Apellido y Nombre:

Carrera y comisión:

1 2 3 4 5 6 1 2 TOTAL NOTA

ALCEBRA Y ÁLGEBRA II

Examen Final Tema A
(6/12/2007)

1. Sea $T: \mathbb{R}^4 \mapsto \mathbb{R}^3$ la transformacion lineal tal que

$$T(E_1) = e_1 + e_3 \quad T(E_2) = e_2 + 2e_3 \quad T(E_3) = 2e_1 + 2e_2 + 2e_3 \quad T(E_4) = e_1 + 2e_2 + 5e_3 \quad T(E_4) = e_1 + 2e_3 + 5e_4 + 5e_5 +$$

donde $\beta = \{E_1, E_2, E_3, E_4\}$ y $\beta' = \{e_1, e_2, e_3\}$ son las bases canónicas de \mathbb{R}^4 y \mathbb{R}^3 respectivements.

- (a) Calcular la dimensión y dar una base del núcleo de T.
- (b) Calcular la dimensión y dar una base de la imagen de T
- (c) Si denotamos por A a la matriz de T con respecto a las bases ordenadas β y β' , describir paramétricamente del conjunto de soluciones del sistema AX = (1,0,1).
- 2. Sea α = (1, −1, 2)
 - (a) Déterminar el conjunto $W=\{\beta\in\mathbb{R}^3:<\alpha,\beta>=0\}$. Demostrar que W es un espacio vectorial con la suma y el producto usual de \mathbb{R}^3 .
 - (b) Determinar al conjunto de los $\beta \in \mathbb{R}^3$ tales que $<\alpha,\beta>=2$. Determinar si es o no un subespacio de R^3 . ¿Qué relación tiene con W?
- Decir si las siguientes afirmaciones son verdaderas o falsas, justificando claramente su respuesta.
 - (a) Sea $T:\mathbb{R}^5\mapsto\mathbb{R}^5$ es una fransformación lineal suryectiva entonces det $T\neq 0$.
 - (b) Existen dos matrices $A \in \mathbb{R}(2 \times 3)$ y $B \in \mathbb{R}(3 \times 2)$ tales que det $AB \neq 0$.
 - (c) Si V es un espacio vectorial real y $S,T:V\mapsto V$ son transformaciones lineales tales que $T\circ S=Id_V$ entonces $ST=Id_V$ \forall
- 4. Sea $T: \mathbb{R}^3 \mapsto \mathbb{R}^3$ definida por T(x, y, z) = (x y, x + y + z, y z) y sea $C = \{e_1, e_2, e_3\}$ la base canonica de \mathbb{R}^3 .
 - (a) Dar la matriz de cambio de base de β a β'
 - (b) Dar la matriz de T con respecto a las bases ordenadas

$$\beta = \{e_2, e_3, e_1\}$$
 y $\beta' = \{2e_2, -e_3, 3e_1\}$.

- (c) Calcular $\det[T]$
- 5. Sean V y W espacios vectoriales y sea $T:V\mapsto W$ una transformación lineal. Demostrar que $\dim V=\dim \operatorname{Nu} T+\dim \operatorname{Im} T.$

6. Sea V un espacio vectorial real.

- (a) Definir independencia lineal.
- (b) Definir cuando un conjunto se dice que genera el espacio vectorial V.
- (c) Sean β₁,..., β_n ∈ V un conjunto de generadores, demostrar que todo conjunto linealmente independiente en V tiene menor o igual cantidad de elmentos. Es decir que si V =< β₁,..., β_n >, y {α₁,..., α_τ} son linealmente independientes, entonces τ ≤ n.

Ejercicios (solo) para alumnos libres:

1. Calcular el determinante de la matriz $A = \begin{bmatrix} 0 & 0.1 & 0 & 0.0 & 0 & 0 \\ -1 & 0.0 & 0 & 0.0 & 0 & 0 \\ 0 & 0.0 & 0 & 0.0 & 0 & 0 \\ 0 & 0.0 & 0 & 0.0 & 0 & 0 \\ 0 & 0.0 & 0 & 0 & 1 & 0 \end{bmatrix}$

2. Si $A \in \mathbb{R}(n \times n)$ es una matriz inversible, demostrar que existen dos bases de \mathbb{R}^n , β y β' tales que $A = [Id]_{\beta}^{\beta'}$, donde Id es la transformación identidad de \mathbb{R}^n en sí mismo.