

Definitions

Data

 "Related items of (chiefly numerical) information considered collectively, typically obtained by scientific work and used for reference, analysis, or calculation". Some common examples include numbers, characters, images and sounds.

Information

 "Knowledge communicated concerning some particular fact, subject, or event; that of which one is apprised or told; intelligence, news".

Knowledge

- "That which is known; the sum of what is known".
- In Computing, Knowledge is "Information in the form of facts, assumptions, and inference rules which can be accessed by a computer program".

(Oxford English Dictionary)

Data Analysis

- Descriptive statistics
 - Numerical values: median, mean, standard deviation, skewness, kurtosis
 - Graphs: histograms, bar charts, line graphs, boxplots
- Inferential statistics
 - Significance testing, t-test, F-test, etc.
 - ANOVA
 - Estimation (point and interval)
 - Regression

- ...

Random Variables

- Distributions and probability density functions (PDFs):
 - Discrete: binomial; Poisson...
 - Continuous: normal (Gaussian); uniform (rectangular); triangular; chi-squared; Student's t; F; arc-sin; exponential; Cauchy...
- Moments:
 - An <u>ordinary moment</u> of kth order is defined as: m_k=E(X^k)
 - A <u>central moment</u> of kth order is defined as: $\mu_k = E[(X-E(X))^k]$, where X is the measurement error; E(X) is the expectation or average value of X; k=1,2,...

Most Commonly Used Moments

- The first-order ordinary moment, i.e. arithmetic average: m₁= E(X)
- The **second-order central moment** is a measure of the **spread** of the measurement errors about the average value: $\mu_2 = \sigma^2 = V[X] = E[(X-E(X))^2]$.
- The **3rd-order central moment**, μ_3 is related to the asymmetry of the distribution, usually characterised by **skewness**, γ_3 , i.e. the ratio of the 3rdorder central moment to the third power of the standard deviation: $\gamma_3 = \mu_3 / \sigma^3$. For a normal distribution, $\gamma_3 = \mu_3 = 0$.
- The **4th-order central moment**, μ_3 , is related to the graduation of the distribution, often characterised by the **kurtosis**, γ_4 , i.e. the ratio of the 4th order central moment to the 4th power of the standard deviation: $\gamma_4 = \mu_4/\sigma^4$. For a normal distribution, $\gamma_4 = 3$.

Univariate Distributions

• A continuous univariate distribution is specified by a probability density function (pdf) $f(x) \ge 0$:

$$P(a < X \le b) = \int_a^b f(x)dx, \qquad P(-\infty < X \le +\infty) = \int_{-\infty}^{+\infty} f(x)dx = 1.$$

• Mean μ and variance σ^2 :

$$\mu = E(X) = \int_{-\infty}^{+\infty} x f(x) dx,$$

$$\sigma^2 = V(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx.$$

Properties:

$$E(a + bX) = a + bE(X),$$

$$V(a + bX) = b^{2}V(X).$$

Bivariate Distributions

- Bivariate density distribution $f(x, y) \ge 0$
- Covariance

$$V(X,Y) = cov(X,Y) = E[(X - E(X))(Y - E(Y))] = \iint (x - \mu_X)(y - \mu_Y)f(x,y)dxdy$$

where
$$\mu_X = E(X) = \iint x f(x,y) dx dy$$
, $\mu_Y = E(Y) = \iint y f(x,y) dx dy$.

- Measures the strength of linear dependence;
- X and Y are statistically independent if f(x, y) = f(x)f(y);
- -V(X,Y)=0 if X and Y are statistically independent.
- Correlation coefficient

$$\rho_{X,Y} = corr(X,Y) = \frac{cov(X,Y)}{\sigma_X \sigma_Y} = \frac{E[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y},$$

 $-1 \leq \rho_{X,Y} \leq 1.$

Multivariate Distributions

- Given random vectors $\mathbf{X} = (X_1, X_2, ..., X_n)^T$, $\mathbf{Y} = (Y_1, Y_2, ..., Y_m)^T$,
- Covariance matrix

$$V(\mathbf{X}) = cov(\mathbf{X}, \mathbf{X}) = E[(\mathbf{X} - E(\mathbf{X}))(\mathbf{X} - E(\mathbf{X}))^{T}]$$

- $V(\mathbf{X})$ is the $n \times n$ matrix with $V_{jk} = V(X_j, X_k)$.
- The Correlation matrix is a scaled version of the covariance matrix with $C_{jk} = \frac{v_{jk}}{\sqrt{v_{jj}v_{kk}}}$
- Cross-covariance matrix

$$V(X,Y) = cov(X,Y) = E[(X - E(X))(Y - E(Y))^{T}]$$

Section 10 Advanced Data Analysis

Introduction

► Law of Propagation of Uncertainty (LPU)

Fitting a Model to Measured Data Linear Least Square Method

Non-linear Least Square Method

Lab sessions

Law of Propagation of Uncertainty (LPU)

- Given $X=(X_1, X_2, ..., X_n)$ with mean $E(X)=\mathbf{x}=(x_1, x_2, ..., x_n)$ and variance matrix V
- If Y is a linear combination of X, i.e.:

$$Y = c_1 X_1 + c_2 X_2 + ... + c_n X_n = c^T X$$

where $\mathbf{c} = (c_1, c_2, ..., c_n)$ are known constants

then

$$y=E(Y)=c_1E(X_1)+c_2E(X_2)+...+c_nE(X_n)=c_1X_1+c_2X_2+...+c_nX_n=\mathbf{c}^{\mathsf{T}}\mathbf{x}$$

and

$$u^2(y) = V(Y) = \mathbf{c}^T V \mathbf{c}$$

If V(X_i, X_i)=0, i≠j, then

$$u^2(y) = V(Y) = c_1^2 V(X_1) + c_2^2 V(X_2) + \dots + c_n^2 V(X_n) = c_1^2 u_1^2 + c_2^2 u_2^2 + \dots + c_n^2 u_n^2$$

Examples

• Sum of two independent variables

Assume $E(X_1) = x_1, V(X_1) = u_1^2, E(X_2) = x_2, V(X_2) = u_2^2$,

 X_1 and X_2 are independent $\rightarrow V(X_1, X_2)=0$,

and

$$V_X = V(X) = \begin{bmatrix} u_1^2 & 0 \\ 0 & u_2^2 \end{bmatrix}, Y = \mathbf{c}^T X = X_1 + X_2 = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}.$$

Then

$$E(Y) = \mathbf{c}^T E(\mathbf{X}) = [1 \ 1] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1 + x_2,$$

and

$$u^{2}(y) = V(Y) = \mathbf{c}^{T} V_{x} \mathbf{c} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} u_{1}^{2} & 0 \\ 0 & u_{2}^{2} \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = u_{1}^{2} + u_{2}^{2}.$$

• Difference of two independent variables

$$Y = X_1 - X_2, E(Y) = x_1 - x_2, V(Y) = u_1^2 + u_2^2.$$

LPU, Multivariate Case

- Given $\mathbf{X} = (X_1, X_2, ..., X_n)^T$ with mean $\mathbf{E}(\mathbf{X}) = \mathbf{x}$ and variance matrix \mathbf{V}
- If $Y = (Y_1, Y_2, ..., Y_m)^T = CX$,

then

$$y=E(Y)=CE(X)=Cx$$

and

$$u^2(y) = V(Y) = CVC^T$$

Example

Measurements with a common systematic effect

Given
$$x_1=a+\delta+\epsilon_1$$
, $x_2=a+\delta+\epsilon_2$, and $E(\delta)=E(\epsilon_1)=E(\epsilon_2)=0, V(\delta)=\beta^2, V(\epsilon_1)=V(\epsilon_2)=\sigma^2$

$$\bullet \quad \text{Let } \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \alpha + \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \delta \end{bmatrix}$$

• Assume the effects are independent , so their variance matrix is

$$V = \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \beta^2 \end{bmatrix}$$

Applying LPU,

$$E(X) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} a,$$

$$V_X = CVC^T = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \sigma^2 & 0 & 0 \\ 0 & \sigma^2 & 0 \\ 0 & 0 & \beta^2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \sigma^2 + \beta^2 & 0 & 0 \\ 0 & \sigma^2 + \beta^2 & 0 \\ 0 & 0 & \beta^2 \end{bmatrix}.$$

LPU, Nonlinear Case

- Assume Y=f(X), E(X)=x, V(X)=V_x
- Find the sensitivity coefficient (partial derivative):

$$c_j = \frac{\partial f}{\partial X_j}(\mathbf{x})$$

Then

$$E(Y) \approx f(\mathbf{x}),$$

$$u^{2}(y) = V(Y) \approx \mathbf{c}^{T} V_{x} \mathbf{c}^{T}$$

• For multivariate case, if **Y** =f(**X**) and $C_{ij}=\frac{\partial f_i}{\partial X_j}$, then

$$E(Y) \approx f(x)$$

and

$$V_{v} = V(Y) \approx CV_{x}C^{T}$$

Exercise 1: Comparison of two gauge blocks

• Suppose two gauge blocks of the same material and nominal length L_0 are measured. Calculate the 2×2 variance matrix V_L associated with their lengths

 $L = (L_1, L_2)^T$ for data:

 $z_1 = 100.000 090 \text{ mm}, z_2 = 100.000 050 \text{ mm},$

 $u(z_1) = u(z_2) = u(z) = 0.000 050 \text{ mm},$

 $t_1 = 20.5 \, ^{\circ}\text{C}, \ t_2 = 20.3 \, ^{\circ}\text{C},$

 $u(t_1) = u(t_2) = u(t) = 0.1 \, ^{\circ}C,$

 $c = 10 \times 10^{-6} \text{ m K}^{-1}$

 $u(c) = 1 \times 10^{-6}$

• Use V_L to calculate the uncertainties associated with $L_1 \pm L_2$.

Exercise 2.1: Mass calculations

The mass of a cylindrical artefact is given by
 M = πρhr²,

```
where  \rho \ \ \text{is the density at 20 °C,} \\ r \ \ \text{is the radius,} \\ h \ \ \text{is the height.}
```

 Express the uncertainty associated with M in terms of the uncertainties associated with ρ, r and h.

Exercise 2.2: Taking into account temperature

- In Exercise 2.1, suppose r and h are measured at temperature t and that the
 coefficient of thermal expansion is c. Express the uncertainty associated with M
 in terms of the uncertainties associated with ρ, r, h, t and c.
- Determine the 2×2 variance matrix V_M for the masses M_1 and M_2 of two cylindrical artefacts made from the same material from the following data:

```
r_1 = 25.005 mm is the radius measured at temperature t_1 = 20.5°C, h_1 = 63.510 mm is the height measured at temperature t_1, r_2 = 25.020 mm is the radius measured at temperature t_2 = 20.8°C, h_2 = 63.515 mm is the height measured at temperature t_2, \rho = 8000 kg m<sup>-3</sup>, c = 10 × 10<sup>-6</sup> m K<sup>-1</sup>, u(r_1) = u(r_2) = u(h_1) = u(h_2) = 0.001 mm, u(r_1) = u(r_2) = 0.1 °C, u(\rho) = 0.05 kg m<sup>-3</sup>, u(c) = 1 × 10<sup>-6</sup> K<sup>-1</sup>
```

• Use V_M to evaluate the uncertainties associated with M1 \pm M2.

Introduction

Law of Propagation of Uncertainty (LPU)

► Fitting a Model to Measured Data

Linear Least Square Method

Non-linear Least Square Method

Lab sessions

Functional Models

$$y = \varphi(x)$$
,

$$\mathbf{x} = (x_1, x_2, \dots, x_n)^T$$

where

y is the response (or dependent) variable.

 $\boldsymbol{x}\,$ are covariates (or independent variables).

 φ is the function describing how y varies with (depends on) ${\bf x}$.

Typically, values of ${\bf x}$ are controlled or known accurately, and the response ${\bf y}$ is measured subject to measurement uncertainty.

Functional Model: example 1

- The length of a gauge block depends on temperature: $y = \varphi(T,L,c) = L(1+c(T-T_0))$
- In generic notation,

$$y = \varphi(x, \mathbf{a}) = a_1 + a_2(x - T_0)$$

 $\mathbf{a} = (a_1, a_2)^T, a_1 = L, a_2 = Lc.$

• The parameters **a** are used to define the class (or *space*) of models that could describe the dependence of length on temperature.

Possible Behaviours

Functional Model: example 2

Newton's law of cooling:

$$y = \varphi(t, T_0, T_b, k) = T_b + (T_0 - T_b)e^{-kt}$$

- Functional model involves three parameters T_b, T_0, k
- · In generic notation,

$$y = \varphi(x, \mathbf{a}) = a_1 + (a_2 - a_1)e^{-a_3x},$$

 $\mathbf{a} = (a_1, a_2, a_3)^T$

• The parameters a are used to define the class (or space) of models that could describe the dependence of temperature on time.

Possible Behaviours

Mechanistic and Empirical Models

• Mechanistic models are based on the underlying physics governing the behaviour of the process, e.g.

$$T = T_b + (T_0 - T_b)e^{-kt}$$

- They explain behaviour.
- Parameters have a physical meaning.
- Empirical models are based on experience or data, e.g. Polynomials $\varphi(x, a) = \sum_i a_i x^i$ and Fourier series
 - They describe (summarise) behaviour.
 - Parameters may have no intrinsic meaning.

What is a Linear Model?

- A linear model is linear in the parameters a.
- In practice, a linear model is usually defined as a linear combination of basis functions

$$\varphi(x, a) = a_1 \varphi_1(x) + a_2 \varphi_2(x) + ... + a_n \varphi_n(x)$$

- For a linear model, $\frac{\partial \varphi}{\partial a_i}$ is independent of ${m a}$
- Examples
 - polynomials

$$\varphi(x, \mathbf{a}) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$$

Fourier series

$$\varphi_0(x) = 1, \varphi_{2i-1} = \frac{\cos 2\pi i x}{L}, \varphi_{2i} = \frac{\sin 2\pi i x}{L}$$

Nonlinear Model

- For a nonlinear model, $\frac{\partial \varphi}{\partial a_i}$ is **not** independent of ${m a}$
- Examples: Newton's law of cooling

$$\varphi(t,T_0,T_b,k)=T_b+(T_0-T_b)e^{-kt}$$

In this case, $\mathbf{a} = (\mathbf{T_b}, \mathbf{T_0}, k)^T$, $\frac{\partial \varphi}{\partial a_i}$ are:

$$\frac{\partial \varphi}{\partial T_b} = 1 - e^{-kt}, \frac{\partial \varphi}{\partial T_0} = e^{-kt}, \frac{\partial \varphi}{\partial k} = -t(T_0 - T_b)e^{-kt}$$

Fitting a Model to Measured Data

- Given data (x_i, y_i) , i=1, 2,...,m and functional model $y = \varphi(x, a)$
- Model predictions $\boldsymbol{\varphi}(\boldsymbol{a}) = [\varphi(x_1, \boldsymbol{a}), ..., \varphi(x_m, \boldsymbol{a})]^T$
- $\mathbf{y} = (y_1, ..., y_m)^T$ is a fixed point or vector in \mathbb{R}^m
- $a \mapsto \varphi(a)$ is a surface in R^m
- Choose \boldsymbol{a} such that $\varphi(\boldsymbol{a})$ is as close as possible to \boldsymbol{y}
- $\min_{a} E(a) = ||y \varphi(a)||^2 = \sum_{i=1}^{m} [y_i \varphi(x_i, a)]^2$

(0)

Geometrical Interpretation

- Data vector $\mathbf{y} = (y_1, ..., y_m)^\mathsf{T}$ defines a fixed point in \mathcal{R}^m
- Mapping ${m a} {\mapsto} {m \phi}({m a})$ defines an n-dimensional surface $S({m a})$ in ${\mathcal R}^m$
- Best-fit parameter values \widehat{a} define the point $\phi(\widehat{a})$ on the surface S(a) closest to y
- Parameter estimation method is a method of associating with a data vector y a unique point on the surface S(a)

Section 10 Advanced Data Analysis

Introduction

Law of Propagation of Uncertainty (LPU)

Fitting a Model to Measured Data

▶ Linear Least Square Method

Non-linear Least Square Method

Lab sessions

Fitting with Linear Models Using Least Squares Method (1)

- $\bullet \quad y_i=\varphi(x_i,\pmb{a})=a_1\varphi_1(x_i)+a_2\varphi_2(x_i)+...+a_n\varphi_n(x_i)$
- $E(\mathbf{a}) = \|\mathbf{y} \boldsymbol{\varphi}(\mathbf{a})\|^2 = \sum_{i=1}^m [y_i \varphi(x_i, a)]^2$ = $\sum_{i=1}^m [y_i - a_1 \varphi_1(x_i) - a_2 \varphi_2(x_i) - \dots - a_n \varphi_n(x_i)]^2$
- Let $\frac{\partial E}{\partial a_1} = \sum_{i=1}^m -2\varphi_1(x_i)[y_i a_1\varphi_1(x_i) a_2\varphi_2(x_i) \dots a_n\varphi_n(x_i)] = 0$, we have:

$$a_1 \sum_{i=1}^m \varphi_1(x_i) \varphi_1(x_i) + \dots + a_n \sum_{i=1}^m \varphi_1(x_i) \varphi_n(x_i) = \sum_{i=1}^m \varphi_1(x_i) y_i$$
,

• Similarly,

Let
$$\frac{\partial E}{\partial a_2} = \sum_{i=1}^m -2\varphi_2(x_i)[y_i - a_1\varphi_1(x_i) - a_2\varphi_2(x_i) - \dots - a_n\varphi_n(x_i)] = 0,$$

$$a_1 \sum_{i=1}^m \varphi_2(x_i) \; \varphi_1(x_i) + \dots + a_n \sum_{i=1}^m \varphi_2(x_i) \; \varphi_n(x_i) = \sum_{i=1}^m \varphi_2(x_i) y_i.$$

(a)

Fitting with Linear Models Using Least Squares Method (2)

• The solution is defined by the normal equations

$$\begin{bmatrix} \sum_{i} \varphi_{1}(x_{i})\varphi_{1}(x_{i}) & \sum_{i} \varphi_{1}(x_{i})\varphi_{2}(x_{i}) & \dots & \sum_{i} \varphi_{1}(x_{i})\varphi_{n}(x_{i}) \\ \sum_{i} \varphi_{2}(x_{i})\varphi_{1}(x_{i}) & \sum_{i} \varphi_{2}(x_{i})\varphi_{2}(x_{i}) & \dots & \sum_{i} \varphi_{2}(x_{i})\varphi_{n}(x_{i}) \\ \vdots & \vdots & \vdots & \vdots \\ \sum_{i} \varphi_{n}(x_{i})\varphi_{1}(x_{i}) & \sum_{i} \varphi_{n}(x_{i})\varphi_{2}(x_{i}) & \dots & \sum_{i} \varphi_{n}(x_{i})\varphi_{n}(x_{i}) \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \begin{bmatrix} \sum_{i} \varphi_{1}(x_{i})y_{i} \\ \vdots \\ \sum_{i} \varphi_{1}(x_{i})y_{i} \\ \vdots \\ \sum_{i} \varphi_{1}(x_{i})y_{i} \end{bmatrix}$$

• Factor form

$$\sum_{i} \begin{bmatrix} \varphi_{1}(x_{i}) \\ \varphi_{2}(x_{i}) \\ \vdots \\ \varphi_{n}(x_{i}) \end{bmatrix} \begin{bmatrix} \varphi_{1}(x_{i}) \\ \varphi_{2}(x_{i}) \\ \vdots \\ \varphi_{n}(x_{i}) \end{bmatrix}^{T} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{bmatrix} = \sum_{i} y_{i} \begin{bmatrix} \varphi_{1}(x_{i}) \\ \varphi_{2}(x_{i}) \\ \vdots \\ \varphi_{n}(x_{i}) \end{bmatrix}$$

Linear Least Squares Method Using Matrix-vector Form (1)

• Standard linear model:

$$y_i = \varphi(x_i, \boldsymbol{a}) + \epsilon_i = a_1 \varphi_1(x_i) + a_2 \varphi_2(x_i) + ... + a_n \varphi_n(x_i) + \epsilon_i = \boldsymbol{c}_i^T \boldsymbol{a} + \epsilon_i, \text{ i=1, 2, ..., m}$$

$$E(\epsilon_i)=0, V(\epsilon_i)=\sigma^2$$

• In matrix-vector form

$$y = Ca + \epsilon$$
, $E(\epsilon) = 0, V(\epsilon) = \sigma^2 I$

where

$$\boldsymbol{c}_i^T = [\varphi_1(x_i), \varphi_2(x_i), \dots, \varphi_n(x_i)],$$

$$C = \begin{bmatrix} \boldsymbol{c}_1^T \\ \boldsymbol{c}_2^T \\ \vdots \\ \boldsymbol{c}_m^T \end{bmatrix} = \begin{bmatrix} \varphi_1(x_1) & \varphi_2(x_1) & \dots & \varphi_n(x_1) \\ \varphi_1(x_2) & \varphi_2(x_2) & \dots & \varphi_n(x_2) \\ \vdots & \vdots & \vdots & \vdots \\ \varphi_1(x_m) & \varphi_2(x_m) & \dots & \varphi_n(x_m) \end{bmatrix}, \boldsymbol{a} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}, \boldsymbol{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix}, \boldsymbol{\epsilon} = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_m \end{bmatrix}$$

- $E(y) = E(Ca + \epsilon) = Ca + E(\epsilon) = Ca$,
- $V(y) = \sigma^2 I$

Linear Least Squares Method Using Matrix-vector Form (2)

• Least-squares fit, the solution \widehat{a} minimizes

$$E(\mathbf{a}) = \|\mathbf{y} - C\mathbf{a}\|^2 = (\mathbf{y} - C\mathbf{a})^T(\mathbf{y} - C\mathbf{a})$$

• $\frac{dE}{da} = 0$, i.e.

$$2(\mathbf{y} - C\mathbf{a})^T(-C) = \mathbf{0}$$

$$C^{T}(y - Ca) = \mathbf{0}$$

$$C^{T}Ca = C^{T}y$$

$$\widehat{a} = (C^{T}C)^{-1}C^{T}y = C^{+}y$$

• Matrix
$$C^+ = (C^T C)^{-1} C^T$$
 is the pseudo-inverse of C

$$C^+C = (C^TC)^{-1}C^TC = I$$

Geometrical Interpretation

- The columns \mathbf{c}_i (j=1,...n) and \mathbf{y} are vectors or points in \mathbb{R}^m .
- The linear combinations $C \boldsymbol{a} = \sum_{j=1}^n a_j \boldsymbol{c}_j = a_1 \boldsymbol{c}_1 + \dots + a_n \boldsymbol{c}_n$ of the vectors \boldsymbol{c}_j defines points in the n-dimensional linear subspace $\mathcal C$ defined by these column vectors.
- The linear least square solution defines the point $\widehat{y} = Ca$ on linear subspace $\mathcal C$ closest to y.
- The vector $\mathbf{y} \widehat{\mathbf{y}}$ from \mathbf{y} to $C\mathbf{a}$ must be orthogonal to the plane and perpendicular to every \mathbf{c}_i : $\mathbf{c}_j^T(\mathbf{y} C\mathbf{a}) = 0$, j=1..., n.
- In matrix notation,

$$C^T(\boldsymbol{y} - C\boldsymbol{a}) = 0$$

or

$$C^T y = C^T C a$$

• C is known as the observation matrix.

Statistics Associated with the Least Squares Linear Model Fit

- $\hat{a} = C^+ y$, with $C^+ = (C^T C)^{-1} C^T$, E(y) = Ca, $V(y) = \sigma^2 I$
- Applying LPU,

$$E(\widehat{\boldsymbol{a}}) = C^+ E(\boldsymbol{y}) = C^+ C \boldsymbol{a} = \boldsymbol{a}$$

$$V(\widehat{\boldsymbol{a}}) = C^+ V(\boldsymbol{y}) (C^+)^T = (C^T C)^{-1} C^T \sigma^2 I C (C^T C)^{-1} = \sigma^2 (C^T C)^{-1}$$

- If y is a random draw from a distribution with expectation Ca and variance $\sigma^2 I$, then \hat{a} is a random draw from a distribution with expectation a and variance $\sigma^2(C^TC)^{-1}$.
- If $m\gg n$, then the central limit theorem implies that $\widehat{\pmb a}\in N(\pmb a,\sigma^2(\pmb C^T\pmb C)^{-1})$

Statistics Associated with Other Calculations

Model predications at x_i

$$\widehat{\boldsymbol{y}} = C\widehat{\boldsymbol{a}},$$

$$V(\widehat{\boldsymbol{y}}) = CV(\widehat{\boldsymbol{a}})C^T = \sigma^2 C(C^TC)^{-1}C^T$$

· Vector of residuals

$$r = y - C\hat{a} = (I - CC^{+})y$$

 $V_r = (I - CC^{+})V_y(I - CC^{+})^T = \sigma^2(I - C(C^TC)^{-1}C^T)$

• Model prediction at a new point x

$$\hat{y} = \boldsymbol{c}^T \hat{\boldsymbol{a}}, \boldsymbol{c}^T = [\varphi_1(x), \varphi_2(x), \dots, \varphi_n(x)]$$

$$\forall (\widehat{\boldsymbol{y}}) = \boldsymbol{c}^T V(\widehat{\boldsymbol{a}}) \boldsymbol{c} = \sigma^2 \boldsymbol{c}^T (C^T C)^{-1} \boldsymbol{c}$$

Posterior Estimate of σ

• If

$$\mathbf{y} = C\mathbf{a} + \epsilon, C: m \times n, \epsilon \in N(0, \sigma^2 I)$$

 $\hat{\mathbf{a}} = (C^T C)^{-1} C^T \mathbf{y}, \qquad \mathbf{r} = \mathbf{y} - C\hat{\mathbf{a}}$

Then

$$\sum_i r_i^2 = oldsymbol{r}^T oldsymbol{r} \in \chi^2_{m-n}$$
 , $E(oldsymbol{r}^T oldsymbol{r}) = m-n$

• Posterior estimate of σ , $V(\widehat{a})$:

$$\widehat{\boldsymbol{\sigma}}^2 = \frac{\boldsymbol{r}^T \boldsymbol{r}}{m - n'},$$

$$V(\widehat{\boldsymbol{a}}) = \widehat{\boldsymbol{\sigma}}^2 (C^T C)^{-1}$$

Exercise

Modify Matlab scripts r_line_fit_A.m to fit a quadratic $y = a + bx + cx^2$ (or cubic) to data.

What is the formula for

$$\sum_i u^2(r_i)$$

the sum of squares of the uncertainties associated with the residuals, in terms of σ , m and n? Can you think/prove why this formula applies?

Coefficient of Determination, R²

- R² measures how well the regression model approximates the real data points. An R² of 1 indicates that the regression line fits the data perfectly.
- $R^2 = \frac{ESS}{TSS} = 1 \frac{RSS}{TSS}$ where $TSS(total\ SS) = \sum_i (y_i - \bar{y})^2$, $ESS\ (Explained\ SS) = \sum_i (\hat{y_i} - \bar{y})^2$, $ESS\ (Explained\ SS) = \sum_i (\hat{y_i} - \bar{y})^2$, $ESS\ (Explained\ SS) = \sum_i (y_i - \hat{y_i})^2 = r^T r$, TSS = ESS + RSS.
- Adjusted R²:

$$\bar{R}^2 = 1 - \frac{\frac{RSS}{m-n}}{\frac{TSS}{m-1}} = 1 - (1 - R^2) \frac{m-1}{m-n}$$

• \bar{R}^2 can reduce the influence of m on the value of R^2 .

Dr QP Yang

Significance Testing of Single Parameter

• Hypothesis:

$$H_0: a_i = 0 \quad (i = 1, 2, ..., n)$$

 $H_1: a_i \neq 0 \quad (i = 1, 2, ..., n)$

• Calculate t statistic:

$$t(\hat{a}_i) = \frac{\hat{a}_i - a_i}{S(\hat{a}_i)} = \frac{\hat{a}_i}{S(\hat{a}_i)} \sim t(m - n)$$

where $S(\hat{a}_i) = \sqrt{v_{ii}}$, c_{ii} is the ith element on diagonal of $V(\hat{a})$.

- Choose a suitable significance level, e.g. α =0.05 (Confidence level=1- α =0.95=95%)
- If $|t(\hat{a}_i)| > t_{\frac{\alpha}{2}}$ (m-n), reject H₀. a_i has significance influence y. Otherwise, accept H₀, a_i should be excluded in the model.

Prediction Interval

• Model prediction at a new point x

$$\hat{y} = \boldsymbol{c}^T \boldsymbol{a}, \, \boldsymbol{c}^T = [\varphi_1(x), \, \varphi_2(x), \dots, \varphi_n(x)]$$

$$V(\hat{y}) = \mathbf{c}^T V(\hat{\mathbf{a}}) \mathbf{c} = \sigma^2 \mathbf{c}^T (C^T C)^{-1} \mathbf{c}$$

• Since $y = c^T a + \epsilon = \hat{y} + \epsilon$

$$V(y) = V(\hat{y}) + \sigma^2 = \sigma^2 (1 + c^T (C^T C)^{-1} c)$$

- $\frac{y-\hat{y}}{S(y)} = \frac{y-\hat{y}}{\hat{\sigma}\sqrt{(1+c^T(C^TC)^{-1}c)}} \sim t\frac{\alpha}{2} (m-n)$
- The prediction interval (confidence level (1- α)%) is thus

$$[\hat{y} - S(y) t_{\frac{\alpha}{2}}(m-n), \hat{y} + S(y) t_{\frac{\alpha}{2}}(m-n)]$$

(G)

$$\begin{aligned} y_i &= a + bx_i + e_i, \\ e_i &\in N(0,\sigma^2), i = 1,2,\dots,m. \end{aligned}$$

C is a $m \times 2$ observation matrix:

$$C(i, 1: 2) = [1 x_i]$$

U4/S10-22 Dr QP Yang

Least Squares Approximation with Nonlinear Models

- Model: $y = \varphi(\mathbf{x}, \mathbf{a})$, e.g. $\varphi(t, T_0, T_b, k) = T_b + (T_0 T_b)e^{-kt}$
- Data: (x_i, y_i) , i = 1, 2, ..., m
- Least squares parameter estimates $\widehat{\pmb{a}}$ minimizes

$$E(\boldsymbol{a}) = \frac{1}{2} \sum_{i=1}^{m} f_i^2(\boldsymbol{a}) = \frac{1}{2} \boldsymbol{f}^T \boldsymbol{f},$$

$$f_i(\boldsymbol{a}) = y_i - \varphi(\boldsymbol{x_i}, \boldsymbol{a}), \boldsymbol{f} = (f_1, f_2, \dots, f_m)^T$$

Geometrical Interpretation

- $a \mapsto \varphi(a)$ is a n-surface in R^m .
- We look for the point on the surface closest to y.
- At the solution $\varphi(\widehat{a})$, the vector $\mathbf{f} = \mathbf{y} \varphi(\widehat{a})$ is orthogonal to the surface at \widehat{a} .
- The tangent plane at $\widehat{\pmb{a}}$ is

$$\varphi(\boldsymbol{a}) \approx \varphi(\widehat{\boldsymbol{a}}) + J^{T}(\boldsymbol{a} - \widehat{\boldsymbol{a}}), J_{ij} = \frac{\partial f_{i}}{\partial \boldsymbol{a}_{j}}(\widehat{\boldsymbol{a}}),$$

• so \hat{a} must solve

$$J^{T}(a)f(a) = J^{T}(a)(y - \varphi(a)) = 0.$$

• Linear case: $C^T(\mathbf{y} - C\mathbf{a}) = 0$.

Nonlinear Least Squares Method

The gradient of the objective function is
$$\boldsymbol{g} = \frac{\partial E}{\partial \boldsymbol{a}} = \frac{1}{2} \! \left(2 f^T \frac{\partial \boldsymbol{f}}{\partial \boldsymbol{a}} \right) = \boldsymbol{f}^T \boldsymbol{J} = \boldsymbol{J}^T \boldsymbol{f},$$

$$J_{ij} = \frac{\partial f_i}{\partial a_j}.$$

The Hessian matrix:

H =
$$\frac{\partial^2 E}{\partial a^2}$$
 = $\frac{\partial \mathbf{g}}{\partial \mathbf{a}}$ = $J^T \frac{\partial \mathbf{f}}{\partial \mathbf{a}} + \mathbf{f}^T \frac{\partial J}{\partial \mathbf{a}}$ = $J^T J + G$,

$$G_{jk} = \sum_{i=1}^m f_i \frac{\partial^2 f_i}{\partial a_j a_k}$$

The necessary condition $\, m{g} = 0 \,$, i.e.

$$f^T J = \mathbf{0},$$

or $J^T f = \mathbf{0}.$

Nonlinear Least Squares Method (Newton method)

- Newton method to find the zero of function g(a) = 0
- Given estimate a, linearise $g(a + \Delta a) \approx g(a) + g'(a)\Delta a$
- Given an initial a, we try to find Δa such that $g(a + \Delta a) = 0$, hence $g'(a)\Delta a = -g(a)$
- Multivariate case:

$$g(a + \Delta a) = g(a) + H\Delta a$$

 $H\Delta a = -g$

- Solve the above equation in LS sense to find $\mathbf{p} = \Delta \mathbf{a} = -H \setminus \mathbf{g}$
- $\text{Update } \hat{a}_{k+1} = \hat{a}_k + p.$

Nonlinear Least Squares Method (Gauss-Newton method)

• Use Newton's algorithm

$$H\Delta a = -g$$

• Approximate the Hessian matrix (when f_i is small):

$$H = J^T J + G \approx J^T J$$

Hence

$$J^T J \Delta \boldsymbol{a} = -\boldsymbol{g} = -J^T \boldsymbol{f}$$

- Normal equations for $J\Delta a = -f$
- Solve the above equation in LS sense to find $\mathbf{p} = \Delta \mathbf{a} = -J \backslash \mathbf{f}$ (using QR factorisation, J = QR)
- $\bullet \quad \text{Update } \hat{a}_{k+1} = \hat{a}_k + p.$
- Uncertainty $V(\hat{a}) \approx \sigma^2 (J^T J)^{-1}$

Section 10 Advanced Data Analysis

Introduction

Law of Propagation of Uncertainty (LPU)

Fitting a Model to Measured Data

Linear Least Square Method

Non-linear Least Square Method

► Lab sessions