

Chapitre 2 : Etats physiques du corps pur et changements d'état

- Rappels : propriétés comparées des états gaz, liquide et solide
- Capacité calorifique
- ❖ Le gaz parfait
- Phases, constituants
- Corps pur, simple, composé
- Changements d'états à température constante
- Changements d'état à pression constante
- Diagramme P,V,T du corps pur
- Diagramme P,T du corps pur, pression de vapeur saturante fonction de la température

Mélange de gaz, fractions molaires et volumiques, pressions partielles : vapeur sèche, vapeur humide, humidité relative

Approche expérimentale

2h – semaine 3

Rappels : les états physiques de la matière

Rappels : les états physiques de la matière

FIMI

Cours de Thermodynamique

d_{intermoléculaire} = 40 Å

Absence d'interactions entre particules

Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

probabilité de trouver un autre atome ou une autre molécule à une distance d d'un atome ou d'une molécule pris comme origine et de diamètre a₀

Etat gazeux

d_{intermoléculaire} = 40 Å

Absence d'interactions entre particules

Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

Pression d'un gaz :

Due au choc des molécules du gaz sur les parois d'un récipient

Etat gazeux

d_{intermoléculaire} = 40 Å

Absence d'interactions entre particules

Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

Pression d'un gaz :

Définie comme une force par unité de surface

FIMI Cours de Thermodynamique

Rappels: propriétés comparées des états gaz, liquide et solide

Etat gazeux

d_{intermoléculaire} = 40 Å

Absence d'interactions entre particules

Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

Pression d'un gaz :

Baromètre de Toricelli : pression du gaz = hauteur d'une colonne de mercure qui s'élève sous son effet dans un tube fermé sous vide

Expérience de Torricelli - Torricelli Experiment.mp4

FIMI Cours de Thermodynamique

Rappels : propriétés comparées des états gaz, liquide et solide

Etat gazeux

d_{intermoléculaire} = 40 Å

Absence d'interactions entre particules

Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

Température d'un gaz :

Liée à l'énergie cinétique moyenne E_c des particules qui le composent.

Pour un gaz constitué d'atomes ou de molécules en translation dans l'espace, on définit la température T du gaz par la relation :

$$E_c = \frac{3}{2}k_B T = \frac{3}{2} \times \frac{R}{N_A} T$$

 k_B : contante de Boltzmann

R: constante des gaz parfaits

$$= 8,314 \text{ J.K}^{-1}.\text{mol}^{-1}$$

Poly – Fiche O2-B

Cours de

Thermo-

dynamique

Propriétés du gaz parfait

Etat gazeux

d_{intermoléculaire} = 40 Å

Absence d'interactions entre particules

Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

Molécules suffisamment éloignées pour négliger les interactions entre elles :

> E_{potentielle microscopique} << E_{cinétique microscopique}

Vérifié pour les gaz à basse pression, mais aussi pour de nombreux gaz à P = 1 atm (ex : O_2 et N_2)

Relation entre pression, température et volume du gaz indépendante de la nature du gaz

Poly – Fiche O4

FIMI Cours de Thermo-

Loi des gaz parfaits

Sur le plan macroscopique, on appelle gaz parfait tout gaz vérifiant la loi suivante:

1 atm(sophère) = 1,013 bar = 1,1013 x 10^5 Pa = 760 mmHg = 760 Torrs

Poly – Fiche O4-C

Masse volumique et densité d'un gaz parfait

$$\rho = \frac{m}{V} = \frac{n \times M}{V} = \frac{M \times P}{R \times T}$$

$$\rho_B = \rho_A \times \frac{T_A \times P_B}{T_B \times P_A}$$
 Etat A : T_A, P_A Etat B : T_B, P_B

La densité d'un gaz 1 (de masse molaire M_1) par rapport à un gaz 2 (de masse molaire M_2) est égale au rapport des masses de chacun des gaz occupant le même volume dans les mêmes conditions de température et de pression :

$$d_{1/2} = \left(\frac{m_1}{m_2}\right)_{T,P,V} = \frac{M_1}{M_2} = \frac{\rho_1}{\rho_2}$$

$$d_{gaz/air} = \frac{M_{gaz}}{M_{gir}}$$

Poly – Fiche O4-F

FIMI Cours de Thermo-

Fraction molaire

Soit le système composé exclusivement de molécules à l'état gazeux

$$n_{tot,gaz} = n_1 + n_2 + n_3$$

La composition du gaz peut être exprimée par la fraction molaire

$$x_i = \frac{n_i}{n_{tot,gaz}} < 1$$

$$\sum_{i=1}^{n_{tot,gaz}} x_i = 1$$

INSA

FIMI

Cours de Thermodynamique

Pressions partielles

$$P_{tot} \cdot V_{tot} = n_{tot} \cdot R \cdot T$$

INSA LYON FIMI

Pressions partielles

Cours de Thermodynamique

$$P_{tot} \cdot V_{tot} = n_{tot} \cdot R \cdot T$$

FIMI Cours de Thermo-

Pressions partielles

P_i : pression partielle du gaz dans le mélange

= pression de ce gaz seul dans le récipient (occupant le volume V_{tot})

Poly – Fiche O4-E

FIMI Cours de

Pressions partielles

Loi de Dalton pour les GP :

$$P_i = x_i \cdot P_{tot}$$

$$\sum_{i=1}^{n} P_i = P_{tot}$$

(n constituants gazeux dans le mélange)

Masse molaire du mélange

https://www.wooclap.com/THERMOASINSA2

FIMI

Cours de Thermodynamique

Etat gazeux

 $d_{intermoléculaire} = 40 \text{ Å}$

Absence d'interactions entre particules

Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

Etat liquide

 $d_{intermol\'eculaire} = 4 \text{ Å}$

Interactions entre particules non négligeables

Faible mobilité moléculaire

Volume propre

Pas de forme définie

Non compressible

FIMI

Cours de Thermodynamique

Etat gazeux

 $d_{intermoléculaire} = 40 \text{ Å}$

Absence d'interactions entre particules

Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

Etat liquide

 $d_{intermoléculaire} = 4 \text{ Å}$

Interactions entre particules non négligeables

Faible mobilité moléculaire

Volume propre

Pas de forme définie

Non compressible

Attention : non compressible

pression constante au sein du liquide

V et ρ constants

Cours de Thermodynamique

état vitreux : ordre à courte distance

état cristallisé : ordre à longue distance

Etat solide

d_{intermoléculaire} = 2 Å

Interactions entre

particules fortes

Très faible mobilité moléculaire

Volume et forme propres

Non compressible

21

FIMI

Cours de Thermodynamique

FIMI

Cours de Thermodynamique

Etat gazeux

 $d_{intermoléculaire} = 40 \text{ Å}$

Absence d'interactions entre particules

> Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

Désordre complet

Etat liquide

d_{intermoléculaire} = 4 Å

Interactions entre particules non négligeables

Faible mobilité moléculaire

Volume propre

Pas de forme définie

Non compressible

Ordre à courte distance

Etat solide cristallisé

 $d_{intermoleculaire} = 2 \text{ Å}$

Interactions entre particules fortes

Très faible mobilité moléculaire

Volume et forme propres

Non compressible

Etat le plus ordonné

dynamique

Rappels: propriétés comparées des états gaz, liquide et solide

Etat gazeux

d_{intermoléculaire} = 40 Å

Absence d'interactions entre particules

> Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

Etat liquide

d_{intermoléculaire} = 4 Å

Interactions entre particules non négligeables

Faible mobilité moléculaire

Volume propre

Pas de forme définie

Non compressible

Etat solide cristallisé

d_{intermoléculaire} = 2 Å

Interactions entre particules fortes

Très faible mobilité moléculaire

Volume et forme propres

Non compressible

 $\Delta V_{gaz} \gg \Delta V_{liquides}$ et solides

Négligé mais non nul

Propriétés thermodynamiques usuelles

❖ Capacité thermique (ou capacité calorifique) : grandeur permettant de quantifier la possibilité qu'a un corps d'absorber ou de restituer de l'énergie par échange thermique au cours d'une transformation pendant laquelle sa température varie.

25

Propriétés thermodynamiques usuelles

- ❖ Capacité thermique (ou capacité calorifique) : grandeur permettant de quantifier la possibilité qu'a un corps d'absorber ou de restituer de l'énergie par échange thermique au cours d'une transformation pendant laquelle sa température varie.
- C'est l'énergie qu'il faut apporter à un corps pour augmenter sa température d'un kelvin. Elle s'exprime en joule par kelvin (J/K).

Propriétés thermodynamiques usuelles

- ❖ Capacité thermique (ou capacité calorifique) : grandeur permettant de quantifier la possibilité qu'a un corps d'absorber ou de restituer de l'énergie par échange thermique au cours d'une transformation pendant laquelle sa température varie.
- C'est l'énergie qu'il faut apporter à un corps pour augmenter sa température d'un kelvin. Elle s'exprime en joule par kelvin (J/K).

❖ Grandeur extensive : plus la quantité de matière est importante plus la capacité thermique est grande.

Toutes choses étant égales par ailleurs, plus la capacité thermique C_x d'un corps x est grande, plus grande sera la quantité d'énergie échangée au cours d'une transformation s'accompagnant d'une variation de la température de ce corps.

❖ Grandeur extensive : plus la quantité de matière est importante plus la capacité thermique est grande.

Toutes choses étant égales par ailleurs, plus la capacité thermique C_x d'un corps x est grande, plus grande sera la quantité d'énergie échangée au cours d'une transformation s'accompagnant d'une variation de la température de ce corps.

- Définition de plusieurs grandeurs intensives :
 - O Capacité thermique molaire, rapportée à une mole du corps x considéré (J.K⁻¹.mol⁻¹) :

$$\overline{C_x} = \frac{C_x}{n}$$

O Capacité thermique massique (ou spécifique), rapportée à un kg de corps x considéré (J.K⁻¹.kg⁻¹) :

$$C_{m,x} = \frac{C_x}{m}$$

Grande capacité thermique = une grande quantité d'énergie peut être stockée moyennant une augmentation relativement faible de la température.

- Grande capacité thermique = une grande quantité d'énergie peut être stockée moyennant une augmentation relativement faible de la température.
- ❖ Pour les solides et les liquides (considérés comme incompressibles) : la capacité thermique ne dépend pas de la façon dont la variation de température est réalisée : on définit une valeur de capacité thermique.

Substance	Capacité thermique
(phase solide)	massique (J·kg ⁻¹ ·K ⁻¹)
Asphalte	1 021
Brique	840
Béton	880
Granite	790
Gypse	1 090
Marbre	880
Sable	835
Verre	720 ⁴
Bois	≈ 1 200-2 700 ^{5,6}

Source: wikipedia

- ❖ Pour les gaz (compressibles) : la capacité thermique dépend de la façon dont la variation de température est réalisée
 - Nous verrons que la température d'un gaz varie aussi lorsqu'il reçoit ou fournit du travail (cf gonflage d'un pneu de vélo)
 - Il existe donc une infinité de façons de faire varier sa température d'un degré, en combinant chaleur et travail

$$Q_g \neq Q_d$$

Cours de Thermo-dynamique

Capacité thermique

- ❖ Pour les gaz (compressibles) : la capacité thermique dépend de la façon dont la variation de température est réalisée
 - Nous verrons que la température d'un gaz varie aussi lorsqu'il reçoit ou fournit du travail (cf gonflage d'un pneu de vélo)
 - Il existe donc une infinité de façons de faire varier sa température d'un degré, en combinant chaleur et travail
 - o Parmi celles-ci, on retient deux valeurs particulières :
 - o C_p: capacité thermique à pression constante
 - C_v: capacité thermique à volume constant

$$Q_g \neq Q_d$$

FIMI

Cours de

Grande capacité thermique = une grande quantité d'énergie peut être stockée moyennant une augmentation relativement faible de la température.

H 28,836	Capacites triciningues molaries des corps simples													He 20,786				
Li	Be		<u> </u>	<u>pre</u>	<u>SSIOI</u>	<u>1 con</u>	istan		B	C	N 20.424	0	F	Ne				
24,86 Na	16,443 Mg							11,087 Al	8,517 Si	29,124 P	29,378 S	31,304 Cl	20,786 Ar					
28,23	24,869							24,2	19,789	23,824	22,75	33,949	20,786					
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni 20.07	Cu	Zn	Ga	Ge	As	Se	Br	Kr
29,6	25,929		25,52	25,06	24,89	23,35	26,32	25,1	24,81	26,07	24,44	25,39		23,222		25,363	36,057	20,786
Rb 31,06	Sr 26,4		Y 26,53	Zr 25,36	Nb 24,6	Mo 24,06	Тс	Ru 24,06	Rh 24,98	Pd 25,98	Ag 25,35	Cd 26,02	In 26,74	Sn 27,112	Sb 25,23	Te 25,73	1 36,888	Xe 20,786
Cs 32,21	Ba 28,07	*	Lu 26,86	Hf 25,73	Ta 25,36	W 24,27	Re 25,48	Os 24,7	lr 25,1	Pt	Au	Hg 27,8419	TI	Pb 26,65	Bi 25,52	Po	At	Rn
Fr	Ra 20,786	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og
↓																		
		*	La 27,11	Ce 26,94	Pr 27,2	Nd 27,45	Pm	Sm 29,54	Eu 27,66	Gd 37,03	Tb 28,91	Dy 27,7	Ho 27,15	Er 28,12	Tm 27,03	Yb 26,74		
		**	Ac 27,2	Th 26,23	Pa	U 27,665	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No		

FIMI

Cours de Thermodynamique

Capacité thermique

Grande capacité thermique = une grande quantité d'énergie peut être stockée moyennant une augmentation relativement faible de la température.

Gaz monoatomiques

FIMI

Cours de Thermodynamique

Capacité thermique

Grande capacité thermique = une grande quantité d'énergie peut être stockée moyennant une augmentation relativement faible de la température.

Rf

Db

Sg

Bh

Hs

H 28,836	Capacités thermiques molaires des corps simples A procesion constante (1/m al/K)																	
Li	Be														N 20.424	0	F	
24,86 Na	16,443 Mg	11,087 8,517 29,124 29,378 31,304 2																
	24,869							24,2	19,789	23,824	22,75	33,949						
K 29,6	Ca 25,929		Sc 25,52	Ti 25,06	V 24,89	Cr 23,35	Mn 26,32	Fe 25,1	Co 24,81	Ni 26,07	Cu 24,44	Zn 25,39	Ga 25,86	Ge 23,222	As 24,64	Se 25,363	Br 36,057	
Rb 31,06	Sr 26,4		Y 26,53	Zr 25,36	Nb 24,6	Mo 24,06	Тс	Ru 24,06	Rh 24,98	Pd 25,98	Ag 25,35	Cd 26,02	In 26,74	Sn 27,112	Sb 25,23	Te 25,73	l 36,888	
Cs 32,21	Ba 28,07	*	Lu 26,86	Hf 25,73	Ta 25,36	W 24,27	Re 25,48	Os 24,7	lr 25,1	Pt 25,86	Au 25,418	Hg 27,8419	TI 26,32	Pb 26,65	Bi 25,52	Ро	At	

Mt

+														
*	La 27,11	Ce 26,94	Pr 27,2	Nd 27,45	Pm	Sm 29,54	Eu 27,66	Gd 37,03	Tb 28,91	Dy 27,7	Ho 27,15	Er 28,12	Tm 27,03	Yb 26,74
**	Ac 27,2	Th 26,23	Pa	U 27,665	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No

Ds

Rg

Cn

Nh

FI

He 20,786 Ne 20,786 Ar 20,786 Kr 20,786 Xe 20,786

Rn

Og

Mc

Lv

Ts

FIMI

Cours de Thermolynamique

Capacité thermique

Grande capacité thermique = une grande quantité d'énergie peut être stockée moyennant une augmentation relativement faible de la température.

Gaz	Masse molaire (kg/mol)	Température (°C)	Capacité thermique massique (J/(kg·K)) à pression
Air	29 × 10 ⁻³	0-100	1 004 constante
Argon	39,948 × 10 ⁻³	15	520
Diazote	28,013 × 10 ⁻³	0-200	1 025
Dioxyde de carbone	44,01 × 10 ⁻³	20	650
Hélium	4,003 × 10 ⁻³	18	3 160
Dihydrogène	2,016 × 10 ⁻³	16	10 140
Dioxygène	31,999 × 10 ⁻³	13-207	920
Vapeur d'eau	18,015 × 10 ⁻³	100	2 010

Source: wikipedia

Valeurs dans les conditions normales de température et de pression

CNTP: 273 K $(0^{\circ}C) - 1$ atm

FIMI

Cours de Thermolynamique

Capacité thermique

Influence de la température :

Influence de la température souvent négligée si ΔT est faible

Etude des changements d'état

Thermodynamique

Rappels : propriétés comparées des états gaz, liquide et solide

Etat gazeux

 $d_{intermoléculaire} = 40 \text{ Å}$

Absence d'interactions entre particules

Forte mobilité moléculaire (état désordonné)

Pas de volume ni de forme définis

Compressible

Désordre complet

Etat liquide

 $d_{intermoléculaire} = 4 \text{ Å}$

Interactions entre
particules non
négligeables

Rupture d'interactions

moléculaire

Volume propre

Pas de forme définie

Non compressible

Ordre à courte distance

Etat solide cristallisé

d_{intermoléculaire} = 2 Å

Interactions entre particules fortes

Très faible mobilité moléculaire

Volume et forme propres

Non compressible

Etat le plus ordonné

FIMI

Cours de Thermodynamique

Constituants, phases

Constituants = espèces chimiques contenues dans le système

1 corps pur = 1 constituant

Phase = toute partie d'un système présentant les mêmes propriétés physiques en tout point (gaz, liquide, solide)

FIMI

Cours de Thermodynamique

Constituants, phases

Constituants = espèces chimiques contenues dans le système

1 corps pur = 1 constituant

Phase = toute partie d'un système présentant les mêmes propriétés physiques en tout point (gaz, liquide, solide)

Rappels: changements d'état

Rappels: changements d'état

Le mot « Condensation » au lieu de liquéfaction toléré pour l'eau

FIMI Cours de Thermo-

Rappels: changements d'état

Chaleur échangée lors d'un changement d'état : chaleur latente

Rappels: changements d'état

Chaleur échangée lors d'un changement d'état : chaleur latente

Rappels: changements d'état

Chaleur échangée lors d'un changement d'état : chaleur latente

Variation de volume lors d'un changement d'état : travail échangé

Rappels: changements d'état

Au cours d'un changement d'état, qu'en est-il de la pression et de la température?

Etude <u>expérimentale</u> : corps pur à **pression constante**

Chauffage isobare d'une quantité définie d'eau sous 1 atm

Etude <u>expérimentale</u> : corps pur à **pression constante**

Chauffage isobare d'une quantité définie d'eau sous 1 atm

FIMI Cours de Thermo-

la glace

fusion

Etude expérimentale : corps pur à pression constante Chauffage isobare d'une quantité définie d'eau sous 1 atm Couvercle à la surface de l'eau Pas d'air au dessus de l'eau T (°C) gaz Liquide + gaz ^I vap E +100 liquide Solide + liquide $\mathsf{T}_\mathsf{fus} 0$ solide -30 temps Q sert à: Échauffer **Provoquer la** Échauffer **Provoquer la** Échauffer

l'eau

vaporisation

la vapeur

FIMI Cours de Thermo-

Etude <u>expérimentale</u> : corps pur à **pression constante**

- T ne peut varier que si le système se trouve sous une seule phase
- ❖ T = constante tant que 2 phases coexistent (équilibre)

INSA

FIMI

Cours de Thermolynamique

Etude <u>expérimentale</u> : corps pur à **pression constante**

Chauffage isobare d'une quantité définie d'eau sous 1 atm

Etude <u>expérimentale</u> : corps pur à **pression constante**

Diagramme température-volume : évolution de la température pour différentes pressions

- Plus la pression est grande, plus la plage d'ébullition (mélange liquide-vapeur) est petite
- Plus la pression est grande, plus la température de changement de phase augmente Thermodynamique – Chapitre II

Etude <u>expérimentale</u> : corps pur à **pression constante**

Diagramme température-volume : évolution de la température pour différentes pressions

- Plus la pression est grande, plus la plage d'ébullition (mélange liquide-vapeur) est petite
- Plus la pression est grande, plus la température de changement de phase augmente Thermodynamique – Chapitre II

Etude <u>expérimentale</u> : corps pur à température constante

Compression isotherme d'une mole de CO_2 à $\theta = 0^{\circ}C$

<u>V (mL)</u>

Etude <u>expérimentale</u> : corps pur à température constante

Compression isotherme d'une mole de CO_2 à $\theta = 0^{\circ}C$

Pression de vapeur saturante

Expérience à T = constante : ajouts de liquide Volume total constant (grand par rapport à la quantité ajoutée)

Le liquide se vaporise : P

jusqu'à ce que
$$P_{gaz} = P^*_{gaz} \rightarrow V_{gaz}$$

Pression de vapeur

apparition de la première goutte de liquide dans l'enceinte

Ensuite
$$P_{gaz} = cte = P^*_{gaz}, V_{liq} / I$$

$$P_{gaz} \le P_{gaz}^* \qquad P_{gaz}^* = f(T)$$

$$\iff$$
 S'il y a du liquide, alors $P_{gaz} = P_{gaz}^*$

saturante

Diagramme de Clapeyron de CO₂

Diagramme P, V, T du corps pur

FIMI Cours de dynamique

Diagramme P, V, T du corps pur

Diagramme P, V, T du corps pur

Courbe de fusion

Source: https://sciencetonnante.wordpress.com/2011/02/14/skier-sur-du-gallium/

Courbe de fusion

Source: https://sciencetonnante.wordpress.com/2011/02/14/skier-sur-du-gallium/

Courbe de vaporisation Pression de vapeur saturante en fonction de la température

FIMI

Cours de Thermodynamique

2,000

300

350

400

450

Temperature [K]

500

550

600

650

Courbe de vaporisation Pression de vapeur saturante en fonction de la température

FIMI

Cours de Thermolynamique

300

350

400

450

Temperature [K]

500

550

600

650

Courbe de vaporisation Pression de vapeur saturante en fonction de la température

FIMI

Cours de Thermodynamique

$$\ln \frac{P_{vs}}{P_{r\acute{e}f}} = -\frac{A}{T} + B$$

$$A = \frac{L_{vap}}{R}$$

Courbe de vaporisation Pression de vapeur saturante en fonction de la température

FIMI

Cours de Thermodynamique

$$\ln \frac{P_{vs}}{P_{r\acute{e}f}} = -\frac{A}{T} + B$$

$$A = \frac{L_{vap}}{\uparrow R}$$

démontré plus tard

Cas des mélanges de gaz Vapeur humide, humidité relative

FIMI

Cours de Thermolynamique

Humidité relative

L'évaporation de l'eau s'effectue à toutes les températures supérieures au point triple (comme cela a été vu sur les diagrammes précédents) :

évaporation de l'eau à température ambiante en milieu ouvert

au bout d'un certain temps l'ensemble de l'eau sera évaporé dans l'air

Humidité relative

Température ambiante T_{amb}

FIMI

Cours de Thermodynamique

$$HR(T_{amb}) = \frac{P_{H_2O}}{P_{vs,H_2O(T_{amb})}} \times 100$$

Humidité relative et pression de vapeur saturante L'air sec peut piéger la FIMI vapeur d'eau sec Cours de Thermosec Air sec sec Augmentation de la température Diminution de la température Air Air Air sec sec sec Air Air sec sec Air Air Air sec sec sec L'air sec froid peut piéger moins de vapeur L'air sec chaud peut piéger plus de Thermodynamique – Chapitre II d'eau vapeur d'eau

Air

sec

77

Air

sec

FIMI Cours de

Humidité relative

Température ambiante T_{amb}

Ajout d'eau vapeur : P_{H_2O} augmente

$$\rightarrow$$
 $HR(T_{amb}) = 100\%$

FIMI

Cours de Thermodynamique

Humidité relative

Que ce passe-t-il si on introduit de la vapeur d'eau dans l'air saturé?

Formation de gouttelettes d'eau

FIMI Cours de Thermo-

Humidité relative

Température ambiante T_{amb}

Ajout d'eau vapeur : P_{H_2O} augmente

$$\rightarrow$$
 $HR(T_{amb}) = 100\%$

Humidité relative

L'évaporation de l'eau s'effectue à toutes les températures comme cela a été vu sur les diagrammes précédents :

évaporation de l'eau à température ambiante en milieu ouvert

au bout d'un certain temps l'ensemble de l'eau sera évaporé dans l'air

évaporation de l'eau à température ambiante dans une enceinte fermée

au bout d'un certain temps on atteindra l'équilibre liquide/vapeur et la P_{vs(Tamb)}

INSA LYON

Humidité relative

Augmentation de la pression totale T = cte

Air humide (il existe de l'eau condensée)

$$HR(T_{amb}) = 100\%$$

FIMI

Cours de Thermodynamique

Humidité relative

Augmentation de la pression totale T = cte

Air humide (il existe de l'eau condensée)

$$HR(T_{amb}) = 100\%$$
 $P_{tot} = P_{N_2} + P_{O_2} + P_{H_2O}$ cte= $P_{vs(T)}$

augmentent mais n_{O2} et n_{N2} cts

FIMI

Cours de Thermodynamique

Humidité relative

Augmentation de la pression totale T = cte

Air humide (il existe de l'eau condensée)

$$HR(T_{amb}) = 100\%$$
 $P_{tot} = P_{N_2} + P_{O_2} + P_{H_2O}$ cte= $P_{vs(T)}$

Le nombre de moles d'eau vapeur diminue Le nombre de moles d'eau liquide augmente

FIMI Cours de Thermo-

Représentation sur un diagramme psychrométrique

L'humidité absolue (ou teneur en humidité) indique la quantité de vapeur d'eau présente dans l'air, exprimée en grammes de vapeur d'eau par kilogramme d'air sec $[g_{vapeur}/kg_{air\,sec}]$. Elle est notée r .

FIMI Cours de

Utilisation du diagramme

- Point A : si la température de l'air est de 20 °C et HR=50 %, alors sa teneur en humidité est de 7,2 g/kg environ.
- Point B : si la température de l'air est de 35 °C et sa teneur en humidité de 12 g/kg, alors HR = 35 % environ.
- Point C : l'air saturé à 20 °C contient environ 15 grammes de vapeur d'eau par kilogramme d'air sec.