Name PID

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Electrical and Computer Engineering Department ECE 65 – Spring 2021

Components and Circuits lab

Midterm Exam1

You should submit your handwritten solutions in a PDF format to Gradescope on Friday, 4/16, by 1:50 pm (Pacific Time).

Name PID

a) Design a diode circuit that would generate the output waveform shown in the below graph when the input signal $v_i=10\sin(\omega t)$ is applied to the circuit. On the graph, $v_i(t)$ is drawn in blue color and $v_o(t)$ is drawn in red color.

You can use regular PN junction diodes ($V_{D0}=0.7\ V$), Zener diodes (any desired V_Z), and resistor(s) in your design. Make sure to label v_i and v_o on your circuit diagram.

b) Parametrically solve your designed circuit to find the transfer function and draw the transfer function graph (find the relationship between v_o and v_i for different ranges of v_i and plot v_o vs v_i)

Show your work.

$$i_1 = \frac{V_i - V_{D_1} + V_{D_C}}{R}$$

Vo becomes constant when $Vi \ge -6V$, meaning P_i is on:

$$\begin{cases} \dot{V}_1 = \frac{V_i - V_{D_1} + V_{D_C}}{R} \ge 0 \\ V_i \ge -6 V \end{cases} \Rightarrow V_{D_C} = 6.7 V$$

$$i_1 = \frac{V_i - V_{D_1} + V_{D_C}}{R} \ge 0$$

from kUL:
$$VD_1 = Vi - iR + VDC = Vi + 6.7$$

$$V_{D_1} \leq V_{D_0}$$
: $V_i \leq -6V$.

 $V_o = V_i - i_1 R = V_i$.

