目录

1 概率统计 回归教材训练 1

2

1 概率统计回归教材训练1

illusion

1. 四名同学各抛骰子 5 次,分别记录每次骰子出现的点数。根据四名同学的统计结果,可以判断出一定没有出现点数 6 的是

A. 平均数为 3, 中位数为 2

B. 中位数为 3, 众数为 2

C. 平均数为 2, 方差为 2.4

D. 中位数为 3, 方差为 2.8

2. 已知总体划分为 3 层,通过分层随机抽样,各层抽取的样本、样本均值和样本方差分别为: $l,\bar{x},s_1^2;m,\bar{y},s_2^2;n,\bar{z},s_3^2$,记总体的样本均值为 \bar{w} ,样本方差为 s^2 ,证明:

$$\bar{w} = \frac{l}{l+m+n}\bar{x} + \frac{m}{l+m+n}\bar{y} + \frac{n}{l+m+n}\bar{z},$$

$$s^{2} = \frac{1}{l+m+n} \left\{ l[s_{1}^{2} + (\bar{x} - \bar{w})^{2}] + m[s_{2}^{2} + (\bar{y} - \bar{w})^{2}] + n[s_{3}^{2} + (\bar{z} - \bar{w})^{2}] \right\}.$$

- 3. 在对树人中学高一年级学生身高的调查中,采用样本量比例分配的分层随机抽样。如果不知道样本数值,只知道抽取了男生 25 人,均值和方差分别为 170 和 10,抽取了女生 25 人,均值和方差分别为 160 和 40。你能由这些数据计算出总样本的方差,并对高一年级全体学生的身高方差作出估计吗?
- 4. 从两名男生 (记为 B_1 和 B_2)、两名女生 (记为 G_1 和 G_2) 中抽取两人。
 - (1) 分别计算有放回简单随机抽样、不放回简单随机抽样和按性别等比例分层随机抽样下,抽到的两人都是男生的概率;
 - (2) 比较这三种抽样方式在避免极端样本(例如全是男生的样本)上的优劣。
- 5. 从 $1\sim20$ 这 20 个整数中随机选择一个数,设事件 A 表示选到的数能被 2 整除,事件 B 表示选到的数能被 3 整除。求下列事件的概率:
 - (1) 这个数既能被 2 整除也能被 3 整除;
 - (2) 这个数能被 2 整除或能被 3 整除;

- (3) 这个数既不能被2整除也不能被3整除。
- 6. 互为对立的两个事件是非常特殊的一种事件关系。请分别证明如果事件 A 与事件 B 相互独立,那么 A 与 \overline{B} , \overline{A} 与 B 是独立的。
- 7. 一个均匀的正八面体,八个面分别标以数字 1 到 8,任意拨捏一次这个正八面体,观察它与地面接触的面上的数字,得到样本空间为 $\Omega = \{1,2,3,4,5,6,7,8\}$ 。构造适当的事件 A,B,C,使得 P(A)P(B)P(C) = P(ABC) 成立,但不满足 A,B,C 三个事件是两两独立的。
- 8. "用事件 A 发生的频率 $f_n(A)$ 估计概率 P(A),重复试验次数 n 越大,估计的就越精确",判断这种说法是否正确,并举例说明。
- 9. 有两个盒子,其中1号盒子中有95个红球,5个白球;2号盒子中有95个红球,5个白球。现从两个盒子中任意选择一个,再从中任意摸出一个球。如果摸到的是红球,你认为选择的是哪个盒子?做出你的推断,你的推断犯错误的概率是多少?
- 10. (1) 4 名同学分别报名参加学校的足球队、篮球队、乒乓球队,每人限报其中的一个运动队,不同报法的种数是 3^4 还是 4^3 ?
 - (2) 3个班分别从 5个景点中选择一处游览,不同选择的种数是 3^5 还是 5^3 ?
- 11. 在国庆长假期间,要从7人中选择若干人在7天假期值班(每天只需1人值班),不出现同一人连续值班2天,有多少种可能的安排方法?
- 12. 2160 有多少个不同的正因数? 这些正因数的和是多少?

- 13. 用 0~9 这 10 个数字,可以组成多少个没有重复数字的三位数?
- 14. 求证:

(1)
$$1 + \sum_{k=1}^{n} k \cdot A_k^k = A_{k+1}^{k+1};$$

(2) $\frac{(n+1)!}{k!} - \frac{n!}{(k-1)!} = \frac{(n-k+1) \cdot n!}{k!} \quad (k \le n).$

- 15. 证明等式 $C_n^k \cdot C_{n-k}^{m-k} = C_m^k \cdot C_n^m$ 并构造一个实际背景, 说明这个等式的意义。
- 16. 如图,现要用 5 种不同的颜色对某市的 4 个区县地图进行着色,要要求有公共边的两个地区不能用同一种颜色, 共有几种不同的着色方法?

- 17. (1) 平面内有两组平行线,一组有m条,另一组有n条,这两组平行线相交,可以构成多少个平行四边形?
 - (2) 空间有三组平行平面,第一组有m个,第二组有n个,第三组有l个,不同两组的平面都相交,且交线不都平行,可以构成多少个平行六面体?
- 18. 移动互联网给人们的沟通交流带来了方便。某种移动社交软件平台,既可以供用户彼此添加"好友"单独交流,又可以供多个用户建立一个"群"("群里"的人彼此不一定是"好友"关系)共同交流。如果某人在平台上发了信息,其他的"好友"都可以看到,但"群"里的非"好友"不能看到。现在这个"群"里有一个10人的"群",其中1人在平台上发了一条信息,"群"里有3人说看到,不能看到的有7人。那么这个"群"里与信息发送人是"好友"关系的情况可能有多少种?

- 19. 证明:
 - (1) $(n+1)^n-1$ 能被 n^2 整除;
 - (2) 9910-1能被1000整除;
 - (3) 5555 除以8所得的余数是7。
- 20. 求证:

$$2^{n} - C_{n}^{1} \times 2^{n-1} + C_{n}^{2} \times 2^{n-2} + \dots + (-1)^{n-1} C_{n}^{n-1} \times 2 + (-1)^{n} = 1.$$

- 21. (1) 求 $\left(9x + \frac{1}{3\sqrt{x}}\right)^{18}$ 的展开式的常数项;
 - (2) 已知 $(1 + \sqrt{x})^n$ 的展开式中第 9 项、第 10 项、第 11 项的二项式系数构成等差数列,求 n;
 - (3) 求 $(1+x+x^2)(1-x)^{10}$ 的展开式中 x^4 的系数;
 - (4) 求 $(x^2 + x + y)^5$ 的展开式中 x^5y^2 的系数。
- 22. 在 $(1+x)^3 + (1+x)^4 + \cdots + (1+x)^{n+2}$ 的展开式中,含 x^2 项的系数是多少?