Edexcel Maths FP1

Topic Questions from Papers

Series

2. (a) Show, using the formulae for $\sum r$ and $\sum r^2$, that

$$\sum_{r=1}^{n} (6r^2 + 4r - 1) = n(n+2)(2n+1)$$

(5)

(b) Hence, or otherwise, find the value of $\sum_{r=11}^{20} (6r^2 + 4r - 1)$.

2. (a) Using the formulae for $\sum_{r=1}^{n} r$, $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$, show that

$$\sum_{r=1}^{n} r(r+1)(r+3) = \frac{1}{12}n(n+1)(n+2)(3n+k),$$

where k is a constant to be found.

(7)

(b) Hence evaluate $\sum_{r=21}^{40} r(r+1)(r+3)$.

Leave

8. (b) Using the formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^3$, show that

$$\sum_{r=1}^{n} (r^3 + 3r + 2) = \frac{1}{4} n(n+2)(n^2 + 7)$$

(5)

(c) Hence evaluate $\sum_{r=15}^{25} (r^3 + 3r + 2)$

- 9. Using the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$,
 - (b) show that

$$\sum_{r=1}^{n} (r+2)(r+3) = \frac{1}{3} n(n^2 + an + b),$$

where a and b are integers to be found.

_ (5)

(c) Hence show that

$$\sum_{r=n+1}^{2n} (r+2)(r+3) = \frac{1}{3}n(7n^2 + 27n + 26)$$

(3)

5. (a) Use the results for $\sum_{r=1}^{n} r$, $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$, to prove that

$$\sum_{r=1}^{n} r(r+1)(r+5) = \frac{1}{4}n(n+1)(n+2)(n+7)$$

for all positive integers n.

(5)

(b) Hence, or otherwise, find the value of

$$\sum_{r=20}^{50} r(r+1)(r+5)$$

(2)

10

7. (a) Use the results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that

$$\sum_{r=1}^{n} (2r-1)^2 = \frac{1}{3}n(2n+1)(2n-1)$$

for all positive integers n.

(6)

(b) Hence show that

$$\sum_{r=n+1}^{3n} (2r-1)^2 = \frac{2}{3}n(an^2+b)$$

where a and b are integers to be found.

(4)

6. (a)

$$\sum_{r=1}^{n} r^{3} = \frac{1}{4} n^{2} (n+1)^{2}$$

(b) Using the result in part (a), show that

$$\sum_{r=1}^{n} (r^3 - 2) = \frac{1}{4} n(n^3 + 2n^2 + n - 8)$$
(3)

(c) Calculate the exact value of $\sum_{r=20}^{50} (r^3 - 2)$. (3)

4. (a) Use the standard results for $\sum_{r=1}^{n} r^3$ and $\sum_{r=1}^{n} r$ to show that

$$\sum_{r=1}^{n} (r^3 + 6r - 3) = \frac{1}{4} n^2 (n^2 + 2n + 13)$$

for all positive integers n.

(5)

(b) Hence find the exact value of

$$\sum_{r=16}^{30} (r^3 + 6r - 3)$$

$\sum_{r=1}^{n} 3(2r-1)^2 = n(2n+1)(2n-1), \text{ for all positive integers } n.$	(5)

5. (a) Use the standard results for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$ to show that

$$\sum_{r=1}^{n} (r+2)(r+3) = \frac{1}{3}n(n^2+9n+26)$$

for all positive integers n.

(6)

(b) Hence show that

$$\sum_{r=n+1}^{3n} (r+2)(r+3) = \frac{2}{3}n(an^2 + bn + c)$$

where a, b and c are integers to be found.

(4)

8.

$$\sum_{r=1}^{n} r(2r-1) = \frac{1}{6} n(n+1)(4n-1)$$

(b) Hence, show that

$$\sum_{r=n+1}^{3n} r(2r-1) = \frac{1}{3} n(an^2 + bn + c)$$

where a, b and c are integers to be found.

1	1	1
l	7	',

24

10. (i) Use the standard results for $\sum_{r=1}^{n} r^3$ and $\sum_{r=1}^{n} r$ to evaluate

$$\sum_{r=1}^{24} (r^3 - 4r)$$

(ii) Use the standard results for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r$ to show that

$$\sum_{r=0}^{n} (r^2 - 2r + 2n + 1) = \frac{1}{6} (n+1)(n+a)(bn+c)$$

for all integers $n \ge 0$, where a, b and c are constant integers to be found.

(6)

Further Pure Mathematics FP1

Candidates sitting FP1 may also require those formulae listed under Core Mathematics C1 and C2.

Summations

$$\sum_{r=1}^{n} r^2 = \frac{1}{6} n(n+1)(2n+1)$$

$$\sum_{n=1}^{n} r^3 = \frac{1}{4} n^2 (n+1)^2$$

Numerical solution of equations

The Newton-Raphson iteration for solving f(x) = 0: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$

Conics

	Parabola	Rectangular Hyperbola
Standard Form	$y^2 = 4ax$	$xy = c^2$
Parametric Form	(at ² , 2at)	$\left(ct, \frac{c}{t}\right)$
Foci	(a, 0)	Not required
Directrices	x = -a	Not required

Matrix transformations

Anticlockwise rotation through θ about $O: \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$

Reflection in the line $y = (\tan \theta)x$: $\begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$

In FP1, θ will be a multiple of 45°.

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1}b + \binom{n}{2} a^{n-2}b^{2} + \dots + \binom{n}{r} a^{n-r}b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$
where $\binom{n}{r} = {}^{n}C_{r} = \frac{n!}{r!(n-r)!}$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b - a}{n}$