Dynamic Programming-3

Department of Computer Science, Tsinghua University

Outline

- Challenge I: what are the subproblems in DP?
 - ▶ Take one choice of the optimal solution away!
 - Maximum subarray (Ch4.1), Knapsack
- Challenge II: establish recurrences
 - Optimal substructure (Ch15.3)
 - Knapsack, Matrix Chain Multiplication (Ch15.2)
- Challenge III: implementations
 - Bottom-up vs.Top-down
 - Matrix Chain Multiplication, Knapsack

Recurrence of Knapsack

- Theorem (optimal substructure property): Define $z_{i,u}$ is an opt. profit for the subproblem of selecting from a_1, \ldots, a_i with a total weight $\leq u$. Then,
 - If a_i belongs to the opt. solution, then $z_{i,u} = z_{i-1,u-w_i} + v_i$
 - If a_i does not belong to the opt. solution, then $z_{i,u} = z_{i-1,u}$. So we compare both cases, and take the larger one.

Recursive solution:

$$z_{1,u} = \begin{cases} 0 & if \ u < w_1 \\ v_1 & otherwise \end{cases}$$

$$z_{i,u} = \begin{cases} 0 & if \ u \leq 0 \\ z_{i-1,u} & if \ u \leq w_i \\ \max(z_{i-1,u}, z_{i-1,u-w_i} + v_i) & otherwise \end{cases}$$

of Subproblems Knapsack

Original Solution Space:

- Use {0,1,1,...,0} to represent a subset of items
- \triangleright 2ⁿ possible subsets

of subproblems in DP

Define $z_{i,u}$ is an opt. profit for the subproblem of selecting from $a_1, ..., a_i$ with a total weight $\leq u$

Recurrence of MCM

- Let m[i,j] be the minimum number of scalar multiplications needed to computer the matrix chain $A_{i...j}$
- **Setup a recurrence for** m[i,j], then the original problem: a cheapest way would thus be m[1,n]
- If the optimal solution of $A_{i...j}$ cuts at k
 - $m[i,j] = m[i,k] + m[k+1,j] + p_{i-1}p_kp_j$
- \blacktriangleright Try all possible k and choose the minimum

of Subproblems MCM

Original Solution Space:

$$P(n) = \begin{cases} 1 & n = 1 \\ \sum_{k=1}^{n-1} P(k)P(n-k) & n > 1 \end{cases}$$

of subproblems in DP

```
 \begin{aligned} m[i,j] &= \\ 0 & \text{if } i=j \\ \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{aligned}
```


Steps of DP

- Steps of dynamic programming
 - Step I: Characterize the structure of an optimal solution
 - Step2: Recursively define the value of an optimal solution
 - Step3: Compute the value of an optimal solution


```
m[i,j] = \begin{cases} 0 & \text{if } i = j \\ \min_{i \le k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_k p_j\} & \text{if } i < j \end{cases}
```

Step3: Recursive

```
RECURSIVE-MATRIX-CHAIN (p, i, j)
//A_i has dimensions p_{i-1} \times p_i
1 if i == j
2 return 0
3 m[i, j] = \infty
4 for k = 1 to j - 1
5
       q = RECURSIVE-MATRIX-CHAIN(p, i, k)
            +RECURSIVE-MATRIX-CHAIN (p, k + 1, j)
            +p_{i-1}p_kp_i
6
        if q < m[i, j]
            m[i, j] = q
8 return m[i, j]
```


Step3: Recursive

• However without memoization, RECURSIVE-MATRIX-CHAIN is still exponential in n.

RECURSIVE-MATRIX-CHAIN(p, 1, 4)

$$T(n) > \sum_{k=1}^{n-1} (T(k) + T(n-k)) = 2 \sum_{k=1}^{n-1} T(k) \ge 2^{n-1}$$

Overlapping Subproblems

Overlapping subproblems property: We have relatively few distinct subproblems, a recursive algorithm may encounter each subproblem many times.

Two solutions:

- recursive algorithm with memoization: store the outputs of distinct subproblems
- bottom-up algorithm if possible: instead of computing the solution recursively, we compute the optimal cost by using a tabular, bottom-up approach

Step3: Memoization

```
MEMOIZED-MATRIX-CHAIN (p) LOOKUP-CHAIN (p, i, j)
1 n = p.length - 1
                              1 if m[i, j] < \infty
2 for i = 1 to n
                                     return m[i, j]
       for j = i to n 3 if i == j
              m[i, j] \leftarrow \infty \quad 4 \quad m[i, j] = 0
                              5 for k = i to i - 1
 return LOOKUP-CHAIN(p,
1, n)
                                         q = \text{LOOKUP-CHAIN}(p, i, k)
                                         +LOOKUP-CHAIN (p, k + 1, j)
                                         +p_{i-1}p_kp_i
                                             if q < m[i, j]
                                               m[i, j] = q
                              9 return m[i, j]
```

MEMOIZED-MATRIX-CHAIN runs in $O(n^3)$ time. Each of $\theta(n^2)$ table entries is filled by just one call of LOOKUP-CHAIN, each call takes O(n), excluding the time spent in computing other table entries.

Step3: Bottom-up

```
MATRIX-CHAIN-ORDER (p) //A_i has dimensions p_{i-1} \times p_i
1 n = p.length - 1
                                   The number of subproblems is
2 for i = 1 to n
                                   \theta(n^2); each one has \theta(n)choices;
                                   yielding a total running time of O(n^3)
       m[i, i] = 0
4 for l = 2 to n / / l is the length of subchains.
5
       for i = 1 to n - 1 + 1
              j = i + 1 - 1
6
              m[i, j] = \infty
              for k = i to j - 1
8
                      q = m[i, k] + m[k + 1, j] + p_{i-1}p_kp_j
9
10
                      if q < m[i, j]
11
                             m[i, j] = q
                             s[i, j] = k
12
```

13 return m and s

Step3: an Example

matrix dimension

$$A_1 30 \times 35$$
 $A_2 35 \times 15$ $A_3 15 \times 5$

$$A_4$$
 5 × 10 A_5 10 × 20 A_6 20 × 25

$$m[i,j] = \min_{i \le k < j} \{ m[i,k] + m[k+1,j] + p_{i-1}p_kp_j \}$$

Step 3: Knapsack

Example: Knapsack of capacity W = 5

<u>item</u>	weight	<u>value</u>		
1	2	\$12	(0	if $u \leq 0$
2	1	\$10	$z_{iu} = \begin{cases} 0 \\ z_{i-1,u} \\ \max(z_{i-1,u}, z_{i-1,u-w_i} + v_i) \end{cases}$	if $u < w_i$
3	3	\$20	$\left(\max(z_{i-1,u}, z_{i-1,u-w_i} + v_i)\right)$	otherwise
4	2	\$15		

capacity *u*

i	0	1	2	3	4	5	
1	0	0	12	12	12	12	
2				T			
3	0	10	12	122	30	32	
4	0	10	15	25	30	37	
	2 3	1 0 2 0 3 0	1 0 0 2 0 10 3 0 10	1 0 0 12 2 0 10 12 3 0 10 12	1 0 0 12 12 2 0 10 12 22 3 0 10 12 22	1 0 0 12 12 12 2 0 10 12 22 22 3 0 10 12 22 30	2 0 10 12 22 22 22 3 0 10 12 22 30 32

Step 3: Group Discussion

▶ Pros and Cons of bottom-up and top-down implementations.

Steps of DP

- Steps of dynamic programming
 - Step I: Characterize the structure of an optimal solution
 - Step2: Recursively define the value of an optimal solution
 - Step3: Compute the value of an optimal solution (bottom-up)
 - Step4: Construct an optimal solution from computed information

Step4: Constructing an optimal solution

```
PRINT-OPTIMAL-PARENS(s, i, j)

1 if i == j

2 print "A"i

3 else print "("

PRINT-OPTIMAL-PARENS(s, i, s[i, j])

PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)

print ")"
```


Design Points of DP

- When should we look for dynamic-programming solution to a problem?
 - Optimal Substructure
 - Easy to construct subproblems from the solution perspective.
- Steps of dynamic programming
 - Step I: Characterize the structure of an optimal solution
 - Step2: Recursively define the value of an optimal solution
 - Step3: Compute the value of an optimal solution (bottom-up)
 - Step4: Construct an optimal solution from computed information
- Two factors decide the running time of a bottom-up implementation:
 - the number of subproblems
 - the number of choices for each subproblem

Comparison with D&C

	Divide & Conquer	Dynamic Programming	
"Recursive" nature	Yes	Yes	
Combine solutions to subproblems	Yes	Yes	
Partition subproblems	Even partitions	Making one choice at a time	
Overlapping subproblems	No	Yes	
Primarily for optimization	No	Yes	
Optimal substructure		Yes (to develop a recurrence)	
Preprocessing	Sometimes		
Top-down vs. Bottom-up	Top-down (but)	Bottom-up (but)	
Characteristic running time	Recurrence of running time	The space of subproblems	

In-class Exercise

▶ T/F

- Both D&C algorithms and DP algorithms view a problem as a collection of subproblems.
- We normally determine the running time of both D&C algorithms and DP algorithms by solving a recurrence.

