Opções de Juros - Dia 1 - Parte 1

Marcos Costa Santos Carreira

CMAP - Ecole Polytechnique

XP Investimentos - 03-Jun-2017

Conteúdo

- Abertura do curso, objetivos
 - Pré-requisitos
- 2 CDI e SELIC história e modelagem
 - História
 - Meta SELIC
 - SELIC
 - CDI
 - Transições
- 3 IDI e accrual
 - Accrual
 - Dinâmica
 - ISE

- Abertura do curso, objetivosPré-requisitos
- 2 CDI e SELIC história e modelagem
 - História
 - Meta SELIC
 - SELIC
 - CDI
 - Transições
- IDI e accrual
 - Accrual
 - Dinâmica
 - ISE

O que vocês já conhecem

- Estatística básica
 - Volatilidade
- Conceitos de cálculo
 - Derivadas parciais
 - Minimização
- Álgebra Linear
 - Vetores, matrizes e operações
 - Componentes principais
- Finanças
 - Valor presente
 - Contratos futuros
 - Opções

O que vamos discutir

- A dinâmica dos ativos base operados
 - CDI e SELIC
 - Taxas de juros (spot e forward)
- O que muda na modelagem das opções destes ativos
- Gerenciamento de risco

Objetivos

- Uma maior familiaridade com modelagem de opções
- Ampliar conceitos de risco
- Fortalecer conceitos para análise histórica dos mercados de juros

- Abertura do curso, objetivosPré-requisitos
- 2 CDI e SELIC história e modelagem
 - História
 - Meta SELIC
 - SELIC
 - CDI
 - Transições
- IDI e accrual
 - Accrual
 - Dinâmica
 - ISE

Taxas overnight eram altas

30 anos atrás o divisor era 30

- Até 30/06/1989, as taxas dos dias que precediam a fins de semana e feriados eram divididas pelo número de dias destes, de forma a mostrar a taxa over paga pelos dias não úteis.
- Até 31/05/1990, taxas divulgadas ao ano de 360 dias, com expressão linear.
 - Entre 01/06/1990 e 31/12/1997, somente taxas diárias expressas linear ao mês.
- A partir de 01/01/1998, taxas médias diárias de DI-Over e de SELIC divulgadas ao ano de 252 dias úteis, com expressão exponencial.
- Até a implantação do SPB o CDI hoje era a SELIC amanhã

Estatísticas inteligentes

- Identificar regimes
 - Quebras estruturais
 - Não confundir com volatilidade normal
- Exemplos:
 - Plano Real
- Reuniões extraordinárias do COPOM
 - Última foi em Out-2002

- Abertura do curso, objetivosPré-requisitos
- 2 CDI e SELIC história e modelagem
 - História
 - Meta SELIC
 - SELIC
 - CDI
 - Transições
- IDI e accrual
 - Accrual
 - Dinâmica
 - ISE

Regras

- Determinada pelo COPOM
- Varia em múltiplos de 25bp
- Normalmente é determinada em reuniões pré-agendadas
- Calendários do ano seguinte determinados até junho do ano atual
- http://www.bcb.gov.br/Pec/Copom/Port/taxaSelic.asp

Extraindo os dados

- https://github.com/MarcosCarreira/BrazilianDerivatives
- Python
 - requests para acessar a URL
 - BeautifulSoup para quebrar a página nos componentes

Degraus

Armínio

Meirelles

Tombini

Goldfajn

Olhe para trás

- Abertura do curso, objetivosPré-requisitos
- 2 CDI e SELIC história e modelagem
 - História
 - Meta SELIC
 - SELIC
 - CDI
 - Transições
- 3 IDI e accrual
 - Accrual
 - Dinâmica
 - ISE

Series updated according to the new IBGE's calculation methodology for GDP and released in March 2007.

Search series

Select one or more series to search values

 Find more series Full name 5 △ Last value Interest rate - CDI % p.d. D 06/03/1986 29/05/2014 Cetip Interest rate - Selic target % p.y. D 05/03/1999 16/07/2014 Copom Interest rate - Selic in annual terms (basis 252) % p.y. D 04/05/1986 30/05/2014 Sisbacen PTAX860 Interest rate - CDI in annual terms (basis 252) % p.y. 06/03/1986 29/05/2014 Mark all Unmark all Take out checked series from listing above Remove

View chart View values

Spreads

Pulos

Saltos

Produtos

- LFT
- Repos
- 2013:
 - SCS
 - OC1

- Abertura do curso, objetivosPré-requisitos
- 2 CDI e SELIC história e modelagem
 - História
 - Meta SELIC
 - SELIC
 - CDI
 - Transições
- 3 IDI e accrual
 - Accrual
 - Dinâmica
 - ISE

NOVA METODOLOGIA DE APURAÇÃO DA TAXA DI

TAXA DI-Cetip

Critério de Apuração a partir de 07/10/2013

As estatisticas do ativo Taxa DI-Cetip Over (Extra-Grupo) são calculadas e divulgadas pela Cetip, apuradas com base nas operações de emissão de Depósitos Interfinanceiros pré-fixados, pactuadas por um dia útil e registradas e liquidadas pelo sistema Cetip, conforme determinação do Banco Central do Brasil.

No universo do mercado interbancário abla seleccionadas as operações de 1 (um) dia ún! de prazo (over), considerando apenas as operações realizadas entre instituições de congiormendos diferentes (Extra-grupo), desprezando-se as demais (intra-Grupo). As estatistosa aqui apuradas são, portanto estatísticas da população DI Over (Extra-Grupo).

A nova metodología de apuração do DI propõe que o cálculo seja baseado em grupos de taxas e valores, não mais em operações.

A diferença principal deste novo tratamento é que não há mais exclusão de cinco 5% nos extremos das caudas (superior e inferior); mas sim uma diluição do percentual de alto, definido em 10%, so longo de toda a série de dados. Dessa forma, os pesos das caudas são reduzidos e proporcionalmente distribuidos nos pesos remanascentina.

FALLBACK - PROCEDIMENTO ESPECIAL PARA A APURAÇÃO DA TAXA DI

O fatback é caracterizado num cenário onde, em um dia de negociação, o número de operações usadas para o cálculo da Taxa DI seja inferior a 10 (dez). Nesta situação, a metodologia atual do DI não será aplicada e será acionado um modelo estatístico diferenciado para a apuração da Taxa DI.

Com o intuito de prover mais simplicidade e transparência, a metodologia fallback para apuração da Taxa DI a partir da Taxa Selic Over foi alterada na revisão de 21 de julho de 2016, como divulgado através do comunicado Cedio nº 062/2016 em 8 de julho de 2016.

Dessa forma, uma vez caracterizado o falibacir, a acuração da Tava DI, para uma determinada data, é malizada através do modelo descrito abaixo:

DI = β x SELIC

Di: Taxa Di Over do dia, apurada com duas casas decimais com arredondamento;
SELIC*: Taxa Selic Over, apurada e divulgada no dia com duas casas decimais;
B: parâmetro com 5 casas decimais conforme detalhado no modelo abalxo.

"Em caso extraordinário de não indivigação da Tissa SELIC Over de lá a 21/10, o. Celip poderá adobte a SELIC da étida entrivir exclusivemente para o cálculo da Tissa de la participa de la composição de la compo

- Bancos aplicados em SELIC e captados a CDI
- Spread aumenta
- 2013: Productos indexados a SELIC na BVMF
- SCC=>SCS
- E problemas com fixing ... contribuições ao CDI somem

CDI

Futuro?

- Convergência para SELIC?
- Desindexação?

- 2 CDI e SELIC história e modelagem
 - História
 - Meta SELIC
 - SELIC
 - CDI
 - Transições
- IDI e accrual
 - Accrual
 - Dinâmica
 - ISE

O passado sempre está presente

- A trajetória passada da meta é importante para a estimativa da trajetória futura ...
- Até não ser (31-Ago-2011)
- Comunicação (comunicado, ata, ...) ajudam a sinalizar possíveis mudanças no ritmo
- Assim como eleições freiam subidas
- Podemos usar isso na modelagem (estrutura a termo)

- Abertura do curso, objetivos
 - Pré-requisitos
- 2 CDI e SELIC história e modelagem
 - História
 - Meta SELIC
 - SELIC
 - CDI
 - Transições
- 3 IDI e accrual
 - Accrual
 - Dinâmica
 - ISE

Taxas fixas e flutuantes

• Taxa do prazo equivalente ao accrual:

•
$$(1 + r_{0,N})^{\frac{N}{252}} = \prod_{j=0}^{N-1} (1 + CDI_j)^{\frac{1}{252}}$$

CDI médio equivalente ao accrual:

•
$$(1+r_{0,N})^{\frac{N}{252}} = \prod_{j=0}^{N-1} (1+r_{0,N})^{\frac{1}{252}}$$

- O CDI varia no tempo (em degraus), portanto muito provavelmente o CDI nunca vai ser igual à taxa média
- E portanto:

•
$$\prod_{j=0}^{N-1} \left(1 + \left((1 + r_{0,N})^{\frac{1}{252}} - 1 \right) \cdot Perc \right) \neq \prod_{j=0}^{N-1} \left(1 + \left((1 + CDI_j)^{\frac{1}{252}} - 1 \right) \cdot Perc \right)$$

E no início ...

- Início do IDI: 02-Jan-2003
- Mas o tempo passa:

Accrual

Porque esse spot tão grande? É para operar pior

- PV01 do DI Futuro:
 - $\bullet \ \ PV01_{DI} = PV_{DI} \cdot ModDur \cdot 1bp = \frac{100000}{(1+r)^t} \cdot \frac{t}{(1+r)} \cdot 1bp = \frac{10 \cdot t}{(1+r)^{t+1}}$
- PV01 de um IDI Futuro:
 - $PV01_{IDI} = PV_{IDI} \cdot ModDur \cdot 1bp = 100000 \cdot Accrual \cdot \frac{t}{(1+r)} \cdot 1bp = \frac{10 \cdot t}{(1+r)} \cdot Accrual$
- Número de contratos de DI para hedgear 1 IDI:

$$\bullet \ \frac{PV01_{IDI}}{PV01_{DI}} = \frac{\prod_{j=0}^{N-1} (1 + CDI_j)^{\frac{1}{252}}}{(1+r)^t}$$

Qual o problema?

- Opção fica mais cara (em reais)
- O valor (e o risco) de um "contrato" aumenta com o tempo
- ...?

Começar de novo

- Novo IDI (2009)
- E quando vem o novo?

IDI

- Abertura do curso, objetivos
 - Pré-requisitos
- 2 CDI e SELIC história e modelagem
 - História
 - Meta SELIC
 - SELIC
 - CDI
 - Transições
- 3 IDI e accrual
 - Accrual
 - Dinâmica
 - ISE

Para o alto e avante

- Juros positivos (por muito tempo)
- IDI só muda a inclinação
- Ruim para payoffs com dependência de trajetória

Positivo operante

- Drift positivo
- Spot não varia, só o forward
- Expressar o IDI forward em função da taxa implícita

Nem todo valor é relevante

- Só alguns valores de IDI são "possíveis"
 - Agora o CDI está "bem comportado"

Difusão não

Recombinação

- Comutatividade de trajetórias
 - Funcionaria a princípio
 - SE número de dias úteis for o mesmo nos períodos entre COPOMs

Autocorrelação

- Mudanças nas taxas são autocorrelacionadas
- Forma forte:
 - Próxima mudança é igual à mudança anterior na ausência de sinalização sobre mudança de ritmo
- Forma fraca:
 - Próxima mudança tem o mesmo sinal da mudança anterior na ausência de sinalização sobre início ou fim de ciclo
- Consequência:
 - Zigue-zagues são bastante improváveis
 - Algumas trajetórias são muito mais prováveis que outras

Transição

- Matrizes de transição:
- No estado inicial, associamos ao vetor de possíveis mudanças de taxa $m = [\ldots, -50, -25, 0, +25, +50, \ldots]$ um vetor de probabilidades $p = [\ldots, p_{-50}, p_{-25}, p_0, p_{+25}, p_{+50}, \ldots]$
 - A soma dos elementos desse vetor é 1
 - O produto escalar $p \bullet m$ tem que ser coerente com o mercado de DIs
 - Distribuição pode ser parametrizada como unimodal (ou bimodal para mudanças de taxa vizinhas)
 - Exceção para prêmio de risco (Maio-2017)?
 - Levar em conta as mudanças de taxas anteriores
 - Pode ser calibrada com opções de IDI
- Para cada mudança em m haverá um novo vetor de probabilidades, que continua levando em conta as mudanças de taxas anteriores, incluindo as projetadas:
 - Zigue-zagues improváveis
- Calibrar probabilidades com opções de IDI mais longas

- Abertura do curso, objetivos
 - Pré-requisitos
- 2 CDI e SELIC história e modelagem
 - História
 - Meta SELIC
 - SELIC
 - CDI
 - Transições
- 3 IDI e accrual
 - Accrual
 - Dinâmica
 - ISE

Regularidade

- SELIC foi mais bem comportada que o CDI
- Mesma lógica
- Balcão (não listado)