AMENDMENTS TO THE CLAIMS

Claim 1. (Currently Amended): A compound of formula

$$R_{5}$$
 $N-A_{1}$ D A_{2} $T-A_{3}$ $W-A_{4}$ Q R_{2} X_{2} X_{1} X_{2} X_{2} X_{3} X_{4} X_{5} X_{6} X_{6} X_{7} X_{8} X_{1} X_{2} X_{2} X_{3} X_{4} X_{5} X_{6} X_{6} X_{7} X_{8} X_{1} X_{2} X_{2} X_{3} X_{4} X_{5} X_{6} X_{6} X_{7} X_{8} X_{1} X_{2} X_{2} X_{3} X_{4} X_{5} X_{5} X_{6} X_{7} X_{8} X_{8}

wherein

 A_1 , A_2 and A_3 are each independently of the others a bond or a C_1 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl and C_1 - C_3 haloalkyl;

 A_4 is a C_1 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl and C_1 - C_3 haloalkyl;

D is CH or N;

T is a bond, O, NH, NR₇, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₈- or -NR₈-C(=O)-;

W is O, NR₇, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, $-C(=O)-NR_8-$ or $-NR_8-C(=O)-$;

Q is O, NR_7 , S, SO or SO_2 ;

Y is O, NR_7 , S, SO or SO_2 ;

 X_1 and X_2 are each independently of the other fluorine, chlorine or bromine;

 R_1 , R_2 and R_3 are each independently of the others H, halogen, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 -alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, C_1 - C_6 -alkoxycarbonyl or C_2 - C_6 haloalkenyloxy; the substituents R_3 being independent of one another when m is 2;

 R_4 is H, halogen, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 -alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkenyloxy,

 C_2 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, C_1 - C_6 alkoxycarbonyl or C_2 - C_6 haloalkenyloxy; the substituents R_4 being independent of one another when k is greater than 1;

 R_5 is H, CN, OH, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 alkenyloxy, C_2 - C_6 alkynyloxy, $-C(=O)R_9$, $-C(=S)R_9$, phenyl, benzyl; or phenyl or benzyl each of which is substituted in the aromatic ring by from one to five identical or different substituents selected from the group consisting of halogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkoxy, hydroxy, cyano and nitro;

 R_6 is H, CN, C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, $-C(=O)R_9$, $-C(=S)R_9$, phenyl, benzyl; or phenyl or benzyl each of which is substituted in the aromatic ring by from one to five identical or different substituents selected from the group consisting of halogen, C_1 - C_6 alkyl, halo- C_1 - C_6 alkyl, C_1 - C_6 alkoxy, halo- C_1 - C_6 alkoxy, hydroxy, cyano and nitro; or

 R_5 and R_6 together form a four- to eight-membered alkylene or a four- to eight-membered alkenylene bridge wherein a CH_2 group may have been replaced by O, S or NR_{10} , and the alkylene or alkenylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkyl, C_1 - C_6

 R_6 is $-C(=O)R_9$ or $-C(=S)R_9$, and R_5 and R_9 together form a two- to eight-membered alkylene or a two- to eight-membered alkenylene bridge wherein a CH_2 group may have been replaced by O, S or NR_{10} , and wherein the alkylene or alkenylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_6 alkyl; or

 R_5 and R_6 are each independently of the other -C(=O)R₉ or -C(=S)R₉, and the two R₉ together form a two- to eight-membered, straight-chain or branched alkylene or a two- to eight-membered alkenylene bridge wherein a CH_2 group may have been replaced by O, S or NR_{10} ; and wherein the alkylene or alkenylene bridge is unsubstituted or substituted by from one to four identical or different substituents selected from C_1 - C_6 alkyl, C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl, C_1 - C_6 alkyl, C_1 - C_1 -

 R_7 is H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 haloalkylcarbonyl, C_1 - C_6 alkoxyalkyl, C_1 - C_6 alkylcarbonyl or C_3 - C_8 cycloalkyl;

 R_8 is H, C_1 - C_6 alkyl, C_1 - C_3 haloalkyl, C_1 - C_3 haloalkylcarbonyl, C_1 - C_6 alkoxyalkyl, $-C(=O)C_1$ - C_6 alkyl or C_3 - C_8 cycloalkyl;

 R_9 is C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_2 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_2 - C_6 alkenyloxy, C_2 - C_6 haloalkenyloxy, C_2 - C_6 alkynyloxy, C_3 - C_6 cycloalkyl, phenyl, benzyl; or phenyl or benzyl each of which is unsubstituted or substituted by from one to three identical or different substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 haloalkyl, C_1 - C_6 alkylcarbonyl, C_2 - C_6 alkenyl, C_2 - C_6 haloalkenyl, C_3 - C_6 alkynyl, C_1 - C_6 alkoxy, C_1 - C_6 haloalkoxy, C_1 - C_6 alkoxycarbonyl, C_2 - C_6 haloalkoxycarbonyl and C_2 - C_6 haloalkenyloxy;

R₁₀ is H, C₁-C₆alkyl, C₁-C₃haloalkyl, C₁-C₃haloalkylcarbonyl, C₁-C₆alkoxyalkyl, C₁-C₆-alkylcarbonyl or C₃-C₈cycloalkyl;

k, when D is nitrogen, is 1, 2 or 3; or, when D is CH, is 1, 2, 3 or 4; and m is 1 or 2;

and, where applicable, a possible E/Z isomer, E/Z isomeric mixture and/or tautomer thereof, in each case in free form or in salt form.

Claim 2. (Original): A compound according to claim 1 of formula (I) in free form.

Claim 3. (Previously Presented): A compound according to claim 1 of formula (I) wherein X_1 and X_2 are chlorine or bromine.

Claim 4. (Cancelled)

Claim 5. (Original): A pesticidal composition which comprises as active ingredient at least one compound according to claim 1 of formula (I), in free form or in agrochemically acceptable salt form, and at least one adjuvant.

Claim 6. (Currently Amended): A process for the preparation of a composition as described in claim 4 claim 1 which comprises intimately mixing the active ingredient with the adjuvant(s).

Claim 7. (Original): A method of controlling pests which comprises applying a pesticidal composition as described in claim 4 claim 1 to the pests or to the locus thereof.

Claim 8. (Cancelled).

Claim 9. (New) A compound according to claim 3 in free form.

Claim 10. (New) A compound according to claim 1, wherein:

A₂ is a bond;

W is -C(=O)—NR₈;

 A_4 is a C_1 - C_6 alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from C_3 - C_8 cycloalkyl, C_3 - C_8 cycloalkyl- C_1 - C_6 alkyl and C_1 - C_3 haloalkyl;

Q is O; and

Y is O.

Claim 11. (New) A pesticidal composition which comprises as active ingredient at least one compound according to claim 10, in free form or in agrochemically acceptable salt form, and at least one adjuvant.

Claim 12. (New) A method of controlling pests which comprises applying a pesticidal composition as described in claim 11 to the pests or to the locus thereof.