Análise do Credit Card Fraud Detection Dataset

A análise a seguir se refere ao Credit Card Fraud Detection Dataset, um dataset público que contém informações sobre transações, normais e fraudulentas, feitas por cartões de créditos da Europa em setembro de 2013. Download feito no site https://www.kaggle.com/mlg-ulb/creditcardfraud. Utilizou-se o método de machine learning – logistic regression feito na linguagem de programação python para a análise do dataset.

O dataset contém mais de 280.000 transações, das quais apenas 492 são fraudulentas. Isso representa 0.172% de todas as transações, ou seja, temos um dataset desbalanceado, um possível problema para o modelo. O dataset possui 30 features, V1 a V28 (por razões de confidencialidade, não foi possível obter mais informações sobre as features), Time e Amount, o valor da transação. A feature Time contém o tempo decorrido entre a primeira transação e as demais. Não é uma informação relevante para análise, então foi desconsiderada. Amount é o quanto foi gasto na transação, portanto é uma feature possivelmente importante para a análise. V1 a V28 são os restantes das features que foram analisadas. A última coluna do dataset (Class) se refere se a transação foi ou não fraudulenta. Ela é o target do estudo.

Tabela 1 – Dados carregados no jupyter notebook

V5	V6	V7	V8	V 9	 V21	V22	V23	V24	V25	V26	V27	V28	Amount	Class
-0.338321	0.462388	0.239599	0.098698	0.363787	 -0.018307	0.277838	-0.110474	0.066928	0.128539	-0.189115	0.133558	-0.021053	149.62	0
0.060018	-0.082361	-0.078803	0.085102	-0.255425	 -0.225775	-0.638672	0.101288	-0.339846	0.167170	0.125895	-0.008983	0.014724	2.69	0
-0.503198	1.800499	0.791461	0.247676	-1.514654	 0.247998	0.771679	0.909412	-0.689281	-0.327642	-0.139097	-0.055353	-0.059752	378.66	0
-0.010309	1.247203	0.237609	0.377436	-1.387024	 -0.108300	0.005274	-0.190321	-1.175575	0.647376	-0.221929	0.062723	0.061458	123.50	0
-0.407193	0.095921	0.592941	-0.270533	0.817739	 -0.009431	0.798278	-0.137458	0.141267	-0.206010	0.502292	0.219422	0.215153	69.99	0
-5.364473	-2.606837	-4.918215	7.305334	1.914428	 0.213454	0.111864	1.014480	-0.509348	1.436807	0.250034	0.943651	0.823731	0.77	0
0.868229	1.058415	0.024330	0.294869	0.584800	 0.214205	0.924384	0.012463	-1.016226	-0.606624	-0.395255	0.068472	-0.053527	24.79	0
2.630515	3.031260	-0.296827	0.708417	0.432454	 0.232045	0.578229	-0.037501	0.640134	0.265745	-0.087371	0.004455	-0.026561	67.88	0
-0.377961	0.623708	-0.686180	0.679145	0.392087	 0.265245	0.800049	-0.163298	0.123205	-0.569159	0.546668	0.108821	0.104533	10.00	0
-0.012546	-0.649617	1.577006	-0.414650	0.486180	 0.261057	0.643078	0.376777	0.008797	-0.473649	-0.818267	-0.002415	0.013649	217.00	0

Com os dados carregados no jupyter notebook, como visto na tabela 1 (V1 a V5 não apareceram na tabela 1, pois são muitos dados), foi separado em 2 variáveis os inputs e o target. Inputs foram as features V1 a V28 e Amount. Já o target foi Class.

Para uma melhor análise, os dados foram embaralhados randomicamente, já que eles coletados e armazenados numa mesma janela de tempo. No fim do estudo também foi feito um modelo sem o embaralhamento para comparação dos resultados.

Em seguida, foi feito o balanceamento do *dataset*, pois o número de transações fraudulentas em relação ao total é muito baixo e isso pode prejudicar o algoritmo do modelo, levando a interpretações e resultados errados.

O próximo passo foi separar o *dataset* em 80% dados de treino e 20% dados de teste que foram usados para checar a precisão final do modelo com dados novos.

Tabela 2 – Valores dos coeficientes e *intercept* - dados randomizados

Feature Name	Coefficient
V22	1,1664
V4	0,7353
V28	0,7039
V23	0,5223
V18	0,5008
V26	0,2715
V17	0,2032
V7	0,2017
V1	0,1029
V11	0,0952
V16	0,0666
V13	0,0567
V5	0,0131
Amount	0,0003
V9	-0,0996
V19	-0,1653
V21	-0,2211
V2	-0,2831
V14	-0,3245
V10	-0,4452
V6	-0,5153
V8	-0,5528
V15	-0,6523
V20	-0,6758
V24	-0,7697
V25	-0,8224
V27	-0,8461
V3	-0,8540
V12	-1,1498
Intercept	-2,3413

Figura 1 - Valores dos coeficientes - dados randomizados

Na tabela 2, temos os valores dos coeficientes para o modelo *logistic regression* e na figura 1 a representação visual dos valores. Pode-se perceber que o valor de *Amount* é próximo de zero e não é impactante para o modelo, ou seja, na prática, o valor das transações não é um fator relevante para classificar se a transação é fraudulenta ou não. Pode ser uma transação de R\$5,00 ou R\$10.000,00, não é relevante. Outras *features* que não são relevantes são V9, V5. Não é possível verificar a razão desse comportamento, pois não foram fornecidas as informações sobre o que representa cada *feature*. V22 e V12 se motram as features mais importantes para o modelo, mas, pelo menos motivo apresentado anteriormente, não é possível comentar o motivo do seu impacto.

Tabela 3 – Valores da precisão do modelo – dados randomizados

Accuracy						
Dados Treino	96,57 %					
Dados Teste	95,43 %					

Os resultados obtidos da *accuracy* do modelo podem ser vistos na tabela 3. A diferença obtida com os dados de treino e teste são esperados e, como a diferença entre eles é pequena, não é necessária uma preocupação inicial com *overfitting*, já que o modelo se comportou bem na presença de novos dados. Então, foi obtido um bom modelo e sem a presença de *overfitting*, podendo classificar transações fraudulentas com uma *accuracy* de 95 %, o que é um resultado ótimo para uma operação vital e sensível nos modelos econômicos atuais.