

Experimental design and obtaining DNA for long-read sequencing

Outline

Select your species and/or individual

Generate high quality DNA

Some examples

What do all these things have in common?

Shifts in pollinators

Response to nutrients

Flower color morphs

Genome as a puzzle

CGAGTTCCCTGGAACGGGACGCCGCAGAGGGGTGAGAG

Genome size of angiosperms

Oryza sativa 430 MB

Allium cepa 16,000 MB

Zingiber officinale 1,582 MB

Tulipa sylvestris 59,241 MB

Chromosome number and ploidy

Genome size estimate

- For many nonmodel systems, there are no entries in the Kew database
 - Even if the genus is there, genome size can vary between species

Kmer (estimates)

- Cleaned Illumina data
- Jellyfish paired with GenomeScope or RESPECT

k = 19	k-mer coverage	28.0
property	min	max
Heterozygosity (%)	3.64	3.65
Genome Haploid Length (bp)	11,995,570	12,010,675
Genome Repeat Length (bp)	2,179,917	2,182,662
Genome Unique Length (bp)	9,815,653	9,828,014
Model Fit (%)	98.26	98.89
Read Error Rate (%)	0.13	0.13

Flow cytometry (more reliable)

- Fresh or silica dried matieral; protocols can vary a lot between species
 - Need accurate references to compare

Ideal scenario for sample selection

- Individual with lots of fresh material available
 - Single induvial for sequencing and assembly
 - Scaffolding and/or annotation material can come from different individuals/species
 - Generate large amounts of high molecular weight DNA (often multiple micrograms)
 - RNA from multiple tissues and/or developmental stages
 - Fresh tissue for Hi-C sequencing
- "Clean" less exposure to microorganisms or other organisms
 - If others are sequenced (including yourself), won't scaffold and be annotated

Obtaining Sequencing data

Which puzzle is easier to put together?

Which puzzle is easier to put together?

https://im-a-puzzle.com/puzzle/passifloracaeruleaflower-jigsaw-puzzle

In the world of genomes

Short vs Long-reads

- Short reads
- Amplification errors and bias
- Several enzymatic steps
- Multi-molecule raw accuracy
- Errors tend to be systematic
- More coverage required
- 2" GENERATION 3" GENERATION DATA INFORMATION Sequence + Methylation + Kinetics Sequence
- Long reads
- No required amplification
- Simple sample prep
- Single molecule raw accuracy
- Errors tend to be random (vs. systematic)
- DATA INFORMATION Less coverage
 Sequence Sequence + Methylation + Kinetics
 https://get.genotoul.fr/wp-content/uploads/2017/06/150519_Technology_and_Applications_PACBIO_GerritKuhn_low.pdf

 required

Long-read options

	PacBio Revio	SBS sequencing	Nanopore sequencing
Read length	15-20 kb	2x150 bp	10−100 kb
Read accuracy	99.95% (Q33)	99.92% (Q31)	99.26% (Q21)
Run time	24 hours ³	44 hours	72 hours
Yield	90 Gb ^{2,5}	2,400-3,000 Gb	50-110 Gb
Variant calling — SNVs	✓	✓	✓
Variant calling — indels	✓	✓	X
Variant calling — SVs	✓	X	✓
5mC methylation	✓	X	✓
Phasing	✓	X	✓

HiFi targets 10 kbp, while Nanopore works "best" around 10-20 kbp ("best" can vary if fragment size or output is most desired)

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%

Nanopore

https://finlaymagui.re/presentations/robot_revolution.html

Nanopore approaches

Genomic DNA

Oxford Nanopore rapid prep addition of transposome complex 100 min 55 min

RNA

165 minutes

Cutput 10-20 GB in 96 hours

Oxford

ligation

prep

Nanopore

DNA extraction (with incidental fragmentation)

8-10 GB in 96 hours

10 minutes

5 – 7 Million transcripts in 48 hours

Getting started with Nanopore MinION

- Starter pack \$1,999
 - Two 10.4.1 flow cells and 1 6-reaction library kit
- Flow cells typically guaranteed to last 3 months or less in the fridge
 - Individually \$700 each
 - 24 bundle \$500 each
 - 48 bundle \$475
- Library prep is ~\$150 per sample (kit is \$100/sample + extra reagents)
 - 1.5-2 hour prep time, need 1 ug starting DNA
- PromethION is \$900 per flow cell, similar prep method, with increased sequencing output

PacBio

SMRT Cell

Science, Vol 299, Jan 31 2003, pp682-686 J. Appl. Phys. 103, 034301 (2008)

Fichot and Norman 2013; Microbiome

Revio

- 90% of bases ≥Q30 and median read accuracy ≥Q30
- 15x increase in throughput over the Sequel II system
- Little less than 100 GB per SMRT cell
 - If DNA fragments are less than 10 KB, total output drops
- HiFi sequencing provides structural variants, repeat expansions, methylation, and haplotype phasing from a single library
 - The \$1000 complete, phased genome
- Typically outsourced as opposed to what can be done inhouse with minION

Cost of sequencing genomes

- 50X Illumina:
 - 50Gb x \$26.5/Gb = **\$1,325**
- 50X nanopore:
 - 50Gb x \$40/Gb = **\$2,000**

\$3,325

Hi-C

- Hi-C = high throughput chromatin conformation capture
- DNA of the same chromosome will be *spatially* close

Scaffolding (1 GB genome)

- Hi-C Library kit \$500 + 50x Illumina \$550 = **\$1,050**
 - Library prep is not trivial, two-day protocol
 - Comes in sets of two
- Outsource to Phase Genomics
 - Send frozen samples on dry ice
 - Library prep \$1,500 + 150 M Read-pair Illumina \$750 = **\$2,250**
 - Guaranteed to get usable data
- Arima Genomics has a 6 hour rapid protocol
- Optical mapping by Bionano
 - Outsource (HWM extraction + Saphyr chip + analysis) = ~\$3,000

Extracting good DNA

Tips for nonmodel systems

Tissue Grinding

Mortar and pestle

- Better yield, larger fragments
- Nanopore flow cell generated 18.5 GB with an N50 of 6.5 kb

Grinding beads

Much lower yield; highly fragmented DNA Nanopore flow cell generated 12 GB with an N50 of 4.2 kb

Extraction method

Modified SDS for Monocots Modified CTAB for Eudicots

Kit based approaches

- Several options available
- Zymo's is supposed to work in 45 minutes

Quick-DNA HMW MagBead Kit				
Cat #	Name	Size	Price (i	Quantity
D6060	<i>Quick</i> -DNA HMW MagBead Kit	96 Preps	\$311.60	- 1 +

QC

- Quantification Need to rely on Qubit
 - Nanodrop drastically overestimates concentrations
 - 1 ug for each sequencing run; if size selection need around
 5 ug starting out
- Purity/Cleanliness Nanodrop
 - 260/280 values should be 1.8-2, while 260/230 values 2.0-2.2
 - If pure DNA, concentrations should be close to 1:1 (Nanodrop:Qubit)
- Integrity
 - Bioanalyzer or Femto Pulse
 - Low percentage agarose gel (0.5-1%) with low voltage
 - NEB 1 KB Extend Ladder (top band 48.5 kb)

Size selection

- Blue pippin
- Ciculomics Short Read Eliminator Kit
 - Target cutoff size: XS (10 kb), Regular (25 kb), XL (40 kb)
- Some/most DNA will be lost, but what remains is highly valuable
 - Be prepared for around a 40% quantity reduction with each cleaning step

Cleaning the DNA

- Some species can be very difficult to get pure DNA
 - 1:1 Nanodrop:Qubit
- DNAeasy ProClean kit increases sequencing yield
 - DNA is sheared somewhat

Sequenced libraries

A couple of examples and costs

Small(ish) genome

- Estimated genome size
 750 MB 1 GB
- Two Nanopore flow cells (\$1,200)
- 50x Illumina (\$570)
- 1 SMRT cell Revio (\$2,760)
- 30x Hi-C (\$1,880)
- Total: **\$6,410**
- Chromosome scale with 90% of estimated size in appropriate number of scaffolds

Mid sized genome

- Estimated genome size1.8 GB
- Four Nanopore flow cells (\$2,400)
- 50x Illumina (\$570)
- 3 RSII SMRT cells (\$7,235)
- 30x Hi-C (\$2,250)
- Total: **\$12,545**
- Chromosome scale with 90% of estimated size in appropriate number of scaffolds

Larger genome

- Estimated genome size3 GB
- 4 RS II SMRT cells (\$9,090)
- 30x Hi-C (\$3,500)
- Total: **\$12,590**
- Chromosome scale with 90% of estimated size in appropriate number of scaffolds

Questions

