Improving Text-based Similar Product Recommendation for Dynamic Product Advertising at Yahoo

Xiao Bai, Lei Duan, Richard Tang, Gaurav Batra and Ritesh Agrawal

Yahoo Research & Yahoo

Dynamic Product Advertising

Personalized ad experience for e-commerce users

Publisher Website

Similar Product Recommendation

Crucial to the success of Dynamic Product Advertising

- Similar products as alternatives in an ad carousel
- Similar products as substitutes of out of stock products
- Similar products to bring new users to advertiser websites

Challenges and Contributions

Key Challenges

Application specific models are costly

Clicks are very weak similarity signals

Embedding-based semantic retrieval may fail to capture key product aspects

Our Solutions

Retrieve and filter paradigm

- Embedding-based semantic retrieval
- Application-specific filtering

Human annotated data for semantic retrieval

- **Editorial guidelines** for general purpose product similarity

Product type as a post retrieval filter

Product name generation from text

System Overview

Embedding-based Product Retrieval

Transformer-based Siamese Network (aka Sentence-BERT [1])

- Fine-tune with editorial labeled dataset
 - Excellent/Good/Fair as positive (+1)
 - Excellent: exactly the same products
 - Good: Same type but differ in brand, model, etc.
 - Fair: Same category but differ in major characteristics (bike vs. electric bike)
 - Bad as negative (-1)
 - Different types of products (boots vs. sandals)
 - Gender/age mismatch
- Product titles as inputs
- Mean-pooling of hidden representations as product embedding
- Mean-squared loss on cosine similarity

Reprinted from [1]

Product Name Generation

Problem definition

- Given a product, generate all the valid product names, from its title and GPT (Google Product Taxonomy) category
- Product name
 - A small number of words that describe the type of a product.
 - Core product + at most one modifier that is not an existing product attribute (e.g., age, gender, brand, etc.)

<u>Title</u>: Star K Heart Shape 8mm Created Sapphire Antique Vintage Style Solitaire **Engagement** Promise **Ring**

<u>GPT</u>: Apparel & Accessories > Jewelry > Rings

Background

Product attribute identification in the literature

- Multi-class classification for each attribute
 - Works well for attributes with a small number of fixed values, e.g., gender, age
 - Cannot predict new attribute values, e.g., product name, brand
- Sequence tagging for named entity recognition
 - o Typical models: CRF, BiLSTM, BiLSTM-CRF, etc.

<u>Title</u>: Star K Heart Shape 8mm Created Sapphire Antique Vintage Style Solitaire **Engagement** Promise **Ring**<u>Tags</u>: O O O O O O O O B I I

Cannot extract product names that are not a continuous text span

Product name identification as a keyphrase generation task in this work

Pre-trained Transformer for Product Name Generation

Fine-tuning pre-trained Transformers with seq2seq objectives

Input format

Self-attention mask^[1] for product name generation

- Fine-tuning objective
 - Maximize the likelihood of the target sequence given the source sequence

Evaluation of Embedding-based Product Retrieval

Datasets

- Train and Dev: 500K product-product pairs
- Test: 10K product-product pairs for head, torso, tail products respectively
- 5 random similar products per product, labeled by professional editors as Excellent/Good/Fair/Bad

Metrics: NDCG@5

	Model	Embedding Size	Head	Torso	Tail
CNN for low	Production (GBDT)	NA	0.8782	0.7713	0.7366
dimensional —	→ CLSM [35]	128	0.8756	0.7754	0.7388
representation	EPR (Our model)	128	0.8837	0.7843	0.7746
	EPR (Our model) Rapid	ojection 768	0.8836	0.7845	0.7750

Evaluation of Product Name Generation

Datasets

- Train and Dev: 55K Random + 2.5K Difficult + 2.5K Ambiguous products
- Test: 3K Random; 5K Easy; 2.5K Difficult; 2.5K Ambiguous products
- Product difficulty determined by the number of product names given by production model

Metrics

F1@M - M is the actual number of product names being generated/extracted

	Model	Random	Easy	Difficult	Ambiguous	
	Production-CRF [24]	0.381	0.503	0.000	0.357	Extractive
Transformer	BiLSTM-CRF [18]	0.602	0.616	0.375	0.558	\int
trained from —	SEG-NET [3]	0.436	0.432	0.392	0.416	Extractive & Generative
scratch	PNG (Our model)	0.683	0.628	0.583	0.659	Generative
vahoo!						Jahoo!

Product Name as a Post Filter

Filter out if:

No common product name between two products

Datasets

1000 random product with top-5 similar products

Coverage	Excellent	Good	Fair	Bad
87.8%	7.4%	85.0%	2.4%	5.3%
53.4%	8.8%	86.9%	1.3%	3.1%
81.0%	8.1%	86.0%	2.0%	3.9%
	87.8% 53.4%	87.8% 7.4% 53.4% 8.8%	87.8% 7.4% 85.0% 53.4% 8.8% 86.9%	87.8% 7.4% 85.0% 2.4% 53.4% 8.8% 86.9% 1.3%

Application 1: Substitute of Out-of-Stock Products

Setting

- Retargeting: showing users the same products they were interested in
- Top-1 similar product as substitute for each out-of-stock Retargeting product
- Application specific filter:
 - Different advertisers

Online A/B testing results

Impression	CPM	CTR	
+3.8%	+2.4%	+0.69%	

Application 2: Prospecting via Similar Products

Setting

- Prospecting: showing users products they might be interested in based on implicit signals
- Top-3 similar products for each product eligible for Retargeting
- Application specific post filter:
 - Same titles if different advertisers

Online A/B testing results

Impression	CPM	CTR
+2.2%	+1.1%	+0.0%

Conclusions

Text-based similar product recommendation

- Transformer-based Siamese product retrieval model improves tree-based and CNN-based models
- Product name as post filtering improves embedding-based product retrieval
- Transformer-based product name generation model improves extractive models

Applications in Yahoo Dynamic Product Advertising

- Retrieve and filter paradigm easily supports similar applications
- High quality similar products improve ad impression and revenue in two applications

Thanks!

Questions / Suggestions?

Improving Text-based Similar Product Recommendation for Dynamic Product Advertising at Yahoo

xbai@yahooinc.com

