**DSE 220** 

- One of the basic tools for forecasting
- A statistical technique to describe relationships among variables
- Consider two variables y and x
  - Describe y using x
  - y: dependent variable
  - x: independent variable (explanatory, exogenous)







- How to find the line that fits best?
  - Line:  $y = \beta_0 + \beta_1 X$
  - How to find  $\beta_0$  and  $\beta_1$ ?
- Example

- Probabilistic Model
  - $y_t = \beta_0 + \beta_1 x_t + \varepsilon_t$
  - $\varepsilon_t \stackrel{iid}{\to} N(0, \sigma^2)$
  - Model parameters:  $\beta_0$ ,  $\beta_1$ ,  $\sigma^2$
- If this model is correct:
  - Expected value of y conditional on  $x = x^*$ 
    - $E(y|x^*) = \beta_0 + \beta_1 x^*$

- Fitted values
  - $\hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 x_t$
- Minimize residuals
  - Residuals = in-sample forecast errors
  - $e_t = y_t \hat{y}_t$
- Least-squares estimation
  - $\sum_{t=1}^{T} (y_t \hat{y}_t)^2$

- Multiple linear regression
  - y is described by more than one explanatory variable



- Multiple linear regression model
  - $y_t = \beta_0 + \beta_1 x_t + \beta_2 z_t + \varepsilon_t$
  - $\varepsilon_t \stackrel{iid}{\rightarrow} N(0, \sigma^2)$
- Fitted values

$$\bullet \ \hat{y}_t = \hat{\beta}_0 + \hat{\beta}_1 x_t + \hat{\beta}_2 z_t$$

- Residuals
  - $e_t = y_t \hat{y}_t$
- Least-squares estimation
  - $\sum_{t=1}^{T} (y_t \hat{y}_t)^2$

- Sum squared resid.
  - Objective of the least-squares estimation
  - Sum of squared residuals
  - Not of much value in isolation
  - Input to other diagnostics
  - Useful for comparing models and testing hypotheses

$$SSR = \sum_{t=1}^{T} e_t^2$$

- R-squared  $(R^2)$ 
  - Indicates how much of var(y) can be explained by the variables included in the regression
  - Intuition:  $\frac{var(y|x)}{var(y)}$
  - Measurement of in-sample success of the regression equation
  - If intercept is included,  $0 < R^2 < 1$

$$R^{2} = 1 - \frac{\frac{1}{T} \sum_{t=1}^{T} e_{t}^{2}}{\frac{1}{T} \sum_{t=1}^{T} (y_{t} - \overline{y}_{t})^{2}}$$

- Adjusted R-squared  $(\bar{R}^2)$ 
  - Same interpretation as  $\mathbb{R}^2$  but formula is slightly different
  - Adjusted for degrees of freedom used in fitting the model
  - Adjustment: penalize the amount of right-hand-side variables

$$\overline{R}^{2} = 1 - \frac{\frac{1}{T-k} \sum_{t=1}^{T} e_{t}^{2}}{\frac{1}{T-1} \sum_{t=1}^{T} (y_{t} - \overline{y}_{t})^{2}}$$

- Akaike info criterion (AIC)
  - Estimate of the out-of-sample forecast error variance
  - Similar to  $s^2$  but penalizes degrees of freedom more harshly
  - Used to compare forecasting models

AIC = 
$$e^{\left(\frac{2k}{T}\right)} \frac{\sum_{t=1}^{T} e_t^2}{T}$$

- Schwarz criterion (SIC)
  - Alternative to AIC
  - Harsher penalty for degrees-of-freedom
  - Used to compare forecasting models

$$SIC = T^{\left(\frac{k}{T}\right)} \frac{\sum_{t=1}^{T} e_t^2}{T}$$

- Durbin-Watson stat. (DW)
  - Errors from a good forecasting model should be unforecastable
    - Forcastable error -> room for improvement in the model
    - Correlation among errors -> forecastable information
    - DW tests if the regression disturbances over time are serially correlated.

• 
$$y_t = \beta_0 + \beta_1 x_t + \varepsilon_t$$
, where  $\varepsilon_t = \varphi \varepsilon_{t-1} + v_t$  
$$v_t \overset{iid}{\rightarrow} N(0, \sigma^2)$$

- $\varepsilon_t$  is serially correlated when  $\varphi \neq 0$ .
- Ideal case  $\varphi = 0$

- Durbin-Watson stat. (DW)
  - $H_0$ :  $\varphi = 0$
  - $0 \le DW \le 4$ 
    - **OK**: *DW*∼2
    - Alarm: DW < 1.5
      - Consult DW tables for significance level for rejecting the null hypothesis

$$DW = \frac{\sum_{t=2}^{T} (e_{t} - e_{t-1})^{2}}{\sum_{t=1}^{T} e_{t}^{2}}$$

- Residual plot
  - Examine:
    - Actual data  $(y_t)$
    - Fitted values  $(\hat{y}_t)$
    - Residuals  $(e_t)$





## **Evaluation Metrics**

#### **Evaluation Metrics**

- Up to now: measure a model's performance by some simple metric
  - classifier error rate, accuracy, ...
- Simple example: accuracy

$$accuracy = \frac{\text{Number of correct decisions made}}{\text{Total number of decisions made}}$$

- Classification accuracy is popular, but usually too simplistic for applications of data mining to real business problems
- Decompose and count the different types of correct and incorrect decisions made by a classifier

## Unequal costs and benefits

- How much do we care about the different errors and correct decisions?
  - Classification accuracy makes no distinction between false positive and false negative errors
  - In real-world applications, different kinds of errors lead to different consequences!
- Examples for medical diagnosis:
  - a patient has cancer (although he does not)
    - → false positive error, expensive, but not life threatening
  - a patient has cancer, but she is told that she has not
    - → false negative error, more serious
- Errors should be counted separately
  - Estimate cost or benefit of each decision

#### Confusion Matrix

- A confusion matrix for a problem involving *n* classes
  - ullet is an n imes n matrix with the columns labeled with actual classes and the rows labels with predicted classes

#### **Predicted Classes**

**True Values** 

|   | р                    | n                   |
|---|----------------------|---------------------|
| 1 | True Positives (TP)  | False Negative (FN) |
| 0 | False Positives (FP) | True Negatives (TN) |

- Each example in a test set has an actual class label and the class predicted by the classifier
- The confusion matrix separates out the decisions made by the classifier
  - actual/true classes: 1 (Positive Label), 0 (Negative Label)
  - predicted classes: p(ositive), n(egative)
  - The main diagonal contains the count of correct decisions

#### Other Evaluation Metrics

- Based on the entries of the confusion matrix, we can describe various evaluation metrics
  - True positive rate (Recall):  $\frac{TP}{TP+FN}$  False negative rate:  $\frac{FN}{TP+FN}$
  - Precision (accuracy over the cases predicted to be positive):  $\frac{TP}{TP+FP}$
  - F-measure (harmonic mean):  $2 \cdot \frac{precision \cdot recall}{precision + recall}$
  - Specificity:  $\frac{TN}{TN+FP}$  Sensitivity:  $\frac{TN}{TP+FN}$

  - Accuracy (count of correct decisions):  $\frac{TP+TN}{D+N}$

## **ROC Curves**

# Ranking Instead of Classifying



# ROC Graphs and Curves



# ROC Graphs and Curves



## Generating ROC curve: Algorithm

- Sort the test set by the model predictions
- Start with cutoff = max (prediction)
- Decrease cutoff, after each step count the number of true positives
   TP (positives with prediction above the cutoff) and false positives FP
   (negatives above the cutoff)
- Calculate TP rate (TP/P) and FP (FP/N) rate
- Plot current number of TP/P as a function of current FP/N

## Area Under the ROC Curve (AUC)

- The area under a classifier's curve expressed as a fraction of the unit square
  - Its value ranges from zero to one
- The AUC is useful when a single number is needed to summarize performance, or when nothing is known about the operating conditions
  - A ROC curve provides more information than its area
- Equivalent to the Mann-Whitney-Wilcoxon measure
  - Also equivalent to the Gini Coefficient (with a minor algebraic transformation)
  - Both are equivalent to the probability that a randomly chosen positive instance will be ranked ahead of a randomly chosen negative instance

### Performance Evaluation

• Training Set:

| Model               | Accuracy |
|---------------------|----------|
| Classification Tree | 95%      |
| Logistic Regression | 93%      |
| k-Nearest Neighbors | 100%     |
| Naive Bayes         | 76%      |

• Test Set:

| Model               | Accuracy  | AUC                  |
|---------------------|-----------|----------------------|
| Classification Tree | 91.8%±0.0 | 0.614±0.014          |
| Logistic Regression | 93.0%±0.1 | 0.574 <u>+</u> 0.023 |
| k-Nearest Neighbors | 93.0%±0.0 | 0.537±0.015          |
| Naive Bayes         | 76.5%±0.6 | 0.632 <u>+</u> 0.019 |

### Performance Evaluation

Naive Bayes confusion matrix:

|   | р        | n          |
|---|----------|------------|
| Y | 127 (3%) | 848 (18%)  |
| N | 200 (4%) | 3518 (75%) |

• *k*-Nearest Neighbors confusion matrix:

|   | р        | n          |
|---|----------|------------|
| Y | 3 (0%)   | 15 (0%)    |
| N | 324 (7%) | 4351 (93%) |

### ROC Curve

