

X-Ray Classifier **Alex Cross**

/github.com/alcr0996

/in/alcr0996 alexfourdata@gmail.com

Background

This dataset was obtained from the Stanford ML group, which worked with a group of board certified radiologists to prepare and label the data.

Creating a ML model that could assist in the identification of x-ray studies would be a major contribution to the healthcare industry.

Objectives

- Test models to make a diagnosis of normal vs abnormal on X-Rays of the arm
- Simple C basic CNN
- CP convolution-pool
- CCP convolution-convolution-pool
- Test best performing model on each set of X-Rays (finger, hand, wrist, forearm, elbow, humerus, shoulder)
- Compare best model performance vs pre-trained model: Xception

Data

 40k images: 36.5k training images, 3.2k testing images.

Difficult data:

Misclassified data:

 Total dataset after cleaning and balancing: 44k train, 3.2k test

Image Size	64x64		96x96		128x128	
Model	My Model	Xception	My Model	Xception	My Model	Xception
Accuracy	62%	•	63%	62 %	61%	63%
Precision	63%	•	65%	62 %	61%	67%
Recall	49%	•	58%	56 %	56 %	45%
F1	55%	-	61%	59 %	58%	5 4%
AUROC	61%	-	63%	61%	61%	62%

Results

	F1 Score			Accuracy	
Bone	My Model	Xception	Bone	My Model	Xception
Elbow	73%*	63%	Elbow	75%*	55%
Finger	69%*	64%	Finger	68%*	58 %
Forearm	67%*	65%	Forearm	64%*	57%
Hand	21%	56%*	Hand	59%*	54%
Humerus	63%	72%*	Humerus	63%	69%
Shoulder	70%*	12%	Shoulder	73%*	52 %
Wrist	66%*	55%	Wrist	70%*	66%

Misclassified Results

* - indicates better performing model

Class: 1 Model: 0.39

Image Size/Augmentation

Model Arch.

Block 1 x 2 **Activation:** 2D Convolutional 3x3 (64 filters) Relu/LeakyReLU 2D Max Pooling 2x2 Dropout: 20%

Block 2 x 2		
2D Convolutional 3x3 (128 filters)	Activation: Relu/LeakyReLU	
2D Max Pooling 2x2	Dropout: 20%	

Activation: Relu/LeakyReLU
Dropout: 20%

Block 4 x 2				
Flatten for Dense Layers				
Dense: 64 Neurons	Activation: LeakyReLU			
Dense: 32 Neurons	Activation: LeakyReLU			
Dense: 1 Neuron	Activation: Sigmoid			
Loss: Binary Cro	ossentropy			
Optimizer: Adam				

Unsupervised

PCA-TSNE: All Neg. vs Pos.

PCA-TSNE: All Classes

K Keras

Class: 1 Model: 0.08 Class 0 Model: 0.76 Class: 0 Model: 0.82

Class: 0 Model: 0.99

Future Steps

- Separate images
- Visualize layers of CNN
- Class activation map
- Transfer Learning Unsupervised Learning
- Prediction per study
- VGG19

Adult/youth study

References

• Rajpurkar P, Irvin J, Bagu Al, Ding D, Duan T, Mehta H, Yang B, Zhu K, Laird D, Ball RL, et al. 2017. MURA: Large Dataset for Abnormality Detection in Musculoskeletal Radiographs. 1st Conference on Medical Imaging with Deep Learning.

