

End Effectors and Grip Planning

Prof. Dr. Karsten Berns

Robotics Research Lab Department of Computer Science TU Kaiserslautern, Germany

Contents

- Foundations
 - Flexibility of gripping systems
- Gripping operations
- Fingertip contact
- Grip Hierarchy
 - Equlibrium grip
 - Force closed grips
 - Form closed grips
- Stable grips

Gripper/End Effectors

- Manipulation is the result of the interaction between the end effector and the handled object
 - In industrial robots essentially transport tasks
- Change the position of an object by applying forces and moments
- Gripping systems for industrial robots
 - Mechanical gripper
 - Gripper with suction unit
 - Magnetic gripper

Foundations: Characterization of Technical End Effectors

- Mechanics and principles of action
- Number of fingers
- Number of finger joints
- Type of force and form fit
- Movement possibilities
- Actuator types
- Gripping force
- Sensors
- Size and weight

Control Parameter of Gripping Systems

- Position of the finger joints
- Gripping force
- Gripping path
- Gripping velocity
- Position of the object between the gripping plates
- Acting forces and moments

Gripping Force and Gripping Path Determination

- Work-piece weight
- Center of mass
- Geometry and position of the work-piece
- Grip points
- Positions of engagement

Mechanical Gripper

Translational

Rotational (scissors)

Enlargement of the Effective Surfaces

 Two finger gripping system: Slipping hazard, enlargement of effective area necessary

Three finger system: Higher stability, optimum positive locking

Scissor Gripper

Pincer Gripper

Suction Gripper

- a) Suction cup with ball joint
- b) Spring-loaded suction cup
- c) Sucker for sensitive objects
- d) Adhesive suction cup with valve for releasing air
- e) Suction cup for concrete slabs

V = vacuum

B = ball joint

SR = Sponge Rubber

AF = airflow

Magnetic Gripper

- Simple construction, no wear on any parts
- No moving elements, contact surface sufficient
- Ferromagnetic materials
- For thin materials, several can be gripped at once
- Electromagnetic grippers without power in case of power failure
- Gripping force $F_G = \frac{B^2 A}{2\mu_0}$
 - Magnetic field B
 - Area A
 - Vacuum permeability μ

Flexibility of Gripping Systems

- Objective: Object-related adaptation with regard to force and form fit
- Possible solutions
 - Adjustable plate profiles
 - Adjustable operating points of the gripper
 - Interchangeable grippers
 - Multi-jointed fingers
 - Sensor-guided flexible plate profiles

Robot arm with automatic

locking device

Improvement of the Form Fit

1- Initial State

2- Scan and Fix

3- Scanned workpiece contour 4- Grip with form and frictional connected

Improvement of the Form Fit

The Human Hand

- Universal gripper with 16 joints
- 22 degrees of freedom
- Common modeling
 - Kinematic model
 - Area-based geometry model

Grip Taxonomy According to Cutkosky

FZK-Hand (Forschungszentrum Karlsruhe) today KIT

Gripping Operations: Example Sequence

- Instruction: "Mount parts A, B according to installation plan P"
- Possible sequence (actions)
 - 1. Move robot hand in position of engagement of part A
 - 2. Move to the gripping position of part A
 - 3. Close claw fingers
 - 4. Drive with gripped part A into the repositioning position of part A
 - 5. Move hand with part A in position of engagement of part B
 - Move hand with part A to mounting position of A and B
 - 7. Connect parts A, B according to the specification of P
 - 8. Open gripper fingers
 - 9. Move to the release position of part *B*

Gripping Operations: Movement Types

- Grasp/release object with mounted gripper
 - Selection of a secure grip, i.e. determination of a suitable geometric relation of the gripper fingers to the gripped object
 - Collision avoidance between gripper, object to be grabbed and objects of the environment (actions 3,8)
- Up/down movement of the gripper
 - Planning the movement (position and orientation)
 - Collision avoidance between gripper, object to be grabbed, robotic arm and objects of the environment (actions 2,9).

Gripping Operations: Movement Types

- Up/down movement of the gripper with gripped object
 - Motion planning of the gripper with gripped object
 - Collision avoidance between gripper, gripped object, robotic arm and objects of the environment (actions 4,6)
- Connecting the gripped object with other objects
 - Sensor-monitored and/or sensor-guided movements (action 7)
- Transfer movement of the gripper with/without a gripped object
 - Higher execution speeds and lower accuracy requirements compared to above movement types (actions 1,5)

Gripping Operations: Pick-and-Place

- a) Picking configuration
- b) Placing configuration
- c) Transfer movement of the gripper
- d) Movement of the gripper to position of engagement
- e) Reaching the picking configuration
- f) Gripping the object

Gripping Operations: Pick-and-Place

- g) Upward movement of the gripper with the gripped object
- h) Transfer movement of the gripper with gripped object
- i) Downward movement of the gripper with the gripped object
- j) Reaching the place configuration
- k) Letting go of the object
- Upward movement of the gripper

Gripping Operations: Internal Constraints

- I1 Validity of a grip
 - Overlap between gripping features of the object to be gripped and the gripper fingers
- I2 Collision free gripping
 - No collisions between gripper and gripped object
- I3 Accessibility of a grip
 - Handle is reachable without collision for grippers

Gripping Operations: External Constraints

- E1 Collision free movement of the gripper to position of engagement
 - No collisions between robot arm, gripper, adjacent objects and working plane
- E2 Collision free movement of the gripper with the gripped object
 - See *E*1
- E3 Consideration of the robot kinematics
 - Selected grip lies in the workspace of the robot
 - Corresponding trajectories of the up/down movement can be traversed by the robot

Gripping Operations: External Constraints

- E4 Stability of a grip
 - Relative position and orientation of the object to be gripped or already gripped object to the gripper does not change (during gripping and transfer movement)
- E5 Stability of the scene
 - No influence on the scene stability during the removal of the gripper with gripped object
- E6 Task dependency of a gripper
 - Selection of a suitable handle for pick-and-place operations with regards to pick and place configuration

Gripping Operations: Planning Implications

- No grip can be determined (considering the constraints for pickup and tray configuration) → Determination of suitable recapturing sequence
- Execute a grip with special forces and torques on the gripped object → Determination of gripping position, required forces and torques

Gripping Operations: Planning Steps

Planning steps for generating gripping operations

Fingertip Contact: Grip Model

- Simplification of the synthesis of possible grips by determining suitable contact points on the surface of the object to be gripped (constraint I1)
- Disadvantage: failure to observe fundamental constraints of the gripping process, such as collision freedom and accessibility of a handle (constraints I2 and I3)

Fingertip Contact: Assumptions

- Point contact without friction
 - Force: point contact to the surface of the object without friction
 - Effect: Normal to the surface
- Rigid point contact with friction
 - Force: Rigid point contact on object surface with friction
 - Effect: Normal and tangential to the surface
 - Both forces linked via Coulomb's friction law

Fingertip Contact: Assumptions

- Non-rigid point contact with friction
 - Force: non-rigid contact on object surface with friction
 - Effect: Normal and tangential to the surface
 - Both forces linked via Coulomb's friction law

Grip Hierarchy: Wrench Vector \vec{w}

- Summary of forces f_i and torques τ_i acting on the contact point \vec{p} with $i \in [x, y, z]$
 - Planar grip: $\vec{w} = (f_x, f_y, \tau_z)^T \in \mathbb{R}^3$
 - Spatial grip: $\vec{w} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6$
- Depending on the type of i-th contact point, wrench vectors describe the normal n and tangential forces t and the axial torque θ acting on the contact point
 - Identifier: \vec{w}_n , \vec{w}_t , \vec{w}_θ
 - Corresponding scalars: ic_n , ic_t , ${}^ic_\theta$

Grip Hierarchy: Gripper Matrix

- Represents geometric and physical properties of a fingertip grip
- Wrench vectors can be represented as a spatial vector as column vectors of a $6 \times 3m$ matrix G.

$$G = \begin{bmatrix} 1 \overrightarrow{w}_n, & 1 \overrightarrow{w}_t, & 1 \overrightarrow{w}_{\theta}, \cdots & m \overrightarrow{w}_n, & m \overrightarrow{w}_t, & m \overrightarrow{w}_{\theta} \end{bmatrix}$$

For the scalars we get the vector

$$\vec{c} = \begin{pmatrix} {}^{1}c_{n}, {}^{1}c_{t}, {}^{1}c_{\theta}, \cdots {}^{m}c_{n}, {}^{m}c_{t}, {}^{m}c_{\theta} \end{pmatrix}^{T} \in \mathbb{R}^{3m}$$

Equilibrium Grip

• A grip specified by gripping matrix G, to which an external force and an external torque $\vec{e} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6$ will be applied, if

$$\forall i \in [1, m]: \quad {}^{i}c_{n} \geq 0, \quad {}^{i}\mu_{t} \cdot {}^{i}c_{n} \geq \left| {}^{i}c_{t} \right|, \quad {}^{i}\mu_{\theta} \cdot {}^{i}c_{n} \geq \left| {}^{i}c_{\theta} \right|$$

$$\exists \vec{c} \in \mathbb{R}^{3m}, \vec{c} \neq \vec{0}: G \cdot \vec{c} + \vec{e} = \vec{0}$$

- ${}^{i}\mu_{t}$, ${}^{i}\mu_{\theta} \in \mathbb{R}$ Coulomb friction coefficients at contact point i
- Limitation of the acting tangential forces t and axial moments θ with respect to the absolute value of the corresponding normal forces n

Equilibrium Grip

- Sum of all forces f_i and torques τ_i acting on the gripped object is equal to zero
- Equilibrium grip of an object is based on two rigid pointcontacts without friction
 - An external force \vec{f} acts on the object's center of gravity.

- During transfer movement and assembly operation various previously unknown external forces and moments act on an object
- Solution
 - Stability of a grip through the balance of forces
 - Forces and moments exerted on objects by gripper fingers must compensate external forces and moments
- Grips specified by gripping matrix G, on which any external forces and moments $\vec{e} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6$ will be applied, if

$$\forall \vec{e} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6 \ \exists \vec{c} \in \mathbb{R}^{3m}$$
$$\vec{c} \neq \vec{0} \colon G \cdot \vec{c} + \vec{e} = \vec{0}$$

Force Closed Grips: Contact Points

- Force closure with point contacts and without friction
 - Object to gripped without rotational symmetry: Planar force closed grip needs at least 4 contact points
 - Any 3D object: Max. 12 contact points required
 - Restriction on polyhedra: upper limit of 7 points
- Force closure with point contacts and friction
 - Planar objects: Fingertip grip with 3 contact points
 - Spatial case: Lower limit of 4 contact points

Planar form closed grip of an object is based on three non-rigid point contacts with friction

- For each contact point, consider only the non-penetrating properties co-linear to the corresponding external surface normal vector.
- Only dependent on the position of the contact points and the corresponding external surface normal vectors
- No consideration of normal or tangential forces and torques, which appear due to friction, among other things.

- External surfaces normal vectors corresponding to the contact points specify the contact geometry of the fingertip grip
- Grip matrix $G' = \begin{bmatrix} 1 \overrightarrow{w}_n, & 2 \overrightarrow{w}_n, \cdots & m \overrightarrow{w}_n \end{bmatrix} \in \mathbb{R}^{6xm}$
- Contact points with form closed fingertip grip
 - Planar grip: Min. 4 contact points
 - Arbitrary 3D-object: Min. 7 contact points
- Grip specified by modified gripping matrix G', on which any external forces and moments $\vec{e} = (f_x, f_y, f_z, \tau_x, \tau_y, \tau_z)^T \in \mathbb{R}^6$ can be applied, if

$$\forall \vec{e} = \left(f_x, f_y, f_z, \tau_x, \tau_y, \tau_z\right)^T \in \mathbb{R}^6 \ \exists \vec{c} \in \mathbb{R}^6 \colon \ G' \cdot \vec{c} + \vec{e} = \vec{0}$$

Form closed grip of an object

Stable Grips

- Previous condition: Rigid gripper fingers
- Improvement: Modeling of finger forces that compensate for small changes in the nominal position of the gripped object
- Description with a potential function $V: \mathbb{R}^6 \to \mathbb{R}$
- V Specifies the potential energy stored in the grip as a function of the position and orientation of the gripped object

Stable Grips: Definition

 If the potential energy stored in an equilibrium grip of an object is specified via a potential function V and if

$$\delta \vec{q} = \left(\delta_x, \delta_y, \delta_z, \delta_{\varphi x}, \delta_{\varphi y}, \delta_{\varphi z}\right)^T \in \mathbb{R}^6 \neq \vec{0}$$

describes an infinitesimal change in position of the gripped object and the resulting change in the potential energy, then the grip is stable if

$$\forall \delta \vec{q} \in \mathbb{R}^6 : \delta \vec{V} > \vec{0}$$

 Thus, an equilibrium grip is unstable when a position change exists for which the resulting change in potential energy is less than zero

Stable Grips

Stable and locked grip of a polygon based on 4 non-rigid point contacts with friction

Stable triangle handle of a polygon;
Not locked

Coming up next...

Planning systems

