R_Activity_Assignment_8

Dahee Ahn

2024-10-25

In this study, two animal species (goats or sheep) were fed one of three diets (control, alfalfa hay, and cottonseed meal) and received a drug injection (slaframine in saline or just saline). The 12 treatments were assigned in a randomized complete block design with twelve blocks (replications). So, each combination of animal × diet × drug combination appears twelve times. For this activity we are ONLY going to look at the effects of drug (and reps) on glucose blood levels.

1. Load in the glucose df.txt dataset.

```
glucose_txt <-read.table(file="C:/Users/chemk/Desktop/Classes/ENT6707_DataAnalysis/week10/glucos
e_df.txt", header=TRUE, sep="\t")
nrow(glucose_txt)</pre>
```

```
## [1] 144
```

```
str(glucose_txt)
```

```
## 'data.frame': 144 obs. of 5 variables:
## $ rep : int 1 1 1 1 1 1 1 1 1 1 ...
## $ animal : chr "goat" "goat" "goat" ...
## $ diet : chr "alfalfa_hay" "alfalfa_hay" "control" "control" ...
## $ drug : chr "control" "slaframine" "control" "slaframine" ...
## $ glucose: int 66 56 70 89 69 61 57 85 52 87 ...
```

```
head(glucose_txt)
```

```
##
     rep animal
                           diet
                                      drug glucose
                    alfalfa_hay
## 1
       1
           goat
                                   control
                                                 66
## 2
       1
           goat
                    alfalfa_hay slaframine
                                                 56
## 3
                        control
                                   control
                                                 70
       1 goat
                        control slaframine
                                                 89
## 4
       1
         goat
           goat cottonseed_meal
                                                 69
## 5
       1
                                   control
## 6
           goat cottonseed_meal slaframine
                                                 61
```

```
tail(glucose_txt)
```

```
##
       rep animal
                             diet
                                        drug glucose
                      alfalfa hay
## 139 12
           sheep
                                     control
## 140
            sheep
                      alfalfa_hay slaframine
                                                  83
## 141
       12
                          control
                                                  58
           sheep
                                     control
## 142 12
           sheep
                          control slaframine
                                                  91
## 143 12 sheep cottonseed_meal
                                                  88
                                     control
       12 sheep cottonseed_meal slaframine
                                                  90
```

```
summary(glucose_txt)
```

```
animal
                                           diet
                                                               drug
##
         rep
                    Length:144
##
   Min. : 1.00
                                       Length:144
                                                           Length:144
                    Class :character
   1st Qu.: 3.75
                                       Class :character
                                                          Class :character
   Median: 6.50
##
                    Mode :character
                                       Mode :character
                                                          Mode :character
         : 6.50
##
   Mean
   3rd Qu.: 9.25
##
##
   Max.
           :12.00
      glucose
##
   Min.
           :43.00
##
   1st Qu.:59.00
##
   Median :66.00
   Mean
           :68.65
##
   3rd Qu.:79.00
##
   Max.
           :94.00
```

2. Graph glucose as a function of drug. Color each point by the variable rep and change the axis labels to "Glucose (mg/dl)" and "Drug".

```
library(ggplot2)
ggplot(data=glucose_txt, aes(x=drug, y=glucose, color=as.factor(rep)))+geom_point()+theme_classi
c()+labs(x="Drug", y="Glucose (mg/dl)", color="Rep")
```


3. Fit a fixed-effects only model of glucose as a function of rep and drug. Provide a summary() of the model.

```
library(lme4)

## Loading required package: Matrix

f_model <- lm(glucose~rep+drug, data=glucose_txt)
summary(f_model)</pre>
```

```
##
## Call:
## lm(formula = glucose ~ rep + drug, data = glucose_txt)
## Residuals:
##
      Min
                                     Max
               1Q Median
                              3Q
##
  -32.309 -7.094
                   0.042 7.577 25.634
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept) 61.2576
                             2.1342 28.703 < 2e-16 ***
## rep
                  0.1847
                             0.2625 0.704
                                              0.483
## drugslaframine 12.3889
                             1.8126 6.835 2.28e-10 ***
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 10.88 on 141 degrees of freedom
## Multiple R-squared: 0.2508, Adjusted R-squared: 0.2402
## F-statistic: 23.61 on 2 and 141 DF, p-value: 1.436e-09
```

4. Fit a linear mixed-effects model of glucose as a function of drug. Include a term for rep as a random intercept. Provide a summary() of the model and check the assumptions (please provide proof you conducted diagnostics and ensure the summary output has p-values). Are you satisfied the assumptions are met? Why or why not?

In the residual plot, the residuals appear to be normally distributed around both the X-axis and Y-axis. However, there are some clustered points and an empty central area that might suggest a violation of the assumption. In the Q-Q plot, the points are closely aligned along the diagonal line, indicating that they follow a normal distribution. Additionally, in the random effects Q-Q plot, the points also align closely along the diagonal line and do not deviate significantly. Overall, I believe the assumptions are well met.

```
library(lme4)
library(lmerTest)
```

```
##
## Attaching package: 'lmerTest'
```

```
## The following object is masked from 'package:lme4':
##
## lmer

## The following object is masked from 'package:stats':
##
```

```
m_model <- lmer(glucose~drug+(1|rep), data=glucose_txt)
summary(m_model)</pre>
```

```
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: glucose ~ drug + (1 | rep)
     Data: glucose_txt
##
##
## REML criterion at convergence: 1085.5
##
## Scaled residuals:
                     Median
##
       Min
                 1Q
                                   3Q
                                          Max
## -2.79352 -0.65366 0.01272 0.74784 2.23314
##
## Random effects:
                       Variance Std.Dev.
## Groups Name
## rep
            (Intercept) 9.606
                                3.099
   Residual
                        108.924 10.437
## Number of obs: 144, groups: rep, 12
##
## Fixed effects:
##
                 Estimate Std. Error
                                         df t value Pr(>|t|)
## (Intercept)
                   62.458
                              1.521 23.813 41.065 < 2e-16 ***
                              1.739 131.000
## drugslaframine 12.389
                                             7.122 6.32e-11 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Correlation of Fixed Effects:
##
              (Intr)
## drugslafrmn -0.572
```

```
plot(m_model) # To check the assumptions
```

##

step

qqnorm(residuals(m_model))

Normal Q-Q Plot


```
ranef_glucose <- ranef(m_model)$rep # To check normality of rep random effect
qqnorm(ranef_glucose$'(Intercept)')
qqline(ranef_glucose$'(Intercept)', col="red")</pre>
```

Normal Q-Q Plot

hist(ranef_glucose\$`(Intercept)`)

Histogram of ranef_glucose\$`(Intercept)`

5. Write one sentence comparing the conclusions one would draw from each model and one sentence interpreting the mixed-effects model.

A1) In comparing the conclusions from each model, both indicate that the drug slaframine has a significant effect on glucose levels; however, the mixed effects model provides more reliable results by accounting for variability among replicates.

A2) The mixed effects model suggests that slaframine treatment increases glucose levels by approximately 12.39 mg/dl.