Preinformática (antes de 1940):

Ábaco (????)

Instrumento que sirve para **efectuar operaciones aritméticas sencillas** (sumas, restas y multiplicaciones)

Considerado el precursor de la calculadora digital moderna

Funcionamiento

Tablas logarítmicas (John Napier) (1614)

Tablero con reborde en el que se colocarán las varillas neperianas (tiras de madera, metal o cartón grueso) para realizar las operaciones de **multiplicación** o **división**. El tablero tiene su reborde izquierdo dividido en 9 casillas en las que se escriben los números 1 a 9.

Pascalina

(Blaise Pascal) (1642)

Primera **calculadora** que funcionaba a base de ruedas y engranajes

Cuando una rueda giraba completamente sobre su eje, hacía avanzar un grado a la siguiente.

Las ruedas representaban el «sistema decimal de numeración»

Máquina diferencial y máquina analítica (Charles Babbage) (S XIX)

Calculadora mecánica de propósito especial, diseñada para calcular funciones polinómicas.

Máquina diferencial Charles Babbage

Algebra de boole

(George Boole) (1847).

Permite definir el modo de realizar cálculos y comparaciones en binario

Estructura algebraica que esquematiza las operaciones lógicas Y, O, NO y SI (AND, OR, NOT, IF), así como el conjunto de operaciones unión, intersección y complemento.

Máquina tabuladora de Hollerith

(Herman Hollerith) (1890)

Anécdota...

Se tardaron sólo 3 años en perforar unas 56 s de tarjetas

1° GENERACIÓN (1940-1950):

Válvulas de vacío

Il Guerra Mundial → Fines militares y científicos

- Máquinas grandes y requerían programación "física".
- Poco fiables
- Potencia de cálculo → menos que una calculadora de bolsillo
- Von Neumann establece los principios de su arquitectura en el borrador de la máquina EDVAC que no llegaría a construirse
- Máquina ENIAC

The imitation game (Descifrando enigma)

2° GENERACIÓN (1950-1965):

Transistor

Máquinas más pequeñas, menor consumo

ATLAS → Primer computador de transistores

Primeros periféricos

Tarjetas perforadas

- Cinta magnética
- **Impresora**

Máquinas con capacidades de cálculo muy superiores a las Supercomputadoras → computadoras comunes y de escritorio y que son usadas con fines

específicos

Trabajo por lotes

Ejecución del programa no precisa ningún tipo de interacción con el usuario

Serie IBM 7090

- Una habitación
- 2.900.000 \$ en el mercado

Consola de manejo del IBM 7090 en la NASA

Carga las tarjetas perforadas en 1401

El proceso de lectura de las tarjetas perforadas es muy lento

Copia las tarjetas a la cinta magnética

Carga la cinta en 7094, que realiza los cálculos

- El proceso de carga de la cinta es mucho más rápido
- Los cálculos pueden ser complejos y llevar tiempo
- En una cinta se pueden grabar varios programas, de forma que se fueran ejecutando uno tras otro sin necesidad de intervención del operador
- La cinta de sistema contiene un primitivo sistema operativo, llamado cargador, que carga los trabajos que forman el lote
- Mientras se está procesando este lote de trabajos, otro usuario puede estar cargando sus tarjetas en el 1401

Carga la cinta en 1401, que imprime el resultado

Mientras se imprime, se pueden estar realizando los cálculos de un trabajo posterior

3° GENERACIÓN (1965-1975):

Circuitos integrados — Todos los transistores en un chip

Nivel de integración

Tamaño con que se fabrican las capas que forman el microprocesador **SSI** (Small Scale Integration) pequeño nivel: **de 10 a 100**

transistores

MSI (Medium Scale Integration)

medio: 101 a 1.000 transistores

Mainframe Miniordenador

Clase de computadora multiusuario, que se encuentran en el **rango intermedio** del espectro computacional; es decir, entre los grandes sistemas multiusuario (**mainframes**) y los más pequeños sistemas monousuarios (microcomputadoras, computadoras personales, o **PC**, etc.).

Estación de trabajo $\, o \,$

Ordenador de altas prestaciones destinado para trabajo técnico o científico

- Serie 360 de IBM
 Una habitación
 2.000.000 \$ en el mercado

Incluía un sistema operativo llamado OS con instrucciones para el manejo de la memoria y el procesador

4° GENERACIÓN (1975-1983):

Microchip — Millones de transistores

Nivel de integración

LSI (Large Scale Integration) grande:

1.001 a 10.000 transistores

Microprocesador → integrando todo el hardware de la CPU.

Apple I

IBM PC

Actuales: escritorio, maleta, bolsillo...

5° GENERACIÓN (1983-1991):

Nivel de integración

VLSI (Very Large Scale Integration) muy grande:

10.001 a 100.000 transistores

Ley de Moore -> Evolución muy rápida de la tecnología

El número de transistores en un procesador se duplica cada 18-24 meses

Con el tiempo:

- Se reduce el tamaño
- Se incrementa la potencia de cálculo
- Se incrementa su fiabilidad
- Se reduce el peso

<u>¿Final de la Ley de Moore?</u>

Bajada de precio de las computadoras, haciéndose accesibles a más personas y ámbitos.

Muchas instrucciones se ejecutan simultáneamente, operando sobre el principio de que problemas Procesamiento en paralelo --> grandes, a menudo se pueden dividir en unos más pequeños, que luego son resueltos simultáneamente (en paralelo).

Redes de ordenadores

6° GENERACIÓN (1992-actualidad):

Nivel de integración

ULSI (Utra Large Scale Integration) ultra grande:100.001 a 1.000.000 transistores

GLSI (Extreme Large Scale Integration) giga grande: más de 1.000.000 transistores

Procesadores multinúcleo --> Combina dos o más microprocesadores independientes en un solo paquete, a menudo un solo circuito integrado

Empleo masivo de las redes de ordenadores

Dispositivos portátiles, Smartphones, tablets...

Clasificación de los ordenadores basándonos en su tamaño y potencia:

Estadísticas del último informe del Top 500 supercomputers

(Junio 2018)

<u>Summit</u> – supercomputador más potente del Mundo <u>MareNostrum</u> – supercomputador más potente de España