New York University Tandon School of Engineering

Biomedical Engineering
Applied Mathematics and Statistics for Biomedical Engineering

Fall 2021 Professor Mirella Altoe Tuesday 5:00-7:30PM Rogers Hall 325

Computer Lab Assignment #5

QUESTION 1: The number of cases of Lyme disease, a tick-borne illness, more than doubled between 2001 and 2015 in North America. A vaccine for Lyme disease was approved by the U.S. Food and Drug Administration in 1998, but it was then removed from the market just 3 years later (*Nigrovic and Thompson 2007*). Did it work? A clinical trial of the efficacy of this vaccine compared 5469 people who received the vaccine to 5467 people who received a placebo (*Steere et al. 1998*). Of these, 15 people with the vaccine had developed Lyme disease after 2 years, and 65 people in the placebo control group had developed the disease. In the same study, side effects were also tracked. The most severe possible side effect was joint pain. Of the vaccinated group, 71 people had joint pain, while in the control group 6 people had joint pain.

A. (0.50 pts.) Calculate the relative risk of getting Lyme disease for patients who received the vaccine compared to those who did not.

B. (0.50 pts.) Based on that relative risk calculation, by what amount does the vaccine reduce the rate of getting Lyme disease?

C. (0.75 pts.) Do these data provide evidence that the vaccine was effective in reducing the rate of contracting Lyme disease? Carry out an appropriate hypothesis test.

g Lyn	Lythe disease: Carry out an appropriate hypothesis test.							
	Vaccon	control	1 tan					
lm	15	65	80	P[vacest] = 0.50009144				
hely	5454	5402	10886.	P[contm] = 0.4999 86				
	5469	5467	10936	P[24m2 0,007315				
	7			P [hatty] = 0.912685				
	Pr [van-les] x to M = 40.007 { Pr [sonth-les] x to M = 34.443 Pr [van-belly] x to M = 5428.493 Pr [control-belly] x to M = 5427.007							
	$\chi^2 = \frac{(obs-exp)^2}{exp}$							
	(15-40,007)2) (65-39,463) (5454-5428,993)2 5422-5427.20							
	(15-40.007)2 + (65-39.493) + (5454-5428.993)2 + 5402-5427.007							
	TX2=31.5 , If 21, crit whe = 3.84 At our observed X2 value of 31.5 is much greater than the of the test statistic (3.84). Therefore, we can reject the and							
				by of lyne obeye is contrapt on				
		reconstitut.						

D. (0.50 pts.) What is the relative risk of joint pain for vaccinated patients compared to the controls?

E. (0.75 pts.) Is there evidence that the probability of joint pain is different between vaccinated and control groups? Do a hypothesis test.

	Vaccire	contol	- Company and Company
jort	71	6	77 Prem = 100 77 = 0.007 04096618
no pan	5398	4 461	10859 P[nopon] = 10951 = 0192950344
TM	5469	5467	
	100870	RP 0 = Ja	P[week] = 6,50001144 P[whi] = 4990856
	Pr[Vace+	pon] - total	Pr [control + pun]. tol
	= 38	.507	10 2 38,493
	Pr [vat	no pun]	o Pr [control + no pun]
	= 5430.		TO = 5428.507
Tue Coop	x2 = £(0	object - expe	18.507 (6-38463) (5398-543043) (561-543.507) 5436.507
			\$13 55.24 df21, con volu : 3.84
	A 0~	- observed	X2 value of 55.24 is much great they the of
			of 3.84. Thuba, we can rejust to and accept
1			pon is contrigued on vaccination
		POPPINT	
The second second	Section 1988		

QUESTION 2: Darwin suggested that plants pollinated by long-tongued insects would benefit by having long flowers, because greater length would cause the insects to press themselves farther into the flower to reach the nectar, increasing deposition and removal of pollen. Several populations of the South African orchid, *Disa draconis*, evolved longer flowers after switching pollinators to long-tongued tanglewing flies. To measure the advantage of the long flowers, Johnson and Steiner (1997) experimentally shortened 59 of 118 flowers. The remaining 59 flowers were controls. One week later, 10 of the 59 shortened flowers had received pollen, whereas 27 of the 59 control flowers had received pollen.

A. (0.50 pts.) Illustrate these results in a mosaic plot.

B. (0.50 pts.) What is the estimated odds ratio of not receiving pollen after experimental shortening, as compared to control flowers? Provide a confidence interval for the population odds ratio.

Odds ratio = 0.242

O d d D I d d l O	V.2 .2			
experient	conty			
10	27	ad =	10 (32)	- 0.242
49	32	bc	(27(49)	en (OR) 2 Hony -1.42
				Se(ln(OR)) 2 / 10 + 27 + 1/2 + 32
-1.42-1.966	0.434) Lla	(õè) (-	1.42+1.96(04	34) = 0.434
= [-2.27 < 2	n (OR) (-0	.57		
			es not include	1,
w	on right	Ho and	conclude th	legity
		rous an		

QUESTION 3: In North America, between 100 million and 1 billion birds die each year by crashing into windows on buildings, more than any other human-related cause. This figure represents up to 5% of all birds in the area. One possible solution is to construct windows angled downward slightly, so that they reflect the ground rather than an image of the sky to a flying bird. An experiment by Klem et al. (2004) compared the number of birds that died as a result of vertical windows, windows angled 20 degrees off vertical, and windows angled 40 degrees off vertical. The angles were randomly assigned with equal probability to six windows and changed daily; assume for this exercise that windows and window locations were identical in every respect except angle. Over the course of the experiment, 30 birds were killed by windows in the vertical orientation, 15 were killed by windows set at 20 degrees off vertical, and 8 were killed by windows set at 40 degrees off vertical.

A. (0.50 pts.) Clearly state an appropriate null hypothesis and an alternative hypothesis.

H₀: Window incline and the rate of bird deaths are not related.

H_A: Probability of bird deaths were dependent of window incline.

B. (0.25 pts.) What proportion of deaths occurred while the windows were set at a vertical orientation?

- **C.** (**0.25 pts.**) What statistical test would you use to test the null hypothesis? Chi squared test.
- **D.** (0.50 pts.) Carry out the statistical test from part (c). Is there evidence that window angle affects the mortality rates of birds?

-	leaths	exputed	$\chi^{2} = \underbrace{\frac{\left(0\right)^{2} - \left(0\right)^{2}}{\left(0\right)^{2}}}_{E}$
Vento		17.67	= (30-17.67)2 (5-17.67)2 + (8-17.67)
20°		17.67	17.61
45°		17.67	= [14.3], df=2, proman = 5.99
tota	53		\$ since our test statistic is greater than
			our control value, we can reject the all hypothes.
			Bird duths and window to incline
			during this time intown were well-ted.