	Nueral Network and Page No.
	Deep Zeoning
	Re LU punction Rectified Linear Unit
	Newton is a single function. A grip of newtons from a network.
	Mode Node
Inþi	output
	dunsely connected
	Supervised learning
Ex.	Input (x) Output (y) Application Ad, user into click on ad? (0/1) Online advertising English Other lang Machine teanslating
CNN {	Image Object (1,, 1000) Photo tagging
	You should figure out what is X and what is Y.
	Recurrent NN - one dimensional structured data.
	Structured data Unstructured date Survey data, tabulated Audio, image, texts makes sense to computers hardre to make sense

Paga No. Why deep learning is getting popular recently? large NN small training Medium NN small NN Performano Teadifical leasning alogorithm amount of data Computation, Algorithms. Sigmoid Relu Fast Computation ogistic regression is an algorithm for binary classification (cat) vs O (Non-cat) 64 feature Vector

64 X64 X3 = 12288 n= nx=12288 dimension I E IR IX m teaining ex: {(x") y"

> M=Mtgain M= Mtest

Straining L set

	Page No.
	Date
	Loss function
	$\frac{1}{2}(\hat{y}, y) = -(y \log \hat{y} + (1-y) \log (1-\hat{y}))$
110 -	lose g
is to	wise y
	If y=1
	$((\hat{y}, y) = -(\log \hat{y}) \leftarrow \text{want this to be large}$
	g mond should be large
	If y=0
	$Z(\hat{y}, y) = -\log(1-\hat{y}) \leftarrow \omega $ ant $\log(1-\hat{y})$ to be large
	ŷ should be small)
	Cost Lunco
	$\frac{m}{m}$
	$: J(\omega,b) = \int_{M} \frac{\mathbb{Z}}{ y } \int_{i=1}^{\infty} \left(g^{(i)}, g^{(i)} \right) $
	M
	$= - \frac{1}{2} \sum_{i=1}^{2} y^{(i)} \sum_{j=1}^{2} \log y^{(i)}$
How 1	
trai	THIS EXCUMPLE
	LL() applied to a single trainging example.
	The Manadera
Ho	
a	e doing on the entire was b and try to minimize J
\$	bet. Gradient descent
	Gradient descent: Used to choose the val of
	J(w,b) bhw
	Used as it is conver
	wast val
	convex We can initialize
	use reach the is convex.
	into some hoist
	W Lowest
	/0/0/
	global optimum

