Властивості класу складності \mathcal{NP}

Андрій Фесенко

Використання зведення

 $HALT \le HALT^{\varepsilon}$ $HALT \le A_{TM}$

Використання зведення

 $HALT \leq_m HALT^{\varepsilon}$

 $HALT \leq_m A_{TM}$

R є замкненим відносно зведення \leq_m , а $HALT \not\in R$, $HALT \in RE$

Використання зведення

$$HALT \leq_m HALT^{\varepsilon}$$

$$HALT \leq_m A_{TM}$$

R є замкненим відносно зведення \leq_m , а $HALT \not\in R$, $HALT \in RE$

Властивості класу складності відносно зведення:

- замкненість;
- існування важких задач;
- існування повних задач.

Твердження

Нехай L_1 ∈ RE. Тоді, $L_1 \leq_m HALT$.

Твердження

Нехай L_1 ∈ RE. Тоді, $L_1 \leq_m HALT$.

Доведення.

$$L_1 \in RE \Rightarrow \exists \ ДМТ \ M_1 : L(M_1) = L_1. \ (\ x \in L_1 \Leftrightarrow M_1(x) = 1\)$$

Твердження

Нехай L_1 ∈ RE. Тоді, $L_1 \leq_m HALT$.

Доведення.

$$L_1 \in RE \Rightarrow \exists$$
 ДМТ $M_1 : L(M_1) = L_1$. ($x \in L_1 \Leftrightarrow M_1(x) = 1$)

ДМТ
$$ilde{M}_1(x) = egin{cases} M_1(x), & M_1(x)
eq 0 \\ \bot, & M_1(x) = 0 \end{cases}$$

Твердження

Нехай L_1 ∈ RE. Тоді, $L_1 <_m HALT$.

Доведення.

$$L_1 \in RE \Rightarrow \exists \ ДМТ \ M_1 : L(M_1) = L_1. \ (\ x \in L_1 \Leftrightarrow M_1(x) = 1\)$$

ДМТ
$$\tilde{M}_1(x) = \begin{cases} M_1(x), & M_1(x) \neq 0 \\ \perp, & M_1(x) = 0 \end{cases}$$

 $orall x \in \set{0,1}^*$ функція зведення $f(x) = (ilde{M}_1,x)$

٦

Твердження

Нехай L_1 ∈ RE. Тоді, $L_1 \leq_m HALT$.

Доведення.

$$L_1 \in RE \Rightarrow \exists$$
 ДМТ $M_1: L(M_1) = L_1.$ ($x \in L_1 \Leftrightarrow M_1(x) = 1$)

ДМТ
$$ilde{M}_1(x) = egin{cases} M_1(x), & M_1(x)
eq 0 \\ \bot, & M_1(x) = 0 \end{cases}$$

$$orall x \in \set{0,1}^*$$
 функція зведення $f(x) = (\tilde{M}_1,x)$ $x \in L_1 \Leftrightarrow M_1(x) = 1 \Leftrightarrow \tilde{M}_1(x)
eq \bot \Leftrightarrow f(x) = (\tilde{M}_1,x) \in \mathit{HALT}$

П

Твердження

Нехай L_1 ∈ RE. Тоді, $L_1 \leq_m HALT$.

Доведення.

$$L_1 \in RE \Rightarrow \exists$$
 ДМТ $M_1: L(M_1) = L_1.$ ($x \in L_1 \Leftrightarrow M_1(x) = 1$)

ДМТ
$$ilde{M}_1(x)=egin{cases} M_1(x), & M_1(x)
eq 0 \ \\ \bot, & M_1(x)=0 \end{cases}$$

$$orall x \in \set{0,1}^*$$
 функція зведення $f(x) = (ilde{M}_1,x)$ $x \in L_1 \Leftrightarrow M_1(x) = 1 \Leftrightarrow ilde{M}_1(x)
eq \bot \Leftrightarrow f(x) = (ilde{M}_1,x) \in \mathit{HALT}$

Наслідок

 $HALT \in RE$ -повною задачею відносно зведення \leq_m

Твердження

Нехай $L_1 \in R$ ϵ нетривіальною мовою.

Тоді, для довільної мови $L_2 \in R : L_2 \leq_m L_1$.

Твердження

Нехай $L_1 \in R$ є нетривіальною мовою.

Тоді, для довільної мови $L_2 \in R : L_2 \leq_m L_1$.

Доведення.

 L_1 — нетривіальна мова $\Rightarrow \exists x_0, x_1 \in \{0,1\}^*$: $x_0
otin L_1$ і $x_1 \in L_1$

Твердження

Нехай $L_1 \in R$ є нетривіальною мовою.

Тоді, для довільної мови $L_2 \in R: L_2 \leq_m L_1.$

Доведення.

 L_1 — нетривіальна мова $\Rightarrow \exists x_0, x_1 \in \{0,1\}^*$: $x_0
otin L_1$ і $x_1 \in L_1$

$$L_2 \in R \Rightarrow \exists \ \Box MT \ M_2 : L(M_2) = L_2$$

 $x \in L_2 \Leftrightarrow M_2(x) = 1, \ x \notin L_2 \Leftrightarrow M_2(x) = 0$

Твердження

Нехай $L_1 \in R$ є нетривіальною мовою.

Тоді, для довільної мови $L_2 \in R: L_2 \leq_m L_1.$

Доведення.

$$L_1$$
 — нетривіальна мова $\Rightarrow \exists x_0, x_1 \in \{0,1\}^*$: $x_0
otin L_1$ і $x_1 \in L_1$

$$L_2 \in R \Rightarrow \exists \ \Box MT \ M_2 : L(M_2) = L_2$$

 $x \in L_2 \Leftrightarrow M_2(x) = 1, \ x \notin L_2 \Leftrightarrow M_2(x) = 0$

ДМТ
$$\tilde{M}_2(x) = \begin{cases} x_0, & M_2(x) = 0 \\ x_1, & M_2(x) = 1 \end{cases}$$
, функція зведення $f(x) = \tilde{M}_2(x)$

Твердження

Нехай $L_1 \in R$ ε нетривіальною мовою.

Тоді, для довільної мови $L_2 \in R: L_2 \leq_m L_1.$

Доведення.

 L_1 — нетривіальна мова $\Rightarrow \exists x_0, x_1 \in \{0,1\}^*$: $x_0
otin L_1$ і $x_1 \in L_1$

$$L_2 \in R \Rightarrow \exists \ \Box MT \ M_2 : L(M_2) = L_2$$

 $x \in L_2 \Leftrightarrow M_2(x) = 1, \ x \notin L_2 \Leftrightarrow M_2(x) = 0$

ДМТ
$$\tilde{M}_2(x) = \begin{cases} x_0, & M_2(x) = 0 \\ x_1, & M_2(x) = 1 \end{cases}$$
, функція зведення $f(x) = \tilde{M}_2(x)$

$$x \in L_2 \Leftrightarrow M_2(x) = 1 \Leftrightarrow \tilde{M}_2(x) = f(x) = x_1 \in L_1$$

3

Твердження

Нехай $L_1 \in R$ ϵ нетривіальною мовою.

Тоді, для довільної мови $L_2 \in R: L_2 \leq_m L_1.$

Доведення.

$$L_1$$
 — нетривіальна мова $\Rightarrow \exists x_0, x_1 \in \{0,1\}^* \colon x_0
ot\in L_1$ і $x_1 \in L_1$

$$L_2 \in R \Rightarrow \exists \ ДМТ \ M_2 : L(M_2) = L_2$$

 $x \in L_2 \Leftrightarrow M_2(x) = 1, \ x \not\in L_2 \Leftrightarrow M_2(x) = 0$

ДМТ
$$\tilde{M}_2(x) = \begin{cases} x_0, & M_2(x) = 0 \\ x_1, & M_2(x) = 1 \end{cases}$$
, функція зведення $f(x) = \tilde{M}_2(x)$

$$x \in L_2 \Leftrightarrow M_2(x) = 1 \Leftrightarrow \tilde{M}_2(x) = f(x) = x_1 \in L_1$$

Наслідок

Будь-яка нетривіальна мова з класу $R \in R$ -повною відносно \leq_m

Наслідок

Зведення повинно використовувати менше ресурсів ніж необхідно для розв'язку задач

Наслідок

Зведення повинно використовувати менше ресурсів ніж необхідно для розв'язку задач

Твердження

Нехай $L_1 \in P$ є нетривіальною мовою.

Тоді, для довільної мови $L_2 \in P: L_2 \leq_m L_1.$

Наслідок

Зведення повинно використовувати менше ресурсів ніж необхідно для розв'язку задач

Твердження

Нехай $L_1 \in P$ є нетривіальною мовою.

Тоді, для довільної мови $L_2 \in P : L_2 \leq_m L_1$.

Твердження

Нехай $L_1 \in P$ ϵ нетривіальною мовою.

Тоді, для довільної мови $L_2 \in P : L_2 \leq_p L_1$.

Наслідок

Зведення повинно використовувати менше ресурсів ніж необхідно для розв'язку задач

Твердження

Нехай $L_1 \in P$ ϵ нетривіальною мовою.

Тоді, для довільної мови $L_2 \in P: L_2 \leq_m L_1.$

Твердження

Нехай $L_1 \in P$ є нетривіальною мовою.

Тоді, для довільної мови $L_2 \in P: L_2 \leq_p L_1.$

Але клас P ϵ замкненим відносно \leq_p

Клас NP — поліноміальне зведення (за Карпом)

Клас NP — поліноміальне зведення (за Карпом)

Клас NP є також замкненим відносно \leq_{p}

Клас *NP* — поліноміальне зведення (за Карпом)

Клас NP є також замкненим відносно \leq_p

Означення

Клас складності NPC — множина всіх NP-повних задач відносно поліноміального зведення

Клас *NP* — поліноміальне зведення (за Карпом)

Клас NP ϵ також замкненим відносно \leq_p

Означення

Клас складності NPC — множина всіх NP-повних задач відносно поліноміального зведення

Твердження

Нехай L_1 є NP-важкою мовою. Якщо $L_1 \in P$, то P = NP.

Клас *NP* — поліноміальне зведення (за Карпом)

Клас NP є також замкненим відносно \leq_p

Означення

Клас складності NPC — множина всіх NP-повних задач відносно поліноміального зведення

Твердження

Нехай L_1 є NP-важкою мовою. Якщо $L_1 \in P$, то P = NP.

Доведення.

$$P \subseteq NP$$

$$\forall L_2 \in \mathit{NP}\ L_2 \leq_{\mathit{p}} L_1 \ \mathsf{i}\ L_1 \in \mathit{P} \Rightarrow L_2 \in \mathit{P} \Rightarrow \mathit{NP} \subseteq \mathit{P}$$

Чи існують *NP*-повні задачі?

Чи існують *NP*-повні задачі?

Так!

$$TMSAT=\{(\alpha,x,1^n,1^t)\mid \exists u\in\{0,1\}^n: \ \mathsf{АНДМТ}\ M_{\alpha}(x,u)=1$$
 не більше ніж за t тактів $\}$

Чи існують *NP*-повні задачі?

Tak!

$$TMSAT = \{(\alpha, x, 1^n, 1^t) \mid \exists u \in \{0, 1\}^n : \text{ АНДМТ } M_{\alpha}(x, u) = 1$$
 не більше ніж за t тактів $\}$

Доведення.

 $TMSAT \in NP$, використовуючи універсальну АНДМТ $orall L_1 \in NP: \exists$ поліноми $p,q: \mathbb{N} \to \mathbb{N}$ і АНДМТ M_1 такі, що $\forall x \in \{0,1\}^* \; \exists u \in \{0,1\}^{q(|x|)} \; M_1(x,u) = 1 \; \text{за час, не більше ніж } p(|x|).$ функція зведення — $f(x) = (\lfloor M_1 \rfloor, x, 1^{q(|x|)}, 1^{p(|x|)})$

Чи існують *NP*-повні задачі?

Tak!

 $TMSAT = \{(\alpha, x, 1^n, 1^t) \mid \exists u \in \{0, 1\}^n : \text{ АНДМТ } M_{\alpha}(x, u) = 1$ не більше ніж за t тактів $\}$

Доведення.

 $TMSAT \in NP$, використовуючи універсальну АНДМТ $\forall L_1 \in NP: \exists$ поліноми $p,q: \mathbb{N} \to \mathbb{N}$ і АНДМТ M_1 такі, що $\forall x \in \{0,1\}^* \; \exists u \in \{0,1\}^{q(|x|)} \; M_1(x,u) = 1 \; \text{за час, не більше ніж } p(|x|).$ функція зведення — $f(x) = (\lfloor M_1 \rfloor, x, 1^{q(|x|)}, 1^{p(|x|)})$

Твердження

Нехай $L_1\in \mathit{NPC}$, $L_2\in \mathit{NP}$ і $L_1\leq_p L_2$. Тоді $L_2\in \mathit{NPC}$.

Теорема Кука

Теорема Кука(-Левіна), 1971р., 1973р.

 $SAT \in NP$ -повною задачею.

Теорема Кука

Теорема Кука(-Левіна), 1971р., 1973р.

 $SAT \in NP$ -повною задачею.

Доведення.

 $orall L_1 \in \mathit{NP}: \exists$ поліноми $p,q: \mathbb{N} \to \mathbb{N}$ і АНДМТ M_1 такі, що $orall x \in \set{0,1}^* \exists u \in \set{0,1}^{q(|x|)} M_1(x,u) = 1$ за час, не більше ніж p(|x|).

 $T_{i,j,k}$ — комірка i містить символ j на такті k $H_{i,k}$ — зчитувальний пристрій на комірці i на такті k $Q_{a,k}$ — АНДМТ в стані q на такті k

Річард Карп 'Reducibility among combinatorial problems' 1972р.

Гэри М., Джонсон Д. Вычислительные машины и труднорешаемые задачи, 1982р. — 300+ задач

Задача суперечності булевої формули (SAT)

З'ясувати чи має модель задана булева формула $\varphi(x_1,\ldots,x_k)$.

Задача суперечності булевої формули (CNFSAT)

З'ясувати чи має модель задана у КНФ булева формула $\varphi(x_1,\ldots,x_k).$

Задача суперечності булевої формули (n-SAT)

З'ясувати чи має модель задана у КНФ булева формула $\varphi(x_1,\ldots,x_k)$, кожен диз'юнкт якої містить не більше ніж n літер.

Твердження

 $SAT =_{p} 3-SAT$.

Доведення.

$$u_1 \vee \bar{u}_2 \vee \bar{u}_3 \vee u_4 \Rightarrow (u_1 \vee \bar{u}_2 \vee z) \wedge (\bar{u}_3 \vee u_4 \vee \bar{z})$$

Твердження

 $SAT =_{p} 3-SAT$.

Доведення.

$$u_1 \vee \bar{u}_2 \vee \bar{u}_3 \vee u_4 \Rightarrow (u_1 \vee \bar{u}_2 \vee z) \wedge (\bar{u}_3 \vee u_4 \vee \bar{z})$$

Наслідок.

$$SAT=_{p}$$
 $n ext{-}SAT$ для довільного значення $n\in\mathbb{N},\ n\geq 3$

Твердження

 $SAT =_{p} 3-SAT$.

Доведення.

$$u_1 \vee \bar{u}_2 \vee \bar{u}_3 \vee u_4 \Rightarrow (u_1 \vee \bar{u}_2 \vee z) \wedge (\bar{u}_3 \vee u_4 \vee \bar{z})$$

Наслідок.

 $SAT=_p n ext{-}SAT$ для довільного значення $n\in\mathbb{N},\ n\geq 3$

Твердження

2- $SAT \in P$ (метод резолюцій Рабіна)

Задача пошуку моделі булевої формули (SAT SEARCH)

Знайти модель заданої булевої формули $\varphi(x_1,\ldots,x_k)$.

Задача пошуку моделі булевої формули (SAT SEARCH)

Знайти модель заданої булевої формули $\varphi(x_1,\ldots,x_k)$.

Твердження

$$SAT =_{p} SAT SEARCH$$

Задача пошуку моделі булевої формули (SAT SEARCH)

Знайти модель заданої булевої формули $\varphi(x_1,\ldots,x_k)$.

Твердження

 $SAT =_{p} SAT SEARCH$

Доведення.

Перевірити чи має модель $ilde{arphi}(1,\dots,x_k)$ та $ilde{arphi}(0,\dots,x_k)$ і тд.

Задача пошуку моделі булевої формули (SAT SEARCH)

Знайти модель заданої булевої формули $\varphi(x_1,\ldots,x_k)$.

Твердження

 $SAT =_{p} SAT SEARCH$

Доведення.

Перевірити чи має модель $ilde{arphi}(1,\dots,x_k)$ та $ilde{arphi}(0,\dots,x_k)$ і тд.

SAT вирішувачі

P vs NP

$$P = NP = NPC$$

$$P \neq NP$$

Означення

$$NPI = \{L \in NP | L \notin NPC, L \notin P\}, NPI = NP \setminus (P \cup NPC)$$

Означення

 $NPI = \{L \in NP | L \notin NPC, L \notin P\}, NPI = NP \setminus (P \cup NPC)$

Теорема Ладнера

Якщо $P \neq NP$, то існує мова $L_1 \in NP$ така, що $L_1 \in NP \setminus P$ і $L_1 \notin NPC$.

Означення

 $NPI = \{L \in NP | L \notin NPC, L \notin P\}, NPI = NP \setminus (P \cup NPC)$

Теорема Ладнера

Якщо $P \neq NP$, то існує мова $L_1 \in NP$ така, що $L_1 \in NP \setminus P$ і $L_1 \not\in NPC$.

Доведення.

Збільшення довжини φ у КНФ

Означення

 $NPI = \{L \in NP | L \notin NPC, L \notin P\}, NPI = NP \setminus (P \cup NPC)$

Теорема Ладнера

Якщо $P \neq NP$, то існує мова $L_1 \in NP$ така, що $L_1 \in NP \setminus P$ і $L_1 \not\in NPC$.

Доведення.

Збільшення довжини φ у КНФ

NPI — Факторизація цілих чисел, ізоморфізм графів, дискретний логарифм

Діаграма класів складності

Теореми про ієрархію

Теорема (про часову ієрархію)

Нехай $f,g:\mathbb{N}\to\mathbb{N}$ — конструктивні за часом функції такі, що $f(n)\log f(n)=o(g(n)).$ Тоді $DTIME(f(n))\subset DTIME(g(n)).$

Теореми про ієрархію

Теорема (про часову ієрархію)

Нехай $f,g:\mathbb{N}\to\mathbb{N}$ — конструктивні за часом функції такі, що $f(n)\log f(n)=o(g(n)).$ Тоді $DTIME(f(n))\subset DTIME(g(n)).$

Доведення.

Доведемо, що $DTIME(n) \subset DTIME(n^{1,5})$

Нехай ДМТ D для довільного вхідного слова $x \in \{0,1\}^*$ моделює $|x|^{1,4}$ тактів роботи ДМТ M_x на вхідному слові x.

$$D(x) = \begin{cases} 1 - M_x(x), & M_x(x) \neq \bot \\ 0, & M_x(x) = \bot \end{cases} \Rightarrow L(D) \in DTIME(n^{1,5})$$

Нехай $L(D) \in DTIME(n) \Rightarrow \exists ДМТ M, L(M) = L(D).$

УДМТ U моделює роботу ДМТ M за час $c'c|x|\log|x|$

$$\Rightarrow \exists n_0 \ \forall n > n_0 \ n^{1.4} > c'cn \log n$$

$$\exists x = \lfloor M \rfloor$$
 таке, що $|x| > \mathit{n}_0 \Rightarrow \mathit{D}(x) = 1 - \mathit{M}(x)
eq \mathit{M}(x)$

Теореми про ієрархію

Теорема (про часову ієрархію)

Нехай $f,g:\mathbb{N}\to\mathbb{N}$ — конструктивні за часом функції такі, що $f(n)\log f(n)=o(g(n)).$ Тоді $DTIME(f(n))\subset DTIME(g(n)).$

Доведення.

Доведемо, що $DTIME(n) \subset DTIME(n^{1,5})$

Нехай ДМТ D для довільного вхідного слова $x \in \{0,1\}^*$ моделює $|x|^{1,4}$ тактів роботи ДМТ M_x на вхідному слові x.

$$D(x) = egin{cases} 1 - M_{x}(x), & M_{x}(x)
eq \perp \\ 0, & M_{x}(x) = \perp \end{cases} \Rightarrow L(D) \in DTIME(n^{1,5})$$

Нехай $L(D) \in DTIME(n) \Rightarrow \exists ДМТ M, L(M) = L(D).$

УДМТ U моделює роботу ДМТ M за час $c'c|x|\log|x|$

$$\Rightarrow \exists n_0 \ \forall n > n_0 \ n^{1.4} > c'cn \log n$$

$$\exists x = \lfloor M \rfloor$$
 таке, що $|x| > n_0 \Rightarrow D(x) = 1 - M(x)
eq M(x)$

$$f(n+1) = o(g(n)) \Rightarrow NTIME(f(n)) \subset NTIME(g(n))$$

Якщо $NP \neq coNP$, то $P \neq NP$.

Якщо
$$NP \neq coNP$$
, то $P \neq NP$.

Доведення.

$$P = NP \Rightarrow coNP = coP = P = NP$$

Якщо $NP \neq coNP$, то $P \neq NP$.

Доведення.

$$P = NP \Rightarrow coNP = coP = P = NP$$

Якщо $EXP \neq NEXP$, то $P \neq NP$.

Якщо $NP \neq coNP$, то $P \neq NP$.

Доведення.

$$P = NP \Rightarrow coNP = coP = P = NP$$

Якщо $EXP \neq NEXP$, то $P \neq NP$.

Доведення.

Нехай
$$P = \mathit{NP}$$
 і $L_1 \in \mathit{NTIME}(2^{n^c})$ $L_{1+\mathit{pad}} = \left\{ \left(x, 1^{2^{|x|^c}} \right) \mid x \in L_1 \right\} \Rightarrow L_{1+\mathit{pad}} \in \mathit{NP}$

Перевіряємо формат слова $y=z||1^{2^{|z|^c}}$ і запускаємо НДМТ M_1 на слові z

Час роботи є поліноміальним відносно |y|.

Якщо $NP \neq coNP$, то $P \neq NP$.

Доведення.

$$P = NP \Rightarrow coNP = coP = P = NP$$

Якщо $EXP \neq NEXP$, то $P \neq NP$.

Доведення.

Нехай
$$P = \mathit{NP}$$
 і $L_1 \in \mathit{NTIME}(2^{n^c})$ $L_{1+\mathit{pad}} = \left\{ \left(x, 1^{2^{|x|^c}} \right) \mid x \in L_1 \right\} \Rightarrow L_{1+\mathit{pad}} \in \mathit{NP}$

Перевіряємо формат слова $y=z||1^{2^{|z|^c}}$ і запускаємо НДМТ M_1 на слові z

Час роботи є поліноміальним відносно |y|.

метод доповнення (padding)

Теорема Бейкера-Джіла-Соловея

$$orall O \subseteq \{0,1\}^*$$
 P^O (NP^O) — всі мови ДМТ (НДМТ) з оракулом O

Твердження

- $\bullet \overline{SAT} \in P^{SAT};$
- **2** $O \in P$, $P^O = P$;
- **3** $EXPCOM = \{(M, x, 1^n) \mid M(x) = 1 \text{ за } \leq 2^n \text{ тактів }\}$ $P^{EXPCOM} = NP^{EXPCOM} = EXP$

Доведення.

- 🗿 інша відповідь;
- 2 моделювання роботи оракула;
- ullet $EXP \subseteq P^{EXPCOM}$ запит до оракула $(M,x,1^{n^c})$ $P^{EXPCOM} \subseteq NP^{EXPCOM}$ $NP^{EXPCOM} \subseteq EXP$ моделювання НДМТ з усіма відповідями оракула

Теорема Бейкера-Джіла-Соловея

Теорема Бейкера-Джіла-Соловея

 $\exists A, B$ — оракули такі, що $P^A = NP^A$ і $P^B \neq NP^B$.

Доведення.

A = FXPCOM $\forall B \subseteq \{0,1\}^*$ унарна мова — $U_B = \{1^n, \exists x \in B, |x| = n\}$ $\forall B \subset \{0,1\}^* \ U_B \in NP^B$ Побудуємо таку мову B, щоб $U_B \notin P^B$: кожна ДМТ M_i^B має двійкове представлення iпокроково додаємо слова в мову B індукцією за i, щоб M_i^B не могла розв'язати U_B за час $\frac{2^n}{10}$ обираємо довжину більшу за всі довжини запитів про вже визначені слова відповідаємо чесно про нові слова відповідаємо 'ні' перебрати всі слова з довжиною n за час $\frac{2^n}{10}$ неможливо