MLP

```
In []: import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split
from tensorflow.keras.datasets import mnist
from tensorflow.keras.models import Sequential
from tensorflow.keras.utils import to_categorical
```

Load Dataset

MNIST dataset

```
In [ ]: (X_train, y_train), (X_test, y_test) = mnist.load_data()
In [ ]: plt.imshow(X_train[0]) # show first number in the dataset
plt.show()
print('Label: ', y_train[0])
```


5

Label:

Label: 7

```
In [ ]: # reshaping X data: (n, 28, 28) => (n, 784)
X_train = X_train.reshape((X_train.shape[0], -1))
X_test = X_test.reshape((X_test.shape[0], -1))
```

```
In [ ]: # converting y data into categorical (one-hot encoding)
    y_train = to_categorical(y_train)
    y_test = to_categorical(y_test)
```

MLP model

· Naive MLP model without any alterations

```
In [ ]: from tensorflow.keras.models import Sequential
       from tensorflow.keras.layers import Activation, Dense
       from tensorflow.keras import optimizers
In [ ]: model = Sequential()
       model.add(Dense(50, input shape = (784, )))
       model.add(Activation('sigmoid'))
       model.add(Dense(50))
       model.add(Activation('sigmoid'))
       model.add(Dense(50))
       model.add(Activation('sigmoid'))
       model.add(Dense(50))
       model.add(Activation('sigmoid'))
       model.add(Dense(10))
       model.add(Activation('softmax'))
In [ ]: sgd = optimizers.SGD(1r = 0.001) model.compile(optimizer = sgd, loss =
        'categorical_crossentropy', metrics = ['accuracy'])
In [ ]: history = model.fit(X_train, y_train, batch_size = 256, validation_split = 0.3,
       epochs = 100, verbose = 1)
       Epoch 1/100
       165/165 [========================== ] - 1s 7ms/step - loss: 2.4838 - accur
       acy: 0.0995 - val loss: 2.4486 - val accuracy: 0.0966
       Epoch 2/100
       165/165 [=========================] - 1s 5ms/step - loss: 2.4176 - accur
       acy: 0.0995 - val_loss: 2.3965 - val_accuracy: 0.0966
       Epoch 3/100
       acy: 0.0995 - val_loss: 2.3634 - val_accuracy: 0.0966
       Epoch 4/100
       acy: 0.0995 - val_loss: 2.3422 - val_accuracy: 0.0966
       Epoch 5/100
       165/165 [========================== ] - 1s 5ms/step - loss: 2.3327 - accur
       acy: 0.0995 - val_loss: 2.3283 - val_accuracy: 0.0966
       Epoch 6/100
       165/165 [================= ] - 1s 5ms/step - loss: 2.3217 - accur
       acy: 0.0997 - val_loss: 2.3193 - val_accuracy: 0.0970
       Epoch 7/100
       165/165 [
                                           1
                                              1s 5ms/step
                                                          loss: 2 3145 accur
```


Training and validation accuracy seems to improve after around 60 epochs

Test accuracy: 0.11349999904632568

1. Weight Initialization

- Changing weight initialization scheme can sometimes improve training of the model by preventing vanishing gradient problem up to some degree
- He normal or Xavier normal initialization schemes are SOTA at the moment

```
# from now on, create a function to generate (return) models

def mlp_model():
    model = Sequential()

    model.add(Dense(50, input_shape = (784, ), kernel_initializer='he_normal'))
    # use he_normal initializer

model.add(Activation('sigmoid'))
    model.add(Dense(50, kernel initializer='he_normal'))
```

```
In [ ]:
           # use he normal initializer
        model.add(Activation('sigmoid'))
            model.add(Dense(50, kernel_initializer='he_normal'))
           # use he normal initializer
        model.add(Activation('sigmoid'))
            model.add(Dense(50, kernel_initializer='he_normal'))
           # use he normal initializer
        model.add(Activation('sigmoid'))
            model.add(Dense(10, kernel_initializer='he_normal'))
           # use he normal initializer
        model.add(Activation('softmax'))
            sgd = optimizers.SGD(1r = 0.001)
            model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics =
        ['accuracy'])
        return model
```

```
In [ ]: model = mlp_model() history = model.fit(X_train, y_train, validation_split
    = 0.3, epochs = 100, verbose = 1)
    Epoch 1/100
    uracy: 0.1143 - val_loss: 2.3063 - val_accuracy: 0.1079
    Epoch 2/100
    uracy: 0.1143 - val loss: 2.2984 - val accuracy: 0.1079
    Epoch 3/100
    uracy: 0.1143 - val loss: 2.2955 - val accuracy: 0.1079
    Epoch 4/100
    uracy: 0.1143 - val_loss: 2.2927 - val_accuracy: 0.1079
    Epoch 5/100
    uracy: 0.1143 - val loss: 2.2900 - val accuracy: 0.1079
    Epoch 6/100
    uracy: 0.1143 - val_loss: 2.2872 - val_accuracy: 0.1079
    Epoch 7/100
    1313/1313 [
                            1 2s 2ms/step
                                     loss: 2 2849
                                             acc
```

```
In []:
    plt.plot(history.history['accuracy'])
    plt.plot(history.history['val_accuracy'])
    plt.plot(history.history['loss'])
    plt.plot(history.history['val_loss'])
    plt.legend(['train acc', 'valid acc', 'train loss', 'valid loss'], loc = 'upper left')
    plt.show()
```


Training and validation accuracy seems to improve after around 60 epochs

Test accuracy: 0.862500011920929

2. Nonlinearity (Activation function)

- · Sigmoid functions suffer from gradient vanishing problem, making training slower
- There are many choices apart from sigmoid and tanh; try many of them!
 - 'relu' (rectified linear unit) is one of the most popular ones
 - 'selu' (scaled exponential linear unit) is one of the most recent ones

```
In [ ]: def mlp_model():
            model = Sequential()
            model.add(Dense(50, input_shape = (784, )))
            model.add(Activation('relu')) # use relu
            model.add(Dense(50))
            model.add(Activation('relu')) # use relu
            model.add(Dense(50))
            model.add(Activation('relu')) # use relu
            model.add(Dense(50))
            model.add(Activation('relu')) # use relu
            model.add(Dense(10))
            model.add(Activation('softmax'))
            sgd = optimizers.SGD(lr = 0.001)
            model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics =
        ['accuracy'])
            return model
```

```
In [ ]:
```

0.0

20

40

60

```
model = mlp model()
     history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 100,
     verbose = 1)
     Epoch 1/100
     uracy: 0.7314 - val loss: 0.5504 - val accuracy: 0.8466
     Epoch 2/100
     uracy: 0.8700 - val_loss: 0.4168 - val_accuracy: 0.8827
     Epoch 3/100
     uracy: 0.8988 - val_loss: 0.3719 - val_accuracy: 0.8918
     Epoch 4/100
     uracy: 0.9141 - val_loss: 0.3231 - val_accuracy: 0.9103
     Epoch 5/100
     uracy: 0.9248 - val_loss: 0.2951 - val_accuracy: 0.9153
     Epoch 6/100
     uracy: 0.9321 - val_loss: 0.2940 - val_accuracy: 0.9170
     Epoch 7/100
     1313/1313 [
                                   2 2 / t
                                             1
                                                 0 2094
In [ ]: plt.plot(history.history['accuracy'])
     plt.plot(history.history['val_accuracy'])
     plt.plot(history.history['loss'])
     plt.plot(history.history['val_loss'])
     plt.legend(['train acc', 'valid acc', 'train loss', 'valid loss'], loc = 'upper
     left')
     plt.show()
           train acc
           valid acc
      1.0
           train loss
           valid loss
      0.8
      0.6
      0.4
      0.2
```

Training and validation accuracy improve instantaneously, but reach a plateau after around 30 epochs

80

```
results = model.evaluate(X_test, y_test)
```

100

Test accuracy: 0.9488000273704529

3. Optimizers

Many variants of SGD are proposed and employed nowadays

One of the most popular ones are Adam (Adaptive Moment Estimation)

Relative convergence speed of different optimizers

```
In [ ]:
```

```
def mlp model():
    model = Sequential()
    model.add(Dense(50, input shape = (784, )))
    model.add(Activation('sigmoid'))
    model.add(Dense(50))
    model.add(Activation('sigmoid'))
    model.add(Dense(50))
    model.add(Activation('sigmoid'))
    model.add(Dense(50))
    model.add(Activation('sigmoid'))
    model.add(Dense(10))
    model.add(Activation('softmax'))
    adam = optimizers.Adam(lr = 0.001)
                                                            # use Adam optimizer
    model.compile(optimizer = adam, loss = 'categorical_crossentropy', metrics =
['accuracy'])
    return model
```

```
In [ ]: model = mlp_model()
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 100,
verbose = 0)
```

```
In []: plt.plot(history.history['accuracy'])
    plt.plot(history.history['val_accuracy'])
    plt.plot(history.history['loss'])
    plt.plot(history.history['val_loss'])
    plt.legend(['train acc', 'valid acc', 'train loss', 'valid loss'], loc = 'upper left')
    plt.show()
```


Training and validation accuracy improve instantaneously, but reach plateau after around 50 epochs

```
results = model.evaluate(X_test, y_test)
```

Test accuracy: 0.9465000033378601

4. Batch Normalization

Batch Normalization, one of the methods to prevent the "internal covariance shift" problem, has proven to be highly effective

Normalize each mini-batch before nonlinearity

Batch normalization layer is usually inserted after dense/convolution and before nonlinearity

```
In [ ]: from keras.layers import BatchNormalization
        def mlp model():
        model = Sequential()
            model.add(Dense(50, input_shape = (784, )))
            model.add(BatchNormalization())
                                                                # Add Batchnorm Layer
        before Activation
            model.add(Activation('sigmoid'))
        model.add(Dense(50))
            model.add(BatchNormalization())
                                                                # Add Batchnorm Layer
        before Activation
            model.add(Activation('sigmoid'))
        model.add(Dense(50))
            model.add(BatchNormalization())
                                                                # Add Batchnorm Layer
        before Activation
            model.add(Activation('sigmoid'))
        model.add(Dense(50))
            model.add(BatchNormalization())
                                                                # Add Batchnorm Layer
        before Activation
            model.add(Activation('sigmoid'))
        model.add(Dense(10))
            model.add(Activation('softmax'))
            sgd = optimizers.SGD(lr = 0.001)
            model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics =
        ['accuracy'])
        return model
```

```
In [ ]:
```

```
plt.plot(history.history['accuracy'])
plt.plot(history.history['val_accuracy'])
plt.plot(history.history['loss'])
plt.plot(history.history['val_loss'])
plt.legend(['train acc', 'valid acc', 'train loss', 'valid loss'], loc = 'upper left')
plt.show()
```


Training and validation accuracy improve consistently, but reach plateau after around 60 epochs

Test accuracy: 0.9480999708175659

5. Dropout (Regularization)

- Dropout is one of powerful ways to prevent overfitting
- The idea is simple. It is disconnecting some (randomly selected) neurons in each layer
- The probability of each neuron to be disconnected, namely 'Dropout rate', has to be
- designated

In []:

Dropout

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SVM on Fisher Vectors of Dense SIFT and Color Statistics		*	27.3
Avg of classifiers over FVs of SIFT, LBP, GIST and CSIFT	-	-	26.2
Conv Net + dropout (Krizhevsky et al., 2012)	40.7	18.2	
Avg of 5 Conv Nets + dropout (Krizhevsky et al., 2012)	38.1	16.4	16.4

Table 6: Results on the ILSVRC-2012 validation/test set.

Dropout: A simple way to prevent neural networks from overfitting [Srivastava JMLR 2014]

```
In [ ]: from keras.layers import Dropout
```

```
In [ ]: | def mlp_model():
            model = Sequential()
            model.add(Dense(50, input_shape = (784, )))
            model.add(Activation('sigmoid'))
            model.add(Dropout(0.2))
                                                             # Dropout layer after
        Activation
            model.add(Dense(50))
            model.add(Activation('sigmoid'))
                                                             # Dropout Layer after
            model.add(Dropout(0.2))
        Activation
            model.add(Dense(50))
            model.add(Activation('sigmoid'))
            model.add(Dropout(0.2))
                                                             # Dropout layer after
        Activation
            model.add(Dense(50))
            model.add(Activation('sigmoid'))
            model.add(Dropout(0.2))
                                                              # Dropout layer after
        Activation
            model.add(Dense(10))
            model.add(Activation('softmax'))
            sgd = optimizers.SGD(lr = 0.001)
            model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics =
         ['accuracy'])
            return model
```

```
model = mlp_model()
history = model.fit(X_train, y_train, validation_split = 0.3, epochs = 100,
verbose = 0)
```

```
In [ ]: plt.plot(history.history['accuracy'])
    plt.plot(history.history['val_accuracy'])
    plt.plot(history.history['loss'])
    plt.plot(history.history['val_loss'])
    plt.legend(['train acc', 'valid acc', 'train loss', 'valid loss'], loc = 'upper left')
    plt.show()
```


Validation results does not improve since it did not show signs of overfitting, yet. Hence, the key takeaway message is that apply dropout when you see a signal of overfitting.

Test accuracy: 0.4226999878883362

6. Model Ensemble

Model ensemble is a reliable and promising way to boost performance of the model Usually create 8 to 10 independent networks and merge their results Here, we resort to scikit-learn API, **VotingClassifier**

```
In [ ]:
  In [ ]: import numpy as np
          from tensorflow.keras.wrappers.scikit learn import KerasClassifier
          from sklearn.ensemble import VotingClassifier
          from sklearn.metrics import accuracy score
 In [ ]: y_train = np.argmax(y_train, axis = 1)
          y test = np.argmax(y test, axis = 1)
 In [ ]: | def mlp_model():
               model = Sequential()
               model.add(Dense(50, input_shape = (784, )))
               model.add(Activation('sigmoid'))
               model.add(Dense(50))
               model.add(Activation('sigmoid'))
               model.add(Dense(50))
               model.add(Activation('sigmoid'))
               model.add(Dense(50))
               model.add(Activation('sigmoid'))
               model.add(Dense(10))
               model.add(Activation('softmax'))
               sgd = optimizers.SGD(lr = 0.001)
               model.compile(optimizer = sgd, loss = 'categorical_crossentropy', metrics =
          ['accuracy'])
               return model
 In [ ]: | model1 = KerasClassifier(build_fn = mlp_model, epochs = 100, verbose = 0)
          model2 = KerasClassifier(build_fn = mlp_model, epochs = 100, verbose = 0)
          model3 = KerasClassifier(build fn = mlp model, epochs = 100, verbose = 0)
          model1._estimator_type = "classifier"
          model2._estimator_type = "classifier"
          model3._estimator_type = "classifier"
Out[131]: VotingClassifier(estimators=[('model1',
                                         <tensorflow.python.keras.wrappers.scikit_learn.Ke</pre>
          rasClassifier object at 0x7f3b1c1f9438>),
                                        ('model2',
                                         <tensorflow.python.keras.wrappers.scikit_learn.Ke</pre>
          rasClassifier object at 0x7f3b1c1ce7b8>),
                                        ('model3',
                                         <tensorflow.python.keras.wrappers.scikit learn.Ke</pre>
          rasClassifier object at 0x7f3b1c10d978>)],
                            flatten_transform=True, n_jobs=None, voting='soft',
           weights=None)
  In [ ]: | y_pred = ensemble_clf.predict(X_test)
```

WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/wrappers/scikit_learn.py:264: Sequential.predict_proba (from tensorflo

Summary

Below table is a summary of evaluation results so far. It turns out that all methods improve the test performance over the MNIST dataset. Why don't we try them out altogether?

Model	Baseline	Weight	Activation function	Optimizer	Batchnormalization	Regularization	Ensemble
Test Accuracy	0.1134	0.8625	0.9488	0.9465	0.9480	0.4226	0.9002