If an image is not aligned the same way we want it to be,

How should it be processed to adjust its alignment

How can we obtain this look of image?

Answer is through Geometric (point) Transformation

Transforming points in 2D to a new axis

What would point transform effect an image?

Geometric Transformation (point transform)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} a_0 & a_1 \\ b_0 & b_1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} a_2 \\ b_2 \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Relation between transform action and transfer function

(0,1)

(-1,0)0

(1.0)

(-1,0)

$$\begin{vmatrix} x' \\ y' \\ 1 \end{vmatrix} = \begin{vmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{vmatrix} \begin{vmatrix} x \\ y \\ 1 \end{vmatrix}$$

Translation

$$\begin{bmatrix} \mathbf{x}' \\ \mathbf{y}' \\ 1 \end{bmatrix} = \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix}$$

Scaling

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & sh_x & 0 \\ sh_y & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Shearing

http://en.wikipedia.org/wiki/Transformation_matrix

How would point transform

Apply to an image?

Forward Mapping

Real number grid (x',y')

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a_0 & a_1 & a_2 \\ b_0 & b_1 & b_2 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

An Image uses integer grid

g(round(x'), round(y'))

Point Transform Example

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$
Rotation

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} cos(90) & -sin(90) & 0 \\ sin(90) & cos(90) & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

 $\theta = 90$

	y=0	y=1
x=0	1	2
x=1	3	4

х	У	x'	у'
0	0		
0	1		
1	0		
1	1		

Point Transform Example

Shifting Back to Unsigned Integer Grid

	y'=0	y'=1
x'=-1	2	4
x'=0	1	3

o/p image g(x, y)

Actual rotation result

	y'=0	y'=1
x'=0	2	4
x'=1	1	3

Mapping result onto unsigned integer grid

Forward Mapping Problem

Why does the o/p image can not hold all the area of the result?

i/p image f(x,y)

o/p image g(x, y)

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos(25^{\circ}) & -\sin(25^{\circ}) \\ \sin(25^{\circ}) & \cos(25^{\circ}) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Backward Mapping

$$g(x', y') = interpolation[f(x, y)]$$

ค่าเฉลี่ยจากตำแหน่งพิกเซลเพื่อนบ้านรอบจุด (x,y)

Geometric Transform Parameters

(Backward Mapping)

Backward

Forward

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2) Translation (Shift)
$$\Rightarrow x = x' - \Delta x$$

 $y = y' - \Delta y$

$$x' = x + \Delta x$$
$$y' = y + \Delta y$$

3) Enlarge or reduce by scaling factor (S)
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{1}{S_x} & 0 \\ 0 & \frac{1}{S_y} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} S_x & 0 \\ 0 & S_y \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} = \frac{1}{|\det()|} \begin{bmatrix} -1 & sh_x \\ sh_y & -1 \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \qquad \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 1 & sh_x \\ sh_y & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

Zero-order Interpolation

(nearest neighbor)

$$g(x', y') = f[round(x), round(y)]$$

First-order interpolation

(bilinear interpolation)

$$\Delta x = x - x_0$$

$$\Delta y = y - y_0$$

$$g(x', y') = f(x_0, y_0) + [f(x_1, y_0) - f(x_0, y_0)] \Delta x$$
$$+ [f(x_0, y_1) - f(x_0, y_0)] \Delta y$$
$$+ [f(x_1, y_1) + f(x_0, y_0) - f(x_0, y_1) - f(x_1, y_0) \Delta x \Delta y$$

Rotation using Bilinear Interpolation

	y=0	y=1
x=0	1	2
x=1	3	4

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

Rotate	30
cos()	0.866025
sin()	0.5

	y=-1	y=0	y=1	y=2
x=-2	0	0	0	0
x=-1	0	0	2	0
x=0	0	1	4	0
x=1	0	0	3	0
x=2	0	0	0	0

	Forward mapping									
X	У	f(x,y)	x'=xcos-ysin	y'=xsin+ycos	round(x')	round(y')				
0	0	1	0	0	0	0				
0	1	2	-0.5	0.866025	-1	1				
1	0	3	0.866025	0.5	1	1				
1	1	4	0.366025	1.366025	0	1				
	min		-0.5	0	-1	0				
	max		0.866025	1.366025	1	1				

Backward Mapping (Bilinear Interpolation)

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos 30^{\circ} & \sin 30^{\circ} \\ -\sin 30^{\circ} & \cos 30^{\circ} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix} \begin{bmatrix} g(x', y') = f(x_0, y_0) + [f(x_1, y_0) - f(x_0, y_0)] \Delta x \\ + [f(x_0, y_1) - f(x_0, y_0)] \Delta y \\ + [f(x_1, y_1) + f(x_0, y_0) - f(x_0, y_1) - f(x_1, y_0) \Delta x \Delta y \end{bmatrix}$$

x'	y'	x=x'cos+y'sin	y=-x'sin+y'cos	x0	y0	f(x0,y0)	f(x0,y1)	f(x1,y0)	f(x1,y1)	dx	dy
-2	-1	-2.2321	0.1340	-3	0	0	0	0	0	0.7680	0.1340
-2	0	-1.7321	1.0000	-2	1	0	0	0	0	0.2680	0.0000
-2	1	-1.2321	1.8660	-2	1	0	0	0	0	0.7680	0.8660
-2	2	-0.7321	2.7321	-1	2	0	0	0	0	0.2680	0.7321
-1	-1	-1.3660	-0.3660	-2	-1	0	0	0	0	0.6340	0.6340
-1	0	-0.8660	0.5000	-1	0	0	0	1	2	0.1340	0.5000
-1	1	-0.3660	1.3660	-1	1	0	0	2	0	0.6340	0.3660
-1	2	0.1340	2.2321	0	2	0	0	0	0	0.1340	0.2321
0	-1	-0.5000	-0.8660	-1	-1	0	0	0	1	0.5000	0.1340
0	0	0.0000	0.0000	0	0	1	2	3	4	0.0000	0.0000
0	1	0.5000	0.8660	0	0	1	2	3	4	0.5000	0.8660
0	2	1.0000	1.7321	1	1	4	0	0	0	0.0000	0.7321
1	-1	0.3660	-1.3660	0	-2	0	0	0	0	0.3660	0.6340
1	0	0.8660	-0.5000	0	-1	0	1	0	3	0.8660	0.5000
1	1	1.3660	0.3660	1	0	3	4	0	0	0.3660	0.3660
1	2	1.8660	1.2321	1	1	4	0	0	0	0.8660	0.2321
2	-1	1.2321	-1.8660	1	-2	0	0	0	0	0.2321	0.1340
2	0	1.7321	-1.0000	1	-1	0	0	0	0	0.7321	0.0000
2	1	2.2321	-0.1340	2	-1	0	0	0	0	0.2321	0.8660
2	2	2.7321	0.7321	2	0	0	0	0	0	0.7321	0.7321

Backward Mapping (Bilinear Interpolation)

$$g(x', y') = f(x_0, y_0) + [f(x_1, y_0) - f(x_0, y_0)] \Delta x$$

$$+ [f(x_0, y_1) - f(x_0, y_0)] \Delta y$$

$$+ [f(x_1, y_1) + f(x_0, y_0) - f(x_0, y_1) - f(x_1, y_0) \Delta x \Delta y$$

f(x0,y0)	f(x0,y1)	f(x1,y0)	f(x1,y1)	dx	dy	[f(x1,y0)-f(x0,y0)]*dx	[f(x0,y1)-f(x0,y0)]*dy	[]*dx*dy	g(x',y')
0	0	0	0	0.7680	0.1340	0.0000	0.0000	0.0000	0.0000
0	0	0	0	0.2680	0.0000	0.0000	0.0000	0.0000	0.0000
0	0	0	0	0.7680	0.8660	0.0000	0.0000	0.0000	0.0000
0	0	0	0	0.2680	0.7321	0.0000	0.0000	0.0000	0.0000
0	0	0	0	0.6340	0.6340	0.0000	0.0000	0.0000	0.0000
0	0	1	2	0.1340	0.5000	0.1340	0.0000	0.0670	0.2010
0	0	2	0	0.6340	0.3660	1.2680	0.0000	-0.4641	0.8038
0	0	0	0	0.1340	0.2321	0.0000	0.0000	0.0000	0.0000
0	0	0	1	0.5000	0.1340	0.0000	0.0000	0.0670	0.0670
1	2	3	4	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000
1	2	3	4	0.5000	0.8660	1.0000	0.8660	0.0000	2.8660
4	0	0	0	0.0000	0.7321	0.0000	-2.9282	0.0000	1.0718
0	0	0	0	0.3660	0.6340	0.0000	0.0000	0.0000	0.0000
0	1	0	3	0.8660	0.5000	0.0000	0.5000	0.8660	1.3660
3	4	0	0	0.3660	0.3660	-1.0981	0.3660	-0.1340	2.1340
4	0	0	0	0.8660	0.2321	-3.4641	-0.9282	0.8038	0.4115
0	0	0	0	0.2321	0.1340	0.0000	0.0000	0.0000	0.0000
0	0	0	0	0.7321	0.0000	0.0000	0.0000	0.0000	0.0000
0	0	0	0	0.2321	0.8660	0.0000	0.0000	0.0000	0.0000
0	0	0	0	0.7321	0.7321	0.0000	0.0000	0.0000	0.0000

Forward vs Backward Mapping (Bilinear Interpolation)

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos 30^{\circ} & \sin 30^{\circ} \\ -\sin 30^{\circ} & \cos 30^{\circ} \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}$$

	y=-1	y=0	y=1	y=2
x=-2	0	0	0	0
x=-1	0	0	2	0
x=0	0	1	4	0
x=1	0	0	3	0
x=2	0	0	0	0

	y=0	y=1
x=0	1	2
x=1	3	4

	y=-1	y=0	y=1	y=2
x=-2	0	0	0	0
x=-1	0	0.2010	0.8038	0
x=0	0.0670	1	2.8660	1.0718
x=1	0	1.3660	2.1340	0
x=2	0	0	0	0

	y=-1	y=0	y=1	y=2
x=-2	0	0	0	0
x=-1	0	0	1	0
x=0	0	1	3	1
x=1	0	1	2	0
x=2	0	0	0	0

High-order interpolation

(cubic interpolation)

$$\Delta y = y - y_0$$

 $\Delta x = x - x_0$

$$g(x', y') = \sum_{m=-1}^{2} \sum_{n=-1}^{2} f(x_0 + m, y_0 + n) R(m - \Delta x) R(\Delta y - n)$$

$$R(k) = \frac{1}{6} [P(k+2)^3 - 4P(k+1)^3 - 4P(k-1)^3 + 6P(k)^3]$$

$$P(z) = \begin{cases} z & z > 0 \\ 0 & z \le 0 \end{cases}$$

Zero-Order Interpolation

First-Order (Bilinear) Interpolation

Cubic Interpolation

Homework

- □ ให้นศ.สร้างภาพขนาด 2x2 พิกเซล ในรูปของ 2D-array
- □ กำหนดค่าใน 2D-array ด้วยการ random ค่าระหว่าง 3-7
- ทำการหมุนภาพด้วยเทคนิค Backward mapping และใช้การกำหนดค่าระดับ
 ความเข้มแสงผลลัพธ์ด้วยเทคนิคการเฉลี่ยค่าแบบ bilinear interpolation
 - มุมที่หมุนขึ้นกับเลขท้ายของรหัสนศ. Mod 4
 - \blacksquare [zeta(0) zeta(1) zeta(2) zeta(3)] = [30, 60, 120, 150]
- □ แสดงขั้นตอนการคำนวณการหมุนภาพโดยละเอียดลงในกระดาษ A4