Họ và tên: Đinh Thị Thúy Hường - 21120176

Bài 1:

Segment	Base	Limit
0	219	600
1	2300	14
2	90	100
3	1327	580
4	1952	96

What are the physical addresses of the following logical addresses?

- a) 0, 701
- b) 1, 8
- c) 2, 100
- d) 3, 429
- e) 4, 78
- a. invalid
- b. 2308
- c.invalid
- d. 1327 + 429 = 1756
- e. 1952 + 78 = 2030

Bài 2:

<u>First - Fit</u>

Uu: Nhanh, không mất thời gian tìm kiếm

Khuyết:

Gây ra phân mảnh ngoại vi

Không tối ưu hóa không gian nhớ

Các khoảng trống nhỏ dễ bị sử dụng không hợp lý

P4 (426 KB)

Best - Fit

Worst-Fit

Kết luận: Trong ngữ cảnh của bài này, Best – Fit là thuật toán phù hợp nhất, vì ta có thể thấy First – Fit không chứa hết tất cả tiến trình đang có nhu cầu vào bộ nhớ (P4) và Worst – Fit chứa hết nhưng không tối ưu hóa bộ nhớ bằng Best – Fit.

Bài 3:

FIFO

a.

1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
1	1	1	1	1	1	5	5	5	5	5	3	3	3	3	3	1	1	1	1
	2	2	2	2	2	2	6	6	6	6	6	7	7	7	7	7	7	3	3
		3	3	3	3	3	3	2	2	2	2	2	6	6	6	6	6	6	6
			4	4	4	4	4	4	1	1	1	1	1	1	2	2	2	2	2
*	*	*	*			*	*	*	*		*	*	*		*	*		*	

b. Page faults: 14

c. Page fault ratio: 0,7

d. EAT = 0,3*102+0,7*192=165 ns

OPTIMAL

a.

1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
1	1	1	1	1	1	1	1	1	1	1	1	7	7	7	7	1	1	1	1
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3
			4	4	4	5	6	6	6	6	6	6	6	6	6	6	6	6	6
*	*	*	*			*	*					*				*			

b. Page faults: 8

c. Page fault ratio: 0,4

d. EAT = 0.6*102+0.4*192=138 ns

<u>LRU</u>

a.

1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
1	1	1	1	1	1	1	1	1	1	1	1	1	6	6	6	6	6	6	6
	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
		3	3	3	3	5	5	5	5	5	3	3	3	3	3	3	3	3	3
			4	4	4	4	6	6	6	6	6	7	7	7	7	1	1	1	1
*	*	*	*			*	*				*	*	*			*			

b. Page faults: 10

c. Page fault ratio: 0,5

d. EAT = 0.5*102+0.5*192=147 ns

SECOND CHANCE

	1	2	3	4	2	1	5	6	2	1	2	3	7	6	3	2	1	2	3	6
	1	1	1	1	1	1	5	5	5	1	1	1	1	1	1	2	2	2	2	2
		2	2	2	2	2	2	6	6	2	2	2	2	6	6	6	6	6	6	6
			3	3	3	3	3	3	3	5	5	3	3	3	3	3	1	1	1	1
				4	4	4	4	4	2	6	6	6	7	7	7	7	7	7	3	3
Fifo	1	12	123	1234	1234	1234	2345	3456	4562	5621	5621	6213	2137	1376	1376	3762	7621	7621	6213	6213
Rb	1	12	123	1234	1234	1234	5	56	562	5621	5621	3	37	376	376	3762	1	12	123	1236
	*	*	*	*			*	*	*	*		*	*	*		*	*		*	

b. Page faults: 14

c. Page fault ratio: 0,7

d. EAT = 0.3*102+0.7*192=165 ns

Bài 4:

Page size = 1KB

Process P: 8 pages

32 frames

- a. Calculate the number of bits used for storing a physical address
 - Số frame là $32 = 2^5 \Rightarrow$ Dùng 5 bit để lưu no of Frame
 - Kích thước frame = kích thước page = 1KB = 2^10 => Dùng 10 bit để lưu số Offset
- ⇒ Số lượng bit cần dùng để lưu bộ nhớ vật lý: 10 + 5=15 bits
- b. Calculate the size of virtual memory space of the program P:
 Kích thước bộ nhớ ảo = Page size * Number of pages = 1KB * 8 pages = 8 KB
- c. Calculate the size of physical memory:
 Kích thước bộ nhớ vật lý = Frame size * Number of frames = 1KB * 32 frames = 32 KB

Bài 5:

48 bit logical address

Page size: 8KB

Byte-addressable memory: 320MB

- a. Give the number of frames in the physical memory: No.frames = $320MB/8KB = 10*2^{25}/2^{13} = 10*2^{12} = 40960$
- b. Give the maximum number of pages in logical address space:
 1 page = 2¹³ => Dùng 13 bit để lưu offsets
- ⇒ Số bits dùng để lưu số page: 35 bits => Max no.page: 2³⁵ pages
- c. Convert the logical addresses 1892, 15296 and 20300 to addresses <p,d> $1892 \Rightarrow p=0$, d=1892 $15296 \Rightarrow p=1$, d=7104

 $20300 \Rightarrow p=2, d=3916$

Bài 6:

a. Số lượng bit dùng để lưu offset là: 32-9-11 = 12 bits

- \Rightarrow No.offsets = 2^{12}
- \Rightarrow Word addressable memory => 1 offset = 4 bytes
- \Rightarrow Size of page: $2^{12} * 4 = 16$ KB
- b. Give the number of frames in the memory: No. Frames = $10GB/16KB = 10*2^{16}$ frames
- c. What is the maximum size of process space supported in this system? Kích thước lớn nhất cho không gian tiến trình: $2^{32} *4 = 2^{34}$ bytes = 16 GB
- d. If loading the process P1 of 2.8GB into the system, may we suffer from the fragmentation problem? Justify your answer
 - Giả sử tiến trình P1 đi vào hệ thống, no. Pages = 2,8GB/16KB = 183500.8 -> internal fragmentation.
- e. Trong hệ thống paging, phân mảnh có thể là internal fragmentation.

Bài 7:

$$EAT = h*(t_c + t_m) + (1 - h)*(t_c + 4*t_m) = 0.75*(25 + 132) + 0.25*(25 + 4*132) = 256 \ ns$$

Bài 8:

$$\begin{split} EAT &= h * (t_c + t_m) + (1 - h) * (t_c + 2 * t_m) \\ &=> 225 = h * (25 + 150) + (1 - h) * (25 + 2 * 150) \iff 225 = 175 h + 325 (1 - h) \\ &\Leftrightarrow h = 0,67 = 67\% \end{split}$$