The standard model

Particles of the standard model

		(T,T^3)	Y			
	$ u_L$ s	$\left(\frac{1}{2},+\frac{1}{2}\right)$	$-\frac{1}{2}$			
	e_L , μ_L , τ_L	$\left(\frac{1}{2}, -\frac{1}{2}\right)$	$-\frac{1}{2}$			
	e_R , μ_R , τ_R	(0,0)	-1			
	u_L , c_L , t_L	$\left(\frac{1}{2}, +\frac{1}{2}\right)$	$\frac{1}{6}$			
	d_L , s_L , t_L	$\left(\frac{1}{2}, -\frac{1}{2}\right)$	$\frac{1}{6}$			
	u_R , c_R , t_R	(0,0)	$\frac{2}{3}$			
	d_R , s_R , b_R	(0,0)	$-\frac{1}{3}$			
	h	$(\frac{1}{2}, -\frac{1}{2})$	$\frac{1}{2}$			
	W^+	$\boxed{(1,+1)}$	0			
	W^-	(1, -1)	0			
	Z^0	(-, 0)	0			
	γ	(-, 0)	0			
h -	and the gauge fields Z^0 and					

Generations					
e	μ	au			
$0.5 \times 10^{-3} \text{ GeV}$	0.106 GeV	1.77 GeV			
u	c	t			
$3 \times 10^{-3} \text{ GeV}$	1.3 GeV	171 GeV			
d	S	b			
$6 \times 10^{-3} \text{ GeV}$	0.1 GeV	4.2 GeV			

$g(M_Z)$	0.6297
$g'(M_Z)$	0.3434
$\sin^2 \theta_w(M_Z)$	0.231
m_W	80.4 GeV
m_Z	91.2 GeV
m_H	$> 114~\mathrm{GeV}$
v	246 GeV

Note that the gauge fields Z^0 and γ are mixtures of $SU(2)_L$ and $U(1)_Y$ generators, and are a mixture of the trivial and fundamental representation of the weak charge. Both belong to the $T^3=0$. This is analogous to how $|\uparrow\downarrow\rangle$ has $m_z=0$ but is a combination of $\vec{S}=1$ and $\vec{S}=0$ representations. The electric charge is defined by:

$$Q = T^3 + Y$$

- U^i stands for $\{u,c,t\}$ - D^i stands for $\{d,s,b\}$ -Q is any quark

-f is any fermion - L is any Lepton - $\{A^1,A^2,A^3\}$ are the $SU(2)_L$ generators

-B is the $U(1)_Y$ generator - X_L , X_R mean left- and right-handed parts of X

The Lagrangian

$$\mathcal{L}_{SM} = \mathcal{L}_{gauge, kin} + \mathcal{L}_{fermion, kin} + \mathcal{L}_{Yukawa} + \mathcal{L}_{Higgs}$$
 (1)

The gauge fields

The gauge fields associated with the $SU(2)_L$ transformation in standard form are A^i_μ , i=1, 2 or 3 when the commutation relations for the associated generators T^i are $[T^i, T^j] = i\varepsilon_{ijk}T^k$. The gauge field for the $U(1)_Y$ field is B_μ . Rewriting in terms of the physical gauge fields we have for the W^{\pm} :

$$W^{\pm} = \frac{1}{\sqrt{2}} \left(A^1 \pm iA^2 \right)$$

The gauge fields Z^0 and γ are mixtures of A^3 and B.

$$\begin{pmatrix} Z^0 \\ A \end{pmatrix} = \begin{pmatrix} \cos \theta_w - \sin \theta_w \\ \sin \theta_w & \cos \theta_w \end{pmatrix} \begin{pmatrix} A^3 \\ B \end{pmatrix}$$

Define the field strength tensors $A_{\mu\nu}$ for $SU(2)_L$, $B_{\mu\nu}$ for the U(1) gauge fields, and $G_{\mu\nu}$ for the $SU(3)_{color}$ as follows:

$$A^{a}_{\mu\nu} = 2\partial_{[\mu}A^{a}_{\nu]} + ig\varepsilon^{abc}A^{b}_{\mu}A^{c}_{\nu}, \qquad G^{a}_{\mu\nu} = 2\partial_{[\mu}G^{a}_{\nu]} + ig_{s}f^{abc}G^{b}_{\mu}G^{c}_{\nu}, \qquad B_{\mu\nu} = 2\partial_{[\mu}B_{\nu]}$$

The gauge piece of the Lagrangian is given by

$$\mathcal{L}_{\rm gauge} = \frac{1}{2g^2} {\rm Tr} (A^a_{\mu\nu} T^a)^2 + \frac{1}{2g_s^2} {\rm Tr} (G^a_{\mu\nu} \lambda^a)^2 + \frac{1}{2g'^2} B_{\mu\nu} B^{\mu\nu}$$

The fermion kinetic term

The kinetic term for the Lagrangian can be simply written in terms of the covariant derivative:

$$\mathcal{L}_{\text{fermion, kinetic}} = \sum_{f} \bar{f} i \mathcal{D} f \tag{2}$$

where the gauge-covariant derivative acting on fermion fields is given by

$$D_{\mu} = \partial_{\mu} - igA_{\mu}^{a}T^{a} - ig'YB_{\mu}$$

$$= \partial_{\mu} - ig(W_{\mu}^{+}T^{+} + W_{\mu}^{-}T^{-}) - i\frac{1}{\sqrt{g^{2} + (g')^{2}}}Z_{\mu}(g^{2}T^{3} - g'^{2}Y) - i\frac{gg'}{\sqrt{g^{2} + g'^{2}}}A_{\mu}(T^{3} + Y).$$

Using the standard definitions

$$\cos \theta_w = \frac{g}{\sqrt{g^2 + g'^2}}, \qquad \sin \theta_w = \frac{g'}{\sqrt{g^2 + g'^2}}, \qquad e = \frac{gg'}{\sqrt{g^2 + g'^2}}$$

allows us to write the covariant derivitave as

$$D_{\mu} = \partial_{\mu} - ig(W_{\mu}^{+}T^{+} + W_{\mu}^{-}T^{-}) - i\frac{g}{\cos\theta_{w}}Z_{\mu}(T^{3} - Q\sin^{2}\theta_{w}) - ieA_{\mu}Q.$$

Replacing the gauge-covariant derivatives with gauge fields, we can more transparently see the interactions in the fermion sector:

$$\mathcal{L}_{\text{fermion, kinetic}} = \sum_{f} \bar{f} i \not\!\!\!D f = \left(\sum_{f} \bar{f} i \not\!\!\!D f \right) + g(W_{\mu}^{+} J_{W^{+}}^{\mu} + W_{\mu}^{-} J_{W^{-}}^{\mu} + Z_{\mu}^{0} J_{Z^{0}}^{\mu}) + e A_{\mu} J_{\gamma}^{\mu}$$

where the pure $SU(2)_L$ currents are defined by

$$J_{W^{+}}^{\mu} = \frac{1}{\sqrt{2}} \left(\bar{\nu}_{L}^{i} \gamma^{\mu} L_{L}^{i} + \bar{U}_{L}^{i} \gamma^{\mu} V_{ij} D_{L}^{j} \right)$$

$$J_{W^{-}}^{\mu} = \frac{1}{\sqrt{2}} \left(\bar{L}_{L}^{i} \gamma^{\mu} \nu_{L}^{i} + \bar{D}_{L}^{i} \gamma^{\mu} V_{ij}^{\dagger} U_{L}^{j} \right)$$

(V is defined in CKM matrix) and the mixed $SU(2)_L$ and $U(1)_Y$ currents are

$$J_{Z^0}^{\mu} = \frac{1}{\cos\theta_w} \left(\sum_{\text{fermions}} \bar{f}_L \gamma^{\mu} (T_{f_L}^3 - Q_f \sin^2\theta_w) f_L + \bar{f}_R (0 - Q_f \sin^2\theta_w) f_R \right)$$

$$J_{\gamma}^{\mu} = \sum_{\text{fermions}} Q_f \bar{f} \gamma^{\mu} f = -\bar{e} \gamma^{\mu} e + \frac{2}{3} \bar{U} \gamma^{\mu} U - \frac{1}{3} \bar{D} \gamma^{\mu} D$$

Yukawa couplings

The coupling of the fermions and the Higgs take the form

$$\mathcal{L}_{\mathsf{Yukawa}} = -\sum_{\mathsf{Leptons}} \lambda_{L^i} (\bar{L}_L^i \cdot \Phi) L_R^i + \mathsf{h.c.} + \sum_{\mathsf{Gens}\ i} \left(-\lambda_{D_i} (\bar{Q}_L^i \cdot \Phi) D_R^i - \lambda_{U_i} \epsilon^{ab} \bar{Q}_{La} \Phi_b^\dagger u_R + \mathsf{h.c.} \right).$$

Expanding out the Higgs field gives us the mass terms and the Higgs-fermion interaction terms:

$$\begin{split} \sum_{\text{Leptons}} \lambda_{L^i} (L_L^i \cdot \Phi) L_R^i &= \frac{1}{\sqrt{2}} \lambda_e \bar{e}_L(v+h) e_R + \frac{1}{\sqrt{2}} \lambda_\mu \bar{\mu}_L(v+h) \mu_R + \frac{1}{\sqrt{2}} \lambda_\tau \bar{\tau}_L(v+h) \tau_R \\ &= m_e \bar{e}_L \left(1 + \frac{h}{v} \right) e_R + m_\mu \bar{\mu}_L \left(1 + \frac{h}{v} \right) \mu_R + m_\tau \bar{\tau}_L \left(1 + \frac{h}{v} \right) \tau_R \\ \sum_{\text{Gens } i} \lambda_{D_i} (\bar{Q}_L^i \cdot \Phi) D_R^i &= \frac{v}{\sqrt{2}} \lambda_d \bar{d}_L d_R \left(1 + \frac{h}{v} \right) + \frac{v}{\sqrt{2}} \lambda_s \bar{s}_L s_R \left(1 + \frac{h}{v} \right) + \frac{v}{\sqrt{2}} \lambda_b \bar{b}_L b_R \left(1 + \frac{h}{v} \right) \\ &= m_d \bar{d}_L d_R \left(1 + \frac{h}{v} \right) + m_s \bar{s}_L s_R \left(1 + \frac{h}{v} \right) + m_b \bar{b}_L b_R \left(1 + \frac{h}{v} \right) \end{split}$$

with similar results for the up type quarks. Note that

$$m_f \equiv \frac{v}{\sqrt{2}} \lambda_f$$

The Higgs sector

The simple Higgs model uses the standard Φ^4 potential, where Φ is the Higgs $SU(2)_L$ doublet:

$$\mathcal{L}_{\text{Higgs}} = |D_{\mu}\Phi|^2 + \mu^2 |\Phi|^2 - \lambda |\Phi|^4.$$

The symmetry is broken by choosing

$$\Phi = \frac{U(x)}{\sqrt{2}} \begin{pmatrix} 0 \\ v + h(x) \end{pmatrix}.$$

U(x) is a gauge degree of freedom (the Goldstone Boson) and is eliminated in the unitary gauge. The only physical degree of freedom is h(x) which has $(T,T^3)=(\frac{1}{2},-\frac{1}{2})$ and (setting Q=0) has hypercharge $Y=\frac{1}{2}$.

These quantum numbers imply (in the unitary gauge)

$$\mathcal{L}_{\mathsf{Higgs}} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h + m_W^2 \left(1 + \frac{h}{v} \right)^2 W_{\mu}^- W^{+\mu} + \frac{1}{2} m_Z^2 \left(1 + \frac{h}{v} \right)^2 Z_{\mu} Z^{\mu} - \frac{1}{2} m_h^2 h^2 - \frac{m_h^2}{2v} h^3 - \frac{1}{8} \left(\frac{m_h}{v} \right)^2 h \left[\frac{m_h^2}{v} \right]^2 \left(\frac{m_h^2}{v} \right)^2 \right) \right]$$

where we have eliminated μ and λ in favour of the Higgs mass m_H and the Higgs VEV via the relationships

$$m_H = \sqrt{2}\mu,$$
 $v = \sqrt{\frac{\mu^2}{\lambda}},$ $m_W = g\frac{v}{2},$ $m_Z = \frac{v}{2}\sqrt{g^2 + g'^2}.$

CKM matrix

$$V_{\mathsf{CKM}} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}\,e^{-i\delta_{13}} \\ -s_{12}c_{23} - c_{12}s_{23}s_{13}e^{i\delta_{13}} & c_{12}c_{23} - s_{12}s_{23}s_{13}e^{i\delta_{13}} & s_{23}c_{23} \\ s_{12}s_{23} - c_{12}c_{23}s_{13}e^{i\delta_{13}} & -c_{12}s_{23} - s_{12}c_{23}s_{13}e^{i\delta_{13}} & c_{23}c_{13} \end{pmatrix}, \qquad c_{ij} = \cos\theta_{ij}, \quad s_{ij} = \sin\theta_{ij}$$

Experimentally, the best determination has been

Quantity	$\sin heta_{12}$	$\sin heta_{13}$	$\sin heta_{23}$	δ_{13}
Value	0.2243 ± 0.0016	0.0037 ± 0.0005	0.0413 ± 0.0015	$60^{\circ} \pm 14^{\circ}$

Quark phases are all defined so all angles lie in the first quadrant. The above is sufficient for obtaining the cosines as well.

Feynman diagrams

