2021年10月高等教育自学考试全国统一命题考试

高等数学 (工本)

课程代码 00023

注意事项:

- 1. 本试卷分为两部分,第一部分为选择题,第二部分为非选择题。
- 2. 应考者必须按试题顺序在答题卡(纸)指定位置上作答,答在试卷上无效。
- 3. 涂写部分、画图部分必须使用 2B 铅笔,书写部分必须使用黑色字迹签字笔。

第一部分 选择题

一、单项选择题:本大题共10小题,每小题3分,共30分。在每小题列出的备选项中只有一				
	项是最符合题目要求的,请将其选出。			
1.	设向量 $\alpha = \{0, -1, 1\}$,则向量 2α 的模为			
	A. 1	B. √2	C. 2	D. 2√2
2.	设函数 $z = \ln(x^2 + y^2)$,则 $\frac{\partial z}{\partial x} =$			
	A. 2x	$B. \frac{2x}{x^2 + y^2}$	$C. \frac{2y}{x^2 + y^2}$	$D. \frac{2x + 2y}{x^2 + y^2}$
3.	下列微分方程中,不是一阶微分方程的是			
	$A. x^2y'' - xy' + y = 0$		B. $(x^2 - y^2) dx + (x^2)^2$	$+y^2)\mathrm{d}y=0$
	$\mathbb{C}.\ x(y')^2-2xy'+x$	= 0	D. $y' + y = \sin^2 x$	
4.	幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x=2$ 处发散,则该幂级数在 $x=-3$ 处			
	A. 绝对收敛	B. 条件收敛	C. 发散	D. 敛散性不确定
5.	设积分区域 $D:(x-1)^2 + y^2 \le 1$,则二重积分 $\iint_D (3-y) dxdy =$			
	A. 0	В. т	C. 2π	D. 3π

6. 在直线 $L: \begin{cases} x + 2y - z - 7 = 0 \\ 2x - y - z - 7 = 0 \end{cases}$ 上的点是

A.
$$(2,1,-4)$$

A.
$$(2,1,-4)$$
 B. $(1,-2,-3)$ C. $(0,0,-7)$ D. $(0,0,7)$

C.
$$(0,0,-7)$$

7. 函数 $z = 3 - x^2 - y^2$ 在点(0,0) 处

B. 取得极小值

D. 不能确定是否取得极值

8. 设积分区域 Ω : $-1 \le z \le 1, 0 \le y \le 1, 0 \le z \le 2,$ 则三重积分 $\iint (4+z) dx dy dz =$

9. 级数 $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ 的和为

A.
$$\frac{1}{4}$$
 B. $\frac{1}{2}$

B.
$$\frac{1}{2}$$

10. 设 C 是任意常数,则微分方程 $\frac{dy}{dx} = 2xy$ 的通解 y =

A.
$$x + C$$
 B. $\frac{C}{x}$

B.
$$\frac{C}{x}$$

第二部分 非选择题

- 二、计算题:本大题共10小题,每小题6分,共60分。
- 11. 求过点 M(-1, -2,3) 且与平面 x-2y-z+5=0 平行的平面方程.
- 12. 求过两点 $M_1(3,1,-2)$ 和 $M_2(1,0,2)$ 的直线方程.
- 13. 求空间曲线 $\Gamma: x = t, y = t, z = t^2 3t$ 在点 A(1,1,-2) 处的切线方程.
- 14. 求函数 u = xyz 在点 A(2,1,1) 处的梯度.
- 15. 设 z = z(x,y) 由方程 $e^z + 2xy 3yz = 0$ 所确定,求 $\frac{\partial z}{\partial y}$.
- 16. 计算二重积分 $\int (2x+y) dxdy$,其中积分区域 D 是由 x+y=2, y=x 及 x 轴所围的闭区域.
- 17. 计算对弧长的曲线积分 $I = \int_{L} (x+y) ds$, 其中 L 是由点 A(2,-1) 沿直线 x-2y-4=0到点 B(4,0) 的直线段.

后续更新试题或答案请加微信

Wzxwzxzz

18. 计算对坐标的曲线积分

$$I = \oint_L (1 - 2x \sin y + 3x^2 y^2) dx + (2xy - x^2 \cos y + x) dy$$

其中 L 为圆 $x^2 + y^2 = a^2$ 的逆时针方向.

- 19. 判断级数 $\sum_{n=1}^{\infty} \frac{n-1}{5^n}$ 的敛散性.
- 20. 求微分方程 y" + 4y' + 4y = 0 的通解.
- 三、综合题:本大题共2小题,每小题5分,共10分。
- 21. 判断级数 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{3^{n-1}}$ 是否收敛? 若收敛,是绝对收敛还是条件收敛?
- 22. 计算对坐标的曲面积分 $I=\int\limits_{\Sigma}(1-z^2)\,\mathrm{d}x\mathrm{d}y$,其中 Σ 是半球面 $z=\sqrt{1-x^2-y^2}$ 被三个坐 标面所截得在第一卦限部分曲面的上侧.

2021年10月高等教育自学考试全国统一命题考试

高等数学(工本)试题答案及评分参考

(课程代码 00023)

一、单项选择题:本大题共10小题,每小题3分,共30分。

- 1. D 2. B 3. A 4. C 5. D 6. C 7. A 8. B 9. C 10. D
- 二、计算题:本大题共10小题,每小题6分,共60分。
- 11. 解:由平面与平面平行,则所求平面的法向量可取为

$$n = \{1, -2, -1\},$$
 (3 分)

又平面过点 M(-1,-2,3),则所求方程为

$$x - 2y - z = 0 \tag{3 \%}$$

12. 解:直线过两点 $M_1(3,1,-2)$ 和 $M_2(1,0,2)$,

则方向向量可取为
$$\overline{M_1M_2} = \{-2, -1, 4\},$$
 (3分)

又直线过点 $M_1(3,1,-2)$,

则所求方程为
$$\frac{x-3}{2} = \frac{y-1}{1} = \frac{z+2}{4}$$
 (3分)

- 13. 解:曲线 Γ 上任一点处的切向量为 $S = \{1,1,2t-3\}$, (2分)
 - 又点 A(1,1,-2) 对应 t=1,则该点处 $S=\{1,1,-1\}$, (2分)

从而所求切线方程为

$$\frac{x-1}{1} = \frac{y-1}{1} = \frac{z+2}{-1} \tag{2.5}$$

14.
$$\mathbf{m}: \mathbf{h} \frac{\partial u}{\partial x} = yz, \frac{\partial u}{\partial x} = xz, \frac{\partial u}{\partial x} = xy,$$
 (3 \(\frac{\partial}{2}\))

可得:grad
$$u(2,1,1) = \{1,2,2\}.$$
 (3分)

15. $\mathbf{M}: \diamondsuit F = \mathbf{e}^z + 2xy - 3yz, \mathbf{M}$

$$F_x = 2x - 3z, F_z = e^z - 3y,$$
 (3 $\frac{1}{2}$)

从而
$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = \frac{3z - 2x}{e^z - 3y}$$
. (3分)

高等数学(工本)试题答案及评分参考第1页(共3页)

后续更新试题或答案请加微信

Wzxwzxzz

(3分)

(2分)

16.
$$\mathbf{H}: \iint_{D} (2x+y) \, dx dy = \int_{0}^{1} dy \int_{y}^{2-y} (2x+y) \, dx$$

$$= \int_{0}^{1} (x^{2}+xy) \Big|_{y}^{2-y} dy = \int_{0}^{1} (4-2y-2y^{2}) \, dy$$

$$= (4y - y^2 - \frac{2}{3}y^3) \Big|_0^1 = \frac{7}{3}$$
 (3 $\frac{4}{3}$)

17.
$$\Re : L: x = 4 + 2y, (-1 \le y \le 0), ds = \sqrt{1 + (x')^2} dy = \sqrt{5} dy,$$
 (2 \(\frac{1}{2}\))

则
$$I = \int_{L} (x + y) ds = \int_{-1}^{0} (4 + 3y) \sqrt{5} dy$$
 (2分)

$$= \sqrt{5} \left(4y + \frac{3}{2} y^2 \right) \Big|_{-1}^{0} = \frac{5}{2} \sqrt{5}$$
 (2 \(\frac{1}{2}\))

18.
$$\mathbf{H}: \mathcal{U} P(x,y) = 1 - 2x \sin y + 3x^2 y^2$$
,

$$Q(x,y) = 2xy - x^2\cos y + x, \qquad D:x^2 + y^2 \le a^2$$

则
$$\frac{\partial Q}{\partial x} = 2y - 2x\cos y + 1, \frac{\partial P}{\partial y} = -2x\cos y + 6x^2y$$
 (2分)

由格林公式,得:

$$I = \oint_{L} (1 - 2x \sin y + 3x^{2}y^{2}) dx + (2xy - x^{2} \cos y + x) dy$$

$$= \iint_{D} (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dx dy = \iint_{D} (2y + 1 - 6x^{2}y) dx dy$$

$$= \iint_{D} (2 - 6x^{2}) y dx dy + \iint_{D} dx dy$$
(2 \(\frac{1}{2}\))

$$=0+\iint\!\mathrm{d}x\mathrm{d}y=\pi a^2\tag{2 \%}$$

19.
$$\mathbf{m}: u_n = \frac{n-1}{5^n}, \frac{u_{n+1}}{u_n} = \frac{1}{5} \frac{n}{n-1}$$

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\frac{1}{5}<1$$

: 由比值审敛法知,该级数收敛.

20. 解:特征方程为
$$r^2 + 4r + 4 = 0$$
, (2分)

特征根
$$r_1 = r_2 = -2$$
. (2分)

方程通解为
$$y = (C_1 + C_2 x)e^{-2x}$$
. (2 分)

高等数学(工本)试题答案及评分参考第2页(共3页)

后续更新试题或答案请加微信

Wzxwzxzz

三、综合题:本大题共2小题,每小题5分,共10分。

21.
$$M: \Leftrightarrow u_n = \frac{n}{3^{n-1}}, \text{ Move } \text{ Given } \sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{3^{n-1}} = \sum_{n=1}^{\infty} (-1)^{n-1}u_n$$

考虑正项级数
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}n}{3^{n-1}} \right| = \sum_{n=1}^{\infty} u_n, \frac{u_{n+1}}{u_n} = \frac{1}{3} \frac{n+1}{n}$$

$$\therefore \quad \lim_{n\to\infty} \frac{u_{n+1}}{u_n} = \frac{1}{3} < 1$$

所以正项级数
$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n-1}n}{3^{n-1}} \right|$$
 是收敛的,

从而原级数
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}n}{3^{n-1}}$$
 收敛,且为绝对收敛.

22.
$$\Re: \Sigma: z = \sqrt{1-x^2-y^2} (x \ge 0, y \ge 0)$$
,

$$\Sigma$$
 在 oxy 平面上的投影为 $D_{xy}: x^2 + y^2 \le 1, x \ge 0, y \ge 0$,

$$\Sigma$$
 的法向量与 z 轴正向的夹角小于 $\frac{\pi}{2}$,

得
$$I = \iint_{\Sigma} (1 - z^2) dxdy = + \iint_{D_{\tau}} (1 - (1 - x^2 - y^2)) dxdy$$

$$= \iint_{D_{\tau}} (x^2 + y^2) dxdy = \int_0^{\frac{\tau}{2}} d\theta \int_0^1 r^2 \cdot r dr$$

FEET MINISTER HV22FHU

A ROBERT FLY 22 FHU

SHEET THE PHYZZEHU

高等数学(工本) 试题答案及评分参考第3页(共3页)