Identifying Selection in Experimental Evolution

Arya Iranmehr airanmehr@ucsd.edu

Bafna Lab University of California, San Diego

March, 2017

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ のQで

Arya Iranmehr

 $March,\ 2017$

An experiment design for *D. melanogaster*

Arya Iranmehr Identifying Selection in Experimental

Challenges (I)

 \bullet Small population size \Rightarrow strong drift

Challenges (I)

- Small population size \Rightarrow strong drift
- Partial sweep

Challenges (I)

- Small population size \Rightarrow strong drift
- Partial sweep

• Strong selection \Rightarrow Short fixation time \Rightarrow High LD \Rightarrow Difficult to locate favored allele

Arya Iranmehr Identifying Selection in Experimental March, 2017 3 / 23

Challenges (II)

• Pool-seq data: Heterogeneous coverage for a variant

Challenges (III)

• Selection + Demography

CLEAR procedure

Arya Iranmehr Identifying Selection in Experimental March, 2017

Simplified Model (I)

• Suppose we have sequenced a whole (diploid, size=N) population every generation and exact allele frequency are given.

Simplified Model (I)

- Suppose we have sequenced a whole (diploid, size=N) population every generation and exact allele frequency are given.
- Wright-Fisher Markov chain, computes likelihood of a trajectory for a given N (a $2N \times 2N$ transition matrix Q)

 $P(\nu_0\,,\,\ldots\,,\nu_5) = \,Q_{1,2}\,\,Q_{2,1}\,\,Q_{1,1}Q_{1,2}\,Q_{2,0}$

Likelihood ratio test

- find \hat{N} and \hat{s} that maximizes likelihood of data.
- compute likelihood ratio, H statistic for each SNP:

 $H = \frac{\text{likelihood of data as if being under selection with } \hat{s}, \hat{N}}{\text{likelihood of data as if being neutral with } \hat{N}}$

Model (complete)

• In reality, population is sequenced after some (τ) generations. solution: use Q^{τ} in computing likelihoods.

Model (complete)

- In reality, population is sequenced after some (τ) generations. solution: use Q^{τ} in computing likelihoods.
- Allele frequencies are unknown, and depth of each variant can be different, and finite sample is taken for sequencing.

Model (complete)

- In reality, population is sequenced after some (τ) generations. solution: use Q^{τ} in computing likelihoods.
- Allele frequencies are unknown, and depth of each variant can be different, and finite sample is taken for sequencing.

Arya Iranmehr Identifying Selection in Experimental March, 2017

Composite Likelihood for a Region

- Computing joint likelihoods of SNPs is infeasible (haplotypes are required) and intractable (requires estimating covariance).
- A heuristic is to compute composite (aka, pseudo) likelihood of the region L to reduce false-positives

$$\mathcal{H} = \frac{1}{|L|} \sum_{\ell \in L} H_{\ell}$$

10 / 23

Arya Iranmehr Identifying Selection in Experimental March, 2017

Performance in Detecting Regions under Selection

Each point represent power (TPR when $FPR \le 0.05$) of detection in 1000 simulations (500 neutral, 500 selection) of a 50Kbp window, for different coverages.

Localizing favored allele

Each curve depicts cumulative distribution of the rank of favored allele among (≈ 1150) variants, in 500 simulations.

Estimating parameters (I)

Our model estimates strength of selection s and overdominance h parameter for each variant.

- h = 0: recessive adaptive allele
- h = 0.5: directional selection
- h = 1: dominant adaptive allele
- h > 1 :overdominance

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ 釣@@

13 / 23

Arya Iranmehr Identifying Selection in Experimental March, 2017

Estimating parameters (II)

Distribution of bias of parameters in 500 simulations.

Estimating parameters (III)

Analysis of real data

- A population of *D. melanogaster* is evolved for 59 generations, under alternative hot and cold temperatures.
- Coverage is different at generations and samples are not synchronized.
- Genome scan for sliding window size=50Kbp, steps=10Kbp
- $\hat{N} = 200$

Arya Iranmehr

March, 2017

$D.\ melanogaster$

Outcrossing Yeast populations

- 12 replicates of Yeast populations (census size $10^7 10^9$) are E&Red for 540 generations.
- $\hat{N} = 2000$
- two regions violating FDR cutoff are found.

Arya Iranmehr

March, 2017

Outcrossing Yeast populations

Discussion

• An efficient method for analyzing full time-series read-count data is proposed.

Discussion

- An efficient method for analyzing full time-series read-count data is proposed.
- By computing composite likelihood \mathcal{H} statistic is more robust to false positives.

Arya Iranmehr

March, 2017

Discussion

- An efficient method for analyzing full time-series read-count data is proposed.
- By computing composite likelihood \mathcal{H} statistic is more robust to false positives.
- We can infer demographic changes as well as selection for and experiment.

Thanks!

Modeling genetic drift via Binomial sampling

• Drift: rate of sampling remain constant $\Pr(i \to j) = B(j; N, i/N)$

Arya Iranmehr

March, 2017

Binomial Sampling with Selection

• In selection, we sample favored allele proportional to 1+s, and the alternate allele with weight 1. $\Pr(i \to j) = B(j; N, k/N)$

Arya Iranmehr Identifying Selection in Experimental March, 2017 23 / 23