The Theoretical Minimum Classical Mechanics - Solutions I01E01

M. Bivert

October 7, 2022

Exercise 1. Using a graphic calculator or a program like Mathematica, plot each of the following functions. See the next section if you are unfamiliar with the trigonometric functions.

$$f(t) = t^4 + 3t^3 - 12t^2 + t - 6$$

$$g(x) = \sin x - \cos x$$

$$\theta(\alpha) = e^{\alpha} + \alpha \ln \alpha$$

$$x(t) = \sin^2 t - \cos t$$

Figure 1: $f(t) = t^4 + 3t^3 - 12t^2 + t - 6$

Figure 2: $g(x) = \sin x - \cos x$

Figure 3: $\theta(\alpha) = e^{\alpha} + \alpha \ln \alpha$

Figure 4: $x(t) = \sin^2 t - \cos t$

Remark 1. All those plots were created using TiKz (with $\cancel{E}^{1}T_{\cancel{E}}X$ then). For instance, here's the code for the last plot:

```
\begin{figure}[H]
    \centering
    \begin{tikzpicture}
         \tikzmath{
             \mbox{\em xmin} = -7;
             \mbox{} \mbox{} \mbox{} \mbox{} = 7;
             \gamma = -2;
             \ \ \ = 2;
         \draw[->] (\xmin-1, 0) -- (\xmax+1, 0) node[right] {$t$};
         \draw[->] (0, \mbox{ymin-1}) -- (0, \mbox{ymax+1}) node[above] <math>\{x(t)\};
         \draw[color=gray!30, dashed]
             (\sum_{1,y=1}^{y=1} grid (\sum_{1,y=2}^{y=1} t);
         \draw[scale=1, domain=\xmin:\xmax, smooth, samples=100, variable=\t, blue]
             plot (\{\t\}, \{\sin(\t r)^2 - \cos(\t r)\});
    \end{tikzpicture}
    \cost{sin^2t - \cos t}
\end{figure}
```