Laboratory Test

DEDP 2019-2020 Final

Information

- There are 6 subjects in all, shown below according to the laboratory they were done in.
- The test will last for up to 110 minutes (~a full 2h normal lab session)

Subjects

Lab 1

- 1. Create another Matlab function myPDF() that directly estimates the probability density function from a vector of data
 - the function requires three arguments and returns one value p = myPDF(v,x,epsilon)
 - v is a vector, x, epsilon and p are scalar numbers
 - the function computes how many elements from v are in the interval $[x-\epsilon, x+\epsilon]$, divided to the total number of elements of v, and also divided to 2 * epsilon
- 2. Plot the probability density function estimated from a vector of data
 - generate a vector v with 100000 values from the normal distribution $\mathcal{N}(2,2)$ and plot the values
 - generate a vector n of 50 values uniformly spread between -5 to 15
 - apply myPDF() on v to estimate the probability density at every value from n (use epsilon = 0.1)
 - plot the results of the function against the values of n

Lab 2

- 1. Simulate threshold-based detection with a single sample, as follows:
 - Generate a vector of 100000 values 0 or A, with equal probability (hint: use rand() and compare to 0.5). Use A = 5.

- Add over it a random noise with normal distribution $\mathcal{N}(0, \sigma^2 = 1)$
- Compare each element with T to decide which sample is logical 0 or logical 1 (A)
- Compare the decision result with the true original vector, and count how many correct rejections, false alarms, misses and correct detections have happened;
- Estimate probability of correct rejection, false alarm, miss and correct detection (by dividing the above counters to the size of the vector).

Lab 3

- 1. Simulate the BPSK sender
 - Generate a vector **data** of 1000 values 0 or 1, with equal probability (hint: use rand() and compare to 0.5).
 - Generate a vector **signal** of 100000 values as follows: for each bit in **data**, put a 100-long sine $\pm A \sin(2\pi f n)$ in **signal**. Use A = 1, f = 1/100. 0 corresponds to +A, 1 to -A.
 - Plot the resulting vector signal.
 - Generate a vector of white gaussian noise with distribution $\mathcal{N}(0, \sigma^2)$, the same length as signal, and $\sigma^2 = A/10$.
 - Add the noise to the signal, store result as **r**.
 - Plot the resulting signal **r** (do not overwrite the previous figure of **s**, we want to see both)

Lab 4

- 1. Implement a function [class] = myKNN(signal, k, trainset) for performing k-NN classification of a signal:
 - the function takes as input an unclassified signal signal, the parameter value k, and the training set matrix trainset
 - the function computes the Euclidean distance between signal and each vector from the training set
 - the output class is defined by the majority of the k nearest neighbours of the signal
- 2. Call the function myKNN for the first signal from the testing set and determine its class. Use different values for k: k = 1, then k = 5, then k = 15.

Note: the training set matrix can be loaded from the file ECG_train.mat, and the test set from ECG_test.mat

Lab 5

1. Load the color image 'Peppers.tiff' using imread(). Convert the image to double and display it (don't convert to grayscale, leave the colors).

- 2. Use Matlab's k-Means algorithm to cluster all the pixel values (each pixel = a group of three values R, G, B) into 4 groups.
- 3. Replace each pixel of the image with the *centroid* of its class. Display the image. Hint:
 - You can reshape a matrix A to a column vector using A(:)
 - You can reshape a column vector v to matrix of size m, n using reshape(v, m, n)
 - Alternatively, you can use the reshape() function to resize a $M \times N \times 3$ tensor I into a $(M * N) \times 3$ matrix P, as follows:

```
P = reshape(I, [], 3);
```

• Use the kmeans() Matlab function to do the clustering. You can read the documentation for more details.

Lab 6

- 1. Generate a 500-samples long sinusoidal signal $s_{\Theta} = \sin(2\pi f n)$ with frequency f = 0.01, and add over it normal noise with distribution $\mathcal{N}(0, \sigma^2 = 0.5)$. Name the resulting vector \mathbf{r} . Plot the \mathbf{r} vector.
- 2. Estimate the frequency \hat{f} of the signal via Maximum Likelihood estimation from the **r** vector:
 - Generate 1000 candidate frequencies f_k equally spaced from 0 to 0.5
 - Compute the Euclidean distance between **r** and the sine signal with each candidate frequency
 - Maximum Likelihood: choose \hat{f}_{ML} as the candidate frequency which minimizes the Euclidean distance
 - Display the estimate value $\hat{f}_M L$
 - Plot a sinusoidal with the estimated frequency \hat{f}_{ML} , and the original vector \mathbf{r} , on the same figure