Problem Set #2 3.75/5 points (75%)

Quiz, 5 questions



## Try again once you are ready.

Back to Week 2

Required to pass: 80% or higher

You can retake this quiz up to 2 times every 12 hours.

Retake



1/1 point

1.

Consider a directed graph with distinct and nonnegative edge lengths and a source vertex s. Fix a destination vertex t, and assume that the graph contains at least one s-t path. Which of the following statements are true? [Check all that apply.]

| nac ap | ٠٠٠٠٠ - ١٠٠٠٠٠<br>١٣٠٠ ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠٠- ١٣٠ |
|--------|----------------------------------------------------------------------------------------------------------------|
|        | There is a shortest $s	ext{-}t$ path with no repeated vertices (i.e., a "simple" or "loopless" such path).     |
| Corr   | ect                                                                                                            |
|        |                                                                                                                |
|        | The shortest $s	ext{-}t$ path must include the minimum-length edge of $G$ .                                    |
| Un-s   | elected is correct                                                                                             |
|        |                                                                                                                |

The shortest (i.e., minimum-length) s-t path might have as many as n-1 edges, where n is the number of vertices.

Correct

lacksquare The shortest  $s ext{-}t$  path must exclude the maximum-length edge of G.

**Un-selected** is correct



1/1 point

| $\sim$ |  |
|--------|--|
| _      |  |

| Consider Problem    | er a directed graph $G$ with a source vertex $s$ , a destination $t$ , and nonnegative edge lengths. Set $t$ path guaranteed to be unique?                                                                                                                                                                                    | Under what <b>3.75/5 points (75%</b> |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|
| Quiz, 5 que         | estions When all edge lengths are distinct positive integers.                                                                                                                                                                                                                                                                 |                                      |
|                     | None of the other options are correct.                                                                                                                                                                                                                                                                                        |                                      |
|                     | When all edges lengths are distinct positive integers and the graph ${\cal G}$ contains no directed                                                                                                                                                                                                                           | cycles.                              |
| 0                   | When all edge lengths are distinct powers of 2.                                                                                                                                                                                                                                                                               |                                      |
| <b>Corre</b><br>Two | ect<br>sums of distinct powers of two cannot be the same (imagine the numbers are written in bin                                                                                                                                                                                                                              | ary).                                |
| ×                   | 0 / 1<br>point                                                                                                                                                                                                                                                                                                                |                                      |
| source<br>edges f   | er a directed graph $G=(V,E)$ and a source vertex $s$ with the following properties: edges vertex $s$ have arbitrary (possibly negative) lengths; all other edge lengths are nonnegative; as from any other vertex to the source $s$ . Does Dijkstra's shortest-path algorithm correctly completes (from $s$ ) in this graph? | nd there are no                      |
|                     | Never                                                                                                                                                                                                                                                                                                                         |                                      |
| 0                   | Only if we add the assumption that ${\cal G}$ contains no directed cycles with negative total weigh                                                                                                                                                                                                                           | t.                                   |
|                     | should not be selected hypotheses in the problem statement already imply that there is no such cycle,                                                                                                                                                                                                                         |                                      |
|                     | Maybe, maybe not (depends on the graph)                                                                                                                                                                                                                                                                                       |                                      |
|                     | Always                                                                                                                                                                                                                                                                                                                        |                                      |
| <b>~</b>            | 1/1 point                                                                                                                                                                                                                                                                                                                     |                                      |
| 4.<br>Conside       | er a directed graph $G$ and a source vertex $s$ . Suppose $G$ has some negative edge lengths bu                                                                                                                                                                                                                               | t no negative                        |

Consider a directed graph G and a source vertex s. Suppose G has some negative edge lengths but no negative cycles, meaning G does not have a directed cycle in which the sum of the edge lengths is negative. Suppose you run Dijkstra's algorithm on G (with source s). Which of the following statements are true? [Check all that apply.]



Dijkstra's algorithm always terminates, but in some cases the paths it computes will not be the shortest

paths from s to all other vertices. Problem Set #2 3.75/5 points (75%)

| v | u | <b>Z</b> . | - | w | rlea | OIL.I | u | <br>3 |
|---|---|------------|---|---|------|-------|---|-------|
|   |   |            |   |   |      |       |   |       |

| Nonnegativity of the edge lengths was used in the correctness proof for Dijkstra's algorithm; with negative                                                                                                                                                                                                                                   |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| edge lengths, the algorithm is no longer correct in general.                                                                                                                                                                                                                                                                                  |  |
| Dijkstra's algorithm always terminates, and in some cases the paths it computes will be the correct shortest paths from $s$ to all other vertices.                                                                                                                                                                                            |  |
| Correct                                                                                                                                                                                                                                                                                                                                       |  |
| See Question 3.                                                                                                                                                                                                                                                                                                                               |  |
| Dijkstra's algorithm might loop forever.                                                                                                                                                                                                                                                                                                      |  |
| Un-selected is correct                                                                                                                                                                                                                                                                                                                        |  |
| It's impossible to run Dijkstra's algorithm on a graph with negative edge lengths.                                                                                                                                                                                                                                                            |  |
| Un-selected is correct                                                                                                                                                                                                                                                                                                                        |  |
|                                                                                                                                                                                                                                                                                                                                               |  |
| 0.75 / 1<br>point                                                                                                                                                                                                                                                                                                                             |  |
| 5.                                                                                                                                                                                                                                                                                                                                            |  |
| Consider a directed graph $G$ and a source vertex $s$ . Suppose $G$ contains a negative cycle (a directed cycle in which the sum of the edge lengths is negative) and also a path from $s$ to this cycle. Suppose you run Dijkstra's algorithm on $G$ (with source $s$ ). Which of the following statements are true? [Check all that apply.] |  |
| Dijkstra's algorithm always terminates, and in some cases the paths it computes will be the correct shortest paths from $s$ to all other vertices.                                                                                                                                                                                            |  |
| This should not be selected                                                                                                                                                                                                                                                                                                                   |  |
| When there is negative cycle reachable from $s$ , there is no shortest path from $s$ from any vertex on cycle (every path can be made shorter by going around the cycle an additional time).                                                                                                                                                  |  |
| It's impossible to run Dijkstra's algorithm on a graph with a negative cycle.                                                                                                                                                                                                                                                                 |  |
| Un-selected is correct                                                                                                                                                                                                                                                                                                                        |  |

Dijkstra's algorithm might loop forever.



3.75/5 points (75%)

Quiz, 5 questions

|       | Dijkstra's algorithm always terminates, but in some cases the paths it computes will not be the shortest paths from $s$ to all other vertices. |  |  |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Corre | Correct                                                                                                                                        |  |  |  |  |
|       |                                                                                                                                                |  |  |  |  |
|       |                                                                                                                                                |  |  |  |  |
|       |                                                                                                                                                |  |  |  |  |
|       |                                                                                                                                                |  |  |  |  |



 $\vdash$