Lecture 18: Dimensionality Reduction

Professor Ilias Bilionis

The dimensionality reduction problem

Unsupervised Learning

Your are given n observations:

$$\mathbf{x}_{1:n} = \{\mathbf{x}_1, ..., \mathbf{x}_n\}$$

(inputs, features, ...)

Assume that the observations are D dimensional ($D \gg 1$).

Problem: Describe the data using d dimensional variables $d \ll D$, $\mathbf{z}_{1:n} = \{\mathbf{z}_1, ..., \mathbf{z}_n\}$.

Example: MNIST 3s

Original data: 28 x 28 pixels -> D = 784

 $\underline{https://en.wikipedia.org/wiki/MNIST_database\#/media/File:MnistExamples.png}$

Can you describe them with fewer numbers?

Example: B-H curves of steel

Example: Von Mises stress on human skull

Lee, Turin, Gosain, Bilionis, Tepole, 2018

$$D = 6807$$

Can you describe them with fewer numbers?

Why is dimensionality reduction possible?

You can describe all the possible positions of this boy using only 4 numbers!

Dimensionality reduction is possible of symmetries and physical constraints!