

ANÁLISIS MATEMÁTICO II Examen final 19/12/2023

Apellido y nombre:

Corrigió: Revisó:

T1	Т2	P1	P2	Р3	P4	Calificación

Todas las respuestas deben ser justificadas adecuadamente para ser tenidas en cuenta. No resolver el examen en lápiz. Duración del examen: 2 horas

Condición de aprobación (6 puntos): tres ejercicios correctamente resueltos (uno de T1 o T2 y dos de P1, P2, P3 o P4).

- T1. a) Sea $f: \mathbb{R}^2 \to \mathbb{R}$. Demuestre que si f es diferenciable en \mathbf{x} y $\nabla f(\mathbf{x}) \neq \vec{0}$, entonces la derivada direccional máxima de f en \mathbf{x} es $\|\nabla f(\mathbf{x})\|$.
 - b) Si $f(x,y,z) = x^2 + y yz^2$, ¿existe $\check{v} = (a,b,c)$ tal que $a^2 + b^2 + c^2 = 1$ y $\frac{\partial f}{\partial \check{v}}(1,-1,1) = 3$?
- T2. Determine si las siguientes proposiciones son verdaderas o falsas. Justifique su respuesta.
 - a) Una ecuación del plano tangente a la superficie de ecuación $x^2 + 2z + e^{yz} = 4$ en $\mathbf{x}_0 = (1,0,1)$ es 2x + y + 2z = 4.
 - b) Si la supeficie S: y=4, $x^2+z^2 \le 1$ esta orientada con vectores normales con segunda componente negativa, entonces el flujo de $\vec{f}(x,y,z)=(e^{x^2},\ y-5,\ \sin(z^2))$ a través de S es negativo.
- P1. Calcule el flujo saliente de $\vec{f}(x,y,z)=(x+\cos(y^2),\ y+\sin(z^6),\ z-3)$ a través de la frontera del cuerpo V definido por las condiciones $x^2+y^2+z^2\leq 4$, $z\geq 1$.
- P2. Calcule el área de la región encerrada por la curva del haz ortogonal a la familia $y = kx^2$ que pasa por el punto $(\sqrt{2}, -1)$.
- P3. Dada $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = 5 + 2x x^2 y^2 xy^2$, detemine en qué puntos del gráfico de f el plano tangente es paralelo al plano xy y analice si en alguno de esos puntos el valor de f es máximo o mínimo local.
- P4. Sean $\vec{f}(x,y,z)=(yz^2,\ 2xz^2,\ xyz)$ y C la curva definida por la intersección de las superficies $z=x^2+y^2$ y $x^2+y^2+z^2=20$. Calcule la circulación de \vec{f} a lo largo de C indicando claramente la orientación elegida para el cálculo.