INFINITE SERIES AND SEQUENCES

NUMBER OF QUESTIONS—45

NO CALCULATOR

- 1. What is the difference between a sequence and a series?
 - (A) A sequence is the sum of a set of numbers, whereas a series is a set of numbers.
 - (B) A sequence is a set of numbers arranged in ascending order, whereas a series is the sum of a set of numbers arranged in ascending order.
 - (C) A sequence is a set of numbers, whereas a series is the sum of a set of numbers.
 - (D) A sequence always diverges, whereas a series may converge or diverge.
 - (E) A sequence always converges, whereas a series may converge or diverge.
- 2. Which sequence converges?

(A)
$$\{-1,1,-1,1,-1,\dots\}$$

(B)
$$\{-2, -1, 0, 1, 2, \dots\}$$

(C)
$$\{1,2,4,8,16,\dots\}$$

(D)
$$\left\{1, \frac{3}{4}, \frac{9}{16}, \frac{27}{64}, \frac{81}{256}, \dots\right\}$$

(E)
$$\left\{ \frac{1}{2}, -\frac{3}{2}, \frac{5}{2}, -\frac{7}{2}, \frac{9}{2}, \dots \right\}$$

3.
$$\frac{\pi}{4} - \frac{\pi^2}{16} + \frac{\pi^3}{64} - \frac{\pi^4}{256} + \dots + (-1)^{n+1} \left(\frac{\pi}{4}\right)^n + \dots$$
 is

(A)
$$\frac{-4}{4+\pi}$$
 (B) $\frac{\pi}{4-\pi}$ (C) $\frac{\pi}{4+\pi}$ (D) $\frac{4}{4-\pi}$

(B)
$$\frac{\pi}{4-\pi}$$

(C)
$$\frac{\pi}{4+\pi}$$

(D)
$$\frac{4}{4-\pi}$$

4. By the Binomial Theorem, $(3x-5)^4$ is

(A)
$$(3x)^4 + {4 \choose 1}(3x)^3(-5) + {4 \choose 2}(3x)^2(-5)^2 + {4 \choose 3}(3x)(-5)^3 + (-5)^4$$

(B)
$$-(3x)^4 - {4 \choose 1}(3x)^3(-5) - {4 \choose 2}(3x)^2(-5)^2 - {4 \choose 3}(3x)(-5)^3 - (-5)^4$$

(C)
$$(3x)^4 + {4 \choose 1}(3x)^3(5) + {4 \choose 2}(3x)^2(5)^2 + {4 \choose 3}(3x)(5)^3 + (5)^4$$

(D)
$$(3x)^4 + {4 \choose 1} - (3x)^3(5) - {4 \choose 2}(3x)^2(5)^2 - {4 \choose 3}(3x)(5)^3 - (5)^4$$

(E)
$$(3x)^4 + {4 \choose 1} - (3x)^3(-5) - {4 \choose 2}(3x)^2(-5)^2 - {4 \choose 3}(3x)(-5)^3 - (-5)^4$$

5. The Maclaurin series of $\cos x$ is

(A)
$$1 + \frac{x^2}{2} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$$

(B)
$$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots + \frac{(-1)^n x^{2n+1}}{(2n+1)!} + \dots$$

(C)
$$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots + \frac{x^{2n+1}}{(2n+1)!} + \dots$$

(D)
$$1+x+\frac{x^2}{2}+\frac{x^3}{3!}+\cdots+\frac{x^n}{n!}+\cdots$$

(E)
$$1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots + \frac{(-1)^n x^{2n}}{(2n)!} + \dots$$

6. Let $a_n = \frac{1}{\sqrt[3]{n^2}}$. Which option is true?

(A)
$$\sum_{n=1}^{\infty} a_n$$
 converges because $\lim_{n\to\infty} a_n = 0$.

- (B) $\sum_{n=1}^{\infty} a_n$ converges because it is a *p*-series with $p \le 1$.
- (C) $\sum_{n=1}^{\infty} a_n$ diverges because $\lim_{n\to\infty} a_n = 0$.
- (D) $\sum_{n=1}^{\infty} a_n$ diverges because it is a *p*-series with $p \le 1$.
- (E) It cannot be determined from the given information.
- 7. Which series diverges?

$$(A) \quad \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^5}}$$

(B)
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

$$(C) \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{1}{n^{5/4}}$$

(A)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^5}}$$
 (B) $\sum_{n=1}^{\infty} \frac{1}{n^2}$ (C) $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$ (D) $\sum_{n=1}^{\infty} \frac{1}{n^{5/4}}$ (E) $\sum_{n=1}^{\infty} \frac{n}{n^2 \sqrt{n}}$

- **8.** Suppose that $a_n \ge b_n > 0$ and $\{b_n\}$ diverges. Which of the following must be true?
 - I. $\{a_n\}$ diverges.
 - II. $\lim_{n\to\infty}a_n=\infty$.
 - III. $\lim_{n\to\infty}b_n=\infty$.
 - (A) None
 - (B) I only
 - (C) I and II only
 - (D) I and III only
 - (E) I, II, and III
- **9.** Which series is alternating?

(A)
$$\sum_{n=1}^{\infty} (-1)^{2n}$$

(B)
$$\sum_{n=1}^{\infty} (-1)^n \cos(\pi n)$$

(C)
$$\sum_{n=1}^{\infty} \frac{(-1)^{2n+3}}{n}$$

(D)
$$\sum_{n=1}^{\infty} \frac{\sin(\pi n)}{\sqrt{n}}$$

(E) All of the above

- 10. Suppose $\sum_{n=1}^{\infty} a_n$ converges. Which of the following must be true?
 - I. $\lim_{n\to\infty} a_n = 0$
 - II. The sequence $\{a_n\}$ converges.
 - III. $\lim_{N\to\infty}\sum_{n=1}^N a_n = \pm \infty.$
 - (A) I only
 - (B) II only
 - (C) I and II only
 - (D) II and III only
 - (E) I, II, and III
- 11. The Maclaurin series $x^2 \frac{x^4}{3!} + \frac{x^6}{5!} \frac{x^8}{7!} + \cdots$ converges to which function?

- (A) $\sin x$ (B) $\cos x$ (C) $x^2 e^x$ (D) $x^2 \sin x$
- (E) $x \sin x$

- **12.** Which series converges?

- (A) $\sum_{n=1}^{\infty} (-1)^n$ (B) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$ (C) $\sum_{n=1}^{\infty} (-1)^n n$ (D) $\sum_{n=1}^{\infty} (-1)^{2n}$ (E) $\sum_{n=1}^{\infty} \frac{(-1)^{2n}}{n}$

13. Suppose that $\sum_{n=1}^{\infty} b_n$ converges and $a_n \le b_n$ for $n \ge 1$. Which choice must be true?

(A)
$$\sum_{n=1}^{\infty} a_n$$
 converges.

(B)
$$\sum_{n=1}^{\infty} a_n$$
 diverges.

(C)
$$\lim_{n\to\infty} a_n = 0$$
.

(D)
$$\lim_{n\to\infty}b_n\neq 0$$
.

- (E) None of the above
- **14.** Function g has derivatives of all orders. The table below shows selected values of the derivatives of g(x) at x = 3, with g(3) = 1. What is the fourth-degree Taylor series of g(x) centered at x = 3?

n	1	2	3	4
$g^{(n)}(3)$	-2	2	3/2	-4/3

(A)
$$1-2(x-3)+(x-3)^2+\frac{1}{4}(x-3)^3-\frac{1}{18}(x-3)^4$$

(B)
$$1-2(x-3)+2(x-3)^2+\frac{3}{2}(x-3)^3-\frac{4}{3}(x-3)^4$$

(C)
$$-2(x-3) + 2(x-3)^2 + \frac{3}{2}(x-3)^3 - \frac{4}{3}(x-3)^4$$

(D)
$$-2(x-3) + (x-3)^2 + \frac{1}{4}(x-3)^3 - \frac{1}{18}(x-3)^4$$

(E)
$$1 - 2(x+3) + (x+3)^2 + \frac{1}{4}(x+3)^3 - \frac{1}{18}(x+3)^4$$

- **15.** For what values of k does $\sum_{n=1}^{\infty} \frac{1}{n^{2k-3}}$ diverge?
 - (A) $k \leq 2$
 - (B) $k < \frac{3}{2}$
 - (C) $k > \frac{3}{2}$
 - (D) k > 2
 - (E) $k \geqslant 2$
- **16.** Which choice correctly describes the convergence or divergence of $S = \sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 3}}$?
 - (A) S converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - (B) S diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n^2}$.
 - (C) S converges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - (D) S diverges by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$.
 - (E) It cannot be determined from the given information.
- 17. For all x, $1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + \frac{x^{2n}}{(2n)!} + \dots$ converges to
 - (A) $\sin x$
- (B) $\cosh x$
- (C) $\sinh x$
- (D) $\cos x$
- (E) e^{2x}

- 18. Let f be a function with derivatives of all orders. The fourth-degree Taylor series of f(x) centered at x = 2 is $2 + (x - 2) - \frac{2}{5}(x - 2)^2 - \frac{3}{2}(x - 2)^3 + \frac{1}{7}(x - 2)^4 + \cdots$. What is the value of f'''(2)?
- (A) -9 (B) $-\frac{9}{2}$ (C) $-\frac{3}{2}$ (D) $-\frac{1}{4}$
- (E) 0

- **19.** The coefficient of x^3 in the Maclaurin series of $e^{-x/3}$ is

 - (A) $-\frac{1}{27}$ (B) $-\frac{1}{162}$ (C) $\frac{1}{162}$ (D) $\frac{1}{27}$ (E) $\frac{1}{6}$

- **20.** Which series converges conditionally?
 - (A) $\sum_{n=1}^{\infty} \frac{1}{n+1}$
 - (B) $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$
 - (C) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n+1}}$
 - (D) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
 - (E) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n^3+2}}$

- **21.** Which choice about $\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n+3}}$ is correct?
 - (A) The series converges because $\int_{1}^{\infty} \frac{1}{\sqrt{2x+3}} dx$ converges.
 - (B) The series converges because $\int_1^\infty \frac{1}{\sqrt{2x+3}} dx$ diverges.
 - (C) The series converges because $\int_{1}^{\infty} \frac{1}{\sqrt{2x+3}} dx > 0$.
 - (D) The series diverges because $\int_{1}^{\infty} \frac{1}{\sqrt{2x+3}} dx$ converges.
 - (E) The series diverges because $\int_{1}^{\infty} \frac{1}{\sqrt{2x+3}} dx$ diverges.
- **22.** The binomial series expansion of $\frac{1}{2}\sqrt{4-x}$ is

(A)
$$1 + \frac{1}{2} \left(-\frac{x}{4} \right) + \frac{\frac{1}{2} \left(-\frac{1}{2} \right)}{2!} \left(-\frac{x}{4} \right)^2 + \frac{\frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{3!} \left(-\frac{x}{4} \right)^3 + \cdots$$

(B)
$$1 - \frac{1}{2} \left(-\frac{x}{4} \right) - \frac{\frac{1}{2} \left(-\frac{1}{2} \right)}{2!} \left(-\frac{x}{4} \right)^2 - \frac{\frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{3!} \left(-\frac{x}{4} \right)^3 + \cdots$$

(C)
$$1 + \frac{1}{2} \left(\frac{x}{4} \right) + \frac{\frac{1}{2} \left(-\frac{1}{2} \right)}{2!} \left(\frac{x}{4} \right)^2 + \frac{\frac{1}{2} \left(-\frac{1}{2} \right) \left(-\frac{3}{2} \right)}{3!} \left(\frac{x}{4} \right)^3 + \cdots$$

(D)
$$1 + \frac{1}{2} \left(-\frac{x}{4} \right) + \frac{\frac{1}{2} \left(\frac{1}{2} \right)}{2!} \left(-\frac{x}{4} \right)^2 + \frac{\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{3}{2} \right)}{3!} \left(-\frac{x}{4} \right)^3 + \cdots$$

(E)
$$1 + \frac{1}{2} \left(\frac{x}{4} \right) + \frac{\frac{1}{2} \left(\frac{1}{2} \right)}{2!} \left(\frac{x}{4} \right)^2 + \frac{\frac{1}{2} \left(\frac{1}{2} \right) \left(\frac{3}{2} \right)}{3!} \left(\frac{x}{4} \right)^3 + \cdots$$

23. For which series is the Root Test inconclusive?

(A)
$$\sum_{n=1}^{\infty} \frac{5^n}{8^n + 1}$$

(B)
$$\sum_{n=1}^{\infty} \left(\frac{n+3}{n+2} \right)^n$$

(C)
$$\sum_{n=1}^{\infty} \left(\frac{2n+7}{3n-1} \right)^n$$

(D)
$$\sum_{n=1}^{\infty} \left(\frac{6n^2 + n - 2}{4n^2 + 9} \right)^n$$

$$(E) \sum_{n=1}^{\infty} \frac{n^n}{5^{3n+1}}$$

24. Suppose that $\sum_{n=1}^{\infty} a_n$ converges and c is a finite constant. All the following series must converge except

(A)
$$c + \sum_{n=1}^{\infty} a_n$$

(B)
$$c\sum_{n=1}^{\infty}a_n$$

$$(C) \sum_{n=1+|c|}^{\infty} a_n$$

(D)
$$\sum_{n=1}^{\infty} [a_n]^c$$

(E)
$$\sum_{n=1}^{\infty} \left[a_n + c \, a_n \right]$$

25. The fourth-degree Taylor series of e^x centered at x = 2 is

(A)
$$1 + (x+2) + \frac{1}{2}(x+2)^2 + \frac{1}{3!}(x+2)^3 + \frac{1}{4!}(x+2)^3$$

(B)
$$1 + (x-2) + \frac{1}{2}(x-2)^2 + \frac{1}{3!}(x-2)^3 + \frac{1}{4!}(x-2)^3$$

(C)
$$e^2 \left[1 + (x+2) + \frac{1}{2}(x+2)^2 + \frac{1}{3!}(x+2)^3 + \frac{1}{4!}(x+2)^3 \right]$$

(D)
$$e^2 \left[1 + (x-2) + \frac{1}{2}(x-2)^2 + \frac{1}{3!}(x-2)^3 + \frac{1}{4!}(x-2)^3 \right]$$

(E)
$$e^2 \left[1 + (x-2) + \frac{1}{2}(x-2)^2 + \frac{1}{3}(x-2)^3 + \frac{1}{4}(x-2)^3 \right]$$

26. Which function does not have a Taylor series at the given center?

- (A) e^x centered at $x = e^x$
- (B) $\tan x$ centered at $x = \frac{\pi}{3}$
- (C) \sqrt{x} centered at x = 1
- (D) $\ln x$ centered at x = 1
- (E) $\sqrt{x-1}$ centered at x=0

27. The radius of convergence of $\sum_{n=1}^{\infty} \frac{x^n n^2}{n!}$ is

- (A) 0
- (B) 1
- (C) 2
- (D) *e*
- (E) ∞

28. Suppose that $\sum_{n=1}^{\infty} a_n \geqslant \sum_{n=1}^{\infty} b_n > 0$ and $\sum_{n=1}^{\infty} b_n$ diverges. Which of the following must be true?

I.
$$\sum_{n=1}^{\infty} a_n$$
 diverges.

II.
$$\sum_{n=1}^{\infty} a_n$$
 must diverge to $+\infty$.

III.
$$\sum_{n=1}^{\infty} b_n$$
 must diverge to $+\infty$.

- (A) I only
- (B) I and II only
- (C) II and III only
- (D) I and III only
- (E) I, II, and III
- **29.** For -1 < x < 1, which series is equivalent to $\frac{1}{1 x^2}$?

(A)
$$x^2 - x^4 + x^6 - x^8 + \cdots$$

(B)
$$x^2 + x^4 + x^6 + x^8 + \cdots$$

(C)
$$1+x^2+x^4+x^6+x^8+\cdots$$

(D)
$$1-x^2+x^4+-x^6+x^8+\cdots$$

(E)
$$-1-x^2-x^4-x^6-x^8-\cdots$$

30. Which series diverges?

(A)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{2n^3+9}}$$

(B)
$$\sum_{n=1}^{\infty} \frac{\sqrt{n^2 + 5}}{\sqrt{n^6 + 9}}$$

(C)
$$\sum_{n=1}^{\infty} \frac{n+2}{\sqrt{3n^4+4}}$$

(D)
$$\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^6 + 2}}$$

(E)
$$\sum_{n=1}^{\infty} \frac{\sqrt{2n+1}}{\sqrt{5n^4+3}}$$

31. Let $a_n = \frac{n^2 \sqrt{n^2 + 4}}{n^3}$. Which choice is correct?

(A) Because
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| > 1$$
, $\sum_{n=1}^{\infty} a_n$ diverges by the Ratio Test.

(B) Because
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
, $\sum_{n=1}^{\infty} a_n$ diverges by the Ratio Test.

(C) Because
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| < 1$$
, $\sum_{n=1}^{\infty} a_n$ converges by the Ratio Test.

(D) Because
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
, $\sum_{n=1}^{\infty} a_n$ diverges by the Ratio Test.

(E) Because
$$\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$$
, the Ratio Test for $\sum_{n=1}^{\infty} a_n$ is inconclusive.

32. Function f has derivatives of all orders. At x = 0, f(x) is decreasing and concave up. Which choice could be the third-degree Maclaurin series for f?

(A)
$$2+x-\frac{1}{3}x^2+4x^3$$

(B)
$$2+x+\frac{1}{3}x^2-4x^3$$

(C)
$$-2-x-\frac{1}{3}x^2-4x^3$$

(D)
$$-2-x+\frac{1}{3}x^2-4x^3$$

(E)
$$2+x+\frac{1}{3}x^2+4x^3$$

33. Let $a_n = \frac{1}{\sqrt{n+2}}$ for $n \ge 0$. Let f be a continuous function such that $f(n) = a_n$. Which choice must be true?

(A)
$$\sum_{n=2}^{\infty} a_n \leqslant \int_{1}^{\infty} f(x) \, \mathrm{d}x$$

(B)
$$\sum_{n=2}^{\infty} a_n \geqslant \int_{1}^{\infty} f(x) \, \mathrm{d}x$$

(C)
$$\sum_{n=2}^{\infty} a_n = \int_1^{\infty} f(x) \, \mathrm{d}x$$

(D)
$$\sum_{n=1}^{\infty} a_n = \int_{1}^{\infty} f(x) \, \mathrm{d}x$$

(E) It cannot be determined from the given information.

34.
$$\frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=1}^{\infty} \frac{x^{3n+1}}{n!} =$$

(A)
$$\frac{x^5}{5} + \frac{x^8}{8(2!)} + \frac{x^{11}}{11(3!)} + \dots + \frac{x^{3n+2}}{(3n+2)n!} + \dots$$

(B)
$$4x + \frac{7}{2!}x^4 + \frac{10}{3!}x^7 + \dots + (3n+1)\frac{3^{3n-2}}{n!} + \dots$$

(C)
$$\frac{x^7}{7} + \frac{x^{10}}{10(2!)} + \frac{x^{13}}{13(3!)} + \dots + \frac{x^{3n+4}}{(3n+4)n!} + \dots$$

(D)
$$4x^3 + \frac{1}{2!}x^6 + \frac{1}{3!}x^9 + \dots + \frac{x^{3n}}{n!} + \dots$$

(E)
$$4x^3 + \frac{7}{2!}x^6 + \frac{10}{3!}x^9 + \dots + (3n+1)\frac{x^{3n}}{n!} + \dots$$

35.
$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + n} \right)$$
 is

- (A) 0
- (B) 1 (C) $\frac{3}{2}$
- (D) 2
- (E) divergent

- **36.** Let $S = \sum_{n=1}^{\infty} \frac{\sin n}{n^2}$. Which of the following must be true?
 - I. *S* converges absolutely.
 - II. S converges conditionally.
 - III. S converges.
 - (A) I only
 - (B) I and II only
 - (C) I and III only
 - (D) II and III only
 - (E) I, II, and III
- 37. Let $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{n!}$. What is the coefficient of the x^6 term in $\int_0^x f(t) dt$?
- (A) $-\frac{7}{6}$ (B) $-\frac{1}{12}$ (C) $-\frac{1}{48}$ (D) $\frac{1}{12}$ (E) $\frac{7}{6}$

- **38.** What is the interval of convergence of $\sum_{n=1}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$?
 - (A) The series diverges for all x.
 - (B) -1 < x < 1
 - (C) $-1 \leqslant x \leqslant 1$
 - (D) 0 < x < 1
 - (E) $0 \le x \le 1$
- **39.** Let $f(x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n+4}}{n^2}$. The coefficient of the x^6 term in f'(x) is
- (A) $-\frac{7}{9}$ (B) $-\frac{1}{4}$ (C) $-\frac{1}{24}$ (D) $\frac{1}{6}$ (E) $\frac{7}{9}$

40. Function g has derivatives of all orders. The fourth-degree Maclaurin series of g(x) is m(x). It is known that $|g^{(5)}(x)| \le 0.7$ for $0 \le x \le 0.4$. Which choice must be true?

(A)
$$|g(0.4) - m(0.4)| \le 0.7$$

(B)
$$|g(0.4) - m(0.4)| \le \frac{0.7}{4!} (0.4)^4$$

(C)
$$|g(0.4) - m(0.4)| \ge \frac{0.7}{4!} (0.4)^4$$

(D)
$$|g(0.4) - m(0.4)| \ge \frac{0.7}{5!} (0.4)^5$$

(E)
$$|g(0.4) - m(0.4)| \le \frac{0.7}{5!} (0.4)^5$$

- **41.** The power series $S = \sum_{n=0}^{\infty} c_n (x-5)^n$ converges at x=7 and diverges at x=8. Which of the following must be true?
 - I. S converges at x = 4.
 - II. S converges at x = 3.
 - III. S diverges at x = 2.
 - (A) I only
 - (B) II only
 - (C) III only
 - (D) II and III only
 - (E) I, II, and III

42. The power series $f(x) = \sum_{n=1}^{\infty} c_n (x-a)^n$ has a radius of convergence of R. The power series of which of the following must also have a radius of convergence of R?

I.
$$f'(x)$$

II.
$$\int f(x) dx$$

III.
$$2f(x)$$

- (A) None
- (B) I only
- (C) II only
- (D) I and II only
- (E) I, II, and III
- **43.** Let $S = \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n+8}}$. Using the Alternating Series Error Bound, what is the least amount of terms must be summed to guarantee a partial sum that is within $\frac{1}{30}$ of S?
 - (A) 22
- (B) 30
- (C) 891
- (D) 900
- (E) 908

- **44.** The partial sum $S_k = \sum_{n=1}^k \frac{1}{n^3}$ is used to estimate $\sum_{n=1}^\infty \frac{1}{n^3}$. Based on the Integral Test, what is the smallest value of k such that the error in S_k is no more than $\frac{1}{200}$?
 - (A) 2
- (B) 10
- (C) 50
- (D) 100
- (E) 200
- **45.** Let $f(x) = \frac{x}{1+x^6}$. Let $g(x) = \int f(x) dx$ and g(0) = 1. What is the Maclaurin series expansion of g?

(A)
$$\frac{x^2}{2} - \frac{x^8}{8} + \frac{x^{14}}{14} - \frac{x^{20}}{20} + \dots + \frac{(-1)^n x^{6n+2}}{6n+2} + \dots$$

(B)
$$x - x^7 + x^{13} - x^{19} + \dots + (-1)^n x^{6n+1} + \dots$$

(C)
$$1+x-x^7+x^{13}+\cdots+(-1)^n x^{6n+1}+\cdots$$

(D)
$$1 + \frac{x^2}{2} - \frac{x^8}{8} + \frac{x^{14}}{14} + \dots + \frac{(-1)^n x^{6n+2}}{6n+2} + \dots$$

(E)
$$1 - 7x^6 + 13x^{12} - 19x^{18} + \dots + (-1)^n (6n+1)x^{6n} + \dots$$

- 1. \mathbf{C}
- 2. D
- . \mathbf{C}
- . A
- . E
- 6. D
- 7. \mathbf{C}
- 8. A
- 9. D
- . C
- . E
- . B
- . E
- . A . A
- . D
- . B
- . A
- . B
- . C
- . E
- . A . B
- . D
- . D
- . E
- . E
- . E
- . C
- . C
- . E
- . D
- . A

- . E
- . B
- . C
- . D
- . C
- . E
- . E
- . A
- . D
- . C
- . B
- . D