Richiami di di Elettrotecnica

Legge di Ohm

La legge di Ohm stabilisce che la tensione v ai capi di un conduttore è proporzionale alla corrente i che lo attraversa. Il fattore di proporzionalità v/i è chiamato resistenza (R).

I legge di Kirchhoff (o ai nodi)

La I legge di Kirchhoff stabilisce che *la somma algebrica di tutte le correnti che confluiscono in un nodo di un circuito è nulla in ogni istante*. Un nodo di un circuito è un punto in cui si incontrano due o più elementi circuitali.

La somma delle correnti entranti è uguale alla somma delle correnti uscenti.

II legge di Kirchhoff (o alle maglie)

La II legge di Kirchhoff stabilisce che *la somma algebrica di tutte le cadute di tensione lungo un qualunque percorso chiuso di un circuito è nulla in ogni istante.* Un percorso chiuso in un circuito si definisce *anello* o *maglia*.

La somma algebrica delle f.e.m. dei generatori è uguale alla somma algebrica delle cadute di tensione negli elementi circuitali passivi.

Resistori in serie

La resistenza equivalente di un qualunque numero di resistori in serie, ovvero percorsi dalla stessa corrente, è uguale alla somma delle singole resistenze.

$$R_{eq} = \sum_{n=1}^{N} R_n$$

$$v = v_1 + v_2 = iR_1 + iR_2 = i(R_1 + R_2)$$

$$v = iR_{eq} \qquad R_{eq} = R_1 + R_2$$

Partitore di tensione

$$v = iR_{eq}$$

$$v = iR_{eq}$$

$$R_{eq} = R_1 + R_2$$

$$i = \frac{v}{R_1 + R_2}$$

$$v_1 = iR_1 = \frac{v}{R_1 + R_2} R_1 = v \frac{R_1}{R_1 + R_2}$$

$$v_1 = v \frac{R_1}{R_1 + R_2}$$

$$v_2 = v \frac{R_2}{R_1 + R_2}$$

Resistori in parallelo

La conduttanza equivalente di un qualunque numero di resistori in parallelo, ovvero con ai loro capi la stessa caduta di tensione, è uguale alla somma delle singole conduttanze.

$$v \stackrel{i}{\Longrightarrow} \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$G_{eq} = \sum_{n=1}^{N} G_n$$

$$\begin{cases} R_{2} & i = i_{1} + i_{2} = \frac{v}{R_{1}} + \frac{v}{R_{2}} = v \left(\frac{1}{R_{1}} + \frac{1}{R_{2}} \right) \end{cases}$$

$$i = \frac{v}{R_{eq}}$$
 $\frac{1}{R_{eq}} = G_{eq} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_1 + R_2}{R_1 R_2}$

Partitore di corrente

$$i = \frac{v}{R_{eq}} \quad \frac{1}{R_{eq}} = G_{eq} = \frac{1}{R_1} + \frac{1}{R_2} = \frac{R_1 + R_2}{R_1 R_2}$$

$$v \Rightarrow R_1 \Rightarrow R_2 \quad i_1 = \frac{v}{R_1} = \frac{iR_{eq}}{R_1} = \frac{i}{R_1} \frac{R_1 R_2}{R_1 + R_2} = i \frac{R_2}{R_1 + R_2}$$

$$i_1 = i \frac{R_2}{R_1 + R_2}$$

$$\dot{R}_2 = i \frac{R_1}{R_1 + R_2}$$

Principio di sovrapposizione degli effetti

La risposta di una rete lineare che contiene più generatori indipendenti può essere ricavata considerando un singolo generatore per volta e sommando tutte le risposte così ottenute.

- Una rete lineare è composta solamente da elementi circuitali lineari, generatori dipendenti lineari e generatori indipendenti.
- Un elemento circuitale è detto lineare quando la relazione i-v soddisfa la proprietà di omogeneità e la proprietà additiva.
- Nel valutare la risposta della rete ad un singolo generatore, occorre:
- disattivare gli altri generatori indipendenti (v=0 per i generatori di tensione e i=0 per i generatori di corrente);
- mantenere attivi i generatori dipendenti in quanto controllati da variabili (i,v) del circuito

Teorema di Thevenin

Una qualsiasi rete lineare, rispetto a una coppia di suoi nodi, può essere sostituita da un circuito equivalente costituito da una generatore di tensione V_{Th} con in serie una resistenza R_{Th} .

Teorema di Thevenin

Il valore di V_{Th} è pari alla tensione a circuito aperto tra i due nodi

Teorema di Thevenin

Il valore di R_{Th} è pari alla resistenza vista tra i due nodi, ovvero alla resistenza equivalente tra i due nodi quando i generatori indipendenti sono disattivati. I generatori dipendenti devono rimanere attivi.

Teorema di Norton

Una qualunque rete lineare, rispetto a una coppia dei suoi nodi, può essere sostituita da un generatore di corrente I_N (di valore pari alla corrente di cortocircuito) in parallelo con la resistenza R_N vista tra i due nodi.

Legame tra Thevenin e Norton

$$R_N = R_{Th}$$

$$I_N = i_{sc} = rac{V_{Th}}{R_{Th}}$$

$$R_{Th} = rac{V_{Th}}{I_N} = rac{v_{oc}}{i_{sc}}$$

Condensatore - Induttore

$$q = Cv$$

$$i = \frac{dq}{dt} = C\frac{dv}{dt}$$

Condensatori in parallelo

$$i = i_1 + i_2 + i_3 + \dots + i_N$$

$$i = C_1 \frac{dv}{dt} + C_2 \frac{dv}{dt} + C_3 \frac{dv}{dt} + \dots + C_N \frac{dv}{dt} = \left(\sum_{i=1}^N C_i\right) \frac{dv}{dt}$$

Condensatori in serie

$$C_{\text{eq}} = \frac{1}{C_{\text{eq}}} = \left(\sum_{i=1}^{N} \frac{1}{C_i} \right)$$

$$v = v_1 + v_2 + v_3 + \dots + v_N$$

$$v = \frac{1}{C_1} \int_{t_0}^{t} i dt + v_1(t_0) + \frac{1}{C_2} \int_{t_0}^{t} i dt + v_2(t_0) + \dots + \frac{1}{C_N} \int_{t_0}^{t} i dt + v_N(t_0) =$$

$$= \left(\sum_{i=1}^{N} \frac{1}{C_i}\right) \int_{t_0}^{t} i dt + \left(\sum_{i=1}^{N} v_i(t_0)\right) = \frac{1}{C_{eq}} \int_{t_0}^{t} i dt + v(t_0)$$

Induttori in serie

$$i$$
 L_1 L_2 L_3 L_N
 $+$ $+$ v_1 $+$ v_2 $+$ v_3 $+$ v_N

$$L_{eq} = \left(\sum_{i=1}^{N} L_i\right)$$

$$v = v_1 + v_2 + v_3 + \dots + v_N$$

$$v = L_1 \frac{di}{dt} + L_2 \frac{di}{dt} + L_3 \frac{di}{dt} + \dots + L_N \frac{di}{dt} = \left(\sum_{i=1}^N L_i\right) \frac{di}{dt}$$

Induttori in parallelo

$$i = i_{1} + i_{2} + i_{3} + \dots + i_{N}$$

$$i = \frac{1}{L_{1}} \int_{t_{0}}^{t} v dt + i_{1}(t_{0}) + \frac{1}{L_{2}} \int_{t_{0}}^{t} v dt + i_{2}(t_{0}) + \dots + \frac{1}{L_{N}} \int_{t_{0}}^{t} v dt + i_{N}(t_{0}) =$$

$$= \left(\sum_{i=1}^{N} \frac{1}{L_{i}}\right) \int_{t_{0}}^{t} v dt + \left(\sum_{i=1}^{N} i_{i}(t_{0})\right) = \frac{1}{L_{aa}} \int_{t_{0}}^{t} v dt + i(t_{0})$$

Riassunto

Relazione	Resistore (R)	Condensatore (C)	Induttore (L)
v-i	v = Ri	$v = \frac{1}{C} \int_{t_0}^t idt + v(t_0)$	$v = L \frac{di}{dt}$
i-v	i = v/R	$i = C \frac{dv}{dt}$	$i = \frac{1}{L} \int_{t_0}^t v dt + i(t_0)$
Serie	$R_{eq} = R_1 + R_2$	$C_{eq} = \frac{C_1 C_2}{C_1 + C_2}$	$L_{eq} = L_1 + L_2$
Parallelo	$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$	$C_{eq} = C_1 + C_2$	$L_{eq} = \frac{L_1 L_2}{L_1 + L_2}$
Alimentazione DC	Inalterato	Circuito aperto	Corto circuito
Variabile che non può cambiare istantaneamente	Non applicabile	Tensione (v)	Corrente (i)

Transitorio di un condensatore

$$\ln\left(\frac{v(t)-V_s}{V_0-V_s}\right) = -\frac{t}{RC} \qquad \frac{v(t)-V_s}{V_0-V_s} = e^{-\frac{t}{RC}}$$

$$v(t) = V_s + (V_0 - V_s)e^{-\frac{t}{\tau}} \qquad \tau = RC$$

Transitorio di un condensatore

$$v(t) = V_s + (V_0 - V_s)e^{-\frac{t}{\tau}} \qquad \tau = RC$$

 V_0 : tensione iniziale presente sul condensatore

 V_s : tensione finale presente sul condensatore

τ : costante di tempo