MATH 611 (DUE 10/23)

HIDENORI SHINOHARA

1. SIMPLICIAL AND SINGULAR HOMOLOGY

Exercise. (Problem 2) Show that the Δ -complex obtained from Δ^3 by performing the edge identifications $[v_0, v_1] \sim [v_1, v_3]$ and $[v_0, v_2] \sim [v_2, v_3]$ deformation retracts onto a Klein bottle. Find other pairs of identifications of edges that produce Δ -complexes deformation retracting onto a torus, a 2-sphere, and $\mathbb{R}\mathbf{P}^2$.

Proof. Maybe something like this? Either way, I noticed that it looks like it contains $2 \mathbb{R}P^2$.

Exercise. (Problem 4) Compute the simplicial homology groups of the triangular parachute obtained from Δ^2 by identifying its three vertices to a single point.

Proof. Let v_0 denote the only vertex, e_1, e_2, e_3 denote the three edges of the parachute, and σ denote the face of the parachute. $C_k = 0$ for $k \geq 3$ because Δ^2 with the vertices identified does not contain any k-dimensional simplicies. $C_2 = \langle \sigma \rangle$, $C_1 = \langle e_1, e_2, e_3 \rangle$, $C_0 = \langle v_0 \rangle$. Let $n \in \mathbb{N}$. ∂_n is defined such that $\partial_n(\sigma_\alpha) = \sum_i (-1)^i \sigma_\alpha | [v_0, \cdots, \hat{v_i}, \cdots, v_n]$. Since there is only one vertex, ∂_n is the zero map.

This argument doesn't work. Check the torus example from class. It only has one vertex, but ∂_n is not the zero map for some n.

Therefore, $H_n = \ker(\partial_n)/\operatorname{Im}(\partial_{n+1}) = C_n/\langle 0 \rangle = C_n$. Thus

$$H_n = \begin{cases} \{0\} & (n \ge 3) \\ \langle \sigma \rangle \cong \mathbb{Z} & (n = 2) \\ \langle e_1, e_2, e_3 \rangle \cong \mathbb{Z}^3 & (n = 1) \\ \langle v_0 \rangle \cong \mathbb{Z} & (n = 0). \end{cases}$$

Figure 1. mycaption

FIGURE 2. Problem 5

I'm not sure if this is correct.

Exercise. (Problem 5) Compute the simplicial homology groups of the Klein bottle using the Δ -complex structure described at the beginning of this section.

Proof. We will use the notations in Figure 2.

$$C_n = \begin{cases} 0 & (n \ge 3) \\ \langle U, L \rangle & (n = 2) \\ \langle a, b, c \rangle & (n = 1) \\ \langle v \rangle & (n = 0). \end{cases}$$

 $\partial_n = 0$ for $n \ge 3$ and n = 0.

$$\partial_2(U) = \sum_{i=0}^2 (-1)^i \sigma | [0, 1, 2]$$

= $\sigma | [1, 2] - \sigma | [0, 2] + \sigma | [0, 1]$
= $b - c + a$.

$$\partial_2(L) = \sum_{i=0}^2 (-1)^i \sigma | [0, 1, 2]$$

= $\sigma | [1, 2] - \sigma | [0, 2] + \sigma | [0, 1]$
= $a - b + c$.

 $\partial_1(a) = 0$ since $\partial_1(a) = \sigma|[1] - \sigma|[0] = v - v = 0$. Similarly, $\partial_1(b) = \partial_1(c) = 0$. Thus

$$H_n = \begin{cases} \{0\} & (n \ge 3) \\ \langle \sigma \rangle \cong \mathbb{Z} & (n = 2) \\ \langle e_1, e_2, e_3 \rangle \cong \mathbb{Z}^3 & (n = 1) \\ \langle v_0 \rangle \cong \mathbb{Z} & (n = 0). \end{cases}$$

Finish the rest.