Project Euler: Problem 124

Nathan Marianovsky

Problem (Ordered Radicals). The radical of n, rad(n), is the product of the distinct prime factors of n. For example, $504 = 2^3 \times 3^2 \times 7$, so rad $(504) = 2 \times 3 \times 7 = 42$. If we calculate rad(n) for $1 \le n \le 10$, then sort them on rad(n), and sorting on n if the radical values are equal, we get:

n	rad(n)	
1	1	
2	2	
3	3	
4	2	
5	5	
6	6	
7	7	
8	2	
9	3	
10	10	

rad(n)	k
1	1
2	2
2	3
2	4
3	5
3	6
5	7
6	8
7	9
10	10
	1 2 2 2 3 3 5 6 7

Let E(k) be the kth element in the sorted n column; for example, E(4) = 8 and E(6) = 9. If rad(n) is sorted for $1 \le n \le 100000$, find E(10000).

 \rightarrow

Solution. It is best to approach this problem by first assuming that the list is of length N, though the problem specifically wants N = 100000. For each value of n in the table produced, we need the prime factorization n:

$$n = p_1^{m_1} p_2^{m_2} \dots p_l^{m_l}$$

so that:

$$\operatorname{rad}(n) = p_1 p_2 \dots p_l$$

After this it is a simple task of organizing the list based on rad(n) first, then n.

¹See the personal comments for problem 3 for a proof of the Fundamental Theorem of Arithmetic