Lecture 8 EE 421 / C\$ 425 Digital System Design

Fall 2024
Shahid Masud

Topics

- Three State Drivers (or Buffers)
- D and T Flipflops
- Some Examples of DFF based Circuits:
 - Shift Registers
 - Counters
- Analyzing DFF based Circuits
- Synthesizing DFF Based Counters or Sequencers

Remember: Quiz 2 Next Week

Three State Buffers for Processor Buses

- Buses are multi-wire signal paths that connect multiple functional units in a computer system, e.g., Address bus, peripheral bus, etc.
- Simplifies design and architecture of a computer system
- Tradeoff is that the access to the bus has to be managed to avoid conflicts
- Three state hardware devices provide a dynamic interface between a bus and a circuit, providing signals when enabled else an open circuit
- The input goes to the output of the tri-state buffer when enable signal is asserted

Three State Bus Drivers

X	en	У
0	0	Hi_Z
0	1	0
1	0	Hi_Z

X	en	У
0	0	0
0	1	Hi_Z
1	0	1
1	1	Hi_Z

Typical Bus Structure utilizing 3-state buffers

Inverting and Non-Inverting 3-State Buffers / Drivers Exist

The Enable can be active high or active low

Buffers with Hysterisis Loop are available for better noise immunity

1

D Flipflops - Behaviour and Equation

Characteristic Equation:

Q(t+1) = D

Q after clock pulse gets value of D

D	Q(t+1)
0	0; Reset
1	1; Set

T Flipflop - Behaviour and Equation

In this course,

We will mostly use D Flipflops and sometimes T Flipflops

We want to study complex and high speed designs

Sequential Circuits: Counters, Sequencers, State Machines

- Counters: count in a fixed sequence, up or down
- Sequencers: sequence through a pre-defined arbitrary sequence
- State Machines: Sequential and Combinational Circuits work together to go one of many next states based on current inputs

Moving Through Register Chain

3 DFF Shift Register Timing Diagram from a

website

Look closely at the Area close to Clock transition, Shaded pink lines

We assume that there is a small delay at Q state of each flipflop to make the timing diagram easily understandable.

But in reality, the situation would be a little more complicated than this simple time delay.

Digital System Design Lecture 7 Fall 2024

Cyclic Shift Register using D flipflops

Assume all DFFs are Cleared to **0** at Startup

Clock No.	Q1	Q2	Q3
1	0	0	0
2	0	1	1
3	1	1	0
4	0	0	0
5	0	1	1
6	1	1	0
7	0	0	0
CONTINUE	••••	••••	••••

After the clock edge:

Q1(t+1) becomes same as Q3(t)

Q2(t+1) becomes inverse of Q1(t)

Q3(t+1) becomes inverse of Q2(t)

Tail Ring Counter Four Stage

State Transition Table

Sequence No.	Q1	Q2	Q3	Q4
1	0	0	0	0 ~
2	1	0	0	0
3	1	1	0	0
4	1	1	1	0
5	1	1	1	1
6	0	1	1	1
7	0	0	1	1
8	0	0	0	1
9	0	Digital System Design	n Locturo 9 Fall 2024	0

Analyze Sequential Circuits

- Concept of State Equations
- Concept of State Tables
- Logic Steering through Combinational Logic
- Arbitrary Counting and Sequencing

13

Example Sequential Circuit for Analysis

Determine State Equations

$$QA(t+1) = QA(t)x(t) + QB(t) x(t)$$

$$QB(t+1) = QA'(t) x(t)$$

$$y(t) = [QA(t) + QB(t)]x'(t)$$

Can be written in a simplified way:

$$QA(t+1) = QA.(x) + QB.(x)$$

$$QB(t+1) = QA'.(x)$$

$$y = (QA + QB).(x')$$

Determine State Table from State Equations

Present State	Present State	Input	Next State	Next State	Output
QA(t)	QB(t)	X	QA(t+1)	QB(t+1)	у
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	0	1
0	1	1	1	1	0
1	0	0	0	0	1
1	0	1	1	0	0
1	1	0	0	0	1
1	1	1	1	0	0

16

Compact State Table

Presen	Present State		e Next State			Out	put
		Wher	hen $x = 0$ When $x = 1$		x = 0	x = 1	
A(t)	B(t)	A(t+1)	B(t+1)	A(t+1)	B(t+1)	У	у
0	0	0	0	0	1	0	0
0	1	0	0	1	1	1	0
1	0	0	0	1	0	1	0
1	1	0	0	1	0	1	0

Using Memory to design an arbitrary sequencer

Desired Sequence is Stored in Memory Locations

Design of Synchronous Counter using DFF

- Express each number of sequence in binary code
- Use appropriate number of DFFs to represent entire sequence
- Make a State Table representing Present State and Next State
- Determine Excitation Logic Expression for Next States using K-Maps
- Complete the DFF Based Circuit using Excitation Expressions

Example Design of a Synchronous Counter (Sequencer)

Make a Synchronous Counter for sequence $\{0 \rightarrow 3 \rightarrow 6 \rightarrow 9 \rightarrow 12 \rightarrow 0\}$

Step 1: Describe Behavior Through Truth Table

Desired Sequence In Binary form:

Clock No.	Sequence	Binary					
		Q3	Q2	Q1	Q0		
1	0	0	0	0	0	1	
2	3	0	0	1	1		
3	6	0	1	1	0		
4	9	1	0	0	1		
5	12	1	1	0	0		
6	0	0	0	0	0		

Present State - Next State Table

Clock No.	Sequence		Presen	t State			Next	State	
		Q3(t)	Q2(t)	Q1(t)	Q0(t)	Q3(t+1)	Q2(t+1)	Q1(t+1)	Q0(t+1)
1	0	0	0	0	0	0	0	1	1
2	3	0	0	1	1	0	1	1	0
3	6	0	1	1	0	1	0	0	1
4	9	1	0	0	1	1	1	0	0
5	12	1	1	0	0	0	0	0	0
6	0	0	0	0	0	0	0	1	1

DFF make it convenient as Present State to Next State is only separated by a Clock Pulse

Make K-Maps to determine Next State using Next State Outputs as K-Map Entries

K-Map for D0 (Input that will give correct next state)

	Q3Q2, Q1Q0	00	01	11	10
	00	1		0	
	01				(1)
\	11	0			
	10		0		

State Equation:

D0 = Q3'Q2'Q1'Q0' + Q3'Q2Q1Q0'

K-Map for D1

State Equation:

D1=Q3'Q2'Q1'Q0' + Q3'Q2'Q1Q0

K-Map for D2

State Equation:

D2= Q3Q2'Q1'Q0 + Q3'Q2'Q1Q0

K-Map for D3

State Equation:

D3=Q3'Q2Q1Q0' + Q3Q2'Q1'Q0

Final Circuit Design of Sequencer

