Package 'mFDP'

October 13, 2022

3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	
Type Package	
Title Flexible Control of the mFDP	
Version 0.1.0	
Date 2022-08-19	
Maintainer Jesse Hemerik < jesse.hemerik@wur.nl>	
Description Computes bounds for the median of the false discovery proportion (mFDP). These 50 percent confidence bounds for the FDP are simultaneously valid. The method takes a vector of p-values as input. Also provides mFDP-adjusted p-values. Can be used for flexible mFDP control.	
License GNU General Public License	
Imports methods	
NeedsCompilation no	
Author Jesse Hemerik [aut, cre]	
Repository CRAN	
Date/Publication 2022-08-22 14:30:05 UTC	
R topics documented:	
get.bound	
Index	
get.bound Compute a 50 percent confidence upper bound for the number of false positives	

of false positives. The bounds are simultaneous over t.

For a p-value rejection threshold t, compute the 50 percent confidence upper bound for the number

Description

2 get.kappa.max

Usage

```
get.bound(t,c,kappa.max)
```

Arguments

t The p-value threshold

The tuning parameter, which influences the intercept and slope of the enveloppe.

Should be numeric.

kappa.max This value needs to be computes based on the p-values. Together with c it de-

fines the bounds.

Value

A non-negative integer, which is a median unbiased (or upward biased) estimate of the number false positives.

Examples

```
#Suppose the envelope that has been computed is defined by c=0.002 and kappa.max=0.001.
#We can then evaluate the envelope at several thresholds t as below.
#This is equivalent to simply entering the formula floor((t+c)/kappa.max).

#50 percent confidence upper bound for nr of false positives, if p-value threshold of 0.01 is used:
get.bound(t=0.01,c=0.002,kappa.max=0.001) #12

#50 percent confidence upper bound for nr of false positives, if p-value threshold of 0.02 is used:
get.bound(t=0.02,c=0.002,kappa.max=0.001) #22

#50 percent confidence upper bound for nr of false positives, if p-value threshold of 0.03 is used:
get.bound(t=0.03,c=0.002,kappa.max=0.001) #32
```

get.kappa.max	Based on a vector of raw p-values, compute kappa.max, which defines
	the mFDP envelope

Description

Based on a vector of unadjusted(!) p-values, compute kappa.max, which together with c defines the mFDP envelope

Usage

```
get.kappa.max(P, c="1/(2m)", s1=0, s2=0.1)
```

mFDP.adjust 3

Arguments

P	A vector of p-values.
С	The tuning parameter, which influences the intercept and slope of the enveloppe. Should either be numeric or " $1/(2m)$ " or " $1/m$ ".
s1	The smallest p-value threshold of interest. Non-negative.
s2	The largest p-value threshold of interest. Should be larger than s1 and at most 1.

Value

kappa.max, which together with c defines the mFDP envelope.

Examples

mFDP.adjust

 $compute\ mFDP-adjusted\ p\text{-}values$

Description

Provides mFDP-adjusted p-values, given a vector of p-values.

Usage

```
mFDP.adjust(P, c="1/(2m)", s1=0, s2=0.1)
```

Arguments

P	A vector of (raw, i.e. unadjusted) p-values.
С	The tuning parameter, which influences the intercept and slope of the envelope. Should either be numeric or " $1/(2m)$ " or " $1/m$ ".
s1	The smallest p-value threshold of interest.
s2	The largest p-value threshold of interest.

4 mFDP.adjust

Value

A vector of mFDP-adjusted p-values. Some can be infinity - which can be interpreted as 1.

Examples

Index

```
get.bound, 1
get.kappa.max, 2
mFDP.adjust, 3
```