Misc. Notes:

Ex 3.4.8. e)

 $\mathbb R$ is both open and closed.

int $\mathbb{R} = \mathbb{R}'$

 $\emptyset = \mathrm{bd} \ \mathbb{R} \subset \mathbb{R}$

 $S \subset \mathbb{R}$

 $s \in S'$ if, $\forall \epsilon > 0$, $N^*(x, \epsilon) \cap S \neq \emptyset$

HW: pages 141 - 142, numbers 6, 7, 15, 17, 19, 21

Theorem 3.4.17 - pg 118

Let: $S \subset \mathbb{R}$

Then

- a. S is closed iff $S' \subset S$
- b. cl S is a closed set
- c. S is closed iff S = cl S
- d. clS=S U $S'=S\cup \, \mathrm{bd}\,\, S$

Proof.

a)

S is closed iff $S' \subset S$

 \longrightarrow

Suppose: S is closed. Want to show: $S' \subset S$

Let: $x \in S'$ Thus, $\forall \epsilon > 0$

$$N(x, \epsilon) \cap S = \emptyset$$
 (1)

Want to show: $x \in S$

Assume: $x \notin S$ Then, from (1),

$$N(x,\epsilon) \cap S \neq \emptyset$$
 (2)

and

$$N(x, \epsilon) \cap \neg S \neq \emptyset$$
 (3)

From (2) and (3),

 $x \in bd \ S \subset S$ by definition of a closed set. This is a contradiction.

Hence, $x \in S$.

This proves:

$$S'\subset S$$

 \leftarrow

Conversely,

Suppose: $S' \subset S$

Want to show: $\mathbb{R} \setminus S$ is open $\Rightarrow S$ is closed.

Let: $x \in \mathbb{R} \setminus S$

Want to show: $\exists \epsilon > 0 \text{ st } N(x, \epsilon) \subset \mathbb{R} \setminus S$

Since $x \notin S$, we see that x not $\notin S$ '.

Thus, $\exists \epsilon > 0$ st $N(x, \epsilon) \cap S = \emptyset$

Since $x \notin S$, we have:

$$N(x, \epsilon) \cap S = \emptyset$$
 (1)

Hence, $N(x, \epsilon) \subset \mathbb{R} \setminus S$, which proves that $\mathbb{R} \setminus S$ is open, or, equivalently, that S is closed. This completes the proof of a).

b)

cl S is a closed set

Recall that cl $S = S \cup S'$.

Want to show: $\mathbb{R} \setminus \text{cl S}$ is open \Rightarrow cl S is closed

Let: $x \in cl (\mathbb{R} \setminus S)$ (aka $(S \cup S')$ Compliment)

We must find an $\epsilon > 0$ st $N(x, \epsilon) \subset cl (\mathbb{R} \setminus S)$

Now $x \notin S$ and $x \notin S'$.

 $\exists \epsilon > 0 \text{ st } N^*(x, \epsilon) \cap S = \emptyset$

However, $x \notin S$, so

$$N(x, \epsilon) \cap S = \emptyset$$
 (1)

We claim that $N(x, \epsilon) \cap S' = \emptyset$

Since:

$$\neg[x \in S \cup S']$$
$$\neg[x \in S \text{ or } x \in S']$$
$$x \notin S \text{ and } x \notin S'$$

which is equivalent to $N(x, \epsilon) \subset \mathbb{R} \setminus S'$

Let: $y \in N(x, \epsilon)$

By Theorem 2(a), the set $N(x, \epsilon)$ is open.

So $\exists \hat{\epsilon} > 0$ st $N(y, \hat{\epsilon}) \subset N(x, \epsilon)$.

In particular, $y \notin N(x, \epsilon)$.

From **(1)**

 $N^*(y, \hat{\epsilon}) \cap S = \emptyset.$

So, $y \notin S'$ or, equivalently, $y \in \mathbb{R} \setminus S'$.

This proves that $N(x, \epsilon) \subset \mathbb{R} \setminus S'$ or, equivalently,

$$N(x, \epsilon) \cap S' = \emptyset$$
 (2)

From (1) and (2), $N(x, \epsilon) \cap (S \cup S') = \emptyset$.

Hence,

$$N(x,\epsilon) \subset (S \cup S')^C = \operatorname{cl} S^C$$
(3)

Thus, (3) and * prove that $cl S^C$ is open.

Hence, by Theorem 3.4.7, cl S is closed.

c)

S is closed iff S = cl S (= S \cup S')

 \longrightarrow

Suppose: S is closed.

Want to show: $S = S \cup S'$.

By definition, $S \subset S \cup S'$.

Want to show: $S \cup S' \subset S$

Let $x \in S \cup S'$.

If $x \in S$, then we are finished.

If $x \in S' \setminus S$ Venn Diagram: (S ()xxS')

Then by a), $S' \subset S$, since S is closed.

Hence, $x \in S$, and we are finished.

 \leftarrow

Conversely,

Suppose: $S = S \cup S'$

Want to show: S is closed.

By (b), cl S is closed.

Since, $S = S \cup S' = cl S$, S is also closed.

d)

 $cl~S = S \cup S' = S \cup bd~S$

Let: $x \in S \cup S'$

If $x \in S$, then $x \in S \cup bd S$.

So, $S \cup S \subset S \cup bd S$ in this case.

If $x \in S' \setminus S$, then $\forall \epsilon > 0$, $N(x, \epsilon) \cap S \neq \emptyset$, which implies $x \in \mathbb{R} \setminus S$ and $N(x, \epsilon) \cap \mathbb{R} \setminus S \neq \emptyset$

Thus, $x \in bd S \subset S \cup bd S$.

Hence, $S \cup S' \subset S \cup bd S$.

For the reverse conclusion, let $x \in S \cup bd S$.

If $x \in S$, then $x \in S \cup S'$. So, in this case, $S \cup bd S \subset S \cup S' = cl S$.

if $x \in bd S \setminus S$, then, in particular,

 $\forall \epsilon > 0,$

$$N*(x,\epsilon)\cap S\neq\emptyset$$

which implies that $x \in S' \subset S \cup S'$.

Hence, $S \cup bd S \subset S \cup S'$.

Hence, result.