

Matplotlib数据可视化基础

2020/5/19

目录

FigureCanvas

Renderer

Artist

基本绘图流程

1.创建画布与创建子图

第一部分主要作用是构建出一张空白的画布,并可以选择是否将整个画布划分为多个部分,方便在同一幅图上绘制多个图形的情况。最简单的绘图可以省略第一部分,而后直接在默认的画布上进行图形绘制。

命令	作用	
import matplotlib.pyplot as plt	导入绘图函数库	
plt.show()	脚本中绘图显示,放到代码最后	
%matplotlib #IPython交互绘图	任何一个plt会打开图形窗口,增加命令 图形更新	
plt.figure	创建一个空白画布,可以指定画布大小,像素。	

2.添加画布内容

第二部分是绘图的主体部分。其中添加标题,坐标轴名称,绘制图形等步骤是并列的,没有先后顺序,可以 先绘制图形,也可以先添加各类标签。但是添加图例一定要在绘制图形之后。

函数名称	函数作用
plt.title	在当前图形中添加标题,可以指定标题的名称、位置、颜色、字体大小等参数。
plt.xlabel	在当前图形中添加x轴名称,可以指定位置、颜色、字体大小等参数。
plt.ylabel	在当前图形中添加y轴名称,可以指定位置、颜色、字体大小等参数。
plt.xlim	指定当前图形x轴的范围,只能确定一个数值区间,而无法使用字符串标识。
plt.ylim	指定当前图形y轴的范围,只能确定一个数值区间,而无法使用字符串标识。
plt.xticks	指定x轴刻度的数目与取值。
plt.yticks	指定y轴刻度的数目与取值。
plt.legend	指定当前图形的图例,可以指定图例的大小、位置、标签。

3.存与展示图形

第三部分主要用于保存和显示图形。

函数名称	函数作用			
plt.savafig	保存绘制的图片,可以指定图片的分辨率、边缘的颜色等参数。			
plt.show	在本机显示图形。			

两种画图接口

x=np.linspace(0,10,100)
plt.figure() # create a plot figure传统方法创建子图
create the first of two panels and set current axis
plt.subplot(2, 1, 1) # (rows, columns, panel number)
plt.plot(x, np.sin(x))
create the second panel and set current axis
plt.subplot(2, 1, 2)
plt.plot(x, np.cos(x))

面向对象方法创建子图 先创建图形网格 # ax子图数组 fig, ax = plt.subplots(2)# subplots(2,2) # Call plot() method on the appropriate object ax[0].plot(x, np.sin(x)) #ax[0,0] ax[1].plot(x, np.cos(x))

目录

绘制折线图

plot函数

plt.plot(*args, **kwargs)

plot函数在官方文档的语法中只要求填入不定长参数,实际可以填入的主要参数主要如下。

参数名称	说明		
x, y	接收array。表示x轴和y轴对应的数据。无默认。		
color	接收特定string。指定线条的颜色。默认为None。		
linestyle	接收特定string。指定线条类型。默认为 "-"。		
marker	接收特定string。表示绘制的点的类型。默认为None。		
alpha	接收0-1的小数。表示点的透明度。默认为None。		
linewidth	线条宽度 取0-10之间的数值		
markersize	点的大小		

绘制折线图

plot函数

color参数的8种常用颜色的缩写。

颜色缩写	代表的颜色	颜色缩写	代表的颜色	
b	b 蓝色 m		品红	
g	绿色		黄色	
r	红色	k	黑色	
С	青色	W	白色	

linestyle取值	意义	linestyle取值	意义
_	实线		点线
	长虚线	•	短虚线

线条标记解释

marker取值	意义	marker取值	意义
'o'	圆圈		点
'D'	菱形	's'	正方形
'h'	六边形1	1*1	星号
'H'	六边形2	'd'	小菱形
'_'	水平线	'V'	一角朝下的三角形
'8'	八边形	' <'	一角朝左的三角形
ʻp'	五边形	'>'	一角朝右的三角形
1 1	像素	'^'	一角朝上的三角形
' +'	加 号	'\'	竖线
'None'	无	'x'	X

任务实现

线图绘制实例

- \rightarrow x = np.linspace(0, 10, 1000)
- > plt.plot(x, x, '-g') # 实线 green
- # plt.plot(x, x, color='g',linestyle='-')
- ➤ plt.plot(x, x + 1, '--c') # 虚线 cyan
- plt.plot(x, x + 2, '-.k') #点划线 black
- plt.plot(x, x + 3, ':r'); # 点实线 red

任务实现

#坐标轴上下限 plt.plot(x, np.sin(x)) plt.xlim(-1, 11) plt.ylim(-1.5, 1.5) #plt.axis([-1, 11, -1.5, 1.5])也可 #设置标题和标签 plt.plot(x, np.sin(x)) plt.title("A Sine Curve") plt.xlabel("x") plt.ylabel("sin(x)"); #设置图例 plt.plot(x, np.sin(x), '-g', label='sin(x)') plt.plot(x, np.cos(x), ':b', label='cos(x)') plt.legend()

绘制散点图

散点图

- ➤ 散点图 (scatter diagram) 又称为散点分布图,是以一个特征为横坐标,另一个特征为纵坐标,利用坐标点(散点)的分布形态反映特征间的统计关系的一种图形。
- 值是由点在图表中的位置表示,类别是由图表中的不同标记表示,通常用于比较跨类别的数据。

绘制散点图

scatter函数

plt.scatter(x, y, s=None, c=None, marker=None, alpha=None, **kwargs)

》 常用参数及说明如下表所示 。

参数名称	说明 ····································			
x, y	接收array。表示x轴和y轴对应的数据。无默认。			
•	接收数值或者一维的array。指定点的大小,若传入一维array则表示每个点的大小。默			
S	认为None。			
	接收颜色或者一维的array。指定点的颜色,若传入一维array则表示每个点的颜色。默			
С	认为None			
marker	接收特定string。表示绘制的点的类型。默认为None。			
alpha	接收0-1的小数。表示点的透明度。默认为None。			

绘制散点图

plot绘制散点图

scatter可以单独控制每个三点具有不同属性。大小 颜色 等

rng = np.random.RandomState(0)
x = rng.randn(100)
y = rng.randn(100)
colors = rng.rand(100)
sizes = 1000 * rng.rand(100)
plt.scatter(x, y, c=colors, s=sizes, alpha=0.3)
plt.colorbar(); #显示颜色条

目录

绘制直方图

直方图

- ▶ 直方图 (Histogram) 又称质量分布图,是统计报告图的一种,由一系列高度不等的纵向条纹或线段表示数据分布的情况,一般用横轴表示数据所属类别,纵轴表示数量或者占比。
- 用直方图可以比较直观地看出产品质量特性的分布状态,便于判断其总体质量分布情况。直方图可以发现分布表无法发现的数据模式、样本的频率分布和总体的分布。

绘制直方图

bar函数

plt.bar (left, height, width = 0.8, bottom = None, hold = None, data = None, ** kwargs)

> 常用参数及说明如下表所示。

参数名称	说明
left	接收array。表示x轴数据。无默认。
height	接收array。表示x轴所代表数据的数量。无默认。
width	接收0-1之间的float。指定直方图宽度。默认为0.8。
color	接收特定string或者包含颜色字符串的array。表示直方图颜色。默认为None。

绘制直方图

x=np.linspace(0,10,10)

plt.bar(x,np.sin(x))

x=np.linspace(0,10,20)

plt.bar(x,np.sin(x),color=['red','blue','green'])

绘制频次直方图

import numpy as np import matplotlib.pyplot as plt data = np.random.randn(1000) data.mean() #0.04366974487426336均值 data.std() #0.9860214413153232 方差 plt.hist(data) x1 = np.random.normal(0, 0.8, 1000) x2 = np.random.normal(-2, 1, 1000) x3 = np.random.normal(3, 2, 1000) kwargs = dict(histtype='stepfilled', alpha=0.3, normed=True, bins=40)

plt.hist(x1, **kwargs)
plt.hist(x2, **kwargs)

plt.hist(x3, **kwargs);

normed: 是否将得到的 直方图向量归一化。默 认为0

histtype: 直方图类型,

'bar',

'barstacked',

'step', 'stepfilled'

bins 直方图柱形数量

绘制饼图

饼图

》 饼图 (Pie Graph) 是将各项的大小与各项总和的比例显示在一张"饼"中,以"饼"的大小来确定每一项的占比。

饼图可以比较清楚地反映出部分与部分、部分与整体之间的比例关系,易于显示每组数据相对于总数的大小,而且显现方式直观。

绘制饼图

pie函数

matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None, ...)

常用参数及说明如下表所示。

参数名称	说明	参数名称	说明
x	接收array。表示用于绘制撇的数据。 无默认。	31111/ \/ \/ \/	接收特定string。指定数值的显示方式。默 认为None。
explode	接收array。表示指定项离饼图圆心为n个半径。默认为None。	pctdistance	接收float。指定每一项的比例和距离饼图 圆心n个半径。默认为0.6。
labels	接收array。指定每一项的名称。默认 为None。	labeldistance	接收float。指定每一项的名称和距离饼图 圆心多少个半径。默认为1.1。
color	接收特定string或者包含颜色字符串的 array。表示饼图颜色。默认为None。	radius	接收float。表示饼图的半径。默认为1。

绘制饼图

饼图

plt.pie(x,labels=['a','b','c','d','e'])

plt.legend()

目录

美国出生人口数据分析

要求分别统计不同年和月男女出生人口信息。

```
import numpy as np
import matplotlib.pyplot as plt
birth =np.loadtxt("d:/births.csv",dtype=np.int,usecols=(0,1,4),delimiter=",",skiprows=1)
gender =np.loadtxt("d:/births.csv",dtype=np.str,usecols=3,delimiter=",",skiprows=1)
#统计不同年份的出生人数
y=birth[:,0]
m=birth[:,1]
s=birth[:,2]
x=np.arange(year.size)
year=np.sort(np.unique(y)) #去重后排序
count1=np.zeros like(year)
for i in x:
 j=np.sum(s[y==year[i]])
  count1[i]=j
plt.plot(x,count1,label='total')
plt.xlabel("Year")
plt.ylabel("Births")
plt.xticks(x,year,rotation=75)
plt.legend()
plt.show()
```


1	Α	В	C	D	E	
1	year	month	day	gender	births	
2	1969	1	1	F	4046	
3	1969	1	1	M	4440	
4	1969	1	2	F	4454	
5	1969	1	2	M	4548	
6	1969	1	3	F	4548	
7	1969	1	3	M	4994	
8	1969	1	4	F	4440	
9	1969	1	4	M	4520	
10	1969	1	5	F	4192	
11	1969	1	5	M	4198	
12	1969	1	6	F	4710	
13	1969	1	6	M	4850	
14	1969	1	7	F	4646	
15	1969	1	7	M	5092	
16	1969	1	8	F	4800	
17	1969	1	8	M	4934	
18	1969	1	9	F	4592	
19	1969	1	9	M	4842	

鸢尾花数据集可视化

Python的Sklearn机器学习库中自带的数据集——鸢尾花数据集。 数据集共包含花瓣长度、花瓣宽度、花萼长度、花萼宽度四个特征4个特征变量、1个类别变量,

共有150个样本。类别变量分别对应鸢尾花的三个类别,分别是山鸢尾 (Iris-setosa)、变色鸢尾

(Iris-versicolor)和维吉尼亚鸢尾(Iris-virginica)。

可以通过seabon导入到pandas对象

import seaborn as sns
iris = sns.load_dataset('iris')
iris.head()

#iris为pandas dataframe对象

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

3、鸢尾花数据集介绍

通过sklearn.datasets扩展包中的load_iris()函数导入鸢尾花数据集,该Iris中有两个属性,分别是:iris.data和iris.target。

data里是一个二维数组,每一列代表了萼片或花瓣的长宽,一共4列,每一列代表某个被测量的鸢尾植物,一共采样了150条记录。

target是一个一维数组,存储了data中每条记录属于哪一类鸢尾植物,数组长度是150,数组元素的值因为共有3类鸢尾植物,所以不同值只有3个。 iris.data[0:10]

Iris Setosa(山鸢尾)

Iris Versicolour(杂色鸢尾)

Iris Virginica (维吉尼亚鸢尾)

from sklearn.datasets import load_iris

#载入数据集

iris = load_iris()

#输出数据集

print(iris.data[0:10]) #为numpy数组,150,4

Out[8]: array([[5.1, 3.5, 1.4, 0.2],

[4.9, 3., 1.4, 0.2],

[4.7, 3.2, 1.3, 0.2],

[4.6, 3.1, 1.5, 0.2],

[5., 3.6, 1.4, 0.2],

[5.4, 3.9, 1.7, 0.4],

[4.6, 3.4, 1.4, 0.3],

[5., 3.4, 1.5, 0.2],

[4.4, 2.9, 1.4, 0.2],

[4.9, 3.1, 1.5, 0.1]])

print(iris.target[0:10])

 $[0\ 0\ 0\ 0\ 0\ 0\ 0\ 0]$

Scikit-Learn自带鸢尾花数据集,包含三种花。采集了花瓣和花萼的长度和宽度4个特征。

from sklearn.datasets import load_iris import matplotlib.pyplot as plt x=load_iris().data y=load_iris().target plt.scatter(x[:,0],x[:,1],s=10*x[:,2]+x[:,3],c=y) plt.xlabel("sepal length") plt.ylabel("sepal width")

散点图可以让我们看到不同维度的数据,每个点的坐标值(x,y)分别表示花萼的长度和宽度,点的大小表示花瓣的长度和宽度,颜色对应不同种类的花型。

Thank you!