Classification 2

• Target variable

Variable yang ingin diprediksi/dimodelkan, sering disebut sebagai respon/dependent variable.

• Predictor

Variable yang digunakan untuk memprediksi target variable, sering disebut sebagi independent variable.

• Classification

Metode yang digunakan untuk memprediksi target variable bertipe kategorik (factor).

• Missing value

Keadaan dimana data memiliki nilai yang hilang (tidak diketahui nilainya).

• Deletion

Membuang variable/kolom pada data yang memiliki jumlah missing value melebihi 50% dari jumlah observasi

• Observation

Data yang dikumpulkan sebagai informasi, secara umum mengacu pada 1 baris data yang terdiri dari beberapa variabel.

• Full analysis

Membuang observation/baris yang mengandung missing value. Cara ini dilakukan jika jumlah observation yang mengandung missing value tidak melebihi 5% dari total observation.

• Imputation

Mengisi missing value dengan suatu nilai tertentu.

• Feature engineering

Tahapan untuk menambah jumlah variable/kolom berdasarkan informasi dari variable lain yag sudah ada.

• Feature selection

Feature selection merupakan tahapan dalam memilih variabel yang akan digunakan.

• Independent Events

Kejadian yang masing-masing tidak saling berkaitan satu sama lain.

• Dependent Events

Kejadian yang masing-masing saling berkaitan satu sama lain (kemungkinan terjadinya suatu kejadian akan memepengaruhi kemungkinan terjadinya kejadian lain.

• Laplace smoothing

Menambahkan nilai pada setiap prediktor, biasanya adalah 1 pada masing-masing jumlah kejadian.

• Text mining

Analisis yang dilakukan dengan memanfaatkan teks sebagai prediktor.

• Corpus

Objek yang digunakan pada text mining, berisi kumpulan teks yang disebut sebagai dokumen.

• Punctuation

Tanda baca pada teks.

• Stopwords

Kumpulan kata yang tidak memiliki makna jika diikutsertakan dalam pemodelan klasifikasi.

• Stemming

Proses untuk mengambil kata dasar dari sebuah kata berimbuhan.

• DocumentTermMatrix

Proses untuk membagi setiap konten teks menjadi kata-kata yang mewakili predictor.

• Confusion Matrix

Metrics yang digunakan untuk mengukur kebaikan model classification, terdiri dari accuracy, recall, specificity, dan precision.

• ROC (Receiver Operating Characteristic)

Kurva yang menggambarkan performa model klasifikasi untuk seluruh threshold.

AUC

Luas area di bawah kurva ROC, menggambarkan keberhasilan model klasifikasi dalam memprediksi/membedakan kedua kelas dari target variable.

• Overfit

Keadaan dimana model yang dibuat hanya dapat memprediksi dengan baik data train. Namun, ketika melakukan prediksi pada data test, model tersebut tidak dapat memprediksi dengan baik.

• Entropy

Derajat kehomogenan.

• Information gain

Penurunan entropy setelah terjadi pembagian/spliting data.

• Pruning

Membatasi pembentukan cabang pada pohon (menyederhanakan pohon yang dibentuk).

• Terminal node

Bagian data yang sudah tidak dapat terbagi lagi.

• Data train

Bagian data yang digunakan untuk membuat model.

• Data test

Bagian data yang digunakan untuk mengevaluasi kebaikan model.

• Cross Validation

Proses untuk membagi data menjadi dua bagian, yaitu data train dan data test.

• K-fold cross validation

Membagi data sebanyak k bagian, setiap bagian akan digunakan menjadi train dan test secara bergantian.

• Class imbalance

Keadaan dimana suatu kategori/level lebih mendominasi keseluruhan target variable (kelas mayoritas) dibandingkan kategori/level lainnya (kelas minoritas).

• Sampling

Megambil sebanyak n bagian data secara acak.

• Down-sample

Proses sampling pada observasi kelas mayoritas, sebanyak jumlah observasi pada kelas minoritas. Tujuannya untuk menyamakan jumlah observasi pada kelas mayoritas dan minoritas.

\bullet Up-sample

Proses sampling pada observasi kelas minoritas, sebanyak jumlah observasi pada kelas mayoritas. Tujuannya untuk menyamakan jumlah observasi pada kelas mayoritas dan minoritas.

• Ensamble method

Kumpulan beberapa algoritma prediktif untuk memperoleh performa yang lebih baik.

• OOB (Out of Bag) error rate

Besar error dari hasil prediksi pada data aktual yang belum dilihat oleh model.

$\bullet \ \ Variable \ importance$

Predictor yang dianggap penting dalam model.