Particle Swarm Optimisation

Particle swarm optimisation (PSO)

- ► First proposed in [Kennedy and Eberhart, 1995],
- inspired by the collective intelligence of birds:
- the social interaction of birds allows the solution of a problem.

Particle swarm optimisation Metaphor and working principle:

- ▶ If taken one by one, birds in the swarm have no central control to allow a global interesting behaviour to emerge...
- but by interacting locally among themselves (sharing of local information), their are able to explore the sky looking for food.
- Each bird has a memory of the most successful place he has visited and share it with its neighbour;
- they tend to follow a leader (wisest bird in the swarm) who knows the best place to find food.
- ▶ Birds explore the area but keep in mind their previous success and the success of the leader.
- If a better place is found, the leader suddenly change and the swarm change direction.

PSO: representation

- In the most general case, a bird (or particle) P_i (i = 1, 2, 3, ..., NP) in a swarm of NP particles in associated to:
 - ▶ its position $\mathbf{x_i} \in \mathbb{R}^n$ in the *n*-dimensional search space;
 - ▶ its velocity¹ vector $\mathbf{v_i} \in \mathbb{R}^n$;
- Also, every particle has a memory of:
 - its most successful position x_i^{lb} (in its neighbourhood: local best);
 - its most successful position x_i^{lw} (in its neighbourhood: local worst);

N.B. x_i^{lw} is rarely used, but some variants could employ it.

The best point (lower fitness value) amongst all $\mathbf{x_i^{lb}} i = 1, 2, 3, \dots, NP$ is obviously the best solution found for the problem $\mathbf{x^{gb}}$ (global best).

¹It must not be confused with the physical meaning of this term, strictly speaking it is a displacement rather than a velocity.

Standard PSO working mechanism Velocity and position update

- Positions and velocities are initialised uniformly within the search space, x_i^{lb} and x^{gb} assigned according to their fitness values;
- ightharpoonup i-th particle in the swarm, velocities have to be updated

$$\mathbf{v_i} = \phi_1 \mathbf{v_i} + \phi_2 \left(\mathbf{x_i^{lb}} - \mathbf{x_i} \right) + \phi_3 \left(\mathbf{x^{gb}} - \mathbf{x_i} \right)$$
 (1)

▶ and positions perturbed accordingly (iteration k + 1):

$$x_{i} = x_{i} + v_{i} \tag{2}$$

▶ if the new generated position has a lower fitness value than the local best position, then it replaces it.

Standard PSO: velocity update

- velocity is randomised and it is added to the position as in a stochastic search!
 - ▶ But can be "biased" by properly combining the 3 component on the right-hand side!
- Performance heavily depends on the choice of the weights (tuning is key)!

Standard PSO: velocity update (external forces)

- $ightharpoonup \phi_{2/3} = \mathcal{U}\left(0, c_{1/2}\right)$ is a vector uniformly sampled in $[0, c_{1/2}]^{n2}$
- ► The two moves can be seen as attractive forces produced by springs of random stiffness [Poli et al., 2007]:
 - **b** by tuning c_1 and c_2 we make PSO more or less responsive!

²The element-wise product is performed with $\left(x_i^{\mathsf{gb}}-x_i\right)$ and $\left(x_i^{\mathsf{lb}}-x_i\right)$.

Standard PSO: velocity update (particles' inertia)

- ϕ_1 tuning is key: high inertia \Rightarrow big steps, low \Rightarrow small steps:
 - ▶ ideally, it is high (e.g. 0.9) at the beg beginning (*exploration*),
 - ▶ and low towards the end of the optimisation (*exploitation*)!
- This can be achieved by tuning it on-the-fly!
- ▶ Many methods were proposed (see HERE), a popular one is:

$$\phi_1 = \phi_{max} - rac{\left(\phi_{min} - \phi_{max}
ight)k}{k_{max}}$$
 ("Linear Decreasing Inertia Weight").

Standard PSO memory structures:

- two memory structures are necessary, the first one to keep track of local best positions, the second for the current positions, i.e. the trials;
- with respect to Evolutionary Algorithms we may think we have two populations instead of one (we perturb the first one, we make converge the other the second one!);
- on the other hand, the set of current positions can be seen as an offspring population.

PSO as EA

- ► PSO can be seen as population-based algorithm where the particle positions evolve over time;
- each local best is a candidate solution while a current position is a trial solution;
- ▶ in a way, the metaphor is not so important: PSO can possibly be seen as an EA.

Main difference with EAs

- ► The main difference is not in the metaphor but in the logic related to the selection:
 - ► In EAs the selection (either parent or survivor) must be fitness based and take into account the entire population (e.g. arranging a ranking or a tournament);
 - in PSO (and all Swarm Intelligence Algorithms) the selection is done by considering the solution before and after the perturbation.

Standard PSO: implementation details

Standard PSO pseudo-code

```
initialise NP
                                                                                                         \triangleright Swarm size \triangleright usually, V_{max} \leftarrow x^U - x^L
initialise V<sub>max</sub>
V_{min} = -V_{max}
for i = 1 : NP do
                                                                                     \triangleright also suggested V_i \sim \mathcal{U}\left(\frac{V_{min}}{2}, \frac{V_{max}}{2}\right)
    V_i \sim \mathcal{U}\left(x^L, x^U\right)
    x_i \sim \mathcal{U}\left(x^L, x^U\right)
    x_i^{lb} \leftarrow x_i
    if f(x_i) \le f(x^{gb}) ||i| = 1 then
          x^{gb} \leftarrow x_i
     end if
end for
while Condition on budget do
     for i = 1 : NP do
          Update V: and perturb x:
                                                                                                                      ⊳ Formula 1 and 2
          if f(x_i) \leq f(x_i^{lb}) then
                                                                                                                       x_i^{lb} \leftarrow x_i
                                                                                                                     local best update
              if f(x_i) \leq f(x^{gb}) then
                    x^{gb} \leftarrow x_i
                                                                                                                   end if
               Update swarm
          end if
     end for
end while
Output xgb
```

PSO variants

- ▶ In the past 20 years a multitude of variants has been proposed,
- these variants are mainly based on modifications of the velocity update strategy.
- Discrete and hybrid (e.g. with LS algorithms and EAs) implementations have been proposed too.
- We will briefly consider two important variants: CLPSO and CCPSO2.

Comprehensive learning Particle swarm optimisation (CLPSO) [Liang et al., 2006]

- Same structure and selection of a standard PSO.
- ▶ The perturbation logic is drastically changed:
 - \triangleright the following learning strategy is employed in updating V_i , whereby all the local best positions help form the perturbation vector

$$\mathbf{v_i} = \phi_1 \mathbf{v_i} + \phi_2 \mathbf{U} \times \left(\mathbf{x_i^{rlb}} - \mathbf{x_i} \right)$$
 (3)

► The proposed modification has shown to be performing in handling problems in up to 50D.

inertia weight
$$\mathbf{v_i} = \begin{array}{c} \phi_1 \quad \mathbf{v_i} + \begin{array}{c} \phi_2 \quad \mathbf{U} \\ \end{array} \times (\begin{array}{c} \mathbf{x_i^{rlb}} \\ \end{array} - \mathbf{x_i} \end{array})$$
 random $n \times n$ matrix, $[u_{i,j}] = \mathcal{U}\left(0,1\right)$ "randomised" local best

- ► x_i^{rlb} borrows components from all the local bests of the swarm:
- ▶ \forall design variable j (j = 1, 2, 3, ..., n)
 - if $\mathcal{U}(0,1) > P_{c,i} \Rightarrow \mathbf{x_i^{rlb}}[j] = \mathbf{x_i^{lb}}[j]$;
 - ▶ otherwise, two particles are randomly selected from the swarm
 - ▶ the fittest of the the two gives the j^{th} design variable to x_i^{rlb} .

 $ightharpoonup P_{c,j}$ is generated for each design variable such that it gets less likely to "borrow" variables:

$$P_{c,j} = 0.05 + 0.45 \cdot \frac{e^{\frac{10(j-1)}{NP-1}} - 1}{e^{10} - 1}$$

▶ it can be easily seen that we have a 95% probability for borrowing the first design variable (j = 1), and only 50% for the last one (j = NP).

Cooperatively Co-evolving PSO for large scale optimization (CCPSO2)

- Simple and efficient scheme to address large scale problems, but often very efficient also in low dimensions!.
- We describe the main idea to understand how the "coevolving" approach can be beneficial in large scale optimisation;
- however, this variant, namely CCPSO2, does not employ the classic PSO velocity based perturbation strategy.
- ► For more details see the original paper [Li and Yao, 2012].

CCPSO2: main idea

- If the problem is characterized by many variables, it is worthy to attempt to decompose the problem and start multiple sub-PSO instances on the sub-problems;
- This division is arbitrary and it is unknown whether allows an improvement.
- If improvements occur, we keep evolving the sub-swarms; conversely, we restart the algorithm with a different grouping.

CCPSO2: domain decomposition

- ▶ In order to create sub-swarms we randomly pick up a divisor S from a set of potential options. e.g. $S \in \{2, 5, 50, 100, 200\}$;
- ▶ then, $k = \frac{n}{S}$ sub-swarms in S dimension values are considered.
- N.B. The fitness functional call must be done by using an n-dimensional vector! (e.g. injection of s new components into the global best).

In CCPSO2 there is no velocity update and the new position is generated by using a Normal (Gaussian) or Cauchy distribution as follow:

$$\mathbf{x}_{i} = \left\{ \begin{array}{l} \mathbf{x^{gb}}[j] + \mathcal{C}\left(0,1\right) | \mathbf{x_{i}^{lb}}[j] - \mathbf{x^{gb}}[j]| & \textit{if } \mathcal{U}\left(0,1\right)$$

- ► It must be remarked that in this case x^{gb} is the fittest amongst the current ith particle in the sub-swarm, its its immediate left and its immediate right neighbors.
- p = 0.5 is suggested.
- ▶ Both the distribution are centred in x_i^{gb} , and scaled in $x_i^{lb}[j] x_j^{gb}[j]$, but Cauchy performs longer steps than Gaussian distribution.

- ▶ There are many other optimisers based on SI logic
 - sometimes they look quite similar!
- PSO is probably the most used, but many are currently being used, such as:
 - Ant Colony Optimisation (ACO) [Dorigo et al., 2006];
 - ▶ Bacterial Forging Optimisation (BFO) [Passino, 2012]
 - ▶ Migrating Birds Optimisation (MBO) [Duman et al., 2012]
 - Artificial Bee Colony (ABC) algorithm [Karaboga, 2005].
 - etc.
- ▶ All the mentioned variants have the 1-to-1 spawning strategy in common (as in PSO), and can adopt combinations of popular operators... e.g. let us briefly consider ABC...

Artificial Bee Colony (ABC) ([Karaboga, 2005])

- Inspired by the behavior of the bees;
- from a different metaphor, but still employs commonly used working principles (1-to-1 spawning, mutations, fitness proportionate selection etc.).
- ► The main idea is to explore different locations (flowers) by combining two perturbation strategies instead of one:
 - one of these strategies is explorative while the other is exploitative (conceptually not so different from mutation and crossover in EAs).

ABC: brief description a complete iteration consist of:

1. We perturb the position $(x_i \ i = 1, 2, 3, ..., NB)$ of each (employed) bee in the swarm via:

$$\mathbf{v_i} \leftarrow \mathbf{x_i} + \mathcal{U}(-1, 1) \left(\mathbf{x_i} - \mathbf{x_j} \right) \quad (j \neq i,)$$
 (4)

- 2. We perform replacement via 1-to-1 spawning.
- By means of roulette wheel with fitness proportionate selection, we select NB (onlooker) bees to perform step 1 and 2 again.
- **4.** Those *i*th positions that are not improved by this procedure are re-sampled (*scout* bees):

$$\mathbf{x_i} \leftarrow \mathcal{U}\left(\mathbf{x^L}, \mathbf{x^U}\right)$$
 (5)

- ▶ ACO can be considered as an SI algorithm:
 - 1-to-1 spawning
 - the information form the best "empoyed" bees are then used by the "onlokeer" bees (as the local best is used to perform the perturbation in PSO).
- ► However, this framework borrows may operators from EAs:
 - Equation 4 is basically a mutation;
 - ► Equation 5 is the initialisation process.

Laboratory and participation work:

- ▶ Implement a standard PSO (toroidal bounds), for the usual four problems (De Jong, Rastrigin, Schwefel and Michalewicz) in 10D and 50D.
- ▶ Implement CLPSO and run on the same problems.
- Compare the results and write one paragraph to explain what makes CLPSO a successful framework (feel free to use the literature to get some inspiration and cite the studies you found helpful to make a conjecture).

References I

- Dorigo, M., Birattari, M., and Stützle, T. (2006).
 Ant colony optimization.

 Computational Intelligence Magazine, IEEE, 1(4):28–39.
- Duman, E., Uysal, M., and Alkaya, A. F. (2012).

 Migrating birds optimization: A new metaheuristic approach and its performance on quadratic assignment problem.

 Information Sciences, 217:65–77.
- Karaboga, D. (2005).

 An idea based on honey bee swarm for numerical optimization.

 Technical report, Technical report-tr06, Erciyes university, engineering faculty, computer engineering department.
- Kennedy, J. and Eberhart, R. C. (1995).

 Particle swarm optimization.

 In *Proceedings of IEEE International Conference on Neural Networks*, pages 1942–1948.

Task 7

References II

Cooperatively coevolving particle swarms for large scale optimization. *Evolutionary Computation, IEEE Transactions on*, 16(2):210–224.

Liang, J. J., Qin, A. K., Suganthan, P. N., and Baskar, S. (2006).

Comprehensive learning particle swarm optimizer for global optimization of multimodal functions.

IEEE Transactions on Evolutionary Computation, 10(3):281–295.

- Passino, K. M. (2012).
 Bacterial foraging optimization.
 Innovations and Developments of Swarm Intelligence Applications, page 219.
- Poli, R., Kennedy, J., and Blackwell, T. (2007). Particle swarm optimization. Swarm intelligence, 1(1):33–57.