Nguyen Tran

Analysis

a. Which algorithm	Logistic		precision	recall	f1-score	support
performed better?	Regression	9	0.98	0.80	0.88	50
		1	0.73	0.96	0.83	28
Overall, the Decision		accuracy			0.86	78
Tree classifier performed		accuracy macro avg	0.85	0.88	0.85	78 78
the best out of all the		weighted avg	0.89	0.86	0.86	78
models. However, the						
,						
sequential neural net in	Decision		precision	recall	f1-score	support
its later epochs seemed	Tree	9	0.98	0.92	0.95	50
to perform above or on		1	0.87	0.96	0.92	28
par with it as well.						
•		accuracy macro avg	0.92	0.94	0.94 0.93	78 78
The accuracy score of		weighted avg	0.94	0.94	0.94	78
94% was generally the						
• •	MLP		precision	nocall	f1-score	cuppont
highest for the Decision	Classifier		precision	recall	T1-score	support
Tree classifier. Although,	Classifier	Ø	0.94	0.92	0.93	50
with more epochs, the		1	0.86	0.89	0.88	28
sequential NN started		accuracy			0.91	78
approaching that		macro avg	0.90	0.91	0.90	78
number, and the MLP		weighted avg	0.91	0.91	0.91	78
classifier was slightly						
below. The precision for		Model Accuracy				
•	Cognontial	0.90 -				~
the not high mpg (0) was	Sequential			_		
identical for the same	NN	0.85 -				
with the logistic						
regression model. For		5 0.80 - E				
the positive class (1)		5 0.80 -				
high mpg, it was higher						
than that of the logistic		0.70 -				
The state of the logistic						

Decision Tree was the highest among all of the models.

regression. The recall for both classes was for the

In general, the better performing algorithm was the decision tree. I think this algorithm performed better than the others because there was no limit on the growth of the tree and the tree wasn't pruned. So, it could be that there was some overfitting to the data going on.

Between writing code in R and writing code in python, I prefer python. It has a similar object structure to other languages that I'm familiar with such as Java, even in the way in which objects are referenced through qualifiers such as the . operator, it feels similar to how attributes/fields or methods of objects would be accessed from what I'm more used to. In addition, the way in which we get these objects seem to be bundled into libraries where import statements bring those libraries into our code so we can use them. This process is more familiar to me than what ought to be done in R via the library command and messing with R's package manager. That said, in the brief moments here I've had with python, it does seem like all of the libraries: pandas, numpy, matplotlib, seaborn, etc. are emulating what is already available in R. In that sense, I'm thankful that before starting to get into python's world of objects in addition to those offered by the extended libraries, that I got a foundation with stuff like dataframes and vectors; seeing those being mimicked over in the python world is something that looks familiar now to me. In terms of R versus sklearn, while I don't completely dislike R, I think the structure of sklearn makes it a bit more readable. Everything is broken up by modules in different levels of namespaces. It looks like it's organized, much like Java is, so reading the documentation for sklearn versus that of R in my opinion is a little more understandable. One thing I do think I will miss with R is the ability to specify equations for regressions explicitly using ~ syntax and having some short-hand enabled in there such as . and - to be able to include or exclude features from the equation. That's not a feature I've seen in python's ecosystem yet and from what I saw of sklearn, it's not a thing there either, so that will be missed. But other than that, in general, I find writing python more comfortable than R.