Question	Paper 32- Mechanics Mark Scheme	Marks
1(a)	$a = 6t^2 i + 8t^3 j$	M1
	$u = \int 6t^2 i + 8t^3 j \ dt = 2t^3 i + 2t^4 j + c$	
	At $t = 0$, $u = 400i$ Hence $c = 400i$	
	$x = \int (2t^3 + 400)i + (2t^4)j dt = \left(\frac{1}{2}t^4 + 400t\right)i + \left(\frac{2}{5}t^5\right)j + c$	MI
	At $t = 0$, $x = 0$ Hence $c = 0$	
	Displacement at $t = 10$ $\left(\frac{1}{2}(10)^4 + 400(10)\right)\mathbf{i} + \left(\frac{2}{5}(10)^5\right)\mathbf{j} = 9000\mathbf{i} + 40000\mathbf{j}$	MI
	$\sqrt{9000^2 + 40000^2}$	MI
	$\sqrt{9000^2 + 40000^2} = 41000 \text{ m}$	BI
	e de la fragtación de	(5)
1(b)	For use of $\tan \theta$ with 40000 and 9000 or values found in part(a)	MI
	$\tan\theta = \frac{40000}{9000}$	MI
	$\theta = 77.3^{\circ}$	ВІ
		(3)
2	Boat A: u = 20, v = 20, a = 0, s = s, t = t	MI
	$s = ut + \frac{1}{2}at^2$	
	$s = 20t + \left(\frac{1}{2} \times 0 \times t^2\right)$	
	s = 20t	MI
	Boat B: u = 15, v = v, a = 2, s = s, t = (t - 4)	MI
	$s = ut + \frac{1}{2}at^2$	
	$s = 15(t-4) + (\frac{1}{2} \times 2 \times (t-4)^2)$	
	$s = t^2 + 7t - 44$	MI
	Equates found equations and rearranges to given form $20t = t^2 + 7t - 44$ $t^2 - 13t - 44 = 0$	Al
		(5)

Question	Paper 32- Mechanics Mark Scheme	Marks
3(a)	Identifies vertical component of pulling force 25 sin 30	M1
	$25\sin(30) + R = 15g$	M1
	$R = 134.5 \mathrm{N}$	B1
		(3)
3(b)	At least one of $25 \cos 30 - \mu R$	M1
	15 × 0.2	
	$25\cos(30) - \mu R = 15 \times 0.2$	M1
	$\mu = 0.139 (3 \text{sf})$	B1
		(3)
4(a)	Horizontal velocity = $u\cos(\theta)$ always	M1
	Attempts to use Pythagoras to find vertical velocity: $(u\cos(\theta))^2 + v^2 = (2u)^2$	M1
	$v = -u\sqrt{4 - \cos^2(\theta)}$ (negative root only as v is downwards vertical velocity)	M1 accept find v^2 only
	Attempts to use $v^2 = u^2 + 2as$ $u^2(4 - \cos^2(\theta)) = u^2\sin^2(\theta) - 2 \times 9.8 \times 9$	MI
	Attempts to rearrange e.g. $u^{2} \left(4 - \left(\sin^{2}(\theta) + \cos^{2}(\theta) \right) \right) = 176.4$	M1
	$u = 7.67 \mathrm{ms^{-1}}$	Bl
		(6)
	Attempt to use $v = u + at$ $-7.67\sqrt{4 - \cos^2(\theta)} = 7.67\sin(\theta) - 9.8 \times 2$	MI
	Attempt to rearrange e.g. $4 - \cos^2(\theta) = \sin^2(\theta) - \frac{2 \times 9.8 \times 2}{7.67} \sin(\theta) + \left(\frac{9.8 \times 2}{7.67}\right)^2$	M1
	Rearrange to get $sin(\theta)$ on one side e.g. $sin(\theta) = 7.67 \left((19.6)^2 \right)$	MI
	$\sin(\theta) = \frac{7.67}{39.2} \left(\left(\frac{19.6}{7.67} \right)^2 - 3 \right)$	
	$\theta = 43.7^{\circ}$	B1
	Accept alternate methods using any SUVAT equation other than $v^2=u^2+2as$	

Children CD (\$1000) that are a recommendation of the comment of

Question	Paper 32- Mechanics Mark Scheme	Marks
5(a)	Speed Not drawn accurately 6.25 ms ⁻¹ time 180 s	B1 Graph clearly split into 3 distinct parts B2 Fully correct graph
		(2)
5(b)	Process to find area under the graph e.g. $\frac{1}{2} \times 6.25 \times (T + 180) = 1000$	MI
	T = 140 seconds	BI
		(2)
6(a)	Expressions for magnitude of reaction at P and Q e.g. P: R and Q: 3R May be implied by working Resolves vertically	MI
	R + 3R = 50g	
	122.5 N	Bt
		(3)
6(b)	Clockwise moment about $P = 50g(CA - 1.8)$	Ml
	Anti-clockwise moment about $P = 37.5g(15 - 1.8 - 2.4)$	Mt
	50g(CA - 1.8) = 37.5g(15 - 1.8 - 2.4)	Ml
	Begins process to solve e.g. $CA - 1.8 = \frac{3}{4}(15 - 1.8 - 2.4)$	MI
	AC = 9.9 m	Bl
		(5)