Code No: 111AB

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD B.Tech I Year Examinations, December - 2017 MATHEMATICS-I

(Common to CE, EEE, ME, ECE, CSE, CHEM, EIE, BME, IT, MCT, ETM, MMT, AE, AME, MIE, PTM, CEE, AGE)

Time: 3 hours Max. Marks: 75

Note: This question paper contains two parts A and B.

Part A is compulsory which carries 25 marks. Answer all questions in Part A. Part B consists of 5 Units. Answer any one full question from each unit. Each question carries 10 marks and may have a, b, c as sub questions.

PART-A

(25 Marks)

1.a) Find the rank of
$$\begin{bmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 3 & 2 \\ 1 & -1 & 2 & 1 \end{bmatrix}$$
 [2]

- b) Find the nature of the quadratic form $x^2 + y^2 + 2xy$. [3]
- c) If $x = r\cos\theta$, $y = r\sin\theta$ then find the Jacobian $J\left(\frac{r,\theta}{x,y}\right)$. [2]
- d) State Rolle's mean theorem and explain its geometrical interpretation. [3]
- e) Evaluate $\int_{0}^{\frac{\pi}{2}} Sin^{3}\theta Cos^{5}\theta d\theta$ using beta and gamma function. [2]
- f) Evaluate $\int_{-1}^{1} \int_{0}^{2} \int_{0}^{3} (x+y+z) dx dy dz$. [3]
- g) Find P.I of $\frac{1}{D^2 + 16} Sin4x$ [2]
- h) Find the flow of the current in simple closed LR-circuit, initially the current is zero where L=2H, $R=4\Omega$ and source of the voltage $E(t)=e^t$, t>0. [3]
- i) Find $L^{-1}\left(\frac{1}{s^2 2s + 5}\right)$ [2]
- j) Let $L\{f(t)\}=\bar{f}(s)$, Prove that $L\{f(at)\}=\frac{1}{a}\bar{f}\left(\frac{s}{a}\right)$ [3]

PART-B

(50 Marks)

- 2.a) If a, b, c are distinct non-zero numbers, show that the homogeneous system with coefficient matrix $\begin{bmatrix} a & b & c \\ a & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{bmatrix}$ has no non-trivial solution.
 - b) Find the Eigen values and Eigen vectors of $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$. [5+5]

OR

- 3.a) Reduce the quadratic form $2x^2 + 2y^2 + 2z^2 + 2yz$ to canonical form and hence find the nature.
 - b) Find the value of 'k' such that the rank of A is 3, where $A = \begin{bmatrix} 1 & 1 & -1 & 0 \\ 4 & 4 & -3 & 1 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3 \end{bmatrix}$. [5+5]
- 4.a) Examine the maxima and minima of $x^3 + 3xy^2 + 3x^2 3y^2 + 4$.
 - b) Find the approximate value of $\sqrt[5]{245}$ by using Lagrange's mean value theorem. [5+5]

OR

- 5.a) Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- b) Verify Rolle's theorem for $\log \left[\frac{x^2 + ab}{x(a+b)} \right]$ on [a, b], b > a > 0. [5+5]
- 6.a) Define Beta function, Prove that B(m,n) = B(n,m), m > 0, n > 0.
- b) Evaluate $\int_{0}^{2} x\sqrt{2-x} dx$ using Beta and Gamma function. [54]

OR

- 7. Evaluate $\iint_R xy \, dxdy$ where R is the region bounded by x-axis and x = 2a and the curve $x^2 = 4ay$. [10]
- 8.a) Solve $(1 + y^2)dx = (\tan^{-1} y x)dy$.
- b) Find the orthogonal trajectory of the family of cardioids $r = a(1 \cos \theta)$, a > 0. [5+5]

- 9.a) Solve $(D^2 + 9)y = (x^2 + 1)e^{3x}$. b) Solve $(D^2 + a^2)y = Tanax$.
- b) Solve $(D^2 + a^2)y = Tanax$. [5+5]
- 10.a) Find $L\left\{\sqrt{t} + \frac{1}{\sqrt{t}}\right\}$ for t > 0.
 - b) Solve the integral equation $f(t) = at + \int_{0}^{t} f(u)\sin(t-u)du$, t > 0. [5+5]
- 11.a) Evaluate $\int_{0}^{\infty} e^{-t} \frac{\sinh t}{t} dt$.
 - b) Solve y'' + 4y = 0, y(0) = 1, y'(0) = 6 using Laplace transform. [5+5]

---00000----