Introduction to Time Series Analysis

Kritchavat Ploddi

Section 1

ARIMA and Exponential Smoothing Models

Packages requirement

Before proceeding, please download and install following packages:

```
library(forecast)
library(tseries)
library(ggplot2)
library(dplyr)
```

Stationary

Another important concept in time series analysis is stationary.

This is because most time series forecasting models require stationary assumptions.

Stationary

A time series Y is said to be stationary if all of its values y_t do not depend on time t. In other words, the distribution of y_t has constant mean and variance.

Stationary?

Stationary?

How to transform non-stationary time series to be stationary

Stationary is characterized by constant mean and variance.

Transformations help to stabilize the variance.

Difference help to stabilize the mean

Transformations

Variance could be stabilized by taking:

- (Natural) Logarithm (log)
- Squared root (sqrt)

Transformations

```
par(mfrow=c(1,3))
plot(covid$date, covid$covid, type='l')
plot(covid$date, log(covid$covid), type='l')
plot(covid$date, sqrt(covid$covid), type='l')
```


Transformations

We found that taking natural logarithm on Covid cases mostly stabilize the variance.

```
covid$log_covid <- log(covid$covid)
head(covid[, c('date', 'covid', 'log_covid')])</pre>
```

```
##
          date covid log covid
  1 2021-04-01
                  26
                     3.258097
  2 2021-04-02 58 4.060443
  3 2021-04-03
                 84 4.430817
  4 2021-04-04
                96 4.564348
  5 2021-04-05
                 194
                     5.267858
  6 2021-04-06
                 250
                     5.521461
```

Differencing

Difference helps stabilize the mean.

In R, we could use the command diff() (plus NA offset at the first index).

```
covid$diff_log_covid <- c(NA, diff(covid$log_covid))

par(mfrow=c(1,2))
plot(covid$date, covid$covid, type='l')
plot(covid$date, covid$diff_log_covid, type='l')</pre>
```


We could use KPSS test (Kwiatkowski-Phillips-Schmidt-Shin test) to test if a series is stationary.

Using the function kpss.test() from tseries package.

print(kpss.test((covid\$diff_log_covid))) # Log transform with differencing

```
##
## KPSS Test for Level Stationarity
##
## data: (covid$diff_log_covid)
## KPSS Level = 0.9128, Truncation lag parameter = 5, p-value = 0.01
```

This suggested that log-transformed differencing is not enough.

We have to take another differencing:

```
diff_diff_log_covid <- diff(na.omit(covid$diff_log_covid))
print(kpss.test(diff_diff_log_covid)) # Log transform with second differencin
##
## KPSS Test for Level Stationarity
##
## data: diff_diff_log_covid
## KPSS Level = 0.068379, Truncation lag parameter = 5, p-value = 0.1</pre>
```

We could use KPSS test (Kwiatkowski–Phillips–Schmidt–Shin test) to test if a series is stationary. Using the function kpss.test() from tseries package.

```
print(kpss.test(covid$log_covid)) # Log tranform
```

```
##
## KPSS Test for Level Stationarity
##
## data: covid$log_covid
## KPSS Level = 1.6925, Truncation lag parameter = 5, p-value = 0.01
```

We could use KPSS test (Kwiatkowski–Phillips–Schmidt–Shin test) to test if a series is stationary. Using the function kpss.test() from tseries package.

```
print(kpss.test(covid$covid)) # Original series
```

```
##
## KPSS Test for Level Stationarity
##
## data: covid$covid
## KPSS Level = 1.105, Truncation lag parameter = 5, p-value = 0.01
```

ARIMA Models

Autoregressive Integrated Moving Average (ARIMA) Models

An ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But it can capture a huge range of time series patterns.

ARIMA Models

Autoregressive Integrated Moving Average (ARIMA) Models

An ARIMA model is rarely interpretable in terms of visible data structures like trend and seasonality. But it can capture a huge range of time series patterns.

It is composed of an Autoregressive (AR) and Moving Average (MA) models

Autoregressive models (AR)

$$y_t = c + \phi_1 y_{t-1} + \phi_2 y_{t-2} + \cdots + \phi_p y_{t-p} + \varepsilon_t,$$

This is called AR(p) model.

AR models predict future values based on previous values (at p lags).

Moving Average Models (MA)

$$y_t = c + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \theta_2 \varepsilon_{t-2} + \cdots + \theta_q \varepsilon_{t-q},$$

This is called MA(q) model.

MA models predict future values based on previous errors (at q lags).

ARMA and **ARIMA** models

ARMA(p,q) is a linear combination of AR(p) and MA(q). ARMA predict future values based on both previous values and errors.

ARIMA(p,n,q) is similar to ARMA(p,q), except only n difference has been taken. This is done for taking an account for non-stationary time series.

```
## 3
       2009-03-01
                    2324
## 4
       2009-04-01
                    2947
## 5
       2009-05-01
                    6234
## 6
       2009-06-01
                    8569
## 7
       2009-07-01
                    7184
## 8
       2009-08-01
                    7302
## 9
       2009-09-01
                    5016
## 10
       2009-10-01
                    4640
       2009-11-01
## 11
                    4723
```

Train-test splitting

```
train <- dhfrain[dhfrain$year < 2018, ]
test <- dhfrain[dhfrain$year == 2018, ]</pre>
```

Train-test splitting

Cross-validation

ggplot(train) + geom_line(aes(x=date, y=cases))


```
train$logcases <- log(train$cases)
logcases_diff <- diff(train$logcases)
plot(logcases_diff, type='1')</pre>
```



```
KPSS test for stationary
library(tseries)
kpss.test(logcases_diff)
##
## KPSS Test for Level Stationarity
```

data: logcases_diff

##

KPSS Level = 0.038409, Truncation lag parameter = 4, p-value = 0.1

ACF and PACF plot

par(mfrow=c(1,2))
acf(logcases_diff)
pacf(logcases_diff)

Series logcases_diff

Y 29 00 0 0 0 0 15 20 Lag

Series logcases diff

ACF and PACF plot (seasonal)

```
par(mfrow=c(1,2))
acf(logcases_diff, lag=60)
pacf(logcases_diff, lag=60)
```

Series logcases_diff

Series logcases diff

So the ARIMA model would be: (S)ARIMA (1,1,0) (2,1,0), 12

Auto ARIMA

```
library(forecast)
auto <- auto.arima(train$logcases)</pre>
```

Models evaluation

```
test$forecast_manual <- exp(forecast(manual, h=12)$mean)
test$forecast_auto <- exp(forecast(auto, h=12)$mean)</pre>
```

Models evaluation: metrics

Error
$$Error = Y_{actual} - Y_{forecast}$$

Absolute Error AbsError = Abs(Error)

Absolute Percentage Error $AbsPctError = Abs(Error)/Y_{actual} \times 100$

Squred Error $SqError = Error^2$

Mean Squared Error MSE = mean(SqError)

Root mean squred error $RMSE = \sqrt{MSE}$

Mean Absolute Error MAE = mean(AbsError)

Mean Absolute Percentage Error MAPE = mean(AbsPctError)

Models evaluation

```
ggplot() +
geom_line(data = train, aes(x=date, y=cases)) +
geom_line(data = test, aes(x=date, y=cases)) +
geom_line(data = test, aes(x=date, y=forecast_auto), color='red') +
geom_line(data = test, aes(x=date, y=forecast_manual), color='blue')
```


Models evaluation

Root mean squared error:

```
error manual <- with(test, forecast manual - cases)
error_auto <- with(test, forecast_auto - cases)
# SE
sqerror_manual <- error_manual^2
sgerror auto <- error auto^2
# MSE
mse manual <- mean(sgerror manual)
mse_auto <- mean(sqerror_auto)</pre>
# RMSE
rmse_manual <- sqrt(mse_manual)</pre>
rmse auto <- sgrt(mse auto)
c(manual=rmse_manual, auto=rmse_auto)
```

auto

manual

4298.099 3096.161

Models evaluation

Mean absolute error: (MAE)

```
error manual <- with(test, forecast manual - cases)
error auto <- with(test, forecast auto - cases)
# ABS Error
abserror manual <- abs(error manual)
abserror auto <- abs(error auto)
# MAE
mae manual <- mean(abserror manual)</pre>
mae_auto <- mean(abserror_auto)</pre>
c(manual=mae_manual, auto=mae_auto)
     manual
```

auto

3234.929 2094.105

Model evaluation

Mean absolute percentage error: (MAE)

```
error manual <- with(test, forecast manual - cases)
error auto <- with(test, forecast auto - cases)
# ARS Error
abserror manual <- abs(error manual)
abserror auto <- abs(error auto)
# Abs Percentage Error
abs_pct_error_manual <- abserror_manual/test$cases * 100
abs pct error auto <- abserror auto/test$cases * 100
# MAPE
mape manual <- mean(abs pct error manual)
mape_auto <- mean(abs_pct_error_auto)</pre>
c(manual=mape manual, auto=mape auto)
```

Section 2

Exponential smoothing methods

Naïve average

Using the naïve method, all forecasts for the future are equal to the last observed value of the series,

$$\hat{y}_{T+h|T} = y_T$$

```
rti Naïve
       2011-01-01 2068
       2011-02-01 1859
                        2068
       2011-03-01 1987
                        1859
## 4
       2011-04-01 1907
                        1987
## 5
       2011-05-01 1763
                        1907
## 6
       2011-06-01 1678
                        1763
       2011-07-01 1709
                        1678
## 7
## 8
       2011-08-01 1706
                        1709
       2011-09-01 1536
                        1706
       2011-10-01 1779
                        1536
       2011-11-01 1925
                        1779
       2011-12-01 2079
                        1925
       2012-01-01 1968
                        2079
       2012-02-01 1840
                        1968
       2012-03-01 2109
                        1840
       2012-04-01 1963
                        2109
       2012-05-01 1697
                        1963
       2012-06-01 1680
                        1697
       2012-07-01 1724
                        1680
      2012-08-01 1597 1724
```

Average method

Using the average method, all future forecasts are equal to a simple average of the observed data,

$$\hat{y}_{T+h|T} = \frac{1}{T} \sum_{t=1}^{T} y_t,$$

Simple Exponential Smoothing

$$\hat{y}_{T+1|T} = \alpha y_T + \alpha (1-\alpha) y_{T-1} + \alpha (1-\alpha)^2 y_{T-2} + \cdots$$

Simple Exponential Smoothing

```
rti <- read.csv("data/rti.csv")
rti$date <- as.Date(rti$date)
ts_rti <- ts(rti$rti, start=c(2011,1), freq=12)
ts_rti
## Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec</pre>
```

```
## 2011 2068 1859 1987 1907 1763 1678 1709 1706 1536 1779 1925 2079
## 2012 1968 1840 2109 1963 1697 1680 1724 1597 1496 1723 1853 1953
## 2013 1936 1767 1983 1856 1717 1671 1657 1540 1502 1675 1909 2008
## 2014 2091 1897 2080 1764 1682 1565 1459 1493 1410 1644 1730 1972
## 2015 1786 1596 1726 1799 1574 1499 1477 1456 1473 1672 1860 2041
## 2016 2023 1956 1999 1973 1645 1661 1686 1554 1598 1708 1860 2082
## 2017 2018 1902 2036 1827 1688 1723 1509 1568 1671 1742 1827 2096
## 2018 1841 1772 1904 1763 1593 1470 1504 1469 1437 1550 1788 1839
## 2019 1908 1758 1853 1781 1570 1584 1548 1443 1393 1570 1662 1834
## 2020 1679 1628 1614
                       916 1296 1281 1424 1452 1388 1602 1707 1844
```

Simple Exponential Smoothing

```
forecast_rti <- ses(ts_rti, h=15)
autoplot(forecast_rti) +
  autolayer(fitted(forecast_rti), series="Fitted")</pre>
```

Forecasts from Simple exponential smoothing

Additive and multiplicative trend

Additive trend

```
data.frame(t=1:100, e=rnorm(100,0,5)) %>%
 mutate(v=20+1.6*t+e) \%
 ggplot() + geom_line(aes(x=t, y=y)) + ylim(0,300)
```


Additive and multiplicative trend

Multiplicative trend

```
data.frame(t=1:100, e=rnorm(100,0,10)) %>%
 mutate(y=exp(0.06*t)+e) \%>\%
  ggplot() + geom_line(aes(x=t, y=y))
```


Additive and multiplicative seasonal

Classification of exponential smooting method

Trend Component	Seasonal Component		
	N	A	M
	(None)	(Additive)	(Multiplicative)
N (None)	(N,N)	(N,A)	(N,M)
A (Additive)	(A,N)	(A,A)	(A,M)
A_d (Additive damped)	(A_d,N)	(A_d,A)	(A_d,M)

Some of these methods we have already seen using other names:

Short hand	Method	
(N,N)	Simple exponential smoothing	
(A,N)	Holt's linear method	
(A_d, N)	Additive damped trend method	
(A,A)	Additive Holt-Winters' method	
(A,M)	Multiplicative Holt-Winters' method	
(A, M)	Holt-Winters' damped method	49.7

In R, using ets() function from forecast package to fit an exponential smoothing We can specify the type of ets using the model parameters.

- "NNN" Simple Average
- "NAN" Additive Trend without seasonal
- "NMN" Multiplicative Trend without seasonal
- "NAA" Additive Trend and seasonal (Additive Holt-Winter's)
- "NMM" Multiplicative Trend and seasonal (Multiplicative Holt-Winter's)

We can also use "Z", e.g. "ZZZ" to let R to find the best fitted ETS models.

For example, if we wish to fit Additive Holt-Winter methods (Additive trend and seasonality) and Multiplicative Holt-Winter methods (Multiplicative trend and seasonality)

Fitting Additive Holt-Winter methods (Additive trend and seasonality), "ZAA'

Fitting Multiplicative Holt-Winter methods (Multiplicative trend and seasonality), "ZMM"

```
zaa_rti <- ets(ts_rti, model="ZAA") # Additive
zmm_rti <- ets(ts_rti, model="ZMM") # Multiplicative
par(mfrow=c(1,2))
autoplot(forecast(zaa_rti), h=16)</pre>
```

Forecasts from ETS(A,A,A)

We can also use "ZZZ" to let R automatically fit and Exponential Smoothing Models

```
zzz_rti <- ets(ts_rti, model="ZZZ")
autoplot(forecast(zzz_rti), h=16)</pre>
```

Forecasts from ETS(A,N,A)

Fitting an ETS with Dengue data

We would be manually fitting an ETS with only multiplicative seasonal with training data of Dengue (2009-2017).

We would also use an automated methods.

Fitting an ETS with Dengue data

Using "ZNM" for multiplicative seasonal ETS

Using "ZZZ" for automated ETS

```
train_ts <- ts(train$cases, start=c(2009,1), freq=12)
znm_train <- ets(train_ts, model="ZNM")
zzz_train <- ets(train_ts, model="ZZZ") # Auto
par(mfrow=c(1,2))
autoplot(forecast(znm_train), h=12)</pre>
```

Forecasts from ETS(M,N,M)

Models evaluation

Mean Absolute Percentage Errors

```
forecast_test_znm <- forecast(znm_train, h=12)$mean
forecast_test_zzz <- forecast(zzz_train, h=12)$mean
abs_error_znm <- abs(forecast_test_znm - test$cases)
abs_error_zzz <- abs(forecast_test_zzz - test$cases)
abs_pct_error_znm <- abs_error_znm/test$cases * 100
abs_pct_error_zzz <- abs_error_zzz/test$cases * 100
mape_znm <- mean(abs_pct_error_znm)
mape_zzz <- mean(abs_pct_error_zzz)
c(ZNM=mape_znm, AUTO=mape_zzz)
```

```
## ZNM AUTO
## 34.62963 34.62963
```

Models evaluation

```
Comparing MAPE with previous ARIMA models
```

```
c(AUTO_ETS=mape_zzz, manual_ARIMA=mape_manual, AUTO_ARIMA=mape_auto)
```

```
## AUTO_ETS manual_ARIMA AUTO_ARIMA
## 34.62963 38.90675 23.20156
```