SUCCESSIONI E SERIE NUMERICHE

ANTONIO IANNIZZOTTO

SOMMARIO. Limiti di successioni e teoremi relativi. Successioni monotone, limitate, sottosuccessioni. Definizione di serie convergente, divergente, indeterminata. Serie a termini di segno costante: criterio del confronto, rapporto, radice. Serie a termini di segno alterno. Criterio di Leibniz. Convergenza assoluta. Queste note sono un mero supporto didattico, senza alcuna pretesa di completezza, originalità o precisione.

Indice

1.	Successioni e limiti	1
2.	Successioni limitate, monotone, sotto-successioni	5
3.	Serie numeriche	12
4.	Serie a termini di segno costante	14
5.	Serie a termini di segno variabile e convergenza	
	assoluta	17
Riferimenti bibliografici		20

Versione del 26 ottobre 2016

1. Successioni e limiti

Non c'è un solo fatto che non possa essere il primo di una serie infinita.

J.L. Borges

Una successione (numerica a termini reali) è una funzione definita in \mathbb{N} o in \mathbb{N}_0^1 a valori in \mathbb{R} . Per ogni $n \in \mathbb{N}$ denotiamo a_n il valore corrispondente della funzione, detto termine n-mo della successione, mentre la successione stessa è indicata con (a_n) .

Esempio 1.1. Vediamo alcuni esempi di successioni:

- $(i) \ (\frac{1}{n}),$ i cui termini sono $1,\frac{1}{2},\frac{1}{3},\ldots;$
- (ii) (2^n) , i cui termini sono $1, 2, 4, \ldots$;
- (iii) $((-1)^n)$, i cui termini sono 1, -1, 1, -1, ...;
- (iv) la successione delle approssimazioni decimali (dal basso) di π , i cui termini sono 3, 3, 14, 3, 1415, . . .;
- (v) la successione di Fibonacci, definita ricorsivamente ponendo $a_1=1,\ a_2=1,$ e poi $a_n=a_{n-1}+a_{n-2}$ per ogni $n\geqslant 3.$

Si dice che una successione (a_n) verifica definitivamente una proprietà P se esiste $\nu \in \mathbb{N}$ t.c. a_n verifica P per ogni $n \in \mathbb{N}$, $n \geq \nu$. Per esempio, i termini della successione (2^n) sono definitivamente numeri pari. Praticamente tutta la teoria delle successioni è incentrata sulle proprietà definitive, e questo è il motivo per cui non è molto importante sapere 'da dove parte' l'indice n. Una successione

 $^{^1}$ Nel seguito non specificheremo se il dominio è \mathbb{N} o \mathbb{N}_0 in quanto ciò sarà chiaro dal contesto.

è detta regolare se, definitivamente, i suoi termini sono arbitrariamente vicini a una quantità fissata, finita o infinita.

Definizione 1.2. Sia (a_n) una successione. Si ha

- (i) $\lim_{n} a_n = l \in \mathbb{R}$ se per ogni $\varepsilon > 0$ esiste $\nu \in \mathbb{N}$ t.c. $|a_n l| < \varepsilon$ per ogni $n \ge \nu$;
- (ii) $\lim_{n} a_n = +\infty$ se per ogni K > 0 esiste $\nu \in \mathbb{N}$ t.c. $a_n > K$ per ogni $n \geqslant \nu$; (iii) $\lim_{n} a_n = -\infty$ se per ogni K > 0 esiste $\nu \in \mathbb{N}$ t.c. $a_n < -K$ per ogni $n \geqslant \nu$.

In ognuno dei casi precedenti (a_n) è detta regolare, altrimenti è detta irregolare.

Nel caso (i), la successione è detta convergente, nei casi (ii), (iii) è detta divergente. Una notazione altrernativa è $a_n \to l \ (\pm \infty)$. Le successioni dell'Esempio 1.1 hanno caratteri diversi: (i) è convergente con limite 0, in quanto per ogni $\varepsilon > 0$ esiste $n \in \mathbb{N}$ t.c. $n > \frac{1}{\varepsilon}$ (proprietà di Archimede, ved. [2]), ovvero

$$\left|\frac{1}{n} - 0\right| < \varepsilon;$$

invece (ii) diverge positivamente, in quanto per ogni K>0 esiste $n\in\mathbb{N}$ t.c. $n< K\leqslant n+1$, e per la diseguaglianza di Bernoulli (ved. [2]) si ha

$$K \leqslant n + 1 \leqslant 2^n;$$

con argomenti elementari si dimostra che (iii) è irregolare, (iv) converge a π , e (v) diverge positivamente.

Dimostriamo adesso alcune proprietà dei limiti:

Teorema 1.3. (Unicità del limite) Siano (a_n) una successione $e \mid l, m \in \mathbb{R} \cup \{\pm \infty\}$ $t.c. \mid a_n \rightarrow l, m$. Allora l=m.

Dimostrazione. Consideriamo solo il caso $l, m \in \mathbb{R}$ e procediamo per assurdo: sia ad esempio l < m. Fissato $\varepsilon \in (0, \frac{m-l}{2})$, per la Definizione 1.2 (i) esistono $\nu, \mu \in \mathbb{N}$ t.c. $|a_n - l| < \varepsilon$ per ogni $n \geqslant \nu$, e $|a_n - m| < \varepsilon$ per ogni $n \ge \mu$. Dunque, per ogni $n \ge \max\{\nu, \mu\}$ si ha

$$\frac{l+m}{2} < m - \varepsilon < a_n < l + \varepsilon < \frac{l+m}{2},$$

assurdo. Similmente, se l > m si ottiene una contraddizione. Dunque, l = m.

Teorema 1.4. (Conservazione del segno) Siano (a_n) una successione t.c. $a_n \to l \in \mathbb{R}$, m < l. Allora, definitivamente $a_n > m$.

Dimostrazione. Basta applicare la Definizione 1.2 (i) con $\varepsilon \in (0, l-m)$.

Teorema 1.5. (Confronto) Siano (a_n) , (b_n) successioni t.c. $a_n \to l$, $b_n \to m$, e $a_n \leqslant b_n$ definitivamente. Allora $l \leq m$.

Dimostrazione. Consideriamo solo il caso $l, m \in \mathbb{R}$ e procediamo per assurdo: sia l > m. Allora esiste $\nu \in \mathbb{N}$ t.c. $a_n > \frac{l+m}{2} > b_n$ per ogni $n \geqslant \nu$. Per ipotesi esiste $\mu \in \mathbb{N}$ t.c. $a_n \leqslant b_n$ per ogni $n \geqslant \mu$. Dunque, per ogni $n \geqslant \max\{\nu, \mu\}$ si ha

$$\frac{l+m}{2} < a_n \leqslant b_n < \frac{l+m}{2},$$

assurdo.

Corollario 1.6. (Carabinieri) Siano (a_n) , (b_n) , (c_n) successioni t.c. $a_n, c_n \to l$ e $a_n \leqslant b_n \leqslant c_n$ definitivamente. Allora $b_n \to l$.

I precedenti risultati si applicano nel calcolo di alcuni limiti notevoli:

Esempio 1.7. Si ha

$$\lim_{n} \sin\left(\frac{1}{n}\right) = 0.$$

Infatti, per ogni $a \in \left]0, \frac{\pi}{2}\right[$ vale la diseguaglianza:

$$(1.1) \sin(a) < a < \tan(a).$$

Pertanto, per ogni $n \in \mathbb{N}_0$ abbiamo

$$0 < \sin\left(\frac{1}{n}\right) < \frac{1}{n},$$

da cui la conclusione, applicando il Corollario 1.6.

Lemma 1.8. (Operazioni con i limiti/1) Siano (a_n) , (b_n) successioni, $l, m \in \mathbb{R}$ t.c. $a_n \to l$, $b_n \to m$. Allora

- (i) $a_n + b_n \to l + m$;
- (ii) $a_n b_n \to lm$;
- (iii) se $m \neq 0$, allora $\frac{a_n}{b_n} \to \frac{l}{m}$;
- (iv) se l > 0, allors $a_n^{b_n} \to l^m$; (v) se l > 0, $l \neq 1$ e m > 0, allors $\log_{a_n}(b_n) \to \log_l(m)$.

Dimostrazione. Dimostriamo solo (i). Per ogni $\varepsilon > 0$ esistono $\nu, \mu \in \mathbb{N}$ t.c. $|a_n - l| < \frac{\varepsilon}{2}$ per ogni $n \ge \nu$ e $|b_n - l| < \frac{\varepsilon}{2}$ per ogni $n \ge \mu$. Dunque, per ogni $n \ge \max\{\nu, \mu\}$ si ha

$$\left| (a_n + b_n) - (l+m) \right| \leqslant |a_n - l| + |b_n - m| < \varepsilon,$$

da cui $a_n + b_n \to l + m$.

Esempio 1.9. Si ha

$$\lim_{n} n \sin\left(\frac{1}{n}\right) = 1.$$

Per ogni $n \in \mathbb{N}_0$, da (1.1) segue che

$$\cos\left(\frac{1}{n}\right) < n\sin\left(\frac{1}{n}\right) < 1,$$

che per il Corollario 1.6 permette di concludere. Con semplici manipolazioni algebriche si ottiene anche

$$\lim_{n} n^{2} \left(\cos \left(\frac{1}{n} \right) - 1 \right) = -\frac{1}{2}.$$

Il Lemma 1.8 viene usato per 'scomporre' limiti complicati in altri più semplici.

Esempio 1.10. Si ha

$$\lim_{n} \frac{n+1}{n} = 1.$$

Infatti, per ogni $n \in \mathbb{N}_0$

$$\frac{n+1}{n} = 1 + \frac{1}{n} \to 1 + 0 = 1.$$

Esempio 1.11. Sia per ogni $n \in \mathbb{N}_0$

$$a_n = \frac{3^{\frac{1}{n}} + \sin(1/n^2)}{2^{\frac{1}{n}}}.$$

Si ha

$$a_n = \left(\frac{3}{2}\right)^{\frac{1}{n}} + \sin\left(\frac{1}{n^2}\right)2^{-\frac{1}{n}} \to 1 + 0 \cdot 1 = 1.$$

Esistono versioni del Lemma 1.8 per successioni divergenti:

Lemma 1.12. (Operazioni con i limiti/2) Siano (a_n) , (b_n) successioni. Si ha:

- (i) se $a_n \to +\infty$, $b_n \to m \in \mathbb{R} \cup \{+\infty\}$, allora $a_n + b_n \to +\infty$;
- (ii) se $a_n \to -\infty$, $b_n \to m \in \mathbb{R} \cup \{-\infty\}$, allora $a_n + b_n \to -\infty$;
- (iii) se $a_n \to +\infty$, $b \to m \in]0, +\infty[$, allora $a_n b_n \to +\infty$;
- (iv) se $a_n \to -\infty$, $b \to m \in]0, +\infty]$, allora $a_n b_n \to -\infty$; (v) se $a_n \to \pm \infty$, allora $\frac{1}{a_n} \to 0$.

Dimostrazione. Dimostriamo solo (i). Sia $m \in \mathbb{R}$: allora, per ogni K > 0 esistono $\nu, \mu \in \mathbb{N}$ t.c. $a_n > K - m + 1$ per ogni $n \ge \nu$, e $b_n > m - 1$ per ogni $n \ge \mu$, dunque per ogni $n \ge \max\{\nu, \mu\}$ abbiamo

$$a_n + b_n > (K - m + 1) + (m - 1) = K.$$

Se invece $m=+\infty$, allora per ogni K>0 esistono $\nu,\mu\in\mathbb{N}$ t.c. $a_n>\frac{K}{2}$ per ogni $n\geqslant\nu$, e $b_n>\frac{K}{2}$ per ogni $n \ge \mu$, dunque per ogni $n \ge \max\{\nu, \mu\}$ abbiamo

$$a_n + b_n > \frac{K}{2} + \frac{K}{2} = K,$$

il che conclude la dimostrazione.

Osserviamo che il Lemma 1.12 lascia indeterminati i seguenti casi:

$$+\infty-\infty, \ \infty\cdot 0, \ \frac{\infty}{\infty}, \ \frac{0}{0}.$$

Valgono anche delle regole di calcolo per le funzioni trascendenti, come la potenza con base ed esponente reali (ved. [1], [4]): se $a_n \to +\infty$, $b_n \to m > 0$, allora

$$\lim_{n} a_n^{b_n} = +\infty$$

(per brevità non elencheremo queste regole). Anch'esse lasciano dei casi indeterminati, per esempio ∞^0 e 1^{∞^2} . Talvolta è utile confrontare una successione (a_n) con la successione $(|a_n|)$, si ha infatti che se $a_n \to l$ allora $|a_n| \to |l|$ (ved [2] per le diseguaglianze triangolari), mentre se $(|a_n|)$ è regolare non sappiamo nulla sul carattere di (a_n) (si pensi a $((-1)^n)$).

Riportiamo una caratterizzazione degli insiemi chiusi per mezzo di successioni (ved. [2]):

Lemma 1.13. Sia $A \subseteq \mathbb{R}$. Allora le seguenti affermazioni sono equivalenti:

- (i) A è chiuso;
- (ii) per ogni successione (a_n) t.c. $a_n \in A$ per ogni $n \in \mathbb{N}$ e $a_n \to l$, si ha $l \in A$.

Dimostrazione. Dimostriamo che (i) implica (ii). Sia (a_n) una successione in A, convergente a

• se esiste $n \in \mathbb{N}$ t.c. $a_n = l$, allora $l \in A$;

²Per una discussione più approfondita rimandiamo a [5].

• se $a_n \neq l$ per ogni $n \in \mathbb{N}$, allora $l \in DA$, e poiché A è chiuso ne segue $l \in A$. Così (ii) è provata.

Esercizio 1.14. Usando la Definizione 1.2, dimostrare i seguenti limiti:

$$\lim_{n} \left(\sqrt{n^2 + 1} - n \right) = 0, \lim_{n} \frac{n^2 + 2}{2n} = +\infty, \lim_{n} (n - n^3) = -\infty,$$
$$\lim_{n} \log_2 \left(\frac{n+1}{n^2} \right) = -\infty, \not\equiv \lim_{n} \sin \left(\frac{n\pi}{2} \right).$$

Esercizio 1.15. Studiare il carattere delle seguenti successioni:

$$(\tan(n)), (\sqrt[n]{2}), (\frac{n+1}{n^2-1}), (\ln(n)).$$

Esercizio 1.16. Dimostrare gli altri casi del Teorema 1.3.

Esercizio 1.17. Dimostrare gli altri casi del Teorema 1.5.

Esercizio 1.18. Dimostrare che

$$\lim_{n} \cos\left(\frac{1}{n}\right) = 1, \lim_{n} \tan\left(\frac{1}{n}\right) = 0.$$

Esercizio 1.19. Dimostrare la (ii) del Lemma 1.8 (suggerimento: si ha $a_nb_n - lm = a_n(b_n - m) + (a_n - l)m$).

2. Successioni limitate, monotone, sotto-successioni

Introduciamo adesso alcune famiglie di successioni il cui carattere si può determinare facilmente.

Definizione 2.1. Una successione (a_n) è detta

- (i) superiormente limitata se esiste K > 0 t.c. $a_n \leq K$ per ogni $n \in \mathbb{N}$;
- (ii) inferiormente limitata se esiste K > 0 t.c. $a_n \ge -K$ per ogni $n \in \mathbb{N}$;
- (iii) limitata se è superiormente e inferiormente limitata;
- (iv) (superiormente, inferiormente) illimitata se non è (superiormente, inferiormente) limitata.

Osserviamo che (a_n) è limitata se e solo se esiste K > 0 t.c. $|a_n| \leq K$ per ogni $n \in \mathbb{N}$. Denotiamo

$$\sup_{n \in \mathbb{N}} a_n = \sup\{a_n : n \in \mathbb{N}\}, \inf_{n \in \mathbb{N}} a_n = \inf\{a_n : n \in \mathbb{N}\}.$$

Chiaramente ogni successione convergente è limitata, e ogni successione divergente è illimitata. Ma queste implicazioni non si invertono.

Esempio 2.2. La successione $(\sin(n))$ è limitata e irregolare, la successione $((-2)^n)$ è illimitata e irregolare.

Lemma 2.3. Siano (a_n) , (b_n) due successioni t.c. $a_n \to 0$ e (b_n) è limitata. Allora

$$\lim_{n} a_n b_n = 0.$$

Dimostrazione. Sia K>0 t.c. $|b_n|\leqslant K$ per ogni $n\in\mathbb{N}$. Fissato $\varepsilon>0$, esiste $\nu\in\mathbb{N}$ t.c. $|a_n|<\frac{\varepsilon}{K}$ per ogni $n\geqslant\nu$, da cui per gli stessi n si ha $|a_nb_n|<\varepsilon$.

Introduciamo adesso un'altra importante classe di successioni:

Definizione 2.4. Una successione (a_n) è detta

(i) non-decrescente se $a_n \leqslant a_{n+1}$ per ogni $n \in \mathbb{N}$;

- (ii) non-crescente se $a_n \geqslant a_{n+1}$ per ogni $n \in \mathbb{N}$;
- (iii) crescente se $a_n < a_{n+1}$ per ogni $n \in \mathbb{N}$;
- (iv) decrescente se $a_n > a_{n+1}$ per ogni $n \in \mathbb{N}$.

Nei casi (i), (ii) la successione (a_n) è detta monotona, nei casi (iii), (iv) strettamente monotona. Le successioni monotone sono tutte regolari:

Lemma 2.5. Sia (a_n) una successione:

- (i) se (a_n) è non-decrescente, allora $\lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n$; (ii) se (a_n) è non-crescente, allora $\lim_{n \to \infty} a_n = \inf_{n \in \mathbb{N}} a_n$.

Dimostrazione. Dimostriamo (i). Supponiamo che (a_n) sia limitata superiormente, cioè

$$\sup_{n\in\mathbb{N}}a_n=l\in\mathbb{R}.$$

Allora, per ogni $\varepsilon > 0$ esiste $\nu \in \mathbb{N}$ t.c. $a_{\nu} > l - \varepsilon$, da cui segue per ogni $n \geqslant \nu$

$$l - \varepsilon < a_n \leqslant l$$
,

così che $a_n \to l$. Se invece (a_n) è superiormente illimitata, per ogni K > 0 esiste $\nu \in \mathbb{N}$ t.c. $a_{\nu} > K$, da cui segue per ogni $n \geqslant \nu$

$$a_n > K$$
,

 \cos che $a_n \to +\infty$.

Esempio 2.6. La successione geometrica di ragione $q \in \mathbb{R}$ ha termine generale q^n . Il suo carattere dipende da q:

$$\lim_{n} q^{n} = \begin{cases} +\infty & \text{se } q > 1\\ 1 & \text{se } q = 1\\ 0 & \text{se } |q| < 1\\ \text{non esiste} & \text{se } q \leqslant -1. \end{cases}$$

Osserviamo che (q^n) è crescente e superiormente illimitata se q>1, costante se q=1 o q=0, decrescente e limitata se 0 < q < 1.

Esempio 2.7. Il numero di Nepero è il limite della successione di termine generale

$$a_n = \left(1 + \frac{1}{n}\right)^n.$$

Per dimostrare che (a_n) (una forma indeterminata del tipo 1^{∞}) è convergente, useremo la monotonia. Infatti dalla diseguaglianza di Bernoulli (ved. [2]) segue per ogni $n \in \mathbb{N}$

$$\frac{n}{n+1} = 1 - \frac{1}{n+1} < \left(1 - \frac{1}{(n+1)^2}\right)^{n+1} = \left(\frac{n(n+2)}{(n+1)^2}\right)^{n+1},$$

da cui

$$1 + \frac{1}{n} > \left(\frac{n+1}{n+2}\right)^{n+1} \left(1 + \frac{1}{n}\right)^{n+1},$$

che equivale a

$$\left(1+\frac{1}{n}\right)^n<\left(1+\frac{1}{n+1}\right)^{n+1},$$

ossia (a_n) è crescente. In modo analogo si dimostra che la successione di termine generale

$$b_n = \left(1 + \frac{1}{n}\right)^{n+1}$$

è decrescente, e $a_n < b_n$ per ogni $n \in \mathbb{N}$. Per il Lemma 2.5 e il Teorema 1.5, entrambe risultano convergenti. Inoltre, poiché $\frac{a_n}{b_n} \to 1$, segue che esiste $e \in \mathbb{R}$ t.c.

$$\lim_{n} a_n = \lim_{n} b_n = e.$$

Si dimostra che $e \in \mathbb{R} \setminus \mathbb{Q}$ e il suo valore approssimato è

$$e = 2,7182818284...$$

Questo numero è adoperato come base per il logaritmo naturale, ovvero si pone per ogni a > 0

$$ln(a) = log_e(a).$$

Introduciamo ora una nozione che permette di definire una regolarità 'parziale'.

Definizione 2.8. Siano (a_n) una successione a termini reali, $e(n_k)$ una successione a termini in \mathbb{N} , crescente. La successione (a_{n_k}) , definita come la funzione composta $k \mapsto n_k \mapsto a_{n_k}$, è detta sotto-successione di (a_n) .

La stretta monotonia di (n_k) serve a evitare situazioni paradossali (come quella in cui si prendesse come sotto-successione di (a_n) il singolo termine a_1 , ripetuto all'infinito). Si vede facilmente che, se (a_n) è regolare, ogni sua sotto-successione è regolare con lo stesso limite. Invece, una successione irregolare può avere sotto-successioni di qualsiasi carattere.

Esempio 2.9. La successione $((-1)^n)$ ha sotto-successioni che possono convergere a 1, a -1, o essere irregolari. La successione $(\sin(n))$ ha sotto-successioni convergenti a l per ogni $l \in [-1, 1]$.

Inoltre possiamo ora invertire parzialmente l'implicazione 'convergente ⇒ limitata'.

Teorema 2.10. (di Bolzano-Weierstraß) $Sia(a_n)$ una successione limitata. Allora esiste una sotto-successione di (a_n) monotona e convergente.

Dimostrazione. Per evitare casi banali, possiamo assumere che (a_n) abbia un insieme infinito di termini. Passando a una sotto-successione, abbiamo $a_n \neq a_m$ per ogni $n \neq m$. Poiché (a_n) è limitata, esiste il numero

$$l_1 = \sup_{n \in \mathbb{N}} a_n.$$

Se $a_n \neq l_1$ per ogni $n \in \mathbb{N}$, allora per le proprietà dell'estremo superiore esiste una sotto-successione di (a_n) crescente e convergente a l_1 . Altrimenti, sia $n_1 \in \mathbb{N}$ t.c. $a_{n_1} = l_1$ e sia

$$l_2 = \sup_{n > n_1} a_n \leqslant l_1.$$

Di nuovo, se $a_n \neq l_2$ per ogni $n > n_1$ si raggiunge facilmente la conclusione. Altrimenti, sia $n_2 > n_1$ t.c. $a_{n_2} = l_2$. Continuando così, si possono presentare due casi:

- (a_n) ha una sotto-successione crescente, convergente a un certo l_m $(m \ge 1)$;
- (a_n) ha una sotto-successione non-crescente (a_{n_k}) , che essendo limitata risulta convergente per il Lemma 2.5.

In ogni caso, la tesi è provata.

Osservazione 2.11. Una forma equivalente del Teorema 2.10, quella 'topologica', si enuncia così (ved. [2]): Ogni sottoinsieme infinito e limitato di \mathbb{R} ha un punto di accumulazione.

Il problema della *convergenza* di una successione si può studiare anche senza calcolare esplicitamente il limite.

Teorema 2.12. (Criterio di Cauchy) Sia (a_n) una successione. Allora le seguenti affermazioni sono equivalenti:

- (i) (a_n) è convergente;
- (ii) per ogni $\varepsilon > 0$ esiste $\nu \in \mathbb{N}$ t.c per ogni $n, m \geqslant \nu$ si ha $|a_n a_m| < \varepsilon$.

Dimostrazione. L'implicazione $(i) \Rightarrow (ii)$ è ovvia. Dimostriamo che $(ii) \Rightarrow (i)$. Prima osserviamo che (a_n) è limitata, in quanto esiste $\nu \in \mathbb{N}$ t.c. in particolare, $|a_n - a_{\nu}| < 1$ per ogni $n \geqslant \nu$, così che per ogni $n \in \mathbb{N}$ si ha

$$|a_n| \leq \max\{|a_1|, \dots |a_{\nu-1}|, |a_{\nu}| + 1\}.$$

Per il Teorema 2.10 esiste (n_k) crescente in $\mathbb N$ t.c. $a_{n_k} \to l$ per qualche $l \in \mathbb R$. Per ogni $\varepsilon > 0$ esiste $\mu \in \mathbb{N}$ t.c. $|a_{n_k} - l| < \frac{\varepsilon}{2}$ per ogni $k \geqslant \mu$, ed esiste $\nu \in \mathbb{N}$ t.c. $|a_n - a_m| < \frac{\varepsilon}{2}$ per ogni $n, m \geqslant \nu$. Poiché $n_k \to +\infty$, esiste $\mu' \geqslant \mu$ t.c. $n_k \geqslant \nu$ per ogni $k \geqslant \mu'$, da cui per ogni $n \geqslant \nu$ si può scegliere $k \geqslant \mu'$ in modo tale che

$$|a_n - l| \leqslant |a_n - a_{n_k}| + |a_{n_k} - l| < \varepsilon,$$

dunque $a_n \to l$.

Osservazione 2.13. Il Teorema 2.12 si esprime anche dicendo che \mathbb{R} è completo secondo Cauchy, ed è equivalente alla completezza di \mathbb{R} secondo Dedekind (ved. [2]). L'insieme \mathbb{Q} non è completo, per esempio la successione dell'Esempio 2.7 ha termini razionali e soddisfa (ii), ma il suo limite è irrazionale.

Spesso, le forme indeterminate si possono risolvere mediante confronto asintotico. Cominciamo con il caso più semplice, quello del confronto fra due polinomi:

Lemma 2.14. Siano $p(x) = a_0 + a_1x + ... + a_hx^h$, $q(x) = b_0 + b_1x + ... + b_kx^k$ due polinomi, con $h, k \in \mathbb{N}_0, a_0, \dots a_h, b_0, \dots b_k \in \mathbb{R} \ (a_h, b_k \neq 0).$ Allora:

- (i) se h < k, allora $\lim_{n} \frac{p(n)}{q(n)} = 0$;
- (ii) se h = k, allora $\lim_{n} \frac{p(n)}{a(n)} = \frac{a_h}{b_k}$;
- (iii) se h > k, allora $\lim_{n} \frac{p(n)}{q(n)} = \pm \infty$ (il segno è lo stesso di $\frac{a_h}{b_k}$).

Dimostrazione. Dimostriamo (i): per ogni $n \in \mathbb{N}_0$ si ha

$$\frac{p(n)}{q(n)} = \frac{1}{n^{k-h}} \frac{a_0 n^{-h} + a_1 n^{1-h} + \dots + a_h}{b_0 n^{-k} + b_1 n^{1-k} + \dots + b_k},$$

e il secondo membro è il prodotto di una successione tendente a 0 per una limitata, che tende a 0 per il Lemma 2.3.

Raccogliamo nel seguente Lemma i principali confronti asintotici:

Lemma 2.15. *Si ha:*

(i)
$$\lim_{n} \frac{\log_{a}(n)}{n^{b}} = 0 \text{ per ogni } a > 0, \ a \neq 1, \ b > 0;$$

(ii) $\lim_{n} \frac{n^{a}}{b^{n}} = 0 \text{ per ogni } a > 0, \ b > 1;$
(iii) $\lim_{n} \frac{a^{n}}{n!} = 0 \text{ per ogni } a > 1;$

(ii)
$$\lim_{n} \frac{n^{a}}{h^{n}} = 0 \text{ per ogni } a > 0, b > 1,$$

(iii)
$$\lim_{n} \frac{a^n}{n!} = 0$$
 per ogni $a > 1$;

$$(iv) \lim_{n} \frac{n!}{n^n} = 0.$$

Dimostrazione. Dimostriamo (i). Dalla diseguaglianza di Bernoulli (ved. [2]) segue che per ogni $\alpha > 0$ reale

(2.1)
$$\log_a(\alpha) < \alpha \log_a(2).$$

Posto $\alpha = n^{\frac{b}{2}}$, da (2.1) abbiamo

$$\frac{\log_a(n)}{n^b} < \frac{2\log_a(2)}{bn^{\frac{b}{2}}},$$

e l'ultimo membro tende a 0. Per il Teorema 1.5, questo conclude la prova.

Osservazione 2.16. Una scrittura abbreviata per i confronti asintotici, molto usata nelle scienze applicate, è quella basata sui *simboli di Landau*: date due successioni (a_n) , (b_n) con lo stesso limite (finito o infinito), e $b_n \neq 0$ definitivamente, si scrive

$$a_n = \mathbf{o}(b_n) \iff \lim_n \frac{a_n}{b_n} = 0,$$

 $a_n = \mathbf{O}(b_n) \iff \left(\frac{a_n}{b_n}\right) \text{ è limitata.}$

Per esempio, la (ii) del Lemma 2.15 si riformula come $n^a = \mathbf{o}(b^n)$.

Esempio 2.17. Calcoliamo

$$\lim_{n} \frac{3^{n} + n^{2} - \ln(n)}{n! + n^{4}}.$$

Applicando il Lemma 2.15 si ha

$$\frac{3^n + n^2 - \ln(n)}{n! + n^4} = \frac{3^n + \mathbf{o}(3^n)}{n! + \mathbf{o}(n!)} = \frac{3^n}{n!} \frac{1 + \mathbf{o}(1)}{1 + \mathbf{o}(1)} \to 0.$$

Usando il Lemma 2.15 si calcolano alcuni limiti notevoli:

Esempio 2.18. Si ha

$$\lim_{n} \sqrt[n]{n} = 1.$$

Infatti si può scrivere per ogni $n \in \mathbb{N}$

$$\sqrt[n]{n} = e^{\frac{\ln(n)}{n}} \to e^0 = 1.$$

Altri limiti notevoli si ottengono per sostituzione:

Esempio 2.19. Sia (a_n) una successione a termini non nulli t.c. $a_n \to 0$. Allora:

$$\lim_{n} (1+a_n)^{\frac{1}{a_n}} = e.$$

Per semplicità supponiamo $a_n > 0$ per ogni $n \in \mathbb{N}$: poiché $\frac{1}{a_n} \to +\infty$, esiste una successione crescente (k_n) in \mathbb{N} t.c. $k_n \leqslant \frac{1}{a_n} < k_n + 1$ per ogni $n \in \mathbb{N}$, da cui

$$\left(1 + \frac{1}{k_n + 1}\right)^{k_n} \leqslant (1 + a_n)^{\frac{1}{a_n}} \leqslant \left(1 + \frac{1}{k_n}\right)^{k_n + 1}.$$

Rammentando l'Esempio 2.7 e il Corollario 1.6, concludiamo.

Ne seguono altri risultati:

$$\lim_{n} \frac{a_n}{\log_b(1+a_n)} = \ln(b) \text{ per ogni } b > 0, b \neq 1,$$
$$\lim_{n} \frac{b^{a_n} - 1}{a_n} = \ln(b) \text{ per ogni } b > 0, b \neq 1,$$

$$\lim_{n} \frac{(1+a_n)^b - 1}{a_n} = b \text{ per ogni } b \in \mathbb{R}.$$

Esempio 2.20. Consideriamo la successione di termine generale

$$a_n = \frac{2^n n!}{n^n}.$$

Per studiarla, esaminiamo la successione $\left(\frac{a_{n+1}}{a_n}\right)$:

$$\frac{a_{n+1}}{a_n} = 2\left(\frac{n}{n+1}\right)^n \to \frac{2}{e}.$$

Poiché $a_n > 0$ e $\frac{2}{e} < 1$, ne segue che $a_{n+1} < a_n$ definitivamente. Dunque, (a_n) è (definitivamente) decrescente e inferiormente limitata. Per il Lemma 2.5 ne segue che $a_n \to l$ per qualche $l \ge 0$. Se fosse l > 0, avremmo

$$\lim_{n} \frac{a_{n+1}}{a_n} = 1,$$

ma non è così (come visto sopra). Dunque concludiamo che

$$\lim_{n} \frac{2^n n!}{n^n} = 0.$$

Usando la nozione di limite, si possono determinare gli estremi di certi insiemi.

Esempio 2.21. Determiniamo l'estremo inferiore e quello superiore di

$$A = \left\{ \frac{n^2}{n^2 + 1} : n \in \mathbb{N} \right\}.$$

Gli elementi di A sono i termini di una successione e si possono riscrivere come

$$\frac{n^2}{n^2+1} = 1 - \frac{1}{n^2+1},$$

così che la successione risulta crescente e limitata. Ne segue che

$$\min A = \frac{1}{2}, \ \sup A = \lim_{n} \frac{n^2}{n^2 + 1} = 1$$

(osserviamo che l'estremo superiore non appartiene ad A).

Per le successioni irregolari si introducono nozioni 'surrogate' di limite, sfruttando solo la limitatezza.

Definizione 2.22. Sia (a_n) una successione superiormente limitata. Un numero $b \in \mathbb{R}$ è detto maggiorante definitivo di (a_n) se esiste $\nu \in \mathbb{N}$ t.c. $a_n \leq b$ per ogni $n \geq \nu$. Il massimo limite di (a_n) è

$$\lim\sup_n a_n = \inf\{b \in \mathbb{R} : b \text{ è un maggiorante definitivo di } (a_n)\},$$

mentre se (a_n) non è superiormente limitata si pone

$$\lim_{n} \sup a_n = +\infty.$$

Lemma 2.23. Siano (a_n) una successione superiormente limitata, $l \in \mathbb{R}$. Allora si ha $\limsup_n a_n = l$ se e solo se

- (i) per ogni $\varepsilon > 0$ esiste $\nu \in \mathbb{N}$ t.c. $a_n < l + \varepsilon$ per ogni $n \geqslant \nu$;
- (ii) per ogni $\varepsilon > 0$, $\nu \in \mathbb{N}$ esiste $n \ge \nu$ t.c. $a_n > l \varepsilon$.

Inoltre, in tal caso, esiste una sotto-successione di (a_n) convergente a l.

Dimostrazione. La caratterizzazione è ovvia in quanto (i), (ii) definiscono l'estremo inferiore dell'insieme dei maggioranti definitivi. Per dimostrare l'ultima affermazione, osserviamo che, per (i), (ii) esiste $n_1 \in \mathbb{N}$ t.c. $|a_{n_1} - l| < 1$. Per lo stesso motivo esiste $n_2 > n_1$ t.c. $|a_{n_2} - l| < \frac{1}{2}$, e così via. Procedendo per induzione (ved. [2]) si costruisce una sotto-successione (a_{n_k}) t.c. $|a_{n_k} - l| < \frac{1}{k}$ per ogni $k \in \mathbb{N}_0$, quindi $a_{n_k} \to l$.

Similmente si definisce il minimo limite, denotato

$$\liminf_{n} a_n$$
,

che gode di analoghe proprietà. Chiaramente, se (a_n) è regolare si ha

$$\liminf_{n} a_n = \limsup_{n} a_n = \lim_{n} a_n.$$

Esempio 2.24. Consideriamo le successioni irregolari $((-1)^n)$, $(\cos(\frac{n\pi}{2}))$. Si ha

$$\liminf_{n} (-1)^{n} = -1, \ \lim_{n} \sup_{n} (-1)^{n} = 1,$$

$$\liminf_n \cos\left(\frac{n\pi}{2}\right) = -1, \ \limsup_n \cos\left(\frac{n\pi}{2}\right) = 1.$$

Esercizio 2.25. Calcolare i seguenti limiti:

$$\lim_{n} (n - \sin(n)), \lim_{n} \frac{1 + 2^{-n}}{n}, \lim_{n} \cos\left(\frac{1}{n}\right),$$

$$\lim_{n} \frac{4n^{2} + 3n + 2}{n^{2} - 1}, \lim_{n} \frac{n|5 - n| - 1}{n^{2} + 1}, \lim_{n} \log_{3}(2n^{2} - n),$$

$$\lim_{n} \frac{n^{3}}{(n+3)!}, \lim_{n} \sin\left(\pi n + \frac{1}{n}\right), \lim_{n} \left(\sqrt{n^{2} + n + 1} - n\right),$$

$$\lim_{n} (2^{n} + 3^{n})^{\frac{1}{n}}, \lim_{n} \left(1 + \frac{1}{n}\right)^{\sqrt{n}}, \lim_{n} \left(1 + \frac{1}{n}\right)^{n^{2}}.$$

Esercizio 2.26. Determinare gli estremi dei seguenti insiemi:

$$\left\{5^{\frac{n+1}{n}}: n \in \mathbb{N}_0\right\}, \left\{(-1)^n \frac{n-1}{n}: n \in \mathbb{N}_0\right\}.$$

Esercizio 2.27. Calcolare i seguenti limiti:

$$\lim_{n} \frac{n^{2} + \ln(n)^{3}}{n \ln(n) + 1}, \quad \lim_{n} \left(\frac{n}{n+1}\right)^{\sin(n)}, \quad \lim_{n} \left(n\sqrt{n^{3} + 3} - n^{2}\right),$$

$$\lim_{n} \left(\frac{n+2}{n+1}\right)^{2n}, \quad \lim_{n} \left(\frac{\cos(n\pi)}{n\pi} + \ln\left(\sin\left(\frac{\pi}{n}\right)\right)\right), \quad \lim_{n} \frac{e^{n^{2}} - n^{5} + \sin(n^{2} - 1)}{\log_{2}(n^{3}) + n^{2}},$$

$$\lim_{n} \left(\ln(2) + \ln(3) + \dots + \ln(n-1) + (1-n)\ln(n)\right).$$

3. Serie numeriche

Benché collegata all'idea intuitiva di 'somma di infiniti numeri', la nozione di serie numerica non aggiunge nulla di nuovo a quella di successione: sia (a_n) una successione di numeri reali, si definisce la successione delle somme parziali di termine generale

$$S_k = \sum_{n=0}^{\infty} a_n.$$

La serie numerica di termine generale a_n è la successione (S_k) , denotata

$$\sum_{n=0}^{\infty} a_n \text{ (oppure } \sum_{n=1}^{\infty} a_n \text{)}.$$

Definizione 3.1. La serie $\sum_{n=0}^{\infty} a_n$ è detta

- (i) convergente se $S_k \to S$ per qualche $S \in \mathbb{R}$, e il numero S è detto somma della serie;
- (ii) divergente positivamente (risp. negativamente) se $S_k \to +\infty$ (risp. $-\infty$);
- (iii) irregolare se (S_k) è irregolare.

Di alcune serie semplici si riesce a determinare non solo il carattere ma anche la somma (nel caso di convergenza).

Esempio 3.2. La serie di Mengoli è

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}.$$

Per ogni $k \in \mathbb{N}_0$ si ha

$$S_k = \sum_{n=1}^k \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{k+1},$$

da cui

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \lim_{k} \left(1 - \frac{1}{k+1} \right) = 1$$

(metodo generale per le serie telescopiche).

Esempio 3.3. La serie geometrica di ragione $q \in \mathbb{R} \setminus \{1\}$ è

$$\sum_{n=0}^{\infty} q^n.$$

Il suo carattere dipende da q. Cominciamo col riportare la formula

(3.1)
$$\sum_{n=0}^{k} q^n = \frac{1 - q^{k+1}}{1 - q},$$

che si dimostra facilmente per induzione. A questo punto si ha

$$\sum_{n=0}^{\infty} q^n = \begin{cases} \frac{1}{1-q} & \text{se } |q| < 1\\ +\infty & \text{se } q \geqslant 1\\ \text{irregolare} & \text{se } q \leqslant -1. \end{cases}$$

Questa serie è usata nel calcolo degli interessi, e anche per determinare la frazione generatrice di un numero decimale periodico. Sia

$$\alpha = a_0, a_1 \dots a_h \overline{b_1 \dots b_p}$$

con $a_0, h, p \in \mathbb{N}, a_1, \dots a_h, b_1, \dots b_p \in \{0, \dots 9\}$. Per ogni $k \in \mathbb{N}$ poniamo

$$\alpha_k = a_0, a_1 \dots a_h b_1 \dots b_p \dots b_1 \dots b_p$$

(con k ripetizioni del periodo), così che $\alpha_n \to \alpha$. Per ogni $k \in \mathbb{N}$ si ha

$$\alpha_k = \frac{a_0 \dots a_h}{10^h} + \frac{b_1 \dots b_p}{10^h} \sum_{n=1}^k \frac{1}{10^{np}},$$

da cui

$$\alpha = \lim_{k} \alpha_{k} = \frac{a_{0} \dots a_{h}}{10^{h}} + \frac{b_{1} \dots b_{p}}{10^{h}} \frac{1}{10^{p} - 1} = \frac{a_{0} \dots a_{h} \, b_{1} \dots b_{p} - a_{0} \dots a_{h}}{\underbrace{9 \dots 9 \, 0 \dots 0}_{h}}.$$

Condizioni necessarie o sufficienti per la convergenza di una serie:

Lemma 3.4. Sia $\sum_{n=0}^{\infty} a_n$ una serie convergente. Allora

- (i) $\lim_n a_n = 0$;
- (ii) per ogni $h \in \mathbb{N}$ la serie $\sum_{n=h+1}^{\infty} a_n$ converge con somma R_h , $e \lim_{n \to \infty} R_h = 0$.

Dimostrazione. Dimostriamo (i). Siano (S_k) la successione delle somme parziali della serie assegnata, e $S \in \mathbb{R}$ la sua somma: allora si ha per ogni $n \in \mathbb{N}$

$$a_n = S_n - S_{n-1},$$

da cui $a_n \to 0$. Dimostriamo ora (ii). Detta (S'_k) la successione delle somme parziali della serie $\sum_{n=h+1}^{\infty} a_n$, si ha

$$S_k' = S_k - S_h,$$

da cui, passando al limite su k, si ha $R_h = S - S_h$. Un altro passaggio al limite, stavolta su h, permette di concludere.

Una conseguenza immediata del Teorema 2.12:

Teorema 3.5. (Criterio di Cauchy per le serie) Sia $\sum_{n=0}^{\infty} a_n$ una serie. Allora le seguenti affermazioni sono equivalenti:

- (i) $\sum_{n=0}^{\infty} a_n \ \dot{e} \ convergente;$
- (ii) per ogni $\varepsilon > 0$ esiste $\nu \in \mathbb{N}$ t.c. $\left| \sum_{n=k}^{h} a_n \right| < \varepsilon$ per ogni $\nu \leqslant k \leqslant h$.

Lemma 3.6. Siano $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ due serie convergenti, di somme S, S', $e \alpha, \beta \in \mathbb{R}$. Allora

$$\sum_{n=0}^{\infty} (\alpha a_n + \beta b_n) = \alpha S + \beta S'.$$

Dimostrazione. Basta studiare le successioni delle somme parziali e applicare il Lemma 1.8 (i). \Box

Esercizio 3.7. Studiare la convergenza e, se esiste, calcolare la somma delle seguenti serie:

$$\sum_{n=1}^{\infty} \frac{2n+1}{n^4+2n^3+n^2}, \sum_{n=1}^{\infty} \frac{2}{4n^2+8n+3}$$

(suggerimento: sono telescopiche).

Esercizio 3.8. Sfruttando quanto visto nell'Esempio 3.3, dimostrare che

$$0, \overline{9} = 1.$$

4. Serie a termini di segno costante

Le serie a termini di segno costante, ovvero le serie $\sum_{n=0}^{\infty} a_n$ con $a_n \geqslant 0$ (o $a_n \leqslant 0$) per ogni $n \in \mathbb{N}$, sono sempre regolari. Infatti, per una tale serie la successione (S_k) delle somme parziali è monotona e vale il Lemma 2.5. Per semplicità studieremo solo le serie a termini positivi, che hanno due soli caratteri:

$$\bullet \sum_{\substack{n=0\\ \infty}}^{\infty} a_n = S, S > 0;$$

 $\bullet \sum_{n=0}^{\infty} a_n = +\infty.$

Teorema 4.1. (Criterio del confronto) Siano $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ serie a termini positivi, $\nu \in \mathbb{N}$ t.c. $a_n \leq b_n$ per ogni $n \geq \nu$. Allora:

- (i) se $\sum_{n=0}^{\infty} b_n$ converge, $\sum_{n=0}^{\infty} a_n$ converge; (ii) se $\sum_{n=0}^{\infty} a_n$ diverge, $\sum_{n=0}^{\infty} b_n$ diverge.

Dimostrazione. Siano (S_k) , (S_k') le successioni delle somme parziali delle due serie, allora $S_k \leq S_k' + c$ per ogni $k \in \mathbb{N}$ (per un'opportuna costante c > 0). La tesi segue dal Teorema 1.5.

Conseguenze del Teorema 4.1:

Teorema 4.2. (Criterio del rapporto) Sia $\sum_{n=0}^{\infty} a_n$ una serie a termini positivi. Allora:

- (i) se esistono $\lambda \in]0,1[$, $\nu \in \mathbb{N}$ t.c. $\frac{a_{n+1}}{a_n} < \lambda$ per ogni $n \geqslant \nu$, $\sum_{n=0}^{\infty} a_n$ converge; (ii) se esiste $\nu \in \mathbb{N}$ t.c. $\frac{a_{n+1}}{a_n} \geqslant 1$ per ogni $n \geqslant \nu$, allora $\sum_{n=0}^{\infty} a_n$ diverge.

Dimostrazione. Dimostriamo (i). Per ogni $n \ge \nu$ si ha $a_n < a_\nu \lambda^{n-\nu}$, dunque basta applicare il Teorema 4.1 alle serie $\sum_{n=0}^{\infty} a_n$ e $\sum_{n=0}^{\infty} \lambda^n$ (moltiplicata per un'opportuna costante), che converge per l'Esempio 3.3.

Dimostriamo (ii). La successione (a_n) non tende a 0, quindi per il Lemma 3.4 (i) la serie diverge. \square

Un raffinamento del Teorema 4.2:

Teorema 4.3. (Criterio di Raabe) Sia $\sum_{n=0}^{\infty} a_n$ una serie a termini positivi, t.c.

$$\lim_{n} n \left(\frac{a_n}{a_{n+1}} - 1 \right) = l.$$

Allora:

- (i) se l > 1, $\sum_{n=0}^{\infty} a_n$ converge; (ii) se l < 1, $\sum_{n=0}^{\infty} a_n$ diverge.

Teorema 4.4. (Criterio della radice) Sia $\sum_{n=0}^{\infty} a_n$ una serie a termini positivi. Allora:

(i) se esistono $\lambda \in]0,1[$, $\nu \in \mathbb{N}$ t.c. $\sqrt[n]{a_n} < \lambda$ per ogni $n \geqslant \nu$, $\sum_{n=0}^{\infty} a_n$ converge; (ii) se esiste $\nu \in \mathbb{N}$ t.c. $\sqrt[n]{a_n} \geqslant 1$ per ogni $n \geqslant \nu$, allora $\sum_{n=0}^{\infty} a_n$ diverge.

Dimostrazione. Simile a quella del Teorema 4.2.

Esempio 4.5. La serie esponenziale è

$$\sum_{n=0}^{\infty} \frac{1}{n!},$$

ed è convergente per il Teorema 4.2. In questo caso possiamo calcolarne esplicitamente la somma S>0. Infatti, per ogni $k\in\mathbb{N}_0$ si ha per la formula del binomio di Newton (ved. [2])

$$\left(1+\frac{1}{k}\right)^k = \sum_{n=0}^k \frac{k!}{n!(k-n)!} \frac{1}{k^n} = 2 + \sum_{n=2}^k \frac{1}{n!} \frac{k}{k} \frac{k-1}{k} \dots \frac{k-n+1}{k} \leqslant \sum_{n=0}^k \frac{1}{n!},$$

da cui, passando al limite per $k \to \infty$, per il Teorema 1.5 si ha $e \leqslant S$. Un ragionamento simile mostra che $e \ge S$, dunque

$$\sum_{n=0}^{\infty} \frac{1}{n!} = e.$$

Esempio 4.6. Studiamo il carattere delle seguenti serie:

$$\sum_{n=1}^{\infty} \frac{n!}{(2n)!}, \sum_{n=1}^{\infty} \frac{n}{2^n}.$$

La prima converge per il Teorema 4.2, in quanto

$$\frac{(n+1)!}{(2n+2)!}\frac{(2n)!}{n!} = \frac{n+1}{(2n+1)(2n+2)} \to 0.$$

La seconda converge per il Teorema 4.4, in quanto

$$\sqrt[n]{\frac{n}{2^n}} = \frac{\sqrt[n]{n}}{2} \to \frac{1}{2}.$$

Entrambi i criteri sopra riportati lasciano indeterminato il caso 'soglia', risp. $\frac{a_{n+1}}{a_n} \to 1$ e $\sqrt[n]{a_n} \to 1$. La serie armonica

$$\sum_{n=1}^{\infty} \frac{1}{n}$$

ricade in entrambi, ma può essere studiata mediante il seguente risultato (che non dimostriamo), e risulta divergente.

Teorema 4.7. (Criterio di condensazione) Sia $\sum_{n=0}^{\infty} a_n$ una serie a termini positivi t.c. (a_n) è non-crescente. Allora le sequenti affermazioni sono equivalenti:

- (i) $\sum_{n=0}^{\infty} a_n$ converge; (ii) $\sum_{n=0}^{\infty} 2^n a_{2^n}$ converge.

Esempio 4.8. La serie armonica generalizzata con esponente $\alpha > 0$ ha il seguente carattere

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} \begin{cases} \text{converge se } \alpha > 1 \\ \text{diverge se } \alpha \leqslant 1. \end{cases}$$

Infatti, per il Teorema 4.7, essa ha lo stesso carattere della serie geometrica

$$\sum_{n=0}^{\infty} (2^{1-\alpha})^n.$$

La tecnica più comune per studiare le serie a termini positivi è quella del confronto asintotico, illustrata dal seguente Esempio:

Esempio 4.9. Consideriamo la serie

$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right).$$

Il suo termine generale è positivo, e dall'Esempio 1.9 sappiamo che

$$\lim_{n} \frac{a_n}{b_n} = 1, \ a_n = \sin\left(\frac{1}{n}\right), \ b_n = \frac{1}{n},$$

in particolare si ha $a_n > \frac{b_n}{2}$ definitivamente. Dall'Esempio 4.8 sappiamo che $\sum_{n=1}^{\infty} b_n = +\infty$, da cui

$$\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right) = +\infty.$$

Esempio 4.10. Studiamo la seguente serie:

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} - \ln \left(\frac{n+1}{n} \right) \right).$$

Richiamando l'Esempio 2.7, si vede facilmente che

$$\frac{1}{n+1} < \ln\left(\frac{n+1}{n}\right) < \frac{1}{n},$$

così che la serie data è a termini positivi. Studiamo la successione delle somme parziali:

$$S_k = \left(1 - \ln(2)\right) + \left(\frac{1}{2} - \ln\left(\frac{3}{2}\right)\right) + \dots + \left(\frac{1}{k} - \ln\left(\frac{k+1}{k}\right)\right)$$

$$= 1 + \left(\frac{1}{2} - \ln(2)\right) + \dots + \left(\frac{1}{k} - \ln\left(\frac{k}{k-1}\right)\right) - \ln\left(\frac{k+1}{k}\right)$$

$$\leq 1 - \ln\left(\frac{k+1}{k}\right) \text{ (per (4.1))},$$

e l'ultimo termine tende a 1 per $k \to \infty$. Dunque la serie è convergente e la sua somma è un numero $\gamma \in]0,1]$ detto costante di Eulero-Mascheroni (non si sa se γ sia razionale o irrazionale).

Esercizio 4.11. Studiare il carattere delle seguenti serie a termini positivi:

$$\sum_{n=1}^{\infty} \frac{1}{n^3 + n}, \sum_{n=1}^{\infty} \ln\left(1 + \frac{1}{n}\right), \sum_{n=1}^{\infty} \frac{1}{\sqrt{n!}},$$

$$\sum_{n=1}^{\infty} \frac{1}{n \ln(n)}, \sum_{n=1}^{\infty} \frac{\ln(n)}{n}, \sum_{n=1}^{\infty} \frac{\sqrt{n+1} - \sqrt{n}}{n \ln(n)},$$

$$\sum_{n=1}^{\infty} \frac{2^n n!}{n^n}, \sum_{n=1}^{\infty} \sin\left(\frac{1}{\sqrt{n^2 + \ln(n)}}\right), \sum_{n=1}^{\infty} \left(e^{\frac{1}{n^2}} - 1\right).$$

Esercizio 4.12. Studiare la convergenza delle seguenti serie a termini positivi:

$$\sum_{n=0}^{\infty} \frac{e^n - 1}{(2e)^n}, \sum_{n=1}^{\infty} \left(1 - \cos\left(\frac{1}{n}\right) \right), \sum_{n=1}^{\infty} 4^n \left(\frac{2}{n^2} + 1\right),$$
$$\sum_{n=1}^{\infty} \frac{1 + \sin(n^2)}{1 + n^2}, \sum_{n=1}^{\infty} 4^n \sin\left(\frac{1}{2^n}\right), \sum_{n=1}^{\infty} 2^n \sin\left(\frac{1}{4^n}\right),$$

$$\sum_{n=1}^{\infty} \frac{\ln(n)^2 + 1}{n \ln(n)^2 + n^2 \ln(n)}, \sum_{n=1}^{\infty} \ln\left(\frac{n^3 + 1}{n^3 - 3n}\right) \ln(n),$$
$$\sum_{n=1}^{\infty} \frac{(n!)^2}{(2n)!}, \sum_{n=1}^{\infty} \frac{\sqrt{n} - \ln(n)}{5n^4 - 1}, \sum_{n=1}^{\infty} \frac{\arctan(n)}{n^2 + 1}.$$

5. Serie a termini di segno variabile e convergenza assoluta

In mancanza di informazioni sul segno dei termini, il carattere di una serie può essere qualunque. Per ricordurne lo studio a quello di una serie a termini positivi, si introduce una nozione più forte di convergenza.

Definizione 5.1. Una serie $\sum_{n=0}^{\infty} a_n$ è detta assolutamente convergente se la serie $\sum_{n=0}^{\infty} |a_n|$ converge.

Una serie assolutamente convergente è anche (semplicemente) convergente. Infatti, posto per ogni $n\in\mathbb{N}$

$$a_n^{\pm} = \max\{\pm a_n, 0\},\,$$

si ha $a_n = a_n^+ - a_n^-$, $|a_n| = a_n^+ + a_n^-$. Le serie $\sum_{n=0}^{\infty} a_n^{\pm}$, a termini non negativi, sono convergenti per il Teorema 4.1, dunque lo è anche $\sum_{n=0}^{\infty} a_n$ per il Lemma 3.6.

Esempio 5.2. La serie

$$\sum_{n=1}^{\infty} \frac{\sin(n)}{n^2}$$

è assolutamente convergente per confronto con $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (ved. Esempio 4.8).

Tuttavia, l'implicazione non si inverte. Un caso particolare è quello delle serie a termini di segno alterno, per le quali la convergenza (semplice) può essere acquisita sotto ipotesi generali.

Teorema 5.3. (Criterio di Leibniz) Sia (a_n) una successione non-crescente, a termini positivi, t.c. $a_n \to 0$. Allora la serie

$$\sum_{n=0}^{\infty} (-1)^n a_n$$

è convergente.

Dimostrazione. Sia (S_k) la successione delle somme parziali. La sotto-successione (S_{2k}) è decrescente e inferiormente limitata, in quanto per ogni $k \in \mathbb{N}$ si ha

$$S_{2k+2} = S_{2k} - a_{2k+1} + a_{2k+2} \leqslant S_{2k},$$

$$S_{2k} = a_1 + (a_2 - a_3) + \dots + (a_{2k} - a_{2k-1}) \geqslant a_1,$$

dunque (S_{2k}) converge per il Lemma 2.5 a $S \in \mathbb{R}$. Similmente si prova che (S_{2k+1}) è crescente e superiormente limitata, da cui $S_{2k+1} \to S'$. Infine osserviamo che

$$S' - S = \lim_{k} (S_{2k+1} - S_{2k}) = \lim_{k} a_{2k+1} = 0,$$

 \cos che $S_k \to S$.

Esempio 5.4. La serie

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

converge ma non assolutamente.

Esercizio 5.5. Determinare il carattere delle seguenti serie:

$$\sum_{n=1}^{\infty} \cos(n\pi) \sin\left(\frac{1}{n}\right), \ \sum_{n=1}^{\infty} (-1)^n \arcsin\left(\sqrt{\frac{n}{n^2+1}}\right), \ \sum_{n=1}^{\infty} (-1)^n \ln\left(\frac{n+1}{n}\right).$$

La somma (di un insieme finito di numeri reali) gode delle proprietà associativa e commutativa. Vediamo ora se, e sotto quali condizioni, esse si possano estendere a quelle 'somme infinite' che sono le serie.

Lemma 5.6. Sia $\sum_{n=0}^{\infty} a_n$ una serie regolare, e siano (k_n) una successione crescente in \mathbb{N} , con $k_0 = 0$. Sia $b_0 = 0$ e per ogni $n \in \mathbb{N}_0$

$$b_n = \sum_{j=k_{n-1}+1}^{k_n} a_j.$$

Allora la serie $\sum_{n=0}^{\infty} b_n$ ha lo stesso carattere (e la stessa somma in caso di convergenza) di $\sum_{n=0}^{\infty} a_n$.

Dimostrazione. Sia (S_k) la successione delle somme parziali di $\sum_{n=0}^{\infty} a_n$. Allora, la successione delle somme parziali di $\sum_{n=0}^{\infty} b_n$ è una sotto-successione di (S_k) , che ha lo stesso limite.

Esempio 5.7. La serie $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ è convergente. Raccogliendo opportunamente i suoi termini, si ottiene l'opposto della serie di Mengoli (ved. Esempio 3.2), che converge a 1. Dunque si ha

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n} = -1.$$

Le serie irregolari, invece, non godono della proprietà associativa:

Esempio 5.8. Consideriamo la serie $\sum_{n=0}^{\infty} (-1)^n$, che è irregolare. Associando i suoi termini a due a due $(k_n = 2n)$, si ottiene la serie a termini nulli, che è convergente a 0.

Per la proprietà commutativa occorre richiedere la convergenza assoluta (omettiamo la dimostrazione).

Lemma 5.9. Sia $\sum_{n=0}^{\infty} a_n$ una serie assolutamente convergente, e siano $\sigma : \mathbb{N} \to \mathbb{N}$ una funzione biunivoca e $b_n = a_{\sigma(n)}$ per ogni $n \in \mathbb{N}^3$. Allora la serie $\sum_{n=0}^{\infty} b_n$ ha lo stesso carattere (e la stessa somma in caso di convergenza) di $\sum_{n=0}^{\infty} a_n$.

La convergenza semplice non è sufficiente, come prova il seguente (sorprendente) risultato:

Teorema 5.10. (di Riemann-Dini) Sia $\sum_{n=0}^{\infty} a_n$ una serie convergente, t.c. $\sum_{n=0}^{\infty} |a_n| = +\infty$. Allora, per ogni $S \in \mathbb{R}$ esiste $\sigma : \mathbb{N} \to \mathbb{N}$ biunivoca t.c.

$$\sum_{n=0}^{\infty} a_{\sigma(n)} = S.$$

Per 'moltiplicare' due serie occorre introdurre una forma di convoluzione⁴.

Definizione 5.11. Siano $\sum_{n=0}^{\infty} a_n$, $\sum_{n=0}^{\infty} b_n$ due serie. Il loro prodotto secondo Cauchy è la serie

$$\sum_{n=0}^{\infty} c_n, \ c_n = \sum_{k=0}^{n} a_k b_{n-k}.$$

³Questo tipo di funzione è detto permutazione, e la serie così prodotta è un riordinamento di $\sum_{n=0}^{\infty} a_n$.

⁴La convoluzione è maggiormente legata alla teoria dell'integrazione, ved. [3].

Il prodotto di serie convergenti può non convergere.

Esempio 5.12. La serie

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{n+1}}$$

converge per il Teorema 5.3, ma il suo prodotto per se stessa ha termine generale

$$c_n = (-1)^n \sum_{k=0}^n \frac{1}{\sqrt{nk - k^2 + n + 1}},$$

che non tende a 0 per $n \to \infty$, quindi la serie $\sum_{n=0}^{\infty} c_n$ non converge (Lemma 3.4 (i)).

Anche in questo caso, la convergenza assoluta risolve il problema (omettiamo la dimostrazione):

Teorema 5.13. (Mertens) Siano $\sum_{n=0}^{\infty} a_n$ assolutamente convergente, $\sum_{n=0}^{\infty} b_n$ convergente. Allora il loro prodotto secondo Cauchy è una serie convergente e si ha

$$\sum_{n=0}^{\infty} c_n = \left(\sum_{n=0}^{\infty} a_n\right) \left(\sum_{n=0}^{\infty} b_n\right).$$

Esempio 5.14. Siano $q, r \in \mathbb{R}$ t.c. 0 < |q| < |r| < 1. Allora il prodotto secondo Cauchy delle serie geometriche di ragioni q, r risp. è convergente e ha somma $\frac{1}{(1-q)(1-r)}$.

Esempio 5.15. Riprendiamo e generalizziamo l'Esempio 4.5, dimostrando che per ogni $p \in \mathbb{N}_0$ si ha

$$\sum_{n=0}^{\infty} \frac{p^n}{n!} = e^p.$$

Procediamo per induzione. Il caso p=1 è noto. Supponiamo che (5.1) valga per $p\in\mathbb{N}_0$, e consideriamo il prodotto secondo Cauchy delle serie convergenti $\sum_{n=0}^{\infty}\frac{p^n}{n!},\sum_{n=0}^{\infty}\frac{1}{n!}$, il cui termine generale è

$$c_n = \sum_{k=0}^n \frac{p^k}{k!(n-k)!} = \frac{1}{n!} \sum_{k=0}^n \binom{n}{k} p^k = \frac{(p+1)^n}{n!}$$

per la formula del binomio di Newton (ved. [2]). Dunque, per il Teorema 5.13 e l'ipotesi induttiva si ha

$$\sum_{n=0}^{\infty} \frac{(p+1)^n}{n!} = \left(\sum_{n=0}^{\infty} \frac{p^n}{n!}\right) \left(\sum_{n=0}^{\infty} \frac{1}{n!}\right) = e^{p+1},$$

il che conclude la dimostrazione. In effetti, (5.1) vale anche per ogni $p \in \mathbb{R}$.

Esercizio 5.16. Studiare la convergenza semplice e assoluta delle seguenti serie:

$$\sum_{n=1}^{\infty} (-1)^n \left(e^{\frac{1}{n}} - 1 \right), \ \sum_{n=1}^{\infty} \frac{\sqrt{n} + (-1)^n n}{n^2}, \ \sum_{n=1}^{\infty} \frac{(-1)^n}{n + \sin(n)}.$$

RIFERIMENTI BIBLIOGRAFICI

- $[1]\,$ A. Iannizzotto, Pan di Via per i corsi di Analisi Matematica. ${\color{black}4}$
- [2] A. IANNIZZOTTO, Insiemi numerici. 2, 4, 6, 7, 8, 9, 11, 15, 19
- [3] A. IANNIZZOTTO, Calcolo integrale. 18
- [4] G. MALAFARINA, Matematica per i precorsi, McGraw-Hill (2007). 4
- [5] C.D. PAGANI, S. SALSA, Analisi matematica 1, Zanichelli (2015). 4

DIPARTIMENTO DI MATEMATICA E INFORMATICA UNIVERSITÀ DEGLI STUDI DI CAGLIARI VIALE L. MERELLO 92, 09123 CAGLIARI, ITALY *E-mail address*: antonio.iannizzotto@unica.it