FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

CASIO LUYÊN THI THPT QUỐC GIA

ĐỀ TỰ LUYỆN (Đề thi 105 câu / 11 trang)

ĐỀ TRẮC NGHIỆM ÔN THI THPT **OUÓC GIA 2017** Môn: TOÁN HỌC Chuyên đề: Số phức ĐÈ 25

Bài 1. Cho số phức z thoả mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn số phức $w = z + \frac{1}{z}$ thuộc một đường ellipse. Tìm tâm sai e của ellipse đó.

A.
$$e = \frac{3}{25}\sqrt{43}$$

B.
$$e = \frac{22}{25}\sqrt{41}$$

C.
$$e = \frac{3}{25}\sqrt{41}$$

A.
$$e = \frac{3}{25}\sqrt{43}$$
 B. $e = \frac{22}{25}\sqrt{41}$ **C.** $e = \frac{3}{25}\sqrt{41}$ **D.** $e = \frac{22}{25}\sqrt{43}$

Bài 2. Một acgumen của số phức $z \neq 0$ là ϕ thì một acgumen của $\frac{z}{1+z}$

A.
$$-\phi - \frac{\pi}{4}$$
 B. $\phi + \frac{\pi}{2}$

B.
$$\phi + \frac{\pi}{2}$$

$$\mathbf{C}.\phi-\pi$$

D.
$$-\phi + \frac{\pi}{4}$$

Bài 3. Tính $z = \frac{1}{2-5i}$

A.
$$z = \frac{2}{29} \pm \frac{5}{29}i$$

B.
$$z = \frac{1}{29} + \frac{7}{29}$$

$$C. \ z = \frac{2}{29} + \frac{5}{29}$$

A.
$$z = \frac{2}{29} \pm \frac{5}{29}i$$
 B. $z = \frac{1}{29} + \frac{7}{29}i$ **C.** $z = \frac{2}{29} + \frac{5}{29}i$ **D.** $z = \frac{1}{29} - \frac{7}{29}i$

Bài 4. Cho số phức z thoả mãn |z-12-5i|=3. Tìm giá trị nhỏ nhất của |z|

- **A.** 16
- **B.** 12

C. 9

D. 10

Bài 5. Khi số phức z thay đổi tuỳ ý thì tập hợp các $2z + 2\overline{z}$ là

- A. Tập hợp các số thực dương
- **B.** Tập hợp các số thực không âm
- C. Tập hợp các số thực
- **D.** Tập hợp các số phức không phải số ảo

Bài 6. Cho số phức z thoả mãn |z-12-5i|=3. Tìm giá trị lớn nhất của |z|.

- **A.** 12
- **B.** 16
- **C.** 10
- **D.** 9

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 7. Tìm tất cả giá trị của m để phương trình $2z^2 - (3+8i)z - m - 4i = 0$ có một nghiệm thực.

A.
$$m = 2$$

B.
$$m = -4$$

C.
$$m = 1$$

D.
$$m = -3$$

Bài 8. Tìm số phức z sao cho $\frac{3-z}{1+i-2z} = 2-i$;

A.
$$z = -\frac{3}{13} + \frac{3}{13}i$$
 B. $z = -\frac{2}{13} + \frac{3}{13}i$ **C.** $z = -\frac{3}{13} + \frac{2}{13}i$ **D.** $z = -\frac{2}{13} + \frac{3}{13}i$

B.
$$z = -\frac{2}{13} + \frac{3}{13}$$

C.
$$z = -\frac{3}{13} + \frac{2}{13}$$

D.
$$z = -\frac{2}{13} + \frac{3}{13}$$

Bài 9. Kết luận nào sau đây đúng

A.
$$|z_1 + z_2| \le |z_1| + |z_2|$$

B.
$$|z_1 + z_2| > |z_1| + |z_2|$$

C.
$$|z_1 + z_2| \ge |z_1| + |z_2|$$

D.
$$|z_1 + z_2| < |z_1| + |z_2|$$

Bài 10. Tìm modulus của số phức z = (2-i)(1-3i)

A.
$$|z| = 2\sqrt{7}$$

B.
$$|z| = 2\sqrt{5}$$

A.
$$|z| = 2\sqrt{7}$$
 B. $|z| = 2\sqrt{5}$ **C.** $|z| = 4\sqrt{2}$

D.
$$|z| = 5\sqrt{2}$$

Bài 11. Tính Argument của số phức $z = (-\sqrt{3} + i)^{12}$

$$\mathbf{A.} \ \operatorname{arg}(z) = 0$$

B.
$$arg(z) = \frac{5}{6}$$

A.
$$\arg(z) = 0$$
 B. $\arg(z) = \frac{5}{6}$ **C.** $\arg(z) = \frac{5\pi}{6}$

D.
$$arg(z) = \frac{1}{4096}$$

Bài 12. Tìm điều kiện của số nguyên n để $z_n = (1 + \sqrt{3}i)^n$ là số thực

A. n chia hết 3

B. n chia cho 3 du 1

C. n chia cho 4 du 1

D. n chia cho 3 du 2

Bài 13. Tìm phần ảo của số phức $z = \frac{\left(\cos\frac{9\pi}{17} + i\sin\frac{9\pi}{17}\right)^3}{\left(\cos\frac{2\pi}{17} - i\sin\frac{2\pi}{17}\right)^3}$

A. 0

B. -1

C. 2

D. 1

Bài 14. Cho số phức z thoả mãn |z| = 2. Biết rang tập hợp các điểm biểu diễn của số phức $w = \frac{2016 + 2017i}{7}$ thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$r = \frac{1}{2}\sqrt{1626509}$$

B.
$$r = \frac{1}{2}\sqrt{8132545}$$

A.
$$r = \frac{1}{2}\sqrt{1626509}$$
 B. $r = \frac{1}{2}\sqrt{8132545}$ **C.** $r = \frac{3}{2}\sqrt{1626509}$ **D.** $r = \frac{3}{2}\sqrt{8132545}$

D.
$$r = \frac{3}{2}\sqrt{8132545}$$

Bài 15. Cho các số phức z và w thoả mãn $\overline{z}w \neq 1$ và |z| = 1 hoặc |w| = 1. Cho $A = \frac{z - w}{1 - \overline{z}w}$. Tính |A|

A.
$$|A| = 1$$

B.
$$|A| = \frac{1}{2}$$
 C. $|A| = \frac{3}{2}$

C.
$$|A| = \frac{3}{2}$$

D.
$$|A| = 2$$

Bài 16. Cho số phức z thoả mãn $2\Re(z) - 3\Im(z) = 6 \text{ với }\Re(z)$ là phần thực, $\Im(z)$ là phần ảo. Khi đó giá trị nhỏ nhất của |z| là:

A.
$$\frac{5}{\sqrt{13}}$$

B.
$$\frac{6}{\sqrt{13}}$$

A.
$$\frac{5}{\sqrt{13}}$$
 B. $\frac{6}{\sqrt{13}}$ **C.** $\frac{8}{\sqrt{13}}$

D.
$$\frac{7}{\sqrt{13}}$$

Bài 17. Cho số phức u = 2 - 5i và v = -3 + 2i. Nhận xét nào sau đây là sai:

A.
$$u - v = 5 - 7i$$

A.
$$u - v = 5 - 7i$$
 B. $3u - v = 9 + 9i$ **C.** $u + v = -1 - 3i$

C.
$$u + v = -1 - 3i$$

D.
$$2u - 3v = 13 - 16i$$

Bài 18. Cho $iz^3 + z^2 - z + i = 0$. Khi đó giá trị của |z| là:

A.
$$\sqrt{5}$$
 B. $\sqrt{2}$

$$\mathbf{B}. \sqrt{2}$$

Bài 19. Cho z_1 , z_2 , z_3 là 3 nghiệm phức của phương trình $z^3 + 8 = 0$. Tính $|z_1| + |z_2| + |z_3|$.

B.
$$2 + \sqrt{3}$$

D.
$$2 + 2\sqrt{3}$$

Bài 20. Cho số phức $z = \frac{(1+2i)(1+i)}{-2-3i}$. Kết luận nào sau đây là đúng khi nói về argument của số phức z.

$$\mathbf{A.} \ \operatorname{arg}(z) > 0$$

B.
$$arg(z) < 0$$

C.
$$arg(z)$$
 không xác định

D.
$$arg(z) = 0$$

Bài 21. Gọi z_1 , z_2 , z_3 , z_4 , z_5 , z_6 là sáu nghiệm của phương trình $z^6+8=0$. Tính $|z_1|+|z_2|+|z_3|$ $+ |z_4| + |z_5| + |z_6|$

A.
$$6\sqrt{2}$$

B.
$$6\sqrt{3}$$

C.
$$3\sqrt{2}$$

D.
$$2\sqrt{3}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 22. Cho số phức z = 3 + 2i. Nhận xét nào sau đây là đúng khi nói tới số phức $w = \frac{z-1}{z-2}$

A. Phần ảo của w là
$$-\frac{2}{5}$$

B. Phần thực của w là
$$\frac{3}{4}$$

C. Phần ảo của w là
$$\frac{1}{4}$$

D. Phần thực của w là
$$-\frac{6}{5}$$

Bài 23. Tính $z = \frac{2+3i}{4-5i}$

A.
$$z = -\frac{3}{43} + \frac{23}{43}i$$
 B. $z = -\frac{7}{41} + \frac{22}{41}i$ **C.** $z = \frac{3}{43} + \frac{23}{43}i$ **D.** $z = \frac{7}{41} + \frac{22}{41}i$

B.
$$z = -\frac{7}{41} + \frac{22}{41}i$$

$$\mathbf{C.} \ \ z = \frac{3}{43} + \frac{23}{43}$$

D.
$$z = \frac{7}{41} + \frac{22}{41}i$$

Bài 24. Tìm phần thực của số phức $z = e^{e^{1+i}}$

A.
$$\Re(z) = e^{e\sin x} \sin(e\cos 1)$$

B.
$$\Re(z) = e^{e\sin x}\cos(e\cos 1)$$

C.
$$\Re(z) = e^{e\cos x}\cos(e\sin 1)$$

D.
$$\Re(z) = e^{e\cos x} \sin(e\sin 1)$$

Bài 25. Cho số phức z thoả mãn |z| = 1 và $z^{2n} \neq -1$ với mọi n là số nguyên dương. Nhận xét nào sau đây là đúng khi nói về số phức $w = \frac{z^n}{1 + z^{2n}}$?

- A. Tập hợp điểm biểu diễn của w là trục
- **B.** w là số thuần ảo

C.
$$|w| = \frac{1}{2}$$

D. Phần ảo của w bằng 0

Bài 26. Rút gọn
$$\frac{\sqrt{2}\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)}{2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)}$$

A.
$$-\frac{1}{2} + \frac{1}{2}i$$
 B. $\frac{1}{2} - \frac{1}{2}i$

B.
$$\frac{1}{2} - \frac{1}{2}$$

C.
$$\frac{1}{2} + \frac{1}{2}i$$

D.
$$-\frac{1}{2} - \frac{1}{2}i$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 27. Nhận xét nào sau đây là đúng khi nói về tập hợp điểm biểu diễn số phức z thoả mãn $arg(z+3+2i) = \frac{3\pi}{4}$

A. Một đường tròn

B. Một đoạn thẳng

C. Một đường thắng

D. Môt tia

Bài 28. Biết z = 3 - 2i thỏa mãn phương trình $z^4 - 6z^3 + 18z^2 + pz + 65 = 0$. Tìm p

- **A.** p = -21
- **B.** p = -30
- **C.** p = 0

Bài 29. Số nguyên Gaussian được định nghĩa là số phức dạng $z = a + bi \ với \ a, b \in \square$. Cho x, y là 2 số nguyên Gaussian. Khi đó thương phép chia Eiclid của x cho y là một số nguyên Gaussian z sao cho z gần $\frac{x}{v}$ nhất khi biểu diễn trên hệ trục toạ độ. Tìm thương phép chia Euclid $\frac{10+9i}{4-7i}$

- **A.** 2i
- **B.** -1 + i
- $C_{1} 1 + 2i$
- **D.** i

Bài 30. Cho các số phức x, y, z thoả mãn $\begin{cases} x+yz=2\\ y+zx=2 \end{cases}$. Kết luận nào sau đây là đúng?

- **A.** Tồn tại các số phức (x, y, z) = (1+i, 1-i, 1) thoả mãn bài toán
- **B.** Không tồn tại các số phức x, y, z thoả mãn bài toán.
- C. Tồn tại các số phức $(x, y, z) = (1 + \sqrt{2}i, 1 \sqrt{2}i, 1)$ thoả mãn bài toán.
- **D.** Tổn tại các số phức (x, y, z) = (1 + 2i, 1 2i, 1) thoả mãn bài toán.

Bài 31. Tính Argument của số phức $z = \sqrt{3} - 2 + i$

A.
$$\arg(z) = \frac{11\pi}{12}$$
 B. $\arg(z) = \frac{4\pi}{7}$ **C.** $\arg(z) = \frac{3\pi}{7}$ **D.** $\arg(z) = \frac{7\pi}{12}$

B.
$$\arg(z) = \frac{4\pi}{7}$$

C.
$$arg(z) = \frac{3\pi}{7}$$

D.
$$arg(z) = \frac{7\pi}{12}$$

Bài 32. Với mọi số phức z, ta có $|z+1|^2$ bằng

- **A.** $z\overline{z} + z + \overline{z} + 1$ **B.** $|z|^2 + 2|z| + 1$ **C.** $z + \overline{z} + 1$ **D.** $z\overline{z} + 1$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 33. Tìm modulus của số phức $z = \frac{2-3i}{3}$

A.
$$|z| = \frac{\sqrt{13}}{10}$$

B.
$$|z| = \frac{\sqrt{10}}{13}$$

C.
$$|z| = \sqrt{\frac{10}{13}}$$

A.
$$|z| = \frac{\sqrt{13}}{10}$$
 B. $|z| = \frac{\sqrt{10}}{13}$ **C.** $|z| = \sqrt{\frac{10}{13}}$ **D.** $|z| = \sqrt{\frac{13}{10}}$

Bài 34. Cho số phức z thoả mãn |z| = 1. Biết rằng tập hợp các điểm biểu diễn của số phức $w = (4-3i)z^2 - 4 - 2i$ trên hệ trục Oxy thuộc một đường tròn. Tìm tâm I của đường tròn đó.

Bài 35. Biểu diễn số phức $z = 4\sqrt{3} - 4i$ dưới dạng lượng giác là :

A.
$$z = 8\sin\frac{-\pi}{6} + 8\cos\frac{-\pi}{6}$$

B.
$$z = 8\sin\frac{-\pi}{6} + 8i\cos\frac{-\pi}{6}$$

C.
$$z = 8\cos{\frac{-\pi}{6}} + 8\sin{\frac{-\pi}{6}}$$

D.
$$z = 8\cos{\frac{-\pi}{6}} + 8i\sin{\frac{-\pi}{6}}$$

Bài 36. Cho số phức z thoả mãn $\frac{3(z+2)}{z+2i} = 5-2i$. Khi đó giá trị của z là :

A.
$$z = 5 - i$$

B.
$$z = 3 + 2i$$
 C. $z = 3 - 2i$

C.
$$z = 3 - 2i$$

D.
$$z = 5 + i$$

Bài 37. Cho số phức z = 2 + 3i. Gọi A, B, C, D lần lượt là điểm biểu diễn của $z, 2z, \overline{z}, iz$ trên hệ trục toạ độ Oxy. Nhận xét nào sau đây là đúng?

- A. OB và OC đối xứng nhau qua Ox
- B. OC vuông góc với OA
- C. OB vuông góc với OD
- **D.** Oy là phân giác của góc BOD

Bài 38. Tìm phần ảo của số phức $z = \frac{26}{-3 + 2i} + i^{69}$

A. 3

B. -6

C. 6

D. -3

Bài 39. Gọi A, B là điểm biểu diễn của số phức $z_1 = \frac{2-3i}{1-i}$; $z_2 = 4+i$. Tính độ dài đoạn thẳng AB.

A.
$$AB = \frac{3}{5}\sqrt{2}$$
 B. $AB = \frac{1}{3}\sqrt{2}$ **C.** $AB = \frac{2}{\sqrt{3}}$ **D.** $AB = \frac{3}{\sqrt{2}}$

B.
$$AB = \frac{1}{3}\sqrt{2}$$

C.
$$AB = \frac{2}{\sqrt{3}}$$

D.
$$AB = \frac{3}{\sqrt{2}}$$

Câu 40. Cho các số phức $z_1 = 5 - 3i$, $z_2 = 4 + i$. Tìm modulus của số phức $z = z_1 + z_2$.

A.
$$|z| = \sqrt{58}$$

B.
$$|z| = 13\sqrt{5}$$

C.
$$|z| = \sqrt{85}$$

B.
$$|z| = 13\sqrt{5}$$
 C. $|z| = \sqrt{85}$ **D.** $|z| = 5\sqrt{13}$

Câu 41. Tìm số phức z thoả mãn $z^2 + 4z + 13 = 0$

A.
$$z = 2 \pm 3i$$

B.
$$z = -2 \pm 3i$$

C.
$$z = 4 \pm 6$$

A.
$$z = 2 \pm 3i$$
 B. $z = -2 \pm 3i$ **C.** $z = 4 \pm 6i$ **D.** $z = -4 \pm 6i$

Bài 42. Tính $i(1+i)(1-i)^2$

A.
$$2 + 2i$$

$$C.7 - 12i$$

D.
$$5 - 3i$$

Bài 43 Cho số phức $z = \frac{1+i}{2-i}$. Tính $A = z^2 + \frac{1+i}{z}$

A.
$$A = \frac{42}{25} + \frac{19}{25}i$$

B.
$$A = \frac{42}{25} - \frac{19}{25}$$

A.
$$A = \frac{42}{25} + \frac{19}{25}i$$
 B. $A = \frac{42}{25} - \frac{19}{25}i$ **C.** $A = -\frac{24}{25} - \frac{19}{25}i$ **D.** $A = \frac{24}{25} - \frac{19}{25}i$

D.
$$A = \frac{24}{25} - \frac{19}{25}$$

Bài 44. Tìm phần thực của số phức $z = (1 + \sqrt{3}i)^9$

A.
$$256\sqrt{3}$$

B.
$$256\sqrt{2}$$
 C. 256

D.
$$128\sqrt{5}$$

Bài 45. Gọi A là điểm biểu diễn số phức $z = \sqrt{3} - i$ trên hệ trục toạ độ Oxy. Khi đó độ dài đoạn thắng OA là:

A.
$$2\sqrt{2}$$

D.
$$\sqrt{3}$$

Bài 46. Cho $z = \left(\frac{a+bi}{a-bi}\right)^2 + \left(\frac{a-bi}{a+bi}\right)^2$. Khẳng định nào sau đây là đúng?

A.
$$z = \overline{z}$$

B.
$$z\overline{z} = |z|$$

$$\mathbf{C.} \ |z| = \sqrt{a^2 + b^2} \qquad \mathbf{D.} \ z = \overline{z} |z|$$

D.
$$z = \overline{z} | z$$

Bài 47. Tìm phần thực của $\left(\frac{1-2i}{1-i}\right)^{10}$

A.
$$\frac{779}{32}$$

B.
$$-\frac{237}{8}$$

C.
$$\frac{237}{32}$$

D.
$$-\frac{779}{8}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 48. Tìm tập hợp điểm biểu diễn số phức z thoả mãn |z-3| = |z+i|

A. Đường thẳng
$$y = -4x + 1$$

B. Đường thẳng
$$y = -5x + 3$$

C. Đường thẳng
$$y = -3x + 4$$

D. Đường thẳng
$$y = -x + 3$$

Bài 49. Biết $\cos^5 x = a\cos 5x + b\sin 3x + c\cos x$ với a, b, c là các số thực. Tính a - b + c

A.
$$\frac{5}{16}$$

B.
$$\frac{5}{8}$$

C.
$$\frac{1}{16}$$

D.
$$\frac{3}{8}$$

Bài 50. Biết z = 5 - 2i là nghiệm của phương trình $z^3 + (-5 + 2i)z^2 + 4z + 8i - 20 = 0$. Tìm các nghiệm còn lại của phương trình trên.

$$\mathbf{A.} \ \ z = \pm i$$

B.
$$z = 2 \pm \sqrt{5}i$$
 C. $z = \pm \sqrt{5}i$ **D.** $z = \pm 2i$

C.
$$z = \pm \sqrt{5}i$$

D.
$$z = \pm 2i$$

Bài 51. Tìm tập hợp điểm biểu diễn số phức z thoả mãn $\arg\left(\frac{z}{z-4i}\right) = \frac{\pi}{2}$.

- A. Nửa đường tròn bán kính 2 tâm (-2, 0) thuộc góc phần tư thứ tư
- **B.** Nửa đường tròn bán kính 2 tâm (2, 0) thuộc góc phần tư thứ nhất
- C. Nửa đường tròn bán kính 1 tâm (1, 0) thuộc góc phần tư thứ tư
- **D.** Nửa đường tròn bán kính 2 tâm (0, 2) thuộc góc phần tư thứ nhất

Bài 52. Tìm tập hợp điểm biểu diễn số phức z thoả mãn $\arg(z-2) = \frac{\pi}{3}$.

- **A.** Đường thẳng $y = \sqrt{3}x + 2\sqrt{3}$ thuộc góc phần tư thứ hai
- **B.** Đường thẳng $y = \sqrt{3}x 2\sqrt{3}$ thuộc góc phần tư thứ hai
- **C.** Đường thẳng $y = \sqrt{3}x 2\sqrt{3}$ thuộc góc phần tư thứ nhất
- **D.** Đường thẳng $y = \sqrt{3}x + 2\sqrt{3}$ thuộc góc phần tư thứ nhất

Bài 53. Cho số phức z thoả mãn |z-2i|=|z+2|. Tập hợp điểm biểu diễn của z trên hệ trục toạ độ Oxy là:

A. Parabol tiếp xúc đường thẳng y = -x

- B. Ellipse tiêu cự 1
- C. Đường thẳng y = -x
- D. Đường tròn bán kính 1

Bài 54. Gọi x_1 , x_2 là 2 nghiệm phức của phương trình $\tan^2 t \cdot x^2 + \tan t \cdot x + 1 = 0$ với t là số thực thỏa mãn tant $\neq 0$. Tính $x_1^n + x_2^n$

A.
$$x_1^n + x_2^n = 2\cos\frac{\pi n}{3}\cos^n t$$

B.
$$x_1^n + x_2^n = \cos \frac{2\pi n}{3} \cos^n t$$

C.
$$x_1^n + x_2^n = \cos \frac{\pi n}{3} \cos^n t$$

D.
$$x_1^n + x_2^n = 2\cos\frac{2\pi n}{3}\cos^n t$$

Bài 55. Số phức z nào đước đây thoả mãn $z^2 + z + 1 = 0$

A. Không có số phức z nào thỏa mãn

B.
$$z = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

C.
$$z = \frac{1}{2} - \frac{\sqrt{5}}{2}i$$

D.
$$z = \frac{3}{2} + \frac{\sqrt{5}}{2}i$$

Bài 56. Cho 2 số phức
$$z_1$$
, z_2 có $|z_1| = 8$, $|z_2| = \frac{1}{2}$ và $\arg(z_1) = -\frac{\pi}{4}$, $\arg(z_2) = \frac{3\pi}{4}$. Tính $z_1 z_2 + \frac{z_1}{z_2}$

A.
$$-16 + 4i$$

B.
$$-3 + 4i$$

$$C. -16 + 3i$$

D.
$$-3 + 3i$$

Bài 57. Số phức z thay đổi sao cho |z| = 1 thì giá trị bé m và giá trị lớn nhất M của |z - i| là

A.
$$m = 0$$
, $M = 2$

B. m = 0, M =
$$\sqrt{2}$$

$$C. m = 1, M = 2$$

D.
$$m = 0, M = 1$$

Bài 58. Cho số phức z thoả mãn $z^2 + (\sqrt{3} + i)z + 1 = 0$. Modulus của z là :

A.
$$|z| = \sqrt{2 + \sqrt{3}}$$

B.
$$|z| = \sqrt{2 - \sqrt{3}}$$

A.
$$|z| = \sqrt{2 + \sqrt{3}}$$
 B. $|z| = \sqrt{2 - \sqrt{3}}$ **C.** $|z| = \sqrt{3 - \sqrt{2}}$ **D.** $|z| = \sqrt{3 + \sqrt{2}}$

D.
$$|z| = \sqrt{3 + \sqrt{2}}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 59. Tính tổng tất cả các nghiệm của phương trình $z^4 + 3z^2 - 28 = 0$ trên trường số phức.

A.
$$4-2\sqrt{7}i$$

D.
$$4 + 2\sqrt{7}i$$

Bài 60. Phương trình $z^3 - (n+i)z + m + 2i = 0$ có 3 nghiệm với n, m là các hằng số thực. Tìm m để modulus của tích các nghiệm phức bằng 5.

A.
$$m = 1 \text{ hoặc } m = -2$$

B.
$$m = 1 \text{ hoặc } m = -1$$

C.
$$m = 1$$

D.
$$m = -2$$

Bài 61. Cho số phức z thoả mãn |z+2-3i|=4. Tập hợp các điểm biểu diễn của z trên hệ trục toa độ Oxy là:

Bài 62. Cho số phức u = 2 - 5i, v = -3 + 2i. Nhận xét nào sau đây là đúng?

A.
$$u^2 = 21 - 20i$$

B.
$$uv = 4 + 19i$$

C.
$$\frac{u}{v} = 5 + 7i$$

A.
$$u^2 = 21 - 20i$$
 B. $uv = 4 + 19i$ **C.** $\frac{u}{v} = 5 + 7i$ **D.** $\frac{v}{u} = 5 + 7i$

Bài 63. Tập hợp điểm biểu diễn của số phức z trên hệ trục toạ độ Oxy thoả mãn arg $(z-1+i) = -\frac{\pi}{4}$ là :

A. Đường thẳng
$$y = -x \text{ với } x > 1$$

C. Đường thẳng
$$y = -x \text{ với } x \ge 1$$

Bài 64. Tính i^{2017}

$$A. -i$$

Bài 65. Cho 2 số phức $u = 1 + \sqrt{3}i$; $v = \sqrt{3} + i$. Tính $\frac{u^3}{u^4}$

A.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}$$

B.
$$\frac{1}{2} - \frac{\sqrt{3}}{2}$$

C.
$$\frac{1}{4} - \frac{\sqrt{3}}{4}$$

Bài 66. Tìm tập hợp điểm biểu diễn số phức z thoả mãn |z| = |z - 6i|

A. Đường thẳng
$$x = 1$$

B. Đường thẳng
$$x = 3$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

C. Đường thẳng
$$y = 3$$

D. Đường thẳng
$$y = 1$$

Bài 67. Cho số phức $z = \cos \theta + i \sin \theta$. Tính $z^n + \frac{1}{z^n}$ với n là số nguyên dương

A.
$$2\sin(n-1)\theta$$

B.
$$2\cos(n-1)\theta$$

C.
$$2\cos n\theta$$

D.
$$2\sin n\theta$$

Bài 68. Phần thực và phần ảo của số phức $z = (1+2i)^2$ là:

- A. Phần thực bằng 3, phần ảo bằng 4
- **B.** Phần thực bằng -3, phần ảo bằng 4
- C. Phần thực bằng -3, phần ảo bằng -4
- D. Phần thực bằng 3, phần ảo bằng 4

Bài 69. Nhà toán học Rafael Bombelli (1526- 1572) đã tình cờ phát hiện ra số phức khi nghiên cứu phương trình bậc 3. Ông cho rằng phương trình $x^3 - 3x + 1 = 0$ tồn tại nghiệm

$$A = \frac{\sqrt[3]{-4 + 4\sqrt{-3}}}{2} + \frac{2}{\sqrt[3]{-4 + 4\sqrt{-3}}}$$

Nhà toán học Abraham de Moivre (1667 -1754) phát hiện ra định lý:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Sử dụng định lý Moivre, hãy rút gọn biểu thức A.

A.
$$A = 2\cos\frac{2\pi}{9}$$

B.
$$A = 2\sin\frac{2\pi}{9}$$

$$\mathbf{C.} \ A = \cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9}$$

D.
$$A = \cos \frac{2\pi}{9} - i \sin \frac{2\pi}{9}$$

Bài 70. Tìm tập hợp điểm biểu diễn số phức z thoả mãn $\arg\left(\frac{z-6}{z-2}\right) = \frac{\pi}{4}$.

- **A.** Đường tròn đường kính $2\sqrt{2}$ thuộc góc phần tư thứ hai
- **B.** Đường tròn đường kính $2\sqrt{2}\,$ thuộc góc phần tư thứ nhất
- C. Đường tròn đường kình $4\sqrt{2}$ thuộc góc phần tư thứ nhất

- **D.** Đường tròn đường kính $4\sqrt{2}$ thuộc góc phần tư thứ hai
- **Bài 71.** Cho số phức z = 3 7i. Tìm phần thực và phần ảo của số phức z.
 - A. Phần thực bằng 3, phần ảo bằng -7i.
 - **B.** Phần thực bằng 3, phần ảo bằng -7.
 - C. Phần thực bằng 3, phần ảo bằng 7i.
 - **D.** Phần thực bằng 3, phần ảo bằng 7.
- **Bài 72.** Cho số phức z thoả mãn |z+1|=2|z-i|. Biết rằng tập hợp các điểm biểu diễn của z thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

A.
$$r = \frac{\sqrt{17}}{3}$$

B.
$$r = \frac{5\sqrt{11}}{7}$$

A.
$$r = \frac{\sqrt{17}}{3}$$
 B. $r = \frac{5\sqrt{11}}{7}$ **C.** $r = \frac{\sqrt{23}}{13}$ **D.** $r = \frac{3\sqrt{7}}{4}$

D.
$$r = \frac{3\sqrt{7}}{4}$$

Bài 73. Tính |z| với $z = \frac{(1+i)^4}{(1+6i)(2-7i)}$

A.
$$|z| = \frac{4}{\sqrt{46}\sqrt{53}}$$
 B. $|z| = \frac{2}{\sqrt{37}\sqrt{53}}$ **C.** $|z| = \frac{2}{\sqrt{46}\sqrt{53}}$ **D.** $|z| = \frac{4}{\sqrt{37}\sqrt{53}}$

B.
$$|z| = \frac{2}{\sqrt{37}\sqrt{53}}$$

C.
$$|z| = \frac{2}{\sqrt{46}\sqrt{53}}$$

D.
$$|z| = \frac{4}{\sqrt{37}\sqrt{53}}$$

Bài 74. Gọi z_1 , z_2 , z_3 , z_4 , z_5 là 5 nghiệm phức của phương trình $z^5 = 1 + i$. Biểu diễn 5 nghiệm này trên hệ trục toạ độ Oxy ta thấy đây là đỉnh của một ngũ giác đều. Tính độ dài cạnh của ngũ giác đều đó.

A.
$$\sqrt{\frac{(3+\sqrt{5})\sqrt[5]{2}}{2}}$$

B.
$$\sqrt{\frac{(5+\sqrt{5})\sqrt[5]{2}}{2}}$$

C.
$$\sqrt{\frac{(5-\sqrt{5})\sqrt[5]{2}}{2}}$$

C.
$$\sqrt{\frac{(5-\sqrt{5})\sqrt[5]{2}}{2}}$$
 D. $\sqrt{\frac{(3-\sqrt{5})\sqrt[5]{2}}{2}}$

Bài 75. Cho số phức z thoả mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức $w = z - \frac{i}{z}$ thuộc đường ellipse. Tìm tiêu cự của ellipse.

A. 8

B. 4

C. 6

D. 2

Bài 76. Tìm tập hợp điểm biểu diễn số phức z thoả mãn |z-6|=6|z+6-9i|

- A. Đường tròn tâm (-12, 10) bán kính 10
- **B.** Đường tròn tâm (-10, 12) bán kính 10
- C. Đường tròn tâm (12, -10) bán kính 12
- **D.** Đường tròn tâm (-12, 10) bán kính 12

Bài 77. Cho số phức z thoả mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức w = (1-3i)z + i - 1 thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

A.
$$r = \sqrt{10}$$

B.
$$r = 2\sqrt{5}$$

B.
$$r = 2\sqrt{5}$$
 C. $r = 2\sqrt{10}$ **D.** $r = \sqrt{5}$

D.
$$r = \sqrt{5}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 78. Cho các số thực x, y sao cho $\frac{x}{1+i} + \frac{y}{2-i} = 2+4i$. Tính x + y

A.
$$x + y = 8$$

B.
$$x + y = -2$$

A.
$$x + y = 8$$
 B. $x + y = -2$ **C.** $x + y = 6$

D.
$$x + y = 14$$

Bài 79. Cho $f(x) = z^3 + bz^2 + cz - 75$ với $b, c \in \Box$ Biết f(-4 + 3i) = 0. Tìm b, c

A.
$$b = 5 \text{ và } c = 1$$

B.
$$b = 2 \text{ và } c = 4$$

C.
$$b = 4 \text{ và } c = 2$$

A.
$$b = 5$$
 và $c = 1$ **B.** $b = 2$ và $c = 4$ **C.** $b = 4$ và $c = 2$ **D.** $b = 3$ và $c = 3$

Bài 80. Cho các số phức z_1 , z_2 thoả mãn $\frac{1+z_1}{2+z_2} = 3+i; \frac{1+z_2}{2-z_1} = 3-i$. Đẳng thức nào sau đây là đúng?

A.
$$|z_1 + z_2| = \frac{2\sqrt{26}}{11}$$
 B. $|z_1 + z_2| = \frac{2\sqrt{13}}{11}$ **C.** $|z_1 + z_2| = \frac{\sqrt{13}}{22}$ **D.** $|z_1 + z_2| = \frac{\sqrt{13}}{11}$

B.
$$|z_1 + z_2| = \frac{2\sqrt{13}}{11}$$

$$\mathbf{C.} \ \left| z_1 + z_2 \right| = \frac{\sqrt{13}}{22}$$

D.
$$|z_1 + z_2| = \frac{\sqrt{12}}{11}$$

Bài 81. Số phức z nào dưới đây thoả mãn $z^2 = 1 + i$.

A.
$$z = \sqrt{\frac{1+\sqrt{2}}{2}} + \frac{1}{\sqrt{2+2\sqrt{2}}}i$$
B. $z = \sqrt{\frac{3+\sqrt{2}}{2}} - \frac{2}{\sqrt{3+\sqrt{2}}}i$
C. $z = \sqrt{\frac{3+\sqrt{2}}{2}} + \frac{2}{\sqrt{3+\sqrt{2}}}i$
D. $z = \sqrt{\frac{1+\sqrt{2}}{2}} - \frac{1}{\sqrt{2+2\sqrt{2}}}i$

B.
$$z = \sqrt{\frac{3+\sqrt{2}}{2}} - \frac{2}{\sqrt{3+\sqrt{2}}}i$$

C.
$$z = \sqrt{\frac{3+\sqrt{2}}{2}} + \frac{2}{\sqrt{3+\sqrt{2}}}$$

D.
$$z = \sqrt{\frac{1+\sqrt{2}}{2}} - \frac{1}{\sqrt{2+2\sqrt{2}}}$$

Bài 82. Cho số phức z có |z| = 2; arg $(z) = -\frac{\pi}{6}$. Tính \overline{u}^{-1}

A.
$$\frac{1}{4} + \frac{\sqrt{3}}{4}i$$

B.
$$\frac{1}{4} - \frac{\sqrt{3}}{4}i$$

C.
$$\frac{\sqrt{3}}{4} + \frac{1}{4}i$$

A.
$$\frac{1}{4} + \frac{\sqrt{3}}{4}i$$
 B. $\frac{1}{4} - \frac{\sqrt{3}}{4}i$ **C.** $\frac{\sqrt{3}}{4} + \frac{1}{4}i$ **D.** $\frac{\sqrt{3}}{4} - \frac{1}{4}i$

Bài 83. Cho số phức z thoả mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức $w = \frac{1+3i}{z+i}$ thuộc một đường tròn. Tìm bán kính r của đường tròn đó

A.
$$r = \frac{4}{5}\sqrt{5}$$

B.
$$r = \frac{3}{7}\sqrt{14}$$

C.
$$r = \frac{4}{7}\sqrt{7}$$

A.
$$r = \frac{4}{5}\sqrt{5}$$
 B. $r = \frac{3}{7}\sqrt{14}$ **C.** $r = \frac{4}{7}\sqrt{7}$ **D.** $r = \frac{3}{8}\sqrt{10}$

Bài 84. Tìm các số hữu tỷ n sao cho $\left(-\sqrt{3}+i\right)^n + \left(-\sqrt{3}-i\right)^n = 0$

A.
$$n = \frac{3-6k}{5}; k \in \square$$

B.
$$n = \frac{3+6k}{5}; k \in \square$$

C.
$$n = \frac{6-3k}{5}; k \in \square$$

D.
$$n = \frac{6+3k}{5}; k \in \square$$

Bài 85. Tìm các số thực x, y thỏa mãn

$$2x + 5iy - 3ix - 4y = 16 - 21i$$

A.
$$x = -3 \text{ và } y = 2$$

B.
$$x = 2 \text{ và } y = -3$$

C.
$$x = -7 \text{ và } y = 4$$

D.
$$x = 6 \text{ và } y = -5$$

Bài 86. Cho 2 số phức z_1 và z_2 thỏa mãn phương trình $z_1z_2=0$. Nhận xét nào sau đây là đúng?

- **A.** Phương trình tồn tại nghiệm phức z_1 , z_2 thỏa mãn $z_1 \neq 0$ và $z_2 \neq 0$
- **B.** Phương trình tương đương với $z_1 = 0$ hoặc $z_2 = 0$
- C. Phương trình vô nghiệm vì không có phép chia cho 0
- **D.** Phương trình tương đương với $z_1 = 0$ và $z_2 = 0$

Bài 87. Cho số phức $z_1 = 3 - 4i$ và $z_2 = -4 + 7i$. Tìm moduls của số phức $z = z_1 + z_2$

A.
$$|z| = 2\sqrt{10}$$
 B. $|z| = \sqrt{10}$ **C.** $|z| = \sqrt{7}$

B.
$$|z| = \sqrt{10}$$

C.
$$|z| = \sqrt{7}$$

D.
$$|z| = 4\sqrt{2}$$

Bài 88. Cho số phức $z = \sqrt{2} + 3i$; $w = \frac{1}{1+i}$. Tìm phần ảo của zw

A.
$$\frac{3-\sqrt{2}}{2}$$

B.
$$\frac{5-\sqrt{2}}{2}$$

A.
$$\frac{3-\sqrt{2}}{2}$$
 B. $\frac{5-\sqrt{2}}{2}$ **C.** $\frac{5-3\sqrt{2}}{2}$

D.
$$\frac{1-\sqrt{2}}{2}$$

Bài 89. Tính $\frac{(1+i)^{17}}{(1-i)^{16}}$

A.
$$1 + i$$

B.
$$-1-i$$
 C. $-1+i$

$$C_{\bullet} - 1 + \frac{1}{2}$$

D.
$$1 - i$$

Bài 90. Tìm modulus của số phức z = 2 - 5i

A.
$$|z| = \sqrt{17}$$
 B. $|z| = 9\sqrt{2}$ **C.** $|z| = \sqrt{29}$

B.
$$|z| = 9\sqrt{2}$$

C.
$$|z| = \sqrt{29}$$

D.
$$|z| = \sqrt{31}$$

Bài 91. Tìm phần thực của số phức $z = (1+i)^{2017} - (1-i)^{2017}$

A.
$$e^{2^{2017}}$$

$$\mathbf{C}$$
, 2^{2017}

D.
$$2^{2018}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 92. Cho các số phức z_1 và z_2 thỏa mãn $\frac{1+z_1}{2+z_1}=3+i; \frac{1+z_2}{2-z_2}=3-i$ Đẳng thức nào sau đây là đúng

A.
$$10z_1 - 17z_2 = 46 + 5i$$

$$\mathbf{B.5}z_1 + 17z_2 = 10 + 2i$$

$$\mathbf{C.5}z_1 - 17z_2 = -34 + 4i$$

D.
$$10z_1 + 17z_2 = 2-i$$

Bài 93. Cho số phức z thỏa mãn $\frac{2-3i+\frac{1-i}{z+2i}}{3+i+\frac{1+i}{z+2i}} = -3+i$. Tìm phần ảo của số z

A.
$$-\frac{37}{17}i$$
 B. $-\frac{19}{51}$ **C.** $-\frac{37}{17}$

B.
$$-\frac{19}{51}$$

$$\mathbf{C.} - \frac{37}{17}$$

D.
$$-\frac{19}{51}i$$

Bài 94. Cho số phức z = 2 + 7i. Nhận xét nào sau đây là đúng?

- **A.** Phần thực của \overline{z} bằng -2, phần ảo của z bằng -7.
- **B.** Phần thực của \overline{z} bằng 2, phần ảo của z bằng -7.
- C. Phần thực của \overline{z} bằng 2, phần ảo của z bằng 7.
- **D.** Phần thực của \overline{z} bằng 2, phần ảo của z bằng 7.

Bài 95. Cho số phức $z_1 = 2 - 3i \text{ và } z_2 = -1 + i \cdot \text{Tính } z_1 (2z_2 + 1)$

A.
$$3 + 2i$$

B.
$$7 + 2i$$

$$C.6 + 9i$$

D.
$$4 + 7i$$

Bài 96. Tìm tập hợp các điểm biểu diễn số phức z trên hệ trục tọa độ Oxy thỏa mãn điều kiện |z -1 - i| = 2|z - 5 - 2i|

A. Đường tròn
$$\left(x - \frac{7}{3}\right)^2 + \left(y - \frac{19}{3}\right)^2 = \frac{68}{9}$$

B. Đường thẳng
$$y = \frac{7}{19}x$$

C. Đường thẳng
$$y = \frac{19}{7}x$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

D. Đường tròn
$$\left(x - \frac{19}{3}\right)^2 + \left(y - \frac{7}{3}\right)^2 = \frac{68}{9}$$

- **Bài 97.** Cho z là số phức thỏa mãn |z|=1. Tìm tập hợp các điểm biểu diễn của số phức $w = \frac{z-1}{z+1}$ trên hệ trục tọa độ Oxy.
 - **A.** Đoạn thắng AB với A (1; 0) và B (1; 0)
 - **B.** Đoạn thắng AB với A (0; 1) và B (0; 1).
 - C. Trục hoành
 - **D.** Truc tung
- **Bài 98.** Cho số phức $z_1 = \frac{4+6i}{2-3i}$; $z_2 = \frac{4-6i}{2+3i}$. Tìm phần thực của số phức $w = z_1 2z_2$.

A.
$$\frac{15}{13}$$

B.
$$\frac{12}{13}$$

C.
$$\frac{11}{13}$$

D.
$$\frac{10}{13}$$

Bài 99. Tìm tập hợp điểm biểu diễn số phức thỏa mãn |z-5-3i|=3

A.
$$(x+5)^2 + (y-1)^2 = 9$$

A.
$$(x+5)^2 + (y-1)^2 = 9$$
 B. $(x-5)^2 + (y-3)^2 = 9$

C.
$$(x+2)^2 + (y+1)^2 = 9$$

D.
$$(x-3)^2 + (y+1)^2 = 3$$

Bài 100. Có bao nhiều số phức z thỏa mãn $z^3 - 3(1+i)z^2 + 6iz + 1 - 2i = 0$

Bài 101. Tìm modulus của số phức $z = \frac{1-i}{2+3i} + \frac{1+i}{2-5i}$

A.
$$|z| = \sqrt{\frac{20}{377}}$$
 B. $|z| = \frac{5}{13}$ **C.** $|z| = \frac{2}{13}$

B.
$$|z| = \frac{5}{13}$$

C.
$$|z| = \frac{2}{13}$$

D.
$$|z| = \sqrt{\frac{20}{37}}$$

Bài 102. Cho số phức w và z thỏa mãn $w = \frac{5iz + i}{z + 1}$. Nhận xét nào sau đây sai

A. Nếu
$$|z| = 1$$
 thì $|w - 5i| = |w - i|$

B.
$$z = \frac{i - w}{w - 5i}$$

C. Nếu |z|=1 thì tập hợp các điểm biểu diễn w là đường thẳng y=3

D. Nếu |z|=1 thì tập hợp các điểm biểu diễn w là đường thẳng $y=\frac{5}{2}$

Bài 103. Một acgumen của số phức $z \neq 0$ là ϕ thì một acgumen của $\frac{1}{z^2}$

A.
$$2\phi + \pi$$

B.
$$-2\phi$$

C.
$$-\phi^2$$

D.
$$-\phi^2 + \frac{\pi}{2}$$

Bài 104. Tìm modulus của số phức $z = \left(\frac{1+\sqrt{3}i}{2-i}\right)^{10}$

A.
$$|z| = \frac{1}{32}$$

A.
$$|z| = \frac{1}{32}$$
 B. $|z| = \frac{1024}{3125}$ **C.** $|z| = 32$

C.
$$|z| = 32$$

D.
$$|z| = \frac{3125}{1024}$$

Bài 105. Cho số phức z = 5 - 4i. Tìm phần thực và phần ảo của số phức \overline{z}

- A. Phần thực bằng 5, phần ảo bằng -4
- **B.** Phần thực bằng 5, phần ảo bằng 4.
- C. Phần thực bằng 5, phần ảo bằng 4i.
- **D.** Phần thực bằng 5, phần ảo bằng -4i.

CASIO LUYỆN THI THPT QUỐC GIA

ĐỀ TƯ LUYÊN (Đề thi 105 câu / 11 trang) ĐỂ TRẮC NGHIỆM ÔN THI THPT **OUÓC GIA 2017** Môn: TOÁN HOC Chuyên đề: Số phức ĐÈ 26

Bài 1. Biết $\cos^5 x = a\cos 5x + b\sin 3x + c\cos x$ với a; b; c là các số thực. Tính a - b + c.

A.
$$\frac{3}{8}$$

B.
$$\frac{5}{16}$$
 C. $\frac{5}{8}$

C.
$$\frac{5}{9}$$

D.
$$\frac{1}{16}$$

Bài 2. Gọi A, B là điểm biểu diễn của số phức $z_1 = \frac{2-3i}{1-i}$; $z_2 = 4+i$

Tính độ dài đoạn thẳng AB.

A.
$$AB = \frac{3}{\sqrt{2}}$$

A.
$$AB = \frac{3}{\sqrt{2}}$$
 B. $AB = \frac{3}{5}\sqrt{2}$ **C.** $AB = \frac{1}{3}\sqrt{2}$ **D.** $AB = \frac{2}{\sqrt{3}}$

C.
$$AB = \frac{1}{3}\sqrt{2}$$

D.
$$AB = \frac{2}{\sqrt{3}}$$

Bài 3. Tìm phần thực của số phức $z = (1+i)^{2017} - (1-i)^{2017}$

A.
$$2^{2018}$$

B.
$$e^{2^{2017}}$$

D.
$$2^{2017}$$

Bài 4. Tìm modulus của số phức $z = \frac{1-i}{2+3i} + \frac{1+i}{2-5i}$

A.
$$|z| = \sqrt{\frac{20}{37}}$$

A.
$$|z| = \sqrt{\frac{20}{37}}$$
 B. $|z| = \sqrt{\frac{20}{377}}$ **C.** $|z| = \frac{5}{13}$ **D.** $|z| = \frac{2}{13}$

C.
$$|z| = \frac{5}{13}$$

D.
$$|z| = \frac{2}{13}$$

Bài 5. Cho các số phức z_1 và z_2 thỏa mãn $\frac{1+z_1}{2+z_1}=3+i; \frac{1+z_2}{2-z_2}=3-i$. Đẳng thức nào sau đây đúng?

$$\mathbf{A.}10z_1 + 17z_2 = 2-i$$

$$\mathbf{B.}10z_1 - 17z_2 = 46 + 5i$$

$$\mathbf{C} \cdot z_1 + 17z_2 = 10 + 2i$$

D.
$$5z_1 - 17z_2 = -34 + 4i$$

Bài 6. Tìm tập hợp điểm biểu diễn sốphức thỏa mãn |z-3| = |z+i|

- **A.** Đường thẳng y = -x + 3
- **B.** Đường thẳng y = -4x + 1
- C. Đường thẳng y = -5x + 3
- **D.** Đường thẳng y = -3x + 4

Bài 7. Có bao nhiều số phức z phân biệt thỏa mãn $z^3 - 3(1+i)z^2 + 6iz + 1 - 2i = 0$

A. 1

B. 4

C. 3

D. 2

Bài 8. Cho các số phức z và w thỏa mãn $\overline{z}w \neq 1; |z| = 1 \text{ hoặc } |w| = 1$. Cho $A = \frac{z - w}{1 - \overline{z}w}$. Tính |A|

A.
$$|A| = 2$$
 B. $|A| = 1$

B.
$$|A| = 1$$

C.
$$|A| = \frac{1}{2}$$

C.
$$|A| = \frac{1}{2}$$
 D. $|A| = \frac{3}{2}$

Bài 9. Tìm các số hữu tỷ n sao cho $(-\sqrt{3}+i)^n + (-\sqrt{3}-i)^n = 0$

A.
$$n = \frac{6+3k}{5}; k \in \square$$

B.
$$n = \frac{3-6k}{5}$$
; $k \in \Box$

C.
$$n = \frac{3+6k}{5}; k \in \square$$

D.
$$n = \frac{6-3k}{5}; k \in \square$$

Bài 10. Cho số phức w và z thỏa mãn $w = \frac{5iz + i}{z + 1}$ Nhận xét nào sau đây là sai?

A. Nếu |z|=1 thì tập hợp các điểm biểu diễn w là đường thẳng $y=\frac{5}{2}$

B. Nếu
$$|z| = 1$$
 thì $|w - 5i| = |w - i|$

C.
$$z = \frac{i - w}{w - 5i}$$

D. Nếu |z|=1 thì tập hợp các điểm biểu diễn w là đường thẳng y=3

Bài 11. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z| = |z - 6i|.

A. Đường thẳng
$$y = 1$$

B. Đường thẳng
$$x = 1$$

C. Đường thẳng
$$x = 3$$

D. Đường thẳng
$$y = 3$$

Bài 12. Tính argument của số phức $z = (-\sqrt{3} + i)^{12}$

A.
$$arg(z) = \frac{1}{4096}$$

$$\mathbf{B.} \ \operatorname{arg}(z) = 0$$

C.
$$arg(z) = \frac{z}{6}$$

A.
$$\arg(z) = \frac{1}{4096}$$
 B. $\arg(z) = 0$ **C.** $\arg(z) = \frac{5}{6}$ **D.** $\arg(z) = \frac{5\pi}{6}$

Bài 13. Cho các số phức $z_1 = 5 - 3i$ và $z_2 = 4 + i$. Tìm modulus của số phức $z = z_1 + z_2$.

A.
$$|z| = 5\sqrt{13}$$

B.
$$|z| = \sqrt{58}$$

B.
$$|z| = \sqrt{58}$$
 C. $|z| = 13\sqrt{5}$ **D.** $|z| = \sqrt{85}$

D.
$$|z| = \sqrt{85}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 14. Cho số phức z có|z| = 2 và arg $(z) = -\frac{\pi}{6}$. Tính \overline{u}^{-1}

A.
$$\frac{\sqrt{3}}{4} - \frac{1}{4}i$$

B.
$$\frac{1}{4} + \frac{\sqrt{3}}{4}$$

C.
$$\frac{1}{4} - \frac{\sqrt{3}}{4}$$

A.
$$\frac{\sqrt{3}}{4} - \frac{1}{4}i$$
 B. $\frac{1}{4} + \frac{\sqrt{3}}{4}i$ **C.** $\frac{1}{4} - \frac{\sqrt{3}}{4}i$ **D.** $\frac{\sqrt{3}}{4} + \frac{1}{4}i$

Bài 15. Cho 2 số phức $u = 1 + \sqrt{3}i; v = \sqrt{3} + i$. Tính $\frac{u^3}{v^4}$

A.
$$\frac{1}{4} + \frac{\sqrt{3}}{4}i$$
 B. $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ **C.** $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ **D.** $\frac{1}{4} - \frac{\sqrt{3}}{4}i$

B.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

C.
$$\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

D.
$$\frac{1}{4} - \frac{\sqrt{3}}{4}$$

Bài 16. Tìm tập hợp điểm biểu diễn số phức thỏa mãn $\arg\left(\frac{z-6}{z-2}\right) = \frac{\pi}{4}$.

- **A.** Đường tròn đường kính $4\sqrt{2}$ thuộc góc phần tư thứ hai
- **B.** Đường tròn đường kính $2\sqrt{2}$ thuộc góc phần tư thứ hai
- C. Đường tròn đường kình $2\sqrt{2}$ thuộc góc phần tư thứ nhất
- **D.** Đường tròn đường kính $4\sqrt{2}$ thuộc góc phần tư thứ nhất

Bài 17. Cho số phức z = 5 - 4i. Tìm phần thực và phần ảo của số phức \overline{z}

- A. Phần thực bằng 5, phần ảo bằng -4i.
- **B.** Phần thực bằng 5, phần ảo bằng -4
- C. Phần thực bằng 5, phần ảo bằng 4.
- **D.** Phần thực bằng 5, phần ảo bằng 4i.

Bài 18. Số nguyên Gaussian được định nghĩa là số phức dạng z = a + bi với $a, b \in \Box$. Cho x; y là 2 số nguyên Gaussian. Khi đó thương phép chia Euclid của x cho y là một số nguyên

Gaussian z sao cho z gần $\frac{x}{y}$ nhất khi biểu diễn trên hệ trục tọa độ. Tìm thương phép chia Euclid

$$\frac{10+9i}{4-7i}$$

A. i

B. 2i

C. -1 + i

D. -1 + 2i

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 19. Tính
$$z = \frac{1}{2-5i}$$

A.
$$z = \frac{1}{29} - \frac{7}{29}i$$
 B. $z = \frac{2}{29} \pm \frac{5}{29}i$ **C.** $z = \frac{1}{29} + \frac{7}{29}i$ **D.** $z = \frac{2}{29} + \frac{5}{29}i$

B.
$$z = \frac{2}{29} \pm \frac{5}{29}$$

C.
$$z = \frac{1}{29} + \frac{7}{29}$$

D.
$$z = \frac{2}{29} + \frac{5}{29}$$

Bài 20. Nhà toán học Rafael Bombelli (1526-1572) đã tình cờ phát hiện ra số phức khi nghiên cứu phương trình bậc 3. Ông cho rằng phương trình $x^3 - 3x + 1 = 0$ tồn tại nghiệm

$$A = \frac{\sqrt[3]{-4 + 4\sqrt{-3}}}{2} + \frac{2}{\sqrt[3]{-4 + 4\sqrt{-3}}}$$

Nhà toán học Abraham de Moivre (1667-1754) phát hiện ra định lý:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Sử dụng định lý Moivre, hãy rút gọn biểu thức A.

$$\mathbf{A.} \ A = \cos\frac{2\pi}{9} - i\sin\frac{2\pi}{9}$$

B.
$$A = \cos \frac{2\pi}{9}$$

C.
$$A = 2\sin\frac{2\pi}{9}$$

D.
$$A = \cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9}$$

Bài 21. Cho số phức $z_1 = 2 - 3i$ và $z_2 = -1 + i$. Tính $z_1(2z_2 + 1)$

$$A.4 + 7i$$

B.
$$3 + 2i$$

$$C.7 + 2i$$

Bài 22. Một acgumen của số phức $z \neq 0$ là ϕ thì một acgumen của $\frac{1}{z^2}$ là

A.
$$-\phi^2 + \frac{\pi}{2}$$
 B. $2\phi + \pi$ **C.** -2ϕ

B.
$$2\phi + \pi$$

D.
$$-\phi^2$$

Bài 23. Với mọi số phức z, ta có $|z+1|^2$ bằng

A.
$$z\overline{z} + 1$$

B.
$$z\overline{z} + z + \overline{z} + 1$$
 C. $|z|^2 + 2|z| + 1$ **D.** $z + \overline{z} + 1$

C.
$$|z|^2 + 2|z| +$$

D.
$$z + \overline{z} + 1$$

Bài 24. Tìm số phức z thỏa mãn $z^2 + 4z + 13 = 0$

A.
$$z = -4 \pm 6i$$
 B. $z = 2 \pm 3i$ **C.** $z = -2 \pm 3i$

B.
$$z = 2 \pm 3$$

C.
$$z = -2 \pm 3$$

D.
$$z = 4 \pm 6i$$

Bài 25. Số phức z nào dưới đây thỏa mãn $z^2 = 1 + i$

A.
$$z = \sqrt{\frac{1+\sqrt{2}}{2}} - \frac{1}{\sqrt{2+2\sqrt{2}}}i$$

B.
$$z = \sqrt{\frac{1+\sqrt{2}}{2}} + \frac{1}{\sqrt{2+2\sqrt{2}}}i$$

C.
$$z = \sqrt{\frac{3+\sqrt{2}}{2}} - \frac{2}{\sqrt{3+\sqrt{2}}}i$$

D.
$$z = \sqrt{\frac{3+\sqrt{2}}{2}} + \frac{2}{\sqrt{3+\sqrt{2}}}i$$

 $\textbf{Câu 26.} \ \ \text{Gọi} \ \ z_1; \ z_2; \ z_3; \ z_4; \ z_5; \ z_6 \ \text{là 6 nghiệm phức của phương trình} \ z^6 + 8 = 0 \ . \ \ \text{Tính} \ |z_1| + |z_2| + |z_3| + |z_4| + |z_4$ $|z_3| + |z_4| + |z_5| + |z_6|$

- **A.** $2\sqrt{3}$
- **B.** $6\sqrt{2}$
- **C.** $6\sqrt{3}$
- **D.** $3\sqrt{2}$

Câu 27. Tìm tập hợp điểm biểu diễn số phức z thỏa mãn arg $\left(\frac{z}{z-4i}\right) = \frac{\pi}{2}$

- A. Nửa đường tròn bán kính 2 tâm (0; 2), thuộc góc phần tư thứ nhất
- **B.** Nửa đường tròn bán kính 2 tâm (-2, 0), thuộc góc phần tư thứ tư
- C. Nửa đường tròn bán kính 2 tâm (2; 0), thuộc góc phần tư thứ nhất
- **D.** Nửa đường tròn bán kính 1 tâm (1; 0), thuộc góc phần tư thứ tư

Câu 28. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức $w = z + \frac{1}{z}$ thuộc một đường ellipse. Tìm tâm sai của ellipse đó

A.
$$e = \frac{22}{25}\sqrt{43}$$
 B. $e = \frac{3}{25}\sqrt{43}$ **C.** $e = \frac{22}{25}\sqrt{41}$ **D.** $e = \frac{3}{25}\sqrt{41}$

B.
$$e = \frac{3}{25}\sqrt{43}$$

C.
$$e = \frac{22}{25}\sqrt{41}$$

D.
$$e = \frac{3}{25}\sqrt{41}$$

Câu 29. Tìm phần ảo của số phức $z = \frac{\left(\cos\frac{9\pi}{17} + i\sin\frac{9\pi}{17}\right)^2}{\left(\cos\frac{2\pi}{17} - i\sin\frac{2\pi}{17}\right)^3}$

A. 1

B. 0

C. -1

D. 2

Câu 30. Cho số phức z thoả mãn $\frac{3(z+2)}{z+2i} = 5-2i$. Khi đó giá trị của z là :

- **A.** z = 5 + i **B.** z = 5 i **C.** z = 3 + 2i **D.** z = 3 2i

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Câu 31. Cho 2 số phức
$$z_1$$
, z_2 có $|z_1| = 8$, $|z_2| = \frac{1}{2}$ và $\arg(z_1) = -\frac{\pi}{4}$, $\arg(z_2) = \frac{3\pi}{4}$. Tính $z_1 z_2 + \frac{z_1}{z_2}$

- A. -3 + 3i
- **B.** -16 + 4i **C.** -3 + 4i
- **D.** -16 + 3i

Bài 32. Cho 2 số phức z_1 và z_2 thỏa mãn phương trình $z_1z_2 = 0$. Nhận xét nào sau đây là đúng?

- **A.** Phương trình tương đương với $z_1 = 0$ hoặc $z_2 = 0$
- **B.** Phương trình tồn tại nghiệm phức z_1 , z_2 thỏa mãn $z_1 \neq 0$ và $z_2 \neq 0$
- **C.** Phương trình tương đương với $z_1 = 0$ và $z_2 = 0$
- **D.** Phương trình vô nghiệm vì không có phép chia cho 0

Bài 33. Cho z_1 , z_2 , z_3 là 3 nghiệm phức của phương trình $z_1^3 + 8 = 0$. Tính $|z_1| + |z_2||z_3|$

- **A.** $2 + 2\sqrt{3}$
- **B.** 3

- **C.** $2 + \sqrt{3}$
- **D.** 6

Bài 34. Khi số phức z thay đổi tùy ý thì tập hợp các số $2z + 2\overline{z}$

- A. Tập hợp các số phức không phải số ảo
- B. Tập hợp các số thực dương
- C. Tập hợp các số thực không âm
- **D.** Tập hợp các số thực

Bài 35. Biết z = 5 - 2i là nghiệm của phương rình $z^3 + (-5 + 2i)z^2 + 4z + 8i - 20 = 0$. Tìm các nghiệm còn lại của phương trình trên

A.
$$z = \pm 2i$$

B.
$$z = \pm i$$

B.
$$z = \pm i$$
 C. $z = 2 \pm \sqrt{5}i$ **D.** $z = \pm \sqrt{5}i$

D.
$$z = \pm \sqrt{5}$$

Bài 36. Số phức z thay đổi sao cho |z| = 1 thì giá trị bé m và giá trị lớn nhất M của |z - i| là

A.
$$m = 0$$
, $M = 1$

B.
$$m = 0$$
, $M = 2$

C. m = 1, M =
$$\sqrt{2}$$

D.
$$m = 0$$
, $M = 2$

Bài 37. Gọi z_1 , z_2 , z_3 , z_4 , z_5 là 5 nghiệm phức của phương trình $z^5 = 1 + i$. Biểu diễn 5 nghiệm này trên hệ trục toạ độ Oxy ta thấy đây là đỉnh của một ngũ giác đều. Tính độ dài cạnh của ngũ giác đều đó.

A.
$$\sqrt{\frac{(3-\sqrt{5})\sqrt[5]{2}}{2}}$$
 B. $\sqrt{\frac{(3+\sqrt{5})\sqrt[5]{2}}{2}}$ **C.** $\sqrt{\frac{(5+\sqrt{5})\sqrt[5]{2}}{2}}$

B.
$$\sqrt{\frac{(3+\sqrt{5})\sqrt[5]{2}}{2}}$$

$$\mathbf{C.}\sqrt{\frac{\left(5+\sqrt{5}\right)\sqrt[5]{2}}{2}}$$

D.
$$\sqrt{\frac{(5-\sqrt{5})\sqrt[5]{2}}{2}}$$

Bài 38. Tìm modulus của số phức z = (2-i)(1-3i)

A.
$$|z| = 5\sqrt{2}$$
 B. $|z| = 2\sqrt{7}$ **C.** $|z| = 2\sqrt{5}$

B.
$$|z| = 2\sqrt{7}$$

C.
$$|z| = 2\sqrt{5}$$

D.
$$|z| = 4\sqrt{2}$$

Bài 39. Tính $\frac{(1+i)^{17}}{(1-i)^{16}}$

B.
$$1 + i$$

D.
$$-1 + i$$

Bài 40. Tính |z| với $z = \frac{(1+i)^4}{(1+6i)(2-7i)}$

A.
$$|z| = \frac{4}{\sqrt{37}\sqrt{53}}$$

B.
$$|z| = \frac{4}{\sqrt{46}\sqrt{53}}$$

C.
$$|z| = \frac{2}{\sqrt{37}\sqrt{53}}$$

A.
$$|z| = \frac{4}{\sqrt{37}\sqrt{53}}$$
 B. $|z| = \frac{4}{\sqrt{46}\sqrt{53}}$ **C.** $|z| = \frac{2}{\sqrt{37}\sqrt{53}}$ **D.** $|z| = \frac{2}{\sqrt{46}\sqrt{53}}$

Bài 41. Tìm modulus của số phức $z = \left(\frac{1+\sqrt{3}i}{2-i}\right)^{10}$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$|z| = \frac{3125}{1024}$$

B.
$$|z| = \frac{1}{32}$$

A.
$$|z| = \frac{3125}{1024}$$
 B. $|z| = \frac{1}{32}$ **C.** $|z| = \frac{1024}{3125}$ **D.** $|z| = 32$

D.
$$|z| = 32$$

Bài 42. Cho z là số phức thỏa mãn |z| = 1. Tìm tập hợp các điểm biểu diễn của số phức

 $w = \frac{z-1}{z+1}$ trên hệ trục tọa độ Oxy.

- **A.** Truc tung
- **B.** Doan thẳng AB với A (-1; 0) và B (1; 0)
- **C.** Đoạn thắng AB với A (0; -1) và B (0; 1).
- **D.** Trục hoành

Bài 43. Tìm tập hợp điểm biểu diễn số phức z thoả mãn |z-6|=6|z+6-9i|

- A. Đường tròn tâm (-12, 10) bán kính 10
- B. Đường tròn tâm (-12, 10) bán kính 10
- C. Đường tròn tâm (-10, 12) bán kính 10
- **D.** Đường tròn tâm (12, -10) bán kính 12

Bài 44. Biết z = 3 - 2i thỏa mãn phương trình $z^4 - 6z^3 + 18z^2 + pz + 65 = 0$ Tìm p.

A.
$$p=14$$

B.
$$p = -21$$

C.
$$p = -30$$

D.
$$p = 0$$

Bài 45. Cho số phức u = 2 - 5i và v = -3 + 2i. Nhận xét nào sau đây là sai?

A.
$$2u - 3v = 13 - 16i$$
 B. $u - v = 5 - 7i$ **C.** $3u - v = 9 + 9i$ D. $u + v = -1 - 3i$

B.
$$u - v = 5 - 7$$

C.
$$3u - v = 9 + 9i$$

D.
$$u + v = -1 - 3a$$

Bài 46. Kết luân nào sau đây là đúng

A.
$$|z_1 + z_2| < |z_1| + |z_2|$$

B.
$$|z_1 + z_2| \le |z_1| + |z_2|$$

C.
$$|z_1 + z_2| > |z_1| + |z_2|$$

D.
$$|z_1 + z_2| \ge |z_1| + |z_2|$$

Bài 47. Cho số phức z thoả mãn |z|=1 và $z^{2n}\neq -1$ với mọi n là số nguyên dương. Nhận xét nào sau đây là đúng khi nói về số phức $w = \frac{z^n}{1+z^{2n}}$?

A. Phần ảo của w bằng 0

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

- **B.** Tập hợp điểm biểu diễn của w là trục hoành
- **B.** w là số thuần ảo

C.
$$|w| = \frac{1}{2}$$

Bài 48. Cho các số phức z_1 và z_2 thỏa mãn $\frac{1+z_1}{2+z_2}=3+i; \frac{1+z_2}{2-z_1}=3-i$. Đẳng thức nào sau đây là đúng?

A.
$$|z_1 + z_2| = \frac{\sqrt{13}}{11}$$

A.
$$|z_1 + z_2| = \frac{\sqrt{13}}{11}$$
 B. $|z_1 + z_2| = \frac{2\sqrt{26}}{11}$ **C.** $|z_1 + z_2| = \frac{2\sqrt{13}}{11}$ **D.** $|z_1 + z_2| = \frac{\sqrt{13}}{22}$

C.
$$|z_1 + z_2| = \frac{2\sqrt{13}}{11}$$

D.
$$|z_1 + z_2| = \frac{\sqrt{13}}{22}$$

Bài 49. Tìm phần ảo của số phức $z = \frac{26}{-3 + 2i} + i^{69}$

Bài 50. Gọi x_1 , x_2 là 2 nghiệm phức của phương trình $\tan^2 t \cdot x^2 + \tan t \cdot x + 1 = 0$ với t là số thực thỏa mãn tan $t \neq 0$. Tính $x_1^n + x_2^n$

A.
$$x_1^n + x_2^n = 2\cos\frac{2\pi n}{3}\cos^n t$$
 B. $x_1^n + x_2^n = 2\cos\frac{\pi n}{3}\cos^n t$

B.
$$x_1^n + x_2^n = 2\cos\frac{\pi n}{3}\cos^n t$$

C.
$$x_1^n + x_2^n = \cos \frac{2\pi n}{3} \cos^n t$$
 D. $x_1^n + x_2^n = \cos \frac{\pi n}{3} \cos^n t$

D.
$$x_1^n + x_2^n = \cos \frac{\pi n}{3} \cos^n t$$

Bài 51. Tìm modulus của số phức z = 2 - 5i

A.
$$|z| = \sqrt{31}$$
 B. $|z| = \sqrt{17}$ **C.** $|z| = 9\sqrt{2}$ **D.** $|z| = \sqrt{29}$

B.
$$|z| = \sqrt{17}$$

C.
$$|z| = 9\sqrt{2}$$

D.
$$|z| = \sqrt{29}$$

Bài 52. Tính tổng tất cả các nghiệm của phương trình $z^4 + 3z^2 - 28 = 0$ trên trường số phức

A.
$$4 + 2\sqrt{7}i$$

B.
$$4-2\sqrt{7}i$$

Bài 53. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức $w = \frac{1+3i}{2+i}$ thuộc một đường tròn. Tìm bán kính r của đường tròn đó

A.
$$r = \frac{3}{8}\sqrt{10}$$

B.
$$r = \frac{4}{5}\sqrt{5}$$

A.
$$r = \frac{3}{8}\sqrt{10}$$
 B. $r = \frac{4}{5}\sqrt{5}$ **C.** $r = \frac{3}{7}\sqrt{14}$ **D.** $r = \frac{4}{7}\sqrt{7}$

D.
$$r = \frac{4}{7}\sqrt{7}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 54. Cho số phức $z = \sqrt{2} + 3i$; $w = \frac{1}{1+i}$. Tìm phần ảo của zw

A.
$$\frac{1-\sqrt{2}}{2}$$

B.
$$\frac{3-\sqrt{2}}{2}$$

C.
$$\frac{5-\sqrt{2}}{2}$$

A.
$$\frac{1-\sqrt{2}}{2}$$
 B. $\frac{3-\sqrt{2}}{2}$ **C.** $\frac{5-\sqrt{2}}{2}$ **D.** $\frac{5-3\sqrt{2}}{2}$

Bài 55. Cho số phức z thỏa mãn $\frac{2-3i+\frac{1-i}{z+2i}}{3+i+\frac{1+i}{z+2i}} = -3+i$. Tìm phần ảo của z

A.
$$-\frac{19}{51}i$$
 B. $-\frac{37}{17}i$ **C.** $-\frac{19}{51}$ **D.** $-\frac{37}{17}$

B.
$$-\frac{37}{17}$$

$$C. -\frac{19}{51}$$

D.
$$-\frac{37}{17}$$

Bài 56. Tìm tất cả giá trị của m để phương trình $2z^2 - (3+8i)z - m - 4i = 0$ có một nghiệm thực

A.
$$m = -3$$

B.
$$m = 2$$

C.
$$m = -4$$

D.
$$m = 1$$

Bài 57. Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức $w = z - \frac{i}{z}$ thuộc một đường ellipse. Tìm tiêu cự của ellipse.

Bài 58. Tính $z = \frac{2+3i}{4-5i}$

A.
$$z = \frac{7}{41} + \frac{22}{41}i$$

B.
$$z = -\frac{3}{43} + \frac{23}{43}i$$

A.
$$z = \frac{7}{41} + \frac{22}{41}i$$
 B. $z = -\frac{3}{43} + \frac{23}{43}i$ **C.** $z = -\frac{7}{41} + \frac{22}{41}i$ **D.** $z = \frac{3}{43} + \frac{23}{43}i$

D.
$$z = \frac{3}{43} + \frac{23}{43}$$

Bài 59. Cho số phức z thỏa mãn |z|=2. Biết rằng tập hợp các điểm biểu diễn của số phức w = (1-3i)z + i - 1 thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

A.
$$r = \sqrt{5}$$

B.
$$r = \sqrt{10}$$

C.
$$r = 2\sqrt{5}$$

D.
$$r = 2\sqrt{10}$$

Bài 60. Cho số phức u = 2 - 5i, v = -3 + 2i. Nhận xét nào sau đây là đúng?

A.
$$\frac{u}{v} = 5 + 7u$$

B.
$$u^2 = 21 - 20u$$

C.
$$uv = 4 + 19i$$

A.
$$\frac{u}{v} = 5 + 7i$$
 B. $u^2 = 21 - 20i$ **C.** $uv = 4 + 19i$ **D.** $\frac{u}{v} = 5 + 7i$

Bài 61. Cho số phức z thỏa mãn |z+1|=2|z-i|. Biết rằng tập hợp các điểm biểu diễn của z thuộc một đường tròn. Tìm bán kính r của đường tròn đó

A.
$$r = \frac{3\sqrt{7}}{4}$$

B.
$$r = \frac{\sqrt{17}}{3}$$

A.
$$r = \frac{3\sqrt{7}}{4}$$
 B. $r = \frac{\sqrt{17}}{3}$ **C.** $r = \frac{5\sqrt{11}}{7}$ **D.** $r = \frac{\sqrt{23}}{13}$

D.
$$r = \frac{\sqrt{23}}{13}$$

Bài 62. Cho số phức $z = \frac{(1+2i)(1+i)}{-2-3i}$. Kết luận nào sau đây là đúng khi nói về argument của số phức z.

A.
$$arg(z) = 0$$

B.
$$arg(z) > 0$$

C.
$$arg(z) < 0$$

D.
$$arg(z)$$
 không xác định

Bài 63. Phần thực và phần ảo của số phức $z = (1+2i)^2$ là:

- A. Phần thực bằng 3, phần ảo bằng -4
- **B.** Phần thực bằng 3, phần ảo bằng 4
- C. Phần thực bằng -3, phần ảo bằng 4
- **D.** Phần thực bằng -3, phần ảo bằng -4

Bài 64. Cho $z = \left(\frac{a+bi}{a-bi}\right)^2 + \left(\frac{a-bi}{a+bi}\right)^2$. Khẳng định nào sau đây là đúng?

A.
$$z = \overline{z} | z$$

$$\mathbf{B.} \ \ z = \overline{z}$$

$$\mathbf{C.} \ z\overline{z} = |z|$$

A.
$$z = \overline{z}|z|$$
 B. $z = \overline{z}$ **C.** $z\overline{z} = |z|$ **D.** $|z| = \sqrt{a^2 + b^2}$

Bài 65. Tìm phần thực của số phức $z = (1 + \sqrt{3}i)^9$

A.
$$128\sqrt{5}$$

B.
$$256\sqrt{3}$$

C.
$$256\sqrt{2}$$

Bài 66. Một acgumen của số phức $z \neq 0$ là ϕ thì một acgumen của $\frac{z}{1+z}$ là

A.
$$-\phi + \frac{\pi}{4}$$

A.
$$-\phi + \frac{\pi}{4}$$
 B. $-\phi - \frac{\pi}{4}$ **C.** $\phi + \frac{\pi}{2}$

$$\mathbf{C}. \ \phi + \frac{\pi}{2}$$

D.
$$\phi - \pi$$

Bài 67. Cho các số phức x, y, z thỏa mãn $\begin{cases} x+yz=2\\ y+zx=2 \end{cases}$. Kết luận nào sau đây là đúng?

A. Tồn tại các số phức
$$(x, y, z) = (1 + 2i, 1 - 2i, 1)$$
 thoả mãn bài toán

- **B.** Tổn tại các số phức (x, y, z) = (1+i, 1-i, 1) thoả mãn bài toán.
- C. Không tồn tại các số phức x, y, z thoả mãn bài toán.
- **D.** Tồn tại các số phức $(x, y, z) = (1 + \sqrt{2}i, 1 \sqrt{2}i, 1)$ thoả mãn bài toán.

Bài 68. Cho số phức $z_1 = \frac{4+6i}{2-3i}$; $z_2 = \frac{4-6i}{2+3i}$. Tìm phần thực của số phức $w = z_1 - 2z_2$

A.
$$\frac{10}{13}$$

B.
$$\frac{15}{13}$$

C.
$$\frac{12}{13}$$

D.
$$\frac{11}{13}$$

Bài 69. Tính i²⁰¹⁷

Bài 70. Cho số phức z = 3 - 7i. Tìm phần thực và phần ảo của số phức z

- A. Phần thực bằng 3, phần ảo bằng 7
- B. Phần thực bằng 3, phần ảo bằng -7i.
- C. Phần thực bằng 3, phần ảo bằng -7.
- **D.** Phần thực bằng 3, phần ảo bằng 7i.

Bài 71. Tập hợp các điểm biểu diễn của số phức z trên hệ trục toạn độ Oxy thỏa $m\tilde{a}n \arg\left(z-1+i\right) = -\frac{\pi}{4} l\tilde{a}$

B. Đường thẳng
$$y = -x \text{ với } x > 1$$

D. Đường thẳng
$$y = -x \text{ với } x \ge 1$$

Câu 72. Cho số phức $z = \frac{1+i}{2-i}$. Tính $A = z^2 + \frac{1+i}{z}$

A.
$$A = \frac{24}{25} - \frac{19}{25}i$$

B.
$$A = \frac{42}{25} + \frac{19}{25}$$

C.
$$A = \frac{42}{25} - \frac{19}{25}$$

A.
$$A = \frac{24}{25} - \frac{19}{25}i$$
 B. $A = \frac{42}{25} + \frac{19}{25}i$ **C.** $A = \frac{42}{25} - \frac{19}{25}i$ **D.** $A = -\frac{24}{25} - \frac{19}{25}i$

Bài 73. Tìm phần thực của số phức $z = e^{e^{1+i}}$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$\Re(z) = e^{e\cos 1}\sin(e\sin 1)$$

B.
$$\Re(z) = e^{e \sin 1} \sin(e \cos 1)$$

C.
$$\Re(z) = e^{e\sin t}\cos(e\cos t)$$

$$\mathbf{D.} \ \Re(z) = e^{e\cos z} \cos(e\sin z)$$

Bài 74. Cho số phức z thỏa mãn |z + 2 - 3i| = 4. Tập hợp các điểm biểu diễn của z trên hệ trục tọa độ Oxy

A. Elip tiêu cự 4

B. Đường tròn đường kính 8

C. Elip tiêu cự 8

D. Đường tròn đường kính 4

Bài 75. Cho số phức z thỏa mãn |z - 12 - 5i| = 3. Tìm giá tri nhỏ nhất của |z|

Bài 76. Rút gọn
$$\frac{\sqrt{2}\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)}{2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)}$$

A.
$$-\frac{1}{2} - \frac{1}{2}$$

A.
$$-\frac{1}{2} - \frac{1}{2}i$$
 B. $-\frac{1}{2} + \frac{1}{2}i$ **C.** $\frac{1}{2} - \frac{1}{2}i$ **D.** $\frac{1}{2} + \frac{1}{2}i$

C.
$$\frac{1}{2} - \frac{1}{2}i$$

D.
$$\frac{1}{2} + \frac{1}{2}$$

Bài 77. Gọi A là điểm biểu diễn số phức $z = \sqrt{3} - i$ trên hệ trục tọa độ Oxy. Khi đó độ dài đoạn thẳng OA là:

A.
$$\sqrt{3}$$

B.
$$2\sqrt{2}$$

Bài 78. Cho các số thực x, y sao cho $\frac{x}{1+i} + \frac{y}{2-i} = 2+4i$. Tính x + y

A.
$$x + y = 14$$
 B. $x + y = 8$ **C.** $x + y = -2$ **D.** $x + y = 6$

B.
$$x + y = 8$$

C.
$$x + y = -2$$

D.
$$x + y = 6$$

Bài 79. Cho số phức z thỏa mãn $z^2 + (\sqrt{3} + i)z + 1 = 0$. Modulus của z là

A.
$$|z| = \sqrt{3 + \sqrt{2}}$$

B.
$$|z| = \sqrt{2 + \sqrt{3}}$$

A.
$$|z| = \sqrt{3 + \sqrt{2}}$$
 B. $|z| = \sqrt{2 + \sqrt{3}}$ **C.** $|z| = \sqrt{2 - \sqrt{3}}$ **D.** $|z| = \sqrt{3 - \sqrt{2}}$

D.
$$|z| = \sqrt{3 - \sqrt{2}}$$

Bài 80. Tính $i(1+i)(1-i)^2$

A.
$$5 - 3i$$

B.
$$2 + 2i$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

- **Bài 81.** Tìm tập hợp điểm biểu diễn số phức z thoả mãn $\arg(z-2) = \frac{\pi}{3}$.
 - **A.** Đường thẳng $y = \sqrt{3}x + 2\sqrt{3}$ thuộc góc phần tư thứ nhất
 - **B.** Đường thẳng $y = \sqrt{3}x + 2\sqrt{3}$ thuộc góc phần tư thứ hai
 - **C.** Đường thẳng $y = \sqrt{3}x 2\sqrt{3}$ thuộc góc phần tư thứ hai
 - **D.** Đường thẳng $y = \sqrt{3}x 2\sqrt{3}$ thuộc góc phần tư thứ nhất
- **Bài 82.** Cho số phức z = 2 + 3i. Gọi A, B, C, D lần lượt là điểm biểu diễn của $z, 2z, \overline{z}, iz$ trên hệ trục toạ độ Oxy. Nhận xét nào sau đây là đúng?
 - A. Oy là phân giác của góc BOD
 - B. OB và OC đối xứng nhau qua Ox
 - C. OC vuông góc với OA
 - D. OB vuông góc với OD
- **Bài 83.** Cho số phức z thỏa mãn $2\Re(z)-3\Im(z)=6$ với $\Re(z),\Im(z)$ là phần thực, phần ảo của z. Khi đó giá tri nhỏ nhất của |z| là

A.
$$\frac{7}{\sqrt{13}}$$

B.
$$\frac{5}{\sqrt{13}}$$

C.
$$\frac{6}{\sqrt{13}}$$

D.
$$\frac{8}{\sqrt{13}}$$

Bài 84. Số phức z nào dưới đây thỏa mãn $z^2 + z + 1 = 0$

A.
$$z = \frac{3}{2} + \frac{\sqrt{5}}{2}i$$

B. Không có số phức z nào thỏa mãn

C.
$$z = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

D.
$$z = \frac{1}{2} - \frac{\sqrt{5}}{2}i$$

Bài 85. Cho $iz^3 + z^2 - z + i = 0$. Khi đó giá trị của |z| là:

A. 2

B. $\sqrt{5}$

C. $\sqrt{2}$

D. 1

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 86. Cho số phức z thoả mãn |z| = 2. Biết rang tập hợp các điểm biểu diễn của số phức $w = \frac{2016 + 2017i}{r}$ thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

A.
$$r = \frac{3}{2}\sqrt{8132545}$$

B.
$$r = \frac{1}{2}\sqrt{1626509}$$

C.
$$r = \frac{1}{2}\sqrt{8132545}$$

A.
$$r = \frac{3}{2}\sqrt{8132545}$$
 B. $r = \frac{1}{2}\sqrt{1626509}$ **C.** $r = \frac{1}{2}\sqrt{8132545}$ **D.** $r = \frac{3}{2}\sqrt{1626509}$

Bài 87. Cho số phức $z_1 = 3 - 4i$ và $z_2 = -4 + 7i$. Tìm moduls của số phức $z = z_1 + z_2$

A.
$$|z| = 4\sqrt{2}$$

A.
$$|z| = 4\sqrt{2}$$
 B. $|z| = 2\sqrt{10}$ **C.** $|z| = \sqrt{10}$ **D.** $|z| = \sqrt{7}$

C.
$$|z| = \sqrt{10}$$

D.
$$|z| = \sqrt{7}$$

Bài 88. Cho số phức z = 2 + 7i. Nhận xét nào sau đây là đúng?

- **A.** Phần thực của \overline{z} bằng -2, phần ảo của z bằng 7.
- **B.** Phần thực của \overline{z} bằng -2, phần ảo của z bằng -7.
- C. Phần thực của \overline{z} bằng 2, phần ảo của z bằng -7.
- **D.** Phần thực của \overline{z} bằng 2, phần ảo của z bằng 7.

Bài 89. Tìm tập hợp các điểm biểu diễn số phức z trên hệ trục tọa độ Oxy thỏa mãn điều kiện |z -1 - i| = 2|z - 5 - 2i|

A. Đường tròn
$$\left(x - \frac{19}{3}\right)^2 + \left(y - \frac{7}{3}\right)^2 = \frac{68}{9}$$

B. Đường tròn
$$\left(x - \frac{7}{3}\right)^2 + \left(y - \frac{19}{3}\right)^2 = \frac{68}{9}$$

C. Đường thẳng
$$y = \frac{7}{19}x$$

D. Đường thẳng
$$y = \frac{19}{7}x$$

Bài 90. Cho $f(z) = z^3 + bz^2 + cz - 75, (b, c \in R)$. Biết f(-4+3i) = 0. Tìm b, c

A.
$$b = 3 \text{ và } c = 3$$

B.
$$b = 5 \text{ và } c = 1$$

A.
$$b = 3 \text{ và } c = 3$$
 B. $b = 5 \text{ và } c = 1$ **C.** $b = 2 \text{ và } c = 4$

D.
$$b = 4 \text{ và } c = 2$$

Bài 91. Cho số phức z thỏa mãn |z-12-5i|=3. Tìm giá trị lớn nhất của |z|

A. 9

B. 12

C. 16

D. 10

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 92. Tìm điều kiện của số nguyên dương n để $z_n = (1 + \sqrt{3}i)^n$ là số thực

A. n chia 3 du 2

B. n chia hết cho 3

C. n chia cho 3 du 1

D. n chia cho 4 du 1

Bài 93. Tìm modulus của số phức $z = \frac{2-3i}{3-i}$

A.
$$|z| = \sqrt{\frac{13}{10}}$$

A.
$$|z| = \sqrt{\frac{13}{10}}$$
 B. $|z| = \frac{\sqrt{13}}{10}$ **C.** $|z| = \frac{\sqrt{10}}{13}$

C.
$$|z| = \frac{\sqrt{10}}{13}$$

D.
$$|z| = \sqrt{\frac{10}{13}}$$

Bài 94. Nhận xét nào sau đây là đúng khi nói về tập hợp điểm biểu diễn số phức z thỏa $m\tilde{a}n \arg\left(z+3+2i\right) = \frac{3\pi}{4}$

A. Một tia

B. Một đường tròn

C. Một đoạn thẳng

D. Một đường thẳng

Bài 95. Biểu diễn số phức $z = 4\sqrt{3} - 4i$ dưới dạng lượng giác là :

A.
$$z = 8\cos\frac{-\pi}{6} + 8i\sin\frac{-\pi}{6}$$
 B. $z = 8\sin\frac{-\pi}{6} + 8\cos\frac{-\pi}{6}$

B.
$$z = 8\sin\frac{-\pi}{6} + 8\cos\frac{-\pi}{6}$$

C.
$$z = 8\sin{\frac{-\pi}{6}} + 8i\cos{\frac{-\pi}{6}}$$

D.
$$z = 8\cos{\frac{-\pi}{6}} + 8\sin{\frac{-\pi}{6}}$$

Bài 96. Cho số phức $z = \cos \theta + i \sin \theta$. Tính $z^n + \frac{1}{z^n}$ với n là số nguyên dương

A. $2\sin n\theta$

B. $2\sin(n-1)\theta$

C. $2\cos(n-1)\theta$

D. $2\cos n\theta$

Bài 97. Tìm các số thực x, y thỏa mãn

$$2x + 5iy - 3ix - 4y = 16 - 21i$$

A.
$$x = 6 \text{ và } y = -5$$

B.
$$x = -3 \text{ và } y = 2$$

C.
$$x = 2 \text{ và } y = -3$$

D.
$$x = -7 \text{ và } y = 4$$

Bài 98. Tìm số phức z sao cho $\frac{3-z}{1+i-2z} = 2-i$

A.
$$z = -\frac{2}{13} + \frac{3}{13}$$

B.
$$z = -\frac{3}{13} + \frac{3}{13}i$$

A.
$$z = -\frac{2}{13} + \frac{3}{13}i$$
 B. $z = -\frac{3}{13} + \frac{3}{13}i$ **C.** $z = -\frac{2}{13} + \frac{2}{13}i$ **D.** $z = -\frac{3}{13} + \frac{2}{13}i$

D.
$$z = -\frac{3}{13} + \frac{2}{13}i$$

Bài 99. Tìm phần thực của $\left(\frac{1-2i}{1-i}\right)^{10}$

A.
$$-\frac{779}{8}$$
 B. $\frac{779}{32}$ **C.** $-\frac{237}{8}$ **D.** $\frac{237}{32}$

B.
$$\frac{779}{32}$$

C.
$$-\frac{237}{8}$$

D.
$$\frac{237}{32}$$

Bài 100. Cho số phức z thỏa mãn |z-2i|=|z+2|. Tập hợp biểu diễn của z trên hệ trục tọa độ Oxy là

- A. Đường tròn bán kính 1
- **B.** Parabol tiếp xúc đường thẳng y = -x
- C. Ellipse tiêu cự 1
- **D.** Đường thẳng y = -x

Bài 101. Cho số phức z = 3 + 2i. Nhận xét nào sau đây là đúng khi nói tới số phức $w = \frac{z-1}{z-2}$

A. Phần thực của w là $-\frac{6}{5}$ **B.** Phần ảo của w là $-\frac{2}{5}$

C. Phần thực của w là $\frac{3}{4}$

D. Phần ảo của w là $\frac{1}{4}$

Bài 102. Cho số phức z thoả mãn |z| = 1. Biết rằng tập hợp các điểm biểu diễn của số phức $w = (4-3i)z^2 - 4 - 2i$ trên hệ trục Oxy thuộc một đường tròn. Tìm tâm I của đường tròn đó.

Bài 103. Tính Argument của số phức $z = \sqrt{3} - 2 + i$

A.
$$arg(z) = \frac{7\pi}{12}$$

A.
$$\arg(z) = \frac{7\pi}{12}$$
 B. $\arg(z) = \frac{11\pi}{12}$ **C.** $\arg(z) = \frac{4\pi}{7}$ **D.** $\arg(z) = \frac{3\pi}{7}$

C.
$$\arg(z) = \frac{4\pi}{7}$$

D.
$$\arg(z) = \frac{3\pi}{7}$$

Bài 104. Phương trình $z^3 - (n+i)z + m + 2i = 0$ có 3 nghiệm với n, m là các hằng số thực. Tìm m để modulus của tích các nghiệm phức bằng 5.

A.
$$m = -2$$

B.
$$m = 1$$
 hoặc $m = -2$

C.
$$m = 1$$
 hoặc $m = -1$

D.
$$m = 1$$

Bài 105. Tìm tập hợp biểu diễn số phức z thỏa mãn |z-5-3i|=3

A.
$$(x-3)^2 + (y+1)^2 = 3$$

B.
$$(x+5)^2 + (y-1)^2 = 9$$

C.
$$(x-5)^2 + (y-3)^2 = 9$$

D.
$$(x+2)^2 + (y+1)^2 = 9$$

CASIO LUYỆN THI THPT QUỐC GIA

ĐỀ TỰ LUYỆN (Đề thi 105 câu / 11 trang)

ĐỀ TRẮC NGHIỆM ÔN THI THPT **QUỐC GIA 2017**

Môn: TOÁN HOC Chuyên đề: Số phức

ĐÈ 27

Bài 1. Biểu diễn số phức $z = 4\sqrt{3} - 4i$ dưới dạng lượng giác là :

A.
$$z = 8\sin\frac{-\pi}{6} + 8\cos\frac{-\pi}{6}$$

B.
$$z = 8\cos\frac{-\pi}{6} + 8i\sin\frac{-\pi}{6}$$

D.
$$z = 8\cos{\frac{-\pi}{6}} + 8\sin{\frac{-\pi}{6}}$$

Bài 2. Cho số phức z = 3 + 2i. Nhận xét nào sau đây là đúng khi nói tới số phức $w = \frac{z-1}{z-2}$

A. Phần ảo của w là
$$-\frac{2}{5}$$

B. Phần thực của w là
$$-\frac{6}{5}$$

C. Phần thực của w là
$$\frac{3}{4}$$

D. Phần ảo của w là
$$\frac{1}{4}$$

Bài 3. Có bao nhiều số phức z phân biệt thoả mãn $z^3 - 3(1+i)z^2 + 6iz + 1 - 2i = 0$

A. 4

B. 1

C. 3

D. 2

Bài 4. Gọi A, B là điểm biểu diễn của số phức $z_1 = \frac{2-3i}{1-i}$; $z_2 = 4+i$. Tính độ dài đoạn thẳng AB.

A.
$$AB = \frac{3}{5}\sqrt{2}$$

B.
$$AB = \frac{3}{\sqrt{2}}$$

A.
$$AB = \frac{3}{5}\sqrt{2}$$
 B. $AB = \frac{3}{\sqrt{2}}$ **C.** $AB = \frac{1}{3}\sqrt{2}$ **D.** $AB = \frac{2}{\sqrt{3}}$

D.
$$AB = \frac{2}{\sqrt{3}}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 5. Cho các số phức z_1 và z_2 thỏa mãn $\frac{1+z_1}{2+z_1}=3+i; \frac{1+z_2}{2-z_2}=3-i$. Đẳng thức nào sau đây là đúng

A.
$$10z_1 - 17z_2 = 46 + 5i$$

B.
$$10z_1 + 17z_2 = 2 - i$$

C.
$$5z_1 + 17z_2 = 10 + 2i$$

D.
$$5z_1 - 17z_2 = -34 + 4i$$

Bài 6. Tính
$$z = \frac{2+3i}{4-5i}$$

A.
$$z = -\frac{3}{43} + \frac{23}{43}i$$
 B. $z = \frac{7}{41} + \frac{22}{41}i$ **C.** $z = -\frac{7}{41} + \frac{22}{41}i$ **D.** $z = \frac{3}{43} + \frac{23}{43}i$

B.
$$z = \frac{7}{41} + \frac{22}{41}i$$

C.
$$z = -\frac{7}{41} + \frac{22}{41}$$

D.
$$z = \frac{3}{43} + \frac{23}{43}i$$

Bài 7. Tìm tập hợp điểm biểu diễn số phức z thoả mãn $\arg(z-2) = \frac{\pi}{3}$.

A. Đường thẳng $y = \sqrt{3}x + 2\sqrt{3}$ thuộc góc phần tư thứ hai

B. Đường thẳng $y = \sqrt{3}x + 2\sqrt{3}$ thuộc góc phần tư thứ nhất

C. Đường thẳng $y = \sqrt{3}x - 2\sqrt{3}$ thuộc góc phần tư thứ hai

D. Đường thẳng $y = \sqrt{3}x - 2\sqrt{3}$ thuộc góc phần tư thứ nhất

Bài 8. Biết $\cos^5 x = a \cos 5x + b \sin 3x + c \cos x$ với a, b, c là các số thực. Tính a - b + c

A.
$$\frac{5}{16}$$

B.
$$\frac{3}{8}$$

C.
$$\frac{5}{8}$$

D.
$$\frac{1}{16}$$

Bài 9. Cho số phức $z = \sqrt{2} + 3i$; $w = \frac{1}{1+i}$. Tìm phần ảo của zw

A.
$$\frac{3-\sqrt{2}}{2}$$
 B. $\frac{1-\sqrt{2}}{2}$ **C.** $\frac{5-\sqrt{2}}{2}$

B.
$$\frac{1-\sqrt{2}}{2}$$

C.
$$\frac{5-\sqrt{2}}{2}$$

C.
$$\frac{5-3\sqrt{2}}{2}$$

Bài 10. Cho số phức u = 2 - 5i và v = -3 + 2i. Nhận xét nào sau đây là sai:

A.
$$u - v = 5 - 7i$$

A.
$$u - v = 5 - 7i$$
 B. $2u - 3v = 13 - 16i$ **C.** $3u - v = 9 + 9i$

D.
$$u + v = -1 - 3i$$

Bài 11. Cho các số phức x, y, z thoả mãn
$$\begin{cases} x+yz=2\\ y+zx=2 \end{cases}$$
. Kết luận nào sau đây là đúng?
$$z+xy=3$$

- **A.** Tồn tại các số phức (x, y, z) = (1+i, 1-i, 1) thoả mãn bài toán
- **B.** Tồn tại các số phức (x, y, z) = (1 + 2i, 1 2i, 1) thoả mãn bài toán.
- C. Không tồn tại các số phức x, y, z thoả mãn bài toán.
- **D.** Tồn tại các số phức $(x, y, z) = (1 + \sqrt{2}i, 1 \sqrt{2}i, 1)$ thoả mãn bài toán.
- **Bài 12.** Cho số phức z = 2 + 3i. Gọi A, B, C, D lần lượt là điểm biểu diễn của $z, 2z, \overline{z}, iz$ trên hệ trục toạ độ Oxy. Nhận xét nào sau đây là đúng?
 - A. OB và OC đối xứng nhau qua Ox
 - **B.** Oy là phân giác của góc BOD
 - C. OC vuông góc với OA
 - D. OB vuông góc với OD
- **Bài 13.** Cho số phức z thoả mãn |z-2i|=|z+2|. Tập hợp điểm biểu diễn của z trên hệ trục toạ đô Oxy là :
 - **A.** Parabol tiếp xúc đường thẳng y = -x
 - B. Đường tròn bán kính 1
 - C. Ellipse tiêu cự 1
 - **D.** Đường thẳng y = -x
- **Bài 14.** Cho số phức z thỏa mãn |z 12 5i| = 3. Tìm gái trị lớn nhất của |z|
 - **A.** 12
- **B.** 9

- **C.** 16
- **D.** 10
- **Bài 15.** Cho số phức z thoả mãn |z| = 1 và $z^{2n} \neq -1$ với mọi n là số nguyên dương. Nhận xét nào sau đây là đúng khi nói về số phức $w = \frac{z^n}{1 + z^{2n}}$?
 - A. Tập hợp điểm biểu diễn của w là trục

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

- **B.** Phần ảo của w bằng 0
- C. w là số thuần ảo
- **D.** $|w| = \frac{1}{2}$
- **Bài 16.** Cho số phức z = 5 4i. Tìm phần thực và phần ảo của số phức z.
 - A. Phần thực bằng 5, phần ảo bằng -4.
 - **B.** Phần thực bằng 5, phần ảo bằng -4i.
 - C. Phần thực bằng 5, phần ảo bằng 4.
 - **D.** Phần thực bằng 5, phần ảo bằng 4i.
- **Bài 17.** Cho số phức $z_1 = 5 3i$ và $z_2 = 4 + i$. Tìm modulus của số phức $z_1 = z_1 + z_2$

A.
$$|z| = \sqrt{58}$$

B.
$$|z| = 5\sqrt{13}$$

A.
$$|z| = \sqrt{58}$$
 B. $|z| = 5\sqrt{13}$ **C.** $|z| = 13\sqrt{5}$

D.
$$|z| = \sqrt{85}$$

- **Bài 18.** Tìm tập hợp điểm biểu diễn số phức z thoả mãn |z-6|=6|z+6-9i|
 - A. Đường tròn tâm (-12, 10) bán kính 10
 - B. Đường tròn tâm (-12, 10) bán kính 12
 - C. Đường tròn tâm (-10, 12) bán kính 10
 - **D.** Đường tròn tâm (12, -10) bán kính 12
- **Bài 19.** Cho số phức z có |z|=2; $\arg(z)=-\frac{\pi}{6}$. Tính \overline{u}^{-1}

A.
$$\frac{1}{4} + \frac{\sqrt{3}}{4}i$$

B.
$$\frac{\sqrt{3}}{4} - \frac{1}{4}i$$

C.
$$\frac{1}{4} - \frac{\sqrt{3}}{4}i$$

A.
$$\frac{1}{4} + \frac{\sqrt{3}}{4}i$$
 B. $\frac{\sqrt{3}}{4} - \frac{1}{4}i$ **C.** $\frac{1}{4} - \frac{\sqrt{3}}{4}i$ **D.** $\frac{\sqrt{3}}{4} + \frac{1}{4}i$

- **Bài 20.** Tìm tập hợp điểm biểu diễn số phức z thoả mãn $\arg\left(\frac{z-6}{z-2}\right) = \frac{\pi}{4}$.
 - **A.** Đường tròn đường kính $2\sqrt{2}$ thuộc góc phần tư thứ hai
 - **B.** Đường tròn đường kính $4\sqrt{2}$ thuộc góc phần tư thứ hai
 - ${\bf C.}$ Đường tròn đường kính $2\sqrt{2}\,$ thuộc góc phần tư thứ nhất

D. Đường tròn đường kình $4\sqrt{2}$ thuộc góc phần tư thứ nhất

Bài 21. Cho $f(x) = z^3 + bz^2 + cz - 75$ với $b, c \in R$. Biết f(-4 + 3i) = 0. Tìm b, c

A.
$$b = 5 \text{ và } c = 1$$

B.
$$b = 3 \text{ và } c = 3$$

A.
$$b = 5$$
 và $c = 1$ **B.** $b = 3$ và $c = 3$ **C.** $b = 2$ và $c = 4$

D.
$$b = 4 \text{ và } c = 2$$

Bài 22. Cho số phức z thoả mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức $w = \frac{1+3i}{z+i}$ thuộc một đường tròn. Tìm bán kính r của đường tròn đó

A.
$$r = \frac{4}{5}\sqrt{5}$$

A.
$$r = \frac{4}{5}\sqrt{5}$$
 B. $r = \frac{3}{8}\sqrt{10}$ **C.** $r = \frac{3}{7}\sqrt{14}$ **D.** $r = \frac{4}{7}\sqrt{7}$

C.
$$r = \frac{3}{7}\sqrt{14}$$

D.
$$r = \frac{4}{7}\sqrt{7}$$

Bài 23. Cho z là số phức thỏa mãn |z| = 1. Tìm tập hợp các điểm biểu diễn của số phức

$$w = \frac{z-1}{z+1}$$
 trên hệ trục tọa độ Oxy.

A. Đoan thẳng AB với A (-1; 0) và B (1; 0)

B. Truc tung

C. Đoạn thẳng AB với A (0; -1) và B (0; 1).

D. Truc hoành

Bài 24. Nhận xét nào sau đây là đúng khi nói về tập hợp điểm biểu diễn số phức z thoả mãn $\arg(z+3+2i) = \frac{3\pi}{4}$

A. Một đường tròn

B. Một tia

C. Một đoan thắng

D. Môt đường thắng

Bài 25. Tính Argument của số phức $z = (-\sqrt{3} + i)^{12}$

$$\mathbf{A.} \ \operatorname{arg}(z) = 0$$

A.
$$\arg(z) = 0$$
 B. $\arg(z) = \frac{1}{4096}$ **C.** $\arg(z) = \frac{5}{6}$ **D.** $\arg(z) = \frac{5\pi}{6}$

$$\mathbf{C.}\arg(z) = \frac{5}{6}$$

D.
$$arg(z) = \frac{5\pi}{6}$$

Bài 26. Cho $z = \left(\frac{a+bi}{a-bi}\right)^2 + \left(\frac{a-bi}{a+bi}\right)^2$. Khẳng định nào sau đây là đúng ?

A.
$$z = \overline{z}$$

B.
$$z = \overline{z} | z$$

C.
$$z\overline{z} = |z|$$

B.
$$z = \overline{z} |z|$$
 C. $z\overline{z} = |z|$ **D.** $|z| = \sqrt{a^2 + b^2}$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 27. Cho số phức z thỏa mãn
$$\frac{2-3i+\frac{1-i}{z+2i}}{3+i+\frac{1+i}{z+2i}} = -3+i$$
. Tìm phần ảo của số z

A.
$$-\frac{37}{17}i$$
 B. $-\frac{19}{51}i$ **C.** $-\frac{19}{51}$ **D.** $-\frac{37}{17}$

B.
$$-\frac{19}{51}i$$

$$C. -\frac{19}{51}$$

D.
$$-\frac{37}{17}$$

Bài 28. Nhà toán học Rafael Bombelli (1526- 1572) đã tình cờ phát hiện ra số phức khi nghiên cứu phương trình bậc 3. Ông cho rằng phương trình $x^3 - 3x + 1 = 0$ tồn tại nghiệm

$$A = \frac{\sqrt[3]{-4 + 4\sqrt{-3}}}{2} + \frac{2}{\sqrt[3]{-4 + 4\sqrt{-3}}}$$

Nhà toán học Abraham de Moivre (1667 -1754) phát hiện ra định lý:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Sử dụng định lý Moivre, hãy rút gọn biểu thức A.

A.
$$A = 2\cos\frac{2\pi}{9}$$

C.
$$A = 2\sin\frac{2\pi}{9}$$

B.
$$A = \cos \frac{2\pi}{9} - i \sin \frac{2\pi}{9}$$

D. $A = \cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9}$

$$\mathbf{D.} \ \ A = \cos\frac{2\pi}{9} + i\sin\frac{2\pi}{9}$$

Bài 29. Cho số phức z thoả mãn |z+1|=2|z-i|. Biết rằng tập hợp các điểm biểu diễn của z thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

A.
$$r = \frac{\sqrt{17}}{3}$$

B.
$$r = \frac{3\sqrt{7}}{4}$$

$$\mathbf{C.} r = \frac{5\sqrt{11}}{7}$$

A.
$$r = \frac{\sqrt{17}}{3}$$
 B. $r = \frac{3\sqrt{7}}{4}$ **C.** $r = \frac{5\sqrt{11}}{7}$ **D.** $r = \frac{\sqrt{23}}{13}$

Bài 30. Cho số phức $z_1=3-4i$ và $z_2=-4+7i$. Tìm moduls của số phức $z=z_1+z_2$

A.
$$|z| = 2\sqrt{10}$$
 B. $|z| = 4\sqrt{2}$ **C.** $|z| = \sqrt{10}$ **D.** $|z| = \sqrt{7}$

B.
$$|z| = 4\sqrt{2}$$

C.
$$|z| = \sqrt{10}$$

D.
$$|z| = \sqrt{2}$$

Bài 31. Với mọi số phức z, ta có $|z+1|^2$ bằng

A.
$$z\overline{z} + z + \overline{z} + 1$$

B.
$$z\overline{z} + 1$$

A.
$$z\overline{z} + z + \overline{z} + 1$$
 B. $z\overline{z} + 1$ **C.** $|z|^2 + 2|z| + 1$ **D.** $z + \overline{z} + 1$

D.
$$z + \overline{z} + 1$$

Bài 32. Số phức z nào dước đây thoả mãn $z^2 + z + 1 = 0$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A. Không có số phức z nào thỏa mãn

B.
$$z = \frac{3}{2} + \frac{\sqrt{5}}{2}i$$

C.
$$z = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

D.
$$z = \frac{1}{2} - \frac{\sqrt{5}}{2}i$$

- **Bài 33.** Cho số phức $z = \cos \theta + i \sin \theta$. Tính $z^n + \frac{1}{z^n}$ với n là số nguyên dương
 - A. $2\sin(n-1)\theta$
- **B.** $2\sin n\theta$
- C. $2\cos(n-1)\theta$
- **D.** $2\cos n\theta$
- **Bài 34.** Tìm các số hữu tỷ n sao cho $\left(-\sqrt{3}+i\right)^n+\left(-\sqrt{3}-i\right)^n=0$

A.
$$n = \frac{3-6k}{5}; k \in \mathbb{Z}$$

B.
$$n = \frac{6+3k}{5}$$
; $k \in \mathbb{Z}$

C.
$$n = \frac{3+6k}{5}$$
; $k \in \mathbb{Z}$

D.
$$n = \frac{6-3k}{5}; k \in \mathbb{Z}$$

A.
$$1 + i$$

B.
$$1 - i$$

C.
$$-1 - i$$

D.
$$-1 + i$$

- **Bài 36.** Cho số phức z thỏa mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức $w = z \frac{i}{z}$ thuộc một đường ellipse. Tìm tiêu cự của ellipse
 - **A.** 8

B. 2

C. 4

- **D.** 6
- **Bài 37.** Tìm tập hợp điểm biểu diễn số phức z thỏa mãn |z| = |z 6i|
 - **A.** Đường thẳng x = 1

B. Đường thẳng y = 1

C. Đường thẳng x = 3

D. Đường thẳng y = 3

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 38. Số nguyên Gaussian được định nghĩa là số phức dạng z = a + bi với $a, b \in Z$. Cho x, y là 2 số nguyên Gaussian. Khi đó thương phép chia Eiclid của x cho y là một số nguyên Gaussian z sao cho z gần $\frac{x}{v}$ nhất khi biểu diễn trên hệ trục toạ độ. Tìm thương phép chia Euclid $\frac{10+9i}{4-7i}$

$$C. -1 + i$$

$$D_{i} - 1 + 2i$$

Bài 39. Phương trình $z^3 - (n+i)z + m + 2i = 0$ có 3 nghiệm với n, m là các hằng số thực. Tìm m để modulus của tích các nghiệm phức bằng 5.

A.
$$m = 1 \text{ hoặc } m = -2$$

B.
$$m = -2$$

C.
$$m = 1 \text{ hoặc } m = -1$$

D.
$$m = 1$$

Bài 40. Tìm modulus của số phức $z = \left(\frac{1+\sqrt{3}i}{2-i}\right)^{10}$

A.
$$|z| = \frac{1}{32}$$

B.
$$|z| = \frac{3125}{1024}$$

A.
$$|z| = \frac{1}{32}$$
 B. $|z| = \frac{3125}{1024}$ **C.** $|z| = \frac{1024}{3125}$ **D.** $|z| = 32$

D.
$$|z| = 32$$

Bài 41. Gọi z_1 , z_2 , z_3 , z_4 , z_5 , z_6 là sáu nghiệm của phương trình $z^6 + 8 = 0$. Tính $|z_1| + |z_2| + |z_3| + 1$ $|z_4| + |z_5| + |z_6|$

A.
$$6\sqrt{2}$$

B.
$$2\sqrt{3}$$
 C. $6\sqrt{3}$

C.
$$6\sqrt{3}$$

D.
$$3\sqrt{2}$$

Bài 42. Tìm tập hợp điểm biểu diễn số phức z thoả mãn $\arg\left(\frac{z}{z-Ai}\right) = \frac{\pi}{2}$.

- A. Nửa đường tròn bán kính 2 tâm (-2, 0) thuộc góc phần tư thứ tư
- **B.** Nửa đường tròn bán kính 2 tâm (0, 2) thuộc góc phần tư thứ nhất
- C. Nửa đường tròn bán kính 2 tâm (2, 0) thuộc góc phần tư thứ nhất
- **D.** Nửa đường tròn bán kính 1 tâm (1, 0) thuộc góc phần tư thứ tư

Bài 43. Tìm tập hợp điểm biểu diễn số phức thỏa mãn |z-5-3i|=3

A.
$$(x+5)^2 + (y-1)^2 = 9$$

B.
$$(x-3)^2 + (y+1)^2 = 3$$

$$\mathbf{C.}(x-5)^2 + (y-3)^2 = 9$$

43

D.
$$(x+2)^2 + (y+1)^2 = 9$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 44. Tìm tập hợp điểm biểu diễn số phức z thoả mãn |z-3| = |z+i|

A. Đường thẳng y = -4x + 1

B. Đường thẳng y = -x + 3

C. Đường thẳng y = -5x + 3

D. Đường thẳng y = -3x + 4

Bài 45. Tìm phần thực của số phức $z = (1 + i)^{2017} - (1 - i)^{2017}$

A.
$$e^{2^{2017}}$$

B.
$$2^{2018}$$

D.
$$2^{2017}$$

Bài 46. Cho số phức $z_1 = 2 - 3i$ và $z_2 = -1 + i$. Tính $z_1(2z_2 + 1)$

A.
$$3 + 2i$$

B.
$$4 + 7i$$

$$C.7 + 2i$$

D.
$$6 + 9i$$

Bài 47. Một acgumen của số phức $z \neq 0$ là ϕ thì một acgumen của $\frac{z}{1+z}$ là

$$\mathbf{A.}-\phi-\frac{\pi}{4}$$

A.
$$-\phi - \frac{\pi}{4}$$
 B. $-\phi + \frac{\pi}{4}$ **C.** $\phi + \frac{\pi}{2}$

C.
$$\phi + \frac{\pi}{2}$$

D.
$$\phi - \pi$$

Bài 48. Tìm phần thực của số phức $z = (1 + \sqrt{3}i)^9$

A.
$$256\sqrt{3}$$

B.
$$128\sqrt{5}$$

C.
$$256\sqrt{2}$$

Bài 49. Cho z_1 , z_2 , z_3 là 3 nghiệm phức của phương trình $z^3 + 8 = 0$. Tính $|z_1| + |z_2| + |z_3|$

B.
$$2+2\sqrt{3}$$
 C. $2+\sqrt{3}$

C.
$$2 + \sqrt{3}$$

Bài 50. Tìm modulus của số phức $z = \frac{2-3i}{3-i}$

A.
$$|z| = \frac{\sqrt{3}}{10}$$

B.
$$|z| = \sqrt{\frac{13}{10}}$$

C.
$$|z| = \frac{\sqrt{10}}{13}$$

A.
$$|z| = \frac{\sqrt{3}}{10}$$
 B. $|z| = \sqrt{\frac{13}{10}}$ **C.** $|z| = \frac{\sqrt{10}}{13}$ **D.** $|z| = \sqrt{\frac{10}{13}}$

Bài 51. Cho số phức z thoả mãn |z| = 1. Biết rằng tập hợp các điểm biểu diễn của số phức $w = (4-3i)z^2 - 4 - 2i$ trên hệ trục Oxy thuộc một đường tròn. Tìm tâm I của đường tròn đó.

Bài 52. Tìm phần thực của số phức $z = e^{e^{1+i}}$

A.
$$\Re(z) = e^{e\sin x} \sin(e\cos 1)$$

B.
$$\Re(z) = e^{ecos1} \sin(e \sin 1)$$

C.
$$\Re(z) = e^{e \sin t} \cos(e \cos t)$$

D.
$$\Re(z) = e^{e\cos 1} \cos(e\sin 1)$$

Bài 53. Tìm phần ảo của số phức
$$z = \frac{\left(\cos\frac{9\pi}{17} + i\sin\frac{9\pi}{17}\right)^5}{\left(\cos\frac{2\pi}{17} - i\sin\frac{2\pi}{17}\right)^3}$$

A. 0

B. 1

C. -1

D. 2

Bài 54. Gọi A là điểm biểu diễn số phức $z = \sqrt{3} - i$ trên hệ trục tọa độ Oxy. Khi đó độ dài của đoạn thẳng OA là:

- **A.** $2\sqrt{2}$
- \mathbf{R} . $\sqrt{3}$
- C. 2

D. 1

Bài 55. Cho số phức z = 3 - 7i. Tìm phần thực và phần ảo của số phức z

- A. Phần thực bằng 3, phần ảo bằng -7i
- **B.** Phần thực bằng 3, phần ảo bằng 7
- C. Phần thực bằng 3, phần ảo bằng -7
- **D.** Phần thực bằng 3, phần ảo bằng 7i

Bài 56. Cho các số phức z và w thoả mãn $\overline{z}w \neq 1$ và |z| = 1 hoặc |w| = 1. Cho $A = \frac{z - w}{1 - \overline{z}w}$. Tính |A|

$$A_{\bullet} |A| = 1$$

B.
$$|A| = 2$$

C.
$$|A| = \frac{1}{2}$$

D.
$$|A| = \frac{3}{2}$$

Bài 57. Một acgumen của số phức $z \neq 0$ và ϕ thì một acgumen của $\frac{1}{z^2}$ là

$$\mathbf{A.}\,2\boldsymbol{\phi}+\boldsymbol{\pi}$$

A.
$$2\phi + \pi$$
 B. $-\phi^2 + \frac{\pi}{2}$ **C.** -2ϕ

$$\mathbf{C}.-2\phi$$

$$\mathbf{D} \cdot -\phi$$

Bài 58. Tìm số phức z sao cho $\frac{3-z}{1+i-2z} = 2-i$;

A.
$$z = -\frac{3}{13} + \frac{3}{13}i$$

B.
$$z = -\frac{2}{13} + \frac{3}{13}$$

$$\mathbf{C} \cdot z = -\frac{2}{13} + \frac{2}{13}$$

A.
$$z = -\frac{3}{13} + \frac{3}{13}i$$
 B. $z = -\frac{2}{13} + \frac{3}{13}i$ **C.** $z = -\frac{2}{13} + \frac{2}{13}i$ **D.** $z = -\frac{3}{13} + \frac{2}{13}i$

Bài 59. Kết luận nào sau đây đúng

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$|z_1 + z_2| \le |z_1| + |z_2|$$

B.
$$|z_1 + z_2| < |z_1| + |z_2|$$

C.
$$|z_1 + z_2| > |z_1| + |z_2|$$

D.
$$|z_1 + z_2| \ge |z_1| + |z_2|$$

Bài 60. Tính |z| với
$$z = \frac{(1+i)^4}{(1+6i)(2-7i)}$$

A.
$$|z| = \frac{4}{\sqrt{46}\sqrt{53}}$$

B.
$$|z| = \frac{4}{\sqrt{37}\sqrt{53}}$$

C.
$$|z| = \frac{2}{\sqrt{37}\sqrt{53}}$$

A.
$$|z| = \frac{4}{\sqrt{46}\sqrt{53}}$$
 B. $|z| = \frac{4}{\sqrt{37}\sqrt{53}}$ **C.** $|z| = \frac{2}{\sqrt{37}\sqrt{53}}$ **D.** $|z| = \frac{2}{\sqrt{46}\sqrt{53}}$

Bài 61. Tập hợp điểm biểu diễn của số phức z trên hệ trục toạ độ Oxy thoả mãn arg $(z-1+i) = -\frac{\pi}{4}$ là :

A. Đường thẳng
$$y = -x \text{ với } x > 1$$

B. Nửa đường tròn bán kính 1

D. Đường thẳng $y = -x \text{ với } x \ge 1$

Bài 62. Cho 2 số phức
$$u = 1 + \sqrt{3}i, v = \sqrt{3} + i$$
. Tính $\frac{u^3}{v^4}$

A.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

A.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 B. $\frac{1}{4} + \frac{\sqrt{3}}{4}i$ **C.** $\frac{1}{2} - \frac{\sqrt{3}}{2}i$

C.
$$\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

D.
$$\frac{1}{4} - \frac{\sqrt{3}}{4}i$$

Bài 63. Cho số phức $z = \frac{(1+2i)(1+i)}{-2-3i}$. Kết luận nào sau đây là đúng khi nói về argument của số phức z.

A.
$$arg(z) > 0$$

B.
$$arg(z) = 0$$

C.
$$arg(z) < 0$$

D. arg(z) không xác định

Bài 64. Tìm số phức z thỏa mãn $z^2 + 4z + 13 = 0$

A.
$$z = 2 \pm 3i$$

B.
$$z = -4 \pm 6$$

B.
$$z = -4 \pm 6i$$
 C. $z = -2 \pm 3i$ **D.** $z = 4 \pm 6i$

D.
$$z = 4 \pm 6$$

Bài 65. Số phức z thay đổi sao cho |z| = 1 thì giá trị bé m và giá trị lớn nhất M của |z - i| là

A.
$$m = 0$$
, $M = 2$

B.
$$m = 0$$
, $M = 1$

C. m = 1, M =
$$\sqrt{2}$$
 D. m = 0, M = 2

D.
$$m = 0$$
. $M = 2$

Bài 66. Tìm modulus của số phức $z = \frac{1-i}{2+3i} + \frac{1+i}{2-5i}$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$|z| = \sqrt{\frac{20}{377}}$$
 B. $|z| = \sqrt{\frac{20}{37}}$ **C.** $|z| = \frac{5}{13}$ **C.** $|z| = \frac{2}{13}$

B.
$$|z| = \sqrt{\frac{20}{37}}$$

C.
$$|z| = \frac{5}{13}$$

C.
$$|z| = \frac{2}{13}$$

Bài 67. Tính $i(1+i)(1-i)^2$

A.
$$2 + 2i$$

B.
$$5 - 3i$$

$$C.4 + 6i$$

D.
$$7 - 12i$$

Bài 68. Gọi x_1 , x_2 là 2 nghiệm phức của phương trình $\tan^2 t \cdot x^2 + \tan t \cdot x + 1 = 0$ với t là số thực thỏa mãn tant $\neq 0$. Tính $x_1^n + x_2^n$

A.
$$x_1^n + x_2^n = 2\cos\frac{\pi n}{3}\cos^n t$$

B.
$$x_1^n + x_2^n = \cos \frac{2\pi n}{3} \cos^n t$$

C.
$$x_1^n + x_2^n = \cos \frac{2\pi n}{3} \cos^n t$$

D.
$$x_1^n + x_2^n = \cos \frac{\pi n}{3} \cos^n t$$

Bài 69. Số phức z nào dưới đây thoả mãn $z^2 = 1 + i$

A.
$$z = \sqrt{\frac{1+\sqrt{2}}{2}} + \frac{1}{\sqrt{2+2\sqrt{2}}}i$$

B.
$$z = \sqrt{\frac{1+\sqrt{2}}{2}} - \frac{1}{\sqrt{2+2\sqrt{2}}}i$$

C.
$$z = \sqrt{\frac{3+\sqrt{2}}{2}} - \frac{2}{\sqrt{3+2\sqrt{2}}}i$$
D. $z = \sqrt{\frac{3+\sqrt{2}}{2}} + \frac{2}{\sqrt{3+\sqrt{2}}}i$

D.
$$z = \sqrt{\frac{3+\sqrt{2}}{2}} + \frac{2}{\sqrt{3+\sqrt{2}}}i$$

Bài 70. Tìm modulus của số phức z = 2 - 5i

A.
$$|z| = \sqrt{17}$$

B.
$$|z| = \sqrt{31}$$

C.
$$|z| = 9\sqrt{2}$$

C.
$$|z| = 9\sqrt{2}$$
 D. $|z| = \sqrt{29}$

Bài 71. Tìm modulus của số phức z = (2-i)(1-3i)

A.
$$|z| = 2\sqrt{7}$$

B.
$$|z| = 5\sqrt{2}$$

B.
$$|z| = 5\sqrt{2}$$
 C. $|z| = 2\sqrt{5}$

C.
$$|z| = 4\sqrt{2}$$

Bài 72. Cho số phức $z_1 = \frac{4+6i}{2-3i}$; $z_2 = \frac{4-6i}{2+3i}$. Tìm phần thực của số phức $w = z_1 - 2z_2$

A.
$$\frac{15}{13}$$

B.
$$\frac{10}{13}$$

$$C.\frac{12}{13}$$

D.
$$\frac{11}{13}$$

Bài 73. Tìm điều kiện của số nguyên n để $z_n = (1 + \sqrt{3}i)^n$ là số thực

A. n chia hết 3

B. n chia cho 3 du 2

C. n chia cho 3 du 1

D. n chia cho 4 du 1

Bài 74. Cho $iz^3 + z^2 - z + i = 0$. Khi đó giá trị của |z| là

A.
$$\sqrt{5}$$

C.
$$\sqrt{2}$$

Bài 75. Tìm tập hợp các điểm biểu diễn số phức z trên hệ trục tọa độ Oxy thỏa mãn điều kiện |z – 1 - i| = 2|z - 5 - 2i|

A. Đường tròn
$$\left(x - \frac{7}{3}\right)^2 + \left(y - \frac{19}{3}\right)^2 = \frac{68}{9}$$

B. Đường tròn
$$\left(x - \frac{19}{3}\right)^2 + \left(y - \frac{7}{3}\right)^2 = \frac{68}{9}$$

C. Đường thẳng
$$y = \frac{7}{19}x$$

D. Đường thẳng
$$y = \frac{19}{7}x$$

Bài 76. Rút gọn $\frac{\sqrt{2}\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right)}{2\left(\cos\frac{5\pi}{6} + i\sin\frac{5\pi}{6}\right)}$

A.
$$-\frac{1}{2} + \frac{1}{2}i$$
 B. $-\frac{1}{2} - \frac{1}{2}i$

B.
$$-\frac{1}{2} - \frac{1}{2}i$$

$$\mathbf{C} \cdot \frac{1}{2} - \frac{1}{2}i$$

C.
$$\frac{1}{2} + \frac{1}{2}i$$

Dăng kí http://thichhocchui.xyz/ tại Zalo 0383572270 Thích Học Chui

Bài 77. Khi số phức z thay đổi tùy ý thì tập hợp các số $2z + 2\overline{z}$ là

- A. Tập hợp các số thực dương
- **B.** Tập hợp các số phức không phải số ảo
- C. Tập hợp các số thực không âm
- **D.** Tập hợp các số thực

Bài 78. Cho số phức z thỏa mãn |z - 12 - 5i| = 3. Tìm giá trị nhỏ nhất của |z|

A. 16

B. 10

C. 12

D. 9

Bài 79. Tính Argument của số phức $z = \sqrt{3} - 2 + i$

A.
$$arg(z) = \frac{11\pi}{12}$$

B. arg
$$(z) = \frac{7\pi}{12}$$

A.
$$\arg(z) = \frac{11\pi}{12}$$
 B. $\arg(z) = \frac{7\pi}{12}$ **C.** $\arg(z) = \frac{4\pi}{7}$ **D.** $\arg(z) = \frac{3\pi}{7}$

D.
$$arg(z) = \frac{3\pi}{7}$$

Bài 80. Gọi z_1 , z_2 , z_3 , z_4 , z_5 là 5 nghiệm phức của phương trình $z_5 = 1 + i$. Biểu diễn 5 nghiệm này trên hệ trục toạ độ Oxy ta thấy đây là đỉnh của một ngũ giác đều. Tính độ dài cạnh của ngũ giác đều đó.

Bài 81. Phần thực và phần ảo của số phức $z = (1+2i)^2$ là:

- A. Phần thực bằng 3, phần ảo bằng 4
- **B.** Phần thực bằng 3, phần ảo bằng -4
- C. Phần thực bằng -3, phần ảo bằng 4
- D. Phần thực bằng -3, phần ảo bằng -4

Bài 82. Cho số phức z = 2 + 7i. Nhận xét nào sau đây là đúng?

- **A.** Phần thực của \overline{z} bằng -2, phần ảo của z bằng -7.
- **B.** Phần thực của \overline{z} bằng -2, phần ảo của z bằng 7.

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

- C. Phần thực của \overline{z} bằng 2, phần ảo của z bằng -7.
- **D.** Phần thực của \overline{z} bằng 2, phần ảo của z bằng 7.
- **Bài 83.** Cho số phức z thoả mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn số phức $w = z + \frac{1}{z}$ thuộc một đường ellipse. Tìm tâm sai e của ellipse đó.

A.
$$e = \frac{3}{25}\sqrt{43}$$
 B . $e = \frac{22}{25}\sqrt{41}$ **C.** $e = \frac{22}{25}\sqrt{41}$ **D.** $e = \frac{22}{25}\sqrt{41}$

•
$$e = \frac{22}{25}\sqrt{41}$$

C.
$$e = \frac{22}{25}\sqrt{41}$$

D.
$$e = \frac{22}{25}\sqrt{41}$$

Bài 84. Tìm phần ảo của số phức $z = \frac{26}{-3 + 2i} + i^{69}$

Bài 85. Tính i²⁰¹⁷

$$A.-i$$

Bài 86. Cho 2 số phức
$$z_1$$
, z_2 có $|z_1| = 8$, $|z_2| = \frac{1}{2}$ và $\arg(z_1) = -\frac{\pi}{4}$, $\arg(z_2) = \frac{3\pi}{4}$. Tính $z_1 z_2 + \frac{z_1}{z_2}$

A.
$$-16 + 4i$$
 B. $-3 + 3i$

B.
$$-3 + 3i$$

$$C. -3 + 4i$$

D.
$$-16 + 3i$$

Bài 87. Tìm tất cả giá trị của m để phương trình $2z^2 - (3+8i)z - m - 4i = 0$ có một nghiệm thực.

A.
$$m = 2$$

B.
$$m = -3$$

C.
$$m = -4$$

D.
$$m = 1$$

Bài 88. Cho số phức u = 2 - 5i, v = -3 + 2i. Nhận xét nào sau đây là đúng?

A.
$$u^2 = 21 - 20i$$

B.
$$\frac{v}{u} = 5 + 7i$$

C.
$$uv = 4 + 19i$$

A.
$$u^2 = 21 - 20i$$
 B. $\frac{v}{u} = 5 + 7i$ **C.** $uv = 4 + 19i$ **D.** $\frac{u}{v} = 5 + 7i$

Bài 89. Tính $z = \frac{1}{2-5i}$

50

A.
$$z = \frac{2}{29} \pm \frac{5}{29}i$$
 B. $z = \frac{1}{29} - \frac{7}{29}i$ **C.** $z = \frac{1}{29} + \frac{7}{29}i$ **D.** $z = \frac{2}{29} + \frac{5}{29}i$

B.
$$z = \frac{1}{29} - \frac{7}{29}$$

$$\mathbf{C.} \ \ z = \frac{1}{29} + \frac{7}{29}$$

D.
$$z = \frac{2}{29} + \frac{5}{29}$$

Bài 90. Cho số phức w và z thỏa mãn $w = \frac{5iz + i}{z + 1}$. Nhận xét nào sau đây sai

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A. Nếu
$$|z| = 1$$
 thì $|w - 5i| = |w - i|$

B. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng $y = \frac{5}{2}$

C.
$$z = \frac{i-w}{w-5i}$$

D. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng y = 3

Bài 91. Biết z = 3 - 2i thỏa mãn phương trình $z^4 - 6z^3 + 18z^2 + pz + 65 = 0$. Tìm p

A.
$$p = -21$$

B.
$$p = 14$$

C.
$$p = -30$$

D.
$$p = 0$$

Bài 92. Cho số phức z thoả mãn $2\Re(z) - 3\Im(z) = 6$ với $\Re(z)$ là phần thực, $\Im(z)$ là phần ảo của z. Khi đó giá trị nhỏ nhất của |z| là:

A.
$$\frac{5}{\sqrt{13}}$$
 B. $\frac{7}{\sqrt{13}}$

B.
$$\frac{7}{\sqrt{13}}$$

C.
$$\frac{6}{\sqrt{13}}$$

D.
$$\frac{8}{\sqrt{13}}$$

Bài 93. Tìm phần thực của $\left(\frac{1-2i}{1-i}\right)^{10}$

A.
$$\frac{779}{32}$$

A.
$$\frac{779}{32}$$
 B. $-\frac{779}{8}$

$$\mathbf{C.} - \frac{237}{8}$$

D.
$$\frac{237}{32}$$

Bài 94. Cho số phức z thoả mãn $z^2 + (\sqrt{3} + i)z + 1 = 0$. Modulus của z là :

A.
$$|z| = \sqrt{2 + \sqrt{3}}$$
 B. $|z| = \sqrt{3 + \sqrt{2}}$ **C.** $|z| = \sqrt{2 - \sqrt{3}}$ **D.** $|z| = \sqrt{3 - \sqrt{2}}$

B.
$$|z| = \sqrt{3 + \sqrt{2}}$$

C.
$$|z| = \sqrt{2 - \sqrt{3}}$$

D.
$$|z| = \sqrt{3 - \sqrt{2}}$$

Bài 95. Cho số phức z thoả mãn |z| = 2. Biết rang tập hợp các điểm biểu diễn của số phức $w = \frac{2016 + 2017i}{7}$ thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

A.
$$r = \frac{1}{2}\sqrt{1626509}$$
 B. $r = \frac{3}{2}\sqrt{8132545}$ **C.** $r = \frac{1}{2}\sqrt{8132545}$ **D.** $r = \frac{3}{2}\sqrt{1626509}$

B.
$$r = \frac{3}{2}\sqrt{8132545}$$

C.
$$r = \frac{1}{2}\sqrt{8132545}$$

D.
$$r = \frac{3}{2}\sqrt{1626509}$$

Bài 96. Biết z = 5 - 2i là nghiệm của phương trình $z^3 + (-5 + 2i)z^2 + 4z + 8i - 20 = 0$. Tìm các nghiệm còn lại của phương trình trên.

A.
$$z = \pm i$$

B.
$$z = \pm 2i$$

C.
$$z = 2 \pm \sqrt{5}i$$
 D. $z = \pm \sqrt{5}i$

D.
$$z = \pm \sqrt{5}i$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 97. Cho 2 số phức z_1 và z_2 thỏa mãn phương trình $z_1z_2 = 0$. Nhận xét nào sau đây là đúng?

- **A.** Phương trình tồn tại nghiệm phức z_1 , z_2 thỏa mãn $z_1 \neq 0$ và $z_2 \neq 0$
- **B.** Phương trình tương đương với $z_1 = 0$ và $z_2 = 0$
- **C.** Phương trình tương đương với $z_1 = 0$ hoặc $z_2 = 0$
- **D.** Phương trình vô nghiệm vì không có phép chia cho 0

Bài 98. Cho số phức z thoả mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức w = (1-3i)z + i - 1 thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

A.
$$r = \sqrt{10}$$

B.
$$r = \sqrt{5}$$

C.
$$r = 2\sqrt{5}$$

B.
$$r = \sqrt{5}$$
 C. $r = 2\sqrt{5}$ **D.** $r = 2\sqrt{10}$

Bài 99. Cho các số thực x, y sao cho $\frac{x}{1+i} + \frac{y}{2-i} = 2+4i$. Tính x + y

A.
$$x + y = 8$$

A.
$$x + y = 8$$
 B. $x + y = 14$ **C.** $x + y = -2$ **D.** $x + y = 6$

C.
$$x + y = -2$$

D.
$$x + y = 6$$

Bài 100. Cho số phức z thỏa mãn $\frac{3(z+2)}{z+2i} = 5-2i$. Khi đó giá trị của z là:

A.
$$z = 5 - i$$

B.
$$z = 5 + i$$

A.
$$z = 5 - i$$
 B. $z = 5 + i$ **C.** $z = 3 + 2i$

D.
$$z = 3 - 2i$$

Bài 101. Tính tổng tất cả các nghiệm của phương trình $z^4 + 3z^2 - 28 = 0$ trân trường số phức

A.
$$4-2\sqrt{7}i$$
 B. $4+2\sqrt{7}i$

B.
$$4 + 2\sqrt{7}i$$

Bài 102. Cho số phức z thoả mãn |z+2-3i|=4. Tập hợp các điểm biểu diễn của z trên hệ trục toạ độ Oxy là:

- **A.** Đường tròn đường kính 8
- **B.** Elip tiêu cư 4

C. Elip tiêu cu 8

D. Đường tròn đường kính 4

Bài 103. Cho các số phức z_1 , z_2 thoả mãn $\frac{1+z_1}{2+z_2} = 3+i$; $\frac{1+z_2}{2-z_1} = 3-i$. Đẳng thức nào sau đây là đúng?

A.
$$|z_1 + z_2| = \frac{2\sqrt{26}}{11}$$
 B. $|z_1 + z_2| = \frac{\sqrt{13}}{11}$ **C.** $|z_1 + z_2| = \frac{2\sqrt{13}}{11}$ **D.** $|z_1 + z_2| = \frac{\sqrt{13}}{22}$

B.
$$|z_1 + z_2| = \frac{\sqrt{13}}{11}$$

C.
$$|z_1 + z_2| = \frac{2\sqrt{13}}{11}$$

D.
$$|z_1 + z_2| = \frac{\sqrt{13}}{22}$$

Bài 104. Cho số phức $z = \frac{1+i}{2-i}$. Tính $A = z^2 + \frac{1+i}{z}$

A.
$$A = \frac{42}{25} + \frac{19}{25}$$

B.
$$A = \frac{24}{25} - \frac{19}{25}i$$

C.
$$A = \frac{42}{25} - \frac{19}{25}$$

A.
$$A = \frac{42}{25} + \frac{19}{25}i$$
 B. $A = \frac{24}{25} - \frac{19}{25}i$ **C.** $A = \frac{42}{25} - \frac{19}{25}i$ **D.** $A = -\frac{24}{25} - \frac{19}{25}i$

Bài 105. Tìm các số thực x, y thỏa mãn

$$2x + 5iy - 3ix - 4y = 16 - 21i$$

A.
$$x = -3 \text{ và } y = 2$$

B.
$$x = 6 \text{ và } y = -5$$

C.
$$x = 2 \text{ và } y = -3$$

D.
$$x = -7 \text{ và } y = 4$$

CASIO LUYỆN THI THPT QUỐC GIA

ĐỀ TỰ LUYỆN (Đề thi 105 câu / 11 trang)

ĐỀ TRẮC NGHIỆM ÔN THI THPT QUỐC GIA 2017 Môn: TOÁN HỌC Chuyên đề: Số phức

ĐÈ 28

Bài 1. Tìm tập hợp điểm biểu diễn số phức z thoả mãn |z-6| = 6|z+6-9i|

- A. Đường tròn tâm (-12, 10) bán kính 10
- **B.** Đường tròn tâm (12, -10) bán kính 12
- C. Đường tròn tâm (-10, 12) bán kính 10
- ${f D}$. Đường tròn tâm (-12, 10) bán kính 12
- **Bài 2.** Phương trình $z^3 (n+i)z + m + 2i = 0$ có 3 nghiệm với n, m là các hằng số thực. Tìm m để modulus của tích các nghiệm phức bằng 5.

A.
$$m = 1 \text{ hoăc } m = -2$$

B.
$$m = 1$$

C.
$$m = 1$$
 hoặc $m = -1$

D.
$$m = -2$$

- **Bài 3.** Cho số phức z = 5 4i. Tìm phần thực và phần ảo của số phức \overline{z}
 - **A.** Phần thực bằng 5, phần ảo bằng −4
 - **B.** Phần thực bằng 5, phần ảo bằng 4i.

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

- C. Phần thực bằng 5, phần ảo bằng 4.
- **D.** Phần thực bằng 5, phần ảo bằng -4i.
- **Bài 4.** Có bao nhiều số phức z thỏa mãn $z^3 3(1+i)z^2 + 6iz + 1 2i = 0$?
 - **A.** 4

B. 2

C. 3

D. 1

Bài 5. Tìm modulus của số phức $z = \frac{2-3i}{2}$

A.
$$|z| = \frac{\sqrt{3}}{10}$$

A.
$$|z| = \frac{\sqrt{3}}{10}$$
 B. $|z| = \sqrt{\frac{10}{13}}$ **C.** $|z| = \frac{\sqrt{10}}{13}$ **D.** $|z| = \sqrt{\frac{13}{10}}$

C.
$$|z| = \frac{\sqrt{10}}{13}$$

$$\mathbf{D}.\left|z\right| = \sqrt{\frac{13}{10}}$$

Bài 6. Tính i^{2017}

$$A. -i$$

Bài 7. Tìm modulus của số phức $z = \left(\frac{1+\sqrt{3}i}{2-i}\right)^{10}$

A.
$$|z| = \frac{1}{32}$$
 B. $|z| = 32$

B.
$$|z| = 32$$

C.
$$|z| = \frac{1024}{3125}$$

D.
$$|z| = \frac{3125}{1024}$$

Bài 8. Cho số phức z thoả mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức w = (1-3i)z + i - 1 thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

A.
$$r = \sqrt{10}$$

B.
$$r = 2\sqrt{10}$$

C.
$$r = 2\sqrt{5}$$

D.
$$r = \sqrt{5}$$

Bài 9. Cho số phức z thoả mãn |z-2i|=|z+2|. Tập hợp điểm biểu diễn của z trên hệ trục toạ độ Oxy là:

- **A.** Parabol tiếp xúc đường thẳng y = -x
- **B.** Dường thẳng y = -x
- C. Ellipse tiêu cự 1
- **D.** Đường tròn bán kính 1

Bài 10. Tìm tập hợp điểm biểu diễn số phức z thoả mãn $\arg(z-2) = \frac{\pi}{3}$.

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A. Đường thẳng $y = \sqrt{3}x + 2\sqrt{3}$ thuộc góc phần tư thứ hai

B. Đường thẳng $y = \sqrt{3}x - 2\sqrt{3}$ thuộc góc phần tư thứ nhất

C. Đường thẳng $y = \sqrt{3}x - 2\sqrt{3}$ thuộc góc phần tư thứ hai

D. Đường thẳng $y = \sqrt{3}x + 2\sqrt{3}$ thuộc góc phần tư thứ nhất

Bài 11. Cho các số phức x, y, z thoả mãn $\begin{cases} x+yz=2\\ y+zx=2 \end{cases}$. Kết luận nào sau đây là đúng?

A. Tồn tại các số phức (x, y, z) = (1+i, 1-i, 1) thoả mãn bài toán

B. Tồn tại các số phức $(x, y, z) = (1 + \sqrt{2}i, 1 - \sqrt{2}i, 1)$ thoả mãn bài toán.

C. Không tồn tại các số phức x, y, z thoả mãn bài toán.

D. Tổn tại các số phức (x, y, z) = (1 + 2i, 1 - 2i, 1) thoả mãn bài toán.

Bài 12. Biểu diễn số phức $z = 4\sqrt{3} - 4i$ dưới dạng lượng giác là :

A.
$$z = 8\sin{\frac{-\pi}{6}} + 8\cos{\frac{-\pi}{6}}$$

B.
$$z = 8\cos{\frac{-\pi}{6}} + 8\sin{\frac{-\pi}{6}}$$

$$\mathbf{C.} \ z = 8\sin\frac{-\pi}{6} + 8i\cos\frac{-\pi}{6}$$

D.
$$z = 8\cos{\frac{-\pi}{6}} + 8i\sin{\frac{-\pi}{6}}$$

Bài 13. Cho số phức z thoả mãn $2\Re(z) - 3\Im(z) = 6$ với $\Re(z)$ là phần thực, $\Im(z)$ là phần ảo của z. Khi đó giá trị nhỏ nhất của |z| là:

A.
$$\frac{5}{\sqrt{13}}$$

B.
$$\frac{8}{\sqrt{13}}$$

C.
$$\frac{6}{\sqrt{13}}$$

A.
$$\frac{5}{\sqrt{13}}$$
 B. $\frac{8}{\sqrt{13}}$ **C.** $\frac{6}{\sqrt{13}}$ **D.** $\frac{7}{\sqrt{13}}$

Bài 14. Cho số phức u = 2 - 5i, v = -3 + 2i. Nhận xét nào sau đây là đúng ?

A.
$$u^2 = 21 - 20i$$

B.
$$\frac{u}{v} = 5 + 7i$$

C.
$$uv = 4 + 19$$

A.
$$u^2 = 21 - 20i$$
 B. $\frac{u}{v} = 5 + 7i$ **C.** $uv = 4 + 19i$ **D.** $\frac{v}{u} = 5 + 7i$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 15. Gọi A, B là điểm biểu diễn của số phức $z_1 = \frac{2-3i}{1-i}$; $z_2 = 4+i$. Tính độ dài đoạn thẳng AB.

A.
$$AB = \frac{3}{5}\sqrt{2}$$

B.
$$AB = \frac{2}{\sqrt{3}}$$

D.
$$AB = \frac{3}{\sqrt{2}}$$

Bài 16. Cho số phức z = 2 + 3i. Gọi A, B, C, D lần lượt là điểm biểu diễn của $z, 2z, \overline{z}, iz$ trên hệ trục toạ độ Oxy. Nhận xét nào sau đây là đúng?

- A. OB và OC đối xứng nhau qua Ox
- B. OB vuông góc với OD
- C. OC vuông góc với OA
- **D.** Oy là phân giác của góc *BOD*

Bài 17. Gọi x_1 , x_2 là 2 nghiệm phức của phương trình $\tan^2 t \cdot x^2 + \tan t \cdot x + 1 = 0$ với t là số thực thỏa mãn tant $\neq 0$. Tính $x_1^n + x_2^n$

A.
$$x_1^n + x_2^n = 2\cos\frac{\pi n}{3}\cos^n t$$

B.
$$x_1^n + x_2^n = \cos \frac{\pi n}{3} \cos^n t$$

C.
$$x_1^n + x_2^n = \cos \frac{2\pi n}{3} \cos^n t$$

D.
$$x_1^n + x_2^n = 2\cos\frac{2\pi n}{3}\cos^n t$$

Bài 18. Cho 2 số phức z_1 , z_2 có $|z_1| = 8$, $|z_2| = \frac{1}{2}$ và $\arg(z_1) = -\frac{\pi}{4}$, $\arg(z_2) = \frac{3\pi}{4}$. Tính $z_1 z_2 + \frac{z_1}{z_2}$

$$A_{-16} + 4^{-1}$$

A.
$$-16 + 4i$$
 B. $-16 + 3i$ **C.** $-3 + 4i$

$$C_{-3} + 4i$$

D.
$$-3 + 3i$$

Bài 19. Tìm số phức z sao cho $\frac{3-z}{1+i-2z} = 2-i$;

A.
$$z = -\frac{3}{13} + \frac{3}{13}$$

B.
$$z = -\frac{3}{13} + \frac{2}{13}$$

$$\mathbf{C.} z = -\frac{2}{13} + \frac{2}{13}$$

A.
$$z = -\frac{3}{13} + \frac{3}{13}i$$
 B. $z = -\frac{3}{13} + \frac{2}{13}i$ **C.** $z = -\frac{2}{13} + \frac{2}{13}i$ **D.** $z = -\frac{2}{13} + \frac{3}{13}i$

Bài 20. Cho số phức $z_1 = 2 - 3i$ và $z_2 = -1 + i$. Tính $z_1(2z_2 + 1)$

A.
$$3 + 2i$$

$$C.7 + 2i$$

D.
$$4 + 7i$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 21. Tìm phần thực của
$$\left(\frac{1-2i}{1-i}\right)^{10}$$

A.
$$\frac{779}{32}$$

B.
$$\frac{237}{32}$$

C.
$$-\frac{23^{\circ}}{8}$$

A.
$$\frac{779}{32}$$
 B. $\frac{237}{32}$ **C.** $-\frac{237}{8}$ **D.** $-\frac{779}{8}$

Bài 22. Cho các số phức z_1 , z_2 thoả mãn $\frac{1+z_1}{2+z_2}=3+i; \frac{1+z_2}{2-z_1}=3-i$. Đẳng thức nào sau đây là đúng?

A.
$$|z_1 + z_2| = \frac{2\sqrt{26}}{11}$$
 B. $|z_1 + z_2| = \frac{\sqrt{13}}{22}$ **C.** $|z_1 + z_2| = \frac{2\sqrt{13}}{11}$ **D.** $|z_1 + z_2| = \frac{\sqrt{13}}{11}$

B.
$$|z_1 + z_2| = \frac{\sqrt{13}}{22}$$

C.
$$|z_1 + z_2| = \frac{2\sqrt{13}}{11}$$

D.
$$|z_1 + z_2| = \frac{\sqrt{13}}{11}$$

Bài 23. Tính $z = \frac{2+3i}{4-5i}$

A.
$$z = -\frac{3}{43} + \frac{23}{43}i$$
 B. $z = \frac{3}{43} + \frac{23}{43}i$ **C.** $z = -\frac{7}{41} + \frac{22}{41}i$ **D.** $z = \frac{7}{41} + \frac{22}{41}i$

B.
$$z = \frac{3}{43} + \frac{23}{43}i$$

C.
$$z = -\frac{7}{41} + \frac{22}{41}$$

D.
$$z = \frac{7}{41} + \frac{22}{41}$$

Bài 24. Cho 2 số phức z_1 và z_2 thỏa mãn phương trình $z_1z_2 = 0$. Nhận xét nào sau đây là đúng?

- **A.** Phương trình tồn tại nghiệm phức z_1 , z_2 thỏa mãn $z_1 \neq 0$ và $z_2 \neq 0$
- **B.** Phương trình vô nghiệm vì không có phép chia cho 0
- C. Phương trình tương đương với $z_1 = 0$ hoặc $z_2 = 0$
- **D.** Phương trình tương đương với $z_1 = 0$ và $z_2 = 0$

Bài 25. Cho số phức u = 2 - 5i và v = -3 + 2i. Nhận xét nào sau đây là sai:

$$\mathbf{A.} \mathbf{u} - \mathbf{v} = 5 - 7\mathbf{i}$$

B.
$$u + v = -1 - 3i$$

C.
$$3u - v = 9 + 9i$$

A.
$$u - v = 5 - 7i$$
 B. $u + v = -1 - 3i$ **C.** $3u - v = 9 + 9i$ **D.** $2u - 3v = 13 - 16i$

Bài 26. Gọi A là điểm biểu diễn số phức $z = \sqrt{3} - i$ trên hệ trục toạ độ Oxy. Khi đó độ dài đoạn thẳng OA là:

A.
$$2\sqrt{2}$$

D.
$$\sqrt{3}$$

Bài 27. Một acgumen có số phức $z \neq 0$ là ϕ thì một acgumen của $\frac{z}{1+z}$ là

$$\mathbf{A.}-\phi-\frac{\pi}{4}$$

B.
$$-\phi - \pi$$

C.
$$\phi + \frac{\pi}{2}$$

A.
$$-\phi - \frac{\pi}{4}$$
 B. $-\phi - \pi$ **C.** $\phi + \frac{\pi}{2}$ **D.** $-\phi + \frac{\pi}{4}$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 28. Cho số phức z thoả mãn |z+1|=2|z-i|. Biết rằng tập hợp các điểm biểu diễn của z thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

A.
$$r = \frac{\sqrt{17}}{3}$$

B.
$$r = \frac{\sqrt{23}}{13}$$

A.
$$r = \frac{\sqrt{17}}{3}$$
 B. $r = \frac{\sqrt{23}}{13}$ **C.** $r = \frac{5\sqrt{11}}{7}$ **D.** $r = \frac{3\sqrt{7}}{4}$

D.
$$r = \frac{3\sqrt{7}}{4}$$

Bài 29. Cho các số phức $z_1 = 5 - 3i$, $z_2 = 4 + i$. Tìm modulus của số phức $z = z_1 + z_2$.

A.
$$|z| = \sqrt{58}$$

B.
$$|z| = \sqrt{85}$$

A.
$$|z| = \sqrt{58}$$
 B. $|z| = \sqrt{85}$ **C.** $|z| = 13\sqrt{5}$ **D.** $|z| = 5\sqrt{13}$

D.
$$|z| = 5\sqrt{13}$$

Bài 30. Cho số phức z thoả mãn |z| = 2. Biết rằng tập hợp các điểm biểu diễn của số phức $w = \frac{2016 + 2017i}{7}$ thuộc một đường tròn. Tìm bán kính r của đường tròn đó.

A.
$$r = \frac{1}{2}\sqrt{1626509}$$

A.
$$r = \frac{1}{2}\sqrt{1626509}$$
 B. $r = \frac{3}{2}\sqrt{1626509}$ **C.** $r = \frac{1}{2}\sqrt{8132545}$ **D.** $r = \frac{3}{2}\sqrt{8132545}$

C.
$$r = \frac{1}{2}\sqrt{8132545}$$

D.
$$r = \frac{3}{2}\sqrt{8132545}$$

Bài 31. Cho 2 số phức $u = 1 + \sqrt{3}i; v = \sqrt{3} + i$. Tính $\frac{u^3}{v^4}$

A.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

B.
$$\frac{1}{4} - \frac{\sqrt{3}}{4}i$$

C.
$$\frac{1}{2} - \frac{\sqrt{3}}{2}$$

A.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 B. $\frac{1}{4} - \frac{\sqrt{3}}{4}i$ **C.** $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ **D.** $\frac{1}{4} + \frac{\sqrt{3}}{4}i$

Bài 32. Kết luận nào sau đây đúng

A.
$$|z_1 + z_2| \le |z_1| + |z_2|$$

B.
$$|z_1 + z_2| \ge |z_1| + |z_2|$$

C.
$$|z_1 + z_2| > |z_1| + |z_2|$$

D.
$$|z_1 + z_2| < |z_1| + |z_2|$$

Bài 33. Biết z = 3 - 2i thỏa mãn phương trình $z^4 - 6z^3 + 18z^2 + pz + 65 = 0$. Tìm p

A.
$$p = -21$$

B.
$$p = 0$$

C.
$$p = -30$$

D.
$$p = 14$$

Bài 34. Tìm điều kiện của số nguyên n để $z_n = (1 + \sqrt{3}i)^n$ là số thực

A. n chia hết 3

B. n chia cho 4 du 1

C. n chia cho 3 du 1

D. n chia cho 3 du 2

Bài 35. Tính $z = \frac{1}{2-5i}$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$z = \frac{2}{29} \pm \frac{5}{29}$$

B.
$$z = \frac{2}{29} + \frac{5}{29}$$

A.
$$z = \frac{2}{29} \pm \frac{5}{29}i$$
 B. $z = \frac{2}{29} + \frac{5}{29}i$ **C.** $z = \frac{1}{29} + \frac{7}{29}i$ **D.** $z = \frac{1}{29} - \frac{7}{29}i$

D.
$$z = \frac{1}{29} - \frac{7}{29}z$$

Bài 36. Với mọi số phức z, ta có $|z+1|^2$ bằng

A.
$$z\overline{z} + z + \overline{z} + 1$$

B.
$$z + \overline{z} + 1$$

A.
$$z\overline{z} + z + \overline{z} + 1$$
 B. $z + \overline{z} + 1$ **C.** $|z|^2 + 2|z| + 1$ **D.** $z\overline{z} + 1$

D.
$$z\overline{z} + 1$$

Bài 37. Tính Argument của số phức $z = (-\sqrt{3} + i)^{12}$

$$\mathbf{A.} \ \operatorname{arg}(z) = 0$$

B.
$$arg(z) = \frac{5\pi}{6}$$

C.
$$arg(z) = \frac{5}{6}$$

A.
$$\arg(z) = 0$$
 B. $\arg(z) = \frac{5\pi}{6}$ **C.** $\arg(z) = \frac{5}{6}$ **D.** $\arg(z) = \frac{1}{4096}$

Bài 38. Cho số phức z thoả mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn số phức $w = z + \frac{1}{z}$ thuộc một đường ellipse. Tìm tâm sai e của ellipse đó.

A.
$$e = \frac{3}{25}\sqrt{43}$$

B.
$$e = \frac{3}{25}\sqrt{41}$$

A.
$$e = \frac{3}{25}\sqrt{43}$$
 B. $e = \frac{3}{25}\sqrt{41}$ **C.** $e = \frac{22}{25}\sqrt{41}$ **D.** $e = \frac{22}{25}\sqrt{43}$

D.
$$e = \frac{22}{25}\sqrt{43}$$

Bài 39. Cho số phức z thoả mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức $w = \frac{1+3i}{z+i}$ thuộc một đường tròn. Tìm bán kính r của đường tròn đó

A.
$$r = \frac{4}{5}\sqrt{5}$$

B.
$$r = \frac{4}{7}\sqrt{7}$$

A.
$$r = \frac{4}{5}\sqrt{5}$$
 B. $r = \frac{4}{7}\sqrt{7}$ **C.** $r = \frac{3}{7}\sqrt{14}$

D.
$$r = \frac{3}{8}\sqrt{10}$$

Bài 40. Biết $\cos^5 x = a\cos 5x + b\sin 3x + c\cos x$ với a, b, c là các số thực. Tính a - b + c

A.
$$\frac{5}{16}$$

A.
$$\frac{5}{16}$$
 B. $\frac{1}{16}$ **C.** $\frac{5}{8}$

C.
$$\frac{5}{8}$$

D.
$$\frac{3}{8}$$

Bài 41. Tìm phần thực của số phức $z = (1+i)^{2017} - (1-i)^{2017}$

A.
$$e^{2^{2017}}$$

D.
$$2^{2018}$$

Bài 42. Cho số phức z thoả mãn |z| = 1. Biết rằng tập hợp các điểm biểu diễn của số phức $w = (4-3i)z^2 - 4 - 2i$ trên hệ trục Oxy thuộc một đường tròn. Tìm tâm I của đường tròn đó.

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 43. Cho số phức $z_1 = \frac{4+6i}{2-3i}$; $z_2 = \frac{4-6i}{2+3i}$. Tìm phần thực của số phức $w = z_1 - 2z_2$

A.
$$\frac{15}{13}$$

B.
$$\frac{11}{13}$$

C.
$$\frac{12}{13}$$

D.
$$\frac{10}{13}$$

Bài 44. Rút gọn $\frac{\sqrt{2} \left(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right)}{2 \left(\cos \frac{5\pi}{6} + i \sin \frac{5\pi}{6} \right)}$

A.
$$-\frac{1}{2} + \frac{1}{2}i$$
 B. $\frac{1}{2} + \frac{1}{2}i$ **C.** $\frac{1}{2} - \frac{1}{2}i$ **D.** $-\frac{1}{2} - \frac{1}{2}i$

B.
$$\frac{1}{2} + \frac{1}{2}i$$

C.
$$\frac{1}{2} - \frac{1}{2}$$

D.
$$-\frac{1}{2} - \frac{1}{2}i$$

Bài 45. Tìm tất cả giá trị của m để phương trình $2z^2 - (3+8i)z - m - 4i = 0$ có một nghiệm thực.

A.
$$m = 2$$

B.
$$m = 1$$

C.
$$m = -4$$

D.
$$m = -3$$

Bài 46. Tìm các số hữu tỷ n sao cho $\left(-\sqrt{3}+i\right)^n + \left(-\sqrt{3}-i\right)^n = 0$

A.
$$n = \frac{3-6k}{5}; k \in \mathbb{Z}$$

A.
$$n = \frac{3-6k}{5}; k \in \mathbb{Z}$$
B. $n = \frac{6-3k}{5}; k \in \mathbb{Z}$
C. $n = \frac{3+6k}{5}; k \in \mathbb{Z}$
D. $n = \frac{6+3k}{5}; k \in \mathbb{Z}$

C.
$$n = \frac{3+6k}{5}$$
; $k \in \mathbb{Z}$

D.
$$n = \frac{6+3k}{5}; k \in \mathbb{Z}$$

Bài 47. Gọi z_1 , z_2 , z_3 , z_4 , z_5 là 5 nghiệm phức của phương trình $z_5 = 1 + i$. Biểu diễn 5 nghiệm này trên hệ trục toạ độ Oxy ta thấy đây là đỉnh của một ngũ giác đều. Tính độ dài cạnh của ngũ giác đều đó.

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

A.
$$\sqrt{\frac{(3+\sqrt{5})\sqrt[5]{2}}{2}}$$
 B. $\sqrt{\frac{(5-\sqrt{5})\sqrt[5]{2}}{2}}$ **C.** $\sqrt{\frac{(5+\sqrt{5})\sqrt[5]{2}}{2}}$ **D.** $\sqrt{\frac{(3-\sqrt{5})\sqrt[5]{2}}{2}}$

B.
$$\sqrt{\frac{(5-\sqrt{5})\sqrt[5]{2}}{2}}$$

C.
$$\sqrt{\frac{(5+\sqrt{5})^{5/2}}{2}}$$

D.
$$\sqrt{\frac{(3-\sqrt{5})\sqrt[5]{2}}{2}}$$

Bài 48. Cho số phức z thoả mãn |z-12-5i|=3. Tìm giá trị lớn nhất của |z|.

Bài 49. Cho số phức $z_1 = 3 - 4i$ và $z_2 = -4 + 7i$. Tìm moduls của số phức $z = z_1 + z_2$

A.
$$|z| = 2\sqrt{10}$$

B.
$$|z| = \sqrt{7}$$

B.
$$|z| = \sqrt{7}$$
 C. $|z| = \sqrt{10}$

D.
$$|z| = 4\sqrt{2}$$

Bài 50. Tìm modulus của số phức $z = \frac{1-i}{2+3i} + \frac{1+i}{2-5i}$

A.
$$|z| = \sqrt{\frac{20}{377}}$$
 B. $|z| = \frac{2}{13}$ **C.** $|z| = \frac{5}{13}$ **D.** $|z| = \sqrt{\frac{20}{37}}$

B.
$$|z| = \frac{2}{13}$$

C.
$$|z| = \frac{5}{13}$$

D.
$$|z| = \sqrt{\frac{20}{37}}$$

Bài 51. Nhà toán học Rafael Bombelli (1526- 1572) đã tình cờ phát hiện ra số phức khi nghiên cứu phương trình bậc 3. Ông cho rằng phương trình $x^3 - 3x + 1 = 0$ tồn tại nghiệm

$$A = \frac{\sqrt[3]{-4 + 4\sqrt{-3}}}{2} + \frac{2}{\sqrt[3]{-4 + 4\sqrt{-3}}}$$

Nhà toán học Abraham de Moivre (1667 -1754) phát hiện ra định lý:

$$(\cos\theta + i\sin\theta)^n = \cos n\theta + i\sin n\theta$$

Sử dụng định lý Moivre, hãy rút gọn biểu thức A.

A.
$$A = 2\cos\frac{2\pi}{9}$$

B.
$$A = \cos \frac{2\pi}{9} + i \sin \frac{2\pi}{9}$$

C.
$$A = 2\sin\frac{2\pi}{\Omega}$$

D.
$$A = \cos \frac{2\pi}{9} - i \sin \frac{2\pi}{9}$$

Bài 52. Cho $f(x) = z^3 + bz^2 + cz - 75$ với $b, c \in R$. Biết f(-4 + 3i) = 0. Tìm b, c

A.
$$b = 5$$
 và $c = 1$ **B.** $b = 4$ và $c = 2$ **C.** $b = 2$ và $c = 4$ **D.** $b = 3$ và $c = 3$

B.
$$b = 4 \text{ và } c = 2$$

C.
$$b = 2 \text{ và } c = 4$$

D.
$$b = 3 \text{ và } c = 3$$

Bài 53. Cho số phức z có |z| = 2; arg $(z) = -\frac{\pi}{6}$. Tính \overline{u}^{-1}

A.
$$\frac{1}{4} + \frac{\sqrt{3}}{4}i$$
 B. $\frac{\sqrt{3}}{4} + \frac{1}{4}i$ **C.** $\frac{1}{4} - \frac{\sqrt{3}}{4}i$ **D.** $\frac{\sqrt{3}}{4} - \frac{1}{4}i$

B.
$$\frac{\sqrt{3}}{4} + \frac{1}{4}i$$

C.
$$\frac{1}{4} - \frac{\sqrt{3}}{4}i$$

D.
$$\frac{\sqrt{3}}{4} - \frac{1}{4}$$

Bài 54. Tìm tập hợp điểm biểu diễn số phức z thoả mãn $\arg\left(\frac{z-6}{z-2}\right) = \frac{\pi}{4}$.

B. Đường tròn đường kính $2\sqrt{2}$ thuộc góc phần tư thứ nhất

C. Đường tròn đường kình $4\sqrt{2}$ thuộc góc phần tư thứ nhất

D. Đường tròn đường kính $4\sqrt{2}$ thuộc góc phần tư thứ hai

Bài 55. Cho z là số phức thỏa mãn |z| = 1. Tìm tập hợp các điểm biểu diễn của số phức

$$w = \frac{z-1}{z+1}$$
 trên hệ trục tọa độ Oxy.

A. Đoạn thắng AB với A (1; 0) và B (1; 0)

B. Đoạn thắng AB với A (0; 1) và B (0; 1).

C. Trục hoành

D. Truc tung

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 56. Tìm tập hợp các điểm biểu diễn số phức z trên hệ trục tọa độ Oxy thỏa mãn điều kiện |z - 1 - i| = 2|z - 5 - 2i|

A. Đường tròn
$$\left(x - \frac{7}{3}\right)^2 + \left(y - \frac{19}{3}\right)^2 = \frac{68}{9}$$

B. Đường thẳng
$$y = \frac{19}{7}x$$

C. Đường thẳng
$$y = \frac{7}{19}x$$

D. Đường tròn
$$\left(x - \frac{19}{3}\right)^2 + \left(y - \frac{7}{3}\right)^2 = \frac{68}{9}$$

Bài 57. Cho số phức z thoả mãn |z| = 1 và $z^{2n} \neq -1$ với mọi n là số nguyên dương. Nhận xét nào sau đây là đúng khi nói về số phức $w = \frac{z^n}{1 + z^{2n}}$?

A. Tập hợp điểm biểu diễn của w là trục

B.
$$|w| = \frac{1}{2}$$

C. w là số thuần ảo

D. Phần ảo của w bằng 0

Bài 58. Tìm các số thực x, y thỏa mãn

$$2x + 5iy - 3ix - 4y = 16 - 21i$$

A.
$$x = -3 \text{ và } y = 2$$

B.
$$x = -7 \text{ và } y = 4$$

C.
$$x = 2 \text{ và } y = -3$$

D.
$$x = 6 \text{ và } y = -5$$

Bài 59. Cho số phức z = 3 + 2i. Nhận xét nào sau đây là đúng khi nói tới số phức $w = \frac{z-1}{z-2}$

A. Phần ảo của w là
$$-\frac{2}{5}$$

B. Phần thực của w là
$$\frac{1}{4}$$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

C. Phần ảo của w là
$$\frac{3}{4}$$

D. Phần thực của w là
$$-\frac{6}{5}$$

Bài 60. Tìm phần ảo của số phức $z = \frac{26}{-3 + 2i} + i^{69}$

Bài 61. Tìm phần thực của số phức $z = (1 + \sqrt{3}i)^9$

A.
$$256\sqrt{3}$$

C.
$$256\sqrt{2}$$

D.
$$128\sqrt{5}$$

Bài 62. Cho các số phức z và w thoả mãn $\overline{z}w \neq 1$ và |z| = 1 hoặc |w| = 1. Cho $A = \frac{z - w}{1 - \overline{z}w}$. Tính |A|

A.
$$|A| = 1$$

B.
$$|A| = \frac{3}{2}$$

B.
$$|A| = \frac{3}{2}$$
 C. $|A| = \frac{1}{2}$

D.
$$|A| = 2$$

Bài 63. Số nguyên Gaussian được định nghĩa là số phức dạng z = a + bi với $a,b \in Z$. Cho x, y là 2 số nguyên Gaussian. Khi đó thương phép chia Eiclid của x cho y là một số nguyên Gaussian z sao cho z gần $\frac{x}{v}$ nhất khi biểu diễn trên hệ trục toạ độ. Tìm thương phép chia Euclid $\frac{10+9i}{4-7i}$

B.
$$-1 + 2i$$

$$C. -1 + i$$

Bài 64. Cho số phức z thoả mãn |z-12-5i|=3. Tìm giá trị nhỏ nhất của |z|

Bài 65. Tìm phần thực của số phức $z = e^{e^{1+i}}$

A.
$$\Re(z) = e^{e\sin x} \sin(e\cos 1)$$

B.
$$\Re(z) = e^{e\cos 1}\cos(e\sin 1)$$

C.
$$\Re(z) = e^{e\sin t}\cos(e\cos t)$$

D.
$$\Re(z) = e^{e\cos 1}\sin(e\sin 1)$$

Bài 66. Một acgumen của số phức $z \neq 0$ là ϕ thì một acgumen của $\frac{1}{z^2}$

$$\mathbf{A.}\,2\phi + \pi$$

65

$$\mathbf{B} \cdot -\phi^2$$

$$\mathbf{C}.-2\phi$$

D.
$$-\phi^2 + \frac{\pi}{2}$$

Bài 67. Tìm modulus của số phức z = (2-i)(1-3i)

A.
$$|z| = 2\sqrt{7}$$

B.
$$|z| = 4\sqrt{2}$$

C.
$$|z| = 2\sqrt{5}$$

A.
$$|z| = 2\sqrt{7}$$
 B. $|z| = 4\sqrt{2}$ **C.** $|z| = 2\sqrt{5}$ **D.** $|z| = 5\sqrt{2}$

Bài 68. Gọi z_1 , z_2 , z_3 , z_4 , z_5 , z_6 là sáu nghiệm của phương trình $z^6 + 8 = 0$. Tính $|z_1| + |z_2| + |z_3| + 1$ $|z_4| + |z_5| + |z_6|$

A.
$$6\sqrt{2}$$

B.
$$3\sqrt{2}$$

C.
$$6\sqrt{3}$$

D.
$$2\sqrt{3}$$

Bài 69. Cho số phức z thoả mãn $z^2 + (\sqrt{3} + i) + 1 = 0$. Modulus của z là :

A.
$$|z| = \sqrt{2 + \sqrt{3}}$$
 B. $|z| = \sqrt{3 - \sqrt{2}}$ **C.** $|z| = \sqrt{2 - \sqrt{3}}$ **D.** $|z| = \sqrt{3 + \sqrt{2}}$

B.
$$|z| = \sqrt{3 - \sqrt{2}}$$

C.
$$|z| = \sqrt{2 - \sqrt{3}}$$

D.
$$|z| = \sqrt{3 + \sqrt{2}}$$

Dăng kí http://thichhocchui.xyz/ tại Zalo 0383572270 Thích Học Chui

Bài 70. Cho số phức w và z thỏa mãn $w = \frac{5iz + i}{z + 1}$. Nhận xét nào sau đây sai

A. Nếu
$$|z| = 1$$
 thì $|w - 5i| = |w - i|$

B. Nếu |z| = 1 thì tập hợp các điểm biểu diễn w là đường thẳng y = 3

$$\mathbf{C.} \ \ z = \frac{i - w}{w - 5i}$$

Bài 71. Khi số phức z thay đổi tuỳ ý thì tập hợp các $2z + 2\overline{z}$ là

- **A.** Tập hợp các số thực dương
- **B.** Tập hợp các số thực
- C. Tập hợp các số thực không âm
- **D.** Tập hợp các số phức không phải số ảo

Câu 72. Tìm số phức z thoả mãn $z^2 + 4z + 13 = 0$

A.
$$z = 2 \pm 3i$$

B.
$$z = 4 \pm 6i$$

C.
$$z = -2 \pm 3$$

C.
$$z = -2 \pm 3i$$
 D. $z = -4 \pm 6i$

Bài 73. Phần thực và phần ảo của số phức $z = (1+2i)^2$ là:

A. Phần thực bằng 3, phần ảo bằng 4

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

- **B.** Phần thực bằng -3, phần ảo bằng -4
- C. Phần thực bằng -3, phần ảo bằng 4
- **D.** Phần thực bằng 3, phần ảo bằng 4
- Bài 74. Nhận xét nào sau đây là đúng khi nói về tập hợp điểm biểu diễn số phức z thoả mãn $\arg\left(z+3+2i\right) = \frac{3\pi}{4}$
 - A. Môt đường tròn

B. Môt đoan thẳng

C. Một đoạn thẳng

- **D.** Một tia
- **Bài 75.** Cho z_1 , z_2 , z_3 là 3 nghiệm phức của phương trình $z^3 + 8 = 0$. Tính $|z_1| + |z_2| + |z_3|$
 - **A**. 3

B. 6

C. $2 + \sqrt{3}$

- **D.** $2 + 2\sqrt{3}$
- **Bài 76.** Cho các số thực x, y sao cho $\frac{x}{1+i} + \frac{y}{2-i} = 2+4i$. Tính x + y

A.
$$x + y = 8$$

B.
$$x + y = 6$$
 C. $x + y = -2$

C.
$$x + y = -2$$

D.
$$x + y = 14$$

- **Bài 77.** Cho số phức z = 2 + 7i. nhận xét nào sau đây là đúng?
 - **A.** Phần thực của \overline{z} bằng -2, phần ảo của z bằng -7.
 - **B.** Phần thực của \overline{z} bằng 2, phần ảo của z bằng 7.
 - **C.** Phần thực của \overline{z} bằng 2, phần ảo của z bằng -7.
 - **D.** Phần thực của \overline{z} bằng 2, phần ảo của z bằng 7.
- **Bài 78.** Cho $iz^3 + z^2 z + i = 0$. Khi đó giá trị của |z| là:

- C. $\sqrt{2}$
- **D.** 2

- **Bài 79.** Tính Argument của số phức $z = \sqrt{3} 2 + i$
 - **A.** $\arg(z) = \frac{11\pi}{12}$ **B.** $\arg(z) = \frac{3\pi}{7}$ **C.** $\arg(z) = \frac{4\pi}{7}$ **D.** $\arg(z) = \frac{7\pi}{12}$

- **Bài 80.** Cho số phức z thoả mãn $\frac{3(z+2)}{z+2i} = 5-2i$. Khi đó giá trị của z là :

A.
$$z = 5 - i$$

B.
$$z = 3 - 2i$$
 C. $z = 3 + 2i$

C.
$$z = 3 + 2i$$

D.
$$z = 5 + i$$

Bài 81. Số phức z thay đổi sao cho |z| = 1 thì giá trị bé m và giá trị lớn nhất M của |z - i| là

A.
$$m = 0$$
, $M = 2$

B.
$$m = 0$$
, $M = 2$

D.
$$m = 0$$
, $M = 1$

Bài 82. Cho số phức $z = \frac{(1+2i)(1+i)}{-2-3i}$. Kết luận nào sau đây là đúng khi nói về argument của số phức z.

A.
$$arg(z) > 0$$

B.
$$arg(z)$$
 không xác định

C.
$$arg(z) < 0$$

D.
$$arg(z) = 0$$

Bài 83. Cho $z = \left(\frac{a+bi}{a-bi}\right)^2 + \left(\frac{a-bi}{a+bi}\right)^2$. Khẳng định nào sau đây là đúng?

$$\mathbf{A.} \ \ z = \overline{z}$$

A.
$$z = \overline{z}$$
 B. $|z| = \sqrt{a^2 + b^2}$ **C.** $z\overline{z} = |z|$ **D.** $z = \overline{z}|z|$

$$\mathbf{C.} \ \ z\overline{z} = |z|$$

D.
$$z = \overline{z} |z|$$

Bài 84. Tìm tập hợp điểm biểu diễn số phức z thoả mãn $\arg\left(\frac{z}{z-4i}\right) = \frac{\pi}{2}$.

A. Nửa đường tròn bán kính 2 tâm (-2, 0) thuộc góc phần tư thứ tư

B. Nửa đường tròn bán kính 1 tâm (1, 0) thuộc góc phần tư thứ tư

C. Nửa đường tròn bán kính 2 tâm (2, 0) thuộc góc phần tư thứ nhất

D. Nửa đường tròn bán kính 2 tâm (0, 2) thuộc góc phần tư thứ nhất

Bài 85. Cho số phức z thoả mãn |z+2-3i|=4. Tập hợp các điểm biểu diễn của z trên hệ trục toạ độ Oxy là:

A. Đường tròn đường kính 8

B. Đường tròn đường kính 4

C. Elip tiêu cự 8

D. Elip tiêu cự 4

Bài 86. Tính |z| với
$$z = \frac{(1+i)^4}{(1+6i)(2-7i)}$$

A.
$$|z| = \frac{4}{\sqrt{46}\sqrt{53}}$$

B.
$$|z| = \frac{2}{\sqrt{46}\sqrt{53}}$$

C.
$$|z| = \frac{2}{\sqrt{37}\sqrt{53}}$$

A.
$$|z| = \frac{4}{\sqrt{46}\sqrt{53}}$$
 B. $|z| = \frac{2}{\sqrt{46}\sqrt{53}}$ **C.** $|z| = \frac{2}{\sqrt{37}\sqrt{53}}$ **D.** $|z| = \frac{4}{\sqrt{37}\sqrt{53}}$

FanPage: Adoba – Tài Liệu luyện thi số 1 Việt Nam

Bài 87. Tính
$$i(1+i)(1-i)^2$$

A.
$$2 + 2i$$

B.
$$7 - 12i$$

$$C.4 + 6i$$

D.
$$5 - 3i$$

Bài 88. Tìm phần ảo của số phức
$$z = \frac{\left(\cos\frac{9\pi}{17} + i\sin\frac{9\pi}{17}\right)^5}{\left(\cos\frac{2\pi}{17} - i\sin\frac{2\pi}{17}\right)^3}$$

Bài 89. Cho số phức z thoả mãn |z| = 3. Biết rằng tập hợp các điểm biểu diễn của số phức $w = z - \frac{i}{z}$ thuộc đường ellipse. Tìm tiêu cự của ellipse.

Bài 90. Tính
$$\frac{(1+i)^{17}}{(1-i)^{16}}$$

A.
$$1 + i$$

B.
$$-1 + i$$
 C. $-1 - i$

D.
$$1 - i$$

Bài 91. Cho số phức $z = \cos \theta + i \sin \theta$. Tính $z^n + \frac{1}{z^n}$ với n là số nguyên dương

A.
$$2\sin(n-1)\theta$$

B.
$$2\cos n\theta$$

C.
$$2\cos(n-1)\theta$$

D.
$$2\sin n\theta$$

Bài 92. Tìm tập hợp điểm biểu diễn số phức z thoả mãn |z-3| = |z+i|

A. Đường thẳng
$$y = -4x + 1$$

B. Đường thẳng
$$y = -3x + 4$$

C. Đường thẳng
$$y = -5x + 3$$

D. Đường thẳng
$$y = -x + 3$$

Bài 93. Cho số phức $z = \sqrt{2} + 3i$; $w = \frac{1}{1+i}$. Tìm phần ảo của zw

A.
$$\frac{3-\sqrt{2}}{2}$$
 B. $\frac{5-3\sqrt{2}}{2}$ **C.** $\frac{5-\sqrt{2}}{2}$

B.
$$\frac{5-3\sqrt{2}}{2}$$

C.
$$\frac{5-\sqrt{2}}{2}$$

D.
$$\frac{1-\sqrt{2}}{2}$$

Bài 94. Số phức z nào đước đây thoả mãn $z^2 + z + 1 = 0$

A. Không có số phức z nào thỏa mãn

B.
$$z = \frac{1}{2} - \frac{\sqrt{5}}{2}i$$

C.
$$z = -\frac{1}{2} - \frac{\sqrt{3}}{2}i$$

D.
$$z = \frac{3}{2} + \frac{\sqrt{5}}{2}i$$

Bài 95. Tìm modulus của số phức z = 2 - 5i

A.
$$|z| = \sqrt{17}$$

B.
$$|z| = \sqrt{29}$$

C.
$$|z| = 9\sqrt{2}$$
 D. $|z| = \sqrt{31}$

D.
$$|z| = \sqrt{31}$$

Bài 96. Tìm tập hợp điểm biểu diễn số phức z thoả mãn |z| = |z - 6i|

A. Đường thẳng
$$x = 1$$

B. Đường thẳng
$$y = 3$$

C. Đường thẳng
$$x = 3$$

D. Đường thẳng
$$y = 1$$

Bài 97. Số phức z nào dưới đây thoả mãn $z^2 = 1 + i$

A.
$$z = \sqrt{\frac{1+\sqrt{2}}{2}} + \frac{1}{\sqrt{2+2\sqrt{2}}}i$$

B.
$$z = \sqrt{\frac{3+\sqrt{2}}{2}} + \frac{2}{\sqrt{3+2\sqrt{2}}}i$$

C.
$$z = \sqrt{\frac{3+\sqrt{2}}{2}} - \frac{2}{\sqrt{3+\sqrt{2}}}i$$

D.
$$z = \sqrt{\frac{1+\sqrt{2}}{2}} - \frac{1}{\sqrt{2+2\sqrt{2}}}i$$

Bài 98. Tập hợp điểm biểu diễn của số phức z trên hệ trục toạ độ Oxy thoả mãn arg $(z-1+i) = -\frac{\pi}{4}$ là :

A. Đường thẳng
$$y = -x \text{ với } x > 1$$

B. Đường thẳng
$$y = -x \text{ với } x \ge 1$$

Bài 99. Biết z = 5 - 2i là nghiệm của phương trình $z^3 + (-5 + 2i)z^2 + 4z + 8i - 20 = 0$. Tìm các nghiệm còn lại của phương trình trên.

A.
$$z = \pm i$$

B.
$$z = \pm \sqrt{5}i$$

C.
$$z = 2 \pm \sqrt{5}i$$
 D. $z = \pm 2i$

D.
$$z = \pm 2i$$

Bài 100. Tìm tập hợp điểm biểu diễn số phức thỏa mãn |z-5-3i|=3

A.
$$(x+5)^2 + (y-1)^2 = 9$$

B.
$$(x+2)^2 + (y+1)^2 = 9$$

C.
$$(x-5)^2 + (y-3)^2 = 9$$

D.
$$(x-3)^2 + (y+1)^2 = 3$$

Bài 101. Cho các số phức z_1 và z_2 thỏa mãn $\frac{1+z_1}{2+z_1}=3+i; \frac{1+z_2}{2-z_2}=3-i$ Đẳng thức nào sau đây là đúng

A.
$$10z_1 - 17z_2 = 46 + 5i$$

B.
$$5z_1 - 17z_2 = -34 + 4i$$

C.
$$5z_1 + 17z_2 = 10 + 2i$$

D.
$$10z_1 + 17z_2 = 2 - i$$

Bài 102. Tính tổng tất cả các nghiệm của phương trình $z^4 + 3z^2 - 28 = 0$ trên trường số phức.

A.
$$4-2\sqrt{7}i$$

D.
$$4 + 2\sqrt{7}i$$

Bài 103. Cho số phức $z = \frac{1+i}{2-i}$. Tính $A = z^2 + \frac{1+i}{2}$

A.
$$A = \frac{42}{25} + \frac{19}{25}i$$

A.
$$A = \frac{42}{25} + \frac{19}{25}i$$
 B. $A = -\frac{24}{25} - \frac{19}{25}i$ **C.** $A = \frac{42}{25} - \frac{19}{25}i$ **D.** $A = \frac{24}{25} - \frac{19}{25}i$

C.
$$A = \frac{42}{25} - \frac{19}{25}$$

D.
$$A = \frac{24}{25} - \frac{19}{25}$$

Bài 104. Cho số phức z = 3 - 7i. Tìm phần thực và phần ảo của số phức z.

- A. Phần thực bằng 3, phần ảo bằng -7i.
- **B.** Phần thực bằng 3, phần ảo bằng 7i.
- C. Phần thực bằng 3, phần ảo bằng -7.
- **D.** Phần thực bằng 3, phần ảo bằng 7.

Bài 105. Cho số phức z thỏa mãn $\frac{2-3i+\frac{1-i}{z+2i}}{3+i+\frac{1+i}{z+2i}} = -3+i$. Tìm phần ảo của số z

A.
$$-\frac{37}{17}i$$

B.
$$-\frac{37}{17}$$

$$C. -\frac{19}{51}$$

A.
$$-\frac{37}{17}i$$
 B. $-\frac{37}{17}$ **C.** $-\frac{19}{51}$ **D.** $-\frac{19}{51}i$

CASIO LUYỆN THI THPT QUỐC GIA

ĐỀ TỰ LUYỆN (Đề thi 105 câu / 11 trang)

ĐÁP ÁN ĐỀ TRẮC NGHIỆM ÔN THI THPT QUỐC GIA 2017 Môn: TOÁN HỌC

Chuyên đề: Số phức ĐỀ 25

1C	2A	3C	4D	5C	6B	7A	8D	9A	10D
11A	12A	13A	14B	15A	16B	17B	18C	19C	20B
21A	22A	23B	24C	25D	26D	27D	28B	29A	30A
31D	32A	33D	34C	35D	36C	37C	38D	39D	40C
41B	42A	43B	44C	45B	46A	47D	48C	49D	50D
51D	52C	53C	54D	55B	56A	57A	58B	59B	60B
61A	62B	63A	64C	65C	66C	67C	68B	69A	70C
71B	72A	73D	74C	75B	76B	77C	78C	79A	80A
81A	82D	73B	84B	85B	86B	87B	88A	89A	90C
91B	92C	93C	94C	95D	96D	97B	98D	99B	100B
101A	102D	103B	104B	105B					

72 <u>https://www.facebook.com/Adoba.com.vn/</u> – FanPage chuyên đề thi – tài liệu miễn phí

CASIO LUYỆN THI THPT QUỐC GIA

ĐÁP ÁN ĐỀ TRẮC NGHIỆM ÔN THI THPT QUỐC GIA 2017 Môn: TOÁN HỌC Chuyên đề: Số phức

ĐÈ 26

ĐỀ TỰ LUYỆN (Đề thi 105 câu / 11 trang)

1A	11D	21A	31B	41C	51D	61B	71B	81D	91C	101B
2A	12B	22C	32C	42C	52C	62C	72C	82D	92B	102D
3C	13D	23B	33D	43C	53A	63C	73D	83C	93A	103A
4B	14A	24C	34D	44C	54B	64B	74B	84C	94A	104C
5D	15D	25B	35A	45C	55D	65D	75A	85D	95A	105C
6D	16D	26B	36D	46B	56B	66B	76A	86C	96D	
7C	17C	27A	37B	47A	57C	67B	77C	87C	97C	
8B	18B	28D	38A	48B	58C	68A	78D	88D	98A	
9C	19D	29B	39B	49A	59D	69D	79C	89A	99A	
10A	20B	30D	40A	50A	60C	70C	80B	90B	100D	

CASIO LUYỆN THI THPT QUỐC GIA

ĐÁP ÁN ĐỀ TRẮC NGHIỆM ÔN THI THPT QUỐC GIA 2017 Môn: TOÁN HỌC Chuyên đề: Số phức

ĐÈ 28

ĐỀ TỰ LUYỆN (Đề thi 105 câu / 11 trang)

1C	11A	21D	31B	41C	51A	61B	71B	81A	91B	101B
2C	12D	22A	32A	42B	52A	62A	72C	82C	92B	102C
3C	13C	23C	33C	43D	53D	63A	73C	83A	93A	103C
4C	14C	24C	34A	44D	54B	64C	74D	84D	94C	104C
5D	15D	25C	35B	45A	55C	65B	75B	85A	95B	105B
6B	16B	26C	36A	46C	56D	66C	76B	86D	96B	
7C	17D	27A	37A	47B	57D	67D	77B	87A	97A	
8B	18A	28A	38B	48D	58C	68A	78B	88A	98A	
9B	19D	29B	39D	49C	59A	69C	79D	89C	99D	
10B	20D	30C	40D	50A	60D	70D	80B	90A	100C	