import os

import pandas as pd import numpy as np import matplotlib.pyplot as plt from xgboost import XGBRegressor from sklearn.ensemble import RandomForestRegressor from sklearn.linear model import LinearRegression from sklearn.preprocessing import MinMaxScaler from sklearn.metrics import mean absolute error, mean squared error, r2 score from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense,LSTM from tensorflow.keras.callbacks import EarlyStopping,ModelCheckpoint

inventory_forecast= pd.read_csv('/content/cocacola.07.csv.csv') inventory_forecast.head(10)

_ →		Date	0pen	High	Low	Close	Adj Close	Volume	
	0	18-06-2001	22.129999	22.225000	21.735001	21.885000	12.246120	6354400	ılı
	1	19-06-2001	21.885000	22.045000	21.770000	21.875000	12.240531	5441000	
	2	20-06-2001	21.875000	22.120001	21.725000	21.965000	12.290888	8301800	
	3	21-06-2001	21.965000	22.240000	21.775000	21.795000	12.195761	10298800	
	4	22-06-2001	21.795000	21.855000	21.295000	21.424999	11.988725	9211200	
	5	25-06-2001	21.629999	22.100000	21.629999	21.795000	12.195761	14690600	
	6	26-06-2001	21.795000	22.150000	21.514999	21.975000	12.296491	20446600	
	7	27-06-2001	21.975000	22.174999	21.875000	22.090000	12.360837	12653800	
	8	28-06-2001	22.110001	22.705000	22.110001	22.674999	12.688185	15615000	
	9	29-06-2001	22.750000	22.830000	22.430000	22.500000	12.590258	13146800	

Next steps:

Generate code with inventory_forecast

View recommended plots

Checking the Null values in the Dataset

inventory_forecast.info()

</pre RangeIndex: 5160 entries, 0 to 5159 Data columns (total 7 columns):

```
Column
              Non-Null Count Dtype
              _____
0
   Date
              5160 non-null object
   0pen
              5160 non-null float64
   High
              5160 non-null float64
              5160 non-null float64
3
   Low
              5160 non-null float64
4
   Close
5
   Adj Close 5160 non-null float64
6 Volume
             5160 non-null int64
dtypes: float64(5), int64(1), object(1)
memory usage: 282.3+ KB
```

inventory_forecast=inventory_forecast.drop(['Adj Close','Open','Close'],axis=1)

inventory_forecast.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5160 entries, 0 to 5159
Data columns (total 4 columns):
    # Column Non-Null Count Dtype
-------
0 Date 5160 non-null object
1 High 5160 non-null float64
2 Low 5160 non-null float64
3 Volume 5160 non-null int64
dtypes: float64(2), int64(1), object(1)
memory usage: 161.4+ KB
```

inventory_forecast.head(10)

→		Date	High	Low	Volume	
	0	18-06-2001	22.225000	21.735001	6354400	ıl.
	1	19-06-2001	22.045000	21.770000	5441000	
	2	20-06-2001	22.120001	21.725000	8301800	
	3	21-06-2001	22.240000	21.775000	10298800	
	4	22-06-2001	21.855000	21.295000	9211200	
	5	25-06-2001	22.100000	21.629999	14690600	
	6	26-06-2001	22.150000	21.514999	20446600	
	7	27-06-2001	22.174999	21.875000	12653800	
	8	28-06-2001	22.705000	22.110001	15615000	
	9	29-06-2001	22.830000	22.430000	13146800	

Next steps: Generate code with inventory_forecast

• View recommended plots

Visualization

Date

```
inventory_forecast['Volume_diff']=inventory_forecast['Volume'].diff()
inventory_forecast = inventory_forecast.dropna()
inventory_forecast.head(10)
```

→		Date	High	Low	Volume	Volume_diff	
	1	19-06-2001	22.045000	21.770000	5441000	-913400.0	11.
	2	20-06-2001	22.120001	21.725000	8301800	2860800.0	
	3	21-06-2001	22.240000	21.775000	10298800	1997000.0	
	4	22-06-2001	21.855000	21.295000	9211200	-1087600.0	
	5	25-06-2001	22.100000	21.629999	14690600	5479400.0	
	6	26-06-2001	22.150000	21.514999	20446600	5756000.0	
	7	27-06-2001	22.174999	21.875000	12653800	-7792800.0	
	8	28-06-2001	22.705000	22.110001	15615000	2961200.0	
	9	29-06-2001	22.830000	22.430000	13146800	-2468200.0	
	10	02-07-2001	23.025000	22.334999	7314800	-5832000.0	
<pre>plt.figure(figsize=(15,5)) plt.plot(inventory_forecast['Date'], inventory_forecast['Volume']) plt.xlabel("Date") plt.ylabel("Volume")</pre>							

plt.ylabel("Volume") plt.show()

month 8

5479400.0 -1

5756000.0 5

2961200.0 -7

-3418600.0 -5

1618800.0 -3

10

-494800.0

-468200.0

```
supervised data = inventory forecast.drop(['Date','Volume'], axis=1)
for i in range(1,13):
  col name = 'month ' + str(i)
  supervised data[col name] = supervised data['Volume diff'].shift(i)
supervised data = supervised data.dropna().reset index(drop=True)
supervised data.head(10)
<del>_</del>₹
              High
                         Low Volume diff
                                              month 1
                                                          month 2
                                                                     month 3
                                                                                 month 4
                                                                                            month 5
                                                                                                        month 6
                                                                                                                   month 7
                   22.285000
      0 22.745001
                                  -494800.0
                                             1618800.0
                                                       -3418600.0
                                                                   -5832000.0
                                                                              -2468200.0
                                                                                           2961200.0
                                                                                                     -7792800.0
                                                                                                                 5756000.0
      1 22.840000 22.280001
                                  -468200.0
                                             -494800.0
                                                        1618800.0
                                                                   -3418600.0
                                                                              -5832000.0
                                                                                          -2468200.0
                                                                                                      2961200.0
                                                                                                                -7792800.0
      2 22.645000 22.225000
                                 4887200.0
                                             -468200.0
                                                         -494800.0
                                                                    1618800.0
                                                                              -3418600.0
                                                                                          -5832000.0
                                                                                                     -2468200.0
                                                                                                                 2961200.0
                                                                                                                            -7792800.0 5
      3 22.875000 22.145000
                                             4887200.0
                                                         -468200.0
                                                                    -494800.0
                                                                               1618800.0
                                                                                          -3418600.0
                                                                                                     -5832000.0
                                                                                                                -2468200.0
                                 -2205000.0
      4 22.750000 22.450001
                                  -283400.0
                                            -2205000.0
                                                        4887200.0
                                                                    -468200.0
                                                                                -494800.0
                                                                                           1618800.0
                                                                                                     -3418600.0
                                                                                                                -5832000.0 -2468200.0 2
      5 23.070000 22.555000
                                  -478000.0
                                             -283400.0
                                                       -2205000.0
                                                                   4887200.0
                                                                                -468200.0
                                                                                           -494800.0
                                                                                                      1618800.0
                                                                                                                 -3418600.0
                                                                                                                            -5832000.0 -24
                   23.025000
                                                                   -2205000.0
                                                                               4887200.0
                                                                                           -468200.0
      6 23.490000
                                 1929600.0
                                             -478000.0
                                                         -283400.0
                                                                                                       -494800.0
                                                                                                                  1618800.0
                   22.955000
                                                         -478000.0
                                                                    -283400.0
                                                                              -2205000.0
                                                                                           4887200.0
                                                                                                       -468200.0
                                                                                                                  -494800.0
      7 23.600000
                                  -870400.0
                                             1929600.0
      8 23.475000 22.805000
                                  656800.0
                                             -870400.0
                                                        1929600.0
                                                                    -478000.0
                                                                                -283400.0
                                                                                          -2205000.0
                                                                                                      4887200.0
                                                                                                                  -468200.0
      9 23.445000 22.900000
                                 -3150400.0
                                              656800.0
                                                         -870400.0
                                                                   1929600.0
                                                                               -478000.0
                                                                                           -283400.0
                                                                                                     -2205000.0
                                                                                                                  4887200.0
              Generate code with supervised_data
                                                     View recommended plots
 Next steps:
train data = supervised data[:-12]
test data = supervised data[-12:]
print("Train Data Shape: ", train_data.shape)
print("Test Data Shape: ", test_data.shape)
     Train Data Shape: (5135, 15)
     Test Data Shape: (12, 15)
scaler = MinMaxScaler(feature range=(-1,1))
scaler.fit(train data)
train data = scaler.transform(train data)
test data = scaler.transform(test data)
```

```
x train, y train = train data[:,1:], train data[:,0:1]
x_test, y_test = test_data[:,1:], test_data[:,0:1]
y_train = y_train.ravel()
y test = y test.ravel()
print("X_train Shape: ", x_train.shape)
print("y train Shape: ", x train.shape)
print("X_test Shape: ", x_test.shape)
print("y_test Shape: ", x_test.shape)
→ X train Shape: (5135, 14)
     y_train Shape: (5135, 14)
     X_test Shape: (12, 14)
     v test Shape: (12, 14)
sales_dates = inventory_forecast['Date'][-12:].reset_index(drop=True)
predict df=pd.DataFrame(sales dates)
act_sales=inventory_forecast['Volume'][-13:].to_list()
print(act_sales)
    [18719600, 17074200, 21062400, 26624100, 23832700, 18026300, 13846400, 23151000, 31362800, 24806600, 24923800, 24696900, 51874400]
Create the Linear Regression model, and predicted Output
lr_model=LinearRegression()
lr model.fit(x_train, y_train)
lr pre=lr model.predict(x test)
lr_pre = lr_pre.reshape(-1,1)
lr_pre_test_set =np.concatenate([lr_pre,x_test],axis=1)
lr_pre_test_set =scaler.inverse_transform(lr_pre_test_set)
result_list = []
for index in range(0, len(lr_pre_test_set)):
    result_list.append(lr_pre_test_set[index][0] + act_sales[index])
lr_pre_series = pd.Series(result_list, name="Linear Predication")
predict df = predict df.merge(lr pre series, left index=True, right index=True)
```

```
# print(predict df)
lr mse=np.sqrt(mean squared error(predict df['Linear Predication'],inventory forecast['Volume'] [-12:]))
lr mae=mean absolute error(predict df['Linear Predication'],inventory forecast['Volume'][-12:])
lr r2=r2 score=(predict df['Linear Predication'],inventory forecast['Volume'][-12:])
print("Linear Regression MSE", lr mse)
print("Linear Regression MAE", lr mae)
print("Linear Regression R2", lr r2)
    Linear Regression MSE 9328246.535392681
     Linear Regression MAE 6297266.342521627
     Linear Regression R2 (0
                                1.871965e+07
          1.707425e+07
     2
           2.106245e+07
     3
           2.662416e+07
     4
           2.383276e+07
     5
           1.802636e+07
     6
           1.384646e+07
     7
           2.315106e+07
     8
           3.136286e+07
     9
           2.480666e+07
           2.492386e+07
     10
     11
           2.469696e+07
     Name: Linear Predication, dtype: float64, 5148
                                                       17074200
     5149
             21062400
     5150
             26624100
     5151
             23832700
     5152
             18026300
     5153
             13846400
     5154
             23151000
     5155
             31362800
     5156
             24806600
     5157
             24923800
     5158
             24696900
     5159
             51874400
     Name: Volume, dtype: int64)
# Assuming the correct column name for predicted values is 'Linear Predication'
# Plot Actual Sales
plt.plot(inventory forecast['Date'], inventory forecast['Volume'])
# Plot Predicted Sales
plt.plot(predict_df['Date'], predict_df['Linear Predication'])
plt.title("Inventory Forecast using LR model")
plt.xlabel('Date')
plt.ylabel('Volume')
plt.legend(['Actual Sales', 'Predicted Sales'])
plt.show()
```


