OpenCL Tutorial

David Castells-Rufas
Microelectronics & Electronics Systems Department
Universitat Autònoma de Barcelona
david.castells@uab.cat

FPGAs & Energy Efficiency

History of Energy Efficiency (G from Greeness)

- Computing Eras
- Operations per Joule
- OPS per Watt

 *GREEN uses GFLOPS/W

Fujitsu A64FX=16.9 GFlops/Watt

- 12 orders of magnitude in 65 yr.
 - Disruptive changes
 - Architectural changes

$$G = \frac{Op}{E} = \frac{Op}{T} \frac{1}{P}$$

Rules changed before 2010

Dennard Scaling Rules were no longer valid

Thermal Density

	Dennard (1974)	Taylor (2013)	
Tran. Size tox, W,	1/s	$1/_{S}$	
L			
Devices	s^2	s^2	
Voltage V	$1/_{\mathcal{S}}$	1	
Current I	$1/_{\mathcal{S}}$	1	
Capacitance C	1/s	$1/_{S}$	
Intrinsic delay	$1/_{\mathcal{S}}$	1/s	
CV/I			
Power dissipation	$\frac{1}{s^2}$	1	
VI	752		
Power density	1	s^2	
Frequency	S	1	

David Castells Rufas Ph.D. Thesis Defense 8/2/20

Alternatives

Multicores

HW Coprocessors

• GPUs

• FPGAs

What is an FPGA?

How "Big" is an FPGA?

- A simple RISC processor takes about 6 KLE
- FPGAs are early adopters of last technology nodes (11nm Intel node)

•Hundreds of soft-core processors can already be embedded in

current big FPGA devices

Energy Efficiency Drivers in CMOS era

$$G = \frac{\mathrm{OPC} \cdot f_{clk}}{P} = \frac{\mathrm{OPC} \cdot f_{clk}}{P_{dyn} + P_{sta}} = \frac{\mathrm{OPC} \cdot f_{clk}}{N \cdot \alpha \cdot f_{clk} \cdot C \cdot V^2 + N \cdot V \cdot I_{leakage}}$$

$$G_{dyn} = \frac{OPC}{N \cdot \alpha \cdot C \cdot V^2}$$

$$G = \frac{OPC}{N \cdot \left(\alpha \cdot (C \cdot V^2) + \frac{V \cdot I_{leakage}}{f_{clk}}\right)}$$

$$G = \frac{OPC}{N \cdot \left(\alpha \cdot (C \cdot V^2) + \frac{V \cdot I_{leakage}}{f_{clk}}\right)}$$

Before Synthesis

efore Synthesis
$$-\nabla f_{clk} \Rightarrow \nabla C$$
, $\nabla N \Rightarrow \nabla P_{dyn}$, ∇P_{sta}

•Empirical
$$f_{max}$$

--- 28nm ---- 20nm ---- 14nm (4-fin) ---- 10nm (3-fin)

$$G = \frac{OPC}{N \cdot \left(\alpha \cdot (C \cdot V^2) + \frac{V \cdot I_{leakage}}{f_{clk}}\right)}$$

•FPGAs use more transistors

Circuits		Technolo	Area		
		gy	Overhead		
Small Benchmarks [Kuon07	7]	90 nm	23-55		
Pentium [Lu07]		65 nm	53		
OpenSparc, Atom,	Nehalem	65 nm	17-27		
[Wong11]					

$$K_N = \frac{N_{FPGA}}{N_{IC}} \approx 40$$

$$G = \frac{OPC}{N \cdot \left(\alpha \cdot \frac{(C \cdot V^2) + \frac{V \cdot I_{leakage}}{f_{clk}}\right)}$$

- •C is complex
 - –Transistor tech. & sizing, Fanout, Wiring

- •Isolate Tech. Node contribution
- ITRS predictions are not exactly inline with industry

Node Name	65nm	45nm	32nm	22nm	14nm
\mathcal{C}_g (aF)	72.9	49.65	41.32	32.44	34.78
Relative C_g	1	0.68	0.56	0.44	0.47

$$G = \frac{OPC}{N \cdot \left(\alpha \cdot (C \cdot V^2) + \frac{V \cdot I_{leakage}}{f_{clk}}\right)}$$

- Leakage power is a major concernBut due to N
- •Fixed by tech. Node
 - (sleep modes)

Node Name	65nm	45nm	32nm	22nm	14nm
I _{leakage} (nA)	11	8	11.2	0.45	0.35
Relative I _{leakage}	0.98	0.71	1	0.04	0.03

 Isolate Node Contribution.

The Basic Fundamental Problems to increase OPC

- Frequency is limited
- Memory Access Latency > several clock cycles
- Data Dependency prevents parallelization

How Superscalar uP get the Job done?

- High frequency (3GHz)
- Have multiple functional units
- Have long instructions queues so that dependency analysis can be done and operations can be scheduled simultaneously

How GPUs get the Job done?

- High frequency (2GHz)
- Have multiple SIMD processors and support for massive number of threads with fast context switch (1 clk)
- Very High Memory Bandwidth (DDR5), multiple Banks
- Avoid data dependencies by running different threads
 - data accesses from different threads are not dependent

What FPGAs can provide?

- Remove intermediate memory from computation datapaths
- Allow much higher number simultaneous computation units
- Fine grain (bit level) computation

- Problems
 - Lower frequency (due to overheads)
 - Difficult to program (HDL)

Questions?

