Design

이번 과제는 potential뿐만 아니라 electron과 hole을 고려하여 jacobian matrix를 재구성하는 것이었다. 3개의 변수 phi, n, p에 대해 fully-coupled 한 matrix를 구성하기 위해 각 상관관계를 파악하여 jacobian matrix를 구성하는 것이 중요해였으며 이 상관관계를 정확히 정의하는 것이 coupled matrix의 핵심이다.

구조의 경우 계산전자공학의 2.11.1 예제를 2D로 확장하여 새로 design 했다. jacobian matrix의 경우 순서대로 stack 하여 구성했으며 phi-n-p순으로 stack 했다.

variable	region	vertex 개수	interface vertex 개수	
	oxide	18	6	
potential	silicon 30		-	
	oxide	18	6	
electron	silicon	30	-	
hole	silicon	30	_	

matrix size의 경우 interface vertex의 중복을 고려하여 (66+30+30) X (66+30+30)인 126 X 126 matrix로 설정했다. 기존의 jacobian matrix보다 더 큰 jacobian matrix를 형성해야 했기에 electron과 hole에 해당하는 부분 또한 re-indexing 해주었으며, 다음 표와 같이 re-indexing 했다.

	potent	ial(phi)		electi	ron(n)	hol	le(p)
vertex	re-index	vertex	re-index				
1	1	28	34	vertex	re-index	vertex	re-index
2	2	29	35				
3	3	30	36	13	67	13	97
4	4	31	37	14	68	14	98
5	5	32	38	15	69	15	99
6	6	33	39	16	70	16	100
7	7	34	40	17	71	17	101
8	8	35	41	18	72	18	102
9	9	36	42	19	73	19	103
10	10	37	43	20	74	20	104
11	11	38	44	21	75	21	105
12	12	39	45	22	76	22	106
13	13	40	46	23	77	23	107
14	14	41	47	24	78	24	108
15	15	42	48	25	79	25	109
16	16	37	49	26	80	26	110
17	17	38	50	27	81	27	111
18	18	39	51	28	82	28	112
13	19	40	52	29	83	29	113
14	20	41	53	30	84	30	114
15	21	42	54	31	85	31	115
16	22	43	55	32	86	32	116
17	23	44	56	33	87	33	117
18	24	45	57	34	88	34	118
19	25	46	58	35	89	35	119
20	26	47	59	36	90	36	120
21	27	48	60	37	91	37	121
22	28	49	61	38	92	38	122
23	29	50	62	39	93	39	123
24	30	51	63	40	94	40	124
25	31	52	64	41	95	41	125
26	32	53	65	42	96	42	126
27	33	54	66				

*blue box : interface1
*green box : interface2

- solve non-linear poisson equation

먼저, non-linear posson equation을 풀어 initial value를 구해야한다.

계산전자공학을 참고하여 edge contact = 0.33374V, Ndop= $1E24[/m^3]$, ni= $1E16[/m^3]$ 으로 설정했다.

$$\nabla \cdot (-\nabla \epsilon \phi) = -qn + qp + qNdop^{+} --- (1)$$

$$n = n_{i} \exp(\phi/Vt) --- (2)$$

$$p = n_{i} \exp(-\phi/Vt) --- (3)$$

 $N_{d\phi}$ 와 contact을 이용하여 initial potential을 구할 수 있다. 구한 initial potential 식을 이용하여 식 (2), (3)에 대입하면 initial electron, initial hole 값을 구할 수 있다.

initial value를 구하고 나서 total jacobian matrix를 위 3개의 식의 상관관계를 파악해 coupled 한 matrix로 구성했다.

(1) 식을 양변에 적분을 취하고, 이항하면 다음의 res를 얻을 수 있다.

$$res = \int \int \nabla \cdot (-\nabla \epsilon \phi) + \int \int qn - \int \int qp - \int \int qN dop^+$$

이 residue를 이용하여 jacobian matrix의 index 1~66까지의 행, 열 값을 정의할 수 있다.

기존의 CVM을 이용하여 edge/length로 각 node에서의 flow를 계산하고 n, p, Ndop는 control volume을 계산해 곱해주어야 한다. 작은 삼각형 control volume은 edge*len/4을 나타내며, 작은 삼각형 control volume을 더해 각 노드에서의 control volume을 계산하여 곱해준다. 그렇다면 index 1~66의 행에 대한 열의 값은 각 노드에서의 flow, 그리고 charge들을 index에 맞게 고려해주면 된다.

(2) 식을 이항하면 다음의 res를 얻을 수 있다.

$$res = n - n_i \exp(\phi / Vt)$$

jac1 = 1

 $jac2 = -ni/V_t \exp(\phi/Vt)$

위 res를 통해 jacobian matrix를 구성하면, 각 노드에 해당하는 electron charge와 해당 node에서의 potential 값을 고려해주면 된다.

(3) 식을 이항하면 다음의 res를 얻을 수 있다.

$$res = p - n_i \exp(-\phi/Vt)$$

jac1 = 1

 $jac2 = ni/V_t \exp(-\phi/Vt)$

위 res를 통해 jacobian matrix를 구성하면, 각 노드에 해당하는 hole charge와 해당 node에서의 potential 값을 고려해주면 된다.

vertex	initial hole	initial electron		
13	3.71E+21	2.7E+10		
14	3.71E+21	2.7E+10		
15	3.71E+21	2.7E+10		
16	3.71E+21	2.7E+10		
17	3.71E+21	2.7E+10		
18	3.71E+21	2.7E+10		
19	2.44E+21	4.1E+10		
20	2.44E+21	4.1E+10		
21	2.44E+21	4.1E+10		
22	2.44E+21	4.1E+10		
23	2.44E+21	4.1E+10		
24	2.44E+21	4.1E+10		
25	2.12E+21	4.72E+10		
26	2.12E+21	4.72E+10		
27	2.12E+21	4.72E+10		
28	2.12E+21	4.72E+10		
29	2.12E+21	4.72E+10		
30	2.12E+21	4.72E+10		
31	2.44E+21	4.1E+10		
32	2.44E+21	4.1E+10		
33	2.44E+21	4.1E+10		
34	2.44E+21	4.1E+10		
35	2.44E+21	4.1E+10		
36	2.44E+21	4.1E+10		
37	3.71E+21	2.7E+10		
38	3.71E+21	2.7E+10		
39	3.71E+21	2.7E+10		
40	3.71E+21	2.7E+10		
41	3.71E+21	2.7E+10		
42	3.71E+21	2.7E+10		

Result

해당 관계식을 통해 jacobian matrix와 residue matrix를 구성했다.

iteration을 1번 했을 때 update vector를 보면 potential 부분에는 이상이 없지만, electron과 hole 부분에서 값이 제대로 적용되지 않는 것을 관찰했다. iteration을 함에 따라, electron과 hole 부분이 비약적으로 증가하는 것을 관찰하였으며, 이는 jacobian matrix를 구성할 때 오류가 발생했고, code에 대한 debugging이 조금 더 필요하다고 생각한다. coupled 한 matrix를 만들기 위해 jacobian matrix를 적절히 잘 구성해야하며, 다음 수업 이후 코드를 보완하여 완성할 계획이다.