XX.

ERDÉLYI MAGYAR MATEMATIKAVERSENY

SEPSISZENTGYÖRGY 2010. FEBRUÁR 5-7.

ELŐSZÓ

Jelen kiadványunk az Erdélyi Magyar Matematikaverseny (EMMV) 2010. évi fordulója alkalmával jelenik meg, melynek házigazdája újból a sepsiszentgyörgyi Székely Mikó Kollégium. Ez a verseny része annak a matematikai tehetséggondozó mozgalomnak, melyet Bencze Mihály brassói matematikatanár kezdeményezett éppen 20 évvel ezelőtt. Az Erdélyi Magyar Matematikaversenynek mintegy másfél évtizeden át a Székely Kollégium adott otthont, miközben Székelv Mikó Matematikaverseny név alatt futott. Ebben a periódusban – felkérésemre - Dr. Bege Antal, a Babes-Bolvai Tudományegyetem docense látta el a versenybizottság elnöki tisztét. Az utóbbi időben matematikai vetélkedőnk az Erdélyi Magyar Matematikaverseny nevet viseli és vándorversennyé vált: minden évben más-más neves erdélyi magyar tannyelvű középiskola szervezi a soron következő fordulót. Versenyünk szerves része egy, a Kárpát-medencét átfogó magyar matematikai vetélkedősorozatnak. Az Erdélyi Magyar Matematikaversenyen elért eredmények alapján válogatjuk ki azt a 60 tagú középiskolás akik Erdélyt képviselik a Nemzetközi Magyar Matematikaversenyen. Az EMMV köré egy matematikai alkotóműhely is szerveződik: többségében eredeti, magyar matematikatanárok által szerkesztett versenyfeladatok kerülnek kitűzésre, melyek utólag megoldásaikkal együtt szaklapokban és matematikai gyűjteményekben is megjelennek. Nem utolsó sorban pedig matematika-előadások és szakmai tanácskozások szerepelnek a verseny programjában.

Ugyanakkor vándorversenyünk házigazdái mindig gondoskodnak arról, hogy ez több legyen matematikai vetélkedőnél: Erdély különböző régióiból összesereglett közel 200 diák és több, mint 30 tanár ízelítőt kaphat helytörténetből, vagy éppen színházi előadást tekinthet meg, és minden esetben szabadidős programokon vehet részt.

Most sorra kerülő versenyünk a Bolyai-jubileum jegyében zajlik. 150 éve hunyt el minden idők legnagyobb magyar matematikusa, Bolyai János, akit Erdély adott a magyar és egyetemes tudományosságnak. Nagyrabecsüléssel és büszkeséggel adózunk emlékének. Sain Márton "Nincs királyi út!" című híres matematikatörténeti művében így méltatja Bolyait: "1860. január 27-én befejezte életét ez a lángeszű, tragikus sorsú férfi, akit a világon élt tíz legnagyobb matematikus közt tartanak számon."

Kiadványunk tartalmazza az EMMV 2010-es fordulójára kitűzött versenyfeladatokat és azok megoldásait, valamint a résztvevő diákok és tanárok névsorát.

A versenyre érkező csapatoknak sikeres versenyzést, és kellemes időtöltést kíván a házigazda nevében

BÍRÓ BÉLA, igazgató

Sepsiszentgyörgy, 2010. február 4.

FELADATOK

IX. OSZTÁLY

1. Ha a és b valós számok, valamint $ab \in [-1,1]$, igazold, hogy

$$(a+b+2)^2 \ge 4(a+b)(ab+1)$$

Bencze Mihály, Brassó

- **2. a)** Igazold, hogy bármely természetes számnak és számjegyei összegének 9-cel való osztási maradéka ugyanannyi!
- **b)** Két természetes szám számjegyeinek összege azonos, jelöljük ezt az összeget k-val. A két szám számtani közepe 9n + k alakú, ahol n természetes szám. Igazold, hogy a két szám különbsége osztható 18-cal!

Kolumbán József tanuló, Kolozsvár

- **3.** Az ABCD paralelogrammában AB > AD. Az E és F pont az (AB) és (CD) oldal B, illetve D csúcsokhoz közelebb eső harmadoló pontja. A G_1 és G_2 pont az ADE, illetve BCF háromszög súlypontja és $G_1G_2\cap AD=\{K\}$.
- **a)** Igazold, hogy $\frac{AK}{AD}=\frac{1}{5}$ és $\frac{KG_1}{G_1G_2}=\frac{2}{5}$
- **b)** Számítsd ki a DG_1K és AG_1G_2 háromszögek területének arányát!

Olosz Ferenc, Szatmárnémeti

4. Egy $n \times n$ -es táblázat minden mezőjébe beírjuk az illető mező sora és oszlopa sorszámának különbségét. Pl. n=4 esetén a következő a táblázat:

0	-1	-2	-3
1	0	-1	-2
2	1	0	-1
3	2	1	0

Igazold, hogy a táblázatban szereplő számok négyzetöszege $\frac{n^2\left(n^2-1\right)}{6}$.

Bencze Mihály, Brassó

5. Az ABC háromszög oldalain adottak az $M \in (BC)$, $N \in (AC)$ és $P \in (AB)$ pontok úgy, hogy az AM, BN és CP egyenesek összefutóak. Határozd meg a háromszög A és B szögeinek mértékét, ha $m\left(\widehat{BAM}\right) = 20^\circ$, $m\left(\widehat{ABN}\right) = 30^\circ$, $m\left(\widehat{BCP}\right) = 20^\circ$ és $m\left(\widehat{ACP}\right) = 30^\circ$.

Csapó Hajnalka, Csíkszereda

6. Egy 9×9-es fehér-fekete "sakktábla" első sorának középső mezőjén áll egy bábu, amelyet az alsó sorba kell eljuttatni. Csak "sarokszomszédos" (egyetlen közös pontjuk van, az egyik csúcs) fehér mezőre léphet és csak lefele haladhat. Hány útvonalon érhet az alsó sorba?

Mikó Ágnes, Sepsiszentgyörgy

X. OSZTÁLY

1. Igazold, hogy ha a, b és c egész számok, és $a^2 + b^2 = c^2$, akkor az abc szorzat osztható 60-nal!

2. Igazold, hogy az ABCDEFG szabályos hétszögben

$$\frac{1}{AB} = \frac{1}{AC} + \frac{1}{AD} \,.$$

- **3.** Adott az $M=\left\{z\in\mathbb{C}\left||z|=\left|z^4+1\right|=1\right\}$ halmaz.
- **a)** Határozd meg annak a sokszögnek a területét, amely csúcsainak affixumai az M halmaz elemei!
- **b)** Igazold, hogy tetszőleges $z \in M$ komplex számra

$$z^{12n+4} + \frac{1}{z^{12n+4}} = -1, \ \forall n \in \mathbb{N} \ .$$

Bíró Béla, Sepsiszentgyörgy

4. Igazold, hogy $\left(\log_3 2\right)^2 + \left(\log_4 3\right)^2 + 1 > \log_3 2 + \log_4 3$.

Bíró Béla, Sepsiszentgyörgy

- **5.** Adott az $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3 + ax^2 + bx$ függvény, ahol $a,b \in \mathbb{R}$ és $a^2 < 3b$.
- **a)** Igazold, hogy bármely $d \in \mathbb{R}$ számra az f(x) = d egyenletnek legtöbb egy megoldása van.
- **b)** Ha b>4, igazold, hogy az $f(x)=f^{-1}(x)$ egyenletnek nincs nullától különböző megoldása!

Szász Emese, Marosvásárhely

6. Az ABC háromszög (AB) és (AC) oldalán adottak a D és E pontok, valamint $BE \cap CD = \{P\}$. Ha $T_{BPD} = 1$, $T_{BCP} = 4$ és $T_{CEP} = 2$, számítsd ki az ADPE négyszög területét!

Dávid Géza, Székelyudvarhely

XI. OSZTÁLY

 $\begin{array}{lll} \textbf{1.} & \text{Az} & \left(a_n\right)_{n\geq 1} & \text{sorozatra} & a_1=0 \ , & a_n\geq 0 & \text{\'es} & a_{n+1}=\sum_{k=1}^n \frac{1}{a_k+a_{k+1}} \\ \text{minden} & n\geq 1 & \text{eset\'en.} & \text{Sz\'am\'itsd} & \text{ki} & \text{a} & \lim_{n\to\infty} \sqrt{n} \left(a_{n+2}+a_{n+1}-2a_n\right) \\ \text{hat\'ar\'ert\'eket!} \\ \end{array}$

Bencze Mihály, Brassó

2. Pistike kap a szüleitől n lejt, amit csak édességre költ. Minden nap vásárol egy édességet: egy cukorkát 1 lejért, egy csokit 2 lejért, vagy egy fagyit 2 lejért. Hányféleképpen költheti el a pénzét?

Mátyás Mátyás, Brassó

3. Az $A \in M_3(\mathbb{Z})$ mátrixra

$$2A^2 - A - I_3 = O_3$$

Igazold, hogy:

- **a)** $\det(A + I_3) = 8$
- **b)** $\det(A I_3) = 0$
- c) Határozd meg az A mátrixot!

Bíró Béla, Sepsiszentgyörgy

4. Igazold, hogy tetszőleges n természetes szám esetén a $2^n + 3^{n+1}$ és $2^{n+1} + 3^n$ számok relatív prímek!

Kacsó Ferenc, Marosvásárhely

5. Adott az a nullától különböző valós szám és az $f: \mathbb{R} \to \mathbb{R}$ függvény, amelyre

$$f(x+a) + f(x) = x$$
, $\forall x \in \mathbb{R}$.

- **a)** Igazold, hogy a $g:\mathbb{R}\to\mathbb{R}$, $g(x)=f(x)-\frac{x}{2}$ függvény periodikus.
- **b)** Számítsd ki a $\lim_{n\to\infty} \frac{f(x+2an)}{n}$ határértéket!
- **c)** Adj példát olyan függvényre, amely teljesíti a feltételben megadott tulajdonságot.

Kacsó Ferenc, Marosvásárhely

6. Az O_1 és O_2 középpontú körök az A és B pontban metszik egymást. Egy A ponton áthaladó egyenes másodszor az M pontban metszi az O_1 középpontú kört és az N pontban az O_2 középpontú kört. Igazold, hogy $MN \leq 2 \cdot O_1 O_2$.

XII. OSZTÁLY

1. Pistike kap a szüleitől n lejt, amit csak édességre költ. Minden nap vásárol egy cukorkát 1 lejért, vagy egy csokit 2 lejért, vagy egy fagyit 2 lejért. Hányféleképpen költheti el a pénzét?

Mátyás Mátyás, Brassó

2. A $H_n=\{1,2,...,n\}$ részhalmazai közül véletlenszerűen kiválasztunk egyet. Jelölje p_n annak valószínűségét, hogy a kiválasztott részhalmaz tartalmaz legalább egy teljes négyzetet. Számítsd ki a $\lim_{n\to\infty}p_n$ határértéket!

Bíró Béla, Sepsiszentgyörgy

3. Igazold, hogy nem léteznek olyan nullától különböző m és n természetes számok, amelyekre m^2+4n és n^2+4m is négyzetszám.

4. Adott az $\alpha \in \mathbb{C}$ szám és a

$$G = \left\{X \in M_2\left(\mathbb{C}\right) \middle| \det\left(X - \alpha I_2\right) \neq 0\right\} \text{ halmaz}.$$

Az $M_2(\mathbb{C})$ halmazon értelmezzük az

$$A*B = AB - \alpha(A+B) + (\alpha^2 + \alpha)I_2, \ \forall A, B \in M_2(\mathbb{C})$$
 műveletet.

- **a)** Igazold, hogy G zárt részhalmaza az $M_2(\mathbb{C})$ halmaznak a "*" műveletre nézve!
- **b)** Igazold, hogy (G,*) a (H,\cdot) csoporttal izomorf csoport, ahol $H = \left\{X \in M_2\left(\mathbb{C}\right) \middle| \det X \neq 0\right\}$, a művelet pedig a mátrixok szorzása.

Bencze Mihály, Brassó

5. Bizonyítsd be, hogy ha az $f : \mathbb{R} \to \mathbb{R}$ deriválható függvény és f(0) = 0, akkor létezik olyan $a \in (0,1)$, amelyre

$$(1 - f(a))f'(a) \le \frac{1}{2}$$

Kacsó Ferenc, Marosvásárhely

6. Az O_1 és O_2 középpontú körök az A és B pontban metszik egymást. Egy A ponton áthaladó egyenes másodszor az M pontban metszi az O_1 középpontú kört és az N pontban az O_2 középpontú kört. Igazold, hogy $MN \le 2 \cdot O_1 O_2$.

MEGOLDÁSOK

IX. OSZTÁLY

1.

$$\begin{split} &(a+b+2)^2 \geq 4\,(a+b)\,(ab+1) \Leftrightarrow \\ &(a+b)^2 + 4\,(a+b) + 4 \geq 4\,(a+b)\,ab + 4\,(a+b) \Leftrightarrow \\ &\Leftrightarrow (a+b)^2 - 4\,(a+b)\,ab + 4 \geq 0 \Leftrightarrow \\ &(a+b)^2 - 4\,(a+b)\,ab + 4a^2b^2 + 4\,\left(1-a^2b^2\right) \geq 0 \Leftrightarrow \\ &\Leftrightarrow (a+b-ab)^2 + 4\left(1-a^2b^2\right) \geq 0 \text{ , ami igaz, mert } (a+b-ab)^2 \geq 0 \end{split}$$
 és $1-a^2b^2 > 0$.

2.

$$\begin{array}{ll} \textbf{a)} & \overline{a_{n-1}a_{n-2}...a_{1}a_{0}} - \left(a_{n-1} + a_{n-2} + ... + a_{1} + a_{0}\right) = \\ & = 10^{n-1}a_{n-1} + ... + 10a_{1} + a_{0} - \left(a_{n-1} + ... + a_{1} + a_{0}\right) = . \\ & = \left(10^{n-1} - 1\right)a_{n-1} + \left(10^{n-2} - 1\right)a_{n-2} + ... + 9a_{1} = \\ & = \underbrace{99...9}_{n-1}\underbrace{a_{0}} a_{n-1} + \underbrace{99...9}_{n-2}\underbrace{a_{0}} a_{n-2} + ... + 9a_{1} = \\ & = 9\left[\underbrace{11...1}_{n-1}\underbrace{a_{n-1}} + \underbrace{11...1}_{n-2}\underbrace{a_{n-2}} a_{n-2} + ... + a_{1}\right] \end{array}$$

Tehát egy szám és számjegyei összegének különbsége osztható 9-cel, azaz 9-cel való osztási maradékuk megegyezik.

b) Legyen a két szám a és b. Az **a)** pont alapján (a-k): 9 és (b-k): 9, tehát létezik $i, j \in \mathbb{N}$ úgy, hogy a=9i+k és b=9j+k.

Ekkor $\frac{a+b}{2}=9\cdot\frac{i+j}{2}+k$. Ez a számtani közép akkor és csakis akkor lesz 9n+k alakú ha i+j páros. Ekkor i-j is páros és a-b=9 (i-j):18.

3.

a)
$$\overrightarrow{G_1G_2} = \overrightarrow{AG_2} - \overrightarrow{AG_1} = \frac{\overrightarrow{AB} + \overrightarrow{AC} + \overrightarrow{AF}}{3} - \frac{\overrightarrow{AE} + \overrightarrow{AD}}{3}$$
.

Felhasználjuk, hogy $\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{AD}$, $\overrightarrow{AE} = \frac{2}{3} \cdot \overrightarrow{AB}$,

$$\overrightarrow{AF} = \frac{\overrightarrow{AC} + 2 \cdot \overrightarrow{AD}}{3}$$
, és kapjuk $\overrightarrow{G_1G_2} = \frac{5 \cdot \overrightarrow{AB} + 3 \cdot \overrightarrow{AD}}{9}$

Legyen $\frac{AK}{AD} = \alpha$, ekkor

$$\begin{split} \overrightarrow{KG_1} &= \overrightarrow{AG_1} - \overrightarrow{AK} = \frac{2 \cdot \overrightarrow{AB} + 3 \cdot \overrightarrow{AD}}{9} - \alpha \overrightarrow{AD} = \\ &= \frac{2 \cdot \overrightarrow{AB} + (3 - 9\alpha) \cdot \overrightarrow{AD}}{9}. \end{split}$$

Mivel K, G_1 , G_2 egy egyenesen helyezkednek el, ezért a $\overline{G_1G_2}$, $\overline{KG_1}$ vektorokban az \overline{AB} , \overline{AD} együtthatói arányosak: $\frac{5}{2}=\frac{3}{3-9\alpha}$, ahonnan $\alpha=\frac{1}{5}=\frac{AK}{AD}$

Az α értékét felhasználva: $\overrightarrow{KG_1} = \frac{10 \cdot \overrightarrow{AB} + 6 \cdot \overrightarrow{AD}}{45} = \frac{2}{5} \cdot \overrightarrow{G_1G_2}$, ahonnan $\frac{KG_1}{G_1G_2} = \frac{2}{5}$.

b) Legyen AL és DM az A illetve D pontnak a KG_2 egyenestől mért távolsága. $AKL_{\vartriangle} \sim DKM_{\vartriangle} \Rightarrow \frac{AL}{DM} = \frac{AK}{DK} = \frac{1}{4} \,, \qquad \text{tehát}$ $\frac{T_{KG_1D}}{T_{AG_2G_2}} = \frac{KG_1 \cdot DM}{G_1G_2 \cdot AL} = \frac{2}{5} \cdot \frac{4}{1} = \frac{8}{5}$

4.

A feladatot matematikai indukció módszerével igazoljuk.

n=1 esetén a táblázat: 0

Ekkor
$$0 = 0^2 = \frac{0^2 \left(0^2 - 1\right)}{6}$$

n=2 esetén a táblázat:

0	-1
1	0

Ekkor
$$(-1)^2 + 0^2 + 1^2 + 0^2 = 2 = \frac{12}{6} = \frac{4 \cdot 3}{6} = \frac{2^2 (2^2 - 1)}{6}$$

n-1 esetén a táblázat:

0	-1	-2		2-n
1	0	-1		3-n
:	:	:	٠.	i :
n-2	n-3	n-4	•••	0

Feltételezzük, hogy a táblázatban szereplő elemek összege:

$$\frac{(n-1)^2 \left((n-1)^2 - 1\right)}{6} = \frac{(n-1)^2 \left(n^2 - 2n\right)}{6}$$

n esetén a táblázat:

0	-1	-2		2-n	1-n
1	0	-1	•••	3-n	2-n
:	:	÷	٠.	÷	
n-2	n-3	n-4		0	-1
n-1	n-2	n-3		1	0

Az indukciós feltevést felhasználva a táblázatban szereplő számok

összege:
$$\frac{(n-1)^2 \left(n^2-2n\right)}{6} + \left((n-1)^2 + \dots + 2^2 + 1^2\right) + \\ + \left((-1)^2 + (-2)^2 + \dots + (1-n)^2\right) = \\ = \frac{(n-1)^2 \left(n^2-2n\right)}{6} + 2\left(1^2 + 2^2 + \dots + (n-1)^2\right) = \\ = \frac{(n-1)^2 \left(n^2-2n\right)}{6} + 2\frac{(n-1)n(2n-1)}{6} = \frac{n^2 \left(n^2-1\right)}{6}$$

Tehát az összeg minden $n \in \mathbb{N}^*$ esetén $\frac{n^2 \left(n^2 - 1\right)}{6}$

5..

$$\begin{split} \widehat{PBN} & \equiv \widehat{PCN} \Rightarrow PBNC \\ \text{húrnégyszög} & \Rightarrow \\ m\left(\widehat{PNB}\right) & = m\left(\widehat{PCB}\right) = 20^{\circ} \Rightarrow \\ \widehat{PNQ} & \equiv \widehat{PAQ} \Rightarrow PANQ \\ \text{húrnégyszög} & \Rightarrow \\ m\left(\widehat{APQ}\right) & + m\left(\widehat{ANQ}\right) = 180^{\circ} \;, \end{split}$$

ugyanakkor $m\left(\widehat{APQ}\right) = m\left(\widehat{ANQ}\right)$, mert ABN és APC hasonló

háromszögek. Tehát
$$BN$$
, CP és AM magasságok \Rightarrow $m\left(\widehat{MAC}\right) = 90^{\circ} - m\left(\widehat{ACM}\right) = 40^{\circ} \Rightarrow m\left(\widehat{BAC}\right) = 60^{\circ} \Rightarrow$ $m\left(\widehat{ABC}\right) = 180^{\circ} - \left(50^{\circ} + 60^{\circ}\right) = 70^{\circ}$.

6.

A beírt számok azt mutatják, hogy az illető mezőre hány útvonalon lehet elérni. Az utolsó sorba tehát összesen 20+55+70+55+20=220 útvonal vezet.

X. OSZTÁLY

1.

 $60=3\cdot 4\cdot 5$ és a 3, 4, 5 számok páronként relatív prímek, így elégséges igazolni, hogy abc osztható 3-mal, 4-gyel és 5-tel. Feltételezzük, hogy az, a, b és c számok közül egyik sem osztható 3-mal, ekkor az a^2 , b^2 és c^2 számok 3-mal való osztási maradéka 1, így az a^2+b^2 szám 3-mal való osztási maradéka 2.

Ellentmondás. Tehát a három szám valamelyike osztható 3-mal, azaz a szorzat osztható 3-mal.

Feltételezzük, hogy az, a, b és c számok közül egyik sem osztható 5-tel, ekkor az a^2 , b^2 és c^2 számok 5-tel való osztási maradéka 1 vagy 4, így az $a^2 + b^2$ szám 5-tel való osztási maradéka 0, 2 vagy 3. Ellentmondás. Tehát a három szám valamelyike osztható 5-tel, azaz a szorzat osztható 5-tel.

Ha mindhárom szám páratlan lenne, akkor a bal oldalon páros és a jobb oldalon páratlan szám állna. Tehát legalább egyikük páros. Ha legalább két szám páros, akkor a szorzat nyilván osztható 4-gyel. Feltételezzük, hogy egy szám páros és a másik kettő páratlan. Még igazolnunk kell, hogy ez a szám osztható 4-gyel. Két esetet különböztetünk meg aszerint, hogy a páros szám az egyenlőség bal vagy jobb oldalán van:

Legyen
$$a = 2m$$
, $b = 2n + 1$ és $c = 2k + 1$, ekkor $4m^2 + 4n^2 + 4n + 1 = 4k^2 + 4k + 1 \Rightarrow m^2 + n(n+1) = k(k+1)$.

Mivel két egymás után következő szám szorzata páros, közvetkezik, hogy m^2 páros, azaz m páros, tehát a:4 . Így abc:4 . Legyen a=2m+1, b=2n+1 és c=2k, ekkor

 $4m^2+4m+1+4n^2+4n+1=4k^2$, ami nem lehetséges, mert a bal oldalon szereplő kifejezés 4-gyel való osztási maradéka 2, míg a jobb oldalon szereplő szám osztható 4-gyel.

A fentiek alapján abc:60

2.

Az
$$AOB_{\Delta}$$
, AOC_{Δ} , AOD_{Δ} -ben felírhatjuk, hogy :

$$AB = 2R\sin\frac{\pi}{7}, AC = 2R\sin\frac{2\pi}{7} \text{ és } AD = 2R\sin\frac{3\pi}{7}.$$

$$\frac{1}{AB} = \frac{1}{AC} + \frac{1}{AD} \Leftrightarrow \frac{1}{2R\sin\frac{\pi}{7}} = \frac{1}{2R\sin\frac{2\pi}{7}} + \frac{1}{2R\sin\frac{3\pi}{7}} \Leftrightarrow$$

$$\Leftrightarrow \frac{1}{\sin\frac{\pi}{7}} = \frac{1}{\sin\frac{2\pi}{7}} + \frac{1}{\sin\frac{3\pi}{7}} \Leftrightarrow$$

$$\Leftrightarrow \sin\frac{2\pi}{7}\sin\frac{3\pi}{7} = \sin\frac{\pi}{7}\sin\frac{3\pi}{7} + \sin\frac{\pi}{7}\sin\frac{2\pi}{7} \Leftrightarrow$$

$$\Leftrightarrow \cos\frac{5\pi}{7} - \cos\frac{\pi}{7} = \cos\frac{4\pi}{7} - \cos\frac{2\pi}{7} + \cos\frac{3\pi}{7} - \cos\frac{\pi}{7} \Leftrightarrow$$

$$\Leftrightarrow \cos\frac{5\pi}{7} - \cos\frac{3\pi}{7} = \cos\frac{4\pi}{7} - \cos\frac{2\pi}{7} \Leftrightarrow$$

$$\Leftrightarrow 2\sin\frac{4\pi}{7}\sin\frac{\pi}{7} = 2\sin\frac{3\pi}{7}\sin\frac{\pi}{7} \Leftrightarrow$$

$$\Leftrightarrow \sin \frac{4\pi}{7} = \sin \frac{3\pi}{7} \iff \sin \frac{4\pi}{7} = \sin \left(\pi - \frac{3\pi}{7}\right)$$
, ami igaz.

Megjegyzés:

A bizonyítandó összefüggés így is írható:

$$AD \cdot AC = AB \cdot AD + AB \cdot AC(1)$$
.

Az ABDG négyszög körbeírható, Ptolemaiosz tételét alkalmazva kapjuk: $AD \cdot BG = AB \cdot DG + BD \cdot AG$ (2)

Felhasználva a szabályos hétszög tulajdonságait $(BG) \equiv (AC)$, $(AD) \equiv (DG)$ valamint $(AB) \equiv (AG)(3)$

Ekkor $(2),(3) \Rightarrow (1)$.

3.

a) Kimutatható, hogy $|z| = |z^4 + 1| = 1$ egyenértékű a $z^8 + z^4 + 1 = 0$ egyenlőséggel.

Valóban, ha
$$|z| = \left|z^4 + 1\right| = 1 \Rightarrow \begin{cases} z\overline{z} = 1\\ \left(z^4 + 1\right)\left(\overline{z}^4 + 1\right) = 1 \end{cases} \Rightarrow$$

$$\begin{cases} \overline{z} = \frac{1}{z} \\ (z\overline{z})^4 + \overline{z}^4 + z^4 + 1 = 1 \end{cases} \Rightarrow 1 + \frac{1}{z^4} + z^4 + 1 = 1 \Rightarrow$$

$$z^8 + z^4 + 1 = 0.$$

Másrészt ha
$$z^8+z^4+1=0 \Rightarrow (z^4-1)(z^8+z^4+1)=0 \Rightarrow$$

$$z^{^{12}}-1=0 \implies z^{^{12}}=1 \implies \left|z^{^{12}}\right|=1 \implies$$

$$|z|^{12}=1 \Rightarrow |z|=1$$
, és ha

$$z^{8} + z^{4} + 1 = 0 \implies z^{4} \left(z^{4} + 1\right) = -1 \implies$$

$$\left|z^4\left(z^4+1\right)\right|=1 \implies$$

$$|z^4||z^4+1|=1 \stackrel{|z|=1}{\Rightarrow} |z^4+1|=1$$
.

A bizonyításból az is kiderül, hogy a megadott komplex számok nem mások, mint azok a 12-ed rendű egységgyökök, melyek nem egyenlőek ± 1 -gyel és $\pm i$ -vel.

Ismeretes, hogy a 12-ed rendű egységgyökök az origó szimmetriaközéppontú szabályos tizenkétszög csúcsainak affixumai.

Ha eltávolítjuk a ± 1 és $\pm i$ komplex számok mértani képeit, akkor egy olyan nyolcszöget kapunk, amelyik feldarabolható 4 db. Egységnyi oldalú szabályos háromszögre és 4 db. Olyan egységnyi szárú háromszögre, melynél a szárak 30° -os szögeket zárnak be.

Tehát a nyolcszög területe:
$$T=4\left(\frac{\sqrt{3}}{4}+\frac{1}{4}\right)=\sqrt{3}+1$$

b)
$$z^8 + z^4 + 1 = 0 \implies z^4 + \frac{1}{z^4} = -1$$
, másrészt $z^{12} = 1$.

$$z^{12n+4} + \frac{1}{z^{12n+4}} = \left(z^{12}\right)^n z^4 + \frac{1}{\left(z^{12}\right)^n z^4} = z^4 + \frac{1}{z^4} = -1, (\forall) n \in \mathbb{N}.$$

4.

Legyen
$$\log_3 2 = x \in (0,1) \Rightarrow \log_4 3 = \frac{1}{2\log_2 2} = \frac{1}{2x}$$
.

Az adott egyenlőtlenség a következő alakot ölti:

$$x^2 + \frac{1}{4x^2} + 1 > x + \frac{1}{2x}.$$

Legyen továbbá
$$x + \frac{1}{2x} = y \Rightarrow x^2 + \frac{1}{4x^2} = y^2 - 1$$
.

Ezáltal a bizonyítandó egyenlőtlenség az y(y-1) > 0 alakra hozható.

Kimutatható, hogy
$$x + \frac{1}{2x} = y \ge 2\sqrt{x\frac{1}{2x}} = \sqrt{2}$$
.

Így a bizonyítandó egyenlőtlenség már nyilvánvaló.

5.

a)
$$\forall x_1 \neq x_2, x_1, x_2 \in \mathbb{R}$$
 esetén

$$\frac{f(x_1) - f(x_2)}{x_1 - x_2} = x_1^2 + x_1 x_2 + x_2^2 + ax_1 + ax_2 + b =$$

$$= x_1^2 + (a + x_1)x_1 + x_2^2 + ax_1 + b$$

$$= x_1^2 + (a + x_2)x_1 + x_2^2 + ax_2 + b$$

$$\begin{split} \Delta &= -3x_2^2 - 2ax_2 + a^2 - 4b & \text{ \'es ennek a diszkrimin\'ansa} \\ \Delta_\Delta &= 16\left(a^2 - 3b\right) < 0 \text{ , \'es ez\'ert } -3x_2^2 - 2ax_2 + a^2 - 4b < 0 \text{ ,} \end{split}$$

$$\forall x_2 \in \mathbb{R} \text{ ahonnan } x_1^2 + \left(a + x_2\right)x_1 + x_2^2 + ax_2 + b > 0 \text{ , } \forall x_1, x_2 \in \mathbb{R} \text{ .}$$

Tehát az f függvény szigorúan növekvő \mathbb{R} -en \Rightarrow f injektív \Rightarrow $\forall d \in \mathbb{R}$ esetén az f(x) = d egyenletnek legtöbb egy megoldása van.

b) Az f és f^{-1} függvények grafikus képei egymás szimmetrikusai az első szögfelezőre nézve \Rightarrow a szigorúan növekvő f függvény az f^{-1} függvényt csak az első szögfelezőn metszheti. Tehát $f(x) = f^{-1}(x) \implies f(x) = x \iff x^3 + ax^2 + (b-1)x = 0 \iff x\left(x^2 + ax + b - 1\right) = 0$ az x = 0 megoldás, de az $x^2 + ax + b - 1 = 0$ egyenletnek nincs megoldása, mivel $\Delta = a^2 - 4b + 4 < 3b - 4b + 4 = -b + 4 < 0$, ha b > 4.

6.

$$\begin{split} \text{Jel\"ol\'esek:} \ &\frac{AE}{EC} = k_1, \ \frac{AD}{DB} = k_2, \\ &T = T_{ADE_\Delta}, \ T_1 = T_{DPE_\Delta}. \\ &\frac{T_{CPE_\Delta}}{T_{CPB_\Delta}} = \frac{1}{2} \ \Rightarrow \ PB = 2PE \ . \\ &\frac{T_{BDP_\Delta}}{T_{BPC_\Delta}} = \frac{1}{4} \ \Rightarrow \ PC = 4PD \ . \end{split}$$

$$\frac{T_1}{1} = \frac{PE}{BP} \implies \frac{T_1}{1} = \frac{1}{2} \implies T_1 = \frac{1}{2}.$$

$$\frac{T_{BAE_{\Delta}}}{T_{BEC_{*}}} = \frac{AE}{EC} \Rightarrow \frac{T + \frac{1}{2} + 1}{4 + 2} = k_{1} \Rightarrow T + \frac{3}{2} = 6k_{1}$$
 (1)

$$\frac{T_{ADC_{\Delta}}}{T_{BDC_{\Delta}}} = \frac{AD}{DB} \Rightarrow \frac{T + \frac{1}{2} + 2}{5} = k_2 \Rightarrow T + \frac{5}{2} = 5k_2 \tag{2}$$

$$(1), (2) \Rightarrow 6k_1 - 5k_2 = -1.$$

Az ADC_{Δ} -re és a BE szelőre alkalmazzuk Menelaosz tételét

$$\Rightarrow \frac{AE}{EC} \cdot \frac{PC}{PD} \cdot \frac{BD}{BA} = 1 \ \Rightarrow k_1 \cdot 4 \cdot \frac{1}{k_2 + 1} = 1 \ \Rightarrow 4k_1 = k_2 + 1 \,.$$

Tehát
$$\begin{cases} 6k_1-5k_2=-1\\ 4k_1-k_2=1 \end{cases}, \text{ amit megoldva kapjuk, hogy } k_1=\frac{3}{7} \Rightarrow$$

$$\Rightarrow T = 6k_1 - \frac{3}{2} = \frac{15}{14}$$
.

XI. OSZTÁLY

1.

$$\begin{split} a_2 &= \frac{1}{a_1 + a_2} \, \Rightarrow \, a_2^2 = 1 \; \, \text{\'es} \; \, a_2 \geq 0 \; \text{, teh\'at} \; \, a_2 = 1 \, . \\ a_3 &= \frac{1}{a_1 + a_2} + \frac{1}{a_2 + a_3} = 1 + \frac{1}{1 + a_3} \; \, \Rightarrow \; \, a_3^2 = 2 \; \; \, \text{\'es} \; \, \, a_3 \geq 0 \, , \; \, \text{teh\'at} \\ a_3 &= \sqrt{2} \; . \end{split}$$

A matematikai indukció módszerével igazoljuk, hogy $a_n = \sqrt{n-1}$ bármely $n \in \mathbb{N}^*$ esetén.

Feltételezzük, hogy $a_n = \sqrt{n-1}$.

$$\begin{array}{l} {\rm Ekkor} \quad a_{n+1} = \sum_{k=1}^n \frac{1}{a_k + a_{k+1}} = a_n + \frac{1}{a_n + a_{n+1}} \quad \Rightarrow \ a_{n+1}^2 - a_n^2 = 1 \quad \Rightarrow \\ a_{n+1}^2 = n \ \ {\rm \acute{e}s} \ \ a_{n+1} \geq 0 \ \Rightarrow \ \ a_{n+1} = \sqrt{n} \ . \ {\rm Teh\acute{a}t} \ \ a_n = \sqrt{n-1} \ , \ \forall n \in \mathbb{N}^* \ . \\ \lim_{n \to \infty} \sqrt{n} \left(a_{n+2} + a_{n+1} - 2a_n \right) = \lim_{n \to \infty} \sqrt{n} \left(\sqrt{n+1} + \sqrt{n} - 2\sqrt{n-1} \right) = \\ = \lim_{n \to \infty} \left[\sqrt{n} \left(\sqrt{n+1} - \sqrt{n-1} \right) + \sqrt{n} \left(\sqrt{n} - \sqrt{n-1} \right) \right] = \\ = \lim_{n \to \infty} \frac{2\sqrt{n}}{\sqrt{n+1} + \sqrt{n-1}} + \frac{\sqrt{n}}{\sqrt{n} + \sqrt{n-1}} = 1 + \frac{1}{2} = \frac{3}{2} \end{array}$$

2.

Ha $k \in \mathbb{N}^*$, legyen P_k a k lej elköltési módjainak száma.

Első nap vagy egy cukorkát vagy egy csokit vagy egy fagyit vásárolhat.

Ha egy cukorkát vásárol, akkor k-1 leje marad, amit P_{k-1} féleképpen költhet el. Ha egy csokit vagy egy fagyit vásárol, akkor k-2 leje marad, amit P_{k-2} féleképpen költhet el.

Tehát
$$P_k = P_{k-1} + 2P_{k-2}$$
, $\forall k \ge 3$.

A karakterisztikus egyenlet: $x^2-x-2=0$ megoldásai 2 és -1, tehát a $(P_k)_{k\geq 1}$ sorozat általános tagja $P_k=\alpha 2^k+\beta \left(-1\right)^k$ alakú, ahol $\alpha,\beta\in\mathbb{R}$.

1 lejt egyféleképpen lehet elkölteni, mert csak egy cukorkát lehet rá vásárolni. 2 lejt háromféleképpen költhet el, mert vásárolhat rá két cukorkát vagy egy csokit vagy egy fagylaltot, így $P_1=1$ és $P_2=3$.

Innen
$$2\alpha-\beta=1$$
 és $4\alpha+\beta=3$. Tehát $\alpha=\frac{2}{3}$ és $\beta=\frac{1}{3}$, azaz
$$P_n=\frac{2^{n+1}+(-1)^n}{3}.$$

3.

A c) pont megoldásával kezdjük

Észrevehető, hogy $2A^2 - A - I_3 = (A - I_3)(2A + I_3)$.

Emiatt az adott egyenlet az $(A - I_3)(2A + I_3) = O_3$, $A \in M_3(\mathbb{Z})$ alakra hozható. A továbbiakban kimutatjuk, hogy a $2A + I_3$ mátrix invertálható.

$$\text{Legyen } A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \in M_3(\mathbb{Z}) \Rightarrow$$

$$\det(2A+I_3) = \begin{vmatrix} (2a+1) & 2b & 2c \\ 2d & (2c+1) & 2f \\ 2g & 2h & (2i+1) \end{vmatrix} \text{, ami}$$

nyilvánvalóan páratlan egész szám $\Rightarrow \det(2A+I_3) \neq 0$, és ezért az adott egyenlet mindkét oldalán levő mátrixokat jobbról szorozhatjuk a $(2A+I_3)$ mátrix inverzével.

Így azt kapjuk, hogy $A - I_3 = O_3 \implies A = I_3$.

Ezek alapján az a) és b) alpont állításai nyilvánvalóak.

$$A + I_3 = 2I_3 \implies \det(A + I_3) = 2^3 \det I_3 = 8$$

 $A - I_3 = O_3 \implies \det(A - I_3) = 0$

Megjegyzés: Az adott egyenlet tényleges megoldása nélkül is lehet bizonyítani az **a**) és **b**) alpontok állításait:

$$\begin{split} 2A^2-A-I_3&=O_3 \, \Rightarrow \, A(2A-I_3)=I_3 \, \Rightarrow \, \det A \cdot \det(2A-I_3)=1 \,. \\ \text{De } \det A \,, \, \det(2A-I_3) \in \mathbb{Z} \,, \, \text{teh\'at} \, \det A=\pm 1 \,. \\ \text{Ugyanakkor} \ \ 2A^2-A-I_3&=O_3 \, \Rightarrow \, A+I_3=2A^2 \, \Rightarrow \end{split}$$

$$\Rightarrow \det(A + I_3) = 2^3 \det(A^2) = 8 \Rightarrow \det(A + I_3) = 8.$$

$$2A^2 - A - I_3 = O_3 \Rightarrow 2(A^2 - I_3) = (A - I_3) \Rightarrow$$

$$\Rightarrow 2(A - I_3)(A + I_3) = (A - I_3) \Rightarrow$$

$$\Rightarrow 2^3 \det(A - I_3) \det(A + I_3) = \det(A - I_3) \Rightarrow$$

$$\Rightarrow 63 \det(A - I_2) = 0 \Rightarrow \det(A - I_2) = 0.$$

4.

Legyen $a = 2^n + 3^{n+1}$ és $b = 2^{n+1} + 3^n$.

Feltételezzük, hogy létezik olyan p prímszám, amely a és b közös osztója. Következik, hogy $2a - b = 5 \cdot 3^n$ is osztható p-vel.

Ez azt jelent, hogy p csak 3 vagy 5 lehet. De p nem lehet 3, mert $2^n + 3^{n+1}$ nem osztható 3-mal.

Másrészt
$$ab = 2^{2n+1} + 3^{2n+1} + 7 \cdot 6^n =$$

= $(2+3)(2^{2n} - 2^{2n-1} \cdot 3 + 2^{2n-2} \cdot 3^2 - \dots + 3^{2n}) + 7 \cdot 6^n$,

és ez nem osztható 5-tel, ami azt jelenti, hogy sem a, sem pedig b nem osztható 5-tel, azaz $p \neq 5$. Tehát nincs olyan p, amely a két szám közös osztója, vagyis a és b relatív prímek.

5.

a) Mivel
$$f(x+a)+f(x)=x$$
, $\forall x\in\mathbb{R}$, ezért $f(x+2a)+f(x+a)=x+a$, $\forall x\in\mathbb{R}$.

Következik, hogy

$$f(x+2a) - f(x) = a$$
, $\forall x \in \mathbb{R}$. (1)

Ez még így is írható:

$$f(x+2a) - \frac{x+2a}{2} = f(x) - \frac{x}{2}$$
, $\forall x \in \mathbb{R}$.

Következik, hogy a $g: \mathbb{R} \to \mathbb{R}$, $g(x) = f(x) - \frac{x}{2}$ függvény periodikus, periódusa 2a.

b) Az a) alpont alapján
$$f(x+2an) - \frac{x+2an}{2} = f(x) - \frac{x}{2}$$
, vagyis $f(x+2a) = f(x) + an$, $\forall x \in \mathbb{R}$, $\forall n \in \mathbb{Z}$.

$$\text{Tehát } \lim_{n \to \infty} \frac{f\left(x + 2an\right)}{n} = \lim_{n \to \infty} \left(\frac{f\left(x\right)}{n} + a\right) = a \text{ , } \forall x \in \mathbb{R} \text{ .}$$

Más megoldás

Alkalmazzuk a Cesàro-Stolz-lemmát, majd az (1) állítást, x helyett (x + 2an)-et írva:

$$\lim_{n\to\infty}\frac{f\left(x+2an\right)}{n}=\lim_{n\to\infty}\frac{f\left(x+2a\left(n+1\right)\right)-f\left(x+2an\right)}{n+1-n}=\lim_{n\to\infty}a=a\;.$$

c) Bármely $a \neq 0$ esetén létezik olyan függvény, amely a feladatbeli tulajdonsággal rendelkezik. Például:

$$f(x) = \frac{2x - a}{4} + \sin\frac{\pi x}{a}.$$

6..

Legyen P és Q a B pont átmérősen ellentett pontja az O_1 , illetve O_2 középpontú körön. Ekkor $m\left(\widehat{PAB}\right) = m\left(\widehat{BAQ}\right) = 90^\circ$, mert átmérőre illeszkedő szögek, tehát a P, A és Q pontok kollineárisak.

 $\widehat{BPA} \equiv \widehat{BMA}$ és $\widehat{BQA} \equiv \widehat{BNA}$ (ugyanazt a körívet zárják közre). Tehát $BPQ_{\Lambda} \sim BMN_{\Lambda}$ és $BP \geq BM$, mert az átmérő bármely

húrnál hosszabb
$$\Rightarrow$$
 $\frac{BP}{BM} = \frac{PQ}{MN} \ge 1$ \Rightarrow $PQ \ge MN$ \Rightarrow $2 \cdot O_1O_2 \ge MN$.

XII. OSZTÁLY

1. Lásd a XI. osztály 2. feladatát.

2.

Először meghatározzuk a H_n halmaz azon részhalmazainak számát, melyekben nincsenek teljes négyzetek. Az $1,2,3,\ldots,n$ számok között $[\sqrt{n}]$ darab teljes négyzet található, a követezők: $1^2,2^2,3^2,\ldots,[\sqrt{n}]^2$.

A H_n -nek $n-[\sqrt{n}]$ darab olyan eleme van, ami nem négyzetszám, tehát azon részhalmazainak száma, amelyekben nincsenek négyzetszámok $2^{n-[\sqrt{n}]}$. Következésképpen H_n halmaz azon részhalmazainak száma, melyek tartalmaznak legalább egy teljes négyzetet: $2^n-2^{n-[\sqrt{n}]}$.

Tehát a keresett valószínűség:

$$\begin{split} p_n &= \frac{2^n - 2^{n-[\sqrt{n}]}}{2^n} = 1 - \frac{2^{n-[\sqrt{n}]}}{2^n} = 1 - \frac{1}{2^{[\sqrt{n}]}} \Rightarrow \\ \lim_{n \to \infty} p_n &= \lim_{n \to \infty} \left(1 - \frac{1}{2^{[\sqrt{n}]}}\right) = 1 \,. \end{split}$$

3.

Feltételezzük, hogy léteznek olyan m és n nullától különböző természetes számok, amelyekre m^2+4n és n^2+4m is négyzetszámok. Ha $m \leq n$, akkor $n^2 < n^2 + 4m \leq n^2 + 4n < (n+2)^2$. Így $n^2 + 4m = (n+1)^2$ és innen 4m = 2n+1, ami ellentmondás, mivel 4m páros, 2n+1 pedig páratlan szám.

4.

a) Az értelmezés szerint

$$\begin{split} A*B - \alpha I_2 &= AB - \alpha \left(A+B\right) + \alpha^2 I_2 = (A-\alpha I_2)(B-\alpha I_2) \text{ \'es \'igy} \\ \det(A*B - \alpha I_2) &= \det(A-\alpha I_2)\det(B-\alpha I_2) \neq 0 \text{ , } \forall A,B \in G \\ \text{eset\'en.} \end{split}$$

b) Értelmezzük az $f:G\to H$ függvényt, ahol $f(X)=X-\alpha I_2$. Ekkor $f(A*B)=A*B-\alpha I_2=(A-\alpha I_2)(B-\alpha I_2)=f(A)f(B)$, $\forall A,B\in G$ esetén. Az f injektív, mert $f(X_1)=f(X_2)$ esetén $X_1-\alpha I_2=X_2-\alpha I_2$, azaz $X_1=X_2$. A függvény értelmezéséből következik, hogy f szürjektív, így bijektív. Mivel (H,\cdot) csoport és f bijektív, ezért $(G,*)\cong (H,\cdot)$, tehát (G,*) is csoport.

5.

A bizonyítandó egyenlőtlenség így is írható:

$$2f'(a) - 2f(a) f'(a) \le 1$$
.

Ezért tekintsük a $g: \mathbb{R} \to \mathbb{R}$, $g(x) = 2f(x) - f^2(x)$ függvényt, és alkalmazzuk a Lagrange-tételt a [0,1] intervallumon:

$$\exists a \in (0,1) : g'(a) = g(1) - g(0) . (1)$$

Mivel

$$\begin{split} &g'(x) = 2f'(x) - 2f(x)\,f'(x)\,,\;\forall x \in \mathbb{R}\;,\\ &g(1) = 2f(1) - f^2(1) = 1 - \left(f(1) - 1\right)^2,\,\text{\'es}\;\,g(0) = 0\;,\,\text{ez\'ert az (1)-b\"ol}\\ &\text{k\"ovetkezik, hogy} \end{split}$$

$$\exists a\in (0,1): 2f'(a)-2f(a)\,f'(a)=1-\big(f\big(1\big)-1\big)^2\leq 1\,,$$
amit bizonyítani kellett.

6. Lásd a XI. osztály 6. feladatát.

A XX. ERDÉLYI MAGYAR MATEMATIKAVERSENYEN RÉSZTVEVŐ DIÁKOK

Csiky Gergely Iskolacsoport, Arac

Kurunczi-Papp Dávid	9	Kurunczi-Papp Konrád	10
Nagy Eduárd-Sándor	9	Vámos Timea-Imelda	10
Smeu Júlia	9	Boros Zoltán-János	12
Szabó Endre	9	Hadnagy Kinga	12
Baróti Szabó	Dávid	l Iskolacsoport, Barót	
Farkas Izabella Ingrid	9	Szekeres Szidónia	10
Zajzon Csaba	9	Szabó Enikő	11
Farkas Domokos	10	Kakucs Szende	12
Áprily Lajo	s Főg	gimnázium, Brassó	
Foris Zsuzsika	9	Tomos Réka	10
Horváth István	9	Berceni Róbert	12
Jani András	9	Lengyel Hunor	12
Farkas Zita-Ágota	10	Likacs Bettina	12
Komán Zsombor-Attila	10	Nagy Ferenc-Zsolt	12
Salamon Ernő Gir	mnáz	ium, Gyergyószentmiklós	
Kémenes Endre	10	Gábor Szabolcs-László	11
Polgár István	10	György Levente	12
Bartalis Szilárd	11	Kecseti Hunor	12

Márton Árc	n Gimnázium	, Csíkszereda
------------	-------------	---------------

Antal Emőke	9	Sandy Endre-Kristóf	10
Bálint Ákos	9	Szabó-Györke István	10
Boldizsár Noémi	9	Csiszér Ágnes	11
Boros Bernadett	9	Illyés Attila	11
Császár Szabolcs	9	Tankó Kincső	11
Mátyás-Barta Kinga	9	Bedő Anita	12
Szatmári Anna	9	Buslig Szabolcs	12
Nagy Tamás	10	Ferencz-Hanke Réka	12
Péter Emőke	10	János Csongor	12

Nagy Mózes Elméleti Líceum, Kézdivásárhely

Lestyán Attila	9	Miklós Melinda	11
Bíró Dániel	10	Zsögön Csilla	11
Budai Kinga	10	Szabó Ágnes	12
Cseh Júlia	10		

Báthory István Elméleti Líceum, Kolozsvár

Jaskó György	9	Vajda Szabolcs	11
Deák Norbert	10	Várhelyi Melinda	11
Fülöp Balogh Beátrix	10	Brudasca Renáta	12
Emőke	10	Kolumbán József	12
Kegyes Krisztina	10	Kovács Krausz Zoltán	12
Durugy Ákos	11	Sebestyén Balázs	12
Takács Petra	11		

Brassai Sámuel Elméleti Líceum, Kolozsvár

Kiss Gyöngyi	9	Prezenszky Tamás	9
János Zsigm	ond Unitár	ius Kollégium, K	olozsvár
C	Gilyén Hunor	10	
Octavia	n Goga Főg	imnázium, Marg	itta
Bagosi Béla Sándor	10	Oláh Mátyás	11
Szabó Ágnes Teréz	10	Jakab Lilla	12
Bolyai Farka	as Elméleti	Líceum, Marosvá	isárhely
Benkő Mária Beatri	x 9	Szederjesi Arnold	10
Borsos Tamás	9	Vass Gergely	10
Kiss Anna	9	Bartos Júlia	11
Máté Péter	9	Benedek Annabella	11
Páll Katinka Pálma	9	Borsos Zalán	11
Szabó Zsolt	10	Fehér Áron	11
Béni Lehel	10	Puskás Timea	11
Bordi Eszter	10	Konnerth Raimund	12
Kovács Boldizsár	10	Sütő Szabolcs	12
Németh La	ászló Elmél	eti Liceum, Nagy	bánya
Nagy Lóránt	9	Lakatos Csilla	11
Szika Ottó Zsolt	10	Módis László	12

Arany János F	rőgim	názium, Nagyszalont	a
Fechete Tibor	9	Balázs Norbert Mihály	1
Kiss Annamária	9	Varga Roland	1
Ady End	re Lío	ceum, Nagyvárad	
Kádár Gergely	9	Palai Sándor	10
Sacal Krisztina-Beáta	9	Bátori Norbert	1.
Székely Ádám	9	Márton Sándor	1
Pető Ferenc	10	Suciu Renáta	1
Mihai Emineso	eu Fő	gimnázium, Nagyvára	d
Lengyel Erzsébet	9	Halász Hajnalka	10
György Szabolcs	10	Fazekas Norbert	11
Mikes Kelemen Elr	nélet	i Líceum, Sepsiszentg	yörgy
Demeter Ibolya-Brigitta	10	Gödri Csilla	11
Simon Norbert	10	Lőrinczi Ábel	11
Református K	ollégi	um, Sepsiszentgyörg	У
Balogh István	9	Szabó Sinka Sámuel	9

Székely Mikó Kollégium, Sepsiszentgyörgy

Cseh Tünde	9	Mester Ágnes	10
Halada Szilárd	9	Pintér Viktória	10
Holinka Botond	9	Aczél Andrea	11
Iffiú Szabolcs	9	Héjja Rudolf	11
János Olivér Ferenc	9	Orbán A. Szabolcs	11
Jánosi Zsolt	9	Orbán M. Szabolcs	11
László Gábor	9	Rab Enikő Sarolta	11
Mester Nagy Levente	9	Jakab István-Barna	12
Orbán Eszter	9	Lakatos István	12
Pál József-Attila	9	Sasu Robert	12
Bagoly Attila	10	Sipos Lehel	12
Kilyén Nándor Alpár	10		

Hám János Római Katolikus Iskola, Szatmárnémeti

Kostyál Maskulik Ditta 10

Kölcsey Ferenc Főgimnázium, Szatmárnémeti

Doloczki Lilla	9	Mile László	11
Oláh László	9	Tempfli Arnold	11
Lakatos Tamás	10	Bodor Zoltán	12
Lengyel Sándor	10	Mandici Szilárd	12
Sajtos István	10	Polcz Péter	12
Bondici László	11	Simon Erika	12

Petőfi Sándor Líceum, Székelyhíd

Major Lajos		11	
Orbán Balázs	Gimná	zium, Székelykeresztű	ir
Sándor Csanád	10	Farkas Ágnes	12
Hevele Balázs	11	Hevele István	12
Tamási Áron Eln	néleti l	Liceum, Székelyudvarl	hely
Bîrsan Norbert	9	Páll Tamás	10
Borsay Zsuzsanna	9	Porsche Endre	10
Gothárd Szabolcs	9	Birtalan Árpád Zsolt	11
Györfi Csenge	9	Csiki Tímea	11
Kajántó Sándor	9	Tikosi Kinga	11
Pál-Szilágyi Regina	9	Vass Balázs	11
Püsök Nóra	9	Zongor Lajos	11
Demény Dávid	10	Gencsi Márta	12
Lázár Zsolt	10	Páll Levente	12
Bartók Béla	Elméle	eti Líceum, Temesvár	
Nemes András	9	Szántó Zoltán	10
Virginás Tar Ágnes	9	Szilveszter István	11
Silvan	ia Főgi	mnázium, Zilah	

9

9

László Alma

Péterfi Zsuzsanna

11

12

Faluvégi Ágota

Máthé Brigitta

Csurulya Edit

RÉSZTVEVŐ TANÁROK NÉVSORA

Református Kollégium

Betuker Enikő Octavian.Goga Főgimnázium
Bíró Zoltán Salamon Ernő Gimnázium
Both Mihály Gábor Székely Mikó Kollégium
Csáki Ágnes Székely Mikó Kollégium
Csáki Gábor Székely Mikó Kollégium

Dáni Zsuzsa Nagy Mózes Elméleti Líceum

Darvas Annamária Baróti Szabó Dávid Szakközépiskola

Deák Éva Székely Mikó Kollégium

Egyed Géza Nagy Mózes Elméleti Líceum

György Éva Salamon Ernő Gimnázium

Hatházi Annamária Báthory István Elméleti Líceum

Henning Edit Székely Mikó Kollégium Jakab Tibor Székely Mikó Kollégium

Kéry Hajnal Mihai Eminescu Főgimnázium

Kiss Gyula Silvania Főgimnázium

Kiss Mária Arany János Főgimnázium Koszta Zoltán Székely Mikó Kollégium

Kovács Béla Kölcsey Ferenc Főgimnázium
Kovács Lajos Tamási Áron Elméleti Líceum
Mátyás Mátyás Transilvania Egyetem, Brassó
Mikó Ágnes Mikes Kelemen Elméleti Líceum
Nagy Örs Babeş-Bolyai Tudományegyetem

Nagy Zoltán Ady Endre Líceum

Nemes András Bartók Béla Elméleti Líceum Nevelits Gyöngyvér Kölcsey Ferenc Főgimnázium

Oláh-Ilkei Árpád Baróti Szabó Dávid Szakközépiskola

Páll R. Olga Márton Áron Gimnázium

Péter András Csíki Gergely Iskolacsoport

Sebestyén József Orbán Balázs Gimnázium

Stan Ágota Bolyai Farkas Elméleti Líceum Szabó Zoltán Áprily Lajos Főgimnázium

Szász Árpád Mikes Kelemen Elméleti Líceum Szilágyi Emőke Bolyai Farkas Elméleti Líceum

Tamási Csaba Márton Áron Gimnázium

Vass Csilla Kovászna Megyei Tanfelügyelőség

Zákány Mónika Németh László Elméleti Líceum