TD 4 : Fonctions de plusieurs variables

Exercice 1 - Calculs de dérivées

1.1 Soient $f: \mathbb{R}^2 \to \mathbb{R}$ et $g: \mathbb{R}^3 \to \mathbb{R}$ deux fonctions de classe C^{∞} .

Calculez les dérivées des fonctions suivantes :

- (i) $a: \mathbb{R} \to \mathbb{R}$ $x \mapsto f(\cos x, \sin x)$
- (ii) $b: \mathbb{R} \to \mathbb{R}$ $x \mapsto g(x, x^2, x^3)$
- (iii) $c: \mathbb{R} \to \mathbb{R}$ $h \mapsto f\left(x + \frac{h}{2}, y + 3h\right)$
- **1.2** Vérifiez vos réponses avec $f(x,y) = x^2 + y^2$ et g(x,y,z) = x y z.

Exercice 2 - Extrema d'une fonction à deux variables

(examen 2023-2024)

Pour tout réel x, on considère la matrice $M_x = \begin{pmatrix} x & -3 \\ -3 & x \end{pmatrix}$.

- **2.1** Calculer le déterminant de M_x en fonction de x, et dire à quelle condition sur x la matrice est inversible.
- **2.2** Trouver les valeurs propres de $M_0 = \begin{pmatrix} 0 & -3 \\ -3 & 0 \end{pmatrix}$, ainsi qu'un vecteur propre pour chacune des valeurs propres.
- **2.3** Trouver les valeurs propres de $M_1 = \begin{pmatrix} 1 & -3 \\ -3 & 1 \end{pmatrix}$, ainsi qu'un vecteur propre pour chacune des valeurs propres.
- 2.4 Dans le cas général, quelles sont les valeurs propres de M_x et les vecteurs propres associés?
- 2.5 En utilisant ce qui précède, trouver les extrema locaux de la fonction

$$f: \begin{array}{ccc} \mathbb{R}^2 & \to & \mathbb{R} \\ (x,y) & \mapsto & x^3 + y^3 - 3xy \end{array}.$$

Exercice 3 - Extrema de fonctions à plusieurs variables

Pour chacune des fonctions suivantes, déterminer les points critiques puis les extrema locaux.

- **3.1** $f_1: \mathbb{R}^2 \to \mathbb{R}$ $(x,y) \mapsto 2x^2 + y^2 2xy 2x 2$
- **3.2** $f_2: \mathbb{R}^2 \to \mathbb{R}$ $(x,y) \mapsto x^2 + xy + y^2 + \frac{1}{4}x^3$
- **3.3** $f_3: \mathbb{R}^3 \longrightarrow \mathbb{R}$ $(x,y,z) \mapsto (1+x^2+y^2) \exp(z^2)$

Exercice 4 - Un calcul par intégrales simples

On considère la fonction $f(x,y) = \frac{x^2 - y^2}{(x^2 + y^2)^2}$.

- **4.1** Calculer la dérivée de $g(x,y) = \frac{y}{x^2 + y^2}$ par rapport à y.
- **4.2** En déduire la valeur de $\int_{x=0}^{1} \left(\int_{y=0}^{1} f(x,y) \, \mathrm{d}y \right) \, \mathrm{d}x$.
- **4.3** Calculer maintenant la valeur de $\int_{y=0}^{1} \left(\int_{x=0}^{1} f(x,y) \, \mathrm{d}x \right) \, \mathrm{d}y$.
- **4.4** Que pouvez-vous dire sur la fonction f?

Exercice 5 - Centre de gravité d'un quart de disque

(examen 2023-2024)

Le but de cet exercice est de déterminer le centre de gravité de l'ensemble

$$D = \{(x, y) \in \mathbb{R}^2 \mid -y \le x \le y \text{ et } x^2 + y^2 \le 1\}.$$

- 5.1 Représenter graphiquement l'ensemble D.
- **5.2** Calculer $A = \iint_D d(x, y)$.

Poser $x = \rho \cos \theta$ et $y = \rho \sin \theta$.

5.3 Calculer $X = \iint_D x d(x, y)$.

Poser $x = \rho \cos \theta$ et $y = \rho \sin \theta$.

5.4 Calculer $Y = \iint_D y d(x, y)$.

Poser $x = \rho \cos \theta$ et $y = \rho \sin \theta$.

5.5 On rappelle que le centre de gravité de D est le point G de coordonnées $\left(\frac{X}{A}, \frac{Y}{A}\right)$.

Calculer les coordonnées de G, placer G sur le dessin produit à la question 1 et commenter.

note : On pourra utiliser les valeurs approchées $3\pi \simeq 10$ et $\sqrt{2} \simeq 1.5$.

Exercice 6 - Intégrales multiples

Calculer la valeur des intégrales multiples suivantes.

6.1
$$\iint_D xy \, \mathrm{d}(x,y) \text{ sur } D = \left\{ (x,y) \in \mathbb{R}^2 \mid x > 0, \ y > 0 \text{ et } \left(\frac{x}{a}\right)^2 + \left(\frac{y}{b}\right)^2 \le 1 \right\}.$$

6.2
$$\iint_D \frac{d(x,y)}{(x+y)^3} \text{ où } D = \{(x,y) \in \mathbb{R}^2 \mid 1 < x, \ 1 < y \text{ et } x+y < 3\}.$$

6.3
$$\iint_D y \, d(x,y) \text{ où } D = \{(x,y) \mid 0 \le y, \ x^2 + y^2 \le 1\}.$$

6.4
$$\iint_D \cos(x+y) \, \mathrm{d}(x,y) \text{ où } D = \{(x,y) \mid 0 \le x, \ \frac{\pi}{2} \le y, \ x+y \le \pi\}.$$

6.5
$$\iint_D \frac{y}{x} d(x,y) \text{ où } D = \{(x,y) \in \mathbb{R}^2 \mid 1 \le x \le 4, \ y \ge 0, \text{ et } xy \le 1\}.$$

note: On commencera par représenter graphiquement l'ensemble D.