

(ATP合成會消耗4個H, 真正用在合成 ATP的只有三個H, 另外一個H[†]就是用來 將 H_2PO_4 ⁻運輸進基質的。)

八、Shuttle System(上課只簡單說明種類與結果,分子機轉為補充內容)

- 1. 在細胞質中產生的NADH無法直接通過粒線體的內膜,故需要一運送系統達成此一目的,經由一連串反應,使粒線體內產生對應的還原態物質。
- 2. 即細胞質中的還原物質(NADH)藉由G3P shuttle、Malate shuttle傳遞H⁺,使 得粒線體基質產生鄉對應的還原物質(NADH、FADH₂)
- 3. 在肝臟、心臟中主要是 Malate/Aspartate shuttle:
 - (a) 在細胞質中的NADH + H⁺ 將兩個H傳給OAA形成Malate, Malate擴散到粒 線體內基質後,再將H傳給NAD⁺,成為NADH+ H⁺。
 - (b) NADH進入電子傳遞鏈後可產生 2.5ATP。

- 4. 在腦、肌肉中主要是Glycerol-3-phosphate(G3P) shuttle:
 - (a) 在細胞質中的NADH + H⁺ 將兩個H傳給Dihydroxyacetone phosphate而形成Glycerol-3-phosphate,Glycerol-3-phosphate擴散到粒線體內基質後,再將H傳給FAD,成為FADH₂。
 - (b) FADH2進入電子傳遞鏈後可產生 1.5ATP。

步驟	移動位置	運送系統	
1	細胞質 > 粒線體基質	G3P shuttle(腦,肌)、Malate shuttle(肝,心)	
2	粒線體基質 → 粒線體膜間腔	Complex I+II+III+IV	
3	粒線體膜間腔 → 粒線體基質	$F_{O} \cdot F_{1}$	

九、Uncoupling (解偶聯機制)

- 1. 目的:使得電子傳遞鏈正常進行,氫離子也可流入基質,但ATP無法合成。
- 2. Uncoupler位於粒腺體內膜上,可以將膜間腔內濃度很高的H[†]運輸進基質中,並產生熱能,而不經過ATP合成酶 → 質子濃度梯度直接轉換成熱能。

Uncoupler 如 2,4-Dinitrophenol(DNP)、FCCP使得磷酸化反應與電子傳遞解 偶聯。

加入\結果	氧氣消耗	ATP合成
Oligomycin	減少	終止
DNP	增加	終止

十、氧化磷酸化的調控機轉

1.與受質有關:

ADP/Pi的存在會影響氧化磷酸化是否進行(可視ADP為氧化磷酸化的調控者)。
----- 當ADP+P的量變為兩倍時,氧氣消耗也變兩倍 → stoichiometric
[ATP]/[ADP][P]的比值稱為mass-action ratio,通常這個比值很大(4-10倍),代表
ATP-ADP是被充分氧化的,但細胞耗能時這個比值就會下降,促使ATP合成。亦即,ATP是在需要的時候才會被合成的。

- 2. Inhibitor of F1(上課未提) 在低氧環境時防止ATP的水解,因低氧無法進行電子傳遞製造ATP。
- 3.抑制氧化磷酸化導致NADH堆積,造成負向回饋抑制糖解作用的PFK-1。(上課未提)