Using Eviews

Rob Hayward

February 11, 2014

Outline

- Import data
- Confidence intervals on coefficients
- Ourbin-Watson
- Residuals
- 6 Further Reading

Rob Hayward Using Eviews

Import Data

Return Code

```
"Quick", "Generate Series" or,
```

```
smpl 2000.02 @last
series bacr = @pch(bac)
series spyr = @pch(spy)
```

Return Series

Samples

You can sample from a smaller range of data. This can be used to test the stabilty of the parameters or is necessary to compute lags.

```
smpl 2000.01 2012.12
@first @last
@all
```

6 / 23

Equations

C is the constant $\left(-1\right)$ will lag the variable No need to specify the error

The total variance of the dependent variable is called the total sum of squares (TSS). This can be split into

Explained sum of squares or sum of squares of the regression (ESS)

The total variance of the dependent variable is called the total sum of squares (TSS). This can be split into

- Explained sum of squares or sum of squares of the regression (ESS)
- Residual sum of squares (RSS)

The total variance of the dependent variable is called the total sum of squares (TSS). This can be split into

- Explained sum of squares or sum of squares of the regression (ESS)
- Residual sum of squares (RSS)

The total variance of the dependent variable is called the total sum of squares (TSS). This can be split into

- Explained sum of squares or sum of squares of the regression (ESS)
- Residual sum of squares (RSS)

$$R^{2} = 1 - \frac{RSS}{TSS} = 1 - \frac{RSS}{RSS + ESS}$$

$$R^{2} = 1 - \frac{\hat{\varepsilon}'\hat{\varepsilon}}{(y - \bar{y})'(y - \bar{y})}$$

$$u = \hat{\varepsilon}$$
(1)

Adjusted R Squared (p. 13)

The R^2 can be considered a measure of goodness of fit. However, the more variables that you add the smaller the R^2 . The Adjusted R Squared (\bar{R}^2) will make a penalty for adding variables.

$$\bar{R}^2 = 1 - (1 - R^2) \times \frac{(T - 1)}{(T - K)}$$
 (2)

where T is the total number of observations and K is the number of variables.

4□ > 4□ > 4 = > 4 = > = 99

Remember that the estimates of the coefficients will depend on the sample

■ A different sample will give a different estimate

10 / 23

Rob Hayward Using Eviews February 11, 2014

Remember that the estimates of the coefficients will depend on the sample

- A different sample will give a different estimate
- We want to know how reliable the estimates will be under different samples

Remember that the estimates of the coefficients will depend on the sample

- A different sample will give a different estimate
- We want to know how reliable the estimates will be under different samples
- lacksquare eta is a random variable. If OLS (*Gauss-Markov* assumptions hold)

Remember that the estimates of the coefficients will depend on the sample

- A different sample will give a different estimate
- We want to know how reliable the estimates will be under different samples
- lacksquare is a random variable. If OLS (*Gauss-Markov* assumptions hold)
 - $\qquad \hat{\beta_1} \sim \textit{N}(\beta_1, \sigma_{\beta_1}^2)$

10 / 23

Rob Hayward Using Eviews February 11, 2014

Remember that the estimates of the coefficients will depend on the sample

- A different sample will give a different estimate
- We want to know how reliable the estimates will be under different samples
- lacksquare is a random variable. If OLS (*Gauss-Markov* assumptions hold)
 - $\hat{\beta_1} \sim \textit{N}(\beta_1, \sigma_{\beta_1}^2)$

Remember that the estimates of the coefficients will depend on the sample

- A different sample will give a different estimate
- We want to know how reliable the estimates will be under different samples
- lacksquare is a random variable. If OLS (*Gauss-Markov* assumptions hold)
 - $\hat{\beta_1} \sim N(\beta_1, \sigma_{\beta_1}^2)$

If we assume a normal distribution we can carry out hypothese tests about coefficients like β_1

Variance of Coefficient estimates

Hypothesis tests of Coefficients p.14

Hypothese tests are conducted using the t-statistic

$$t\text{-stat} = \frac{\text{estimator-hypothesised value}}{\text{standard error of the estimator}}$$

$$t=rac{\hat{eta}_1-eta_{1,0}}{\mathit{SE}(\hat{eta}_1)}$$

Need to estimate the standard deviation of the coefficient estimate

< ロ ト ∢ @ ト ∢ 差 ト → 差 → りへ(^-)

12 / 23

Rob Hayward Using Eviews February 11, 2014

Estimating the distribution of the parameter estimate

Covariance matrix of estimated coefficiencts is $Var(b) = s^2(X'X)^{-1}$ $s^2 = \frac{\hat{\varepsilon}'\hat{\varepsilon}}{(T-k)}$ $\hat{\varepsilon} = y - Xb$ $SE(\hat{\beta}_1) = \sqrt{Var(b)^2}$

Durbin Watson

This is a test of first order autocorrelation If $Y_t = a + bX_t + u_t$ and $u_t = \rho u_{t-1} + v_t$ DW tests

*H*0 :
$$\rho = 0$$
 *H*1 : $\rho > 0$

H0 - There is no first order autocorrelation

Durbin Watson test

The test is

$$DW = 2 - 2 \frac{\sum_{t=2}^{T} \hat{u}_{t} \hat{u}_{t-1}}{\sum_{t=1}^{T} \hat{u}_{t}^{2}}$$
$$DW = 2(1 - \hat{\rho})$$

DW statistics close to two suggest no autocorrlation of the residuals.

18 / 23

Rob Hayward Using Eviews February 11, 2014

Inspection and tests of the residuals will allow us to assess whether there are problems with the model

■ Residuals should be White Noise

Inspection and tests of the residuals will allow us to assess whether there are problems with the model

- Residuals should be White Noise
- $= u = \sim N(0, \sigma^2)$

20 / 23

Rob Hayward Using Eviews February 11, 2014

Inspection and tests of the residuals will allow us to assess whether there are problems with the model

- Residuals should be White Noise
- $u = \sim N(0, \sigma^2)$
- Tests for autocorrelation

Inspection and tests of the residuals will allow us to assess whether there are problems with the model

- Residuals should be White Noise
- $u = \sim N(0, \sigma^2)$
- Tests for autocorrelation
- Tests for hetroskedsasticity

Inspection and tests of the residuals will allow us to assess whether there are problems with the model

- Residuals should be White Noise
- $u = \sim N(0, \sigma^2)$
- Tests for autocorrelation
- Tests for hetroskedsasticity
- Tests for normal distribution

Eviews Website

- Eviews Website
- Tutorials

- Eviews Website
- Tutorials
- User Guide 1 Chapter 11 (p. 315 to 321)

- Eviews Website
- Tutorials
- User Guide 1 Chapter 11 (p. 315 to 321)
- User Guide 2 Chapter 18 (p. 1 to 22)

Bibliography