转录组学的分析与临床应用

学习框架

- 第一课 🔆 1. 了解基础知识框架
 - 2. 收集相关资料,自主学习

- 第二课 🔅 3. 练习编程、绘图
 - 4. 将分析技能应用到研究中
 - 5. 编写、发表生信算法、文章

生信自主学习的主要方式: 读说明文档, 读代码

计算机与编程

基本编程技能: R, Python (或 Perl), Linux

运算功能

011011101011010101010101

编译

汇编语言: MOV

C: int height=1;

C++: class

编译

R, Python, Perl

存储功能

01101110011001011011011

编码

dwadawxzcvwas xwadaw+)dwad wwad&*%(^*(^

编码

Hello world

统计检验

到底来自 A 还是 B?

P 值为什么要矫正?

转录组测序

转录组测序

测序数据分析

WIND TOWNS STATE STA

FASTQ

FASTA

GTF / GFF

SAM / BAM

BED

WIG / BIGWIG / BEDGRAPH

MATRIX (EXCEL)

TXT

BWA / BOWTIE2 / HISAT2 / TOPHAT2

SRATOOLS FASTQC ComBat

MACS2 BEDTOOLS FeatureCounts

SAMTOOLS SALMON CUFFDIFF / DESeq2

GSEA / gProfiler / DAVID / EnrichR

文件与工具

流程多变,不唯一!!!

文件

FASTA

FASTA

注意染色体(或转录本)名字, 注意碱基类型大小写含义,人类基因组碱基数量 ~3GB 一定要留意基因组版本号(比如人类的 hg19)

>chrM

GATCACAGGTCTATCACCCTATTAACCACTCACGGGAGCTCTCCATGCAT
TTGGTATTTTCGTCTGGGGGGGTGTGCACGCGATAGCATTGCGAGACGCTG

•••

CTATTATTTATCGCACCTACGTTCAATATTACAGGCGAACATACCTACTA
AAGTGTGTTAATTAATTAATGCTTGTAGGACATAATAATAACAATTGAAT
GTCTGCACAGCCGCTTTCCACACAGACATCATAACAAAAAATTTCCACCA
>chr1

•••

FASTQ

FASTQ

@SRR8179797.116 116 length=151 GGCTAGTG ... GCCGTCT +SRR8179797.116 116 length=151 AAAA.FFFF ... F.A<7)..FF7

每四行记录了一个读段

文件较大,一般会压缩后存储(.gz,.sra)

第三行可以只保留"+"

碱基测序质量打分(ASCII 转码):

Q=S-N(N 一般是 33)

 $P = 10^{(-Q/10)}$

ASCII可显示字符

				AUCI.	Tel alfolde	פו נ					
二进制	十进制	十六进制	图形	二进制	十进制	十六进制	图形	二进制	十进制	十六进制	图形
0010 0000	32	20	(空格) (50)	0100 0000	64	40	@	0110 0000	96	60	
0010 0001	33	21	1	0100 0001	65	41	Α	0110 0001	97	61	а
0010 0010	34	22	"	0100 0010	66	42	В	0110 0010	98	62	b
0010 0011	35	23	#	0100 0011	67	43	С	0110 0011	99	63	С
0010 0100	36	24	\$	0100 0100	68	44	D	0110 0100	100	64	d
0010 0101	37	25	%	0100 0101	69	45	Е	0110 0101	101	65	е
0010 0110	38	26	&	0100 0110	70	46	F	0110 0110	102	66	f
0010 0111	39	27	,	0100 0111	71	47	G	0110 0111	103	67	g
0010 1000	40	28	(0100 1000	72	48	Н	0110 1000	104	68	h
0010 1001	41	29)	0100 1001	73	49	1	0110 1001	105	69	i
0010 1010	42	2A	*	0100 1010	74	4A	J	0110 1010	106	6A	j
0010 1011	43	2B	+	0100 1011	75	4B	K	0110 1011	107	6B	k
0010 1100	44	2C	,	0100 1100	76	4C	L	0110 1100	108	6C	Į.
0010 1101	45	2D	-	0100 1101	77	4D	M	0110 1101	109	6D	m
0010 1110	46	2E		0100 1110	78	4E	N	0110 1110	110	6E	n
0010 1111	47	2F	1	0100 1111	79	4F	0	0110 1111	111	6F	0
0011 0000	48	30	0	0101 0000	80	50	Р	0111 0000	112	70	р
0011 0001	49	31	1	0101 0001	81	51	Q	0111 0001	113	71	q
0011 0010	50	32	2	0101 0010	82	52	R	0111 0010	114	72	г

质量控制 (FASTQC)

SAM / BAM

SAM / BAM

SAM 文件记录了每一个读段"如何"比对到"何处",也保存了碱基类型和质量信息

SAM 文件较大,一般使用 SAMTOOLS 将 SAM 格式转化为二进制的 BAM 格式

GTF / GFF

GTF / GFF

GTF 文件记录了每一个基因组元件的 "性质"和"位置"

```
chr1 protein_coding CDS 69091 70005 . +
0 gene_id "ENSG00000186092"; transcript_id
"ENST00000335137"; exon_number "1"; gene_name
"OR4F5"; gene_source "ensembl_havana";
gene_biotype "protein_coding"; transcript_name
"OR4F5-001"; transcript_source "ensembl_havana";
tag "CCDS"; ccds_id "CCDS30547"; protein_id
"ENSP00000334393";
```

MATRIX

MATRIX 表达

读段个数矩阵 (read count matrix)

	Sample1	Sample2	Sample3	•••
Gene1	5	9	1	
Gene2	353	247	271	
Gene3	3777	2364	25	

FPKM / RPKM / RPM / TPM 对数变换

每一行减去 均值 除以 标准差

不同样本同基因可比

类正态,易做检验

PCA / Heatmap

TXT 差异

TXT 差异

一般情况下, Fold Change 和 Pvalue (Padj) 都要考虑

DESeq2 结果

	Case 1	Case 2	Ctrl 1	Ctrl 2	baseMean	log2FoldChange	lfcSE	stat	pvalue	padj
						<u> </u>				. ,
Cx3cr1	13	7	363	691	309.4573221	-6.253625195	0.51093498	-12.2396	1.91E-34	2.43E-30
5830411N06Rik	1082	821	8	20	391.3886748	5.589308195	0.472684251	11.82461	2.91E-32	1.86E-28
lgkc	50	20	3819	1850	2027.636391	-7.19943295	0.611847719	-11.7667	5.79E-32	2.46E-28
										- (
Cd163l1	1147	912	17	20	427.7605469	5.216160719	0.45457985	11.4/469	1.//E-30	5.63E-27
Jchain	8	8	1442	651	753.2178054	-7.844916069	0.693993672	-11.304	1.25E-29	3.19E-26
Zeb2	18	7	255	750	278.0539922	-5.789824356	0.539203416	-10.7377	6.77E-27	1.44E-23
Gzma	33	30	915	715	555.5517287	-5.402705083	0.516218347	-10.4659	1.24E-25	2.25E-22
Gzmk	10	12	204	383	175.0640247	-5.243874941	0.529835716	-9.89717	4.28E-23	6.82E-20
S1pr5	25	15	327	367	226.5920639	-4.769446278	0.509896752	-9.35375	8.46E-21	1.20E-17

TXT 富集

TXT 富集

gProfiler 结果

一般情况下, 只考虑 Padj ,也可以综合考虑基因个数

可视化

第二课内容

想法 (idea)

产出 (ppt, paper, funding)

找数据

癌症 + 表达矩阵 + 临床信息

http://www.cbioportal.org/datasets

找数据

单细胞转录组数据(HCL)

https://db.cngb.org/HCL/index.html

Human Cell Landscape

在线分析

关系网络绘制

https://string-db.org/

在线分析

http://gepia.cancer-pku.cn/

TCGA 数据在线分析

可视化

富集 + 网络展示 ClueGo

https://apps.cytoscape.org/apps/cluego

可视化

ComplexHeatmap + Circlize + EnrichedHeatmap + ...

Gu https://github.com/jokergoo

Zuguang Gu

可视化

UCSC + WashU + IGV

http://genome.ucsc.edu/

Genome Viewer

http://epigenomegateway.wustl.edu/

https://software.broadinstitute.org/software/igv/

介绍研究

RNA 编辑位点鉴定

单细胞批次效应

RNA Editing: RNA editing generates post-transcriptional sequence alterations, primarily the modification of RNA nucleotides¹ 。

Primary types: adenosine-to-inosine (A-to-I, detected as A-to-G)² cytosine-to-uracil (C-to-U, detected as C-to-T)³

^{1.} Farajollahi, S. & Maas, S. Molecular diversity through RNA editing: a balancing act. Trends Genet.

^{2.} Zipeto, M. A., Jiang, Q., Melese, E. & Jamieson, C. H. RNA rewriting, recoding, and rewiring in human disease. Trends in molecular medicine

^{3.} Blanc, V. et al. Genome-wide identification and functional analysis of Apobec-1-mediated C-to-U RNA editing in mouse small intestine and liver. Genome biology

https://github.com/jumphone/SPRINT

输入: RNA-seq 测序数据 (.fastq)

输出:RNA 编辑位点 (BED)

SN**P**-free **R**NA editing **I**dentification **T**oolkit

Ref. SPRINT: an SNP-free toolkit for identifying RNA editing sites, *Bioinformatics*, 2017

https://github.com/jumphone/SPRINT

SPRINT consists of three major steps:

- Reads processing
- 2. SNV calling
- 3. RES calling

https://github.com/jumphone/SPRINT

SNV calling ⇒

https://github.com/jumphone/SPRINT

https://github.com/jumphone/SPRINT

			Alu sit	es		Repeti	tive nor	n-Alu sites		Nonre	petitive	sites	
Cell lines	Tools	Known SNP (%)	Total	A- to-G (%)	Precision (%)	Total	A- to-G (%)	Precision (%)	FDR (%)	Total	A-to- G (%)	Precision (%)	FDR (%)
GM12878, cell	SPRINT	0	336 304	97.7	96.5	14 019	87.8	97.2	-	5407	49.8ª	96.8	-
	Ramaswami et al.*	100	147 029	95.8	-	2385	97.4	- 0	-	1451	86.6	-	-
GM12878, cytosolic	SPRINT	0	359 725	98.9	96.9	5469	96	96.8	-	2081	75.9	95.5	-
	GIREMI*	70	36 131	99	99.4	267	83.7	84.3	-	1193	82.8	73.8	-
	GIREMI*	100	39 757	99.7	-	260	88.6	-	-	1010	73.5	-	-
U87MG	SPRINT	0	48 085	99.6	96.2	988	99.5	97.1	4.5	296	87.8	91.2	0
	GIREMI	100	2152	99.8	-	114	96.5	-	9	509	88.6	-0	53
	RNAEditor	100	62 979	-	-	6142	-	-	42.3	155	-	-	55.5
	REDItools (de novo)	100	628	96.5	-	238	46.2		80	14 949	39.7		100
	JACUSA (RRD)	100	2154	94.7	-	331	39	-	- 1	4527	20.8		-

https://github.com/jumphone/SPRINT

	Input data	Re-align & hyper-RES calling	Reads alignment assisting	SNV calling	RES calling
SPRINT	RNA-seq	√	√	1	√
GIREMI	dbSNP + RNA-seq				1
RNAEditor	dbSNP + RNA-seq		√	1	√
REDItools	dbSNP + RNA-seq or			√	√
	DNA-seq +RNA-seq				
RED	dbSNP + RNA-seq or				\checkmark
	DNA-seq +RNA-seq				
RES-Scanner	DNA-seq + RNA-seq		√	√	√
JACUSA	DNA-seq + RNA-seq			√	√

https://github.com/jumphone/SPRINT

SPRINT: an SNP-free toolkit for identifying RNA editing sites.

2017 Bioinformatics | Volume: 33, Issue: 22, pp 3538-3548 | DOI: 10.1093/BIOINFORMATICS/BTX473

Feng Zhang ¹, Yulan Lu ², Sijia Yan ³, Qinghe Xing ³, Weidong Tian ³

- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development,
- ² The Molecular Genetic Diagnosis Center, Shanghai Key Lab of Birth Defect, Translational Medicine Research Center of Children Development and Diseases, Pediatrics Research Institute., ³ Fudan University

https://github.com/jumphone/BEER

单细胞测序技术是**对单个细胞的序列信息进行高通量探测的技术**。与大细胞量(bulk)测序不同,每一条测序读段都有独特的标记,用以区分来自不同细胞的测序读段。

https://github.com/jumphone/BEER

单细胞分析工具非常多

https://www.scrna-tools.org/tools

降噪、降维、展示

Seurat: https://satijalab.org/seurat/

有 3 个阶段的数据是消除**批次效应**的突破口

数据预处理

线性降维

非线性降维 (展示) 标准化,基因数量、读段数量,线粒体基因表达,细胞周期, doublet

	Cell1	Cell2	Cell 3	•••
Gene1				
Gene2				
Gene3				

线性

	Cell1	Cell2	Cell3	•••
PC1				
PC2				
PC3				
•••				

C1 * Gene1 + C2 * Gene2 + C3 * Gene3 + ... = PC1

选择解释方差较大 的一定数量的 PCs (top20, 50, or 100)

寻找互最近邻对(不同批次中相似的细胞类型)

https://github.com/jumphone/BEER

Recent update

提出了加强版分析流程 (应对非线性批次效应)

https://github.com/jumphone/BEER

合并 scATAC 与 scRNA

- 1. Find mutual nearest (MN) pairs
- 2. Remove PCs with "batch effect"

原版 BEER

3. Use Combat & BBKNN to further adjust the output

No imputation (没有使用插值【预测的值】

No cell removing (没有删除细胞)

加强版 BEER

