测试实验报告

课程:图形学

任课老师: 孙正兴

姓名: 金鑫

学号: 121220307

CONTENT

1.	引言.		2
	1.1	编写目的	2
	1.2	用户群	2
	1.3	背景	2
	1.4	术语定义	2
	1.5	测试对象	3
	1.6	测试阶段	3
	1.7	测试工具	3
2.	测试	慨要	4
	2. 1	测试环境	4
		2.1.1 硬件环境	4
		2.1.2 软件环境	4
	2.2	测试目的	4
	2.3	测试执行	4
	2.4	测试人员及时间	4
		2.4.1 测试人员	4
		2.4.2 测试时间	5
	2.5	测试用例	5
3.	测试	内容及过程	5
	3. 1	功能测试	5
	3. 2	易用性测试	6
4.	测试:	结果及缺陷分析	7
	4. 1	测试结果综述	7
	4.2	测试结果记录与分析	7
		4.2.1 测试是否能够绘制直线	7
		4.2.2 测试是否能够绘制圆形	7
		4.2.3 测试是否能够绘制椭圆形	8
		4.2.4 测试是否能够绘制矩形	8
		4.2.5 测试是否能够绘制多边形	8
		4.2.6 测试是否能够填充圆形	
		4.2.7 测试是否能够填充椭圆形	
		4.2.8 测试是否能够填充矩形	
5.		结论与建议1	
		功能性	1
	5. 2	兼容性	1

1. 引言

1.1 编写目的

编写该测试报告说明书主要有以下目的:

- 1.1.1 通过对测试结果的分析,得到对软件质量的评价
- 1.1.2 分析测试的过程,产品,资源,信息,为以后制定测试计划提供参考
- 1.1.3 评估测试测试执行和测试计划是否符合
- 1.1.4 分析系统存在的缺陷,为修复和预防 bug 提供建议

预期参考人员包括:用户、测试人员、开发人员、项目管理者、项目验收者。

1.2 用户群

主要读者:课程老师,课程助教

其他读者:对本软件有兴趣的同学

1.3 背景

图形学课程我们学习了线画图元,填充图元的知识,在老师的要求下,我们理论联系实践,进一步通过程序实现相关内容。

1.4 术语定义

- A. 系统: Drawing Board
- B. 用户:课程助教及任课老师
- C. 管理员:负责维护系统、审查数据的人员
- D. 一级错误:不能完全满足系统要求,基本功能未完全实现;或者危及人身安全。
- E. 二级错误:严重地影响系统要求或基本功能的实现,且没有更正办法(重新安装或重新启动该软件不属于更正办法)。
- F. 三级错误:严重地影响系统要求或基本功能的实现,但存在合理的更正办法(重新安装或重新启动该软件不属于更正办法)。
- G. 四级错误: 使操作者不方便或遇到麻烦,但它不影响执行工作功能或重要功能。

- H. 五级错误: 其他错误。
- I. 回测:产生测试错误或缺陷的测试项由软件开发人员进行修改调试正确后,由软件测试人员再次进行的针对该测试项以及相关项的测试。

1.5 测试对象

Drawing Board

1.6 测试阶段

软件测试

1.7 测试工具

人工手动测试

2. 测试概要

2.1 测试环境

2.1.1 硬件环境

CPU: Intel PD 3.0GHz

内存: 1G DDR2 667 内存 可扩充至 2G

硬盘: 1 个 7200RPM 80GB SATA 硬盘

2.1.2 软件环境

PC 端操作系统 Windows 8.1

2.2 测试目的

根据需求规格书进行测试,查找系统缺陷和问题,验证系统是否满足需求规格,保证在系统交付之前在各方面都能达到用户的要求,保证系统的可靠性与鲁棒性。

2.3 测试执行

此次测试严格按照项目计划和测试计划执行,按时完成了测试计划规定的测试对象的测试。针对测试计划规定的测试策略,在测试执行中都有体现,在测试执行过程中,依据测试计划和测试用例,对系统进行了完整的测试。

2.4 测试人员及时间

2.4.1 测试人员

测试工程师: 金鑫

测试参与人员: 金鑫

2.4.2 测试时间

开始: 2015年04月30

截止: 2012年04月30

2.5 测试用例

系统采用等价类和边界值等方法进行系统测试,根据需求规格说明说,划分出如下等 价类

- A. 线画图元: 画线
- B. 线画图元:画圆
- C. 线画图元: 画椭圆
- D. 线画图元: 画矩形
- E. 线画图元: 画多边形
- F. 填充图元:填充圆形
- G. 填充图元:填充椭圆形
- H. 填充图元:填充矩形

3. 测试内容及过程

3.1 功能测试

A、测试重点:验证是否能够画线

B、测试重点: 验证是否能够画圆

C、测试重点:验证是否能够画椭圆形

D、测试重点:验证是否能够画矩形

E、测试重点:验证是否能够画多边形

F、测试重点:验证是否能够填充圆形

G、测试重点:验证是否能够填充椭圆形

H、测试重点:验证是否能够填充矩形

3.2 易用性测试

A、测试重点:测试操作按钮提示信息正确性,一致性,可理解性

测试方法: 鼠标悬停个按钮, 挨个查看核对按钮提示信息

B、测试重点: 限制条件提示信息正确性, 一致性, 可理解性

测试方法: 寻找输入信息框, 查看并核对输入限制, 操作限制等信息

C、测试重点:测试系统各界面风格的友好性、一致性

测试方法:逐个查看系统的各个界面,检查显示的信息是否清晰可见,背景图片是否风格一致、画面美观舒适。

4. 测试结果及缺陷分析

4.1 测试结果综述

总的错误分布情况:

错误类型	发现错误量	修改错误量	修复率(%)	占错比(%)
一级错误	0	0		
二级错误	0	0		
三级错误	0	0		
四级错误	0	1	100	50%
五级错误	0	1	100	50%
错误合计	0	3	100	100%

4.2 测试结果记录与分析

4.2.1 测试是否能够绘制直线

测试是否能够绘制直线

4.2.2 测试是否能够绘制圆形

绘制圆形结果如下:

4.2.3 测试是否能够绘制椭圆形

椭圆形绘制结果如下:

4.2.4 测试是否能够绘制矩形

矩形绘制结果如下:

4.2.5 测试是否能够绘制多边形

多边形绘制结果:

4.2.6 测试是否能够填充圆形

圆形填充结果:

4.2.7 测试是否能够填充椭圆形

椭圆形填充结果:

4.2.8 测试是否能够填充矩形

填充矩形结果:

5. 测试结论与建议

5.1 功能性

实验性课程如下要求:

- 1. 至少包括一种线画图元生成算法→生成三种以上线画图形
- 2. 至少包括一种填充图元生成算法→生成三种以上填充区域
- 3. 至少具有用户交互定义功能:输入线画图形和填充区域

5.2 兼容性

本软件使用 Java 编写,具有平台的可移植性。目前主要支持的平台是 windows,其他平台 如 Mac 和 Linux 可能会存在一些美观上的缺陷。