CLAIMS

1	1. A device comprising:
2	a first layer;
3	an etch stop layer positioned over the first layer;
4	a second layer positioned over the etch stop layer;
5	a first trench positioned through the second layer, etch stop layer, and a portion of
6	the first layer.
1	2. A device, as defined in claim 1, wherein the etch stop layer is an oxide.
1	3. A device, as defined in claim 2, wherein the first layer is c-Si and the second
2	layer is amorphous silicon.
1	4. A device, as defined in claim 2, wherein the first layer is c-Si and the second
2	layer is epitaxial silicon.
1	5. A device, as defined in claim 2, wherein the first layer is low-k dielectric and
2	the second layer is an amorphous Si.
1	6. A device, as defined in claim 5, wherein k is between 1 and 3.9.
1	7. A device, as defined in claim 1, further comprising an intermediary layer
2	interposing the etch stop layer and first layer, the trench further extending through the
3	intermediary layer.
1	8. A device, as defined in claim 1, further comprising a second trench positioned
2	through the second layer, etch stop layer, and a portion of the first layer, wherein the
3	second trench has a shallower depth than the first trench.
1	9. A method for generating a first trench comprising:
2	depositing an etch stop film over a first layer, wherein the first layer is a c-Si
3	substrate;

4	depositing a second layer over the etch stop film;
5	depositing a first photomask layer over the second layer;
6	patterning the first photomask layer;
7	patterning the second layer according to the first photomask layer; and
8	patterning the etch stop layer;
9	removing the first photomask layer; and
10	patterning the first layer according to the etch stop layer.
1	10. A method, as defined in claim 9, wherein the etch stop film is an oxide.
1	11. A method, as defined in claim 9, wherein the first layer is a c-Si substrate and
2	the second layer is amorphous silicon.
1	12. A method, as defined in claim 11, wherein patterning the amorphous silicon
2	includes etching with chlorine based etch chemistry.
1	13. A method, as defined in claim 11, wherein the first layer is a c-Si substrate
2	and the second layer is epitaxial silicon.
1	14. A method, as defined in claim 9, wherein patterning the etch stop layer
2	includes patterning with wet etch chemistry.
1	15. A method, as defined in claim 9, wherein patterning the etch stop layer
2	includes patterning with dry etch chemistry.
1	16. A method, as defined in claim 9, wherein patterning the amorphous silicon
2	includes optical endpointing to determine when the etch reaches the etch stop.
1	17. A method, as defined in claim 16, wherein optical endpointing includes
2	applying optical emission spectra.

1	18. A method, as defined in claim 16, wherein optical endpointing includes
2	applying interferometry.
1	19. A method, as defined in claim 9, further comprising:
2	depositing a second photomask layer;
3	patterning the second photomask layer;
4	patterning the second layer according to the second photomask layer; and
5	etching the first layer according to the etch stop layer to define an additional
6	trench, wherein the additional trench has a shallower depth than the first trench.
1	