Expression de l'Hamiltonien utilisé dans mon code Potts

Marc Durand

7 mai 2019

Dans ce qui suit, je note $\lambda \equiv$ area_constraint. Les paramètres λ et $J(\sigma_k, \sigma_l)$ utilisés dans mes simuls sont définis à partir de l'Hamiltonien suivant :

$$\mathcal{H} = \sum_{\substack{sites \\ \langle k, l \rangle}} J(\sigma_k, \sigma_l) \left(1 - \delta_{\sigma_k, \sigma_l} \right) + \lambda \sum_{\substack{cells \\ i}} \frac{\left(A_i - A_i^0 \right)^2}{A_i^0}. \tag{1}$$

La comparaison avec l'Hamiltonien physique :

$$\mathcal{H} = \sum_{\substack{cells\\\langle i,j\rangle}} \gamma_{ij} \mathcal{L}_{ij} + \frac{B}{2A_0} \sum_{\substack{cells\\i}} (A_i - A_0)^2$$
 (2)

nous donne la correspondance :

$$B = 2\lambda$$

et

$$\gamma_{ij} = zJ(i,j),$$

où $z \equiv \text{line_to_area} \simeq 11.3.$