A1: Let A and B be bounded subsets of \mathbb{R} . Define

$$A + B = \{a + b \mid a \in A \text{ and } b \in B\}.$$

 (\Rightarrow)

Since A and B are bounded sets,

$$s = \sup A, t = \sup B,$$

 $u = \inf A, v = \inf B$

exists. The set A + B is bounded since

$$u + v \le a + b \le s + t, \ \forall a \in A, b \in B.$$

Therefore sup (A + B) exists. Let $\epsilon > 0$,

$$s+t-\epsilon=(s-\frac{\epsilon}{2})+(t-\frac{\epsilon}{2}).$$

Then $\exists a_0 \in A$ and $b_0 \in B$ s.t. $s - \frac{\epsilon}{2} < a_0$ and $t - \frac{\epsilon}{2} < b_0$. Hence, $s + t - \epsilon < a_0 + b_0$. Therefore, $\sup (A+B) = \sup A + \sup B$.

A2: Let A be a nonempty subset of \mathbb{R} that is bounded above. Define B to be the set of upper bounds of A. Prove that B is bounded below and that

$$\sup A = \inf B$$
.

 (\Rightarrow)

Since A is bounded above, $\alpha = \sup A$ exists and is, by definition of B, an element of B. The inequality,

$$a < \alpha < b, \ \forall a \in A, b \in B$$

implies B is bounded below and $\beta = \inf B$ exists. In particular, $\beta \leq \alpha$.

Suppose $\beta < \alpha$. Define $\epsilon := \alpha - \beta > 0$. Then $\exists a_0 \in A \text{ s.t.}$

$$a_0 > \sup A - \epsilon$$

= $\sup A - (\sup A - \inf B)$
= $\inf B$
= β .

Contradiction. Therefore sup $A = \inf B$.

A3: Let x and y be real numbers with x > y > 0 and let n be a natural number. Prove the following.

(a) $x^n > y^n$.

For n = 2,

$$y^2 < xy < x^2.$$

Suppose

$$y^k < x^k, \ k \in \mathbb{N}$$

then

$$y^{k+1} < xy^k < x^{k+1}.$$

Thus,

$$0 < y < x \Rightarrow y^n < x^n.$$

(b)
$$x^n - y^n < nx^{n-1}(x - y)$$

$$x^{n} - y^{n} = (x - y) \sum_{k=0}^{n-1} x^{n-1-k} y^{k}$$

$$= (x - y) \sum_{k=0}^{n-1} x^{n-k} \left(\frac{y}{x}\right)^{k}$$

$$< (x - y) \sum_{k=0}^{n-1} x^{n-1}, \quad \left(\frac{y}{x}\right) < 1$$

$$= (x - y)(n - 1)x^{n-1}$$

$$< nx^{n-1}(x - y).$$

A4: Assume that $a \in \mathbb{R}$ and a > 0 and that $n \in \mathbb{N}$.

 (\Rightarrow)

WLOG assume a > 1. If 0 < a < 1, then $\frac{1}{a} > 1$, so that the positive n-th root of a is the reciprocal of the positive n-th root of $\frac{1}{a}$. Define

$$A = \{ x \in \mathbb{R} \mid x^n < a \}$$

The set is non-empty since $1 \in A$. The binomial expansion of $(a+1)^n$

$$(a+1)^n = \sum_{k=0}^n \binom{n}{k} a^k > a$$

implies A is bounded above and therefore $s = \sup A$ exists. $1 \in A$ implies $s \ge 1 > 0$. Let $b \in \mathbb{R}$ s.t. $b^n > a$. Assume b is positive? Let $k \in \mathbb{N}$ s.t. $0 < (b - \frac{1}{k}) < b$. By A3.b, we have

$$b^{n} - (b - \frac{1}{k})^{n} < nb^{n-1}(b - b + \frac{1}{k})$$
$$= \frac{n}{k}b^{n-1}.$$

So,

$$b^{n} - \frac{n}{k}b^{n-1} < (b - \frac{1}{k})^{n}.$$

For $k > \frac{nb^{n-1}}{b^n - a}$,

$$a < b^n - \frac{n}{k}b^{n-1} < (b - \frac{1}{k})^n$$

implies that $b - \frac{1}{k} \notin A$. Moreover, $b - \frac{1}{k}$ is an upper bound on A and b is not the LUB. Therefore $s = \sup A$ cannot be a number s.t. $s^n > a$. Therefore s is s.t. $s^n \le a$. We now show that s is s.t. $s^n \ge a$.

Let $c \in \mathbb{R}$ s.t. $c^n < a, k \in \mathbb{N}$. Choose $k \in \mathbb{N}$ s.t.

$$k > \frac{n(c+1)^n}{a - c^n}$$

Then

$$\left(c + \frac{1}{k}\right)^n < a.$$

This implies that $s = \sup$ A cannot be s.t. $s^n < a$ because that would contradict it being an upper bound. Therefore s is s.t. $s^n \ge a$. It follows that s is s.t. $s^n = a$. s must be unique because if s' is a different positive root,

$$s' < s \text{ or } s < s'$$

implies that

$$(s')^n < a \text{ or } (s')^n > a.$$