Edge detection using Canny, Prewitt, and Gaussian Blur

Edge detection is an image processing technique used to identify edges

How are edges detected?

Sudden changes in pixel intensity characterize edges. We look for such changes in the neighboring pixels to detect edges

Canny edge detection

it is a three stage process for extracting edges from an image

- 1)Noise reduction
- 2) Calculating the Intensity Gradient of the Image
- 3) Suppression of False Edges
- 4) Hysteresis Thresholding

In [9]: pip install opencv-python

Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: opencv-python in c:\users\kamal\appdata\roamin g\python\python310\site-packages (4.9.0.80)

Requirement already satisfied: numpy>=1.21.2 in c:\program files\anaconda\lib \site-packages (from opency-python) (1.23.5)

Note: you may need to restart the kernel to use updated packages.

```
In [10]: from skimage.io import imread
    from matplotlib.pyplot import imshow
    from matplotlib.pyplot import plot,subplot
    import matplotlib.pyplot as plt
    import cv2
    import numpy as np
    plt.style.use('seaborn')
```

C:\Users\kamal\AppData\Local\Temp\ipykernel_9820\1156266310.py:7: MatplotlibD eprecationWarning: The seaborn styles shipped by Matplotlib are deprecated si nce 3.6, as they no longer correspond to the styles shipped by seaborn. Howev er, they will remain available as 'seaborn-v0_8-<style>'. Alternatively, dire ctly use the seaborn API instead.

plt.style.use('seaborn')

```
In [11]: butterfly = cv2.imread('butterfly.jpg')
imshow(butterfly)
```

Out[11]: <matplotlib.image.AxesImage at 0x2588993f460>


```
In [12]: image1 = cv2.imread('butterfly.jpg', cv2.IMREAD_GRAYSCALE)
```

converting image into rgb format

```
In [13]: image_colour = cv2.cvtColor(image1,cv2.COLOR_BGR2RGB)
```

converting to grayscale

imshow(edged image)

```
In [22]: gray_image = cv2.cvtColor(butterfly,cv2.COLOR_BGR2GRAY)
```

applying canny edge detection

Out[24]: Text(0.5, 1.0, 'image after applying canny edge detection')

plt.title('image after applying canny edge detection')

applying prewitt operator for edge detection

Combining the edge-detected images prewitt_x and prewitt_y

Gaussian blur

applying gaussian blur to image

```
In [28]: blurred1 = cv2.GaussianBlur(image1, (5, 5), 0)
blurred2 = cv2.GaussianBlur(image1, (9, 9), 0)
```

calculating difference of gaussian

```
In [29]: dog = blurred1 - blurred2
In []:
```

Applying a binary thresholding to the DoG image

```
_, edges = cv2.threshold(dog, 30, 255, cv2.THRESH_BINARY)
In [30]:
In [31]:
          subplot(1,2,1)
          imshow(butterfly)
          plt.title('original image')
          subplot(1,2,2)
          plt.imshow(edges, cmap='gray')
          plt.title('image after applying gaussion blur')
          plt.show()
                           original image
                                                           image after applying gaussion blur
             0
           100
                                                      100
                                                      200
           200
                                                      300
           300
           400
                                                      400
           500
                                                      500
                       200
                                400
                                         600
                                                                                   600
                                                                 200
```

Comparing all the three image outputs

```
In [32]: subplot(2,2,1)
    plt.imshow(edged_image, cmap='gray')
    plt.title('Canny')
    plt.show()

subplot(2,2,3)
    imshow(prewitt_edges)
    plt.title('Prewitt')

subplot(2,2,4)
    plt.imshow(edges, cmap='gray')
    plt.title('Gaussion blur')
    plt.show()
```


In []: