Relationships between complexity classes

How are P, NP, EXP, and NEXP related?

 $P \subseteq NP$ by definition.

 $P \subseteq EXP$ again by definition.

Similarly, $NP \subseteq NEXP$ by definition.

Finally, $NP \subseteq EXP$ due to the previous lemma.

P vs. NP

P the class of languages where membership can be decided quickly.

NP the class of languages where membership can be verified quickly.

Examples

SAT =
$$\{\phi \mid \phi \text{ is satisfiable}\}$$
. in NP (and not known to be in P)

Reach =
$$\{(G, s, t) \mid t \text{ is reachable from } s \text{ in } G\}$$
. in P

3-SAT =
$$\{\phi \mid \phi \text{ is a 3-CNF and satisfiable}\}$$
. in NP (and not known to be in P)

2-SAT =
$$\{\phi \mid \phi \text{ is a 2-CNF and satisfiable}\}$$
. in P

Factoring =
$$\{(k, n) \mid n \text{ has a factor } \leq k\}$$
. Google it!

Clique = $\{(G, k) \mid G \text{ has a clique of size } \geq k\}$. in NP (and not known to be in P)

Time heirarchy theorem

How do we separate NP from P?

To prove Method used

not regular pumping lemma for REG

non-context-free pumping lemma or CFLs

not recognizable diagonalization

not decidable Rice's theorem or diagonalization and reductions

not in P ???

Finer structure inside P

Definition

A function $t: \mathbb{N} \to \mathbb{N}$ is said to be time constructible if the there exists a TM that on input 1^n , it outputs t(n) in time O(t(n)).

Examples

 n^2 , $n \log n$.

Theorem

Let $t : \mathbb{N} \to \mathbb{N}$ be a time constructible function. There exists a language L such that $L \in TIME(t(n)^2)$, but $L \notin TIME(o(t(n)))$.