Qiunuo Chen

Fuzhou University

March, 2025

Qiunuo Chen Casual Inference

- Graph
- 2 Structed Causal Model(SCM)
- 3 Intransitive case
- 4 V-structure
- **6** D-separation
- **6** References

1 Graph

Graph 00000

- 2 Structed Causal Model(SCM)
- 4 V-structure

Graph

Graph 00000

> • Simple graphical diagram can be useful in describing casual relatioship between variables.

Definition

A graph is a collection of vertices or nodes and edges. The nodes are connected by the edges.

$$\begin{array}{c|cccc} A & B \\ \hline X & Y & Z \end{array}$$

• Two nodes are adjacent if there is an edge between them.

Definition

A graph is a collection of vertices or nodes and edges. The nodes are connected by the edges.

• The graph is a complete graph if there is an edge between every pair of nodes in the graph.

- 2 Structed Causal Model(SCM)
- 4 V-structure

Fuzhou University

Defintion of Causation

用简化的模型研究自然界中的因果关系;(fire...) 利用抽象的数学语言刻画两个变量的关系。

A variable X is a direct cause(Treatment) of a Variable Y if Xappears in the functions that determines Y's value.

$$Y = f(X)$$

Sometimes X is not the only cause.

$$Y = f(X, Z, \ldots)$$

Defintion of Causation

Structed Causal Model(SCM)

X might be an indirect cause.

$$Z = g(X)$$

$$Y = f(Z)$$

$$Y = f(g(X))$$

X is a cause of Y if it is a direct cause of Y, or of any cause of Y.

Association between Causation and Graphs

If Y is the child of X, then X is the direct cause of Y. If Y is the descendant of X, then X is a potential cause of Y.

1 Y is caused by X

Structed Causal Model(SCM)

$$Y = f(X)$$

$$X ----> Y$$

(Y is the child of X)

 \bigcirc Y is caused by X and Z

$$Y = f(X, Z)$$

$$X/Z$$
 ----> Y

Graph

Association between Causation and Graphs

- A SCM consists of two sets of variables U and V, and a set of functions f
- The variables in U are called exogenous variables (external to the model)
- The variables in V are called endogenous variables. (internal)
- Every endogenous variable is a descendant of at least one exogenous variable

Association between Causation and Graphs

- Root nodes
 ⇔ Exogenous variables U
- Descendant nodes of root nodes
 ⇔ Endogenous variables V
- Edges \Leftrightarrow The functions f.

Graph

Example: Association between Causation and Graphs

Example: Association between Causation and Graphs

Structed Causal Model(SCM)

0000000000

V= {Height, Grander, Performance] U= { u, , uz, u, } f= {f1, f2, f3} Giender = film) Height = f2 (Uz, Gender) Performance=f3cHeight, Gender, Uz)

Gender
$$\frac{1}{2}$$
 Height Us

from Performance

Example: Association between Causation and Graphs

Structed Causal Model(SCM)

Statistical dependence doesn't necessarily imply causation.

Example: Association between Causation and Graphs

• Statistical dependence doesn't necessarily imply causation.

Intransitive case •00

- 2 Structed Causal Model(SCM)
- 3 Intransitive case
- 4 V-structure

- If X and Y are statistically dependent, X does not necessarily cause Y (or Y causes X).
- But, on the other hand, if X causes Y, are X and Y statistically dependent?
- The answer is: very likely X and Y are dependent, but not always.
 - for example, Gene1 causes disease. However, if gene2 exists, it will antagonize the effect of Gene1. 看起来不相关,但是有因果性。

Conclusion

Very likely, but not always Statistical Vependence

- 2 Structed Causal Model(SCM)
- 4 V-structure

V-structure

chain ,fork ,collider 是构造更复杂图的基本组件。

 $f_Z: Z = 100Y + U_Z$

Chain

SCM $V = \{X, Y, Z\}$ working training performance hours $U = \{U_X, U_Y, U_Z\}$ $F = \{f_X, f_Y, f_Z\}$ $f_X : X = U_X$ $f_Y : Y = 84 - X + U_Y$

Chain

V-structure

00000000000000000

- \bullet Z and Y are likely dependent
- \mathbf{Q} Y and X are likely dependent
- 3 Z and X are likely dependent
- **4** Z and X are independent, **conditional on** Y i.e.

$$P(Z = z \mid X = x, Y = c) = P(Z = z \mid Y = c)$$

Qiunuo Chen Casual Inference

Chain

Z and X are independent, conditional on Y i.e.

$$P(Z = z \mid X = x, \mathbf{Y} = \mathbf{c}) = P(Z = z \mid \mathbf{Y} = \mathbf{c})$$

 $f_X : X = U_X$

$$f_Y: Y = 84 - X + U_Y = C$$

$$f_Z: Z = 100 Y + U_Z$$

Chain-Rule1

Structed Causal Model(SCM)

Rule 1 (Conditional independence in Chains)

If there is only one chain between X and Z, and Y is any set of variables that intercept that chain, then(相当于y从中间切断了)

V-structure

00000000000000000

$$X \perp \!\!\! \perp Z \mid Y$$

$$X \equiv Z$$
; $' \equiv '$ means dependent $X \perp \!\!\! \perp Z \mid \{Y_1, Y_2, Y_3, \ldots\}$

Qiunuo Chen

Fuzhou University

Explanation - Causal Diagram

我们可以用因果图来解释辛普森悖论现象。(看整体数据)

Fork

$$U = \{U_X, U_Y, U_Z\}$$

$$F = \{f_X, f_Y, f_Z\}$$

$$V = \{X, Y, Z\}$$

crowd on beach ice cream sales drowning

$$f_X: X = U_X = C$$

$$f_Y: Y = 4X + U_Y$$

$$f_Z: Z = \frac{X}{10} + U_Z$$

Fork

- 1 X and Y are likely dependent
- 2 X and Z are likely dependent
- $oldsymbol{0}$ Y and Z are independent conditional on X

i.e.

$$P(Z = z \mid Y = y, X = c) = P(Z = z \mid X = c)$$

Qiunuo Chen Casual Inference Fuzhou University

Structed Causal Model(SCM)

Fork

V-structure

00000000000000000

$$U = \{U_X, U_Y, U_Z\}$$

$$F = \{f_X, f_Y, f_Z\}$$

$$V = \{X, Y, Z\}$$

crowd on beach ice cream sales drowning

$$f_X: X = U_X = C$$

$$f_Y: Y = 4X + U_Y$$

$$f_Z: Z = \frac{X}{10} + U_Z$$

V-structure

000000000000000000

Fork-Rule2

Rule 2 (Conditional independence in Forks)

If X is a common cause of Y and Z, and there is only one path between Y and Z, then

$$Y \perp \!\!\!\perp Z \mid X$$

$$Y \perp \!\!\! \perp Z \mid X_1$$
 ? No

$$Y \perp \!\!\!\perp Z \mid X_1, X_2, X_3$$
 ? YES

Structed Causal Model(SCM)

$$Y \longleftarrow X_1 \longrightarrow X_2 \longrightarrow X_3 \longrightarrow Z$$

$$Y \equiv Z$$
 ? Yes
 $Y \perp \!\!\!\perp Z \mid X_2$? Yes
 $Y \perp \!\!\!\perp Z \mid X_1$? Yes
 $Y \perp \!\!\!\perp Z \mid X_3$? Yes

Explanation - Causal Diagram

我们可以用因果图来解释辛普森悖论现象。(看分组数据)

Collider

V-structure

00000000000000000

$$U = \{U_X, U_Y, U_Z\}$$

$$F = \{f_X, f_Y, f_Z\}$$

$$V = \{X, Y, Z\}$$

$$f_X : X = U_X$$

$$f_Y : Y = U_Y$$

$$f_Z : Z = X + Y + U_Z$$

Qiunuo Chen Fuzhou University

Collider

Structed Causal Model(SCM)

- \bullet Z and Z are likely dependent
- 2 Y and Z are likely dependent
- 3 X and Y are likely independent
- X and Y are dependent, conditional on Z
 i.e.

$$P(X = x \mid Y = y, \ \mathbf{Z} = \mathbf{c}) \neq P(X = x \mid \mathbf{Z} = \mathbf{c})$$

Qiunuo Chen Fuzhou University

Collider

V-structure

00000000000000000

$$U = \{U_X, U_Y, U_Z\}$$

$$F = \{f_X, f_Y, f_Z\}$$

$$V = \{X, Y, Z\}$$

$$f_X : X = U_X$$

$$f_Y : Y = U_Y$$

$$f_Z : Z = X + Y + U_Z = C$$

Qiunuo Chen

Collider-Rule3

Structed Causal Model(SCM)

Rule 3 (Conditional independence in Colliders)

If Z is a collision of X and Y and there is only one path between X and Y, then X and Y are unconditionally independent but are dependent conditional on Z, or any descendent of Z.

V-structure

00000000000000000

Fuzhou University

- **1** Graph
- 2 Structed Causal Model(SCM)
- 4 V-structure
- **5** D-separation

Basic Concept

Graph

总结之前的三个模型:

V - structure	Uncondition	Condition
Fork	unblock	block
Chain	unblock	block
Collider	block	unblock
(or descendants)		

•

X and Y d - separated $\Leftrightarrow X, Y$ independent.

•

$$X$$
 and Y d - sep condition $Z \Leftrightarrow X, Y$ indep. $|Z|$

- X and Y are d separated:
 If every path between X and Y is blocked, or d separated.
- X and Y are d connected:
 If there exists an unblocked path.

Example

- 1 $Z \perp Y$ Yes
- 2 $Z \equiv Y \mid U \text{ Yes}$
- **3** $Z \perp Y \mid \{W, X\} \text{ Yes}$

- **1** Graph
- 2 Structed Causal Model(SCM)
- 4 V-structure
- 6 References

- [1] J. Pearl and D. Mackenzie, *The Book of Why: The New Science of Cause and Effect.*Basic Books, May 2018.
- [2] J. Pearl, M. Glymour, and N. P. Jewell, Causal Inference in Statistics: A Primer. John Wiley & Sons, reissue ed., 2016.

Thank You

4□ > 4□ > 4 ≥ > 4 ≥