# CS 189/289

Today's lecture outline

Methods for Evaluating Classifiers

Assigned reading:

5.25, 5.26 (classifier accuracy, ROC curves)

# Previously: cross-validation (CV)



- CV: re-use your data to train/validate, with one final test set.
- Suppose we were evaluating classifiers, what might we compute for each test fold?

## How to pick between these two classifiers?

| TRUTH | Logistic regression | Neural network |
|-------|---------------------|----------------|
| 1     | 0.7198              | 0.9038         |
| 0     | 0.2460              | 0.8455         |
| 0     | 0.1219              | 0.4655         |
| 0     | 0.1560              | 0.3204         |
| 0     | 0.7527              | 0.2491         |
| 1     | 0.3064              | 0.7129         |
| 0     | 0.7194              | 0.4983         |
| 0     | 0.5531              | 0.6513         |
| 1     | 0.2173              | 0.3806         |
| 0     | 0.0839              | 0.1619         |
| 1     | 0.8429              | 0.7028         |

What evaluation metric/quantity applied to these data could help decide which model to use?

# How to pick between these two classifiers?

- We could use threshold of p=0.5 and count the # of misclassifications that each model makes ("accuracy").
- Assumes probabilities are "calibrated".
- Similarly so does hold out log likelihood.
- Suppose model is not *calibrated*, but there exists a threshold other than 0.5 that yields perfect prediction. Is this a good classifier?
- Also, what if the model is not probabilistic?
- ROC curves are going to help us deal with these issues.

| TRUTH | Logistic regression | Neural network |
|-------|---------------------|----------------|
| 1     | 0.7198              | 0.9038         |
| 0     | 0.2460              | 0.8455         |
| 0     | 0.1219              | 0.4655         |
| 0     | 0.1560              | 0.3204         |
| 0     | 0.7527              | 0.2491         |
| 1     | 0.3064              | 0.7129         |
| 0     | 0.7194              | 0.4983         |
| 0     | 0.5531              | 0.6513         |
| 1     | 0.2173              | 0.3806         |
| 0     | 0.0839              | 0.1619         |
| 1     | 0.8429              | 0.7028         |



#### A miscalibrated but useful classifier

| TRUTH | Logistic regression | Neural network |
|-------|---------------------|----------------|
| 1     | 0.88                | 0.9038         |
| 0     | 0.77                | 0.8455         |
| 0     | 0.59                | 0.4655         |
| 0     | 0.81                | 0.3204         |
| 0     | 0.7527              | 0.2491         |
| 1     | 0.93                | 0.63           |
| 0     | 0.7194              | 0.4983         |
| 0     | 0.5531              | 0.6513         |
| 1     | 0.98                | 0.3806         |
| 0     | 0.0839              | 0.1619         |
| 1     | 0.8429              | 0.7028         |

- If we pick the "optimal" decision of p=0.5 decision boundary, we will choose the model "containing less information" (NN)!
- Whereas best LR threshold of 0.8 gives 0 errors, while best NN threshold of 0.5 gives 3 errors.

# Defining false positives, false negatives, etc.

[We will consider only binary classifiers in today's lecture]

Distribution of classifier "scores" of unhealthy and healthy individuals in a test set



# Defining false positives, false negative, etc.

[We will consider only binary classifiers in today's lecture]

Choose a threshold on the score/probabilistic output, and call/predict all samples above it a "1" (e.g. "healthy) and all those below it a "-1" (e.g. "unhealthy").

Distribution of classifier "scores" of unhealthy and healthy individuals in a test set



# Definitions: True Positives (TP)



# Definitions: False Positives (FP)



# Definitions: True Negatives (TN)



# Definitions: False Negatives (FN)





Once we set a *decision* threshold on the predictive score, all test data points fall into one of these four categories:

- 1. False Positive (FP)—person is truly a "-1" but called "1"
- 2. False Negative (FN)—person is truly a "1" but called "-1"
- 3. True Positive (TP) —person is truly a "1" and called "1"
- 4. True Negative (TN) —person is truly a "-1" and called "-1"
- Thus if N is total # of test points, then N=FP+FN+TP+TN
- FP and FN are mistakes when using the classifier.
- TP and TN are correct decisions when using the classifier.

Often we see these reported in the form of a confusion matrix:

|              |          | MODEL PREDICTIONS |          |                         |
|--------------|----------|-------------------|----------|-------------------------|
|              |          | Negative          | Positive |                         |
| CDOUND TRUTH | Negative | TN                | FP       | #actual negatives=TN+FP |
| GROUND TRUTH | Positive | FN                | TP       | #actual positives=FN+TP |

[Adapted https://hiplab.mc.vanderbilt.edu/people/malin/presentations/ROC\_Curves.ppt]

Rates: "normalize" by #samples who could have had that call:

- TP rate, TPR=TP/#actual positives=TP/(FN+TP), aka Sensitivity
- TN rate, TNR=TN/#actual negatives=TN/(TN+FP), aka Specificity
- FN rate, FNR=FN/#actual positives=1-TPR aka Miss Rate
- FP rate, FPR=FP/#actual negatives=1-TNR aka Fall out

|              |          | MODEL P  | REDICTIONS |                         |
|--------------|----------|----------|------------|-------------------------|
|              |          | Negative | Positive   |                         |
| CROUND TRUTU | Negative | TN       | FP         | #actual negatives=TN+FP |
| GROUND TRUTH | Positive | FN       | TP         | #actual positives=FN+TP |



#### As we shift it, we can draw out an ROC curve



#### Comparing ROC curves across classifiers





How would a perfect classifier appear on this plot?

#### Comparing ROC curves across classifiers





#### Comparing ROC curves across classifiers





#### Which model would you choose?



- In this example, no one classifier (A or B) *dominates* in ROC space.
- Thus we might ask what regime is most relevant to our problem.
- e.g. suppose you know you need few false positives, then you should pick method A, which dominates up until FPR 40%.

# An algorithm for making an ROC curve

Exploit the property that any instance that is classified as + at a given threshold, will be classified as + for all lower thresholds as well:

- 1. Sort the test instances by decreasing score.
- 2. Move down the list (lowering the threshold), processing one instance at a time. For each instance,
- 3. Computer the TPR and FPR and add one point to the plot.

\*Table does not correspond to figure



| LOGISTIC<br>Regression<br>score |  |
|---------------------------------|--|
| 0.98                            |  |
| 0.93                            |  |
| 0.88                            |  |
| 0.8429                          |  |
| 0.81                            |  |
| 0.77                            |  |
| 0.7527                          |  |
| 0.7194                          |  |
| 0.59                            |  |
| 0.42                            |  |
| 0.0839                          |  |
|                                 |  |

# An algorithm for making an ROC curve

- Smoothness of the ROC curve is dependent on the # of points in it
- Restricted by # of test points and uniqueness of scores:





#### Summarizing ROCs with the Area Under the Curve (AUC)

- AUC: often used to compare classifiers.
- The bigger the AUC the better.
- AUC can be computed by a slight modification to the algorithm for constructing ROC curves—basically a simple form of integration to compute the area under the curve.

  Trapezoid Rule  $\int_a^b f(x) dx \approx \sum_{n=0}^{N-1} \frac{1}{2} (f_n + f_{n+1}) (\Delta x)_n$



#### Summarizing ROCs with the Area Under the Curve (AUC)



The AUC of a classifier is equivalent to the probability that the classifier will rank a randomly chosen positive sample higher than a randomly chosen negative sample.

#### Visualization of score distributions wrt ROCs & AUC

- 1. Sweeping a threshold through the predictions for one classifier traces out the ROC curve.
- 2. The more separated the distribution of scores between the two classes, the larger the AUC.



#### Partial Area Under the Curve (AUC)



Sometimes we know we would never operate with a FPR above some amount, and so we compute a *partial* AUC, here *AUC(0.2)*.

- e.g. deciding on medical intervention like chemotherapy
- e.g. deciding to spend lots of \$\$\$ in follow up biology experiments.

#### History of ROC curves

- "The ROC curve was first developed by electrical engineers and radar engineers during World War II (1939-45) for detecting enemy objects in battle fields and was soon introduced to psychology to account for perceptual detection of stimuli."
- "ROC analysis since then has been used in medicine, radiology, biometrics, and other areas for many decades and often used in machine learning and data mining research and applications."



#### More on ROC curves

ROC curves are insensitive to the balance of classes in the test set (because FPR and FNR are insensitive quantities).

- TP rate, TPR=TP/#actual positives=TP/(FN+TP)
- TN rate, TNR=TN/#actual negatives=TN/(TN+FP)
- To obtain classification accuracy from an ROC, need to know the balance (i.e. ratio of # actual positives to # actual negatives in the test set).
- ➤ Knowing this we can find a point on the graph with optimal classification accuracy.
- ➤ Sometimes we use Precision-Recall curves instead of ROC because desire sensitivity to the balance of classes.

Rates: "normalize" by #samples who could have had that call:

- TP rate, TPR=TP/#actual positives=TP/(FN+TP), aka "Sensitivity"
- TN rate, TNR=TN/#actual negatives=TN/(TN+FP), aka "Specificity"
- FN rate, FNR=FN/#actual positives=1-TPR aka "Miss Rate"
- FP rate, FPR=FP/#actual negatives=1-TNR aka "Fall out"
- Precision=TP/(#predicted positive)=TP/(TP+FP)—this now depends on class balance in test set.
- Recall=TPR=Sensitivity

|              |          | MODEL PREDICTIONS |          |    |
|--------------|----------|-------------------|----------|----|
|              |          | Negative          | Positive |    |
| GROUND TRUTH | Negative | TN                | FP       | #a |
| GROUND IRUIN | Positive | FN                | TP       | #a |

#actual negatives=TN+FP

#actual positives=FN+TP

#### Precision Recall Curves

- Wrt ROC: replace FPR with Precision and flip the axes.
- ROC curves useful when we want invariance to class distribution.
- Precision-recall curves useful when care about (and know) the balance of the classes at test time.





#### Summary of ROC curves and their utility

- Gives more nuanced understanding than counting the # of misclassifications.
- Does not require a decision threshold.
- Summarizes performance of binary classification models, across all possible trade-offs in decision making FPR and FNR.
- Does not care about model calibration (can be a pro or a con).
- Can compare classifiers by comparing their AUC summary, or using the entire ROC curves, or just part of curve for AUC/ROC.



If you care about (probabilistic) model calibration

- Then you should NOT use ROC curves to evaluate, because they don't care about "calibrated uncertainty" of the predictions.
- Calibrated uncertainty can be very important in medical applications, such as to determine treatments, or administering invasive diagnostics.
- Calibration also come into ML-based design--e.g. in small molecule engineering (e.g. use a
  predictive model to design the best binder to
  drug target).
- Also in "active learning".





ACS Cent. Sci. 2018, 4, 268-276

#### Many other evaluations—dictated by the domain of application

- Predict a Ranking (of webpages)
  - Users only look at top 4
  - Sort by f(x|w,b)
- Precision @4 = 1/2
  - Fraction of top 4 relevant
- Recall @4 =2/3
  - Fraction of relevant in top 4
- Top of Ranking Only!



# If we care about these metrics, why not use them as a loss function to train the model?

- These losses are often not differentiable everywhere (e.g. AUC and others have hard thresholding).
- Can't use mini-batch (ranking requires entire test set), hence can't use SGD.
- Some niche attempts to make metrics differentiable, but in practice, rarely used.

#### Learning cost-sensitive classifiers

- In regular classification (all we have seen so far), we treat all types of misclassification errors the same (e.g. in using a likelihood cost function, but also in general).
- A more general setting is to learn cost-sensitive classifiers where we allow for different types of errors to have more or less impact.

  Patient

Model

| Loss Function      | Has Cancer | Doesn't Have<br>Cancer |
|--------------------|------------|------------------------|
| Predicts Cancer    | Low        | Medium                 |
| Predicts No Cancer | OMG Panic! | Low                    |

#### Learning cost-sensitive classifiers

- In regular classification (all we have seen so far), we treat all types of misclassification errors the same (e.g. in using a likelihood cost function, but also in general).
- A more general setting is to learn cost-sensitive classifiers where we allow for different types of errors to have more or less impact.

  Patient

|       | Loss Function      | Has Cancer | Doesn't Have<br>Cancer |
|-------|--------------------|------------|------------------------|
|       | Predicts Cancer    | Low        | Medium                 |
| )<br> | Predicts No Cancer | OMG Panic! | Low                    |

 Note this is conceptually orthogonal to ROC & Precision-Recall which are to evaluate classifiers.

#### Optimizing for Cost-Sensitive Loss

 No universally accepted way, but a common and simple one is to use a "Cost Balancing" loss (effectively you are "rebalancing" the training data by your costs):

$$\underset{w,b}{\operatorname{argmin}} \left( 1000 \sum_{i:y_i=1} L(y_i, f(x_i \mid w, b)) + \sum_{i:y_i=-1} L(y_i, f(x_i \mid w, b)) \right)$$

user-defined cost matrix

| Loss Function      | Has Cancer | Doesn't Have<br>Cancer |
|--------------------|------------|------------------------|
| Predicts Cancer    | 0          | 1                      |
| Predicts No Cancer | 1000       | 0                      |

## Extra