කාලය කා දමන්නාගේ අනාගතය කාලය විසින් කා දමනු ලැබේ...

BATTLE FIELD MCQ PAPER 23

- lacktriangle සම්පූර්ණ විෂය නිර්දේශයම ආවරණය වන පරිදි සැකසූ උසස් මට්ටමේ $\mathbf{MCQ}\ 50$ ක් මෙහි අන්තර්ගත වේ.
- පංති පැවැත්වෙන කාලයෙන් පසු මිනිත්තු 30 ක් ගුරුවරයා පන්තිය තුළ සිටින අතර එහිදී ඔබට අවශා ඕනෑම සිද්ධාන්ත කොටසක් නැවත අසා දැන ගත හැක.

MCQ NO 5811-5860

	(1) Mg	(2) Ne	(3) Al	(4) P	(5) Cl	
(2)	වැඩිම π බන්ධන සංඛාාවක් අඩංගු වන අණුව වන්නේ,					
	(1) H_2SO_4	(2) H_2SO_3		$(3) HNO_3$	$(4) H_3PO_4$	(5) HCIO ₄
(3)		ОН 				

 $H - C \equiv C - CH - CH - CH_2CHO$ CH_2CH_3

(1) තෙවන අයනීකරණ ශක්තිය ඉහළම මූලදුවා වනුයේ,

- (1) 3-ethyl-4-hydroxyhex-1-ynal
- (2) 1-oxo-4-ethylhex-5-yn-3-ol
- (3) 4-hydroxy-3-ethyl-1-hexynal
- (4) 4-ethyl-3-hydroxy-5-hexynal
- (5) 3-hydroxy-4-ethyl-5-hexynal
- (4) ගෝලීය උණුසුම කෙරෙහි වැඩිම දායකත්වය දක්වන වායුව අතුරු ඵලයක් ලෙස නිපදවන නිෂ්පාදන කිුයාවලිය වනුයේ,
 - (1) ටයිටේනියම් ඩයොක්සයිඩ් නිෂ්පාදනය
 - (2) නයිටුක් අම්ල නිෂ්පාදනය
 - (3) යකඩ නිස්සාරණය
 - (4) සල්ෆියුරික් අම්ල නිෂ්පාදනය
 - (5) ජෛව ඩීසල් නිෂ්පාදනය
- (5) $X(g) + e \longrightarrow X^{-}_{(g)}$ හිදී වැඩිම තාප පුමාණයක් මුදා හරිනු ලබන්නේ,
 - (1) Be
- (2) C
- (3) N (4) O
- (5) S
- (6) $I + F_2 0$ අයනය සම්බන්ධයෙන් අසතා පුකාශය වනුයේ,

- (1) මධා පරමාණුවේ ඔක්සිකරණ අවස්ථාව +4 ක් වන අතර මුහුම්කරණය ${
 m sp}^3$ වේ.
- (2) මධා පරමාණුව වටා ඉලෙක්ටෝන යුගල ජාාමිතිය චතුස්තලීය වන අතර හැඩය පිරමිඩාකාර වේ.
- (3) අයනයේ π බන්ධන 1 ක් අඩංගු වේ.
- (4) අයනයේ හැඩය පිරමීඩාකාර වේ.
- (5) මධා පරමාණුව වටා විකර්ෂණ ඒකක 4 ක් අඩංගු වේ.
- (7) ගීනාඩ් පුතිකාරකයක් පිළියෙල කිරීමට භාවිත කළ හැකි සංයෝගයක් වනුයේ,

(5) $H - C \equiv C - CH CH_3$ Br

- B) වෙනස් වූ වර්ණයක් සහිත ජලීය දුාවණයක් සඳහා සංකීර්ණ අයනයක් වනුයේ,
 - (1) $[Ni(NH_3)_6]^{2+}$
- (2) $[Co(H_2O)_6]^{2+}$
- (3) $[CoCl_4]^{2-}$

Н

- (4) $[Cu(NH_3)_4]^{2+}$
- (5) $[Co(OH)_4]^{2-}$
- (9) ඇමෝනියම් ලවණ වල තාප වියෝජනය සම්බන්ධයෙන් සතා පුකාශ වනුයේ,
 - (1) සියළුම ඇමෝනියම් ලවණ රත් කිරීමෙන් වායුමය ඵලයක් පමණක් ලැබේ.
 - (2) සියළුම ඇමෝනියම් ලවණ රත් කිරීමේදී NH₃ පිටවේ.
 - (3) $(NH_4)_2Cr_2O_7$ රත් කළ විට N_2O වායුව ලැබේ.
 - (4) NH_4NO_3 රත්කළ විට NO වායුව ලැබේ.
 - (5) $\mathrm{NH_4NO_2}$ රත් කළ විට $\mathrm{N_2}$ වායුව ලැබේ.
- (10) පහත දැක්වෙන පුතිකියා අනුකුමය සලකන්න.

X හා Y සඳහා වඩාත්ම ගැලපෙන වනුහ වනුයේ,

(3) CH_2OH CH_2OH Br Br Br CH_2OH CH_2OH CH_3 COOH COBI

 $\begin{array}{ccc}
\mathsf{CH}_2\mathsf{OH} & \mathsf{CH}_2\mathsf{Br} \\
(5) & & & & & & & \\
\end{array}$

- (11) 127^{0} C දි හා 4.157×10^{4} Pa පීඩනයක් යටතේදී N_{2} හා O_{2} අඩංගු වායූ මිශුණයක ඝනත්වය $0.37~{
 m kgm^{-3}}$ වේ. මෙම මිශුණයේ N2 පුතිශත සංයුතිය වනුයේ,
 - (1) 10%
- (2) 20%
- (3) 40% (4) 60%
- (5)80%
- (12) වායු දූෂක සම්බන්ධයෙන් අසතා වගන්තිය වනුයේ,
 - (1) කර්මාන්තශාලා වලින් ${
 m CO}_2$, ${
 m SO}_2$ වායු අවම කිරීමට පිටාර නලවලට ${
 m CaO}$ යොදා ගනී.
 - (2) වායුගෝලයට එකතුවන $\mathsf{NO}(\mathsf{g})$ මගින් වාතයේ එකතු වී ඇති $\mathsf{SO}_{\mathsf{2}(\mathsf{g})}$ වායුව SO_3 බවට ඔක්සිකරණය උත්පේරණය කරයි.
 - (3) $SO_{2(g)}$ හා $CO_{2(g)}$ යන වායු අම්ල වැදි සඳහා දායක වේ.
 - (4) වාහන වල උත්පේරක පරිවර්ථක මගින් NOx , N_2 හා O_2 බවට පත් කරයි.
 - (5) කාබනික දුවා වල නිර්වායු හායනයෙන් CH4, වායු ගෝලයට එකතු වේ.

COCH₃

(13)යන කාබනික සංයෝග LiAlH4 සමග පුතිකිුිිියා කරවා, ලැබෙන ඵලය ජල විච්ජේදනය කළ විට CH₂CH = CH₂ ලබා දෙන සංයෝගය වනුයේ,

OH (1) CHCH₃ COOH $CH_2CH = CH_2$

(2) CHCH₃

(3)СНСН3 COOH CH2CH2CH2

(4) COCH₃ $CH_2CH = CH_2$

COOH СООН COOH

- (14) M නම් ඉලෙක්ටුෝඩයක සම්මත ඉලෙක්ටුෝඩ විභවය 0.16~
 m V වේ. සින්ක් ඉලෙක්ටුෝඩයේ සම්මත ඉලෙක්ටුෝඩ විභගය - $0.77\mathrm{v}$ වේ. Zn ඉලෙක්ටෝඩයේ විභවය, M ඉලෙක්ටෝඩයට සාපේක්ෂව මිනුම් කලේ නම් ලැබෙන අගය කුමක්ද?
 - (1) -0.61V
- (2) +0.93V

(5)

- (3) +0.77V (4) -0.93V
- (5) +0.61V
- (15) A හි තනුක ජලීය දාවණයක ස්කන්ධ සංයුතිය x ppm ලෙස දක්වා ඇත. ජලය m ස්කන්ධයක් තුළ මවුලික ස්කන්ධය M වන, A මවුල y පුමාණයක් දියකර ඇත. x,y,m හා M අතර නිවැරදි සම්බන්ධය වනුයේ,
 - (1) $\frac{My}{m} = 10^6 x$ (2) $\frac{10^6 My}{m} = x$ (3) $\frac{My}{m+My} = x$
- (4) $\frac{My}{m+My} = 10^6 x$ (5) $\frac{My10^6}{m+My} = x$
- (16) X නමැති අකාබනික සංයෝගය තනුක HCl සමග අවර්ණ වායුවක් සහ අවර්ණ දුාවණයක් ලබා දුනි. එම වායුව අාම්ලික $K_2Cr_2O_7$ දාවණයක් කොළ පැහැයට හැරවීය. එම අවර්ණ දාවණය තනුක H_2SO_4 සමග සුදු අවක්ෂේපයක් ලබා දුනි නම් X විය හැක්කේ,

- (1) $Ba(NO_3)_2$
- (2) SrS
- (3) MgS_2O_3 (4) $Ba(NO_2)_2$ (5) Na_2SO_3
- (17) පිනොප්තලීන් දර්ශනය යොදා ${
 m Na}_2{
 m CO}_3$ ජලීය දුාවණ $30{
 m cm}^3$ අනුමාපනයේදී අන්ත ලසෂාය ලැබෙන විට ${
 m HCl}$ දුාවණයෙන් $30\mathrm{cm}^3$ වැය විනි. එම දර්ශකයම භාවිතා කරමින් එම HCl දුාවණයෙන් $30\mathrm{cm}^3$ ගෙන එම $\mathrm{Na}_2\mathrm{CO}_3$ දුාවණය සමග අනුමාපනය කළේ නම් අන්ත ලක්ෂායේදී වැයවෙන ${
 m Na}_2{
 m CO}_3$ පරිමාව කොපමණද?
 - $(1) 30 \text{cm}^3$
- $(2) 15 cm^3$
- $(3) 22.5 \text{cm}^3$ $(4) 45 \text{cm}^3$
- $(5) 60 \text{cm}^3$
- (18) Si, P, S හා Cl යන මූල දුවායන්ගේ දුවාංක ආරෝහන රටාව වන්නේ,
 - (1) Si <P <S<Cl
- (2) Cl < S < P < Si (3) Cl < P < S < Si

- (4) P<S<Cl<Si
- (5) S<P<Cl<Si
- (19) පහත වියෝජන පුතිකිුයාව සඳහා එක්තරා උෂ්ණත්වයක්දී $\mathrm{Kp} = 4 \times 10^{15} \ \mathrm{N}^3\mathrm{M}^{-6}$ වේ. අදාල උෂ්ණත්වයේදී කිසියම් ${
 m NH_2COONH_4(s)}$ මවුල පුමාණයක් පහත ගතික සමතුලිතයට පත්වන තෙක් තබන ලදී. පද්ධතියේ මුලු පීඩනය කොපමණද?

 $NH_2COONH_{4(s)} \rightleftharpoons 2NH_{3(g)} + CO_{2(g)}$

- (1) $2 \times 10^5 \text{ Nm}^{-2}$
- (2) $6 \times 10^5 \text{ Nm}^{-2}$ (3) $3 \times 10^5 \text{ Nm}^{-2}$ (4) $1 \times 10^5 \text{ Nm}^{-2}$

- (5) $4 \times 10^5 \text{ Nm}^{-2}$
- (20) $CH_3 CH = CH C = C CH_2 CH_2$

ඉහත බන්ධන දුරවල් ආරෝහනය වන අනුපිළිවෙල වන්නේ,

- (1) d<b<g<a<e
- (2) b < g < c < a < f (3) g < b < d < a < f (4) f < a < c < b < f

- (5) a < c < e < f < d
- (21) X නම් කෘමි නාශකය, ජලයේ මෙන්ම ඊතර් තුළද දිය වේ. ඊතර් හා ජලය අතර X හි වxාප්ති සංගුණකය 12 ක් වේ. X වලින් අපවිතු වූ ජලය $100~{
 m cm^3}$ ක් සහ ඊතර් $100{
 m cm^3}$ ක් ඔබට සපයා ඇත. ඊතර් $25{
 m cm^3}$ ක් බැගින් යොදා වාර 4 කදී ඊතර් තුළට නිස්සාරණය කළ හැකි X පුතිශතය වනුයේ,
 - (1) 22.5%
- (2) 48%
- (3) 64.6%
- (4) 99.6%

- (5) ගණනය සඳහා දත්ත පුමාණවත් නොවේ.
- (22) සංශුද්ධ පුතිශතය 80% ක් වන NaOH සාම්පලයකින් 2.00g ක් වාතයට නිරාවරණය කර තැබූ විට එයින් 60% ක් වායුගෝලයේ ඇති ${
 m CO}_2$ සමග පුතිකිුයා කර ඇත. පුතිකිුයාවෙන් පසු ලැබුණු ශේෂය ජලයේ දියකර මෙතිල් ඔරේන්ජ් දර්ශකය ඇති විට 1.0 mol dm⁻³ HCl සමග අනුමාපනය කරන ලදී. අන්ත ලඤායේදී වැයවූ HCl පරිමාව cm3 වලින්, (Na = 23, C = 12, H = 1, 0 = 16)
 - (1) 14.0 cm^3
- $(2) 26.0 \text{ cm}^3$
- $(3) 40.0 \text{ cm}^3$
- (4) 44.0 cm³

- (5) 88.0 cm³
- (23) $2SO_{2(g)} + O_{2(g)} \Longrightarrow 2SO_{3(g)}$ යන සමතුලිත පුතිකියාව සඳහා $T \ k$ නම් උෂ්ණත්වයේදී සමතුලිතතා නියතය Kc= K වේ.

 $T \; k \;$ හිදී, $SO_{2(g)} + rac{1}{2} \, O_{2(g)} \; \Longleftrightarrow SO_{3(g)}$ යන පුතිකුියාව සඳහා Kp නියතය වනුයේ,

- (1) $\left(\frac{K}{RT}\right)^{1/2}$ (2) K (RT) $\frac{1}{2}$ (3) $\left(\frac{K}{RT}\right)^{2}$ (4) $\left(\frac{RT}{K}\right)^{2}$ (5) K(RT)²

 ΔG^{θ} kJ mol⁻¹

පුතිකියක

(24) A(g) \Longrightarrow 2B(g) පුතිකියාව සඳහා T_1 හා T_2 උෂ්ණත්ව වලදී පුතිකියා පුමාණයට එරෙහිව ගිබ්ස් ශක්තිය විචලනය වන ආකාරය පහත දැක්වේ. $(T_1 > T_2 වේ)$.

- (1) T_1 ට වඩා T_2 හි දී සමතුලිත නියතය විශාල වේ.
- (2) T_1 හි දී ඉහත පුතිකියාව ස්වයංසිද්ධව සිදුවේ.
- (3) පුතිකියාවේ $\Delta S^{ heta}$ ධන අගයක් වේ.
- (4) පුතිකිුයාව තාප දායක වේ.
- (5) පුතිකිුයාවේ ΔS^{θ} හා ΔH^{θ} ධන අගයන් වේ.
- (25) A, B, C, D හා E ලෝහ වේ. ඒ පිළිබඳ පහත කරුණු සලකන්න.
 - C හි ඔක්සයිඩය තාප වියෝජනයෙන් C ලෝහය ලැබේ.
 - B, D සහ E ලෝහ පමණක් තනුක HCl සමග H2 වායුව පිට කරයි.
 - ullet A,B හා C ජලීය අයන දුාවණ වලට D ලෝහය එක් කළ විට, A,B හා C යන ලෝහ විස්ථාපනය වේ.
 - E හි ජලීය අයන දුාවණයකට D එකතු කළ විට E විස්ථාපනය නොවේ. ඉහත ලෝහ වල ඔක්සිහාරක ගුණය වැඩිවන නිවැරදි අනුපිළිවෙල වනුයේ,
 - (1) B < D < E < A < C (2) C < A < B < D < E (3) E < D < B < A < C (4) D < A < B < C < E

- (5) C<A<D<B<E
- (26) A නම් පුකාශ සකීය සංයෝගය ජලීය Na_2CO_3 සමග පුතිකියා කර CO_2 වායුව මුදාහරී. A සංයෝගය, $LiAlH_4$ සමග පුතිකියා කර, ලැබෙන ඵලය ජල විච්ජේදනයෙන් ලැබෙන ඵලයද පුකාශ සකීය වේ. A විය හැක්කේ,
 - CH₃ CH CHO (1)
- (2) $CH_3 \dot{C} = COOH$
- (3) $CH_3 C CH_2COOH$
- (4) HOCH₂CH₂COOH (5) HOCH₂COOCH₃
- (27) Mg ලෝහය නිස්සාරණය හා සම්බන්ධ Dow Process (ඩවු මූලධර්මය) පිළිබඳ අසතා වගන්තිය වනුයේ,
 - (1) කියාවලිය පියවර 4 කින් සිදුවේ.
 - (2) පුධාන අමුදුවා ලෙස බීටර්න් දුාවණය යොදා ගනී.
 - (3) පළමුව බීටර්න් දුාවණයේ ඇති ${
 m Mg^{2+}}$ හයිඩොක්සයිඩ ලෙස අවක්ෂේප කර ගනී.
 - (4) මෙම කිුයාවලියේදී ජලීය MgCl_2 විදාුත් විච්ජේදනයට ලක් වේ.
 - (5) කෝෂයෙන් ඉවත් කර ගන්නා Mg දුව තත්ත්වයේ පවතී.
- (28) X නැමැති මූලදුවා පළමු පෙළ පුතිකිුයාවක් ආකාරයට සු වේ. X හි ආරම්භක සාන්දුණය 4 mol dm⁻³ විය. සාන්දුණය $0.25\,\mathrm{mol}\,\mathrm{dm}^{-3}$ වීමට $120\,\mathrm{min}\,\mathrm{am}$ ගත වේ නම් $X\,\mathrm{am}$ ය වීමේ පුතිකිුයාවට අදාළ සීසුතා නියතය වනුයේ,
 - (1) $2.31 \times 10^{-1} \text{ min}^{-1}$
- (2) $2.31 \times 10^{-2} \text{ min}^{-1}$ (3) 40 min^{-1}

- (4) $3.1 \times 10^{-2} \text{ min}^{-1}$
- (5) $3.1 \times 10^{-1} \text{ min}^{-1}$

- (29) නුයුක්ලියෝපිලිකයක් මගින් පහර දීමේ හැකියාව නිවැරදිව දැක්වෙනුයේ,
 - (1) CH3CHO < CH3COOH
- (2) $CH_3COCl < CH_3COOCH_3$
- (3) $CH_3CONH_2 < CH_3COCl$
- (4) $CH_3COCl < CH_2 = CHCOCl$
- (5) $CH_3CHO < CH_3COCH_3$
- (30) නයිටුජන් වල රසායනය සම්බන්ධයෙන් අසතා වගන්තිය වනුයේ,
 - (1) ස්ථායි තිුත්ව බන්ධනයක් පැවතීම නිසා N_2 අකීය වායුවක් ලෙස පවතී.
 - (2) -3 සිට +5 දක්වා වූ සෑම ඔක්සිකරණ අවස්ථාවක්ම පෙන්වයි.
 - (3) අකුණු ගැසීම් වලදී වායුගෝලීය N_2 , NO_2 බවට පත්වේ.
 - (4) S ගොනුවේ සියලුම මූලදුවා සමග රත් කළ විට ලෝහ නයිටුයිඩ සාදයි.
 - (5) ඇමෝනියා ඔක්සිකරණයෙන් N_2 වායුව ලබාගත හැක.
- (31) දුබල භෂ්මයක නියත පරිමාවක් පුබල අම්ලයක් මගින් සිදු කරන අනුමාපනයක් සලකන්න. මින් කුමක් දුබල භෂ්මයේ සාන්දුණය මත රඳා පවතීද?
 - (a) සමකතා ලක්ෂායේදී pH අගය
 - (b) අන්ත ලක්ෂායේදී වැයවන අම්ල පරිමාව
 - (c) දුබල භෂ්මයේ විඝටන නියනය
 - (d) දාවණයේ $[H_3O^+_{(aq)}][OH^-_{(aq)}]$ යන අගය
- (32) $CH_2 = C CH_2 CONH_2$ යන සංයෝගය පිළිබඳව සතා වගන්ති(ය) වනුයේ,
 - (a) සෝඩියම් ලෝහය සමග H_2 පිටකරයි.
 - (b) LiAlH4 සමග පිරියම් කළ විට, පුාථමික ඇමීනයක් ලැබේ.
 - (c) NaOH සමග රත් කළ විට NH3 නිදහස් වේ.
 - (d) ඇමෝනීය Cu_2Cl_2 සමග ගඩොල් රතු අවක්ෂේපයක් ලබා දෙයි.
- (33) ගතික සමතුලිතතාවයේ පවතින පහත පද්ධතිය සලකන්න.

$$2P_{(g)} + Q_{(g)} \rightleftharpoons 2R(g)$$
; $\Delta H > 0$

- (a) උෂ්ණත්වය වැඩි කළ විට පසු පුතිකියා සීඝුතාව අඩු වේ.
- (b) නියත උෂ්ණත්වයේදී P හි සාන්දුණය දෙගුණයක් කර Q හි සාන්දුණය අර්ධයක් කළ විට සමතුලිතතා ලක්ෂා වෙනස් නොවේ.
- (c) නියත උෂ්ණත්වයේදී පද්ධතියේ සමස්ත පරිමාව වැඩි කළ විට R හි ආංශික පීඩනය වැඩි වේ.
- (d) නියත උෂ්ණත්වයේදී P හි සාන්දුණය වැඩි කළ විට, Q හි සාන්දුණය අඩු වන අතර R සාන්දුණය වැඩිවේ.
- (34) සංශුද්ධ ජලයේ කලාප සටහන පහත දැක්වේ.

ඉහත කලාප සටහන සම්බන්ධයෙන් නිවැරදි වගන්ති(ය) වනුයේ,

- (a) තික ලක්ෂායේ ඇති මිශුණයේ උෂ්ණත්වය නියතව තබා පීඩනය වැඩි කිරීමේදී දුව ජලය පමණක් ඉතිරි වේ.
- (b) TC වකුය මගින් අයිස් හා ජල වාෂ්ප අතර සමතුලිතව පවතින උෂ්ණත්ව පීඩන පෙන්වයි.
- (c) තුීක ලඎායේ ඇති දුවායේ පීඩනය නියතව තබා උෂ්ණත්වය අඩු කරගෙන යාමේදී දුව කලාපය පමණක් ඉතිරි වේ.
- (d) පීඩනය නියතව තබා P නම් සංයුතිය සහිත දුවායේ උෂ්ණත්වය අඩු කරගෙන යාමේදී මල් තුහීන ඇතිවේ.
- (35) ජලයේ අදුාවා වන නමුත්, සාන්දු HCl හි දුාවා වන්නේ,
 - (a) $Ba(OH)_2$
- (b) COCl₂
- (c) PbCl₂
- (d) BiOCl
- (36) පිෂ්ඨ දුාවණයක් නිල්පැහැ ඇති නොකරන්නේ, ආම්ලික KI දුාවණයක් පහත කිනම් දුාවණයකට මිශු කළ විටද?
 - (a) FeCl₃
- (b) CuSO₄
- (c) H_2O_2
- (d) $Ba(NO_3)_2$
- (37) HCHO සහ CH3COCH3 මිශුණයක් ජලීය NaOH දුාවණයක් සමග පුතිකියාවෙන් සෑදේ යැයි අපේඎ කළ හැකි සංයෝග වනුයේ,
 - (a) HOCH₂CHO
- (b) $CH_3 \begin{picture}(60,0) \put(0,0){\line(0,0){100}} \put(0,0){\li$

- (38) $25 ext{dm}^3$ පරිමාවක් ගන්නා භාජනයක 400° C දී, N_2 1 mol ක් ද, H_2 3 mol ක් ද, NH_3 මවූල 0.5 mol ක් ද එක්තරා සමතුලිත වීමට ඉඩහරිනු ලැබේ. $400^{
 m o}$ C දී සමතුලිතතා නියතය ${
 m Kc}=0.5~{
 m mol}^{-2}~{
 m dm}^{
 m o}$ වේ. පහත වගන්ති වලින් සතා පුකාශ(ය) කුමක්ද?
 - (a) සමතුලිතතාවයේදී ඉදිරි පුතිකියාව සිදුවේ.
 - (b) සමතුලිතතාවයට එළඹීමේදී $H_{2(g)}$ මවුල පුමාණය වැඩිවේ.
 - (c) සමතුලිතතාවයට එළඹීමේදී, ඒකකරන ලද $\mathrm{NH}_{3(g)}$ වියෝජනය වේ.
 - (d) සමතුලිතතාවයට පැමිණීමේදී N_2 මවුල පුමාණය අඩුවේ.
- (39) පහත දී ඇති සංයෝග සලකන්න.
 - (A) C_6H_5OH
- (B) $HO_2C(CH_2)_4CO_2H$
- (C) HCHO

(D) $CF_2 = CF_2$

(E)
$$CH_2 = C - C = CH_2$$

ඉහත සංයෝගවලින් පිළියෙල කළ හැකි බහු අවයවික පිළිබඳ සතා වගන්තිය වනුයේ,

- (a) තාප සුවිකාර්යය ආකලන බහු අවයවිකයක් ${
 m E}$ වලින් ලැබේ.
- (b) තාපස්ථාපන, තුිමාන බහුඅවයවකයන් A හා C පුතිකිුයාවෙන් ලැබේ.
- (c) D වලින් මෙන්ම E වලින් සෑදෙන ආකලන බහුඅවයවික රත් කිරීමෙන් මෘදු කළ නොහැක.
- (d) B, HOCH2CH2OH සමග පුතිකියාවෙන් තාප ස්ථාපන බහුඅවයවකයක් ලැබේ.
- (40) CH3COOCH2CH3 සම්බන්ධයෙන් අසතා පුකාශය වනුයේ,
 - (a) $\mathrm{CH_3MgBr}$ සමග පුතිකිුයාවෙන් සෑදෙන ඇල්කොහොලය $\mathrm{ZnCl2}$ / $\mathrm{c.}$ HCl සමග සෙමින් ආවිලතාවයක් ඇති වේ.
 - (b) NaOH_(aq) සමග පුතිකියාවෙන් CH₃COOH ලැබේ.
 - (c) LiAlH4 සමග පුතිකිුිිියාකර ලැබෙන ඵලය ජල විච්ජේදනයෙන් CH3CH2OH ලැබේ.
 - $(d)~\mathrm{CH_3CH_2MgBr}$ සමග පුතිකිුයාවෙන් සෑදෙන ඇල්කොහොලය $\mathrm{H^+/K_2Cr_2O_7}$ දුාවණයක, වර්ණය වෙනස් නොකරයි.

Advanced Level Chemistry

	පළමු වගන්තිය	දෙවන වගන්තිය	
(41)	ධුැවීය දුාවකයක් තුළ නිර්ධුැවීය සංයෝගයක දුාවානතාව ශුනා වේ.	ද්විධුැව - ද්විධුැව ආකර්ෂණ බලවලට සාපේක්ෂව ලන්ඩන් බල පුභල වන අවස්ථා ඇත.	
(42)	HCOOH හා CH3COOH වෙන්කර හඳුනා ගැනීමට, ටොලන් පුතිකාරකය යොදා ගත හැක.	0 HCOOH හි – C – H කාණ්ඩය – COOH බවට ඔක්සිකරණය වේ.	
(43)	X වලින් හැලජන නිරූපණය වන විට කාණ්ඩයේ පහළට යන විට NaX හි සම්මත දාවණය සඳහා ගිබ්ස් ශක්තියේ සෘණ අගය වැඩි වේ.	කාණ්ඩයේ පහළට යන විට හේලයිඩ අයනවල විශාලත්වය වැඩි වේ.	
(44)	$A_{(g)}$ \Longrightarrow $2B(g)$ යන සමතුලිත පුතිකියාවේ නිරපේක්ෂ උෂ්ණත්වය $T=rac{\Delta H}{\Delta S}$ මගින් ලැබේ.	ගතික සමතුලිතතාවයේදී පුතිකියාවක එන්තැල්පි විපර්යාසය ශුනා වේ.	
(45)	ජලීය $\mathrm{Al}(\mathrm{NO}_3)_3$ හා $\mathrm{Na}_2\mathrm{CO}_3$ අතර පුතිකිුයාවෙන් CO_2 මුදා හරී.	Al^{3+} ජලීය දාවණයකදී $[Al(OH)(OH_2)_5]^{2+}$ හා H_3O^+ $_{(aq)}$ පවතී.	
(46)	KBr හා KNO2 දුාවණ වෙන්කර හඳුනා ගැනීමට, සාන්දු H ₂ SO ₄ භාවිත කළ හැක.	සාන්දු $\mathrm{H}_2\mathrm{SO}_4$ පුභල ඔක්සිකාරකයක් මෙන්ම, විජලකාරකයක් ද වේ.	
(47)	KMnO4 හා H ₂ C ₂ O ₄ අතර පුතිකියාවේදී Mn ²⁺ අයනය ස්වයං උත්පේුරකයක් ලෙස කිුයා කරයි.	උත්පේරකයක් පුතිකිුයා වේ. ΔG හි සෘණ අගය වැඩි කරයි.	
(48)	වාෂ්පශීලී දාවකයක, අවාෂ්පශීලී දුවායක් මිශු කළ විට වාෂ්ප පීඩනය දාවකයේ සංතෘප්ත වාෂ්ප පීඩනයට වඩා වැඩි වේ.	ජලයේ මිශු, වාෂ්පශීලී සංරචකයක් සංශුද්ධ වෙන්කර ගැනීමට හුමාල ආසවනය යොදා ගනී.	
(49)	ජලීය $AgNO_3$ දාවණයකට $H_2S_{(g)}$ වායුව යැවීමෙන් Ag_2S අවක්ෂේප කළ නොහැක.	කැටායන කාණ්ඩ විශ්ලේෂණයේදී පළමු කාණ්ඩයේදී AgCl ලෙස අවක්ෂේප කරයි.	
(50)	CH3OH වලට වඩා CH3NH2 භාෂ්මික වේ.	$ m CH_3 + NH_3$ හි ස්ථායිතාවට වඩා $ m CH_3 + OH_2$ අයනය ස්ථායි වේ.	

කාලය කා දමන්නාගේ අනාගතය කාලය විසින් කා දමනු ලැබේ...

උජිත් අංජන හේමචන්දු