Inhaltsverzeichnis

1	Rep	pititorium 19.04.2022	3
	1.1		3
		1.1.1 Musterlösung Alexander Frank	3
	1.2		6
		1.2.1 Musterlösung Alexander Frank	6
0	D		7
2	_	oititorium 26.04.2022	7
	2.1		
	2.2		9
	0.9	2.2.1 Musterlösung Alexander Frank	
	2.3	Aufgabe 2	LU
3	Rep	pititorium 03.05.2022	2
	3.1	Aufgabe 1 (leichte Version)	12
		3.1.1 Musterlösung Alexander Frank	
	3.2	Tipps für Rekursive Folgen	
	3.3	Aufgabe 2	
4	Rep		7
	4.1	Reihen und Potenzreihen	
		4.1.1 Divergenz	
		4.1.2 Konvergenz	
		4.1.3 Indizien wann welches Verfahren verwendet werden sollte	
	4.2	Aufgabe 1	
	4.3	<u> </u>	18
	4.4		18
	4.5	Aufgabe 4	
	4.6	Aufgabe 5	L9
5	Ror	pititorium 17.05.2022 2	20
J	5.1	Hilfreiche Anmerkungen zu Beginn	
	5.1	5.1.1 Definition von Funktionen	
			20 20
		· ·	20 20
		ů .	20
			20
			21
			21
	5.2		21
	9,2		21 21
		5.2.1 Nidoveriobung fileAunder Frank	- 1
6	Rep	pititorium 24.05.2022 2	23
	6.1	Aufgabe 1	23
		6.1.1 Lösung Alexander Frank	24

7	Rep	ititorium 31.05.2022 2	7
	7.1	Alle wichtigen Sachen (auch für die Klausur) zum Thema Differenzierbarkeit aus	
		Kapitel 5.1/5.2	27
		7.1.1 Definition Differential quotient	27
		7.1.2 Definition Extrema	27
		7.1.3 Notwendige/Hinreichende Kriterium	27
			27
		7.1.5 Mittelwertsatz	27
		7.1.6 Monotonie	27
			27
		7.1.8 Satz zwischen den Zeilen	
	7.2		28
		7.2.1 Musterlösung Alexander Frank	
	7.3	Aufgabe 2	
			32
	7.4	Aufgabe 3	
	•••	7.4.1 Musterlösung Alexander Frank	
		1112 112400011004110 11011111 1 1 1 1 1 1 1 1 1	
8	Rep	oititorium 07.06.2022 3	1
	8.1	Aufgabe 1 (Taylor Reihen)	31
		8.1.1 Musterlösung Alexander Frank	
9	Ren	oititorium 14.06.2022 3	4
•	9.1	Aufgabe 1	
	0.1	9.1.1 Musterlösung Alexander Frank	
	9.2	Aufgabe 2	
	0.2	9.2.1 Musterlösung Alexander Frank	
		orali masteriosang menanati manati na manati n	
10	Rep	oititorium 21.06.2022 3	7
	10.1	Partielle Integration	37
	10.2	Substitutionelle	37
	10.3	Aufgabe 1	37
		10.3.1 Musterlösung Alexander Frank	38
	10.4	Aufgabe 2	
			8
	10.5	ŭ	39
			39
	10.6	~	39
	_0.0		10
11	Ren	oititorium 28.06.2022 4	1
11	-		: 1 []
		Lösungsideen Alexander Frank	
		Dinge die auf dem Klausurzettel stehen sollten	
	$\tau \tau . 0$	Dingo die dai delli Madsurzentei stenen sellten	ⅎℸ

1 Repititorium 19.04.2022

Tipp: Für die Klausur Zeitmanagement

Gehe alle Aufgaben zu beginn einmal durch und schreibe dir eine Bewertung an die einzelnen Aufgaben, für wie schwer man diese hält.

Teile halte dir feste Zeiträume für einzelne Aufgaben fest und gehe zur nächsten Aufgabe, wenn die Zeit zum lösen der Aufgabe nicht reicht.

1.1 Aufgabe 1

Beweisen Sie: Für alle $n \in \mathbb{N}$ gilt:

 $n^3 + 5n$ ist durch 6 teilbar

1.1.1 Musterlösung Alexander Frank

Tipp: Aussagen greifbar machen

Vereinfache die Aussage, sodass sie einfacher zu beweisen ist.

$$A(n) \Leftrightarrow 6|(n^3 + 5n)$$

 $\Leftrightarrow \frac{1}{6}(n^3 + 5n) \in \mathbb{N}$

Induktionsanfang: (A(1))

$$6|(1^3+5)$$

 $6|6$

Induktionsvoraussetzung:

Es gelte für ein $n \in \mathbb{N}$ die Aussgae A(n).

Tipp: Induktionsvoraussetzung für ein n

Es darf nicht geschrieben werden, dass die Aussage für alle $n \in \mathbb{N}$ gilt. Eine andere Formulierung wäre:

Es existiert ein $n \in \mathbb{N}$ für alle $k \leq n$ gilt A(k).

Induktionsschritt: $(n \to n+1)$

Tipp: Aussage mit n+1 aufschreiben

Schreibe immer die Aussage die zu zeigen ist auf.

Dies hilft, das Ziel besser im Auge zu behalten und den Weg nicht zu verlieren.

$$A(n+1) \Leftrightarrow 6|((n+1)^3 + 5(n+1))$$

Tipp: Wähle immer die schwerere Seite zuerst

Es ist leichter von der von der schwereren Seite zur Leichten zu gelangen. Analogie: Vom Berg runter ist leichter als den Berg herauf zu gelangen.

Tipp: Induktionsvoraussetzung benutzen

Irgendwann <u>muss</u> immer die Induktionsvoraussetzung eingesetzt werden.

$$6|((n+1)^3 + 5(n+1)) \Leftrightarrow 6|((n^3 + 3n^2 + 3n + 1) + 5n + 5)$$

$$\Leftrightarrow 6|(\underbrace{(n^3 + 5n)}_{\text{Ist durch 6 teilbar}} + (3n^2 + 3n + 6))$$

$$\Leftrightarrow 6|(3n^2 + 3n + 6)$$

$$\Leftrightarrow 6|(3n(n+1) + \underbrace{6}_{\text{Ist durch 6 Teilbar}})$$

$$\Leftrightarrow 6|(3n(n+1))$$

$$\Leftrightarrow 6|3 \cdot \sum_{k=1}^{n} 2k$$

$$\Leftrightarrow 6|6 \cdot \sum_{k=1}^{n} k$$

Tipp: Induktionsbeweis in Induktionsbeweis

Fällt einem die Formel $\sum_{k=1}^n 2k = n(n+1)$ kann man auch einfach einen Induktionsbeweis im Induktionsbeweis führen wie folgt:

$$B(n) \Leftrightarrow 6|3(n+1)n$$

I.A.:

$$B(1) \Leftrightarrow 6|6\checkmark$$

I.V.:

Die Aussage B(n) gilt für ein beliebiges aber festes $n \in \mathbb{N}$

I.S:

$$B(n+1) \Leftrightarrow 6|3(n+2)(n+1)$$

$$\Leftrightarrow 6|\left(3n(n+1) + 6(n+1)\right)$$

$$\stackrel{I.V.}{\Leftrightarrow} 6|6(n+1)$$

Interessant für Spickzettel

$$\sum_{k=1}^{n} 2k = n(n+1)$$

1.2 Aufgabe 2

Beweisen Sie, dass für alle $n \in \mathbb{N}$ die Aussage

$$(1+x)^n \le 1 + (2^n - 1)x$$

für alle $x \in [0, 1]$ gilt.

1.2.1 Musterlösung Alexander Frank

$$A(n) \Leftrightarrow (1+x)^n \le 1 + (2^n - 1)x \qquad \forall x \in [0, 1]$$

Induktionsanfang:

$$A(1) \Leftrightarrow (1+x)^{1} \leq 1 + (2^{1} - 1)x \qquad \forall x \in [0, 1]$$

$$\Leftrightarrow (1+x) \leq 1 + x \qquad \forall x \in [0, 1]$$

Induktionsvoraussetzung:

Es gelte
$$A(n)$$
 für $n \in \mathbb{N}$

Induktionsschritt:

$$A(n+1) \Leftrightarrow (1+x)^{n+1} \le 1 + (2^{n+1} - 1)x$$

Tipp: Ausrufezeichnen drüber setzen

Wenn man ein! drüber setzt, dann heißt das, man möchte, dass die Aussage gilt, allerdings gibt es noch kein Beweis dazu.

$$1 + (2^{n+1} - 1)x \Leftrightarrow 1 + (2^n + 2^n - 1)x$$

$$\Leftrightarrow 1 + (2^n - 1)x + 2^n x$$

$$\stackrel{I.V.}{\geq} (1 + x)^n + 2^n x \stackrel{!}{\geq} (1 + x)^{n+1}$$

$$\Leftrightarrow (1 + x)^n + 2^n x \stackrel{!}{\geq} (1 + x)(1 + x)^n$$

$$\Leftrightarrow (1 + x)^n + 2^n \stackrel{!}{\geq} (1 + x)^n + x(^+x)^n$$

$$\Leftrightarrow 2^n x \stackrel{!}{\geq} (1 + x)^n x$$

1. Fall (x = 0)

$$0 \ge 0$$

2. Fall (x > 0)

$$2^n \stackrel{!}{\geq} (1+x)^n$$

$$\Leftrightarrow 2^n \ge (1+1)^n \ge (1+x)^n$$

2 Repititorium 26.04.2022

Tipp: Die Aufgaben des Repititoriums sind interessant

Die Aufgaben des Repititoriums, werden für die Erstellung der Klausur mit in betrachtet gezogen und können in dieser in ähnlicher Form dran kommen. Die Aufgaben in der Klausur können, also beispielsweise ähnliche Kniffe, wie hier, enthalten, was zur Lösung der Aufgaben hilfreich sein kann.

2.1 Was für Probleme kommen und wie löst man die?

Es gibt vier relevante Problemstukturen:

- $1) \ \exists x \in X : A(x)$
 - Nullstellen
 - Ableitung
 - Integrall
 - Induktionsanfang
 - ...

Lösen mit:

- Algorithmen
- Verfahren (Ableitungsregeln)
- l'hopital
- Raten (Bauchgefühl)
- Umformungen
- $2) \ \forall y \in Y : A(y)$
 - Obere-/Untereschranken
 - Globale Werte (Maxima/Minima/...)
 - Norm (Normeigenschaften)

Lösen mit:

- Induktion
- Abschätzung
- Folgerungen aus Wahrheit

- 3) $\exists x \in X \ \forall y \in Y : A(x,y)$
 - Neutrales Element
 - Supremum/Infimum

Lösen mit:

- Wähle $x \in X!$
 - Bauchgefühl/Intuition ⇒ Induktion, Mengenaufteilung, Abschätzung
- 4) $\forall y \in Y \ \exists x \in X : A(x,y)$
 - Inverse(s) Element(e)
 - Funktionswerte
 - Funktionen

Lösen mit:

- Bestimme $x(y) \in X$
 - Beispiel: $\forall c \in \mathbb{R} \exists z \in \overline{\mathbb{C}} : z^2 = x \text{ mit } c = R + Ii \text{ und } z = a + bi$

Lösen mit:

- Umformen
- Abschätzen

$$\forall y \in \mathbb{R} \ \forall \varepsilon > 0 \ \underbrace{\exists \delta > 0}_{\leftarrow \delta(y,\varepsilon)} \ \forall x \in \mathbb{R} : \underbrace{(|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon)}_{A(y,\varepsilon,\delta,x)}$$

2.2 Aufgabe 1

$$x_n = \frac{n}{2^n}$$
 Zeige Konvergenz per Definition

Definition der Konvergenz

$$\exists x \in \mathbb{R} \ \forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \ge n_0 : |x_n - x| < \varepsilon$$

2.2.1 Musterlösung Alexander Frank

$$\underbrace{\exists x \in \mathbb{R}}_{x \in \mathbb{R}} \ \forall \varepsilon > 0 \ \underbrace{\exists n_0 \in \mathbb{N}}_{n_0(\varepsilon) \in \mathbb{N}} \ \forall n \ge n_0 : \left| \frac{n}{2^n} - x \right| < \varepsilon$$

Tipp: Werte einsetzen

Setze einfach ein paar Werte ein und schaue dir an wie sich die Funktion verhält

1) $x \in \mathbb{R}$ Nebenrechnung (Werte in $\frac{n}{2^n}$ einsetzen):

$$\frac{1}{2}, \frac{1}{2}, \frac{3}{8}, \frac{1}{4}, \frac{5}{32}, \frac{3}{32}, ..., 0$$

$$\frac{1000}{2^{1000} < \frac{1000}{2^{125}}}$$

Wir lassen unser Bauchgefühl entscheiden und wählen x = 0 (Behauptung).

Das Wissen wir bereits

$$n^2 \le 2^n \qquad \qquad n \ge 4$$

Behauptung:

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \left| \frac{n}{2^n} - 0 \right| < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : \frac{n}{2^n} < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq \max(4, n_0) : \frac{n}{2^n} \leq \frac{n}{n^2} < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq \max(4, n_0) : \frac{n}{2^n} \leq \frac{1}{n} < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq \max(4, n_0) : \frac{n}{2^n} \leq \frac{1}{n} < \varepsilon$$

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq \max(4, n_0) : \frac{n}{2^n} \leq \frac{1}{n} \frac{1}{n_0} < \varepsilon$$

$$\Leftrightarrow$$

$$\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} : \frac{1}{n_0} < \varepsilon \qquad \Leftrightarrow$$

$$\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} : \frac{1}{\varepsilon} < n_0 \qquad \Leftrightarrow$$

$$\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} : n_0 \ge \left\lceil \frac{2}{\varepsilon} \right\rceil \qquad \Leftarrow$$

$$\forall \varepsilon > 0 \; \exists n_0 \in \mathbb{N} : n_0 = \max(4, \left\lceil \frac{2}{\varepsilon} \right\rceil)$$

Tipp: Auf und Abrunden hilft

Bei der Bestimmung von echt kleiner oder echt größer kann es helfen, dass man seinen Term, mit Hilfe der Gauß'schen Klammern, auf-/abrundent.

Tipp: Rekursive Folgen sind in der Klausur beliebt

Aufgaben mit rekursiven Folgen sind gern gesehene Aufgaben in einer Klausur, da sie mehrere Themen gleichzeitig abfragen.

2.3 Aufgabe 2

$$a_0 = \frac{1}{2} \qquad a_{n+1} = a_n(2 - a_n)$$

Fiese Aufgabenstellung:

Untersuche auf Konvergenz und gebe gegebenenfalls einen Grenzwert an.

Aufgabe lösen in Schritten:

- 1) Beschränktheit zeigen
 - $a \le a_n \le b$
 - $\forall a, b \in \mathbb{R} \ \forall n \in \mathbb{N} :$

Werte in die Folge einsetzen (NR):

$$\frac{1}{2}, \frac{3}{4}, \frac{15}{16}, \frac{17 \cdot 15}{16^2}, \dots, 1$$

Alexander Frank würde die Aussage $\underbrace{0 \leq a_0 \leq 1}_{\text{Induktion}}$ beweisen.

- 2) Monotonie $\forall n \in \mathbb{N} : a_{n+1} \stackrel{\leq}{>} a_n$
 - keine Induktion, wenn vorher Beschränktheit gezeigt ist
 - ⇒ Folgerung aus Wahrheit

- 3) \Rightarrow Aus einem Satz der Vorlesung folgt: Aus Beschränktheit und Monotonie folgt die Konvergenz
- 4) Grenzwert
 - $\bullet \ a_{n+1} = a_n = a$
 - $\bullet \ a = a(2-a)$
 - $\lim_{n\to\infty} a_{n+1} = \lim_{n\to\infty} a_n = a$

Tipp zum Lösen der Aufgabe:

$$a_{n+1} = \underbrace{\frac{a_n(2 - a_n)}{2a_n - a_n^2}}_{= 1 - 1 + 2a_n - a_n^2}$$
$$= 1 - (1 - 2a_n + a_n^2)$$
$$= 1 - (1 - a_n)$$

3 Repititorium 03.05.2022

3.1 Aufgabe 1 (leichte Version)

$$a_{n+1} = \frac{1}{1 + \frac{1}{a_n}} \qquad a_0 = 1$$

- a) Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}_0}$ beschränkt ist.
- b) Zeige $(a_n)_{n\in\mathbb{N}}$ ist streng monoton
- c) Konvergent?
- d) Geben Sie den Grenzwert an.

3.1.1 Musterlösung Alexander Frank

a) Mögliche Beschränkungen, die man zeigen kann:

$$0 \le a_n \le 1$$

$$0 \le a_n \le x$$

x > 1

$$0 < a_n \le 1$$

optimale Aussage für Aufgabenteil b)

Das Wissen wir bereits

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot d}{b \cdot c}$$

Beschränktheit: $\exists a, b \in \mathbb{R} \ \forall n \in \mathbb{N}_0 : a \leq a_n \leq b$ Wir wollen zeigen:

$$\forall n \in \mathbb{N}_0 : 0 \le a_n \le 1$$

Induktionsanfang:

$$0 \le 1 \le 1$$
 wahr $\checkmark (n=0)$

Induktionsvoraussetzung:

$$\exists n \in \mathbb{N}_0 : 0 \le a_n \le 1$$

Induktionsschritt:

$$a \le a_{n+1} \le 1$$

$$0 \le \frac{1}{1 + \frac{1}{a_n}} \le 1$$
Brüche

$$0 \le \frac{1}{\frac{a_n+1}{a_n}} \le 1$$

$$0 \le \frac{a_n}{a_n+1} \le 1$$

$$0 \cdot (a_n+1) \le a_n \le a_n+1$$

$$0 < a_n \le a_n+1$$

$$0 < a_n \le a_n+1$$

Tipp: Nutzt solange wie möglich Äquivalenzumformungen

Man sollte so lange wie möglich Äquivalenzumformungen verwenden. Sollten diese irgendwann nicht mehr ausreichen, dann sollte zu Folgerungen übergegangen werden.

b)

Tipp: Werte einsetzen hilf

Es ist sehr Hilfreich erst einmal ein paar Werte in die Funktion/Folge/Reihe einzusetzen, um ein Gefühl für diese zu bekommen. Dadurch ist es leichter herauszufinden, was für diese gilt.

Randnotiz

Damit man die Aussage mittels Induktion lösen kann muss man eine Aussage wie folgt konstruieren:

$$\forall n \in \mathbb{N}_0 : a_n - \frac{1}{1 + \frac{1}{a_n}} > 0$$

$$a_n - \frac{a_n}{a_n + 1} > 0$$

$$\frac{a_n(a_n + 1) - a_n}{a_n + 1} > 0$$

$$\frac{a_n^2}{a_n + 1} > 0$$

$$a_n^2 > 0$$

Nicht aber so:

$$\forall n \in \mathbb{N}_0 : a_n - a_{n+1} > 0$$

Induktionsan
fang: $a_0=1$ $a_1=\frac{1}{2}$ $\frac{1}{2}>0$

$$\forall n \in \mathbb{N}_0 : a_{n+1} < a_n$$

$$\forall n \in \mathbb{N}_0 : \frac{1}{1 + \frac{1}{a_n}} < a_n \qquad \qquad \stackrel{\text{siehe a}}{\Leftrightarrow}$$

$$\forall n \in \mathbb{N}_0 : \frac{a_n}{a_n + 1} < a_n \qquad \qquad \stackrel{\cdot (a_n + 1) > 0}{\Leftrightarrow}$$

$$\forall n \in \mathbb{N}_0 : a_n < a_n^2 + a_n \qquad \qquad \stackrel{-a_n}{\Leftrightarrow}$$

$$\forall n \in \mathbb{N}_0 : 0 < a_n^2$$

Damit < 0 gilt muss man bei der Beschränktheit die linke Seite \le anpassen zu <.

Tipp: Keine Induktion bei Monotonie-Beweis

Bei der Monotonie reicht es meist durch Umformungen zu zeigen, dass etwas streng monoton ist. Induktionsbeweise sorgen dafür, dass man auf den falschen Weg geleitet wird.

c) Die Folge $(a_n)_{n\in\mathbb{N}_0}$ ist streng monoton fallend und beschränkt, daraus folgt $(a_n)_{n\in\mathbb{N}_0}$ ist konvergent.

Tipp: Vermeide das Cauchy-Kriterium

Man will das Cauchy-Kriterium nicht verwenden, das ist hässlich und unhandlich. Es wird auch nur für wenige Aussagen gebraucht. In der Klausur wird es keine Aufgabe geben, wo man das Cauchy-Kriterium verwenden muss.

Tipp: Rechne zu ende auch wenn du einen Fehler gemacht hast

Solltest du bemerken, dass du eine Aufgabe nicht ganz richtig hast in einem frühreren Punkt (Hier beispielsweise a)), dann beende deine Aufgabe trotzdem. Du bekommst trotzdem Punkte wenn du das richtige aus deinen falschen Rechnungen schlussfolgerst. Beispiel: Du folgerst in a), dass die Beschränktheit nicht gilt, dann folgere in c) das richtige aus deinem falschen a). Also dann würde die Divergenz folgen.

d)

$$\lim_{n \to \infty} a_n = a$$
$$\lim_{n \to \infty} a_{n+1} = a$$

$$a = \frac{1}{1 + \frac{1}{a}}$$

$$a = \frac{a}{a+1}$$

$$a(a+1) = a$$

$$\Rightarrow$$

$$a^{2} + a = a$$

$$a^{2} = 0$$

$$a = 0$$

$$\Leftrightarrow$$

 $\exists a \in \mathbb{R} : \lim_{n \to \infty} a_n = a$

Randnotiz

$$1 = \frac{\frac{1}{n}}{\frac{1}{n}}$$

$$a_{n+1} = \frac{a_n}{a_n + 1}$$

Randnotiz

Optionen zur Bestimmung auf Konvergenz:

- 1) Monotonie & Beschränktheit
- 2) Cauchy-Kriterium (fast nie)
- 3) Implizite Darsteluung (sehr selten)

•

$$a_n = \frac{1}{n+1}$$

• Beweise mit Induktion

3.2 Tipps für Rekursive Folgen

a) Folgeglieder bestimmen

$$a_0, a_1, a_2, a_3, a_4$$

- b) So einfach wie möglich umformen $a_{n+1} = \dots$
- c) Schritte 1-4 für Konvergenz
 - 1) Zeigen Sie, dass $(a_n)_{n\in\mathbb{N}_0}$ beschränkt ist.
 - 2) Zeige $(a_n)_{n\in\mathbb{N}}$ ist streng monoton
 - 3) Konvergent?
 - 4) Geben Sie den Grenzwert an.
- \Rightarrow Schranken aus 1) auch später anpassbar
- \Rightarrow Beschränktheit induktiv zeigen
- ⇒ Monotonie direkt beweisen (Beschränktheit nutzen)

3.3 Aufgabe 2

$$a_{n+1} = 1 + \frac{1}{1 + a_n}$$

$$a_0 = 1$$

- 1) $a_n \in [1, 2]$
- 2) 🗶
- 3)
- 4) $\sqrt{2}$

4 Repititorium 10.05.2022

4.1 Reihen und Potenzreihen

4.1.1 Divergenz

Wie kann man Divergenz beweisen:

- 1) Ist a_k keine Nullfolge? (Notwendige Bedingung) \Rightarrow nicht konvergent, nicht absolut konvergent
- 2) <u>Minorantenkriterium</u>: $\exists k_0 \in \mathbb{N} \ \forall k \geq k_0 : a_k \geq c_k \geq 0 \land \sum_{k=1}^{\infty} c_k \text{ divergent} \Rightarrow \sum_{k=1}^{\infty} a_k \text{ divergent} \Rightarrow \text{ nicht absolut konvergent}$ Bekannte divergente Reihen: $\sum \frac{1}{k}, \sum (-1)^k, \sum \frac{1}{\sqrt{k}}$
- 3) Wurzelkriterium: $\lim_{n\to\infty} \sup_{n\to\infty} \sqrt[n]{|a_k|} > 1$
- 4) Quotientenkriterium: $\lim_{n\to\infty} \sup_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$

4.1.2 Konvergenz

- 1) Ähnlich zu bekannter Reihe? Geometrische! $\sum \frac{(-1)^{k+1}}{k}, \sum \frac{1}{k^m} m \ge 2, \sum (x + \frac{1}{k})^k x \in [0, 1), \sum \frac{k^5}{k!} \text{ konvergent}$ $\sum_{k=1}^{\infty} \frac{1}{k(k+1)} = 1, \sum_{k=0}^{\infty} x^k = \frac{1-x^{a+1}}{1-x}, \sum_{k=0}^{\infty} \frac{x^4}{k!} = e^x, \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (x-1)^k = \ln(x)$
- 2) Majorantenkriterium: $\exists k_0 \in \mathbb{N} \ \forall h \geq h_0 : |a_k| \leq c_k \text{ und } \sum c_k \text{ absolut konvergent}$ $\Rightarrow \sum a_k \text{ absolut konvergent}$
- 3) a) Quotientenkriterium: $\exists q \in (0,1) \ \exists h_0 \in \mathbb{N} \ \forall k \geq k_0 : a_n \neq 0 \land \left| \frac{a_{k+1}}{a_k} \right| \leq q$ $\Rightarrow \sum a_k$ absolut konvergent
- 4) b) Wurzelkriterium: $\exists q \in (0,1) \ \exists h_0 \in \mathbb{N} \ \forall h \geq h_0 : \sqrt[k]{|a_k|} \leq q$ $\Rightarrow \sum a_k$ absolut konvergent
- 5) Leibniz: a_k monoton fallende Nullfolge $\Rightarrow \sum_{k=1}^{\infty} (-1)^k a_k$ konvergiert
- 6) Teleskopsumme: $\sum_{k=0}^{N} a_k = \sum_{k=0}^{N} (b_k b_{k+1}) = b_0 b_{N+1}$ $\sum_{n=0}^{N} a_k = \sum_{k=0}^{N} (b_k b_{k+2}) = b_0 + b_1 b_{N+1} b_{N+2}$

Tipp: Zeige immer erst die absolute Konvergenz

Soll die Konvergenz einer Reihe gezeigt werden, dann sollte immer die absolute Konvergenz versucht werden zu zeigen, da aus dieser immer die gewöhnliche Konvergenz folgt.

17

4.1.3 Indizien wann welches Verfahren verwendet werden sollte

$$\begin{array}{lll} \text{Majoranten} & \sum_{k=1}^{\infty} \frac{p_k(x)}{q_k(x)} & \text{Minoranten} \\ \text{Quotienten} & (x!, \frac{x}{y}, x^y) - Mischmasch & \text{Quotienten} \\ \text{Wurzel} & a_k \sim > (b_k)^k & \text{Wurzel} \\ & a_n < b_k^k \wedge b_k \text{ konvergiert absolut mit } \sqrt{\cdot} \\ & a_n > b_k^k \wedge b_k \text{ divergiert mit } \sqrt{\cdot} \\ \text{Leibniz} & a_n = (-1)^k \cdot b_k \\ \text{Teleskopsumme} & a_k = b_n - b_{k+m} \vee a_k = \frac{1}{(b_k + x)(b_k - y)} \end{array}$$

4.2 Aufgabe 1

$$\sum_{k=0}^{\infty} (-42)^n$$

Das ist keine Nullfolge! \rightarrow divergent. Vorgehen:

$$\lim_{n\to\infty} \frac{1}{(-42)^n} = 0 \Rightarrow a_n \text{ bestimmt divergent } \Rightarrow a_n \text{ keine Nullfolge}$$

4.3 Aufgabe 2

$$\sum_{k=1}^{\infty} \frac{k+1}{k^3+1} \sim \frac{1}{k^2}$$

Vorgehen: Abschätzung / Majorantenkriterium

$$\sum_{k=1}^{\infty} \frac{k+1}{k^3+1} < \sum_{k=1}^{\infty} \frac{k+1}{k^3} = \sum_{k=1}^{\infty} \frac{1}{k^2} + \sum_{k=1}^{\infty} \frac{1}{k^3}$$

4.4 Aufgabe 3

$$\sum_{n=1}^{\infty} \frac{(n+1)! \cdot 3n}{(n+2)! - n!}$$

Das ganze ist keine Nullfolge! Vorgehen:

$$\frac{(n+1)! \cdot 3n}{(n+2)! - n!} > \frac{(n+1)! \cdot 3n}{(n+2)! + n!} > \frac{(n+1)! \cdot 3n}{(n+2)! + (n+2)!}$$

$$= \frac{(n+1)! \cdot 3n}{2 \cdot (n+2)!} = \frac{3n}{2(n+2)} = \frac{3n}{2n+2}$$

$$> \frac{3n}{2n+2n} = \frac{3n}{4n} = \frac{3}{4}$$

4.5 Aufgabe 4

$$s_N = \sum_{n=2}^N \frac{2}{4n^2 - 9} = \sum_{n=2}^N \frac{2}{(2n-3)(2n+3)} = \sum_{n=1}^N \left[\frac{1}{3} \frac{2}{(2n-3)} - \frac{1}{3} \frac{2}{(2n+3)} \right]$$
$$= \frac{2}{3} \left[\sum_{n=2}^N \frac{1}{2n-3} - \frac{1}{2n+3} \right]$$

Nebenrechnung:

$$\frac{A}{2n-3} - \frac{B}{2n+3} = \frac{A(2n+3) - B(2n-3)}{(2n-3)(2n+3)}$$

$$\frac{2An + 3A - 2Bn + 3B}{(2n-3)(2n+3)} = \frac{2n(A-B) + 3(A+B)}{(2n-3)(2n+3)} = \dots = 1 + \frac{1}{3} + \frac{1}{5} = \frac{23}{15}$$

$$2n(A - B) = 0n \Leftrightarrow A = B$$
$$3(A + B) = 2 \Rightarrow A = \frac{1}{3} B = \frac{1}{3}$$

4.6 Aufgabe 5

$$\sum_{n=1}^{\infty} 2^{(-1)^n - n}$$

- a) Zeige, dass das Quotientenkriterium nicht anwendbar ist!
- b) Zeige, dass dass Wurzelkriterium funktioniert
- c) Ist die Reihe konvergent?

5 Repititorium 17.05.2022

5.1 Hilfreiche Anmerkungen zu Beginn

5.1.1 Definition von Funktionen

$$\forall x \in A \; \exists ! y \in B : f(x) = y$$

Jedem x ist genau ein y zugeordnet.

Definitionsbreich \overline{A}

Bildbereich B

Bild $f(A) \subseteq B$

5.1.2 Injektivität

$$\forall x, x' \in A : f(x) = f(x') \Rightarrow x = x' \qquad \text{(nach } x \text{ auflösbar } x \cdot e^x \not X x \log x) \frac{x+2}{5} \checkmark$$
$$\forall x, x' \in A : x \neq y \Rightarrow f(x) \neq f(x') \qquad \text{(Monoton(streng), Vorzeichenwechsel)}$$

5.1.3 Surjektivität

$$\forall y \in B \ \exists x \in A : f(x) = y$$
 Umkehrfunktion bildbar!

$$B = [a, b] \land \exists x_a : f(x_a) = a \land \exists x_b : f(x_b) = b \land f \text{ stetig}$$
 (Zwischenwertsatz))

$$B = \mathbb{R} \Rightarrow \lim_{x \to -\infty} f(x) = -\infty \land \lim_{x \to \infty} f(x) = \infty \land f \text{ stetig}$$
 (Zwischenwertsatz)

5.1.4 Umkehrfunktion

$$\exists f^{-1} \, \forall x \in A : f^{-1}(f(x)) = x$$
 (Nachrechnen!)

5.1.5 Beschränktheit

$$\exists k>0 \ \forall x\in A: |f(x)|< k$$
 (direkte Beweise)
$$0<1\Rightarrow |x|<1+|x|$$

$$\vdots$$

$$|f(x)|< k$$

Fange mit einer Wahrheit an und forme um! Wahrheiten die man gerne nutzt:

- 0 < 1</p>
- $0 < x^2$
- $0 \le (x-a)^2$
- 0 < |x a|

5.1.6 Monotonie

Ein Beispielfall (streng steigende Monotonie)

$$\forall x, x' \in A : x < x' \Rightarrow f(x) < f(x')$$

5.1.7 Bekannte Korollare

Umkehrfunktion \Leftrightarrow Bijektiv Strenge Monotonie \Rightarrow Umkehrfunktion auf f(A)

5.2 Aufgabe 1

Gegeben sei $f: \mathbb{R} \to \mathbb{R}$ mit $f(x) = \frac{1}{1+|x|}$

- a) Überprüfe f auf Injektivität, Surjektivivtät und Bijektivität
- b) Ist f beschränkt?
- c) Es sei $A=[0,\infty)$ und B=(0,1] zeigen Sie, dass eine Umkehrabbildung existiert und geben Sie diese an.

5.2.1 Musterlösung Alexander Frank

a) Injektiv? Gegenbeispiel:

$$f(-1) = \frac{1}{1+|-1|} = \frac{1}{2} = \frac{1}{1+|1|} = f(1)$$

Tipp: Mache eine grobe Skizze im Kopf

Male dir die Funktion grob auf. Mache dir klar in welche Richtung die Funktion für ∞ und $-\infty$ verläuft. Anschließend setzen 0 (manchmal auch 1) ein. Wähle wenige Werte mehr um 0 herum und zeichne deine Skizze.

Surjektiv? $B = \mathbb{R}$ Schöner Weg (muss man aber auch direkt sehen):

$$|x| \ge 0 \ne -\frac{1}{2} \qquad \Leftrightarrow$$

$$|x| \ne -\frac{1}{2} \qquad \Leftrightarrow$$

$$1 + |x| \ne \frac{1}{2} \qquad \Leftrightarrow$$

$$\frac{1}{1 + |x|} \ne 2 \qquad \Leftrightarrow$$

$$f(x) \ne 2$$

Der Praktikablere Weg:

$$-1 \neq \frac{1}{1+|x|} \qquad \stackrel{\cdot (1+|x|)}{\Leftrightarrow}$$

$$-(1+|x|) \neq 1 \qquad \Leftrightarrow \\ -1-|x| \neq 1 \qquad \Leftrightarrow \\ -|x| \neq 2 \qquad \vdots \Rightarrow \\ |x| \neq -2$$

Weiterer möglicher Weg:

$$f(x) \ge 0$$

$$\frac{1}{1+|x|} \ge 0$$

$$1 \ge 0$$

$$\Leftrightarrow \frac{(1+|x|)}{(1+|x|)}$$

Somit gilt $\not\exists x \in \mathbb{R} : f(x) = -2$

b)

$$\frac{1}{1+|x|} \le 1$$

$$1 \le 1+|x|$$

$$0 \le |x|$$

$$(1+|x|)$$

$$\Leftrightarrow$$

$$\exists 2 > 0 : \forall x \in \mathbb{R} : \underbrace{-2 < 0 \le f(x) < 2}_{|f(x)| < 2}$$

 $Bild(f) = f(\mathbb{R}) = (0, 1]$

c)

$$y = \frac{1}{1+|x|} \qquad \Leftrightarrow \text{mit } x \in \mathbb{R}_{\geq 0}$$

$$y = \frac{1}{1+x} \qquad , x \in \mathbb{R}_{\geq 0} \stackrel{y \geq 0}{\Leftrightarrow}$$

$$\frac{1}{y} = 1+x \qquad \stackrel{=}{\rightleftharpoons}, x \in \mathbb{R}_{\geq 0}$$

$$f^{-1} = \frac{1}{x} - 1$$

$$A' = (0, 1] \quad B' = [0, \infty)$$

$$f^{-1}(f(x)) \stackrel{x \ge 0}{=} \frac{1}{f(x)} - 1 = \frac{1}{\frac{1}{1+x}} - 1$$
$$= \frac{1+x}{1} - 1$$
$$= 1+x-1 = x$$

6 Repititorium 24.05.2022

Tipp: Induktion funktioniert nur über die Natürlichen Zahlen

Sobald irgendwas vorliegt über die reelen Zahlen, rationalen Zahlen, irgendwas kontinuierliches oder ähnliches, kann keine Induktion angewendet werden.

 \mathbb{Q}, \mathbb{R} Induktion? Nein! Komplett Flasch!

Tipp: Abschätzungen und Folgerungen nur in eine Richtung

Abshcätzungen dürfen immer nur in eine Richtung erfolgen und nicht in zwei!

$$\begin{aligned} x < y \le z \quad \checkmark \Rightarrow x < z \quad \checkmark \\ x < y_1 < y_2 < \dots < \underline{y_n \ge z} \quad \checkmark \quad x < z \\ A \Rightarrow B \Rightarrow \dots \Rightarrow X \Leftarrow y \quad \checkmark \end{aligned}$$

Tipp: Skizziere eine Idee

Aufgabenstellung:

Idee:

- 1. Löse x > 1
- 2. Löse xy 1
- 3. Irgendwie muss nun $x \in [-1, 1]$ gezeigt werden
 - a) Stetigkeit + Kompakt
 - b) :

Wenn man nicht genug Handwerk besitzt eine Aufgabe vernünftig zu lösen, skizziere das Vorgehen, wie die Aufgabe gelöst werden sollte. Das Ganze gibt Teilpunkte! Außerdem hilft es beim späteren Draufschauen schneller auf eine Idee zu kommen.

6.1 Aufgabe 1

Ursprüngliche Aufgabe:

$$f: (0,1) \to \mathbb{R}_{>0}$$
$$f(x) = \frac{1}{2x}$$

Zeigen Sie mit dem ε - δ -Definition, dass die Funktion stetig, aber nicht gleichmäßig stetig ist.

Zum einfacheren Lösen teilen wir die Aufgabe im Folgendem in Teilaufgaben auf:

- a) f ist streng monoton fallend
- b) Schätzen Sie eine sinnvolle Obergrenze für $\delta > 0$ ab $\forall x \in \mathbb{R} : |x a| < \delta \Rightarrow x \in \mathbb{R}_{>0}$
- c) Zeige Stetigkeit mit ε - δ -Definition.
- d) Konstruiere ein Gegenbeispiel für gleichmäßige Stetigkeit

Randnotiz

Falls jemand die Grafiken von der Tafel abgeschrieben hat oder ein Foto davon gemacht wurde, bitte einfach auf Telegramm einmal bitte in die Mafi2 Gruppe schicken oder mir per pm oder einfach selbst in Latex als randnotiz" (command) einfügen, wenn sich wer traut :)

6.1.1 Lösung Alexander Frank

a)

$$0 < x < y \Leftrightarrow \frac{1}{x} > \frac{1}{y} \Leftrightarrow \frac{1}{2x} > \frac{1}{2y} \Leftrightarrow f(x) > f(y)$$

b) Vorüberlegung:

$$\forall x \in \mathbb{R} : \underbrace{|x - a| < \delta} \Rightarrow \underline{x \in \mathbb{R}_{>0}}$$

Randnotiz

Hier sollte ein Zahlenstrahl zur Verdeutlichung von $|x-a| < \delta$ hin

$$|x - a| < \delta \Leftrightarrow -\delta < x - a < \delta \stackrel{+a}{\Leftrightarrow} a - \delta < x < a + \delta$$

$$x \in (\underbrace{a - \delta}_{>0}, a + \delta)$$

$$a - \delta > 0 \Leftrightarrow a > \delta$$
$$\mathbf{a} > \delta > \mathbf{0}$$

Lösung:

$$\forall a \in (0,1) \ \exists \varepsilon > 0 \ \exists \delta > 0 \ (a > \delta > 0) \ \forall x \in (0,1) : |x - a| < \delta \Rightarrow \left| \frac{1}{2x} - \frac{1}{2a} \right| < \varepsilon$$

$$|\frac{1}{2x} - \frac{1}{2a}| = |\frac{2a - 2x}{4ax}| \qquad (Hauptnenner)$$

$$= \frac{|a - x|}{2ax}$$

$$< \frac{1}{2ax} \cdot \delta \qquad (|a - x| < \delta)$$

$$\stackrel{*}{\leq} \frac{1}{2a\frac{a}{2}} \cdot \delta$$

$$\frac{\delta}{a^2} \stackrel{!}{<} \varepsilon$$

$$*x > a - \underbrace{\delta}_{\frac{a}{2}} > \frac{a}{2}$$

$$\frac{\delta}{a^2} < \varepsilon \Leftrightarrow$$
$$\delta < \varepsilon a^2$$

$$\delta < \min(\frac{a}{2}, \varepsilon a^2)$$
$$\delta := \min(\frac{a}{4}, \frac{\varepsilon}{2} a^2)$$

$$\forall a \in (0,1) \forall \varepsilon > 0 \forall x \in (0,1) : |x-a| < \min(\frac{a}{4}, \frac{\varepsilon}{2}a^2) \Rightarrow |\frac{1}{2x} - \frac{1}{2a}| < \varepsilon$$

c) wird in b) beantwortet?

d)

$$\exists \varepsilon > 0 \forall \delta > 0 \exists x, y \in (0,1) : |x-y| < \delta \Rightarrow |f(x) - f(y)| \ge \varepsilon$$

Wähle $x = \delta.$ (Weil $\lim \delta \searrow 0$) Wähle $y = x - \frac{\delta}{2} = \frac{\delta}{2}$

Tipp: Wähle x und y

Verläuft die Funktion für x gegen 0 gegen ∞ , dann wähle x mit δ im Nenner. Läuft x gegen ∞ und f(x) gegen ∞ so wähle x mit δ im Nenner. y sollte immer als Eins davon

$$y = x \quad \stackrel{\delta}{=} \quad \frac{\delta}{2}$$

$$|x - y| < \delta \Rightarrow |f(x) - f(y)| \ge \varepsilon$$

 $|x - y| = |\delta - \frac{\delta}{2}| = \frac{\delta}{2} < \delta$

$$|f(x) - f(y)| = \left|\frac{1}{2\delta} - \frac{1}{2\frac{\delta}{2}}\right| = \left|\frac{1}{2\delta} - \frac{1}{\delta}\right| = \frac{1}{2\delta} \stackrel{\delta < 1}{\geq} \frac{1}{2}$$

2.
Fall
$$\delta \geq 1 \, |x-y| < \delta \, x = \frac{1}{2} \, y = \frac{1}{4}$$

$$\left|\frac{1}{2^{\frac{1}{2}}} - \frac{1}{2^{\frac{1}{4}}}\right| = 1 \ge \frac{1}{2}$$

7 Repititorium 31.05.2022

7.1 Alle wichtigen Sachen (auch für die Klausur) zum Thema Differenzierbarkeit aus Kapitel 5.1/5.2

7.1.1 Definition Differential quotient

Def:

$$\lim_{x \to a, x \in A \setminus \{a\}} \frac{f(x) - f(a)}{x - a} = f'(a) = \lim_{n \to 0, n \neq 0} \frac{f(a + h) - f(a)}{h}$$

7.1.2 Definition Extrema

Def: $x \in (a, b)$ ist Extrema von $f: (a, b) \to \mathbb{R}$, falls $\exists \varepsilon > 0 \ \forall y \in (a, b) : |x - y| < \varepsilon \Rightarrow f(x) \overset{\leq}{\geq} f(y)$ Maximum

7.1.3 Notwendige/Hinreichende Kriterium

Notwendig: $x \in (a, b) : f'(x) = 0$

Hinreichend: $x \in a, b$): $f'(x) = 0 \land f''(x) < 0(Maximum)$

7.1.4 Satz von Rolle

a < b, f stetig auf [a, b], differenzierbar $(a, b), f(a) = f(b) \Rightarrow \exists x \in (a, b) : f'(c) = 0$

7.1.5 Mittelwertsatz

a < b, f stetig [a, b], differenzierbar $(a, b) \Rightarrow \exists c \in (a, b) : f'(c) = \frac{f(b) - f(a)}{b - a}$

7.1.6 Monotonie

 $f'(x) > 0 \Rightarrow f$ streng monoton wachsend

 $f'(x) \ge 0 \Leftrightarrow f$ monoton wachsend

 $f'(x) < 0 \Rightarrow f$ streng monoton fallend

 $f'(x) < 0 \Leftrightarrow f$ monoton fallend

7.1.7 Konvex /konkav

$$f''(x) \ge 0 \Rightarrow f \text{ konvex}$$

 $f''(x) < 0 \Rightarrow f \text{ konkav}$

7.1.8 Satz zwischen den Zeilen

 $x \in (a,b)$ lokales Extremum für f und f konvex/konkav $\Rightarrow x$ globales Extremum (vor Satz 5.23)

7.2 Aufgabe 1

Bildet die Ableitung von f mit dem Differentialquotient für $f(x)=2x^2-x$

7.2.1 Musterlösung Alexander Frank

$$\lim_{x \to y, x \neq y} \frac{f(x) - f(y)}{x - y} = \lim_{x \to y, x \neq y} \frac{2x^2 - x - 2y^2 + y}{x - y}$$

$$= \lim_{x \to y, x \neq y} \frac{2(x^2 - y^2) - (x - y)}{x - y}$$

$$= \lim_{x \to y, x \neq y} \frac{2(x + y)(x - y) - (x - y)}{x - y}$$

$$= \lim_{x \to y, x \neq y} 2(x + y) - 1$$

$$= \underbrace{2 \cdot 2x}_{y} - 1 = \underbrace{4x}_{y} - 1$$

7.3 Aufgabe 2

$$f: (0, \infty) \to \mathbb{R}$$
$$f(x) = 4x \cdot \ln(x) + 1$$

Bestimme alle Extrema von f. Sind diese jeweils global oder lokal?

7.3.1 Musterlösung Alexander Frank

- a) Bilde f' und f''
- b) Berechne potentielle (lokale) Extrema f'(x) = 0
- c) Überprüfe auf global
- a)

$$f(x) = 4x \cdot \ln(x) + 1$$
$$f'(x) = 4 \cdot \ln(x) + 4$$
$$f''(x) = \frac{4}{x}$$

b) Lokale Extrema?:

$$f'(x) = 0 \qquad \Leftrightarrow
4\ln(x) + 4 = 0 \qquad \Leftrightarrow
4\ln(x) = -4 \qquad \Leftrightarrow
\ln(x) = -1 \qquad \Leftrightarrow$$

$$x = e^{-1} = \frac{1}{e}$$

$$f(\frac{1}{e}) = \frac{4}{e}(-1) + 1 = \frac{e-4}{e} < 0$$

 $(\frac{1}{e}, \frac{e-4}{e})$ Wendestelle?lokales/globales Extremum?

c)

$$f''(x) = \frac{4}{x} > 0 \text{ für } x \in (0, \infty)$$

$$\Rightarrow f \text{ ist konvex}$$

 \Rightarrow Jedes lokale Extremum ist global.

7.4 Aufgabe 3

$$f: [1, 2]$$

$$f(x) = -\frac{2}{3}x^{-3} - \frac{1}{2}x^2 + x$$

Gebe das globale Minimum an (und beweise dies).

- a) Bilde f' und f''
- b) Zeige es existiert ein lokales potentielles Extremum in (1,2)
- c) Zeige dieses ist ein Maximum!
- d) Gebe das Minimum an.

7.4.1 Musterlösung Alexander Frank

a) f ist rationale Funktion $\Rightarrow f \in C^{\infty}((0,\infty),\mathbb{R})$

$$f(x) = -\frac{2}{3}x^{-3} - \frac{1}{2}x^2 + x$$
$$f'(x) = 2x^{-4} - x + 1$$
$$f''(x) = -8x^{-5} - 1$$

b) $\exists x \in (1,2) : f'(x) = 0$ Zwischenwertsatz:

$$f'$$
 stetig; $f'(1) = 2 - 1 + 1 = 2 > 0$
 $f'(2) = \frac{2}{16} - 2 + 1 = \frac{1}{8} - 1 = -\frac{7}{8} < 0$
 $\Rightarrow \exists x \in (1,2) : f'(x) = 0$

c)

$$f''(x) = -8x^{-5} - 1 < 0 \text{ für } x \in [1, 2]$$

f ist konkav \Rightarrow lokales Extremum = globales Extremum notwendig + hinreichend \Rightarrow Maximum in (1,2) jedes lokale Extremum \Rightarrow globales Maximum

d)

$$f(1) = -\frac{2}{3} - \frac{1}{2} + 1 = -\frac{1}{6}$$
$$f(2) = -\frac{2}{24} - 2 + 2 = -\frac{1}{12}$$

8 Repititorium 07.06.2022

8.1 Aufgabe 1 (Taylor Reihen)

$$f(x) = e^x + e^{-x} x_0 = 0$$

Schritt 1: Wie weit ist die Funktion differenzierbar?

Schritt 2: Bilde die ersten drei Ableitungen f'(x), f''(x), f'''(x) und f(0), f'(0), f''(0), f'''(0).

Schritt 3: Bestimme $f^{(k)}(x)$ (\Rightarrow und mache einen Induktionsbeweis)

Schritt 4: Berechne $f^{(k)}(x)$

Schritt 5: Bilde die Taylorreihe/(polynom von Grad n)

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Schritt 6: Bestimmen Sie den

- Konvergenzradius
- Konvergenzbereich

Restglied: $R_n = \frac{f^{(n+1)}(x_0)}{(n+1)!}(x-x_0)^{n+1} < k$

Tipp: Unterschied Konvergenzradius - Konvergenzbereich

Radius:

• Quotientenkriterium

$$\forall x \in A : \exists N \in \mathbb{N} \ \forall n \ge N :$$

$$\left| \frac{a_{n+1}}{a_n} \right| < 1$$

$$r := \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

• Qurzelkriterium

$$\forall x \in A : \exists N \in \mathbb{N} \ \forall n \ge N : \sqrt[n]{|a_n|} < 1$$

$$r \stackrel{n \to \infty}{:=} \frac{1}{\sqrt[0]{|a_n|}} \checkmark \text{Limes}$$

 $r = \infty \Rightarrow \text{Konvergenzbereich } A \subseteq \mathbb{R}$

8.1.1 Musterlösung Alexander Frank

Schritt 1: $f \in C(A, \mathbb{R})$ $A = \mathbb{R}$

Tipp: In Klausuren meist C^{∞}

In der Klausur werden eigentlich immer Funktionen gegeben, die unendlich ableitbar sind.

Schritt 2:

$$f'(x) = e^{x} - e^{-x}$$

$$f''(x) = e^{x} + e^{-x}$$

$$f'''(x) = e^{x} - e^{-x}$$

$$f(0) = 2$$

$$f'(0) = 0$$

$$f''(0) = 2$$

$$f''(0) = 0$$

Schritt 3: Aussage:

$$f^{(k)}(x) = e^x + (-1)^k e^{-x}$$

Induktionsanfanng:

$$f^{(0)}(x) = e^{x} + e^{-x}$$

$$f^{(1)}(x) = e^{x} - e^{-x}$$

$$f^{(2)}(x) = e^{x} + e^{-x}$$

$$f^{(3)}(x) = e^{x} - e^{-x}$$

Induktionsvoraussetzung:

Es existiert ein
$$k \in \mathbb{N}_0$$
: $f^{(k)}(x) = e^x + (-1)^k e^{-x}$

Induktionsschritt:

$$f^{(k+1)}(x) = (f^{(k)}(x))'$$

$$\stackrel{I.V.}{=} (e^x + (-1)^k e^{-x})'$$

$$\stackrel{Kettenregel}{=} e^x + (-1)^k (-1) e^{-x}$$

$$= e^x + (-1)^{k+1} e^{-x}$$

Randnotiz

Schätze für jede Aufgabe (a-d) ein $f^{(k)}(x)$.

Schritt 4:

$$f^{(k)}(x) = e^x + (-1)^k e^{-x}$$
$$f^{(k)}(0) = 1 + (-1)^k = \begin{cases} 2 & k \text{ gerade} \\ 0 & k \text{ ungerade} \end{cases}$$

Schritt 5:

$$\sum_{k=0}^{\infty} \frac{1 + (-1)^k}{k!} x^k \stackrel{k=2i}{=} \sum_{i=0}^{\infty} \frac{2}{(2i)!} x^{2i}$$

Schritt 6: Quotientenkriterium:

$$\left| \frac{\frac{2}{2(i+1)!} x^{2(i+1)}}{\frac{2}{(2i)!} x^{2i}} \right| = \frac{1}{(2i+1)(2i+2)} |x|^2$$

$$< \underbrace{\frac{1}{(2N+1)(2N+2)} |x|^2} < 1 \quad \square$$

9 Repititorium 14.06.2022

9.1 Aufgabe 1

$$\lim_{x \to 0} \frac{\cos(x) - 1}{x \cdot \sin(x)}$$

- a) Berechne den Grenzwert mit l'Hopital
- b) Berechne den Grenzwert ohne Ableitungen

9.1.1 Musterlösung Alexander Frank

- a) I Argumentieren:
 - Stetigkeit, besser
 - $C^{\infty}(\mathbb{R})$ (unendlich oft differenzierbar)

$$f(x) = \cos(x) - 1 \in C^{\infty}(\mathbb{R})$$

$$g(x) = x \cdot \sin(x) \in C^{\infty}(\mathbb{R})$$

II

$$\lim_{x \to 0} f(x) = f(0) = 0$$
$$\lim_{x \to 0} g(x) = g(0) = 0$$

III Argumentieren: Differenzierbar (möglicherweise von I abgedeckt) \Rightarrow L'Hopitals anwendbar (gleich), wenn $g'(x) \neq 0 \forall x \in (-\delta, \delta)$

$$f'(x) = -\sin(x) \qquad \qquad g'(x) = \sin(x) + x \cdot \cos(x)$$

Betrachte fortan:

$$\lim_{x \to 0} \frac{-\sin(x)}{\sin(x) + x \cdot \cos(x)}$$

- I III wiederholen (I/III nur falls nötig)
- II

$$\lim_{x \to 0} -\sin(x) = 0$$
$$\lim_{x \to 0} \sin(x) + x \cdot \cos(x) = 0$$

$$f''(x) = -\cos(x) \qquad \qquad g''(x) = \cos(x) + \cos(x) - x \cdot \sin(x)$$

Berechne fortan:

$$\lim_{x \to 0} \frac{-\cos(x)}{2\cos(x) - x \cdot \sin(x)}$$

II

$$\lim_{x \to 0} -\cos(x) = -1$$
$$\lim_{x \to 0} 2\cos(x) - x \cdot \sin(x) = 2$$

Antwortsatz: Differenziebar/Stetig, 2x Grenzwert mit L'Hopital ergibt Grenzwert $-\frac{1}{2}$

- b) 1) Additions theoreme
 - 2) Folgengrenzwert (wähle gute Folge x_n)
 - 3) Potenzreihendarstellung

$$\frac{\cos(x) - 1}{x \cdot \sin(x)} = \frac{\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!} - 1}{x \cdot \sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+1}}{(2n+1)!}} = \frac{\sum_{n=1}^{\infty} (-1)^n \cdot \frac{x^{2n}}{(2n)!}}{\sum_{n=0}^{\infty} (-1)^n \cdot \frac{x^{2n+2}}{(2n+1)!}}$$
$$= \frac{-\frac{1}{2}x^2 + \frac{1}{24}x^4 - \dots}{x^2 - \frac{1}{6}x^4 + \dots} = \frac{-\frac{1}{2}x + \frac{1}{24}x^2 - \dots}{x - \frac{1}{6}x^2 + \dots} \xrightarrow{x \to 0} \frac{-\frac{1}{2} + 0 - \dots}{1 - 0 + \dots} = -\frac{1}{2}$$

9.2 Aufgabe 2

$$M = \left\{ \frac{\ln(\sqrt{x})}{\sqrt{\ln(x)} | x \in (1, e]} \right\}$$

- a) finde alle lokalen Extrema in (1, e)
- b) berechne alle $f(\bar{x})$ für \bar{x} lokale Extremstelle oder Randpunkt (limes?)

9.2.1 Musterlösung Alexander Frank

Randnotiz

3 Minuten-Kniff (erfordert $\ln(x^y) = y \cdot \ln(x)) \Rightarrow$ nur für $\mathbb Z$ laut Sktipt:

$$\frac{\ln(\sqrt{x})}{\sqrt{\ln(x)}} = \frac{\ln(x^{\frac{1}{2}})}{\sqrt{\ln(x)}} = \frac{\frac{1}{2} \cdot \ln(x)}{\sqrt{\ln(x)}} = \frac{1}{2} \cdot \sqrt{\ln(x)}$$

- \sqrt{x} : monoton steigend
- $\ln(x)$: monoton steigend $\rightarrow \sqrt{\ln(x)}$ monoton steigend

Infimum: $\lim_{x\to 1} \frac{1}{2} \sqrt{\ln(x)} ==$

Supremum: $\lim_{x \to e} \frac{1}{2} \sqrt{\ln(x)} = \frac{1}{2}$ (Maximum)

a) Definiere als Funktion

$$f(x) = \frac{\ln(\sqrt{x})}{\sqrt{\ln(x)}} \quad (1, e) \subset (1, e]$$

Die Funktion ist differenzierbar, da sie eine Konkatenation von differenzierbaren Funktionen ist.

$$f'(x) = \frac{\frac{1}{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}} \cdot \sqrt{\ln(x)} - \ln(\sqrt{x}) \cdot \frac{1}{\sqrt{\ln(x)}} \cdot \frac{1}{x}}{\ln(x)}$$

$$= \frac{\frac{1}{2x} \sqrt{\ln(x)} - \frac{1}{2x} \cdot \frac{\ln(\sqrt{x})}{\sqrt{\ln(x)}}}{\ln(x)}$$

$$= \frac{\ln(x) - \ln(\sqrt{x})}{2x \cdot \sqrt{x} \cdot \ln(x)}$$

$$= \frac{\ln(\frac{x}{\sqrt{x}})}{2x\sqrt{\ln(x)} \cdot \ln(x)} = \frac{\ln(\sqrt{x})}{2x\sqrt{\ln(x)} \ln(x)}$$

$$f'(x) = 0 \Leftrightarrow \ln(\sqrt{x}) = 0$$

 $\Leftrightarrow \sqrt{x} = 1$
 $\Rightarrow x = 1$

 \Rightarrow keine lokalen Extrema in (1, e) möglich

Zweite Ableitung nicht nötig, da lokale Extrema und nicht Hochpunkt/Tiefpunkt gefragt

b)

$$\lim_{x \to 1} \frac{\ln(\sqrt{x})}{\sqrt{\ln(x)}} \Rightarrow L'Hopital$$

mit I, II:

$$\lim_{x \to 1} \frac{\frac{1}{\sqrt{x}} \cdot \frac{1}{2\sqrt{x}}}{\frac{1}{2\sqrt{\ln(x)}} \cdot \frac{1}{x}} = \lim_{x \to 1} \sqrt{\ln(x)} = \sqrt{\ln(1)} = \sqrt{0} = 0$$

$$f(e) = \lim_{x \to e} \frac{\ln(\sqrt{x})}{\sqrt{\ln(x)}} = \frac{\ln(\sqrt{e})}{\sqrt{\ln(e)}} = \ln(\sqrt{e})$$

Repititorium 21.06.2022 10

10.1 Partielle Integration

$$\int_{a}^{b} f(x) \cdot g'(x) dx = [f(x) \cdot g(x)] - \int_{a}^{b} f'(x) \cdot g(x) dx$$

<u>1</u>

$$f(x) = \dots$$
 $g(x) = \dots$
 $f'(x) = \dots$ $g'(x) = \dots$

2 Einsetzen in Formel

Substitutionelle 10.2

$$\int_{a}^{b} f(g(t)) \cdot g'(t)dt = \int_{g(a)}^{g(b)} f(x)dx$$

$$\int_{a}^{b} f(g(x))dx$$

$$u = g(x)$$
 substituieren
$$\frac{u}{du}du = \frac{g(x)}{dx}dx \Leftrightarrow$$

$$du dx 1du = g'(x)dx \Leftrightarrow$$

$$1du = g'(x)dx \Leftrightarrow$$

$$dx = \frac{1}{g'(x)}du$$

$$\int_{a}^{b} \underline{\bar{f}(g(x)) \cdot g'(x)} \, dx = \int_{u(\alpha)}^{u(\beta)} \bar{f}(u) du$$

$$= \int_{g(\alpha)}^{g(\beta)} \bar{f}(u) du$$

Aufgabe 1 10.3

$$\int_0^1 (x^2 + 3x)e^x dx$$

Bestimme das Integral der angegebenen Funktion.

10.3.1 Musterlösung Alexander Frank

$$\int_0^1 (x^2 + 3x)e^x dx = \left[(x^2 + 3x)e^x \right]_0^1 - \int_0^1 (2x + 3)e^x dx$$

$$f(x) = x^{2} + 3x$$

$$f'(x) = e^{x}$$

$$g(x) = 2x + 3$$

$$g'(x) = e^{x}$$

f, g' stetig differenzierbar, g stetig differenzierbar

Nebenrechnung: $\int_{0}^{1} (2x+3)e^{x}dx$

$$\bar{f}(x) = 2x + 3$$
 $\bar{g}(x) = e^x$
 $\bar{f}'(x) = 2$ $\bar{g}'(x) = e^x$

 \bar{f}, \bar{g} stetig differenzierbar

$$\int_{0}^{1} (2x+3)e^{x}dx = [(2x+3)e^{x}]_{0}^{1} - \int_{0}^{1} 2e^{x}dx$$

$$= 5e^{1} - 3e^{0} - 2\int_{0}^{1} e^{x}dx$$

$$= 5e - 3 - 2[e^{x}]_{0}^{1}$$

$$= 5e - 2 - (2e^{1} - 2e^{0}) = 3e - 1$$

$$\int_0^1 (x^2 + 3x)e^x dx = [(x^2 + 3x)e^x]_0^1 3e - 1$$
$$= [4e^1 - 0e^0] - 3e + 1$$
$$= e + 1$$

10.4 Aufgabe 2

Bilde die Stammfunktion von:

$$\int \sin(x) \cdot \cos(x) dx$$

10.4.1 Musterlösung Alexander Frank

$$f(x) = \sin(x)$$

$$f'(x) = \cos(x)$$

$$g(x) = \sin(x)$$

$$g'(x) = \cos(x)$$

f, g stetig und differenzierbar

$$\int \sin(x) \cdot \cos(x) dx = \left[\sin^2(x)\right] - \int \cos(x) \cdot \sin(x) dx \qquad \Leftrightarrow (+ \int \sin \cdot \cos)$$

$$2 \cdot \int \sin(x) \cdot \cos(x) dx = \sin^2(x) \qquad \Leftrightarrow (\div 2)$$

$$\int \sin(x) \cdot \cos(x) dx = \frac{1}{2} \sin^2(x) - \frac{1}{2} \cos^2(x)$$

10.5 Aufgabe 3

$$\int_{0}^{4} \frac{1}{2} x e^{x^{2}} dx$$

Bestimme das Integral der angegebenen Funktion.

10.5.1 Musterlösung Alexander Frank

 $u = x^2$ u ist stetig differenzierbar

$$du = 2xdx$$

$$b = 4 \rightarrow \bar{b} = u(b) = 4^2 = 16$$

$$a = 0 \rightarrow \bar{a} = u(a) = 0^2 = 0$$

$$\int_0^4 \frac{1}{2} x e^{x^2} = \int_0^4 \frac{1}{4} e^{x^2} 2x dx \qquad (x^2 = 4)$$

$$= \int_0^4 \frac{1}{4} e^4 du$$

$$= \frac{1}{4} \left[e^4 \right]_0^{16}$$

$$= \frac{1}{4} \left(e^1 6 - 1 \right)$$

10.6 Aufgabe 4

$$\int_0^1 \frac{3x^3 - 6x^2 - 9x + 15}{x^3 - 3x + 3} dx$$

Bestimme das Integral der angegebenen Funktion.

10.6.1 Musterlösung Alexander Frank

Polynomdivision:

$$\frac{3x^3 - 6x^2 - 9x + 15}{-3x^3 + 9x - 9} : (x^3 - 3x + 3) = 3 + \frac{-6x^2 + 6}{x^3 - 3x + 3}$$

$$\int_0^1 3 + \frac{-6x^2 + 6}{x^3 - 3x + 3} dx = \int_0^1 3 - 2 \cdot \frac{1}{x^3 - 3x + 3} \cdot (3x^2 - 3) dx$$
$$= \int_3^1 -2\frac{1}{u} du$$
$$= [3u - 2\ln(u)]_3^1$$
$$= 3 - 2\ln(1) - (9 - 2\ln(3))$$
$$= -6 - 2\ln(3)$$

11 Repititorium 28.06.2022

11.1 Probeklausur Aufgaben

Aufgabe 1: (10 Punkte)

Zeigen Sie mit vollständiger Induktion

$$\prod_{k=0}^{n-1} \cos(2^k x) = \frac{\sin(2^n x)}{2^n \sin(x)}$$

Aufgabe 2: (4 Punkte)

Sei $(a_k)_{k\in\mathbb{N}}$ unbeschränkt und monoton wachsend. Zeige das a_k bestimmt divergent gegen ∞ ist.

Aufgabe 3: (5 Punkte)

Ist die Folge konvergent oder divergent?

$$a_k := k^{k(\cos(k\pi) - 1)}$$

Aufgabe 4: (6 Punkte)

Konvergiert die rekursive Folge? Wenn ja, gebe den Grenzwert an!

$$a_0 = 1, a_{n+1} = \frac{a_n}{a_n + 2}$$

Aufgabe 5: (10 Punkte)

Überprüfen Sie beide Reihen auf (absolute) Konvergenz oder Divergenz.

a)
$$\sum_{k=1}^{\infty} \frac{(-1)^k k^2}{e^k}$$
, b) $\sum_{k=1}^{\infty} (-1)^k \frac{k}{1+k^2}$

Aufgabe 6: (6 Punkte)

Ziegen Sie die folgenden Aussagen

a) $2 \le e \le 3$

b)
$$\lim_{x \searrow 0} \frac{(\tan(\sqrt{x}))^2}{x} = 1$$

Aufgabe 7: (6 Punkte)

Berechnen Sie die Taylorreihe von T[f, 0]

$$f: (-\infty, \frac{1}{3}) \to \mathbb{R}, \quad f(x) := \ln(1 - 3x)$$

Aufgabe 8: (6 Punkte)

Sei $h: [-1,1] \to \mathbb{R}$ gegeben durch

$$h(x) := \begin{cases} -1 & \text{für } x \in [-1, 0), \\ 1 & \text{für } x \in [0, 1] \end{cases}$$

Beweise oder widerlege: Es existiert $H:(-1,1)\to\mathbb{R}$ mit H'(x)=h(x)

Aufgabe 9: (6 Punkte)

Berechnen Sie die Integrale:

a)
$$\int_{2}^{3} \frac{(\ln x)^{2}}{x} dx$$
 b)
$$\int xe^{-x} dx$$

11.2 Lösungsideen Alexander Frank

Aufgabe 1: (10 Punkte)

- 1) Zeige Induktionsanfang für n = 0 (<u>Additiontheoreme</u>)
- 2) Die Aussage gilt für ein $n \in \mathbb{N}_0$ (\mathbb{N})
- 3) Zeige Induktionsschluss (Additiontheoreme)

$$\prod_{k=0}^{n} = \cos(2^{n}x) \prod_{k=0}^{n-1} \cos(2^{k}x)$$

$$\stackrel{I.V}{=} \frac{\cos(2^{n}x) \sin(2^{n}x)}{2^{n} \sin(x)}$$

$$= \frac{1}{2} \cos(2^{n}x) \sin(2^{n}x) + \frac{1}{2} \cos(2^{n}x) \sin(2^{n}x)$$

$$= \frac{1}{2} \sin(2^{n}x + 2^{n}x)$$

Aufgabe 2: (4 Punkte)

1)

$$\forall N > 0 \; \exists n \in \mathbb{N} : N < a_n$$

2)

$$\forall n \in \mathbb{N} : a_{n+1} > a_n$$

$$b_k = \frac{1}{a_k} \qquad \lim_{k \to \infty} b_k = 0$$

$$\forall \varepsilon > 0 \ \exists n_0 \in \mathbb{N} \ \forall n \geq n_0 : |b_k| < \varepsilon$$

Begründe mit 1) und 2)

$$b_k \to 0 \Rightarrow a_k \to \pm \infty \stackrel{2)}{\Rightarrow} a_k \to +\infty$$

Aufgabe 3:

(5 Punkte)

 a_k umformen in eine Form

$$a_k = \begin{cases} 1 & k \text{ gerade} \\ k^{-2k} = \frac{1}{k^{2k}} & k \text{ ungerade} \end{cases}$$

Berechne beide Grenzwerte \Rightarrow die Folge divergiert

Aufgabe 4:

(6 Punkte)

Optional Folge umschreiben

$$a_{n+1} = 1 - \frac{2}{a_n + 2}$$

1) Beschränktheit nachweisen $(0 < a_n \le 1 \text{ per Induktion zeigen})$

$$1, \frac{1}{3}, \frac{1}{7}, \frac{1}{15}, \frac{1}{31}$$

- 2) Monotonie $a_{n+1} < a_n$
- 3) Monoton + Beschränkt ⇒ Konvergenz
- $4) \ a = \frac{a}{a+2} \to 0$

Aufgabe 5:

(10 Punkte)

a)
Gefühl sagt absolut konvergent
Quotientenkriterium wählen und zeige

$$\frac{(k+2)^2 e^k}{k^2 e^{k+1}} \to \frac{1}{e} < 1$$

b)
Gefühl sagt konvergent und nicht absolut konvergent
Leibniz Kriterium anwenden und zeigen

$$\frac{k}{k^2 + 1} \to 0$$

nicht absolut durch

$$\sum_{k=1}^{\infty} \frac{k}{k^2 + 1} > \sum_{k=1}^{\infty} \frac{k}{k^2 + k} = \sum_{k=1}^{\infty} \frac{1}{k + 1} = \sum_{k=2}^{\infty} \frac{1}{k}$$

Aufgabe 6:

(6 Punkte)

a)

$$2 \leq \sum_{k=0}^{\infty} \frac{1}{k!} \leq 3$$

$$2 \leq 1+1+\sum_{\substack{k=2\\\text{geometrisch größere Reihe}}}^{\infty} \frac{1}{k!} \leq 1+1+2\cdot\sum_{k=2}^{\infty} \frac{1}{2^k} = 3$$

43

b)

$$\lim_{x \searrow 0} \frac{\sin^2(\sqrt{x})}{x \cos^2(\sqrt{x})}$$

L'Hospital 2 mal

Aufgabe 7:

(6 Punkte)

- $\underline{1}$ Bilde f', f'', f''', \dots
- 2 Konstruiere $f^{(n)}$
- 3 Induktionsbeweis
- 4 Taylorreihe

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Lösung:

$$\sum_{n=1}^{\infty} \frac{3^n}{n} x^n$$

Aufgabe 8:

(6 Punkte)

Zeichne einmal h(x) auf. Das erinnert dann an g(x) = (|x|)' $x \in \mathbb{R} \setminus \{0\}$ Zeige dass der Differenzenquotient im Punkt 0 kaputt geht. Und widerlege durch Konstruktion.

Aufgabe 9:

(6 Punkte)

a) Substituiere

$$\ln x = u$$

$$\int_{\ln 2}^{\ln 3} u^2 du$$

b)

Nutze Partielle Integration

$$f(x) = x$$

$$f'(x) = 1$$

$$g(x) = -e^{-x}$$

$$g'(x) = e^{-x}$$

11.3 Dinge die auf dem Klausurzettel stehen sollten

• Additiontheoreme zu sin und cos