COUNT NOUNS
MASS NOUNS

distinguish between **count nouns**, such as aardvarks, holes, and theorems, and **mass nouns**, such as butter, water, and energy. Several competing ontologies claim to handle this distinction. We will describe just one; the others are covered in the historical notes section.

To represent stuff properly, we begin with the obvious. We will need to have as objects in our ontology at least the gross "lumps" of stuff we interact with. For example, we might recognize a lump of butter as the same butter that was left on the table the night before; we might pick it up, weigh it, sell it, or whatever. In these senses, it is an object just like the aardvark. Let us call it $Butter_3$. We will also define the category Butter. Informally, its elements will be all those things of which one might say "It's butter," including $Butter_3$. With some caveats about very small parts that we will omit for now, any part of a butter-object is also a butter-object:

 $x \in Butter \land PartOf(y, x) \Rightarrow y \in Butter$.

We can now say that butter melts at around 30 degrees centigrade:

 $x \in Butter \Rightarrow MeltingPoint(x, Centigrade(30))$.

We could go on to say that butter is yellow, is less dense than water, is soft at room temperature, has a high fat content, and so on. On the other hand, butter has no particular size, shape, or weight. We can define more specialized categories of butter such as *UnsaltedButter*, which is also a kind of stuff. On the other hand, the category *PoundOfButter*, which includes as members all butter-objects weighing one pound, is not a substance! If we cut a pound of butter in half, we do not, alas, get two pounds of butter.

INTRINSIC

EXTRINSIC

What is actually going on is this: there are some properties that are **intrinsic**: they belong to the very substance of the object, rather than to the object as a whole. When you cut a substance in half, the two pieces retain the same set of intrinsic properties—things like density, boiling point, flavor, color, ownership, and so on. On the other hand, **extrinsic** properties are the opposite: properties such as weight, length, shape, function, and so on are not retained under subdivision.

A class of objects that includes in its definition only *intrinsic* properties is then a substance, or mass noun; a class that includes *any* extrinsic properties in its definition is a count noun. The category *Stuff* is the most general substance category, specifying no intrinsic properties. The category *Thing* is the most general discrete object category, specifying no extrinsic properties. All physical objects belong to both categories, so the categories are coextensive—they refer to the same entities.

10.3 ACTIONS, SITUATIONS, AND EVENTS

Reasoning about the results of actions is central to the operation of a knowledge-based agent. Chapter 7 gave examples of propositional sentences describing how actions affect the wumpus world—for example, Equation (7.3) on page 227 states how the agent's location is changed by forward motion. One drawback of propositional logic is the need to have a different copy of the action description for each time at which the action might be executed. This section describes a representation method that uses first-order logic to avoid that problem.

The ontology of situation calculus

One obvious way to avoid multiple copies of axioms is simply to quantify over time—to say, " $\forall t$, such-and-such is the result at t+1 of doing the action at t." Instead of dealing with explicit times like t+1, we will concentrate in this section on *situations*, which denote the states resulting from executing actions. This approach is called situation calculus and involves the following ontology:

- As in Chapter 8, actions are logical terms such as Forward and Turn(Right). For now, we will assume that the environment contains only one agent. (If there is more than one, an additional argument can be inserted to say which agent is doing the action.)
- ullet Situations are logical terms consisting of the initial situation (usually called S_0) and all situations that are generated by applying an action to a situation. The function Result(a,s) (sometimes called Do) names the situation that results when action a is executed in situation s. Figure 10.2 illustrates this idea.
- Fluents are functions and predicates that vary from one situation to the next, such as the location of the agent or the aliveness of the wumpus. The dictionary says a fluent is something that flows, like a liquid. In this use, it means flowing or changing across situations. By convention, the situation is always the last argument of a fluent. For example, $\neg Holding(G_1, S_0)$ says that the agent is not holding the gold G_1 in the initial situation S_0 . $Age(Wumpus, S_0)$ refers to the wumpus's age in S_0 .
- Atemporal or eternal predicates and functions are also allowed. Examples include the predicate $Gold(G_1)$ and the function LeftLegOf(Wumpus).

Figure 10.2 In situation calculus, each situation (except S_0) is the result of an action.

SITUATION CALCULUS

SITUATIONS

FLUENTS

Chapter 10. Knowledge Representation

In addition to single actions, it is also helpful to reason about action sequences. We can define the results of sequences in terms of the results of individual actions. First, we say that executing an empty sequence leaves the situation unchanged:

$$Result([],s)=s$$
.

Executing a nonempty sequence is the same as executing the first action and then executing the rest in the resulting situation:

$$Result([a|seq], s) = Result(seq, Result(a, s))$$
.

A situation calculus agent should be able to deduce the outcome of a given sequence of actions; this is the **projection** task. With a suitable constructive inference algorithm, it should also be able to *find* a sequence that achieves a desired effect; this is the **planning** task.

We will use an example from a modified version of the wumpus world where we do not worry about the agent's orientation and where the agent can Go from one location to an adjacent one. Suppose the agent is at [1,1] and the gold is at [1,2]. The aim is to have the gold in [1,1]. The fluent predicates are At(o,x,s) and Holding(o,s). Then the initial knowledge base might include the following description:

$$At(Agent, [1, 1], S_0) \wedge At(G_1, [1, 2], S_0)$$
.

This is not quite enough, however, because it doesn't say what isn't true in S_0 . (See page 355 for further discussion of this point.) The complete description is as follows:

$$At(o, x, S_0) \Leftrightarrow [(o = Agent \land x = [1, 1]) \lor (o = G_1 \land x = [1, 2])]$$
. $\neg Holding(o, S_0)$.

We also need to state that G_1 is gold and that [1,1] and [1,2] are adjacent:

$$Gold(G_1) \wedge Adjacent([1,1],[1,2]) \wedge Adjacent([1,2],[1,1])$$
.

One would like to be able to prove that the agent achieves its aim by going to [1, 2], grabbing the gold, and returning to [1, 1]. That is,

$$At(G_1, [1, 1], Result([Go([1, 1], [1, 2]), Grab(G_1), Go([1, 2], [1, 1])], S_0))$$
.

More interesting is the possibility of constructing a plan to get the gold, which is achieved by answering the query "what sequence of actions results in the gold being at [1,1]?"

$$\exists seq At(G_1, [1, 1], Result(seq, S_0)).$$

Let us see what has to go into the knowledge base for these queries to be answered.

Describing actions in situation calculus

POSSIBILITY AXIOM

330

PROJECTION

PLANNING

In the simplest version of situation calculus, each action is described by two axioms: a **possibility axiom** that says when it is possible to execute the action, and an **effect axiom** that says what happens when a possible action is executed. We will use Poss(a, s) to mean that it is possible to execute action a in situation s. The axioms have the following form:

Possibility Axiom: $Preconditions \Rightarrow Poss(a, s)$.

EFFECT AXIOM: $Poss(a, s) \Rightarrow Changes that result from taking action.$

We will present these axioms for the modified wumpus world. To shorten our sentences, we will omit universal quantifiers whose scope is the entire sentence. We assume that the variable s ranges over situations, a ranges over actions, o over objects (including agents), g over gold, and x and y over locations.

The possibility axioms for this world state that an agent can go between adjacent locations, grab a piece of gold in the current location, and release some gold that it is holding:

$$\begin{array}{lll} At(Agent,x,s) \wedge Adjacent(x,y) & \Rightarrow & Poss(Go(x,y),s) \, . \\ Gold(g) \wedge At(Agent,x,s) \wedge At(g,x,s) & \Rightarrow & Poss(Grab(g),s) \, . \\ Holding(g,s) & \Rightarrow & Poss(Release(g),s) \, . \end{array}$$

The effect axioms state that, if an action is possible, then certain properties (fluents) will hold in the situation that results from executing the action. Going from x to y results in being at y, grabbing the gold results in holding the gold, and releasing the gold results in not holding it:

```
Poss(Go(x,y),s)
                      \Rightarrow At(Agent, y, Result(Go(x, y), s)).
Poss(Grab(q), s) \Rightarrow Holding(g, Result(Grab(g), s)).
Poss(Release(g), s) \Rightarrow \neg Holding(g, Result(Release(g), s)).
```

Having stated these axioms, can we prove that our little plan achieves the goal? Unfortunately not! At first, everything works fine; Go([1,1],[1,2]) is indeed possible in S_0 and the effect axiom for Go allows us to conclude that the agent reaches [1,2]:

$$At(Agent, [1, 2], Result(Go([1, 1], [1, 2]), S_0))$$
.

Now we consider the $Grab(G_1)$ action. We have to show that it is possible in the new situation—that is,

$$At(G_1, [1, 2], Result(Go([1, 1], [1, 2]), S_0))$$
.

Alas, nothing in the knowledge base justifies such a conclusion. Intuitively, we understand that the agent's Go action should have no effect on the gold's location, so it should still be at [1, 2], where it was in S_0 . The problem is that the effect axioms say what changes, but don't say what stays the same.

Representing all the things that stay the same is called the frame problem. We must find an efficient solution to the frame problem because, in the real world, almost everything stays the same almost all the time. Each action affects only a tiny fraction of all fluents.

One approach is to write explicit frame axioms that do say what stays the same. For example, the agent's movements leave other objects stationary unless they are held:

$$At(o, x, s) \land (o \neq Agent) \land \neg Holding(o, s) \Rightarrow At(o, x, Result(Go(y, z), s))$$
.

If there are F fluent predicates and A actions, then we will need O(AF) frame axioms. On the other hand, if each action has at most E effects, where E is typically much less than F, then we should be able to represent what happens with a much smaller knowledge base of size O(AE). This is the representational frame problem. The closely related inferential frame problem is to project the results of a t-step sequence of actions in time O(Et), rather than time O(Ft) or O(AEt). We will address each problem in turn. Even then, another problem remains—that of ensuring that all necessary conditions for an action's success have been specified. For example, Go fails if the agent dies en route. This is the qualification **problem**, for which there is no complete solution.

FRAME PROBLEM

FRAME AXIOM

REPRESENTATIONAL FRAME PROBLEM

QUALIFICATION PROBLEM

Actions, Situations, and Events

We will present these axioms for the modified wumpus world. To shorten our sentences, we will omit universal quantifiers whose scope is the entire sentence. We assume that the variable s ranges over situations, a ranges over actions, o over objects (including agents), g over gold, and g and g over locations.

331

The possibility axioms for this world state that an agent can go between adjacent locations, grab a piece of gold in the current location, and release some gold that it is holding:

```
\begin{array}{lll} At(Agent,x,s) \wedge Adjacent(x,y) & \Rightarrow & Poss(Go(x,y),s) \; . \\ Gold(g) \wedge At(Agent,x,s) \wedge At(g,x,s) & \Rightarrow & Poss(Grab(g),s) \; . \\ Holding(g,s) & \Rightarrow & Poss(Release(g),s) \; . \end{array}
```

The effect axioms state that, if an action is possible, then certain properties (fluents) will hold in the situation that results from executing the action. Going from x to y results in being at y, grabbing the gold results in holding the gold, and releasing the gold results in not holding it:

```
\begin{array}{lll} Poss(Go(x,y),s) & \Rightarrow & At(Agent,y,Result(Go(x,y),s)) \,. \\ Poss(Grab(g),s) & \Rightarrow & Holding(g,Result(Grab(g),s)) \,. \\ Poss(Release(g),s) & \Rightarrow & \neg Holding(g,Result(Release(g),s)) \,. \end{array}
```

Having stated these axioms, can we prove that our little plan achieves the goal? Unfortunately not! At first, everything works fine; Go([1,1],[1,2]) is indeed possible in S_0 and the effect axiom for Go allows us to conclude that the agent reaches [1,2]:

$$At(Agent, [1, 2], Result(Go([1, 1], [1, 2]), S_0))$$
.

Now we consider the $Grab(G_1)$ action. We have to show that it is possible in the new situation—that is,

$$At(G_1, [1, 2], Result(Go([1, 1], [1, 2]), S_0))$$
.

Alas, nothing in the knowledge base justifies such a conclusion. Intuitively, we understand that the agent's Go action should have no effect on the gold's location, so it should still be at [1,2], where it was in S_0 . The problem is that the effect axioms say what changes, but don't say what stays the same.

Representing all the things that stay the same is called the **frame problem**. We must find an efficient solution to the frame problem because, in the real world, almost everything stays the same almost all the time. Each action affects only a tiny fraction of all fluents.

One approach is to write explicit **frame axioms** that *do* say what stays the same. For example, the agent's movements leave other objects stationary unless they are held:

$$At(o, x, s) \land (o \neq Agent) \land \neg Holding(o, s) \Rightarrow At(o, x, Result(Go(y, z), s))$$
.

If there are F fluent predicates and A actions, then we will need O(AF) frame axioms. On the other hand, if each action has at most E effects, where E is typically much less than F, then we should be able to represent what happens with a much smaller knowledge base of size O(AE). This is the **representational frame problem**. The closely related **inferential frame problem** is to project the results of a t-step sequence of actions in time O(Et), rather than time O(Ft) or O(AEt). We will address each problem in turn. Even then, another problem remains—that of ensuring that all necessary conditions for an action's success have been specified. For example, Go fails if the agent dies en route. This is the qualification **problem**, for which there is no complete solution.

-2	2	$^{\circ}$
		L

Chapter 10. Knowledge Representation

Solving the representational frame problem

The solution to the representational frame problem involves just a slight change in viewpoint on how to write the axioms. Instead of writing out the effects of each action, we consider how each fluent predicate evolves over time.³ The axioms we use are called **successor-state** axioms. They have the following form:

SUCCESSOR-STATE AXIOM:

Action is possible \Rightarrow (Fluent is true in result state \Rightarrow Action's effect made it true \vee It was true before and action left it alone).

After the qualification that we are not considering impossible actions, notice that this definition uses \Leftrightarrow , not \Rightarrow . This means that the axiom says that the fluent will be true if *and only if* the right-hand side holds. Put another way, we are specifying the truth value of each fluent in the next state as a function of the action and the truth value in the current state. This means that the next state is completely specified from the current state and hence that there are no additional frame axioms needed.

The successor-state axiom for the agent's location says that the agent is at y after executing an action either if the action is possible and consists of moving to y or if the agent was already at y and the action is not a move to somewhere else:

$$\begin{array}{ll} Poss(a, \textbf{\textit{s}}) \Rightarrow \\ (At(Agent, y, Result(a, s)) & \Leftrightarrow & a = Go(x, y) \\ & \vee (At(Agent, y, s) \land a \neq Go(y, z))) \end{array}$$

The axiom for Holding says that the agent is holding g after executing an action if the action was a grab of g and the grab is possible or if the agent was already holding g, and the action is not releasing it:

$$\begin{array}{ll} Poss(a, \textbf{\textit{s}}) \Rightarrow \\ (Holding(g, Result(a, s)) & \Leftrightarrow & a = Grab(g) \\ & \vee (Holding(g, s) \wedge a \neq Release(g))) \; . \end{array}$$

Successor-state axioms solve the representational frame problem because the total size of the axioms is O(AE) literals: each of the E effects of each of the A actions is mentioned exactly once. The literals are spread over F different axioms, so the axioms have average size AE/F.

The astute reader will have noticed that these axioms handle the At fluent for the agent, but not for the gold; thus, we still cannot prove that the three-step plan achieves the goal of having the gold in [1,1]. We need to say that an **implicit effect** of an agent moving from x to y is that any gold it is carrying will move too (as will any ants on the gold, any bacteria on the ants, etc.). Dealing with implicit effects is called the **ramification problem**. We will discuss the problem in general later, but for this specific domain, it can be solved by writing a more general successor-state axiom for At. The new axiom, which subsumes the previous version, says that an object o is at y if the agent went to y and o is the agent or something the

SUCCESSOR-STATE AXIOM

100

IMPLICIT EFFECT

RAMIFICATION PROBLEM

This is essentially the approach we took in building the Boolean circuit-based agent in Chapter 7. Indeed, axioms such as Equation (7.4) and Equation (7.5) can be viewed as successor-state axioms.

n

agent was holding; or if o was already at y and the agent didn't go elsewhere, with o being the agent or something the agent was holding.

$$\begin{array}{ccc} Poss(a,s) \Rightarrow & \\ At(o,y,Result(a,s)) & \Leftrightarrow & (a=Go(x,y) \land (o=Agent \lor Holding(o,s))) \\ & \lor (At(o,y,s) \land \neg (\exists z \ y \neq z \land a = Go(y,z) \land \\ & & (o=Agent \lor Holding(o,s)))) \ . \end{array}$$

There is one more technicality: an inference process that uses these axioms must be able to prove nonidentities. The simplest kind of nonidentity is between constants—for example, $Agent \neq G_1$. The general semantics of first-order logic allows distinct constants to refer to the same object, so the knowledge base must include an axiom to prevent this. The **unique names axiom** states a disequality for every pair of constants in the knowledge base. When this is assumed by the theorem prover, rather than written down in the knowledge base, it is called a **unique names assumption**. We also need to state disequalities between action terms: Go([1,1],[1,2]) is a different action from Go([1,2],[1,1]) or $Grab(G_1)$. First, we say that each type of action is distinct—that no Go action is a Grab action. For each pair of action names A and B, we would have

$$A(x_1,\ldots,x_m)\neq B(y_1,\ldots,y_n)$$
.

Next, we say that two action terms with the same action name refer to the same action only if they involve all the same objects:

$$A(x_1,\ldots,x_m) = A(y_1,\ldots,y_m) \Leftrightarrow x_1 = y_1 \wedge \ldots \wedge x_m = y_m$$

UNIQUE ACTION AXIOMS

UNIQUE NAMES

These are called, collectively, the **unique action axioms**. The combination of initial state description, successor-state axioms, unique name axiom, and unique action axioms suffices to prove that the proposed plan achieves the goal.

Solving the inferential frame problem

Successor-state axioms solve the representational frame problem, but not the inferential frame problem. Consider a t-step plan p such that $S_t = Result(p, S_0)$. To decide which fluents are true in S_t , we need to consider each of the F frame axioms on each of the t time steps. Because the axioms have average size AE/F, this gives us O(AEt) inferential work. Most of the work involves copying fluents unchanged from one situation to the next.

To solve the inferential frame problem, we have two possibilities. First, we could discard situation calculus and invent a new formalism for writing axioms. This has been done with formalisms such as the **fluent calculus**. Second, we could alter the inference mechanism to handle frame axioms more efficiently. A hint that this should be possible is that the simple approach is O(AEt); why should it depend on the number of actions, A, when we know exactly which one action is executed at each time step? To see how to improve matters, we first look at the format of the frame axioms:

$$Poss(a, s) \Rightarrow$$

 $F_i(Result(a, s)) \Leftrightarrow (a = A_1 \lor a = A_2 ...)$
 $\lor F_i(s) \land (a \neq A_3) \land (a \neq A_4) ...$

That is, each axiom mentions several actions that can make the fluent true and several actions that can make it false. We can formalize this by introducing the predicate $PosEffect(a, F_i)$, meaning that action a causes F_i to become true, and $NegEffect(a, F_i)$ meaning that a causes F_i to become false. Then we can rewrite the foregoing axiom schema as:

```
\begin{array}{l} Poss(a,s) \Rightarrow \\ F_i(Result(a,s)) \Leftrightarrow PosEffect(a,F_i) \vee [F_i(s) \wedge \neg NegEffect(a,F_i)] \\ PosEffect(A_1,F_i) \\ PosEffect(A_2,F_i) \\ NegEffect(A_3,F_i) \\ NegEffect(A_4,F_i) \ . \end{array}
```

Whether this can be done automatically depends on the exact format of the frame axioms. To make an efficient inference procedure using axioms like this, we need to do three things:

- 1. Index the PosEffect and NegEffect predicates by their first argument so that when we are given an action that occurs at time t, we can find its effects in O(1) time.
- 2. Index the axioms so that once you know that F_i is an effect of an action, you can find the axiom for F_i in O(1) time. Then you need not even consider the axioms for fluents that are not an effect of the action.
- 3. Represent each situation as a previous situation plus a delta. Thus, if nothing changes from one step to the next, we need do no work at all. In the old approach, we would need to do O(F) work in generating an assertion for each fluent $F_i(Result(a, s))$ from the preceding $F_i(s)$ assertions.

Thus at each time step, we look at the current action, fetch its effects, and update the set of true fluents. Each time step will have an average of E of these updates, for a total complexity of O(Et). This constitutes a solution to the inferential frame problem.

Time and event calculus

Situation calculus works well when there is a single agent performing instantaneous, discrete actions. When actions have duration and can overlap with each other, situation calculus becomes somewhat awkward. Therefore, we will cover those topics with an alternative formalism known as **event calculus**, which is based on points in time rather than on situations. (The terms "event" and "action" may be used interchangeably. Informally, "event" connotes a wider class of actions, including ones with no explicit agent. These are easier to handle in event calculus than in situation calculus.)

In event calculus, fluents hold at points in time rather than at situations, and the calculus is designed to allow reasoning over intervals of time. The event calculus axiom says that a fluent is true at a point in time if the fluent was initiated by an event at some time in the past and was not terminated by an intervening event. The Initiates and Terminates relations play a role similar to the Result relation in situation calculus; Initiates(e, f, t) means that the occurrence of event e at time t causes fluent f to become true, while Terminates(w, f, t) means that f ceases to be true. We use Happens(e, t) to mean that event e happens at time e,

EVENT CALCULUS

Section 10.3. Actions, Situations, and Events

and we use $Clipped(f, t, t_2)$ to mean that f is terminated by some event sometime between t and t_2 . Formally, the axiom is:

335

```
EVENT CALCULUS AXIOM: T(f,t_2) \Leftrightarrow \exists e,t \; Happens(e,t) \land Initiates(e,f,t) \land (t < t_2) \\ \land \neg Clipped(f,t,t_2)Clipped(f,t,t_2) \Leftrightarrow \exists e,t_1 \; Happens(e,t_1) \land Terminates(e,f,t_1) \\ \land (t < t_1) \land (t_1 < t_2) \; .
```

This gives us functionality that is similar to situation calculus, but with the ability to talk about time points and intervals, so we can say $Happens(TurnOff(LightSwitch_1), 1:00)$ to say that a lightswitch was turned off at exactly 1:00.

Many extensions to event calculus have been made to address problems of indirect effects, events with duration, concurrent events, continuously changing events, nondeterministic effects, causal constraints, and other complications. We will revisit some of these issues in the next subsection. It is fair to say that, at present, completely satisfactory solutions are not yet available for most of them, but no insuperable obstacles have been encountered.

Generalized events

So far, we have looked at two main concepts: actions and objects. Now it is time to see how they fit into an encompassing ontology in which both actions and objects can be thought of as aspects of a physical universe. We think of a particular universe as having both a spatial and a temporal dimension. The wumpus world has its spatial component laid out in a two-dimensional grid and has discrete time; our world has three spatial dimensions and one temporal dimension,³ all continuous. A **generalized event** is composed from aspects of some "space—time chunk"—a piece of this multidimensional space—time universe. This abstraction generalizes most of the concepts we have seen so far, including actions, locations, times, fluents, and physical objects. Figure 10.3 gives the general idea. From now on, we will use the simple term "event" to refer to generalized events.

For example, World War II is an event that took place at various points in space–time, as indicated by the irregularly shaped grey patch. We can break it down into **subevents**:⁴

$$SubEvent(BattleOfBritain, WorldWarII)$$
.

Similarly, World War II is a subevent of the 20th century:

The 20th century is an *interval* of time. Intervals are chunks of space—time that include all of space between two time points. The function Period(e) denotes the smallest interval enclosing the event e. Duration(i) is the length of time occupied by an interval, so we can say Duration(Period(WorldWarII)) > Years(5).

GENERALIZED EVENT

SUBEVENTS

³ Some physicists studying string theory argue for 10 dimensions or more, and some argue for a discrete world, but 4-D continuous space–time is an adequate representation for commonsense reasoning purposes.

⁴ Note that SubEvent is a special case of the PartOf relation and is also transitive and reflexive.

Chapter 10. Knowledge Representation

Figure 10.3 Generalized events. A universe has spatial and temporal dimensions; in this figure we show only a single spatial dimension. All events are *PartOf* the universe. An event, such as *WorldWarII*, occurs in a portion of space—time with somewhat arbitrary and timevarying borders. An *Interval*, such as the *TwentiethCentury*, has a fixed, limited temporal extent and maximal spatial extent, and a *Place*, such as Australia, has a roughly fixed spatial extent and maximal temporal extent.

Australia is a *place*; a chunk with some fixed spatial borders. The borders can vary over time, due to geological or political changes. We use the predicate In to denote the subevent relation that holds when one event's spatial projection is PartOf of another's:

In(Sydney, Australia).

336

The function Location(e) denotes the smallest place that encloses the event e.

Like any other sort of object, events can be grouped into categories. For example, WorldWarII belongs to the category Wars. To say that a civil war occurred in England in the 1640s, we would say

 $\exists w \ w \in CivilWars \land SubEvent(w, 1640s) \land In(Location(w), England)$.

The notion of a category of events answers a question that we avoided when we described the effects of actions in Section 10.3: what exactly do logical terms such as Go([1,1],[1,2]) refer to? Are they events? The answer, perhaps surprisingly, is no. We can see this by considering a plan with two "identical" actions, such as

$$[Go([1,1],[1,2]),Go([1,2],[1,1]),Go([1,1],[1,2])].$$

In this plan, Go([1,1],[1,2]) cannot be the name of an event, because there are *two different* events occurring at different times. Instead, Go([1,1],[1,2]) is the name of a category of events—all those events where the agent goes from [1,1] to [1,2]. The three-step plan says that instances of these three event categories will occur.

Notice that this is the first time we have seen categories named by complex terms rather than just constant symbols. This presents no new difficulties; in fact, we can use the argument structure to our advantage. Eliminating arguments creates a more general category:

$$Go(x,y) \subseteq GoTo(y)$$
 $Go(x,y) \subseteq GoFrom(x)$.

Similarly, we can add arguments to create more specific categories. For example, to describe actions by other agents, we can add an agent argument. Thus, to say that Shankar flew from New York to New Delhi yesterday, we would write:

$$\exists e \ e \in Fly(Shankar, NewYork, NewDelhi) \land SubEvent(e, Yesterday)$$
.

The form of this formula is so common that we will create an abbreviation for it: E(c, i) will mean that an element of the category of events c is a subevent of the event or interval i:

$$E(c,i) \Leftrightarrow \exists e \ e \in c \land SubEvent(e,i)$$
.

Thus, we have:

$$E(Fly(Shankar, NewYork, NewDelhi), Yesterday)$$
.

Processes

DISCRETE EVENTS

Section 10.3.

The events we have seen so far are what we call **discrete events**—they have a definite structure. Shankar's trip has a beginning, middle, and end. If interrupted halfway, the event would be different—it would not be a trip from New York to New Delhi, but instead a trip from New York to somewhere over Europe. On the other hand, the category of events denoted by Flying(Shankar) has a different quality. If we take a small interval of Shankar's flight, say, the third 20-minute segment (while he waits anxiously for a second bag of peanuts), that event is still a member of Flying(Shankar). In fact, this is true for any subinterval.

PROCESS
LIQUID EVENT

STATES

Categories of events with this property are called **process** categories or **liquid event** categories. Any subinterval of a process is also a member of the same process category. We can employ the same notation used for discrete events to say that, for example, Shankar was flying at some time yesterday:

$$E(Flying(Shankar), Yesterday)$$
.

We often want to say that some process was going on *throughout* some interval, rather than just in some subinterval of it. To do this, we use the predicate T:

$$T(Working(Stuart), TodayLunchHour)$$
.

T(c,i) means that some event of type c occurred over exactly the interval i—that is, the event begins and ends at the same time as the interval.

The distinction between liquid and nonliquid events is exactly analogous to the difference between substances, or *stuff*, and individual objects. In fact, some have called liquid event types **temporal substances**, whereas things like butter are **spatial substances**.

As well as describing processes of continuous change, liquid events can describe processes of continuous non-change. These are often called **states**. For example, "Shankar being in New York" is a category of states that we denote by In(Shankar, NewYork). To say he was in New York all day, we would write

$$T(In(Shankar, NewYork), Today)$$
.

FLUENT CALCULUS

We can form more complex states and events by combining primitive ones. This approach is called **fluent calculus**. Fluent calculus reifies combinations of fluents, not just individual fluents. We have already seen a way of representing the event of two things happening at once, namely, the function $Both(e_1,e_2)$. In fluent calculus, this is usually abbreviated with the infix notation $e_1 \circ e_2$. For example, to say that someone walked and chewed gum at the same time, we can write

$$\exists p, i \ (p \in People) \land T(Walk(p) \circ ChewGum(p), i) .$$

The "o" function is commutative and associative, just like logical conjunction. We can also define analogs of disjunction and negation, but we have to be more careful—there are two reasonable ways of interpreting disjunction. When we say "the agent was either walking or chewing gum for the last two minutes" we might mean that the agent was doing one of the actions for the whole interval, or we might mean that the agent was alternating between the two actions. We will use OneOf and Either to indicate these two possibilities. Figure 10.4 diagrams the complex events.

Figure 10.4 A depiction of complex events. (a) T(Both(p,q),i), also denoted as $T(p \circ q,i)$. (b) T(OneOf(p,q),i). (c) T(Either(p,q),i).

Intervals

Time is important to any agent that takes action, and there has been much work on the representation of time intervals. We will consider two kinds: moments and extended intervals. The distinction is that only moments have zero duration:

```
Partition(\{Moments, ExtendedIntervals\}, Intervals)
i \in Moments \Leftrightarrow Duration(i) = Seconds(0).
```

Next we invent a time scale and associate points on that scale with moments, giving us absolute times. The time scale is arbitrary; we will measure it in seconds and say that the moment at midnight (GMT) on January 1, 1900, has time 0. The functions Start and End pick out the earliest and latest moments in an interval, and the function Time delivers the point on the time scale for a moment. The function Duration gives the difference between the end time and the start time.

```
\begin{split} Interval(i) &\Rightarrow Duration(i) = (Time(End(i)) - Time(Start(i))) \;. \\ Time(Start(AD1900)) &= Seconds(0) \;. \\ Time(Start(AD2001)) &= Seconds(3187324800) \;. \\ Time(End(AD2001)) &= Seconds(3218860800) \;. \\ Duration(AD2001) &= Seconds(31536000) \;. \end{split}
```

Section 10.3. Actions, Situations, and Events

To make these numbers easier to read, we also introduce a function *Date*, which takes six arguments (hours, minutes, seconds, day, month, and year) and returns a time point:

```
Time(Start(AD2001)) = Date(0, 0, 0, 1, Jan, 2001)

Date(0, 20, 21, 24, 1, 1995) = Seconds(3000000000).
```

Two intervals Meet if the end time of the first equals the start time of the second. It is possible to define predicates such as Before, After, During, and Overlap solely in terms of Meet, but it is more intuitive to define them in terms of points on the time scale. (See Figure 10.5 for a graphical representation.)

```
\begin{array}{cccc} Meet(i,j) & \Leftrightarrow & Time(End(i)) = Time(Start(j)) \; . \\ Before(i,j) & \Leftrightarrow & Time(End(i)) < Time(Start(j)) \; . \\ After(j,i) & \Leftrightarrow & Before(i,j) \; . \\ During(i,j) & \Leftrightarrow & Time(Start(j)) \leq Time(Start(i)) \\ & & \wedge & Time(End(i)) \leq Time(End(j)) \; . \\ Overlap(i,j) & \Leftrightarrow & \exists k \; During(k,i) \wedge During(k,j) \; . \end{array}
```


For example, to say that the reign of Elizabeth II followed that of George VI, and the reign of Elvis overlapped with the 1950s, we can write the following:

```
\begin{split} &After(ReignOf(ElizabethII), ReignOf(GeorgeVI)) \; . \\ &Overlap(Fifties, ReignOf(Elvis)) \; . \\ &Start(Fifties) = Start(AD1950) \; . \\ &End(Fifties) = End(AD1959) \; . \end{split}
```

Fluents and objects

We mentioned that physical objects can be viewed as generalized events, in the sense that a physical object is a chunk of space—time. For example, USA can be thought of as an event that began in, say, 1776 as a union of 13 states and is still in progress today as a union of 50.

We can describe the changing properties of USA using state fluents. For example, we can say that at some point in 1999 its population was 271 million:

E(Population(USA, 271000000), AD1999).

Another property of the USA that changes every four or eight years, barring mishaps, is its president. One might propose that President(USA) is a logical term that denotes a different object at different times. Unfortunately, this is not possible, because a term denotes exactly one object in a given model structure. (The term President(USA, t) can denote different objects, depending on the value of t, but our ontology keeps time indices separate from fluents.) The only possibility is that President(USA) denotes a single object that consists of different people at different times. It is the object that is George Washington from 1789 to 1796, John Adams from 1796 to 1800, and so on, as in Figure 10.6.

Figure 10.6 A schematic view of the object President(USA) for the first 15 years of its existence.

To say that George Washington was president throughout 1790, we can write

 $T(President(\mathit{USA}) = George Washington, AD1790) \; .$

We need to be careful, however. In this sentence, "=" must be a function symbol rather than the standard logical operator. The interpretation is *not* that *GeorgeWashington* and *President(USA)* are logically identical in 1790; logical identity is not something that can change over time. The logical identity exists between the subevents of each object that are defined by the period 1790.

Don't confuse the physical object *George Washington* with a collections of atoms. George Washington is not logically identical to *any* specific collection of atoms, because the set of atoms of which he is constituted varies considerably over time. He has his short lifetime, and each atom has its own very long lifetime. They intersect for some period, during which the temporal slice of the atom is *PartOf* George, and then they go their separate ways.