Guia de ejercicios para la evaluación del primer parcial

- 1. Sean X, Y y Z espacios topológicos. Consideremos $f,g:X\to Y$ y $\psi,\varphi:Y\to Z$ funciones continuas entre estos espacios. Demostrar que:
 - a) Si $f \simeq g$ relativo a $A \subset X$ entonces $\varphi \circ f \simeq \varphi \circ g$ relativo a A.
 - b) Si $\varphi \simeq \phi$ relativo a $B \subset Y$ entonces $\varphi \circ f \simeq \psi \circ f$ relativo a $f^{-1}[B]$
- 2. Sean X, Y espacios topológicos. Demostrar que si Y es conectable por trayectorias entonces para cualquier $f,g:X\to Y$ funciones continuas nulhomotópicas tenemos que $f\simeq g$.
- 3. Demostrar que la relación \simeq es una relación de equivalencia en la clase de todos los espacios topológicos.
- 4. Sean X, Y y Z espacios topológicos. Entonces:
 - a) Demostrar que si $\varphi:(X,x)\to (Y,y), \ \psi:(Y,y)\to (Z,z)$ son funciones basadas,

$$(\psi \circ \varphi)_* = \psi_* \circ \varphi_* : \pi(X, x) \to \pi(Z, z)$$

b) Demostrar que si $Id_X:(X,x)\to (X,x)$ es la identidad en X.

$$(Id_X)_* = Id_{\pi(X,x)}$$

- 5. Demostrar que si $f,g:X\to\mathbb{S}^2$ son continuas tales que $\forall x\in X,\ f(x)\neq g(x)$ entonces $f\simeq g$.
- 6. Sean X un espacio topológico simplemente conexo y $\{x_0, x_1\} \subset X$. Demostar que si $f, g: I \to X$ son dos trayectorias con $f(0) = g(0) = x_0$ y $f(1) = g(1) = x_1$ entonces $f \simeq g$.
- 7. Sean Y y Z espacios topológicos y $p:Y\to Z$ una función cubriente. Demostrar que para todo $z\in Z$ el subespacio $p^{-1}(y)$ es un espacio discreto en Y.
- 8. Encontrar una función cubriente de \mathbb{S}^1 en \mathbb{S}^1 que no sea la función identidad.
- 9. Demostrar que \mathbb{R} es un espacio cubriente del \mathbb{S}^1 .
- 10. Demostrar que el toro es un espacio cubriente de la botella de Klein.

Tarea 02 Marzo 2019