

Clustering 1 (Introduction and kmean)

Prepared by Raymond Wong
Some parts of this notes are borrowed from LW Chan's notes
Screenshots of XLMiner Captured by Hao Liu
Presented by Raymond Wong
raywong@cse

Clustering

Cluster 2 (e.g. High Score in History and Low Score in Computer)

	Computer	History
Raymond	100	40
Louis	90	45
Wyman	20	95

Cluster 1 (e.g. High Score in Computer and Low Score in History)

Problem: to find all clusters

Why Clustering?

- Clustering for Utility
 - Summarization
 - Compression

-

Why Clustering?

- Clustering for Understanding
 - Applications
 - Biology
 - Group different species
 - Psychology and Medicine
 - Group medicine
 - Business
 - Group different customers for marketing
 - Network
 - Group different types of traffic patterns
 - Software
 - Group different programs for data analysis

Clustering Methods

- K-means Clustering
 - Original k-means Clustering
 - Sequential K-means Clustering
 - Forgetful Sequential K-means Clustering
 - How to use the data mining tool
- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach and monothetic approach
 - How to use the data mining tool

K-mean Clustering

- Suppose that we have n example feature vectors $x_1, x_2, ..., x_n$, and we know that they fall into k compact clusters, k < n
- Let m_i be the mean of the vectors in cluster i.
- we can say that x is in cluster i if distance from x to m_i is the minimum of all the k distances.

Procedure for finding k-means

- Make initial guesses for the means m₁, m₂, .., m_k
- Until there is no change in any mean
 - Assign each data point to the cluster whose mean is the nearest
 - Calculate the mean of each cluster
 - For i from 1 to k
 - Replace m_i with the mean of all examples for cluster i

Procedure for finding k-means

COMP1942

Initialization of k-means

- The way to initialize the means was not specified. One popular way to start is to randomly choose k of the examples
- The results produced depend on the initial values for the means, and it frequently happens that suboptimal partitions are found. The standard solution is to try a number of different starting points

Disadvantages of k-means

Disadvantages

- In a "bad" initial guess, there are no points assigned to the cluster with the initial mean m_i.
- The value of k is not user-friendly. This is because we do not know the number of clusters before we want to find clusters.

Clustering Methods

- K-means Clustering
 - Original k-means Clustering
 - Sequential K-means Clustering >
 - Forgetful Sequential K-means Clustering
 - How to use the data mining tool
- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach and monothetic approach
 - How to use the data mining tool

Sequential k-Means Clustering

- Another way to modify the k-means procedure is to update the means one example at a time, rather than all at once.
- This is particularly attractive when we acquire the examples over a period of time, and we want to start clustering before we have seen all of the examples
- Here is a modification of the k-means procedure that operates sequentially

Sequential k-Means Clustering

- Make initial guesses for the means m₁, m₂, ..., m_k
- Set the counts n₁, n₂, ..., n_k to zero
- Until interrupted
 - Acquire the next example, x
 - If m_i is closest to x
 - Increment n_i
 - Replace m_i by m_i + (1/n_i) · (x − m_i)

Clustering Methods

- K-means Clustering
 - Original k-means Clustering
 - Sequential K-means Clustering
 - Forgetful Sequential K-means Clustering
 - How to use the data mining tool
- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach and monothetic approach
 - How to use the data mining tool

Forgetful Sequential k-means

- This also suggests another alternative in which we replace the counts by constants. In particular, suppose that a is a constant between 0 and 1, and consider the following variation:
- Make initial guesses for the means m₁, m₂, ..., m_k
- Until interrupted
 - Acquire the next example x
 - If m_i is closest to x, replace m_i by m_i+a(x-m_i)

- The result is called the "forgetful" sequential kmeans procedure.
- It is not hard to show that m_i is a weighted average of the examples that were closest to m_i, where the weight decreases exponentially with the "age" to the example.
- That is, if m₀ is the initial value of the mean vector and if x_j is the j-th example out of n examples that were used to form m_i, then it is not hard to show that

$$m_n = (1-a)^n m_0 + a \sum_{k=1}^n (1-a)^{n-k} x_k$$

COMP1942

Forgetful Sequential k-means

- Thus, the initial value m₀ is eventually forgotten, and recent examples receive more weight than ancient examples.
- This variation of k-means is particularly simple to implement, and it is attractive when the nature of the problem changes over time and the cluster centres "drift".

Clustering Methods

- K-means Clustering
 - Original k-means Clustering
 - Sequential K-means Clustering
 - Forgetful Sequential K-means Clustering
 - How to use the data mining tool
- Hierarchical Clustering Methods
 - Agglomerative methods
 - Divisive methods polythetic approach and monothetic approach
 - How to use the data mining tool

How to use the data mining tool

- We have the following 2 versions.
- XLMiner Desktop (installed in either the CSE lab machine or your computer)
 - XLMiner Cloud (installed as a plugin in your Office 365 Excel)

How to use the data mining tool (XLMiner Desktop)

- We can use XLMiner for performing kmean clustering
- Open "cluster.xlsx" in MS Excel in a CSE lab machine

COMP1942

How to use the data mining tool

- We have the following 2 versions.
 - XLMiner Desktop (installed in either the CSE lab machine or your computer)
- XLMiner Cloud (installed as a plugin in your Office 365 Excel)

- The way of opening K-means Clustering in XLMiner Cloud plugin in your Office 365 Excel
 - "Data Mining" Tag → Cluster → K-Means Clustering

How to use the data mining tool (XLMiner Cloud)

- The steps of performing "k-means clustering" in XLMiner Cloud is similar to the steps in XLMiner Desktop.
- The output format and the clustering result of XLMiner Cloud are the same as that from XLMiner Desktop.

COMP1942