§3.4 向量组的秩

数学系 梁卓滨

2016 - 2017 学年 I 暑修班

m维 向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$

m维 向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

$$m$$
维
向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

- α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且
- 对 α_{i_1} , α_{i_2} , ..., α_{i_r} 再加入任一 α_i 后都是线性相关,

$$m$$
维
向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

- α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且
- 对 α_{i_1} , α_{i_2} , ..., α_{i_r} 再加入任一 α_i 后都是线性相关,

("不可扩充"的) 线性无关

$$m$$
维 向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

- α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且
- 对 α_{i_1} , α_{i_2} , ..., α_{i_r} 再加入任一 α_i 后都是线性相关,

则称 α_{i_1} , α_{i_2} , ..., α_{i_r} 是 α_1 , α_2 , ..., α_s 的一个极大 (线性) 无关组。

("不可扩充"的 线性无关

$$m$$
维 向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

- α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且
- 对 α_{i1}, α_{i2}, ..., α_i, 再加入任一 α_i 后都是线性相关,

则称 α_{j_1} , α_{j_2} , ..., α_{j_r} 是 α_1 , α_2 , ..., α_s 的一个极大 (线性) 无关组。

 $注 r \leq s$

("不可扩充"的 线性无关

$$m$$
维 向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

- α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且
- 对 α_{i_1} , α_{i_2} , ..., α_{i_r} 再加入任一 α_i 后都是线性相关,

则称 α_{j_1} , α_{j_2} , ..., α_{j_r} 是 α_1 , α_2 , ..., α_s 的一个极大 (线性) 无关组。

("不可扩充"的 线性无关

$$m$$
维
向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且

- ("不可扩充"的 线性无关
- 对 α_{j_1} , α_{j_2} , ..., α_{j_r} 再加入任一 α_i 后都是线性相关,

则称 α_{j_1} , α_{j_2} , . . . , α_{j_r} 是 α_1 , α_2 , . . . , α_s 的一个极大 (线性) 无关组。

例 设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则极大无关组

是:

$$m$$
维 向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

- α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且
- 对 α_{i_1} , α_{i_2} , ..., α_{i_r} 再加入任一 α_i 后都是线性相关,

则称 α_{j_1} , α_{j_2} , . . . , α_{j_r} 是 α_1 , α_2 , . . . , α_s 的一个极大 (线性) 无关组。

例 设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则极大无关组

是:

 $\alpha_1, \alpha_2;$

("不可扩充"的) 线性无关

$$m$$
维
向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

- α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且
- 对 α_{i_1} , α_{i_2} , ..., α_{i_r} 再加入任一 α_i 后都是线性相关,

则称 α_{j_1} , α_{j_2} , . . . , α_{j_r} 是 α_1 , α_2 , . . . , α_s 的一个极大 (线性) 无关组。

例 设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则极大无关组

是:

$$\alpha_1, \alpha_2; \quad \alpha_1, \alpha_3;$$

("不可扩充"的) 线性无关

$$m$$
维 向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

- α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且
- 且 ("不可扩充"的 线性无关
- 对 α_{j_1} , α_{j_2} , ..., α_{j_r} 再加入任一 α_i 后都是线性相关,

则称 α_{j_1} , α_{j_2} , ..., α_{j_r} 是 α_1 , α_2 , ..., α_s 的一个极大 (线性) 无关组。

例 设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则极大无关组

是:

$$\alpha_1$$
, α_2 ; α_1 , α_3 ; α_2 , α_3 ;

$$m$$
维
向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

- α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且
- 对 α_{i_1} , α_{i_2} , ..., α_{i_r} 再加入任一 α_i 后都是线性相关,

则称 α_{j_1} , α_{j_2} , ..., α_{j_r} 是 α_1 , α_2 , ..., α_s 的一个极大 (线性) 无关组。

注 $r \le s$ 且 $r \le m$ 。

例 设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则极大无关组

是:

$$\alpha_1$$
, α_2 ; α_1 , α_3 ; α_2 , α_3 ; α_2 , α_4 ;

("不可扩充"的) 线性无关

$$m$$
维
向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s \xrightarrow{\text{挑选}} \alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$

满足:

- α_{j1}, α_{j2}, ..., α_{jr} 线性无关;且
- 对 α_{i_1} , α_{i_2} , ..., α_{i_r} 再加入任一 α_i 后都是线性相关,

则称 α_{j_1} , α_{j_2} , . . . , α_{j_r} 是 α_1 , α_2 , . . . , α_s 的一个极大 (线性) 无关组。

注 $r \le s$ 且 $r \le m$ 。

例 设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则极大无关组

是:

$$\alpha_1, \ \alpha_2; \quad \alpha_1, \ \alpha_3; \quad \alpha_2, \ \alpha_3; \quad \alpha_2, \ \alpha_4; \quad \alpha_3, \ \alpha_4$$

("不可扩充"的) 线性无关

定理 设 α_{j_1} , α_{j_2} , ..., α_{j_r} 是 α_1 , α_2 , ..., α_s 的线性无关部分组,则:

$$\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r} \iff$$
是极大无关组

定理 设 α_{j_1} , α_{j_2} , ..., α_{j_r} 是 α_1 , α_2 , ..., α_s 的线性无关部分组,则:

$$lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r} \iff lpha_1, \, lpha_2, \, \ldots, \, lpha_s$$
中每个向量是极大无关组。 都可由 $lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r}$ 线性表示

定理 设 α_{j_1} , α_{j_2} , ..., α_{j_r} 是 α_1 , α_2 , ..., α_s 的线性无关部分组,则:

$$lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r} \qquad \Longleftrightarrow \qquad lpha_1, \, lpha_2, \, \ldots, \, lpha_s$$
中每个向量是极大无关组 都可由 $lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r}$ 线性表示

证明

定理 设 α_{j_1} , α_{j_2} , ..., α_{j_r} 是 α_1 , α_2 , ..., α_s 的线性无关部分组,则:

$$egin{array}{lll} lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r} & \Longleftrightarrow & lpha_1, \, lpha_2, \, \ldots, \, lpha_s$$
中每个向量是极大无关组 $lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r}$ 线性表示

证明

"⇒" 对任意 α_i 成立: α_{i_1} , α_{i_2} , ..., α_{i_r} , α_i 线性相关

定理 设 α_{j_1} , α_{j_2} , ..., α_{j_r} 是 α_1 , α_2 , ..., α_s 的线性无关部分组,则:

$$egin{array}{lll} lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r} & \Longleftrightarrow & lpha_1, \, lpha_2, \, \ldots, \, lpha_s$$
中每个向量是极大无关组。 $lpha_1, \, lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r}$ 线性表示

证明

" \Rightarrow " 对任意 α_i 成立: α_{j_1} , α_{j_2} , ..., α_{j_r} , α_i 线性相关,所以 α_i 是 α_{j_1} , α_{j_2} , ..., α_{j_r} 线性组合

定理 设 $\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$ 是 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的线性无关部分组,则:

$$lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r} \iff lpha_1, \, lpha_2, \, \ldots, \, lpha_s$$
中每个向量是极大无关组。 都可由 $lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r}$ 线性表示

证明

- " \Rightarrow " 对任意 α_i 成立: α_{j_1} , α_{j_2} , ..., α_{j_r} , α_i 线性相关,所以 α_i 是 α_{j_1} , α_{j_2} , ..., α_{j_r} 线性组合
- $" \leftarrow "$ 对任意 α_i 成立: α_i 是 α_{j_1} , α_{j_2} , ..., α_{j_r} 线性组合

定理 设 $\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}$ 是 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的线性无关部分组,则:

$$lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r} \iff lpha_1, \, lpha_2, \, \ldots, \, lpha_s$$
中每个向量是极大无关组。 都可由 $lpha_{j_1}, \, lpha_{j_2}, \, \ldots, \, lpha_{j_r}$ 线性表示

证明

- " ⇒ "对任意 α_i 成立: α_{j_1} , α_{j_2} , . . . , α_{j_r} , α_i 线性相关,所以 α_i 是 α_{j_1} , α_{j_2} , . . . , α_{j_r} 线性组合
- " \leftarrow "对任意 α_i 成立: α_i 是 α_{j_1} , α_{j_2} , ..., α_{j_r} 线性组合,所以 α_{j_1} , α_{j_2} , ..., α_{i_r} , α_i 线性相关

定理 极大无关组所包含向量的个数是唯一确定的。

定理 极大无关组所包含向量的个数是唯一确定的。即: 若

$$\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}; \qquad \beta_{k_1}, \beta_{k_2}, \ldots, \beta_{k_t}$$

都是 α_1 , α_2 , ..., α_s 的极大无关组,则

定理 极大无关组所包含向量的个数是唯一确定的。即: 若

$$\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}; \qquad \beta_{k_1}, \beta_{k_2}, \ldots, \beta_{k_t}$$

都是 α_1 , α_2 , ..., α_s 的极大无关组,则 r = t

定理 极大无关组所包含向量的个数是唯一确定的。即: 若

$$\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}; \qquad \beta_{k_1}, \beta_{k_2}, \ldots, \beta_{k_t}$$

都是 α_1 , α_2 , ..., α_s 的极大无关组,则 r = t

证明 注意到

α_{j1}, α_{j2}, ..., α_{jr} 与 β_{k1}, β_{k2}, ..., β_{kt} 等价(相互线性表示); 且

定理 极大无关组所包含向量的个数是唯一确定的。即: 若

$$\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}; \qquad \beta_{k_1}, \beta_{k_2}, \ldots, \beta_{k_t}$$

都是 α_1 , α_2 , ..., α_s 的极大无关组,则 r = t

证明 注意到

- α_{j1}, α_{j2}, ..., α_{jr} 与 β_{k1}, β_{k2}, ..., β_{kt} 等价(相互线性表示); 且
- α_{j1}, α_{j2}, ..., α_{jr} 与 β_{k1}, β_{k2}, ..., β_{kt} 都是线性无关,

定理 极大无关组所包含向量的个数是唯一确定的。即: 若

$$\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}; \qquad \beta_{k_1}, \beta_{k_2}, \ldots, \beta_{k_t}$$

都是 α_1 , α_2 , ..., α_s 的极大无关组,则 r = t

证明 注意到

- α_{j_1} , α_{j_2} , ..., α_{j_r} 与 β_{k_1} , β_{k_2} , ..., β_{k_t} 等价(相互线性表示);且
- α_{j_1} , α_{j_2} , ..., α_{j_r} 与 β_{k_1} , β_{k_2} , ..., β_{k_t} 都是线性无关, 所以 r = t

定理 极大无关组所包含向量的个数是唯一确定的。即: 若

$$\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}; \qquad \beta_{k_1}, \beta_{k_2}, \ldots, \beta_{k_t}$$

都是 α_1 , α_2 , ..., α_s 的极大无关组,则 r = t

证明 注意到

- α_{j_1} , α_{j_2} , ..., α_{j_r} 与 β_{k_1} , β_{k_2} , ..., β_{k_t} 等价(相互线性表示);且
- α_{j_1} , α_{j_2} , ..., α_{j_r} 与 β_{k_1} , β_{k_2} , ..., β_{k_t} 都是线性无关,

所以 r = t

定义 设向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 的极大无关组所包含向量的个数,称向量组的秩,记为:

定理 极大无关组所包含向量的个数是唯一确定的。即: 若

$$\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}; \qquad \beta_{k_1}, \beta_{k_2}, \ldots, \beta_{k_t}$$

都是 α_1 , α_2 , ..., α_s 的极大无关组, 则 r = t

证明 注意到

- α_{j1}, α_{j2}, ..., α_{jr} 与 β_{k1}, β_{k2}, ..., β_{kt} 等价(相互线性表示); 且
- α_{j_1} , α_{j_2} , ..., α_{j_r} 与 β_{k_1} , β_{k_2} , ..., β_{k_t} 都是线性无关,

所以 r = t

定义 设向量组 α_1 , α_2 , ..., α_s 的极大无关组所包含向量的个数, 称向量组的秩, 记为: $r(\alpha_1, \alpha_2, ..., \alpha_s)$

定理 极大无关组所包含向量的个数是唯一确定的。即: 若

$$\alpha_{j_1}, \alpha_{j_2}, \ldots, \alpha_{j_r}; \qquad \beta_{k_1}, \beta_{k_2}, \ldots, \beta_{k_t}$$

都是 α_1 , α_2 , ..., α_s 的极大无关组,则 r = t

证明 注意到

- α_{j1}, α_{j2}, ..., α_{jr} 与 β_{k1}, β_{k2}, ..., β_{kt} 等价(相互线性表示); 且
- α_{j_1} , α_{j_2} , ..., α_{j_r} 与 β_{k_1} , β_{k_2} , ..., β_{k_t} 都是线性无关,

所以 r = t

定义 设向量组 $lpha_1$, $lpha_2$, \ldots , $lpha_s$ 的极大无关组所包含向量的个数 , 称向量组的秩 , 记为: $r(lpha_1,lpha_2,\ldots,lpha_s)$

 $注 r(\alpha_1, \alpha_2, \ldots, \alpha_s) \le s \ \underline{1} \le m (维数).$

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) =$

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 2$

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \underline{2}$

这是:

α₁, α₂ 是极大无关组,

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \underline{2}$

这是:

• α_1 , α_2 是极大无关组,所以极大无关组包含个 2 向量。

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \underline{2}$

这是:

α₁, α₂ 是极大无关组, 所以极大无关组包含个 2 向量。
 事实上, α₁, α₂ 线性无关,

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \underline{2}$

这是:

α₁, α₂ 是极大无关组, 所以极大无关组包含个 2 向量。
 事实上, α₁, α₂ 线性无关, 且 α₃, α₄ 均能由 α₁, α₂ 线性表示

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \underline{2}$

这是:

α₁, α₂ 是极大无关组, 所以极大无关组包含个 2 向量。
 事实上, α₁, α₂ 线性无关, 且 α₃, α₄ 均能由 α₁, α₂ 线性表示
 α₃ = α₁ + α₂;

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \underline{2}$

这是:

α₁, α₂ 是极大无关组, 所以极大无关组包含个 2 向量。
 事实上, α₁, α₂ 线性无关, 且 α₃, α₄ 均能由 α₁, α₂ 线性表示
 α₃ = α₁ + α₂; α₄ = 2α₂

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \underline{2}$

这是:

α₁, α₂ 是极大无关组, 所以极大无关组包含个 2 向量。
 事实上, α₁, α₂ 线性无关, 且 α₃, α₄ 均能由 α₁, α₂ 线性表示

$$\alpha_3 = \alpha_1 + \alpha_2$$
; $\alpha_4 = 2\alpha_2$

或者说:

• $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \leq 2$

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \underline{2}$

这是:

α₁, α₂ 是极大无关组, 所以极大无关组包含个 2 向量。
 事实上, α₁, α₂ 线性无关, 且 α₃, α₄ 均能由 α₁, α₂ 线性表示

$$\alpha_3 = \alpha_1 + \alpha_2$$
; $\alpha_4 = 2\alpha_2$

或者说:

- $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \leq 2$
- 有两个线性无关向量,

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \underline{2}$

这是:

α₁, α₂ 是极大无关组, 所以极大无关组包含个 2 向量。
 事实上, α₁, α₂ 线性无关, 且 α₃, α₄ 均能由 α₁, α₂ 线性表示

$$\alpha_3 = \alpha_1 + \alpha_2$$
; $\alpha_4 = 2\alpha_2$

或者说:

- $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \leq 2$
- 有两个线性无关向量,如 α₁, α₂,

例设
$$\alpha_1 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 0 \\ 2 \end{pmatrix}$, 则 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = \underline{2}$

这是:

α₁, α₂ 是极大无关组, 所以极大无关组包含个 2 向量。
 事实上, α₁, α₂ 线性无关, 且 α₃, α₄ 均能由 α₁, α₂ 线性表示

$$\alpha_3 = \alpha_1 + \alpha_2$$
; $\alpha_4 = 2\alpha_2$

或者说:

- $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \leq 2$
- 有两个线性无关向量,如 α_1 , α_2 , 所以 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) \ge 2$

设

$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

设
$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

设
$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

设
$$a_1 \quad a_2 \quad a_n$$

$$A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

设
$$A_{m\times n} = \begin{pmatrix} \alpha_1 & \alpha_2 & \alpha_n \\ \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} = (\alpha_1 \alpha_2 \cdots \alpha_n)$$

设
$$\alpha_{1} \quad \alpha_{2} \quad \alpha_{n}$$

$$A_{m \times n} = \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} = (\alpha_{1} \alpha_{2} \cdots \alpha_{n})$$

设
$$a_1 \quad a_2 \quad a_n$$

$$A_{m \times n} = \begin{pmatrix} \beta_1 & \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \beta_2 & \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} = (\alpha_1 \, \alpha_2 \, \cdots \, \alpha_n)$$

说
$$A_{m \times n} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix} \begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix} = (\alpha_1 \alpha_2 \cdots \alpha_n)$$

设
$$A_{m\times n} = \begin{array}{cccc} \beta_1 & \alpha_1 & \alpha_2 & \alpha_n \\ \beta_2 & \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_m & \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{array} \right) = (\alpha_1 \alpha_2 \cdots \alpha_n) = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}$$

$$\dot{\mathcal{R}}$$

$$\alpha_{1} \quad \alpha_{2} \quad \alpha_{n}$$

$$A_{m \times n} = \begin{cases}
\beta_{1} \\
\beta_{2} \\
\beta_{m}
\end{cases}$$

$$\alpha_{11} \quad \alpha_{12} \quad \cdots \quad \alpha_{1n}$$

$$\alpha_{21} \quad \alpha_{22} \quad \cdots \quad \alpha_{2n}$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots$$

$$\alpha_{m1} \quad \alpha_{m2} \quad \cdots \quad \alpha_{mn}$$

$$A_{mn} = \alpha_{mn}$$

$$\alpha_{n} = \alpha_{n} \quad \alpha_{n} = \alpha_{n}$$

$$\alpha_{n} = \alpha_{n} \quad \alpha_{n} = \alpha_{n} \quad \alpha_{n} = \alpha_{n}$$

定义

r(α₁, α₂, ..., α_n) 称为 A 的列秩;

$$\dot{\mathcal{R}}$$

$$\alpha_{1} \quad \alpha_{2} \quad \alpha_{n}$$

$$A_{m \times n} = \begin{cases}
\beta_{1} \\
\beta_{2} \\
\beta_{m}
\end{cases}$$

$$\alpha_{11} \quad \alpha_{12} \quad \cdots \quad \alpha_{1n}$$

$$\alpha_{21} \quad \alpha_{22} \quad \cdots \quad \alpha_{2n}$$

$$\vdots \quad \vdots \quad \ddots \quad \vdots$$

$$\alpha_{m1} \quad \alpha_{m2} \quad \cdots \quad \alpha_{mn}$$

$$A_{mn} = \alpha_{mn}$$

$$\alpha_{n} = \alpha_{n} \quad \alpha_{n}$$

$$\alpha_{n} = \alpha_{n} \quad \alpha_{n}$$

$$\alpha_{n} = \alpha_{n} \quad \alpha_{n}$$

定义

- r(α₁, α₂, ..., α_n) 称为 A 的列秩;
- r(β₁, β₂, ..., β_m) 称为 A 的行秩;

设
$$A_{m \times n} = \begin{array}{cccc} \beta_1 & \alpha_1 & \alpha_2 & \alpha_n \\ \beta_2 & \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \beta_2 & \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \beta_m & \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{array} \right) = (\alpha_1 \, \alpha_2 \, \cdots \, \alpha_n) = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_m \end{pmatrix}$$

定义

- r(α₁, α₂, ..., α_n) 称为 A 的列秩;
- r(β₁, β₂,...,β_m) 称为 A 的行秩;

定理
$$r(A) = r(\alpha_1, \alpha_2, \ldots, \alpha_n) = r(\beta_1, \beta_2, \ldots, \beta_m)$$

问题 给出 m 维的向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$,如何求出其一组极大无关组?

步骤

问题 给出 m 维的向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$,如何求出其一组极大无关组?

问题 给出 m 维的向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$,如何求出其一组极大无关组?

步骤
$$\frac{\alpha_{1}}{1} \quad \alpha_{2} \quad \alpha_{n} \\
\alpha_{11} \quad \alpha_{12} \quad \cdots \quad \alpha_{1n} \\
\alpha_{21} \quad \alpha_{22} \quad \cdots \quad \alpha_{2n} \\
\vdots \quad \vdots \quad \ddots \quad \vdots \\
\alpha_{m1} \quad \alpha_{m2} \quad \cdots \quad \alpha_{mn}$$

$$\frac{\eta + \eta + \eta}{\eta + \eta} \Rightarrow \text{ 简化的阶梯型矩阵}$$

2. 通过简化的阶梯型矩阵, 求出 r(A)。

问题 给出 m 维的向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$,如何求出其一组极大无关组?

步骤
$$1. A_{m \times n} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \xrightarrow{\eta \not = \tau \not = \psi}$$
 简化的阶梯型矩阵

2. 通过简化的阶梯型矩阵, 求出 r(A)。

利用
$$r(\alpha_1, \alpha_2, ..., \alpha_n) = r(A)$$
,得出极大无关组所包含向量的 个数

问题 给出 m 维的向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$,如何求出其一组极大无关组?

- 2. 通过简化的阶梯型矩阵,求出 r(A)。 利用 $r(\alpha_1, \alpha_2, \ldots, \alpha_n) = r(A)$,得出极大无关组所包含向量的 个数
- 3. 通过简化的阶梯型矩阵,容易看出线性无关的 r(A) 列,这就找到一组极大无关组

3.4 向量组的税

问题 给出 m 维的向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$,如何求出其一组极大无关组?

步骤
$$\frac{\alpha_{1}}{1} \quad \alpha_{2} \quad \alpha_{n} \\
\alpha_{11} \quad \alpha_{12} \quad \cdots \quad \alpha_{1n} \\
\alpha_{21} \quad \alpha_{22} \quad \cdots \quad \alpha_{2n} \\
\vdots \quad \vdots \quad \ddots \quad \vdots \\
\alpha_{m1} \quad \alpha_{m2} \quad \cdots \quad \alpha_{mn}$$

$$\frac{\eta + \eta + \eta}{\eta + \eta} \quad \text{ 简化的阶梯型矩阵}$$

- 2. 通过简化的阶梯型矩阵, 求出 r(A)。
 - 利用 $r(\alpha_1, \alpha_2, ..., \alpha_n) = r(A)$,得出极大无关组所包含向量的个数
- 3. 通过简化的阶梯型矩阵,容易看出线性无关的 r(A) 列,这就找到一组极大无关组
- 4. 通过简化的阶梯型矩阵,容易看出其余列如何用极大无关组线性

例 求向量组 $\alpha_1 = \begin{pmatrix} 2\\4\\2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3\\5\\2 \end{pmatrix}$ 的一个极

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2\\4\\2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3\\5\\2 \end{pmatrix}$ 的一个极

$$\begin{pmatrix}
\alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}$$

例 求向量组 $\alpha_1 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$ 的一个极

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix} \xrightarrow{r_2 - 2r_1} \xrightarrow{r_3 - r_1}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$ 的一个极

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix} \xrightarrow[r_3-r_1]{r_2-2r_1} \begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix} \longrightarrow$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2\\4\\2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3\\5\\2 \end{pmatrix}$ 的一个极

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow[r_3-r_1]{r_2-2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$ 的一个极

$$\begin{pmatrix} 2 & 1 & 2 & 3 \\ 4 & 1 & 3 & 5 \\ 2 & 0 & 1 & 2 \end{pmatrix} \xrightarrow{r_2 - 2r_1} \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & -1 & -1 & -1 \\ 0 & -1 & -1 & -1 \end{pmatrix} \longrightarrow \begin{pmatrix} 2 & 1 & 2 & 3 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

$$r_1-r_2$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$ 的一个极

$$\xrightarrow{r_1-r_2} \left(\begin{array}{cccc} 2 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$ 的一个极

$$\xrightarrow{r_1-r_2} \left(\begin{array}{cccc} 2 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right) \xrightarrow{\frac{1}{2} \times r_1}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2\\4\\2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3\\5\\2 \end{pmatrix}$ 的一个极

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2\\4\\2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3\\5\\2 \end{pmatrix}$ 的一个极

$$\xrightarrow{r_1-r_2} \left(\begin{array}{cccc} 2 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{\frac{1}{2} \times r_1} \left(\begin{array}{cccc} 1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$ 的一个极

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2-2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{r_1-r_2} \left(\begin{array}{cccc} 2 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{\frac{1}{2} \times r_1} \left(\begin{array}{cccc} 1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

所以

•
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 2$$
;

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2\\4\\2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3\\5\\2 \end{pmatrix}$ 的一个极

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow[r_3-r_1]{r_2-2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{r_1-r_2} \left(\begin{array}{cccc} 2 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{\frac{1}{2} \times r_1} \left(\begin{array}{cccc} 1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

所以

•
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 2$$
;

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2\\4\\2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1\\1\\0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2\\3\\1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3\\5\\2 \end{pmatrix}$ 的一个极

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow[r_3-r_1]{r_2-2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{r_1-r_2} \left(\begin{array}{cccc} 2 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{\frac{1}{2} \times r_1} \left(\begin{array}{cccc} 1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

所以

- $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 2$;
- α₁, α₂ 是极大无关组;

例 求向量组
$$\alpha_1 = \begin{pmatrix} 2 \\ 4 \\ 2 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 3 \\ 5 \\ 2 \end{pmatrix}$ 的一个极

$$\begin{pmatrix}
2 & 1 & 2 & 3 \\
4 & 1 & 3 & 5 \\
2 & 0 & 1 & 2
\end{pmatrix}
\xrightarrow{r_2-2r_1}
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & -1 & -1 & -1 \\
0 & -1 & -1 & -1
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
2 & 1 & 2 & 3 \\
0 & 1 & 1 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\xrightarrow{r_1-r_2} \left(\begin{array}{cccc} 2 & 0 & 1 & 2 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right) \xrightarrow{\frac{1}{2} \times r_1} \left(\begin{array}{cccc} 1 & 0 & \frac{1}{2} & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

所以

•
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 2$$
;

•
$$\alpha_3 = \frac{1}{2}\alpha_1 + \alpha_2$$
, $\alpha_4 = \alpha_1 + \alpha_2$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
\mathbf{R} & \alpha_1 & \alpha_2 & \alpha_3 & \alpha_4 \\
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow[r_3-r_1]{r_2-2r_1}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow[r_3-r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow[r_3-r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow[r_4-2r_2]{r_3-r_2}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow[r_3-r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow[r_4-2r_2]{r_3-r_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow[r_3-r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow[r_4-2r_2]{r_3-r_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

$$r_4 - 3r_3$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

$$\xrightarrow{r_4-3r_3} \left(\begin{array}{cccc} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array}\right)$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

$$\xrightarrow{r_4-3r_3} \begin{pmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow[r_3-r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow[r_4-2r_2]{r_3-r_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

$$\xrightarrow{r_4 - 3r_3} \left(\begin{array}{cccc} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_2-2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_3-r_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{r_4-3r_3}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

所以
•
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 3$$
;

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_2-2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_3-r_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

$$r_{4}-3r_{3}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0
\end{pmatrix}$$

$$\xrightarrow{r_4 - 3r_3} \left(\begin{array}{cccc} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{array} \right)$$

所以
•
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 3$$
;

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_2-2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_3-r_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

$$\xrightarrow{r_4-3r_3}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

• $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 3$;

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ 0 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 2 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 1 \\ 1 \\ 0 \\ -2 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 2 \\ 4 \\ 3 \\ 3 \end{pmatrix}$ 的一

$$\begin{pmatrix}
1 & 0 & 1 & 2 \\
2 & 1 & 1 & 4 \\
1 & 1 & 0 & 3 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_2 - 2r_1}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 2 & -2 & 3
\end{pmatrix}
\xrightarrow{r_3 - r_2}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 3
\end{pmatrix}$$

$$\xrightarrow{r_4 - 3r_3}
\begin{pmatrix}
1 & 0 & 1 & 2 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{pmatrix}$$

所以
•
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 3$$
;

- α₁, α₂, α₄ 是极大无关组;
- $\alpha_3 = \alpha_1 \alpha_2$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}
\xrightarrow[r_4-4r_1]{r_2-2r_1}
\xrightarrow[r_4-4r_1]{r_2-3r_1}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}
\xrightarrow[r_4-4r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{pmatrix}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}
\xrightarrow[r_4-4r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{pmatrix}$$

$$\frac{r_3-2r_2}{r_4-3r_2}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1\\2\\3\\4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2\\3\\4\\5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3\\4\\5\\6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4\\5\\6\\7 \end{pmatrix}$ 的一个

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}
\xrightarrow[r_3-3r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{pmatrix}$$

$$\xrightarrow[r_4-3r_2]{r_4-3r_2}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}
\xrightarrow[r_4-3r_2]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{pmatrix}$$

$$\xrightarrow[r_4-3r_2]{r_2-2r_2}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

所以
•
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 2$$
;

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}
\xrightarrow[r_{3}-3r_{1}]{r_{3}-3r_{1}}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{pmatrix}$$

$$\xrightarrow[r_{4}-3r_{2}]{r_{4}-3r_{2}}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

所以
•
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 2$$
;

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}
\xrightarrow[r_4-4r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{pmatrix}$$

$$\xrightarrow[r_4-3r_2]{r_4-3r_2}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

- $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 2$;
 - α₁, α₂ 是极大无关组;

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}
\xrightarrow[r_4-4r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{pmatrix}$$

$$\xrightarrow[r_4-3r_2]{r_4-3r_2}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

- $r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 2;$
 - α₁, α₂ 是极大无关组;
 - $\alpha_3 = -\alpha_1 + 2\alpha_2$

例 求向量组
$$\alpha_1 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$$
, $\alpha_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$, $\alpha_3 = \begin{pmatrix} 3 \\ 4 \\ 5 \\ 6 \end{pmatrix}$, $\alpha_4 = \begin{pmatrix} 4 \\ 5 \\ 6 \\ 7 \end{pmatrix}$ 的一个

$$\begin{pmatrix}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{pmatrix}
\xrightarrow[r_4-4r_1]{r_2-2r_1}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{pmatrix}$$

$$\xrightarrow[r_4-3r_2]{r_4-3r_2}
\begin{pmatrix}
1 & 2 & 3 & 4 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\longrightarrow
\begin{pmatrix}
1 & 0 & -1 & -2 \\
0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

所以
•
$$r(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = r(A) = 2$$
;

- α₁, α₂ 是极大无关组;
- $\alpha_3 = -\alpha_1 + 2\alpha_2$, $\alpha_4 = -2\alpha_1 + 3\alpha_2$

例 求向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由 $\beta_1, \beta_2, \ldots, \beta_t$ 线性表示,则 $r(\alpha_1, \alpha_2, \ldots, \alpha_s) \leq r(\beta_1, \beta_2, \ldots, \beta_t).$

例 求向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由 $\beta_1, \beta_2, \ldots, \beta_t$ 线性表示,则 $r(\alpha_1, \alpha_2, \ldots, \alpha_s) \leq r(\beta_1, \beta_2, \ldots, \beta_t).$

$$r_1 = r(\alpha_1, \alpha_2, \ldots, \alpha_s),$$

$$r_2 = r(\beta_1, \beta_2, \ldots, \beta_t),$$

例 求向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由 $\beta_1, \beta_2, \ldots, \beta_t$ 线性表示,则 $r(\alpha_1, \alpha_2, \ldots, \alpha_s) \leq r(\beta_1, \beta_2, \ldots, \beta_t).$

$$r_1 = r(\alpha_1, \alpha_2, \ldots, \alpha_s), \quad \alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_{r_1}}$$
 是极大无关组 $r_2 = r(\beta_1, \beta_2, \ldots, \beta_t),$

例 求向量组 α_1 , α_2 , ..., α_s 可由 β_1 , β_2 , ..., β_t 线性表示,则 $r(\alpha_1, \alpha_2, ..., \alpha_s) \leq r(\beta_1, \beta_2, ..., \beta_t).$

$$r_1 = r(\alpha_1, \alpha_2, ..., \alpha_s), \quad \alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_{r_1}}$$
 是极大无关组 $r_2 = r(\beta_1, \beta_2, ..., \beta_t), \quad \beta_{j_1}, \beta_{j_2}, ..., \beta_{j_{r_2}}$ 是极大无关组

例 求向量组 α_1 , α_2 , ..., α_s 可由 β_1 , β_2 , ..., β_t 线性表示,则 $r(\alpha_1, \alpha_2, ..., \alpha_s) \leq r(\beta_1, \beta_2, ..., \beta_t).$

$$r_1 = r(\alpha_1, \alpha_2, ..., \alpha_s), \quad \alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_{r_1}}$$
 是极大无关组 $r_2 = r(\beta_1, \beta_2, ..., \beta_t), \quad \beta_{j_1}, \beta_{j_2}, ..., \beta_{j_{r_2}}$ 是极大无关组 注意到 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_{r_1}}$ 能由 $\beta_{j_1}, \beta_{j_2}, ..., \beta_{j_{r_2}}$ 线性表示,

例 求向量组 α_1 , α_2 , ..., α_s 可由 β_1 , β_2 , ..., β_t 线性表示,则 $r(\alpha_1, \alpha_2, ..., \alpha_s) \leq r(\beta_1, \beta_2, ..., \beta_t).$

$$r_1 = r(\alpha_1, \alpha_2, ..., \alpha_s), \quad \alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_{r_1}}$$
 是极大无关组 $r_2 = r(\beta_1, \beta_2, ..., \beta_t), \quad \beta_{j_1}, \beta_{j_2}, ..., \beta_{j_{r_2}}$ 是极大无关组 注意到 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_{r_1}}$ 能由 $\beta_{j_1}, \beta_{j_2}, ..., \beta_{j_{r_2}}$ 线性表示,所以 $r_1 \leq r_2$ 。

例 求向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由 $\beta_1, \beta_2, \ldots, \beta_t$ 线性表示,则 $r(\alpha_1, \alpha_2, \ldots, \alpha_s) \leq r(\beta_1, \beta_2, \ldots, \beta_t).$

证明 设

$$r_1 = r(\alpha_1, \alpha_2, ..., \alpha_s)$$
, $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_{r_1}}$ 是极大无关组 $r_2 = r(\beta_1, \beta_2, ..., \beta_t)$, $\beta_{j_1}, \beta_{j_2}, ..., \beta_{j_{r_2}}$ 是极大无关组 注意到 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_{r_1}}$ 能由 $\beta_{j_1}, \beta_{j_2}, ..., \beta_{j_{r_2}}$ 线性表示,所以 $r_1 \leq r_2$ 。

定理 设有向量组 $(A): \alpha_1, \alpha_2, \ldots, \alpha_s$

(B): $\beta_1, \beta_2, \ldots, \beta_t$

若它们等价,

例 求向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s$ 可由 $\beta_1, \beta_2, \ldots, \beta_t$ 线性表示,则 $r(\alpha_1, \alpha_2, \ldots, \alpha_s) \leq r(\beta_1, \beta_2, \ldots, \beta_t).$

证明 设

$$r_1 = r(\alpha_1, \alpha_2, ..., \alpha_s), \quad \alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_{r_1}}$$
 是极大无关组 $r_2 = r(\beta_1, \beta_2, ..., \beta_t), \quad \beta_{j_1}, \beta_{j_2}, ..., \beta_{j_{r_2}}$ 是极大无关组 注意到 $\alpha_{i_1}, \alpha_{i_2}, ..., \alpha_{i_{r_1}}$ 能由 $\beta_{j_1}, \beta_{j_2}, ..., \beta_{j_{r_2}}$ 线性表示,所以 $r_1 \leq r_2$ 。

定理 设有向量组
$$(A): \quad \alpha_1, \alpha_2, \ldots, \alpha_s$$

(B):
$$\beta_1, \beta_2, \ldots, \beta_t$$

若它们等价,则 $r(\alpha_1, \alpha_2, \ldots, \alpha_s) = r(\beta_1, \beta_2, \ldots, \beta_t)$ 。

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B}$$

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{R}$$

 α_1

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{R}$$

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{R}$$

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{c_{m1}} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{c_{m1}} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{c_{m1}}$$

证明 设
$$AB = C_{m \times s}$$

$$\begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1s} \\
c_{21} & c_{22} & \cdots & c_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m1} & c_{m2} & \cdots & c_{ms}
\end{pmatrix} = \begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}
\begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1s} \\
b_{21} & b_{22} & \cdots & b_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{ns}
\end{pmatrix}$$

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{R}$$

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B}$$

$$(\gamma_1 \ \gamma_2 \cdots \ \gamma_s) = (\alpha_1 \ \alpha_2 \cdots \ \alpha_n) \begin{pmatrix} b_{11} \ b_{12} \cdots b_{1s} \\ b_{21} \ b_{22} \cdots b_{2s} \\ \vdots \ \vdots \ \ddots \ \vdots \\ b_{n1} \ b_{n2} \cdots b_{ns} \end{pmatrix}$$

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B}$$

$$(\gamma_1 \ \gamma_2 \ \cdots \ \gamma_s) = (\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n) \begin{pmatrix} b_{11} \ b_{12} \ \cdots \ b_{1s} \\ b_{21} \ b_{22} \ \cdots \ b_{2s} \\ \vdots \ \vdots \ \ddots \ \vdots \\ b_{n1} \ b_{n2} \ \cdots \ b_{ns} \end{pmatrix}$$

$$\Rightarrow \quad \gamma_1 = b_{11}\alpha_1 + b_{21}\alpha_2 + \dots + b_{n1}\alpha_n$$

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B}$$

$$(\gamma_1 \ \gamma_2 \ \cdots \ \gamma_s) = (\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n) \begin{pmatrix} b_{11} \ b_{12} \ \cdots \ b_{1s} \\ b_{21} \ b_{22} \ \cdots \ b_{2s} \\ \vdots \ \vdots \ \ddots \ \vdots \\ b_{n1} \ b_{n2} \ \cdots \ b_{ns} \end{pmatrix}$$

$$\Rightarrow \quad \gamma_1 = b_{11}\alpha_1 + b_{21}\alpha_2 + \dots + b_{n1}\alpha_n \quad 等等$$

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B}$$

即

$$(\gamma_1 \ \gamma_2 \ \cdots \ \gamma_s) = (\alpha_1 \ \alpha_2 \ \cdots \ \alpha_n) \begin{pmatrix} b_{11} \ b_{12} \ \cdots \ b_{1s} \\ b_{21} \ b_{22} \ \cdots \ b_{2s} \\ \vdots \ \vdots \ \ddots \ \vdots \\ b_{n1} \ b_{n2} \ \cdots \ b_{ns} \end{pmatrix}$$

$$\Rightarrow \quad \gamma_1 = b_{11}\alpha_1 + b_{21}\alpha_2 + \dots + b_{n1}\alpha_n \quad$$
\$\$

可见 $\gamma_1, \ldots, \gamma_s$ 由 $\alpha_1, \ldots, \alpha_s$ 线性表示,

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B}$$

即

$$(\gamma_1 \ \gamma_2 \cdots \ \gamma_s) = (\alpha_1 \ \alpha_2 \cdots \ \alpha_n) \begin{pmatrix} b_{11} \ b_{12} \cdots b_{1s} \\ b_{21} \ b_{22} \cdots b_{2s} \\ \vdots \ \vdots \ \ddots \ \vdots \\ b_{n1} \ b_{n2} \cdots b_{ns} \end{pmatrix}$$

可见
$$\gamma_1, \ldots, \gamma_s$$
 由 $\alpha_1, \ldots, \alpha_s$ 线性表示,所以

 $\Rightarrow \gamma_1 = b_{11}\alpha_1 + b_{21}\alpha_2 + \cdots + b_{n1}\alpha_n$ 等等

$$r(\gamma_1, \ldots, \gamma_s) \leq r(\alpha_1, \ldots, \alpha_n)$$

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1s} \\
c_{21} & c_{22} & \cdots & c_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m1} & c_{m2} & \cdots & c_{ms}
\end{pmatrix}}_{C} = \underbrace{\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}}_{A} \underbrace{\begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1s} \\
b_{21} & b_{22} & \cdots & b_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{ns}
\end{pmatrix}}_{B}$$

$$(\gamma_1 \ \gamma_2 \cdots \gamma_s) = (\alpha_1 \ \alpha_2 \cdots \alpha_n) \begin{pmatrix} b_{11} \ b_{12} \cdots b_{1s} \\ b_{21} \ b_{22} \cdots b_{2s} \\ \vdots \ \vdots \ \ddots \ \vdots \\ b_{n1} \ b_{n2} \cdots b_{ns} \end{pmatrix}$$

$$\Rightarrow \gamma_1 = b_{11}\alpha_1 + b_{21}\alpha_2 + \cdots + b_{n1}\alpha_n \quad \mathfrak{F}\mathfrak{F}$$

可见
$$\gamma_1, \ldots, \gamma_s$$
 由 $\alpha_1, \ldots, \alpha_s$ 线性表示,所以

$$r(\gamma_1, \ldots, \gamma_s) \leq r(\alpha_1, \ldots, \alpha_n) = r(A)$$

证明 设
$$AB = C_{m \times s}$$

$$\underbrace{\begin{pmatrix}
c_{11} & c_{12} & \cdots & c_{1s} \\
c_{21} & c_{22} & \cdots & c_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
c_{m1} & c_{m2} & \cdots & c_{ms}
\end{pmatrix}}_{C} = \underbrace{\begin{pmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn}
\end{pmatrix}}_{A} \begin{pmatrix}
b_{11} & b_{12} & \cdots & b_{1s} \\
b_{21} & b_{22} & \cdots & b_{2s} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \cdots & b_{ns}
\end{pmatrix}}_{B}$$

$$(\gamma_1 \ \gamma_2 \cdots \gamma_s) = (\alpha_1 \ \alpha_2 \cdots \alpha_n) \begin{pmatrix} b_{11} \ b_{12} \cdots b_{1s} \\ b_{21} \ b_{22} \cdots b_{2s} \\ \vdots \ \vdots \ \ddots \ \vdots \\ b_{n1} \ b_{n2} \cdots b_{ns} \end{pmatrix}$$

$$\Rightarrow \gamma_1 = b_{11}\alpha_1 + b_{21}\alpha_2 + \cdots + b_{n1}\alpha_n \quad \mathfrak{F}\mathfrak{F}$$

可见
$$\gamma_1, \ldots, \gamma_s$$
 由 $\alpha_1, \ldots, \alpha_s$ 线性表示,所以

$$r(AB) = r(\gamma_1, \ldots, \gamma_s) \le r(\alpha_1, \ldots, \alpha_n) = r(A)$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B}^{\beta_{1}}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B}^{\beta_{1}}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{\beta_{n}}^{\beta_{1}}$$

$$\underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}_{\beta_{1}}^{\beta_{1}}}_{\beta_{2}}$$

$$\underbrace{\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{bmatrix}}_{C} = \underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{bmatrix}}_{\beta_{n}}^{\beta_{1}}$$

$$\underbrace{ \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{bmatrix}}_{C} = \underbrace{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A} \underbrace{ \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{bmatrix}_{\beta_{n}}^{\beta_{1}}$$

$$\frac{\delta_{1}}{\delta_{2}} \begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \\$$

证明 设 $AB = C_{m \times s}$

$$\underbrace{\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{bmatrix}}_{C} = \underbrace{\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A} \underbrace{\begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{bmatrix}}_{B}^{\beta_{1}}$$

$$\begin{pmatrix} \delta_1 \\ \delta_2 \\ \vdots \\ \delta_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

证明 设 $AB = C_{m \times s}$

$$\underbrace{\begin{bmatrix} \delta_1 \\ \delta_2 \\ \vdots \\ \delta_m \end{bmatrix}}_{C} \underbrace{\begin{pmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B} \beta_1$$

$$\begin{pmatrix} \delta_1 \\ \delta_2 \\ \vdots \\ \delta_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$\Rightarrow \quad \delta_1 = a_{11}\beta_1 + a_{12}\beta_2 + \dots + a_{1n}\beta_n$$

证明 设 $AB = C_{m \times s}$

$$\underbrace{\begin{bmatrix} \delta_1 \\ \delta_2 \\ \vdots \\ \delta_m \end{bmatrix} \begin{pmatrix} C_{11} & C_{12} & \cdots & C_{1s} \\ C_{21} & C_{22} & \cdots & C_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ C_{m1} & C_{m2} & \cdots & C_{ms} \end{pmatrix}}_{C} = \underbrace{\begin{pmatrix} \alpha_{11} & \alpha_{12} & \cdots & \alpha_{1n} \\ \alpha_{21} & \alpha_{22} & \cdots & \alpha_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_{m1} & \alpha_{m2} & \cdots & \alpha_{mn} \end{pmatrix}}_{A} \underbrace{\begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{pmatrix}}_{B}^{\beta_1}$$

$$\begin{pmatrix} \delta_1 \\ \delta_2 \\ \vdots \\ \delta_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1n} \\ a_{21} & a_{22} \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$\Rightarrow$$
 $\delta_1 = \alpha_{11}\beta_1 + \alpha_{12}\beta_2 + \cdots + \alpha_{1n}\beta_n$ 等等

证明 设 $AB = C_{m \times s}$

$$\underbrace{ \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{bmatrix}}_{C} = \underbrace{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A} \underbrace{ \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{bmatrix}}_{B}^{\beta_{1}}$$

即

$$\begin{pmatrix} \delta_1 \\ \delta_2 \\ \vdots \\ \delta_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$\Rightarrow \quad \delta_1 = a_{11}\beta_1 + a_{12}\beta_2 + \dots + a_{1n}\beta_n \quad$$
\$

可见 $\delta_1, \ldots, \delta_m$ 由 β_1, \ldots, β_s 线性表示,

证明 设 $AB = C_{m \times s}$

$$\underbrace{ \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ \delta_2 & c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{bmatrix}}_{C} = \underbrace{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A} \underbrace{ \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{bmatrix}_{\beta_n}^{\beta_1} }_{B}$$

即

$$\begin{pmatrix} \delta_1 \\ \delta_2 \\ \vdots \\ \delta_m \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1n} \\ a_{21} & a_{22} \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_n \end{pmatrix}$$

$$\Rightarrow \quad \delta_1 = \alpha_{11}\beta_1 + \alpha_{12}\beta_2 + \dots + \alpha_{1n}\beta_n \quad$$
 等等

可见 $\delta_1, \ldots, \delta_m$ 由 β_1, \ldots, β_s 线性表示, 所以

证明 设 $AB = C_{m \times s}$

$$\underbrace{ \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{bmatrix}}_{C} = \underbrace{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A} \underbrace{ \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{bmatrix}_{\beta_{n}}^{\beta_{1}}$$

$$\begin{pmatrix} \delta_{1} \\ \delta_{2} \\ \vdots \\ \delta_{m} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1n} \\ a_{21} & a_{22} \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{pmatrix}$$

$$\Rightarrow \delta_{1} = a_{11}\beta_{1} + a_{12}\beta_{2} + \cdots + a_{1n}\beta_{n} \quad \text{\refs}$$

可见
$$\delta_1, \ldots, \delta_m$$
 由 β_1, \ldots, β_s 线性表示,所以

$$r(\delta_1,\ldots,\delta_m) \leq r(\beta_1,\ldots,\beta_n)$$

证明 设 $AB = C_{m \times s}$

$$\underbrace{ \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{bmatrix}}_{C} = \underbrace{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A} \underbrace{ \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{bmatrix}_{\beta_{n}}^{\beta_{1}}$$

即

$$\begin{pmatrix} \delta_{1} \\ \delta_{2} \\ \vdots \\ \delta_{m} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1n} \\ a_{21} & a_{22} \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{pmatrix}$$

$$\Rightarrow \quad \delta_{1} = a_{11}\beta_{1} + a_{12}\beta_{2} + \cdots + a_{1n}\beta_{n} \quad \text{\refs}$$

可见 $\delta_1, \ldots, \delta_m$ 由 β_1, \ldots, β_s 线性表示,所以

$$r(\delta_1, \ldots, \delta_m) \le r(\beta_1, \ldots, \beta_n) = r(B)$$

证明 设 $AB = C_{m \times s}$

$$\underbrace{ \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1s} \\ c_{21} & c_{22} & \cdots & c_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{ms} \end{bmatrix}}_{C} = \underbrace{ \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}}_{A} \underbrace{ \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{ns} \end{bmatrix}_{\beta_{n}}^{\beta_{1}}$$

即

$$\begin{pmatrix} \delta_{1} \\ \delta_{2} \\ \vdots \\ \delta_{m} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} \cdots & a_{1n} \\ a_{21} & a_{22} \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} \cdots & a_{mn} \end{pmatrix} \begin{pmatrix} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{n} \end{pmatrix}$$

$$\Rightarrow \quad \delta_{1} = a_{11}\beta_{1} + a_{12}\beta_{2} + \cdots + a_{1n}\beta_{n} \quad \text{\refs}$$

可见 $\delta_1, \ldots, \delta_m$ 由 β_1, \ldots, β_s 线性表示,所以

$$r(AB) = r(\delta_1, \ldots, \delta_m) \le r(\beta_1, \ldots, \beta_n) = r(B)$$