上海市精品课程系列——生物化学

- 1 脂类的消化和吸收
- 2 脂肪、磷脂和糖脂的代谢

1 脂肪酸代谢

● 脂类的消化和吸收

■ 脂质的酶促降解

小肠上段是主要的消化场所

胆汁酸盐的乳化作用:胆汁酸盐可减少脂肪的表面张力,使脂肪乳化成非常细小的乳化微粒,提高溶解度,增加了酶与脂类的接触面积,有利于脂类的消化及吸收

脂肪酶(舌、胃和胰)、磷脂酶等

脂肪食物摄取

小肠

① 胆汁酸 盐在小肠中将食物中的大脂肪滴乳化成小脂肪滴(物理消化)

②肠内的脂肪酶消化三脂 酰甘油形成脂肪酸和甘 油(化学消化)

③脂肪酸和其他消化产物 被小肠黏膜细胞吸收并 再次合成为三脂酰甘油

⑩ 脂类的消化和吸收

■ 脂质的吸收

- ① 胆汁酸盐在小肠中将食物中的大脂肪滴乳化成小脂肪滴(物理消化)
- ②肠内的脂肪酶消化三脂 酰甘油形成脂肪酸和甘 油(化学消化)
- ③脂肪酸和其他消化产物 被小肠黏膜细胞吸收并 再次合成为三脂酰甘油

小肠黏膜细胞

ApoC-II

⑦脂肪酸进入细胞, 甘油 转运至肝脏和肾脏

脂蛋白脂肪酶

- ⑥在组织毛细管中的脂蛋 白脂肪酶催化脂肪形成 脂肪酸和甘油
- ⑤乳糜微粒通过淋巴系统和血流运输至组织

乳糜微粒 (CM)

④三脂酰甘油与胆固醇、磷脂和軟脂蛋白混合成乳糜微粒(CM)

小肠粘膜细胞吸收

胆固醇

脂类的消化和吸收

脂类的运输

◆脂类物质是疏水的,在血液中不能运输 脂质(疏水) + 载脂蛋白(亲水) + 磷脂和胆固醇(两亲) 血浆脂蛋白(亲水)

三脂酰甘油

和胆固醇酯

- ◆血浆脂蛋白种类
 - ① CM(乳糜微粒),小肠合成,转运外源性脂肪(小肠→体内)
 - ② VLDL(极低密度脂蛋白),肝脏合成,转 运内源性脂肪(肝→肝外组织)
 - ③ LDL(低密度脂蛋白),血管中由VLDL脱脂肪形成,转运胆固醇和磷脂至肝外
 - ④ HDL(高密度脂蛋白),最初在肝脏合成, 收集肝外胆固醇和磷脂至肝

- ◆ 正常人空腹血浆中不易检 测CM与VLDL
- ◆ LDL由VLDL转变而成, 是空腹血浆的主要脂蛋白, 其胆固醇含量相对较高, 血浆中LDL高者易患动脉 粥样硬化
- ◆ HDL能将肝外组织衰老与 死亡细胞膜上的胆固醇经 血液逆向运回肝,转变成 胆汁酸盐等排泄,一般认 为它有防止动脉粥样硬化 的作用

■ 脂肪代谢

脂肪的水解

脂肪水解受激素控制

脂肪动员:指储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸及甘油并释放入血液,被其他组织氧化利用的过程

CH2OCOR1 CHOCOR2 CH2OCOR3

水解

CH2OH CHOH CH2OH 世油

水解「糖异生

糖的分解

RiCOO **脂肪酸**

R₂C00[−] 脂肪酸

R₃COO ̄ **脂肪酸** 脂肪酸的 氧化分解

食物

脂肪的合成

- 4 胰岛素诱导
- → 脂肪细胞和肝细胞内
- ◆ 甘油 → 磷酸甘油
- ★ 脂肪酸 → 脂酰CoA

三脂酰甘油的合成

■ 磷脂代谢

磷脂的分解

磷脂的合成

- ◆ 醇骨架的合成
- ← 脂酰基转移到碳骨架上
- ◆ 亲水头部基团加入
- ◆ 头部基团修饰

甘油磷脂的合成

- **脂肪酸的分解**
- 脂肪酸的合成
- 脂肪酸代谢的调控

■脂肪酸的分解

- → 脂肪酸的活化最活跃的组织: 肝和肌肉
- * 氧化方式有: α-氧化、β-氧化和ω-氧化
- * β-氧化是主要方式

脂肪酸β-氧化作用的发现

- ★ 发生在β碳原子上
- ★ 发生在线粒体基质中
- ◆ 释放二碳单位乙酰CoA

脂肪酸β-氧化作用的概念

在脂肪酸的β碳原子上氧化,然后在α和β碳原子之间发生断裂。每进行一次β氧化作用,分解出一个二碳片段,生成较原来少两个碳原子的脂肪酸

脂肪酸β-氧化途径

- ◆ 脂肪酸的活化
- ◆ 脂肪酸的转运
- ♣ β-氧化作用

场所:线粒体基质

● 脂

脂肪酸代谢

脂肪酸的活化

位于线粒体外膜的脂酰CoA合成酶催化脂肪酸的羧基与CoA-SH生成活化的脂酰CoA的过程

- + 反应不可逆
- ◆ 在细胞质中进行
- ◆ 消耗 2ATP
- ◆ 极性增加,易溶于水
- ◆ 分子中有高能键,性质活泼
- ◆ 酶的特异性底物,与酶亲和力大

❖ 脂肪酸的转运

脂肪酸氧化酶系存在线粒体基质中,但细胞质中活化的长链脂酰CoA不能直接透过线粒体内膜,须与肉碱结合成脂酰肉碱才能进入线粒体基质

左旋肉碱

- ◆ 限速步骤
- ↑ 肉碱脂酰转移酶 ▮

脂肪酸代谢

β-氧化作用

每一轮β-氧化经历四步反应

脂肪酸的β-氧化作用

软脂酸的

β-氧化过程

RCH2CH2CO-SCOA 脂酰CoA 脱氢酶 呼吸链 FADH₂ H₂O RCH=CH-CO-SCoA H₂O β-烯脂酰CoA 水化酶 RCHOHCH₂CO~ScoA NAD+ 呼吸链 β-羟脂酰CoA 脱氢酶 H_2O RCOCH₂CO-SCoA CoA-SH β-酮酯酰CoA 硫解酶 脂酰CoA R-CO~SCoA + CH3CO~SCoA 乙酰CoA 乙酰CoA 乙酰CoA 乙酰CoA 乙酰CoA 乙酰CoA 乙酰CoA

脂酰CoA脱氢酶 与呼吸链

❖ β-氧化过程中的能量

一分子软脂酸(16C)彻底氧化	生成ATP的分子数
一次活化作用	-2
七轮β-氧化作用	+(1.5+2.5)×7 = +28
八分子乙酰CoA的氧化	$+10 \times 8 = +80$
总计	+106

葡萄糖?正己酸

脂肪酸代谢

β-氧化作用的生理意义

- ❖ 能为机体提供大量能量
- ❖ 能提供长度适宜的脂肪酸
- ❖ 能提供乙酰CoA作为合成脂肪酸、 糖和某些氨基酸的原料
- ◆ 产生大量的水可满足陆生动物对
 水的需要

不饱和脂肪酸的氧化

- Δ^3 顺- Δ^2 反烯脂酰-CoA异构酶:双键处于奇数位,生成 Δ^2 反烯脂酰-CoA
- * 差向异构酶:双键处于偶数位,生成 L(+)-β-羟酯酰CoA

有一个双键就少一次脂酰CoA脱氢酶催化的脱氢反应,即少生成1个FADH₂

脂肪酸代谢

奇数碳链脂肪酸的氧化

酮体的生成和利用

❖ 酮体的生成

是脂肪酸在肝脏进行正常分解 代谢所生成的特殊中间产物

- ◆ 乙酰乙酸 (约占30%)
- β-羟丁酸(约占70%)
- ◆ 丙酮 (极少量)

+ 生成部位: 肝细胞线粒体

♣ 原料: 乙酰CoA

❖ 酮体的利用

- ◆ 肝脏细胞缺乏氧化酮体的酶,因此不能利用酮体,肝脏产生的酮体必须经血液运输到肝外组织进一步氧化分解
- ◆ 肝外组织(如心肌、骨骼肌、肾、肾上腺、脑组织等) 有活性很强的利用酮体的酶,所以可利用酮体供能

骨骼肌、心肌、肾脏:琥珀酰CoA转硫酶

乙酰乙酸 → 乙酰乙酰CoA → 乙酰CoA → TCA循环

心肌、肾脏、脑: 乙酰乙酸硫激酶

- + 肝内合成
- ◆ 肝外利用

The ketone bodies are released by the liver into the blood

lung

kidney

Used in the heart, brain and muscle

Metabolism of Ketone bodies

excreted

by skin, lung and

kidney

❖ 酮体生成的生理意义

- ◆ 酮体是脂肪酸加工的 "半成品", 易于运输与利用
- ◆ 酮体具水溶性,能透过血脑屏障及毛细血管壁,是输出脂肪 肪能源的一种形式
- ◆ 长期饥饿时,酮体供给脑组织50~70%的能量
- ◆ 禁食、应激及糖尿病时,心、肾、骨骼肌摄取酮体代替葡萄糖功能,节省葡萄糖以供脑和红细胞所需

■ 脂肪酸的合成

脂肪酸合成并非β-氧化的逆过程

◆ 合成部位:细胞质(动物)

叶绿体和前质体(植物)

◆ 原料: 乙酰CoA

◆ 引物:乙酰基

→ 二碳单位供体:丙二酸单酰CoA

◆ 产物:不超过16碳的饱和脂肪酸

乙酰CoA的来源和转运

乙酰CoA的羧化(丙二酸单酰CoA的形成)

脂肪酸链的合成

脂肪酸链的修饰

<u>₿</u>乙酰CoA 乙酰CoA的转运: 柠檬酸穿梭系统

线粒体内膜

1Z酰CoA

7 乙酰CoA

乙酰CoA羧化酶

羧化

ADP

2丙二酸单酰CoA

乙酰CoA的羧化:

二酸单酰CoA

合成

脂肪酸链的合成:

脂肪酸合酶系统

 CO_2

 CO_2

脂肪酸从头合成的过程

乙酰CoA 的来源和 转运

- ♣ 脂肪酸β-氧化
- ◆ 丙酮酸氧化脱羧
- ◆ 氨基酸氧化

都存在于线粒体中

乙酰CoA的羧化(丙二酸单酰CoA的形成)

二碳单位的载体

- + 不可逆反应
- ♣ 脂肪酸合成的限速酶(变构酶)
- ◆ 辅基为生物素:羧基的中间载体

脂肪酸链的合成

脂肪酸合酶系统

- 第一类: 多功能酶, 单个酶具有不同的酶活性(真菌和哺乳动物)
- * 第二类: 多酶复合体, 不同蛋白质发挥 不同的酶活性(细菌、古菌和植物)

一个辅助蛋白: 脂酰基载体蛋白 (ACP)

七种酶: AT、MT、KS、KR、HD、ER、TE

Bacteria, Plants

Seven activities in seven separate polypeptides

Yeast

Seven activities in two separate polypeptides

Vertebrates

Seven activities in one large polypeptide

两个用于运载脂肪酸 的活性巯基

⑦ 软脂酰-ACP硫酯酶(TE), 哺乳动物多出的一个酶,能催化 软脂酰-CoA的水解形成软脂酸

- ① 乙酰CoA-ACP转移酶(AT)
- ② 丙二酸单酰CoA-ACP转移酶(MT)
- ③ β-酮脂酰-ACP含酶 (KS)
- ④ β-酮脂酰-ACP还原酶 (KR)
- ⑤ β-羟脂酰-ACP脱水酶 (HD)
- ⑥ 烯脂酰-ACP还原酶(ER)

脂肪酸合酶系统结构模式 (细菌)

ACP辅基的结构

脂肪酸链的形成过程

以乙酰CoA为起点(引物),由丙二酸单 酰CoA在羧基端逐步添加二碳单位,合成 不超过16碳的脂酰基,最后脂酰基水解为 游离的脂肪酸

◆ 第一阶段:乙酰CoA进位(连到FAS上)

◆ 第二阶段: 脂肪酸链的延伸 (二碳单位添加)

◆ 第三阶段: 脂酰基的水解

- ◆ 移位
- ◆ 进位
- ◆ 缩合
- + 还原(加氢)
- ◆ 脱水
- + 还原(加氢)

2NADPH+H⁺

2NADP⁺

脂肪酸代谢

- **1**: 进位
- ◆ 2: 移位
- 4 3: 进位
- 4:缩合
- + 5: 还原(加氢)
- ◆ 6: 脱水
- + 7: 还原 (加氢)
- ◆ 8: 水解

脂肪酸的从头合成

脂肪酸代谢

乙酰CoA + 7丙二酸单酰CoA + 14NADPH + 14H⁺ + H₂O

脂肪酸合酶系统

(7次循环)

软脂酸 + 14NADP+ + 7CO₂ + 8CoA-SH

棕榈酸 (16C) 合成的总反应

脂肪酸从头合成与脂肪酸β-氧化的比较

区别点	脂肪酸从头合成	脂肪酸β-氧化
细胞内进行部位	细胞质	线粒体、乙醛酸体
脂酰基载体	ACP-SH	CoA-SH
加入或断裂的二碳单位	丙二酸单酰CoA	乙酰CoA
电子供体或受体	NADPH (供体)	NAD+、FAD(受体)
能量	消耗7ATP、14NADPH	产生106ATP
底物的转运	柠檬酸穿梭系统	肉碱转运系统
酶系	脂肪酸合酶系统	四个酶

脂肪酸链的修饰

爺 脂肪酸的
延伸反应

内质网: CoA 替代ACP作为脂酰基载体

线粒体:基本上是β-氧化的逆过程,最后 一步供氢体为NADPH

内质网膜

去饱和酶

Cyt b5

还原酶

* 脂肪酸的去饱和反应

硬脂酰-CoA Δ9-油酰-CoA $+ O_2 + 2H^+$ + 2H,O 去饱和酶 2 cyt b₅ Fe²⁺ 2 cyt b5 Fe3+ Cyt b 2H++ cyt b5还原酶 cyt b, 还原酶 FADH, FAD

 NAD^{+}

 $NADH + H^{+}$

- ◆ 先形成单不饱和脂肪酸
- ◆ 再形成多不饱和脂肪酸
- ◆ NADH和脂酰CoA作为供氢体

- 脂肪酸代谢的调控
- ❖ 分解代谢的调控

- * 肉碱脂酰转移酶I (CPT1) 是 主要的调控位点
- ◆ 丙二酸单酰CoA是抑制剂

❖ 合成代谢的调控

磷酸化修饰:磷酸化无活性, 去磷酸化有活性

别构调节:单、二聚体无活

性, 多聚体有活性

哺乳动物ACC的活性调节

