

This listing of claims will replace all prior versions,
and listings, of claims in the application:

1 Claim 1 (currently amended): A communication device for
2 use in a communications system that uses multiple tones
3 distributed over a predetermined bandwidth to communicate
4 data, the device comprising:

5 a mapping circuit that receives data symbols and
6 maps the symbols to prescribed time instants in a
7 predetermined time interval to generate a discrete signal
8 including mapped symbols, each mapped symbol corresponding
9 to a discrete point in time; and

10 an interpolation circuit that receives the
11 discrete signal and generates a continuous signal by
12 applying an interpolation function to the discrete signal,
13 the interpolation function operating on the discrete signal
14 such that a frequency response of the continuous signal
15 includes sinusoids having non-zero values at a first set of
16 tones, the first set of tones being a subset of said
17 multiple tones, the non-zero value at each of said first
18 set of tones being a function of a plurality of mapped
19 symbols corresponding to different discrete points in time,
20 the frequency response of the continuous signal also
21 including zero values at a second set of tones, the second
22 set of tones being different from said first set of tones
23 and being another subset of said multiple tones; and
24 a cyclic prefix circuit located after the
25 interpolation circuit to prepend a cyclic prefix.

1 Claim 2 (previously presented): The device of claim 1
2 wherein the discrete time instants are defined within the

3 range of 0, T/N, 2T/N, ..., T(N-1)/N, where N is a total
4 number of time instants in the predetermined time interval.

1 Claim 3 (previously presented): The device of claim 1
2 wherein the frequency tones within the first set of tones
3 are contiguous frequency tones, and the prescribed time
4 instants are equally spaced and uniformly distributed over
5 one symbol duration.

1 Claim 4 (previously presented): The device of claim 1
2 wherein the frequency tones within the first set of tones
3 are equally spaced frequency tones, and the prescribed time
4 instants are equally spaced and uniformly distributed over
5 a fraction of one symbol duration.

1 Claim 5 (previously presented): The device of claim 4
2 wherein a fraction of one symbol duration is defined by $1/L$
3 where L is the spacing between two adjacent tones in the
4 first set of tones.

1 Claim 6 (previously presented): The device of claim 1
2 wherein a total number of discrete time instants is greater
3 than or equal to a total number of frequency tones
4 distributed over the predetermined bandwidth.

1 Claim 7 (previously presented): The device of claim 1
2 wherein the interpolation circuit further includes a memory
3 for storing the predetermined interpolation functions, and
4 an interpolation function module for retrieving the
5 interpolation functions from the memory and applying the
6 interpolation functions to the discrete signal to generate
7 the continuous signal.

1 Claim 8 (previously presented): The device of claim 7
2 wherein the interpolation functions comprise a matrix of
3 precomputed sinusoidal waveforms.

1 Claim 9 (previously presented): The device of claim 7
2 wherein the interpolation functions comprise continuous
3 interpolation functions.

1 Claim 10 (previously presented): The device of claim 1
2 wherein the mapping circuit replicates the discrete signal
3 of mapped symbols to generate an infinite series of mapped
4 symbols over prescribed time instants covering a time
5 interval from $-\infty$ to $+\infty$.

1 Claim 11 (previously presented): The device of claim 10
2 wherein the interpolation functions comprise sinc
3 interpolation functions, and the interpolation circuit
4 applies the sinc interpolation functions to the infinite
5 series of mapped symbols.

1 Claim 12 (previously presented): The device of claim 1
2 wherein the data symbols are complex symbols associated
3 with a symbol constellation.

1 Claim 13 (previously presented): The device of claim 1
2 further including a digital signal processor for
3 implementing the mapping circuit and the interpolation
4 circuit.

1 Claim 14 (currently amended): The device of claim 1
2 wherein said interpolation circuit includes a sampling
3 circuit for sampling the continuous signal to produce a
4 digital signal sample vector; and, ~~the device further~~

5 ~~including a~~ wherein the cyclic prefix circuit receives is
6 ~~for receiving~~ the digital signal sample vector from the
7 sampling circuit and ~~prepends~~ prepending a the cyclic
8 prefix to the digital signal sample vector.

1 Claim 15 (previously presented): The device of claim 14
2 wherein the cyclic prefix circuit operates to copy an end
3 portion of the digital signal sample vector and prepend the
4 end portion to a beginning portion of the digital signal
5 sample vector.

1 Claim 16 (previously presented): The device of claim 1,
2 wherein said interpolation circuit includes a sampling
3 circuit for sampling the continuous signal to produce a
4 digital signal sample vector, the device further including
5 a digital to analog converter operable to receive the
6 digital signal sample vector and generate an analog signal
7 for transmission.

1 Claim 17 (currently amended): A communication system for
2 generating an OFDM signal having allocated frequency tones
3 distributed over a predetermined bandwidth, the
4 communication system comprising:

5 a mapping module that receives data symbols from
6 a symbol constellation and maps the symbols to prescribed
7 time instants in a time domain symbol duration to generate
8 a discrete signal of mapped symbols; and
9 an interpolation module that receives the
10 discrete signal and generates a continuous signal by
11 applying an interpolation function to the discrete signal;
12 wherein the interpolation function operates on
13 the discrete signal such that a frequency response of the
14 continuous signal includes sinusoids having non-zero values

15 at the allocated frequency tones, and zero values at
16 frequency tones other than the allocated frequency tones;
17 and
18 a cyclic prefix circuit located after the
19 interpolation module to prepend a cyclic prefix.

1 Claim 18 (original): The communication system of claim 17
2 wherein the allocated frequency tones are associated with a
3 designated transmitter within the communication system.

1 Claim 19 (original): The communication system of claim 17
2 wherein the allocated frequency tones are contiguous
3 frequency tones, and the prescribed time instants are
4 equally spaced time instants uniformly distributed over one
5 symbol duration.

1 Claim 20 (original): The communication system of claim 17
2 wherein the allocated frequency tones are equally spaced
3 frequency tones, and the prescribed time instants are
4 equally spaced time instants uniformly distributed over a
5 fraction of one symbol duration.

1 Claim 21 (original): The communication system of claim 20
2 wherein a fraction of one symbol duration is defined by $1/L$
3 where L is the spacing between two adjacent allocated
4 frequency tones.

1 Claim 22 (original): The communication system of claim 17
2 wherein the interpolation function operates on the discrete
3 signal such that values of the continuous signal at the
4 prescribed time instants are equal to the mapped symbols.

1 Claim 23 (original): The communication system of claim 17
2 wherein the interpolation module includes a memory for
3 storing the interpolation function, the interpolation
4 module retrieving the interpolation function from the
5 memory and applying the interpolation function to the
6 discrete signal to generate the continuous signal.

1 Claim 24 (original): The communication system of claim 23
2 wherein the interpolation function comprises a sinc
3 interpolation function.

1 Claim 25 (currently amended): A communication system for
2 generating an OFDM signal having allocated frequency tones
3 distributed over a predetermined bandwidth, the
4 communication system
5 comprising:

6 a mapping module that receives data symbols from
7 a symbol constellation and maps the symbols to prescribed
8 time instants in a time domain symbol duration to generate
9 a discrete signal of mapped symbols; and

10 an interpolation module that receives the
11 discrete signal and generates a digital signal sample
12 vector by applying an interpolation function to the
13 discrete signal;

14 wherein the interpolation function operates on
15 the discrete signal such that a frequency response of the
16 digital signal sample vector includes sinusoids having non-
17 zero values at the allocated frequency tones, and zero
18 values at frequency tones other than the allocated
19 frequency tones; and

20 a cyclic prefix module located after the
21 interpolation module for prepending a cyclic prefix.

1 Claim 26 (original): The communication system of claim 25
2 wherein the interpolation module further includes a memory
3 for storing the interpolation function, the interpolation
4 module retrieving the interpolation function from the
5 memory and applying the interpolation function to the
6 discrete signal to generate a digital signal sample vector.

1 Claim 27 (original): The communication system of claim 26
2 wherein the interpolation function is a discrete
3 interpolation function comprising a matrix of precomputed
4 sinusoidal waveforms.

1 Claim 28 (original): The communication system of claim 27
2 wherein the interpolation module multiplies the matrix of
3 precomputed sinusoidal waveforms with the discrete signal
4 of mapped symbols over the time domain symbol duration to
5 generate the digital signal sample vector.

1 Claim 29 (currently amended): A communication system for
2 generating an OFDM signal having allocated frequency tones
3 distributed over a predetermined bandwidth, the
4 communication system comprising:

5 a mapping module that receives data symbols from
6 a symbol constellation and maps the symbols to prescribed
7 time instants in a time domain symbol duration to generate
8 a discrete signal of mapped symbols; and

9 an interpolation module that receives the
10 discrete signal and generates a continuous signal by
11 applying an interpolation function to the discrete signal;
12 wherein the interpolation function operates on
13 the discrete signal such that values of the continuous
14 signal at the prescribed time instants are equal to the
15 mapped symbols; and

16 a cyclic prefix module located after the
17 interpolation module to prepend a cyclic prefix.

1 Claim 30 (currently amended): A communication system
2 comprising:

3 a mapping circuit that receives data symbols and
4 maps the symbols to prescribed time instants in a time
5 domain symbol duration to generate a discrete signal of
6 mapped symbols; and

7 an interpolation circuit that receives the
8 discrete signal and generates a continuous signal by
9 applying an interpolation function that operates on the
10 discrete signal such that a frequency response of the
11 continuous signal includes sinusoids having non-zero values
12 at a first set of tones, and zero values at a second set of
13 tones; and

14 a cyclic prefix module located after the interpolation
15 circuit to prepend a cyclic prefix.

1 Claim 31 (previously presented): The communication system
2 of claim 30 wherein the continuous signal comprises an OFDM
3 communication signal and wherein the value of the
4 continuous signal at each of the prescribed time instants
5 is a function of the mapped symbol at said prescribed time
6 instant.

1 Claim 32 (original): The communication system of claim 30
2 wherein the first set of tones are allocated to one
3 communication device within the communication system.

1 Claim 33 (original): The communication system of claim 32
2 wherein the communication device comprises a transmitter.

1 Claim 34 (original): The communication system of claim 30
2 wherein the interpolation circuit is adapted to store the
3 interpolation function.

1 Claim 35 (original): The communication system of claim 34
2 wherein the interpolation function is a sinc interpolation
3 function.

1 Claim 36 (original): The communication system of claim 34
2 wherein the interpolation function is a matrix of
3 precomputed sinusoidal waveforms.

1 Claim 37 (original): The communication system of claim 36
2 wherein the interpolation circuit multiplies the matrix of
3 precomputed sinusoidal waveforms with the discrete signal
4 of mapped symbols over the time domain symbol duration to
5 generate the continuous signal.

1 Claim 38 (original): The communication system of claim 30
2 further comprising a sampling circuit that samples the
3 continuous signal at discrete time instants distributed
4 over the time domain symbol duration to generate a digital
5 signal sample vector.

1 Claim 39 (original): The communication system of claim 38
2 wherein the discrete time instants are defined within the
3 range of 0, T/N, 2T/N, ..., T(N-1)/N, where N is a total
4 number of time instants in the time domain symbol duration.

1 Claim 40 (original): The communication system of claim 30
2 wherein the data symbols are complex symbols associated
3 with a symbol constellation.

1 Claim 41 (currently amended): A communication system
2 comprising:

3 a mapping circuit that receives data symbols and
4 maps the symbols to prescribed time instants in a time
5 domain symbol duration to generate a discrete signal of
6 mapped symbols; and

7 an interpolation circuit that receives the
8 discrete signal and generates a digital signal sample
9 vector by applying an interpolation function that operates
10 on the discrete signal such that a frequency response of
11 the digital signal sample vector includes sinusoids having
12 non-zero values at a first set of tones, and zero values at
13 a second set of tones; and

14 a cyclic prefix circuit located after the
15 interpolation module to prepend a cyclic prefix.

1 Claim 42 (original): The communication system of claim 41
2 wherein the interpolation circuit is adapted to store the
3 interpolation function.

1 Claim 43 (original): The communication system of claim 42
2 wherein the interpolation function is a matrix of
3 precomputed sinusoidal waveforms.

1 Claim 44 (original): The communication system of claim 43
2 wherein the interpolation circuit multiplies the matrix of
3 precomputed sinusoidal waveforms with the discrete signal
4 of mapped symbols over the time domain symbol duration to
5 generate the digital signal sample vector.

Claims 45-49 (canceled)

1 Claim 50 (currently amended): A method for reducing a
2 peak-to-average ratio in an OFDM communication signal
3 transmitted by a communication device, the method
4 comprising:

5 providing a time domain symbol duration having
6 equally spaced time instants;

7 allocating a predetermined number of frequency
8 tones to the communication device;

9 receiving as input data symbols to be transmitted
10 by the OFDM communication signal;

11 mapping the data symbols to the equally spaced
12 time instants in the symbol duration to generate a discrete
13 signal of mapped symbols;

14 generating a continuous signal by applying an
15 interpolation function to the discrete signal, the
16 interpolation function operating on the discrete signal
17 such that a frequency response of the continuous signal
18 includes sinusoids having non-zero values at the allocated
19 frequency tones, and zero values at frequency tones other
20 than the allocated frequency tones; and

21 sampling the continuous signal at discrete time
22 instants distributed over the time domain symbol duration,
23 to generate a digital signal sample vector; and

24 prepend a cyclic prefix to the digital signal
25 sample vector produced by sampling the continuous signal
26 after generation of the continuous signal by applying the
27 interpolation function.

1 Claim 51 (original): The method of claim 50 wherein the
2 discrete time instants are defined within the range of 0,
3 T/N, 2T/N, ..., T(N-1)/N, where N is a total number of time
4 instants in the symbol duration.

1 Claim 52 (original): The method of claim 50 wherein the
2 step of allocating a predetermined number of frequency
3 tones to the communication device further comprises
4 allocating contiguous frequency tones to the communication
5 device.

1 Claim 53 (original): The method of claim 50 wherein the
2 step of allocating a predetermined number of frequency
3 tones to the communication device further comprises
4 allocating equally spaced frequency tones to the
5 communication device.

1 Claim 54 (original): The method of claim 50 further
2 including the step of replicating the mapped symbols within
3 the symbol duration to generate an infinite series of data
4 symbols over equally spaced time instants covering a time
5 interval from $-\infty$ to $+\infty$ after the step of mapping the data
6 symbols.

1 Claim 55 (original): The method of claim 54 wherein the
2 step of generating the continuous signal further comprises
3 applying a sinc interpolation function to the infinite
4 series of data symbols.

1 Claim 56 (original): The method of claim 50 wherein the
2 discrete signal of mapped symbols includes odd numbered
3 symbols and even number symbols, and further comprises the
4 step of phase rotating each even numbered symbol by $\pi/4$.

1 Claim 57 (original): The method of claim 50 further
2 comprising the step of mapping the data symbols to a block
3 of complex data symbols wherein the block of complex data

4 symbols includes odd numbered symbols and even numbered
5 symbols;

6 phase rotating each even numbered symbol by $\pi/4$;
7 and

8 mapping the block of complex data symbols to
9 equally spaced time instants in the symbol duration to
10 generate the discrete signal of mapped symbols.

1 Claim 58 (original): The method of claim 50 further
2 comprising the step of offsetting imaginary components of
3 the digital signal sample vector by a predetermined number
4 of samples for producing a cyclic offset in the digital
5 signal sample vector.

1 Claim 59 (original): The method of claim 58 further
2 comprising the step of fixing a position of real components
3 of the digital signal sample vector with respect to the
4 imaginary components.

1 Claim 60 (original): The method of claim 58 wherein the
2 predetermined number of samples is an integer number of
3 samples.

1 Claim 61 (original): The method of claim 58 wherein the
2 predetermined number of samples is a fraction of one sample
3 period.

1 Claim 62 (original): The method of claim 50 further
2 comprising the step of prepending a cyclic prefix to the
3 digital signal sample vector.

1 Claim 63 (original): The method of claim 62 wherein the
2 step of prepending a cyclic prefix further comprises

3 copying an end portion of the digital signal sample vector
4 and prepending the end portion to a beginning portion of
5 the digital signal sample vector.

1 Claim 64 (original): The method of claim 50 wherein the
2 step of allocating a predetermined number of frequency
3 tones includes allocating more tones than a total number of
4 data symbols to be transmitted in the symbol duration.

1 Claim 65 (original): The method of claim 50 wherein the
2 interpolation function is a raised cosine function.

1 Claim 66 (original): The method of claim 50 further
2 comprising the step of precomputing the interpolation
3 function and storing the interpolation function in a
4 memory.

1 Claim 67 (currently amended): A method for reducing a
2 peak-to-average ratio in an OFDM communication signal
3 having a set of tones distributed over a predetermined
4 bandwidth, the method comprising:
5 defining a symbol duration for the OFDM
6 communication signal;
7 defining time instants in the symbol duration;
8 allocating frequency tones from the set of tones
9 to a particular communication device;
10 receiving as input data symbols from a symbol
11 constellation, the data symbols being transmitted by the
12 OFDM communication signal;
13 mapping the data symbols to the time instants to
14 generate a discrete signal in the time domain;
15 generating a digital signal sample vector by
16 applying interpolation functions to the discrete signal

17 such that a frequency response of the digital signal sample
18 vector includes sinusoids having non-zero values at
19 allocated frequency tones, and zero values at frequency
20 tones other than the allocated frequency tones; and
21 prependding a cyclic prefix to the digital signal
22 sample vector after the digital signal sample vector is
23 generated by applying the interpolation function.

1 Claim 68 (original): The method of claim 67 wherein the
2 step of allocating frequency tones further includes
3 allocating contiguous tones, and mapping the data symbols
4 to equally spaced time instants distributed over one symbol
5 duration.

1 Claim 69 (original): The method of claim 67 wherein the
2 step of allocating frequency tones further includes
3 allocating equally spaced tones, and mapping the data
4 symbols to equally spaced time instants distributed over a
5 portion of one symbol duration.

1 Claim 70 (original): The method of claim 67 wherein the
2 data symbols are complex symbols.

1 Claim 71 (original): The method of claim 67 wherein the
2 discrete signal includes odd numbered symbols and even
3 number symbols, and further comprises the step of phase
4 rotating each even numbered symbol by $\pi/4$.

1 Claim 72 (original): The method of claim 67 further
2 comprising the step of mapping the data symbols to a block
3 of complex data symbols wherein the block of complex data
4 symbols includes odd numbered symbols and even numbered
5 symbols;

6 phase rotating each even numbered symbol by $\pi/4$;

7 and

8 mapping the block of complex data symbols to
9 equally spaced time instants in the symbol duration to
10 generate the discrete signal.

1 Claim 73 (original): The method of claim 67 further
2 comprising the step of offsetting imaginary components of
3 the digital signal sample vector by a predetermined number
4 of samples for producing a cyclic offset in the digital
5 signal sample vector.

1 Claim 74 (currently amended): A communication device for
2 use in a communications system that uses multiple tones
3 distributed over a predetermined bandwidth to communicate
4 data, the device comprising:

5 a mapping circuit that receives data symbols and
6 maps the symbols to prescribed time instants in a
7 predetermined time interval to generate a discrete signal
8 including mapped symbols, each mapped symbol corresponding
9 to a discrete point in time, each discrete point in time to
10 which a symbol is mapped not overlapping a discrete point
11 in time to which another symbol is mapped, multiple symbols
12 being mapped to said predetermined time interval, discrete
13 points in time to which symbols are mapped having a
14 predetermined spacing; and

15 an interpolation circuit that receives the
16 discrete signal and generates a continuous signal by
17 applying an interpolation function to the discrete signal,
18 the interpolation function operating on the discrete signal
19 such that a frequency response of the continuous signal
20 includes sinusoids having non-zero values at a first set of
21 tones, the first set of tones being a subset of said

22 multiple tones, the non-zero value at each of said first
23 set of tones being a function of a plurality of mapped
24 symbols corresponding to different discrete points in time,
25 the frequency response of the continuous signal also
26 including zero values at a second set of tones, the second
27 set of tones being different from said first set of tones
28 and being another subset of said multiple tones; and
29 a cyclic prefix circuit located after the
30 interpolation circuit for prepending a cyclic prefix.