Conexidade(s)

Thomas Felipe Campos Bastos

17 de abril de 2020

 Intuitivamente um espaço é conexo se não pode ser separado em duas partes (não-vazias) disjuntas

- Intuitivamente um espaço é conexo se não pode ser separado em duas partes (não-vazias) disjuntas
- lacksquare \mathbb{R} deve ser conexo, mas $\mathbb{R}=(-\infty,0]\cup(0,+\infty)$

- Intuitivamente um espaço é conexo se não pode ser separado em duas partes (não-vazias) disjuntas
- lacksquare \mathbb{R} deve ser conexo, mas $\mathbb{R}=(-\infty,0]\cup(0,+\infty)$
- Já $X=\mathbb{R}\setminus\{0\}=(-\infty,0)\cup(0,+\infty)$ deve ser desconexo

■ Intuitivamente um espaço é conexo se não pode ser separado em duas partes (não-vazias) disjuntas

- \blacksquare \mathbb{R} deve ser conexo, mas $\mathbb{R}=(-\infty,0]\cup(0,+\infty)$
- Já $X=\mathbb{R}\setminus\{0\}=(-\infty,0)\cup(0,+\infty)$ deve ser desconexo
- Não basta que sejam pedaços disjuntos, mas também abertos na topologia do espaço ambiente

Definição

Um espaço topológico X é **desconexo** se existem abertos não-vazios disjuntos $A, B \in \tau_X$ tal que $X = A \cup B$. Ele é conexo se não for desconexo.

Definições equivalentes de Conexidade

- 1 X não é a união de dois abertos disjuntos não-vazios
- 2 X não é a união de dois fechados disjuntos não-vazios
- ${\bf 3}$ \varnothing e X são os únicos clopen do espaço topológico
- **4** Toda função contínua $f: X \rightarrow \{0,1\}$ é constante

Definições equivalentes de Conexidade

- X não é a união de dois abertos disjuntos não-vazios
- 2 X não é a união de dois fechados disjuntos não-vazios
- \boxtimes e X são os únicos clopen do espaço topológico
- **4** Toda função contínua $f: X \rightarrow \{0,1\}$ é constante

Prova:

- $(1 \Rightarrow 3)$ Se existir algum $A \neq \emptyset, X$ clopen então tome $B = X \setminus A$ que também será clopen, e $X = A \cup B$.
- $(3\Rightarrow 4)$ Se existir uma função $f:X\to \{0,1\}$ contínua não constante, tome $f^{-1}(0)\subset X$ subconjunto próprio que será clopen e não-vazio.
- $(4\Rightarrow 1)$ Se $X=A\cup B$ então a função característica $\chi_A:X\to\{0,1\}$ é contínua mas não é constante.

É um invariante topológico

Seja X conexo e $f:(X,\tau_X)\to (Y,\tau_Y)$ uma função contínua e sobrejetora então Y é conexo:

É um invariante topológico

Seja X conexo e $f:(X,\tau_X)\to (Y,\tau_Y)$ uma função contínua e sobrejetora então Y é conexo:

Prova:

Se existe um clopen $B \subset Y$ não vazio então $f^{-1}(B) \subset X$ será um subconjunto próprio clopen e não vazio.

Exemplos

- Um espaço discreto é conexo se $|X| \le 1$. Em particular $\mathbb N$ e $\mathbb Z$ são desconexos
- $\mathbb{Q} = \{q \in \mathbb{Q} : q^2 < 2\} \cup \{q \in \mathbb{Q} : q^2 > 2\}$ é desconexo
- Se $I \subset \mathbb{R}$ é conexo então é um intervalo.

Exemplos

- Um espaço discreto é conexo se $|X| \le 1$. Em particular $\mathbb N$ e $\mathbb Z$ são desconexos
- $\mathbb{Q} = \{q \in \mathbb{Q} : q^2 < 2\} \cup \{q \in \mathbb{Q} : q^2 > 2\}$ é desconexo
- Se $I \subset \mathbb{R}$ é conexo então é um intervalo.

Prova:

Se I não é um intervalo, existem $a,b \in I$ e $z \notin I$ tal que a < z < b. Temos então que o conjunto $C = \{x \in I : x < z\} = \{x \in I : x \le z\}$ é clopen não vazio na topologia do subespaço de I.

Teorema do Valor Intermediário

Seja X um espaço conexo e $f:X\to\mathbb{R}$ contínua, então $\mathit{Im}(f)$ é um intervalo.

Se X é desconexo e $Y \subset X$ conexo então ou $Y \subset A$ ou $Y \subset B$ onde A, B são uma separação de X.

Se X é desconexo e $Y \subset X$ conexo então ou $Y \subset A$ ou $Y \subset B$ onde A, B são uma separação de X.

Prova:

$$Y=(A\cap Y)\cup (B\cap Y)$$
 e $(A\cap Y)\cap (B\cap Y)=\varnothing$. Como Y é conexo, então ou $A\cap Y=\varnothing$ ou $B\cap Y=\varnothing$

Seja $\{A_{\alpha}\}_{{\alpha}\in I}$ uma coleção de conjuntos conexos tal que $A_{\alpha}\cap A_{\beta}\neq\varnothing$ para todo $\alpha,\beta\in I$. Então é verdade que $Y=\cup_{\alpha}A_{\alpha}$ é conexo.

Seja $\{A_{\alpha}\}_{{\alpha}\in I}$ uma coleção de conjuntos conexos tal que $A_{\alpha}\cap A_{\beta}\neq\varnothing$ para todo $\alpha,\beta\in I$. Então é verdade que $Y=\cup_{\alpha}A_{\alpha}$ é conexo.

Prova:

Por absurdo, se Y é desconexo então $Y=\cup_{\alpha}A_{\alpha}=C\cup D$. Então $A_{\alpha}\subset C$ ou $A_{\alpha}\subset D$. Escolhendo $A_{\alpha}\subset C$, sabemos que existe $A_{\beta}\subset D$. Mas $(A_{\alpha}\cap C)\cap (A_{\beta}\cap D)=\varnothing$.

Se $\forall x,y \in X$ existir um $C_{xy} \subset X$ conexo tal que $x,y \in C_{xy}$ então X é conexo.

Se $\forall x, y \in X$ existir um $C_{xy} \subset X$ conexo tal que $x, y \in C_{xy}$ então X é conexo.

Prova:

O caso $X=\varnothing$ é trivial. Se $X\neq\varnothing$ então fixe $a\in X$, e para todo $x\in X$ existe $C_{ax}\subset X$ conexo. Mas $X=\cup_{x\in X}C_{ax}$ com $C_{ax}\cap C_{ay}\neq\varnothing$ para todo $x,y\in X$.

 $X \times Y$ é conexo se, e somente se, X e Y são conexos.

 $X \times Y$ é conexo se, e somente se, X e Y são conexos.

Prova:

 (\Rightarrow) Se $X \times Y$ é conexo então a projecão $\pi_X : X \times Y \to X$, que é sobrejetora, mostra que X é conexo.

(\Leftarrow) Para dois pontos qualquer (a, b), (c, d) ∈ $X \times Y$:

$$X \times \{b\} \cong X$$

$$\{c\} \times Y \cong Y$$

Como $(X \times \{b\}) \cap (\{c\} \times Y) = (c, b)$ o conjunto $(X \times \{b\}) \cup (\{c\} \times Y)$ é conexo.

Outra prova...

Prova:

Seja $F: X \times Y \to \{0,1\}$ um mapa contínuo. A restrição $F': \{x\} \times Y \to \{0,1\}$ e o mapa $g: y \mapsto F'(x,y)$ também são contínuos. O mapa $g = F' \circ E$ é constante então F' também sera constante. Logo F é constante em cada restrição $\{x\} \times Y$ e $X \times \{y\}$.

Outra prova...

Prova:

Seja $F: X \times Y \to \{0,1\}$ um mapa contínuo. A restrição $F': \{x\} \times Y \to \{0,1\}$ e o mapa $g: y \mapsto F'(x,y)$ também são contínuos. O mapa $g = F' \circ E$ é constante então F' também sera constante. Logo F é constante em cada restrição $\{x\} \times Y$ e $X \times \{y\}$.

Tome $(x, y), (x', y') \in X \times Y$ então F(x, y) = F(x, y') = F(x', y').

Todo intervalo em \mathbb{R} é conexo.

Todo intervalo em \mathbb{R} é conexo.

Prova:

Suponha que I = [0,1] seja desconexo. Existem $A, B \subset I$ fechados em I tal que $I = A \cup B$.

Todo intervalo em \mathbb{R} é conexo.

Prova:

Suponha que I = [0,1] seja desconexo. Existem $A, B \subset I$ fechados em I tal que $I = A \cup B$.

Seja $f: A \times B \to [0,1]$ tal que f(x,y) = |x-y|. Como $A \times B$ é compacto (próximo seminário), f tem um ponto de mínimo (a_0,b_0) .

Todo intervalo em \mathbb{R} é conexo.

Prova:

Suponha que I = [0,1] seja desconexo. Existem $A, B \subset I$ fechados em I tal que $I = A \cup B$.

Seja $f: A \times B \to [0,1]$ tal que f(x,y) = |x-y|. Como $A \times B$ é compacto (próximo seminário), f tem um ponto de mínimo (a_0,b_0) .

Tome o ponto $z=(a_0+b_0)/2$. $|z-b_0|<|a_0-b_0|$ então $z\notin A$. Da mesma forma $|z-a_0|<|a_0-b_0|$ então $z\notin B$ e provamos que I não é intervalo.

Todo intervalo em \mathbb{R} é conexo.

Prova:

Suponha que I = [0,1] seja desconexo. Existem $A, B \subset I$ fechados em I tal que $I = A \cup B$.

Seja $f: A \times B \to [0,1]$ tal que f(x,y) = |x-y|. Como $A \times B$ é compacto (próximo seminário), f tem um ponto de mínimo (a_0,b_0) .

Tome o ponto $z=(a_0+b_0)/2$. $|z-b_0|<|a_0-b_0|$ então $z\notin A$. Da mesma forma $|z-a_0|<|a_0-b_0|$ então $z\notin B$ e provamos que I não é intervalo.

De forma geral $[a,b]\cong [0,1]$ então todo intervalo é conexo

É simples ver que $\mathbb{R}=\cup_{n\in\mathbb{N}}[-n,n]$ é conexo. \mathbb{R}^n é também conexo. (Ufa!)

É simples ver que $\mathbb{R}=\cup_{n\in\mathbb{N}}[-n,n]$ é conexo. \mathbb{R}^n é também conexo. (Ufa!)

 $\mathbb{R}\setminus\mathbb{Q}$ é desconexo, mas $\mathbb{R}^n\setminus\mathbb{Q}^n$ é conexo para todo natural $n\geq 2$.

Cut Point

Um espaço topológico conexo X tem um ponto de corte se existe $p \in X$ tal que $X \setminus \{p\}$ é desconexo

A quantidade de pontos de corte é preservada por homeomorfismos.

Cut Point

Um espaço topológico conexo X tem um ponto de corte se existe $p \in X$ tal que $X \setminus \{p\}$ é desconexo

 $\mathbb{R}^n \ncong \mathbb{R}$ pois \mathbb{R} tem um número infinito de pontos de corte, enquanto \mathbb{R}^n não possui nenhum.

Cut Point

Um espaço topológico conexo X tem um ponto de corte se existe $p \in X$ tal que $X \setminus \{p\}$ é desconexo

 $\mathbb{R}^n \ncong \mathbb{R}$ pois \mathbb{R} tem um número infinito de pontos de corte, enquanto \mathbb{R}^n não possui nenhum.

 $S^1 \ncong [0,1]$ pois [0,1] tem um número infinito de pontos de corte, enquanto $S^1 \setminus \{p\} \cong \mathbb{R}$ é conexo

Componentes conexas

Uma componente conexa C de um espaço topológico X é um subconjunto conexo maximal, ou seja, um subconjunto conexo tal que para qualquer outro D conexo que $C \subset D \subset X$ vale que C = D

Componentes conexas

Uma componente conexa C de um espaço topológico X é um subconjunto conexo maximal, ou seja, um subconjunto conexo tal que para qualquer outro D conexo que $C \subset D \subset X$ vale que C = D

Também é preservado por homeomorfismos.

Gera uma partição em X com a relação de equivalência pRq se p e q estão na mesma componente conexa.

Conexidade por caminhos

Um espaço topológico X é conexo por caminhos se para todo $x,y\in X$ existe uma função contínua $f:[0,1]\to X$ tal que f(0)=x e f(1)=y.

Uma condição mais forte

Se X é conexo por caminhos então é também conexo.

Uma condição mais forte

Se X é conexo por caminhos então é também conexo.

Prova:

Para todo $x, y \in X$ existe um caminho $f: [0,1] \to X$ unindo os dois pontos. O conjunto $C_{xy} = Im(f)$ é conexo pois f é contínua e contem x, y. Logo X é conexo.

Outras definições

Localmente conexo (por caminhos)

Um espaço topológico X é localmente conexo (por caminhos) se para todo ponto $x \in X$ e toda vizinhança $V_x \ni x$ existe um aberto conexo (por caminhos) $U \subset V_x$ que contém x.

Prova:

Se $X \neq \emptyset$ então existe $a \in X$ e o conjunto $C = \{x \in X : \text{existe um caminho de a até } x\}$ é não vazio.

Prova:

Se $X \neq \emptyset$ então existe $a \in X$ e o conjunto $C = \{x \in X : \text{existe um caminho de a até } x\}$ é não vazio.

Se $x \in C$ existe um caminho f de a até x. Existe também um aberto conexo por caminhos $U \ni x$ de forma que para todo $y \in U$ existe um caminho g de x até y. Logo existe um caminho de a até y o que nos leva a conclusão que $U \subset C$. C é um aberto em X

Prova:

Se $X \neq \emptyset$ então existe $a \in X$ e o conjunto $C = \{x \in X : \text{existe um caminho de a até } x\}$ é não vazio.

Se $x \in C$ existe um caminho f de a até x. Existe também um aberto conexo por caminhos $U \ni x$ de forma que para todo $y \in U$ existe um caminho g de x até y. Logo existe um caminho de a até y o que nos leva a conclusão que $U \subset C$. C é um aberto em X

Se $x \notin C$ existe um aberto conexo por caminhos $U \ni x$ de forma que para todo $y \in U$ existe um caminho g de x até y. Não poderia existir nenhum caminho de y até a então $U \subset X \setminus C$. C é fechado, clopen e não vazio. Por conexidade vemos que C = X.

Homotopia de caminhos

Seja X um espaço topológico e $f,g:I=[0,1]\to X$ caminhos que tem os mesmos pontos iniciais e finais $(x \in y)$. Dizemos que $f \in g$ sao homotópicos se exise um mapa contínuo $H:I\times I\to X$ tal que:

$$H(s,0) = f(s)$$

$$H(s,1) = g(s)$$

$$H(0,t) = x$$

$$H(1,t) = y$$

Simplesmente conexo

Um espaço topológico X é simplesmente conexo se é conexo por caminhos e todo *loop* é homotópico ao loop constante (c(t) = x).

Final

- SO(n) tem uma correspondência bijetiva com o conjunto das bases ortonormais de \mathbb{R}^n
- Basta provar que para qualquer base ortonomal $(a_i)_{i=1}^n$ existem uma deformação (rotação) contínua para a base ortonormal $(e_i)_{i=1}^n$.

Sejam $v,w\in\mathbb{R}^n$ unitários então

$$\gamma:[0,1] \to SO(n)$$

onde
$$\gamma(0)v = v$$
 e $\gamma(1)v = w$

Sejam $v,w\in\mathbb{R}^n$ unitários então

$$\gamma:[0,1]\to SO(n)$$

onde
$$\gamma(0)v = v$$
 e $\gamma(1)v = w$

Tome $u \in \mathbb{R}^n$ ortogonal a v tal que $u \in span(v, w)$. Agora se V = span(u, v), então $w \in V$ e

$$w = \begin{bmatrix} \cos(\phi) & \sin(\phi) & 0 \\ -\sin(\phi) & \cos(\phi) & 0 \\ 0 & 0 & I_{n-2} \end{bmatrix} v$$

Basta tomar o caminho

$$\gamma(t) = egin{bmatrix} \cos(t\phi) & \sin(t\phi) & 0 \ -\sin(t\phi) & \cos(t\phi) & 0 \ 0 & 0 & I_{n-2} \end{bmatrix}$$

Basta tomar o caminho

$$\gamma(t) = egin{bmatrix} \cos(t\phi) & \sin(t\phi) & 0 \ -\sin(t\phi) & \cos(t\phi) & 0 \ 0 & 0 & I_{n-2} \end{bmatrix}$$

Para uma base ortonomal qualquer $(a_i)_{i=1}^n$ basta aplicar $\gamma = \gamma_1 \circ \gamma_2 \circ ... \circ \gamma_{n-1}$ onde $\gamma_1 a_1 = e_1$, $\gamma_2 \gamma_1 a_2 = e_2$ e assim por diante. Logo $\gamma(0) = I_n$ e $(\gamma a_1, ..., \gamma a_n) = (e_1, ..., e_n)$