FONDAMENTI DI ELETTRONICA – INGEGNERIA BIOMEDICA TEMA PROPOSTO 4

PROBLEMA P1

Dato il circuito riportato nella figura sottostante, determinare:

- 1) il valore delle resistenze R_4 in modo che la correnti di drain di M_2 valga $I_{D2} = 20$ mA;
- 2) il punto di lavoro dei transistor M_1 , M_2 ;
- 3) la potenza dissipata dai due MOSFETs M_1 e M_2 e la potenza dissipata dal circuito
- 4) il guadagno di tensione ai piccoli segnali ac $A_v = v_o/v_i$;
- 5) le resistenze di ingresso e uscita ai piccoli segnali ac R_{in} e R_{out} .

PROBLEMA P2

Dato il circuito che usa amplificatori operazionali e componenti passivi ideali:

- ricavare l'espressione (simbolica, senza sostituire i valori dei componenti) della funzione di trasferimento $W(s)=V_{out}(s)/V_{in}(s);$
- tracciare il diagramma di Bode asintotico dell'ampiezza e della fase di $H(j\omega)$, usando, nel caso della fase, l'approssimazione senza discontinuità;
- determinare il valore della tensione di uscita sapendo che la tensione di ingresso vale $V_{in}=0.1\sin(\omega t)$ [V] con:

a.
$$\omega_1$$
=4*10⁴ rad/s
b. ω_2 =1*10⁷ rad/s

DATI: $R_1=505 \Omega$, $R_2=50k\Omega$, $R_3=1k\Omega$, C₂=200nF, C₄=10 nF

PROBLEMA Q1

Dato il circuito nella figura sottostante, in cui l'amplificatore operazionale è ideale, determinare lo stato del diodo D_Z , la corrente I_O erogata dall'amplificatore operazionale e la tensione V_O .

PROBLEMA Q2

Data la seguente tabella della verità

- 1) Ricavare la mappa di Karnaugh corrispondente;
- 2) Trovare una F minimizzata
- 3) Disegnare la rete logica minimizzata tramite porte logiche fondamentali.

Α	В	С	D	F
0	0	0	0	X
0	0	0	1	0
0	0	1	0	1
0	0	1	1	0
0	1	0	0	0
0	1	0	1	X
0	1	1	0	1
0	1	1	1	1
1	0	0	0	1
1	0	0	1	1
1	0	1	0	X
1	0	1	1	1
1	1	0	0	0
1	1	0	1	1
1	1	1	0	1
1	1	1	1	X