Underfitting, Overfitting and Cross-Validation

Prof. Mingkui Tan

SCUT Machine Intelligence Laboratory (SMIL)

Contents

Underfitting and Overfitting

2 Bias-Variance Trade-off

3 Cross-Validation

Contents

Underfitting and Overfitting

² Bias-Variance Trade-off

3 Cross-Validation

Why We Need Validation?

Business Reasons

- Need to choose the best model
- Measure accuracy/power of the selected model
- Good to measure ROI of the modeling project

Statistical Reasons

- Model building techniques are inherently designed to minimize "loss" or "bias"
- To an extent, a model will always fit "noise" as well as "signal"
- If you just fit a bunch of models on a given dataset and choose the "best" one, it will likely be overly "optimistic"

Notations

- Target Variable: *y*
 - What we are trying to predict
 - house price, ...
- Input Variables: $x = [x_1, x_2, \dots, x_m]$
 - Input features used to make predictions
 - size of house, location of house, ...
- Predictive Model: $\hat{y} = f(x)$
 - Estimate the unknown value \hat{y} based on known values $\{x_i\}_{i=1}^m$

General Fitting Scheme

■ Model is fitting and can capture the underlying trend of the data

Underfitting

■ Model cannot capture the underlying trend of the data

Overfitting

- Model is too complex to capture the true trend
- Model seeks to fit the noise or outlier of the data

Underfitting vs Overfitting

Comprehend from Taylor expansion

■ The more terms, the more complex, the more power

$$f(x) = f(x_0) + \nabla f(x_0)^{\mathrm{T}} (x - x_0) + \frac{1}{2!} (x - x_0)^{\mathrm{T}} \nabla^2 f(x_0) (x - x_0) + \cdots$$

Signs of Underfitting and Overfitting

- How to judge underfitting or overfitting?
 - Underfitting: If the training set's error is relatively large and the generalization error is large
 - Need to increase capacity (complexity of models)
 - Overfitting: If the training set's error is relatively small and the generalization error is large
 - Need to decrease capacity (complexity of models)
 - Or increase training set

Contents

1 Underfitting and Overfitting

2 Bias-Variance Trade-off

3 Cross-Validation

Bias-Variance Trade-off

- Complex model
 - Too complex can diminish model's accuracy on future data (called the Bias-Variance Trade-off)
 - Low Bias
 - Model fits well on the training data
 - High Variance
 - Model is more likely to make a wrong prediction

Contents

1 Underfitting and Overfitting

² Bias-Variance Trade-off

3 Cross-Validation

- Simplest idea: Split data into 2 sets
 - Training set: Data used to fit the model
 - Testing set: Data used to evaluate the model

- Training set
 - $\blacksquare \approx 70\%$ of data, $x^{(i)}$, $y^{(i)}$, total m examples

- Testing set
 - Arr $\approx 30\%$ of data, $x_{test}^{(i)}, y_{test}^{(i)}$, total m_{test} examples

■ It's better to choose examples for training/testing set randomly

- Another idea: Split data into 3 sets
 - We still have training and testing sets
 - But additionally we have a validation set to test the performance of our model depending on the parameter

- Training set
 - $\approx 60\%$ of data, $x^{(i)}, y^{(i)},$ total m examples

- Validation set
 - Arr $\approx 20\%$ of data, $x_{cv}^{(i)}$, $y_{cv}^{(i)}$, total m_{cv} examples
- Testing set
 - Arr $\approx 20\%$ of data, $x_{test}^{(i)}, y_{test}^{(i)}$, total m_{test} examples

Validation for Evaluation

■ Training error

$$J_{train}(\theta) = \frac{1}{2m} \sum cost(x^{(i)}, y^{(i)})$$

Validation error

$$J_{cv}(\theta) = \frac{1}{2m_{cv}} \sum cost\left(x_{cv}^{(i)}, y_{cv}^{(i)}\right)$$

Testing error

$$J_{test}(\theta) = \frac{1}{2m_{test}} \sum cost\left(x_{test}^{(i)}, y_{test}^{(i)}\right)$$

- For model selection
 - Obtain $\theta^{(1)}$, ..., $\theta^{(d)}$ and select the best (lowest) $J_{cv}(\theta^{(i)})$
- For final evaluation
 - Evaluate generalization error $J_{test}(\theta^{(i)})$ on testing set

Tuning Learning Parameter

- Use validation set for tuning hyper-parameters
- Use testing set only for final evaluation

Tuning Regularization Parameter λ

Suppose we are fitting a model with high-order polynomial $h_{\theta}(x) = \theta_0 + \theta_1 x + \dots + \theta_n x^n$

■ To prevent overfitting, we use regularization

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} cost(h_{\theta}(x_i), y_i) + \frac{\lambda}{2m} \sum_{j=1}^{n} \theta_j^2$$

Tuning Regularization Parameter λ

- If λ is too large, all θ are penalized and $\theta_1 \approx \theta_2 \approx \cdots \approx 0$, $h_{\theta}(x) \approx \theta_0$
- \blacksquare If λ is intermediate, the model fits well
- If λ is too small, the model fits too well, i.e. overfitting

Tuning Regularization Parameter λ

- \blacksquare Choose good λ on validation set
 - Choose a range of possible values for $\lambda(0.02, \dots, 0.24)$
 - That gives us 12 models with different parameters λ to check
 - For each λ_i :
 - \blacksquare Calculate θ_i
 - Calculate $J_{cv}(\theta_i)$
 - Take λ_i with lowest $J_{cv}(\theta_i)$
 - Finally, we report the test error as $J_{test}(\theta_i)$

K-Fold Cross-validation

- If we want to reduce variability in the data
 - We can use multiple rounds of cross-validation using different partitions
 - And then, average the result over all rounds
- Given a data S sampled from the population D

K-Fold Cross-validation

- Split data S into K equal disjoint subsets (T_1, \dots, T_K)
- Perform following steps for $k = 1, \dots, K$
 - Use $R_k = S T_k$ as the training set
 - Build classifier C_k using R_k
 - Use T_k as the validation set, compute error $Err_k = error(C_k, T_k)$
- Let $Err^{ave} = \frac{1}{K} \sum_{k=1}^{K} Err_k$
 - This is the averaged error rate

Tuning Learning Parameter

- \blacksquare Choosing λ with K-Fold Cross-validation
 - Split your data into training, validation and testing set
 - \blacksquare For every possible value λ , estimate the error rate
 - Select λ with least average error rage Err^{ave}
 - Final evaluation on testing set

Thank You