Session 26: Sequences

Sequences

Examples of Sequences

Recurrence relations

Introduction

Sequences are ordered lists of elements of a set

```
1, 2, 3, 5, 8
```

Sequences

Definition: A **sequence** is a function from a subset of the integers to a set *S*.

Usually it is either the set **Z**⁺ or **N**.

Let $f: \mathbf{Z}^+ \to S$ be the function that defines a sequence.

- We write a_n to denote the image f(n) of the integer n.
- We call a_n a **term** of the sequence.

Example

Let $\{a_n\}$ denote the sequence that is defined by $a_n = \frac{1}{n}$

Integer Sequences

TABLE 1 Some Useful Sequences.	
nth Term	First 10 Terms
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,
2^n	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
3^n	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Types of Sequences

Explicit definition of the function

- Arithmetic progression
- Geometric progression

Recurrence relations

Strings

Arithmetic Progression

Definition: An arithmetic progression is a sequence of the form:

$$a, a + d, a + 2d, ..., a + nd, ...$$

where the **initial term** *a* and the **common difference** *d* are real numbers.

An arithmetic progression is defined by the function

$$f: \mathbf{N} \to S$$
, $f(n) = a + nd$

Examples

Let a = -1 and d = 4:

Let a = 7 and d = -3:

Let a = 1 and d = 2:

Geometric Progression

Definition: A *geometric progression* is a sequence of the form

$$a, ar, ar^2, \ldots, ar^n, \ldots$$

where the **initial term** a and the **common ratio** r are real numbers.

An arithmetic progression is defined by the function

$$f: \mathbf{Z}^{+} \rightarrow S, f(n) = ar^{n}$$

Geometric Progression

Definition: A *geometric progression* is a sequence of the form

$$a, ar, ar^2, \ldots, ar^n, \ldots$$

where the **initial term** a and the **common ratio** r are real numbers.

An arithmetic progression is defined by the function

$$f: \mathbf{Z}^{+} \rightarrow S, f(n) = ar^{n}$$

Examples

Let a = 1 and r = -1. Then:

Let a = 2 and r = 5. Then:

Finance: initial capital a = 100, interest rate r = 0.01. Then capital after n years is $f(n) = a(1+r)^n$

Recurrence Relations

Definition: A **recurrence relation** for the sequence $\{a_n\}$ is an equation that expresses a_n in terms of a finite number k of the preceding terms of the sequence, i.e.,

$$a_n = f(a_{n-1}, a_{n-1}, ..., a_{n-k})$$

A sequence $\{a_n\}$ is called a **solution** of a recurrence relation if its terms satisfy the recurrence relation.

The **initial conditions** for a sequence specify the terms a_0 , a_1 , ..., a_{k-1}

Example

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation

$$a_n = a_{n-1} 1.01$$
 for $n = 1, 2, 3, 4,...$

and suppose that $a_0 = 100$.

Example

Let $\{a_n\}$ be a sequence that satisfies the recurrence relation

$$a_n = a_{n-1} - a_{n-2}$$
 for $n = 2, 3, 4, ...$

and suppose that $a_0 = 3$ and $a_1 = 5$.

Solving Recurrence Relations

Finding a formula for the n^{th} term of the sequence generated by a recurrence relation is called **solving the recurrence relation**.

- Such a formula is called a closed formula.
- Various methods for solving recurrence relations will be covered in Advanced Counting, where recurrence relations will be studied in greater depth.

Strings

Definition: A **string** is a finite sequence of characters from a finite set *A* (an alphabet).

A string is defined by a function

$$f: \{1, \ldots, n\} \rightarrow A$$

Sequences of characters or bits are important in computer science.

The *empty string* is represented by λ .

The string abcde has length 5.

Lexicographic Ordering on Strings

Consider strings of lowercase English letters.

A lexicographic ordering can be defined using the ordering of the letters in the alphabet.

discreet < discrete, because these strings differ in the seventh position and e < t.

discreet < discreetness, because the first eight letters agree, but the second string is longer.

Strings with lexicographic ordering are well-ordered sets.

This is the same ordering as that used in dictionaries.

Summary

Sequences

Examples of Sequences

Arithmetic progression

Geometric progression

Recurrence relations

Strings