《电子电路与系统基础 I》期末考试试题 A 卷 2021.6.13 学号: 姓名:

共七大题,卷面满分100分。全部题目在答题纸上作答,在本试题纸上作答无效。

一、(5分)根据下图所示系统幅频特性和相频特性,写出该系统的传递函数表达式

二、(5 分)已知电源 $v_{in1}=1V$,为理想直流电压源,电源 $v_{in2}=2cos(3\omega_0t+\varphi_0)V$,其中 $\omega_0=2\pi f_0$, $f_0=1kHz$,相位 φ_0 可调,电源 v_{in3} 如下右图所示是周期为1ms的峰值为 $\pm 1V$ 的 50%占空比的方波信号,负载 $R_L=1k\Omega$,分析不同 φ_0 取值下负载电阻上瞬时功率的最大值及最小值

- 三、(10 分)如图所示电路,已知 $R_L = 1$ k Ω , $f_0 = 1$ kHz,
 - 1) 虚线框内电路分别是哪一种滤波器(没有合理分析不给分)
 - 2) 求 R_L 获得最大功率输出时 R_{sig} 、 R_1 、 C_1 、 L_2 的取值需满足的条件

- 四、(20 分)如下图所示,运算放大器非理想,增益为A,其等效输入阻抗 $R_i=1M\Omega$,等效输出阻抗 $R_o=20\Omega$,输出电压范围为 ± 12 V之间, $R_1=1k\Omega$, $R_2=10k\Omega$
 - 1) 画出非理想运算放大器电压转移特性示意图
 - 2) 画出运算放大器在线性区的等效电路
 - 3) 当 $|v_o| \ge 9.99|v_{in}|$ 时,运算放大器增益A应满足何种约束?

- 五、(15 分)如下图所示, A_1 为理想运算放大器,已知 $R_1=1k\Omega$, $C_1=1\mu F$, $R_2=10k\Omega$, $C_2=1nF$, $R_L=10k\Omega$,
 - 1) 求系统的电压传递函数 $H(j\omega) = \frac{v_o(j\omega)}{v_{in}(j\omega)}$
 - 2) 画出该系统幅频特性和相频特性的波特图

六、(15 分)利用理想运算放大器和电阻设计一个电路,满足输出电压 $v_o=3v_{in1}-2v_{in2}$

- 七、(30 分)如图所示电路,受控电流源 I_x 的输出电流为 $I_x=g_mv_{gs}$,其中 v_{gs} 为电容 C_{gs} 两端的电压, $g_m=1$ mS 为常数,已知 $R_{sig}=500$ k Ω 、 $r_o=100$ k Ω 、 $R_L=10$ k Ω 、 $R_2=1$ M Ω 、 $C_{gs}=1$ μ F、 $C_D=1$ μ F。
 - 1) 求图 a 中虚线框内的二端口网络的Z参量
 - 2) 当输出端开路时,求从1号箭头看进去的等效输入阻抗Zin
 - 3) 当输入端短路时,求从2号箭头看进去的等效输出阻抗Zout

提示: Z参量定义为 $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = \begin{bmatrix} Z_{11} & Z_{12} \\ Z_{21} & Z_{22} \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \end{bmatrix}$

