Problem Set III: Linear Transformations - II

Note: The basis $e_1, e_2, \dots e_k$ refer to the standard basis vectors in \mathbf{R}^k for some positive integer k, where the value of k will vary. Vector spaces considered are finite dimensional. The variables m, n and k will generally be used to indicate arbitrary positive integers. Let V, W be finite dimensional vector spaces over \mathbf{R} of dimension n and m respectively. Let $T: V \mapsto W$ be a linear Transformation of rank r.

- 1. a Show that there exist vectors $b_1, b_2 \dots b_r \in V$ such that $T(b_1), T(b_2), \dots, T(b_r)$ is a basis of Img(T).
 - b Let $v \in V$ and $x \in W$ such that T(v) = x. Suppose $x = \alpha_1 T(b_1) + \alpha_2 T(b_2) + \cdots + \alpha_r T(b_r)$, where $\alpha_i \in \mathbf{R}$. Then, show that $T(v \alpha_1 b_1 \alpha_2 b_2 \cdots \alpha_r b_r) = 0$.
 - c Let $c_1, c_2 \dots c_k$ be a basis of Nspace(T). Then show that $\{c_1, c_2, \dots c_k, b_1, b_2, \dots b_r\}$ forms a basis of V. Hence conclude that k = n r.
- 2. Consider the matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 1 \end{bmatrix}$ Let $b = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$. Find real numbers $\alpha, \beta, \gamma, \delta$ such that for all $t \in \mathbf{R}$, the parametrized solution vector $x = \begin{bmatrix} \alpha + \beta t \\ \gamma + \delta t \end{bmatrix}$ is a solution to Ax = b.
- 3. Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & \alpha & \beta \end{bmatrix}$.
 - a Find real numbers α, β such that there exists at least one vector $b \in \mathbf{R}^2$ such that Ax = b has no solution. (Hint: What is the condition on the Rank(A) for the requirement to be satisfied.)
 - b For the α, β values found above, find a vector b for which Ax = b is solvable. Find the general parametric form for all solutions for Ax = b.
- 4. Consider the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$.
 - a Find a vector $d \in \mathbf{R}^2$ such that Ax = b has a solution if and only if b = td for some $t \in \mathbf{R}$. Justify your answer. (Hint: What is the dimension of the image of A? How many vectors are needed to span that space?)
 - b Find two vectors $u, v \in \mathbf{R}^3$ such that $Ax = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ if and only if $x = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \alpha u + \beta v$ for some $\alpha, \beta \in \mathbf{R}$.
- 5. Consider the linear transformation T whose matrix is $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 4 \end{bmatrix}$ with respect to the standard basis on both \mathbf{R}^3 and \mathbf{R}^2 . Suppose the basis or \mathbf{R}^3 is changed to $b_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ $b_2 = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ $b_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$, and the basis of \mathbf{R}^2 is changed to $c_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $c_2 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$; how will the matrix of T change with respect to the new bases?
- 6. Consider the linear transformation T whose matrix with respect to the standard basis on \mathbf{R}^2 is $\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$. Find a basis b_1, b_2 of \mathbf{R}^2 such that, with respect to this basis, the matrix of T takes the form $\begin{bmatrix} \alpha & 0 \\ 0 & \beta \end{bmatrix}$ for some real numbers α, β . Find the values of α and β .
- 7. Suppose that W = V. That, is $T : V \mapsto V$. Suppose $b_1, b_2, \dots b_n$ be a basis of V such that $T(b_i) = \alpha_i b_i$ for some real numbers α_i , $1 \le i \le n$, then what will be the matrix of T with respect to the basis $b_1, b_2, \dots b_n$?
- 8. Suppose that $\dim(V) = \dim(W)$. Prove that T is injective $\Leftrightarrow T$ is surjective $\Leftrightarrow T$ is bijective \Leftrightarrow Nspace $(T) = \{0\}$. (Hint: Use the Rank Nullity Theorem.)