- Zdroje železa: mäso, mäsové výrobky, pečeň, vajcia, zelená zelenina, strukoviny (hlavne hnedá fazuľa, sušené ovocie (sušené marhule, slivky).
- Výskyt železa v prírode: väčšina pôd obsahuje veľké množstvo železa viazaného v nerastoch, od ktorých aj pôdy a usadeniny dostávajú farbu. Zemská kôra obsahuje asi 5 % Fe, v pôde jeho obsah môže dosiahnúť až 10 %.
- Minerály: hematit Fe₂O₃,
 magnetit Fe₃O₄,
 limonit FeO(OH),
 siderit FeCO₃,
 pyrit FeS₂.

Železo sa v biosystémoch vyskytuje v dvoch oxidačných číslach II a III (a vie existovať aj v IV a V)

Železo sa v biosystémoch zúčastňuje oxidačno- redukčných procesov

Je dostupné - 1/3 hmoty na planéte obsahuje Fe

Chelatácia je zabezpečovaná prostredníctvom chelatačných látok, ktoré sú produkované pôdnymi baktériami = siderofóry

Siderofóry sú zlúčeniny nízkej molekulovej hmotnosti, ktoré pevne koordinujú Fe³⁺ ión s vysokou afinitou

katecholy a hydroxamátové skupiny

Transport železa z jedného miesta v organizme na druhé je zabezpečované pomocou železo-transportného proteínu

transferín

Uskladňovanie železa sa realizuje prostredníctvom železo-zásobneho proteínu

feritín

Transferín

feritin

• zásobný proteín železa ($M \approx 480 \text{ kDa}$), ktorého molekula je zložená z 24 polypeptidových podjednotiek.

Proces mineralizácie vo feritíne

Mineralizácia feritínu

Procesy prebiehajúce v organizme, pri ktorých sú nevyhnutné redox vlastnosti železa:

Počas metabolizmu O₂

$$O_2 + e^- \rightarrow O_2^-$$

 $O_2^- + e^- + 2H^+ \rightarrow H_2O_2$
 $H_2O_2 + e^- + H^+ \rightarrow H_2O + OH^-$
 $OH + e^- + H^+ \rightarrow H_2O$

$$O_2 + 2e^- + 2H^+ \rightarrow H_2O_2$$

 $H_2O_2 + 2e^- + 2H^+ \rightarrow 2 H_2O$

$$O_2 + 4H^+ + 4e^- \rightarrow 2H_2O$$

Formy kyslíka v akých sa môže vyskytovať v organizme

Nosiče (prenášače, transportéry) kyslíka =

Porfyrínové štruktúry

- hemoglobíny
- hemocyaníny (obsahujú Cu)
- hemorytríny

"odstraňovače" superoxidového iónu =

Superoxid reduktázy (nájdené v niektorých anaerobných a mikroaerobných baktériách)

Pozor!!! U vyšších organizmov sa na tento účel využívajú prevažne ZnCu superoxidizmutázové enzýmy

"odstraňovače" peroxidu vodíka

peroxidázy

$$2SH + H_2O_2 \rightarrow 2S + 2H_2O$$
 katalázy

$$2 H_2O_2 \rightarrow O_2 + 2H_2O$$

$$2H_2O_2 + 2e^- + 2H^+ \rightarrow 2H_2O$$

Peroxidázy a katalázy používajú Fe protoporfyrín IX ako prostetickú skupinu

Enzýmy aktivujúce dikyslík

Cytochrómy

Jednojadrové hémové enzýmy železa

Enzýmy redukujúce dikyslík na vodu

Cytochrom c oxidáza

Nosiče (prenášače, transportéry) kyslíka =

Porfyrínové štruktúry

- Hemoglobíny (Hb)
- hemocyaníny (obsahujú Cu) (Hc)
- hemorytríny (Hr)

V súčasnosti sú známe tri chemicky rozdielne proteíny prenášajúce kyslík

hemoglobíny

Protoporfyrin IX

hém (Iron (II) protoporphyrín IX)

Oxyhemoglobín

hém

globín

deoxy Hb

MYOGLOBÍNY

Myoglobín (Mb) je červené svalové farbivo, ktorého funkciou je transport a uskladňovanie kyslíka vo svaloch.

Prenos plynov v krvi

- Pri prenose O₂ a CO₂ v krvi dochádza ku vzniku pomerne labilných zlúčenín oxyhemoglobínu a karbaminohemoglobínu.
- Pre prenos CO₂ majú však značnú dôležitosť i hydrogenuhličitany.

Nasýtenie hemoglobínu kyslíkom (vznik oxyhemoglobínu) závisí:

- od parciálneho tlaku O₂
- od parciálneho tlaku CO₂
- od teploty
- od pH
- od koncentrácie solí a iných látok v krvi.

Mechanizmus transportu O₂ a CO₂ v krvi

$$H_2O + CO_2 \iff H_2CO_3$$

$$H_2CO_3 \iff H^+ + HCO_3^-$$

Táto reakcia musí byť katalyzovaná v oboch smeroch enzýmom karboanhydrázou, ináč by prebiehala veľmi pomaly.

V erytrocytoch sa uskutočňuje prenos CO₂:

- vo forme hydrogenuhličitanov
- vo forme karbaminohemoglobínu

SOD

katalyzujú disproporcionáciu O₂- na O₂ a H₂O₂

SOR

Katalyzujú jednoelektrónovú redukciu O₂- na H₂O₂
 používajúc NADH alebo NADPH ako zdroj elektrónov

FeSOD sa vyskytuje iba u prokaryontov

- Tri histidínové zvyšky, jeden aspartátový a molekula vody sa viažu na Fe a tvoria trigonálnu-bipyramídu

$$H = 0$$
 $H = 0$
 $H =$

- FeSOR boli nájdené u niektorých anaerobných a mikroaerofílnych baktérii
- Fe^{2+} stav = $[Fe(His)_4(Cys)]$
- Fe³⁺ stav = [Fe(His)₄(Cys)Glu]

H₂O₂

Všeobecne má peroxid vodíka oxidačné účinky, pričom sa rozkladá na O₂ a H₂O.

Peroxidázy a katalázy sú konštruované tak, že štiepenie je heterolytické

 Peroxidázy a katalýzy sú metaloenzýmy obsahujúce Fe-protoporfyrínovú zložku (hém), ktorá je viazaná na proteín (prevažne globín)

Mechanizmus peroxidázy a katalázy:

$$2 SH + H2O2 \xrightarrow{peroxidase} 2 S \cdot + 2 H2O$$

$$2 H2O2 \xrightarrow{catalase} O2 + 2 H2O$$

Enzýmy aktivujúce dikyslík =

Cytochrómy (hémové)

Fe(II) enzýmy s 2-His-1-karboxylátom (nehémové)

Jednojadrové hémové enzýmy železa

Enzýmy redukujúce dikyslík na vodu = Cytochrom *c* oxidáza

Enzýmy aktivujúce dikyslík

- Príroda prenáša v tele kyslík pomocou Hb, Hr, (Mb)
- Avšak príroda vyvinula aj kyslík viažúce centrá, ktoré podporujú štiepenie O-O väzby = kyslík aktivujúce metaloenzýmy = cytochrómy, pretože prvým krokom ich mechanizmu je viazanie O₂ na aktivne miesto obsahujúce ión kovu.

Fe štruktúry versus metabolity O₂ Enzýmy aktivujúce dikyslík

Cytochrómy sa od Hb líšia viazanou AK:

Cytochrom P450

Cytochróm P- 450

Cytochróm P- 450 je súčasťou skupiny enzýmov katalyzujúcich

hydroxyláciu substrátov (R-H):

$$R-H + O_2 + 2H^+ + 2e^- \rightarrow R-OH + H_2O$$

- Cytochróm P- 450 viaže molekulový kyslík a aktivuje ho.
- Dochádza k rozštiepeniu väzby O=O, jeden atóm odovzdáva
- substrátu. Tým vzniká produkt hydroxylácie (R-OH) a voda.

Železo Fe štruktúry versus metabolity O₂ Jednojadrové hémové enzýmy železa

Enzýmy redukujúce dikyslík na vodu =

Cytochrom c oxidáza

$$O_2$$
 + 4ferrocytochrom c (Fe²⁺) + 4H⁺ \rightarrow 2H₂O + 4ferricytochrom c (Fe³⁺)

Železo v cytochrómoch je vratne oxidované a redukované, teda mení oxidačné číslo Fe^{III} ⇌ Fe^{II} = prenášače elektrónov

Cytochróm c

Fe-S proteíny (klastre, kofaktory) - všeobecne

Proteíny s väzbou železo – síra skrátene označované Fe-S proteíny

Iron – sulfur proteins,
alebo označované skratkou NHIP
Fe-S centers
Nonheme iron proteins

Zúčastňujú sa v širokom meradle biologických oxidačno-redukčných procesov,

Fe-S proteíny (klastre, kofaktory) - všeobecne

[Fe(S-Cys)₄] klastre v rubredoxínoch

[Fe₂S₂] klastre vo feredoxínoch

[Fe₄S₄] klastre s kubickou štruktúrou

[Fe₃S₄] klastre

Fe-S proteíny (klastre, kofaktory) - všeobecne

Funkcie	Typ klastra	Proteín
Prenos elektrónov	Cys₄Fe -	Rubredoxín, desulforedoxín
Prenos elektrónov	[Fe ₂ S ₂]	Rieske proteíny
Prenos elektrónov	$[Fe_2S_2]$ a/alebo $[Fe_3S_4]$ a/alebo $[Fe_4S_4]$	Feredoxíny, Fe-hydrogenáza, B podjednotka fumarát dehydrogenázy,
Katalýza neredoxnej reakcie	[Fe ₄ S ₄]	akonitáza
Stabilizácia proteínovej štruktúry pri DNA oprave	[Fe ₄ S ₄] + sirohem	Endonukleáza III
Regulácia tvorby voľných radikálov redoxnými reakciami	[Fe ₄ S ₄]	Anaeróbna ribonukleotid reduktáza, Biotín syntáza

Biologické funkcie FeS klastrov

Železo Fe štruktúry využívané počas ďalších procesov Fe-S proteíny

Metabolizmus H₂

Redox chémia H₂ je katalyzovaná enzýmami hydrogénreduktázami (H₂ázy)

Všetky známe H₂ázy sú metaloenzýmy obsahujúce Fe-S klastre.

Klasifikujú sa podľa obsahu aktívneho centra na:

Ni-Fe a Fe-Fe H₂ázy