



# AWI-CM3 hands-on-course: Part 1 Introduction

Jan Streffing 08.09.2022



## Goals of the day



- 1) Install esm\_tools
- 2) Install awicm3-v3.1
- 3) Run a default simulation
- 4) Modify namelists and run a simulation
- 5) Learn how to contribute
- 6) Learn about visualization
- 7) Learn about documentation & support





## Introduction



#### **Major participating models for CMIP6:**

ACCESS-CM2, AWI-CM1-MR, AWI-ESM1-LR, BCC-SM2-MR, CAMS, CanESM5, CAS-ESM2-0, CESM2, CIESM, CMCC-CM2-SR5, CNRM-CM6-1-HR, E3SM-1-1, EC-Earth3, FGOALS-f3-L, FIO-ESM-2-0, GISS-E2-1-G, HadGEM3MM, ICON-ESM-LR, IITM-ESM, INM5, IPSL-CM6A-LR, KIOST-ESM, MCMUA1, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, NESM3, NOAA-GFDL, NorESM2-MM, SNU, TaiESM1

#### **Practical resolutions:**

AWI-CM1

FESOM1: 120-10 km

ECHAM6: 200-100 km





## Introduction



#### **Major participating models for CMIP6:**

ACCESS-CM2, AWI-CM1-MR, AWI-ESM1-LR, BCC-SM2-MR, CAMS, CanESM5, CAS-ESM2-0, CESM2, CIESM, CMCC-CM2-SR5, CNRM-CM6-1-HR, E3SM-1-1, EC-Earth3, FGOALS-f3-L, FIO-ESM-2-0, GISS-E2-1-G, HadGEM3MM, ICON-ESM-LR, IITM-ESM, INM5, IPSL-CM6A-LR, KIOST-ESM, MCMUA1, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, NESM3, NOAA-GFDL, NorESM2-MM, SNU, TaiESM1

#### **Practical resolutions:**

**AWI-CM1** FESOM1: 120-10 km

ECHAM6: 200-100 km

**AWI-CM2** FESOM2: 120-1 km

ECHAM6: 200-100 km





## Introduction



#### **Major participating models for CMIP6:**

ACCESS-CM2, AWI-CM1-MR, AWI-ESM1-LR, BCC-SM2-MR, CAMS, CanESM5, CAS-ESM2-0, CESM2, CIESM, CMCC-CM2-SR5, CNRM-CM6-1-HR, E3SM-1-1, EC-Earth3, FGOALS-f3-L, FIO-ESM-2-0, GISS-E2-1-G, HadGEM3MM, ICON-ESM-LR, IITM-ESM, INM5, IPSL-CM6A-LR, KIOST-ESM, MCMUA1, MIROC6, MPI-ESM1-2-HR, MRI-ESM2-0, NESM3, NOAA-GFDL, NorESM2-MM, SNU, TaiESM1

#### **Practical resolutions:**

**AWI-CM1** FESOM1: 120-10 km

ECHAM6: 200-100 km

**AWI-CM2** FESOM2: 120-1 km

ECHAM6: 200-100 km

AWI-CM3 FESOM2: 120-1 km

OpenIFS: 120-9km





# Introduction Coupling schematic



Parallel IO XIOS 2.5





## Introduction Coupling schematic



#### **Oasis: Interpolation library by CERFACS & Los Alamos Labratory**



# Introduction Basic coupling





| Computed in FESOM2          | Computed in OpenIFS                         | Computed in Runoff-mapper |
|-----------------------------|---------------------------------------------|---------------------------|
| Sea surface temperature     | Zonal wind stress, ocean                    | River runoff              |
| Sea ice surface temperature | Meridional wind stress, ocean               |                           |
| Sea ice concentration       | Zonal wind stress, sea ice                  | . Ψ                       |
| Sea ice thickness           | Meridional wind stress, sea ice             |                           |
| Snow thickness              | Non-solar heat flux ocean                   | - /· . Y                  |
|                             | Solar heat flux                             |                           |
|                             | Total heat flux sea ice                     |                           |
|                             | Liquid precipitation                        |                           |
|                             | Solid precipitation                         |                           |
|                             | Evaporation                                 |                           |
|                             | Sublimation                                 |                           |
|                             | Precipitation - evaporation - soil moisture |                           |



## Introduction v3.0 performance







Green = better than CMIP6 average Magenta = worse than CMIP6 average Number = Factor by how much

https://github.com/JanStreffing/cmpi-tool/



## Introduction v3.0 performance







**Green = better than CMIP6 average Magenta = worse than CMIP6 average** Number = Factor by how much

https://github.com/JanStreffing/cmpi-tool/

#### More details in:

Streffing, J., Sidorenko, D., Semmler, T., Zampieri, L., Scholz, P., Andres-Martinez, M., ... Jung, T. (2022). AWI-CM3 coupled climate model: description and evaluation experiments for a prototype post-CMIP6 model. Geoscientific Model Development, 15 (16), 6399-6427. Retrieved from https://gmd.copernicus.org/articles/15/6399/2022/ doi: 10.5194/gmd-15-6399-2022



## Introduction v3.0 performance







Green = better than CMIP6 average Magenta = worse than CMIP6 average Number = Factor by how much

https://github.com/JanStreffing/cmpi-tool/



## Introduction v3.1 performance





AMI CM2 1 CDD CMDL O OOF

|                | AWI-CM3.1_SPP CMPI: 0.895 |              |              |              |                |               |                |               |               |               |               |               |            |             |              |              |                |                |                |               |                 |                 |                 |                 |
|----------------|---------------------------|--------------|--------------|--------------|----------------|---------------|----------------|---------------|---------------|---------------|---------------|---------------|------------|-------------|--------------|--------------|----------------|----------------|----------------|---------------|-----------------|-----------------|-----------------|-----------------|
| siconc -       | 1.40                      | 0.68         | 0.48         | 1.26         | 0.81           | 1.09          | 1.00           | 0.80          |               |               |               |               |            |             |              |              | 0.85           | 1.08           | 0.88           | 0.98          | 0.90            | 0.49            | 0.52            | 0.79            |
| tas -          | 1.62                      | 0.64         | 0.76         | 1.27         | 0.91           | 0.71          | 0.74           | 0.90          | 0.94          | 0.98          | 0.89          | 0.95          | 1.36       | 2.47        | 1.69         | 1.03         | 0.81           | 0.71           | 0.70           | 0.85          | 0.70            | 0.35            | 0.52            | 0.43            |
| clt -          | 1.01                      | 1.20         | 1.24         | 1.17         | 0.69           | 0.79          | 0.67           | 0.76          | 0.81          | 0.78          | 0.63          | 0.68          | 0.81       | 0.44        | 0.66         | 0.67         | 0.82           | 0.79           | 0.72           | 0.87          | 1.01            | 1.00            | 0.82            | 0.81            |
| pr -           | 0.68                      | 0.68         | 0.88         | 1.00         | 0.81           | 1.21          | 1.07           | 0.99          | 1.05          | 1.00          | 0.86          | 0.82          | 1.47       | 0.97        | 1.01         | 1.11         | 1.35           | 0.77           | 1.10           | 1.31          | 0.80            | 0.82            | 0.86            | 0.81            |
| rlut -         | 1.48                      | 1.19         | 1.12         | 1.22         | 1.10           | 0.66          | 0.68           | 1.01          | 1.13          | 1.08          | 0.93          | 0.87          | 1.55       | 0.91        | 0.85         | 1.10         | 0.58           | 0.96           | 0.87           | 0.45          | 0.70            | 1.00            | 0.84            | 1.08            |
| uas -          | 0.60                      | 0.80         | 0.57         | 0.81         | 0.63           | 0.77          | 0.41           | 0.56          | 1.04          | 0.86          | 0.82          | 0.87          | 1.45       | 1.37        | 0.54         | 1.05         | 0.83           | 0.76           | 0.82           | 0.54          | 0.53            | 0.47            | 0.50            | 0.48            |
| vas -          | 0.68                      | 0.70         | 0.63         | 0.73         | 0.61           | 0.68          | 0.54           | 0.62          | 0.95          | 0.87          | 0.78          | 0.78          | 1.21       | 1.64        | 0.86         | 0.70         | 0.67           | 0.81           | 0.65           | 0.52          | 0.56            | 0.53            | 0.50            | 0.51            |
| 300hPa ua -    | 0.59                      | 0.96         | 0.59         | 0.66         | 0.69           | 1.08          | 0.51           | 0.66          | 0.83          | 0.70          | 0.65          | 0.71          | 0.54       | 0.77        | 0.48         | 0.61         | 0.64           | 0.77           | 0.96           | 0.56          | 0.74            | 0.58            | 0.61            | 0.71            |
| 500hPa zg -    | 0.43                      | 0.47         | 0.56         | 0.35         | 0.64           | 0.35          | 0.26           | 0.63          | 0.50          | 0.56          | 0.27          | 0.60          | 0.67       | 0.61        | 0.30         | 0.66         | 0.46           | 1.30           | 1.26           | 0.32          | 0.24            | 0.64            | 0.40            | 0.19            |
| st. dev. zos - | 0.64                      | 0.45         | 0.63         | 0.62         | 0.90           | 0.96          | 0.92           | 0.90          | 1.08          | 1.05          | 1.09          | 1.11          | 1.43       | 1.57        | 1.80         | 1.86         | 0.95           | 0.98           | 0.99           | 0.98          | 0.90            | 0.81            | 0.97            | 0.97            |
| st. dev. tos - | 1.25                      | 1.10         | 1.13         | 1.23         | 1.20           | 1.94          | 1.63           | 1.38          | 1.30          | 1.27          | 1.08          | 1.46          | 0.28       | 0.32        | 0.26         | 0.39         | 1.85           | 1.12           | 0.98           | 1.99          | 1.82            | 0.82            | 0.97            | 1.83            |
| mlotst -       | 0.93                      | 0.45         | 0.59         | 0.94         | 2.93           | 0.55          | 0.77           | 2.48          | 1.41          | 1.06          | 1.66          | 1.05          | 0.54       | 0.72        | 0.79         | 0.64         | 0.58           | 2.30           | 3.18           | 1.13          | 1.00            | 2.57            | 1.34            | 0.36            |
| 10m thetao -   | 1.09                      | 1.00         | 0.83         | 1.06         | 0.91           | 0.81          | 0.72           | 0.90          | 1.09          | 1.18          | 1.03          | 0.93          | 1.57       | 2.08        | 1.45         | 1.26         | 1.00           | 0.93           | 0.92           | 1.00          | 1.29            | 0.77            | 0.82            | 1.43            |
| 100m thetao -  | 0.89                      | 0.87         | 0.86         | 0.84         | 1.05           | 1.04          | 1.00           | 1.04          | 1.13          | 1.14          | 1.11          | 1.12          | 0.83       | 0.74        | 1.19         | 1.07         | 0.96           | 1.00           | 1.01           | 0.96          | 1.16            | 1.40            | 1.65            | 1.44            |
| 1000m thetao - | 1.31                      | 1.31         | 1.31         | 1.31         | 0.47           | 0.47          | 0.48           | 0.48          | 0.45          | 0.45          | 0.45          | 0.45          | 0.07       | 0.07        | 0.08         | 0.06         | 0.52           | 0.52           | 0.52           | 0.52          | 0.60            | 0.63            | 0.61            | 0.59            |
| 10m so -       | 0.98                      | 0.85         | 0.77         | 0.94         | 0.96           | 0.95          | 0.95           | 0.96          | 0.98          | 0.95          | 0.95          | 0.95          | 0.63       | 0.62        | 0.67         | 0.81         | 0.73           | 0.70           | 0.73           | 0.72          | 0.63            | 0.97            | 0.88            | 0.68            |
| 100m so -      | 0.41                      | 0.43         | 0.45         | 0.42         | 1.16           | 1.18          | 1.15           | 1.16          | 0.94          | 0.95          | 0.94          | 0.95          | 1.11       | 1.06        | 1.07         | 1.08         | 0.78           | 0.75           | 0.75           | 0.77          | 1.42            | 1.42            | 1.40            | 1.44            |
| 1000m so -     | 0.46                      | 0.50         | 0.50         | 0.44         | 1.16           | 1.16          | 1.16           | 1.16          | 0.97          | 0.97          | 0.97          | 0.97          | 1.03       | 1.04        | 1.05         | 1.04         | 0.52           | 0.52           | 0.51           | 0.52          | 0.65            | 0.65            | 0.64            | 0.64            |
|                | arctic MAM -              | arctic JJA - | arctic SON - | arctic DJF - | northmid MAM - | northmid JJA- | northmid SON - | northmid DJF- | tropics MAM - | tropics JJA - | tropics SON - | tropics DJF - | nino34 MAM | nino34 JJA- | nino34 SON - | nino34 DJF - | southmid MAM - | southmid JJA - | southmid SON - | southmid DJF- | antarctic MAM - | antarctic JJA - | antarctic SON - | antarctic DJF - |

**Green = better than CMIP6 average** Magenta = worse than CMIP6 average Number = Factor by how much

https://github.com/JanStreffing/cmpi-tool/



## Introduction Longterm plan





FESOM2 + ICEPACK

RECOM

**PISM** 

LPJ-G

**FOCI-OIFS** 

NEMO3.6 + AGRIF + LIM2 OpenIFS 43r3 + WAM + CAMS + H-TESSEL

XIOS 3

CaMa-Flood

ECE-4

NEMO4 + SI<sup>3</sup>

**PISCES**