Database Management System (DBMS) Lecture-31

Dharmendra Kumar October 31, 2020

Closure of attribute sets

Consider relation schema R and a set of functional dependencies F. Let $\alpha \subseteq R$.

The closure of α is the set of all the attributes of R which are logically determined by α under a set F. It is denoted by α^+ .

```
The closure of \alpha is computed by following algorithm:-
Input: \alpha and F
Output: \alpha^+ = \text{result}
result \leftarrow \alpha
while changes to result do
    for each functional dependency \beta \rightarrow \gamma in F do
        if \beta \subseteq result then
         | result \leftarrow result \cup \gamma
         end
    end
end
Algorithm 1: An algorithm to compute \alpha^+, the closure of \alpha
under F
```

Example: Consider relation schema R = (A, B, C, G, H, I) and the set F of functional dependencies $A \rightarrow B$, $A \rightarrow C$, $CG \rightarrow H$, $CG \rightarrow I$, $B \rightarrow H$. Compute the closure of $\{A,G\}$, $\{C,G\}$ and $\{A\}$.

Solution:

```
\{A,G\}^+ = \{A,G\}
             = \{A,B,C,G\}
             = \{A,B,C,G,H,I\}
Therefore, \{A, G\}^+ = \{A, B, C, G, H, I\}
   \{C,G\}^+ = \{C,G\}
             = \{C,G,H,I\}
Therefore, \{C, G\}^+ = \{C, G, H, I\}
     {A}^+ = {A}
             = \{A,B,C\}
             = \{A,B,C,H\}
```

Therefore, $\{A\}^+ = \{A,B,C,H\}$

3

Uses or applications of attribute closure

There are several uses of the attribute closure:

- To test if α is a superkey, we compute α^+ , and check if α^+ contains all attributes of R.
- We can check if a functional dependency $\alpha \to \beta$ holds by checking if $\beta \subseteq \alpha^+$.
- It gives us an alternative way to compute F^+ : For each $\gamma \subseteq R$, we find the closure γ^+ , and for each $S \subseteq \gamma^+$, we output a functional dependency $\gamma \to S$.

Canonical Cover

Before defining canonical cover, first we are going to define some concepts related with it.

Extraneous attribute: Consider a set F of functional dependencies and the functional dependency $\alpha \to \beta$ in F.

- Attribute A is said to be extraneous in α if A $\in \alpha$, and F logically implies (F $\{\alpha \to \beta\}$) $\cup \{(\alpha A) \to \beta\}$.
- Attribute A is said to be extraneous in β if A $\in \beta$, and the set of functional dependencies (F $\{\alpha \to \beta\}$) $\cup \{\alpha \to (\beta A)\}$ logically implies F.

Example: Consider $F = \{AB \rightarrow C \text{ and } A \rightarrow C\}$. Find extraneous attributes in F.

Solution: Consider the functional dependency $AB \rightarrow C$. In this dependency, right hand side contains single attribute, therefore right hand side has no extraneous attribute.

Now, consider left hand side. Now, we check A is extraneous attribute or not.

Eliminate A from FD, AB \rightarrow C. We get B \rightarrow C. Clearly, B \rightarrow C can not be derived from F, therefore A is not extraneous attribute.

Now, we check B is extraneous attribute or not.

Eliminate B from FD, AB \rightarrow C. We get A \rightarrow C. Clearly, A \rightarrow C is derived from F, therefore B is an extraneous attribute.

Consider the functional dependency $A \to C$. In this dependency, left hand and right hand side contains single attribute, therefore this FD has no extraneous attribute.

Example: Consider $F = \{AB \rightarrow CD \text{ and } A \rightarrow C\}$. Find extraneous attributes in F.

Solution: Consider the functional dependency $AB \to CD$. In this FD, both sides may contain extraneous attributes.

Now, consider left hand side. Now, we check A is extraneous attribute or not.

Eliminate A from FD, AB \rightarrow CD. We get B \rightarrow CD. Clearly, B \rightarrow CD can not be derived from F, therefore A is not extraneous attribute. Now, we check B is extraneous attribute or not.

Eliminate B from FD, AB \rightarrow CD. We get A \rightarrow CD. Clearly, A \rightarrow CD can not be derived from F, therefore B is not extraneous attribute.

Now, we check C is extraneous attribute or not.

Eliminate C from FD, AB \rightarrow CD. We get AB \rightarrow D. Clearly, Set F' = {AB \rightarrow D, A \rightarrow C} derives set F, therefore C is an extraneous attribute.

Now, we check D is extraneous attribute or not.

Eliminate D from FD, AB \rightarrow CD. We get AB \rightarrow C. Clearly, Set F' = {AB \rightarrow C, A \rightarrow C} can not derive set F, therefore D is not an extraneous attribute.

Consider the functional dependency $A \to C$. In this dependency, left hand and right hand side contains single attribute, therefore this FD has no extraneous attribute.

Redundant functional dependency

A functional dependency $\alpha \to \beta$ in F is said to be redundant if after eliminating $\alpha \to \beta$ from F, we get a set of functional dependency F' equivalent to F. That is, $F^+ = F'^+$.

Example: Consider $F = \{A \to B, B \to C, \text{ and } A \to C\}$. In this set F, FD $A \to C$ is redundant because it is derived from $A \to B$ and $B \to C$ using transitivity rule.

Canonical Cover:

Canonical cover is defined for a set F of functional dependencies. Canonical cover of F is the minimal set of functional dependencies equivalent to F that is canonical cover is a set of functional dependencies equivalent to F which does not contain any extraneous attribute and redundant FD. It is denoted by F_c .

A canonical cover for a set of functional dependencies F can be computed by following algorithm.

Input: F

Output: F_c

 $F_c \leftarrow F$

repeat

Use the union rule to replace any dependencies in F_c of the form $\alpha_1 \to \beta_1$ and $\alpha_1 \to \beta_2$ with $\alpha_1 \to \beta_1\beta_2$.

Find a functional dependency $\alpha \to \beta$ in F_c with an extraneous attribute either in α or in β .

/* Note: the test for extraneous attributes is done using F_c , not F */

If an extraneous attribute is found, delete it from $\alpha \to \beta$.

until F_c does not change any further;

Algorithm 2: Computing canonical cover

Example: Consider the following set F of functional dependencies on relation schema R = (A,B,C):

 $\mathsf{A} \to \mathsf{BC}\text{,} \qquad \qquad \mathsf{B} \to \mathsf{C}\text{,} \qquad \qquad \mathsf{A} \to \mathsf{B}\text{,} \qquad \qquad \mathsf{AB} \to \mathsf{C}$

Compute the canonical cover for F.

Solution:

 There are two functional dependencies with the same set of attributes on the left side of the arrow:

 $\mathsf{A}\to\mathsf{BC}\text{, }\mathsf{A}\to\mathsf{B}$

We combine these functional dependencies using union rule into A \rightarrow BC.

- A is extraneous in AB \to C because F logically implies (F {AB \to C}) \cup {B \to C}. This assertion is true because B \to C is already in our set of functional dependencies.
- C is extraneous in A \rightarrow BC, since A \rightarrow BC is logically implied by A \rightarrow B and B \rightarrow C.

Thus, canonical cover of F is

$$F_c = \{A \rightarrow B, B \rightarrow C\}.$$

Note: A canonical cover might not be unique.

Example: Consider the following set F of functional dependencies on relation schema R = (A,B,C):

$$\mathsf{A} \to \mathsf{BC}, \qquad \qquad \mathsf{B} \to \mathsf{AC}, \qquad \qquad \mathsf{C} \to \mathsf{AB}$$

Compute the canonical cover for F.

Solution: If we apply the extraneity test to A BC, we find that both B and C are extraneous under F. However, it is incorrect to delete both. The algorithm for finding the canonical cover picks one of the two, and deletes it. Then,

- If C is deleted, we get the set F' = {A → B, B → AC, and C → AB}. Now, B is not extraneous in the right hand side of A → B under F'. Continuing the algorithm, we find A and B are extraneous in the right hand side of C → AB, leading to two canonical covers F_c = {A → B, B → C, and C → A}, and F_c = {A → B, B → AC, and C → B}.
- 2. If B is deleted, we get the set $F'=\{A\to C,\,B\to AC,\, and\,C\to AB\}$. This case is symmetrical to the previous case, leading to the canonical covers

$$F_c = \{A \rightarrow C, C \rightarrow B, \text{ and } B \rightarrow A\}, \text{ and } F_c = \{A \rightarrow C, B \rightarrow C, \text{ and } C \rightarrow AB\}.$$