Probability Notes

Mark DiBattista

April 16, 2019

Abstract

Probability.

1 Suggested Resource Materials

Useful source texts:

- Probability/Statistics, intermediate (probability sections are better than statistics):

 Statistical Inference, Casella & Berger
- Probability, advanced:

Probability and Measure, Billingsley

Throughout the text the acronym, LAN, refers to the companion writeup, $Linear\ Algebra\ Notes$, from which information is referenced by chapter and/or numbered equation.

2 Probability Preliminaries

Practical concerns in probability – those related to the calculation of probabilities and likelihoods that arise through models of physical phenomena – are addressed completely through operations on density or cumulative functions defined over real-valued spaces. For the purposes of compact presentation of mathematical relations, however, it is beneficial to ground the practical expressions in terms of an abstract theory, which covers the following notions:

- An **abstract probability space**, within which a probability measure is defined over collections of events,
- A state space, over which a probability density function captures the frequency at which events are mapped to real numbers,
- A random variable, an invertible function that allows movement from one space to the other as necessary.

It is usually the case that a given statement or relation is expressed most clearly in the abstract probability space, while specific realizations are carried out as operations on probability distributions in the state space.

2.1 Probability Spaces, State Spaces and Random Variables

Probability theory models the results of physical processes as individual elements, known as **outcomes**, and quantifies carefully selected aggregations of outcomes, known as **events**, by assigning real values to each. Both the collection of aggregations and assigned values are controlled, and must obey the following constraints:

- All events are assigned values between zero and unity, inclusive;
- The event of no outcomes is assigned a value of zero; the event of all outcomes is assigned a value of unity;
- For each event the *complement* aggregation all outcomes are assigned to one aggregation or the other is also an event;
- For two *disjoint* events those that share no common outcome the aggregation of both collections of outcomes is an event, and the value assigned to the joint aggregation is the sum of the values assigned to each separately;
- For a *countaby infinite* number of disjoint events, the *limit* of the aggregation of all collections is an event, and the value assigned to the joint aggregation is the *limit* of the sum of the values assigned to each separately.

2.1.1 Set Collections

Within probability theory individual outcomes are taken as featureless points distinguished by name only, events are interpreted as formal sets of outcomes, and values are assigned by a set function that maps events to the unit interval. The constraints on event formation, described in the itemized list above, is concisely expressed as the closure of a collection of sets, known as a σ -algebra, under operations of complementation and countable union:

$$S \text{ is a } \sigma\text{-algebra} \Rightarrow \begin{cases} \emptyset \in S \\ A \in S \Rightarrow A^{c} \in S \\ A_{n \in \mathbb{N}} \in S \Rightarrow \bigcup_{n \in \mathbb{N}} A_{n} \in S \end{cases}$$
 (1)

Notice that these rules imply that the σ -algebra is closed under countable intersection as well:

$$A_{n\in\mathbb{N}}\in\mathcal{S}\Rightarrow A_{n\in\mathbb{N}}^{\mathsf{c}}\Rightarrow\bigcup_{n\in\mathbb{N}}A_{n}^{\mathsf{c}}\in\mathcal{S}\Rightarrow\bigcap_{n\in\mathbb{N}}A_{n}\in\mathcal{S},$$
 (2)

since the complementation of countable union is countable intersection.

By the nature of inclusion and closure defined in (1), if events are organized into two distinct σ -algebras, then one must include the other. For a given collection of sets, \mathcal{A} , many σ -algebras may contain all its members, and the *smallest* σ -algebra that contains \mathcal{A} , formed from the intersection of all such σ -algebras, is indicated by $\sigma(\mathcal{A})$. In other words, if the full list of events is *partially* defined by inclusion in \mathcal{A} , the designation, $\sigma(\mathcal{A})$, specifies the smallest collection of *all consistent* events.

2.1.2 Set Functions

Within probability theory the values assigned to events must never decrease with respect to increasing combination of events. The constraints on set measures, described in the itemized list above, is captured by the requirements of a **subadditive measure**:

$$\mathbb{P} \text{ is a subadditive measure} \Rightarrow \begin{cases} \mathbb{P}\emptyset = 0 \\ A_1 \cap A_2 = \emptyset \Rightarrow \mathbb{P}(A_1 \cup A_2) = \mathbb{P}A_1 + \mathbb{P}A_2 \\ A_i \cap A_j = \emptyset, i \neq j \in \mathbb{N} \Rightarrow \mathbb{P}(\bigcup_{n \in \mathbb{N}}) = \sum_{n \in \mathbb{N}} \mathbb{P}A_n \end{cases}$$
(3)

The specification of sub additivity comes from the application of the measure function to arbitrary sets:

$$\mathbb{P}(A \cup B) = \mathbb{P}((A - B) \cup (B - A) \cup (A \cap B))$$

$$\leq \mathbb{P}((A - B) \cup (A \cap B)) + \mathbb{P}((B - A) \cup (A \cap B)) = \mathbb{P}A + \mathbb{P}B, \quad (4)$$

which provides an alternative basis for the definition.

2.1.3 Measurability of Sets and Functions

The definitions of σ -algebra in §2.1.1 and subadditive measure in §2.1.2 are joined in the notion of **measurability**. Indeed, for a given universe of all outcomes, Ω , the set of all events, \mathcal{F} , and a subadditive set function, \mathbb{P} , we have the definitions,

A universe of elements,
$$\Omega$$

A σ -algebra of sets, \mathcal{F} $A \in \mathcal{F} \Rightarrow A \subset \Omega$ then Ω is \mathcal{F} -measurable; (5)

and

A
$$\sigma$$
-algebra of sets, \mathcal{F}
A subadditive measure, \mathbb{P} $\mathbb{P}: \mathcal{F} \to [0,1]$ then \mathcal{F} is \mathbb{P} -measurable. (6)

Thus, measurability is a concept that applies in a closely coupled fashion to both collections of sets and to subadditive set functions.

2.1.4 Probability and State Spaces

A Probability Space is defined as a triple,

probability space
$$\to (\Omega, \mathcal{F}, \mathbb{P}),$$
 (7)

consisting of the set of all outcomes, the set of all events and a set function that assigns each event a real value in the unit interval. In particular, the set of all events is a σ -algebra, and the set function is a **probability measure**, which in addition to the requirements of subadditivity listed in (3), is bounded by unity:

$$A \subset \Omega \Rightarrow 0 = \mathbb{P}\emptyset \le \mathbb{P}A \le \mathbb{P}\Omega = 1. \tag{8}$$

The key point is that the set of all outcomes, the set of all events, and the probability measure are linked by measurability, and the arrangment is sufficiently flexible to model the effects of chained 'and' and 'or' conditions on probabilistic statements (as well as the convergence properties of countably infinite may such statements), while also sufficiently restrictive to prevent the application to sets to which consistent probability values cannot be assigned, and cannot arise as natural problems of physical origin. The properties of the probability triple are summarized in the table:

Set of all outcomes,
$$\Omega$$
 Individual outcome, ω $\Omega = \{\omega_{\lambda \in \Lambda}\}$ (9) σ -algebra of all events, \mathcal{F} Individual event, $A \subset \Omega$ $\mathcal{F} = \{A_{\lambda \in \Lambda}\}$ (10) Ω is- \mathcal{F} -measurable Probability measure, \mathbb{P} \mathcal{F} is \mathbb{P} -measurable $\mathbb{P}: \mathcal{F} \to [0,1]$ (11)

The index and index set, λ and Λ , respectively, in the table reference (possibly) uncountably infinite members in both the sets of outcomes and events.

Although a probability space provides a rigorous structure for modeling uncertainty in physical problems, it is unwieldy for performing calculations to address specific questions on probabilities of outcomes, many of which are indifferent to the detailed, computationally indistinguishable combinations of outcomes. The associated **State Space** is a kind of probability triple introduced to satisfy this,

state space
$$\rightarrow (\mathbb{R}, \mathcal{B}, \mu)$$
. (12)

Here, the universe of outcomes is taken as the real number line, \mathbb{R} , whose elements are collected into **Borel sets**, which are contained within the σ -algebra of events generated by the set of real intervals with rational endpoints – a countable set denoted as \mathcal{J} :

$$\mathcal{B} = \sigma(\mathcal{J}). \tag{13}$$

Finally, the set functions, \mathbb{P} and μ , are both probability measures.

2.1.5 Random Variables

The probability space and the state space, which serve as kinds of abstract and realized domains of chance phenomena, are linked through a mapping, X, known as a **random variable**,

$$X: \Omega \to \mathbb{R} \quad \begin{cases} \text{Realization of the random variable:} & \omega \in \Omega \Rightarrow X(\omega) = x \\ \text{Borel sets pull back to measurable collections of events:} & X^{-1}: \mathcal{B} \to \mathcal{F} \\ \text{The probability 'law of X':} & \mu_X: \mathcal{B} \to [0, 1] \\ \mathcal{B} \in \mathcal{B} \end{cases} \Rightarrow \mu_X \mathcal{B} = \mathbb{P}_X X^{-1} \mathcal{B}$$
 (14)

The key point is the random variable, X, maps events in the probability space into events in the state space, and the values of the respective probability measures are identical for all events. The probability space is the more natural space to pose questions, the state space is the more natural to derive numerical results, and the random variable ensures that the two domains are consistently aligned in all cases.

Also note the slight change in symbol for the probability e measure, which has taken a subscript, \mathbb{P}_X . This is intended to indicate that the probability measure is restricted to sets in the probability space that are pulled back from Borel sets in the state space, as defined through the mapping, X.

2.1.6 The Probability Density and Cumulative Distribution Functions

The probability measure induced by the random variable, X, is expressed as a **cumulative distribution** function, F_X , which is the value assigned to the infinite half-open interval:

$$B = [-\infty, x)$$

$$A = X^{-1}B = \{\omega : X(\omega) < x\} \} \Rightarrow \mathbb{P}_X A = \mu_X B \equiv F_X(x)$$
(15)

Applying the fundamental theorem of calculus, we can derive an equivalent expression in terms of a related **probability density function**, p(x). The two functions are related by the standard operations,

Probability density function:
$$p(x) = \frac{d}{dx}F(x)$$
 (16)

Cumulative distribution function:
$$F(x) = \int_{-\infty}^{x} p(x) dx$$
 (17)

As a practical matter, 'probability distributions' are specified by attaching the random variable, X, to a formula for the probability density or cumulative distribution function.

2.1.7 The Expectation Operator

The main tool in probability theory is the **expection operator**, \mathbb{E} , which carries out integration of constants, functions of the random variable, X, or functions of the probability measure, \mathbb{P}_X , taken over the entire probability space. In all cases the integration over the probability space is equal to the integration of the random variable mapped into the state space, and weighted by the probability density function. An arbitrary function of the random variable, for example, is expressed as

$$\mathbb{E}gX = \int_{-\infty}^{\infty} g(x) \, p_X(x) \, dx. \tag{18}$$

In fact *all* operations in this presentation can be expressed as applications of the expectation operator. Note in particular that probability calculations can be expressed in terms of the expectation operator, since

$$1_A(\omega) = \begin{cases} 1, \omega \in A \\ 0, \omega \notin A \end{cases} \Rightarrow \mathbb{P}A = \mathbb{E} 1_A, \tag{19}$$

for which the operator, 1_A , is the indicator function for the set, A.

3 Moments

3.1 Univariate

A (continuous) probability distribution is completely defined by its **moments**, which are integrations of powers of the random variable,

$$\mathbb{E}X^n = \int_{-\infty}^{\infty} x^n \, p_X(x) \, dx. \tag{20}$$

A common method of approximating probability distributions is to specify the value of the lower-order moments. The first moment is known as the **mean** of the distribution, and is given by

$$\mathbb{E}X \equiv \mu_X \int_{-\infty}^{\infty} x \, p_X(x) \, dx. \tag{21}$$

Note that the standard symbol for the mean, μ_X , matches the form typically assigned to the probability measure in the state space. It should be obvious from context which is intended.

Information about the shape of the distribution is also provided by the **central moments**, which are integrations of powers of the random variable shifted by the mean,

$$\mathbb{E}(X - \mathbb{E}X)^n = \int_{-\infty}^{\infty} (x - \mu_X)^n \, p_X(x) \, dx. \tag{22}$$

In particular the second central moment, also known as the **variance**, is used as a common measure of spread of a distribution,

$$\mathbb{V}X \equiv \sigma_X^2 = \mathbb{E}(X - \mathbb{E}X)^2 = \int_{-\infty}^{\infty} (x - \mu_X)^2 \, p(x) \, dx \tag{23}$$

$$= \mathbb{E}X^2 - (\mathbb{E}X)^2 = \int_{-\infty}^{\infty} x^2 \, p(x) \, dx - \mu_X^2$$
 (24)

and the covariance of a joint distribution is used a common measure of coordination of variation,

$$\mathbb{C}(X, Y \equiv \sigma_{XY} = \mathbb{E}(X - \mathbb{E}X)(Y - \mathbb{E}Y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y) p(x, y) dx dy$$
 (25)

$$= \mathbb{E}XY - \mathbb{E}X \,\mathbb{E}Y = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \, p(x, y) \, dx \, dy - \mu_X \mu_Y \tag{26}$$

3.2 Multivariate Moments

The moments for multivariate probability distributions can be expressed in terms of vectors and operations on vectors of univariate random variables. In particular the mean and covariance of the multivariate distribution take the form of a vector and matrix, respectively:

$$\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \Rightarrow \begin{cases} \mathbb{E}\mathbf{X} &= \begin{pmatrix} \mathbb{E}X_1 \\ \vdots \\ \mathbb{E}X_n \end{pmatrix} \\ \mathbb{V}\mathbf{X} &= \mathbb{E}(\mathbf{X} - \mathbb{E}\mathbf{X})(\mathbf{X} - \mathbb{E}\mathbf{X})^{\top} = \mathbb{E}\mathbf{X}\mathbf{X}^{\top} - \mathbb{E}\mathbf{X} \mathbb{E}\mathbf{X}^{\top} \\ &= \begin{pmatrix} \mathbb{V}X_1 & \cdots & \mathbb{C}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \mathbb{C}(X_n, X_1) & \cdots & \mathbb{V}X_n \end{pmatrix} \end{cases}$$
(27)

Note in particular that the covariance matrix is written as the expectation of a random variable dyad (see LAN, §3.3), and is generally full-rank, symmetric and positive definite.

3.3 Moments of Sample Distributions

$$X = \begin{pmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & \ddots & \vdots \\ x_{m1} & \cdots & x_{mn} \end{pmatrix} = \begin{pmatrix} \uparrow & & \uparrow \\ \mathbf{x}_1 & \cdots & \mathbf{x}_n \\ \downarrow & & \downarrow \end{pmatrix}$$
 (28)

$$\bar{\mathbf{x}} = (\bar{x}_1 \quad \cdots \quad \bar{x}_n) \to \bar{x}_j = \frac{1}{m} \sum_{i=1}^m x_{ij}$$
(29)

$$X^{\top} \mathbf{1}_{m} = m \begin{pmatrix} \bar{x}_{1} \\ \vdots \\ \bar{x}_{n} \end{pmatrix} \Rightarrow X^{\top} \mathbf{1}_{m} (\mathbf{1}_{m}^{\top} \mathbf{1}_{m})^{-1} \mathbf{1}_{m}^{\top} X = X^{\top} P_{\mathbf{1}_{m}} X = m \begin{pmatrix} \bar{x}_{1}^{2} & \cdots & \bar{x}_{1} \bar{x}_{n} \\ \vdots & \ddots & \vdots \\ \bar{x}_{n} \bar{x}_{1} & \cdots & \bar{x}_{n}^{2} \end{pmatrix}$$
(30)

$$m\Sigma = X^{\top}X - X^{\top}P_{\mathbf{1}_m}X = X^{\top}I_mX - X^{\top}P_{\mathbf{1}_m}X = X^{\top}(I_m - P_{\mathbf{1}_m})X$$
(31)

4 Norms and Inequalities

4.1 Cauchy-Schwartz Inequality

$$|\langle \mathbf{x}_1, \mathbf{x}_2 \rangle|^2 \le \langle \mathbf{x}_1, \mathbf{x}_1 \rangle \cdot \langle \mathbf{x}_2, \mathbf{x}_2 \rangle \tag{32}$$

$$\mathbb{C}(X_1, X_2) \le \mathbb{V}X_1 \cdot \mathbb{V}X_2 \tag{33}$$

4.2 Chebyshev's Inequality

$$\mathbb{P}\{g(X) \ge r\} \le \frac{\mathbb{E}g(X)}{r} = \int_{D} g(x)f(x) \, dx \ge \int_{\{g(x) \ge r\}} g(x)f(x) \, dx$$
$$\ge r \int_{\{g(x) \ge r\}} f(x) \, dx = r \mathbb{P}\{g(X) \ge r\}. \quad (34)$$

4.3 Jensen's Inequality

$$\phi(\mathbb{E}X) \le \mathbb{E}\phi(X) \tag{35}$$

convex function

$$\phi(tx_1 + (1-t)x_2) \le t\phi(x_1) + (1-t)\phi(x_2) \tag{36}$$

$$ax + b \le \phi(x) \tag{37}$$

$$\mathbb{E}\phi(X) = \int_{I} \phi(x)p(x) \, dx \ge \int_{I} (ax+b)p(x) \, dx = a \int_{I} xp(x) \, dx + b \int_{I} p(x) \, dx = ax_0 + b = \phi(x_0) = \phi(\mathbb{E}X).$$
 (38)

5 Operators

5.1 Exponentiated Operators

5.1.1 Moment-Generating Functions

$$M_X(t) \equiv \mathbb{E}e^{tX} \tag{39}$$

$$M_X(t) \equiv \sum_n = 1^\infty \frac{\mathbb{E}X^n}{n!} t^n \tag{40}$$

$$\mathbb{E}X^n = \frac{d^n}{dt^n} M_X(t)|_{t=0} = M_X^{(n)}(0)$$
(41)

X and Y independent

$$M_{X+Y}(t) = \mathbb{E}e^{t(X+Y)} = \mathbb{E}e^{tX}e^{tY} = \mathbb{E}e^{tX}\mathbb{E}e^{tY} = M_X(t)M_Y(t)$$
(42)

$$M_{cX}(t) = \mathbb{E}e^{ctX} = M_X(ct) \tag{43}$$

5.1.2 Cumulants

$$K_X(t) = \ln M_X(t) \tag{44}$$

Since $ln(1+x) = t - \frac{t^2}{2} + \cdots$

$$K_X(t) = \left(t\mathbb{E}X + \frac{t^2}{2}\mathbb{E}X^2 + \cdots\right) + \frac{1}{2}\left(t\mathbb{E}X + \cdots\right)^2 + \cdots$$
 (45)

$$= t\mathbb{E}X + \frac{t^2}{2}\left(\left(\mathbb{E}X\right)^2 - \mathbb{E}X^2\right) + \cdots \tag{46}$$

For X and Y independent

$$K_{X+Y}(t) = K_X(t) + K_Y(t)$$
 (47)

$$K_{cX}(t) = K_X(ct) \tag{48}$$

5.1.3 Characteristic Functions

Fourier transform of probability density function

$$\phi_X(t) \equiv \mathbb{E}e^{itX} \tag{49}$$

for X and Y independent

$$\phi_{X+Y}(t) = \mathbb{E}e^{it(X+Y)} = \mathbb{E}e^{itX}e^{itY} = \mathbb{E}e^{itX}\mathbb{E}e^{itY} = \phi_X(t)\phi_Y(t)$$
(50)

$$\phi_{cX}(t) = \mathbb{E}e^{ictX} = \phi_X(ct) \tag{51}$$

let Z = X + Y be the sum of two independent random variables

$$\phi_{X+Y}(t) = \phi_X(t)\phi_Y(t) \Rightarrow p_{X+Y}(z) = \int_{-\infty}^{\infty} p_X(x)p_Y(z-x) dx$$
 (52)

5.1.4 Extensions to Random Vectors

$$\left. \begin{array}{l} X \to \mathbf{X} \\ t \to \mathbf{t} \end{array} \right\} \Rightarrow \begin{cases} M_{\mathbf{X}}(\mathbf{t}) \equiv \mathbb{E}e^{\mathbf{t}^{\top}\mathbf{X}} \\ K_{\mathbf{X}}(\mathbf{t}) \equiv \ln M_{\mathbf{X}}(\mathbf{t}) \\ \phi_{\mathbf{X}}(\mathbf{t}) \equiv \mathbb{E}e^{i\mathbf{t}^{\top}\mathbf{X}} \end{cases} \tag{53}$$

5.2 Transformations

5.2.1 General Transformation

$$Y = g(X) \tag{54}$$

increasing function,
$$g: F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le Y = \mathbb{P}(X \le g^{-1}(y)) = F_X(g^{-1}(y))$$
 (55)

decreasing function,
$$g: F_Y(y) = \mathbb{P}(Y \le y) = \mathbb{P}(g(X) \le Y = \mathbb{P}(X \ge g^{-1}(y)) = 1 - F_X(g^{-1}(y))$$
 (56)

$$f_Y(y) = \frac{d}{dy} F_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$
 (57)

5.2.2 Scale-location Adjustment

$$X \sim f(x) \Rightarrow \alpha + \beta X \sim \frac{1}{\beta} f(\alpha + \beta x)$$
 (58)

6 Joint Distributions and Independence

bivariate distribution is **independent** if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y) \tag{59}$$

a multivariate distribution is independent if

$$f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^{n} f_{X_i}(x_i) \tag{60}$$

a multivariate distribution can be factored into marginal and conditional distributions

$$f_{X,Y}(x,y) = f_{X|Y}(x|y) f_Y(y) \Rightarrow f_{X|Y} = \frac{f_{X,Y}(x,y)}{f_Y(y)}$$
 (61)

if the multivariate distribution is independent identically distributed (IID)

$$X_1, \dots, X_n \sim X \Rightarrow f_{\mathbf{X}}(\mathbf{x}) = \prod_{i=1}^n f_X(x_i)$$
 (62)

7 Common Functions

• Error function and complementary error function

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$
 (63)

$$\operatorname{erfc}(x) = 1 - \operatorname{erf}(x)$$
 (64)

• Gamma function

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt \tag{65}$$

$$\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$$

$$= -t^{x-1} e^{-t} \Big|_0^\infty - \int_0^\infty (x-1) t^{x-2} (-e^{-t}) dt$$

$$= (x-1) \int_0^\infty t^{x-2} e^{-t} dt$$

$$= (x-1)\Gamma(x-1)$$
(66)

$$\Gamma(n) = (n-1)! \tag{67}$$

• Beta function

$$B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt$$
 (68)

$$\Gamma(x)\Gamma(y) = \int_0^\infty s^{x-1}e^{-s} ds \int_0^\infty t^{y-1}e^{-t} dt$$

$$= \int_0^\infty \int_0^\infty s^{x-1}t^{y-1}e^{-(s+t)} ds dt \qquad \begin{cases} s = uv \\ t = u(1-v) \end{cases}$$

$$= \int_{u=0}^\infty \int_{v=0}^1 (uv)^{x-1}(u(1-v))^{y-1}e^{-u}u du dv \qquad |J| = u$$

$$= \int_0^\infty e^{-u}u^{x+y-1} du \int_0^1 v^{x-1}(1-v)^{y-1} dv$$

$$= \Gamma(x+y) B(x,y)$$
(69)

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)} \tag{70}$$

$$B\left(\frac{1}{2}, \frac{1}{2}\right) = \int_0^1 t^{-\frac{1}{2}} (1-t)^{-\frac{1}{2}} dt$$

$$= 2 \int_0^{\frac{\pi}{2}} \frac{\cos \theta \sin \theta}{\cos \theta \sin \theta} d\theta$$

$$= \pi$$
(71)

$$B\left(\frac{1}{2}, \frac{1}{2}\right) = \frac{\Gamma(\frac{1}{2})\Gamma(\frac{1}{2})}{\Gamma(1)} \Rightarrow \Gamma\left(\frac{1}{2}\right) = \sqrt{B\left(\frac{1}{2}, \frac{1}{2}\right)} = \sqrt{\pi}$$
 (72)

• Multivariate Beta Function

$$B(\alpha_1, \dots, \alpha_n) = \frac{\prod_{i=1}^n \Gamma(\alpha_i)}{\Gamma(\sum_{i=1}^n \alpha_i)}$$
(73)

$$B(\alpha_1, \dots, \alpha_n) = \frac{\Gamma(\alpha_j) \prod_{i \neq j} \Gamma(\alpha_i)}{\Gamma\left(\alpha_j + \sum_{i \neq j} \alpha_i\right)} = \frac{\prod_{i \neq j} \Gamma(\alpha_i)}{\Gamma(\sum_{i \neq j} \alpha_i)} B\left(\alpha_j, \sum_{i \neq j} \alpha_i\right)$$
(74)

8 Common Distributions

8.1 Discrete Distributions

8.1.1 Sampling With Replacement

8.1.1.1 Bernoulli

$$Ber(p) \equiv f(k|p) = p^k (1-p)^{1-k}, k \in \{0, 1\}$$
(75)

8.1.1.2 Binomial

$$X_i \sim \text{Ber}(p) \Rightarrow Y = \sum_{i=1}^n X_i \sim \text{Bin}(n, p)$$
 (76)

$$Bin(n,p) \equiv f(k|n,p) = \binom{n}{k} p^k (1-p)^{n-k}, k \in \{0, \dots, n\}$$
 (77)

8.1.1.3 Negative Binomial

$$NB(k|r,p) = Bin(k|k+r-1,p)Ber(0|p)$$
(78)

$$NB(k|r,p) \equiv f(k|r,p) = {k+r-1 \choose k} p^k (1-p)^{r-k}, k \in \mathbb{N}$$
(79)

8.1.1.4 Geometric

$$Geo(k|p) = NB(k|1, 1-p) = p(1-p)^{k-1}, k \in \mathbb{N}$$
 (80)

8.1.1.5 Poisson

$$Poi(\lambda) = f(k|\lambda) = \frac{\lambda^k}{k!} e^{-\lambda}, k \in \mathbb{N}$$
(81)

$$\operatorname{Bin}\left(n, \frac{\lambda}{n}\right) = f\left(k \left| n, \frac{\lambda}{n}\right.\right) = \binom{n}{k} \left(\frac{\lambda}{n}\right)^{k} \left(1 - \frac{\lambda}{k}\right)^{n-k}$$

$$= \frac{n \cdot n - 1 \cdot \dots \cdot n - k + 1}{k!} \frac{\lambda^{k}}{n^{k}} \left(1 - \frac{\lambda}{n}\right)^{n} \left(1 - \frac{\lambda}{n}\right)^{k}$$

$$= \left[\left(\frac{n}{n}\right) \cdot \left(\frac{n-1}{n}\right) \cdot \dots \cdot \left(\frac{n-k+1}{n}\right)\right] \cdot \left[\left(1 - \frac{\lambda}{n}\right)^{-k}\right] \cdot \left[\frac{\lambda^{k}}{k!} \left(1 - \frac{\lambda}{n}\right)^{n}\right]$$
(82)

$$\lim_{n \to \infty} \operatorname{Bin}\left(n, \frac{\lambda}{n}\right) = \frac{\lambda^k}{k!} e^{-\lambda} \equiv \operatorname{Poi}(\lambda)$$
(83)

8.1.1.6 Multinomial The multinomial distribution is realized from the sum of n repeated dependent Bernoulli trials, each parametrized by potentially different probabilities of individual success, p_i , and linked by the requirement that one, and only one, may be successful on any given trial, $\sum_{i=1}^{k} p_i = 1$:

$$\operatorname{Mul}(n, p_1, \dots, p_k) \equiv f(x_1, \dots, x_k | n, p_1, \dots, p_k) = \frac{n}{\prod_{i=1}^k x_i!} \prod_{i=1}^k p_i^{x_i} = \frac{\Gamma(1 + \sum_{i=1}^k x_i)}{\prod_{i=1}^k \Gamma(1 + x_i)} \prod_{i=1}^k p_i^{x_i}$$
(84)

$$X_{1}, \cdots, X_{k} \sim \operatorname{Mul}(n, p_{1}, \cdots, p_{k}) \Rightarrow \begin{cases} \mathbb{E}X_{i} = np_{i} \\ \mathbb{V}X_{i} = np_{i}(1 - p_{i}) \end{cases}$$

$$\mathbb{C}(X_{i}, X_{j}) = -np_{i}p_{j}, i \neq j$$

$$(85)$$

8.1.2 Sampling Without Replacement

8.1.2.1 Hypergeometric

$$\operatorname{Hyp}(n, N, K) \equiv f(k|n, N, K) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}$$
(86)

8.1.2.2 Multivariate Hypergeometric

$$\mathbf{k} = (k_1, \dots, k_n)^{\top}$$

$$\mathbf{K} = (K_1, \dots, K_n)^{\top}$$

$$\Rightarrow \text{MHG}(\mathbf{k}|\mathbf{K}) = \frac{\binom{K_1}{k_1} \dots \binom{K_n}{k_n}}{\binom{\sum_{i=1}^n K_i}{\sum_{i=1}^n k_i}}$$
(87)

8.2 Continuous Distributions

$$f(x|\theta) = h(x)g(\theta)e^{\eta(\theta)T(x)}$$
(88)

8.2.1 Gaussian

8.2.1.1Univariate Gaussian

$$N(\mu, \sigma^2) \equiv f_N(x|\mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (89)

$$\mathbb{P}_{\mathcal{N}(\mu,\sigma^2)}[-\infty,x] = F_{\mathcal{N}}(x|\mu,\sigma^2) = \int_{-\infty}^x f_{\mathcal{N}}(x|\mu,\sigma^2) \, dx = \frac{1}{2} \left(1 + \operatorname{erf}\left(\frac{x-\mu}{\sigma\sqrt{2}}\right) \right) \tag{90}$$

$$\mathbb{E}(X-\mu)^{2n-1} = 0 \tag{91}$$

$$g(\alpha) = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\alpha \frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sqrt{\alpha}}$$
 (92)

$$\mathbb{E}(X-\mu)^{2n} = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} (x-\mu)^{2n} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = (-2\sigma^2)^n \left. \frac{d^n}{d\alpha^n} g(\alpha) \right|_{\alpha=1} = (2n-1)!! \sigma^{2n}$$
(93)

$$M_{N(\mu,\sigma^2)}(t) \equiv \mathbb{E}e^{tX} = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{tx} e^{-\frac{(x-\mu)^2}{2\sigma^2}} dx = \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x-\mu)^2-tx}{2\sigma^2}} dx$$
(94)

$$= e^{t\mu + \frac{1}{2}t^2\sigma^2} \frac{1}{\sigma\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{(x - (\mu + t\sigma^2))^2}{2\sigma^2}} dx$$

$$= e^{t\mu + \frac{1}{2}t^2\sigma^2}$$
(95)

$$=e^{t\mu + \frac{1}{2}t^2\sigma^2} \tag{96}$$

$$\phi_{\mathcal{N}(\mu,\sigma^2)}(t) \equiv \mathbb{E}e^{itX} = e^{it\mu - \frac{1}{2}t^2\sigma^2}$$
(97)

$$\left. \begin{array}{l} X \sim \mathrm{N}(\mu, \sigma^2) \Rightarrow M_X = e^{t\mu + \frac{1}{2}t^2\sigma^2} \\ Y \sim \mathrm{N}(\nu, \tau^2) \Rightarrow M_Y = e^{t\nu + \frac{1}{2}t^2\tau^2} \end{array} \right\} \Rightarrow M_{X+Y} = e^{t(\mu+\nu) + \frac{1}{2}t^2(\sigma^2 + \tau^2)} \Rightarrow X + Y \sim \mathrm{N}(\mu + \nu, \sigma^2 + \tau^2) \quad (98)$$

8.2.1.2 Standard Normal

$$Z \sim \mathcal{N}(0,1) \tag{99}$$

8.2.1.3 Multivariate Gaussian

$$\mathbf{X} = \begin{pmatrix} X_1 \\ \vdots \\ X_n \end{pmatrix} \Rightarrow \begin{cases} \boldsymbol{\mu} = \begin{pmatrix} \mathbb{E}X_1 \\ \vdots \\ \mathbb{E}X_n \end{pmatrix} \\ \boldsymbol{\Sigma} = \begin{pmatrix} \mathbb{V}X_1 & \cdots & \mathbb{C}(X_1, X_n) \\ \vdots & \ddots & \vdots \\ \mathbb{C}(X_1, X_n) & \cdots & \mathbb{V}X_n \end{pmatrix}$$

$$(100)$$

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n \det \boldsymbol{\Sigma}}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})}$$
(101)

$$\mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) = (2\pi)^{-\frac{n}{2}} e^{-\frac{1}{2}\mathbf{z}^{\top}\mathbf{z}}$$
(102)

Transformation, $\mathbf{X} = \boldsymbol{\mu} + \boldsymbol{\Gamma} \mathbf{Z}$,

$$\mathbb{E}\mathbf{X} \equiv \mathbb{E}(\boldsymbol{\mu} + \boldsymbol{\Gamma}\mathbf{Z}) = \boldsymbol{\mu}$$

$$\mathbb{V}\mathbf{X} \equiv \mathbb{E}\left(\mathbf{X} - \mathbb{E}\mathbf{X}\right)\left(\mathbf{X} - \mathbb{E}\mathbf{X}\right)^{\top} = \boldsymbol{\Gamma}\boldsymbol{\Gamma}^{\top}\right\} \Rightarrow \mathbf{X} \sim N(\boldsymbol{\mu}, \boldsymbol{\Gamma}\boldsymbol{\Gamma}^{\top})$$
(103)

$$\Sigma = \mathbf{Q}\mathbf{D}\mathbf{Q}^{\top} = \Gamma\Gamma^{\top} \Rightarrow \Gamma = \mathbf{Q}\mathbf{D}^{\frac{1}{2}}, \qquad \mathbf{D}^{\frac{1}{2}} = \operatorname{diag}(\sigma_1, \dots, \sigma_n)$$
 (104)

Transformation, $\mathbf{Z} = \mathbf{\Gamma}^{-1}(\mathbf{X} - \boldsymbol{\mu})$

$$\mathbb{E}\mathbf{Z} \equiv \mathbb{E}\Gamma(\mathbf{X} - \boldsymbol{\mu}) = \mathbf{0}$$

$$\mathbb{V}\mathbf{Z} \equiv \mathbb{E}\left(\mathbf{Z} - \mathbb{E}\mathbf{Z}\right)\left(\mathbf{Z} - \mathbb{E}\mathbf{Z}\right)^{\top} = \mathbb{E}\mathbf{Z}\mathbf{Z}^{\top} = \boldsymbol{\Gamma}^{-1}\boldsymbol{\Sigma}\boldsymbol{\Gamma}^{-\top} = \mathbf{I}\right\} \Rightarrow \mathbf{Z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$
(105)

$$\Sigma = \mathbf{Q} \mathbf{D} \mathbf{Q}^{\top} \Rightarrow \Sigma^{-1} = \mathbf{Q} \mathbf{D}^{-1} \mathbf{Q}^{\top}$$
(106)

$$\mathbf{D} = \operatorname{diag}(\sigma_1^2, \dots, \sigma_n^2) \Rightarrow \mathbf{D}^{-1} = \operatorname{diag}\left(\frac{1}{\sigma_1^2}, \dots, \frac{1}{\sigma_n^2}\right)$$
(107)

$$\mathbf{y} = \mathbf{Q}^{\top}(\mathbf{x} - \boldsymbol{\mu}) \Rightarrow \frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu}) = \frac{1}{2} \mathbf{y}^{\top} \mathbf{D}^{-1} \mathbf{y} = \sum_{i=1}^{n} \frac{y_i^2}{2\sigma_i^2}$$
(108)

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^n \det \boldsymbol{\Sigma}}} e^{-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^\top \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})} = \prod_{i=1}^n \frac{1}{\sigma_i \sqrt{2\pi}} e^{-\frac{y_i^2}{2\sigma_i^2}} = \prod_{i=1}^n f_{\mathcal{N}}(y_i | 0, \sigma_i^2)$$
(109)

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix} \Rightarrow \begin{cases} \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix} \\ \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \end{cases}$$
(110)

$$\mathbf{X}_1 | (\mathbf{X}_2 = \mathbf{x}_2) \sim N(\mathbf{x}_1 + \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} (\mathbf{x}_2 - \boldsymbol{\mu}_2), \mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12} \mathbf{\Sigma}_{22}^{-1} \mathbf{\Sigma}_{21},$$
 (111)

8.2.1.4 Marginal and Conditional Gaussian Distributions $X \sim N(\mu, \Sigma)$

$$\mathbf{X} = \begin{pmatrix} \mathbf{X}_1 \\ \mathbf{X}_2 \end{pmatrix} \Rightarrow \begin{cases} \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_1 \\ \boldsymbol{\mu}_2 \end{pmatrix} \\ \boldsymbol{\Sigma} = \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix} \end{cases}$$
(112)

$$(\mathbf{x}^{\top} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma} (\mathbf{x}^{\top} - \boldsymbol{\mu}) = \begin{pmatrix} \mathbf{x}_1 - \boldsymbol{\mu} \\ \mathbf{x}_2 - \boldsymbol{\mu} \end{pmatrix}^{\top} \begin{pmatrix} \boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\ \boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{x}_1 - \boldsymbol{\mu} \\ \mathbf{x}_2 - \boldsymbol{\mu} \end{pmatrix}$$
(113)

$$\begin{pmatrix} \mathbf{\Sigma}_{11} & \mathbf{\Sigma}_{12} \\ \mathbf{\Sigma}_{21} & \mathbf{\Sigma}_{22} \end{pmatrix}^{-1} = \begin{pmatrix} I_p & 0 \\ -\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21} & I_q \end{pmatrix} \begin{pmatrix} (\mathbf{\Sigma}_{11} - \mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1}\mathbf{\Sigma}_{21})^{-1} & 0 \\ 0 & \mathbf{\Sigma}_{22}^{-1} \end{pmatrix} \begin{pmatrix} I_p & -\mathbf{\Sigma}_{12}\mathbf{\Sigma}_{22}^{-1} \\ 0 & I_q \end{pmatrix}$$
(114)

$$(\mathbf{x} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{x} - \boldsymbol{\mu})$$

$$= \begin{pmatrix} \mathbf{x}_{1} - \boldsymbol{\mu} \\ \mathbf{x}_{2} - \boldsymbol{\mu} \end{pmatrix}^{\top} \begin{pmatrix} I_{p} \\ \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21} \end{pmatrix} (\boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21})^{-1} \begin{pmatrix} I_{p} \\ -\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \end{pmatrix}^{\top} \begin{pmatrix} \mathbf{x}_{1} - \boldsymbol{\mu} \\ \mathbf{x}_{2} - \boldsymbol{\mu} \end{pmatrix} + (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})^{\top} \boldsymbol{\Sigma}_{22}^{-1} (\mathbf{x}_{2} - \boldsymbol{\mu}_{2})$$

$$(115)$$

$$N(\mu, \Sigma) = N(\mu_1 - (\mathbf{x}_2 - \mu_2)^{\top} \Sigma_{22}^{-1} \Sigma_{21}, \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}) N(\mu_2, \Sigma_{22})$$
(116)

Marginal Distribution:
$$\mathbf{X}_2 \sim N(\boldsymbol{\mu}_2, \boldsymbol{\Sigma}_{22})$$
 (117)

Conditional Distribution:
$$\mathbf{X}_1 | (\mathbf{X}_2 = \mathbf{x}_2) \sim \mathrm{N}(\boldsymbol{\mu}_1 - (\mathbf{x}_2 - \boldsymbol{\mu}_2)^{\top} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21}, \boldsymbol{\Sigma}_{11} - \boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} \boldsymbol{\Sigma}_{21})$$
 (118)

8.2.1.5 Mean and Variance of IID Normal Random Variables

$$\mathbf{X} = (X_1, \dots, X_n)^{\top}, X_i \sim \mathcal{N}(\mu, \sigma^2)$$

$$\mathbf{1}_n = (1, \dots, 1)^{\top}$$

$$\Rightarrow \mathbf{X} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 I_n)$$
(119)

let the random vector, \mathbf{Y} , be formed by the linear transformation of \mathbf{X} by the $n \times n$ orthogonal matrix, Q

$$\mathbf{Y} = (\mathbf{Y}_1, \cdots, \mathbf{Y}_n)^{\top} = Q^{\top} \mathbf{X} \Rightarrow \mathbf{Y} \sim \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 Q^{\top} I_n Q) = \mathcal{N}(\mu \mathbf{1}_n, \sigma^2 I_n)$$
(120)

Fisher's Theorem: sample mean and sample variance taken from IID normal distribution are independent:

$$\hat{\mu} \mathbf{1}_n = \mathbf{1}_n \frac{1}{n} \mathbf{1}_n^{\mathsf{T}} \mathbf{x} = \mathbf{1}_n (\mathbf{1}_n^{\mathsf{T}} \mathbf{1}_n)^{-1} \mathbf{1}_n^{\mathsf{T}} \mathbf{x} = P_{\mathbf{1}_n} \mathbf{x}$$
(121)

$$\hat{\sigma}^2 = \frac{1}{n-1} (\mathbf{x} - \hat{\mu} \mathbf{1}_n)^{\top} (\mathbf{x} - \hat{\mu} \mathbf{1}_n) = \frac{1}{n-1} (\mathbf{x} - P_{\mathbf{1}_n} \mathbf{x})^{\top} (\mathbf{x} - P_{\mathbf{1}_n} \mathbf{x}) = \frac{1}{n-1} \mathbf{x}^{\top} (I_n - P_{\mathbf{1}_n}) \mathbf{x}$$
(122)

These equations imply that, for arbitrary sample sets of data, information on the mean and variances of the distributed data are carried in mutually orthogonal 1- and (n-1)-dimensional subspaces, respectively. Knowledge of the mean carries no information about the variance, and v.v.

Sums of Gaussian are Gaussian

$$\sqrt{n}\hat{\mu} \sim N(\mu, \sigma^2)$$
 (123)

Furthermore, the distribution of the sample variance can be shown to be chi-square distributed:

$$(n-1)\frac{\hat{\sigma}^2}{\sigma^2} = \frac{1}{\sigma^2} \mathbf{x}^\top (I_n - P_{\mathbf{1}_n}) \mathbf{x} = \sum_{i=2}^n \frac{y_i^2}{\sigma^2} = \sum_{i=2}^n z_i^2 \sim \chi_{n-1}^2$$
 (124)

8.2.2 Gamma-Derived Distributions

8.2.2.1 Gamma

$$\Gamma(\alpha, \beta) \equiv f_{\Gamma}(x|\alpha, \beta) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \ x \ge 0$$
 (125)

$$\Gamma(\alpha) = \int_0^\infty t^{\alpha - 1} e^{-t} dt$$

$$= \int_0^\infty (\beta x)^{\alpha - 1} e^{-\beta x} \beta dx \qquad t = \beta x$$

$$= \int_0^\infty \beta^\alpha x^{\alpha - 1} e^{-\beta x} dx \qquad (126)$$

$$\mathbb{E}X^{n} = \frac{\beta^{\alpha}}{\Gamma(\alpha)} \int_{0}^{\infty} x^{k} x^{\alpha-1} e^{-\beta x} dx$$

$$= \frac{\beta^{\alpha}}{\beta^{\alpha+k}} \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)} \int_{0}^{\infty} \frac{\beta^{\alpha+k}}{\Gamma(\alpha+k)} x^{\alpha+k-1} e^{-\beta x} dx$$

$$= \frac{1}{\beta^{k}} \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)} \int_{0}^{\infty} f_{\Gamma}(x|\alpha+k,\beta) dx$$

$$= \frac{1}{\beta^{k}} \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)}$$
(127)

$$\mathbb{E}X = \frac{\alpha}{\beta} \tag{128}$$

$$\mathbb{V}X = \mathbb{E}X^2 - (\mathbb{E}X)^2 = \frac{(\alpha+1)\alpha}{\beta^2} - \frac{\alpha^2}{\beta^2} = \frac{\alpha}{\beta^2}$$
 (129)

$$M_{\Gamma(\alpha,\beta)} \equiv \mathbb{E}e^{tX} = \int_0^\infty e^{tx} \frac{\beta^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\beta-t)x} dx$$

$$= \frac{\beta^\alpha}{(\beta-t)^\alpha} \int_0^\infty \frac{(\beta-t)^\alpha}{\Gamma(\alpha)} x^{\alpha-1} e^{-(\beta-t)x} dx$$

$$= \left(\frac{\beta}{\beta-t}\right)^\alpha \int_0^\infty f_\Gamma(x|\alpha,\beta-t) dx$$

$$= \left(\frac{\beta}{\beta-t}\right)^\alpha$$
(130)

$$X_i \sim \Gamma(\alpha_i, \beta) \Rightarrow \sum_{i=1}^n X_i \sim \Gamma\left(\sum_{i=1}^n \alpha_i, \beta\right)$$
 (131)

8.2.2.2 Chi-square

$$X \sim N(0,1) \Rightarrow X^2 \sim \chi^2 = \Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$$
 (132)

$$\mathbb{P}\{X^2 \le x\} = \mathbb{P}\{-\sqrt{x} \le X \le \sqrt{x}\} = \int_{-\sqrt{x}}^{\sqrt{x}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt$$
 (133)

$$\chi^{2} \equiv f_{\chi^{2}}(x) = \frac{d}{dx} \int_{-\sqrt{x}}^{\sqrt{x}} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^{2}}{2}} dt$$

$$= \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x}{2}}\right) \left(\frac{1}{2} x^{-\frac{1}{2}}\right) - \left(\frac{1}{\sqrt{2\pi}} e^{-\frac{x}{2}}\right) \left(-\frac{1}{2} x^{-\frac{1}{2}}\right)$$

$$= \frac{1}{\sqrt{2\pi}} x^{\frac{1}{2} - 1} e^{-\frac{x}{2}}$$

$$= \Gamma\left(\frac{1}{2}, \frac{1}{2}\right)$$
(134)

$$X_i \sim \mathcal{N}(0,1) \Rightarrow \sum_{i=1}^n X_i^2 \sim \chi_n^2 = \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$$
 (135)

$$X \sim \chi_n^2 \Rightarrow \begin{cases} \mathbb{E}X = n \\ \mathbb{V}X = \frac{n}{2} \end{cases}$$
 (136)

$$\Sigma = \mathbf{Q} \mathbf{D} \mathbf{Q}^{\top} = \Gamma \Gamma^{\top} \Rightarrow \mathbf{Z} = \Gamma^{-1} (\mathbf{X} - \boldsymbol{\mu})$$
(137)

$$\mathbf{X} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma}) \Rightarrow (\mathbf{X} - \boldsymbol{\mu})^{\top} \boldsymbol{\Sigma}^{-1} (\mathbf{X} - \boldsymbol{\mu}) = \mathbf{Z}^{\top} \mathbf{Z} \sim \chi_n^2$$
(138)

8.2.2.3 Inverse Gamma

8.2.3 Beta-Derived Distributions

8.2.3.1 Beta

$$B(\alpha, \beta) \equiv f_B(x|\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1 - x)^{\beta - 1}, \qquad 0 \le x \le 1$$
(139)

$$\mathbb{E}X^{k} = \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \int_{0}^{1} x^{k} x^{\alpha-1} (1-x)^{\beta-1} dx$$

$$= \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\alpha+k)\Gamma(\beta)}{\Gamma(\alpha+\beta+k)} \int_{0}^{1} \frac{\Gamma(\alpha+\beta+k)}{\Gamma(\alpha+k)\Gamma(\beta)} x^{\alpha+k-1} (1-x)^{\beta-1} dx$$

$$= \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+k)} \int_{0}^{1} f_{B}(x|\alpha+k,\beta) dx$$

$$= \frac{\Gamma(\alpha+k)}{\Gamma(\alpha)} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha+\beta+k)}$$
(140)

$$\mathbb{E}X = \frac{\alpha}{\alpha + \beta} \tag{141}$$

$$\mathbb{V}X = \mathbb{E}X^2 - (\mathbb{E}X)^2 = \frac{(\alpha+1)\alpha}{(\alpha+\beta+1)(\alpha+\beta)} - \frac{\alpha^2}{(\alpha+\beta)^2} = \frac{\alpha\beta}{(\alpha+\beta)^2}$$
(142)

8.2.3.2 Dirichlet

$$\operatorname{Dir}(\alpha_1, \dots, \alpha_n) \equiv f_{\mathcal{D}}(x_1, \dots, x_n | \alpha_1, \dots, \alpha_n) = \frac{\prod_{i=1}^n x_i^{\alpha_i - 1}}{B(\alpha_1, \dots, \alpha_n)}, \begin{cases} 0 \le x_i \le 1\\ \sum_{i=1}^n x_i = 1 \end{cases}$$
(143)

marginal distributions

$$f_D(x_i|\alpha_1,\dots,\alpha_n) = f_B\left(x_i \middle| \alpha_i, \sum_{j \neq i} \alpha_j\right) = \frac{x_i^{\alpha_i - 1} (1 - x_i)^{\sum_{j \neq i} \alpha_j - 1}}{B(\alpha_i, \sum_{j \neq i} \alpha_j)}$$
(144)

$$\mathbb{E}X_i = \frac{\alpha_i}{\sum_{j=1}^n \alpha_j} \tag{145}$$

$$\mathbb{V}X_i = \frac{\alpha_i \sum_{j \neq i} \alpha_j}{\left(\sum_{j=1}^n \alpha_j\right)^2} \tag{146}$$

8.2.4 Distributions of Ratios of Standard Normal Random Variables

8.2.4.1 F-Distribution

$$\frac{U_{1}, \dots, U_{k}}{V_{1}, \dots, V_{m}} \sim Z = \mathcal{N}(0, 1) \Rightarrow \frac{\frac{1}{k} \sum_{i=1}^{k} U_{i}^{2}}{\frac{1}{m} \sum_{j=1}^{m} V_{j}^{2}} \sim F(k, m),$$

$$F(k, m) \equiv f_{F}(x|k, m) = \frac{\Gamma(\frac{k+m}{2})}{\Gamma(\frac{k}{2})\Gamma(\frac{m}{2})} \left(\frac{k}{m}\right)^{\frac{k}{2}} x^{\frac{k}{2}-1} \left(1 + \frac{k}{m}x\right)^{-\frac{k+m}{2}} \tag{147}$$

Define the numerator and denominator in terms of chi-square distributed variables

$$U = \sum_{i=1}^{k} U_i^2 \sim \chi_k^2 \\ V = \sum_{j=1}^{m} V_j^2 \sim \chi_m^2 \end{cases} \Rightarrow \mathbb{P}\left\{\frac{\frac{U}{k}}{\frac{V}{m}} \le x\right\} = \mathbb{P}\{U \le \frac{k}{m}xV\}$$
$$= \iint_{\{U \le \frac{k}{m}xV\}} f_{\chi_k^2}(u) f_{\chi_m^2}(v) \, du \, dv = \int_0^\infty \int_0^{\frac{k}{m}xv} f_{\chi_k^2}(u) f_{\chi_m^2}(v) \, du \, dv \quad (148)$$

$$F(k,m) \equiv f_{F}(x|k,m) = \frac{d}{dx} \int_{0}^{\infty} \int_{0}^{\frac{k}{m}xv} f_{\chi_{k}^{2}}(u) f_{\chi_{m}^{2}}(v) du dv = \int_{0}^{\infty} \frac{d}{dx} \left(\int_{0}^{\frac{k}{m}xv} f_{\chi_{k}^{2}}(u) du \right) f_{\chi_{m}^{2}}(v) dv$$

$$= \frac{k}{m} \int_{0}^{\infty} f_{\chi_{k}^{2}} \left(\frac{k}{m}xv \right) f_{\chi_{m}^{2}}(v) v dv$$

$$= \frac{k}{m} \int_{0}^{\infty} \left(\frac{\frac{1}{2}^{\frac{k}{2}}}{\Gamma\left(\frac{k}{2}\right)} \left(\frac{k}{m}xv \right)^{\frac{k}{2}-1} e^{-\frac{k}{m}xv} \right) \left(\frac{\frac{1}{2}^{\frac{m}{2}}}{\Gamma\left(\frac{m}{2}\right)} v^{\frac{m}{2}-1} e^{-\frac{v}{2}} \right) v dv$$

$$= \frac{k^{\frac{k}{2}}}{m} \int_{0}^{\infty} \frac{\left(\frac{1}{2}\right)^{\frac{k+m}{2}} x^{\frac{k}{2}-1}}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} v^{\frac{k+m}{2}-1} e^{-\frac{1}{2}v\left(\frac{k}{m}t+1\right)} dv$$

$$= \frac{\Gamma\left(\frac{k+m}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} \left(\frac{k}{m} \right)^{\frac{k}{2}} x^{\frac{k}{2}-1} \left(\frac{1}{\frac{k}{m}x+1} \right)^{\frac{k+m}{2}} \int_{0}^{\infty} \frac{\left(\frac{t+1}{2}\right)^{\frac{k+m}{2}}}{\Gamma\left(\frac{k+m}{2}\right)} v^{\frac{k+m}{2}-1} e^{-v^{\frac{t+1}{2}}} dv$$

$$= \frac{\Gamma\left(\frac{k+m}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} \left(\frac{k}{m} \right)^{\frac{k}{2}} x^{\frac{k}{2}-1} \left(1 + \frac{k}{m}x \right)^{-\frac{k+m}{2}} \int_{0}^{\infty} f_{\Gamma}\left(v \left| \frac{k+m}{2}, \frac{t+1}{2} \right| \right) dv$$

$$= \frac{\Gamma\left(\frac{k+m}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} \left(\frac{k}{m} \right)^{\frac{k}{2}} x^{\frac{k}{2}-1} \left(1 + \frac{k}{m}x \right)^{-\frac{k+m}{2}}$$

$$= \frac{\Gamma\left(\frac{k+m}{2}\right)}{\Gamma\left(\frac{k}{2}\right) \Gamma\left(\frac{m}{2}\right)} \left(\frac{k}{m} \right)^{\frac{k}{2}} x^{\frac{k}{2}-1} \left(1 + \frac{k}{m}x \right)^{-\frac{k+m}{2}}$$

$$(149)$$

8.2.4.2 T-Distribution

$$\frac{U_1}{V_1, \dots, V_m} \sim Z = \mathcal{N}(0, 1) \Rightarrow \frac{U_1}{\sqrt{\frac{1}{m} \sum_{j=1}^m V_j^2}} \sim T(m),$$

$$T(m) \equiv f_T(x|m) = \frac{\Gamma(\frac{m+1}{2})}{\Gamma(\frac{1}{2})\Gamma(\frac{m}{2})} \frac{1}{\sqrt{m}} \left(1 + \frac{x^2}{m}\right)^{-\frac{m+1}{2}} \tag{150}$$

$$\begin{aligned}
U &= U_i^2 \sim \chi^2 \\
V &= \sum_{j=1}^m V_j^2 \sim \chi_m^2
\end{aligned}
\Rightarrow \mathbb{P}\left\{-x \le \frac{\sqrt{U}}{\sqrt{\frac{1}{m}V}} \le x\right\} = \mathbb{P}\left\{\frac{U}{\frac{1}{m}V} \le x^2\right\} = \int_0^{x^2} f_F(v|1, m) \, dv \quad (151)$$

$$T(m) \equiv f_T(x|m) = \frac{1}{2} \frac{d}{dx} \int_0^{x^2} f_F(v|1,m) \, dv = x f_F\left(x^2|1,m\right)$$
$$= \frac{\Gamma\left(\frac{m+1}{2}\right)}{\Gamma\left(\frac{1}{2}\right) \Gamma\left(\frac{m}{2}\right)} \frac{1}{\sqrt{m}} \left(1 + \frac{x^2}{m}\right)^{-\frac{m+1}{2}}$$
(152)

8.2.4.3 Cauchy

$$\frac{U}{V} \sim Z = N(0,1) \Rightarrow \frac{U}{V} \sim \text{Cau}(0,1) \equiv f_C(x) = \frac{1}{\pi} \frac{1}{x^2 + 1}$$
(153)

$$\mathbb{P}\left\{\frac{U}{V} \le x\right\} = \mathbb{P}\left\{U \le xV\right\} = \iint_{\{u \le xv\}} f_{\mathcal{N}}(u|0,1) f_{\mathcal{N}}(v|0,1) \, du \, dv \\
= \int_{-\infty}^{\infty} \int_{-\infty}^{xv} f_{\mathcal{N}}(u|0,1) f_{\mathcal{N}}(v|0,1) \, du \, dv \quad (154)$$

$$\operatorname{Cau}(0,1) \equiv f_{\mathcal{C}}(x) = \frac{d}{dx} \mathbb{P} \left\{ \frac{U}{V} \leq x \right\} = \frac{d}{dx} \int_{0}^{\infty} \int_{0}^{xv} f_{\mathcal{N}}(u|0,1) f_{\mathcal{N}}(v|0,1) \, du \, dv$$

$$= \int_{-\infty}^{\infty} \left(\frac{d}{dx} \int_{-\infty}^{xv} f_{\mathcal{N}}(u|0,1) \, du \right) f_{\mathcal{N}}(v|0,1) \, dv = \int_{-\infty}^{\infty} f_{\mathcal{N}}(xv|0,1) f_{\mathcal{N}}(v|0,1) \, dv$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^{2}v^{2}}{2}} \frac{1}{2\pi} e^{-\frac{v^{2}}{2}} v \, dv = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-\frac{v^{2}(x^{2}+1)}{2}} v \, dv$$

$$= \frac{1}{2\pi} \frac{1}{x^{2}+1} \int_{-\infty}^{\infty} e^{-t} \, dt = \frac{1}{\pi} \frac{1}{x^{2}+1} \int_{0}^{\infty} e^{-t} \, dt$$

$$= \frac{1}{\pi} \frac{1}{x^{2}+1}$$

$$(155)$$

$$Cau(0,1) \equiv T(1) \tag{156}$$

8.2.5 Other Common Distributions

8.2.5.1 Exponential

$$\operatorname{Exp}(\lambda) \equiv f_{\mathcal{E}}(x|\lambda) = \lambda e^{-\lambda x}, \qquad x \ge 0$$
 (157)

memoryless:

$$\mathbb{P}\{x > s + t | x > s\} = \mathbb{P}\{x > t\} \tag{158}$$

$$h(t) = \frac{f(t)}{1 - \int_0^t f(x) \, dx} = \lambda \tag{159}$$

8.2.5.2 Pareto

$$\operatorname{Par}(\alpha, x_m) \equiv f_{\mathcal{P}}(x|\alpha, x_m) = \begin{cases} \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}, & x \ge x_m \\ 0, & x < x_m \end{cases}$$
(160)

hazard rate (burn-in period)

$$h(t) = \frac{\alpha}{t} \tag{161}$$

8.2.5.3 Weibull

8.2.5.4 Uniform

$$Uni(0,1) \equiv f_{U}(x) = 1, \ 0 \le x \le 1$$
(162)

9 Order Statistics

The probability distributions of cumulative probability rank, or 'percentile', of finite samples taken with replacement from *arbitrary* distributions are known as **order statitistics**. The key insight is that *all* ranks are distributed uniformly with respect to their cumulative distribution function.

With this is mind we let a set of n IID random variables, designated as X_1, \dots, X_n , be sampled from a uniform distribution, $X_i \sim \text{Uni}(0,1)$. The random variables sorted in increasing order, designated as $X_{(1)}, \dots, X_{(n)}$,

- k-1 events fall within [0,u);
- 1 event falls within [u + du];
- n-k events fall within [u+du,1].

Treating the infinitesimal interval as finite-sized, the frequency with which each independend sample falls within each interval is governed by multinomial statistics, §8.1.1.6,

$$\frac{n!}{(k-1)!1!(n-k)!}u^{k-1} \cdot du \cdot (1-u-du)^{n-k} \approx \frac{n!}{(k-1)!(n-k)!}u^{k-1} \cdot (1-u)^{n-k} \cdot du$$
 (163)

which, in the limit of infinitesimal interval, du, takes the form of a cumulative distribution whose probability density is given by

$$X_{(k)} \sim B(k, n+1-k).$$
 (164)

10 Asymptotic Limits

10.1 Convergence of Random Variables

Random variables, X, as described in §2.1.5, map outcomes from the probability space, $(\Omega, \mathcal{F}, \mathbb{P})$, into real values the state space, $(\mathbb{R}, \mathcal{B}, \mu)$, while the inverse map, X^{-1} , pulls back Borel sets from the state space into events in the probability space:

$$X: \Omega \to \mathbb{R} \tag{165}$$

$$X^{-1}: \mathcal{B} \to \mathcal{F} \tag{166}$$

Notice the difference in granularity of the forward and inverse map: the random variable applies to individual outcomes realized as a many-to-one mapping; the inverse action acts upon real sets, and cannot generally resolve individual outcomes.

Given a sequence of random variables, $X_{n\in\mathbb{N}}$, and a candidate limiting random variable, X, convergence is established by applying probability measures to a selection of events with vanishing results. However, the mathematical setting is complex and convergence can be defined in a number of ways – one can initiate the selection of sets from either the probability space or the state space, or one can alter the sequence the limit and probability operations. More formally we can define convergence of random variables as the following:

- In the *inverse* sense as the selection of sets is initiated in the state space and the probability measure is applied to the sequence of events generated by the pullback: **convergence in distribution**;
- In the *forward* sense as the selection of set is initiated in the probability space, to which the probability measure is then applied; vanishing probability of the event in which the sequence and the limiting random variables differ:
 - convergence in probability: Application of the probability measure is made to each event,
 and convergence is demonstrated as the vanishing limit of real numbers;

 convergence almost surely: Application of the probability measure is made to a limiting set, which requires that the limiting set be an event, and convergence is demonstrated as a zero-valued measure.

These three notions of convergence are covered briefly in the following sections. For the most part it is a simple matter of decoding the mathematical statements.

10.1.1 Convergence in Distribution

The cumulative distribution function, F(x), completely defines the operation of random variables in the state space, and serves as the probability measure of half-open infinite sets, $[-\infty, x)$. Demonstration of convergence with respect to these sets is sufficient to establish convergence with respect to any Borel set. The pullback of the half-open set by the random variables, X_n , is represented as

$$X^{-1}[-\infty, x) = \{ \omega \in \Omega : X(\omega) < x \} \equiv \{ X < x \}$$
 (167)

Convergence in distribution is established in a few steps:

- Generate the events that correspond to each random variable in the sequence: $\{X_n < x\}$
- Calculate the probability of each event: $\mathbb{P}\{X_n < x\}$
- Equate the limiting probability to the probability of the candidate random variable:

$$\lim_{n \to \infty} \mathbb{P}\{X_n < x\} = \mathbb{P}\{X < x\} \Leftrightarrow X_n \stackrel{d}{\longrightarrow} X \tag{168}$$

Notice that the limit is applied to real values, and that the relation in (168) must hold for all x.

10.1.2 Convergence in Probability (Weak Convergence)

We start with the set of all outcomes for which the absolute difference between mappings, for an arbitrary random variable in the sequence, X_n , and the target random variable, X, exceeds a threshold, $\epsilon > 0$,

$$\{\omega \in \Omega : |X_n(\omega) - X(\omega)| > \epsilon\} \equiv \{|X_n - X| > \epsilon\}$$
(169)

Then convergence in probability is established in a few steps:

- Generate the difference event for each random variable: $\{|X_n X| > \epsilon\}$
- Calculate the probability of each event: $\mathbb{P}\{|X_n X| > \epsilon\}$
- Assert the probability vanishes in the limit for all $\epsilon > 0$:

$$\lim_{n \to \infty} \mathbb{P}\{|X_n - X| > \epsilon\} = 0 \Leftrightarrow X_n \stackrel{p}{\longrightarrow} X. \tag{170}$$

As with convergence in distribution, convergence in probability is a statement about the vanishing limit of real numbers.

10.1.3 Convergence Almost Surely (Strong Convergence)

Similar to convergence in probability, convergence almost surely starts with the sequence of difference sets defined in (169). However, the order of limit and measure operations is interchanged. The limit of a sequence of sets is best interpreted as the limit superior, defined as

$$\limsup_{n \to \infty} \{ |X_n - X| > \epsilon \} = \bigcap_{n \in \mathbb{N}} \bigcup_{m \ge n} \{ \omega \in \Omega : |X_m(\omega) - X(\omega)| > \epsilon \}.$$
 (171)

The order of unions and intersections ensures that all outcomes that appear in an infinite number of sets in the sequence are assigned to the limiting set. Convergence almost surely then follows from applying the probability measure to the limiting set, and asserting the result vanishes for all $\epsilon > 0$,

$$\mathbb{P}\limsup_{n\to\infty}\{|X_n - X| > \epsilon\} = 0 \Leftrightarrow X_n \xrightarrow{as} X. \tag{172}$$

There is a subtlety here: the set of events, \mathcal{F} , must be complete, and contain the limiting set, which may not be the case!

10.1.4 Functions of Convergent Random Variables

The Continuous Mapping Theorem:

$$g \text{ is a } continuous \text{ function}$$

$$X_n \stackrel{d}{\longrightarrow} X$$

$$\Rightarrow g(X_n) \stackrel{d}{\longrightarrow} g(X).$$

$$(173)$$

10.1.5 Product of Convergent Random Variables

Slutsky's Theorem:

$$\left. \begin{array}{c} X_n \xrightarrow{d} X \\ Y_n \xrightarrow{p} c \end{array} \right\} \Rightarrow X_n Y_n \xrightarrow{d} cX \tag{174}$$

Note that the convergence of the product holds *only* if the limit of one is a constant.

10.2 Asymptotic Limits of IID Samples

10.2.1 Law of Large Numbers

Given a random variable, X, with finite mean and variance,

$$\mathbb{E}X = \mu; \tag{175}$$

$$VX = \sigma^2; (176)$$

and a collection of independent, identically distributed random variables, $X_{i\in\mathbb{N}} \sim X$, the sample mean and variance of the collection are given by

$$\bar{X}_{n} = \frac{1}{n} \sum_{i=1}^{n} X_{i} \Rightarrow \begin{cases} \mathbb{E}\bar{X}_{n} = \mathbb{E}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{E}X_{i} = \mu; \\ \mathbb{V}\bar{X}_{n} = \mathbb{V}\left(\frac{1}{n} \sum_{i=1}^{n} X_{i}\right) = \frac{1}{n^{2}} \sum_{i=1}^{n} \mathbb{V}X_{i} = \frac{\sigma^{2}}{n}. \end{cases}$$
(177)

due to the linearity of the expectation operator. Furthermore, the asymptotic distribution of sample mean can be proved to converge in both weak and strong senses to the mean,

Weak Law of Large Numbers
$$\bar{X}_n \stackrel{p}{\longrightarrow} \mu;$$
 (178)

Strong Law of Large Numbers
$$\bar{X}_n \xrightarrow{as} \mu$$
. (179)

The weak law can be shown as a simple consequence of Chebyshev's Inequality (see §4.2). Set $g(X) = |\bar{X}_n - \mu|$, then

$$\mathbb{P}\{|\bar{X}_n - \mu| \ge \epsilon\} = \mathbb{P}\{(\bar{X}_n - \mu)^2 \ge \epsilon^2\} \le \frac{\sigma^2}{n\epsilon^2} \Rightarrow \lim_{n \to \infty} \mathbb{P}\{|\bar{X}_n - \mu| \ge \epsilon\} = 0, \tag{180}$$

which is the condition for convergence in probability.

It is also possible to use Chebyshev's Inequality to prove the strong law, but this requires use of tools from Lebesgue integration.

10.2.2 Central Limit Theorem

Whereas the law of large numbers assures us that the distribution of the sample mean approaches the population mean of the underlying distributions, the **central limit theorem** provides asymptotic estimates on the *rate* of convergence.

10.2.2.1 Univariate Theorem Given a random variable, X, with mean and variance, μ and σ^2 , respectively, and a collection of independent, identically distributed random variables, $X_{i\in\mathbb{N}} \sim X$, the scaled sample mean converges in distribution to the standard normal,

$$\frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} \xrightarrow{d} N(0, 1). \tag{181}$$

The characteristic equation, as described above in §5.1.3, provides a ready proof of the theorem. Given the definition of the sample mean, we construct the sum of scaled variables,

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i \Rightarrow \frac{\sqrt{n}(\bar{X}_n - \mu)}{\sigma} = \sum_{i=1}^n \frac{X_i - \mu}{\sigma \sqrt{n}} \Rightarrow \begin{cases} \mathbb{E}\left(\frac{X_i - \mu}{\sigma \sqrt{n}}\right) = 0\\ \mathbb{E}\left(\frac{X_i - \mu}{\sigma \sqrt{n}}\right)^2 = \frac{1}{n}, \end{cases}$$
(182)

along with the mean and variance of each contribution to the sum. The characteristic function for any one of the collection is given by

$$\phi_X(t) = 1 + it\mathbb{E}X - \frac{t^2}{2}\mathbb{E}X^2 + \dots \Rightarrow \phi_{\frac{X_i - \mu}{\sigma\sqrt{n}}}(t) = 1 - \frac{t^2}{2n} + \mathcal{O}\left(n^{-\frac{3}{2}}\right)$$
(183)

and the full collection to leading order is given by,

$$\phi_{\sum_{i=1}^{n} \frac{X_{i} - \mu}{\sigma \sqrt{n}}}(t) = \prod_{i=1}^{n} \phi_{\frac{X_{i} - \mu}{\sigma \sqrt{n}}}(t) = \prod_{i=1}^{n} \left(1 - \frac{t^{2}}{2n} + \mathcal{O}\left(n^{-\frac{3}{2}}\right)\right). \tag{184}$$

Finally, noting that the limit yields an exponential function, whose form matches the characteristic function of the standard normal distribution,

$$\lim_{n \to \infty} \prod_{i=1}^{n} \left(1 - \frac{t^2}{n} + \mathcal{O}\left(n^{-\frac{3}{2}}\right) \right) = \lim_{n \to \infty} \left(1 - \frac{t^2}{n} + \mathcal{O}\left(n^{-\frac{3}{2}}\right) \right)^n = e^{-\frac{t^2}{2}} = \phi_{\mathcal{N}(0,1)}(t). \tag{185}$$

10.2.2.2 Multivariate Theorem The multivariate version of the central limit theorem is a straightforward generalization of the univariate case. Given the mean vector and covariance matrix of a random variable, X,

$$\mathbb{E}\mathbf{X} = \boldsymbol{\mu};\tag{186}$$

$$VX = EXX^{\top} - EXEX^{\top} = \Sigma;$$
(187)

the asymptotic distribution of the sample mean approaches a normal distribution,

$$\bar{\mathbf{X}}_n = \frac{1}{n} \sum_{i=1}^n \mathbf{X}_i \Rightarrow \sqrt{n} (\bar{\mathbf{X}}_n - \boldsymbol{\mu}) \xrightarrow{d} \mathbf{N}(\mathbf{0}, \boldsymbol{\Sigma}), \tag{188}$$

whose covariance matrix matches the underlying distribution.

For any given function of a multivariate random variable, $g(\mathbf{X})$, we can construct a related asymptotic distribution, via the **delta method**,

$$\mathbb{E}g(\mathbf{X}) = g(\boldsymbol{\mu}) \\
\mathbb{V}g(\mathbf{X}) \approx \nabla g(\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma} \nabla g(\boldsymbol{\mu}) \right\} \Rightarrow \sqrt{n} \left(g(\mathbf{X}_n) - g(\boldsymbol{\mu}) \right) \xrightarrow{d} \mathbf{N} \left(\mathbf{0}, \nabla g(\boldsymbol{\mu})^{\top} \boldsymbol{\Sigma} \nabla g(\boldsymbol{\mu}) \right). \tag{189}$$

Applying the delta method to a linear transmformation, $g(\mathbf{X}) = \Gamma \mathbf{X}$, yields

$$\mathbb{E}g(\mathbf{X}) = \Gamma \boldsymbol{\mu} \\ \mathbb{V}g(\mathbf{X}) = \Gamma^{\top} \boldsymbol{\Sigma} \Gamma \right\} \Rightarrow \sqrt{n} \Gamma \left(\mathbf{X}_n - \boldsymbol{\mu} \right) \stackrel{d}{\longrightarrow} \mathbf{N} \left(\mathbf{0}, \Gamma^{\top} \boldsymbol{\Sigma} \Gamma \right) \right).$$
 (190)

11 Likelihood Function and Information Measures

11.1 Thermodynamic Entropy

The origins of information theory lie in thermodynamics, in which the multinomial arrangements of identical particles – a **macrostate** – are assigned values that depend on the number of permutations – each a **microstate**. For a given physical system the microstates are defined by distinct energy levels, while possible macrostates are constrained by the total energy. In particular the **physical entropy** of the dominant macrostate can be identified with the *logarithm* of the number of microstates, for which the linear extensibility of physical entropy is a consequence.

11.2 Shannon Information and Entropy

The link between physical entropy and probability theory for the **microcanonical** assembly described in §11.1 is furnished by the equivalence between indistinguishability of particles and the equal probability of permutations. For a physical system of interacting particles, the macrostate that maximizes entropy – the one with the greatest number of microstates – is interpreted as the *most probable* to be observed at any given time. And since energy is exchanged during interactions, the instantaneous macrostates fluctuate about the maximum-entropy state, with the size of the excursions an inverse function of the number of particles in the multinomial permutations.

As the number of particles increases, the observations of macroscopic phenomena are dominated by a single most-probable macrostate, which becomes sharp in the limit. Given a random variable, X, the limiting microcanonical entropy is identified with the **Shannon information**,

$$\mathbb{I}_S X = -\ln \mathbb{P}_X. \tag{191}$$

For distinct mappings of the random variable the Shannon information varies by the logarithm of the probability measure, which can be thought of as due to the indistinguishability – and equal 'probability' – of the underlying outcomes that are collected in the density, \mathbb{P}_X . Since information can be linearly combined, the *global* information, or **Shannon entropy**, is captured by the expectation of Shannon information,

$$\mathbb{H}X \equiv \mathbb{E}\mathbb{I}_S X = \int_{-\infty}^{\infty} p_X(x) \ln p_X \, dx. \tag{192}$$

An alternative interpretation of information and entropy comes from coding theory, in which discrete random variables are efficiently encoded in bits. Here, information in the multinomial arrangements of bits is provided by the number required to represent the ensemble, which is provided by the logarithm.

A common application of Shannon entropy is to estimate the form of a distribution consistent with a finite set of measurements. The basic idea is that the 'true' distribution is one that is both

- consistent with the measurements;
- evenly distributed (maximizes 'disorder') otherwise.

11.3 Joint Entropy Measures

There are a number of quantities derived from information and entropy that measure the relation between two different random variables, which are taken up in the next few sections.

11.3.1 Relative Entropy (Kullback-Leibler Divergence)

The **relative entropy** between random variables, X and Y, is given by

$$D_{\mathrm{KL}}(X||Y) \equiv \mathbb{H}X - \mathbb{H}_X Y = -\int_{-\infty}^{\infty} p_X(x) \ln \frac{p_X(x)}{p_Y(x)} dx. \tag{193}$$

The relative entropy is defined as the difference between the entropy of the random variable, X, and the expection with respect to X of the information in Y. If the two random variables coincide, the relative entropy is zero; otherwise, by Jensen's Inequality, the relative entropy must be positive:

$$D_{\text{KL}}(X||Y) = -\int_{-\infty}^{\infty} p_X(x) \ln \frac{p_X(x)}{p_Y(x)} dx \ge -\ln \left(\int_{-\infty}^{\infty} p_X(x) \frac{p_X(x)}{p_Y(x)} dx \right) = -\ln \int_{-\infty}^{\infty} p_Y(x) dx = 0.$$
(194)

The relative entropy is interpreted as a measure of the error introduced by substituting the random variable, Y, for cases in which X is correct. Notice also that the relative entropy is *not* symmetric in X and Y, and the relative entropy of Y with respect to X is generally different for the relative entropy of X with respect to Y.

11.3.2 Conditional Entropy

The **conditional entropy** the random variable, X|Y, is provided by the linear combination of the entropy of the joint distribution less the entropy in the conditional variable,

$$\mathbb{H}(X|Y) = \mathbb{H}(X,Y) - \mathbb{H}Y. \tag{195}$$

11.3.3 Mutual Information

The **mutual information** between the random variables, X and Y, can be expressed either in terms of entropy or in terms of the Kullback-Leibler divergence,

$$\mathbb{I}_{M}(X,Y) = \mathbb{H}X + \mathbb{H}Y - \mathbb{H}(X,Y) = D_{\mathrm{KL}}\left((X,Y)||XY\right) = \mathbb{E}_{Y}D_{\mathrm{KL}}\left(X|Y||X\right). \tag{196}$$

Notice that, unlike relative entropy, mutual information is symmetric with respect to the random variables that comprise the joint distribution. Mutual information measures the 'overlap' entropy between the two variables that make up the joint distribution. For independent random variables the mutual information is the sum of the entropy in each.

11.4 Likelihood Function and Fisher Information

In the definitions of Shannon information and entropy, in (191) and (192), respectively, it is clear that information is a local property – a value defined at a single point in the domain – while entropy is a global one that summarizes the full distribution. A family of random variables defined over a parameter has, in some sense, local information encoded not only in the density function, but also in the change of densities due to change in the parameter.

Let $f(\mathbf{x}|\theta)$ be the joint distribution of the sample, $\mathbf{X} = (X_1, \dots, X_n)$, for which each coordinate is taken from a distribution parametrized by θ . The **likelihood function**, $L(\theta|\mathbf{x})$, given that $\mathbf{X} = \mathbf{x}$ is observed, is defined as

$$L(\theta|\mathbf{x}) \equiv f(\mathbf{x}|\theta) \tag{197}$$

The log-likelihood function is identical to the Shannon information for parametrized distributions, so that

$$\ln L(\theta|\mathbf{x}) = \ln f(\mathbf{x}|\theta) = \ln \mathbb{P}\mathbf{X}_{\theta} = -\mathbb{I}_{S}\mathbf{X}_{\theta}. \tag{198}$$

Since the samples are independent, the Shannon information is additive, equal to the sum of information in each measurement,

$$L(\theta|\mathbf{x}) \equiv f(\mathbf{x}|\theta) = \prod_{i=1}^{n} f(x_i|\theta) \Rightarrow \ln L(\theta|\mathbf{x}) = \sum_{i=1}^{n} \ln f(x_i|\theta).$$
 (199)

11.4.1 Fisher Information

The **score function**, $S(\theta|\mathbf{x})$, measures the sensitivity of the likelihood function to changes in the parameter value,

$$S(\theta|\mathbf{x}) = \frac{\partial}{\partial \theta} \ln L(\theta|\mathbf{x}) = \frac{\partial}{\partial \theta} \ln f(\mathbf{x}|\theta) = \frac{1}{f(\mathbf{x}|\theta)} \frac{\partial}{\partial \theta} f(\mathbf{x}|\theta), \tag{200}$$

which is the derivative with respect to the parameter of the Shannon information in the joint distribution. Given the two integration identities,

$$\int_{D} f \frac{\partial}{\partial \theta} \ln f \, d\mathbf{x} = \int_{D} \frac{\partial}{\partial \theta} f \, d\mathbf{x} = \frac{\partial}{\partial \theta} \int_{D} f \, d\mathbf{x} = 0 \tag{201}$$

$$\int_{D} f \left(\frac{\partial}{\partial \theta} \ln f \right)^{2} d\mathbf{x} = \int_{D} \frac{1}{f} \left(\frac{\partial f}{\partial \theta} \right)^{2} d\mathbf{x} = \int_{D} \left(\frac{\partial^{2} f}{\partial \theta^{2}} - f \frac{\partial^{2}}{\partial \theta^{2}} \ln f \right) d\mathbf{x} = -\int_{D} f \frac{\partial^{2}}{\partial \theta^{2}} \ln f d\mathbf{x} \qquad (202)$$

we can calculate the expection and variance of the score function:

$$\mathbb{E}_{\theta} S(\theta | \mathbf{X}) = 0 \tag{203}$$

$$\mathbb{V}_{\theta}S(\theta|\mathbf{X}) = \mathbb{E}_{\theta}S(\theta|\mathbf{X})^{2} - (\mathbb{E}_{\theta}S(\theta|\mathbf{X}))^{2} = \mathbb{E}_{\theta}S(\theta|\mathbf{X})^{2} = -\mathbb{E}_{\theta}\left(\frac{\partial}{\partial\theta}S(\theta|\mathbf{X})\right)$$
(204)

Note that the expection of the score function, which is a kind of global property assigned point-wise, vanishes. The variance of the score function is known as **Fisher information**, defined formally as

$$\mathbb{I}_{F} \mathbf{X}_{\theta} = \mathbb{V} S(\theta | \mathbf{X}) = -\mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} S(\theta | \mathbf{X}) \right) = -\mathbb{E}_{\theta} \frac{\partial^{2}}{\partial \theta^{2}} \ln f(\mathbf{X} | \theta).$$
 (205)

Therefore, the Fisher information describes the (local) change in (global) Shannon entropy as the parameter undergoes an infinitesimal change. Expanding the joint log-likelihood function into a power series in the parameter, via Taylor's theorem, yields

$$\ln L(\theta + \Delta\theta | \mathbf{x}) \approx \ln L(\theta | \mathbf{x}) + \frac{\partial}{\partial \theta} \ln L(\theta | \mathbf{x}) \Delta\theta + \frac{1}{2} \frac{\partial^2}{\partial \theta^2} \ln L(\theta | \mathbf{x}) \Delta\theta^2, \tag{206}$$

and applying the expectation operator to the result,

$$-\mathbb{E}_{\theta} \ln L(\theta + \Delta \theta | \mathbf{X}) \approx -\mathbb{E}_{\theta} \left(\ln L(\theta | \mathbf{X}) + \frac{\partial}{\partial \theta} \ln L(\theta | \mathbf{X}) \Delta \theta + \frac{1}{2} \frac{\partial^{2}}{\partial \theta^{2}} \ln L(\theta | \mathbf{X}) \Delta \theta^{2} \right)$$

$$= \mathbb{E}_{\theta} \mathbb{I}_{S} \mathbf{X}_{\theta} - \mathbb{E}_{\theta} S(\theta | \mathbf{X}) \Delta \theta + \frac{1}{2} \mathbb{E}_{\theta} \left(\frac{\partial}{\partial \theta} S(\theta | \mathbf{X}) \right) \Delta \theta^{2}$$

$$\mathbb{H} \mathbf{X}_{\theta + \Delta \theta} \approx \mathbb{H} \mathbf{X}_{\theta} + \frac{1}{2} \mathbb{I}_{F} \mathbf{X}_{\theta} \Delta \theta^{2}$$
(207)

shows that Fisher information provides the estimate of the second-order global change in entropy given changes in the local parameter value.

A quick calculation shows that this is identical to the Kullback-Leibler divergence applied to nearby values of the parameter, θ ,

$$D_{\mathrm{KL}}\left(L(\theta|\mathbf{x})||L(\theta+\Delta\theta|\mathbf{x})\right) = \int_{\Theta} L(\theta|\mathbf{x}) \ln \frac{L(\theta|\mathbf{x})}{L(\theta+\Delta\theta|\mathbf{x})} d\theta$$

$$= \int_{\Theta} L(\theta|\mathbf{x}) \left(\ln L(\theta|\mathbf{x}) - \ln L(\theta+\Delta\theta|\mathbf{x})\right) d\theta$$

$$\approx \int_{\Theta} L(\theta|\mathbf{x}) \left(-\frac{\partial}{\partial\theta} \ln L(\theta|\mathbf{x})\Delta\theta - \frac{1}{2} \frac{\partial^{2}}{\partial\theta^{2}} \ln L(\theta|\mathbf{x})\Delta\theta^{2}\right) d\theta$$

$$= -\mathbb{E}_{\theta} S(\theta|\mathbf{X}) \Delta\theta - \frac{1}{2} \mathbb{E}_{\theta} \frac{\partial}{\partial\theta} S(\theta|\mathbf{X}) \Delta\theta^{2}$$

$$= \frac{1}{2} \mathbb{I}_{F} \mathbf{X}_{\theta} \Delta\theta^{2}$$
(208)

and the Taylor expansion of log-likelihood can be equivalently expressed as

$$\mathbb{H}\mathbf{X}_{\theta+\Delta\theta} \approx \mathbb{H}\mathbf{X}_{\theta} + D_{\mathrm{KL}}\left(L(\theta|\mathbf{x})||L(\theta+\Delta\theta|\mathbf{x})\right). \tag{209}$$

11.4.2 Multidimensional Fisher Information

The ideas on Fisher information in §11.4.1 are readily extended to the case for which the parameters are multidimensional, expressed in vector form as $\boldsymbol{\theta} = (\theta_1, \dots, \theta_m)^{\top}$, and the joint random variable expressed as $\mathbf{X}_{\boldsymbol{\theta}}$. Here, the **Fisher information matrix** is given by

$$\mathbb{I}_{F} \mathbf{X}_{\boldsymbol{\theta}} \equiv -\mathbb{E}_{\boldsymbol{\theta}} \nabla^{2} \ln f(\mathbf{X}|\boldsymbol{\theta}) = -\mathbb{E}_{\boldsymbol{\theta}} \begin{pmatrix} \frac{\partial^{2}}{\partial \theta_{1}^{2}} \ln f(\mathbf{X}|\boldsymbol{\theta}) & \cdots & \frac{\partial^{2}}{\partial \theta_{1} \partial \theta_{m}} \ln f(\mathbf{X}|\boldsymbol{\theta}) \\ \vdots & \ddots & \vdots \\ \frac{\partial^{2}}{\partial \theta_{m} \partial \theta_{1}} \ln f(\mathbf{X}|\boldsymbol{\theta}) & \cdots & \frac{\partial^{2}}{\partial \theta_{m}^{2}} \ln f(\mathbf{X}|\boldsymbol{\theta}) \end{pmatrix}$$
(210)

for which the univariate second-order derivative in (205) is replaced by the Laplacian operator, and the scalar result replaced by a matrix.

Also, as in the univariate case, the multidimensional Taylor expansion of the log-likelihood function,

$$\ln L(\boldsymbol{\theta} + \Delta \boldsymbol{\theta} | \mathbf{x}) \approx \ln L(\boldsymbol{\theta} | \mathbf{x}) + \Delta \boldsymbol{\theta}^{\top} \ln L(\boldsymbol{\theta} | \mathbf{x}) + \frac{1}{2} \Delta \boldsymbol{\theta}^{\top} H \ln L(\boldsymbol{\theta} | \mathbf{x}) \Delta \boldsymbol{\theta}$$
(211)

leads to an identical relation and interpretation between Shannon entropy and Fisher information,

$$\mathbb{H}\mathbf{X}_{\boldsymbol{\theta}+\Delta\boldsymbol{\theta}} \approx \mathbb{H}\mathbf{X}_{\boldsymbol{\theta}} + \Delta\boldsymbol{\theta}^{\top} \frac{1}{2} \mathbb{I}_{F} \mathbf{X}_{\boldsymbol{\theta}} \Delta\boldsymbol{\theta}. \tag{212}$$

And again, as in the univariate case, the Kullback-Leibler divergence,

$$D_{\mathrm{KL}}\left(L(\boldsymbol{\theta}|\mathbf{x})||L(\boldsymbol{\theta}+\Delta\boldsymbol{\theta}|\mathbf{x})\right) = \Delta\boldsymbol{\theta}^{\top}\frac{1}{2}\mathbb{I}_{F}\mathbf{X}_{\boldsymbol{\theta}}\Delta\boldsymbol{\theta}$$
(213)

also supplies the value of the second-order correction,

$$\mathbb{H}\mathbf{X}_{\boldsymbol{\theta}+\Delta\boldsymbol{\theta}} \approx \mathbb{H}\mathbf{X}_{\boldsymbol{\theta}} + D_{\mathrm{KL}}\left(L(\boldsymbol{\theta}|\mathbf{x})||L(\boldsymbol{\theta}+\Delta\boldsymbol{\theta}|\mathbf{x})\right). \tag{214}$$

12 Bayesian Perspectives

12.1 Bayes' Theorem

Given events, A and B, and a probability measure, \mathbb{P} , Bayes' Theorem is

$$\mathbb{P}\{A|B\} = \frac{\mathbb{P}\{B|A\}\mathbb{P}\{A\}}{\mathbb{P}\{B\}}$$
 (215)

12.2 Parameter Refinement and Estimation

the object is to estimate the unknown value of a parameter, θ^* , that governs a parametrized distribution, $f(x|\theta^*)$. The estimate for the parameter is made through a sequence of IID measurements, x_1, \dots, x_i , sampled from the distribution, and each of which adds to the refinement of a distribution for the parameter, $f(\theta)$.

12.3 Conjugate Families

Beta prior, binomial likelihood (n draws):

beta prior:
$$B(\alpha, \beta) \propto \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

binomial likelihood: $Bin(n, k) \propto \theta^{k} (1 - \theta)^{n - k}$ \Rightarrow beta posterior: $B(\alpha + k, \beta + n - k)$ (216)

Gamma prior, Posson likelihood (n draws):

gamma prior:
$$\Gamma(\alpha, \beta) \propto x^{\alpha - 1} e^{-\beta x}$$

Poisson likelihood: $\operatorname{Poi}(x) \propto x^k e^{-nx}$ \Rightarrow gamma posterior: $\Gamma(\alpha + k, \beta + n)$ (217)

Gaussian prior, Gaussian likelihood (n draws): This is a model for an iterative determination of the unknown mean of a Gaussian distribution with known variance:

Gaussian prior:
$$\mu \sim \mathcal{N}(\mu_0, \sigma_0) \propto \exp\left(-\frac{1}{2} \frac{(\mu - \mu_0)^2}{\sigma_0^2}\right)$$
Gaussian likelihood:
$$\mu | \mathbf{x} \sim \mathcal{N}(\mu, \sigma^2) \propto \prod_{i=1}^n \exp\left(-\frac{1}{2} \frac{(x_i - \mu)^2}{\sigma^2}\right)$$

$$\Rightarrow \text{Gaussian posterior: } \mu \sim \mathcal{N}\left(\frac{\kappa_0 \mu_0 + n\bar{\mathbf{x}}}{\kappa_0 + n}, \frac{\sigma^2}{\kappa_0 + n}\right) \quad (218)$$

$$\kappa_0 = \frac{\sigma}{\sigma_0} \tag{219}$$

Inverted gamma prior, Gaussian likelihood This is a model for an iterative determination of the unknown variance of a Gaussian distribution with known mean

inverted gamma prior:
$$\sigma^{2} \sim I\Gamma(\alpha, \beta) \propto \sigma^{-2(\alpha+1)} \exp\left(-\frac{\beta}{\sigma^{2}}\right)$$
Gaussian likelihood:
$$\sigma^{2} | \mathbf{x} \sim N(\mu, \sigma^{2}) \propto \prod_{i=1}^{n} \frac{1}{\sigma} \exp\left(-\frac{1}{2} \frac{(x_{i} - \mu)^{2}}{\sigma^{2}}\right)$$

$$\Rightarrow \text{inverted gamma posterior: } \sigma^{2} \sim I\Gamma\left(\alpha + \frac{n}{2}, \beta + \frac{1}{2} \sum_{i=1}^{n} (x_{i} - \mu)^{2}\right) \quad (220)$$

12.4 Monte Carlo Methods