Predicción de eficacia en Sistemas de Recomendación

Alejandro Bellogín

alejandro.bellogin@uam.es

Escuela Politécnica Superior Universidad Autónoma de Madrid

En colaboración con Pablo Castells e Iván Cantador

Predicción de eficacia

- Útil en Recuperación de Información
 - Estimar eficacia de la consulta a priori y tomar una decisión en consecuencia
 - Ejemplo: expandir la consulta, combinar buscadores
- ¿Será útil también para los Sistemas de Recomendación?

Sistemas de Recomendación

- Los SRs sugieren ítems "interesantes" a los usuarios
 - Comúnmente: puntuaciones explícitas (ratings)
 - Objetivo: predecir rating r_{ik}

Adomavicious, G., Tuzhilin, A. 2005. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge and Data Engineering 17(6), 734-749

Predicción de eficacia en Sistemas de Recomendación

- ¿Es posible predecir la eficacia de una recomendación?
- Si así fuera, podríamos:
 - Decidir si mostrar o no una recomendación
 - Dado un conjunto de SRs, utilizar el que se estima que funcionará mejor para cada usuario
- Fuentes de información:
 - Puntuaciones (*ratings*)
 - Características de los ítems
 - Redes sociales
 - Etc.

Predictores de eficacia para recomendación

- Basados en los definidos en RI
 - A partir de estadísticas de los términos, documentos, etc.
- A partir de la claridad de la consulta (query clarity)
 - Consulta más ambigua si los documentos devueltos son sobre temas distintos
- Definimos la claridad del usuario (user clarity)

$$\gamma(u) = \text{clarity}(u) = \sum_{x \in X} p(x|u) \log \left(\frac{p(x|u)}{p_c(x)}\right)$$
 user's model system's model

• Tenemos libertad para el espacio X: usuarios, ítems, ratings, y combinaciones

Cronen-Townsend, S., Croft, W.B., Zhou, Y. 2002. Predicting query performance. In SIGIR 2002, 299-306

Claridad de usuario

• Tres formulaciones:

Nombre	Vocabulario	User model	Background model
Rating-based	Ratings	$p(r \mid u)$	$p_{c}(r)$
Item-based	Ítems	$p(i \mid u)$	$p_{c}(i)$
Item-and-rating-based	Ítems puntuados por el usuario	p(r i, u)	$p_{ml}(r i)$

clarity
$$(u) = \sum_{x \in X} p(x | u) \log \left(\underbrace{\frac{p(x | u)}{p_c(x)}} \right)$$

user model

background model

Ejemplo

Formulación basada en ratings

El comportamiento de u2 es distinto al de u1 si nos fijamos en su forma de puntuar

Cada formulación captura un aspecto distinto del usuario

Metodología de evaluación

Dos pasos:

- 1) Análisis de correlación
- 2) Evaluación de la eficacia final

Análisis de correlación

- Sirve para estudiar el poder predictivo de los predictores
- Se mide la correlación entre el predictor y una métrica de eficacia

Evaluación de la eficacia final

- Sirve para observar si el predictor mejora la eficacia
- Se comparan versiones de los algoritmos: dinámica frente a estática

Aplicaciones

 La predicción de eficacia se puede aplicar cuando se tiene una combinación de estrategias

Aplicación 1: ponderación dinámica de vecinos

Aplicación 2: recomendación híbrida dinámica

Aplicación 1: Ponderación dinámica de vecinos

- Los vecinos del usuario se ponderan de acuerdo a su similitud
- ¿Podemos tener en cuenta la incertidumbre en los datos del vecino?
- Ponderación de vecinos

• Estática:
$$g(u,i) = C \sum_{v \in N[u]} sim(u,v) \times rat(v,i)$$

• Dinámica:
$$g(u,i) = C \sum_{v \in N[u]} \gamma(v) \times sim(u,v) \times rat(v,i)$$

Ponderación dinámica de vecinos

Análisis de correlación

• Con respecto a una métrica de Bondad del Vecino (*Neighbor Goodness*) : "cómo de bueno es un vecino para su vecindario"

% training	10%	20%	30%	40%	50%	60%	70%	80%	90%
correlation	-0.10	0.10	0.18	0.18	0.18	0.17	0.17	0.15	0.15

Eficacia (MAE = Mean Average Error, mejor cuanto más bajo)

Aplicación 2: Recomendación híbrida dinámica

- El peso en un híbrido es el mismo para cada ítem y usuario (obtenido a partir de entrenamiento)
- ¿Qué pasa si damos más importancia a las recomendaciones del algoritmo que se espera que funcionen mejor para un usuario?
- Recomendación híbrida

• Estática:
$$g(u,i) = \lambda \times g_{R1}(u,i) + (1-\lambda) \times g_{R2}(u,i)$$

• Dinámica:
$$g(u,i) = (\gamma(u)) \times g_{R1}(u,i) + (1 - (\gamma(u)) \times g_{R2}(u,i))$$

Recomendación híbrida dinámica – CF + CB

- Análisis de correlación
 - Con respecto a nDCG@50 (nDCG, normalized Discount Cumulative Gain)

Predictor	CBF	IB	TF-L1	TF-L2	UB	Median	Mean
ItemSimple	0.257	0.146	0.521	0.564	0.491	0.491	0.396
ItemUser	0.252	0.188	0.534	0.531	0.483	0.483	0.398
RatUser	0.234	0.182	0.507	0.516	0.469	0.469	0.382
RatItem	0.191	0.184	0.442	0.426	0.395	0.395	0.328
IRUser	0.171	-0.092	0.253	0.399	0.257	0.253	0.198
IRItem	0.218	0.152	0.453	0.416	0.372	0.372	0.322
IRUserItem	0.265	0.105	0.523	0.545	0.444	0.444	0.376

• Eficacia (nDCG, mejor cuanto más alto)

Recomendación híbrida dinámica – CF + Social

Primeros resultados

- Utilizar métricas de grafos como predictores
- El predictor indica la fuerza del usuario en su red social

		P@5		nDCG@5		
_	H1	H2	Н3	H1	H2	Н3
Average Neigh Deg	0.219*	0.092*	0.199	0.240*	0.097*	0.215
Centrality	0.222*	0.106‡	0.188†	0.242*	0.111‡	0.204†
Clustering coef	0.211*	0.094*	0.188†	0.231*	0.100*	0.202†
Degree	<u>0.233</u> ‡	0.095*	0.197	<u>0.256</u> ‡	0.099*	0.213
Ego Comp Size	0.227‡	0.096*	<u>0.201</u> *	0.249‡	0.101*	0.215
HITS	0.225*	<u>0.110</u> ‡	0.197	0.248*	<u>0.114</u> ‡	0.212
PageRank	0.227‡	0.097*	0.200	0.247*	0.101*	<u>0.216</u>
Two Hop Neigh	0.229‡	0.093*	0.195	0.250‡	0.100*	0.212
Static 0.5	0.186	0.077	0.189	0.205	0.081	0.206
Best static	0.218	0.091	0.199	0.239	0.096	0.215

Conclusiones

- La eficacia de un usuario en un sistema de recomendación se puede estimar
 - Proponemos adaptaciones de técnicas de RI, como la claridad
- Hemos presentado estrategias de recomendación dinámicas
 - Ponderación dinámica de vecinos: de acuerdo a la bondad esperada del vecino
 - Recomendación híbrida dinámica: basada en la eficacia estimada
- Resultados positivos
 - Buen poder predictivo (correlaciones fuertes entre predictores y métricas)
 - Estrategias dinámicas obtienen mejores (o iguales) resultados que las estáticas

Trabajo futuro

- Predictores que utilicen otras fuentes de información
 - ✓ Ratings
 - ✓ Redes sociales
 - Datos implícitos
- Predictores basados en ítems
 - Nociones de popularidad, diversidad, novedad
- Desarrollar una teoría formal para entender cómo funcionan los predictores

Gracias!

Predicción de eficacia en Sistemas de Recomendación

Alejandro Bellogín

alejandro.bellogin@uam.es

Escuela Politécnica Superior Universidad Autónoma de Madrid

Supervisado por Pablo Castells e Iván Cantador

Publicaciones relacionadas

- A Performance Prediction Aproach to Enhance Collaborative
 Filtering Performance. A. Bellogín and P. Castells. In ECIR 2010.
- Predicting the Performance of Recommender Systems: An Information Theoretic Approach. A. Bellogín, P. Castells, and I. Cantador. In ICTIR 2011.
- Self-adjusting Hybrid Recommenders based on Social Network Analysis. A. Bellogín, P. Castells, and I. Cantador. In SIGIR 2011.
- Performance Prediction for Dynamic Ensemble Recommender Systems. A. Bellogín, P. Castells, and I. Cantador. Under review.

