

FCC Test Report

Product Name: Connection Box

Model No. : Connection Box PandarQT

Applicant: Hesai Technology Co., Ltd.

Address: No.2 Building, No.468 Xinlai Road, Jiading District,

Shanghai, China

Date of Receipt: Nov. 26, 2020

Test Date : Nov. 26, 2020-Dec. 24, 2020

Issued Date : Dec. 24, 2020

Report No. : 20B0927R-IT-US-P01V03

Report Version : V3.0

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standard through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced without the written approval of DEKRA Testing & Certification (Suzhou) Co., Ltd.

Report No.: 20B0927R-IT-US-P01V03

Issued Date: Dec.24,2020

Report No. : 20B0927R-IT-US-P01V03

Product Name : Connection Box

Applicant : Hesai Technology Co., Ltd.

Address : No.2 Building, No.468 Xinlai Road, Jiading District, Shanghai,

China

Manufacturer : Hesai Technology Co., Ltd.

Address : No.2 Building, No.468 Xinlai Road, Jiading District, Shanghai,

China

Model No. : Connection Box PandarQT

Brand Name : HESAI

禾夏(

(S)

FCC ID 2ASO2CBPANDARQT EUT Voltage : AC 100-240V, 50/60Hz

Test Voltage : AC 120V,60Hz

Applicable Standard : FCC CFR Title 47 Part 15 Subpart B: 2020 Class A

ANSI C63.4: 2014

Test Result : Complied

Performed Location : DEKRA Testing and Certification (Suzhou) Co., Ltd.

No.99 Hongye Rd., Suzhou Industrial Park, Suzhou, 215006,

Jiangsu, China

TEL: +86-512-62515088 / FAX: +86-512-62515098

Documented By : Beck Gu

(Senior Project Engineer: Beck Gu)

Reviewed By : Black Hao

(Supervisor: Black Hao)

(Manager: Jerry Pan)

TABLE OF CONTENTS

Descri	iption	Page
1.	General Information	4
1.1.	EUT Description	4
1.2.	Mode of Operation	4
1.3.	Tested System Details	5
1.4.	Configuration of Tested System	6
1.5.	EUT Exercise Software	7
2.	Technical Test	8
2.1.	Summary of Test Result	8
2.2.	List of Test Equipment	9
2.3.	Test Environment	10
2.4.	Measurement Uncertainty	11
3.	Conducted disturbance	12
3.1.	Test Specification	12
3.2.	Test Setup	12
3.3.	Limit	13
3.4.	Test Procedure	13
3.5.	Deviation from Test Standard	13
3.6.	Test Result	14
3.7.	Test Photograph	16
4.	Radiated disturbance	17
4.1.	Test Specification	17
4.2.	Test Setup	17
4.3.	Limit	18
4.4.	Test Procedure	19
4.5.	Deviation from Test Standard	21
4.6.	Test Result	22
4.7.	Test Photograph	26
5.	Attachment	28
	FUT Photograph	28

1. General Information

1.1. EUT Description

Product Name	Connection Box				
Model No.	Connection Box PandarQT				
Brand Name	HESAI 无真 (+)				

The EUT information is from customer declaration.

1.2. Mode of Operation

We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in normal operation, which was shown in this test report and defined as:

Pre Test Mode
Mode 1: Normal working
Final Test Mode
Mode 1: Normal working

1.3. Tested System Details

The types for all equipments, plus descriptions of all cables used in the tested system (including inserted cards) are:

Pro	duct	Manufacturer	Model No.	Serial No.	Power Cord
1	Adaptor	HESAI	N/A	N/A	N/A
2	GPS module	HESAI	N/A	N/A	Powered by EUT
3	PC	Lenovo	E470	N/A	Powered by adaptor
4	QT	HESAI	N/A	N/A	Powered by EUT

1.4. Configuration of Tested System

The network port is for monitoring only.

1.5. EUT Exercise Software

1	Setup the EUT and simulators as shown on above.
2	Turn on the power of all equipment.
3	Turn on the EUT.
4	Start test.

2. Technical Test

2.1. Summary of Test Result

No deviations from the test standards
Deviations from the test standards as below description:

Emission							
Performed Test Item	Normative References	Test Performed	Deviation				
Conducted	FCC CFR Title 47 Part 15 Subpart B: 2020 Class A	Yes	No				
disturbance	ANSI C63.4: 2014						
Radiated	FCC CFR Title 47 Part 15 Subpart B: 2020 Class A	Yes	No				
disturbance	ANSI C63.4: 2014						

2.2. List of Test Equipment

Conducted Emission / TR1

Instrument	Manufacturer	Model No.	Serial No.	Cali. Date	Cali. Due Date
EMI Test Receiver	R&S	ESCI	100906	2020.03.04	2021.03.04
Two-Line V-Network	R&S	ENV216	101190	2020.06.09	2021.06.09
Two-Line V-Network	R&S	ENV216	101044	2020.06.09	2021.06.09
Current Probe	R&S	EZ-17	100678	2020.03.07	2021.03.07
50ohm Termination	SHX	TF2	07081402	2020.09.08	2021.09.08
50ohm Termination	SHX	TF2	07081403	2020.09.08	2021.09.08
50ohm Coaxial Switch	Anritsu	MP59B	6200464462	N/A	N/A
Coaxial Cable	Suhner	RG 223	TR1-C1	2020.04.26	2021.04.26
Temperature/Humidity Meter	Ruitesi	RTS-8S	TR1-TH	2020.10.24	2021.10.24
Software	Quietek	EMI_V3	V3.0.0	N/A	N/A

Radiated Emission / AC1

Instrument	Manufacturer	Model No.	Serial No.	Cali. Date	Cali. Due Date
EMI Test Receiver	R&S	ESCI	100175	2020.09.08	2021.09.08
EMI Test Receiver	R&S	ESCI	100726	2020.03.18	2021.03.18
Preamplifier	Quietek	AP-025C	CHM-0602008	2020.04.10	2021.04.10
Preamplifier	Quietek	AP-025C	CHM-0503006	2020.04.10	2021.04.10
Bilog Antenna	Schaffner	CBL6112B	2931	2020.05.18	2021.05.18
Bilog Antenna	Schaffner	CBL6112B	2933	2020.05.18	2021.05.18
Coaxial Cable	Huber+Suhner	RG 214_U	AC1-L	2020.10.10	2021.10.10
Coaxial Cable	Huber+Suhner	RG 214_U	AC1-R	2020.10.10	2021.10.10
Temperature/Humidity Meter	Ruitesi	RTS-8S	AC1-TH	2020.10.24	2021.10.24
Software	Quietek	EMI_V3	V3.0.0	N/A	N/A

Radiated Emission / AC2

Instrument	Manufacturer	Model No.	Serial No.	Cali. Date	Cali. Due Date
EMI Test Receiver	R&S	ESCI	100573	2020.03.04	2021.03.04
Bilog Antenna	Teseq GmbH	CBL6112D	27611	2020.06.09	2021.06.09
Coaxial Cable	Huber+Suhner	RG 214	AC2-C	2020.02.28	2021.02.28
Temperature/Humidity	Puitosi	RTS-8S	AC2-TH	2020.10.24	2021 10 24
Meter	Ruitesi	K13-03	ACZ-TH	2020.10.24	2021.10.24
Software	Quietek	EMI_V3	V3.0.0	N/A	N/A

Radiated Emission / AC3

Instrument	Manufacturer	Model No.	Serial No.	Cali. Date	Cali. Due Date
EMI Test Receiver	R&S	ESCI	100176	2020.09.08	2021.09.08
Bilog Antenna	Teseq GmbH	CBL6112D	27613	2020.06.09	2021.06.09
	Huber+Suhner	RG 214	AC3-C	2020.02.28	2021.02.28
Temperature/Humidity	Puitosi	RTS-8S	AC3-TH	2020.10.24	2021 10 24
Meter	Ruitesi	K13-03	AC3-111	2020.10.24	2021.10.24
Software	Quietek	EMI_V3	V3.0.0	N/A	N/A

Radiated Emission / AC5

Instrument	Manufacturer	Model No.	Serial No.	Cali. Date	Cali. Due Date
EMI Receiver	Agilent	N9038A	MY51210196	2020.06.09	2021.06.09
low Noise Amplifier	BXT	NA2651D	LNA17040209	2020.07.16	2021.07.16

DRG Horn Antenna	ETS-Lindgren	3117	00167055	2020.06.09	2021.06.09
Coaxial Cable	Huber+Suhner	SUCOFLEX 106	AC5-C2	2020.02.28	2021.02.28
Pre-Amplifier	Chengyi	EMC184045SE	980263	2020.09.08	2021.09.08
Coaxial Cable	ROSENBERG ER	LA1-C011-2000/ 3000	AC5-40G	2020.02.28	2021.02.28
IAntenna		BBHA9170	294	2020.02.23	2021.02.23
Temperature/Humidity Meter	Ruitesi	RTS-8S	AC5-TH	2020.10.24	2021.10.24
Software	Quietek	EMI_V3	V3.0.0	N/A	N/A

2.3. Test Environment

Tests have been performed in a controlled laboratory environment, where the environmental conditions are maintained within the applicable ranges.

Performed Item	Items	Required	Actual
	Temperature (°C)	10-40	23
Conducted Emission	Humidity (%RH)	25-75	40
	Barometric pressure (mbar)	860-1060	1016
Radiated Emission	Temperature (°C)	10-40	24
	Humidity (%RH)	25-75	41
(30~1000MHz)	Barometric pressure (mbar)	860-1060	1014
Radiated Emission	Temperature (°C)	10-40	24
Radiated Emission (1~40GHz)	Humidity (%RH)	25-75	41
(1~40GHZ)	Barometric pressure (mbar)	860-1060	1014

Page: 10 of 31

2.4. Measurement Uncertainty

Conducted Emission / TR1

The maximum measurement uncertainty is evaluated as:

9kHz~150kHz: 2.46dB 150kHz~30MHz: 2.46dB

Radiated Emission / AC1

The maximum measurement uncertainty is evaluated as:

Horizontal: 30MHz~200MHz: 5.28 dB

200MHz~1GHz: 4.24 dB

Vertical: 30MHz~200MHz: 5.28 dB

200MHz~1GHz: 4.58 dB

Radiated Emission / AC2

The maximum measurement uncertainty is evaluated as:

Horizontal: 30MHz~200MHz: 5.34 dB

200MHz~1GHz: 5.32 dB

Vertical: 30MHz~200MHz: 5.32 dB

200MHz~1GHz: 4.88 dB

Radiated Emission / AC3

The maximum measurement uncertainty is evaluated as:

Horizontal: 30MHz~200MHz: 4.60 dB

200MHz~1GHz: 4.10 dB

Vertical: 30MHz~200MHz: 4.80 dB

200MHz~1GHz: 4.10 dB

Radiated Emission / AC5

The maximum measurement uncertainty is evaluated as:

Horizontal: 1GHz~18GHz: 5.00 dB Vertical: 1GHz~18GHz: 4.80 dB

3. Conducted disturbance

3.1. Test Specification

According to Standard: FCC Part 15.107 Class A, ANSI C63.4

3.2. Test Setup

3.3. Limit

Limits for conducted disturbance of class A ITE						
Frequency range	Limits dB(μV)					
MHz	Quasi-peak	Average				
0.15 to 0.50	79	66				
0.50 to 30 73 60						
NOTE: The lower limit shall apply at the transition frequency.						

Limits for conducted disturbance of class B ITE						
Frequency range	Limits dB(μV)					
MHz	Quasi-peak	Average				
0.15 to 0.50	66 to 56	56 to 46				
0.50 to 5	56	46				
5 to 30	60	50				

NOTE 1: The lower limit shall apply at the transition frequencies.

NOTE 2: The limit decreases linearly with the logarithm of the frequency in the range 0.15MHz to 0.50MHz.

3.4. Test Procedure

The EUT and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.). This provides a 50Ω / 50μ H coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50Ω / 50μ H coupling impedance with 50Ω termination. (Please refer to the block diagram of the test setup and photographs.)

Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed on conducted measurement.

Conducted emissions were invested over the frequency range from 0.15MHz to 30MHz using a receiver bandwidth of 9kHz.

3.5. Deviation from Test Standard

No deviation.

3.6. Test Result

Engineer: Lynee				
Site: TR1	Time: 2020/12/15			
Limit: FCC_Part15.107_CE_AC Power_ClassA	Margin: 0			
Probe: ENV216_101044_(0.009-30MHz)	Polarity: Line			
EUT: Connection Box	Power: AC 120V/60Hz			
Note: Mode 1				

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Probe	Cable	Amp	Туре
		(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dB)	(dB)	(dB)	
1	*	0.159	47.803	38.139	-31.197	79.000	9.639	0.025	0.000	QP
2		0.159	32.336	22.671	-33.664	66.000	9.639	0.025	0.000	AV
3		0.186	42.434	32.741	-36.566	79.000	9.666	0.026	0.000	QP
4		0.186	29.211	19.519	-36.789	66.000	9.666	0.026	0.000	AV
5		0.211	41.294	31.587	-37.706	79.000	9.677	0.030	0.000	QP
6		0.211	26.470	16.763	-39.530	66.000	9.677	0.030	0.000	AV
7		0.447	37.794	28.069	-41.206	79.000	9.685	0.040	0.000	QP
8		0.447	30.787	21.062	-35.213	66.000	9.685	0.040	0.000	AV
9		0.474	37.949	28.224	-41.051	79.000	9.686	0.039	0.000	QP
10		0.474	30.429	20.704	-35.571	66.000	9.686	0.039	0.000	AV
11		4.031	27.156	17.261	-45.844	73.000	9.768	0.127	0.000	QP
12		4.031	19.201	9.305	-40.799	60.000	9.768	0.127	0.000	AV

- 1. " * ", means this data is the worst emission level.
- 2. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

Engineer: Lynee					
Site: TR1	Time: 2020/12/15				
Limit: FCC_Part15.107_CE_AC Power_ClassA	Margin: 0				
Probe: ENV216_101044_(0.009-30MHz)	Polarity: Neutral				
EUT: Connection Box	Power: AC 120V/60Hz				
Note: Mode 1	·				

No	Mark	Frequency	Measure Level	Reading Level	Over Limit	Limit	Probe	Cable	Amp	Туре
		(MHz)	(dBuV)	(dBuV)	(dB)	(dBuV)	(dB)	(dB)	(dB)	
1	*	0.159	47.956	38.288	-31.044	79.000	9.642	0.025	0.000	QP
2		0.159	32.068	22.400	-33.932	66.000	9.642	0.025	0.000	AV
3		0.197	42.208	32.531	-36.792	79.000	9.649	0.028	0.000	QP
4		0.197	26.394	16.717	-39.606	66.000	9.649	0.028	0.000	AV
5		0.287	30.320	20.625	-48.680	79.000	9.662	0.033	0.000	QP
6		0.287	15.049	5.353	-50.951	66.000	9.662	0.033	0.000	AV
7		0.449	36.614	26.890	-42.386	79.000	9.684	0.040	0.000	QP
8		0.449	26.734	17.010	-39.266	66.000	9.684	0.040	0.000	AV
9		0.469	37.874	28.148	-41.126	79.000	9.686	0.039	0.000	QP
10		0.469	33.784	24.058	-32.216	66.000	9.686	0.039	0.000	AV
11		2.987	23.887	14.048	-49.113	73.000	9.729	0.110	0.000	QP
12		2.987	16.019	6.179	-43.981	60.000	9.729	0.110	0.000	AV

- 1. " * ", means this data is the worst emission level.
- 2. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

3.7. Test Photograph

Test Mode: Mode 1

Description: Front View of Conducted disturbance Test Setup

Test Mode: Mode 1

Description: Side View of Conducted disturbance Test Setup

4. Radiated disturbance

4.1. Test Specification

According to Standard: FCC Part 15.109 Class A, ANSI C63.4

4.2. Test Setup

Below 1GHz Test Setup

Above 1GHz Test Setup

4.3. Limit

Limits for Radiated disturbance of class A ITE at a measuring distance of 10m					
Frequency of Emission (MHz)	Field Strength dB(μV/m)				
30 to 88	39				
88 to 216	43.5				
216 to 960	46.4				
Above 960 49.5					
NOTE: The lower limit shall apply at the transition frequency.					

Limits for Radiated disturbance of class A ITE at a measuring distance of 3m						
Frequency of Emission Field Strength (MHz) dB(µV/m)						
1000 to 18000 60						
NOTE: The lower limit shall apply at the transition frequency.						

Limits for Radiated disturbance of class A ITE at a measuring distance of 1m					
Frequency of Emission Field Strength (MHz) dB(µV/m)					
18000 to 40000 69.5					
NOTE: The lower limit shall apply at the transition frequency.					

Limits for Radiated disturbance of class B ITE at a measuring distance of 3m					
Frequency of Emission Field Strength (MHz) dB(μV/m)					
30 to 88	40				
88 to 216	43.5				
216 to 960	46				
960 to 18000 54					
NOTE: The lower limit shall apply at the transition frequency.					

Limits for Radiated disturbance of class B ITE at a measuring distance of 1m								
Frequency of Emission (MHz)	Field Strength dB(μV/m)							
18000-40000	63.5							
NOTE: The lower limit shall apply at the transition frequency.								

4.4. Test Procedure

The EUT and its simulators are placed on a turntable which is 0.8 meter above ground. The turntable can rotate 360 degrees to determine the position of the maximum emission level. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level.

Both horizontal and vertical polarization of the antenna are set on measurement. In order to find the maximum emission, all of the interface cables must be changed during radiated measurement.

The bandwidth below 1GHz setting on the receiver is 120kHz and above 1GHz is 1MHz.

For an unintentional radiator, including a digital device, the spectrum shall be investigated from the lowest radio frequency signal generated or used in the device, without going below the lowest frequency for which a radiated emission limit is specified, up to the frequency shown in the following table:

Highest frequency generated or used in the device or on which the device operates or tunes (MHz)	Upper frequency of measurement range (MHz)
Below 1.705	30
1.705 to 108	1000
108 to 500	2000
500 to 1000	5000
Above 1000	5 th harmonic of the highest frequency or 40GHz, whichever is lower

On any frequency or frequencies below or equal to 1000MHz, the radiated limits shown are based on measuring equipment employing a quasi-peak detector function and above 1000MHz, the radiated limits shown are based measuring equipment employing an average detector function.

When average radiated emission measurement are included emission measurement Above 1000MHz, there also is a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

The radiated field measurement method above 1 GHz is based on measurement of the maximum electric field emitted from the EUT as shown below

Definitions referring to Figure

Validated test volume: The volume validated during the site validation procedure (see 8.3.3of CISPR 16-1-4). Typically, this is the largest diameter EUT that can be used in the test facility.

EUT: The smallest diameter cylinder that will fully encompass all portions of the actual EUT, including cable racks and a minimum length of 30 cm of cables. The EUT that is located within this cylinder must be capable of rotating about its centre (typically by aremotely controlled turntable). The EUT must be located within the validated test volume. A maximum of 30 cm of ω (see definition of ω below) may be below the height of absorbers on the floor only when the EUT is floor standing and cannot be raised above the height of the absorbers.

 θ 3 dB: The minimum 3 dB beamwidth of the receive antenna at each frequency of interest. θ 3 dB is the minimum of both the E-plane and H-plane values at each frequency. θ 3dB may be obtained from manufacturer provided data for the receive antenna.

d: The measurement distance (in meters). This is measured as the horizontal distance between the periphery of the EUT and the reference point of the receive antenna.

ω: The dimension of the line tangent to the EUT formed by θ 3 dB at the measurement distance d. Equation (10) shall be used to calculate ω for each actual antenna and measurement distance used. The values of ω shall be included in the test report. This calculation may be based on the manufacturer-provided receive-antenna beamwidth specifications:

 $\omega = 2 \times d \times tan (0.5 \times \theta 3 dB)$

DRG Horn Antenna (M/N: 3117) test dimension of ω

Frequency GHz	θ 3 dB (min) °	ω _m
1	90	6.00
2	60	3.46
3	75	4.60
4	60	3.46
5	60	3.46
6	50	2.80
7	45	2.49
8	40	2.18
9	35	1.89
10	30	1.61
11	35	1.89
12	40	2.18
13	35	1.89
14	35	1.89
15	35	1.89
16	35	1.89
17	30	1.61
18	20	1.06

Note: The antenna's moving up and down is determined by ω value for above 1GHz, to ensure that the acceptable range of the testing antenna can cover the whole range of EUT.

4.5. Deviation from Test Standard

No deviation.

4.6. Test Result

Engineer: Yves						
Site: AC1	Time: 2020/12/07					
Limit: FCC_Part15.109_RE(10m)_ClassA	Margin: 0					
Probe: CBL6112B_2933(30-1000MHz)	Polarity: Horizontal					
EUT: Connection Box	Power: AC 120V/60Hz					
Note: Mode 1						

No	Mark	Frequency	Measure	Reading	Over	Limit	Probe	Cable	Amp	Ant	Table	Туре
		(MHz)	Level	Level	Limit	(dBuV/m)	(dB/m)	(dB)	(dB)	Pos	Pos	
			(dBuV/m)	(dBuV)	(dB)					(cm)	(deg)	
1		38.730	15.822	24.541	-23.178	39.000	12.911	1.240	22.870	100	41	QP
2		56.796	14.544	22.241	-24.456	39.000	13.528	1.526	22.751	100	218	QP
3		162.648	16.469	23.541	-27.031	43.500	12.988	2.728	22.787	200	46	QP
4		220.605	21.589	31.541	-24.811	46.400	9.558	3.235	22.745	100	307	QP
5		291.294	17.842	23.541	-28.558	46.400	13.039	3.790	22.528	100	247	QP
6	*	850.014	30.336	22.511	-16.064	46.400	22.500	7.124	21.799	100	218	QP

- 1. " * ", means this data is the worst emission level.
- 2. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

Engineer: Yves						
Site: AC1	Time: 2020/12/07					
Limit: FCC_Part15.109_RE(10m)_ClassA	Margin: 0					
Probe: CBL6112B_2933(30-1000MHz)	Polarity: Vertical					
EUT: Connection Box	Power: AC 120V/60Hz					
Note: Mode 1						

No	Mark	Frequency	Measure	Reading	Over	Limit	Probe	Cable	Amp	Ant	Table	Туре
		(MHz)	Level	Level	Limit	(dBuV/m)	(dB/m)	(dB)	(dB)	Pos	Pos	
			(dBuV/m)	(dBuV)	(dB)					(cm)	(deg)	
1		55.220	18.982	26.541	-20.018	39.000	13.591	1.500	22.650	100	218	QP
2		133.305	29.056	37.511	-14.444	43.500	11.930	2.445	22.830	100	214	QP
3		248.129	18.851	26.541	-27.549	46.400	11.522	3.459	22.671	100	238	QP
4		291.294	15.865	21.564	-30.535	46.400	13.039	3.790	22.528	100	251	QP
5		850.014	31.366	23.541	-15.034	46.400	22.500	7.124	21.799	100	28	QP
6	*	950.045	38.691	29.511	-7.709	46.400	23.300	7.630	21.750	100	37	QP

- 1. " * ", means this data is the worst emission level.
- 2. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

Engineer: Adele						
Site: AC5	Time: 2020/12/07					
Limit: FCC_Part15.109_RE(3m)_ClassA	Margin: 0					
Probe: Horn_3117_00123988_(1-18GHz)	Polarity: Vertical					
EUT: Connection Box	Power: AC 120V/60Hz					
Note: Mode 1						

No	Mark	Frequency	Measure	Reading	Over	Limit	Probe	Cable	Amp	Ant	Table	Туре
		(MHz)	Level	Level	Limit	(dBuV/m)	(dB/m)	(dB)	(dB)	Pos	Pos	
			(dBuV/m)	(dBuV)	(dB)					(cm)	(deg)	
1		1765.000	49.915	61.880	-29.585	79.500	29.936	4.436	46.337	100	158	PK
2		1765.350	24.196	36.178	-35.304	59.500	29.937	4.417	46.336	100	158	AV
3		3125.000	45.787	54.860	-33.713	79.500	31.800	5.249	46.122	100	143	PK
4		3130.265	31.353	40.581	-28.147	59.500	31.804	5.113	46.146	100	143	AV
5		8395.000	50.980	50.772	-28.520	79.500	37.995	8.201	45.987	100	268	PK
6	*	8395.700	40.321	40.120	-19.179	59.500	37.996	8.190	45.985	100	268	AV

- 1. " * ", means this data is the worst emission level.
- 2. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

Engineer: Adele						
Site: AC5	Time: 2020/12/07					
Limit: FCC_Part15.109_RE(3m)_ClassA	Margin: 0					
Probe: Horn_3117_00123988_(1-18GHz)	Polarity: Horizontal					
EUT: Connection Box	Power: AC 120V/60Hz					
Note: Mode 1						

No	Mark	Frequency	Measure	Reading	Over	Limit	Probe	Cable	Amp	Ant	Table	Туре
		(MHz)	Level	Level	Limit	(dBuV/m)	(dB/m)	(dB)	(dB)	Pos	Pos	
			(dBuV/m)	(dBuV)	(dB)					(cm)	(deg)	
1		3108.000	41.513	51.341	-37.987	79.500	31.786	4.671	46.286	100	276	PK
2		3108.265	31.449	41.265	-28.051	59.500	31.786	4.680	46.283	100	276	AV
3		6355.000	43.329	45.426	-36.171	79.500	35.697	7.113	44.907	100	183	PK
4		6355.235	30.137	32.236	-29.363	59.500	35.697	7.108	44.905	100	183	AV
5		8395.000	52.890	52.682	-26.610	79.500	37.995	8.201	45.987	100	106	PK
6	*	8395.880	42.783	42.585	-16.717	59.500	37.996	8.188	45.985	100	106	AV

- 1. " * ", means this data is the worst emission level.
- 2. Measurement Level = Reading Level + Factor(Probe+Cable-Amp).

4.7. Test Photograph

Test Mode: Mode 1

Description: Front View of Radiated disturbance Test Setup (Below 1GHz)

Test Mode: Mode 1

Description: Rear View of Radiated disturbance Test Setup (Below 1GHz)

Test Mode: Mode 1

Description: Front View of Radiated disturbance Test Setup (Above 1GHz)

Test Mode: Mode 1

Description: Rear View of Radiated disturbance Test Setup (Above 1GHz)

5. Attachment

EUT Photograph

(1) EUT Photo

(2) EUT Photo

(3) EUT Photo

(4) EUT Photo

(5) Pandar QT

(6) Adaptor

(7) GPS module

The End