Algèbre

Martin Mugnier

DD ENSAE-HEC, 2019

Chapitre 4: Formes bilinéaires symétriques, produit scalaire

1 Formes bilinéaires symétriques, Généralités

2 Cas particulier : le produit scalaire

Méthodes d'orthogonalisation

Inégalités remarquables

Forme bilinéaire et forme bilinéaire symétrique

On appelle forme bilinéaire sur E, toute application φ de $E \times E \to \mathbb{R}$ telle que

$$\forall (\lambda, \mu) \in \mathbb{R}^2, \ \forall (x, y, z) \in E^3, \quad \varphi(x, \lambda y + \mu z) = \lambda \varphi(x, y) + \mu \varphi(x, z)$$
$$\varphi(\lambda x + \mu z, y) = \lambda \varphi(x, y) + \mu \varphi(z, y)$$

Définition (Forme bilinéaire symétrique)

 φ est une forme bilinéaire symétrique sur E ssi $\forall (x,y) \in E \times E$, $\varphi(x,y) = \varphi(y,x)$.

On note $S_2(E)$ l'ensemble des formes bilinéaires symétriques sur E.

Forme quadratique

On appelle forme quadratique sur E, toute application ϕ de E dans $\mathbb R$ telle que

- $\forall \lambda \in \mathbb{R}, \ \forall x \in E, \ \phi(\lambda x) = \lambda^2 \phi(x)$
- $ullet \varphi$ définie par

$$\forall (x,y) \in E \times E, \quad \varphi(x,y) = \frac{1}{2} \left(\phi(x+y) - \phi(x) - \phi(y) \right)$$
$$\varphi(x,y) = \frac{1}{4} \left(\phi(x+y) - \phi(x-y) \right)$$

est une forme bilinéaire symétrique sur $E.\ \varphi$ s'appelle alors la forme polaire associée à $\phi.$

Représentation matricielle d'une forme bilinéaire

On suppose E de dimension finie n muni d'une base $\mathcal{B}_E = \{e_1, \dots, e_n\}$.

Définition

On appelle matrice réprésentative de φ relativement à \mathcal{B}_E la matrice carrée d'ordre n à coefficients dans \mathbb{R} donnée par $\mathsf{Mat}(\varphi,\mathcal{B}_E) = (\varphi(\mathsf{e}_i,\mathsf{e}_j))_{i,j}$.

On a

$$\varphi(x,y) = X^T Mat(\varphi,\mathcal{B}_E) Y$$

Proposition (Changement de base)

Si $\widetilde{\mathcal{B}}_E$ est une base de E et $P = Mat(Id_E, \widetilde{\mathcal{B}}_E, \mathcal{B}_E)$, alors $Mat(\varphi, \mathcal{B}_E)$ et

$$Mat(\varphi, \widetilde{\mathcal{B}}_E) = P^T Mat(\varphi, \mathcal{B}_E) P$$

 φ est une forme bilinéaire symétrique ssi toute matrice représentative de φ est symétrique.

Martin Mugnier Algèbre

Orthogonalité, définition pour $\varphi \in \mathcal{S}_2(E)$

Définition

- Soient $(x,y) \in E^2$, x et y sont orthogonaux, $x \perp y$, ssi $\varphi(x,y) = 0_{\mathbb{R}}$
- Soient $A, B \subset E$. A et B sont orthogonaux, $A \perp B$, ssi $\forall (x, y) \in A \times B$ $\varphi(x, y) = 0_{\mathbb{R}}$
- Soit A ⊂ E, on définit l'orthogonal de A comme

$$A^{\perp} = \{ y \in E, \quad \forall x \in A, \quad \varphi(x, y) = 0_{\mathbb{R}} \}$$

Orthogonalité, propriétés

Soient $A \subset E$ et $B \subset E$.

- A^{\perp} est un s.e.v de E
- $\bullet \ A \perp B \iff A \subset B^{\perp} \iff B \subset A^{\perp}$
- $A \subset B \implies B^{\perp} \subset A^{\perp}$
- $\bullet \ (A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}$
- $A^{\perp} + B^{\perp} \subset (A \cap B)^{\perp}$
- $A^{\perp} \cap B^{\perp} \subset (A+B)^{\perp}$
- $0_E \in A \cap B \implies A^{\perp} \cap B^{\perp} = (A+B)^{\perp}$
- $A^{\perp} = (Vect(A))^{\perp}$
- $A \subset (A^{\perp})^{\perp}$
- $(\{0_E\})^{\perp} = E$

Forme bilinéaire symétrique non dégénérée

Définition

On dit que φ est non dégénérée ssi $E^{\perp} = \{0_E\}$.

Proposition

Si E est de dimension finie $n \ge 1$ alors on a l'équivalence entre

- φ est non dégénérée
- ullet toute matrice représentative de arphi est de déterminant non nul

Proposition

Si E est de dimension finie n ≥ 1 et si φ est non dégénérée alors :

- $Dim(F) + Dim(F^{\perp}) = Dim(E)$
- $(F^{\perp})^{\perp} = F$

Forme quadratique définie positive et produit scalaire

Définition

- ϕ est semi-définie positive ssi $\forall x \in E$, $\phi(x) \ge 0$
- ϕ est définie positive ssi $\forall x \in E$, $\phi(x) \ge 0$ et $\phi(x) = 0 \implies x = 0_E$
- Toute forme bilinéaire sur E symétrique, de forme quadratique définie positive est appelée **produit scalaire**, notée <,>
- On définit la **norme euclidienne** $||\cdot||$ par $||x|| = \sqrt{\langle x, x \rangle}$
- Le couple (E, <, >) où E est un espace vectoriel sur $\mathbb R$ muni d'un produit scalaire est appelé espace **préhilbertien réel**
- Tout espace préhilbertien réel de dimension finie est appelé espace euclidien

Exemple : montrer que $<,>:\mathbb{R}^3\times\mathbb{R}^3\to\mathbb{R}$ définie par

$$< x, y> = \left(\frac{1}{\sqrt{3}}x_1 - x_2 + x_3\right)\left(\frac{1}{\sqrt{3}}y_1 - y_2 + y_3\right) + (x_2 - x_3)(y_2 - y_3) + 3x_3y_3$$

est un produit scalaire.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 釣 へ ②

Forme quadratique définie positive et produit scalaire

Proposition

Si ϕ est définie positive alors φ est non dégénérée.

Proposition

Soit ϕ définie positive et E de dimension finie.

- Pour tout s.e.v F de E, $F \oplus F^{\perp} = E$ et $F = (F^{\perp})^{\perp}$
- Soient F, G deux s.e.v de E, alors

$$F^{\perp} \perp G^{\perp} \iff F^{\perp} \subset G \iff G^{\perp} \subset F$$

et F et G sont dits perpendiculaires

Martin Mugnier

Forme quadratique définie positive et produit scalaire

Proposition

Soit ϕ définie positive.

• Si F_1, \ldots, F_p p s.e.v de E deux à deux orthogonaux, alors

$$F_1 + \cdots + F_p = \bigoplus_{i=1}^p F_i$$

• Si $\{f_1, \ldots, f_p\}$ est une famille de vecteurs non nuls de E, deux à deux orthogonaux, alors $\{f_1, \ldots, f_p\}$ est une famille libre

Bases orthogonales et orthonormées

Définition

On dit que $\mathcal{B}_E = (e_i)_{i \in I}$ est une base de E orthogonale pour φ ssi $\forall i \neq j$, $\varphi(e_i, e_j) = 0_{\mathbb{R}}$ On dit que $\mathcal{B}_E = (e_i)_{i \in I}$ est une base de E orthonormée pour φ ssi

$$\forall (i,j) \in I \times I, \quad \varphi(e_i,e_j) = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{sinon} \end{cases}$$

Proposition

Si E est de dimension finie alors $\mathcal{B}_E = (e_i)_{i \in I}$ est une base de E orthogonale pour φ ssi $Mat(\varphi, \mathcal{B}_E)$ est diagonale.

Théorème

Si E est de dimension finie alors il existe une base de E orthogonale pour φ

Martin Mugnier Algèbre

Méthode d'orthogonalisation de Gauss

Soit E de dimension finie et $B_E = (e_1, \dots, e_n)$ une base. Soit $x = \sum_{i=1}^n x_i e_i \in E$ on a

$$\phi(x) = \sum_{i=1}^n \phi(e_i)x_i^2 + 2\sum_{1 \leq i < j \leq n} \varphi(e_i, e_j)x_ix_j \equiv \Psi(x_1, \dots, x_n)$$

Objectif: trouver une base $\widetilde{\mathcal{B}}_E$ orthogonale pour φ On cherche donc à mettre $\phi(x)$ sous la forme

$$\phi(x) = (P^{-1}X)^{\top}D(P^{-1}X) = a_1L_1(x_1, \dots, x_n)^2 + \dots + a_rL_r(x_1, \dots, x_n)^2$$

avec $P^{-1}=Mat(Id_E,\mathcal{B}_E,\widetilde{\mathcal{B}}_E),\ \widetilde{X}=P^{-1}X$, et

- pour tout les $i \in \{1, \ldots, r\}$ $\widetilde{x}_i = L_i(x_1, \ldots, x_n)$
- pour tout les $i \in \{r+1,\ldots,n\}$, \widetilde{x}_i tel que $(\widetilde{x}_i)_{i=1,\ldots,n}$ soit une famille libre de \mathbb{R}^n

Méthode d'orthogonalisation de Gauss, pratique

Deux cas:

• **Si** il existe i_0 tel que $a:=\phi(e_{i_0})\neq 0_{\mathbb{R}}$:

$$\Psi(x_1,...,x_n) = aL(x_1,...,x_n)^2 + \widetilde{\Psi}(x_1,...,x_{i_0-1},x_{i_0+1},...,x_n)$$

où Ψ est une forme quadratique sur laquelle on itère.

• Sinon il existe $(i_0,j_0)\in\{1,\ldots,n\}^2$ tel que $arphi(e_{i_0},e_{j_0})
eq 0_\mathbb{R}$ et on a

$$\Psi(x_1,\ldots,x_n) = \frac{\varphi(e_{i_0},e_{j_0})}{2} L_1(x_1,\ldots,x_n)^2 + \frac{-\varphi(e_{i_0},e_{j_0})}{2} L_2(x_1,\ldots,x_n)^2 + \widetilde{\Psi}(x_1,\ldots,x_{i_0-1},x_{i_0+1},\ldots,x_{j_0-1},x_{j_0+1},\ldots,x_n)$$

et

$$L_1(x_1,\ldots,x_n) = x_{i_0} + x_{j_0} + \sum_{i \neq i_0} \frac{\varphi(e_i,e_{j_0})}{\varphi(e_{i_0},e_{j_0})} x_i + \sum_{j \neq j_0} \frac{\varphi(e_{i_0},e_j)}{\varphi(e_{i_0},e_{j_0})} x_j$$

$$L_2(x_1,\ldots,x_n) = x_{i_0} + (-x_{j_0}) + \sum_{i \neq i_0} \frac{\varphi(e_i, e_{j_0})}{\varphi(e_{i_0}, e_{j_0})} x_i + \sum_{j \neq j_0} \frac{\varphi(e_{i_0}, e_{j_0})}{\varphi(e_{i_0}, e_{j_0})} (-x_j)$$

Méthode d'orthogonalisation de Gram-Schmidt

E \mathbb{R} -ev, non nécessairement de dimension finie, muni d'une base $(e_i)_{i\in I}$.

$$\left(\begin{array}{ccc} \varphi(e_1,e_1) & \dots & \varphi(e_1,e_k) \\ \vdots & & \vdots \\ \varphi(e_k,e_1) & \dots & \varphi(e_k,e_k) \end{array}\right)$$

est la φ -matrice de Gram de $\{e_1,\ldots,e_k\}$, Δ_k son déterminant, et $D_{i,j}$ ses cofacteurs.

Théorème (Gram-Schmidt, forme bilinéaire)

Soit $(\epsilon_i)_{i\in I}$ définie par

$$\epsilon_i = \sum_{i=1}^i \frac{D_{j,i}}{D_{i,i}} e_j$$

Pour tout $i \in I$, $\{\epsilon_1, \dots, \epsilon_i\}$ est une base de E_i orthogonale pour $\varphi_{|E_i \times E_i}$ et

$$\epsilon_i = e_i - \sum_{k=1}^{i-1} \frac{\varphi(\epsilon_k, e_i)}{\phi(\epsilon_k)} \times \epsilon_k$$

Martin Mugnier Algèbre

Méthode d'orthogonalisation de Gram-Schmidt, produit scalaire

Méthode d'orthogonalisation de Gram-Schmidt, produit scalaire

Théorème (Gram-Schmidt, produit scalaire)

Pour tout $i \in I$, $(\epsilon_i)_{i \in I}$ définie par $\epsilon_1 = e_1$ et

$$\epsilon_i = e_i - \sum_{k=1}^{i-1} \frac{\langle \epsilon_k, e_i \rangle}{||\epsilon_k||} \times \epsilon_k$$

est une base de E_i orthogonale pour <,>.

Martin Mugnier

Inégalités remarquables

Proposition

ullet Inégalité de Cauchy-Schwarz : si ϕ est semi définie positive alors

$$\forall x, y \in E \times E, \quad |\varphi(x, y)| \le \sqrt{\phi(x)} \sqrt{\phi(y)}$$

ullet Inégalité de Minkowsky : si ϕ est semi définie positive alors

$$\forall x, y \in E \times E, \quad \sqrt{\phi(x+y)} \le \sqrt{\phi(x)} + \sqrt{\phi(y)}$$

Proposition (Cas d'égalités)

• Dans l'inégalité de Cauchy-Schwarz : si ϕ est semi définie positive alors

$$|\varphi(x,y)| = \sqrt{\phi(x)}\sqrt{\phi(y)} \iff \exists \lambda, \ x = \lambda y$$

ullet Dans l'inégalité de Minkowsky : si ϕ est semi définie positive alors

$$\sqrt{\phi(x+y)} = \sqrt{\phi(x)} + \sqrt{\phi(y)} \iff \exists \lambda > 0, \ x = \lambda y$$

Martin Mugnier Alge