Complexité algorithmique

TP: 5, 6, 7

Noté sur 20 points - évaluation en salle-machine

Objectifs:

- -- se familiariser avec l'algorithmique des graphes,
- -- évaluation de l'impact du choix d'une solution, des structures de données sur le temps d'exécution,
- -- évaluation de la complexité algorithmique,
- -- se familiariser avec le très fameux problème du voyageur de commerce

Le problème du voyageur de commerce

Le problème du voyageur de commerce consiste à trouver l'ordre de visite des villes qui minimise la distance totale parcourue par le voyageur. Les domaines d'applications sont nombreux : problèmes de logistique, de transport, d'ordonnancement, etc.

Nous étudierons dans ce TP deux variantes du problème. A titre d'exemple, on peut chercher le tour le plus court des plus grandes villes de France. Le problème est défini par un graphe G = (V, E) non orienté et valué de n sommets. Chaque sommet représente une ville, et chaque arête $(i, j) \in E$, une route entre les villes i et j ; la valeur associée à (i; j) est la distance de la route entre i et j.

TP N° 5 & 6 : L'objectif des deux premières questions est de vérifier que le graphe est connexe et de construire une matrice des distances entre toutes les villes.

Q1: Définir une fonction qui permet de lire un graphe depuis un fichier texte. Définir une autre fonction qui permet de générer un graphe aléatoire.

Q2 : Définir une fonction connexe() qui vérifie si le graphe des villes est connexe.

Q3 : On suppose maintenant que le graphe est bien connexe. On veut calculer toutes les longueurs des plus courts chemins entre toutes les villes. Ces distances seront stockées dans une matrice distance [][].

Remarque: on peut utiliser l'algorithme de Dijkstra

TP N°7: On s'intéresse maintenant au graphe complet (un graphe est complet si et seulement si ses sommets sont tous reliés deux à deux) valué donné par distance[][]. On cherche dans ce graphe complet une tournée, c'est-à-dire un cycle parcourant une et une seule fois chacune des villes avant de revenir à son point de départ.

On appelle longueur d'une tournée la somme des distances parcourues lors du parcours des villes incluant le retour au point de départ.

Proposez deux solutions :

Q4 : une 1ère variante simple : la solution constructive la plus simple consiste à partir d'une ville puis d'aller de ville en ville, en visitant à chaque fois la ville non visitée la plus proche. Donnez un exemple pour lequel cette solution ne renvoie pas la tournée la plus courte (on pourra éventuellement faire un dessin).

Q5: une 2ème variante qui renvoie une solution optimale.

Q6: comparer les temps d'exécution des deux variantes pour un nombre de villes allant de 10 à 20.