MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

5^a Lista de Exercícios

Para entregar: exercícios 2, 4, 12, 13, 21 e 22.

OBS.: Regras para ganhar a nota extra referente aos exercícios marcados com "BÔNUS": (1) a resolução deve redigida de forma clara e sem erros, e não há notas intermediárias; (2) a nota máxima a ser dada como bônus é 1,0 ponto na média do semestre; (3) os exercícios devem ser entregues no prazo para entrega da lista.

- 1-) Exercícios dos capítulos 8 e 9 do Elonzinho.
- 2-) Seja $f: I \to \mathbb{R}$ contínua no intervalo $I \subset \mathbb{R}$. Se, para cada $x \in I$ (exceto, possivelmente, na extremidade superior de I, caso a mesma esteja em I), existir $f'_+(x)$ e for > 0, então f é estritamente crescente.
- **3-)** Seja $f: X \subset \mathbb{R} \to \mathbb{R}$ derivável no ponto $a \in X \cap X'$. Se $(x_n)_{n \in \mathbb{N}}$ e $(y_n)_{n \in \mathbb{N}}$ são seqüências em X tais que $(\forall n \in \mathbb{N}) x_n < a < y_n, x_n \to a$ e $y_n \to a$, então $\frac{f(y_n) f(x_n)}{y_n x_n} \to f'(a)$.
- **4-**) Seja $f: I \subset \mathbb{R} \to \mathbb{R}$ derivável no intervalo I. Dado $a \in I$, são equivalentes:
 - (a) f' é contínua em a;
 - (b) $\forall (x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$ seqüências em I tais que $(\forall n\in\mathbb{N})$ $x_n\neq y_n$, $x_n\to a$ e $y_n\to a$, tem-se $\frac{f(y_n)-f(x_n)}{y_n-x_n}\to f'(a)$.
- 5-) Seja $f: I \to \mathbb{R}$ derivável no intervalo aberto $I \subset \mathbb{R}$. Um número real $c \in I$ diz-se um ponto crítico de f se f'(c) = 0. Se $c \in I$ for um ponto crítico de f, diz-se que o mesmo é $n\tilde{a}o$ -degenerado se f é duas vezes derivável em c e $f''(c) \neq 0$. Mostre que:
 - (a) Se f é de classe C^1 , o conjunto dos pontos críticos de f é fechado em I (vide definição na lista 4 caso não se recorde);
 - (b) Os pontos de máximos e mínimos locais de f são críticos. Um ponto crítico não-degenerado deve ser de máximo local ou de mínimo local.
 - (c) Se $c \in I$ é um ponto crítico não-degenerado de f, então existe $\delta > 0$ tal que f não tem outros pontos críticos no intervalo $(c \delta, c + \delta)$. Ou seja, todo ponto crítico não-degenerado é um ponto crítico isolado.
 - (d) Se todos os pontos críticos de f são não-degenerados, então o conjunto dos pontos críticos de f é enumerável, e em qualquer intervalo $[a,b] \subset I$ há apenas um número finito de tais pontos.
- **6-)** Se $f:[0,+\infty)\to\mathbb{R}$ é derivável e $\lim_{x\to+\infty}f'(x)=L$, então, para cada c>0, $\lim_{x\to+\infty}[f(x+c)-f(x)]=c\cdot L$ e $\lim_{x\to+\infty}\frac{f(x)}{x}=L$.
- 7-) Seja $f:[0,+\infty)\to\mathbb{R}$ duas vezes derivável. Se f'' é limitada e existe $\lim_{x\to+\infty}f(x)$, mostre que $\lim_{x\to+\infty}f'(x)=0$. Bônus: vale 0,25 pontos na média do semestre.

- 8-) (TEOREMA DE CAUCHY) Sejam $f, g : [a, b] \to \mathbb{R}$ contínuas e deriváveis em (a, b). Então existe $c \in (a, b)$ tal que f'(c)[g(b) g(a)] = g'(c)[f(b) f(a)].
- 9-) (1A. REGRA DE L'HÔPITAL) Sejam $I \subset \mathbb{R}$ um intervalo, $a \in I$, $f, g : I \setminus \{a\} \to \mathbb{R}$ funções deriváveis tais que existem e são nulos os limites $\lim_{x\to a} f(x)$ e $\lim_{x\to a} g(x)$. Suponha que g' não se anule em $I \setminus \{a\}$ e que $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, onde $L \in \mathbb{R}$ ou $L = \pm \infty$. Então g não se anula em $I \setminus \{a\}$ e $\lim_{x\to a} \frac{f(x)}{g(x)} = L$. Sugestão: Use a questão anterior.
- 10-) (2A. REGRA DE L'HÔPITAL) Sejam $I \subset \mathbb{R}$ um intervalo, $a \in I$, $f,g: I \setminus \{a\} \to \mathbb{R}$ funções deriváveis tais que $\lim_{x\to a} |f(x)| = +\infty$ e $\lim_{x\to a} |g(x)| = +\infty$. Suponha que g' não se anule em $I \setminus \{a\}$ e que $\lim_{x\to a} \frac{f'(x)}{g'(x)} = L$, onde $L \in \mathbb{R}$ ou $L = \pm \infty$. Então $\lim_{x\to a} \frac{f(x)}{g(x)} = L$. Sugestão: Use a questão 8-).
- **11-)** Dado c>0, uma função derivável $f:I\to\mathbb{R}$ no intervalo $I\subset\mathbb{R}$ satisfaz a condição de Lipschitz $(\forall x,y\in I)\,|f(x)-f(y)|\leqslant c|x-y|$ se, e somente se, $(\forall\,x\in I)\,|f'(x)|\leqslant c$.
- 12-) Seja $f: I \to \mathbb{R}$ derivável no intervalo fechado $I \subset \mathbb{R}$ (limitado ou não). Dado $c \in [0,1)$, suponha que $(\forall x \in I) | f'(x) | \leq c$, e que $f(I) \subset I$. Mostre que f tem um único ponto fixo a em I (i.e. existe um único $a \in I$ tal que f(a) = a) e que, para todo $x_1 \in I$, a seqüência definida indutivamente por $(\forall n \in \mathbb{N}) x_{n+1} = f(x_n)$ é tal que $x_n \to a$. Sugestão: Use a questão anterior e a questão 10 lista 2.
- 13-) Sejam $p \in \mathbb{N}$ e $c \in [0,1)$. Dada $f: I \to \mathbb{R}$ derivável no intervalo fechado $I \subset \mathbb{R}$, suponha que $f(I) \subset I$ e que $g \doteq f^p \doteq f \circ f \circ \cdots \circ f$ satisfaça $(\forall x \in I) |g'(x)| \leqslant c$. Prove que f tem um único ponto fixo $a \in I$ e que, para todo $x \in I$, $\lim_{n \to \infty} f^n(x) = a$.

 EXEMPLO: A função cosseno ainda será definida formalmente no curso. Neste exemplo, assume-se que a mesma já tenha sido definida num curso de Cálculo. A função $f \doteq \cos : [-\pi, \pi] \to \mathbb{R}$ não cumpre a condição $(\forall x \in [-\pi, \pi]) |f'(x)| \leqslant c < 1$, mas $f^2 = f \circ f$ cumpre.
- 14-) Dada $f: \mathbb{R} \to \mathbb{R}$ derivável, com derivada limitada, prove que existe $c \in \mathbb{R}$ tal que a função $\phi: \mathbb{R} \to \mathbb{R}$ definida por $\phi(x) = x + c \cdot f(x)$ é um difeomorfismo (i.e. uma bijeção derivável com inversa derivável).
- **15-)** Sejam $a \in \mathbb{R}$, $\delta > 0$, $c \in [0,1)$ e $f : [a \delta, a + \delta] \to \mathbb{R}$ derivável, com $(\forall x) |f'(x)| \leq c$. Se $|f(a) a| \leq (1 c)\delta$, então f tem um único ponto fixo em $[a \delta, a + \delta]$.
- **16-**) Seja $f:[a,b]\to\mathbb{R}$ contínua e derivável em (a,b). Se $\lim_{x\to a^+} f'(x)=+\infty$, então $\lim_{x\to a^+} \frac{f(x)-f(a)}{x-a}=+\infty$.
- 17-) (a) Se $f,g:I\to\mathbb{R}$ são de classe C^n no intervalo $I\subset\mathbb{R}$, então $f\cdot g$ é de classe C^n . (b) Sejam $I,J\subset\mathbb{R}$ intervalos, $f:I\to\mathbb{R}$ e $g:J\to\mathbb{R}$ de classe C^n tais que $f(I)\subset J$. Então $g\circ f$ é de classe C^n . (c) (d) Se $f:I\to\mathbb{R}$ é de classe C^n no intervalo $I\subset\mathbb{R}$ e f' não se anula em I, então a inversa

 $g: J \doteq f(I) \to \mathbb{R}$ de f é de classe C^n .

18-) Sejam $I \subset \mathbb{R}$ um intervalo e $f: I \to \mathbb{R}$ duas vezes derivável em $a \in I$. Mostre que:

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}.$$

19-) Sejam $I \subset \mathbb{R}$ um intervalo e $f: I \to \mathbb{R}$ duas vezes derivável em $a \in \stackrel{\circ}{I}$. Mostre que:

$$f''(a) = \lim_{h \to 0} \frac{f(a+2h) - 2f(a+h) + f(a)}{h^2}.$$

- **20-)** Seja $f: \mathbb{R} \to \mathbb{R}$ de classe C^{∞} . Se f se anula, juntamente com todas as suas derivadas, num ponto $a \in \mathbb{R}$, então, para cada $k \in \mathbb{N}$, podemos escrever $f(x) = (x a)^k \phi(x)$, onde ϕ é de classe C^{∞} .
- **21-)** Sejam f e g analíticas num intervalo aberto $I \subset \mathbb{R}$. Se existe $a \in I$ tal que f e g coincidem, juntamente com todas as suas derivadas, no ponto a, então $(\forall x \in I) f(x) = g(x)$. Mostre que isto seria falso se supuséssemos apenas f e g de classe C^{∞} .
- **22-)** Dadas f e g analíticas no intervalo aberto I, seja $X \subset I$ um conjunto que possui um ponto de acumulação em I. Se $(\forall x \in X)$ f(x) = g(x), então f coincide com g em I. Em particular, se f se anula em X, então f se anula em I.
- **23-)** Seja $I = (a \delta, a + \delta)$. Dada $f : I \to \mathbb{R}$ de classe C^{∞} , suponha que exista uma seqüência $(a_n)_{n \geqslant 0}$ de números reais tal que $(\forall x \in I)$ $f(x) = \sum_{n=0}^{\infty} a_n (x-a)^n$. Prove que $\sum a_n (x-a)^n$ é a série de Taylor de f centrada em a, i.e. $(\forall n)$ $a_n = \frac{f^{(n)}(a)}{n!}$.