CHAPTER 2 THE PHYSICAL LAYER (物理层)

- The Theoretical Basis for Data Communication
- Guided Transmission Media
- Wireless Transmission
- Digital Modulation and Multiplexing
 - OFDM
- The Public Switched Telephone Network (Stationary)
- Communication Satellites (Celestial 天体的) *
- The Mobile Telephone System (Mobile) *
- Cable Television (Stationary)*

THE THEORETICAL BASIS FOR DATA COMMUNICATION (数据通信的基本理论)

• Fourier analysis (傅立叶分析)

• Bandwidth-limited signals (有限带宽信号)

• Maximum data rate of a channel (信道的最大数据传送速率)

Jean Baptiste Joseph Fourier (1768-1830)

- Had crazy idea (1807):
- Any periodic function can be rewritten as a weighted sum of Sines and Cosines of different frequencies.
- Don't believe it?
 - Neither did Lagrange,
 Laplace, Poisson and other
 big wigs
 - Not translated into English until 1878!
- But it's true!
 - called Fourier Series
 - Possibly the greatest tool used in Engineering

A Sum of Sinusoids

• Our building block:

$A\sin(\omega x + \phi)$

- Add enough of them to get any signal f(x) you want!
- How many degrees of freedom?
- What does each control?
- Which one encodes the coarse vs. fine structure of the signal?

Fourier Transform

• We want to understand the frequency ω of our signal. So, let's reparametrize the signal by ω instead of x:

- For every ω from 0 to inf, $F(\omega)$ holds the amplitude A and phase ϕ of the corresponding sine $A\sin(\omega x + \phi)$
 - How can F hold both? Complex number trick!

$$F(\omega) = R(\omega) + iI(\omega)$$

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2} \qquad \phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

$$F(\omega)$$
 Inverse Fourier \longrightarrow $f(x)$

Time and Frequency

• example : $g(t) = \sin(2pift) + (1/3)\sin(2pi(3f)t)$

Time and Frequency

• example : $g(t) = \sin(2pi f t) + (1/3)\sin(2pi (3f) t)$

• example : $g(t) = \sin(2pi f t) + (1/3)\sin(2pi (3f) t)$

• Usually, frequency is more interesting than the phase

$$= A \sum_{k=1}^{\infty} \frac{1}{k} \sin(2\pi kt)$$

The Theoretical Basis For Data Communication: Fourier Analysis

- We model the variation of voltage or current with mathematical function
- Any reasonably behaved periodic function g(t) with period T, can be constructed as the sum of a (possibly infinite) number of sines and cosines

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

The Theoretical Basis For Data Communication: Fourier Analysis

- We model the variation of voltage or current with mathematical function
- Any reasonably behaved periodic function g(t) with period T, can be constructed as the sum of a (possibly infinite) number of sines and cosines

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt \qquad b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt \qquad c = \frac{2}{T} \int_0^T g(t) dt$$

• A data signal that has a finite duration (which all of them do) can be handled by just imagining that it repeats the entire pattern over and over forever.

- Bandwidth-Limited Signals
 - Input → System (transmission, filtering) → output
 - Bandwidth (帯宽) for systems
 - The range of frequencies transmitted without being strongly attenuated
 - The cutoff frequency is not really sharp, is defined as the frequency at which half the power gets through.
 - Any signal (bandwidth-limited or unlimited) (input)
 - → system (filtering)
 - → bandwidth-limited signal (output)

(in time domain, convolution;

In frequency domain, multiplication)

- Bandwidth-Limited Signals
 - A binary signal and its root-mean-square Fourier amplitudes: rms = $(a_n^2 + b_n^2)^{1/2}$
 - These squares are proportional to the energy transmitted at the corresponding frequency

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

- Bandwidth-Limited Signals
 - Successive approximations to the original signal.

- Bandwidth-Limited Signals
 - Successive approximations to the original signal.

- Bandwidth-Limited Signals
 - Successive approximations to the original signal.

- Bandwidth-Limited Signals
 - Successive approximations to the original signal.

- Bandwidth-limited signals
 - Given a bit rate b bits/sec,
 - \rightarrow the time to send 1 bit is 1/b,
 - \rightarrow the time required to send 8 bits is 8/b sec,
 - \rightarrow the frequency of the 1st harmonic (一次谐波) is b/8.
 - An ordinary telephone line (often called as a voice-grade line (话音级线路)) has an *artificially* introduced cutoff frequency near *3000Hz*. This restriction means that the number of the highest harmonic passed through is *3000/(b/8)* or *24000/b*.

• Bandwidth-Limited Signals: Relation between data rate and harmonics for the voice-grade line (3000Hz)

Bps	T (msec)	First harmonic (Hz)	# Harmonics sent
300	26.67	37.5	80
600	13.33	75	40
1200	6.67	150	20
2400	3.33	300	10
4800	1.67	600	5
9600	0.83	1200	2
19200	0.42	2400	1
38400	0.21	4800	0

Conclusion: the data rate is limited by the bandwidth of transmission system or media.

- The maximum data rate of a channel
 - In 1924, Henry Nyquist derived an equation expressing the maximum data rate for a finite bandwidth *noiseless* channel:

Max data rate = $2H \log_2 V$ bits/sec, or Max symbol rate = 2Hwhere H is the bandwith, V is the discrete levels

If we use B to denote the data rate (bits/s), and S to denote the symbol rate (symbol/s),

$$B \le 2H \log_2 V$$

 $S \le 2H$

Symbol rate vs. Data rate

- Symbol rate == baud rate
- Usually, data rate = symbol rate * bits per symbol
- Ex 1: we use 8 discrete voltage levels to represent bits
 - \rightarrow 1 symbol represent 3 bits \rightarrow data rate = 3 * symbol rate
- Ex 2: we use 1-0 (high-to-low) transition to represent 1 and 0-1 (low-to-high) transition to represent 0, i.e. Manchester encoding
 - \rightarrow 2 symbols represent 1 bit \rightarrow data rate = $\frac{1}{2}$ * symbol rate
- The modulation technique determines the number of bits/symbol.

- The max data rate of a channel
 - In 1943, Claude Shannon extend it to channel with random noise

Max data rate = $H \log_2 (1+S/N)$ bits/sec where S/N is the signal to noise ratio

- If we use B to denote the data rate (bits/s)
 B <= H log ₂ (1+S/N)
- SNR: typically measured in dB, decibel

 dB = 10log₁₀ S/N

 Ex: S/N=10→10dB, S/N=100→20dB, ...

GUIDED TRANSMISSION MEDIA (有线数据传输)

- Magnetic media (磁介质)
- Twisted pair (双绞线)
- Coaxial cable (同轴电缆)
- Power Lines (电力线)
- Fiber optics (光纤)

Guided Transmission Media: Magnetic media

- One of the most common ways to transport data from one computer to another is
 - To write them onto magnetic tape or removable media,
 - To transport the tape or disks to the destination machine, and
 - To read them back in again.
- Bandwidth:

```
800GB/tape * 1000 tapes/box / (24*60*60s) = 70+Gbps
```

• Cost:

```
(800GB/tape * 1000 tapes/box) / 5000\$ = 160GB/\$
```

• Conclusion:

Never underestimate the bandwidth of station wagon full of tapes hurtling down the highway.

• Why computer network?

- A twisted pair consists of two insulated copper wires, typically about 1 mm thick. The wires are twisted together in a helical form, just like a DNA molecule.
- Twisted pairs can run several kilometers without amplification, but for longer distances, repeaters are needed.

- (a) Category 3 UTP.
- (b) Category 5 UTP.

- Twisted pairs: analog or digital signals.
- Full-Duplex, Half-Duplex, Simplex
- Types
 - Category 5 (100Mbps, 1Gbps)
 - Category 6 (10Gbps)
 - Category 7 (Shielded Twisted Pair)

• Category 5 (100Mbps, 1Gbps)

Guided Transmission Media: Coaxial cable

- A coaxial cable consists of
 - a stiff copper wire as the core,
 - surrounded by an insulating material.
 - The insulator is encased by a cylindrical conductor, often as a closely-woven breaded mesh.
 - The outer conductor is covered in a protective plastic sheath.

- Two types: 50-ohm (digital), 75-ohm (analog and digital)
- High bandwidth and excellent noise immunity
- Used to be widely used for long-distance lines.

Guided Transmission Media: Power Lines

- Power lines have been used by electricity companies for low-rate communication such as remote metering for many years, as well in the home to control devices.
- In recent years, there has been renewed interest in highrate communication over these lines, both inside the home as a LAN and outside the home for broadband Internet access.

Guided Transmission Media: Power Lines

 Now, many products use various proprietary standards for power-line networking, so international standards are actively under development.

- In the race between computing and communication, communication won
 - Original IBM PC at 4.77 MHz in 1981 → four-core
 CPU at 3GHz → (16 per decade) and physical limits
 - 45Mbps (T3 line) → 100Gbps (optical communication)
 16 per decade and error rate almost zero and almost no limits
- The new conventional wisdom should be that: all computers are hopeless slow and networks should try to avoid computation at all costs, no matter how much bandwidth that wastes.
- An optical transmission system: the light source \rightarrow the transmission medium \rightarrow the detector.

- (a) Three examples of a light ray from inside a silica fiber impinging on the air/silica boundary at different angles.
- (b) Light trapped by total internal reflection (反射) (no refraction (折射)).

■ Two types of fiber optics
Multimode (多模): many different rays
Unimode (单模): single rays, longer distance

- Transmission of light through fiber
 - Attenuation (衰減) of light through fiber in the infrared region.
 - Three wavelength bands are used for optical communication. They are centered at 0.85, 1.30, and 1.55 micros (微米).

- Fiber cables
 - Fiber optic cables are similar to coax, except without the braid.
 - (a) Side view of a single fiber.
 - (b) End view of a sheath with three fibers.

- Fiber cables
 - Deployment
 - Laid in the ground within a meter of the surface
 - Buried in trenches near the shore
 - Lie on the bottom in deep water
 - Connection
 - Fiber sockets
 - Spliced mechanically
 - Fusion splice
 - Detection
 - Photodiode (光电二极管). The response time is 1ns, which limits data rates to about 1Gbps.

- Fiber cables
 - Light sources
 - LED: 发光二极管
 - Semiconductor laser: 半导体激光

ltem	LED	Semiconductor laser	
Data rate	Low	High	
Fiber type	Multimode	Multimode or single mode	
Distance	Short	Long	
Lifetime	Long life	Short life	
Temperature sensitivity	Minor	Substantial	
Cost	Low cost	Expensive	

- Comparison of fiber optics and copper wire
 - Advantages
 - Higher bandwidths and Low attenuation.
 - Not being affected by power surges, electromagnetic interference, or power failures.
 - Not affected by corrosive chemicals in the air.
 - Thin and lightweight.
 - Fibers do not leak light and quite difficult to tap.
 - Disadvantages
 - Less familiar technology.
 - Fiber interfaces more expensive.
 - Conclusion: For new routes (longer ones), fiber wins!

WIRELESS TRANSMISSION (无线传输)

- The electromagnetic spectrum (电磁波谱)
- Radio transmission (无线电传输)
- Microwave transmission (微波传输)
- Infrared and millimeter waves (红外线和毫米波)
- Lightwave transmission (光波传输)

Wireless Transmission:

The Electromagnetic Spectrum

The electromagnetic spectrum and its uses for communication.

Wireless Transmission: The Electromagnetic Spectrum

LF(Low), MF(Medium), HF(High),
 VHF(Very), UHF(Ultra), SHF(Super),
 EHT(Extremely), THF(Tremendously),
 (IHF(Incredibly), AHF(Astonishingly),
 PHF(Prodigiously))

- The wider the band, the higher the data rate.
- To prevent total chaos, there are national and international agreements about who gets to use which frequencies.
- Most transmissions use a narrow frequency band. (GSM)

Wireless Transmission: The Electromagnetic Spectrum

- Some spread its frequency over a wide frequency band (spread spectrum, 扩频).
 - Frequency hopping spread spectrum (military, 802.11, Bluetooth)
 - Direct sequence spread spectrum (3G mobile phones)
 - UWB (UltraWideBand)

Wireless Transmission & Radar

Wireless Transmission: Radio transmission

- Radio waves are easy to generate, can travel long distances, and can penetrate buildings easily, so they are widely used for communication
- Radio waves also are omnidirectional, meaning that they travel in all directions from the source, so the transmitter and receiver do not have to be carefully aligned physically.
- Due to radio's ability to travel long distances, interference between users is a problem. For this reason, all governments tightly license the use of radio transmitters.

Wireless Transmission: Radio transmission

- (a) In the VLF, LF, and MF bands, radio waves follow the curvature of the earth.
- (b) In the HF band, they bounce off the ionosphere (电离层).

Wireless Transmission: Microwave transmission

- Above 100MHz, the waves travel in straight lines and can therefore be narrowly focused.
- The higher the transmission towers are, the further apart they can be. For 100-m high towers, repeaters can be spaced 80km apart.
- Microwave can cause *multipath fading* or be *absorbed by rain*.
- Microwave communication is so widely used for longdistance telephone communication, cellular telephones, television distribution, and other uses, that a severe shortage of spectrum has developed.
- Microwave has some advantages over fiber: no right of way problem, being inexpensive.

Wireless Transmission: Microwave transmission

- Who allocates frequencies?
 - ITU: recommendation
 - 无线电管理委员会 (CN)
 - FCC (Federal Communication Commission) (US)
- Who gets frequencies?
 - Auctioning off the bandwidth to the highest bidder

Wireless Transmission: Microwave transmission

- Free frequencies:
 - The location of the **ISM** (Industrial, Scientific, Medical) band varies from country to country.
 - ISM and U-NII (Unlicensed National Information Infrastructure) bands used in the United States by wireless devices.

Wireless Transmission: Infrared and millimeter waves

- Infrared and millimeter waves can not pass through solid objects.
- Infrared can be used for indoor wireless LANs, remote controllers.
- Infrared can not be used outdoors for the sun shines as brightly in the infrared as in the visible spectrum.
- Advantages
 - The infrared controller cannot control the TV of your neighbor.
 - More secure.

Wireless Transmission: Lightwave transmission Convection currents (气流) can interfere with laser comm systems.

A bidirectional system with two lasers is pictured here.

DIGITAL MODULATION AND MULTIPLEXING

- Baseband Transmission (基带传输)
 - signal occupies frequencies from zero up to a maximum
- Passband Transmission (通带传输)
 - signal occupies a band of frequencies around the frequency of the carrier signal
- Frequency Division Multiplexing (频分复用)
- Time Division Multiplexing (时分复用)
- Code Division Multiplexing (码分复用)

Digital Modulation and Multiplexing

- To send digital information we must devise analog signals to represent bits.
- The process of converting between bits and signals that represent them is called **Digital Modulation** (数字调制).

- Channels are often shared by multiple signals.
- This kind of sharing is called Multiplexing (复用)

Digital Modulation and Multiplexing: Baseband Transmission

Digital Modulation and Multiplexing: Baseband Transmission

- Clock Recovery
 - Accurate clock: For all schemes that encode bits into symbols, the receiver must know when one symbol ends and the next symbol begins to correctly decode the bits.
 - NRZ (Non-Return-to-Zero,不归*零*制): the symbols are simply voltage levels.
 - Problem: a long run of 0s or 1s leaves the signal unchanged. After a while it is hard to tell the bits apart, as 15 zeros look much like 16 zeros unless you have a very accurate clock.

Digital Modulation and Multiplexing: Baseband Transmission

- Clock Recovery
 - One strategy is to send a separate clock signal to the receiver.
 - A clever trick is to mix the clock signal with the data signal by XORing them together so that no extra line is needed. → Manchester Encoding
 - As a step in the right direction, we can simplify the situation by encoding a 1 as a transition and a 0 as no transition, or vice versa. → NRZI (Non-Return-to-Zero Inverted,不归零倒相制) (Used in USB)
 - Problem: long runs of 0s? \rightarrow 4B/5B

Digital Modulation and Multiplexing: Baseband Transmission

- Clock Recovery
 - 4B/5B: The five bit patterns are chosen so that there
 will never be a run of more than three consecutive 0s.

Data (4B)	Codeword (5B)	Data (4B)	Codeword (5B)
0000	11110	1000	10010
0001	01001	1001	10011
0010	10100	1010	10110
0011	10101	1011	10111
0100	01010	1100	11010
0101	01011	1101	11011
0110	01110	1110	11100
0111	01111	1111	11101

Digital Modulation and Multiplexing: Passband Transmission (振幅、频率、相位)

Digital Modulation and Multiplexing: Passband Transmission

Constellation diagrams (星座图)

- (a) QPSK. (Quadrature Phase Shift Keying)
- (b) QAM-16. (Quadrature Amplitude Modulation)
- (c) QAM-64.

Digital Modulation and Multiplexing: Frequency Division Multiplexing

Digital Modulation and Multiplexing: Time Division Multiplexing

Digital Modulation and Multiplexing: Code Division Multiplexing

- Each station is assigned a chip sequence
- The chip sequences are orthogonal
- Station transmits bit 1 represented by its chip sequence, and bit 0 represented by the inverse of its chip sequence
- The transmissions are synchronized
- The channel is additive

$$A = (-1 -1 -1 +1 +1 -1 +1 +1)$$

$$B = (-1 -1 +1 -1 +1 +1 +1 -1)$$

$$C = (-1 +1 -1 +1 +1 +1 -1 -1)$$

$$D = (-1 +1 -1 -1 -1 -1 +1 -1)$$

Digital Modulation and Multiplexing: Code Division Multiplexing

$$A = (-1 - 1 - 1 + 1 + 1 - 1 + 1 + 1)$$
 (a) Chip sequences for four stations.
$$B = (-1 - 1 + 1 - 1 + 1 + 1 + 1 - 1)$$
 (b) Six examples of transmissions.
$$C = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$$
 (c) Six examples of transmissions.
$$C = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$$
 (d) Recovery of station C's
$$D = (-1 + 1 - 1 - 1 - 1 - 1 + 1 + 1 - 1 - 1)$$
 (a)
$$S_1 = C = (-1 + 1 - 1 + 1 + 1 + 1 - 1 - 1)$$

$$S_1 \cdot C = [1 + 1 - 1 + 1 + 1 + 1 - 1 - 1]/8 = 1$$

$$S_2 = B + C = (-2 \ 0 \ 0 \ 0 + 2 + 2 \ 0 - 2)$$

$$S_2 \cdot C = [2 + 0 + 0 + 0 + 2 + 2 + 0 + 2]/8 = 1$$

$$S_3 = A + B = (0 \ 0 - 2 + 2 \ 0 - 2 \ 0 + 2)$$

$$S_3 \cdot C = [0 + 0 + 2 + 2 + 0 - 2 + 0 + 2]/8 = 1$$

$$S_5 = A + B + C + D = (-4 \ 0 - 2 \ 0 + 2 \ 0 + 2 - 2)$$

$$S_5 \cdot C = [4 + 0 + 2 + 0 + 2 + 0 - 2 + 4 - 2 + 2]/8 = 1$$

$$S_6 = A + B + C + D = (-2 - 2 \ 0 - 2 \ 0 - 2 + 4 \ 0)$$

$$S_6 \cdot C = [2 - 2 + 0 - 2 + 0 - 2 - 4 + 0]/8 = -1$$
 (d)