BEST AVAILABLE COPY PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2001-000422

(43) Date of publication of application: 09.01.2001

(51)Int.CI.

A61B 5/117 A61B 5/0245

(21)Application number: 11-178125

(22)Date of filing: 24

24.06.1999

(71)Applicant : FUJI XEROX CO LTD

(72)Inventor: YASUKAWA KAORU

SUGINO SO

SHIMIZU TADASHI SAKAI KATSURA

(54) APPARATUS FOR IDENTIFYING LIVING BODY

(57)Abstract:

PROBLEM TO BE SOLVED: To enable identification of a living body each time biological signals are detected, based on the characteristic value extracted from a plurality of detected signals and the memorized values in the memory means. SOLUTION: This apparatus irradiates light from a light source 2 to a finger 1 each time a plurality of predetermined signals is detected. A light detection device 3 detects a pulse wave signal by receiving light that has penetrated the finger 1. Unnecessary noises are eliminated from the signal by a filter circuit 4 and the resulting signal is converted to a digital signal by an A/D converter 5. The digitized pulse wave signal is subjected to extraction of characteristic values by a characteristicsextracting means 6. A data processing means 7 constitutes characteristic vectors and matrices from these values. On collation, a switch 8 is connected to a collation side. Unknown characteristic vectors and wave shape vectors of an examinee enter a comparison/judge means 9 from the data processing means 7. Thus, each time a pulse wave signal is detected on inspection of a plurality of predetermined items, the signal is collated with registered data in the data storage means for judgement.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] A biomedical signal detection means to detect the biomedical signal showing physiology actuation of a living body at each time at the time of two or more detection defined beforehand, A characteristic quantity extract means to extract characteristic quantity from the biomedical signal detected with said biomedical signal detection means, A storage means to memorize at least one side of a value which processed characteristic quantity and this characteristic quantity. The living body identification unit equipped with a discernment means to identify a living body based on the storage value memorized by the characteristic quantity extracted by said characteristic quantity extract means, and said storage means whenever a biomedical signal is detected at each time at the time of two or more detection.

[Claim 2] Said characteristic quantity is a living body identification unit according to claim 1 characterized by being the information about the frequency spectrum of a biomedical signal at least. [Claim 3] The characteristic quantity about said frequency spectrum is the frequency of at least one spectrum of a biomedical signal, reinforcement, and a living body identification unit according to claim 2 characterized by being at least one of the half-value width.

[Claim 4] Said characteristic quantity is a living body identification unit according to claim 1 characterized by being the information about the time interval of the specific location of a biomedical signal at least.

[Claim 5] The characteristic quantity about the time interval of said specific location is a living body identification unit according to claim 4 characterized by being the statistic of the spacing time amount when measuring on the basis of the peak location or bottom location of a biomedical signal repeated periodically.

[Claim 6] Said characteristic quantity is a living body identification unit according to claim 1 characterized by being the information about the amplitude value of a biomedical signal at least.
[Claim 7] The information about said amplitude value is a living body identification unit according to claim 6 characterized by being the value which amended the biomedical signal with the time interval of the fixed range of this biomedical signal.

[Claim 8] The information about said amplitude value is a living body identification unit according to claim 6 or 7 characterized by being two or more amplitude value of fixed within the limits from the predetermined location which the biomedical signal defined beforehand.

[Claim 9] It is the living body identification unit of claim 6 which is further equipped with an scaling means to scale said two or more amplitude value of fixed within the limits, and is characterized by said discernment means identifying a living body based on the storage value memorized by said amplitude value scaled by said scaling means, and said storage means thru/or claim 8 given in any 1 term.

[Claim 10] Said scaling means is a living body identification unit according to claim 9 characterized by said thing [scaling] by doing the division of said two or more amplitude value of fixed within the limits with the standard deviation of two or more of these amplitude value, or subtracting it by the average of two or more of these amplitude value.

[Claim 11] The value which processed said characteristic quantity is the vector constituted using said characteristic quantity. Said discernment means A vector is constituted using the characteristic quantity extracted by said characteristic quantity extract means. A living body identification unit given in any 1 term of claim 2 which calculates the distance of the constituted this vector and the vector memorized by said storage means, and is characterized by what a living body is identified for based on the calculated distance thru/or claim 10.

[Claim 12] The value which processed said characteristic quantity is the vector and matrix which were

constituted using said characteristic quantity. Said discernment means A vector is constituted using the characteristic quantity extract dby said characteristic quantity extract means. A living body identification unit given in any 1 term of claim 6 characterized by what a living body is identified for based on the distance which calculated and calculated distance using the constituted this vector, the vector memorized by said storage means, and the example of a line thru/or claim 10. [Claim 13] Said biomedical signal is a living body identification unit given in any 1 term of claim 1 characterized by ****** by a pulse wave, an electrocardiogram, a heartbeat, the wink, the electroencephalogram, the respiratory sound, and the signal that detected any of temperature they were and was acquired thru/or claim 12.

[Claim 14] Said feature—extraction means is a living body identification unit given in any 1 term of claim 1 characterized by extracting characteristic quantity from the signal which differentiated the biomedical signal about time amount thru/or claim 13.

[Translation done.]

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] This invention relates to a living body identification unit, and relates to the living body identification unit which identifies a living body based on the biomedical signal showing physiology actuation of a living body in more detail.

[0002]

[Description of the Prior Art] Conventionally, the method of using closing motion (wink) of a fingerprint, ****, the iris, the blood vessel of a finger, the vasa sanguinea retinae, a face, a voiceprint, and an eyelid and a signature for the method using biometrics with the identification equipment used for close leaving management of a security system, the access control of a computer, etc. is learned. For example, it is indicated by JP,6–187430,A with the equipment using a fingerprint, and is indicated by JP,7–21373,A in the system using the blood vessel pattern of a finger. The identification using the period of a pupillary reaction or the wink, for example, JP,6–203145,A, is indicated. Moreover, for the medical purpose, the method which carries out identification from blood vessel information (Korotkoff sounds, a pulse wave, heart rate, etc.) required for blood pressure measurement, for example, JP,6–142065,A, is indicated. [0003]

[Problem(s) to be Solved by the Invention] The conventional discernment by a fingerprint, ****, the iris, the face, the blood vessel of a finger, the vasa sanguinea retinae, etc. is discernment by the spatial pattern fundamentally made eternal. While these patterns are excellent in the point that reading does not take time amount, they have **** possibility that a pattern will be stolen on the contrary with an image sensor etc. in that in an instant, and always have the danger of surreptitious use. In discernment by the voiceprint and hand (signature) which change in time on the other hand, although there are few **** dangers that data will be stolen in an instant, since the time of day from detection for discernment to collating decision and time amount (how much) are limited (when), there is a problem which is easy to have data forged by the false signal etc.

[0004] Moreover, although it is possible in the identification using the above-mentioned wink period to make a collating judgment by the time of day of arbitration and the time amount of arbitration from detection for discernment, it turns out that it generates at random, and this period cannot be identified only by it. Moreover, as for a user's burden, it is large that the need of carrying out armband wearing is in an arm by the method using the pattern of the Korotkoff sounds of blood vessel information etc. Moreover, this method as well as a voiceprint or a hand (signature) has the problem that the time of day and time amount from detection for discernment to collating decision are limited.

[0005] With the identification equipment made applicable [which was described above / conventional] to discernment, since the candidate for discernment is a spatial pattern or time of day from detection for discernment to collating decision and time amount (how much) are limited (when), for the person aiming at forgery, it also has the serious defect in which the malfeasance by a false pattern (or signal) etc. can be performed easily.

[0006] By the discernment method explained variously above, by the time amount of arbitration, a biomedical signal cannot be detected and identification cannot be carried out to the time of day of arbitration at any time from the biomedical signal.

[0007] This invention was accomplished in view of the above-mentioned fact, and aims at proposing the possible living body identification unit of identifying a living body at any time.
[0008]

[Means for Solving the Problem] A biomedical signal detection means to detect the biomedical signal with which invention according to claim 1 expresses physiology actuation of a living body at each time at

the time of two or more detection defined beforehand for the above-mentioned purpose achievement, A characteristic quantity extract means to extract characteristic quantity from the biomedical signal detected with said biomedical signal detection means. A storage means to memorize at least one side of a value which processed characteristic quantity and this characteristic quantity, Based on the storage value memorized by the characteristic quantity extracted by said characteristic quantity extract means, and said storage means, whenever a biomedical signal is detected at each time at the time of two or more detection, it has a discernment means to identify a living body.

[0009] Namely, a biomedical signal detection means detects a biomedical signal at each time at the time of two or more detection defined beforehand. Namely, a biomedical signal detection means detects at least one biomedical signal at each time at the time of two or more detection defined beforehand. This biomedical signal expresses physiology actuation of a living body. Physiology actuation differs for every living body. Therefore, the different description for every living body is included in a biomedical signal. A characteristic quantity extract means extracts characteristic quantity from the biomedical signal detected with the biomedical signal detection means. A storage means memorizes at least one side of a value which processed characteristic quantity and this characteristic quantity.

[0010] And based on the storage value memorized by the characteristic quantity extracted by the characteristic quantity extract means, and the storage means, a discernment means identifies a living body, whenever a biomedical signal is detected at each time at the time of two or more detection. In addition, although a discernment means may identify a living body for every time at the time of two or more detection which detects a biomedical signal with a biomedical signal detection means, it may identify a living body at each time at the time of two or more detection which detects a biomedical signal with a biomedical signal detection means.

[0011] Thus, since a living body is identified based on the storage value memorized by the characteristic quantity which detected the biomedical signal at each time at the time of two or more detection defined beforehand, and extracted it from the detected biomedical signal, and the storage means whenever a biomedical signal is detected at each time at the time of two or more detection, a living body is discriminable at any time.

[0012] Here, characteristic quantity is good also as information about the frequency spectrum of a biomedical signal at least like claim 2. In this case, the characteristic quantity about frequency spectrum is good also as at least one of the frequency of at least one spectrum of a biomedical signal, reinforcement, and the half-value width.

[0013] Moreover, characteristic quantity is good also as information about the time interval of the specific location of a biomedical signal at least like claim 4. In this case, the characteristic quantity about the time interval of a specific location is good like claim 5 also as statistics (an average, a median, standard deviation, distribution, etc.) of the spacing time amount when measuring on the basis of the peak location or bottom location of a biomedical signal repeated periodically.

[0014] Furthermore, characteristic quantity is good also as information about the amplitude value of a biomedical signal at least like claim 6. In this case, in order that amplitude value may amend this since it changes if the period of a biomedical signal changes, the information about amplitude value is good like claim 7 also as a value which amended the biomedical signal with the time interval of the fixed range of this biomedical signal. On the other hand, specifically, the information about amplitude value is good like claim 8 also as two or more amplitude value of the predetermined location which the biomedical signal defined beforehand to fixed within the limits. namely, two or more amplitude value of the predetermined location which at least one biomedical signal detected at each time at the time of two or more detection beforehand defined with the biomedical signal detection means defined beforehand to fixed within the limits --- ** --- you may carry out. In this case, it has further an scaling means to scale two or more amplitude value of fixed within the limits, like claim 9, and you may make it a discernment means identify a living body based on the storage value memorized by the amplitude value scaled by the scaling means, and the storage means. In this case, an scaling means is scaled like claim 10 by doing the division of two or more amplitude value of fixed within the limits with the standard deviation of two or more of these amplitude value, or subtracting it by the average of two or more of these amplitude value. [0015] By the way, it sets to claim 2 thru/or claim 10. The value which processed characteristic

quantity like claim 11 It is the vector constituted using characteristic quantity, and a discernment means calculates the distance of the vector which constituted and this constituted the vector using the characteristic quantity extracted by the characteristic quantity extract means, and the vector memorized by said storage means, and you may make it identify a living body based on the calculated distance.

[0016] In claim 6 thru/or claim 10, moreover, especially the value that processed characteristic quantity like claim 12 It is the vector and matrix which were constituted using characteristic quantity. A discernment means You may make it identify a living body based on the distance which calculated and calculated distance using the vector which constituted and this constituted the vector using the characteristic quantity extract means, the vector memorized by said storage means, and the example of a line.

[0017] In addition, a biomedical signal is good like claim 13 also as a signal which detected any of a pulse wave, an electrocardiogram, a heartbeat, the wink, an electroencephalogram, the respiratory sound, and temperature they were, and was acquired.

[0018] Moreover, in order that a feature-extraction means may emphasize the description part and may raise a living body discernment system, you may make it extract characteristic quantity from the signal which differentiated the biomedical signal about time amount like claim 14.
[0019]

[Embodiment of the Invention] Hereafter, the gestalt of operation of this invention is explained to a detail with reference to a drawing. A pulse wave is made into a biomedical signal with the gestalt of the 1st operation. In addition, with the gestalt of this operation, in addition to a pulse wave, if the detection approach is set aside, an electrocardio wave and a cardiac acoustic wave can be detected and this can be made into a biomedical signal. In addition, with the gestalt of the 2nd operation, the signal showing actuation of the wink is made into a biomedical signal so that it may mention later, but if the detection approach is set aside, an electroencephalogram, a respiratory acoustic wave, and temperature can be detected and this can be made into a biomedical signal.

[0020] The living body identification unit (henceforth identification equipment) concerning the gestalt of [gestalt of the 1st operation] book operation In order that the light source 2 for pulse wave detection and a photo detector 3, the filter circuit 4 for the noise rejection of a pulse wave signal, A/D converter 5 changed into a digital signal from an analog signal, a feature-extraction means 6 to extract characteristic quantity from a pulse wave signal, a data-processing means 7 to process characteristic quantity, and security may secure It is operated by the manager with the registration authority of data. It is based on the collating result obtained with the data storage means 10 which consists of a switch 8 which changes collating and registration in identification equipment according to this actuation, semiconductor memory, etc., a comparative judgment means 9 to compare preservation data (storage value) with the data which should be collated, and the comparative judgment means 9. It has a correspondence actuation means 11 to output correspondence actuation.

[0021] Here, there are a plethysmogram (refer to drawing 2) which measured volume change of a peripheral vascular system as a pulse wave, and a pressure pulse wave (refer to drawing 3) which measured the pressure change of a part with a blood vessel secret cavity in a pulse wave. The reflection from cardiac tuning, the ejection condition of the ventriclus sinister, main artery compliance, and a peripheral vascular system etc. is reflected in the pulse wave, and all can perform identification by comparing the individual difference. However, about a pressure pulse wave, in order to measure lateral pressure change (the carotid pulse, jugular pulse as an example) with pressure components (for example, PZT etc.), a user's burden is not greatly suitable for identification equipment.

[0022] generally measurement of a plethysmogram is widely performed in a medical diagnosis — having -- **** -- two kinds, a photoelectrical type and an impedance method, -- it is . Since an impedance method has the large burden of a user called attachment of the electrode for impedance change detection in the living body etc., it is not suitable for identification equipment. In plethysmogram measurement of a photoelectrical type, the difference of the arterial blood inflow in a part and venous blood inflow is regarded as quantity of light change. There are the transparency mold approach (refer to drawing 4 (A)) of detecting the light which penetrates the interior of a living body, and the reflective mold approach (refer to drawing 4 (B)) of detecting the light reflected irregularly inside the living body in this photoelectrical type, and any approach can be applied to identification equipment. Moreover, also about a measurement part, if it is the part which a peripheral condition pulse blood circulatory system concentrates (for example, a finger tip, an earlobe, etc.), it can measure by every part of the body in principle. However, with the gestalt of this operation, as shown in drawing 5 (A) and drawing 5 (B), the light penetrated on both sides of a finger tip 1 by the photo detector 3 and the light source 2 (dispersion) is measured. therefore, the description of the arterial system from the above-mentioned ventriclus sinister to a measurement part -- in addition, reflection according to a pawl since the anatomical feature of measurement part parts, such as a peripheral vessel pattern, thickness of living body ****, and an optical property, is also reflected in a pulse wave, and the description (individual

difference) can be extracted more notably, and the light source 2 and a photo detector 3 avoid a part for a claw part and are further arranged in an optical path — there is nothing — a S/N ratio — a high pulse wave signal is acquired. However, if premised on actuation of a computer, the way of an earlobe will have both hands more desirable [a measurement part] in the semantics of becoming free. [0023] About the light source 2 of pulse wave measurement, an incandescent lamp, a halogen lamp, light emitting diode, laser diode, etc. can be used. If it thinks from safety, endurance, and economical efficiency especially, although light emitting diode is desirable, it will not be restricted to this. Moreover, on the wavelength (800-900nm) of a near infrared region, although not limited especially about the wavelength of the light source 2, since living body **** is permeated from the first more well and an oxyhemoglobin and the reduced hemoglobin absorb the light of this wavelength field, the moisture which occupies most living bodies can acquire the good pulse wave signal of the S/N ratio which reflected the individual description sharply as quantity of light change. Moreover, with the identification equipment using the light source 2 of the wavelength (800-900nm) of a near infrared region, since it says that light is hardly visible to an eye, there are a mental load to a test subject and effectiveness mitigated sharply. The light which may emit light continuously and emits light intermittently is sufficient as the light source. Light may be temporarily emitted at the time of day of arbitration. When a biomedical signal is able to be detected in addition to the time amount which emits light when emitting light continuously and it breaks off in the middle of a biomedical signal, or even when emitting light temporarily, judge that it was forged clearly and all subsequent processings are made to stop, for example, if it is a computer system, correspondence actuation of a compulsory log out etc. is performed.

[0024] Next, a filter circuit 4 is explained. A filter circuit 4 removes the noise by the stray lights mixed in the pulse wave signal (electrical signal) changed by the photo detector 3, such as a source power supply and an indoor fluorescent light. With the gestalt of this operation, two kinds of low pass filters (the cutoff frequency of 20Hz or less and about 15Hz are desirable) shown in drawing 6 (A) and drawing 6 (B) can be used. The low pass filter of an active mold is shown in drawing 6 (A), and the low pass filter of a passive mold is shown in drawing 6 (B). It has the integrating circuit constituted from resistance r and a capacitor c1 by both, and a noise is removed. However, since mixing of a noise is influenced by a measurement location and the Measuring condition, if the good pulse wave signal of a S/N ratio is acquired from the first, a filter circuit 4 is necessarily unnecessary. Moreover, since a dc component does not contribute to a direct pattern of pulse wave, it may prepare the high-pass filter (the cut-off frequency of 1Hz or less and about 0.1Hz are desirable) which cuts a dc component.

[0025] Next, A/D converter 5 is explained. A/D converter 5 digitizes a pulse wave signal. Since the upper limit of the frequency spectrum of the pulse wave signal of a resting period is about 10–12Hz, a sampling theorem to sampling—time spacing should just be about 50 or less ms at least. However, it is more desirable to extract with the shortest possible time interval, in order to find more the time base point (for example, a peak location or a bottom location) of the below—mentioned point extracting [characteristic quantity] to accuracy. With the gestalt of this operation, it saw from change of a pattern of pulse wave, and could be about 1ms. Moreover, the almost same effectiveness is realizable also by processing [moving average] the data after A/D conversion instead of processing with the filter for the above—mentioned noise rejection.

[0026] Next, the feature-extraction means 6 is explained. With the identification equipment of this invention, since a medical diagnosis is not the purpose, its attention is paid to the characteristic quantity in which individual difference appears more notably in a feature extraction. With the feature-extraction means 6 in the gestalt of this operation, a pulse wave signal extracts characteristic quantity also from the signal (the signal which carried out multiple-times differential may be used) which differentiated the signal about time amount from the first. It is because discernment precision will improve in the case which the characteristic quantity which emphasized the high frequency component contained in a wave is obtained, and the individual description concentrates on the large part of change of a pattern of pulse wave if the differential signal of a pulse wave signal is used. Although not illustrated, with said feature-extraction means 6, it also has a means to differentiate a pulse wave signal. Below, when extracting the information about the frequency spectrum for a pulse wave signal and its differential signal as characteristic quantity and extracting the information about time amount as characteristic quantity, three in the case of extracting the information about the amplitude value of a signal as characteristic quantity are explained.

[0027] Next, an operation of the gestalt of this operation is explained.

[0028] The light which came out of the light source 2 receives a transmitted light by the photo detector 3 which penetrates a finger tip 1 and is located in the opposite side. Intensity modulation of the

transmitted light is carried out by the individual pulse wave. Therefore, the electrical signal photo electric conversion was carried out [the electrical signal] by the photo detector 3 turns into a pulse wave signal including the individual description. An unnecessary noise is removed by the filter circuit 4 and this signal is changed into a digital signal by A/D converter 5. As for this digitized pulse wave signal, the extract of characteristic quantity is performed by the following feature-extraction means 6. Although not illustrated, a means to differentiate a pulse wave signal is also included in this featureextraction means 6. characteristic quantity is a pulse wave signal and (or) the information about the frequency spectrum of the differential signal, the information about the time interval of a signal, and the information about the amplitude value of a signal. The following data-processing means 7 constitutes a feature vector and the description matrix (it mentions later for details) from such characteristic quantity. With this identification equipment, it is processing after the data-processing means 7 at the registration and collating time, and the contents and flow of processing differ from each other. In the time of registration, a switch 8 is connected to a registration side and a feature vector and the description matrix are stored as registration data with the identification number which can identify a registrant for the data storage means 10. As for registration of an identification equipment user, a manager is engaged in registration with a registrant. On the other hand, a switch 8 is connected to a collating side, a test subject's strange feature vector and wave vector (it mentions later for details) go into the comparative judgment means 9 from the data-processing means 7, and the comparative judgment of the case of collating is carried out to the registration data in the data storage means 10. a comparative judgment here computes the distance of a strange vector and registration data, and judges whether it is the no which is the person into whom the strange test subject registered the feature vector with relative magnitude with each of that distance and (or) a fixed threshold distance. With the following correspondence actuation means 11, based on the decision result of the comparative judgment means 9, correspondence actuation of log in authorization (compulsory log out) of a computer system etc. is performed, and a series of processings are completed.

[0029] If the test subject is always equipped with the detector for detecting a biomedical signal, these processings can be measured at the time of day of arbitration at each time at the time of the time amount of arbitration, i.e., two or more detection defined beforehand, and can make a collating judgment at any time. Moreover, since collating decision can make a collating judgment not only the time of the log in of a system but during a log in, when he ****, the malfeasance which others also take the place of can also be prevented.

[0030] Moreover, when the biomedical signal is always detected and it becomes impossible to detect a signal during operation of a system while the system which needs actual security, such as under the log in of a computer system, is working for example, correspondence actuation of a compulsory log out etc. can also be performed. Furthermore, since only the time amount of arbitration can also perform this processing of a series of at the time of day of arbitration according to the procedures (for example, program etc.) for which it opted beforehand, the safety to the malfeasance by the false pattern (or signal) etc. increases by leaps and bounds compared with the conventional approach. [0031] Next, the information about the frequency spectrum for the pulse wave signal and its differential signal as characteristic quantity extracted by the feature-extraction means 6, the information about time amount, and the information about the amplitude value of a signal are further explained to a detail. [0032] First, the information about frequency spectrum makes characteristic quantity frequency spectrum obtained by carrying out the Fourier transform of the pulse wave signal (or the differential signal) (refer to drawing 7), the frequency spectrum of a pulse wave signal — setting — the frequencies f1, f2, and f3 of the peak location of each spectrum ... (in drawing 8, it is illustrating only to f5) -- peak intensity p1 and p2 — the half-value width (one half of frequency spans of a location of each peak value) w1, w2, and w3 of ... and a spectrum ... and peak intensity p1 and p2 ... the receiving ratio w1 of the half-value width of one spectrum / w2 [p1 and]/p2 ... is extracted and it considers as characteristic quantity. Moreover, the effectiveness same also as characteristic quantity is acquired in the inverse number of the ratio of the half-value width of one spectrum to peak intensity. Although a certain amount of [the amount in connection with fundamental frequency] discernment precision as characteristic quantity is securable, when requiring high degree of accuracy more, it is desirable to make the amount to 9th higher-harmonic extent into characteristic quantity. Although a higher harmonic [9th / more than] higher harmonic has very weak spectral intensity, and 9th higher-harmonic extent is enough as the higher harmonic to incorporate since it is thought that the contribution to characteristic quantity is small, a higher harmonic [9th / more than] higher harmonic may be included in characteristic quantity. Resolution required for a frequency spectrum extract is about 0.1Hz or less

(desirably about 0.01Hz or less), and the time amount which incorporates a pattern of pulse wave is set to about 10 or less (desirably about 100 or less secs) secs. In addition, since the frequency to deal with is low, as for the Fourier transform here, it is common to use the algorithm of a fast Fourier transform actually. Moreover, the maximum entropy method may be used as the another technique of frequency spectrum analysis.

[0033] Moreover, the information about time amount extracts a hour entry with the combination on the basis of a peak 13 and a bottom location, as shown in drawing 8 and drawing 9. With the gestalt of this operation Time intervals t1, t2, t3, and t4 of a peak 13 ... (to t6) deer illustration has not been carried out — and (or) the time intervals d1, d2, d3, and d4 of a bottom 14 — the time amount (r1, r2, and r3 ...) from ... and (or) one wave—like bottom 14 (peak 13) to a peak 13 (bottom 14) s1, s2, s3 ... Let the statistics illustrating neither (an average, a median, standard deviation, distribution, etc.) be characteristic quantity. It is more more desirable to ask the extract of such characteristic quantity for a statistic from the sample of about 150 to 300 or more patterns of pulse wave which the above—mentioned statistic fixed—izes mostly.

[0034] Furthermore, the information about the amplitude value of a signal makes characteristic quantity amplitude value of the signal of the pattern of pulse wave which is in the fixed range on the basis of the wave-like specific location repeated like a translation number of a pulse wave signal. With the gestalt of this operation, as shown in drawing 10, let amplitude value (v1, v2, v3 — –) of the signal which determines and corresponds the specific location made into criteria in the extracting point of the characteristic quantity of some [order / that] in a time interval t0 as one wave-like peak location be 1 set of characteristic quantity. A time interval t0 is decided in consideration of the frequency spectrum of a pattern of pulse wave. Moreover, the number of the extracting points of characteristic quantity is decided from a pattern of pulse wave and a time interval t0 to extract. The pattern of pulse wave to extract is very good in which part of a signal. for example, drawing 11 — wave-like signal amplitude value from the peak 13 (bottom 14) of a pattern of pulse wave to the following peak 13 (bottom 14) can also be made into characteristic quantity like. moreover, P-B and B-P show by drawing 12 — as — making amplitude value of the signal of the wave [**** / making amplitude value of the wave-like signal from the peak 13 of a pattern of pulse wave to the following bottom 14 into characteristic quantity] from the bottom 14 of a pattern of pulse wave to the following peak 13 into characteristic quantity ****

[0035] Moreover, amplitude value of the range distant from the peak 13 (bottom 14) fixed time of arbitration can also be made into characteristic quantity like drawing 13. Furthermore, signal amplitude value between the peaks 13 (bottom 14) of the arbitration which a pulse wave signal does not adjoin can also be made into characteristic quantity. About 1ms and since it is sufficiently small, a time interval t0 is equal to 1ms, or serves as a value beyond it, so that it can be determined with the gestalt of this operation that the sampling time in A/D converter 5 will be the specific location of criteria and it can determine a peak location or a bottom location as accuracy more here. With this feature-extraction means 6, it sees from wave-like frequency spectrum, a time interval to is set to about 20ms, and the characteristic quantity extract mark n are made into 40 points. The amplitude value of 40 points of the signal of the time amount range for about 800ms corresponds to 1 set of characteristic quantity. [0036] By the way, fault may arise in the feature extraction of the information about the abovementioned amplitude value. It is because characteristic quantity may be changed if the amplitude value of a signal is extracted according to the characteristic quantity extract mark which fixed the time interval, since the time interval of a pulse wave is changed about about 30 to 40% with the condition of breathing, or mental stress even if it is a resting period. In order to avoid this, with the gestalt of this operation, the approach of amending the time interval of the point extracting [characteristic quantity] based on the conventional-time spacing on the basis of two wave-like peak time intervals of the arbitration which includes the extracted wave between them was taken. It is more desirable to amend on the basis of two wave-like time intervals which adjoin before and after a wave to extract in one wavelike feature extraction which includes a peak 13 (bottom 14), since an amendment error will become large if two waves of arbitration separate too much, and fluctuation of a pulse wave fine in the meantime arises.

[0037] Below, two waves which adjoin before and after a wave to extract show the procedure which the time interval of the wave-like extract on the basis of a peak 13 amends (refer to drawing 14). the wave which adjoins before and after the wave B to extract — peak spacing of A and C is set to t, and it considers as the conventional time for performing time amount amendment. The range of the time amount which extracts a wave to extract is decided based on t. In this example, it is considering as one

half of the values of t. this 1/2 -- a wave -- since the time amount range equivalent to two waves is included in the peak spacing t of A and B, it is based on the idea that that 1/2 is appropriate to one wave extract. However, since it is not restricted to one wave extract in a feature extraction, even if it has the value of 1/3, and a 2 / 3 grades, it is satisfactory in any way. That is, it is important to set up the wave A which adjoins before and after the wave B to extract, and the time amount range on the basis of the peak spacing t of B. With the gestalt of this operation, the value which did the division of t/2 by the characteristic quantity extract mark n (n= 40) hits the time interval t0 of the point extracting [characteristic quantity]. thus, the wave which adjoins if it sets up with t0=t/(2n) -- since the time interval t0 of the point extracting [characteristic quantity] changes according to it even if the peak spacing t of A and B changes proportionally and the time interval of a pulse wave changes with the condition of breathing, or mental stress, the feature extraction of the amplitude value of a signal will be made more to accuracy. Moreover, assignment before and behind a feature-extraction point may be performed to arbitration, for example, in the time amount range of predetermined p hours by the side of before the peak 13 shown in drawing 14, 15 point sampling may be carried out, 35 point sampling of the remainder may be carried out to the time amount range of predetermined q hours on the backside, and all 40 points may be extracted before a peak 13 or from the backside.

[0038] Moreover, amendment of the time interval of a wave extract can be performed easily [what always needs to measure the time amount between peaks (or between bottoms)], when extracting the wave between peaks (or between bottoms). When it is the time amount t0 which divided peak 13 spacing time amount by the characteristic quantity extract mark n-1 when the case between the adjoining peaks 13 was taken for the example (drawing 11), even if the time amount between peaks 13 changes, it is because t0 will be corrected each time.

[0039] furthermore, the amplitude value scaling means of the signal which carries out the standard deviation of a wave-like signal change and (or) an average to regularity on the basis of the specific location (for example, a peak location or a bottom location) of the signal extracted with the featureextraction means 6 which makes information about amplitude value characteristic quantity is explained. The amplitude value of the signal extracted with the above-mentioned feature-extraction means 6 may change with the conditions (how to place a finger, how to apply acupressure, the dirt of a fingertip, blemish, etc.) of the measured finger a lot for every measurement. In order that basing-on individual difference amplitude value change and distinction may not attach this change, by the identification using that characteristic quantity, the case where highly precise discernment becomes impossible has it. in that case, amplitude value change of the signal produced for every measurement can be sharply reduced using the standard deviation value and (or) the average of amplitude value of one wave signal. For example, the standard deviation for every wave becomes fixed by breaking the amplitude value of one wave-like signal by standard deviation (distribution being sufficient) of the signal. Moreover, the average for every wave becomes fixed-ization by subtracting the average of the signal about the amplitude value of one wave-like signal. Thus, by performing scaling processing, change of the amplitude value of the signal for every measurement is reduced, equalization of ******* can be performed, and the identification equipment of high discernment precision can be realized.

[0040] Next, the data-processing means 7 is explained, the characteristic quantity obtained by the above-mentioned feature-extraction means 6 to a feature vector and (or) the description matrix consist of data-processing means 7. In addition, when the data-processing means 7 constitutes a feature vector when the information about frequency spectrum and the information about time amount are extracted by the feature-extraction means 6 as characteristic quantity, and the information about the amplitude value of a signal is extracted by the feature-extraction means 6 as characteristic quantity, the dataprocessing means 7 is ***** about a feature vector and the example of the description line. [0041] How to constitute the vector of a pattern is explained from the characteristic quantity obtained

from the feature-extraction means 6. By the feature-extraction means 6, the number of feature vectors may be one and many feature vectors may be obtained.

[0042] In the characteristic quantity of the information about frequency spectrum, the element of this vector is the ratio of the half-value width of a spectrum to the frequency of the peak location of each spectrum, peak intensity, the half-value width of a spectrum, and peak intensity. Although it is not necessary to use as the element of a vector all the characteristic quantity mentioned here, the combination of at least two or more characteristic quantity is required from a viewpoint of precision. The combination of arbitration is sufficient. Moreover, the array sequence of each element is also arbitrary and good.

[0043] For example, the vector V constituted from characteristic quantity of the information about the

frequency spectrum extracted from one biomedical signal is V= (p1, p2 ..., w1, w2, w3 ..., p1, p2, ..., w1 / w2 [p1 and]/p2 ...).

[0044] Moreover, in the characteristic quantity of the information about time amount, each average which is these statistics, a median, standard deviation, distribution, etc. serve as each element from the value of the time interval of a peak 13, the time interval of a bottom 14, the time amount from one wave-like bottom 14 to a peak 13, and the time amount from one wave-like peak 13 to a bottom 14. Similarly, although it is not necessary to use all the characteristic quantity as the element of a vector, the combination of at least two or more characteristic quantity is required from a viewpoint of precision here. The combination of arbitration is sufficient. Moreover, the array sequence of each element is also arbitrary and good.

[0045] For example, the vector H constituted from characteristic quantity of the information about the time amount extracted from one biomedical signal is H= (t1, t2, t3, t4 [... r1, r2, r3] ... d1, d2, d3, d4 ..., s1, s2, s3 ...).

*******.

[0046] Furthermore, the informational characteristic quantity about frequency spectrum and the characteristic quantity of the information about time amount are doubled, and it is good also as an element of one vector. Similarly, the combination of arbitration is sufficient, and the array sequence of each element is also arbitrary and good.

[0047] In addition, the characteristic quantity of the information about amplitude value can constitute one n vector from the value of n points over one wave extracting [characteristic quantity], for example. Therefore, from the continuous pulse wave signal, many waves are extracted and many wave vectors are made. The feature vector in this case is taken as the mean vector of a full-wave type vector. Moreover, the distributed covariance matrix (or matrix of correlation) calculated from the full-wave type vector is considered as the description matrix G.

[0048] Next, the contents and flow of processing change with cases where the case where the feature vector and the description matrix which were acquired with the data-processing means 7 register his description into identification equipment, and collating are performed.

[0049] In registration, the switch 8 of drawing 1 is connected to a registration side, and a specific identification number is attached to the each people who registered the feature vector and the description matrix into the preservation means of an amount, and it stores. An identification number is inputted from the identification number input terminal 12. Here, it is not necessary to register all of an above-mentioned feature vector and the above-mentioned description matrix. A part is also satisfactory. Moreover, all characteristic quantity is registered, and when using, you may make it choose a required thing. Moreover, in registration, discernment precision of way which computed the feature vector and the description matrix improves more from as much characteristic quantity as possible so that his description can be extracted correctly. Although time amount will be taken so much by collection of much data, since a test subject does not register frequently, the problem on practical employment is not produced. however -- since it is also considered according to secular change of the body that a pulse wave signal changes -- being periodical (for example, 1 time per year) -- it is desirable to update registration. In collating, the switch 8 of drawing 1 is connected to a collating side, and a strange test subject's feature vector and wave vector (the mean vector of two or more vectors is sufficient as this vector) are sent to the comparative judgment means 9. This feature vector and a wave vector must correspond to registration data. For example, if this registration data (the feature vector and matrix which were registered beforehand) is a feature vector about frequency spectrum, the feature vector collated must also be related with frequency spectrum. Moreover, in collating, the description matrix is unnecessary.

[0050] Next, the comparative judgment means 9 is explained.

[0051] With the comparative judgment means 9, distance with a strange test subject's feature vector or a wave vector, the feature vector that a large number registered, or (reaching) the description matrix is computed.

[0052] In addition, if the feature vector corresponding to the biomedical signal of the strange living body which detected this time is set to X when the information about frequency spectrum and the information about time amount are extracted by the feature-extraction means 6 as characteristic quantity, distance |X-V|, |X-H|, etc. will be computed, for example.

[0053] if the feature vector corresponding to the biomedical signal of the strange living body which detected this time is set to X on the other hand when the information about the amplitude value of a

signal is extracted by the feature-extraction means 6 as characteristic quantity — for example, Mahalanobis distance (X-V) T-G-1- (V-X) and T-G(X-H)- 1- (H-X) etc. is computed. In addition, G-1 shows the inverse matrix of G, and T shows transposition.

[0054] And the person who registered the strange feature vector, the feature vector in the shortest

distance, or (reaching) the description matrix judges it as a test subject. However, when larger than threshold distance with the distance judged to be the shortest, it is judged that there is not a person applicable to a registrant. Moreover, when there are many registrants and it will take time amount very much if it collates with all registrants like, the feature vector which inputted and registered the identification number which carried out together registration, or the description matrix can be called and collated from the data storage means 10 at the time of registration (drawing 1). In this case, collating is completed only by performing the comparison with threshold distance, and decision of being him can be performed. Moreover, you may use for the index of decision of the include angle which vectors make in the comparative judgment of a strange feature vector and the registered feature vector. [0055] About the above-mentioned distance, distance, such as the distance used by statistical discriminant analysis, cluster analysis, etc., for example, city area distance, distance of Euclid, standardization Euclidean distance, and Mahalanobis's distance, can be used (Murakami ******: behavior-metrics series "science of truth or falsehood" Asakura Publishing, 1996). Each of four former distance is acquired as a distance between a strange test subject's feature vector, and the registered feature vector. Latter Mahalanobis's distance is calculated from the inverse matrix of a strange test subject's wave vector, the registered feature vector (mean vector), and the description matrix (a distributed covariance matrix or matrix of correlation), the above-mentioned threshold distance — a certain specific registrant — and (or) — others — it decides for every registrant from a registrant with the shortest distance in all registrants. For example, 1/2 or less distance of the minimum distance can also be made into threshold distance. Moreover, threshold distance can be set up using the statistics (for example, distribution etc.) of characteristic quantity. Since threshold distance may differ for every registrant, they is registered into the data storage means 10 with a registrant's identification number. [0056] If it is judged with the comparative judgment means 9 that he is him, after performing the actuation corresponding to the system to which the identification equipment by this invention is applied with the following correspondence actuation means 11, for example, log in authorization, a compulsory log out, etc. of a computer system, a series of processings are completed.

[0057] Thus, with the identification equipment by the gestalt of this operation, measurement is possible between the time amount of arbitration at the time of day of arbitration which can always detect a biomedical signal, and a collating judgment can be made at any time. Moreover, since collating decision can make a collating judgment not only the time of the log in of a system but during a log in, when he ****, the malfeasance which others also take the place of can also be prevented.

[0058] Furthermore, in the identification by the gestalt of this operation, since a part is applicable also to medical information, abnormality detection of cardiopathy etc. has subordinate effectiveness, such as being useful also to an identification unit user's health care.

[0059] [The gestalt of the 2nd operation], next the gestalt of this operation explain the case where the wink is used as biological information. However, except for the block diagram and detection section of a gestalt of the 1st operation, the block diagram of the gestalt of this operation is the same after a filter circuit, and explains only a part which is different except for a part also about a feature extraction since it is the same.

[0060] By the way, there are also no optionality wink, reflective eliciting stimulus, and signals which are performed in intentional and optional, such as a signal by the reflexibility wink and eye which **, such as mechanical stimulus, a flash, and a strong sound, are stimulated, and produce, in the wink, and it is classified into three of the spontaneity wink almost produced in unconscious. Among these, the spontaneity wink is supposed that it has relation as deeply other than physiological meaning, such as desiccation prevention on the front face of an eyeball, and washing of dust, as cognitive factors, such as an arousal level and cautions, a state of mind, etc., and it is supposed that the individual description appears it in movement of a palpebra. Therefore, identification can be carried out by extracting and comparing the individual description from movement of the palpebra by the spontaneity wink.

[0061] There are eye ball lightning projection (drawing 15), an approach by the video camera, etc. in measurement of a wink wave. In the former eye ball lightning Fig. measurement, a sensor 15 is formed in the front frame and regio palpebralis inferior of an eyebrows top of an eye, and the differential amplifier 16 detects a wink wave. Since this approach attaches a sensor in the direct body, it cannot be told to identification equipment that it is desirable (the Japan Society of Physiological Anthropology

measurement research committee "a human science measurement handbook", Gihodo Shuppan (1996)). With a video camera, the approach by the video camera can photograph a test subject's face, and can acquire a wink wave from the video signal (Nakano, Sugiyama, Mizuno, and Yamamoto: "application to the wink measurement and nap detection by the image", a television magazine, 50 and 12, pp.1949-1956). Moreover, there is an optical approach shown in drawing 16 as a simple approach. Irradiating light from light emitting diode 15 at an eye, the exposure light 16 receives reflection by the eyeball surface part or the retina. The reflected light 17 is detected by the photo detector 18. You may make it make it light continuously, and the power source 19 of light emitting diode may be made to light intermittently. Or only when making a discernment judgment, you may make it make it light. Although the configuration is easy, it is necessary to adjust correctly the location of the light and the eye to irradiate, and the location of a photo detector. A place which is greatly different from a pulse wave by the actual wink wave does not almost have periodicity, and neither the information about frequency spectrum nor the information about time amount can appear easily as an individual description. Therefore, let information about the signal amplitude value of a wink wave be characteristic quantity with the gestalt 2 of this operation. Moreover, although there is no periodicity in a wink wave, since one wave-like time amount size (time amount which winks) does not change with individuals by the remainder, it is unnecessary. [of amendment of a time-axis like a pulse wave] About a feature-extraction means to extract the description from the information about the amplitude value of a signal, a data-processing means, a comparative judgment means, and a correspondence actuation means, it is the same as that of the gestalt of the 1st operation.

[0062]

[Effect of the Invention] Since a living body is identified based on the storage value memorized by the characteristic quantity which detected the biomedical signal at each time at the time of two or more detection which determined beforehand that this invention explained above, and extracted it from the detected biomedical signal, and the storage means whenever a biomedical signal is detected at each time at the time of two or more detection, it has the effectiveness that a living body is discriminable at any time.

[Translation done.]

* NOTICES *

JPO and NCIPI are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2,**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the block diagram of the example by this invention.

[Drawing 2] It is drawing having shown the plethysmogram wave (finger tip).

[Drawing 3] It is drawing having shown the pressure pulse wave wave (carotid artery).

[Drawing 4] It is drawing having shown the pulse wave detector.

[Drawing 5] (A) and (B) are drawings having shown the pulse wave detector, (A) is a plan and (B) is a sectional view.

[Drawing 6] It is drawing having shown the noise filter circuit.

[Drawing 7] It is drawing having shown the Fourier spectrum of a pulse wave.

[Drawing 8] It is drawing having shown the hour entry extracted from the pulse wave.

[Drawing 9] It is drawing having shown the hour entry extracted from the differential wave of a pulse wave.

[Drawing 10] It is drawing having shown the information on the amplitude value before and behind the peak value extracted from the pulse wave.

[Drawing 11] It is drawing having shown the information on the amplitude value between the peak value extracted from the pulse wave.

[Drawing 12] It is drawing in which having extracted from the pulse wave and having shown the information on amplitude value.

[Drawing 13] It is drawing having shown the information on the amplitude value extracted from the pulse wave.

[Drawing 14] It is drawing showing the amendment approach of an extract time interval.

[Drawing 15] It is drawing explaining the detection approach of the wink in eye ball lightning projection.

[Drawing 16] It is the measurement Fig. of the wink by optical means.

[Description of Notations]

- 1 Finger Tip
- 2 Light Source
- 3 Photo Detector
- 4 Filter Circuit
- 5 A/D Converter
- 6 Feature-Extraction Means
- 7 Data-Processing Means
- 8 Switch
- 9 Comparative Judgment Means
- 10 Data Storage Means
- 11 Correspondence Actuation Means
- 12 Identification Number Input Terminal

[Translation done.]

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2001-422 (P2001-422A)

(43)公開日 平成13年1月9日(2001.1.9)

(51) Int.Cl.7

識別記号

FΙ

テーマコート*(参考)

A 6 1 B 5/117

5/0245

A 6 1 B 5/10

320Z 4C017

5/02

310H 4C038

審査請求 未請求 請求項の数14 OL (全 14 頁)

(21)出願番号 特願平11-178125

(22)出顧日

平成11年6月24日(1999.6.24)

(71)出願人 000005496

宮士ゼロックス株式会社

東京都港区赤坂二丁目17番22号

(72)発明者 安川 薫

神奈川県足柄上郡中井町境430 グリーン

テクなかい 富士ゼロックス株式会社内

(72)発明者 杉野 創

神奈川県足柄上郡中井町境430 グリーン

テクなかい 富士ゼロックス株式会社内

(74)代理人 100079049

弁理士 中島 淳 (外3名)

最終頁に続く

(54) 【発明の名称】 生体識別装置

(57)【要約】

【課題】 生体を随時識別する。

【解決手段】 予め定めた複数の検出時各々のときに光源2から指1に光を照射し、受光素子3は指1を透過した光を受光して脈波信号を検出し、この信号は、フィルター回路4によって不要なノイズが除去され、A/D変換器5によってディジタル信号に変換される。ディジタル化された脈波信号は、特徴抽出手段6によって、特徴量の抽出が行われる。データ処理手段7では、これらの特徴量から、特徴ベクトル及び特徴行列を構成する。照合の場合、スイッチ8が照合側に接続され、データ処理手段7から被験者の未知の特徴ベクトルや波形ベクトルが比較判断手段9に入り、予め定めた複数の検出時各々のときに脈波信号が検出される毎にデータ保存手段10にある登録データと比較判断される。

【特許請求の範囲】

【請求項1】 生体の生理動作を表す生体信号を、予め 定めた複数の検出時各々のときに検出する生体信号検出 手段と、

前記生体信号検出手段により検出した生体信号から特徴 量を抽出する特徴量抽出手段と、

特徴量及び該特徴量を処理した値の少なくとも一方を記憶する記憶手段と、

前記特徴量抽出手段により抽出された特徴量と前記記憶 手段に記憶された記憶値とに基づいて、生体信号が複数 10 の検出時各々のときに検出される毎に生体を識別する識 別手段と、

を備えた生体識別装置。

【請求項2】 前記特徴量は、少なくとも生体信号の周波数スペクトルに関する情報であることを特徴とする請求項1記載の生体識別装置。

【請求項3】 前記周波数スペクトルに関する特徴量は、生体信号の少なくとも1つのスペクトルの周波数、強度、及び半値幅の少なくとも1つであることを特徴とする請求項2記載の生体識別装置。

【請求項4】 前記特徴量は、少なくとも生体信号の特定位置の時間間隔に関する情報であることを特徴とする請求項1記載の生体識別装置。

【請求項5】 前記特定位置の時間間隔に関する特徴量は、生体信号の周期的に繰り返されるピーク位置またはボトム位置を基準として計った時の間隔時間の統計量であることを特徴とする請求項4記載の生体識別装置。

【請求項6】 前記特徴量は、少なくとも生体信号の振幅値に関する情報であることを特徴とする請求項1記載の生体識別装置。

【請求項7】 前記振幅値に関する情報は、生体信号を、該生体信号の一定範囲の時間間隔で補正した値であることを特徴とする請求項6記載の生体識別装置。

【請求項8】 前記振幅値に関する情報は、生体信号の 予め定めた所定位置から一定範囲内の複数の振幅値であ ることを特徴とする請求項6または請求項7記載の生体 識別装置。

【請求項9】 前記一定範囲内の複数の振幅値を基準化する基準化手段を更に備え、

前記識別手段は、前記基準化手段により基準化された前 40 記振幅値と前記記憶手段に記憶された記憶値とに基づい て、生体を識別することを特徴とする請求項6乃至請求 項8の何れか1項記載の生体識別装置。

【請求項10】 前記基準化手段は、前記一定範囲内の複数の振幅値を、該複数の振幅値の標準偏差で除算しまたは該複数の振幅値の平均値で減算することにより、前記基準化することを特徴とする請求項9記載の生体識別装置。

【請求項11】 前記特徴量を処理した値は、前記特徴 量を用いて構成されたベクトルであり、 前記識別手段は、前記特徴量抽出手段により抽出された 特徴量を用いてベクトルを構成し、該構成したベクトル と前記記憶手段に記憶されたベクトルとの距離を演算 し、演算した距離に基づいて、生体を識別する、

ことを特徴とする請求項2乃至請求項10の何れか1項に 記載の生体識別装置。

【請求項12】 前記特徴量を処理した値は、前記特徴量を用いて構成されたベクトル及び行列であり、

前記識別手段は、前記特徴量抽出手段により抽出された 特徴量を用いてベクトルを構成し、該構成したベクトル と前記記憶手段に記憶されたベクトル及び行例とを用い て距離を演算し、演算した距離に基づいて、生体を識別 する

ことを特徴とする請求項6乃至請求項10の何れか1項 に記載の生体識別装置。

【請求項13】 前記生体信号は、脈波、心電図、心音、瞬目、脳波、呼吸音、体温の何れかを検出して得た信号でることを特徴とする請求項1乃至請求項12の何れか1項に記載の生体識別装置。

20 【請求項14】 前記特徴抽出手段は、生体信号を時間 に関して微分した信号から特徴量を抽出することを特徴 とする請求項1乃至請求項13の何れか1項に記載の生 体識別装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、生体識別装置に係り、より詳しくは、生体の生理動作を表す生体信号をもとに生体を識別する生体識別装置に関する。

[0002]

30 【従来の技術】従来、セキュリティシステムの入退室管理やコンピュータのアクセス管理などに利用される個人識別装置でバイオメトリックスを使った方式には、指紋、手紋、虹彩、指の血管、、網膜血管、顔、声紋、瞼の開閉(瞬目)、署名を利用する方法等が知られている。例えば、指紋を利用する装置では特開平6-187430号公報に開示され、指の血管パターンを利用するシステムでは、特開平7-21373号公報に開示されている。瞳孔反応や瞬目の周期を利用する個人識別、例えば、特開平6-203145が開示されている。また、医療目的では、血圧測定に必要な血管情報(コロトコフ音、脈波、心拍数等)から個人識別する方式、例えば、特開平6-142065が開示されている。

[0003]

【発明が解決しようとする課題】指紋、手紋、虹彩、顔、指の血管、網膜血管などによる従来の識別は、基本的には不変とされる空間的パターンによる識別である。これらのパターンは、読み取りに時間がかからないという点で優れている反面、そのことがかえって撮像索子等で瞬時にパターンを盗み取られるれる可能性があり、盗50 用の危険性を常に持っている。一方、時間的に変化する

20

声紋や筆跡(署名)による識別では、データを瞬時に盗 み取られるれる危険性が少ないものの、識別対象の検知 から照合判断までの時刻(いつ)、時間(どのくらい) が限定されているので、擬似信号などによって、データ を偽造されやすい問題がある。

【0004】また、前述の瞬目周期を利用する個人識別 では、識別対象の検知から照合判断を任意の時刻、任意 の時間で行うことは可能であるが、この周期はランダム に発生することがわかっており、それだけで識別するこ とはできない。また、血管情報のコロトコフ音のパター 10 ンを利用する方式では、腕に腕帯装着する必要があるな ど、利用者の負担が大きい。また、この方式も、声紋や 筆跡(署名)と同様に、識別対象の検知から照合判断ま での時刻や時間が限定されるという問題がある。

【0005】以上に述べた従来の識別対象とする個人識 別装置では、識別対象が空間的パターンであったり、識 別対象の検知から照合判断までの時刻(いつ)、時間 (どのくらい)が限定されたりするので、偽造を目的と する者にとっては、擬似パターン(あるいは信号)など による不正行為が簡単に行えるという重大な欠陥も持っ ている。

【0006】以上種々説明した識別方式では、任意の時 刻に任意の時間で生体信号を検出し、その生体信号から 随時個人識別することができない。

【0007】本発明は、上記事実に鑑み成されたもの で、生体を随時識別することの可能な生体識別装置を提 案することを目的とする。

[0008]

【課題を解決するための手段】上記目的達成のため讃求 項1記載の発明は、生体の生理動作を表す生体信号を、 予め定めた複数の検出時各々のときに検出する生体信号 検出手段と、前記生体信号検出手段により検出した生体 信号から特徴量を抽出する特徴量抽出手段と、特徴量及 び該特徴量を処理した値の少なくとも一方を記憶する記 憶手段と、前記特徴量抽出手段により抽出された特徴量 と前記記憶手段に記憶された記憶値とに基づいて、生体 信号が複数の検出時各々のときに検出される毎に生体を 識別する識別手段と、を備えている。

【0009】即ち、生体信号検出手段は予め定めた複数 の検出時各々のときに生体信号を検出する。即ち、生体 信号検出手段は、予め定めた複数の検出時各々のときに 少なくとも1つの生体信号を検出する。この生体信号 は、生体の生理動作を表すものである。生理動作は各生 体毎に異なる。従って、生体信号には、各生体毎に異な る特徴が含まれる。特徴量抽出手段は、生体信号検出手 段により検出した生体信号から特徴量を抽出する。記憶 手段は、特徴量及び該特徴量を処理した値の少なくとも 一方を記憶する。

【0010】そして、識別手段は、特徴量抽出手段によ

基づいて、生体信号が複数の検出時各々のときに検出さ れる毎に生体を識別する。なお、識別手段は、生体信号 検出手段により生体信号を検出する複数の検出時各々の とき毎に生体を識別してもよいが、生体信号検出手段に より生体信号を検出する複数の検出時の内の複数の検出 時各々のときに生体を識別してもよい。

【0011】このように、生体信号を、予め定めた複数 の検出時各々のときに検出し、検出した生体信号から抽 出した特徴量と記憶手段に記憶された記憶値とに基づい て、生体信号が複数の検出時各々のときに検出される毎 に生体を識別するので、生体を随時識別することができ る.

【0012】ここで、請求項2のように、特徴量は、少 なくとも生体信号の周波数スペクトルに関する情報とし てもよい。この場合、周波数スペクトルに関する特徴量 は、生体信号の少なくとも1つのスペクトルの周波数、 強度、及び半値幅の少なくとも1つとしてもよい。

【0013】また、請求項4のように、特徴量は、少な くとも生体信号の特定位置の時間間隔に関する情報とし てもよい。この場合、請求項5のように、特定位置の時 間間隔に関する特徴量は、生体信号の周期的に繰り返さ れるピーク位置またはボトム位置を基準として計った時 の間隔時間の統計量(平均、中央値、標準偏差、分散 等)としてもよい。

【0014】更に、請求項6のように、特徴量は、少な くとも生体信号の振幅値に関する情報としてもよい。こ の場合、振幅値は、生体信号の周期が変化すると、変化 するのでこれを補正するため、請求項7のように、振幅 値に関する情報は、生体信号を、該生体信号の一定範囲 の時間間隔で補正した値としてもよい。一方、具体的に は、請求項8のように、振幅値に関する情報は、生体信 号の予め定めた所定位置から一定範囲内の複数の振幅値 としてもよい。即ち、生体信号検出手段により予め定め た複数の検出時各々のときに検出された少なくとも1つ の生体信号の予め予め定めた所定位置から一定範囲内の 複数の振幅値をとしてもよい。この場合、請求項9のよ うに、一定範囲内の複数の振幅値を基準化する基準化手 段を更に備え、識別手段は、基準化手段により基準化さ れた振幅値と記憶手段に記憶された記憶値とに基づい て、生体を識別するようにしてもよい。この場合、請求 項10のように、基準化手段は、一定範囲内の複数の振 幅値を、該複数の振幅値の標準偏差で除算しまたは該複 数の振幅値の平均値で減算することにより、基準化す

【0015】ところで、請求項2乃至請求項10において は、請求項11のように、特徴量を処理した値は、特徴 量を用いて構成されたベクトルであり、識別手段は、特 徴量抽出手段により抽出された特徴量を用いてベクトル を構成し、該構成したベクトルと前記記億手段に記憶さ り抽出された特徴量と記憶手段に記憶された記憶値とに 50 れたベクトルとの距離を演算し、演算した距離に基づい

て、生体を識別するようにしてもよい。

【0016】また、請求項6乃至請求項10においては特に、請求項12のように、特徴量を処理した値は、特徴量を用いて構成されたベクトル及び行列であり、識別手段は、特徴量抽出手段により抽出された特徴量を用いてベクトルを構成し、該構成したベクトルと前記記憶手段に記憶されたベクトル及び行例とを用いて距離を演算し、演算した距離に基づいて、生体を識別するようにしてもよい。

【0017】なお、請求項13のように、生体信号は、 脈波、心電図、心音、瞬目、脳波、呼吸音、体温の何れ かを検出して得た信号としてもよい。

【0018】また、請求項14のように、特徴抽出手段は、特徴部分を強調して、生体識別制度を向上させるため、生体信号を時間に関して微分した信号から特徴量を抽出するようにしてもよい。

[0019]

【発明の実施の形態】以下、図面を参照して、本発明の実施の形態を詳細に説明する。第1の実施の形態では、脈波を生体信号とする。なお、本実施の形態では、脈波以外に、検出方法を別にすれば、心電波、心音波を検出しこれを生体信号とすることができる。なお、第2の実施の形態では、後述するように、瞬目の動作を表す信号を生体信号とするが、検出方法を別にすれば、脳波、呼吸音波、体温を検出しこれを生体信号とすることができる。

【〇〇2〇】 [第1の実施の形態] 本実施の形態に係る生体識別装置(以下、個人識別装置という) は、脈波検出用の光源2及び受光素子3、脈波信号のノイズ除去用のフィルター回路4、アナログ信号からディジタル信号に変換するA/D変換器5、脈波信号から特徴量を抽出する特徴抽出手段6、特徴量を処理するデータ処理手段7、セキュリティの確保するためにデータの登録権限を持つ管理者により操作され、該操作に応じて個人識別装置における照合と登録を切り替えるスイッチ8、半導体メモリ等で構成されるデータ保存手段10、保存データ(記憶値)と照合すべきデータを比較する比較判断手段9、及び比較判断手段9で得られる照合結果に基づいて、対応動作を出力する対応動作手段11を備えている。

【0021】ここで、脈波には、末梢血管系の容積変化を脈波として計測した容積脈波(図2参照)と血管内内腔のある部分の圧変化を計測した圧脈波(図3参照)がある。いずれも、心調律、左心室の拍出状態、大動脈コンプライアンス、末梢血管系からの反射等が脈波に反映されており、その個人差を比較することによって個人識別を行うことができる。ただし、圧脈波については、側圧変化(例として、頚動脈波、頚静脈波)を圧力素子(例えば、PZT等)で計測するため利用者の負担が大きく個人識別装置には適さない。

6 【0022】容積脈波の測定は、医療診断において広く 一般に行われており、光電式とインピーダンス方式の2 種類ある。インピーダンス方式は、生体内のインピーダ ンス変化検知用電極の貼付けなどといった利用者の負担 が大きいため個人識別装置には適さない。光電式の容積 脈波測定では、局所における動脈血流入量と静脈血流入 量の差分を光量変化として捉える。この光電式には、生 体の内部を透過する光を検出する透過型方法(図4(A)参 照)と: 生体の内部で乱反射した光を検出する反射型方 法(図4(B)参照)があり、いずれの方法も、個人識別装 置に適用できる。また、測定部位についても、末梢動静 脈血管系が集中する部位(例えば、指尖、耳朶など)で あれば、原則として人体のどの部位でも測定できる。し かし、本実施の形態では、図5(A)、図5(B)に示すよ うに、指尖1を受光索子3と光源2で挟んで透過(散 乱) する光を測定する。よって、前述の左心室から測定 部位までの動脈系の特徴に加えて、末梢血管パターン、 生体組識の厚み、光学特性等の測定部位局所の解剖学的 特徴も脈波に反映されるので、より顕著に特徴(個人 差)を抽出することができ、さらに、光源2と受光素子 3は、光路中に爪部分を避けて配置されるため、爪によ る反射がなく、S/N比高い脈波信号が得られる。ただ し、コンピュータの操作を前提にするなら、測定個所は 耳朶のほうが両手が自由になるという意味でより望まし

【0023】脈波測定の光源2については、白熱電球、 ハロゲンランプ、発光ダイオード、レーザーダイオード 等が使える。特に、安全性、耐久性、経済性から考えれ ば、発光ダイオードが望ましいがこれに限られるもので はない。また、光源2の波長については、特に限定され ないが、近赤外領域の波長 (800~900nm) では、生体の 大部分を占める水分はもとより、よりよく生体組識に浸 透し、酸化ヘモグロビン、還元ヘモグロビンともにこの 波長領域の光を吸収するため、個人の特徴を鋭敏に反映 したS/N比の良い脈波信号を光量変化として得ることが できる。また、近赤外領域の波長(800~900mm)の光源 2を使った個人識別装置では、光が殆ど眼に見えないと いうこともあり、被験者への心理的負荷も大幅に軽減さ れる効果もある。光源は、連続的に発光しても良いし断 40 続的に発光する光でも良い。任意の時刻で一時的に発光 しても良い。連続的に発光している場合は、生体信号と 途中で途切れた場合や一時的に発光する場合でも、発光 する時間以外に生体信号が検出できた場合などは、明ら かに偽造されたと判断して、その後の処理をすべてスト ップさせて、例えば、コンピュータシステムなら強制的 なログアウトなどの対応動作が行われる。

【0024】次に、フィルター回路4を説明する。フィルター回路4は、受光素子3で変換された脈波信号(電気信号)に混入する商用電源や室内の蛍光燈等の迷光等による。大きなの形態では、図6

50 によるノイズを除去する。本実施の形態では、図6

(A)、図6(B)に示す2種類のローパスフィルター (遮断周波数20Hz以下、15Hz程度が望ましい)を用いる ことができる。図6(A)には、能動型のローパスフィ ルターが示され、図6(B)には、受動型のローパスフィ ルターが示されている。どちらも抵抗r及びコンデンサ c1で構成される積分回路を備えて、ノイズを除去す る。ただし、ノイズの混入は、測定場所や測定条件によ っても左右されるので、もともと、S/N比の良い脈波信 号が得られるのであれば、フィルター回路4は必ずしも 必要ない。また、直流成分は、直接脈波波形に寄与しな いので、直流成分をカットするハイパスフィルター (遮 断周波数1Hz以下、0.1Hz程度が望ましい)を設けても

【0025】次に、A/D変換器5を説明する。A/D変 換器5は、脈波信号のディジタル化を行う。安静時の脈 波信号の周波数スペクトラムの上限は約10~12Hzである ので、サンプリング定理からサンプリング時間間隔は少 なくとも約50ms以下であれば良い。しかし、後述の特 **徴量抽出点の時間基準点(例えばピーク位置若しくはボ** トム位置)をより正確に見つけるために、できるだけ短 20 い時間間隔で抽出したほうが望ましい。この実施の形態 では、脈波波形の変化から見て約1msとした。また、 前述のノイズ除去用のフィルターによる処理の代わり に、A/D変換後のデータを移動平均等の処理することに よってもほぼ同じ効果を実現できる。

【0026】次に特徴抽出手段6について説明する。本 発明の個人識別装置では、医療診断が目的でないので、 特徴抽出においては、個人差がより顕著に現れる特徴量 に着目する。本実施の形態での特徴抽出手段6では、脈 波信号はもとより、その信号を時間に関して微分した信 号(複数回微分した信号でも良い)からも特徴量を抽出 する。脈波信号の微分信号を用いると、波形に含まれる 高い周波数成分を強調した特徴量が得られ、脈波波形の 変化の大きい部分に個人の特徴が集中するケースには識 別精度が向上するからである。図示していないが前記特 徴抽出手段6では、脈波信号を微分する手段も有する。 以下では、脈波信号とその微分信号を対象とした周波数 スペクトルに関する情報を特徴量として抽出する場合、 時間に関する情報を特徴量として抽出する場合、及び信 号の振幅値に関する情報を特徴量として抽出する場合の 40 3つについて説明する。

【0027】次に、本実施の形態の作用を説明する。 【0028】光源2から出た光は、指尖1を透過し反対 側に位置する受光素子3により、透過した光を受光す る。透過した光は、個人の脈波によって強度変調されて いる。従って受光素子3によって光電変換された電気信 号が個人の特徴を含んだ脈波信号となる。この信号は、 フィルター回路4によって不要なノイズが除去され、A /D変換器5によってディジタル信号に変換される。こ のディジタル化された脈波信号は、次の特徴抽出手段6 50 とによって得られる周波数スペクトルを特徴量とする

によって、特徴量の抽出が行われる。この特徴抽出手段 6には、図示していないが脈波信号を微分する手段も含 まれている。特徴量は、脈波信号且つ(または)その微 分信号の周波数スペクトルに関する情報、信号の時間間 隔に関する情報、信号の振幅値に関する情報である。次 のデータ処理手段7では、これらの特徴量から、特徴べ クトル及び特徴行列(詳細は後述する)を構成する。本 個人識別装置では、データ処理手段7後の処理は、登録 時と照合時で処理の内容と流れが異なる。登録時では、 スイッチ8が登録側に接続され、特徴ベクトル及び特徴 行列は、データ保存手段10に、登録者を識別できる識 別番号とともに、登録データとして格納される。個人識 別装置利用者の登録は、管理者が、登録者と共に登録作 業に携わる。一方、照合の場合は、スイッチ8が照合側 に接続され、データ処理手段7から被験者の未知の特徴 ベクトルや波形ベクトル(詳細は後述する)が比較判断 手段9に入り、データ保存手段10にある登録データと 比較判断される。ここでの比較判断は、未知のベクトル と登録データとの距離を算出し、その各距離且つ (また は)一定の閾値距離との相対的な大きさによって、その 未知の被験者が特徴ベクトルを登録した人物である否か を判断する。次の対応動作手段11では、比較判断手段 9の判断結果に基づいて、例えば、コンピュータシステ ムのログイン許可(強制的なログアウト)等の対応動作 が実行され、一連の処理が終了する。

【0029】これらの処理は、生体信号を検知するため の検出器を被験者に常に装着しておくと、任意の時刻で 任意の時間、即ち、予め定めた複数の検出時各々のとき に測定が可能であり、随時照合判断を行うことができ る。また、照合判断は、例えばシステムのログイン時だり けでなく、ログイン中にも照合判断を行うことができる ので、本人が離席したときなどに他人が成り代わる不正 行為も防ぐことができる。

【0030】また、例えば、コンピュータシステムのロ グイン中など実際のセキュリティが必要なシステムが稼 動している間は、常に生体信号を検出しておき、システ ムの稼動中に信号が検知できなくなった場合には、強制 的なログアウトなどの対応動作も行うこともできる。さ らに、この一連の処理は、予め決めておいた手順(例え ばプログラムなど)にしたがって任意の時刻に任意の時 間だけ行うこともできるので、擬似パターン(あるいは 信号)による不正行為などに対する安全性は、従来の方 法に比べて飛躍的に高まる.

【0031】次に特徴抽出手段6により抽出される特徴 量としての、脈波信号とその微分信号を対象とした周波 数スペクトルに関する情報、時間に関する情報、及び信 号の振幅値に関する情報を更に詳細に説明する.

【0032】まず、周波数スペクトルに関する情報は、 脈波信号(またはその微分信号)をフーリエ変換するこ

うに、脈波波形のピーク13から次のボトム14までの 波形の信号の振幅値を特徴量としたり、脈波波形のボト ム14から次のピーク13までの波形の信号の振幅値を

10

特徴量としたり、することもできる。

【0035】また、図13のように、ピーク13(ボトム 14)から一定の時間離れた任意の範囲の振幅値を特徴 量とすることもできる。更に、脈波信号の隣接しない任 意のピーク13(ボトム14)間の信号振幅値を特徴量 とすることもできる。本実施の形態では、A/D変換器 5でのサンプリング時間が、基準の特定位置、ここで は、ピーク位置またはボトム位置をより正確に決定でき るように、約1msと十分小さいため、時間間隔toは、 1msに等しいかそれ以上の値となる。この特徴抽出手 段6では、波形の周波数スペクトルから見て、時間間隔 toを約20msとし、特徴量抽出点数 nを40点としている。 約800mの時間範囲の信号の40点の振幅値が、1組の特 徴量に対応する。

【0036】ところで、前述の振幅値に関する情報の特 徴抽出では、不具合が生じる場合がある。それは、安静 時であっても、呼吸の状態、或いは精神的な緊張等によ り脈波の時間間隔は、約30~40%程度変動するので、時 間間隔を固定した特徴量抽出点数に従って信号の振幅値 を抽出すると、特徴量が変動する場合があるからであ る。これを避ける為に、本実施の形態では、抽出した波 形をその間に含む任意の2つの波形のピーク時間間隔を 基準とし、その基準時間間隔に基づいて、特徴量抽出点 の時間間隔を補正する方法をとった。任意の2つの波形 は、離れすぎていると、その間に細かい脈波の変動が生 じると補正誤差が大きくなるので、ピーク13(ボトム 14)を含むような1つの波形の特徴抽出では、抽出し たい波形の前後に隣接する2つの波形の時間間隔を基準 にして補正するほうが望ましい。

【0037】以下に、抽出したい波形の前後に隣接する 2つの波形により、ピーク13を基準とする波形の抽出 の時間間隔の補正する手順を示す(図14参照)。抽出し たい波形Bの前後に隣接する波形A,Cのピーク間隔をt とし、時間補正を行う為の基準時間とする。抽出したい 波形を抽出する時間の範囲をもに基づいて決める。この 例では、tの1/2の値としている。この1/2は、波形A,B のピーク間隔 tには、2つの波形に相当する時間範囲が 含まれているから、1つの波形抽出には、その1/2が妥当 であるという考えに基づいている。しかし、特徴抽出で は、1つの波形抽出に限られるものではないので、1/3、 2/3等の値を持っていても何ら問題はない。つまり、抽 出したい波形Bの前後に隣接する波形A.Bのピーク間隔 t を基準とした時間範囲を設定することが重要である。こ の実施の形態では、特徴量抽出点数 n (n=40) で、t/2を 除算した値が、特徴量抽出点の時間間隔toに当たる。こ のようにto =t/(2n)と設定すると、隣接する波形A.Bの

(図7参照)。脈波信号の周波数スペクトルにおいて、 各スペクトルのピーク位置の周波数 f1、f2、f3··· (図8ではf5までしか図示していない)、ピーク強度p 1、p2・・・、スペクトルの半値幅 (各ピーク値の1/2 の位置の周波数幅) w1、w2、w3・・・、そして、ピーク 強度p1、p2・・・対する1つのスペクトルの半値幅の 比w1/p1、w2/p2・・・を抽出し特徴量とする。また、 ピーク強度に対する1つのスペクトルの半値幅の比の逆 数を特徴量としても同じ効果が得られる。特徴量として は、基本周波数に関わる量のみでも、ある程度の識別精 10 度は確保できるが、より高精度を要求する場合には、第 9高調波程度までの量を特徴量とするのが望ましい。第9 高調波以上の高調波は、スペクトル強度が非常に弱く、 特徴量への寄与が小さいと考えられるので、取り込む高 調波は第9高調波程度で十分であるが、第9高調波以上 の高調波を特徴量に含めても良い。周波数スペクトル抽 出に必要な分解能は、約0.1Hz以下(望ましくは約0.01H z以下)で、脈波波形を取り込む時間は、約10sec以下 (望ましくは約100sec以下)となる。なお、ここでのフー リエ変換は、取り扱う周波数が低いので、現実には高速 20 フーリエ変換のアルゴリズムを使うのが普通である。ま た、周波数スペクトル解析の別の手法として、最大エン トロピー法を利用しても良い。

【0033】また、時間に関する情報は、図8及び図9に 示すように、ピーク13、ボトム位置を基準とし、その 組み合わせにより時間情報の抽出を行う。本実施の形態 では、ピーク13の時間間隔 t1、t2、t3、t4・・・ (t6までしか図示していない)且つ(または)ボトム 14の時間間隔d1、d2、d3、d4・・・且つ(または)ー つの波形のボトム14(ピーク13)からピーク13 (ボトム14)までの時間 (r₁, r₂、r₃・・・、s₁, s₂、 s3···何れも図示せず)の統計量(平均、中央値、標 準偏差、分散など)を特徴量とする。これらの特徴量の 抽出には、前述の統計量がほぼ一定化する約150~300以 上の脈波波形のサンプルからが統計量を求めたほうがよ り望ましい。

【0034】更に、信号の振幅値に関する情報は、脈波 信号の概周期的に繰り返される波形の特定位置を基準と して、一定の範囲にある脈波波形の信号の振幅値を特徴 量とする。 本実施の形態では、図10に示すように、基 準とする特定位置を一つの波形のピーク位置として、そ の前後に、時間間隔taでいくつかの特徴量の抽出点を決 め、対応する信号の振幅値(v1,v,2,v3····)を1組の特 **徴量とする。時間間隔いは、脈波波形の周波数スペクト** ルを考慮して決める。また、特徴量の抽出点の数は、抽 出したい脈波波形と時間間隔toから決める。抽出する脈 波波形は、信号のどの部分をとっても良い。例えば、図 11ように、脈波波形のピーク13(ボトム14)から次の ピーク13(ボトム14)までの波形の信号振幅値を特徴 量とすることもできる。また、図12でP-B、B-Pで示すよ 50 ビーク間隔 t の比例して変化し、呼吸の状態、或いは精 神的な緊張等により脈波の時間間隔が変化しても、それに応じて、特徴量抽出点の時間間隔toが変化するので、より正確に信号の振幅値の特徴抽出ができることになる。また、特徴抽出点の前後の割り振りは、任意に行っても良い。例えば、図14に示すピーク13前側の所定 p時間の時間範囲に、15点抽出し、後側の所定 q時間の時間範囲に残りの35点抽出しても良いし、40点全てをピー

【0038】また、波形抽出の時間間隔の補正は、ピーク間(またはボトム間)の波形を抽出する時には、ピー10 の間(またはボトム間)の時間を常に計測する必要があるものの簡単に実行できる。隣接するピーク13間の場合を例(図11)にとると、特徴量抽出点数n-1でピーク13間隔時間を割った時間toとすると、ピーク13間の時間は変化しても、その都度、toが修正されることになるからである。

ク13の前側或いは後側から抽出しても良い。

【0039】更に、振幅値に関する情報を特徴量とする 特徴抽出手段6により抽出した信号の特定位置(例えば ピーク位置またはボトム位置)を基準として、波形の信 号変化の標準偏差且つ(または)平均を一定にする信号 の振幅値基準化手段について説明する。前述の特徴抽出 手段6により抽出した信号の振幅値は、計測した指の状 態(指の置き方、指圧のかけ方、指先の汚れ、傷等)に よって、計測毎に大きく変化する場合がある。この変化 は、個人差によるの振幅値変化と区別がつかないため、 その特徴量を使った個人識別では、髙精度な識別ができ なくなる場合がある。その場合には、1つの波形信号の 振幅値の標準偏差値且つ(または)平均値を使って、計 測毎に生じる信号の振幅値変化を大幅に低減することが できる。例えば、一つの波形の信号の振幅値をその信号 30 の標準偏差(分散でもよい)で割ることで、波形毎の標 準偏差が一定になる。また、一つの波形の信号の振幅値 をその信号の平均値を引き算することで、波形毎の平均 が一定化になる。このように基準化処理を行うことで、 計測毎の信号の振幅値の変化を低減しやばらつきの均一 化ができ、高識別精度の個人識別装置を実現することが できる。

【0040】次に、データ処理手段7について説明する。データ処理手段7では、前述の特徴抽出手段6によって得られた特徴量から、特徴ベクトル且つ(または)特徴行列を構成する。なお、特徴抽出手段6により特徴量として、周波数スペクトルに関する情報及び時間に関する情報が抽出された場合、データ処理手段7は特徴ベクトルを構成し、特徴抽出手段6により特徴量として、信号の振幅値に関する情報が抽出された場合、データ処理手段7は特徴ベクトル及び特徴行例を構成る。

【0041】特徴抽出手段6から得られる特徴量から、パターンのベクトルを構成する方法を説明する。特徴抽出手段6によって、特徴ベクトルが一つの場合もあるし、多数の特徴ベクトルが得られる場合もある。

【0042】周波数スペクトルに関する情報の特徴量では、このベクトルの要素は、各スペクトルのピーク位置の周波数、ピーク強度、スペクトルの半値幅、そして、ピーク強度に対するスペクトルの半値幅の比である。ここで挙げた特徴量の全てをベクトルの要素とする必要はないが精度の観点から少なくとも2つ以上の特徴量の組み合わせが必要である。任意の組み合わせでも良い。また、各要素の配列順序も任意で良い。

12

【0043】例えば、1つの生体信号から抽出した周波) 数スペクトルに関する情報の特徴量から構成したベクト ルVは、

 $V = (p_1, p_2 \cdot \cdot \cdot , w_1, w_2, w_3 \cdot \cdot \cdot , p_1, p_2 \cdot \cdot \cdot , w_1/p_1, w_2/p_2 \cdot \cdot \cdot)$ 等である。

【0044】また、時間に関する情報の特徴量では、ピーク13の時間間隔、ボトム14の時間間隔、一つの波形のボトム14からピーク13までの時間、一つの波形のピーク13からボトム14までの時間の値から、これらの統計量である其々の平均、中央値、標準偏差、分散等が各要素となる。ここでも同じく、特徴量の全てをベクトルの要素とする必要はないが精度の観点から少なくとも2つ以上の特徴量の組み合わせが必要である。任意の組み合わせでも良い。また、各要素の配列順序も任意で良い。

【0045】例えば、1つの生体信号から抽出した時間に関する情報の特徴量から構成したベクトルHは、 H=(t₁、t₂、t₃、t₄···d₁、d₂、d₃、d₄··· r₁、r₂、r₃···, s₁、s₂、s₃···) 等である。

30 【0046】更に、周波数スペクトルに関する情報の特 徴量と時間に関する情報の特徴量を合わせて、一つのペ クトルの要素としてもよい。同じく、任意の組み合わせ でも良いし、各要素の配列順序も任意で良い。

【0047】なお、振幅値に関する情報の特徴量では、例えば、1つの波形に対するn個の特徴量抽出点の値から、1つのn次元ベクトルを構成できる。従って、連続した脈波信号からは、多数の波形を抽出し、多数の波形ベクトルができる。この場合の特徴ベクトルは、全波形ベクトルの平均ベクトルとする。また、全波形ベクトルから計算した分散共分散行列(または相関行列)を特徴行列Gとする。

【0048】次に、データ処理手段7によって得た特徴ベクトル及び特徴行列は、個人識別装置に本人の特徴を登録する場合と照合を行う場合によって、処理の内容と流れが異なる。

【0049】登録の場合には、図1のスイッチ8を登録 側に接続し、特徴ベクトル及び特徴行列を量の保存手段 に、登録した各個人に特定の識別番号を付けて格納す る。識別番号は、識別番号入力端末12から入力され

50 る。ここでは、前述の特徴ベクトルや特徴行列を全て登

14

録する必要はない。一部でも問題ない。また、全ての特 徴量を登録しておいて、利用する時に、必要なものを選 択するようにしてもよい。また、登録では、本人の特徴 を正確に抽出できるように、できるだけ多くの特徴量か ら特徴ベクトルや特徴行列を算出したほうが、より識別 精度が向上する。多数のデータの収集はそれだけ時間が かかることになるが、被験者は頻繁に登録しないので、 実際的な運用上の問題は生じない。ただし、人体の経年 変化により、脈波信号が変化することも考えられるの で、定期的(例えば、1年1回)に登録を更新することが 10 望ましい。照合の場合は、図1のスイッチ8を照合側に 接続し、未知の被験者の特徴ベクトルと波形ベクトル (このベクトルは複数のベクトルの平均ベクトルでも良 い)が比較判断手段9に送られる。この特徴ベクトルと 波形ベクトルは、登録データに対応するものでなければ ならない。例えば、この登録データ(予め登録した特徴 ベクトルや行列)が、周波数スペクトルに関する特徴べ クトルであれば、照合される特徴ベクトルも周波数スペ クトルに関するものでなければならない。また、照合の 場合には、特徴行列は必要ない。

【0050】次に比較判断手段9について説明する。 【0051】比較判断手段9では、未知の被験者の特徴ベクトルまたは波形ベクトルと多数の登録した特徴ベクトルまたは(及び)特徴行列との距離が算出される。

【0052】なお、特徴抽出手段6により特徴量として、周波数スペクトルに関する情報や時間に関する情報が抽出された場合、今回検出した未知の生体の生体信号に対応する特徴ベクトルをXとすると、例えば、距離 | X-V | 、 | X-H | ・・・等が算出される。

【0053】一方、特徴抽出手段6により特徴量として、信号の振幅値に関する情報が抽出された場合、今回検出した未知の生体の生体信号に対応する特徴ベクトルをXとすると、例えば、マハラノビス距離(X-V)「・G-1・(V-X)、(X-H)「・G-1・(H-X)・・・等が算出される。なお、G-1は、Gの逆行列を示し、「は、転置を示す。

【0054】そして、未知の特徴ベクトルと最も短い距離にある特徴ベクトルまたは(及び)特徴行列を登録した人物が、被験者と判断する。しかし、最も短いと判断した距離がある関値距離より大きい場合は、登録者が多いときする人物がいないと判断する。また、登録者が多いときなどのように、登録者全員と照合すると非常に時間がかかる場合には、登録時に一緒登録した識別番号を入力して、登録した特徴ベクトルまたは特徴行列をデータ保存手段10から呼び出して照合することができる(図1)。この場合は、関値距離との比較を行うだけで照合が完了し本人か否かの判断ができる。また、未知の特徴ベクトルと登録した特徴ベクトルの比較判断では、ベクトルと登録した特徴ベクトルの比較判断では、ベクトルに登録した特徴ベクトルの比較判断では、ベクトルに

【0055】前述の距離については、統計学の判別分析 50

やクラスター分析などで用いられている距離、例えば市 街地距離、ユークリッドの距離、標準化ユークリッド距 離、マハラノビスの距離等の距離を使うことができる (村上征勝著:行動計量学シリーズ「真贋の科学」朝倉 書店、1996)。前者の4つの距離は、いずれも、未知の 被験者の特徴ベクトルと登録した特徴ベクトル間の距離 として得られる。後者のマハラノビスの距離は、未知の 被験者の波形ベクトルと登録した特徴ベクトル (平均ベ クトル)と特徴行列(分散共分散行列または相関行列) の逆行列から計算される。前述の閾値距離は、ある特定 の登録者及び(或いは)他の登録者全員の中で最も距離 が短い登録者から、登録者毎に決める。例えば、その最 短距離の1/2以下の距離を閾値距離とすることもでき る。また、特徴量の統計量(例えば分散等)を使って、 **閾値距離を設定することができる。閾値距離は、登録者** 毎に異なる場合もあるので、登録者の識別番号とともに データ保存手段10に登録しておく。

【0056】比較判断手段9で本人であると判断されれば、次の対応動作手段11で、本発明による個人識別装置が適用されているシステムに対応する動作、例えば、コンピュータシステムのログイン許可や強制的なログアウト等を行った後、一連の処理が終了する。

【0057】このように、本実施の形態による個人識別装置では、生体信号を常に検知することができる、任意の時刻で任意の時間の間、測定が可能であり、随時照合判断を行うことができる。また、照合判断は、例えばシステムのログイン時だけでなく、ログイン中にも照合判断を行うことができるので、本人が離席したときなどに他人が成り代わる不正行為も防ぐことができる。

0 【0058】更に、本実施の形態による個人識別では、 一部医療情報にも適用できるため心臓疾患などの異常検 知など、識別装置利用者の健康管理にも役立つなどの付 随的効果もある。

【0059】[第2の実施の形態]次に、本実施の形態では、生体情報として瞬目を使った場合について説明する。ただし、本実施の形態のブロック図は、第1の実施の形態のブロック図と検出部分を除いてフィルター回路以降は同じであり、特徴抽出についても一部を除いて同じため、異なる部分についてのみ説明する。

【0060】ところで、瞬目には、機械的刺激、閃光、強い音など等が刺激となって生じる反射性瞬目、眼による合図など意図的、随意的に行う随意性瞬目、反射誘発刺激も合図もなく、殆ど無意識に生じる自発性瞬目の三つに分類される。このうち自発性瞬目は、眼球表面の乾燥防止、塵埃の洗浄等の生理学的な意義のほかに、覚醒水準、注意等の認知的要因、心理状態などと深く関わりを持っているとされており、眼瞼の運動には個人の特徴が現れるとされている。従って、自発性瞬目による眼瞼の運動から、個人の特徴を抽出し比較することで、個人識別することができる。

15

【0061】瞬目波形の測定には、眼球電図法(図15) やビデオカメラによる方法などがある。前者の眼球電図 測定では、眼の眉上側の前額部と下眼瞼部にセンサー15 を設け差動アンプ16によって瞬目波形を検出する。この 方法は、センサーを直接身体に取り付けるので個人識別 装置には好ましいとは言えない(日本生理人類学会計測 研究部会"人間科学計測ハンドブック"、技報堂出版 (1996))。ビデオカメラによる方法は、ビデオカメラ によって、被験者の顔を撮ってそのビデオ信号から瞬目 波形を得ることができる(中野、杉山、水野、山本: "画像による瞬目計測と居眠り検知への応用"、テレビ 誌、50,12,pp.1949-1956)。また、簡易的な方法とし て、図16に示す光学的な方法がある。発光ダイオード15 から眼に光を照射し、その照射光16は眼球表面部分や網 膜によって反射を受ける。その反射光17を受光素子18で 検出するのである。発光ダイオードの電源19は、連続的 に点燈させるようにしても良いし、断続的に点燈させて も良い。あるいは、識別判断をするときのみ点燈させる ようにしても良い。構成は簡単だが、照射する光、眼の 位置、受光索子の位置を正確に調整する必要がある。実 20 際の瞬目波形で、脈波と大きく異なるところは、周期性 が殆どなく、周波数スペクトルに関する情報や時間に関 する情報は、個人の特徴として現れにくい。従って、本 実施の形態2では、瞬目波形の信号振幅値に関する情報 を特徴量とする。また、瞬目波形には、周期性はないも のの、一つの波形の時間サイズ (瞬きをする時間) は、 個人によってあまりで変化しないので、脈波のような時 間軸の補正は必要ない。信号の振幅値に関する情報から 特徴を抽出する特徴抽出手段、データ処理手段、比較判 断手段、対応動作手段等については、第1の実施の形態 30 同様である。

[0062]

【発明の効果】以上説明したように本発明は、生体信号を、予め定めた複数の検出時各々のときに検出し、検出した生体信号から抽出した特徴量と記憶手段に記憶された記憶値とに基づいて、生体信号が複数の検出時各々のときに検出される毎に生体を識別するので、生体を随時識別することができる、という効果を有する。

【図面の簡単な説明】

16

- 【図1】 本発明による実施例のブロック図である。
- 【図2】 容積脈波波形(指尖)を示した図である。
- 【図3】 圧脈波波形(頚動脈)を示した図である。
- 【図4】 脈波検出器を示した図である。
- 【図5】 (A)、(B)は、脈波検出器を示した図であり、(A)は上面図であり、(B)は断面図である。
- 【図6】 ノイズフィルター回路を示した図である。
- 【図7】 脈波のフーリエスペクトルを示した図である。
- 10 【図8】 脈波から抽出した時間情報を示した図である。
 - 【図9】 脈波の微分波形から抽出した時間情報を示した図である。
 - 【図10】 脈波から抽出したピーク値の前後の振幅値の情報を示した図である。
 - 【図11】 脈波から抽出したピーク値の間の振幅値の 情報を示した図である。
 - 【図12】 脈波から抽出し振幅値の情報を示した図である。
 -) 【図13】 脈波から抽出した振幅値の情報を示した図 である。
 - 【図14】 抽出時間間隔の補正方法を示す図である。
 - 【図15】 眼球電図法における瞬目の検出方法を説明 する図である。
 - 【図16】 光学的方法による瞬目の測定図である。 【符号の説明】
 - 1 指尖
 - 2 光源
 - 3 受光素子
 - 0 4 フィルター回路
 - 5 A/D変換器
 - 6 特徵抽出手段
 - 7 データ処理手段
 - 8 スイッチ
 - 9 比較判断手段
 - 10 データ保存手段
 - 11 対応動作手段
 - 12 識別番号入力端末

【図15】

【図6】

【図7】

[図8]

【図9】

【図10】

【図11】

【図12】

【図13】

【図16】

フロントページの続き

(72)発明者 伊藤 健介 神奈川県足柄上郡中井町境430 グリーン

テクなかい 富士ゼロックス株式会社内

(72) 発明者 清水 正

神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内

(72) 発明者 酒井 桂

神奈川県足柄上郡中井町境430 グリーン テクなかい 富士ゼロックス株式会社内

Fターム(参考) 4CO17 AAO4 AAO9 AA16 AA19 AA20 ・ ABO3 AC27 BB12 BCO7 BC16

BC30 BD10 FF30

4C038 VA07 VB13 VC01 VC20

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.