9)	A = \(\begin{array}{c c c c c c c c c c c c c c c c c c c
	det (A) = 2·2·2·2 det (A) = 16
6)	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
	$E_1 = F_1 \leftrightarrow F_4$ $E_2 = F_2 \leftrightarrow F_3$ $E_3 \Rightarrow F_3 \Rightarrow F_4$ $E_4 \Rightarrow F_5 \leftrightarrow F_6$
	det (E, E, B) = det (Id) Planteo lo que llegamos avriba 1) (-1) (det B) = det (Id) El cambio de fila combia el signo del determinante det (B) = 1] El determinante de la matig Id es 1 por regla
<i>c</i>)	$C = \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix} \xrightarrow{F_4 - (F_1 : \frac{1}{2})} \begin{pmatrix} 2 & 0 & 0 & 1 \\ 0 & 2 & 1 & 0 \\ 0 & 1 & 2 & 0 \end{pmatrix} \xrightarrow{F_3 - (F_2 : \frac{1}{2})} \begin{pmatrix} 0 & 0 & \frac{3}{2} & 0 \\ 0 & 0 & 0 & \frac{3}{2} & 0 \end{pmatrix} = Id$
	Ya que Id es una matriz triangula superior, sobomos que $\det(Id) - [2 \cdot 2 \cdot 3/2 \cdot (x - \frac{1}{2}) = 6(x - \frac{1}{2}) = 6x - 3$ Se sigue por teoremo det (c) = dét (Id)
	• Ces inversible si y sale si det(c) $\neq 0$ por le que es inversible pred took $\times \neq 1/2$, $\rightarrow x \in k \times \neq 1/2$]

Acomble