

Московский государственный университет имени М.В. Ломоносова

Факультет вычислительной математики и кибернетики

Кафедра системного анализа

Отчёт по практикуму

«Стохастический анализ и моделирование»

Студент 415 группы Н. Ю. Заварзин

Руководитель практикума аспирант В. А. Сливинский

Содержание

Задание 1	:
Задание 2	
Задание 3	8
Задание 4	14
Задание 5	16
Задание 6	19

Задание 1

1.1

Определение 1. Схемой Бернулли с заданной вероятностью р называется эксперимент, состоящий из серии испытаний, удовлетворяющих следующим условиям:

- 1. Отсутствие взаимного влияния.
- 2. Воспроизводимость. Однородные испытания проводятся в сходных, аналогичных условиях (не одинаковых, иначе результат был бы один и тот же).
- 3. Существует признак, который реализуется ("успех" с вероятностью p) или не реализуется ("неуспех" с вероятностью q=1-p) в испытании. Признак может быть отнесён к любому из испытаний (в силу их однородности).

Определение 2. Случайная величина X, принимающая значение 1 c вероятностью p u значение 0 c вероятностью q=1-p, называется случайной величиной c распределением Бернулли.

Случайную величину X, имеющую распределение Бернулли, можно сэмплировать, беря логическое значение u < p, где u — равномерно распределенная на [0,1] случайная величина. Ведь при таком подходе $\mathbb{P}(X=1) = \mathbb{P}(u < p) = p$, $\mathbb{P}(X=0) = \mathbb{P}(u > p) = q$.

Определение 3. Случайная величина X имеет биномиальное распределение c параметрами n и p, $X \sim Binom(n,p)$, если

$$\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k}, \quad k \in \mathbb{N}_0.$$

$$\tag{1}$$

Случайную величину X, имеющую биномиальное распределение можно представить в виде суммы n независимых, одинаково распределенных бернуллиевских случайных величин

$$X = \sum_{i=1}^{n} Y_i. \tag{2}$$

Так как

$$\mathbb{P}\left(\sum_{i=1}^{n} Y_{i} = k\right) = C_{n}^{k} \cdot \mathbb{P}(Y = 1)^{k} \cdot \mathbb{P}(Y = 0)^{n-k} = C_{n}^{k} p^{k} (1 - p)^{n-k},$$

где C_n^k — число сочетаний k "успехов" в n испытаниях Бернулли, $Y \sim Y_i$.

1.2

Определение 4. Случайная величина X, равная количеству неудач до появления первого успеха в схеме Бернулли с параметром р, имеет геометрическое распределение с парамет $pom p (X \sim Geom(p)),$

$$\mathbb{P}(X=k) = p(1-p)^k. \tag{3}$$

Для моделирования X, имеющей геометрическое распределение с параметром p, будем сэмплировать случайную величину $Y \sim Ber(p)$, до появления первого значения 1 и возвращать число встреченных нулей. В таком случае, аналогично тому, как это было сделано для биномиального распределения, можно показать корректность используемого построения.

Свойство 1. Если $Y \sim Geom(p)$, то $\mathbb{P}(Y > m + n \mid Y \geqslant m) = \mathbb{P}(Y > n)$, для любых целых неотрицательных т и п. Это называется свойством отсутствия памяти (количество "неудач" в прошлом не влияет на число будущих).

Доказательство.

$$\mathbb{P}(Y > m + n \mid Y \geqslant m) = \frac{\mathbb{P}(Y > m + n)}{\mathbb{P}(Y \geqslant m)} = \frac{1 - \sum_{k=0}^{m+n} p(1 - p)^k}{1 - \sum_{k=0}^{m-1} p(1 - p)^k},$$

покажем, что эта вероятность совпадает с $\mathbb{P}(Y>n)=1-\sum_{k=0}^n p(1-p)^k$, или, что

$$1 - \sum_{k=0}^{m+n} p(1-p)^k = \left(1 - \sum_{k=0}^{m-1} p(1-p)^k\right) \left(1 - \sum_{k=0}^n p(1-p)^k\right) \Leftrightarrow$$

$$\Leftrightarrow 1 - \left(1 - \frac{p(1-p)^{m+n+1}}{1 - (1-p)}\right) = \left(1 - \left(1 - \frac{p(1-p)^m}{1 - (1-p)}\right)\right) \left(1 - \left(1 - \frac{p(1-p)^{n+1}}{1 - (1-p)}\right)\right) \Leftrightarrow$$

$$\Leftrightarrow (1-p)^{m+n+1} = (1-p)^m (1-p)^{n+1}.$$

1.3

Рассмотрим процесс игры в орлянку, для этого построим последовательность случайных величин X_i таких, что

$$X_i = \begin{cases} 1, & p = 0.5, \\ -1, & p = 0.5. \end{cases}$$

$$Y(i)$$
 примем равным $\dfrac{X_1+\cdots+X_i}{\sqrt{n}},\ i=\overline{1,n}$

Теорема 1. (Центральная предельная теорема.) (док-во см. в [2])

Пусть X_1, X_2, \ldots — независимые, одинаково распределенные случайные величины, с конечными $\mathbb{E} X_i = a \ u \ \mathbb{D} X_i = \sigma^2$. Тогда

$$\mathbb{P}\left(\frac{S_n - na}{\sigma\sqrt{n}} < z\right) \underset{n \to \infty}{\to} \Phi(z) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{z} e^{-\frac{y^2}{2}} \, \mathrm{d}y.$$

Отметим, что математическое ожидание X_i равно нулю, дисперсия равна 1, а значит по сформулированной выше теореме, в пределе для Y(n) мы получим стандартное нормальное распределение.

Задание 2

2.1

Определение 5. Распределение называется сингулярным, если оно сосредоточено на континуальном множестве с нулевой мерой Лебега.

Моделировать канторову случайную величину стандартным методом через обращение функции распределения крайне проблематично, в силу сложности аналитического нахождения обратной функции. Поэтому перейдём от равномерного сэмплирования на [0,1] по оу к равномерному сэмплированию элементов множества кантора (считаем, что между ними есть взаимнооднозначное соответствие из-за монотонности лестницы и её возрастания исключительно на рассматриваемом множестве). Для того, чтобы понять как нам генерировать элементы канторова множества вспомним процесс его построения.

При построении канторова множества C на отрезке [0,1] мы выбрасываем из него интервалы $(\frac{1}{3},\frac{2}{3}), (\frac{1}{9},\frac{2}{9}), (\frac{7}{9},\frac{8}{9}), \dots$ В итоге получаем замкнутое множество C (как пересечение замкнутых). Оно получается из отрезка [0,1] выбрасыванием счётного числа интервалов. Из построения получаем, что канторово множество состоит из точек, в записи которых в троичной системе счисления нет единиц. Поэтому элементы этого множества можно сэмплировать в виде

$$X = \sum_{i=1}^{\infty} \frac{2y_i}{3^i},$$

где $y_i \sim Ber(0.5)$.

Беря во внимание конечность машинной точности вычислений, элементы будем генери-

ровать как

$$X = \sum_{i=1}^{n} \frac{2y_i}{3^i},$$

тут n выбирается исходя из заданной точности ε следующим образом:

$$\sum_{k=n}^{\infty} \frac{2y_k}{3^k} \leqslant \sum_{k=n}^{\infty} \frac{2}{3^k} = \frac{\frac{2}{3^n}}{1 - \frac{1}{3}} = \frac{1}{3^{n-1}} < \varepsilon \Leftrightarrow$$

$$\Leftrightarrow n > \log_3\left(\frac{1}{\varepsilon}\right) + 1.$$

Используем критерий Колмогорова для проверки корректности работы датчика. За гипотезу H_0 примем случай совпадения наблюдаемой функции распределения $F_n(x)$ с теоретической F(x), за H_1 —отрицание H_0 . Также определим статистику Колмогорова

$$T_n = \sqrt{n}D_n = \sqrt{n} \cdot \sup_{x \in [0,1]} |F_n(x) - F(x)|.$$

Для проверки гипотезы через известное распределение статистики Колмогорова $F_k(T)$ и заданный уровень значимости α ($\mathbb{P}(H_1 \mid H_0)$) рассчитаем $p_{value} = 1 - F_k(T_n)$, сравним его с α :

$$p_{value} \vee \alpha$$
,

здесь знак \leq будет говорить в пользу отклонения гипотезы H_0 .

В программной реализации p_{value} будем определять с задаваемой пользователем точностью ε . Для этого рассмотрим саму

$$F_k(T) = 1 + 2\sum_{s=1}^{\infty} (-1)^s e^{-2s^2T^2}$$

и найдём остаток её ряда, дающий вклад $< \varepsilon$.

$$2\sum_{s=n}^{\infty} (-1)^s e^{-2s^2T^2} \leqslant 2\sum_{s=n}^{\infty} e^{-2s^2T^2} \leqslant 2\sum_{s=n}^{\infty} e^{-s^2T^2} \leqslant$$

$$\leqslant \left\{ -s^2T^2 < -s \Leftrightarrow 1 < sT^2 \Leftrightarrow s > \frac{1}{T^2} \right\} \leqslant$$

$$\leqslant 2\sum_{s=n}^{\infty} e^{-s} = \frac{2e^{-n}}{1 - \frac{1}{e}} = \frac{2}{e^{n-1}(e-1)} \Rightarrow$$

$$\Rightarrow \frac{2}{e^{n-1}(e-1)} < \varepsilon \Leftrightarrow \frac{2}{\varepsilon(e-1)} \leqslant e^{n-1} \Leftrightarrow \ln\left(\frac{2}{\varepsilon(e-1)}\right) < n-1 \Rightarrow$$

$$\Rightarrow n > \max\left\{\ln\left(\frac{2}{\varepsilon(e-1)}\right) + 1, \frac{1}{T^2}\right\}$$
(4)

Теорема 2. (*Теорема Колмогорова*) Пусть X_1, \ldots, X_n, \ldots — бесконечная выборка из распределения, задаваемого непрерывной функцией F(x). Пусть $F_n(x)$ — выборочная функция распределения, построенная на первых n элементах выборки. Тогда

$$\sqrt{n} \cdot \sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to K$$

по распределению при $n \to +\infty$, где K — случайная величина, имеющая распределение Колмогорова.

Доказательство представлено в [6]. Результаты проверки гипотезы с $\alpha = 5\%$:

Обьём выборки	Количество испытаний	Частота принятия гипотезы
10^{3}	10^{3}	0.954
10^{3}	10^{4}	0.9542
10^{4}	10^{3}	0.951
10^{4}	10^{4}	0.9529

2.2

Свойство симметричности канторовых случайных величин относительно $\frac{1}{2}$ эквивалентно совпадению распределений для X и 1-X.

$$1 - X = 1 - \sum_{i=1}^{\infty} \frac{2y_i}{3^i} = \sum_{i=1}^{\infty} \frac{2(1 - y_i)}{3^i} = \sum_{i=1}^{\infty} \frac{2z_i}{3^i},$$

здесь $z_i \sim Ber(0.5)$, а значит распределения действительно идентичны.

Проверим свойство самоподобия относительно деления на 3 для канторовых случайных величин, то есть, что условное распределение X при условии $X \in [0, \frac{1}{3}]$ совпадает с распределением $\frac{X}{3}$.

$$\frac{X}{3} = \frac{1}{3} \cdot \sum_{i=1}^{\infty} \frac{2y_i}{3^i} = \sum_{i=1}^{\infty} \frac{2y_i}{3^{i+1}} = \sum_{i=2}^{\infty} \frac{2y_i}{3^i} = X,$$

ведь $y_1 = 0 \Leftrightarrow X \in [0, \frac{1}{3}].$

Реализуем численно критерий Смирнова и убедимся в корректности работы программы,

посредством проверки указанных выше свойств (так как теоретически доказана их правильность, то частота принятия критерия должна быть близка к 1 - α).

Действовать будем как и в случае с критерием Колмогорова, только статистику возьмём

$$T_{nm} = \sqrt{\frac{nm}{n+m}} D_{nm} = \sqrt{\frac{nm}{n+m}} \cdot \sup_{x \in [0,1]} |F_n(x) - F_m(x)|,$$

тут $F_n(x)$, $F_m(x)$ — эмпирические функции распределения рассматриваемых выборок, а n и m — их длины.

Теорема 3. (*Теорема Смирнова*) Пусть $F_n^1(x)$ и $F_m^2(x)$ — эмпирические функции распределения с объёмами выборок n и m соответственно случайной величины Y. Тогда, если $F(x) \in C^1(\mathbb{R})$, то

$$\lim_{n,m \to +\infty} \mathbb{P}\left(\sqrt{\frac{nm}{n+m}} D_{nm} \leqslant t\right) = K(t) = 1 + 2\sum_{s=1}^{\infty} (-1)^s e^{-2s^2t^2}, \quad \forall t > 0,$$

$$\operatorname{ide} D_{nm} = \sup_{x \in \mathbb{R}} |F_n^1(x) - F_m^2(x)|.$$

Доказательство представлено в [3]. Результаты проверки, отталкиваясь от свойства симметричности при $\alpha=5\%$:

Обьём выборки	Количество испытаний	Частота принятия гипотезы
10^{3}	10^{3}	0.959
10^{3}	10^{4}	0.9588
10^{4}	10^{3}	0.945
10^{4}	10^{4}	0.9557

Результаты проверки, отталкиваясь от свойства самоподобия при $\alpha=5\%$:

Обьём выборки Количество испытаний Частота приняти:		Частота принятия гипотезы
10^{3}	10^{3}	0.96
10^{3}	10^{4}	0.9596
10^{4}	10^{3}	0.946
10^{4}	10^{4}	0.9578

2.3

Математическое ожидание канторовой случайной величины:

$$\mathbb{E}X = \mathbb{E}\sum_{i=1}^{\infty} \frac{2y_i}{3^i} = \sum_{i=1}^{\infty} \frac{2\mathbb{E}y_i}{3^i} = \sum_{i=1}^{\infty} \frac{1}{3^i} = \frac{\frac{1}{3}}{1 - \frac{1}{3}} = \frac{1}{2}.$$

Дисперсия:

$$\mathbb{D}X = \mathbb{D}\sum_{i=1}^{\infty} \frac{2y_i}{3^i} = \sum_{i=1}^{\infty} \frac{4\mathbb{D}y_i}{3^{2i}} = \sum_{i=1}^{\infty} \frac{1}{3^{2i}} = \frac{\frac{1}{9}}{1 - \frac{1}{9}} = \frac{1}{8},$$

пользовались выше тем, что для бернуллиевских y_i известны $\mathbb{E}y_i = \frac{1}{2}$, $\mathbb{D}y_i = \frac{1}{4}$.

Задание 3

3.1

Определение 6. Случайная величина X имеет экспоненциальное распределение c параметром $\lambda > 0$, если её функция распределения имеет вид:

$$F_x(t) = \begin{cases} 1 - e^{-\lambda t}, & t \geqslant 0, \\ 0, t < 0. \end{cases}$$

Теорема 4. Пусть функция F(x) непрерывна и монотонно возрастает на \mathbb{R} , $\lim_{x \to -\infty} F(x) = 0$, $\lim_{x \to +\infty} F(x) = 1$, случайная величина $Y \sim \mathbb{U}[0,1]$ распределение, то случайная величина $X = F^{-1}(Y)$ имеет функцию распределения $F_x(x) = F(x)$. (док-во см. в [3]).

Воспользуемся этой теоремой для построения датчика экспоненциального распределения:

$$F_x(t) = 1 - e^{-\lambda t} \Rightarrow F_x^{-1}(y) = -\frac{1}{\lambda} \ln(1 - y)$$

определяя y как реализацию некоторой случайной величины $Y \sim \mathbb{U}[0,1]$, мы попадём в условие теоремы 4, следовательно, получим искомый способ моделирования.

Свойство 2. Если $Y \sim Exp(\lambda)$, то $\mathbb{P}(Y > m + n \mid Y \geqslant m) = \mathbb{P}(Y > n)$, для любых неотрицательных a u b. Это называется свойством отсутствия памяти для экспоненциального распределения.

Доказательство.

$$\mathbb{P}(Y > a + b \mid Y \geqslant a) = \frac{\mathbb{P}(Y > a + b)}{\mathbb{P}(Y \geqslant b)} = \frac{1 - (1 - e^{-\lambda(a + b)})}{1 - (1 - e^{-\lambda b})},$$

покажем, что эта вероятность совпадает с $\mathbb{P}(Y>a)=1-(1-e^{-\lambda a})$, или, что

$$1 - (1 - e^{-\lambda(a+b)}) = (1 - (1 - e^{-\lambda b}))(1 - (1 - e^{-\lambda a})) \Leftrightarrow$$
$$\Leftrightarrow e^{-\lambda(a+b)} = e^{-\lambda b}e^{-\lambda a}$$

Теорема 5. Пусть X_1, \ldots, X_n независимые случайные величины, и $X_i \sim Exp(\lambda_i)$. Тогда $Y = \min_{i=1,\ldots,n} X_i \sim Exp(\sum_{i=1}^n \lambda_i)$.

Доказательство.

$$\mathbb{P}(Y < t) = 1 - \mathbb{P}(Y \geqslant t) = 1 - \prod_{i=1}^{n} \mathbb{P}(X_i \geqslant t) = 1 - \prod_{i=1}^{n} (1 - F_{X_i}(t)) = 1 - \prod_{i=1}^{n} e^{-\lambda_i t} = 1 - e^{-(\sum_{i=1}^{n} \lambda_i)t}$$

3.2

Определение 7. Случайная величина X имеет распределение Пуассона c параметром $\lambda > 0$, если

$$\mathbb{P}(X=k) = \frac{\lambda^k}{k!}e^{-\lambda}, \quad k = 0, 1, 2, \dots$$

Строить датчик будем на основе следующей теоремы.

Теорема 6. Пусть $\eta_1, \ldots, \eta_n, \ldots$ независимые случайные величины, такие, что $\eta_i \sim Exp(1)$. Если

$$X = \max \left\{ k \ \bigg| \sum_{i=1}^{k} \eta_i < \lambda \right\},\,$$

то случайная величина $X \sim Poiss(\lambda)$. В случае, $\eta_1 \geqslant \lambda$ полагаем X = 0.

Доказательство можно найти в [2].

Таким образом, мы будем сэмплировать Exp(1), пока их сумма не превзойдёт заданного параметра λ и возвращать число генераций минус 1.

3.3

Теорема 7. Пусть случайная величина $X \sim Binom(n,p)$. Пусть $np = \lambda = {\rm const.}$ Тогда npu $n \to \infty$

$$\mathbb{P}(X=k) = C_n^k p^k (1-p)^{n-k} \to \frac{\lambda^k}{k!} e^{-\lambda}.$$

Доказательство данной теоремы можно найти в [2].

С помощью критерия хи-квадрат Пирсона убедимся в корректности работы построенного датчика. Для этого определим статистику

$$\chi_n^2 = n \sum_{i=1}^k \frac{\left(\frac{n_i}{n} - p_i\right)^2}{p_i},$$

в которой p_i задают вероятности предполагаемого распределения (H_0) , в нашем случае это $Poiss(\lambda)$, n_i — число встреченных в выборке значений i-го номинала, k — количество различных номиналов значений в совокупности наблюдений. Получается, что разность $(\frac{n_i}{n} - p_i)$ как бы находит отклонение эмпирической вероятности наблюдать некоторое i-е значение от теоретической.

Также введём функцию плотности распределения статистики χ^2 :

$$g(s) = \frac{1}{2^{\frac{r}{2}} \cdot \Gamma(\frac{r}{2})} s^{\frac{r}{2} - 1} e^{-\frac{s}{2}},\tag{5}$$

с r = k - 1 — числом степеней свободы.

Проверяемую гипотезу H_0 будем отвергать в случае, если p_{value} окажется меньше α . Так как критерий имеет правостороннюю критическую область, то

$$p_{value} = \int_{\chi_2^2}^{\infty} g(s) \, \mathrm{d}s.$$

Примем c равным $\frac{1}{2^{\frac{r}{2}} \cdot \Gamma(\frac{r}{2})}$ и найдём p_{value} с точностью ε , для этого определим такое l, что

$$c \cdot \int_{1}^{\infty} s^{\frac{r}{2} - 1} e^{-\frac{s}{2}} \, \mathrm{d}s < \varepsilon.$$

Обозначим для удобства $k=\frac{r}{2}-1$, тогда нам необходимо показать, что

$$\int_{1}^{\infty} s^{k} e^{-\frac{s}{2}} \, \mathrm{d}s < \frac{\varepsilon}{c}.$$

Взяв $l: l^k < e^{\frac{l}{4}}$, мы придём к

$$\int_{l}^{\infty} s^{k} e^{-\frac{s}{2}} \, ds < \int_{l}^{\infty} e^{-\frac{s}{4}} \, ds = -4e^{-\frac{s}{4}} \bigg|_{l}^{\infty} = 4e^{-\frac{l}{4}} < \frac{\varepsilon}{c} \Leftrightarrow$$

$$\Leftrightarrow -l < 4 \ln\left(\frac{\varepsilon}{4c}\right) \Leftrightarrow l > -4 \ln\left(\frac{\varepsilon}{4c}\right).$$

Теперь поподробнее рассмотрим неравенство

$$l^k < e^{\frac{l}{4}}. (6)$$

Воспользуемся известным фактом, что степенная функция растёт медленнее показательной с аргументом > 1. Поэтому, если мы найдём некоторое l^* , для которого неравенство (6) выполняется, то оно будет справедливо и при больших значениях. Преобразуем неравенство для удобства следующим образом:

$$l^k < e^{\frac{l}{4}} \Leftrightarrow 4k \ln l < l.$$

Нетрудно проверить, что $l^* = \max\{(4k)^2, e\}$ подходит.

• Если $e \geqslant (4k)^2$.
Тогда очевидно выполняется

$$4k\ln(e) = 4k < e.$$

• Если $e < (4k)^2$.

$$4k \ln (4k)^2 < (4k)^2 \Leftrightarrow 2 \ln(4k) < 4k,$$

что выполнено в силу совокупности двух фактов: указанного выше о сравнении скорости роста двух типов функций и второго: $2\ln(s) < s$ при s=1.

Поэтому l положим равной $\max\left\{e,(4k)^2,-4\ln\left(\frac{\varepsilon}{4c}\right)\right\}.$ Результаты проверки с $\alpha=5\%,\,\varepsilon=10^{-10}$:

Обьём выборки	Количество испытаний	Частота принятия гипотезы
10^{3}	10^{3}	0.954
10^{3}	10^{4}	0.9552
10^{4}	10^{3}	0.954
10^{4}	10^{4}	0.959

3.4

Построим датчик стандартного нормального распределения методом моделирования случайных величин парами с переходом в полярные координаты. Для этого рассмотрим случайные величины $\xi \sim \mathcal{N}(0,1), \, \eta \sim \mathcal{N}(0,1).$ Совместная функция распределения имеет вид:

$$\mathbb{P}(\xi < x, \eta < y) = \frac{1}{2\pi} \int_{-\infty}^{x} \int_{-\infty}^{y} e^{-\frac{(x_{1}^{2} + x_{2}^{2})}{2}} dx_{1} dx_{2} = \frac{1}{2\pi} \iint_{\substack{r \cos \phi < x \\ r \sin \phi < y}} re^{-\frac{(r^{2})}{2}} dr d\phi = \frac{1}{4\pi} \iint_{\substack{r \cos \phi < x \\ r \sin \phi < y}} e^{-\frac{w}{2}} dw d\phi.$$

Получили общую функцию распределения случайных величин $w \sim Exp(\frac{1}{2}), \ \phi \sim U[0,2\pi].$ Таким образом совместное распределение ξ и η совпадает с таковым у $\sqrt{w}\cos\phi, \ \sqrt{w}\sin\phi.$ Поэтому случайные величины ξ и η можно сэмплировать как:

$$\xi = \sqrt{w}\cos\phi, \quad \eta = \sqrt{w}\sin\phi.$$

Проверим равенство нулю математических ожиданий $\mathbb{E}\sqrt{w}\cos\phi$ и $\mathbb{E}\sqrt{w}\sin\phi$ при помощи t-критерия Стьюдента, статистика которого имеет вид

$$T_n = \sqrt{n} \frac{\overline{X} - m}{s_X},$$

здесь \overline{X} — выборочное среднее, m — предполагаемое значение математического ожидания (в нашем случае 0), s_X — корень из выборочной дисперсии. Распределение данной статистики для этого критерия задаётся как

$$F(T) = \int_{-\infty}^{T} \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu} \cdot \Gamma(\frac{\nu}{2})} \cdot \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} dx,$$

где ν — число степеней свободы (для рассматриваемого случай $\nu=n-1$). Обозначим $c=\frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\pi\nu}\cdot\Gamma(\frac{\nu}{2})}$. Проверяемую гипотезу будем отвергать, если

$$p_{value}^* = \int_{|T|}^{+\infty} c \cdot \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} dx < \frac{\alpha}{2}$$

в силу симметрии t-распределения. Вычислять значение p_{value}^* будем с точностью ε , для этого найдём l такое, что

$$\int_{1}^{+\infty} c \cdot \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} dx < \varepsilon.$$

Заметим, что

$$\left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} = \left(\frac{\nu + x^2}{\nu}\right)^{-\frac{\nu+1}{2}} = \left(\frac{\nu}{\nu + x^2}\right)^{\frac{\nu+1}{2}} < \left(\frac{\nu}{x^2}\right)^{\nu},$$

считаем $\nu \geqslant 1$, то есть $n \geqslant 2$. Тогда получим

$$\int_{l}^{+\infty} \frac{\nu^{\nu}}{x^{2\nu}} \, \mathrm{d}x < \frac{\varepsilon}{c} \Leftrightarrow \nu^{\nu} \cdot \frac{x^{-(2\nu-1)}}{-(2\nu-1)} \bigg|_{l}^{+\infty} < \frac{\varepsilon}{c} \Leftrightarrow \nu^{\nu} \frac{l^{-(2\nu-1)}}{2\nu-1} < \frac{\varepsilon}{c} \Leftrightarrow l > \sqrt[(2\nu-1)]{\frac{\nu^{\nu} \cdot c}{(2\nu-1)\varepsilon}}.$$

А значит, достаточно определять

$$p_{value}^* = \int_{|T|}^{l} c \cdot \left(1 + \frac{x^2}{\nu}\right)^{-\frac{\nu+1}{2}} dx \vee \frac{\alpha}{2}.$$

Результаты проверки с $\alpha = 5\%, \, \varepsilon = 10^{-10}$:

Обьём выборки	Количество испытаний	Частота принятия гипотезы
10^{2}	10^{2}	0.96
10^{2}	10^{3}	0.956
10^{2}	10^{4}	0.9476

Далее сформулируем критерий Фишера, равенства дисперсий и проверим его на смоделированных нами случайных величинах ξ и η . За гипотезу H_0 примем $\sigma_{\xi}^2 = \sigma_{\eta}^2$ для независимых нормальных случайных величин. Используемая статистика

$$T_{nm} = \frac{S_{\xi}^2}{S_{\eta}^2},$$

здесь $S_{\xi}^2,\,S_{\eta}^2$ — выборочные дисперсии (несмещённые). Пусть в первой выборке n элементов,

а во второй — m, тогда, если проверяемая гипотеза верна, то T_n имеет F-распределение со степенями свободы (n-1) и (m-1). Кроме того, так как критерий двусторонний, то для принятия H_0 станем проверять неравенство

$$F_{1-\frac{\alpha}{2}}(n-1,m-1) > T_{nm} > F_{\frac{\alpha}{2}}(n-1,m-1).$$

В силу сложности получения аналитической оценки значения квантилей F-распределения, для их определения воспользуемся библиотечной функцией. Ниже показаны результаты применения критерия с $\alpha = 5\%$:

Обьём выборки	Количество испытаний	Частота принятия гипотезы
10^{3}	10^{3}	0.955
10^{3}	10^{4}	0.9524
10^{4}	10^{3}	0.941
10^{4}	10^{4}	0.9507

Задание 4

4.1

Определение 8. Случайная величина ξ имеет распределение Коши c параметрами cдвига x_0 и масштаба $\gamma > 0$, если её функция распределения имеет вид

$$F_{\xi}(x) = \frac{1}{\pi} \arctan\left(\frac{x - x_0}{\gamma}\right) + \frac{1}{2}.$$

Датчик распределение Коши легко построить через:

$$F_{\xi}^{-1}(y) = x_0 + \gamma \operatorname{tg}\left(\pi\left(y - \frac{1}{2}\right)\right).$$

Воспользовавшись теоремой 4 получим, что если $Y \sim U[0,1]$, то $X = F_{\xi}^{-1}(Y)$ имеет распределение Коши.

4.2

Пусть заданы плотности двух распределений $f_1(x)$, $f_2(x)$. Суть метода фон Неймана заключается в том, что бы определив константу k: $kf_1(x) \geqslant f_2(x) \ \forall x$ сгенерировать ξ по следующему алгоритму:

1. Сэмплируется элемент y соответствующий $f_1(x)$.

- 2. Вычисляется $R = \frac{f_2(y)}{kf_1(y)}$.
- 3. Генерируется $\eta(y) \sim Ber(R)$ и если она равна 1, то значение x возвращаем как результат генерации случайного элемента, имеющего плотность распределения $f_2(x)$, иначе повторяем заново.

В нашем случае:

$$f_1(x) = \frac{1}{\pi} \frac{\gamma}{(x - x_0)^2 + \gamma^2}, \ f_2(x) = \frac{1}{\sqrt{2\pi}} \cdot e^{-\frac{x^2}{2}}.$$

Обоснуем метод фон Неймана.

Теорема 8. пусть P и Q — вероятностные меры, заданные на измеримом пространстве $(\mathcal{X}, \mathcal{A})$, причём P(A) < kQ(A) для всех $A \in \mathcal{A}$ для некоторого вещественного числа k. Пусть ν — бернуллиевская случайная величина с параметром $\frac{\mathrm{d}P}{k\mathrm{d}Q}$. Тогда

$$\mathbb{P}(X \in A \mid \nu = 1) = P(A).$$

Доказательство.

$$\mathbb{P}(X \in A \mid \nu = 1) = \frac{\mathbb{P}(X \in A, \ \nu = 1)}{\mathbb{P}(\nu = 1)} = \frac{\int_{A} \mathbb{P}(X = x, \ \nu = 1) \, \mathrm{d}Q(x)}{\int_{\Omega} \mathbb{P}(X = x, \ \nu = 1) \, \mathrm{d}Q(x)} = \frac{\int_{A} \frac{\mathrm{d}P}{\mathrm{kd}Q} \, \mathrm{d}Q(x)}{\int_{\Omega} \frac{\mathrm{d}P}{\mathrm{kd}Q} \, \mathrm{d}Q(x)} = P(A).$$

Функция normplot сопоставляет квантилям рассматриваемой выборки квантили нормального распределения. Таким образом, если выборка соответствует нормальному распределению, то мы будем наблюдать линейную зависимость на графике, а в случае распределения, отличного от нормального, получим квантили, которые сильно отличаются от таковых у нормального.

4.3

Скорость моделирования стандартного нормального распределения методом фон Неймана сильно ниже, чем у метода пар. Убедимся в этом эмпирически, результаты на рис. (будет в чистовой версии).

Задание 5

5.1

Пусть $X_i \sim \mathcal{N}(\mu, \sigma^2)$. Исследуем поведение суммы $\frac{S_n}{n}$ и эмпирического распределения величины

$$\sqrt{n}\left(\frac{S_n}{n}-\mu\right).$$

Теорема 9. (Закон больших чисел) Пусть X_1, X_2, \ldots — независимые, одинаково распределенные случайные величины, $\mathbb{E}X_i = \mu \ \forall i \in \mathbb{N}, \ |\mu| < \infty, \ \mathbb{D}X_i \leqslant c, \ S_n = X_1 + \cdots + X_n.$ Тогда $S_n \xrightarrow[n \to \infty]{\mathbb{P}} \mu$, m. e.

$$\forall \varepsilon > 0 \quad \mathbb{P}\left(\left|\frac{S_n}{n} - \mu\right| > \varepsilon\right) \underset{n \to \infty}{\longrightarrow} 0.$$

Теорема 10. (Центральная предельная теорема) Пусть X_1, X_2, \ldots независимые, одинаково распределенные случайные величины, с конечными $\mathbb{E}X_i = a \ u \ \mathbb{D}X_i = \sigma^2$. Тогда

$$\mathbb{P}\left(\frac{S_n - na}{\sigma\sqrt{n}} < z\right) \underset{n \to \infty}{\to} \Phi(z) = \frac{1}{\sqrt{2\pi}} \cdot \int_{-\infty}^{z} e^{-\frac{y^2}{2}} \, \mathrm{d}y.$$

Доказательство данных теорем представлено в [2].

5.2

Доверительный интервал для среднего будем строить отталкиваясь от t-распределения, для дисперсии — χ^2 -распределения.

• Для неизвестного среднего μ при неизвестной дисперсии σ^2 : по теореме Фишера ([3]) для независимой выборки из нормального распределения справедливо:

$$\frac{\sqrt{n}(\overline{x} - \mu)}{\sigma} \sim \mathcal{N}(0, 1), \ \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 \sim \chi^2_{(n-1)}.$$

Следовательно отношение

$$\frac{\sqrt{n}(\overline{x} - \mu)}{\sqrt{\frac{1}{n-1} \cdot \sum_{i=1}^{n} (x_i - \overline{x})^2}} = \frac{\sqrt{n}(\overline{x} - \mu)}{s}$$

есть не что иное, как распределение Стьюдента с (n-1) степенью свободы. Тогда с вероятностью γ (рассматриваемая надёжность) выполнено неравенство

$$t_{\frac{1-\gamma}{2}}^{(n-1)} < \frac{\sqrt{n}(\overline{x} - \mu)}{s} < t_{\frac{1+\gamma}{2}}^{(n-1)},$$

тут t_{α}^{n} — квантиль t-распределения с n степенями свободы. Откуда легко получить, пользуясь симметрией распределения:

$$\overline{x} - \frac{s}{\sqrt{n}} t_{\frac{1+\gamma}{2}}^{(n-1)} < \mu < \overline{x} + \frac{s}{\sqrt{n}} t_{\frac{1+\gamma}{2}}^{(n-1)}.$$

• Для неизвестной дисперсии σ^2 при неизвестном среднем μ : из сказанного выше

$$\frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 \sim \chi^2_{(n-1)},$$

а значит,

$$h_{\varepsilon_1}^{(n-1)} < \frac{1}{\sigma^2} \sum_{i=1}^n (x_i - \overline{x})^2 < h_{1-\varepsilon_2}^{(n-1)}$$

наш искомый интервал, если взять $\varepsilon_1 + \varepsilon_2 = 1 - \gamma$. h_{α}^n — это квантиль хи-квадрат распределения с n степенями свободы. Из представленного неравенства получаем:

$$\frac{(n-1)s^2}{h_{1-\varepsilon_2}^{(n-1)}} < \sigma^2 < \frac{(n-1)s^2}{h_{\varepsilon_1}^{(n-1)}}.$$

5.3

Пусть $X_i \sim C(a,b) \ \forall i \in \mathbb{N}$. Рассмотрим график, по нему видно, что $\frac{S_n}{n}$ не имеет предела (ЗБЧ не выполнен), что неудивительно, ведь у случайной величины, имеющей распределение Коши отсутствует математическое ожидание

$$\mathbb{E}X_i = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{bx}{(x-a)^2 + b^2} \, \mathrm{d}x = \frac{b}{2\pi} \ln((x-a)^2 + b^2) \Big|_{-\infty}^{+\infty} - \frac{a}{\pi} \arctan\left(\frac{a-x}{b}\right) \Big|_{-\infty}^{+\infty} = \infty - \infty.$$

Покажем, что закон распределения сумм $\frac{S_n}{n}$ есть C(a,b). Для этого Вспомним понятие характеристической функции, которая задаётся как $\mathbb{E}e^{itX}$, а также тот факт, что существует взаимно однозначное соответствие между характеристическими функциями и функциями распределения, а они в свою очередь однозначно связаны со случайными величинами.

Непосредственно для X_i :

$$\mathbb{E}e^{itX_i} = \frac{1}{\pi} \int_{-\infty}^{+\infty} \frac{b}{(x-a)^2 + b^2} e^{itx} \, \mathrm{d}x = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{+\infty} \sqrt{\frac{2}{\pi}} \cdot \frac{b}{(x-a)^2 + b^2} \cdot e^{itx} \, \mathrm{d}x.$$

Заметим, что выше представлено обратное преобразование Фурье к $\sqrt{\frac{2}{\pi}} \cdot \frac{b}{(x-a)^2+b^2}$. Поэтому вспомним основные свойства этого преобразования, приняв за $F(\xi)$ — образ рассматриваемой функции f(t):

$$f(at) \rightarrow \frac{1}{a}F\left(\frac{\xi}{a}\right),$$

$$e^{-|t|} \rightarrow \sqrt{\frac{2}{\pi}} \cdot \frac{1}{1+\xi^2},$$

$$e^{itx_0}f(t) \rightarrow F(\xi - x_0).$$

Следовательно, легко проверить, что

$$e^{ita-|t|b} \rightarrow \sqrt{\frac{2}{\pi}} \cdot \frac{b}{(x-a)^2 + b^2}$$

а значит — искомый прообраз. Отметим два важных свойства характеристической функции, которыми мы воспользуемся в дальнейшем:

1. Если x_1 и x_2 — независимы, а $f_{x_1}(t)$, $f_{x_2}(t)$ — их характеристические функции, то

$$f_{x_1+x_2}(t) = f_{x_1}(t) \cdot f_{x_2}(t).$$

2. Кроме того

$$f_{ax+b}(t) = e^{itb} f_x(at).$$

Отталкиваясь от озвученного выше

$$f_{S_n}(t) = \prod_{j=1}^n f_{x_j}(t) = \prod_{j=1}^n e^{ita-|t|b} = e^{n(ita-|t|b)} \Rightarrow$$

$$\Rightarrow f_{\underline{S_n}}(t) = f_{S_n}\left(\frac{t}{n}\right) = e^{(ita-|t|b)}.$$

Поэтому среднее арифметическое случайных величин, имеющих одно и то же распределение Коши, распределено идентичным образом.

Задание 6

6.1

Представим интеграл

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \frac{e^{-\left(x_1^2 + \dots + x_{10}^2 + \frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2}\right)}}{x_1^2 \cdot \dots \cdot x_{10}^2} \, \mathrm{d}x_1 \dots \, \mathrm{d}x_{10}$$

в виде

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} \sqrt{\pi^{10}} \frac{e^{-\left(\frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2}\right)}}{x_1^2 \cdot \dots \cdot x_{10}^2} \cdot \frac{1}{\sqrt{\pi^{10}}} e^{-\left(x_1^2 + \dots + x_{10}^2\right)} dx_1 \dots dx_{10}.$$

Примем

$$f(x) = \sqrt{\pi^{10}} \cdot \frac{e^{-\left(\frac{1}{2^7 \cdot x_1^2 \cdot \dots \cdot x_{10}^2}\right)}}{x_1^2 \cdot \dots \cdot x_{10}^2}, \ g(x) = \frac{1}{\sqrt{\pi^{10}}} e^{-\left(x_1^2 + \dots + x_{10}^2\right)}.$$

Отметим, что g(x) — плотность многомерного вектора (x_1,\ldots,x_{10}) , если $x_i \sim \mathcal{N}(0,\frac{1}{2})$. Тогда исходный интеграл можно записать как

$$I = \mathbb{E}f(x_1, \dots, x_{10}).$$

Воспользуемся законом больших чисел. Для этого рассмотрим выборку

$$x^{i} = (x_{1}^{i}, \dots, x_{10}^{i}), \quad x_{k}^{i} \sim \mathcal{N}\left(0, \frac{1}{2}\right), \ k = \overline{1, 10}, \ i = \overline{1, n}.$$

Придём к

$$\frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n f(x^i) \underset{n \to \infty}{\longrightarrow} I.$$

Оценим погрешность метода Монте-Карло.

$$\mathbb{P}\left(\left|\frac{S_n}{n} - I\right| < \varepsilon\right) = \mathbb{P}\left(\left|\frac{S_n - nI}{ns}\right| < \frac{\varepsilon}{s}\right) = \mathbb{P}\left(-\frac{\varepsilon}{s} < \frac{S_n - nI}{ns} < \frac{\varepsilon}{s}\right) =$$

$$= \mathbb{P}\left(-\sqrt{n}\frac{\varepsilon}{s} < \sqrt{n}\frac{S_n - nI}{ns} < \sqrt{n}\frac{\varepsilon}{s}\right) = \Phi\left(\sqrt{n}\frac{\varepsilon}{s}\right) - \Phi\left(-\sqrt{n}\frac{\varepsilon}{s}\right) = 2\Phi\left(\sqrt{n}\frac{\varepsilon}{s}\right) - 1 = \gamma.$$

Где ε — погрешность вычисления $I,\,\gamma$ — вероятность, с которой мы будем иметь расхождения с I в пределах $\varepsilon,\,\Phi(x)$ — функция распределения нормальной случайной величины, s —

несмещённая выборочная дисперсия. Напомню, что

$$\Phi(x) = \int_{-\infty}^{x} e^{-\frac{y^2}{2}} \, \mathrm{d}y.$$

Поясним, каким образом будет происходить оценка погрешности. Изначально нам задаётся коэффициент доверия γ , отталкиваясь от него решаем задачу

$$2\Phi\left(x_{\frac{1+\gamma}{2}}\right) - 1 = \gamma,$$

находя при этом $x_{\frac{1+\gamma}{2}}$, откуда получаем

$$\varepsilon = \frac{s \cdot x_{\frac{1+\gamma}{2}}}{\sqrt{n}}.$$

Стоит отметить, что конечность математического ожидания и дисперсии многомерной случайной величины f(x) (можно доопределить до непрерывной \Rightarrow борелевское отображение \Rightarrow сл. в.) следует из её ограниченности. А значит, можем воспользоваться ЦПТ, при этом опираясь на состоятельность в оценке эталонной дисперсии выборочной.

Таблица испытаний с $\gamma = 0.95$:

Обьём выборки	Результат	Погрешность	Время работы
10^{4}	140.886	19.516	10.8 ms
10^{5}	128.210	7.187	76.3 ms
10^{6}	121.768	4.241	777 ms
10 ⁷	124.991	0.708	10.6 s

6.2

Сведём задачу к собственному интегралу Римана заменой

$$x_i = \operatorname{tg}\left(\frac{\pi}{2}t_i\right), \ t_i \in [0, 1].$$

Получим

$$I = \left(\frac{\pi}{2}\right)^{10} \cdot \int_{-1}^{1} \dots \int_{-1}^{1} \frac{\exp\left\{-\left(\sum_{i=1}^{10} \operatorname{tg}^{2}\left(\frac{\pi}{2}t_{i}\right) + \frac{1}{2^{7} \cdot \prod_{i=1}^{10} \operatorname{tg}^{2}\left(\frac{\pi}{2}t_{i}\right)}\right)\right\}}{\prod_{i=1}^{10} \sin^{2}\left(\frac{\pi}{2}t_{i}\right)} dt_{1} \dots dt_{10}.$$

Проведём разбиение отрезка [-1,1] на N частей:

$$-1 = t_0 < t_1 < \dots < t_N = 1, \ t_i = -1 + i\frac{2}{N}, \ i = \overline{1, N}.$$

Обозначим через $f(y_1, \ldots, y_{10})$ подынтегральную функцию интеграла I. Будем использовать метод срединных прямоугольников. Для этого нам необходимо выбрать середины нашего разбиения:

$$y_i = \frac{t_i + t_{i-1}}{2}, \ i = \overline{1, N}$$

Тогда наш интеграл приближённо можно посчитать следующим образом:

$$I_N = \left(\frac{\pi}{2}\right)^{10} \sum_{i_1=1}^N \dots \sum_{i_{10}=1}^N f(y_1, \dots, y_{10}).$$

Оценка погрешности метода прямоугольников на равномерной сетке имеет вид:

$$\varepsilon = \frac{h^2}{24}(b-a) \max_{1 \leqslant i,j \leqslant 10} |f_{x_i x_j}''|.$$

Приведем таблицу зависимости результата от количества точек разбиения отрезка:

N	Результат	Время работы
4	0.087	$18.3 \mathrm{\ s}$
6	272.603	18min 49s
8	183.489	7h 15min 33s

Вывод: метод Монте-Карло работает намного эффективнее по скорости и точности, чем метод квадратур.

Список литературы

- [1] Смирнов С. Н. Лекции по курсу «Стохастический анализ и моделирование», 2023–2024.
- [2] Ширяев А. Н. Вероятность, Наука. М.: 1989.
- [3] Востриков И. В. Лекции по курсу «Теория идентификации», 2008.
- [4] Кропачёва Н. Ю., Тихомиров А. С. Моделирование случайных величин: метод указания, НовГУ им. Ярослава Мудрого, 2004.
- [5] Колмогоров А. Н. Избранные труды, в 6 томах. Том 2. Теория вероятностей и математическая статистика. М., Математический институт им. В. А. Стеклова РАН.
- [6] Феллер В. Введение в теорию вероятностей и её приложения, в 2-х томах. Т.1, М., Мир, 1984.