#### Introduction to Machine Learning



#### Lecture 4

**Instructor:** 

Dr. Tom Arodz

#### ML: Typical assumptions

- The modeled phenomenon is poorly understood / too complex to simulate
- The features are somewhat informative but not perfectly correlated with the class
- The association between regions of feature space and the class variable is fixed
- The association between features and class we can learn is likely to be accurate only for objects similar to our training set
- These assumptions lead to a probabilistic view of ML

#### Example

Feature X1 – height (0-very short, 1-short, 2-medium) Class Y – tribe (0-hobbit, 1-dwarf)



Feature X1 – height (0-v. short, 1-short, 2-medium)

Class Y – tribe (0-hobbit, 1-dwarf)

- What we study is rarely deterministic / crisp
  - Not true that: all hobbits are short or v.short, all dwarves are medium
- Probability comes into play in several ways:
  - Features and dataset:
    - v. short folks are 30% of the population of Middle-earth
    - In our specific training set, v. short folks are 27%, not 30%
  - Class (y) vs features (x):
    - y=>x: if class is hobbit, then height is v.short 40% of the time, short 35% of the time
    - x=>y: if height is v. short, then it is a hobbit 85% of the time

Feature X1 – height (0-v. short, 1-short, 2-medium)

Class Y – tribe (0-hobbit, 1-dwarf)

- Probability comes into play in several ways:
  - Features and dataset:
    - v. short folks are 30% of the population
      - Probability(X1 = 0)=0.3, P(X1=1)=0.45, ...
      - Probability distribution D for X1:
        - **0**:0.3, 1:0.45, 2:0.25
    - In our specific training set, v. short folks are 27%, not 30%
      - Dataset comes to us by randomly drawing from distribution D over features
  - Class vs features:
    - y=>x if hobbit, then height is v.short 40% of time
      - Probability of X1=0 given Y=0: conditional probability: P(X1=0 | Y=0) = 0.4
    - x=>y if height is v. short, then it is a hobbit 85% of time
      - Probability of Y=0 given X1=0: conditional probability: P(Y=0 | X1=0) = 0.85

- Sample space: spectrum of possible observations
  - E.g. sample space for dice =  $\{1,2,3,4,5,6\}$
  - E.g. feature X1 can be: 0,1,2
  - E.g. class Y can b: 0, 1
- Event space: sets of observations
  - E.g. "1 on a dice", "even number on a dice"
  - E.g. observed feature value: 0, observed feature value: 1 or 2
- Probability: function that assigns a number in [0,1] range to events:
  - P(event) quantifies the degree of our belief that event happens (e.g. equality is true)
  - E.g. P(feature=0), P(feature=1 or feature=2),P(class=1)

- Sample space: possible observations
  - E.g. feature X1 can be: 0,1,2
- We will see two types of sample spaces
  - Real numbers (typically individual features are reals)
    - We will call these random variables: e.g. X1, Y
    - We define probability distribution over random variable, e.g. P(X1=0)=0.25, P(Y=1)=0.4
    - When we talk about distribution as a whole (not probability for specific value, P(X1=0)) in ML we often use D to denote the distribution

0.4

0.2

- P(X1=0) = D(0), P(X1=1)=D(1), ...
- Distribution D(x) gives us probability values P(X1=x) for each possible observation x
  - These values are in [0,1] range, and add up to 1

- Sample space: possible observations
- We will see two types of sample spaces
  - Real numbers (e.g. individual features)
  - Vectors (*multiple features*, and/or *features + class*)
    - Joint distribution over multiple random variables
      - Over all possible combinations of values
    - E.g. P(X1=0, Y=1)=0.2
      - the probability that value of X1 will be equal to 0 AND value of Y will be equal to 1
      - Again, we use D to denote distribution itself
        - (x,y) ~ D
        - P(X1=0, Y=1)=D(0,1)
      - Again, values of D are in [0,1] range
         and add up to 1 over the whole set of distinct possibilities



#### **Notation**

- P(X=x) is the probability that variable X assumes value x
- Often, we use simplified notation, with variable implied by context:
  - E.g. P(+1) instead of P(Y=+1) if it's clear we are talking about class
  - E.g. P(y) or P(Y) to talk about the probability of classes in general, not of specific class values like +1
- Distributions
  - We often use subscript to denote which distribution we mean
    - $X \sim D_x$

 $Y \sim D_y$ 

- $Y \sim D_{y|x}$
- We often use z=(x,y) to denote all features and class, jointly
  - $D_z$  is the distribution over those, it gives us  $P(X1=0, Y=1)=D_z(0,1)$ 
    - $z \sim D_z$
    - $(x,y)\sim D_z$



#### Back to Middle-earth

Feature X1 – height (0-very short, 1-short, 2-medium) Class Y – tribe (0-hobbit, 1-dwarf)

We have two separate distributions,

over the feature(s)

 $X1 \sim D_{x1}$ 

and over the class

 $Y \sim D_y$ 

| P(x1=0) | 0.3  |
|---------|------|
| P(x1=1) | 0.45 |
| P(x1=2) | 0.25 |
|         | 1    |

| P(y=0) | 0.55 |
|--------|------|
| P(y=1) | 0.45 |

The distribution over the feature(s) covers possible values of features from which our samples come from

The distribution over the classes is typically a discrete distribution over just two possibilities (+1/-1 or 1/0):

$$P(+1) + P(-1) = 1$$
 or  $P(+1) + P(0) = 1$ 

If we know the probability distribution for individual random variables (features P(x) and class P(Y)), does it help making class predictions?

| P(x1=0) | 0.3  |
|---------|------|
| P(x1=1) | 0.45 |
| P(x1=2) | 0.25 |

| P(y=0) | 0.55 |
|--------|------|
| P(y=1) | 0.45 |

Feature X1 – height (0-very short, 1-short, 2-medium)

Class Y - tribe (0-hobbit, 1-dwarf)

If you know the above distrib's, and that x1=short what would you predict?

if you knew x1=v.short, What would you predict?



#### Back to Middle-earth

Classes probabilities are not independent from feature probs.

(we learn to use that relationship to make predictions).

| P(x1=0) | 0.3  |
|---------|------|
| P(x1=1) | 0.45 |
| P(x1=2) | 0.25 |

| P(y=0) | 0.55 |
|--------|------|
| P(y=1) | 0.45 |

Joint distribution D over z=(X1,Y):



|             | D    |
|-------------|------|
| P(x1=0,y=0) | 0.25 |
| P(x1=0,y=1) | 0.05 |
| P(x1=1,y=0) | 0.2  |
| P(x1=1,y=1) | 0.25 |
| P(x1=2,y=0) | 0.1  |
| P(x1=2,y=1) | 0.15 |
|             |      |

How can joint probability distribution over (features, class) vectors help in making predictions?

#### Back to Middle-earth

Classes probabilities are not independent from feature probs.

(we learn to use that relationship to make predictions).

| P(x1=0) | 0.3  |
|---------|------|
| P(x1=1) | 0.45 |
| P(x1=2) | 0.25 |

| P(y=0) | 0.55 |
|--------|------|
| P(y=1) | 0.45 |

#### Joint distribution D over z=(X1,Y):



|             | D    |
|-------------|------|
| P(x1=0,y=0) | 0.25 |
| P(x1=0,y=1) | 0.05 |
| P(x1=1,y=0) | 0.2  |
| P(x1=1,y=1) | 0.25 |
| P(x1=2,y=0) | 0.1  |
| P(x1=2,y=1) | 0.15 |
|             |      |

How can joint probability distribution over (features, class) vectors help in making predictions?

If we know (x1=0), we can look up whether P(x1=0,y=0) or P(x1=0,y=1) is higher Basically, make prediction using *conditional probability*!

- What can help us directly in making predictions is conditional probability of class given features
  - Conditional probability of Y given X: P(Y=y | X=x)
    is the probability that Y will be equal to y
    if we know that X took the value of x
    - Often, we just write P(y|x)
  - We see a v.short character (X1=0), is it a hobbit (Y=0) or a dwarf (Y=1)?
    - Probability that class is 0 if we know height is "v. short"  $P(Y=0 \mid X1=0) = 0.83$
    - Probability that class is 1 if we know height is "v. short"  $P(Y=1 \mid X1=0) = 0.17$
    - What should our prediction be? Hobbit (0)!

#### What is *conditional probability*?

- What can help us directly in making predictions is conditional probability of class given features
  - Conditional probability of Y given X: P(Y=y | X=x) is the probability that Y will be equal to y if we know that X took the value of x

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

We can derive conditional probability from joint probability

$$P(Y=y \mid X=x) = P(Y=y, X=x) / P(X=x)$$

- E.g. X=1 happens 50 of 100 times, and Y=1, X=1 happens 20 out of 100 times.
  - When X=1 happens (50 times)
  - Y=1 happens 20 times out of the 50 times
  - P(Y=1|X=1)=20/50=0.4

#### Probability so far - recap

- P(A) probability of event A happening
  - P(temp < 32F) = 0.1
- P(AB) joint probability of both A and B events happening
  - P(temp<32F, snow)=0.05</li>
- P(A|B) probability of A happening if B is happening
  - $P(\text{snow} \mid \text{temp} < 32F) = 0.5$
  - $P(temp < 32F \mid snow) = 0.95$
- P(A|B) = P(AB) / P(B)
  - P(snow | temp<32F)=P(temp<32F, snow) / P(temp<32F) 0.5 = 0.05 / 0.1
- P(A|B)\*P(B)=P(AB)
  - P(snow | temp<32F)\*P(temp<32F)=P(temp<32F, snow) 0.5\*0.1 = 0.05
- We don't know P(snow), can we deduce it?

#### Probability so far - recap

- P(A) probability of event A happening
  - P(temp < 32F) = 0.1
- P(AB) joint probability of both A and B events happening
  - P(temp<32F, snow)=0.05</li>
- P(A|B) probability of A happening if B is happening
  - $P(\text{snow} \mid \text{temp} < 32F) = 0.5$
  - $P(temp < 32F \mid snow) = 0.95$
- P(A|B) = P(AB) / P(B)
  - P(snow | temp<32F)=P(temp<32F, snow) / P(temp<32F) 0.5 = 0.05 / 0.1
- P(A|B)\*P(B)=P(AB)
  - P(snow | temp<32F)\*P(temp<32F)=P(temp<32F, snow) 0.5\*0.1 = 0.05
- We don't know P(snow), can we deduce it?
  - P(temp<32F | snow) \* P(snow) = P(temp<32F,snow)</li>
     0.95\*??? = 0.05
     we can deduce that P(snow)=0.0526

Predictions from conditional probability P(y|x)

Feature X1 —height (0-v. short, 1-short, 2-medium)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Class Y – tribe (0-hobbit, 1-dwarf)

0.2

0.1



| P(y=0) | 0.55 |
|--------|------|
| P(y=1) | 0.45 |

| P(x1=0) | 0.3  |
|---------|------|
| P(x1=1) | 0.45 |
| P(x1=2) | 0.25 |





For each value of x (features), predict the most probable value of y (class)

Predictions from conditional probability P(y|x)

0.6 0.15/0.25

Feature X1 –height (0-v. short, 1-short, 2-medium)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Class Y – tribe (0-hobbit, 1-dwarf)



| P(x1=0) | 0.3  |   | Х           |          |           |
|---------|------|---|-------------|----------|-----------|
| P(x1=1) | 0.45 |   | $D_{Y X}$   |          |           |
| P(x1=2) | 0.25 |   | P(y=0 x1=0) | 0.833333 | 0.25/0.3  |
|         |      |   | P(y=1 x1=0) | 0.166667 | 0.05/0.3  |
| 0.6     |      |   |             |          |           |
| 0.4     |      |   | P(y=0 x1=1) | 0.444444 | 0.2/0.45  |
| 0.2     |      |   | P(y=1 x1=1) | 0.555556 | 0.25/0.45 |
| 0       |      |   |             |          |           |
| 1 2 3   |      | • | P(y=0 x1=2) | 0.4      | 0.1/0.25  |

P(x)

P(y=1|x1=2)

Is it possible to avoid incorrect predictions?

What is the probability of making a wrong prediction?

Predictions from conditional probability P(y|x)

Feature X1 –height (0-v. short, 1-short, 2-medium)

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)}.$$

Class Y – tribe (0-hobbit, 1-dwarf)

|             | D    |            |
|-------------|------|------------|
| P(x1=0,y=0) | 0.25 | <b>^</b>   |
| P(x1=0,y=1) | 0.05 | $\swarrow$ |
| P(x1=1,y=0) | 0.2  |            |
| P(x1=1,y=1) | 0.25 | <b>✓</b>   |
| P(x1=2,y=0) | 0.1  |            |
| P(x1=2,y=1) | 0.15 |            |
|             |      |            |

| P(y=0) | 0.55 |
|--------|------|
| P(y=1) | 0.45 |

| P(x1=0) | 0.3  |
|---------|------|
| P(x1=1) | 0.45 |
| P(x1=2) | 0.25 |







#### Continuous features

#### Apple vs Orange

Joint distribution over (wavelength x fruit class)





- Our distributions will typically be over reals f\u00f3r features
  - Most often, probability of any specific real value is 0
    - E.g., probability of height (not rounded) being exactly 5.678901234 ft is 0
  - But, probability of a range of values is typically >0
    - E.g. probability of height in [5.67-5.68] ft
  - For continuous variables, we have probability density function (pdf)
    - Intuitively, pdf p(x) is a function that tells us the probability of seeing values from a very small region around x relative to other regions
      - As if we did histograms with narrower and narrower bins, always using infinite number of samples

# 4

# Continuous features (grad only)

- For continuous variables, we have probability density function (pdf)
  - Intuitively, pdf p(x) is a function that tells us the probability of seeing values from a very small region around x relative to other regions
- We first define cumulative distribution function CDF(x)
  - $\quad \mathsf{CDF}(\mathsf{x}) = \mathsf{P}(\mathsf{X} <= \mathsf{x})$
- Then, define PDF from CDF
  - PDF is the derivative of CDF with respect to x pdf(x) = d CDF / dx



- We have observations in a fixed F-dimensional feature space X
  - Every sample x is a vector (point) in that feature space

$$\mathbf{x} = \begin{bmatrix} x^{\langle 1 \rangle}, x^{\langle 2 \rangle}, ..., x^{\langle F \rangle} \end{bmatrix}^T \quad \mathbf{x} \in \mathcal{X} \quad \mathcal{X} \subset \mathbb{R}^F$$

- Sample x belongs to class y, {-1, +1} (or {0,1}, or {1,2,3,..})
  - So together we have an extended space

$$\mathbf{z} = (\mathbf{x}, y)$$
  $\mathcal{Z} = \mathcal{X} \times \{-1, +1\}$ 

# 

#### Cartesian product



- **Examples** come from space  $\mathcal{Z} = \mathcal{X} \times \{-1, +1\}$   $\mathbf{z} = (\mathbf{x}, y)$
- Over that space, we have a joint probability distribution
- Samples are obtained from that distribution and have probability P(z) = P(x,y)
- We can factor it using conditional probability to separate P(x) from P(y|x)

$$P(z) = P(x,y) = P(y|x)P(x)$$



P(y|x) = conditional probabilityprob. of seeing class y if we're observing sample x

- What we want for classification is p(y|x): what is the most probably class y for a given x?
- For each value of x (features), predict the most probable value of y (class)





 It is often much easier to obtain probability distribution of each individual class, p(x|y<sub>i</sub>)



- Probability distribution of wavelength for Apples
- Probability distribution of wavelength for Oranges

• We may have probability distribution of each individual  $\int_{\mathbb{R}^n} \frac{p(x|y_i)}{a_i + 1}$ 

class, p(x|y<sub>i</sub>)

380 430 430 580 580 680 730 Wavelength (nm)

But what we really want for classification is p(y<sub>i</sub>|x): what is the probability

of class y<sub>i</sub>

for given value of x?





## Often, we just have p(x|y)

I'm not a robot

Two classes: robot or human Two features,  $x=(x^1,x^2)$ :



randomness (deviation from straight line)



# Probabilistic decision making

#### Assume:

- Somehow we got to know:
  - The distributions P(x|y<sub>i</sub>) for each class y<sub>i</sub> (i.e., the distributions over feature vectors x)
  - The probabilities  $P(y_i)$  for each class  $y_i$  (i.e., single numbers)

How do we make decisions given this information?





### Bayes theorem

- Conditional probability Y given X
   P(Y=y | X=x) = P(X=x AND Y=y) / P(X=x)
  - That means:  $P(X=x \text{ AND } Y=y) = P(Y=y \mid X=x) P(X=x)$
- Conditional probability X given Y
   P(X=x | Y=y) = P(X=x AND Y=y) / P(Y=y)
  - That means: P(X=x AND Y=y) = P(X=x | Y=y) P(Y=y)
- Bayes Theorem links these two conditional probabilities: P(y|x) = P(x|y) P(y) / P(x)
  - From P(y|x)P(x)=P(x,y)=P(x|y)P(y)

#### Probabilistic classification

#### Assume:

- Somehow we got to know:
  - The distributions  $P(x|y_i)$  for each class  $y_i$  (i.e., the distributions over feature vectors x)
  - The probabilities  $P(y_i)$  for each class  $y_i$  (i.e., single numbers)
- How do we make decisions given this information?

We use Bayes Theorem!  

$$P(y_i \mid x) = P(x \mid y_i)P(y_i) / P(x)$$

$$= P(x \mid y_i)P(y_i) / \sum_i P(x \mid y_i)P(y_i)$$





#### Probabilistic classification

Detailed derivation:

 $P(A)=\Sigma_i P(A|B_i)P(B_i)$ 

- $p(y_i | x) = p(x | y_i) p(y_i) / p(x)$ 
  - $P(y_i,x)=P(y_i|x)P(x)=P(y_i|x)P(x)$   $P(y_i,x)=P(x|y_i)P(y_i)=P(x|y_i)P(y_i)$
- $p(y_i | x) = p(x | y_i) p(y_i) / Σ_i p(x | y_i) P(y_i)$

#### Recap: Probabilistic classification

- How do we make decisions given  $P(x|y_i)$  and  $P(y_i)$ ?
  - $p(y_i | x) = p(x | y_i) p(y_i) / p(x)$ ~  $p(x | y_i) p(y_i)$

p(x) same for each y<sub>i</sub>

In python (using scipy + numpy):

```
from scipy.stats import multivariate normal;
def predict y0orl for x(x):
     # someone gave us means, covariances, and prob. of classes
     distr x given class0 = multivariate normal(mean=mean0, cov=covariance0)
     distr x given class1 = multivariate normal (mean=mean1, cov=covariance1)
    p y 0 = 0.45;
                                p y 1 = 1-py 0;
     # get p(x|y)
    p \times given y0 = distr \times given class0.pdf(x)
    p x given y1 = distr x given class1.pdf(x)
     # calculate p(y|x) // ignoring p(x)
    p y 0 given x = p y 0 * p x given y 0
    p y1 given x = p y 1 * p x given y1
     if (p \ y0 \ qiven \ x > p \ y1 \ qiven \ x):
                                                   return 0;
     else:
                                                   return 1;
```



#### Probabilistic classification

#### Two classes: car or SUV (HW1 data)



- How do we make decisions given  $P(x|y_i)$  and  $P(y_i)$ ?
  - p(car | x) = p(x | car) p(car)
  - $p(SUV \mid x) = p(x \mid SUV) p(SUV)$

In python:

 when new vehicle pops up, we just do the arithmetic to make a prediction

