HALF ADDER

EXP.NO: 27

AIM:

To design and implement the two bit half adder using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 2 inputs into the canvas.
- 3) Connect the inputs to the XOR gate and AND gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

A	В	S	C
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

$$S = A XOR B$$
 $C = A AND B$

OUTPUT

RESULT: Thu	s 2-bit half adder	has been design	ned and impleme	ented successfull	y using logisim s	imulator.

TWO BIT HALF SUBTRACTOR

EXP.NO: 28

AIM:

To design and implement the two bit half subtractor using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 2 inputs into the canvas.
- 3) Connect the inputs to the OR gate, AND gate and NOT gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

Inputs		Outputs		
Α	В	Diff	Borrow	
0	0	0	0	
0	1	1	1	
1	0	1	0	
1	1	0	0	

Diff=A'B+AB'Borrow = A'B

OUTPUT

RESULT: Thus 2-bit half subtractor has been designed and implemented successfully using logisim

simulator.

FULL ADDER

EXP.NO: 29

AIM:

To design and implement the full adder using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 3 inputs into the canvas.
- 3) Connect the inputs to the XOR gate, AND gate and OR gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

Inputs			Outputs		
Α	В	C _{in}	Sum	Carry	
0	0	0	0	0	
0	0	1	1	0	
0	1	0	1	0	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

 $Sum=(A \bigoplus B) \bigoplus C_{in}$

Carry= $A.B + (A \oplus B)$

OUTPUT

RESULT: Thus full adder has been designed and implemented successfully using logisim simulator.

FULL SUBTRACTOR

EXP.NO: 30

AIM:

To design and implement the full subtractor using Logisim simulator.

PROCEDURE:

- 1) Pick and place the necessary gates.
- 2) Insert 3 inputs into the canvas.
- 3) Connect the inputs to the XOR gate, AND gate and OR gate.
- 4) Insert 2 outputs into the canvas.
- 5) Make the connections using the connecting wires.
- 6) Verify the truth table.

TRUTH TABLE:

Inputs			Outputs		
Α	В	B Borrow _{in}		Borrow	
0	0	0	0	0	
0	0	1	1	1	
0	1	0	1	1	
0	1	1	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	1	0	0	0	
1	1	1	1	1	

 $Diff=(A \bigoplus B) \bigoplus 'Borrow_{in'}$

Borrow=A'.B + $(A \oplus B)'$

OUTPUT

RESULT: Thus full subtractor has been designed and implemented successfully using logisim simulator.