ENUMERATION ASPECTS OF DATABASES: FUNCTIONAL DEPENDENCIES AND

INFORMATIVE ARMSTRONG RELATIONS

Simon Vilmin, Jean-Marc Petit²
Journées "Graphes et Bases de Données"
March 2023

1 LORIA, Univ Lorraine, CNRS, INRIA, Nancy 2 LIRIS, INSA Lyon, UCBL, CNRS, Lyon

Data and their semantics

- . A relation r: a collection of tuples to over a set R of attributes Relation schema
- Find Knowledge in the data:

 Find functions between attributes $f(X) = A \quad X \subseteq R, A \in R$

٢	A	В	C	D	
4	3	3	3	3	
ł ₂	7	3	7	3	$\Delta R \rightarrow N$
t₂ t₃	7	3	2	3	710 0
t 4	3	4	3	4	
f ₅	7	4	7	4	
ょ	7	1	2	7	$BC \rightarrow D$
卢	5	1	2	9	No 🗑
tg	6	3	3	8	
	•				

Find Knowledge -> Functional Dependencies (FDs) X -> A

Outline

- . Objective: understand the FDs holding in the data
- . PART I: Find them explicitly
 - . What does it mean?
 - . What for ?
 - . Complexity ?
- . Part II: The data already summarizes the knowledge
 - . Informative Armstrong relations (IARs)
 - . Preliminary results on enumeration

Enumeration

. Enumeration task: given an input x, list a set of solutions R(x) poly(x)

Enumeration algorithm A x of size n, R(x) of size m

- . output-polynomial time
- . polynomial delay
- . incremental polynomial time
- . output quasi-polynomial time

Hypergraphs

- $H = \{V = \{1, ..., 5\}, \{E_1, E_2, E_3, E_4\}\}:$ $E_1 = \{123\}, E_2 = \{124\}, E_3 = \{34\}, E_4 = \{45\}$
- . Transversal Ts U: Tn E; # Ø for every E;
- . Independent set I = V: E; &I for every E;

PROB. Enum Minimal Transversals (Enum-MTR)

* E; \$ E; ∀i,;

Input: a (simple) hypergraph $\mathcal{H}=(\mathcal{V}, \mathcal{E})$ Task: enumerate the inclusion-wise minimal transversals of \mathcal{H} , MTR(\mathcal{H})

- . Open problem, quasi-poly algorithm [Fredman, Khachiyan, 1996]
- . Equivalent to Enum MIS: listing the maximal inclependent sets of H, MIS (H)

PART I. FINDING FUNCTIONAL DEPENDENCIES

Functional Dependencies (Fls)

DEF. A Functional dependency (FD) over R is an expression X->Y where X,Y=R.

DEF. Let r be a relation over R and X-Y a FD over R. The FD X-Y holds in r, written $r \models X \rightarrow Y$, if for every $t_1, t_2 \in r$ $t_1[X] = t_2[X]$ implies $t_1[Y] = t_2[Y]$. If Z is a set of FDs, r = Z means r = X -> Y for all X->YEZ

$$. r \not\models A \rightarrow B, D \rightarrow C$$

Do we want all of them?

. Do we really need all FDs?

.
$$r \neq X \rightarrow Y$$
 trivially holds if $Y \subseteq X$ $X \rightarrow Y$
. $r \neq X \rightarrow Y$, $Y \rightarrow Z$ entails $r \neq X \rightarrow Z$ $X \rightarrow Z$ Useless
. $r \neq X \rightarrow Z$ implies $r \neq X \cup Y \rightarrow Z$ $X \cup Y \rightarrow Z$

We can deduce FDs from others, and it does not depend on the choice of r

DEF. Let Z be a set of FDs over R, and let $X \rightarrow Y$ be another FD. We say that $X \rightarrow Y$ follows from Z, written $Z \models X \rightarrow Y$, if for every relation r over R, $r \models Z$ implies $r \models X \rightarrow Y$

Closure algorithm

. Deciding $Z \neq X \rightarrow Y$: implication problem

Forward chaining / Transitive closure

- . To solve it: closure procedure
 - . takes $X \subseteq R$ as input, returns the closure $\phi(X)$ of X wrt Σ
 - , builds X=X₀,..., X_m=φ(x) s.t. X_i= X_{i-1} υ ∪ (Y | ₹ → Y ∈ Σ, ₹ ⊆ X_{i-1} {

Prop.
$$\Sigma \models X \rightarrow Y : ff Y = \phi(X)$$

$$\Sigma = \{AB \rightarrow C, b \rightarrow B, cb \rightarrow E, bF \rightarrow G\}$$

$$X = X_0 = AbF$$

$$X_1 = AbFBG$$

$$X_2 = AbFBGC$$

$$X_3 = AbFBGCE$$

Sets of FDs

. Two sets of FDs can be different but equivalent

DEF. Let Σ_1, Σ_2 be sets of FDs over R. We say that Σ_1 follows from Σ_2 , written $\Sigma_2 \models \Sigma_1$, if $\Sigma_2 \models X_1 \rightarrow Y_1$ for all $X_1 \rightarrow Y_1 \in \Sigma_1$. We say that Σ_1 and Σ_2 are equivalent if $\Sigma_1 \models \Sigma_2$ and $\Sigma_2 \models \Sigma_1$.

- . Thus, there are sets of FDs better than others :
 - (1) Σ is a nonredundant cover if $\Sigma | X \rightarrow Y \not\models \Sigma$ for every $X \rightarrow Y \in \Sigma$
 - (2) Z is a minimum cover if it has the least possible number of FDs
 - (3) Σ is an optimum cover if $\sum_{X\to Y\in\Sigma} |X|+|Y|$ is minimal among all equiv. Σ'
- . (3) \Rightarrow (2) \Rightarrow (1) but (3) hard to optimize, while (1), (2) poly (from Σ)
 [Ausiello et al., 1986]

Back to the problem

PROB. Minimum Cover

Input: a relation rover R

Task: find a minimum cover E of the FDs satisfied by r

٢	A	B	C	D
4	3	3	3	3
ł ₂	7	3	7	3
łz	7	3	2	3
t 4	3	4	3	4
t ₅	7	4	7	4
ょ	7	1	2	7
t ₇	5	1	2	9
tg	6	3	3	8

. How do we know we are done?

· we also have r = CD -> A

DEF. Let Σ be a set of FDs over R. A relation rover R is an Armstrong relation for Σ if for every FD X \rightarrow Y over R $\Gamma \models X \rightarrow Y$ iff $\Sigma \models X \rightarrow Y$

FDs and closure system

DEF. A closure system is a pair (R, B) where R is a set and $B \subseteq 2^R s.t.$ $R \in B$ and $X_1, X_2 \in B$ implies $X_1 \cap X_2 \in B$

- . Given Σ , $\mathcal{C}(\Sigma) = \{ \Phi(X) \mid X \subseteq R \}$ is a closure system (with R)
- . Every closure system can be represented by sets of FDs

$$\Sigma = \{ D \rightarrow B, CD \rightarrow A, AB \rightarrow b \}$$

Prop. For $Z \subseteq R$, $Z \in \mathcal{C}(\Sigma)$ iff $X \subseteq Z$ entails $Y \subseteq Z$ for each $FDX \to Y$ of Σ

 Σ represents a closure system \rightarrow an Armstrong relation for Σ represents the same closure system

Agree sets

DEF. Let r be a relation over R and $t_1, t_2 \in R$. The agree set of t_1, t_2 is $ag(t_1, t_2) = \{A \in R \mid t_1[A] = t_2[A]\}$. The agree sets of r are denoted ag(r)

r	A	В	C	D	
4	3	3	3	3	
t ₂	7	3	7	3	$ag(t_2,t_3) = ABD$
ts	7	3	2	3	wg(12,13) = 7.00
4	3	4	3	4	
l ₅	7	4	7	4	
16	7	1	2	7	$ag(r) = \{ \phi, A, B, C, AC, BC, BD, ABCD \}$
ħ	5	1	2	9	
t _g	6	3	3	8	

Agree sets and FDs

- Rewriting: r = X → Y iff for each Z ∈ ag(r), X ⊆ Z implies Y ⊆ Z

 —> every agree set satisfies X → Y
- . Going further: r = Z means that each agree set satisfies each FD of Z

PROP. If Γ is an Armstrong relation for Z, then ag(Γ) ⊆ B(Σ)

What is the minimal amount of information (elements) from $\mathcal{C}(\Sigma)$ we need to store in a relation to obtain an Armstrong relation for Σ ?

Meet-irreducible Elements

- . A closure system (R, &) is closed under intersection
 - . R is trivially in &
 - . Some sets are obtained by intersecting others
 - . Some are not, they are irreducible

DEF. Let (R, \mathcal{B}) be a closure system and let $M \in \mathcal{B}$, $M \neq R$. Then, M is meet-irreducible if $M = X_1 n X_2$ implies $M = X_1$ or $M = X_2$ for all $X_1, X_2 \in \mathcal{B}$ $M:(\mathcal{B})$ is the set of meet-irreducible elements of (R, \mathcal{B})

Meet-irreducibles and agree sets

Given
$$\Sigma$$
 over R , $Mi(\Sigma)$ is the minimal amount of information needed to reconstruct $\mathcal{B}(\Sigma)$ by intersections

THM. [Beeri et al., 1984] Let Σ be a set of FDs over R, and let r be a relation over R. Then, r is an Armstrong relation for Σ iff $Mi(\Sigma) \subseteq ag(r) \subseteq \mathcal{B}(\Sigma)$

Packing up

- ag. A relation r over R defines some meet-irreducible elements Mi
- n. Mi defines a closure system (R, 8)
- ϕ . The closure system (R, E) can be represented by a set Ξ of $F\Delta s$
- F. E represents the FDs of r

Minimum Cover is the problem of finding an alternative representation of a closure system

On the example

Closure systems are ubiquitous

- . Closure systems arise from numerous objects/fields
 - . Lattice theory
 - . Knowledge space theory
 - . Pure Horn CNF
 - . Formal Conapt Analysis
 - . Points in Rn

- . matroids
- . graph convexities (geodesic, monophonic)
- . posets (ideals, convex sets)
- . Argumentation Frameworks
- • •
- . <u>Minimum Cover</u> appears in disguise in many fields
- . Closure systems coming from special objects may have special interesting properties for Minimum Cover

FDs vs. relations

- . What is the size of Z wrt r in general?
 - · Z can have size exponential in the size of r
 - · r can have size exponential in the size of Z
- . The complexity of some problems depends on the representation

Problem	Σ	٢
Enumerating minimal Keys	poly-delay	quasi-poly
Does A belong to a minimal Key	NP-c	poly

(minimal) Key: (minimal) subset k of R which determines everyone, i.e. K -> R holds

At last, complexity!

Prob. Minimum Cover

Input: a relation rover R

Task: find a minimum cover E of the FDs satisfied by r

- . Surveys [Bertet et al., 2018], [Wild, 2017]
- . Negative side
 - . Unknown complexity ...
 - . Harder than Enum MTR [Khardon, 1995]
- . Positive side
 - . (Exponential) algorithms [Mannila, Räihä, 1992], [Wild, 1995]
 - . Tractable cases [Beaudou et al., 2017], [Defrain et al., 2021]

Summary

- . Minimum Cover: find a small set of FDs representing the knowledge in the data
- . Goes well beyond databases: it is a matter of representing closure systems
 - · appears in Logic, Formal Concept Analysis, Knowledge spaces, ...
 - · connections with graphs, posets, matroids, geometries,...
- . But the problem is tough ...
 - · un known complexity (for more than 30 years)
 - · harder than Enum-MTR
- . The same goes for the clual problem Emr!
- . Main idea : find particular closure systems
 - . graph convexities?
 - . case where E has no "cycle"?

PART I. INFORMATIVE ARMSTRONG RELATIONS

We love FDs, but...

FDs have drawbacks

- . hard to find
- . possibly much larger than the data
- . not all of them are meaningful

Maybe find another representation ... such as the data itself.

Find a "small" subset of tuples faithfully representing the semantics (FDs) of the data

=> informative Armstrong relations

Example

٢	A	В	C	D
4	3	3	3	3
t ₂	7	3	7	3
ൃ	7	3	2	3
4	3	4	3	4
t 5	7	4	7	4
16	7	1	2	7
t 7	5	1	2	9
tg	6	3	3	8

$$\Sigma = \{ D \rightarrow B, AB \rightarrow D, CD \rightarrow A \}$$

$\sum_{1} = \langle$	$D \rightarrow B$, $AB \rightarrow D$, $CD \rightarrow A$
	1

_ S ₂	A	В	C	D	
4	3	3	3	3	
4	3	4	3	4	
t ₅	7	4	7	4	
tg	6	3	3 3 7 3	8	

$$\Sigma_2 = \{ D \rightarrow B, C \rightarrow A, AB \rightarrow D, Cb \rightarrow A \}$$

Informative Armstrong Relations

Let r be a relation over R. A subrelation ser is an Informative Armstrong relations (IAR) for r if it satisfies exactly the same FDs as r.

Why are they interesting?

- . conclensed representation of the data
- . understanding which FDs are relevant

Previous works are mostly experimental [Bisbal, Grimson, 2001]
[De Marchi, Petit, 2007], [Wei, Link, 2018]

first problem, first observations

Closure system of r

```
PROB. Minimum IAR
     Input: a relation r over R, KENN
Question: does r contain an IAR s such that |s| \le k?
```

Remarks:

. ag(t, tz) = {A & R | t_[A] = t_2[A]}

- . s is an Armstrong relation for r iff $Mi(r) \subseteq ag(s) \subseteq \mathcal{B}(r)$. $s \subseteq r$ implies $ag(s) \subseteq \mathcal{B}(r)$ meet-irreducible elements of r

The subrelation s is an IAR for $r \longleftrightarrow Mi(r) \leq ag(s)$

A graph of tuples and irreducibles

٢	A	B	C	D	
ţ	3	3	3	3	$t_{\mathcal{G}}$
t ₂	7	3	7	3	DC AC
t _s	7	3	2	3	t ₄ O / Bb / ABb
4	3	4	3	4	
l ₅	7	4	7	4	O BC BD AC
16	7	1	2	7	ag(t6,t7)=BC / t8 0 AC 6
þ	5	1	2	9	BC € Mi(r)
tg	6	3	3	8	74

$$Mi(r) = \{AC, BD, ABD, BC\}$$

IARs and graph coloring

Consider the edge-colored graph $G_r = (r, E)$ of the relation r with:

- . $(t_1, t_2) \in E$ exactly when $ag(t_1, t_2) \in Mi(r)$
- . (t, t2) is given the color ag(t1, t2)

Colors are exactly
Mi(r)

Minimum IAR ← find a small induced subgraph of Gr with all the colors!

Precision:

- · For ser, G_[s] = (s, E(s)) with E(s) = {(t1, t2) & E | t1, t2 & s}
- . Gr[s] subgraph of Gr induced by s

Meanwhile, in bioinformatics

needs not be

PROB. Minimum Rainbow Subgraph (MRS)

Input: a graph G = (V, E) where each edge is given a color in $\{1, ..., m\}$, $K \in \mathbb{N}$

Question: is there a subgraph of G with at most K

vertices and exactly one edge of each color?

Comes from bioinformatics [Bafna et al., 2003], [Catanzaro & Labbé, 2009]

- . MRS is NP-complete [Camacho et al., 2010]
- . most results are approximations [Popa 2014], [Camacho et al., 2010]

Minimum IAR particular case of MRS

Properties of IARs

Consequences

The graph Gr has some forbidden patterns

- Hyp: $M_{\lambda} \neq M_{2}$
- Due to ta, tz, tz, M, = M, holds
- . Due to t4, t5, t6, M2 = M, holds

- · Hyp: ag(t, t2) = ag(t2, t3) = M,
- . Problem: ag(t, t3)?
- $\sim Sol.1: ag(t_1,t_3) = M_2$
- ~ Sol. 2: ag(t, t3) = M2 n M3

Minimum ... or Minimal

THM. (Petit, V.) The problem Minimum IAR is NP-complete.

What about (inclusion-wise) minimal IARs?

- . IARs are closed under taking supersets
- . Testing IAR property is easy
- ~> Find a minimal IAR for r: greedy approach

PROB. Enumerating Minimal IAR (Enum-MIAR)

Input: a relation rover R

Task: enumerating the inclusion-wise minimal IARs for r

Hypergraphs and IARs

•
$$\mathcal{H} = \{V = \{1, ..., 5\}, \{E_1, E_2, E_3, E_4\}\}:$$

 $E_1 = \{123\}, E_2 = \{124\}, E_3 = \{34\}, E_4 = \{45\}$

. Gr: incidence bipartite graph of H

.
$$M_{1}(r) = \{A_{1}, A_{2}, A_{3}, A_{4}, RA_{1}, RA_{2}, RA_{3}, RA_{4}\}$$

Enum - MIAR 7, Enum - MTR

THM. (Petit, V.) The problem Enum-MIAR is harder than Enum-MTR

Further remarks on the reduction:

- . Bipartite graph
- . FDs easy to find

Adapting the reduction to SAT:

THM. (Petit, V.) Let r be a relation over R, and let ter. It is NP-complete to clecide whether t belongs to a minimal IAR for r.

Summary

- . Informative Armstrong relations (IARs) summarize the data
- . But their structure seems rather complex
 - . hard to find a minimum IAR
 - . hard to decide if a tuple belongs to a minimal IAR
 - . enumerating minimal IAR is at least quasi-poly
- . Perhaps ...
 - . restrict the underlying closure system?
 - . restrict the graph of meet-irreducible elements?

Thank you for your attention!

References Part I

[Ausiello et al., 1986]

- · Ausiello, D'Atri, Sacca Minimal representations of directed hypergraphs SIAM Journal on Computing, 1986
- [Beaudou et al., 2017]
- . Beaudou, Mary, Nourine Algorithms for K-meet-semiclistributive lattices Theoretical Computer Science, 2017
- Bertet, Demko, Viaud, Guérin

 Lattices, closure systems and implication bases: A survey of structural aspects and algorithms

 Theoretical Computer Science, 2018
- Defrain, Nourine, Vilmin

 Translating between the representations of a ranked convex geometry

 Discrete Mathematics, 2021.
- Beeri, Dowd, Fagin, Statman

 On the structure of Armstrong relations for functional dependencies

 Journal of the ACM, 1984

References Part I

- Fredman, Khachiyan [Fredman, Khachiyan, 1996]
 On the complexity of dualization of monotone disjunctive normal forms
 Tournal of Algorithms, 1996
- . Khardon

 [Khardon, 1995]

 Translating between Horn representations and their Characteristic Models

 Journal of Artificial Intelligence Research, 1995
- . Mannila, Räihä

 [Mannila, Räihä, 1992]

 The Design of Relational Databases

 Addison Wiley, 1992
- . Wild Computations with finite dosure systems and Implications Springer LNCS 959, 1995
- . Wild

 The joy of implications, aka pure Horn formulas: mainly a survey

 Theoretical Computer Science, 2017

References Part II

· Bisbal, Grimson
Database sampling with functional dependencies
Information and Software Technology, 2001

LBisbal, Grimson, 2001]

. Bafna, Gusfield, Lancia, Shibu Haplotyping as perfect phylogeny: A direct approach Tournal of Computational Biology, 2003 [Bafna et al., 2003]

- . Catanzaro, Labbé

 [Catanzaro & Labbé, 2009]

 The pure parsimony haplotyping problem: Overview and computational advances

 International Transactions in Operational Research, 2009
- De Marchi, Petit, 2007]
 Semantic sampling of existing databases through informative Armstrong relations
 Information Sciences, 2007

References Part II

- Popa 2014]
 Better lower and upper bounds for the minimum rainbow subgraph problem
 Theoretical Computer Science, 2014
- . Camacho, Schiermeyer, Tuza [Camacho et al., 2010] Approximation algorithms for the minimum rainbow subgraph problem Discrete Mathematics, 2010
- . Wei, Link
 [Wei, Link, 2018]
 Data Prof: semantic profiling for iterative data cleansing and business rule acquisition
 Proceedings of the 2018 International Conference on Management on Data, 2018