Kapitel 1.6

Matchings

Matching-Algorithmen

Satz: (Hall, Heiratssatz)

Ein bipartiter graph G=(A⊎B, E) enthält ein

Matching M der Kardinalität |M|=|A| gdw

∀ X⊆A : |X| ≤ |N(X)|

Philip Hall (1904-1982)

Satz: (Hall, Heiratssatz)

Ein bipartiter graph G=(A⊌B, E) enthält ein

Matching M der Kardinalität |M|=|A| gdw

∀ X⊆A : |X| ≤ |N(X)|

Philip Hall (1904-1982)

Beweis: Induktion über a = IAI

Induktionsverankerung: a = 1:

Induktionsschritt: Wir müssen zeigen:

Satz gilt für alle bipartiten \Rightarrow Satz gilt für alle bipartiten Graphen mit $|A| \le a-1$ \Rightarrow Graphen mit |A| = a

"a-1 \Rightarrow a"

Satz: (Hall, Heiratssatz)

Ein bipartiter graph G=(A⊌B, E) enthält ein

Matching M der Kardinalität |M|=|A| gdw

 $\forall X \subseteq A : |X| \leq |N(X)| \qquad (*)$

Philip Hall (1904-1982)

Beweis: "a-1 \Rightarrow a" Betrachte *beliebigen* Graphen mit |A|=a:

1.Fall: $\forall \varnothing \neq X \subseteq A$: |X| < |N(X)| 2.Fall: $\exists \varnothing \neq X_0 \subseteq A$: $|X_0| = |N(X_0)|$

- Wähle beliebige Kante {x,y} und lösche x, y und alle inzidenten Kanten.
- Zeige dass der verbleibende Graph die Bedingung (*) erfüllt.

- - Betrachte die beiden durch $X_0 \cup N(X_0)$ bzw $A \setminus X_0 \cup B \setminus N(X_0)$ induzierten Graphen
 - Zeige dass beide Graphen die Bedingung (*) erfüllen.

Satz: (Hall, Heiratssatz)

Ein bipartiter Graph G=(A⊌B, E) enthält ein

Matching M der Kardinalität |M|=|A| gdw

 $\forall X \subseteq A : |X| \leq |N(X)|$

Philip Hall (1904-1982)

Korollar: (Frobenius)

Für alle k gilt: jeder k-reguläre bipartite Graph

enthält ein perfektes Matching.

Ferdinand Georg Frobenius (1849 – 1917)

Theorem: (Hall, 1935)

Ein bipartiter graph G=(A⊌B, E) enthält ein

Matching M der Kardinalität |M| = |A| gdw

 $\forall A' \subseteq A : |A'| \leq |N(A')|$

Korollar: (Frobenius, 1917)

Für alle k gilt: jeder k-reguläre bipartite graph enthält ein perfektes Matching.

Es gilt sogar: Graph ist Vereinigung von perfekten Matchings.

Philip Hall (1904-1982)

Ferdinand Georg Frobenius (1849 – 1917)

Theorem: (Hall, 1935)

Ein bipartiter graph G=(A⊌B, E) enthält ein

Matching M der Kardinalität |M| = |A| gdw

 $\forall A' \subseteq A : |A'| \leq |N(A')|$

Korollar: (Frobenius, 1917)

Für alle k gilt: jeder k-reguläre bipartite graph enthält ein perfektes Matching.

Es gilt sogar: Graph ist Vereinigung von perfekten Matchings.

Philip Hall (1904-1982)

Ferdinand Georg Frobenius (1849 – 1917)

Theorem: (Hall, 1935)

Ein bipartiter graph G=(A⊌B, E) enthält ein

Matching M der Kardinalität |M|=|A| gdw

 $\forall A' \subseteq A : |A'| \leq |N(A')|$

Korollar: (Frobenius, 1917)

Für alle k gilt: jeder k-reguläre bipartite graph enthält ein perfektes Matching.

Es gilt sogar: Graph ist Vereinigung von perfekten Matchings.

Philip Hall (1904-1982)

Ferdinand Georg Frobenius (1849 – 1917)

Satz: (Hall, Heiratssatz)

Ein bipartiter Graph G=(A⊎B, E) enthält ein

Matching M der Kardinalität |M|=|A| gdw

 $\forall X \subseteq A : |X| \leq |N(X)|$

Philip Hall (1904-1982)

Korollar: (Frobenius)

Für alle k gilt: jeder k-reguläre bipartite Graph

enthält ein perfektes Matching.

Ferdinand Georg Frobenius (1849 – 1917)

Beachte: bipartit ist wichtig!

Algorithmen für bipartite Graphen

Satz: In **2**^k-regulären bipartiten Graphen kann man in Zeit **O(|E|)** ein perfektes Matching bestimmen.

Man kann zeigen:

Satz: In **k**-regulären bipartiten Graphen kann man in Zeit O(|E|) ein perfektes Matching bestimmen.

Augmentierende Pfade:

In bipartiten Graphen kann man in Zeit O(|V||E|) ein perfektes Matching bestimmen.

Matching-Algorithmen

für bipartite Graphen

```
O(|V|<sup>1/2</sup> · |E|) Hopcroft-Karp (ungewichtet)
```

O(|E|1+o(1)) (mit polynominellen Gewichte):

für allgemeine Graphen (mit polynominellen Gewichte)

O(|V|1/2 · |E|) Micali-Vazirani (ungewichtet) / Gabow-Tarjan

O(|V|2.373) mit Matrix-Multiplikation - Mucha, Sankowski (ungewichtet)

Ein M-augmentierender Pfad P ist ein Pfad, der abwechselnd Kanten aus M und nicht aus M enthält und der in von M nicht überdeckten Knoten beginnt und endet.

Ein M-augmentierender Pfad P ist ein Pfad, der abwechselnd Kanten aus M und nicht aus M enthält und der in von M nicht überdeckten Knoten beginnt und endet.

⇒ durch *Tauschen* entlang M können wir das Matching vergrössern:

M' := M ⊕ P

Seien M, M' beliebige Matchings.

Betrachte den Teilgraphen mit Kantenmenge M

M'.

Beobachtungen:

- Jeder Knoten hat Grad ≤ 2.
- ⇒ Kollektion von Pfaden und Kreisen.
- Jeder Pfad/Kreis wechselt ab zwischen Kanten aus M und M'.
- Falls IMI < IM'I, so gibt es mindestens einen Pfad mit Start- und Endkante in M'.

Gedankenexperiment:

M nicht-maximales Matching (schon bekannt)
M' maximales Matching (noch unbekannt)

Dann besitzt M einen augmentierenden Pfad!

Satz (Berge, 1957): Jedes Matching, das nicht (kardinalitäts-) maximal ist, besitzt einen augmentierenden Pfad.

Algorithmus

Input: Graph G = (V, E)

Output: maximales Matching M

Starte mit $M = \emptyset$.

repeat

- Suche augmentierenden Pfad P.
- if kein solcher Pfad existiert then return M.
- else M := M ⊕ P.

Suchen/Finden eines augmentierenden Pfades:

- in bipartiten Graphen in Zeit O(|V|+|E|). Mit BFS, sehen wir gleich.
- in allgemeinen Graphen in Zeit O(|V|·|E|). Blossom-Algorithmus von Edmond, deutlich technischer, sehen wir nicht.

BFS für alternierende Pfade:

Input: bipartiter Graph G = (A⊎B,E), Matching M

Output: (kürzester) augmentierender Pfad,

falls solche Pfade existieren

L₀ := {unüberdeckten Knoten aus A} Markiere Knoten aus L₀ als besucht.

if ein Knoten v in Li ist nicht überdeckt then return Pfad zu v (backtracking)

