Interview Problems

TABLE OF CONTENTS

- 1. Merge Overlapping Intervals
- 2. Merge Sorted Overlapping Intervals
- 3. Merge Intervals 2
- 4. Given N elements. Find first missing positive number

Merge Overlapping Intervals

</>
</>
Code

S2, C2 S, ,e, How to check no overlap if (e, < S2 11 e2 < S,) L

no overlag else (Smeyed = min(S_1, S_2) Cmerged = man(e_1, e_2)

< Question > : Given a sorted list of overlapping intervals, sorted based on start-time, Merge all overlapping intervals and return the sorted list of non-overlapping intervals.

$$\{C1,2\},\{C1,4\},\{C5,6\},\{6,8\}$$
. $T \leq N = 10^{5}$

Take the 0th interval as the reference initially Now start iterating. If overlap, updak the reference to the merged interval. If no overlap, put the reflince in answer list & updale eef to neve interval.

Example:

```
Intervals[N] \rightarrow [(0,2),(1,4),(5,6),(6,8),(7,10),(8,9),(12,14)]
```

```
</>
Sode

Input is 2D allay Mr.
   we-start = au(0)(0)
   cm-end = au(o)(1) Tc: O(N)
   ans = (]
  for (i: 1-> n-1) C
       if ( au li) (0) > cm_end) {
           Uno overlap
           ans. insert & cur-start, cur-end }
           cuer_start = aceli) (0)
           well- end = auli) (1)
      elsel
         Cul-end=man(w1-end, aus(i)(1)
 ans. insert ( wy-start, wy-end }
```

< **Question** >: Given N non-overlapping intervals sorted based on start-time. Given a new interval. Merge this with existing intervals, if possible and return final non-overlapping intervals.

$$N = 8$$
 $J = (10,22)$ [$(1,3)$, $(4,7)$, $(10,14)$, $(16,19)$, $(21,24)$, $(27,30)$, $(32,35)$, $(38,45)$] $(10,22)$

Resultant Intervals
$$\rightarrow$$
 1,3 4,7 10,25 27,30 32,35 38,45

input is 20 allay all & / interval (I ~ 11,224 </>
</>
Code ans = [] for (i:0 → n-1) L if (ausi)[1] < I[0]) ans. insert (aulis) else if (auli) (0) > I (1)) { ans. insert (I) for (j: i > n-1) { ans. insert (are[j]) break) I (0) = min (I(0), au [i](0)) I (1) = man (I (1), au (i) (1)) ans. insert (I)

1,2,3,4

< **Question** >: Find the first missing natural number.

N = length of array

Example 1: $arr[5]: [3 -1 1 2 7] \implies 4$

Example 2: arr [7]: [9 2 6 4 -8 1 3] => 5

Example 3: arr [6]: [10-5-642] = 3

Example 4: arr [6]: [1 2 5 6 4 3] ⇒ ₹

Example 5: arr [4]: [1 2 3 4]

BFIdea check for 1, 2,3,7,5.... Hill

you find the answer. TC: O(n2)

min bossible => 1

[Idea -2 man possible => N+1

0
 1
 2
 3
 4
 5
 8
 1
 4
 2
 6
 3

€ Idea-3 (all given numbers are +ve)

-8 -1 -4 -2 6 -3

for (i:0 \rightarrow n-1) (

elem = abs (als [i])

idn = elem -1

if (idn >,0 as idn < n) (

als (idn) * = -1

Idea -4
Keep the elements at their correct position.

Example: $arr[] \rightarrow [4 2 7 6 9 1 5 3]$ 0 1 2 3 4 5 6 7

arr []
$$\rightarrow$$
 [3 9 -2 5 -1 1] 0 1 2 3 4 5

n=6

</>
</>
Code

for (i:
$$0 \rightarrow n-1$$
) C

if $(A(i) \leq 0) C$
 $A(i) = N+2$
 $A(i) = N+2$

for (i: $0 \rightarrow n-1$) C

elem = abs(als (i))

idn = elem -1

if $(idn > 0) = AE idn < n$) C

all $(idn) \neq E = -1$

for (i: $0 \rightarrow n-1$) C

for (i: 0 -> n-1) {

if (A(i) > 0)

seturn i+1

y

return N+1