班级	学号	姓名	考试科目_信号与系统_	A 卷	<u>闭卷</u>	共 <u>4</u>	_页
	题(每小题 2 分 信号无失真地		统函数在频域中应满足:_		o		
2. 信号的	频谱包括两个	部分,它们分别是	<u>:</u>	o			
3. 已知 f	(t)的傅里叶变挂	奂为 $F(\omega)$,则 $f_1(t)$	f(-at-b)(a>0,b>0)	り傅里变:	换为	°	
4. 描述某	连续系统的微	分方程为 $\frac{dy(t)}{dt}$ + y	f(t)=f(t),则其冲激响应 h	(t)		•	
5. 信号 f	$(t) = e^{-2t} \theta(t)$ 的收	文敛域为	0				
6. 周期信	号频谱的特点。	是	0_				
7. 离散时	`间序列 f[k]= A	$A\sin\frac{\pi}{5}k + B\cos\frac{\pi}{3}$	k 是(A. 周期信号;	B. 非周	期信号)。若是	周
期信号,贝	リ周期 N =	o					
8. $\int_{-\infty}^{t} 4\sin \theta$	$a\tau\delta\left(\tau-\frac{\pi}{3}\right)d\tau=$	$ \int_{-\infty}^{\infty} 4\sin t \delta \left(\frac{1}{2} \right)^{-1} dt = 0 $	$(t-\frac{\pi}{3})dt = \underline{\qquad}$				
9. 若已知	信号 $f(t)$ 的傅 $\frac{1}{2}$	里叶变换为 $F(\omega)$,	请用 $F(\omega)$ 表示下列信号的	频谱:			
f(t)* f	$f(t-2) \rightarrow $		$f(t) * \cos 4t \rightarrow \underline{\hspace{1cm}}$		_•		
10. 若x(t)	$)$ 的带宽是 $\Delta \omega$,	$x\left(\frac{t}{2}\right)$ 的带宽是_	; x(2t)的带宽	°			
二、单项进	选择题(从每 小	题的四个备选答案	案中,选出一个正确的答案	,每小是	厦2分,	共 20 分	分)
1. 下列各	表达式中错误	的是	o				
(A) J	$\int_{-\infty}^{\infty} f(t)\delta(t)dt =$	f(0) (B)	$\int_{-\infty}^{\infty} f(t)\delta(t-t_0)dt = f(t_0)$				
(C) .	$\int_{-\infty}^{\infty} f(t-t_0) \delta(t) dt$	$dt = f(t_0) (D) \int$	$\int_{-\infty}^{\infty} f(t - t_0) \delta(t - t_0) dt = f(0)$				
2 .下列各 $_{(\mathrm{A})}~\delta^{[k]}$	表达式中正确 $\epsilon = \varepsilon[k+1] - \varepsilon[k]$	的是: $(B) \delta[k] = \varepsilon[-$	$-k$] $-\varepsilon[-k+1]$				
(C) $\varepsilon[k]$	$=\sum_{j=-\infty}^{\infty}\delta[k+j]$	(D) $\varepsilon[-k] = \sum_{j=-\infty}^{0} c_j$	$\delta[k-j]$				

2018~2019 学年第 2 学期

班级	学号	_ 姓名	考试科目_信号	与系统	<u>A 卷</u>	<u>闭卷</u>	共_	<u>4</u> 页
3. 已知 /	$F(\omega) = 2\cos 3\omega$,贝	J信号 $f(t)$ 是		0_				
(A)	$2[\delta(t+3)+\delta(t-3)]$	$(B) \frac{1}{2} \left[\delta(t) \right]$	$+3)+\delta(t-3)$					
(C)	$\delta(t+3)+\delta(t-3)$	(D) $2[\delta(t-$	$+3)-\delta(t-3)$					
4. 某线性	系统的系统函数 H($(s) = \frac{s}{s+1}$,若其零	状态响应 y _{zs} (t)	$= \left(1 - e^{-t}\right) e^{-t}$	arepsilon(t) , $arphi$	則系统的	的输入	$\backslash f(t)$
等于	o							
(A)	$\delta(t)$ (B)	$\varepsilon(t)$ (C)	$e^{-2t}\mathcal{E}(t)$	(D) $t\varepsilon(t)$)			
5. 信号 e	$j^{2t}\delta'(t)$ 的傅里叶变	换为:	o					
(A)	-2 (B) j	$(\omega-2)$ (C)	$j(\omega+2)$	(D) 2+	jω			
6. 信号 j	$F(t)\varepsilon(t)$ 延时 t_0 后所	导的延时信号是_		0				
(A)	$f(t-t_0)$ (B)	$f(t-t_0)\varepsilon(t)$	(C) $f(t)\varepsilon(t-$	t_0) (I	f($(t-t_0)$	$\varepsilon(t -$	$-t_0$
7. 已知:	$f[k] \Leftrightarrow F(z), a < z $	< b,如果 Z[f[-	k]]存在,则其 \emptyset	女敛域 一定	为			_•
(A)	$a < z < b \tag{B}$	1/b < z < 1/a	(C) b < z < a	(1	D) 1/a	a < z <	1/ <i>b</i>	
8. 单边拉	立氏变换 $F(s) = \frac{se^{-\pi s}}{s^2 + 1}$	- 的原函数等于		o				
(A)	$\cos(t-\pi)\varepsilon(t)$ (B)	$\cos(t-1)\varepsilon(t)$ (0	C) $\cos(t-\pi)\varepsilon(t-\pi)$	$-\pi$) (D)	$\cos(t$	$(-1)\varepsilon(t)$	-1)	
9. 下列名	A式为描述系统的方	程,其中非时变系	系统是	0_				
	y(t) = tf(t)							
(C)	$y(t) = f(-t) \qquad ($	y[k] = f[k]st	$im\Omega_0 k$					
10. 信号	$f(t) = \varepsilon(t) - \varepsilon(t-1)$	的单边拉氏变换	$\mathcal{F}(s) = \underline{\hspace{1cm}}$		0			
(A) $\frac{1}{s}$	(B) $\left(1-e^{-s}\right)$	s (C) $\frac{1}{s} - \frac{1}{s}$	$\frac{1}{+1}$ (D) $\frac{e}{-1}$	$\frac{e^{-s}}{s}$				

2018~2019 学年第 2 学期

班级______ 学号_____ 姓名_____ 考试科目_信号与系统 <u>A 卷</u> 闭卷 共 4 页

三、简单分析题(每小题5分,共25分)

1. 已知信号 f(t)的波形如图所示,试画出信号 y(t) = f(-2t-2)的波形。

2. 已知函数 $f_1(t)$, $f_2(t)$ 的波形如图所示,求 $y(t) = f_1(t) * f_2(t)$ 与 y(4)。

3. $F(\omega)$ 的图形如图所示,求原函数 f(t)。

4. 某线性时不变系统的初始状态不变,已知当激励为 f(t)时,全响应为 $y_1(t) = e^{-t} + \cos 2t$, 当激励为 2f(t)时,全响应为 $y_1(t) = 2\cos 2t$,求当激励为 3f(t)时,系统的全响应。

5. 简述周期矩形脉冲信号的频谱与周期 T 和脉冲持续时间 τ 的关系。

2018~2019 学年第 2 学期

姓名 考试科目 信号与系统 ___ A卷 闭卷 共_4_页 学号 班级

四、已知某系统的微分方程为y''(t)+3y'(t)+2y(t)=4f(t) (15 分)

- (1) 求该系统的系统函数 H(s) 及单位冲激响应 h(t);
- (2) 判断系统是否稳定,说明原因;
- (3) 若系统的输入 $f(t) = e^{-3t} \varepsilon(t)$, $y'(0_{-}) = 1$, $y(0_{-}) = 1$, 求系统的全响应。

五、已知信号 f(t) 的幅度频谱 $F(\omega)$ 如图所示,(10 分)

- (1) 若 y(t)=f(t)cos50t, 画出信号 y(t)的频谱 Y(ω);
- (2) 若 w(t)=y(t)cos50t, 画出信号 w(t)的频谱 W(ω);

若用频谱 $W(\alpha)$ 无失真的恢复出原信号 f(t) 的频谱 $F(\alpha)$,需要加什么样的滤波器? (注: 此题可以画图解答)

六、一线性时不变离散系统系统函数 H(z)的零极点分布如图,且已知某单位脉冲响应 h[n]的初 值 h[0]=1,求该系统的单位脉冲响应 h[n],且写出描述该系统的差分方程。(10 分)

