Visual + Prompt

Apr 23th 2022

Prompt

②设计灵活,可以适应不同类型的 NLP任务

我觉得这一点是它 被认为是NLP第四 范式的关键

Type	Task	Input ([X])	Template	Answer ([Z]
Text CLS	Sentiment	I love this movie.	[X] The movie is [Z].	great fantastic
	Topics	He prompted the LM.	[X] The text is about [Z].	sports science
	Intention	What is taxi fare to Denver?	[X] The question is about [Z].	quantity city
Text-span CLS	Aspect Sentiment	Poor service but good food.	[X] What about service? [Z].	Bad Terrible
Text-pair CLS	NLI	[X1]: An old man with [X2]: A man walks	[X1]? [Z], [X2]	Yes No
Tagging	NER	[X1]: Mike went to Paris. [X2]: Paris	[X1] [X2] is a [Z] entity.	organization location
Text Generation	Summarization	Las Vegas police	[X] TL;DR: [Z]	The victim A woman
	Translation	Je vous aime.	French: [X] English: [Z]	I love you. I fancy you.

DAPL 2202.06687

Domain Adaptation via Prompt Learning

通过NLP跨模态的方式实现Domain Prompt编码

DAPL 2202.06687

Domain Adaptation via Prompt Learning

通过NLP跨模态的方式实现Domain Prompt编码

VPT visual prompt tuning

Prompt策略:加可学习Token在每个ViT Encoder

$$egin{aligned} [\mathbf{x}_i, _, \mathbf{E}_i] &= oldsymbol{L_i}([\mathbf{x}_{i-1}, \mathbf{P}_{i-1}, \mathbf{E}_{i-1}]) & [\mathbf{x}_1, \mathbf{Z}_1, \mathbf{E}_1] &= oldsymbol{L_1}([\mathbf{x}_0, \mathbf{P}, \mathbf{E}_0]) \ \mathbf{y} &= oldsymbol{\mathsf{Head}}(\mathbf{x}_N) &. & [\mathbf{x}_i, \mathbf{Z}_i, \mathbf{E}_i] &= oldsymbol{L_i}([\mathbf{x}_{i-1}, \mathbf{Z}_{i-1}, \mathbf{E}_{i-1}]) \ \mathbf{y} &= oldsymbol{\mathsf{Head}}(\mathbf{x}_N) &, \end{aligned}$$

复现 https://github.com/sagizty/VPT

Visual Prompting:

Tulip

Iris

Tulip

Iris

Modifying Pixel Space to Adapt Pre-trained Models 通过加入Prompt Token进行训练(类似一种VPT-Shallow)

Tulip

Iris

Figure 1: **All you need is a single patch.** Given a frozen, pre-trained model (CLIP [1] in this example), we wish to adapt the model to perform well on a new downstream task. Adding a *single*, *input-agnostic* prompt to input images improves performance across *all* object categories in a dataset.

Visual Prompting:

Modifying Pixel Space to Adapt Pre-trained Models

通过加入Prompt Token进行训练 (类似一种VPT-Shallow) (a) Adding a single visual prompt to every image increases performance on a task.

(b) Given an image, changing the visual prompt causes the model to perform different tasks.

