

MONASH BUSINESS SCHOOL

Forecasting: principles and practice

Rob J Hyndman

2.1 State space models

Outline

1 Innovations state space models

2 ETS in R

3 Lab session 8

Methods V Models

Exponential smoothing methods

■ Algorithms that return point forecasts.

Innovations state space models

- Generate same point forecasts but can also generate forecast intervals.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection.

Methods V Models

Exponential smoothing methods

Algorithms that return point forecasts.

Innovations state space models

- Generate same point forecasts but can also generate forecast intervals.
- A stochastic (or random) data generating process that can generate an entire forecast distribution.
- Allow for "proper" model selection.

ETS models

- Each model has an observation equation and transition equations, one for each state (level, trend, seasonal), i.e., state space models.
- Two models for each method: one with additive and one with multiplicative errors, i.e., in total 18 models.
- ETS(Error,Trend,Seasonal):
 - Error = {A,M}
 - $Trend = \{N,A,A_d\}$
 - Seasonal = {N,A,M}.

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A _d ,M

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_{d}	(Additive damped)	A _d ,N	A_d , A	A _d ,M

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

M,A,M: Multiplicative Holt-Winters' method with multiplicative errors

There are 18 separate models in the ETS framework

		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A_d , N	A_d , A	A _d ,M

General notation ETS: ExponenTial Smoothing

Error Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

M,A,M: Multiplicative Holt-Winters' method with multiplicative errors

There are 18 separate models in the ETS framework

		Seasonal Component		
	Trend	N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A_d , N	A_d , A	A _d ,M

General notation ETS: ExponenTial Smoothing

Error Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

M,A,M: Multiplicative Holt-Winters' method with multiplicative errors

There are 18 separate models in the ETS framework

Component form

Forecast equation

 $\hat{\mathbf{y}}_{t+h|t} = \ell_t$

Smoothing equation

 $\ell_t = \alpha \mathbf{y}_t + (1 - \alpha)\ell_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Error correction form

$$y_t = \ell_{t-1} + e_t$$

$$\ell_t = \ell_{t-1} + \alpha(y_t - \ell_{t-1})$$

$$= \ell_{t-1} + \alpha e_t$$

Component form

Forecast equation

$$\hat{y}_{t+h|t} = \ell_t$$

Smoothing equation

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Error correction form

$$y_t = \ell_{t-1} + e_t$$

$$\ell_t = \ell_{t-1} + \alpha (y_t - \ell_{t-1})$$

$$= \ell_{t-1} + \alpha e_t$$

Component form

Forecast equation $\hat{y}_{t+h|t} = \ell_t$ Smoothing equation $\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Error correction form

$$y_t = \ell_{t-1} + e_t$$

$$\ell_t = \ell_{t-1} + \alpha(y_t - \ell_{t-1})$$

$$= \ell_{t-1} + \alpha e_t$$

Component form

Forecast equation
Smoothing equation

$$\hat{y}_{t+h|t} = \ell_t$$

$$\ell_t = \alpha y_t + (1 - \alpha)\ell_{t-1}$$

Forecast error: $e_t = y_t - \hat{y}_{t|t-1} = y_t - \ell_{t-1}$.

Error correction form

$$y_t = \ell_{t-1} + e_t$$

$$\ell_t = \ell_{t-1} + \alpha(y_t - \ell_{t-1})$$

$$= \ell_{t-1} + \alpha e_t$$

ETS(A,N,N)

Measurement equation
$$y_t = 0$$

State equation $\ell_t = 0$

$$y_t = \ell_{t-1} + \varepsilon_t$$
$$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$$

where $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

- "innovations" or "single source of error" because same error process, ε_t .
- Measurement equation: relationship between observations and states.
- Transition equation(s): evolution of the state(s) through time.

ETS(M,N,N)

SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

$$y_t = \ell_{t-1} + \ell_{t-1}\varepsilon_t$$

$$e_t = y_t - \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$$

$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

$$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$$

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

ETS(M,N,N)

SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

$$y_t = \ell_{t-1} + \ell_{t-1}\varepsilon_t$$

$$e_t = y_t - \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$$

Measurement equation
$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

ETS(M,N,N)

SES with multiplicative errors.

- Specify relative errors $\varepsilon_t = \frac{y_t \hat{y}_{t|t-1}}{\hat{y}_{t|t-1}} \sim \text{NID}(0, \sigma^2)$
- Substituting $\hat{y}_{t|t-1} = \ell_{t-1}$ gives:

$$y_t = \ell_{t-1} + \ell_{t-1}\varepsilon_t$$

$$e_t = y_t - \hat{y}_{t|t-1} = \ell_{t-1}\varepsilon_t$$

Measurement equation
$$y_t = \ell_{t-1}(1 + \varepsilon_t)$$

State equation $\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$

Models with additive and multiplicative errors with the same parameters generate the same point forecasts but different prediction intervals.

ETS(A,A,N)

Holt's linear method with additive errors.

- Assume ε_t = $y_t \ell_{t-1} b_{t-1} \sim NID(0, \sigma^2)$.
- Substituting into the error correction equations for Holt's linear method

$$\begin{aligned} \mathbf{y}_t &= \ell_{t-1} + b_{t-1} + \varepsilon_t \\ \ell_t &= \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t \\ b_t &= b_{t-1} + \alpha \beta^* \varepsilon_t \end{aligned}$$

For simplicity, set $\beta = \alpha \beta^*$.

ETS(M,A,N)

Holt's linear method with multiplicative errors.

- Assume $\varepsilon_t = \frac{y_t (\ell_{t-1} + b_{t-1})}{(\ell_{t-1} + b_{t-1})}$
- Following a similar approach as above, the innovations state space model underlying Holt's linear method with multiplicative errors is specified as

$$y_{t} = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_{t})$$

$$\ell_{t} = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_{t})$$

$$b_{t} = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_{t}$$

where again $\beta = \alpha \beta^*$ and $\varepsilon_t \sim \text{NID}(0, \sigma^2)$.

ETS(A,A,A)

Holt-Winters additive method with additive errors.

Forecast equation
Observation equation
State equations

$$\hat{y}_{t+h|t} = \ell_t + hb_t + s_{t-m+h_m^+}$$

$$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$$

$$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$$

$$b_t = b_{t-1} + \beta \varepsilon_t$$

$$s_t = s_{t-m} + \gamma \varepsilon_t$$

- Forecast errors: $\varepsilon_t = \mathbf{y}_t \hat{\mathbf{y}}_{t|t-1}$
- $h_m^+ = |(h-1) \mod m| + 1.$

Additive error models

Trend		Seasonal	
	N	Α	M
N	$y_t = \ell_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = \ell_{t-1} s_{t-m} + \varepsilon_t$
	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \alpha \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / \ell_{t-1}$
	$y_t = \ell_{t-1} + b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m} + \varepsilon_t$
Α	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t$	$b_t = b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + b_{t-1})$
	$y_t = \ell_{t-1} + \phi b_{t-1} + \varepsilon_t$	$y_t = \ell_{t-1} + \phi b_{t-1} + s_{t-m} + \varepsilon_t$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} + \varepsilon_t$
A_d	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha \varepsilon_t / s_{t-m}$
	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t$	$b_t = \phi b_{t-1} + \beta \varepsilon_t / s_{t-m}$
		$s_t = s_{t-m} + \gamma \varepsilon_t$	$s_t = s_{t-m} + \gamma \varepsilon_t / (\ell_{t-1} + \phi b_{t-1})$

Multiplicative error models

Trend		Seasonal	
	N	Α	M
N	$y_t = \ell_{t-1}(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = \ell_{t-1} s_{t-m} (1 + \varepsilon_t)$
	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \alpha(\ell_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = \ell_{t-1}(1 + \alpha \varepsilon_t)$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = (\ell_{t-1} + b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + b_{t-1})s_{t-m}(1 + \varepsilon_t)$
A	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + b_{t-1} + \alpha(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$\ell_t = (\ell_{t-1} + b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1} + s_{t-m})\varepsilon_t$	$b_t = b_{t-1} + \beta(\ell_{t-1} + b_{t-1})\varepsilon_t$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$
	$y_t = (\ell_{t-1} + \phi b_{t-1})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1} + s_{t-m})(1 + \varepsilon_t)$	$y_t = (\ell_{t-1} + \phi b_{t-1}) s_{t-m} (1 + \varepsilon_t)$
A_d	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$	$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$\ell_t = (\ell_{t-1} + \phi b_{t-1})(1 + \alpha \varepsilon_t)$
	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$b_t = \phi b_{t-1} + \beta (\ell_{t-1} + \phi b_{t-1}) \varepsilon_t$
		$s_t = s_{t-m} + \gamma (\ell_{t-1} + \phi b_{t-1} + s_{t-m}) \varepsilon_t$	$s_t = s_{t-m}(1 + \gamma \varepsilon_t)$

Estimating ETS models

- Smoothing parameters α , β , γ and ϕ , and the initial states ℓ_0 , b_0 , s_0 , s_{-1} , ..., s_{-m+1} are estimated by maximising the "likelihood" = the probability of the data arising from the specified model.
- For models with additive errors equivalent to minimising SSE.
- For models with multiplicative errors, **not** equivalent to minimising SSE.
- We will estimate models with the ets() function in the forecast package.

Innovations state space models

iid

Let
$$\mathbf{x}_t = (\ell_t, b_t, s_t, s_{t-1}, \dots, s_{t-m+1})$$
 and $\varepsilon_t \sim N(0, \sigma^2)$.

$$y_{t} = \underbrace{h(\mathbf{x}_{t-1})}_{\mu_{t}} + \underbrace{k(\mathbf{x}_{t-1})\varepsilon_{t}}_{e_{t}}$$
$$\mathbf{x}_{t} = f(\mathbf{x}_{t-1}) + g(\mathbf{x}_{t-1})\varepsilon_{t}$$

Additive errors

$$k(x) = 1.$$
 $y_t = \mu_t + \varepsilon_t.$

Multiplicative errors

$$k(\mathbf{x}_{t-1}) = \mu_t.$$
 $\mathbf{y}_t = \mu_t(1 + \varepsilon_t).$ $\varepsilon_t = (\mathbf{y}_t - \mu_t)/\mu_t$ is relative error.

Innovations state space models

Estimation

$$L^*(\boldsymbol{\theta}, \mathbf{x}_0) = n \log \left(\sum_{t=1}^n \varepsilon_t^2 / k^2(\mathbf{x}_{t-1}) \right) + 2 \sum_{t=1}^n \log |k(\mathbf{x}_{t-1})|$$

= -2 log(Likelihood) + constant

Estimate parameters $\theta = (\alpha, \beta, \gamma, \phi)$ and initial states $\mathbf{x}_0 = (\ell_0, b_0, s_0, s_{-1}, \dots, s_{-m+1})$ by minimizing L^* .

Parameter restrictions

Usual region

- Traditional restrictions in the methods $0 < \alpha, \beta^*, \gamma^*, \phi < 1$ (equations interpreted as weighted averages).
- In models we set $\beta = \alpha \beta^*$ and $\gamma = (1 \alpha)\gamma^*$.
- Therefore $0 < \alpha < 1$, $0 < \beta < \alpha$ and $0 < \gamma < 1 \alpha$.
- $0.8 < \phi < 0.98$ to prevent numerical difficulties.

Admissible region

- To prevent observations in the distant past having a continuing effect on current forecasts.
- Usually (but not always) less restrictive than the usual region.
- For example for ETS(A,N,N): usual $0 < \alpha < 1$ admissible is $0 < \alpha < 2$.

Parameter restrictions

Usual region

- Traditional restrictions in the methods $0 < \alpha, \beta^*, \gamma^*, \phi < 1$ (equations interpreted as weighted averages).
- In models we set $\beta = \alpha \beta^*$ and $\gamma = (1 \alpha)\gamma^*$.
- Therefore $0 < \alpha < 1$, $0 < \beta < \alpha$ and $0 < \gamma < 1 \alpha$.
- $0.8 < \phi < 0.98$ to prevent numerical difficulties.

Admissible region

- To prevent observations in the distant past having a continuing effect on current forecasts.
- Usually (but not always) less restrictive than the usual region.
- For example for ETS(A,N,N): usual $0 < \alpha < 1$ admissible is $0 < \alpha < 2$.

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$BIC = AIC + k(\log(T) - 2).$$

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$BIC = AIC + k(\log(T) - 2).$$

Model selection

Akaike's Information Criterion

$$AIC = -2\log(L) + 2k$$

where *L* is the likelihood and *k* is the number of parameters initial states estimated in the model.

Corrected AIC

$$AIC_c = AIC + \frac{2(k+1)(k+2)}{T-k}$$

which is the AIC corrected (for small sample bias).

Bayesian Information Criterion

$$BIC = AIC + k(\log(T) - 2).$$

Automatic forecasting

From Hyndman et al. (IJF, 2002):

- Apply each model that is appropriate to the data. Optimize parameters and initial values using MLE (or some other criterion).
- Select best method using AICc:
- Produce forecasts using best method.
- Obtain Forecast intervals using underlying state space model.

Method performed very well in M3 competition.

Some unstable models

- Some of the combinations of (Error, Trend, Seasonal) can lead to numerical difficulties; see equations with division by a state.
- These are: ETS(A,N,M), ETS(A,A,M), $ETS(A,A_d,M)$.
- Models with multiplicative errors are useful for strictly positive data, but are not numerically stable with data containing zeros or negative values. In that case only the six fully additive models will be applied.

Additive Error		Seasonal Component			
Trend		N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	A,N,N	A,N,A	<u> </u>	
Α	(Additive)	A,A,N	A,A,A	Δ,Δ,Δ	
A_d	(Additive damped)	A,A _d ,N	A,A_d,A	$\Delta_{A}\Delta_{A}M$	

Multiplicative Error		Seasonal Component			
Trend		N	Α	М	
	Component	(None)	(Additive)	(Multiplicative)	
Ν	(None)	M,N,N	M,N,A	M,N,M	
Α	(Additive)	M,A,N	M,A,A	M,A,M	
A_{d}	(Additive damped)	M,A _d ,N	M,A_d,A	M,A_d,M	

Forecasting with ETS models

Point forecasts: iterate the equations for t = T + 1, T + 2, ..., T + h and set all $\varepsilon_t = 0$ for t > T.

- Not the same as $E(y_{t+h}|\mathbf{x}_t)$ unless trend and seasonality are both additive.
- Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same.

Forecasting with ETS models

Point forecasts: iterate the equations for t = T + 1, T + 2, ..., T + h and set all $\varepsilon_t = 0$ for t > T.

- Not the same as $E(y_{t+h}|\mathbf{x}_t)$ unless trend and seasonality are both additive.
- Point forecasts for ETS(A,x,y) are identical to ETS(M,x,y) if the parameters are the same.

Forecasting with ETS models

Prediction intervals: cannot be generated using the methods.

- The prediction intervals will differ between models with additive and multiplicative methods.
- Exact formulae for some models.
- More general to simulate future sample paths, conditional on the last estimate of the states, and to obtain prediction intervals from the percentiles of these simulated future paths.
- Options are available in R using the forecast function in the forecast package.

Outline

1 Innovations state space models

2 ETS in R

3 Lab session 8

```
ets(h02)
## ETS(M,Ad,M)
##
## Call:
    ets(v = h02)
##
##
     Smoothing parameters:
##
       alpha = 0.2173
##
       beta = 2e-04
       gamma = 1e-04
##
       phi
             = 0.9756
##
##
##
    Initial states:
       1 = 0.3996
##
    b = 0.0098
##
   s=0.8675 0.8259 0.7591 0.7748 0.6945 1.2838
##
              1.3366 1.1753 1.1545 1.0968 1.0482 0.983
##
##
##
     sigma:
            0.0647
##
```

-123.21905 -119.52175 -63.49289

AICc

BIC

AIC

##

```
ets(h02, model="AAA", damped=FALSE)
```

```
## ETS(A,A.A)
##
## Call:
##
   ets(y = h02, model = "AAA", damped = FALSE)
##
##
    Smoothing parameters:
##
      alpha = 0.1957
##
    beta = 1e-04
##
      gamma = 0.4211
##
##
    Initial states:
   1 = 0.4146
##
##
   b = 0.0026
   s=-0.1064 -0.1028 -0.1211 -0.1086 -0.161 0.2173
##
             0.2306 0.0671 0.0667 0.0299 -0.0156 0.0038
##
##
##
    sigma: 0.0538
##
        ATC ATCC BTC
##
## -73.33048 -70.04016 -16.92244
```

The ets() function

- Automatically chooses a model by default using the AIC, AICc or BIC.
- Can handle any combination of trend, seasonality and damping
- Produces prediction intervals for every model
- Ensures the parameters are admissible (equivalent to invertible)
- Produces an object of class "ets".

ets objects

- Methods: coef(), autoplot(), plot(), summary(), residuals(), fitted(), simulate() and forecast()
- autoplot() and plot() functions show time plots of the original time series along with the extracted components (level, growth and seasonal).

h02 %>% ets %>% autoplot

h02 %>% ets %>% forecast %>% autoplot

80

95

```
h02 %>% ets %>% accuracy
##
                       MF.
                                RMSE MAE
                                                     MPE
                                                            MAPE
  Training set 0.003353397 0.05144236 0.03919035 0.0437546 5.054949
##
                    MASE
                                ACF1
## Training set 0.6465103 -0.007295816
h02 %>% ets(model="AAA", damped=FALSE) %>% accuracy
##
                       ME
                                RMSE
                                           MAE
                                                      MPE
                                                             MAPE
## Training set 0.000396129 0.05381921 0.04038841 -0.3530507 5.375484
##
                    MASE
                               ACF1
  Training set 0.6662743 -0.06641172
```

The ets() function

ets() function also allows refitting model to new data set.

```
train <- window(h02, end=c(2004,12))
test <- window(h02, start=2005)
fit1 <- ets(train)</pre>
fit2 <- ets(test, model = fit1)</pre>
accuracy(fit2)
##
                       MF.
                          RMSE MAE
                                                     MPF.
                                                            MAPE.
## Training set 0.002828719 0.0556371 0.04510416 -0.3111965 5.424523
                              ACF1
##
                   MASE
## Training set 0.7094596 -0.3807942
accuracy(forecast(fit1,10), test)
##
                        MF.
                                 RMSE
                                            MAE
                                                      MPE
                                                               MAPE
## Training set 0.003385115 0.04466096 0.03278583 0.169324 4.332804
## Test set -0.079220419 0.09420250 0.08237909 -10.353804 10.642337
##
                   MASE
                        ACF1 Theil's U
## Training set 0.5560485 -0.01039592
## Test set 1.3971516 0.01728834 0.6543488
```

```
ets(y, model = "ZZZ", damped = NULL,
  additive.only = FALSE,
  lambda = NULL, biasadj = FALSE,
  lower = c(rep(1e-04, 3), 0.8),
 upper = c(rep(0.9999, 3), 0.98),
  opt.crit = c("lik", "amse", "mse", "sigma", "n
 nmse = 3.
  bounds = c("both", "usual", "admissible"),
  ic = c("aicc", "aic", "bic"),
 restrict = TRUE,
  allow.multiplicative.trend = FALSE, ...)
```

- y
 The time series to be forecast.
- model use the ETS classification and notation: "N" for none, "A" for additive, "M" for multiplicative, or "Z" for automatic selection. Default ZZZ all components are selected using the information criterion.
- damped
- If damped=TRUE, then a damped trend will be used (either A_d or M_d).
- damped=FALSE, then a non-damped trend will used.
- If damped=NULL (the default), then either a damped or a non-damped trend will be selected according to the information criterion chosen.

- additive.only
 Only models with additive components will be considered if additive.only=TRUE. Otherwise all models will be considered.
- lambda
 Box-Cox transformation parameter. It will be ignored if lambda=NULL (the default value). Otherwise, the time series will be transformed before the model is estimated.
 When lambda is not NULL, additive.only is set to TRUE.
- biadadj
 Uses bias-adjustment when undoing Box-Cox transformation for fitted values.

- lower, upper bounds for the parameter estimates of α , β^* , γ^* and ϕ .
- opt.crit=lik (default) optimisation criterion used for estimation.
- bounds Constraints on the parameters.
 - usual region "bounds=usual";
 - admissible region "bounds=admissible";
 - "bounds=both" (the default) requires the parameters to satisfy both sets of constraints.
- ic=aicc (the default) information criterion to be used in selecting models.
- restrict=TRUE (the default) models that cause numerical difficulties are not considered in model selection.
- allow.multiplicative.trend allows models with a multiplicative trend.

The forecast() function in R

```
forecast(object,
  h=ifelse(object$m>1, 2*object$m, 10),
  level=c(80,95), fan=FALSE,
  simulate=FALSE, bootstrap=FALSE,
  npaths=5000, PI=TRUE,
  lambda=object$lambda, biasadj=FALSE,...)
```

- object: the object returned by the ets() function.
- h: the number of periods to be forecast.
- level: the confidence level for the prediction intervals.
- fan: if fan=TRUE, suitable for fan plots.
- simulate: If TRUE, prediction intervals generated via simulation rather than analytic formulae. Even if FALSE simulation will be used if no algebraic formulae exist.

The forecast() function in R

- bootstrap: If bootstrap=TRUE and simulate=TRUE, then simulated prediction intervals use re-sampled errors rather than normally distributed errors.
- npaths: The number of sample paths used in computing simulated prediction intervals.
- PI: If PI=TRUE, then prediction intervals are produced; otherwise only point forecasts are calculated. If PI=FALSE, then level, fan, simulate, bootstrap and npaths are all ignored.
- lambda: The Box-Cox transformation parameter. Ignored if lambda=NULL. Otherwise, forecasts are back-transformed via inverse Box-Cox transformation.
- biasadj: Apply bias adjustment after Box-Cox?

Outline

1 Innovations state space models

2 ETS in R

3 Lab session 8

Lab Session 8