1 Methods

1.1 Computing Feature Vectors

1.2 Feature Normalization

2 Visualizations

2.1 Successful Segmentations

Figure 1: cat_march.jpg, using HAC with k=3, position + color features, feature normalization, and a resize factor of 0.025.

Figure 2: $\mathtt{Cat_Bed.jpg}$, using k-means clustering with k=4, position + color features, and feature normalization.

Figure 3: $black_kitten_star.jpg$, using k-means clustering with k=3, color features, and no feature normalization.

2.2 Unsuccessful Segmentations

Figure 4: $cat_grumpy.jpg$, using k-means clustering with k=5, position + color features, and no feature normalization.

Figure 5: cat-jumping-running-grass.jpg, using k-means clustering with k=3, color features, and feature normalization.

Figure 6: kitten16.jpg, using HAC with k=3, color features, feature normalization, and a resize factor of 0.25.

2.3 Composite Images

Using the script titled <code>GrabCat.m</code>, we were able to produce composite images by transferring segments from one image to another background image. This allowed us to create the two composite images shown below.

Figure 7: Input: black_kitten_star.jpg, desert.jpg, using k-means clustering with k=3, color features, and feature normalization.

Figure 8: Input: black_kitten.jpg, beach.jpg, using HAC with k=5, color features, feature normalization, and a resize factor of 0.2.

3 Evaluation