Numerical Optimization

Ezepov Ilya

Agenda

- Optimization in ML
- Problems with optimization in ML
- Approaches to optimisation
- 50 shades of Gradient Descent

Optimization in ML

What is machine learning?

- Given the data X
 N row(data points), M columns (features)
- and the correct "answers" y
- Find the best function f
- Such that f(X) will be close to y

Finding the function

- How to select a good function?
- In general, we are doomed
- Let's select from a class of function and tune the parameters

Function classes a.k.a machine learning algorithms

Algo	Parameters
Naive bayess	P(x y) distribution
Linear regression	M Coefficients
K means	Clusters centeres
SVM	M Coefficients + Kernel parameters
Decision Trees	Split coordinates, predictions in leafs
Neural Networks	A lot of coefficients

Here comes the optimization

- We need to choose w in f(X, w)
- to minimize loss function loss(f(X, w), y)
- Optimization: minimize g == maximize -g

Problems

1. Curse of dimensionality

- In high dimensions things work different
- 100 points uniformly placed on the unit 1dimensional cube will cover with gaps no more than 10-2
- Then we have 9 more dimensions. How many data points do we need to cover it with the same density?

1. Curse of dimensionality

- In my current work I need to train neural network with 164 480 parameters
- Impossible to create a good search policy
- Brute search is absolutely impossible

2. Non separable problmes

- Separable: argmin $f(w_1, w_2) = argmin f(w_1, ...)$, argmin $f(..., w_2)$
- ML optimization is non-separable, parameters are dependent

3. Function itself

Approaches to optimization on linear model

Linear models

- Data X with constant columns, real value answer y
- f(X, w) = XW
- MSE loss

Explicit Solution (OLS)

$$XW = \hat{y}$$

$$\frac{1}{2}(y - XW)(y - XW)^T \to min$$

$$W = (X^T X)^{-1} X^T y$$

Explicit Solution

$$XW = \hat{y}$$

$$\frac{1}{2}(y - XW)(y - XW)^T \to min$$

$$W = (X^T X)^{-1} X^T y$$

Matrix multiplication/inversion:

Coppersmith–Winograd algorithm, O(n^{2.373})

$$Loss(W) = \frac{1}{2}(y - XW)(y - XW)^{T}$$

$$\frac{\partial Loss(W)}{\partial W} = ?$$

$$W_t = W_{t-1} - \alpha \nabla W_{t-1}$$

$$W_t = W_{t-1} - \alpha \nabla W_{t-1}$$

$$W_t = W_{t-1} - \alpha \nabla W_{t-1}$$

$$W_t = W_{t-1} - \alpha \nabla W_{t-1}$$

$$W_t = W_{t-1} - \alpha \nabla W_{t-1}$$

$$W_t = W_{t-1} - \alpha \nabla W_{t-1}$$

Pros

- If you can find a derivative, you can optimize*
- Every step in the correct direction
- Faster than explicit solution

Cons

Cons

- How to select learning rate?
- When to stop?
- Can't determine global or local minimum
- Very slow on the ill-conditioned problems
- Difficult to compute on the big dataset
- No guarantees about finding minimum in finite time

Learning Rate

*can't into derivatives

- Can't explicitly find df/dw_i?
- Compute it!
- df/dw_i ≈ [f(w_i + eps) f(w_i)]/eps ≈ [f(w_i) f(w_i eps)]/eps ≈ [f(w_i + eps) f(w_i eps)]/eps/2

Check yourself!

- When implementing GD always check your explicit gradient function numerically!
- Calculate relative difference Idf_c df_eI/max(Idf_eI, Idf_cI)

- relative error > 1e-2 usually means the gradient is probably wrong
- 1e-2 > relative error > 1e-4 should make you feel uncomfortable.
- 1e-7 and less you should be happy.
- eps ~ 1e-5
- Use float64!

Standardization

Which one is better for SGD (GD)?

2d - Gradient Descent

Stochastic Gradient Descent

Stochastic Gradient Descent a.k.a. SGD

With GD you must pass through the whole dataset to calculate one gradient!

GD vs SGD

GD vs SGD

- (as GD) No guarantee about global minimum
- (as GD) No guarantee that solution would be found in finite time
- (as GD) No guarantee about convergence at all
- No guarantee about moving in correct direction

GD vs SGD

- (as GD) No guarantee about global minimum
- (as GD) No guarantee that solution would be found in finite time
- (as GD) No guarantee about convergence at all
- No guarantee about moving in correct direction

GD: **O**(**n**)

SGD: O(1)

Confusing names

- Full data: Gradient descent
- Part of the data: SGD, Mini batch GD
- One point: Fully stochastic GD, SGD

Newton

Moving in the right direction

$$\mathbf{x}_{n+1} = \mathbf{x}_n - [\mathbf{H}f(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n)$$

Super accurate

Moving in the right direction

$$\mathbf{x}_{n+1} = \mathbf{x}_n - [\mathbf{H}f(\mathbf{x}_n)]^{-1} \nabla f(\mathbf{x}_n)$$

- Super accurate
- Need to compute Hessian (second order derivatives) O(n²)
- Need to invert the Hessian! O(n³)
- Never used in practice

Momentum

Use momentum

Add momentum to your SGD path

$$\nabla W_t = \nabla W_t + \lambda \nabla W_{t-1}$$

Use ~0.9 momentum rate

Nesterov accelerated gradien (NAG)

Nesterov acceleration

$$\nabla W_t = \nabla (W_t + \lambda \nabla W_{t-1}) + \lambda \nabla W_{t-1}$$

Point: Nesterov is better than everything

Use momentum

Add momentum to your SGD path

$$\nabla W_t = \nabla W_t + \lambda \nabla W_{t-1}$$

Use ~0.9 momentum rate

Nesterov momentum update

Idea: Slowing down the learning rate

It's good to reduce learning rate

- **Step decay.** Reduce the learning rate by some factor every few epochs. Typical values might be reducing the learning rate by a half every 5 epochs, or by 0.1 every 20 epochs.
- Exponential decay. has the mathematical form
 a=a₀e^{-kt}, where α₀, k are hyperparameters and t is the
 iteration number (but you can also use units of epochs).
- 1/t decay. The mathematical form α=α₀/(1+kt) where a₀,
 k are hyperparameters and t is the iteration number.

Idea: Slowing down the learning rate with respect to parameter

AdaGrad

$$W_t = W_{t-1} - \alpha \frac{\nabla W_{t-1}}{\sqrt{G}}$$

Remember total update of every feature and scale updates to prevent jittering

AdaGrad

Adadelta

Adam

RMSprop

How to select?

- Try simple SGD.
- Add Momentum.
- Add Nesterov acceleration.
- Try some of adaptive methods

Resources

- http://cs231n.github.io/neural-networks-3/
- http://sebastianruder.com/optimizing-gradientdescent/
- https://tao.lri.fr/tiki-download_wiki_attachment.php?
 attId=954
- https://en.wikipedia.org/wiki/ Numerical differentiation