6.842 Randomness and Computation

April 20, 2022

Lectures on Learning Theory

Lecturer: Ronitt Rubinfield Scribe: Yuchong Pan

1 PAC Learning

The model of learning from random, uniform examples is as follows: Given the example oracle Ex(f) of a function f, pick m i.i.d. random variables x_1, \ldots, x_m uniformly (or from some distribution \mathcal{D} , which might not be known to the learner in general), and call Ex(f) to obtain m random labeled examples $(x_1, f(x_1)), \ldots, (x_m, f(x_m))$; after seeing these examples, the learner outputs a hypothesis h of the function f.

Should we require h = f? This is probably too much to ask. However, we can at least require $\operatorname{dist}(h, f) := \mathbb{P}_{x \sim \mathcal{D}}(h(x) \neq f(x)) \leq \varepsilon$, where $\operatorname{dist}(h, f)$ is also called $\operatorname{error}_{\mathcal{D}}(h)$ with respect to f.

Definition 1. A uniform distribution learning algorithm for a concept class C is an algorithm A that, given $\varepsilon > 0$, $\delta > 0$ and access to Ex(f) for $f \in C$, outputs a function h such that with probability at least $1 - \delta$, error(h) with respect to f is at most ε . This is called probably approximately correct (PAC) learning.

We are interested in the following parameters:

- m, the sample complexity;
- ε , the accuracy parameter;
- δ , the *confidence* parameter;
- the running time, which we hope to be poly(log(domain size), $1/\varepsilon$, $1/\delta$);
- the description of h, which at least should be compact (i.e., $O(\log |\mathcal{C}|)$) and efficient to evaluate; it require $h \in \mathcal{C}$, then this is called proper learning.

Note that the uniform case is a special case of the PAC model. The more general PAC model is given $\text{Ex}_{\mathcal{D}}(f)$ and bounds $\text{error}_{\mathcal{D}}(h)$ with respect to f.

2 Learning Conjunctions

Let \mathcal{C} be the class of conjunctions (i.e., 1-term DNF) over $\{0,1\}^n$. We cannot hope for 0-error from a sub-exponential number of random samples; to see this, note that it is hard to distinguish $f(x) = x_1 \cdots x_n$ and f(x) = F. Algorithm 1 gives a polynomial time sampling algorithm for conjunction learning, where "?" indicates a parameter to be determined.

For x_i in the conjunction, it must be set in the same way in each positive example, so $i \in V$. For x_i not in the conjunction,

$$\mathbb{P}[i \in V] = \mathbb{P}[x_i \text{ is set is the same way in each of the } k \text{ positive examples}] = \frac{1}{2^{k-1}}.$$

By the union bound,

$$\mathbb{P}\left[\text{any }x_i \text{ not in the conjunction survives}\right] \leq \frac{n}{2^{k-1}} \leq \delta,$$

```
1 draw poly(1/\varepsilon) samples

2 estimate \mathbb{P}[f(x)=1] to additive error at most \pm \varepsilon/4 and confidence at least 1-\delta/2

3 if estimate is less than \varepsilon/2 then

4 return h(x)=0

5 (estimate is at least \varepsilon/2; see a new positive example every O(1/\varepsilon) samples)

6 collect? more positive examples

7 V \leftarrow set of indices of variables that are set in the same way in each positive example

8 return h(x) = \bigwedge_{i \in V} x_i^{b_i}, where each b_i indicates if x_i is complemented or not
```

Algorithm 1: A polynomial time sampling algorithm for conjunction learning.

if we pick $k = \log(n/\delta)$. Therefore, if we need $\Omega(\log(n/\delta))$ positive examples, or $\Omega((1/\varepsilon)\log(n/\delta))$ total examples to rule out every x_i not in the conjunction.

3 Occam's Razor

In a high level, Occam's Razor claims the following:

- If we ignore the running time, then learning is easy (with a polynomial number of samples).
- The shortest explanation is the best.

To see the first claim, we consider the brute-force algorithm in Algorithm 2.

```
1 draw M = (1/\varepsilon)(\ln |\mathcal{C}| + \ln |1/\delta|)
2 search over all h \in \mathcal{C} until find one consistent with the samples
3 return h
```

Algorithm 2: A brute-force learning algorithm that demonstrates Occam's Razor.

We say that a function h is bad if error(h) with respect to f is at least ε . For a bad function h, $\mathbb{P}[h]$ is consistent with the samples $0 \le (1 - \varepsilon)^M$.

By the union bound,

 $\mathbb{P}[\text{any bad function } h \text{ is consistent with the samples}] \leq |\mathcal{C}|(1-\varepsilon)^M = |\mathcal{C}|(1-\varepsilon)^{\frac{1}{\varepsilon}\left(\ln|\mathcal{C}| + \ln\left|\frac{1}{\delta}\right|\right)} = \delta.$

Hence, it is unlikely to output a bad hypothesis h. For example, for conjunction learning, this analysis requires $O((1/\varepsilon)(n+1/\delta))$ samples, where Algorithm 1 has a better sample complexity. On the other hand, if we have a *qood* hypothesis h,

(i) we can predict values of f on new random inputs according to distribution \mathcal{D} , since

$$\mathbb{P}_{x \sim \mathcal{D}}[f(x) = h(x)] \ge 1 - \delta;$$

(ii) we can compress the description of samples $(x_1, f(x_1)), (x_2, f(x_2)), \ldots, (x_m, f(x_m))$ from the naïve description which takes $m(\log |D| + \log |R|)$ bits, where D and R are the domain and the range of f, respectively, to the form " x_1, \ldots, x_m plus the description of h" which requires $m \log |D| + \log |\mathcal{C}|$ bits only.

4 Learning via Fourier Representations

In this section, we study learning algorithms that are based on estimating the Fourier representation of a function f.

4.1 Approximating One Fourier Coefficient

Lemma 2. For any $S \subset [n]$, one can approximate $\hat{f}(S)$ to within additive error γ (i.e., $|output - \hat{f}(S)| \leq \gamma$) with probability at least $1 - \delta$ in $O(1/\gamma^2 \log 1/\delta)$ samples.

Proof. Recall that $\hat{f}(S) = 2 \mathbb{P}_{x \in \{0,1\}^n}[f(x) \neq \chi_S(x)] - 1$. Hence, we can approximate $\hat{f}(S)$ by estimating $\mathbb{P}_{x \in \{0,1\}^n}[f(x) \neq \chi_S(x)]$ and applying the Chernoff bound.

4.2 Fourier Concentration and the Low Degree Algorithm

Definition 3. For all $\varepsilon \in (0,1)$ and $n \in \mathbb{N}$, we say that a function $f: \{\pm 1\}^n \to \mathbb{R}$ has $\alpha(\varepsilon, n)$ Fourier concentration (f.c.) if

$$\sum_{\substack{S \subset [n]\\ |S| > \alpha(\varepsilon, n)}} \hat{f}(S)^2 \le \varepsilon.$$

For a Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$, Parseval's identity gives $\sum_{S \subset [n]} \hat{f}(S)^2 = 1$, so having $\alpha(\varepsilon, n)$ -Fourier concentration implies that

$$\sum_{\substack{S \subset [n]\\|S| \le \alpha(\varepsilon, n)}} \ge 1 - \varepsilon.$$

The low degree algorithm, given in Algorithm 3, approximates a Boolean function with d-Fourier concentration, where $d = \alpha(\varepsilon, n)$.

- 1 take $m = O((n^d/\tau)\log(n^d/\delta))$ samples
- 2 foreach $S \subset [n]$ such that $|S| \leq d$ do
- $C_S \leftarrow \text{estimate of } \hat{f}(S)$
- 4 let $h: \{\pm 1\}^n \to \mathbb{R}$ be defined by $h(x) = \sum_{S \subset [n]: |S| \le d} C_S \chi_S(x)$
- **5 return** sign $\circ h$ as hypothesis

Algorithm 3: The low degree algorithm given degree d, accuracy τ and confidence δ .

Proposition 4. If f has d-Fourier concentration with $d = \alpha(\varepsilon, n)$, then $\mathbb{E}_{x \in \{0,1\}^n}[(f(x) - h(x))^2] \le \varepsilon + \tau$ with probability at least $1 - \delta$.

Proof. First, we claim that each low degree Fourier Coefficient is well approximated, i.e., with probability at least $1 - \delta$, we have $|C_S - \hat{f}(S)| \le \gamma$ for all $S \subset [n]$ with $|S| \le d$, where $\gamma = \sqrt{\tau/n^d}$. This can be proved using the Chernoff bound and the union bound.

Second, we show that if all low degree Fourier coefficients are well approximated, then h has a low ℓ_2 -error. Suppose $|C_S - \hat{f}(S)| \leq \gamma$ for all $S \subset [n]$ such that $|S| \leq d$. Let $g : \{\pm 1\}^n \to \mathbb{R}$ be defined by

$$g(x) = f(x) - h(x).$$

By the linearity of the Fourier transform, for all $S \subset [n]$,

$$\hat{g}(S) = \hat{f}(S) - \hat{h}(S).$$

For all $S \subset [n]$ with |S| > d, we have $\hat{h}(S) = 0$, so $\hat{g}(S) = \hat{f}(S)$. For all $S \subset [n]$ with $|S| \leq d$, we have $|\hat{g}(S)| \leq \gamma$, so $\hat{g}(S)^2 \leq \gamma^2$. Therefore,

$$\mathbb{E}_{x \in \{\pm 1\}^n} \left[(f(x) - h(x))^2 \right] = \mathbb{E} \left[g(x)^2 \right] = \sum_{S \subset [n]} \hat{g}(S)^2 \qquad \text{(Parseval's identity)}$$

$$= \sum_{\substack{S \subset [n] \\ |S| \le d}} \hat{g}(S)^2 + \sum_{\substack{S \subset [n] \\ |S| > d}} \hat{g}(S)^2$$

$$\leq \sum_{\substack{S \subset [n] \\ |S| \le d}} \gamma^2 + \sum_{\substack{S \subset [n] \\ |S| > d}} \hat{f}(S)^2$$

$$\leq \binom{n}{d} \cdot \gamma^2 + \varepsilon \qquad \text{(by Fourier concentration)}$$

$$\leq \tau + \varepsilon.$$

This completes the proof.

Proposition 5. Let $f: \{\pm 1\}^n \to \{\pm 1\}$. Let $h: \{\pm 1\}^n \to \mathbb{R}$. Then

$$\mathbb{P}_{x \in \{\pm 1\}^n}[f(x) \neq \text{sign}(h(x))] \le \mathbb{E}_{x \in \{\pm 1\}^n}[(f(x) - h(x))^2]$$

Proof. Recall that

$$\mathbb{E}_{x \in \{\pm 1\}^n} \left[(f(x) - h(x))^2 \right] = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} (f(x) - h(x))^2, \tag{1}$$

$$\mathbb{P}_{x \in \{\pm 1\}^n} [f(x) \neq \text{sign}(h(x))] = \frac{1}{2^n} \sum_{x \in \{\pm 1\}^n} \mathbb{1}_{f(x) \neq \text{sign}(h(x))}. \tag{2}$$

We compare (1) and (2) term by term. Let $x \in \{\pm 1\}^n$. If $f(x) = \operatorname{sign}(h(x))$, then $\mathbbm{1}_{f(x) \neq \operatorname{sign}(h(x))} = 0 \leq (f(x) - h(x))^2$. If $f(x) \neq \operatorname{sign}(h(x))$, then $\mathbbm{1}_{f(x) \neq \operatorname{sign}(h(x))} = 1 \leq (f(x) - h(x))^2$; see Figure 1 for an illustration.

$$\begin{array}{cccc}
-1 & 0 & +1 \\
h(x) & f(x) \\
& & \geq 1
\end{array}$$

Figure 1: Illustrating the proof of Proposition 5.

Theorem 6. If a concept class C has Fourier concentration $d = \alpha(\varepsilon, n)$, then there exists a uniform distribution learning algorithm for C with $q = O((n^d/\varepsilon) \log(n^d/\delta))$ samples; i.e., this algorithm gets q samples and with probability at least $1 - \delta$ outputs a hypothesis h' such that

$$\underset{x \in \{\pm 1\}^n}{\mathbb{P}} \left[f(x) \neq h'(x) \right] \leq 2\varepsilon.$$

Proof. Run the low degree algorithm with $\tau = \varepsilon$. By Proposition 4, we get a hypothesis h such that $\mathbb{E}_{x \in \{\pm 1\}^n}[(f(x) - h(x))^2] \le \varepsilon + \varepsilon = 2\varepsilon$. Let $h' = \text{sign } \circ h$. By Proposition 5, h' has error at most 2ε with respect to f. This completes the proof.

Following are examples of functions that have $\alpha(\varepsilon, n)$ -Fourier concentration.

(i) Any function $f: \{\pm 1\}^n \to \mathbb{R}$ that depends on at most k variables has

$$\sum_{\substack{S \subset [n]\\|S| > k}} \hat{f}(S)^2 = 0.$$

(ii) Let $T = \{i_1, \ldots, i_k\} \subset [n]$ be such that |T| = k. Let AND: $\{\pm 1\}^n \to \{\pm 1\}$ be defined by

$$\mathsf{AND}(x) = \left\{ \begin{array}{ll} -1, & \text{if } x_i = -1 \text{ for all } i \in T, \\ 1, & \text{otherwise.} \end{array} \right.$$

We claim that AND has $\log(4/\varepsilon)$ -Fourier concentration. Note $\widehat{\mathsf{AND}}(S) = 0$ for all $S \subset [n]$ with |S| > |T|. If $|T| \le \log(4/\varepsilon)$, then we are done by definition. If $|T| > \log(4/\varepsilon)$, then

$$\widehat{\mathsf{AND}}(\emptyset)^2 = (1 - 2 \,\mathbb{P}\left[f(x) \neq \chi_\emptyset(x)\right])^2 = \left(1 - 2 \cdot \frac{1}{2^{|T|}}\right)^2 > 1 - \varepsilon.$$

Therefore, AND has 0-Fourier concentration.

(iii) Let $T = \{i_1, \dots, i_k\} \subset [n]$ be such that |T| = k. Let $\overline{\mathsf{AND}} : \{\pm 1\}^n \to \{\pm 1\}$ be defined by

$$\overline{\mathsf{AND}}(x) = \left\{ \begin{array}{ll} 1, & \text{if } x_i = -1 \text{ for all } i \in T, \\ -1, & \text{otherwise.} \end{array} \right.$$

Let $f: \{\pm 1\}^n \to \{0,1\}$ be defined by

$$f(x) = \begin{cases} 1, & \text{if } x_i = -1 \text{ for all } i \in T, \\ 0, & \text{otherwise,} \end{cases}$$
$$= \frac{1 - x_{i_1}}{2} \cdot \frac{1 - x_{i_2}}{2} \cdot \cdot \cdot \frac{1 - x_{i_k}}{2}$$
$$= \frac{1}{2^k} \sum_{S \in T} (-1)^{|S|} \chi_S(x).$$

Note that all Fourier coefficients $\hat{f}(S)$ for $S \not\subset T$ are 0. Then

$$\overline{\mathsf{AND}}(x) = 2f(x) - 1 = -1 + \frac{2}{2^k} + \sum_{\substack{S \subset T \\ S \neq \emptyset}} \frac{(-1)^{|S|}}{2^k} \chi_S(x).$$

(iv) **Decision trees.** Consider a decision tree T, e.g., Figure 2. For each leaf ℓ of T, let V_{ℓ} denote the set of indices of variables visited on the path from the root to leaf ℓ , and let $f_{\ell}: \{\pm 1\}^n \to \{0,1\}$ be defined by

$$f_{\ell}(x) = \prod_{i \in V_{\ell}} \frac{1 \pm x_i}{2}$$
 ("±" denotes a left turn or a right turn)

$$= \frac{1}{2^{|V_\ell|}} \sum_{S \subset V_\ell} (-1)^{\# \text{ left turns taken in } S} \chi_S.$$

Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be defined by

$$f(x) = \sum_{\ell: \text{ leaf of } T} f_{\ell}(x) \operatorname{val}(\ell).$$

Note that for each $x \in \{\pm 1\}^n$, exactly one of the values $f_{\ell}(x)$ is 1 for leaves ℓ of T, and all others are 0. Moreover, for each leaf ℓ of T, the number of variables on which f_{ℓ} depends is at most the depth of ℓ . By the linearity of the Fourier transform,

$$\hat{f}(S) = \sum_{\ell: \text{ leaf of } T} \widehat{f}_{\ell}(S) \operatorname{val}(\ell).$$

Therefore, $\hat{f}(S) = 0$ for all $S \subset [n]$ such that |S| is greater than the depth of T.

Figure 2: A decision tree.

(v) Constant depth circuits. Recall that a Boolean circuit is a DAG whose vertices are gates which represent operations (e.g., \land , \lor , \neg), constants (1,0) and variables (x_1, \ldots, x_n) . We allow each operation to have an unbounded number of inputs; the \neg gate can have only one input. Can we compute the parity (XOR) of n bits in a constant depth with a polynomial-size input for each operation? The answe is "no," which follows from the switching lemma by Furst, Saxe and Sipser.

Theorem 7 (Hastad, Linial, Mansour and Nisan). For any function f computable via a size-s depth-d circuit,

$$\sum_{\substack{S \subset [n] \\ |S| > t}} \hat{f}(S)^2 \le \alpha,$$

where $t = O(\log(s/\alpha))^{d-1}$.

Taking s = poly(n), d = O(1) and $\alpha = O(\varepsilon)$ implies $t = O(\log^d(n/\varepsilon))$. Therefore, the low degree algorithm gives an $n^{O(\log^d(n/\varepsilon))}$ sample algorithm for learning.

(vi) Learning half-spaces.

Definition 8. For $w \in \mathbb{R}^n$ and $\theta \in \mathbb{R}$, the function $h : \{\pm 1\}^n \to \{\pm 1\}$ defined by $h(x) = \text{sign}(w \cdot x - \theta)$ is called a half-space function.

Theorem 9. A half-space function $h: \{\pm 1\}^n \to \{\pm 1\}$ has Fourier concentration $\alpha(\varepsilon) = c/\varepsilon^2$ for some constant c.

Corollary 10. The low degree algorithm learns half-spaces with $n^{O(1/\varepsilon^2)}$ samples.

4.3 Noise Sensitivity

Definition 11. For $\varepsilon \in (0, 1/2)$, the noise operator $N_{\varepsilon}(x)$ randomly flips each bit of x with probability ε , given $x \in \{\pm 1\}^n$.

Definition 12. The noise sensitivity of a Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ is defined to be

$$NS_{\varepsilon}(f) = \mathbb{P}_{\substack{x \in \{\pm 1\}^n \text{ noise}}} \left[f(x) \neq f(N_{\varepsilon}(x)) \right].$$

Following are examples of the noise sensitivity of a Boolean function.

- (i) If $f(x) = x_1$, then $NS_{\varepsilon}(f) = \varepsilon$.
- (ii) If $f(x) = x_1 \cdots x_k$, then

$$\begin{split} \operatorname{NS}_{\varepsilon}(f) &= \mathbb{P}[f(x) = \mathsf{F}, f(N_{\varepsilon}(x) = \mathsf{T})] + \mathbb{P}[f(x) = \mathsf{T}, f(N_{\varepsilon}(x) = \mathsf{F})] \\ &= 2 \, \mathbb{P}[f(x) = \mathsf{T}, f(N_{\varepsilon}(x) = \mathsf{F})] \\ &= 2 \cdot \frac{1}{2k} \cdot (1 - (1 - \varepsilon)^k). \end{split}$$

Therefore, if $\varepsilon \ll 1/k$, then $NS_{\varepsilon}(f) \approx \varepsilon k/2^{k-1}$; if $\varepsilon \gg 1/k$, then $NS_{\varepsilon}(f) \approx (1 - e^{-\varepsilon k})/2^{k-1}$.

(iii) If
$$f(x) = \text{Maj}(x_1, \dots, x_n)$$
, then $NS_{\varepsilon}(f) = O(\sqrt{\varepsilon})$.

To see this, note that Maj(x) corresponds to a random walk on a line starting at 0, and that the location corresponds to the sum of the x_i 's so far.

Fact 13. If $X_1, \ldots, X_n \in \{\pm 1\}$ are i.i.d random variables, then $\mathbb{E}[|X_1 + \ldots + X_n|] = \sqrt{n}$, and (informally) $|X_1 + \ldots + X_n|$ is likely to be close to \sqrt{n} .

Therefore, $N_{\varepsilon}(x)$ corresponds to a random walk on εn bits, where each flip displaces by ± 2 . By Fact 13, the expected displacement is $2\sqrt{\varepsilon n}$.

Given $x \in \{\pm 1\}^n$, we consider the following process:

- 1. Talk a walk specified by x.
- 2. Continue the walk according to $2N_{\varepsilon}(x)$.

Pretend that the first walk leaves us at \sqrt{n} . By Markov's inequality,

$$\mathbb{P}[\text{the second walk takes us accross } 0] = \frac{1}{2} \, \mathbb{P}[\text{the second displacement is greater than } \sqrt{n}]$$

$$= \frac{1}{2} \cdot \frac{\mathbb{E}[\text{the second displacement}]}{\sqrt{n}}$$

$$= \frac{1}{2} \cdot \frac{2\sqrt{\varepsilon n}}{\sqrt{n}} = \sqrt{\varepsilon}.$$

(iv) Linear threshold functions (half-spaces).

Theorem 14. If f is a linear threshold function (i.e., a half-space), then $NS_{\varepsilon}(f) < 8.8\sqrt{\varepsilon}$.

(v) Parity functions.

Proposition 15. Let $S \subset [n]$ be such that |S| = k. Then

$$NS_{\varepsilon}(\chi_S) = \frac{1 - (1 - 2\varepsilon)^k}{2}.$$

(vi) Any function.

Theorem 16. For any $f : \{\pm 1\}^n \to \{\pm 1\}$,

$$NS_{\varepsilon}(f) = \frac{1}{2} - \frac{1}{2} \sum_{S \subset [n]} (1 - 2\varepsilon)^{|S|} \hat{f}(S)^{2}.$$

The proof of Theorem 16 is in homework.

Next, we show the relation between noise sensitivity and Fourier concentration.

Theorem 17. For any $f : \{\pm 1\}^n \to \{\pm 1\}$ and $\gamma \in (0, 1/2)$,

$$\sum_{\substack{S \subset [n] \\ |S| \geq \frac{1}{\gamma}}} \hat{f}(S)^2 < 2.32 \operatorname{NS}_{\gamma}(f).$$

Proof. We have

$$2 \operatorname{NS}_{\gamma}(f) = 1 - \sum_{S \subset [n]} (1 - 2\gamma)^{|S|} \hat{f}(S)^{2}$$
 (Theorem 16)
$$= \sum_{S \subset [n]} \left(\hat{f}(S)^{2} - (1 - 2\gamma)^{|S|} \hat{f}(S)^{2} \right)$$
 (Boolean Parseval's identity)
$$= \sum_{S \subset [n]} \left(1 - (1 - 2\gamma)^{|S|} \right) \hat{f}(S)^{2}$$

$$\geq \sum_{\substack{S \subset [n] \\ |S| \geq \frac{1}{\gamma}}} \left(1 - (1 - 2\gamma)^{\frac{1}{\gamma}} \right) \hat{f}(S)^{2}$$

$$> \sum_{\substack{S \subset [n] \\ S| \geq \frac{1}{\gamma}}} (1 - e^{-2}) \hat{f}(S)^{2}.$$

Therefore,

$$\sum_{\substack{S \subset [n]\\|S| \ge \frac{1}{\gamma}}} \hat{f}(S)^2 \le \operatorname{NS}_{\gamma}(f) \left(\frac{1}{1 - e^{-2}}\right) < 2.32 \operatorname{NS}_{\gamma}(f).$$

This completes the proof.

Corollary 18. For any half-space $h: \{\pm 1\}^n \to \{\pm 1\}$,

$$\sum_{\substack{S \subset [n] \\ |S| \ge O(1/\varepsilon^2)}} \hat{f}(S)^2 \le \varepsilon.$$

Therefore, one can learn any half-space from $n^{O(1/\varepsilon^2)}$ random examples.

Corollary 19. Any function of k half-spaces can be learned with $n^{O(k^2/\varepsilon^2)}$ samples.

4.4 Learning Heavy Fourier Coefficients

Given $\theta > 0$ and black box access to $f: \{\pm 1\}^n \to \{\pm 1\}$, we want to

- (i) output all coefficients $S \subset [n]$ such that $|\hat{f}(S)| \geq \theta$;
- (ii) only output coefficients $S \subset [n]$ such that $|\hat{f}(S)| \geq \theta/2$.

The main idea is exhaustive search with good pruning. The search tree consists of n levels, each representing a variable x_i for $i \in [n]$. For each level $i \in [n]$, going left means $x_i \in S$, and going right means $x_i \notin S$. Informally, we only go down paths with lots of "weights," and we output leaves reached at the bottom level.

Fix $k \in \{0, ..., n\}$ representing the current level of search. Fix $S_1 \subset [k]$ representing the current node of search. Let $f_{k,S_1} : \{\pm 1\}^{n-k} \to \mathbb{R}$ be defined by

$$f_{k,S_1}(x) = \sum_{T \subset \{k+1,\dots,n\}} \hat{f}(S_1 \cup T_2) \chi_{T_2}(x).$$

Note that we could replace χ_{T_2} with $\chi_{S_1 \cup T_2} = \chi_{S_1} \cdot \chi_{T_2}$, but χ_{S_1} remains the same. If k = 0, then

$$f_{0,\emptyset}(x) = \sum_{T_2 \subset [n]} \hat{f}(T_2) \chi_{T_2}(x) = f(x).$$

On the other hand, if k = n, then for any $S_1 \subset [n]$,

$$f(n, S_1)(x) = \sum_{T_2 \subset \emptyset} \hat{f}(S_1 \cup T_2) \chi_{T_2}(x) = \hat{f}(S_1).$$

The plan is to only go down paths with $\mathbb{E}[f_{k,S_1}(x)^2] \geq \theta^2$. There are several questions to answer:

- (i) Can we compute it?
- (ii) Does it bring us to right leaves? In other words, do we get to all heavy leaves, and do we get to junks (i.e., light leaves)?
- (iii) How many paths do we take? In other words, are there a lot of dead ends, and is the running time good?

First, we show that there are not too many paths.

Lemma 20. Let $f : \{\pm 1\}^n \to \{\pm 1\}$.

- (i) At most $1/\theta^2$ sets $S \subset [n]$ satisfy $|\hat{f}(S)| \ge \theta$.
- (ii) For all $k \in \{0, ..., n\}$, at most $1/\theta^2$ functions f_{k,S_1} have $\mathbb{E}_{x \in \{+1\}^{n-k}}[f_{k,S_1}(x)^2] \ge \theta^2$.

Lemma 20 implies that our algorithm explores at most $O(1/\theta^2)$ nodes of the search tree.

Proposition 21. For any $k \in \{0, ..., n\}$ and $S_1 \subset [n]$,

$$\mathbb{E}_{x \in \{\pm 1\}^{n-k}} \left[f_{k,S_1}(x)^2 \right] = \sum_{T_2 \subset \{k+1,\dots,n\}} \hat{f} \left(S_1 \cup T_2 \right)^2.$$

Proof. we have

$$\mathbb{E}_{x \in \{\pm 1\}^{n-k}} \left[f_{k,S_1}(x)^2 \right] = \mathbb{E}_{x \in \{\pm 1\}^{n-k}} \left[\left(\sum_{T_2 \subset \{k+1,\dots,n\}} \hat{f} \left(S_1 \cup T_2 \right) \chi_{T_2} \right)^2 \right] \\
= \mathbb{E}_{x \in \{\pm 1\}^{n-k}} \left[\sum_{T_2, T_2' \subset \{k+1,\dots,n\}} \hat{f} \left(S_1 \cup T_2 \right) \hat{f} \left(S_1 \cup T_2' \right) \chi_{T_2}(x) \chi_{T_2'}(x) \right] \\
= \sum_{T_2, T_2' \subset \{k+1,\dots,n\}} \hat{f} \left(S_1 \cup T_2 \right) \hat{f} \left(S_1 \cup T_2' \right) \mathbb{E}_{x \in \{\pm 1\}^{n-k}} \left[\chi_{T_2}(x) \chi_{T_2'}(x) \right].$$

Note that

$$\mathbb{E}_{x \in \{\pm 1\}^{n-k}} \left[\chi_{T_2}(x) \chi_{T_2'}(x) \right] = \begin{cases} 0, & \text{if } T_2 \neq T_2', \\ 1, & \text{if } T_2 = T_2'. \end{cases}$$

Therefore,

$$\mathbb{E}_{x \in \{\pm 1\}^{n-k}} \left[f_{k,S_1}(x)^2 \right] = \sum_{T_2 \subset \{k+1,\dots,n\}} \hat{f} \left(S_1 \cup T_2 \right)^2.$$

This completes the proof.

Proof of Lemma 20. (i) By the Boolean Parseval's identity,

$$1 = \mathop{\mathbb{E}}_{x \in \{\pm 1\}^n} \left[f(x)^2 \right] = \sum_{S \subset [n]} \hat{f}(S)^2.$$

Therefore, if more than $1/\theta^2$ sets $S \subset [n]$ had $|\hat{f}(S)| \geq \theta$, then

$$\sum_{S \subset [n]} \hat{f}(S)^2 > \frac{1}{\theta} \cdot \theta^2 = 1,$$

a contradiction.

(ii) Let $k \in \{0, ..., n\}$.

Therefore,

$$1 = \sum_{S \subset [n]} \hat{f}(S)^2$$
 (Boolean Parseval's identity)

$$= \sum_{S_1 \subset [k]} \sum_{T_2 \subset \{k+1,\dots,n\}} \hat{f}(S_1 \cup T_2)^2$$

$$= \sum_{S_1 \subset [k]} \mathbb{E}_{x \in \{\pm 1\}^{n-k}} \left[f_{k,S_1}(x)^2 \right]$$
 (Proposition 21)

Therefore, at most $1/\theta^2$ sets $S_1 \subset [k]$ have $\mathbb{E}_{x \pm \{\pm 1\}^{n-k}}[f_{k,S_1}(x)^2] \geq \theta^2$.

Second, we show that the algorithm does not miss out heavy Fourier coefficients. To see this, for any $k \in \{0, ..., n\}$ and $S_1 \subset [k]$, if there exists $T_2^* \subset \{k+1, ..., n\}$ such that $|\hat{f}(S_1 \cup T_2^*)| > \theta$, then Proposition 21 implies that

$$\mathbb{E}_{x \in \{\pm 1\}^n} \left[f_{k,S_1}(x)^2 \right] = \sum_{T_2 \subset \{k+1,\dots,n\}} \hat{f} \left(S_1 \cup T_2 \right)^2 \ge \hat{f} \left(S_! \cup T_2^* \right) \ge \theta^2.$$

To avoid outputting junks (i.e., light Fourier coefficients), we add a simple fix to the algorithm: For each candidate to S, estimate its Fourier coefficient and make sure it is big enough before outputting it.

Lemma 22. For $x \in \{\pm 1\}^{n-k}$,

$$f_{k,S_1}(x) = \mathbb{E}_{y \in \{\pm 1\}^k} [f(yx)\chi_{S_1}(y)],$$

where yx denotes the concatenation operation.

By Lemma 22, we can estimate $f_{k,S_1}(x)$ by picking random y, outputting the average and using the Chernoff bound.

Proof. Let $x \in \{\pm 1\}^{n-k}$. Then

$$f(yx) = \sum_{T \subset [n]} \hat{f}(T)\chi_T(yx).$$

Since $T = T_1 \cup T_2$ where $T_1 \subset [k]$ and $T_2 \subset \{k+1,\ldots,n\}$, then $\chi_T(yx) = \chi_{T_1}(y)\chi_{T_2}(x)$. Therefore,

$$\mathbb{E}_{y \in \{\pm 1\}^k} [f(yx)\chi_{S_1}(y)] = \mathbb{E}_{y \in \{\pm 1\}^k} \left[\sum_{T_1 \subset [k]} \sum_{T_2 \subset \{k+1,\dots,n\}} \hat{f}(T_1 \cup T_2) \chi_{T_1}(y) \chi_{T_2}(x) \chi_{S_1}(y) \right] \\
= \sum_{T_1 \subset [k]} \sum_{T_2 \subset \{k+1,\dots,n\}} \hat{f}(T_1 \cup T_2) \chi_{T_2}(x) \mathbb{E}_{y \in \{\pm 1\}^k} [\chi_{T_1}(y)\chi_{S_1}(y)].$$

Note that

$$\mathbb{E}_{y \in \{\pm 1\}^k} \left[\chi_{T_1}(y) \chi_{S_1}(y) \right] = \begin{cases} 0, & \text{if } T_1 \neq S_1, \\ 1, & \text{if } T_1 = S_1. \end{cases}$$

Therefore,

$$\mathbb{E}_{y \in \{\pm 1\}^k} \left[f(yx) \chi_{S_1}(y) \right] = \sum_{T_2 \subset \{k+1, \dots, n\}} \hat{f} \left(S_1 \cup T_2 \right) \chi_{T_2}(x) = f_{k, S_1}(x).$$

This completes the proof.

Now we are ready to summarize the full algorithm, called the Kushilevitz-Mansour algorithm, in Algorithm 4.

The Kushilevitz-Mansour algorithm has the following applications:

- (i) Learn decision trees of size $\leq t$ (not just small depth);
- (ii) functions of small L_1 -norm, where the L_1 -norm of a function $f: \{\pm 1\}^n \to \{\pm 1\}$ is defined to be $L_1(f) = \sum_{S \subset [n]} |\hat{f}(S)|$ (by setting $\theta \leftarrow \varepsilon/L_1(f)$).

```
1 if k=n then (leaf)
2 if the \ \theta/4-additive estimate of \hat{f}(S_1) is at least 3/4 then
3 return S_1
4 else if \mathbb{E}_{x\in\{\pm 1\}^{n-k}}[f_{k,S_1\cup\{k+1\}}(x)^2] \geq \theta^2/2 then (check left subtree)
5 recurse on (k+1,S_1\cup\{k+1\})
6 else if \mathbb{E}_{x\in\{\pm 1\}^{n-k}}[f_{k,S_1}(x)^2] \geq \theta^2/2 then (check right subtree)
7 recurse on (k+1,S_1)
```

Algorithm 4: The Kushilevitz-Mansour algorithm, given the current level $k \in \{0, ..., n\}$ and the current prefix $S_1 \subset [n]$.

5 Monotone Functions

Definition 23. We define \leq to be a partial order over $\{\pm 1\}^n$ such that $x \leq y$ if and only if $x_i \leq y_i$ for all $i \in [n]$.

Definition 24. A Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$ is monotone if $f(x) \leq f(y)$ for all $x, y \in \{\pm 1\}^n$ with $x \leq y$.

Are monotone functions learnable? Occam's Razor implies that $O(\log |\mathcal{C}|)$ samples suffice, where \mathcal{C} is the class of monotone functions. We have the following lower bound on $|\mathcal{C}|$: Consider slice functions which have values +1 on level greater than n/2 in the Boolean hypercube, values -1 on level less than n/2, and arbitrary values on level n/2. Then slice functions are all monotone. There are $\binom{n}{n/2}$ nodes on level n/2, so there are $2^{\binom{n}{n/2}}$ monotone functions. Therefore, the sample complexity implied by Occam's Razor is $O(\binom{n}{n/2}) = O(2^n/\sqrt{n})$. In homework, we shall show that $2^{O(\sqrt{n})}$ samples suffice.

We show that monotone functions have weak agreement with some dictator function.

Theorem 25. For any monotone Boolean function $f: \{\pm 1\}^n \to \{\pm 1\}$, there exists $g \in S:= \{\pm 1, x_1, x_2, \ldots, x_n\}$ such that

$$\mathbb{P}_{x \in \{\pm 1\}^n}[f(x) = g(x)] \ge \frac{1}{2} + \Omega\left(\frac{1}{n}\right).$$

Note that if we add the majority function to S, then we can get $1/2 + O(1/\sqrt{n})$. Theorem 25 suggests the following learning algorithm: Estimate the agreement of f with each member of S, and output the best.

If f has weak agreement with +1 or -1, then we are done. Otherwise, $\mathbb{P}[f(x)=1] \in [1/4,3/4]$. Consider a "graphic" view of the Boolean hypercube in Figure 3, where vertices with value 1 are colored red and vertices with value -1 are colored blue.

Definition 26. Let $f: \{\pm 1\}^n \to \{\pm 1\}$ be a monotone Boolean function. The *influence of* f at the i^{th} direction is defined to be

$$\mathrm{Inf}_i(f) = \frac{\# \text{ red-blue edges in the } i^{\mathrm{th}} \text{ direction}}{2^{n-1}} = \underset{x \in \{\pm 1\}^n}{\mathbb{P}} \left[f(x) \neq f\left(x^{\oplus i}\right) \right],$$

where $x^{\oplus i}$ is the vector obtained by flipping the i^{th} bit in x. The influence of f is defined to be

$$\operatorname{Inf}(f) = \frac{\# \text{ red-blue edges}}{2^n} = \sum_{i=1}^n \operatorname{Inf}_i(f).$$

Figure 3: A "graphic" view of the Boolean hypercube, where vertices with value 1 are colored red and vertices with value -1 are colored blue.

Theorem 27. Any monotone Boolean function has $Inf_i(f) = \hat{f}(\{i\})$.

Theorem 28. The majority function $f(x) := sign(\sum_{i=1}^{n} x_i)$, where n is odd, maximizes the influence among monotone functions.

Theorems 27 and 28 will be proved in homework. By Theorem 27, any monotone Boolean function f has

$$\operatorname{Inf}_{i}(f) = \hat{f}(\{i\}) = 2 \underset{x \in \{\pm 1\}^{n}}{\mathbb{P}} \left[f(x) = \chi_{\{i\}}(x) \right] - 1 = 2 \underset{x \in \{\pm 1\}^{n}}{\mathbb{P}} \left[f(x) = x_{i} \right] - 1.$$

Therefore, showing $\operatorname{Inf}_i(f) \ge \Omega(1/n)$ is equivalent to showing

$$\mathbb{P}_{x\in\{\pm 1\}^n} \ge \frac{1}{2} + \frac{\operatorname{Inf}_i(f)}{2} = \frac{1}{2} + \Omega\left(\frac{1}{n}\right).$$

Hence, such an index $i \in [n]$ would prove Theorem 25.

We introduce the *canonical path argument*, which proceeds as follows:

- (i) Define the canonical path for every red-blue pair of vertices (which must cross at least one red-blue edge).
- (ii) Show an upper bound on the number of canonical paths passing through any edge (called bounding the congestion).
- (iii) Conclude a lower bound on the number of red-blue edges.

First, we define the canonical path for every red-blue pair of vertices.

Definition 29. For all $(x, y) \in \{0, 1\}^n \times \{0, 1\}^n$ such that x is red and y is blue, the *canonical path* from x to y is defined by the following procedure: Scan bits from left to right, and flip where needed. Each flip corresponds to a step in the canonical path (in the undirected Boolean hypercube).

Note that if x is red and y is blue, then the canonical path from x to y must include some red-blue edge. Recall that $\mathbb{P}[f(x) = 1] \in [1/4, 3/4]$, then the number of red-blue (x, y) pairs that have canonical paths is at least

$$\left(\frac{1}{4} \cdot 2^n\right) \cdot \left(\frac{1}{4} \cdot 2^n\right) = \frac{1}{16} \cdot 2^{2n}.$$

Second, we show an upper bound on the number of canonical paths passing through any (red-blue) edge. Note that any red-blue pair (x, y) taking edge $(u, u^{\oplus i})$ must have

$$y_1 \dots y_{i-1} y_i = u_1 \dots u_{i-1} \overline{u_i},$$

$$x_i x_{i+1} \dots x_n = u_i u_{i+1} \dots u_n.$$

Hence, we can pick y_{i+1}, \ldots, y_n and x_1, \ldots, x_{i-1} freely, so there are at most 2^n total choices. Third, since each red-blue canonical path crosses at least one red-blue edge,

(# red-blue edges) \cdot (max # canonical paths using each edge) \geq # red-blue canonical paths.

Therefore, the number of red-blue edges is at least

$$\frac{\frac{1}{16} \cdot 2^{2n}}{2^n} = \frac{1}{16} \cdot 2^n.$$

It follows that there exists $i \in [n]$ such that there exist at least $2^n/(16n)$ red-blue edges in the i^{th} direction, so

$$2 \underset{x \in \{\pm 1\}^n}{\mathbb{P}} [f(x) = x_i] - 1 = \hat{f}(\{i\}) = \operatorname{Inf}_i(f) \ge \frac{\frac{2^n}{16n}}{2^{n-1}} = \frac{1}{8n}.$$

This proves that there exists $i \in [n]$ such that $\mathbb{P}_{x \in \{\pm 1\}^n}[f(x) = x_i] \ge 1/2 + 1/(16n)$.

6 Weak and Strong Learning

Definition 30. An algorithm \mathcal{A} weakly PAC learns a concept class \mathcal{C} if for any $C \in \mathcal{C}$ and distribution \mathcal{D} , there exists $\gamma > 0$ such that for all $\delta > 0$, with probability at least $1 - \delta$, given Ex(C), \mathcal{A} outputs h such that

$$\underset{x \sim \mathcal{D}}{\mathbb{P}}[h(x) = C(x)] \ge \frac{1}{2} + \frac{\gamma}{2}.$$
 (3)

Note that we used to ask for $\mathbb{P}_{x \sim \mathcal{D}}[h(x) = C(x)] \geq 1 - \varepsilon$ for all $\varepsilon > 0$; this is called *(strong) PAC learning.*

Theorem 31. If a concept class C can be weakly learned on any distribution D, then C can be (strongly) learned, i.e., with error at most ε for all $\varepsilon > 0$.

We are interested in the dependence on γ , δ and ε .