Supporting Information

Staudinger ketene-imine cycloaddition, RCM approach to macrocrocyclic bisazetidinones

Yehia A. Ibrahim,* Talal F. Al-Azemi, Mohamed D. Abd El-Halim and Elizabeth John

Chemistry Department, Faculty of Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwai. yehiaai@kuc01.kuniv.edu.kw

S. No.	Content	Page No.
I.	General Experimental Information	S2
II.	NMR Experiments of 8a with Chiral Shift Reagent Eu(hfc) ₃	S13
III.	¹ H, ¹³ C NMR and ¹⁵ N Full Spectral Assignment of 2a , 5a , 8a and 11a	S14-S15
IV.	¹ H and ¹³ C NMR spectra	S16-S59

I. General Experimental Information

Experimental

All melting points are uncorrected. IR spectra were recorded in KBr disks on a Perkin Elmer System 2000 FT-IR spectrophotometer. ¹H, ¹³C and ¹⁵N NMR spectra were recorded on a Bruker DPX 400, 400 MHz, Avance ^{II} 600, 600 MHz super-conducting NMR spectrometers. Mass spectra were measured on VG Auto-spec-Q (high resolution, high performance, tri-sector GC/MS/MS) and with LCMS using Agilent 1100 series LC/MSD with an API-ES/APCI ionization mode. Microanalyses were performed on LECO CH NS-932 Elemental Analyzer. The starting compounds 1a⁸, 14^{6h} and 16^{6h} were prepared as reported.

General procedure for synthesis of compound 1a,b, 15 and 17.

A mixture of each of *o*-allyloxysalicylaldehyede (324 mg, 2 mmol) or bis-aldehydes **14, 16** (296 mg, 1 mmol) and the appropriate diamine (1 mmol) in methanol (15 ml) was refluxed for 2 h. The solvent was then removed in vacuo.

Compound 1a.

Yield 0.3 g (85%); yellow crystals (EtOH), mp 87 °C (Lit.⁸ mp 87 °C), $R_{\rm f}$ = 0.70 (pet. ether/EtOAc 3:1). IR: 3090, 3077, 3012, 2988, 2898, 2843, 1638, 1601, 1489, 1452, 1372, 1287, 1250, 1164, 998, 932, 759. ¹H NMR (CDCl₃): δ 4.01 (s, 4H), 4.56 (m, 4H), 5.30 (dd, 2H, J 10.4, 1.2), 5.41 (dd, 2H, J 17.2, 1.2), 6.03 (m, 2H), 6.88 (d, 2H, J 8.0), 6.98 (t, 2H, J 7.6), 7.35 (dt, 2H, J 7.8, 2.0), 7.95 (dd, 2H, J 7.6, 2.0), 8.79 (s, 2H). ¹³C NMR (CDCl₃): δ 62.0, 69.0, 112.3, 117.5, 120.9, 125.0, 127.3, 131.6, 133.0, 157.7, 158.6.

Compound 1b.

Yield 0.35 g (80%); yellow oil (EtOH), R_f = 0.65 (pet. ether/EtOAc 3:1). MS: m/z = 436 (M+, 5%). IR: 3036, 3076, 3019, 2893, 2867, 1638, 1600, 1486, 1454, 1295, 1244, 1119, 1019, 997, 926, 755. ¹H NMR (CDCl₃): δ 3.64 (s, 4H), 3.77 (m, 8H), 4.56 (m, 4H), 5.28 (dd, 2H, J 10.4, 1.2), 5.40 (dd, 2H, J 17.2, 1.6), 6.06 (m, 2H), 6.86 (d, 2H, J 8.4), 6.96 (t, 2H, J 7.6), 7.32 (dt, 2H, J 7.2, 1.6), 7.96 (dd, 2H, J 7.6, 1.6), 8.77 (s, 2H). ¹³C NMR (CDCl₃): δ 61.2, 68.9, 70.3, 70.8, 112.1, 117.4, 120.7, 124.7, 127.2, 131.5, 132.8, 157.5, 158.4. HRMS = 436.2356 (C₂₆H₃₂N₂O₄ requires 436.2356).

Compound 15.

Yield 0.34 g (85%); yellow oil, $R_f = 0.43$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 408 (M⁺, 5%). IR: 3073, 3034, 2969, 2887, 1638, 1560, 1485, 1453, 1376, 1295, 1241, 1160, 1128, 1018, 954, 756. ¹H NMR (CDCl₃): δ 3.55 (s, 4H), 3.65 (t, 4H, J 4.8), 3.72 (t, 4H, J 4.8), 4.73 (d, 4H, J 4.8), 6.06 (t, 2H, J 4.8), 6.92 (d, 2H, J 8.4), 7.00 (t, 2H, J 7.8), 7.35 (dt, 2H, J 8.4, 1.8), 7.92 (dd, 2H, J 7.8, 1.8), 8.70 (s, 2H). HRMS = 408.2044 ($C_{24}H_{28}N_{2}O_{4}$ requires 408.2043).

Compound 17.

Yield 0.33 g (81%); yellow oil, $R_f = 0.44$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 408 (M⁺, 10%). IR: 3073, 3034, 2969, 2887, 1638, 1560, 1485, 1453, 1376, 1295, 1241, 1160, 1128, 1018, 954, 756. ¹H NMR (CDCl₃): δ 3.60 (s, 4H), 3.81 (s, 8H), 4.66 (s, 4H), 6.16 (s, 2H), 6.91 (d, 2H, J 8.4), 7.01 (t, 2H, J 7.6), 7.38 (dt, 2H, J 8.8, 1.6), 7.93 (dd, 2H, J 7.6, 1.6), 8.80 (s, 2H). HRMS = 408.2044 ($C_{24}H_{28}N_2O_4$ requires 408.2043).

Synthesis of β-Lactams 2-7 by staudinger reaction: General Procedure.

A solution of aryloxyacetyl chloride (4 mmol) in dry CH₂Cl₂ (5 mL) was purged with nitrogen and cooled to 0 °C, then a solution of triethylamine (8 mmol) in dry CH₂Cl₂ (5 mL) was added dropwise with a syringe. The mixture was stirred for 30 min and a solution of the corresponding diimine **1a,b**, **15**, **17** (1 mmol) in dry CH₂Cl₂ (5 mL) was added dropwise over a period of 2 h. The reaction mixture was then stirred overnight at room temperature. The organic layer was washed with water, Na₂CO₃ solution (10%) till no effervescence and then dried over anhydrous Na₂SO₄. The solvent was removed in vacuo and the crude product was separated by chromatography. All *anti* products **2a**, **3a**, **4a** were readily separated from their corresponding *syn* isomers **5a**, **6a**, **7a**. The other *anti and syn* isomers could not be separated and identified as a mixture of each of these two isomers where ¹H NMR is almost completely identical except for the azetidinones ring which is assigned for each isomer.

Compound 2a:

Yield 0.28 g (45%); colorless crystals, mp130-132 $^{\circ}$ C, $R_{\rm f}$ = 0.54 (pet. ether/EtOAc 1:1). MS: m/z = 616 (M⁺, 5%). IR: 3067, 3040, 2969, 2929, 1759, 1600, 1590, 1494, 1415, 1353, 12407, 1231, 1055, 1002, 926, 752, 691. 1 H NMR (CDCl₃): δ 2.90 (d, 2H, J 11.4), 3.90 (d, 2H, J 10.8), 4.34 (dd, 2H, J 13.2, 4.8), 4.50 (dd, 2H, J 13.2, 4.8), 5.34 (dd, 2H, J 10.8, 1.2), 5.48 (dd, 2H, J 17.7, 1.2), 5.51 (d, 2H, J 4.4), 5.84 (d, 2H, J 4.4), 6.06 (m, 2H), 6.73 (d, 2H, J 8.4), 6.80 (d, 4H, J 7.8), 6.87 (t, 2H, J 7.2), 6.94 (t, 2H, J 7.8), 7.11 (t, 4H, J 7.2), 7.20 (dt, 2H, J 7.8, 1.2), 7.32 (dd, 2H, J 7.8, 1.2). 13 C NMR (CDCl₃): δ 37.9, 55.5, 68.7, 82.5, 111.4, 115.6, 117.4, 120.4, 121.4, 121.7,

127.9, 128.9, 129.4, 133.0, 156.9, 157.0, 167.4. HRMS = 616.2568 ($C_{38}H_{36}N_2O_6$ requires 616.2567).

Compound 5a:

Yield 0.25 g (40%); yellow oil, R_f = 0.39 (pet. ether/EtOAc 1:1). MS: m/z = 616 (M⁺, 5%). IR: 3068, 3015, 2917, 2850, 1761, 1599, 1590, 1493, 1455, 1408, 1357, 1291, 1238, 997, 753, 691. ¹H NMR (CDCl₃): δ 3.11 (m, 2H), 3.85 (m, 2H), 4.28 (ddt, 2H, J 12.6, 5.4, 1.2), 4.44 (ddt, 2H, J 12.6, 5.4, 1.8), 5.29 (ddd, 2H, J 10.2, 2.0, 1.2), 5.32 (d, 2H, J 4.2), 5.38 (ddd, 2H, J 17.4, 2.4, 1.2), 5.44 (d, 2H, J 4.2), 6.00 (m, 2H), 6.71 (m, 6H), 6.86 (t, 2H, J 7.2), 6.98 (t, 2H, J 7.8), 7.09 (dt, 4H, J 7.2, 1.8), 7.22 (dt, 2H, J 8.4, 1.8), 7.30 (dd, 2H, J 7.8, 1.8). ¹³C NMR (CDCl₃): δ 37.7, 55.8, 68.5, 81.9, 111.3, 115.2, 117.4, 120.4, 120.5, 121.5, 128.1, 128.7, 129.4, 132.7, 156.5, 156.6, 166.0. HRMS = 616.2568 (C₃₈H₃₆N₂O₆ requires 616.2567).

Compound 3a:

Yield 0.32 g (46%); yellow oil, R_f = 0.52 (pet. ether/EtOAc 1:1). MS: m/z = 716 (M⁺, 10%). IR: 3061, 2958, 2928, 2859, 1760, 1727, 1598, 1580, 1491, 1459, 1396, 1350, 1285, 1268, 1244, 1124, 1072, 793, 771, 753. ¹H NMR (CDCl₃): δ 3.07 (d, 2H, J 11.2), 4.04 (d, 2H, J 11.2), 4.37 (ddt, 2H, J 12.8, 5.5, 1.2), 4.52 (ddt, 2H, J 12.8, 5.2, 1.2), 5.29 (ddd, 2H, J 10.4, 2.4, 1.2), 5.44 (ddd, 2H, J 17.2, 3.2, 1.6), 5.74 (d, 2H, J 4.4), 5.95 (d, 2H, J 4.4), 6.03 (m, 2H), 6.76 (d, 2H, J 7.6), 6.95 (t, 2H, J 6.8), 7.09 (d, 2H, J 7.2), 7.21 (dt, 2H, J 1.6, 8.4), 7.30 (m, 4H), 7.41 (m, 6H), 7.71 (d, 4H, J 8.4). ¹³C NMR (CDCl₃): δ 38.1, 55.6, 68.8, 82.8, 107.2, 111.5, 117.5, 120.5, 121.4, 121.7, 121.9, 125.0, 125.2, 125.4, 126.1, 127.0, 127.8, 129.4, 132.9, 134.1, 152.8, 156.9, 167.7. HRMS = 716.2881 (C₄₆H₄₀N₂O₆ requires 716.2880)

Compound 6a:

Yield 0.32g (45%); colourless crystals, mp191 °C $R_{\rm f}$ = 0.64 (pet. ether/EtOAc 1:1). MS: m/z = 716 (M⁺, 10%). IR: 3081, 3058, 2949, 2910, 2866, 1758, 1595, 1579, 1490, 1455, 1394, 1352, 1289, 1265, 1240, 1181, 1159, 1111, 1086, 1014, 995, 923, 768, 751. ¹H NMR (CDCl₃): δ 3.25 (m, 2H), 3.98 (m, 2H), 4.33 (ddt, 2H, J 12.8, 5.2, 1.6), 4.49 (ddt, 2H, J 12.8, 5.2, 1.6), 5.26 (ddd, 2H, J 13.2, 2.4, 1.2), 5.35 (ddd, 2H, J 17.2, 2.8, 1.2), 5.50 (d, 2H, J 4.6), 5.54 (d, 2H, J 4.6), 5.98

(m, 2H), 6.74 (d, 2H, J 8.0), 6.92 (d, 2H, J 7.6), 6.98 (t, 2H, J 7.2), 7.20 (dt, 2H, J 8.0, 1.6), 7.27 (m, 4H), 7.40 (m, 6H), 7.69 (m, 4H). ¹³C NMR (CDCl₃): δ 38.1, 56.1, 68.9, 82.4, 106.9, 111.6, 117.7, 120.7, 121.1, 121.5, 121.9, 125.1, 125.2, 126.3, 127.0, 128.2, 129.6, 132.9, 134.1, 152.7, 156.8, 166.4. HRMS = 716.2882 (C₄₆H₄₀N₂O₆ requires 716.2880)

Compound 4a:

Yield 0.33 g (46%); yellow oil, R_f = 0.58 (pet. ether/EtOAc 1:1). MS: m/z = 716 (M⁺, 5%). IR: 3059, 2926, 2854, 1759, 1629, 1600, 1510, 1491, 1466, 1455, 1359, 1253, 1217, 1183, 840, 751. 1 H NMR (CDCl₃): δ 3.00 (d, 2H, J 10.8), 4.00 (d, 2H, J 10.8), 4.25 (dd, 2H, J 12.8, 4.8), 4.43 (dd, 2H, J 12.8, 4.4), 5.35 (d, 2H, J 10.8), 5.50 (d, 2H, J 17.2), 5.68 (d, 2H, J 4.4), 5.98 (d, 2H, J 4.4), 6.05 (m, 2H), 6.62 (d, 2H, J 8.4), 6.93 (m, 4H), 7.15 (m, 4H), 7.32 (t, 2H, J 7.4), 7.40 (m, 4H), 7.55 (d, 2H, J 8.8), 7.69 (d, 4H, J 8.4). 13 C NMR (CDCl₃): δ 37.9, 55.4, 68.4, 82.4, 108.7, 111.2, 117.3, 118.5, 120.3, 121.1, 123.9, 126.1, 126.9, 127.4, 127.9, 129.0, 129.3, 129.4, 132.9, 133.9, 154.6, 156.7, 167.3. HRMS = 716.2881 (C₄₆H₄₀N₂O₆ requires 716.2880)

Compound 7a:

Yield 0.32 g (45%); yellow oil, R_f = 0.55 (pet. ether/EtOAc 1:1). MS: m/z = 716 (M⁺, 10%). IR: 3060, 2958, 2922, 2856, 1760, 1711, 1629, 1600, 1510, 1491, 1466, 1455, 1407, 1392, 1359, 1289, 1253, 1217, 1183, 1120, 839, 751. ¹H NMR (CDCl₃): δ 3.16 (m, 2H), 3.92 (m, 2H), 4.20 (dd, 2H, J 12.8, 5.2), 4.40 (dd, 2H, J 12.8, 4.8), 5.29 (dd, 2H, J 10.8, 1.2), 5.37 (dd, 2H, J 17.2, 1.2), 5.48 (d, 2H, J 4.4), 5.58 (d, 2H, J 4.4), 6.02 (m, 2H), 6.62 (d, 2H, J 8.4), 6.89 (dd, 2H, J 8.8, 2.4), 7.01 (m, 4H), 7.18 (dt, 2H, J 8.8, 1.2), 7.32 (t, 2H, J 7.2), 7.38 (m, 4H), 7.55 (d, 2H, J 8.8), 7.64 (d, 4H, J 8.0), 7.69 (d, 2H, J 8.0). ¹³C NMR (CDCl₃): δ 37.8, 55.8, 68.6, 82.0, 108.3, 111.3, 117.6, 118.4, 120.4, 120.5, 123.9, 126.1, 126.7, 127.5, 128.3, 129.0, 129.3, 129.6, 132.9, 133.8, 154.5, 156.6, 166.0. HRMS = 716.2881 (C₄₆H₄₀N₂O₆ requires 716.2880)

Compound 2b, 5b:

Yield 0.52 g (74%), obtained as inseparable yellow oily mixture containing **2b** (38%) and **5b** (36%) from column chromatography (using pet. ether/EtOAc/DCM), $R_f = 0.44$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 704 (M⁺, 5%). IR: 3067, 3040, 2918, 2868, 1761, 1599, 1493, 1454, 1406, 1356, 1290, 1238, 1117, 754. ¹H NMR (CDCl₃): δ 3.15-3.17 (m, 2H), 3.41 (m, 2H), 3.47-4.58 (m, 6H), 3.71 (m, 2H), 4.26-4.29 (m, 2H), 4.4-4.45 (m, 2H), 5.28 (dm, 2H, J 10.8), 5.39 (d, 2H, J 16.2), 5.41 (d, 2H, J 4.8, azetidinone H-3 of **5b**), 5.44 (d, 2H, J 4.2, azetidinone H-3 of **2b**), 5.57 (d, 2H, J 4.8, H-4 of **5b**), 5.58 (d, 2H, J 4.2, azetidinone H-4 of **2b**), 6.02 (m, 2H), 6.65 (d, 2H, J 7.8, ArH **5b**), 6.66 (d, 2H, J 7.8, ArH **2b**), 6.73 (m, 4H), 6.83 (t, 2H, J 7.2), 6.90 (t,

2H, J 7.8), 7.06 (t, 4H, J 8.1), 7.13 (m, 2H), 7.31 (dd, 2H, J 7.4, 1.8, ArH **2b**), 7.33 (dd, 2H, J 7.8, 1.6, ArH **5b**). ¹³C NMR (CDCl₃): δ 39.83 (39.86) (azetidinone C-4), 56.6, 67.7, 68.3, 69.74 (69.75), 81.74 (azetidinone C-3), 110.92 (110.94), 115.1, 117.1, 120.0, 121.3, 121.38 (121.41), 127.8, 128.6, 129.0, 132.8, 156.2, 156.6, 166.04 (166.06) (isomer signals). HRMS = 704.3088 (C₄₂H₄₄N₂O₈ requires 704.3092).

Compound 3b, 6b:

Yield 0.72 g (90%), obtained as inseparable yellow oily mixture containing **3b** (45%) and **6b** (45%) from column chromatography (using pet. ether/EtOAc/DCM), $R_f = 0.48$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 804 (M⁺, 10%). IR: 3062, 3011, 2957, 2925, 2870, 1763, 1492, 1457, 1398, 1267, 1243, 1119, 794, 772, 756. ¹H NMR (CDCl₃): δ 3.22-3.30 (m, 2H), 3.46-69 (m, 8H), 3.78-3.86 (m, 2H), 4.30 (dd, 2H, J 12.8, 5.2), 4.46 (dd, 2H, J 12.8, 4.8), 5.25 (d, 2H, J 10.8), 5.35 (d, 2H, J 17.2), 5.63 (d, 2H, J 4.8, azetidinone H-3 of **6b**), 5.65 (d, 2H, J 4.8, azetidinone H-3 of **3b**), 5.67, 5.68 (2d, 2H, J 4.8, azetidinone H-4 of **6b**, **3b**), 5.99 (m, 2H), 6.71 (d, 2H, J 8.0), 6.92 (t, 2H, J 7.6), 6.99 (t, 2H, J 6.8), 7.16 (m, 2H), 7.26 (m, 4H), 7.39 (m, 6H), 7.67 (m, 4H). ¹³C NMR (CDCl₃): δ 40.2 (40.3) (azetidinone C-4), 56.9, 67.97 (68.0), 69.0, 70.0 (70.04), 82.2 (azetidinone C-3), 106.92 (106.94), 111.2, 117.3, 120.4, 121.3, 121.8, 121.98 (122.0), 124.9, 125.1, 125.2, 126.1, 126.9, 128.0, 129.1, 133.0, 134.0, 152.8, 156.5, 166.63 (166.65) (isomer signals). HRMS = 804.3404 (C₅₀H₄₈N₂O₈ requires 804.3405).

Compound 4b, 7b:

Yield 0.64 g (80%), obtained as inseparable yellow oily mixture containing **4b** (40%) and **7b** (40%) from column chromatography (using pet. ether/EtOAc/DCM), $R_f = 0.48$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 804 (M⁺, 10%). IR: 3060, 2918, 2869, 1763, 1629, 1600, 1492, 1455, 1360, 1254, 1218, 1183, 1120, 752. ¹H NMR (CDCl₃): δ 3.20-3.23 (m, 2H), 3.45-3.49 (m, 2H), 3.54-3.65 (m, 6H), 3.73-3.79 (m, 2H), 4.22 (dd, 2H, J 12.6, 3.6), 4.39 (dd, 2H, J 12.6, 3.6), 5.31 (d, 2H, J 10.2), 5.42 (d, 2H, J 17.4), 5.57 (d, 2H, J 3.6, azetidinone H-3 of **7b**),), 5.60 (d, 2H, J 3.6, azetidinone H-3 of **4b**), 5.71 (d, 2H, J 3.6, overlaped azetidinone H-4 of **7b**, **4b**),), 6.02 (m, 2H), 6.57 (d, 2H, J 7.8), 6.91 (m, 4H), 7.10 (m, 4H), 7.31 (t, 2H, J 7.2), 7.39 (m, 4H), 7.53 (d, 2H, J 9.0), 7.64 (d, 2H, J 8.4), 7.68 (d, 2H, J 7.8). ¹³C NMR (CDCl₃): δ 40.12 (40.16) (azetidinone C-4), 56.7, 67.99 (68.01), 68.4, 70.02 (70.05), 81.91 (81.95) (azetidinone C-3), 108.39 (108.41), 111.02 (111.04), 117.2, 118.5, 120.2, 121.28 (121.31), 123.8, 126.1, 126.7, 127.5, 128.2, 129.0, 129.20, 129.24, 133.1, 133.8, 154.6, 156.4, 166.2 (isomer signals). HRMS = 804.3404 (C₅₀H₄₈N₂O₈ requires 804.3405).

Compound *E***-8b**, *E***-11b**:

Yield 0.53 g (78%), isolated as a yellow oil of *anti/syn* (64:36) mixture after column chromatography, $R_f = 0.41$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 676 (M⁺, 7%). HRMS = 676.2778 (C₄₀H₄₀N₂O₈ requires 676.2779). IR: 3065, 3011, 2918, 2868, 1761, 1599, 1493, 1454, 1408, 1358, 1290, 1240, 1113, 752, 690. Compound **8b** ¹H NMR (CDCl₃): δ 3.07 (m, 2H), 3.45-3.55 (m, 4H), 3.57-3.60 (m, 2H), 3.65-3.71 (m, 2H), 3.91 (ddd, 2H, J 14.6, 6.8, 3.6), 4.36 (dd, 2H, J 11.4, 2.5), 4.59 (dd, 2H, J 11.4, 2.5), 5.45 (d, 2H, J 4.5), 5.69 (d, 2H, J 4.5), 6.17 (t, 2H, J 2.5), 6.74 (d, 4H, J 7.8), 6.77 (d, 2H, J 7.8), 6.86 (m, 2H), 6.97 (t, 2H, J 7.2), 7.08 (dt, 4H, J 7.2, 1.8), 7.21 (dt, 2H, J 8.0, 1.6), 7.36 (dd, 2H, J 7.6, 1.6). Compound **8b** ¹³C NMR (CDCl₃): δ 39.5, 56.2, 67.2, 67.9, 69.5, 82.0, 111.0, 115.4, 120.59, 121.6, 121.7, 127.7, 128.3, 128.8, 129.3, 156.4, 156.9, 166.3. Compound **11b**: ¹H NMR (CDCl₃): δ 3.07 (m, 2H), 3.45-3.55 (m, 4H), 3.57-3.60 (m, 2H), 3.65-3.71 (m, 2H), 3.84 (ddd, 2H, J 14.6, 6.2, 3.6), 4.36 (dd, 2H, J 12.9, 2.5), 4.56 (dd, 2H, J 12.9, 2.5), 5.48 (d, 2H, J 4.5), 5.70 (d, 2H, J 4.5), 6.08 (t, 2H, J 2.5), 6.70 (d, 4H, J 8.0), 6.73 (d, 2H, J 7.2), 6.86 (m, 2H), 6.95 (t, 2H, J 7.2), 7.11 (dt, 4H, J 7.6, 2.0), 7.18 (dt, 2H, J 8.0, 1.6), 7.36 (dd, 2H, J 7.2, 1.6). Compound **11b** ¹³C NMR (CDCl₃): δ 39.6, 56.6, 67.3, 68.2, 69.6, 82.1, 111.3, 115.5, 120.6, 121.6, 122.0, 127.8, 128.5, 128.9, 129.2, 156.4, 157.0, 166.3.

Compound *E***-9b**, *E***-12b**:

Yield 0.66 g (85%), isolated as a yellow oil of *anti/syn* (55:45) mixture after column chromatography, R_f = 0.37 (DCM/pet. ether/EtOAc 2:1:3). MS: m/z = 776 (M⁺, 10%). HRMS = 776.3092 (C₄₈H₄₄N₂O₈ requires 776.3092) IR: 3054, 2918, 2867, 1759, 1492, 1456, 1396, 1267, 1242, 1112, 910, 773, 754, 730. Compound **9b** ¹H NMR (CDCl₃): δ 3.05 (m, 2H), 3.40-3.50 (m, 4H), 3.54 (m, 2H), 3.63 (m, 2H), 3.90 (m, 2H), 4.23 (d, 2H, J 11.4), 4.42 (d, 2H, J 11.4), 5.54 (d, 2H, J 4.8), 5.67 (d, 2H, J 4.8), 5.97 (s, 2H), 6.63 (d, 2H, J 8.4), 6.87 (m, 4H), 7.06-7.16 (m, 6H), 7.26 (d, 2H, J 8.4), 7.29 (dt, 4H, J 7.8, 1.2), 7.58 (t, 4H, J 7.8). Compound **9b** ¹³C NMR (CDCl₃): δ 39.7, 56.2, 67.3, 67.8, 69.6, 82.2, 107.0, 111.1, 120.7, 121.4, 121.9, 122.1, 125.1, 125.2, 125.3, 126.2, 127.0, 127.6, 128.2, 129.3, 134.1, 152.9, 156.4, 166.6. Compound **12b**: ¹H NMR (CDCl₃): δ 3.05 (m, 2H), 3.40-3.50 (m, 4H), 3.54 (m, 2H), 3.63 (m, 2H), 3.81 (m, 2H), 4.33 (d, 2H, J 12.0), 4.43 (d, 2H, J 12.0), 5.56 (d, 2H, J 4.2), 5.68 (d, 2H, J 4.2), 5.91 (s, 2H), 6.62 (d, 2H, J 7.8). Compound **12b** ¹³C NMR (CDCl₃): δ 39.8, 56.6, 67.3, 68.2, 69.7, 82.3, 107.1, 111.4, 120.7, 121.4, 121.9, 122.3, 125.1, 125.2, 125.3, 126.2, 127.1, 127.8, 128.4, 129.2, 134.2, 153.0, 156.5, 166.6.

Compound *E***-10b**, *E***-13b**:

Yield 0.65 g (84%), isolated as a yellow oil of anti/syn (55:45) mixture after column chromatography, $R_f = 0.29$ (DCM/pet. ether/EtOAc 2:1:3). MS: m/z = 776 (M⁺, 10%). HRMS = 776.3092 (C₄₈H₄₄N₂O₈ requires776.3092) IR: 3059, 2919, 2868, 1761, 1629, 1600, 1492, 1455, 1407, 1253, 1218, 1115, 913, 747. Compound **10b** ¹H NMR (CDCl₃): δ 3.11 (m, 2H), 3.59-3.66 (m, 6H), 3.74 (m, 2H), 3.96 (m, 2H), 4.25 (d, 2H, J 12.0), 4.58 (d, 2H, J 12.0), 5.60 (d, 2H, J 4.2), 5.83 (d, 2H, J 4.2), 6.21 (s, 2H), 6.62 (d, 2H, J 7.8), 6.89 (dd, 2H, J 7.2, 1.8), 6.97 (t, 2H, J 7.2), 7.08 (d, 2H, J 7.2), 7.15 (dt, 2H, J 8.4, 1.8), 7.32 (dt, 2H, J 7.2, 1.2), 7.38 (m, 4H), 7.53 (d, 2H, J 9), 7.58 (d, 2H, J 8.4), 7.68 (d, 2H, J 7.8). Compound **10b** ¹³C NMR (CDCl₃): δ 39.5, 56.3, 67.1, 68.1, 69.5, 81.9, 108.4, 110.8, 118.6, 120.5, 121.3, 123.8, 126.1, 126.5, 127.6, 127.7, 128.2, 129.0, 129.3, 129.4, 133.9, 154.7, 156.3, 166.1. Compound **13b:** ¹H NMR (CDCl₃): δ 3.13 (m, 2H), 3.49-3.55 (m, 6H), 3.71 (m, 2H), 3.88 (m, 2H), 4.41(d, 2H, J 13.8), 4.54 (d, 2H, J 13.8), 5.63 (d, 2H, J 4.2), 5.85 (d, 2H, J 4.2), 6.09 (s, 2H), 6.57 (d, 2H, J 7.8), 6.93 (m, 4H), 7.10 (dt, 2H, J 9.0, 1.8), 7.13 (d, 2H, J 7.2), 7.31(td, 2H, J 7.8, 1.8), 7.39 (m, 4H), 7.55 (d, 2H, J 9.0), 7.65 (d, 2H, J 7.8), 7.67 (d, 2H, J 7.8). Compound **13b** ¹³C NMR (CDCl₃): δ 39.7, 56.5, 67.1, 68.4, 69.6, 82.1, 108.5, 111.1, 118.6, 120.5, 123.9, 126.2, 126.6, 127.6, 127.8, 128.4, 129.0, 129.2, 129.3, 130.9, 133.9, 154.8, 156.2, 166.1.

Compound *Z***-8b,** *Z***-11b:**

Yield 0.54 g (80%), isolated as a yellow oil of *anti/syn* (48:52) mixture after column chromatography, R_f = 0.41 (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 676 (M⁺, 15%). HRMS = 676.2778 (C₄₀H₄₀N₂O₈ requires 676.2779). IR: 3065, 3038, 2921, 2871, 1761, 1595, 1492, 1456, 1407, 1356, 1293, 1237, 1114, 1080, 1020, 755, 732, 692. Compound **Z-8b** ¹H NMR (CDCl₃): δ 3.18 (m, 2H), 3.13-349 (m, 6H), 3.59 (m, 2H), 3.77 (m, 2H), 4.43(dd, 2H, J 12.0, 3.6), 4.72 (dd, 2H, J 12.0, 3.6), 5.39 (d, 2H, J 4.4), 5.59 (d, 2H, J 4.4), 5.95 (t, 2H, J 3.6), 6.62 (d, 2H, J 7.6), 6.76 (td, 4H, J 8.0, 0.8), 6.88 (td, 2H, J 7.2, 0.8), 6.96 (m, 2H), 7.13 (m, 4H), 7.18 (m, 2H), 7.33 (m, 2H). Compound **Z-8b** ¹³C NMR (CDCl₃): δ 39.6, 56.8, 64.6, 68.3, 69.6, 82.1, 111.4, 115.5, 120.7, 121.8, 121.9, 128.2, 128.7, 128.9, 129.3, 156.3, 157.0, 166.3. Compound **Z-11b**: ¹H NMR (CDCl₃): δ 3.08 (m, 2H), 3.13-349 (m, 6H), 3.59 (m, 2H), 3.77 (m, 2H), 4.62 (dd, 2H, J 11.6, 3.2), 4.69 (d, 2H, J 11.6, 3.2), 5.48 (d, 2H, J 4.4), 5.68 (d, 2H, J 4.4), 5.87 (t, 2H, J 3.2), 6.62 (d, 2H, J 7.6), 6.76 (td, 4H, J 8.0, 0.8), 6.88 (td, 2H, J 7.2, 0.8), 6.96 (m, 2H), 7.13 (m, 4H), 7.18 (m, 2H), 7.33 (m, 2H). Compound **Z-11b** ¹³C NMR (CDCl₃): δ 39.5, 56.6, 64.1, 68.5, 69.6, 82.1, 111.1, 115.4, 120.7, 121.7, 121.8, 128.4, 128.5, 128.9, 129.2, 156.4, 156.9, 166.2.

Compound *Z***-9b,** *Z***-12b:**

Yield 0.65 g (84%), isolated as a yellow oil of anti/syn (48:52) mixture after column chromatography, $R_f = 0.41$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 776 (M⁺, 10%). HRMS = 776.3092 (C₄₈H₄₄N₂O₈ requires 776.3092). IR: 3057, 2923, 2866, 1761, 1596, 1491, 1457, 1397, 1353, 1289, 1267, 1240, 1114, 1018, 794, 770, 732. Compound **Z-9b** ¹H NMR (CDCl₃): δ 3.24 (m, 2H), 3.39 (m, 2H), 3.46 (m, 2H), 3.54 (m, 2H), 3.65 (m, 2H), 3.85 (m, 2H), 4.42 (dd, 2H, J 12.0, 4.8), 4.68 (dd, 2H, J 12.0, 4.8), 5.55 (d, 2H, J 4.8), 5.66 (d, 2H, J 4.8), 5.89 (t, 2H, J 4.8), 6.67 (d, 2H, J 8.4), 6.95 (m, 4H), 7.12 (m, 2H), 7.26 (m, 4H), 7.40 (m, 6H), 7.18 (d, 2H, J 7.8), 7.70 (t, 2H, J 7.8). Compound **Z-9b** ¹³C NMR (CDCl₃): δ 39.7, 56.6, 64.1, 68.5, 69.7, 82.4, 107.0, 111.2, 120.8, 121.5, 121.9, 122.2, 125.1, 125.23, 125.24, 126.2, 127.1, 128.3, 128.5, 129.2, 134.2, 152.9, 156.5, 166.4. Compound **Z-12b:** ¹H NMR (CDCl₃): δ 3.15 (m, 2H), 3.39 (m, 2H), 3.46 (m, 2H), 3.54 (m, 2H), 3.65 (m, 2H), 3.85 (m, 2H), 4.56 (dd, 2H, J 12.6, 3.6), 4.65 (dd, 2H, J 12.6, 3.6), 5.65 (d, 2H, J 4.8), 5.74 (d, 2H, J 4.8), 5.81 (t, 2H, J 3.6), 6.70 (d, 2H, J 7.8), 6.95 (m, 4H), 7.12 (m, 2H), 7.26 (m, 4H), 7.40 (m, 6H), 7.18 (d, 2H, J 7.8), 7.70 (t, 2H, J 7.8). Compound **Z-12b** ¹³C NMR (CDCl₃): δ 39.8, 56.8, 64.5, 68.3, 69.8, 82.3, 107.2, 111.5, 120.9, 121.5, 121.8, 122.3, 125.1, 125.2, 125.4, 126.2, 127.1, 128.4, 128.5, 129.3, 134.2, 152.9, 156.5, 166.5.

Compound *Z*-10b, *Z*-13b:

Yield 0.61 g (78%), isolated as a yellow oil of anti/syn (48:52) mixture after column chromatography, $R_f = 0.41$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 776 (M⁺, 10%). HRMS = 776.3092 (C₄₈H₄₄N₂O₈ requires 776.3092). IR: 3059, 2923, 2862, 1762, 1597, 1491, 1461, 1402, 1357, 1254, 1220, 1119, 911, 776, 733. Compound **Z-10b** ¹H NMR (CDCl₃): δ 3.12 (m, 2H), 3.23-3.41 (m, 6H), 3.49-3.57 (m, 2H), 3.68-3.74 (m, 2H), 4.26 (dd, 2H, J 12.4, 3.2), 4.54 (dd, 2H, J 12.4, 3.2), 5.45 (d, 2H, J 4.1), 5.62 (d, 2H, J 4.1), 5.63 (t, 2H, J 3.2), 6.58 (d, 2H, J 7.6), 6.83 (m, 4H), 7.01 (d, 2H, J 7.2), 7.03 (td, 2H, J 1.4, 8.0), 7.22-7.36 (m, 6H), 7.53 (d, 2H, J J 7.2) 8.0), 7.61 (dd, 4H, J 8.0, 2.2). Compound **Z-10b** ¹³C NMR (CDCl₃): δ 39.6, 56.7, 64.7, 68.6, 69.6, 82.0, 108.6, 111.3, 118.6, 120.6, 121.6, 123.9, 126.2, 126.7, 127.6, 128.4, 128.6, 129.1, 129.2, 129.3, 133.9, 154.7, 156.2, 165.9. Compound **Z-13b:** ¹H NMR (CDCl₃): δ 3.12 (m, 2H), 3.23-3.41 (m, 6H), 3.49-3.57 (m, 2H), 3.68-3.74 (m, 2H), 4.26 (dd, 2H, J 12.4, 3.2), 4.54 (dd, 2H, J 12.4, 3.2), 5.53 (d, 2H, J 4.2), 5.71 (d, 2H, J 4.2), 5.79 (t, 2H, J 3.2), 6.35 (d, 2H, J 8.2), 6.83 (m, 4H), 5.95 (td, 2H, J 1.7, 8.2), 6.98 (d, 2H, J 7.2), 7.22-7.36 (m, 6H), 7.47 (d, 4H, J J 7.2) 9.0), 7.59 (d, 2H, J 8.0). Compound **Z-13b** ¹³C NMR (CDCl₃): δ 39.5, 56.5, 64.2, 68.5, 69.6, 82.1, 108.4, 111.0, 118.6, 120.7, 121.4, 123.9, 126.2, 126.6, 127.6, 128.1, 128.4, 129.1, 129.11, 129.3, 133.8, 154.7, 156.3, 166.0.

General Procedures of the RCM

To a solution of each of the appropriate β -Lactam **2-7** (1 mmol) in DCM (10 ml), Grubb's catalyst **I** or **II** (mol% indicated in Tables 2, 3) was added. The reaction mixture was heated under reflux (for time indicated in Tables 2, 3) and the solvent was removed in vacuo and the product was purified by column chromatography with eluent DCM/pet. ether (60-80)/EtOAc

Compound 8a:

Yield 0.56 g (95%), isolated as *cis/trans* (8:92) mixture after column chromatography [of RCM reaction with Grubbs' **I** (5 mol%)] as colorless crystals, mp 123-125 °C, $R_f = 0.61$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 588 (M⁺, 25%). HRMS = 588.2254 (C₃₆H₃₂N₂O₆ requires 588.2254). IR: 3065, 3041, 2922, 2853, 1764, 1599, 1590, 1492, 1456, 1404, 1355, 1237, 912, 752, 734. **Trans 8a:** ¹H NMR (CDCl₃): δ 3.06 (d, 2H, J 9.6), 3.58 (d, 2H, J 9.6), 4.58 (dd, 2H, J 11.0, 2.8), 4.71 (dd, 2H, J 11.0, 2.8), 5.17 (d, 2H, J 4.6), 5.36 (d, 2H, J 4.6), 5.96 (t, 2H, J 2.8), 6.70 (d, 4H, J 7.8), 6.86 (m, 4H), 7.00 (t, 2H, J 7.2), 7.11 (m, 4H), 7.22 (td, 2H, J 8.4, 1.2), 7.39 (dd, 2H, J 7.8, 1.2). **Trans 8a:** ¹³C NMR (CDCl₃): δ 39.1, 55.7, 68.4, 81.5, 114.7, 115.3, 121.6, 121.7, 122.6, 129.1, 129.3, 129.75, 129.9, 156.6, 156.9, 166.6. **Cis 8a:** ¹H NMR (CDCl₃): δ 3.32 (d, 2H, J 13.0), 3.73 (d, 2H, J 13.0), 4.63 (dd, 2H, J 11.0, 4.0), 4.67 (dd, 2H, J 11.0, 4.0), 4.73 (d, 2H, J 4.6), 5.42 (d, 2H, J 4.6), 6.18 (t, 2H, J 4.0), 6.64 (d, 4H, J 7.8), 6.86 (m, 4H), 7.06 (t, 2H, J 7.3), 7.12 (m, 4H), 7.27 (td, 2H, J 8.0, 2.0), 7.35 (dd, 2H, J 7.7, 1.6). **Cis 8a:** ¹³C NMR (CDCl₃): δ 39.4, 56.0, 64.6, 81.4, 111.9, 115.5, 121.4, 121.68, 121.8, 128.9, 129.2, 129.6, 129.8, 156.5, 156.7, 166.3.

Compound 11a:

Yield 0.55 g (94%), isolated as *cis/trans* (11:89) mixture after column chromatography [of RCM reaction with Grubbs' **I** (5 mol%)] as white crystals, mp123-125 °C, $R_f = 0.69$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 588 (M⁺, 25%). HRMS = 588.2256 (C₃₆H₃₂N₂O₆ requires 588.2261). IR: 3063, 3013, 2926, 1771, 1599, 1493, 1456, 1406, 1360, 1236, 1047, 866, 752, 690. **Trans 11a** ¹H NMR (CDCl₃): δ 2.95 (m, 2H), 3.78 (m, 2H), 4.62 (d, 2H, *J* 14.0), 4.75 (d, 2H, *J* 14.0), 5.43 (d, 2H, *J* 4.5), 5.48 (d, 2H, *J* 4.5), 5.95 (s, 2H), 6.78 (m, 6H), 6.89 (m, 4H), 7.15 (m, 6H), 7.28 (dd, 2H, *J* 7.6, 1.6). **Trans 11a** ¹³C NMR (CDCl₃): δ 38.2, 55.8, 68.6, 81.9, 114.4, 115.5, 121.4, 121.9, 122.1, 128.9, 129.1, 129.4, 129.7, 156.6, 157.0, 166.2. **Cis 11a** ¹H NMR (CDCl₃): δ 2.93 (m, 2H), 3.97 (m, 2H), 4.46 (dd, 2H, *J* 10.4, 5.6), 4.64 (dd, 2H, *J* 10.4, 5.6), 5.44 (d, 2H, *J* 4.5), 5.56 (d, 2H, *J* 4.5), 6.22 (t, 2H, *J* 5.6), 6.78 (m, 6H), 6.89 (m, 4H), 7.15 (m, 6H), 7.28 (dd, 2H, *J* 7.6, 1.6). **Cis 11a** ¹³C NMR (CDCl₃): δ 38.0, 55.7, 63.6, 81.8, 112.3, 115.6, 121.1, 121.6, 121.7, 128.8, 129.0, 129.8, 130.7, 156.9, 157.2, 166.5.

Compound 9a:

Yield 0.63 g (92%), isolated as *cis/trans* (21:79) mixture after column chromatography [of RCM reaction with Grubbs' **I** (5 mol%)] as yellow oil, $R_{\rm f} = 0.68$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 688 (M⁺, 10%). HRMS = 688.2568 (C₄₄H₃₆N₂O₆ requires 688.2567). IR: 3056, 2925, 1768, 1629, 1600, 1490, 1458, 1396, 1266, 1217, 1183, 755, 733. *Trans* **9a** ¹H NMR (CDCl₃): δ 3.23 (d, 2H, J 10.0), 3.70 (d, 2H, J 10.0), 4.60 (d, 2H, J 11.6), 4.70 (d, 2H, J 11.6), 5.35 (d, 2H, J 4.8), 5.50 (d, 2H, J 4.8), 6.02 (s, 2H), 6.83 (d, 2H, J 7.2), 6.92 (d, 2H, J 8.0), 7.03 (t, 2H, J 7.2), 7.22-7.34 (m, 6H), 7.41(m, 4H), 7.51 (dd, 2H, J 7.6, 1.6), 7.70 (d, 2H, J 8.0), 7.79 (d, 2H, J 8.4). *Trans* **9a** ¹³C NMR (CDCl₃): δ 39.3, 55.9, 68.6, 81.6, 106.8, 114.9, 121.4, 121.7, 121.8, 122.9, 125.1, 125.2, 125.5, 126.3, 127.1, 129.1, 129.8, 129.9, 134.2, 152.7, 156.7, 166.8. *Cis* **9a** ¹H NMR (CDCl₃): δ 3.44 (d, 2H, J 13.2), 3.84 (d, 2H, J 13.2), 4.60 (dd, 2H, J 11.6, 4.0), 4.70 (dd, 2H, J 11.6, 4.0), 4.92 (d, 2H, J 4.8), 5.56 (d, 2H, J 4.8), 6.19 (t, 2H, J 4.0), 6.78 (d, 2H, J 7.6), 6.90 (d, 2H, J 8.0), 7.07 (t, 2H, J 7.6), 7.22-7.34 (m, 6H), 7.41(m, 4H), 7.47 (dd, 2H, J 7.6, 1.6), 7.74 (d, 2H, J 8.0), 7.69 (d, 2H, J 8.4). *Cis* **9a** ¹³C NMR (CDCl₃): δ 39.5, 55.9, 64.7, 81.5, 106.9, 111.9, 121.5, 121.7, 121.8, 122.9, 125.1, 125.2, 125.5, 126.3, 127.0, 128.8, 129.6, 130.9, 134.1, 152.6, 156.6, 166.5

Compound 12a:

Yield 0.64 g (93%), isolated as *cis/trans* (19:81) mixture after column chromatography [of RCM reaction with Grubbs' **I** (5 mol%)] as yellow oil, $R_f = 0.72$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 688 (M⁺, 15%). HRMS = 688.2567 (C₄₄H₃₆N₂O₆ requires 688.2567). IR: 3058, 2954, 2925, 1770, 1629, 1600, 1490, 1458, 1396, 1359, 1254, 1218, 1183, 912, 752, 731. *Trans* **12a** ¹H NMR (CDCl₃): δ 3.07 (m, 2H), 3.89 (m, 2H), 4.62 (d, 2H, J 12.8), 4.75 (d, 2H, J 12.8), 5.59 (d, 2H, J 4.4), 5.65 (d, 2H, J 4.4), 5.97 (s, 2H), 6.84 (d, 2H, J 8.0), 6.94 (t, 4H, J 8.0), 7.18 (dt, 2H, J 8.0, 1.6), 7.26-7.33 (m, 4H), 7.40 (m, 6H), 7.71 (d, 2H, J 8.0), 7.79 (d, 2H, J 8.4). *Trans* **12a** ¹³C NMR (CDCl₃): δ 38.3, 56.0, 68.8, 82.1, 107.2, 114.6, 121.5, 121.6, 121.8, 122.3, 125.2, 125.3, 125.5, 126.3, 127.2, 128.9, 129.3, 129.8, 134.2, 152.8, 156.7, 166.3. *Cis* **12a** ¹H NMR (CDCl₃): δ 3.05 (m, 2H), 3.89 (m, 2H), 4.46 (dd, 2H, J 10.0, 4.8), 4.61 (d, 2H, J 10.0, 4.8), 5.58 (d, 2H, J 4.4), 5.68 (d, 2H, J 4.4), 6.08 (t, 2H, J 4.8), 6.89 (d, 2H, J 8.0), 6.98 (t, 4H, J 7.6), 7.18 (td, 2H, J 8.0, 1.6), 7.26-7.33 (m, 4H), 7.40 (m, 6H), 7.71 (d, 4H, J 8.0). *Cis* **12a** ¹³C NMR (CDCl₃): δ 38.1, 55.7, 63.9, 82.1, 107.3, 112.5, 121.3, 121.6, 121.7, 121.9, 125.2, 125.3, 125.4, 126.3, 127.2, 128.7, 129.3, 129.8, 130.6, 152.9, 157.4, 166.7.

Compound 10a:

Yield 0.40 g (58%), isolated as *cis/trans* (17:83) mixture after column chromatography [of RCM reaction with Grubbs' **I** (5 mol%)] as yellow oil, $R_f = 0.64$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 688 (M⁺, 10%). HRMS = 688.2567 (C₄₄H₃₆N₂O₆ requires 688.2567). IR: 3058, 2921, 2852 1766, 1629, 1600, 1489, 1456, 1395, 1359, 1254, 1217, 1183, 913, 752, 732. **Trans 10a** ¹H NMR (CDCl₃): δ 3.14 (d, 2H, J 9.7), 3.67 (d, 2H, J 9.7), 4.63 (d, 2H, J 12.0), 4.73 (d, 2H, J 12.0), 5.32 (d, 2H, J 4.4), 5.48 (d, 2H, J 4.4), 6.03 (s, 2H), 6.83 (d, 2H, J 7.6), 6.98 (m, 4H), 7.19

(t, 4H, J 7.2), 7.32 (t, 2H, J 7.2), 7.41 (t, 2H, J 7.2), 7.45 (t, 2H, J 7.6), 7.58 (d, 2H, J 8.8), 7.63 (d, 2H, J 7.6), 7.69 (d, 2H, J 8.1). *Trans* **10a** ¹³C NMR (CDCl₃): δ 39.2, 55.7, 68.2, 81.5, 108.6, 114.6, 118.4, 118.5, 121.6, 122.5, 123.9, 126.2, 126.28, 127.5, 129.2, 129.3, 129.4, 129.7, 134.0, 154.7, 156.5, 166.5. *Cis* **10a** ¹H NMR (CDCl₃): δ 3.33 (d, 2H, J 13.5), 3.79 (d, 2H, J 13.5), 4.63 (d, 2H, J 12.0), 4.73 (d, 2H, J 12.0), 4.85 (d, 2H, J 4.5), 5.54 (d, 2H, J 4.5), 6.24 (s, 2H), 6.83 (d, 2H, J 7.6), 6.98 (m, 4H), 7.19 (t, 4H, J 7.2), 7.32 (t, 2H, J 7.2), 7.41 (t, 2H, J 7.2), 7.45 (t, 2H, J 7.6), 7.75 (d, 2H, J 8.8), 7.77 (d, 2H, J 7.6), 7.79 (d, 2H, J 8.1) *Cis* **10a** ¹³C NMR (CDCl₃): δ 39.4, 56.1, 64.8, 81.4, 107.2, 111.8, 118.5, 118.6, 121.4, 122.2, 124.0, 126.3, 126.9, 127.6, 129.1, 129.3, 129.6, 129.9, 134.3, 154.5, 156.5, 166.1.

Compound 13a:

Yield 0.41 g (60%), isolated as *cis/trans* (19:81) mixture after column chromatography [of RCM reaction with Grubbs' **I** (5 mol%)] as yellow oil, $R_f = 0.67$ (DCM/pet. ether/EtOAc 1:1:1). MS: m/z = 688 (M⁺, 10%). HRMS = 688.2568 (C₄₄H₃₆N₂O₆ requires 688.2567). IR: 3060, 2927, 2879, 1772, 1630, 1601, 1511, 1490, 1395, 1360, 1255, 1218, 1184, 911, 732. **Trans 13a** ¹H NMR (CDCl₃): δ 2.99 (m, 2H), 3.88 (m, 2H), 4.62 (d, 2H, J 14.0), 4.79 (d, 2H, J 14.0), 5.61 (d, 2H, J 4.4), 5.65(d, 2H, J 4.4), 6.03 (s, 2H), 6.71 (d, 2H, J 8.0), 6.89 (t, 2H, J 7.6), 6.99 (dd, 2H, J 8.8, 2.4), 7.07-7.19 (m, 4H), 7.30-7.49 (m, 6H) 7.59 (d, 2H, J 8.8), 7.68 (t, 4H, J 8.8). **Trans 13a** ¹³C NMR (CDCl₃): δ 38.2, 55.8, 68.4, 81.9, 108.8, 114.4, 118.5, 121.0, 121.4, 124.0, 126.2, 126.8, 127.5, 128.3, 128.9, 129.2, 129.4, 129.7, 134.0, 154.7, 156.3, 166.0. **Cis 13a** ¹H NMR (CDCl₃): δ 2.92 (m, 2H), 4.06 (m, 2H), 4.31 (dd, 2H, J 10.0, 4.8), 4.52 (d, 2H, J 10.0, 4.8), 5.67 (d, 2H, J 4.4), 5.76 (d, 2H, J 4.4), 6.33 (t, 2H, J 4.8), 6.70 (d, 2H, J 7.6), 6.89 (t, 2H, J 7.6), 6.99 (dd, 2H, J 8.8, 2.4), 7.07-7.19 (m, 4H), 7.30-7.49 (m, 6H) 7.59 (d, 2H, J 8.8), 7.74 (t, 4H, J 8.8). **Trans 13a** ¹³C NMR (CDCl₃): δ 38.0, 55.7, 63.1, 81.6, 108.7, 111.9, 118.6, 121.2, 121.8, 124.0, 126.3, 126.6, 127.7, 128.5, 129.1, 129.21, 129.24, 131.0, 133.9, 154.7, 157.0, 166.3.

Figure 3. ¹H-NMR (600 MHz, CDCl₃) Spectra of *cis-anti-cis* compound **8a** (*racemic*): (a) before addition of chiral shift reagent, Eu(hfc)₃; (b) after addition of chiral shift reagent, Eu(hfc)₃.

III. ¹H, ¹³C NMR and ¹⁵N Full Spectral Assignment of 2a, 5a, 8a and 11a

Full Assignments of protons, carbons and nitrogen NMR of compounds **2a**, **5a**, **8a** and **11a** along with the numbering used in the NMR correlations are shown in Figure 4, 5. These assignments were made based on H,H-COSY, HMQC (or HSQC) and HMBC experiments, ¹⁵N NMR signals were measured using ¹H-¹⁵N HMBC experiments. The important ¹H-¹³C and ¹H-¹⁵N long range correlations found in the HMBC experiments are indicated in each figure.

Figure 4: ¹H, ¹³C and ¹⁵N NMR spectroscopy assignment of 2a, 5a

Figure 5: ¹H, ¹³C and ¹⁵N NMR spectroscopy assignment of *E*-8a, *E*-11a, *Z*-8a, *Z*-11a

IV. ¹H and ¹³C NMR spectra

