The evolution of apes

Example

Patterns of evolution

The evolution of primates

The evolution of apes

Outline

Example

Patterns of evolution

Context for evolution Patterns of diversity

The evolution of primates

Tools for learning about the past Challenges in learning about the past

The evolution of apes

► Humans are an example of a biological species that has evolved

- ► Humans are an example of a biological species that has evolved
- ► Possibly of interest, since many of your friends are probably humans

- ► Humans are an example of a biological species that has evolved
- Possibly of interest, since many of your friends are probably humans
- ► Humans seem unique:

- Humans are an example of a biological species that has evolved
- Possibly of interest, since many of your friends are probably humans
- ► Humans seem unique:
 - ► How do they differ from other evolved organisms?

- Humans are an example of a biological species that has evolved
- Possibly of interest, since many of your friends are probably humans
- Humans seem unique:
 - ▶ How do they differ from other evolved organisms?
 - ► What do they share with other evolved organisms?

- ► Humans are an example of a biological species that has evolved
- Possibly of interest, since many of your friends are probably humans
- Humans seem unique:
 - How do they differ from other evolved organisms?
 - What do they share with other evolved organisms?

► What is different about people?

What is different about people?

▶ *

- What is different about people?
 - * Complex thoughts

- What is different about people?
 - ► * Complex thoughts
 - *

- What is different about people?
 - * Complex thoughts
 - * Culture

- What is different about people?
 - * Complex thoughts
 - * Culture
 - *****

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - **>** 3

- ▶ What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology
- ▶ What is the same?

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology
- What is the same?
 - **▶** :

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology
- What is the same?
 - * We're here because our ancestors reproduced

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology
- What is the same?
 - * We're here because our ancestors reproduced
 - **>** ×

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology
- What is the same?
 - * We're here because our ancestors reproduced
 - * If reproductive success depends on heritable variation in traits . . .

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology
- What is the same?
 - * We're here because our ancestors reproduced
 - * If reproductive success depends on heritable variation in traits . . .
 - *

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology
- What is the same?
 - * We're here because our ancestors reproduced
 - * If reproductive success depends on heritable variation in traits . . .
 - * We're still evolving

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology
- What is the same?
 - * We're here because our ancestors reproduced
 - * If reproductive success depends on heritable variation in traits . . .
 - * We're still evolving
 - *

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology
- What is the same?
 - * We're here because our ancestors reproduced
 - * If reproductive success depends on heritable variation in traits . . .
 - ► * We're still evolving
 - ▶ * Directional selection? Varying selection?

- What is different about people?
 - * Complex thoughts
 - * Culture
 - * Language
 - * Technology
- What is the same?
 - * We're here because our ancestors reproduced
 - * If reproductive success depends on heritable variation in traits . . .
 - ► * We're still evolving
 - ▶ * Directional selection? Varying selection?

Outline

Example

Patterns of evolution Context for evolution Patterns of diversity

The evolution of primates

Tools for learning about

Challenges in learning about the past

The evolution of apes

► There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life

- ► There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life
- ► More than 3 billion years ago!

- ► There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life
- ▶ More than 3 billion years ago!
- ► Some key steps:

- ► There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life
- More than 3 billion years ago!
- Some key steps:
 - Eukaryotes

- ► There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life
- More than 3 billion years ago!
- Some key steps:
 - Eukaryotes
 - ► Animals

- ► There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life
- More than 3 billion years ago!
- Some key steps:
 - Eukaryotes
 - Animals
 - Vertebrates

- ► There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life
- More than 3 billion years ago!
- Some key steps:
 - Eukaryotes
 - Animals
 - Vertebrates
 - ► Mammals

History

- ► There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life
- More than 3 billion years ago!
- Some key steps:
 - Eukaryotes
 - Animals
 - Vertebrates
 - Mammals
 - ▶ Primates

History

- ► There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life
- More than 3 billion years ago!
- Some key steps:
 - Eukaryotes
 - Animals
 - Vertebrates
 - Mammals
 - Primates
 - Apes

History

- ► There are a *lot* of steps (and a lot of divergences) between us and the last universal common ancestor of life
- More than 3 billion years ago!
- Some key steps:
 - Eukaryotes
 - Animals
 - Vertebrates
 - Mammals
 - Primates
 - Apes

TABLE 9.1 The Geological Timescale

Era	Period	Epoch	Period begins (mya)	Notable events
Cenozoic	Quaternary	Recent	0.012	Origins of agriculture and complex societies
		Pleistocene	1.8	Appearance of Homo sapiens
	Tertiary	Pliocene Miocene Oligocene Eocene Paleocene	5 23 34 54 65	Dominance of land by angiosperms, mammals, birds, and insects
Mesozoic	Cretaceous		136	Rise of angiosperms, disappearance of dinosaurs, second great radiation of insects
	Jurassic		190	Abundance of dinosaurs, appearance of first birds
	Triassic		225	Appearance of first mammals and dinosaurs
Paleozoic	Permian		280	Great expansion of reptiles, decline of amphibians, last of trilobites
	Carboniferous		345	Age of Amphibians; first reptiles, first great insect radiation
	Devonian		395	Age of Fishes; first amphibians and insects
	Silurian		430	Land invaded by a few arthropods
	Ordovician		500	First vertebrates
	Cambrian		570	Abundance of marine invertebrates
Precambrian				Primitive marine life

► Why not just say how long ago?

- ▶ Why not just say how long ago?
 - ► Periods may be punctuated by major events

- Why not just say how long ago?
 - ▶ Periods may be punctuated by major events
 - * Radiations, mass extinctions

- Why not just say how long ago?
 - Periods may be punctuated by major events
 - * Radiations, mass extinctions
 - ► People started talking about periods before they had good measures of how long ago things happened

- Why not just say how long ago?
 - Periods may be punctuated by major events
 - * Radiations, mass extinctions
 - People started talking about periods before they had good measures of how long ago things happened
 - ► Periods have cool names

- Why not just say how long ago?
 - Periods may be punctuated by major events
 - * Radiations, mass extinctions
 - People started talking about periods before they had good measures of how long ago things happened
 - Periods have cool names

Outline

Example

Patterns of evolution
Context for evolution
Patterns of diversity

The evolution of primates

Tools for learning about the past Challenges in learning about the past

The evolution of apes

► Adaptations build on existing adaptations – often in unexpected ways

- Adaptations build on existing adaptations often in unexpected ways
- ► Evolution does not know where it's going

- Adaptations build on existing adaptations often in unexpected ways
- Evolution does not know where it's going
- ▶ In a constant environment, we would have to imagine a species just getting better and better adapted to that environment

- Adaptations build on existing adaptations often in unexpected ways
- Evolution does not know where it's going
- In a constant environment, we would have to imagine a species just getting better and better adapted to that environment
 - ▶ and never getting stuck, e.g. vertebrate eyes

- Adaptations build on existing adaptations often in unexpected ways
- Evolution does not know where it's going
- In a constant environment, we would have to imagine a species just getting better and better adapted to that environment
 - and never getting stuck, e.g. vertebrate eyes
- ► A changing environment provides opportunities to try new combinations and build in unexpected directions

- Adaptations build on existing adaptations often in unexpected ways
- Evolution does not know where it's going
- In a constant environment, we would have to imagine a species just getting better and better adapted to that environment
 - and never getting stuck, e.g. vertebrate eyes
- A changing environment provides opportunities to try new combinations and build in unexpected directions

► Physical changes often provide species with new adaptive challenges and opportunities:

- Physical changes often provide species with new adaptive challenges and opportunities:
- ► Global climate change

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- ► Continental drift

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- Continental drift
- ► Geological changes

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- Continental drift
- Geological changes
 - ► New environments can arise (e.g., mountain ranges, desert basins)

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- Continental drift
- Geological changes
 - New environments can arise (e.g., mountain ranges, desert basins)
 - Geology may also change connections between two populations without a large effect on how they live

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- Continental drift
- Geological changes
 - New environments can arise (e.g., mountain ranges, desert basins)
 - Geology may also change connections between two populations without a large effect on how they live
 - ► Rivers changing course

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- Continental drift
- Geological changes
 - New environments can arise (e.g., mountain ranges, desert basins)
 - Geology may also change connections between two populations without a large effect on how they live
 - Rivers changing course
 - ► Mountain ranges separating valley species

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- Continental drift
- Geological changes
 - New environments can arise (e.g., mountain ranges, desert basins)
 - Geology may also change connections between two populations without a large effect on how they live
 - Rivers changing course
 - Mountain ranges separating valley species
 - **×** ×

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- Continental drift
- Geological changes
 - New environments can arise (e.g., mountain ranges, desert basins)
 - Geology may also change connections between two populations without a large effect on how they live
 - Rivers changing course
 - Mountain ranges separating valley species
 - * Provides opportunities for allopatric speciation

- Physical changes often provide species with new adaptive challenges and opportunities:
- Global climate change
- Continental drift
- Geological changes
 - New environments can arise (e.g., mountain ranges, desert basins)
 - Geology may also change connections between two populations without a large effect on how they live
 - Rivers changing course
 - Mountain ranges separating valley species
 - * Provides opportunities for allopatric speciation

Figure 9.5

► Taxa can be dramatically affected by changes in other taxa

- ► Taxa can be dramatically affected by changes in other taxa
 - ▶ Due to evolution or to colonization

- Taxa can be dramatically affected by changes in other taxa
 - ▶ Due to evolution or to colonization
- ► Interactions with other organisms are key to most ecological niches

- Taxa can be dramatically affected by changes in other taxa
 - Due to evolution or to colonization
- Interactions with other organisms are key to most ecological niches
 - ▶ Who do I eat? Who is trying to eat me? How do I reproduce?

- Taxa can be dramatically affected by changes in other taxa
 - Due to evolution or to colonization
- Interactions with other organisms are key to most ecological niches
 - ▶ Who do I eat? Who is trying to eat me? How do I reproduce?
- ► Co-evolution is a key driver of diversity. For example:

- Taxa can be dramatically affected by changes in other taxa
 - Due to evolution or to colonization
- Interactions with other organisms are key to most ecological niches
 - ▶ Who do I eat? Who is trying to eat me? How do I reproduce?
- ► Co-evolution is a key driver of diversity. For example:
 - ► Plants evolve new ways to use insects for sex, or vertebrates for dispersal

Changing ecosystems

- Taxa can be dramatically affected by changes in other taxa
 - Due to evolution or to colonization
- Interactions with other organisms are key to most ecological niches
 - ▶ Who do I eat? Who is trying to eat me? How do I reproduce?
- ► Co-evolution is a key driver of diversity. For example:
 - Plants evolve new ways to use insects for sex, or vertebrates for dispersal
 - ► Animals evolve new ways to benefit from plant resources

Changing ecosystems

- Taxa can be dramatically affected by changes in other taxa
 - Due to evolution or to colonization
- Interactions with other organisms are key to most ecological niches
 - ▶ Who do I eat? Who is trying to eat me? How do I reproduce?
- ► Co-evolution is a key driver of diversity. For example:
 - Plants evolve new ways to use insects for sex, or vertebrates for dispersal
 - Animals evolve new ways to benefit from plant resources

Outline

Example

Patterns of evolution

Context for evolution

Patterns of diversity

The evolution of primates

Tools for learning about the past Challenges in learning about the pa

The evolution of apes

► Our ancestors radiated and dominated many terrestrial environments *before* dinosaurs did

- Our ancestors radiated and dominated many terrestrial environments before dinosaurs did
 - ► I have no idea why the book refers to therapsids as reptiles; it seems very wrong:

- Our ancestors radiated and dominated many terrestrial environments before dinosaurs did
 - ▶ I have no idea why the book refers to therapsids as reptiles; it seems very wrong:
 - **▶** ३

- Our ancestors radiated and dominated many terrestrial environments before dinosaurs did
 - I have no idea why the book refers to therapsids as reptiles; it seems very wrong:
 - ▶ * If they were, then we are

- Our ancestors radiated and dominated many terrestrial environments before dinosaurs did
 - ▶ I have no idea why the book refers to therapsids as reptiles; it seems very wrong:
 - ▶ * If they were, then we are
 - , ·

- Our ancestors radiated and dominated many terrestrial environments before dinosaurs did
 - I have no idea why the book refers to therapsids as reptiles; it seems very wrong:
 - ▶ * If they were, then we are
 - * One better name would be tetrapods

- Our ancestors radiated and dominated many terrestrial environments before dinosaurs did
 - I have no idea why the book refers to therapsids as reptiles; it seems very wrong:
 - ▶ * If they were, then we are
 - * One better name would be tetrapods
- Therapsids were largely replaced by dinosaurs in the age of dinosaurs

- Our ancestors radiated and dominated many terrestrial environments before dinosaurs did
 - ▶ I have no idea why the book refers to therapsids as reptiles; it seems very wrong:
 - ▶ * If they were, then we are
 - * One better name would be tetrapods
- Therapsids were largely replaced by dinosaurs in the age of dinosaurs
 - ▶ But some survived, and one radiated after a mass extinction

- Our ancestors radiated and dominated many terrestrial environments before dinosaurs did
 - I have no idea why the book refers to therapsids as reptiles; it seems very wrong:
 - ▶ * If they were, then we are
 - * One better name would be tetrapods
- Therapsids were largely replaced by dinosaurs in the age of dinosaurs
 - ▶ But some survived, and one radiated after a mass extinction

► Many clades seem to go through periods of radiation and contraction

- Many clades seem to go through periods of radiation and contraction
 - ► Gain and then loss of species diversity

- Many clades seem to go through periods of radiation and contraction
 - Gain and then loss of species diversity
- Examples:

- Many clades seem to go through periods of radiation and contraction
 - Gain and then loss of species diversity
- Examples:
 - ► Therapsids, apes, hominins (us)

- Many clades seem to go through periods of radiation and contraction
 - Gain and then loss of species diversity
- Examples:
 - ► Therapsids, apes, hominins (us)
- Radiation gives many chances for adaptation

- Many clades seem to go through periods of radiation and contraction
 - Gain and then loss of species diversity
- Examples:
 - Therapsids, apes, hominins (us)
- Radiation gives many chances for adaptation
 - ► Things that have had radiations may be more likely to persist

- Many clades seem to go through periods of radiation and contraction
 - Gain and then loss of species diversity
- Examples:
 - Therapsids, apes, hominins (us)
- Radiation gives many chances for adaptation
 - Things that have had radiations may be more likely to persist
 - ► Even after periods of contraction

- Many clades seem to go through periods of radiation and contraction
 - Gain and then loss of species diversity
- Examples:
 - ► Therapsids, apes, hominins (us)
- Radiation gives many chances for adaptation
 - Things that have had radiations may be more likely to persist
 - Even after periods of contraction

▶ Why might a clade diversify and then suffer many extinctions?

▶ Why might a clade diversify and then suffer many extinctions?

- ▶ Why might a clade diversify and then suffer many extinctions?
 - * Changing conditions (climate change, continents moving)

- ▶ Why might a clade diversify and then suffer many extinctions?
 - * Changing conditions (climate change, continents moving)
 - *

- ▶ Why might a clade diversify and then suffer many extinctions?
 - * Changing conditions (climate change, continents moving)
 - ▶ * Competition from other clades (apes vs. monkeys)

- ▶ Why might a clade diversify and then suffer many extinctions?
 - * Changing conditions (climate change, continents moving)
 - * Competition from other clades (apes vs. monkeys)
 - _ ×

- ▶ Why might a clade diversify and then suffer many extinctions?
 - * Changing conditions (climate change, continents moving)
 - * Competition from other clades (apes vs. monkeys)
 - ► * Competition from a successful member (people vs. other hominins)

- ▶ Why might a clade diversify and then suffer many extinctions?
 - * Changing conditions (climate change, continents moving)
 - * Competition from other clades (apes vs. monkeys)
 - ► * Competition from a successful member (people vs. other hominins)

► One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at

► One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at

▶ 3

- ► One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at
 - * The clades that are still around

- One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at
 - * The clades that are still around
- ► Clades with a history of radiation may be more successful

- One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at
 - * The clades that are still around
- Clades with a history of radiation may be more successful
 - ► They've explored more kinds of environments

- One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at
 - * The clades that are still around
- Clades with a history of radiation may be more successful
 - They've explored more kinds of environments
 - ► They're found in more different specific places

- One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at
 - * The clades that are still around
- Clades with a history of radiation may be more successful
 - They've explored more kinds of environments
 - ► They're found in more different specific places
 - e.g., marsupials in Australia

- ➤ One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at
 - * The clades that are still around
- Clades with a history of radiation may be more successful
 - They've explored more kinds of environments
 - ► They're found in more different specific places
 - e.g., marsupials in Australia
 - They've had more chances to adapt

- One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at
 - * The clades that are still around
- Clades with a history of radiation may be more successful
 - They've explored more kinds of environments
 - ► They're found in more different specific places
 - e.g., marsupials in Australia
 - They've had more chances to adapt
 - ► May have a few very successful species (like us)

- One reason we see a lot of clades with a history of radiations may be that those clades are the ones we're looking at
 - * The clades that are still around
- Clades with a history of radiation may be more successful
 - They've explored more kinds of environments
 - ► They're found in more different specific places
 - e.g., marsupials in Australia
 - They've had more chances to adapt
 - May have a few very successful species (like us)

Outline

Example

Patterns of evolution Context for evolution Patterns of diversity

The evolution of primates

Tools for learning about the past

Challenges in learning about the past

The evolution of apes

► Humans are **primates**, an "order" characterized by

- ▶ Humans are **primates**, an "order" characterized by
 - ► Grasping hands and feet

- ▶ Humans are **primates**, an "order" characterized by
 - ► Grasping hands and feet
 - Nails and fingertips (instead of claws)

- ▶ Humans are **primates**, an "order" characterized by
 - Grasping hands and feet
 - Nails and fingertips (instead of claws)
 - ► Highly developed **stereroscopic** vision

- ▶ Humans are **primates**, an "order" characterized by
 - Grasping hands and feet
 - Nails and fingertips (instead of claws)
 - Highly developed stereroscopic vision
 - ▶ Eyes are close together, face forward, and are used together

- ▶ Humans are **primates**, an "order" characterized by
 - Grasping hands and feet
 - Nails and fingertips (instead of claws)
 - Highly developed stereroscopic vision
 - Eyes are close together, face forward, and are used together
 - ► Allows 3-d visualization

- ▶ Humans are **primates**, an "order" characterized by
 - Grasping hands and feet
 - Nails and fingertips (instead of claws)
 - Highly developed stereroscopic vision
 - Eyes are close together, face forward, and are used together
 - Allows 3-d visualization
 - ▶ Hind-limb dominance

- ▶ Humans are **primates**, an "order" characterized by
 - Grasping hands and feet
 - Nails and fingertips (instead of claws)
 - ► Highly developed **stereroscopic** vision
 - ▶ Eyes are close together, face forward, and are used together
 - Allows 3-d visualization
 - Hind-limb dominance
 - ► Large brains

- ▶ Humans are **primates**, an "order" characterized by
 - Grasping hands and feet
 - Nails and fingertips (instead of claws)
 - Highly developed stereroscopic vision
 - ▶ Eyes are close together, face forward, and are used together
 - Allows 3-d visualization
 - Hind-limb dominance
 - Large brains

▶ What sort of traits to biologists use to characterize a group?

▶ What sort of traits to biologists use to characterize a group?

- ▶ What sort of traits to biologists use to characterize a group?
 - * Derived traits

- ▶ What sort of traits to biologists use to characterize a group?
 - * Derived traits
- ► How would you interpret the fact that humans don't have grasping feet?

- ▶ What sort of traits to biologists use to characterize a group?
 - * Derived traits
- ► How would you interpret the fact that humans don't have grasping feet?
 - **k**

- What sort of traits to biologists use to characterize a group?
 - * Derived traits
- ► How would you interpret the fact that humans don't have grasping feet?
 - ▶ * Secondary loss

- What sort of traits to biologists use to characterize a group?
 - * Derived traits
- ► How would you interpret the fact that humans don't have grasping feet?
 - ► * Secondary loss

The angiosperm explosion

► Flowering plants diversified very rapidly around 100 mya – million years ago

The angiosperm explosion

- ► Flowering plants diversified very rapidly around 100 mya million years ago
- ► This radically changed the ecology of the world, and opened up many new niches, apparently including space for primates

The angiosperm explosion

- ► Flowering plants diversified very rapidly around 100 mya million years ago
- ► This radically changed the ecology of the world, and opened up many new niches, apparently including space for primates

► There are a variety of theories for how characteristic primate adaptations evolved

- ► There are a variety of theories for how characteristic primate adaptations evolved
- ► Each step was likely favored adaptively

- ► There are a variety of theories for how characteristic primate adaptations evolved
- Each step was likely favored adaptively
- Likely something to do with processing and handling angiosperm fruit and flowers

- ► There are a variety of theories for how characteristic primate adaptations evolved
- Each step was likely favored adaptively
- ► Likely something to do with processing and handling angiosperm fruit and flowers
 - ▶ Or else the insects that fed on these fruit and flowers

- ► There are a variety of theories for how characteristic primate adaptations evolved
- Each step was likely favored adaptively
- Likely something to do with processing and handling angiosperm fruit and flowers
 - Or else the insects that fed on these fruit and flowers

► There are many theories for why primate traits might have been adaptively favored in our ancestors

- ► There are many theories for why primate traits might have been adaptively favored in our ancestors
 - ► Leaping from branch to branch

- ► There are many theories for why primate traits might have been adaptively favored in our ancestors
 - ▶ Leaping from branch to branch
 - Climbing and balancing on trees

- ► There are many theories for why primate traits might have been adaptively favored in our ancestors
 - Leaping from branch to branch
 - Climbing and balancing on trees
 - Exploiting new plant resources

- ► There are many theories for why primate traits might have been adaptively favored in our ancestors
 - ► Leaping from branch to branch
 - Climbing and balancing on trees
 - Exploiting new plant resources
 - ► Catching insects

- ► There are many theories for why primate traits might have been adaptively favored in our ancestors
 - ► Leaping from branch to branch
 - Climbing and balancing on trees
 - Exploiting new plant resources
 - Catching insects
 - Adaptive foraging: the ability to switch between types of food, and to learn to use new types of food

Adaptive theories

- ► There are many theories for why primate traits might have been adaptively favored in our ancestors
 - Leaping from branch to branch
 - Climbing and balancing on trees
 - Exploiting new plant resources
 - Catching insects
 - Adaptive foraging: the ability to switch between types of food, and to learn to use new types of food

► These strategies may have evolved sequentially

- ► These strategies may have evolved sequentially
 - ► Maybe exploiting tree resources came first, but similar traits helped some species later catch insects

- ▶ These strategies may have evolved sequentially
 - Maybe exploiting tree resources came first, but similar traits helped some species later catch insects
 - ► Maybe traits evolved for one specific purpose later became useful for adaptive foraging

- ▶ These strategies may have evolved sequentially
 - Maybe exploiting tree resources came first, but similar traits helped some species later catch insects
 - Maybe traits evolved for one specific purpose later became useful for adaptive foraging

► A big component of fitness may be based on co-operating with (or at least being tolerated by) **conspecifics** – other members of your species

- A big component of fitness may be based on co-operating with (or at least being tolerated by) conspecifics – other members of your species
- ► Brains that evolved for complicated foraging may have also been useful for social skills

- A big component of fitness may be based on co-operating with (or at least being tolerated by) conspecifics – other members of your species
- Brains that evolved for complicated foraging may have also been useful for social skills
- ► Looping: once sociality was present, adaptation for social thinking and thinking about food may have interacted to increase selection for brain size

- A big component of fitness may be based on co-operating with (or at least being tolerated by) conspecifics – other members of your species
- Brains that evolved for complicated foraging may have also been useful for social skills
- Looping: once sociality was present, adaptation for social thinking and thinking about food may have interacted to increase selection for brain size

Outline

Example

Patterns of evolution

Context for evolution Patterns of diversity

The evolution of primates

Tools for learning about the past

Challenges in learning about the past

The evolution of apes

► A major factor in adaptation is food source.

- A major factor in adaptation is food source.
- ► The most important strategies for early primates were:

- A major factor in adaptation is food source.
- ▶ The most important strategies for early primates were:
 - ► Frugivory: eating fruits (and sometimes flowers)

- ▶ A major factor in adaptation is food source.
- ▶ The most important strategies for early primates were:
 - Frugivory: eating fruits (and sometimes flowers)
 - ► Folivory: eating leaves

- A major factor in adaptation is food source.
- ▶ The most important strategies for early primates were:
 - Frugivory: eating fruits (and sometimes flowers)
 - ► Folivory: eating leaves
 - ► **Insectivory**: eating insects

- ▶ A major factor in adaptation is food source.
- ▶ The most important strategies for early primates were:
 - Frugivory: eating fruits (and sometimes flowers)
 - ► Folivory: eating leaves
 - ► **Insectivory**: eating insects

► Teeth are very important for processing food

- ► Teeth are very important for processing food
- ► Why do we have wisdom teeth?

- ► Teeth are very important for processing food
- Why do we have wisdom teeth?
 - **▶** *

- ► Teeth are very important for processing food
- ▶ Why do we have wisdom teeth?
 - ► * An adaptation to make it more likely we will have functional teeth in middle age

- ► Teeth are very important for processing food
- Why do we have wisdom teeth?
 - ► * An adaptation to make it more likely we will have functional teeth in middle age
 - *

- ► Teeth are very important for processing food
- Why do we have wisdom teeth?
 - ► * An adaptation to make it more likely we will have functional teeth in middle age
 - ▶ * This is probably also why we have two sets of teeth

- Teeth are very important for processing food
- Why do we have wisdom teeth?
 - ► * An adaptation to make it more likely we will have functional teeth in middle age
 - ▶ * This is probably also why we have two sets of teeth
- ► Teeth help scientists understand what extinct animals ate

- ► Teeth are very important for processing food
- Why do we have wisdom teeth?
 - ► * An adaptation to make it more likely we will have functional teeth in middle age
 - ▶ * This is probably also why we have two sets of teeth
- Teeth help scientists understand what extinct animals ate
 - ► Well preserved, highly adapted

- ► Teeth are very important for processing food
- Why do we have wisdom teeth?
 - ► * An adaptation to make it more likely we will have functional teeth in middle age
 - ▶ * This is probably also why we have two sets of teeth
- Teeth help scientists understand what extinct animals ate
 - Well preserved, highly adapted

► Eye **orbits** are the skeletal cavities where eyes are

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - >

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - ▶ * Better for precise tasks, three-dimensional visualization

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - ▶ * Better for precise tasks, three-dimensional visualization
 - *

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - ▶ * Better for precise tasks, three-dimensional visualization
 - ▶ * Not as good for looking around, being alert

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - ▶ * Better for precise tasks, three-dimensional visualization
 - ▶ * Not as good for looking around, being alert
- What are the advantages and disadvantages of larger eyes?

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - ▶ * Better for precise tasks, three-dimensional visualization
 - * Not as good for looking around, being alert
- ▶ What are the advantages and disadvantages of larger eyes?
 - **▶** ३

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - ▶ * Better for precise tasks, three-dimensional visualization
 - ▶ * Not as good for looking around, being alert
- ▶ What are the advantages and disadvantages of larger eyes?
 - ▶ * Better for night vision

Eyes

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - ▶ * Better for precise tasks, three-dimensional visualization
 - * Not as good for looking around, being alert
- What are the advantages and disadvantages of larger eyes?
 - ▶ * Better for night vision
 - k 🗸

Eyes

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - ▶ * Better for precise tasks, three-dimensional visualization
 - * Not as good for looking around, being alert
- What are the advantages and disadvantages of larger eyes?
 - * Better for night vision
 - ▶ * More costly? Better for day vision?

Eyes

- Eye orbits are the skeletal cavities where eyes are
- Orbits tell us size, shape and position of eyes from fossil animals
- What are the advantages and disadvantages of more forward-facing eyes?
 - ▶ * Better for precise tasks, three-dimensional visualization
 - * Not as good for looking around, being alert
- What are the advantages and disadvantages of larger eyes?
 - * Better for night vision
 - ▶ * More costly? Better for day vision?

► Information about differences between males and females has implications about social structure and mating patterns

- ► Information about differences between males and females has implications about social structure and mating patterns
 - ► In species where there is more variation in male success (less bonding in pairs), we expect:

- ► Information about differences between males and females has implications about social structure and mating patterns
 - ▶ In species where there is more variation in male success (less bonding in pairs), we expect:

▶ *

- ► Information about differences between males and females has implications about social structure and mating patterns
 - ▶ In species where there is more variation in male success (less bonding in pairs), we expect:
 - * More sexual dimorphism

- ► Information about differences between males and females has implications about social structure and mating patterns
 - ▶ In species where there is more variation in male success (less bonding in pairs), we expect:
 - * More sexual dimorphism
 - **×** ×

- ► Information about differences between males and females has implications about social structure and mating patterns
 - ▶ In species where there is more variation in male success (less bonding in pairs), we expect:
 - * More sexual dimorphism
 - ▶ * More competition between males for females

- ► Information about differences between males and females has implications about social structure and mating patterns
 - ▶ In species where there is more variation in male success (less bonding in pairs), we expect:
 - * More sexual dimorphism
 - ▶ * More competition between males for females

 Gorillas live in male-centered groups (one adult male, several adult females)

- Gorillas live in male-centered groups (one adult male, several adult females)
- ► Chimpanzees live in large, well-mixed groups with lots of interactions between males and females

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- ► Which species should have more sexual dimorphism overall?

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- ▶ Which species should have more sexual dimorphism overall?

4 D > 4 D > 4 E > 4 E > E 9 Q C

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- Which species should have more sexual dimorphism overall?
 - * Gorillas. Males are huge and strong and compete for females by displaying and fighting. A dominant male has exclusive access to a group of females

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- Which species should have more sexual dimorphism overall?
 - * Gorillas. Males are huge and strong and compete for females by displaying and fighting. A dominant male has exclusive access to a group of females
- ► Which species should have larger male genitals?

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- Which species should have more sexual dimorphism overall?
 - * Gorillas. Males are huge and strong and compete for females by displaying and fighting. A dominant male has exclusive access to a group of females
- Which species should have larger male genitals?

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- Which species should have more sexual dimorphism overall?
 - * Gorillas. Males are huge and strong and compete for females by displaying and fighting. A dominant male has exclusive access to a group of females
- ▶ Which species should have larger male genitals?
 - ► * Chimpanzees have much larger genitals. Gorillas don't use genitals as part of sexual competition

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- Which species should have more sexual dimorphism overall?
 - * Gorillas. Males are huge and strong and compete for females by displaying and fighting. A dominant male has exclusive access to a group of females
- ▶ Which species should have larger male genitals?
 - ▶ * Chimpanzees have much larger genitals. Gorillas don't use genitals as part of sexual competition
- ► What about humans?

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- Which species should have more sexual dimorphism overall?
 - ► * Gorillas. Males are huge and strong and compete for females by displaying and fighting. A dominant male has exclusive access to a group of females
- ▶ Which species should have larger male genitals?
 - ▶ * Chimpanzees have much larger genitals. Gorillas don't use genitals as part of sexual competition
- What about humans?
 - I am not writing this one down

- Gorillas live in male-centered groups (one adult male, several adult females)
- Chimpanzees live in large, well-mixed groups with lots of interactions between males and females
- Which species should have more sexual dimorphism overall?
 - ▶ * Gorillas. Males are huge and strong and compete for females by displaying and fighting. A dominant male has exclusive access to a group of females
- Which species should have larger male genitals?
 - ▶ * Chimpanzees have much larger genitals. Gorillas don't use genitals as part of sexual competition
- What about humans?
 - I am not writing this one down

Outline

Example

Patterns of evolution

Context for evolution

Patterns of diversity

The evolution of primates

Tools for learning about the past Challenges in learning about the past

The evolution of apes

► There is lots of ongoing debate about relationships between extinct primates

- ► There is lots of ongoing debate about relationships between extinct primates
- ► We know a lot know about omomyids and adapids

- ► There is lots of ongoing debate about relationships between extinct primates
- ▶ We know a lot know about omomyids and adapids
- ► How do we not know how they relate to modern primates?

- ► There is lots of ongoing debate about relationships between extinct primates
- ▶ We know a lot know about omomyids and adapids
- ▶ How do we not know how they relate to modern primates?

- ► There is lots of ongoing debate about relationships between extinct primates
- We know a lot know about omomyids and adapids
- ▶ How do we not know how they relate to modern primates?
 - * Convergent evolution

- ► There is lots of ongoing debate about relationships between extinct primates
- We know a lot know about omomyids and adapids
- ▶ How do we not know how they relate to modern primates?
 - * Convergent evolution

What was where when?

▶ When are two specimens from the same species?

What was where when?

- ▶ When are two specimens from the same species?
- ► How do we learn clues to tell *sexes* apart, and recognize which dimorphic individuals are from the same species?

What was where when?

- ▶ When are two specimens from the same species?
- ▶ How do we learn clues to tell *sexes* apart, and recognize which dimorphic individuals are from the same species?
- ▶ How do we know what fossils we didn't find?

What was where when?

- ▶ When are two specimens from the same species?
- How do we learn clues to tell sexes apart, and recognize which dimorphic individuals are from the same species?
- ▶ How do we know what fossils we didn't find?

Outline

Example

Patterns of evolution

Context for evolution Patterns of diversity

The evolution of primates

Tools for learning about the past Challenges in learning about the past

The evolution of apes

► Anthropoids is the sub-group of primates including apes and monkeys

► **Anthropoids** is the sub-group of primates including apes and monkeys

- ► Anthropoids is the sub-group of primates including apes and monkeys
 - * Monkeys are not a clade!

- ► Anthropoids is the sub-group of primates including apes and monkeys
 - * Monkeys are not a clade!

► Apes are more adapted for swinging through trees, whereas monkeys are more adapted for climbing and leaping

- Apes are more adapted for swinging through trees, whereas monkeys are more adapted for climbing and leaping
- ► More upright

- Apes are more adapted for swinging through trees, whereas monkeys are more adapted for climbing and leaping
- ► More upright
- ▶ Better at hanging, and worse at sitting

- Apes are more adapted for swinging through trees, whereas monkeys are more adapted for climbing and leaping
- ► More upright
- Better at hanging, and worse at sitting
- ► Lots of missing pieces of the puzzle

- Apes are more adapted for swinging through trees, whereas monkeys are more adapted for climbing and leaping
- ► More upright
- Better at hanging, and worse at sitting
- Lots of missing pieces of the puzzle
 - ► There may be a lot of convergent evolution and secondary loss going on

- Apes are more adapted for swinging through trees, whereas monkeys are more adapted for climbing and leaping
- ► More upright
- Better at hanging, and worse at sitting
- Lots of missing pieces of the puzzle
 - ► There may be a lot of convergent evolution and secondary loss going on

► Apes "radiated" into many habitats before monkeys did

- Apes "radiated" into many habitats before monkeys did
 - ► Many ape species were apparently later replaced by monkeys

- Apes "radiated" into many habitats before monkeys did
 - ▶ Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?

- Apes "radiated" into many habitats before monkeys did
 - ▶ Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - *

- Apes "radiated" into many habitats before monkeys did
 - Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - * Changing climactic conditions

- Apes "radiated" into many habitats before monkeys did
 - ▶ Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - * Changing climactic conditions
 - *

- Apes "radiated" into many habitats before monkeys did
 - Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - * Changing climactic conditions
 - * Changes in plants or insects

- Apes "radiated" into many habitats before monkeys did
 - Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - * Changing climactic conditions
 - * Changes in plants or insects
 - *

- Apes "radiated" into many habitats before monkeys did
 - Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - * Changing climactic conditions
 - * Changes in plants or insects
 - * Unpredictable adaptive innovations

- Apes "radiated" into many habitats before monkeys did
 - Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - * Changing climactic conditions
 - * Changes in plants or insects
 - * Unpredictable adaptive innovations
- ► What if the ape radiation had never happened?

- Apes "radiated" into many habitats before monkeys did
 - Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - * Changing climactic conditions
 - * Changes in plants or insects
 - * Unpredictable adaptive innovations
- What if the ape radiation had never happened?
 - **k**

- Apes "radiated" into many habitats before monkeys did
 - Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - * Changing climactic conditions
 - * Changes in plants or insects
 - * Unpredictable adaptive innovations
- ▶ What if the ape radiation had never happened?
 - ▶ * Probably no people

- Apes "radiated" into many habitats before monkeys did
 - Many ape species were apparently later replaced by monkeys
- Why might apes have diversified, and later been replaced by monkeys?
 - * Changing climactic conditions
 - * Changes in plants or insects
 - * Unpredictable adaptive innovations
- ▶ What if the ape radiation had never happened?
 - ▶ * Probably no people

► People have important differences from other organisms

- ▶ People have important differences from other organisms
- ► We got here using the same rules of natural selection as everyone else

- ▶ People have important differences from other organisms
- ▶ We got here using the same rules of natural selection as everyone else
 - ▶ Things may be different *now*, but even that is not so clear

- ▶ People have important differences from other organisms
- ▶ We got here using the same rules of natural selection as everyone else
 - ▶ Things may be different *now*, but even that is not so clear
- Adaptation does not move in a straight line

- ▶ People have important differences from other organisms
- ▶ We got here using the same rules of natural selection as everyone else
 - ▶ Things may be different *now*, but even that is not so clear
- Adaptation does not move in a straight line
 - Changing conditions lead to opportunities for new adaptations

- People have important differences from other organisms
- ▶ We got here using the same rules of natural selection as everyone else
 - ▶ Things may be different *now*, but even that is not so clear
- Adaptation does not move in a straight line
 - Changing conditions lead to opportunities for new adaptations
 - New adaptations themselves can be an important cause of changing conditions

- People have important differences from other organisms
- ▶ We got here using the same rules of natural selection as everyone else
 - ▶ Things may be different *now*, but even that is not so clear
- Adaptation does not move in a straight line
 - Changing conditions lead to opportunities for new adaptations
 - New adaptations themselves can be an important cause of changing conditions
 - Innovations, or co-evolution with other taxa

- People have important differences from other organisms
- ▶ We got here using the same rules of natural selection as everyone else
 - ▶ Things may be different *now*, but even that is not so clear
- Adaptation does not move in a straight line
 - Changing conditions lead to opportunities for new adaptations
 - New adaptations themselves can be an important cause of changing conditions
 - Innovations, or co-evolution with other taxa

► Understanding the course of evolution is an important part of understanding how things work now

- Understanding the course of evolution is an important part of understanding how things work now
 - ► How organisms work, and how ecosystems work

- Understanding the course of evolution is an important part of understanding how things work now
 - ▶ How organisms work, and how ecosystems work
- ► There are many challenges:

- Understanding the course of evolution is an important part of understanding how things work now
 - ► How organisms work, and how ecosystems work
- There are many challenges:
 - ► Timelines, identification, convergent evolution

- Understanding the course of evolution is an important part of understanding how things work now
 - ► How organisms work, and how ecosystems work
- There are many challenges:
 - ► Timelines, identification, convergent evolution