Taller MMAF

Pontificia Universidad Javeriana - Cali

Table of contents

1	Talle	ler MMAF																										
	1.1	E	gercicio	1																								
	1.2	E	gercicio	2																								
	1.3	E	gercicio	3																								
	1.4	E	gercicio	4																								
	1.5	E	gercicio	5																								
	1.6	E	gercicio	6																								
	1.7	E	gercicio	7																								
	1.8	E	gercicio	8 (
	1.9	E	gercicio	9																								
	1.10	E	diercicio	10) .														 								_	

1 Taller MMAF

1.1 Ejercicio 1

Recordar que si a,b tienen el mismo signo, entonces ab y $\frac{a}{b}$ son positivos, mientras que si a y b tienen signos contrarios, entonces ab y $\frac{a}{b}$ son negativos.

Con base en lo anterior, y asumiendo que x>0 y y<0, determina el signo de:

$$\frac{x}{y} + \frac{y}{x}$$

Argumenta claramente el modo en que lo determinaste.

Ahora supón que x < 0 y y > 0. Justifica el signo de:

- xy^2
- $\frac{x-y}{x}$
 - \overline{xy}
- y(y-x)

1.2 Ejercicio 2

Expresa los siguientes enunciados como una desigualdad:

- 1. x es negativo.
- 2. El cociente de p y q es a lo más 7.
- 3. El valor absoluto de x es mayor a 7.
- 4. w es mayor o igual a -4.

1.3 Ejercicio 3

Reescribe el número sin usar el símbolo de valor absoluto y simplifica el resultado:

- 1. |-3-2|
- 2. |-11+1|
- 3. $|\pi 4|$
- 4. $\left| \frac{1}{5} \frac{1}{3} \right|$

1.4 Ejercicio 4

Reescribe la expresión sin valor absoluto y simplifica:

- 1. |3+x|, si x < -3.
- 2. |a b|, si a < b.
- 3. |7 + x|, si $x \ge 7$.
- 4. $|x^2+4|$.
- 5. $|-x^2-1|$.

1.5 Ejercicio 5

Sustituye el símbolo \square con = o \neq para que el enunciado sea verdadero para todos los números reales a, b, c y d, siempre que las expresiones estén definidas:

1.
$$\frac{a+c}{b+d} \square \frac{a}{b} + \frac{c}{d}$$
2.
$$\frac{a-b}{b-a} \square - 1$$
3.
$$-(a+b)\square - a + b$$

2.
$$\frac{a-b}{b}\Box -1$$

3.
$$-(a+b)\Box - a + b$$

1.6 Ejercicio 6

Simplifica:

1.
$$\left(-\frac{3}{2}\right)^4 - 2^{-4}$$

1.
$$\left(-\frac{3}{2}\right)^4 - 2^{-4}$$
2. $\left(\frac{4a^2b}{a^3b^2}\right) \left(\frac{5a^2b}{2b^4}\right)$
3. $\left(\frac{3x^5y^4}{x^0y^{-3}}\right)^2$

$$3. \left(\frac{3x^5y^4}{x^0y^{-3}}\right)$$

$$(x^{0}y^{-3})$$
4. $(4a^{2}b)^{4}\left(\frac{-a^{3}}{2b}\right)^{2}$

1.7 Ejercicio 7

Determina si el número es positivo o negativo:

1.
$$(-10-10)^{-10+10}$$

2.
$$(-1)^{-1}(-1)^0(-1)$$

3.
$$(\pi^2\pi^3\pi^{-4})^{-1}$$

1.8 Ejercicio 8

¿Crees que los siguientes cálculos son correctos? Justifica tu respuesta:

3

1.
$$2^3 = 6$$

1.
$$2^3 = 6$$

2. $\frac{2}{4+3} = \frac{2}{4} + \frac{2}{3}$
3. $-2+3 = -(2+3)$

$$3. -2 + 3 = -(2 + 3)$$

1.9 Ejercicio 9

Simplifica la expresión y racionaliza el denominador cuando sea apropiado:

1.
$$\sqrt[4]{\frac{5x^8y^3}{27x^2}}$$
2. $\sqrt[5]{\frac{5x^7y^2}{8x^3}}$
3. $\sqrt[3]{3t^4v^2}\sqrt[3]{-9t^{-1}v^4}$

1.10 Ejercicio 10

Existe una fórmula para determinar la eficiencia del levantamiento de pesas por parte de atletas que practican esta actividad. Si un levantador que pesa b kilogramos levanta w kilogramos de peso, entonces la eficiencia del levantamiento está dada por:

$$W = \frac{w}{\sqrt[3]{b - 35}}$$

Supón que dos levantadores que pesan 75 y 120 kilogramos levantan pesas de 180 y 250 kilogramos, respectivamente. Usa la fórmula anterior para determinar el mejor levantador de pesas.