Resonant Inductive Coupling Wireless Power Transfer

Elisenda Bou Balust

Outline

- Introduction
 - Energy Challenges in Nanotechnology
 - Resonant Inductive Coupling
 - RIC Scalability
- WPT-Based Active Energy Harvesting
- New Nano-Applications
 - Wireless Nano Sensor Networks
 - Claytronics
 - Nano-materials

Energy Challenges in Nanotechnology Enabled Wireless Comm.

Introduction - Overview

Resonant Inductive Coupling is a type of Electromagnetic WPT

- Very **promising efficiencies** → Above 80% PTEff.
- Relative large distances → 3 times the tx/rx diameters.

Potential applications

- Electric vehicle charging
- Sensor networks
- Biomedical Implants
- Commercial electronic devices
- RIC is a very novel technology (< 4y)

- Electromagnetic WPT is the transmission of EM fields
- Dual composition of EM fields → a WPT system can behave differently depending on the separation between Tx and Rx
 - Non-Radiative (Near Field Region) → changes in current/charge distrib.
 - Radiative (Far Field Region) → changes in Magnetic/Electric fields.
- Where is the limit?

Maxwell's equations for an **Infinitesimal Dipole**

- The region where all the contributions are equal is the boundary region between near and far-field.
- Separation not sharp → mid-range zone where radiative and nonradiative fields coexist.

- . If $r << \lambda/2\pi$ Electrostatic & induction terms \rightarrow non-radiative (reactive) **near-field zone**
- . If $\lambda/2\pi < r < \lambda$ Induction & Radiation terms \rightarrow mid-range
- . If $r \gg \lambda/2\pi$ Radiation term dominates
- → far-field zone

Introduction - EM. Inductive WPT

- First demonstrated in the early 20th century by Nikola Tesla, but thought impractical due to the undesirably large electric fields.
- In 1960 WPT EMI was reintroduced for biomedical applications (artificial hearts).
 - Since then, commonly used in implantable devices.
 - These inductors, such as typical transformers, required a very short distance between transmitter and receiver (centimeters range).

- Later systems implemented resonant transmitter coils
 - Each coil capacitively loaded forming a tuned LC resonating circuit at a common frequency.
 - Inductive links used in medical and consumer applications, but limited to the near-range (less than the dimensions of the coils).

Non-Resonant

- In 2007, EMI links extended to larger ranges (several times the diameter of the antennas) stretching RIC in strong-coupling regime.
 - Demonstrated lighting a bulb at 2m with 40% Efficiency
- Strong coupled RIC attracted lot of attention
 - Harmless to humans (non-radiative).
 - No direct line-of-sight needed
 - Good efficiencies at several meters.
- RIC is foreseen as a key enabling technology for wireless power transfer in the following years.

Exploring RIC Scalability

 There are scattered examples of RIC for different frequencies/sizes of the coils

Coil Diam. [cm]	f[MHz]	Turns	d/r_m	Eff[%]	$P_{out}[W]$	Ref	Year	Comments
(2.56,2.56)	10.38	20	2.34	60	1.21	[51]	2009	4 Coils
(2.56, 2.56)	10.38	20	4.37	15	0.20	[51]	2009	4 Coils
(32,32)	10	5	25	1.3	-	[52]	2008	2 Coils
(4.6,4.6)	3.7	1	1.3	95	3000	[53]	2011	
(3.0,3.0)	19.22	4	0.33	90	-	[54]	2010	Optimum Load
(6.4,2.2)	0.7	40	1.07	82	0.1	[31]	2011	AWG44 Litz Wire
(6.4,2.2)	0.7	40	1.73	72	0.08	[31]	2011	AWG44 Litz Wire
(100,100)	0.2	1	200	50	80	[44]	2010	Superconducting
(6,6)	10	1	2.5	85.7	200	[55]	2010	Optimum Load
(6,6)	10	1	5	42.3	70	[55]	2010	Optimum Load
(6,2)	0.7	-	1.73	36	0.05	[56]	2004	Non Resonant
(2.4,2)	2	32	1	40	-	[57]	2010	

Exploring RIC Scalability

RIC efficiency as a function up to 10 times the radii of the antennas.

WPT-Based Active Energy Harvesting

- EH would allow successful deployment of battery-less self-powered
 Wireless sensor networks (WSN) nodes, biomedical implants and body
 area networks
- Despise EH is already successful in niche applications, the most ubiquitous source of energy, EM harvesting, is still not feasible.
- To circumvent the current short and mid-terms limits of EH technologies _

active radiation of a
single energy source
(energy broadcast).

Nano-Materials: Graphene-Based coils

- How to increase the range of the system?
 - Decrease losses (improve Q)
- To reduce losses, several technologies have been proposed:
 - Superconducting dielectric-less coils
 - ohmic losses negligible
 - More complexity
 - Litz-Wire Coils
 - minimize skin & proximity effects
 - Low frequencies 1-2MHz.
- Because high frequency/low loss coils are necessary in Wireless Power and Data Systems, we propose to use new materials such as graphenebased nano-coils for the design and implementation of active energy harvesting systems.

Nano-Materials: Graphene-Based coils

"High-Frequency Behavior of Graphene-Based Interconnects—Part II: Impedance Analysis and Implications for Inductor Design" Deblina Sarkar, *Student Member, IEEE*, Chuan Xu, *Student Member, IEEE*, Hong Li, *Student Member, IEEE*, and Kaustav Banerjee, *Senior Member, IEEE*

Diameter = 200 μ m, N=4, Wire width= 8 μ m, Wire thickness H = 2 μ m

Nano-Materials: Graphene-Based coils

Same graphene-doped coils simulated with Finite Element Field-Solver FEKO

Differences with previous results due to the non-ideal dielectric substrate used.

Wireless Nano-Sensor Networks

- One of the potential applications of RIC systems is WPT networks.
- Due to the behavior of RIC systems, this WPT method is very suitable for broadcast applications where coils could be active (resonant) or inactive (non-resonating) without inquiring in significant losses to the transmitter's power.
- Because in RIC systems, antennas act as transmitter and receiver at the same time, WPT meshed networks could be implemented and miniaturized.

Wireless Nano-Sensor Networks

- RIC inductors can operate as transmitter and receiver at the same time
- Increase in distance range by using the different nodes as repeaters.

Claytronics - Inteligent Matter

 RIC can be used as a potential means for providing power to catoms without using electrical connections.

 WPT to multiple small receivers has been demonstrated by Prof. Goldstein.

Magnetic Resonant Coupling As a Potential Means for Wireless Power Transfer to Multiple Small Receivers" Benjamin L. Cannon, James F. Hoburg, Daniel D. Stancil and Seth Copen Goldstein

Conclusions

- In WNSN and claytronics, every node needs to be powered individually.
- The challenge to power this nodes using energy harvesting is still unsolved.
- We propose to use Active Energy Harvesting to circumvent the energy requirements.
- Because of its scalability in frequency and size, **Resonant Inductive**Coupling is proposed as a method to perform Active Energy Harvesting in the nano-scale.
- Graphene based inductor antennas have been simulated to act as the transmitters and receivers of such a RIC system.

