1 2

3

5

6 7

8

1

3

1

2

1 2

1

2

1

2

1

2

3

4

Serial No. 09/741,411

A. Partyka 20

Claim Amendments

No claim is amended in this Amendment.

1. (previously presented) A method of authentication in a telemetry system, said method	
comprising:	
transmitting, by each of a plurality of transmitters, transmissions intermittently at time intervals	
and at a plurality of frequencies independently of any receiver of said transmissions and independently of	
any other of said plurality of transmitters, and	
holding, by a receiver, simultaneously for each of said plurality of transmitters, data indicative of	
an expected frequency and an expected time of at least one future transmission, and	

authenticating transmissions based on an expected and actual transmission frequency and time.

- 2. (previously presented) The method of claim I wherein said expected transmission frequency comprises estimate for transmitter reference frequency drift.
- 3. (previously presented) The method of claim 1 wherein said expected transmission time comprises estimate for transmitter time reference drift.
- 4. (previously presented) The method of claim 1 wherein each of said plurality of transmitters controls transmission frequency and time between transmissions based on frequency-time pattern that is different for each of said plurality of transmitters.
- 5. (previously presented) The method of claim 1 wherein, each of said plurality of transmitters is for varying encryption key between transmissions.
- 6. (previously presented) The method of claim 5 wherein said encryption key is varied based on frequency-time pattern for controlling transmission frequency and time between transmissions.
- 7. (previously presented) The method of claim 1 wherein each of said plurality of transmitters is for verifiable and variable modification of transmitted messages content based on frequency-time pattern for controlling transmission frequency and time between transmissions.
- 8. (previously presented) A receiver for authenticating telemetry transmissions, said receiver comprising:
- logic for holding, simultaneously for each plurality of transmissions, data indicative of an expected time and an expected frequency of at least one future transmission, wherein each said plurality

1 2

1 2

Ì

2

7

2

1

2

1

4 5

Serial No. 09/741,411	A. Partyka 20

to 17038729306

5	of transmissions is transmitted by a different one of a plurality of transmitters, wherein each of said
6	plurality of transmitters is for transmitting transmissions intermittently at time intervals and at a plurality
7	of frequencies independently of any equipment that is capable of receiving any of said transmissions from
8	any of said plurality of transmitters, and
y	circuitry for receiving said transmissions;
10	wherein said receiver is for authenticating transmissions based on an expected and actual
11	transmission frequency and time.

- 9. (previously presented) The receiver of claim 8 wherein said expected transmission frequency comprises estimate for transmitter reference frequency drift.
- 10. (previously presented) The receiver of claim 8 wherein said expected transmission time comprises estimate for transmitter time reference drift.
- 11. (previously presented) The receiver of claim 8 wherein frequency and time of transmissions is ı controlled according to a frequency-time pattern that is different for each of said plurality of transmitters. 2
 - 12. (previously presented) The receiver of claim 8 wherein said receiver is for changing decryption key between transmissions based on a frequency-time pattern for controlling frequency and time of transmissions.
 - 13. (previously presented) The receiver of claim 8 wherein said receiver, in operation. authenticates transmissions based on verifiable and variable modification of transmission content.
 - 14. (previously presented) The receiver of claim 13 wherein said verifiable modification is based on frequency-time pattern for controlling transmission frequency and time.
 - 15. (previously presented) A frequency hopping telemetry transmitter comprising:
- 2 circuit for transmitting transmissions intermittently, at time intervals and at various frequencies. independently of any receiver of said transmissions, and 3
 - logic for providing a predetermined frequency-time pattern for controlling transmission frequency and time between transmissions, and
- 6 wherein said transmitter is for varying encryption, for said transmissions, based, at least in part. on said frequency-time pattern.

1 2

1 2

l

6

7

1 2

1

2

Serial No. 09/741,411

A. Partyka 20

16. (previously presented) The transmitter of claim 15 wherein said frequency-time pattern is
individually selected for said transmitter from a plurality of predetermined patterns.

- 17. (previously presented) The transmitter of claim 15 wherein said frequency-time pattern is predetermined based on a transmitter identification.
 - 18. (previously presented) A frequency hopping telemetry transmitter comprising:
- circuit for transmitting transmissions intermittently, at time intervals and at various frequencies,
 independently of any receiver of said transmissions, and
- logic for providing a predetermined frequency-time pattern for controlling transmission frequency
 and time between transmissions, and
 - wherein said transmitter is for modification of at least a portion of known data for transmission using a modifier that is varied based, at least in part, on said frequency-time pattern.
 - 19. (previously presented) The transmitter of claim 18 wherein frequency-time pattern is individually selected for said transmitter from a plurality of predetermined patterns.
 - 20. (previously presented) The transmitter of claim 18 wherein said frequency-time pattern is predetermined based on a transmitter identification.