

Overview

S.Lan

Radom Samplin

Radom Samples and Expectation of Sampl Statistics

Generalized Variance and Measurement of Sample Variation

Normal

Multivariate Normal Density and Its Properties

Parameter Estimation

The Sampling
Distribution of \bar{X} and SLarge-Sample Behavior
of \bar{X} and S

Lecture 3 Random Sampling and Multivariate Normal Distribution

Shiwei Lan¹

¹School of Mathematical and Statistical Sciences Arizona State University

STP533 Multivariate Analysis Spring 2025

Table of Contents

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Sample Statistics

Generalized Varian and Measurement Sample Variation

Multivariate Normal

Multivariate Normal Density and Its Properties

Parameter Estimation
Maximum Likelihood
Estimation

The Sampling
Distribution of \bar{X} and SLarge-Sample Behavior
of \bar{X} and S

• Radom Sampling

Radom Samples and Expectation of Sample Statistics Generalized Variance and Measurement of Sample Variation

2 Multivariate Normal Distribution

Multivariate Normal Density and Its Properties

Parameter Estimation: Maximum Likelihood Estimation

The Sampling Distribution of \bar{X} and \bar{S}

Large-Sample Behavior of $\bar{\mathbf{X}}$ and \mathbf{S}

Radom Samples

Overview

S.Lan

Radom Sampline

Radom Samples and Expectation of Sample Statistics

Generalized Varian and Measurement Sample Variation

Normal Distribution

Multivariate Norm Density and Its Properties

Parameter Estimati Maximum Likelihoo Estimation

The Sampling Distribution of \bar{X} and S Large-Sample Behavior of \bar{X} and S

• Recall the data array **X** is arranged as an $n \times p$ matrix

$$\mathbf{X} = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1j} & \cdots & x_{1p} \\ x_{21} & x_{22} & \cdots & x_{2j} & \cdots & x_{2p} \\ \vdots & \vdots & & \vdots & & \vdots \\ x_{i1} & x_{i2} & \cdots & x_{ij} & \cdots & x_{ip} \\ \vdots & \vdots & & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nj} & \cdots & x_{np} \end{bmatrix} = \begin{bmatrix} X_1^T \\ X_2^T \\ \vdots \\ X_n^T \end{bmatrix} = \begin{bmatrix} X_1 & X_2 & \cdots & X_p \end{bmatrix}$$

- Each row $X_i^T = [X_{i1}, X_{i2}, \cdots, X_{ip}]$ represents a *independent observation* from a joint distribution *p*-dimensional random vector.
- Each column $X_j = [X_{1j}, X_{2j}, \cdots, X_{nj}]^T$ represents a random sample (collection of observations) of a random variable X_j .

Radom Samples

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Sample Statistics

Generalized Varian and Measurement Sample Variation

Normal Distribution

Multivariate Norm Density and Its Properties

Maximum Likeliho Estimation

The Sampling
Distribution of \bar{X} and SLarge-Sample Behavior
of \bar{X} and S

- Random sample is often assumed to be a collection of *independently identically distributed* (*i.i.d.*) observations.
- Assume the *p*-dimensional distribution has a density function $f(\mathbf{x}) = f(x_1, x_2, \dots, x_p)$. We denote random sample $\{X_i\}_{i=1}^n \stackrel{iid}{\sim} f(\mathbf{x})$.
- For the joint distribution of all the samples, based on the iid assumption, we have

$$f(\mathbf{X}) = \prod_{i=1}^n f(\mathbf{x}_i).$$

• Note, in general $f(\mathbf{x}) \neq \prod_{j=1}^{p} f(x_j)$ where each $f(x_j)$ is the marginal density of random variable X_j .

Expectation of Sample Statistics

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Sample Statistics

Generalized Variar and Measurement Sample Variation

Multivariate Normal

Multivariate Normal Density and Its

Parameter Estimation
Maximum Likelihoo
Estimation

The Sampling
Distribution of \bar{X} and SLarge-Sample Behavior

of X and S

• Now we assume a random sample $\{X_i\}_{i=1}^n \stackrel{iid}{\sim} f(\mathbf{x})$ from a joint distribution with mean $\mu \in \mathbb{R}^p$ and covariance $\mathbf{\Sigma} \in \mathbb{R}^{p \times p}$.

• Previously we had sample mean $ar{\mathbf{X}} = rac{1}{n} \sum_{i=1}^n X_i$ and

$$\mathrm{E}[ar{\mathbf{X}}] = oldsymbol{\mu}, \quad \mathrm{Cov}(ar{\mathbf{X}}) = rac{1}{n} oldsymbol{\Sigma}$$

• Then we have for sample covariance $\mathbf{S}_n = \frac{1}{n} \sum_{i=1}^n (X_i - \bar{\mathbf{X}})(X_i - \bar{\mathbf{X}})^T$

$$\mathrm{E}[\mathbf{S}_n] = rac{n-1}{n}\mathbf{\Sigma}$$

• Therefore, we often consider the unbiased sample covariance matrix $S = \frac{n}{n-1}S_n$.

Generalized Variance

S.Lan

Generalized Variance and Measurement of Sample Variation

Distribution of X and S of X and S

• For p-dimensional random sample $X_{n \times p}$, the generalized sample variance is defined as the determinant of sample covariance **S**:

generalized sample variance =
$$|\mathbf{S}| = (n-1)^p \text{vol}^2$$

where vol is the volume generated by p residual (deviation) vectors $\{\mathbf{x}_i - \mathbf{\bar{x}}_i\}_{i=1}^p$.

- It can be shown that $\text{vol}\{\mathbf{x}: (\mathbf{x} \bar{\mathbf{x}})^T \mathbf{S}^{-1} (\mathbf{x} \bar{\mathbf{x}}) < c^2\} = k_n |\mathbf{S}|^{\frac{1}{2}} c^p$.
- This quantity measures the variability of the random sample of size n.
- It can be used to detect multi-colinearity, i.e. $X_1, X_2, \cdots X_n$ are linearly dependent when $|\mathbf{S}| = 0$.
- If n < p, then $|\mathbf{S}| = 0$ for all samples.

Generalized Variance

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Sample Statistics

Generalized Variance and Measurement of Sample Variation

Multivariate Normal Distribution

Multivariate Normal Density and Its Properties Parameter Estimation Maximum Likelihood

The Sampling
Distribution of \bar{X} and SLarge-Sample Behavior of \bar{X} and S

Consider the area generated within the plane by two deviation vectors $\mathbf{d_1} = \mathbf{y_1} - \overline{\mathbf{x_1}} \mathbf{1}$ and $\mathbf{d_2} = \mathbf{y_2} - \overline{\mathbf{x_2}} \mathbf{1}$. Let $L_{\mathbf{d_1}}$ be the length of $\mathbf{d_1}$ and $L_{\mathbf{d_2}}$ the length of $\mathbf{d_2}$. By elementary geometry, we have the diagram

and the area of the trapezoid is $|L_{\mathbf{d}_1}\sin(\theta)|L_{\mathbf{d}_2}$. Since $\cos^2(\theta) + \sin^2(\theta) = 1$, we can express this area as

$$Area = L_{\mathbf{d}_1} L_{\mathbf{d}_2} \sqrt{1 - \cos^2(\theta)}$$

From (3-5) and (3-7),

$$L_{\mathbf{d}_1} = \sqrt{\sum_{j=1}^{n} (x_{j1} - \bar{x}_1)^2} = \sqrt{(n-1)s_{11}}$$

$$L_{\mathbf{d}_2} = \sqrt{\sum_{j=1}^{n} (x_{j2} - \bar{x}_2)^2} = \sqrt{(n-1)s_{22}}$$

and

$$\cos(\theta) = r_{12}$$

Therefore,

Area =
$$(n-1)\sqrt{s_{11}}\sqrt{s_{22}}\sqrt{1-r_{12}^2} = (n-1)\sqrt{s_{11}s_{22}(1-r_{12}^2)}$$
 (3-13)

Also,

$$|\mathbf{S}| = \left| \begin{bmatrix} s_{11} & s_{12} \\ s_{12} & s_{22} \end{bmatrix} \right| = \left| \begin{bmatrix} s_{11} & \sqrt{s_{11}} \sqrt{s_{22}} r_{12} \\ \sqrt{s_{11}} & \sqrt{s_{22}} r_{12} & s_{22} \end{bmatrix} \right|$$

$$= s_{11} s_{22} - s_{11} s_{22} r_{12}^2 = s_{11} s_{22} (1 - r_{12}^2)$$
(3-14)

Generalized Variance

Jverview

S.Lan

Radom Samplin

Radom Samples and Expectation of Samp Statistics

Generalized Variance and Measurement of Sample Variation

Multivariate Normal

Multivariate Normal Density and Its Properties

Parameter Estimat Maximum Likeliho

The Sampling
Distribution of \bar{X} and SLarge-Sample Behavior

$$\mathbf{X} = \begin{bmatrix} 1 & 9 & 10 \\ 4 & 12 & 16 \\ 2 & 10 & 12 \\ 5 & 8 & 13 \\ 3 & 11 & 14 \end{bmatrix}$$

Other Generalization of Variance

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Sample Statistics

Generalized Variance and Measurement of Sample Variation

Multivariate Normal

Density and Its
Properties
Parameter Estimatic

Estimation The Sampling Distribution of \bar{X} and

Distribution of \bar{X} and \bar{S} Large-Sample Behavior of \bar{X} and \bar{S} Consider the generalized sample variance of the standardized variables

$$|\mathbf{R}| = (n-1)^p \operatorname{vol}^2$$

where vol is the volume generated by p standardized vectors $\left\{\frac{\mathbf{x}_j - \bar{\mathbf{x}}_j}{\sqrt{s_{jj}}}\right\}_{j=1}^p$.

• What is the relationship between |R| and |S|?

• Another generalization of variance is total sample variance defined as $\mathrm{tr}(\mathbf{S})$.

Sample Statistics of Linear Combinations of Variables

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Samp Statistics

Generalized Variance and Measurement of Sample Variation

Multivariate Normal

Multivariate Norn Density and Its Properties

Parameter Estima Maximum Likeliho

The Sampling
Distribution of \bar{X} and SLarge-Sample Behavior
of \bar{X} and S

• Recall we had the following matrix representation of sample statistics:

$$\bar{\mathbf{X}} = \frac{\mathbf{1}_n^T}{n} \mathbf{X}, \quad \mathbf{S} = \frac{1}{n-1} \mathbf{X}^T (\mathbf{I}_n - \mathbf{J}) \mathbf{X}, \quad \mathbf{J} = \frac{\mathbf{1} \mathbf{1}_n^T}{n}$$

• Now suppose we have two linear combinations $\mathbf{b}^T \mathbf{X}$ and $\mathbf{c}^T \mathbf{X}$. Then we have

$$\overline{\mathbf{b}^T\mathbf{X}} = \mathbf{b}^T\bar{\mathbf{X}}, \quad s_{\mathbf{b}^T\mathbf{X},\mathbf{c}^T\mathbf{X}} = \mathbf{b}^T\mathbf{S}\mathbf{c}$$

• For example,
$$\mathbf{X} = \begin{bmatrix} 1 & 2 & 5 \\ 4 & 1 & 6 \\ 4 & 0 & 4 \end{bmatrix}$$
, $\mathbf{b} = [2, 2, -1]^T$ and $\mathbf{c} = [1, -1, 3]^T$.

Table of Contents

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Sample Statistics

Generalized Varian and Measurement Sample Variation

Multivariate Normal

Multivariate Normal Density and Its Properties

Parameter Estimation
Maximum Likelihood
Estimation

The Sampling Distribution of \bar{X} and S Large-Sample Behavior of \bar{X} and S

1 Radom Sampling

Radom Samples and Expectation of Sample Statistics Generalized Variance and Measurement of Sample Variation

Multivariate Normal Distribution

Multivariate Normal Density and Its Properties

Parameter Estimation: Maximum Likelihood Estimation

The Sampling Distribution of \bar{X} and S

Large-Sample Behavior of $\bar{\mathbf{X}}$ and \mathbf{S}

Multivariate Normal Density

S.Lan

Multivariate Normal Density and Its Properties

Distribution of X and S of X and S

- The read data are not exactly multivariate normal, but normal density can serve as a good approximation.
- The density of multivariate normal random vector $\mathbf{X} \sim N_p(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ is

$$f(\mathbf{x}) = (2\pi)^{-\frac{\rho}{2}} |\mathbf{\Sigma}|^{-\frac{1}{2}} \exp\{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

where the covariance matrix Σ is PSD.

Elliptic Contours of MVN Density

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Sample Statistics

Generalized Variand and Measurement of Sample Variation

Multivariate Normal

Multivariate Normal Density and Its Properties

Parameter Estimation Maximum Likelihood Estimation

The Sampling
Distribution of \bar{X} and SLarge-Sample Behavior
of \bar{X} and S

• The contour of MVN density is determined by

$$(\mathbf{x} - \boldsymbol{\mu})^T \mathbf{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu}) = c^2$$

• This is an ellipsoid centered at μ and having axes $\pm \sqrt{\lambda_i} \mathbf{v}_i$ with eigen-paris $\{\lambda_i, \mathbf{v}_i\}$ of Σ .

Figure 4.3 A constant-density contour for a bivariate normal distribution with $\sigma_{11} = \sigma_{22}$ and $\sigma_{12} > 0$ (or $\rho_{12} > 0$).

Properties of MVN

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Samp Statistics

Generalized Variand and Measurement of Sample Variation

Multivariate Normal

Multivariate Normal Density and Its Properties

Parameter Estimation Maximum Likelihoo

The Sampling
Distribution of \bar{X} and SLarge-Sample Behavior
of \bar{X} and S

• The linear combination of MVN is another MVN. Let $\mathbf{A} \in \mathbb{R}^{q \times p}$. Then

$$\mathbf{AX} \sim N_q(\mathbf{A}oldsymbol{\mu}, \mathbf{A}oldsymbol{\Sigma}\mathbf{A}^T)$$

- The marginal of MVN is also MVN. Consider $\mathbf{A} = \begin{bmatrix} \mathbf{I}_q & \mathbf{0} \end{bmatrix}$.
- ullet The conditional pdf of MVN is also MVN. Let $old X = egin{bmatrix} old X_1 \ old X_2 \end{bmatrix}$, $old \mu = egin{bmatrix} old \mu_1 \ old \mu_2 \end{bmatrix}$,

$$oldsymbol{\Sigma} = egin{bmatrix} oldsymbol{\Sigma}_{11} & oldsymbol{\Sigma}_{12} \ oldsymbol{\Sigma}_{21} & oldsymbol{\Sigma}_{22} \end{bmatrix}$$
 . Then

$$|\mathbf{X}_1|\mathbf{X}_2 = \mathsf{x}_2 \sim \mathit{N}_{p_1}(\mu_1 - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}(\mathsf{x}_2 - \mu_2), \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21})$$

- Note $\mathbf{X}_1 \perp \mathbf{X}_2$ if and only if $\mathbf{\Sigma}_{12} = 0$. What is the caveat?
- What is the distribution of $(\mathbf{x} \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x} \boldsymbol{\mu})$?

The Multivariate Normal Likelihood

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Samp

Generalized Varian and Measurement Sample Variation

Normal Distribution

Multivariate Normal Density and Its Properties

Parameter Estimation Maximum Likelihood Estimation

The Sampling
Distribution of \bar{X} and SLarge-Sample Behavior
of \bar{X} and S

• Consider the random sample $X_{n \times p}$. The *likelihood* of the sample is the joint density

$$L_{\mathbf{X}}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \prod_{i=1}^{n} f(\mathbf{x}_i) = (2\pi)^{-\frac{np}{2}} |\boldsymbol{\Sigma}|^{-\frac{n}{2}} \exp\left\{-\frac{1}{2} \sum_{i=1}^{n} (\mathbf{x}_i - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{x}_i - \boldsymbol{\mu})\right\}$$

• We notice the sum of quadratic form can be rewritten as

$$\sum_{i=1}^{n} (\mathsf{x}_i - \mu)^T \mathbf{\Sigma}^{-1} (\mathsf{x}_i - \mu) = \operatorname{tr} \left[(\mathsf{X} - \mu)^T \mathbf{\Sigma}^{-1} (\mathsf{X} - \mu) \right]$$

The Maximum Likelihood Estimation for MVN

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Samp Statistics

Generalized Variance and Measurement of Sample Variation

Multivariate Normal

Multivariate Norma Density and Its Properties

Parameter Estimation: Maximum Likelihood Estimation

The Sampling Distribution of \bar{X} and S Large-Sample Behavior of \bar{X} and S

• The maximum likelihood estimation (MLE) is to maximize the following log-likelihood with respect to μ and Σ :

$$\ell_{\mathbf{X}}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \log L_{\mathbf{X}}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = -\frac{n}{2} \log |\boldsymbol{\Sigma}| - \frac{1}{2} \mathrm{tr} \left[(\mathbf{X} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) \right]$$

• Setting $\frac{\partial \ell}{\partial \mu}=0$ and $\frac{\partial \ell}{\partial \Sigma}=0$, we obtain the MLE for μ,Σ as

$$\hat{oldsymbol{\mu}} = ar{f X}, \quad \hat{f \Sigma} = rac{n-1}{n} {f S}$$

• Note that $\bar{\mathbf{X}}$ and \mathbf{S} are also sufficient statistics.

The Sampling Distribution of \bar{X} and S

Overview

S.Lan

Radom Samplin

Radom Samples and Expectation of Sampl Statistics

Generalized Varianc and Measurement of Sample Variation

Multivariate Normal Distribution

Multivariate Normal Density and Its Properties

Maximum Likelihood Estimation

The Sampling
Distribution of \bar{X} and S

of X and S

Suppose $\mathbf{X}_i \stackrel{iid}{\sim} N_p(\mu, \mathbf{\Sigma})$, then we have

- **2** $(n-1)\mathbf{S} \sim W_{n-1}(\mathbf{\Sigma})$, Wishart distribution with degree of freedom n-1.
- $\mathbf{S} \mathbf{X} \perp \mathbf{S}$.

Definition (Wishart distribution)

A square matrix $\mathbf{A} \sim W_m(\mathbf{\Sigma})$ Wishart distribution with degree of freedom m if it can be expressed as $\mathbf{A} = \sum_{j=1}^m \mathbf{Z} \mathbf{Z}^T$, where $\mathbf{Z}_j \stackrel{iid}{\sim} Np(\mathbf{0}, \mathbf{\Sigma})$. The density of \mathbf{A} is

$$f_m(\mathbf{A}|\mathbf{\Sigma}) = \frac{|\mathbf{A}|^{(m-p-1)/2} \exp\{-\text{tr}(\mathbf{A}\mathbf{\Sigma}^{-1})/2\}}{2^{pm/2}\pi^{p(p-1)/4}|\mathbf{\Sigma}|^{m/2}\prod_{i=1}^{p}\Gamma((m+1-i)/2)}$$

- If $\mathbf{A}_1 \sim W_{m_1}(\mathbf{\Sigma})$ and $\mathbf{A}_2 \sim W_{m_2}(\mathbf{\Sigma})$, then $\mathbf{A}_1 + \mathbf{A}_2 \sim W_{m_1+m_2}(\mathbf{\Sigma})$.
- If $\mathbf{A} \sim W_m(\mathbf{\Sigma})$, then $\mathbf{CAC}^T \sim W_m(\mathbf{C\SigmaC}^T)$.

Large-Sample Behavior \bar{X} and S

Overview

S.Lan

Radom Samplin

Radom Samples and Expectation of Sample Statistics

Generalized Variance and Measurement of Sample Variation

Multivariate Normal

DISTRIBUTION

Multivariate Normal

Density and Its

Parameter Estimation
Maximum Likelihood
Estimation

The Sampling Distribution of \bar{X} and S

Large-Sample Behavior of X and S

Suppose $\mathbf{X}_i \stackrel{iid}{\sim} (\boldsymbol{\mu}, \boldsymbol{\Sigma})$, then we have

LLN $\bar{\mathbf{X}} \stackrel{P}{\to} \boldsymbol{\mu}$, i.e. for any $\epsilon > 0$, $P[|\bar{\mathbf{X}} - \boldsymbol{\mu}| > \epsilon] \to 0$ as $n \to \infty$.

CLT
$$\sqrt{n}(\bar{\mathbf{X}} - \boldsymbol{\mu}) \stackrel{L}{\to} N_p(\mathbf{0}, \boldsymbol{\Sigma})$$
, i.e $P[\sqrt{n}(\bar{\mathbf{X}} - \boldsymbol{\mu}) \leq \mathbf{x}] \to p_N(\mathbf{x}; \mathbf{0}, \boldsymbol{\Sigma})$ as $n \to \infty$.

• We also have $n(\bar{\mathbf{X}} - \mu)^T \mathbf{S}^{-1} (\bar{\mathbf{X}} - \mu) \overset{.}{\sim} \chi_p^2$.

Evaluating Normality: qqnorm, qqplot

Overview

S.Lan

Radom Sampling

Radom Samples and Expectation of Sample Statistics

Generalized Variand and Measurement of Sample Variation

Multivariate Normal Distribution

Multivariate Normal
Density and Its
Properties

Maximum Likelihood Estimation

The Sampling
Distribution of \bar{X} and S

Large-Sample Behavior of X and S

• For univariate normality:

The steps leading to a Q-Q plot are as follows:

- 1. Order the original observations to get $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$ and their corresponding probability values $\left(1 \frac{1}{2}\right)/n$, $\left(2 \frac{1}{2}\right)/n$, $\left(n \frac{1}{2}\right)/n$;
- 2. Calculate the standard normal quantiles $q_{(1)}, q_{(2)}, \ldots, q_{(n)}$; and
- 3. Plot the pairs of observations $(q_{(1)}, x_{(1)}), (q_{(2)}, x_{(2)}), \ldots, (q_{(n)}, x_{(n)})$, and examine the "straightness" of the outcome.
- For bivariate normality:
 - To construct the chi-square plot,
 - 1. Order the squared distances in (4-32) from smallest to largest as $d_{(1)}^2 \le d_{(2)}^2 \le \cdots \le d_{(n)}^2$.
 - 2. Graph the pairs $(q_{c,p}((j-\frac{1}{2})/n), d_{(j)}^2)$, where $q_{c,p}((j-\frac{1}{2})/n)$ is the $100(j-\frac{1}{2})/n$ quantile of the chi-square distribution with p degrees of freedom.