Mark each of the first nine statements as true or false. In question ten draw the required graph.

- 1. If events A and B are complementary then P(A) + P(B) = 1.
- 2. If $x \in]\frac{\pi}{2}, \pi]$ then $\arcsin(\sin x) = x$.

1 3. The fourth roots of unity are $\pm 1, \pm i$. $\xi^{4} = 1$

4. If events A and B are independent with P(A) = 0.3 and P(B) = 0.5 then $P(A \cup B) = 0.65$.

 $f(-x) = \{+ \geq (as(-x) + 3 cos(-x) + 4 sin(-x))\}$ $(-x) = \{+ \geq (as(-x) + 3 cos(-x) + 4 sin(-x))\}$

(6) If P(A) = 0.3 and P(B) = 0.4 then $0.1 \le P(A' \cap B) \le 0.4$.

(.1-0.29= 282 (1.18)-> O.4. 7. The function $f: \mathbb{R} \to [0,1]$ with rule $f(x) = x - \lfloor x \rfloor$ is surjective but not injective.

 $\pi(x-1) = \frac{\pi}{2} + 2 \sqrt{\pi}$ うしまりに

8. $101_2 + 1011_2 = 10000_2$.

5 + (1 = 1 b.

9. The equation $2\cos(\pi(x-1)) = 1$ has (5) solutions in the interval [0,5].

10. Draw the graph of $f(x) = \frac{1-2x}{1+x}$ in the window below. Be sure to indicate any key features. $\frac{-2\times +1}{\times +1}$

needs to be " -- - -

 $\frac{z}{2} + 5k$ $(X-1=\frac{3}{7}+5k)$

cos(TI(X-1))= 1

你都写了生了...