矢量分析知识点汇总

场的类型	标量场	矢量场	
场的定义	标量场 u : 只需要大小就能确定的量。	矢量场 $ar{F}$: 需要大小和方向才能完全确定的量。	
场的图形表示	等值面或等值线	矢量线	
场的最基本量	方向导数 $ \frac{\partial u}{\partial l}\bigg _{M_0} = \lim_{\Delta l \to 0} \frac{u(M) - u(M_0)}{\Delta l} $ 物理意义:表示标量场在某点沿某方向的空间变化率。	通量 $\psi = \int d\psi = \int_S \vec{F} \cdot d\vec{S} = \int_S \vec{F} \cdot \vec{e}_n dS$ 物理意义: 穿过曲面的矢量场的积分。对于闭合曲面,通量不为零时,表示闭合曲面内有通量源。	环流 $\Gamma = \oint_c \overrightarrow{F} \cdot \overrightarrow{dl}$ 物理意义: 描述矢量场的旋涡特性。场沿闭合曲 线的环流不为零时,表示存在旋涡源。
基本量的密度	无	散度 $div\vec{F} = \lim_{\Delta v \to 0} \frac{\oint \vec{F} \cdot ds}{\Delta v} = \nabla \cdot \vec{F}$ 物理意义: 通量密度, 描述单位体积内通量源的 大小。闭合曲面所围的体积收敛到一个点。	环流密度 $L_n = rot_n \vec{F} = \lim_{\Delta S \to 0} \frac{\oint_C \vec{F} \cdot d\vec{l}}{\Delta S}$ 物理意义:描述旋涡源的大小。闭合曲线所围的曲面收敛到一个点,不同面元法向得到不同值。
基本量的最大值	梯度	无	旋度 $rot \ \vec{F} = \vec{e_n} \lim_{\Delta S \to 0} \frac{\oint_C \vec{F} \cdot d\vec{l}}{\Delta S} = \nabla \times \vec{F}$ 物理意义: 最大环流密度矢量,描述矢量场环流 密度的最大值和对应面元的正法线方向。
对应定理	无	高斯定理 $\int_V \nabla \cdot \vec{F} dV = \oint_S \vec{F} \cdot d\vec{S}$ 物理意义:面积分与体积分互相转化	斯托克斯定理 $\int_{S} \nabla \times \vec{F} \cdot d\vec{S} = \oint_{C} \vec{F} \cdot d\vec{l}$ 物理意义:线积分与面积分互相转化
电磁场分析中的 应用	静电场的电位、恒定磁场的标量磁位	电流连续性方程、静电场的高斯定理、 电介质的极化、位移电流	恒定磁场的安培环路定理、磁介质的磁化、 电磁感应定律