Trustworthy Boolean Reasoning 2B: Proof Generation with BDDs

Randal E. Bryant

Carnegie Mellon University

June, 2022

Bryant: SSFT22 1 / 25

Important Ideas for These Lectures

- SAT solvers are useful tools
 - Many practical problems reducible to SAT
 - Need to learn effective encoding techniques
- ▶ For many applications, formulas should be unsatisfiable
 - Program should generate a checkable proof
 - ► There is a well-developed proof infrastructure
- Binary Decision Diagrams (BDDs) can play important role
 - In supplementing current SAT algorithms
 - In proof generation

Bryant: SSFT22 2 / 25

Extended Resolution and BDDs

▶ Tseitin, 1967

Can introduce extension variables

- ▶ Variable z that has not yet occurred in proof
- Must add defining clauses
 - ▶ Encode constraint of form $z \leftrightarrow F$
 - ▶ Boolean formula z over input and earlier extension variables

Extension variable z becomes shorthand for formula F

Repeated use can yield exponentially smaller proof

Bryant: SSFT22 3 / 2

Extended Resolution and BDDs

► Tseitin, 1967

Can introduce extension variables

- ▶ Variable z that has not yet occurred in proof
- Must add defining clauses
 - ▶ Encode constraint of form $z \leftrightarrow F$
 - ▶ Boolean formula z over input and earlier extension variables

Extension variable z becomes shorthand for formula F

Repeated use can yield exponentially smaller proof

Generate extension variable for every node in BDD

- ▶ Biere, Sinz, Jussila, 2006
- ► Each recursive step of Apply algorithm justified as proof steps

▶ Reducing formula to BDD ⊥ yields UNSAT proof

Bryant: SSFT22 3 / 25

Generating Extended Resolution Proofs

- Create extension variable for each node in BDD
 - Notation: Same symbol for node and its extension variable

▶ Defining clauses encode constraint $u \leftrightarrow ITE(x, u_1, u_0)$

Clause name	Formula	Clausal form
HD(u)	$x \rightarrow (u \rightarrow u_1)$	$\overline{x} \vee \overline{u} \vee u_1$
LD(u)	$\overline{x} \rightarrow (u \rightarrow u_0)$	$x \vee \overline{u} \vee u_0$
HU(u)	$x \rightarrow (u_1 \rightarrow u)$	$\overline{x} \vee \overline{u}_1 \vee u$
LU(u)	$\overline{x} \rightarrow (u_0 \rightarrow u)$	$x \vee \overline{u}_0 \vee u$

Bryant: SSFT22 4 / 2

Apply Algorithm Recursion

Bryant: SSFT22 5 / 2

Apply Algorithm Recursion

Bryant: SSFT22 5 / 2

Apply Algorithm Recursion

Bryant: SSFT22 5 / 2

Proof-Generating Apply Operation

Integrate Proof Generation into Apply Operation

- ▶ When Apply (u, v, \land) returns w, also generate proof $u \land v \rightarrow w$
- ► **Key Idea:** Proof based on the underlying logic of the Apply algorithm

Proof Structure

Assume recursive calls generate proofs

- $ightharpoonup u_1 \wedge v_1 \rightarrow w_1$
- $ightharpoonup u_0 \wedge v_0 \rightarrow w_0$
- \triangleright Combine with defining clauses for nodes u, v, and w

Bryant: SSFT22 6/2

Apply Proof Structure

Defining Clauses

Clause	Formula	Clause	Formula
HD(u)	$x \rightarrow (u \rightarrow u_1)$	LD(u)	$\overline{x} \rightarrow (u \rightarrow u_0)$
HD(v)	$x \rightarrow (v \rightarrow v_1)$	LD(v)	$\overline{x} \rightarrow (v \rightarrow v_0)$
HU(w)	$x \rightarrow (w_1 \rightarrow w)$	LU(w)	$\overline{x} \rightarrow (w_0 \rightarrow w)$

Resolution Steps

$$\begin{array}{cccc}
x \to (u \to u_1) & \overline{x} \to (u \to u_0) \\
x \to (v \to v_1) & \overline{x} \to (v \to v_0) \\
x \to (w_1 \to w) & u_1 \land v_1 \to w_1 & \overline{x} \to (w_0 \to w) & u_0 \land v_0 \to w_0 \\
\hline
\underline{x \to (u \land v \to w)} & \overline{x} \to (u \land v \to w)
\end{array}$$

Can perform with 2 RUP steps

Bryant: SSFT22 7/25

Quantification Operations

Operation EQuant(f, X)

- Abstract away details of satisfying (partial) solutions
- Not logically required for SAT solver
 - ▶ But, critical for obtaining good performance

Proof Generation

- ▶ Do not attempt to follow recursive structure of algorithm
- Instead, follow with separate implication proof generation
 - ▶ EQuant $(u, X) \rightarrow w$
 - ▶ Generate proof $u \rightarrow w$
 - Algorithm similar to proof-generating Apply operation

Bryant: SSFT22 8 / 25

Overall Proof Task

Input Variables

Input Clauses

▶ Set of input clauses C_I over the input variables

Completion

▶ Generate Proof $C_I \models \bot$

Bryant: SSFT22 9/2!

Trusted BDDs (TBDD)

Components

- BDD with root node t
- Proof step for unit clause (t)

Interpretation

- $ightharpoonup C_I \models t$
- Any variable assignment that satisfies input clauses must yield 1 for BDD with root t

Bryant: SSFT22 10 / 25

TBDD Example

 C_1 $\overline{a} \lor b$ C_2 $a \lor \overline{c}$

 $t_1 \leftarrow FromClause(C_1)$ $t_2 \leftarrow FromClause(C_2)$

Bryant: SSFT22

TBDD Example

 C_1 $\overline{a} \lor b$ C_2 $a \lor \overline{c}$

 $t_1 \leftarrow FromClause(C_1)$ $t_2 \leftarrow FromClause(C_2)$ $t_3 \leftarrow ApplyAnd(t_1, t_2)$

Bryant: SSFT22

Input Variables

▶ BDD variable for each input variable

Bryant: SSFT22 12 / 25

Input Variables

▶ BDD variable for each input variable

Input Clauses

- ▶ For each input clause $C_i \in C_I$, generate BDD representation t_i
- ▶ Generate *validation* proof $C_i \models t_i$
 - Sequence of resolution steps based on linear structure of BDD
- Initial set of TBDDs

Bryant: SSFT22 12 / 25

Input Variables

BDD variable for each input variable

Input Clauses

- ▶ For each input clause $C_i \in C_I$, generate BDD representation t_i
- ▶ Generate *validation* proof $C_i \models t_i$
 - Sequence of resolution steps based on linear structure of BDD
- Initial set of TBDDs

Combine Top-Level BDDs

- ▶ Choose TBDDs t_i , t_j . Use to generate TBDD t_k
- $ightharpoonup t_k \longleftarrow \mathsf{ApplyAnd}(t_i, t_j)$
 - ▶ Combine proofs $C_l \vDash t_i$, $C_l \vDash t_j$ and $t_i \land t_j \rightarrow t_k$ to validate $C_l \vDash t_k$
- $ightharpoonup t_k \leftarrow \mathsf{EQuant}(t_i, X)$
 - ▶ Combine proofs $C_I \models t_i$ and $t_i \rightarrow t_k$ to validate $C_I \models t_k$

Bryant: SSFT22 12 / 25

Input Variables

BDD variable for each input variable

Input Clauses

- ▶ For each input clause $C_i \in C_I$, generate BDD representation t_i
- ▶ Generate *validation* proof $C_i \models t_i$
 - Sequence of resolution steps based on linear structure of BDD
- Initial set of TBDDs

Combine Top-Level BDDs

- ▶ Choose TBDDs t_i , t_i . Use to generate TBDD t_k
- $ightharpoonup t_k \longleftarrow \mathsf{ApplyAnd}(t_i, t_j)$
 - ▶ Combine proofs $C_I \vDash t_i$, $C_I \vDash t_j$ and $t_i \land t_j \to t_k$ to validate $C_I \vDash t_k$
- $ightharpoonup t_k \longleftarrow \mathsf{EQuant}(t_i, X)$
 - ▶ Combine proofs $C_I \models t_i$ and $t_i \rightarrow t_k$ to validate $C_I \models t_k$

Completion

Bryant: SSFT22

▶ When $t_k = \bot$ have proof $C_l \models \bot$

Comparing Proofs

Generated by CDCL Solver

- Resolution
- Encode conflict clauses
 - ▶ Increasingly strong constraints on set of satisfying solutions
- ▶ Reach empty clause when detect there is no solution

Generated with BDD-Based Solver

- Extended resolution
- Justify each recursive step of BDD algorithm
- lacktriangle Reach empty clause when reduce formula to BDD leaf ot

Checking

▶ Both checked with DRAT/LRAT checkers

Bryant: SSFT22 13 / 25

TBSAT (Trusted BDD Satisfiability solver)

Implementation

- ► TBUDDY: Modified version of BuDDy BDD package
 - ► Lind-Nielsen, ca. 1998
- Support for TBDDs and proof generation
- ► C/C++
- https://github.com/rebryant/tbuddy-artifact

Bryant: SSFT22 14 / 25

Parity Benchmark Proof Complexity

- ► Total number of proof steps
 - ► Defining clauses + RUP clauses
- ► TBSAT with bucket elimination scales polynomially

► Checker time ≈ Solver time

Bryant: SSFT22 15 / 25

Integrating Parity Reasoning into Proof-Generating SAT Solver

- Overall flow same as SAT solver.
- Parity solver does all of the reasoning
- ▶ BDDs serve only as mechanism for generating clausal proof

Bryant: SSFT22 16 / 25

Gaussian Elimination Over GF2

System of Equations $E = \{e_1, e_2, \dots, e_m\}$

$$\mathbf{e}_i: \sum_{j=1,n} a_{i,j} \cdot x_j = b_i$$

Assume

- ▶ $a_{i,j}, x_i \in \{0, 1\}$
- $\rightarrow a+b \equiv a \oplus b$
- $ightharpoonup a \cdot b \equiv a \wedge b$

Capability

▶ Can determine if there are any solutions for $x_1, x_2, ..., x_n$

Bryant: SSFT22 17 / 25

Gaussian Elimination Over GF2

System of Equations $E = \{e_1, e_2, \dots, e_m\}$

$$\mathbf{e}_i: \sum_{j=1,n} a_{i,j} \cdot x_j = b_i$$

Elimination Step

- 1. Choose pivot equation \mathbf{e}_s and variable x_t such that $a_{s,t} = 1$
- 2. For each $i \neq s$:

$$\mathbf{e}_i \leftarrow \left\{ egin{array}{ll} \mathbf{e}_i & a_{i,t} = 0 \\ \mathbf{e}_s + \mathbf{e}_i, & a_{i,t} = 1 \end{array} \right.$$

- ▶ Guarantees $a_{i,t} = 0$ for all $i \neq s$
- 3. Remove e_s from E and repeat until single equation left

Bryant: SSFT22 17 / 25

Gaussian Elimination Results

Possible Outcomes

- 1. If encounter degenerate equation
 - ightharpoonup Of form 0 = 1
 - ▶ Has no solution
- 2. Otherwise,
 - Can perform back substitution to find solution

Bryant: SSFT22 18 / 25

CNF to Parity Constraint Validation

Clauses

- ▶ Suppose clauses $C_{i_1}, C_{i_2}, \ldots, C_{i_k}$ encode parity constraint equation **e**
- ▶ Have validated BDD representations $t_{i_1}, t_{i_2}, \ldots, t_{i_k}$

Form conjunction

$$s = \bigwedge_{1 \leq j \leq k} t_{i_j}$$

▶ Also yields proof $C_I \models s$

Represent Constraint

▶ Form BDD representation t_j of **e**

Validate

- ▶ Generate proof $s o t_j$
- ▶ Use to validate term $C_I \models t_j$

Bryant: SSFT22

Parity Step Validation

Assume

- ▶ Have BDDs t_i and t_j representing equations \mathbf{e}_i and \mathbf{e}_j
- ▶ Satisfying $C_I \models t_i$ and $C_I \models t_i$

Compute

- $ightharpoonup s \leftarrow ApplyAnd(t_i, t_i)$
 - ▶ Gives proof $t_i \land t_i \rightarrow s$
- ▶ Generate BDD representation t_k of equation $\mathbf{e}_k = \mathbf{e}_i + \mathbf{e}_i$

Validation

- ▶ Generate proof $s \rightarrow t_k$
- ▶ Combine with other proofs to validate $C_I \models t_k$

Bryant: SSFT22 20/2

Parity Benchmark Runtime

- n = 100,000 in 74 seconds
- ▶ Upper limit: n = 699,051
 - ▶ BuDDy limited to 2²¹ − 1 BDD variables

Bryant: SSFT22 21 / 25

Parity Benchmark Proof Complexity

- ► Total number of proof steps
 - ▶ Defining clauses + RUP clauses
- ▶ Checker time ≈ Solver time

Bryant: SSFT22 22 / 25

Final Thoughts on SAT Solvers

CDCL is the best overall approach

- Readily generates resolution proofs
- But, very weak for parity and cardinality constraints

BDDs provide complementary strengths

- Can generate extended resolution proofs
- Very strong for parity constraints
- Some success with cardinality constraints

Future solvers should use combination of methods

- With unified proof framework
- Clausal reasoning
- Constraint reasoning
- Boolean reasoning

Bryant: SSFT22 23 / 25

Final Thoughts on Checkable Proofs

Important capability

- ▶ Vital to gain confidence in automated reasoning tools
- Benefits both tool developers and tool users

SAT community handled this especially well

- Started with well-established logical framework (resolution)
- Developed efficient algorithms that integrated well with solvers (RUP)
- Included more general capabilities (extended resolution)
- ► Formulated file formats, tool chain
- Fostered deployment through competitions

More challenging for other domains

► Beyond Boolean

Bryant: SSFT22 24 / 25

Some References

BDDs

- ► R. E. Bryant, "Graph-Based Algorithms for Boolean Function Manipulation," *IEEE Transactions on Computers*, 1986
- ▶ R. E. Bryant, "Binary Decision Diagrams," Handbook of Model Checking, 2018

Proof Generation with BDDs

- R. E. Bryant and M. J. H. Heule, "Generating Extended Resolution Proofs with a BDD-Based SAT Solver," TACAS, 2021
- ▶ R. E. Bryant, A. Biere, and M. J. H. Heule, "Clausal Proofs from Pseudo-Boolean Reasoning," TACAS, 2022
- ► R. E. Bryant, "TBUDDY: A Proof-Generating BDD Package," in submission, 2022

Bryant: SSFT22 25 / 25