Tables of GAM results in paper

Willem Vervoort, Michaela Dolk & Floris van Ogtrop 2017-08-29

This rmarkdown document and the resulting pdf are stored on github. All directories (apart from the root working directory) refer to the directories in this repository.

Introduction

This document is related to the manuscript "Disentangling climate change trends in Australian streamflow" (vervoort et al.), submitted to Journal of Hydrology.

This document is a further component on the analysis of the streamflow data using Generalised Additive models (GAM) testing for a trend in the data, or testing for a trend in the residuals (part 3 of the series). This document, part 3A, only creates table 4, 5, 6 in the Manuscript and back transforms the trends. The data for this document has been generated in document 3 and was stored in a temporary directory called "../projectdata", so one directory up and then a directory called "projectdata". This directory is not included on github, as this data can be regenerated using document 3.

Table 4

This table combines the results of model 1 and model 2, or the simple trend analysis for flow (Q) and precipitation (P).

Table 1: This is Table 4 in the manuscript

Station	Qtrend	Qpvalue	Q_mm_year	Ptrend	Ppvalue	P_mm_year
COTT	-0.0002592	0.0285	-0.01348	-0.0003816	8.77e-06	-0.01985
RUTH	-0.0005892	3.149e-14	-0.03065	-0.0001305	0.03456	-0.006786
CORA	-0.0002107	0.00178	-0.01096	-4.979e-05	0.3874	NA
ELIZ	4.887e-06	0.9848	NA	-0.0003745	0.06944	-0.01948
COCH	-5.77e-06	0.9613	NA	-0.0006523	1.916e-06	-0.03393
COEN	-2.977e-05	0.8874	NA	-5.208e-05	0.7176	NA
SCOT	-8.134e-05	0.3733	NA	-7.987e-05	0.2414	NA
HELL	-0.0001375	0.2707	NA	-0.000191	9.632 e-05	-0.009932
NIVE	-6.446e-05	0.718	NA	-7.42e-05	0.2209	NA
MURR	-0.0002164	0.001545	-0.01125	-9.83e-05	0.0713	-0.005112
SOUT	-0.0001543	0.01232	-0.008024	-0.0001819	4.055e-05	-0.009457
YARR	-0.0001143	0.02487	-0.005942	-0.0001191	0.2118	NA
DOMB	-0.0001237	0.5306	NA	-0.0002795	0.003782	-0.01454

Table 5

This table combines the results of model 3, which is the GAMM analysis for flow (Q) taking into account the effect of precipitation (P).

Table 2: This is Table 5 in the manuscript

Station	AIC	Qtrend	Qpvalue	Q_mm_year
COTT	807.7	-0.0002635	0.1214	NA
RUTH	1519	-0.0005527	6.471e-11	-0.02875
CORA	3700	-0.0001906	0.0007155	-0.00991
ELIZ	2813	-0.000197	0.4233	NA
COCH	1439	-0.0001328	0.3417	NA
COEN	2859	-2.843e-05	0.8813	NA
SCOT	1603	-7.227e-05	0.4154	NA
HELL	2361	-0.0001427	0.2644	NA
NIVE	3014	-8.442e-05	0.6261	NA
MURR	-472.7	-0.0001986	0.004321	-0.01033
SOUT	1082	-0.0001322	0.0259	-0.006874
YARR	-417.6	-0.000118	0.01033	-0.006135
DOMB	1926	-0.0002598	0.1395	NA