CSE215 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

September 14, 2022

Today Homework 01

Preparation exercises for Midterm1

To finish by 4h25

```
* Exercise 1 (score = 10)
```

Construct the truth table for the following statement forms:

- 1. false \/ p
- 2. True /\ p

```
* Exercise 2 (score = 30)
```

Write truth tables for the following statement forms.

- 1. $p \rightarrow q$
- 2. ~p \/ q
- 3. q -> p
- 4. ~q \/ p
- $5. \sim q \rightarrow \sim p$
- $6. \sim p \rightarrow \sim q$

* Exercise 3 (score = 15)

Among the six statement forms in Exercise 2, find at least five pairs that are equivalent? For example, if you believe statement forms 1 and 2 in Exercise 2 are equivalent, you have found a pair (1, 2).

Exe	rcise (2 1.	2.	3.	4.	5.	6.
P	9	P→Q	~P V 2	Q → P	~ % V P	~ 9 → ~P	NP → ~9
Т	Т	Т	T	+	T	Т	T
T	F	F	F	T	Т	F	T
F	Т	Т	T	F	F	Т	F
F	F	Т	Т	Т	T	7	Т

Exercise 3

- 1, 2, 5 are equivalent
- 3, 4, 6 are equivalent

* Exercise 4. (score = 20)

Make a truth table for the prroposition $\sim P$ Λ (Q \rightarrow P). What can you conclude about P and Q if you know the statement is true?

Р	Q	~P	Q->P	~P∆(Q->P)
Т	Т	F	Т	F
Т	F	F	Т	F
F	Т	Т	F	F
F	F	Т	Т	Т

If the whole statement is true, then P is false and Q is false.

* Exercise 5. (score = 15)

For each statement form below, use truth tables to determine if it is a tautology, contradiction, or neither.

- 1. (~p\/q)\/(p/\~q)
- 2. (p/\~q)\(~p\/q) 3. (p/\q)\/(~p\/(p/\~q))

5.

Р	Q	~PVQ	P∧~Q	(~P∨Q) ∨(P∧~Q)
Т	Т	Т	F	Т
Т	F	F	Т	Т
F	Т	Т	F	Т
F	F	Т	F	Т

 $(\sim P \vee Q) \vee (P \wedge \sim Q)$ is a tautology.

Р	Q	P∧~Q	~PVQ	(P∧~Q) ∧(~P∨Q)
Т	Т	F	Т	F
Т	F	Т	F	F
F	Т	F	Т	F
F	F	F	Т	F

 $(P \land \neg Q) \land (\neg P \lor Q)$ is a contradiction.

Р	Q	P∧Q	P∧~Q	~PV(P^~Q)	(P∧Q) V (~P V (P∧~Q))
Т	Т	Т	F	F	Т
Т	F	F	Т	Т	Т
F	т	F	F	Т	Т
F	F	F	F	Т	Т

 $(P \land Q) \lor (\neg P \lor (P \land \neg Q))$ is a tautology.

* Exercise 6. (score = 10)

Check if the two statement forms below are logically equivalent using a truth table

6.

Р	Q	R	PVQ	(PVQ)- >R	P->R	Q->R	(P->R)\\ (Q->R)
Т	Т	Т	Т	I	Т	Т	I
Т	Т	F	Т	E	F	F	E
Т	F	Т	Т	I	Т	Т	T
Т	F	F	Т	E	F	Т	E
F	Т	Т	Т		Т	Т	I
F	Т	F	Т	E	Т	F	E
F	F	Т	F	I	Т	Т	I
F	F	F	F	I	Т	Т	I

They are logically equivalent.

Midterm 1

01	08-30	Course overview	
	08-31	Recitation: Look and feel of a final exam	
	09-01	Propositional logic [homework01 announced]	Epp, Ch2
02	09-06	Propositional logic	Epp, Ch2
	09-07	Recitation	
	09-08	Propositional logic [homework01 due, homework02 announced]	Epp, Ch2
03	09-12	Predicate logic	Epp, Ch3
	09-14	Recitation	
	09-15	Proof techniques [homework02 due, homework03 announced]	Epp, Ch4
04	09-20	Proof techniques	Epp, Ch4
	09-21	Recitation	
	09-22	Proof techniques [homework03 due, homework04 announced]	Epp, Ch4
05	09-27	Proof techniques	Epp, Ch4
	09-28	Recitation	
	09-29	Midterm review [homework04 due]	
06	No class 10-04		
	10-05	Recitation	
	10-06	Midterm 1	

* Exercise 1

Tautaulogy, contradition, or neither of them?

- (p XOR q) $/\$ (p <-> q)
- (p XOR q) \/ (p <-> q)
- $(p -> q) /\ (\sim p -> \sim q)$

- Contradiction
- Tautology
- Neither contradiction, or tautology

* Exercise 2

Consider the following statement form: $(p \oplus q) \rightarrow (\sim r \rightarrow (p \vee q))$.

- 1. How many rows would you need to construct its truth table?
- 2. How many columns would you need at least, to construct its truth table?
- 3. What is the truth value of the statement form when p = T, q = F, r = T?

- 9 rows including the header row
- 4 columns
- true

* Exercise 3
Show (p -> q) -> r and p -> (q -> r) are **not** logical equivalent?

 Not equivalent. When p = false and r = false, the first proposition (p->q)->r is false whereas the second one, p->(q->r) is true.

* Exercise 4

Write a negation for the following statement: $\exists x \exists y \text{ such that } (0 < x \le y^2 < 100).$

- \sim ($\exists x \exists y \text{ such that } (0 < x <= y^2 < 100)) is the same as:$
- \sim ($\exists x \exists y \text{ such that } (0 < x \land x <= y^2 \text{ and } y^2 < 100)), which becomes:$
- \forall x \forall y, $(0 >= x \lor x >= y^2 \lor y^2 >= 100)$,

* Exercise 5

Determine if the following argument is valid:

- It is valid. Below is the proof.
- Assume the premises are true.
- Namely, p<->q is true and q xor r is true.
- Since p <->q is true, we know p and q must be the same truth value.
- Since q xor r is true, we know q and r must be different truth values.
- Thus, p and r must be different truth values.
- Thus p and r can be either (true and false), or (false and true)
- Thus q ∨ r, namely, the conclusion, is true.