Structure Theorem

Kei Thoma

February 22, 2023

1 Category

Definition 1. A category $\mathcal C$ consists of

- 1. a class of objects, denoted by $Ob(\mathcal{C})$, and
- 2. a collection of of morphisms, denoted by $\operatorname{Hom}(\mathcal{C})$

Example 1.1. 1. The category of sets

- 2. The category of groups
- 3. the category of rings
- 4. the category of fields
- 5. For a ring A, the category of left modules, right modules
- 6. the single element category

Definition 2 (Subcategory).

Definition 3 (Opposite Category).

2 Functors

Definition 4. Let $\mathcal C$ and $\mathcal D$ be two categories. A functor F from $\mathcal C$ to $\mathcal D$ is a mapping that

- 1. associates each object X in C to an object F(X) in \mathcal{D} , and
- 2. associates each morphism $f: X \to Y$ in \mathcal{C} to a morphism $F(f): F(X) \to F(Y)$ in \mathcal{D} such that
 - a) $F(id_X) = id_{F(X)}$ for every object X in C, and
 - b) $F(g \circ f) = F(g) \circ F(f)$ for all morphisms $f: X \to Y$ and $g: Y \to Z$ in $\mathcal{C}.$

Definition 5 (Covariant and Contravariant).

Definition 6 (Faithful and Full).

Intuition. Faithful is basically injective, full is basically surjective.