

CERTIFICATION TEST REPORT

Report Number.: 12229356E

Applicant : Philips Lighting North America Corporation

10275 W. Higgins Rd. Rosemont, IL 60018

Model: SNS441

FCC ID: 2AF2N-SNSS

ISED ID : 20659-SNSS

EUT Description: ceiling luminaire mounted light sensor with 2.4GHz radio

Test Standard(s): FCC 47 CFR PART 15 SUBPART C

ISED RSS-247 ISSUE 2

Date Of Issue: 2018-07-25

Prepared by:

UL LLC 333 Pfingsten Rd. Northbrook, IL 60062, USA TEL: (847) 272-8800

REPORT NO: 12229356A DATE: 2018-07-25 FCC ID:2AF2N-SNSS ISED ID: 20659-SNSS

REPORT REVISION HISTORY

Rev.	Issue Date	Revisions	Revised By
1.0	2018-07-25	Original Issue	BM

TEL: (847) 272-8800

DATE: 2018-07-25 ISED ID: 20659-SNSS

TABLE OF CONTENTS

	TABLE OF CONTENTS	
PORT RI	EVISION HISTORY	2
BLE OF	CONTENTS	3
1.2. SA	AMPLE CALCULATION	6
o.2. M	AXIMUM OUTPUT POWER	
0.4. S(OPET CASE CONFICURATION AND MODE	······································
-		
8.4.1.		
3.5. PO		
8.5.1.		
3.6. C	ONDUCTED SPURIOUS EMISSIONS	
8.6.1.	TX Mode	18
RADIA	TED TEST RESULTS	22
-		
	3	
•		
-		
	POWER LINE CONDICTED EMISSIONS	36
-		
	BLE OF ATTES TEST I FACILI (CALIB 4.1. M. 4.2. S. 4.3. M. 5.2. M. 5.5. M. 5.5. MEASI TEST I ANTEN 3.1. O. 3.2. 98. 8.2.1. 3.3. 6. 6.3. 6. 6.1. RADIA (G. 1. L. 1.2. 1.3. 1.2. 9.3. 1.3. 1.4. 1.4. 1.5. 1.5. 1.5. 1.5. 1.5. 1.5	4.2. SAMPLE CALCULATION 4.3. MEASUREMENT UNCERTAINTY EQUIPMENT UNDER TEST. 5.1. EUT DESCRIPTION 5.2. MAXIMUM OUTPUT POWER 5.3. DESCRIPTION OF AVAILABLE ANTENNAS 5.4. SOFTWARE AND FIRMWARE 5.5. WORST-CASE CONFIGURATION AND MODE 6.6. DESCRIPTION OF TEST SETUP MEASUREMENT METHOD TEST AND MEASUREMENT EQUIPMENT ANTENNA PORT TEST RESULTS 3.1. ON TIME AND DUTY CYCLE 3.2. 99% BANDWIDTH 8.2.1. TX Mode 3.3. 6 dB BANDWIDTH 8.3.1. TX Mode 8.4.1. TX Mode 8.4.1. TX Mode 8.5. POWER SPECTRAL DENSITY 8.5.1. TX Mode 8.6. CONDUCTED SPURIOUS EMISSIONS 8.6.1. TX Mode 9.2. TRANSMITTER SHAD 9.2.1. Outdoor to 10m SAC Correlation Data 9.2.2. Radiated Emissions 9kHz-30MHz 9.3.1. Low Channel 9.3.2. Middle Channel 9.3.3.1. Low Channel 9.3.3. High Channel 9.4.4. TRANSMITTER 16Hz - 25GHz 9.4.1. Low Channel 9.4.2. Middle Channel 9.4.2. Middle Channel 9.4.3. High Channel 9.4.3. High Channel 9.4.4. Middle Channel 9.4.2. Middle Channel 9.4.3. High Channel 9.4.3. High Channel 9.4.3. High Channel 9.4.4. Middle Channel 9.4.2. Middle Channel 9.4.3. High Channel 10.1.1. AC Power Line Results – TX Mode / Middle Channel 10.1.1. AC Power Line Results – TX Mode / Hidgle Channel 10.1.1. AC Power Line Results – TX Mode / Hidgle Channel

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: Philips Lighting North America

EUT DESCRIPTION: ceiling luminaire mounted light sensor with 2.4GHz radio

MODEL: SNS441

SERIAL NUMBER: see section 5.6

DATE TESTED: 2018-06-07 TO 2018-07-23

APPLICABLE STANDARDS

STANDARD TEST RESULTS

CFR 47 Part 15 Subpart C Compliant
ISED RSS-247 Issue 2 Compliant
ISED RSS-GEN Issue 5 Compliant

UL LLC tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL LLC based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL LLC and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL LLC will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. government.

Approved & Released For

UL LLC By:

Prepared By:

Jeff Moser

CONSUMER TECHNOLOGY DIVISION

PROJECT LEAD

UL LLC

Bart Mucha

CONSUMER TECHNOLOGY DIVISION

Mhulu

Staff Engineer

UL LLC

DATE: 2018-07-25

REPORT NO: 12229356A DATE: 2018-07-25 FCC ID:2AF2N-SNSS ISED ID: 20659-SNSS

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with FCC CFR 47 Part 2, FCC CFR 47 Part 15, ANSI C63.10-2013, RSS-GEN Issue 5, and RSS-247 Issue 2.

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 333 Pfingsten Road, Northbrook, Illinois, USA.

333 Pfingsten Road					
\boxtimes	Chamber 10m (ISED:2180A-1)				

UL LLC is accredited by NVLAP, Laboratory Code 1004141-0. The full scope of accreditation can be viewed at https://www.nist.gov/nvlap.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + *Path Factor (dB) Example: 28.9dBuV/m = 36.5 dBuV + 18.7 dB/m + (-27.5) dB

*Path factor may include cable, preamp and attenuators. Positive path factor indicates losses only and negative path factor indicates gain (preamp).

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Worst Case Conducted Disturbance, 9KHz to 0.15 MHz	3.84 dB
Worst Case Conducted Disturbance, 0.15 to 30 MHz	3.65 dB
Worst Case Radiated Disturbance, 9KHz to 30 MHz	3.15 dB
Worst Case Radiated Disturbance, 30 to 1000 MHz	5.36 dB
Worst Case Radiated Disturbance, 1000 to 18000 MHz	4.32 dB
Worst Case Radiated Disturbance, 18000 to 26000 MHz	4.45 dB

Uncertainty figures are valid to a confidence level of 95%.

DATE: 2018-07-25

REPORT NO: 12229356A DATE: 2018-07-25 FCC ID:2AF2N-SNSS ISED ID: 20659-SNSS

5. EQUIPMENT UNDER TEST

5.1. EUT DESCRIPTION

The EUT is a ceiling luminaire mounted light sensor with 2.4GHz ZigBee type radio.

5.2. MAXIMUM OUTPUT POWER

The transmitter has a maximum peak conducted output power as follows:

Frequency	Mode	Output Power	Output Power
Range		(dBm)	(mW)
2405 - 2475	TX	4.913	3.10

5.3. DESCRIPTION OF AVAILABLE ANTENNAS

The radio utilizes an Inverted F PCB antenna, with a maximum gain of 0.7dBi.

5.4. SOFTWARE AND FIRMWARE

The EUT firmware installed during testing was: FCC Mode V0.30

The test utility software used during testing was: none

5.5. WORST-CASE CONFIGURATION AND MODE

Radiated Spurious Emissions between 30MHz to 25GHz were performed with the EUT set to transmit at the intended power setting on low, middle and high channels.

Radiated Emissions between 9kHz-30MHz were conducted with random channel selected.

Line Conducted Emissions between 150kHz to 30MHz were performed with the EUT set to transmit at the intended power setting on low, middle and high channels.

The EUT is Luminaire mounted only therefore all radiated spurious emissions were conducted in single orientation.

For testing purposes the EUT was set to 100% duty cycle, however in normal use the worst case pulse train will be approximately 10mS over 100mS period.

REPORT NO: 12229356A DATE: 2018-07-25 FCC ID:2AF2N-SNSS ISED ID: 20659-SNSS

5.6. DESCRIPTION OF TEST SETUP

EUT and SUPPORT EQUIPMENT

Support Equipment List							
Description Manufactu Model Serial Number FCC ID							
EUT - Antenna Port	Philips	SNS441	-	2AF2N-SNS441			
EUT - Radiated Sample	Philips	SNS441	-	2AF2N-SNS441			
*LED Driver	Philips	XI040C110V054VPT1	443579000431	-			

Support Equipment List

I/O CABLES

I/O Cable List							
Cable	Cable Port # of identical Connector Cable Type Cable Remarks						
	No ports Type Length (m)						
No		ports	Туре		Length (m)		

TEST SETUP

Frequencies and modes of operation are set by NFC transmitter. EUT is powered by a LED ballast.

SETUP DIAGRAM FOR ANTENNA CONDUCTED TESTS

SETUP DIAGRAM FOR RADIATED TESTS

SETUP DIAGRAM FOR AC LINE CONDUCTED TEST

* note: variable power supply is only used to program the mode and frequency and its removed during conducted emissions testing.

REPORT NO: 12229356A DATE: 2018-07-25 FCC ID:2AF2N-SNSS ISED ID: 20659-SNSS

6. MEASUREMENT METHOD

On Time and Duty Cycle: ANSI C63.10, section 11.6, b

6 dB BW: ANSI C63.10, section 11.8.1 (option 2)

99% Occupied Bandwidth: RSS-Gen, Issue 5, Section 6.7

Output Power: ANSI C63.10, section 11.9.1.1

Power Spectral Density: ANSI C63.10, section 11.10.2 (peak PSD)

Out-of-band emissions in non-restricted bands: ANSI C63.10, section 11.11

Out-of-band emissions in restricted bands: ANSI C63.10, section 11.12.1

Band-edge: ANSI C63.10, section 11.12.1

AC Power Line Conducted Emissions: ANSI C63.10-2013, Section 6.2.

7. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

Description	Manufacturer	Model	Identifier	Cal. Date	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	EMC4328	2017-12-21	2018-12-31
BiCon Antenna	Chase	VBA6106A	EMC4078	2018-03-28	2019-03-31
Log-P Antenna	Chase	UPA6109	EMC4313	2018-04-09	2019-04-30
Loop Antenna	EMCO	6502/1	EMC4026	2018-01-10	2019-01-31
Antenna Array	UL	BOMS	EMC4276	2018-06-19	2019-06-30
EMI Test Receiver	Rohde & Schwarz	ESU	EMC4323	2017-12-20	2018-12-31
Spectrum Analyzer	Agilent	N9030A (PXA)	EMC4360	2017-12-28	2018-12-31
EMI Test Receiver	Rohde & Schwarz	ESR	EMC4377	2017-12-23	2018-12-31
Transient Limiter	Electro-Metrics	EM7600-2	EMC4224	N/A	N/A
High-Pass Filter	Solar Electronics	2803-150	EMC4327	N/A	N/A
Attenuator	HP	8494B	2831A00838	N/A	N/A
LISN - L1	Solar Electronics	8602-50-TS-50-N	EMC4066	2017-12-29	2018-12-31
LISN - L2	Solar Electronics	8602-50-TS-50-N	EMC4064	2017-12-29	2018-12-31

REPORT NO: 12229356A DATE: 2018-07-25 FCC ID:2AF2N-SNSS ISED ID: 20659-SNSS

8. ANTENNA PORT TEST RESULTS

8.1. ON TIME AND DUTY CYCLE

LIMITS

None; for reporting purposes only.

PROCEDURE

ON TIME AND DUTY CYCLE RESULTS

Mode	ON Time	Period	Duty Cycle	Duty	Duty Cycle	1/B
	В		x	Cycle	Correction Factor	Minimum VBW
	(msec)	(msec)	(linear)	(%)	(dB)	(kHz)
*TX Mode	100.000	100.000	1.000	100.00%	0.00	0.010

^{*} For testing purposes the device was set to transmit with 100% duty cycle.

8.2. 99% BANDWIDTH

LIMITS

None; for reporting purposes only.

RESULTS

8.2.1. TX Mode

Channel	Frequency (MHz)	99% Bandwidth (MHz)
Low	2405	2.2523
Middle	2440	2.2720
High	2475	2.2667

DATE: 2018-07-25

8.3. 6 dB BANDWIDTH

LIMITS

FCC §15.247 (a) (2)

RSS-247 5.2 (a)

The minimum 6 dB bandwidth shall be at least 500 kHz.

RESULTS

8.3.1. TX Mode

Channel	Frequency (MHz)	6 dB Bandwidth (MHz)	Minimum Limit (MHz)
Low	2405	1.7040	0.5
Middle	2440	1.7020	0.5
High	2475	1.7030	0.5

DATE: 2018-07-25

ISED ID: 20659-SNSS

12:44:42 PM Jul 09, 20 Radio Std: None Center Freq 2.475000000 GHz Radio Device: BTS Clear Wr Averag Max Ho Min Ho Span 10 MHz Center 2.475 GHz Res BW 91 kHz VBW 910 kHz Occupied Bandwidth **Total Power** 10.6 dBm 2.2813 MHz Transmit Freq Error 15.180 kHz OBW Power 99.00 % x dB Bandwidth 1.703 MHz x dB -6.00 dB **HIGH CHANNEL**

REPORT NO: 12229356A DATE: 2018-07-25 FCC ID:2AF2N-SNSS ISED ID: 20659-SNSS

8.4. OUTPUT POWER

LIMITS

FCC §15.247 (b) (3)

RSS-247 5.4 (d)

The maximum antenna gain is less than 6dBi, therefore the limit is 30 dBm.

TEST PROCEDURE

ANSI C63.10, section11.9.1.1

The cable assembly insertion loss of 10.5 dB (including cable and attenuator) was entered as reference offset in the spectrum analyzer.

RESULTS

8.4.1. TX Mode

Channel	Frequency	Peak Power Reading	Limit	Margin
	(MHz)	(dBm)	(dBm)	(dB)
Low	2405	4.913	30	-25.087
Middle	2440	4.286	30	-25.714
High	2475	3.533	30	-26.467

RF 500 0C | Marker 1 2.404600000000 GHz | Trig: Free Run | FGain.taw | Atten: 10 dB

#VBW 50 MHz

Ref Offset 10.5 dB Ref 10.00 dBm

#VBW 50 MHz

DATE: 2018-07-25

ISED ID: 20659-SNSS

Peak Search

Avg Type: Log-Pwr Avg|Hold>100/100

Mkr1 2.404 60 GHz 4.913 dBm

Span 20.00 MHz Sweep 1.000 ms (1001 pts)

8.5. POWER SPECTRAL DENSITY

LIMITS

FCC §15.247 (e)

RSS-247 (5.2) (b)

The power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

RESULTS

8.5.1. TX Mode

Channel	Frequency	PSD	Limit	Margin
	(MHz)	(dBm)	(dBm/3kHz)	(dB)
Low	2405	-3.38	8	-11.38
Middle	2440	-4.04	8	-12.04
High	2475	-4.81	8	-12.81

8.6. CONDUCTED SPURIOUS EMISSIONS

LIMITS

FCC §15.247 (d)

RSS-247 5.5

Output power was measured based on the use of a peak measurement, therefore the required attenuation is 20 dB.

RESULTS

8.6.1. Bandedge

Philips L	ighting NA						
SNS441	SNS441						
Antenna	Port TX						
Pow ered	d by Driver						
Channel	>RED:Low, 0	GRN:Mid,	BLU: High				
Trace M	Arkers						
	Test	Meter		Path			
Marker	Frequency	Reading		Factor	Lev el	Limit	Margin
No.	(GHz)	(dBm)	Detector	dB	dBm	dBm	(dB)
Low Cha	annel						
1	2.4045	-9.31	Pk	10.5	1.19	1.19	0
2	2.4056	-9.4	Pk	10.5	1.1	1.19	-0.09
3	2.3811	-70.09	Pk	10.5	-59.59	-18.81	-40.78
4	2.4	-64.44	Pk	10.5	-53.94	-18.81	-35.13
Middle C	hannel						
5	2.4398	-9.75	Pk	10.5	0.75	1.19	-0.44
6	2.4406	-9.65	Pk	10.5	0.85	1.19	-0.34
High Cha	annel						
7	2.3818	-69.53	Pk	10.5	-59.03	-18.81	-40.22
8	2.4745	-10.85	Pk	10.5	-0.35	1.19	-1.54
9 2.4753		-10.97	Pk	10.5	-0.47	1.19	-1.66
10 2.4835		-69.12	Pk	10.5	-58.62	-18.81	-39.81
Pk - Pea	k detector						

6.4 20MU- 26CU-

8.6.1. 30MHz-26GHz

Low Channel

Philips Lig	hting NA											
Philips Lighting NA												
	SNS441											
Antenna F												
Powered b	y Driver											
Channel>I	High											
Trace MA	kers											
Marker No.	Test Meter Path Factor Level Limit Margin (MHz) (dBm) Detector dB dBm dBm (dB)											
1	44.0665	-63.25	Pk	10.1	-53.2	-19.1	-34.02					
2	442.8746	-60.86	Pk	10.1	-50.8	-19.1	-31.63					
3	2406	-9.63	Pk	10.5	0.87	0.87	0					
4												
5												
6 23950 -53.53 Pk 11.7 -41.8 -19.1 -22.7												
Pk - Peak	detector											

DATE: 2018-07-25

-60

-70

30

DATE: 2018-07-25 ISED ID: 20659-SNSS

10000

| RBW/UBW | Ref/Attn | Det/Avg Type | Sweep | 188k (-3dB)/388k 5/38 | PEAK/LogPur-Video | Auto 25000

1000

Frequency (MHz)

Pts #Swps Ronge (MHz) 10k MAXH 4:1000-25000

Philips Lig	Philips Lighting NA											
SNS441	SNS441											
Antenna F	Port TX											
Powered I	by Driver											
Channel>	High											
Trace MA	rkers											
Marker No.	Test Frequency (MHz)	Frequency Reading Factor Level Limit Margin										
7	92.3774	-63.28	Pk	10.1	-53.2	-19.1	-34.05					
8	465.6719	-62.39	Pk	10.1	-52.3	-19.1	-33.16					
9	2440	-10.88	Pk	10.5	-0.38	0.87	-1.25					
10	3793	-55.43	Pk	10.8	-44.6	-19.1	-25.5					
11	23726	-53.41	Pk	11.7	-41.7	-19.1	-22.58					
Pk - Peak	detector											

100

RBW/UBW Ref/Attn 188k(-3dB)/300k 5/38

Det/Avg Type PEAK/LogPwr-Video

Philips Lig	Philips Lighting NA											
SNS441	SNS441											
Antenna F	Port TX											
Powered b	y Driver											
Channel>I	High											
Trace MA	kers											
Marker No.	Test Meter Path Marker Frequency Reading Factor Level Limit Margin											
12	52.5063	-64.04	Pk	10.1	-53.9	-19.1	-34.81					
13	183.7609	-62.79	Pk	10.1	-52.7	-19.1	-33.56					
14	403.9736	-61.36	Pk	10.1	-51.3	-19.1	-32.13					
15	967.8927	-60.7	Pk	10.2	-50.5	-19.1	-31.37					
16												
17												
18 24110 -53.14 Pk 11.6 -41.5 -19.1 -22.41												
Pk - Peak	detector											

9. RADIATED TEST RESULTS

9.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.205 and §15.209

RSS-GEN, Section 8.9 and 8.10.

Frequency Range (MHz)	Field Strength Limit (uV/m) at 3 m	Field Strength Limit (dBuV/m) at 3 m
0.009-0.490	2400/F(kHz) @ 300 m	-
0.490-1.705	24000/F(kHz) @ 30 m	-
1.705 - 30	30 @ 30m	-
30 - 88	100	40
88 - 216	150	43.5
216 - 960	200	46
Above 960	500	54

TEST PROCEDURE

The EUT is placed on a non-conducting table 80 cm above the ground plane for measurement below 1GHz; 1.5 m above the ground plane for measurement above 1GHz. The antenna to EUT distance is 3 meters for frequencies 9kHz-30MHz and 1GHz-25GHz. For frequencies 9kHz-30MHz the limit was extrapolated to 3m distance using the 40*log(d1/d2). For frequencies 30MHz-1GHz the antenna distance is 10m and the levels are extrapolated to distance of 3m using the 20*log(d1/d2). The EUT is configured in accordance with ANSI C63.10. The EUT is set to transmit in a continuous mode.

Although for 9kHz-30MHz tests were performed at a test site other than an open area test site, adequate comparison measurements were confirmed against an open area test site. Therefore sufficient tests were made to demonstrate that the alternative site produces results that correlate with the ones of tests made in an open field based on KDB 414788. See data in section **Error! Reference source not found.**

For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak.

For final measurements above 1 GHz the resolution bandwidth is set to 1 MHz; the video bandwidth is set to 3 MHz for peak measurements and as applicable for average measurements.

The spectrum from 30MHz to 25 GHz is investigated with the transmitter set to the lowest, middle, and highest channels in each applicable band. For frequencies 9kHz-30MHz random channels was used.

The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions. For frequencies 9kHz-30MHz no height scan was conducted.

TEL: (847) 272-8800

9.2. TRANSMITTER 9kHz – 30MHz

9.2.1. Outdoor to 10m SAC Correlation Data

Correlation Data for measurements 9kHz-30MHz between Outside and 10m semi-anechoic chamber at Underwriter Laboratories in Northbrook, IL.

Correlation measurements were conducted using a signal source with an antenna outside in open area (parking lot). Immediately following the measurements the same setup was moved inside the 10 meter semi-anechoic chamber and the measurements were repeated. The above plot shows the difference in levels measured between outside and the 10 meter semi anechoic chamber.

9.2.2. Radiated Emissions 9kHz-30MHz

DATE: 2018-07-25

Philips S	NS441									
TX Mid (Ch									
RED: Ho	rizontal GRN	l: Vertical								
Trace Ma	arkers									
	Test	Meter		Antenna	Path		FCC			
Marker	Frequency	Reading		Factor	Factor	Lev el	Part	Margin	Azimuth	Height
No.	No. (MHz) (dBuV)		Detector	dB/m	dB	dBuV/m	15 3M	(dB)	[Degs]	[cm]
Parallel to	o EUT									
1	0.00921	42.55	Pk	23.1	0	65.65	128.3	-62.65	0-360	101
2	0.22476	40.9	Pk	11.8	0.1	52.8	100.6	-47.77	0-360	101
3	1.76125	20.43	Pk	12.2	0.1	32.73	69.54	-36.81	0-360	101
Perpendi	cular to EUT	-								
4	0.00935	41.43	Pk	23.1	0	64.53	128.2	-63.64	0-360	101
5	0.24606	39.01	Pk	11.8	0.1	50.91	99.78	-48.87	0-360	101
6	1.79025	21.44	Pk	12.2	0.1	33.74	69.54	-35.8	0-360	101
Parallel to Ground										
7 0.009245 46.73		Pk	23.1	0	69.83	128.3	-58.44	0-360	101	
8 0.24883 38.99		Pk	11.8	0.1	50.89	99.68	-48.79	0-360	101	
9 1.63075 21.04		Pk	12.2	0.1	33.34	63.36	-30.02	0-360	101	
Pk - Pea	k detector									

9.3. TRANSMITTER 30MHz – 1GHz

9.3.1. Low Channel

DATE: 2018-07-25

Philips SNS441 with driver below floor TX Low Channel RED: Horizontal GRN: Vertical

Trace Markers

Test No. Frequency (MHz)		Transducer Factor (dB)	Gain/Loss Factor (dB)	Corrected Reading dB	
1 33.995	30.75dBuV Pk	16.7	-19.9	27.55	40
	Azimuth:0-360			Margin (dB)	
2 133.3175	31.41dBuV Pk	14.3		26.61	43.52
0 400 0655	Azimuth:0-360			Margin (dB)	-16.91
3 190.2675	32.51dBuV Pk	16		29.91	43.52
4 33.6125	Azimuth:0-360			Margin (dB)	-13.61
4 33.6125	31.13dBuV Pk Azimuth:0-360	16.8	-19.6	28.33	40 -11.67
5 133.53	31.21dBuV Pk	Height:251 14.3	-19	Margin (dB) 26.51	43.52
5 155.55	Azimuth:0-360			Margin (dB)	-17.01
6 188.525	31.07dBuV Pk	16	-18.6	28.47	43.52
	Azimuth:0-360			Margin (dB)	-15.05
7 308.6	31.87dBuV Pk	13.3	-18.1	27.07 ´	46.02
	Azimuth:0-360	Height:99		Margin (dB)	-18.95
8 694.1	31.13dBuV Pk	21.1	-16.2	36.03	46.02
	Azimuth:0-360			Margin (dB)	-9.99
9 309	32.05dBuV Pk	13.3	-18.2	27.15	46.02
10 600 0	Azimuth:0-360			Margin (dB)	
10 692.8	30.37dBuV Pk	21.1	-16.8	34.67	46.02
	Azimuth:0-360	Height:102	2	Margin (dB)	-11.35

LIMIT 1: 47 CFR Part 15.209 3m Pk - Peak detector

DATE: 2018-07-25

9.3.2. Middle Channel

DATE: 2018-07-25

Philips SNS441 with driver below floor TX Mid Channel RED: Horizontal GRN: Vertical

Trace Markers

Test No. Frequency (MHz)	Meter Reading	Transducer Factor (dB)		Corrected Reading dB	Limit:1 (uVolts/meter)
1 40.54	30.71dBuV Pk	14	-19.4	25.31	40
	Azimuth:0-360			Margin (dB)	
2 177.56	30.19dBuV Pk			27.19	
	Azimuth:0-360			Margin (dB)	
3 39.605	30.94dBuV Pk	14.4	-19.8	Ž5.54	40
	Azimuth:0-360	Height:398	3	Margin (dB)	
4 178.0275	30.63dBuV Pk	15.6	-18.8	27.43	43.52
	Azimuth:0-360	Height:101	L	Margin (dB)	-16.09
5 324.4	30.45dBuV Pk	13.9	-18	26.35	46.02
	Azimuth:0-360	Height:102	2	Margin (dB)	-19.67
6 851.8	29.81dBuV Pk	22.7	-16.5	36.01	46.02
	Azimuth:0-360	Height:299	9	Margin (dB)	-10.01
7 320.7	30.75dBuV Pk	13.9	-18.1	26.55 ´	46.02
	Azimuth:0-360	Height:399	9	Margin (dB)	-19.47
8 850.8	29.94dBuV Pk			35.54	
	Azimuth:0-360	Height:399	9	Margin (dB)	-10.48

LIMIT 1: 47 CFR Part 15.209 3m Pk - Peak detector

DATE: 2018-07-25

9.3.3. High Channel

Philips SNS441 with driver below floor TX High Channel RED: Horizontal GRN: Vertical

Trace Markers

Test No. Frequency (MHz)	Meter Reading	Transducer Factor (dB)			Limit:1 (uVolts/meter)
1 41.7725	31.19dBuV Pk Azimuth:0-360	13.5		24.99	40
2 122.055	30.81dBuV Pk	13.5	-19.6	Margin (dB) 24.71	43.52
3 41.0925		13.8	-19.5	Margin (dB) 25.93	40
4 134.2525	Azimuth:0-360 31.88dBuV Pk	14.3	-19.2	Margin (dB) 26.98	43.52
5 547.3	Azimuth:0-360 29.57dBuV Pk			Margin (dB) 31.87	-16.54 46.02
6 839.4	Azimuth:0-360 30.01dBuV Pk) Height:299 23.1		Margin (dB) 36.01	
7 555.4	Azimuth:0-360 29.25dBuV Pk) Height:399 20.1		Margin (dB) 32.35	-10.01 46.02
8 863	Azimuth:0-360 29.51dBuV Pk	Height:299	9	Margin (dB)	
	Azimuth:0-360			Margin (dB)	

LIMIT 1: 47 CFR Part 15.209 3m Pk - Peak detector

DATE: 2018-07-25

9.4. TRANSMITTER 1GHz – 25GHz

9.4.1. Low Channel

Band Edge Data - Horizontal

Philips													
SNS441													
LoCh													
	eak GRN: PW	/R AV											
Horizont	al												
Trace M	Arkers												
	Test	Meter		Antenna	Path		BandEdge		BandEdge				
Marker	Frequency	Reading		Factor	Factor	Level	PK Limit	Margin	AV Limit	Margin	Azimuth	Height	
No.	(GHz)	(dBuV)	Detector	dB/m	dB	dBuV/m	dBuV/m	(dB)	dBuV/m	(dB)	[Degs]	[cm]	Polarity
1	2.3726	28.6	Pk	21.8	4.65	55.05	74	-18.95	-	-	246	110	Н
2	2.3896	27.93	Pk	21.8	4.78	54.51	74	-19.49	-	-	246	110	Н
3	2.4046	66.69	Pk	21.8	4.68	93.17	-	-	-	-	246	110	Н
4	2.4055	66.72	Pk	21.8	4.68	93.2	-	-	-	-	246	110	Н
5	2.3721	16.06	Av	21.8	4.65	42.51	-	-	54	-11.49	246	110	Н
6	2.39	16.05	Av	21.8	4.79	42.64	-	-	54	-11.36	246	110	Н
7	2.4051	62.69	Av	21.8	4.68	89.17	-	-	-	-	246	110	Н
Pk - Pea	ak detector												
Av - Av	erage detecto	r											

Band Edge Data - Vertical

Philips													
SNS441													
LoCh													
RED: Pe	ak GRN: PW	/R AV											
Vertical													
Trace M	Arkers												
	Test	Meter			Path		BandEdge		BandEdge				
Marker	Frequency	Reading		Factor	Factor	Lev el	PK Limit	Margin	AV Limit	Margin	Azimuth	Height	
No.	(GHz)	(dBuV)	Detector	dB/m	dB	dBuV/m	dBuV/m	(dB)	dBuV/m	(dB)	[Degs]	[cm]	Polarity
1	2.3702	28.36	Pk	21.8	4.64	54.8	74	-19.2	-	-	269	119	V
2	2.3899	27.29	Pk	21.8	4.79	53.88	74	-20.12	-	-	269	119	V
3	2.4045	73.29	Pk	21.8	4.68	99.77	-	-	-	-	269	119	V
4	2.4055	73.31	Pk	21.8	4.68	99.79	-	-	-	-	269	119	V
5	2.3704	16	Av	21.8	4.64	42.44	-	-	54	-11.56	269	119	V
6	2.39	16.11	Av	21.8	4.79	42.7	-	-	54	-11.3	269	119	V
7	2.405	69.32	Av	21.8	4.68	95.8	-	-	-	-	269	119	V
Pk - Pea	k detector												
Av - Ave	erage Detecto	r											

DATE: 2018-07-25 ISED ID: 20659-SNSS

			-										
Philips													
SNS441													
LoCh													
RED: Horizontal GRN: Vertical													
Trace MArkers													
	Test	Meter		Antenna	Path		47 CFR Part		47 CFR Part				
Marker	Frequency	Reading		Factor	Factor	Lev el	15.209 PK	Margin	15.209 Limit	Margin	Azimuth	Height	
No.	(GHz)	(dBuV)	Detector	dB/m	dB	dBuV/m	Limit dBuV/m	(dB)	AV dBuV/m	(dB)	[Degs]	[cm]	Polarity
1	2.405	61.2	Pk	21.8	4.68	87.68	-	-	-	-	0-360	150	Н
3	4.811	64.35	Pk	27.7	-51.45	40.6	74	-33.4	54	-13.4	0-360	200	Н
5	17.997	48.86	Pk	40.1	-39.89	49.07	74	-24.93	54	-4.93	0-360	150	Н
2	2.404	67.71	Pk	21.8	4.69	94.2	-	-	-	-	0-360	100	V
4	4.809	66.96	Pk	27.7	-51.46	43.2	74	-30.8	54	-10.8	0-360	150	V
6	17.998	48.26	Pk	40.1	-39.83	48.53	74	-25.47	54	-5.47	0-360	200	V
Pk - Pea	Pk - Peak detector												

DATE: 2018-07-25

9.4.2. Middle Channel

Spurious Emissions 1GHz - 25GHz

DATE: 2018-07-25 ISED ID: 20659-SNSS

Philips													
SNS441													
Middle (Channel												
RED: Ho	orizontal GRN	N: Vertical											
Trace M	1Arkers												
	Test	Meter		Antenna	Path		47 CFR Part		47 CFR Part				
Marker	Frequency	Reading			Factor	Lev el	15.209 PK	Margin		Margin	Azimuth	Height	
No.	(GHz)	(dBuV)	Detector	dB/m	dB	dBuV/m	Limit dBuV/m	(dB)	AV dBuV/m	(dB)	[Degs]	[cm]	Polarity
1	2.44	59.48	Pk	21.9	4.61	85.99	-	-	-	-	0-360	100	Н
3	4.881	64.45	Pk	27.7	-50.78	41.37	74	-32.63	54	-12.63	0-360	200	Н
5	8.005	61.25	Pk	36.1	-46.76	50.59	74	-23.41	54	-3.41	0-360	100	Н
2	2.439	66.43	Pk	21.9	4.64	92.97	-	-	-	-	0-360	100	V
4	4.879	66.75	Pk	27.7	-50.81	43.64	74	-30.36	54	-10.36	0-360	150	V
6	8.009	60.42	Pk	36.1	-46.65	49.87	74	-24.13	54	-4.13	0-360	150	V
Pk - Pea	ak detector												

9.4.3. High Channel

Band Edge Data - Horizontal

Philips L	ighting NA												
Model: 4	41												
High CH	TX												
Band Ed	ge												
HORIZO	NTAL												
Trace M	Arkers												
	Test	Meter			Path		BandEdge		BandEdge				
Marker	Frequency	Reading		Factor	Factor	Level	PK Limit	Margin	AV Limit	Margin	Azimuth	Height	
No.	(GHz)	(dBuV)	Detector	dB/m	dB	dBuV/m	dBuV/m	(dB)	dBuV/m	(dB)	[Degs]	[cm]	Polarity
1	2.4744	63.98	Pk	22	4.56	90.54	-	-	-	-	283	234	Н
2	2.4834	28.24	Pk	22.1	4.53	54.87	-	-	-	-	283	234	Н
3	2.4836	27.1	Pk	22.1	4.53	53.73	74	-20.27	-	-	283	234	Н
4	2.4892	27.23	Pk	22.1	4.54	53.87	74	-20.13	-	-	283	234	Н
5	2.4751	59.98	Av	22	4.54	86.52	-	-	-	-	283	234	Н
6	2.4834	16.34	Av	22.1	4.53	42.97	-	-	-	-	283	234	Н
7	2.4836	16.32	Av	22.1	4.53	42.95	-	-	54	-11.05	283	234	Н
8	2.489	16.26	Av	22.1	4.54	42.9	-	-	54	-11.1	283	234	Н
Pk - Pea	k detector												
Av - Ave	erage Detecto	r											

Philips L	ighting NA												
Model: 4	141												
High CH	TX												
Band Ed	lge												
VERTIC	AL												
Trace M	Arkers												
Madaa	Test	Meter		Antenna	Path	Laval	BandEdge	Manaia	BandEdge	Manain	A :	l latalet	
	Frequency	Reading	Datastas	Factor	Factor dB	Level		Margin	AV Limit	Margin	Azimuth	_	Dalasit
No.	(GHz)	(dBuV)		dB/m		dBuV/m	dBuV/m	(dB)	dBuV/m	(dB)	[Degs]	[cm]	Polarity
1	2.4745	68.94	Pk	22	4.56	95.5	-	-	-	-	85	102	V
2	2.4834	26.71	Pk	22.1	4.53	53.34	-	-	-	-	85	102	V
3	2.4836	27.04	Pk	22.1	4.53	53.67	74	-20.33	-	1	85	102	V
4	2.4881	29.44	Pk	22.1	4.54	56.08	74	-17.92	-		85	102	٧
5	2.475	64.92	Av	22	4.54	91.46	-	-	-		85	102	٧
6	2.4834	16.35	Av	22.1	4.53	42.98	-	-	-	-	85	102	V
7	2.4836	16.42	Av	22.1	4.53	43.05	-	-	54	-10.95	85	102	٧
8	2.4881	16.56	Av	22.1	4.54	43.2	-	-	54	-10.8	85	102	V
Pk - Pea	ak detector												
Av - Av	erage Detecto	or											

Spurious Emissions 1GHz - 25GHz

DATE: 2018-07-25 ISED ID: 20659-SNSS

Philips I	_ighting NA												
Model:	441												
High CH	I TX												
Spurious	S												
Red: Ho	orizontal Gre	en: Vertical											
Trace M	1Arkers												
Marker	Test Frequency	Meter Reading		Antenna Factor		Lev el	47 CFR Part 15.209 PK	Margin	47 CFR Part 15.209 Limit	Margin	Azimuth	Height	
No.	(GHz)	(dBuV)	Detector	dB/m	dB	dBuV/m	Limit dBuV/m	(dB)	AV dBuV/m	(dB)	[Degs]	[cm]	Polarity
1	1.201	69.95	Pk	28.1	-55.62	42.43	74	-31.57	54	-11.57	0-360	150	Н
2	2.475	56.79	Pk	22	4.55	83.34	-	-	-	-	0-360	150	Н
3	7.428	61.6	Pk	30.8	-46.59	45.81	74	-28.19	54	-8.19	0-360	150	Н
4	11.079	56.86	Pk	36.5	-47.51	45.85	74	-28.15	54	-8.15	0-360	150	Н
5	14.462	48.9	Pk	39.8	-40.99	47.71	74	-26.29	54	-6.29	0-360	150	Н
6	20.448	54.02	Pk	40.3	-49.82	44.5	74	-29.5	54	-9.5	0-360	150	Н
7	1.877	67.08	Pk	31	-53.21	44.87	74	-29.13	54	-9.13	0-360	150	V
8	2.475	62.92	Pk	22	4.55	89.47	-	-	-	-	0-360	150	V
9	4.949	67	Pk	27.8	-49.51	45.29	74	-28.71	54	-8.71	0-360	150	V
10	10.859	59.01	Pk	36.4	-48.14	47.27	74	-26.73	54	-6.73	0-360	150	V
11	13.151	51.83	Pk	39.8	-44.36	47.27	74	-26.73	54	-6.73	0-360	150	V
12	19.54	55.01	Pk	40.3	-51.41	43.9	74	-30.1	54	-10.1	0-360	150	V
Pk - Pe	ak detector												

REPORT NO: 12229356A DATE: 2018-07-25 FCC ID:2AF2N-SNSS ISED ID: 20659-SNSS

10. AC POWER LINE CONDUCTED EMISSIONS

LIMITS

FCC §15.207 (a)

RSS-Gen 8.8

Frequency of Emission (MHz)	Conducted Limit (dBuV)				
	Quasi-peak	Average			
0.15-0.5	66 to 56 *	56 to 46 *			
0.5-5	56	46			
5-30	60	50			

Decreases with the logarithm of the frequency.

RESULTS

Philips SNS441 LowCh TX

LowCh TX RED: QP GRV: AV

Trace Markers

Test No. Frequency (MHz)	2	Factor (dB)	Factor (dB)	J , ,	Volts))	2
Line 1 1 .2265 2 .22425 3 .9015 4 .9015 5 6.56025 6 6.56025 7 16.908 8 16.90688	38.03dBuV Qp 28.46dBuV Ca 22.41dBuV Qp 16.41dBuV Ca 23.67dBuV Qp 20.44dBuV Ca 29.83dBuV Qp 20.53dBuV Ca	0 0 0 0 0 0	11.4 11.4 10.6 10.6 10.8 10.8 11.3	49.43 Margin (dB) 39.86 Margin (dB) 33.01 Margin (dB) 27.01 Margin (dB) 34.47 Margin (dB) 31.24 Margin (dB) 41.13 Margin (dB) 31.83 Margin (dB)	62.58 -13.15 - 56 -22.99 - 60 -25.53 - 60 -18.87	52.66 -12.8 -46 -18.99 -50 -18.76
Neutral 9 .2265 10 .2265 11 .906 12 .906 13 6.56925 14 6.567	36.15dBuV Qp 26.01dBuV Ca 31.18dBuV Qp 22.4dBuV Ca 29.4dBuV Qp 25.26dBuV Ca	0 0 0 0 0	11.4 11.4 10.6 10.6 10.8	47.55 Margin (dB) 37.41 Margin (dB) 41.78 Margin (dB) 33 Margin (dB) 40.2 Margin (dB) 36.06 Margin (dB)	62.58 -15.03 - - 56 -14.22 - - 60 -19.8	52.58 -15.17 - 46 -13 - 50 -13.94

LIMIT 1: 47 CFR Part 15.207 QP LIMIT 2: 47 CFR Part 15.207 AV

Qp - Quasi-Peak detector Ca - CISPR Average detection DATE: 2018-07-25

10.1.2. AC Power Line Results – TX Mode / Middle Channel

DATE: 2018-07-25 ISED ID: 20659-SNSS

Philips SNS441 MidCh TX RED: QP GRV: AV

Trace Markers Test No. Frequency (MHz)	Meter Reading	Factor (dB)	Factor (dB)	Corrected Lim. Reading (dB(uV		2
Line 1						
1 .17925	36.6dBuV Qp	.1	11.8	48.5 Margin (dB)	64.52 -16.02	_
2 .17925	26.05dBuV Ca	.1	11.8	37.95 Margin (dB)	-10.02	54.52 -16.57
3 .9015	22.75dBuV Qp	0	10.6	33.35 Margin (dB)	56 -22.65	10.57
4 .89925	16.48dBuV Ca	0	10.6	Ž7.08	-22.03	46 -18.92
5 6.738	25.77dBuV Qp	0	10.8	Margin (dB) 36.57 Margin (dB)	60 -23.43	-10.92
6 6.73575	21.1dBuV Ca	0	10.8	31.9 Margin (dB)	-23.43	50 -18.1
7 17.24325	29.93dBuV Qp	0	11.3	41.23	60	-10.1
8 17.241	19.46dBuV Ca	0	11.3	Margin (dB) 30.76 Margin (dB)	-18.77 -	50 -19.24
Neutral				Margin (GB)	_	-19.24
9 .17925	36.94dBuV Qp	.1	11.8	48.84 Margin (dB)	64.52 -15.68	_
10 .17925	25.97dBuV Ca	.1	11.8	37.87 Margin (dB)	-	54.52 -16.65
11 .9015	32.62dBuV Qp	0	10.6	43.22 Margin (dB)	56 -12.78	-10.05
12 .89925	24.14dBuV Ca	0	10.6	34.74	-12.76	46 -11.26
13 6.558	29.36dBuV Qp	0	10.8	Margin (dB) 40.16	60	-11.20
14 6.558	25.5dBuV Ca	0	10.8	Margin (dB) 36.3 Margin (dB)	-19.84 - -	50 -13.7

LIMIT 3: 47 CFR Part 15.207 QP LIMIT 4: 47 CFR Part 15.209 AV

Qp - Quasi-Peak detector
Ca - CISPR Average detection

10.1.3. AC Power Line Results – TX Mode / High Channel

DATE: 2018-07-25 ISED ID: 20659-SNSS

Philips SNS441 HiCh TX RED: QP GRV: AV

Trace Markers Test (MHz)	Meter	Transducer (dB)	Gain/Loss (dB)	Corrected	Limit:1	2
Line 1 1 .2265 2 .22425 3 .90375 4 .90375 5 6.4005 6 6.39825	38.12dBuV Qp 28.53dBuV Ca 22.93dBuV Qp 16.67dBuV Ca 25.25dBuV Qp 21.21dBuV Ca	0 0 0 0 0	11.4 11.4 10.6 10.6 10.8	49.52 Margin (dB) 39.93 Margin (dB) 33.53 Margin (dB) 27.27 Margin (dB) 36.05 Margin (dB) 32.01 Margin (dB)	62.58 -13.06 - - 56 -22.47 - 60 -23.95	52.66 -12.73 - 46 -18.73 - 50 -17.99
Neutral 7 .2265 8 .22425 9 .90375 10 .90375 11 6.4005 12 6.4005	36.36dBuV Qp 26.21dBuV Ca 32.6dBuV Qp 24.23dBuV Ca 29.56dBuV Qp 25.85dBuV Ca	0 0 0 0 0	11.4 11.4 10.6 10.6 10.8	47.76 Margin (dB) 37.61 Margin (dB) 43.2 Margin (dB) 34.83 Margin (dB) 40.36 Margin (dB) 36.65 Margin (dB)	62.58 -14.82 - - 56 -12.8 - - 60 -19.64	52.66 -15.05 -46 -11.17 -50 -13.35

LIMIT 3: 47 CFR Part 15.207 QP LIMIT 4: 47 CFR Part 15.207 AV

Qp - Quasi-Peak detector Ca - CISPR Average detection