

國立陽明交通大學

NATIONAL YANG MING CHIAO TUNG UNIVERSITY

Deep Learning Lab6: DQN and DDPG

Name: 許子駿

Student ID: 311551166

Institute of Computer Science and Engineering

2023年5月27日

Table of Contents

1	Intr	roduction	2
2	Exp	periment setups	3
	2.1	DQN	3
		2.1.1 Network	3
		2.1.2 Action selection	4
		2.1.3 Updating behavior network	4
		2.1.4 Updating target network	5
	2.2	DDPG	5
		2.2.1 Actor network	5
		2.2.2 Critic network	6
		2.2.3 Action selection	6
		2.2.4 Updating behavior network	7
		2.2.5 Updating target network	8
3	Experimental results		
	3.1	DQN for $LunarLander-v2$	9
	3.2	DDPG for $LunarLanderContinuous-v2$	10
	3.3	DQN for BreakoutNoFrameskip-v4	10
4	Disc	cussion	12
	4.1	Explain effects of the discount factor	12
	4.2	Explain benefits of epsilon-greedy in comparison to greedy action	
		selection	12
	4.3	Explain the necessity of the target network	12
	4.4	Describe the tricks you used in Breakout and their effects, and how	
		they differ from those used in LunarLander	13

Introduction

This task is to solve LunarLander-v2 and BreakoutNoFrameskip-v4 using deep Q-network (DQN), and LunarLanderContinuous-v2 using deep deterministic policy gradient (DDPG).

Experiment setups

Experiment setups are listed in this chapter including 2 parts, DQN and DDPG.

2.1 DQN

DQN details are listed in this section including 4 parts, network, action selection, updating behavior network, and updating target network.

2.1.1 Network

Since LunarLander-v2 includes 4 actions, i.e., 0 (No-op), 1 (Fire left engine), 2 (Fire main engine), 3 (Fire right engine), a network with output dimension 4 is built to predict Q value (See Listing 2.1).

```
class Net(nn.Module):
      def __init__(self,
          state_dim=8, action_dim=4, hidden_dim=(400, 300)) -> None:
          super().__init__()
          self.layers = nn.Sequential(
              nn.Linear(in_features=state_dim,
                  out_features=hidden_dim[0]),
              nn.ReLU(inplace=True),
              nn.Linear(in_features=hidden_dim[0],
                  out_features=hidden_dim[1]),
              nn.ReLU(inplace=True),
              nn.Linear(in_features=hidden_dim[1],
13
                  out_features=action_dim)
14
          )
15
16
```

```
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
    return self.layers(x)
```

Listing 2.1: Python code of **Net** of DQN.

2.1.2 Action selection

During the play, action with maximum Q value with probability ϵ will be selected, or random action is selected, otherwise. It's called ϵ -greedy (See Listing 2.2).

```
def select_action(self, state, epsilon, action_space):
    if random.random() > epsilon:
        with torch.no_grad():
            # Max element is in 2nd column (dim=1).
            state = torch.from_numpy(state).view(1, -1).to(self.device)
            return self._behavior_net(state).max(dim=1)[1].item()
    else:
        return action_space.sample()
```

Listing 2.2: Python code of **select_action** of DQN.

2.1.3 Updating behavior network

To update behavior network, sample transitions (state, action, reward, next action, done) from replay memory, then do TD-learning, and finally calculate MSE loss from Q value and Q target (See Listing 2.3 and Equation 2.1).

Listing 2.3: Python code of <u>update</u> <u>behavior</u> <u>network</u> of DQN.

$$y_{j} = \begin{cases} r_{j} & \text{if episode terminates at step } j+1 \\ r_{j} + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta) & \text{otherwise} \end{cases}$$
(2.1)

2.1.4 Updating target network

To update target network, copy weights of behavior network (See Listing 2.4).

```
def _update_target_network(self):
    self._target_net.load_state_dict(self._behavior_net.state_dict())
```

Listing 2.4: Python code of <u>update_target_network</u> of DQN.

2.2 DDPG

DDPG details are listed in this section including 5 parts, actor network, critic network, action selection, updating behavior network, and updating target network.

2.2.1 Actor network

Since Lunar Lander Continuous-v2 includes 2 engines, i.e., main engine with range [-1,1] and left-right engine with range [-1,1], a network with output dimension 2 is built (See Listing 2.5).

```
class ActorNet(nn.Module):
      def __init__(self,
              state_dim=8, action_dim=2, hidden_dim=(400, 300)) -> None:
          super().__init__()
          self.layers = nn.Sequential(
              nn.Linear(in_features=state_dim,
                  out_features=hidden_dim[0]),
              nn.ReLU(inplace=True),
              nn.Linear(in_features=hidden_dim[0],
                   out_features=hidden_dim[1]),
              nn.ReLU(inplace=True),
              nn.Linear(in_features=hidden_dim[1],
13
                  out_features=action_dim),
14
              nn.Tanh()
          )
16
17
      def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
```

```
return self.layers(x)
```

Listing 2.5: Python code of **ActorNet** of DDPG.

2.2.2 Critic network

Critic network is used to predict Q value. Since the output is scalar, output dimension 1. (See Listing 2.6).

```
class CriticNet(nn.Module):
      def __init__(self,
               state_dim=8, action_dim=2, hidden_dim=(400, 300)) -> None:
          super().__init__()
          h1, h2 = hidden_dim
          self.critic_head = nn.Sequential(
               nn.Linear(state_dim + action_dim, h1),
              nn.ReLU(),
9
          )
          self.critic = nn.Sequential(
              nn.Linear(h1, h2),
12
              nn.ReLU(),
13
              nn.Linear(h2, 1),
14
          )
16
      def forward(self,
17
               x: torch.FloatTensor, action: torch.FloatTensor) -> torch.
18
      FloatTensor:
          x = self.critic_head(torch.cat([x, action], dim=1))
19
          return self.critic(x)
```

Listing 2.6: Python code of **CriticNet** of DDPG.

2.2.3 Action selection

During the play, select action with actor network and add extra noise (See Listing 2.7).

```
def select_action(self, state, noise=True):
    with torch.no_grad():
        if noise:
            re = self._actor_net(torch.from_numpy(state).view(1, -1).to(self.device)) + \
                 torch.from_numpy(self._action_noise.sample()).view(1, -1).to(self.device)
```

```
else:
    re = self._actor_net(torch.from_numpy(state).view(1, -1).to(self.
    device))

return re.to('cpu').numpy().squeeze()
```

Listing 2.7: Python code of **select_action** of DDPG.

2.2.4 Updating behavior network

To update behavior network, sample transitions (state, action, reward, next action, done) from replay memory, and calculate MSE loss from Q value of behavior network and Q target of target network to update critic network. Also, to maximize Q value by updating actor network μ , calculate negative Q value expectation $\mathbb{E}[-Q(s,\mu(s))]$ (See Listing 2.8 and Equation 2.2).

```
def _update_behavior_network(self, gamma):
      # Sample transitions batch.
      state, action, reward, next_state, done = self._memory.sample(
          self.batch_size, self.device)
      # Update critic.
      q_value = self._critic_net(state, action)
      with torch.no_grad():
         a_next = self._target_actor_net(next_state)
         q next = self. target critic net(next state, a next)
         q_target = reward + gamma * q_next * (1 - done)
      criterion = nn.MSELoss()
      critic_loss = criterion(q_value, q_target)
14
      self._actor_net.zero_grad()
      self._critic_net.zero_grad()
17
      critic_loss.backward()
18
      self._critic_opt.step()
19
20
      # Update actor.
21
      action = self._actor_net(state)
22
      actor_loss = -self._critic_net(state, action).mean()
23
24
      self._actor_net.zero_grad()
25
      self._critic_net.zero_grad()
26
      actor_loss.backward()
27
```

```
self._actor_opt.step()
```

Listing 2.8: Python code of <u>update_behavior_network</u> of DDPG.

$$y_i = r_i + \gamma Q'(s_{t+1}, \mu'(s_{t+1}|\theta^{\mu'})|\theta^{Q'})$$
(2.2)

2.2.5 Updating target network

To update target network, **soft copy** weights of behavior network (See Listing 2.9).

```
def _update_target_network(target_net, net, tau):
    for target, behavior in zip(target_net.parameters(), net.parameters()):
        target.data.copy_((1 - tau) * target.data + tau * behavior.data)
```

Listing 2.9: Python code of <u>update_target_network</u> of DDPG.

Experimental results

Results are listed in this chapter including 3 parts, DQN for LunarLander-v2, DDPG for LunarLanderContinuous-v2, and DQN for BreakoutNoFrameskip-v4.

3.1 DQN for LunarLander-v2

From Figure 3.2, we can see that the average testing reward is **255.89**.

Figure 3.1: Rewards of DQN for LunarLander-v2 during training.

Figure 3.2: Rewards of DQN for LunarLander-v2 during evaluation.

Lab6: DQN and DDPG

3.2 DDPG for LunarLanderContinuous-v2

From Figure 3.4, we can see that the average testing reward is **206.39**.

Figure 3.3: Rewards of DDPG for LunarLanderContinuous-v2 during training.

```
Idl) root@Sbd8h3997782./workspace/jab6f xvfb-run -s "screen & 1400x000x24" python ddpg.py —mode test —device 1 —resume_ckpt models/230521_063715_ddpg-lunar-lander-continuous-v2_batch_size64_pisodes1200x0 mmpl00000. Tr. actor=0.001, Ir.critic=0.001, gamma=0.999, tau=0.005, seed=2 0200519, resum_ckpt="models/230521_063715_ddpg-lunar-lander-continuous-v2_batch_size64_episodes1200x0 mum_steps_warmup=100000, lr_actor=0.001, Ir.critic=0.001, gamma=0.99, tau=0.005, seed=2 0200519, resum_ckpt="models/230521_063715_ddpg-lunar-lander-continuous-v2_batch_size64_episodes1200x0 mrunp=100000_lra0.001gmma=0.994au0.005/ddpg.pth', dir_writer='./runs/', dir_model='./n odels/'./n varnings.warnicolorizef'%s: %s'%'\makemath{warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.warnings.w
```

Figure 3.4: Rewards of DDPG for LunarLanderContinuous-v2 during evaluation.

$3.3~~{ m DQN}~{ m for}~BreakoutNoFrameskip-v4$

From Figure 3.6, we can see that the average testing reward is **227.06**.

Figure 3.5: Rewards of DQN for BreakoutNoFrameskip-v4 during training.

Lab6: DQN and DDPG

Figure 3.6: Rewards of DQN for *BreakoutNoFrameskip-v4* during evaluation.

Discussion

Four questions and their answers are listed in this chapter.

4.1 Explain effects of the discount factor

In Equation 4.1, λ is discount factor, and the future effects getting smaller with the degree of λ getting larger.

$$G_t = R_{t+1} + \lambda R_{t+2} + \dots = \sum_{k=0}^{\infty} \lambda^k R_{t+k+1}$$
 (4.1)

4.2 Explain benefits of epsilon-greedy in comparison to greedy action selection

It's better to balance between explore and exploit with greedy action selection, and sometimes choosing other action to explore may be best action.

4.3 Explain the necessity of the target network

With target network and behavior network, the training process can be more stable, since Q target is output from target network and it's updated with lower frequency.

4.4 Describe the tricks you used in Breakout and their effects, and how they differ from those used in LunarLander

For LunarLander-v2, MSE loss is used, but for BreakoutNoFrameskip-v4, smooth L1 loss is used instead (See Listing 4.1).

```
def _update_behavior_network(self, gamma):
      state, action, reward, next_state, done = self._memory.sample(
          self.batch_size)
      q_value = self._behavior_net(state).gather(dim=1, index=action.long())
      with torch.no_grad():
6
          q_next = self._target_net(next_state).max(dim=1)[0]
          q_target = reward[:, 0] + gamma * q_next * (1 - done[:, 0])
      loss = F.smooth_l1_loss(q_value, q_target.unsqueeze(1))
10
      self._optim.zero_grad()
12
      loss.backward()
13
      for param in self._behavior_net.parameters():
14
          param.grad.data.clamp_(-1, 1)
      self._optim.step()
16
```

Listing 4.1: Python code of <u>update_behavior_network</u> of DQN for BreakoutNoFrameskip-v4.