Teil 1

Wieso wird Logik und Mengenlehre benötigt?

Dieses Teil beschäftigt mit der Frage, für was Logik und Mengenlehre benötigt wird. Abgesehen von der innewohnenden Schönheit bildet die Logik das Skelett (oder das Gerüst), auf welchem die übrige Mathematik aufgebaut ist. Es ist so, dass die Logik die Spielregeln vorgibt, wie in der Mathematik die Beweise geführt werden müssen, damit die bewiesenen Aussagen als wahr akzeptiert werden. Was jedoch nicht bedeutet, dass die Anschauung, das Ausprobieren, Näherungsrechnungen und ähnliche Vorgänge nicht verwendet werden sollen und dürfen. Jedoch hat es sich als sinnvoll erwiesen, dass die Beweisführung nur mit den Mitteln der Logik vorgenommen wird. Du fragst Dich vielleicht, wieso dies so ist? Weil innerhalb der Logik überlegt wird, wie ich von Aussagen (wie beispielsweise: "Max und Moritz haben die Hosen voll"), welche ich als wahr betrachte, wieder auf andere von mir als wahr betrachtete Aussage schließen kann. Nun, das tönt vielsagend nichtssagend. Falls Du mehr darüber wissen möchtest, dann schaue doch beispielsweise im Abschnitt 18.6 mit der Bezeichnung "Wie kann ich etwas folgern?" nach. Dort habe ich ein Beispiel für eine solche Umformung gemacht. Beachte, dass die Logik, so wie ich sie hier betreibe, ausschließlich darauf ausgerichtet ist, die weitere Mathematik zu entwickeln. Ich habe kürzlich wieder einmal auf der Wikipedia den Eintrag über Logik überflogen - und habe praktisch kein Wort auf Anhieb kapiert. Wie Du siehst, mache ich also fast alles, damit Du diesen Text wieder auf die Seite legst. Nein, ich habe mich schon ein wenig mit der Logik befasst. Ich möchte die Logik so einführen, dass es möglichst praktisch ist.

Was ich ab und zu gelesen habe, ist die faktische Geringschätzung, welcher der elementaren Logik entgegengebracht wird. Da¹ wurde beispielsweise geschrieben, Mathematik sei viel mehr, als Textaussagen mit Hilfe der Logik ineinander umzuwandeln. Ich habe das Gefühl, die Abneigung gegen die Logik als dumpfe Ausführung von an und für sich sinnlosen Vorschriften hat etwas von einer Höllenvorstellung (wo "Heulen und Zähneklappern" vorherrscht). Es tönt in meinen Ohren so, wie arme Schülerinnen und Schüler immer noch genötigt werden, Reihen zu lernen, den Zehnerübergang zu büffeln. Ich glaube, die Abneigung gegen die Logik hat damit zu tun, dass Logik automatisiert werden kann. Der Compi² ist förmlich die materialisierte Form der Logik. Jedoch steckt die Kreativität nicht in der Ausführung der elementaren Logik diese Ausführung ist recht einfach zu behalten und auszuführen. Nein die Kreativität in der elementaren Logik besteht aus meiner Sicht darin, wie die Definitionen gemacht wurden. Diese Definitionen sind sicher nicht einfach so "vom Himmel gefallen", sondern sie waren einer sehr wahrscheinlich das Erzeugnis einer langen und wahrscheinlich erbittert

 $^{^1{\}rm Ich}$ werden den Literaturhinweis nur dann noch einfügen, falls er mir per~Zufallwieder über den Weg läuft.

²Kosewort für "Computer".

geführten Diskussion. Da wurde sehr wahrscheinlich gestritten und es gingen die Emotionen hoch, bis klar wurde, was jetzt als richtig und was als nicht richtig gilt.

Ich werde im Übrigen diese Möglichkeit der Automatisierung der Logik andeuten, indem ich für alle logischen Verknüpfungen die Schaltbilder gezeichnet habe, mit welchen die logischen Verknüpfungen nachgebildet werden können. Dabei wird der Wahrheitsgehalt von Aussagen (siehe Kapitel 1) immer so dargestellt, als dass ein Taster³ betätigt werde, falls die Aussage wahr ist. Ist die Aussage jedoch nicht wahr, dann werde der Taster jedoch nicht betätigt. Eine Einführung über die Schaltbilder habe ich mindestens an zwei Stellen geschrieben. Die erste Stelle befindet sich im Kapitel der Definition der Negation (siehe Kapitel 6). Der Wahrheitswert einer Aussage sei definiert als wahr, falls die Aussage wahr ist. Entsprechend sei der Wahrheitswert einer Aussage als falsch definiert, falls nicht gilt, dass die Aussage wahr ist.

Üblicherweise werde ich logische Sätze beweisen, indem ich die Definitionen nachschlage und einsetze. Ich werde jedoch auch Methoden zeigen, welche nicht nach dem Prinzip des Nachschlagens und Ausführens von Definitionen oder anderen logischen Sätzen bestehen (siehe zum Beispiel den Satz der Transitivität der Implikation, Kapitel 18.4). Aber ob diese Beweisführungen eleganter sind als das simple "berechnen" der Behauptungen, weiß ich auch nicht. Beim Beweis des Satzes der Transitivität der Implikation ist er auf jeden Fall ähnlich groß geworden, wie er würde, wenn er einfach ausgerechnet würde. Egal, wo immer möglich werde ich beide Beweisarten nebeneinander ausführen, damit Du möglichst viel Übung in der Beweisführung bekommst und dies dann später dann gewinnbringend anwenden kannst. Ich werde mir erlauben, den Prozess der Mathematisierung sozusagen in Zeitlupe noch einmal nachzubilden.

Beim Durchlesen der Beispiele dieses Teils (Logik) ist mir aufgefallen, dass relative viele Beispiele mit Benennungen wie "Alle Hirsche heißen Hans" oder "Alle Hasen heißen Roger Rabbit" oder ähnlich lauten. Dies ist ein (dummer) Zufall. Die Beispiele dienen sowieso der Illustration der Definitionen und Sätze. Aus ihnen entsteht also keine Theorie. Aus diesem Grund erlaube ich mir, diese Beispiele vorläufig nicht zu entfernen. Ebenfalls zu diskutieren ist, ob ich die formale Beschreibung der einzelnen logischen Verknüpfungen wirklich abgesetzt von der jeweils tabellarischen Beschreibung machen sollte. Aber urteile selbst.

³Eigentlich würde ich gerne von "Schalter" sprechen. Jedoch sind diese so beschaffen, dass sie gedrückt bleiben, falls sie gedrückt werden. Erst wenn sie noch einmal gedrückt werden, dann werden sie wieder stromlos. Ein Taster jedoch springt automatisch wieder in die Ruheposition, falls er nicht gedrückt wird.

Zuerst werden die Beispiele, welche ich mache, aus dem Alltag gegriffen sein. Die Beispiele werden jedoch immer mehr mit der Mathematik zu tun haben. Auf der einen Seite ist das schade. Denn es macht den Anschein, als ob Mathematik ausschließlich reiner Selbstzweck wäre. Auf der anderen Seite soll es Dir zeigen, für was der ganze Unterbau gut sein soll. Dass es also durchaus Berechtigung besitzt, wenn ich mir ausführlich Gedanken mache, warum etwas so und nicht auf eine andere Art definiert wurde.

Noch auf eine Schwierigkeit möchte hinweisen. Egal, wie viele logische Sätze ich zu formulieren und beweisen versuche: Ich werde später mehr davon oder andere logische Sätze benötigen. Das Ganze ist gleichsam ein Fass ohne Boden. Aber ich denke, dass ich gegebenenfalls das Gebiet der Logik verlassen und bei Bedarf wieder darauf zurückkommen werde. Der Hauptteil des Kapitels ist darum eine Art "Mottenkiste", in welchem viele logische Sätze vorhanden sind. Welche jedoch nicht verwendet werden.

Und nun zum Aufbau dieses Teils: Zuerst werde ich mich mit Symbolen und Aussagen beschäftigen. Das ist zuerst einmal knochentrocken und langweilig. Aber es dient dazu, den Prozess der Mathematisierung minutiös zu beschreiben. Anschließend werde ich die in der Logik verwendeten Aussagen definieren. Dann werde ich das machen, was meines Erachtens das ganze erst spannend macht. Ich werde untersuchen, welches die Zusammenhänge von einzelnen definierten Aussagen vorhanden sind. Hier kommen die logischen Sätze ins Spiel. Diese können dann später hoffentlich gewinnbringend angewendet werden. Außerdem dient das Untersuchen der Zusammenhänge zwischen den definierten Aussagen zum Überprüfen der Tauglichkeit der gemachten Definitionen. Im dümmsten Fall kann es geschehen, dass am Schluss klar wird, dass die gemachten Voraussetzungen falsch sind.

KAPITEL 1

Was sind Aussagen?

Ich möchte gleich auf den Punkt kommen:

(1.0.1) Aussagen sind Anneinanderreihungen von Symbolen

Jeder umgangssprachliche Satz ist also eine Aussage. Damit wird also der Begriff der mathematischen Aussage definiert. Dass Symbole noch weiter zusammengefasst werden, lässt die Frage aufkommen, ab wann eine Aussage eine Aussage ist und welche Art der Verknüpfungen gelten. Ist zum Beispiel "dies ist" auch eine Aussage? Oder ist sogar "d" eine Aussage? Gemäß der obigen Definition wäre das erste Beispiel ("dies ist") eine Aussage, "d" jedoch nicht, da es nur aus einem Symbol besteht. Gleichwohl kann gegebenenfalls auch "d" als Aussage interpretiert werden. Allerdings würde ich behaupten, dass ein einzelnes Symbol wohl nie eine Aussage bilden kann, welche wahr ist. Denn in der Logik geht es eigentlich nicht um die Aussage an und für sich, sondern immer nur darum, welches die Wahrheitsgehalte von Aussagen sind. Vielleicht findest Du dies doof, fühlst Dich vielleicht veräppelt. Aber das Füllen von Inhalten wird einfach den anderen mathematischen Teilgebieten überlassen. Das ist eine Art Aufgabenteilung innerhalb der Mathematik. Wenn Du Dich fragst: "Wo wird dann das gebraucht?", dann muss ich Dich auf die späteren Kapitel vertrösten. In diesen werde ich zeigen müssen, dass die Spielregeln der Logik wirklich genug durchdacht waren, so dass nicht widersprüchliche Theorien aus ihnen folgen. Bestehen die Verknüpfungen aus dem hintereinander Aufschreiben der Symbole? Im Moment seien Aussagen Symbole, welche hintereinander aufgeschrieben (es wird dann schon noch komplizierter ;)) Als Beispiel soll eine Aussage dienen:

$\forall x \epsilon \mathbb{R} \; \exists n \epsilon \mathbb{N} \; n > x$

Dies ist der Satz von Archimedes: Jede reelle Zahl wird von einer natürlichen Zahl übertroffen (wahrscheinlich haut dies Dich nicht aus den Socken, aber dies ist ein mathematischer Satz). Dies ist eine Aussage, und diese Aussage ist erst noch wahr. In diesem Zusammenhang seien drei wichtige Aussagen erwähnt:

• Definition

Eine Definition ist eine Festlegung, welche nicht begründet

werden soll. Ich sage, rot sei die Farbe des menschlichen Blutes. Natürlich ist dies weder ein exakte Definition (das Blut von Menschen mit einer Kohlendioxidvergiftung sei kirschenrot, habe an der Kantonsschule einmal gelernt) noch lässt sich über den Sinn dieser Definition streiten. Was ist dann "menschlich", was ist "Blut"? Was ist mit Personen, welche nichts sehen? Können sich diese unter rot mit dieser Definition etwas vorstellen? Aber es ist eine Definition, ohne Zweifel. Ich glaube, die Mathematik ist vor allem eine Frage der Definitionen. Welche Definitionen muss ich treffen? Was ist sinnvoll, das ich festlege, was überflüssig, was führt geradezu in eine Sackgasse? Da steckt meines Erachtens das ganze Herzblut drin. Oft werden Definitionen gemacht, um einen Sachverhalt besser studieren zu können. Oder um eine bemerkenswerte Tatsache begrifflich fassen zu können. Beispiel für eine gelungene Definition ist beispielsweise das Zahlensystem der Dezimalzahlen. Es dauerte fast eine Ewigkeit, bis es sich festgelegt hat, und kaum jemand möchte es missen. Aber es ist eine Festlegung, eine Definition, welche als solche meines Erachtens nicht vom Himmel gefallen ist. Es musste hart erarbeitet werden, und jedes Kind muss es wieder entdecken und den Sinn desselben erfassen können. Definition sind so lange als wahr anzuerkennen, bis sie als falsch erkannt werden (die berühmte Falsifizierungsregel der Wissenschaft, so wie ich es begreife, eine ursprünglich sozialwissenschaftliche Errungenschaft). Wenn eine Definition, also eine Festlegung, eine Beziehung oder einen Sachverhalt betrifft, welcher zwar wie ein Satz daherkommt, aber keiner ist, dann wird von einem Axiom gesprochen. Ein Axiom ist beispielsweise die vollständige Induktion (siehe Satz??). Ich habe die zuweilen schon fast krankhafte Angewohnheit, dass ich möglichst wenig Definitionen machen möchte. Natürlich ist es klar, dass es ohne nicht geht. Aber es ist reizvoll, wenn nur so viele Definitionen wie unbedingt nötig und so wenige Definitionen wie möglich verwendet werden. Aber wie schon oben erwähnt, schütte ich zuweilen sozusagen das Kind mit dem Bad aus, indem ich finde, das könnte jetzt auch noch hergeleitet und nicht definiert werden. Zu meiner Verteidigung möchte ich jedoch schreiben, dass ich die Definitionen für das eigentlich menschliche an der Mathematik halte. Die Sätze und die Beweise sind eigentlich immer Folgen der Definitionen. Und da ist eine elegante Definition Gold wert.

• Satz

Ein Satz ist wie eine Landmarke, etwa ein Gipfelkreuz, ein

Leuchtturm oder eine Fahne, welche anzeigt: Seht her, ich habe etwas wichtiges herausgefunden. Es lohnt sich, diesen Sachverhalt zu merken. Es gibt nebst dem Satz noch das Lemma, den Hilfssatz. Dieser wird oft benötigt, um einen Satz zu beweisen, wird jedoch nicht als so wichtig gehalten, um einen Satz zu bilden. Ein Satz kann nie ein Dilemma sein. Denn ein Dilemma besagt, dass jemand nicht weiß, was zu tun ist. Ein Lemma ist jedoch ein Satz, welcher selbst nicht so wichtig ist. Jedoch ist ein Lemma eine wahre Aussage, wogegen beim Dilemma nicht sicher ist, ob es jetzt wahr ist oder nicht. Vielleicht denkst Du jetzt: Was, ein Satz? In einem Mathematikbuch hat es doch Hunderte davon. Das stimmt schon, jedoch ist nicht jeder Satz als Satz in einem mathematischen Sinn definiert. Die Sätze sind sozusagen die Schlüsselstellen im Buch, entlang derer Du Dich "entlanghangeln können solltest". Es sind sozusagen die Leuchttürme (wieder eine Metapher¹ für die Bedeutung eines Satzes) innerhalb des Textes. Wenn Du fertig bist mit dem Überfliegen oder dem Wälzen dieses Textes, dann solltest Du leicht wieder finden können, was Du gelesen hast. Darum werden besonders wichtige Textpassagen als Sätze gekennzeichnet. Schlussendlich gibt es noch die Vermutung: Dies ist ein unbewiesener Satz. Es gibt bekanntlich mathematische Vermutungen, welche schon ein paar hundert Jahre waren, bis sie bewiesen wurden². Und es gibt Vermutungen, welche selbst schon mehr als hundert Jahre alt sind, und immer noch nicht bewiesen wurden³! Selbstredend muss ich gestehen, dass ich noch keinen Satz produziert habe, welcher in die Mathematikbücher eingegangen ist. Ich bin eben nur Laie, und nicht Profi. Und außerdem weiß ich nicht, ob das erstrebenswert wäre, wenn es einen Satz von Demarmels gäbe. Einen kleinen Satz glaube ich für mich herausgefunden zu haben: Das Axiom der vollständigen Induktion ist meines Erachtens beweisbar (vergleiche mit dem Kapitel??). Aber das ist keine große Leistung. Ich bin schon nur froh, wenn ich nachvollziehen kann, was andere bewiesen haben.

Ach ja, bevor ich es vergesse: Ein mathematischer Satz kann aus mehreren Sätzen bestehen⁴! Ein mathematischer Satz und

¹ein bildlicher Vergleich

²Beispiel ist die Fermatsche Vermutung. Wikipedia weiß Bescheid, um was es dahei geht

 $^{^3{\}rm Ein}$ Beispiel dafür ist die Riemannsche Vermutung über die Zeta-Funktion, siehe wiederum Wikipedia

⁴keine Sorge: Das ist nur ein Sprachspiel (er beißt nicht, er will nur spielen).

ein sprachlicher Satz sind eben nicht dasselbe. Ein sprachlicher besteht offenbar aus einem oder mehreren Wörtern, welche durch ein spezielles "Interpunktionszeichen" abgeschlossen wird (beispielsweise einen Punkt, ein Ausrufs- oder ein Fragezeichen) und bei welchem das erste Wort mit einem großen Buchstaben geschrieben wird. Wie es in anderen Sprachen funktioniert wie beispielsweise dem Chinesischen, entzieht sich meiner Kenntnis. Aber es ist schon so, dass ein mathematischer Satz auch aus mehreren Sätzen gebildet werden kann. Das ist sogar die Regel. Er wird dann so gekennzeichnet, indem er sprachlich oder mit darstellenden Mitteln besonders gekennzeichnet wird. Ich hoffe, dass ich Dich gelegentlich auf entsprechende Beispiele verweisen kann. Ein einfaches Beispiel für für einen mathematischen Satz, welcher aus mehreren (in diesem Fall, zwei) sprachlichen Sätzen besteht, ist der Satz??.

• Beweis

Ein Satz muss bewiesen werden. Es genügt, nicht, zu sagen: "Das gilt, und Du musst mir glauben, dass es so ist". Was ein Beweis ist und was nicht - das ist im Rahmen der Analysis durch die Logik festgelegt. Im Buch von Heuser gibt es die schöne Aussage⁵, dass ein Satz nur mit den mitteln der Logik und nicht mit den drei traditionsreichsten "Beweis"-Mitteln Uberredung, Einschüchterung und Bestechung bewiesen werden dürfe. Ich denke, damit ist eben auch gezeigt, dass die Tätigkeit des Beweisens eben schon etwas von einer Auseinandersetzung besitzt, welche jedoch mit unblutigen Mitteln geführt wird. Einen Beweis zu schreiben, ist oft so, wie eine Arbeit zu machen. Leider, das muss ich gestehen, habe ich noch viele Beweise nicht begriffen, und das ist ja auch gerade einer der Gründe, wieso ich gerne diesen Text schreiben möchte. Ich möchte viel und noch viel mehr begreifen. Einen Beweis zu begreifen, das gibt mir ein Gefühl der tiefen Befriedigung (ja. ja. ich denke, ich weiß, was Du gerade denkst, denke Du das ruhig). Für mich ist es, wie in einer Landschaft herumzuwandern, welche nur im Kopf existiert. Jedoch kann diese Landschaft im Kopf nie ganz durchmessen werden. Jedoch gibt es ein Gefühl dafür, dass man etwas mit gutem Gewissen anwenden darf. Auf der anderen Seite ist es ein Scheiß-Gefühl, wenn Du vor einem Mathebuch sitzt und beim besten Willen keinen leisen Schimmer davon hast, um was es in diesem Buch geht.

⁵auf Seite 12

KAPITEL 2

Welche Spielregeln gelten in der Logik?

Bis jetzt habe ich Aussagen definiert. Im folgenden möchte ich mit der Frage auseinander setzen, welche Regeln für die Verknüpfung von Aussagen von der Sicht der Logik her gelten sollen - und welche nicht. Zuerst möchte ich ein wenig über Wahrheit "philosophieren" (im Sinn einer Stammtischphilosophie - ich bin weder Mathematiker noch Philosoph). Dann möchte ich mich über meine Interpretation der Logik auslassen. Die in diesem Kapitel gemachten Aussagen sind allesamt ziemlich langweilig. Das haben so Einführungstexte in der Logik so an sich. Es gibt daneben in Einführungen über einfache Logik immer wieder total an den Haaren herbeigezogene Beispiele. Diese möchte ich jedoch außer Acht lassen, obwohl ich absurde Beispiele verwende. Mit "an den Haaren herbeigezogen" meine ich jedoch so verwinkelte Aussagen, dass es schnell einmal zur Haarspalterei wird, um was es genau geht. Ich möchte wirklich nur einfache Logik betreiben - auf diese dann jedoch auch wirklich zurückgreifen.

Zuerst möchte ich darauf hinweisen, dass Wahrheit oft im Zusammenhang mit Gerechtigkeit bemüht wird. Gerade in der Rechtsprechung wird versucht, ein wahres Bild der Wirklichkeit zu konstruieren. Ich habe meine Worte absichtlich so gewählt, dass es ersichtlich ist, dass Wahrheit ein menschliche Konstruktion ist, wie es ein Gebäude oder eine Maschine ist. Das bedeutet, dass ich der Meinung bin, dass die Wahrheit nicht "vom Himmel fällt", obwohl ich auch nichts gegen eine göttliche Ordnung hätte - nur leider hat es diese m.E. so nie gegeben. Immer waren es Menschen, welche das Recht und somit die Wahrheit in Anspruch nahmen. Ich habe die Mühe auf mich genommen, die Bibel zu lesen. Dabei habe ich zu meiner Verwunderung mit der Zeit gemerkt, dass alle Autoren je für sich ein eigenes Gottesbild entwerfen. Ebenso erstaunt war ich, wie "diktatorisch" die einzelnen Autoren sind. Alle sagen immer und immer wieder: "Ich weiß, wie es ist, es ist so". Dieses Bild der Dinge ist heute nicht mehr modern. Heute gilt es vielmehr, zu sagen: "Das nehme ich an, und das folgere ich daraus". Und wenn ich schreibe "ich", dann möchte ich damit nicht ausdrücken, dass ich die Wahrheit mit dem Löffel gefressen hätte, sondern, dass die Wahrheit immer subjektiv, immer an Menschen (Frauen, Männer, Kinder, gleich jedes Ansehen, Vermögen, Nationalität) gebunden ist. Die Wahrheit an und für sich, die gibt es heute so nicht mehr (das ist zwar ein geisteswissenschaftlicher Ansatz, aber ich denke, er bewährt sich

in der Naturwissenschaft bestens, denn da gibt es auch immer wieder Hahnenkämpfe, welche darauf zurückzuführen sind, dass sich Personen sehr wichtig finden). Der Vorteil dieser Sichtweise liegt meines Erachtens darin, dass "die Mathematik" von allen immer wieder neu entdeckt und erobert werden will. Was ich heute sage, wirst Du morgen vielleicht nicht mehr so sehen - und übermorgen ein anderer wieder auf eine andere Art betrachten. Wichtig ist jedoch in meinen Augen, dass Du Dir ein eigenes Bild von der Materie machen kannst, dass diese nicht nur einer kleinen Elite vorbehalten ist (wie im alten Testament die Schriftgelehrten und der Stamm von Amos sich die Religion und Politik unter den Nagel rissen).

Nachdem ich nun das Wort zum Donnerstag losgelassen habe (ich habe das Kapitel am Donnerstag, den 29. Juli 2010 geschrieben), möchte ich mit einer Voraussetzung beginnen, welche in der Logik eine wichtige Rolle spielt:

Nun kommt die Formalisierung der Aussage: Für den Sprachteil "es gibt" oder "es existiert" oder "existiert" wird das Symbol " \exists " verwendet. Und genau so, wie ich oben lang und breit ausgewalzt habe, wird anstatt der Aussage oft ein Buchstaben für dessen Symbol oder Bezeichnung genommen, typischerweise A oder B, seltener auch C. Es werden einfach von vorne begonnen die Symbole des lateinischen Alphabets genommen. Also "richtig" formuliert heißt der obige Satz:

$$(2.0.2) \exists A$$

falls A als Symbol für eine Aussage verstanden wird. Der Satzteil "falls A als Symbol für eine Aussage verstanden wird", kann formalisiert werden mit

$$(2.0.3) \exists A \epsilon \Omega A$$

wobei Ω die Menge aller Aussagen bezeichne, welche nicht in sich selbst oder bezüglich anderen Symbolen widersprüchlich seien (dies ist allerdings schon wieder eine selbst gewählte Bezeichnung, welche ich nicht in einem Mathematikbuch gefunden habe). Der Grund, wieso ich den griechischen Buchstaben Omega verwendet habe, liegt darin, dass A und Ω gerne als Symbole für Alles verwendet werden. A und Ω sind die ersten und die letzten Buchstaben des griechischen Alphabetes. Da eigentlich fast alles Aussagen sind, habe ich den letzten Buchstaben des griechischen Alphabets für die Bezeichnung der Menge aller Aussagen verwendet. Sätze, welche nicht als Schlussfolgerungen von anderen Sätzen ableiten lassen (siehe auch das Kapitel 18.6), werden als Axiome, als unbeweisbare Aussagen, bezeichnet. In den Sozialwissenschaften heißen

diese Behauptungen übrigens "Thesen". Es gilt also die Regel: Ist eine Aussage wahr, dann wird sie einfach hingeschrieben. Es wird also bei der formalen Beschreibung nicht speziell geschrieben: Diese Behauptung ist wahr. Obwohl dies bei der sprachlichen Beschreibung immer gemacht wird.

Damit alles seine Richtigkeit hat, möchte ich den eben erwähnten Sachverhalt in eine Definition und ein Axiom abfüllen. Somit schreibe ich die folgende

DEFINITION 1. Es bezeichne Ω die Menge aller Aussagen, welche in sich selbst und bezüglich den anderen Aussagen widerspruchsfrei seien.

Weiter definiere ich (als Axiom)

DEFINITION 2. **Axiom der wahren Aussagen**: Es gelte per Definition (als Axiom)

$$\exists A \in \Omega : A$$

In Worten: Es gibt Aussagen, welche wahr sind.

Leider kann ich die Axiome nicht als eigenständige Begriffe (wie "Definition" und "Satz") mit meinem Textverarbeitungssystem ("Lyx") erzeugen. Respektive weiß ich nicht, wie ich das machen soll. Darum habe ich das Axiom der wahren Aussagen als Definition gekennzeichnet.

Es ist im Übrigen seltsam, dass das Axiom der wahren Aussagen erst jetzt kommt. Denn alle anderen Sätze vorher müssten von Dir ebenfalls als wahre Sätze anerkannt werden. Sonst hättest Du das Buch schon lange weggelegt, wohl im Stil von: "So ein Scheißdreck, was der Demarmels wieder faselt. Ist ein gescheiterter Physikstudent und will jetzt ein Einführungswerk in Mathematik schreiben." Das mag ja sein. Jedoch geht es ohne die Annahme des Satzes 2.0.3 sonst nicht weiter. Und das wäre schade. Auf jeden Fall ist dieses Axiom schon fast philosophisch. Dass es wahre Aussagen gibt, kann weder bewiesen noch widerlegt werden. Es ist eine Annahme - jedoch eine überaus praktische.

Wenn ich von wahren Aussagen spreche, dann meine ich in erster Linie diejenigen Aussagen, welche wirklich von den meisten Menschen als wahr angenommen werden. Wenn an Mathematik gedacht wird, dann werden unter wahren Aussagen wohl in erster Linie solche verstanden, welche erst nach einer langen und mühsamen Beweisserie als wahr akzeptiert werden. Und da verschiebt sich der Begriff der wahren Aussage in Richtung "unglaublich, aber offenbar wahr" oder "ich habe keinen blassen Schimmer, wie Vorfahren auf diese Idee gekommen sind, und ich kann den Beweis selbst nicht nachvollziehen, aber wenn die das sagen, wird es schon stimmen". Nein, ich meine Aussagen, welche für die meisten Menschen als selbstverständlich angenommen werden. Aussagen wie: "Ein Elefant ist üblicherweise schwerer als eine Maus" (Ich betrachte den Fall nicht, in welchem die Maus selbst trächtig ist, jedoch

der Elefant gerade erst im Mutterleib gezeugt wurde und sich die befruchtete Eizelle des so gezeugten Elefanten sich noch nie geteilt hat). Oder ich denke an Tatsachen wie: "Wenn ein Lebewesen stirbt, dann kann es nicht wieder zum Leben erweckt werden" oder "Die Sonnenstrahlen sind wichtig für das Leben auf der Erde". Oder aber: "Menschen müssen Nahrung zu sich nehmen, damit sie leben können". Aber auch dass diese Aussagen wahr sind, kann im eigentlichen Sinn nicht bewiesen werden. Es ist eine Annahme, ein Glaube, welcher aus vergangenen Erfahrungen resultiert. Natürlich werden Karrieren gemacht oder vernichtet, indem Schülerinnen und Schüler nach Aussagen abgefragt werden, welche die Lehrpersonen als wahr erachten. Natürlich gibt es Personen, welche aufgrund einer Behinderung nicht in der Lage sind, Aussagen als wahr zu erkennen und gewinnbringend anzuwenden. Aber Hand aufs Herz, was verstehst Du, was verstehe ich "von der Welt"? Und wollen wir das wirklich? Das wäre eine Höllenvorstellung, wenn ich alles im Voraus erkennen würde, was in naher oder gar ferner Zukunft geschehen würde, eben weil ich alles wüsste. Dass es nicht darum geht, "gut zu sein", sondern bloß besser als die Mitmenschen in meiner Umgebung, ist für mich kein wirklicher Trost. Ich habe es, um es genauer zu schreiben, sogar ziemlich satt. Gerade darum finde ich diese Annahme, dass es wahre Aussagen gibt, unglaublich inspirierend. Weil sie den Kern der Sache offenlegt: Es werden Annahmen gemacht und überlegt, was daraus gefolgert werden kann.

In der Disziplin der Mathematik war es ein schmerzhafter Einschnitt, als erkannt wurde, dass Annahmen nicht wahr waren, welche als richtig angenommen wurden. Als Beispiel dafür kann der Mengenbegriff (siehe Kapitel 3) genommen werden. Denn das Gemeine an den falschen Annahmen ist, dass dann deren Schlussfolgerungen ebenfalls nicht mehr gültig sind. Dann müssen wir wieder "von vorne" beginnen. Vielleicht ist darum kein Zufall, dass der Wegbereiter des Mengenbegriffs, Georg Cantor, an manischen Depressionen erkrankte¹. Cantor musste erkennen, dass eine grundlegende Annahme (die Menge aller Mengen, siehe Abschnitt 3) in sich nicht logisch ist. Dies leitet auf die psychologische Dimension des Axioms hin, welche ebenfalls nicht ohne Tiefgang ist: Es gibt leider immer wieder Leute, welche am Leben verzweifeln. Für diese Personen gilt diese Annahme "Es gibt wahre Aussagen" leider nicht mehr. Für sie ist alles falsch. Und das ist traurig, todtraurig. Nun, es ist ein Mathematikbuch, welches ich zu schreiben beabsichtige, und kein Lehrbuch über klinische Psychologie. Trotzdem möchte ich darauf hinweisen, dass auch in der Mathematik nicht davon ausgegangen werden kann, zu wissen, was richtig ist und was falsch. Es wird einfach angenommen, dass es Aussagen gibt, welche richtig sind. Weiter wird untersucht, was daraus folgt.

¹gemäß Wikipedia, ich habe es aber auch in anderen Texten gelesen

Auf der anderen Seite gilt in der modernen Physik eine solche Aussage wohl nur schwer. Eine absolute Aussage widerspricht eigentlich der Denkweise der Quantenphysik. Jedoch verbraucht die moderne Hochenergiephysik Milliarden an Dollar, und das ist doch sicher ein Faktum, welches so gilt. Das heißt, in der Alltagswelt ist die moderne Physik vielleicht doch nicht so diffus ist, wie sie zu sein doch irgendwie vorgibt. Doch es gilt auch, sich von den Geistes- und Sozialwissenschaften abzugrenzen in dem Sinn, dass in den Geistes und Sozialwissenschaften häufig eine sogenannte Relativismusdebatte geführt wird. Beispielsweise wird die Relativität der verschiedenen Lebens- und Kulturformen gepredigt. Das mag ja innerhalb gewisser Grenzen auch zutreffen. Doch es gibt beispielsweise keine Volksgruppe, welche sich ausschließlich von Kieselsteinen ernährt. Es ist sicher nicht so, dass sich durch die Mathematik alles beweisen ließe. Das ist einfach nicht zutreffend, es wurde sogar bewiesen (durch Gödel). Aber innerhalb der Mathematik wird angenommen, dass es wahre Aussagen gibt.

Bevor ich weiter weiter meinen Gedanken nachgehe, möchte ich darauf hinweisen, dass eine wahre Aussage sicher eine Entsprechung in den Strukturen von Menschen, jedoch auch von Tieren oder sogar Pflanzen haben sollte. Der Begriff der wahren Aussage ist nicht menschengemacht, sondern ein Ergebnis unserer Evolution. Ich möchte an dieser Stelle dafür danken, denn dank diesen Strukturen habe ich eine Möglichkeit gefunden, wie ich etwas mit meiner Zeit auf Erden anfangen kann.

Ich möchte jetzt bereits eine Aussage aufschreiben, welche ich sich selbst widersprüchlich sind. Das Beispiel ist das Barbier-Pradoxon von Berndt Russel². Es lautet: "Man kann einen Barbier definieren als einen, der alle diejenigen und nur diejenigen, die sich nicht selbst rasieren, rasiert. Die Frage ist: Rasiert der Barbier sich selbst?". Denn wenn er sich selbst rasieren würde, dann würde er sich gemäß Definition jemanden rasieren, obwohl sich dieser selbst rasiert. Dann wäre er jedoch kein Barbier. Also ist dies nicht möglich. Würde er sich selbst jedoch nicht rasieren, dann gäbe es jemanden, welcher nicht durch den Barbier rasiert wird. Also wäre er wieder kein Barbier. Wie ich es drehe und wende, das geht nicht gut. Also ist die ganze Aussage in sich selbst widersprüchlich. Der ganze Widerspruch kann jedoch gut aufgelöst werden, falls die Aussage ausdrücklich nur auf andere Personen eingeschränkt wird. Also etwa: "Ein Barbier rasiert andere Personen, welche sich selbst nicht rasieren". Dann habe ich bemerkt, dass es nicht darauf ankommt, ob der Barbier sich selbst rasiert oder nicht. Es kommt nur darauf an, ob er andere Personen rasiert.

²nachzulesen unter http://de.wikipedia.org/wiki/Barbier-Paradoxon

Ein anderes Beispiel ist das folgende³. Stelle Dir vor, jemand würde eine Verbotstafel aufstellen auf welcher geschrieben würde: "Es ist verboten, im Umkreis von 100 Metern Verbotstafeln aufzustellen". Dann ist das ein Widerspruch in sich selbst. Denn dann hätte die Verbotstafel selbst nicht aufgestellt werden dürfen. Andererseits wäre in diesem Fall die Verbotstafel nicht vorhanden. Dann wäre es jedoch erlaubt, Verbotstafeln aufzustellen, was jedoch hätte verhindert werden sollen. Wieder kann der Widerspruch so aufgelöst werden, indem auf die Verbotstafel geschrieben wird: "Es ist verboten, im Umkreis von 100 Metern andere Verbotstafeln aufzustellen".

Ein drittes Beispiel musste ich selbst erleiden. Es ist der berühmte logische Zirkelschluss, welchem ich auch als kleiner Knirps erlegen bin. Ich habe die Wolken und den Wind betrachtet. Und dann habe ich voller Stolz meiner großen Schwester erklärt: "Jetzt weiß ich, wieso der Wind bläst: Es sind die Wolken, welche den Wind antreiben". Und dann hat meine Schwester mich gefragt: "Das ist ja schon gut und recht. Aber wieso bewegen sich dann die Wolken." Dann habe ich nachgedacht und wichtig erklärt: "Das ist doch ganz einfach: Weil der Wind bläst". Meine große Schwester erklärte mir, dass das nicht stimmen kann was ich sage, aber ich habe damals nicht begriffen, wieso. Später lernten wir beide, dass diese Art von Fehlschlüssen in der menschlichen Entwicklung praktisch immer vorkommen. Aber im Moment fühlte ich mich schon gedemütigt. Also gibt es Aussagen, welche in sich selbst widersprüchlich sind. Es ist oft wichtig und richtig, diese Aussagen aufzuschreiben - damit den lieben Mitmenschen respektive Nachfahren nicht die gleiche Pein widerfährt wie mir, als ich ein kleiner Junge war.

Ich möchte betonen, dass die folgenden Zeilen ein Vorschlag sind und dass meines Erachtens die Problematik der in sich widersprüchlichen Aussagen in der ernsthaften Logik sehr kontrovers diskutiert wird. Aber bilde Dir doch selbst ein Urteil! Wie also mit in sich widersprüchlichen Aussagen umgehen? Nun, diese können als in sich widersprüchlich bezeichnet und als solche den nicht wahren Aussagen zugewiesen werden. Jedoch können diese nicht aus sich selbst als nicht wahre Aussagen erschlossen werden, sondern müssen als solche zusätzlich bezeichnet werden. Das ist dann wie ein Fisch, welcher in einem Lebensmittelladen zum Verkauf angeboten wird, dessen Ablaufdatum jedoch überschritten ist. Falls er stinkt, dann merkst Du es selbst, dass es keine gute Idee mehr ist, diesen Fisch zum Verzehr kaufen zu wollen. Stinkt er jedoch nicht, dann siehst Du eventuell auf einer Beschriftung auf der Verpackung des Fisches, dass sein Ablaufdatum überschritten ist. Und so, schlage ich vor, kannst Du mit einer in sich selbst widersprüchlichen Aussage umgehen: Falls Du gemerkt hast, dass etwas mit der Aussage nicht stimmt, dann schreibst Du diese zusammen mit dem Vermerk hin:

³Auch dieses Beispiel habe ich irgendwo geklaut, aber noch abgewandelt. Wenn ich die Quelle noch wüsste, würde ich sie an dieser Stelle aufschreiben.

"Mit dieser Aussage ist etwas nicht in Ordnung". Damit rechnest Du diese Aussage jedoch automatisch den nicht wahren Aussagen zu. Dann kannst Du weiter Deinen Überlegungen nachgehen. Diese Problematik kann unter einem pessimistischen oder optimistischen Standpunkt betrachtet werden. Einfacher ausgedrückt: Das kann als Nachteil oder als Vorteil angesehen werden. Der pessimistische Standpunkt ist, dass die so vorgestellte, "naive" Logik fehlerhaft und in sich widersprüchlich ist. Der optimistische Standpunkt ist, dass es uns Menschen braucht, um Logik betreiben zu können. Vielleicht werden Maschinen und Computer immer besser und überflügeln uns immer öfter in Teilgebieten an sogenannter Intelligenz überflügeln. Ein Beispiel dafür ist im Moment (am 31. Mai 2019) die Gesichtserkennung. Es soll jetzt Computern besser als uns Menschen gelingen, Gesichter zu erkennen. Das kann beispielsweise wichtig sein, um polizeilich gesuchte Menschen in Flughäfen oder Bahnhöfen zu erkennen. Und da finde ich den Gedanken tröstlich, dass es uns Menschen im Moment noch gelingt, Computer oder Roboter insofern zu überflügeln, als ich noch nie von einem Computer gehört hätte, welcher aus freien Stücken oder nach einer entsprechenden Aufforderung ein Skript über Logik schreiben würde.

Übrigens ist der Begriff der Widerspruchsfreiheit selbst recht heikel. Wie ich mit dem Beispiel 18.18 zeigen möchte, kann eine Aussage nur schon durch die Reihenfolge der Niederschrift zu einer Widersprüchlichkeit führen.

Die nächsten Kapitel 6 bis 14 beschäftigen sich mit der Definition von logischen Verknüpfungen. Diese sind immer gleich aufgebaut: Zuerst werden Beispiele gemacht, welche zeigen sollen, wie logische Verknüpfungen aufgebaut sind. Die Eigenschaften der logischen Verknüpfungen werden mit Tabellen beziehungsweise Schaltbildern anschaulich dargestellt. Die Kapitel enden jeweils mit einer mathematisch formalisierten Darstellung der logischen Verknüpfungen. Diese werden jeweils noch aufgelöst bis sie wieder rein sprachliche Beschreibungen darstellen. Außerdem werde ich versuchen, bei den drei gebräuchlichsten logischen Verknüpfungen (der Konjunktion⁴ und der Disjunktion⁵ sowie der Implikation⁶) "Abkürzungen" anzugeben, welche verwendet werden können, um logische Ausdrücke auszuwerten. Ich versuche, den Schritt von der umgangssprachlichen Darstellung der Aussagen in die formale Darstellung in möglichst viele, möglichst kleine Schritte zu unterteilen, so dass Du Dich möglichst ohne eigene Anstrengung an die formale mathematische Darstellung gewöhnst, und sie vielleicht, wenn ich Glück habe, sogar schätzen lernst. Denke daran, dass Du natürlich jederzeit das Recht hast, die Kapitel zu überlesen, falls es Dir zu blöd wird!

⁴ "Und-Verknüpfung"

⁵, Oder-Verknüpfung"

⁶logischen Schlussfolgerungen

Vielleicht liest Du zuerst ein späteres Kapitel und kommst dann wieder auf diese Definitionen zurück. Ich nehme mir die Freiheit, dass ich in der sprachlichen Beschreibung von formalisierten Aussagen diese, falls sie offensichtlich nicht wahr sind, in der indirekten Schreibweise wieder geben. Wenn ich also schreibe: "Es gilt nicht, dass Eisbären in der Antarktis leben würden", dann bedeutet dies eben, dass Eisbären nicht in der Antarktis leben.

KAPITEL 3

Was sind Mengen?

Im umgangssprachlichen Sinn wird der Begriff der Menge oft als Umschreibung ähnlich wie das Wort "viel" verwendet. "Der Demarmels erzählt eine Menge Scheiße" könnte beispielsweise eine solche Aussage sein, in welcher dieses Wort verwendet wird. In einem Kreuzworträtsel war jedoch einmal ein gesuchter Begriff "Menge zwischen zwei Fingern". Wüsstest Du ihn? Würde ich jetzt einen professionellen Text schreiben, dann würde ich Dich darüber im Dunkeln lassen, um welchen Begriff es sich dabei handelt. Schließlich habe ich auch lange darüber nachgedacht. Warum sollte ich Dir jetzt die Lösung "auf dem Silbertablett" präsentieren? Nun, ich schreibe keinen professionellen Text. Und darum begnüge ich mich damit, die Lösung als Fußnote einzufügen¹. Obwohl in der Umgangssprechei der Begriff "Menge" oft gleichbedeutend mit der Eigenschaft "viel" ist, kann in der Mathematik eine Menge aber nichts sein. Meine Definition von einer Menge ist:

DEFINITION 3. Eine Menge ist eine Zusammenfassung von Symbolen. Jedes Symbol kann jedoch höchstens einmal in einer Menge auftreten. Dabei darf die Menge weder direkt noch indirekt in der Zusammenfassung enthalten sein. Ein Symbol, welches in einer Menge enthalten ist, wird Element geheißen. Ein Menge werde genau dann Mengensystem geheißen, falls jedes Element der Menge wiederum eine nichtleere Menge ist.

Diese Definition ist vom Typ Marke Eigenbau². Mengen werden üblicherweise so definiert, als für sie ein Symbol reserviert wird. Üblicherweise ist das Symbol für eine Menge "M", getreu dem Grundsatz, dass von einem Begriff der erste Buchstabe genommen und dieser als Symbol für den Begriff genommen wird.

Nun kommt etwas, was immer für Verwirrung sorgt - auch für mich. Ich möchte mich mit der Frage beschäftigen, ob es denn Mengen gibt, welche nicht leer sind? Ich beginne am Besten zuerst mit dem Lemma:

Definition von Mengen

¹Die Lösung ist: "Prise", also etwa eine Prise Salz. Der Witz dabei ist, dass genau nicht "viel", sondern "wenig" damit gemeint ist. Also nicht etwa ein Kilo Salz, sondern ganz, ganz wenig Salz.

²Das bedeutet, dass Du diese Definition so in keinem Lehrbuch findest. Ich habe diese Definition selbst zusammengebastelt. Darum tust Du gut daran, zu überlegen, ob diese Definition kompletter Nonsens, teilweise falsch, eigentlich richtig, richtig oder sogar genial ist.

Lemma 4. Es gibt Mengen, welche nicht leer sind.

BEWEIS. Im Lemma 2.0.1 habe ich angenommen, dass es wahre Aussagen gibt. Also kann ich daraus folgern, dass die Menge der wahren Aussagen nicht leer ist. Denn ansonsten wäre die Menge aller Aussagen leer. Damit glaube ich, den Beweis des Lemmas erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Wozu das Ganze? Das Problem ist, dass es möglich sein könnte, etwas zu definieren, welches gar nicht gibt. Ein Beispiel dafür für etwas, was es nicht gibt, ist die Definition der kleinsten Zahl, welche größer als 0 ist. Das gibt es nicht. Denn wäre eine solche vorhanden, dann kann ich diese mit x bezeichnen. Dann müsste jedoch auch

 $\frac{x}{2}$

eine Zahl sein, welche größer als Null ist. Jedoch müsste diese auch kleiner als x sein. Damit könnte jedoch x nicht die kleinste Zahl sein, welche größer als Null ist. Damit das nicht auch hinsichtlich der Annahme von leeren Mengen passiert, habe ich das kleine Lemma aufgeschrieben. Interessant ist aus meiner Sicht, dass sich der Beweis von nicht leeren Mengen auf die Annahme von wahren Aussagen stützt und somit mehr oder weniger ebenfalls eine Definition ist. Jedoch ist die Annahme von wahren Aussagen bis jetzt immer noch eine Annahme, welche durchaus sinnvoll ist.

Es ist nun am einfachsten, wenn Du Dir unter einer Menge eine Menge von Zahlen vorstellst, auch wenn wenn dieser Mengenbegriff keineswegs so "harmlos³" ist, wie es aussieht. Aber es sei nun M die Menge der Zahlen 1, $\frac{1}{2}$, $\frac{1}{4}$ sowie $\frac{1}{8}$. Dann kann ich das so aufschreiben:

$$M = \left\{1, \, \frac{1}{2}, \, \frac{1}{4}, \, \frac{1}{8}\right\}$$

Die Zahlen 1, $\frac{1}{2}$, $\frac{1}{4}$ sowie $\frac{1}{8}$ werden die Elemente der Menge M geheißen. Die öffnende und geschweifte Klammer ("{" beziehungsweise "}") geben an, dass es sich um eine Mengenbezeichnung handelt. Aber das kann problematisch werden. Ein Problem kann beispielsweise dann auftreten, wenn Bruchzahlen mit Komma geschrieben werden. Im obigen Fall würde dies dann so aussehen:

³Keine Angst, es ist sowieso nie von Gefahr für Leib und Leben die Rede. Der Ausdruck "gefährlich" würde bedeuten, dass eine Aussage nicht wahr sein könnte. Wenn es darum geht, dass Du eventuell eine Prüfung nicht bestehen könntest, ausgeschlossen würdest von einem Leben in Anstand und Würde, dauernd Praktikantenjobs erledigen müsstest, 1 Euro-Jobs ausüben dürftest oder so ähnlich - ja, dann ist es wirklich GEFÄHRLICH!

$$M = \{1, 0, 5, 0, 25, 0, 125\}$$

Na ja, das sieht nicht schön aus. In diesem Fall kannst Du selbstverständlich auch Semikolons⁴ als Zahlentrenner nehmen:

$$M = \{1; 0, 5; 0, 25; 0, 125\}$$

Oder aber Du könntest Punkte als Trennzeichen bei Bruchzahlen verwenden, was wie folgt aussehen würde:

$$M = \{1, 0.5, 0.25, 0.125\}$$

Das anderes Problem ist dasjenige, dass in der Definition nichts davon gesagt, wird, dass es sich dabei um endlich viele Symbole handeln muss. Ein guter Teil der Analysis lebt jedoch gerade davon, dass Mengen unendlich viele Elemente besitzen können. Ein Beispiel dafür ist die Menge der natürlichen Zahlen, welche wie folgt definiert werden könnte:

$$\mathbb{N} = \{1, 2, 3, 4, ...\}$$

Wieder sind die Punkte unsäglich. Denn diese heißen eigentlich: "Frau oder Mann weiß ja, wie es weiter geht". Und ich behaupte: Davon kann nicht ausgegangen werden. Denn damit lässt sich genau nicht rechnen. Wenn Du es ganz exakt aufschreiben möchtest, dann kannst Du es wie folgt aufschreiben, wobei ich zugebe, dass die logischen Verknüpfungen noch nicht behandelt habe (lasse Dich bitte jedoch nicht davon abschrecken, ich werde alle ganz genau erklären - lese einfach weiter!):

$$(3.0.1) \mathbb{N} = \{ x \mid (x = 1) \lor ((y \in \mathbb{N}) \land (x = y + 1)) \}$$

In Worten besagt diese Definition der Menge der natürlichen Zahlen das folgende: "Die Menge der natürlichen Zahlen ist definiert als die Menge der Objekte x, für welche gilt: x ist Eins oder es gibt eine andere natürliche Zahl, welche mit y bezeichnet wird, so dass x=y+1 ist". Der genaue logische Aufbau der Aussage rechts vom Trennstrich "]" muss Dich nicht interessieren. Wesentlich ist nur, dass die Menge so definiert ist, dass ihre Elemente, welche mit dem Symbol x bezeichnet werden, einer Eigenschaft zugeordnet werden. Dies lässt sich dann sprachlich so formulieren: "Eine Menge M ist definiert als die Menge aller Elemente, welche mit x bezeichnet werden, für welche jeweils gilt ("]"). Dabei ist es meines Wissens auch möglich, den Satzteil "für welche gilt" auch mit einem Doppelpunkt ":" abzukürzen. Ich werde mich jedoch an den Trennstrich halten. Die einzelnen natürlichen Zahlen werden dann auch Elemente der Menge der natürlichen Zahlen geheißen.

⁴auf gut Deutsch: "Strichpunkt" ";"

Nun möchte ich weiter Beispiele für Mengen aufschreiben: Es sei A die Menge aller Automarken⁵. Dann umfasst A mindestens die Automarken "Mercedes", "Citroën", "Toyota", natürlich nebst anderen Automarken. Dann heißen die Automarken "Mercedes", "Citroën" und "Toyota" die Elemente der Menge aller Automarken.

Oder es sei F die Menge aller Fruchtarten. Dann umfasst F mindestens die Fruchtart "Äpfel", "Birnen", "Bananen", "Aprikosen". Also sind "Äpfel", "Birnen" oder "Bananen" Elemente der Menge aller Fruchtarten

Wenn ich eine Menge mit der Bezeichnung M und ein beliebiges Element mit der Bezeichnung e habe, dann wird, wie ich es schon geschrieben, jedoch noch nicht gesagt habe, das Symbol der Menge üblicherweise mit einem Großbuchstaben und das Element mit einem Kleinbuchstaben gekennzeichnet. Der Buchstabe "e" ist übrigens keine glückliche Bezeichnung für ein Element. Denn in der Mathematik ist e im Allgemeinen für die sogenannte eulerschen Zahl e definiert, welche ungefähr den Wert 2.718 besitzt. Aber da ich sehr wahrscheinlich erst nach sehr vielen Seiten, wenn überhaupt dazu komme, die eulersche Zahl zu definieren, werde ich mir erlauben, an dieser Stelle sehr trotzdem den Buchstaben "e" als Bezeichnung eines Elements zu definieren. Jetzt kann ich zwei Fälle unterscheiden: Entweder, das Element e gehört zur Menge M oder das Element e gehört nicht zur Menge. Falls das Element e zur Menge M gehört, dann schreibe ich: $e \in M^6$. Falls das Element e nicht zur Menge M gehört, dann schreibe ich $e \notin M$. Ich könnte aber auch schreiben $\neg (e \in M)$. Um Beispiele zu machen: Da "Toyota" eine Automarke ist, gilt "Toyota" $\in A$. Da Aprikosen Früchte sind, gilt "Aprikose" $\in F$. Da jedoch "Mercedes" keine Fruchtart ist, schreibe ich "Mercedes" $\notin F$. Da wiederum Bananen keine Autos sind, schreibe ich "Bananen" $\notin A$.

Mengen sind zusammen mit Aussagen, dass zwei Elemente gleich oder ungleich sind, die kleinsten Bausteine der Logik. Sie entsprechen der Kategorisierung in der menschlichen Entwicklung, also beispielsweise der Aussage: "Kaninchen sind Säugetiere" oder eben "Äpfel sind Früchte". Kinder beginnen in der Regel im Alter von vier bis sechs Jahren, solche Kategorien für ihre Überlegungen zu verwenden.

Wobei, genauer geschrieben, kann bei einer gegebenen Menge M die Aussage $e \in M$ auch als Variablendefinition verwendet werden. Ich mache ein Beispiel: Es sei $M = \{1, 3, 5, 7, 9\}$ die Definition der Menge M als diejenige Menge, welche die ungeraden natürlichen Zahlen bis und mit neun definiert. "Ungerade" bedeutet, dass die Zahl, welche mit dem Symbol n bezeichnet werde, entweder 1 ist oder es eine andere

 $^{^5}$ Sobald die eine oder andere Automarke verschwindet, muss ich diesen Abschnitt wieder neu schreiben. Wie bereits die Griechen gesagt haben: Παντα ρηει - alles fließt.

^{6,, €&}quot; kann als "enthalten" gelesen werden, falls Du den Text auf Deutsch liest

natürliche Zahl g gibt (also mit dem Symbol "g" bezeichnet werde) so dass gilt:

$$n = 2 \cdot g + 1$$

Ich möchte kurz zeigen, dass das dies auf die Zahlen der Menge M zutrifft: 1 ist in der Menge M enthalten. Also ist 1 per Definition (willkürlicher Festlegung) ungerade. 3 ist ungerade, da gilt:

$$3 = 2 \cdot 1 + 1 = 2 + 1$$

5 ist ungerade, da gilt:

$$5 = 2 \cdot 2 + 1 = 4 + 1$$

7 ist ungerade, da gilt:

$$7 = 2 \cdot 3 + 1 = 6 + 1$$

Und schlussendlich ist 9 ungerade, da gilt:

$$9 = 2 \cdot 4 + 1 = 8 + 1$$

Dann kann mit der Aussage: Es sei e ein Element von M (formal beschrieben mit $e \in M$) verwendet werden, um die Variable e zu definieren (zur Definition einer Variablen siehe Definition?? oben). Dann ist e ein Metasymbol für eine der Zahlen 1, 3, 5, 7 oder 9. Welches Symbol genau gemeint ist, kann und will bis zu dieser Stelle niemand sagen - auch wenn dies widersinnig erscheint. Das Metasymbol ist gewissermaßen anonymisiert. Anstatt über ein Symbol der Menge M nachzudenken, überlege ich mir, welche wahren Aussagen ich über alle Elemente der Menge M machen kann. Dies ist wieder ein Beispiel für eine Kategorisierung, welche in der präoperativen Stufe der kognitiven Entwicklung nach Piaget beschrieben wird. Damit ist gemeint, dass beispielsweise Tierarten zusammengefasst werden wie "Hunde, Katzen, Kühe und Mäuse sind Säugetiere". Dann kann ich schreiben: "Es sei s ein (Meta-)Symbol für Säugetiere. Dann hat s vier Gliedmaßen, sofern es keine Geburtsmissbildung respektive Unfall erleiden musste." Es kann jedoch auch geschrieben werden, welche gemeinsamen Eigenschaften die aufgezählten Säugetierarten nicht besitzen. Beispielsweise kann ich aufschreiben: "Es gilt nicht, dass s ein Metasymbol für eine Säugetierart ist, welches andere Säugetiere isst. Denn Katzen oder der Hunde essen Fleisch, Kühe und Mäuse jedoch nicht. Angewendet auf mathematische Aussagen wird später also nie ausschließlich die Rede davon sein, dass $e \in M$ sei. Es werden typischerweise Aussagen wie die folgende gemacht

$$\forall e \in M : e \text{ ist ungerade.}$$

Ganz ausgeschrieben bedeutet dies, dass für alle Elemente e in der Menge M gilt, dass e ungerade ist. Nun, da sowohl 1, 3, 5, 7 wie auch 9 ungerade sind, haben wir wohl nichts dagegen einzuwenden - außer dass es wahrscheinlich immer noch fragwürdig ist, für was das gut sei. Jedoch werden später wohl schier unzählige mathematische Aussagen

sich wunderbar klar mittels der Variablenschreibweise formulieren, jedoch noch besser beweisen lassen, wenn anstelle der ausgeschriebenen Schreibweise wie "1, 3, 5, 7 sowie 9 sind ungerade" die Schreibweise mittels Eigenschaften (siehe Aussage 3.0.1 oben) verwendet wird. Dies ist mindestens dann bestimmt der Fall, wenn M unendlich viele Elemente besitzt.

Wenn ich eine Menge M definiert habe, dann fordere ich, dass die Menge weder direkt noch indirekt als Element der Menge definiert ist. Ein Beispiel dafür, was nicht geht, ist die folgende Menge: Es sei S die Menge aller Mengen, welche sich selbst nicht als Element enthalten. Das hatte der Mathematiker Cantor bemerkt⁷. Denn diese Menge ist in sich widersprüchlich. Denn es geht um die Frage, ob S in S enthalten sei. Falls ich sage: "Doch, S muss in S enthalten sein, denn S ist auch eine Menge, welche sich nicht selbst als Element enthält", dann ist S gerade eine Menge, welche sich selbst als Element enthält. Also darf S kein Element von S sein. Ist jedoch S nicht in S enthalten, dann ist S einer Menge, welche sich nicht selbst als Element enthält. Also ist S in S als Element enthalten.

Woher kommt der Widerspruch und wie kann er sich auflösen? Der Widerspruch stammt m.E. daher, weil eine Menge sicher syntaktisch beschrieben werden kann. Das Wort syntaktisch bedeutet, dass klar definierte Regeln aufgeschrieben werden können, welche beschreiben, was eine Menge ist und was nicht. In den Abbildungen 3.0.1 bis 3.0.7 habe ich die Beschreibung einer Menge als Abbildung eingefügt. Ich habe zuerst gedacht, das sei einfach, aufzuschreiben, was eine Menge ist und was nicht. Aber ich glaube, ich habe mich getäuscht. Vielleicht empfindest Du die Darstellung überschaubar. Dann gratuliere ich Dir! Ich finde diese Beschreibung schon sehr unübersichtlich. Die Beschreibung von Mengen mittels Flussdiagrammen habe ich zuerst in einem Buch über Programmierung mittels Modula-2 zuerst gesehen⁸. Ich habe das Buch selbst nicht kapiert. Jedoch fand ich die Beschreibung der Grammatik der Programmiersprache mittels Flussdiagrammen schön. Diese Beschreibung in den Abbildungen der Abbildungen 3.0.1 bis 3.0.7 kannst Du so lesen: Einerseits kannst Du eine Menge wird so definieren, indem kein beziehungsweise ein Symbol definiert wird. Dabei sollen die Symbole so definiert werden, wie ich es im Kapitel?? dargestellt habe. Einerseits ist es möglich, die Mengendefinition damit bereits abzuschließen. Dann ist die Menge jedoch nicht näher umschrieben. Das heißt, dass in diesem Fall uns außer dem Namen keine weiteren Eigenschaften der Menge bekannt sind. Aber es ist möglich, auf diese Weise

⁷Da ich den Beweis nicht mehr im Kopf hatte, habe ich ihn bei http://www.mathe-online.at nachgelesen

⁸Wenn ich mich nicht täusche, war es dieses Buch (der Link ist natürlich im PDF aktiviert. Ausgedruckt lautet er http://www.inf.ethz.ch/personal/wirth/books/Modula2D/)

Abbildung 3.0.1. syntaktische Beschreibung eines Operators

ein Menge zu bezeichnen. Ob das sinnvoll ist, wage ich jedoch zu bezweifeln. Darum kann andererseits die Menge noch weiter beschrieben werden. Entweder, indem eine Bedingung aufgeschrieben wird. Oder es können kein, ein oder mehrere Symbole aufgeschrieben werden. Schlussendlich können neue Mengen erzeugt werden, indem diese durch mehr oder weniger komplizierte Operationen aus anderen Mengen gebildet werden. Die Operation werden später noch aufgelistet. Ich habe diese ausschließlich hier aufgeschrieben, weil ich aufzeigen möchte, wie Mengen gebildet werden können.

Den Begriff des "maskierten Symbols" wirst Du weiter oben nicht finden. Und nein, dieser Ausdruck ist nicht in der Mathematik geläufig. Dort wird diese Thematik generös umschifft. Dafür kenne ich ihn aus der Informatik. Du kannst jedoch beruhigt sein, denn ich werde den Begriff des maskierten Symbols zwar beschreiben. Aber ich werde ihn später nicht mehr verwenden. Er dient bloß dazu, Dir die Schwierigkeit einer sogenannten hieb- und stichfesten Definition vor Augen zu führen. Weiter bedeute das angespitzte Rechteck eine Entscheidung. Das Gleichheitszeichen mit drei Strichen bedeute definitionsgemäße Gleichheit. Ich möchte kurz beschreiben, was ich überhaupt mit diesem Flussdiagramm ausdrücken wollte: Ein maskiertes Symbol ist zuerst einmal ein Symbol. Ist das Symbol jedoch einer der folgenden Zeichen: "{,,, "}", ",", "/", dann verwende ich nicht das Symbol, sondern das maskiertes Symbol. Ich verwende also anstelle des Symbols das Symbol, dem jedoch ein Schrägstrich "/" vorangestellt wird. Würde ich bloß "Symbol" schreiben, dann wäre gemäß dieser Beschreibung die folgende Menge zwar syntaktisch korrekt, jedoch von der Bedeutung her ("semantisch")

Abbildung 3.0.2. syntaktische Beschreibung einer Operation

mehrdeutig:

$$M = \{,\}\}, \{,a,/\}$$

Dann wäre es beispielsweise unklar, ob das erste Element jetzt ein Komma und zwei schließende geschweifte Klammern (, }}) oder ,}}, { wäre. Jedoch könnte diese Unklarheit beseitigt werden, indem ein Füllsymbol (in diesem Fall ein Schrägstrich) verwendet würde. So wie ich in der Abbildung 3.0.5 die Maskierung definiert habe, geht es darum, dass Also könnte im obigen Beispiel etwa geschrieben werden:

$$M = \{/,/\}/\},/\{/,a,//\}$$

In diesem Fall hätte die Menge M die folgenden Elemente: Das erste Element wäre ",/ $\}$ / $\}$ ". Es würde also aus einem Komma und zwei schließenden Klammern bestehen. Das zweite Element wäre "/ $\{$ ". Dies wäre dann eine öffnende Klammer. Das dritte Element wäre "a", also der Buchstabe "a". Dieser Buchstabe könnte eventuell als Symbol für

Abbildung 3.0.3. syntaktische Beschreibung einer Bedingung

Abbildung 3.0.4. syntaktische Beschreibung eines Trennzeichens

Abbildung 3.0.5. syntaktische Beschreibung der maskierten Symbole Start demaskiere Symbol X≡Symbol Ist X = "/"YZ und (Y = "," oder Y = "{,, oder Y = "}" oder Y = "/") und ist nein ja Z ein Symbol? Ist X = "/,"Y und (Y = "," oder Y = "{" oder Y = "}" oder Y = "/")? ja nein Demaskiertes Symbol≡ Demasakieres Demasakieres Symbol ≡ Y Y demaskiertes Symbol(Z) Symbol≡ X Ende Maskiertes

etwas anderes verwendet werden könnte. Was das genau ist, wird jedoch im Rahmen dieser Mengenbeschreibung nicht preisgegeben. Das vierte Symbol wäre "/", also ein Schrägstrich.

Symbol

Das System der Maskierung kommt in der Mathematik übrigens nicht vor. Dafür umso intensiver in der Informatik. Dort dient es dazu,

ABBILDUNG 3.0.6. syntaktische Beschreibung einer expliziten Mengenbeschreibung

zwischen Symbol und Metasymbol zu unterscheiden. Jedoch werden durch diesen Kunstgriff die Mengen fast nicht mehr lesbar. Aber falls ich dann die Elemente auslese, dann wäre beispielsweise die Aussage

$$, \in M$$

zwar wahr - aber leider schon wieder grenzwertig. Besser wäre es wohl aufzuschreiben, dass

$$','\in M$$

sei. Auch diese Aussage wäre wahr. Und nun kommt natürlich die "nächste Katastrophe". Denn würde ich willkürlich definieren

$$N \equiv M \cup \{\cup\}$$

Nun wäre das natürlich schon wieder gewöhnungsbedürftig. Und ja, wahrscheinlich wäre es eine gute Idee, alle Symbole, welche in irgendeiner Form im Zusammenhang mit der Mengenschreibweise vorkommen, entweder von vornherein mit Apostrophen ('), Anführungs- und Schlusszeichen oder Maskierungzeichen zu maskieren. Aber ich werde

Abbildung 3.0.7. syntaktische Beschreibung einer Menge

jetzt an dieser Stelle abbrechen. Einfach, weil die Diskussion an dieser Stelle bloß zeigen soll, wie schwierig es ist, gute Festlegungen zu finden.

Trotzdem sollte es jetzt möglich sein, beliebige Mengen aufzuschreiben. Eine solche ist ist zum Beispiel

$$\mathbb{Z} = \left\{ z \mid \exists n_1 \, n_2 \in \mathbb{N} : z = (n_1, \, n_2) \right\}$$

Um diese Menge aufzuschreiben, kannst Du in der Abbildung 3.0.7 beginnen und dann den mittleren Pfad einschlagen. Das Symbol, welches verlangt wird, ist Z. Diese Menge ist die übrigens die Definition der Menge aller ganzen Zahlen, wobei jedoch die Addition genauer definiert werden müsste. Anschließend wird das Gleichheitszeichen aufgeschrieben und dann zu expliziten Mengenbeschreibung (siehe Abbildung 3.0.6). In dieser expliziten Mengenbeschreibung wird zuerst die öffnende geschweifte Klammer hingeschrieben. Dann folgt ein Symbol, ein vertikaler Trennstrich um zum Schluss eine Bedienung, welche in mathematischer Form hingeschrieben wurde. Diese Bedingung lautet

ausformuliert nicht mehr und nicht weniger: Es existieren zwei natürliche Zahlen, welche mit n_1 respektive n_2 benennt sein sollen, so dass gilt, dass z die geordnete Menge aus n_1 und n_2 ist. Eine geordnete Menge werde ich später erklären, wenn ich mich über die ganzen Zahlen unterhalte.

Auf diese Weise sollte es möglich sein, alle Menge in einer Liste einzutragen - in der Menge aller Menge eben. Dass diese Menge aller Menge in der Liste aller Mengen enthalten sein soll oder eben nicht, interessiert meines Erachtens nur unwesentlich. Falls es interessiert, dann führt dies zu einem Widerspruch, welcher oben aufgeschrieben wurde. Aber ich habe ja oben definiert, dass in der resultierenden Liste nicht danach gesucht werden soll, ob die Menge in der Menge enthalten ist. Es ist jedoch sicher richtig, dass darauf hingewiesen wurde, dass es diesbezüglich Schwierigkeiten geben kann. Es wurde meines Erachtens durch Cantor darauf hingewiesen, dass zwischen einer Zusammenfassung von Symbolen (also einer Menge) und einzelnen Symbolen unterschieden werden soll. Ich halte es so, wie ich es gelesen habe (wobei mir im Moment die Quelle entfallen ist): Falls eine Menge definiert wird, dann soll darauf geachtet werden, dass diese Menge nicht "ins Blaue hinaus" definiert wird. Was bedeutet, dass ich darauf achten muss, dass die Elemente gut definiert werden müssen. Und dass kein Element ein Symbol für etwas ist, was gar nicht existiert, oder welches genau wieder auf sich selbst hinweist. Es gibt natürlich Ausnahmen. Eine davon ist eine leere Menge, als Symbol \emptyset . Diese Menge besitzt keine Elemente. Wieso soll das gut sein, etwas aufzuschreiben, was es gar nicht gibt? Es ist schon wichtig, sich zu überlegen, ob etwas überhaupt existieren kann. Und wenn es nicht existiert, dann lohnt es sich, das aufzuschreiben. Dadurch können andere Personen oder ich selbst zu einem späteren Zeitpunkt davon abgehalten werden, nach etwas zu suchen, was nicht existieren kann. Oder nach etwas, was in sich selbst widersprüchlich wäre (vergleiche mit dem Abschnitt 2). Andere Mengen, welche grundsätzlich vor der Verwendung genau auf innere Widersprüche untersucht werden müssen, sind rekursiv definierte Mengen, wie ich unter der Definition 3.0.1 oben gezeigt habe. Das Problem dieser Menge ist, dass gar nicht mehr alle Elemente der Menge aufgeschrieben werden können! Die Frage ist, ob dies sinnvoll ist oder nicht. Diese Frage werde ich später sicher wieder aufnehmen.

Eine andere Lösung des Problems in sich widersprüchlicher Mengen besteht darin, Mengen und Mengen von Mengen und Mengen von Mengen und so weiter separat zu definieren. Dann würden die Mengen von Mengen typischerweise als "Metamengen" definiert. Also sind Mengen und Elemente klar voneinander zu trennen. Eine Menge kann nur innerhalb von Mengen, welche Mengen als Elemente besitzen, ein Element sein. Die folgende Menge wäre in diesem Sinn falsch

formuliert.

$$M_1 = \{1, \{2\}\}\$$

Dennoch wird diese Schreibweise oft in der Mathematik angewendet. Doch wieso wäre diese Schreibweise falsch? 1 und die Menge mit dem Element 2 wären Elemente der Menge M_1 . Dies bedeutet, dass ein Element und eine Menge mit einem Element in der gleichen Menge verwendet würden. Richtig formuliert müsste es in diesem Zusammenhang heißen: Entweder schreibe ich

$$M_2 = \{1, 2\}$$

oder aber

$$M_3 = \{\{1\}, \{2\}\}$$

 M_2 ist dann die Menge mit den Elementen 1 respektive 2, M_3 ist dann die Metamenge, welche die Mengen $\{1\}$ respektive $\{2\}$ enthält. Aber ich vermute (ich weiß es nicht), dass jede in diesem Sinn falsch aufgeschriebene Menge in einer richtig geschriebene Menge umgewandelt werden kann. Im Moment möchte ich mir jedoch keine Gedanken darüber machen, ob das auch wirklich so ist.

Wie oben bereits erwähnt spielen in sich selbst widersprüchliche Mengen für die weiteren Betrachtung eine eher untergeordnete Rolle. In der Logik, so wie ich sie auf Wikipedia überflogen habe, wird das jedoch "breitgewalzt", also ausführlich besprochen werden. Und wie schon besprochen, kapiere ich die Ausführungen jeweils nur teilweise. Ich werde im folgenden von einer "wohldefinierten Menge" sprechen, wenn ich zwar eine beliebige, jedoch nicht potentiell in sich oder in Bezug auf andere Mengen widersprüchlichen Menge im Kopf habe. Ein solche Menge, welche sicher nicht in sich widersprüchlich ist, ist beispielsweise die Menge $M = \{0, 1, 2, 3, 4, 5, 6, 7\}$. Bevor ich weiter gehe, möchte ich noch aufschreiben, wann zwei Mengen als gleich zu betrachten sind.

DEFINITION 5. Es seien M und N beliebige Mengen. Ist dann jedes Element von M in der Menge N enthalten und umgekehrt jedes Element der Menge N in der Menge M, dann dann seien die Mengen gleich.

Ich möchte nun Beispiele von Mengengleichheiten respektive Mengenungleichheiten aufschreiben Es seien beispielsweise die Mengen M und P wie folgt gegeben:

$$M = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

$$P = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

Dann sind die Mengen M und und P gleich. Denn jedes Element von M kommt in der Menge P und jedes Element von P kommt in

der Menge M vor, wie Du wohl ebenfalls unmittelbar siehst. Auch die Mengen

$$S = \left\{ \frac{1}{2}, 1, \frac{1}{4}, \frac{1}{8} \right\}$$

$$T = \left\{ \frac{1}{8}, \frac{1}{4}, \frac{1}{2}, \frac{1}{1} \right\}$$

sind gleich der Menge M. Erstaunlicherweise sind jedoch die folgenden Mengen M und Q ebenfalls gleich:

$$M = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

$$Q = \left\{1, \frac{1}{2}, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

Der Grund dafür ist, dass alle Elemente von M (also die Elemente 1, $\frac{1}{2}$, $\frac{1}{4}$ sowie $\frac{1}{8}$) sowohl ebenfalls in der Menge Q vorkommen. Ebenso kommen die Elemente von Q (also die Elemente 1, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{4}$ sowie $\frac{1}{8}$) ebenfalls in der Menge M vorkommen. Jetzt möchte ich selbstverständlich noch ein Beispiel für zwei Mengen aufschreiben, welche nicht gleich sind. Es seien die Mengen

$$M = \left\{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

$$R = \left\{0, 1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}\right\}$$

gegeben. Dann sind zwar alle Menge von M in der Menge R enthalten. Jedoch sind nicht alle Elemente von R in der Menge M enthalten. Denn 0 ist zwar in der Menge R, nicht jedoch in der Menge M enthalten.

Die Beispiele mögen Dir wahrscheinlich lächerlich einfach erscheinen. Tatsächlich sind jedoch viele äußerst vertrackte Beweise in der Analysis derart aufgebaut, dass im Kern gezeigt wird, dass zwei Mengen entweder gleich oder ungleich sind.

Ich habe mir erlaubt, die Menge Ω als diejenige Menge zu definieren, welche keine in sich oder gegenüber anderen Aussagen widersprüchliche Aussagen enthalte. Obwohl solche widersprüchliche Aussagen sehr wohl existieren (siehe dazu Abschnitt 2). Das macht für die Logik meines Erachtens keine gravierende Probleme. Denn falls eine A eine in sich widersprüchliche Aussage ist, dann kann sie keine wahre Aussage sein. Also muss sie in der Menge derjenigen Aussagen enthalten sein, welche nicht wahr ist.

Bevor ich weitere Elemente vorstelle, möchte ich kurz das erste Mal die leere Menge definieren. Es gelte:

DEFINITION 6. Es sei $\emptyset \equiv \{\}$ die leere Menge. In Worten: Die leere Menge \emptyset sei definiert als diejenige Menge, welche keine Elemente besitze. Wenn ich umgekehrt schreibe, eine (wohldefinierte) Menge M sei nichtleer (oder gewöhnlicher geschrieben: nicht leer), dann meine ich, dass gilt

$$M \neq \emptyset$$

In Worten: Ich meine damit, dass M nicht leer sei. Also muss M mindestens ein Element besitzen.

KAPITEL 4

Über das sogenannte Bilderverbot in der Mathe

Vorbemerkung: Diese Bezeichnung "Bilderverbot" ist eine Bezeichnung, welche ich selber gewählt habe. Ich werde jedoch noch erklären versuchen, wieso ich das so gemacht habe.

Ich möchte ein Beispiel machen: Jemand sagt, dass gilt

$$\sum_{k=0}^{n} (2 \cdot k + 1) = (n+1)^{2}$$

Was bedeutet diese Formel? In Worten besagt diese Formel: Gegeben sei die Menge der ungeraden Zahlen. Das sind etwa die Zahlen 1, 3, 5, aber auch 111, 127. Also die Zahlen welche ich dadurch bilden kann, dass ich eine beliebige "natürliche Zahl" abzüglich 1 nehme, diese mit 2 multipliziere und dann 1 hinzuzähle. Beispiel: Wenn ich 42 als Ausgangszahl nehme, dann kann ich rechnen

$$2 \cdot 42 + 1 = 84 + 1 = 85$$

Nun ist die Behauptung: Wenn ich eine bestimmte Zahl habe, sagen wir 3. Dann bestimme ich die entsprechende ungerade Zahl, indem ich rechne:

$$2 \cdot 3 + 1 = 6 + 1 = 7$$

Weiter zähle ich alle ungeraden Zahlen welche kleiner oder gleich diese Zahl (7 im Beispiel) sind, zusammen. Dann erhalte ich

$$1 + 3 + 5 + 7 = 4 + 12 = 16$$

Also behaupte ich, dass diese Summe gleich die ursprüngliche Zahl (3) mal sich selber ist. Und hier kommt das "Bilderverbot" ins Spiel: Weil ich gesehen habe, dass die Behauptung für die Zahl 3 stimmt, heißt dies nicht, dass dies für alle Zahlen gelten muss. Und ja, die Regel ist üblicherweise ist schon sinnvoll. Übrigens ist es auch Sinnvoll, eine allgemeine Aussage zu widerlegen, indem ein Gegenbeispiel gefunden wird. Ein gutes diesbezügliches Beispiel finde ich die sogenannten Mersenne-Zahlen¹. Dies sind spezielle gebildete Zahlen. Ursprünglich war die Idee, dass alle diese Zahlen sogenannten Primzahlen seien, also solche, welche ohne Rest nur durch 1 und die Zahl selber geteilt werden können. Jedoch wurde dann eine Zahl gefunden, welche eine solche Mersenne-Zahl ist, jedoch trotzdem keine Primzahl ist. Also kann ich

¹siehe beispielsweise https://de.wikipedia.org/wiki/Mersenne-Zahl

schließen, dass ein Beispiel zwar ein gutes Mittel ist, um einen mathematischen Satz zu widerlegen - jedoch nicht, um einen mathematischen Satz zu beweisen.

Das Wort "Bilderverbot" habe ich mir übrigens von der christlichen Religion ausgeliehen. Dort wurde es ja bereits vielfach selber ad absurdum geführt (also durch sich selber widerlegt). In den zehn Geboten von Mose wird geschrieben: "Du sollst dir kein Gottesbild machen" (zitiert von https://de.wikipedia.org/wiki/Bilderverbot). Warum das so geschrieben wurde, ist natürlich im Nachhinein schwierig zu erraten. Und ja: Gerade die römisch katholische Kirche (zu welcher ich selber gehöre) hat sich eigentlich immer darum foutiert (also hat dieses Gebot nie eingehalten). Dieses Bilderverbot besagt im Kern, dass die Frage, wer oder was der Begriff der Göttin oder des Gottes sein könnte, sich selber eigentlich verbietet. Von mir gesehen wäre diese dieses Gebot schon sinnvoll - aber wie schon geschrieben: Daran hält sie in der römisch katholischen Kirche niemand. Und wieso ist das Gebot sinnvoll? Weil die Autoren (leider waren es wahrscheinlich wirklich fast immer Männer, welche die Bibel niederschrieben) an einem bestimmten Punkt in der Niederschreibung des Werks der Meinung waren, dass es nicht möglich sei, zu beschreiben, was unter dem Begriff "Gott" zu verstehen sei. Sie stellten sich vor, dass da etwas sei, was die Geschicke der Welt lenken würde. Was dieses etwas sei, das entziehe sich jedoch der menschlichen Beschreibung. Es wurde auch die Meinung vertreten, dass Gott sehen unweigerlich den eigenen Tod nach sich ziehen würde. Weil die Kraft, welche das Universum geformt habe, so groß und mächtig sein müsse, dass jedes menschliche Leben daneben winzig sein müsse. Denke dabei an Phänomene wie Stürme, die unvorstellbare Größe der Sonne, neben welcher die Erde klein wie eine Stecknadel erscheint. Oder Erdbeben, Tsunamis, Stürme, Tornados, Vulkanausbrüche. Wenn auch die moderne Naturwissenschaft auch die Mechanismen dieser Erscheinungen besser beschreiben kann - steuern oder gar regeln kann die Naturwissenschaft diese Phänomene nicht. Die Menschheit kann beispielsweise Erdbeben immer noch nicht gut vorhersagen oder die Gewalt von Vulkanausbrüchen begrenzen. Aus diesem Grund finde ich eigentlich ganz sinnvoll, wenn der Gottesbegriff so gehandhabt wird, dass Gott ein Bild ist für das Rätsel unserer Existenz.

Aber auch in der Mathematik hält sich niemand an das "Bilderverbot". Wenn beispielsweise ein Beweis für einen Beweis nachvollzogen wird, dann wird häufig eine Skizze angefertigt, um den Beweis für eine bestimmte Situation nachvollziehen zu können. Dies auch im Wissen darüber, dass jede Skizze nur einen bestimmten möglichen Fall beschreiben kann, in welchem ein mathematischer Satz gilt. Obwohl viele Sätze häufig unendlich viele Fälle aufs Mal beschreiben. Trotzdem hilft es für das Erinnern eines Beweises enorm, wenn die Schritte exemplarisch nachvollzogen werden. Jedoch gibt es eine wesentliche Schranke:

ABBILDUNG 4.0.1. Venn-Diagramm einer Menge

Wenn ein mathematischer Satz bewiesen wird, dann reicht es nicht, falls der mathematische Satz an wenigen Beispielen bewiesen wird. Dann wird es sinnvoll, wenn der mathematische Satz für alle Fälle bewiesen wird. Und falls dies nicht geht, dann ist es üblich, den Satz als Vermutung aufzuschreiben und nicht als Satz oder den Satz nur für diejenigen Fälle zu beschreiben, in welchen er gültig ist.

Doch wieso schreibe ich dies an dieser Stelle auf? Ich möchte hier ein erstes Mal mir sozusagen "die Hände schmutzig machen" und Venn-Diagramme beschreiben. Diese dienen zur Visualisierung des Mengenbegriffs und werden in der Mathematik oft verwendet. Obwohl sie für sich selber betrachtet nur einen begrenzten Wert besitzen. In der 4.0.1 ist das Venn-Diagramm einer Menge mit der Bezeichnung "A" abgebildet, welche selber nicht leer sei.

Und nun möchte ich damit beginnen, die Eigenschaften des Venn-Diagramms zu beschreiben - so gut wie ich es kenne und kann. Das in der Abbildung gezeigte Diagramm zeigt die zwei Mengen mit den Bezeichnungen A und B. Dabei gilt

$$A = \{\text{``Kamel'', '`Dromedar'', '`Pfeifhase''}\}$$

$$B = \{\text{'`Pfeifhase'', '`Seekuh'', '`Elefant'', '`Klipppschliefer''}\}$$

$$C = \{\}$$

Als einziges Element ist "Pfeifhase" sowohl in den Mengen A wie auch B vorhanden.

ABBILDUNG 4.0.2. nicht korrektes Venn-Diagramm einer Menge

Es scheint mir wesentlich zu sein, dass ein Element genau einmal in einem Venn-Diagramm eingezeichnet wird. Denn sonst stimmen die Venn-Diagramme aufgrund der Definition der Symbolgleichheit nicht mit den entsprechenden Mengenaussagen überein. In der Abbildung 4.0.2 ist etwa das Element mit der Bezeichnung "böses Element" sowohl in der Menge A wie auch B eingezeichnet. Das ist jedoch nicht korrekt. In der Abbildung 4.0.3 habe zu zeichnen versucht, wie das korrekt gezeichnet werden müsste.

Mehr zeigt das abgebildete Venn-Diagramm nicht. Manchmal werden noch Punkte eingezeichnet für einzelne Elemente. Die Farben sind nicht obligatorisch (aber es sieht doch schöner aus mit Farben, oder nicht?). Die Elemente können mit oder ohne Anführungs- oder Schlusszeichen aufgeschrieben werden. Häufig werden Zahlen oder Anführungs- und Schlusszeichen aufgeschrieben. Die Mengen werden als Kreise oder Ellipsen (etwa "eiförmige Kreise") gezeichnet. Das hat den Vorteil, dass Du besser sehen kannst, wie groß eine Menge ist. Dabei wird angenommen, dass die Mengenbegrenzung keine Ecken hat. Darum gehört der "Pfeifhase" sowohl zur Menge A wie auch zur Menge B. Die Menge C ist speziell. Denn sie ist die sogenannte "leere Menge". Schlussendlich spielt es keine Rolle, mit welcher Farbe die Elemente geschrieben werden. Auch spielt die Hintergrundfarbe der Mengen keine Rolle.

Ab und zu werden auch keine Elemente in die runden Mengen eingezeichnet. Dann ist ist die Meinung, dass die Menge durch die Punkte

ABBILDUNG 4.0.3. korrigiertes Venn-Diagramm der vorhergehenden Abbildung

innerhalb der runden Mengen definiert werden. Dann besteht jedoch eine Schwierigkeit darin, leere Menge zu zeichnen.

Ich werde die Venn-Diagramme erst wieder zur Illustration von Mengenoperationen heranziehen (vergleiche mit dem Kapitel ??). Bis dann bleibt diese Definition der Venn-Diagramme relativ blutleer. Venn-Diagramme sind meines Erachtens nicht schwierig zu verstehen. Jedoch scheint der praktische Nutzen von Venn-Diagrammen relativ beschränkt zu sein. Soll deswegen auf sie verzichtet werden? Nein, sicher nicht. Denn sie können überaus nützliche Dienste erweisen. Auch wenn mit diesen Diagrammen nicht alles bewiesen werden kann, können sie Sachverhalte auf eine gute Art darstellen.

KAPITEL 5

Warum werden Fälle in logischen Tabellen geordnet?

Dass diese Auflistung von Fällen vor den eigentlichen Definitionen geschrieben wird, erstaunt Dich vielleicht. Es geht dabei um folgendes: Logische Verknüpfungen verbinden eine oder mehrere Aussagen zu neuen Aussagen. In den Kapitel 6 bis 14 wirst Du insgesamt 8 verschiedene Verknüpfungen kennen lernen (die Identität nicht mitgezählt). Weiter wirst Du in den darauf folgenden Sätzen 12 und folgende Anwendungen dieser Definitionen kennenlernen. Die Eigenschaften der Verknüpfungen werden dabei immer wieder so vorgestellt: Es seien entweder eine, zwei oder mehr Aussagen gegeben, welche mit den Buchstaben A respektive B, C abgekürzt werden. Und dann wird für jede Kombination der Wahrheitsgehalte der Aussagen festgestellt, ob die verknüpften Aussagen wahr oder nicht wahr sind. Dabei sind alle Kombinationen immer auf die gleiche Art aufgelistet (vergleiche mit dem Tabellen 1 bis 6). Ist nur eine logische Variable beteiligt, dann wird der Tabellen 1 respektive 2 aufgelistet. "Vor. A" bedeutet dabei "Voraussetzung der Aussage mit dem Symbol A". Entsprechend heißt "Vor. B" respektive "Vor. C" "Voraussetzung der Aussage mit dem Symbol B" respektive "Voraussetzung der Aussage mit dem Symbol C". Zurück zur Tabelle 1. In den Zeilen wird bezüglich der Voraussetzung der Aussage mit dem Symbol aufgelistet, dass zuerst A nicht wahr, anschließend, dass A wahr sei. Wie ich oben dargelegt habe, existieren wahre Aussagen nach Annahme. An dieser Stelle nehme ich auch an, dass es nicht wahre Aussagen gibt. Eine davon dürfte sein: "Alle Menschen haben genug essen und genug zu trinken". Leider ist diese Aussage, so wie es scheint, nicht wahr. Trotzdem möchte ich weiter unten im Kapitel 18.26 zeigen, dass aufgrund der Annahme, dass es wahre Aussagen gibt und der Festlegung der Regeln der elementaren Logik sich zeigen lässt, dass auch Aussagen geben muss, welche nicht wahr sind. Noch einmal zurück zur Auflistung der Aussagen: Warum wird gerade diese Reihenfolge gemacht? Mit dieser Anordnung geht kein Fall verloren. Dies habe ich versucht, in der zweiten Tabelle 2 der Auflistung der Fälle von einer logischen Variablen zu zeigen. In dieser Tabelle wird 0 hingeschrieben, falls die Aussage mit der Bezeichnung A nicht wahr ist. Ist die Aussage A wahr, dann

¹Eine Kombination ist eine mögliche Zusammensetzung

TABELLE 1. 1. Schema Fallunterscheidungen für logische Aussagen mit einer logischen Variablen

Aussage/ Fall Nr.	Vor. A
1	$\neg A$
2	A

TABELLE 2. 2. Schema Fallunterscheidungen für logische Aussagen mit einer logischen Variablen

Aussage/ Fall Nr.	Vor. A	Wert
1	0	$0 \cdot 2^0 = 0 = 1 - 1$
2	1	$1 \cdot 2^0 = 1 = 2 - 1$

TABELLE 3. 1. Schema Fallunterscheidungen für logische Aussagen mit zwei logischen Variablen

Aussage/ Fall Nr.	Vor. A	Vor. B
1	$\neg A$	$\neg B$
2	$\neg A$	В
3	A	B
4	A	$\neg B$

schreibe ich eine 1 hin. In dieser Tabelle siehst Du, dass sich die Nummer des Falls mit dem Wahrheitswert der Aussage A verknüpfen lässt gemäß der Formel, welche in der Spalte mit der Bezeichnung "Wert" jeweils für den entsprechenden Fall ausgerechnet wird. Dabei sei $2^0 \equiv 1$, $2^1 \equiv 2 \cdot 2^0 = 2 \cdot 1 = 2$, $2^2 \equiv 2 \cdot 2^1 = 2 \cdot 2 = 4$, $2^3 \equiv 2 \cdot 2^2 = 2 \cdot 4 = 8$. Wobei \equiv mit "definiert gleich" übersetzt werden kann. Das bedeutet, dass die Teile links und rechts gleich sind, aber nicht, weil dies so berechnet oder hergeleitet werden kann. Sondern, weil das so festgelegt wird, also aufgrund einer Annahme. Ich möchte nicht verschweigen, dass anstelle von \equiv auch oft := geschrieben wird, da dies einfacher zu schreiben ist (wenn es ohne "Tex" oder "LaTex" geschrieben wird). Zurück zu den beiden Tabellen mit der Auflistung der Fälle für eine logische Variable: Diese Tabelle finde ich relativ langweilig, weil bei einer logischen Variable der Überblick über die möglichen Wahrheitswerte der Variable wohl kaum verloren geht.

Bei zwei Fällen ist es schon ein wenig interessanter, wie Du in den Tabellen 3 respektive 4 nachschlagen kannst. So richtig Sinn macht das Ganze bei drei logischen Variablen. Diese habe in den Tabellen 5

TABELLE 4. 2. Schema Fallunterscheidungen für logische Aussagen mit drei logischen Variablen

Aussage/ Fall Nr.	Vor. A	Vor. B	Wert
1	0	0	$0 \cdot 2^1 + 0 \cdot 2^0 = 0 = 1 - 1$
2	0	1	$0 \cdot 2^1 + 1 \cdot 2^0 = 1 = 2 - 1$
3	1	0	$1 \cdot 2^1 + 0 \cdot 2^0 = 2 = 3 - 1$
4	1	1	$1 \cdot 2^1 + 1 \cdot 2^0 = 3 = 4 - 1$

TABELLE 5. 1. Schema Fallunterscheidungen für logische Aussagen mit drei logischen Variablen

Aussage/ Fall Nr.	Vor. A	Vor. B	Vor. C
1	$\neg A$	$\neg B$	$\neg C$
2	$\neg A$	$\neg B$	C
3	$\neg A$	B	$\neg C$
4	$\neg A$	B	C
5	A	$\neg B$	$\neg C$
6	A	$\neg B$	C
7	A	B	$\neg C$
8	A	B	C

TABELLE 6. 2. Schema Fallunterscheidungen für logische Aussagen mit drei logischen Variablen

Aussage/ Fall Nr.	Vor. A	Vor. B	Vor. C	Wert
1	0	0	0	$0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 0 = 1 - 1$
2	0	0	1	$0 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 1 = 2 - 1$
3	0	1	0	$0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 2 = 3 - 1$
4	0	1	1	$0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 3 = 4 - 1$
5	1	0	0	$1 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0 = 4 = 5 - 1$
6	1	0	1	$1 \cdot 2^2 + 0 \cdot 2^1 + 1 \cdot 2^0 = 5 = 6 - 1$
7	1	1	0	$1 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 6 = 7 - 1$
8	1	1	1	$1 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 7 = 8 - 1$

respektive 6 aufgelistet. Und in den jeweils zweiten Tabellen habe ich die Herleitung der Zeilennummern aufgrund der Fälle aufgezeigt.

Vielleicht ist es Dir aufgefallen, dass in den jeweiligen Tabellen jeweils von 0 bis 7 und nicht von 1 bis 8 durchgezählt wird. Dies hängt damit zusammen, dass mit zwei Symbolen (0 respektive 1) und drei Ziffern (also wie 101) 8 Zahlen, jedoch von 0 bis 7 und nicht von 1 bis 8 gebildet werden können. Sogar wenn Du die obige Rechnung verstehen solltest, wirst Du Dir wahrscheinlich immer noch die Frage stellen, wozu ich dieses Schema aufgestellt habe. Wieso so kompliziert, falls es einfach auch geht? Der Hinweis, dass ich auch dies in erster Linie abgeschrieben habe, mag Dich wahrscheinlich nicht zufrieden zu stellen. Noch einmal: Dieses Schema hilft, Übersicht zu gewinnen. Wenn einfach einmal mit einem Fall begonnen wird, und dann den nächsten Fall betrachtet wird, dann verliere ich schnell einmal die Ubersicht. Welchen Fall habe ich jetzt bereits behandelt, und welchen Fall gilt es noch zu behandeln? Diese ordnende Funktion der Mathematik ist nicht zu unterschätzen. Schließlich hat sich die Mathematik offenbar aus dem Bemühen unserer Vorfahren in Indien und Mesopotamien entwickelt, Übersicht darüber zu entwickeln, was in welcher Menge vorhanden ist (vor allem die Anzahl von Getreidekrügen oder Kühen oder Ochsen oder sonstigen Lebensmitteln). Ich kann jedoch nicht verschweigen, dass ich immer mit dem Chaos kämpfe, und leider träume ich immer davon, dass mein Leben ein wenig mehr Ordnung bekommt.

ordnende Funktion der Mathematik

Es gibt noch eine weitere Möglichkeit, wie Du Dir die Reihenfolge der Fälle m.E. gut merken kannst. Und zwar ändert in der letzten Spalte der Wert der logischen Variablen jede Zeile. In der zweitletzten Zeile ändert der Wert der logischen Variablen nur jede jede zweite Zeile. Und in der ersten Spalte ändert der Wert der logischen Variablen nur noch jede vierte Spalte. Wenn es eine noch eine Spalte weiter links gäbe, dann würde diese nur noch jede achte Spalte ändern. Wenn Du Dir die Zahlen überlegst, dann sind dies 1, 2, 4, 8,... Nachher würde 16, dann 32, dann 64 und so weiter folgen. Also immer Multiplikation mit 2.

Nachdem ich jetzt über die Voraussetzungen gesprochen habe, möchte ich jetzt die logischen Verknüpfungen vorstellen.

KAPITEL 6

Was ist eine "Negation"?

Falls eine Aussage nicht wahr ist, dann muss dies besonders gekennzeichnet werden. Ansonsten würde ja die Aussage als wahr "verkauft", also als wahre Ausgabe dargestellt. In der Logik wird dafür das "¬"-Zeichen verwendet. Dieses Zeichen beutet also: Das, was nachher aufgeschrieben wird, ist nicht wahr. Wird mit A das Symbol einer Aussage bezeichnet, so wird mit $\neg A$ die Negation der Aussage, auf Deutsch etwa die Verneinung der Aussage, bezeichnet. Eigentlich könntest Du Dir sagen: "Wieso schreibst Du es dann trotzdem auf, wenn es schon nicht stimmt?" Nun, diese Frage ist berechtigt. Aber manchmal ist es eben trotzdem wichtig, sich Sachen zu überlegen, welche sich dann als falsch herausstellen. Beispielsweise ist es wichtig, wenn aufgeschrieben wird, dass Knollenblätterpilze¹ nicht essbar sind. Formal würde das so geschrieben werden:

(6.0.1) \neg (Knollenblätterpilze sind essbar)

Nebenbemerkungen:

- In einer Diskussion mit einem lieben Freund ist die Bemerkung gefallen, Knollenblätterpilze seien auf jeden Fall essbar, das was nach dem Verzehr kommen würde, sei zu diskutieren. Ich wollte habe schon mit der Korrektur begonnen, da habe ich mir gedacht: "Moment, ich schaue nach, wie der Begriff definiert ist. Und da habe ich wirklich gelesen, dass das wirklich so korrekt beschrieben ist. Knollenblätterpilze sind demnach wirklich genau dann essbar, falls sie nicht giftig sind.
- Ich hätte schreiben sollen "¬(**grüne** Knollenblätterpilze sind essbar)", da es mehrere Arten von Knollenblätterpilzen gibt. Aber vielleicht macht es dies noch interessanter. Denn dann wird es noch schwieriger, dieser Aussage einen Wahrheitswert zuzuordnen, also also zu bestimmen, ob die Aussage, "Knollenblätterpilze sind essbar" wahr ist oder nicht.

Doch zurück zur eigentlichen Aussage: Die Klammer habe ich wieder geschrieben, damit klar wird, dass die ganze Aussage nicht gültig ist,

¹Knollenblätterpilze sind Pilze, welche so giftig sind, dass ihr Verzehr tödlich sein kann. Heute (4. Januar 2012) habe ich in einer Gratiszeitung ("Blick am Abend") gelesen, in Australien seien Personen gestorben, weil sie Knollenblätterpilze gegessen hätten. Ich habe jedoch nicht gewusst, dass es in Australien auch Knollenblätterpilze gibt.

und nicht etwa nur der erste Teil, also "Knollenblätterpilze). Es ist wieder nicht üblich, Wörter in einer mathematischen Formel zu verwenden. Aber keine Angst: Weiter unten wird die "reine" mathematische Formulierung hingeschrieben. Der obige Satz könnte auch auf eine andere Art geschrieben werden: "Knollenblätterpilze sind nicht essbar". Aber weil das Wort "nicht" in der mathematischen Literatur so oft vorkommt, wurde es offenbar als zweckmäßig erachtet, dem Wort "nicht" ein eigenes Symbol zur Verfügung zu stellen. Weiter besteht meines Erachtens ein gewisser Unterschied, wenn geschrieben wird: "Die Aussage "Knollenblätterpilze sind essbar' ist nicht wahr", im Gegensatz zur Aussage "Die Aussage "Knollenblätterpilze sind essbar' ist falsch". Du wirst dies vielleicht für eine Spitzfindigkeit halten. Jedoch ist es möglich, dass Du Knollenblätterpilze kennst, jedoch aus Vorsicht noch keinen gegessen hast (was ich Dir auch DRINGEND anrate: Esse NIE Knollenblätterpilze!). Aber Du weißt nicht, ob Knollenblätterpilze essbar sind. Dies möchtest Du gerne als mathematische Formel aufschreiben. Nun ist es so, dass die elementare Logik Dir zwei Möglichkeiten gibt, dies aufzuschreiben. Entweder Du schreibst "Es gilt nicht, dass Knollenblätterpilze essbar sind". Oder Du schreibst: "Es gilt, dass Knollenblätterpilze essbar sind", wobei jedoch, und das möchte ich noch einmal betonen, diese Aussage NICHT wahr ist². Also müsstest Du die erste Variante aufschreiben: "Es gilt nicht, dass Knollenblätterpilze essbar sind", obwohl, und dies ist jetzt gerade der Witz der Sache, Du nicht weißt, ob dies auch so stimmt. Denn Du hast, und das ist sehr vernünftig, bis jetzt (und wirst es hoffentlich auch in Zukunft) nicht versucht, selbst zu untersuchen, ob Knollenblätterpilze essbar sind.

Es gibt jetzt noch zwei Argumente, welche ich diesbezüglich einbringen will. Das erste Argument lautet, dass die naive Logik die Wörter "vielleicht" oder "wahrscheinlich" oder "eventuell" oder so ähnlich vermeidet. Umgangssprachlich würde ich etwa schreiben: "Es ist wahrscheinlich, dass Knollenblätterpilze nicht essbar sind." Aber genau diese Möglichkeit vermeidet die naive Logik. Entweder gilt es, oder es ist nicht wahr, dass es etwas gilt. Nichts dazwischen. Das ist ein Unterschied zur Alltagssprache. Das zweite Argument ist, dass Wahrscheinlichkeiten vermieden werden. Obwohl die Wahrscheinlichkeit selbst ein mathematischer Begriff ist, welcher noch genauer zu definieren wäre. Aber in der Logik wird auf Wahrscheinlichkeiten bewusst verzichtet. Im Fall der Knollenblätterpilze wäre die Anwendung von Wahrscheinlichkeiten sowieso ein "Kaffeesatzlesen", sprich unseriös. Denn was soll ich schreiben? "Das Risiko, dass Knollenblätterpilze giftig, ja sogar tödlich sind, beträgt etwa 90%"? Wie komme ich auf diese Zahl? Ich habe

²Mir scheint es unmöglich, die zweite Variante aufzuschreiben, denn dies wäre die Einladung zu einem tödlichen Mahl.

keine Ahnung, welche Zahl ich einsetzen soll. Ich weiß ja nicht, ob Knollenblätterpilze essbar sind. Also ist auch dieser Weg aus meiner Sicht nicht praktikabel.

Vielleicht denkst Du jetzt: "Was soll ich mit Knollenblätterpilzen, ich möchte Mathematik betreiben?" Stimmt, jedoch gibt es auch in der Mathematik Aussagen, von welchen wir nicht wissen, ob sie zutreffen oder nicht. Dann ist es aus Sicht der Logik nicht zulässig, zu sagen, dass die Aussage wahr ist. Also müsstest Du schreiben, dass die Aussage nicht wahr ist. Obwohl die Aussage wahr sein könnte. Aber die Logik verbietet es, eine Aussage als wahr hinzustellen, obwohl nicht sicher ist, ob sie wahr ist oder nicht. Auf der anderen Seite ist es jedoch sehr wohl möglich, von einer Aussage anzunehmen, dass sie nicht wahr sei, obwohl sie wahr ist. Das ist weit weniger tragisch. Denn daraus können keine falschen Schlüssen gezogen werden (vergleiche mit dem "Konservendosenwitz" von Kapitel ??).

Und wieder gibt es zwei Ausnahme zu der Regel, dass Sachen nicht aufgeschrieben werden sollen, welche nicht zutreffen. Die erste ist der Widerspruchsbeweis. Dieser wird unter dem Abschnitt 18.7 präsentiert. Die zweite ist, dass Vermutungen als solche hingeschrieben werden. Also müsste ich, wenn ich es wirklich seriös angehen möchte, schreiben:

Vermutung 7. Es ist zu vermuten, dass Knollenblätterpilze giftig sind.

Also kannst Du erkennen, dass es in der Mathematik eine unbedingte Liebe zur Wahrheit gibt. Auch wenn es so aussehen sollte: Wahre und nicht wahre Aussagen sind in der Logik und somit auch in der Mathematik nicht gleichberechtigt. Es werden immer nur wahre Aussagen aufgeschrieben, nie nicht wahre. Es wird also nie bewusst geschummelt oder noch schlimmer, gelogen. Zum Schluss möchte ich Dir einen Slogan vorstellen, welcher meine Gedanken so ziemlich zusammenfassen sollte: "Nicht wahr" ist nicht das Gleiche wie "falsch". Ich meine damit, dass die Begriffe "Eine Aussage ist nicht wahr" in meinen Augen nicht das gleiche meint wie "Eine Aussage ist falsch". Wenn ich schreibe: "Die Aussage Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist nicht wahr", dann ist das zwar an den Haaren herbei gezogen. Aber es ist nicht nicht die gleiche Aussage wie "Die Aussage 'Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist falsch". Denn im ersten Fall gebe ich zu erkennen, dass ich es nicht weiß, ob alle Hunde in der Nacht, wenn niemand zusieht, Pizza essen. Also schreibe ich, dass ich nicht sagen kann, dass dem so ist. Aber eben auch nichts anderes. Während dem ich mich im zweiten Fall ("Die Aussage 'Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist falsch") einen Beweis dafür liefern muss. Ich muss also einen Hund finden, den ich nicht beobachte, welcher aber, wenn alle Menschen schlafen (was

nicht wahr ungleich falsch wahrscheinlich schwierig zu beweisen sein dürfte, dass dies je einmal zutrifft) eben nicht Pizza isst. Erst wenn ich "hieb- und stichfest" beweisen kann, dass ein Hund in diesem Moment nicht Pizza gegessen hat, dann kann ich sagen, dass die Aussage "Alle Hunde essen in der Nacht, wenn niemand zuschaut und zusieht, Pizza" falsch ist. Der ersten Aussage "Die Aussage "Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist nicht wahr" kann ich ohne weiteres zustimmen. Die zweite "Die Aussage Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist falsch" finde ich jedoch eben nicht wahr! Denn ich vermute zwar, dass die Aussage "Die Aussage "Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist nicht wahr" zutrifft, also eben wahr ist. Aber ich kann es nicht beweisen. Also muss ich, da ich mich ja diesbezüglich (freiwillig) äußern möchte, schreiben: "Die Aussage "Die Aussage, Alle Hunde essen in der Nacht, wenn niemand zusieht, Pizza' ist falsch", ist nicht wahr". Dann ist so für mich richtig. Aber bedenke, dass ich über Festlegungen schreibe und nicht über Wahrheiten. Somit bist Du natürlich immer noch frei, für Dich zu sagen: "So ein Quatsch" und meine Ausführungen ebenfalls als nicht wahr, oder schlimmer noch als falsch zu bezeichnen.

Doch nun endlich zurück zur Negation: Die Negation kann als Schaltbild dargestellt werden (vergleiche mit der Abbildung 6.0.1). In der Elektrotechnik werden Schaltungen, welche ein Eingangssignal negieren, als NOT-Gatter bezeichnet. Lass Dir keine grauen Haare wachsen, falls Du den Sinn der Schaltbilder nicht verstehst. Die Schaltbilder wurden nur Illustration hingezeichnet, später im Text wird nirgends mehr darauf verwiesen. Beachte jedoch, dass die konkreten elektrischen Schaltungen häufig ganz anders aufgebaut sind. Diese Schaltbilder eignen sich wahrscheinlich überhaupt nicht für die elektrotechnische Umsetzung. Aber dieses Skript soll eine Einführung in die Mathematik sein und keine über Elektrotechnik ³. Trotzdem sollen die Schaltbilder folgendes bezwecken:

- (1) Sie sollen auf eine weitere Art darstellen, wie logische Verknüpfungen aufgebaut sind.
- (2) Sie sollen zeigen, dass in logischen Aussagen nur der Wahrheitsgehalt (eine Aussage ist wahr, oder eben gerade nicht) interessiert. Sonst nichts.
- (3) Sie sollen aufzeigen, dass es durchaus Sinn macht, dass die Logik üblicherweise nur zwei Arten von Aussagen kennt. Wenn der Taster nur "ein bisschen" schaltet, dann müsste mit einer komplizierten Spannungsmessung am Ende festgestellt werden, wie viel geschaltet worden ist. Wenn hingegen die Schaltung genau schalten kann oder auch nicht, dann genügt es, ein

³Ich habe mir den Wälzer von Tietze und Schenk vom Springer Verlag über Halbleiterschalttechnik gekauft, lese immer wieder Mal drin - und bin jedes Mal frustriert, wie wenig ich davon zu begreifen glaube.

Lämpchen an den Ausgang zu stellen und zu schauen, ob es leuchtet oder nicht. Natürlich soll nicht verschwiegen werden, dass es auch widerspruchsfreie Logik gibt, welche mit mehr als zwei Zuständen ("nicht wahr" respektive "wahr") auskommt. Ein Beispiel dafür ist die Fuzzylogic, auf deutsch übersetzbar mit etwa "Fusellogik"⁴. Aber diese ist für unsere Zwecke zu aufwendig. Gemäß einem Bonmot⁵ von Einstein⁶ sollen die Sachen so einfach wie möglich gemacht werden, jedoch nicht "einfacher". Die sogenannt zweiwertige Logik scheint mir diesem Kriterium zu genügen: Sie ist einfach, jedoch durchaus ausreichend.

Beim elektrischen Strom gibt es zwei wichtige Größen. Dabei ist die Situation ähnlich einem Rohr, welches von Wasser durchströmt wird. Die Stromstärke I kann mit der Wassermenge verglichen werde, welche pro Zeiteinheit (zum Beispiel Sekunde oder Stunde) durch das Rohr fliesen. Die Spannung V kann mit dem Druck im Rohr verglichen werden. Der Wasserstrahl kann umso mehr Leistung verrichten, je mehr Wasser pro Sekunde durch das Rohr hindurch schießest und je größer der Druck im Rohr ist. Die elektrische Leistung P ist gerade gleich dem Produkt von I und V. Das bedeutet in einer Formel aufgeschrieben

$$P = I \cdot V$$

Beispiels: Ist $I=0.10\,A$ und $V=10\,V$, also der Strom 0.1 Ampere und die Spannung 10 Volt, dann ist die Leistung

$$P = 10 \cdot 0.1VA = 1W$$

Ein Watt ist noch nicht so viel, dass Du damit durch die Galaxien sausen könntest, aber auch nicht nichts. In Wikipedia⁷ wird die Leistung durchschnittliche Leistung eines Handys mit 1.5 Watt angegeben.

Doch zurück zu den Schaltschemata⁸. Es bezeichnet V_c die Versorgungsspannung (üblicherweise 5 V, also durchaus ungefährlich für Deine Gesundheit). U_a bezeichne die Ausgangsspannung. Diese Ausgangsspannung zeigt das Resultat an. Diese kann beispielsweise verwendet werden, um ein Lämpchen zu schalten, so wie es im Bild auch gezeigt wird. Der Taster ist so gezeichnet, dass er nicht schaltet, falls der Eingang (der Wahrheitswert der Aussage mit der Bezeichnung "A") wahr ist. Den Buchstabe "A" als Symbol einer Aussage habe ich gewählt, weil weiter unten bei Verknüpfungen von zwei Aussagen die Symbole "A" respektive "B" für Aussagen verwendet wurden. Falls A nicht wahr ist,

⁴"Fusel" als Stoffteilchen, welche herumliegen und wie Dreck aussehen

⁵so weit ich weiß ist ein Bonmot ein gelungener, also witziger oder geistreicher Spruch

⁶ich kann nicht angeben, wo ich das gelesen habe

⁷unter dem entsprechenden Wikipedia-Artikel

⁸Mehrzahl für "Schaltschema"

dann liegt liegt am Ausgang als Ausgangsspannung die Eingangsspannung an. Das Lämpchen leuchtet in diesem Fall also. Gleichzeitig fließt immer ein wenig Ladung via Lämpchen auf die Erde. Üblicherweise ist es genau umgekehrt: Es fließen Elektronen von der Erde das Lämpchen "hinauf". Aber das kommt davon, weil die Entdecker der Elektrizität nicht gewusst haben, was in einem metallischen Leiter genau fließt. Doch das ist eine andere - ebenfalls spannende - Geschichte.

Wahrscheinlich ist das für Dich ungewöhnlich, dass ein Taster die Leitung unterbricht, wenn er gedrückt wird. Üblicherweise schaltet ein Taster, falls der betätigt wurde. Jedoch ist es im Bereich der Technik üblich, Taster zu verwenden, welche genau umgekehrt schalten. Also welche die Leitung unterbrechen, falls sie betätigt werden. Ein Beispiel dafür sind Not-Ausschalter bei Steuerungen oder bei Brandschutzanlagen. Not ist hier kein eingedeutschtes englisches Wort, sondern sondern das deutsche Wort für Not im Sinne von Mangel oder Ausnahmezustand (beispielsweise wie im Satz "die Not ist groß"). Der Sinn dieser Schaltart ist, dass Leitungsunterbrüche mit dieser Schaltlogik ebenfalls erkennt werden können. Wenn das Signal vorhanden ist, dann heißt das, dass alles in Ordnung ist. Ist das Signal jedoch nicht anstehend, dann bedeutet dies, dass entweder etwas wirklich nicht in Ordnung ist oder aber die Leitung unterbrochen ist. Ist der Taster also gesetzt (was mit einem Energieaufwand verbunden ist), dann wird der Ausgang spannungslos. Wäre das Lämpchen nicht vorhanden, dann würde sich das Potential des Ausgangs und der Erde (das Symbol unterhalb des Lämpchens) nicht so ohne weiteres angleichen. Darum muss das Lämpchen vorhanden sein, sonst funktioniert die Schaltung nicht. Ich hätte auch einen Widerstand zeichnen können. Der kann kann ebenfalls als Erdungselement verwendet werden, ohne das die Schaltung gleich einen Kurzschluss erzeugt. Ein Kurzschluss sollte vermieden werden. Falls Batterien verwendet werden, werden diese bei einem Kurzschluss in Null Komma Nichts entleert. Es ist im Fall eines Kurzschlusses auch möglich, dass derart große Ströme und damit auch große Leistungen erzeugt werden, dass die elektrische Schaltung zerstört wird. Im schlimmsten Fall kann das ganze Gebäude in Flammen aufgehen! Falls der Ausgang wieder in einer logischen Schaltung verwendet und gar nicht angezeigt werden soll, dann wäre es wahrscheinlich sinnvoller, einen Widerstand statt eines Lämpchen⁹ zu verwenden. In meinem Beispiel jedoch soll der Ausgang der Schaltung nicht mehr für weitere logische Berechnungen verwendet werden. Darum finde ich, dass ein Lämpchen zweckmäßiger eingebaut würde. Die ausgefüllten Punkte unter und oberhalb des Symbol der Lampe bedeuteten, dass die Leitungen zusammen gelötet werden sollen. Der Kringel (kleiner Kreis)

⁹Übrigens kann ein Lämpchen als ein spezieller Widerstand betrachtet werden, welcher zu leuchten beginnt, falls der Stromfluss eine bestimmte Größe überschreitet.

ABBILDUNG 6.0.1. Negation als Schaltbild (1. Darstellung, Ausgang gesetzt)

ABBILDUNG 6.0.2. Negation als Schaltbild (1. Darstellung, Ausgang zurückgesetzt)

links vom Taster bedeutet, dass an dieser Stelle der Leiter beweglich ist.

Wenn der Taster also nicht betätigt wurde, dann liegt am Ausgang die Eingangsspannung an (so wie in der Abbildung 6.0.1 gezeichnet). Ich sage in diesem Fall, der Ausgang sei "gesetzt". In diesem Fall liegt zwischen dem Ausgang der Schaltung und der Erde ein Potential an. Das Lämpchen ist weiß gezeichnet, weil es in diesem Fall leuchtet.

Ist der Taster jedoch geschaltet, dann besitzt der Ausgang das Erdpotential. Das Lämpchen leuchtet in diesem Fall nicht. Ich rede in diesem Fall davon, dass der Ausgang sei "zurückgesetzt". Das bedeutet, dass zwischen dem Ausgang der Schaltung und der Erde keine Spannung anliegt und die Lampe in diesem Fall nicht leuchtet. Ich habe versucht, dies in der Abbildung 6.0.2 entsprechend zu zeichnen. Das Lämpchen ist schwarz gezeichnet, da es in diesem Fall nicht leuchtet. Der Leiter ist nach unten gelegt gezeichnet. Damit sollte die Bedeutung des Kringels hoffentlich ein wenig klarer werden: Er zeigt an, so der Taster beginnt. und dass an dieser Stelle eigentlich ein Taster wäre.

Jetzt soll gelten: Ist der Taster nicht betätigt, dann sei die Aussage, welche invertiert werden soll (zum Beispiel die Aussage "es gibt einen Zwerg, welcher größer ist, als Menschen üblicherweise sind") nicht

wahr. In diesem Fall ist die invertierte Aussage wahr. Das bedeutet also beispielsweise:

¬ (es gibt einen Zwerg, welcher grösser ist, als es Menschen üblicherweise sind)

Ist jedoch die Aussage wahr wie beispielsweise die Aussage

es ist noch kein Meister vom Himmel gefallen dann ist die invertierte Aussage nicht wahr:

 $\neg (\neg (\text{es ist noch kein Meister vom Himmel gefallen}))$

In Worten: Es gilt nicht, dass nicht gilt, dass wahr ist, dass noch kein Meister vom Himmel gefallen ist. Wie ich später noch zeigen will, ist dies gleichbedeutend zur ursprünglichen Aussage "Es ist noch kein Meister vom Himmel gefallen" (vergleiche mit dem Absatz 18.2). Wie Du siehst, gibt es also nach Annahme auch nicht wahre Aussagen. Denn für jede Aussage A, welche wahr ist, gilt, dass nicht gilt, dass ihre Negation $\neg A$ ebenfalls wahr ist. Also ist $\neg A$ nicht wahr. Und da wir annehmen, dass es wahre Aussagen A gibt, gibt es also auch nicht wahre Aussagen.

Nun wendest Du vielleicht ein: "Dein Schaltbild ist schon gut. Jedoch ist es Energieverschwendung, dass beständig Ladung verloren geht. Das kostet, und in der heutigen Zeit sollte nicht so viel Energie verschwendet werden. Geht das nicht ohne einen Widerstand oder ein Lämpchen?" Eigentlich geht es schon energieeffizienter - wobei ich gestehen muss, dass ich die gesamten typischen Energieaufwände nicht kenne. Die Energiesparvariante habe dies in der Abbildung 6.0.3 hingezeichnet. In diesem Fall gehört das Lämpchen nicht mehr zur eigentlichen Schaltung. Das heißt, die Schaltung würde auch dann richtig funktionieren, falls das Lämpchen nicht mehr eingefügt wäre. Ich habe es jedoch trotzdem hinzugefügt, weil es versinnbildlicht, was die Schaltung bewirkt. Das in die Höhe verzerrte "T" soll zeigen, das mit einem Tastendruck gleich zwei Taster betätigt werden, wobei der obere Taster ein "Öffner" ist, die Stromleitung also unterbrochen wird, falls der Taster betätigt wird. Der untere Taster jedoch ist ein "Schließer", das bedeutet, dass die Stromleitung also geschlossen wird, falls der Taster betätigt wird. Das T erinnert übrigens an die Pistons von Blechblasinstrumente. Pistons sind sozusagen die Tasten, welche bei Blechblasinstrumenten gedrückt werden können, so dass die Tonhöhe angepasst werden kann¹⁰. Genau gleich kannst Du die Taster vorstellen: Sobald der Taster betätigt ist, wird entweder der Stromfluss unterbrochen oder fließt an einem anderen Ort durch. Bei Blechblasinstrumenten wird der

¹⁰Ich spiele ein wenig Trompete

Abbild (2. Darstellung)

Luftstrom übrigens nicht unterbrochen, falls ein Piston ganz gedrückt wird - sonst würde kein Ton mehr erklingen.

Ich möchte jedoch nicht verschweigen, dass auch diese Schaltung von Abbildung 6.0.3 Energie benötigt, damit sie geschaltet betrieben werden kann. Denn einerseits benötigt der Taster Energie zum Schalten, andererseits fließen immer Ladungen, falls die Kontakte des Schalters ein- oder ausgeschaltet werden. Auch wenn diese Energieaufwände für einzelne Taster klein sind, kann die Summe der Aufwände bei einem Computer oder bei einer Rechnerfarm, welche für Telekom-Firmen Webseiten speichert oder sonst wie für Webanfragen genutzt werden können, sehr groß werden. Der Bogen in der Stromleitung bedeutet, dass an der Stelle des Bogens der Leiter nicht mit dem Taster verknüpft ist.

So weit ich weiß, ist es bei der Fertigung von integrierten Schaltkreisen einfacher, Taster herzustellen, als Widerstände zu fertigen. Darum wird meines Wissens die zweite Schaltart typischerweise in der Mikroelektronik verwendet. Ich weiß jedoch nicht, ob in Computern genau diese Art des Schalters (als Negation) existieren. Jedoch kommen ähnliche Taster durchaus vor (siehe den Kapitel 14).

Die Eigenschaften der Negation können in Tabellenform dargestellt werden. Die Reihenfolge ist nun diejenige, wie ich sie ausführlich im Kapitel 5 ausgeführt habe. Diese Reihenfolge wurde in den Tabellen 1 beziehungsweise der Tabelle 2 dargestellt. Es sei A das Symbol einer Aussage. Dabei zeigt die Negation ein seltsames Verhalten: Ist die Aussage nicht wahr, dann gilt, dass die Negation der Aussage wahr ist. Ist die Aussage wahr, dann gilt nicht, dass die Negation der Aussage nicht wahr ist.

In der Tabelle 2 wird 0 geschrieben, falls die Aussage nicht wahr ist. Ist die Aussage wahr, dann wird 1 geschrieben. Ansonsten sind

Tabelle 1. 1. Darstellung der Wahrheitstabelle der Negation

Voraussetzung	
$\neg A$	$\neg A$
A	$\neg (\neg A)$

Tabelle 2. 2. Darstellung der Wahrheitstabelle der Negation

A	$\neg A$	
0	1	
1	0	

die zwei Tabellen völlig identisch. Im Verlauf dieses Textes möchte ich die eigene Schreibweise noch mehr entwickeln. In der Aussage 6.0.2 siehst Du, wie ich mir die Definition der Negation in einer logischen Schreibweise vorstelle.

$$(\neg A \implies \neg A) \land$$

$$(A \implies \neg (\neg A))$$

Das einzige Zeichen, welches Du so nicht in der mathematischen Literatur sehen wirst, ist der dreifache Pfeil ("⇒") nach rechts. Dieser soll anzeigen, dass die Folgerung als solche festgelegt ist. Das bedeutet mit anderen Worten, dass die Schlussfolgerung nicht aus anderen Definitionen oder Sätzen abgeleitet werden kann. Vielleicht denkst Du, das sei unnötig kompliziert. Dies mag sein. Mir ist einfach aufgefallen, dass die Tabellen irgendwie ist im Vergleich zur üblichen Schreibweise in der mathematischen Literatur unstimmig sind. Ich möchte darum bereits die Definitionen in der (fast) üblichen Schreibweise darstellen. Das letzte Zeichen auf der ersten Zeile bedeutet übrigens "und", nicht mehr und nicht weniger (siehe dazu Kapitel 8). Ich werde zukünftig mir erlauben, von der 1. respektive 2. Zeile der Definition 6.0.2 zu sprechen. Dann bedeutet dies, dass ich mich entweder auf die Aussage $(\neg A \Rightarrow \neg A)$ oder aber auf die Aussage $(A \Rightarrow \neg (\neg A))$ beziehe. Beachte, dass das Und-Zeichen (\land) am Ende der ersten Zeile, dazu dient, die beiden Aussagen sprachlich zu verbinden. Es könnte auch weggelassen werden, aber ich denke, der Lesefluss würde dadurch ein wenig gestört.

Nun werde ich kleine Beispiele für die Definitionen aufschreiben. Ich werde zuerst ein Beispiel für die erste Zeile der Definition machen: Es sei A das Symbol für die Aussage "Alle Hirsche heißen Hans". Diese Aussage ist nicht wahr. Ich hoffe, Du stimmst mit mir darin überein. Dann gilt die Negation der Aussage, $\neg A$, welche im vorliegenden Fall gleichbedeutend zur Aussage \neg "Alle Hirsche heißen Hans". Sprachlich umformuliert ist dies die Aussage: "Es gilt nicht, dass alle Hirsche Hans heißen". Damit ist das Beispiel für die erste Zeile gemacht. Nun möchte

ich ein Beispiel für die zweite Zeile der Definition machen: Ist A das Symbol für die Aussage "Adam und Eva sind Namen", dann gilt die Negation der Aussage nicht. Es gilt also $\neg(\neg A)$. Wenn die Aussage eingesetzt wird, dann heißt diese Aussage $\neg(\neg$ "Adam und Eva sind Namen"). Sprachlich umformuliert bedeutet dies: "Es gilt nicht, dass nicht gilt, dass Adam und Eva Namen sind". Das ist fast alles.

KAPITEL 7

Was ist eine "Identität"?

Die Identität ist im Bereich der Logik eigentlich überflüssig, im Bereich der Elektrotechnik jedoch wird sie dankbar gebraucht. Darum beschreibe ich zuerst, wieso im Bereich der Elektrotechnik die Identität gebraucht wird. Wenn Du eine Schaltung hast, in welcher der Ausgang nicht bestimmt ist, falls eine Bedingung nicht erfüllt ist, dann kannst Du diese Schaltung an eine Identität anschließen, und diese garantiert Dir, dass die Schaltung dann definierte Zustände besitzt. Außerdem wird die Identität in der Elektrotechnik gebraucht, um Signale "aufzufrischen". Dies bedeutet, dass es manchmal wichtig ist, ein Signal, welches beispielsweise durch eine lange Leitung abgeschwächt wurde, vor der weiteren Verarbeitung so zu verstärken, dass keine undefinierte Zustände vorkommen. Ein solcher undefinierter Zustand kann dazu führen, dass ein Schalter irgendwie zwischen dem ein- und dem ausgeschalteten Zustand hin und her flackert. Dann haben wird statt einem eindeutigen Signal nur noch ein Rauschen und wissen nicht mehr, was der Sender uns eigentlich mitteilen wollte. Ein Beispiel für eine Identität habe ich in der Figur 12.0.4 gezeichnet. Die Identität wird über eine Spule garantiert, welche bewirkt, dass der Ausgang der Schaltung auch wirklich auf den Grund gezogen wird (also der Wert der dazugehörigen Aussage nicht wahr wird), falls die Aussage nicht wahr ist.

Im Bereich der Logik ist die Identität der Aussage der Wahrheitswert der Aussage selbst. Falls eine Aussage nicht wahr ist, dann ist die Identität der Aussage, dass die Aussage nicht wahr ist. Falls die Aussage wahr ist, dann ist der Wert der Identität der Aussage, dass die Aussage wahr ist. Ein Beispiel: Der Wert der Identität der Aussage, dass alle Eisbären südlich der Sahara wohnen, ist derjenige, dass es nicht wahr ist, dass alle Eisbären südlich der Sahara wohnen. Der Wert der Identität der Aussage, dass es mehr Chinesen als Schweizer gibt, ist, dass es wahr ist, dass es mehr Chinesen als Schweizer gibt. Für die Identität der ist mir kein besonderes Symbol bekannt. Wie eingangs erwähnt, ist es mehr ein elektrotechnisches denn ein logisches Problem.

Die Identität kann auch als Schaltbild gezeichnet werden (vergleiche mit der Abbildung 7.0.1).

Das Lämpchen ist ausgeschaltet gezeichnet, weil in diesem Fall der Ausgang der Schaltung zurückgesetzt ist. Das bedeutet, dass zwischen dem Ausgang und der Erde keine Spannung anliegt und in diesem Fall das Lämpchen nicht leuchtet. Der Taster ist durch den Kringel auf der

ABBILDUNG 7.0.1. 1. Schaltbild der Identität im zurückgesetzten Zustand

ABBILDUNG 7.0.2. 1. Schaltbild der Identität im gesetzten Ausgang

TABELLE 1. 1. Darstellung der Wahrheitstabelle der Identität

Voraussetzung	$\neg A$
$\neg A$	$\neg (\neg A)$
A	$\neg A$

linken Seite und den kurzen vertikalen (senkrechten Strich gekennzeichnet). Den senkrechten Strich habe ich gezeichnet, damit auch im Fall des geschalteten Tasters ersichtlich wird, dass sich ein Schalter in der Schaltung befindet. Ich habe versucht, dies in der Abbildung 7.0.2 zu zeichnen. Ich hoffe, Du bist mir nicht böse, wenn ich zukünftig nicht beide Schaltzustände nachfolgend nicht mehr speziell darstelle.

Die energiesparende Version der Identität habe ich in der Abbildung 7.0.3 gezeichnet.

Ich habe in den Tabellen 1 sowie 2 noch die Wahrheitstafeln der Identität aufgeschrieben.

Nun sollen die drei wichtigsten logischen Verknüpfungen vorgestellt werden:

ABBILDUNG 7.0.3. 2. Schaltbild der Identität

TABELLE 2. 2. Darstellung der Wahrheitstabelle der Identität

A	$\neg A$
0	0
1	1

KAPITEL 8

Was ist eine "Konjunktion"?

Ich mache ein Beispiel dafür, was eine Konjunktion ist: Es seien A sowie B Symbole von Aussagen. Dann sei $A \wedge B$ genau dann war, falls sowohl A wie auch B wahr sind. Die Konjunktion wird auch "Und-Verknüpfung" genannt. Die würde, so wie es verstehe, in etwa "(etwas) miteinander verknüpfen" bedeuten. Nun muss ich jedoch die Konjunktion mit Leben füllen und zeigen, für was das gut ist. A sei die Aussage "Mäuse essen gerne Käse" und B sei die Aussage "Frederike ist eine Maus". Falls beides zutrifft, dann gilt eben die Aussage "Frederike ist eine Maus ∧ Mäuse essen gerne Käse". Nun sei Frederike keine Maus, sondern eine Physikerin. Dann gilt die Aussage "Frederike ist eine Maus ∧ Mäuse essen gerne Käse" nicht. Angenommen, es würde eine Biologin geben, welche eine Maus finden würde, welche eine Käseallergie hat (vielleicht eine Mutantin der "käse-intoleranten" Mäuse), dann stimmt die Aussage "Frederike ist eine Maus ∧ Mäuse essen gerne Käse" ebenfalls nicht, sogar dann, falls die Maus wirklich Frederike heißen würde. Aber das spielt dann überhaupt keine Rolle mehr. Egal ob die Maus Kasimir oder Markus oder Hermine oder Mausi heißt, die Aussage "Frederike ist eine Maus ∧ Mäuse essen gerne Käse" stimmt immer noch nicht. Falls Frederike ein Flughörnchen und keine Maus wäre, und es "käse-intolerante" Mäuse geben würde, dann würde die Aussage "Frederike ist eine Maus ∧ Mäuse essen gerne Käse" erst recht nicht stimmen, wobei es logisch keinen Unterschied macht, ob eine oder beide Aussagen nicht zutreffen. Die Aussage wird nicht "falscher", falls beide Aussagen nicht zutreffen. Die Reihenfolge ist ebenfalls nicht wesentlich für die Bestimmung des Wahrheitsgehalts. Es ist nicht wesentlich ob zuerst "Mäuse essen gerne Käse" oder "Frederike ist eine Maus" aufgeschrieben wird. Dies möchte ich jedoch noch im Abschnitt 18.18 weiter ausführen möchte.

Es gibt ein anderes Beispiel, welches jedoch vielleicht auf den ersten Blick komisch aussieht:

Falls A die Aussage ist: "Der Ball ist rund", und B ist die Aussage ist: "Der Ball ist rund", dann ist die Aussage "Der Ball ist rund \land der Ball ist rund" ebenfalls wahr. Obwohl Dir sich wahrscheinlich die Nackenhaare sträuben bei diesem Gedanken. Im umgangssprachlichen Sinn ist die Aussage "Der Ball ist rund und der Ball ist rund." wohl eher ein Zeichen dafür, dass Gefahr irgendwelcher Art in Verzug ist.

Ich werde das jedoch zeigen müssen, dass dies wirklich so ist, und zwar im Kapitel 30.

Es gibt noch ein drittes Beispiel, welches ebenfalls es wert ist, aufgeschrieben zu werden: Falls A die Aussage ist "Kaffee ist ein Getränk" und "Jimi Hendrix war ein Musiker", dann ist die Aussage "Kaffee ist ein Getränk \land Jimy Hendrix war ein Musiker" wahr. Du fragst Dich wahrscheinlich: "Was hat das eine mit dem anderen zu tun?" Die Antwort ist: Nichts. Aber das spielt eben keine Rolle in der Logik. Es wird nicht darüber nachgedacht, welche Beziehungen Aussagen zueinander besitzen, sondern nur, was sich aus Aussagen folgern lässt.

Die Konjunktion kann formal so aufgeschrieben werden:

$$(8.0.1) A, B \epsilon \Omega \Rightarrow (A \wedge B \Leftrightarrow A B)$$

Ausgeschrieben heißt diese Behauptung: Für alle Aussagen mit den Bezeichnungen "A" und "B" gilt: Die Aussage "A gilt und B gilt, sei per Übereinkunft genau dann wahr, falls sowohl A wie auch B gilt. Wobei diese Beschreibung der Konjunktion wohl eher Verwirrung als Klarheit stiftet. Der Sinn dieser Schreibweise soll derjenige sein, Dich nach und nach mit der formalen mathematischen Sprache vertraut zu machen. Gehen wir die Formel also durch. Am besten sage ich im Voraus, was nicht Standard in der mathematischen Schreibweise ist. Das Aufschreiben von AB soll anzeigen, dass sowohl A wie auch B wahr sind. Der dreifache Pfeil nach rechts ist ebenfalls nicht Standard. Er bedeutet (wie schon oben beschrieben: "Das gelte so per Festlegung, also per Definition". $A, B \in \Omega$ ist ebenfalls nicht Standard. Es soll bedeuten: "A und B sind Bezeichnungen von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen der Behauptung widerspruchsfrei seien." Standard sind folgende Teile: $B\epsilon\Omega$ (vergleiche mit dem Kapitel 3 Mengen). Dies bedeutet: B ist ein Element der Menge mit der Bezeichnung Ω. "⇒" bedeutet: "Daraus folgt per Übereinkunft, ist also willkürlich festgelegt" (siehe Kapitel 9). Die Klammern "(" sowie ")" habe ich nicht etwa hingeschrieben, weil die Aussage $A \wedge B \iff A B$ eine Randbemerkung wäre, weil sie nicht so wichtig ist wie der Rest, sondern weil sonst nicht klar ist, was mit was äquivalent, also gleichbedeutend ist. Das Symbol ⇔ habe ich extra erzeugen müssen, damit ich es aufschreiben konnte. Es ist so speziell, dass es nicht einmal durch ETFX (das Schreibprogramm) zur Verfügung gestellt wurde. Die Bedeutung dieses dreifachen Pfeils nach links und rechts sei: Es gelte nach Ubereinkunft, dass $A \wedge B$ die gleiche Bedeutung habe wie die Aussage A, gefolgt von der Aussage B.

Die Aussage $A \wedge B$ sei also genau dann wahr, falls A wahr ist sowie B wahr ist. Diese Aussage ist jedoch streng genommen ein Witz. Ich vermute, dass Du beim bestem Willen keinen Unterschied zwischen " $A \wedge B$ ist wahr", und "sowohl A ist wahr wie auch B ist wahr", abgekürzt "AB"

Tabelle 1. 1. Darstellung der Wahrheitstabelle der Konjunktion

A	В	$A \wedge B$
$\neg A$	$\neg B$	$\neg (A \land B)$
$\neg A$	B	$\neg (A \land B)$
A	$\neg B$	$\neg (A \land B)$
A	B	$A \wedge B$

Tabelle 2. 2. Darstellung der Wahrheitstabelle der Konjunktion

A	B	$A \wedge B$
0	0	0
0	1	0
1	0	0
1	1	1

finden kannst. Ich auch nicht. Ich habe es übrigens erst beim Aufschreiben dieser Zeilen bemerkt, dass streng genommen das ∧-Zeichen weggewerden kann. $W\ddot{u}rde \wedge ich \wedge das \wedge ganze \wedge Skript \wedge so \wedge$ lassen schreiben,∧dann∧würde∧dieser∧Text∧so∧aussehen. Und das wäre ja einfach lächerlich, findest Du nicht auch? Wieso wird es dann trotzdem aufgeschrieben? Abgesehen, um Dich zu ärgern (aber auch dies ist nicht sicher), vor allem darum, um damit eine Operation, also eine Tätigkeit, auszudrucken: Wir haben die beiden Aussagen, welche mit A und B bezeichnet werden, und jetzt möchte ich feststellen, ob beide Aussagen wahr sind. Das Aufschreiben des Zeichens der Konjunktion ist auch dann praktisch, wenn in Definitionen und Sätzen der Logik eine Konjunktion von Aussagen auftritt. In diesem Fall kannst Du das ∧-Zeichen für die Trennung der Fälle verwenden. Du siehst dann leichter, wo die eine Aussage aufhört und wo die andere Aussage anfängt.

In den Tabellen 1 respektive 2 wurden zwei Mal eine Wahrheitstafel für die Konjunktion aufgeschrieben: Das eine Mal, so wie ich es schreiben würde, das andere Mal so, wie es üblicherweise aufgeschrieben wird.

Die Tabelle 1 kannst Du so lesen: A und B seien Metasymbole von Aussagen. Auf jeder Zeile ist eine mögliche der Kombinationen der Wahrheitsgehalte aufgeschrieben: In der ersten Zeile sind beide Aussagen nicht wahr. In der zweiten Zeile ist die Aussage B, in der dritten Zeile ist die Zeile A wahr. In der letzten Zeile sind beide Aussagen wahr. Diese Anordnung der Fälle ist darum üblich, damit kein Fall vergessen geht. Außerdem sind die Fälle geordnet. In der letzten Spalte ist dann aufgeschrieben, ob die Konjunktion der beiden Aussagen immer noch wahr ist. Wie Du siehst, ist dies nur der Fall, falls sowohl die erste Aussage A wie auch die zweite Aussage B wahr sind. In der Tabelle 2 ist das Gleiche noch einmal aufgeschrieben - jedoch auf eine andere

Klammern der Konjunktion können weggelassen werden

Art: Statt der Bezeichnung der Aussage ist nur noch deren Wahrheitsgehalt aufgeschrieben, jedoch auch dieser nur noch als Zahl: Falls die Aussage nicht wahr ist, dann wird eine Null hingeschrieben, ansonsten eine Eins. Der Grund, wieso dies so aufgeschrieben wird, ist der, dass die Konjunktion als Rechnung mit 0 und 1 aufgefasst werden kann. Der Wahrheitsgehalt der Aussage $A \wedge B$ kann als Produkt (Multiplikation) der Wahrheitsgehalte von A und B aufgefasst werden. Ich werde diese Interpretation des Wahrheitswertes als Multiplikation¹ ausführlich im Kapitel?? besprechen. Es seien zunächst sowohl A wie auch B Symbole für Aussagen, welche nicht wahr seien. Ich nehme zwei Aussagen, welche so nicht stimmen. Es sei A das Symbol für die Aussage "Kreise besitzen vier Ecken" und B das Symbol für die Aussage "Alle Hasen heißen Roger Rabbit". Da beide Aussagen nicht wahr sind, besitzen sowohl A wie auch B den den Wahrheitswert 0. Es gilt $0 \cdot 0 = 0$, aber dies streng genommen ein Satz, welcher bewiesen werden muss². Doch wir glauben jetzt einmal, dass dem so sei. Wie Du vielleicht erraten kannst, finde ich die ganze Übung insofern bescheuert, weil sie gerade eben nicht induktiv ist, sondern bereits auf Tatsachen zurückgreift, welche erst noch gezeigt werden müssen. Das wird übrigens auf häufig in richtigen Mathematikbüchern gemacht, aber eben: Mathematikerinnen und Mathematiker sind häufig "gut getarnte Chaoten" respektive "gut getarnte Chaotinnen". Nun ja, aber zurück zu dem, was ich eigentlich zeigen wollte. Weil eben $0 \cdot 0 = 0$ ist, kann dieser Wert dem Wahrheitswert der Aussage "Alle Kreise besitzen vier Ecken und alle Hasen heißen Roger Rabbit" zugeordnet werden. Beachte übrigens, dass ich "alle" im Beispiel klein geschrieben habe. Streng genommen hätte ich "Alle" schreiben müssen, denn "a" und "A" zwei verschiedene Symbole. Vielleicht denkst Du, dass sei eine übertriebene Spitzfindigkeit. Und natürlich hast Du recht. Dummerweise jedoch lebt die Mathematik von der Auslassung. Damit meine ich, dass ein wesentlicher Teil der mathematischen Arbeit darin besteht, so viel wie möglich wegzulassen, und so viel wie nötig zu behalten. Das führt dazu, dass jeder einzelne Teil einer Aussage wichtig wird. Ich habe zum Beispiel kürzlich in einer Aufgabe einen Punkt übersehen. Das Beispiel war: Berechne die Lösungen der inhomogenen Differentialgleichung

$$D^3x(t) - \dot{x}(t) = t - 1$$

zu berechnen. In der Eile habe ich gelesen:

$$D^3x(t) - x(t) = t - 1$$

Finde den Unterschied... Es ist der Punkt oberhalb des zweiten x-es von links. Ich nehme nicht an, dass Du die Gleichung verstehst

¹Mal-Rechnung

²und unter auch bewiesen wird. Dort wird auch $1 \cdot 0 = 0$, $0 \cdot 1 = 0$ sowie $1 \cdot 1 = 1$ bewiesen.

. Es geht mir selbstverständlich nicht darum, zu zeigen, was ich doch für ein toller Hirsch bin. Ich möchte einfach daraus hinweisen, dass es wichtig und richtig ist, bis ins kleinste Detail eine Aussage zu prüfen, falls mit ihr gerechnet werden soll. Zurück zu unserer Aussage "Kreise besitzen vier Ecken und alle Hasen heißen Roger Rabbit". Da dieser Aussage der Wert 0 zugeordnet wird, bedeutet dies, dass sie nicht wahr ist - was wir ja schon immer gewusst haben. Aber die erste Zeile der Definitionstabelle ist damit erledigt.

Nun gehe ich zur zweiten Zeile: Es sei A das Symbol einer nicht wahren Aussage und B das Symbol für eine wahre Aussage (zum Beispiel sei A der Name der Aussage "In der Nacht scheint die Sonne" und B der Name der Aussage "1 ist eine Zahl"). Dann kann A der Wahrheitswert 0 zugewiesen werden und B der Wahrheitswert 1. Wieder muss ich ich auf später vertrösten, was den Wert der Multiplikation $0 \cdot 1$ betrifft. Natürlich ist anzunehmen, dass Du schon weißt, dass $0 \cdot 1 = 0$ ist. Der Witz an der ganzen Sache ist jedoch nicht, dass $0 \cdot 1 = 0$ ist, sondern, wieso $0 \cdot 1 = 0$ ist. An dieser Stelle begnügen wird uns damit, zu bemerken, dass $0 \cdot 1 = 0$ ist. Das bedeutet, dass der Aussage "In der Nacht scheint die Sonne und 1 ist eine Zahl" der Wahrheitswert 0 zugewiesen werden muss. Damit wäre die zweite Zeile der Tabelle erledigt. Nun kommt das nächste Beispiel an die Reihe. A sei das Symbol für die Aussage "Es gibt Blumen und Bäume" und B das Symbol für die Aussage "Alle Personen heißen gleich". Da B (zum Glück!) nicht wahr ist, A hingegen schon, muss B den Wert 0 und A den Wert 1 zugewiesen werden. Nun ist $1 \cdot 0 = 0$, was wiederum bedeutet, dass der Aussage "Es gibt Blumen und Bäume und alle Personen heißen gleich" der Wert 0 zugewiesen wird. Es gilt also nicht, dass es gleichzeitig Blumen und Bäume gibt und alle Personen gleich heißen. Dass in einer Aussage wieder ein "und" verwendet wurde, macht übrigens nichts. Das geht schon. Es zeigt, dass sich im Fall der Logik die geschriebene Sprache und die formale logische Sprache teilweise vermischen können. Zu guter Letzt sei A das Symbol für die Aussage "Wasser kann gefrieren" und B das Symbol für die Aussage "Es ist noch kein Meister vom Himmel gefallen". Sowohl A wie auch B sind meines Erachtens wahr. Obwohl B natürlich nur im übertragenen Sinn wahr ist, nämlich in demjenigen, dass es noch niemand gab, welche oder welcher schon allwissend auf die Welt gekommen ist. Im wörtlichen Sinn weiß ich es natürlich nicht, ob es nicht einmal ein Genie gelebt hat, welches sich dadurch in die ewigen Jagdgründe beförderte, indem er oder sie sich vom Flugzeug stürzte und dann wortwörtlich "vom Himmel fiel". Da A und B wahr sind, muss beiden Aussagen eine 1 zugeordnet werden. Es gilt: $1 \cdot 1 = 1$. Also besitzt die Aussage "Wasser kann gefrieren und es ist noch kein Meister vom Himmel gefallen" den Wahrheitswert 1, was bedeutet, dass sie wahr ist - obwohl sie ziemlich bekloppt tönt. Keine Angst, ich denke natürlich nicht immer in solch komischen Zusammenhängen, obwohl

es manchmal lustig ist, sich solche Beispiele auszudenken. Aber damit wäre auf jeden Fall ein Beispiel der letzten Zeile der Definition der Konjunktion gemacht.

Definition von $, \Lambda$ "

Es gibt übrigens ein ähnliches mathematische Symbol, welches fast gleich aussieht: " \bigwedge ". Dieses Symbol hat die gleiche Bedeutung wie " \bigvee ", und das ist...? Das ist "Für alle...". Die Ähnlichkeit des Symbols " \bigwedge " mit dem Symbol " \bigwedge " ist kein Zufall, in beiden Fällen spielt die Und-(\bigwedge) Verknüpfung hinein. So kann kann einerseits die Und-(\bigwedge) Verknüpfung als Spezialfall einer "Für alle..."-(\bigwedge) Aussage verstanden werden. Diese "Für alle..."-(\bigwedge) Aussage wird auf zwei Aussagen (welche oben mit " \bigwedge " respektive " \bigwedge B" bezeichnet werden) angewendet. Somit wäre die Und-(\bigwedge) Verknüpfung die kleine Schwester der "Für alle..."-(\bigwedge) Aussage. Andererseits kann die "Für alle..."-(\bigwedge) Aussage als Verallgemeinerung einer Konjunktion aufgefasst werden. Statt zwei Aussagen werden alle Aussagen mittels einer Konjunktion miteinander verkettet. Die Schreibweise von " \bigwedge " und " \bigvee " unterscheidet sich insofern, als das die Bedingung unter das \bigwedge -Zeichen geschrieben wird. Also wird beispielsweise geschrieben:

$$\bigwedge_{n \in \mathbb{N}} (-1) \cdot n \leqslant -1$$

statt

$$\forall n \in \mathbb{N} \ (-1) \cdot n \leqslant -1$$

Ausgeschrieben heißen beide Aussagen: "Für alle natürlichen Zahlen gilt, dass ihr Produkt mit Minus Eins kleiner oder gleich Minus Eins ist." Ich weiß, dass hast Du schon vorher gewusst. Aber hier geht es mir ausschließlich um die Notation und nicht darum, um über Eigenschaften von natürlichen Zahlen nachzudenken. Ich habe die erste Notation mit dem "Spitzberg" nicht so gerne, weil die Leserichtung kurzzeitig statt von links nach rechts von oben nach unten geht. Aber falls Du es cooler findest, dann kannst Du natürlich in Deinen mathematischen Abhandlungen den großen Bruder der Konjunktion (\wedge) verwenden.

Auch die Konjunktion kann als Schaltbild dargestellt werden (vgl. mit der Abbildung 8.0.1). Falls die zwei Taster gedrückt sind, dann ist das Ausgangspotential der Taster gleich dem Eingangspotential. In diesem Fall fließt Ladung durch das Lämpchen, und dieses beginnt zu leuchten. Ist jedoch mindestens einer der beiden Taster nicht betätigt, dann fließt alle Ladung in die Erde respektive findet ein Potentialausgleich von der Erde zum Ausgang der Schaltung statt. Auch für diese Schaltung gibt es die energiesparende Variante. Diese ist unter der Abbildung 8.0.2 dargestellt.

In der zweiten Darstellung der Und-Schaltung wird der Ausgang nur dann nicht auf das Erdpotential "hinuntergezogen", falls beide Eingänge gesetzt sind. Der obere Teil wurde von der vorhergehenden Abbildung Abbildung 8.0.1. 1. Prinzipschema Konjunktion

Abbildung 8.0.2. 2. Prinzipschema Konjunktion

übernommen. Wieder ist in der zweiten Schaltung das Lämpchen für Funktion nicht mehr nötig. Im Gegensatz dazu ist in der ersten Schaltung das Lämpchen nötig, damit die Ausgangsspannung verschwindet, falls die beiden Aussagen nicht wahr und also die beiden Taster nicht betätigt worden sind.

Die endgültige Formalisierung der Eigenschaften der Konjunktion habe unter der Tabelle 8.0.2 dargestellt. Lasse Dich nicht verdrießen von den vielen Klammern und Dreifachpfeilen:

$$(8.0.2) \qquad \begin{array}{ccc} ((\neg A \wedge \neg B) & \Rrightarrow & \neg (A \wedge B)) & \wedge \\ ((\neg A \wedge B) & \Rrightarrow & \neg (A \wedge B)) & \wedge \\ ((A \wedge \neg B) & \Rrightarrow & \neg (A \wedge B)) & \wedge \\ ((A \wedge B) & \Rrightarrow & (A \wedge B)) & \end{array}$$

Noch einmal werde ich versuchen, diese Aussage sprachlich zu fassen. Es seien A respektive B Symbole für zwei Aussagen (welche auch

verschiedene Bezeichnung für die gleiche Aussage sein können). Dann ist Aussage, welche aus der Aussage A und der Aussage B besteht, genau dann wahr, falls die Aussage A sowie die Aussage B wahr sind. Es fällt natürlich auf, dass das "Und"-Zeichen (\wedge) einerseits definiert wird, andererseits gleichzeitig verwendet wird. Jedoch wollte ich zeigen, wie die formale Variante der Definition der Konjunktion aussieht. Die sprachliche Beschreibung wurde ja weiter oben bereits gemacht. Ich werde noch einmal Beispiele machen. Vermutlich ist es Dir zu langweilig, diese durchzulesen, weil Du es bereits begriffen hast, um was es geht. In diesem Fall kannst Du die Beispiele getrost überlesen - Du wirst nichts verpassen. Im anderen Fall wünsche ich Dir viel Kurzweil beim Überfliegen der Beispiele: Es sei A das Symbol für die Aussage: "Der Mond kann kugelrund sein" und B sei das Symbol für die Aussage "Ein Automobil ist ein Fahrzeug". Ich nehme an, Du wirst gegen beide Aussagen nichts einzuwenden haben. Dann sind also sowohl die Aussage A wie auch die Aussage B wahr. Dann gilt also, dass $A \wedge B$ wahr ist, ausgeschrieben

> "Der Mond kann kugelrund sein" \ "Ein Automobil ist ein Fahrzeug",

sprachlich ausformuliert "Es ist wahr, dass der Mond kugelrund sein kann und dass ein Automobil ein Fahrzeug ist". Ja, ich weiß, diese zwei Aussagen haben absolut nichts miteinander zu tun, jedoch kommt es darauf in der Logik nicht darauf an. Wichtig ist, dass die zusammengesetzte Aussage wahr ist. Falls A das Symbol für die Aussage ist "Alle Esel reden schweizerdeutsch" und B ist das Symbol für die Aussage "Hirsche sind Säugetiere", dann ist die Aussage $A \wedge B$ nicht wahr, denn es gilt

¬ ("Alle Esel reden schweizerdeutsch" ∧ "Hirsche sind Säugetiere"),

ausformuliert: "Es gilt nicht, dass einerseits alle Esel schweizerdeutsch reden und dass andererseits Hirsche Säugetiere sind". Denn ich denke nicht, dass alle Esel schweizerdeutsch reden können. Damit ist bereits die mit einer Konjunktion zusammengesetzte Aussage falsch. Es sei nun A das Symbol für die Aussage "Das Jahr ist in Monate unterteilt" und B sei das Symbol für die Aussage "Die Körpertemperatur des Menschen ist -197 °C". Dann gilt wieder die Aussage $\neg (A \land B)$, ausgeschrieben

 $\neg\,(\text{"Das Jahr ist in Monate unterteilt"}\land$ "Die Körpertemperatur des Menschen betraegt -197° C"),

ausformuliert: "Es stimmt nicht, dass einerseits die Körpertemperatur des Menschen - 197 °C beträgt, und dass andererseits das Jahr in Monate unterteilt ist". Ich musste die Aussage abgesetzt und auf zwei Zeilen verteilt schreiben, da ansonsten der Ausdruck im PDF-Format nicht lesbar gewesen wäre. Aber von der Mathematik her sind die drei Schreibweisen meines Erachtens gleichwertig. Die Aussage ist darum nicht wahr, weil die Körpertemperatur etwa 36 °C und nicht kälter als gefrierendes Wasser ist. Gefrierendes Wasser besitzt eine Temperatur von 0 °C. - 197 °C ist meines Wissens die Temperatur von flüssigem Stickstoff. Aber so cool³ sind wir glücklicherweise nicht! Schlussendlich sei A das Symbol für die Aussage "Züge können fliegen." und B sei das Symbol für die Aussage "Fernseher sind zum Wellenreiten da". Da beide Aussagen offensichtlich Quatsch sind, gilt die Aussage $\neg (A \land B)$, ausgeschrieben

¬ ("Züge können fliegen." ∧ "Fernseher sind zum Wellenreiten da.") ausformuliert: "Es stimmt nicht, dass einerseits Züge fliegen können und andererseits Fernseher zum Wellenreiten da sind".

Ich habe noch herausgefunden (wahrscheinlich wurde das schon in Hundert anderen Einführungen in die Logik festgestellt, aber was soll's), dass die Konjunktion mathematisch als Bestimmung des Minimums auffassen kann. Sind also A und B Symbole von Aussagen, dann können von den in Zahlen umgewandelten Werten das Minimum bestimmt werden, um zum Wahrheitsgehalt der Und-verknüpften Aussage $(A \wedge B)$ zu gelangen. Ist beispielsweise A wahr und B nicht, dann ist der Wahrheitsgehalt von A 1, derjenige von B jedoch 0, das Minimum also $0 = \min\{0, 1\}$. Diese Tatsache möchte ich fortan mit dem "Minimumprinzip der Konjunktion" benennen. Die geschweiften Klammern bedeuten übrigens eine Mengenangabe (vergleiche mit dem Kapitel 3). In Worten bedeutet das Resultat, dass nicht die Aussage A zusammen mit der Aussage B gilt. Ich nehme an, das ist Dir ziemlich egal, aber zum Beweisen von logischen Sätzen ist es eben praktisch, wenn Du die Wahrheitswerte der Aussagen in Zahlen umsetzen und anschließend mit ihnen rechnen kannst, so wie Du es lange (eventuell sogar qualvolle) Stunden lang geübt hast. So ist es eventuell einfacher für Dich. Wenn nicht, habe ich es einfach der Vollständigkeit halber hingeschrieben. Außerdem wird dadurch das Verständnis der mathematischen Operation, welche hinter der Disjunktion steckt (vergleiche mit dem Kapitel 11) einfacher: Der Wahrheitswert der Disjunktion von zwei Aussagen ist gleich dem Maximum der Wahrheitswerte der beiden Aussagen. Das Schöne an dieser Definition ist, dass sie irgendwie symmetrisch sind. Denn die Bestimmung eines Minimums respektive Maximums von Elementen von Mengen mit (endlich) vielen Elementen sind

Minimumprinzip der Konjunktion

³,kalt" auf Englisch geschrieben

irgendwie ähnlich, wenn auch genau entgegengesetzt. Das Minimumprinzip kann auch als logische Sätze formuliert und bewiesen werden. Ich habe dies unter den Lemma 41 sowie 42 aufgeschrieben.

Abkürzung Konjunktion

An dieser Stelle möchte ich auf eine Besonderheit der Konjunktion hinweisen. Es geht darum, dass die Überprüfung der Konjunktion abgebrochen werden kann, falls die erste Aussage (mit "A" oben bezeichnet) nicht gilt. Dies folgt aus dem Minimumprinzip der Konjunktion, welches ich im vorhergehenden Kapitel vorgestellt habe. Denn ist die erste Aussage nicht wahr, dann ist deren Wahrheitswert, in einer Zahl ausgedrückt, 0. Das bedeutet jedoch, dass das Minimum der Wahrheitswerte der Konjunktion der beiden Aussagen in diesem Fall nicht größer als Null sein kann. Denn das Minimum ist immer kleiner oder gleich 0. Da die Wahrheitswerte der beiden Aussagen nur 0 respektive 1 sein können, folgt daraus, dass der Wert der Konjunktion immer Null sein muss. Falls Du immer noch skeptisch bist, ob die Aussage, dass die Konjunktion automatisch nicht wahr ist, falls die erste Aussage nicht wahr ist (das ist Dein gutes Recht, und ich möchte Dich nur darin bestärken, dieses Recht bei Bedarf auch einzufordern), dann kannst Du in der ersten respektive zweiten Zeile der Definition 8.0.2 nachschlagen. In beiden Zeilen ist die Aussage A sowie die Konjunktion der beiden Aussagen nicht wahr. Dies ist zwar nicht weiter verwunderlich, aber es kann Dir "Rechenzeit", seriöser ausgedrückt, Zeit für die Überlegung ersparen. In vielen Programmiersprachen wie "C/C++" oder "Java" wird das berücksichtigt, indem in diesem Fall die zweite Aussage für die Konjunktion nicht mehr berücksichtigt wird, sondern das Resultat bereits dann zurückgegeben wird, falls die erste Aussage nicht wahr ist. Dies ist im Fall der Programmiersprachen dann heimtückisch, wenn, wie in der Programmiersprache "C" leider üblich, das Abfragen und das Verändern von Werten im gleichen Zug ausgeführt werden. Dann kann es vorkommen, dass gemeint wird, dass beide Teile der Und-Abfrage zumindest überprüft und in der zweiten Und-Abfrage noch etwas ausgeführt werden sollte. Sowohl die Überprüfung (was so auch gewünscht wird) wie auch die Ausführung (was so nicht gewünscht ist) der zweiten Aussage erfolgen dann nicht, und so wird etwas nicht ausgeführt, was hätte ausgeführt werden sollen. Schlussendlich können dadurch Programmfehler entstehen, welche nur sehr mühsam entdeckt werden. Aber zum Glück lernen wir hier nicht programmieren, sondern ich möchte Dir eine Einführung in Mathematik geben.

KAPITEL 9

Was ist eine "Implikation"?

Ich nehme an, Du hättest das Kapitel "Was ist eine Disjunktion?" (also "Oder-Verknüpfung") erwartet. Das hatte ich auch in der ersten Version des Skriptes so vorgesehen. Dann habe ich jedoch bemerkt, dass es für die eigene Darstellung der Definition der logischen Verknüpfungen besser ist, wenn ich die Definition der Implikation (welche auch als "Schlussfolgerung" bezeichnet wird) vorziehe. Diese eigene Darstellungsart der Definition der logischen Verknüpfungen mache ich bekanntlich darum, dass Du Dich möglichst früh mit der mathematischen Schreibweise von Aussagen vertraut machen kannst. Aus diesen Gründen habe ich die Reihenfolge der Kapitel umgekehrt.

Die meisten mathematischen Sätze sind so aufgebaut: Für alle x aus der Menge M, für welche die folgenden Voraussetzungen gelten, folgt die folgende (geniale, unglaublich erstaunliche) Schlussfolgerung. Die Schlussfolgerung wird mit einem Doppelpfeil abgekürzt. Ich weiß jedoch nicht, wieso ausgerechnet ein Doppelpfeil ("⇒") und kein einfacher Pfeil ("→") verwendet wird. In der deutschen Sprache können "folgen" und "gehorchen" mit dem gleichen Tätigkeitswort "folgen" geschrieben werden. Ob und wenn ja der Doppelpfeil etwas mit dieser Art von "gehorchen" zu tun hat, weiß ich nicht. Das bleibt Deiner Phantasie überlassen. Um es ein wenig kompliziert zu machen¹, möchte ich an dieser Stelle noch erwähnen, dass die Schlussfolgerung nicht das gleiche wie "folgern" ist. Ich bespreche an dieser Stelle nur die Schlussfolgerung, und diese hat sehr merkwürdige Eigenschaften. Das folgern jedoch, welches später als logischer Satz präsentiert wird (siehe Kapitel 18.6), hat diejenigen Eigenschaften, welche Dir vertraut vorkommen dürften.

Ich möchte jetzt zwei Beispiele machen, welche mehr oder weniger spitzfindig sind. Die Aussage mit dem Symbol A laute: "Alles was wir am Himmel sehen, wird Himmelskörper genannt" und B sei ein Symbol der Aussage: "Der Mond steht ab und zu am Himmel". Weil sowohl A wie auch B wahre Aussagen sind, gilt die Schlussfolgerung: Aus der Tatsache, dass wir alles was wir am Himmel sehen, Himmelskörper nennen, folgt, dass der Mond ab und zu am Himmel steht. Beachte, dass diese Schlussfolgerung nicht das ist, was Du wahrscheinlich erwarten würdest. Wenn ich mich nicht täusche, würdest Du die folgende Schlussfolgerung erwarten: "Der Mond steht ab und zu am Himmel" sei die erste

Beispiel wahrer Schlussfolgerung

 $^{^{1}}$ sollte ein Witz sein...

Aussage, "Alles was ab und zu am Himmel steht, wird Himmelskörper genannt", sei die zweite Aussage. Die Schlussfolgerung ist entsprechend: "Der Mond ist ein Himmelskörper". Das ist eine Schlussfolgerung, welche jedoch bereits ein logischer Satz ist und dementsprechend bewiesen werden kann und soll. Die ursprüngliche Schlussfolgerung $A \Rightarrow B$ ist jedoch sehr seltsam: Weder Du noch ich würden aus der Tatsache, dass alles, was wir am Himmel sehen, folgern, dass der Mond ab und zu am Himmel steht. Jedoch ist die Schlussfolgerung trotzdem richtig, weil nämlich beide Aussagen A und B richtig sind. Das bedeutet, dass die Schlussfolgerung auch dann wahr bleibt, auch wenn nicht ersichtlich ist, wie die zweite Aussage aus der ersten Aussage abgeleitet wurde. Davon lebt die Mathematik. Sie "zimmert" Sätze zusammen, welche mit zwei Aussagen arbeiten (welche hier A und B genannt werden). In der Aussage A sind die Bedingungen abgelegt, in der Aussage B die Schlussfolgerung. Und dann wird die ganze Aussage als wahre Schlussfolgerung angepriesen. Auch wenn der Leser oder die Leserin nicht weiß, wie aus der Aussage A die Aussage B abgeleitet wird. Das hat dann häufig etwas verschwörerisches an sich: "Vertraue mir, es stimmt so".

Beispiel nicht wahrer Schlussfolgerung Nun möchte ich ein Beispiel einer nicht wahren Schlussfolgerung aufschreiben. Eine Schlussfolgerung ist nur dann nicht wahr, falls die erste Aussage A wahr, die zweite Ausgabe B jedoch nicht wahr ist. A sei zum Beispiel das Symbol der Aussage: "Ein Auto ist schwerer als ein Fahrrad" und B sei die Aussage "Äpfel und Birnen sind das Gleiche". Dann gilt die Schlussfolgerung: "Aus der Tatsache, dass ein Auto schwerer ist als ein Fahrrad, folgt, dass Äpfel und Birnen das Gleiche sind" nicht. Das würdest Du wahrscheinlich auch so sehen, oder nicht?

Es wird die folgende Wahrheitstafel für die Implikation vereinbart, welche ich wieder in zwei Varianten aufschreibe (vergleiche mit den Tabellen 1 respektive 2). Die Tabelle 1 kannst Du so lesen: A und B seien Metasymbole von Aussagen. Auf jeder Zeile ist eine möglichen Wahrheitsgehalte der Kombinationen der Wahrheitsgehalte aufgeschrieben: In der ersten Zeile sind beide Aussagen nicht wahr. Auf der zweiten Zeile ist die Aussage B, auf der dritten Zeile ist die Aussage A wahr B jedoch nicht. In der letzten Zeile sind beide Aussagen wahr. In der letzten Spalte ist dann aufgeschrieben, ob aus der Aussage A die Aussage B folgt respektive nicht folgt. Wie Du siehst, ist letzteres (die Schlussfolgerung gilt nicht) nur der Fall, falls Aussage A wahr, jedoch die Aussage B nicht wahr ist. In der Tabelle 2 ist das Gleiche noch einmal aufgeschrieben - jedoch auf eine andere Art: Statt der Bezeichnung der Aussage ist nur noch deren Wahrheitsgehalt aufgeschrieben, jedoch auch dieser nur noch als Zahl. Falls die Aussage nicht wahr ist, dann wird eine Null hingeschrieben, ansonsten eine Eins.

Tabelle 1. 1. Darstellung der Wahrheitstabelle der Schlussfolgerung

Voraussetzungen	
$\neg A \land \neg B$	$A \Rightarrow B$
$\neg A \land B$	$A \Rightarrow B$
$A \wedge \neg B$	$\neg (A \Rightarrow B)$
$A \wedge B$	$A \Rightarrow B$

Tabelle 2. 2. Darstellung der Wahrheitstabelle der Schlussfolgerung

A	B	$A \Rightarrow B$
0	0	1
0	1	1
1	0	0
1	1	1

Ich mache Beispiele, welche Du gut überlesen kannst. Es sei A die Aussage: "Der Steinpilz ist eine Kamelart". B sei die Aussage: "Elche lügen immer". Dann sind wohl beide Aussagen nicht wahr. Gleichwohl ist jedoch die Schlussfolgerung wahr: "Elche lügen immer, falls der Steinpilz eine Kamelart ist". Vielleicht denkst Du jetzt, ich hätte eine Meise. Aber diese Definition kommt nicht von mir. Ich werde schon noch Argumente auflisten, welche die Bedeutung dieser Definition nahelegen. Für die ersten Zeilen wäre jetzt also ein Beispiel gemacht.

Zur Demonstration der zweiten Zeile sei A die Bezeichnung der Aussage: "Die Violine ist ein Blasinstrument" und B sei die Aussage: "Ein Dreieck ist nicht rund". Dann gilt die Schlussfolgerung "Aus der Tatsache, dass die Violine ein Blasinstrument ist, folgt, dass ein Dreieck nicht rund ist." Nun ja, auch diese Aussage ist gewöhnungsbedürftig. Aber damit ist ein Beispiel für die zweite Zeile der Definition der Schlussfolgerung gegeben. Ein Beispiel für die dritte Zeile habe ich unter Kapitel 9 unter der Randbemerkung "Beispiel einer nicht wahren Schlussfolgerung" gegeben (das Beispiel, dass aus der Tatsache, dass ein Auto schwerer als ein Velo, also ein Fahrrad ist, folgt, dass Äpfel gleich Birnen sind).

Und ein Beispiel für die letzte Zeile habe ich zu Beginn des Kapitels geschrieben ("Aus der Tatsache, dass wir alles was wir am Himmel sehen, Himmelskörper nennen, folgt, dass der Mond ab und zu am Himmel steht"). Analog dem Minimumprinzip der Konjunktion respektive und dem Maximumprinzip der Disjunktion (siehe die entsprechenden Kapitel 8 respektive 11) kannst Du Dir folgendes merken: Die Schlussfolgerung gilt nur dann nicht, falls links eine Eins und rechts eine Null steht. Damit kannst Du bei schwierigeren logischen Berechnungen schneller die entsprechenden Tabellen füllen.

ABBILDUNG 9.0.1. 1. Schaltbild Schlussfolgerung

Abbild Schlussfolgerung 2.0.2. 2. Schaltbild Schlussfolgerung

Es existieren auch für die logische Schlussfolgerung Schaltbilder. Dasjenige mit einem Lämpchen ist in Abbildung 9.0.1, das andere ohne Widerstand (die "Energiesparvariante") in Abbildung 9.0.2 gezeigt. In Abbildung 9.0.3 habe ich eine "symmetrische Variante" aufgezeichnet.

Diese Schaltbilder sind für meinen Geschmack ziemlich kompliziert. Darum möchte ich sie kurz sprachlich beschreiben. Im ersten Schaltbild ist der Ausgang schon gesetzt, falls die Aussage A nicht wahr ist. Das bedeutet, dass bereits in diesem Zustand das Lämpchen leuchtet. Falls die Aussage A wahr ist, der entsprechende Taster entsprechend

Abbild Schlussfolgerung Abbild Schlussfolgerung

gesetzt, dann hängt das Potential am Ausgang davon ab, ob die Aussage B wahr ist, der Taster B dementsprechend gesetzt ist. Falls die Aussage B wahr ist und somit der entsprechende Taster gesetzt, dann liegt wieder die Eingangsspannung über dem Ausgang. Falls der zweite Taster nicht getätigt ist, dann fließt die Ladung in die Erde - entweder über das Lämpchen wie in der ersten Schaltung oder in der zweiten Schaltung direkt über den entsprechenden Schaltkreis in die Erde. Der inverse Taster beim Taster B ist übrigens in diesem Fall direkt mit der Erde verbunden und darum existiert in diesem Fall kein Potentialunterschied über dem Lämpchen. Ich behaupte, dass in der Implikation "echte Mathe" zum ersten Mal zu Vorschein kommt. Denn alle anderen logischen Verknüpfungen, welche ich definiert habe, sind symmetrisch.

Die endgültige formale Fassung der Eigenschaften der Implikation ist in der Aussage 9.0.1 festgelegt:

$$(9.0.1) \begin{array}{cccc} ((\neg A \wedge \neg B) & \Rrightarrow & (A \Rightarrow B)) & \wedge \\ ((\neg A \wedge B) & \Rrightarrow & (A \Rightarrow B)) & \wedge \\ ((A \wedge \neg B) & \Rrightarrow & \neg (A \Rightarrow B)) & \wedge \\ ((A \wedge B) & \Rrightarrow & (A \Rightarrow B)) & \wedge \\ \end{array}$$

Natürlich ist es wiederum fast ein wenig widersinnig, die Schlussfolgerung einerseits zu definieren, andererseits bereits in der gleichen Aussage bereits zu verwenden. Aber wieder habe ich die Eigenschaften der Schlussfolgerung bereits einmal vorgestellt, ohne die Schlussfolgerung gleichzeitig zu verwenden. Andererseits finde ich es besser, wenn die formale Sprache möglichst früh möglichst stimmig zeige, so dass Du später nicht viel Aufwand betreiben musst, um die Sätze und die Beweise zu verstehen. Ich werde wieder noch einmal Beispiele hinschreiben, welche es klarer machen, was ich eigentlich meine. Es seien A das Symbol

für die Aussage: "Elefanten können fliegen." Und B das Symbol für die Aussage: "Auch Computer sind nur Menschen". Offenbar stimmen beide Aussagen nicht. Dann gilt komischerweise die Aussage $A\Rightarrow B$, ausgeschrieben

"Elefanten können fliegen" ⇒ "Auch Computer sind nur Menschen".

ausformuliert: Wenn Elefanten fliegen können, dann sind Computer auch nur Menschen". Wohlgemerkt habe ich dadurch nicht bewiesen dass Computer auch nur Menschen seien. Aber das werde ich später noch ausführlich erläutern. Damit habe ich ein Beispiel für die erste Zeile der Definition der Implikation aufgeschrieben. Nun möchte ich ich ein Beispiel für die zweite Zeile der Definition der Implikation aufschreiben. Es sei nun A das Symbol für die Aussage "Stein ist so weich wie Luft" und B sei das Symbol für die Aussage "Blitze und Hagel sind Wetterphänomene". Dann gilt $A \Rightarrow B$, ausgeschrieben

"Stein ist so weich wie Luft" \Rightarrow "Blitze und Hagel sind Wetterphänomene",

ausformuliert "Wenn Stein so weich wie Luft ist, dann sind Blitz und Hagel Wetterphänomene". Das tönt in meinen Ohren so, also ob es nicht stimmen würde, dass Blitz und Hagel keine Wetterphänomene seien. Oder als seien Blitz und Hagel nur dann Wetterphänomene, falls Stein so weich wie Luft ist. Beides ist nicht der Fall. So wie ich die Logik verstehe, ist gemeint, dass nicht ausgeschlossen werden kann, dass Blitz und Hagel Wetterphänomene sind. Aber da nicht wahr ist, dass Stein so weich wie Luft ist, dann ist es immer noch möglich, dass Blitz und Hagel Wetterphänomene sind. Gehen wir zum nächsten Beispiel: Es sei B das Symbol für die Aussage: "Das Wort "Pop" ist die Abkürzung für "populäre Musik" und und B sei das Symbol der Aussage: "Physik handelt von lachenden Kühen". Dann gilt die Aussage $\neg(A \Rightarrow B)$, ausgeschrieben,

 \neg ("Das Wort 'Pop' ist die Abkürzung für 'populäre Musik'." \Rightarrow "Physik handelt von lachenden Kühen") ,

ausformuliert: "Es gilt nicht, dass Physik von lachenden Kühen handelt, wenn 'Pop' die Abkürzung für 'populäre Musik' ist". Denn 'Pop' ist meines Wissens tatsächlich die Abkürzung für 'populäre Musik'², jedoch bin ich nicht der Meinung, dass Physik von lachenden Kühnen handelt. Darum ist diese Schlussfolgerung unzulässig. Und noch ein letztes Beispiel: Es sei A das Symbol für die Aussage "Fahrradfahren

²Ich selbst höre übrigens mehr "unpopuläre" Musik, insbesondere Kirchenmusik und ethnologische Musik

wäre gesund" und B sei das Symbol für die Aussage "Klettern kann Spaß machen". Da beide Aussagen wahr sind, gilt die Schlussfolgerung

"Fahrradfahren wäre gesund" \Rightarrow "Klettern kann Spass machen",

ausformuliert: "Klettern kann Spaß machen, weil Fahrradfahren gesund wäre". Du denkst jetzt wahrscheinlich, das sei totaler Bockmist, den ich Dir da auftischen möchte. Es ist jedoch so, dass einerseits Fahrradfahren gesund wäre (würde frau oder man dann tun), andererseits Klettern Spaß machen kann (jedoch nicht muss). Da beide Aussagen wahr sind, gilt banalerweise, dass die zweite Aussage "Klettern kann Spaß machen" aus der ersten folgt - auch wenn diese beide Aussagen nichts miteinander zu tun haben. Aber dies ist so definiert und wird entsprechend in der Mathematik durchgezogen. Es sind genau nicht die Definitionen, welche interessant sind, sondern deren Anwendung. Und bei diesen Anwendungen hat sich diese Definition als sehr wirksam erwiesen.

Diese Art der Verknüpfung ist asymmetrisch. Was dies bedeutet möchte ich anhand eines Beispiels zeigen. Es gibt Aussagen mit dem Symbolen A, B derart gibt, dass gilt

$$(A \Rightarrow B) \land \neg (B \Rightarrow A)$$

In Worten: Aus der Aussage A folgt die Aussage B aber aus der Aussage B folgt nicht die Aussage A. Um ein kleines Beispiel zu machen: Jede Chinesin, welche in China wohnt, ist eine Asiatin, aber nicht jede Asiatin ist eine Chinesin (es könnte beispielsweise auch eine Nepalesin sein). Diese Asymmetrie mag stoßend sein. Aber sie ist in der Mathematik sehr wichtig, da sie erlaubt, Beweise auf eine gute Art zu führen.

Ich möchte wieder auf die "Abkürzungen" bei der Auswertung der Schlussfolgerungen hinweisen: Falls die erste Aussage A nicht wahr oder die zweite Aussage B wahr ist, dann ist die Schlussfolgerung immer bereits wahr. Falls die erste Aussage nicht wahr ist, dann liegen die Fälle vor, welche auf der ersten respektive der zweiten Zeile der Definition 9.0.1 der Schlussfolgerung beschrieben werden. Wenn diese Situation auftritt, dann kann ich das sprachlich so beschreiben, als ich sage, die Implikation sei wahr, weil die Voraussetzung nicht wahr seit. Um die zweite Behauptung zu überprüfen, schaue auf der zweiten respektive vierten Zeile der betreffenden Definition nach. Nur in diesen Fällen ist die zweite Aussage wahr, jedoch die Schlussfolgerung bereits richtig. Diese Situation fasse ich sprachlich in Worte, indem ich in diesem Fall sage, die Implikation sei wahr, weil die Folgerung wahr sei. Diese Beobachtung kann mittels eigenen logischen Sätzen formuliert und bewiesen werden. Siehe dazu Korollare 72 sowie 73.

Es gibt noch eine weitere Art, wie Du den Wahrheitswert einer Implikation ermitteln kannst: Falls Du untersuchen willst, ob die Implikation der zwei Aussagen A sowie B wahr ist, kannst du den Wahrheitswert von A oder B mit 0 bezeichnen, sofern die Aussagen nicht

Abkürzungsregeln der Implikation

wahr sind. Falls die Aussagen A oder B wahr sind, dann kannst Du diese mit 1 bezeichnen. Dann sollen die Wahrheitswerte von A und B, als Zahl ausgedrückt, mit $\delta(A)$ sowie $\delta(B)$ bezeichnet werden. Dann ist die Implikation

$$A \Rightarrow B$$

genau dann wahr, falls gilt

$$\delta(A) \leq \delta(B)$$

In Worten: Die Implikation

$$A \Rightarrow B$$

ist genau dann wahr, falls der Wahrheitswert von A kleiner oder gleich dem Wahrheitswert von B ist.

Ich greife hier ein wenig vor (vergleiche mit dem äußerst langem Kapitel 18 über logische Sätze, falls Du bereits mehr darüber wissen möchtest).

Um zu dies zu beweisen, kann ich für alle denkbaren Fälle dies überprüfen: Sind sowohl die Aussage A wie auch die Aussage B nicht wahr, dann gilt

$$\delta(A) = 0$$

sowie

$$\delta\left(B\right) = 0$$

Somit ist

$$\delta(A) = \delta(B)$$

und darum auch

$$\delta(A) \leq \delta(B)$$

Also ist in diesem Fall einerseits gemäß der ersten Zeile der Definition 9.0.1 der Implikation

$$A \Rightarrow B$$

und andererseits

$$\delta(A) \leq \delta(B)$$

Damit wäre dieser Fall bewiesen. Nun möchte ich die drei anderen Fälle auf genau die gleiche Art beweisen.

Ist die Aussage A nicht wahr, die Aussage B aber wahr, dann gilt

$$\delta(A) = 0$$

sowie

$$\delta(B) = 1$$

Somit ist

$$\delta(A) < \delta(B)$$

und darum auch

$$\delta(A) \leq \delta(b)$$

Also ist in diesem Fall einerseits gemäß der zweiten Zeile der Definition 9.0.1 der Implikation

$$A \Rightarrow B$$

und andererseits

$$\delta(A) \le \delta B$$

Also habe ich gezeigt, dass auch in diesem Fall die Behauptung wahr ist.

Ist die Aussage A wahr, die Aussage B aber nicht wahr, dann gilt

$$\delta(A) = 1$$

sowie

$$\delta(B) = 0$$

Somit ist

$$\delta(A) > \delta(B)$$

und darum auch

$$\neg (\delta (A) \leq \delta (b))$$

In Worten: Es gilt nicht dass der Wahrheitswert von A (als Zahl ausgedrückt) kleiner oder gleich dem Wahrheitswert von B (wiederum als Wahrheitswert ausgedrückt) ist. Also ist in diesem Fall einerseits gemäß der dritten Zeile der Definition 9.0.1 der Implikation

$$\neg (A \Rightarrow B)$$

und andererseits

$$\neg (\delta (A) \le \delta B)$$

Also habe ich gezeigt, dass auch in diesem Fall die Behauptung wahr ist.

Nun möchte ich mir noch den letzten Fall überlegen: Sind sowohl die Aussagen A wie auch B wahr, dann gilt

$$\delta(A) = 1$$

sowie

$$\delta(B) = 1$$

Somit ist

$$\delta(A) = \delta(B)$$

und darum auch

$$\delta(A) \leq \delta(B)$$

Also ist in diesem Fall einerseits gemäß der vierten Zeile der Definition 9.0.1 der Implikation

$$A \Rightarrow B$$

und andererseits

$$\delta(A) \le \delta(B)$$

Also habe ich gezeigt, dass auch in diesem Fall die Behauptung wahr ist.

Schlussendlich meine ich, in allen vernünftigen Fälle den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Darum behaupte ich, gezeigt zu haben, dass die Behauptung bewiesen ist und beende aus diesem Grund die weitere Beweisführung. Es bleibt mir jedoch noch darauf hinzuweisen, dass ich unter dem Lemma ?? diesen Satz erneut zu beweisen.

KAPITEL 10

Was ist eine "Replikation"?

Dieses Kapitel behandelt die Bedeutung des Symbol, welches wie ein Doppelpfeil nach links aussieht. Ich werde zuerst ein Beispiel machen, welches Dir vielleicht auf Anhieb unverständlich ist. Lasse Dich nicht verdrießen. Weiter unten werde ich dann schon wieder klarer und einfacher.

Den Doppelpfeil nach links gibt es eigentlich gar nicht. Jedenfalls ist mir der Pfeil nach links in mathematischen Texten nicht geläufig. Als ich an der ETH studiert habe, wollte ich viele Aussagen hinschreiben wie: "Die Summe zweier ganzer Zahlen ist größer oder gleich Null, falls beide Zahlen größer oder gleich Null sind". Nun, meine Aussage ist schon ein wenig problematisch, da es auch Summen von zwei ganzen Zahlen gibt, welche größer als Null sind, falls eine Zahl kleiner, die andere jedoch größer als Null ist. Ein Beispiel ist die Summe 10+(-9)=1. Diese Summe ist größer als Null, obwohl eine der beiden ganzen Zahlen kleiner als Null ist. Nehme jedoch an, diese Aussage sei ursprünglich die Aussage: Falls zwei ganze Zahlen größer oder gleich Null sind, dann ist ihre Summe größer oder gleich Null. An dieser Aussage gibt es nichts auszusetzen. Diese Aussage kann so als formale Aussage übersetzt werden:

$$\forall x \in \mathbb{Z} \ \forall y \in \mathbb{Z} \ ((x \ge 0) \land (y \ge 0)) \Rightarrow (x + y \ge 0)$$

Nun ist es jedoch möglich, dass Du die Aussage wirklich so schreiben möchtest, wie ich sie ursprünglich geschrieben habe (mit dem Satzteil "falls..."). Dann muss ich zwei Schritte machen, um dies so hinschreiben zu können. Doch zuerst möchte ich eine Anekdote erzählen. Als ich an der ETH Physik studiert habt (ohne Abschluss, wie ich schon erwähnt habe), ist mir genau das passiert. Ich wollte etwas hinschreiben in der obigen Art, mit dem Zusatz: "... falls das und das gilt". Dann hat eine Assistentin, deren Namen mir jedoch entfallen ist, relativ heftig interveniert und gesagt, dass das so nicht gehen würde. Nun möchte ich zeigen, dass dies sehr wohl geht. Es ist jedoch nicht so, dass ich das als Revanche oder Rache verstehen würde. Sondern vielmehr geht es mir darum, mich von meinen Schatten der Vergangenheit zu lösen. Ich möchte selbst einen neuen Zugang zur Mathematik finden, welcher entspannter, glücklicher oder gelöster ist als denjenigen, welchen ich kennen gelernt habe.

Doch zurück zu dem, was ich zeigen wollte. Der erste Schritt besteht darin, dass ich die Aussage oben umformuliere zu

$$((x \in \mathbb{Z}) \land (y \in \mathbb{Z}) \land (x \ge 0) \land (y \ge 0)) \Rightarrow (x + y \ge 0)$$

Ich kann mir vorstellen, dass Du Dir jetzt die Augen reibst und nicht weißt, was mit diese Aussage anzufangen sei. Diese Aussage besagt jetzt aber wirklich das gleiche wie die erste Aussage dieses Kapitels. Falls x und y ganze Zahlen sind, welche größer oder gleich Null sind, dann folgt daraus, dass ihre Summe größer oder gleich Null ist. Und nun besteht der zweite Schritt darin, dass ich die Aussage "umkehre", und zwar so, wie ich es nachfolgend aufschreibe:

$$(x+y \ge 0) \Leftarrow ((x \in \mathbb{Z}) \land (y \in \mathbb{Z}) \land (x \ge 0) \land (y \ge 0))$$

Und diese Aussage bedeutet jetzt wirklich das, so wie ich es für mich oft denke: Die Summe zweier Zahlen ist größer oder gleich Null, falls beide Zahlen ganze Zahlen sind, welche größer oder gleich Null sind. Um es ein wenig allgemeiner zu machen werde weiter unten unter dem Satz 23 zu zeigen versuchen:

$$(10.0.1) \qquad \forall A, B \in \Omega \ ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A))$$

In Worten ausgedrückt bedeutet diese Aussage: Sind A und B Symbole von Aussagen, dann die Aussage, dass A gilt, falls B gilt, genau dann wahr, falls A aus B folgt.

Ich empfehle ausdrücklich nicht, den Pfeil nach links in Aussagen zu verwenden, welche dann in einem PDF oder sonst wo "für die Ewigkeit" gespeichert werden soll. Denn das ist meines Wissens nicht oder noch nicht Standard. Jedoch ist es beispielsweise dann praktisch, falls Du Dir etwas überlegst und zuerst den Sachverhalt und erst anschließend die Voraussetzung aufschreiben möchtest. Denn ich zumindest denke oft so, dass mir etwas wichtig ist, und ich dann zuerst dies aufschreiben möchte. Anschließend schreibe ich den Rest. Gemäß einer Suche im Netz heißt diese Verknüpfung "Replikation". Wobei ich diese Wortwahl eigenartig finde. Denn üblicherweise bedeutet für mich "Replikation" "Nachbildung", also wenn etwas erneut geschaffen ist, was bereits existiert. Aber was soll ich machen? So haben sie es definiert und ich kann leider nicht die Begriffe einfach mit einem neuen Wort beschreiben, nur weil mir das vorhandene Wort nicht gebrauchen möchte.

Nun möchte ich wieder die Wahrheitstafeln respektive die formale Beschreibung der Replikation aufschreiben. Das ist übrigens der Grund, wieso ich oben die Aussage 10.0.1 nicht als Definition der Replikation definiert habe. Wenn Du etwas definiert hast, dann ist es definiert, und das weitere muss aus der Definition hergeleitet werden. Du kannst nicht sagen: "Gut, ich habe es definiert, jetzt definiere ich es noch einmal." Jedoch werden häufig Definitionen mit verschiedenen Bezeichnungen gemacht und anschließend gezeigt, dass dass beide Definitionen die

Tabelle 1. 1. Darstellung der Wahrheitstabelle der Replikation

A	B	$A \Leftarrow B$
$\neg A$	$\neg B$	$A \Leftarrow B$
$\neg A$	В	$\neg (A \Leftarrow B)$
A	$\neg B$	$A \Leftarrow B$
A	B	$A \Leftarrow B$

Tabelle 2. 2. Darstellung der Wahrheitstabelle Replikation

A	B	$A \Leftarrow B$
0	0	1
0	1	0
1	0	1
1	1	1

gleiche Bedeutung besitzen. Damit ich keine Schwierigkeiten damit bekomme (auch ich habe ein wenig meinen Stolz, die Dinge inhaltlich korrekt darzustellen), werde ich in den Tabellen 1 sowie 2 wie auch in der Aussage 10.0.2 die Eigenschaften der Replikation noch einmal aufschreiben.

$$(10.0.2) \qquad \begin{array}{cccc} ((\neg A \wedge \neg B) & \Rrightarrow & (A \Leftarrow B)) & \wedge \\ ((\neg A \wedge B) & \Rrightarrow & \neg (A \Leftarrow B)) & \wedge \\ ((A \wedge \neg B) & \Rrightarrow & (A \Leftarrow B)) & \wedge \\ ((A \wedge B) & \Rrightarrow & (A \Leftarrow B)) \end{array}$$

Nun sollte ich Dir noch Beispiele bringen für die Replikation. Ist A das Symbol der Aussage "Alle Hunde tanzen Tango" und B das Symbol der Aussage "Der Mond ist viereckig", dann sind beide Aussagen wohl nicht wahr. Wenn Du jetzt in den Tabellen die ersten Zeilen nachschlägst, dann siehst Du, dass in diesem Fall die Replikation trotzdem richtig ist. Es gilt also die Aussage $A \Leftarrow B$, ausgeschrieben

"Alle Hunde tanzen Tango"
$$\Leftarrow$$
 "Der Mond ist viereckig",

ausformuliert: "Alle Hunde tanzen Tango, falls der Mond viereckig ist". Was ich irgendwie verstehen kann, denn in diesem Fall sind die Hunde oder wir oder beide wahrscheinlich auf Drogen. Auf jeden Fall ist damit ein Beispiel für die erste Zeile der Replikation gemacht. Nun sei A das Symbol für die Aussage: "Alle Stiere heißen Markus mit Vornamen", B sei jedoch das Symbol der Aussage: "Mit Eisen können Schwerter oder

Pflugscharen gefertigt werden". Dann erscheint mir A nicht richtig, B jedoch schon¹. Dann gilt aber die Aussage $\neg (A \Leftarrow B)$, ausgeschrieben:

¬ ("Alle Stiere heissen Markus mit Vornamen." ← "Mit Eisen können Schwerter oder Pflugscharen gefertigt werden."),

ausformuliert: "Es gilt nicht, dass alle Stiere mit Vornamen Markus heißen würden, falls aus Eisen Schwerter oder Pflugscharen gefertigt werden kann". Denn es kann ja aus Eisen Schwerter oder Pflugscharen gefertigt werden (das entsprechende Können vorausgesetzt, was bei mir selbstredend nicht vorhanden ist), jedoch heißen glücklicherweise nicht alle Stiere mit Vornamen Markus. Damit ist ein Beispiel der zweiten Zeile der Definition der "Replikation" gemacht. Um ein ein Beispiel für die dritte Zeile der Definition der "Replikation" anzugeben, sei A das Symbol der Aussage "Es gibt Hunde und Katzen, welche sich leiden können". B sei das Symbol für die Aussage "Es gibt eine Leiter zum Mond". Nun, ich kenne einen Hund und eine Katze, welche sich mögen, und das ist zuckersüß anzuschauen. Also ist die Aussage mit der Bezeichnung A wahr. Es ist mir jedoch nicht bekannt, dass es eine Leiter zum Mond gäbe. Also ist die Aussage B nicht wahr. Dann ist jedoch die "Replikation" $A \Leftarrow B$ wahr, ausformuliert

"Es gibt Hunde und Katzen, welche sich leiden können." \Leftarrow "Es gibt eine Leiter zum Mond",

ausgeschrieben: "Es gibt Hunde und Katzen, welche sich leiden können, falls es eine Leiter zum Mond gibt." Wohl gemerkt gibt es nicht nur dann Hunde und Katzen, welche sich leiden können, falls es eine Leiter zum Mond gibt. Das ist eine andere Sache. Aber falls es eine Leiter zum Mond gibt, dann gibt es sicher Hunde und Katzen, welche sich leiden können. Daraus kannst Du ablesen, dass Du, obwohl die obige Aussage richtig ist, nicht schließen kannst, dass es Hunde und Katzen gibt, welche sich leiden können. Dies musst Du auf eine andere Art bewerkstelligen. Jedoch kann ich auf Grund dieser Aussage schließen, dass es zumindest nicht ausgeschlossen ist, dass es Hunde und Katzen gibt, welche sich nicht leiden können.

Die folgenden Ausführungen verstehst Du nur dann, falls Du das Kapitel über die Logik bereits einmal durchgelesen hast. Aber lasse Dich nicht verdrießen davon, falls Du es beim ersten Durchlesen nicht verstehst. Die Situation der "Replikation" erinnert mich ein wenig an die Eigenschaften der Oder- und der Entweder-Disjunktionen, welche in den Kapiteln 11 respektive 13 vorgestellt werden. Die "Replikation" ist weniger einengend, als wird uns das vorstellen würden, so

 $^{^1}B$ ist ein abgewandeltes Bibel-Zitat (offenbar gemäß Wikipedia vom Propheten Micha, 4,1–4): "Dann werden Schwerter zu Pflugscharen...", eine wunderbar schöne Formulierung Hoffnung, dass einmal Frieden auf Welt werde.

wie die Disjunktion eigentlich nicht der umgangssprachlichen Vorstellung einer "Disjunktion" entspricht. Es wäre die Antivalenz (Entweder-Disjunktion), welche der umgangssprachlichen Vorstellung einer "entweder-Disjunktion" entspricht. Wenn ich die einengendere Replikation nehmen würde, dann würde ich beim logischen Satz des Schlussfolgerns (siehe Kapitel 18.6) landen, und diese ist, wie mir beim Beweisen aufgefallen ist, logisch äquivalent (gleichwertig) zur "Konjunktion" (vergleiche mit dem Satz 17).

Zu guter Letzt möchte ich ich ein Beispiel für die letzte Zeile der "Replikation" machen. Es sei A das Symbol der Aussage "Es gibt Ballone", B sei das Symbol der Aussage "Es gibt Steine". Nun, da beide Aussage wahr sind (jedoch langweilig, das gebe ich zu), gilt die entsprechende Replikation $A \Leftarrow B$, ausformuliert (also die Symbole A sowie B durch ihre Aussagen ersetzt)

"Es gibt Ballone." \Leftarrow "Es gibt Steine."

Das Gleiche in Worten: "Es gibt Ballone, falls es Steine gibt." Obwohl diese Aussage richtig ist, ist sie für meinen Geschmack trotzdem merkwürdig. Denn Steine und Ballone haben ja nicht viel miteinander zu tun. Warum soll das eine gelten, falls das andere gilt? Die Antwort ist eben so, dass dies so vereinbart wurde. Das heißt, es wird angenommen, dass diese Annahme der wahren Aussage richtig ist. Nicht mehr und nicht weniger.

KAPITEL 11

Was ist eine "Disjunktion"?

Wieder beginne ich die Einführung mit einem Beispiel:

Es sei A die Bezeichnung der Aussage "Alle Kaninchen haben ein Pyjama an" und B sei die Bezeichnung der Aussage: "Der Mond ist ein Himmelskörper". Dann ist die Aussage "Alle Kaninchen haben ein Pyjama an oder der Mond ist ein Himmelskörper", formal geschrieben " $A \vee B$ " wahr - auch wenn dies seltsam tönen sollte. Die Aussage "Aist ein Buchstabe oder B ist ein Buchstabe" ist ebenso wahr (A und Bwerden hier übrigens als Buchstaben bezeichnet, und nicht als Symbole für Aussagen oder andere Buchstaben). Die Disjunktion (auch logische Oder-(V) Verknüpfung genannt) ist also auch dann wahr, falls beide Aussagen wahr sind. Sie wird jedoch nicht "wahrer", falls beide Aussagen wahr sind. Falls jedoch beide Aussagen nicht wahr sind, dann kann die Disjunktion der Aussagen nicht wahr sein. Die Aussage "Alle Kaninchen haben ein Pyjama an oder jeweils am Freitag, dem 13., gehen alle schwarzen Katzen im Handstand von links nach rechts über die Straße" ist also nicht wahr (Glück gehabt). Es gilt jedoch auch nicht, dass die beiden Teilaussagen wahr sind, falls die gesamte Oder-verknüpfte Aussage wahr ist. Es folgt also nicht, dass alle Kaninchen ein Pyjama angezogen haben, wenn die Aussage "Der Mond ist ein Himmelskörper oder alle Kaninchen haben ein Pyjama an" wahr ist. Was aber durchaus aus Sicht der Aussagenlogik möglich ist, ist die Tatsache, dass die zwei miteinander verknüpften Aussagen überhaupt nichts miteinander zu tun haben müssen (siehe die Aussagen über Kaninchen und den Mond oben).

Die Bezeichnung "Disjunktion" scheint mir ein seltsamer Name zu sein. Denn die griechische Vorsilbe "Dis" hat meines Wissens die Bedeutung von "Auflösung". Wahrscheinlich ist dies die Abgrenzung von "Konjunktion", aber ich weiß es nicht. Ich möchte wieder auf zwei verschiedene Arten die Wahrheitstafeln der Disjunktion aufschreiben (vergleiche mit den Tabellen 1 respektive 2) . Es seien also A respektive B die Bezeichnungen für zwei Aussagen. Je nach dem Wahrheitsgehalt von A und B ist dann die Disjunktion der beiden Aussagen wahr oder nicht.

Wieder kannst Du diese Tabelle zeilenweise lesen. In der ersten Zeile seien A und B nicht wahr. Dann ist also auch die Disjunktion der beiden Aussagen nicht wahr. In allen anderen Fällen ist mindestens eine der

Tabelle 1. 1. Darstellung der Wahrheitstabelle der Disjunktion

$\neg A$	$\neg B$	$\neg (A \lor B)$
$\neg A$	B	$A \vee B$
A	$\neg B$	$A \vee B$
A	В	$A \vee B$

Tabelle 2. 2. Darstellung der Wahrheitstabelle der Disjunktion

A	B	$A \vee B$
0	0	0
0	1	1
1	0	1
1	1	1

beiden Aussagen A oder B wahr. Dann ist die Disjunktion der beiden Aussagen wahr.

Die Tabelle 2 der Wahrheitstabelle der Disjunktion zeigt die Wahrheitstabelle wieder so, wie sie in den Einführungsbüchern üblicherweise geschrieben wird. Ich habe lange Zeit gedacht, dass die Disjunktion nur mittels der Rechenvorschrift

$$(A \lor B) \Leftrightarrow (\delta(A) + \delta(B) \geqslant 1)$$

(in Worten: Die Aussage A oder B ist genau dann wahr, falls deren Zahlenwerte zusammengezählt größer oder gleich ist) übersetzt werden könnte. Aber ich habe mich geirrt. Siehe Satz ??, um mehr darüber zu erfahren. Im Folgenden werde ich mich ausführlich darüber unterhalten.

Ich möchte nun Beispiele aufschreiben, wie Rechenvorschrift

$$(A \lor B) \Leftrightarrow (\delta(A) + \delta(B) \geqslant 1)$$

umgesetzt werden kann. Ich möchte jedoch betonen, dass die Rechenvorschrift

$$(A \lor B) \Leftrightarrow (\delta(A) + \delta(B) - \delta(A) \cdot \delta(B) = 1)$$

viel praktischer ist. Nun, das soll Dich nicht stören. Zur Notation δ (A) siehe Kapitel ?? "Kronecker-Symbole". Es seien nun A und B Symbole für Aussagen, welche nicht wahr seien. Es sei A die Bezeichnung der Aussage "Die Leibspeise von Eisbären sind Pinguine" und B die Bezeichnung der Aussage "Es gibt eine Pflanze, welche 100 Meter in 9.3 Sekunden zurücklegen kann". Da beide Aussagen offenbar nicht wahr sind, müssen sowohl dem Wahrheitswert von A wie auch demjenigen von B 0 zugeordnet werden. Die Summe von 0 und 0, 0 + 0, ist wieder 0. Nun ist jedoch 0 < 1 (auch dies ist eine Behauptung, welche später noch geklärt werden muss). Dies bedeutet, dass die Summe (0) nicht größer oder gleich 1 ist. Also ist Aussage

$$(\delta(A) + \delta(B) \geqslant 1)$$

nicht wahr. Dies bedeutet, dass nicht stimmt, dass die Aussage A oder die Aussage B wahr sind. Damit ist die erste Zeile "erschlagen". Nun seien A und B Symbole für Aussagen, wobei die Aussage A immer noch nicht wahr ist, B jedoch schon. Ich denke mir als mögliche Aussagen aus: A sei das Symbol für die Aussagen "Alle Elefanten essen am liebsten Sauerkraut, Speck und Bohnen". B sei das Symbol für die Aussage: "Es führen viele Wege nach Rom" (diese deutsche Redewendung bedeutet, dass es oft mehrere Wege gibt, wie etwas erledigt werden kann). Die Aussage A ist nicht wahr, darum wird ihr der Wahrheitswert 0 zugewiesen. Die Aussage B hingegen ist wahr. Also wird ihr der Wert 1 zugewiesen. Nun ist $0+1=1 \ge 1$, wobei ich mir erlaubt habe, zwei Aussagen hintereinander aufzuschreiben. Korrekt wäre es, wenn ich aufschreiben würde $(0+1=1) \land (1 \ge 1)$. Aber dies ist in der mathematischen Literatur üblich, und es gibt keine Probleme, falls darauf geachtet wird, dass immer Ungleichungen hintereinander aufgeschrieben werden, welche immer ≥ oder aber immer ≤ beinhalten, also in Richtung größerer Zahlen oder Gleichheit, oder jedoch in Richtung kleinerer Zahlen oder eine Gleichheit. Was jedoch keinen Sinn ergibt, sind Ungleichungen hintereinander zu schreiben, welche einmal in Richtung größerer Zahlen und einmal in Richtung kleinerer Zahlen geschrieben werden, wie zum Beispiel x < 4 > y, falls x und y Symbole für Bruchzahlen sind und ein Aussage darüber gemacht werden soll, ob denn nun x < y, x = y, oder x > y gilt. Doch zurück zu unserem Problem. Zusammengefasst ist also $\delta(A) + \delta(B) \ge 1$. Also muss der Aussage "Alle Elefanten essen am liebsten Sauerkraut, Speck und Bohnen oder es führen viele Wege nach Rom" wahr sein, auch wenn uns wahrscheinlich dabei ein wenig unwohl ist. Damit ist die Richtigkeit der zweiten Zeile gezeigt. Für die dritte Zeile denke ich mir folgenden (zugegebenermaßen sowohl trivial wie auch abstrusen) Aussagen aus: Es sei A die Bezeichnung für die Aussage "Es gibt Tiere, Pflanzen, Bakterien und Viren" und B sei die Bezeichnung der Aussage "Ich kenne einen Kater, welcher mehrsprachig Furzen kann" (ich hoffe, Du mögest Dich nicht über diese Aussage ärgern, sie stimmt eh nicht, kann es nur auf deutsch:)). Da A offenbar immer noch wahr ist und B ein offensichtlicher Schwachsinn, welcher nie und nimmer wahr sein kann, ordne ich A den Wahrheitswert 1 und B den Wahrheitswert 0 zu. Nun ist 1+0=1, und darum kann der Aussage "Es gibt Tiere, Pflanzen, Bakterien und Viren oder ich kenne einen Kater, der kann mehrsprachig Furzen" den Wahrheitswert 1 zugewiesen werden, das heißt, diese Aussage ist ebenfalls wahr. Nun kommt noch die letzte Zeile dieser Wahrheitstafel. Wieder denke ich mir zwei Aussagen aus, welche beide wahr sein sollen. Die erste Aussage lautet: "Laut und Luise sind zwei

Wörter"¹ und die zweite Aussage lautete "Alle Tage haben weniger als 25 Stunden". Da A und B beide wahr sind, muss beiden Aussagen der Wahrheitswert 1 zugewiesen werden. Da $1+1=2\geqslant 1$ gilt (eigentlich gilt ja 2>1, aber aus 2>1 folgt $2>1\lor 2=1$, also auch $2\geqslant 1$, was bereits ein Vorgeschmack darauf ist, wozu die Disjunktion verwendet werden kann, vergleiche mit dem Abschnitt 54), ist also $A+B\geqslant 1$ wahr, es kann ihr also der Wahrheitswert 1 zugewiesen werden. Und darum ist auch diese Aussage "Laut und Luise sind zwei Wörter oder alle Tage haben weniger als 25 Stunden" wahr. Wieder gibt es eine große Schwester (oder einen großen Bruder) der Disjunktion, und die sieht dann entsprechend so aus: \bigvee . Wenn Du errätst, welche Bedeutung das Zeichen in der Formel

$$\bigvee_{z \in \mathbb{Z}} z^2 = 4$$

hat, dann bis Du genial. In Worten gesprochen heißt diese Gleichung: Es gibt eine ganze Zahl, deren Quadrat (also die Zahl mit sich selbst multipliziert, wie beispielsweise $7^2 = 7 \cdot 7 = 49^2$) 4 gibt. Vielleicht wirst Du jetzt denken: "Das stimmt nicht, es gibt nicht eine, sondern zwei Zahlen, für welche das stimmt". Ja, das ist so (die Zahlen sind 2 respektive -2, denn $2^2 = 2 \cdot 2 = 4$, jedoch ist auch $(-2)^2 = (-2) \cdot (-2) = 4$), aber wie oben gesagt, spielt es keine Rolle, ob es ein oder mehrere Aussagen gibt, welche wahr sind - Hauptsache, es gibt überhaupt eine Aussage, welche wahr ist. Wieder möchte ich an dieser Stelle mich darüber beschweren, dass die "Rabenschnabel"-variante der "es-gibt" Aussage zum Lesen eigentlich nicht gut ist, weil sie den Lesefluss stört. Es gibt ja die " \exists "-Schreibweise, welche genau das gleiche leistet. Die obige Aussage lautet dann:

$$\exists z \in \mathbb{Z} \ z^2 = 4$$

Auf der anderen Seite ist nicht wahr, dass es ganze Zahlen gibt, für welche gilt, dass ihr Quadrat -1 ergibt. Dies könnte ich dann so aufschreiben:

$$\neg \left(\exists z \epsilon \mathbb{Z} \ z^2 = -1\right)$$

Das ist jedoch ein unnötig kompliziert aufgeschrieben. Kürzer und gleichbedeutend (wobei ich das weiter unten zeigen ?? will) ist:

¹Fast hätte ich eine Quelle nicht angegeben! Gemäß Wikipedia ist "Laut und Luise" ein Gedichtband des österreichischen Lyrikers Ernst Jandl, der 1966 im Walter Verlag veröffentlicht wurde. Den Walter-Verlag, den gibt's nicht mehr (leider). Er war ca. 3 km von meinem Wohnsitz entfernt.

 $^{^2}$ Apropos: Kennst Du den Spruch "Sieben mal sieben gibt feinen Sand", welcher eine Verballhornung von $7^2=7\cdot 7=49$ darstellt? Dann gibt es noch einen Spruch, aber der geht nur gut auf Schweizerdeutsch: "Acht mal Acht gibt 64, scheiß in die Hosen links und rechts". In diesem Sinn wäre also das Quadrat von 8, $8^2=8\cdot 8=64$ total verschissen Hosen...

$$\forall z \in \mathbb{Z} \ z^2 \neq -1$$

Dies bedeutet, dass die Quantoren" \forall " (für alle) sowie " \exists " (es gibt) eigentlich nur zwei Seiten der gleichen Medaille sind. Wenn ich eine Aussage mit dem Quantor " \forall ", dann könnte ich ebenso gut die verneinte Aussage verwenden - diese Ausführungen muss ich jedoch später unter dem Satz 18.32 ausführen³.

Auch die Disjunktion kann als Schaltbild dargestellt werden (siehe Abbildung 11.0.1). Sobald einer der Eingänge geschaltet ist, befindet sich der Ausgang auf dem Potential des Eingangs und das Lämpchen beginnt zu leuchten. Falls der Eingang nicht mit dem Ausgang verbunden ist, dann fließt die noch vorhandene Ladung über das Lämpchen ab. Nach dieser winzig kleinen Zeit leuchtet das Lämpchen nicht mehr. Auch von dieser Schaltung existiert eine "Energiesparvariante" (siehe Abbildung 11.0.2), welche das Lämpchen nicht mehr benötigt, damit sie richtig arbeitet.

In der Aussage 11.0.1 sind die Eigenschaften der Disjunktion noch einmal aufgeschrieben.

$$(11.0.1) \qquad \begin{array}{ccc} ((\neg A \wedge \neg B) & \Rrightarrow & \neg (A \vee B)) & \wedge \\ ((\neg A \wedge B) & \Rrightarrow & (A \vee B)) & \wedge \\ ((A \wedge \neg B) & \Rrightarrow & (A \vee B)) & \wedge \\ ((A \wedge B) & \Rrightarrow & (A \vee B)) \end{array}$$

³Vielleicht denkst Du jetzt: "Morgen, morgen, nur nicht heute, sagen alle faulen Leute". Aber ich möchte einfach kein Durcheinander machen

Abbildung 11.0.2. 2. Schaltbild der Disjunktion

Ich werde noch einmal abschließende Beispiele machen welche die Eigenschaften der Disjunktion noch einmal auflisten sollen. Es sei A das Symbol für die Aussage "Blumen können galoppieren" und B sei das Symbol für die Aussage "Hähne legen Eier". Dann ist $\neg (A \lor B)$, ausgeschrieben

¬ ("Blumen können gallopieren"∨ "Hähne legen Eier"),

ausformuliert: "Es gilt nicht, dass Blumen galoppieren würden oder dass Hähne Eier legen könnten". Damit habe ich ein Beispiel für die erste Zeile der Definition 11.0.1 der Disjunktion gegeben. Nun sei A ein Symbol für die Aussage "Dächer bestehen aus Regen" und B sei ein Symbol für die Aussage "Autos fahren häufig mit Benzin". Da A offenbar nicht wahr sein kann, B jedoch schon, gilt $A \vee B$, ausgeschrieben

"Dächer bestehen aus Regen" ∨ "Autos fahren häufig mit Benzin",

ausformuliert: "Dächer bestehen aus Regen oder Autos fahren häufig mit Benzin". Diese Aussage ist wahr, auch wenn sie Dir (wie mir auch) völlig durchgeknallt erscheint. Auf jeden Fall habe ich damit ein Beispiel für die zweite Zeile der Definition der Disjunktion gegeben. Weiter sei A das Symbol für die Aussage: "Es gibt in Afrika Elefanten", B sei das Symbol für die Aussage: "Licht besteht aus Schatten". Da die Aussage A wahr ist (und hoffentlich noch lange sein wird) und die Aussage B einfach so nicht stimmen kann, dann gilt $A \vee B$, ausgeschrieben

"Es gibt in Afrika Elefanten" v "Licht besteht aus Schatten", ausformuliert: "Es gibt in Afrika Elefanten oder Licht besteht aus Schatten". Auch hier ist wieder die Bemerkung angebracht, dass die Aussage sogar dann wahr ist, wenn die beiden Teile absolut nichts gemeinsam haben. Damit wäre ein Beispiel für die dritte Zeile der Definition gegeben. Nun kommt noch das Beispiel für die letzte Zeile dran: Es sei A das Symbol der Aussage "Mauersegler sind keine Singvögel" und B sei das Symbol der Aussage "Beryllium ist ein Leichtmetall". Wie Du in Wikipedia nachschlagen kannst, sind beide Aussagen wahr. Darum gilt $A \vee B$, ausgeschrieben

"Mauersegler sind keine Singvögel" V "Beryllium ist ein Leichtmetall",

ausformuliert: "Mauersegler sind keine Singvögel oder Beryllium ist ein Leichtmetall". Bemerkenswert ist, dass die Aussage sogar dann noch gilt, falls beide Aussagen wahr sind. Die "ausschließende" Disjunktion, bei welcher dies nicht mehr gilt, wird unter Kapitel 13 beschrieben.

Wie ich im Kapitel 8 über die Konjunktion gezeigt habe, kann die Disjunktion als Bestimmung des Maximums der Wahrheitswerte der beteiligten Aussagen verstanden werden. Ich möchte dies noch einmal ausführen. Angenommen, A sei das Symbol der Aussage "Eisen hat eine kleinere Dichte als Eis", B sei das Symbol der Aussage "4 ist eine Zahl". A ist Unsinn, B jedoch wahr, dann besitzt A den Wahrheitswert B0, B1 den Wahrheitswert B1. Dann ist

$$(11.0.2) 1 = \max\{0, 1\}$$

wobei max die Bezeichnung für die Bestimmung des Maximalwerts ist (vergleiche diesbezüglich mit dem Kapitel $\ref{Max:properties}$. Entsprechend dem Minimumprinzip der Konjunktion (siehe Kapitel $\ref{Max:properties}$ oben) möchte ich diese Umdeutung das "Maximumprinzip der Disjunktion" nennen . Die geschweiften Klammern definieren eine Menge im mathematischen Sinn. Und zwar bedeutet $\ref{Max:properties}$ die Menge mit den beiden Elementen $\ref{Max:properties}$ respektive 1. In Worten bedeutet die Gleichung $\ref{Max:properties}$ dass Eisen eine kleinere Dichte als Eis hat oder dass $\ref{Max:properties}$ eine Zahl ist.

Es gibt wiederum eine Abkürzung in der Auswertung des Wahrheitswerts der Disjunktion. Falls die Aussage A wahr ist, dann ist die Disjunktion der Aussage bereits wahr. Wieder wird das in vielen Programmiersprachen, bei welchen darauf geachtet wurde, dass die Geschwindigkeit der Berechnung möglichst groß ist, berücksichtigt, indem die Aussage B gar nicht mehr auf ihren Wahrheitsgehalt untersucht wird, falls die Aussage A wahr ist. Um die Richtigkeit der Behauptung, dass die Disjunktion bereits dann wahr ist, falls die Aussage A wahr ist, kannst Du in der Zeile drei respektive vier der Definition der Disjunktion nachschlagen. In diesen Fällen ist die Aussage A und auch die Disjunktion der Aussagen A mit der Aussage B wahr.

Maximumprinzip der Disjunktion

Abkürzung Disjunktion

Und weiter geht es mit der Definition von logischen Verknüpfungen.

KAPITEL 12

Was ist eine "logische Äquivalenz"?

Aus dem Internet habe ich in Erfahrung gebracht, dass Äquivalenz die Bedeutung von "Gleichwertigkeit" besitzt. Das heißt, dass immer dann wenn A und B Metasymbole von logischen Aussagen sind und die Aussage $A \Leftrightarrow B$ gilt, A aus logischer Sicht die gleiche Bedeutung wie B besitzt. Du kannst übrigens $A \Leftrightarrow B$ lesen mit "A gilt genau dann, falls B gilt" oder "A ist äquivalent zu B" ("A ist logisch gleichbedeutend mit B"). Es gibt noch eine andere Ausdrucksweise für diesen Sachverhalt: Es wird geschrieben oder gesagt, die Aussage A sei "dann und nur dann" wahr, falls die Aussage B wahr sei. Im englischen wird dieser Ausdruck meines Erachtens häufiger verwendet. Es heißt dann vielleicht: "The statement A is true, if and only if B is it too¹". Mir persönlich gefällt diese Ausdrucksweise jedoch nicht so gut, weil sie in meinen Augen so eine Art "Aussage mit dem Zeigefinger" ist. Das ist wie wenn der Pfarrer Kinder beim stehlen von Äpfeln erwischt hat und ihnen ins Gewissen redet².

Also wenn ich bis jetzt keine Ahnung vom Ganzen hätte, würde ich mir in diesem Augenblick denken: "OK, dann sind A und B verschiedene Symbole für die gleiche Aussage". Aber das kann, muss jedoch nicht der Fall sein. Zum Beispiel sind beide Aussagen logisch gleichbedeutend: "Sonne und Mond sind ausschließlich Bezeichnungen von Gasthäusern" und "Alle Menschen besitzen 42 Finger". Warum ist das so? Weil beide Aussagen nicht wahr sind. Weiter sind die Aussagen gleichbedeutend: "Rhein und Rhone sind beides Flüsse in Zentraleuropa" sowie die Aussage "Es gibt fliegende Fische", denn beide Aussagen sind wahr (obwohl ich selbst noch nie einen fliegenden Fisch gesehen habe, außer im Fernsehen - aber ich bin nun einmal ein "gläubiger" Mensch, und so glaube ich, was mir erzählt oder gezeigt wird).

Der Vollständigkeit halber sei erwähnt, dass also beispielsweise folgende Aussagen nicht gleichbedeutend sind: "Alle Menschen besitzen 42 Finger" ist nicht gleichwertig zur Aussage der Aussage "Rhein und

¹Mein Englisch ist hundsmiserabel.

²Es gibt ja diesen Witz: "Dem Pfarrer werden andauernd aus dem Obstgarten Früchte gestohlen. Er stellt ein Schild auf: "Gott sieht alles!" Am nächsten Tag steht darunter: "Aber er petzt nicht..."" (leicht abgeändert gefunden auf etwa "https://www.versoehnungskirche-unterbettringen.de/humor/"). Ich finde, die Mathematik sollte aus der Ecke der "penetranten Besserwisserinnen und Besserwisser" herauskommen.

TABELLE 1. 1. Darstellung der Wahrheitstabelle der logischen Äquivalenz

A	В	$A \Leftrightarrow B$
$\neg A$	$\neg B$	$A \Leftrightarrow B$
$\neg A$	B	$\neg (A \Leftrightarrow B)$
A	$\neg B$	$\neg (A \Leftrightarrow B)$
A	B	$A \Leftrightarrow B$

Rhone sind beides Flüsse in Zentraleuropa" (die erste Aussage ist nicht

wahr, die zweite ist wahr) respektive "Es gibt fliegende Fische" und "Alle Menschen besitzen 42 Finger" (die erste Aussage ist wahr, die zweite nicht). Wieder allgemeiner ausgedrückt sind alle wahren Aussagen per Definition paarweise logisch äquivalent respektive alle nicht wahren Aussagen sind paarweise logisch äquivalent. Der Begriff "paarweise" wird in der mathematischen Literatur öfters verwendet. Er bedeutet in diesem Fall: "Nimm zwei beliebige Aussagen (also ein Paar Aussagen) und vergleiche deren Wahrheitswerte. Sind dann die Wahrheitswerte beider Aussagen gleich und gilt das für alle mögliche Paare, dann gilt, dass die Wahrheitswerte aller Aussagen paarweise gleich sind". Eigentlich könnte geschrieben werden, alle Wahrheitswerte seien gleich. Jedoch gibt es Situationen, in welchen der Begriff "paarweise" wirklich treffender ist als der Begriff "alle gleich". Bevor ich die Wahrheitstafeln aufstelle, schreibe ich darum, dass $A \Leftrightarrow B$, vorausgesetzt, A sowie B seien Symbole von beliebigen logische Aussagen, genau dann wahr ist, wenn A wie auch B wahr sind (im "positiven" Fall) oder sowohl A wie auch B nicht wahr seien (im "negativen" Fall). Die Äquivalenz bezieht sich also auf den Wahrheitsgehalt der beiden Aussagen - und in der Logik ist nur der Wahrheitsgehalt einer Aussage wichtig, nichts anderes. Oder besser gesagt, wird das Füllen der Aussagen mit Bedeutungen sowieso auf die anderen mathematischen oder sonstigen Disziplinen übertragen. Es wird also von der gegebenen Aussage abstrahiert. Die Aussage interessiert nur in der Hinsicht, ob sie wahr ist - oder nicht. Unscharf ausgedrückt ist die logische Äquivalenz das Gleichheitszeichen in der Logik. Bezüglich der Logik sind beide Aussagen gleich - das bedeutet jedoch immer noch nicht, dass die beiden Aussagen, in Text

Die Tabelle 1 kannst Du so lesen: A und B seien Metasymbole von Aussagen. Auf jeder Zeile ist eine mögliche Kombination der Wahrheitsgehalte aufgeschrieben. In der ersten Zeile sind beide Aussagen nicht wahr. Auf der zweiten Zeile ist die Aussage B, auf der dritten Zeile ist die A wahr. In der letzten Zeile sind beide Aussagen wahr. In der letzten Spalte ist dann aufgeschrieben, ob die entsprechende Aussage, dass die Aussage A genau dann gilt, falls die Aussage B gilt, gültig ist.

übersetzt, gleich sein müssen. Ich möchte jetzt auf die Wahrheitstafeln

der logischen Aquivalenz unter 1 respektive 2 verweisen.

paarweise

TABELLE 2. 2. Darstellung der Wahrheitstabelle der logischen Äquivalenz

A	B	$A \Leftrightarrow B$
0	0	1
0	1	0
1	0	0
1	1	1

In der Tabelle 2 ist das Gleiche noch einmal aufgeschrieben - jedoch auf eine andere Art: Statt der Bezeichnung der Aussage ist nur noch deren Wahrheitsgehalt aufgeschrieben, jedoch auch dieser nur noch als Zahl. Falls die Aussage nicht wahr ist, dann wird eine Null hingeschrieben, ansonsten eine Eins.

Die Zuordnung der obigen Beispiele zu den einzelnen Zeilen ist wie folgt: Die Aussage "Sonne und Mond sind ausschließlich Bezeichnungen von Gasthäusern ist genau dann wahr, falls alle Menschen 42 Finger besitzen", ist ein Beispiel, dessen Wahrheitsgehalt in den jeweils ersten Zeilen abgelesen werden kann (die Aussage stimmt). Die Aussage "Rhein und Rhone sind genau dann Flüsse in Zentraleuropa, falls es gibt fliegende Fische gibt" ist ein Beispiel, dessen Wahrheitsgehalt in vierten Zeile nachgeschlagen werden kann (auch diese Aussage ist wahr). "Alle Menschen besitzen genau dann 42 Finger falls Rhein und Rhone beides Flüsse in Zentraleuropa sind" ist ein Beispiel einer Aussage, dessen Wahrheitsgehalt in der jeweils zweiten Zeile nachgeschlagen werden kann - diese Aussage gilt also nicht. Ebenso wenig, wie es wahr ist, dass es genau dann fliegende Fische gibt, falls alle Menschen 42 Finger besitzen. Diese Definition kann in den jeweils dritten Zeilen der Tabellen nachgeschlagen werden.

Und auch die Äquivalenz lässt sich mit einem Schaltbild nachbilden, und wie vorher üblich mit einer energiefressenden (siehe Abbildung 12.0.1) und einer energiesparenden Variante (unter Abbildung 12.0.2).

Der Halbkreis bei der Überkreuzung der Leitungen zeigt an, dass die beiden Leitungen sich nicht berühren sollen. Anderenfalls würde ein Kurzschluss erzeugt, falls die Aussage A wahr wäre. Beide Schaltungen sind so angelegt, dass das Lämpchen genau dann leuchtet, falls die Aussagen entweder beide wahr oder nicht wahr sind. Bei der zweiten Abbildung regt es mich irgendwie auf, dass sie bezüglich den Eingängen A respektive B nicht symmetrisch ist. Ich habe darüber nachgedacht, bringe jedoch keine ähnlich gute Schaltung hin, welche symmetrisch wäre. Die volle Schaltung, welche ich der Vollständigkeit halber noch unter Abbildung 12.0.3 abgebildet habe, zeigt für jede Zeile der Tabelle 2 die entsprechende Schaltung. Wie Du aus dem Vergleich der beiden Abbildungen erkennen kannst, ergibt sich die Verschaltung, welche in der Abbildung 12.0.2 verwendet wurde, aus dem Umstand, dass die

Elend der asymmetrischen Schaltung

Abbildung 12.0.1. 1. Schaltbild der Äquivalenz

Abbildung 12.0.2. 2. Schaltbild der Äquivalenz

entsprechende Taster bei B de facto nicht verwendet werden, falls A entsprechend verwendet wird. Aber die Tatsache, dass die daraus entstehende Schaltung bezüglich den Eingängen A und B asymmetrisch ist, hat mir irgendwie einen halben Ferientag versaut. Was mich irgendwie nervt, ist das Gefühl, es könne eine noch elegantere Schaltmöglichkeit geben, welche ich einfach übersehen habe. Vielleicht findest Du ein besseres Schaltbild für die Äquivalenz. Maile es mir doch. Beachte jedoch, dass ich aus ästhetischen Gründen es auch nicht schön finde, wenn ein Taster vorkommt, welcher von einem Zwischenprodukt angesteuert wird, so wie es in der Abbildung 12.0.4 gezeigt wird. Und ja, ich gebe es auch zu, immer schwingt bei mir die leise Angst mit, dass es mir dann nicht möglich ist, weiter Mathematik zu treiben - oder schon nur das, was ich dafür halte, wenn ich die perfekte Lösung nicht gefunden

Abbildung 12.0.3. 3. Schaltbild der Äquivalenz

habe. Jetzt weißt Du auch ein wenig, wie ich ticke, und warum ich dieses Dokument schreiben möchte. Trotzdem noch kurz zur Abbildung 12.0.4. Dort wird das Problem des unbestimmten Ausgangs so gelöst, dass ein weiterer Taster mittels einer Spule oder einer Identität betätigt wird, welcher dann den Ausgang auf ein definiertes Niveau hebt. Jedoch finde ich diese Art der Schaltung nicht cool, weil sie eventuell Zeit kostet. Zudem wird auch in dieser Variante Energie verbraten für das Ziehen des Relais (weil eine Spule durchflossen wird). Was in diesem Schaltbild ebenfalls seltsam ist, ist der Umstand, dass die Spule angezogen gezeichnet wurde. Der kurze senkrechte Strich bedeutet, dass der Kontakt geschlossen wurde.

Unter der Gleichung 12.0.1 ist wieder formal beschrieben, wie die Eigenschaften der Äquivalenz zu verstehen sind.

$$(12.0.1) \qquad \begin{array}{cccc} ((\neg A \wedge \neg B) & \Rrightarrow & (A \Leftrightarrow B)) & \wedge \\ ((\neg A \wedge B) & \Rrightarrow & \neg (A \Leftrightarrow B)) & \wedge \\ ((A \wedge \neg B) & \Rrightarrow & \neg (A \Leftrightarrow B)) & \wedge \\ ((A \wedge B) & \Rrightarrow & (A \Leftrightarrow B)) \end{array}$$

Wieder sollen abschließende Beispiele die Kenntnisse der Eigenschaften der Äquivalenz und die Anwendung der formalen mathematischen Schreibweise vertiefen. Es sei A das Symbol für die Aussage: "Europa und Amerika sind Automarken", B sei das Symbol der Aussage: "Mobiltelefone sind verdaulich". Nun, ich denke, wir sind uns einig,

dass beide Aussagen kompletter Nonsens ist. Dagegen ist die Aussage $A \Leftrightarrow B,$ ausgeschrieben

"Europa und Amerika sind Automarken" \Leftrightarrow "Mobiltelefone sind verdaulich",

ausformuliert: "Europa und Amerika sind genau dann Automarken, falls Mobiltelefone verdaulich sind", wahr. Ich denke, dass ist auch intuitiv so einsichtig. da beide Aussagen nicht richtig sind, ist das eine ebenso wenig wahr wie das zweite. Darum sind die beiden Aussagen gleichwertig. Nun zur zweiten Zeile der Definition. Es sei A das Symbol der Aussage "Störche bringen die Kinder" und B sei das Symbol für die Aussage "Getreide und Reis sind wichtige Nahrungsmittel". Da nun die Aussage A offenbar nicht wahr ist, B jedoch schon, gilt die Aussage $\neg(A \Leftrightarrow B)$, ausgeschrieben

 $\neg \left(\text{,,Störche bringen die Kinder"} \Leftrightarrow \text{,,Getreide und Reis sind wichtige Nahrungsmittel"} \right)$

ausgeschrieben: "Es gilt nicht, dass Störche genau dann Kinder bringen, falls Getreide und Reis wichtige Nahrungsmittel sind". Weiter sei A das Symbol für die Aussage "mit Windkraft kann elektrische Energie erzeugt werden", wogegen B das Symbol für die Aussage ist: "Mücken können tonnenweise Lasten tragen". Dann ist die Aussage A richtig, B jedoch nicht. Entsprechend gilt $\neg (A \Leftrightarrow B)$, ausgeschrieben

¬ ("mit Windkraft kann elektrische Energie erzeugt werden" ⇔ "Mücken können tonnenweise Lasten tragen"),

ausformuliert: "Es gilt nicht, dass mit Windkraft genau dann elektrische Energie erzeugt werden kann, falls Mücken tonnenweise Lasten tragen können". Schlussendlich sei A das Symbol für die Aussage: "Es gibt Wüsten", B sei das Symbol für die Aussage "in der Sahara scheint die Sonne häufig". Dann sind meines Erachtens beide Aussagen wahr. Also gilt per Definition die Aussage $A \Leftrightarrow B$, ausgeschrieben

"es gibt Wüsten" ⇔ "in der Sahara scheint die Sonne häufig",

ausformuliert: "Es gibt genau dann Wüsten, falls in der Sahara die Sonne oft scheint". Natürlich ist dies eine sonderbare Aussage, und sie ist nur darum richtig, weil die Äquivalenz auf diese Weise definiert wurde. Ich würde mich davor hüten, diese Aussage ein einem anderen Zusammenhang als dieser Einführung in die Logik zu machen. Denn die Aussage ist in meinen Augen völlig sinnlos. Aber sie ist logisch richtig, so bedenklich mir das auch scheinen mag.

Du denkst vielleicht wie ich - es reicht mit den Definitionen, die sind langweilig. Dann kannst Du natürlich gelangweilt ein wenig mit dem Bildschirm nach unten scrollen und weiter unten wieder weiterlesen. Du verpasst wahrscheinlich nicht sehr viel. Ich jedoch möchte oder muss noch weitere Definitionen präsentieren.

KAPITEL 13

Was ist eine "Antivalenz"?

Um es einfach zu machen: Eine entweder-oder Verknüpfung (auch "ausschließende Disjunktion genannt") ist wiederum eine Verknüpfung von zwei Aussagen, welche genau dann wahr ist, falls die entsprechende logische Äquivalenzaussage (siehe Kapitel 13) nicht wahr ist. Da gibt es vielleicht zwei Fragen von Dir: "1. Warum definierst Du dann die Antivalenz, wenn diese einfach mit der logischen Definition der Aquivalenz definiert werden kann" und "2. Wieso heißt diese Verknüpfung dann entweder-oder-Verknüpfung". Zur ersten Frage: Diese Verknüpfung wird eingeführt, weil sie in der mathematischen Literatur, jedoch vor allem in der Elektrotechnik vorkommen. Dabei wird sie definiert, weil das Ausschreiben als Negation der Äquivalenz oft mühsamer ist als das Hinschreiben der Antivalenz. Zur zweiten Frage: In der Tabelle 1 seien A und B die Symbole von Aussagen. Die Fälle sind so geordnet, wie ich sie in den Tabellen 3 respektive 4 dargestellt habe. In der letzten Spalte ist dann aufgeschrieben, ob die Antivalenz gilt. Ich muss gestehen, dass das Symbol der Antivalenz eventuell falsch ist. In der elektrotechnischen Literatur wird EXOR als Bezeichnung für die Antivalenz genommen, oder (vielleicht überraschend) "=1". In der Tabelle 2 ist das Gleiche noch einmal aufgeschrieben - jedoch auf eine andere Art: Statt der Bezeichnung der Aussage ist nur noch deren Wahrheitsgehalt aufgeschrieben, jedoch auch dieser nur noch als Zahl. Falls die Aussage nicht wahr ist, dann wird eine Null hingeschrieben, ansonsten eine Eins¹. Das "=1"-Zeichen kannst Du wie folgt interpretieren: Alle Zeilen der Tabelle 2, in welchen rechts die 1 steht, wahr sind. Wie Du jetzt ablesen kannst, ist die Antivalenz also genau dann wahr, falls eine der beiden Aussagen wahr und die andere Aussage nicht wahr ist. Wenn Du jetzt in in der Tabelle 2 die Zahlen auf der linken Seite zusammenzählst, dann sind alle Zeilen wahr, in welchen die Summe der Zahlen auf der linken Seite gleich eins ist. In der ersten Zeile ist die Summe der Zahlen auf der linken Seite der Tabelle 0, also ungleich 1. In den nächsten beiden Zeilen ist die Summe der Zahlen 1 = 0 + 1 = 1 + 0. Die entweder-Disjunktion ist in diesem Fall auch wahr. In der letzten Zeile ist auf der linken Seite die Summe der Zahlen 2. Da jedoch 2 ungleich 1 ist, ist die Antivalenz nicht richtig. Darum muss ihr der Wert 0 zugeordnet werden.

¹Vergleiche dazu mit der Definition ?? der Delta-Notation

TABELLE 1. 1. Darstellung der Wahrheitstabelle der logischen Äquivalenz

$\neg A$	$\neg B$	$\neg (A \Leftrightarrow B)$
$\neg A$	B	$A \Leftrightarrow B$
A	$\neg B$	$A \Leftrightarrow B$
A	B	$\neg (A \Leftrightarrow B)$

TABELLE 2. 2. Darstellung der Wahrheitstabelle der logischen Äquivalenz

A	B	$A \Leftrightarrow B$
0	0	0
0	1	1
1	0	1
1	1	0

Diese Art der "Disjunktion" liegt mir rein intuitiv näher als die "nicht ausschließende Disjunktion", welche ich im Kapitel 11 definiert habe. Das "nicht ausschließend" meint, dass die Aussage auch dann wahr sein soll, falls beide Teile der Aussage wahr sind. Falls bei einer "ausschließenden Disjunktion" beide Teile der Aussage wahr sind, dann ist die gesamte Aussage nicht wahr. Falls zwei Aussagen mit den Bezeichnungen A und B mit einer Antivalenz verknüpft werden sollen, dann kannst Du sagen: "Entweder gilt A oder es gilt B". Falls Du sagst: "A oder B gilt", dann ist es in der mathematischen Sprechweise immer möglich, dass beide Aussagen A und B zugleich gelten.

Ich mache jetzt Beispiele zur ausschließenden Disjunktion. Es ist nicht wahr, dass entweder Elche schießen können oder aber alle Pinguine in London leben (damit wäre eine Beispiel für die erste Zeile gemacht). Weiter ist es jedoch sehr wohl wahr, dass sich entweder Bäume auf schweizerdeutsch unterhalten oder aber wir Menschen nicht leben können, ohne zu atmen (auch wenn diese Atmung teilweise mittels einer Maschine gemacht wird). Damit wäre ein Beispiel für die jeweils zweiten Zeilen der Definitionen gemacht. Auch wahr ist, dass entweder Afrika ein Kontinent ist oder aber alle Menschen alle Sprachen dieser Welt sprechen können (ich für mich bin schon nur froh, wenn ich einigermaßen Deutsch schreiben kann - reden kann ich als Deutschschweizer sowieso nur Schweizerdeutsch). Dies ist ein Beispiel für die jeweils dritten Zeilen der Definition der Antivalenz. Es ist jedoch wiederum nicht wahr, dass entweder Fische im Wasser leben oder dass Vögel existieren, welche Möwen heißen (da beide Aussagen wahr sind, ist die Entweder-Oder-Aussage falsch). Damit hätte ich ein Beispiel für die jeweils vierten Zeilen der Definitionen der Antivalenz gemacht. Schlussendlich ist die Aussage zu Kindern: "Entweder Du gehst jetzt

Abbild der Antivalenz

sofort ins Bett, oder Du gehst jetzt sofort ins Bett" zwar eine massive Drohung, jedoch als Aussage nicht wahr². Denn sie ist nicht wahr, falls das Kind nicht ins Bett geht. In diesem Fall wäre es ein weitere Beispiel für die erste Zeile der Definition der Antivalenz. Oder aber sie ist nicht wahr, falls das Kind ins Bett geht. In diesem Fall wäre sie ein weiteres Beispiel für die vierte Zeile der Antivalenz.

Wieder existieren Schaltbilder für die Antivalenz. In der Abbildung 13.0.1 habe ich die Variante mit einem Lämpchen gezeichnet. In der Abbildung 13.0.2 habe ich die Variante gezeichnet, bei welcher das Lämpchen nicht zwingend notwendig ist. Bei der zweiten Schaltung ist wieder das "Elend" der asymmetrischen Schaltung vorhanden (Siehe die Bemerkung auf Seite 95).

In der Definition 13.0.1 werden die Eigenschaften der Antivalenz noch einmal aufgeschrieben, diesmal formal (abgesehen vom dreifachen Pfeil nach rechts (\Longrightarrow)).

$$((\neg A \land \neg B) \Rightarrow \neg (A \Leftrightarrow B)) \land \\ ((\neg A \land B) \Rightarrow (A \Leftrightarrow B)) \land \\ ((A \land \neg B) \Rightarrow (A \Leftrightarrow B)) \land \\ ((A \land B) \Rightarrow \neg (A \Leftrightarrow B))$$

Wieder mache ich abschließende Beispiele, welche die Eigenschaften der logischen Antivalenz besser zeigen sollen. Als Beispiel für die erste Zeile sei A das Symbol für die Aussage: "Kühe haben vier Ohren", B sei das Symbol für die Aussage: "Geld ist essbar". Da ich an beide Aussagen nicht glaube, sind meiner Ansicht nach beide Aussage falsch. Darum gilt $\neg(A \Leftrightarrow B)$, ausgeschrieben:

²Außerdem sollten Kindern bekanntlich nur Alternativen angeboten werden, welche echte Alternativen sind. Ansonsten ist es eine Art seelische Marter (in der Art "Wahl der Qual").

¬("Kühe haben vier Ohren" \Leftrightarrow "Geld ist essbar"),

ausgeschrieben: "Es ist ist nicht wahr, dass entweder Kühe vier Ohren haben oder aber Geld essbar ist". Nun kommen zwei komische Beispiele. Als Beispiel für die zweite Zeile der Definition der Antivalenz sei A das Symbol für die Aussage "Es gibt eine Person, welche nirgends Ausländerin oder Ausländer ist" und B sei das Symbol für die Aussage "Bits und Bytes sind Begriffe der Informatik". Da die Aussage A bekanntlich nicht stimmt (es gilt ja die Aussage "Alle Menschen sind irgendwo Ausländer"), Bits und Bytes jedoch tatsächlich Begriffe der Informatik sind, gilt $A \Leftrightarrow B$, ausgeschrieben

"Es gibt eine Person, welche nirgends Ausländerin oder Ausländer ist" # "Bits und Bytes sind Begriffe der Informatik",

ausformuliert: "Entweder gibt es eine Person, welche nirgends Ausländerin oder Ausländer ist, oder Bits und Bytes sind Begriffe der Informatik". Wenn dieser Satz oberflächlich gelesen wird, dann kann es meines Erachtens passieren, dass gemeint wird, dass alles stimmt. Das ist jedoch nicht wahr. Die Aussage meint, dass eine der beiden Aussagen richtig ist und die andere ist es nicht. Natürlich wird nicht gesagt, welche Aussage richtig ist und welche nicht. Jedoch ist wahr, dass eine der beiden Aussagen wahr ist und die andere ist es nicht. Wie Du jedoch sehen kannst, ist jedoch viel gewonnen, wenn ich zeigen kann, dass es keine Person gibt, welche nirgends Ausländerin oder Ausländer ist. Denn wenn ich das zeigen kann, dann ist damit klar, dass Bits und Bytes Begriffe der Informatik sind - falls mich das noch interessiert...

Jedoch ist das in etwa das Vorgehen in der Mathematik. Beim nächsten Beispiel, welches als Beispiel der dritten Zeile der Antivalenz dienen soll, sei A das Symbol für die Aussage "Zuwenig Regen ist schlecht, zu viel jedoch auch" und B sei das Symbol für die Aussage "Es führt genau eine Straße nach Rom". Dann empfinde ich die Aussage A als zwar vage, jedoch wahr. Wohingegen die Aussage B nicht wahr ist. Also gilt $A \Leftrightarrow B$, ausgeschrieben

"Zuwenig Regen ist schlecht, zuviel jedoch auch" \Leftrightarrow "Es führt genau eine Strasse nach Rom",

ausformuliert: "Entweder ist zu wenig Regen schlecht, zu viel jedoch auch, oder es führt genau eine Straße nach Rom." Ich finde, das ist für mich einigermaßen plausibel. Da mehrere Straßen nach Rom führen³, muss die ersten Aussage wahr sein - und das ist sie doch, oder? Nun kommt noch das Beispiel für die letzte Zeile der Definition der Antivalenz, welche meines Erachtens wieder schwerer nachzuvollziehen ist. Ja, ich weiß, für Dich ist alles leicht, und das soll ja auch so sein. Ich aber quäle mich immer ein wenig ab in der Suche, etwas so einfach wie möglich und so kompliziert wie nötig darzustellen. Es sei also A das Symbol der Aussage: "Im Leben gibt es schöne und weniger schöne Momente", B sei das Symbol für die Aussage: "Bäume sind Pflanzen". Dann sind beide Aussagen meines Erachtens wahr (ich hoffe nicht, dass Du nur schönes oder nur weniger schönes erlebt hast), und Bäume sind auch Pflanzen. Jedoch gilt $\neg(A \Leftrightarrow B)$, ausgeschrieben:

¬ ("Im Leben gibt es schöne und weniger schöne Momente" \Leftrightarrow "Bäume sind Pflanzen")

ausformuliert: "Es gilt nicht, dass es entweder im Leben schöne und weniger schöne Momente gibt, oder dass Bäume Pflanzen sind". Es gilt eben beides, nicht "entweder oder".

Die nächsten zwei Arten von logischen Verknüpfungen werden in der Elektrotechnik bis zur Erschöpfung, aber in der Mathematik meines Wissens fast nicht verwendet. Sie werden hier aufgelistet, weil mit beide von ihnen alle übrigen Verknüpfungen von Aussagen erzeugt werden können - was ich seltsam finde, jedoch ist es so!

³"Es führen viele Wege nach Rom" ist ein Sprichwort, welches besagt, dass häufig mehrere Wege zum Ziel führen. Das stimmt übrigens auch in der Mathematik. Häufig gibt es mehrere Beweise für einen mathematischen Satz.

KAPITEL 14

Was ist eine "NAND-Verknüpfung"?

Die NAND-Verknüpfung (gemäß Wikipedia offenbar auch als Sheffer-Notation bezeichnet) besitzt als charakterisierende Eigenschaft, dass sie genau dann wahr ist, falls die entsprechende Konjunktion nicht wahr ist. Die wichtigste Eigenschaft dieser Verknüpfung ist jedoch, dass sich aus ihr alle andere Verknüpfungen ableiten lassen (was ich wieder später erledigen werde, so nach dem Motto: Verschiebe getrost auf Morgen, was Du heute kannst besorgen :)¹). Nein den entsprechenden Absatz kannst Du unter dem Satz 93 sowie dessen entsprechendem Abschnitt nachlesen). Im Abschnitt 21.12 möchte ich das beweisen. Diese Art der Verknüpfung wird in der Computer-Industrie milliardenfach verwendet - als logische Gatter. Das tönt wie eine Vorrichtung, um einen Gartenzaun oder so abzuschließen. Es sind jedoch elektrische Schaltbilder damit gemeint. Diese kannst Du unter 14.0.1 (energiefressende Variante) respektive 14.0.2 (Energiesparvariante) betrachten.

Ich versuche wieder in Worte zu fassen, was ich zeichnen wollte. Die verschiedenen Elemente habe ich bereits an anderer Stelle vorgestellt

¹Was natürlich so nicht stimmt! Das deutsche Sprichwort lautet: "Verschiebe nicht auf Morgen, was Du heute kannst besorgen."

Abbildung 14.0.2. 2. Prinzipschema NAND-Verknüpfung

TABELLE 1. 1. Darstellung der Wahrheitstabelle der NAND-Verknüpfung

$\neg A$	$\neg B$	$A \overline{\wedge} B$
$\neg A$	B	$A \overline{\wedge} B$
A	$\neg B$	$A \overline{\wedge} B$
A	B	$\neg (A \overline{\wedge} B)$

(beispielsweise unter dem Kapitel 6 über die Negation einer Aussage). Der Ausgang der Prinzipschemata der NAND-Verknüpfung wird nur dann "auf den Grund gezogen", dass heißt, er besitzt nur dann ein verschwindendes Potential gegenüber der Erde, falls beide Taster geschlossen sind. In allen anderen Fällen besitzt der Ausgang eine Ausgangsspannung.

Nachdem ich so "schöne Bildchen" gezeichnet habe (über deren Sinn respektive Unsinn sich durchaus streiten lässt) fühle ich mich trotzdem verpflichtet, den Sachverhalt der NAND-Verknüpfung noch sprachlich respektive tabellarisch zu fassen.

Wie gesagt, lässt sich die NAND-Verknüpfung dadurch charakterisieren, dass sie zwei Aussagen miteinander verknüpft nur dann nicht wahr ist, falls beide Aussagen wahr sind. Die Verknüpfung müsste also heißen: "... ist nicht zusammen wahr mit der Aussage ...".

In der Tabelle 1 respektive der Tabelle 2 sind die Eigenschaften der NAND-Verknüpfung noch einmal genau aufgelistet. Ich werde wieder Beispiele auflisten, welche die Eigenschaften NAND-Verknüpfung demonstrieren sollen. Es ist wahr, dass die Aussage, dass Himalaya ausschließlich der Name eines Gebirges ist, nicht zusammen wahr ist mit

TABELLE 2. 2. Darstellung der Wahrheitstabelle der NAND-Verknüpfung

A	B	$A \bar{\wedge} B$
0	0	1
0	1	1
1	0	1
1	1	0

der Aussage, dass sich Fliegen melken lassen. Denn es gibt offenbar eine schweizerische Künstlerin², welche ihre Tochter Himalaya taufen ließ (das arme Kind). Läuse werden angeblich von Ameisen "gemolken"³, jedoch ist mir von Fliegen nicht bekannt. Damit wäre ein Beispiel für die jeweils ersten Zeilen der Tabellen der NAND-Verknüpfung gemacht. Weiter ist die Aussage, dass Autos in der Schweiz gleich besteuert werden wie Fahrräder nicht zusammen wahr mit der Aussage, dass es Gleithörnchen gibt. In der Schweiz werden die Autofahrer "gemolken" in dem Sinn, dass die Fahrzeugsteuer schon ziemlich ins Geld gehen kann (ich selbst besitze kein Auto, obwohl ich stolzer Besitzer eines gültigen Fahrausweises bin). Gleithörnchen existieren jedoch (honnit soi qui mal y pense⁴;)). Jedoch sind nicht beide Aussagen gleichzeitig wahr, und darum ist die NAND-Verknüpfung der beiden Aussagen wieder wahr. Also wäre auch die nächste Zeile der Tabelle der NAND-Verknüpfung mit einem Beispiel belegt. Weiter ist die Aussage, dass es Laubbäume gibt, nicht gleichzeitig wahr mit der Aussage, dass Übergewicht harmlos ist. Ja, es gibt Laubbäume, Übergewicht ist jedoch eine eigentliche Krankheit (ich leide an Übergewicht). Da jedoch nicht gleichzeitig beide Aussagen wahr sind, gilt die NAND-Verknüpfung der beiden Aussagen wieder. Damit ist auch ein Beispiel der dritten Zeile gegeben. Schlussendlich stimmt jedoch die Aussage nicht, dass die Aussage, dass es am Himmel Wolken gibt, nicht zusammen wahr ist mit der Aussage, dass es aus Wolken regnen kann. Denn beide Aussagen (dass es am Himmel Wolken gibt einerseits und dass es aus Wolken regnen kann), sind wahr. Damit wären die Beispiele gezeigt. Nun werde ich wieder die Eigenschaften der NAND-Verknüpfung formal beschreiben:

²Die Künstlerin arbeitet unter dem Namen Pippilotti Rist

 $^{^3}$ Ja ich weiß: Hier wäre wieder eine Literaturangabe fällig, aber das lasse ich weg. Wer Lust hat, kann die entsprechende Literaturangabe mir zusenden

⁴Auf gut Deutsch: "Ein Schelm, wer Arges dabei denkt". Wobei die Aussage insofern wieder lustig ist, weil der, welche oder welcher dies schreibt, an die verfängliche Variante gedacht haben muss. Hätte er oder sie nicht daran gedacht, dann wäre es ihr oder ihm auch nicht in denn Sinn gekommen, dies zu sagen. Bitte verzeihe mir, wenn ich an dieser Stelle keine Erklärungen mache, was mir dabei durch den Kopf gegangen ist.

$$(14.0.1) \qquad \begin{array}{ccc} ((\neg A \wedge \neg B) & \Rrightarrow & (A \,\overline{\wedge}\, B)) & \wedge \\ ((\neg A \wedge B) & \Rrightarrow & (A \,\overline{\wedge}\, B)) & \wedge \\ ((A \wedge \neg B) & \Rrightarrow & (A \,\overline{\wedge}\, B)) & \wedge \\ ((A \wedge B) & \Rrightarrow & \neg (A \,\overline{\wedge}\, B)) \end{array}$$

Wieder mache ich Beispiele für diese Eigenschaften. Es sei A das Symbol der Aussage "Es gibt Papageien am Südpol.", B sei das Symbol der Aussage "Alle Clowns sind Mathematiker". Nun, beide Aussage sind wohl nicht wahr. Darum gilt $A \overline{\wedge} B$, ausgeschrieben:

```
"Es gibt Papageien am Südpol."¬¬
"Alle Clowns sind Mathematiker.",
```

ausformuliert: "Dass es Papageien am Südpol gäbe ist nicht gleichzeitig wahr wie die Aussage, dass alle Clowns Mathematiker seien." Damit ist ein Beispiel für die erste Zeile der Definition der NAND-Verknüpfung gegeben. Nun sei A ein Symbol für die Aussage: "Alle Menschen haben die gleiche Hautfarbe grün", B sei ein Symbol für die Aussage: "Viele Menschen können sehen". Die Aussage A stimmt wohl eher nicht, auch wenn wir uns manchmal grün und blau ärgern. Hingegen können tatsächlich viele (wenn auch nicht alle) Menschen sehen. Darum gilt $A \bar{\wedge} B$, ausgeschrieben

"Alle Menschen haben die gleiche Hautfarbe grün."⊼ "Viele Menschen können sehen.",

ausformuliert: "Dass alle Menschen grüne Hautfarbe hätten, ist nicht gleichzeitig wahr wie die Aussage, dass viele Menschen sehen können." Nun sei A das Symbol für die Aussage: "Schnee ist kälter als kochendes Wasser". B sei das Symbol für die Aussage: "Alle Menschen haben genug zu essen". Leider ist die letzte Aussage B im Jahr 2011 immer noch nicht wahr (was für eine Schande für uns). Hingegen ist Schnee durchaus kälter als kochendes Wasser. Darum gilt: $A \,\bar{\wedge}\, B$, ausgeschrieben

"Schnee ist kälter als kochendes Wasser."¬¬, Alle Menschen haben genug zu essen.",

ausformuliert: "Die Aussage, dass Schnee kälter als kochendes Wasser ist, ist nicht zusammen wahr mit der Aussage, dass alle Menschen genug zu essen hätten." Nun möchte ich noch ein Beispiel für die letzte Zeile der Definition der NAND-Verknüpfung machen. Es sei A das Symbol der Aussage: "Es gibt Mathematikerinnen". B sei das Symbol der Aussage: "Es gibt Babysitter". Da bekanntlich beide Aussagen wahr sind, gilt: $\neg(A \overline{\land} B)$, ausgeschrieben

 \neg ("Es gibt Mathematikerinnen." $\overline{\land}$ "Es gibt Babysitter."),

ausformuliert: "Es gilt nicht, dass die Aussage, dass es Mathematikerinnen gibt, nicht zusammen wahr ist mit der Aussage, dass es Babysitter gibt". Damit wäre auch ein Beispiel für die letzte Zeile der formalen Beschreibung der NAND-Verknüpfung gemacht.

Bevor ich zum Schluss des Kapitels komme, möchte ich mir nicht überlegen, ob es Abkürzungsregeln der NAND-Verknüpfung gibt. Ich bin der Meinung, dass diese vorhanden ist.

LEMMA 8. Es seien A und B Symbole für Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Ist dann A oder B nicht wahr, dann ist die Aussage

 $A \overline{\wedge} B$

wahr.

BEWEIS. Denn sind beide Behauptungen A und B nicht wahr, dann ist gemäß der ersten Zeile der Definition der NAND-Verknüpfung oben die Behauptung wahr. Ist die Aussage A nicht wahr und die Behauptung B wahr (also die Behauptung A nicht wahr), dann ist gemäß der zweiten Zeile der Definition der NAND-Verknüpfung oben die Behauptung ebenfalls wahr. Ist die Aussage A wahr und die Aussage B nicht wahr (also die Behauptung B nicht wahr), dann ist gemäß der dritten Zeilen der Definition der NAND-Verknüpfung die Behauptung ebenfalls wahr. Damit hätte ich jedoch den Beweis für die Richtigkeit der Behauptung erbracht und beende darum an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Am Schluss dieses Kapitels möchte ich eine Bemerkung über die das Symbol der NAND-Verknüpfung schreiben: Das Symbol der NAND-Verknüpfung ist eigentlich aus zwei Symbolen aufgebaut: Dem Symbol der Konjunktion "^" und dem Symbol der Negation "". Allerdings ist das Symbol der Negation nicht wie sonst als "Haken" geschrieben: "¬", sondern als Strich über der Aussage. Das ist auch eine mögliche Schreibweise. Sie ich im Satz 68 formulieren und beweisen möchte, könnte ich anstelle von

 $A\overline{\wedge}B$

schreiben

$$\neg (A \land B)$$

Und da in der Mathematik anstelle des Hakens auch ein Strich über der Aussage geschrieben wird, könnte ich auch schreiben:

 $\overline{A \wedge B}$

sogenannte Abkürzungsregeln der NAND-Verknüpfung Also ist die Schreibweise $\overline{\wedge}$ sozusagen eine Verkürzung der Schreibweise mit dem langen Strich oberhalb der Aussage.

Als nächstes folgt die Beschreibung der letzten logischen Verknüpfung, welche ich vorstellen möchte.

KAPITEL 15

Was ist eine "NOR-Verknüpfung"?

Um es kurz zu machen: eine NOR-Verknüpfung (gemäß Wikipedia auch als Peirce-Notation bezeichnet) ist die Negation einer Disjunktion. Daher auch ihr Name. "NOR" ist eine Verkürzung von "not or", auf deutsch also "nicht oder". Sie ist also nur dann wahr, falls beide Aussagen, welche NOR-verknüpft werden, falsch sind. Die Tabellen 1 respektive 2 zeigen die Eigenschaften der NOR-Verknüpfung. Das Symbol der NOR-Verknüpfung wurde dem dtv-Atlas der Mathematik entnommen. Die Sprachregelung ist übrigens ebenfalls komisch: Sind A und B Symbole für Aussagen, so kann die zusammengesetzte Aussage $A\overline{\vee}B$ ausgesprochen werden als: "Weder A noch B sind wahr". Wieso wird dann von NOR, also "not or", und nicht von "not and", "nicht und" gesprochen? Ich werde diese noch zeigen müssen (siehe Kapitel 18.25). Weiter werde ich an anderer Stelle ebenfalls zeigen, dass die NOR-Verknüpfung alle anderen Verknüpfungen erzeugt.

Die NOR-Verknüpfung spielt in der Computertechnik eine wichtige Rolle, indem mit ihr logische Schaltungen aus Transistoren erzeugt werden können. Falls Du wie auch daran glaubst, dass die Amerikaner auf dem Mond waren (sie hätten mich dort ruhig besuchen dürfen,

TABELLE 1. 1. Darstellung der Wahrheitstabelle der NOR-Verknüpfung

$\neg A$	$\neg B$	$(A\overline{\vee}B)$
$\neg A$	B	$\neg (A \overline{\lor} B)$
A	$\neg B$	$\neg (A \overline{\lor} B)$
A	В	$\neg (A \overline{\vee} B)$

TABELLE 2. 2. Darstellung der Wahrheitstabelle der NOR-Verknüpfung

A	B	$A\overline{\vee}B$
0	0	1
0	1	0
1	0	0
1	1	0

Abbildung 15.0.1. 1. Prinzipschema NOR-Verknüpfung

da ich schon lange hinter dem Mond wohne¹...), dann lass Dir gesagt sein, dass die Amerikaner mit einem Computer auf den Mond flogen, welcher als logische Grundbausteine NOR-Gatter besaßen. 15.0.1 zeigt das Prinzip eines NOR-Gatters.

Ich möchte sprachlich ausdrücken, was ich zu zeichnen versucht habe². Ganz links ist der Verweis angebracht, dass diese Leitung mit der Grundspannung versorgt wird. Keine Angst, das sind üblicherweise nicht kV, welche da angeschlossen sind (kV sind 1000 V, durchaus tödlich). Üblicherweise sind dies 5 V. Es kitzelt an der Zunge, wenn der Leiter über die Zunge mit der Erde verbunden wird. Aber mehr passiert nicht. Dann hat es zwei komische Taster. Diese Taster haben die Eigenschaft, dass sie keinen Strom leiten, wenn der Taster "eingeschaltet" wird. Das Einschalten kannst Du Dir so vorstellen, dass Energie verwendet muss, um den Taster zu drücken. Falls keine Energie verwendet wird, dann springt der Taster wieder auf und wird dadurch leitend. Diese Taster sind einer nach dem anderen geschaltet. Das bedeutet: Sobald einer der beiden Taster betätigt wird, dann wird die Stromleitung unterbrochen. Die Ladung, welche dann beim Ausgang noch vorhanden wäre, fließt in in diesem Fall den Boden. Dadurch wird erreicht, dass beim Ausgang keine Spannung mehr vorhanden ist. Wäre kein Widerstand vorhanden, dann würde die Ladung beim Ausgang verbleiben, und der Taster würde sich nicht ausschalten lassen. Nur falls beide Taster geöffnet sind, kann Ladung aus der Spannungsquelle zum Ausgang fließen und somit für eine Ausgangsspannung sorgen. Wenn dann eine kleine Spannung als 0 und Spannung als 1 übersetzt wird³, dann kannst Du aus dem Vergleich mit 2 erkennen, dass diese

¹wäre übrigens ein Witz

²Sei mir bitte nicht böse, dass diese Beschreibung eine ähnliche ist wie diejenige der vorhergehenden Kapitel, insbesondere des Kapitels 6

³Eigentlich könnte ich schreiben "keine Spannung". Aber in der Elektrotechnik wird zwischen kleiner und großer Spannung unterschieden, damit die Schaltungen auch unter realen Bedingungen funktionieren.

Abbildung 15.0.2. 2. Prinzipschema NOR-Verknüpfung

Schaltung tatsächlich ein NOR-Gatter erzeugt. Wenn anstatt ein Widerstand zwei Taster verwendet werden um gegebenenfalls überflüssige Ladungen in die Erde abzuleiten, dann sind dies Taster, so wie Du sie sicher kennst: Falls diese gedrückt werden, dann fließt die überschüssige Ladung in die Erde. Wie Du in der Abbildung 15.0.2 erkennen kannst, wird der Ausgang mit der Erde verbunden, sobald einer der beiden Taster betätigt wird. Umgekehrt wird der Ausgang nur dann mit der Versorgungsspannung verbunden, wenn beide Taster nicht betätigt sind. Schaltungen ohne Widerstände sind in der Mikrosystemtechnik meines Wissens einfacher zu realisieren als Schaltungen mit Widerständen. Darüber hinaus erzeugt die Schaltung ohne Widerstände weniger Verlustleistung. Die Compis brauchen auch so noch zu viel elektrische Energie. . .

Ich möchte noch Beispiele für die NOR-Verknüpfung machen machen: Die Aussage "alle Hasen essen Ostereier an Pfingsten" ist ebenso wenig wahr wie die Aussage "Ali Baba und die 50 Räuber". (Es wären 40 Räuber im Märchen aus 1001 Nacht). Das wäre ein Beispiel für die erste Zeile der NOR-Verknüpfung. Jedoch stimmt es nicht, dass die Aussage "Aller Anfang ist 10 kg leicht" ebenso wenig wahr ist wie die Aussage "Die Sonne geht im Osten auf und im Westen unter". Denn die Sonne geht per Definition im Osten auf und im Westen unter. Also hätte ich ein Beispiel der zweiten Zeile der Definition NOR-Verknüpfung aufgeschrieben. Weiter stimmt es auch nicht, dass Wikinger nicht Norweger waren und Julius Cäsar als Kaiser von Rom mit Kaiser Napoleon Bonaparte nie in Buenos Aires gemeinsam das Frühstück eingenommen haben. Denn die Wikinger waren wirklich (unter anderem) Norweger. Adlerdings ist zu bezweifeln, ob Kaiser Napoleon Bonaparte und Julius Cäsar miteinander das Frühstück eingenommen haben. Aber da die

erste Aussage wahr ist, ist damit schon gezeigt, dass nicht gilt, dass die erste Aussage ebenso wenig wahr ist wie die zweite Aussage. Damit wäre ein Beispiel für die dritte Zeile der NOR-Verknüpfung gemacht. Schlussendlich stimmt es auch nicht, dass Pinguine nicht in der Arktis und Eisbären nicht in der Antarktis natürlicherweise vorkommen. Da beide Aussagen wahr sind, ist die NOR-Verknüpfung der beiden Aussagen sicher nicht wahr. Jedoch habe ich damit ein Beispiel der vierten Zeile der NOR-Verknüpfung geschrieben.

Wieder möchte ich die formale Beschreibung der NOR-Verknüpfung einführen. Diese besitzt per Definition die folgenden Eigenschaften:

$$(15.0.1) \qquad \begin{array}{ccc} ((\neg A \wedge \neg B) & \Rrightarrow & (A \overline{\vee} B)) & \wedge \\ ((\neg A \wedge B) & \Rrightarrow & \neg (A \overline{\vee} B)) & \wedge \\ ((A \wedge \neg B) & \Rrightarrow & \neg (A \overline{\vee} B)) & \wedge \\ ((A \wedge B) & \Rrightarrow & \neg (A \overline{\vee} B)) \end{array}$$

Ich werde jetzt wieder Beispiele für die formale Beschreibung machen. Es sei A das Symbol für die Aussage: "Die Beine von Bachstelzen sind gleich lang, besonders jeweils das linke."⁴, B sei das Symbol für die Aussage: "Die Menschen werden als Greise geboren und sterben als Säuglinge". Beide Aussagen stimmen natürlich nicht, jedoch die Aussage $A\overline{\vee}B$, ausgeschrieben

"die Füsse von Bachstelzen sind gleich lang, "
"besonders jeweils der linke Fuss."

"Die Menschen werden als Greise geboren "
"und sterben als Säuglinge"

ausformuliert: "Die Aussage, dass beide Beine von Bachstelzen gleich lang seien, besonders das linke, ist ebenso wenig wahr wie die Aussage, dass Menschen als Greise geboren werden und als Säuglinge sterben." Also wäre ein Beispiel für die erste Zeile der formalen Definition der NOR-Verknüpfung gemacht. Als Beispiel für die zweite Zeile der formalen Definition der NOR-Verknüpfung sei A das Symbol der Aussage: "Steine haben ein Herz und Nieren", B sei das Symbol für die Aussage: "Es gibt viele verschiedene Tier- respektive Pflanzenarten". Dann ist die A Aussage nicht wahr (jedenfalls ist mir nicht bekannt, dass Steine leben würden), wohingegen die Aussage B durchaus richtig ist. Also gilt $\neg (A \nabla B)$, ausgeschrieben

⁴Das war, wenn ich mich richtig erinnere, Bestandteil eines Witzes: "Welches Bein einer Bachstelze ist länger, das linke oder das rechte? Antwort: Beide Beine sind gleich lang, besonders der linke". Er geht in die gleiche Richtung wie der Witz: "Im Kommunismus sind alle Personen gleich, nur sind ein paar gleicher". Die Utopie und die Realität prallen eben nicht nur in der katholischen Kirche immer wieder hart aufeinander.

 \neg ("Steine haben ein Herz und Nieren." $\overline{\lor}$ "Es gibt viele verschiedene Tier- repspektive Pflanzenarten.") ,

ausformuliert: "Es ist nicht wahr, dass die Aussage, dass Steine Herz und Nieren hätten, ebenso wenig wahr ist wie die Aussage, dass es viele verschiedene Tier- respektive Pflanzenarten gibt". Also ist das Beispiel für die zweite Zeile der Definition der NOR-Verknüpfung gemacht. Als Beispiel für die dritte Zeile sei A das Symbol der Aussage: "Die Künste beeindrucken viele Personen." B sei das Symbol für die Aussage: "Pferde sind Fleischfresser." Dann ist die Aussage A wahr, wenn auch schwammig formuliert. Jedoch ist die Aussage B nicht wahr. Also gilt $\neg (A \overline{\lor} B)$, ausgeschrieben

 \neg ("Die Künste beeindrucken viele Personen." $\overline{\lor}$ "Pferde sind Fleischfresser."),

ausformuliert: "Es ist nicht wahr, dass die Aussage, dass die Künste viele Personen beeindrucken, ebenso wenig wahr ist wie die Aussage, dass Pferde Fleischfresser seien." Damit ist das Beispiel für die dritte Zeile der NOR-Verknüpfung gemacht. Als Beispiel für die vierte Zeile der formalen Beschreibung der NOR-Verknüpfung sei A das Symbol für die Aussage "1 ist eine Zahl.", B sei das Symbol für die Aussage "2 ist eine Zahl.". Dann gilt $\neg(A \nabla B)$, ausgeschrieben

 \neg (,,1 ist eine Zahl" $\overline{\lor}$,2 ist eine Zahl."),

ausformuliert: "Es gilt nicht, dass weder 1 noch 2 Zahlen sind".

Entsprechend der Bemerkung über das Symbol der NAND-Verknüpfung kann ich auch über das Symbol der NOR-Verknüpfung schreiben, dass dieses eigentlich eine Abkürzung der Schreibweise

$$\overline{A \vee B} \Leftrightarrow \neg (A \vee B)$$

angesehen werden kann. In Worten will ich damit schreiben, dass die NOR-Verknüpfung als Negation einer Disjunktion angesehen werden kann. Vergleiche dazu mit dem Satz 69 - falls Dich das interessiert und Dich "getraust", das schon durchzulesen. Ich meine das nicht abwertend. Jedoch sind Vorwärtsbezüge in Büchern immer eigentlich deplatziert ("doof"), da die lesenden Personen praktisch immer in "kaltes Wasser geworfen werden".

Jetzt endlich sind die Startbedingungen festgemacht.

Als nächstes möchte ich aufschreiben, welche Operatoren üblicherweise zuerst, welche dann anschließend ausgeführt werden.

KAPITEL 16

Wie ist die Ausführungsreihenfolge von Operatoren?

Ich habe jetzt die folgenden Operationen definiert:

- die Negation ¬
- die Identität, diese besitzt jedoch kein Symbol und interessiert nur am Rand
- die Konjunktion \wedge
- die Implikation \Rightarrow
- die "Replikation" ←
- die Disjunktion ∨
- die logische Äquivalenz ⇔
- die logische Antivalenz #
- die NOR-Verknüpfung $\overline{\vee}$
- \bullet die NAND-Verknüpfung $\overline{\wedge}$

Jetzt ist praktisch, wenn eine Reihenfolge gemacht wird, welche anzeigt, welche Operation zuerst ausgeführt wird, und welche nachher. Ich mache ein Beispiel, welches das die Problemstellung aufzeigen soll: Der Satz der Kette der Schlussfolgerung lässt beispielsweise so aufschreiben: Sind A, B sowie C Symbole dreier Aussagen, dann gilt

$$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

In Worten bedeutet dieser Satz: Wenn aus aus der Aussage A die Aussage B und aus der Aussage B die Aussage so abgearbeitet werden muss:

$$((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$$

oder so

$$(A \Rightarrow B) \land ((B \Rightarrow C) \Rightarrow (A \Rightarrow C))$$

Dann bedeutet die erste Art der Verknüpfung: "Wenn aus der Aussage A die Aussage B und aus der Aussage B die Aussage B nach einer Aussage B, so dass gilt: Folgt aus der Aussage B die Aussage B

auf jeden Fall kein logischer Satz (vergleiche mit dem folgenden Kapitel). Denn wenn A eine wahre, B hingegen keine wahr Aussage ist, dann ist die ganze Aussage nicht wahr (vergleiche mit der dritten Zeile der Definition 9.0.1 der Schlussfolgerung sowie der "Abkürzungsregel der Konjunktion" am Ende des Kapitels 8). Das bedeutet, aber nach dem folgenden Kapitel, dass die Aussage kein logischer Satz sein kann. Weiter kann ich damit zeigen, dass es unter Umständen sehr auf die Ausführungsreihenfolge der Operationen ankommt.

Es ist jedoch praktisch, wenn die Klammern weggelassen werden können, falls es klar ist, wie die Ausführungsreihenfolge lautet. Ich werde zwar so oft wie möglich probieren, die Klammern zu setzen. Aber Du wirst wahrscheinlich selbst nicht alle Klammern schreiben, so wie auch in mathematischen Texten die Klammern nicht geschrieben werden. Nachfolgend möchte ich Dir die Reihenfolge angeben, so wie ich sie kennengelernt habe. Dabei bedeutet eine tiefe Nummer, dass die Operation zuerst ausgeführt wird. Eine höhere Nummer bedeutet, dass die Operation später ausgeführt wird (ich habe weitgehend bei Wikipedia¹ abgeschrieben):

- (1) die Negation \neg
- (2) die Identität (ohne spezielles Symbol)
- (3) die NOR-Verknüpfung $\overline{\vee}$
- (4) die Konjunktion \wedge
- (5) die NAND-Verknüpfung $\overline{\wedge}$
- (6) die Disjunktion \vee
- (7) die Äquivalenz ⇔
- (8) die Antivalenz \(\phi \)
- (9) die Replikation \Leftarrow
- (10) die Implikation \Rightarrow

Ich muss zugeben, dass mir nicht bekannt ist, an welcher Stelle die NOR respektive die NAND-Verknüpfung kommt. Vielleicht weißt Du es. Dann wäre ich um eine entsprechende Rückmeldung dankbar. Ebenfalls bin ich mir nicht genau sicher mit den genauen Positionen der Äquivalenz, der Antivalenz, der Replikation und der Implikation.

Wie schon gesagt, würde ich Klammern schreiben und vielleicht noch die Abstände zwischen Teilen, welche erst später verknüpft werden, vielleicht noch ein wenig vergrößern, falls Du Dir nicht hundertprozentig sicher bist, was jetzt zuerst, was erst anschließend ausgeführt werden soll. Übrigens ist die Ausführungsreihenfolge auch in Programmiersprachen ein großes Thema. Dort sind dann alle Operatoren schön geordnet. Aber ich bezweifle, ob jemand diese Reihenfolge vollständig verinnerlichen kann. Ich beispielsweise kann's nicht, und tendiere auf jeden Fall dazu, immer schön kleinere Einheiten zu machen. Dies ist dann auch für die Fehlersuche vorteilhaft.

¹http://de.wikipedia.org/wiki/Operatorrangfolge

So, jetzt wären sozusagen die Zutaten pfannenfertig vorhanden. Was nun kommt, ist sozusagen der erste Lackmustest², ob diese Festlegungen auch sinnvoll sind. Das ist m.E. das Interessante am Ganzen. Du kannst Alles definieren, jedoch musst Du nachher zeigen, ob die Annahmen auch sinnvolle Resultate zeigen³. In den folgenden Kapiteln möchte ich logische Aussagen beweisen.

²Ein Lackmustest (http://de.wikipedia.org/wiki/Lackmustest) zeigt meines Wissens an, ob eine Flüssigkeit sauer oder basisch ist. Dabei handelt es sich um einen Streifen, welcher kurz in die Flüssigkeit gehalten werden muss. Je nach Farbe ist die Flüssigkeit also eine Säure oder eine Base. Im übertragenen Sinn habe ich den Lackmustest kennengelernt als Überprüfung, ob die Dinge wirklich so sind, wie sie zu sein scheinen.

³Das war einer der wesentlichen Gründe, wieso ich im sozialen Bereich todtraurig wurde. Da wurde gesagt und gesagt, jedoch nicht überprüft.

KAPITEL 17

Mengenelemente und logische Aussagen

Das folgende Kapitel schreibe ich, weil ich bemerkt habe, dass es später wichtig ist, wenn ich später einfach darauf zurückgreifen kann und nicht noch erläutern muss, was ich das sagen möchte. Es sei M eine Menge, welche jedoch wohldefiniert sei! Das bedeutet, wie ich weiter oben in Kapitel 3 bereits zu zeigen versuchte, dass diese Menge keine abstruse Menge sei, welche eventuell über sieben Ecken und Enden Bezug auf sich selbst nimmt. Nun sei A eine Aussage. Dann sei der Allquantor \forall wie folgt definiert:

$$(17.0.1) \qquad (\forall x \in M : A) \Leftrightarrow ((x \in M) \Rightarrow A)$$

In Worten: Es sei definitionsgemäß die Aussage A für alle Elemente x der Menge M dann gültig, falls aus der Aussage, dass x in M sei, die Aussage A folge. Auf der linken Seite der Definition ($\forall x \in M : A$) steht die Aussage "Für alle x aus der Menge M gilt die Aussage A. Diese Aussage kann eine Aussage sein, in welcher x als Metasymbol verwendet wird. Oder es kann eine Aussage sein, welche x nicht als Metasymbol enthält. Dann allerdings ist die Aussage wahrscheinlich sinnlos, also vielleicht zwar formal richtig, jedoch ohne jeden praktischen Bezug.

Andererseits sei der Existenzquantor \exists wie folgt definiert:

$$(17.0.2) \qquad (\exists x \in M : A) \Leftrightarrow ((x \in M) \land A)$$

Wenn ich diese Definitionen sprachlich ausdrücken will, dann gibt es definitionsgemäß genau dann ein Element x der Menge M, für welche die Aussage A gelte, falls x ein Element der Menge M ist und die Aussage A gilt. Auf der linken Seite der Definition $(\exists x \in M : A)$ ist die Aussage aufgeschrieben: "Es gibt ein Element der Menge M, für welche die Aussage A gilt". Die Symbole \forall respektive \exists werden übrigens Quantoren genannt. Ein Quantor ist (Irrtum vorbehalten) eine Mengenbezeichnung.

Ich mache ein Beispiel, welches vielleicht hoffentlich ein wenig zur Klärung beiträgt. Es sei n das Symbol für eine beliebige natürliche Zahl. Eine Zahl heiße natürlich, falls sie entweder 1 ist oder es eine natürliche Zahl gibt, welche mit dem Symbol bezeichnet m werde, so dass n=m+1 ist. Das heißt, dass $1,2,3,4,\ldots$ natürliche Zahlen sind. Nun gilt die Aussage, dass jede natürlich Zahl entweder gerade oder ungerade ist. Dabei heißt eine natürliche Zahl n gerade, falls es

eine natürliche Zahl p derart gibt, dass $n=2\cdot p$ ist. Das bedeutet, dass unter anderem die Zahlen 2, 4, 6, respektive 8 gerade sind. Weiter heißt eine natürliche Zahl n ungerade ist, falls es eine natürliche Zahl q derart gibt, dass $q=2\cdot q-1$ ist. Das hat zur Folge, dass die Zahlen 1, 3, 5, 7 ungerade sind. Nun gilt die Aussage

$$\forall n \in \mathbb{N} : ((\exists p \in \mathbb{N} : n = 2 \cdot p) \lor (\exists q \in \mathbb{N} : n = 2 \cdot q - 1))$$

Diese Aussage bedeutet in Worten: Jede Zahl ist gerade oder ungerade. Ich löse die Definition auf und erhalte

$$(n \in \mathbb{N}) \Rightarrow ((\exists p \in \mathbb{N} : n = 2 \cdot p) \lor (\exists q \in \mathbb{N} : n = 2 \cdot q - 1))$$

oder, falls die Existenzaussagen auch noch ausschreibe

$$(n \in \mathbb{N}) \Rightarrow ((p \in \mathbb{N} \land n = 2 \cdot p) \lor (q \in \mathbb{N} \land n = 2 \cdot q - 1))$$

Wenn ich die letzte Aussage in Worte fasse, dann kann ich schreiben: Ist n das Metasymbol einer natürlichen Zahl, dann folgt daraus, dass n gerade oder ungerade ist.

Wieder ist da die quälende Frage: "Was soll das Ganze?" Wieso muss ich etwas definieren, wenn ich es auf eine andere Art ebenso aufschreiben könnte? Die Antwort kenne ich nicht genau. Jedoch vermute ich, dass die Definition darum entstand, damit die Aussagen leichter lesbar sind. Außerdem sind die Aussagen insofern bemerkenswert, weil sie eine Definition und eine Aussage enthalten. Also die Leserin oder den Leser zuerst darauf lenken, dass etwas definiert wird ("n sei das Symbol einer natürlichen Zahl") und anschließend eine Aussage über das definierte Symbol gemacht wird. Zwar beinhaltet die Aussage

$$(n \in \mathbb{N}) \Rightarrow ((p \in \mathbb{N} \land n = 2 \cdot p) \lor (q \in \mathbb{N} \land n = 2 \cdot q - 1))$$

auch Definitionen. Aber diese sind sozusagen versteckt. Denn ist n keine natürliche Zahl, dann gilt die Aussage gemäß den ersten zwei Zeilen der Definition 9.0.1 trotzdem. Und ist n eine natürliche Zahl, dann muss es Symbole, welche mit p oder q derart geben, dass p und q natürliche Zahlen symbolisieren und für welche gelten, dass $n=2\cdot p$ oder $n=2\cdot q-1$ ist. Wenn ich jedoch schreibe

$$\forall n \in \mathbb{N} : ((\exists p \in \mathbb{N} : n = 2 \cdot p) \lor (\exists q \in \mathbb{N} : n = 2 \cdot q - 1))$$

dann mache ich die Definitionen der Symbole n, p sowie q klar sichtbar. Die Hoffnung ist dann, dass der Text in diesem Fall leichter lesbar wird.

Und nun, da ich schon ein einigermaßen gescheites Beispiel gemacht habe, ein unsinniges Beispiel. Ich nehme an, dass die die Aussage sei: "Die Sonne ist ein sehr großer Himmelskörper". dann würde die ganze Aussage lauten

 $\forall n \in \mathbb{N}$: "Die Sonne ist ein sehr grosser Himmelskörper"

Dies könnte dann übersetzt werden mit

 $(n \in \mathbb{N}) \Rightarrow$ "Die Sonne ist ein sehr grosser Himmelskörper"

Ausgeschrieben: "Für alle natürlichen Zahlen n gilt, dass die Sonne ein Himmelskörper ist". Diese Aussage ist zwar wahr - aber der Erkenntnisgewinn minimal, also eigentlich gar nicht vorhanden. Denn da auf der rechten Seite immer eine wahre Aussage ist, gilt die Aussage immer, unabhängig davon, ob die Aussage auf der linken Seite der Behauptung wahr ist. Jedoch gilt die Aussage immer noch für alle natürlichen Zahlen, welche mit n beschrieben werden sollen.

Es gibt übrigens noch eine Definition in diesem Zusammenhang, welche mir erwähnenswert scheint: Wenn ich schreibe

$$\exists ! n \in \mathbb{N} : n < 1$$

dann meine ich damit: Es gibt genau eine natürliche Zahl, welche kleiner oder gleich 1 ist. Das heißt, das ich nicht bloß schreibe, dass es mindestens eine natürliche Zahl, welche mit n bezeichnet werde und für welche gilt, dass n kleiner oder gleich ist. Es ist vielmehr so, dass es in diesem Fall auch höchstens eine Zahl n gibt, für welche dies gilt. Wenn Du Dich fragst, wieso das so wichtig sein soll, dann möchte ich darauf antworten, dass es oftmals wichtig ist, zu wissen, wie viele Möglichkeiten existieren. Zur Illustrationen möchte ich Dir eine kleine Geschichte erzählen. Ich habe einmal mit meiner Exfrau und damaligen Freundin "im Bahnhof" abgemacht, und zwar dann, wenn der letzte Zug angekommen ist. Leider habe ich angenommen, dass meine damalige Freundin den Bahnhof Luzern meinte. Während dem sie angenommen hat, dass der Bahnhof Olten gemeint ist. Also habe ich am Bahnhof Luzern gewartet und meine damalige Freundin ist nicht erschienen. Mit dem Resultat, dass ich eine Nacht im Freien verbringen durfte, da ich keine Bleibe über Nacht hatte. Dadurch, dass die Aussage "im Bahnhof zum Zeitpunkt der letzten Ankunft des Zuges" mehr als eine Möglichkeit hatte, hat sich ein Kommunikationsfehler eingeschlichen, deren Folge ich schmerzlich am eigenen Leib verspürt habe. Also ist es manchmal wichtig nicht nur zu wissen, ob eine Problemstellung beispielsweise mindestens eine Lösung hat (wo verabreden wir uns wann), sondern auch, ob es höchstens eine Lösung hat (reden wir vom gleichen Zeitpunkt und vom gleichen Ort?). Zu diesem Zweck wurde das Ausrufezeichen eingeführt. Ich habe ich mich übrigens schon gefragt, ob es dann auch eine Möglichkeit gibt, formal zu schreiben, dass es etwa 10 natürliche Zahlen gibt, deren Quadrat (also Multiplikation mit sich selbst) kleiner oder gleich 100 ist. Wie wäre es etwa mit dieser Schreibweise?

$$\exists (10)! n \in \mathbb{N} : n^2 \le 100$$

Leider nein. Mir ist keine solche Schreibweise bekannt. Diese wird offenbar auch nicht benötigt. Aber ich finde es trotzdem witzig, darüber nachzudenken. Und übrigens: Die gesuchten Zahlen sind in folgender Menge enthalten:

$$\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$

Denn

$$1 \cdot 1 = 1 \leq 100$$

$$2 \cdot 2 = 4 \le 100$$

$$3 \cdot 3 = 9 \le 100$$

$$4 \cdot 4 = 16 \le 100$$

$$5 \cdot 5 = 25 \le 100$$

$$6 \cdot 6 = 36 \le 100$$

$$7 \cdot 7 = 49 \le 100$$

$$8 \cdot 8 = 64 \le 100$$

$$9 \cdot 9 = 81 \le 100$$

$$10 \cdot 10 = 100 \le 100$$

KAPITEL 18

Über logische Sätze

Alles, was in der Logik interessiert, sind Wahrheitsgehalte von Aussagen, welche, wie ich in im Abschnitt 1.0.1 zu definieren versuchte, Verknüpfungen von Symbolen sind. Dabei können die Aussagen wahr oder nicht wahr sein. Ein logischer Satz ist jetzt eine beliebige Verknüpfung von Aussagen, welche mit den in den Kapitel 6 bis 14 definierten logischen Verknüpfungen oder anderen entsprechend definierten Verknüpfungen zusammengeschweißt wurden. Dabei ist ein logischer Satz erstaunlicherweise genau dann wahr, falls für alle Aussagen die so entstandene Aussage wahr ist. Dies mag komisch tönen, denn dies erinnert an Pleonasmen wie "der weiße Schimmel" oder "das motorisierte Auto" (meines Wissens sind Autos immer mit einem Motor versehen). Aber wie ich Dir schon weiter oben "vorgebetet" habe, sind in der Logik nicht die Aussagen an und für sich wichtig, sondern es interessiert nur, wie von wahren Aussagen auf weitere wahre Aussagen geschlossen werden kann. Logische Sätze helfen auf diesem Weg. Wie so oft ist Dir sehr wahrscheinlich nicht so klar, wie das gehen soll. Darum werde unten viele, viele Beispiele geben. Ich kann jedoch bereits an dieser Stelle sagen, dass ein wichtiges Element in logischen Sätzen häufig ist, dass eine Schlussfolgerung in ihr enthalten ist. Diese garantiert, dass die Behauptung trotzdem wahr ist, auch wenn die Voraussetzungen nicht wahr sind (vergleiche mit der ersten und zweiten Zeile der entsprechenden Definition 9.0.1 der Implikation). Ich möchte nun versuchen, die Eigenschaften von logischen Sätzen formal darzustellen. Es gibt ein paar logische Sätze, welche zwei logische Variablen verwenden. Dann sei A das Symbol für die erste logische Variable und B das Symbol für die zweite logische Variable. Es sei C die Bezeichnung einer Aussage, in welcher die logischen Variablen verwendet werden. Es sei S die Menge aller logischen Sätze Dann sei C ein logischer Satz, falls gelte:

$$(18.0.1) C \in \Omega \Rightarrow (C \in S \Leftrightarrow (\forall A, B \in \Omega : C))$$

In Worten bedeutet diese logische Aussage nicht mehr und nicht weniger: Ist C eine Aussage, dann ist C genau dann ein logischer Satz, falls für alle Aussagen A und B gilt, dass die daraus gebildete Aussage C wahr ist. Was ich in der Definition nicht aufgeschrieben habe, ist die Tatsache, dass sowohl A wie auch B in der Aussage C enthalten sein

sollen. Aber ich weiß im Moment nicht, wie ich das mit den momentanen Mitteln darstellen sollte¹. Ich möchte ein Beispiel für die obige Definition machen: Häufig wird ein sogenannter Widerspruchsbeweis geführt, um zu beweisen, dass etwas gilt. Dieser Widerspruchsbeweis hat die folgende Form:

$$(18.0.2) \qquad \forall A, B \in \Omega \ ((\neg A \Rightarrow \neg B) \land B) \Rightarrow A$$

In Worten: Für alle Aussagen mit den Bezeichnungen A sowie B, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei sind, gilt: Folgt aus der Negation der Aussage A die Negation der Aussage B, gilt jedoch die Aussage B, dann folgt daraus, dass die Aussage A gilt. Für einen Beweis siehe etwa Abschnitt 18.7.

Mit diesem logischen Satz werden ganz viele andere Sätze bewiesen. Die Arbeit besteht dann darin, zu zeigen, dass tatsächlich aus der Negation von A die Negation von B folgt, jedoch gleichzeitig B gilt. Wie Du auf die Aussage kommst, welche mit Hilfe der Logik bewiesen werden soll, ist wiederum eine eigene Geschichte. Die Logik legt nur die Spielregeln fest, wie der Satz mit Hilfe der Logik bewiesen werden kann. Natürlich werden praktisch alle logischen Sätze, welche nachfolgend aufschreiben werde, für Dich wahrscheinlich leicht zu verstehen sein. Es geht jedoch oft nicht so sehr darum, ob etwas gültig ist, sondern darum, warum es gültig ist. Es geht sozusagen darum, Dir das Rüstzeug, oder weniger vornehm ausgedrückt das Werkzeug, die Mittel zur Verfügung zu stellen, damit Du gegebenenfalls selbst überprüfen kannst, ob gemäß den Regeln der elementaren Logik etwas gezeigt werden kann - oder eben nicht. Eine Falle, welche ich ab und zu gesehen habe, ist die Meinung, dass das Folgende ein logischer Satz sei. Es seien dabei A und B Metasymbole. Dann ist die Frage, ob zwingend gelten muss:

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$
?

Nein, das muss es nicht. Denn ist A eine Aussage, welche nicht wahr ist, jedoch B eine wahre Aussage, dann gilt die Aussage

$$\neg (\neg A \Rightarrow \neg B)$$

also in Worten: Es ist nicht wahr, dass aus der Negation der Aussage A die Negation der Aussage B folgt. Denn ist die Aussage A nicht wahr, dann gilt gemäß der ersten Zeile der Definition 9.0.1 der Implikation die Aussage $\neg A$. Ist auf der anderen Seite die Aussage B wahr, dann gilt gemäß der zweiten Zeile der Definition 9.0.1 der Negation die Aussage B nicht. Da nun die Aussage B wahr, die Aussage B jedoch

 $^{^1}$ Ich könnte schreiben $C\left(A,B\right)$, in Worten: "Die Aussage, welche mit dem Buchstaben Cbezeichnet werde, sei von den Aussagen Aund Babhängig. Vergleiche mit dem Abschnitt $\ref{Abschnitt}$ über Funktionen. Funktionen mit mehr als einem Argument muss ich jedoch noch speziell definieren.

nicht wahr ist, kann gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$\neg A \Rightarrow \neg B$$

nicht wahr sein. Aber es gilt die Implikation von A auf die Aussage B gemäß der zweiten Zeile der Definition 9.0.1 der Implikation, da die Aussage A gemäß Voraussetzung nicht wahr ist und die Aussage B gemäß Voraussetzung wahr ist. Es gilt also die Aussage

$$A \Rightarrow B$$

Da nun die Aussage

$$A \Rightarrow B$$

in diesem Fall wahr, die Aussage

$$\neg A \Rightarrow \neg B$$

jedoch nicht wahr ist, kann in diesem Fall also die Aussage

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

gemäß der dritten Zeile der Definition 9.0.1 der Implikation nicht wahr sein. Also muss gemäß der ersten Zeile der Definition 6.0.2 die Aussage

$$\neg ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$$

wahr sein. Wenn ich daraus einen logischen Satz "zimmern²" möchte, dann könnte ich das so schreiben:

$$\neg A \land B \Rightarrow \neg ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$$

In Worten besagt dieser logische Satz: Gegeben seien zwei Aussagen, welche mit den Symbolen A und B bezeichnet werden. Diese Aussagen seien in Bezug auf sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann gilt die Aussage nicht, dass aus der Implikation von A nach B die Implikation der Negation der Aussage B aus der Negation der Aussage A folgt. Dies ist jetzt zwar ein logischer Satz, da die linke Seite der Implikation $(\neg A \land B)$ nur dann wahr ist, falls A eben nicht wahr und B wahr ist und die rechte Seite genau in diesem Fall wahr ist. Also ist in allen möglichen Fällen die Aussage wahr. Jedoch wird dieser logische Satz wohl kaum in einem Beweis verwendet werden, da sein Erkenntnisgewinn vernachlässigbar klein ist. Er dient bloß dazu, Dir zu vor Augen zu führen, dass es sehr wohl logische Fehlschlüsse geben kann, welche Dir scheinbare Wahrheiten vorspiegeln können, welche jedoch so nicht existieren.

Wahrscheinlich werde ich in den folgenden Kapiteln wieder auf bereits bekannte Eigenschaften der oben definierten Verknüpfungen Bezug nehme. Aber das soll Dich nicht weiter aufhalten. Du kannst es ja überlesen, falls Du die Eigenschaften kennst. Aber ich will damit die Eigenschaften der Definitionen mit Dir sozusagen pauken, damit

²Mir ist schon klar, dass ich nicht zimmere, sondern bloß schreibe. Es ist mehr ein Wortspiel als ein sinnvoller Ausdruck.

Du in deiner weiteren Karriere keine Probleme mehr damit bekommst. Wie schon hundertfach in diesem Text erwähnt, steht es Dir frei, dies zu überlesen, falls es schon begriffen hast, bevor Du es gelesen hast³ oder falls Du jemand mit einem gesunden Menschenverstand bist⁴. Im zweiten Fall hast Du jedes Wort, jeden Begriff, jede Definition, jeden Satz genau einmal hören müssen, damit Du es auswendig kannst⁵. Ich möchte gerne eine Definition aufschreiben, welcher zwar recht vage ist und welchen ich zwar nicht weiter verwende, jedoch trotzdem aus meiner Sicht noch ganz nützlich ist. Dabei kannst Du Dir ℕ vorstellen als die Menge

$$\mathbb{N} \equiv \{1, 2, 3, \dots\}$$

auch wenn ich mir bewusst bin, dass diese Mengenbeschreibung äußerst vage ist.

DEFINITION 9. Es seien $k, n \in \mathbb{N}$ mit $k \leq n$ sowie $\{A_k\}_{k \in \mathbb{N} \wedge k \leq n}$ Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Aussagen der Definition widerspruchsfrei. Weiter mit $k \in \mathbb{N}$ und $k \leq n$ die Aussage A aus den Aussagen A_k sowie logischen Verknüpfungen gebildet wird. Ich beschreibe dies formal mit

$$A\left(\left\{A_k\right\}_{k\in\mathbb{N}\wedge k\leq n}\right)$$

in Worten: A ist abhängig von den Aussagen A_k , wobei k eine natürliche Zahl kleiner oder gleich n ist. Die Definition von $\mathbb N$ habe ich unter dem Kapitel $\ref{eq:substantial}$ zu definieren versucht. Dann ist A oder genau dann ein logischer Satz, falls für alle $k \in \mathbb N$ mit $k \leq n$ sowie für alle Aussagen A_k gilt:

$$A\left(\left\{A_k\right\}_{k\in\mathbb{N}\wedge k\leq n}\right)$$

Natürlich ist diese Definition so vage und umständlich, dass sein praktischer Nutzen fast ohne Bedeutung ist. Trotzdem zeigt er meines Erachtens, worin das Wesens eines logischen Satzes besteht. Ein logischer Satz besteht aus anderen Aussagen, welche mittels logischen Verknüpfungen zusammengesetzt werden. Der logische Satz zeichnet sich dadurch aus, dass er für alle Aussagen, aus welchen er besteht, immer wahr ist. Und ja, obige Definition ist zu allem Übel noch in sich widersprüchlich. Denn einerseits habe ich mit

$$A\left(\left\{A_k\right\}_{k\in\mathbb{N}\wedge k\leq n}\right)$$

³Dies soll ein Witz sein...

⁴Das ist ein erneuter Versuch eines Witzes. Von wegen "gesundem Menschenverstand": Dieser besagt bekanntlich, dass die Erde eine Scheibe ist. Aber das ist wieder ein Zitat, von welchem ich nicht weiß, von wem ich es geklaut habe. Wie so ziemlich alles in diesem Buch geklaut ist, so wie es die Prinzen - eine deutsche Popgruppe - es in einem ihrer Lieder besingen.

⁵Was wiederum fast nur bei Autisten oder bei zwei oder drei anderen Menschen auf dieser Welt vorkommt. Aber eben: Du bist sicher so genial. Ich bin es nicht.

auszudrücken versucht, dass die Aussage A von den Aussagen A_k in irgend einer Form abhängig sei. Also die Aussagen A_k in der Aussage A vorkommt. Andererseits habe ich mit

$$A\left(\left\{A_k\right\}_{k\in\mathbb{N}\wedge k\leq n}\right)$$

zu beschreiben versucht, dass die dadurch geformte Aussage A wahr sei. Aber dass ich mich getraute, dies zu schreiben, hängt damit zusammen, dass ich versuche, die Dinge so gut zu beschreiben, wie ich es eben nur kann. Und ich hoffe, dass meine Lust am Fabulieren sich auf Dich überträgt.

Wenn ich das so zuerst lesen würde, dann würde ich denken: Oh, das muss sehr langweilig sein. Denn die logischen Sätze zeichnen sich im Allgemeinen nicht dadurch aus, dass sie weltbewegende Tatsachen beinhalten würden. Aber darum geht es nicht. Es geht vor allem darum, festzulegen, welche logischen Umformungen erlaubt sind - und welche eben nicht. Ich möchte nun eine Sammlung von logischen Sätze präsentieren. Wieder geht es weder um Vollständigkeit oder um die neusten und letzten logischen Sätze ("Spitze der Forschung"). Nein, es geht mir um den Geist der logischen Sätze: Wie kann ich zeigen, das ein logischer Satz gültig ist?

Um die Übersicht zu bewahren, möchte ich eine Zusammenfassung von Sätzen in der Tabellen 1 bis 8 aufschreiben. Beachte bitte, dass die Sätze nicht thematisch oder sonst wie geordnet sind und deren Auswahl willkürlich ist. Dabei seien A, B und C Symbole für beliebige Aussagen.

Ich habe noch eine Art Hilfssätze formuliert und bewiesen. Diese sind an der Grenze dessen, was als sinnvoll erachtet werden kann. Trotzdem möchte ich diese an dieser Stelle ebenfalls noch auflisten.

Bezüglich der tabellarischen Form der logischen Sätze: Ich habe eine kleine Python-Anwendung⁶ geschrieben, mit welchen ich die Sätze noch einmal vom Computer nachrechnen ließ. Vielleicht gelingt es mir einmal, die Software auch zu veröffentlichen. Ich habe auch ein wenig online gesucht und bin beispielsweise unter

fündig geworden. Es mag eventuell aus Deiner Sicht stoßend sein, wenn ich die Sätze noch mit einer Software nachgerechnet habe. So im Sinn von "Wieso soll ich dann das Zeugs lernen, wenn es mit einer kleiner Anwendung bequem nachgerechnet werden kann?" Nun, dieser Einwand ist sicher berechtigt. Jedoch möchte ich darauf verweisen, dass es nicht darum geht, dass Du das Zeugs auswendig lernst. Sondern ich möchte eine Auflistung der logischen Sätze aufschreiben, von welcher in der restlichen Mathematik ausführlich Gebrauch gemacht wird. Jedoch habe ich kein Lektorat, welches die Sachen unabhängig nachrechnet. Damit die Qualität meiner Arbeit verbessert wird, möchte ich

 $^{^6}$ "Python" ist als Programmiersprache zu verstehen, nicht als Schlange.

TABELLE 1. 1. Tabelle der logischen Sätze

Bezeichnung	Satz	logischer Satz
Kommutation Konjunktion	34	$A \wedge B \Leftrightarrow B \wedge A$
Kommutation Negation	or	$\neg (A \land B) \Leftrightarrow$
Kommutation	35	$\neg (B \land A)$
Kommutation Disjunktion	36	$A \lor B \Leftrightarrow B \lor A$
doppelte Negation	10	$\neg (\neg A) \Leftrightarrow A$
doppelte Negation	11	$\neg (\neg A) \Rightarrow A$
(abgeschwächte Form)		, ,
ausgeschlossener Dritter	12	$\neg A \Leftrightarrow A$
ausgeschlossener Dritter	13	$A \vee \neg A$
(schwache Form)	10	·
Transitivität der Implikation	14	$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow$
Transfervious der implikation		$ \begin{array}{c} (A \Rightarrow C) \\ \hline (A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow \end{array} $
Transitivität der Äquivalenz	15	
		$(A \Leftrightarrow C)$
Satz der Schlussfolgerung	16	$A \land (A \Rightarrow B) \Rightarrow B$
alternativer	17	$A \wedge (A \Rightarrow B) \Leftrightarrow$
Satz der Schlussfolgerung		$A \wedge B$
Widerspruchssatz	19	$(\neg A \Rightarrow \neg B) \Rightarrow$
_		$(B \Rightarrow A)$ $(\neg A \Rightarrow \neg B) \land B \Rightarrow$
alternativer	20	
Widerspruchssatz		$\begin{array}{c} A \\ (\neg A \Rightarrow \neg B) & \Leftrightarrow \end{array}$
verengter Widerspruchssatz	36	$(\neg A \Rightarrow \neg D) \Leftrightarrow$ $(B \Rightarrow A)$
Konjunktions-Disunktionssatz	21	$(B \Rightarrow A)$ $A \land B \Rightarrow A \lor B$
Ronjunktions-Disunktionssatz	21	$(A \Leftrightarrow B) \qquad \Leftrightarrow \qquad$
Äquivalenz-Implikationssatz	22	$(A \Rightarrow B) \land (B \Rightarrow A)$
Zusammenhang	00	
Replikation-Implikation	23	$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$
alternativer Satz		$(A \times D)$
Zusammenhang	24	$ \begin{array}{c} (A \Rightarrow B) & \Leftrightarrow \\ (\neg B \Leftarrow \neg A) \end{array} $
Replikation-Implikation		$(\neg D \Leftarrow \neg A)$
Distribution	25	$(A \Rightarrow (B \land C)) \qquad \Leftrightarrow \qquad$
Implikation-Konjunktion	20	$(A \Rightarrow B) \land (A \Rightarrow C)$ $(A \Rightarrow (B \lor C)) \Leftrightarrow$
Distribution	26	
Implikation-Disjunktion	40	$(A \Rightarrow B) \lor (A \Rightarrow C)$ $((A \lor B) \Rightarrow C) \Leftrightarrow$
Disjunktion-Vertauschungssatz	27	
2 15 amilion 101 was citaligned		$(A \Rightarrow C) \land (B \Rightarrow C)$ $((A \land B) \Rightarrow C) \Leftrightarrow$
Konjunktion-Vertauschungssatz	28	$((A \land B) \Rightarrow C) \Leftrightarrow (A \Rightarrow C) \lor (B \Rightarrow C)$ $(A \land (B \lor C)) \Leftrightarrow (A \land (B \lor C))$
Distributivgesetz	29	
Konjunktion und Disjunktion	29	$(A \land B) \lor (B \land A)$

TABELLE 3. 2. Tabelle der logischen Sätze

Bezeichnung	Satz	logischer Satz
Äquivalenz-Aussage-	20	$A \Leftrightarrow A \wedge A$
Kommutation	30	$A \Leftrightarrow A \land A$
Äquivalenz Aussage-Disjunktion	31	$A \Leftrightarrow A \lor A$
Implikation Aussage aus	32	$A \Rightarrow A$
Aussage		·
Aussage-Disjunktionssatz	57	$A \Rightarrow A \lor B$
Denkfehler Aussage	58	$\neg A \land B \Rightarrow$
aus Disjunktion		$\neg (A \lor B \Rightarrow A)$
2. Maximumprinzip Disjunktion	59	$B \Rightarrow A \vee B$
Identitivität Äquivalenz	37	$A \Leftrightarrow A$
Kommutation Äquivalenz	38	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
Assoziativität Konjunktion	39	$ \begin{array}{c} (A \wedge B) \wedge C \iff \\ A \wedge (B \wedge C) \end{array} $
Assoziativität Disjunktion	40	$\begin{array}{c} A \wedge (B \wedge C) \\ (A \vee B) \vee C \iff \\ A \vee (B \vee C) \end{array}$
1. Minimumprinzip Konjunktion	41	$\neg A \Rightarrow \neg \left(A \land B \right)$
2. Minimumprinzip Konjunktion	42	$\neg B \Rightarrow \neg \left(A \land B \right)$
Minimumprinzip Konjunktion 3 Argumente	43	$ \neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg (A \land B \land C) \\ (\neg (A \land B)) \Leftrightarrow $
Negation-Konjunktionssatz	44	$ \begin{array}{c} (\neg (A \land B)) \Leftrightarrow \\ ((\neg A) \lor (\neg B)) \end{array} $
Existenz nicht wahrer Aussagen	45	$\neg (A \land \neg A)$
Negation-Disjunktionssatz	46	$ \begin{array}{c} (\neg (A \lor B)) \Leftrightarrow \\ ((\neg A) \land (\neg B)) \\ ((A \lor B) \land (\neg A)) \Leftrightarrow \end{array} $
Ausschlusssatz	47	$((A \lor B) \land (\neg A)) \Leftrightarrow B$
doppelte Negation impliziert Aussage	48	$\neg \left(\neg A\right) \Rightarrow A$
Äquivalenz Äquivalenz und zwei Implikationen	49	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (A \Rightarrow B) & \land \\ (B \Rightarrow A) \end{array} $
alternativer Äquivalenz-Implikationssatz	50	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B) \end{array} $

TABELLE 4. 3. Tabelle der logischen Sätze

Bezeichnung	Satz	logischer Satz
Implikation aus Äquivalenz	51	$ \begin{array}{c} (A \Leftrightarrow B) \Rightarrow \\ (A \Rightarrow B) \end{array} $
Disjunktions-Konjunktionssatz	52	
disjunktive Normalform der Implikation	53	$ \begin{array}{ccc} (A \Rightarrow B) & \Leftrightarrow \\ (\neg (A \land \neg B)) & \end{array} $
Konjunktion-Aussagesatz	54	$A \wedge B \Rightarrow A$
Denkfehler Konjunktion aus Aussage	56	$ \begin{array}{ccc} A \wedge \neg B & \Rightarrow \\ \neg (A \Rightarrow A \wedge B) \end{array} $
Äquivalenz-Negationssatz	60	$ \begin{array}{c} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \Leftrightarrow \neg B) \end{array} $
Äquivalenz-Antivalenzsatz	61	$ \neg (A \Leftrightarrow B) \Leftrightarrow (A \Leftrightarrow B) $
aus Antivalenz folgt Disjunktion	62	$\begin{array}{c} (A \Leftrightarrow B) \Rightarrow \\ A \vee B \end{array}$
Negation-Implikationssatz	63	
Satz der Trivialität	64	$\neg A \land A \Rightarrow B$
Satz der zyklischen Implikationen	65	$(A \Rightarrow B) \land \\ (B \Rightarrow C) \land \\ (C \Rightarrow A) \Rightarrow \\ (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \land \\ (C \Leftrightarrow A)$
verschärfter Satz der zyklischen Implikationen	66	$(A \Rightarrow B) \land \\ (B \Rightarrow C) \land \\ (C \Rightarrow A) \Leftrightarrow \\ (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \land \\ (C \Leftrightarrow A)$
Kommutativität der NAND-Verknüpfung	67	$\begin{array}{c} A \overline{\wedge} B \iff \\ B \overline{\wedge} A \end{array}$
disjunktive Normalform der NAND-Verknüpfung	68	$ \neg (A \land B) \Leftrightarrow (A \overline{\land} B) $
disjunktive Normalform der NOR-Verknüpfung	69	$(A \overline{\vee} B) \Leftrightarrow \neg (A \vee B)$
konjunktive Normalform Implikation	70	$ \begin{array}{ccc} (A \Rightarrow B) & \Leftrightarrow \\ \neg A \lor B \end{array} $

TABELLE 5. 4. Tabelle der logischen Sätze

Bezeichnung	Satz	logischer Satz
konjunktive Normalform Replikation	71	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ A \lor \neg B \end{array} $
1. Abkürzungsregel Implikation	72	$\neg A \Rightarrow (A \Rightarrow B)$
2. Abkürzungsregel Implikation	73	$B \Rightarrow (A \Rightarrow B)$
konjunktive Normalform der Äquivalenz	74	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ \neg A \land \neg B & \lor \\ A \land B \end{array} $
konjunktive Normalform der Antivalenz	75	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ \neg A \land B & \lor \\ A \land \neg B \end{array} $
konjunktive Normalform der NAND-Verknüpfung	76	$ \begin{array}{ccc} (A\overline{\wedge}B) & \Leftrightarrow \\ \neg A \wedge \neg B & \vee \\ A \wedge \neg B & \vee \\ \neg A \wedge & B & \vee \end{array} $
konjunktive Normalform der NOR-Verknüpfung	77	$ \begin{array}{ccc} (A\overline{\vee}B) & \Leftrightarrow \\ \neg A \wedge \neg B & \\ A \wedge (B \wedge \neg B) & \Leftrightarrow \end{array} $
1. Minimumsatz der Logik	78	$\begin{array}{c} A \wedge (B \wedge \neg B) & \Leftrightarrow \\ (B \wedge \neg B) & \Leftrightarrow \\ A \wedge (B \vee \neg B) & \Leftrightarrow \end{array}$
2. Minimumsatz der Logik	78	A
1. Maximumsatz der Logik	78	$\begin{array}{c} A \lor (B \land \neg B) & \Leftrightarrow \\ A \end{array}$
2. Maximumsatz der Logik	78	$\begin{array}{c} A \lor (B \land \neg B) & \Leftrightarrow \\ A \end{array}$
1. erweiterter Minimumsatz der Logik	79	$ \begin{array}{c} (A \Leftrightarrow (B \land \neg B)) \Rightarrow \\ (A \Leftrightarrow C \land A) \end{array} $
2. erweiterter Minimumsatz der Logik	79	$ \begin{array}{ccc} (A \Leftrightarrow (B \vee \neg B)) & \Rightarrow \\ (C \Leftrightarrow C \wedge A) & \end{array} $
1. erweiterter Maximumsatz der Logik	79	$ \begin{array}{cc} (A \Leftrightarrow (B \land \neg B)) & \Rightarrow \\ (C \Leftrightarrow C \lor A) & \end{array} $

auf eine zweite, unabhängige Art die Beweise nachprüfen. Übrigens ist das meine Erachtens ein großer Teil der Mathematik, dass ein Beweis eines Satzes zwar gut ist, zwei Beweise eines Satzes jedoch viel besser sind. Denn es durchaus möglich, dass ein Beweis eines Satzes zwar äußerst einleuchtend tönt, jedoch schlicht falsch ist. Damit möchte zum wiederholten Mal meine Überzeugung zum Ausdruck bringen, dass Mathematik auch nicht vom Himmel gefallen ist, sonder stetig aufs Neue von den beteiligten Personen konstruiert werden muss.

TABELLE 6. 5. Tabelle der logischen Sätze

Donoish	Cat-	lamiach C-t-
Bezeichnung	Satz	logischer Satz
2. erweiterter	79	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow$
Maximumsatz der Logik	13	$(A \Leftrightarrow C \lor A)$ $\neg A \Leftrightarrow \Rightarrow$
Zusammenhang	80	$\neg A \Leftrightarrow$
Negation-NAND	00	$(A\overline{\wedge}A)$
Zusammenhang	81	$A \Leftrightarrow$
Identität-NAND	01	$(A\overline{\wedge}A)\overline{\wedge}(A\overline{\wedge}A)$
Zusammenhang	82	$A \wedge B \iff$
Konjunktion-NAND	02	$(A\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}B)$
Zusammenhang	83	$A \vee B \qquad \Leftrightarrow \qquad$
Disjunktion-NAND	00	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$
Zusammenhang	84	$(A \Rightarrow B) \Leftrightarrow$
Implikation-NAND	04	$A\overline{\wedge}(B\overline{\wedge}B)$
Zusammenhang		$(A \Leftrightarrow B) \Leftrightarrow$
Antivalenz-NAND	85	$(A\overline{\wedge} (B\overline{\wedge} B))\overline{\wedge}$
Antivalenz-NAND		$(B\overline{\wedge}(A\overline{\wedge}A))$
Zusammenhang		$(A \Leftrightarrow B) \Leftrightarrow$
	86	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}$
Äquivalenz-NAND		$(A\overline{\wedge}B)$
Zusammenhang		$(A\overline{\vee}B) \Leftrightarrow$
NOR-NAND	87	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}$
NOIUNAND		$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
Zusammenhang	88	$\neg A \Leftrightarrow A \overline{\vee} A$
Negation-NOR	00	
Zusammenhang	89	$A \wedge B \iff$
Konjunktion-NOR	<u> </u>	$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$
Zusammenhang		$A\overline{\wedge}B \Leftrightarrow$
NAND-NOR	90	$((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))\overline{\vee}$
NAMD-NOR		$((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))$
Zusammenhang	91	$A\overline{\wedge}B$ \Leftrightarrow
NAND-Implikation	31	$(A \Rightarrow \neg B)$
Zusammenhang	92	$A\overline{\vee}B \Leftrightarrow \neg (\neg A \Rightarrow B)$
NOR-Implikation	JA	,
		$\exists x \in M : A \Leftrightarrow$
Quantoren-	??	$\neg (\forall x \in M : \neg A)$
transformationen	; ;	$\forall x \in M: A \Leftrightarrow$
		$\neg (\exists x \in M : \neg A)$
		· · · · · · · · · · · · · · · · · · ·

18.1. Vorbemerkung

Mir ist etwas aufgefallen. Und zwar, dass ich irgendwie Mühe habe, Sachen zu zeigen, welche eigentlich gezeigt werden sollten. Es seien A,B sowie C Symbole für Aussagen. Dabei sei die Aussage B in der

TABELLE 7. 6. Tabelle der logischen (Hilfs-) Sätze

Bezeichnung	Satz	logischer Satz
1. Substitutionssatz	0.4	$\neg A \land (B \Rightarrow A) \Rightarrow$
der Negation	94	$\neg B$
2. Substitutionssatz	05	$\neg A \land (A \Leftrightarrow B) \Rightarrow$
der Negation	95	$\neg B$
1. Substitutionssatz	0.0	$A \wedge B \wedge (A \Rightarrow C) \Rightarrow$
der Konjunktion	96	$C \wedge B$
2. Substitutionssatz	97	$A \wedge B \wedge (B \Rightarrow C) \Rightarrow$
der Konjunktion	91	$A \wedge C$
3. Substitutionssatz	98	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow$
der Konjunktion	98	$C \wedge B$
4. Substitutionssatz	99	$A \wedge B \wedge (B \Leftrightarrow C) \Rightarrow$
der Konjunktion	99	$A \wedge C$
1. Substitutionssatz	100	$(A \lor B) \land (A \Rightarrow C) \Rightarrow$
der Disjunktion	100	$C \vee B$
2. Substitutionssatz	101	$(A \vee B) \wedge (B \Rightarrow C) \Rightarrow$
der Disjunktion	101	$A \lor C$
3. Substitutionssatz	102	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow$
der Disjunktion	102	$C \vee B$
4. Substitutionssatz	103	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow$
der Disjunktion	100	$A \lor C$
1. Substitutionssatz	104	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow$
der Implikation	104	$(C \Rightarrow B)$
2. Substitutionssatz	14	$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow$
der Implikation	14	$(A \Rightarrow C)$
3. Substitutionssatz	105	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow$
der Implikation	100	$(C \Rightarrow B)$
4. Substitutionssatz	106	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow$
der Implikation	100	$(A \Rightarrow C)$
1. Substitutionssatz	112	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow$
der Replikation	112	$(C \Leftarrow B)$
2. Substitutionssatz	113	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow$
der Replikation	110	$(A \Leftarrow C)$ $(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow$
3. Substitutionssatz	109	
der Replikation	100	$(C \Leftarrow B)$ $(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow$
4. Substitutionssatz	110	
der Replikation	110	$(A \Leftarrow C)$ $(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow$
Substitutionssatz	111	
der Aequivalenz		$ \begin{array}{c} (C \Leftrightarrow B) \\ \hline (A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow \end{array} $
1. Substitutionssatz	112	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow$
der Antivalenz		$ \begin{array}{c} (A \Leftrightarrow B) \\ \hline (A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow \end{array} $
2. Substitutionssatz	113	
der Antivalenz		$(A \Leftrightarrow C)$

TABELLE 8. 8. Tabelle der logischen (Hilfs-)Sätze

Bezeichnung	Satz	logischer Satz
1. Äquivalenzsatz der NAND- Verknüpfung	114	$\begin{array}{c} (A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow \\ (C\overline{\wedge}B) \end{array}$
2. Substitutionssatz der NAND- Verknüpfung	115	$ \begin{array}{c} (A \overline{\wedge} B) \wedge (B \Leftrightarrow C) \Rightarrow \\ (A \overline{\wedge} C) \end{array} $
1. Substitutionssatz der NOR- Verknüpfung	116	$ \begin{array}{c} (A \overline{\vee} B) \wedge (A \Leftrightarrow C) \Rightarrow \\ (C \overline{\vee} B) \end{array} $
2. Substitutionssatz der NOR- Verknüpfung	117	$ \begin{array}{c} (A \overline{\vee} B) \wedge (B \Leftrightarrow C) \Rightarrow \\ (A \overline{\vee} C) \end{array} $
Äquivalenz- satz NAND-Ver- knüpfung 1. Argument	118	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Rightarrow \\ ((A\bar{\wedge}B) & \Leftrightarrow \\ (C\bar{\wedge}B)) \end{array} $
Äquivalenz- satz NAND-Ver- knüpfung 2. Argument	119	$\begin{array}{ccc} (B \Leftrightarrow C) & \Rightarrow \\ ((A\bar{\wedge}B) & \Leftrightarrow \\ (A\bar{\wedge}C)) \end{array}$
Äquivalenz- satz NAND-Ver- knüpfung beide Argumente	120	$ \begin{array}{ccc} (A \Leftrightarrow C) \wedge (B \Leftrightarrow D) & \Rightarrow \\ ((A \bar{\wedge} B) & \Leftrightarrow \\ (B \bar{\wedge} D)) & \end{array} $

Aussage A enthalten. Ist nun C äquivalent zu B, dann müsste auch gelten

$$(18.1.1) A(B) \Leftrightarrow A(C)$$

Das kannst Du so aussprechen: Die Aussage A, welche von der Aussage B abhängt, ist genau dann war, falls es die Aussage ist, welche von der Aussage C abhängig ist. Und wo ist das Problem? Das Problem ist, dass das zwar eigentlich offensichtlich ist, ich es jedoch nicht beweisen kann. Auch wenn es nicht möglich ist, so ist es doch in der Mathematik mehr oder weniger typisch: Es gibt ab und an Behauptungen, welche zwar irgendwie offensichtlich sind - aber trotzdem nicht gezeigt werden können. Als ich dieses Problem begriffen habe, bin ich zuerst einmal - wie so oft - ziemlich ratlos geworden und bin fast schon in einer Art Schockstarre verfallen. Denn ich hatte die Hoffnung, dass es mir gelingt, ein Dokument zu schreiben, welches die Mathematik näher bringt. Und zwar so klar, dass eigentlich "Alles und Jedes" gezeigt wird. Doch die Aussage 18.1.1 hat mir gezeigt, dass ich da an meine

TABELLE 9. 8. Tabelle der logischen (Hilfs-)Sätze

Bezeichnung	Satz	logischer Satz		
Äquivalenz- satz Negation	121	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Rightarrow \\ (\neg A & \Leftrightarrow \\ \neg B) \end{array} $		
Äquivalenz- satz Konjunktion	122	$ \begin{array}{ccc} (A \Leftrightarrow C) \wedge (B \Leftrightarrow D) & \Rightarrow \\ ((A \wedge B) & \Leftrightarrow \\ (B \wedge D)) & \end{array} $		
Äquivalenz- satz Disjunktion	123	$ \begin{array}{ccc} (A \Leftrightarrow C) \wedge (B \Leftrightarrow D) & \Rightarrow \\ ((A \vee B) & \Leftrightarrow \\ (B \vee D)) & \end{array} $		
Äquivalenz- satz Implikation	124	$ \begin{array}{ccc} (A \Leftrightarrow C) \wedge (B \Leftrightarrow D) & \Rightarrow \\ ((A \Rightarrow B) & \Leftrightarrow \\ (B \Rightarrow D)) & \end{array} $		
Äquivalenz- satz Replikation	125	$ \begin{array}{ccc} (A \Leftrightarrow C) \wedge (B \Leftrightarrow D) & \Rightarrow \\ ((A \Leftarrow B) & \Leftrightarrow \\ (B \Leftarrow D)) & \end{array} $		
Äquivalenz- satz Äquivalenz	126	$ \begin{array}{ccc} (A \Leftrightarrow C) \wedge (B \Leftrightarrow D) & \Rightarrow \\ ((A \Leftrightarrow B) & \Leftrightarrow \\ (B \Leftrightarrow D)) & \end{array} $		
Äquivalenz- satz NOR- Verknüpfung	127	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Rightarrow \\ ((A\bar{\vee}C) & \Leftrightarrow \\ (B\bar{\vee}C)) \end{array} $		

Grenzen stoße. Nun beginne ich hoffentlich, mich langsam aus dieser Schockstarre zu lösen. Eine Strategie, welche ich mir zurecht gelegt habe, um trotzdem an meinem Skript weiter arbeiten zu können, heißt: Überprüfung. Denn ich kann hemmungslos von der Aussage 18.1.1 Gebrauch machen. Nur muss ich mich dafür verpflichten, einen gefundenen logischen Satz anschließend unabhängig zu überprüfen. Und zwar mit den mühsamen und hirntötenden Tabellen. Natürlich stellt sich die Frage, wieso ich jetzt eine Einführung auf ca. 300 Seiten geschrieben habe, wenn am Schluss alles mit einem simplen Rechner ausgerechnet werden kann? Es geht mir in dieser Einleitung darum, die Grundlagen dafür zu schaffen, dass Du weißt, wo die Fallen sind und wie Du mit den Grundlagen der Logik umgehen kannst. Und wie oben bereits erwähnt, habe ich auch selbst eine kleine Python-Anwendung geschrieben, mit welcher die Wahrheitstafeln von logischen Aussagen erstellt werden können. Und eine zweite Strategie war das Formulieren und Beweisen von Sätzen, welche ich selbst "Substitutionssätze" genannt habe (vergleiche mit den Tabellen 7 und 8). Mit diesen Sätzen möchte ich zu zeigen versuchen, wie diese Gleichheit von Aussagen verwendet werden können. Leider ist es mir jedoch bis auf wenige Ausnahmen nicht oder noch nicht gelungen, diese Substitutionssätze bei Beweisen von logischen Aussagen wirklich zu verwenden. Trotzdem habe ich das jetzt zu zeigen versucht. Falls es möglich ist, werde ich noch zukünftig nochmals versuchen, diese Behauptung zu beweisen. Und zwar mit Hilfe der natürlichen Zahlen.

Das Ganze hat für mich eine unangenehme, aber auch eine angenehme Seite: Die unangenehme Seite für mich ist, dass mir klar vor Augen geführt wird, wie sehr die Mathematik eben doch mit uns Menschen verknüpft ist. Wie leicht wir das, was wir machen, nicht erklären können. Dass also noch mehr "Magie" in unserem Tun vorhanden ist, als wir uns gerne eingestehen. Vielleicht habe ich jedoch einfach den falschen Ausgangspunkt für einen Beweis des Paradoxons 18.1.1 verwendet? Keine Ahnung. Die angenehme Seite des Ganzen ist für mich, dass der Sinn einer guten Lektüre ist, dass am Schluss mehr Fragen als zu Beginn vorhanden sein sollten. Denn im besten Fall sagst Du Dir: "OK, aber ich kann das besser". Und genau das (nicht mehr, aber auch nicht weniger) möchte ich ja. Ich möchte Dich ermächtigen, eigene Schritte in dieser Hinsicht zu unternehmen.

Ich möchte noch auf eine zweite Besonderheit hinweisen. Diese besteht darin, dass die Logik in der Anwendung häufig im Kopf durchgeführt wird. Zwar wird diese in mathematischen Beweisen immer und immer wieder angewendet. Jedoch werden die logischen Anwendungen häufig weder ausdrücklich erwähnt noch die zu Grunde liegenden Beweise durchgeführt.

Vielleicht hast Du jetzt das Gefühl, dass alle logischen Aussagen automatisch logische Sätze sind und dass immer die Aussagen oder ihre Negation logische Sätze sind. Darum möchte ich ein entsprechendes Beispiel aufschreiben, welches zeigen soll, dass dass dem nicht so ist: Wieder seien A und B Metasymbole von Aussagen (welche weder in sich selber noch in Bezug auf die anderen Symbole der Aussage widersprüchlich sein sollen). Dann ist weder

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

noch

$$\neg ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$$

ein logischer Satz. Denn ist A das Metasymbol einer nicht wahren Aussage und B das Metasymbol einer wahren Aussage, dann ist gemäß der zweiten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \Rightarrow B$$

wahr. Jedoch ist in diesem Fall gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ wahr, und gemäß der zweiten Zeile derselben Definition ist die Aussage $\neg B$ nicht wahr. Da nun die Aussage $\neg A$ wahr sein muss und die Aussage $\neg B$ nicht wahr sein kann, ist also gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$\neg A \Rightarrow \neg B$$

nicht wahr.

Da nun die Aussage

$$A \Rightarrow B$$

wahr sein muss, die Aussage

$$\neg A \Rightarrow \neg B$$

jedoch nicht wahr sein kann, folgt wiederum gemäß der dritten Zeile der Definition 9.0.1 der Implikation, dass die Aussage

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

nicht wahr ist. Somit kann die Aussage

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

kein logischer Satz sein. Damit hätte ich den Beweis für die Richtigkeit des ersten Teil der Behauptung erbracht. Sind jedoch sowohl A wie auch B Metasymbole von Aussagen, welche wahr seien, dann ist gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \Rightarrow B$$

wahr. Gemäß der zweiten Zeile der Definition 6.0.2 der Negation sind sowohl die Aussagen $\neg A$ wie auch $\neg B$ nicht wahr. Da nun weder die Aussage $\neg A$ noch die Aussage $\neg B$ wahr sein können, folgt aus der ersten Zeile der Definition 9.0.1 der Implikation, dass die Aussage

$$\neg A \Rightarrow \neg B$$

wiederum wahr ist. Weil sowohl die Aussage

$$A \Rightarrow B$$

wie auch die Aussage

$$\neg A \Rightarrow \neg B$$

wahr ist, ist wiederum gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Aussage

$$(A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)$$

wahr. Weil diese letzte Aussage wahr ist, ist in diesem Fall gemäß der zweiten Zeile der Definition 6.0.2 der Negation die Aussage

$$\neg ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$$

nicht wahr. Also kann auch diese Aussage kein logischer Satz sein.

Damit hätte ich den Beweis der Richtigkeit beider Behauptungen erbracht. Doch warum habe ich gerade mit diesem Beispiel zu zeigen versucht, dass nicht alle Aussagen oder ihre Negationen logische Sätze sind? Ganz einfach, weil wahrscheinlich die ganze mathematische Logik entwickelt wurde, weil gemerkt wurde, dass diese Aussagen nicht zutreffen. Es ist sozusagen das Paradebeispiel eines logischen Fehlschlusses. Übrigens ist es typisch, dass ein Gegenbeispiel verwendet wird.

Herr Struwe (ein Mathematiker, welcher an der ETH lehrt), hat einmal gesagt, wahrscheinlich könne fast die ganze Analysis (Teilgebiet der Mathematik) mit Hilfe von Gegenbeispielen demonstriert werden. Falls Du jetzt das Gefühl hast, meine Behauptungen oben würde gegen den Satz 12 des ausgeschlossenen Dritten verstoßen, dann kann ich an dieser Stelle Entwarnung geben. Die korrekten Aussagen sind:

$$\neg (\forall A, B \in \Omega : (A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B))$$
$$\neg (\forall A, B \in \Omega : \neg ((A \Rightarrow B) \Rightarrow (\neg A \Rightarrow \neg B)))$$

In Worten: Es gilt weder für alle Aussagen (welche mit den Buchstaben A sowie B bezeichnet werden), dass es richtig ist, dass aus der Negation der Aussage A die Negation der Aussage B folgt, sofern aus der Aussage A die Aussage B folgt. Ebenfalls ist nicht richtig, dass es für alle derartigen Aussagen nicht gilt, dass aus der Negation der Aussage A die Negation der Aussage B folgt, falls aus der Aussage A die Aussage B folgt.

Und diese Aussagen sind wahr.

18.2. Was ist der Satz der doppelten Negation?

Der Satz der doppelten Negation besagt, dass die Negation der Negation einer Aussage äquivalent zur Aussage selbst ist. Das ist so ein logischer Satz, welcher Du wahrscheinlich bereits das eine oder andere Mal durchgeführt hast und darum Dich nicht aus den Socken haut. Es ist jedoch eine Aufgabe der elementaren Logik, die Begriffe zu benennen und miteinander in Beziehung zu setzen. Ich denke, das war die eigentliche Leistung der Mathematik. Wahrscheinlich haben bereits früher Menschen sich logische Gedanken gemacht, sich jedoch keine großen Gedanken darüber gemacht, wie genau die Eigenschaften beschaffen sein müssen, damit die einzelnen Begriffe stimmig miteinander verknüpft werden sollen. Dass die Logik eigentlich erst mit der schriftlichen Aufzeichnung sinnvoll betrieben werden kann, zeigen die Beweise der logischen Sätze, welche im Kopf wahrscheinlich gar nicht durchführbar wären. Auf der anderen Seite ist bekannt, dass im Laufe der menschlichen Entwicklung Personen immer wieder ähnliche Denkfehler machen, ja sogar machen müssen. Dann besteht die Aufgabe der elementaren Logik, dass alle Beteiligten die Gelegenheit erhalten, über ihre Voraussetzungen nachzudenken, zu streiten, anzunehmen und vielleicht sogar zu verwerfen. Auch ich mache das immer wieder. Am Schluss merke ich dann, dass ich nicht mehr der gleiche bin, wie ich einmal war. Und das ist dann nicht nur immer schlecht.

Ich mache ein Beispiel zum Satz der doppelten Negation: Es sei A das Symbol der Aussage, dass der Eiffelturm in Paris steht. $\neg A$ wäre dann die Aussage, dass nicht gilt, dass der Eiffelturm in Paris stehen würde. $\neg(\neg A)$ ist schlussendlich die Aussage, dass nicht stimmt, dass

nicht stimmt, dass der Eiffelturm in Paris steht. Dann ist die Behauptung dass die Aussage, dass es nicht stimmt, dass nicht stimmt, das der Eiffelturm in Paris steht, genau dann wahr ist, falls es wahr ist, dass der Eiffelturm in Paris steht. Nun, da der Eiffelturm tatsächlich in Paris steht, ist die Aussage, dass es nicht stimmt, dass der Eiffelturm in Paris steht, nicht wahr. Das heißt, es stimmt nicht, dass es nicht stimmt, dass der Eiffelturm in Paris steht. Damit wäre für diesen Fall die Aussage bewiesen. Da ich später auf diese logische Aussage verweisen möchte, werde ich ihn als logischen Satz formulieren und hoffentlich auch beweisen können:

Satz 10. SatzSatz der doppelten Negation: Es sei A das Symbol einer Aussage. Dann gilt

$$A \Leftrightarrow \neg (\neg A)$$

Beweis. Ich möchte den Satz jetzt mit Hilfe von Wahrheitstafeln herleiten, und zwar zuerst so, wie es üblicherweise gemacht wird. Vergleiche dazu mit der Tabelle 10. In der Tabelle 11 ist es so beschrieben, wie ich es selbst erarbeitet habe. Jedoch - in diesem Fall ist die Schreibweise mit den Nullen und Einsen wirklich besser, wie ich zerknirscht feststellen muss. Besonders die Feststellung dass nicht gilt, dass A gilt, falls A nicht gilt, ist eigentlich eine intellektuelle Zumutung. Jedoch kannst Du erstens den Beweis getrost überlesen, falls ihn nicht lesen willst (Du verpasst nichts), und zweitens kannst Du in der Tabelle 10 abgucken, falls es Dir zu kompliziert ist. Ich wollte übrigens zuerst den zweiten Beweis zuerst hinschreiben - bin jedoch im ersten Anlauf prompt auf die Nase gefallen. Ja, so ist das Leben. Es geht nicht alles, und schon gar nicht auf Anhieb. Unter der Tabelle 12 habe ich die Verweise des Satzes der doppelten Negation aufgeschrieben.

Ich möchte den Beweis noch sprachlich begründen - obwohl dieser Beweis einem bloßen Nacherzählen des tabellarischen Beweises gleichkommt: Ist die Aussage A nicht wahr, dann ist gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ wahr. Da die Aussage $\neg A$ wahr ist, ist gemäß der zweiten Zeile der gleichen Definition 6.0.2 der Negation die Aussage $\neg (\neg A)$ nicht wahr. Da nun A nach Voraussetzung wahr ist und ich folgern kann, dass in diesem Fall die Aussage $\neg (\neg A)$ ebenfalls nicht wahr sein kann, gilt gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz, dass die Aussage

$$A \Leftrightarrow \neg (\neg A)$$

wahr sein muss. Also hätte ich die Behauptung unter der Bedingung, dass die Aussage A nicht wahr ist, beweisen.

Auf die haargenau gleiche Art kann ich nun zeigen, dass die Behauptung auch dann wahr sein muss, falls die Aussage A wahr ist. Ist

Tabelle 10. 1. Beweis des Satzes der doppelten Negation

Aussage/ Fall Nr.	$\neg A$	$\neg (\neg A)$	$(\neg (\neg A)) \Leftrightarrow A$
1	1	0	1
2	0	1	1

TABELLE 11. 2. Beweis des Satzes der doppelten Negation

Aussage/ Fall Nr.	$\neg A$	$\neg (\neg A)$	$(\neg (\neg A)) \Leftrightarrow A$
1	_ 1	-(-(-1))	$(\neg (\neg A)) \Leftrightarrow A$
1	'Л	'('('A))	$(\neg(\neg A)) \Leftrightarrow A$

TABELLE 12. Verweise des Satzes der doppelten Negation

Definion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 6.0.2 der Negation	Definition 12.0.1 der Äquivalenz
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile

die Aussage A wahr, dann gilt gemäß der zweiten Zeile der Definition 6.0.2 der Negation, dass die Aussage $\neg A$ nicht wahr sein kann. Ist die Aussage $\neg A$ nicht wahr, dann gilt gemäß der ersten Zeile der gleichen Definition 6.0.2 der Negation, dass die Aussage $\neg (\neg A)$ wahr ist. Da die Aussage A nach Voraussetzung wahr sein soll und ich folgern kann, dass die Aussage $\neg (\neg A)$ wahr sein muss, ist gemäß der vierten Zeile der Definition 12.0.1 die Aussage

$$A \Leftrightarrow \neg (\neg A)$$

wiederum wahr. Somit habe ich auch in diesem Fall gezeigt, dass die Behauptung bewiesen werden kann. Aus diesem Grund glaube ich gezeigt zu haben, dass in allen möglichen Fällen die Behauptung richtig ist und ich somit den Beweis für die Richtigkeit der Behauptung erbracht habe. Darum beende ich an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Es bleibt mir noch, ein zweites Beispiel des Satzes der doppelten Negation zu liefern. Falls die Aussage wahr ist, habe ich ja zu Beginn des Kapitels ein Beispiel gegeben. Es sei A das Symbol für die Aussage: Alle Äpfel schmecken wie Bananen. Ich glaube nicht, dass das so ist.

Äpfel schmecken wie Äpfel, Bananen wie Bananen. Also ist die Aussage A nicht wahr. Dann ist die Aussage $\neg(\neg(\neg A))$ ebenfalls wahr, in Worten: Es stimmt nicht, dass nicht stimmt, dass die Aussage, dass alle Äpfel wie Bananen schmecken würden, falsch sei. Aber ich merke jetzt gerade, dass ich die Beispiele von der falschen Richtung her aufgezogen habe. Üblicherweise ist die doppelte Verneinung einer Aussage gegeben und dann besteht die intellektuelle Leistung darin, die Aussage selbst zu extrahieren. Das vereinfacht in der Regel die Sache erheblich. Beispiel: Jemand sagt, es würde nicht stimmen, dass Dampflokomotiven keinen Dampf erzeugen würden. Dann ist diese Aussage, welche ich wieder mit A^7 bezeichnen will: "Dampflokomotiven erzeugen Dampf". Diese Aussage ist wahr: Dampfmaschinen erzeugen abgesehen ganz wenig mechanischer Leistung sehr viel Dampf.

Die Negation dieser Aussage (welche entsprechend mit $\neg A$ bezeichnet wird) lautet: "Dampflokomotiven erzeugen keinen Dampf". Und die Negation der letzteren Aussage $\neg (\neg A)$ lautet: "Es stimmt nicht, dass Dampflokomotiven keinen Dampf erzeugen würden". Und dann garantiert also der Satz der doppelten Negation, dass die Aussage, dass nicht stimmt, dass Dampflokomotiven keinen Dampf erzeugen, gleichbedeutend zur Aussage ist, dass Dampflokomotiven Dampf erzeugen. Also muss auch die Aussage $\neg (\neg A)$ wahr sein: Es ist nicht wahr, dass Dampfmaschinen keinen Dampf erzeugen.

Auf der anderen Seite sei die Aussage: "Es gilt nicht, dass nicht gilt, dass Möwen zwei linke Beine haben" gegeben. Ist jetzt diese Aussage wahr oder nicht wahr? Ich gehe von der Aussage mit der (erneuten) Bezeichnung A aus, die da lautet: "Möwen haben zwei linke Beine". Diese Aussage stimmt so nicht, ist also nicht wahr. Per Definition (Festlegung) haben Möwen, welche noch über zwei Beine verfügen, ein linkes und ein rechtes Bein. Gemäß der ersten Zeile der Definition 6.0.2 der Negation gilt also, dass die Aussage $\neg A$: "Es gilt nicht, dass Möwen zwei linke Beine haben" wahr ist. Wenn ich nun die ursprüngliche Aussage A zwei Mal verneine, dann erhalte ich die Aussage, dass nicht gilt, dass nicht gilt, dass Möwen zwei linke Beine haben. So ist das. Nun weiß ich aber, dass diese Aussage genau dann wahr ist, falls die Aussage "Möwen haben zwei linke Bein" wahr ist. Das ist sie jedoch nicht. Also ist Aussage: "Es gilt nicht, dass nicht gilt, dass Möwen zwei linke Beine haben" nicht wahr. Es kommt ab und zu vor, dass zwei Verneinungen einer Aussage durch die Aussage selbst ersetzt werden können.

Falls Du diese Zeilen liest, dann wirst Du Dir wahrscheinlich fast nicht vorstellen können, dass diese Gedanken für irgend etwas gut sein sollen. Dass dem trotzdem so ist, das wird im Verlauf dieses Dokuments zu zeigen meine Aufgabe sein. Aber abgesehen davon, hoffe ich,

⁷ja, ich weiß, das tönt seltsam, aber typischerweise bedeutet A, dass der ersten Aussage ein Namen gegeben werden soll, B, dass der zweiten Aussage ein Name gegeben soll, und so weiter.

dass es Dir auch ein wenig Spaß macht, auszuloten, was die Konsequenzen der ursprünglichen Definitionen sind. Dies ist übrigens meines Erachtens ein großer Teil der Arbeit von Mathematikerinnen und Mathematikern. Es wird etwas definiert und dann wird geschaut, was die möglichen Konsequenzen aus diesen Definitionen sind. Mit viel Glück kommt dabei etwas heraus, was praktische Anwendungen haben kann. Ich möchte übrigens noch eine "Spielart" dieses Satzes aufschreiben:

Satz 11. Abgeschwächte Form des Satzes der doppelten Negation: Es sein A die Bezeichnung einer Aussage, welche in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sei. Dann gilt die Aussage

$$\neg (\neg A) \Rightarrow A$$

In Worten: Ist die Negation der Aussage A nicht wahr, dann ist die Aussage wahr.

BEWEIS. Da dieser logische Satz bloß eine Aussage umfasst, kann ich auf den Beweis mittels Wahrheitstabellen verzichten. Ist die Aussage A nicht wahr, dann ist gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ wahr. Da nun die Aussage $\neg A$ wahr ist, ist gemäß der zweiten Zeile der gleichen Definition 6.0.2 der Negation die Aussage

$$\neg (\neg A)$$

wiederum nicht wahr. Da nun sowohl die Aussagen A wie auch $\neg (\neg A)$ nicht wahr sind, ist gemäß der ersten Zeile der Definition 9.0.1 der Implikation die Aussage

$$\neg (\neg A) \Rightarrow A$$

wiederum wahr. Nun sei die Aussage A wahr. Dann ist gemäß der zweiten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ nicht wahr. Da ich feststellen kann, dass die Aussage $\neg A$ nicht wahr ist, ist gemäß der ersten Zeile derselben Definition 6.0.2 der Negation die Aussage $\neg (\neg A)$ wiederum wahr. Da in diesem Fall (in welchem A als wahr angenommen wird) also sowohl die Aussagen A wie auch $\neg (\neg A)$ wahr sind, kann ich gemäß der vierten Zeile der Definition 9.0.1 der Implikation schließen, dass auch die Aussage

$$\neg (\neg A) \Rightarrow A$$

wahr sein muss. Somit glaube ich, in allen möglichen Fällen gezeigt zu haben, dass die Behauptung richtig ist und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 13. 1. Beweis des Satzes vom ausgeschlossenen Dritten

Aussage/ Fall Nr.	$\neg A$	$A \Leftrightarrow (\neg A)$
1	1	1
2	0	1

Tabelle 14. 2. Beweis des Satzes vom ausgeschlossenen Dritten

Aussage/ Fall Nr.	$\neg A$	$A \Leftrightarrow (\neg A)$
1	$\neg A$	$A \Leftrightarrow (\neg A)$
2	$\neg (\neg A)$	$A \Leftrightarrow (\neg A)$

TABELLE 15. Verweise des Satz vom ausgeschlossenen Dritten

Definition/ Fall Nr.	Definition 6.0.2 der Negation	Definition 13.0.1 der Antivalenz
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile

18.3. Was ist der "Satz vom ausgeschlossenen Dritten"?

Der Satz vom ausgeschlossenen Dritten besagt folgendes:

Satz 12. Satz des ausgeschlossenen Dritten

Es sei A das Symbol für eine Aussage, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sei. Dann gilt

$$A \Leftrightarrow \neg A$$

Ausformuliert heißt dieser Satz: "Jede Aussage ist entweder wahr oder nicht wahr".

BEWEIS. Ich möchte den Beweis zuerst mit tabellarischen Mitteln (in Form einer Tabelle) führen, und zwar in zwei Tabellen, einmal so, wie es üblicherweise gemacht wird und einmal so, wie ich es zeigen würde. Die erste Beweis ist in der Tabelle 13 abgelegt, der zweite Beweis in der Tabelle 14. Die Verweise des Beweises habe ich in der Tabelle 15 abgelegt.

Beachte, dass in dieser Tabelle ausgiebig von den "Alias-Bezeichnungen" Gebrauch gemacht wird (vergleiche mit dem Punkt $\ref{eq:constraint}$ der Auflistung $\ref{eq:constraint}$ im Abschnitt, in welchem ich kritisch über mathematischen Vorgehensweise äußere). Unter der Tabelle $\ref{eq:constraint}$ sind die Verweise der Beweise abgelegt. Wie Du in den Tabellen siehst, ist die Aussage, dass entweder die Aussage $\ref{eq:constraint}$ oder ihre Negation richtig ist,

also darum richtig, weil sie für alle Aussagen, welche richtig sind, und für alle Aussagen, welche nicht richtig sind, stimmt. Nun bin ich mir jedoch durchaus bewusst, dass diese Beweisführung etwas "zirkuläres⁸" in sich trägt. Also eine Art inneren Widerspruch besitzt. Aber auch diese Beweisführung ist mehr oder weniger eine Ubereinkunft: Es wird vereinbart, dass der logische Satz dann als wahr anerkannt wird, falls er für alle (hinreichend in sich selbst widerspruchsfreien) Aussagen richtig ist. Diese Art der Beweisführung werde ich für alle logischen Sätze so durchziehen. Bemerkenswert ist, dass, es sich nur um ein "Nachschlagen" handelt. Du wirst Dich wahrscheinlich fragen: "Wo bleibt da die Kreativität, der Witz an der ganzen Sache?" oder: "Das ist ja schön langweilig". Lass Dir gesagt sein: Die Kreativität liegt in den Definitionen und der Erstellung der Sätze selbst. Das Austesten der Sätze ist eine "Formsache", eine Art "maschinelles Austesten". Aber Du wolltest doch die Welt verbessern und weder logische Sätze erfinden noch austesten. Darum übernehme ich Dir diese Arbeit. Deine Arbeit wird darin liegen, die logischen Aussagen anzuwenden. Ich werde den Beweis noch einmal führen, und zwar formal, damit Du ein Gefühl dafür bekommst, wie formale Beweise aufgebaut sind. Und nun möchte ich (endlich) den Beweis noch mit sprachlichen Mitteln führen:

Es sei also A das Symbol einer Aussage. Ist die Aussage A wahr, dann gilt gemäß der 2. Zeile der Definition 6.0.2 der Negation, dass die Aussage $\neg A$ nicht wahr ist. Da nun die Aussage A wahr und Aussage $\neg A$ nicht wahr, dann gilt gemäß der 3. Zeile der Definition 13.0.1 der Antivalenz die Aussage $A \Leftrightarrow \neg A$. Ist jedoch A nicht wahr ist, dann ist gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ wahr. Da nun gemäß Voraussetzung die Aussage A nicht wahr ist und gemäß der Schlussfolgerung die Aussage A wahr ist, dann ist gemäß der zweiten Zeile der Definition 13.0.1 der Antivalenz die Aussage $A \Leftrightarrow \neg A$ wiederum wahr. Darum ist $A \Leftrightarrow \neg (\neg A)$ unabhängig von der konkreten Aussage A immer wahr. Damit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Der folgende Abschnitt hat große Ähnlichkeit mit den Ausführungen im Kapitel 6 über die Negation. Daher kannst Du ihn getrost überlesen oder nur schnell überfliegen, falls Du das entsprechende Kapitel bereits einmal gelesen hast.

Ja ich weiß, die Aussage des Aussage heißt normalerweise nicht: "Alle Aussagen sind entweder wahr oder nicht wahr", sondern: "Aussagen sind entweder wahr oder falsch". Dann sind die zwei Wahrheitswerte

⁸wörtlich "kreisförmiges", also "etwas, was auf sich selbst verweist"

"wahr" und "falsch", und der Sinn des Satzes "Satz vom ausgeschlossenen Dritten" bedeutet dann, dass es keinen dritten Wahrheitswert gibt. Jedoch werde ich mir erlauben, ihn in der obigen Form zu verwenden. Doch wahrscheinlich kommen jetzt von Dir ein oder mehrere Widersprüche: "Wieso wahr oder nicht wahr" und nicht "Wahr oder falsch"? Oder der Widerspruch: "Was ist mit den Aussagen, welche sehr wahrscheinlich wahr sind, oder solche, welche sehr wahrscheinlich falsch sind?" Zum ersten Einwand: Nun, für das Weitere spielt es sowieso keine große Rolle, ob jetzt "wahr und falsch" oder "wahr und nicht wahr" als Aussage genommen wird. Jedoch ist oft unklar, ob jetzt etwas gilt oder etwas nicht gilt. In diesem Fall kann nicht gesagt werden, ob etwas wahr oder falsch ist - wir wissen es nicht. Dann liegt eben der Fall vor, dass wir nicht sagen können, ob eine Aussage wahr oder falsch ist. Dann macht es Sinn, zu sagen, dass die Aussage nicht wahr ist. Ich möchte jedoch auch zu bedenken geben, dass oft die Situation vorliegt, in welcher wir versucht sind, das "Fell zu verkaufen, bevor der Bär erlegt ist". Dies bedeutet, dass wir annehmen, die Aussage sei wahr - um dann das Gegenteil zu beweisen. Schlussendlich - und dies scheint mit das stärkste Argument zu sein - geht es in der Mathematik darum, von wahren, oder besser geschrieben von als wahr angenommenen Aussagen wieder wahre Aussagen zu gewinnen. Es nützt nichts, wenn wir eine Aussage, von welcher wir nicht wissen, ob sie wahr ist, oder von welcher wir sogar wissen, dass sie nicht zutrifft, verwenden, um wieder zu wahren Aussagen zu kommen. Falls eine Aussage nicht wahr ist, dann heißt das nicht, dass ich das auch beweisen kann, dass sie nicht wahr ist. Wenn ich schreiben würde: "Alle Aussagen sind entweder wahr oder falsch", dann habe ich ein Problem, falls ich an eine Aussage gerate, von welcher ich nicht weiß, ob sie wahr oder falsch ist. Was mache ich dann mit dieser Aussage? Wenn ich sage: "Diese Aussage ist falsch", dann verhalte ich mich wie der Bauer, welche die Kartoffeln nicht isst, welche er nicht kennt⁹: Alles was ich nicht kenne, lehne ich ab. Ich denke, dann verschenke ich mir die Chance, eventuell auf etwas zu stoßen, welches interessant sein könnte. Wenn ich jedoch sage: "Gut, ich nehme an, dass die Aussage wahr sei", dann laufe ich Gefahr, naiv alles zu übernehmen, was ich nicht kenne, so frei nach dem Motto: "Alles was ich nicht kenne, muss besser sein als das, was ich habe" (so wie der Hansdampf im Schneckenhaus¹⁰). Ich denke nicht, dass dies eine besonders geschickte Strategie ist. Aus diesem Grund habe ich mich entschieden, im Folgenden "nicht wahr" zu verwenden - auch wenn ich

⁹Es gibt im Deutschen ein Sprichwort, welches heißt: "Was der Bauer nicht kennt, das isst er nicht". Es will bedeuten, dass viele Bäuerinnen und Bauer an Neuem nicht interessiert seien und darum Chancen auf bessere Produkte leichtfertig verspielen würden.

¹⁰Kinderreim, welcher da lautet: Hansdampf im Schneckenhaus, hat alles was er will. Und was er hat, das will er nicht. Und was er will, das hat er nicht

weiß, dass die logische Literatur meiner Argumentation wohl kaum folgen wird. Es folgt nun ein ziemlich langer Teil, in welchem ich meine Wortwahl zu begründen versuche. Aber ich denke nicht, dass es mir gelingen wird.

Ich möchte die zweiwertige Logik (mit wahren und nicht wahren Aussagen) mit physikalischen Erkenntnissen vergleichen, welche im Zusammenhang der Schrödingergleichung (siehe Gleichung??) entstanden sind. In der Quantenmechanik wird von einer Wellenfunktion gesprochen, welche mit Aufenthaltswahrscheinlichkeiten verknüpft ist. Der springende Punkt dabei ist, dass es nicht mehr möglich wird, absolut wahre oder falsche Aussagen zu machen. Sondern Aussagen sind immer mit einer Wahrscheinlichkeit verknüpft, welche angeben, wie häufig diese zutreffen. Eine zweiwertige Logik wäre also ein Spezialfall, in welchem die Wahrscheinlichkeit für ein bestimmtes Ereignis immer entweder 0 oder 100% wäre. Ich möchte ein Beispiel machen. Aischa geht in die Schule. Wenn sie keine Schule hat, dann ist sie daheim oder auf dem Spielplatz. Ab und zu kauft sie für ihren Vater ein, welcher den Haushalt besorgt. Selten geht sie fort. Dann ist die Wahrscheinlichkeit recht groß, dass sie im Bett ist und schläft (sagen wir etwa 9 Stunden pro Tag). Am zweithäufigsten ist sie wohl daheim und in der Schule anzutreffen, seltener wahrscheinlich auf dem Spielplatz oder sonst wo. Aber wann sie genau wo ist, das kann niemand sagen. Das weiß wirklich niemand außer Aischa selbst - wenn sie sich darauf achtet. Später wird sie sehr wahrscheinlich vergessen, wo sie wann war. Wenn wir jetzt nur die zweiwertige Logik akzeptieren würden, dann wäre die Aussage "Aischa ist auf dem Spielplatz" immer nur wahr oder nicht wahr. Würden wir jetzt quantenmechanisch argumentieren, würden wir sagen: "Aischa ist mit einer Wahrscheinlichkeit von 12\% auf dem Spielplatz". Das bedeutet, wenn wir während einer genügend langen Zeit (beispielsweise einem Monat) alle 15 Minuten auf dem Spielplatz ein Photo machen würden (in der Nacht mit Restlichtverstärkung oder Infrarotaufnahmen oder Blitzlichtbeleuchtung), dann wäre etwa auf jedem achten Bild auf dem Bild Aischa zu sehen. Das bedeutet jedoch, dass ich nicht absolut sagen kann, wann sich Aischa wo aufhält, sondern nur mit einer gewissen Wahrscheinlichkeit. Heißt das jedoch, dass die zweiwertige Logik jetzt falsch ist? Ich meine, dass sie nicht falsch ist, und ich möchte versuchen, meine Meinung zu begründen. Die Logik, wie ich sie hier zu entwickeln versuche, geht von wahren Aussagen aus. Häufig sind jedoch die wahren Aussagen diejenigen, welche ich als wahr annehme. Der Unterschied zwischen einer wahren und einer als wahr angenommenen Aussagen mag für Dich lächerlich klein oder gar nicht vorhanden zu sein. Dies ist jedoch nicht der Fall. Meine Behauptung ist also, dass die Mathematik anders bei anderen Wissenschaften nicht von der "Empirie", also der Erfahrung ausgeht, sondern von Annahmen. Darum

nehme ich auch an, dass solche wahren Aussagen existieren (vergleiche mit der Aussage 2.0.1). Anschließend wird überlegt, was dann aus diesen Annahmen gefolgert werden kann. Dass die Mathematik gerade auch in der Physik und vielen anderen erfahrungsgestützten Wissenschaften erfolgreich verwendet werden kann, zeigt meines Erachtens im Nachhinein, dass dieses Vorgehen durchaus gerechtfertigt ist.

Es gab auch in der Mathematik und in der Wissenschaft insgesamt immer wieder Krisen, weil sich Aussagen, von welchen immer angenommen wurde, dass sie wahr sind, plötzlich als nicht mehr haltbar, als in sich widersprüchlich herausgestellt haben. Dies wird wahrscheinlich immer wieder der Fall sein. Damit diese Krisen jedoch sinngebend in einer Theorie einfließen können, halte ich es für unerlässlich, dass ich schreibe, dass eigentlich immer nur die Annahmen als wirklich wahr betrachtet werden können. Alle Beobachtungen, die ganze Wahrnehmungen (sehen, hören, riechen, schmecken, fühlen) sind immer nur mit einer gewissen Wahrscheinlichkeit wahr. An der Kantonsschule musste ich einmal ein Buch lesen mit dem Titel "konstruierte Wahrheiten". Ich weiß keinen Satz mehr vom Buch, es hat mich angeödet. Jedoch ist der Titel hängen geblieben. Er hat mich aufgeregt, weil ich dachte, entweder ist etwas wahr oder nicht wahr. Aber Wahrheit kann doch nicht konstruiert, zurechtgebogen werden, so wie es von schmierigen Winkeladvokaten behauptet wird? Erst viel später habe ich gemerkt, dass es wohltuend sein kann, wenn die Annahmen offengelegt und die daraus resultierenden Konsequenzen abgeleitet werden. "Konstruierte Wahrheiten" bedeutet jedoch immer auch, dass Wahrnehmungen interpretiert werden müssen, damit sie einen Sinn ergeben. Jedoch sind gerade Symbole derart gebaut, dass die Wahrscheinlichkeit, dass sie falsch interpretiert werden, auf ein absolutes Minimum reduziert wird. Eine der raren Ausnahmen, welche jedoch die Regel ziemlich gut bestätigen, sind die Symbole 0 respektive O. Vergleiche mit der Notiz über die erzwungene Eindeutigkeit (siehe Abschnitt??), welche sich ebenfalls mit diesem Thema auseinandersetzt. Während das erste Symbol das Symbol für die Zahl "Null" ist, ist das zweite Symbol das Symbol des Lautes, welches im Wort "Ort" zuerst ausgesprochen wird. Trotzdem funktioniert diese "Objektivierung" im Allgemeinen sehr gut. Wenn Wahrheiten konstruiert werden, dann können Aussagen als wahr angenommen werden, ohne wenn und aber. Aus diesen Wahrheiten können mittels den Mitteln der Logik wieder andere Wahrheiten abgeleitet werden. Darum glaube ich daran, dass der Satz des ausgeschlossenen Dritten eine richtige Konsequenz der Logik ist. Mein Standpunkt ist übrigens dem Konstruktivismus der Sozialwissenschaften angelehnt, und diesen Standpunkt halte ich für sehr interessant. Denn er macht aus uns handelnde Subjekte. Wahrheit ist mit uns Menschen verknüpft, sie wächst weder auf den Bäumen noch fällt sie vom Himmel. Und sie ist in meinen Augen lebensbejahend und nicht so diktatorisch wie der traditionelle naturwissenschaftliche Anspruch einer "immateriellen Wahrheit". Aber das ist eine Behauptung von mir, welche ich mit Leben füllen muss, indem ich diesen Text schreibe. Natürlich lassen sich auch mit Texten mehrdeutige Aussagen erzeugen, und genau das ist ja sehr interessant, wenn Du ein unterhaltsames Buch liest. Denn das Lesen ruft im guten Fall immer Bilder hervor, es ist ein Eintauchen in einer fremde Welt, welche aus sicherer Distanz gefahrlos betrachtet werden kann (beispielsweise beim Lesen des Buchs "Krieg und Frieden" von Tolstoi). Und in diesen Texten ist die Mehrdeutigkeit immer zu einem guten Teil gewollt. Jedoch wird in mathematischen Texten eine Mehrdeutigkeit von Begriffen nach Kräften vermieden. Dies ist jedoch eine bewusste Entscheidung, und sie wird gerade verständlich, wenn Du Dir die Anfänge der Mathematik vor Augen hältst. Die Mathematik diente beispielsweise bei den Sumerern und Babyloniern offenbar dazu, Schulden zu beziffern (vergleiche mit den Ausführungen im entsprechenden Kapitel ?? über Schulden). Da ist es natürlich das Interesse vom Schuldner und vom Gläubiger, dass peinlichst genau aufgeschrieben wird, wer wem was schuldet.

Um die Diskussion über den Sinngehalt des Satzes des ausgeschlossenen Dritten zu beenden, möchte ich bemerken, dass der Satz in der Gleichung 12 beweisbar ist - wogegen die Aussage "Aussagen sind entweder wahr oder falsch" eine Annahme ist. Welche dann erst noch viele Diskussionen darüber entfacht, ob es nicht doch andere Zustände geben soll - mit entsprechend komplizierten Argumenten, welche meines Erachtens sowieso nur darauf hinauslaufen, dass sie so doziert werden können, dass kein Meerschweinchen und kein Kanarienvogel verstehen und am Schluss die gähnende Leere und Öde herrscht¹¹.

Wie dem auch sei, Du willst ja die Welt verändern, reich und berühmt werden, das Leben in Saus und Braus genießen können, und darum werde ich jetzt mein Wehklagen beenden. Ich mache noch Beispiele für diesen Satz. Es sei A das Symbol für die Aussage: Alle Elefanten haben 10 Rüssel. Nun, diese Aussage ist ja nicht wahr. A ist also nicht wahr, $\neg A$ jedoch schon. Insgesamt gilt also $A \Leftrightarrow \neg A$, ausgeschrieben:

"Alle Elephanten haben 10 Rüssel." ⇔ ¬ ("Alle Elephanten haben 10 Rüssel")

ausformuliert: "Entweder haben alle Elefanten 10 Rüssel, oder sie haben es nicht." Ich nehme an, das würdest Du auch so sehen. Es sei A das Symbol der Aussage: "Biber sind die größten Nagetiere Europas" (das habe ich jetzt gerade im Fernsehen gehört...). Nun, wenn wenn die das im Fernsehen sagen, dann wird es schon stimmen. Nein, ich habe

¹¹obwohl "herrscht" nicht geschlechtsneutral ist, aber was soll's: Die Zukunft ist eh weiblich... Auch wenn ich mir verbitten würde, von etwas zu schreiben, welches "dämlich" sei, finde ich es ganz in Ordnung, wenn mein sogenanntes "starkes Geschlecht" auch mal sein Fett weg bekommt.

TABELLE 16. 1. Beweis des schwachen Satzes vom ausgeschlossenen Dritten

Aussage/ Fall Nr.	$\neg A$	$A \vee (\neg A)$
1	1	1
1	1	1

das einmal in der Kantonsschule an einer Prüfung über Säugetiere nicht gewusst, und das hat sich tief in meine Hirnwindungen eingebrannt. Darum bin ich felsenfest davon überzeugt, dass dies stimmt. Also ist A wahr, $\neg A$ jedoch nicht. und darum ist $A \Leftrightarrow \neg A$ wiederum wahr, ausgeschrieben:

"Biber sind die grössten Säugetiere Europas" ⇔ ¬("Biber sind die grössten Säugetiere Europas"),

ausformuliert: "Entweder sind Biber die größten Säugetiere Europas, oder sie sind es nicht". Es gibt jedoch noch abgeschwächte Varianten des Satzes des ausgeschlossenen Dritten. Es gilt der

Satz 13. Schwacher Satz des ausgeschlossenen Dritten: Es sei A das Symbol einer Aussage. Dann gilt:

$$A \vee \neg A$$

In Worten: Die Aussage A gilt oder die Negation der Aussage A gilt.

Beweis. Ich habe diesen Beweis in den Tabellen 16 respektive 17 erbracht. Die Verweise habe ich in der Tabelle 18 abgelegt.

Ich möchte den Beweis trotzdem noch als noch einmal führen: Ist die Aussage A nicht wahr, dann gilt gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ wahr. Da nun die Aussage $\neg A$ wahr und die Aussage A nicht wahr ist, kann ich gemäß der dritten Zeile der Definition 11.0.1 der Disjunktion folgern, dass die Aussage

$$\neg A \lor A$$

wahr ist. Damit wäre die eine Hälfte der Behauptung bewiesen. Ist die Aussage A wahr, dann ist gemäß der zweiten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ nicht wahr. Da nun die Aussage $\neg A$ nicht wahr und die Aussage A wahr ist, ist gemäß der zweiten Zeile der Definition 11.0.1 der Disjunktion die Aussage

$$\neg A \lor A$$

wiederum wahr. Also bin ich der Meinung, dass ich die Behauptung in allen möglichen Fällen bewiesen habe und beende an dieser Stelle aus diesem Grund die weitere Beweisführung.

TABELLE 17. 2. Beweis des schwachen Satzes vom ausgeschlossenen Dritten

Aussage/ Fall Nr.	$\neg A$	$A \vee (\neg A)$
1	$\neg A$	$A \vee (\neg A)$
2	$\neg (\neg A)$	$A \vee (\neg A)$

TABELLE 18. Verweise des schwachen Satz vom ausgeschlossenen Dritten

Definition/ Fall Nr.	Definition 6.0.2 der Negation	Definition 11.0.1 der Disjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile

<includebackwardreferences>

<includeforwardreferences>

Zum Wort "schwach". In der Umgangssprache bedeutet "schwach" oft, das etwas schlecht sei. Dies ist aber nicht die Meinung im in diesem Fall. In diesem Fall bedeutet "schwach", dass die Schlussfolgerung weniger weitreichend ist als die Schlussfolgerung des "starken", also üblichen Satzes vom ausgeschlossenen Dritten. Aber manchmal genügt dies.

Es gibt eine witzige Umsetzung des schwachen Satzes der. Es gibt ein Sprichwort, welches heißt: "Kräht der Hahn auf dem Mist, so ändert das Wetter, oder es bleibt wie es ist." Bezüglich dem Wetter gibt es zwei Möglichkeiten: Es ändert, oder es ändert nicht. Der schwache Satz 13 des ausgeschlossenen Dritten besagt nun, dass dies immer wahr ist. Nun ist zwar die Aussage wahr - aber meines Erachtens will das Sprichwort nicht darauf anspielen. Es spielt vielmehr darauf an, dass die Aussage zwar wahr ist - aber das eine (das Krähen des Hahns) nichts mit dem anderen (der Verlauf des Wetters) zu tun hat.

Und weiter geht es mit dem nächsten logischen Satz.

18.4. Was ist der "Satz der Transitivität der Implikation"?

Den Satz kennst Du wahrscheinlich auch, wenn auch nicht so formal, dann jedoch intuitiv.

Satz 14. Angenommen, A, B sowie C seien Symbole für Aussagen. Der Satz lautet in diesem Fall

$$((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$$

ausformuliert: "Wenn aus der Aussage A die Aussage B folgt und aus der Aussage B die Aussage C, dann folgt aus der Aussage A die Aussage C".

Tabelle 19. 1. Teil 1. Beweis Satz der Transitivität der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$
1	1	1	1
2	1	1	1
3	1	0	0
4	1	1	1
5	0	1	0
6	0	1	0
7	1	0	0
8	1	1	1

Tabelle 20. 2. Teil 1. Beweis der Transitivität der Implikation

Aussage/ Fall Nr.	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ $\Rightarrow (A \Rightarrow C)$
1	1	1
2	1	1
3	1	1
4	1	1
5	0	1
6	1	1
7	0	1
8	1	1

BEWEIS. Damit kein Durcheinander mit den Fällen auftritt, welche möglich sind, habe ich die Wahrheitsgehalte der einzelnen logischen Variablen (siehe die Definition ??) gemäß der Tabelle 5 aufgelistet. Darum habe ich mir oben auch so viel Zeit gelassen, um das möglichst ausführlich zu erklären. In den Tabellen 19 sowie 20 ist der erste Beweis der Aussage dargestellt. In den Tabellen 21 sowie 22 habe ich den zweiten Beweis der Aussage aufgeschrieben. In den Tabellen 23 respektive 24 habe ich aufgeschrieben, welche Voraussetzungen für diesen Beweis verwendet wurden.

Ich habe ein wenig mit den Einstellungen gespielt. Obwohl die Art der Darstellung ein wenig unglücklich ist, habe ich sie so belassen, da ich annehme, dass Du diese Einführung entweder gar nicht liest¹² oder dann aber als PDF. Falls Du sie als PDF lesen würdest, müsstest Du zwischendurch den Kopf verdrehen, damit Du die Darstellung lesen kannst. Ich möchte Dir dies ersparen, es tut zumindest mir einigermaßen weh, vor allem wenn ich daran denke, dass ich noch ein paar Tabellen bis zum Ende dieses Textes einfügen werde. Bevor ich

¹²Nur dass wir uns verstehen: Das sollte ein Witz sein, und ich weiß schon, dass das gegenstandslos ist, falls Du die Einführung gar nicht liest.

TABELLE 21. 1. Teil 2. Beweis Satz der Transitivität der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$
1	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$
2	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$
3	$A \Rightarrow B$	$\neg \left(B\Rightarrow C\right)$	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$
4	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$
5	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$
6	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$
7	$A \Rightarrow B$	$\neg \left(B\Rightarrow C\right)$	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$
8	$A \Rightarrow B$	$B \Rightarrow C$	$(A \Rightarrow B) \land (B \Rightarrow C)$

TABELLE 22. 2. Teil 2. Beweis der Transitivität der Implikation

Aussage/ Fall Nr.	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ $\Rightarrow (A \Rightarrow C)$
1	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
2	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ $\Rightarrow (A \Rightarrow C)$
3	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
4	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
5	$\neg (A \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
6	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
7	$\neg \left(A \Rightarrow C \right)$	$((A \Rightarrow B) \land (B \Rightarrow C))$ \Rightarrow (A \Rightarrow C)
8	$A \Rightarrow C$	$((A \Rightarrow B) \land (B \Rightarrow C))$ $\Rightarrow (A \Rightarrow C)$

TABELLE 23. 1. Teil Verweise Beweis Kette von Schlussfolgerungen

Definition/	Definition 9.0.1	Definition 9.0.1	Definition 8.0.2
Fall Nr.	der	der	der
ran m.	Implikation	Implikation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	4. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 24. 2. Teil Verweise Beweis Kette von Schlussfolgerung

Definition/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	4. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

angebe, wieso ich mich erfrecht habe, diese Aussagen aufzuschreiben, welche in den zwei Tabellen abgebildet sind, möchte ich die Tabellen so schreiben, wie ich sie in den Büchern gefunden habe (vergleiche mit den Tabellen 19 respektive 20). In dieser Tabelle kannst Du sehr gut sehen, wieso mit Zahlen gerechnet wird: Die Konjunktion ist immer das Minimum der Argumente, wie ich es oben bereits erwähnt habe (siehe Kapitel 8). Die Schlussfolgerung kannst du Dir so merken, dass die Schlussfolgerung genau dann nicht wahr ist, falls die Aussage auf der linken Seite wahr, die Aussage auf der rechten Seite jedoch nicht wahr ist (vergleiche mit dem Kapitel 9).

Ich bespreche zuerst eine Zeile, welche wenig interessant ist. Betrachte zuerst den Fall, dass die Aussage A nicht wahr ist. Dann ist die Aussage bereits bewiesen! Warum ist das so? Nun: Falls die Aussage A nicht wahr ist, dann ist die Aussage, dass aus der Aussage A die Aussage C folgt, immer wahr (vergleiche mit den Zeilen 1 und 2 der Definition 9.0.1 der Implikation). Um es noch klarer auszudrücken:

Sind weder die Aussagen A noch C wahr, dann kannst Du in der ersten Zeile der Definition 9.0.1 der Implikation nachlesen, dass die Schlussfolgerung $A\Rightarrow C$ wahr ist. Ist jedoch die Aussage A nicht wahr und die Aussage C wahr, dann kannst Du in der zweiten Zeile der Definition 9.0.1 der Implikation erkennen, dass die Aussage $A\Rightarrow C$ wiederum wahr ist. Wenn jetzt die Aussage $A\Rightarrow C$ wahr ist, dann ist die gesamte Aussage $((A\Rightarrow B)\land (B\Rightarrow C))\Rightarrow (A\Rightarrow C)$ immer wahr, unabhängig davon, was auf der linken Seite der Aussage steht. Dies habe ich im Kapitel 9 der Abkürzungen der Schlussfolgerungen dargelegt. Darum ist die Behauptung bereits dann wahr, falls die Aussage A nicht wahr ist

Nun möchte ich einen interessanteren Fall untersuchen. Betrachte den Fall 7, in welchem die Aussagen A und B wahr sind, die Aussage C jedoch nicht wahr ist. Aufgrund der 4. Zeile der Definition 9.0.1 der Implikation ist die Schlussfolgerung $A\Rightarrow B$ wahr, jedoch sind die Schlussfolgerungen $B\Rightarrow C$ respektive $A\Rightarrow C$ beide gemäß der 3. Zeile der Definition 9.0.1 nicht wahr. Da die Aussage $A\Rightarrow B$ wahr ist, die Aussage $B\Rightarrow C$ jedoch nicht, ist gemäß der 3. Zeile der Definition der Konjunktion 8.0.2 ist die Aussage $(A\Rightarrow B)\land (B\Rightarrow C)$ nicht wahr. Da jetzt also sowohl die Aussage $(A\Rightarrow B)\land (B\Rightarrow C)$ wie auch die Aussage $A\Rightarrow C$ nicht wahr sind, ist jedoch gemäß der 1. Zeile der Definition 9.0.1 der Implikation die Behauptung der Kette der Schlussfolgerung für diesen Fall wiederum wahr. Die restlichen Zeilen habe ich in der Tabelle 23 respektive 24 entsprechend berechnet.

sprachlicher Beweis der Transitivität der Implikation

Jedoch - vielleicht findest Du den Beweis öde und abstrakt. Denn ich habe in der obigen Beweisführung eine Definition nach der anderen hervorgekramt und angewendet. Das ist gewissermaßen mit dem "rhetorischen Zweihänder" bewiesen, also relativ uninspiriert, geistlos. Da stellt sich die Frage: Gibt es eine elegantere Beweisführung, sozusagen mit dem "rhetorischen Florett". Doch, die gibt es, und die geht so: Wie ich oben bereits angedeutet habe, ist die Aussage $A \Rightarrow B$ nur dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Da stellt sich die Frage: Angenommen, es gibt Aussagen mit den Symbolen A, B respektive C, für welche die Kette der Schlussfolgerung $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$ nicht gilt. Welchen Wahrheitswerten müssten den drei Aussagen dann zugeordnet werden? Dies wäre dann der Fall, falls die Aussage $(A \Rightarrow B) \land (B \Rightarrow C)$ wahr, die Aussage $A \Rightarrow C$ jedoch nicht wahr wäre. Die Aussage $(A \Rightarrow B) \land (B \Rightarrow C)$ scheint mir bereits ein wenig kompliziert zu sein, um sich Fälle zu überlegen, in welchen sie wahr wäre. Bei der Aussage auf der rechten Seite aber ist schnell zu bestimmen, in welchen Fällen sie nicht gilt: Gemäß der dritten Zeile der Definition 9.0.1 müsste die Aussage A wahr sein, die Aussage C jedoch könnte nicht wahr sein. In den anderen Fälle ist diese Schlussfolgerung wahr, und wie ich oben schon ausgeführt habe, ist damit in den anderen Fällen die Behauptung bereits bewiesen! Nun habe ich zu zeigen, dass auch in den restlichen zwei Fällen die Behauptung gilt. Entweder ist B wahr oder nicht wahr, wie ich versuchte, Dir im Satz vom ausgeschlossenen Dritten (siehe Satz 18.3) zu vermitteln. Angenommen, die Aussage B sei nicht wahr. Siehe wieder die Bemerkung 5 über die ordnende Funktion der Mathematik, wenn es Dir seltsam vorkommt, wieso ich zuerst annehme, dass die Aussage B nicht wahr ist. Wie dem auch sei - wenn also die Aussage B nicht wahr wäre, dann wäre die Aussage $A \Rightarrow B$ gemäß der dritten Zeile der Definition der Schlussfolgerungen 9.0.1 nicht wahr. Und dann ist die Behauptung bereits wieder wahr! Denn wenn die Aussage $A \Rightarrow B$ nicht wahr wäre, dann wäre gemäß dem Minimumprinzip 8 der Konjunktion die Konjunktion $(A \Rightarrow B) \land (B \Rightarrow C)$ bereits nicht wahr. Und da die Aussage $(A \Rightarrow B) \land (B \Rightarrow C)$ ist, ist die Schlussfolgerung $((A \Rightarrow B) \land (B \Rightarrow C)) \Rightarrow (A \Rightarrow C)$ immer wahr, wie ich unter den Abkürzungsregeln der Implikation 9 oben dargelegt habe. Falls die Aussage B jedoch wahr wäre, dann wäre die Schlussfolgerung $B \Rightarrow C$ gemäß der dritten Zeile der Definition 9.0.1 der Implikation nicht wahr, da ja die Aussage C gemäß Voraussetzung immer noch nicht wahr ist. Da A und die Aussage B wahr sind, ist übrigens nach der vierten Zeile der Definition 9.0.1 der Schlussfolgerung die Aussage $A \Rightarrow B$ wahr. Weil nun die Aussage $A \Rightarrow B$ wahr ist, die Aussage $B \Rightarrow C$ jedoch nicht, wäre die Aussage $(A \Rightarrow B) \land (B \Rightarrow C)$ nicht wahr, da dazu beide Teilaussagen wahr sein müssen (siehe die 3. Zeile der Definition 8.0.2 der Konjunktion). Da jetzt $(A \Rightarrow B) \land (B \Rightarrow C)$ nicht wahr wäre, wäre wiederum die Behauptung der Transitivität der Implikation, also die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

gemäß den Abkürzungsregeln 9 der Implikation wiederum wahr. Weil jetzt alle möglichen Fälle untersucht wurden, habe ich also wieder gezeigt, dass die Behauptung der Transitivität der Implikation für alle möglichen (also in sich und gegenüber den anderen Symbolen des Satzes widerspruchsfreien) Aussagen richtig ist. Obwohl ich nicht weiß, ob Dir dieser Beweis einsichtig erscheint. Damit beende ich an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

Dieser Satz wird so viel verwendet, dass es eigentlich gar nicht möglich ist, aufzuzählen, wo er überall verwendet wird. Darum macht es eigentlich keinen Sinn, wenn ich versuche, Beispiele aufzuzählen. Ich möchte es trotzdem versuchen. Es sei A das Symbol für die Aussage "Anna ist ein Mensch", B sei das Symbol der Aussage "Bert ist ein Mensch" und C sei das Symbol der Aussage "Caroline ist ein Mensch". Wenn jetzt Bert der Sohn von Anna ist und Caroline die Tochter von

Bert, dann kann ich daraus schließen: "Wenn Anna ein Mensch ist, dann ist Bert ein Mensch". Dies entspricht der Aussage: $A \Rightarrow B$. Weiter kann ich daraus schließen: "Wenn Bert ein Mensch ist, dann ist Caroline ein Mensch". Dies entspricht der Aussage: $B \Rightarrow C$. Aus dem Satz der Transitivität der Implikation kann ich jetzt folgern: "Wenn Anna ein Mensch ist, dann ist Caroline ein Mensch".

Und nochmals ja, ich weiß, das Beispiel ist irgendwie mager. Aber wie gesagt, eigentlich wird der Satz der Transitivität der Implikation bis zum Überdruss verwendet. Ich versuche, Dir den Grund dafür darzulegen. Bei praktisch allen Beweisen werden zuerst die Definitionen der beteiligten Größen herangezogen. Anschließend werden werden die Schlussfolgerungen die Definitionen umgeformt. Nun ist es so, dass häufig mehrere Schlussfolgerungen hintereinander aufgeschrieben werden. Dann garantiert die Transitivität der Implikation, dass aus den Voraussetzungen immer wieder das Resultat der letzten Schlussfolgerung folgt. Aber eben: Ich werde Dir natürlich noch die entsprechenden Beispiele nachliefern müssen. Ja, das mit den Beispielen, wird immer schwieriger. Denn die logischen Sätze werden immer spezieller und entfernen sich immer weiter vom täglichen Leben. Jedoch hoffe ich trotzdem, zur gegebenen Zeit gute Beispiele nachliefern zu können.

Alle Verknüpfungen, welche dieses Verhalten besitzen, heißen "transitiv". Vergleiche mit der Definition ??, aber lasse Dich bitte nicht von den Formeln abschrecken! Sondern lese die nachfolgenden Erläuterungen, welche ich allerdings nachfolgend noch einmal aufschreiben werde.

Im Prinzip könnte ich es jetzt Dir überlassen, ähnliche logische Sätze zu beweisen. Ich denke, ich habe Dir jetzt das Rüstzeug gegeben, um logische Sätze formulieren, beweisen und anwenden zu können. Ich schreibe mittlerweile schon recht lange an diesem Teil des Buchs. Und ehrlich geschrieben: Ich finde es mittlerweile recht langweilig. Dennoch geht es in diesem Buch ja nur noch am Rande um mich - sondern viel mehr um Dich! Du musst entscheiden, ob Du weiter lesen oder den nächsten Buchteil zu lesen beginnen möchtest. Aber vielleicht möchtest Du noch ein wenig Übung, oder Du möchtest Dich nicht mit den Einzelheiten der Beweise (der "Beweistechnik") herumschlagen. Vielleicht möchtest Du nur noch die Ergebnisse sehen, weil Du denkst, Du wüsstest "im Falle eines Falles", wie etwas zu formulieren, beweisen und anzuwenden wäre.

Beachte übrigens die Ähnlichkeit von der Schlussfolgerung mit Abschätzungen. Dabei geht es um folgendes: Es seien beispielsweise drei natürliche Zahlen (zur Definition von natürlichen Zahlen siehe ??) n_1, n_2 sowie n_3 , zum Beispiel 34,495 sowie 750. Dann gilt

$$n_1 \le n_2 \land n_2 \le n_3 \Rightarrow n_1 \le n_3$$

In Worten: Ist die Zahl n_1 kleiner oder gleich n_2 und n_2 kleiner oder gleich n_3 , dann ist n_1 kleiner oder gleich n_3 .

Mit den obigen Zahlen gilt dann

$$34 < 495 \land 495 < 750 \Rightarrow 34 < 750$$

In Worten: Da 34 kleiner oder gleich 495 und 495 kleiner oder gleich 750 ist, muss 34 kleiner oder gleich 750 sein.

Nun, mit drei natürlichen Zahlen ist dies relativ einsichtig. Aber viele wichtige Sätze der Analysis können mittels Abschätzungen erzeugt werden. Und ich versuche unter dem Lemma ?? zu zeigen, dass die Implikation auch als eine Art kleiner oder gleich Beziehung verstanden werden kann.

Egal, welche Beweggründe hast, den Text zusammen mit dem Laptop in die Ecke zu schmeißen (schade um den Laptop) oder begierig am Text zu kleben¹³, formuliere ich jetzt den nächsten logischen Satz.

18.5. Warum ist die Äquivalenz transitiv?

Die Äquivalenz und die Implikation unterscheiden sich in Bezug auf die Transitivität praktisch nicht. Ich möchte also den Satz formulieren und beweisen:

SATZ 15. Es seien A, B und C Symbole von Aussagen. Dann gilt:

$$((A \Leftrightarrow B) \land (B \Leftrightarrow C)) \Rightarrow (A \Leftrightarrow C)$$

BEWEIS. Der Beweis mit Hilfe der δ -Notation (siehe Definition ??) ist schnell erzählt. Ist $A \Leftrightarrow B$ und $B \Leftrightarrow C$, dann ist

$$\delta(A) = \delta(B)$$

und

$$\delta(B) = \delta(C)$$

Somit ist also

$$\delta(A) = \delta(C)$$

was eben gemäß dem Satz?? bedeutet, dass

$$A \Leftrightarrow C$$

ist. Da die Krux der δ -Notation darin besteht, dass sie auf Zahlen zurückgreift, und ich noch nicht erzählt habe, was darunter zu verstehen sei. Also möchte ich die Behauptung noch mittels Wahrheitstafeln erbringen. Die Beweise habe ich in den Tabellen 25 und 26 respektive 27 sowie 28 aufgeschrieben. Die Verweise habe ich in den Tabellen 29 sowie 30 aufgeschrieben.

Ich möchte trotzdem versuchen, den Beweis auch mit sprachlichen Mitteln zu erbringen. Dazu möchte ich fragen, unter welchen Bedingungen die Behauptung nicht wahr sein könnte? Dies wäre dann der Fall, falls die Aussage

$$A \Leftrightarrow C$$

¹³Ich fände beide übrigens Reaktionen ein wenig übertrieben.

nicht wahr, die Behauptungen

$$A \Leftrightarrow B$$

sowie jedoch

$$B \Leftrightarrow C$$

jedoch wahr wären. Wäre jedoch

$$\neg (A \Leftrightarrow C)$$

dann müsste gemäß der Definition 12.0.1 der Äquivalenz einer der beiden Fälle vorliegen: Entweder wäre die Aussage A nicht wahr, die Aussage C jedoch wahr, oder aber die Aussage A wäre wahr, die Aussage C aber nicht. Wäre nun die Aussage A nicht wahr, die Aussage C jedoch wahr, dann gilt es wieder zwei Fälle zu überprüfen. In einem Fall ist die Aussage B nicht wahr, im anderen Fall ist die Aussage B jedoch wahr. Ist die Aussage B nicht wahr, dann könnte die Aussage

$$B \Leftrightarrow C$$

gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz nicht wahr sein. Weil diese Aussage nicht wahr sein könnte, könnte gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

ebenfalls nicht wahr sein. Weil diese Aussage nicht wahr sein könnte, müsste gemäß der Abkürzungsregel 9 der Implikation die gesamte Aussage trotzdem wahr sein. Wäre jedoch die Aussage B wahr, dann könnte die Aussage

$$A \Leftrightarrow B$$

gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz nicht wahr sein. Da diese Aussage nicht wahr sein könnte, könnte wiederum gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

nicht wahr sein. Da die letzte Aussage nicht wahr sein könnte, müsste erneut gemäß der Abkürzungsregel 9 der Implikation die gesamte Aussage trotzdem wahr sein.

Das wäre der eine Teil des Beweises. Und entsprechend möchte ich den zweiten Teil des Beweises aufschreiben. Wäre die Aussage A wahr, dann könnte es die Aussage C nicht sein. Also gibt es erneut zwei Fälle zu unterscheiden. Wäre die Aussage B nicht wahr, dann könnte die Aussage

$$A \Leftrightarrow B$$

gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz nicht wahr sein. Da diese Aussage nicht wahr sein könnte, könnte gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

Tabelle 25. 1. Teil 1. Beweis Satz der Transitivität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
1	1	1	1
2	1	0	0
3	0	0	0
4	0	1	0
5	0	1	0
6	0	0	0
7	1	0	0
8	1	1	1

Tabelle 26. 2. Teil 1. Beweis Satz der Transitivität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow C$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
1	1	1
2	0	1
3	1	1
4	0	1
5	0	1
6	1	1
7	0	1
8	1	1

ebenfalls nicht wahr sein. Und da diese letzte Aussage nicht wahr sein könnte, müsste gemäß der Abkürzungsregel 9 der Implikation die gesamte Aussage trotzdem wahr sein. Und endlich komme ich zum letzten Fall. Wäre die Aussage B wahr, dann könnte gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$B \Leftrightarrow C$$

wiederum nicht wahr sein. Da diese Aussage nicht wahr sein könnte, könnte gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

ebenfalls nicht wahr sein. Und da die letzte Aussage in Form einer Konjunktion nicht wahr sein könnte, müsste somit die gesamte Aussage gemäß der Abkürzungsregeln 9 der Implikation wiederum wahr sein. Also meine ich, in allen möglichen Fällen gezeigt haben, dass die Behauptung wahr ist.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 27. 1. Teil 2. Beweis Satz der Transitivität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
1	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
2	$A \Leftrightarrow B$	$\neg \left(B \Leftrightarrow C \right)$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
3	$\neg (A \Leftrightarrow B)$	$\neg \left(B \Leftrightarrow C \right)$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
4	$\neg (A \Leftrightarrow B)$	$B \Leftrightarrow C$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
5	$\neg (A \Leftrightarrow B)$	$B \Leftrightarrow C$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
6	$\neg (A \Leftrightarrow B)$	$\neg \left(B \Leftrightarrow C \right)$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
7	$A \Leftrightarrow B$	$\neg \left(B \Leftrightarrow C \right)$	$\neg (A \Leftrightarrow B) \land (B \Leftrightarrow C) $
8	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$

TABELLE 28. 2. Teil 2. Beweis Satz der Transitivität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow C$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
1	$A \Leftrightarrow C$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
2	$\neg \left(A \Leftrightarrow C \right)$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
3	$A \Leftrightarrow C$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
4	$\neg \left(A \Leftrightarrow C \right)$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
5	$\neg \left(A \Leftrightarrow C \right)$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
6	$A \Leftrightarrow C$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
7	$\neg \left(A \Leftrightarrow C \right)$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$
8	$A \Leftrightarrow C$	$((A \Leftrightarrow B) \land (B \Leftrightarrow C))$ $\Rightarrow (A \Leftrightarrow C)$

TABELLE 29. 1. Teil Verweise Beweis Satz der Transitivität der Äquivalenz

Aussage/ Fall Nr.	Definition 12.0.1 der	Definition 12.0.1 der	Definition 8.0.2 der
	Äquivalenz	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	1. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 30. 2. Teil Verweise Beweis Kette der Äquivalenz

Aussage/ Fall Nr.	Definition 12.0.1 der Äquivalenz	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

An dieser Stelle bin ich Dir ein gutes Beispiel schuldig. Ich hoffe, es Dir gelegentlich noch geben zu können. Es bleibt mir übrig, darauf hinzuweisen, dass mit dem Satz der Transitivität der Äquivalenz gezeigt wird, dass die Äquivalenz sozusagen die Gleichheit von Aussagen darstellt. Wobei jedoch bloß auf ein Merkmal hin die Gleichheit untersucht wird. Dabei sind zwei Aussagen gleich, falls beide Aussagen wahr oder beide Aussagen nicht wahr sind.

Ich möchte jedoch darauf hinweisen, dass der Satz der Transitivität der Äquivalenz nicht bedeutet, dass immer automatisch alle Aussagen wahr sein müssen. Es ist möglich, dass mit diesem Satz bewiesen wird, dass die Aussagen A, B oder C nicht wahr sind.

18.6. Wie kann ich etwas "folgern"?

Dieser Satz ist wahrscheinlich innerhalb der elementaren Logik zentral. Er besagt folgendes:

Satz 16. Satz der Schlussfolgerung: Es seien A und B die Symbole von zwei beliebigen Aussagen, welche jedoch in sich selber und in Bezug auf die anderen Aussagen des Satzes nicht widersprüchlich seien. Dann gilt

$$(A \land (A \Rightarrow B)) \Rightarrow B$$

In Worten bedeutet dies, dass die Aussage B wahr ist, falls die Aussage A wahr ist und die Schlussfolgerung, dass aus aus der Aussage A die Aussage B folgt, ebenfalls richtig ist. Wieder gibt es "plumpere" und "elegantere" Beweise für diesen logischen Satz. Ich versuche zuerst, den Beweis in Worten zu fassen.

BEWEIS. Angenommen, die Behauptung sei nicht richtig. Dann könnte also die Aussage B gemäß der dritten Zeile der Definition 9.0.1 der Schlussfolgerung nicht wahr sein. Denn in allen anderen Fällen wäre die Schlussfolgerung

$$(A \land (A \Rightarrow B)) \Rightarrow B$$

wahr. Weiter müssten sowohl die Aussage A sowie die Implikation $A\Rightarrow B$ wahr sein. Ansonsten wäre die Aussage

$$A \wedge (A \Rightarrow B)$$

gemäß dem Minimumprinzip 8 der Konjunktion nicht wahr. Wenn jedoch sowohl die Aussage A wie auch die Schlussfolgerung der Aussage A nach auf die Aussage B wahr sein müssten, dann wäre die Aussage B eben auch wahr. Ansonsten wäre nämlich die Schlussfolgerung von A nach B nicht wahr (siehe dritte Zeile der Definition 9.0.1 der Schlussfolgerung). Jedoch habe ich jetzt ein Problem. Denn ich habe weiter oben vorausgesetzt, dass die Aussage B nicht wahr sein kann. Darum kann ich keinen Fall konstruieren, in welchem der Satz der Schlussfolgerung nicht wahr ist. Gemäß dem Satz 12 des ausgeschlossenen Dritten meine ich daher, behaupten zu können, dass die Behauptung in in allen vernünftigen Fällen wahr sein muss. Eventuell ist Dir dieser Satz hiermit zu wenig klar bewiesen. Darum möchte ich ihn zuerst in der Tabelle 31 auf die gängige Art, dann in den Tabellen 32 auf meine Art beweisen und schlussendlich in der Tabelle 33 die verwendeten Eigenschaften auflisten.

<includebackwardreferences>

<includeforwardreferences>

Wenn Du die Tabelle 31 betrachtest, dann siehst Du, dass die Aussage $A \wedge (A \Rightarrow B)$ genau dann wahr sind, falls die Aussagen A sowie B beide wahr sind. Das heißt, ich könnte mich darauf beschränken, zu zeigen, dass die Aussagen A sowie B wahr sind. Aber das ist nicht

TABELLE 31. 1. Beweis Satz der logischen Schlussfolgerung

Aussage/ Fall Nr.	$A \Rightarrow B$	$A \wedge (A \Rightarrow B)$	$(A \land (A \Rightarrow B)) \Rightarrow B$
1	1	0	1
2	1	0	1
3	0	0	1
4	1	1	1

TABELLE 32. 2. Beweis Satz der logischen Schlussfolgerung

Aussage/ Fall Nr.	$A \Rightarrow B$	$A \wedge (A \Rightarrow B)$	$(A \land (A \Rightarrow B)) \Rightarrow B$
1	$A \Rightarrow B$	$\neg (A \land (A \Rightarrow B))$	$(A \land (A \Rightarrow B)) \Rightarrow B$
2	$A \Rightarrow B$	$\neg (A \land (A \Rightarrow B))$	$(A \land (A \Rightarrow B)) \Rightarrow B$
3	$\neg (A \Rightarrow B)$	$\neg (A \land (A \Rightarrow B))$	$(A \land (A \Rightarrow B)) \Rightarrow B$
4	$A \Rightarrow B$	$A \wedge (A \Rightarrow B)$	$(A \land (A \Rightarrow B)) \Rightarrow B$

TABELLE 33. 1. Teil Verweise Beweis Satz der logischen Schlussfolgerung

Definition/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 8.0.2 der Konjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile
4	4. Zeile	4. Zeile

TABELLE 34. 2. Teil Verweise Beweis Satz der logischen Schlussfolgerung

Definition/ Fall Nr.	Definition 9.0.1 der Implikation
1	1. Zeile
2	2. Zeile
3	1. Zeile
4	4. Zeile

der springende Punkt. Es sind zwei verschiedene Wege, welche ich beschreiten kann, um zu zeigen, dass die Aussage B wahr ist, sofern die jeweils andere Aussage als wahr vorausgesetzt wird. Es ist ebenfalls wichtig, dass die wahren Aussagen "nicht vom Himmel fallen". Die Aussagen sind nur wahr, weil wir Voraussetzungen gemacht haben. Falls

wir nichts voraussetzen würden ("glauben" im religiös-philosophischen Sinn), dann würden wir auch nichts als wahr erkennen können. Also hat Mathematik genau gleich viel oder gleich wenig mit Glauben wie Religion zu tun in dem Sinn, das in beiden Fällen Annahmen getroffen werden. Wahrscheinlich erwiderst Du mit Zornesröte auf der Stirn, dass in der Mathematik die sinnvolleren Annahmen als in der Religion getroffen werden. Aber auch das ist für mich ein viel zu großes Wort, als dass ich es wage, an dieser Stelle und überhaupt sonst im Moment zu diskutieren. Im Wort "sinnvoll" ist das Wort "Sinn" enthalten. Für mich ist das fest mit "Sehnsucht" verknüpft. Wie ich mich in der Mathematik nach "Erlösung" sehne in Sinn von "verstehen" oder schon nur "das Gefühl haben, zu verstehen", auch wenn ich vielleicht weiß, dass ich nur ein ganz kleinen Flecken des Planeten der Mathematik kenne, habe ich auch in meinem Empfinden die Sehnsucht nach einer Ganzheit, nach einer Einheit, nach einer Stimmigkeit. Wenn Du sagst, Du würdest nur das glauben, was Du mit eigenen Augen gesehen hast, dann müsstest Du an Zauberei glauben, denn jeder Zauberkünstler kann uns glauben machen, dass das richtig ist, was wir sehen. Und die in der Mathematik vertretene Ansicht, die Formel seien "für die Ewigkeit gemacht", ist genau überlegt nicht stichhaltig. Wenn es keine Menschen gäbe, welche Mathematik lernen und anwenden, dann wäre nicht einsehbar, dass von einer Mathematik gesprochen werden könnte. Ubrigens wird "Religion" häufig mit "magischem Denken" in Verbindung gebracht. Ich weiß nicht, warum dies so ist. Ich weiß auch nicht, warum das so sein müsste. Ein nicht religiöser Mensch ist für mich - und da lehne ich ich wahrscheinlich "weit aus dem Fenster hinaus" - jemand, welcher oder welche ein opportunistischer Arschkriecher respektive eine opportunistische Arschkriecherin ist. Welcher für ein Geschäft seine oder ihre eigene Großmutter verkaufen würde. Dem oder der das Los anderer Menschen scheißegal ist, welche oder welcher immer ausschließlich auf seinen oder ihren Vorteil bedacht ist. Weiter beginnt der Glauben dort, wo das Wissen aufhört. Und das ist in der Mathematik genau am Anfang. Denn immer zu Beginn einer Theorie werden die Annahmen getroffen. Anschließend werden die Schlussfolgerungen daraus gezogen. Und die Annahmen werden immer exotischer und abenteuerlicher (denke etwa an die Quantenphysik mit ihren wirklich abenteuerlichen Annahmen, etwa derjenigen des Teilchen-Welle-Dualismus). Das ist aus meiner Sicht Glauben, nicht Wissen. Aber die Theorie funktioniert wirklich gut - siehe mein Skript, welches aufgrund von quantenphysikalischen Erkenntnissen geschrieben werden konnte. Doch zurück auf den "Pfad der Tugend". Die elementaren Sätze der Logik lehren uns, dass nie aus "nichts" Schlüsse gezogen werden können. Und das ist auch gut so!

Der Satz der Schlussfolgerung sieht irgendwie wie eine Mogelpackung aus: Denn ich habe habe bereits die Aussage, dass aus der Aussage A die Aussage B folgt. Wieso muss ich dann noch zusätzlich schreiben, dass A gilt? Das ist darum, weil die Aussage, dass aus der Aussage A die Aussage B folgt, auch dann wahr ist, falls die Aussage A nicht wahr ist. In diesem Fall kann auch die Aussage B nicht wahr sein. Wenn ich jedoch noch zusätzlich voraussetze, dass die Aussage A wahr ist, dann muss die Aussage B ebenfalls wahr sein. Dieser Satz ist jedoch gleichzeitig ein Beispiel für eine sogenannte "Deduktion" in dem Sinn, dass aus dem Allgemeinen etwas Spezielles hergeleitet wird. Dabei ist die Implikation, dass aus der Aussage A die Aussage B folgt, sozusagen die allgemeine Aussage. Die Aussage A ist dann der Einzelfall, auf welchen der allgemeine Fall angewendet werden soll. Vergleiche mit dem Satz P0 vollständigen Induktion. Dort wird aus dem Speziellen etwas Allgemeines hergeleitet. Dies ist gerade der umgekehrte Fall.

Ich mache noch eine kleine Anwendung des Satzes. Diese ist zwar noch nicht ganz richtig gezeigt. Denn es wird mit Mengen argumentiert. Es sei A das Symbol der Aussage: "Markus ist Schweizer". Die Schlussfolgerung, dass alle Schweizer auch Europäer sind, sei durch die Schlussfolgerung $A \Rightarrow B$ dargestellt. Die Aussage B sei schließlich die Aussage, dass Markus Europäer ist. Da ich Markus bin, trifft für mich die Aussage A zu. Die Schlussfolgerung, dass alle Schweizer Europäer sind, ist diskutabel, ich nehme jetzt einfach frecherweise an, dies sei so¹⁴. Wie auch immer, ich nehme an, dass diese Schlussfolgerung richtig sei. Dann kann ich folgern, dass ich, Markus, ein Europäer bin¹⁵. Solche Schlussfolgerungen gibt es wie Sand am Meer respektive Sterne am Himmel. Hier haben wir jedoch gezeigt, dass unter den gegebenen Annahmen wir ruhig folgern dürfen, wenn uns danach der Sinn steht. Mag sein, dass Dich der Stoff zu nerven beginnt. Es gibt jedoch noch ein paar andere logische Sätze, welche ich ebenfalls noch schnell zeigen will.

Ich kann diesen Satz jedoch noch verschärfen. Diese Verschärfung drückt jedoch nichts neues aus. Inhaltlich besagt er, dass die Voraussetzung des Satzes der Schlussfolgerung äquivalent zur Konjunktion ist.

¹⁴Es scheint manchmal so, dass wir Schweizerinnen und Schweizer uns als Marsmenschen betrachten, welche es nur infolge eines dummen Zufalls auf die Erde verschneit hat. Dem ist jedoch nicht so. Wir sind nun mal Erdenbewohnerinnen und Erdenbewohner und zudem weder Asiatinnen noch Asiaten, Afrikanerinnen noch Afrikaner, Polynesierinnen noch Polynesier, Australierinnen noch Australier oder gar Amerikanerinnen noch Amerikaner. Folglich müssen wir Europäer sein. Aber auch die eurozentristische Sichtweise ist bekanntlich viel zu kurz gegriffen. Wir sind auf einem im Vergleich zum Weltall winzig kleinen Raumkapsel unterwegs und somit in erster Linie Weltenbürger - was natürlich auch wieder Raum für philosophische oder theologische Gespräche lässt.

¹⁵obwohl ich eine Art Sehnsucht zur afrikanischen Steppe fühle, auch wenn ich noch nie dort war

Tabelle 35.	1. Beweis des	s verschärften	Satzes der	logi-
schen Schlussf	olgerung			

Aussage/ Fall Nr.	$A \Rightarrow B$	$A \wedge (A \Rightarrow B)$	$A \wedge B$	$A \land (A \Rightarrow B) \Leftrightarrow A \land B$
1	1	0	0	1
2	1	0	0	1
3	0	0	0	1
4	1	1	1	1

Diese Verschärfung wird dann so jedoch meines Wissens nicht mehr angewendet.

Satz 17. Es seien also A und B Metasymbole, welche in sich selber und in Bezug auf die anderen Symbole widerspruchsfrei seien. Dann gilt

$$A \wedge (A \Rightarrow B) \Leftrightarrow A \wedge B$$

BEWEIS. Ich möchte zeigen, dass die Aussage der

$$A \wedge (A \wedge B)$$

genau dann wahr ist, falls sowohl die Aussage A wie auch die Aussage B wahr sind. Damit die Aussage $A \land (A \Rightarrow B)$ wahr ist, müssen gemäß der Definition 8.0.2 der Konjunktion sowohl die Aussage A wie auch die Aussage $A \Rightarrow B$ wahr sein. Da die Aussage A wahr ist, muss jedoch auch die Aussage B wahr sein. Denn wäre die Aussage B nicht wahr, dann wäre gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \Rightarrow B$$

nicht wahr. Also wäre gemäß dem Minimumprinzip8der Konjunktion die Aussage

$$A \wedge (A \Rightarrow B)$$

nicht wahr. Ist die Aussage B jedoch wahr, dann ist die Aussage

$$A \Rightarrow B$$

gemäß der vierten Zeile der Definition 9.0.1 der Implikation wahr. Also ist die Aussage

$$A \wedge (A \Rightarrow B)$$

nur dann wahr, falls sowohl die Aussage A wie auch die Aussage B wahr sind. Somit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Der Einfachheit halber schreibe ich den Beweis ebenfalls noch in Wahrheitstafeln auf. Diese sind in den Tabellen 35 respektive 36 abgelegt. Die Verweise kannst Du bei Bedarf unter den Tabellen 37 sowie 38 nachschlagen.

TABELLE 36. 2. Beweis des verschärften Satzes der logischen Schlussfolgerung

Aussage/ Fall Nr.	$A \Rightarrow B$	$A \wedge (A \Rightarrow B)$	$A \wedge B$	$A \wedge (A \Rightarrow B) \Leftrightarrow A \wedge B$
1	$A \Rightarrow B$	$\neg (A \land (A \Rightarrow B))$	$\neg (A \land B)$	$A \land (A \Rightarrow B) \Leftrightarrow A \land B$
2	$A \Rightarrow B$	$\neg (A \land (A \Rightarrow B))$	$\neg (A \land B)$	$A \land (A \Rightarrow B) \Leftrightarrow A \land B$
3	$\neg (A \Rightarrow B)$	$\neg (A \land (A \Rightarrow B))$	$\neg (A \land B)$	$A \land (A \Rightarrow B) \Leftrightarrow A \land B$
4	$A \Rightarrow B$	$A \wedge (A \Rightarrow B)$	$A \wedge B$	$A \land (A \Rightarrow B) \Leftrightarrow A \land B$

TABELLE 37. 1. Teil der Verweise des verschärften Satzes der logischen Schlussfolgerung

Aussage/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 8.0.2 der Konjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile
4	4. Zeile	4. Zeile

TABELLE 38. 2. Teil der Verweise des verschärften Satzes der logischen Schlussfolgerung

Aussage/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 12.0.1 der Äquivalenz
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile

<includebackwardreferences>

<includeforwardreferences>

Es gilt auch noch eine entschärfte Variante des Satzes des Schlussfolgerung:

Satz 18. Es seien A und B Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$A \wedge (A \Leftrightarrow B) \Rightarrow B$$

Tabelle	39.	1.	Beweis	des	entschärften	Satzes	der	lo-
gischen Sc	hlus	sfo	lgerung					

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \wedge (A \Leftrightarrow B)$	$A \land (A \Leftrightarrow B) \Leftrightarrow B$
1	1	0	1
2	0	0	1
3	0	0	1
4	1	1	1

Beweis. Angenommen, die Aussage wäre nicht wahr. Dies könnte gemäß der Definition 9.0.1 nur dann der Fall, falls die Aussage

$$A \wedge (A \Leftrightarrow B)$$

wahr, die Aussage B jedoch nicht wahr wäre. Da die Aussage B jedoch nicht wahr sein darf, kann die Aussage A auch nicht wahr sein. Denn wäre die Aussage A wahr und die Aussage B nicht wahr, dann wäre gemäß der dritten Zeile der Definition 12.0.1 die Aussage

$$A \Leftrightarrow B$$

nicht wahr. Gemäß dem Minimumprinzip 8 der Konjunktion wäre dann

$$A \wedge (A \Leftrightarrow B)$$

ebenfalls nicht wahr - im Gegensatz zur Voraussetzung. Also dürfte dann die Aussage A nicht wahr sein. Wäre jedoch die Aussage A nicht wahr, dann wäre zwar die Aussage

$$A \Leftrightarrow B$$

gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenzrelation wahr. Denn gemäß der zweiten Zeile der Definition 8.0.2 der Konjunktion wäre in diesem Fall die Aussage

$$A \wedge (A \Leftrightarrow B)$$

nicht wahr - im Widerspruch zur Voraussetzung. Somit meine ich gezeigt zu haben, dass es nicht möglich ist, Aussagen mit den Bezeichnungen A und B derart zu finden, dass die gesamte Aussage der Behauptung nicht wahr ist. Gemäß dem Satz 12 des ausgeschlossenen Dritten meine ich darum folgern zu können, dass für alle Aussagen A sowie B die Behauptung richtig sein muss.

Ich möchte den Satz noch einmal mittels Wahrheitstabellen beweisen.

<includebackwardreferences>
<includeforwardreferences>

B

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \wedge (A \Leftrightarrow B)$	$A \land (A \Leftrightarrow B) \Leftrightarrow B$
1	$A \Leftrightarrow B$	$\neg (A \land (A \Leftrightarrow B))$	$A \land (A \Leftrightarrow B) \Leftrightarrow B$
2	$\neg A \Leftrightarrow B$	$\neg (A \land (A \Leftrightarrow B))$	$A \land (A \Leftrightarrow B) \Leftrightarrow B$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \land (A \Leftrightarrow B))$	$A \land (A \Leftrightarrow B) \Leftrightarrow B$
1	$\Lambda \mapsto R$	$\Lambda \wedge (\Lambda \leftrightarrow B)$	$A \wedge (A \Leftrightarrow B) \Leftrightarrow$

TABELLE 40. 2. Beweis des verschärften Satzes der logischen Schlussfolgerung

TABELLE 41. 1. Teil der Verweise des Beweis entschärfter Satz vom logischen Widerspruch

Aussage/	Definition 12.0.1	Definition 8.0.2	Definition 12.0.1
Fall Nr.	der	der	der
ran m.	Implikation	Konjunktion	Implikation
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

18.7. Was ist der "Satz vom logischen Widerspruch"?

Den Widerspruchsbeweis ist oben bereits vorgestellt worden (vergleiche mit der Aussage 18.0.2 oben). Er wird kann übrigens auch auf eine andere Art dargestellt werden:

Satz 19. Es seien A und B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)$$

Welche Form Du nimmst, um Dir ihn einzuprägen, sofern dies Dein Ziel ist, überlasse ich natürlich Dir. Nun möchte ich jedoch daran gehen, ihn Dir zu beweisen:

BEWEIS. Dies mache ich diesmal zuerst so, wie es üblicherweise ausgerechnet würde (vergleiche mit den Tabellen 42 respektive 43). Da nur zwei logische Variablen vorkommen, werde ich ich die Tabelle 4 für die Fälle verwenden.

TABELLE 42. 1. Teil 1. Beweis 1. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
1	1	1	1
2	1	0	0
3	0	1	1
4	0	0	1

TABELLE 43. 2. Teil 1. Beweis 1. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$B \Rightarrow A$	Behauptung
1	1	1
2	0	1
3	1	1
4	1	1

TABELLE 44. 1. Teil 2. Beweis 1. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
1	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
2	$\neg A$	$\neg (\neg B)$	$\neg ((\neg A) \Rightarrow (\neg B))$
3	$\neg (\neg A)$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
4	$\neg (\neg A)$	$\neg (\neg B)$	$(\neg A) \Rightarrow (\neg B)$

TABELLE 45. 2. Teil 2. Beweis 1. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$B \Rightarrow A$	$\begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array}$
1	$B \Rightarrow A$	$ \begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array} $
2	$\neg \left(B\Rightarrow A\right)$	$ \begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array} $
3	$B \Rightarrow A$	$ \begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array} $
4	$B \Rightarrow A$	$ \begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array} $

In den Tabellen 44 respektive 45 habe ich den Beweis des Satzes formaler aufgeschrieben. In den Tabellen 46 sowie 47 habe ich die Verweise des Beweises aufgeschrieben.

<includebackwardreferences>

<includeforwardreferences>

TABELLE 46. 1. Teil Verweise Beweis 1. Satz vom logischen Widerspruch

Defintion/	Definition 6.0.2 der	Definition 6.0.2 der	Definition 9.0.1 der
Fall Nr.	Negation	Negation	Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile

TABELLE 47. 2. Teil Verweise Beweis 1. Satz vom logischen Widerspruch

Definition/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile

Ich möchte trotzdem noch versuchen, sprachlich darzulegen, wieso der Satz logisch bewiesen werden könnte. Er wäre gemäß der Definition 9.0.1 der Implikation nur dann nicht wahr, falls es Aussagen A respektive B derart gäbe, so dass die Aussage

$$((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)$$

nicht wahr wäre. Die wäre dann der Fall, falls die Aussage

$$B \Rightarrow A$$

nicht wahr, die Aussage

$$(\neg A) \Rightarrow (\neg B)$$

jedoch wahr wäre. Die Aussage

$$B \Rightarrow A$$

kann wiederum gemäß der dritten Zeile der Definition 9.0.1 der Implikation nur dann nicht wahr sein, falls die Aussage B wahr, die Aussage A jedoch nicht wahr wäre. Da die Aussage B wahr sein müsste, wäre in diesem Fall wäre dann gemäß zweiten Zeile der Definition 6.0.2 der Negation die Aussage $\neg B$ nicht wahr. Weil die Aussage A nicht wahr sein könnte, müsste gemäß der ersten Zeile derselben Definition 6.0.2 der Negation die Aussage A jedoch wahr sein. Da nun die Aussage A

wahr sein müsste, die Aussage $\neg B$ jedoch nicht wahr könnte, könnte gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$(\neg A) \Rightarrow (\neg B)$$

ebenfalls nicht wahr sein. Da diese Aussage also nicht wahr sein könnte, müsste die gesamte Aussage

$$((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)$$

aufgrund der Abkürzungsregel 9 der Implikation eben trotzdem wahr sein. Darum meine ich schließen zu können, dass es keine entsprechende Aussagen A, B derart geben kann, dass die Aussage

$$((\neg A) \Rightarrow (\neg B)) \Rightarrow (B \Rightarrow A)$$

nicht wahr wäre. Gemäß dem Satz 12 des ausgeschlossenen Dritten glaube ich darum sagen zu können, dass die Behauptung für alle möglichen, sprich in sich und bezüglich den anderen Aussagen des Satzes widerspruchsfreien Aussagen wahr sein muss. Also meine ich, den Satz mit rein sprachlichen Mitteln noch einmal bewiesen zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Skeptikerinnen und Skeptiker der zweiwertigen Logik (vergleiche mit den Bemerkungen zum Satz 12 des ausgeschlossenen Dritten) verwenden diesen Satz übrigens nicht, da sie argumentieren, dass es noch andere Möglichkeit der Wahrheit gebe als bloß "wahr" und "nicht wahr" (oder noch schlimmer: als "falsch"). Ob Du den Widerspruchsbeweis ablehnst oder nicht, bleibt natürlich Dir überlassen. Obwohl der Weg über die Aussagen, welche sich nicht mit dem Widerspruchsbeweis beweisen lassen, immer "steiniger" ist als derjenige, welcher bequem den Widerspruchsbeweis benutzt. Ich werde ihn benutzen.

Ich möchte jetzt trotzdem noch den anderen Satz des logischen Widerspruchs formulieren und beweisen:

Satz 20. Es seien A und B Bezeichnungen von logischen Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei. Dann gilt die Aussage

$$(\neg A \Rightarrow \neg B) \land B \Rightarrow A$$

BEWEIS. Angenommen, die Aussage sei nicht wahr. Gemäß der dritten Zeile der Definition 9.0.1 wäre dies der Fall, falls die Aussage

$$(\neg A \Rightarrow \neg B) \land B$$

wahr, die Aussage A jedoch nicht wahr wäre. Da die Aussage A nicht wahr sein könnte, wäre gemäß der ersten Zeile der Definition 6.0.2 die Aussage $\neg A$ wahr. Da die Aussage

$$(\neg A \Rightarrow \neg B) \land B$$

TABELLE 48. 1. Teil 1. Beweis 2. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
1	1	1	1
2	1	0	0
3	0	1	1
4	0	0	1

TABELLE 49. 2. Teil 1. Beweis 2. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$((\neg A) \Rightarrow (\neg B)) \land B$	Behauptung
1	0	1
2	0	1
3	0	1
4	1	1

wahr sein müsste, müsste auch die Aussage B wahr sein. Ansonsten wäre gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(\neg A \Rightarrow \neg B) \land B$$

nicht wahr - im Widerspruch zur Voraussetzung. Da jedoch die Aussage B wahr sein müsste, wäre in diesem Fall die Aussage

$$\neg B$$

gemäß der zweiten Zeile der Definition 6.0.2 der Negation nicht wahr. Da nun die Aussage $\neg A$ wahr sein müsse, die Aussage $\neg B$ jedoch nicht wahr sein könnte, wäre die Aussage

$$\neg A \Rightarrow \neg B$$

gemäß der dritten Zeile der Definition 9.0.1 der Implikation nicht wahr und darum die Aussage

$$(\neg A \Rightarrow \neg B) \land B$$

gemäß dem Minimumprinzip entgegen der Voraussetzung eben trotzdem nicht wahr. Also folgere ich, dass es keine Aussagen A und B derart geben kann, so dass die Aussage

$$(\neg A \Rightarrow \neg B) \land B \Rightarrow A$$

nicht wahr sein kann. Gemäß dem Satz 12 des ausgeschlossenen Dritten muss darum diese Aussage für alle in sich widerspruchsfreien Aussagen A sowie B wahr sein. Darum meine ich an dieser Stelle, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Ich möchte den Beweis trotzdem noch einmal tabellarisch führen. Diesen habe ich in den

TABELLE 50. 1. Teil 2. Beweis 2. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
1	$\neg A$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
2	$\neg A$	$\neg (\neg B)$	$\neg ((\neg A) \Rightarrow (\neg B))$
3	$\neg (\neg A)$	$\neg B$	$(\neg A) \Rightarrow (\neg B)$
4	$\neg (\neg A)$	$\neg (\neg B)$	$(\neg A) \Rightarrow (\neg B)$

TABELLE 51. 2. Teil 2. Beweis 2. Satz vom logischen Widerspruch

Aussage/ Fall Nr.	$(B \Rightarrow A) \land B$	$((\neg A) \Rightarrow (\neg B)) \land B \Rightarrow B \Rightarrow A$
1	$\neg \left((B \Rightarrow A) \land B \right)$	$\begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array}$
2	$\neg \left((B \Rightarrow A) \land B \right)$	$\begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array}$
3	$\neg \left((B \Rightarrow A) \land B \right)$	$\begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array}$
4	$(B \Rightarrow A) \land B$	$\begin{array}{c} ((\neg A) \Rightarrow (\neg B)) \Rightarrow \\ B \Rightarrow A \end{array}$

TABELLE 52. 1. Teil Verweise Beweis 2. Satz vom logischen Widerspruch

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 6.0.2 der Negation	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile

In den Tabellen 50 respektive 51 habe ich den Beweis des Satzes formaler aufgeschrieben. In den Tabellen 52 sowie 53 habe ich die Verweise des Beweises aufgeschrieben.

<includebackwardreferences>

<includeforwardreferences>

Ich möchte nun eine kleine Anwendung des Satzes des logischen Widerspruchs aufschreiben. Es sei p eine gerade Zahl größer als Null, welche mit sich sich selbst multipliziert gerade und kleiner als 10 ist. Welche Zahl ist damit gemeint? Wenn von geraden Zahlen gesprochen wird, dann kannst Du davon ausgehen, dass damit mindestens ganze Zahlen (0, -1, 1, -2, 2, -3, 3, -4, 4) und so weiter) verwendet werden

Definition/	Definition 8.0.2	Definition 9.0.1
,	der	der
Fall Nr.	Konjunktion	Implikation
1	3. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile

4. Zeile

4. Zeile

4

TABELLE 53. 2. Teil Verweise Beweis 2. Satz vom logischen Widerspruch

sollen. Ich weiß, ich hätte das "fairerweise" bei der "Aufgabenstellung" sagen sollen. Eine gerade Zahl x ist eine solche, welche bei Division durch 2 keinen Rest besitzt. Genauer: Es gibt eine andere ganze Zahl y (y kann also den Wert 0, - 1, 1, -2, 2, -3, 3 und so weiter besitzen), so dass gilt: $y = 2 \cdot x$. Um zu finden, welche Zahl oder welche Zahlen gesucht sein könnten, gehe ich einmal den einfachen Weg und rechne es aus:

$$\begin{aligned}
1 \cdot 1 &= 1 \\
2 \cdot 2 &= 4 \\
3 \cdot 3 &= 9 \\
4 \cdot 4 &= 16 \\
5 \cdot 5 &= 25 \\
6 \cdot 6 &= 36 \\
7 \cdot 7 &= 49 \\
8 \cdot 8 &= 64 \\
9 \cdot 9 &= 81
\end{aligned}$$

Wie Du vermuten kannst (ich verzichte hier auf einen exakten Beweis, der wird später natürlich nachgeliefert), muss für alle ganzen Zahlen z, welche größer oder gleich 4 sind, gelten, dass $z \cdot z > 10$ ist. Dann bleiben noch 1, 2, respektive 3 als mögliche Kandidaten für die gesuchte Zahl übrig. Wäre die Zahl jetzt 1, dann dann wäre ihr Quadrat (also das Produkt von 1 mit sich selbst) wieder 1. Dies ist jedoch eine ungerade Zahl, denn

$$1 = 2 \cdot 0 + 1$$

Darum kann die gesuchte Zahl nicht 1 sein. Dies ist jetzt aber ein Beispiel für einen Widerspruchsbeweis, in dem die Aussage mit dem Symbol A ist: "1 ist nicht die gesuchte Zahl". B ist dann die Aussage: "Das Quadrat der Zahl 1 ist kleiner als 10 und gerade". Die Negation von der Aussage A ist: "Es gilt nicht, dass 1 nicht die gesuchte Zahl ist." Gemäß dem Satz 10 der doppelten Negation ist die Negation von A äquivalent zur Aussage: "1 ist die gesuchte Zahl". Die Negation der Aussage B lautet: "Es gilt nicht, dass das Quadrat von 1 kleiner als 10 und gerade ist". Da die Aussage B wahr ist (da das Quadrat von

1 ungerade ist), muss gemäß der Abkürzungsregel 9 der Implikation gelten, dass die Aussage

$$\neg A \Rightarrow \neg B$$

wahr. In Worten: "Ist 1 die gesuchte Zahl, dann gilt nicht, dass das Quadrat von 1 kleiner als 10 und gerade ist". Da ich jedoch annehme, dass die Aussage B gelten muss, kann ich gemäß der zweiten Version des Satzes 20 des Satzes des logischen Widerspruchs folgern, dass gilt

$$(\neg A \Rightarrow \neg B) \land B \Rightarrow A$$

In Worten: "Wäre die gesuchte Zahl 1 dann würde daraus folgern, dann wäre das Quadrat von 1 nicht zugleich kleiner 10 und gerade - im Gegensatz zur Voraussetzung. Daraus folgt, dass A nicht die gesuchte Zahl sein kann."

Natürlich wärst Du sicher auf darauf gekommen. Jedoch erscheint es mir zweckmäßig, dies exemplarisch für ein Beispiel zu demonstrieren. Nehme ich dagegen 2, dann ist das Quadrat der Zahl $(4=2\cdot 2)$ kleiner und gerade. Also habe ich eine Zahl gefunden, welche die gesuchten Eigenschaften bestimmt. Nehme ich jetzt 3, dann ist das Quadrat der Zahl zwar immer noch kleiner als 9, jedoch ist das Quadrat wieder ungerade $(9=2\cdot 4+1)$. Darum habe ich genau eine Zahl gefunden, welche die gewünschten Eingenschaften besitzt. Es hätte jedoch auch gut sein können, dass ich keine, mehrere oder beliebig viele Zahlen mit der gewünschten Eigenschaft gefunden hätte. Ich weiß übrigens nicht, wie ich auf die Schnelle einen Beweis finden könnte, welcher auf den Widerspruchsbeweis verzichtet.

18.8. Aus Konjunktion folgt Disjunktion

Ich habe im Kapitel 8 die Konjunktion und im Kapitel 11 die Disjunktion definiert. Dann gilt der folgende logische Satz:

Satz 21. (Konjunktions-Disjunktionssatz) Sind A respektive B Symbole für Aussagen, dann gilt:

$$(A \land B) \Rightarrow (A \lor B)$$

In der formalen Schreibweise wären die Klammern nicht notwendig, denn sowohl die Konjunktion wie auch die Disjunktion haben eine höhere Priorität als die Implikation ("Schlussfolgerung"). In Worten bedeutet dieser Satz: Falls die Aussagen A und B beide wahr sind, dann ist die Aussage A oder die Aussage B wahr. Ich nehme nicht an, dass Dich dieser Satz erstaunt. Er ist jedoch manchmal ganz nützlich. Dies ist eine eine Art "Abschätzung" der logischen Art. Diese Art der Abschätzung ist zwar recht grob, jedoch dennoch oftmals genügend. Wahrscheinlich widerspricht die Aussage ein wenig dem sogenannten "gesunden Menschenverstand", indem ich nicht mehr sage, dass die Aussage A und die Aussage B gelten, sondern nur noch, dass die Aussage A oder die

Aussage B gilt. Dann vermute ich, dass Du Dir sagst: "Warum soll jetzt A oder B gelten? Es gelten doch beide Aussagen". Eine Falle wäre es jedoch, wenn Du Dir denken würdest: "Dann gelten also entweder Aoder B, jedoch nicht beide Aussagen". Nein, so ist es nicht gemeint. Falls A und B wahre Aussagen sind, dann gilt die Aussage A, oder es gilt die Aussage B, oder es gelten die Aussagen A und B. Ich mache ein Beispiel. Es sei A das Symbol der Aussage: "Viele Menschen können sehen". B sei das Symbol der Aussage: "Viele Menschen können hören". Da sowohl die Aussage A wie auch die Aussage B m.E.¹⁶ wahr sind sind, gilt die Konjunktion der beiden Aussagen $(A \wedge B)$. Dann gilt aber auch die Disjunktion der beiden Aussage $(A \vee B)$, ausformuliert: "Viele Menschen können sehen oder viele Menschen können hören". Sprachlich würde das wohl eher so umformuliert: Viele Menschen können sehen oder hören. Eventuell regt sich bei Dir Widerstand in dem Sinn, als Du Dich fragst: Wieso soll ich davon reden, dass viele Menschen sehen oder hören können, wenn viele Menschen sehen und hören können? Aber das hat schon seinen Grund, wie ich später darzulegen versuche.

Jetzt möchte ich zeigen, wie dieser Satz hergeleitet werden könnte:

BEWEIS. Da ich ein einfaches Gemüt bin, möchte ich zuerst wieder einmal mit einem Widerspruchsbeweis die Richtigkeit des Satzes herleiten. Angenommen, der Satz wäre nicht wahr. Dann müsste aufgrund der dritten Zeile der Definition 9.0.1 der Implikation die Aussage $A \vee B$ nicht wahr, die Aussage $A \wedge B$ jedoch wahr sein. Dies ist jedoch nicht möglich. Denn die Aussage $A \vee B$ ist gemäß der Definition 11.0.1 genau dann nicht wahr, falls sowohl A wie auch B nicht wahr sind. Dann ist jedoch die Aussage $A \wedge B$ gemäß der ersten Zeile der Definition 8.0.2 der Konjunktion ebenfalls nicht wahr. Also ist auch in diesem Fall die Aussage $(A \wedge B) \Rightarrow (A \vee B)$ gemäß der ersten Zeile der Definition 11.0.1 wieder wahr. In anderen Fällen ist entweder A oder B wahr. Somit ist gemäß des Maximumprinzip 11 der Disjunktion bereits wahr. Also ist gemäß der Abkürzungsregel 9 der Implikation die Behauptung bereits wieder bewiesen.

Nun gut, vielleicht traust Du meinem Geplapper nicht. Darum möchte ich den Beweis noch auf die "hirnlose Art" führen. In der Tabelle 54 habe ich den Beweis so aufgeschrieben, wie Du ihn wahrscheinlich in den seriösen Mathebüchern finden könntest. Tabelle 55 zeigt einen Beweis auf meine Art. In der Tabelle 56 habe ich die Definitionen aufgeschrieben, welche für den Beweis verwendet wurden. Da ich oben ein Beispiel für den Satz gemacht habe, verzichte ich darauf, noch eine Anwendung des Satzes zu zeigen.

<includebackwardreferences>
<includeforwardreferences>

¹⁶,,m.E." ist die Abkürzung für "meines Erachtens"

TABELLE 54. 1. Beweis Folgerung der Disjunktion aufgrund der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \vee B$	$(A \land B) \Rightarrow (A \lor B)$
1	0	0	1
2	0	1	1
3	0	1	1
4	1	1	1

TABELLE 55. 2. Beweis Folgerung der Disjunktion aufgrund der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \vee B$	$(A \land B) \Rightarrow (A \lor B)$
1	$\neg (A \land B)$	$\neg (A \lor B)$	$(A \land B) \Rightarrow (A \lor B)$
2	$\neg (A \land B)$	$A \vee B$	$(A \land B) \Rightarrow (A \lor B)$
3	$\neg (A \land B)$	$A \vee B$	$(A \land B) \Rightarrow (A \lor B)$
4	$A \wedge B$	$A \vee B$	$(A \land B) \Rightarrow (A \lor B)$

TABELLE 56. Verweise Beweis Folgerung der Disjunktion aufgrund der Konjunktion

Definition/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 11.0.1 der Disjunktion	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile	2. Zeile
4	4. Zeile	4. Zeile	4. Zeile

Ich werde noch ein paar Sätze auflisten, welche ich verwenden werde. Ich habe jedoch bei der Überarbeitung des Textes bemerkt, dass mir die Beispiele der Anwendungen der Sätze ausgegangen sind. Nun kommt insofern eine "Durststrecke", als ich in einem ersten Schritt die logischen Sätze bloß aufschreibe. Falls Du diese Zeilen überfliegst, dann wird dies eine Glaubensfrage der anderen Art. Ich hoffe, dass Du mir glaubst, dass es Sinn macht, diese logischen Sätze aufzulisten, weil ich davon überzeugt bin, dass sie auch gegebenenfalls sinnvoll eingesetzt werden können. Jedoch fühle ich mich im Moment ausschließlich in der Lage, Dir die Sätze anzugeben, jedoch nicht, anzugeben, ob und wenn ja diese auch angewendet werden.

18.9. Äquivalenz, Implikation und Replikation

Oder auf eine andere Art formuliert: Was ist der Satz der Äquivalenz von Äquivalenz einerseits und einer Implikation und einer Replikation andererseits? Was immer es ist: Die Bezeichnung des logischen Satzes ist eine ad Hoc Bezeichnung. Dies bedeutet, dass Du diesen Satz so nicht in der mathematischen Literatur finden wirst. Gemeint ist der folgende logische Satz:

Satz 22. Es seien A und B Symbole für zwei Aussagen. Dann gilt

$$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (A \Leftarrow B))$$

BEWEIS. Angenommen, die Äquivalenz $A \Leftrightarrow B$ sei wahr. Dann können die Aussagen A und B gemäß der Definition 12.0.1 der Äquivalenz beide wahr oder nicht wahr sein. Sind beide Aussagen wahr, dann gelten gemäß der vierten Zeilen der Definitionen 9.0.1 der Schlussfolgerung sowie der Definition 10.0.2 der Replikation sowohl die Aussagen

$$A \Rightarrow B$$

und

$$A \Leftarrow B$$

Das bedeutet, dass in diesem Fall gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion der Aussagen ebenfalls wahr sein muss. In diesem Fall ist also die Aussage

$$(A \Rightarrow B) \land (A \Leftarrow B)$$

wahr. Gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz ist die gesamte Aussage

$$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (A \Leftarrow B))$$

ebenfalls wahr und dieser Fall bewiesen.

Sind A und B jedoch nicht wahr, dann gelten gemäß der ersten Zeilen der Definitionen 9.0.1 der Implikation wie auch der Definition 10.0.2 der Replikation die Aussagen

$$A \Rightarrow B$$

und

$$A \Leftarrow B$$

Somit kann ich wiederum folgern, dass in diesem Fall ebenfalls gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion der Aussagen ebenfalls wahr sein muss. In diesem Fall ist also erneut die Aussage

$$(A \Rightarrow B) \land (A \Leftarrow B)$$

wahr. Gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz ist die gesamte Aussage

$$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (A \Leftarrow B))$$

TABELLE 57. 1. Teil 1. Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$A \Leftarrow B$	$(A \Rightarrow B) \land (A \Leftarrow B)$
1	1	1	1	1
2	0	1	0	0
3	0	0	1	0
4	1	1	1	1

TABELLE 58. 2. Teil 1. Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Aussage/ Fall Nr.	$(A \Leftrightarrow B) \Leftrightarrow ((A \Rightarrow B) \land (A \Leftarrow B))$
1	1
2	1
3	1
4	1

ebenfalls wiederum wahr und dieser ebenfalls Fall bewiesen.

Nun sei die Äquivalenz $A \Leftrightarrow B$ nicht wahr. Dann muss gemäß der Definition der Äquivalenz eine der beiden Aussagen wahr, die andere jedoch nicht wahr sein. Ist die Aussage A nicht wahr, die Aussage B jedoch schon, dann ist die Replikation $A \Leftarrow B$ gemäß der zweiten Zeile der Definition 10.0.2 der Replikation nicht wahr. Ist die Aussage A jedoch wahr, die Aussage B hingegen nicht, dann ist gemäß der Definition 9.0.1 der Implikation die Aussage $A \Rightarrow B$ nicht wahr. Das bedeutet aufgrund des Minimumprinzip B der Konjunktion, dass die Konjunktion der beiden Aussagen in diesen Fällen ebenfalls nicht wahr sein kann. Da jedoch die Aussage $A \Rightarrow B$ in diesem Fall ebenfalls nicht wahr ist, ist die gesamte Aussage der Äquivalenz von Äquivalenz und Implikation wiederum wahr. Damit wäre der Beweis erbracht.

Nun ist es gut möglich, dass Du mir entweder nicht folgen willst oder nicht kannst, weil Du meine Formulierungen zu umständlich findest. In diesem Fall empfehle ich Dir, die Tabellen 57 bis 60 zu überfliegen, in welchen die Aussagen zusammen mit den Verweisen auf die entsprechenden Definitionen noch einmal aufgeführt sind.

<includebackwardreferences>

<includeforwardreferences>

Wieder mache ich ein Beispiel zum Beweis: Es seien M und N zwei Mengen. Dann sind diese Mengen genau dann gleich, falls jedes Element der ersten Menge in der zweiten Menge und jedes Element der zweiten

TABELLE 59. 1. Teil 2. Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$A \Leftarrow B$
1	$A \Leftrightarrow B$	$A \Rightarrow B$	$A \Leftarrow B$
2	$\neg (A \Leftrightarrow B)$	$A \Rightarrow B$	$\neg (A \Leftarrow B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \Rightarrow B)$	$A \Leftarrow B$
4	$A \Leftrightarrow B$	$A \Rightarrow B$	$A \Leftarrow B$

TABELLE 60. 2. Teil 2. Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (A \Leftarrow B)$	$(A \Leftrightarrow B) ((A \Rightarrow B) \land (A \Leftarrow B))$	\Leftrightarrow
1	$(A \Rightarrow B) \land (A \Leftarrow B)$	$(A \Leftrightarrow B) ((A \Rightarrow B) \land (A \Leftarrow B))$	\Leftrightarrow
2	$\neg ((A \Rightarrow B) \land (A \Leftarrow B))$	$(A \Leftrightarrow B) ((A \Rightarrow B) \land (A \Leftarrow B))$	\Leftrightarrow
3	$\neg ((A \Rightarrow B) \land (A \Leftarrow B))$	$(A \Leftrightarrow B)$ $((A \Rightarrow B) \land (A \Leftarrow B))$	\Leftrightarrow
4	$(A \Rightarrow B) \land (A \Leftarrow B)$	$(A \Leftrightarrow B) ((A \Rightarrow B) \land (A \Leftarrow B))$	\Leftrightarrow

TABELLE 61. 1. Tabelle Verweise Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Definition/	Definition 12.0.1	Definition 9.0.1	Definition 10.0.2
Fall Nr.	der	der	der
rall M.	Äquivalenz	Implikation	Replikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile	3. Zeile
4	4. Zeile	4. Zeile	4. Zeile

Menge in der ersten Menge ist. Es ist gut möglich, dass Du auf die Schnelle nicht begreifst, was der Satz der Äquivalenz von Äquivalenz und zwei Implikationen mit der Mengengleichheit verbinden soll. Dies werde ich an anderer Stelle zu zeigen versuchen. An dieser Stelle sei einfach gesagt, dass der logische Satz für die Beweistechnik unentbehrlich ist. Denn dadurch wird es möglich, zu zeigen, dass zwei Aussagen logisch gleichwertig und in diesem Sinn eben äquivalent sind. Der Satz ist irgendwie vertrackt. Denn im Unterschied zu den meisten logischen Sätzen vorher verwendet er keine Schlussfolgerung als Verknüpfung der

TABELLE 62. 2. Tabelle Verweise Beweis Äquivalenz von Äquivalenz und zwei Implikationen

Definition/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 12.0.1 der Äquivalenz
1	4. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile

TABELLE 63. 1. Beweis des Satzes der Äquivalenz von Implikation und Replikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Leftarrow A$	Behauptung
1	1	1	1
2	1	1	1
3	0	0	1
4	1	1	1

zwei Teile der übergeordneten Aussage, sondern eine Äquivalenz. Denn diese Äquivalenz, und das ist eben der Witz am Ganzen, sind ja aufgrund des Satzes eine Implikation und eine Replikation.

18.10. Zusammenhang Implikation und Replikation

Dieses Kapitel ist eigentlich überflüssig. Aber ich möchte Dir trotzdem zeigen, dass folgender Satz gilt:

SATZ 23. Es seien $A, B \in \Omega$, also Symbolen von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei sein. Dann gilt

$$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$$

Beweis. Der Beweis ist in den Tabellen 63 sowie 64, die Verweise unter der Tabelle 65 abgelegt.

<includebackwardreferences>

<includeforwardreferences>

Dieser Satz ist die Einlösung einer meiner schier unzähligen Versprechen, welche ich im Verlauf meines bisherigen Lebens gegeben und in erdrückend großer Anzahl nicht eingelöst habe. Ich habe bei der Definition der Replikation bei der Aussage 10.0.1 angekündigt, dass ich diesen Zusammenhang noch einmal erbringen möchte. Dies hätte

Tabelle 64.	2. Beweis d	les Satzes	der	Äquivalenz	von
Implikation un	ıd Replikatio	on			

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Leftarrow A$	Behauptung
1	$A \Rightarrow B$	$B \Leftarrow A$	$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$
2	$A \Rightarrow B$	$B \Leftarrow A$	$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$
3	$\neg (A \Rightarrow B)$	$\neg (B \Leftarrow A)$	$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$
4	$A \Rightarrow B$	$B \Leftarrow A$	$(A \Rightarrow B) \Leftrightarrow (B \Leftarrow A)$

TABELLE 65. Verweise Beweis des Satzes der Äquivalenz von Implikation und Replikation

Definition/	Definition 9.0.1 der	Definition 10.0.2 der	Definition 12.0.1 der
Fall Nr.	Implikation	Replikation	Äquivalenz
1	1. Zeile	1. Zeile	4. Zeile
2	2. Zeile	3. Zeile	4. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

ich hiermit getan. Auch dieser Satz besitzt übrigens eine alternative Formulierung:

Satz 24. Es seien A und B Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \Leftarrow B) \Leftrightarrow (\neg A \Rightarrow \neg B)$$

BEWEIS. Die Replikation ist gemäß der Definition 10.0.2 der Replikation genau dann nicht wahr, falls die Aussage A nicht wahr, die Aussage B jedoch wahr ist. Die Aussage

$$\neg A \Rightarrow \neg B$$

ist gemäß der Definition 9.0.1 genau dann nicht wahr, falls die Aussage $\neg A$ wahr, die Aussagen $\neg B$ jedoch nicht wahr ist. Die Aussagen $\neg A$ ist gemäß der Definition 6.0.2 der Negation genau dann wahr, falls die Aussage A nicht wahr ist. Die Aussage $\neg B$ ist gemäß der Definition 6.0.2 der Negation genau dann nicht wahr, falls die Aussage B wahr ist. Somit ist die Aussage

$$\neg A \Rightarrow \neg B$$

genau dann nicht wahr, falls die Aussage A nicht wahr, die Aussage B jedoch wahr ist. Das ist jedoch genau der gleiche Fall, in welchem

TABELLE 66. 1. Teil 1. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$\neg A$	$\neg B$
1	1	1	1
2	0	1	0
3	1	0	1
4	1	0	0

TABELLE 67. 2. Teil 1. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation

Aussage/ Fall Nr.	$\neg A \Rightarrow \neg B$	Behauptung
1	1	1
2	0	1
3	1	1
4	1	1

TABELLE 68. 1. Teil 2. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$\neg A$	$\neg B$
1	$A \Leftarrow B$	$\neg A$	$\neg B$
2	$\neg (A \Leftarrow B)$	$\neg A$	$\neg (\neg B)$
3	$A \Leftarrow B$	$\neg (\neg A)$	$\neg B$
4	$A \Leftarrow B$	$\neg (\neg A)$	$\neg (\neg B)$

die Replikation von B nach A nicht wahr ist. Also muss gemäß dem Äquivalenz-Negationssatz 60 auch die Äquivalenz

$$(A \Leftarrow B) \Leftrightarrow (\neg A \Rightarrow \neg B)$$

wahr sein. Damit meine ich jedoch den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Jedoch habe ich (ohne es ausdrücklich zu schreiben) den abgeschwächten Satz 11 der doppelten Negation verwendet, indem ich schließe, das alle Aussagen wahr sind, falls ich zeigen kann, dass sie nicht nicht wahr sind.

Damit ich mich nicht verrechne, möchte ich den Beweis noch einmal berechnen. Diesen Beweis habe ich einerseits in den Tabellen 66 sowie 67 und andererseits in den Tabellen 67 sowie 69 abgelegt. Schlussendlich sind in den Tabellen 69 sowie 71 die Verweise abgelegt.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 69. 2. Teil 2. Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation

Aussage/ Fall Nr.	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ (\neg A \Rightarrow \neg B) \end{array} $
1	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ (\neg A \Rightarrow \neg B) \end{array} $
2	$\neg \left(\neg A \Rightarrow \neg B \right)$	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ (\neg A \Rightarrow \neg B) \end{array} $
3	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ (\neg A \Rightarrow \neg B) \end{array} $
4	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Leftarrow B) & \Leftrightarrow \\ (\neg A \Rightarrow \neg B) \end{array} $

TABELLE 70. 1. Teil Verweise Beweis des alternativen Satzes des Zusammenhangs von Replikation und Implikation

Definition/ Fall Nr.	Definition 9.0.1 der Replikation	Definition 6.0.2 der Negation	Definition 6.0.2 der Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

TABELLE 71. 2. Teil Verweise Beweis des Zusammenhangs von Implikation und Replikation

Definition/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 12.0.1 der Negation
1	4. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	4. Zeile
4	1. Zeile	4. Zeile

Als nächstes möchte ich Distributivgesetze in der Logik besprechen. Ich hoffe, Du findest das auch ein wenig interessant.

18.11. Distributivgesetz von Implikation und Konjunktion

Was ist ein Distributivgesetz? Ich habe kurz nachgeschaut, was "distributiv" bedeutet. So wie ich es gesehen habe, bedeutet dies in etwa so viel wie "die Verteilung betreffend". Das Distributivgesetz kann meines

Tabelle	72. 1. Te	il 1. Bew	eis des	Satzes	der	Kommu-
tation von	Implikat	on und I	Konjunk	tion		

Aussage/ Fall Nr.	$B \wedge C$	$\begin{array}{c} A \Rightarrow \\ B \wedge C \end{array}$	$A \Rightarrow B$
1	0	1	1
2	0	1	1
3	0	1	1
4	1	1	1
5	0	0	0
6	0	0	0
7	0	0	1
8	1	1	1

Erachtens am Besten mit der Addition und Multiplikation von Zahlen gezeigt werden. Es gilt beispielsweise

$$5 \cdot (1+2) = 5 \cdot 3 = 15$$

Jedoch ist auch auch

$$5 \cdot (1+2) = 5 \cdot 1 + 5 \cdot 2 = 5 + 10 = 15$$

Also kommt es nicht darauf an, ob ich zuerst 1+2 addiere und dann mit 5 multipliziere oder zuerst 5 mit 1 multipliziere, 5 mit 2 multipliziere und dann addiere. Also verhält sich sozusagen die Multiplikation ähnlich wie die Implikation und die Addition ähnlich wie die Konjunktion. Doch wie lautet jetzt der Satz genau?

Satz 25. Es seien jetzt A, B respektive C Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Rightarrow (B \land C)) \Leftrightarrow ((A \Rightarrow B) \land (A \Rightarrow C))$$

Das bedeutet, dass aus der Aussage A die Aussagen B und C genau dann folgen, falls aus der Aussage A die Aussage B und aus der Aussage A die Aussage C folgt. Ich kann die Reihenfolge der Implikation und der Konjunktion miteinander vertauschen. Es kommt also nicht darauf an, ob ich zuerst die Konjunktion der Aussagen B und C beweise und anschließend zeige, dass die Implikation der Aussage A zur Konjunktion von B und C gilt, oder ob ich zuerst zeige, dass die Aussage A sowohl die Aussage B wie auch die Aussage C impliziert.

BEWEIS. Um die Behauptung der Äquivalenz zu beweisen, stelle ich wieder die Wahrheitstafeln auf: Für die Beweise siehe Tabellen 72 sowie 73 einerseits für den einen sowie die Tabellen 74 und 75 andererseits für den anderen Beweis. Für die Verweise siehe Tabellen 76 sowie 77. Und wie steht es mit den Klammern, braucht es diese? Ja, diese sind

TABELLE 73. 2. Teil 1. Beweis des Satzes der Kommutation von Implikation und Konjunktion

Aussage/ Fall Nr.	$A \Rightarrow C$	$(A \Rightarrow B) \land (A \Rightarrow C)$	Behauptung
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	0	0	1
6	1	0	1
7	0	0	1
8	1	1	1

TABELLE 74. 1. Teil 2. Beweis des Satzes der Kommutation von Implikation und Konjunktion

Aussage/ Fall Nr.	$B \wedge C$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$
1	$\neg (B \land C)$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$
2	$\neg (B \land C)$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$
3	$\neg (B \land C)$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$
4	$B \wedge C$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$
5	$\neg (B \land C)$	$\neg (A \Rightarrow (B \land C))$	$\neg (A \Rightarrow B)$	$\neg (A \Rightarrow C)$
6	$\neg (B \land C)$	$\neg (A \Rightarrow (B \land C))$	$\neg (A \Rightarrow B)$	$A \Rightarrow C$
7	$\neg (B \land C)$	$\neg (A \Rightarrow (B \land C))$	$A \Rightarrow B$	$\neg (A \Rightarrow C)$
8	$B \wedge C$	$A \Rightarrow (B \land C)$	$A \Rightarrow B$	$A \Rightarrow C$

nötig. Ich möchte den Beweis unter dem Lemma?? erbringen, weil er recht aufwändig, jedoch ziemlich unergiebig ist.

Ich möchte den Beweis noch mit Worten führen. Die Aussage $A\Rightarrow (B\wedge C)$ ist gemäß der dritten Zeile der Definition 9.0.1 genau dann nicht wahr, falls die Aussage A wahr und die Aussage $B\wedge C$ nicht wahr ist. Die Aussage $B\wedge C$ ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion genau dann nicht wahr, falls die Aussage B oder B oder B nicht wahr sind. Dann ist also die Aussage $A \Rightarrow (B\wedge C)$ also genau dann nicht wahr, falls die Aussage B wahr ist, die Aussagen B oder B genau dann nicht wahr, falls die Aussage B wahr und die Aussage B nicht wahr ist. Die Aussage B ist genau dann nicht wahr, falls die Aussage B nicht wahr ist. Die Aussage B nicht wahr ist. Also ist der Ausdruck B0 B1 genau dann nicht wahr, falls die Aussage B2 genau dann nicht wahr, falls die Aussage B3 genau dann nicht wahr, falls die Aussage B4 wahr wahr ist, die Aussage B5 gedoch nicht, oder aber falls die Aussage B5 wahr ist, die Aussage B6 jedoch nicht. Damit die gesamte Aussage nicht wahr ist, muss also die Aussage B3 auf jeden Fall

TABELLE 75. 2. Teil 2. Beweis des Satzes der Kommutation von Implikation und Konjunktion

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
1	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
2	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
3	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
4	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
5	$\neg ((A \Rightarrow B) \land (A \Rightarrow C))$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
6	$\neg ((A \Rightarrow B) \land (A \Rightarrow C))$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
7	$\neg ((A \Rightarrow B) \land (A \Rightarrow C))$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow
8	$(A \Rightarrow B) \land (A \Rightarrow C)$	$(A \Rightarrow (B \land C))$ $((A \Rightarrow B) \land (A \Rightarrow C))$	\Leftrightarrow

TABELLE 76. 1. Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Konjunktion

Definition/	Definition 8.0.2	Definition 9.0.1	Definition 9.0.1
Fall Nr.	der	der	der
ran w.	Konjunktion	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	1. Zeile
3	3. Zeile	1. Zeile	2. Zeile
4	4. Zeile	2. Zeile	2. Zeile
5	1. Zeile	3. Zeile	3. Zeile
6	2. Zeile	3. Zeile	3. Zeile
7	3. Zeile	3. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

wahr sein. Weiter können eine der Aussagen B oder C nicht wahr sein. Dies sind jedoch die genau gleichen Fälle, in welchen $A \Rightarrow (B \land C)$ nicht wahr sind. Wenn ich mit dem abgeschwächten Satz 13 des ausgeschlossenen Dritten argumentiere, dass alle Aussage wahr sein müssen, falls sie nicht wahr sein können, kann ich den Beweis der Behauptung als bewiesen betrachten. Darum erlaube ich mir an dieser Stelle, auf

Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Konjunktion

Definition/	Definition 8.0.2	Definition 8.0.2	Definition 12.0.1
Fall Nr.	der	der	der
ran m.	Konjunktion	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	4. Zeile	4. Zeile
3	1. Zeile	4. Zeile	4. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	1. Zeile
6	4. Zeile	2. Zeile	1. Zeile
7	3. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

die weitere Beweisführung zu verzichten (um es so kompliziert auszudrücken). Oder auf gut Deutsch: Darum ist der Beweis beendet.

<includebackwardreferences>

<includeforwardreferences>

Nun, ich muss gestehen, dass mir im Moment keine Anwendung dieses Satzes einfällt. Aber vielleicht stoße ich noch auf eine Anwendung dieses Satzes, wer weiß? Falls Du ein Satz kennenlernen möchtest, in welchem zwei Operationen nicht einem Distributivgesetz folgen, dann möchte ich Dich auf den Satz 27 verweisen.

Jedoch, und das finde ich ein wenig verwirrend, gehorcht die Kombination von Implikation und Disjunktion ebenfalls dem Distributivgesetz. Das möchte ich im nächsten Abschnitt beschreiben.

18.12. Distributivgesetz von Implikation und Disjunktion

Auch dieser Satz verhält sich so, wie Du es Dir wahrscheinlich vorstellst. Er funktioniert genau gleich wie derjenige Satz, welchen ich im vorhergehenden Abschnitt vorgestellt habe. Jedoch mit dem Unterschied, dass anstelle der Konjunktion die Disjunktion verwendet wird:

Satz 26. Es seien A, B sowie C die Metasymbole dreier beliebigen Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gehorcht die Kombination der Implikation und Disjunktion dem Distributivgesetz. Es gilt also:

$$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$$

Es spielt also wiederum keine Rolle, ob ich zeige, dass aus der Aussage A die Aussage B oder aus der Aussage A die Aussage C folgt, oder ob ich zeige, dass aus der Aussage A die Aussage B oder die Aussage C folgt. Wieder interessiere ich mich eigentlich mehr dafür, wieso dies funktioniert, als dass es mir wichtig ist, zu zeigen, dass es funktioniert. Darum möchte ich für einmal zuerst den sprachlichen Beweis erbringen und erst anschließend den Beweis mittels Wahrheitstabellen aufschreiben:

Beweis. Die Implikation

$$A \Rightarrow (B \lor C)$$

ist gemäß der der dritten Zeile der Definition 9.0.1 der Implikation genau dann nicht gültig, falls die Aussage A wahr ist, jedoch sowohl die Aussage $B \vee C$ nicht wahr ist. Gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion ist die Aussage $A \vee B$ genau dann nicht wahr, falls weder die Aussage A noch die Aussage B wahr sind. Darum muss ich jetzt zeigen, dass genau in diesem Fall die Aussage

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

nicht wahr ist. Ist die Aussage A wahr, sind jedoch die Aussagen B und C nicht wahr, dann sind nach der dritten Zeile der Definition 9.0.1 der Implikation sowohl die Aussage

$$A \Rightarrow B$$

wie auch die Aussage

$$A \Rightarrow C$$

nicht wahr. Also ist nach der ersten Zeile der Definition 11.0.1 der Disjunktion die Aussage

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

nicht wahr. Ich möchte nun überlegen, unter welchen Umständen die Aussage

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

nicht wahr ist. Gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion ist diese Aussage genau dann nicht wahr, falls weder die Aussage $A\Rightarrow B$ noch die Aussage $A\Rightarrow C$ wahr ist. Die Aussage

$$A \Rightarrow B$$

ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation genau dann nicht wahr, falls die Aussage A wahr ist, die Aussage B jedoch nicht wahr ist. Ebenso ist die Aussage

$$A \Rightarrow C$$

gemäß der gleichen dritten Zeile der Definition 9.0.1 der Implikation genau dann nicht wahr, falls die Aussage A wahr, die Aussage C jedoch nicht wahr ist. Also ist der einzige Fall, in welchem die Aussage

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

Tabelle 78. 1. Teil 1. Beweis des Satzes der Kommutation von Implikation und Disjunktion

Aussage/ Fall Nr.	$B \vee C$	$A \Rightarrow B \lor C$	$A \Rightarrow B$
1	0	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	0	0	0
6	1	1	0
7	1	1	1
8	1	1	1

nicht wahr ist, derjenige, in welchem die Aussage A wahr ist, die Aussagen B sowie C jedoch nicht wahr sind. Das ist jedoch genau der gleiche Fall, in welchem die Aussage

$$A \Rightarrow (B \lor C)$$

nicht wahr ist. Gemäß dem abgeschwächten Satz 13 des ausgeschlossenen Dritten behaupte ich, dass die Aussagen genau dann wahr sein müssen, falls ich zeigen kann, dass sie nicht nicht wahr sein können. Also meine ich, dass die beiden Aussagen

$$A \Rightarrow (B \lor C)$$

sowie

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

gleichbedeutend (äquivalent) sind. Also glaube ich, damit zeigen zu können, dass in den gleichen Fällen die Aussagen

$$A \Rightarrow (B \lor C)$$

sowie

$$(A \Rightarrow B) \lor (A \Rightarrow C)$$

wahr respektive nicht wahr sind. Somit folgere ich daraus, dass die beiden Aussagen äquivalent sein müssen. Darum meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Aber ich möchte jetzt den ganzen Beweis trotzdem noch einmal mittels Wahrheitstafeln aufschreiben (vergleiche mit den Tabelle 78 sowie Tabelle 79). Wenn die Behauptung bewiesen wird, indem die Aussagen hingeschrieben werden, dann gilt der Beweis, so wie er in den Tabellen 80 sowie 81 aufgeschrieben ist. Die Verweise der Beweise werden in den Tabellen 82 sowie 83 aufgelistet. Weil ich glaube, den Beweis noch einmal erbracht zu haben, beende ich an dieser Stelle die weitere Beweisführung.

Tabelle	79. 2	. Teil 1.	Beweis	des	Satzes	der	Kommu-
tation von	Impli	kation u	ınd Disj	unkt	tion		

Aussage/ Fall Nr.	$A \Rightarrow C$	$(A \Rightarrow B) \lor (A \Rightarrow C)$	Behauptung
1	1	1	1
2	1	1	1
3	1	1	1
4	1	1	1
5	0	0	1
6	1	1	1
7	0	1	1
8	1	1	1

TABELLE 80. 1. Teil 2. Beweis des Satzes der Kommutation von Implikation und Disjunktion

Aussage/ Fall Nr.	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$
1	$\neg (B \lor C)$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$
2	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$
3	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$
4	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$
5	$\neg (B \lor C)$	$\neg (A \Rightarrow (B \lor C))$	$\neg (A \Rightarrow B)$	$\neg (A \Rightarrow C)$
6	$B \lor C$	$A \Rightarrow (B \lor C)$	$\neg (A \Rightarrow B)$	$A \Rightarrow C$
7	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$\neg (A \Rightarrow C)$
8	$B \lor C$	$A \Rightarrow (B \lor C)$	$A \Rightarrow B$	$A \Rightarrow C$

<includebackwardreferences>

Auch für diesen Satz muss ich im Moment passen, wenn es um ein gutes Beispiel gehen sollte. Ich hoffe, ich werde dies zu gegebener Zeit nachholen können.

Nun kommt sozusagen mein Lieblingssatz, wenn es um logische Sätze geht. Denn einerseits besitzt dieser Satz meines Erachtens eine wirklich wichtige Anwendung. Andererseits verblüfft er mich, weil er eine Disjunktion sozusagen in eine Konjunktion "verwandelt". Jedoch lässt sich bekanntlich über den Geschmack vortrefflich streiten. Und ich hoffe selbstverständlich, dass Du nicht Deine Nase rümpfst, falls ich von einem "Lieblingssatz" schreibe.

18.13. Disjunktion, Implikation und Konjunktion

Ich persönlich finde den nächsten Abschnitt insofern interessant, als er einen Weg zeigt, wie für alle Elemente einer Menge eine Aussage bewiesen werden kann. Doch ich möchte zuerst ein wenig ausholen:

<includeforwardreferences>

TABELLE 81. 2. Teil 2. Beweis des Satzes der Kommutation von Implikation und Disjunktion

Aussage/ Fall Nr.	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
1	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
2	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
3	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
4	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
5	$\neg ((A \Rightarrow B) \lor (A \Rightarrow C))$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
6	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
7	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$
8	$(A \Rightarrow B) \lor (A \Rightarrow C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \Rightarrow B) \lor (A \Rightarrow C))$

TABELLE 82. 1. Tabelle Verweise Beweis des Satzes der Kommutation von Implikation und Disjunktion

Definition/	Definition 11.0.1	Definition 9.0.1	Definition 9.0.1
Fall Nr.	der	der	der
rall IVI.	Disjunktion	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile	2. Zeile
4	4. Zeile	2. Zeile	2. Zeile
5	1. Zeile	3. Zeile	3. Zeile
6	2. Zeile	4. Zeile	3. Zeile
7	3. Zeile	4. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Satz 27. Es seien A, B und C Metasymbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Also gilt

$$((A \lor B) \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C))$$

Tabelle 83.	2. Tabelle Verweise Beweis des Satzes der
Kommutation	von Implikation und Disjunktion

Definition/	Definition 11.0.1 der	Definition 8.0.2 der	Definition 12.0.1 der
Fall Nr.	Disjunktion	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	4. Zeile	4. Zeile
3	1. Zeile	4. Zeile	4. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	1. Zeile
6	4. Zeile	2. Zeile	4. Zeile
7	3. Zeile	3. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Beweis. Ich möchte mir die Fälle überlegen, in welchen die Aussage

$$(A \lor B) \Rightarrow C$$

und die Aussage

$$(A \Rightarrow C) \land (B \Rightarrow C)$$

nicht wahr sind und dann zeigen, dass die beiden Aussagen in genau den gleichen Fällen nicht wahr sind. Falls dies der Fall ist, kann ich dann gemäß dem abgeschwächten Satz 13 des ausgeschlossenen Dritten folgern, dass die beiden Aussagen auch in genau den gleichen Fällen wahr sind. Also kann ich in diesem Fall die Äquivalenz der beiden Aussagen folgern und somit den Satz auf diese Art beweisen. Nun möchte ich mit meinen "Untersuchungen" beginnen:

Die Aussage $(A \vee B) \Rightarrow C$ ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation genau dann nicht wahr, falls die Aussage $A \vee B$ wahr ist, die Aussage C jedoch nicht wahr ist. Die Disjunktion der Aussagen A sowie B (also die Aussage $A \vee B$) ist gemäß der Definition 9.0.1 der Implikation dann wahr, falls die Aussage A wahr ist, die Aussage B wahr ist oder beide Aussagen A und B wahr sind. Zusammengefasst ist die Aussage $A \vee B \Rightarrow C$ als genau dann nicht wahr, falls die Aussage A wahr ist, die Aussage B wahr ist oder die Aussagen A und B wahr sind, die Aussage C aber in jedem Fall nicht wahr ist.

Die Aussage $((A \Rightarrow C) \land (B \Rightarrow C))$ ist gemäß den ersten drei Zeilen der Definition 8.0.2 der Konjunktion genau dann nicht wahr, falls die Aussage $A \Rightarrow C$ nicht wahr ist, die Aussage $B \Rightarrow C$ nicht wahr oder beide Aussagen (sowohl die Aussage $A \Rightarrow C$ wie auch die Aussage $B \Rightarrow C$) nicht wahr sind. Die Aussage $A \Rightarrow C$ ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation nicht wahr, falls die Aussage

Aussage/ Fall Nr.	$A \vee B$	$\begin{array}{c} A \vee B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$
1	0	1	1
2	0	1	1
3	1	0	1
4	1	1	1
5	1	0	0
6	1	1	1
7	1	0	0
_		_	

TABELLE 84. 1. Teil 1. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation

A ist, die Aussage B jedoch nicht wahr ist. Die Aussage $B\Rightarrow C$ ist gemäß der gleichen (dritten) Zeilen der gleichen Definition 9.0.1 der Implikation genau dann nicht wahr, falls die Aussage B wahr ist, die Aussage C jedoch nicht wahr ist. Zusammengefasst ist die Aussage $((A\Rightarrow C)\land (B\Rightarrow C))$ also genau dann nicht wahr, falls die Aussage A wahr ist, die Aussage B wahr ist oder beide Aussagen A und B wahr sind, die Aussage C jedoch nicht wahr ist.

Nun vergleiche ich diese Fälle mit denjenigen Fällen, in welchem die Aussage

$$(A \lor B) \Rightarrow C$$

nicht wahr sind und sehe, dass es genau die gleichen Fälle sind. Gemäß dem abgeschwächten Satz 10 der doppelten Negation kann ich jetzt folgern, dass die beiden Aussagen

$$(A \vee B) \Rightarrow C$$

sowie

$$(A \Rightarrow C) \land (B \Rightarrow C)$$

auch in den gleichen Fällen wahr sein müssen. Damit meine ich schließen zu können, dass die beiden Aussagen äquivalent sein müssen.

Ich hoffe, meine obigen Gedanken sind einigermaßen nachvollziehbar. Ich möchte jedoch den Satz noch "konventionell", also auch mit Wahrheitstafeln beweisen, da er noch weiterhin wichtige Dienste leisten soll. Der Beweis ist in den Tabellen 84, 85, 86 sowie 87, die Verweise sind in den Tabellen 88 sowie 89 aufgeschrieben.

<includebackwardreferences>

<includeforwardreferences>

Nun möchte ich zu zeigen versuchen, für was dies nützlich ist. Es sei

$$M = \{1, 2\}$$

TABELLE 85. 2. Teil 1. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Aussage/ Fall Nr.	$B \Rightarrow C$	$(A \Rightarrow C) \land (B \Rightarrow C)$	Behauptung
1	1	1	1
2	1	1	1
3	0	0	1
4	1	1	1
5	1	0	1
6	1	1	1
7	0	0	1
8	1	1	1

TABELLE 86. 1. Teil 2. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Aussage/ Fall Nr.	$A \vee B$	$\begin{array}{c} A \vee B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$
1	$\neg (A \lor B)$	$\begin{array}{c} A \vee B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$
2	$\neg (A \lor B)$	$\begin{array}{c} A \vee B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$
3	$A \vee B$	$\neg (A \lor B \\ \Rightarrow C)$	$A \Rightarrow C$	$\neg \left(B \Rightarrow C \right)$
4	$A \vee B$	$\begin{array}{c} A \vee B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$
5	$A \vee B$	$\neg (A \lor B \\ \Rightarrow C)$	$\neg (A \Rightarrow C)$	$B \Rightarrow C$
6	$A \vee B$	$\begin{array}{c} A \vee B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$
7	$A \vee B$	$\neg (A \lor B \\ \Rightarrow C)$	$\neg (A \Rightarrow C)$	$\neg \left(B\Rightarrow C\right)$
8	$A \vee B$	$\begin{array}{c} A \vee B \\ \Rightarrow C \end{array}$	$A \Rightarrow C$	$B \Rightarrow C$

In Worten: Die Menge, welche mit dem Symbol "M" beschrieben (bezeichnet, benannt) werde, bestehe aus den Elementen "1" und "2". Nun möchte ich zeigen, dass für alle Elemente m der Menge M gilt, dass $m \geq 1$ ist. Doch wie schreibe ich das korrekt auf? Wenn ich $m \in M$ als logische Aussage aufschreibe dann kann ich schreiben:

$$m \in M \Leftrightarrow m = 1 \lor m = 2$$

Ich kann meine Behauptung, dass für alle Elemente m aus der Menge gelten müssen, dass m größer oder gleich zwei ist, logisch korrekt so

TABELLE 87. 2. Teil 2. Beweis der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Aussage/ Fall Nr.	$(A \Rightarrow C) \land (B \Rightarrow C)$	Behauptung
1	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
2	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
3	$\neg ((A \Rightarrow C) \land (B \Rightarrow C))$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
4	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
5	$\neg ((A \Rightarrow C) \land (B \Rightarrow C))$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
6	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
7	$\neg ((A \Rightarrow C) \land (B \Rightarrow C))$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$
8	$(A \Rightarrow C) \land (B \Rightarrow C)$	$(A \lor B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \land (B \Rightarrow C)$

TABELLE 88. 1. Tabelle Verweise des Beweises der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Definition/	Definition 11.0.1	Definition 9.0.1	Definition 9.0.1
Fall Nr.	der	der	der
ran nr.	Disjunktion	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

aufschreiben:

$$m \in M \Rightarrow m \geq 1$$

Wenn ich die Definition der Menge jetzt einfüge, dann bekommt die Aussage die folgende Gestalt

$$m \in \{1,2\} \Rightarrow m \ge 1$$

TABELLE 89. 2. Tabelle Verweise des Beweises der Vertauschung von Disjunktion und Konjunktion unter der Implikation

Definition/	Definition 9.0.1	Definition 8.0.2	Definition 12.0.1
Fall Nr.	der	der	der
rall M.	Implikation	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	4. Zeile	4. Zeile
3	3. Zeile	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile
5	1. Zeile	2. Zeile	1. Zeile
6	2. Zeile	4. Zeile	4. Zeile
7	3. Zeile	1. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

oder, wenn ich das aufschreibe

$$m = 1 \lor m = 2 \Rightarrow m \ge 1$$

Also kann ich den obigen Satz 27 verwenden und erhalte die als zu überprüfende Aussage:

$$(m=1 \Rightarrow m \ge 1) \land (m=2 \Rightarrow m \ge 1)$$

Übrigens sind die Klammern an dieser Stelle wesentlich, da Du ansonsten die Aussage so lesen müsstest:

$$m = 1 \Rightarrow (m > 1 \land m = 2) \Rightarrow m > 1$$

Und das wäre weder eine richtige Aussage (da aus m=1 nicht m=2 folgt) noch die richtige Umformung. Doch zurück zur richtig umgeformten Behauptung. Ich muss also zeigen, dass gilt:

$$(m=1 \Rightarrow m \ge 1) \land (m=2 \Rightarrow m \ge 1)$$

Da für m=1 gilt

$$1 \ge 1$$

ist die Aussage

$$m=1\Rightarrow m\geq 1$$

wahr. Und da für m=2 gilt

$$2 \ge 1$$

ist die Aussage

$$m=2 \Rightarrow m \geq 1$$

ebenfalls wahr. Somit gilt also die Aussage

$$(m=1 \Rightarrow m \geq 1) \land (m=2 \Rightarrow m \geq 1)$$

Aussage $A \wedge B$ $A \wedge B$ $A \Rightarrow C$ Fall Nr. $\Rightarrow C$

TABELLE 90. 1. Teil 1. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Also ist die einerseits die Aussage

$$(m=1 \lor m=2) \Rightarrow m \ge 1$$

sowie

$$m \in \{1, 2\} \Rightarrow m > 1$$

ebenfalls wahr. Schlussendlich kann ich also schreiben

$$m \in M \Rightarrow m \ge 1$$

Der Satz 27 der Vertauschung von Disjunktion und Konjunktion unter der Implikation kann auch auf Mengen mit mehr als zwei Elementen erweitert werden. Aber ich hoffe, Dir damit gezeigt zu haben, wie die Vertauschung von Disjunktion und Konjunktion unter der Implikation verwendet werden kann, damit Behauptungen für alle Elemente in einer Menge überprüft werden können. Wenn Du im Kapitel ?? nachschlägst, dann kannst Du erkennen, wie der Satz 27 für die Definition von Quantoren verwendet wird.

Und dann kommt noch die andere Art der Verknüpfung. Auch dies würde ich so nicht erwarten. Denn gefühlsmäßig ist ein Konjunktion immer einschränkender als die Disjunktion.

SATZ 28. Es seien $A, B, C \in \Omega$, also Metasymbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt

$$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$$

BEWEIS. Ich möchte den Satz zuerst wiederum mit bloßem Nachschlagen erbringen. Die Beweise sind in den Tabellen 90, 91, 92 sowie 93 abgelegt. Die Verweise kannst Du in den Tabellen 94 sowie 95 nachschlagen.

TABELLE 91. 2. Teil 1. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Aussage/ Fall Nr.	$B \Rightarrow C$	$(A \Rightarrow C) \lor (B \Rightarrow C)$	Behauptung
1	1	1	1
2	1	1	1
3	0	1	1
4	1	1	1
5	1	1	1
6	1	1	1
7	0	0	1
8	1	1	1

TABELLE 92. 1. Teil 2. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Aussage/ Fall Nr.	$A \wedge B$	$A \wedge B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$
1	$\neg (A \land B)$	$A \wedge B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$
2	$\neg (A \land B)$	$A \wedge B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$
3	$\neg (A \land B)$	$A \wedge B \\ \Rightarrow C$	$A \Rightarrow C$	$\neg \left(B\Rightarrow C\right)$
4	$\neg (A \land B)$	$A \wedge B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$
5	$\neg (A \land B)$	$A \wedge B \\ \Rightarrow C$	$\neg (A \Rightarrow C)$	$B \Rightarrow C$
6	$\neg (A \land B)$	$A \wedge B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$
7	$A \wedge B$	$\neg (A \land B \\ \Rightarrow C)$	$\neg (A \Rightarrow C)$	$\neg \left(B\Rightarrow C\right)$
8	$A \wedge B$	$A \wedge B \\ \Rightarrow C$	$A \Rightarrow C$	$B \Rightarrow C$

Nun folgt der Versuch eines sprachlichen Beweises des Satzes: Ich frage mich zuerst, welche Bedingungen gelten müssen, damit die Aussage

$$A \wedge B \Rightarrow C$$

nicht wahr sei. Gemäß der dritten Zeile der Definition 9.0.1 der Implikation ist dies genau dann der Fall, falls die Aussage $A \wedge B$ wahr, die Aussage C jedoch nicht wahr ist. Die Aussage $A \wedge B$ ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion wahr, falls sowohl die

TABELLE 93. 2. Teil 2. Beweis der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Aussage/ Fall Nr.	$(A \Rightarrow C) \lor (B \Rightarrow C)$	Behauptung
1	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
2	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
3	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
4	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
5	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
6	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$
7	$\neg ((A \Rightarrow C) \lor (B \Rightarrow C))$	$ (A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C)) $
8	$(A \Rightarrow C) \lor (B \Rightarrow C)$	$(A \land B \Rightarrow C) \Leftrightarrow ((A \Rightarrow C) \lor (B \Rightarrow C))$

TABELLE 94. 1. Tabelle Verweise des Beweises der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Definition/	Definition 8.0.2	Definition 9.0.1	Definition 9.0.1
Fall Nr.	der	der	der
ran m.	Konjunktion	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	1. Zeile	1. Zeile
4	2. Zeile	2. Zeile	2. Zeile
5	3. Zeile	1. Zeile	3. Zeile
6	3. Zeile	2. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Aussage A wie auch die Aussage B wahr ist. Insgesamt ist die Aussage

$$A \wedge B \Rightarrow C$$

also dann nicht wahr, falls die Aussagen A und B wahr sind, die Aussage C jedoch nicht wahr ist.

TABELLE 95. 2. Tabelle Verweise des Beweises der Vertauschung von Konjunktion und Disjunktion unter der Implikation

Definition/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	4. Zeile	4. Zeile
3	3. Zeile	3. Zeile	4. Zeile
4	4. Zeile	4. Zeile	4. Zeile
5	1. Zeile	2. Zeile	4. Zeile
6	2. Zeile	4. Zeile	4. Zeile
7	3. Zeile	1. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Weiter frage ich mich, unter welchen Umständen die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

nicht wahr ist. Gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion ist die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

genau dann nicht wahr, falls weder die Aussage $A\Rightarrow C$ noch die Aussage $B\Rightarrow C$ wahr ist. Die Aussage

$$A \Rightarrow C$$

ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation genau dann nicht wahr, falls die Aussage A wahr, die Aussage C jedoch nicht wahr ist. Die Aussage

$$B \Rightarrow C$$

ist gemäß der gleichen (dritten) Zeile der (gleichen) Definition 9.0.1 der Implikation ebenfalls genau dann nicht wahr, falls die Aussage B wahr, die Aussage C aber nicht wahr ist. Zusammengefasst ist die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

also genau dann nicht wahr, falls die Aussage A und B wahr sind, die Aussage C jedoch nicht. Ich kann das auch noch auf eine andere Art überlegen. Ist eine der beiden Aussagen A oder B wahr, dann ist gemäß der Abkürzungsregel 9 der Implikation eine der Aussagen

$$A \Rightarrow C$$

oder

$$B \Rightarrow C$$

wahr. Also ist gemäß der letzten drei Zeilen der Definition 11.0.1 der Disjunktion die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

ebenfalls dann wahr, falls die Aussagen A oder B nicht wahr sind. Denn ist die Aussage A nicht wahr, dann ist gemäß der Abkürzungsregel 9 der Implikation die Aussage

$$A \Rightarrow C$$

wahr. Also muss gemäß dem Maximumprinzip 11 der Disjunktion die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

wahr sein. Die gleiche Überlegung kann ich auch auf die Aussage B anwenden: Ist die Aussage B nicht wahr, dann ist gemäß der Abkürzungsregel 9 der Implikation die Aussage

$$B \Rightarrow C$$

wahr. Gemäß dem Maximumprinzip 11 der Disjunktion kann ich dann erneut schließen, dass die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

auch in diesem Fall wahr sein muss.

Auf der anderen Seite sind beide Aussagen

$$A \Rightarrow C$$

respektive

$$B \Rightarrow C$$

gemäß der Abkürzungsregel 9 der Implikation wahr, falls die Aussage C wahr ist. Somit ist auch gemäß der vierten Zeile der Definition 11.0.1 der Disjunktion die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

wahr, falls die Aussage C wahr ist.

Ich fasse also zusammen: Ist mindestens eine der beiden Aussage A oder B nicht wahr oder ist die Aussage C wahr, dann ist die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

wahr.

Nun kann ich gemäß der abgeschwächten Form des Satzes 12 des ausgeschlossenen Dritten folgern, dass in allen Fällen die Aussage

$$(A \Rightarrow C) \lor (B \Rightarrow C)$$

also nur dann nicht wahr sein kann, falls sowohl die Aussagen A wie auch B wahr sind und aber die Aussage C nicht wahr ist.

Nun kann ich das Ergebnis meiner Überlegungen zusammenfassen: Die Bedingungen, unter welchen die Aussage

$$A \wedge B \Rightarrow C$$

wie auch die Aussage

$$A \Rightarrow C \lor B \Rightarrow C$$

nicht wahr sind, sind gleich. Beide Aussagen sind genau dann nicht wahr, falls beide Aussagen A und B wahr sind, die Aussage C jedoch nicht wahr ist. Gemäß dem abgeschwächten Satz 11 der doppelten Negation kann ich dann folgern, dass die beide Aussagen

$$A \wedge B \Rightarrow C$$

wie auch

$$A \Rightarrow C \lor B \Rightarrow C$$

also genau dann wahr sind, falls mindestens eine der beiden Aussagen A oder B nicht wahr oder aber die Aussage C wahr ist. Damit meine ich schließen zu können, dass beide Aussagen äquivalent, also gleichbedeutend sein müssen, mithin also die Aussage

$$(A \land B \Rightarrow C) \Leftrightarrow (A \Rightarrow C) \lor (B \Rightarrow C)$$

gilt. Damit beende ich an dieser Stelle endlich die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Zu meinem eigenen Verdruss könnte ich jedoch keine Anwendung dieses logischen Satzes angeben. Ich habe ihn sozusagen einfach zum Spaß formuliert und bewiesen. Ich hoffe, Dich damit nicht zu fest verärgert zu haben.

18.14. Distributivgesetz von Konjunktion und Disjunktion

Die beiden folgenden Sätze zeigen auf, dass die Konjunktion sozusagen stärker bindet als die Disjunktion.

Satz 29. Es seien wie gewohnt A, B, C Metasymbole von drei beliebigen Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$((A \lor B) \land C) \Leftrightarrow (A \land C) \lor (B \land C)$$

Auch dieser Satz erinnert an ein Distributivgesetz (vergleiche mit dem Absatz 18.11) der Addition und Multiplikation von Zahlen. Dabei nimmt die Addition ("+") den Platz der Disjunktion ("\v") und die Multiplikation ("·") den Platz der Konjunktion ein. Doch zurück zum Satz 29 des Distributivgesetzes der Konjunktion und Disjunktion. Wieder möchte ich den Beweis für die Behauptung zuerst sprachlich erbringen, bevor ich den Beweis mit Wahrheitstafeln zu erbringen versuche.

BEWEIS. Ich möchte mir überlegen, unter welchen Bedingung die Aussage

$$(A \vee B) \wedge C$$

nicht wahr ist. Gemäß der Definition 8.0.2 der Konjunktion müsste die Aussage C nicht wahr sein oder die Aussage $A \vee B$ müsste nicht wahr sein. Die Aussage $A \vee B$ ist gemäß der Definition 11.0.1 der Disjunktion genau dann nicht wahr, falls weder die Aussage A noch die Aussage B nicht wahr sind. Zusammenfassend kann ich also sagen, dass die Aussage

$$(A \vee B) \wedge C$$

genau dann nicht wahr ist, falls die Aussage C nicht wahr ist oder sowohl die Aussagen A wie auch B nicht wahr sind.

Wenn ich mir überlege, unter welchen Bedingungen die Aussage

$$(A \wedge C) \vee (B \wedge C)$$

nicht wahr ist, dann muss gemäß der Definition 11.0.1 der Disjunktion sowohl die Aussage

$$A \wedge C$$

wie auch die Aussage

$$B \wedge C$$

nicht wahr sein. Ist jedoch die Aussage C nicht wahr, dann sind nach dem Minimumprinzip 8 der Konjunktion bereits die Aussagen

$$A \wedge C$$

wie auch die Aussagen

$$B \wedge C$$

nicht wahr. Ist die Aussage C hingegen wahr, dann kann der gesamte Ausdruck $(A \wedge C) \vee (B \wedge C)$ nur dann nicht wahr sein, wenn sowohl die Aussagen A und B nicht wahr sind. Denn ansonsten ist die Aussage $A \wedge C$ oder die Aussage $B \wedge C$ und somit gemäß dem Maximumprinzip 11 der Disjunktion die Aussage

$$(A \wedge C) \vee (B \wedge C)$$

wahr. Also ist die Aussage

$$(A \wedge C) \vee (B \wedge C)$$

auch in genau denjenigen Fällen nicht wahr, in welchen C nicht wahr ist oder sowohl die Aussagen A wie auch B nicht wahr sind. Das ist jedoch genau in den gleichen Fällen, in welchen die Aussage

$$(A \vee B) \wedge C$$

nicht wahr ist. Damit glaube ich jedoch den Beweis für die Gültigkeit der Äquivalenz der beiden Aussagen erbracht zu haben.

Soweit die sprachliche Beschreibung des Beweises. Jetzt kommt das dröge Nachschlagen der Definitionen. In den Tabellen 96 und 97 sind die Beweise mittels Nachschlagen der Definitionen geführt. Wenn die

TABELLE 96. 1. Teil 1. Beweis des Satzes des Distributivgesetzes von Konjunktion und Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$(A \vee B) \wedge C$	$A \wedge C$
1	0	0	0
2	0	0	0
3	1	0	0
4	1	1	0
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

TABELLE 97. 2. Teil 1. Beweis des Satzes des Distributivgesetzes von Konjunktion und Disjunktion

Aussage/ Fall Nr.	$B \wedge C$	$(A \wedge C) \vee (B \wedge C)$	Behauptung
1	0	0	1
2	0	0	1
3	0	0	1
4	1	1	1
5	0	0	1
6	0	1	1
7	0	0	1
8	1	1	1

Behauptung bewiesen wird, indem die Aussagen hingeschrieben werden, dann gilt der Beweis, so wie er in den Tabellen 98 sowie 99 aufgeschrieben ist. Die Verweise der Beweise werden in den Tabellen 100 sowie 101 aufgelistet.

<includebackwardreferences>
<includeforwardreferences>

18.15. Äquivalenz von Aussage und Konjunktion

Ja, dieser Satz ist wieder an Einfachheit kaum zu überbieten. Es geht mir aber primär nicht darum, zu überlegen, was gilt, sondern warum es gilt. Das ist jedoch ein kleiner, jedoch feiner Unterschied.

Satz 30. Es sei A das Symbol für eine beliebige Aussage, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei sei. Dann gilt der logische Satz:

$$A \Leftrightarrow (A \land A)$$

TABELLE 98. 1. Teil 2. Beweis des Distributivgesetzes von Konjunktion und Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$(A \vee B) \wedge C$	$A \wedge C$	$B \wedge C$
1	$\neg (A \lor B)$	$\neg ((A \lor B) \land C)$	$\neg (A \land C)$	$\neg (B \land C)$
2	$\neg (A \lor B)$	$\neg ((A \lor B) \land C)$	$\neg (A \land C)$	$\neg (B \land C)$
3	$A \vee B$	$\neg ((A \lor B) \land C)$	$\neg (A \land C)$	$\neg (B \land C)$
4	$A \vee B$	$(A \lor B) \land C$	$\neg (A \land C)$	$B \wedge C$
5	$A \vee B$	$\neg ((A \lor B) \land C)$	$\neg (A \land C)$	$\neg (B \land C)$
6	$A \vee B$	$(A \vee B) \wedge C$	$A \wedge C$	$\neg (B \land C)$
7	$A \vee B$	$\neg ((A \lor B) \land C)$	$\neg (A \land C)$	$\neg (B \land C)$
8	$A \vee B$	$(A \lor B) \land C$	$A \wedge C$	$B \wedge C$

TABELLE 99. 2. Teil 2. Beweis des Distributivgesetzes von Konjunktion und Disjunktion

Aussage/ Fall Nr.	$(A \land C) \lor (B \land C)$	$ \begin{array}{c} (A \Rightarrow (B \lor C)) & \Leftrightarrow \\ ((A \land C) \lor (B \land C)) & \end{array} $
1	$\neg ((A \land C) \lor (B \land C))$	$ (A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C)) $
2	$\neg ((A \land C) \lor (B \land C))$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
3	$\neg ((A \land C) \lor (B \land C))$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
4	$(A \wedge C) \vee (B \wedge C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
5	$\neg ((A \land C) \lor (B \land C))$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
6	$(A \wedge C) \vee (B \wedge C)$	$(A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C))$
7	$\neg ((A \land C) \lor (B \land C))$	$ (A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C)) $
8	$(A \wedge C) \vee (B \wedge C)$	$ (A \Rightarrow (B \lor C)) \Leftrightarrow ((A \land C) \lor (B \land C)) $

In Worten bedeutet dies, dass die Aussage A genau dann wahr ist, falls die Aussage A und die Aussage A wahr ist. Natürlich glaubst Du mir sofort, dass dieser Satz einerseits wahr, auf der anderen Seite völlig sinnlos ist. Nun ja, trotzdem möchte ich ihn hier aufschreiben, da ich einerseits wissen möchte, warum er gilt, andererseits möchte ich gelegentlich hier aufschreiben, wo dies benutzt werden kann. Dieser Satz kann übrigens gut als Beispiel dafür herangezogen werden, dass aus

TABELLE 100. 1. Tabelle Verweise Beweis des Distributivgesetzes von Konjunktion und Konjunktion

Defintion/	Definition 11.0.1	Definition 8.0.2	Definition 8.0.2
Fall Nr.	der	der	der
rall Nr.	Disjunktion	Konjunktion	Konjunktion
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 101. 2. Tabelle Verweise Beweis des Distributivgesetzes von Konjunktion und Konjunktion

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	1. Zeile
3	1. Zeile	1. Zeile	1. Zeile
4	2. Zeile	2. Zeile	4. Zeile
5	1. Zeile	1. Zeile	1. Zeile
6	2. Zeile	4. Zeile	4. Zeile
7	1. Zeile	1. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

vernünftigen Annahmen (der Definition der Äquivalenz und der Konjunktion) Aussagen konstruiert werden können, welche dem Gefühl total entgegenlaufen. Dieser logische Satz ist aus meiner Sicht irgendwie befremdend und seltsam. Und er ist auch ein logischer Satz, welcher genau eine logische Variable enthält. Auch das ist gewöhnungsbedürftig, wenn sozusagen etwas mit sich selbst verknüpft wird.

BEWEIS. Der Beweis soll zuerst rein sprachlich erfolgen, da genau eine Variable im logischen Satz enthalten ist. Ist A nicht wahr, dann ist auch dessen Konjunktion mit sich selbst gemäß der ersten Zeile der Definition 8.0.2 der Konjunktion nicht wahr. Also ist in diesem Fall die Äquivalenz von A zur Konjunktion von A mit sich selbst gemäß der ersten Zeile der entsprechenden Definition 12.0.1 der Äquivalenz

TABELLE 102. 1. Beweis des Satzes der Äquivalenz von Aussage und Konjunktion

Aussage/ Fall Nr.	$A \wedge A$	$\begin{array}{c} A \Leftrightarrow \\ (A \wedge A) \end{array}$
1	0	1
2	1	1

TABELLE 103. 2. Beweis des Satzes der Äquivalenz von Aussage und Konjunktion

Aussage/ Fall Nr.	$A \wedge A$	$A \Leftrightarrow (A \land A)$
1	$\neg (A \land A)$	$A \Leftrightarrow (A \land A)$
2	$A \wedge A$	$A \Leftrightarrow (A \land A)$

TABELLE 104. Tabelle Verweise Beweis des Satzes der Äquivalenz von Aussage und Konjunktion

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 12.0.1 der Äquivalenz
1	1. Zeile	1. Zeile
2	4. Zeile	4. Zeile

wahr. Ist hingegen A das Symbol einer wahren Aussage, dann ist auch die Konjunktion von A mit sich selbst gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion wahr. Somit ist auch die Äquivalenz von A mit der Konjunktion von A mit sich selbst gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz wiederum wahr. Darum ist der Satz insgesamt wahr, da er in allen denkbaren Fällen wahr ist.

Der Vollständigkeit halber soll der Beweis ebenfalls durch das Auflisten der Definitionen geführt werden (siehe Tabelle 102). Wenn die Behauptung bewiesen wird, indem die Aussagen hingeschrieben werden, dann gilt der Beweis, so wie er in der Tabelle 103 aufgeschrieben ist. Die Verweise des Beweises habe ich in die Tabelle 104 hingeschrieben.

<includebackwardreferences>

<includeforwardreferences>

Und weiter geht es jetzt mit dem nächsten logischen Satz.

18.16. Äquivalenz von Aussage und Disjunktion

Warum ist eine Aussage äquivalent zur Disjunktion mit sich selbst? Eigentlich könnte ich das letzte Kapitel kopieren und anpassen. Denn genau gleich, wie eine Aussage A äquivalent ist zur Konjunktion $A \wedge A$ mit sich selbst, ist A auch äquivalent zur Disjunktion $A \vee A$ mit sich selbst. Wieder gelten alle Vorbehalte (Für was soll das gut sein? Das wird doch nirgends benötigt). Und trotzdem möchte ich den logischen Satz formulieren und zu beweisen versuchen.

Satz 31. Es sei wie gewohnt A das Symbol für eine Aussage, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei sei. Dann gilt der logische Satz

$$A \Leftrightarrow (A \lor A)$$

Beweis. Ja, und wie beweise ich das jetzt? Ich nehme an, Du könntest dies "unter Umgehung des Großhirns¹⁷" beweisen. Nein, das geht natürlich nicht, das kann niemand. Es will jedoch andeuten, dass für die Ausübung der Mathematik die Gesetzmäßigkeiten und Definition verinnerlicht werden sollten. Jedoch denke ich, ist auch diese Art der Mathematik heute nicht mehr zeitgemäß. Heute geht es meines Erachtens mehr darum, den Stoff derart gut zu präsentieren, dass bloß noch gelernt werden muss, wo eine gute "Futterquelle" für mathematisches Wissen ist und bei Bedarf dieses angezapft werden kann. Und ja, ich bin wieder abgeschweift. Zurück zum Thema: Ich möchte zeigen, dass wirklich jede Aussage A äquivalent zur Disjunktion der Aussage A zu sich selbst ist. Da wiederum nur eine logische Variable verwendet wird, möchte auch diesen Beweis rein sprachlich darlegen. Ist A nicht das Symbol einer wahren Aussage, dann ist gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion die Disjunktion von A mit sich selbst nicht wahr. Darum ist auch gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz-Verknüpfung die Aussage A äquivalent zur Disjunktion von A mit sich selbst. Ist jedoch A das Symbol einer wahren Aussage, dann ist gemäß der vierten Zeile der Definition 11.0.1 der Disjunktion die Disjunktion von A mit sich selbst ebenfalls wahr. Gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz-Verknüpfung ist dann A äquivalent zur Disjunktion von A mit sich selbst. Da jetzt für alle denkbaren Fälle gezeigt wurde, dass die Aussage, dass A äquivalent zur Disjunktion von A mit sich selbst ist, darf ich schreiben, dass die Behauptung bewiesen wurde. Den Beweis habe ich in der Tabelle 105 noch einmal aufgeschrieben. Wenn die Behauptung bewiesen wird, indem die Aussagen hingeschrieben werden, dann gilt der Beweis, so wie er in den Tabellen 106 aufgeschrieben ist. Die Verweise der Beweise sind in der Tabelle 107 aufgeschrieben.

<includebackwardreferences>
<includeforwardreferences>

¹⁷Das will heißen: ohne darüber nachzudenken. Es gibt übrigens wirklich Reaktionen mit Muskeln, welche offenbar nicht vom Gehirn ausgelöst werden müssen. Das berühmteste diesbezügliche Beispiel sind Reflexe wie zum Beispiel der Kniesehnenreflex

TABELLE 105. 1. Beweis des Satzes der Äquivalenz von Aussage und Disjunktion

Aussage/ Fall Nr.	$A \lor A$	$A \Leftrightarrow (A \vee A)$
1	0	1
2	1	1

TABELLE 106. 2. Beweis des Satzes der Äquivalenz von Aussage und Disjunktion

Aussage/ Fall Nr.	$A \lor A$	$A \Leftrightarrow (A \vee A)$
1	$\neg (A \lor A)$	$A \Leftrightarrow (A \vee A)$
2	$A \lor A$	$A \Leftrightarrow (A \lor A)$

TABELLE 107. Tabelle Verweise Beweis des Satzes der Äquivalenz von Aussage und Disjunktion

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz
1	1. Zeile	1. Zeile
2	4. Zeile	4. Zeile

Natürlich muss ich gegebenenfalls den Beweis nachliefern, dass dieser logische Satz auch wirklich verwendet wird. Aber im Moment bin ich um ein entsprechende Beispiel verlegen.

Und wieder kommt im nächsten Abschnitt ein Satz, dessen Bedeutung alles andere als einleuchtend ist.

18.17. Warum folgt die Aussage aus der Aussage?

Auf diesen Satz bin ich per Zufall gestoßen. Er ist eigentlich so bescheuert, dass ich grinsen musste, als ich ihn beim Überarbeiten des Textes wieder gelesen habe.

Satz 32. Es sei A ein Metasymbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sei. Dann gilt

$$A \Rightarrow A$$

BEWEIS. Denn ist A eine Aussage, welche nicht wahr ist, dann gilt gemäß der 1. Zeile der Definition 9.0.1 der Implikation

$$A \Rightarrow A$$

TABELLE 108. 1. Beweis des Satzes der Implikation von Aussage zu Aussage

Aussage/ Fall Nr.	$A \Rightarrow A$
1	1
_	

TABELLE 109. 2. Beweis des Satzes der Implikation von Aussage zu Aussage

Aussage/ Fall Nr.	$A \Rightarrow A$
1	$A \Rightarrow A$

TABELLE 110. Tabelle Verweise Beweis des Satzes der Äquivalenz von Aussage und Aussage

Aussage/ Fall Nr.	Definition 9.0.1 der Implikation
1	1. Zeile
2	4. Zeile

Ist A eine wahre Aussage, welche wahr ist, dann gilt gemäß der 4. Zeile der Definition 9.0.1 der Implikation

$$A \Rightarrow A$$

Somit gilt für alle Aussage alle genügend widerspruchsfreien Aussagen und ich kann den Satz als bewiesen betrachten. Ich habe jedoch mir nicht nehmen lassen, den Beweis mittels Wahrheitstafeln zu beweisen. Dies habe ich in der Tabelle 108 aufgeschrieben. Wenn die Behauptung bewiesen wird, indem die Aussagen hingeschrieben werden, dann gilt der Beweis, so wie er in der Tabelle 109 aufgeschrieben ist. Die Verweise des Beweises habe ich in der Tabelle 110 hingeschrieben.

<includebackwardreferences>

<includeforwardreferences>

Ich möchte nun ein kleines Korollar dieses Satzes aufschreiben:

Korollar 33. Es sei A eine Aussage, welche in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt

$$A \Leftrightarrow A$$

BEWEIS. Ist die Aussage A nicht wahr, dann gilt gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow A$$

Ist jedoch die Aussage A wahr, dann gilt gemäß der vierten Zeile der Definition 12.0.1 die Aussage

$$A \Leftrightarrow A$$

Da gemäß dem Satz 12 des ausgeschlossenen Dritten die Aussage A nur nicht wahr oder wahr ist, meine ich gezeigt, zu haben, dass für alle denkbaren Fälle gilt, dass die Aussage

$$A \Leftrightarrow A$$

wahr ist. Somit meine ich, den Beweis für die Richtigkeit der Behauptung des Korollars erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Bitte beachte, dass dieser Satz für sich selbst betrachtet relativ "sinnfrei¹⁸" ist. Sinn macht er erst, wenn er in beispielsweise im Zusammenhang einer logischen Umformung betrachtet wird. Siehe dazu beispielsweise den Abschnitt 78 über die Minimum- und Maximumsätze in der Logik.

18.18. Warum kommutiert die Konjunktion?

Und wieso soll dies wichtig sein? Und kann ich dabei von Kommutation sprechen? Eventuell hätte ich davon schreiben sollen, dass die Konjunktion symmetrisch sei. Ich habe schnell auf der entsprechenden Wikipedia-Seite gelinst (vergleiche dazu die entsprechende Bemerkung unter??), und gesehen, dass da unbedarft¹⁹ von Kommutation geschrieben wird. Nun ja, wenn die sich getrauen, dann möchte ich auch von Kommutation sprechen - oder besser gesagt schreiben.

Sowohl die Addition wie auch die Multiplikation sind kommutativ. So gilt etwa (und das soll als beispielhafte Definition der Kommutation gelten):

$$5 \cdot 3 = 3 \cdot 5 = 15$$

 $8 + 13 = 13 + 8 = 21$

Kommutation oder eben keine Kommutation ist in der theoretischen Physik extrem wichtig. Eines der wichtigsten Dinge in der Physik, welche nicht kommutativ ist, ist die Aneinanderreihung von Drehungen, sofern die Drehachsen nicht in einer besonderen Beziehung zueinander

 $^{^{18}}$ unsinnig, sinnlos

¹⁹oder ein wenig nüchterner ausgedrückt: ohne zu zögern

stehen. Werden dann zwei Drehungen (welche geeignet definiert werden) nacheinander ausgeführt, dann macht es einen Unterschied, ob zuerst die eine und anschließend die andere oder zuerst die andere und dann die eine Drehung ausgeführt wird.

Um die erste Frage zu beantworten, wieso das wichtig sein soll, dass die Konjunktion kommutiert: Genau das macht die Mathematik aus. In der Mathematik geht es oft darum, bei neuen Begriffen zu überprüfen, welche Eigenschaften diese besitzen. Denn dieses Absuchen nach Eigenschaften erschließt oft neue Möglichkeiten, um Lösungen für bekannte Probleme zu finden.

Satz 34. Es seien also A respektive B Symbole für Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Beweises widerspruchsfrei seien. Dann gilt die Aussage

$$(A \wedge B) \Leftrightarrow (B \wedge A)$$

Nun ich nehme an, dass Du das auch so siehst. Dies umso mehr, als das Zeichen der Konjunktion ("^") ja ebenso gut weggelassen werden könnte. Und es dürfte bei genügend gutartigen Aussagen auch keine Rolle spielen, ob sie an erster oder zweiter Stelle aufgeschrieben werden. An dieser Stelle ist jedoch für mich wieder wichtig, zu zeigen, warum ich zu dieser Behauptung gelange.

Beweis. Die Behauptung $A \wedge B$ ist gemäß ihrer Definition 8.0.2 genau dann wahr, falls sowohl die Behauptung A wie auch die Behauptung B wahr ist. Die Behauptung $B \wedge A$ ist jedoch ebenfalls genau dann wahr, falls sowohl die Behauptung B wie auch die Behauptung A wahr ist (vergleiche mit der vierten Zeile der Definition 8.0.2 der Konjunktion, jedoch unter der Bedingung, dass die Variable A der Definition in die Variable B und die Variable B der Definition in die Variable Aumbenennt wird). Ist jedoch die Behauptung B wie auch die Behauptung A wahr, dann ist auch sowohl die Behauptung A wie auch die Behauptung B wahr. Das bedeutet jedoch, dass die Behauptung $A \wedge B$ im genau dem gleichen Fall wahr ist, in welchem die Behauptung $B \wedge A$ wahr ist. Das bedeutet jedoch, dass die beiden Behauptungen äquivalent sind und darum der Satz 34 wahr ist. Nun mir liegt viel daran, dass die Verhältnisse glasklar sind. Und darum möchte ich noch den tabellarischen Beweis nachholen. Dieser habe ich in den Tabellen 111 sowie 112 abgelegt. Die Verweise der Beweise sind in der Tabelle 113 aufgelistet.

<includebackwardreferences>
<includeforwardreferences>

Beispiel topologische Widersprüchlichkeit

Also gut, ich habe jetzt die Richtigkeit des obigen Satzes zu erbringen versucht. Dann möchte ich jetzt ein Beispiel zeigen, welches beweisen sollte, das dies nicht so einfach ist, wie ich es gerne hätte. Es

TABELLE 111. 1. Beweis des Satzes der Kommutativität der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$B \wedge A$	$(A \land B) \Leftrightarrow (B \land A)$
1	0	0	1
2	0	0	1
3	0	0	1
4	1	1	1

Tabelle 112. 2. Beweis der Kommutativität der Kommutation

Aussage/ Fall Nr.	$A \wedge B$	$B \wedge A$	$(A \land B) \Leftrightarrow (B \land A)$
1	$\neg (A \land B)$	$\neg (B \land A)$	$(A \land B) \Leftrightarrow (B \land A)$
2	$\neg (A \land B)$	$\neg (B \land A)$	$(A \land B) \Leftrightarrow (B \land A)$
3	$\neg (A \land B)$	$\neg (B \land A)$	$(A \land B) \Leftrightarrow (B \land A)$
4	$A \wedge B$	$B \wedge A$	$(A \wedge B) \Leftrightarrow (B \wedge A)$

TABELLE 113. 1. Tabelle Verweise Beweis der Kommutation der Konjunktion

Defintion/ Fall Nr.	Definition 8.0.2 der	Definition 8.0.2 der	Definition 12.0.1 der
rall Mr.	Konjunktion	Konjunktion	Äquivalenz
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

sei A das Symbol für die Aussage: "Menschen leben". Diese Aussage ist bestimmt so lange wahr, wie es jemanden gibt, welcher sich als Mensch bezeichnen würde. Und das sind im Moment doch einige (im Moment seien dies rund 7.6 Milliarden Menschen, sagt mir die entsprechende Webseite von Wikipedia). Die Aussage B sei das Symbol für die Aussage: "vorher wurde die Aussage mit dem Symbol A gefolgt von einem Symbol für die Konjunktion (" \wedge ") hingeschrieben. Dann stimmt zwar die Aussage

$$A \wedge B$$

Jedoch stimmt die Aussage

$$B \wedge A$$

eben gerade nicht. Denn diese Aussage lautet:

"Vorher wurde die Aussage "Menschen leben", gefolgt von einem Symbol für die Konjunktion (\land) hingeschrieben" \land "Menschen leben".

3

4

0

1

0

Aussage/ Fall Nr.	$A \wedge B$	$\neg (A \land B)$	$B \wedge A$	$\neg (B \land A)$	$\neg (A \land B) \Leftrightarrow$
Fall Nr.	11/(1)	(217(B)	D / \ II	(11)	$\neg (B \land A)$
1	0	1	0	1	1
2	0	1	0	1	1

0

1

0

1

TABELLE 114. 1. Beweis des Satzes der Kommutativität der Negation der Konjunktion

Also kann diese Aussage so nicht stimmen. Jedoch - und das ist der springende Punkt bei meinen Ausführungen - möchte ich betonen, dass ich diese Art von Widersprüchlichkeit in den Voraussetzungen abgefangen haben, indem ich von A und B verlangt habe, dass sie "weder in sich selbst noch bezüglich den anderen Symbolen des Satzes widersprüchlich seien. Ich möchte diese Art Widersprüchlichkeit eine "topologische Widersprüchlichkeit"²⁰ nennen. Ich kann mir nun gut vorstellen, dass sich in Dir ein Widerspruch regt im Sinn von "Demarmels ist ein Scharlatan". Das kann ja sein. Aber ich möchte zu zeigen versuchen, dass die von mir vorgestellte elementare und naive Logik eben doch Pferdefüße derart besitzt, welche dazu führen, dass sie nicht vollständig in sich widerspruchsfrei ist. Schlussendlich möchte ich an dieser Stelle betonen, dass für die meisten praktischen Probleme diese Widersprüchlichkeit keine Rolle spielt. Und dass wir deswegen unsere Flinten nicht ins Korn werfen oder den Bettel hinschmeißen sollten. Sondern im Gegenteil mit viel Lust und Leidenschaft Mathematik und Logik betreiben sollten.

Nun möchte ich zeigen, dass auch die Disjunktion kommutativ ist. Zuvor möchte ich jedoch ein kleines Korollar beweisen:

Korollar 35. Es seien also A respektive B Symbole für Aussagen. Dann gilt die Aussage

$$\neg (A \land B) \Leftrightarrow \neg (B \land A)$$

BEWEIS. Ich möchte den Beweis für die Richtigkeit des Satzes mit Hilfe von Wahrheitstafeln zeigen. Ich habe die Beweise in den Tabellen 114 sowie den Tabellen 115 und 116 aufgeschrieben. Die Verweise der Beweise habe ich in den Tabellen 117 sowie 118 abgelegt.

<includebackwardreferences>
<includeforwardreferences>

 $^{^{20}\}mathrm{Die}$ Topologie kann sozusagen als die Wissenschaft der Lagebeziehungen aufgefasst werden.

TABELLE 115. 1. Teil des 2. Beweis der Kommutativität der Negation der Kommutation

Aussage/ Fall Nr.	$A \wedge B$	$\neg (A \land B)$
1	$\neg (A \land B)$	$\neg (A \land B)$
2	$\neg (A \land B)$	$\neg (A \land B)$
3	$\neg (A \land B)$	$\neg (A \land B)$
4	$A \wedge B$	$\neg (\neg (A \land B))$

TABELLE 116. 2. Teil des 2. Beweis der Kommutativität der Negation der Kommutation

Aussage/ Fall Nr.	$B \wedge A$	$(\neg (B \land A))$	$\neg (A \land B) \Leftrightarrow \\ \neg (B \land A)$
1	$\neg \left(B \wedge A \right)$	$(\neg (B \land A))$	$\neg (A \land B) \Leftrightarrow \\ \neg (B \land A)$
2	$\neg (B \land A)$	$(\neg (B \land A))$	$\neg (A \land B) \Leftrightarrow \\ \neg (B \land A)$
3	$\neg (B \land A)$	$(\neg (B \land A))$	$\neg (A \land B) \Leftrightarrow \\ \neg (B \land A)$
4	$B \wedge A$	$\neg (\neg (B \land A))$	$\neg (A \land B) \Leftrightarrow \\ \neg (B \land A)$

TABELLE 117. 1. Tabelle Verweise Beweis der Kommutation der Negation der Konjunktion

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 6.0.2 der Negation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	2. Zeile

TABELLE 118. 2. Tabelle Verweise Beweis der Kommutation der Negation der Konjunktion

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 6.0.2 der Negation	Definition 12.0.1 der Äquivalenz
1	1. Zeile	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile	4. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	4. Zeile	2. Zeile	1. Zeile

TABELLE 119. 1. Beweis des Satzes der Kommutativität der Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$B \vee A$	$(A \vee B) \Leftrightarrow (B \vee A)$
1	0	0	1
2	1	1	1
3	1	1	1
4	1	1	1

18.19. Warum kommutiert die Disjunktion?

Ja, es kommt auch noch dieser Satz. Denn dieser Satz ist genau gleich aufgebaut wie der vorhergehende. Ich muss zugeben, dass sich bei mir eine gewisse Ermüdung breitmacht, weil ich etwas auf ca. 300 Seite ausgewalzt habe, was in anderen Lehrbüchern auf einer Seite präsentiert wird. Macht das Sinn? Keine Ahnung, ich weiß es nicht. Jedoch möchte ich, dass alle die gleichen Chancen haben, und darum mache ich weiter im Text.

Satz 36. Es seien also A respektive B Symbole für zwei Aussagen. Dann gilt

$$(A \lor B) \Leftrightarrow (B \lor A)$$

wobei die Klammern gar nicht notwendig wären.

Um den

BEWEIS. sprachlich zu erledigen, möchte ich mich fragen, wann eine beiden Disjunktionen $A \vee B$ respektive $B \vee A$ nicht wahr sind. Dies ist in beide Fällen genau dann der Fall, wenn sowohl A wie auch B nicht wahr sind. Also ist in demjenigen Fall, in welchem sowohl B wie auch A nicht wahr sind, die Äquivalenz

$$(A \vee B) \Leftrightarrow (B \vee A)$$

gemäß der ersten Zeile der Definition 2 der Äquivalenz immer noch wahr. In anderen Fällen sind beide Aussagen $A\vee B$ wie auch $B\vee A$ wahr und somit gemäß der vierten Zeile der Definition der Äquivalenz die gesamte Aussage

$$(A \lor B) \Leftrightarrow (B \lor A)$$

ebenfalls wahr. Damit ist der Beweis jedoch erbracht.

Nun, dieser Beweis ist zwar wahr, jedoch irgendwie schwammig. Falls Du dich lieber auf klipp und klare Verweise abstützt, gebe ich Dir in den Tabellen 119 sowie 120 Gelegenheit, dies tabellarisch nachzuprüfen. In der Tabelle 121 werden die Verweise auf die Definitionen nachgeliefert.

 $(A \vee B) \Leftrightarrow (B \vee A)$

 $(A \lor B) \Leftrightarrow (B \lor A)$

Aussage/
Fall Nr. $A \vee B$ $B \vee A$ $(A \vee B) \Leftrightarrow (B \vee A)$ 1 $\neg (A \vee B)$ $\neg (B \vee A)$ $(A \vee B) \Leftrightarrow (B \vee A)$ 2 $A \vee B$ $B \vee A$ $(A \vee B) \Leftrightarrow (B \vee A)$

 $B \vee A$

 $B \vee A$

Tabelle 120. 2. Beweis der Kommutativität der Disjunktion

Tabelle 121. Verweise Beweis der Kommutation der Disjunktion

 $A \vee B$

 $A \vee B$

Defintion/	Definition 11.0.1	Definition 11.0.1	Definition 12.0.1
Fall Nr.	der	der	der
ran m.	Disjunktion	Disjunktion	Äquivalenz
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	3. Zeile	4. Zeile
3	3. Zeile	2. Zeile	4. Zeile
4	4. Zeile	4. Zeile	4. Zeile

<includebackwardreferences>

<includeforwardreferences>

3

4

18.20. Warum ist die Äquivalenz identitiv?

Warum nicht? Nein, das war jetzt keine gute Bemerkung. Also was ist "identitiv"? Ich möchte zwar die exakte Definition der Identivität erst nachfolgend in der Definition ?? definieren. An dieser Stelle sei verraten, was ich darunter meine:

Satz 37. Es sei A das Metasymbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Symbole widerspruchsfrei sei. Dann gilt:

$$A \Leftrightarrow A$$

BEWEIS. Ist A das Symbol einer Aussage, welche nicht wahr ist, dann gilt gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz

$$A \Leftrightarrow A$$

Ist jedoch A das Symbol einer wahren Aussage, dann gilt gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz ebenfalls, dass

$$A \Leftrightarrow A$$

Also muss diese Aussage für alle denkbaren Aussagen gelten (gemäß dem Satz 12 des ausgeschlossenen Dritten kann es ja keine andere logischen Aussagen geben). Darum glaube ich, die Richtigkeit des Behauptung an dieser Stelle erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Warum überhaupt dieser Satz? Weil er dazu dient, zu zeigen, dass die Äquivalenz eine Äquivalenzrelation ist. Aber dies möchte ich unter dem Satz ?? weiter unten zeigen. Natürlich könnte jetzt die Idee aufkommen, dass alle Verknüpfungen identitiv seien. Das ist jedoch nicht der Fall. Falls es Dich interessiert: Schaue doch unter dem Satz ?? nach.

Und weiter geht es zum nächsten logischen Satz.

18.21. Warum kommutiert die Äquivalenz?

Dass die Äquivalenz kommutiert, ist wahrscheinlich schnell einmal erkannt. Trotzdem möchte ich zeigen, dass dem tatsächlich so ist:

SATZ 38. Es seien A, B die Symbole zweier Aussagen, welche in sich selbst beziehungsweise in Bezug auf die anderen Symbole des Beweises widerspruchsfrei seien. Dann gilt

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

BEWEIS. Zuerst einmal möchte ich den Beweis sprachlich ergründen: A und B sind genau dann äquivalent, falls beide Aussagen wahr oder nicht wahr sind. Sind beide Aussagen A sowie B wahr, dann ist gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

wahr. Also ist in diesem Fall wiederum gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz ebenso die Aussage

$$B \Leftrightarrow A$$

wahr. Somit muss gemäß wiederum gemäß der vierten Zeile der Äquivalenz die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

wahr sein. Daum meine ich, die Behauptung in diesem Fall bewiesen zu haben.

Sind jedoch A und B nicht wahr, dann ist gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

nicht wahr. Also ist gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz ebenso die Aussage

$$B \Leftrightarrow A$$

wiederum wahr. Somit ist gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz wiederum die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

wiederum wahr. Die Behauptung des Satzes kann nur dann gemäß der zweiten und dritten Zeile der Definition 12.0.1 der Äquivalenz nicht wahr sein, falls eine der Aussagen

$$A \Leftrightarrow B$$

oder

$$B \Leftrightarrow A$$

nicht wahr, die andere jedoch wahr ist. Es sei nun die Aussage

$$A \Leftrightarrow B$$

wahr. Dann müssten entweder beide Aussagen A wie auch B nicht wahr sein oder beide Aussagen wahr sein. Sind jedoch die Aussagen A und B nicht wahr, dann müsste gemäß der erste Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$B \Leftrightarrow A$$

ebenfalls wahr sein - im Widerspruch der Voraussetzung, dass diese Aussage eben nicht wahr sein darf. Darum ist dieser Fall nicht möglich. Sind jedoch sowohl die Aussagen A und B beide wahr, dann müsste auch gemäß der vierten Zeile der Definition 12.0.1 auch die Aussage

$$B \Leftrightarrow A$$

wahr sein. Also kann auch dieser Fall nicht wahr sein.

Nun sei die Aussage

$$A \Leftrightarrow B$$

nicht wahr, die Aussage

$$B \Leftrightarrow A$$

jedoch wahr. Wiederum müssten in diesem Fall sowohl die Aussagen B wie auch A nicht wahr oder wahr sein. Sind sowohl die Aussagen B wie auch A nicht wahr, dann muss gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

eben trotzdem wahr sein - jedoch entgegen der Voraussetzung, dass diese Aussage nicht wahr sein darf. Sind jedoch sowohl die Aussagen B wie auch A wahr, dann muss gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

eben wiederum wahr sein. Aber die dies ist wiederum ein Widerspruch zur Voraussetzung, dass die Aussage

$$A \Leftrightarrow B$$

Tabelle 122. 1. Beweis des Satzes der Kommutativität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow A$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
1	1	1	1
2	0	0	1
3	0	0	1
4	1	1	1

TABELLE 123. 2. Beweis der Kommutativität der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow A$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
1	$A \Leftrightarrow B$	$B \Leftrightarrow A$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
2	$\neg (A \Leftrightarrow B)$	$\neg (B \Leftrightarrow A)$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
3	$\neg (A \Leftrightarrow B)$	$\neg (B \Leftrightarrow A)$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$
4	$A \Leftrightarrow B$	$B \Leftrightarrow A$	$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$

Tabelle 124. Verweise Beweis der Kommutation der Äquivalenz

Defintion/ Fall Nr.	Definition 12.0.1 der Äquivalenz	Definition 12.0.1 der Äquivalenz	Definition 12.0.1
1	1. Zeile	1. Zeile	4. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

nicht wahr sein darf. Damit hätte ich auch in diesem Fall gezeigt, dass es nicht möglich ist, zwei Aussagen mit den Symbolen A wie auch B derart zu finden, dass die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 11 der doppelten Negation kann ich nun folgen, dass die Aussage der Behauptung für alle Aussagen, welche hinreichend widerspruchsfrei in sich selbst und in Bezug der anderen Aussagen sind, wahr sein muss.

Also denke ich, dass damit der Beweis erbracht ist. Der Vollständigkeit halber möchte ich jedoch den Beweis tabellarisch beweisen (siehe Tabellen 122 respektive 123, für die Verweise des Beweise siehe 124).

<includebackwardreferences>
<includeforwardreferences>

Nun möchte ich zeigen, dass die Konjunktion nicht bloß kommutativ, sondern ebenfalls assoziativ ist.

18.22. Warum ist die Konjunktion assoziativ?

Kommutativität und Assoziativität sind so Begriffe, welche oft gesagt werden, deren Sinn aber vielleicht irgendwie schleierhaft ist. Ich möchte den Satz der Assoziativität der Konjunktion zuerst einmal formulieren:

Satz 39. Es seien A, B sowie C Symbole von Aussagen, welche in sich selber und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien . Dann gilt die Aussage

$$(A \wedge B) \wedge C \Leftrightarrow A \wedge (B \wedge C)$$

BEWEIS. Ich habe ja bei der Einführung der Konjunktion unter dem Abschnitt 8 bemerkt, dass das Symbol der Konjunktion ebenso gut weggelassen werden könnte. Somit hätte ich den Beweis bereits erbracht, auch wenn der Beweis irgendwie schwammig bleibt. Darum möchte ich den Beweis noch mittels Wahrheitstafeln erbringen. Diesen habe ich in den Tabellen 125 einerseits und 126 sowie 127 andererseits abgelegt. Die Verweise der Beweise habe ich in den Tabellen 128 sowie 129 abgelegt.

Weil meine Ausführungen jetzt noch ein wenig mager sind, möchte ich mich zusätzlich noch an einen sprachlichen Beweis der Behauptung wagen. Angenommen, die Behauptung sei nicht wahr. Dann müsste es Aussagen mit den Symbolen A, B sowie C derart geben, dass die Aussage

$$(A \wedge B) \wedge C \Leftrightarrow A \wedge (B \wedge C)$$

nicht wahr ist. Also müsste entweder die Aussage

$$(A \wedge B) \wedge C$$

wahr, die Aussage

$$A \wedge (B \wedge C)$$

jedoch nicht wahr sein. Oder aber die Aussage

$$(A \wedge B) \wedge C$$

nicht wahr und die Aussage

$$A \wedge (B \wedge C)$$

wahr sein. Dann muss ich zeigen, dass beide Fälle einen Widerspruch beinhalten. Angenommen, die Aussage

$$(A \wedge B) \wedge C$$

sei wahr. Dies ist gemäß der Definition 8.0.2 der Konjunktion nur dann der Fall, falls sowohl die Aussage

$$A \wedge B$$

wie auch die Aussage C wahr sind. Die Aussage

$$A \wedge B$$

ist jedoch gemäß der Definition 8.0.2 der Konjunktion nur dann der Fall, falls sowohl die Aussage A wie auch die Aussage B wahr sind. Insgesamt kann ich also aussagen, dass die Aussage

$$(A \wedge B) \wedge C$$

nur dann wahr ist, wenn alle drei Aussagen A,B wie auch C wahr sind. Dann muss jedoch gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$B \wedge C$$

wahr sein. Ebenfalls gemäß der gleichen vierten Zeile der Definition 8.0.2 der Konjunktion muss in diesem Fall die Aussage

$$A \wedge (B \wedge C)$$

wahr sein. Dies ist jedoch ein Widerspruch der Voraussetzung, dass die Aussage

$$A \wedge (B \wedge C)$$

nicht wahr ist. Somit kann dieser Fall nie eintreten.

Genau gleich kann ich argumentieren, um zu zeigen, dass es nicht möglich ist, dass die Aussage

$$(A \wedge B) \wedge C$$

nicht wahr, die Aussage

$$A \wedge (B \wedge C)$$

jedoch wahr ist. Die Aussage

$$A \wedge (B \wedge C)$$

ist gemäß der Definition 8.0.2 der Konjunktion nur dann wahr, falls die Aussagen A und $B \wedge C$ wahr sind. Die Aussage

$$B \wedge C$$

ist gemäß der gleichen Definition 8.0.2 der Konjunktion nur dann wahr, falls die Aussage B und C wahr sind. Somit ist auch diese Aussage nur dann wahr, falls alle drei Aussagen A, B sowie C wahr sind. Ist also die Aussage

$$A \wedge (B \wedge C)$$

wahr, dann müssen alle drei Aussagen A,B und C wahr sein. Also muss in diesem Fall gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$A \wedge B$$

wahr sein. Ebenso muss gemäß der gleichen Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$(A \wedge B) \wedge C$$

TABELLE 125. 1. Teil 1. Beweis des Satzes der Assoziativität der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$(A \wedge B) \wedge C$	$B \wedge C$	$\begin{array}{c} A \wedge \\ (B \wedge C) \end{array}$	Behauptung
1	0	0	0	0	1
2	0	0	0	0	1
3	0	0	0	0	1
4	0	0	1	0	1
5	0	0	0	0	1
6	0	0	0	0	1
7	1	0	0	0	1
8	1	1	1	1	1

TABELLE 126. 1. Teil 2. Beweis der Assoziativität der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$(A \wedge B) \wedge C$	$B \wedge C$
1	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
2	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
3	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
4	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$B \wedge C$
5	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
6	$\neg (A \land B)$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
7	$A \wedge B$	$\neg ((A \land B) \land C)$	$\neg (B \land C)$
8	$A \wedge B$	$(A \wedge B) \wedge C$	$B \wedge C$

wahr sein. Dies ist jedoch ein Widerspruch zur Voraussetzung, dass die Aussage

$$(A \wedge B) \wedge C$$

nicht wahr ist. Somit ist es ebenfalls nicht möglich, Aussagen A, B sowie C derart zu finden, dass die Aussage

$$A \wedge (B \wedge C)$$

wahr, die Aussage

$$A \wedge (B \wedge C)$$

jedoch nicht wahr ist. Somit glaube ich, für alle Fälle gezeigt zu haben, dass es nicht möglich ist, Aussagen mit den Symbolen A, B sowie C derart zu finden, dass die Behauptung nicht stimmt. Aufgrund der abgeschwächten Form des Satzes 11 der doppelten Negation behaupte ich, dass die Behauptung für alle in sich und in Bezug auf die anderen Symbole widerspruchsfreien Symbolen wahr sein muss. Also habe ich den Beweis für die Richtigkeit der Behauptung meines Erachtens gefunden und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

TABELLE 127. 2. Teil 2. Beweis der Assoziativität der Konjunktion

Aussage/ Fall Nr.	$A \wedge (B \wedge C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
1	$\neg (A \land (B \land C))$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
2	$\neg \left(A \wedge \left(B \wedge C \right) \right)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
3	$\neg (A \land (B \land C))$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
4	$\neg (A \land (B \land C))$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
5	$\neg (A \land (B \land C))$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
6	$\neg (A \land (B \land C))$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$
7	$\neg (A \land (B \land C))$	$(A \wedge B) \wedge C \Leftrightarrow A \wedge (B \wedge C)$
8	$A \wedge (B \wedge C)$	$(A \land B) \land C \Leftrightarrow A \land (B \land C)$

TABELLE 128. 1. Tabelle Verweise Beweis der Assoziativität der Konjunktion

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 8.0.2 der Konjunktion	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	1. Zeile	3. Zeile
4	2. Zeile	2. Zeile	4. Zeile
5	3. Zeile	1. Zeile	1. Zeile
6	3. Zeile	2. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

<includebackwardreferences>

Es hat sich in der Mathematik durchgesetzt, dass bei mathematischen Verknüpfungen, welche assoziativ sind, die Klammern weggelassen werden. Also kannst Du schreiben, falls A,B und C Symbole von Aussagen sind:

$$A \wedge B \wedge C$$

<include forward references>

Definition 8.0.2 Definition 12.0.1 Defintion/ der der Fall Nr. Konjunktion Aquivalenz 1. Zeile 1. Zeile 1 2 1. Zeile 1. Zeile 3 1. Zeile 1. Zeile 2. Zeile 1. Zeile 4 5 3. Zeile 1. Zeile 3. Zeile 1. Zeile 6 7 3. Zeile 1. Zeile

TABELLE 129. 2. Tabelle Verweise der Assoziativität der Konjunktion

wenn Du die Aussage

8

$$(A \wedge B) \wedge C$$

4. Zeile

4. Zeile

oder die Aussage

$$A \wedge (B \wedge C)$$

meinst. Denn da ich oben gezeigt habe, das die letzteren beiden Ausdrücke gleichbedeutend sind, spielt es keine Rolle, ob die Klammern hingeschrieben werden oder nicht. Doch zurück zur ursprünglichen Frage: Was ist Assoziativität? Diese ist eigentlich eine spezielle Art von Kommutativität. Und zwar geht es im Fall der Konjunktion von zwei Aussagen eben um die Frage, ob der Wahrheitsgehalt der Konjunktion der Aussagen A,B sowie C davon abhängt, ob zuerst die Konjunktion von A und B gebildet wird und nachher die Konjunktion der Aussage $(A \wedge B)$ mit C gebildet wird (und somit die Aussage

$$D \equiv (A \wedge B) \wedge C$$

gebildet wird) oder ob zuerst die Konjunktion der Aussagen B und C gebildet wird (also die Aussage $B \wedge C$ gebildet wird) und anschließend die Konjunktion der Aussage A mit dieser Aussage und somit die Aussage

$$E \equiv A \wedge (B \wedge C)$$

gebildet wird. Oder, indem ich es noch einmal sprachlich zu fassen versuche, ob es auf die Reihenfolge der Verknüpfungen ankommt. Nun, im Fall der Konjunktion kann es intuitiv (gefühlsmäßig) darum leicht eingesehen werden, indem daran erinnert wird, dass das Symbol der Konjunktion ja gar nicht aufgeschrieben werden müsste.

18.23. Warum ist die Disjunktion assoziativ?

Genau auf die gleiche Art, wie die Konjunktion assoziativ ist, es die Disjunktion auch. Darum habe ich den obigen Abschnitt zuerst einmal

umkopiert und angepasst. Falls Du also einen entsprechenden Fehler in meiner Argumentation entdeckst, weißt Du also, wieso dem so ist.

Wiederum formuliere ich zuerst einmal den Satz der Assoziativität der Disjunktion:

Satz 40. Es seien A, B sowie C Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt

$$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$$

BEWEIS. Und wieder möchte ich den Beweis mittels Wahrheitstafeln erbringen. Diesen habe ich in den Tabellen 130 einerseits und 131 sowie 132 andererseits abgelegt. Die Verweise der Beweise habe ich in den Tabellen 133 sowie 134 abgelegt. Beim Überarbeiten des Satzes habe ich mir gedacht, dass bloß mit stumpfen Nachschlagen der Definitionen der Beweis für die Richtigkeit des Satzes nur halb erbracht ist. Darum möchte ich an dieser Stelle versuchen, zu zeigen, dass es einen eleganteren Beweis geben müsse. Wäre die Disjunktion nicht assoziativ, dann müsste es eine Kombination der Aussagen mit den Symbolen A, B oder C derart geben, dass die Aussage

$$(A \lor B) \lor C$$

nicht wahr und die Aussage

$$A \vee (B \vee C)$$

wahr wäre oder umgekehrt die Aussage

$$(A \vee B) \vee C$$

wahr und die Aussage

$$A \vee (B \vee C)$$

nicht wahr wäre. Nun, dann möchte ich damit beginnen, mir zu überlegen, ob dann der erste Fall auftreten könnte. Wäre die Aussage

$$(A \lor B) \lor C$$

nicht wahr, dann könnte keine der drei Aussagen wahr sein. Nur in diesem Fall wäre die Aussage

$$(A \lor B) \lor C$$

nicht wahr. Genauer: Die Aussage

$$(A \vee B) \vee C$$

kann gemäß der Definition 11.0.1 der Disjunktion nur dann nicht wahr sein, falls weder die Aussage

$$A \vee B$$

noch die Aussage C wahr ist. Die Aussage

$$A \vee B$$

ist gemäß der gleichen Definition 11.0.1 der Disjunktion der Disjunktion nur dann nicht wahr, falls weder die Aussage A noch die Aussage B wahr ist. Zusammenfassend kann ich also schreiben, dass die Aussage

$$(A \vee B) \vee C$$

nur dann nicht wahr ist, falls keine der Aussagen A, B sowie C wahr ist. Also müsste in diesem Fall gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion die Aussage

$$B \vee C$$

und somit aus dem genau gleichen Grund auch die Aussage

$$A \vee (B \vee C)$$

nicht wahr sein - entgegen der Annahme, dass die Aussage

$$A \lor (B \lor C)$$

wahr sein müsste. Somit kann der erste Fall nicht eintreten. Und auf die genau gleiche Art kann ich beweisen, dass auch der zweite Fall nicht eintreten kann: Die Aussage

$$A \vee (B \vee C)$$

kann gemäß der Definition 11.0.1 der Disjunktion nur dann nicht wahr sein, falls die Aussage A nicht wahr und die Aussage $B \vee C$ nicht wahr ist. Die Aussage $B \vee C$ kann wiederum gemäß der gleichen Definition 11.0.1 der Disjunktion nur dann nicht wahr sein, falls weder die Aussage B noch die Aussage C wahr ist. Also kann die Aussage

$$A \vee (B \vee C)$$

nur dann nicht wahr sein, falls keine der drei Aussagen A, B oder C nicht wahr ist. In diesem Fall kann jedoch die Aussage

$$A \vee B$$

immer noch gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion ebenfalls nicht wahr sein. Da die Aussage C ja auch nicht wahr sein kann, kann in diesem Fall die Aussage

$$(A \lor B) \lor C$$

ebenfalls nicht wahr sein (auch immer noch gemäß der Definition 11.0.1 der Disjunktion). Also kann auch der zweite Fall nicht eintreten. Darum glaube ich gemäß der abgeschwächten Form des Satzes 12 des ausgeschlossenen Dritten schließen zu können, dass die Behauptung für alle möglichen Aussagen wahr sein muss. Somit glaube ich gezeigt zu haben, dass für alle Fälle gelten muss, dass die Aussage

$$A \lor (B \lor C) \Leftrightarrow (A \lor B) \lor C$$

wahr ist. Damit glaube ich gezeigt zu haben, dass ich den Beweis für die Richtigkeit meiner Aussage erbracht habe und beende an dieser Stelle die weitere Beweisführung.

TABELLE 130. 1. Teil 1. Beweis des Satzes der Assoziativität der Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$(A \lor B) \lor C$	$B \vee C$	$\begin{array}{c} A \lor \\ (B \lor C) \end{array}$	Behauptung
1	0	0	0	0	1
2	0	1	1	1	1
3	1	1	1	1	1
4	1	1	1	1	1
5	1	1	0	1	1
6	1	1	1	1	1
7	1	1	1	1	1
8	1	1	1	1	1

Tabelle 131. 1. Teil 2. Beweis der Assoziativität der Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$(A \vee B) \vee C$	$B \lor C$
1	$\neg (A \lor B)$	$\neg ((A \lor B) \lor C)$	$\neg (B \lor C)$
2	$\neg (A \lor B)$	$(A \lor B) \lor C$	$B \lor C$
3	$A \vee B$	$(A \lor B) \lor C$	$B \lor C$
4	$A \vee B$	$(A \lor B) \lor C$	$B \lor C$
5	$A \vee B$	$(A \lor B) \lor C$	$\neg (B \lor C)$
6	$A \vee B$	$(A \lor B) \lor C$	$B \lor C$
7	$A \vee B$	$(A \lor B) \lor C$	$B \lor C$
8	$A \vee B$	$(A \lor B) \lor C$	$B \lor C$

<includebackwardreferences>

Als Vereinfachung der Schreibweise kannst Du wiederum schreiben, falls A,B und C Symbole von Aussagen sind:

$$A \vee B \vee C$$

wenn Du

$$(A \lor B) \lor C$$

oder

$$A \vee (B \vee C)$$

meinst. Denn da ich oben gezeigt habe, das die letzteren beiden Ausdrücke gleichbedeutend sind, spielt es keine Rolle, ob die Klammern hingeschrieben werden oder nicht.

So, wie ich die letzten vier Abschnitte geschrieben habe, könntest Du den Eindruck bekommen, dass eigentlich alle logischen Verknüpfungen kommutativ und assoziativ sein müssten. Das ist jedoch nicht der Fall. Denn beispielsweise die Implikation ist weder kommutativ noch assoziativ. Es seien A,B Metasymbole von logischen Aussagen

<includeforwardreferences>

Tabelle 132. 2. Teil 2. Beweis der Assoziativität der Disjunktion

Aussage/ Fall Nr.	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
1	$\neg \left(A \vee \left(B \vee C \right) \right)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
2	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
3	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
4	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
5	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
6	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
7	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$
8	$A \vee (B \vee C)$	$(A \lor B) \lor C \Leftrightarrow A \lor (B \lor C)$

TABELLE 133. 1. Tabelle Verweise Beweis der Assoziation der Disjunktion

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 11.0.1 der Disjunktion	Definition 11.0.1 der Disjunktion
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

welche in sich selbst und in Bezug auf die anderen Symbole des folgenden Abschnitts widerspruchsfrei sei. Ist A das Symbol einer wahren Aussage, B jedoch das Symbol keiner wahren Aussage, dann ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \Rightarrow B$$

nicht wahr. Hingegen ist die Aussage

$$B \Rightarrow A$$

Tabelle 134.	2. Tabelle Verweise Beweis des Distribu-
tivgesetzes von	Konjunktion und Konjunktion

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz
1	1. Zeile	1. Zeile
2	2. Zeile	4. Zeile
3	2. Zeile	4. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	4. Zeile
7	4. Zeile	4. Zeile
8	4. Zeile	4. Zeile

gemäß der zweiten Zeile der Definition 9.0.1 der Implikation wahr. Also muss in diesem Fall gelten, dass gilt

$$(A \land \neg B) \Rightarrow (\neg ((A \Rightarrow B) \Leftrightarrow (B \Rightarrow A)))$$

und somit die Implikation nicht kommutativ ist. Es seien nun A, B, C Symbole von Aussagen, wobei A, B und C nicht wahr seien. Dann ist die Aussage

$$(A \Rightarrow B) \Rightarrow C$$

nicht wahr. Denn gemäß der ersten Zeile der Definition 9.0.1 der Implikation ist die Aussage $A \Rightarrow B$ zwar wahr. Also ist die Aussage

$$(A \Rightarrow B) \Rightarrow C$$

gemäß der dritten Zeile der Definition 9.0.1 nicht wahr. Jedoch ist die Aussage

$$A \Rightarrow (B \Rightarrow C)$$

wahr, da die Aussage

$$B \Rightarrow C$$

in diesem Fall gemäß der ersten Zeile der Definition 9.0.1 der Implikation wiederum wahr ist. Also ist die Aussage

$$A \Rightarrow (B \Rightarrow C)$$

gemäß der zweiten Zeile der Definition 9.0.1 der Implikation wieder wahr. Somit gilt in diesem Fall die Aussage

$$(\neg A \land \neg B \land \neg C) \Rightarrow (\neg (((A \Rightarrow B) \Rightarrow C) \Leftrightarrow (A \Rightarrow (B \Rightarrow C))))$$

Damit habe ich auch gezeigt, dass die Implikation nicht assoziativ ist. Ich möchte noch ein weiteres Beispiel einer Verknüpfung geben, welche nicht assoziativ ist. Es gilt

$$(10-3)-1=7-1=6$$

jedoch

$$10 - (3 - 1) = 10 - 2 = 8$$

und darum kann ich schreiben

$$(10-3)-1 \neq 10-(3-1)$$

Eine strenge formale Definition der Assoziativität werde ich unter ?? aufzuschreiben versuchen. Die Assoziativität und Kommutativität ist wichtig, um logische Ausdrücke zu vereinfachen. Aber wenn ich Dir keine Beispiele liefere, dann ist diese Aussage von mir relativ sinnlos. In der Mathematik geht es jedoch immer auch darum, alle Eigenschaften zu überprüfen. Wenn auf einem Gebiet der Mathematik Eigenschaften definiert werden, dann können diese Eigenschaften auf andere Gebiete der Mathematik zu übertragen versucht werden. Gelingt es, dann können erstaunliche Aussagen erzeugt werden. Das ist die eigentliche Schönheit der Mathematik. Dass die Mathematik zu einem Spiel wird, in welchem überraschende Zusammenhänge gelten. Aber ich müsste auch hier sinnvolle Beispiele liefern können.

Jetzt kommen meines Erachtens interessantere logische Sätze, welche wirklich ab und an angewendet werden können.

18.24. Minimumprinzip der Konjunktion

Ich möchte an dieser Stelle zeigen, dass das Minimumprinzip der Konjunktion auch als logischer Sätze formuliert und bewiesen werden kann. Ich möchte gleich beginnen zu zeigen, was ich damit meine:

LEMMA 41. Es seien A und B Bezeichnungen für Aussagen, welche in sich selber und in Bezug auf andere Symbole und Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$\neg A \Rightarrow \neg (A \land B)$$

BEWEIS. Angenommen, die Aussage sei nicht wahr. Dann müsste es gemäß der dritten Zeile der Definition 9.0.1 der Implikation Aussagen mit den Bezeichnungen A sowie B derart geben, dass die Aussage $\neg A$ wahr, die Aussage

$$\neg (A \land B)$$

jedoch nicht wahr ist. Gemäß dem Satz 10 der doppelten Negation wäre in diesem Fall die Aussage

$$A \wedge B$$

wahr. Dies würde jedoch gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion bedeuten, dass die Aussage A wahr sein müsste. Denn in allen anderen Fällen (falls die Aussage A nicht wahr ist oder dass die Aussage B wahr ist), ist eben die Aussage

Tabelle 135. 1. Beweis 1. Teil Minimumprinzip Konjunktion

Aussage/ Fall Nr.	$\neg A$	$A \wedge B$	$\neg (A \land B)$	Behauptung
1	1	0	1	1
2	1	0	1	1
3	0	0	1	1
4	0	1	0	1

Tabelle 136. 2. Beweis 1. Teil Minimumprinzip Konjunktion

Aussage/ Fall Nr.	$\neg A$	$A \wedge B$	$\neg (A \land B)$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $
1	$\neg A$	$\neg (A \land B)$	$\neg (A \land B)$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $
2	$\neg A$	$\neg (A \land B)$	$\neg (A \land B)$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $
3	$\neg (\neg A)$	$\neg (A \land B)$	$\neg (A \land B)$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $
4	$\neg (\neg A)$	$A \wedge B$	$\neg (\neg (A \land B))$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $

nicht wahr. Da die Aussage A wahr ist, ist jedoch die Aussage $\neg A$ nicht wahr. Somit ist gemäß der ersten Zeile der Definition 9.0.1 der Implikation im Widerspruch zur Voraussetzung eben doch wahr. Also ist es nicht möglich, Aussagen mit den Bezeichnungen A sowie B derart zu finden, dass die Behauptung nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 11 der doppelten Negation folgere ich daraus, dass die Behauptung eben richtig sein muss.

Damit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Damit alles seine Richtigkeit hat, werde ich den Beweis noch in Form von Wahrheitstabellen erbringen. Diesen habe ich in der Tabelle 135 auf die übliche Art und in der Tabelle 135 auf meine Art erbracht. Die Verweise habe ich in den Tabellen 137 sowie 138 aufgeschrieben. Damit erlaube ich mir, die weitere Beweisführung an dieser Stelle zu beenden.

<includebackwardreferences>

<includeforwardreferences>

Nun möchte ich den zweiten Teil des Minimumprinzip der Konjunktion formulieren und beweisen:

Lemma 42. Es seien A sowie B Bezeichnungen für Aussagen, welche in sich selber und in Bezug auf die anderen Aussagen des Lemmas widerspruchsfrei seien. Dann gilt die Aussage:

$$\neg B \Rightarrow \neg (A \land B)$$

TABELLE 137. Verweise des 1. Teil des Minimumprinzip der Konjunktion

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile
3	2. Zeile	3. Zeile
4	2. Zeile	4. Zeile

TABELLE 138. 2. Teil Verweise des Beweises des Satzes der Konjunktion mit nicht wahrer Aussage

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 9.0.1 der Implikaton
1	1. Zeile	4. Zeile
2	1. Zeile	4. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile

BEWEIS. Wiederum nehme ich an, dass es Aussagen mit den Bezeichnungen A sowie B derart geben würde, dass die Behauptung nicht wahr sei. Dann müsste gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage $\neg B$ wahr, die Aussage $\neg (A \land B)$ jedoch nicht wahr sein. Es müsste also gelten:

$$\neg \left(\neg \left(A \wedge B\right)\right)$$

Gemäß dem Satz 10 der doppelten Negation ist dies gleichbedeutend mit der Aussage, dass die Aussage

$$A \wedge B$$

wahr ist. Gemäß der Definition 8.0.2 der Konjunktion ist dies nur dann möglich, falls die Aussage A wie auch die Aussage B wahr ist. Da die Aussage B wahr ist, muss die Aussage B gemäß der zweiten Zeile der Definition 8.0.2 aber nicht wahr sein. Das bedeutet jedoch gemäß der zweiten Definition 9.0.1 der Implikation, dass die Aussage

$$\neg B \Rightarrow \neg (A \land B)$$

im Widerspruch zur Voraussetzung eben doch war wäre. Also ist es nicht möglich, Aussagen mit den Bezeichnungen A sowie B derart zu finden, dass die Behauptung nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 11 der doppelten Negation folgere ich daraus, dass die Behauptung eben richtig sein muss.

Tabelle 139. 1. Beweis 2. Teil Minimumprinzip Konjunktion

Aussage/ Fall Nr.	$\neg B$	$A \wedge B$	$\neg (A \land B)$	Behauptung
1	1	0	1	1
2	0	0	1	1
3	1	0	1	1
4	0	1	0	1

Tabelle 140. 2. Beweis 2. Teil Minimumprinzip Konjunktion

Aussage/ Fall Nr.	$\neg B$	$A \wedge B$	$\neg (A \land B)$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $
1	$\neg B$	$\neg (A \land B)$	$\neg (A \land B)$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $
2	$\neg (\neg B)$	$\neg (A \land B)$	$\neg (A \land B)$	
3	$\neg B$	$\neg (A \land B)$	$\neg (A \land B)$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $
4	$\neg (\neg B)$	$A \wedge B$	$\neg (\neg (A \land B))$	$ \begin{array}{cc} \neg A & \Rightarrow \\ (A \land B) \end{array} $

TABELLE 141. Verweise des 1. Teil des Minimumprinzip der Konjunktion Teil 1

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	3. Zeile
4	2. Zeile	4. Zeile

Damit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Damit ich den Satz noch einmal unabhängig beweisen kann, werde ich diesen noch einmal mittels Wahrheitstafeln zu beweisen versuchen. Den Beweis habe ich in der Tabelle 139 so aufgeschrieben, wie er üblicherweise aufgeschrieben wird. Andererseits habe ich ihn in der Tabelle 139 auf meine Art aufgeschrieben. In der Tabelle 141 habe ich die Verweise des Satzes aufgeschrieben.

<includebackwardreferences>
<includeforwardreferences>

Defintion/	Definition 6.0.2	Definition 8.0.2
Fall Nr.	der	der
rall Nr.	Negation	Konjunktion
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	3. Zeile
4	2. Zeile	4. Zeile

TABELLE 142. Verweise des 1. Teil des Minimumprinzip der Konjunktion Teil 2

Das Minimumprinzip lässt sich verallgemeinern. Dies möchte ich jedoch in aller Ausführlichkeit im Teil über natürliche Zahlen aufschreiben. An dieser Stelle möchte ich bloß skizzieren, wie ich das Prinzip auf drei Aussagen auszuweiten.

LEMMA 43. Es seien A, B oder C Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$\neg A \lor \neg B \lor \neg C \Rightarrow \neg (A \land B \land C)$$

BEWEIS. Angenommen, das Lemma wäre nicht wahr. Dann müsste es Aussagen, welche mit A,B sowie C bezeichnet werden sollen, derart geben, dass die Aussage

$$\neg (A \land B \land C)$$

nicht wahr ist, die Aussage $\neg A \lor \neg B \lor \neg C$ jedoch wahr ist. Gemäß dem Satz 10 der doppelten Negation ist die Aussage

$$\neg \left(\neg \left(A \land B \land C\right)\right)$$

gleichbedeutend zur Aussage

$$A \wedge B \wedge C$$

Diese Aussage ist jedoch nur dann wahr, falls alle drei Aussagen wahr sind. Das ist jedoch ein Widerspruch zur Aussage, dass eine der Aussagen A,B oder C nicht wahr ist. Darum schließe ich, dass es keine Aussagen, welche mit den Buchstaben A,B wie auch C bezeichnet werden sollen, derart gibt, dass die Aussage

$$\neg A \lor \neg B \lor \neg C \Rightarrow \neg (A \land B \land C)$$

nicht wahr ist. Gemäß dem abgeschwächten Satz 11 der doppelten Negation folgere ich daraus, dass die Behauptung wahr ist. Ich möchte den Beweis noch mittels Wahrheitstafeln erbringen. Diesen habe ich in der üblichen Art in den Tabellen 143, 144 sowie 145 abgelegt. Auf die eigene Art habe ich ihn in den Tabellen 146, 147 sowie 148 abgelegt. Die Verweise der Beweise habe ich in den Tabellen 149, 150 sowie 151

TABELLE 143. 1. Teil 1. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$\neg A \lor \neg B$
1	1	1	1
2	1	1	1
3	1	0	1
4	1	0	1
5	0	1	1
6	0	1	1
7	0	0	0
8	0	0	0

TABELLE 144. 2. Teil 1. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$\neg C$	$\neg A \vee \neg B \vee \neg C$	$A \wedge B$
1	1	1	0
2	0	1	0
3	1	1	0
4	0	1	0
5	1	1	0
6	0	1	0
7	1	1	1
8	0	0	1

abgelegt. Und noch eine kleine Schlussbemerkung: Es wäre nicht nur eine Implikation, sondern eine Äquivalenz, welche ich beweisen könnte. Aber den Beweis dieser Behauptung lasse ich für einmal sein. Da ich nun meine, den Beweis für die Richtigkeit des Beweises der Behauptung erbracht zu haben, erlaube ich mir, auf die Fortführung der weiteren Beweisführung an dieser Stelle zu verzichten und diesen stattdessen zu beenden.

<includebackwardreferences>

<includeforwardreferences>

Damit möchte ich gleich zum nächsten Satz wechseln.

18.25. Was ist der Satz der Negation der Konjunktion?

Es gilt der Satz, dass die Negation der Konjunktion zweier Aussagen die Disjunktion der jeweiligen Negationen der zwei Aussagen sind. Hast Du nicht begriffen, was ich damit meine? Ja, ich würde das auch

TABELLE 145. 3. Teil 1. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$(A \wedge B) \wedge C$	$\neg \left((A \land B) \land C \right)$	Behauptung
1	0	1	1
2	0	1	1
3	0	1	1
4	0	1	1
5	0	1	1
6	0	1	1
7	0	1	1
8	1	0	1

TABELLE 146. 1. Teil 2. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$\neg A \lor \neg B$
1	$\neg A$	$\neg B$	$\neg A \lor \neg B$
2	$\neg A$	$\neg B$	$\neg A \lor \neg B$
3	$\neg A$	$\neg (\neg B)$	$\neg A \lor \neg B$
4	$\neg A$	$\neg (\neg B)$	$\neg A \lor \neg B$
5	$\neg (\neg A)$	$\neg B$	$\neg A \lor \neg B$
6	$\neg (\neg A)$	$\neg B$	$\neg A \lor \neg B$
7	$\neg (\neg A)$	$\neg (\neg B)$	$\neg (\neg A \lor \neg B)$
8	$\neg (\neg A)$	$\neg (\neg B)$	$\neg (\neg A \lor \neg B)$

TABELLE 147. 2. Teil 2. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$\neg C$	$\neg A \vee \neg B \vee \neg C$	$A \wedge B$
1	$\neg C$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
2	$\neg (\neg C)$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
3	$\neg C$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
4	$\neg (\neg C)$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
5	$\neg C$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
6	$\neg (\neg C)$	$\neg A \lor \neg B \lor \neg C$	$\neg (A \land B)$
7	$\neg C$	$\neg A \lor \neg B \lor \neg C$	$A \wedge B$
8	$\neg (\neg C)$	$\neg (\neg A \lor \neg B \lor \neg C)$	$A \wedge B$

nicht. Damit Du siehst, was ich meine, möchte ich den Satz formal²¹ aufschreiben.

²¹will heißen: als Formel

TABELLE 148. 3. Teil 2. Beweis Minimumprinzip Konjunktion mit drei Argumenten

Aussage/ Fall Nr.	$(A \wedge B) \wedge C$	$\neg \left((A \land B) \land C \right)$	$\neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg \left((A \land B) \land C \right)$
1	$\neg (A \land B) \land C$	$\neg ((A \land B) \land C)$	$\neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C)$
2	$\neg (A \land B) \land C$	$\neg \left((A \land B) \land C \right)$	$\neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C)$
3	$\neg (A \land B) \land C$	$\neg ((A \land B) \land C)$	$\neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C)$
4	$\neg (A \land B) \land C$	$\neg ((A \land B) \land C)$	$\neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C)$
5	$\neg (A \land B) \land C$	$\neg ((A \land B) \land C)$	$\neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C)$
6	$\neg (A \land B) \land C$	$\neg ((A \land B) \land C)$	$\neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C)$
7	$\neg (A \land B) \land C$	$\neg ((A \land B) \land C)$	$\neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C)$
8	$(A \wedge B) \wedge C$	$\neg (\neg ((A \land B) \land C))$	$\neg A \lor \neg B \lor \neg C \Rightarrow \\ \neg ((A \land B) \land C)$

TABELLE 149. 1. Teil Verweise Minimumprinzip Konjunktion mit drei Argumenten

Defintion/ Fall Nr.	Definition 6.0.2 der	Definition 6.0.2 der	Definition 11.0.1 der
	Negation	Negation	Disjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	1. Zeile	4. Zeile
3	1. Zeile	2. Zeile	3. Zeile
4	1. Zeile	2. Zeile	3. Zeile
5	2. Zeile	1. Zeile	2. Zeile
6	2. Zeile	2. Zeile	2. Zeile
7	2. Zeile	2. Zeile	1. Zeile
8	2. Zeile	2. Zeile	1. Zeile

Satz 44. Es seien A sowie B Symbole für Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(\neg (A \land B)) \Leftrightarrow ((\neg A) \lor (\neg B))$$

TABELLE 150. 2. Teil Verweise Minimumprinzip Konjunktion mit drei Argumenten

Defintion/	Definition 6.0.2	Definition 11.0.1	Definition 8.0.2
Fall Nr.	der	der	der
ran m.	Negation	Disjunktion	Konjunktion
1	1. Zeile	4. Zeile	1. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	1. Zeile	4. Zeile	2. Zeile
4	2. Zeile	3. Zeile	2. Zeile
5	1. Zeile	4. Zeile	3. Zeile
6	2. Zeile	3. Zeile	3. Zeile
7	1. Zeile	2. Zeile	4. Zeile
8	2. Zeile	1. Zeile	4. Zeile

TABELLE 151. 3. Teil Verweise Minimumprinzip Konjunktion mit drei Argumenten

Defintion/	Definition 8.0.2	Definition 6.0.2	Definition 9.0.1
Fall Nr.	der	der	der
ran m.	Konjunktion	Negation	Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	1. Zeile	1. Zeile	4. Zeile
4	2. Zeile	1. Zeile	4. Zeile
5	1. Zeile	1. Zeile	4. Zeile
6	2. Zeile	1. Zeile	4. Zeile
7	3. Zeile	1. Zeile	4. Zeile
8	4. Zeile	2. Zeile	1. Zeile

BEWEIS. Ich möchte umgehend einen Beweis liefern. Da die Konjunktion der Aussagen A sowie B gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion genau dann wahr ist, wenn die Aussage A wie auch die Aussage B wahr sind, ist also die Negation der Konjunktion der Aussagen A und B gemäß der zweiten Zeile der Definition 6.0.2 der Negation nur dann nicht wahr, falls beide Aussagen wahr sind. Auf der anderen Seite ist gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion auch die Aussage $(\neg A) \lor (\neg B)$ nur dann nicht wahr, falls sowohl die Aussage A sowie die Aussage B wahr sind. Denn ist eine der beiden Aussagen A oder B nicht wahr, dann ist deren Negation gemäß der ersten Zeil der Definition 6.0.2 der Negation wahr und somit gemäß dem Maximumprinzip 11 der Disjunktion die gesamte Aussage. Doch was heißt dies genau? Angenommen, die Aussage A sei nicht

TABELLE 152. 1. Beweis des Satzes der Negation der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$\neg (A \land B)$	$\neg A$	$\neg B$
1	0	1	1	1
2	0	1	1	0
3	0	1	0	1
4	1	0	0	0

Tabelle 153. 1. Beweis des Satzes der Negation der Konjunktion

Aussage/ Fall Nr.	$(\neg A) \vee (\neg B)$	Behauptung
1	1	1
2	1	1
3	1	1
4	0	1

wahr. Dann ist die Negation der Aussage A (die Aussage $\neg A$) gemäß der ersten Zeile der Definition 6.0.2 der Negation wahr. Also ist gemäß dem Maximumprinzip 11 der Disjunktion die Aussage $\neg A \lor \neg B$ bereits wahr. Ebenfalls ist die Aussage $\neg A \lor \neg B$ gemäß dem Maximumprinzip 11 der Disjunktion ebenfalls bereits dann wahr, falls $\neg B$ wahr ist. Gemäß der Definition 6.0.2 der Negation kann in diesem Fall jedoch B nicht wahr sein. Das wollte ich jedoch genau zeigen. Zusammenfassend kann ich also schließen, dass sowohl die Aussage

$$\neg \left(A \wedge B \right)$$

wie auch die Aussage

$$(\neg A) \lor (\neg B)$$

genau dann nicht wahr sind, falls sowohl A wie auch B wahr sind. Darum glaube ich schließen zu dürfen, dass beide Aussagen äquivalent sind. Wieder möchte ich die Aussage jedoch auch mittels Wahrheitstabelle herleiten. Diese sind in den den Tabellen 152 und 153 einerseits sowie 154 und 155 andererseits abgelegt. Für die Verweise der Verknüpfungen siehe die Tabellen 156 zusammen mit der Tabelle 157.

<includebackwardreferences>

<includeforwardreferences>

Das Interessante an diesem Satz besteht meines Erachtens darin, dass er die Konjunktion mit der Disjunktion verknüpft.

TABELLE 154. 1. Teil 2. Beweis des Satzes der Negation der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$\neg (A \land B)$	$\neg A$	$\neg B$
1	$\neg (A \land B)$	$\neg (A \land B)$	$\neg A$	$\neg B$
2	$\neg (A \land B)$	$\neg (A \land B)$	$\neg A$	$\neg (\neg B)$
3	$\neg (A \land B)$	$\neg (A \land B)$	$\neg (\neg A)$	$\neg B$
4	$A \wedge B$	$\neg (\neg (A \land B))$	$\neg (\neg A)$	$\neg (\neg B)$

TABELLE 155. 2. Teil 2. Beweis des Satzes der Negation der Konjunktion

Aussage/ Fall Nr.	$(\neg A) \lor (\neg B)$	$ \begin{array}{c} (\neg (A \land B)) & \Leftrightarrow \\ ((\neg A) \lor (\neg B)) & \end{array} $
1	$(\neg A) \lor (\neg B)$	$ \begin{array}{c} (\neg (A \land B)) \Leftrightarrow \\ ((\neg A) \lor (\neg B)) \end{array} $
2	$(\neg A) \lor (\neg B)$	$ \begin{array}{c} (\neg (A \land B)) \Leftrightarrow \\ ((\neg A) \lor (\neg B)) \end{array} $
3	$(\neg A) \lor (\neg B)$	$ (\neg (A \land B)) \Leftrightarrow \\ ((\neg A) \lor (\neg B)) $
4	$\neg ((\neg A) \lor (\neg B))$	$ \begin{array}{c} (\neg (A \land B)) \Leftrightarrow \\ ((\neg A) \lor (\neg B)) \end{array} $

TABELLE 156. 1. Teil Verweise des Beweises des Satzes der Negation der Konjunktion

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 6.0.2 der Negation	Definition 6.0.2 der Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	1. Zeile
3	3. Zeile	1. Zeile	2. Zeile
4	4. Zeile	2. Zeile	2. Zeile

18.26. Warum muss es unwahre Aussagen geben?

Nun, ich habe oben definiert, dass es wahre Aussagen gibt. Jedoch habe ich nichts über nicht wahre Aussage geschrieben. Obwohl in meiner täglichen Erfahrung auch unwahre Aussagen geben dürfte. Darum möchte ich an dieser Stelle zeigen, dass etwa für beliebige (in sich widerspruchsfreie) Aussagen A die Aussage

TABELLE 157. 2. Teil Verweise des Beweises des Satzes der Negation der Konjunktion

Defintion/ Fall Nr.	Definition 6.0.2 der	Definition 11.0.1 der	Definition 12.0.1 der
	Negation	Disjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	3. Zeile	4. Zeile
3	1. Zeile	2. Zeile	4. Zeile
4	2. Zeile	1. Zeile	1. Zeile

nie wahr sein kann. Dies möchte ich gerne ein wenig schärfer formulieren:

Satz 45. Es sei A das Symbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann muss gelten

$$\neg (A \land \neg A)$$

In Worten: Es kann nicht gleichzeitig A und die Negation von A wahr sein.

Das ist jedoch zu beweisen.

BEWEIS. Ist A das Symbol einer wahren Aussage, dann kann gemäß der zweiten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ nicht wahr sein. Also kann aufgrund der dritten Zeile der Definition 8.0.2 der Konjunktion die Aussage $A \land \neg A$ nicht wahr sein. Ist jedoch A das Symbol einer nicht wahren Aussage, dann muss aufgrund der ersten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ wahr sein. Also ist die Aussage $A \land \neg A$ wegen der zweiten Zeile der Definition 8.0.2 nicht wahr. Somit ist wiederum wegen der ersten Zeile der Definition 8.0.2 der Konjunktion die ganze Behauptung

$$\neg (A \land \neg A)$$

wahr. Damit ist jedoch die Behauptung bewiesen.

Doch was ist ein Beweis im Bereich Logik ohne Wahrheitstafeln? Eben. Darum möchte den Beweis mit Hilfe von Wahrheitstafeln erbringen. Die Beweise habe ich in den Tabellen 158 sowie 159 aufgeschrieben. Die Verweise der Beweise habe in der Tabelle 160 aufgelistet. Somit erachte ich den Beweis des Satzes als erwiesen und erlaube mir, den Beweis an dieser Stelle zu beenden.

<includebackwardreferences>

<includeforwardreferences>

Der Satz besagt, dass eine beliebige logische Aussage nicht gleichzeitig wahr und nicht wahr sein kann.

TABELLE 158. 1. Beweis der Negation der Konjunktion der Aussage und ihrer Negation

Aussage/ Fall Nr.	$\neg A$	$A \wedge (\neg A)$	$\neg (A \land (\neg A))$
1	1	0	1
2	0	0	1

TABELLE 159. 2. Beweis der Negation der Konjunktion der Aussage und ihrer Negation

Aussage/ Fall Nr.	$\neg A$	$A \wedge (\neg A)$	$\neg (A \land (\neg A))$
1	$\neg A$	$\neg (A \land (\neg A))$	$\neg (A \land (\neg A))$
2	$\neg (\neg A)$	$\neg (A \land (\neg A))$	$\neg (A \land (\neg A))$

TABELLE 160. Verweise des Satzes der Negation der Konjunktion der Aussage und ihrer Negation

Definition/	Definition 6.0.2 der	Definition 8.0.2 der	Definition 6.0.2 der
Fall Nr.	Negation	Konjunktion	Negation
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	3. Zeile	1. Zeile

Also habe ich sozusagen meine Hausaufgaben gemacht, so wie ich es im Kapitel 5 versprochen habe. Die andere Frage ist natürlich, für was das gut sein soll. Eine andere Anwendung ist die Definition einer Menge. Wenn ich eine wohldefinierte Menge M besitze, dann kann ich definieren

$$\phi = \{ x \in M \mid x \in M \land x \notin M \}$$

wobei ich diese Menge jedoch auch so schreiben könnte

$$\phi = \{ x \in M \mid x \notin M \}$$

Es gibt also eine Asymmetrie²² zwischen der Menge der wahren sowie der Menge der nicht wahren Aussagen: Währendem ich annehme, dass es wahre Aussagen gibt, beweise ich, dass es in diesem Fall nicht wahre Aussagen geben muss.

18.27. Was ist der Satz der Negation der Disjunktion?

Dieses Kapitel ist die Kopie zusammen mit den entsprechenden Anpassungen des Absatzes 18.25 über die Negation der Konjunktion. Das

²²eine Asymmetrie liegt in etwa dann vor, wenn zwei Dinge sich bezüglich einer bestimmen Eigenschaft unterscheiden

ist einerseits langweilig. Andererseits soll es an dieser Stelle trotzdem der Vollständigkeit halber aufgeschrieben werden.

Es gilt also wiederum der

Satz 46. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt

$$(\neg (A \lor B)) \Leftrightarrow ((\neg A) \land (\neg B))$$

Für den

BEWEIS. der Äquivalenz möchte ich mir überlegen, wann die Aussagen $\neg (A \lor B)$ respektive $(\neg A) \land (\neg B)$ wahr sind. Die zweite Aussage ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion genau dann wahr, falls weder A noch B wahr ist. Denn ist A oder B wahr, dann sind es die Aussagen $\neg A$ oder $\neg B$ gemäß der zweiten Zeile der Definition 6.0.2 der Negation nicht. Also ist gemäß dem Minimumprinzip 8 der Konjunktion auch bereits schon die Aussage

$$\neg A \land \neg B$$

Sind jedoch weder die Aussage A noch die Aussage B wahr, dann sind gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussagen $\neg A$ wie auch $\neg B$ wahr. Somit ist die Aussage

$$\neg A \land \neg B$$

gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion wiederum wahr.

Jedoch ist auch die Aussage $\neg (A \lor B)$ nur dann wahr, falls weder die Aussage A noch die Aussage B wahr sind. Denn ist die Aussage A oder B wahr, dann ist wegen dem Maximumprinzip 11 der Disjunktion die Disjunktion bereits wahr. Also ist die Negation der Disjunktion in diesem Fall gemäß der zweiten Zeile der Definition 6.0.2 der Negation nicht wahr. Sind hingegen weder die Aussage A noch B wahr, dann ist es gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion auch die Aussage $A \lor B$ nicht. Somit ist gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage

$$\neg (A \lor B)$$

wahr. Also dürfen auch in der Aussage $\neg (A \lor B)$ weder die Aussage A noch die Aussage B wahr sein, soll die Aussage

$$\neg (A \lor B)$$

wahr ist.

Ich habe jetzt zu zeigen versucht, dass die beiden Aussagen genau dann wahr sind, falls weder A noch B wahr ist. Darum bin ich der Meinung den Beweis für die Richtigkeit der Behauptung mit sprachlichen Mitteln erbracht zu haben. Und auch diesen Beweis habe ich ebenso

Tabelle 161. 1. Beweis des Satzes der Negation der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$\neg \left(A \vee B \right)$	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$	Behauptung
1	0	1	1	1	1	1
2	1	0	1	0	0	1
3	1	0	0	1	0	1
4	1	0	0	0	0	1

TABELLE 162. 1. Teil 2. Beweis des Satzes der Negation der Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$\neg (A \lor B)$
1	$\neg (A \lor B)$	$\neg (\neg (A \lor B))$
2	$A \vee B$	$\neg (A \lor B)$
3	$A \vee B$	$\neg (A \lor B)$
4	$A \vee B$	$\neg (A \lor B)$

TABELLE 163. 2. Teil 2. Beweis des Satzes der Negation der Disjunktion

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$	$ \begin{array}{c} (\neg (A \lor B)) & \Leftrightarrow \\ ((\neg A) \land (\neg B)) & \end{array} $
1	$\neg A$	$\neg B$	$(\neg A) \wedge (\neg B)$	$ (\neg (A \lor B)) \Leftrightarrow ((\neg A) \land (\neg B)) $
2	$\neg A$	$\neg (\neg B)$		$ \begin{array}{c} (\neg (A \lor B)) & \Leftrightarrow \\ ((\neg A) \land (\neg B)) & \end{array} $
3	$\neg (\neg A)$	$\neg B$		$ (\neg (A \lor B)) \Leftrightarrow ((\neg A) \land (\neg B)) $
4	$\neg (\neg A)$	$\neg (\neg B)$		$ \begin{array}{c} (\neg (A \lor B)) & \Leftrightarrow \\ ((\neg A) \land (\neg B)) & \end{array} $

mit Hilfe von langweiligen Tabellen noch einmal erbracht: Siehe Tabelle 161 sowie die Tabellen 162 wie auch 163. Die Verweise habe ich in den Tabellen 164 respektive 165 "verstaut" (aufgelistet, um es weniger flapsig auszudrücken).

<includebackwardreferences>

<includeforwardreferences>

Vielleicht könntest Du Dich fragen, wo dann der Unterschied zum Satz der Negation der Konjunktion sein könnte? Der Unterschied ist meiner Ansicht nach derjenige, dass der Satz der Negation der Disjunktion nur dann wahr ist, falls die Aussagen A respektive B nicht

Tabelle 164. 1. Teil Verweise Beweis Negation der Disjunktion

Defintion/ Fall Nr.	Definition 11.0.1	Definition 6.0.2	Definition 6.0.2
	der	der	der
rall Mi.	Disjunktion	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile	2. Zeile
4	4. Zeile	2. Zeile	2. Zeile

Tabelle 165. 2. Teil Verweise Beweis Negation der Disjunktion

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 8.0.2 der Konjunktion	Definition 12.0.1 der Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	1. Zeile	2. Zeile	1. Zeile
4	2. Zeile	1. Zeile	1. Zeile

wahr sind, der Satz der Negation der Konjunktion jedoch nur dann nicht wahr ist, falls die Aussagen A respektive B wahr sind. Insbesondere ist der Satz der Negation der Konjunktion auch in diesem Fall wahr, falls sowohl die Aussagen A wie auch B nicht wahr sind. Also folgt aus der NOR-Verknüpfung die NAND-Verknüpfung. Die Negation bewirkt also, dass die Disjunktion also restriktiver wird als die Konjunktion. Und so frage ich mich im Moment, wieso dann in den Computern trotzdem die Schaltungen offenbar häufiger mit NAND- als mit NOR-Verknüpfungen realisiert wurden. Denn je seltener ein Ausgang gesetzt wird, desto weniger Energie wird für die ganze Schaltung benötigt. Ich glaube jedoch nicht, dass dadurch bereits sicher ist, dass dadurch weniger Energie verheizt wird. Denn dies wäre nur dann der Fall, wenn alle Kombination der Variablen der Eingänge in den Gittern gleich häufig wären. Aber wer weiß. Vielleicht kommt einmal ein superstromsparender Compi auf den Markt, und nur wir wissen warum? 23

18.28. Was ist der Satz des Ausschlusses?

Er ist vor allem eines: Eine von mir gewählte Bezeichnung für einen Sachverhalt. Ich weiß nicht, wie der sonst heißen müsste. Ich meine damit folgenden Satz:

 $^{^{23}}$ soll ein Witz sein

Satz 47. Es seien A respektive B Bezeichnungen für zwei Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt der Satz

$$((A \lor B) \land (\neg A)) \Rightarrow B$$

Dieser Satz ist irgendwie vergleichbar mit derjenigen Situation, in welcher Dir zwei Garagen gezeigt werden. Es werde Dir gesagt, dass in der einen Garage ein Auto enthalte sei und in der anderen Garage sei kein Auto enthalten. Die Türen zu den Garagen sind jedoch verschlossen. Es wird gesagt, dass Du ein Garagentor öffnen könnest. Falls sich dann ein Auto in der Garage befinde, dann könnest Du das Auto behalten. Du öffnest erwartungsfroh ein Garagentor - doch oh weh, da ist kein Auto hinter der Garagentüre vorhanden. Dann schließt Du blitzschnell, dass das Auto sich hinter der anderen Garagentür befinden muss. Auch wenn das Beispiel total bescheuert tönt: Es ist eine vereinfachte Situation einer Wahrscheinlichkeitsaufgabe, welche ich zwar kenne, aber ehrlich gesagt, nicht wirklich begreife. Und zwar ist das Beispiel so aufgebaut, dass in drei Garagen ein Auto versteckt ist. Dann wählst Du eine Garage aus. Anschließend wird wird gesagt, hinter welchen anderen Tür sich kein Auto versteckt. Dann ist die Frage: Macht es Sinn, jetzt die dritte Garage auszuwählen, welche weder von Dir gewählt wurde noch nachträglich als leer bezeichnet wurde? Und die Antwort ist: Ja, dann wird die Chance größer, das Auto tatsächlich zu finden. Aber das ist eine andere Geschichte.

Der Witz am Satz des Ausschlusses ist derjenige, dass Du gar nicht zeigen musst, dass B wahr ist, sondern dass A nicht wahr ist. Dieser Gedankengang wird häufig in der Mathematik beschritten. Es stellt sich wiederum die Frage, warum der Satz des Ausschlusses gültig sein muss. Dass der Satz des Ausschlusses gilt, möchte ich zuerst mittels den folgenden Überlegungen zeigen:

Beweis. (des Satzes des Ausschlusses) Es sei die Aussage

$$((A \lor B) \land (\neg A)) \Rightarrow B$$

nicht wahr. Dies könnte gemäß der dritten Zeile der Definition 9.0.1 der Implikation nur dann geschehen, falls die Aussage

$$(A \vee B) \wedge (\neg A)$$

wahr, die Aussage B jedoch nicht wahr ist. Jedoch müsste in diesem Fall die Aussage

$$(A \vee B) \wedge (\neg A)$$

im Widerspruch zur Voraussetzung nicht wahr sein. Denn die Aussage

$$(A \vee B) \wedge (\neg A)$$

könnte gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion nur dann wahr sein, falls die Aussage $\neg A$ nicht wahr wäre. Also müsste

Aussage/ Fall Nr.	$A \lor B$	$\neg A$	$(A \vee B) \wedge (\neg A)$	Behauptung
1	0	1	0	1
2	1	1	1	1
3	1	0	0	1
4	1	0	0	1

Tabelle 166. 1. Beweis des Satzes des Ausschlusses

Tabelle 167. 1. Teil 2. Beweis des Satzes des Ausschlusses

Aussage/ Fall Nr.	$A \vee B$	$\neg A$
1	$\neg (A \lor B)$	$\neg A$
2	$A \vee B$	$\neg A$
3	$A \vee B$	$\neg (\neg A)$
4	$A \lor B$	$\neg (\neg A)$

gemäß der Definition 6.0.2 der Negation die Aussage A nicht wahr sein. Denn wäre die Aussage A wahr, dann wäre gemäß der Definition 6.0.2 die Aussage $\neg A$ nicht wahr. Wäre jedoch die Aussage A nicht wahr, dann wäre gemäß der Definition 6.0.2 der Negation die Aussage $\neg A$ wahr. Wären jedoch sowohl die Aussage A wie auch die Aussage B nicht wahr, dann müsste gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion die Aussage $A \lor B$ ebenfalls nicht wahr sein. Also könnte gemäß der zweiten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$(A \vee B) \wedge (\neg A)$$

nicht wahr sein. Gemäß der Abkürzungsregeln 9 der Implikation wäre darum die gesamte Aussage

$$((A \lor B) \land (\neg A)) \Rightarrow B$$

im Gegensatz zur Voraussetzung eben doch wahr. Also ist es nicht möglich, dass es Aussagen A sowie B derart gibt, dass die Aussage

$$((A \lor B) \land (\neg A)) \Rightarrow B$$

nicht wahr ist. Darum meine ich gezeigt zu haben, dass die Aussage

$$((A \lor B) \land (\neg A)) \Rightarrow B$$

für alle möglichen Aussagen immer wahr ist.

Nun gut, das war jetzt eine schwammige textliche Begründung, wieso der Satz des Ausschlusses gelten müsste. Ich möchte jetzt noch einen "harten" Beweis liefern. Die Beweise sind in den Tabellen 166, 167 sowie 168 aufgelistet. Die Verweise habe ich in den Tabellen 169 sowie 170 abgelegt.

TABELLE 168. 2. Teil 2. Beweis des Satzes des Ausschlusses

Aussage/ Fall Nr.	$(A \vee B) \wedge (\neg A)$	Behauptung
1	$\neg ((A \lor B) \land (\neg A))$	$((A \lor B) \land (\neg A)) \Rightarrow B$
2	$(A \vee B) \wedge (\neg A)$	$((A \lor B) \land (\neg A)) \Rightarrow B$
3	$\neg ((A \lor B) \land (\neg A))$	$((A \lor B) \land (\neg A)) \Rightarrow B$
4	$\neg ((A \lor B) \land (\neg A))$	$((A \lor B) \land (\neg A)) \Rightarrow B$

Tabelle 169. 1. Teil Verweise Beweis Satz des Ausschlusses

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 6.0.2 der Negation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile
4	4. Zeile	2. Zeile

Tabelle 170. 2. Teil Verweise Beweis Satz des Ausschlusses

Def./ Fall Nr.	Definition 8.0.2 der	Definition 9.0.1 der
rall IVI.	Konjunktion	Implikation
1	2. Zeile	1. Zeile
2	4. Zeile	4. Zeile
3	3. Zeile	1. Zeile
4	3. Zeile	2. Zeile

<includebackwardreferences>

<includeforwardreferences>

Ich hatte übrigens einmal die Idee, dass ich zeigen könne, dass ich anstelle von B im Satz des Ausschlusses die Aussage $\neg A$ verwenden könne. Die Idee war, zu zeigen: Wenn ich zeigen kann, $\neg (\neg A)$ gilt, dass dann A gilt. Aber das Resultat war enttäuschend. Denn die resultierende Aussage erhält die Form

$$(A \lor \neg A) \land \neg A \Rightarrow \neg A$$

Da die Aussage $A \vee \neg A$ immer wahr ist, kann ich stattdessen schreiben

$$\neg A \Rightarrow \neg A$$

Das ist jedoch ebenso banal. Eine Alternative wäre wenn ich anstelle von B die Aussage A und anstelle von A die Aussage $\neg A$ verwenden würde. Das Resultat wäre dann

$$(\neg A \lor A) \lor \neg (\neg A) \Rightarrow A$$

TABELLE 171. 1. Beweis des Satzes der Folgerung der Aussage aus der der doppelten Negation

Aussage/ Fall Nr.	$\neg A$	$\neg (\neg A)$	$\neg (\neg A) \Rightarrow A$
1	1	0	1
2	0	1	1

Dies könnte ich wiederum abkürzen zur Aussage

$$\neg (\neg A) \Rightarrow A$$

Doch das wäre auch nicht so berauschend. Denn das könnte ich auch als Folgerung des Satzes 10 der doppelten Negation verstehen. Aber wieso eigentlich nicht? Ich probiere es einmal:

SATZ 48. Es sei A das Symbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sei. Dann gilt die Aussage

$$\neg (\neg A) \Rightarrow A$$

Beweis. Angenommen, dieser Satz sei falsch. Dann müsste gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$\neg (\neg A)$$

wahr, die Aussage

A

jedoch nicht wahr sein. Gemäß dem Satz 10 der doppelten Negation ist jedoch die Aussage

$$\neg (\neg A)$$

genau dann wahr, falls es die Aussage

A

ebenfalls ist. Das wäre jedoch ein Widerspruch zur Voraussetzung, dass die Aussage A nicht wahr sein kann. Also schließe ich daraus, dass es keine Aussage A derart geben kann, dass die Aussage

$$\neg (\neg A) \Rightarrow A$$

nicht wahr sein kann. Zusammen mit dem Satz 12 des ausgeschlossenen Dritten schließe ich daraus, dass für alle (genügend widerspruchsfreien) Aussagen die Aussage

$$\neg (\neg A) \Rightarrow A$$

eben trotzdem wahr sein muss. Darum glaube ich, den Beweis für die Richtigkeit des Satzes erbracht zu haben. Trotzdem möchte ich den Satz noch zusätzlich mit Hilfe der der Wahrheitstabellen beweisen.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 172. 2. Beweis des Satzes der Folgerung der Aussage aus der der doppelten Negation

Aussage/ Fall Nr.	$\neg A$	$\neg (\neg A)$	$\neg (\neg A)$
1	$\neg A$	$\neg (\neg (\neg A))$	$\neg (\neg A)$
1 +	'21	'('('/ユイノ)	'('21)

Tabelle 173. Verweise des Satzes der Folgerung der Aussage aus der der doppelten Negation

Definition/	Definition 6.0.2	Definition 6.0.2	Definition 9.0.1
Fall Nr.	der	der	der
	Negation	Negation	Implikation
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile

18.29. Äquivalenz als zwei Implikationen

Jetzt kann ich den Satz 23 umformulieren, so wie ich es eigentlich schon viel früher hätte tun müssen. Bevor ich ihn jedoch formuliere und zu beweisen versuche, möchte ich Dich darauf hinweisen, dass der Beweis ein neues Element besitzt. Ich möchte versuchen, mit logischen Umformungen den Beweis herzuleiten. Allerdings weiß ich nicht, ob mir dies gelingt. In der Physik und in der Mathematik gilt die unausgesprochene Regel: Für neue Aussagen oder Vermutungen darfst Du sämtliche Regeln brechen. Da muss nur die Lösung einigermaßen plausibel sein. Jedoch musst Du (oder müsstest Du, falls Du Dich an die Regeln halten willst) beim Beweis sehr pedantisch sein. Dass ich im Beweis die etwas schwammigen Umformungen vornehme, kann ich eigentlich nur dadurch begründen, dass ich den Beweis unabhängig von den logischen Umformungen zusätzlich mit Wahrheitstafeln zu beweisen versuche. Doch urteile selbst:

Satz 49. Es seien A, B Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole des Beweises widerspruchsfrei seien. Dann gilt:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

Beweis. Gemäß dem Satz 22 kann ich schreiben:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (A \Leftarrow B)$$

Da die Konjunktion gemäß dem Satz 34 kommutativ ist, kann ich schreiben:

$$(A \Rightarrow B) \land (A \Leftarrow B) \Leftrightarrow (A \Leftarrow B) \land (A \Rightarrow B)$$

Gemäß dem Satz 15 der Transitivität der Äquivalenz kann ich schreiben:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Leftarrow B) \land (A \Rightarrow B)$$

Gemäß dem Satz 23 gilt (nach entsprechender Umbenennung)

$$(A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)$$

Nun kann ich, da diese Aussage für alle sinnvollen Aussagen A wie auch B wahr ist, gemäß der ersten Zeile der erweiterten Minimum- und Maximumsätze 79 der Logik schreiben:

$$(A \Leftarrow B) \land (A \Rightarrow B) \Leftrightarrow (A \Leftarrow B) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A))$$

Wiederum kann ich schreiben, das die Äquivalenz gemäß dem Satz 23 transitiv ist:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Leftarrow B) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A))$$

Nun kann ich gemäß dem Substitutionssatz 96 der Konjunktion schreiben:

$$((A \Leftarrow B) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A))) \Leftrightarrow ((B \Rightarrow A) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)))$$

Wieder nehme ich den Satz 15 der Äquivalenz zu Hilfe und erhalte die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow ((B \Rightarrow A) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)))$$

Da die Aussage

$$(A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)$$

ein logischer Satz ist, kann ich wiederum gemäß der erweiterten Minimum- und Maximumsätze 79 der Logik schreiben:

$$((B \Rightarrow A) \land (A \Rightarrow B) \land ((A \Leftarrow B) \Leftrightarrow (B \Rightarrow A))) \Leftrightarrow (B \Rightarrow A) \land (A \Rightarrow B)$$

Erneut nehme ich den Satz 15 der Äquivalenz zu Hilfe und erhalte die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow ((B \Rightarrow A) \land (A \Rightarrow B))$$

Dann kann ich wiederum den Satz 34 der Kommutativität anwenden und erhalte

$$(B \Leftarrow A) \land (A \Rightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

Zu guter Letzt kann ich noch einmal den Satz 15 der Transitivität der Äquivalenz anwenden und erhalte endlich die gewünschte Behauptung:

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

Nun habe ich (sogar für meine Verhältnisse) den Beweis extrem langatmig bewiesen. Damit Du siehst, dass alles mit rechten Dingen zugeht,

TABELLE 174. 1. Teil 1. Beweis des Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$B \Rightarrow A$
1	1	1	1
2	0	1	0
3	0	0	1
4	1	1	1

TABELLE 175. 2. Teil 1. Beweis des Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow A)$	Behauptung
1	1	1
2	0	1
3	0	1
4	1	1

TABELLE 176. 1. Teil 2. Beweis des Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$B \Rightarrow A$
1	$A \Leftrightarrow B$	$A \Rightarrow B$	$B \Rightarrow A$
2	$\neg (A \Leftrightarrow B)$	$A \Rightarrow B$	$\neg (B \Rightarrow A)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \Rightarrow B)$	$B \Rightarrow A$
4	$A \Leftrightarrow B$	$A \Rightarrow B$	$B \Rightarrow A$

werde ich den Beweis noch einmal mit Hilfe von Wahrheitstafeln beweisen. Der Beweis habe ich einerseits in den Tabellen 174 sowie 175 einerseits und 176 sowie 177 andererseits abgelegt. Die Verweise habe ich in den Tabellen 178 sowie 179 abgelegt.

<includebackwardreferences>

<includeforwardreferences>

Es gibt noch einen alternativen Äquivalenzsatz, auf welche ich per Zufall gestoßen bin (welcher jedoch ebenfalls oft verwendet wird). Diesen möchte ich nun formulieren und beweisen:

Satz 50. Es seien A sowie B Bezeichnungen von Aussagen, welche weder in sich selber noch in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (\neg A \Rightarrow \neg B)$$

TABELLE 177. 2. Teil 2. Beweis des Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow A)$	$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$
1	$(A \Rightarrow B) \land (B \Rightarrow A)$	$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$
2	$\neg ((A \Rightarrow B) \land (B \Rightarrow A))$	$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$
3	$\neg ((A \Rightarrow B) \land (B \Rightarrow A))$	$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$
4	$(A \Rightarrow B) \land (B \Rightarrow A)$	$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$

TABELLE 178. 1. Teil Verweise Beweis des Satzes der Äquivalenz als zwei Implikationen

Defintion/	Definition 12.0.1	Definition 9.0.1	Definition 9.0.1
Fall Nr.	der	der	der
rall M.	Äquivalenz	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	3. Zeile
3	3. Zeile	3. Zeile	2. Zeile
4	4. Zeile	4. Zeile	4. Zeile

TABELLE 179. 1. Teil Verweise Beweis des Satzes der Äquivalenz als zwei Implikationen

Def./ Fall Nr.	Definition 9.0.1 der Implikation	Definition 12.0.1 der Äquivalenz
1	4. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	4. Zeile

BEWEIS. Ich möchte zeigen, dass die Aussagen $A \Leftrightarrow B$ sowie $(A \Rightarrow B) \land (\neg A \Rightarrow \neg B)$ wahr sind. Die Aussage $A \Leftrightarrow B$ ist genau dann wahr, falls weder die Aussage A noch die Aussage B wahr sind oder sowohl die Aussage A wie auch die Aussage B wahr sind. Die Aussage

$$A \Rightarrow B$$

ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation nur dann nicht wahr, falls die Aussage A wahr und die Aussage B nicht

TABELLE 180. 1. Teil 1. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$\neg A$	$\neg B$
1	1	1	1	1
2	0	1	1	0
3	0	0	0	1
4	1	1	0	0

wahr ist. Die Aussage

$$\neg A \Rightarrow \neg B$$

ist entsprechend der gleichen dritten dritten Zeile der Definition 9.0.1 der Implikation nur dann nicht wahr, falls die Aussage $\neg A$ wahr und die Aussage $\neg B$ nicht wahr ist. Die Aussage $\neg A$ ist gemäß der ersten Zeile der Definition 6.0.2 der Negation wahr, falls die Aussage A nicht wahr ist. Die Aussage $\neg B$ ist gemäß der zweiten Zeile der Definition 6.0.2 der Negation nicht wahr, falls die Aussage B wahr ist. Also ist die Implikation

$$\neg A \Rightarrow \neg B$$

genau dann nicht wahr, falls die Aussage A nicht wahr, die Aussage B jedoch wahr ist. Somit ist die Aussage

$$(A \Rightarrow B) \land (\neg A \Rightarrow \neg B)$$

nicht wahr, falls die Aussage A nicht wahr und die Aussage B wahr ist oder falls die Aussage A wahr und die Aussage B wahr ist. Also ist die Aussage

$$(A \Rightarrow B) \land (\neg A \Rightarrow \neg B)$$

wahr, falls sowohl die Aussage A wie auch die Aussage B nicht wahr ist oder falls sowohl die Aussagen A wie auch B wahr sind. Also ist diese Aussage genau dann wahr, falls A und B äquivalent sind, also die Aussage

$$A \Leftrightarrow B$$

gilt. Damit glaube ich den Beweis für die Richtigkeit erbracht zu haben. Damit alles seine Richtigkeit hat, werde ich den Beweis mit Wahrheitstafeln erbringen. Die Beweise habe ich in den Tabellen 180 und 180 einerseits sowie 180 und 180 andererseits abgelegt. Die Verweise habe ich in den drei Tabellen 180, 181 sowie 180 abgelegt.

<includebackwardreferences>

TABELLE 181. 2. Teil 1. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B) \end{array} $	Behauptung
1	1	1	1
2	0	0	1
3	1	0	1
4	1	1	1

TABELLE 182. 1. Teil 2. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	$\neg A$	$\neg B$
1	$A \Leftrightarrow B$	$A \Rightarrow B$	$\neg A$	$\neg B$
2	$\neg (A \Leftrightarrow B)$	$A \Rightarrow B$	$\neg A$	$\neg (\neg B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \Rightarrow B)$	$\neg (\neg A)$	$\neg B$
4	$A \Leftrightarrow B$	$A \Rightarrow B$	$\neg (\neg A)$	$\neg (\neg B)$

TABELLE 183. 1. Teil 2. Beweis des Satzes alternativen Satzes der Äquivalenz als zwei Implikationen

Aussage/ Fall Nr.	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Rightarrow B) \land \\ (\neg A \Rightarrow \neg B) \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B)) \end{array} $
1	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Rightarrow B) \land \\ (\neg A \Rightarrow \neg B) \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B)) \end{array} $
2	$\neg (\neg A \Rightarrow \neg B)$	$\neg ((A \Rightarrow B) \land (\neg A \Rightarrow \neg B))$	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B)) \end{array} $
3	$\neg A \Rightarrow \neg B$	$\neg ((A \Rightarrow B) \land (\neg A \Rightarrow \neg B))$	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B)) \end{array} $
4	$\neg A \Rightarrow \neg B$	$ \begin{array}{c} (A \Rightarrow B) \land \\ (\neg A \Rightarrow \neg B) \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ ((A \Rightarrow B) & \land \\ (\neg A \Rightarrow \neg B)) \end{array} $

18.30. Implikation Implikation aus Äquivalenz

Nun, um was geht es wohl in diesem Abschnitt? Es ist der folgende, an und für sich banale Sachverhalt:

TABELLE 184. 1. Teil Verweise Beweis alternativer Satz der Äquivalenz als zwei Implikationen

Defintion/ Fall Nr.	Definition 12.0.1 der Äquvialenz	Definition 8.0.2 der Implikaton
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile
4	4. Zeile	4. Zeile

TABELLE 185. 2. Teil Verweise Beweis alternativer Satz der Äquivalenz als zwei Implikationen

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 6.0.2 der Negation
1	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile
3	2. Zeile	1. Zeile
4	2. Zeile	2. Zeile

TABELLE 186. 3. Teil Verweise Beweis Satz des Ausschlusses

Defintion/	Definition 9.0.1 der	Definition 8.0.2 der	Definition 12.0.1 der
Fall Nr.	Implikation	Konjunktion	Äquvialenz
1	4. Zeile	4. Zeile	4. Zeile
2	3. Zeile	3. Zeile	1. Zeile
3	2. Zeile	2. Zeile	1. Zeile
4	1. Zeile	4. Zeile	4. Zeile

SATZ 51. Es seien A, B Metasymbole für Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$$

BEWEIS. Dieser Satz kann nur dann nicht wahr sein, falls die Aussage

$$A \Leftrightarrow B$$

wahr, die Aussage

$$A \Rightarrow B$$

jedoch nicht wahr ist. Die Implikation $A \Rightarrow B$ ist nur dann nicht wahr, falls die Aussage A wahr, die Aussage B nicht wahr ist (vergleiche mit

Tabelle 187. 1. Beweis des Satzes der Implikation der Implikation aus der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	Behauptung
1	1	1	1
2	0	1	1
3	0	0	1
4	1	1	1

Tabelle 188. 2. Beweis des Satzes der Implikation der Implikation aus der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Rightarrow B$	Behauptung
1	$A \Leftrightarrow B$	$A \Rightarrow B$	$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$
2	$\neg (A \Leftrightarrow B)$	$A \Rightarrow B$	$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \Rightarrow B)$	$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$
4	$A \Leftrightarrow B$	$A \Rightarrow B$	$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$

Tabelle 189. Verweise Beweis Satz des Ausschlusses

Defintion/ Fall Nr.	Definition 12.0.1 der Äquivalenz	Definition 9.0.1 der Implikation	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

dem Satz 53 respektive mit der dritten Zeile der Definition 9.0.1 der Implikation). In diesem Fall ist jedoch die Äquivalenz $A \Leftrightarrow B$ gemäß der dritten Zeile der Definition 12.0.1 nicht wahr. Das bedeutet jedoch, dass der gesamte Satz

$$(A \Leftrightarrow B) \Rightarrow (A \Rightarrow B)$$

wiederum wahr sein muss. Somit kann ich feststellen, dass der gesamte Satz in allen denkbaren Fällen wahr sein muss. Natürlich möchte ich den Satz noch einmal mit den (von mir nicht mehr so heiß geliebten) Wahrheitstafeln erbringen. Die Beweise habe ich in den Tabellen 187 respektive 188 verstaut. Die Verweise auf die Definitionen habe ich in der Tabelle 189 untergebracht. Damit erachte ich den Beweis der Behauptung als erbracht und beende an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

18.31. Zusammenhang Disjunktion und Konjunktion

Wie kann aus der Negation und der Disjunktion eine Konjunktion erzeugt werden? Und warum? Das "warum" ist einerseits die Neugier, wie das logisch zusammenhängen könnte. Andererseits ist das eine weitere Anwendung der Definitionen.

Satz 52. Es seien also A, B Symbole von Aussagen. Dann gilt:

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land B)$$

BEWEIS. Der Beweis kann so geführt werden, dass gemäß dem Satz 46 des Satzes der Negation der Disjunktion gilt, dass eine Negation einer Disjunktion gleich der Konjunktion der Negation der Aussagen ist. Wenn ich nun anstelle von A die Aussage $\neg A$ und anstelle der Aussage B die Aussage B verwende, dann erhalte ich

$$\neg (\neg A \lor \neg B) \Leftrightarrow (\neg (\neg A) \land \neg (\neg B))$$

Da jetzt die Äquivalenz transitiv und gemäß dem Satz 10 der doppelten Negation

$$\neg (\neg A) \Leftrightarrow A$$
$$\neg (\neg B) \Leftrightarrow B$$

ist, ist ebenso

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land B)$$

Damit glaube ich, den Beweis erbracht zu haben. Oder doch nicht? Leider ist der Beweis jedoch nicht ganz "wasserdicht", also ganz erbracht. Ich möchte nun die Ochsentour durchführen und den Beweis besser machen (ganz erbracht ist auch der nicht):

Gemäß dem Satz der doppelten Negation 10 ist $\neg(\neg A) \Leftrightarrow A$ ein logischer Satz. Ich kann nun gemäß der zweiten Zeile des Lemmas 79 schreiben, dass gilt

$$(\neg (\neg A) \land \neg (\neg B)) \Leftrightarrow (\neg (\neg A) \land \neg (\neg B)) \land (\neg (\neg A) \Leftrightarrow A)$$

Wenn ich den Satz 15 der Transitivität der Äquivalenz verwende, erhalte ich

$$\neg (\neg A \lor \neg B) \Leftrightarrow (\neg (\neg A) \land \neg (\neg B)) \land (\neg (\neg A) \Leftrightarrow A)$$

Nun schreibe ich gemäß dem Substitutionssatz 96 der Konjunktion

$$(\neg (\neg A) \land \neg (\neg B)) \land (\neg (\neg A) \Leftrightarrow A) \Leftrightarrow (A \land \neg (\neg B)) \land (\neg (\neg A) \Leftrightarrow A)$$

Wieder verwende ich den Satz 15 der Transitivität der Äquivalenz und erhalte die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land \neg (\neg B)) \land (\neg (\neg A) \Leftrightarrow A)$$

Nun kann ich die zweite Zeile des Lemmas 79 rückwärts verwenden und erhalte:

$$(A \land \neg (\neg B)) \land (\neg (\neg A) \Leftrightarrow A) \Leftrightarrow (A \land \neg (\neg B))$$

Nach der wiederholten Anwendung des Satzes 15 der Transitivität der Äquivalenz erhalte ich die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land \neg (\neg B))$$

Jetzt verwende ich den Satz 36 der Kommutativität der Konjunktion und erhalte die Aussage

$$(A \land \neg (\neg B)) \Leftrightarrow (\neg (\neg B) \land A)$$

Nach der wiederholten Anwendung des Satzes 15 der Transitivität der Äquivalenz erhalte ich die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (\neg (\neg B) \land A)$$

Und jetzt kommt die ganze Ochsentour noch einmal, jedoch mit vertauschten Rollen:

Gemäß dem Satz der doppelten Negation 10 ist $\neg(\neg B) \Leftrightarrow B$ ein logischer Satz. Ich kann nun gemäß der zweiten Zeile des Lemmas 79 schreiben, dass gilt

$$(\neg (\neg A) \land \neg (\neg B)) \Leftrightarrow (\neg (\neg B) \land A) \land (\neg (\neg B) \Leftrightarrow B)$$

Wenn ich den Satz 15 der Transitivität der Äquivalenz verwende, erhalte ich

$$\neg (\neg A \lor \neg B) \Leftrightarrow (\neg (\neg B) \land A) \land (\neg (\neg B) \Leftrightarrow B)$$

Nun schreibe ich gemäß dem Substitutionssatz 96 der Konjunktion

$$(\neg (\neg B) \land A) \land (\neg (\neg B) \Leftrightarrow B) \Leftrightarrow (B \land A) \land (\neg (\neg B) \Leftrightarrow B)$$

Wieder verwende ich den Satz 15 der Transitivität der Äquivalenz und erhalte die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (B \land A) \land (\neg (\neg B) \Leftrightarrow B)$$

Nun kann ich die zweite Zeile des Lemmas 79 rückwärts verwenden und erhalte:

$$(B \land A) \land (\neg (\neg B) \Leftrightarrow B) \Leftrightarrow (B \land A)$$

Nach der wiederholten Anwendung des Satzes 15 der Transitivität der Äquivalenz erhalte ich die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (B \land A)$$

Jetzt verwende ich den Satz 36 der Kommutativität der Konjunktion und erhalte die Aussage

$$(B \wedge A) \Leftrightarrow (A \wedge B)$$

Nach der wiederholten Anwendung des Satzes 15 der Transitivität der Äquivalenz erhalte ich die Aussage

$$\neg (\neg A \lor \neg B) \Leftrightarrow (A \land B)$$

Ich möchte noch einmal versuchen, einen Beweis zu erbringen, diesmal einen, welcher weniger konstruktiv²⁴ ist (im Sinn von "wie komme ich darauf?") sondern deskriptiv²⁵ (im Sinn von "stimmt das so?"). Ich möchte mir überlegen, unter welchen Umständen die beiden Aussagen

$$\neg (\neg A \lor \neg B)$$

sowie

$$A \wedge B$$

wahr sind. Da die zweite Aussage einfacher ist, möchte ich mit dieser Aussage beginnen. Die Aussage $A \wedge B$ ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion genau dann wahr, falls sowohl die Aussage A wie auch die Aussage B wahr ist. Nun möchte ich dies für die Aussage

$$\neg (\neg A \lor \neg B)$$

überlegen. Gemäß der Definition 6.0.2 der Negation ist diese Aussage nur dann wahr, falls die Aussage

$$\neg A \lor \neg B$$

nicht wahr ist. Damit die Aussage $\neg A \lor \neg B$ nicht wahr ist, können gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion weder die Aussage $\neg A$ noch die Aussage $\neg B$ wahr sein. Gemäß der zweiten zweiten Zeile der Definition 6.0.2 der Negation muss gelten, dass sowohl A wie auch B wahr sein müssen. Also ist die Aussage

$$\neg (\neg A \lor \neg B)$$

genau dann wahr, falls die Aussagen A wie auch B wahr sind. Das ist jedoch genau dann der Fall, wenn

$$A \wedge B$$

wahr ist. Also meine ich, trotzdem den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

An dieser Stelle möchte ich versuchen, Dir den Beweis für die Richtigkeit des Satzes zusätzlich mittels Wahrheitstafeln zu zeigen. Der Beweis habe ich einerseits in der Tabelle 190 sowie 191 und andererseits in den Tabellen 192 sowie 193 aufgeschrieben. Die Verweise des Beweises habe ich in den Tabellen 194 sowie 195 aufgeschrieben.

²⁴erzeugend, erschaffend

²⁵beschreibend

TABELLE 190. 1. Teil 1. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$\neg A \lor \neg B$
1	1	1	1
2	1	0	1
3	0	1	1
4	0	0	0

TABELLE 191. 2. Teil 1. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion

Aussage/ Fall Nr.	$\neg \left(\neg A \vee \neg B\right)$	$A \wedge B$	Behauptung
1	0	0	1
2	0	0	1
3	0	0	1
4	1	1	1

TABELLE 192. 1. Teil 2. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion

Aussage/ Fall Nr.	$\neg A$	$\neg B$	$\neg A \lor \neg B$
1	$\neg A$	$\neg B$	$\neg A \lor \neg B$
2	$\neg A$	$\neg (\neg B)$	$\neg A \lor \neg B$
3	$\neg (\neg A)$	$\neg B$	$\neg A \lor \neg B$
4	$\neg (\neg A)$	$\neg (\neg B)$	$\neg (\neg A \lor \neg B)$

TABELLE 193. 2. Teil 2. Beweis des Satzes des Zusammenhangs von Disjunktion und Konjunktion

Aussage/ Fall Nr.	$\neg \left(\neg A \vee \neg B \right)$	$A \wedge B$	$ \begin{array}{cc} (\neg (\neg A \lor \neg B)) & \Leftrightarrow \\ (A \land B) & \end{array} $
1	$\neg \left(\neg \left(\neg A \vee \neg B\right)\right)$	$\neg (A \land B)$	$ \begin{array}{c} (\neg (\neg A \lor \neg B)) \Leftrightarrow \\ (A \land B) \end{array} $
2	$\neg \left(\neg \left(\neg A \vee \neg B\right)\right)$	$\neg (A \land B)$	$ \begin{array}{cc} (\neg (\neg A \lor \neg B)) & \Leftrightarrow \\ (A \land B) & \end{array} $
3	$\neg \left(\neg \left(\neg A \vee \neg B\right)\right)$	$\neg (A \land B)$	$ \begin{array}{cc} (\neg (\neg A \lor \neg B)) & \Leftrightarrow \\ (A \land B) & \end{array} $
4	$\neg \left(\neg A \vee \neg B \right)$	$A \wedge B$	$ \begin{array}{c} (\neg (\neg A \lor \neg B)) \Leftrightarrow \\ (A \land B) \end{array} $

Tabelle 194.	1. Teil	Verweise	Beweis	Zusammenhang
von Disjunktion	n und K	onjunktio	n	

Defintion/	Definition 6.0.2	Definition 6.0.2	Definition 11.0.1
Fall Nr.	der	der	der
ran ivi.	Negation	Negation	Disjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile

TABELLE 195. 2. Teil Verweise Beweis Zusammenhang von Disjunktion und Konjunktion

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 8.0.2 der Konjunktion	Definition 12.0.1 der Äquivalenz
1	2. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	1. Zeile	4. Zeile	4. Zeile

<includebackwardreferences>

<includeforwardreferences>

Ich gebe es zu, so ganz wohl ist es mir mit diesem Beweis nicht. Die Frage treibt mich regelmäßig herum: Wann ist ein Beweis wirklich erbracht und wann ist er richtig oder wird als richtig empfunden? Ich weiß es nicht. Vielleicht genügt es einfach, in Dir das Feuer der Leidenschaft zu entzünden, dass Du Dich mit viel Begeisterung in die Diskussion einhängst und aufrichtig versuchst, Dich in der Frage von richtig oder falsch einzubringen. Vielleicht ist es das, was es richtig macht. Wer weiß?

18.32. Disjunktive Normalform der Implikation

Warum ist die Implikation äquivalent zur Negation einer Konjunktion? Ja, was soll jetzt dieser Satz wieder?

Satz 53. Es seien A und B Symbole von zwei Aussagen. Dann gilt die Aussage

$$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$$

Wenn ich also nachweisen will, dass aus der Aussage A die Aussage B folgt, dann genügt es also zu zeigen, dass nicht sowohl die Aussage A wie auch die Negation der Aussage B wahr ist. Ist jedoch sowohl

die Aussage A wie auch die Negation der Aussage B wahr, dann kann nicht aus der Aussage A die Aussage B folgen. Dieser Satz ist ja schon recht, nur sollte er noch bewiesen werden. Das möchte ich nachfolgend noch erledigen.

BEWEIS. Wieder soll überlegt werden, wann die Implikation von A auf B respektive die Aussage $\neg (A \land (\neg B))$ gültig ist. Im Satz 44 der Negation der Konjunktion habe ich zu zeigen versucht, dass die Aussage $\neg (A \land (\neg B))$ gleichbedeutend zur Aussage $\neg A \lor \neg (\neg B)$ ist. Stillschweigend habe ich in diesem Satz statt der logischen Variablen B die logische Variable $\neg B$ verwendet. Gemäß dem Satz der doppelten Negation (siehe 18.2) ist die Aussage $\neg (\neg B)$ äquivalent zur Aussage B. Also ist zu zeigen, dass die Implikation von A auf B gleichbedeutend zur Aussage $\neg A \lor B$ ist. Jedoch sind gemäß der Definitionen 9.0.1 der Implikation sowie der Definition 11.0.1 der Disjunktion beide Aussagen genau dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Damit ist ist die Behauptung jedoch bewiesen.

Ich möchte noch einen zweiten Versuch machen, die Behauptung zu beweisen. Ich möchte überlegen, wann beide Aussagen der Äquivalenz nicht wahr sind. Gemäß der dritten Zeile der Definition 9.0.1 der Implikation ist diese nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Die Aussage $(\neg (A \land (\neg B)))$ ist gemäß der Definition 6.0.2 der Negation nicht wahr, falls die Aussage

$$A \wedge (\neg B)$$

wahr ist. Gemäß der Definition 8.0.2 der Konjunktion ist die Aussage $A \wedge (\neg B)$ jedoch nur dann wahr, falls sowohl die Aussage A wie auch die Aussage $\neg B$ wahr sind. Die Aussage $\neg B$ ist jedoch dann gemäß der Definition 6.0.2 der Negation wahr, falls die Aussage B nicht wahr ist. Damit kann ich sagen, dass auch die Aussagen A wie auch $A \wedge (\neg B)$ genau dann nicht wahr sind, falls die Aussage A wahr, die Aussage B nicht wahr ist. Damit meine ich noch einmal gezeigt zu haben, dass die beiden Aussagen wirklich äquivalent sind, also die gesamte Aussage

$$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$$

wirklich wahr ist. Damit Du auch siehst, dass meine sprachliche Beschreibung des Beweises nicht an den Haaren herbeigezogen ist, möchte ich den Beweis noch einmal mit Wahrheitstafeln nachvollziehen. Die Beweise selbst sind in den Tabellen 196 einerseits sowie 197 und 198 abgelegt. Die Verweise habe ich in den Tabellen 199 sowie 200 abgelegt.

<includebackwardreferences>

<includeforwardreferences>

Zum eben formulierten Satz möchte ich noch anfügen, dass er eigentlich ein billiger Taschenspielertrick ist. Denn wenn Du Dir die Definition 9.0.1 der Implikation noch einmal anschaust, dann siehst Du,

.

Tabelle 196. 1. Beweis des Satzes der Äquivalenz von Implikation und Negation einer Konjunktion

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg B$	$A \wedge (\neg B)$	$\neg \left(A \wedge (\neg B) \right)$	Behauptung
1	1	1	0	1	1
2	1	0	0	1	1
3	0	1	1	0	1
4	1	0	0	1	1

TABELLE 197. 1. Teil 2. Beweis des Satzes der Äquivalenz von Implikation und Negation einer Konjunktion

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg B$	$A \wedge (\neg B)$
1	$A \Rightarrow B$	$\neg (\neg B)$	$\neg (A \land (\neg B))$
2	$A \Rightarrow B$	$\neg B$	$\neg (A \land (\neg B))$
3	$\neg (A \Rightarrow B)$	$\neg (\neg B)$	$A \wedge (\neg B)$
4	$A \Rightarrow B$	$\neg B$	$\neg (A \land (\neg B))$

TABELLE 198. 2. Teil 2. Beweis des Satzes der Äquivalenz von Implikation und Negation einer Konjunktion

Aussage/ Fall Nr.	$\neg (A \land (\neg B))$	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$
1	$\neg (\neg (A \land (\neg B)))$	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$
2	$\neg \left(\neg \left(A \wedge (\neg B)\right)\right)$	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$
3	$\neg (A \land (\neg B))$	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$
4	$\neg (\neg (A \land (\neg B)))$	$(A \Rightarrow B) \Leftrightarrow (\neg (A \land (\neg B)))$

TABELLE 199. 1. Teil Verweise Beweis Satzes der Äquivalenz von Implikation und Negation einer Konjunktion

Defintion/	Definition 9.0.1	Definition 6.0.2	Definition 8.0.2
Fall Nr.	der	der	der
rall M.	Implikation	Negation	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile	4. Zeile
4	4. Zeile	2. Zeile	3. Zeile

dass die Implikation nur dann nicht wahr ist, falls die Aussage A wahr ist, die Aussage B jedoch nicht wahr ist. Also kannst Du annehmen, dass die Implikation also in allen anderen Fällen wahr ist. Also sollte

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 12.0.1 der Äquivalenz
1	1. Zeile	4. Zeile
3	1. Zeile 2. Zeile	4. Zeile 1. Zeile
4	1. Zeile	4. Zeile

TABELLE 200. 2. Teil Verweise Beweis Satzes der Äquivalenz von Implikation und Negation einer Konjunktion

die Implikation wahr sein, falls nicht gilt, dass die Aussage A wahr, die Aussage B nicht wahr ist. Und das ist genau die Behauptung des obigen Satzes.

Nun, warum mache ich so einen Lärm um einen Satz, welcher eigentlich höchstens ein Lemma (ein Hilfssatz) ist? Der Grund dafür ist, weil er oft in der Mathematik gebraucht wird, und zwar um Implikationen zu beweisen. Es wird überlegt, ob gleichzeitig die Aussage A und die Negation der Aussage B zutreffen können. Ist dies nicht der Fall, dann kann geschlossen werden, dass aus der Aussage A die Aussage B folgt. Darum ist dieser Satz in meinen Augen durchaus erwähnenswert.

Vielleicht wunderst Du Dich über die Namensgebung. Diese liegt daran, weil in dieser Form der Aussagen untersucht wird, wann eine Aussage nicht gilt. Die einzelnen Aussagen werden dann Disjunktionen zusammengehalten. Ich werde es eventuell noch später beschreiben.

18.33. Warum folgt aus einer Konjunktion eine Aussage?

Natürlich ist dieser Satz fast schon der Gipfel der Einfallslosigkeit. Denn wie ich weiter oben dargestellt habe, kann das Symbol der Konjunktion ("^") ebenso gut weggelassen werden. Also gelten die Aussagen, falls die Konjunktion der Aussagen gültig ist Die Bedeutung dieses Satzes ist, dass er Dir zeigen soll, dass die mathematisierte Form der Konjunktion und der Implikation gleich der umgangssprachlichen Bedeutung der von "und" und "daraus folgt" ist. Es soll also wie das übrige Skript auch, Dir dazu dienen, dich ganz sanft in die Mathe einzuführen. Nichtsdestotrotz möchte ich den Satz formulieren und beweisen:

Satz 54. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann muss also gelten:

$$A \wedge B \Rightarrow A$$

BEWEIS. Angenommen, es gäbe Aussagen, welche mit A und B bezeichnet werden, für welche die Aussage nicht gilt. Dies könnte gemäß der dritten Zeile der Definition 9.0.1 der Implikation nur dann

Tabelle 201. 1. Beweis der Folgerung der Aussage aus einer Konjunktion (erstes Argument)

Aussage/ Fall Nr.	$A \wedge B$	$A \land B \Rightarrow A$
1	0	1
2	0	1
3	0	1
4	1	1

Tabelle 202. 2. Beweis der Folgerung der Aussage aus einer Konjunktion (erstes Argument)

Aussage/ Fall Nr.	$A \wedge B$	$A \wedge B \Rightarrow A$
1	$\neg (A \land B)$	$A \wedge B \Rightarrow A$
2	$\neg (A \land B)$	$A \wedge B \Rightarrow A$
3	$\neg (A \land B)$	$A \wedge B \Rightarrow A$
4	$A \wedge B$	$A \wedge B \Rightarrow A$

TABELLE 203. Verweise Beweis der Folgerung der Aussage aus einer Konjunktion (erstes Argument)

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile
4	4. Zeile	4. Zeile

gelten, falls die Aussagen A und B wahr, die Aussage A jedoch nicht wahr wäre. Wäre jedoch A nicht wahr, dann könnte es gemäß dem Minimumprinzip 8 der Konjunktion auch die Aussage $A \wedge B$ nicht sein. Also hätte ich einen Widerspruch zum Satz 12 des ausgeschlossenen Dritten, demzufolge eine Aussage nicht gleichzeitig wahr und nicht wahr sein kann.

Also folgt in jedem Fall, dass aus $A \wedge B$ die Aussage A folgt. Nun möchte ich jedoch in den Tabellen 201 sowie 202 trotzdem den tabellarischen Beweis aufschreiben. Die Verweise habe ich in der Tabelle 203 abgelegt.

Somit denke ich, den Beweis für die Gültigkeit der Behauptung erbracht zu haben und beende an dieser Stelle die weitere Beweisführung.

TABELLE 204. 1. Beweis der Folgerung der Aussage aus einer Konjunktion (zweites Argument)

Aussage/ Fall Nr.	$A \wedge B$	$A \land B \Rightarrow B$
1	0	1
2	0	1
3	0	1
4	1	1

Tabelle 205. 2. Beweis der Folgerung der Aussage aus einer Konjunktion (zweites Argument)

Aussage/ Fall Nr.	$A \wedge B$	$A \wedge B \Rightarrow B$
1	$\neg (A \land B)$	$A \wedge B \Rightarrow B$
2	$\neg (A \land B)$	$A \wedge B \Rightarrow B$
3	$\neg (A \land B)$	$A \wedge B \Rightarrow B$
4	$A \wedge B$	$A \wedge B \Rightarrow B$

<includebackwardreferences>

<includeforwardreferences>

Haargenau der gleiche Beweis kann für die zweite Aussage einer Aussage formuliert und bewiesen werden:

Satz 55. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann muss also gelten:

$$A \wedge B \Rightarrow B$$

BEWEIS. Angenommen, es gäbe Aussagen, welche mit A und B bezeichnet werden, für welche die Aussage nicht gilt. Dies könnte gemäß der dritten Zeile der Definition 9.0.1 der Implikation nur dann gelten, falls die Aussagen A und B wahr, die Aussage B jedoch nicht wahr wäre. Wäre jedoch B nicht wahr, dann könnte es gemäß dem Minimumprinzip 8 der Konjunktion auch die Aussage $A \wedge B$ nicht sein. Also hätte ich einen Widerspruch zum Satz 12 des ausgeschlossenen Dritten, demzufolge eine Aussage nicht gleichzeitig wahr und nicht wahr sein kann.

Also folgt in jedem Fall, dass aus $A \wedge B$ die Aussage B folgt. Nun möchte ich jedoch in den Tabellen 204 sowie 205 trotzdem den tabellarischen Beweis aufschreiben. Die Verweise habe ich in der Tabelle 206 abgelegt.

Somit denke ich, den Beweis für die Gültigkeit der Behauptung erbracht zu haben und beende an dieser Stelle die weitere Beweisführung.

TABELLE 206. Verweise Beweis der Folgerung der Aus-
sage aus einer Konjunktion (zweites Argument)

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile

<includebackwardreferences>

<includeforwardreferences>

Ich vermute, dass folgender logischer Fehler häufig vorkommt: Sind zwei Aussagen A, B geben, welche in sich selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei sind, dann folgt aus der Richtigkeit der Aussage A nicht, dass die Aussagen A und B richtig sind. Um meine Aussage noch ein wenig prägnanter (einprägsamer) formulieren zu können, schreibe ich:

Lemma 56. Es seien A, B Aussagen, welche in sich selbst widerspruchsfrei seien. Dann gilt:

$$A \land \neg B \Rightarrow \neg (A \Rightarrow A \land B)$$

In Worten: Ist die Aussage A wahr, die Aussage B nicht wahr, dann gilt nicht, dass die Implikation von der Aussage A auf die Konjunktion von A und B wahr wäre.

Beweis. Ist A nicht wahr oder die Aussage B wahr, dann ist die Konjunktion

$$A \wedge \neg B$$

gemäß den ersten zwei Zeilen sowie der letzten Zeile der Definition 8.0.2 der Konjunktion nicht wahr. Also ist die gesamte zu beweisende Aussage gemäß den ersten zwei Zeilen der Definition 9.0.1 der Implikation bereits wahr. Ist jedoch die Aussage A wahr und die Aussage B nicht wahr, dann ist die Konjunktion

$$A \wedge B$$

gemäß der dritten Zeile der Definition 8.0.2 der Konjunktion nicht wahr. Also ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \Rightarrow A \wedge B$$

nicht wahr. Gemäß der ersten Zeile der Definition 6.0.2 der Negation ist die Aussage

$$\neg (A \Rightarrow A \land B)$$

Tabelle 207. 1. Teil 1. Beweis Denkfehler Implikation

Aussage/ Fall Nr.	$\neg B$	$A \wedge \neg B$	$A \wedge B$
1	1	0	0
2	0	0	0
3	1	1	0
4	0	0	1

Tabelle 208. 2. Teil 1. Beweis Denkfehler Implikation

Aussage/ Fall Nr.	$A \Rightarrow A \land B$	$\neg (A \Rightarrow A \land B)$	$ \begin{array}{c} A \land \neg B \Rightarrow \\ \neg (A \Rightarrow A \land B) \end{array} $
1	1	0	1
2	1	0	1
3	0	1	1
4	1	0	1

Tabelle 209. 1. Teil 2. Beweis Denkfehler Implikation

Aussage/ Fall Nr.	$\neg B$	$A \wedge \neg B$	$A \wedge B$
1	$\neg B$	$\neg (A \land \neg B)$	$\neg (A \land B)$
2	$\neg (\neg B)$	$\neg (A \land \neg B)$	$\neg (A \land B)$
3	$\neg B$	$A \wedge \neg B$	$\neg (A \land B)$
4	$\neg (\neg B)$	$\neg (A \land \neg B)$	$A \wedge B$

wiederum wahr. Also ist die gesamte Aussage

$$A \land \neg B \Rightarrow \neg (A \Rightarrow A \land B)$$

in diesem Fall gemäß der vierten Zeile der Definition 9.0.1 wiederum wahr. Ich habe den Beweis noch einmal tabellarisch aufgelistet. Er ist einerseits in den Tabellen 207 sowie 208, andererseits in den Tabellen 209 respektive 210 aufgeschrieben worden. Die Verweise habe ich in den Tabellen 211 sowie 212. Damit glaube ich gezeigt zu haben, dass meine Behauptung in allen denkbaren Fällen wahr ist. Aus diesem Grund erachte ich den Beweis der Behauptung als erbracht und beende an dieser Stelle den Beweis.

<includebackwardreferences>

<includeforwardreferences>

Ich habe das obige Lemma als Warnung aufgeschrieben, weil diese Art von Fehlüberlegung meines Erachtens schnell einmal auftreten kann. Trotzdem möchte alle ermuntern auch dann Mathematik zu betreiben, wenn Fehler auftreten. Denn Fehler gehören untrennbar zum menschlichen Leben.

TABELLE 210. 2. Teil 2. Beweis Denkfehler Implikation

Aussage/ Fall Nr.	$A \Rightarrow A \land B$	$\neg (A \Rightarrow A \land B)$	$A \land \neg B \Rightarrow \\ \neg (A \Rightarrow A \land B)$
1	$A \Rightarrow A \land B$	$\neg \left(\neg \left(A \Rightarrow A \land B\right)\right)$	$ \begin{array}{c} A \land \neg B \Rightarrow \\ \neg (A \Rightarrow A \land B) \end{array} $
2	$A \Rightarrow A \land B$	$\neg (\neg (A \Rightarrow A \land B))$	$A \land \neg B \Rightarrow \\ \neg (A \Rightarrow A \land B)$
3		$\neg (A \Rightarrow A \land B)$	$A \land \neg B \Rightarrow \\ \neg (A \Rightarrow A \land B)$
4	$A \Rightarrow A \land B$	$\neg (\neg (A \Rightarrow A \land B))$	$A \land \neg B \Rightarrow \\ \neg (A \Rightarrow A \land B)$

TABELLE 211. 1. Teil Verweise Beweis des Denkfehlers der Implikation

Defintion/	Definition 6.0.2 der	Definition 8.0.2 der	Definition 8.0.2 der
Fall Nr.	Negation	Konjunktion	Konjunktion (1972)
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	1. Zeile	4. Zeile	3. Zeile
4	2. Zeile	3. Zeile	4. Zeile

TABELLE 212. 2. Teil Verweise Beweis des Denkfehlers der Implikation

Defintion/	Definition 9.0.1	Definition 6.0.2	Definition 9.0.1
Fall Nr.	der	der	der
Tan ivi.	Implikation	Negation	Implikation
1	1. Zeile	2. Zeile	1. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile	4. Zeile
4	4. Zeile	2. Zeile	1. Zeile

18.34. Zusammenhang Aussage und Disjunktion

Dieser Abschnitt musste ja kommen. Denn was ich im letzten Abschnitt über die Konjunktion geschrieben habe, lässt sich ganz genau gleich auf die Disjunktion übertragen.

TABELLE 213. 1. Beweis der Implikation einer Disjunktion aus einer Aussage

Aussage/ Fall Nr.	$A \vee B$	Behauptung
1	0	1
2	1	1
3	1	1
4	1	1

TABELLE 214. 2. Beweis des Satzes der Implikation einer Disjunktion aus einer Aussage

Aussage/ Fall Nr.	$A \vee B$	Behauptung
1	$\neg (A \lor B)$	$A \Rightarrow (A \lor B)$
2	$A \vee B$	$A \Rightarrow (A \lor B)$
3	$A \vee B$	$A \Rightarrow (A \lor B)$
4	$A \vee B$	$A \Rightarrow (A \lor B)$

Satz 57. Es seien A sowie B die Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$A \Rightarrow (A \lor B)$$

wobei jedoch die Klammern weggelassen werden könnten.

BEWEIS. Zuerst möchte ich den Fall betrachten, in welchem die Aussage mit der Bezeichnung A wahr ist. In diesem Fall ist dann die Disjunktion $A \vee B$ gemäß des Maximumprinzips der Disjunktion (siehe unter Definition 11) wahr. Dann gilt jedoch gemäß den Zeilen 2 respektive 4 der Definition 9.0.1 der Implikation, dass die Schlussfolgerung $A \Rightarrow (A \vee B)$ wahr ist. Ist jedoch die Aussage A nicht wahr, dann gilt gemäß den ersten zwei Zeilen der Definition 9.0.1 der Implikation, dass die Implikation $A \Rightarrow (A \vee B)$ immer noch wahr ist. Denn egal, ob die Aussage $A \vee B$ wahr ist oder nicht, wird die Implikation von A nach $(A \vee B)$ richtig sein. Der Vollständigkeit halber habe ich die Beweise noch tabellarisch aufgeschrieben, und zwar in den Tabellen 213 sowie 214. Die Verweise habe in in der Tabelle 215 aufgeschrieben.

<includebackwardreferences>
<includeforwardreferences>

Defintion/	Definition 11.0.1	Definition 9.0.1
/	der	der
Fall Nr.	Disjunktion	Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	4. Zeile
4	4 Zeile	4 Zeile

TABELLE 215. Verweise Beweis Satz der Implikation einer Disjunktion aus einer Aussage

Falls Du denkst: "Was für ein blöder Satz!" Dann versuche ich Dich hiermit vom Gegenteil zu überzeugen. Wenn ich schreibe: Es sei x eine reelle² Zahl x < 5 Dann folgt daraus das $x \le 5$ ist. In Worten: Die Zahl x ist 5 oder sie ist kleiner als 5. Diese Art des Gedankengangs kann "Vergröberung" oder "Abschätzung" genannt werden und leistet in der Mathematik oft fast unschätzbare Werte. Ich habe oben unter dem Absatz ?? darüber schon ein wenig geschrieben. Denn die Voraussetzung von Sätzen sind oftmals sogenannt "schwächer" als die denjenigen Fällen, in welchen diese angewendet werden. Darum kann es meines Erachtens angebracht sein, diesen logischen Satz anzuwenden.

Zum logischen Satz 57 möchte ich jedoch noch bemerken, dass die Aussage B irgend ein Nonsenses, ein Quatsch sein könnte, und die Aussage wäre trotzdem wahr. Das zeigt eigentlich, wie sinnfrei die Logik sein kann. Oder besser geschrieben: Die Logik selbst ist sinnfrei. Der Sinn kann nur in die Logik hineingebracht werden, sie ist jedoch nicht per se in der Logik selbst enthalten. Den Satz 57 kann ich wie folgt beweisen:

Die umgekehrte Aussage, dass aus der Disjunktion zweier Aussagen, welche mit den Symbolen A respektive B bezeichnet werden, die Aussage A folgen müsse, ist kein logischer Satz. Damit ich das trotzdem irgendwie ausschreiben kann, schreibe ich:

Satz 58. Es seien A sowie B Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

In Worten: Wenn die Aussage A nicht, die Aussage B jedoch wahr ist, dann ist die Implikation der Aussage $A \vee B$ auf die Aussage A nicht wahr.

Beweis. Angenommen, die Aussage

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

 $^{^{26}\}mathrm{Was}$ eine reelle Zahl ist, versuche ich unter zu zeigen.

sei nicht wahr. Dies könnte gemäß der Definition 9.0.1 der Implikation nur dann der Fall sein, falls die Aussage

$$\neg A \wedge B$$

wahr, die Aussage

$$\neg (A \lor B \Rightarrow A)$$

jedoch nicht wahr wäre. Also könnte ich annehmen, dass die Aussage

$$\neg A \wedge B$$

wahr sei. Gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion müsste also die Negation der Aussage A sowie die Aussage B wahr sein. Also wäre gemäß der zweiten Zeile der Definition 11.0.1 der Disjunktion die Aussage

$$A \vee B$$

wahr. Jedoch wäre gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage A nicht wahr. Somit wäre gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \vee B \Rightarrow A$$

nicht wahr. Somit müsste jedoch gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage

$$\neg (A \lor B \Rightarrow A)$$

eben doch wahr sein. Somit wäre gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Aussage

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

eben doch wahr. Somit kann ich schließen, dass es nicht möglich ist, Aussagen A wie auch B derart zu finden, dass die Aussage

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

nicht wahr ist. Gemäß dem Satz 11 der doppelten Negation glaube ich daraus schließen zu können, dass jede dieser Aussagen

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

wahr sein muss. Auch diesen Beweis habe ich in den Tabellen 216 sowie 217 einerseits und 218 sowie 219 andererseits aufgeschrieben. Die Verweise habe ich in den Tabellen 220 sowie 221 aufgelistet.

<includebackwardreferences>

<includeforwardreferences>

Die Aussage

$$\neg A \land B \Rightarrow \neg (A \lor B \Rightarrow A)$$

habe ich nur darum aufgeschrieben, um Dich zu warnen.

Tabelle 216. 1. Teil 1. Beweis Denkfehler Disjunktion

Aussage/ Fall Nr.	$\neg A$	$\neg A \wedge B$	$A \vee B$
1	1	0	0
2	1	1	1
3	0	0	1
4	0	0	1

TABELLE 217. 2. Teil 1. Beweis Denkfehler Disjunktion

Aussage/ Fall Nr.	$A \vee B \Rightarrow A$	$\neg (A \lor B \Rightarrow A)$	$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$
1	1	0	1
2	0	1	1
3	1	0	1
4	1	0	1

TABELLE 218. 1. Teil 2. Beweis Denkfehler Disjunktion

Aussage/ Fall Nr.	$\neg A$	$\neg A \wedge B$	$A \vee B$
1	$\neg A$	$\neg (\neg A \land B)$	$\neg (A \lor B)$
2	$\neg A$	$\neg A \wedge B$	$A \vee B$
3	$\neg (\neg A)$	$\neg (\neg A \land B)$	$A \vee B$
4	$\neg (\neg A)$	$\neg (\neg A \land B)$	$A \vee B$

TABELLE 219. 2. Teil 2. Beweis Denkfehler Disjunktion

Aussage/ Fall Nr.	$A \vee B \Rightarrow A$	$\neg \left(A \vee B \Rightarrow A \right)$	$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$
1	$A \vee B \Rightarrow A$	$\neg \left(\neg \left(A \lor B \Rightarrow A\right)\right)$	$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$
2	$\neg (A \lor B \Rightarrow A)$	$\neg (A \lor B \Rightarrow A)$	$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$
3	$A \vee B \Rightarrow A$		$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$
4	$A \vee B \Rightarrow A$	$\neg \left(\neg \left(A \lor B \Rightarrow A\right)\right)$	$\neg A \land B \Rightarrow \\ \neg (A \lor B \Rightarrow A)$

Nun möchte ich daran gehen, den zweiten Teile der Maximumsätze zu formulieren und zu beweisen. Den ersten Teil habe ich bereits formuliert und bewiesen. Es ist der Satz 57 der Implikation der Disjunktion aus der Aussage. Der zweite Teil lautet wie folgt:

TABELLE 220. 1. Teil Verweise Beweis des Denkfehlers der Konjunktion

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 8.0.2 der Konjunktion	Definition 11.0.1 der Disjunktion
1	1. Zeile	3. Zeile	1. Zeile
2	1. Zeile	4. Zeile	2. Zeile
3	2. Zeile	1. Zeile	3. Zeile
4	2. Zeile	2. Zeile	4. Zeile

TABELLE 221. 2. Teil Verweise Beweis des Denkfehlers der Konjunktion

Defintion/	Definition 9.0.1	Definition 6.0.2	Definition 9.0.1
Fall Nr.	der	der	der
rall M.	Implikation	Negation	Implikation
1	1. Zeile	2. Zeile	1. Zeile
2	3. Zeile	1. Zeile	4. Zeile
3	4. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	1. Zeile

Lemma 59. Es seien A und B Symbole von Aussagen, welche in sich selber in Bezug auf die anderen Symbole des Lemmas widerspruchsfrei seien. Dann gilt:

$$B \Rightarrow A \vee B$$

BEWEIS. Angenommen, das Lemma wäre nicht wahr. Dann müsste es gemäß der dritten Zeile der Definition 9.0.1 Aussagen mit den Bezeichnungen A und B derart geben, dass die Aussage B wahr, die Aussage $A \vee B$ jedoch nicht wahr ist. Gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion kann diese nur dann nicht wahr sein, falls weder die Aussage A noch die Aussage B wahr ist. Also kann die Aussage B ebenfalls nicht wahr sein. Das ist jedoch ein Widerspruch zur Voraussetzung, dass die Aussage B wahr sein muss. Gemäß der abgeschwächten Form des Satzes 11 der doppelten Negation kann ich nun folgen, dass die Aussage für alle Aussagen mit den Bezeichnungen A wie auch B wahr sein muss.

Ich möchte das Lemma wiederum mittels Wahrheitstafeln beweisen. Diesen Beweis habe ich einerseits in der Tabelle 222 auf allgemeine Art und in der Tabelle 222 auf meine Art bewiesen. Die Verweise habe ich in der Tabelle 224 abgelegt. Da ich nun der Meinung bin, den Beweis für die Richtigkeit des Satzes erbracht zu haben, verzichte an dieser

TABELLE 222. 1. Beweis des zweiten Teils des Maximumprinzips der Disjunktion

Aussage/ Fall Nr.	$A \vee B$	Behauptung
1	0	1
2	1	1
3	1	1
4	1	1

TABELLE 223. 2. Beweis des zweiten Teils des Maximumprinzips der Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$A \Rightarrow (A \vee B)$
1	$\neg (A \lor B)$	$A \Rightarrow (A \lor B)$
2	$A \vee B$	$A \Rightarrow (A \lor B)$
3	$A \vee B$	$A \Rightarrow (A \lor B)$
4	$A \vee B$	$A \Rightarrow (A \lor B)$

TABELLE 224. Verweise des zweiten Teils des Maximumprinzips der Disjunktion

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	4. Zeile
4	4. Zeile	4. Zeile

Stelle auf eine weitere Beweisführung (und beende entsprechend den Beweis).

<includebackwardreferences>

<includeforwardreferences>

Nun hätte ich also mittels Beweisführung das an und für sich selbsterklärenden Maximumprinzip 11 der Disjunktion bewiesen. Ich habe dies vor allem gemacht, um zu zeigen, das die behaupteten Aussagen widerspruchsfrei seien. Und wie das Beweisen derselben vor sich gehen kann.

18.35. Was ist der Äquivalenz - Negation Satz?

Das ist vor allem eine Wortneuschöpfung (Neologismus), welchen ich verwende, um ein neues Kapitel aufschlagen zu können. Es gilt:

Satz 60. Es seien A, B Symbole für Aussagen, welche jedoch nicht in sich selbst und bezüglich den anderen Aussagen des Satzes widersprüchlich seien. Dann behaupte ich, dass gilt

$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$$

In Worten: A ist genau dann äquivalent zu B, falls $\neg A$ äquivalent zu $\neg B$ ist.

Diesen logischen Satz, so ich ihn überhaupt beweisen kann, nenne ich den Äquivalenz-Negationssatz.

BEWEIS. Ich möchte den Beweis durch bloßes Ausrechnen erbringen. Ich habe ihn in den Tabellen 225 respektive 226 sowie 227 abgelegt. Die Verweise des Beweises habe ich in den Tabellen 228 sowie 229 abgelegt. Ich habe den Beweis noch einmal überflogen. Er sieht ein wenig mager aus. Darum möchte ich noch versuchen, ob ich ihn auch mit rein sprachlichen Mitteln erbringen könnte. Ich überlege mir, ob ich eine Aussage A oder B derart finden könnte, so dass die Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$$

nicht wahr sei. Wenn ich die Definition 12.0.1 anschaue, dann könnte dies nur dann der Fall sein, falls

$$A \Leftrightarrow B$$

nicht wahr, die Aussage

$$\neg A \Leftrightarrow \neg B$$

jedoch wahr oder andererseits die Aussage

$$A \Leftrightarrow B$$

wahr und die Aussage

$$\neg A \Leftrightarrow \neg B$$

nicht wahr wäre. Zum ersten Fall: Es müsste

$$\neg A \Leftrightarrow \neg B$$

gelten. Das könnte gemäß der ersten respektive vierten Zeile der Definition 12.0.1 der Äquivalenz wiederum nur dann der Fall sein, falls sowohl $\neg A$ wie auch $\neg B$ nicht wahr wären oder aber falls sowohl $\neg A$ wie auch $\neg B$ wahr wären. Wäre sowohl $\neg A$ wie auch $\neg B$ nicht wahr, dann müsste gemäß der ersten Definition 6.0.2 der Negation sowohl A wie auch B wahr sein. Dies hätte jedoch die Folge, das gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

ebenfalls wahr wäre. Damit habe ich gezeigt, dass dieser Fall nicht eintreten. Die anderen drei Fälle werde ich jetzt auf die haargenau gleiche Art behandeln. Wäre sowohl $\neg A$ wie auch $\neg B$ wahr, dann müsste gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussagen A

sowie B nicht wahr sein. Dann müsste jedoch gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow B$$

entgegen der Voraussetzung eben doch wahr sein. Also kann dieser Fall ebenfalls nicht eintreten. Nun habe ich gezeigt, dass nicht gelten kann, dass die Aussage

$$\neg A \Leftrightarrow \neg B$$

wahr, die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist.

Nun sei die Aussage

$$A \Leftrightarrow B$$

wahr. Gemäß der ersten und der vierten Zeile der Definition 12.0.1 der Äquivalenz müssten daher beide Aussagen A wie auch B entweder nicht wahr oder aber wahr sein. Wären beide Aussagen A sowie B nicht wahr, dann dann müssten gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussagen $\neg A$ wie auch $\neg B$ wahr sein. Also müsste gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz im Widerspruch zur Voraussetzung die Aussage

$$\neg A \Leftrightarrow \neg B$$

eben doch wahr sein. Wären jedoch die Aussagen A wie auch B wahr, dann wären gemäß der zweiten Zeile der Definition 6.0.2 der Negation die Aussagen $\neg A$ wie auch $\neg B$ nicht wahr. Also wäre gemäß der ersten Zeile der Definition 12.0.1 die Aussage

$$\neg A \Leftrightarrow \neg B$$

eben doch wahr - im Widerspruch zur Annahme, dass die letztgenannte Annahme nicht wahr sei. Also meine ich hiermit gezeigt zu haben, dass der Fall nicht eintreten kann, dass die Aussage

$$A \Leftrightarrow B$$

wahr, die Aussage

$$\neg A \Leftrightarrow \neg B$$

jedoch nicht wahr ist.

So, jetzt habe ich diese Ochsentour absolviert und meine, dass der Beweis nunmehr mit sprachlichen Mitteln eben doch noch erbracht wird (auch wenn dieser langweilig und mühsam ist).

<includebackwardreferences>

<includeforwardreferences>

In diesem Fall trügt also der Schein nicht. Wenn ich zeigen will, dass zwei Aussagen A,B äquivalent sind, dann genügt es zu zeigen, dass die Negation der Aussage A äquivalent zur Negation der Aussage B ist.

TABELLE 225. 1. Beweis des Äquivalenz-Negations-Satzes

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg A \Leftrightarrow \neg B$	Behauptung
1	1	1	1	1	1
2	0	1	0	0	1
3	0	0	1	0	1
4	1	0	0	1	1

TABELLE 226. 1. Teil 2. Beweis des Äquivalenz-Negations-Satzes

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$\neg A$	$\neg B$
1	$A \Leftrightarrow B$	$\neg A$	$\neg B$
2	$\neg (A \Leftrightarrow B)$	$\neg A$	$\neg (\neg B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (\neg A)$	$\neg B$
4	$A \Leftrightarrow B$	$\neg (\neg A)$	$\neg (\neg B)$

TABELLE 227. 2. Teil 2. Beweis des Äquivalenz-Negations-Satzes

Aussage/ Fall Nr.	$\neg A \Leftrightarrow \neg B$	Behauptung
1	$\neg A \Leftrightarrow \neg B$	$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$
2	$\neg (\neg A \Leftrightarrow \neg B)$	$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$
3	$\neg (\neg A \Leftrightarrow \neg B)$	$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$
4	$\neg A \Leftrightarrow \neg B$	$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$

Tabelle Verweise Beweis Äquivalenz-Negationssatz

Defintion/	Definition 12.0.1	Definition 6.0.2	Definition 6.0.2
Fall Nr.	der	der	der
rall M.	Äquivalenz	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

18.36. Um was geht es beim Äquivalenz-Antivalenz-Satz?

Ich möchte in diesem Abschnitt die Verbindung zwischen der Äquivalenz und der Antivalenz herstellen.

Tabelle 229. 2. Tabelle Verweise Beweis Äquivalenz-Negationssatz

Defintion/ Fall Nr.	Definition 12.0.1 der Äquivalenz	Definition 12.0.1 der Äquivalenz
1	4. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	1. Zeile	4. Zeile

Tabelle 230. 1. Beweis des Äquivalenz-Antivalenz-Satzes

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Leftrightarrow B$	$\neg \left(A \Leftrightarrow B \right)$	Behauptung
1	0	1	0	1
2	1	0	1	1
3	1	0	1	1
4	0	1	0	1

TABELLE 231. 1. Teil 2. Beweis des Äquivalenz-Antivalenz-Satzes

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow B)$
1	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow B$	$\neg (\neg (A \Leftrightarrow B))$
2	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow B)$
3	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow B)$
4	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow B$	$\neg (\neg (A \Leftrightarrow B))$

Satz 61. Es seien A, B Symbole für Aussagen, welche nicht in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann behaupte ich, dass gilt

$$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$$

In Worten: Es ist genau dann entweder A oder B wahr, falls nicht A äquivalent zu B ist.

BEWEIS. Dieses logischen Satz, so ich ihn überhaupt beweisen kann, nenne ich den Äquivalenz-Antivalenz-Satz. Ich möchte den Beweis zuerst einmal durch bloßes Ausrechnen zeigen. In den Tabellen 230 und 231 sowie 232 habe ich die Beweise aufgeschrieben. In den Tabellen 233 sowie 234 habe ich die Verweise der Beweise aufgeschrieben.

Ich möchte versuchen, den Satz sprachlich zu beweisen. Angenommen, es gäbe Aussagen A und B derart, dass die Behauptung nicht gelten würde. Dann müsste gemäß der zweiten und dritten Zeile der

TABELLE 232. 2. Teil 2. Beweis des Äquivalenz-Antivalenz-Satzes

Aussage/ Fall Nr.	Behauptung
1	$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$
2	$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$
3	$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$
4	$(A \Leftrightarrow B) \Leftrightarrow \neg (A \Leftrightarrow B)$

TABELLE 233. 1. Teil Verweise Beweis des Äquivalenz-Antivalenz-Satzes

Defintion/	Definition 13.0.1	Definition 12.0.1	Definition 6.0.2
Fall Nr.	der	der	der
ran m.	Antivalenz	Äquivalenz	Negation
1	1. Zeile	1. Zeile	2. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile	2. Zeile

TABELLE 234. 2. Teil Verweise Beweis des Äquivalenz-Antivalenz-Satzes

Defintion/ Fall Nr.	Definition 12.0.1 der Äquivalenz
1	1. Zeile
2	4. Zeile
3	4. Zeile
4	1. Zeile

Definition 12.0.1 der Äquivalenz entweder die Aussage

$$A \not\Leftrightarrow B$$

nicht wahr und die Aussage

$$\neg (A \Leftrightarrow B)$$

wahr oder die Aussage

$$A \not\Leftrightarrow B$$

wahr und die Aussage

$$\neg (A \Leftrightarrow B)$$

nicht wahr sein. Ich beginne mit dem ersten Fall: Wäre die Aussage

$$\neg (A \Leftrightarrow B)$$

wahr, könnten die Aussagen A und B gemäß der Definition 12.0.1 der Äquivalenz nicht beide nicht wahr oder beide wahr sein. Also müsste die Aussage A nicht wahr und die Aussage B wahr oder die Aussage A wahr und die Aussage B nicht wahr sein. Wäre die Aussage A nicht wahr und die Aussage B wahr, dann wäre gemäß der zweiten Zeile der Definition 13.0.1 der Antivalenz die Aussage $A \Leftrightarrow B$ wahr. Wäre die Aussage A wahr und die Aussage B nicht wahr, dann wäre gemäß der dritten Zeile der Definition 13.0.1 der Antivalenz die Aussage $A \Leftrightarrow B$ wiederum wahr. Also kann dieser Fall nicht eintreten, dass die Aussage

$$\neg (A \Leftrightarrow B)$$

wahr, die Aussage

$$A \Leftrightarrow B$$

jedoch nicht wahr ist.

Nun möchte ich auf der anderen Seite überlegen, ob der Fall eintreten könnte, dass die Aussage

$$A \Leftrightarrow B$$

wahr, die Aussage

$$\neg (A \Leftrightarrow B)$$

nicht wahr ist. Ist die Aussage

$$A \Leftrightarrow B$$

wahr, dann muss gemäß der zweiten und dritten Zeile der Definition 13.0.1 der Antivalenz entweder die Aussage A nicht wahr, die Aussage B wahr oder umgekehrt die Aussage A wahr und die Aussage B nicht wahr sein. Ist die Aussage A nicht wahr, die Aussage B jedoch wahr, dann ist gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz die Aussage $A \Leftrightarrow B$ nicht wahr. Also ist gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage $\neg (A \Leftrightarrow B)$ eben trotzdem wahr. Ist auf der anderen Seite die Aussage A wahr, die Aussage Bjedoch nicht, dann ist gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz die Aussage $A \Leftrightarrow B$ wiederum nicht wahr, die Aussage $\neg (A \Leftrightarrow B)$ jedoch wiederum gemäß der ersten Zeile der Definition 6.0.2 der Negation ebenso wahr. Also ist es nicht möglich, Aussagen mit den Bezeichnungen A und B derart zu finden, dass die Aussage $A \Leftrightarrow B$ nicht wahr, die Aussage $\neg (A \Leftrightarrow B)$ jedoch wahr ist. Zusammengefasst habe ich endlich auch mit sprachlichen Mitteln zu zeigen versucht, dass es nicht möglich ist, dass $A \Leftrightarrow B$ nicht wahr, die Aussage $\neg (A \Leftrightarrow B)$ jedoch wahr ist oder die Aussage $A \Leftrightarrow B$ wahr und die Aussage $\neg (A \Leftrightarrow B)$ nicht wahr ist. Somit meine ich auch mit sprachlichen Mitteln die Richtigkeit der Behauptung erbracht zu haben (auch wenn dieser Beweis im Vergleich zum tabellarischen Beweis extrem lang fädig ist) und beende darum an dieser Stelle diesen Beweis.

<includebackwardreferences>
<includeforwardreferences>

18.37. Implikation Antivalenz Disjunktion

Auch dieser logische Satz ist nicht wahnsinnig genial.

Satz 62. Es seien A und B Metasymbole von Aussagen, welche weder in sich selbst noch bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \Rightarrow (A \vee B)$$

In Worten: Ist entweder A oder B wahr, dann folgt daraus, dass A oder B wahr ist.

Ich kann darum umgangssprachlich sagen, dass die Antivalenz eine strengere Bedingung ist als die Disjunktion.

Beweis. Ich möchte den Beweis wiederum als Tabellen abgelegt, und zwar in der Tabelle 235 so, wie ich üblicherweise geschrieben wird und in der Tabelle 236 so, wie ich es eventuell aufschreiben würde. In der Tabelle 237 habe ich die Verweise der Beweise aufgeschrieben. Vielleicht klappt es bei diesem Satz einen sprachlichen Beweis anzufügen (da er eine Implikation enthält). Ich möchte mir überlegen, ob es Aussagen A und B derartig geben müsste, dass die Behauptung nicht richtig sei. Dann müsste also gemäß der dritten Zeile der Definition 13.0.1 die Antivalenz von A und B ($A \Leftrightarrow B$) wahr, jedoch die Disjunktion von A und $B(A \vee B)$ jedoch nicht wahr sein. Gemäß der Definition 11.0.1 der Disjunktion kann diese jedoch nur dann nicht wahr sein, falls weder A noch B wahr sind. In diesem Fall ist gemäß der ersten Zeile der Definition 13.0.1 der Antivalenz jedoch die Antivalenz von A und B jedoch ebenfalls nicht wahr. Das bedeutet jedoch, dass die ganze Behauptung (dass aus der Antivalenz der beiden Aussagen A und B die Implikation folgern würden) jedoch gemäß der ersten Zeile der Definition 9.0.1 der Implikation trotzdem wahr wäre. Damit glaube ich, den Beweis für die Richtigkeit der Behauptung doch noch mit rein sprachlichen Mitteln erbracht zu haben und beende darum an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

18.38. Satz der Negation der Implikation

Dieser Satz verwende ich bei der Herleitung der Gesetzte der natürlichen Zahlen. Er dient jedoch auch dazu, zu zeigen, wann eine Implikation nicht gilt. Denn wenn ich zeigen kann, dass eine Voraussetzung gilt, jedoch die Folgerung nicht gilt, dann habe ich bereits gezeigt, dass die Implikation nicht richtig sein kann. Es gilt:

TABELLE 235. 1. Beweis des Satzes der Implikation von Antivalenz und Disjunktion

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \vee B$	Behauptung
1	0	0	1
2	1	1	1
3	1	1	1
4	0	1	1

TABELLE 236. 2. Beweis des Äquivalenz-Antivalenz-Satzes

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \vee B$	Behauptung
1	$\neg (A \Leftrightarrow B)$	$\neg (A \lor B)$	$\neg (A \Leftrightarrow B) \Rightarrow (A \lor B)$
2	$A \Leftrightarrow B$	$A \vee B$	$\neg (A \Leftrightarrow B) \Rightarrow (A \lor B)$
3	$A \Leftrightarrow B$	$A \vee B$	$\neg (A \Leftrightarrow B) \Rightarrow (A \lor B)$
4	$\neg (A \Leftrightarrow B)$	$A \vee B$	$\neg (A \Leftrightarrow B) \Rightarrow (A \lor B)$

TABELLE 237. Verweise Beweis des Satzes der Implikation von Antivalenz und Disjunktion

Defintion/	Definition 13.0.1	Definition 11.0.1	Definition 9.0.1
Fall Nr.	der	der	der
ran m.	Antivalenz	Disjunktion	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile	4. Zeile
3	3. Zeile	3. Zeile	4. Zeile
4	4. Zeile	4. Zeile	2. Zeile

Satz 63. Es seien A, B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt:

$$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$$

BEWEIS. Die Implikation ist gemäß der Definition 9.0.1 genau dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Damit hätte ich den Satz bereits bewiesen. Damit alles seine Richtigkeit besitzt, möchte ich den Beweis noch tabellarisch beweisen. Diesen Beweis habe ich in den Tabellen 238 und 239 sowie 241 und 241

TABELLE 238. 1. Teil 1. Beweis des Satzes der Negation der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg (A \Rightarrow B)$
1	1	0
2	1	0
3	0	1
4	1	0

TABELLE 239. 2. Teil 1. Beweis des Satzes der Negation der Implikation

Aussage/ Fall Nr.	$\neg B$	$A \wedge \neg B$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$
1	1	0	1
2	0	0	1
3	1	1	1
4	0	0	1

TABELLE 240. 1. Teil 2. Beweis des Satzes der Negation der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg \left(A \Rightarrow B \right)$
1	$A \Rightarrow B$	$\neg (\neg (A \Rightarrow B))$
2	$A \Rightarrow B$	$\neg (\neg (A \Rightarrow B))$
3	$\neg (A \Rightarrow B)$	$\neg (A \Rightarrow B)$
4	$A \Rightarrow B$	$\neg (\neg (A \Rightarrow B))$

abgelegt. Die Verweise habe ich in der Tabelle 242 sowie 243 abgelegt.

<includebackwardreferences>
<includeforwardreferences>

18.39. Satz der Trivialität

Nun, den Namen dieses Satzes gibt es nicht. Zumindest habe ich dessen Namen noch nie gelesen. Ob er sinnvoll ist, ist noch einmal eine andere Frage. Aber ich kann ihn zumindest formulieren und beweisen. Er lautet:

Satz 64. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

Tabelle 241. 2. Teil 2. Beweis des kleinen Lemmas der Äquivalenz der Disjunktion

Aussage/ Fall Nr.	$\neg B$	$A \wedge \neg B$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$
1	$\neg B$	$\neg (A \land \neg B)$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$
2	$\neg (\neg B)$	$\neg \left(A \wedge \neg B \right)$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$
3	$\neg B$	$A \wedge \neg B$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$
4	$\neg (\neg B)$	$\neg (A \land \neg B)$	$\neg (A \Rightarrow B) \Leftrightarrow A \land \neg B$

TABELLE 242. 1. Teil Verweise Beweis des Satzes der Negation der Implikation

Defintion/ Fall Nr.	Definition 9.0.1 der Negation	Definition 6.0.2 der Negation
1	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile
3	2. Zeile	1. Zeile
4	2. Zeile	2. Zeile

TABELLE 243. 2. Teil Verweise Beweis des Satzes der Negation der Implikation

Defintion/	Definition 6.0.2	Definition 8.0.2	Definition 12.0.1
Fall Nr.	der	der	der
ran m.	Negation	Konjunktion	Äquivalenz
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile	1. Zeile
3	1. Zeile	4. Zeile	4. Zeile
4	2. Zeile	3. Zeile	1. Zeile

$$(\neg A \land A) \Rightarrow B$$

BEWEIS. Ich habe den Beweis des Satzes in den Tabellen 244 sowie 245 abgelegt. Die Verweise des Beweises habe ich in der Tabelle 246 aufgeschrieben. Es gibt jedoch auch einen kurzen sprachlichen Beweis. Gemäß dem Satz 45 muss $\neg A \land A$ eine nicht wahre Aussage sein. Das bedeutet jedoch, dass gemäß der ersten Zeile der Definition 6.0.2 der

Tabelle 244. 1. Beweis Satz der Trivialität

Aussage/ Fall Nr.	$\neg A$	$\neg A \wedge A$	Behauptung
1	1	0	1
2	1	0	1
3	0	0	1
4	0	0	1

Tabelle 245. 2. Beweis Satz der Trivialität

Aussage/ Fall Nr.	$\neg A$	$\neg A \wedge A$	Behauptung
1	$\neg A$	$\neg A \wedge A$	$\neg A \land A \Rightarrow B$
2	$\neg A$	$\neg A \wedge A$	$\neg A \land A \Rightarrow B$
3	$\neg (\neg A)$	$\neg A \wedge A$	$\neg A \land A \Rightarrow B$
4	$\neg (\neg A)$	$\neg A \wedge A$	$\neg A \land A \Rightarrow B$

Tabelle 246. Verweise Satz der Trivialität

Defintion/	Definition 6.0.2	Definition 8.0.2	Definition 9.0.1
Fall Nr.	der	der Vaniumletian	der
	Negation	Konjunktion	Implikation
1	1. Zeile	3. Zeile	1. Zeile
2	1. Zeile	3. Zeile	2. Zeile
3	2. Zeile	2. Zeile	1. Zeile
4	2. Zeile	2. Zeile	2. Zeile

Negation die Aussage

$$\neg (\neg A \land A)$$

wahr ist. Gemäß der Abkürzungsregel 9 der Implikation ist damit jedoch die Implikation bereits bewiesen. Da alles seine Richtigkeit haben soll, habe ich in den Tabellen 244 einerseits sowie 245 den Beweis noch tabellarisch erbracht. In der Tabelle 246 habe ich die Verweise des Beweises aufgeschrieben. Damit hoffe ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende darum an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Und bevor Du Dich maßlos darüber aufregst, dass ich diesen Satz formuliert und bewiesen habe: Der Satz wird noch verwendet. Aber ich Trottel habe in einer früheren Fassung einen falschen Verweis hingeschrieben. Doch die ganze Sache dient mir auch als Vorwand, um auf

eine wichtige Funktion von Mathematik hinzuweisen: Die Mathematik dient auch als "Gerümpelkammer" für Ideen. Da werden Probleme und dazugehörige Lösungen aufgeschrieben. Und richtige Mathematikerinnen und Mathematiker untersuchen bei eigenen Problemstellungen oft auch in diesen Sammlungen - "Literatur" genannt - ob ihr Problem auch schon beschrieben oder sogar gelöst wurde. Wenn das der Fall ist, dann haben sie je nachdem Glück oder Pech gehabt. Glück haben sie dann gehabt, falls das gesuchte Problem ein Teilproblem eines anderen Problems war, welches sie eigentlich lösen wollten. Pech haben sie dann gehabt, falls sie dieses Problem hätten lösen und darüber in einer Fachzeitschrift²⁷ oder sonst wo etwas hätten schreiben sollen.

18.40. Mit Implikationen Äquivalenzen beweisen

Angenommen, Du hast mindestens drei Aussagen A, B sowie C und Du möchtest beweisen, dass alle drei Aussagen äquivalent sind. Gibt es da eine elegantes Verfahren? Ja, das gibt es. Ich möchte es kurz zeigen:

SATZ 65. Es seien A, B und C Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage:

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow (A \Leftrightarrow B \land B \Leftrightarrow C)$$

BEWEIS. Kleine Vorbemerkung: Gemäß dem Satz 39 ist die Konjunktion assoziativ. Darum kommt es für die Auswertung des Wahrheitsgehalts nicht darauf an, ob ich die Aussage

$$(A\Rightarrow B)\wedge ((B\Rightarrow C)\wedge (C\Rightarrow A))$$

oder die Aussage

$$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$$

betrachte. Nun möchte ich aber versuchen, den Beweis des zu beweisenden Satz mit sprachlichen Mitteln zu erbringen. Gilt eine der drei Aussagen

$$A \Rightarrow B$$
$$B \Rightarrow C$$
$$C \Rightarrow A$$

nicht, dann ist gemäß der Definition 8.0.2 der Konjunktion die gesamte Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

²⁷Also einer Zeitschrift, in welcher Wissenschaftlerinnen und Wissenschaftlich für andere Fachpersonen schreiben (so kompliziert, dass es üblicherweise nur ihresgleichen lesen können).

nicht wahr. Da es sich hier um einen Basistext handelt, möchte ich das noch weiter ausführen: Ist die Aussage

$$A \Rightarrow B$$

nicht wahr, dann ist gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A \Rightarrow B) \land ((B \Rightarrow C) \land (C \Rightarrow A))$$

und damit die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

nicht wahr. Hier habe ich erneut vom Satz 39 der Assoziativität der Konjunktion Gebrauch gemacht. Ist die Aussage $B\Rightarrow C$ nicht wahr, dann ist gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C)$$

wiederum nicht wahr. Gemäß dem gleichen Minimumprinzip8 der Konjunktion ist dann die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

ebenfalls nicht wahr. Ist schlussendlich die Aussage

$$C \Rightarrow A$$

nicht wahr, dann ist zum dritten Mal gemäß dem Minimumprinzip gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$$

und somit gemäß dem Satz 39 der Assoziativität der Konjunktion die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

wiederum nicht wahr. Also ist die gesamte Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

nicht wahr, falls eine der drei Aussagen

$$A \Rightarrow B$$

$$B \Rightarrow C$$

$$C \Rightarrow A$$

nicht wahr ist. Ist dies der Fall, dann ist gemäß der Abkürzungsregel 9 der Implikation die gesamte Aussage jedoch wahr. Sind jedoch alle drei Implikationen

$$A \Rightarrow B$$

$$B \Rightarrow C$$

$$C \Rightarrow A$$

wahr, dann kann ich gemäß dem Satz 14 der Transitivität der Implikation schließen, dass gelten muss

$$B \Rightarrow A$$

da ja gilt

$$B \Rightarrow C \land C \Rightarrow A$$

Also kann ich jetzt schreiben, dass gilt

$$(A \Rightarrow B) \land (B \Rightarrow A)$$

Also kann ich gemäß dem Satz 49 der Äquivalenz von Äquivalenz und Implikationen schreiben, dass gilt:

$$B \Leftrightarrow A$$

Da nun die Äquivalenz gemäß dem Satz 38 kommutativ ist, kann ich daraus folgern, dass ebenfalls gelten muss

$$A \Leftrightarrow B$$

Auf genau die gleiche Art kann ich beweisen, dass

$$B \Leftrightarrow C$$

sein muss. Da

$$(A \Rightarrow B) \land (C \Rightarrow A)$$

gilt und die Konjunktion gemäß dem Satz 34 immer noch kommutiert, muss auch gelten:

$$(C \Rightarrow A) \land (A \Rightarrow B)$$

Somit muss gemäß dem Satz 14 der Transitivität der Implikation schließen, dass gilt:

$$C \Rightarrow B$$

Zusammen mit der Voraussetzung $B \Rightarrow C$, welche gemäß Voraussetzung wahr sein muss, kann ich also wiederum gemäß dem Korollar 49 des Satzes 22 schreiben, dass gilt:

$$C \Leftrightarrow B$$

Da nun die Äquivalenz gemäß dem Satz 38 kommutativ ist, kann ich daraus folgern, dass ebenfalls gelten muss

$$B \Leftrightarrow C$$

Somit kann ich wiederum folgern, dass gilt

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

Aus diesem Grund bin ich der Meinung, dass ich den ganzen Beweis für die Richtigkeit der Behauptung erbracht habe.

Nun möchte ich gerne wiederum den Beweis mit Hilfe von Wahrheitstafeln erbringen. Die Wahrheitstafeln, welche mit Hilfe von Zahlen den Satz beweisen, sind in den Tabellen 247, 248 sowie 249 abgelegt. Die Wahrheitstafeln, welche mit Hilfe von Aussagen den Satz beweisen,

TABELLE 247. 1. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
1	1	1	1
2	1	1	0
3	1	0	1
4	1	1	0
5	0	1	1
6	0	1	1
7	1	0	1
8	1	1	1

TABELLE 248. 2. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
1	1	1	1
2	1	0	1
3	0	0	0
4	1	0	0
5	0	0	0
6	0	0	0
7	0	0	1
8	1	1	1

TABELLE 249. 3. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$	Behauptung
1	1	1	1
2	0	0	1
3	0	0	1
4	1	0	1
5	1	0	1
6	0	0	1
7	0	0	1
8	1	1	1

sind in den Tabellen 250, 251, 252 sowie 253 abgelegt. Die Verweise der Beweise sind in den Tabellen 254, 255 sowie 256 abgelegt.

Falls Du den tabellarischen Beweis überfliegt, dann wirst Du sehen, dass dieser extrem aufwändig ist. Darum kann es unter Umständen Sinn

TABELLE 250. 1. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
1	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
2	$A \Rightarrow B$	$B \Rightarrow C$	$\neg (C \Rightarrow A)$
3	$A \Rightarrow B$	$\neg (B \Rightarrow C)$	$C \Rightarrow A$
4	$A \Rightarrow B$	$B \Rightarrow C$	$\neg (C \Rightarrow A)$
5	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$C \Rightarrow A$
6	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$C \Rightarrow A$
7	$A \Rightarrow B$	$\neg (B \Rightarrow C)$	$C \Rightarrow A$
8	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$

TABELLE 251. 2. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
1	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
2	$(A \Rightarrow B) \land (B \Rightarrow C)$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$A \Leftrightarrow B$
3	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
4	$(A \Rightarrow B) \land (B \Rightarrow C)$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
5	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
6	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
7	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$A \Leftrightarrow B$
8	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$

TABELLE 252. 3. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
1	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
2	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
3	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
4	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
5	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
6	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
7	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
8	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $

TABELLE 253. 4. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
Fall Nr.	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
1	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
1	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
2	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
3	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
4	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
4	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
5	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
0	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
6	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
O	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
7	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
1	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
8	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow$
G	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$

TABELLE 254. 1. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Auggege /	Definition 9.0.1	Definition 9.0.1	Definition 9.0.1
Aussage/ Fall Nr.	der	der	der
ran m.	Implikation	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	3. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	4. Zeile
7	4. Zeile	3. Zeile	2. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 255. 2. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Auggoro /	Definition 8.0.2	Definition 8.0.2	Definition 12.0.1
Aussage/ Fall Nr.	der	der	der
ran m.	Konjunktion	Konjunktion	Äquivalenz
1	4. Zeile	4. Zeile	1. Zeile
2	4. Zeile	3. Zeile	1. Zeile
3	3. Zeile	2. Zeile	2. Zeile
4	4. Zeile	3. Zeile	2. Zeile
5	2. Zeile	2. Zeile	3. Zeile
6	2. Zeile	2. Zeile	3. Zeile
7	3. Zeile	2. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

machen, den sprachlichen Beweis zu verwenden, da dieser zwar auch aufwändig ist, jedoch immerhin noch eine gewisse Übersicht besitzt.

Nun bin ich an der Stelle, an welcher ich zu meinen glaube, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Ich möchte an dieser Stelle übrigens noch bemerken, dass der Satz nicht aussagt, dass alle Aussagen A,B und C wahr seien müssen. Es ist auch möglich, dass alle Aussagen nicht wahr sind. Jedoch sagt der Satz sehr wohl aus, dass alle Aussagen in diesem Fall wahr sind, sobald

TABELLE	256.	3.	Teil	Verweise	Beweis	Satz	Äquivalen-
zen aus In	aplika	tio	nen				

Auggogo /	Definition 12.0.1	Definition 8.0.2	Definition 12.0.1
Aussage/ Fall Nr.	der	der	der
ran m.	Äquivalenz	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	3. Zeile	1. Zeile	1. Zeile
4	4. Zeile	2. Zeile	1. Zeile
5	1. Zeile	2. Zeile	1. Zeile
6	2. Zeile	1. Zeile	1. Zeile
7	3. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

eine der Aussagen wahr ist. Auch kann keine Aussage wahr sein, falls eine der Aussagen nicht wahr ist.

Der vorhergehende Satz kann übrigens noch verschärft werden:

Satz 66. Es seien A, B sowie C Aussagen, welche in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

Beweises habe ich ja bereits im vorhergehenden Satz 66 erbracht, in welchem ich gezeigt habe, dass eine Äquivalenz aus zyklischen Implikationen folgt. Formal aufgeschrieben habe ich also bereits gezeigt, dass gelten muss:

$$(A\Rightarrow B)\wedge (B\Rightarrow C)\wedge (C\Rightarrow A)\Rightarrow (A\Leftrightarrow B)\wedge (B\Leftrightarrow C)$$

Angenommen die umgekehrte Richtung der Behauptung sei falsch. Zuerst einmal kann gemäß dem Satz 23 über die Äquivalenz von Implikation und Replikation schreiben, dass gilt

$$((A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)) \Leftrightarrow ((A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C))$$

Da die Äquivalenz gemäß dem Satz 38 kommutativ ist, muss daher auch gelten:

$$((A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C)) \Leftrightarrow ((A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A))$$

Nun möchte ich mir überlegen, ob die Implikation

$$((A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A))$$

nicht wahr sein könnte. Dies wäre gemäß der dritten Zeile der Definition 9.0.1 dann der Fall, falls die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

wahr, die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

jedoch nicht wahr wäre. Angenommen, die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

wäre nicht wahr. Dann müsste mindestens eine Aussage der Aussagen

$$A \Rightarrow B$$

$$B \Rightarrow C$$

$$C \Rightarrow A$$

nicht wahr sein. Ansonsten wäre die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

eben (im Widerspruch zur Voraussetzung) wahr. Wäre die Aussage

$$A \Rightarrow B$$

nicht wahr, dann würde dies gemäß der dritten Zeile der Definition 9.0.1 der Implikation bedeuten, dass gilt

$$A \wedge \neg B$$

Daraus würde gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz jedoch folgen, dass die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist. Also wäre gemäß dem Minimumprinzip 41 der Konjunktion folgen, dass die gesamte Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

nicht wahr wäre. Somit wäre gemäß der Abkürzungsregel 9 der Implikation die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

eben doch wahr. Genau auf die gleiche Art kann ich argumentieren, falls die Aussage

$$B \Rightarrow C$$

nicht wahr wäre: Wäre die Aussage

$$B \Rightarrow C$$

nicht wahr, dann würde dies gemäß der dritten Zeile der Definition 9.0.1 der Implikation bedeuten, dass gilt

$$B \wedge \neg C$$

Daraus würde gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz jedoch folgen, dass die Aussage

$$B \Leftrightarrow C$$

nicht wahr ist. Also wäre gemäß dem Minimumprinzip 41 der Konjunktion folgen, dass die gesamte Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

nicht wahr wäre. Somit wäre gemäß der Abkürzungsregel 9 der Implikation die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

eben doch wahr.

Wäre nun die Aussage $C \Rightarrow A$ nicht wahr, dann müsste gemäß der dritten Zeile der Definition 9.0.1 der Implikation gelten, dass gilt

$$C \wedge \neg A$$

Dann könnte jedoch die Aussage

$$(A \Leftrightarrow B) \land (B \Rightarrow C)$$

ebenfalls nicht gelten. Somit wäre gemäß der Abkürzungsregel 9 der Implikation die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

eben doch wahr.

Denn wäre die Aussage A nicht wahr, dann müsste die Aussage B auch nicht wahr sein. Ansonsten wäre gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz die Aussage die Aussage

$$A \Leftrightarrow B$$

nicht wahr und somit gemäß dem Minimumprinzip 8 der Konjunktion die gesamte Aussage nicht wahr. Wäre jedoch die Aussage B nicht wahr, dann wäre gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$B \Leftrightarrow C$$

nicht wahr. Also wäre wiederum gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (B \Rightarrow C)$$

nicht wahr. Somit wäre gemäß der Abkürzungsregel 9 der Implikation die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

eben doch wahr.

Zusammenfassend kann ich schreiben, dass ich keine Aussagen mit dem Symbolen A, B und C finden kann, welche in sich und in Bezug

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
1	1	1	1
2	1	1	0
3	1	0	1
4	1	1	0
5	0	1	1
6	0	1	1
7	1	0	1
8	1	1	1

Tabelle 257. 1. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

auf die anderen Symbole des Lemmas widerspruchsfrei sind und für welche die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)$$

nicht wahr gemäß dem Satz 12 des ausgeschlossenen Dritten meine ich nun schreiben zu können, dass diese Aussage für alle Aussagen gelten muss. Also kann ich auch gemäß dem Satz 23 über die Äquivalenz von Implikation und Replikation schreiben, dass gilt

$$((A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A)) \Leftrightarrow$$
$$((A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C))$$

Gemäß dem Satz 16 der Schlussfolgerung kann ich also folgern, dass gilt:

$$((A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C))$$

Da ich bereits gezeigt habe, dass gilt:

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Rightarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

kann ich gemäß dem Satz 49 kann ich nun schließen dass also gilt:

$$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow (A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

Auch diesen Beweis möchte noch einmal mit Hilfe von Wahrheitstafeln erbringen. Die Wahrheitstafeln, welche mit Hilfe von Zahlen den Satz beweisen, sind in den Tabellen 257, 258 sowie 259 abgelegt. Die Wahrheitstafeln, welche mit Hilfe von Aussagen den Satz beweisen, sind in den Tabellen 260, 261, 262 sowie 263 abgelegt. Die Verweise der Beweise sind in den Tabellen 264, 265 sowie 266 abgelegt.

<includebackwardreferences>

<includeforwardreferences>

Nebenbemerkung: Das Aufschreiben dieses Beweises hat mir wieder einmal vor Augen geführt, dass Mathematik bisweilen ziemlich harte Arbeit ist. Aber auf eine andere Art, als ich dies üblicherweise in der

TABELLE 258. 2. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
1	1	1	1
2	1	0	1
3	0	0	0
4	1	0	0
5	0	0	0
6	0	0	0
7	0	0	1
8	1	1	1

TABELLE 259. 3. Teil 1. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$	Behauptung
1	1	1	1
2	0	0	1
3	0	0	1
4	1	0	1
5	1	0	1
6	0	0	1
7	0	0	1
8	1	1	1

TABELLE 260. 1. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
1	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$
2	$A \Rightarrow B$	$B \Rightarrow C$	$\neg (C \Rightarrow A)$
3	$A \Rightarrow B$	$\neg (B \Rightarrow C)$	$C \Rightarrow A$
4	$A \Rightarrow B$	$B \Rightarrow C$	$\neg (C \Rightarrow A)$
5	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$C \Rightarrow A$
6	$\neg (A \Rightarrow B)$	$B \Rightarrow C$	$C \Rightarrow A$
7	$A \Rightarrow B$	$\neg \left(B \Rightarrow C \right)$	$C \Rightarrow A$
8	$A \Rightarrow B$	$B \Rightarrow C$	$C \Rightarrow A$

mathematischen Literatur zu lesen glaube: Die Arbeit besteht darin, so präzis wie möglich Dinge aufzuschreiben, welche als sowieso wahr gelten.

Tabelle 261. 2. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
1	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$
2	$(A \Rightarrow B) \land (B \Rightarrow C)$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$A \Leftrightarrow B$
3	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
4	$(A \Rightarrow B) \land (B \Rightarrow C)$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
5	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
6	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$\neg (A \Leftrightarrow B)$
7	$\neg ((A \Rightarrow B) \land (B \Rightarrow C))$	$\neg (((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A))$	$A \Leftrightarrow B$
8	$(A \Rightarrow B) \land (B \Rightarrow C)$	$((A \Rightarrow B) \land (B \Rightarrow C)) \land (C \Rightarrow A)$	$A \Leftrightarrow B$

18.41. Kommutativität der NAND-Verknüpfung

Obwohl es nach dem ersten Blick auf die Definition 14.0.1 der NAND-Verknüpfung schnell klar wird, dass die NAND-Verknüpfung kommutativ ist, möchte ich gerne die Behauptung noch einmal erbringen:s

Satz 67. Es seien A sowie B Symbole für Aussagen. Dann ist

$$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$$

BEWEIS. Ich möchte den Beweis mittels Wahrheitstafeln führen. In den Tabellen 267 sowie 268 habe führe ich den Beweis, in der Tabelle 269 habe ich die Verweise aufgelistet.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 262. 3. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
1	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $
2	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
3	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
4	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
5	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
6	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
7	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
8	$B \Leftrightarrow C$	$ \begin{array}{c} (A \Leftrightarrow B) \land \\ (B \Leftrightarrow C) \end{array} $

TABELLE 263. 4. Teil 2. Beweis Satz Äquivalenzen aus Implikationen

Aussage/	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
Fall Nr.	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
1	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
1	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
2	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
3	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
4	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
5	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
0	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
6	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
- O	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
7	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
'	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
8	$(A \Rightarrow B) \land (B \Rightarrow C) \land (C \Rightarrow A) \Leftrightarrow$
G	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$

TABELLE 264. 1. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Auggege /	Definition 9.0.1	Definition 9.0.1	Definition 9.0.1
Aussage/ Fall Nr.	der	der	der
ran Mr.	Implikation	Implikation	Implikation
1	1. Zeile	1. Zeile	1. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	3. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	4. Zeile
7	4. Zeile	3. Zeile	2. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 265. 2. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Aussage/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 8.0.2 der Konjunktion	Definition 12.0.1 der Äquivalenz
1	4. Zeile	4. Zeile	1. Zeile
2	4. Zeile	3. Zeile	1. Zeile
3	3. Zeile	2. Zeile	2. Zeile
4	4. Zeile	3. Zeile	2. Zeile
5	2. Zeile	2. Zeile	3. Zeile
6	2. Zeile	2. Zeile	3. Zeile
7	3. Zeile	2. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Nun möchte ich mir überlegen, wieso die NAND-Verknüpfung so heißt?

18.42. Zusammenhang Konjunktion und NAND-Verknüpfung

Was ist der Zusammenhang von NAND-Verknüpfung und Konjunktion? Es ist nicht schwierig, einen solchen herzustellen. Eigentlich hätte ich als Titel schreiben wollen: Warum ist die NAND-Verknpfüpfung die Negation einer Konjunktion? Als ersten Satz dieses Kapitels hätte ich schreiben wollen: Weil das so definiert ist. Aber der Titel wurde zu lang. Jedoch nützt es wenig, wenn ich das so sage, dass die Negation der Konjunktion die NAND-Verknüpfung ist und ich es jedoch nicht

TABELLE 266. 3. Teil Verweise Beweis Satz Äquivalenzen aus Implikationen

Auggoro /	Definition 12.0.1	Definition 8.0.2	Definition 12.0.1
Aussage/ Fall Nr.	der	der	der
ran m.	Äquivalenz	Konjunktion	Äquivalenz
1	1. Zeile	4. Zeile	4. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	3. Zeile	1. Zeile	1. Zeile
4	4. Zeile	2. Zeile	1. Zeile
5	1. Zeile	2. Zeile	1. Zeile
6	2. Zeile	1. Zeile	1. Zeile
7	3. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 267. 1. Beweis der Kommutativität der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$B\overline{\wedge}A$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$
1	1	1	1
2	1	1	1
3	1	1	1
4	0	0	1

TABELLE 268. 2. Beweis Kommutativität der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$B\overline{\wedge}A$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$
1	$A\overline{\wedge}B$	$B\overline{\wedge}A$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$
2	$A\overline{\wedge}B$	$B\overline{\wedge}A$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$
3	$A\overline{\wedge}B$	$B\overline{\wedge}A$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$
4	$\neg (A \overline{\wedge} B)$	$\neg (B \overline{\wedge} A)$	$A\overline{\wedge}B \Leftrightarrow B\overline{\wedge}A$

TABELLE 269. Tabelle Verweise Beweis der Kommutativität der NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 14.0.1 der NAND- Verknüpfung	Definition 12.0.1 der Äquivalenz
1	1. Zeile	1. Zeile	4. Zeile
2	2. Zeile	3. Zeile	4. Zeile
3	3. Zeile	2. Zeile	4. Zeile
4	4. Zeile	4. Zeile	1. Zeile

zeigen kann, wieso es so ist. Diese Situation kommt übrigens noch ab und zu in der Mathematik vor. Es werden verschiedene Dinge definiert und es wird damit gearbeitet. Und mit der Zeit wird klar, dass beide Definitionen nur unterschiedliche Ansichten des gleichen Sachverhaltes sind. Dann stellt sich die Frage, wieso dann beide Definition beibehalten werden und nicht eine Definition aufgegeben wird. Die Antwort ist, dass jede Beschreibung ihre Vor- und Nachteile besitzt. Darum ist es manchmal von Vorteil, beide Definitionen zu verwenden und sich Gedanken darüber zu machen, wann die eine Beschreibung besser ist und wann die andere.

Doch zurück zur Aussage. Der nachfolgende Satz könnte auch als disjunktive Normalform der NAND-Verküpfung betrachtet werden (auch wenn der Satz keine einzige Disjunktion enthält):

Satz 68. Es seien A respektive B Metasymbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Beweises widerspruchsfrei seien. Dann gilt:

$$(A\overline{\wedge}B) \Leftrightarrow \neg (A \wedge B)$$

BEWEIS. Jetzt möchte ich endlich einmal den Satz 49 verwenden. Ich möchte also zeigen, dass aus der Aussage

 $A\overline{\wedge}B$

die Aussage

$$\neg (A \land B)$$

und aus der Aussage

$$\neg (A \land B)$$

die Aussage

$$A\overline{\wedge}B$$

folgt. Zur ersten Behauptung: Ich möchte mir überlegen, ob es Aussagen mit den Symbolen A sowie B derart gibt, dass die Aussage

$$A\overline{\wedge}B \Rightarrow \neg (A \wedge B)$$

nicht gilt. Dies wäre dann gemäß der dritten Zeile der Definition 9.0.1 der Implikation dann der Fall, falls die Aussage $A \overline{\wedge} B$ wahr, die Aussage $\neg (A \wedge B)$ jedoch nicht wahr wäre. Die Aussage $\neg (A \wedge B)$ ist gemäß der zweiten Zeile der Definition 6.0.2 der Negation dann nicht wahr, falls die Aussage $A \wedge B$ wahr ist. Die Aussage $A \wedge B$ ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion wahr, falls sowohl die Aussage A wie auch die Aussage B wahr ist. Sind sowohl die Aussagen A wie auch B wahr, dann ist jedoch gemäß der vierten Zeile der Definition 14.0.1 der NAND-Funktion (Sheffer Notation) die Aussage $A \overline{\wedge} B$ ebenfalls nicht wahr. Da nun sowohl die Aussagen $A \overline{\wedge} B$ wie auch $\neg (A \wedge B)$ nicht wahr sind, ist gemäß der ersten Zeile der Definition 9.0.1 der Implikation in diesem Fall die Behauptung

$$A\overline{\wedge}B \Rightarrow \neg (A \wedge B)$$

eben doch wahr. Also ist es nicht möglich, dass die Behauptung für irgendwelche (genügend "vernünftige") Aussagen nicht wahr ist. Darum kann ich schließen, dass für alle Aussagen, welche mit den Symbolen A sowie B bezeichnet werden die Aussage

$$A\overline{\wedge}B \Rightarrow \neg (A \wedge B)$$

wahr ist.

Die umgekehrte Richtung kann ich auf die haargenau gleiche Art beweisen. Ich habe dementsprechend den obigen Abschnitt kopiert und angepasst. Ich hoffe, dass dies Dich nicht stört. Ich möchte mir überlegen, ob es Aussagen mit den Symbolen A sowie B derart gibt, dass die Aussage

$$\neg (A \land B) \Rightarrow A \overline{\land} B$$

nicht gilt. Dies wäre dann gemäß der dritten Zeile der Definition 9.0.1 der Implikation dann der Fall, falls die Aussage $\neg(A \land B)$ wahr, die Aussage $A \overline{\land} B$ jedoch nicht wahr wäre. Die Aussage $A \overline{\land} B$ ist gemäß der vierten Zeile der Definition 14.0.1 der NAND - Funktion nicht wahr, falls sowohl die Aussage A wie auch die Aussage B wahr sind. Sind jedoch die Aussage A und B wahr, dann ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage $A \land B$ wahr. Da nun die Aussage $A \land B$ wahr ist, ist gemäß der zweiten Zeile der Definition 6.0.2 der Negation in diesem Fall die Aussage $\neg(A \land B)$ jedoch nicht wahr. Das bedeutet, dass in diesem Fall weder die Aussage

$$\neg (A \land B)$$

noch die Aussage

$$A\overline{\wedge}B$$

wahr sind. Gemäß der ersten Zeile der Definition 9.0.1 der Implikation ist in diesem Fall die Behauptung

$$\neg (A \land B) \Rightarrow A \overline{\land} B$$

eben doch wahr. Also ist es nicht möglich, dass die Behauptung für irgendwelche (genügend "vernünftige") Aussagen nicht wahr ist. Darum kann ich schließen, dass für alle Aussagen, welche mit den Symbolen A sowie B bezeichnet werden die Aussage

$$\neg (A \land B) \Rightarrow A \overline{\land} B$$

wahr ist. Da ich nun gezeigt habe, dass für alle in sich selbst und in Bezug auf die anderen Symbolen widerspruchsfreien Aussagen sowohl gilt

$$A\overline{\wedge}B \Rightarrow \neg (A \wedge B)$$

wie auch

$$\neg (A \land B) \Rightarrow A \overline{\land} B$$

TABELLE 270. 1. Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\wedge}B$	$\neg (A \land B)$	Behauptung
1	0	1	1	1
2	0	1	1	1
3	0	1	1	1
4	1	0	0	1

TABELLE 271. 1. Teil 2. Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\wedge}B$
1	$\neg (A \land B)$	$A\overline{\wedge}B$
2	$\neg (A \land B)$	$A\overline{\wedge}B$
3	$\neg (A \land B)$	$A\overline{\wedge}B$
4	$A \wedge B$	$\neg (A \overline{\wedge} B)$

TABELLE 272. 2. Teil 2. Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion

Aussage/ Fall Nr.	$\neg (A \land B)$	$(\neg (A \land B)) \Leftrightarrow A \overline{\land} B$
1	$\neg (A \land B)$	$(\neg (A \land B)) \Leftrightarrow A \overline{\land} B$
2	$\neg (A \land B)$	$(\neg (A \land B)) \Leftrightarrow A \overline{\land} B$
3	$\neg (A \land B)$	$(\neg (A \land B)) \Leftrightarrow A \overline{\land} B$
4	$\neg (\neg (A \land B))$	$(\neg (A \land B)) \Leftrightarrow A \overline{\land} B$

kann ich gemäß dem Satz 49 der Äquivalenz von Äquivalenz und zwei Implikationen folgern, dass die beiden Aussagen $A \overline{\wedge} B$ sowie $\neg (A \wedge B)$ äquivalent sind. Es gilt also

$$A\overline{\wedge}B \Leftrightarrow \neg (A \wedge B)$$

Genau dies wollte ich jedoch beweisen. Ich habe den Beweis ebenfalls mittels Wahrheitstafeln erbracht. Dieser ist in den Tabellen 270 respektive 271 sowie 272 abgelegt. Die Verweise des Beweises habe ich in den Tabellen 273 sowie 274 aufgeschrieben. Darum glaube ich an dieser Stelle, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grunde an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 273. 1. Teil Verweise Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 6.0.2 der Negation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	2. Zeile

TABELLE 274. 2. Teil Verweise Beweis des Satzes der Äquivalenz von NAND und der Negation einer Konjunktion

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 12.0.1 der Äquivalenz
1	1. Zeile	4. Zeile
2	2. Zeile	4. Zeile
3	3. Zeile	4. Zeile
4	4. Zeile	1. Zeile

Und was kommt jetzt? Richtig: Wenn ich schon mit viel zu vielen Worten zu erklären versucht habe, wieso die NAND-Verknüpfung so heißt, wie sie eben heißt, möchte ich nun beschreiben, wieso die NOR-Verknüpfung so heißt, wie sie eben heißt.

18.43. Zusammenhang NOR-Verknüpfung und Disjunktion

Dieser Abschnitt dient zur Abrundung der Zusammenhänge. Ich möchte gerne zeigen, dass die NOR-Verknüpfung wirklich als Negation einer Disjunktion betrachtet werden kann, so wie es eigentlich durch die Definition 15 behauptet wurde.

Satz 69. Für alle Aussagen mit den Symbolen A respektive B gilt:

$$(A\overline{\vee}B) \Leftrightarrow \neg (A \vee B)$$

BEWEIS. Wieder schreibe ich den Beweis einfach auf (siehe Tabellen 275 sowie 276 und 277, Verweise siehe Tabellen 278 sowie 279). Ich möchte versuchen, den Beweis mit sprachlichen Mittel zu finden. Es geht mir um die Frage, in welchem Fall (es ist wirklich nur einer) die Aussage

$$\neg (A \lor B)$$

TABELLE 275. 1. Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion

Aussage/ Fall Nr.	$A\overline{\vee}B$	$A \vee B$	$\neg (A \lor B)$	Behauptung
1	1	0	1	1
2	0	1	0	1
3	0	1	0	1
4	0	1	0	1

TABELLE 276. 1. Teil 2. Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$A \vee B$
1	$A\overline{\wedge}B$	$\neg (A \lor B)$
2	$\neg (A \overline{\wedge} B)$	$A \vee B$
3	$\neg (A \overline{\wedge} B)$	$A \vee B$
4	$\neg (A \overline{\wedge} B)$	$A \vee B$

Tabelle 277. 2. Teil 2. Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion

Aussage/ Fall Nr.	$\neg (A \lor B)$	Behauptung
1	$\neg (A \lor B)$	$(\neg (A \lor B)) \Leftrightarrow A \overline{\lor} B$
2	$\neg (\neg (A \lor B))$	$(\neg (A \lor B)) \Leftrightarrow A \overline{\lor} B$
3	$\neg (\neg (A \lor B))$	$(\neg (A \lor B)) \Leftrightarrow A \overline{\lor} B$
4	$\neg (\neg (A \lor B))$	$(\neg (A \lor B)) \Leftrightarrow A \overline{\lor} B$

TABELLE 278. 1. Teil Verweise des Beweis des Satzes der Äquivalenz von NOR und der Negation einer Disjunktion

Defintion/ Fall Nr.	Definition 15 der NOR- Verknüpfung	Definition 11.0.1 der Disjunktion
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile
4	4. Zeile	4. Zeile

nicht wahr ist. Da die Aussage

Tabelle 279.	2. Teil Verw	eise des Beweis	des Satzes
der Äquivalenz	von NOR un	nd der Negation	einer Dis-
junktion			

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 12.0.1 der Äquivalenz
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	2. Zeile	1. Zeile

gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion genau dann nicht wahr ist, falls sowohl die Aussage A wie auch die Aussage B nicht wahr ist, ist gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage

$$\neg (A \lor B)$$

genau dann wahr, falls weder die Aussage A noch die Aussage B wahr ist. Wenn ich jetzt die Definition 15 der NOR-Verknüpfung anschaue, dann ist auch die Aussage

$$A \overline{\vee} B$$

auch genau dann wahr, falls weder die Aussage A noch die Aussage B wahr ist. Also kann ich schließen, dass in allen möglichen Fällen die Aussage

$$\neg (A \lor B)$$

genau dann wahr, falls die Aussage

$$A\overline{\vee}B$$

wahr ist. Also meine ich, daraus schließen zu können, dass die beiden Aussagen äquivalent sind. Damit ist meines Erachtens der Beweis für die Richtigkeit dieses Satzes erbracht und ich beende an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

18.44. Schlussbemerkungen über logische Sätze

Ich möchte jetzt einen Schnitt machen und diesen Teil abschließen. Ich hoffe, dass Du Dich gegebenenfalls an dem Fundus der logischen Sätze bedienen kannst.

Und jetzt, nach der vielen Plackerei, möchte ich Dir mitteilen, dass wir eigentlich uns die Bemühungen hätten ersparen können. Denn es ist auch möglich, die Überprüfung von Sätzen der naiven Logik an Computer zu delegieren. Ich habe das entsprechende Kapitel mit der Bezeichnung "Logische Aussagen mit dem Computer überprüfen" unter ??

eingefügt. Diese machen die Berechnungen schneller und zuverlässiger. Trotzdem waren die obigen Sätze nicht ohne Nutzen. Denn einerseits sollen sie Dir eine Einführung in das logische Denken ermöglichen. Andererseits findet der Compi nicht einfach Sätze und gibt ihnen dazu sprechende Namen. Darum ist die obige Auflistung nicht ganz ohne Nutzen.

Im Folgenden möchte ich jedoch trotzdem weitere logische Sätze formulieren und beweisen. Aber die Sätze werden einen anderen Charakter besitzen. Die nachfolgende Sätze werden wohl nicht mehr oft als solche verwendet werden, sondern dienen dazu, Eigenschaften von logischen Aussagen zu beschreiben. Aber das tönt wahrscheinlich "vielsagend nichtssagend". Ich will damit schreiben, dass das vielleicht so aussieht, als hätte ich gar nicht wirklich wichtiges zu schreiben. Das kann sein. Am besten, ich beginne gleich mit meinen Bemühungen.

KAPITEL 19

Normalformen logischer Aussagen

Normalformen helfen, das Leben übersichtlicher zu machen. Anstatt mit beliebigen Aussagen zu hantieren, kannst Du Dich im Fall der konjunktiven Normalform damit begnügen, Dich mit der Negation, der Konjunktion und der Disjunktion zu beschäftigen. Im Moment sehe mich nicht in der Lage, die Normalformen in der gewünschten Gründlichkeit zu beschreiben. Ich werde erst später mich tiefer mit kon- und disjunktiven Normalform herumschlagen (siehe dazu Kapitel ??). Jedoch habe ich bereits ein paar Normalformen formuliert und bewiesen. Ein Beispiel hierfür ist der Satz 53 bezüglich der disjunktiven Normalform der Implikation. Ein anderes Beispiel ist der Satz 68, welcher die NAND-Verknüpfung auf die Negation einer Konjunktion zurückführt.

Grundsätzlich wird mit konjunktiven und disjunktiven Aussagen versucht, beliebige logische Aussagen in einer bestimmten Weise auf Negationen, Konjunktion und Disjunktionen von Aussagen zurückzuführen.

In der Elektrotechnik wird mit konjunktiven und disjunktiven Normalformen versucht, digitale Schaltungen zu vereinfachen. Das Prinzip ist dabei relativ simpel: Je weniger logische Elemente ("Gatter" genannt) eine elektronische Schaltung enthält, desto billiger wird deren Herstellung. Und desto weniger wird die Umwelt durch die Herstellung der logischen Schaltungen strapaziert. Doch diese Beschreibung der Definition ist an dieser Stelle sehr wage. Und ich werde auch nicht versuchen, diese Beschreibung weiter auszuführen. Stattdessen werde ich ein paar wenige Normalformen formulieren und zu beweisen versuchen:

Satz 70. Es seien A und B Symbole für Aussagen. Dann ist die konjunktive Normalform der Implikation

$$(A \Rightarrow B) \Leftrightarrow \neg A \lor B$$

In Worten: Die Aussage B folgt genau dann aus der Aussage A, falls die Aussage A nicht wahr oder die Aussage B wahr ist.

BEWEIS. Zuerst möchte ich versuchen, den Beweis mit sprachlichen Mitteln zu erbringen. Die Implikation ist gemäß der dritten Zeile der Definition 9.0.1 genau dann nicht wahr, falls die Aussage A nicht wahr, jedoch die Aussage B wahr ist. Die Aussage

$$\neg A \lor B$$

Tabelle 1. 1. Beweis der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg A$	$\neg A \lor B$	Behauptung
1	1	1	1	1
2	1	1	1	1
3	0	0	0	1
4	1	0	1	1

Tabelle 2. 2. Beweis der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg A$	$\neg A \lor B$	$\neg A \lor B \Leftrightarrow A \Rightarrow B$
1	$A \Rightarrow B$	$\neg A$	$\neg A \lor B$	$ \neg A \lor B \Leftrightarrow \\ A \Rightarrow B $
2	$A \Rightarrow B$	$\neg A$	$\neg A \lor B$	$\neg A \lor B \Leftrightarrow A \Rightarrow B$
3	$\neg (A \Rightarrow B)$	$\neg (\neg A)$	$\neg \left(\neg A \vee B \right)$	$\neg A \lor B \Leftrightarrow A \Rightarrow B$
4	$A \Rightarrow B$	$\neg (\neg A)$	$\neg A \lor B$	$ \neg A \lor B \Leftrightarrow \\ A \Rightarrow B $

ist gemäß der Definition 11.0.1 der Disjunktion genau dann nicht wahr, falls sowohl die Aussagen $\neg A$ wie auch B nicht wahr sind. Die Aussage $\neg A$ ist gemäß der Definition 6.0.2 der Negation genau dann nicht wahr, falls die Aussage A wahr ist. Zusammengefasst ist also die Aussage

$$\neg A \lor B$$

genau dann nicht wahr, falls die Aussage A wahr und die Aussage B nicht wahr ist. Das ist jedoch genau dann der Fall, wenn die Implikation

$$A \Rightarrow B$$

nicht wahr ist. Gemäß dem Äquivalenz-Negation-Satz 60 ist dann die Aussage

$$\neg A \lor B$$

genau dann wahr, wenn die Aussage

$$A \Rightarrow B$$

wahr ist. Also sind beide Aussagen äquivalent. Damit meine ich den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Ich möchte den Satz ebenfalls mit Hilfe von Wahrheitstafeln erbringen. In den Tabellen 1 sowie 2 habe ich die Beweise aufgeschrieben. In den Tabellen 3 sowie 4 habe ich die Verweise der Tabelle abgelegt.

Da ich nun meine, den Beweis für die Richtigkeit der Behauptung auf zwei verschiedene Arten erbracht zu haben, beende ich an dieser Stelle die weitere Beweisführung. .

TABELLE 3. 1. Teil der Verweise des Beweises der konjunktiven Normalform der Implikation

Defintion/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 6.0.2 der Negation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	2. Zeile
4	4. Zeile	2. Zeile

TABELLE 4. 2. Teil der Verweise des Beweises der konjunktiven Normalform der Implikation

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz
1	3. Zeile	4. Zeile
2	4. Zeile	4. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	4. Zeile

<includebackwardreferences>

<includeforwardreferences>

Zur Bezeichnung: Ich schreibe zwar von einer konjunktiven Normalform. Jedoch gibt es in der Aussage keine einzige Konjunktion. Das ist jedoch nicht etwa ein Versehen, sondern aus der Definition der konjunktiven Normalform erklärbar. Eine typische konjunktive Normalform habe ich unter dem Satz 74 über die konjunktive Normalform der Äquivalenz aufgeschrieben. Das Besondere an der konjunktiven Normalform der Implikation besteht darin, dass die Aussagen nicht mittels Konjunktionen gekoppelt sind. Ich könnte als konjunktive Normalform der Implikation ebenso angeben:

$$(A \Rightarrow B) \Leftrightarrow (\neg A \land \neg B \lor \neg A \land B \lor A \land B)$$

Diese konjunktive Normalform hätte dann Konjunktionen.

Vielleicht fragst Du Dich, welches dann die disjunktive Normalform der Implikation ist. Diese habe ich bereits aufgeschrieben, und zwar unter dem gleichnamigen Satz 53. Zur Erinnerung: Die disjunktive Normalform der Implikation lautet (wobei wie gewohnt A und B Symbole von Aussagen seien, welche in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien):

$$(A \Rightarrow B) \Leftrightarrow \neg (A \land \neg B)$$

Und nun möchte ich daran gehen, aus der konjunktiven Normalform der Implikation Folgerungen abzuleiten:

Aussage/ Fall Nr.	$A \Leftarrow B$	$\neg B$	$A \vee \neg B$	Behauptung
1	1	1	1	1
2	0	0	0	1
3	1	1	1	1
4	1	0	1	1

Tabelle 5. 1. Beweis konjunktive Normalform Replikation

KOROLLAR 71. Es seien $A, B \in \Omega$, also (um es erneut zu betonen) A, B Symbole von Aussagen, welche in sich selbst und bezüglich der anderen Symbolen in der Behauptung widerspruchsfrei seien. Dann gilt:

$$(A \Leftarrow B) \Leftrightarrow A \lor \neg B$$

Beweis. Es ist gemäß dem Satz 23, welcher den Zusammenhang von Replikation und Implikation beschreibt:

$$(B \Rightarrow A) \Leftrightarrow (A \Leftarrow B)$$

Da die Äquivalenz gemäß dem Satz 38 kommutiert, kann ich gemäß dem Satz 16 der Schlussfolgerung schließen, dass auch gelten muss:

$$(A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)$$

Gemäß dem vorhergehenden Satz 70 kann ich darum schreiben:

$$(B \Rightarrow A) \Leftrightarrow (\neg B \lor A)$$

Da die Äquivalenz gemäß dem Satz 15 transitiv ist, erhalte ich die Aussage:

$$(A \Leftarrow B) \Leftrightarrow (\neg B \lor A)$$

Zu meinem Glück ist die Disjunktion gemäß dem Satz 36 wiederum kommutativ. Und so muss gelten:

$$(\neg B \lor A) \Leftrightarrow (A \lor \neg B)$$

Wiederum kann ich vom Satz 15 der Transitivität der Äquivalenz Gebrauch machen und erhalte die Aussage:

$$(A \Leftarrow B) \Leftrightarrow (A \lor \neg B)$$

Damit glaube ich, den Beweis für die Richtigkeit dieses Korollars erbracht zu haben. Weil es mir wichtig ist, dass die Sachen so ausführlich wie möglich dargelegt werden, werde ich den Beweis wiederum tabellarisch auflisten. In den Tabellen 5 sowie 6 habe ich die Beweise aufgeschrieben. In der Tabelle 7 sowie 8 habe ich die Verweise aufgeschrieben.

Aussage/ Fall Nr.	$A \Leftarrow B$	$\neg B$	$A \vee \neg B$	$\begin{array}{cc} A \vee \neg B & \Leftrightarrow \\ (A \Leftarrow B) \end{array}$
1	$A \Leftarrow B$	$\neg B$	$A \vee \neg B$	$\begin{array}{cc} A \vee \neg B & \Leftrightarrow \\ (A \Leftarrow B) \end{array}$
2	$\neg (A \Leftarrow B)$	$\neg (\neg B)$	$\neg (A \vee \neg B)$	$\begin{array}{cc} A \vee \neg B & \Leftrightarrow \\ (A \Leftarrow B) \end{array}$
3	$A \Leftarrow B$	$\neg B$	$\neg A \lor B$	$\begin{array}{cc} A \vee \neg B & \Leftrightarrow \\ (A \Leftarrow B) \end{array}$
4	$A \Rightarrow B$	$\neg (\neg B)$	$\neg A \lor B$	$\begin{array}{ccc} A \vee \neg B & \Leftrightarrow \\ (A \Leftarrow B) & \end{array}$

Tabelle 6. 2. Beweis konjunktive Normalform Replikation

TABELLE 7. Verweise des Beweises der konjunktiven Normalform der Replikation

Defintion/	Definition 10.0.2	Definition 6.0.2	Definition 11.0.1
Fall Nr.	der	der	der
rall Nr.	Replikation	Negation	Disjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	2. Zeile	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile	4. Zeile
4	4. Zeile	2. Zeile	3. Zeile

TABELLE 8. Verweise des Beweises der konjunktiven Normalform der Replikation

Defintion/ Fall Nr.	Definition 12.0.1 der Äquivalenz
1	4. Zeile
2	1. Zeile
3	4. Zeile
4	4. Zeile

<includebackwardreferences>

<includeforwardreferences>

Der Abschnitt könnte an dieser Stelle beendet sein - ist es jedoch noch nicht. Denn es gibt noch zwei Behauptungen aufzuschreiben und zu beweisen. Diese Behauptungen sind gleichbedeutend mit den Abkürzungsregeln 9 der Implikation. Ich beginne mit dem ersten Korollar:

Korollar 72. Es seien A sowie B Bezeichnungen von logischen Aussagen, welche in sich selber und in Bezug auf die anderen Behauptungen des Korollars widerspruchsfrei seien. Dann gilt die folgende

TABELLE 9. 1. Beweis des ersten Korollars der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$\neg A$	$A \Rightarrow B$	Behauptung
1	1	1	1
2	1	1	1
3	0	0	1
4	0	1	1

Aussage:

$$\neg A \Rightarrow (A \Rightarrow B)$$

BEWEIS. Angenommen, der Satz würde nicht stimmen. Dann müsste es Aussagen, welche mit den Buchstaben A sowie B bezeichnet werden, derart geben, dass die Behauptung des Korollars nicht gilt. Dies wäre gemäß der dritten Zeile der Definition 9.0.1 der Implikation dann der Fall, falls die Aussage $\neg A$ wahr, die Aussage $A \Rightarrow B$ jedoch nicht wahr wäre. Die Aussage $A \Rightarrow B$ ist jedoch gemäß der genau gleichen Zeile (drei) der Definition 9.0.1 der Implikation nur dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr wäre. Ist jedoch die Aussage A wahr, dann ist gemäß der zweiten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ nicht wahr. Also ist gemäß der zweiten Zeile der Definition 9.0.1 in diesem Fall die gesamte Aussage

$$\neg A \Rightarrow (A \Rightarrow B)$$

im Widerspruch zur Annahme eben doch wahr. Also glaube ich gezeigt zu haben, dass es keine Aussagen mit den Bezeichnungen A sowie B derart geben kann, dass die Aussage

$$\neg A \Rightarrow (A \Rightarrow B)$$

nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 11 der doppelten Negation folgere ich daraus, dass der Satz für alle derartigen Aussagen wahr sein muss.

Ich möchte den Satz noch einmal mittels Wahrheitstafeln beweisen. Dieser habe ich in Tabelle 9 sowie 10 abgelegt. Die Beweise habe ich in der Tabelle 11 abgelegt.

<includebackwardreferences>

<includeforwardreferences>

Dies war der erste Streich - und der nächste folgt zugleich¹:

Satz 73. Es seien A, B Symbole von Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Korollars widerspruchsfrei

¹das ist ein frei zitierter Vers aus dem Buch "Max und Moritz" von Wilhelm Busch, welches ich für derbste Erwachsenenliteratur halte.

Tabelle 10. 2. Beweis des ersten Korollars der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$\neg A$	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
1	$\neg A$	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
2	$\neg A$	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
3	$\neg (\neg A)$	$\neg (A \Rightarrow B)$	$\neg A \Rightarrow (A \Rightarrow B)$
4	$\neg (\neg A)$	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$

TABELLE 11. Verweise des ersten Korollars der konjunktiven Normalform der Implikation

Defintion/	Definition 6.0.2	Definition 9.0.1	Definition 9.0.1
Fall Nr.	der	der	der
rall M.	Negation	Implikation	Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	4. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile

seien. Dann gilt:

$$B \Rightarrow (A \Rightarrow B)$$

BEWEIS. Angenommen, das Korollar sei nicht wahr. Dann würde es demnach Aussagen geben, welche mit A und B bezeichnet werden könnten und für welche gelten würde, dass die Aussage

$$B \Rightarrow (A \Rightarrow B)$$

nicht wahr ist. Dies wäre gemäß der dritten Zeile der Definition 9.0.1 der Implikation dann der Fall, falls die Aussage B wahr, die Implikation

$$A \Rightarrow B$$

jedoch nicht wahr wäre. Die Aussage $A\Rightarrow B$ wäre gemäß der dritten Zeile der Definition 9.0.1 der Implikation jedoch nur dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr wäre. Das wäre jedoch ein Widerspruch zur Bedingung, dass die Aussage B wahr wäre. Also meine ich folgern zu können, dass es keine Aussagen, welche mit A und B bezeichnet werden können, derart gibt, dass die Behauptung nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 11 der doppelten Negation folgere ich nun, dass die Behauptung für alle Aussagen, welche mit A und B bezeichnet werden können, wahr ist.

Ich möchte den Satz noch einmal mittels Wahrheitstabellen beweisen. Dieser habe ich in Tabelle 12 sowie 13 abgelegt. Die Beweise habe ich in der Tabelle 14 abgelegt.

TABELLE 12. 1. Beweis des zweiten Korollars der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	Behauptung
1	1	1
2	1	1
3	0	1
4	1	1

TABELLE 13. 2. Beweis des zweiten Korollars der konjunktiven Normalform der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
1	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
2	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$
3	$\neg (A \Rightarrow B)$	$\neg A \Rightarrow (A \Rightarrow B)$
4	$A \Rightarrow B$	$\neg A \Rightarrow (A \Rightarrow B)$

TABELLE 14. Verweise des ersten Korollars der konjunktiven Normalform der Implikation

Defintion/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 9.0.1 der Implikation
1	1. Zeile	2. Zeile
2	2. Zeile	4. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile

<includebackwardreferences>
<includeforwardreferences>

19.1. Konjunktive Normalform der Äquivalenz

An dieser Stelle möchte ich eine konjunktive Normalform der Äquivalenz formulieren und beweisen:

Satz 74. Es seien A, B Symbole von Aussagen, welche in selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt

$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \land \neg B \lor A \land B)$$

TABELLE 15. 1. Teil 1. Beweis konjunktive Normalform der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
1	1	1	1	1
2	0	1	0	0
3	0	0	1	0
4	1	0	0	0

BEWEIS. Ich möchte mir überlegen, unter welchen Bedingung die Aussage

$$\neg A \land \neg B \lor A \land B$$

wahr ist. Diese Aussage ist gemäß der letzten drei Zeilen der Definition 11.0.1 der Disjunktion genau dann wahr, falls die Aussage

$$\neg A \land \neg B$$

wahr ist oder die Aussage

$$A \wedge B$$

wahr ist. Die Aussage

$$\neg A \land \neg B$$

ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion genau dann wahr, falls sowohl die Aussagen $\neg A$ wie auch $\neg B$ wahr sind. Die Aussage $\neg A$ ist gemäß der ersten Zeile der Definition 6.0.2 der Negation genau dann wahr, falls die Aussage A nicht wahr ist. Die Aussage $\neg B$ ist gemäß der gleichen ersten Zeile der gleichen Definition 6.0.2 der Negation genau dann wahr, falls die Aussage B nicht wahr ist. Zusammengefasst ist die Aussage $A \land B$ genau dann nicht wahr, falls weder die Aussage A noch die Aussage B wahr ist. Die Aussage $A \land B$ ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion genau dann wahr, falls sowohl die Aussage A wie auch die Aussage B wahr ist.

Ich fasse zusammen: Die Aussage

$$\neg A \land \neg B \lor A \land B$$

ist genau dann wahr, falls weder die Aussage A noch die Aussage B wahr ist oder aber sowohl die Aussage A und die Aussage B wahr ist. Das ist jedoch genau dann der Fall, falls die Äquivalenz von A und B wahr ist. Darum meine ich, dass der Beweis der Richtigkeit der Behauptung erbracht ist.

Damit alles seine Richtigkeit hat, bemühe ich wiederum Wahrheitstafeln, um den Beweis für die Korrektheit der Behauptung noch einmal zu erbringen. Diese Beweise lege ich in den Tabellen 15 und 16 sowie 17 und 18 ab. Die Verweise habe ich in den Tabellen 19, 20 sowie 21 abgelegt.

TABELLE 16. 2. Teil 1. Beweis konjunktive Normalform der Äquivalenz

Aussage/ Fall Nr.	$A \wedge B$	$ \begin{array}{c cccc} \neg A \land \neg B & \lor \\ A \land & B \end{array} $	Behauptung
1	0	1	1
2	0	0	1
3	0	0	1
4	1	1	1

TABELLE 17. 1. Teil 2. Beweis konjunktive Normalform der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
1	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg A \wedge \neg B$
2	$\neg (A \Leftrightarrow B)$	$\neg A$	$\neg (\neg B)$	$\neg (\neg A \land \neg B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (\neg A)$	$\neg B$	$\neg (\neg A \land \neg B)$
4	$A \Leftrightarrow B$	$\neg (\neg A)$	$\neg (\neg B)$	$\neg (\neg A \land \neg B)$

TABELLE 18. 2. Teil 2. Beweis konjunktive Normalform der Äquivalenz

Aussage/ Fall Nr.	$A \wedge B$	$ \begin{array}{ccc} \neg A \wedge \neg B & \vee \\ A \wedge & B \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $
1	$\neg (A \land B)$	$ \begin{array}{ccc} \neg A \wedge \neg B & \vee \\ A \wedge & B \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $
2	$\neg (A \land B)$	$\neg (\neg A \land \neg B \lor A \land B)$	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $
3	$\neg (A \land B)$	$\neg (\neg A \land \neg B \lor A \land B)$	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $
4	$A \wedge B$	$ \begin{array}{ccc} \neg A \wedge \neg B & \lor \\ A \wedge & B \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land \neg B & \lor \\ A \land & B) \end{array} $

<includebackwardreferences>

In einer vorhergehenden Version hatte ich den Beweis auf ca. 4 Seiten ausgewalzt. Jedoch habe ich das Gefühl, dass dieser Beweis nicht derart zwingend ist, wie er sein sollte. Darum habe ich mich entschieden, eine sehr vereinfachte Form des Beweises aufzuschreiben.

<includeforwardreferences>

TABELLE 19. 1. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz

Defintion/ Fall Nr.	Definition 12.0.1 der	Definition 6.0.2 der	Definition 6.0.2 der
	Äquivalenz	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

TABELLE 20. 2. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 8.0.2 der Konjunktion
1	4. Zeile	1. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	3. Zeile
4	1. Zeile	4. Zeile

TABELLE 21. 3. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz
1	3. Zeile	4. Zeile
2	1. Zeile	1. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	4. Zeile

19.2. Konjunktive Normalform der Antivalenz

Die konjunktive Normalform ist gewissermaßen das Gegenstück für die konjunktive Normalform der Äquivalenz:

Satz 75. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \Leftrightarrow B) \Leftrightarrow \neg A \land B \lor A \land \neg B$$

Beweis. Wieder gilt es, zu überlegen, wann die Aussage

$$\neg A \land B \lor A \land \neg B$$

TABELLE 22. 1. Teil 1. Beweis konjunktive Normalform der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$\neg A$	$\neg B$	$\neg A \wedge B$
1	0	1	1	0
2	1	1	0	1
3	1	0	1	0
4	0	0	0	0

wahr ist. Gemäß der letzten dritten Zeilen der Definition 11.0.1 der Disjunktion ist das der Fall, falls die Aussage

$$\neg A \wedge B$$

oder die Aussage

$$A \wedge \neg B$$

wahr ist. Die Aussage $\neg A \land B$ ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion genau dann wahr, falls sowohl die Aussage $\neg A$ wie auch die Aussage B wahr ist. Die Aussage $\neg A$ ist gemäß der ersten Zeile der Definition 6.0.2 der Negation genau dann wahr, falls die Aussage A nicht wahr ist. Also ist die Aussage $\neg A \land B$ wahr, falls die Aussage A nicht wahr, die Aussage B jedoch wahr ist. Auf der anderen Seite ist die Aussage $A \land B$ gemäß der vierten Ziele der Definition 8.0.2 genau dann wahr, falls sowohl die Aussage A wie auch die Aussage A wahr sind. Die Aussage A ist gemäß der ersten Zeile der Definition 6.0.2 der Negation nicht wahr, falls die Aussage B nicht wahr ist. Also ist die Aussage $A \land B$ genau dann wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist.

Somit kann ich zusammenfassen: Die Aussage

$$\neg A \land B \lor A \land \neg B$$

ist genau dann wahr, falls die Aussage A nicht wahr, die Aussage B jedoch wahr ist oder aber falls die Aussage A wahr und die Aussage B nicht wahr ist. Das sind jedoch genau diejenigen Fälle, in welchen die Antivalenz von A und B wahr ist. Darum meine ich, gezeigt zu haben, dass beide Aussagen äquivalent sind.

Ich werde den Beweis noch einmal mit Hilfe der Wahrheitstafeln führen. Diese Beweise lege ich in den Tabellen 22 und 23 sowie 24 und 25 ab. Die Verweise habe ich in den Tabellen 26, 27 sowie 28 abgelegt. Da ich der Meinung bin, dass ich den Beweis für die Richtigkeit der Behauptung auf zwei unterschiedliche Arten erbracht habe, erlaube ich mir an dieser Stelle, die Beweisführung an dieser Stelle zu beenden.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 23. 2. Teil 1. Beweis konjunktive Normalform der Antivalenz

Aussage/ Fall Nr.	$A \wedge \neg B$	$ \begin{array}{ccc} \neg A \wedge & B & \lor \\ A \wedge \neg B & & \\ \end{array} $	Behauptung
1	0	0	1
2	0	1	1
3	1	1	1
4	0	0	1

TABELLE 24. 1. Teil 2. Beweis konjunktive Normalform der Antivalenz

Aussage/ Fall Nr.	$A \not\Leftrightarrow B$	$\neg A$	$\neg B$	$A \wedge \neg B$
1	$\neg (A \Leftrightarrow B)$	$\neg A$	$\neg B$	$\neg (A \land \neg B)$
2	$A \Leftrightarrow B$	$\neg A$	$\neg (\neg B)$	$A \wedge \neg B$
3	$A \Leftrightarrow B$	$\neg (\neg A)$	$\neg B$	$\neg (A \land \neg B)$
4	$\neg (A \Leftrightarrow B)$	$\neg (\neg A)$	$\neg (\neg B)$	$\neg (A \land \neg B)$

TABELLE 25. 2. Teil 2. Beweis konjunktive Normalform der Antivalenz

Aussage/ Fall Nr.	$\neg A \land B$	$ \begin{array}{ccc} \neg A \wedge & B & \vee \\ A \wedge \neg B & \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land & B & \lor \\ A \land \neg B) \end{array} $
1	$\neg (\neg A \land B)$	$\neg (\neg A \land B \lor A \land \neg B)$	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land & B & \lor \\ A \land \neg B) \end{array} $
2			$(A \Leftrightarrow B) \Leftrightarrow (\neg A \land B \lor A \land \neg B)$
3	$\neg A \land B$	$ \begin{array}{ccc} \neg A \wedge & B & \vee \\ A \wedge \neg B & \end{array} $	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land B & \lor \\ A \land \neg B) \end{array} $
4	$\neg (\neg A \land B)$	$\neg (\neg A \land B \lor A \land \neg B)$	$ \begin{array}{ccc} (A \Leftrightarrow B) & \Leftrightarrow \\ (\neg A \land & B & \lor \\ A \land \neg B) \end{array} $

19.3. Konjunktive Normalform der NAND-Verknüpfung

Ich möchte noch die konjunktiven Normalformen der NAND-aufschreiben. Ich glaube, dass ich diesmal einen wunderhübschen Beweis präsentieren kann.

TABELLE 26. 1. Teil Verweise des Beweises der konjunktiven Normalform der Antivalenz

Defintion/	Definition 12.0.1	Definition 6.0.2	Definition 6.0.2
Fall Nr.	der	der	der
ran m.	Äquivalenz	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

TABELLE 27. 2. Teil Verweise des Beweises der konjunktiven Normalform der Antivalenz

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 8.0.2 der Konjunktion
1	3. Zeile	2. Zeile
2	4. Zeile	1. Zeile
3	1. Zeile	4. Zeile
4	2. Zeile	3. Zeile

TABELLE 28. 3. Teil Verweise des Beweises der konjunktiven Normalform der Äquivalenz

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz
1	1. Zeile	1. Zeile
2	3. Zeile	4. Zeile
3	2. Zeile	4. Zeile
4	1. Zeile	1. Zeile

SATZ 76. Es seien A sowie B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$A\overline{\wedge}B \Leftrightarrow \neg A \vee \neg B$$

BEWEIS. Es gilt gemäß dem Satz 68 der Verknüpfung der NAND-Verknüpfung und der Konjunktion

$$(A\overline{\wedge}B) \Leftrightarrow \neg (A \wedge B)$$

Weiter gilt gemäß dem Satz 44 über die Negation der Konjunktion, sofern A und B Symbole von in sich selbst und in Bezug auf die anderen

TABELLE 29. 1. Teil 1. Beweis konjunktive Normalform NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$\neg A$	$\neg B$
1	1	1	1
2	1	1	0
3	1	0	1
4	0	0	0

TABELLE 30. 2. Teil 1. Beweis konjunktive Normalform der NAND-Verknüpfung

Aussage/ Fall Nr.	$\neg A \lor \neg B$	Behauptung
1	1	1
2	1	1
3	1	1
4	0	1

TABELLE 31. 1. Teil 2. Beweis konjunktive Normalform der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$\neg A$	$\neg B$
1	$A\overline{\wedge}B$	$\neg A$	$\neg B$
2	$A\overline{\wedge}B$	$\neg A$	$\neg (\neg B)$
3	$A\overline{\wedge}B$	$\neg (\neg A)$	$\neg B$
4	$\neg (A \overline{\wedge} B)$	$\neg (\neg A)$	$\neg (\neg B)$

Symbolen widerspruchsfreien Aussagen sind:

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B$$

Weiter kann ich gemäß dem Satz der Transitivität der Äquivalenz schließen, dass gelten muss

$$(A\overline{\wedge}B) \Leftrightarrow \neg A \vee \neg B$$

Dies ist jedoch gerade die Behauptung. Darum meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Der Vollständigkeit halber habe ich den Beweis noch mittels Wahrheitstafeln aufschreiben. Die Beweise sind einerseits in den Tabellen 29 sowie 30 und 31 sowie 32 andererseits aufgeschrieben. Die Verweise habe ich in den Tabellen 33 sowie 34 abgelegt.

Also bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Behauptung erbracht habe und beende somit die weitere Beweisführung an dieser Stelle.

TABELLE 32. 2. Teil 2. Beweis konjunktive Normalform der NAND-Verknüpfung

Aussage/ Fall Nr.	$\neg A \lor \neg B$	$A\overline{\wedge}B \Leftrightarrow \\ \neg A \vee \neg B$
1	$\neg A \lor \neg B$	$ \begin{array}{c} A\overline{\wedge}B \Leftrightarrow \\ \neg A \vee \neg B \end{array} $
2	$\neg A \lor \neg B$	$A\overline{\wedge}B \Leftrightarrow \neg A \vee \neg B$
3	$\neg A \lor \neg B$	$A\overline{\wedge}B \Leftrightarrow \neg A \vee \neg B$
4	$\neg \left(\neg A \vee \neg B\right)$	$A\overline{\wedge}B \Leftrightarrow \neg A \vee \neg B$

TABELLE 33. 1. Teil Verweise Beweis konjunktive Normalform der NAND-Verknüpfung

Auggogo/	Definition 14.0.1	Definition 6.0.2	Definition 6.0.2
Aussage/ Fall Nr.	der	der	der
ran nr.	NAND-Verknüpfung	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

TABELLE 34. 2. Teile Verweise Beweis konjunktive Normalform der NAND-Verknüpfung

Aussage/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz
1	4. Zeile	4. Zeile
2	3. Zeile	4. Zeile
3	2. Zeile	4. Zeile
4	1. Zeile	1. Zeile

<includebackwardreferences>
<includeforwardreferences>

19.4. konjunktive Normalform der NOR-Verknüpfung

Auch die konjunktive Normalform der NOR-Verknüpfung kann meines Erachtens gut abgeleitet werden.

TABELLE 35. 1. Teil 1. Beweis konjunktive Normalform NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}B$	$\neg A$	$\neg B$
1	1	1	1
2	0	1	0
3	0	0	1
4	0	0	0

TABELLE 36. 2. Teil 1. Beweis konjunktive Normalform der NOR-Verknüpfung

Aussage/ Fall Nr.	$\neg A \wedge \neg B$	Behauptung
1	1	1
2	0	1
3	0	1
4	0	1

Satz 77. Es seien A und B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$A\overline{\vee}B \Leftrightarrow \neg A \wedge \neg B$$

BEWEIS. Es gilt gemäß dem Satz 69 der Verknüpfung der NOR-Verknüpfung mit der Disjunktion

$$A\overline{\vee}B \Leftrightarrow \neg (A \vee B)$$

Gemäß dem Satz 46 der Negation der Disjunktion gilt:

$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

Somit kann ich gemäß dem Satz 15 der Transitivität der Äquivalenz folgern, dass gilt:

$$A\overline{\vee}B \Leftrightarrow \neg A \wedge \neg B$$

Damit hätte ich diesen logischen Satz auch schon wieder bewiesen. Ich werde jedoch den Beweis des Satzes erneut mit Hilfe von logischen Tabellen erbringen. Diese sind einerseits unter den Tabellen 35 sowie 36 und andererseits unter den Tabellen 37 sowie 38 abgelegt. Die Verweise habe ich in den Tabellen 39 sowie 40 abgelegt. Somit bin ich der Meinung, dass ich den Beweis für die Richtigkeit des Satzes erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 37. 1. Teil 2. Beweis konjunktive Normalform der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}B$	$\neg A$	$\neg B$
1	$A\overline{\vee}B$	$\neg A$	$\neg B$
2	$\neg (A \overline{\lor} B)$	$\neg A$	$\neg (\neg B)$
3	$\neg (A \overline{\vee} B)$	$\neg (\neg A)$	$\neg B$
4	$\neg (A \overline{\vee} B)$	$\neg (\neg A)$	$\neg (\neg B)$

TABELLE 38. 2. Teil 2. Beweis konjunktive Normalform der NOR-Verknüpfung

Aussage/ Fall Nr.	$\neg A \wedge \neg B$	$A \overline{\vee} B \Leftrightarrow \\ \neg A \wedge \neg B$
1	$\neg A \wedge \neg B$	$A\overline{\vee}B \Leftrightarrow \neg A \wedge \neg B$
2	$\neg \left(\neg A \wedge \neg B\right)$	$A \overline{\vee} B \Leftrightarrow \neg A \wedge \neg B$
3	$\neg \left(\neg A \wedge \neg B\right)$	$A\overline{\vee}B\Leftrightarrow \neg A\wedge \neg B$
4	$\neg \left(\neg A \land \neg B\right)$	$A \overline{\vee} B \Leftrightarrow \neg A \wedge \neg B$

TABELLE 39. 1. Teil Verweise Beweis konjunktive Normalform der NOR-Verknüpfung

Aussage/	Definition 14.0.1	Definition 6.0.2	Definition 6.0.2
Fall Nr.	der	der	der
ran nr.	NAND-Verknüpfung	Negation	Negation
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	2. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

TABELLE 40. 2. Teile Verweise Beweis konjunktive Normalform der NOR-Verknüpfung

Aussage/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 12.0.1 der Äquivalenz
1	4. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	1. Zeile	1. Zeile

Ich möchte nun an dieser Stelle dieses Kapitel abschließen. Ich nehme an, dass sich der Sinn des Ganzen (also der konjunktiven und disjunktiven Normalformen) für Dich wahrscheinlich noch nicht ganz erschließt. Und da habe ich keine geringe Mitschuld daran. Ich werde wahrscheinlich versuchen, später auf diese Thematik noch einmal zurück zu kommen. In möchte mich nun einem weiteren sinnlosen Kapitel zuwenden. Aber Du musst es ja nicht lesen, falls Du dies nicht möchtest.

KAPITEL 20

Minimumsätze und Maximumsätze der Logik

Dieser Abschnitt ist meines Erachtens auch ein wenig seltsam. Denn es geht mir darum, die Binsenwahrheiten der Logik aufzuschreiben. Als da wären:

Lemma 78. Es seien A, B Symbole von Aussagen welche in sich selbst und in Bezug auf die anderen Aussagen dieses Lemmas widerspruchsfrei seien. Dann gilt

$$A \wedge (B \wedge \neg B) \iff B \wedge \neg B$$

$$A \wedge (B \vee \neg B) \iff A$$

$$A \vee (B \wedge \neg B) \iff A$$

$$A \vee (B \vee \neg B) \iff B \vee \neg B$$

$$B \wedge \neg B \implies A$$

$$A \implies B \vee \neg B$$

In Worten:

Aus einer Aussage, welche nicht wahr ist, folgt jede Aussage.

Die Konjunktion einer beliebigen Aussage mit einer nicht wahren Aussage ist nicht wahr.

Die Konjunktion einer Aussage A mit einer wahren Aussage ist genau dann wahr, falls die Aussage A wahr ist.

Die Disjunktion einer Aussage A mit einer nicht wahren Aussage ist genau dann wahr, falls die Aussage A wahr ist.

Die Disjunktion einer beliebigen Aussage mit einer wahren Aussagen ist wahr.

Aus jeder Aussage folgt eine Aussage, welche wahr ist.

TABELLE 1. Auflistung der Beweise der Minimum- und Maximumsätze der Logik

Zeile Nummer	erster Beweis	zweiter Beweis
1	Tabelle 3	Tabelle 4
2	Tabelle 6	Tabelle 7
3	Tabelle 10	Tabelle 11
4	Tabelle 14	Tabelle 15
5	Tabelle 18	Tabelle 19
6	Tabelle 22	Tabelle 23

Zeile Nummer	erste Tabelle Verweise	zweite Tabelle Verweise
1	Tabelle 3	Tabelle 4
2	Tabelle 8	Tabelle 9
3	Tabelle 12	Tabelle 13
4	Tabelle 16	Tabelle 17
5	Tabelle 20	Tabelle 21
6	Tabelle 22	Tabelle 23

TABELLE 2. Auflistung der Verweise der Minimum- und Maximumsätze der Logik

BEWEIS. Ich habe in der Tabelle 1 die Verweise auf die Wahrheitstafeln hineingeschrieben, welche für den tabellarischen Beweis der Behauptungen des Lemmas der Minimal- und Maximalsätze in der Logik verwendet werden können. Die Verweise auf die Tabellen mit der Verweisen, welche in den Wahrheitstafeln verwendet wurden, habe ich in der Tabelle 2 aufgeschrieben. Ich möchte nun mit sprachlichen Mitteln zu zeigen versuchen, dass die einzelnen in der Behauptung formulierten Aussagen wahr sein müssen.

Zum Beweis des Satzes, dass aus nicht wahren Aussagen eine Aussage folgt: Gemäß dem Satz 45 kann die Aussage

$$B \wedge \neg B$$

nicht wahr sein. Ist eine Aussage nicht wahr, dann kann gemäß der Abkürzungsregel 9 der Implikation gefolgert werden, dass die nichtwahre Aussage eine beliebige andere Aussage folgt.

Gemäß dem Satz 45 über nicht wahre Aussagen kann die Aussage $B \wedge \neg B$ nicht wahr sein, wohingegen gemäß dem Satz 13 der schwachen Form des ausgeschlossenen Dritten die Aussage $B \vee \neg B$ wahr sein muss. Bezüglich der ersten Aussage: Da die Aussage $B \wedge \neg B$ nicht wahr wahr ist, kann auch gemäß dem Minimumprinzip 8 der Konjunktion auch die Aussage $A \wedge (B \wedge \neg B)$ nicht wahr sein. Aufgrund der ersten Zeile der Definition 12.0.1 der Äquivalenz ist darum die Aussage

$$A \wedge (B \wedge \neg B) \Leftrightarrow B \wedge \neg B$$

wiederum wahr. Damit wäre die erste Aussage bereits bewiesen. Bezüglich der letzten Behauptung

$$A \lor (B \lor \neg B) \Leftrightarrow B \lor \neg B$$

Diese Aussage lässt sich aus dem Maximumprinzip 11 der Disjunktion ableiten, da die Aussage $B \vee \neg B$ ja wahr ist. Also gilt gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz, dass die Behauptung

$$A \lor (B \lor \neg B) \Leftrightarrow B \lor \neg B$$

gilt. Im Fall der Aussage

$$A \wedge (B \vee \neg B) \Leftrightarrow A$$

reicht es, den Wahrheitswert von A zu ermitteln (da die Aussage

$$B \vee \neg B$$

gemäß der schwachen Form des Satzes 13 des ausgeschlossenen Dritten bekanntlich wahr ist). Ist A nicht wahr, dann kann gemäß dem Minimumprinzip 8 der Konjunktion die Aussage $A \wedge (B \vee \neg B)$ nicht wahr sein. Also ist eben auch gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die ganze Aussage

$$A \wedge (B \vee \neg B) \Leftrightarrow A$$

wiederum wahr. Ist hingegen A eine wahre Aussage, dann ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion auch die Aussage

$$A \wedge (B \vee \neg B)$$

wiederum wahr. Ebenso ist gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz ebenfalls die Aussage

$$A \wedge (B \vee \neg B) \Leftrightarrow A$$

wiederum wahr. Somit glaube ich an dieser Stelle gezeigt zu haben, dass die Aussage

$$A \wedge (B \vee \neg B)$$

genau dann wahr ist, falls es die Aussage A ist. Also meine ich, den Beweis für die diesbezügliche Behauptung erbracht zu haben.

Im Fall der Aussage

$$A \lor (B \land \neg B) \Leftrightarrow A$$

reicht es ebenfalls, den Wahrheitswert von A zu ermitteln (da die Aussage

$$B \wedge \neg B$$

bekanntlich nicht wahr ist). Ist A wahr, dann muss gemäß dem Maximumprinzip 11 der Disjunktion die Aussage $A \vee (B \wedge \neg B)$ bereits wahr sein. Also ist eben auch gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz die ganze Aussage

$$A \lor (B \land \neg B) \Leftrightarrow A$$

wiederum wahr. Ist hingegen A eine Aussage, welche nicht wahr ist, dann ist gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion auch die Aussage

$$A \vee (B \wedge \neg B)$$

auch nicht wahr. Also ist gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz ebenfalls die Aussage

$$A \lor (B \land \neg B) \Leftrightarrow A$$

wiederum wahr. Somit hätte ich endlich auch den Beweis der letzten Aussage erbracht und kann darum an dieser Stelle die Beweisführung beenden.

Tabelle 3. 1. Beweis Implikation Aussage aus nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	Behauptung
1	1	0	1
2	0	0	1
3	1	0	1
4	0	0	1

TABELLE 4. 1. Beweis Implikation Aussage aus nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$(B \land \neg B) \Rightarrow A$
1	$\neg B$	$\neg (B \land \neg B)$	$(B \land \neg B) \Rightarrow A$
2	$\neg (\neg B)$	$\neg (B \land \neg B)$	$(B \land \neg B) \Rightarrow A$
3	$\neg B$	$\neg (B \land \neg B)$	$(B \land \neg B) \Rightarrow A$
4	$\neg (\neg B)$	$\neg (B \land \neg B)$	$(B \land \neg B) \Rightarrow A$

TABELLE 5. 1. Teil Verweise des Beweises der Implikation Aussage aus nicht wahrer Aussage

Definition /	Definition 6.0.2	Definition 8.0.2	Definition 9.0.1
Defintion/ Fall Nr.	der	der	der
rall IVI.	Negation	Konjunktion	Implikation
1	1. Zeile	2. Zeile	1. Zeile
2	2. Zeile	3. Zeile	1. Zeile
3	1. Zeile	2. Zeile	2. Zeile
4	2. Zeile	3. Zeile	2. Zeile

Zum Beweis, dass aus einer Aussage eine wahre Aussage folgt: Gemäß dem schwachen Satz 13 des ausgeschlossenen Dritten, kann ich folgern, dass die Aussage

$$B \vee \neg B$$

wahr sein muss. Ist eine Aussage wahr, dann kann ich gemäß dem zweiten Teil der Abkürzungsregel 9 (die zweite Aussage ist wahr) folgern, dass die gesamte Aussage wahr ist.

<includebackwardreferences>

<includeforwardreferences>

Ich muss Dir etwas gestehen: Ich kann diese Satze nicht "bestimmungsgemäß" verwenden. Denn das ist meines Erachtens gar nicht so möglich. Eventuell könnte ich versuchen, die Sätze so zu formulieren:

TABELLE 6. 1. Beweis Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$A \wedge (B \wedge \neg B)$	Behauptung
1	1	0	0	1
2	0	0	0	1
3	1	0	0	1
4	0	0	0	1

TABELLE 7. 2. Beweis Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$\begin{array}{c} A \wedge \\ (B \wedge \neg B) \end{array}$	Behauptung
1	$\neg B$	$\neg (B \land \neg B)$	$ \neg (A \land (B \land \neg B)) $	$\begin{array}{c} A \wedge (B \wedge \neg B) \Leftrightarrow \\ (B \wedge \neg B) \end{array}$
2	$\neg (\neg B)$	$\neg (B \land \neg B)$	$ \neg (A \land (B \land \neg B)) $	$\begin{array}{c} A \wedge (B \wedge \neg B) \Leftrightarrow \\ (B \wedge \neg B) \end{array}$
3	$\neg B$	$\neg (B \land \neg B)$	$ \begin{array}{c} \neg (A \land \\ (B \land \neg B)) \end{array} $	$\begin{array}{c} A \wedge (B \wedge \neg B) \Leftrightarrow \\ (B \wedge \neg B) \end{array}$
4	$\neg (\neg B)$	$\neg (B \land \neg B)$	$ \begin{array}{c} \neg (A \land \\ (B \land \neg B)) \end{array} $	$\begin{array}{c} A \wedge (B \wedge \neg B) \Leftrightarrow \\ (B \wedge \neg B) \end{array}$

TABELLE 8. 1. Teil Verweise des Beweises des Satzes der Konjunktion mit nicht wahrer Aussage

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 8.0.2 der Konjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	3. Zeile

TABELLE 9. 2. Teil Verweise des Beweises des Satzes der Konjunktion mit nicht wahrer Aussage

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 12.0.1 der Äquivalenz
1	1. Zeile	1. Zeile
2	1. Zeile	1. Zeile
3	3. Zeile	1. Zeile
4	3. Zeile	1. Zeile

Tabelle 10. 1. Beweis Disjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$A \vee (B \wedge \neg B)$	Behauptung
1	1	0	0	1
2	0	0	0	1
3	1	0	1	1
4	0	0	1	1

TABELLE 11. 2. Beweis Disjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$\begin{array}{c} A \lor \\ (B \land \neg B) \end{array}$	Behauptung
1	$\neg B$	$\neg \left(B \wedge \neg B \right)$	$\neg (A \lor (B \land \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \lor (B \land \neg B) \end{array}$
2	$\neg (\neg B)$	$\neg (B \land \neg B)$	$\neg (A \land (B \land \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \lor (B \land \neg B) \end{array}$
3	$\neg B$	$\neg (B \land \neg B)$	$(B \land \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \lor (B \land \neg B) \end{array}$
4	$\neg (\neg B)$	$\neg (B \land \neg B)$	$(B \land \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \lor (B \land \neg B) \end{array}$

TABELLE 12. 1. Teil der Verweise Beweises Disjunktion mit nicht wahrer Aussage

Defintion/	Definition 6.0.2	Definition 8.0.2
Fall Nr.	der	der
rall Nr.	Negation	Konjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	3. Zeile

TABELLE 13. 2. Teil der Verweise des Beweis Disjunktion mit nicht wahrer Aussage

Defintion/ Fall Nr.	Definition 11.0.1 der	Definition 12.0.1 der
	Disjunktion	Äquivalenz
1	1. Zeile	1. Zeile
2	1. Zeile	1. Zeile
3	3. Zeile	4. Zeile
4	3. Zeile	4. Zeile

TABELLE 14. 1. Beweis Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$A \wedge (B \wedge \neg B)$	Behauptung
1	1	1	0	1
2	0	1	0	1
3	1	1	1	1
4	0	1	1	1

TABELLE 15. 2. Beweis Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$(B \vee \neg B)$	Behauptung
1	$\neg B$	$\neg \left(B \vee \neg B \right)$	$\neg (A \land (B \lor \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \wedge (B \vee \neg B) \end{array}$
2	$\neg (\neg B)$	$\neg (B \land \neg B)$	$\neg (A \land (B \lor \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \wedge (B \vee \neg B) \end{array}$
3	$\neg B$	$\neg (B \lor \neg B)$	$(B \vee \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \wedge (B \vee \neg B) \end{array}$
4	$\neg (\neg B)$	$\neg (B \lor \neg B)$	$(B \vee \neg B))$	$\begin{array}{c} A \Leftrightarrow \\ A \wedge (B \vee \neg B) \end{array}$

TABELLE 16. 1. Teil Verweise Beweis Konjunktion mit wahrer Aussage

Defintion/	Definition 6.0.2	Definition 11.0.1
Fall Nr.	der	der
rall M.	Negation	Disjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	3. Zeile

TABELLE 17. 2. Teil Verweise Beweis Konjunktion mit wahrer Aussage

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 12.0.1 der Äquivalenz
1	2. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	4. Zeile	4. Zeile
4	4. Zeile	4. Zeile

TABELLE 18. 1. Beweis Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$A \vee (B \wedge \neg B)$	Behauptung
1	1	1	1	1
2	0	1	1	1
3	1	1	1	1
4	0	1	1	1

TABELLE 19. 2. Beweis Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$(B \vee \neg B)$	Behauptung
1	$\neg B$	$\neg \left(B \vee \neg B \right)$	$\begin{array}{c} A \lor \\ (B \lor \neg B) \end{array}$	$(B \vee \neg B) \Leftrightarrow A \wedge (B \vee \neg B)$
2	$\neg (\neg B)$	$\neg (B \land \neg B)$	$\begin{array}{c} A \lor \\ (B \lor \neg B) \end{array}$	$(B \vee \neg B) \Leftrightarrow A \wedge (B \vee \neg B)$
3	$\neg B$	$\neg (B \lor \neg B)$	$(B \vee \neg B)$	$(B \vee \neg B) \Leftrightarrow A \wedge (B \vee \neg B)$
4	$\neg (\neg B)$	$\neg (B \lor \neg B)$	$(B \vee \neg B)$	$(B \vee \neg B) \Leftrightarrow A \wedge (B \vee \neg B)$

TABELLE 20. 1. Teil Verweise Beweis Konjunktion mit wahrer Aussage $\,$

Defintion/	Definition 6.0.2	Definition 11.0.1
Fall Nr.	der	der
rall M.	Negation	Disjunktion
1	1. Zeile	2. Zeile
2	2. Zeile	3. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	3. Zeile

TABELLE 21. 2. Teil Verweise Beweis Konjunktion mit wahrer Aussage $\,$

Defintion/ Fall Nr.	Definition 11.0.1 der	Definition 12.0.1 der
ran wi.	Disjunktion	Äquivalenz
1	2. Zeile	4. Zeile
2	2. Zeile	4. Zeile
3	4. Zeile	4. Zeile
4	4. Zeile	4. Zeile

TABELLE 22. 1. Beweis Implikation wahre Aussage aus Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	Behauptung
1	1	1	1
2	0	1	1
3	1	1	1
4	0	1	1

Tabelle 23. 1. Beweis Implikation wahre Aussage aus Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$A \Rightarrow (B \vee \neg B)$
1	$\neg B$	$B \vee \neg B$	$A \Rightarrow (B \vee \neg B)$
2	$\neg (\neg B)$	$B \vee \neg B$	$A \Rightarrow (B \vee \neg B)$
3	$\neg B$	$B \vee \neg B$	$A \Rightarrow (B \vee \neg B)$
4	$\neg (\neg B)$	$B \vee \neg B$	$A \Rightarrow (B \vee \neg B)$

TABELLE 24. 1. Teil Verweise des Beweises des Satzes der Implikation wahre Aussage aus Aussage

Defintion/	Definition 6.0.2	Definition 11.0.1	Definition 9.0.1
Fall Nr.	der	der	der
ran Nr.	Negation	Disjunktion	Implikation
1	1. Zeile	2. Zeile	2. Zeile
2	2. Zeile	3. Zeile	2. Zeile
3	1. Zeile	2. Zeile	4. Zeile
4	2. Zeile	3. Zeile	4. Zeile

Lemma 79. Es seien A, B sowie C Symbole von Aussagen welche in sich selbst und in Bezug auf die anderen Aussagen dieses Lemmas widerspruchsfrei seien. Dann gilt

$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$$
$$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$$
$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$$
$$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (A \Leftrightarrow C \lor A)$$

In Worten:

Die Konjunktion einer beliebiger Aussage mit einer Aussage, welche nicht wahr ist, ist selbst wieder nicht wahr.

Die Konjunktion einer beliebigen Aussage A mit einer wahren Aussage ist genau dann wahr, falls die Aussage A wahr ist.

Die Disjunktion einer beliebigen Aussage A mit einer Aussage, welche nicht wahr ist, ist genau dann wahr, falls die Aussage A wahr ist.

Die Disjunktion einer beliebigen Aussage mit einer wahren Aussage ist wiederum wahr.

BEWEIS. Zuerst möchte ich gerne den sprachlichen Beweis erbringen. Zuerst möchte ich die Aussage

$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$$

beweisen. Ist die Äquivalenz

$$A \Leftrightarrow (B \land \neg B)$$

nicht wahr, dann ist gemäß den ersten zwei Zeilen der Definition der Implikation die zu beweisende Aussage bereits wahr. Also kann ich im folgenden annehmen, dass die Äquivalenz wahr sei. Dann kann jedoch die Aussage A nicht wahr sein, da die Aussage

$$B \wedge \neg B$$

gemäß dem Satz 45 nicht wahr ist. Das bedeutet jedoch, dass sowohl die Aussage A wie auch die Aussage $C \wedge A$ nicht wahr sein können (die Aussage $C \wedge A$ ist gemäß dem Minimumprinzip 8 der Konjunktion nicht wahr). Also muss auch in diesem Fall gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$(A \Leftrightarrow C \land A)$$

wahr sein. Somit ist gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Aussage

$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$$

wiederum wahr. Somit hätte ich zumindest bewiesen, dass die erste Aussage des Lemmas ein logischer Satz ist.

Nun möchte ich gerne die zweite Aussage des Lemmas beweisen: Ist die Aussage

$$(A \Leftrightarrow (B \vee \neg B))$$

nicht wahr, dann ist die Behauptung gemäß der ersten und zweiten Zeile der Definition 9.0.1 der Implikation richtig. Ist jedoch die Voraussetzung

$$A \Leftrightarrow (B \vee \neg B)$$

wahr, dann muss auch die Aussage A wahr sein, da die Aussage

$$B \vee \neg B$$

gemäß dem schwachen Satz 13 des ausgeschlossenen Dritten immer wahr ist. Ist nun die Aussage C nicht wahr, dann ist auch die Aussage $C \wedge A$ gemäß dem Minimumprinzip 8 der Konjunktion nicht wahr. Also ist gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$C \Leftrightarrow C \wedge A$$

wiederum wahr. Somit muss gemäß der vierten Zeile der Definition 9.0.1 der Implikation die gesamte Aussage

$$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$$

wahr sein. Ist jetzt die Aussage C wahr, dann muss gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$C \wedge A$$

wiederum wahr sein. Also ist auch die Aussage

$$C \Leftrightarrow C \wedge A$$

gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz wiederum wahr. Also ist auch in diesem Fall gemäß der vierten Zeile der Definition 9.0.1 der Implikation die gesamte Aussage

$$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$$

wiederum wahr. Auf diese Art meine ich, den Beweis für die Richtigkeit der zweiten Zeile des Lemmas erbracht zu haben.

Nun möchte ich versuchen, den Beweis für die Richtigkeit der dritten Zeile des Lemmas zu erbringen:

$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$$

Ist die Voraussetzung

$$A \Leftrightarrow (B \land \neg B)$$

nicht wahr, dann ist die Behauptung gemäß der Abkürzungsregel 9 der Implikation wahr. Ist jedoch die Voraussetzung

$$A \Leftrightarrow (B \land \neg B)$$

wahr, dann kann die Aussage A nicht wahr sein, da gemäß dem Satz 45 die Aussage $B \land \neg B$ nicht wahr sein kann. Ist die Aussage C nicht wahr, dann kann gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion die Aussage $C \lor A$ nicht wahr sein. Also ist gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$C \Leftrightarrow C \vee A$$

trotzdem wahr. Also ist gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Aussage

$$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$$

wahr. Ist jedoch die Aussage C wahr, dann ist gemäß der dritten Zeile der Definition 11.0.1 der Disjunktion die Aussage

$$C \vee A$$

wahr. Ebenso ist die Aussage

$$C \Leftrightarrow C \vee A$$

gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz wahr. Also ist die gesamte Aussage gemäß der vierten Zeile der Definition 9.0.1 der

Implikation wiederum richtig. Somit glaube ich, dass ich den Beweis für die Richtigkeit der dritten Behauptung erbracht habe.

Schlussendlich möchte ich den Beweis für die Richtigkeit der vierten Aussage erbringen:

$$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (A \Leftrightarrow C \vee A)$$

Es gilt wieder die gleiche Art der Überlegung: Ist die Voraussetzung

$$A \Leftrightarrow (B \vee \neg B)$$

nicht wahr, dann ist gemäß der ersten zwei Zeilen der Definition 9.0.1 der Implikation die ganze Behauptung wahr. Es bleibt also noch den Fall zu untersuchen, in welchem die Voraussetzung

$$A \Leftrightarrow (B \vee \neg B)$$

wahr ist. In diesem Fall muss die Aussage A wahr sein, da gemäß dem schwachen Satz 13 des ausgeschlossenen Dritten die Aussage

$$(B \vee \neg B)$$

für alle genügend in sich selbst und gegenüber anderen Aussagen hinreichend widerspruchsfreien Aussagen wahr ist. Wäre nun die Aussage A nicht wahr, dann wäre gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow (B \vee \neg B)$$

nicht wahr. Ist die Aussage A jedoch wahr, dann ist die Aussage

$$A \Leftrightarrow (B \vee \neg B)$$

gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz wahr. Und da ich annehme, dass diese Aussage wahr wäre, muss also folgerichtig die Aussage A in diesem Fall wahr sein. In diesem Fall ist gemäß dem Maximumprinzip 11 der Disjunktion die Behauptung

$$C \vee A$$

wahr. Also ist gemäß der vierten Zeile der Definition 11.0.1 der Äquivalenz die Behauptung

$$(A \Leftrightarrow C \lor A)$$

und endlich auch gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Behauptung

$$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (A \Leftrightarrow C \vee A)$$

wahr. Also hätte ich den Beweis für die Richtigkeit der vierten Zeile des Lemmas und somit den Beweis für die Richtigkeit des gesamten Lemmas meines Erachtens glücklicherweise erbracht.

Falls Du meine Behauptungen nicht folgen kannst, nicht folgen willst oder Du (wider Erwarten) eine Schwäche für Wahrheitstafeln hast, habe ich die Beweise der Sätze wiederum in Wahrheitstafeln abgefüllt. Und wieder gibt es derart viele Wahrheitstafeln, dass es sich

TABELLE 25. Auflistung der ersten Beweise der erweiterten Minimum- und Maximumsätze der Logik

Zeile Nummer	1. Teil	2. Teil
1	28	29
2	34	35
3	40	41
4	46	47

TABELLE 26. Auflistung der zweiten Beweise der Minimum- und Maximumsätze der Logik

Zeile Nummer	1. Teil	2. Teil
1	30	31
2	36	37
3	42	43
4	48	49

TABELLE 27. Auflistung der Verweise der Minimum- und Maximumsätze der Logik

Zeile Nummer	erste Tabelle Verweise	zweite Tabelle Verweise
1	32	33
2	38	39
3	44	45
4	50	51

lohnt, ein Verzeichnis derselben in Form von zwei Tabellen abzulegen. Die Verweise auf die Tabellen der Beweise habe ich in der Tabelle 25 sowie 26 abgelegt. Die Verweise auf die Tabellen, in welchen die Verweise der Beweise abgelegt wurden (was für ein Durcheinander) habe ich in der Tabelle 27 abgelegt.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 28. 1. Teil 1. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$(B \land \neg B)$	$A \Leftrightarrow B \land \neg B$
1	1	0	1
2	1	0	1
3	0	0	1
4	0	0	1
5	1	0	0
6	1	0	0
7	0	0	0
8	0	0	0

TABELLE 29. 2. Teil 1. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$C \wedge A$	$A \Leftrightarrow C \wedge A$	Behauptung
1	0	1	1
2	0	1	1
3	0	1	1
4	0	1	1
5	0	0	1
6	1	1	1
7	0	0	1
8	1	1	1

TABELLE 30. 1. Teil 2. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$A \Leftrightarrow B \land \neg B$
1	$\neg B$	$\neg (B \land \neg B)$	$A \Leftrightarrow B \land \neg B$
2	$\neg B$	$\neg (B \land \neg B)$	$A \Leftrightarrow B \land \neg B$
3	$\neg (\neg B)$	$\neg (B \land \neg B)$	$A \Leftrightarrow B \land \neg B$
4	$\neg (\neg B)$	$\neg (B \land \neg B)$	$A \Leftrightarrow B \land \neg B$
5	$\neg B$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow B \land \neg B)$
6	$\neg B$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow B \land \neg B)$
7	$\neg (\neg B)$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow B \land \neg B)$
8	$\neg (\neg B)$	$\neg \left(B \wedge \neg B \right)$	$\neg (A \Leftrightarrow B \land \neg B)$

TABELLE 31. 2. Teil 2. Beweis erweiterter Satz der Konjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$C \wedge A$)	$A \Leftrightarrow C \wedge A$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$
1	$\neg (C \land A)$	$A \Leftrightarrow C \wedge A$	$ \begin{array}{c} (A \Leftrightarrow (B \land \neg B)) \Rightarrow \\ (A \Leftrightarrow C \land A) \end{array} $
2	$\neg (C \land A)$	$\begin{array}{c} A \Leftrightarrow \\ C \wedge A \end{array}$	$ (A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A) $
3	$\neg (C \land A)$	$A \Leftrightarrow C \wedge A$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$
4	$\neg (C \land A)$	$\begin{array}{c} A \Leftrightarrow \\ C \wedge A \end{array}$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$
5	$\neg (C \land A)$	$ \begin{array}{c} \neg (A \Leftrightarrow \\ C \land A) \end{array} $	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$
6	$C \wedge A$)	$\begin{array}{c} A \Leftrightarrow \\ C \wedge A \end{array}$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$
7	$\neg (C \land A)$		$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$
8	$C \wedge A$)	$\begin{array}{c} A \Leftrightarrow \\ C \wedge A \end{array}$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (A \Leftrightarrow C \land A)$

TABELLE 32. 1. Teil Verweise des Beweises des erweiterten Satzes der Konjunktion mit nicht wahrer Aussage

Defintion/	Definition 6.0.2	Definition 8.0.2	Definition 12.0.1
Fall Nr.	der	der	der
ran m.	Negation	Konjunktion	Äquivalenz
1	1. Zeile	2. Zeile	1. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	3. Zeile	1. Zeile
5	1. Zeile	2. Zeile	3. Zeile
6	1. Zeile	2. Zeile	3. Zeile
7	2. Zeile	3. Zeile	3. Zeile
8	2. Zeile	3. Zeile	3. Zeile

TABELLE 33. 2. Teil Verweise des Beweises des erweiterten Satzes der Konjunktion mit nicht wahrer Aussage

Defintion/	Definition 8.0.2	Definition 12.0.1	Definition 9.0.1
Fall Nr.	der	der	der
ran m.	Konjunktion	Äquivalenz	Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile	4. Zeile
3	1. Zeile	1. Zeile	4. Zeile
4	3. Zeile	1. Zeile	4. Zeile
5	2. Zeile	3. Zeile	1. Zeile
6	4. Zeile	4. Zeile	2. Zeile
7	2. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 34. 1. Teil 1. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$A \Leftrightarrow (B \land \neg B)$
1	1	0	1
2	1	0	1
3	0	0	1
4	0	0	1
5	1	0	0
6	1	0	0
7	0	0	0
8	0	0	0

TABELLE 35. 2. Teil 1. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$C \vee A$	$C \Leftrightarrow C \vee A$	$ \begin{array}{c} (A \Leftrightarrow (B \land \neg B)) \Rightarrow \\ (C \Leftrightarrow C \lor A) \end{array} $
1	0	1	1
2	1	1	1
3	0	1	1
4	1	1	1
5	1	0	1
6	1	1	1
7	1	0	1
8	1	1	1

TABELLE 36. 1. Teil 2. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \wedge \neg B$	$A \Leftrightarrow (B \land \neg B)$
1	$\neg B$	$\neg (B \land \neg B)$	$A \Leftrightarrow (B \land \neg B)$
2	$\neg B$	$\neg (B \land \neg B)$	$A \Leftrightarrow (B \land \neg B)$
3	$\neg (\neg B)$	$\neg (B \land \neg B)$	$A \Leftrightarrow (B \land \neg B)$
4	$\neg (\neg B)$	$\neg (B \land \neg B)$	$A \Leftrightarrow (B \land \neg B)$
5	$\neg B$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow (B \land \neg B))$
6	$\neg B$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow (B \land \neg B))$
7	$\neg (\neg B)$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow (B \land \neg B))$
8	$\neg (\neg B)$	$\neg (B \land \neg B)$	$\neg (A \Leftrightarrow (B \land \neg B))$

TABELLE 37. 2. Teil 2. Beweis erweiterter Satz der Disjunktion mit nicht wahrer Aussage

Aussage/ Fall Nr.	$C \vee A$	$C \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$
1	$\neg \left(C \vee A \right)$	$C \Leftrightarrow C \vee A$	$ (A \Leftrightarrow (B \land \neg B)) \Rightarrow $ $ (C \Leftrightarrow C \lor A) $
2	$C \vee A$	$C \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$
3	$\neg (C \lor A)$	$C \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$
4	$C \vee A$	$C \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$
5	$C \vee A$	$\neg (C \Leftrightarrow C \lor A)$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$
6	$C \vee A$	$C \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$
7	$C \vee A$	$\neg (C \Leftrightarrow C \lor A)$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$
8	$C \vee A$	$C \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \land \neg B)) \Rightarrow (C \Leftrightarrow C \lor A)$

TABELLE 38. 1. Teil der Verweise des Beweises des erweiterten Satzes der Disjunktion mit nicht wahrer Aussage

Defintion/	Definition 6.0.2	Definition 8.0.2	Definition 12.0.1
Fall Nr.	der	der	der
ran m.	Negation	Konjunktion	Äquivalenz
1	1. Zeile	2. Zeile	1. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	3. Zeile	1. Zeile
5	1. Zeile	2. Zeile	3. Zeile
6	1. Zeile	2. Zeile	3. Zeile
7	2. Zeile	3. Zeile	3. Zeile
8	2. Zeile	3. Zeile	3. Zeile

TABELLE 39. 2. Teil Verweise des Beweises des erweiterten Satzes der Disjunktion mit nicht wahrer Aussage

Defintion/	Definition 11.0.1	Definition 12.0.1	Definition 9.0.1
Fall Nr.	der	der	der
ran m.	Disjunktion	Äquivalenz	Implikation
1	1. Zeile	1. Zeile	4. Zeile
2	3. Zeile	4. Zeile	4. Zeile
3	1. Zeile	1. Zeile	4. Zeile
4	3. Zeile	4. Zeile	4. Zeile
5	2. Zeile	2. Zeile	1. Zeile
6	4. Zeile	4. Zeile	2. Zeile
7	2. Zeile	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 40. 1. Teil 1. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
1	1	1	0
2	1	1	0
3	0	1	0
4	0	1	0
5	1	1	1
6	1	1	1
7	0	1	1
8	0	1	1

TABELLE 41. 2. Teil 1. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$C \wedge A$	$C \Leftrightarrow \\ C \wedge A$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$
1	0	1	1
2	0	0	1
3	0	1	1
4	0	0	1
5	0	1	1
6	1	1	1
7	0	1	1
8	1	1	1

TABELLE 42. 1. Teil 2. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
1	$\neg B$	$B \vee \neg B$	
2	$\neg B$	$B \vee \neg B$	$\neg (A \Leftrightarrow (B \vee \neg B))$
3	$\neg (\neg B)$	$B \vee \neg B$	$ \neg (A \Leftrightarrow (B \lor \neg B)) $
4	$\neg (\neg B)$	$B \vee \neg B$	$\neg (A \Leftrightarrow (B \vee \neg B))$
5	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
6	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
7	$\neg (\neg B)$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
8	$\neg (\neg B)$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$

TABELLE 43. 2. Teil 2. Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$C \wedge A$	$C \Leftrightarrow C \wedge A$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$
1	$\neg (C \land A)$	$C \Leftrightarrow C \wedge A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$
2	$\neg (C \land A)$	$ \begin{array}{c} \neg(C \Leftrightarrow \\ C \land A \end{array} $	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$
3	$\neg (C \land A)$	$C \Leftrightarrow C \wedge A$	$ (A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A) $
4	$\neg (C \land A)$	$ \neg (C \Leftrightarrow C \land A) $	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (C \Leftrightarrow C \wedge A)$
5	$\neg (C \land A)$	$C \Leftrightarrow C \wedge A$	$ (A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A) $
6	$C \wedge A$	$C \Leftrightarrow C \wedge A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$
7	$\neg (C \land A)$	$C \Leftrightarrow \\ C \wedge A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$
8	$C \wedge A$	$C \Leftrightarrow C \wedge A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (C \Leftrightarrow C \land A)$

TABELLE 44. 1. Teil Verweise Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Defintion/	Definition 6.0.2	Definition 11.0.1	Definition 12.0.1
Fall Nr.	der	der	der
ran m.	Negation	Disjunktion	Äquivalenz
1	1. Zeile	2. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	2. Zeile
4	2. Zeile	3. Zeile	2. Zeile
5	1. Zeile	2. Zeile	4. Zeile
6	1. Zeile	2. Zeile	4. Zeile
7	2. Zeile	3. Zeile	4. Zeile
8	2. Zeile	3. Zeile	4. Zeile

TABELLE 45. 2. Teil Verweise Beweis erweiterter Satz der Konjunktion mit wahrer Aussage

Defintion/	Definition 8.0.2	Definition 12.0.1	Definition 9.0.1
Fall Nr.	der	der	der
ran m.	Konjunktion	Äquivalenz	Implikation
1	1. Zeile	1. Zeile	2. Zeile
2	3. Zeile	3. Zeile	1. Zeile
3	1. Zeile	1. Zeile	2. Zeile
4	3. Zeile	3. Zeile	1. Zeile
5	2. Zeile	1. Zeile	4. Zeile
6	4. Zeile	4. Zeile	4. Zeile
7	2. Zeile	1. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 46. 1. Teil 1. Beweis erweiterter Satz der Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
1	1	1	0
2	1	1	0
3	0	1	0
4	0	1	0
5	1	1	1
6	1	1	1
7	0	1	1
8	0	1	1

TABELLE 47. 2. Teil 1. Beweis erweiterter Satz der Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$C \vee A$	$\begin{array}{c} A \Leftrightarrow \\ C \vee A \end{array}$	$(A \Leftrightarrow (B \vee \neg B)) \Rightarrow (A \Leftrightarrow C \vee A)$
1	0	1	1
2	1	0	1
3	0	1	1
4	1	0	1
5	1	1	1
6	1	1	1
7	1	1	1
8	1	1	1

TABELLE 48. 1. Teil 2. Beweis erweiterter Satz Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
1	$\neg B$	$B \vee \neg B$	$\neg (A \Leftrightarrow (B \vee \neg B))$
2	$\neg B$	$B \vee \neg B$	$\neg (A \Leftrightarrow (B \vee \neg B))$
3	$\neg (\neg B)$	$B \vee \neg B$	$\neg (A \Leftrightarrow (B \vee \neg B))$
4	$\neg (\neg B)$	$B \vee \neg B$	$\neg (A \Leftrightarrow (B \vee \neg B))$
5	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
6	$\neg B$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
7	$\neg (\neg B)$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$
8	$\neg (\neg B)$	$B \vee \neg B$	$\begin{array}{c} A \Leftrightarrow \\ (B \vee \neg B) \end{array}$

TABELLE 49. 2. Teil 2. Beweis erweiterter Satz Disjunktion mit wahrer Aussage

Aussage/ Fall Nr.	$C \vee A$	$A \Leftrightarrow C \vee A$	$ \begin{array}{c} (A \Leftrightarrow (B \vee \neg B)) \Rightarrow \\ (A \Leftrightarrow C \vee A) \end{array} $
1	$\neg \left(C \vee A \right)$	$A \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (A \Leftrightarrow C \lor A)$
2	$C \vee A$	$\neg (A \Leftrightarrow C \lor A)$	$ \begin{array}{c} (A \Leftrightarrow (B \vee \neg B)) \Rightarrow \\ (A \Leftrightarrow C \vee A) \end{array} $
3	$\neg (C \lor A)$	$A \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (A \Leftrightarrow C \lor A)$
4	$C \vee A$	$ \neg (A \Leftrightarrow C \lor A) $	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (A \Leftrightarrow C \lor A)$
5	$C \vee A$	$A \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (A \Leftrightarrow C \lor A)$
6	$C \vee A$	$A \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (A \Leftrightarrow C \lor A)$
7	$C \vee A$	$A \Leftrightarrow C \vee A$	$(A \Leftrightarrow (B \lor \neg B)) \Rightarrow (A \Leftrightarrow C \lor A)$
8	$C \vee A$	$\begin{array}{c} A \Leftrightarrow \\ C \vee A \end{array}$	$ (A \Leftrightarrow (B \lor \neg B)) \Rightarrow (A \Leftrightarrow C \lor A) $

TABELLE 50. 1. Teil Verweise Beweis erweiterter Satz Disjunktion mit wahrer Aussage

Defintion/	Definition 6.0.2	Definition 11.0.1	Definition 12.0.1
Fall Nr.	der	der	der
ran m.	Negation	Disjunktion	Äquivalenz
1	1. Zeile	2. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	2. Zeile
4	2. Zeile	3. Zeile	2. Zeile
5	1. Zeile	2. Zeile	4. Zeile
6	1. Zeile	2. Zeile	4. Zeile
7	2. Zeile	3. Zeile	4. Zeile
8	2. Zeile	3. Zeile	4. Zeile

TABELLE 51. 2. Teil Verweise erweiterter Satz Beweis erweiterter Satz der Disjunktion mit wahrer Aussage

Defintion/	Definition 11.0.1	Definition 12.0.1	Definition 9.0.1
Fall Nr.	der	der	der
ran m.	Disjunktion	Äquivalenz	Implikation
1	1. Zeile	1. Zeile	2. Zeile
2	3. Zeile	2. Zeile	1. Zeile
3	1. Zeile	1. Zeile	2. Zeile
4	3. Zeile	2. Zeile	1. Zeile
5	2. Zeile	4. Zeile	4. Zeile
6	4. Zeile	4. Zeile	4. Zeile
7	2. Zeile	4. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

KAPITEL 21

Erzeugendensysteme in der Logik

Dieses Kapitel ist für sich selber eigentlich ungenießbar. Denn die einzelnen logischen Sätze können eigentlich nicht weiter verwendet werden. Dann stellt sich die Frage, wieso ich mir dann die Mühe mache, die Sätze zu formulieren und zu beweisen? Der Sinn dieser Übung besteht darin, dass ich später die Fragestellung noch einmal bearbeiten möchte, welche ich versucht habe, in der Aussage 18.1.1 zu formulieren. Dazu möchte ich gerne alle anderen logischen Verknüpfungen auf die NAND-Verknüpfung zurückzuführen. Es ist also möglich, alle andere logischen Verknüpfungen mit NAND-Verknüpfungen zu ersetzen. Nachdem dies geschehen ist, kann ich dann später darauf später zurückkommen. Ich hoffe, dass ich dann die in der Aussage 18.1.1 aufgeworfene Fragestellung dann hoffentlich zufrieden beantworten kann.

Auf der anderen Seite stellt sich die Frage, wieso dann die anderen Verknüpfungen definiert wurden, wenn es nur die NAND-Verknüpfung benötigt? Die Antwort ist einfach: Die anderen Verknüpfungen werden vielfach in der Mathematik verwendet und besitzen ihre eigene Eigenschaften. Darum lohnt es sich, auch die anderen logischen Verknüpfungen kennenzulernen und ihre Eigenschaften in Form von logischen Sätzen zu studieren. Doch nun möchte ich mit den "Rückführungen^{1"} beginnen.

21.1. Zusammenhang Negation und NAND-Verknüpfung

In den folgenden Abschnitten möchte ich daran gehen, alle Verknüpfung auf eine Verknüpfung (der NAND-Verknüpfung, auch Sheffer-Notation genannt) zurückzuführen. Der Grund für diese Untersuchungen besteht darin, dass das Suchen von Verbindungen ebenfalls eine sehr wichtige Beschäftigung in der Mathematik darstellt. Das erlaubt dann beispielsweise, dass Probleme zuerst in eine andere Darstellung übersetzt, in der neuen Darstellung gelöst und und anschließend wieder in die ursprüngliche Darstellung zurück übersetzt werden können. So können Probleme gelöst werden, welche ansonsten nicht gelöst oder nur mit einem viel größerem Aufwand gelöst werden könnten.

¹Mit "Rückführungen" werden heutzutage oft Versuche beschrieben, Menschen dazu zu bringen, dass sie sich an Erlebnisse in früheren Leben erinnern. Ob das möglich ist oder nicht, ist jedoch glücklicherweise nicht Thema dieses Buches.

TABELLE 1. 1. Beweis der Ableitung der Negation von der NAND-Verknüpfung

Aussage/ Fall Nr.	$\neg A$	$A\overline{\wedge}A$	Behauptung
1	1	1	1
1 1	1	1	1

Zuerst suche suche ich den Zusammenhang von der NAND-Verknüpfung und der Negation. Dieser lautet:

Satz 80. Es sei zuerst A das Symbol einer Aussage. Dann muss gelten:

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

Beweis. Ich möchte den Beweis in den Tabellen 1 respektive 2 führen. Die Verweise des Beweises möchte ich der Tabelle 3 auflisten.

Nun, ein tabellarischer Beweis ist schon ein Beweis. Nur ist es nicht so witzig, einen Beweis in Tabellen "zu erschlagen". Darum möchte ich versuchen, den Beweis auch mit sprachlichen Mitteln zu erbringen. Ist die Aussage A nicht wahr, dann ist gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ wahr. Ebenfalls gemäß der ersten Zeile der Definition 14.0.1 der NAND-Verknüpfung ist die Aussage

$$A\overline{\wedge}A$$

ebenfalls wahr. Da nun sowohl die Aussagen $\neg A$ wie auch $A \overline{\wedge} A$ wahr sind, ist in diesem Fall gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

wiederum wahr. Ist jedoch die Aussage A wahr, dann gemäß der zweiten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ nicht wahr. Ebenso ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$A\overline{\wedge}A$$

nicht wahr. Da nun in diesem Fall die Aussage $\neg A$ wie auch $A \overline{\wedge} A$ nicht wahr sind, ist in diesem Fall gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

wiederum wahr. Und da es gemäß dem Satz 12 des ausgeschlossenen Dritten alle Aussagen entweder wahr noch nicht wahr sein müssen, behaupte ich an dieser Stelle, den sprachlichen Beweis für die Richtigkeit der Behauptung erbracht zu haben. Also beende ich an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 2. 2. Beweis der Ableitung der Negation von der NAND-Verknüpfung

Aussage/ Fall Nr.	$\neg A$	$A\overline{\wedge}A$	$\neg A \Leftrightarrow (A \overline{\wedge} A)$
-1	4	4 - 4	4 (4 - 4)
1	$\neg A$	$A \wedge A$	$\neg A \Leftrightarrow (A \overline{\wedge} A)$

TABELLE 3. Tabelle Verweise des Beweises der Ableitung der Negation von der NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 6.0.2 der Negation	Definition 6.0.2 der Negation	Definition 12.0.1 der Äquivalenz
1	1. Zeile	1. Zeile	4. Zeile
2	2. Zeile	4. Zeile	1. Zeile

TABELLE 4. 1. Beweis der Ableitung der Identität von der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}A$	$(A\overline{\wedge}A)\overline{\wedge}(A\overline{\wedge}A)$	Behauptung
1	1	0	1
2	0	1	1

21.2. Zusammenhang Identität und NAND-Verknüpfung

Ich möchte versuchen, die Identität als NAND-Verknüpfung aufzuschreiben.

Satz 81. Es sei A das Symbol einer Aussage, dann gilt:

$$A \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$$

BEWEIS. Ich möchte dies in den Tabellen 4 sowie 5 tabellarisch überprüfen. In der Tabellen 6 habe ich die Verweise der Beweise aufgeschrieben.

Ich möchte den Beweis auch mit sprachlichen Mitteln zu führen versuchen. Ich kann gemäß dem Satz 80 des Zusammenhangs der Verknüpfung der Negation und der NAND-Verknüpfung schreiben, dass gilt:

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

Gemäß dem Äquivalenz-Negationssatz 60 kann ich darum folgern, dass gilt

$$\neg (\neg A) \Leftrightarrow \neg (A \overline{\wedge} A)$$

TABELLE 5. 1. Teil 2. Beweis der Ableitung der Identität von der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}A$	$(A\overline{\wedge}A)\overline{\wedge}$ $(A\overline{\wedge}A)$	$(A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$
1	$A\overline{\wedge}A$	$ \neg ((A \overline{\wedge} A) \overline{\wedge} \\ ((A \overline{\wedge} A)) $	$A \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$
2	$\neg (A \overline{\wedge} A)$	$(A\overline{\wedge}A)\overline{\wedge}$ $(A\overline{\wedge}A)$	$A \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$

TABELLE 6. Tabelle Verweise des Beweises der Ableitung der Negation von der NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 14.0.1 der NAND- Verknüpfung	Definition 12.0.1 der Äquivalenz
1	1. Zeile	4. Zeile	1. Zeile
2	4. Zeile	1. Zeile	4. Zeile

Gemäß dem Satz 10 der doppelten Negation kann ich schließen, dass gilt

$$\neg (\neg A) \Leftrightarrow A$$

Da die Äquivalenz gemäß dem Satz 38 kommutativ ist, kann ich ebenfalls schließen:

$$A \Leftrightarrow \neg (\neg A)$$

Da die Äquivalenz gemäß dem Satz 15 transitiv ist, kann ich also schließen, dass gilt

$$A \Leftrightarrow \neg (A \overline{\wedge} A)$$

Nun kann ich erneut den Satz 80 über den Zusammenhang der Negation und der NAND-Verknüpfung verwenden und erhalte die Aussage

$$\neg (A \overline{\wedge} A) \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$$

Da die Äquivalenz gemäß dem Satz 15 immer noch transitiv ist, kann ich schließen:

$$A \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (A \overline{\wedge} A)$$

Damit meine ich, den Beweis für die Richtigkeit der Behauptung noch einmal erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Bitte beachte, dass es mir in diesen Beweisen vor allem darum geht, die Transformationen anwenden zu können. Ein Beweis, welcher sich rein an den Wahrheitstafeln entlang geangelt hätte, wäre ungleich kürzer ausgefallen. Jedoch wirst Du später nicht mehr die tabellarischen Beweise, sondern vor allem die möglichen (aber auch und vor allem die unmöglich scheinenden) Transformationen verwenden. Ich möchte versuchen, an dieser Stelle ein mögliches Grundgerüst bereit zu stellen. Es wäre schön, wenn der Funken auf Dich überspringen würde.

21.3. Zusammenhang Konjunktion und NAND-Verknüpfung

Ich habe bei der Überarbeitung etwa eine Stunde gebraucht, bis ich begriffen habe, dass dieser Abschnitt entgegen meiner ersten Vermutung nicht das gleiche Thema wie der Satz 68 über die disjunktive Normalform der NAND-Verknüpfung besitzt. In diesem Abschnitt soll die Konjunktion mit Hilfe der NAND-Verknüpfung formuliert werden.

Satz 82. Es seien A, B Symbole von Aussagen. Dann gilt

$$A \wedge B \Leftrightarrow (A\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}B)$$

Beweis. Ich möchte meine Behauptung noch tabellarisch überprüfen. Diese Überprüfung habe ich in den Tabellen 7, 8 sowie 9 gemacht. Die Verweise habe ich in den Tabellen 10 sowie 11 aufgeschrieben. Wiederum möchte ich versuche, einen sprachlichen Beweis zu erbringen.

Es seien A und B Symbole von Aussagen. Da gemäß dem Satz 68 gelten muss

$$A\overline{\wedge}B \Leftrightarrow \neg (A \wedge B)$$

muss also auch gemäß dem von mir so getauften Äquivalenz-Negations-Satz 60 gelten

$$\neg (A \overline{\wedge} B) \Leftrightarrow A \wedge B$$

das bedeutet jedoch in Worten, dass die Negation der NAND-Verknüpfung tatsächlich äquivalent zur Konjunktion ist.

Da die Äquivalenz gemäß dem Satz 38 kommutativ ist, kann ich ebenso gut schreiben:

$$A \wedge B \Leftrightarrow \neg (A \overline{\wedge} B)$$

Der Satz 80 über den Zusammenhang der Negation und der NAND-Verknüpfung lehrt mich, dass für jede Aussage C gilt:

$$\neg C \Leftrightarrow C \overline{\wedge} C$$

Nun kann ich für die Aussage C die Aussage $A\overline{\wedge}B$ einsetzen und ich erhalte

$$\neg (A \overline{\wedge} B) \Leftrightarrow (A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B)$$

Weiter oben habe ich gesehen, dass die logische Aussage gilt

$$A \wedge B \Leftrightarrow \neg (A \overline{\wedge} B)$$

TABELLE 7. 1. Beweis des Zusammenhangs von Konjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\wedge}B$	$(A\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}B)$	Behauptung
1	0	1	0	1
2	0	1	0	1
3	0	1	0	1
4	1	0	1	1

TABELLE 8. 1. Teil 2. Beweis des Zusammenhangs von Konjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\wedge}B$
1	$\neg (A \land B)$	$A\overline{\wedge}B$
2	$\neg (A \land B)$	$A\overline{\wedge}B$
3	$\neg (A \land B)$	$A\overline{\wedge}B$
4	$A \wedge B$	$\neg (A \overline{\wedge} B)$

TABELLE 9. 2. Teil 2. Beweis des Zusammenhangs von Konjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}B)$	$(A \land B) \Leftrightarrow ((A \overline{\land} B) \overline{\land} (A \overline{\land} B))$
1	$\neg ((A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B))$	$(A \land B) \Leftrightarrow ((A \overline{\land} B) \overline{\land} (A \overline{\land} B))$
2	$\neg ((A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B))$	$(A \land B) \Leftrightarrow ((A \overline{\land} B) \overline{\land} (A \overline{\land} B))$
3	$\neg ((A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B))$	$(A \land B) \Leftrightarrow ((A \overline{\land} B) \overline{\land} (A \overline{\land} B))$
4	$(A\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}B)$	$(A \land B) \Leftrightarrow ((A \overline{\land} B) \overline{\land} (A \overline{\land} B))$

Eben konnte ich zeigen, dass offenbar die logische Aussage

$$\neg (A \overline{\wedge} B) \Leftrightarrow (A \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} B)$$

gelten muss. Nun wende ich den Satz 15 der Transitivität der Äquivalenz an und erhalte die Aussage

$$A \wedge B \Leftrightarrow (A\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}B)$$

Diese Aussage wollte ich jedoch zeigen. Darum erachte ich den Beweis als erbracht und beende an diese Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Tabelle 10. Verweise Beweis Satz des Zusammenhangs von Konjunktion und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 14.0.1 der NAND- Verknüpfung
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	3. Zeile
4	4. Zeile	4. Zeile

Tabelle 11. Verweise Beweis Satz des Zusammenhangs von Konjunktion und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 12.0.1 der Äquivalenz
1	4. Zeile	1. Zeile
2	4. Zeile	1. Zeile
3	4. Zeile	1. Zeile
4	1. Zeile	4. Zeile

21.4. Zusammenhang Disjunktion und NAND-Verknüpfung

Ich möchte die Disjunktion auf die NAND-Verknüpfung zurückführen.

Satz 83. Es seien A sowie B sind Symbole von Aussagen. Dann gilt die Aussage:

$$A \vee B \Leftrightarrow (A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)$$

Somit habe ich also auch die Disjunktion auf die NAND-Verknüpfung zurückgeführt.

Beweis. In den Tabellen 13 bis 17 habe ich den Beweis des Zusammenhangs von Disjunktion und NAND-Verknüpfung noch einmal ausgerechnet.

Nun möchte ich trotzdem noch einmal mit sprachlichen Mitteln zu begründen versuchen, wieso den Satz für richtig halte. Ich möchte überlegen, wann die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

nicht wahr ist. Diese Aussage ist gemäß der vierten Zeile der Definition 14.0.1 nur dann nicht wahr, falls die Aussagen $A\overline{\wedge}A$ sowie $B\overline{\wedge}B$ wahr sind. Die Aussage $A\overline{\wedge}A$ sowie $B\overline{\wedge}B$ sind gemäß des Satzes 80 über den Zusammenhang der Negation mit der NAND-Verknüpfung genau dann

TABELLE 12. 1. Teil 1. Beweis Zusammenhang Disjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \vee B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	0	1	1
2	1	1	0
3	1	0	1
4	1	0	0

TABELLE 13. 2. Teil 1. Beweis Zusammenhang Disjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	Behauptung
1	0	1
2	1	1
3	1	1
4	1	1

TABELLE 14. 1. Teil 2. Beweis Zusammenhang Disjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \vee B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	$\neg (A \lor B)$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
2	$A \vee B$	$A\overline{\wedge}A$	$\neg (B \overline{\wedge} B)$
3	$A \vee B$	$\neg (A \overline{\wedge} A)$	$B\overline{\wedge}B$
4	$A \vee B$	$\neg (A \overline{\wedge} A)$	$\neg (B \overline{\wedge} B)$

TABELLE 15. 2. Teil 2. Beweis Zusammenhang Disjunktion und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$(A \lor B) \Leftrightarrow ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$
1	$\neg ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$	$(A \lor B) \Leftrightarrow ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$
2	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$(A \lor B) \Leftrightarrow ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$
3	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$(A \lor B) \Leftrightarrow ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$
4	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$(A \lor B) \Leftrightarrow ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$

Tabelle 16. 1. Teil Verweise Beweis Zusammenhang Disjunktion und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 14.0.1 der NAND- Verknüpfung	Definition 14.0.1 der NAND- Verknüpfung
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

Tabelle 17. 2. Teil Verweise Beweis Zusammenhang Disjunktion und NAND-Verknüpfungs

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 12.0.1 derÄquivalenz
1	4. Zeile	1. Zeile
2	3. Zeile	4. Zeile
3	2. Zeile	4. Zeile
4	1. Zeile	4. Zeile

wahr, falls die Aussagen $\neg A$ sowie $\neg B$ wahr sind. Die Aussagen $\neg A$ sowie $\neg B$ sind gemäß der ersten Zeile der Definition 6.0.2 der Negation genau dann wahr, falls die Aussagen A wie auch B nicht wahr sind. Zusammengefasst ist also die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

genau dann nicht wahr, falls die Aussagen A und B nicht wahr sind. Das bedeutet jedoch, dass diese Aussage genau dann nicht wahr ist, falls die Aussage $A \vee B$ nicht wahr ist. Weiter bedeutet dies gemäß des Äquivalenz-Negationssatz 60, dass die Aussage $(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$ genau dann wahr ist, falls die Aussage $A \vee B$ wahr ist. Das ist jedoch gerade die Behauptung. Damit meine ich, noch einmal mit sprachlichen Mitteln den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences> <includeforwardreferences>

Gerne hätte ich noch folgenden Beweis ins Feld geführt: Es ist gemäß dem Satz 80 des Zusammenhangs von Negation und der NAND-Verknüpfung gelten die Aussagen

$$A \Leftrightarrow (A \overline{\wedge} A)$$
$$B \Leftrightarrow (B \overline{\wedge} B)$$

Weiter ist gemäß dem Satz 46 der Negation der Disjunktion

$$\neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

und somit gemäß dem Äquivalenz-Negationssatz 60

$$\neg (\neg (A \lor B)) \Leftrightarrow \neg (\neg A \land \neg B)$$

Gemäß dem Satz 10 der doppelten Negation gilt weiter

$$\neg (\neg (A \lor B)) \Leftrightarrow A \lor B$$

Da die Äquivalenz gemäß dem Satz 38 kommutiert, gilt weiter

$$A \lor B \Leftrightarrow \neg (\neg (A \lor B))$$

Und da die Äquivalenz gemäß dem Satz 15 transitiv ist, gilt weiter

$$A \lor B \Leftrightarrow \neg (\neg A \land \neg B)$$

Dann kann ich weiter die obigen Äquivalenzen der Negationen von A und B einsetzen und erhalte

$$A \vee B \Leftrightarrow \neg ((A \overline{\wedge} A) \wedge (B \overline{\wedge} B))$$

Schlussendlich kann ich den Satz 68 verwenden und erhalte die Aussage

$$\neg ((A \overline{\wedge} A) \wedge (B \overline{\wedge} B)) \Leftrightarrow ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$$

Wenn ich schlussendlich noch einmal den Satz 15 der Äquivalenz verwende, erhalte ich die finale Aussage

$$A \vee B \Leftrightarrow ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$$

Ende gut, alles gut? Leider nein. Weißt Du, wo ich es nicht herleiten kann? Das ist beim Abschnitt "Dann kann ich weiter die obigen Äquivalenzen der Negationen von A und B einsetzen". Das kann ich eben nicht. Es liegt zwar auf der Hand, dass dem so ist. Aber ich kann es nicht beweisen. Ich muss das später noch zeigen, dass dieser Schritt möglich ist. Jedoch muss ich meines Erachtens zuerst das Konzept der natürlichen Zahlen noch entwickeln, bevor ich mich an diese Verknüpfung wagen kann. Vorher ist das "Kaffeesatzleserei" und darum nicht seriös.

TABELLE 18. 1. Beweis Zusammenhang Implikation und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Rightarrow B$	$B\overline{\wedge}B$	$A\overline{\wedge} (B\overline{\wedge}B)$	Behauptung
1	1	1	1	1
2	1	0	1	1
3	0	1	0	1
4	1	0	1	1

21.5. Zusammenhang Implikation und NAND-Verknüpfung

Und wenn ja, für was soll dieser gut sein? Wieder geht es vor allem darum Klarheit zu schaffen (und um Computer bauen zu können, welche alle logischen Verknüpfungen nachbilden kann). Es seien A und B Symbole von beliebigen Aussagen. Dann gilt ja gemäß dem Satz 53:

$$(A \Rightarrow B) \Leftrightarrow \neg (A \land (\neg B))$$

Das ist bereits fast die Behauptung: Es ist

$$\neg B \Leftrightarrow B\overline{\wedge}B$$

Das bedeutet jedoch, dass gilt:

$$(A \Rightarrow B) \Leftrightarrow (A\overline{\wedge} (B\overline{\wedge} B))$$

So, das war jetzt der "Beweis" in dem Sinn, dass er zwar das richtige Ergebnis liefert - jedoch nicht vollständig ist. Ich werde den Beweis in Form von Wahrheitstafeln nachfolgend erbringen. Es gilt also der

Satz 84. Es seien A sowie B Symbole von Aussagen. Dann gilt:

$$(A \Rightarrow B) \Leftrightarrow (A\overline{\wedge} (B\overline{\wedge} B))$$

BEWEIS. Wieder ist die Asymmetrie irgendwie stoßend, aber halt einfach vorhanden. Bedenke jedoch, dass die Implikation als "≤" (kleiner oder gleich Beziehung) in der Logik verstanden werden kann (vergleiche mit der entsprechenden Kronecker-Beziehung, welche im Lemma ?? zu zeigen versuche). Ich habe den Beweis ebenfalls mit Hilfe der Wahrheitstafeln aufgeschrieben. Dieser ist in den Tabellen 18 einerseits und 19 sowie 20 andererseits abgelegt. Die Verweise des Beweises habe ich in den Tabellen 21 sowie 22 aufgeschrieben. Aber ich kann den Beweis trotzdem so nicht stehen lassen. Denn ein Beweis bloß mit Wahrheitstafeln zu erbringen ist irgendwie trostlos und kalt. Darum werde noch einen "wasserdichten" (vollständigen) Beweis mit sprachlichen Mitteln nachliefern.

Ich möchte mir überlegen, unter welchen Umständen die Aussage $A\overline{\wedge} (B\overline{\wedge} B)$ nicht wahr ist. Dies ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung dann der Fall, falls die Aussage A wie

TABELLE 19. 1. Teil 2. Beweis Zusammenhang Implikation und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Rightarrow B$	$B\overline{\wedge}B$
1	$A \Rightarrow B$	$B\overline{\wedge}B$
2	$A \Rightarrow B$	$\neg (B \overline{\wedge} B)$
3	$\neg (A \Rightarrow B)$	$B\overline{\wedge}B$
4	$A \Rightarrow B$	$\neg (B \overline{\wedge} B)$

TABELLE 20. 2. Teil 2. Beweis Zusammenhang Implikation und NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}(B\overline{\wedge}B)$	$(A \Rightarrow B) \Leftrightarrow A \overline{\wedge} (B \overline{\wedge} B)$
1	$A\overline{\wedge} (B\overline{\wedge} B)$	$(A \Rightarrow B) \Leftrightarrow A\overline{\wedge} (B\overline{\wedge}B)$
2	$A\overline{\wedge} (B\overline{\wedge} B)$	$(A \Rightarrow B) \Leftrightarrow A\overline{\wedge} (B\overline{\wedge}B)$
3	$\neg (A \overline{\land} (B \overline{\land} B))$	$(A \Rightarrow B) \Leftrightarrow A\overline{\wedge} (B\overline{\wedge}B)$
4	$A\overline{\wedge} (B\overline{\wedge} B)$	$(A \Rightarrow B) \Leftrightarrow A\overline{\wedge} (B\overline{\wedge}B)$

TABELLE 21. 1. Teil Verweise Beweis Zusammenhang Implikation und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 14.0.1 der NAND- Verknüpfung
1	1. Zeile	1. Zeile
2	2. Zeile	4. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	4. Zeile

Tabelle 22. 2. Teil Verweise Beweis

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 12.0.1 der Äquivalenz
1	2. Zeile	4. Zeile
2	1. Zeile	4. Zeile
3	4. Zeile	1. Zeile
4	3. Zeile	4. Zeile

auch die Aussage $B\overline{\wedge}B$ wahr ist. Ist die Aussage B wahr, dann ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage $B\overline{\wedge}B$ nicht wahr. Ist jedoch die Aussage B nicht wahr, dann ist gemäß der erste Zeile der Definition 14.0.1 der NAND-Verknüpfung

die Aussage $B\overline{\wedge}B$ jedoch wahr - so wie es die Voraussetzung über die Aussage $B\overline{\wedge}B$ fordert. Zusammenfassend kann ich also schreiben, dass die Aussage $A\overline{\wedge}(B\overline{\wedge}B)$ also genau dann nicht wahr, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Dies ist jedoch gemäß der dritten Zeile der Definition 9.0.1 der Implikation genau dann der Fall, falls die Implikation $A\Rightarrow B$ nicht wahr ist. Gemäß dem Äquivalenz-Negationssatz 60 schließe ich daraus, dass die Aussage $A\Rightarrow B$ genau dann wahr ist, falls es auch die Aussage $A\overline{\wedge}(B\overline{\wedge}B)$ ist. Somit kann ich schließen, das beide Aussagen äquivalent sind. Das war jedoch gerade zu beweisen. Aus diesem Grund erachte ich den Beweis für die Richtigkeit der Behauptung als erbracht und ich beende aus diesem Grund hiermit an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

21.6. Zusammenhang Antivalenz und NAND-Verknüpfung

Ich versuche in den folgenden Zeilen, den Zusammenhang zwischen der Antivalenz und der NAND-Verknüpfung zu formulieren und zu beweisen. Ursprünglich wollte ich den Satz mittels logischen Transformationen herleiten. Das möchte ich nun auf später verschieben. Also versuche ich, den Satz über den Zusammenhang von Antivalenz und NAND-Verknüpfung zu formulieren und zu beweisen:

SATZ 85. Es seien A, B Metasymbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Beweises widerspruchsfrei seien. Dann gilt

$$(A \Leftrightarrow B) \Leftrightarrow ((A \overline{\wedge} A) \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} (B \overline{\wedge} B))$$

BEWEIS. Angenommen, der Satz sei nicht wahr. Dann müsste es Aussagen A und B derart geben müsste, dass

$$A \Leftrightarrow B$$

wahr, die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

jedoch nicht wahr ist oder umgekehrt die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

wahr ist und die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist. Angenommen, die Aussage

$$A \Leftrightarrow B$$

sei wahr. Dann ist die Aussage A wahr und die Aussage B nicht wahr oder umgekehrt die Aussage A ist nicht wahr und die Aussage B ist

wahr. Im ersten Fall ist gemäß der ersten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$B\overline{\wedge}B$$

wahr. Also ist gemäß der vierten Zeile der gleichen Definition 14.0.1 der NAND-Verknüpfung die Aussage .

$$A\overline{\wedge} (B\overline{\wedge}B)$$

nicht wahr. Da die Aussage $A\overline{\wedge}(B\overline{\wedge}B)$ nicht wahr ist, ist gemäß der ersten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

auf jeden Fall wahr. Ist jedoch die Aussage A nicht wahr und die Aussage B wahr, dann kann aus ähnlichen Gründen die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

nicht wahr sein. Denn die Aussage

$$A\overline{\wedge}A$$

muss gemäß der ersten Zeile der Definition 14.0.1 der NAND-Verknüpfung wahr sein. Da nun sowohl

$$A\overline{\wedge}A$$

wie auch B wahr sind, kann gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung dann auch die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

nicht wahr sein. Darum muss gemäß der ersten und der zweiten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$((A\overline{\wedge}A)\,\overline{\wedge}B)\,\overline{\wedge}\,(A\overline{\wedge}\,(B\overline{\wedge}B))$$

wahr sein. Also habe ich gezeigt, dass es keine Aussagen A, B derart geben kann, dass die Aussage

$$A \Leftrightarrow B$$

wahr, die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

jedoch nicht wahr ist. Somit hätte ich gezeigt, dass gilt

$$(A \Leftrightarrow B) \Rightarrow ((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

Damit hätte ich lang fädig die erste Hälfte der Behauptung bewiesen. Nun möchte ich endlich die zweite Hälfte der Behauptung beweisen.

Ich möchte überlegen, ob es Aussagen $A,\,B$ derart geben kann, dass die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

wahr ist und die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist. Die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

ist nur dann nicht wahr, falls sowohl die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

wie auch die Aussage

$$A\overline{\wedge} (B\overline{\wedge}B)$$

wahr sind. In allen übrigen Fällen ist die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B))$$

wahr. Die übrigen Fälle sind diejenigen, in welchen die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

nicht wahr ist oder die Aussage

$$A\overline{\wedge} (B\overline{\wedge}B)$$

nicht wahr ist.

Die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung dann nicht wahr, falls nicht sowohl die Aussage

$$4 \overline{\wedge} 4$$

wahr wie auch die Aussage B wahr sind. Die Aussage

$$A\overline{\wedge}A$$

ist gemäß der ersten Zeile der Definition 14.0.1 der NAND-Verknüpfung dann wahr, falls die Aussage A nicht wahr ist. Zusammengefasst kann also nicht die Aussage A nicht wahr und muss die Aussage B wahr sein, damit die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}B$$

nicht wahr ist.

Nun möchte ich mir überlegen, unter welchen Umständen die Aussage

$$A\overline{\wedge} (B\overline{\wedge}B)$$

nicht wahr ist. Dies ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung dann der Fall, falls die Aussage A und die Aussage $B\overline{\wedge}B$ wahr sind. Die Aussage $B\overline{\wedge}B$ ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung dann wahr, falls die Aussage B nicht wahr ist. Also kann die Aussage A nicht wahr oder muss die Aussage B wahr sein, damit die Aussage

$$A\overline{\wedge} (B\overline{\wedge}B)$$

nicht wahr ist.

TABELLE 23. 1. Teil 1. Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$(A\overline{\wedge}A)\overline{\wedge}B$	$B\overline{\wedge}B$
1	0	1	1	1
2	1	1	0	0
3	1	0	1	1
4	0	0	1	0

Ich fasse zusammen: Die Aussage

$$((A\overline{\wedge}A)\,\overline{\wedge}B)\,\overline{\wedge}\,(A\overline{\wedge}\,(B\overline{\wedge}B))$$

ist dann wahr, falls die Aussage

$$((A \overline{\wedge} A) \overline{\wedge} B)$$

nicht wahr ist oder die Aussage

$$(A\overline{\wedge}(B\overline{\wedge}B))$$

nicht wahr ist. Also kann die Aussage A nicht wahr sein und die Aussage B muss wahr sein oder aber die Aussage A muss wahr sein und die Aussage B kann nicht wahr sein. Gemäß der zweiten und der dritten Zeile der Definition 13.0.1 der Antivalenz sind das genau diejenigen Fälle, in welchen die Antivalenz

$$A \Leftrightarrow B$$

wahr ist. Damit meine ich gezeigt zu haben, dass gilt

$$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B)) \Rightarrow A \Leftrightarrow B$$

Gemäß dem Satz 49 über den Zusammenhang von Äquivalenz und zwei Implikationen kann ich nun schließen, dass gilt

$$(A \Leftrightarrow B) \Leftrightarrow ((A\overline{\wedge}A)\overline{\wedge}B\overline{\wedge}(A\overline{\wedge}(B\overline{\wedge}B)))$$

Also hätte ich den Beweis für die Richtigkeit der Behauptung erbracht. Damit Du erkennen kannst, dass die Behauptung richtig ist, habe ich den Beweis noch einmal in Wahrheitstafeln aufschreiben. Erneut habe ich den Beweis ebenfalls mit Hilfe der Wahrheitstafeln aufgeschrieben. Dieser ist in den Tabellen 23 sowie 24 einerseits und 25 sowie 26 andererseits abgelegt. Die Verweise des Beweises habe ich in den Tabellen 27 sowie 28 aufgeschrieben.

<includebackwardreferences>

TABELLE 24. 2. Teil 1. Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge} (B\overline{\wedge}B)$	$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B))$	Behauptung
1	1	0	1
2	1	1	1
3	0	1	1
4	1	0	1

TABELLE 25. 1. Teil 2. Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	<i>A</i> ⇔ <i>B</i>	$A\overline{\wedge}A$	$(A\overline{\wedge}A)\overline{\wedge}B$	$B\overline{\wedge}B$
1	$\neg (A \Leftrightarrow B)$	$A\overline{\wedge}A$	$(A\overline{\wedge}A)\overline{\wedge}B$	$B\overline{\wedge}B$
2	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$\neg ((A \overline{\wedge} A) \overline{\wedge} B)$	$\neg (B \overline{\wedge} B)$
3	$A \Leftrightarrow B$	$\neg (A \overline{\wedge} A)$	$(A\overline{\wedge}A)\overline{\wedge}B$	$B\overline{\wedge}B$
4	$\neg (A \Leftrightarrow B)$	$\neg (A \overline{\wedge} A)$	$(A\overline{\wedge}A)\overline{\wedge}B$	$\neg (B \overline{\wedge} B)$

TABELLE 26. 2. Teil 2. Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge} (B\overline{\wedge}B)$	$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B))$	$(A \Leftrightarrow B) \Leftrightarrow (((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} \\ (A\overline{\wedge}(B\overline{\wedge}B)))$
1	$A\overline{\wedge} (B\overline{\wedge} B)$	$\neg (((A \overline{\wedge} A) \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} (B \overline{\wedge} B)))$	$(A \Leftrightarrow B) \Leftrightarrow (((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} \\ (A\overline{\wedge}(B\overline{\wedge}B)))$
2	$A\overline{\wedge} (B\overline{\wedge}B)$	$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B))$	$(A \Leftrightarrow B) \Leftrightarrow (((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} \\ (A\overline{\wedge}(B\overline{\wedge}B)))$
3	$\neg (A \overline{\wedge} (B \overline{\wedge} B))$	$((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} (A\overline{\wedge}(B\overline{\wedge}B))$	$(A \Leftrightarrow B) \Leftrightarrow (((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} \\ (A\overline{\wedge}(B\overline{\wedge}B)))$
4	$A\overline{\wedge} (B\overline{\wedge}B)$	$\neg (((A \overline{\wedge} A) \overline{\wedge} B) \overline{\wedge} (A \overline{\wedge} (B \overline{\wedge} B)))$	$(A \Leftrightarrow B) \Leftrightarrow (((A\overline{\wedge}A)\overline{\wedge}B)\overline{\wedge} \\ (A\overline{\wedge}(B\overline{\wedge}B)))$

21.7. Zusammenhang Äquivalenz und NAND-Verknüpfung

Ach, hört das dann nie auf? Wieder ein Zusammenhang, welcher so gezeigt werden soll, jedoch immer noch nicht klar ist, für was dies gut sein soll.

TABELLE 27. 1. Teil Verweise Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 13.0.1 der Antivalenz	Definition 6.0.2 der Negation	Definition 14.0.1 der NAND- Verknüpfung
1	1. Zeile	1. Zeile	3. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	2. Zeile

TABELLE 28. 2. Teil Verweise Beweis Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 14.0.1 der NAND- Verknüpfung
1	1. Zeile	2. Zeile
2	4. Zeile	1. Zeile
3	1. Zeile	4. Zeile
4	4. Zeile	3. Zeile

TABELLE 29. 3. Teil Verweise Beweis Beweis Zusammenhang Antivalenz und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 12.0.1 der Äquivalenz
1	4. Zeile	1. Zeile
2	2. Zeile	4. Zeile
3	3. Zeile	4. Zeile
4	4. Zeile	1. Zeile

Satz 86. Es seien A, B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \Leftrightarrow B) \Leftrightarrow (((A \overline{\wedge} A) \, \overline{\wedge} \, (B \overline{\wedge} B)) \, \overline{\wedge} \, (A \overline{\wedge} B))$$

Beweise. Ich möchte auch diesen Satz nicht mit logischen Transformationen beweisen sondern mittels anderer Überlegungen. Ich möchte gerne den Satz gemäß dem alternativen Satz 50 der Äquivalenz als zwei Implikation beweisen. Es sei also zuerst die Aussage

wahr. Gemäß der ersten und der vierten Zeile der Definition 12.0.1 der Äquivalenz ist dies der Fall, falls sowohl die Aussagen A wie auch B nicht wahr oder beide Aussagen wahr sind. Sind beide Aussagen nicht wahr, dann sind gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die Aussagen

 $A\overline{\wedge}A$

und

 $B\overline{\wedge}B$

wie auch

 $A\overline{\wedge}B$

wahr. Also ist gemäß der vierten Zeile der Definition 14.0.1 ist die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

nicht wahr und gemäß der dritten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$(((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}(A\overline{\wedge}B))$$

wahr. Sind jetzt jedoch beide Aussagen A wie auch B wahr, dann ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$A\overline{\wedge}B$$

nicht wahr. Also ist die Aussage

$$((A\overline{\wedge}A)\,\overline{\wedge}\,(B\overline{\wedge}B))\,\overline{\wedge}\,(A\overline{\wedge}B)$$

gemäß der Abkürzungsregel 14 der NAND-Verknüpfung wahr. Also ist auch in diesem Fall die Behauptung wahr.

Nun möchte ich mir den Fall überlegen, in welchem die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist. In diesem Fall ist gemäß der zweiten und dritten Zeile der Definition 12.0.1 der Äquivalenz die Aussage A nicht wahr und die Aussage B wahr oder aber die zweite Aussage A wahr und die Aussage B nicht wahr. Ist die Aussage A nicht wahr wahr und die Aussage B wahr, dann ist gemäß der zweiten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage A0 wahr. Da die Aussage A1 wahr ist, dann ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$B\overline{\wedge}B$$

nicht wahr. Also ist gemäß der Abkürzungsregel 8 der NAND-Verknüpfung die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

wahr. Somit ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}(A\overline{\wedge}B)$$

TABELLE 30. 1. Teil 1. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	1	1	1
2	0	1	0
3	0	0	1
4	1	0	0

nicht wahr. Auf die gleiche Art kann ich zeigen, dass die gleiche Aussage nicht wahr ist, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Denn in diesem Fall ist die Aussage

$$A\overline{\wedge}B$$

gemäß der dritten Zeile der Definition 14.0.1 der NAND-Verknüpfung wahr. Weiter ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$A\overline{\wedge}A$$

nicht wahr. Also ist gemäß der Abkürzungsregel 8 die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

wahr. Darum ist auch in diesem Fall die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}(A\overline{\wedge}B)$$

nicht wahr. Also habe ich gezeigt, dass diese Aussage nicht wahr sein kann, falls eine der beiden Aussagen A und B nicht wahr und die andere wahr ist, also die Aussage

$$A \Leftrightarrow B$$

nicht wahr ist. Damit habe ich jedoch gemäß dem alternativen Satz 50 der Äquivalenz als zwei Implikationen gezeigt, dass die Aussage

$$A \Leftrightarrow B$$

äquivalent zur Aussage

$$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}(A\overline{\wedge}B)$$

ist. Damit glaube ich jedoch, den Beweis für die Richtigkeit der Aussage erbracht zu haben. Damit ich auch wirklich sicher bin, dass die hergeleitete Aussage auch tatsächlich richtig ist (und ich Dich hoffentlich ein kleines bisschen überzeugen kann, dass dem so ist), habe ich den Beweis sowie dessen Verweise ebenfalls in Tabellenform aufgelistet. Der Beweis ist einerseits in den Tabellen 30, 31 sowie 32 abgelegt. Andererseits ist in der Tabellen 33, 34 sowie 35 aufgeschrieben. Die Verweise habe ich in den Tabellen 36, 37 sowie 37 verstaut.

TABELLE 31. 2. Teil 1. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$A\overline{\wedge}B$
1	0	1
2	1	1
3	1	1
4	1	0

TABELLE 32. 3. Teil 1. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} (A\overline{\wedge}B)$	Behauptung
1	1	1
2	0	1
3	0	1
4	1	1

TABELLE 33. 1. Teil 2. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	$A \Leftrightarrow B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
2	$\neg (A \Leftrightarrow B)$	$A\overline{\wedge}A$	$\neg (B \overline{\wedge} B)$
3	$\neg (A \Leftrightarrow B)$	$\neg (A \overline{\wedge} A)$	$B\overline{\wedge}B$
4	$A \Leftrightarrow B$	$\neg (A \overline{\wedge} A)$	$\neg (B \overline{\wedge} B)$

TABELLE 34. 2. Teil 2. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$A\overline{\wedge}B$
1	$\neg ((A \overline{\land} A) \overline{\land} (B \overline{\land} B))$	$A\overline{\wedge}B$
2	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$A\overline{\wedge}B$
3	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$A\overline{\wedge}B$
4	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$\neg (A \overline{\wedge} B)$

<includebackwardreferences>

Und wie kommt frau oder man auf diese Behauptung? Ich habe sie Online gefunden - ich hätte sie nicht selbst herausgefunden.

<includeforwardreferences>

TABELLE 35. 3. Teil 2. Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Aussage/ Fall Nr.	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} (A\overline{\wedge}B)$	$(A \Leftrightarrow B) \Leftrightarrow \\ ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} \\ (A\overline{\wedge}B)$
1	$\neg (((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} ((A\overline{\wedge}B))$	$(A \Leftrightarrow B) \Leftrightarrow ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} (A\overline{\wedge}B)$
2	$(((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} (A\overline{\wedge}B)$	$(A \Leftrightarrow B) \Leftrightarrow ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \xrightarrow{\overline{\wedge}} (A\overline{\wedge}B)$
3	$(((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} (A\overline{\wedge}B)$	$(A \Leftrightarrow B) \Leftrightarrow ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \stackrel{\Leftrightarrow}{\overline{\wedge}} (A\overline{\wedge}B)$
4	$\neg (((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} ((A\overline{\wedge}B))$	$(A \Leftrightarrow B) \Leftrightarrow \\ ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)) \overline{\wedge} \\ (A\overline{\wedge}B)$

TABELLE 36. 1. Teil Verweise Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Defintion/	Definition 12.0.1	Definition 14.0.1	Definition 14.0.1
Fall Nr.	äquivalenz	der NAND- Verknüpfung	der NAND- Verknüpfung
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

TABELLE 37. 2. Teil Verweise Beweis Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 14.0.1 der NAND- Verknüpfung
1	4. Zeile	1. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	3. Zeile
4	1. Zeile	4. Zeile

TABELLE 38. 3. Teil Verweise Beweis Beweis Zusammenhang Äquivalenz und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 12.0.1 der Äquivalenz
1	2. Zeile	4. Zeile
2	4. Zeile	1. Zeile
3	4. Zeile	1. Zeile
4	3. Zeile	4. Zeile

21.8. Zusammenhang von NOR und NAND-Verknüpfung

Nun kommt sozusagen das "pièce de résistance²". Ich möchte die NOR-Verknüpfung aus der NAND-Verknüpfung herleiten.

Satz 87. Es seien A sowie B Symbole von Aussagen, welche weder in sich selbst noch bezüglich den anderen Symbolen des Satzes widersprüchlich seinen. Dann gilt

$$(A\overline{\vee}B) \Leftrightarrow (((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)))$$

Dieser Satz bedeutet, dass die NOR-Verknüpfung als NAND-Verknüpfung dargestellt werden kann.

Beweis. Ich überlege mir wiederum, wann die Aussage

$$(((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)))$$

wahr ist. Diese ist dann wahr, falls die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

nicht wahr ist. Denn ist die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

wahr, dann ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$(((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)))$$

nicht wahr. Die Aussage

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung genau dann nicht wahr, falls sowohl die Aussage $A \overline{\wedge} A$ wie auch $B \overline{\wedge} B$ wahr sind. Die Aussagen

$$A\overline{\wedge}A$$

wie auch

 $B\overline{\wedge}B$

²der schwierigste Teil

TABELLE 39. 1. Teil 1. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	1	1	1
2	0	1	0
3	0	0	1
4	0	0	0

sind gemäß ersten Zeile der Definition genau dann wahr, falls die Aussagen A und B nicht wahr sind. Denn ist die Aussage A nicht wahr, dann ist gemäß der ersten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$A\overline{\wedge}A$$

wahr. Ist jedoch die Aussage A wahr, dann ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$A\overline{\wedge}A$$

nicht wahr.

Wenn ich $A \equiv B$ setze, kann ich ebenso folgern, dass die Aussage

$$B\overline{\wedge}B$$

genau dann wahr, falls die Aussage B nicht wahr ist. Denn ist die Aussage B nicht wahr, dann ist gemäß der ersten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$B\overline{\wedge}B$$

wahr. Ist jedoch die Aussage B wahr, dann ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$B\overline{\wedge}B$$

nicht wahr. Zusammengefasst kann ich also folgern, dass die Aussage

$$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$$

genau dann wahr ist, falls die Aussagen A und B nicht wahr sind. Das ist jedoch genau derjenige Fall, in welchem die Aussage $A\overline{\vee}B$ wahr ist. Damit meine ich den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

So, und jetzt hätte ich den Satz des Zusammenhangs der NOR- und der NAND-Verknüpfung wiederum mehr oder weniger präzise hergeleitet. Nun möchte ich diesen Satz wiederum mittels Wahrheitstafeln herleiten. Dieser ist in den Tabellen 39, 40 sowie 41 einerseits und 42, 43 sowie 44 andererseits abgelegt. Die Verweise des Beweises habe ich in den Tabellen 45, 46 sowie s47 aufgeschrieben.

TABELLE 40. 2. Teil 1. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$\frac{((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}}{((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))}$
1	0	1
2	1	0
3	1	0
4	1	0

TABELLE 41. 3. Teil 1. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/ Fall Nr.	Behauptung
1	1
2	1
3	1
4	1

TABELLE 42. 1. Teil 2. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
1	$A\overline{\vee}B$	$A\overline{\wedge}A$	$B\overline{\wedge}B$
2	$\neg (A \overline{\vee} B)$	$A\overline{\wedge}A$	$\neg (B \overline{\wedge} B)$
3	$\neg (A \overline{\vee} B)$	$\neg (A \overline{\wedge} A)$	$B\overline{\wedge}B$
4	$\neg (A \overline{\vee} B)$	$\neg (A \overline{\wedge} A)$	$\neg (B \overline{\wedge} B)$

TABELLE 43. 2. Teil 2. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge} ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
1	$\neg ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge} ((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
2	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$\neg (((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)) \overline{\wedge} (((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)))$
3	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$\neg (((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)) \overline{\wedge} (((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)))$
4	$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$	$\neg (((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge} (((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)))$

TABELLE 44. 3. Teil 2. Beweis Zusammenhang NOR- und NAND-Verknüpfung

Aussage/	$A\overline{ee}B$
Fall Nr.	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
1	$A\overline{\vee}B$
1	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
2	$A\overline{ee}B$
	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
3	$A\overline{ee}B$
3	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$
1	$A\overline{\vee}B$
4	$((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))\overline{\wedge}((A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B))$

TABELLE 45. 1. Teil Verweise Beweis Zusammenhang NOR- und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 15 der NOR- Verknüfung	Definition 14.0.1 der NAND- Verknüpfung	Definition 14.0.1 der NAND- Verknüpfung
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

TABELLE 46. 2. Teil Verweise Beweis Zusammenhang NOR- und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüpfung	Definition 14.0.1 der NAND- Verknüpfung
1	4. Zeile	1. Zeile
2	3. Zeile	4. Zeile
3	2. Zeile	4. Zeile
4	1. Zeile	4. Zeile

<includebackwardreferences>
<includeforwardreferences>

21.9. Zusammenhang von NAND und NOR-Verknüpfung

Ich habe im vorhergehenden Abschnitt die NOR-Verknüpfung als NAND-Verknüpfung dargestellt. Nun möchte ich den umgekehrten Weg gehen. Damit ich das machen kann, möchte im Unterschied zu den

TABELLE 47. 3. Teil Verweise Beweis Zusammenhang NOR- und NAND-Verknüpfung

Defintion/ Fall Nr.	Definition 12.0.1 der Äquivalenz
1	4. Zeile
2	1. Zeile
3	1. Zeile
4	1. Zeile

vorhergehenden Abschnitte mehrere Sätze im gleichen Abschnitt aufführen. Ich möchte aus dem Satz 69 heraus starten.

Satz 88. Es sei A das Symbol einer Aussage, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$A \Leftrightarrow A \overline{\vee} A$$

BEWEIS. Ist A nicht wahr, dann gilt gemäß der ersten Zeile der Definition 15 der NOR-Verknüpfung

$$A \overline{\vee} A$$

Ist jedoch A wahr, dann gilt gemäß der vierten Zeile der Definition 15 der NOR-Verknüpfung

$$\neg (A \overline{\vee} A)$$

Zusammengefasst ist die Aussage

$$A\overline{\vee}A$$

also genau dann wahr, falls die Aussage

$$\neg A$$

wahr ist. Also kann ich folgern, dass gilt

$$A\overline{\vee}A \Leftrightarrow \neg A$$

Darum glaube an dieser Stelle den Beweis erbracht zu haben und beende darum an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Nun möchte ich daran gehen, den Zusammenhang der Disjunktion mit der NOR-Verknüpfung zu finden.

SATZ 89. Es seinen A und B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt

$$A \wedge B \Leftrightarrow (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)$$

TABELLE 48. 1. Teil 1. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\vee}A$	$B\overline{\vee}B$
1	0	1	1
2	0	1	0
3	0	0	1
4	1	0	0

TABELLE 49. 2. Teil 1. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$	Behauptung
1	0	1
2	0	1
3	0	1
4	1	1

BEWEIS. Ich möchte mir überlegen, unter welchen Umständen die Aussage

$$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$$

wahr ist. Dies ist gemäß der ersten Zeile der Definition 15 der NOR-Verknüpfung dann der Fall, falls sowohl die Aussagen

$$A\overline{\vee}A$$

wie auch

$$B\overline{\vee}B$$

nicht wahr sind. Gemäß dem vorhergehenden Satz 88 sind die Aussagen

$$A\overline{\vee}A$$

wie auch

$$B\overline{\vee}B$$

genau dann nicht wahr, falls die Aussagen A wie auch B wahr sind. Also ist die Aussage

$$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$$

genau dann wahr, falls die Aussagen A wie auch B wahr sind. Also kann ich daraus schließen, dass die beiden Aussagen Äquivalent sind. Darum meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Wiederum möchte ich den Beweis noch mittels Wahrheitstafeln ebenfalls führen. Dieser ist einerseits in den Tabellen 48 sowie 49 andererseits jedoch in den Tabellen 50 sowie 51 niedergeschrieben. Die Verweise des Beweises ist in den Tabellen 52 und 52 abgelegt.

TABELLE 50. 1. Teil 2. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Aussage/ Fall Nr.	$A \wedge B$	$A\overline{\vee}A$	$B\overline{\vee}B$
1	$\neg (A \land B)$	$A\overline{\vee}A$	$B\overline{\vee}B$
2	$\neg (A \land B)$	$A\overline{\vee}A$	$\neg (B \overline{\lor} B)$
3	$\neg (A \land B)$	$\neg (A \overline{\vee} A)$	$B\overline{\vee}B$
4	$A \wedge B$	$\neg (A \overline{\vee} A)$	$\neg (B\overline{\vee}B)$

TABELLE 51. 2. Teil 2. Beweis des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Aussage/ Fall Nr.	$(A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)$	$ \begin{array}{ccc} A \wedge B & \Leftrightarrow \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $
1	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$\begin{array}{c} A \wedge B & \Leftrightarrow \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \end{array}$
2	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$ \begin{array}{ccc} A \wedge B & \Leftrightarrow \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $
3	$\neg \left((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \right)$	$\begin{array}{c} A \wedge B & \Leftrightarrow \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \end{array}$
4	$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$	$ \begin{array}{ccc} A \wedge B & \Leftrightarrow \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $

TABELLE 52. 1. Teil Verweise des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Defintion/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 15 der NOR- Verknüpfung	Definition 15 der NOR- Verknüpfung
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

TABELLE 53. 2. Teil Verweise des Satzes des Zusammenhangs der Konjunktion und der NOR-Verknüpfung

Defintion/ Fall Nr.	Definition 15 der NOR- Verknüpfung	Definition 12.0.1 der Äquivalenz
1	4. Zeile	1. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	1. Zeile	4. Zeile

<includebackwardreferences>

<includeforwardreferences>

Nun bin ich fast am Ziel:

Satz 90. Es seien A,B Symbole, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$A\overline{\wedge}B \Leftrightarrow ((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))\overline{\vee}((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))$$

BEWEIS. Ich möchte mir überlegen, unter welchen Umständen die Aussage

$$((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$$

nicht wahr ist. Diese Aussage ist dann nicht wahr, falls die Aussage

$$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$$

wahr ist. Denn ist die Aussage

$$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$$

nicht wahr, dann ist gemäß der ersten Zeile der Definition 15 die Aussage

$$((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))\overline{\vee}((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))$$

wahr. Ist jedoch die Aussage

$$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$$

wahr, dann ist gemäß der vierten Zeile der Definition 15 die Aussage

$$((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))\overline{\vee}((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))$$

nicht wahr. Gemäß dem vorhergehenden Satz 89 ist die Aussage

$$(A\overline{\vee}A)\,\overline{\vee}\,(B\overline{\vee}B)$$

äquivalent zur Konjunktion

$$A \wedge B$$

Also ist die Aussage

$$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$$

genau dann wahr, falls die Aussagen A und B wahr sind. Also kann ich folgern, dass die Aussage

$$((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))\overline{\vee}((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))$$

genau dann nicht wahr, falls sowohl die Aussage A wie auch die Aussage B wahr sind. Gemäß dem Äquivalenz-Negationssatz 60 kann ich dann folgern, dass die Aussage

$$((A\overline{\vee}A)\,\overline{\vee}\,(B\overline{\vee}B))\,\overline{\vee}\,((A\overline{\vee}A)\,\overline{\vee}\,(B\overline{\vee}B))$$

genau dann wahr ist, falls die Aussage

$$\neg (A \land B)$$

wahr ist. Gemäß dem Satz 68 ist die Aussage

$$\neg (A \land B)$$

TABELLE 54. 1. Teil 1. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$A\overline{\vee}A$	$B\overline{\vee}B$
1	1	1	1
2	1	1	0
3	1	0	1
4	0	0	0

TABELLE 55. 2. Teil 1. Beweis des Satzes des Zusammenhangs der NAND und der NOR-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$	$ \begin{array}{c} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} \\ ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \end{array} $
1	0	1
2	0	1
3	0	1
4	1	0

auch äquivalent zur Aussage

$$A\overline{\wedge}B$$

Da die Äquivalenz transitiv ist, kann ich daraus folgern, dass auch die Aussage

$$((A\overline{\vee}A)\,\overline{\vee}\,(B\overline{\vee}B))\,\overline{\vee}\,((A\overline{\vee}A)\,\overline{\vee}\,(B\overline{\vee}B))$$

äquivalent zur Aussage

$$A\overline{\wedge}B$$

ist. Somit bin ich jetzt an meinem Ziel angekommen und habe Dich, liebe Leserin oder lieber Leser, hoffentlich überzeugt, dass ich den Nachweis für die Richtigkeit der Behauptung des Satzes erbracht habe. Bevor ich den Satz wiederum beende, möchte ich den Satz wiederum mit Wahrheitstafeln beweisen. Der Beweis des Satzes ist einerseits in den Tabellen 54, 55 sowie 56 abgelegt. Andererseits habe ich den Beweis in den Tabellen 57, 58 sowie 59 aufgeschrieben. Die Verweise des Beweises sind in den Tabellen 60, 61 sowie 62 festgehalten.

<includebackwardreferences>

<includeforwardreferences>

Wenn ich übrigens die folgenden Sätze der Äquivalenzen gegenüberstelle (wobei ich wie immer voraussetzen kann, dass A und B Symbole für Aussagen seien, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien):

$$A \overline{\vee} B \Leftrightarrow ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B)) \overline{\wedge} ((A \overline{\wedge} A) \overline{\wedge} (B \overline{\wedge} B))$$
$$A \overline{\wedge} B \Leftrightarrow ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$$

TABELLE 56. 3. Teil 1. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung

Aussage/ Fall Nr.	Behauptung
1	1
2	1
3	1
4	1

TABELLE 57. 1. Teil 2. Beweis des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$A\overline{\vee}A$	$B\overline{\vee}B$
1	$A\overline{\wedge}B$	$A\overline{\vee}A$	$B\overline{\vee}B$
2	$A\overline{\wedge}B$	$A\overline{\vee}A$	$\neg (B\overline{\vee}B)$
3	$A\overline{\wedge}B$	$\neg (A \overline{\vee} A)$	$B\overline{\vee}B$
4	$\neg (A \overline{\wedge} B)$	$\neg (A \overline{\lor} A)$	$\neg (B\overline{\vee}B)$

TABELLE 58. 2. Teil 2. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung

Aussage/ Fall Nr.	$(A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B)$	$ \begin{array}{cc} (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \overline{\vee} \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \end{array} $
1	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$ \begin{array}{cc} (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \overline{\vee} \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $
2	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$ \begin{array}{cc} (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \overline{\vee} \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $
3	$\neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$	$ \begin{array}{cc} (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) & \overline{\vee} \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \end{array} $
4	$(A\nabla A)\nabla(B\nabla B)$	$ \neg ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B) \overline{\vee} \\ (A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) $

TABELLE 59. 3. Teil 2. Beweis des Satzes des Zusammenhangs von NAND- und NOR-Verknüpfung

Aussage/ Fall Nr.	$A \overline{\wedge} B \Leftrightarrow ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$
1	$A\overline{\wedge}B \Leftrightarrow ((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))\overline{\vee}((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))$
2	$A \overline{\wedge} B \Leftrightarrow ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B)) \overline{\vee} ((A \overline{\vee} A) \overline{\vee} (B \overline{\vee} B))$
3	$A\overline{\wedge}B \Leftrightarrow ((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))\overline{\vee}((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))$
4	$A\overline{\wedge}B \Leftrightarrow ((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))\overline{\vee}((A\overline{\vee}A)\overline{\vee}(B\overline{\vee}B))$

TABELLE 60. 1. Teil Verweise des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung

Defintion/ Fall Nr.	Definition 8.0.2 der NAND- Verknüpfung	Definition 15 der NOR- Verknüpfung	Definition 15 der NOR- Verknüpfung
1	1. Zeile	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	4. Zeile	1. Zeile
4	4. Zeile	4. Zeile	4. Zeile

TABELLE 61. 2. Teil Verweise des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung

Defintion/ Fall Nr.	Definition 15 der NOR- Verknüpfung	Definition 15 der NOR- Verknüpfung
1	4. Zeile	1. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	1. Zeile	4. Zeile

TABELLE 62. 2. Teil Verweise des Satzes des Zusammenhangs der NAND- und der NOR-Verknüpfung

Defintion/ Fall Nr.	Definition 12.0.1 der Äquivalenz
1	4. Zeile
2	4. Zeile
3	4. Zeile
4	1. Zeile

dann sehe ich zu meiner Verblüffung, dass die beiden Aussagen rein durch Ersetzung der Symbole durch die jeweils andere Aussage erzeugt werden können. Dabei ist die erste Aussage vorher der Satz 87 des Zusammenhangs von NOR- und NAND-Verknüpfung und die zweite Aussage der Satz 90 des Zusammenhangs von NAND- und NOR-Verknüpfung.

Ersetze ich in der ersten Äquivalenz jedes Symbol der NOR-Verknüpfung $(\overline{\vee})$ durch das Symbol der NAND-Verknüpfung $(\overline{\wedge})$ und gleichzeitig jedes Symbol der NAND-Verknüpfung wiederum durch das Symbol der NOR-Verknüpfung, dann erhalte ich die zweite Äquivalenz. Und die zweite Äquivalenz kann durch die genau gleiche Prozedur in die erste Äquivalenz umgewandelt werden. Dieses Paar von Aussagen

kann mit dem folgenden Paar von Aussagen verglichen werden (wobei wiederum $A, B \in \Omega$ sei):

$$\neg (A \lor B) \Leftrightarrow \neg (\neg (\neg A \land \neg B))$$
$$\neg (A \land B) \Leftrightarrow \neg (\neg (\neg A \lor \neg B))$$

Dabei ist ist die ersten Aussage der Satz 46 der Negation der Disjunktion und die zweite Aussage der Satz 44 der Negation der Konjunktion. Es mag eine Spielerei sein oder das Tor zu einer komplett neuen, faszinierenden Welt? Ich weiß es nicht. Aber ich möchte mich jetzt einer anderen Frage zuwenden. Der Frage nämlich: Wie viele logischen Operationen sind nötig, damit die restlichen logischen Operationen daraus erzeugt werden können? Es ist genau eine. Dabei kann es sich beispielsweise um die NAND- oder die NOR-Operation handeln. Aber ich vermute, dass es dass es auch noch mindestens eine weitere Operation gibt, welche das Gleiche leistet.

21.10. NAND-Verknüpfung als besondere Implikation

Ich habe diesen Abschnitt geschrieben, weil ich zeigen möchte, dass es noch weitere Arten der Verknüpfung geben muss, welche alle anderen logischen Verknüpfung erzeugen kann:

Satz 91. Es seien A, B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien.. Dann gilt

$$A\overline{\wedge}B \Leftrightarrow (A \Rightarrow (\neg B))$$

BEWEIS. Ich möchte mir überlegen, unter welchen Bedingungen sowohl die NAND-Verknüpfung wie auch die Aussage

$$A \Rightarrow (\neg B)$$

nicht wahr sind. Bei der NAND-Verknüpfung ist dies gemäß ihrer Definition 14.0.1 dann der Fall, falls sowohl A wie auch B wahr sind. Bei der Aussage $A\Rightarrow (\neg B)$ ist dies gemäß der Definition 9.0.1 dann der Fall, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Die Aussage B ist wiederum gemäß der Definition 6.0.2 der Negation dann nicht wahr, falls die Aussage B wahr ist. Wenn ich das zusammenfasse, dann ist also die Aussage

$$A \Rightarrow (\neg B)$$

genau dann nicht wahr, falls A wahr und B nicht wahr sind. Das heißt, dass dies in genau den gleichen Fällen zutrifft, in welchen auch die NAND-Verknüpfung der beiden Aussagen nicht wahr ist. Somit muss (auch gemäß dem Äquivalenz-Negation-Satz 60) die NAND-Verknüpfung der beiden Aussagen genau dann wahr sein, falls die Aussage

$$A \Rightarrow (\neg B)$$

TABELLE 63. 1. Teil 1. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$\neg B$
1	1	1
2	1	0
3	1	1
4	0	0

TABELLE 64. 2. Teil 1. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A \Rightarrow \neg B$	Behauptung
1	1	1
2	1	1
3	1	1
4	0	1

TABELLE 65. 1. Teil 2. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$\neg B$
1	$A\overline{\wedge}B$	$\neg B$
2	$A\overline{\wedge}B$	$\neg (\neg B)$
3	$A\overline{\wedge}B$	$\neg B$
4	$\neg (A \overline{\wedge} B)$	$\neg (\neg B)$

wahr ist. Also bin ich der Meinung, dass in allen Fällen die Äquivalenz der beiden Aussagen erbracht ist. Also meine ich, den Beweis für die Richtigkeit des Satzes gezeigt zu haben.

Ich werden den Beweis jedoch ebenfalls mit Wahrheitstafeln erbringen. Die Beweise habe ich einerseits in den Tabellen 63 sowie 64 abgelegt. Andererseits ist er in den Tabellen 65 sowie 66 abgelegt. Die Verweise der Tabelle kannst Du in den Tabelle 67 sowie 68 nachlesen falls Du das möchtest!

<includebackwardreferences>
<includeforwardreferences>

TABELLE 66. 2. Teil 2. Beweis des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
1	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
2	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
3	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
4	$\neg (A \Rightarrow \neg B)$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$

TABELLE 67. 1. Teil der Verweise des Beweises des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Defintion/ Fall Nr.	Definition 14.0.1 der NAND- Verknüfpung	Definition 6.0.2 der Negation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	2. Zeile

TABELLE 68. 2. Teil der Verweise des Beweises des Zusammenhangs der NAND-Verknüpfung und einer erweiterten Form der Implikation

Defintion/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 12.0.1 der Äquivalenz
1	2. Zeile	4. Zeile
2	1. Zeile	4. Zeile
3	4. Zeile	4. Zeile
4	3. Zeile	1. Zeile

21.11. NOR-Verknüpfung als besondere Implikation

Wenn ich gerade dabei bin, möchte ich mir überlegen, ob auch die NOR-Verknüpfung noch zu einem anderen logischen Ausdruck äquivalent sein muss, welcher auf den ersten Blick wenig mit der NOR-Verknüpfung zu tun hat. Ich probiere es mit dem folgenden Satz:

Satz 92. Es seien A, B Symbolen von Aussage, welche in sich selbst sowie in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt

$$A\overline{\vee}B \Leftrightarrow \neg (\neg A \Rightarrow B)$$

Tabelle 69. 1. Teil 1. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A\overline{\vee}B$	$\neg A$	$\neg A \Rightarrow B$
1	1	1	0
2	0	1	1
3	0	0	1
4	0	0	1

Beweis. Ich möchte mir überlegen, unter welchen Umständen die Aussage

$$\neg (\neg A \Rightarrow B)$$

wahr ist. Dies ist gemäß der ersten Zeile der Definition 6.0.2 der Negation dann der Fall, falls die Aussage

$$\neg A \Rightarrow B$$

nicht wahr ist. Diese Aussage ist gemäß der dritten Zeile der Definition 9.0.1 dann der Fall, falls die Aussage $\neg A$ wahr, die Aussage B jedoch nicht wahr ist. Die Aussage $\neg A$ ist gemäß der ersten Zeile der Definition 6.0.2 der Negation dann wahr, falls die Aussage A nicht wahr ist. Wenn ich die Voraussetzungen zusammensetze, dann ist die Aussage

$$\neg (\neg A \Rightarrow B)$$

genau dann wahr, falls sowohl die Aussage A wie auch die Aussage B nicht wahr sind. Das ist jedoch genau derjenige Fall, in welchem die NOR-Verknüpfung der beiden Aussagen wahr ist. Damit meine ich, den Beweis für die Richtigkeit der Aussage erbracht zu haben.

Jedoch werde ich den Beweis noch einmal mit Hilfe von Wahrheitstafeln zu erbringen versuchen, damit ich einigermaßen sicher sein kann, dass der Satz wirklich richtig ist. Der Beweis ist einerseits in den Tabellen 69 und 70 sowie den Tabellen 70 und 72 andererseits abgelegt. Die Beweise sind in den Tabellen 72 sowie 72 abgelegt. Nun beende ich an dieser Stelle die weitere Beweisführung.

<includebackwardreferences> <includeforwardreferences>

21.12. Erzeugendensysteme der Logik - Zusammenfassung

Für was soll das wieder gut sein? Ich vermute, dass es eine der wichtigen Aufgaben der Mathematik ist, die Dinge möglichst einfach darzustellen. Da gibt es beeindruckende Entsprechungen in der Welt der Wissenschaft. Eine, welche ich erwähnen möchte, ist das Periodensystem der Atome. Obwohl es sehr verschiedene Materialien (wie Gesteinsarten

TABELLE 70. 2. Teil 1. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$\neg (A \Rightarrow \neg B)$	Behauptung
1	1	1
2	0	1
3	0	1
4	0	1

TABELLE 71. 1. Teil 2. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A\overline{\vee}B$	$\neg A$	$\neg A \Rightarrow B$
1	$A\overline{\vee}B$	$\neg A$	$\neg (\neg A \Rightarrow B)$
2	$\neg (A \overline{\vee} B)$	$\neg A$	$\neg A \Rightarrow B$
3	$\neg (A \overline{\lor} B)$	$\neg (\neg A)$	$\neg A \Rightarrow B$
4	$\neg (A \overline{\vee} B)$	$\neg (\neg A)$	$\neg A \Rightarrow B$

TABELLE 72. 2. Teil 2. Beweis des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Aussage/ Fall Nr.	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
1	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
2	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
3	$A \Rightarrow \neg B$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$
4	$\neg (A \Rightarrow \neg B)$	$\neg (A \Rightarrow \neg B) \Leftrightarrow A \overline{\wedge} B$

TABELLE 73. 1. Teil der Verweise des Beweises des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Defintion/	Definition 14.0.1	Definition 6.0.2	Definition 9.0.1
Fall Nr.	der NAND-	der	der
rall Nr.	Verknüfpung	Negation	Implikation
1	1. Zeile	1. Zeile	3. Zeile
2	2. Zeile	1. Zeile	4. Zeile
3	3. Zeile	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile	2. Zeile

Tabelle 74. 2. Teil der Verweise des Beweises des Zusammenhangs der NOR-Verknüpfung und einer erweiterten Form der Implikation

Defintion/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 12.0.1 der Äquivalenz
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	2. Zeile	1. Zeile

und Kunststoffe) und Zustandsformen (wie flüssig, gasförmig, plasmaförmig, fest, kristallin) gibt, konnten Forscherinnen und Forscher im Laufe der Zeit entschlüsseln, dass praktisch alle diese Stoffe aus verschiedenen chemischen Elementen entstehen, welche sich in bestimmter Art und Weise zu diesen Erscheinungsformen zusammenfinden. Zwar sind diese chemischen Elemente nicht "einfach", jedoch "einfacher" als all diese verschiedenen Erscheinungsformen.

Aber auch die menschliche Sprache und Erkenntnis ist voll von Bemühungen, die Dinge zu vereinfachen, indem sie in geeigneter Art und Weise geordnet werden. Beispielsweise sind Kühe Wiederkäuer und als solche Säugetiere und als solche Tiere und als solche Lebewesen. Es geht jedoch auch technischer und weniger geheimnisvoll. Ein Auto ist ein vierrädriges Fahrzeug mit Antrieb. Diese Beispiele mögen zeigen, dass es hilfreich sein kann, Ordnung in das Leben zu bringen (auch wenn es wahrscheinlich oftmals nur ein frommer Wunsch ist, ein geordnetes Leben leben zu können).

In der Logik kann jetzt gefragt werden, ob alle logischen Verknüpfungen völlig unabhängig voneinander sind. Und wie ich bereits in den Kapiteln 14 respektive 15 vollmundig verkündet habe: Nein, das sind sie nicht. Sie können auseinander erzeugt werden. Es reicht im Prinzip eine logische Verknüpfung, damit die anderen aus ihr erzeugt werden kann. Das ist dann nützlich, um damit Computer und ähnliche Maschinen zu bauen (wie die sogenannten "Smartphones"). Aber eine direkte Anwendung in der Mathematik kenne ich nicht. Sei's drum. Ich finde es trotzdem interessant.

Doch welche Verknüpfungen sind überhaupt abzuleiten? Es sind dies:

- die Negation
- die Identität
- die Konjunktion
- die Disjunktion
- die Implikation
- die Äquivalenz

- die Antivalenz
- die NOR-Verknüpfung

sowie

• die NAND-Verknüpfung

Nun habe ich in den Abschnitten 21.1 bis 21.8 zu zeigen versucht, dass alle anderen Verknüpfungen als NAND-Verknüpfungen aufgefasst werden können. Also können alle logischen Verknüpfungen als NAND-Verknüpfungen aufgefasst werden. Das mag irgendwie abgehoben tönen. Und als ich den Text zum ersten Mal geschrieben hatte, dann hatte ich das Gefühl ebenfalls. Jedoch hat sich dieses Gefühl bei mir in der Zwischenzeit wieder gelegt, dann mir ist in den Sinn gekommen, dass gemäß dem Satz 68 die NAND-Verknüpfung als Verkettung einer Konjunktion, gefolgt von einer Negation aufgefasst werden kann.

Es muss also gelten, wobei $A, B \in \Omega$ sein soll:

$$(A \overline{\wedge} B) \Leftrightarrow \neg (A \wedge B)$$

Wenn also jetzt jede logische Verknüpfung als Verkettung von NAND-Verknüpfungen aufgefasst werden kann, dann bedeutet dies jedoch, dass jede logische Verknüpfung auch als Verkettungen von Konjunktionen und Negationen aufgefasst werden kann. Das tönt vielleicht für Deine Ohren immer noch sehr abstrakt und vage. Aber die Bedeutung dessen finde ich zumindest recht anschaulich - jedoch auch ziemlich banal: Es gibt keine logische Aussage, welche nicht darauf zurückgeführt werden könnte auf das, was gilt und was nicht gilt. Wobei ich wiederum präzisieren muss: Wenn ich sage, dass etwas nicht gilt, dann meine ich nicht, dass ich immer zeigen kann, dass etwas falsch wäre. Vergleiche dazu mit der Einführung in das Kapitel über die 6 der Negation.

Aber damit nicht genug: Gemäß dem Satz 44 kann die Konjunktion wiederum als Kombination von Disjunktion und Negation erzeugt werden. Also kann die NAND-Verknüpfung ebenfalls wiederum als Kombination von Disjunktion und Negation erzeugt werden. Das bedeutet jedoch:

Satz 93. Alle logischen Verknüpfungen auch als Kombinationen von Negationen und Disjunktionen dargestellt werden können.

Dies kannst Du auch daran ablesen, dass die NAND-Verknüpfung ihrerseits als Verkettung von NOR-Verknüpfungen dargestellt werden kann (vergleiche mit dem Satz 90). Welche anderen Erzeugendensysteme in der Logik vorhanden sind, kann ich so nicht sagen. Wahrscheinlich sind jedoch solche vorhanden. Ein interessanter Kandidat ist die Implikation. Ich habe in den Sätzen 91 sowie 92 zu zeigen versucht, dass die NAND- und die NOR-Verknüpfung wiederum als Kombination von Negation und Implikation verstanden werden kann. Ich würde es jetzt gerne Dir überlassen, darüber zu forschen, welche Erzeugendensysteme sonst noch möglich wären. Aber ich denke nicht, dass es viele Lorbeeren

diesbezüglich zu holen gäbe. Ich kann nicht sagen, ob es diesbezüglich schon Untersuchungen gab. Trotzdem möchte ich das an dieser Stelle aufschreiben, da es das erste Mal wäre, wo ich etwas aus freien Stücken nicht weiter ausführen möchte.

KAPITEL 22

Substitutionssätze

Das mit den Substitutionssätzen ist so eine Sache. Wo ich sie auch immer hinstelle, ist es nicht so gut. Doch um was geht es bei diesen Sätzen? Im vorhergehenden Kapitel habe ich mich gefragt, wieso etwas so sein muss. Denke beispielsweise an den Satz der Schlussfolgerung: Sind A und B Symbole von Aussagen, welche in sich selbst und bezüglich den anderen Aussagen widerspruchsfrei sind, so gilt:

$$A \wedge (A \Rightarrow B) \Rightarrow B$$

Da war es mir wichtig, zu zeigen, dass ich diesen logischen Satz beweisen konnte. In diesem Kapitel geht es mir jedoch um etwas anderes: Es geht mir um die Frage, wie logische Umformungen vorgenommen werden können. Auch wenn ich mir bewusst bin, dass dies wahrscheinlich noch nicht die letzte Fassung dieser Art ist, werde ich trotzdem versuchen, eine erste Fassung zu schreiben.

Bezüglich den Substitutionssätzen ist es auch darum eine Sache, weil die eigentlich fast alle Sätze sofort intuitiv klar sind (außer dem ersten Substitutionssatz 94 der Negation unten). Jedoch geht es mir eben gerade nicht darum, zu zeigen, was ich zeigen kann und was nicht, sondern vor allem, wie ich darauf komme. Und dieses Kapitel ist aus einer veritablen Krise meinerseits entstanden. Ich habe verschiedene Sachen ausprobiert - und eigentlich nichts hat richtig funktioniert. Darum mache ich an dieser Stelle noch einmal einen Anlauf und hoffe, dass es dann jetzt endlich klappt.

22.1. Substitutionssatz der Negation

Ich starte zuerst mit diesem Substitutionssatz:

Satz 94. Es seien $A, B \in \Omega$, also Symbole von Aussagen, welche weder in sich selbst noch bezüglich anderen Aussagen und Symbolen widersprüchlich seien. Dann gilt die Aussage

$$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$$

BEWEIS. Ich möchte zuerst versuchen, den Beweis mit sprachlichen Mitteln zu erbringen. Bezüglich der Aussage

$$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$$

Ist die Aussage $\neg A$ oder die Aussage $B \Rightarrow A$ nicht wahr, dann ist gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$\neg A \land (A \Leftrightarrow B)$$

nicht wahr. Da die Aussage

$$\neg A \land (A \Leftrightarrow B)$$

ist in diesem Fall die Aussage

$$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$$

gemäß der Abkürzungsregel 9 der Implikation wahr. Also kann ich im folgenden annehmen, dass die Aussagen $\neg A$ wie auch die Aussage $B \Rightarrow A$ wahr sind. Ist die Aussage $\neg A$ wahr, dann kann gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage A nicht wahr sein. Ist jedoch die Aussage A nicht wahr, dann auch die Aussage B nicht wahr sein. Denn in diesem Fall ist gemäß der ersten Zeile der Definition 9.0.1 der Implikation die Aussage

$$B \Rightarrow A$$

wahr. Wäre die Aussage B wahr, dann wäre gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$B \Rightarrow A$$

nicht wahr. Da nun die Aussage B nicht wahr sein kann, muss die Aussage B gemäß der ersten Zeile der Definition 6.0.2 der Negation wahr sein. Also muss auch in diesem Fall die Aussage

$$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$$

wahr sein. Somit glaube ich gezeigt zu haben, dass es nicht möglich ist, Aussagen A und B derart zu finden, dass die Aussage

$$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$$

nicht wahr ist. Darum muss gemäß der abgeschwächten Form des Satzes 11 der doppelten Negation diese Aussage wahr sein. Somit glaube ich, die Beweis für die Richtigkeit des Satzes erbracht zu haben und beende an dieser Stelle... Stopp! Fast hätte ich es vergessen. Ich möchte den Satz noch mittels Wahrheitstafeln beweisen. In den Tabellen 1 sowie 2 einerseits und 3 sowie 4 andererseits habe ich den Beweis aufgeschrieben. Die Verweise der Beweise habe ich in den Tabellen 5 sowie 6 abgelegt. Nun glaube ich behaupten zu können, dass ich den Beweis für die Richtigkeit des Satzes erbrachte habe und beende aus diesem Grund die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Nun kommt der zweite Substitutionssatz der Negation:

TABELLE 1. 1. Teil 1. Beweis Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg A$	$B \Rightarrow A$	$\neg A \land (B \Rightarrow A)$
1	1	1	1
2	1	0	0
3	0	1	0
4	0	1	0

TABELLE 2. 2. Teil 1. Beweis Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg B$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1

TABELLE 3. 1. Teil 2. Beweis Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg A$	$B \Rightarrow A$	$\neg A \land (B \Rightarrow A)$
1	$\neg A$	$B \Rightarrow A$	$\neg A \land (B \Rightarrow A)$
2	$\neg A$	$\neg (B \Rightarrow A)$	$\neg \left(\neg A \land (B \Rightarrow A)\right)$
3	$\neg (\neg A)$	$B \Rightarrow A$	$\neg \left(\neg A \land (B \Rightarrow A)\right)$
4	$\neg (\neg A)$	$B \Rightarrow A$	$\neg (\neg A \land (B \Rightarrow A))$

TABELLE 4. 2. Teil 2. Beweis Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg B$	$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$
1	$\neg B$	$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$
2	$\neg (\neg B)$	$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$
3	$\neg B$	$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$
4	$\neg (\neg B)$	$\neg A \land (B \Rightarrow A) \Rightarrow \neg B$

Satz 95. Es seien A, B Symbole für Aussagen, welche nicht in sich selbst oder in Bezug auf die anderen den Symbolen des Satzes widersprüchlich seien. Dann gilt die Aussage

$$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$$

BEWEIS. Angenommen, die Aussage sei nicht wahr. Dann müsste es gemäß der dritten Zeile der Definition 9.0.1 der Implikation Aussagen A,B derart geben, dass die Aussage $\neg B$ nicht wahr, die Aussage

$$\neg A \land (A \Leftrightarrow B)$$

TABELLE 5. 1. Teil Verweise Beweis Substitutionssatz der Negation

Aussage/ Fall Nr.	Definition 6.0.2 der Negation	Definition 9.0.1 der Implikation	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	2. Zeile
4	2. Zeile	4. Zeile	2. Zeile

TABELLE 6. 2. Teile Verweise Beweis Substitutionssatz der Negation

Aussage/ Fall Nr.	Definition 6.0.2 der Negation	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile

jedoch wahr wäre. Da die Aussage $\neg B$ nicht wahr sein könnte, müsste gemäß der zweiten Zeile der Definition 6.0.2 der Negation die Aussage B wahr sein. Denn wäre die Aussage B selbst nicht wahr, dann wäre die Aussage $\neg B$ gemäß der ersten Zeile der Definition 6.0.2 der Negation wahr. Da die Aussage

$$\neg A \land (A \Leftrightarrow B)$$

wahr sein müsste, müsste gemäß dem Satz 54, welcher besagt, dass aus der Konjunktion die Aussage folgt, die Aussage $\neg A$ wahr sein. Somit könnte die Aussage A nicht wahr sein. Denn wäre die Aussage A wahr, dann wäre gemäß der zweiten Zeile der Definition 6.0.2 der Negation die Aussage A nicht wahr. Wäre jedoch die Aussage A nicht wahr, dann wäre gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage $\neg A$ wahr. Nun hätte ich zusammengefasst also die Situation, dass die Aussage A nicht wahr sein könnte, die Aussage B jedoch wahr sein müsste. Jedoch wäre in diesem Fall die Aussage

$$A \Leftrightarrow B$$

gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz nicht wahr. Somit wäre gemäß der dritten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$\neg A \land (A \Leftrightarrow B)$$

Tabelle 7. 1. Teil 1. Beweis 2. Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg A$	$A \Leftrightarrow B$	$\neg A \land (A \Leftrightarrow B)$
1	1	1	1
2	1	0	0
3	0	0	0
4	0	1	0

Tabelle 8. 2. Teil 1. Beweis 2. Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg B$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1

nicht wahr. Also wäre die gesamte Aussage

$$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$$

wiederum wahr. Also meine ich damit gezeigt zu haben, dass es keine Aussagen mit der Bezeichnung A sowie B geben kann, so dass die Aussage

$$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$$

nicht wahr ist. Also meine ich gemäß dem abgeschwächten Satz 11 der doppelten Negation folgern zu können, dass für alle Aussagen, welche mit den Symbolen A wie auch B bezeichnet werden, die Aussage

$$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$$

wahr ist. Damit meine ich, die Richtigkeit des Beweises erbracht zu haben und schreibe den Beweis zur Sicherheit noch tabellarisch auf. In den Tabellen 8 sowie 7 einerseits und 9 sowie 10 andererseits habe ich den Beweis aufgeschrieben. Die Verweise der Beweise habe ich in den Tabellen 11 sowie 12 abgelegt. Somit glaube ich, den Beweis für die Richtigkeit der Behauptung dieses Satzes erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

22.2. Substitutionssätze der Konjunktion

Auch dieser Satz ist sozusagen der Gipfel der Einfaltlosigkeit. Darum werde ich ihn ohne weitere Umschweife an dieser Stelle formulieren und beweisen.

TABELLE 9. 1. Teil 2. Beweis 2. Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg A$	$A \Leftrightarrow B$	$\neg A \land (A \Leftrightarrow B)$
1	$\neg A$	$A \Leftrightarrow B$	$\neg A \land (A \Leftrightarrow B)$
2	$\neg A$	$\neg (A \Leftrightarrow B)$	$\neg (\neg A \land (A \Leftrightarrow B))$
3	$\neg (\neg A)$	$\neg (A \Leftrightarrow B)$	$\neg (\neg A \land (A \Leftrightarrow B))$
4	$\neg (\neg A)$	$A \Leftrightarrow B$	$\neg (\neg A \land (A \Leftrightarrow B))$

Tabelle 10. 2. Teil 2. Beweis 2. Substitutionssatz der Negation

Aussage/ Fall Nr.	$\neg B$	$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$
1	$\neg B$	$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$
2	$\neg (\neg B)$	$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$
3	$\neg B$	$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$
4	$\neg (\neg B)$	$\neg A \land (A \Leftrightarrow B) \Rightarrow \neg B$

TABELLE 11. 1. Teil Verweise Beweis 2. Substitutionssatz der Negation

Aussage/ Fall Nr.	Definition 6.0.2 der Negation	Definition 12.0.1 der Implikation	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile

TABELLE 12. 2. Teile Verweise Beweis 2. Substitutionssatz der Negation

Aussage/ Fall Nr.	Definition 6.0.2 der Negation	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile

Satz 96. Es seien $A,B,C\in\Omega$, also Symbole von Aussagen, welche weder in sich selbst noch bezüglich anderen Aussagen und Symbolen widersprüchlich seien. Dann gilt die Aussage

$$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$$

Beweis. Ist die Aussage $A \wedge B$ oder die Aussage $A \Rightarrow C$ nicht wahr, dann ist die Aussage

$$A \wedge B \wedge (A \Rightarrow C)$$

gemäß dem Minimumprinzip 8 der Konjunktion nicht wahr. Da die letzte Aussage in diesem Fall nicht wahr ist, ist in diesem Fall aufgrund der der Abkürzungsregel 9 der Implikation die Aussage

$$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$$

bereits wahr. Ist die Aussage A oder B nicht wahr, dann ist gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$A \wedge B$$

nicht wahr. Also ist wiederum gemäß der der Abkürzungsregel 9 der Implikation die zu beweisende Aussage

$$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$$

bereits wahr. Also kann ich im folgenden davon ausgehen, dass die Aussagen A, B sowie $A \Rightarrow C$ wahr sind. Denn in allen anderen Fällen ist die zu beweisende Aussage bereits wahr. Ist die Aussage A wahr, dann muss aufgrund der als wahr angenommen Aussage

$$A \Rightarrow C$$

sowie aufgrund des Satzes 16 der Schlussfolgerung die Aussage C ebenfalls wahr sein. Denn wäre die Aussage C nicht wahr, dann wäre die Implikation

$$A \Rightarrow C$$

aufgrund der dritten Zeile der Definition 9.0.1 der Implikation nicht wahr. Da nun jedoch sowohl die Aussagen A und B wie auch die Aussage C wahr sind, ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$C \wedge B$$

ebenfalls wahr. Somit ist gemäß der vierten Zeile der Definition 9.0.1 die gesamte Aussage

$$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$$

wiederum wahr. Also meine ich gezeigt zu haben, dass in allen denkbaren Fällen die Aussage

$$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$$

wahr ist und der Beweis für die Richtigkeit des Satzes somit erbracht ist. Ich habe den Beweis wiederum ebenfalls in Form von Wahrheitstafeln erbracht. In den Tabellen 13 sowie 14 einerseits und 15 sowie 16 andererseits habe ich den Beweis aufgeschrieben. Die Verweise der Beweise habe ich in den Tabellen 17 sowie 18 abgelegt. Somit behaupte ich, den Beweis für die Richtigkeit der Aussage an dieser Stelle

Tabelle 13. 1. Teil 1. Beweis 1. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \Rightarrow C$	$A \wedge B \wedge (A \Rightarrow C)$
1	0	1	0
2	0	1	0
3	0	1	0
4	0	1	0
5	0	0	0
6	0	1	0
7	1	0	0
8	1	1	1

TABELLE 14. 2. Teil 1. Beweis 1. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$C \wedge B$	Behauptung
1	0	1
2	0	1
3	0	1
4	1	1
5	0	1
6	0	1
7	0	1
8	1	1

TABELLE 15. 1. Teil 2. Beweis 1. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \Rightarrow C$	$A \wedge B \wedge (A \Rightarrow C)$
1	$\neg (A \land B)$	$A \Rightarrow C$	$\neg (A \land B \land (A \Rightarrow C))$
2	$\neg (A \land B)$	$A \Rightarrow C$	$\neg (A \land B \land (A \Rightarrow C))$
3	$\neg (A \land B)$	$A \Rightarrow C$	$\neg (A \land B \land (A \Rightarrow C))$
4	$\neg (A \land B)$	$A \Rightarrow C$	$\neg (A \land B \land (A \Rightarrow C))$
5	$\neg (A \land B)$	$\neg (A \Rightarrow C)$	$\neg (A \land B \land (A \Rightarrow C))$
6	$\neg (A \land B)$	$A \Rightarrow C$	$\neg (A \land B \land (A \Rightarrow C))$
7	$A \wedge B$	$\neg (A \Rightarrow C)$	$\neg (A \land B \land (A \Rightarrow C))$
8	$A \wedge B$	$A \Rightarrow C$	$A \wedge B \wedge (A \Rightarrow C)$

erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung. $\hfill \blacksquare$

<includebackwardreferences>
<includeforwardreferences>

TABELLE 16. 2. Teil 2. Beweis 1. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$C \wedge B$	$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$
1	\ /	$A \wedge B \wedge (A \Rightarrow C) \Rightarrow C \wedge B$
2	$\neg (C \land B)$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
3	$\neg (C \land B)$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
4	$C \wedge B$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
5	$\neg (C \land B)$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
6	$\neg (C \land B)$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
7	$\neg (C \land B)$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$
8	$C \wedge B$	$A \land B \land (A \Rightarrow C) \Rightarrow C \land B$

TABELLE 17. 1. Teil Verweise Beweis 1. Substitutionssatz der Konjunktion

Auggege /	Definition 8.0.2	Definition 9.0.1	Definition 8.0.2
Aussage/ Fall Nr.	der	der	der
ran m.	Konjunktion	Implikation	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	2. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 18. 2. Teil Verweise Beweis 1. Substitutionssatz der Konjunktion

Aussage/	Definition 8.0.2	Definition 9.0.1
Fall Nr.	Konjunktion	Implikation
1	1. Zeile	1. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	1. Zeile
6	3. Zeile	1. Zeile
7	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile

Nun möchte ich den zweiten Substitutionssatz (des zweiten Arguments) der Konjunktion formulieren und beweisen;

SATZ 97. Es seien $A, B, C \in \Omega$, also Symbole von Aussagen, welche weder in sich selbst noch bezüglich anderen Aussagen und Symbolen widersprüchlich seien. Dann gilt die folgende Aussage:

$$A \wedge B \wedge (B \Rightarrow C) \Rightarrow A \wedge C$$

Beweis. Ist die Aussage $A \wedge B$ oder die Aussage $B \Rightarrow C$ nicht wahr, dann ist die Aussage

$$A \wedge B \wedge (B \Rightarrow C)$$

gemäß dem Minimumprinzip 8 der Konjunktion nicht wahr. Also ist in diesem Fall die gesamte Aussage

$$A \wedge B \wedge (B \Rightarrow C) \Rightarrow C \wedge B$$

aufgrund der Abkürzungsregel 9 der Implikation bereits wahr. Ist die Aussage A oder B nicht wahr, dann ist gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$A \wedge B$$

nicht wahr. Also ist wiederum gemäß der der Abkürzungsregel 9 der Implikation die zu beweisende Aussage

$$A \wedge B \wedge (B \Rightarrow C) \Rightarrow C \wedge B$$

bereits wahr. Also kann ich im folgenden davon ausgehen, dass die Aussagen A,B sowie $B\Rightarrow C$ wahr sind. Denn in allen anderen Fällen ist die zu beweisende Aussage bereits wahr. Ist die Aussage B wahr, dann muss aufgrund der als wahr angenommen Aussage

$$B \Rightarrow C$$

sowie aufgrund des Satzes 16 der Schlussfolgerung die Aussage C ebenfalls wahr sein. Denn wäre die Aussage C nicht wahr, dann wäre die Implikation

$$B \Rightarrow C$$

aufgrund der dritten Zeile der Definition 9.0.1 der Implikation nicht wahr. Da nun jedoch sowohl die Aussagen A und B wie auch die Aussage C wahr sind, ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$C \wedge B$$

ebenfalls wahr. Somit ist gemäß der vierten Zeile der Definition 9.0.1 der Implikation die gesamte Aussage

$$A \wedge B \wedge (B \Rightarrow C) \Rightarrow C \wedge B$$

wiederum wahr. Also meine ich gezeigt zu haben, dass in allen denkbaren Fällen die Aussage

$$A \wedge B \wedge (B \Rightarrow C) \Rightarrow C \wedge B$$

Tabelle 19. 1. Teil 1. Beweis 2. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$B \Rightarrow C$	$A \wedge B \wedge (B \Rightarrow C)$
1	0	1	0
2	0	1	0
3	0	0	0
4	0	1	0
5	0	1	0
6	0	1	0
7	1	0	0
8	1	1	1

Tabelle 20. 2. Teil 1. Beweis 2. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge C$	Behauptung
1	0	1
2	0	1
3	0	1
4	0	1
5	0	1
6	1	1
7	0	1
8	1	1

TABELLE 21. 1. Teil 2. Beweis 2. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$B \Rightarrow C$	$A \land B \land (B \Rightarrow C)$
1	$\neg (A \land B)$	$B \Rightarrow C$	$\neg (A \land B \land (B \Rightarrow C))$
2	$\neg (A \land B)$	$B \Rightarrow C$	$\neg (A \land B \land (B \Rightarrow C))$
3	$\neg (A \land B)$	$\neg (B \Rightarrow C)$	$\neg (A \land B \land (B \Rightarrow C))$
4	$\neg (A \land B)$	$B \Rightarrow C$	$\neg (A \land B \land (B \Rightarrow C))$
5	$\neg (A \land B)$	$B \Rightarrow C$	$\neg (A \land B \land (B \Rightarrow C))$
6	$\neg (A \land B)$	$B \Rightarrow C$	$\neg (A \land B \land (B \Rightarrow C))$
7	$A \wedge B$	$\neg (B \Rightarrow C)$	$\neg (A \land B \land (B \Rightarrow C))$
8	$A \wedge B$	$B \Rightarrow C$	$A \land B \land (B \Rightarrow C)$

wahr ist. Ich habe den Beweis wiederum ebenfalls in Form von Wahrheitstafeln erbracht. In den Tabellen 19 sowie 20 einerseits und 21 sowie 22 andererseits habe ich den Beweis aufgeschrieben. Die Verweise der Beweise habe ich in den Tabellen 23 sowie 24 abgelegt. Somit behaupte ich an dieser Stelle, den Beweis für die Richtigkeit der Aussage

TABELLE 22. 2. Teil 2. Beweis 2. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge C$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
1	$\neg (A \land C)$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
2	$\neg (A \land C)$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
3	$\neg (A \land C)$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
4	$\neg (A \land C)$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
5	$\neg (A \land C)$	$A \wedge B \wedge (B \Rightarrow C) \Rightarrow C \wedge B$
6	$A \wedge C$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
7	$\neg (A \land C)$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$
8	$A \wedge C$	$A \land B \land (B \Rightarrow C) \Rightarrow C \land B$

TABELLE 23. 1. Teil Verweise Beweis 2. Substitutionssatz der Konjunktion

Auggoro /	Definition 8.0.2	Definition 9.0.1	Definition 8.0.2
Aussage/ Fall Nr.	der	der	der
ran m.	Konjunktion	Implikation	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 24. 2. Teil Verweise Beweis 2. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	Definition 8.0.2 der	Definition 9.0.1 der
1 (111 1 11 1	Konjunktion	Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

an dieser Stelle erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Nun komme ich zum dritten von sage und schreibe vierten Substitutionssatz der Konjunktion:

SATZ 98. Es seien A, B und C Symbole von Aussagen, welche in sich und gegenüber von anderen Aussage widerspruchsfrei seien. Dann gilt:

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

BEWEIS. Falls die Aussage $A \wedge B$ oder die Aussage $A \Leftrightarrow C$ nicht wahr sind, dann ist gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C)$$

nicht wahr und somit gemäß der Abkürzungsregel9 der Implikation die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

wahr. Also kann ich im folgenden annehmen, dass die Aussagen

$$A \wedge B$$

und

$$A \Leftrightarrow C$$

wahr seien. Da die Aussage $A \wedge B$ wahr sein soll, muss auch die Aussage A wahr sein. Vergleiche mit dem Satz 54, welcher besagt, dass aus der Konjunktion die Aussage folgt. Da die Aussage A wahr ist und die Aussage C gleichbedeutend zur Aussage A ist, muss auch die Aussage A wahr sein. Ansonsten wäre gemäß der dritten Zeile der Definition 12.0.1 die Aussage

$$A \Leftrightarrow C$$

nicht wahr - was jedoch ein Widerspruch wäre zur Annahme, dass die Aussage

$$A \Leftrightarrow C$$

sein soll. Wäre nun die Aussage B nicht wahr, dann könne gemäß der dritten Zeile 8.0.2 der Konjunktion die Aussage $A \wedge B$ auch nicht wahr sein. Also muss die Aussage B auch wahr sein. Damit ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$C \wedge B$$

ebenfalls wahr. Also ist gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

ebenfalls wahr. Also meine ich gezeigt zu haben, dass in allen denkbaren Fällen (in denen die Aussage A, B sowie C jedoch in sich selbst und in

Tabelle 25	1.	Teil 1.	Beweis	3.	Substitutionssatz	der	Konjunktion
------------	----	---------	--------	----	-------------------	-----	-------------

Aussage/ Fall Nr.	$A \wedge B$	$A \Leftrightarrow C$	$A \wedge B \wedge (A \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	0	1	0
4	0	0	0
5	0	0	0
6	0	1	0
7	1	0	0
8	1	1	1

TABELLE 26. 2. Teil 1. Beweis 3. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$C \wedge B$	Behauptung
1	0	1
2	0	1
3	0	1
4	1	1
5	0	1
6	0	1
7	0	1
8	1	1

Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien) die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

wahr. Somit meine ich, den Beweis für die Richtigkeit des Satzes erbracht zu haben. Ich habe ebenfalls den tabellarischen Beweis erbracht. Dieser ist unter den Tabelle 25 und 26 sowie 27 und 28 abgelegt. Die Verweise sind unter den Tabellen 29 sowie 30 abgelegt. Also beende ich an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Alle guten Dinge wären zwar drei. Jedoch formuliere ich noch einen vierten Substitutionssatz der Konjunktion und versuche diesen anschließend zu beweisen:

Satz 99. Es seien A, B und C Symbole von Aussagen, welche in sich und gegenüber von anderen Aussage widerspruchsfrei seien. Dann gilt die Aussage

$$A \wedge B \wedge (B \Leftrightarrow C) \Rightarrow A \wedge C$$

Tabelle 27. 1. Teil 2. Beweis 3. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$A \Leftrightarrow C$	$A \wedge B \wedge (A \Leftrightarrow C)$
1	$\neg (A \land B)$	$A \Leftrightarrow C$	$\neg (A \land B \land (A \Leftrightarrow C))$
2	$\neg (A \land B)$	$\neg (A \Leftrightarrow C)$	$\neg (A \land B \land (A \Leftrightarrow C))$
3	$\neg (A \land B)$	$A \Leftrightarrow C$	$\neg (A \land B \land (A \Leftrightarrow C))$
4	$\neg (A \land B)$	$\neg (A \Leftrightarrow C)$	$\neg (A \land B \land (A \Leftrightarrow C))$
5	$\neg (A \land B)$	$\neg (A \Leftrightarrow C)$	$\neg (A \land B \land (A \Leftrightarrow C))$
6	$\neg (A \land B)$	$A \Leftrightarrow C$	$\neg (A \land B \land (A \Leftrightarrow C))$
7	$A \wedge B$	$\neg (A \Leftrightarrow C)$	$\neg (A \land B \land (A \Leftrightarrow C))$
8	$A \wedge B$	$A \Leftrightarrow C$	$A \wedge B \wedge (A \Leftrightarrow C)$

TABELLE 28. 2. Teil 2. Beweis 3. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$C \wedge B$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$
1	\	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
2	\ /	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
3	\ /	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
4	$C \wedge B$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
5	$\neg (C \land B)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
6	$\neg (C \land B)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
7	$\neg (C \land B)$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$
8	$C \wedge B$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$

TABELLE 29. 1. Teil Verweise Beweis 3. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 12.0.1 der Äquivalenz	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Beweis. Falls die Aussage $A \wedge B$ oder die Aussage $B \Leftrightarrow C$ nicht wahr sind, dann ist gemäß dem Minimumprinzip 8 der Konjunktion die

Tabelle 30.	2. Teil	Verweise	Beweis	3.	Substitutions-
satz der Konju	ınktion				

Aussage/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	1. Zeile
6	3. Zeile	1. Zeile
7	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile

Aussage

$$A \wedge B \wedge (B \Leftrightarrow C)$$

nicht wahr und somit gemäß der Abkürzungsregel9 der Implikation die Aussage

$$A \wedge B \wedge (B \Leftrightarrow C) \Rightarrow C \wedge B$$

wahr. Also kann ich im folgenden annehmen, dass die Aussagen

$$A \wedge B$$

und

$$A \Leftrightarrow C$$

wahr seien. Da die Aussage $A \wedge B$ wahr sein soll, muss auch die Aussage A wahr sein. Wäre die Aussage A nicht wahr, dann wäre gemäß dem Minimumprinzip 8 der Konjunktion die Aussage $A \wedge B$ nicht wahr. Da die Aussage B wahr ist und die Aussage B gleichbedeutend zur Aussage B ist, muss auch die Aussage B wahr sein. Ansonsten wäre gemäß der dritten Zeile der Definition 12.0.1 die Aussage

$$A \Leftrightarrow C$$

nicht wahr - entgegen der Annahme, dass die Aussage $A \Leftrightarrow C$ wahr sein soll. Wäre nun die Aussage A nicht wahr, dann könne gemäß der zweiten Zeile 8.0.2 der Konjunktion die Aussage $A \wedge B$ auch nicht wahr sein. Also muss die Aussage A auch wahr sein. Damit ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$A \wedge C$$

ebenfalls wahr. Also ist gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

Tabelle 31. 1. Teil 1. Beweis 4. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$B \Leftrightarrow C$	$A \wedge B \wedge (B \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	0	0	0
4	0	1	0
5	0	1	0
6	0	0	0
7	1	0	0
8	1	1	1

Tabelle 32. 2. Teil 1. Beweis 4. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge C$	Behauptung
1	0	1
2	0	1
3	0	1
4	0	1
5	0	1
6	1	1
7	0	1
8	1	1

ebenfalls wahr. Also meine ich gezeigt zu haben, dass in allen denkbaren Fällen (in denen die Aussage A,B sowie C jedoch in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien) die Aussage

$$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$$

wahr ist. Somit meine ich, den Beweis für die Richtigkeit des Satzes erbracht zu haben. Ich habe ebenfalls den tabellarischen Beweis erbracht. Dieser ist unter den Tabelle 31 und 32 sowie 33 und 34 abgelegt. Die Verweise sind unter den Tabellen 35 sowie 36 abgelegt. Also beende ich an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Nun lasse ich es aber gut sein und wende mich den von mir aus gesehen interessanteren Substitutionssätzen der Disjunktionen zu.

TABELLE 33. 1. Teil 2. Beweis 4. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge B$	$B \Leftrightarrow C$	$A \wedge B \wedge (B \Leftrightarrow C)$
1	$\neg (A \land B)$	$B \Leftrightarrow C$	$\neg A \land B \land (B \Leftrightarrow C)$
2	$\neg (A \land B)$	$\neg (B \Leftrightarrow C)$	$\neg A \land B \land (B \Leftrightarrow C)$
3	$\neg (A \land B)$	$\neg (B \Leftrightarrow C)$	$\neg A \land B \land (B \Leftrightarrow C)$
4	$\neg (A \land B)$	$B \Leftrightarrow C$	$\neg A \land B \land (B \Leftrightarrow C)$
5	$\neg (A \land B)$	$B \Leftrightarrow C$	$\neg A \land B \land (B \Leftrightarrow C)$
6	$\neg (A \land B)$	$\neg (B \Leftrightarrow C)$	$\neg A \land B \land (B \Leftrightarrow C)$
7	$A \wedge B$	$\neg (B \Leftrightarrow C)$	$\neg A \land B \land (B \Leftrightarrow C)$
8	$A \wedge B$	$B \Leftrightarrow C$	$A \wedge B \wedge (B \Leftrightarrow C)$

TABELLE 34. 2. Teil 2. Beweis 4. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	$A \wedge C$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
1	$\neg (A \land C)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
2	$\neg (A \land C)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
3	$\neg (A \land C)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
4	$\neg (A \land C)$	$A \wedge B \wedge (A \Leftrightarrow C) \Rightarrow C \wedge B$
5	$\neg (A \land C)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
6	$A \wedge C$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
7	$\neg (A \land C)$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$
8	$A \wedge C$	$A \land B \land (A \Leftrightarrow C) \Rightarrow C \land B$

TABELLE 35. 1. Teil Verweise Beweis 4. Substitutionssatz der Konjunktion

Auggaga /	Definition 8.0.2	Definition 12.0.1	Definition 8.0.2
Aussage/ Fall Nr.	der	der	der
rall Mi.	Konjunktion	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	1. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 36. 2. Teil Verweise Beweis 4. Substitutionssatz der Konjunktion

Aussage/ Fall Nr.	Definition 8.0.2 der Konjunktion	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

22.3. Substitutionssatz der Disjunktion

Diese Substitutionssätze liegen zwar immer noch auf der Hand. Aber meines Erachtens sind sie ein wenig interessanter als die Substitutionssätze der Konjunktion.

Satz 100. Es seien $A, B, C \in \Omega$, also Symbole von Aussagen, welche weder in sich selbst noch bezüglich anderen Aussagen und Symbolen widersprüchlich seien. Dann gelten die Aussage

$$(A \lor B) \land (A \Rightarrow C) \Rightarrow (C \lor B)$$

Beweis. Gilt die Aussage

$$A \Rightarrow C$$

oder die Aussage

$$A \vee B$$

nicht, dann gilt gemäß dem Minimumprinzip8der Konjunktion die Aussage

$$(A \vee B) \wedge (A \Rightarrow C)$$

nicht. Gemäß der Abkürzungsregel 9 der Implikation gilt in diesem Fall jedoch die Aussage

$$(A \lor B) \land (A \Rightarrow C) \Rightarrow C \lor B$$

Aus diesem Grund kann ich annehmen, dass sowohl die Aussage

$$A \vee B$$

wie auch die Aussage

$$A \Rightarrow C$$

wahr sind. Nun kann ich die folgende Unterscheidung treffen: Ist die Aussage A nicht wahr, dann muss es die Aussage B sein. Denn wäre

die Aussage B nicht wahr, dann wäre auch gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion die Aussage

$$A \vee B$$

ebenfalls nicht wahr. Das wäre jedoch ein Widerspruch zur Annahme, dass die Aussage

$$A \vee B$$

wahr sei. Ist andererseits die Aussage B wahr, dann ist auch gemäß der zweiten Zeile der Definition 11.0.1 der Disjunktion die Aussage

$$A \vee B$$

wahr - so wie ich es angenommen habe. Ist jedoch die Aussage B wahr, dann ist gemäß dem Maximumprinzip 11 der Disjunktion die Aussage

$$C \vee B$$

wahr. Somit ist gemäß der Abkürzungsregel 9 der Implikation die Aussage

$$(A \lor B) \land (A \Rightarrow C) \Rightarrow (C \lor B)$$

wahr. Damit hätte ich diesen Fall bewiesen. Ist jedoch die Aussage A wahr, dann muss gemäß der als wahr angenommen Aussage

$$A \Rightarrow C$$

auch die Aussage C wahr sein. Wäre die Aussage C nämlich nicht wahr, dann könnte auch gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \Rightarrow C$$

nicht wahr sein - im Widerspruch zur getroffenen Annahme. Ist jedoch die Aussage C wahr, dann ist auch gemäß dem Maximumprinzip 11 der Disjunktion die Aussage

$$C \vee B$$

wahr. Somit kann ich wiederum gemäß der Abkürzungsregel 9 der Implikation folgern, dass die Aussage

$$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$$

wiederum wahr sein muss. Somit meine ich behaupten zu können, dass keine Aussagen derart geben kann, dass Behauptung nicht wahr ist. Gemäß dem abgeschwächten Satz 13 des ausgeschlossenen Dritten schließe ich daraus, dass für alle möglichen Aussagen A,B sowie C die zu beweisende Aussage wahr sein muss. Darum behaupte ich an dieser Stelle, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Nun möchte ich diese Beweise wiederum mit Hilfe von Wahrheitstafeln erbringen. Diesen habe ich einerseits in den Tabellen 37 sowie 38 und andererseits in den Tabellen 39 sowie 40 abgelegt. Die Verweise des Beweises habe ich in den Tabellen 41 sowie 42 aufgeschrieben. Damit beende ich den weiteren Beweis dieses Satzes an dieser Stelle.

TABELLE 37. 1. Teil 1. Beweis 1. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$A \Rightarrow C$	$(A \vee B) \wedge (A \Rightarrow C)$
1	0	1	0
2	0	1	0
3	1	1	1
4	1	1	1
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

TABELLE 38. 2. Teil 1. Beweis 1. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$C \vee B$	Behauptung
1	0	1
2	1	1
3	1	1
4	1	1
5	0	1
6	1	1
7	1	1
8	1	1

TABELLE 39. 1. Teil 2. Beweis 1. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$A \Rightarrow C$	$A \vee B \wedge (A \Leftrightarrow C)$
1	$\neg (A \lor B)$	$A \Rightarrow C$	$\neg (A \lor B \land (A \Leftrightarrow C))$
2	$\neg (A \lor B)$	$A \Rightarrow C$	$\neg (A \lor B \land (A \Leftrightarrow C))$
3	$A \vee B$	$A \Rightarrow C$	$A \lor B \land (A \Leftrightarrow C)$
4	$A \vee B$	$A \Rightarrow C$	$A \lor B \land (A \Leftrightarrow C)$
5	$A \vee B$	$\neg (A \Rightarrow C)$	$\neg (A \lor B \land (A \Leftrightarrow C))$
6	$A \vee B$	$A \Rightarrow C$	$A \lor B \land (A \Leftrightarrow C)$
7	$A \vee B$	$\neg (A \Leftrightarrow C)$	$\neg (A \lor B \land (A \Leftrightarrow C))$
8	$A \vee B$	$A \Leftrightarrow C$	$A \lor B \land (A \Leftrightarrow C)$

<includebackwardreferences>

Nun kommt, was kommen muss: Der zweite Substitutionssatz der Disjunktion.

<includeforwardreferences>

TABELLE 40. 2. Teil 2. Beweis 1. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
1	$\neg (C \lor B)$	$(A \vee B) \wedge (A \Leftrightarrow C) \Rightarrow (C \vee B)$
2	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
3	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
4	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
5	$\neg (C \lor B)$	$(A \vee B) \wedge (A \Leftrightarrow C) \Rightarrow (C \vee B)$
6	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
7	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
8	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$

TABELLE 41. 1. Teil Verweise Beweis 1. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	2. Zeile	4. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 42. 2. Teil Verweise Beweis 1. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 9.0.1 der Implikation
		-
1	1. Zeile	1. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	4. Zeile
5	1. Zeile	1. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	2. Zeile
8	4. Zeile	4. Zeile

Satz 101. Es seien A, B sowie C Aussagen, welche in sich selbst und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \lor B) \land (B \Rightarrow C) \Rightarrow (A \lor C)$$

BEWEIS. Angenommen, die Aussage wäre kein logischer Satz. Dann müsste es Aussagen A,B sowie C derart geben, dass die Aussage

$$(A \lor B) \land (B \Rightarrow C) \Rightarrow (A \lor C)$$

nicht wahr sein dürfte. Also dürfte gemäß der dritten Zeile der Definition 9.0.1 die Aussage

$$A \vee C$$

nicht wahr sein. Das würde jedoch bedeuten, dass gemäß dem Maximumprinzip 11 der Disjunktion sowohl die Aussage A wie auch die Aussage C nicht wahr sein dürften. Denn ansonsten wäre die Aussage

$$A \vee C$$

wahr. Dann müsste jedoch ebenfalls die Aussage B wahr sein. Denn wäre die Aussage B nicht wahr, dann wäre gemäß dem gleichen Maximumprinzip 11 der Disjunktion die Aussage

$$A \vee B$$

nicht wahr. Gemäß dem Minimumprinzip 8 der Konjunktion könnte jedoch in diesem Fall die Aussage

$$(A \lor B) \land (B \Rightarrow C)$$

ebenfalls nicht wahr sein. Was bedeuten würde, dass gemäß der Abkürzungsregel 9 der Implikation die gesamte Aussage

$$(A \lor B) \land (B \Rightarrow C) \Rightarrow (A \lor C)$$

eben doch wieder wahr wäre. Falls jedoch die Aussage B wahr wäre, dann wäre (da die Aussage C gemäß der obigen Überlegung nicht wahr sein könnte) die Aussage

$$B \Rightarrow C$$

gemäß der dritten Zeile der Definition 9.0.1 der Implikation nicht wahr. Also könnte gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A \vee B) \wedge (B \Rightarrow C)$$

wiederum nicht wahr sein. Aufgrund der Abkürzungsregel 9 der Implikation wäre wiederum die gesamte Aussage

$$(A \lor B) \land (B \Rightarrow C) \Rightarrow (A \lor C)$$

eben doch wieder wahr. Was ich damit sagen will: Ich kann es drehen und wenden, wie ich will - es kann keine in sich und in Bezug auf die

Aussage/ Fall Nr.	$A \lor B$	$B \Rightarrow C$	$(A \lor B) \land (A \Rightarrow C)$
1	0	1	0
2	0	1	0
3	1	0	0
4	1	1	1
5	1	1	1
6	1	1	1
7	1	0	0
8	1	1	1

Tabelle 43. 1. Teil 1. Beweis 2. Substitutionssatz der Disjunktion

Tabelle 44. 2. Teil 1. Beweis 2. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor C$	Behauptung
1	0	1
2	1	1
3	0	1
4	1	1
5	1	1
6	1	1
7	1	1
8	1	1

anderen Symbolen des Beweises widerspruchsfreie Aussagen A,B sowie C geben, für welche die Aussage

$$(A \lor B) \land (B \Rightarrow C) \Rightarrow (A \lor C)$$

nicht wahr ist. Es gilt also nicht, dass die Behauptung nicht wahr sein könnte. Also muss sie gemäß dem Satz 10 der doppelten Verneinung die Behauptung eben richtig sein. Somit meine ich, den sprachlichen Beweis für die Richtigkeit der Aussage erbracht zu haben.

In den Tabellen 43 und 44 einerseits sowie 45 und 46 andererseits habe ich den Beweis tabellarisch aufgeschrieben. In den Tabellen 47 sowie 48 habe ich die Verweise der Beweise aufgeschrieben.

<includebackwardreferences>

<includeforwardreferences>

Jetzt kommen noch die langweiligeren zwei Sätze:

SATZ 102. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und gegenüber anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$$

Tabelle 45. 1. Teil 2. Beweis 2. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$B \Rightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$
1	$\neg (A \lor B)$	$B \Rightarrow C$	$\neg (A \lor B \land (A \Leftrightarrow C))$
2	$\neg (A \lor B)$	$B \Rightarrow C$	$\neg (A \lor B \land (A \Leftrightarrow C))$
3	$A \vee B$	$\neg (B \Rightarrow C)$	$\neg (A \lor B \land (A \Leftrightarrow C))$
4	$A \vee B$	$B \Rightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
5	$A \vee B$	$B \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
6	$A \vee B$	$B \Rightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$
7	$A \vee B$	$\neg (B \Rightarrow C)$	$\neg (A \lor B \land (A \Leftrightarrow C))$
8	$A \vee B$	$B \Rightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$

TABELLE 46. 2. Teil 2. Beweis 2. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
1	$\neg (A \lor C)$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow (A \vee C)$
2	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
3	$\neg (A \lor C)$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
4	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
5	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
6	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
7	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow (A \lor C)$
8	$A \lor C$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow (A \vee C)$

TABELLE 47. 1. Teil Verweise Beweis 2. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	Definition 11.0.1 der	Definition 9.0.1 der	Definition 8.0.2 der
	Disjunktion	Implikation	Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	2. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	2. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Beweis. Angenommen, der Satz sei nicht wahr. Dann müsste es Aussagen A,B sowie C derart geben, dass die Aussage

$$(A \vee B) \wedge (A \Leftrightarrow C) \Rightarrow (C \vee B)$$

TABELLE 48. 2. Teil Verweise Beweis 2. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	4. Zeile
7	3. Zeile	2. Zeile
8	4. Zeile	4. Zeile

nicht wahr ist. Dies ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation nur dann möglich, falls die Aussage

$$(A \lor B) \land (A \Leftrightarrow C)$$

wahr, die Aussage

$$C \vee B$$

jedoch nicht wahr ist. Die Aussage

$$C \vee B$$

ist ebenfalls gemäß dem Maximumprinzip 11 der Disjunktion nur dann nicht wahr, falls weder die Aussage C noch die Aussage B wahr sind. Denn ansonsten wäre die Aussage

$$C \vee B$$

wahr - im Widerspruch zur Voraussetzung. Damit die Aussage

$$(A \lor B) \land (A \Leftrightarrow C)$$

wahr ist, müssen gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion sowohl die Aussage

$$A \vee B$$

wie auch die Aussage

$$A \Leftrightarrow C$$

wahr sein. Nun habe ich weiter oben jedoch gefolgert, dass die Aussage B nicht wahr sein kann, falls die gesamte Aussage nicht gelten soll. Also muss die Aussage A wahr sein. Denn wäre die Aussage A nicht wahr, dann wäre gemäß der ersten Zeile der Definition 11.0.1 der Disjunktion die Aussage

$$A \vee B$$

Aussage/ Fall Nr.	$A \lor B$	$A \Leftrightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	1	1	1
4	1	0	0
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

Tabelle 49. 1. Teil 1. Beweis 3. Substitutionssatz der Disjunktion

nicht wahr. Ist jedoch die Aussage A wahr, dann ist es gemäß der dritten Zeile der Definition 11.0.1 der Disjunktion auch die Aussage

$$A \vee B$$

Nun sind jedoch die Wahrheitswerte der Aussagen A, B sowie C festgelegt: Die Aussage A muss wahr, die Aussagen B sowie C können nicht wahr sein. Also kann jedoch die Aussage

$$A \Leftrightarrow C$$

gemäß der dritten Zeile der Definition 12.0.1 ebenfalls nicht wahr sein. Dann ist jedoch ebenfalls gemäß der dritten Zeile der Definition 8.0.2 die Konjunktion auch nicht wahr. Somit muss gemäß der Abkürzungsregel 9 der Implikation die gesamte Aussage

$$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$$

trotzdem wieder wahr. Somit meine ich gezeigt haben zu können, dass es keine Aussagen, welche mit A,B sowie C bezeichnet werden, existieren können, für welche die zu beweisende Aussage nicht gilt. Also schließe ich gemäß der abgeschwächten Form des Satzes 13 des ausgeschlossenen Dritten, dass der Satz für alle vernünftigen Aussagen wahr sein muss. Das wollte ich jedoch gerade zeigen. Damit glaube ich den Satz bewiesen zu haben und beende die weitere Beweisführung – nachdem ich den Beweis noch tabellarisch erbracht habe. Ich habe in den Tabellen 49 und 50 einerseits sowie 51 und 52 den Satz tabellarisch aufgeschrieben. Andererseits habe ich die Verweise in den Tabellen 53 sowie 54 aufgeschrieben.

Ich werde nun den letzten, vierten Substitutionssatz der Disjunktion aufschreiben und versuchen, zu beweisen:

SATZ 103. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt:

$$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$$

Tabelle 50. 2. Teil 1. Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$C \vee B$	Behauptung
1	0	1
2	1	1
3	1	1
4	1	1
5	0	1
6	1	1
7	1	1
8	1	1

Tabelle 51. 1. Teil 2. Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$A \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
1	$\neg (A \lor B)$	$A \Leftrightarrow C$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
2	$\neg (A \lor B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
3	$A \vee B$	$A \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
4	$A \vee B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
5	$A \vee B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
6	$A \vee B$	$A \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
7	$A \vee B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
8	$A \lor B$	$A \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$

TABELLE 52. 2. Teil 2. Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
1	$\neg (C \lor B)$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
2	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
3	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
4	$C \vee B$	$(A \vee B) \wedge (A \Leftrightarrow C) \Rightarrow (C \vee B)$
5	$\neg (C \lor B)$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
6	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
7	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$
8	$C \vee B$	$(A \lor B) \land (A \Leftrightarrow C) \Rightarrow (C \lor B)$

BEWEIS. Weil es mir dies besser gefällt, werde ich wieder versuchen, einen Widerspruchsbeweis aufzuschreiben. Angenommen, die Behauptung sei falsch. Dann müsste es Aussagen, welche mit den Symbolen A,B sowie C bezeichnet werden, für welche die Aussage

$$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$$

TABELLE 53. 1. Teil Verweise Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	2. Zeile	3. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 54. 2. Teil Verweise Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	1. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	2. Zeile
8	4. Zeile	4. Zeile

nicht gilt. Dies ist gemäß der Definition 9.0.1 der Implikation dann der Fall, falls die Aussage

$$(A \lor B) \land (B \Leftrightarrow C)$$

wahr ist, die Aussage

$$A \vee C$$

jedoch nicht wahr ist. Die Aussage $A\vee C$ ist gemäß der Definition 11.0.1 der Disjunktion dann nicht wahr, falls weder die Aussage A noch die Aussage C wahr ist. Die Aussage

$$(A \vee B) \wedge (B \Leftrightarrow C)$$

ist gemäß der Definition 8.0.2 der Konjunktion dann wahr, falls sowohl die Aussage

$$A \vee B$$

wie auch die Aussage

$$B \Leftrightarrow C$$

wahr sind. Jetzt kann jedoch die Aussage A nicht wahr sein. Also muss gemäß der Definition 11.0.1 der Disjunktion die Aussage B wahr sein. Denn wäre die Aussage B nicht wahr, dann wäre auch gemäß der ersten Zeile der Definition der Disjunktion die Aussage

$$A \vee B$$

nicht wahr wäre. Wäre jedoch die Aussage B wahr, dann wäre gemäß der dritten Zeile der Definition 11.0.1 der Disjunktion die Aussage

$$A \vee B$$

wahr. Also müsste die Aussage B wahr sein, falls der logische Satz nicht wahr sein soll. Damit wäre jedoch gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$B \Leftrightarrow C$$

nicht wahr, da die Aussage C ja nicht wahr sein kann. Somit wäre gemäß der dritten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$(A \lor B) \land (B \Leftrightarrow C)$$

trotzdem nicht wahr. Gemäß der Abkürzungsregel 9 der Implikation wäre dann die gesamte Aussage

$$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$$

trotzdem wahr. Somit schließe ich gemäß der schwachen Form des Satzes 13 des ausgeschlossenen Dritten, dass die Behauptung für alle möglichen Aussagen mit den Bezeichnungen A, B sowie C wahr sein muss. Somit meine ich, den Beweis für die Richtigkeit des Satzes erbracht zu haben und beende somit die weitere Beweisführung, nachdem ich den Satz noch tabellarisch bewiesen habe. Ich habe den Beweis einerseits in den Tabellen 55 sowie 56 aufgeschrieben. Andererseits habe ich den Beweis in den Tabellen 57 sowie 58 abgelegt. Die Verweise habe ich in den Tabellen 59 sowie 60 aufgeschrieben.

<includebackwardreferences>
<includeforwardreferences>

22.4. Substitutionssätze der Implikation

Ich möchte mir jetzt überlegen, was ich so beweisen kann - und was nicht. Beachte bitte, dass dieser Satz eine Mogelpackung ist. Wenn ich die Formulierungen von oben weiter verwenden möchte, dann würde für die Voraussetzung (die linke Seite) der Implikation ich schreiben:

$$(A \Rightarrow B) \land (A \Rightarrow C)$$

TABELLE 55. 1. Teil 1. Beweis 4. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor B$	$B \Leftrightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	1	0	0
4	1	1	1
5	1	1	1
6	1	0	0
7	1	0	0
8	1	1	1

TABELLE 56. 2. Teil 1. Beweis 4. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor C$	Behauptung
1	0	1
2	1	1
3	0	1
4	1	1
5	1	1
6	1	1
7	1	1
8	1	1

TABELLE 57. 1. Teil 2. Beweis 4. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \vee B$	$B \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
1	$\neg (A \lor B)$	$B \Leftrightarrow C$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
2	$\neg (A \lor B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
3	$A \vee B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
4	$A \vee B$	$B \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$
5	$A \vee B$	$B \Leftrightarrow C$	$(A \lor B) \land (A \Leftrightarrow C)$
6	$A \vee B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
7	$A \vee B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \lor B) \land (A \Leftrightarrow C))$
8	$A \vee B$	$B \Leftrightarrow C$	$(A \vee B) \wedge (A \Leftrightarrow C)$

Aber es ist absehbar, dass dies als Satz nicht funktioniert. Denn falls die Implikation $C\Rightarrow B$ nicht wahr ist, könnten die Implikationen

$$A \Rightarrow B$$

sowie

$$A \Rightarrow C$$

TABELLE 58. 2. Teil 2. Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	$A \lor C$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow A \vee C$
1	/	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow A \vee C$
2	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
3	$\neg (A \lor C)$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
4	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
5	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
6	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
7	$A \lor C$	$(A \lor B) \land (B \Leftrightarrow C) \Rightarrow A \lor C$
8	$A \lor C$	$(A \vee B) \wedge (B \Leftrightarrow C) \Rightarrow A \vee C$

TABELLE 59. 1. Teil Verweise Beweis 4. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 12.0.1 der Äquivalenz	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	2. Zeile	3. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 60. 2. Teil Verweise Beweis 3. Substitutionssatz der Disjunktion

Aussage/ Fall Nr.	Definition 11.0.1 der Disjunktion	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile
1		
2	2. Zeile	2. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	2. Zeile
8	4. Zeile	4. Zeile

trotzdem wahr sein. Dies wäre dann der Fall, falls die Aussagen A wie auch B nicht wahr wären, die Aussage C jedoch schon. Denn in diesem Fall gilt aufgrund der ersten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \Rightarrow B$$

und gemäß der zweiten Zeile die Aussage der gleichen Definition die Aussage

$$A \Rightarrow C$$

Also wäre gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$(A \Rightarrow B) \land (A \Rightarrow C)$$

wahr. Die Aussage

$$C \Rightarrow B$$

wäre dann gemäß der dritten Zeile der Definition 9.0.1 der Implikation nicht wahr. Und gemäß der genau gleichen Zeile der gleichen Definition wäre in diesem Fall die Aussage

$$(A \Rightarrow B) \land (A \Rightarrow C) \Rightarrow (C \Rightarrow B)$$

nicht wahr. Aber nun möchte ich einen Satz aufschreiben, welcher funktionieren sollte:

Satz 104. Es seien A, B sowie C Symbole, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$$

BEWEIS. Der Satz ist ein billiger Taschenspielertrick. Denn er ist ein verpackter Satz der Transitivität der Implikation. Gemäß dem Satz 34 der Kommutativität der Konjunktion gilt

$$(A \Rightarrow B) \land (C \Rightarrow A) \Leftrightarrow (C \Rightarrow A) \land (A \Rightarrow B)$$

Gemäß dem Satz 51, welcher besagt, dass aus der Äquivalenz die Implikation folgt, kann ich schließen, dass gilt:

$$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow A) \land (A \Rightarrow B)$$

Nun kann ich gemäß dem Satz 14 der Transitivität der Implikation schließen, dass gilt:

$$(C \Rightarrow A) \land (A \Rightarrow B) \Rightarrow (C \Rightarrow B)$$

Also kann ich gemäß dem gleichen Satz 14 der Transitivität der Implikation schließen, dass gilt

$$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$$

Genau dies wollte ich jedoch beweisen. Ich werde den Beweis noch tabellarisch aufschreiben. Dies habe ich in den Tabellen 61 und 62 einerseits sowie 63 und 64 andererseits gemacht. Die Verweise habe ich in den Tabellen 65 sowie 66 abgelegt.

TABELLE 61. 1. Teil 1. Beweis 1. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$
1	1	1	1
2	1	0	0
3	1	1	1
4	1	0	0
5	0	1	0
6	0	1	0
7	1	1	1
8	1	1	1

TABELLE 62. 2. Teil 1. Beweis 1. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$C \Rightarrow B$	Behauptung
1	1	1
2	0	1
3	1	1
4	1	1
5	1	1
6	0	1
7	1	1
8	1	1

TABELLE 63. 1. Teil 2. Beweis 1. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$
1	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$
2	$A \Rightarrow B$	$\neg (C \Rightarrow A)$	$\neg ((A \Rightarrow B) \land (C \Rightarrow A))$
3	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$
4	$A \Rightarrow B$	$\neg (C \Rightarrow A)$	$\neg ((A \Rightarrow B) \land (C \Rightarrow A))$
5	$\neg (A \Rightarrow B)$	$C \Rightarrow A$	$\neg ((A \Rightarrow B) \land (C \Rightarrow A))$
6	$\neg (A \Rightarrow B)$	$C \Rightarrow A$	$\neg ((A \Rightarrow B) \land (C \Rightarrow A))$
7	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$
8	$A \Rightarrow B$	$C \Rightarrow A$	$(A \Rightarrow B) \land (C \Rightarrow A)$

<includebackwardreferences>

Somit hätte ich den ersten Substitutionssatz von vier Substitutionssätzen formuliert und bewiesen.

<includeforwardreferences>

TABELLE 64. 2. Teil 2. Beweis 1. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
1	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
2	$\neg (C \Rightarrow B)$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
3	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
4	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
5	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
6	$\neg (C \Rightarrow B)$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
7	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$
8	$C \Rightarrow B$	$(A \Rightarrow B) \land (C \Rightarrow A) \Rightarrow (C \Rightarrow B)$

TABELLE 65. 1. Teil Verweise Beweis 1. Substitutionssatz der Implikation

Auggogo /	Definition 9.0.1	Definition 9.0.1	Definition 8.0.2
Aussage/ Fall Nr.	der	der	der
ran m.	Implikation	Implikation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	3. Zeile	3. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	3. Zeile	3. Zeile
5	3. Zeile	2. Zeile	2. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	2. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 66. 2. Teil Verweise Beweis 1. Substitutionssatz der Implikation

Aussage/	Definition 9.0.1	Definition 9.0.1
Fall Nr.	der	der
ran m.	Implikation	Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	1. Zeile
7	2. Zeile	4. Zeile
8	4. Zeile	4. Zeile

Den zweiten Substitutionssatz der Implikation der Implikation gibt es nicht. Denn der zweite Substitutionssatz der Implikation würde heißen: "Es seien A,B,C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Rightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Rightarrow C)$$

Nun wäre das zwar ein vernünftiger Substitutionssatz. Jedoch habe ich den bereits formuliert und vielfach angewendet. Denn es handelt sich hierbei um den Satz 14 der Transitivität der Implikation. Irgendwie Pech gehabt. Irgendwie jedoch auch schön. So finde ich jedenfalls.

Nun werde ich versuchen, den dritten Substitutionssatz der Implikation zu formulieren und zu bewiesen:

Satz 105. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$$

Beweis. Angenommen, der Satz wäre nicht wahr, dann müsste die Aussage

$$(A \Rightarrow B) \land (A \Leftrightarrow C)$$

wahr, die Aussage

$$C \Rightarrow B$$

jedoch nicht wahr sein. Die Aussage

$$C \Rightarrow B$$

ist gemäß der konjunktiven Normalform 70 der Implikation genau dann nicht wahr, falls die Aussage C wahr, die Aussage B jedoch nicht wahr ist. Da die Aussage

$$(A \Rightarrow B) \land (A \Leftrightarrow C)$$

wahr sein müsste, müssten gemäß der Definition 8.0.2 der Konjunktion sowohl die Aussagen

$$A \Rightarrow B$$

wie auch die Aussage

$$A \Leftrightarrow C$$

wahr sein. Da jedoch die Aussage C wahr sein müsste, müsste es auch die Aussage A sein. Denn wäre die Aussage A nicht wahr, dann wäre gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz nicht wahr. Wäre jedoch die Aussage A wahr, dann wäre die Aussage

$$A \Rightarrow B$$

nicht wahr. Denn wie ich oben zu zeigen versucht habe, könnte die gesamte Aussage nur dann nicht wahr sein, falls die Aussage B nicht

Tabelle 67. 1. Teil 1. Beweis 3. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$A \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	1	1	1
4	1	0	0
5	0	0	0
6	0	1	0
7	1	0	0
8	1	1	1

Tabelle 68. 2. Teil 1. Beweis 3. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$C \Rightarrow B$	Behauptung
1	1	1
2	0	1
3	1	1
4	1	1
5	1	1
6	0	1
7	1	1
8	1	1

wahr wäre. Dies wäre dann jedoch ein Widerspruch zur Voraussetzung, dass die Aussage

$$A \Rightarrow B$$

wahr sein müsste. Also gelingt es mir nicht, zu zeigen, dass es Aussagen A, B wie auch C derart geben müsste, dass die Aussage

$$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$$

nicht wahr ist. Gemäß dem Satz 10 der doppelten Negation kann ich daraus schließen, dass die Aussage wahr sein muss. Genau dies wollte ich jedoch zeigen.

Nun werde ich den Beweis dieses Satzes ebenfalls tabellarisch aufschreiben. Ich habe diesen Beweis in den Tabellen 67 und 68 sowie 69 und 70 aufgeschrieben. Die Verweises habe ich in den Tabellen 71 sowie 72 aufgeschrieben. Damit meine ich, den Beweis für die Richtigkeit des Satzes erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

Tabelle 69. 1. Teil 2. Beweis 3. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$A \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
1	$A \Rightarrow B$	$A \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
2	$A \Rightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
3	$A \Rightarrow B$	$A \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
4	$A \Rightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
5	$\neg (A \Rightarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
6	$\neg (A \Rightarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
7	$A \Rightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
8	$A \Rightarrow B$	$A \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$

Tabelle 70. 2. Teil 2. Beweis 3. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
1	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
2	$\neg (C \Rightarrow B)$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
3	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
4	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
5	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
6	$\neg (C \Rightarrow B)$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
7	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$
8	$C \Rightarrow B$	$(A \Rightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Rightarrow B)$

TABELLE 71. 1. Teil Verweise Beweis 2. Substitutionssatz der Implikation

Aussage/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 12.0.1 der Äquivalenz	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	2. Zeile	3. Zeile
5	3. Zeile	2. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	2. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Nun geht es an den letzten Substitutionssatz der Implikation:

Satz 106. Es seien A, B sowie C Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei

TABELLE 72. 2. Teil Verweise Beweis 1. Substitutionssatz der Implikation

Aussage/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	1. Zeile
7	2. Zeile	2. Zeile
8	4. Zeile	4. Zeile

seien. Dann gilt die Aussage:

$$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$$

BEWEIS. Na ja, es ist klar, dass dieser Satz gilt. Die Frage ist bloß, warum? Angenommen, der Satz gelte nicht. Dann müsste es Aussagen, welche mit den Buchstaben A,B sowie C bezeichnet werden, derart geben, dass die Behauptung nicht stimmt. Dies wäre jedoch gemäß der dritten Zeile der Definition 9.0.1 der Implikation nur dann möglich, falls die Aussage

$$A \Rightarrow C$$

nicht wahr wäre, die Aussage

$$(A \Rightarrow B) \land (B \Leftrightarrow C)$$

jedoch wahr wäre. Die Aussage

$$A \Rightarrow C$$

ist gemäß der gleichen Zeile der Definition 9.0.1 der Implikation dann nicht wahr, falls die Aussage A wahr ist, die Aussage C jedoch nicht wahr ist. Die Aussage

$$(A \Rightarrow B) \land (B \Leftrightarrow C)$$

ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion dann wahr, falls sowohl die Aussage

$$A \Rightarrow B$$

wie auch die Aussage

$$B \Leftrightarrow C$$

wahr sind. Da die Aussage

$$A \Rightarrow B$$

wahr sein soll, müsste die Aussage B wahr sein. Denn wie ich oben zu zeigen versucht habe, müsste die Aussage A wahr sein, falls die gesamte Aussage nicht war wäre. Wäre dann die Aussage B nicht wahr, dann wäre die Aussage gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \Rightarrow B$$

nicht wahr - im Widerspruch zur Voraussetzung. Wäre jedoch die Aussage B wahr, dann wäre gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \Rightarrow B$$

wahr. Dann wäre jedoch gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$B \Leftrightarrow C$$

nicht wahr. Denn die Aussage B muss gemäß der Aussage

$$A \Rightarrow B$$

wahr sein. Die Aussage C kann gemäß der Aussage

$$A \Rightarrow C$$

nicht wahr sein. Dies ist jedoch ein Widerspruch zur Voraussetzung, dass die Aussage

$$B \Leftrightarrow C$$

trotzdem wahr sein muss. Darum glaube ich gezeigt zu haben, dass es keine Aussagen mit den Bezeichnungen $A,\,B$ sowie C derart geben kann dass die Aussage

$$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$$

nicht wahr ist. Also muss aufgrund des abgeschwächten Satzes 12 der doppelten Negation die Aussage für alle möglich Aussagen A,B sowie C wahr sein.

Das habe ich jedoch eben beweisen wollen. Ich möchte den Beweis noch einmal tabellarisch erbringen. Diese Beweise wurden einerseits in den Tabellen 73 und 74 sowie 75 und 76 aufgeschrieben. Die Verweise habe ich unter der Tabellen 77 und 78 abgelegt. Damit meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben und beende somit an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Damit hätte ich die Substitutionssätze der Implikation erschlagen.

Tabelle 73. 1. Teil 1. Beweis 4. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	1	0	0
4	1	1	1
5	0	1	0
6	0	0	0
7	1	0	0
8	1	1	1

Tabelle 74. 2. Teil 1. Beweis 4. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow C$	Behauptung
1	1	1
2	1	1
3	1	1
4	1	1
5	0	1
6	1	1
7	0	1
8	1	1

Tabelle 75. 1. Teil 2. Beweis 4. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow B$	$B \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
1	$A \Rightarrow B$	$B \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
2	$A \Rightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
3	$A \Rightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
4	$A \Rightarrow B$	$B \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$
5	$\neg (A \Rightarrow B)$	$B \Leftrightarrow C$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
6	$\neg (A \Rightarrow B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
7	$A \Rightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Rightarrow B) \land (A \Leftrightarrow C))$
8	$A \Rightarrow B$	$B \Leftrightarrow C$	$(A \Rightarrow B) \land (A \Leftrightarrow C)$

22.5. Substitutionssätze der Replikation

Echt jetzt? Braucht es diesen Abschnitt wirklich? Denn die Replikation ist ja ausschließlich eine umgekehrte Implikation, wie uns der Satz 23 zu zeigen versuchte. Doch, ich denke, ich ziehe das durch. Denn Du

TABELLE 76. 2. Teil 2. Beweis 4. Substitutionssatz der Implikation

Aussage/ Fall Nr.	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
1	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
2	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
3	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
4	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
5	$\neg (A \Rightarrow C)$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
6	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
7	$\neg (A \Rightarrow C)$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$
8	$A \Rightarrow C$	$(A \Rightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Rightarrow C)$

TABELLE 77. 1. Teil Verweise Beweis 4. Substitutionssatz der Implikation

Aussage/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 12.0.1 der Äquivalenz	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	1. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 78. 2. Teil Verweise Beweis 4. Substitutionssatz der Implikation

Aussage/ Fall Nr.	Definition 9.0.1 der Implikation	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile

kannst ja den Abschnitt überlesen, falls Du dies wünscht. Andererseits kannst Du ihn lesen, falls Du ihn lesen willst.

SATZ 107. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$$

BEWEIS. Ich werde den Beweis wiederum recht ruhig angehen. Angenommen, die Behauptung wäre nicht wahr. Dann müsste es Aussagen mit den Symbolen A,B sowie C derart geben, dass die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$$

nicht wahr ist. Dies könnte gemäß der dritten Zeile der Definition 9.0.1 der Implikation nur dann der Fall sein, falls die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C)$$

wahr, die Aussage

$$C \Leftarrow B$$

jedoch nicht wahr wäre. Die Aussage

$$C \Leftarrow B$$

ist jedoch gemäß der zweiten Zeile der Definition 10.0.2 der Replikation nur dann nicht wahr, falls die Aussage C nicht wahr, die Aussage B jedoch wahr wäre. Daraus kann ich jedoch schließen, dass auch die Aussage A nicht wahr sein kann. Denn ansonsten wäre die Aussage

$$A \Rightarrow C$$

gemäß der dritten Zeile 9.0.1 der Implikation nicht wahr. Dann wäre weiter gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel
n9der Implikation die gesamte Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$$

eben doch wahr - im Widerspruch zur entsprechenden Voraussetzung. Da gemäß den obigen Überlegungen die Aussage A nicht wahr sein könnte, die Aussage B jedoch wahr sein müsste, wäre in diesem Falls die Aussage

$$A \Leftarrow B$$

nicht wahr. Das würde jedoch gemäß dem Minimumprinzip8der Konjunktion bedeuten, dass die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C)$$

nicht wahr wäre und gemäß der Abkürzungsregeln 9 der Implikation die gesamte Aussage eben trotzdem wahr wäre. Somit glaube ich hiermit

Aussage/ Fall Nr.	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$
1	1	1	1
2	1	1	1
3	0	1	0
4	0	1	0
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

Tabelle 79. 1. Teil 1. Beweis 1. Substitutionssatz der Replikation

TABELLE 80. 2. Teil 1. Beweis 1. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$C \Leftarrow B$	Behauptung
1	1	1
2	1	1
3	0	1
4	1	1
5	1	1
6	1	1
7	0	1
8	1	1

gezeigt zu haben, dass es keine Aussagen A,B sowie C derart geben kann, dass die Aussage

$$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$$

nicht wahr ist. Gemäß dem abgeschwächten Satz 12 der doppelten Negation schließe ich daraus, dass für alle Symbole, welche mit den Symbolen A,B sowie C bezeichnet werden und in sich selber und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei sind, die Behauptung wahr ist. Somit glaube ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Ich möchte den Beweis noch einmal mittels Wahrheitstabellen erbringen. Diese habe ich in den Tabellen 79 und 80 einerseits sowie 81 und 82 andererseits aufgeschrieben. Die Verweise auf die Definitionen habe ich in den Tabellen 83 sowie 83 abgelegt. Also beende ich an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Nun möchte ich mich dem nächsten Substitutionssatz der Replikation zuwenden:

TABELLE 81. 1. Teil 2. Beweis 1. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$
1	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$
2	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$
3	$\neg (A \Leftarrow B)$	$A \Rightarrow C$	$\neg ((A \Leftarrow B) \land (A \Rightarrow C))$
4	$\neg (A \Leftarrow B)$	$A \Rightarrow C$	$\neg ((A \Leftarrow B) \land (A \Rightarrow C))$
5	$A \Leftarrow B$	$\neg (A \Rightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Rightarrow C))$
6	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$
7	$A \Leftarrow B$	$\neg (A \Rightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Rightarrow C))$
8	$A \Leftarrow B$	$A \Rightarrow C$	$(A \Leftarrow B) \land (A \Rightarrow C)$

TABELLE 82. 2. Teil 2. Beweis 1. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
1	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
2	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
3	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
4	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
5	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
6	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
7	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$
8	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftarrow B)$

TABELLE 83. 1. Teil Verweise Beweis 1. Substitutionssatz der Replikation

Aussage/	Definition 10.0.2	Definition 9.0.1	Definition 8.0.2
Fall Nr.	der	der	der
ran m.	Replikation	Implikation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	4. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	2. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Aussage/	Definition 10.0.2	Definition 9.0.1
U /	der	der
Fall Nr.	Replikation	Implikation
1	1. Zeile	4. Zeile
0	0. 77 11	4 77 11
2	3. Zeile	4. Zeile
3	3. Zeile 2. Zeile	4. Zeile 1. Zeile

2. Zeile

4. Zeile

1. Zeile

4. Zeile

1. Zeile

3. Zeile

2. Zeile

4. Zeile

TABELLE 84. 2. Teil Verweise Beweis 1. Substitutionssatz der Replikation

Satz 108. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt

$$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$$

BEWEIS. Aus dieser Satz ist relativ witzlos, ebenso wie der entsprechende Beweis. Angenommen, die Behauptung sein nicht richtig. Dann müsste es in sich selber und gegenüber den anderen Aussagen des Satzes widerspruchsfreie Aussagen A,B sowie C derart geben, dass die Aussage

$$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$$

nicht wahr ist. Dies wäre gemäß der dritten Zeile der Definition 9.0.1 der Implikation dann der Fall, falls die Aussage

$$(A \Leftarrow B) \land (C \Rightarrow B)$$

wahr, die Aussage

$$A \Leftarrow C$$

jedoch nicht wahr wäre. Die Aussage

5

6

7

8

$$A \Leftarrow C$$

ist gemäß der zweiten Zeile der Definition 9.0.1 der Replikation genau dann nicht wahr, falls die Aussage A nicht wahr, die Aussage C jedoch wahr ist. Da die Aussage C wahr ist, muss die Aussage B auch wahr sein. Ansonsten wäre die Aussage C auch wahr sein. Ansonsten wäre gemäß der dritten Zeile der Definition 9.0.1 der Implikation nicht wahr. Dies hätte zur Folge, dass die Konjunktion

$$(A \Leftarrow B) \land (C \Rightarrow B)$$

gemäß dem Minimumprinzip 8 der Implikation nicht wahr und somit die gesamte Aussage gemäß der Abkürzungsregel 9 der Implikation wiederum wahr wäre - was ja gemäß Annahme nicht der Fall sein soll. Da

Aussage/ Fall Nr.	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$
1	1	1	1
2	1	0	0
3	0	1	0
4	0	1	0
5	1	1	1
6	1	0	0
7	1	1	1
8	1	1	1

Tabelle 85. 1. Teil 1. Beweis 2. Substitutionssatz der Replikation

jedoch die Aussage A gemäß der obigen Überlegung nicht wahr sein könnte und B jedoch wahr sein müsste, wäre in diesem Fall die Aussage

$$A \Leftarrow B$$

gemäß der zweite Zeile der Definition 10.0.2 der Replikation eben nicht wahr. Gemäß dem Minimumprinzip 8 der Konjunktion und der Abkürzungsregel 9 der Implikation wäre dann die gesamte Aussage eben trotzdem wieder wahr - was wiederum ein Widerspruch zur Voraussetzung wäre. Also glaube ich schließen zu können, dass es keine Aussagen A, B sowie C derart geben kann, dass die Aussage

$$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$$

nicht wahr ist. Somit glaube ich gemäß dem abgeschwächten Satz 11 der doppelten Negation folgern zu können, dass für alle in sich selber und gegenüber den anderen Symbolen des Satzes widerspruchsfreien Aussagen A,B sowie C gelten muss, dass die gesamte Aussage wahr ist.

Damit hätte ich auch diesen Satz endlich bewiesen. Ich habe den Satz noch einmal mit Hilfe von Wahrheitstabellen erbracht. Diesen habe ich in den Tabellen 85 und 86 einerseits sowie 87 und 88 abgelegt. Die Verweise habe ich in den Tabellen 89 sowie 90 abgelegt. Da ich nun meines Erachtens alles geschrieben habe, was im Hinblick auf den korrekten Beweis der Behauptung zu schreiben war, erlaube ich mir an dieser Stelle, die weitere Beweisführung zu beenden.

<includebackwardreferences>

<includeforwardreferences>

Jetzt kommt der langweiligere dritte Substitutionssatz der Replikation:

Satz 109. Es seien A, B sowie C Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei

Tabelle 86. 2. Teil 1. Beweis 2. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow C$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1
5	1	1
6	1	1
7	1	1
8	1	1

TABELLE 87. 1. Teil 2. Beweis 2. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$
1	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$
2	$A \Leftarrow B$	$\neg (C \Rightarrow B)$	$\neg ((A \Leftarrow B) \land (C \Rightarrow B))$
3	$\neg (A \Leftarrow B)$	$C \Rightarrow B$	$\neg ((A \Leftarrow B) \land (C \Rightarrow B))$
4	$\neg (A \Leftarrow B)$	$C \Rightarrow B$	$\neg ((A \Leftarrow B) \land (C \Rightarrow B))$
5	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$
6	$A \Leftarrow B$	$\neg (C \Rightarrow B)$	$\neg ((A \Leftarrow B) \land (C \Rightarrow B))$
7	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$
8	$A \Leftarrow B$	$C \Rightarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B)$

Tabelle 88. 2. Teil 2. Beweis 2. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
1	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
2	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
3	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
4	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
5	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
6	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
7	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$
8	$C \Leftarrow B$	$(A \Leftarrow B) \land (C \Rightarrow B) \Rightarrow (A \Leftarrow C)$

seien. Dann gilt die Aussage

$$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$$

BEWEIS. Der Satz ist darum langweilig, weil er klar sein dürfte. Angenommen, der Satz wäre nicht wahr. Dann müsste es Aussagen geben, welche mit den Buchstaben A,B sowie C bezeichnet werden

TABELLE 89. 1. Teil Verweise Beweis 2. Substitutionssatz der Replikation

Aussage/	Definition 10.0.2	Definition 9.0.1	Definition 8.0.2
Fall Nr.	der	der	der
ran wi.	Replikation	Implikation	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	3. Zeile	3. Zeile
3	2. Zeile	2. Zeile	2. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	3. Zeile	3. Zeile
7	4. Zeile	2. Zeile	4. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 90. 2. Teil Verweise Beweis 2. Substitutionssatz der Replikation

Aussage/ Fall Nr.	Definition 10.0.2 der Replikation	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	2. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	4. Zeile
8	4. Zeile	4. Zeile

sollen, so dass die Aussage

$$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$$

nicht wahr ist. Dies wäre gemäß der dritten Zeile der Definition 9.0.1 der Implikation dann der Fall, falls die Aussage

$$(A \Leftarrow B) \land (A \Leftrightarrow C)$$

wahr, die Aussage

$$C \Leftarrow B$$

jedoch nicht wahr wäre. Die Aussage

$$C \Leftarrow B$$

ist gemäß der zweiten Zeile der Definition 10.0.2 der Replikation genau dann nicht wahr, falls die Aussage C nicht wahr, die Aussage B jedoch wahr ist. Dann könnte die Aussage A jedoch ebenfalls nicht wahr sein.

Aussage/ Fall Nr.	$A \Leftarrow B$	$A \Leftrightarrow C$	$(A \Leftarrow B) \land (A \Leftrightarrow C)$
1	1	1	1 ab
2	1	0	0
3	0	1	0
4	0	0	0
5	1	0	0
6	1	1	1
7	1	0	0
8	1	1	1

Tabelle 91. 1. Teil 1. Beweis 3. Substitutionssatz der Replikation

Denn ansonsten wäre gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow C$$

ebenfalls nicht wahr. Aufgrund des Minimumprinzip 8 der Konjunktion könnte dann die Konjunktion

$$(A \Leftarrow B) \land (A \Leftrightarrow C)$$

ebenfalls nicht wahr sein. Also wäre dann gemäß der Abkürzungsregel 9 der Implikation die gesamte Aussage der Behauptung wiederum wahr. Da jedoch A ebenfalls nicht wahr sein könnte, die Aussage B jedoch wahr sein müsste, wäre die Aussage

$$A \Leftarrow B$$

gemäß der zweiten Zeile der Definition 10.0.2 der Replikation wiederum nicht wahr. Das wäre jedoch ein Widerspruch zur Voraussetzung. Darum folgere ich, dass es keine Aussagen geben kann, welche mit den Buchstaben A, B sowie C bezeichnet werden sollen, so dass die Aussage

$$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$$

nicht gilt. Also folgere ich gemäß dem abgeschwächten Satz 11 der doppelten Negation, dass die Behauptung für alle Aussagen wahr sein muss - sofern die Aussagen A, B und C in sich selber und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei sind. Also meine ich, den Beweis für die Richtigkeit der Behauptung erbracht zu haben.

Ich möchte gerne versuchen, den Satz ebenfalls noch mit Hilfe von Wahrheitstabellen zu erbringen. Diesen habe ich in den Tabellen 91 und 92 sowie 93 und 94 abgelegt. Die Verweise des Beweises habe ich in den Tabellen 95 sowie 96 abgelegt. Damit habe ich meines Erachtens den Beweis für die Richtigkeit der Behauptung erbracht und beende somit an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>

TABELLE 92. 2. Teil 1. Beweis 3. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$C \Leftarrow B$	Behauptung
1	1	1
2	1	1
3	0	1
4	1	1
5	1	1
6	1	1
7	0	1
8	1	1

TABELLE 93. 1. Teil 2. Beweis 3. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$A \Leftrightarrow C$	$(A \Leftarrow B) \land (A \Leftrightarrow C)$
1	$A \Leftarrow B$	$A \Leftrightarrow C$	$(A \Leftarrow B) \land (A \Leftrightarrow C)$
2	$A \Leftarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Leftrightarrow C))$
3	$\neg (A \Leftarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Leftarrow B) \land (A \Leftrightarrow C))$
4	$\neg (A \Leftarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Leftrightarrow C))$
5	$A \Leftarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Leftrightarrow C))$
6	$A \Leftarrow B$	$A \Leftrightarrow C$	$(A \Leftarrow B) \land (A \Leftrightarrow C)$
7	$A \Leftarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (A \Leftrightarrow C))$
8	$A \Leftarrow B$	$A \Leftrightarrow C$	$(A \Leftarrow B) \land (A \Leftrightarrow C)$

TABELLE 94. 2. Teil 2. Beweis 3. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
1	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
2	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
3	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
4	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
5	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
6	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
7	$\neg (C \Leftarrow B)$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$
8	$C \Leftarrow B$	$(A \Leftarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftarrow B)$

Nun schreibe ich noch den letzten Substitutionssatz der Replikation auf und versuche diesen zu beweisen:

TABELLE 95. 1. Teil Verweise Beweis 2. Substitutionssatz der Replikation

Aussage/ Fall Nr.	Definition 10.0.2 der Replikation	Definition 12.0.1 der Äquivalenz	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 96. 2. Teil Verweise Beweis 2. Substitutionssatz der Replikation

Aussage/	Definition 10.0.2	Definition 9.0.1
Fall Nr.	der	der
1 011 1 11.	Replikation	Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile

Satz 110. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussagen:

$$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$$

BEWEIS. Ich nehme an, dass es Aussagen gibt, welche mit den Buchstaben A,B sowie C bezeichnet werden sollen, derart existieren, dass die Behauptung eben nicht wahr sei. Gemäß der dritten Zeile der Definition 9.0.1 kann dies nur der Fall sein, falls die Aussage

$$(A \Leftarrow B) \land (B \Leftrightarrow C)$$

wahr ist, die Aussage

$$A \Leftarrow C$$

Aussage/ Fall Nr.	$A \Leftarrow B$	$B \Leftrightarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	0	0	0
4	0	1	0
5	1	1	1
6	1	0	0
7	1	0	0
8	1	1	1

Tabelle 97. 1. Teil 1. Beweis 4. Substitutionssatz der Replikation

jedoch nicht wahr ist. Die Aussage A folgt gemäß der zweiten Zeile der Definition 10.0.2 der Replikation genau dann nicht aus der Aussage C, falls die Aussage A nicht wahr, die Aussage C jedoch wahr ist. Da die Aussage A nicht wahr sein kann, kann die Aussage B ebenfalls nicht wahr sein. Denn wäre die Aussage B wahr, dann wäre gemäß der zweiten Zeile 10.0.2 der Replikation die Aussage

$$A \Leftarrow B$$

nicht wahr. Gemäß dem Minimumprinzip 8 der Konjunktion wäre dann die Aussage

$$(A \Leftarrow B) \land (B \Leftrightarrow C)$$

nicht wahr - im Widerspruch zur Voraussetzung. Da die Aussage B nicht wahr sein könnte, die Aussage C jedoch wahr sein müsste, könnte jedoch gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$B \Leftrightarrow C$$

nicht wahr sein. Gemäß dem Minimumprinzip 8 würde dies jedoch wiederum bedeuten, dass die Aussage

$$(A \Leftarrow B) \land (B \Leftrightarrow C)$$

im Widerspruch zur Voraussetzung eben trotzdem nicht wahr wäre. Darum glaube ich gezeigt zu haben, dass es keine derartigen Aussagen, welche mit A,B sowie C bezeichnet werden sollen, geben kann, so das die Behauptung nicht wahr ist. Gemäß der abgeschwächten Form des Satzes 11 der doppelten Negation glaube ich darum folgern zu können, dass für alle derartigen Aussagen die Behauptung eben wahr ist.

Eben dies wollte ich jedoch beweisen. Ich möchte den Satz noch einmal mit Hilfe von Wahrheitstabellen erbringen. Den Beweis habe ich in den Tabellen 97 sowie 98 einerseits sowie in den Tabellen 99 sowie 100 abgelegt. Die Beweise habe ich in den Tabellen 101 sowie 101 abgelegt. Darum erlaube ich mir, an dieser Stelle auf die weitere Beweisführung zu verzichten und den Beweis zu beenden.

Tabelle 98. 2. Teil 1. Beweis 4. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow C$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1
5	1	1
6	1	1
7	1	1
8	1	1

TABELLE 99. 1. Teil 2. Beweis 4. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow B$	$B \Leftrightarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C)$
1	$A \Leftarrow B$	$B \Leftrightarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C)$
2	$A \Leftarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (B \Leftrightarrow C))$
3	$\neg (A \Leftarrow B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (B \Leftrightarrow C))$
4	$\neg (A \Leftarrow B)$	$B \Leftrightarrow C$	$\neg ((A \Leftarrow B) \land (B \Leftrightarrow C))$
5	$A \Leftarrow B$	$B \Leftrightarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C)$
6	$A \Leftarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (B \Leftrightarrow C))$
7	$A \Leftarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftarrow B) \land (B \Leftrightarrow C))$
8	$A \Leftarrow B$	$B \Leftrightarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C)$

Tabelle 100. 2. Teil 2. Beweis 4. Substitutionssatz der Replikation

Aussage/ Fall Nr.	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
1	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
2	$\neg (A \Leftarrow C)$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
3	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
4	$\neg (A \Leftarrow C)$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
5	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
6	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
7	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$
8	$A \Leftarrow C$	$(A \Leftarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftarrow C)$

<includebackwardreferences>

Ich hoffe, dass ich nun die Substitutionssätze der Replikation abhaken kann und werde mich darum nun den Substitutionssätzen der Äquivalenz zuwenden.

<includeforwardreferences>

TABELLE 101. 1. Teil Verweise Beweis 3. Substitutionssatz der Replikation

Aussage/ Fall Nr.	Definition 10.0.2 der Replikation	Definition 12.0.1 der Äquivalenz	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	1. Zeile
4	2. Zeile	4. Zeile	2. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	2. Zeile	3. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

TABELLE 102. 2. Teil Verweise Beweis 4. Substitutionssatz der Replikation

Aussage/ Fall Nr.	Definition 10.0.2 der Replikation	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	2. Zeile
8	4. Zeile	4. Zeile

22.6. Was ist der Substitutionssatz der Äquivalenz?

Nachfolgend wird der erste Substitutionssatz der Äquivalenz aufgeschrieben und bewiesen:

Satz 111. Es seien A, B sowie C Aussagen, welche in sich selbst und in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

Beweis. Ist die Aussage $A\Leftrightarrow B$ oder $A\Leftrightarrow C$ nicht wahr, dann ist gemäß der Abkürzungsregel 8 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel 9 der Implikation die gesamte Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

wiederum wahr. Also kann ich annehmen, dass sowohl die Aussage

$$A \Leftrightarrow B$$

wie auch die Aussage

$$A \Leftrightarrow C$$

wahr sind. Da die Äquivalenz gemäß dem Satz 38 kommutiert, kann ich schreiben

$$(A \Leftrightarrow B) \Leftrightarrow (B \Leftrightarrow A)$$

Nun kann ich den dritten Substitutionssatz 98 der Konjunktion verwenden. Und zwar ersetze ich in diesem Satz die Aussage A durch die Aussage $A \Leftrightarrow B$. Die Aussage B ersetze ich mit der Aussage $A \Leftrightarrow C$. Als Aussage C verwende ich die Aussage

$$B \Leftrightarrow A$$

Also kann ich gemäß dem dritten Substitutionssatz 98 der Konjunktionssatz sowie dem Satz 16 der Schlussfolgerung schreiben, dass gilt

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (B \Leftrightarrow A) \land (A \Leftrightarrow C)$$

Nun kann ich den Satz 15 der Transitivität der Äquivalenz auf die Aussage

$$(B \Leftrightarrow A) \land (A \Leftrightarrow C)$$

anwenden. Gemäß diesem und wiederum dem Satz 16 der Schlussfolgerung kann ich schließen, dass gilt

$$(B \Leftrightarrow A) \land (A \Leftrightarrow C) \Rightarrow (B \Leftrightarrow C)$$

Und noch einmal kann ich den Satz 38 der Kommutation der Äquivalenz verwenden. Gemäß diesem kann ich schreiben, dass gilt

$$(B \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

Da jetzt gilt

$$((B \Leftrightarrow A) \land (A \Leftrightarrow C) \Rightarrow (B \Leftrightarrow C)) \land ((B \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B))$$

kann ich gemäß dem Satz 14 der Transitivität der Implikation und der erneuten Hinzunahme des Satzes 16 der Schlussfolgerung schreiben, dass gilt

$$((B \Leftrightarrow A) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B))$$

Weiter oben habe ich zu zeigen versucht, dass gilt:

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (B \Leftrightarrow A) \land (A \Leftrightarrow C)$$

Nun habe ich zu zeigen versucht, dass gilt:

$$((B \Leftrightarrow A) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B))$$

Aussage $(A \Leftrightarrow B) \land (A \Leftrightarrow C)$ $A \Leftrightarrow B$ $A \Leftrightarrow C$ Fall Nr.

TABELLE 103. 1. Teil 1. Beweis Substitutionssatz der Äquivalenz

TABELLE 104. 2. Teil 1. Beweis Substitutionssatz der Äquivalenz

Aussage/ Fall Nr.	$C \Leftrightarrow B$	Behauptung
1	1	1
2	0	1
3	0	1
4	1	1
5	1	1
6	0	1
7	0	1
8	1	1

Gemäß dem Satz 14 der Transitivität der Implikation und dem Satz 16 der Schlussfolgerung kann ich schreiben, dass gilt

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

Nun glaube ich, in allen möglichen Fällen bewiesen zu haben dass die Aussage richtig ist. Ich möchte gerne den Beweis noch einmal tabellarisch beweisen. Diesen Beweis habe ich in den Tabellen 103 und 104 einerseits sowie 105 und 106 abgelegt. Die Verweise habe ich in den Tabellen 107 sowie 108 abgelegt. Somit erachte ich diesen Beweis als erbracht und möchte mich nun den Substitutionssätzen der Antivalenz zuwenden.

<includebackwardreferences>

<includeforwardreferences>

Vielleicht wunderst Du Dich darüber, wieso ich nur von einem Substitutionssatz der Äquivalenz schreibe. Nun: Weil es keinen anderen Substitutionssatz der Äquivalenz gibt. Denn der zweite Substitutionssatz, welcher noch möglich wäre, würde wie folgt lauten: Wären A, B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug

TABELLE 105. 1. Teil 2. Beweis Substitutionssatz der Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
1	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
2	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
3	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
4	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
5	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
6	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
7	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
8	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$

TABELLE 106. 2. Teil 2. Beweis Substitutionssatz der Äquivalenz

Aussage/ Fall Nr.	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
1	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
2	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
3	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
4	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
5	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
6	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
7	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
8	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$

TABELLE 107. 1. Teil Verweise Beweis Substitutionssatz der Äquivalenz

Aussage/	Definition 12.0.1	Definition 12.0.1	Definition 8.0.2
Fall Nr.	der	der	der
ran m.	Äquivalenz	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile	4. Zeile

Tabelle 108.	2. Teil	Verweise	Beweis 4	. Substitutions-
satz der Äquiva	ılenz			

Aussage/ Fall Nr.	Definition 12.0.1 der Äquivalenz	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	1. Zeile
3	2. Zeile	1. Zeile
4	4. Zeile	2. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	1. Zeile
7	2. Zeile	1. Zeile
8	4. Zeile	4. Zeile

auf die anderen Aussagen des Satzes widerspruchsfrei seien. Dann gilt die Aussage:

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

Nun, dieser Satz existiert zwar. Jedoch ist er bereits formuliert und bewiesen. Und zwar unter der Bezeichnung "Satz der Transitivität der Äquivalenz". Ich habe ihn diesen unter dem Satz 15 abgelegt.

Und dann musste ich mir eingestehen, dass es keine Substitutionssätze derart gibt, dass eine Äquivalenz mit einer Implikation verknüpft wird. Denn es gilt: Sind A,B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbole der Behauptung widerspruchsfrei seien. Dann gilt die Aussage

$$\neg A \land \neg B \land C \Rightarrow ((A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow \neg (C \Leftrightarrow B))$$

Der Beweis dieser Aussage ist meines Erachtens schnell erbracht. Ist A wahr oder B wahr oder C nicht wahr, dann ist gemäß dem Miniumsatz 43 der Konjunktion mit drei Argumenten die Aussage

$$\neg A \land \neg B \land C$$

nicht wahr und somit gemäß der Abkürzungsregel 9 die gesamte Aussage wahr. Ist jedoch weder die Aussage A noch die Aussage B wahr und die Aussage C wahr, dann ist die Aussage $C \Leftrightarrow B$ gemäß der dritten Zeile der Definition 12.0.1 nicht wahr. Also ist gemäß der der ersten Zeile der Definition 6.0.2 der Negation die Aussage

$$\neg (C \Leftrightarrow B)$$

wahr. Somit ist wiederum gemäß der Abkürzungsregel 9 der Implikation die Behauptung

$$(A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow \neg (C \Leftrightarrow B)$$

wahr und somit gemäß der vierten Zeile der Definition 9.0.1 der Implikation die ganze Behauptung

$$\neg A \land \neg B \land C \Rightarrow ((A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow \neg (C \Leftrightarrow B))$$

wiederum wahr. Somit hätte ich in allen denkbaren Fällen den Beweis für die Richtigkeit dieser Behauptung erbracht.

Das ganze Schlamassel passiert auch dann, falls ich die folgende Aussage untersuche: Es seien A,B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole der Behauptung widerspruchsfrei seien. Dann gilt die Aussage

$$\neg A \land \neg B \land C \Rightarrow ((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow \neg (A \Leftrightarrow C))$$

Auch diese Behauptung ist nicht allzu schwierig zu beweisen. Denn sind A oder B wahr oder C nicht wahr, dann ist die Aussage

$$\neg A \land \neg B \land C$$

dem Miniumsatz 43 der Konjunktion mit drei Argumenten nicht wahr. Gemäß der Abkürzungsregel 9 der Implikation ist in allen diesen Fällen die gesamte Behauptung bereits wahr. Sind jedoch sowohl die Aussagen A wie auch B nicht wahr und die Aussage C wahr, dann ist die Aussage $A \Leftrightarrow C$ gemäß der zweiten Zeile der Definition 12.0.1 nicht wahr. Gemäß der Abkürzungsregel 9 der Implikation ist dann die Aussage

$$((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow \neg (A \Leftrightarrow C))$$

wahr. Und genau gemäß der gleichen Abkürzungsregel ist dann in diesem Fall die gesamte Aussage

$$\neg A \land \neg B \land C \Rightarrow ((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow \neg (A \Leftrightarrow C))$$

wiederum wahr. Also hätte bereits an dieser Stelle die ganze Behauptung bewiesen, da ich für alle denkbaren Fälle die Behauptung bewiesen habe.

Mit diesen zwei Behauptungen glaube ich gezeigt zu haben, dass diese zwei Substitutionssätze nicht möglich sind. Damit glaube ich jedoch gezeigt zu haben, dass nur ein Substitutionssatz der Äquivalenz sinnvoll ist.

22.7. Substitutionssätze der Antivalenz

Ehrlich geschrieben habe ich noch keine Ahnung, was da auf mich zukommt. Ich beginne mit den zwei offensichtlichen Fällen:

Satz 112. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

BEWEIS. Ich möchte mir überlegen, ob ein Fall vorhanden sein könnte, in welchem die Aussage nicht zutrifft. Dies könnte nur dann der Fall sein, falls die Aussage

$$C \Leftrightarrow B$$

nicht wahr, die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$$

hingegen wahr wäre. Da die Aussage

$$C \Leftrightarrow B$$

nicht wahr sein dürfte, müssten gemäß der Definition 13.0.1 der Antivalenz entweder beide Aussagen C wie auch B nicht wahr sein oder aber wahr sein. Wären beide Aussage nicht wahr, dann dürfte auch die Aussage A nicht wahr sein. Denn andernfalls wäre gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz die Aussage $A \Leftrightarrow C$ nicht wahr. Wäre jedoch die Aussage A nicht wahr, dann wären alle drei Aussagen A, B sowie C nicht wahr. Jedoch wäre in diesem Fall die Aussage

$$A \Leftrightarrow B$$

gemäß der ersten Zeile der Definition 13.0.1 der Antivalenz ebenfalls nicht wahr. Somit können C und B nicht beide zusammen nicht wahr sein. Wären jedoch sowohl B wie auch C wahr, dann müsste auch A wahr sein. Denn andernfalls wäre die Aussage

$$A \Leftrightarrow C$$

gemäß der zweiten Aussage der Definition 12.0.1 der Äquivalenz nicht wahr. Wären jedoch sowohl A wie auch C wahr, dann wären alle drei Aussagen A, B wie auch C wahr. In diesem Fall wäre jedoch die Aussage

$$A \Leftrightarrow B$$

wiederum gemäß der vierten Zeile der Definition 13.0.1 wiederum nicht wahr. Also ist auch dieser Fall nicht möglich. Somit bleibt festzuhalten, dass es es keine Aussagen geben kann, welche mit A, B sowie C bezeichnet werden sollen, so dass die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

nicht wahr ist. Also glaube ich gemäß dem abgeschwächten Satz der doppelten Negation folgern zu können, dass die Aussage

$$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$$

für alle möglichen ("vernünftigen") Aussagen, welche mit den Buchstaben A, B sowie C bezeichnet werden sollen, wahr ist.

Also meine ich, den Beweis für die Richtigkeit der Aussage erbracht zu haben. Ich möchte den Beweis nachfolgend noch einmal mit Hilfe von Wahrheitstafeln erbringen. Diesen habe ich in den 109 und 110

Tabelle 109. 1. Teil 1. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	1	1	1
4	1	0	0
5	1	0	0
6	1	1	1
7	0	0	0
8	0	1	0

TABELLE 110. 2. Teil 1. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$C \Leftrightarrow B$	Behauptung
1	0	1
2	1	1
3	1	1
4	0	1
5	0	1
6	1	1
7	1	1
8	0	1

TABELLE 111. 1. Teil 2. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
1	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
2	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
3	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
4	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
5	$A \Leftrightarrow B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
6	$A \Leftrightarrow B$	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C)$
7	$\neg (A \Leftrightarrow B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$
8	$\neg (A \Leftrightarrow B)$	$A \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (A \Leftrightarrow C))$

einerseits sowie 111 und 112 abgelegt. Die Verweise habe ich in den Tabellen 113 sowie 114 abgelegt. $\hfill \blacksquare$

<includebackwardreferences>

<includeforwardreferences>

Nun wird der zweite Substitutionssatz der Antivalenz formuliert und bewiesen:

TABELLE 112. 2. Teil 2. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
1	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
2	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
3	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
4	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
5	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
6	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
7	$C \Leftrightarrow B$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$
8	$\neg (C \Leftrightarrow B)$	$(A \Leftrightarrow B) \land (A \Leftrightarrow C) \Rightarrow (C \Leftrightarrow B)$

TABELLE 113. 1. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	Definition 13.0.1 der Antivalenz	Definition 12.0.1 der Äquivalenz	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	2. Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	2. Zeile	3. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 114. 2. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz

	D C ::: 10.0.1	D C ::: 0.0.1
Auggoro /	Definition 13.0.1	Definition 9.0.1
Aussage/ Fall Nr.	der	der
ran m.	Antivalenz	Implikation
1	1. Zeile	1. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	1. Zeile
5	1. Zeile	1. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	2. Zeile
8	4. Zeile	1. Zeile

Satz 113. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

BEWEIS. Ich überlege mir wiederum, ob es Aussagen gibt, welche mit A, B sowie C bezeichnet werden sollen, und für welche die obige Aussage nicht gilt. Diese ist nur dann nicht wahr, falls die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

wahr, die Aussage

$$(A \Leftrightarrow C)$$

jedoch nicht wahr ist. Die Aussage

$$(A \Leftrightarrow C)$$

ist gemäß der ersten und vierten Zeile der Definition 13.0.1 dann nicht wahr, falls sowohl die Aussagen A wie auch C nicht wahr sind oder beide Aussagen A und C wahr sind. Angenommen, beide Aussagen sind nicht wahr. Ist in diesem Fall die Aussage C ebenfalls nicht wahr, dann kann gemäß der ersten Zeile der Definition 12.0.1 die Aussage B ebenfalls nicht wahr sein. Denn wäre die Aussage B wahr, dann wäre gemäß der dritten Zeile der Definition 12.0.1 die Aussage

$$B \Leftrightarrow C$$

nicht wahr - im Widerspruch zur Annahme, dass die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

und somit gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$B \Leftrightarrow C$$

ebenfalls wahr wahr sein müsste. Wäre jedoch die Aussage B ebenfalls nicht wahr, dann könnte gemäß der ersten Zeile der Definition 13.0.1 der Antivalenz nicht wahr sein - im Widerspruch zur Annahme. Also können nicht gleichzeitig A und C nicht wahr sein. Wären jedoch sowohl A wie auch C wahr, dann müsste auch B wahr sein. Andernfalls wäre nämlich die Äquivalenz

$$B \Leftrightarrow C$$

gemäß der Zeile der Definition 12.0.1 der Äquivalenz nicht wahr. Also wäre gemäß dem Minimumprinzip 8 der Konjunktion die Konjunktion

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$$

und somit gemäß der Abkürzungsregel 9 der Implikation die ganze Behauptung

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

Tabelle 115. 1. Teil 1. Beweis 2. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
1	0	1	0
2	0	0	0
3	1	0	0
4	1	1	1
5	1	1	1
6	1	0	0
7	0	0	0
8	0	1	0

TABELLE 116. 2. Teil 1. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow C$	Behauptung
1	0	1
2	1	1
3	0	1
4	1	1
5	1	1
6	0	1
7	1	1
8	0	1

wiederum wahr. Da jedoch alle drei Aussagen A,B wie auch C wahr sein müssten, wäre gemäß der vierten Zeile der Definition 13.0.1 der Antivalenz die Aussage

$$A \Leftrightarrow B$$

ebenfalls nicht wahr - im Gegensatz zur Voraussetzung.

Somit kann ich festhalten, dass es nicht möglich ist, Aussagen mit den Symbolen A, B sowie C derart zu finden, dass die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

nicht wahr ist. Also kann ich folgern, dass für alle (widerspruchsfreien) Aussagen mit den Bezeichnungen A,B wie auch C die Aussage

$$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$$

wahr sein muss. Somit hätte ich den Beweis für die Richtigkeit der Behauptung erbracht. Ich möchte den Beweis noch tabellarisch erbringen. Dieser ist in den nachfolgenden Tabellen 115 und 116 sowie 117 und 118 abgelegt. Die Verweise habe ich in den Tabellen 119 sowie 120 abgelegt.

TABELLE 117. 1. Teil 2. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
1	$\neg (A \Leftrightarrow B)$	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
2	$\neg (A \Leftrightarrow B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
3	$A \Leftrightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
4	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
5	$A \Leftrightarrow B$	$B \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C)$
6	$A \not\Leftrightarrow B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
7	$\neg (A \Leftrightarrow B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$
8	$\neg (A \Leftrightarrow B)$	$B \Leftrightarrow C$	$\neg ((A \Leftrightarrow B) \land (B \Leftrightarrow C))$

TABELLE 118. 2. Teil 2. Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
1	$\neg (A \Leftrightarrow C)$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
2	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
3	$\neg (A \Leftrightarrow C)$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
4	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
5	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
6	$\neg (A \Leftrightarrow C)$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
7	$A \Leftrightarrow C$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$
8	$\neg (A \Leftrightarrow C)$	$(A \Leftrightarrow B) \land (B \Leftrightarrow C) \Rightarrow (A \Leftrightarrow C)$

TABELLE 119. 1. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz

Aussage/	Definition 13.0.1	Definition 12.0.1	Definition 8.0.2
Fall Nr.	der	der	der
ran m.	Antivalenz	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	2.Zeile
2	1. Zeile	2. Zeile	1. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	2. Zeile	3. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

<includebackwardreferences>
<includeforwardreferences>

TABELLE 120. 2. Teil Verweise Beweis 1. Substitutionssatz der Antivalenz

Aussage/ Fall Nr.	Definition 13.0.1 der Antivalenz	Definition 9.0.1 der Implikation
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	1. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	1. Zeile
7	3. Zeile	2. Zeile
8	4. Zeile	1. Zeile

Es bleibt mir in diesem Abschnitt noch zu zeigen, dass dies die einzigen möglichen Substitutionssätze der Antivalenz sind. Es seien A, B, C Symbole von Aussagen, welche in sich selbst und gegenüber der anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt

$$\neg A \land B \land C \Rightarrow \neg ((A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftrightarrow B))$$

Denn falls A wahr oder B oder C nicht wahr sind, ist gemäß dem Lemma 43 der Konjunktion mit drei Argumenten die Aussage

$$\neg A \wedge B \wedge C$$

nicht wahr. Somit ist der Abkürzungsregel 9 der Implikation die ganze Behauptung wahr. Ist jedoch A nicht wahr und sind sowohl die Aussage B wie auch C wahr, dann ist gemäß der Definition 8.0.2 der Konjunktion die Aussage

$$(\neg A \land B) \land C$$

wahr. Genauer: Gemäß der ersten Zeile der Definition 6.0.2 ist die Aussage $\neg A$ wahr. Gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion ist die Aussage

$$\neg A \wedge B$$

wahr. Und ebenfalls gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion ist die Aussage

$$(\neg A \land B) \land C$$

ebenfalls wahr. Gemäß dem Satz 39 der Assoziativität der Konjunktion ist diese Aussage gleichbedeutend zur Aussage

$$\neg A \land B \land C$$

welche also ebenfalls wahr ist. Weiter ist in diesem Fall die Antivalenz

$$A \Leftrightarrow B$$

gemäß der zweiten Zeile der Definition 13.0.1 der Antivalenz wahr. Ebenfalls gemäß der zweiten Zeile der Definition 9.0.1 ist die Implikation

$$A \Rightarrow C$$

wahr. Also ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$(A \Leftrightarrow B) \land (A \Rightarrow C)$$

wahr. Nun ist gemäß der vierten Zeile der Definition 13.0.1 der Antivalenz die Aussage

$$C \Leftrightarrow B$$

nicht wahr. Gemäß der dritten Zeile der Definition 9.0.1 der Implikation ist dann die Aussage

$$(A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftrightarrow B)$$

nicht wahr. Gemäß der ersten Zeile der Definition 6.0.2 ist dann die Aussage

$$\neg ((A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftrightarrow B))$$

wahr. Insgesamt ist dann gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Aussage

$$\neg A \land B \land C \Rightarrow \neg ((A \Leftrightarrow B) \land (A \Rightarrow C) \Rightarrow (C \Leftrightarrow B))$$

wahr. Also ist ein entsprechender Substitutionssatz der Antivalenz mittels der Implikation nicht möglich.

Und da die Antivalenz kommutiert (wie aus der Definition der Antivalenz abgelesen werden kann), kann ich auch schließen

$$A \land \neg B \land C \Rightarrow \neg (((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Leftrightarrow C)))$$

Ich möchte das genauer begründen: Ist die Aussage B wahr oder sind eine der beiden Aussagen A oder C nicht wahr, dann ist gemäß dem Lemma 43 der Konjunktion mit drei Argumenten die Aussage

$$A \wedge \neg B \wedge C$$

nicht wahr. Also ist gemäß der Abkürzungsregel 9 der Implikation die ganze Aussage bereits wahr. Sind jedoch die Aussagen A und C wahr und ist die Aussage B nicht wahr, dann ist sicher gemäß der Definition 8.0.2 der Konjunktion die Aussage

$$A \wedge \neg B \wedge C$$

wahr. Genauer: Gemäß der ersten Zeile der Definition 6.0.2 der Negation ist die Aussage $\neg B$ wahr. Gemäß der vierten Zeile der Definition 8.0.2 ist die Konjunktion

$$A \wedge \neg B$$

ebenfalls wahr. Gemäß der gleichen vierten Zeile der Definition 8.0.2 der Konjunktion ist die Aussage

$$(A \land \neg B) \land C$$

wahr. Und da die Konjunktion gemäß dem Satz 39 assoziativ ist, muss vorhergehende Aussage äquivalent zur Aussage

$$A \wedge \neg B \wedge C$$

sein, welche dementsprechend auch wahr sein muss. Weiter ist gemäß der dritten Zeile der Definition 13.0.1 der Antivalenz die Aussage

$$A \Leftrightarrow B$$

wahr. Gemäß der zweiten Zeile der gleichen Definition 9.0.1 der Implikation ist die Aussage

$$B \Rightarrow C$$

ebenfalls wahr. Gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion ist die Aussage

$$(A \Leftrightarrow B) \land (B \Rightarrow C)$$

immer ebenfalls wahr. Gemäß der vierten Zeile der Definition 13.0.1 der Antivalenz ist die Aussage

$$A \Leftrightarrow C$$

nicht wahr. Somit ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$(A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Leftrightarrow C)$$

nicht wahr. Also ist gemäß der ersten Zeile der Definition 6.0.2 die Aussage

$$\neg ((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Leftrightarrow C))$$

wahr. Somit ist gemäß der vierten Zeile der Definition die Aussage

$$A \land \neg B \land C \Rightarrow \neg ((A \Leftrightarrow B) \land (B \Rightarrow C) \Rightarrow (A \Leftrightarrow C))$$

wahr. Also hätte ich auch diese Behauptung bewiesen, welche besagt, dass ein entsprechender Substitutionssatz der Antivalenz auch nicht möglich ist. Nun kann ich mich den Substitutionssätzen der NAND-Verknüpfung (Sheffer-Notation) zuwenden.

22.8. Substitutionssätze der NAND-Verknüpfung

Wenn mein Plan aufgeht, dann möchte ich diese Sätze verwenden, damit ich das Konzept der Substitutionssätze weiterverfolgen kann.

Auch für die NAND-Verknüpfung kann ich nur zwei Substitutionssätze formulieren und beweisen:

Satz 114. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$$

Beweis. Ich möchte mir überlegen, ob ein Fall vorhanden sein könnte, in welchem die Aussage nicht zutrifft. Dies könnte gemäß der dritten Zeile der Definition 9.0.1 der Implikation nur dann der Fall sein, falls die Aussage

$$C\overline{\wedge}B$$

nicht wahr wäre, die Aussage

$$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C)$$

hingegen schon. Da die Aussage

$$C\overline{\wedge}B$$

nicht wahr sein dürfte, müssten gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung sowohl die Aussagen B wie auch C wahr sein. Dann müsste auch die Aussage A wahr sein. Denn wäre die Aussage A nicht wahr, dann könnte gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow C$$

auch nicht wahr sein. Dann wäre jedoch gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C)$$

ebenfalls nicht wahr - im Gegensatz zur Voraussetzung über diese letzte Aussage. Wäre die Aussage A jedoch wahr, dann wäre die Aussage gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow C$$

wiederum wahr. Gemäß dem Satz 12 des ausgeschlossenen Dritten kann ich darum folgern, dass die Aussage A darum wahr sein muss (es gibt keinen dritten Wahrheitswert der Aussage: Entweder ist sie wahr oder aber es gilt nicht, dass sie wahr ist).

Weiter oben habe ich schon bemerkt, dass die gesamte Aussage nur dann nicht wahr sein kann, falls die Aussage B nicht wahr ist. Nun habe ich festgestellt, dass die gesamte Aussage nur dann nicht wahr sein kann, falls die Aussage A auch wahr ist. Ist jedoch die Aussage A wahr, dann kann gemäß der vierten Zeile der Definition 14.0.1 die NAND-Verknüpfung

$$A\overline{\wedge}B$$

ebenfalls nicht wahr sein. Also müsste in diesem Fall ebenfalls gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C)$$

und somit gemäß der Abkürzungsregel 9 der Implikation wiederum wahr ist. Also kann ich daraus schließen, dass es nicht möglich ist,

TABELLE 121. 1. Teil 1. Beweis 1. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$A \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	1	1	1
4	1	0	0
5	1	0	0
6	1	1	1
7	1	0	0
8	0	1	0

TABELLE 122. 2. Teil 1. Beweis 1. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$C\overline{\wedge}B$	Behauptung
1	1	1
2	1	1
3	1	1
4	0	1
5	1	1
6	1	1
7	1	1
8	0	1

Aussagen mit der Bezeichnungen A,B sowie C derart zu finden, dass die Aussage

$$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$$

nicht wahr. Somit glaube ich wiederum gemäß dem abgeschwächten Satz 11 der doppelten Negation schließen zu können, dass für alle solche Aussagen mit den Symbolen A,B sowie C die Aussage

$$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)\Rightarrow(C\overline{\wedge}B)$$

wahr sein muss. Also meine ich, den Beweis für die Richtigkeit der Behauptung des Satzes erbracht zu haben.

Ich möchte den Beweis nachfolgend noch einmal mit Hilfe von Wahrheitstafeln erbringen. Diesen habe ich in den 121 und 122 einerseits sowie 123 und 124 abgelegt. Die Verweise habe ich in den Tabellen 125 sowie 126 abgelegt.

TABELLE 123. 1. Teil 2. Beweis 1. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$A \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)$
1	$A\overline{\wedge}B$	$A \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)$
2	$A\overline{\wedge}B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (A \Leftrightarrow C))$
3	$A\overline{\wedge}B$	$A \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)$
4	$A\overline{\wedge}B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (A \Leftrightarrow C))$
5	$A\overline{\wedge}B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (A \Leftrightarrow C))$
6	$A\overline{\wedge}B$	$A \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)$
7	$\neg (A \overline{\wedge} B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (A \Leftrightarrow C))$
8	$\neg (A \overline{\wedge} B)$	$A \Leftrightarrow C$	$\neg ((A \overline{\wedge} B) \wedge (A \Leftrightarrow C))$

TABELLE 124. 2. Teil 2. Beweis 1. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$C\overline{\wedge}B$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)\Rightarrow(C\overline{\wedge}B)$
1	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
2	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
3	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
4	$\neg (C \overline{\wedge} B)$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
5	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
6	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
7	$C\overline{\wedge}B$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$
8	$\neg (C \overline{\wedge} B)$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (C\overline{\wedge}B)$

TABELLE 125. 1. Teil Verweise Beweis 1. Substitutionssatz der NAND-Verknüpfung

. ,	Definition 14.0.1	Definition 12.0.1	Definition 8.0.2
Aussage/	der	der	der
Fall Nr.	NAND-Verknüpfung	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	4. Zeile
4	2. Zeile	2. Zeile	3. Zeile
5	3. Zeile	3. Zeile	3. Zeile
6	3. Zeile	4. Zeile	4. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

Aussage/	Definition 14.0.1 der	Definition 9.0.1 der
Fall Nr.	NAND-Verknüpfung	Implikation
1	1. Zeile	4. Zeile
2	3. Zeile	2. Zeile
3	2. Zeile	4. Zeile
4	4. Zeile	1. Zeile
5	1. Zeile	2. Zeile
6	3. Zeile	4. Zeile
7	2. Zeile	2. Zeile
8	4 Zeile	1 Zeile

TABELLE 126. 2. Teil Verweise Beweis 1. Substitutionssatz der NAND-Verknüpfung

<includebackwardreferences>

<includeforwardreferences>

Nun möchte ich den zweiten Substitutionssatz der NAND-Verknüpfung formulieren und beweisen:

Satz 115. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst sowie in Bezug auf die anderen Symbole des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$$

BEWEIS. Ursprünglich hatte ich den Beweis des letzten Satzes kopiert und angepasst. Nun möchte ich mir jedoch den Beweis auf eine andere Art überlegen. Denn ich habe das Gefühl, dass dies besser passt. Ist eine der Aussagen $A\overline{\wedge}B$ oder $B\Leftrightarrow C$ nicht wahr, dann ist gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel 9 der Implikation ist in diesem Fall die gesamte Aussage wiederum wahr. Somit kann an dieser Stelle annehmen, dass sowohl die Aussage $A\overline{\wedge}B$ wie auch die Aussage $B\Leftrightarrow C$ wahr ist. Gemäß dem Satz 67 ist die NAND-Verknüpfung kommutativ. Nun kann ich den dritten Substitutionssatz 98 der Konjunktion anwenden. Anstelle von A verwende ich die Aussage $A\overline{\wedge}B$. Anstelle von B verwende ich die Aussage $B\Leftrightarrow C$. Anstelle von C verwende ich die Aussage $B\overline{\wedge}A$. Aufgrund dieses Satzes und des Satzes 16 der Schlussfolgerung kann ich schreiben

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C) \wedge ((A\overline{\wedge}B) \Leftrightarrow (B\overline{\wedge}A)) \Rightarrow (B\overline{\wedge}A) \wedge (B \Leftrightarrow C)$$

Nun kann ich die Aussage $(B\overline{\wedge}A) \wedge (B \Leftrightarrow C)$ in den ersten Substitutionssatz 114 der NAND-Verknüpfung einfügen (wobei ich die Aussagen

A und B vertausche). Wiederum gemäß dem Satz 16 der Schlussfolgerung kann ich dann schließen

$$(B\overline{\wedge}A) \wedge (B \Leftrightarrow C) \Rightarrow (C\overline{\wedge}A)$$

Nun habe ich als Aussagen

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C) \Rightarrow (B\overline{\wedge}A) \wedge (B \Leftrightarrow C)$$

sowie

$$(B\overline{\wedge}A) \wedge (B \Leftrightarrow C) \Rightarrow (C\overline{\wedge}A)$$

Da die Implikation gemäß dem Satz 14 transitiv ist, kann ich darum (wieder unter Zuhilfenahme des Satzes 16 des Schlussfolgerung) schließen, dass gilt

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C) \Rightarrow (C\overline{\wedge}A)$$

Nun kann ich erneut den Satz 67 der Kommutation der NAND-Verknüpfung zusammen mit dem Satz 16 der Schlussfolgerung anwenden. Ich kann dann schließen, dass gilt:

$$(C\overline{\wedge}A) \Rightarrow (A\overline{\wedge}C)$$

Und schlussendlich kann ich noch ein letztes Mal kann ich den Satz 14 der Transitivität der Implikation sowie dem Satz 16 der Schlussfolgerung anwenden. Ich erhalte dann die "finale¹" Aussage

$$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$$

Dies ist jedoch gerade die zu beweisende Aussage.

Ich möchte den Beweis nachfolgend noch einmal mit Hilfe von Wahrheitstafeln erbringen. Diesen habe ich in den 127 und 128 einerseits sowie 129 und 130 abgelegt. Die Verweise habe ich in den Tabellen 131 sowie 132 abgelegt. Da ich der Meinung bin, dass ich nun den Beweis auf zwei unterschiedliche Arten bewiesen habe, erlaube ich mir an dieser Stelle, auf eine weitere Beweisführung zu verzichten und den Beweis an dieser Stelle zu beenden.

<includebackwardreferences>

<includeforwardreferences>

Wieder möchte ich an dieser Stelle darauf hinweisen, dass es keine anderen Substitutionssätze der NAND-Verknüpfung geben kann - mindestens in diesem Sinn, als dass diese mit einer einfachen Implikation funktionieren würden.

Es seien A,B sowie C Symbole von Aussagen, welche in sich selbst, jedoch auch in Bezug auf die anderen Symbole der Behauptung widerspruchsfrei seien. Dann gilt die Aussage

$$\neg A \land B \land C \Rightarrow \neg \left((A \overline{\land} B) \land (A \Rightarrow C) \Rightarrow (C \overline{\land} B) \right)$$

¹endgültige

TABELLE 127. 1. Teil 1. Beweis 2. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$B \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(B\Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	1	0	0
4	1	1	1
5	1	1	1
6	1	0	0
7	0	0	0
8	0	1	0

TABELLE 128. 2. Teil 1. Beweis 2. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}C$	Behauptung
1	1	1
2	1	1
3	1	1
4	1	1
5	1	1
6	0	1
7	1	1
8	0	1

TABELLE 129. 1. Teil 2. Beweis 2. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}B$	$B \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(B\Leftrightarrow C)$
1	$A\overline{\wedge}B$	$B \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(B\Leftrightarrow C)$
2	$A\overline{\wedge}B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (B \Leftrightarrow C))$
3	$A\overline{\wedge}B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (B \Leftrightarrow C))$
4	$A\overline{\wedge}B$	$B \Leftrightarrow C$	$(A\overline{\wedge}B)\wedge(B\Leftrightarrow C)$
5	$A\overline{\wedge}B$	$B \Leftrightarrow C$	$(A\overline{\wedge}B) \wedge (B \Leftrightarrow C)$
6	$A\overline{\wedge}B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (B \Leftrightarrow C))$
7	$\neg (A \overline{\wedge} B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\wedge} B) \wedge (B \Leftrightarrow C))$
8	$\neg (A \overline{\wedge} B)$	$B \Leftrightarrow C$	$\neg ((A \overline{\wedge} B) \wedge (B \Leftrightarrow C))$

Ist A wahr oder B oder C nicht wahr, dann ist gemäß der erweiterten Anwendung des Minimumprinzip 43 der Konjunktion die Aussage

$$\neg A \land B \land C$$

TABELLE 130. 2. Teil 2. Beweis 2. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\wedge}C$	$(A\overline{\wedge}B)\wedge(A\Leftrightarrow C)\Rightarrow(A\overline{\wedge}C)$
1	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
2	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
3	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
4	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
5	$A\overline{\wedge}C$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
6	$\neg (A \overline{\wedge} C)$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
7		$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$
8	$\neg (A \overline{\land} C)$	$(A\overline{\wedge}B) \wedge (A \Leftrightarrow C) \Rightarrow (A\overline{\wedge}C)$

TABELLE 131. 1. Teil Verweise Beweis 2. Substitutionssatz der NAND-Verknüpfung

Auggogo /	Definition 14.0.1	Definition 12.0.1	Definition 8.0.2
Aussage/ Fall Nr.	der	der	der
ran m.	NAND-Verknüpfung	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	3. Zeile
4	2. Zeile	4. Zeile	4. Zeile
5	3. Zeile	1. Zeile	4. Zeile
6	3. Zeile	2. Zeile	3. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 132. 2. Teil Verweise Beweis 2. Substitutionssatz der NAND-Verknüpfung

Aussage/ Fall Nr.	Definition 14.0.1 der	Definition 9.0.1 der
ran ivi.	NAND-Verknüpfung	Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	4. Zeile
6	4. Zeile	1. Zeile
7	3. Zeile	2. Zeile
8	4. Zeile	1. Zeile

nicht wahr. Gemäß der Abkürzungsregel 9.0.1 der Implikation ist in diesem Fall die gesamte Aussage wahr. Ist jedoch A nicht wahr und sind die Aussagen B sowie C wahr, dann ist gemäß der Definition 8.0.2 der Konjunktion die Aussage

$$\neg A \wedge B \wedge C$$

wahr. Genauer: Gemäß der ersten Zeile der Definition 6.0.2 der Negation ist die Aussage $\neg A$ wahr. Gemäß der vierten Zeile der Definition 8.0.2 ist die Aussage

$$\neg A \wedge B$$

wahr. Ebenfalls gemäß der vierten Zeile Definition 8.0.2 der Konjunktion ist dann die Aussage

$$(\neg A \wedge B) \wedge C$$

wahr. Und da die Konjunktion gemäß dem Satz 39 assoziativ ist, ist die letzte Aussage äquivalent zur Aussage

$$\neg A \wedge B \wedge C$$

welche darum ebenfalls wahr ist.

Gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung ist weiter die Aussage

$$C\overline{\wedge}B$$

jedoch nicht wahr. Gemäß der zweiten Zeile der Definition 14.0.1 der NAND-Verknüpfung ist die Aussage

$$A\overline{\wedge}B$$

wahr. Ebenso ist gemäß der zweiten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \Rightarrow C$$

wahr. Somit ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$(A\overline{\wedge}B) \wedge (A \Rightarrow C)$$

ebenfalls wahr. Jedoch ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation die Aussage

$$(A\overline{\wedge}B) \wedge (A \Rightarrow C) \Rightarrow (C\overline{\wedge}B)$$

nicht wahr. Dann ist jedoch gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage

$$\neg ((A \overline{\wedge} B) \wedge (A \Rightarrow C) \Rightarrow (C \overline{\wedge} B))$$

wahr. Also ist gemäß der vierten Zeile die gesamte Aussage

$$\neg A \land B \land C \Rightarrow \neg ((A \overline{\land} B) \land (A \Rightarrow C) \Rightarrow (C \overline{\land} B))$$

wiederum wahr. Damit hätte ich diese Aussage bewiesen.

Und ja: Da die NAND-Verknüpfung ist gemäß dem Satz 67 kommutativ. Und darum kann auch kein Substitutionssatz mit dem zweiten Argument auf der Basis einer Implikation bewiesen werden. Es gilt:

$$A \land \neg B \land C \Rightarrow \neg ((A \overline{\land} B) \land (B \Rightarrow C) \Rightarrow (A \overline{\land} C))$$

Denn ist die Aussage B wahr oder eine der Aussagen A oder C nicht wahr, dann ist aufgrund dem Minimumprinzip 43 mit drei Argumenten die Aussage

$$A \wedge \neg B \wedge C$$

nicht wahr. In diesem Fall ist aufgrund der Abkürzungsregel 9 der Implikation die gesamte Aussage wiederum wahr. Sind sowohl die Aussagen A wie auch C wahr und die Aussage B nicht wahr, dann ist die Aussage

$$A \wedge \neg B \wedge C$$

wahr. Genauer: Gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage $\neg B$ wahr. Gemäß der vierten Zeile der Definition 8.0.2 ist die Aussage

$$A \wedge \neg B$$

wahr. Ebenfalls gemäß der vierten Zeile Definition 8.0.2 der Konjunktion ist dann die Aussage

$$(A \land \neg B) \land C$$

wahr. Und da die Konjunktion gemäß dem Satz 39 assoziativ ist, ist die letzte Aussage äquivalent zur Aussage

$$A \wedge \neg B \wedge C$$

welche darum ebenfalls wahr ist.

Die Aussage

$$A\overline{\wedge}C$$

ist gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung nicht wahr. Jedoch ist gemäß der dritten Zeile der Definition 14.0.1 der NAND-Verknüpfung die Aussage

$$A\overline{\wedge}B$$

wahr. Und die Aussage

$$B \Rightarrow C$$

ist gemäß der zweiten Zeile der Definition 9.0.1 der Implikation ebenfalls wahr. Also ist gemäß der vierten Zeile der Definition 8.0.2 der Konjunktion die Aussage

$$(A\overline{\wedge}B) \wedge (B \Rightarrow C)$$

ebenfalls wahr. Gemäß der dritten Zeile der Definition 9.0.1 ist die Aussage

$$(A\overline{\wedge}B) \wedge (B \Rightarrow C) \Rightarrow (A\overline{\wedge}C)$$

nicht wahr. Also ist gemäß der ersten Zeile der Definition 6.0.2 der Negation die Aussage

$$\neg ((A \overline{\land} B) \land (B \Rightarrow C) \Rightarrow (A \overline{\land} C))$$

wahr. Somit ist gemäß der vierten Zeile der Definition 9.0.1 der Implikation die Aussage

$$A \land \neg B \land C \Rightarrow \neg ((A \overline{\land} B) \land (B \Rightarrow C) \Rightarrow (A \overline{\land} C))$$

eben wahr. Darum bin ich der Meinung, den Beweis für die Richtigkeit der Behauptung erbracht zu haben. Ich bin der Meinung, dass ich jetzt langsam auf die Zielgerade eingebogen bin, was die Substitutionssätze anbelangt. Ich werde mich nun um die Substitutionssätze der NOR-Verknüpfung (Peirce-Funktion) kümmern.

22.9. Substitutionssätze der NOR-Verknüpfung

Ich möchte nun die zwei Substitutionssätze der NOR-Verknüpfung formulieren und beweisen. Der erste Substitutionssatz der NOR-Verknüpfung lautet:

SATZ 116. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die die übrigen Symbole des Satzes widerspruchsfrei seien. Dann gilt:

$$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$$

BEWEIS. Ist A oder B wahr, dann ist die Aussage

$$A\overline{\vee}B$$

gemäß der Definition 15 der NOR-Verknüpfung nicht wahr. Also ist gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$A\overline{\vee}B \wedge (A \Leftrightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel 9 der Implikation die gesamte Aussage des Satzes wiederum wahr. Somit kann ich im Folgenden annehmen, dass sowohl die Aussage A wie auch B nicht wahr. Ist nun die Aussage C nicht wahr, dann ist gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow C$$

nicht wahr. Also ist wiederum gemäß dem Minimumprinzip8der Konjunktion die Aussage

$$A\overline{\vee}B \wedge (A \Leftrightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel 9 der Implikation die gesamte Aussage des Satzes erneut wahr. Somit bleibt noch der Fall übrig, in welchem die Aussage C ebenfalls nicht wahr ist. In diesem Fall ist gemäß der ersten Zeile der Definition 12.0.1 der Äquivalenz die Aussage

$$A \Leftrightarrow C$$

TABELLE 133. 1. Teil 1. Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}B$	$A \Leftrightarrow C$	$(A\overline{\vee}B)\wedge(A\Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	0	1	0
4	0	0	0
5	0	0	0
6	0	1	0
7	0	0	0
8	0	1	0

TABELLE 134. 2. Teil 1. Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$C\overline{\vee}B$	Behauptung
1	1	1
2	0	1
3	0	1
4	0	1
5	1	1
6	0	1
7	0	1
8	0	1

wahr. Gemäß der vierten Zeile ist in diesem Fall die Aussage

$$A\overline{\vee}B \wedge (A \Leftrightarrow C)$$

wahr. Jedoch ist (da sowohl die Aussage B wie auch die Aussage C nicht wahr sind), die Aussage

$$C \overline{\vee} B$$

gemäß der ersten Zeile der Definition 15 der NOR-Verknüpfung ebenfalls wahr. Somit ist gemäß der vierten Zeile der Definition 9.0.1 die gesamte Aussage

$$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$$

ebenfalls wahr. Damit meine ich, in allen sinnvollen Fällen gezeigt zu haben, dass die Aussage wahr ist und ich somit den Beweis für die Richtigkeit der Behauptung erbracht habe. Ich möchte den Beweis jedoch noch einmal mit Hilfe von Wahrheitstabellen erbringen. Diese sind in den Tabellen 133 und 134 sowie 135 und 136 abgelegt. Die Verweise habe ich in den Tabellen 137 sowie 138 abgelegt.

TABELLE 135. 1. Teil 2. Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}B$	$A \Leftrightarrow C$	$(A\overline{\vee}B)\wedge(A\Leftrightarrow C)$
1	$A\overline{\vee}B$	$A \Leftrightarrow C$	$(A\overline{\vee}B)\wedge(A\Leftrightarrow C)$
2	$A\overline{\vee}B$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \land (A \Leftrightarrow C))$
3	$\neg (A \overline{\lor} B)$	$A \Leftrightarrow C$	$\neg ((A \overline{\vee} B) \land (A \Leftrightarrow C))$
4	$\neg (A \overline{\lor} B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \land (A \Leftrightarrow C))$
5	$\neg (A \overline{\vee} B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (A \Leftrightarrow C))$
6	$\neg (A \overline{\lor} B)$	$A \Leftrightarrow C$	$\neg ((A \overline{\vee} B) \wedge (A \Leftrightarrow C))$
7	$\neg (A \overline{\lor} B)$	$\neg (A \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (A \Leftrightarrow C))$
8	$\neg (A \overline{\lor} B)$	$A \Leftrightarrow C$	$\neg ((A \overline{\vee} B) \land (A \Leftrightarrow C))$

TABELLE 136. 2. Teil 2. Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$C \overline{\vee} B$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$
1	$C\overline{\vee}B$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$
2	$\neg (C \overline{\lor} B)$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$
3	$\neg (C \overline{\lor} B)$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$
4	$\neg (C \overline{\lor} B)$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$
5	$C \overline{\vee} B$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$
6	$\neg (C \overline{\lor} B)$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$
7	$\neg (C \overline{\lor} B)$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$
8	$\neg (C \overline{\lor} B)$	$A\overline{\vee}B \wedge (A \Leftrightarrow C) \Rightarrow C\overline{\vee}B$

TABELLE 137. 1. Teil Verweise Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/	Definition 15	Definition 12.0.1	Definition 8.0.2
Fall Nr.	der	der	der
ran m.	NOR-Verknüpfung	Äquivalenz	Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	1. Zeile	2. Zeile
4	2. Zeile	2. Zeile	1. Zeile
5	3. Zeile	3. Zeile	1. Zeile
6	3. Zeile	4. Zeile	2. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

Tabelle 138.	2. Teil	Verweise	Beweis	1.	Substitutions-
satz der NOR-V	Verknüp	ofung			

Aussage/ Fall Nr.	Definition 15 der NOR-Verknüpfung	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	3. Zeile	1. Zeile
4	4. Zeile	1. Zeile
5	1. Zeile	2. Zeile
6	2. Zeile	1. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	1. Zeile

<includebackwardreferences>

<includeforwardreferences>

Nun folgt auch schon der zweite Substitutionssatz der NOR-Verknüpfung. Dieser könnte relativ leicht aus dem ersten Substitutionssatz der NOR-Verknüpfung abgeleitet werden, indem darauf aufmerksam gemacht wird, dass die NOR-Verknüpfung kommutiert (vergleiche mit der Definition 15 der NOR-Verknüpfung). Aber das ist mir zu mühsam. Denn ich habe auch nicht streng herleitet, dass die NOR-Verknüpfung nicht kommutiert. Ich habe das einfach so geschrieben. Also möchte ich das wiederum die Ochsentour beschreiten, um den zweiten Substitutionssatz der NOR-Verknüpfung zu beweisen. Nun, da ist er:

Satz 117. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbole des Beweises widerspruchsfrei seien. Dann gilt die Aussage

$$A\overline{\vee}B \wedge (B \Leftrightarrow C) \Rightarrow A\overline{\vee}C$$

BEWEIS. Sei mir bitte nicht böse, dass der Beweis haargenau gleich wie derjenige des vorhergehenden Substitutionssatzes aufgebaut ist. Ist eine der Aussagen A oder B der beide zusammen nicht wahr, dann ist die Aussage

$$A\overline{\vee}B$$

nicht wahr. Also ist in diesen Fällen gemäß dem Minimumprinzip8der Konjunktion die Aussage

$$A\overline{\vee}B \wedge (B \Leftrightarrow C)$$

nicht wahr und gemäß der Abkürzungsregel 8 der Konjunktion die gesamte zu beweisende Aussage wiederum wahr. Sind jedoch beide Aussagen A und B nicht wahr, dann ist die Aussage

$$A \overline{\vee} B$$

wahr. Dann kann jedoch ebenfalls die Aussage C nicht wahr sein. Denn in diesem Fall ist die Aussage

$$B \Leftrightarrow C$$

gemäß der ersten Zeile der Definition 12.0.1 wahr. Wäre die Aussage C nicht wahr, dann wäre die Aussage

$$B \Leftrightarrow C$$

nicht wahr. Also wäre gemäß dem Minimumprinzip 8 der Konjunktion die Aussage

$$A\overline{\vee}B \wedge (B \Leftrightarrow C)$$

nicht wahr und dann entsprechend der Abkürzungsregel 9 der Implikation die Aussage wiederum wahr.

Doch zurück zum Fall, in welchem die Aussage C nicht wahr ist. In diesem Fall ist gemäß der ersten Zeile der Definition 15 der NOR-Verknüpfung die Aussage

$$A\overline{\vee}C$$

wahr. Also ist gemäß der vierten Zeile der Definition 9.0.1 der Implikation die gesamte Aussage

$$A\overline{\vee}B \wedge (B \Leftrightarrow C) \Rightarrow A\overline{\vee}C$$

wahr. Somit bin ich der Meinung, dass ich in allen denkbaren Fällen gezeigt habe, dass die Aussage des Satzes wahr ist. Aus diesem Grund kann ich die weitere Beweisführung an dieser Stelle abbrechen - nachdem ich die Richtigkeit der Aussage noch einmal mittels Wahrheitstabellen erbracht habe. Den Beweis habe ich einerseits in den Tabellen 139 sowie 140 und andererseits in den Tabellen 141 sowie 142 abgelegt. Die Beweise habe ich in den Tabellen 143 sowie 144 abgelegt. Da ich nun meine, den Beweis auf zwei verschiedene Arten bewiesen habe, erlaube ich mir, auf eine weitere Beweisführung zu verzichten und den Beweis somit an dieser Stelle zu beenden.

<includebackwardreferences>
<includeforwardreferences>

22.10. Äquivalenzsätze

Eine Anwendung er Erzeugendensysteme ist mir aber nach langer Zeit trotzdem in den Sinn gekommen. Zuerst möchte den Satz formulieren und anschließend dessen Konsequenzen diskutieren.

TABELLE 139. 1. Teil 1. Beweis 2. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}B$	$B \Leftrightarrow C$	$(A\overline{\vee}B)\wedge(B\Leftrightarrow C)$
1	1	1	1
2	1	0	0
3	0	0	0
4	0	1	0
5	0	1	0
6	0	0	0
7	0	0	0
8	0	1	0

TABELLE 140. 2. Teil 1. Beweis 2. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}C$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1
5	0	1
6	0	1
7	0	1
8	0	1

TABELLE 141. 1. Teil 2. Beweis 2. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}B$	$B \Leftrightarrow C$	$(A\overline{\vee}B)\wedge(B\Leftrightarrow C)$
1	$A\overline{\vee}B$	$B \Leftrightarrow C$	$(A \overline{\vee} B) \wedge (B \Leftrightarrow C)$
2	$A\overline{\vee}B$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (B \Leftrightarrow C))$
3	$\neg (A \overline{\lor} B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (B \Leftrightarrow C))$
4	$\neg (A \overline{\lor} B)$	$B \Leftrightarrow C$	$\neg ((A \overline{\vee} B) \land (B \Leftrightarrow C))$
5	$\neg (A \overline{\lor} B)$	$B \Leftrightarrow C$	$\neg ((A\overline{\vee}B) \land (B \Leftrightarrow C))$
6	$\neg (A \overline{\lor} B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \wedge (B \Leftrightarrow C))$
7	$\neg (A \overline{\lor} B)$	$\neg (B \Leftrightarrow C)$	$\neg ((A \overline{\vee} B) \land (B \Leftrightarrow C))$
8	$\neg (A \overline{\lor} B)$	$B \Leftrightarrow C$	$\neg ((A \overline{\vee} B) \land (B \Leftrightarrow C))$

TABELLE 142. 2. Teil 2. Beweis 1. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	$A\overline{\vee}C$	Behauptung
1	1	1
2	0	1
3	1	1
4	0	1
5	0	1
6	0	1
7	0	1
8	0	1

TABELLE 143. 1. Teil Verweise Beweis 2. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	Definition 15 der NOR-Verknüpfung	Definition 12.0.1 der Äquivalenz	Definition 8.0.2 der Konjunktion
1	1. Zeile	1. Zeile	4. Zeile
2	1. Zeile	2. Zeile	3. Zeile
3	2. Zeile	3. Zeile	2. Zeile
4	2. Zeile	4. Zeile	1. Zeile
5	3. Zeile	1. Zeile	2. Zeile
6	3. Zeile	2. Zeile	1. Zeile
7	4. Zeile	3. Zeile	1. Zeile
8	4. Zeile	4. Zeile	2. Zeile

TABELLE 144. 2. Teil Verweise Beweis 2. Substitutionssatz der NOR-Verknüpfung

Aussage/ Fall Nr.	Definition 15 der NOR-Verknüpfung	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	2. Zeile	1. Zeile
3	1. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	1. Zeile
7	3. Zeile	1. Zeile
8	4. Zeile	1. Zeile

SATZ 118. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \Rightarrow ((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C))$$

BEWEIS. Zuerst möchte ich versuchen, sprachlich einen Beweis zu formulieren. Anschließend möchte ich einen tabellarischen Beweis aufschreiben.

Zum sprachlichen Beweis: Die Aussage

$$(A \Leftrightarrow B) \Rightarrow ((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C))$$

ist gemäß der dritten Zeile der Definition 9.0.1 der Implikation nur dann falsch, falls die Aussage

$$A \Leftrightarrow B$$

wahr, die Aussage

$$((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C))$$

jedoch nicht wahr ist. Die Aussage

$$((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C))$$

ist gemäß der zweiten und dritten Zeile der Definition 12.0.1 der Äquivalenz dann nicht wahr, falls eine Aussage wahr, die andere Aussage jedoch nicht wahr ist. Ich nehme zuerst an, dass die $A\bar{\wedge}C$ nicht wahr sei. Dies ist jedoch gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung nur dann wahr, falls beide Aussagen A sowie Cwahr sind. Da jedoch die Aussage $A \Leftrightarrow B$ gemäß Voraussetzung wahr sein muss, muss die Aussage B gemäß der vierten Zeile der Definition 12.0.1 die Aussage B ebenfalls wahr sein muss. Wäre die Aussage B nicht wahr, dann müsste die Aussage $A \Leftrightarrow B$ gemäß der dritten Zeile der Definition 12.0.1 nicht wahr sein - im Widerspruch zur Voraussetzung. Da nun jedoch alle drei Aussagen A, B sowie C wahr sein müssen, kann in diesem Fall die Aussage $B\bar{\wedge}C$ gemäß der vierten Zeile der Definition 12.0.1 ebenfalls nicht wahr sein - im Widerspruch zur Annahme. Also muss die Aussage $A\bar{\wedge}C$ wahr sein. Gemäß der dritten Zeile der Definition 12.0.1 der Äquivalenz kann in diesem Fall die Aussage $B\bar{\wedge}C$ nicht wahr sein. Denn wäre die Aussage $B\bar{\wedge}C$ wahr, dann wäre gemäß der vierten Zeile der Äquivalenz die Aussage

$$((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C))$$

wiederum wahr, im Widerspruch zur Voraussetzung. Da jedoch die Aussage

$$B\bar{\wedge}C$$

nicht wahr sein kann, müssen gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung beide Aussagen B und C wiederum wahr sein. Denn in allen anderen Fällen (Falls mindestens eine der beiden Aussagen nicht wahr ist), ist die Aussage gemäß der Definition der

TABELLE 145. 1. Teil 1. Beweis des Satzes von NAND und Äquivalenz

Aussage/ Fall Nr.	$A\bar{\wedge}C$	$B\bar{\wedge}C$	$ \begin{array}{c} (A\bar{\wedge}C) \Leftrightarrow \\ (B\bar{\wedge}C) \end{array} $
1	1	1	1
2	1	1	1
3	1	1	1
4	1	0	0
5	1	1	1
6	0	1	0
7	1	1	1
8	0	0	1

NAND-Verknüpfung wiederum wahr. Also muss Voraussetzung über die Aussage

$$A \Leftrightarrow B$$

gemäß der vierten Zeile der Definition 12.0.1 der Äquivalenz die Aussage A wiederum wahr sein. Denn wäre die Aussage A nicht wahr, dann wäre die Aussage

$$A \Leftrightarrow B$$

gemäß der zweiten Zeile der Definition 12.0.1 der Äquivalenz nicht wahr - im Widerspruch zur Voraussetzung. Also wären wiederum alle Aussagen A,B sowie C wahr und somit könnte auch die Aussage

$$A\bar{\wedge}C$$

gemäß der vierten Zeile der Definition 14.0.1 der NAND-Verknüpfung wiederum nicht wahr sein. Damit habe ich gezeigt, dass es keine Aussagen A,B sowie C derart geben kann, dass die Aussage

$$(A \Leftrightarrow B) \Rightarrow ((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C))$$

nicht wahr sein kann. Und gemäß dem Satz 12 kann ich darum folgern, dass für alle denkbaren widerspruchsfreien Aussagen A,B sowie C die Aussage

$$(A \Leftrightarrow B) \Rightarrow ((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C))$$

wahr sein muss. Aus diesem Grund erachte ich den sprachlichen Beweis für Richtigkeit der Behauptung als erbracht.

In den Tabellen 145, 145 sind auf die erste Art, in den Tabellen 147sowie 147sind die tabellarischen Beweise für die Behauptung auf die zweite Art aufgelistet. In den Tabellen 145 sowie 145 sind die Verweise der tabellarischen Beweise abgelegt:

Da ich nun den Beweis für die Richtigkeit der Behauptung auf zwei verschiedene Arten erbracht habe, verzichte ich an dieser Stelle auf eine weitere Beweisführung und beende somit diesen Beweis.

TABELLE 146. 2. Teil 1. Beweis des NAND-Äquvialenzsatzes

Aussage/ Fall Nr.	$A \Leftrightarrow B$	Behauptung
1	1	1
2	1	1
3	0	1
4	0	1
5	1	1
6	0	1
7	0	1
8	1	1

TABELLE 147. 2. Teil 1. Beweis des Satzes von NAND und Äquivalenz

Aussage/ Fall Nr.	$A\bar{\wedge}C$	$B\bar{\wedge}C$
1	$A\bar{\wedge}C$	$B\bar{\wedge}C$
2	$A\bar{\wedge}C$	$B\bar{\wedge}C$
3	$A\bar{\wedge}C$	$B\bar{\wedge}C$
4	$A\bar{\wedge}C$	$\neg (B \bar{\wedge} C)$
5	$A\bar{\wedge}C$	$B\bar{\wedge}C$
6	$\neg (A \bar{\wedge} C)$	$B\bar{\wedge}C$
7	$A\bar{\wedge}B$	$B\bar{\wedge}C$
8	$\neg (A \bar{\wedge} C)$	$\neg (B \bar{\wedge} C)$

Nun schlägt die Stunde der Korollare. Es ist zwar relativ langweilig. Aber ich mache es, weil ich denke, dass es einmal gemacht werden sollte.

KOROLLAR 119. Es seien A, B sowie C Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \Rightarrow ((C \bar{\wedge} A) \Leftrightarrow (C \bar{\wedge} B))$$

BEWEIS. Es gilt sicher gemäß dem vorhergehenden Satz 118 die Aussage

$$(A \Leftrightarrow B) \Rightarrow ((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C))$$

Gemäß dem Satz 67 über die Kommutativität der NAND-Verknüpfung gilt

$$(A\bar{\wedge}C) \Leftrightarrow (C\bar{\wedge}A)$$

Also kann ich gemäß dem 111 Substitutionssatz der Äquivalenz schreiben, dass gilt

$$((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C)) \Rightarrow ((C\bar{\wedge}A) \Leftrightarrow (B\bar{\wedge}C))$$

TABELLE 148. 2. Teil 2. Beweis des Satzes von NAND und Äquivalenz

Aussage/ Fall Nr.	$A \Leftrightarrow B$	Behauptung
1	$A \Leftrightarrow B$	$ \begin{array}{c} (A \Leftrightarrow B) \Rightarrow \\ ((A\bar{\wedge}C) \Leftrightarrow \\ (B\bar{\wedge}C)) \end{array} $
2	$A \Leftrightarrow B$	$ \begin{array}{c} (A \Leftrightarrow B) \Rightarrow \\ ((A\bar{\wedge}C) \Leftrightarrow \\ (B\bar{\wedge}C)) \end{array} $
3	$\neg (A \Leftrightarrow B)$	$ \begin{array}{c} (A \Leftrightarrow B) \Rightarrow \\ ((A\bar{\wedge}C) \Leftrightarrow \\ (B\bar{\wedge}C)) \end{array} $
4	$\neg (A \Leftrightarrow B)$	$ (A \Leftrightarrow B) \Rightarrow ((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C)) $
5	$A \Leftrightarrow B$	$ (A \Leftrightarrow B) \Rightarrow ((A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C)) $
6	$\neg (A \Leftrightarrow B)$	$ \begin{array}{c} (A \Leftrightarrow B) \Rightarrow \\ ((A\bar{\wedge}C) \Leftrightarrow \\ (B\bar{\wedge}C)) \end{array} $
7	$\neg (A \Leftrightarrow B)$	$ \begin{array}{c} (A \Leftrightarrow B) \Rightarrow \\ ((A\bar{\wedge}C) \Leftrightarrow \\ (B\bar{\wedge}C)) \end{array} $
8	$A \Leftrightarrow B$	$ \begin{array}{c} (A \Leftrightarrow B) \Rightarrow \\ ((A\bar{\wedge}C) \Leftrightarrow \\ (B\bar{\wedge}C)) \end{array} $

TABELLE 149. 1. Teil Verweise des Beweises des Satzes von NAND und Äquivalenz

Defintion/	Definition 14.0.1	Definition 14.0.1
Fall Nr.	der	der
ran m.	NAND-Verknüpfung	NAND-Verknüpfung
1	1. Zeile	1. Zeile
2	2. Zeile	2. Zeile
3	1. Zeile	3. Zeile
4	2. Zeile	4. Zeile
5	3. Zeile	1. Zeile
6	4. Zeile	2. Zeile
7	3. Zeile	3. Zeile
8	4. Zeile	4. Zeile

Tabelle 150.	2. Teil	Verweise	${\rm des}$	Beweises	${\rm des}$	Satzes
von NAND und	l Äquiv	alenz				

Defintion/ Fall Nr.	Definition 12.0.1 der Äquivalenz	Definition 9.0.1 der Implikation
1	1. Zeile	4. Zeile
2	1. Zeile	4. Zeile
3	2. Zeile	2. Zeile
4	2. Zeile	1. Zeile
5	3. Zeile	4. Zeile
6	3. Zeile	1. Zeile
7	4. Zeile	2. Zeile
8	4. Zeile	4. Zeile

Da die Implikation gemäß dem Satz 14 transitiv ist, kann ich schreiben, dass gilt

$$(A \Leftrightarrow B) \Rightarrow ((C\bar{\wedge}A) \Leftrightarrow (B\bar{\wedge}C))$$

Ebenso gilt gemäß dem Satz 67 über die Kommutativität der NAND-Verknüpfung

$$(B\bar{\wedge}C) \Leftrightarrow (C\bar{\wedge}B)$$

Da die Äquivalenz gemäß dem Satz 15 transitiv ist, kann ich darum folgern, dass gilt

$$((C\bar{\wedge}A) \Leftrightarrow (B\bar{\wedge}C)) \Rightarrow ((C\bar{\wedge}A) \Leftrightarrow (B\bar{\wedge}C))$$

Und da die Implikation gemäß dem Satz 14 immer noch transitiv ist, kann ich darum ebenfalls folgern, dass gilt

$$(A \Leftrightarrow B) \Rightarrow ((C \bar{\wedge} A) \Leftrightarrow (C \bar{\wedge} B))$$

Genau diese Aussage wollte ich jedoch beweisen. Darum bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Aussage erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Die der NAND-Äquivalenzsatz 118 und das 1. Korollar 119 Können jetzt noch zusammengefasst werden zum Korollar:

KOROLLAR 120. Es seien A, B, C sowie D Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \land (C \Leftrightarrow D) \Rightarrow ((A\bar{\land}C) \Leftrightarrow (B\bar{\land}D))$$

BEWEIS. Es seien also A,B,C sowie D Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Zudem gelte die Aussage

$$(A \Leftrightarrow B) \land (C \Leftrightarrow D)$$

Zur Erinnerung: Ist diese Voraussetzung nicht gegeben, dann gilt der Satz gemäß der Abkürzungsregel 9 der Implikation bereits. Da aus der Konjunktion von zwei Aussagen gemäß dem Satz 54 auch die Aussage selbst folgt, muss auch

$$A \Leftrightarrow B$$

gelten. In Worten: Die Aussage A ist äquivalent zur Aussage B. Dann kann ich mit dem NAND-Äquivalenzsatz 118 des ersten Arguments folgern, dass gelten muss

$$(A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C)$$

Gemäß dem Satz 55, welcher besagt, dass aus der Konjunktion von zwei Aussagen die zweite Aussage folgt, kann ich folgern, dass auch gelten muss dass die Aussage

$$C \Leftrightarrow D$$

gemäß Voraussetzung wahr sein muss. Also kann ich ebenso gemäß dem Korollar 119 des NAND-Äquivalenzsatzes folgern, dass gilt:

$$(B\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}D)$$

Da die Äquivalenz gemäß dem Satz 15 transitiv ist, kann ich aus den Aussagen

$$(A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}C)$$

sowie

$$(B\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}D)$$

folgern, dass gilt

$$(A\bar{\wedge}C) \Leftrightarrow (B\bar{\wedge}D)$$

Dies ist jedoch gerade die Behauptung. Aus diesem Grund erachte ich den Beweis der Richtigkeit der Behauptung als erbracht und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Nun folgt das nächste Korollar:

KOROLLAR 121. Es seine A und B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow B) \Rightarrow (\neg A \Leftrightarrow \neg B)$$

BEWEIS. Gemäß dem Satz 80 über den Zusammenhang von NAND und der Negation gilt die Aussage:

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

Da die Aussage A gemäß Voraussetzung äquivalent zur Aussage B ist, muss gemäß dem ersten Korollar 119 von NAND und Äquivalenz gelten

$$A\overline{\wedge}A \Leftrightarrow B\overline{\wedge}A$$

Da die Äquivalenz gemäß dem Satz 15 transitiv ist, kann ich darum folgern, dass gelten muss

$$\neg A \Leftrightarrow B \bar{\wedge} A$$

Da die Aussage A gemäß Voraussetzung immer noch äquivalent zur Aussage B ist, muss gemäß dem Satz 118 über den Zusammenhang von NAND und Äquivalenz gelten

$$B\overline{\wedge}A \Leftrightarrow B\overline{\wedge}B$$

Wiederum muss gemäß dem Satz 15 der Transitivität der Äquivalenz kann ich darum wiederum folgern, dass gilt

$$\neg A \Leftrightarrow B \bar{\wedge} B$$

Schlussendlich kann ich gemäß dem Satz 80 schreiben, dass gilt

$$\neg B \Leftrightarrow B \bar{\wedge} B$$

Gemäß dem Satz 38 über die Kommutativität der Äquivalenz kann ich folgern, dass auch gilt gilt:

$$B\bar{\wedge}B \Leftrightarrow \neg B$$

Da nun die Äquivalenz gemäß dem Satz 15 immer noch transitiv ist, kann ich aus den Aussagen

$$\neg A \Leftrightarrow B \bar{\wedge} B$$

sowie

$$B\bar{\wedge}B \Leftrightarrow \neg B$$

folgern kann, dass gilt

$$\neg A \Leftrightarrow \neg B$$

Das war jedoch gerade zu beweisen. Aus diesem Grund bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Behauptung erbracht habe.

Es gibt übrigens noch einen weiteren, sehr kurzen Beweis:

Aufgrund des Äquivalenz-Negationssatzes 60 kann ich folgern, dass gilt

$$(A \Leftrightarrow B) \Leftrightarrow (\neg A \Leftrightarrow \neg B)$$

Und da gemäß dem Satz 51, welcher besagt, dass aus einer Äquivalenz eine Negation folgt, kann ich folgern, dass gilt:

$$(A \Leftrightarrow B) \Rightarrow (\neg A \Leftrightarrow \neg B)$$

Und genau dies wollte ich zeigen. Aus diesem Grund behaupte ich, dass ich den Beweis für die Richtigkeit der Behauptung gleich zweimal erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Es bleibt mir anzumerken, dass der Beweis extrem umständlich ist und er mit einem tabellarischen Beweis viel kürzer hätte gehalten werden können. Trotzdem ist es mir wichtig zu zeigen, wie der Beweis mittels der Verwendung der NAND-Verknüpfung geführt werden kann.

Im folgenden möchte ich zeigen, das der Äquivalenzsatz auch für Konjunktionen gilt.

KOROLLAR 122. Es seine A und B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D) \Rightarrow (A \land B \Leftrightarrow C \land D)$$

BEWEIS. Gemäß dem Satz 68 gilt die Aussage

$$A\bar{\wedge}B \Leftrightarrow \neg (A \wedge B)$$

Gemäß dem Äquivalenz-Negationssatz 60 kann ich daraus folgern, dass gilt:

$$\neg (A \bar{\land} B) \Leftrightarrow \neg (\neg (A \land B))$$

Aufgrund des Satzes 10 kann ich folgern, dass gilt

$$A \wedge B \Leftrightarrow \neg (\neg (A \wedge B))$$

Da die Äquivalenz gemäß dem Satz 38 symmetrisch ist, kann ich folgern, dass ebenso gilt:

$$\neg (\neg (A \land B)) \Leftrightarrow A \land B$$

Da die Äquivalenz gemäß dem Satz 15 transitiv ist, kann ich aufgrund der Aussagen

$$\neg (A \overline{\land} B) \Leftrightarrow \neg (\neg (A \land B))$$

sowie

$$\neg (\neg (A \land B)) \Leftrightarrow A \land B$$

folgern, dass gilt

$$(22.10.1) \qquad \neg (A \bar{\wedge} B) \Leftrightarrow A \wedge B$$

Nun ist die Äquivalenz immer noch gemäß des Satzes 38 kommutativ. Also kann ich folgern, dass auch gelten muss, dass gilt

$$A \wedge B \Leftrightarrow \neg (A \bar{\wedge} B)$$

Gemäß dem Korollar 120, des Konjunktion-Äquivalenzsatzes beider Argumente kann ich folgern, dass gilt

$$A\bar{\wedge}B \Leftrightarrow C\bar{\wedge}D$$

Der Äquivalenz-Negationssatz 121 besagt nun, dass auch gelten muss

$$\neg (A \bar{\land} B) \Leftrightarrow \neg (C \bar{\land} D)$$

Da die Äquivalenz gemäß dem Satz 15 transitiv ist, kann ich aus den Aussagen

$$A \wedge B \Leftrightarrow \neg (A \bar{\wedge} B)$$

498

sowie

$$\neg (A \bar{\land} B) \Leftrightarrow \neg (C \bar{\land} D)$$

folgern, dass gilt:

$$A \wedge B \Leftrightarrow \neg (C \bar{\wedge} D)$$

Ich kann jetzt wiederum die Aussage 22.10.1 verwenden und folgern, dass gilt

$$\neg (C \bar{\wedge} D) \Leftrightarrow C \wedge D$$

Also kann ich gemäß dem Satz 15 der Äquivalenz wiederum folgern, dass aus den Aussagen

$$A \wedge B \Leftrightarrow \neg (C \bar{\wedge} D)$$

sowie

$$\neg (C \bar{\wedge} D) \Leftrightarrow C \wedge D$$

folgern, dass gilt

$$A \wedge B \Leftrightarrow C \wedge D$$

Das ist jedoch endlich die gesuchte Aussage. Aus diesem Grund erachte ich den Beweis für die Richtigkeit der Behauptung als erbracht und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Dabei möchte ich bemerken, dass dieses Korollar auch dann gilt, falls nur eine Aussage ausgetauscht wird. Falls also ausschließlich

$$A \Leftrightarrow C$$

oder etwa

$$B \Leftrightarrow D$$

ist. Denn im ersten Fall kann ich setzen

$$D \equiv B$$

im zweiten Fall

$$C \equiv A$$

Denn da die Äquivalenz gemäß dem Satz ?? eine Äquivalenzrelation und darum gemäß der Definition ?? also auch identitiv ist, gilt im Fall

$$D \equiv B$$

auch

$$B \Leftrightarrow B$$

und im zweiten Fall

$$A \Leftrightarrow A$$

Das bedeutet jedoch, dass in beiden Fällen die Voraussetzungen des Korollars gegeben sind und darum das Korollar immer noch gültig ist.

Nun möchte ich das nächste Korollar formulieren und beweisen:

Dabei möchte ich bemerken, dass dieses Korollar auch dann gilt, falls nur eine Aussage ausgetauscht wird. Falls also ausschließlich

$$A \Leftrightarrow C$$

oder etwa

$$B \Leftrightarrow D$$

ist. Denn im ersten Fall kann ich setzen

$$D \equiv B$$

im zweiten Fall

$$C \equiv A$$

KOROLLAR 123. Es seine A und B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D) \Rightarrow (A \lor B \Leftrightarrow C \lor D)$$

BEWEIS. Es seien also A, B, C sowie D Aussagen, welche in sich selbst respektive in Bezug auf die anderen Aussagen des Satzes widerspruchsfrei seien und für welche gilt

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D)$$

Dann gilt gemäß dem Satz 83, welcher den Zusammenhang von Konjunktion und Disjunktion beschreibt:

$$A \vee B \Leftrightarrow (A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B)$$

Beweis. Gemäß dem Satz 80, welcher den Zusammenhang von Negation und NAND-Funktion beschreibt, gilt dann

$$\neg A \Leftrightarrow A \overline{\wedge} A$$

sowie

$$\neg B \Leftrightarrow A \overline{\wedge} A$$

Da die Äquivalenzrelation gemäß dem Satz 38 symmetrisch ist, kann ich also gemäß dem Satz 16 folgern, dass auch gilt

$$A\overline{\wedge}A \Leftrightarrow \neg A$$

sowie

$$B\overline{\wedge}B \Leftrightarrow \neg B$$

Somit kann ich gemäß dem Korollar 120, dem Äquivalenzsatz der NAND-Verknüpfung mit Ersetzung beider Aussagen, und dem Satz 16 schlussfolgern, dass auch gelten muss

$$(A\overline{\wedge}A)\overline{\wedge}(B\overline{\wedge}B) \Leftrightarrow \neg A\overline{\wedge}\neg B$$

Beweis. Gemäß dem Satz 15 ist die Äquivalenz transitiv. Somit kann ich gemäß dem Satz 16 folgern, dass gilt

$$A \vee B \Leftrightarrow \neg A \overline{\wedge} \neg B$$

Da aus der Konjunktion gemäß dem Satz 54 Gültigkeit der ersten Aussage folgt, kann ich aus der Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D)$$

mit dem Satz 16 schlussfolgern, dass gilt

$$A \Leftrightarrow C$$

Beweis. Gemäß dem Satz 60 des Zusammenhangs von Äquivalenz und Negation kann ich aus der Äquivalenz

$$A \Leftrightarrow C$$

die Äquivalenz

$$\neg A \Leftrightarrow \neg C$$

schlussfolgern. Ebenso muss gemäß dem Satz 55 gelten, dass aus der Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D)$$

die Aussage

$$B \Leftrightarrow D$$

folgt. Beweis. Gemäß dem Satz 60 des Zusammenhangs von Äquivalenz und Negation kann ich aus der Äquivalenz

$$B \Leftrightarrow D$$

die Äquivalenz

$$\neg B \Leftrightarrow \neg D$$

schlussfolgern. Da nun also gilt

$$\neg A \Leftrightarrow \neg C$$

sowie

$$\neg B \Leftrightarrow \neg D$$

kann ich gemäß dem Korollar 120, dem Äquivalenzsatz der NAND-Verknüpfung mit Ersetzung beider Aussagen, gemäß dem Satz 16 schlussfolgern, dass gilt

$$\neg A \overline{\wedge} \neg B \Leftrightarrow \neg C \overline{\wedge} \neg D$$

Beweis. Gemäß dem Satz 15 ist die Äquivalenzrelation transitiv. Somit kann ich gemäß dem Satz 16 aus den Aussagen

$$A \vee B \Leftrightarrow \neg A \overline{\wedge} \neg B$$

sowie

$$\neg A \overline{\wedge} \neg B \Leftrightarrow \neg C \overline{\wedge} \neg D$$

folgern, dass gilt

$$A \vee B \Leftrightarrow \neg C \overline{\wedge} \neg D$$

Nun ist noch zu zeigen, dass gilt

$$\neg C \land \neg D \Leftrightarrow C \lor D$$

Wie im Satz 80 schon gezeigt wurde, ist

$$\neg C \Leftrightarrow C \overline{\wedge} C$$

sowie

$$\neg D \Leftrightarrow D \overline{\wedge} D$$

Somit kann ich erneut den Äquivalenzsatz der NAND-Verknüpfung 120 mit beiden Argumenten anwenden und kann gemäß Satz 16 schlussfolgern, dass gilt

$$\neg C \overline{\wedge} \neg D \Leftrightarrow (C \overline{\wedge} C) \overline{\wedge} (D \overline{\wedge} D)$$

Gemäß dem Satz 15 ist die Äquivalenzrelation transitiv. Somit kann ich gemäß dem Satz 16 aus den Aussagen

$$A \vee B \Leftrightarrow \neg C \overline{\wedge} \neg D$$

sowie

$$\neg C \overline{\wedge} \neg D \Leftrightarrow (C \overline{\wedge} C) \overline{\wedge} (D \overline{\wedge} D)$$

folgern, dass gilt

$$A \lor B \Leftrightarrow (C \overline{\land} C) \overline{\land} (D \overline{\land} D)$$

Schlussendlich ist gemäß dem Satz 83

$$C \vee D \Leftrightarrow (C \overline{\wedge} C) \overline{\wedge} (D \overline{\wedge} D)$$

Da die Äquivalenz gemäß dem Satz 38 kommutativ ist, kann ich gemäß dem Satz 16 schlussfolgern, dass gilt:

$$(C\overline{\wedge}C)\overline{\wedge}(D\overline{\wedge}D) \Leftrightarrow C \vee D$$

Gemäß dem Satz 15 ist die Äquivalenzrelation transitiv. Somit kann ich gemäß dem Satz 16 aus den Aussagen

$$A \vee B \Leftrightarrow (C \overline{\wedge} C) \overline{\wedge} (D \overline{\wedge} D)$$

sowie

$$(C\overline{\wedge}C)\overline{\wedge}(D\overline{\wedge}D) \Leftrightarrow C\vee D$$

folgern, dass gilt

$$A \vee B \Leftrightarrow C \vee D$$

somit habe ich endlich den Beweis für die Richtigkeit der Behauptung erbracht und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Ich hoffe nun, dass beim nächsten Korollar der Beweis leichter vonstatten geht:

KOROLLAR 124. Es seine A und B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D) \Rightarrow ((A \Rightarrow B) \Leftrightarrow (C \Rightarrow D))$$

BEWEIS. Es seien also A,B,C sowie D Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Zudem gelte die Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D)$$

Gemäß dem Satz 70 über die konjunktive Normalform der Implikation gilt

$$(A \Rightarrow B) \Leftrightarrow \neg A \lor B$$

Da aus der Konjunktion von zwei Aussagen gemäß dem Satz 54 die Gültigkeit der ersten Aussage folgt, muss auch

$$A \Leftrightarrow C$$

gelten. Also kann ich gemäß dem Korollar 121 über die Äquivalenz von Negationen folgern, dass gilt

$$\neg A \Leftrightarrow \neg C$$

Aus der Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D)$$

kann ich gemäß dem Satz 55 über die Implikation der Gültigkeit der zweiten Aussage aufgrund der Konjunktion zweier Aussagen folgern, dass auch

$$B \Leftrightarrow D$$

wahr ist. Also kann ich das Korollar 123 des Äquivalenzsatzes der Disjunktion anwenden und und erhalte dann die Aussage

$$\neg A \lor B \Leftrightarrow \neg C \lor D$$

Aus den Aussagen

$$(A \Rightarrow B) \Leftrightarrow \neg A \lor B$$

sowie

$$\neg A \lor B \Leftrightarrow \neg C \lor D$$

aufgrund des Satzes 15 der Transitivität der Äquivalenz und dem Satz 16 der Schlussfolgerung schlussfolgern, dass auch gilt

$$(A \Rightarrow B) \Leftrightarrow \neg C \lor D$$

Wahr ist.

Da der Satz 70 der konjunktiven Normalform der Disjunktion besagt, dass gilt:

$$(C \Rightarrow D) \Leftrightarrow (\neg C \lor D)$$

und da die Äquivalenz gemäß dem Satz 38 kommutiert, kann ich daraus mit dem Satz 16 schließen, dass gilt

$$(\neg C \lor D) \Leftrightarrow (C \Rightarrow D)$$

Aus den Aussagen

$$(A \Rightarrow B) \Leftrightarrow (\neg C \lor D)$$

sowie

$$(\neg C \lor D) \Leftrightarrow (C \Rightarrow D)$$

kann ich nun mithilfe des Satzes 15 der Transitivität der Äquivalenz schließen, dass ebenso gilt:

$$(A \Rightarrow B) \Leftrightarrow (C \Rightarrow D)$$

Das wollte ich jedoch gerade zeigen. Also bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Behauptung erbracht habe und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Nun folgen noch die restlichen Äquivalenzsätze. Dies sind die Äquivalenzsätze der Replikation der Äquivalenz, der Antivalenz sowie der NOR-Verknüpfung. Und hätte ich es meines Erachtens. Ich beginne mit dem Äquivalenzsatz der Replikation:

KOROLLAR 125. Es seine A und B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D) \Rightarrow ((A \Leftarrow B) \Leftrightarrow (C \Leftarrow D))$$

BEWEIS. Es seien also A, B, C sowie D Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Zudem gelte die Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D)$$

Gemäß dem Satz 23 über den Zusammenhang von Replikation und Implikation geilt

$$(B \Rightarrow A) \Leftrightarrow (A \Leftarrow B)$$

Da die Äquivalenz gemäß dem Satz 38 kommutiert, kann ich mit Hilfe des Satzes 16 schlussfolgern, dass auch gilt

$$(A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)$$

Gemäß dem Äquivalenzsatzes 124 der Implikation kann ich mit Hilfe des Satzes 16 schließen, das gilt:

$$(B \Rightarrow A) \Leftrightarrow (D \Rightarrow C)$$

Aufgrund des Satzes 15 der Transitivität kann ich mit Hilfe des Satzes 16 schließen, dass aus den Aussagen

$$(A \Leftarrow B) \Leftrightarrow (B \Rightarrow A)$$

sowie

$$(B \Rightarrow A) \Leftrightarrow (D \Rightarrow C)$$

folgt

$$(A \Leftarrow B) \Leftrightarrow (D \Rightarrow C)$$

Gemäß dem Satz 23 kann gilt:

$$(D \Rightarrow C) \Leftrightarrow (C \Leftarrow D)$$

Aufgrund des Satzes 15 der Transitivität der Äquivalenz kann ich mit Hilfe des Satzes 16 schließen, dass gilt dass aus den letzten zwei Aussagen folgt:

$$(A \Leftarrow B) \Leftrightarrow (C \Leftarrow D)$$

Diese Aussage habe ich jedoch gerade beweisen wollen. Aus diesem Grund meine ich, den Beweis für die Richtigkeit erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

Nun komme ich wahrscheinlich zum verwirrendsten Korollar und Beweis desselben:

KOROLLAR 126. Es seine A und B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D) \Rightarrow ((A \Leftrightarrow B) \Leftrightarrow (C \Leftrightarrow D))$$

BEWEIS. Es seien also A,B,C sowie D Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Zudem gelte die Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D)$$

Gemäß dem Satz 49 gilt

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

Aufgrund des Satzes 54 folgt aus der Voraussetzung

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D)$$

Gemäß dem Äquivalenzsatz 124 für Implikationen gilt mit den obigen Voraussetzungen

$$(A \Rightarrow B) \Leftrightarrow (C \Rightarrow D)$$

sowie

$$(B \Rightarrow A) \Leftrightarrow (D \Rightarrow A)$$

Also kann ich mit diesen Äquivalenzen und dem Äquivalenzsatz 122 der Konjunktion folgern, dass gilt:M

$$(A \Rightarrow B) \land (B \Rightarrow A) \Leftrightarrow (C \Rightarrow D) \land (D \Rightarrow A)$$

Also kann ich wieder mit dem Satz 15 der Transitivität der Äquivalenz und des Satzes 16 schlussfolgern, dass mit den Aussagen

$$(A \Leftrightarrow B) \Leftrightarrow (A \Rightarrow B) \land (B \Rightarrow A)$$

sowie

$$(A \Rightarrow B) \land (B \Rightarrow A) \Leftrightarrow (C \Rightarrow D) \land (D \Rightarrow A)$$

auch gilt

$$(A \Leftrightarrow B) \Leftrightarrow (C \Rightarrow D) \land (D \Rightarrow A)$$

Nun kann ich den Satz 49 der Äquivalenz von Äquivalenz und zwei Implikationen erneut anwenden. Aber bevor ich das tue halte ich fest, dass aufgrund des Satzes 38 der Kommutativität der Äquivalenz und

dem Satz 16 schlussfolgern kann, dass mit der Aussage (Äquivalenzsatz 49 von Äquivalenz und zwei Implikationen)

$$(C \Leftrightarrow D) \Leftrightarrow (C \Rightarrow D) \land (D \Rightarrow A)$$

auch die Aussage

$$(C \Rightarrow D) \land (D \Rightarrow A) \Leftrightarrow (C \Leftrightarrow D)$$

folgt. Das bedeutet, dass aus der Aussage

$$(A \Leftrightarrow B) \Leftrightarrow (C \Rightarrow D) \land (D \Rightarrow A)$$

und der Aussage

$$(C \Rightarrow D) \land (D \Rightarrow A) \Leftrightarrow (C \Leftrightarrow D)$$

aufgrund des Satzes 49 der Äquivalenz von Äquivalenz und zwei Implikationen mit dem Satz 16 schlussfolgern kann, dass gilt:

$$(A \Leftrightarrow B) \Leftrightarrow (C \Leftrightarrow D)$$

Genau diese Aussage wollte ich beweisen. Daher betrachte ich den Beweis für die Richtigkeit der Behauptung als erbracht und beende an dieser Stelle die weitere Beweisführung.

Zum Schluss kommt noch der Äquivalenzsatz der NOR-Verknüpfung:

KOROLLAR 127. Es seine A und B Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D) \Rightarrow ((A \bar{\lor} B) \Leftrightarrow (C \bar{\lor} D))$$

BEWEIS. Es seien also A,B,C sowie D Symbole von Aussagen, welche in sich selbst und in Bezug auf die anderen Symbolen des Satzes widerspruchsfrei seien. Zudem gelte die Aussage

$$(A \Leftrightarrow C) \land (B \Leftrightarrow D)$$

Gemäß dem Satz 69 der disjunktiven Normalform der NOR-Verknüpfung gilt

$$(A\overline{\vee}B) \Leftrightarrow \neg (A\vee B)$$

Gemäß dem Äquivalenzsatz 123 der Disjunktion und dem Satz 16 der Schlussfolgerung kann ich folgern, dass gilt

$$A \vee B \Leftrightarrow C \vee D$$

Mit dieser Äquivalenz sowie dem Äquivalenzsatz 121 der Negation kann ich mit Hilfe des Satzes 16 schlussfolgern, dass gilt

$$\neg (A \lor B) \Leftrightarrow \neg (C \lor D)$$

Da die Äquivalenz gemäß dem Satz 15 transitiv ist, kann ich aufgrund der Aussagen

$$(A\overline{\vee}B) \Leftrightarrow \neg (A \vee B)$$

sowie

$$\neg (A \lor B) \Leftrightarrow \neg (C \lor D)$$

gemäß dem Satz 16 schlussfolgern, dass gilt

$$(A\overline{\vee}B) \Leftrightarrow \neg (C \vee D)$$

Gemäß dem Satz 69 der disjunktiven Normalform der NOR-Verknüpfung gilt

$$(C \overline{\vee} D) \Leftrightarrow \neg (C \vee D)$$

Da die Äquivalenz gemäß dem Satz 38 kommutiert, kann ich mit Hilfe des Satzes 16 schlussfolgern, dass auch gilt:

$$\neg (C \lor D) \Leftrightarrow (C \overline{\lor} D)$$

Nun kann ich innerhalb dieses Beweises den Satz 15 der Transitivität der Äquivalenz noch einmal anwenden. Aus den Aussagen

$$(A\overline{\vee}B) \Leftrightarrow \neg (C \vee D)$$

sowie

$$\neg (C \lor D) \Leftrightarrow (C \overline{\lor} D)$$

kann ich schlussfolgern, dass gilt

$$(A\overline{\vee}B) \Leftrightarrow (C\overline{\vee}D)$$

Diese Aussage wollte ich jedoch beweisen. Daher bin ich der Meinung, dass ich den Beweis für die Richtigkeit der Aussage erbracht habe und beende an dieser Stelle die weitere Beweisführung.

KAPITEL 23

Weitere logische Sätze

In diesem Kapitel möchte ich weitere logische Sätze hineinschreiben, welche jedoch oftmals bloß Hilfssätze sind. Ich beginne mit dem

Satz 128. Es seien A sowie B Symbole für Aussagen, welche in sich selber und bezüglich den anderen Symbolen des Satzes widerspruchsfrei seien. Dann gilt die Aussage:

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Beweis. Gemäß der konjunktiven Normalform 70 der Implikation gilt

$$(A \Rightarrow B) \Leftrightarrow \neg A \lor B$$

Gemäß dem Satz 10 der doppelten Negation gilt

$$B \Leftrightarrow \neg (\neg B)$$

Gemäß dem 2. erweiterten Satz ?? der Disjunktion gilt

$$\neg A \lor B \Leftrightarrow \neg A \lor \neg (\neg B)$$

Aufgrund des Satzes 15 der Transitivität der Äquivalenz muss darum gelten, dass gilt

$$(A \Rightarrow B) \Leftrightarrow \neg A \lor \neg (\neg B)$$

Da die Disjunktion gemäß dem Satz 36 kommutativ ist muss gelten,

$$\neg A \lor \neg (\neg B) \Leftrightarrow \neg (\neg B) \lor \neg A$$

Aufgrund des Satzes 15 der Transitivität der Äquivalenz muss darum gelten, dass gilt

$$(A \Rightarrow B) \Leftrightarrow \neg (\neg B) \lor \neg A$$

Der Ausdruck

$$\neg (\neg B) \lor \neg A$$

ist jedoch äquivalent zur konjunktiven Normalform der Implikation

$$\neg B \Rightarrow \neg A$$

formal ausgeschrieben:

$$\neg (\neg B) \lor \neg A \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Aufgrund des Satzes 15 der Transitivität der Äquivalenz muss darum gelten, dass gilt

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A)$$

Dies war jedoch gerade zu beweisen. Aus diesem Grund betrachte ich den Beweis der Richtigkeit der Behauptung als erbracht und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>

<includeforwardreferences>

Ich möchte noch einen weiteren logischen Satz formulieren und beweisen:

Satz 129. Es seien A und B Symbole von logischen Aussagen, welche in sich selber und in Bezug auf die anderen Symbole des Satzes Widerspruchsfrei seien. Dann gelten die zwei folgenden Aussagen:

$$(A \Rightarrow B) \Leftrightarrow (A \land B \Leftrightarrow A)$$
$$(A \Rightarrow B) \Leftrightarrow (A \lor B \Rightarrow B)$$

Beweis Zum Beweis der Aussagen möchte ich mir je überlegen, unter welchen Umständen die Implikation

$$A \Rightarrow B$$

nicht wahr ist. Gemäß der disjunktiven Normalform 53 ist dies nur dann der Fall, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Nun möchte ich mir dasselbe für die Aussage

$$A \wedge B \Leftrightarrow A$$

überlegen. Ist A nicht wahr, dann ist gemäß der Abkürzungsregel 8 der Konjunktion die Aussage $A \wedge B$ nicht wahr. Dann ist jedoch die Aussage

$$A \wedge B \Leftrightarrow A$$

wiederum gemäß der ersten Zeile der Definition 2 der Äquivalenz wahr (denn sowohl die Aussage

$$A \wedge B$$

wie auch die Aussage A sind nicht wahr). Sind beide Aussagen A wie auch B wahr, dann ist gemäß der vierten Zeile der Definition 2 der Konjunktion die Konjunktion von A und B (also die Aussage $A \wedge B$) wahr. Da die Aussage ebenfalls A ebenfalls gemäß Voraussetzung wahr ist, ist gemäß der vierten Zeile der Definition 2 der Äquivalenz auch die ganze Aussage wahr. Bleibt noch der Fall, in welchem die Aussage A wahr, die Aussage B hingegen nicht wahr ist. In diesem Fall ist gemäß der dritten Zeile der Definition 2 die Aussage $A \wedge B$ nicht wahr. Da die Aussage A jedoch nach Voraussetzung wahr ist, ist gemäß der zweiten Zeile der Definition 2 der Äquivalenz die Aussage

$$A \wedge B \Leftrightarrow A$$

nicht wahr. Zusammenfassend lässt sich also schreiben, dass die Aussage

$$A \wedge B \Leftrightarrow A$$

genau dann nicht wahr ist, falls die Aussage A wahr die Aussage B jedoch nicht wahr ist. Das ist jedoch genau derjenige Fall, in welchem die Implikation von A nach B nicht wahr ist. Darum meine, in allen möglichen Fällen gezeigt zu haben, dass die Aussage

$$(A \Rightarrow B) \Rightarrow (A \land B \Leftrightarrow A)$$

wahr ist. Also meine ich, den Beweis für die Richtigkeit des ersten Satzes erbracht zu haben.

Nun möchte ich versuchen, den Beweis für Richtigkeit des zweiten Satzes zu erbringen.

Zu diesem Zweck möchte ich mir überlegen, in welchen Fällen die aussage

$$A \vee B \Leftrightarrow B$$

nicht wahr ist. Ist die Behauptung B wahr, dann ist gemäß der dritten und vierten Zeile der Definition 2 der Disjunktion die Aussage

$$A \vee B$$

wahr. Da in diesem Fall die Aussage B nach Voraussetzung immer noch wahr ist, ist gemäß der vierten Zeile der Definition 2 die Aussage

$$A \vee B \Leftrightarrow B$$

wahr. Sind beide Aussagen A wie auch B nicht wahr, dann ist gemäß der ersten Zeile der Definition 2 der Disjunktion die Aussage

$$A \vee B$$

nicht wahr. Dann ist gemäß der ersten Zeile der Definition 2 die Aussage

$$A \vee B \Leftrightarrow B$$

immer noch wahr. Ist jedoch die Aussage A wahr, die Aussage B aber nicht, dann ist zwar gemäß der dritten Zeile der Definition 2 die Aussage

$$A \vee B$$

wahr. Da jedoch die Aussage B nach Voraussetzung immer noch nicht wahr ist, ist gemäß der dritten Zeile der Definition 2 der Äquivalenz nicht wahr.

Also lässt sich zusammenfassend sagen, dass die Aussage

$$A \vee B \Leftrightarrow B$$

genau dann nicht wahr ist, falls die Aussage A wahr, die Aussage B jedoch nicht wahr ist. Das ist jedoch genau derjenige Fall, in welche auch die Implikation

$$A \Rightarrow B$$

nicht wahr ist. In diesem Fall ist gemäß der ersten Zeile der Definition 2 die Aussage

$$(A \Rightarrow B) \Rightarrow (A \lor B \Leftrightarrow B)$$

trotzdem wahr.

Das bedeutet jedoch, dass in allen möglichen Fällen die Aussage

$$(A \Rightarrow B) \Rightarrow (A \lor B \Leftrightarrow B)$$

wahr ist. Darum meine ich den Beweis für die Richtigkeit der zweiten Behauptung und somit auch beider Behauptungen erbracht zu haben und beende aus diesem Grund an dieser Stelle die weitere Beweisführung.

<includebackwardreferences>
<includeforwardreferences>