M-estimation

Paul Zivich

Institute of Global Health and Infectious Diseases Causal Inference Research Laboratory University of North Carolina at Chapel Hill

October 5, 2022

Acknowledgements

Supported by NIH T32-Al007001.

Thanks to Bonnie Shook-Sa, Stephen Cole, Jessie Edwards, and others at the UNC Causal Lab (causal.unc.edu).¹

pzivich@unc.edu

● @PausalZ

pzivich

Paul Zivich

¹Footnotes are reserved asides for possible discussion or questions

Overview

Introduce M-estimation

Computational M-estimation

Applications

Conclusion

Introduction to M-estimation

M-estimation: a short history

- M(aximum likelihood)-estimation
 - More general framework²
 - Defined as a zero of an estimating function
- Developed to study robust statistics^{3,4}
 - Mean robust to outliers
- Operate under frequentist superpopulation model

²Stefanski LA & Boos DD (2002) The American Statistician, 56(1), 29-38.

³Huber PJ (1964) Annals of Mathematical Statistics, 35, 73–101.

⁴Huber PJ (1973) Annals of Statistics, 1, 799–821.

M-estimation: the basics

M-estimator: solution for θ in

$$\sum_{i=1}^{n} \psi(O_i; \hat{\theta}) = 0$$

where

- $O_1, O_2, ..., O_n$ are independent observations
- $\bullet \ \theta = (\theta_1, ..., \theta_k)$
- $\psi(.)$ is a known $k \times 1$ estimating function
 - ullet Does not depend on i
 - Proof of CAN follows from unbiased estimating functions⁵

⁵See pages 327-329 of 'Essential Statistical Inference' by Boos & Stefanski

Task: estimate the mean (μ) of $\{1, 5, 3, 7, 24\}$

Using $\hat{\mu} = n^{-1} \sum_{i=1}^{n} Y_i$

$$\hat{\mu} = \frac{1+5+3+7+24}{5} = \frac{40}{5} = 8$$

The equivalent estimating function is

$$\sum_{i=1}^{n} (Y_i - \hat{\mu}) = 0$$

To find $\hat{\mu}$, we use a root-finding algorithm⁶

- Select a grid of values
 - 0, 5, ..., 25
- Plug in guess for $\hat{\mu}$ into $\sum_{i=1}^{n} (Y_i \hat{\mu})$
- Select values that straddle zero
 - 5, 10
- Select new grid and repeat process
 - 5, 6, 7, 8, 9, 10
- ullet Terminate procedure when $\hat{\mu}$ that returns zero is found

End up with $\hat{\mu}=8$

⁶This procedure is a simple example of the bisection algorithm.

M-estimation: the basics

Asymptotic sandwich variance

$$V(\theta) = B(\theta)^{-1} F(\theta) \left(B(\theta)^{-1} \right)^{T}$$

Empirical sandwich variance estimator

$$V_n(O_i; \hat{\theta}) = B_n(O_i; \hat{\theta})^{-1} F_n(O_i; \hat{\theta}) \left(B_n(O_i; \hat{\theta})^{-1} \right)^T$$

where

$$B_n(O_i; \hat{\theta}) = n^{-1} \sum_{i=1}^n -\psi'(O_i; \hat{\theta})$$

$$F_n(O_i; \hat{\theta}) = n^{-1} \sum_{i=1}^n \psi(O_i; \hat{\theta}) \psi(O_i; \hat{\theta})^T$$

Connections to maximum likelihood estimation

When the correct parametric family is assumed

$$B(\theta) = F(\theta) = I(\theta)$$

Therefore

$$V(\theta) = I(\theta)^{-1}$$

When the parametric family is incorrect

$$B(\theta) \neq F(\theta)$$

and the correct limiting variance is $V(\boldsymbol{\theta})$

Advantages of the sandwich estimator

Key advantages

- Robust to secondary assumptions
- Automation of the delta method
- Captures uncertainty of parameters that depend on other estimated parameters
- Less computationally intensive
 - Relative to bootstrap, Monte Carlo

Bread matrix

$$B_n(Y_i; \hat{\mu}) = 5^{-1} \sum_{i=1}^{5} -\psi'(Y_i; \hat{\mu})$$

Here

$$\psi'(Y_i; \hat{\mu}) = \frac{d}{d\hat{\mu}} (Y_i - \hat{\mu}) = -1$$

Therefore

$$B_n(Y_i; \hat{\mu}) = 5^{-1} \sum_{i=1}^{5} -(-1) = \frac{5}{5} = 1$$

Filling matrix

$$F_n(Y_i; \hat{\mu}) = 5^{-1} \sum_{i=1}^{5} \psi(Y_i; \hat{\mu}) \psi(Y_i; \hat{\mu})^T$$

Here

$$\psi(Y_i; \hat{\mu})\psi(Y_i; \hat{\mu})^T = (Y_i - \hat{\mu})(Y_i - \hat{\mu}) = (Y_i - \hat{\mu})^2$$

Therefore

$$F_n(Y_i; \hat{\mu}) = 5^{-1} \sum_{i=1}^{5} (Y_i - 8)^2 = 68$$

Paul Zivich M-estimation 13

Sandwich matrix

$$V_n(O_i; \hat{\theta}) = B_n(O_i; \hat{\theta})^{-1} F_n(O_i; \hat{\theta}) \left(B_n(O_i; \hat{\theta})^{-1} \right)^T$$
$$V_n(O_i; \hat{\theta}) = 1^{-1} \times 68 \times 1^{-1} = 68$$

Scale by n for finite-sample variance estimate

$$n^{-1}V_n(O_i; \hat{\theta}) = 68/5 = 13.6$$

Computational M-estimation

Implementation of M-estimators

Solving 'by-hand' has issues

- More than one parameter
- May introduce math errors

However, can all be done by the computer

Procedure

- Root-finding procedure for $\hat{\theta}$
- Numerically approximate derivatives in $B_n(O_i; \hat{\theta})$
- Matrix algebra for sandwich

Software⁷

Paul Zivich M-estimation

 $^{^7 {\}tt delicatessen:}$ Zivich et al. arXiv:2203.11300, geex: Saul & Hudgens (2020) J Stat Soft

Root-finding

Numerical approximation of derivative

Numerical approximation of derivative

Application of M-estimators

Outline

Robust mean

Regression

- Simple
- Robust

Causal estimation methods

- Inverse probability weighting
- G-computation

Fusion designs

• Bridged treatment comparisons

Robust Mean

Problem with the mean

Sensitivity to outliers

- For $\{1, 5, 3, 7, 24\}$
- ullet Observation of 24 has large impact on $\hat{\mu}$
- Mean $(\hat{\mu} = 8)$ is larger than the other 4 observations

Robust mean⁸

$$\sum_{i=1}^{n} f_k(Y_i - \bar{\mu}) = 0$$

$$f_k(x) = \begin{cases} x, & \text{if } -k < x < k \\ k, & \text{if } x \ge k \\ -k, & \text{if } x \le -k \end{cases}$$

Paul Zivich M-estimation

⁸Mean and median are special cases where $k \to \infty$ and $k \to 0$, respectively

Robust Mean

With k=4

$$\bar{\mu}=5$$
 and $\bar{Var}(\bar{\mu})=3.3$

Paul Zivich M-estimation 25

Regression

Notation

 Y_i : independent variable X_i : dependent variable

$$g(X_i) = (1, X_i)$$

$$\beta = (\beta_0, \beta_1)$$

Example

Simple Linear Regression

Notice: the estimating function is the score equation

• Easy to develop as M-estimators

Paul Zivich M-estimation

Simple Linear Regression

Robust Linear Regression

Outliers can only impact up to k

Paul Zivich M-estimation 31

Robust Linear Regression

Other regression models

Penalized regression⁹

ullet Ridge or L_2 penalty

⁹Fu WJ. (2003) *Biometrics*, 59, 126-132

Other regression models

Dose-response regression¹⁰

• 3-parameter log-logistic models¹¹

¹⁰An H et al. (2019) *R Journal*, 11(2), 171.

¹¹Example provided in Zivich et al. arXiv:2203.11300

Causal Effect Estimation

Notation

 Y_i : outcome of interest

 A_i : action of interest

 Y_i^a : potential outcome under action a

 W_i : vector of covariates

$$g(W_i) = (1, W_i)$$

 $g(A_i, W_i) = (1, A_i, W_i)$

Aside: Identification vs Estimation

Following all relies on identification assumptions: causal consistency, exchangeability, positivity¹²

- Identification: writing interest parameter in terms of observable data
- Estimation: how the parameter in terms of observable data is estimated

¹²Identification should always precede estimation (see Maclaren OJ & Nicholson R (2019) *arXiv:1904.02826*, Aronow PM et al. (2021) *arXiv:2108.11342* for why)

Aside: Nuisance Parameters

Causal inference (and related) problems can be set up as

$$\theta = (\mu, \eta)$$

 μ is the *interest* parameter η is the *nuisance* parameter

- To estimate μ , need to estimate η
- But η is not of any immediate interest
- Example: causal mean and propensity scores

Motivating Example

Example from Morris et al. $(2022)^{13}$

- Comparison of covariate adjustment methods
 - Gain power in randomized trials
 - Account for systematic error in observational studies
- Data from the GetTested trial¹⁴
 - Efficacy of e-STI testing on STI testing uptake
 - ullet W_i : gender, age, number of sexual partners, sexual orientation, ethnicity
 - Will ignore missing data here¹⁵

¹³Morris TP et al. (2022) *Trials* 23(1), 1-17.

¹⁴Wilson E et al. (2017) *PLOS Medicine* 14(12), e1002479

¹⁵Don't do this. Will be a later slide on extending the M-estimators

Inverse Probability Weighting

The IPW estimator is

$$\frac{1}{n} \sum_{i=1}^{n} \frac{Y_i A_i}{\Pr(A=1|W_i; \hat{\alpha})} - \frac{1}{n} \sum_{i=1}^{n} \frac{Y_i (1-A_i)}{\Pr(A=0|W_i; \hat{\alpha})}$$

Estimate $\hat{\alpha}$ using a logistic model, $\eta = \alpha$

Estimating the variance for the RD

- Bootstrap
 - Computationally expensive
 - The "GEE trick"
 - ullet Treats \hat{lpha} as known
 - Conservative estimate of the variance¹⁶
 - Sandwich

Paul Zivich M-estimation

¹⁶Only true for some parameters, see Reifeis & Hudgens (2022) *Am J Epidemiol* for an exception

Inverse Probability Weighting

Inverse Probability Weighting

Results

G-computation

G-computation¹⁷

$$\frac{1}{n} \sum_{i=1}^{n} \left(E[Y_i | A_i = 1, W_i; \hat{\beta}] - E[Y_i | A_i = 0, W_i; \hat{\beta}] \right)$$

Estimate $\hat{\beta}$ using a logistic model for binary Y_i , $\eta=\beta$

Estimating the variance for the RD

- Bootstrap
- Sandwich

Paul Zivich M-estimation

¹⁷See Snowden et al. (2011) Am J Epidemiol for details on this 'trick'

G-computation

Results

Paul Zivich M-estimation 46

Missing Data

Do not ignore

- If MCAR, may lose efficiency
- If MAR, may be biased

M-estimation makes extending the estimators simple

$$R_i$$
: observed Y_i ($R_i = 1$) or missing Y_i ($R_i = 0$)

$$\frac{1}{n} \sum_{i=1}^{n} \frac{Y_i R_i I(A_i = a)}{\Pr(A_i = a | W_i; \hat{\alpha}) \Pr(R_i = 1 | A_i, W_i; \hat{\gamma})}$$

$$\eta = (\alpha, \gamma)$$

M-estimation 47

Inverse Probability Weighting with Missing Y

Results

Fusion Designs

What is a fusion design?

Combine data across sources in a principled way to address a question none of the constituent data sets could address as well alone 18

Examples

- Transporting the average causal effect
- Measurement error corrections
- Two-stage studies
- Bridged treatment comparisons

¹⁸See Cole et al. (2022) Am J Epidemiol for examples

Notation

```
T_i: time of event C_i: time of censoring T_i^* = \min(T_i, C_i) \Delta_i = I(T_i = T_i^*) F(t): risk at time t
```

 A_i : action of interest, $\{1, 2, 3\}$

 W_i : vector of covariates

Bridged treatment comparisons¹⁹

Parameter of Interest
$$(\Pr(Y^3|S=1) - \Pr(Y^2|S=1)) + (\Pr(Y^2|S=1) - \Pr(Y^1|S=1))$$
 Bridge

- Target population $(S_i = 1)$: 3 vs 2
- Secondary population $(S_i = 0)$: 2 vs 1

Paul Zivich M-estimation

¹⁹See Breskin et al. (2021) *Stats in Med* and Zivich et al. (2022) *arXiv:2206.04445* for details on identification

Motivating Example

What is the one-year risk difference function comparing triple versus mono antiretroviral therapy (ART) on a composite outcome for the ACTG 320 trial?

- Outcome: AIDS, death, or a large decline in CD4 (>50%)
- ACTG 320
 - ullet Randomized to triple ART (a=3) versus dual ART (a=2)
- ACTG 175
 - ullet Randomized to dual ART (a=2) versus mono ART (a=1)

Paul Zivich M-estimation 54

Estimator

$$\hat{\mu}_t = \left(\hat{F}_{320}^3(t) - \hat{F}_{320}^2(t)\right) + \left(\hat{F}_{175}^2(t) - \hat{F}_{175}^1(t)\right)$$

Tasks

- Incorporate treatment assignment
- Account for informative loss to follow-up
- Transport ACTG 175 results to ACTG 320 population²⁰

Paul Zivich M-estimation

²⁰Westreich et al. (2017) Am J Epidemiol, 186(8), 1010-1014

Estimator for ACTG 320 pieces:

$$\hat{F}_{320}^{a}(t) = n_{320}^{-1} \sum_{i=1}^{n} \frac{I(A_i = a)I(S_i = 1)I(T_i^* \le t)\Delta_i}{\pi_A(S_i; \hat{\eta})\pi_C(W_i, A_i, S_i; \hat{\eta})}$$

where $a \in \{2, 3\}$,

$$n_{320} = \sum_{i=1}^{n} I(S_i = 1)$$

$$\pi_A(S_i) = \Pr(A_i = a | S_i; \hat{\eta})$$

$$\pi_C(W_i, A_i, S_i; \hat{\eta}) = \Pr(C_i > t | W_i, A_i, S_i; \hat{\eta})$$

M-estimation 56

Estimator for ACTG 175 pieces:

$$\hat{F}_{175}^{a}(t) = \hat{n}_{175}^{-1} \sum_{i=1}^{n} \frac{I(A_i = a)I(S_i = 1)I(T_i^* \le t)\Delta_i}{\pi_A(S_i; \hat{\eta})\pi_C(W_i, A_i, S_i; \hat{\eta})} \times \frac{1 - \pi_S(W_i; \hat{\eta})}{\pi_S(W_i; \hat{\eta})}$$

where $a \in \{1, 2\}$

$$\hat{n}_{175} = \sum_{i=1}^{n} I(S_i = 0) \frac{1 - \pi_S(W_i; \hat{\eta})}{\pi_S(W_i; \hat{\eta})}$$

$$\pi_S(V_i; \hat{\eta}) = \Pr(S_i = 1 | W_i; \hat{\eta})$$

Paul Zivich M-estimation 57

Bridged Treatment Comparisons: Diagnostic

Notice that²¹

$$E\left[\hat{F}_{320}^{2}(t) - \hat{F}_{175}^{2}(t)\right] = 0$$

Offers a testable implication

- Compare difference in data
- ullet Difference from zero indicates ≥ 1 assumption is violated

Paul Zivich M-estimation

²¹Zivich et al. (2022) *arXiv:2206.04445* proposed this diagnostic and a permutation test for the whole risk difference curve

$$I(S_i = 1) (I(A_i = 2) - \hat{\gamma}_{1,2})$$

$$I(S_i = 1) (I(A_i = 3) - \hat{\gamma}_{1,3})$$

$$\left(I(S_i = 1) - \mathsf{expit}(W_i^T \hat{\delta})\right) W_i$$

$$\psi_{AFT}(O_i; \hat{\lambda}, \hat{\beta}, \hat{\alpha})$$

$$\psi_{RD(t)}(O_i; \hat{\mu}_t, \hat{\gamma}_{a,s}, \hat{\delta}, \hat{\lambda}, \hat{\beta}, \hat{\alpha})$$

Bridged Treatment Comparisons²²

²²Results presented using twister plots (Zivich et al. (2021) Am J Epidemiol)

Paul Zivich M-estimation 60

Conclusions

Key Advantages

Stacking estimating functions together

- Natural way to build an estimator
- Connects to interest versus nuisance parameters
- Sandwich variance
 - Percolates uncertainty of nuisance parameters
 - · Automation of the delta-method
 - Computationally efficient

Existing estimators

- Many can be expressed as M-estimators
- Score function

Flexible software to implement M-estimators

Limitations

Valid estimating functions

- $\psi(O_i; \theta)$ must not depend on i
 - Excludes models like Cox PH model
- Non-smooth estimating functions
 - Bread estimator may not be valid

Finite dimensional nuisance model

- Nuisance parameters assumed to be finite dimension
- Unclear how (and if) data-adaptive algorithms could be used

Paul Zivich M-estimation 63

Further Reading

Introductory papers

- Stefanski LA & Boos DD. (2002). The calculus of M-estimation. The American Statistician, 56(1), 29-38.
- Cole SR, Edwards JK, Breskin A, et al. (2022). Illustration of Two Fusion Designs and Estimators. American Journal of Epidemiology.
- Jesus J & Chandler RE. (2011). Estimating functions and the generalized method of moments. *Interface Focus*, 1(6), 871-885.

Software

- deli.readthedocs.io
- bsaul.github.io/geex/

Thanks

Slides & code available at: github.com/pzivich/Presentations

Appendix

Hajek IPW Estimator

Augmented Inverse Probability Weighting

The AIPW estimator is

$$\frac{1}{n}\sum_{i=1}^{n}\tilde{Y}_{i}^{1}-\tilde{Y}_{i}^{0}$$

$$\tilde{Y}_{i}^{a} = \frac{Y_{i}I(A_{i} = a)}{\Pr(A_{i} = a|W_{i}; \hat{\alpha})} + \frac{E[Y_{i}|A_{i} = a, W_{i}; \hat{\beta}](...)}{\Pr(A_{i} = a|W_{i}; \hat{\alpha})}$$

Estimating the variance for the RD

- Bootstrap
- Outer product of influence functions
- Sandwich

Augmented Inverse Probability Weighting

Results

Paul Zivich M-estimation 70