As C is clockwise, when seen from above, \hat{n} is negative. Therefore, the RHS is,

$$\iint_{S} \operatorname{curl} \overline{F} \cdot \hat{n} dS = -\iint_{D} \left(-F g_{xx} - \hat{Q} q_{yx} + \hat{R} \right) dA$$

$$= -\iint_{D} \hat{P} dA$$

$$= -\iint_{D} (1 + 2y) dA$$

_	_								
Graph	•						-	-(
	x = 0	hyperbola	hyperbola	2 intersecting lines	upwards parabola	downwards parabola	z-axis	2 parallel lines	ellipse
Trace	y=0	hyperbola	hyperbola	2 intersecting lines	upwards parabola	upwards parabola	2-axis	2 parallel lines	ellipse
	z=0	ellipse	none	(0,0,0)	(0,0,0)	2 intersecting lines	parabola	ellipse	ellipse
Equation		$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$	$-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	$z^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	$z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$	$z = \frac{x^2}{a^2} - \frac{y^2}{b^2}$	$x^2 = 4ay$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
Surface		Hyperboloid of One Sheet	Hyperboloid of Two Sheets	Elliptic Cone	Elliptic Paraboloid	Hyperboloid Paraboloid	Parabolic Cylinder	Elliptic Cylinder	Ellipsoid

Differential and Integral Calculus

Friday 3rd July, 2015

Sequences and Series

Sequences

Definition 1 (Sequences bounded from above) $\{a_n\}$ is said to be bounded from above if $\exists M \in \mathbb{R}, s_1. \ a_n \leq M, \forall n \in \mathbb{N}. \ \text{Each such } M \text{ is called an }$

Definition 2 (Sequences bounded from below) $\{a_n\}$ is said to be bounded from below if $\exists m \in \mathbb{R}, \text{ st. } a_n \geq M, \forall n \in \mathbb{N}.$ Each such M is called an force bound of $\{a_n\}$.

Definition 3 $\{a_n\}$ is said to be bounded if it is bounded from below and bounded from above.

Definition 4 (Monotonic increasing sequence) A sequence $\{a_n\}$ is called monotonic increasing if $\exists n_0 \in \mathbb{N}$, st. $a_n \leq a_{n+1}$, $\forall n \geq n_0$.

Definition 5 (Monotonic decreasing sequence) A sequence $\{a_n\}$ is called **Solution 3**. monotonic decreasing if $\exists n_0 \in \mathbb{N}$, s.t. $a_n \geq a_{n+1}, \forall n \geq n_0$.

Definition 6 (Strongly increasing sequence) A sequence $\{a_n\}$ is called monotonic increasing if $\exists n_0 \in \mathbb{N}$, s.t. $a_n < a_{n+1}$, $\forall n \geq n_0$.

1.1 Limit of a Sequence

Definition 8 (Limit of a sequence) Let $\{a_n\}$ be a given sequence. A number L is said to be the limit of the sequence if $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$ s.t. $|a_n - L| < \varepsilon$, $\forall n_1 > m$. That is, there are infinitely many terms inside the linterval and a finite number of terms outside it.

Exercise 1.

Prove that 2 is not a limit of $\left\{\frac{3n+1}{n}\right\}$.

If possible, let Solution 1.

 $\lim_{n\to\infty}\frac{3n+1}{n}=2$ Then, $\forall \varepsilon>0,\ \exists n_0\in\mathbb{N},\ \mathrm{s.t.}\ \left|\frac{3n+1}{n}-2\right|<\varepsilon,\ \forall n\geq n_0.$ However,

$$\left|\frac{3n+1}{n}-2\right|=1+\frac{1}{n}>1$$

This is a contradiction for $\varepsilon = \frac{1}{2}$. Therefore, 2 is not a limit.

Theorem 2 If a sequence $\{a_n\}$ has limit L, then the sequence is bounded. **Theorem 1** If a sequence $\{a_n\}$ has a limit L then the limit is unique.

Theorem 3 Let $\lim a_n = a$

 $\lim b_n = b$

and let c be a constant. Then,

 $\lim(a_n\pm b_n)\!=\!\lim a_n\pm \lim b_n$ $\lim(ca_n)\!=\!c\!\lim\!a_n$

 $\lim(\frac{a_n}{b_n})\!=\!\frac{\lim a_n}{\lim b_n}\quad(\text{ if }\lim b\!\neq\!0)$ $\lim(a_nb_n)\!=\!\lim a_n\!\lim\!b_n$

Theorem 4 Let $\{b_n\}$ be bounded and let $\lim a_n = 0$. Then,

Theorem 5 (Sandwich Theorem) Let $\{a_n\}$, $\{b_n\}$, $\{c_n\}$ be three sequences. If $\lim_{n\to\infty} \lim_{n\to\infty} \lim_{n\to\infty}$ $\lim(a_nb_n)=0$

Exercise 2. Calculate $\lim_{n\to\infty} \sqrt[n]{2^n+3^n}$

Solution 2.

 $\sqrt[3]{3n} \le \sqrt[3]{2n+3n} \le \sqrt[3]{3n+3n} = \sqrt[3]{2 \cdot 3n}$ $\therefore 3 \leq \sqrt[n]{2^n + 3^n} \leq 3\sqrt[n]{2}$

Therefore, by the Sandwich Theorem, $\lim_{n\to\infty} \sqrt{2^n + 3^n} = 3$.

Theorem 6 Any monotonically increasing sequence which is bounded from above conveyers. Similarly, any monotonically decreasing sequence which is bounded from below converges.

Exercise 3.

Prove that there exists a limit for $a_n = \sqrt{2 + \sqrt{2 + \sqrt{2 + \sqrt{2 + \dots}}}}$ and find it.

 $a_1 = \sqrt{2} < \sqrt{2 + \sqrt{2}} = a_2$ If possible, let $a_{n-1}\!<\!a_n$ Hence, by induction, $\{a_n\}$ is monotonically increasing.

 $a_1 = \sqrt{2} \le 2$ If possible, let $a_n \le 2$

 $\therefore \sqrt{2+a_n} \leq \sqrt{2+2}$ $a_{n+1} \le 2$

Hence, by induction, $\{a_n\}$ is bounded from above by 2. Therefore, by, $\{a_n\}$ converges.

1.2 Sub-sequences

Definition 9 (Sub-sequence) Let $\{a_n\}_{n=1}^\infty$ be a sequence. Let $\{h_k\}_{k=1}^\infty$ be a strongly increasing sequence of natural numbers. Let $\{b_k\}_{k=1}^\infty$ be a sequence such that $b_k = a_{nk}$. Then $\{b_k\}_{k=1}^\infty$ is called a sub-sequence of $\{a_n\}_{n=1}^{\infty}$.

Theorem 7 If the sequence $\{a_n\}$ converges to L in a wide sense, i.e. L can be infinite, then any sub-sequence of $\{a_n\}$ converges to the same limit L.

Definition 10 (Partial limit) A real number a, which may be infinite, is called a partial limit of the sequence $\{a_n\}$ is there exists a sub-sequence of $\{a_n\}$ which converges to a.

Theorem 8 (Bolzano-Weierstrass Theorem) For any bounded sequence there exists a subsequence which is convergent, s.t. there exists at least one partial limit.

Definition 11 (Upper partial limit) The largest partial limit of a sequence is called the upper partial limit. It is denoted by $\overline{\lim}a_n$ or \lim

Definition 12 (Lower partial limit) The smallest partial limit of a sequence is called the upper partial limit. It is denoted by $\overline{\lim}a_n$ or liminfa_n.

Theorem 9 If the sequence $\{a_n\}$ is bounded and $\overline{\lim} a_n = \underline{\lim} a_n = a$ then

1.3 Cauchy Characterisation of Convergence

Definition 13 A sequence $\{a_n\}$ is called a Cauchy sequence if $\forall \varepsilon>0, \exists n_0\in\mathbb{N}, \text{ s.t. } \forall m,n\geq n_0, \ |a_n-a_m|<\varepsilon.$

Theorem 10 (Cauchy Characterisation of Convergence) A sequence $\{a_n\}$ converges if and only if it is a Cauchy sequence.

Theorem 11 (Another Formulation of the Cauchy Characterisation Theorem) The sequence $\{a_n\}$ converges if and only if $\forall \varepsilon > 0$, $\exists n_0 \in \mathbb{N}$, such that $\forall n \geq n_0$ and $\forall p \in \mathbb{N}$, $|a_{n+p} - a_n| < \varepsilon$.

Prove that the sequence $a_n = \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2}$ is convergent

$$|a_{n+p}-a_n| = \left| \frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{(n+p)^2} - \left(\frac{1}{1^2} + \frac{1}{2^2} + \dots + \frac{1}{n^2} \right) \right|$$

$$= \frac{1}{(n+1)^2} + \frac{1}{(n+2)^2} + \dots + \frac{1}{(n+p)^2}$$

$$\therefore |a_{n+p}-a_n| < \frac{1}{n} - \frac{1}{n+1} + \frac{1}{(n+1)(n+2)} + \dots + \frac{1}{(n+p-1)(n+p)}$$

$$\therefore |a_{n+p}-a_n| < \frac{1}{n} - \frac{1}{n+1} + \frac{1}{n+1} + \dots + \frac{1}{p \cdot p - 1} - \frac{1}{n+p}$$

$$\therefore |a_{n+p}-a_n| < \frac{1}{n} - \frac{1}{n+p}$$

$$|..|a_{n+p}-a_n|<\frac{1}{n}$$

Therefore, $\forall \varepsilon>0, \exists n_0\in\mathbb{N}$, s.t. $\forall n\geq n_0$ and $\forall p\in\mathbb{N}, |a_{n+p}-a_n|<\varepsilon$, where $n_0>\frac{1}{\varepsilon}$.

Prove that the sequence

$$a_n = \frac{1}{1} + \frac{1}{n} + \dots + \frac{1}{n}$$
diverges.

Solution 5.

If possible, let the sequence converge. Then, by the Cauchy Characterisation of Convergence, $\forall \epsilon > 0$, $\exists n_0 \in \mathbb{N}$, s.t. $\forall n \geq n_0$ and $\forall p \in \mathbb{N}$, $|a_{n+p} - a_n| < \epsilon$.

$$\begin{aligned} |a_{n+p} - a_n| &= \left| \frac{1}{1} + \frac{1}{2} + \dots + \frac{1}{n+p} - \left(\frac{1}{n} + \dots + \frac{1}{n} \right) \right| \\ &= \frac{1}{n+1} + \dots + \frac{1}{n+p} \\ &= \frac{1}{n+1} + \dots + \frac{1}{n+p} \\ &\geq p \cdot \frac{1}{n+p} \\ &\therefore |a_{n+p} - a_n| > \frac{p}{n+p} \\ &\text{If } n = p. \end{aligned}$$

If
$$n=p$$
,
$$\frac{p}{n+p} = \frac{1}{2}$$
This contrad

of Convergence, for $\varepsilon = \frac{1}{4}$. Therefore, the sequence diverges. This contradicts the result obtained from the Cauchy Characterisation

Definition 14 (p-series) The series $\sum_{n=1}^{\infty}\frac{1}{n^{p}}$ is called the p-series.

Theorem 12 The p-series converges for p>1 and diverges for $p\leq 1$.

Theorem 13 If $\sum a_n$ converges, then $\lim_{n\to\infty} a_n = 0$, but the converse is

Theorem 14 If $\sum a_n$ and $\sum b_n$ converge, then $\sum (a_n \pm b_n)$ and $\sum ca_n$, where c is a constant, also converge. Also, $\sum (a_n \pm b_n) = \sum a_n \pm \sum b_n$

$$\sum (ca_n) = c \sum a_n$$

2.1 Convergence Criteria

2.1.1Leibniz's Criteria

 $\sum (-1)^{n-1}a_n$ with $a_n > 0$ satisfies Theorem 15 (Leibniz's Criteria for Convergence) If an alternating series

(1)
$$a_{n+1} \le a_n$$
, i.e. $\{a_n\}$ is monotonically decreasing. (2) $\lim_{n \to \infty} a_n = 0$

then the series $(-1)^{n-1}a_n$ converges

 $a_n = \frac{1}{n} > 0$, a_n decreases and $\lim a_n = 0$. **Example 1.** The alternating harmonic series $\sum \frac{(-1)^n-1}{n}$ converges as $n=\frac{1}{n}$ or downward $n=\frac{1}{n}$

2.1.2Comparison Test

Theorem 16 (First Comparison Test for Convergence) Assume $\exists n_0 \in \mathbb{N}$, such that $a_n \geq 0$, $b_n \geq 0$, $\forall n \geq n_0$.

(1) If
$$a_n \le b_n$$
, $\forall n \ge n_0$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

(2) If $a_n \ge b_n$, $\forall n \ge n_0$ and $\sum_{n=1}^{\infty} b_n$ diverges, then $\sum_{n=1}^{\infty} a_n$ diverges.

Theorem 17 (Another Formulation of the Comparison Test for Convergence) Assume $\exists n_0 \in \mathbb{N}$, such that $a_n \geq 0$, $b_n \geq 0$, $\forall n \geq n_0$, then if $\lim_{n \to \infty} \frac{a_n}{b_n}$ exists, then $\sum a_n$ and $\sum b_n$ converge or diverge simultaneously.

2.1.3d'Alembert Criteria (Ratio Test)

Definition 15 (Absolute and conditional convergence) The series $\sum a_n$ is said to converge absolutely if $\sum |a_n|$ converges. The series $\sum a_n$ is said to converge conditionally if it converges but $\sum |a_n|$ diverges.

Theorem 18 If the series $\sum a_n$ converges absolutely then it converges

Theorem 19 (d'Alembert Criteria (Ratio Test)) (1) If
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right|$$

 $L < 1$ then $\sum_{n=1}^{\infty} a_n$ converges absolutely.

2.1.4Cauchy Criteria (Cauchy Root Test)

Theorem 20 (Cauchy Criteria (Cauchy Root Test)) (1) If
$$\lim_{n \to \infty} \frac{T}{a_n} = L < 1$$
 then $\sum_{n \to \infty} converges absolutely.$

$$\overline{\lim} \sqrt[n]{|a_n|} = L < 1 \text{ then } \sum a_n \text{ converges absolutely.}$$
(2) If $\overline{\lim} \sqrt[n]{|a_n|} = L > 1$ (including $L = \infty$), then $\sum a_n$ diverges.
(3) If $L = 1$, the test does not apply.

 $a_n = f(n)$. Then the series $\sum_{n=1}^{\infty} a_n$ converges if and only if the improper **Theorem 21** (Integral Test for Series Convergence) Let f(x) be a continuous, non-negative, monotonic decreasing function on $[1,\infty)$ and let

integral
$$\int_{1}^{1} f(x) dx$$
 converges.

Theorem 22 If the series $\sum a_n$ absolutely converges and the series $\sum b_n$ is obtained from $\sum a_n$ by changing the order of the terms in $\sum a_n$ then $\sum b_n$ also absolutely converges and $\sum b_n = \sum a_n$.

Theorem 23 If a series converges then the series with brackets without changing the order of terms also converges. That is, if \sum_{a_n} converges, then any series of the form $(a_1+a_2)+(a_3+a_4+a_5)+a_6+...$ also converges.

Theorem 24 If a series with brackets converges and the terms in the brackets have the same sign, then the series without brackets also converges

3 Power Series

series. **Definition 16** (Power series) The series $\sum_{n=0}^{\infty} a_n (x-c)^n$ is called a power

Theorem 25 (Cauchy-Hadamard Theorem) For any power se $R = \frac{1}{\lim_{n \to \infty} V[a_n]}$ and the series converges for |x-c| < R and diverges for ries $\sum_{n=0}^{\infty} a_n(x-c)^n$ there exists the limit, which may be infinity,

Definition 17 (Radius of convergence and convergence interval) The number R is called the radius of convergence and the interval |x-c| < R is called the convergence interval of the series. The point c is called the convergence interval.

must be separately checked for series convergence.

|x-c|>R. The end points of the interval, i.e. x=c-R and x=c+R

Theorem 26 If $\exists \lim_{n\to\infty} \left| \frac{a_n}{a_{n+1}} \right|$, which may be infinite, then,

 $\lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$

Theorem 27 (Stirling's Approximation) For $n \to \infty$, $n! \approx \left(\frac{n}{e}\right)^n \sqrt{2\pi n}$

Exercise 6.

Find the domain of convergence of $\sum_{n=1}^{\infty} \frac{(2x-4)^n}{n}$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \sin\varphi d\varphi d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{\pi} \int_{0}^{\pi} \sin\varphi d\varphi$$

$$= \int_{0}^{2\pi} \left(-\cos\varphi\right)_{0}^{\pi}$$

$$= 4\pi$$

14 Green's Theorem

 $\overline{F}(x,y,z) = \Big(P(x,y,z),Q(x,y,z),R(x,y,z)\Big)$ **Definition 52** (Curl/Rotor) If

 $\text{curl} \overline{R} \!=\! \nabla \!\times\! \overline{F}$

$$= \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

Definition 53 (Divergence) If

 $\overline{F}(x,\!y,\!z)\!=\!\left(P(x,\!y,\!z),\!Q(x,\!y,\!z),\!R(x,\!y,\!z)\right)$

$$\overrightarrow{\operatorname{div}R} = \nabla \cdot \overline{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

continuous first order partial derivatives of P, Q, R, and if $\mathrm{curl} F=0$, then \overline{F} is a conservative vector field. **Theorem 61** If a vector field $\overline{F}(x,y,z)$ is defined on \mathbb{R}^3 , if there exist

In this case, $\exists f(x,y,z)$, such that $\overline{F} = \nabla f$.

Theorem 62 (Green's Theorem) Let C be a piecewise smooth, simple, and closed curve in \mathbb{R}^2 with positive orientation. Let D be a domain bounded by C. If there exist continuous first order partial derivatives of P(x,y) and Q(x,y) in an open domain which contains D, then

$$\begin{split} W &= \int\limits_{C} \overline{F} \cdot \hat{T} \mathrm{d} \mathbf{s} = \int\limits_{C} P \mathrm{d} \mathbf{x} + Q \mathrm{d} \mathbf{y} \\ &= \iint\limits_{D} (Q_x - P_y) \mathrm{d} A = \iint\limits_{D} \mathrm{curl} \overline{F} \cdot \hat{\mathbf{k}} \mathrm{d} A = \iint\limits_{D} \mathrm{div} \overline{F} \mathrm{d} A \end{split}$$

15 Stoke's Theorem

Definition 54 (Curve with positive orientation) Let S be an oriented surface with normal \hat{n} and let C be a curve bounding S. C is called a curve with positive orientation with respect to S if, as we walk on C in this direction and with our head in the direction of \hat{n} , the surface S is always on our left.

there exist continuous first order partial derivatives of $\tilde{P},\,Q,\,R$ in an open domain of \mathbb{R}^3 which contains S . Then **Theorem 63** (Stoke's Theorem) Let S be a piecewise smooth surface with normal \(\hat{n}\) and let S be bounded by a curve C which is piecewise smooth, simple, closed and with positive orientation with respect to S. Let $\overline{F}(x,y,z) = (P(x,y,z),Q(x,y,z),R(x,y,z))$ be a vector field such that

$$\int_{C} \overline{F} \cdot \hat{T} ds = \iint_{S} \operatorname{curl} \overline{F} \cdot \hat{n} dS$$

Stoke's Theorem is a generalization of Green's Theorem

16 Gauss' Theorem

Theorem 64 Let E be a body bounded by a surface S, with a positive orientation of S. Let $\overline{F} = (P,Q,R)$

$$\iint_{S} \overline{F} \cdot \hat{n} dS = \iiint_{E} div \overline{F} dV$$

Find $\iint_{S} \overline{F} \cdot \hat{n} dS$ where

$$\overline{F} = \left(xy, y^2 + e^{xz^2}, \sin xy\right)$$

and S is a lateral surface of a body E which is bounded by the parabolic cylinder $z=1-x^2$ and the planes z=, y=0, and y+z=2.

Solution 26.

11

$$\iint_{S} \overline{F} \cdot \hat{n} dS = \iiint_{E} \operatorname{div} \overline{F} dV$$

$$= \iiint_{E} (y + 2y + 0) dV$$

$$= 3 \iiint_{E_{11}} y dV$$

$$= 3 \iiint_{D} \left(\int_{0}^{2-s} y dy \right) dA$$

$$= 3 \iint_{D} \left(\int_{2}^{2} \frac{y^{2}}{y - 0} \right) dA$$

$$= 3 \iint_{D} \left(\int_{2}^{2} \frac{y^{2}}{y - 0} \right) dA$$

$$= \frac{3}{2} \iint_{D} (2-z)^{2} dA$$

$$= \frac{3}{2} \iint_{D} (2-z)^{2} dz dx$$

$$= \frac{3}{2} \iint_{D} (2-z)^{2} dz dx$$
184

Verify Stoke's Theorem when $\overline{F} = \left(-y^2, x, z^2\right)$ and C is the intersecton

like between the plane y+z=2 and the culinder $x^2+y^2=1$. The direction of C is clockwise, when seen from above. Let S be the circular surface enclosed by C. As C is clockwise, when seen from above, \hat{n} is negative. Let Solution 27.

$$x = \cos t$$

 $y = \sin t$
Therefore, as $y+z=2$,

 $z=2-\sin t$

where, $t:2\pi\to 0$. t goes from 2π to 0 and not from 0 to 2π , as C is directed clockwise, when seen from above. Therefore, the LHS is,

$$\int \overline{F} \cdot \hat{T} dS = \int_{2\pi}^{0} \left(Px'(t) + Qy'(t) + Rz'(t) \right) dt$$

$$= \int_{2\pi}^{0} \left(-\sin^{2}t \cdot -\sin t + \cos t \cdot \cos t + (2 - \sin t)^{2} \cdot -\cos t \right) dt$$

$$= \int_{2\pi}^{0} \left(\left(1 - \cos^{2}t \right) \sin t + \frac{1 + \cos t}{2} - (2 - \sin t)^{2} \cos t \right) dt$$

$$= \int_{2\pi}^{2\pi} \left(\left(1 - \cos^{2}t \right) \sin t + \frac{1 + \cos t}{2} - (2 - \sin t)^{2} \cos t \right) dt$$

$$= -\cos t + \frac{\cos^{3}t}{3} + \frac{t}{2} + \frac{\sin 2t}{4} + \frac{(2 - \sin t)^{3}}{3} \Big|_{2\pi}^{0}$$

$$= -\cos t + \frac{\cos^{3}t}{3} + \frac{t}{2} + \frac{\sin^{2}t}{4} + \frac{(2 - \sin t)^{3}}{3} \Big|_{2\pi}^{0}$$

curl
$$\overline{F} = (P,Q/K)$$

the a vector field such that there exist continuous first order portfal deriva-
tives of P,Q , and Q , in some open domain which contains E . Then,
$$\begin{vmatrix} \hat{a} & \hat{b} & \hat{b} \\ \hat{b} & \hat{b} & \hat{b} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \end{vmatrix}$$

$$= \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z}$$

Exercise 26.
$$= \frac{\partial}{\partial x} \frac{\partial}{\partial y} \frac{\partial}{\partial z}$$
Find $\iint \overline{F} \cdot \hat{n} dS$ where
$$= \frac{\partial}{\partial y} \frac{\partial}{\partial z} \cdot \hat{b}$$

$$= \frac{\partial}{\partial z} \cdot \hat{b} \cdot \hat{b}$$
Find $\iint \overline{F} \cdot \hat{n} dS$ where
$$= \frac{\partial}{\partial y} \cdot \hat{b} \cdot \hat{b} \cdot \hat{b}$$

$$= \frac{\partial}{\partial z} \cdot \hat{b} \cdot \hat{b} \cdot \hat{b}$$

$$= \frac{\partial}{\partial z} \cdot \hat{b} \cdot \hat{b} \cdot \hat{b}$$
Find $\int \overline{F} \cdot \hat{b} \cdot \hat{b} \cdot \hat{b} \cdot \hat{b} \cdot \hat{b}$

$$= \frac{\partial}{\partial z} \cdot \hat{b} \cdot \hat{b} \cdot \hat{b} \cdot \hat{b} \cdot \hat{b}$$
Find S is a lateral and co of a body E which is bounded by the parabolic
$$= \hat{P}\hat{i} + \hat{Q}\hat{j} + \hat{R}\hat{k}$$

$$= \hat{P}\hat{i} + \hat{Q}\hat{j} + \hat{R}\hat{k}$$

$$= \sqrt{\sin^4 \varphi + \sin^2 \varphi \cos^2 \varphi}$$

$$= \sqrt{\sin^2 \varphi}$$

$$= \sin \varphi$$

$$\begin{cases} x^2 dS = \int \left(\cos \theta \sin \varphi \right)^2 \sin \varphi d\theta d\varphi \\ = \int_0^{2\pi} \int_0^{\pi} \sin^3 \varphi \cos^2 \theta d\varphi d\theta \\ = \int_0^{\pi} \sin^3 \varphi d\varphi \int_0^{2\pi} \cos^2 \theta d\theta \\ = \int_0^{\pi} \left(1 - \cos^2 \varphi \right) \sin \varphi d\varphi \int_0^{2\pi} \frac{2\pi}{2} d\theta \\ = \int_0^{\pi} \left(\sin \varphi - \cos^2 \varphi \sin \varphi \right) d\varphi \left(\frac{\theta}{2} + \frac{\sin 2\theta}{4} \right)_0^{\pi} \right) \end{cases}$$

13 Surface Integrals of Vector Functions Definition 49 (Oriented surface) If a normal vector $\overline{n}(x,y,z)$ to the surface S is continuously changing on S then S is said to be an oriented surface.

Theorem 59 If a surface is given by F(x,y,z)=k, then ∇F is a normal vector to the surface at a point on it.

Definition 50 (Surface with positive orientation) A surface S is said to have positive orientation if \hat{n} is positive. A closed surface S is said to have positive orientation if \hat{n} is directed outwards.

Definition 51 (Surface Integral of Vector Functions) If

 $\overline{F}(x,y,z) = \left(P(x,y,z),Q(x,y,z),R(x,y,z)\right)$

is a continuous vector function on S with orientation $\hat{n},$ then the surface integral of F over \overline{S} is

$$\iiint\limits_{S} \overline{F} \cdot d\overline{S} = \iint\limits_{S} \overline{F} \cdot \hat{n} dS$$

This integral is also called the flux of \overline{F} through \overline{S} in direction $\hat{n}.$

Theorem 60 Let $\overline{F}(x,y,z) = \Big(P(x,y,z),Q(x,y,z),R(x,y,z)\Big)$

 $lf \, S\!:\!z\!=\!g(x,\!y), \ (x,\!y)\!\in\! D, \ then,$ $\iint_{S} \overline{F} \cdot d\overline{S} = \iint_{S} \overline{F} \cdot \hat{n} dS$

 $= \iint \left(-Pg_x - Qg_y + R \right) \mathrm{d}x \mathrm{d}y$ or S with positive orientation, and

 $\iint_{S} \overline{F} \cdot d\overline{S} = \iint_{S} \overline{F} \cdot \hat{n} dS$

 $= - \iint\limits_{D} \left(-Pg_x - Qg_y + R \right) \mathrm{d}x \mathrm{d}y$

for S with negative orientation. If S is given parametrically as $\overline{r}(u,v) = (x(u,v),y(u,v),z(u,v))$ $\iint_{S} \overline{F} \cdot d\overline{S} = \iint_{S} \overline{F} \cdot \hat{n} dS$ If S is closed and given parametrically, it can be solved as above. If S is closed and not given parametrically, it can be divided into surfaces

 $= \iint \overline{F} \cdot (\overline{r}_u \times \overline{r}_v) \mathrm{d}u \mathrm{d}v$

of the first kind, and each of the integrals over the smaller surfaces can be solved as above.

Exercise 24.

Calculate $\iint \overline{F} \cdot \hat{n} dS$, where $S : x^2 + y^2 + z^2 = 1$.

Solution 24. The surface S is given by $x^2 + y^2 + z^2 = 1$

 $\therefore z = \pm \sqrt{1 - x^2 - y^2}$ Therefore, let $S_1 = -\sqrt{1-x^2-y^2}$ $S_2 = \sqrt{1-x^2-y^2}$ Therefore,

 $\iint_{S} \overline{F} \cdot \hat{n} dS = \iint_{S_{1}} \overline{F} \cdot \hat{n} dS + \iint_{S_{2}} \overline{F} \cdot \hat{n} dS$ $= -\iint_{S} \left(-P(g_{1})_{x} - Q(g_{1})_{y} + R \right) dx dy$ $+ \iint\limits_{D} \Big(-P(g_1)_x - Q(g_1)_y + R \Big) \mathrm{d}x \mathrm{d}y$

 $= 2 \iint\limits_{\mathcal{O}} \left(\frac{x^2}{\sqrt{1 - x^2 - y^2}} + \frac{y^2}{\sqrt{1 - x^2 - y^2}} + \sqrt{1 - x^2 - y^2} \right) \mathrm{d}A$

Therefore, the series diverges. If $x = \frac{3}{2}$,

 $\sum_{n=1}^{\infty} \frac{2^n}{n} \left(\frac{5}{2} - 2\right)^n$

 $\sum_{n=1}^{\infty} \frac{2^n}{n} \left(\frac{3}{2} - 2\right)^n$

Exercise 25. Given

 $\overline{z} = (x, y, z)$

Calculate $\iint \overline{F} \cdot \hat{n} \, \mathrm{d} \, S$, where $S: x^2 + y^2 + z^2 = 1$, using parametric epresentation.

 $(\theta,\varphi) = (x(\theta,\varphi),y(\theta,\varphi),z(\theta,\varphi))$ 5 is given parametrically by Solution 25.

where $x(\theta,\varphi) = \cos\theta \sin\varphi$ $\varphi(\theta,\varphi) = \sin\theta\sin\varphi$

 $\overline{r}_{\theta} \times \overline{r}_{\varphi} = \left(-\cos\theta \sin^2\varphi, -\sin\theta \sin^2\varphi, -\sin\varphi \cos\varphi \right)$ with $D: \{0 \le \theta \le 2\pi, 0 \le \varphi \le \pi\}$. Therefore,

However, the positive normal to S at that point is positively directed. Therefore, If $\theta = \frac{\pi}{2}$, $\varphi = \frac{\pi}{2}$, $\overline{r}_{\theta} \times \overline{r}_{\varphi} = (0, -1, 0)$

 $= - \int \!\! \int \!\! \left(-\cos^2\!\theta \sin^3\!\varphi - \sin^2\!\theta \sin^3\!\varphi - \cos^2\!\varphi \!\sin\!\varphi \right) \mathrm{d}\theta \mathrm{d}\varphi$ $= / / \left(\sin^3 \varphi + \cos^2 \varphi \sin \varphi \right) d\theta d\varphi$ $\int \overline{F} \cdot \hat{n} dS = - \iint \overline{F} \cdot \left(\overline{r}_{\theta} \times \overline{r}_{\varphi} \right) d\theta d\varphi$ $= \iint_{\Omega} \sin\varphi d\theta d\varphi$

Solution 6.

$$\sum_{n=1}^{\infty}\frac{(2x-4)^n}{n}=\sum_{n=1}^{\infty}\frac{2^n(x-2)^n}{n}$$
 Therefore, by Cauchy's Formula for Radius of Convergence,

$$\lim_{n \to \infty} f_n(x) =$$

 $=\frac{\lim\limits_{n\to\infty}\frac{2}{\sqrt{n}}}{\frac{1}{2}}$ $=\frac{1}{2}$ Therefore, the series converges for

 $\lim_{n \to \infty} \sqrt[n]{\frac{2^n}{n}}$

 $R = \overline{\lim_{1 \to \infty} \sqrt{|a_n|}}$

 $|x-2|<\frac{1}{2}$ and diverges for

 $|x-2| > \frac{1}{2}$ If $x = \frac{5}{2}$,

Theorem 28 $f_n(x)$ converges uniformly to f(x) in D if and only if $\lim\sup_{n\to\infty}\int_{x\in D}|f_n(x)-f(x)|=0.$

Exercise 10.

 $\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} x^n$

Pherefore, $\forall \varepsilon > 0$, N = 1, $|1\!-\!1|\!<\!\varepsilon$

$$\begin{split} \frac{1}{\lim \sqrt[3]{q_n}} &= x + x + 2u^2 + 6x^6 + 24x^{24} + \dots \\ &\text{Therefore,} \\ a_n &= \begin{cases} n & \text{:} & n = k^2 \\ n & \text{:} & n \neq k^2 \end{cases} \\ &\text{Therefore,} \\ p &= 1 \end{split}$$

 $R = \frac{1}{\lim_{n \to \infty} \sqrt[n]{a_n}}$

 $\begin{aligned} &\text{If } 0\!<\!x\!<\!1,\\ &|f_n(x)\!-\!f(x)|\!=\!|x^n\!-\!0| \end{aligned}$

If possible, let $|f_n(x) - f(x)| = x^n < \varepsilon$. Therefore,

 $|\cdot| \log_x x^n > \log_x \varepsilon$

 $\log_x s > \log_x s$

Therefore, $f_n(x)$ converges pointwise in [0,1].

Definition 18 (Sequence of functions) A sequence $\{f_n\} = f_1(x), f_2(x),...$ defined on $D \subseteq \mathbb{R}$ is called a sequence of functions.

4 Series of Real-valued Functions

If possible let $f_n(x)$ converge uniformly on [0,1]. Therefore, $\forall \varepsilon > 0$, $\exists N$ dependent on ε , such that $|f_n(x) - f(x)| < \varepsilon$.

Let $\varepsilon=\frac{1}{3}$. Therefore, $\exists N$ which is dependent on $\varepsilon,$ such that $\forall n>N,\, \forall x\in [0,1],$

Definition 19 (Pointwise convergence and domain of convergence) $\{f_n\}$ converges pointwise in some domain $E\subseteq D$ if for every $x\in E$, the sequence of $\{f_n(x)\}$ converges. In such a case, E is said to be a domain of convergence of $\{f_n\}$.

Let $x = \frac{1}{2}$, n = N + 1. Therefore, Exercise 8. Find the domain of convergence of $f_n(x) = x^n$, defined on some $D \subseteq \mathbb{R}$.

 $\left| f_n \left(\frac{1}{2} \right) - f \left(\frac{1}{2} \right) \right| = \left| \frac{1}{2} - 0 \right|$

$$\lim_{n\to\infty} f_n(x) = \begin{cases} 0 & ; & -1 < x < 1 \\ 1 & ; & x=1 \\ \text{diverges} & ; & x \notin (-1,1] \end{cases}$$

Therefore, the domain of convergence of $\{f_n\}$ is (-1,1].

Let $f(x):(0,\infty)\to\mathbb{R}$ be some function such that $\lim_{x\to\infty}f(x)=0$. Let $f_n(x)=f(nx)$. What is the domain of convergence of f_n ? What is the limit function?

Let x have some fixed value in $(0,\infty)$. Therefore, as $\lim_{x\to\infty} f(x) = 0$, Solution 9.

$$\lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} f(nx)$$

Therefore, the domain of convergence is $(0,\infty)$ and the limit function is a constant function with value 0.

4.1 Uniform Convergence of Series of Functions

Definition 20 (Pointwise convergence of a sequence of functions) If $\forall x \in D, \ \forall \varepsilon > 0$, $\exists N$ which depends on ε and x, such that $\forall n \geq N, \ |f_n(x) - f(x)| < \varepsilon$, then $\forall x \in D, \ \lim_{n \to \infty} = f(x)$.

Definition 21 (Uniform convergence of a sequence of functions) The sequence $\{f_n(x)\}$ is said to converge uniformly to f(x) in D if $\forall \varepsilon > 0$, $\exists N = N(\varepsilon)$, such that $\forall n \geq N$, $\forall x \in D$, $|f_n(x) - f(x)| < \varepsilon$. It can be denoted as $f_n(x) = \exists f(x)$.

Does $f_n(x) = x^n$ converge in [0,1]?

Solution 10.

 $\therefore f(x) = \begin{cases} 0 & \text{;} & 0 \le x < 1 \\ 1 & \text{;} & x = 1 \end{cases}$

 $=\sum_{n=1}^{\infty}(-1)^n\frac{1}{n}$ Therefore, by Leibniz's Criteria for Convergence, the series converges. Therefore, the domain of convergence is $\left[\frac{3}{2},\frac{5}{12}\right]$.

$$\begin{split} f(0) &= 0 \\ \text{Therefore, } \forall \varepsilon > 0, \, N = 1, \\ |0 - 0| &< \varepsilon \\ \therefore |f_n(0) - f(0)| < \varepsilon \end{split}$$

Find the radius of convergence of $\sum_{n=0}^{\infty} n!x^{n!}$.

Exercise 7.

Solution 7.

 $.|f_n(1)-f(1)|<\varepsilon$

Therefore, for $N = \lfloor \log_x \varepsilon \rfloor + 1$, $|f_n(x) - f(x)| < \varepsilon$.

 $f_n(x) - f(x)| < \frac{1}{2}$

$$\therefore \left| f_n\left(\frac{1}{2}\right) - f\left(\frac{1}{2}\right) \right| > \frac{1}{3}$$

Therefore, $|f_n(x)-f(x)|>\varepsilon$. This is a contradiction. Hence, $f_n(x)$ is does not converge uniformly. **Definition 22** (Supremum) Let $A \subseteq \mathbb{R}$ be a bounded set. M is said to be the supremum of A if

 $\begin{array}{ll} \text{(1)} \ \ \forall x\!\in\!A,\, x\!\leq\!M, \text{i.e.}\ M \text{ is an upper bound of }A.\\ \text{(2)} \ \ \forall \varepsilon,\, \exists x\!\in\!A, \text{ such that } x\!>\!M\!-\!\varepsilon. \end{array}$

That is, the supremum of A is the least upper bound of A. The supremum may or may not be in A.

Definition 23 (Infimum) Let $A \subseteq \mathbb{R}$ be a bounded set. M is said to be the infimum of A if

 $\begin{array}{ll} \text{(1)} \ \, \forall x\!\in\!A,\,x\!\geq\!M, \text{i.e.}\ \, M \text{ is an upper bound of }A.\\ \text{(2)} \ \, \forall \varepsilon,\,\exists x\!\in\!A,\,\text{such that }x\!<\!M\!-\!\varepsilon. \end{array}$

That is, the infimum of A is the greatest lower bound of A. The infimum may or may not be in A.

Theorem 29 Every bounded set A has a supremum and an infimum.

Theorem 30
$$f_n \stackrel{E}{\Longrightarrow} f$$
 if and only if $\lim_{n \to \infty} \left(\sup\{|f_n(x) - f(x)| : x \in E\} \right) = 0$

Definition 24 (Remainder of a series of functions) Let $f(x) = \sum_{k=1}^{\infty} u_k(x)$.

Let the partial sums be denoted by $f_n(x) = \sum_{k=1}^n u_k(x)$. Then

$$R_n(x) = f(x) - f_n(x) = \sum_{k=n+1} u_k(x)$$

is called a remainder of the series $f(x) = \sum_{k=1}^{\infty} u_k(x)$.

Definition 25 (Uniform convergence of a series of functions) If $f_n(x)$ converges uniformly to f(x) on D, i.e. if $\lim_{n\to\infty} R_n(x) = 0$, then the series

 $\sum_{k=1}^{\infty}u_k(x)$ is said to converge uniformly on D..

Show that the series $f(x) = \sum_{k=1}^{\infty} x^{k-1} = \frac{1}{1-k}$ does not converge uniformly on (-1,1).

The series converges uniformly if and
$$c$$

The series converges uniformly if and only if $\lim_{n\to\infty} R_n(x) = 0$.

$$\lim_{n \to \infty(-1,1)} \sup |R_n(x) - 0| = \lim_{n \to \infty(-1,1)} \sup \sum_{k=n+1}^{\infty} x^{k-1}$$

$$= \lim_{n \to \infty(-1,1)} \sup \left| \frac{x^n}{|x-x|} \right|$$

$$= \lim_{n \to \infty(-1,1)} \left| \frac{|x|^n}{|x-x|} \right|$$

$$= \lim_{n \to \infty(-1,1)} \sup \left| \frac{|x|^n}{|x-x|} \right|$$

$$= \lim_{n \to \infty} \infty$$

$$= \infty$$

Therefore, the series does not converge uniformly on (-1,1)

Show that the series $f(x) = \sum_{k=1}^{\infty} x^{k-1} = \frac{1}{1-k}$ does not converge uniformly

$$\lim_{n\to\infty}\sup_{\left(-\frac{1}{2},\frac{1}{2}\right)}|R_n(x)-0|=\lim_{n\to\infty}\sup_{\left(-\frac{1}{2},\frac{1}{2}\right)}\sum_{k=n+1}^{\infty}x^{k-1}$$

$$=\lim_{n\to\infty}\sup_{\left(-\frac{1}{2},\frac{1}{2}\right)}\left|\frac{x^n}{1-x}\right|$$

The series converges uniformly if and only if $\lim_{n\to\infty} R_n(x) = 0$.

$$\lim_{n \to \infty} \sup_{\left(-\frac{1}{2}, \frac{1}{2}\right)} |R_n(x) - 0| = \lim_{n \to \infty} \sup_{\left(-\frac{1}{2}, \frac{1}{2}\right)} \sum_{k=n+1}^{\infty} x^{k-1}$$

$$= \lim_{n \to \infty} \sup_{\left(-\frac{1}{2}, \frac{1}{2}\right)} \left| \frac{x^n}{1-x} \right|$$

$$= \lim_{n \to \infty} \sup_{\left(-\frac{1}{2}, \frac{1}{2}\right)} \frac{|x|^n}{1-x}$$

$$= \lim_{n \to \infty} \frac{\left(\frac{1}{2}\right)^n}{1-\frac{1}{2}}$$

$$= \lim_{n \to \infty} \left(\frac{1}{2}\right)^{n-1}$$

Therefore, the series converges uniformly on $\left(-\frac{1}{2},\frac{1}{2}\right)$

4.2 Weierstrass M-test

Theorem 31 (Weierstrass M-test) If $|u_k(x)| \le c_k$ on D for $k \in \{1,2,3,...\}$ and the numerical series $\sum_{k=1}^{\infty} c_k$ converges, then the series of functions

$$\sum_{k=1}^{\infty} u_k(x) \ \ converges \ \ uniformly \ on \ D.$$

Show that $\sum\limits_{k=1}^{\infty}\frac{1}{k^2}\sin(kx)$ converges uniformly on $\mathbb R.$

Exercise 13.

$$|u_k(x)| = \left| \frac{1}{k^2} \sin(kx) \right|$$
$$\therefore |u_k(x)| \le \frac{1}{k^2}$$

Therefore, let

Therefore, as $|u_k(x)| \le c_k$, and as $\sum_{k=1}^{\infty} c_k$ converges, by the Weierstrass

M-test, $\sum_{k=1}^{\infty} \frac{1}{k^2} \sin(kx)$ converges uniformly.

4.3 Application of Uniform Convergence

Theorem 32 (Continuity of a series) Let functions $u_k(x)$, $k \in \{1,2,3,...\}$ be defined on [a,b] and continuous at $x_0 \in [a,b]$. If $\sum_{k=1} u_k(x)$ converges

uniformly on [a,b] then the function $f(x) = \sum_{k=1}^{\infty} i$ also continuous at x_0

Theorem 33 (Changing the order of integration and infinite summation) If the functions $u_k(x)$, $k \in \{1,23,...\}$ are integrable on [a,b] and the series $\sum_{k=1}^{\infty} u_k(x)$ converges uniformly on [a,b] then

$$\int\limits_{a}^{\circ}\left(\sum_{k=1}^{\infty}u_{k}(x)\right)\mathrm{d}x=\sum_{k=1}^{\infty}\int\limits_{a}^{\circ}u_{k}(x)\mathrm{d}x$$

Exercise 14. Solve
$$\int_{0}^{2\pi} \left(\sum_{k=1}^{\infty} \frac{1}{k^2} \sin(kx) \right)$$
.

by the Weierstrass M-test and $u_k(x) = \frac{1}{k^2}(kx)$ are integrable on $[0,2\pi]$. Therefore, The series $f(x) = \sum_{k=1}^{\infty} \frac{1}{k^2} \sin(kx)$ converges uniformly on $[0,2\pi]$. Therefore,

Interiore,
$$\int_{0}^{2\pi} f(x) dx = \int_{0}^{2\pi} \left(\sum_{k=1}^{\infty} \frac{1}{k^2} \sin(kx) \right) dx$$

$$= \sum_{k=1}^{\infty} \left(\int_{0}^{2\pi} \frac{1}{k^2} \sin(kx) dx \right)$$

$$= \sum_{k=1}^{\infty} \left(-\frac{\cos(2\pi k)}{k^3} + \frac{1}{k^3} \right)$$

Solution 22.

 $C = C_1 \cup C_2$

 $C_2: \overline{r}(t) = (3+0 \cdot t, 4+0 \cdot t, 5-5 \cdot t)$ $C_1: \overline{r}(t) = (2+1 \cdot t, 0+4 \cdot t, 0+5 \cdot t)$ Therefore, for $t:0 \rightarrow 1$

herdone,

$$\int y dx + z dy + x dz = \int y dx + z dy + x dz + \int y dx + z dy + x dz$$

$$C_1$$

$$C_2$$

$$C_1$$

$$C_2$$

$$= \int_{0}^{1} (y_{1}(t)x_{1}'(t) + z_{1}(t)y_{1}'(t) + x_{1}(t)z_{1}'(t))dt$$

$$+ \int_{0}^{1} (y_{2}(t)x_{2}'(t) + z_{2}(t)y_{2}'(t) + x_{2}(t)z_{2}'(t))dt$$

$$=\int\limits_{0}^{1}\left(4t+5t\cdot 4+(2+t)\cdot 5\right)\mathrm{d}t$$

$$\int_{0}^{4x+3x\cdot 4+(2+t)\cdot 3} dt$$

$$\int_{0}^{1} \left(4\cdot 0+(5-5t)\cdot 0+3\cdot (-5)\right) dt$$

$$+ \int_{0}^{1} (4 \cdot 0 + (5 - 5t) \cdot 0 + 3t) dt$$

$$= \int_{0}^{1} (29t - 5) dt$$

$$= \left(29 \frac{t^2}{2} - 5t\right) \bigg|_0^1$$

11 Line Integrals of Vector Functions

Theorem 55 If $C: \overline{r}(t) = (x(t), y(t), z(t)), t: a \rightarrow b$, then

$$W = \int_{C} \overline{F} \cdot \hat{T} ds$$

$$= \int_{C} \left(\overline{F}(\overline{\tau}(t)) \right) \cdot \overline{\tau}'(t) dt$$

$$= \int_{C} \overline{F} \cdot d\overline{r}$$

$$= \int_{C} \left(P(\overline{\tau}(t)) x'(t) + Q(\overline{\tau}(t)) y'(t) + R(\overline{\tau}(t)) z'(t) \right) dt$$

$$= \int_{C} P dx + Q dy + R dz$$

$$= \int_{C} P dx + Q dy + R dz$$

Theorem 56 (Fundamental Theorem of Line Integrals) Let C be a smooth curve in \mathbb{R}^2 or \mathbb{R}^3 given parametrically by $\overline{\tau}(t)$, $t: a \to b$. Let f be a continuous function of (x,y) or (x,y,z), on C, and ∇f be a continuous $|\overline{\tau}(t)| = \sqrt{\sin^4 \varphi \cos^2 \theta + \sin^4 \varphi \sin^2 \theta + \sin^2 \varphi \cos^2 \varphi}$

vector function in a connected domain D which contains C. Then

$$W = \int_{C} \nabla f \cdot \hat{T} ds$$
$$= f(\bar{\tau}(b)) - f(\bar{\tau}(a))$$
$$= f(B) - f(A)$$

Definition 43 (Simple curve) A curve C is called a simple curve if it does not intersect itself.

if for any two points from D, the is a path C which connects the points and remains in D. **Definition 45** (Simple connected domain $D \subset \mathbb{R}^2$ is called simple connected if any simple closed curve from D contains inside itself only points in D.

Definition 46 (Curve with positive orientation) A simple closed curve C is called a curve with a positive orientation, or with anti-clockwise orientation if the domain D bounded by C always remains on the left when we circulate over C by $\overline{r}(t),t:a\rightarrow b$

12 Surface Integrals of Scalar Functions

Definition 47 (Parametic representation of surfaces) Let the surface S be given by

$$\overline{r}(u,v) = (f(u,v),g(u,v),h(u,v))$$

The equations x = f(u,v) y = g(u,v)

are called the parametric equations of Sz = h(u,v)

Definition 48 If a smooth surface S is given by $\overline{\tau}(u,v)=(x(u,v),y(u,v),\overline{\tau}(u,v)),\ u,v\in D$ and $\overline{\tau}(u,v)$ is one-to-one, then the surface area of S is

$$A = \iint_{D} |\bar{r}_{u} \times \bar{r}_{v}| du dv$$

 $\overline{r}_u = (x_u, y_u, z_u)$ $\overline{r}_v = (x_v, y_v, z_v)$

Theorem 57 If S is smooth and given by z = g(x,y), $(x,y) \in D$, then

$$\iint_{\mathbb{R}} f(x,y,z) dS = \iint_{\mathbb{R}} f(x,y,g(x,y)) \sqrt{1 + (g_x)^2 + (g_y)^2} dx dy$$

Theorem 58 If S is smooth and given parametrically by $\overline{\tau}(u,v) = (x(u,v),y(u,v),z(u,v))$, $(u,v) \in D$, then

$$\iint\limits_{S} f(x,y,z) \mathrm{d}S = \iint\limits_{D} f\left(\overline{r}(u,v)\right) |\overline{r}_{u} \times \overline{r}_{v}| \mathrm{d}u \mathrm{d}v$$

Exercise 23

Find $\iint_{S} x^2 dS$ where $S: x^2 + y^2 + z^2 = 1$.

Solution 23

 $y = \sin\theta \sin\varphi$ $z = \cos\varphi$

In spherical coordinates with $\rho = 1$, $x = \cos\theta \sin\varphi$

Therefore

 $\overline{r}(\theta,\varphi) = (\sin\varphi\cos\theta, \sin\varphi\sin\theta, \cos\varphi)$ Therefore,

 $\overline{r}_{\theta} = (-\sin\varphi\sin\theta,\sin\varphi\cos\theta,0)$

 $\bar{r}_{\varphi} = (\cos\varphi\cos\theta, \cos\varphi\sin\theta, -\sin\varphi)$

 $\overline{r}_{\theta} \times \overline{r}_{\varphi} = \begin{vmatrix} \hat{i} & \hat{j} \\ -\sin\varphi \sin\theta & \sin\varphi \cos\theta \\ \cos\varphi \cos\theta & \cos\varphi \sin\theta \end{vmatrix}$ = $\hat{i}(-\sin^2\varphi\cos\theta)$

 $-\hat{j}\left(\sin^2\varphi\sin\theta\right)$

 $+\hat{k}\left(-\sin\varphi\cos\varphi\sin^2\theta-\sin\varphi\cos\varphi\cos^2\theta\right)$

Therefore, let $D_I = \{(r, \theta, z) | 0 \le r \le 2, 0 \le \theta \le 2\pi, r \le z \le 2\}$.

$$I = \int_{--\sqrt{1-x^2}}^{2} \sqrt{\frac{1-x^2}{x^2}} \int_{-x}^{2} \left(x^2 + y^2 \right) dx dy dx$$

$$\int_{-1}^{2} \int_{-\sqrt{1-x^2}}^{2} \sqrt{\frac{x^2 + y^2}{x^2 + y^2}} dx dy dx$$

$$= \iiint_{E} (x^{2} + y^{2}) dx dy dz$$
$$= \iiint_{E} r^{2} \cdot r dr d\theta dz$$

$$=\iiint_{D_1} r^2 \cdot r dr d\theta dz$$

$$= \iiint_{D_1} r^2 \cdot r dr d\theta dz$$

$$\int_{D_1}^{D_1} \int_{D_2}^{D_2} \int_{D_2}^{D_2}^{D_2} \int_{D_2}^{D_2} \int_{D_2}^$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} r^{3}z \Big|_{z=r}^{z=2} dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} (2r^3 - r^4) dr d\theta$$

$$= \int_{0}^{2\pi} \int_{0}^{2\pi} (2r^3 - r^4) dr d\theta$$

9.2 Spherical Coordinates

Spherical coordinates are a special case of change of variables. The operator for the change of variables is

 $T(\rho,\theta,\varphi) = (x,y,z)$

where $x = \rho \cos \theta \sin \varphi$

 $y = \rho \sin \theta \sin \varphi$ $z = \rho \cos \varphi$ Therefore,

 $J = \begin{vmatrix} x_{\rho} & x_{\theta} & x_{\varphi} \\ y_{\rho} & y_{\theta} & y_{\varphi} \\ z_{\rho} & z_{\theta} & z_{\varphi} \end{vmatrix}$ $= \begin{vmatrix} \cos\theta\sin\theta \\ \sin\theta\sin\theta \\ \cos\varphi \end{vmatrix}$

Exercise 20. $=-\rho^2\sin\varphi$

Solution 20.

$$I = \iiint\limits_{B} e\left(x^2 + \nu^2 + z^2\right)^{\frac{3}{2}} \mathrm{d}x \mathrm{d}y \mathrm{d}z$$
$$= \int\limits_{0}^{\pi} \int\limits_{0}^{2\pi} \int\limits_{0}^{2\pi} \left[J\right] \mathrm{d}\rho \mathrm{d}\theta \mathrm{d}\varphi$$

$$= \int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\rho^{\mu}} \left[J \left[d\rho d\theta d\varphi \right] \right]$$

$$= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \rho^{2} \sin \varphi d\rho d\theta d\varphi$$

$$= \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{2\pi} \rho^{2} \sin \varphi d\rho d\theta d\varphi$$

$$=\int_{0}^{\pi}\int_{0}^{2\pi}\frac{e^{\rho^{3}}}{3}\sin\rho\left|_{\rho=0}^{\rho=1}\right.$$

$$=\frac{e-1}{3}\int_{0}^{\pi}\int_{0}^{2\pi}\sin\varphi d\theta d\varphi$$

$$=\frac{e-1}{3}\int_{0}^{\pi}\sin\varphi \cdot 2\pi d\varphi$$

$$=\frac{e-1}{3}\int_{0}^{\pi}\sin\varphi \cdot 2\pi d\varphi$$

$$\frac{4\pi(e-1)}{s}$$

Exercise 21.

Calculate the volume of a body which is situated above the cone $z=\sqrt{x^2+y^2}$ and under the sphere $x^2+y^2+z^2=z$.

Solution 21.

$$x^{2} + y^{2} + z^{2} = z$$

$$x^{2} + y^{2} + z^{2} - z = 0$$

$$x^{2} + y^{2} + \left(z - \frac{1}{2}\right)^{2} = \frac{1}{4}$$

Therefore, the sphere has centre $(0,0,\frac{1}{2})$ and radius $\frac{1}{2}$.

Therefore, the cone and the sphere intersect each other at $z = \frac{1}{2}$. The intersection is a circle with radius $\frac{1}{2}$.

Therefore, the body is made of a cone of base radius $\frac{1}{2}$ and height $\frac{1}{2}$, and a hemisphere of radius $\frac{1}{2}$

In Cartesian coordinates, the sphere is $x^2+y^2+z^2=z$. Therefore, in spherical coordinates, the sphere is $\rho^2=\rho\cos\rho$. Therefore, $V = \iiint \mathrm{d}x \mathrm{d}y \mathrm{d}z$

$$=\int_{0}^{2\pi}\int_{0}^{4\pi}\cos\varphi$$

$$=\int_{0}^{2\pi}\int_{0}^{4\pi}\int_{0}^{2\pi}\sin\varphi d\varphi d\varphi d\theta$$

$$=\int_{0}^{2\pi}\int_{0}^{4\pi}\int_{0}^{3}\sin\varphi$$

$$\int_{0}^{\pi}\int_{0}^{4\pi}\int_{0}^{4\pi}d\varphi d\varphi d\theta$$

$$=\int\limits_{0}^{2\pi}\int\limits_{0}^{\frac{\pi}{4}}\cos^{3}\varphi\sin\varphi d\varphi d\theta$$

$$=2\pi\cdot\left(-\frac{\cos^{4}\pi}{2}\right)\left|\frac{\pi}{4}\right|$$

$$= 2\pi \cdot \left(-\frac{\cos^4 \pi}{12}\right) \left| \frac{\pi}{4} \right|$$

$$= 2\pi \left(-\frac{1}{48} + \frac{1}{12}\right) \left| \frac{\pi}{4} \right|$$

$=2\pi\left(-\frac{1}{48}+\frac{1}{12}\right)$ $=2\pi\left(\frac{3}{48}\right)$

10 Line Integrals of Scalar Functions

Definition 42 (Smooth curve) A curve C which is parametrically given as $\overline{r}(t) = (x(t), y(t), z(t)), t: a \rightarrow b$ is said to be smooth if $\overline{r}(t)$ is a continuous unction on [a,b], $\overline{r}'(t) \neq 0$ on (a,b), and $\overline{r}'(t)$ is continuous on (a,b).

Theorem 53 If f(x,y,z) is continuous and C is smooth, then

$$\int\limits_{\Omega} f(x,y,z) \mathrm{d}s = \int\limits_{\Gamma} f\left(x(t),y(t),z(t)\right) \sqrt{\left(x'(t)\right)^2 + \left(y'(t)\right)^2 + \left(z'(t)\right)^2} \, \mathrm{d}t$$

Pheorem 54 If f(x,y,z) is continuous and C is smooth, then

$$\int f(x,y,z) dx = \int f\left(x(t),y(t),z(t)\right) x'(t) dt$$

$$\int f(x,y,z) dy = \int_{0}^{b} f\left(x(t),y(t),z(t)\right) y'(t) dt$$

$$\int f(x,y,z) dz = \int_{0}^{b} f\left(x(t),y(t),z(t)\right) z'(t) dt$$

Exercise 22.

 $=2\pi \frac{e-1}{3} (-\cos\theta) \Big|_{0}^{\pi}$

Calculate
$$\int y dx + z dy + x dz$$
 for C as shown.

 $\cdot \left| f(x,y) - L \, \right| \leq 3 \sqrt{x^2 + y^2}$

$$\sum_{k=1}^{k} \sum_{i=1}^{k} 0$$

derivatives are continuous on $[\alpha,b],$ and the series $\sum_{k=1}^\infty u_k(x)$ converges point-**Theorem 34** (Changing the order of differentiation and infinite summation) If the functions $u_k(x)$, $k \in \{1,2,3,...\}$ are differentiable on [a,b] and the

wise on [a,b] and the series $\sum_{k=1}^{\infty} u_k'(x)$ converges uniformly on [a,b], then,

$$\left(\sum_{k=1}^{\infty} u_k(x)\right)' = \sum_{k=1}^{\infty} u_k'(x)$$

Theorem 35 (Changing the order of integration and limit) If the functions $f_n(x)$ are integrable on [a,b] and converge uniformly to f on [a,b], then

$$\lim_{n\to\infty} \int_a^b f_n(x) \mathrm{d}x = \int_a^b \lim_{n\to\infty} f_n(x) \mathrm{d}x = \int_a^b f(x) \mathrm{d}x$$

Theorem 36 (Changing the order of differentiation and limit) If there exists the functions $h_i'(x)$ which are continuous on [a,b], for the functions $h_i(x)$ which $\forall x \in [a,b]$, converge pointwise to f(x) on [a,b], and if $f_{i,i}'(x)$ converges uniformly to g(x) on [a,b], then,

$$f'(x) = \left(\lim_{n \to \infty} f_n(x)\right)' = \lim_{n \to \infty} f_n'(x) = g(x)$$

2 Functions of Multiple Variables

1 Limits, Continuity, and Differentiability

Definition 26 (Limit of a function of two variables) Let z = f(x,y) be defined on some open neighbourhood about (a,b), except maybe at the point itself. $L \in \mathbb{R}$ is said to be a limit of f(x,y) at (a,b), if $\forall e > 0, \exists d > 0$,

such that $0 < \sqrt{(x-a)^2 + (y-b)^2} < \delta$, then,

$|f(x,y)-L|<\varepsilon$

Does the limit $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2}$ exist?

Exercise 15.

Solution 15.

Consider the curves $C_1:y=0$, and $C_2:y=x^3$. Therefore, as $(x,y)\to (0,0)$ along these curves, the limit of the function is

$$\lim_{(x,y)\xrightarrow{C_1}}\frac{3x^2y}{x^2+y^2}=\lim_{x\to 0}\frac{3x^2\cdot 0}{x^2+y^2}$$

$$=0$$

$$\lim_{(x,y) \xrightarrow{C_2} (0,0)} \frac{3x^2y}{x^2 + y^2} = \lim_{x \to 0} \frac{3x^2(x^3)}{x^2 + (x^3)^2}$$

$$= \lim_{x \to 0} \frac{3x^5}{x^2 + x^6}$$

$$= \lim_{x \to 0} \frac{3x^3}{x^2 + x^4}$$

$$= 0$$

If $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^2+y^2} = 0, \ \forall \varepsilon>0, \ \exists \delta>0 \ \text{such that} \ 0<\sqrt{x^2+y^2}<\delta, \ \text{then},$ $|f(x,y)-L|<\varepsilon$

Therefore, checking |f(x,y)-L|,

$$\begin{split} \left| f(x,y) - L \right| &= \left| \frac{3x^2y}{x^2 + y^2} - 0 \right| \\ &= \frac{3x^2|y|}{x^2 + y^2} \\ \text{As } \frac{x^2}{x^2 + y^2} &\leq 1, \\ \left| f(x,y) - L \right| &\leq 3|y| \\ &: \left| f(x,y) - L \right| &\leq 3\sqrt{y^2} \end{split}$$

Therefore, $|f(x,y)-L|<\varepsilon$. Therefore, for $\delta \leq \frac{\varepsilon}{3}$, the condition is satisfied. Hence, the limit of the function exists and is 0.

Definition 27 (Iterative limits) The limits
$$\lim_{x\to a} \left(\lim_{y\to b} f(x,y)\right)$$
 and

$$\lim_{y\to b} \left(\lim_{x\to a} f(x,y) \right) \text{ are called the iterative limits of } f(x,y).$$

Theorem 37 If $\exists \lim_{(x,y)\to(a,b)} f(x,y) = L$ and, for some open interval about $b, \, \forall y \neq b, \, \exists \lim_{x\to a} f(x,y)$ then

$$\lim_{y \to b} \left(\lim_{x \to a} f(x, y) \right) = L$$

If $\exists \lim_{(x,y)\to(a,b)} f(x,y) = L$ and, for some open interval about a, $\forall x \neq a$, $\exists \lim_{y \to b} f(x,y)$ then

$$\lim_{x \to a} \left(\lim_{y \to b} f(x,y) \right) = L$$

Definition 28 (Differential)

 $\Delta z\!=\!f(a\!+\!\Delta x,\!b\!+\!\Delta y)\!-\!f(a,\!b)$

 $\mathrm{d}z\!=\!f_x(a,\!b)\mathrm{d}x\!+\!f_y(a,\!b)\mathrm{d}y$

Definition 29 (Differentiability) The function x=f(x,y) is said to be differentiable at (a,b) if $\Delta z=dz+\varepsilon_1(\Delta x,\Delta y)\Delta x+\varepsilon_2(\Delta x,\Delta y)\Delta y$

$$\lim_{\lambda_{n,1} \to (0,0)} \varepsilon_1(\Delta x, \Delta y) = \lim_{\lambda_{n,1} \to (0,0)} \varepsilon_2(\Delta x, \Delta x, \Delta y)$$

$$\lim_{(\Delta x,\Delta y)\to(0,0)}\varepsilon_1(\Delta x,\Delta y)=\lim_{(\Delta x,\Delta y)\to(0,0)}\varepsilon_2(\Delta x,\Delta y)=0$$

Theorem 38 If f(x,y) is differentiable at (a,b) then f(x,y) is continuous at (a,b).

Theorem 39 If $\exists f_x(a_ib)$ and $\exists f_y(a_ib)$ on some open neighbourhood of (a_ib) and are continuous at (a_ib) , then f(x,y) is differentiable at (a_ib) .

2 Directional Derivatives and Gradients

Definition 30 (Directional derivative) Let $x_0 \in \mathbb{R}$, $y_0 \in \mathbb{R}$.

Let $\hat{u}=(a,b)$ be a unit vector in the xy-plane. The directional derivative of z=f(x,y) with respect to the direction $\hat{u}=(a,b)$ at the point (x_0,y_0) is defined as

$$u=(a,b)$$
 at the point (a_0,y_0) is defined as $D_{a}f(x_0,y_0)=\lim_{h\to 0}\frac{f(x_0+ah,y_0+bh)-f(x_0,y_0)}{h}$ If the limit does not exist the directional des

... n If the limit does not exist, the directional derivative does not exist.

Geometrically the directional derivative of z = f(x,y) is the slope of the tangent of the curve formed due to the intersection of the curve z = f(x,y), and the plane which passes through (x_0,y_0) in the direction of \hat{u} and is perpendicular to the xy-plane.

Definition 31 (Gradient) If the functions $f_x(x,y)$ and $f_y(x,y)$ for z=f(x,y) exist, then the vector function

 $\nabla f(x,y) = (f_x(x,y), f_y(x,y))$

is called the gradient of f(x,y).

Theorem 40 Let z = f(x,y) be differential at (x_0,y_0) . The function f(x,y) has a directional derivative with respect to any direction $\dot{u} = (a,b)$ at (x_0,y_0) and

 $D_{a}f(x_{0},y_{0})\!=\!f_{x}(x_{0},y_{0})a\!+\!f_{y}(x_{0},y_{0})b\!=\!\nabla f(x_{0},y_{0})\!\cdot\!\hat{u}$

Exercise 16.

Find the directional derivative of $f(x,y) = x^3 + 4xy + y^4$

with respect to the direction of $\overline{u} = (1,2)$ at any point (x,y) and at (0,1).

$f(x,y) = x^3 + 4xy + y^4$ $f_x(x,y) = 3x^2 + 4y$

Solution 16.

 $f_y(x,y) = 4x + 4y^3$

$$\hat{u} = \frac{\vec{u}}{u}$$

$$= \frac{1}{\sqrt{5}}$$

$$= \left(\frac{1}{\sqrt{5}}, \frac{2}{\sqrt{5}}\right)$$

$$\begin{split} D_{a}f(x,y) &= \frac{1}{\sqrt{5}}(3x^{2} + 4y) + \frac{2}{\sqrt{5}}(4x + 4y^{2}) \\ \text{Therefore,} \\ D_{a}f(0,1) &= \frac{4}{\sqrt{5}} + \frac{8}{\sqrt{5}} \\ &= \frac{12}{\sqrt{5}} \end{split}$$

Theorem 41 If z = f(x,y) is differentiable at (x_0,y_0) , then $\exists \dot{u_0} = (a_0,b_0)$ such that $\max_{\hat{u} \in \mathbb{R}} \!\! D_{\hat{u}} f(x_0, y_0) \! = \! D_{\hat{u_0}} f(x_0, y_0) \! = \! \left| \nabla f(x_0, y_0) \right|$

$$\hat{u_0} = \frac{\nabla f(x_0, y_0)}{\left|\nabla f(x_0, y_0)\right|}$$

Theorem 42 If z=f(x,y) is differentiable at (x_0,y_0) , then $\exists \hat{u_1}=(a_0,b_0)$ such that

$$\min_{\hat{u} \in \mathbb{R}} D_{\hat{u}f}(x_0, y_0) = D_{\hat{u}_1} f(x_0, y_0) = - \left| \nabla f(x_0, y_0) \right|$$
and

$$\hat{u}_1 = -\frac{\nabla f(x_0, y_0)}{\left|\nabla f(x_0, y_0)\right|}$$

3 Local Extrema

Theorem 43 (A necessary condition for local extrema existence) If the function z = f(x,y) has a local extrema at the point (a,b) and $\exists f_x(a,b) = f_y(a,b) = 0$

Definition 32 (Critical point) Let the function z = f(x,y) be defined on some open neighbourhood of (a,b). The point (a,b) is called a critical point $\delta z = f(x,y)$ if $f_x(a,b) = 0$ or at least one of the partial derivative $f_x(a,b)$ and $f_y(a,b)$ does not exist.

Theorem 44 (A sufficient condition for local extrema point) Assume that there exist second order partial derivates of z=f(x,y), they are continuous on some open neighbourhood of (a,b) and $f_x(a,b)=f_y(a,b)=0$. Denote

$$D(a,b) = f_{xx}(a,b)f_{yy}(a,b) - (f_{xy}(a,b))^2$$

- If D(a,b)>0 and f_{xx}<0 then (a,b) is a local maximum point.
 If D(a,b)>0 and f_{xx}>0 then (a,b) is a local minimum point.
 If D(a,b)<0 then (a,b) is called a saddle point.
- Global Extrema
- 4.1 Algorithm for Finding Maxima and Minima of a Function
- Step 1 Find all critical points of f(x,y) on the domain, excluding the
- end points. Step 2 Calculate the values of f(x,y) at the critical points. Step 3 Calculate the values of f(x,y) at the end points of the domain. Step 3 Calculate the walnes of f(x,y) at the end points of the domain. Step 4 Select the maximum and minimum values from Step 2 and Step 3
- 5 Taylor's Formula

$$\begin{split} f(a+h,b+k) &= \sum_{i=0}^{n} \left(\frac{1}{i!} \left(\frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right) f(a,b)\right) \\ &+ \frac{1}{(n+1)!} \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y}\right)^{n+1} f(a+ch,b+ck) \end{split}$$
 where $0 < c < 1$.

6 Vector Functions and Curves in \mathbb{R}^3

consists of a set of vectors, i.e. $\overline{\tau}(t) = (f(t), g(t), h(t)), \forall t \in [a, b].$ **Definition 33** (Vector function) A vector function is a function with a domain which consists of a set of real numbers, and with a domain which

Theorem 46 If
$$\exists \lim_{t \to t_0} f(t)$$
, $\exists \lim_{t \to t_0} g(t)$, $\exists \lim_{t \to t_0} h(t)$, then, $\exists \lim_{t \to t_0} = h(t)$

Definition 35 (Space curve) Let f(t), g(t), h(t) be continuous functions of [a,b]. The set of points (x,y,z), such that x=f(t), y=g(t), z=h(t), $t\in [a,b]$ is called a space curve.

 $\overline{r}(t) = \left(f(t), g(t), h(t)\right)\!,$ if it exists, is defined as **Definition 36** (Derivative of vector function) The derivative of

$$=\lim_{\Delta t \to 0} \frac{\overline{r}(t+\Delta t) - \overline{r}(t)}{\Delta t}$$

Definition 37 (Tangent vector) $\vec{r}'(t_0)$ is called a tangent vector to the curve $C = \overline{r}(t)$ at $P(t_0)$.

Theorem 47 If
$$\exists f'(t_0)$$
, $\exists g'(t_0)$, $\exists h'(t_0)$, and $\overline{\tau}(t) = (f(t), g(t), h(t))$ then,

$$\vec{r}'(t_0) = (f'(t_0), g'(t_0), h'(t_0))$$

Definition 38 (Unit tangent vector) The vector $\hat{T}(t) = \frac{\hat{r}'(t)}{|\hat{r}'(t)|}$ is called the unit tangent vector to C = r(t) at $P(t_0)$.

Definition 39 (Tangent line) A straight line passing through a point P(t) on the curve C = r(t), in the direction $\vec{r}'(t)$, i.e. $\hat{T}(t)$, is called a tangent line to the curve at the point.

Theorem 48 Let $\overline{u}(t)$ and $\overline{v}(t)$ be vector functions, let c be a constant, and let f(t) be a scalar function. Then,

(1)
$$(\overline{u}(t) \pm \overline{v}(t))' = \overline{u}'(t) \pm \overline{v}'(t)$$

(2)
$$\left(c\overline{u}(t)\right)' = c\overline{u}'(t)$$

(3)
$$(f(t)\overline{u}(t))' = f'(t)\overline{u}(t) + f(t)\overline{u}'(t)$$

$$(4) \ \left(\overline{u}(t) \cdot \overline{v}(t)\right) = \overline{u}'(t) \cdot \overline{v}(t) + \overline{u}(t) \cdot \overline{v}'(t)$$

(6)
$$\left(\overline{u}(f(t))\right) = f'(t)\overline{u}'(f(t))$$

8 Change of Variables in Double Integrals

is be an operator,
$$e \quad \text{The determinant}$$

$$J = \frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix}$$

is called the Jacobian of the operator T.

muous on S. Ext
$$f(x,y)$$
 be a continuous function on R .

$$\iint f(x,y) dxdy = \iint f(g(u,v),h(u,v)) |J| dudv$$

Exercise 17.

Calculate $\iint_R (x-y)^2 \sin^2(x+y) dxdy$, where R the area bounded by the

The edges of the domain are $x+y=\pi$

$$\begin{aligned}
x+y &= 3\pi \\
x-y &= \pi
\end{aligned}$$

Therefore, let

Theorem 46 If
$$\exists \lim_{t \to t_0} f(t)$$
, $\exists \lim_{t \to t_0} g(t)$, $\exists \lim_{t \to t_0} h(t)$, then, $\exists \lim_{t \to t_0} = \int_{t \to t_0} f(t) dt$

$$\left(\lim_{t\to t_0} f(t), \lim_{t\to t_0} g(t), \lim_{t\to t_0} h(t)\right).$$

7 Derivatives of Vector Functions

$$\lim_{t \to 0} \frac{\overline{r}(t + \Delta t) - \overline{r}(t)}{\Delta t}$$

If
$$\exists f'(t_0)$$
, $\exists g'(t_0)$, $\exists h'(t_0)$, and $\overline{r}(t) = (f(t), g(t))$

$$= (f'(t_0), g'(t_0), h'(t_0))$$

(1)
$$(\overline{u}(t)\pm\overline{v}(t)) = \overline{u}'(t)\pm\overline{\iota}$$

(2)
$$(c\overline{u}(t)) = c\overline{u}'(t)$$

$$(f(t)\overline{u}(t)) = f'(t)\overline{u}(t) + f(t)\overline{u}'(t)$$

$$(4) \ \left(\overline{u}(t) \cdot \overline{v}(t)\right) = \overline{u}'(t) \cdot \overline{v}(t) + \overline{u}(t) \cdot \overline{v}'(t)$$

$$(5) \ \left(\overline{u}(t) \times \overline{v}(t)\right)' = \overline{u}'(t) \times \overline{v}(t) + \overline{u}(t) \times \overline{v}'(t)$$

(6)
$$\left(\overline{u}(f(t))\right) = f'(t)\overline{u}'(f(t))$$

Definition 40 (Jacobian) Let

$$T(u,v) = (x,y)$$

be an operator.
The determinant

Theorem 49 Let R and S be domains of the first or second kind. Let the opendor T from S to R be one-to-one and onto. Therefore, the inverse opendor T^{-1} exists.

Also, let T be a C^1 operator, i.e. $\exists x_u$, $\exists x_v$, $\exists y_u$, $\exists y_v$, which are continuous on S.

Let f(x,y) be a continuous function on R.

$$\iint\limits_{R} f(x,y) \mathrm{d}x \mathrm{d}y = \iint\limits_{S} f\left(g(u,v),h(u,v)\right) |J| \mathrm{d}u \mathrm{d}v$$

square with vertices at $(\pi,0)$, $(2\pi,\pi)$, $(\pi,2\pi)$, and $(0,\pi)$

Solution 17.

 $x-y=-\pi$

 $x-y=u \\
 x+y=v$

Therefore, $x=\frac{u+v}{2}$ $x=\frac{v}{2}$ $y=\frac{v-u}{2}$ $y=\frac{v-u}{2}$ Therefore, the domain R can be written as $S=\{-\pi\leq u\leq \pi, \pi\leq v\leq 3\pi\}.$ Therefore,

Cheorem 46 If
$$\exists \lim_{t \to t_0} f(t)$$
, $\exists \lim_{t \to t_0} h(t)$, then, $\exists \lim_{t \to t_0} h(t)$,

Definition 34 (Continuous vector function) A vector function as aid to be continuous at
$$t_0$$
 if $\lim_{t\to t_0} \overline{\tau}(t) = \overline{\tau}(t_0)$.

Definition 34 (Continuous vector function) A vector function $\overline{\tau}(t)$ is $J = \begin{pmatrix} x_u & x_v \\ y_u & y_v \end{pmatrix}$ said to be continuous at t_0 if $\lim_{t \to t_0} \overline{\tau}(t) = \overline{\tau}(t_0)$. **Definition 35** (Space curve) Let f(t), g(t), h(t) be continuous functions $=\begin{pmatrix} 1\\ -\frac{1}{2} & \frac{1}{2}\\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix}$ of [a,b]. The set of points (x,y,z), such that x = f(t), y = g(t), z = h(t),

$$\iint_{R} f(x,y) dxdy = \iint_{S} f(g(u,v),h(u,v)) |J| dudv$$

$$\therefore \iint_{R} (x-y)^{2} \sin^{2}(x+y) dxdy = \int_{S} u^{2} \sin^{2}v \left| \frac{1}{2} \right| dudv$$

$$= \frac{1}{2} \int_{S} u^{2} \sin^{2}v dvdu$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} u^2 du \cdot \int_{\pi}^{3\pi} \sin^2 v dv$$

$$= \frac{1}{2} \int_{-\pi}^{\pi} u^2 du \cdot \int_{\pi}^{3\pi} \sin^2 v dv$$

$$= \frac{1}{2} \frac{u^3}{3} \Big|_{-\pi}^{\pi} \cdot \int_{-\pi}^{3\pi} \frac{1 - \cos^2 v}{2} dx$$

$$= \frac{1}{2} \frac{2\pi^3}{3} \cdot \frac{1}{2} 2\pi$$

$$= \frac{\pi^4}{3} \cdot \frac{1}{2} = \frac{\pi^4}{3} = \frac{\pi^4}{3}$$

8.1 Polar Coordinates

Polar coordinates are a special case of change of variables. The operator for the change of variables is

$$T(r,\theta) = (x,y)$$

where
 $x = r\cos\theta$

Therefore, $y = r \sin \theta$

$$J = \begin{vmatrix} x_r & x_\theta \\ y_r & y_\theta \end{vmatrix}$$
$$= \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix}$$
$$= r\cos^2\theta + r\sin^2\theta$$

$$= \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix}$$
$$= r\cos^2\theta + r\sin^2\theta$$

 $\text{Calculate} \iint_R xy \mathrm{d}x \mathrm{d}y, \; R \!=\! \left\{ (x,y) | 1 \!\leq\! x^2 \!+\! y^2 \!\leq\! 4, 0 \!\leq\! y \!\leq\! x \right\}.$ Exercise 18.

Solution 18.

The domain R is the region shown

Therefore, it can be written as $S = \left\{ (r, \theta) | 1 \le r \le 2, 0 \le \theta \le \frac{\pi}{4} \right\}$.

$$\iint_{R} xy dx dy = \int_{0}^{\frac{\pi}{2}} \int_{0}^{2} r \cos\theta r \sin\theta r dr d\theta$$

$$= \int_{0}^{2} r^{3} dr \cdot \int_{0}^{2} c \cos\theta \sin\theta d\theta$$

$$= \frac{15}{4} \cdot \frac{1}{4}$$

$$= \frac{1}{4} \cdot \frac{1}{4}$$

 $D_{\mathrm{I}} = \left\{ (r, \theta) | a \le r \le b, g_{1}(r) \le \theta \le g_{2}(r) \right\}$ **Theorem 50** Let D be a domain, written as D_1 in polar coordinates, i.e.,

and let f(x,y) be continuous on D_I Then,

$$\iint\limits_{D_1} f(x,y) \mathrm{d}x \mathrm{d}y = \int\limits_{a}^{b} \int\limits_{g_2(r)}^{g_2(r)} f(r \cos\!\theta, r \sin\!\theta) r \mathrm{d}\theta \mathrm{d}r$$

and let f(x,y) be continuous on D_{Π} . $D_{\mathrm{I}} = \left\{ (r, \theta) | \alpha \leq \theta \leq \beta, h_{1}(\theta) \leq r \leq h_{2}(\theta) \right\}$ **Theorem 51** Let D be a domain, written as D_{II} in polar coordinates, i.e.,

$$\iint\limits_{D_{11}} f(x,y) \mathrm{d}x \mathrm{d}y = \int\limits_{\alpha} \int\limits_{h_1(\theta)}^{\beta} f(r \cos\theta, r \sin\theta) r \mathrm{d}r \mathrm{d}\theta$$

Definition 41 (Jacobian) Let

$$T(u,v,w) = (x,y,z)$$

be an operator.
The determinant

$$J = \frac{\partial(x,y,z)}{\partial(u,v,w)} = \begin{vmatrix} x_u & x_v & x_w \\ y_u & y_v & y_w \\ z_u & z_v & z_w \end{vmatrix}$$

is called the Jacobian of the operator T

Theorem 52 Let R and S be demains of the first, second, or third kind. Let the operator T from S to R be one-to-one and onto.

Therefore, the inverse operator T⁻¹ exists.

Also, let T be a C¹ operator, i.e. 3x, 3x_w, 3x_w, 3y_w, 3y_w, 3y_w, 3z_w, 3z_w, 3x_w, 3x_w

$$\iint\limits_{\mathbb{R}} f(x,y,z) \mathrm{d}x \mathrm{d}y \mathrm{d}z = \iint\limits_{\mathbb{R}} f\left(x(u,v,w),y(u,v,w),z(u,v,w)\right) |J| \mathrm{d}u \mathrm{d}v \mathrm{d}w$$

9.1 Cylindrical Coordinates

Cylindrical coordinates are a special case of change of variables. The operator for the change of variables is

$$T(r,\theta,z) = (x,y,z)$$

 $\begin{array}{l} y\!=\!r\!\sin\!\theta\\ z\!=\!z \end{array}$

Therefore,

$$J = \begin{vmatrix} y_r & x_\theta & y_z \\ y_r & y_\theta & y_z \\ z_r & z_\theta & z_z \end{vmatrix}$$
$$= \begin{vmatrix} \cos\theta & -r\sin\theta & 0 \\ \sin\theta & r\cos\theta & 0 \\ 0 & 0 & 1 \end{vmatrix}$$

 $=r\cos^2\theta+r\sin^2\theta$

Exercise 19. Calculate the iterative integral
$$I = \int_{-2}^{2} \int_{-4-x^2}^{\sqrt{4-x^2}} \int_{-2-\sqrt{4-x^2}\sqrt{x^2+y^2}}^{2} (x^2+y^2) dz dy dx$$

Solution 19.

radius $\underline{2}$. λ $\lambda = \sqrt{x^2 + y^2} \le z \le 2$, the domain E, where $-2 \le x \le 2$, $-\sqrt{4 - x^2} \le y \le \sqrt{4 - x^2}$, $\sqrt{x^2 + y^2} \le z \le 2$ is a cone, with the circular cross section of radius $x^2 + y^2$. The domain $\{(x,y)|-2 \le x \le 2, -\sqrt{4-x^2} \le y \le \sqrt{4-x^2}\}$ is a circle of

$$I = \int_{0}^{2} \int_{-2\sqrt{4-x^2}}^{\sqrt{4-x^2}} \int_{2}^{2} \left(x^2+y^2\right) dz dy dx$$

$$= \iiint_{E} \left(x^2+y^2\right) dx dy dz$$