ниу итмо

Факультет Программной Инженерии и Компьютерной Техники

Вариант №8722 **Лабораторная работа №3 по дисциплине**'Основы профессиональной деятельности'

Выполнил:

Студент группы Р3113 Кириллова Надежда

Преподаватель:

Николаев Владимир Вячеславович

1. Описание задания:

По выданному преподавателем варианту восстановить текст заданного варианта программы, определить предназначение и составить описание программы, определить область представления и область допустимых значений исходных данных и результата, выполнить трассировку программы.

46B:	047C	479:	846D
46C:	A000	47A:	CEFA
46D:	E000	47B:	0100
46E:	0200	47C:	0000
46F:	+ 0200	47D:	F100
470:	EEFD	47E:	0300
471:	AF03		
472:	EEFA		
473:	4EF7		
474:	EEF7		
475:	ABF6		
476:	F202		
477:	F001		
478:	AAF5		

2. Исходная программа:

	T		
A = = = =	Код	NA	Положения
Адрес	команды	Мнемоника	Пояснение
46B	047C	Α	Адрес начала массива.
46C	A000	В	Ячейка для хранения адреса текущего элемента массива.
46D	E000	С	Ячейка для хранения числа необработанных элементов массива.
46E	0200	D	Результат
46F	0200	CLA	Очищаем аккумулятор.
470	EEFD	ST IP-3	Записываем значение из аккумулятора в ячейку 46Е, обнуляем 46Е.
471	AF03	LD #03	Переписываем значение аккумулятора при помощи прямой загрузки операнда (Количество итераций цикла).
472	EEFA	ST IP-6	Сохраняем значение аккумулятора в ячейку 46D.
473	4EF7	ADD IP-9	Складываем значение аккумулятора со значением ячейки 46B, получаем конец массива.
474	EEF7	ST IP-9	Сохраняем значение аккумулятора в ячейку 46С.
475	ABF6	LD -(A)	Загружаем в аккумулятор элементы массива начиная с последнего (ячейку 47D).
476	F202	BMI 02	Сравниваем элементы массива с нулем.
477	F001	BEQ 01	
478	AAF5	LD (B)+	Если число положительное, то прибавляем к ячейке 46Е единицу.
479	846D	LOOP 46D	Вычитаем из числа оставшихся итераций 1, если число
47A	CEFA	JUMP IP-6	положительное, снова проходимся по циклу,
47B	0100	HLT	иначе выходим из программы.
47C	0000	X_1	
47D	F100	X_2	Элементы массива
47E	0300	<i>X</i> ₃	

3. Описание программы:

а. Назначение программы:

Программа считает число положительных элементов массива. Элементы массива в ходе выполнения программы не изменяются, в ячейке 46С хранится адрес текущего элемента массива, в 46D — число оставшихся элементов(итераций).

$$D = \sum_{i=1}^{3} \begin{cases} 1, X_i > 0 \\ 0, X_i \le 0 \end{cases}$$

b. Область представления и область допустимых значений исходных данных и результата:

і. Область представления:

<u>А,В</u> 11 — разрядные целые беззнаковые числа. Диапазон значений: $0 \dots 2^{11}-1$ <u>X1 — X3</u> 16 — разрядные знаковые числа. Диапазон значений: $-2^{15} \dots 2^{15}-1$

іі. Область допустимых значений исходных данных и результата: Область допустимых значений X_1-X_3 совпадает с областью их представления.

Область допустимых значений А — ячейки, хранящей адрес начала массива, - $[000;\ 468]\ \cup\ [47B;\ 7FD].$

Область допустимых значений D совпадает с областью ее определения.

с. Расположение в памяти ЭВМ программы, исходных данных и результатов: Программа: 46F – 47B

А (0х46В) - адрес начала массива

D (0x46E) – ячейка для записи результата работы программы

Вспомогательные данные: 46C, 46D

Элементы массива: 47С – 47Е

d. Адреса первой и последней выполняемой команд программы:

Адрес первой команды: 46F

Адрес последней команды: 47В

4. Таблица трассировки:

	Выполняемая Содержимое регистров процессора после выполнения команды							Ячейка, содержимое которой изменилось			
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код
46F	0200	470	0200	46F	0200	000	046F	0000	0100		
470	EEFD	471	EEFD	46E	0000	000	FFFD	0000	0100	46E	0000
471	AF03	472	AF03	471	0003	000	0003	0003	0000		
472	EEFA	473	EEFA	46D	0003	000	FFFA	0003	0000	46D	0003
473	4EF7	474	4EF7	46B	047C	000	FFF7	047F	0000		_
474	EEF7	475	EEF7	46C	047F	000	FFF7	047F	0000	46C	047F

475	ABF6	476	ABF6	47E	0300	000	FFF6	0300	0000	46C	047E
476	F202	477	F202	476	F202	000	0476	0300	0000		
477	F001	478	F001	477	F001	000	0477	0300	0000		
478	AAF5	479	AAF5	000	0000	000	FFF5	0000	0100	46E	0001
479	846D	47A	846D	46D	0001	000	0479	0000	0100	46D	0002
47A	CEFA	475	CEFA	47A	0475	000	FFFA	0000	0100		
475	ABF6	476	ABF6	47D	F100	000	FFF6	F100	1000	46C	047D
476	F202	479	F202	476	F202	000	0002	F100	1000		
479	846D	47A	846D	46D	0000	000	0479	F100	1000	46D	0001
47A	CEFA	475	CEFA	47A	0475	000	FFFA	F100	1000		
475	ABF6	476	ABF6	47C	0000	000	FFF6	0000	0100	46C	047C
476	F202	477	F202	476	F202	000	0476	0000	0100		
477	F001	479	F001	477	F001	000	0001	0000	0100		
479	846D	47B	846D	46D	FFFF	000	0479	0000	0100	46D	0000
47B	0100	47C	0100	47B	0100	000	047B	0000	0100		

Таблица трассировки с полученными числами:

 $X_1 = 10000 = 2710_{16}$ $X_2 = -100 = FF9C_{16}$ $X_3 = 5000 = 1388_{16}$ $X_4 = -30000 = 8AD0_{16}$ $X_5 = 32000 = 7D00_{16}$

Выполн команд		Содержимое регистров процессора после выполнения команды									Ячейка, содержимое которой изменилось	
Адрес	Код	IP	CR	AR	DR	SP	BR	AC	NZVC	Адрес	Новый код	
46F	0200	470	0200	46F	0200	000	046F	0000	0100			
470	EEFD	471	EEFD	46E	0000	000	FFFD	0000	0100	46E	0000	
471	AF05	472	AF05	471	0005	000	0005	0005	0000			
472	EEFA	473	EEFA	46D	0005	000	FFFA	0005	0000	46D	0005	
473	4EF7	474	4EF7	46B	047C	000	FFF7	0481	0000			
474	EEF7	475	EEF7	46C	0481	000	FFF7	0481	0000	46C	0481	
475	ABF6	476	ABF6	480	7D00	000	FFF6	7D00	0000	46C	0480	
476	F202	477	F202	476	F202	000	0476	7D00	0000			
477	F001	478	F001	477	F001	000	0477	7D00	0000			
478	AAF5	479	AAF5	000	0000	000	FFF5	0000	0100	46E	0001	
479	846D	47A	846D	46D	0003	000	0479	0000	0100	46D	0004	
47A	CEFA	475	CEFA	47A	0475	000	FFFA	0000	0100			
475	ABF6	476	ABF6	47F	8AD0	000	FFF6	8AD0	1000	46C	047F	
476	F202	479	F202	476	F202	000	0002	8AD0	1000			
479	846D	47A	846D	46D	0002	000	0479	8AD0	1000	46D	0003	
47A	CEFA	475	CEFA	47A	0475	000	FFFA	8AD0	1000			
475	ABF6	476	ABF6	47E	1388	000	FFF6	1388	0000	46C	047E	
476	F202	477	F202	476	F202	000	0476	1388	0000			
477	F001	478	F001	477	F001	000	0477	1388	0000			
478	AAF5	479	AAF5	001	0000	000	FFF5	0000	0100	46E	0002	
479	846D	47A	846D	46D	0001	000	0479	0000	0100	46D	0002	
47A	CEFA	475	CEFA	47A	0475	000	FFFA	0000	0100			
475	ABF6	476	ABF6	47D	FF9C	000	FFF6	FF9C	1000	46C	047D	

476	F202	479	F202	476	F202	000	0002	FF9C	1000		
479	846D	47A	846D	46D	0000	000	0479	FF9C	1000	46D	0001
47A	CEFA	475	CEFA	47A	0475	000	FFFA	FF9C	1000		
475	ABF6	476	ABF6	47C	2710	000	FFF6	2710	0000	46C	047C
476	F202	477	F202	476	F202	000	0476	2710	0000		
477	F001	478	F001	477	F001	000	0477	2710	0000		
478	AAF5	479	AAF5	002	0000	000	FFF5	0000	0100	46E	0003
479	846D	47B	846D	46D	FFFF	000	0479	0000	0100	46D	0000
47B	0100	47C	0100	47B	0100	000	047B	0000	0100		

В ячейке результата по итогу выполнения программы получаем 3.

Проверим, формулу, чтобы удостовериться в верности формулы:

D = 0

- 1) 32000 > 0, D = 1
- 2) -30000 < 0, D = 1 + 0
- 3) 5000 > 0, D = 1 + 0 + 1
- 4) -100 < 0, D = 1 + 0 + 1 + 0
- 5) 10000 > 0, D = 1 + 0 + 1 + 0 + 1D = 3

Таким образом, результат полученной формулы совпал с экспериментальным результатом.

5. Диапазон всех ячеек памяти, где может размещаться массив исходных данных: Первый элемент массива: 000 – 468, 47B - 7FD

Последний элемент массива: 002 - 46A, 47D - 7FF

6. Вывод:

В ходе данной лабораторной работы познакомилась, на практике, с командами ветвления, организацией циклических программ, командой LOOP и режимами адресации.