

MATHEMATICAL EXPECTATION:

Using the pdf or the distribution function, we can obtain the average value of the r.v. X.

The average value, called the **expectation** or **the expected value** or the **mean** gives an idea of where the values of the r.v. X are concentrated.

Mean is a first order quantity.

To know how the individual values are scattered around the mean, we consider the variance and its positive square root, the **standard deviation**.

Variance is a second order quantity.

Definition [Expectation] : Suppose X is a discrete r.v. with probability mass function $p_X = P(X = x)$, the **expectation** or the **expected value** of X is defined as:

$$E(X) = \sum_{X} x p_{X}.$$

If X is a **continuous** r.v. with p.d.f. f(x) then the expectation or the expected value of X is defined as:

$$E(X) = \int_{-\infty}^{\infty} x f(x) dx$$

(Here $-\infty$ denotes the lower limit and ∞ denotes the upper limit)

REMARKS: (i) If Y = g(X) is a r.v. (i.e. Y is a function of X

$$E(Y) = E(g(X)) = \begin{cases} \sum_{X} g(x) p_{X}, & \text{if } X \text{ is discrete} \\ \int_{X} g(x) f(x) dx, & \text{if } X \text{ is continuous} \end{cases}$$

This implies that

$$E(X^{2}) = \begin{cases} \sum_{X} x^{2} p_{X}, & \text{if } X \text{ is discrete} \\ \sum_{X} x^{2} f(x) dx, & \text{if } X \text{ is continuous} \end{cases}$$

(ii) Expectation of a constant is that constant itself i.e. E(a) = a, if a is a constant

Examples

1. A r.v. X has the following distribution. Find k and the mean.

X	-1	0	1	2	3
P(X=x)	0.2	0.1	k	2k	0.1

Solution: Since p(x) is a probability mass function, we have

$$\sum_{\mathcal{X}} p_{\mathcal{X}} = 1$$

$$\Rightarrow$$
 0.2+0.1+ k +2 k +0.1=1

$$\Rightarrow$$
 3 $k = 1 - 0.4$

$$\Rightarrow k = 0.2$$

Therefore, the probability distribution of X is:

X	-1	0	1	2	3
P(X=x)	0.2	0.1	0.2	0.4	0.1

Therefore, the mean = E(X) is given by,

$$E(X) = \sum_{X} x p_{X}$$

$$= (-1)(0.2) + (0)(0.1) + (1)(0.2) + (2)(0.4) + (3)(0.1)$$

$$= 1.1$$

2. If the mean of the following distribution is 16, find m and n.

X	8	12	16	20	24
P(X=x)	1/8	m	n	1/4	1/12

Solution: Since p(x) is a probability mass function, we have

$$\sum_{\mathbf{x}} p_{\mathbf{x}} = 1$$

$$\Rightarrow \frac{1}{8} + m + n + \frac{1}{4} + \frac{1}{12} = 1$$

$$\Rightarrow m+n=\frac{13}{24}.....(1)$$

Also Mean =
$$E(X)=16$$

$$\Rightarrow \sum_{x} x p_{x} = 16$$

$$\Rightarrow$$
 8 * $\frac{1}{8}$ + 12m + 16n + 20 * $\frac{1}{4}$ + 24 * $\frac{1}{12}$ = 16

$$\Rightarrow$$
 12 m + 16 n = 8.....(2)

Solving (1) and (2), we get,
$$n = \frac{9}{24}$$
; $m = \frac{4}{24}$.

3. A fair coin is tossed until a head appears. What is the expectation of the number of tosses required?

Solution: Let the random variable X denote the number of tosses required till a head appears. Then X is a discrete r.v taking values 1,2,3,... Therefore the probability distribution of X is given by

	X	1	2	3	4	5	
	P(X=x)	1/2	$(1/2)^2$	$(1/2)^3$	$(1/2)^4$	$(1/2)^5$	
Then $E(X) = \sum_{X} x p_{X}$	x						
$=1\cdot\frac{1}{2}$	$+2.\left(\frac{1}{2}\right)^2$	+3	$(1)^{3}$	$(1)^{4}$	$+5\left(\frac{1}{2}\right)$	5 +	
2	2.(2)	13.	2)	(2)	$\frac{1}{2}$) '	
$=\frac{1}{2}\left(1+\right)$	$-2.\left(\frac{1}{2}\right)+$	$3.\left(\frac{1}{2}\right)$	+4.	$\left(\frac{1}{2}\right)^3$ +	$5.\left(\frac{1}{2}\right)^4$	+	
$=\frac{1}{2}\left(\frac{1}{1}\right)$	$\frac{1}{-1/2)^2})$						
=2							