MAT3253 Tutorial 2

TA: Zhiyuan Wan

1 Analytic Function

Definition 1. A domain is a connected open set in the complex plane, denoted by D.

Definition 2. A complex function of a complex variable f(z) is analytic in a domain if f'(z) exists everywhere on this domain.

Definition 3. f(z) is analytic at a point z is it is analytic in a neighborhood of that point.

1.1 f(z) is analytic on D, then:

- Write f(z) = u(x, y) + iv(x, y)
- f(z) is continuous on D.
 - -u,v is continuous on D.
- The partial derivatives of u, v, u_x, u_y, v_x, v_y all exist on D, and they satisfy the Cauchy-Riemann equation: $u_x = v_y; u_y = -v_x$
- With the fact that f'(z) is also analytic on D, we further have
 - The partial derivatives of all orders of u, v exist and are continuous on D.
 - As a consequence, the mixed partial derivatives are equal.
 - As a consequence, u, v and all its partial derivatives are also differentiable.

1.2 Exercises

1. The Cauchy Riemann Theorem is formally stated as follows:

Theorem 1. If f(z) = u(x,y) + iv(x,y) is analytic on D, then u_x, u_y, v_x, v_y all exist and are continuous on D, moreover, they satisfy $u_x = v_y$; $u_y = -v_x$

Show the converse is also true.

- 2. Prove the product, sum, quotient of two analytic functions defined on the same domain D is again analytic on D, provided of course in the quotient case the denominator never vanishes on D.
- 3. Prove if f(z) is analytic at a point z_0 , g(w) is analytic at the point $w_0 = g((z_0))$, then the g(f(z)) is analytic at z_0 .