Course Code:	Course Title	Credit
CSC602	Cryptography & System Security	3

Pr	Prerequisite: Computer Networks		
Co	ourse Objectives:		
1	To introduce classical encryption techniques and concepts of modular arithmetic and		
	number theory.		
2	To explore the working principles and utilities of various cryptographic algorithms		
	including secret key cryptography, hashes and message digests, and public key algorithms		
3	To explore the design issues and working principles of various authentication protocols, PKI		
	standards and various secure communication standards including Kerberos, IPsec, and		
	SSL/TLS.		
4	To develop the ability to use existing cryptographic utilities to build programs for secure		
9	communication		
Co	ourse Outcomes:		
1	Understand system security goals and concepts, classical encryption techniques and acquire		
	fundamental knowledge on the concepts of modular arithmetic and number theory		
2	Understand, compare and apply different encryption and decryption techniques to solve		
	problems related to confidentiality and authentication		
3	Apply different message digest and digital signature algorithms to verify integrity and		
	achieve authentication and design secure applications		
4	Understand network security basics, analyse different attacks on networks and evaluate the		
	performance of firewalls and security protocols like SSL, IPSec, and PGP		
5	Analyse and apply system security concept to recognize malicious code		

Module		Content	Hrs
1		Introduction - Number Theory and Basic Cryptography	8
	1.1	Security Goals, Attacks, Services and Mechanisms, Techniques. Modular Arithmetic: Euclidean Algorithm, Fermat's and Euler's theorem	
	1.2	Classical Encryption techniques, Symmetric cipher model, monoalphabetic and polyalphabetic substitution techniques: Vigenere cipher, playfair cipher, Hill cipher, transposition techniques: keyed and keyless transposition ciphers	
2		Symmetric and Asymmetric key Cryptography and key Management	11
	2.1	Block cipher principles, block cipher modes of operation, DES, Double DES, Triple DES, Advanced Encryption Standard (AES), Stream Ciphers: RC4 algorithm.	
	2.2	Public key cryptography: Principles of public key cryptosystems- The RSA Cryptosystem, The knapsack cryptosystem	
	2.3	Symmetric Key Distribution: KDC, Needham-schroeder protocol. Kerberos: Kerberos Authentication protocol, Symmetric key agreement: Diffie Hellman, Public key Distribution: Digital Certificate: X.509, PKI	
3		Cryptographic Hash Functions	3
	3.1	Cryptographic hash functions, Properties of secure hash function, MD5, SHA-1, MAC, HMAC, CMAC.	
4		Authentication Protocols & Digital Signature Schemes	5
	4.1	User Authentication, Entity Authentication: Password Base, Challenge Response Based	

	4.2	Digital Signature, Attacks on Digital Signature, Digital Signature Scheme: RSA	
5		Network Security and Applications	9
	5.1	Network security basics: TCP/IP vulnerabilities (Layer wise), Network Attacks: Packet Sniffing, ARP spoofing, port scanning, IP spoofing	
	5.2	Denial of Service: DOS attacks, ICMP flood, SYN flood, UDP flood, Distributed Denial of Service	
	5.3	Internet Security Protocols: PGP, SSL, IPSEC. Network security: IDS, Firewalls	
6		System Security	3
5	6.1	Buffer Overflow, malicious Programs: Worms and Viruses, SQL injection	

Tex	tbooks:		
1	William Stallings, "Cryptography and Network Security, Principles and Practice", 6th		
	Edition, Pearson Education, March 2013		
2	Behrouz A. Ferouzan, "Cryptography & Network Security", Tata McGraw Hill		
3	Behrouz A. Forouzan & Debdeep Mukhopadhyay, "Cryptography and Network		
10000	Security" 3rd Edition, McGraw Hill		

Ref	Referecebooks:		
1	Bruce Schneier, "Applied Cryptography, Protocols Algorithms and Source Code in C",		
	Second Edition, Wiley.		
2	Atul Kahate, "Cryptography and Network Security", Tata McGraw-Hill Education, 2003.		
3	Eric Cole, "Network Security Bible", Second Edition, Wiley, 2011.		

Ass	essment:
Inte	ernal Assessment:
Ass	essment consists of two class tests of 20 marks each. The first class test is to be conducted
whe	en approx. 40% syllabus is completed and second class test when additional 40% syllabus is
com	pleted. Duration of each test shall be one hour.
End	Semester Theory Examination:
1	Question paper will comprise of total six questions.
2	All question carries equal marks
3	Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3
10000	then part (b) will be from any module other than module 3)
4	Only Four question need to be solved.
5	In question paper weightage of each module will be proportional to number of respective
	lecture hours as mention in the syllabus.

Use	Useful Links		
1	https://github.com/cmin764/cmiN/blob/master/FII/L3/SI/book/W.Stallings%20-		
-	%20Cryptography%20and%20Network%20Security%206th%20ed.pdf		
2	https://docs.google.com/file/d/0B5F6yMKYDUbrYXE4X1ZCUHpLNnc/view		

Lab Code	Lab Name	Credit
CSL602	Cryptography & System Security Lab	1

Pre	Prerequisite: Computer Network		
Lal	Lab Objectives:		
1	To apply various encryption techniques		
2	To study and implement various security mechanism		
3	To explore the network security concept and tools		
Lal	b Outcomes: At the end of the course, the students will be able to		
1	apply the knowledge of symmetric and asymmetric cryptography to implement simple		
-	ciphers.		
2	explore the different network reconnaissance tools to gather information about networks.		
3	explore and use tools like sniffers, port scanners and other related tools for analysing		
	packets in a Network.		
4	set up firewalls and intrusion detection systems using open-source technologies and to		
	explore email security.		
5	explore various attacks like buffer-overflow and web application attack.		

Suggested	Suggested List of Experiments		
Sr. No	Title of Experiment		
1	Design and Implementation of a product cipher using Substitution and Transposition ciphers.		
2	Implementation and analysis of RSA crypto system.		
3	Implementation of Diffie Hellman Key exchange algorithm		
4	For varying message sizes, test integrity of message using MD-5, SHA-1, and analyse the performance of the two protocols. Use crypt APIs.		
5	Study the use of network reconnaissance tools like WHOIS, dig, traceroute, ns lookup to gather information about networks and domain registrars.		
6	Study of packet sniffer tools: wireshark,: 1. Download and install wireshark and capture icmp, tcp, and http packets in promiscuous mode. 2. Explore how the packets can be traced based on different filters.		
7	Download and install nmap. Use it with different options to scan open ports, perform OS fingerprinting, do a ping scan, tcp port scan, udp port scan, xmas scan etc.		
8	Detect ARP spoofing using nmap and/or open-source tool ARPWATCH and wireshark. Use arping tool to generate gratuitous arps and monitor using wireshark		
9	Simulate DOS attack using Hping, hping3 and other tools		
10	Simulate buffer overflow attack using Ollydbg, Splint, Cpp check etc		
11	a. Set up IPSEC under LINUX. b. Set up Snort and study the logs.		
12	Setting up personal Firewall using iptables		
13	Explore the GPG tool of linux to implement email security		
14	SQL injection attack, Cross-Cite Scripting attack simulation		
15	Case Study /Seminar: Topic beyond syllabus related to topics covered.		

T	Term Work:			
1	Term work should consist of 10 experiments.			
2	Journal must include at least 2 assignments on content of theory and practical of			

	"Cryptography and System Security"
3	The final certification and acceptance of term work ensures that satisfactory performance of
5 5	laboratory work and minimum passing marks in term work.
4	The distribution of marks for term work shall be as follows:
	Lab Performance 15 Marks
	Assignments 05 Marks
	Attendance (Theory & practical) 05 Marks

