Cigarini Maria Chiara

Task 1

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized)

Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

answer

Il tempo oggi in Piacenza Lunedi, 02 Dicembre 2019												
	13:00	14:00	16:00	18:00	20:00	21:00	22:00					
	*	*	*	*	*	<u>a</u>	*					
	PartlyCloud	PartlyCloud	LightCloud	LightCloud	PartlyCloud	Cloud	PartlyCloud					
Temperatura effettiva	10°C	10°C	9°C	6°C	7°C	7°C	8°C					
Temperatura percepita	10°C	10°C	8°C	5°C	7°C	6°C	7°C					
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm					
Umidità	79 %	77 %	89 %	90 %	90 %	92 %	91 %					
Pressione atmosferica	1016 hPa	1015 hPa	1016 hPa	1017 hPa	1019 hPa	1019 hPa	1020 hPa					

Now the time is 21:00 and from the data given on the website we have:

- Humidity 92% Φ (relative humidity)=92%
- Pressione atmosferica 1019 hPa P=101,9 kPa
- Temperatura effettiva 7°C T=280,15 K

With the psychrometric Chart we can see:

The humidity ratio, i.e., the absolute humidity ω =0.0055

The web bulb temperature $T_{wb} = 6^{\circ}C$

$$P_v = 0.893 \text{ kPa}$$

$$\boldsymbol{\omega} = \frac{0.622P_v}{P_a} = \frac{0.622P_v}{P - P_v} = 0.0055 \quad 0.622P_v = 0.0055 \ (P - P_v) \quad 0.622P_v = 0.0055P - 0.0055P_v$$

$$0.6275P_v = 0.0055P$$
 $\mathbf{P} = \frac{0.6275P_v}{0.0055} = 114.09P_v = 101.88 \, kPa$

For any ideal gas $m = \frac{PV}{R_{spt}T}$, for water vapor Rspt=0.4615

The pressure of water vapor Pv=0.893 kPa , V is the volume of aula A:

$$\boldsymbol{m_v} = \frac{0.893V}{0.4615 * 230} = 8.41 * 10^{-3}V$$

mg is the maximum water vapor:

$$\boldsymbol{m_{g=}} \frac{m_v}{0.9} = 9.34 * 10^{-3} V$$

Task 2

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a good construction quality and with the same geometry as that of the example which is located in Brindisi, Italy

								BRINDIS	SI, Italy						WMO#:	163200	
	Lat	40.65N	Long:	17.95E	Elev	10	StdP	101.2		Time Zone:	1.00 (EU)	W)	Period	86-10	WBAN:	99999	
ı	Annual He	eating and h	lumidificat	ion Design C	onditions												
ſ				Humidification DP/MCDB and HR					Coldest month WS/MCDB MCW					/PCWD	1		
-	Coldest Month			99.6%			99%			0.4% 15			% to 99.6%		6% DB		
l	IMORIUI	99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD]	
	(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)		
	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
1	Annual Co	poling, Dehu	umidificatio	on, and Enth	alpy Design	Conditions										_	
		Manage Abademia															
ſ	Hottest	Hottest			Cooling DB/MCWB			Evaporation WB/MCDB							PCWD		
-	Month	Month		.4% MCWB	DB 1	1%		%	WB	4%	WB 1	%	WB	2% MCDB	MCWS	4% DB PCWD	
ι	(-1	DB Range		111 4 1 1 1		MCWB	DB	MCWB		MCDB		MCDB					
	(a) 8	7.1	(c) 32.8	(d) 23.6	(e) 31.1	24.3	(g) 29.9	(h) 24.3	27.2	29.7	26.3	29.0	(m) 25.6	(n) 28.3	4.2	(p) 180	-
	•	7.1	32.0					24.3	21.2	29.7	20.3			20.3	4.2	100	(2
[Dehumidification DP/MCDB and HR						Enthalpy/MCDB							Hours		
ŀ	DP	0.4%	MCDB	DP	1%	14000	DP	2%	I MODD		4%		%		%	8 to 4 &	
ι		HR			HR	MCDB		HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	
	(a) 26.3	(b) 21.8	(c) 29.2	(d) 25.4	20.7	28.5	(g) 24.7	(h) 19.7	27.9	86.0	30.1	(1) 82.2	(m) 29.1	(n) 78.5	(o) 28.3	(p) 1236	(3
					20.7	20.5	24.1	19.7	21.9	00.0	30.1	02.2	29.1	70.5	20.3	1230	(3)
ı	Extreme A	Annual Desi	gn Conditi	ons													
r				Extreme Extreme Annual DB						n-Year Return Period Values of Extreme DB							r.
-	Extr	reme Annual	WS	Max Mean Standard deviation										years			
ŀ	1% 2.5% 5%		5%	WB	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
•	(0)	(b)	(c)	(d)	(0)	(f)	(g)	(h)	(1)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

Answer

Internal gains

Calculate the sensible
$$q_{ig,s} = 136 + 2.2A_{cf} + 12N_{oc} = 136 + 2.2 * 200 + 22 * 2 = 620 W$$
 $q_{ig,l} = 20 + 0.22A_{cf} + 12N_{oc} = 20 + 0.22 * 200 + 12 * 2 = 88 W$

Infiltration

For a house with a good construction quality, unit leakage area $A_{ul} = 1.4cm^2/m^2$

And the exposed surface $A_{es} = A_{wall} + A_{roof} = 200 + 144 = 344 m^2$

$$A_L = A_{es} * A_{ul} = 344 * 1.4 = 481.6 cm^2$$

 $T_{cooling} = 24^{\circ} \mathcal{C}$, this is the cooling temperature in Brindisi

 $T_{heating} = 20^{\circ} \mathcal{C}$, this is the heating temperature in Brindisi

$$\Delta T_{cooling} = 31.1^{\circ}C - 24^{\circ}C = 7.1^{\circ}C = 7.1\,K$$

$$T_{heating} = 20^{\circ}C - (-4.1^{\circ}C) = 24.1^{\circ}C = 24.1 K$$

$$IDF_{heating} = 0.073 \frac{L}{s * cm^2}$$

$$IDF_{cooling} = 0.033 \frac{L}{s * cm^2}$$

Calculate infiltration airflow rate:

$$Q_{i,heating} = A_L * IDF_{heating} = 481.6 * 0.073 = 35.157 \frac{L}{s}$$

$$Q_{i,cooling} = A_L * IDF_{cooling} = 481.6 * 0.033 = 15.893 \frac{L}{s}$$

The minimum required whole building ventilation rate is

$$Q_v = 0.05A_{cf} + 3.5(N_{br} + 1) = 0.05 * 200 + 3.5 * (1 + 1)\frac{L}{s}$$

$$Q_{i-v,heating} = Q_{i,heating} + Q_v = 35.157 + 17 = 52.157 \frac{L}{s}$$

$$Q_{i-v,cooling} = Q_{i,cooling} + Q_v = 15.893 + 17 = 32.893 \frac{L}{s}$$

Given that $C_{sensible} = 1.23$ $C_{latent} = 3010$ $\Delta\omega_{cooling} = 0.0039$

$$Q_{inf-ventilation}{}_{cooling}{}_{sensible} = C_{sensible}Q_{i-v,cooling} \Delta T_{cooling} = 1.23*32.893*7.1$$

$$Q_{inf-ventilation}{}_{cooling}{}_{latent} = C_{latent}Q_{i-v,cooling}\Delta\omega_{cooling} = 3010*32.893*0.0039*$$

$$Q_{inf-ventilation}{}_{healting}{}_{sensible} = C_{sensible}Q_{i-v,cooling} \Delta T_{heating} = 1.23*52.157*24.1$$