20210216A

1. **MM**

A company that produces hand sanitizer want to prepare 1000 liters of sanitizer of type A and 800 liters of type B. To produce a liter of A it must blend 200 ml of semifinished product 1 and 500 ml semifinished product 2, while to produce a liter of B the recipe is 600 ml of 1 and 100 ml of 2. The company has a current stock of semifinished products that equals K_1 and K_2 ml, respectively. However, if the stock is not enough, the company can either buy more semifinished products or to produce less liters of A and B. Buying a liter of semifinished products 1 and 2 cost, repectively, c_1 and c_2 Euro. Producing one less liter of A or B corresponds to a loss of l_A an l_B Euro, respectively. Minimize the costs respecting the production constraints.

Notes: (not included in XML)

• Solution:

- $-x_A, x_B$: liters of sanitizer of type A and B produced
- $-s_A, s_B$: liters of sanitizer of type A and B not produced
- $-y_1, y_2$: liters of semifinished product 1 and 2 bought

$$\begin{aligned} & \min \quad c_1 y_1 + c_2 y_2 + l_A s_A + l_B s_B \\ & x_A + s_A &= 1000 \\ & x_B + s_B &= 800 \\ & 200 x_A + 600 x_B &\leq K_1 + 1000 y_1 \\ & 500 x_A + 100 x_B &\leq K_2 + 1000 y_2 \\ & x_A, x_B, s_A, s_B, y_1, y_2 &\geq 0 \end{aligned}$$

2. **PLC**

Consider the following LP problem:

$$\begin{array}{lll} \max & -5x_1 + 5x_2 + 13x_3 \\ & -x_1 + x_2 + 3x_3 + x_4 & = 20 \\ & 12x_1 + 4x_2 + 10x_3 + x_5 & = 90 \\ & x_1, x_2, x_3, x_4, x_5 & \geq 0 \end{array}$$

The optimal solution is x = (0, 20, 0, 0, 10) with value 100. Given that $B^{-1} = \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix}$, answer the following questions. Provide

motivations to support your arguments:

- what happens to the optimal base if b_1 , the right hand side of the first constraint, becomes 24?
- what happens to the optimal base if c_3 , the coefficient of variable x_3 becomes 10?

The question is whether the current solution changes, we are not interested in eventual new optimal solutions.

Notes: (not included in XML)

• Solution:

If b_1 changes, we need to understand if the current base is still optimal. This happens when:

$$B^{-1}(b+\Delta b) \ge 0 \Rightarrow \begin{bmatrix} 1 & 0 \\ -4 & 1 \end{bmatrix} \begin{bmatrix} 20+\Delta b_1 \\ 90 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow -20 \le \Delta b_1 \le 2.5 \Rightarrow 0 \le b_1 \le 22.5$$
. Therefore if b_1 becomes 24 then the optimal base changes.

The variable x_3 is not in the optimal base. If c_3 decreased its coefficient from 13 to 10, x_3 becomes even less attractive for the optimization, and therefore the solution does not change.

3. **DP**

Use Dynamic Programming to solve the following Knapsack Problem: weight $w_j = (4, 2, 3)$, profit $p_j = (2, 1, 2)$, and capacity C = 5. Use a Dynamic Programming where the **states** correspond to the possible **profit levels**. (Tip: you can use M for infinity and E for empty set). Report all the iterations giving the states and their values. Report the optimal solution.

Notes: (not included in XML)

• Solution:

Upper bound on profit: $P = \sum_{j} p_{j} = 5$

	0	1	2	3	4	5
f^0	0	M	M	M	M	M
f^1	0	M	4	M	M	M
f^2	0	2	4	6	M	M
f^3	0	2	3	5	7	9

		0	1	2	3	4	5
	J^0	E	E	E	E	E	\overline{E}
	J^1	E	E	1	E	E	E
	J^2	E	2	1	1, 2	E	E
	J^3	E	2	3	2,3	1,3	1, 2, 3
Optimal solution: $\{2,3\}$ with profit 3.							

20210216B

1. **MM**

A company that produces cookies wants to prepare 50 Kg of cookies of type A and 60 Kg cookies of type B. To produce one Kg of A it must blend 600g of flour 300g of sugar and 3 eggs, while to produce one Kg of B the recipe requires 400g of flour, 400g of sugar and 4 eggs. The company has a current stock of F Kg of flour, S Kg of sugar and E eggs. However, if the stock is not enough, the company can buy more ingredients or can decide to produce less cookies. Buying flour or sugar costs c_1 and c_2 per Kg, respectively, while each egg cost c_3 Euro. Producing one less Kg of cooky of type A and B induces a loss of l_A and l_B Euro, respectively. Minimize the costs respecting the production constraints.

Notes: (not included in XML)

• Solution:

- $-x_A, x_B$: number of Kgs of cookies of type A and B produced
- $-s_A, s_B$: number of Kgs of cookies of type A and B not produced
- $-y_1, y_2, y_3$: Kgs of flour and sugar bought, and number of eggs bought

$$\min \quad z = \sum_{i=1}^{3} c_i y_i + l_A s_A + l_B s_B$$

$$x_A + s_A = 50$$

$$x_B + s_B = 60$$

$$0.6 x_A + 0.4 x_B \leq F + y_1$$

$$0.3 x_A + 0.4 x_B \leq S + y_2$$

$$3 x_A + 4 x_B \leq E + y_3$$

$$x_A, x_B, s_A, s_B, y_1, y_2 \geq 0$$

$$y_3 \geq 0 \text{ integer}$$

2. **PLC**

Consider the following LP problem:

$$\max -5x_1 + 5x_2 + 3x_3 -x_1 + x_2 + 3x_3 + x_4 = 20 12x_1 + 2x_2 + 10x_3 + x_5 = 30 x_1, x_2, x_3, x_4, x_5 \ge 0$$

and the solution x = (0, 15, 0, 5, 0) with associated $B^{-1} = \begin{bmatrix} 0 & 1/2 \\ 1 & -1/2 \end{bmatrix}$, answer the following questions. Provide motivations to support your arguments:

- what happens to the optimal basis if b_1 , the right hand side of the first constraint, becomes 15?
- what happens to the optimal basis if c_1 , the coefficient of variable x_1 , becomes -10?

The question is whether the current basis changes, we are not interested in eventual new optimal basis.

Notes: (not included in XML)

• Solution:

If b_1 changes, we need to understand if the current basis is still optimal. This happens when:

 $B^{-1}(b+\Delta b) \ge 0 \Rightarrow \begin{bmatrix} 0 & 1/2 \\ 1 & -1/2 \end{bmatrix} \begin{bmatrix} 20 + \Delta b_1 \\ 30 \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow \Delta b_1 \ge -5 \Rightarrow 15 \le b_1 \le +\infty$. Therefore if b_1 becomes 15 then the optimal basis does not change.

The variable x_1 is not in the optimal basis. If c_1 decreased its coefficient from -5 to -10, x_1 becomes even less attractive for the optimization, and therefore the basis does not change.

3. **DP**

Use Dynamic Programming to solve the following Knapsack Problem: weight $w_j = (4, 2, 3)$, profit $p_j = (1, 3, 1)$, and capacity C = 5. Use a Dynamic Programming where the **states** correspond to the possible **profit levels**. (Tip: you can use M for infinity and E for empty set). Report all the iterations giving the states and their values. Report the optimal solution.

Notes: (not included in XML)

• Solution:

Upper bound on profit: $P = \sum_{j} p_{j} = 5$

	0	1	2	3	4	5
\overline{f}	0 0	M	M	M	M	\overline{M}
f	0	4	M	M	M	M
f°	2 0	4	M	2	6	M
f^{\cdot}	0	3	7	2	5	9
	0	1	2	3	4	5
J^0	E	E	E	E	E	\overline{E}
J^1	E	1	E	E	E	E
J^2	E	1	E	E	1, 2	E
J^3	E	3	1, 3	2	2,3	1, 2, 3

Optimal solution: $\{2,3\}$ with profit 4.