INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT354

8-input multiplexer/register with transparent latches; 3-state

Product specification
File under Integrated Circuits, IC06

December 1990

74HC/HCT354

FEATURES

- Transparent data latches
- · Transparent address latch
- · Easily expanding
- · Complementary outputs
- · Output capability: bus driver
- · I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT354 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL

(LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT354 data selectors/multiplexers contain full on-chip binary decoding, to select one-of-eight data sources. The data select address is stored in transparent latches that are enabled by a LOW on the latch enable input (LE).

The transparent 8-bit data latches are enabled when the active LOW data enable input (\overline{E}) is LOW. When the output enable input \overline{OE}_1 = HIGH, \overline{OE}_2 = HIGH or OE_3 = LOW, the outputs go to the high impedance OFF-state. Operation of these output enable inputs does not affect the state of the latches.

QUICK REFERENCE DATA

 $GND = 0 \text{ V}; T_{amb} = 25 \text{ °C}; t_r = t_f = 6 \text{ ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STWIDOL	PARAMETER	CONDITIONS	нс	нст	UNII
t _{PHL} / t _{PLH}	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V}$			
	D_n , \overline{E} to Y, \overline{Y}		20	22	ns
	S_n , \overline{LE} to Y, \overline{Y}		24	27	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per latch	notes 1 and 2	68	71	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

- 2. For HC the condition is $V_I = GND$ to V_{CC}
 - For HCT the condition is $V_I = GND$ to $V_{CC} 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

74HC/HCT354

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
8, 7, 6, 5, 4, 3, 2, 1	D ₀ to D ₇	data inputs
9	Ē	data enable input (active LOW)
10	GND	ground (0 V)
11	le Le	address latch enable inputs (active LOW)
14, 13, 12	S ₀ , S ₁ , S ₂	select inputs
15, 16	\overline{OE}_1 , \overline{OE}_2	output enable input (active LOW)
17	OE ₃	output enable input (active HIGH)
18	Y	3-state multiplexer output (active LOW)
19	Υ	3-state multiplexer output (active HIGH)
20	V _{CC}	positive supply voltage

8-input multiplexer/register with transparent latches; 3-state

74HC/HCT354

FUNCTION TABLE

	INPUTS								
Α	ADDRESS (1)			OL	JTPUT ENA	BLE			DESCRIPTION
S ₂	S ₁	S ₀	Ē	ŌĒ ₁	ŌĒ ₂	OE ₃	Υ	Y	
X	Х	Х	Х	Н	Х	Х	Z	Z	outputs in
X	X	X	X	X	Н	X	Z	Z	high impedance
X	X	X	X	X	X	L	Z	Z	OFF-state
L	L	L	L	L	L	Н	D ₀	$ \begin{array}{c c} \overline{D}_0 \\ \overline{D}_1 \\ \overline{D}_2 \\ \overline{D}_3 \end{array} $	
L	L	H	L	L	L	Н	D ₁	\overline{D}_1	
L	Н	L	L	L	L	Н	D ₂	\overline{D}_2	
L	Н	H	L	L	L	Н	D_3		data latch is
Н	L	L	L	L	L	Н	D ₄	\overline{D}_4	transparent
Н	L	Н	L	L	L	Н	D ₅	$ \begin{array}{c c} \overline{D}_5 \\ \overline{D}_6 \\ \overline{D}_7 \end{array} $	
Н	Н	L	L	L	L	Н	D ₆	\overline{D}_6	
Н	Н	Н	L	L	L	Н	D ₇		
L	L	L	Н	L	L	Н	D _{0n}	\overline{D}_{0n}	
L	L	H	Н	L	L	Н	D _{1n}	\overline{D}_{1n}	
L	Н	L	Н	L	L	Н	D _{2n}	\overline{D}_{2n}	
L	Н	H	Н	L	L	Н	D _{3n}	\overline{D}_{3n}	data is
Н	L	L	Н	L	L	Н	D _{4n}	\overline{D}_{4n}	latched
Н	L	Н	Н	L	L	Н	D _{5n}	\overline{D}_{5n}	
Н	Н	L	Н	L	L	Н	D _{6n}	\overline{D}_{6n}	
Н	Н	Н	Н	L	L	Н	D _{7n}	D _{7n}	

Notes

1. This column shows the input address set-up with $\overline{LE} = LOW$ (address latch is transparent).

2. D_0 to D_7 = data at inputs D_0 to D_7

 D_{0n} to D_{7n} = data at inputs D_0 to D_7 before the most recent LOW-to-HIGH transition of \overline{E}

H = HIGH voltage level

L = LOW voltage level

X = don't care

Z = high impedance OFF-state

8-input multiplexer/register with transparent latches; 3-state

74HC/HCT354

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (TEST CONDITIONS				
0.417.01					74H	1					
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(•,	
t _{PHL} / t _{PLH}	propagation delay D_n to Y, \overline{Y}		61 22 18	210 42 36		265 53 45		315 63 54	ns	2.0 4.5 6.0	Fig.7
t _{PHL} / t _{PLH}	propagation delay E to Y, Y		63 23 18	250 50 43		315 63 54		375 75 64	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay S_n to Y, \overline{Y}		77 28 22	260 52 44		325 65 55		390 78 66	ns	2.0 4.5 6.0	Fig.8
t _{PHL} / t _{PLH}	propagation delay LE to Y, Y		77 28 22	290 58 49		365 73 62		435 87 74	ns	2.0 4.5 6.0	Fig.9
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE}_n to Y, \overline{Y}		39 14 11	125 25 21		155 31 26		190 38 32	ns	2.0 4.5 6.0	Fig.10
t _{PZH} / t _{PZL}	3-state output enable time OE_3 to Y, \overline{Y}		44 16 13	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.10
t _{PHZ} / t _{PLZ}	3-state output disable time \overline{OE}_n to Y, \overline{Y}		50 18 14	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.10
t _{PHZ} / t _{PLZ}	3-state output disable time OE_3 to Y, \overline{Y}		55 20 16	155 31 26		195 39 33		235 47 40	ns	2.0 4.5 6.0	Fig.10
t _{THL} / t _{TLH}	output transition time		14 5 4	60 12 10		75 15 13		90 18 15	ns	2.0 4.5 6.0	Figs 7, 8 and 9
t _W	data enable pulse width E LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6
t _W	latch enable pulse width LE LOW	80 16 14	17 6 5		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.9

8-input multiplexer/register with transparent latches; 3-state

	DADAMETED				T _{amb} (TEST CONDITIONS				
CVMPOL		74HC									WAVEFORMS
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.]	(•)	
t _{su}	set-up time	50	11		65		75		ns	2.0	Fig.10
	D_n to \overline{E}	10	4		13		15			4.5	
		9	3		11		13			6.0	
t _{su}	set-up time	50	14		65		75		ns	2.0	Fig.10
	S _n to \overline{LE}	10	5		13		15			4.5	
		9	4		11		13			6.0	
t _h	hold time	5	-6		5		5		ns	2.0	Fig.11
	D _n to $\overline{\overline{E}}$	5	-2		5		5			4.5	
		5	-2		5		5			6.0	
t _h	hold time	5	-8		5		5		ns	2.0	Fig.10
	S _n to LE	5	-3		5		5			4.5	
		5	-2		5		5			6.0	

8-input multiplexer/register with transparent latches; 3-state

74HC/HCT354

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: bus driver

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
D _n , S _n	0.2
OE ₃	0.25
<u>le</u>	0.5
\overline{E} , \overline{OE}_n	1.0

8-input multiplexer/register with transparent latches; 3-state

74HC/HCT354

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

					T _{amb} (TEST CONDITIONS				
SYMBOL	DADAMETED	74HCT									WAVEFORMS
STIVIBUL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(,,	
t _{PHL} / t _{PLH}	propagation delay D _n to Y, Y		25	47		59		71	ns	4.5	Fig.7
t _{PHL} / t _{PLH}	propagation delay E to Y, Y		26	54		68		81	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay S_n to Y, \overline{Y}		30	59		74		89	ns	4.5	Fig.8
t _{PHL} / t _{PLH}	propagation delay LE to Y, Y		31	63		79		95	ns	4.5	Fig.9
t _{PZH} / t _{PZL}	3-state output enable time \overline{OE}_n to Y, \overline{Y}		18	34		43		51	ns	4.5	Fig.10
t _{PZH} / t _{PZL}	3-state output enable time OE_3 to Y, \overline{Y}		18	34		43		51	ns	4.5	Fig.10
t _{PHZ} / t _{PLZ}			18	33		41		50	ns	4.5	Fig.10
t _{PHZ} / t _{PLZ}	3-state output disable time OE_3 to Y, \overline{Y}		21	39		49		59	ns	4.5	Fig.10
t _{THL} / t _{TLH}	output transition time		5	12		15		18	ns	4.5	Figs 7, 8 and 9
t _W	data enable pulse width E	16	6		20		24		ns	4.5	Fig.6
t _W	latch enable pulse width LE LOW	16	6		20		24		ns	4.5	Fig.9
t _{su}	set-up time D _n to E	10	4		13		15		ns	4.5	Fig.11
t _{su}	set-up time S _n to LE	10	5		13		15		ns	4.5	Fig.10
t _h	hold time D _n to E	9	0		11		14		ns	4.5	Fig.11
t _h	hold time S _n to LE	9	-3		11		14		ns	4.5	Fig.10

74HC/HCT354

AC WAVEFORMS

Fig.6 Waveforms showing the data enable input (\overline{E}) pulse width, the data enable to output (Y, \overline{Y}) propagation delays, and the output transition times.

Fig.7 Waveforms showing the data input (D_n) to output (Y, \overline{Y}) propagation delays and the output transition times $(\overline{E} = LOW)$.

Fig.8 Waveforms showing the select input (S_n) to output (Y, \overline{Y}) propagation delays and the output transition times $(\overline{LE} = LOW)$.

Fig.9 Waveforms showing the address latch enable input ($\overline{\text{LE}}$) pulse width, the address latch enable input to output (Y, $\overline{\text{Y}}$) propagation delays and the output transition times.

8-input multiplexer/register with transparent latches; 3-state

Fig.10 Waveforms showing the set-up and hold times for the select input (S_n) to the address latch enable input (LE).

Fig.11 Waveforms showing the set-up and hold times for the data input (D_n) to the data enable input (\overline{E}) .

8-input multiplexer/register with transparent latches; 3-state

74HC/HCT354

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".