

AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE

Sprawozdanie - laboratorium nr 1

Rozwiązywanie układu równań liniowych metodami bezpośrednimi

1. Wstęp teoretyczny

Problemem zadania jest rozwiązanie układu równań liniowych metodami bezpośrednimi, aby było to możliwe wykorzystując metodę Gaussa-Jordana należy założyć istnienie układu równań w postaci:

$$\begin{cases} a_{11} \cdot x_1 + a_{12} \cdot x_2 + \dots + a_{1n} \cdot x_n = b_1 \\ a_{21} \cdot x_1 + a_{22} \cdot x_2 + \dots + a_{2n} \cdot x_n = b_2 \\ \vdots \\ a_{n1} \cdot x_1 + a_{n2} \cdot x_2 + \dots + a_{nn} \cdot x_n = b_n \end{cases}$$

$$(1)$$

Inny możliwy zapis (1) w postaci macierzowej to:

$$A \cdot \vec{x} = \vec{b}$$
 , (2)

gdzie

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} - \text{macierz współczynników układu,}$$
(3)

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} - \text{szukany wektor rozwiązań,}$$
(4)

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix} - \text{wektor wyrazów wolnych.}$$
 (5)

Aby układ był rozwiązywalny, powinien zostać spełniony warunek $\vec{b} \in R(A)$, gdzie R(A) - podprzestrzeń liniowa rozpięta na wektorach kolumnowych macierzy A.

Przy korzystaniu z metody Gaussa-Jordana wykorzystuje się podstawowe operacje arytmetyczne, tak zwane przekształcenia elementarne, jakie są możliwe na macierzach (w tym

przypadku operujemy tylko i wyłącznie na wierszach) tj. mnożenie przez skalar k $(k \neq 0)$, dodawanie ich między sobą, zamiana kolejności wierszy w układzie. Operacje te mają na cel stworzenie macierzy odwrotnej dla macierzy wejściowej.

W celu policzenia macierzy odwrotnej do A budujemy nową macierz:

$$[A|I] , (6)$$

gdzie I jest macierzą jednostkową (macierz kwadratowa wypełniona 0 poza główną przekątną, na której znajdują się 1).

Kolejnym krokiem są odpowiednie operacje elementarne możliwe na jednoczesnych zmianach obu macierzy (A i jednostkowej) mające na celu doprowadzenie macierzy (6) do postaci:

$$[I|B'] . (7)$$

Macierz B ' jest oczekiwanym wynikiem, czyli odwrotną macierzą A , oznaczaną jako A^{-1} .

2. Zadanie do wykonania

2.1. Opis problemu

Jednym z problemów, które można rozwiązać wykorzystując metodę Gaussa-Jordana jest równanie oscylatora harmonicznego, zadane wzorem:

$$\frac{d^2x(t)}{dt^2} = \frac{-k}{m}x(t) = -\omega^2 x(t) , \qquad (8)$$

którego rozwiązanie było tematem zadania.

W zadaniu wykorzystano przybliżenie drugiej pochodnej z równania (8) położenia x w chwili t ilorazem różnicowym:

$$\frac{d^2x(t)}{dt^2} \approx \frac{x(t+\Delta t) - 2x(t) + x(t-\Delta t)}{(\Delta t)^2}$$
(9)

oraz wprowadzono oznaczenia $\Delta t = h$, $x_i = x(ih)$, dzięki którym otrzymano z pierwszego równania iteracyjny przepis pozwalający na wyznaczenie kolejnych x. Finalnie równanie wygląda następująco:

$$x_{i+1} + (\omega^2 h^2 - 2) x_i + x_{i-1} = 0 . (10)$$

Równanie oscylatora, wraz z zadanymi wartościami początkowymi, zapisano w postaci macierzowej (2). Przykładowo dla pierwszych 5 kroków czasowych:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 & 0 \\ 1 & (\omega^{2}h^{2}-2) & 1 & 0 & 0 \\ 0 & 1 & (\omega^{2}h^{2}-2) & 1 & 0 \\ 0 & 0 & 1 & (\omega^{2}h^{2}-2) & 1 \end{bmatrix} \begin{bmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = \begin{bmatrix} A \\ v_{0}h \\ 0 \\ 0 \\ 0 \end{bmatrix} .$$
 (11)

W celu uzyskania jednoznacznego rozwiązania, przyjęto warunki początkowe:

- $\frac{k}{m} = \omega^2 = 1$ stosunek współczynnika *k* do masy ciała,
- $x_0 = A = 1$ wychylenie początkowe ciała,
- $v_0 = 0$ prędkość początkową,

Oraz przyjęto krok całkowania h=0.1.

2.2. Wyniki

Dzięki programowi w języku C korzystającemu z bibliotek numerycznych oraz wykorzystując skrypt Gnuplota (przy zadanym ograniczeniu czasu) możliwe było wygenerowanie następującego wykresu:

Rysunek 1: Wychylenie x(t) uzyskane metodą eliminacji Gaussa-Jordana

Ponieważ z warunków początkowych spodziewano się funkcji o przebiegu podobnym do $\cos(x)$, dlatego skrypt odpowiedzialny za wykres dodatkowo ulepszono dodając funkcję $A\cdot\cos(\omega t)$, która prezentuje się jednocześnie z wynikami numerycznymi. Wyniki te zostały przedstawione w postaci punkcików, ponieważ są dyskretne, natomiast wynik funkcji analitycznej jaką jest - $\cos(x)$ linią ciągłą.

Rysunek 1. pokazuje zależność wychylenia z położenia równowagi dla tego układu na przestrzeni pierwszych 400 kroków czasowych.

3. Wnioski

Analizując rysunek 1. można łatwo zauważyć, że punkty wynikowe niemal idealnie odwzorowują wykres funkcji analitycznej, lekkie odchylenia mieszczą się w granicach tolerancji. Gdyby znaczniej zmniejszono długość kroku czasowego wykres tworzyłby linię ciągłą, spowodowałoby to większe zapotrzebowanie na pamięć, w przypadku stałego przedziału czasowego. W tym przypadku byłaby to relatywnie nieistotna różnica.

Metoda Gaussa-Jordana pozwala w prosty sposób (porównując do np. klasycznego sposobu wykorzystującego dopełnienia algebraiczne, gdzie zapotrzebowanie na nowe dopełnienia byłoby ogromne) na odwracanie macierzy kwadratowych o dużych rozmiarach, a co za tym idzie szybkie i efektywne rozwiązywanie układów równań liniowych.