Homework 3

- 1) (alculate T_2 (S^2VS^1). Hint: use covering spaces
- Let $p: X \to X$ be a regular covering map, with X, X connected and locally path connected. Let $\hat{x}, \hat{y}, \hat{z}$ be points of \hat{x} , such that $p(\hat{x}) = p(\hat{y}) = p(\hat{z})$ and let $g: \hat{X} \to \hat{X}$ be the covering transformation that maps \hat{y} to \hat{z} . Explain how to construct $g(\hat{x})$ by lifting suitable paths, and prove that your construction is correct.

- 3) Let $C = 1(L_1, \partial_1 L_1)$ and $D = 1D_1, \partial_1 L_1$ be chain complexes and let $f: C \rightarrow D$ be a chain map. Let $E_1 = C_{n-1} \oplus D_n$ and define $\partial: E_n \rightarrow E_{n-1}$ by $\partial(x,y) = (\partial x, f x \partial y)$. Show that $E = L_1, \partial_1 L_1$ is a chain complex, and that if all the homology groups of E are zero, then f induces isomorphism: $f_x: H_1(C) \rightarrow H_1(D)$
 - 4) Prove that $H_n(X \times D^k, X \times \partial D^k) \cong H_{n-k}(X)$ for any space X and all n,k5) Let (X,A) be a pair of spaces, $i:A \to X$ -inclusion. Give a proof or counterexample:
 - a) If $H_n(X,A) = 0$ $0 \le n \le k$ then $i_{\mathcal{X}} H_n(A) \to H_n(X)$ is an isomorphism for $0 \le n \le k$.

b) If $i_*: H_n(A) \rightarrow H_n(X)$ is an isomorphism for $0 \le n \le k$ then $H_n(X,A) = 0 \ \forall \ 0 \le n \le k$.