問題 4 次のCPU内の命令実行に関する記述中の に入れるべき適切な字句または数値を解答群から選べ。

CPU は、主記憶装置に格納されている命令を読み出して解読し、他の装置に指示を 出す制御装置と、データに対する論理演算や算術演算を行う演算装置からなる。演算 命令を行うときの、命令の読み出しから実行終了までの流れを図1に示す。

中央処理装置(CPU)

図1 命令実行の流れ

- ① 命令アドレスレジスタ ((1) とも呼ぶ)には、これから実行する命令が格納されている、主記憶装置の番地が格納されている。
- ② 命令アドレスレジスタで示された番地の命令が、命令レジスタに取り出される。 このとき、命令アドレスレジスタは、次の命令の番地を指すように、
 - **(2)** が加えられる(ステージ1)。
- ③ 命令レジスタの命令部は解読器((3) とも呼ぶ)により解読され、演算装置に指示が出される(ステージ2)。
- ④ 命令レジスタのアドレス部はアドレスレジスタに送られる。アドレスレジスタは、 実行に必要なデータが格納されている番地や、実行結果を格納する主記憶装置の番 地を計算する(ステージ3)。
- ⑤ 演算の対象となる番地のデータが、演算装置に送られる(ステージ4)。
- ⑥ 演算装置で計算が実行される(ステージ5)。
- ⑦ 計算結果が、主記憶装置に格納される(ステージ6)。

逐次制御方式は、上記のステージ1からステージ6の一連の動作を、一命令ごとに

順番に繰り返し、実行する方式である。

図2 逐次制御方式

一方,パイプライン制御方式は、図3に示すように、次の命令の処理を1ステージ ずつずらして、複数の命令を並行して実行することにより、処理の高速化を図る方式 である。

図3 パイプライン制御方式

ただし、パイプライン制御の実行中に (4) が現れると、処理の順序が乱れて効率が低下する。この処理の乱れを (5) と呼ぶ。 (4) に対処するためには、実行される確率の高い方を取り出すなどの (6) という技術が使われている。

(1), (3)の解答群

ア. アキュムレータ

ウ. プログラムカウンタ

オ. 命令デコーダ

イ. インデックスレジスタ

エ. ベースレジスタ

カ. 動的アドレス変換機構

(2) の解答群

ア.1

ウ. アドレス部の値

イ. 2

エ. 命令語の長さ

(4) の解答群

ア. 資源の遊び

ウ. 分岐命令

イ. スタート命令

工. 演算命令

(5), (6) の解答群

ア. スーパスカラ

ウ. スーパパイプライン

オ. メモリインタリーブ

イ. パイプラインハザード

エ. 分岐予測

カ. 外部割込み