A Course In Universal Algebra

Stanley Burris & H. P. Sankappanavar May 13, 2020

Contents

1	Lattices		3
	1.1	Definitions of Lattices	3
	1.2	Isomorphism Lattices, and Sublattices	3
	1.3	Distributive and Modular Lattices	4
	1.4	Complete Lattices, Equivalence Relations, and Algebraic Lat-	
		tices	7
	1.5	Closure Operator	8
2 Index		ex	10
			11

1 Lattices

1.1 Definitions of Lattices

Definition 1.1. A nonempty set L together with two binary operations \vee and \wedge (read "join" and "meet" respectively) on L is called a **lattice** if it satisfies the following identities

L1: (a) $x \lor y \approx y \lor x$ (b) $x \land y \approx y \land x$ (commutative laws) L2: (a) $x \lor (y \lor z) \approx (x \lor y) \lor z$ (b) $x \land (y \land z) \approx (x \land y) \land z$ (associate laws) L3: (a) $x \lor x \approx x$ (b) $x \land x \approx x$ (idempotent laws) L4: (a) $x \approx x \lor (x \land y)$ (b) $x \approx x \land (x \lor y)$ (absorption laws)

Definition 1.2. Let A be a subset of a poset P. An element p in P is an **upper bound** for A if $a \le p$ for every a in A. An element p in P is the **least upper bound** of A (l.u.b. of A) or **supremum** of A (sup A.

For a, b in P we say b **covers** a, or a is **covered by** b if a < b and whenever $a \le c \le b$ it follows that a = c or c = b. We use the notation $a \prec b$ to denote a is covered by b.

Definition 1.3. A poset L is a lattice iff for every a,b in L both $\sup\{a,b\}$ and $\inf\{a,b\}$ exist

- 1. If L is a lattice by the first definition, then define \leq on L by $a \leq b$ iff $a = a \wedge b$
- 2. If *L* is a lattice by the second definition, then define \vee and \wedge by $a \vee b = \sup\{a, b\}$ and $a \wedge b = \inf\{a, b\}$

1.2 Isomorphism Lattices, and Sublattices

Definition 1.4. Two lattices L_1 and L_2 are **isomorphic** if there is a bijection α from L_1 to L_2 s.t. for every a,b in L_1 the following two equation hold: $\alpha(a \vee b) = \alpha(a) \vee \alpha(b)$ and $\alpha(a \wedge b) = \alpha(a) \wedge \alpha(b)$. Such an α is called an **isomorphism**

Definition 1.5. If P_1 and P_2 are two posets and α is a map from P_1 to P_2 , then we say α is **order-preserving** if $\alpha(a) \leq \alpha(b)$ holds in P_2 whenever $a \leq b$ holds in P_1

Theorem 1.6. Two lattices L_1 and L_2 are isomorphic iff there is a bijection α from L_1 to L_2 s.t. both α and α^{-1} are order-preserving

Definition 1.7. If L is a lattice and $L' \neq \emptyset$ is a subset of L s.t. for every pair of elements a,b in L' both $a \vee b$ and $a \wedge b$ are in L', where \wedge, \vee are the lattice operations of L, then we say that L' with the same operations is a **sublattice** of L

Definition 1.8. A lattice L_1 can be **embedded** into a lattice L_2 if there is a sublattice of L_2 isomorphic to L_1 ; in this case we also say that L_2 **contains a copy of** L_1 **as a sublattice**

1.3 Distributive and Modular Lattices

Definition 1.9. A **distributive lattice** is a lattice which satisfies either of the distributive laws,

D1:
$$x \land (y \lor z) \approx (x \land y) \lor (x \land z)$$

D2: $x \lor (y \land z) \approx (x \lor y) \land (x \lor z)$

Theorem 1.10. A lattice L satisfies D1 iff it satisfies D2

$$x \lor (y \land z) \approx (x \lor (x \land z)) \lor (y \land z)$$

$$\approx x \lor ((x \land z) \lor (y \land z))$$

$$\approx x \lor ((z \land x) \lor (z \land y))$$

$$\approx x \lor (z \land (x \lor y))$$

$$\approx x \lor ((x \lor y) \land z)$$

$$\approx (x \land (x \lor y)) \lor (x \lor y \land z)$$

$$\approx ((x \lor y) \land x) \lor ((x \lor y) \land)$$

$$\approx (x \lor y) \land (x \lor z)$$
(by L4(a))
$$\approx x \lor ((x \land x)) \lor (x \land y)$$

$$\approx (x \lor (x \land y)) \lor (x \lor y) \land (x \lor y) \land (x \lor y)$$

Actually every lattice satisfies both of the inequalities $(x \land y) \lor (x \land z) \le x \land (y \lor z)$ and $x \lor (y \land z) \le (x \lor y) \land (x \lor z)$.

Definition 1.11. A **modular lattice** is any lattice which satisfies the **modular** law

M:
$$x \le y \to x \lor (y \land z) \approx y \land (x \lor z)$$

Equivalent to the identity

$$(x \land y) \lor (y \land z) \approx y \land ((x \land y) \lor z)$$

Every lattice satisfies

$$x \leq y \to x \vee (y \wedge z) \leq y \wedge (x \vee z)$$

Figure 1

Theorem 1.12. *Every distributive lattice is a modular lattice*

Neither M_5 nor N_5 is a distributive lattice in Figure 1

Theorem 1.13 (Dedekind). L is a nonmodular lattice iff N_5 can be embedded into L

Proof. If L doesn't satisfy the modular law. Then for some a,b,c in L we have $a \leq b$ but $a \vee (b \wedge c) < b \wedge (a \vee c)$. Let $a_1 = a \vee (b \wedge c)$ and $b_1 = b \wedge (a \vee c)$. Then

$$c \wedge b_1 = c \wedge (b \wedge (a \vee c)) = (c \wedge (a \vee c)) \wedge b = c \wedge b$$

and

$$c \vee a_1 = c \vee a$$

Now as $c \wedge b \leq a_1 \leq b_1$, we have $c \wedge b \leq c \wedge a_1 \leq c \wedge b_1 = c \wedge b$, hence $c \wedge a_1 = c \wedge b$. Likewise $c \vee a = c \vee b_1$

Figure 2

Theorem 1.14 (Birkhoff). L is a nondistributive lattice iff M_5 , or N_5 can be embedded into L

Figure 3

Proof. Let suppose that L is a nondistributive lattice and that L does not contain a copy of N_5 as a sublattice. Thus L is modular by Theorem 1.13. Since the distributive laws do not hold in L, there must be elements a,b,c from L s.t. $(a \wedge b) \vee (a \wedge c) < a \wedge (b \vee c)$. Let us define

$$d = (a \land b) \lor (a \land c) \lor (b \land c)$$

$$e = (a \lor b) \land (a \lor c) \land (b \lor c)$$

$$a_1 = (a \land e) \lor d$$

$$b_1 = (b \land e) \lor d$$

$$c_1 = (c \land e) \lor d$$

Then $d \leq a_1, b_1, c_1 \leq e$. Now from

$$a \wedge e = a \wedge (b \vee c)$$

and

$$\begin{aligned} a \wedge d &= \underline{a} \wedge (\underline{(a \wedge b) \vee (a \wedge c)} \vee (b \wedge c)) \\ &= ((a \wedge b) \vee (a \wedge c)) \vee (a \wedge (b \wedge c)) \\ &= (a \wedge b) \vee (a \wedge c) \end{aligned} \text{ by M}$$

it follows that d < e

We now show that diagram in Figure 3 is a copy of M_5 in L. To do this it suffices to show that $a_1 \wedge b_1 = a_1 \wedge c_1 = b_1 \wedge c_1 = d$ and $a_1 \vee b_1 = a_1 \vee c_1 = b_1 \vee c_1 = e$.

$$a_{1} \wedge b_{1} = ((a \wedge e) \vee \underline{d}) \wedge (\underline{(b \wedge e) \vee d})$$

$$= ((a \wedge e) \wedge ((b \wedge \underline{e}) \vee d)) \vee d \qquad \text{(by M)}$$

$$y \wedge z = ((b \wedge e) \vee d) \wedge d = d$$

$$= ((a \wedge e) \wedge ((b \vee d) \wedge e)) \vee d \qquad \text{(by M)}$$

$$= ((a \wedge e) \wedge e \wedge (b \vee d)) \vee d$$

$$= ((a \wedge e) \wedge (b \vee d)) \vee d$$

$$= (a \wedge \underline{(b \vee c)} \wedge (\underline{b} \vee (a \wedge c))) \vee d$$

$$= (a \wedge (b \vee ((b \vee c) \wedge (a \vee c)))) \vee d \qquad \text{(by M)}$$

$$= (\underline{a} \wedge (b \vee \underline{(a \wedge c)})) \vee d \qquad a \wedge c \leq b \vee c$$

$$= (a \wedge c) \vee (b \wedge a) \vee d \qquad \text{(by M)}$$

$$= d$$

1.4 Complete Lattices, Equivalence Relations, and Algebraic Lattices

Definition 1.15. A poset P is **complete** if for every subset A of P both $\sup A$ and $\inf A$ exists in P. The elements $\sup A$ an $\inf A$ will be denoted by $\bigvee A$ and $\bigwedge A$.

Theorem 1.16. Let P be a poset s.t. $\bigvee A$ exists for every subset A, or s.t. $\bigwedge A$ exists for every subset A. Then P is a complete lattice

Proof. Suppose $\bigwedge A$ exists for every $A \subseteq P$. Then letting A^u be the set of upper bounds of A in P, it is routine to verify that $\bigwedge A^u$ is indeed $\bigvee A$. \square

In the above theorem, the existence of $\bigwedge \emptyset$ guarantees a largest element in P, and likewise the existence of $\bigvee \emptyset$ guarantees a smallest element in P. (Every element is larger than \emptyset).

Definition 1.17. A sublattice L' of a complete lattice L is called a **complete sublattice** of L if for every subset A of L' the elements $\bigvee A$ and $\bigwedge A$, as defined in L, are actually in L'

Definition 1.18. The **diagonal relation** Δ_A and the **all relation** A^2 is denoted by ∇_A . $r_1 \circ r_2$ iff there is a $c \in A$ s.t. $\langle a, c \rangle \in r_1$ and $\langle c, b \rangle \in r_2$

Eq(A) is the set of all equivalence relations on A.

Theorem 1.19. The poset Eq(A) with \subseteq as the partial ordering, is a complete lattice.

Theorem 1.20. If θ_1 and θ_2 are two equivalence relations on A then

$$\theta_1 \vee \theta_2 = \theta_1 \cup (\theta_1 \circ \theta_2) \cup (\theta_1 \circ \theta_2 \circ \theta_1) \cup (\theta_1 \circ \theta_2 \circ \theta_1 \circ \theta_2) \cup \dots$$

or equivalently, $\langle a, b \rangle \in \theta_1 \vee \theta_2$ iff there is a sequence of elements c_1, c_2, \ldots, c_n from A s.t.

$$\langle c_i, c_{i+1} \rangle \in \theta_1 \quad or \quad \langle c_i, c_{i+1} \rangle \in \theta_2$$

for
$$i = 1, ..., n - 1$$
 and $a = c, b = c_n$

Definition 1.21. Let θ be a member of $\operatorname{Eq}(A)$. For $a \in A$, the **equivalence** class (or coset) of a modulo θ is the set $a/\theta = \{b \in A : \langle b, a \rangle \in \theta\}$. The set $\{a/\theta : a \in A\}$ is denoted by A/θ

Theorem 1.22. p For $\theta \in Eq(A)$ and $a, b \in A$ we have

- 1. $A = \bigcup_{a \in A} a/\theta$
- 2. $a/\theta \neq b/\theta$ implies $a/\theta \cap b/\theta = \emptyset$

Definition 1.23. A partition π of a set A is a family of nonempty pairwise disjoint subsets of A s.t. $A = \bigcup \pi$. The sets in π are called the **blocks** of π . The set of all partitions of A is denoted by $\Pi(A)$

Theorem 1.24. $\Pi(A)$ *is a complete lattice and it's isomorphic to the lattice* Eq(A).

Definition 1.25. The lattice $\Pi(A)$ is called the **lattice of partitions** of A

Definition 1.26. Let L be a lattice. An element a in L is **compact** iff whenever $\bigvee A$ exists and $a \leq \bigvee A$ for $A \subseteq L$, then $a \leq \bigvee B$ for some finite $B \subseteq A$. L is **compactly generated** iff every element in L is a sup of compact elements. A lattice is **algebraic** if it is complete and compactly generated.

1.5 Closure Operator

Definition 1.27. If we are given a set A, a mapping $C : \mathcal{P}(A) \to \mathcal{P}(A)$ is called a closure **operator** on A if, for $X, Y \subseteq A$ it satisfies

C1:
$$X \subseteq C(X)$$
 (extensive)

C2:
$$C^2(X) = C(X)$$
 (idempotent)

C3: $X \subseteq Y$ implies $C(X) \subseteq C(Y)$

A subset X of A is called a **closed subset** if C(X) = X. The poset of closed subsets of A with set inclusion is denoted by L_C

Theorem 1.28. Let C be a closure operator on a set A. Then L_C is a complete lattice with

$$\bigwedge_{i \in I} C(A_i) = \bigcap_{i \in I} C(A_i)$$

and

$$\bigvee_{i \in I} C(A_i) = C(\bigcup_{i \in I} A_i)$$

Theorem 1.29. Every complete lattice is isomorphic to the lattice of closed subsets of some set A with a closure operator C

Proof. Let *L* be a complete lattice. For $X \subseteq L$ define

$$C(X) = \{ a \in L : a \le \sup X \}$$

Then C is a closure operator on L and the mapping $a \mapsto \{b \in L : b \leq a\}$ gives the desired isomorphism

Definition 1.30. A closure operator C on the set A is an **algebraic closure** operator if for every $X \subseteq A$

C4:
$$C(X) = \bigcup \{C(Y) : Y \subseteq X \text{ and } Y \text{ is finite}\}$$

Theorem 1.31. If C is an algebraic closure operator on a set A then L_C is an algebraic lattice, and the compact elements of L_C are precisely the closed sets C(X), where X is a finite subset of A

Proof. First we will show that C(X) is compact if X is finite. Suppose $X = \{a_1, \ldots, a_k\}$ and

$$C(X) \subseteq \bigvee_{i \in I} C(A_i) = C(\bigcup_{i \in I} A_i)$$

For each $a_j \in X$ we have by (C4) a finite $X_j \subseteq \bigcup_{i \in I} A_i$ with $a_j \in C(X_j)$. Since there are finitely many A_i 's, say A_{j1}, \ldots, A_{jn} , s.t.

$$X_j \subseteq A_{j1} \cup \cdots \cup A_{jn}$$

then

$$a_j \in C(A_{j1} \cup \cdots \cup A_{jn})$$

but then

$$X \subseteq \bigcup_{1 \le j \le k} C(A_{j1} \cup \dots \cup C_{jn})$$

so

$$X \subseteq C(\bigcup_{\substack{1 \le j \le k \\ 1 \le i \le n}} A_{ji})$$

and hence

$$C(X) \subseteq \bigvee_{\substack{1 \le j \le k \\ 1 \le i \le n}} C(A_{ji})$$

So C(X) is compact

Now suppose ${\cal C}(Y)$ is not equal to $({\cal C})$ for any fintie X , it's not compact.

Definition 1.32. If C is a closure operator on A and Y is closed subset of A, then we say a set X is a **generating set** for Y if C(X) = Y. The set Y is **finitely generated** if there is a finite generating set for Y. The set X is **minimal** generating set for Y if X generates Y and no proper subset of X generates Y

Corollary 1.33. Let C be an algebraic closure operator on A. Then the finitely generated subsets of A are precisely the compact elements of L_C

Theorem 1.34. Every algebraic lattice is isomorphic to the lattice of closed subsets of some set A with an algebraic closure operator C

2 Index

A algebraic lattice ... 8 C compact ... 8