

Tracking Olympiad Agenda

- Aim of the seminar
- How to achieve this aim
- How to monitor progress
- How to present papers about tracking
- How the seminar is graded
- When you need to be where
- Open questions

Your aim

Build an artificial intelligence to track hexbugs!

In detail...

Your aim

- You receive 100 videos from us labelled, and 5 videos from us not labelled.
 These 5 videos are used to create an intermediate leaderboard.
- You will get a crappy baseline to get started
- You can use ANY ALGORITHM to come up with (x,y) coordinates for the hexbugs and their identity i.e. track.

You are allowed to:

- Work in your team with team mates
- Acquire new data (and you should see competitions)
- Annotate new data

Teams

- You are part of a team of 3.
 (We will decide on teams in a moment)
- You need a fancy team name.

1 Solution

Ensemble solution:

- Voting?
- Averaging?
- Another network/classifier?
- Hand-written rules?!

Competitions

vs. The seminar team (Leaderboard!)

vs. The other teams!

Team competition (Bonus challenge)

- Record and annotate 3 videos (i.e. one per team member) to for the inference week.
- Everyone runs all team videos
- The one with the lowest overall score wins!

→ Just for fun

The score...?

$$E = \sqrt{(x_1 - x_0)^2 + (y_1 - y_0)^2}$$

How are the Points gathered

2024

Streaks

If you track the same hexbug over multible frames and give it the same id then you are on streak.

Number of frames correctly tracked	Points of the hexbug get
0-19	x1
20-39	x2
40-59	x3
60-100	x4

Assumption: The Streak begins with 4 tracked correct in a row

ID: 0

Points: 15 Streak: 0

Because this is the first frame the id: 0 from the label is connected to the id:0 from the prediction

ID: 0 Points: 1

Streak: 1

Points: 50 Streak: 2

Points: 10 Streak: 3

Points: 25 Streak: 4

-> x2

Points: 25 Streak: 5

-> x2

Points: 10 Streak: 6

-> x2

Points: 10 Streak: 0

-> -100 penalty

Final Score: 106

The id: 0 from the label is now connected to the id:1 from the prediction

Points: 25 Streak: 1

Points: 15 Streak: 2

Submission of Files

Has to be a csv in this format:

	t	hexbug	x	У
0	0	0	181	1414
1	0	1	139	1396
2	1	0	161	1389
3	1	1	34	1416
4	2	0	122	1422
5	2	1	35	1419

t: frame number

hexbug: ID of the hexbug

x,y: coordinates

Example script

```
import csv
# Open a CSV file in write mode
with open('predicted_data.csv', mode='w', newline='') as csv_file:
    # Define the fieldnames for the CSV file
   fieldnames = ['','t', 'hexbug', 'x', 'y']
   # Create a CSV writer object
   writer = csv.writer(csv_file)
    # Write the header row
   writer.writerow(fieldnames)
   idx = 0
   # Write data from the list to the CSV file
   for t, frame in enumerate(list_max_value_ordered):
       for hexbug, pos in enumerate(frame):
           x, y = pos
           writer.writerow([idx,t, hexbug, x, y])
           idx += 1
print("CSV file has been created successfully!")
```

Have fun hunting your hexbug

More information and Leaderboard

The data

- Is on StudON in the data folder
- You receive mp4 files with traco/csv files

The annotation

```
    test.traco

          "rois": [
                  "z": 0,
                   "id": 0,
                   "pos": [
                      467.5086790857383,
                      1048.334330825735
                  "z": 1,
                   "id": 0,
                   "pos": [
                      486.343627490922,
                      1053.5662609382857
                  "z": 2,
                  "id": 0,
                   "pos": [
                      506.2249619186159,
                      1060.8909630958572
```

Annotate new data

- You can record any data (we borrow you a Hexbug)
- We offer you our tracking software: https://github.com/ankilab/traco_external
- You can use Python to run the software ©

Tuesday

Week 1 – Welcome and expectations, teams

Week 2 – Select algorithm and check data (already work!)

Week 3 – Basics of Computer Vision (Teaching unit)

Week 4 – Basics of deep neural networks (Teaching unit)

Week 5-13 – Algorithm presentations (27 Slots)

Week 14 – Inference with TEST data, final round

Presenting algorithms

- Everyone presents 1 (!) **algorithm** about tracking, such that others can improve their reportoire.
- Each presentation should
 - Last max. 15 minutes (~ 15 slides)
 - Break down the algorithm, such that everyone can understand it!
 I will ensure that you understood it.
 - Implement the algorithm or use an existing implementation and test it (e.g. use it on HexBugs, reproduce one of the paper figures, make your own proof of concept).

→ All papers to be selected are online available!

Available Topics

ID	Paper	Link	TL;DR
1	Viola, Jones 2001	https://www.cs.cmu.edu/~efros/course	Rapid Object Detection using a Boosted Cascade of Simple Features
2	Lin et al. 2016	https://arxiv.org/pdf/1612.03144.pdf	Feature Pyramid Networks for Object Detection
3	Pareira et al. 2022	https://www.nature.com/articles/s4159	SLEAP: A deep learning system for multi-animal pose tracking
4	Mathis et al., 2018	https://www.nature.com/articles/s4159	DeepLabCut: markerless pose estimation of user-defined body parts with deep learning
5	Pareira et al., 2018	https://www.nature.com/articles/s4159	Fast animal pose estimation using deep neural networks
6	Toshev et al., 2013	https://arxiv.org/abs/1312.4659	DeepPose: Human Pose Estimation via Deep Neural Networks
7	Wang et al., 2015	https://openaccess.thecvf.com/conten	Visual tracking using convolutional neural network layers
8	Dosovitskiy et al., 2015	https://openaccess.thecvf.com/conten	Learning Optical Flow with CNNs
9	Redmon et al., 2015	https://arxiv.org/abs/1506.02640	You Only Look Once CNN for object detection
10	Liu et al., 2015	https://arxiv.org/abs/1512.02325	SSD: Single Shot detectors (competitor to YOLO)
11	Liu et al., 2021	https://arxiv.org/abs/2103.14030	Swin Transformer - SOTA object detection
12	He et al., 2017	https://openaccess.thecvf.com/conten	Mask R-CNN
13	Girschick et al., 2013	https://arxiv.org/abs/1311.2524	R-CNN
14	Ren et al., 2015	https://proceedings.neurips.cc/paper/2	Faster R-CNN
15	Isard and Blake, 1998	https://link.springer.com/article/10.102	CONDENSATION: Improved Kalman filter technique for tracking
16	Comaniciu et al., 2003	https://ieeexplore.ieee.org/document/	Kernel-based Object Tracking
17	Teknomo and Fernandez, 2015	https://arxiv.org/abs/1510.00889	Fancy method using binary operations to gain background image
18	Oliver et al., 2000	https://ieeexplore.ieee.org/stamp/stamp	Use of eigenvectors for background subtraction and blob tracking
19	Lucas and Kanade, 1981	http://www-cse.ucsd.edu/classes/sp02	Optical Flow computation using image registration
20	Shi and Tomasi, 1994	https://ieeexplore.ieee.org/document/	An algorithm to detect strong edges> i.e. good features to track
21	Smith and Brady, 1997	https://link.springer.com/article/10.102	A low-level method to find edges
22	Barnich and Van Brockenbroec	https://scholar.google.de/scholar_url?	Cool method that uses pixel proximity for universal background subtraction

Presenting papers

Day	Topic	Presenter	Topic
	17		
	18		
	22		Background
	20		
	21		
	23		Edge Detection
	15		
	16		
	1		Object tracking
	19		
	8		
	24		Optical Flow
	9		
	10		
	6		YOLO/SSD/DeepPose
	13		
	14		
	12		RCNN
	5		
	3		
	4		DeepLabCat/(S)LEAP
	2		
	7		
	11		The other cool stuff

In the same spreadsheet:

Go to "Dates" and write your name next to the topic that you want to present. I pre-selected topics and dates, such that they are grouped towards a common topic.

Meetings

- Tuesday 10 c.t. (i.e. 10.15 11.45)
 - General information
 - Paper presentations
 - Discussions
 - → you should/must (your paper) attend!
- Friday 10 c.t. (i.e. 10.15 11.45)
 - Voluntary (group) work
 - Someone is around and checking on you
 - → you can attend!
 - EXCEPT ON THE INTERIM REPORTS and TALKS!

Friday Interim Reports

- This is a quick pitch meeting for everyone from every team!
- 3 Slides:
 - Your current idea (e.g. implementing algorithm XY)
 - The current status (e.g. show some training curves)
 - A meme of your choice representing your progress
- You may talk for 3 min (we have a stop watch!)

This is to keep everyone on track and engaged ©

The last week 17.07. – 21.07.

FRI (week before)

DEADLINE to submit your team videos MO

TUE

WED

THU

FRI 10 - 12

RUN FINAL INFERENCE ON CHALLENGE DATA

=> Get in touch with us, as we would arrange access to a workstation, such that you can run your code on the full challenge dataset.

How do get your grade?

- Talk (50% of grade)
- Report in paper-style (50% of grade)
 - Outline: Introduction, Methods, Results, Discussion, References
 - Documentation of your algorithm
 - Code examples
 - Additional work (annotations, custom data collections, etc.)
 - 10-15 pages JMLR style

https://de.overleaf.com/latex/templates/tem plate-for-journal-of-machine-learningresearch-jmlr-with-jmlr2e-dotsty/vjcpxhvztrjn

