Lista de ejercicios

- 1. Sea una variable aleatoria U uniforme sobre el intervalo (-1,1).
 - Calcula la media y la varianza de *U*.
 - Encuentra el CDF y el PDF de U^2 . ¿ Es la distribución de U^2 uniforme en (0,1)?.
- 2. Un palillo se divide en dos piezas, en un punto uniformemente aleatorio. Encuentra el CDF y el promedio de la longitud de la pieza más grande.
- 3. Sea $U \sim \text{Uniforme}(0,1)$, y

$$X = \log\left(\frac{U}{1 - U}\right)$$

Entonces X tiene una distribución Logística.

- Anota una integral dada de $\mathbb{E}(X^2)$.
- Encuentra $\mathbb{E}(X)$ sin usar cálculo.
- 4. Sea X una variable aleatoria continua con una función de distribución $F(\cdot)$. Consideremos la variable aleatoria

$$Y = F(X) = \int_{-\infty}^{X} f(u)du.$$

Muestra que la distribución Y es uniforme en el intervalo (0,1). Esto es,

$$F_Y(y) = y$$
, $0 < y < 1$.

- 5. Sea $Z \sim \text{Normal}(0,1)$. Encuentra $\mathbb{E}(\Phi(Z))$. Donde Φ es el CDF de Z.
- 6. Usando el hecho que X sigue una distribución normal estándar, entonces

$$\mathbb{P}(X^2 \le x) = (2/\pi)^{1/2} \int_0^x e^{-u^2/2} du,$$

Concluye que,

$$\Gamma(1/2) = \int_0^\infty x^{(1/2)-1} e^{-x} dx = \sqrt{\pi}.$$

- 7. Sea $Z \sim \text{Normal}(0,1)$ y $X = Z^2$. Entonces la distribución de X es llamada de Chi Cuadrada con 1 grado de libertad. Esta distribución aparece en varios métodos estadísticos.
 - Encuentra una buena aproximación para $\mathbb{P}(1 \le X \le 4)$.

- Sea Φ y φ el CDF y el PDF de Z, respectivamente. Muestra que para algún t>0, la función indicador satisface $I(Z>t)\leq (Z/t)I(Z>t)$. Usando este resultado, prueba que $\Phi(t)\geq 1-\varphi(t)/t$.
- 8. Fred quiere vender su coche, después de regresar a Blissville (donde está feliz con el sistema de autobuses). El decide venderlo a la primera persona en ofrecer por lo menos 15.000 soles. Suponiendo que las ofertas son variables aleatorias exponenciales independientes con una media de 10.000 soles.
 - Encuentra el número esperado de ofertas que Fred tendrá.
 - Encuentra la cantidad esperada de dinero que Fred conseguirá por el auto.
- 9. Encuentra $\mathbb{E}(X^3)$ para $X \sim \text{Exponencial}(\lambda)$.
- 10. La distribución Gumbel es la distribución de $-\log X$ con $X \sim \text{Exponencial}(1)$.
 - Encuentra el CDF de la distribución Gumbel.
 - Sean X_1, X_2, \ldots independientes e idénticamente distribuidas a Exponencial(1) y sea $M_n = \max\{X_1, \ldots, X_n\}$. Muestra que el CDF de M_n log converge al CDF Gumbel, cuando $n \to \infty$.
- 11. X es llamada una variable aleatoria lognormal, si $\log X = Y$ es una distribución normal.
 - Encuentra la funcióm densidad, esperanza y la varianza de *X*.
 - Si las variables aleatorias lognormales son independientes, su producto $X_1, X_2, ..., X_n$ es también lognormal.