

Housekeeping

- Dessert social today! 3-4:30pm in WNS 105!
- Modified office hours today: 1:30-2:30pm instead of 2-3pm
- Homework 7 due tonight
- Project proposals due Wednesday night

Recap

- CLT: if we have a sufficiently large sample of n independent observations from a population with mean μ and standard deviation σ , then $\bar{X} \stackrel{.}{\sim} N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$
- To obtain a $\gamma \times 100\%$ CI via CLT, we use

point estimate \pm critical value \times SE

lacktriangle We may need to replace the standard error with an estimate \widehat{SE}

Checking normality

- Remember, CLT requires a sufficiently large sample size *n* or assumption of Normality of the underlying data.
- No perfect way to check Normality, but rule of thumb:
 - If n < 30 small: check that there are no clear outliers
 - If $n \ge 30$ large: check that there are no particularly extreme outliers

CI for a single mean

CI for a single mean (known variance)

Suppose we want a $\gamma \times 100\%$ CI for population mean μ .

• If CLT holds, then we know

$$\bar{X} \sim N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$$

• So our $\gamma \times 100\%$ CI for μ is:

point estimate
$$\pm$$
 critical value \times SE $=$ \bar{x}_{obs} \pm $z^*_{(1+\gamma)/2}$ \times $\frac{\sigma}{\sqrt{n}}$

Margin of Error

Example: age at marriage

In 2006-2010, the CDC conducted a thorough survey asking US women their age at first marriage. Suppose it is known that the standard deviation of the ages at first marriage is 5 years. Suppose we randomly sample 25 US women and ask them their age at first marriage (plotted below). Their average age at marriage was 23.32.

We will obtain an 80% confidence interval for the mean age of US women at first marriage.

- Are conditions of CLT met?
- If so, what does CLT tell us?

What is/are the population parameter(s)? What is the statistic?

Example: age at marriage (cont.)

Obtain an 80% confidence interval for the mean age of US women at first marriage.

• Because we have a random sample (independence) and there are no outliers in the data (normality condition), we can proceed with CLT!

$$\bar{X} \stackrel{.}{\sim} N\left(\mu, \frac{5}{\sqrt{25}}\right) = N(\mu, 1)$$

Construct your confidence interval and interpret!

1. Point estimate: $\bar{x}_{obs} = 23.32$

2. Standard error: SE = 1

3. Critical value: $z_{0.9}^* = qnorm(0.9, 0, 1) = 1.28$

So our 80% confidence interval is $23.32 \pm 1.28 \times 1 = (22.04, 24.6)$

Utility of this model

- The previous formula for the confidence interval for μ relies on knowing σ
- But wait…
 - Want to construct a CI for μ because we don't know its value
 - If we don't know μ , it seems highly unlikely that we would know σ !
- So in practice, we will have to estimate standard error for \bar{X} :

$$\widehat{SE} = \frac{s}{\sqrt{n}}$$

where s is the observed sample standard deviation

• Recall we did something similar for CI for p, where we replaced p with \hat{p}_{obs}

Variance issue

- Estimating variance is extremely difficult when n is small, and still not great for large n
 - Thus, replacing σ with s invalidates CLT
- So if σ is unknown, we *cannot* use the Normal approximation to model \bar{X} for inferential tasks
- Instead, we will use a new distribution for inference calculations, called the *t*-distribution

t-distribution

- The *t*-distribution is symmetric and bell-curved (like the Normal distribution)
- Has "thicker tails" than the Normal distribution (the tails decay more slowly)

- t-distribution is always centered at 0
- One parameter: degrees of freedom (df) defines exact shape of the t
 - Denoted t_{df} (e.g. t_1 or t_{20})

• As df increases, t resembles the N(0, 1). When $df \ge 30$, the t_{df} is nearly identical to N(0, 1)

t distribution in R

- pnorm(x, mean, sd) and qnorm(%, mean, sd) used to find probabilities and percentiles for the Normal distribution
- Analogous functions for t-distribution: pt(x, df) and qt(%, df)

$$pt(-1.5, df = 2) = 0.1361966$$

$$qt(0.7, df = 2) = 0.6172134$$

CI for a single mean (unknown variance)

- Still require independent observations and the Normality condition for CLT
- General formula for $\gamma \times 100\%$ CI is the same, but we simply change what goes into the margin of error.

point estimate
$$\pm t_{df,(1+\gamma)/2}^* \times \widehat{SE} = \bar{x}_{obs} \pm t_{df,(1+\gamma)/2}^* \times \frac{s}{\sqrt{n}}$$

- df = n 1 (always for this CI)
- critical value $t_{df,(1+\gamma)/2}^* = (1+\gamma)/2$ percentile of the t_{df} distribution

Example: age at marriage (cont.)

Let's return to the age at marriage example. Once again, obtain an 80% CI for the average age of first marriage for US women, but now suppose we **don't know** σ .

In our sample of n=25 women, we observed a sample mean of 23.32 years and a sample standard deviation of s=4.03 years.

- 1. Point estimate: $\bar{x}_{obs} = 23.32$
- 2. Standard error: $\widehat{SE} = \frac{s}{\sqrt{n}} = \frac{4.03}{\sqrt{25}} = 0.806$
- 3. Critical value:
 - df = n 1 = 24
 - $t_{24.0.9}^* = qt(0.9, df = 24) = 1.32$

So our 80% confidence interval for μ is:

$$23.32 \pm 1.32 \times 0.806 = (22.26, 24.38)$$

Remarks

- Interpretation of CI does not change even if we use a different model!
- If you have access to both σ and s, would should you use?
 - You should use σ !

Test for a single mean

Hypothesis test recap

- 1. Set hypotheses
- 2. Collect and summarise data, set α
- 3. Obtain null distribution and p-value
 - For CLT-based method, obtain *test statistic*
- 4. Decision and conclusion

Hypotheses and null distribution

Want to conduct a hypothesis test for the mean μ of a population.

- Hypotheses: $H_0: \mu = \mu_0$ versus $H_A: \mu \neq \mu_0$ (or $\mu > \mu_0$ or $\mu < \mu_0$)
- Verify conditions for CLT
 - 1. Independence
 - 2. Approximate normality or large sample size
- Then from population with mean μ and standard deviation σ , we have $\bar{X} \stackrel{.}{\sim} N\left(\mu, \frac{\sigma}{\sqrt{n}}\right)$
- What does the (approximate) **null distribution** for \bar{X} look like?

$$\bar{X} \sim N\left(\mu_0, \frac{\sigma}{\sqrt{n}}\right)$$

z-test and t-test statistics

Our test statistic is always of the form:

$$\frac{\text{observed} - \text{null}}{\text{SE}}$$

or

$$\frac{\text{observed} - \text{null}}{\widehat{SE}}$$

• If σ known and CLT met, we perform a **z-test** where our test-statistic is:

$$z = \frac{\bar{x}_{obs} - \mu_0}{\frac{\sigma}{\sqrt{n}}} \sim N(0, 1)$$

and we obtain our p-value using
pnorm()

Everything else proceeds as usual!

• If σ unknown and CLT met, we perform a *t*-test by estimating σ with s. Our test statistic is:

$$t = \frac{\bar{x}_{obs} - \mu_0}{\frac{s}{\sqrt{n}}} \sim t_{df} \qquad df = n - 1$$

and we obtain our p-value using pt()

Example: salinity

The salinity level in a body of water is important for ecosystem function.

We have 30 salinity level measurements (ppt) collected from a random sample of water masses in the Bimini Lagoon, Bahamas.

• We want to test if the average salinity level in Bimini Lagoon is different from 38 ppm at the $\alpha=0.05$ level.

- 1. Set hypotheses (define parameters as necessary).
 - Let μ be the average salinity level in Bimini Lagoon in ppt.
 - $H_0: \mu = 38 \text{ versus } H_A: \mu \neq 38$
- 2. Collect summary information, set α .
- $\bar{x}_{obs} = 38.6$
- s = 1.29
- n = 30
- $\alpha = 0.05$

- 3. Obtain null distribution, test statistic, and p-value
 - i. Check conditions for CLT
 - ii. If conditions met, obtain null distribution and test-statistic, and determine distribution of test-statistic
- Conditions:
 - Independence: random sample
 - Approximate normality: n = 30, but no clear outliers
- So by CLT, null dist. is $\bar{X} \stackrel{.}{\sim} N\left(38, \frac{\sigma}{\sqrt{30}}\right)$
- Since we don't know σ , we perform a t-test and obtain the following test-statistic:

$$t = \frac{\bar{x}_{obs} - \mu_0}{\widehat{SE}} = \frac{38.6 - 38}{1.29 / \sqrt{30}} = 2.543$$

■ This test-statistic follows a t_{29} distribution

iii. Use test-statistic to obtain p-value (draw picture and/or write code using appropriate distribution)

Want

$$P(T \ge 2.54) + P(T \le 2.54)$$

because H_A is two-sided!

```
1 p_val <- 2 * (1 - pt(t, df = n-1))
2 p_val</pre>
```

[1] 0.01658569

- 4. Decision and conclusion
- Since our p-value 0.017 is less than 0.05, we reject H_0 .
- The data do provide sufficient evidence to suggest that the average salinity level in Bimini Lagoon is different from 38 ppt.

Let's code it up together!