Санкт-Петербургский политехнический университет Петра Великого Физико-механический институт

Направление подготовки «01.04.02 Прикладная математика и информатика»

Отчёт по лабораторной работе №2 по дисциплине «Анализ данных с интервальной неопределенностью»

Выполнила студентка гр. 5040102/20201

Харисова Т.А.

Преподаватель

Баженов А.Н.

Санкт-Петербург

2023

Оглавление

Постановка задачи	3
Теория	3
Реализация	
Результаты	3
Анализ результатов	10
Список иллюстраций	
Рисунок 1. Линейная регрессия для У1	4
Рисунок 2. Информационное множество для У1	4
Рисунок 3. Коридор совместных зависимостей для У1	5
Рисунок 4. Линейная регрессия для У2	5
Рисунок 5. Информационное множество для Y2	6
Рисунок 6. Коридор совместных зависимостей для Y2	6
Рисунок 7. Линейная регрессия для Y3	7
Рисунок 8. Информационное множество для УЗ	
Рисунок 9. Коридор совместных зависимостей для Y3	
Рисунок 10. Линейная регрессия для Y4	
Рисунок 11. Информационное множество для У4	
Рисунок 12. Коридор совместных зависимостей для Y4	
Список таблиц	
Таблица 1. Параметры линейной регрессии для каждой выборки	10

Постановка задачи

Дана интервальная выборка. Требуется восстановить для нее функциональную зависимость.

Теория

Заданы $X = \{x_i\}_{i=1}^n$ — точечная выборка независимых входных данных, $Y = \{y_i\}_{i=1}^n$ — интервальная выборка выходных данных.

Задача поиска функциональной зависимости выглядит следующим образом:

$$y_i = f(x_i, \beta), \qquad i = 1..n, \tag{1}$$

требуется для заданных (X,Y) найти вектор параметров β .

При построении линейной регрессионной модели набор данных аппроксимируется прямой:

$$y_i = \beta_1 x_i + \beta_0 \tag{2}$$

Для оценки параметров β_1 и β_2 необходимо найти решение системы вида:

$$y_i \le \beta_1 x_i + \beta_0 \le \overline{y_i}, \qquad i = 1..n.$$
 (3)

В случае несовместных данных применяется метод вариации неопределенности, с учетом которого система (3) преобразуется в задачу минимизации

$$\sum_{i=1}^{n} w_i \to \min \tag{4}$$

с условиями

$$\operatorname{mid} y_i - w_i \operatorname{rad} y_i \le \beta_1 x_i + \beta_0 \le \operatorname{mid} y_i + w_i \operatorname{rad} y_i$$

$$w_i \ge 0, \qquad i = 1..n,$$
(5)

где W_i – искомые веса.

Информационное множество строится как пересечение полос, заданных (3), с учетом весов w_i , если выборка несовместна.

Внешняя интервальная оценка параметра определяется минимальным и максимальным значениями, которых может достигать значение параметра в информационном множестве.

Коридор совместных зависимостей – множество всех функций, совместных с интервальными данными задачи восстановления зависимости.

Реализация

Работа выполнена с помощью языка программирования Python в среде разработки Visual Studio Code. Ссылка на исходный код работы: <u>Lab 2 (github.com)</u>

Для построения выборки использовались данные из файлов " $+0_5V_1.txt$ ", " $+0_25V_1.txt$ ", " $-0_25V_1.txt$ ".

Результаты

Исходные данные подвергаются предварительной коррекции: вместо \dot{y}_i рассматриваются $\dot{y}_i - \delta_i$, i = 1..n, где δ_i – некоторая погрешность.

x = [0.5, 0.25, -0.25, -0.5], в качестве y берется среднее значение данных из соответствующих файлов, обынтерваленное значением $\varepsilon = 0.005$. Назовем выборку Y_1 .

Рисунок 1. Линейная регрессия для Y_1

$$\beta_0 = 0.0001$$
 $\beta_1 = 0.8538$ $y = 0.8538x + 0.0001$

Рисунок 2. Информационное множество для Y_1

Интервальная оценка параметров $\beta_0 = [-0.0041, 0.0050]$, $\beta_1 = [0.8421, 0.8621]$.

Рисунок 3. Коридор совместных зависимостей для Y_1

Рассмотрим построение линейной регрессии для интервалов, построенных по данным без вычитания погрешности δ_i . Назовем выборку Y_2 .

Рисунок 4. Линейная регрессия для Y_2

$$\beta_0 = 0.0$$
 $\beta_1 = 0.8492$ $y = 0.8492x$

Рисунок 5. Информационное множество для Y_2

Интервальная оценка параметров $\beta_0 = [-0.0065, 0.0026]$, $\beta_1 = [0.8421, 0.8621]$.

Рисунок 6. Коридор совместных зависимостей для Y_2

Рассмотрим построение регрессии для другой интервальной выборки. Вектор x остается тем же, в качестве y берется мода данных из соответствующих файлов, данные предварительно обынтерваливаются значением $\varepsilon = 0.05$. Назовем выборку Y_3 .

Рисунок 7. Линейная регрессия для Y_3

$$\beta_0 = 0.0005$$
 $\beta_1 = 0.8702$
 $y = 0.8702x + 0.0005$

Рисунок 8. Информационное множество для Y_3

Интервальная оценка параметров $\beta_0 = [-0.0342, 0.0351]$, $\beta_1 = [0.8009, 0.9395]$.

Рисунок 9. Коридор совместных зависимостей для Y_3

Рассмотрим построение линейной регрессии для интервалов, построенных по данным без вычитания погрешности δ_i . Назовем выборку Y_4 .

Рисунок 10. Линейная регрессия для Y_4

$$\beta_0 = 0.0$$
 $\beta_1 = 0.8468$ $y = 0.8468x$

Рисунок 11. Информационное множество для Y_4

Интервальная оценка параметров $\beta_0 = [-0.0265, 0.0173]$, $\beta_1 = [0.8113, 0.8998]$.

Рисунок 12. Коридор совместных зависимостей для Y_4

Таблица 1. Параметры линейной регрессии для каждой выборки

<i>Y</i> ₁	y = 0.8538x + 0.0001	$\beta_0 = [-0.0041, 0.0050]$
		$\beta_1 = [0.8421, 0.8621]$
Y_2	y = 0.8492x	$\beta_0 = [-0.0065, 0.0026]$
		$\beta_1 = [0.8421, 0.8621]$
<i>Y</i> ₃	y = 0.8702x + 0.0005	$\beta_0 = [-0.0342, 0.0351]$
		$\beta_1 = [0.8009, 0.9395]$
<i>Y</i> ₄	y = 0.8468x	$\beta_0 = [-0.0265, 0.0173]$
		$\beta_1 = [0.8113, 0.8998]$

Анализ результатов

Первая и вторая интервальные выборки имеют одинаковую ширину интервалов, ширина коридора совместных зависимостей также примерно одинакова. Ширина интервалов третьей выборки больше ширины интервалов четвертой выборки, аналогично с шириной коридора совместных зависимостей. Оценка параметров регрессии для третьей выборки произведена с большей интервальной неопределенностью, чем в случае других выборок. Для всех выборок найденные точечные значения параметров регрессии лежат внутри информационного множества, а линия регрессии лежит внутри коридора совместных зависимостей.