

Für alle reelen Zahlen $q \in \mathbb{R}, \ q \neq 1$, und alle $n \in \mathbb{N}_0$ gilt

$$\sum_{k=0}^{n} q^{k} = \frac{1 - q^{n+1}}{1 - q} \tag{2}$$

Eine Funktion f heißt gleichmäßig stetig auf dem Intervall I, wenn zu jedem $\varepsilon > 0$ ein $\delta = \delta(\varepsilon) > 0$ existiert, so dass für alle $x_1, x_2 \in I$ mit $|x_1 - x_2| < \delta$ gilt

$$|f(x_1) - f(x_2)| < \varepsilon \tag{1}$$

Beachte: In der Definition der gleichmäßigen Stetigkeit darf δ nur von ε abhängen, aber nicht von der Stelle x (wie in der Definition der Stetigkeit an einer festen Stelle c)

4 Antwort

Für alle x, $y \in \mathbb{R}$ und $n \in \mathbb{N}$ gilt:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^{n-k} y^k = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$
 (4)

3

Antwort

Für n und $k \in \mathbb{N}_0$, $k \le n$ ist der *Binomialkoeffizient* $\binom{n}{k}$ definiert durch

$$\binom{n}{k} := \frac{n!}{k!(n-k)!} \tag{3}$$

Für alle $x, y \in \mathbb{R}$ gilt.

$$\triangleright |xy| = |x||y|$$

$$\, \triangleright \, |x \pm y| \geqslant \, \, \|x| - |y|| \, \, \ldots . \, \, inverse \, \, \textit{Dreiecksungleichung} \, \,$$

Eine Abbildung f heißt *injektiv*, wenn für alle $a_1, a_2 \in A$ gilt:

$$a_1 \neq a_2 \implies f(a_1) \neq f(a_2),$$
 (5)

d.h. zu jedem $b \in B$ gibt es *höchstens* ein $a \in A$ mit b = f(a).

Eine Abbildung f heißt *surjektiv*, wenn jedes Element von B als Bild eines Elements von A auftritt:

$$\forall b \in B : \exists a \in A \text{ mit } b = f(a)$$
 (6)

d.h. zu jedem $b \in B$ gibt es *mindestens* ein $a \in A$ mit b = f(a).

Eine Abbildung f, die sowohl injektiv als auch surjektiv ist, heißt bijektiv. Anders ausgedrückt: Zu jedem $b \in B$ gibt es genau ein $a \in A$ mit b = f(a)

8 Antwort

Jede beschränkte, unendliche Teilmenge von $\mathbb R$ besitzt mindestens einen Häufungspunkt.

7

5

Antwort

Sei $A \subseteq \mathbb{R}$. Ein Punkt $x \in \mathbb{R}$ heißt.

- \triangleright innerer Punkt von A, wenn ein $\varepsilon > 0$ existiert, so dass $K(x, \varepsilon) \subseteq A$;
- ▷ äußerer Punkt bezüglich A, wenn x innerer Punkt von A^c ist;
- ightharpoonup Randpunkt von A, wenn jede ε -Umgebung $K(x, \varepsilon)$ einen Punkt von A und einen Punkt von A^c enthält;
- ▷ Häufungspunkt von A, wenn jede ε-Umgebung von x unendlich viele Punkte von A enthält. Gleichbedeutend damit ist, dass jede punktierte ε-Umgebung von x mintestens einen Punkt von A enthält.
- ightharpoonup isolierter Punkt von A, wenn $x \in A$ und wenn es eine punktierte ε -Umgebung $K_r(x, \varepsilon)$ gibt, so dass $K_r(x, \varepsilon) \cap A = \emptyset$.

Analysis I	# 9	1.5. Unendliche Reihen	Analysis I	# 10	1.5. Unendliche Reihen
	Geometrische Re	ihe		ren Sie das Leibnitz-Kr ergenz von alternierend	
Analysis I	# 11	1.5. Unendliche Reihen	Analysis I	# 12	1.5. Unendliche Reihen
Was 1	bedeutet absolute K	onvergenz?	Konv	ergenzkriterien: Major Minorantenkriteriu	

9

Antwort

Eine Reihe der Bauart

$$\sum_{k=0}^{\infty} (-1)^k a_k, \text{ mit } a_k > 0 \text{ für } k = 0, 1, 2, \dots$$
 (8)

heißt alternierende Reihe.

Falls die Folge $\{a_k\}$ monoton gegen 0 konvergiert, dann ist die alternierende Reihe

$$\sum_{k=0}^{\infty} \left(-1\right)^k a_k \tag{9}$$

konvergent.

12 Antwort

- Sei $\sum_{k=1}^{\infty} a_k$ eine Reihe mit positiven Glieder, also $a_k > 0$. Falls ein $M \in \mathbb{N}$ existiert, so dass für alle $k \geqslant M$ gilt $|c_k| \leqslant a_k$, dann heißt $\sum_{k=1}^{\infty} a_k$ Majorante der Reihe $\sum_{k=1}^{\infty} c_k$
 - ▷ Eine Reihe, die eine kovergente Majorante besitzt, ist absolut konvergent.
- Sei $\sum_{k=1}^{\infty} b_k$ eine Reihe mit positiven Glieder, also $b_k > 0$. Falls ein $M \in \mathbb{N}$ existiert, so dass für alle $k \geqslant M$ gilt $|c_k| \geqslant a_k$, dann heißt $\sum_{k=1}^{\infty} b_k$ Minorante der Reihe $\sum_{k=1}^{\infty} c_k$
 - ▷ Eine Reihe, die eine divergente Minorante besitzt, kann nicht absolut konvergieren.

$$\sum_{k=0}^{\infty} = \frac{1}{1-q} \text{ für } |q| < 1 \tag{7}$$

11

Eine Reihe $\sum_{k=1}^{\infty} a_k$ heißt absolut konvergent, wenn die Reihe $\sum_{k=1}^{\infty} |a_k|$ konvergiert.

Antwort

Jede absolut konvergente Reihe ist konvergent.

Analysis I	# 13	1.5. Unendliche Reihen	Analysis I	# 14	1.5. Unendliche Reihen
Quotientenkriteri	um für absolute Reihe	e Konvergenz einer	Quotient	tenkriterium (Grenzwe	${ m rtformulierung})$
Analysis I	# 15	1.5. Unendliche Reihen	Analysis I	# 16	1.5. Unendliche Reihen
Wurzelkriterium fi	ür absolute Kon	vergenz einer Reihe	Wurze	lkriterium (Grenzwert	formulierung)

Falls der Grenzwert

$$\lim_{k \to \infty} \left| \frac{\alpha_{k+1}}{\alpha_k} \right| =: r \tag{10}$$

existiert, dann gilt:

- \triangleright für r < 1 ist die Reihe absolut konvergent,
- \triangleright für r > 1 ist sie divergent,
- \triangleright für r = 1 ist keine Aussage möglich.

16 Antwort

Falls der Grenzwert

$$\lim_{k \to \infty} \sqrt[k]{|a_k|} = r \tag{11}$$

existiert, dann gilt:

- \triangleright für r < 1 ist die Reihe absolut konvergert,
- \triangleright für r > 1 ist sie divergent,
- \triangleright für r = 1 ist keine Aussage möglich.

Falls für die Reihe $\sum_{k=1}^{\infty} a_k$ ab einem gewissen Index N, also für alle $k \geqslant N$ gilt

- $\rhd |\frac{\alpha_{k+1}}{\alpha_k}| \leqslant q < 1$, dann ist die Reihe absolut konvergent.
- $\rhd |\frac{\alpha_{k+1}}{\alpha_k}| \geqslant 1,$ dann ist die Reihe divergent.
- $|a_k| \le 1$, jedoch nicht < 1, dann ist keine allgemeine Aussage möglich.

15

Antwort

Falls für eine Reihe $\sum_{k=1}^{\infty} \alpha_k$ ab einem gewissen Index, also für alle $k \geqslant N$ gilt:

- $\, \triangleright \, \sqrt[k]{|\alpha_k|} \leqslant q < 1, \, \text{dann ist die Reihe absolut konvergent}.$
- $\, \triangleright \, \sqrt[k]{|\alpha_k|} \geqslant 1 \text{, dann ist die Reihe divergent}.$
- $ho \ \sqrt[k]{|a_k|} \leqslant 1$, jedoch nicht $\leqslant q < 1$, dann ist keine Aussage möglich.

Analysis I	# 17	1.5. Unendliche Reihen	Analysis I	# 18	1.6. Reelle Funktionen
Reihendarstel	llung für e , allgemein	e Exponentialreihe		Stetigkeit (Limes-Defin	nition)
Analysis I	# 19	1.6. Reelle Funktionen	Analysis I	# 20	1.6. Reelle Funktionen
	Stetigkeit (ε-δ-Defini	tion)		Lipschitz-Stetigkeit einer F	unktion f.

Sei $A\subseteq\mathbb{R}$ offen. Eine Funktion $f:D\to\mathbb{R}$ heißt stetig an der Stelle $c\in D$, wenn für jede konvergente Folge $\{x_n\}$ in D mit $\lim_{n\to\infty}x_n=c$ gilt:

$$\lim_{n\to\infty} f(x_n) = f(c), \quad \text{kurz}: \lim_{x\to c} f(x) = f(c) \tag{15}$$

Die Eulersche Zahl

17

$$e = \lim_{n \to \infty} \left(1 + \frac{1}{n} \right)^n \tag{12}$$

besitzt die Darstellung als unendliche Reihe:

$$e = \sum_{k=0}^{\infty} \frac{1}{k!} \tag{13}$$

allgemeine Exponentialreihe:

$$\lim_{n \to \infty} \left(1 + \frac{x}{n} \right)^n = \sum_{k=0}^{\infty} \frac{x^n}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots =: e^x \quad (14)$$

20 Antwort

Eine Funktion f heißt Lipschitz-stetig auf dem Intervall I, wenn es eine Konstante $L \ge 0$ gibt, so dass gilt

$$|f(x_1) - f(x_2)| \le L |x_1 - x_2| \ \forall \ x_1, x_2 \in I$$
 (17)

Man beachte, dass die Lipschitzkonstante von dem betrachteten Intervall abhängt. Viele Funktionen (z. B. Polynome) sind Lipschitz-stetig auf jedem beschränkten Intervall, aber nicht auf ganz \mathbb{R}

Lipschitz-Stetigkeit impliziert gleichmäßige Stetigkeit.

19

Antwort

Sei $A\subseteq\mathbb{R}$ offen. Eine Funktion $f:D\to\mathbb{R}$ heißt stetig an der Stelle $c\in D$, wenn zu jeder reelen Zahl $\varepsilon>0$ eine reele Zahl $\delta=\delta(\varepsilon)>0$ existiert, so dass für alle x mit $|c-x|<\delta$ gilt

$$|f(c) - f(x)| < \varepsilon \tag{16}$$

 $x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \tag{18}$

Jedes Polynom vom Grad \geqslant 1 hat mindesten eine (reelle oder komplexe) Nullstelle

23 Antwort

$$e^{x+y} = e^x e^y,$$
 $e^{x\cdot y} = (e^x)^y,$ $e^{-x} = \frac{1}{e^x}$ (19)

$$\ln(x \cdot y) = \ln x + \ln y, \quad \ln x^{k} = k \ln x, \qquad \qquad \ln \frac{1}{x} = -\ln x \quad (20)$$

$$a^{x+y} = a^x a^y, \qquad a^{x \cdot y} = (a^x)^y$$
 (21)

$$a^{x} = \left(e^{\ln a}\right)^{x} = e^{x \ln a} \tag{22}$$

$$\log_{\alpha} x = \frac{\ln x}{\ln a}, \ 0 < x < \infty \tag{23}$$

4

Antwort

Sei f(x) in (a,b) differenzierbar und streng monoton, weiters sei $f'(x) \neq 0, x \in (a,b)$. Dann exisitiert die Umkehrfunktion f^{-1} und ist differenzierbar. Es gilt

$$(f^{-1}(y))' = \frac{1}{f'(f^{-1}(y))}$$
 (25)

Sei $f:(a,b)\to\mathbb{R}$ und $x\in(a,b)$. Wenn $\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}$ existiert, dann heißt f differenzierbar an der Stelle x. Man schreibt

$$f'(x) := \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \tag{24}$$

und bezeichnet f'(x) als die 1. Ableitung oder Differentialquotient von f an der Stelle x.

28

Antwort

27

Antwort

$$\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{arsinh} x = \frac{1}{\sqrt{x^2 + 1}}, \qquad x \in \mathbb{R}$$
 (30)

$$\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{arcosh} x = \pm \frac{1}{\sqrt{x^2 - 1}}, \qquad x > 1 \tag{31}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\operatorname{artanh} x = \frac{1}{1 - x^2}, \qquad x \in (-1, 1)$$
 (32)

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln x = \frac{1}{x}, \qquad \qquad \frac{\mathrm{d}}{\mathrm{d}x}\log_{a}x = \frac{1}{\ln a}\frac{1}{x} \qquad (26)$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\arcsin x = \frac{1}{\sqrt{1-x^2}}, \qquad x \in (-1,1)$$
 (27)

$$\frac{d}{dx} \arccos x = -\frac{1}{\sqrt{1-x^2}}, \quad x \in (-1,1)$$
 (28)

$$\frac{\mathrm{d}}{\mathrm{d}x}\arctan x = \frac{1}{1+x^2}, \qquad x \in \mathbb{R}$$
 (29)

Seien f, g stetig auf [a, b] und differenzierbar auf a, b. Dann existiert $\xi \in (a, b)$ mit

$$f'(\xi)(g(b) - g(a)) = g'(\xi)(f(b) - f(a))$$
 (34)

(Der Speizialfall g(x) = x ergibt wiederum den 1. Mittelwertsatz.)

existiert ein $\xi \in (a, b)$ mit f(b) - f(a)

Sei f(x) stetig auf [a, b] und differenzierbar auf (a, b). Dann

$$f'(\xi) = \frac{f(b) - f(a)}{b - a}$$
(33)

Geometrische Interpretation: Es gibt mindestens einen Punkt $\xi \in (a,b)$, an dem die Steigung der Tangente an den Graphen von f gleich der Steigung der Geraden durch die Punkte (a,f(a)) und (b,f(b)) ist. Siehe Abb. 9.4 im Skript.

32 Antwort

Sei f stetig differenzierbar auf [a, b]. Dann ist f Lipschitzstetig auf [a, b], d.h. es gilt

$$|f(x_1) - f(x_2)| \le L|x_1 - x_2| \ \forall \ x_1, x_2 \in [a, b]$$
 (35)

mit $L = \max_{x \in [a,b]} |f'(x)|$ als kleinstmöglicher Lipschitzkonstante.

31 Antwort

Sei f(x) stetig auf [a, b], differenzierbar auf (a, b) und gilt f(a) = f(b). Dann existiert ein $\xi \in (a, b)$ mit $f'(\xi) = 0$

Analysis I	# 33	1.9. Differentialrechung	Analysis I	# 34	1.9. Differentialrechung
	Regel von de l'Hospital	für 0/0		Wie lautet die Leibnizs	che Produktregel
Analysis I	# 35 1.10. Ve	halten reeller Funktionen	Analysis I	# 36 1.	10. Verhalten reeller Funktionen
	Wie lautet der Satz von	Taylor?		Lokale Ext	rema

 $(fg)^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(k)} g^{(n-k)}$ (39)

Die Funktionen f, $g:[c,c+\varepsilon]\to\mathbb{R}$ seien stetig und auf $(c,c+\varepsilon)$ differenzierbar. Es gelte

$$f(c) = g(c) = 0$$
 und $g'(x) \neq 0, x \in (c, c + \varepsilon)$ (36)

Falls der Grenzwert

$$\lim_{x \to c+} \frac{f'(x)}{g'(x)} = \gamma \qquad (\gamma = \pm \infty \text{ zugelassen!}) \qquad (37)$$

existiert, dann gilt auch

$$\lim_{x \to c+} \frac{f(x)}{g(x)} = \gamma \tag{38}$$

36 Antwort

Sei $f: [a, b] \to \mathbb{R}$ stetig. $x_0 \in (a, b)$ heißt lokales Minimum (Maximum), wenn ein $\delta > 0$ existiert, so dass $f(x_0) \leqslant f(x)$ ($f(x_0) \geqslant f(x)$) für $|x - x_0| < \delta$.

Präziser gesprochen ist x_0 eine lokale *Extremalstelle* (Minimal- oder Maximalstelle), und $f(x_0)$ ist der lokale *Extremalwert* (Minimal- oder Maximalwert).

35 Antwort

Sei $f:[a,b]\to\mathbb{R}$ eine (n+1)mal stetig differenzierbare Funktion. Dann gilt für alle $x_0\in[a,b]$ und $x=x_0+h\in[a,b]$ die Taylorsche Formel,

$$f(x) = f(x_0 + h) = f(x_0) + \frac{f'(x_0)}{1!}h + \frac{f''(x_0)}{2!}h^2 + \dots + \frac{f^{(n)}(x_0)}{n!}h^n + R_{n+1}(x)$$
(40)

mit dem Restglied der Ordnung n + 1.

$$R_{n+1}(x) = \frac{f^{(n+1)}(x_0 + \vartheta \ h)}{(n+1)!} h^{(n+1)} \text{ mit } \vartheta \in [0, 1]$$
 (41)

Analysis I	# 37 1.10. Verhalten reeller Funktionen	Analysis I	# 38	1.11. Iterationsverfahren
	Charakterisierung stationäre Punkte	Rekursi	ve Definition des Nev	vton-Verfahrens
Analysis I	# 39 1.12. Riemann Integral	Analysis I	# 40	1.12. Riemann Integral
	Wie lautet der erste Mittelwertsatz der Integralrechnung	Zweiter	Mittelwertsatz der Iı	ntegralrechnung

$$x_{(n+1)} := x_n - \frac{f(x_n)}{f'(x_n)}, \quad n = 0, 1, 2, \dots$$
 (42)

Sei $f'(x_0)=0,\ f^{(k)}(x_0)=0$ für $k=2\dots n,$ jedoch $f^{(n+1)}(x_0)\neq 0.$

- \triangleright Im Fall (n + 1) gerade, ist x_0
 - für $f^{(n+1)}(x_0) > 0$ ist ein lokales Minimum,

Antwort

- für $f^{(n+1)}(x_0) < 0$ ist ein lokales Maximum.
- \triangleright Im Fall das (n+1) ungerade ist $x_{(0)}$ ein sogenannter Sattelpunkt, d.h. in jeder Umgebung von x_0 gibt es Punkte mit $f(x) > f(x_0)$ und mit $f(x) < f(x_0)$.

Beachte: Ein Sattelpunkt ist ein Wendepunkt mit $f'(x_0) = 0$.

40 Antwort

Sei f(x) stetig auf [a, b], und $g: [a, b] \to \mathbb{R}$ sei integrierbar, wobei $g(x) \geqslant 0$, $x \in [a, b]$, $\int_a^b g(x) dx > 0$. Dann existiert ein $\xi \in [a, b]$ mit

$$\int_a^b f(x)g(x)dx = f(\xi) \int_a^b g(x)dx \tag{44}$$

39 Antwort

Ist f(x) stetig auf [a, b], dann existiert ein $\xi \in [a, b]$ mit

$$\int_{a}^{b} f(x)dx = f(\xi)(b - a)$$
 (43)

Analysis I	# 41	1.12. Riemann Integral	Analysis I	# 42 1.13. Funktionenfolgen
Hauptsatz der 1	Differential und	l Integralrechnung		Punktweise, gleichmäßige Konvergenz
Analysis I	# 43 1.14	. Potenzreihen, Taylorreihen	Analysis I	# 44 1.14. Potenzreihen, Taylorreihen
	as Restglied de Integraldarstell	r Taylorreihe in ung		Wie lautet das Taylorpolynom

- ho Existiert $\lim_{n\to\infty} f_n(\xi)$ für $\xi\in D$, dann heißt $\{f_n\}$ an der Stelle ξ konvergent.
- \triangleright Konvergiert $\{f_n\}$ an x für alle $x \in I \subseteq D$, so heißt $\{f_n\}$ punktweise konvergent in I, und dann existiert eine Grenzfunktion $f: I \to \mathbb{R}$ mit

$$f(x) := \lim_{n \to \infty} f_n(x), \ x \in I$$
 (47)

 \triangleright Die Funktionenfolge f_n heißt gleichmäßig konvergent auf I gegen die Funktion f, wenn

$$\lim_{n \to \infty} \sup_{x \in I} |f_n(x) - f_x| = 0$$
 (48)

In " ϵ -N(ϵ)-Terminologie " ausgedrückt bedeutet dies: Zu jedem $\epsilon>0$ existiert ein Index $N=N(\epsilon)>0$, so dass für alle $x\in I$ und für alle $n\in \mathbb{N}$ mit $n\geqslant N(\epsilon)$ gilt

$$|f_{n}(x) - f(x)| < \varepsilon \tag{49}$$

(i) Sei $f:[a,b]\to\mathbb{R}$ stetig. Dann ist die Funktion $F(x)=\int_a^x f(\xi)d\xi$ auf [a,b] stetig differenzierbar, und es gilt

$$F'(x) = \frac{d}{dx} \int_0^x f(\xi) d\xi = f(x)$$
 (45)

(ii) Sei $f:I\to\mathbb{R}$ stetig, und F sei eine Stammfuntkion von f. Dann gilt für $a,b\in I$

$$\int_{a}^{b} f(x)dx = F(b) - F(a) =: F(x)|_{a}^{b}$$
 (46)

44

Antwort

Das Polynom vom Grad $\leq n$

$$T_n(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 (51)

heißt n-tes Taylorpolynom der Funktion f zur Entwicklungsstelle x_0 , und $R_{n+1}(x)$ heißt das Restglied (n+1)-ter Ordnung.

43

Antwort

$$R_{n+1}(x) = \frac{h^{n+1}}{n!} \int_0^1 (1 - \sigma)^n f^{(n+1)}(x_0 + \sigma h) d\sigma = \mathcal{O}(|h|^{n+1})$$
 für $h \to 0$ (50)

 $e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \quad x \in \mathbb{R}$ (53)

$$\ln(1-x) \sim \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$$
 (54)

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \ \cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
 (55)

Sei $f:[a,b]\to\mathbb{R}$ eine (n+1) mal stetig differenzierbare Funktion. Dann gilt fpr das Taylor-Restglied die Darstellung

$$R_{n+1}(x) = \frac{f^{(n+1)}(x_0 + \vartheta h)}{(n+1)!} h^{n+1}, \ h = x - x_0 \text{ für ein } \vartheta \in [0, 1]$$
 (52)

47

Antwort

$$\sinh x = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}, \ \cosh x = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$$
 (56)

$$\arctan x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)}, \text{ für } x \in [-1, 1]$$
 (57)

$$(1+x)^{a} = \sum_{n=0}^{\infty} {a \choose n} x^{n}, \text{ für } |x| < 1$$
 (58)