## Cryptography and Architectures for Computer Security - Cheat Sheet

## Information Theory

```
\begin{array}{l} Pr(C=c) = \sum_{k:c \in \{\mathbb{E}_k(m), \forall m \in \mathcal{M}\}} Pr(K=k) Pr(P=\mathbb{D}_k(c)) \\ \text{Perfect secrecy: } Pr(P=m|C=c) = Pr(P=m) \implies |\mathcal{K}| = |\mathcal{C}| = |\mathcal{P}| \\ \text{Entropy: } H(X) = -\sum_{i=1}^n p_i \log_2 p_i \quad (p_i \log_2 p_i = 0 \text{ for } p_i = 0) \\ H(X,Y) = -\sum_{i=1}^n \sum_{j=1}^m Pr(X=x_i,Y=y_j) \log_2 Pr(X=x_i,Y=y_j) \\ H(X|Y=y) = -\sum_{i=1}^n \sum_{j=1}^m Pr(X=x_i|Y=y) \log_2 Pr(X=x_i|Y=y) \\ H(X|Y) = -\sum_{i=1}^n \sum_{j=1}^m Pr(Y=y_j) Pr(X=x_i,Y=y_j) \log_2 Pr(X=x_i|Y=y_j) \\ H(X) + H(Y) \geqslant H(X,Y); \ H(X,Y) = H(Y) + H(X|Y); \ H(X|Y) \leqslant H(X) \\ \text{Key equivocation: } H(K|C) = H(P) + H(K) - H(C) \\ \text{Language redundancy: } R_L = 1 - \frac{H_L}{\log_2 |\mathcal{M}|} \\ \text{Spurious keys: } \bar{s_n} \geqslant \frac{|\mathcal{K}|}{|\mathcal{M}|^{nR_L}} - 1 \\ \text{Unicity distance: } n_0 \approx \frac{\log_2 |\mathcal{K}|}{R_L \log_2 |\mathcal{M}|} \end{array}
```

## Symmetric Ciphers

**Hash Functions** 

Algebraic Structures

Elliptic Curves

Public Key Cryptosystems

Montgomery Multiplication

Number Theoretical Cryptanalysis

Misc