1 子群

定义 1.1 (subgroup). $H \subset G \neq G$ 的子群, 如果说 H 满足下面两个条件.

- 1. $1 \in H$
- $2. \ \forall h \in H, \ h^{-1} \in H$

即, H 也是群, 但其为 G 的子集. G 当然是自身的子群, $\{1\}$ 也是 G 的子群, 这两种称为平凡子群. H 是 G 的子群记为 $H \leq G$, 如果说 $H \neq G$ 则可以记为 H < G.

Example 1.2 (\mathbb{Z} 的子群). $f_m: \mathbb{Z} \to \mathbb{Z}, n \mapsto mn$, 是 \mathbb{Z} 上的自同态, 能够看出其值域 $\{mn \mid n \in \mathbb{Z}\}$ 是 \mathbb{Z} 的子群.

Remark 1.3. 可以证明 \mathbb{Z} 的子群均形为 $\{mn \mid n \in \mathbb{Z}\}$

回想 Monoid 的一个衍生定义, 设 $U(M_1)$ 是 Monoid M_1 的子集, 内部元素全部有逆, 可以验证 $U(M_1)$ 是群. 对于群有类似的东西.

定义 1.4 (中心). G 的中心 C(G) 是 G 的子集, 内部元素与所有群元关于群乘法交换. 这是说对于 $\forall c \in C(G), g \in G, cg = gc$. 好吧其实不是很类似, 但是有点类似.

我们注意中心的定义,和所有群元关于群乘法交换,这到底能不能说明 其是最大的交换子群? 假设 C(G) 不是极大的,是用反证法,设存在 $g \in G - C(G)$,其满足: 对于任意的 $g' \in C(G)$,g'g = gg',但是存在 $g'' \in G$ 使得, $g''g \neq gg''$.

"群中心作为共轭作用的核所以其重要."