

iModDom

Manual Técnico V2.0

Elaborado por:

Marco Pereira - 2190516

Orientado por:

Luís Bento

Carlos Neves

Índice

1.	INTR	INTRODUÇÃO			
2.	DESC	DESCRIÇÃO DOS COMPONENTES			
3.	LISTA	A DE MATERIAL	15		
4.	PREF	PARAÇÃO DA MONTAGEM	16		
5.	SOLE	PADURA	18		
	5.1.	PLACA PRINCIPAL	18		
	5.2.	PLACA REMOTA	18		
	5.3.	PLACA DE SHUNT	22		
6.	MON	ITAGEM	23		
	6.1.	FIXAÇÃO DOS RELÉS	23		
	6.2.	Montagem da Placa Remota	25		
	6.3	MONTAGEM DAS PLACAS DE SHUNT	26		

1. Introdução

O projeto iModDom consiste num ecossistema de *hardware* e *software* desenvolvido de forma a ser utilizado em conjunto para aplicações em domótica. A parte de *hardware* do projeto consiste em três placas de circuito impresso desenvolvidas para albergar todos os componentes com o objetivo de obter uma solução compacta e de fácil utilização. Já a parte de *software* consiste numa página *web* desenvolvida para o projeto, onde contém ferramentas que possibilitam a programação, do respetivo *hardware*, através de blocos. O projeto foi desenvolvido com o intuito e objetivo de ser uma solução económica e que permitisse a sua utilização aos utilizadores sem conhecimentos na área da programação.

Neste documento poderá encontrar uma descrição bem como uma lista de todo o material necessário, a nível de *hardware*, para a realização deste projeto, também irá ficar a conhecer os passos necessários para a preparação, processo de soldadura e montagem da versão V2.0 do *hardware* do projeto.

2. Descrição dos Componentes

Nesta secção todos os componentes utilizados no projeto irão ser descritos detalhadamente, de forma a dar a conhecer o funcionamento e características de cada um.

1. ESP32-PoE-ISO

O *ESP32-PoE-ISO* é uma placa de desenvolvimento baseada no microcontrolador *ESP32*, fabricado pela *Espressif Systems*. Esta placa contém WiFi, *Bluetooth Low Energy* (BLE) e *ethernet*, suportando *Power over Ethernet* (PoE) através do chip Si3402-B, seguindo o padrão IEEE 802.3. Pode também ser alimentada através do seu conector de bateria ou através da sua porta micro USB, sendo também utilizada para programar a placa, a tensão de alimentação da placa através destas duas vias não deverá exceder os 5V DC. A placa tem uma tensão de operação de 3.3V DC, pelo que essa é a tensão máxima que os seus pinos aceitam.

2. ESP8266 D1 Mini

O ESP8266 D1 Mini, à semelhança do ESP32-PoE-ISO, é uma placa de desenvolvimento, no entanto é baseada no microprocessador ESP8266. É uma placa de pequenas dimensões, conta com WiFi e uma porta micro USB que pode ser utilizada

para programá-la e/ou fornecer energia, sendo que esta placa requer uma alimentação de 5V DC e a sua tensão de operação é de 3.3V DC.

3. Raspberry Pi 4 Model B

A Raspberry Pi 4 Model B é um minicomputador, possui um processador quadcore, existem versões de 2, 4 e 8gb de memória RAM, sendo esta a versão de 4gb, possui WiFi, BLE e LAN, conta com duas portas USB 2.0 e duas portas USB 3.0, duas portas micro HDMI e uma porta USB-C. A sua alimentação pode ser feita através dos seus pinos a 5V DC, da porta USB-C a 5V DC e ainda através da porta ethernet recorrendo a um adaptador, o PoE HAT. Neste projeto, a Raspberry irá albergar o sistema operativo do Home Assistant de modo a criar um servidor ao qual se possa aceder através da internet e controlar os dispositivos a partir de lá.

4. PoE HAT

O PoE HAT é um acessório para a Raspberry Pi, apenas é compatível com a Raspberry Pi 4 Model B e com a Raspberry Pi 3 Model B+. É um acessório que é encaixado sobre a Raspberry Pi e permite alimentá-la através de PoE, sendo que para

isso é necessário que a rede possua um aparelho que forneça esse tipo de alimentação. Note que não é aconselhável alimentar a *Raspberry Pi* simultaneamente por PoE e USB-C ou pelos seus pinos, assim como quando a alimentação da mesma seja feita através da porta USB-C, o *PoE HAT* não deve estar encaixado, correndo o risco de danificar a *Raspberry Pi*.

5. MCP2515

O *MCP2515* para além de ser o nome do *chip* integrado neste módulo é um controlador CAN *stand-alone* que converte mensagens CAN em SPI, e vice versa, para facilitar a integração com os microcontroladores. Este módulo contém um cristal de 8MHz e o *transceiver* TJA1050, a tensão de alimentação do mesmo é de 5V DC e para realizar a comunicação CANbus tem disponíveis dois pontos de acesso, sendo um deles os pinos conectores macho representados como H e L no módulo, e o outro é o terminal de aperto. Contém também dois pinos conectores macho denominados de J1 que são um *jumper* para uma resistência de 120Ω, necessária em pelo menos um dos módulos quando se realiza a comunicação CANbus com vários módulos.

V1.0-2021 4

6. DHT11

O sensor DHT11 é um sensor de temperatura e humidade que permite realizar leituras de temperatura de 0°C a 50°C e leituras de humidade de 20% a 90%. Pode ser alimentado com tensões entre 3.3V e 5V DC e faz a comunicação com o microcontrolador através de apenas um pino.

7. PCF8574

O PCF8574 é um chip fabricado pela Texas Instruments e também o nome atribuído à placa que é um expansor de entradas e saídas digitais. Esta placa em concreto permite expandir até um máximo de 8 entradas/saídas, tem uma tensão de alimentação de 5V DC e comunica com o microcontrolador através do protocolo de comunicação I2C, pelo que necessita de um endereço que pode ser definido através dos três jumpers, a configuração dos endereços pode ser conhecida na Figura 1. Como pode verificar existem oito endereços diferentes o que significa que pode ligar oito expansores em simultâneo, ficando no total com 64 entradas/saídas disponíveis, sendo que cada um deverá possuir um endereço único.

V1.0-2021 5

A2	A1	A0	Address Pins
0	0	0	= 0x20
0	0	1	= 0x21
0	1	0	= 0x22
0	1	1	= 0x23
1	0	0	= 0x24
1	0	1	= 0x25
1	1	0	= 0x26
1	1	1	= 0x27

Figura 1 - Tabela de Endereços

8. Módulo de 8 Relés

O módulo apresentado é uma placa que inclui 8 relés de estado sólido, a sua tensão de alimentação é de 5V DC e são ativos alimentado o respetivo canal com o sinal de *ground*. Os relés podem ser alimentados e ativos através dos pinos conectores machos (canto inferior esquerdo) ou através dos conectores de aperto (canto inferior direito). A saída destes relés em concreto, só funciona com cargas de corrente alternada (AC), sendo que, no máximo, cada relé suporta cargas de 240V e 2A. Estas saídas podem ser acedidas através dos conectores de aperto de cada relé (parte superior), onde um dos conectores é a entrada da fase e o outro a saída do relé, na Figura 2 pode-se observar um exemplo de ligação de uma carga num dos relés.

Figura 2 - Exemplo de Ligação

9. Módulo RJ45 2x4

O módulo de fichas RJ45 com a configuração de 2x4 permite integrar 8 fichas RJ45 de forma compacta e garante boas ligações entre dispositivos através de cabos de rede *ethernet*. É possível visualizar todas as cotas e dimensões deste módulo na Figura 3.

V1.0-2021 7

Figura 3 - Dimensões Módulo RJ45 2x4

10. Ficha RJ45

Esta ficha RJ45 é acoplada na placa remota e tem o objetivo de fornecer à mesma as tensões de 5V DC e 3V DC, tal como os respetivos *ground* e também o barramento de comunicação CANbus, que está encarregue de transmitir os dados dos sensores ou dispositivos remotos à placa principal. É possível visualizar todas as cotas e dimensões deste módulo na Figura 4.

Figura 4 - Dimensões da Ficha RJ45

11. Placa de Shunt

Uma das placas de circuito impresso tem a função de *shunt* e proteção nas placas de relés, de modo a evitar colocar um fio condutor com a fase em cada conector dos relés. Com esta placa, basta soldar o fio com a fase no orifício central e se desejar, pode soldar um fusível em cada saída com o objetivo de proteger o fusível do módulo de relés, já que é de difícil substituição. Caso não deseje colocar um fusível, poderá soldar os *solder jumpers* individualmente. Note que deverá fazer uma boa distribuição das cargas, já que cada saída da placa apenas poderá debitar 1,2A no máximo, no entanto, a placa de *shunt* não suporta mais do que 2,65A em cada metade da placa. Na Figura 5 pode-se observar o *layout* desta placa.

Figura 5 - Layout da Placa de Shunt

12. Placa Remota

A placa remota tem o objetivo de receber sinais de sensores ou dispositivos remotos, que estejam distantes da placa principal, e enviá-los, através do protocolo de comunicação CANbus, para a mesma, onde serão tratados e apresentados no *Home Assistant*. Esta placa remota irá albergar um módulo *MCP2515*, um *ESP8266 D1 Mini*, uma ficha RJ45 e pinos conectores fêmea. Na Figura 6 pode visualizar o esquema elétrico desta placa e na Figura 7 o *layout*, como pode verificar através das figuras, os pinos 7 e 8 da ficha RJ45 não estão conectados a nenhum dispositivo, mas estão acessíveis, assim como todos os pinos do *ESP8266 D1 Mini*. Através do esquema, é possível verificar que existe uma resistência de 4K7Ω, cuja sua função é limitar a tensão que chega ao pino D6 do *ESP8266 D1 Mini*, no entanto, através de testes realizados, chegou-se à conclusão de que a resistência poderá não ser colocada, sendo, nesse caso, necessário soldar o *solder jumper* que se encontra no mesmo local, de modo a permitir a comunicação entre o modulo *MCP2515* e o *ESP8266 D1 Mini*.

Figura 6 - Esquema Elétrico da Placa Remota

Figura 7 - Layout da Placa Remota

13. Placa Principal

Esta é a placa principal do projeto, é nela que serão montados a maioria dos componentes descritos anteriormente de forma a ficar tudo compacto e bem conectado. Na Figura 8 pode visualizar o seu esquema elétrico e na Figura 9 o *layout*, verificando

que os pinos 7 e 8 da quarta ficha inferior e superior não estão conectados a nada, pelo que estão acessíveis junto do módulo de fichas RJ45 para o caso de serem necessários em aplicações futuras. Todos os pinos do *ESP32-PoE-ISO* também estão acessíveis junto do mesmo, de forma que seja possível pôr em prática novas aplicações. À semelhança da placa remota, nesta placa também existe uma resistência de 4K7Ω, cuja sua função é limitar a tensão que chega ao pino 15 do *ESP32-PoE-ISO*, no entanto, através de testes realizados, chegou-se à conclusão de que a resistência poderá não ser colocada, sendo, nesse caso, necessário soldar o *solder jumper* que se encontra no mesmo local, de modo a permitir a comunicação entre o modulo *MCP2515* e o *ESP32-PoE-ISO*. A configuração das portas do módulo RJ45 pode ser visualizada na Figura 10 e Tabela 1, verificando-se que o pino 1 e 2 de cada porta estão destinados ao sinal de *ground* e o pino 3 e 4 estão destinados à tensão de 3.3V e 5V, respetivamente.

Figura 8 - Esquema elétrico da Placa Principal

Figura 9 - Layout da Placa Principal

Figura 10 – Configuração das Portas

Tabela 1 - Configuração das Portas

C	Comum a todas as todas as portas: 1 e 2 - GND 3 - 3.3V 4 - 5V						
UP1	I/O Expander 1	UP2	I/O Expander 2	UP3	I/O Expander	UP4	CANbus
5	0	5	0	5	0	5	CL
6	1	6	1	6	1	6	CH
7	2	7	2	7	2	7	UP4-7
8	3	8	3	8	3	8	UP4-8
LP1	I/O Expander 1	LP2	I/O Expander 2	LP3	I/O Expander 3	LP4	CANbus
5	4	5	4	5	4	5	CL
6	5	6	5	6	5	6	CH
7	6	7	6	7	6	7	LP4-7
8	7	8	7	8	7	8	LP4-8

3. Lista de Material

Nesta secção ficará a conhecer quais os materiais necessários para a montagem de todo o *hardware* do projeto.

- 1x Placa principal
- 2x Placa remota
- 3x Placa de *shunt*
- 1x Módulo RJ45 2x4
- 6x *PCF8574*
- 1x *DHT11/DHT22*
- 3x Módulo de 8 relés
- 1x ESP32-PoE-ISO
- 3x Módulo MCP2515
- 2x ESP8266 D1 Mini
- 1x Raspberry Pi 4 Model B/Raspberry Pi 3 Model B+
- 1x *PoE HAT*
- 2x Ficha RJ45
- 3x 2 Pinos conectores fêmea
- 7x 4 Pinos conectores fêmea
- 3x 7 Pinos conectores fêmea
- 4x 8 Pinos conectores fêmea
- 10x 9 Pinos conectores fêmea
- 7x 10 Pinos conectores fêmea
- 1x Cartão micro SD
- 1x Switch PoE
- 12x Parafusos plásticos M3x18
- 12x Porcas M3
- 12x Espaçadores M3 11mm

4. Preparação da Montagem

Agora que já possui todos os materiais reunidos pode começar a preparar a montagem, visto que é necessário fazer alterações nos seis *PCF8574*, para isso siga os passos abaixo.

 Com auxílio de um alicate, coloque, com cuidado, os pinos macho do componente PCF8574 na vertical (Figura 11) de modo a ficar com o aspeto da Figura 12.

Figura 11 - Pinos Macho na Horizontal

Figura 12 - Pinos Macho na Vertical

 Cuidadosamente, com o auxílio de um alicate, empurre a o plástico dos pinos para baixo, até ficar encostado na placa, ficando com o aspeto da Figura 13.

Figura 13 - Plástico Encostado na Placa

3. Agora necessita de cortar os pinos de modo a ficarem nivelados com os outros oito pinos do componente (Figura 14).

Figura 14 - Aspeto Final do Componente

5. Soldadura

5.1.Placa Principal

Tendo os componentes todos reunidos e preparados, pode começar a soldar os mesmos na placa de circuito impresso principal, para isso recomenda-se a visualização de um tutorial em vídeo onde ficará a conhecer todos os procedimentos. Note que, apesar do vídeo ser relativo à versão V1.0 da placa desenvolvida, poderá guiar-se pelo mesmo, uma vez que a montagem dos componentes é igual em ambas as versões, alterando apenas o facto, de que, na versão V2.0 existe um solder jumper no local destinado à resistência de 4K7Ω, pelo que se não desejar colocar a resistência terá de soldar o solder jumper. As restantes diferenças entre as versões das placas é apenas nas legendagem dos componentes. vídeo está disponível através do seguinte https://www.youtube.com/watch?v=TkQqE3qw0ag.

Após todos os componentes estarem soldados, é de extrema importância que verifique, com um multímetro, se existem curto-circuitos ou pinos interligados que não seria suposto, de modo a garantir que quando alimentar os componentes nenhum se danifica. Pode fazer essa verificação com o teste de continuidade do multímetro.

5.2.Placa Remota

Para o processo de soldadura das placas remotas poderá seguir os passos abaixo para cada uma delas. Esta versão da placa, face à versão V1.0, apenas difere na legendagem da ficha RJ45 e na existência de um *solder jumper* no mesmo local da resistência de 4K7Ω.

1. Na face da placa mostrada na Figura 15, comece por encaixar as barras de 8 pinos conectores fêmea e proceda à soldadura das mesmas.

Figura 15 - Barras de 8 Pinos Conectores Fêmea

 Ainda na mesma face da placa, coloque a resistência de 4K7Ω no local destinado e proceda à sua soldadura, caso não deseje colocar a resistência, terá de soldar o solder jumper que se encontra no mesmo local (Figura 16).

Figura 16 - Resistência de $4K7\Omega$

3. Na mesma face dos passos anteriores, encaixe a ficha RJ45 no local destinado e proceda à sua soldadura (Figura 17).

Figura 17 - Ficha RJ45

4. Na face oposta, encaixe as duas barras de 9 pinos conectores fêmea e proceda à soldadura das mesmas (Figura 18).

Figura 18 - Barras de 9 pinos conectores fêmea

5. Na mesma face da placa de circuito impresso, encaixe a barra de 2 pinos conectores fêmea, bem como a barra de 7 pinos conectores fêmea e proceda à soldadura de ambas (Figura 19).

Figura 19 - Barras de 2 e 7 pinos conectores fêmea

Após todos os componentes estarem soldados, é de extrema importância que verifique, com um multímetro, se existem curto-circuitos ou pinos interligados que não seria suposto, de modo a garantir que quando alimentar os componentes nenhum se danifica. Pode fazer essa verificação com o teste de continuidade do multímetro.

5.3. Placa de Shunt

Para proceder ao processo de soldadura da placa de *shunt* deverá seguir os passos descritos abaixo para cada uma das placas.

 Se desejar, comece por colocar um fusível em cada saída da placa e proceda á sua soldadura, caso contrário, apenas solde o *solder jumper* que se encontra no mesmo local (Figura 20).

Figura 20 - Fusível/Solder Jumper

2. De seguida, no orifício central, solde um fio que irá alimentar a placa com a fase proveniente do seu quadro elétrico (Figura 21). Note que ao soldar o fio não o deve ter ligado a nada e que o mesmo deve de ter uma secção mínima de 2.5mm², ou 1.5mm² caso todas as cargas sejam de iluminação.

Figura 21 - Alimentação da Placa

3. Após realizados os passos anteriores, as placas deverão ficar com um aspeto semelhante à Figura 22, sendo que neste caso não se utilizaram fusíveis.

Figura 22 - Aspeto Final da Placa de Shunt

6. Montagem

Neste ponto já deverá ter todo o trabalho de soldadura realizado, posto isto, basta seguir os passos abaixo para finalizar a montagem das placas.

6.1. Fixação dos Relés

1. Com o módulo de relés no sítio, basta colocar o espaçador entre o mesmo e a placa principal (Figura 23).

Figura 23 - Espaçador

2. Insira o parafuso através da furação placa principal, de modo que este entre no espaçador e na furação do módulo de relés (Figura 24).

Figura 24 - Parafuso

3. Agora só necessita de apertar a porca no parafuso de modo a ficar seguro (Figura 25), repita o processo para as restantes furações dos relés, ficando com o aspeto da Figura 26.

Figura 25 – Porca

Figura 26 - Aspeto Final

V1.0-2021 24

6.2. Montagem da Placa Remota

Após ter os devidos componentes soldados na placa, basta encaixar os restantes nos devidos conectores de modo a ficar com o aspeto da Figura 27 e da Figura 28. Note que o *ESP8266 D1 Mini* tem uma posição própria, sendo que pode danificá-lo caso não respeite a sua posição.

Figura 27 - Aspeto da Placa Finalizada Face 1

Figura 28 - Aspeto da Placa Finalizada Face 2

V1.0-2021 25

6.3. Montagem das Placas de Shunt

1. Para a montagem das placas de *shunt*, é necessário que, com o auxílio de uma pequena chave de fendas, force a abertura de um ligador de cada saída da placa de relés, de forma a ter o espaço suficiente para encaixar as placas. Na Figura 29 estão demonstrados os ligadores que têm a necessidade de serem forçados.

Figura 29 – Ligadores a Forçar

2. Nos ligadores que acabou de forçar a sua abertura, encaixe a placa de *shunt* exercendo força de forma uniforme por toda a placa e aperte os devidos parafusos dos ligadores para que fique fixa (Figura 30). Note que não deverá apertar em demasia os parafusos para evitar danificar a placa.

Figura 30 - Placa de Shunt Encaixada