

DL Seminar DeepSORT

Simple Online and Realtime Tracking with a Deep Association Metric

인공지능 연구실 김지성

Multi Object Tracking

Frame 1

Frame 2

Frame N

탐지 결과

ID:2

처음 탐지한 객체에 ID를 부여하고, 이후 프레임에서도 같은 ID로 인식하는 문제 연속적인 영상(시계열 데이터)에서 시간에 따른 객체의 공간적, 시각적 변화를 얻을 수 있다.

Multi Object Tracking

→ 다음위치는 어디?

처음 탐지한 객체에 ID를 부여하고, 이후 프레임에서도 같은 ID로 인식하는 문제 연속적인 영상(시계열 데이터)에서 시간에 따른 객체의 공간적, 시각적 변화를 얻을 수 있다.

Online vs Batch

Online Tracking: 현재로부터 과거 프레임 관측 -> 실시간 추적 가능, 상대적으로 낮은 정확도

Batch Tracking: 전체 프레임 관측 -> 실시간 추적 불가능, 상대적으로 높은 정확도

General Tracking Process 순차적으로 1 Frame 씩 Input 객체 탐지 추적 시작 Tracks 연계 추적결과 반환

Detect - Pretrained detector

	backbone	AP	AP_{50}	AP ₇₅	AP_S	AP_M	AP_L
Two-stage methods							
Faster R-CNN+++ [3]	ResNet-101-C4	34.9	55.7	37.4	15.6	38.7	50.9
Faster R-CNN w FPN [6]	ResNet-101-FPN	36.2	59.1	39.0	18.2	39.0	48.2
Faster R-CNN by G-RMI [4]	Inception-ResNet-v2 [19]	34.7	55.5	36.7	13.5	38.1	52.0
Faster R-CNN w TDM [18]	Inception-ResNet-v2-TDM	36.8	57.7	39.2	16.2	39.8	52.1
One-stage methods							
YOLOv2 [13]	DarkNet-19 [13]	21.6	44.0	19.2	5.0	22.4	35.5
SSD513 [9, 2]	ResNet-101-SSD	31.2	50.4	33.3	10.2	34.5	49.8
DSSD513 [2]	ResNet-101-DSSD	33.2	53.3	35.2	13.0	35.4	51.1
RetinaNet [7]	ResNet-101-FPN	39.1	59.1	42.3	21.8	42.7	50.2
RetinaNet [7]	ResNeXt-101-FPN	40.8	61.1	44.1	24.1	44.2	51.2
YOLOv3 608×608	Darknet-53	33.0	57.9	34.4	18.3	35.4	41.9

COCO for YOLOv3

Predict - Motion model

Frame 1

칼만필터 예측

Frame 2

파티클필터 예측

Association

IOU를 이용한 동일객체 연계: Detector성능에 매우 의존적

Appearance Model을 이용한 동일객체 연계 : Detect Noise 보완

Body Embedding

Name	Patch Size/Stride	Output Size			
Conv 1	$3 \times 3/1$	$32 \times 128 \times 64$			
Conv 2	$3 \times 3/1$	$32 \times 128 \times 64$			
Max Pool 3	$3 \times 3/2$	$32 \times 64 \times 32$			
Residual 4	$3 \times 3/1$	$32 \times 64 \times 32$			
Residual 5	$3 \times 3/1$	$32 \times 64 \times 32$			
Residual 6	$3 \times 3/2$	$64 \times 32 \times 16$			
Residual 7	$3 \times 3/1$	$64 \times 32 \times 16$			
Residual 8	$3 \times 3/2$	$128 \times 16 \times 8$			
Residual 9	$3 \times 3/1$	$128 \times 16 \times 8$			
Dense 10		128			
Batch and ℓ_2 no	128				

Triplet : 세 개의 데이터

- Anchor(x_i^a): 기준 인물의 벡터
- Positive (x_i^p) : 기준과 같은 인물의 벡터
- Negative(x_i^n): 기준과 다른 인물의 벡터

기준 인물과 같은 인물은 가깝도록, 기준 인물과 다른 인물은 멀도록

Triplet Loss

$$||f(x_i^a) - f(x_i^p)||_2^2 + \alpha < ||f(x_i^a) - f(x_i^n)||_2^2,$$

- x: O[D]X

- x_i^a : 기준 인물(anchor) 이미지
- x: 이미지 f(x): 임베딩 함수 x_i^p : 기준과 같은 인물(positive)의 이미지 x_i^n : 기준과 다른 인물(negative)의 이미지

Anchor와 Negative의 제곱거리가 Anchor와 Positive의 제곱거리보다 α 만큼 떨어져 있고 싶다!

Triplet - mini batch

조합

Random Sampling Batch

Train Target

Triplet - mini batch

Start Track

1. 탐지 결과를 사용해 트래킹 시작

Frame 1

트래킹 시작

□ 후보(탐지결과)

Cascade Re-ID Matching

2. 후보와 이전 트래킹 결과를 Re-ID Model을 이용하여 매칭 - 순차적으로 과거 트래킹 피쳐와의 거리 계산

Body Feature의 L2 Distance가 Threshold 이하일 때 매칭 (과거 피쳐 일수록 엄격한 Threshold)

- 🔲 살아있는 트래킹
- □ 후보(칼만필터로 예측한 위치+탐지결과)

Association - IOU

3. 후보와 2에서 매칭되지 않은 직전 트래킹 결과를 loU를 이용하여 매칭

Frame 1

Frame 2

칼만필터로 예측한 위치와 탐지한 위치의 IOU가 Threshold 이상일 때 매칭

- ☑ 살아있는 트래킹
- □ 후보(칼만필터로 예측한 위치+탐지결과)

Association - New Track

4. 최종적으로 매칭되지 않은 탐지결과로 새 트래킹 시작

Frame 1

Frame 2

Tracking Object를 잃어버림

Frame 3

계속 Tracking Object를 잃어버림

- □ 잃어버린 트래킹 결과
- □ 후보(탐지결과)

Experiments

MOT Challenge

Ground Truth와 관심영역의 IOU가 0.5 이상일 때 True로 판단

MOTA: tracker 성능지표로 적합

$$MOTA = 1 - \frac{\sum_{t} (FN_t + FP_t + IDSW_t)}{\sum_{t} GT_t},$$
 (1)

t: 프레임 인덱스

FN : 잘못탐지 FP : 놓친 객체

IDSW: id가 바뀐 횟수 GT: Ground Truth의 수

MOTP: detector 성능지표로 적합

$$MOTP = \frac{\sum_{t,i} d_{t,i}}{\sum_{t} c_t},$$
 (2)

t: 프레임 인덱스

Ct: 탐지한 객체 항목의 수

dt, : 탐지한 객체와 Ground Truth를 비교한 IOU

Experiments

MOT Challenge

IDF1: 얼마나 지속적으로 객체를 동일하게 판단하는가

TP: 가장 많이 나온 ID의 개수 = 12

FP: 나머지 ID의 개수 = 2

FN: True - TP = 4

• ID Precision
$$P = \frac{TP}{TP + FP} = \frac{TP}{C}$$

• ID Recall
$$R = \frac{TP}{TP + FN} = \frac{TP}{T}$$

•
$$F_1$$
-score $F_1=2\frac{PR}{P+R}=\frac{TP}{\frac{T+C}{T+C}}$

True Positive: True 이고, True라고 한 경우 -> 정답 False Positive: False 이지만, True라고 한 경우 -> 오답 True Negative: False 이고, False라고 한 경우 -> 정답 False Negative: True 이지만, False 라고 한 경우 -> 오답

Experiments

MOT Challenge

Test Set

Sample Name FPS Resolution Length Tracks Boxes Density Description Source R 1 MOT16- 14 25 1920x1080 750 (00:30) 164 18483 24.6 Filmed from a bus on a busy intersection link [2 MOT16- 12 30 1920x1080 900 (00:30) 86 8295 9.2 Forward moving camera in a busy shopping mall link [3 MOT16- MO
14 (00:30) 2 MOT16- 30 1920x1080 900 86 8295 9.2 Forward moving camera in a busy shopping mall link [1] 3 MOT16- 30 1920x1080 625 63 16737 26.8 A crowded pedestrian street, stationary camera link [2]
12 (00:30) 3 MOT16- 30 1920x1080 625 63 16737 26.8 A crowded pedestrian street, stationary camera link [7]
08 (00:21)
4 MOT16- 30 1920x1080 500 54 16322 32.6 A busy pedestrian street filmed at eye level by a link (00:17) moving camera
5 MOT16- 14 640x480 1194 221 11538 9.7 Street scene from a moving platform link (3) 06 (01:25)
6 MOT16- 30 1920x1080 1500 148 104556 69.7 Pedestrian street at night, elevated viewpoint link [1000x1080 000000000000000000000000000000
7 MOT16- 30 1920x1080 450 23 6395 14.2 People walking around a large square. link [3] 01 (00:15)
Total 5919 frm. 759 182326 30.8 (248 s.)

		MOTA ↑	MOTP↑	$\mathbf{MT} \uparrow$	$\mathbf{ML}\downarrow$	ID ↓	FM ↓	FP ↓	FN↓	Runtime ↑
KDNT [16]*	BATCH	68.2	79.4	41.0%	19.0%	933	1093	11479	45605	0.7 Hz
LMP_p [17]*	BATCH	71.0	80.2	46.9%	21.9%	434	587	7880	44564	0.5 Hz
MCMOT_HDM [18]	BATCH	62.4	78.3	31.5%	24.2%	1394	1318	9855	57257	35 Hz
NOMTwSDP16 [19]	BATCH	62.2	79.6	32.5%	31.1%	406	642	5119	63352	3 Hz
EAMTT [20]	ONLINE	52.5	78.8	19.0%	34.9%	910	1321	4407	81223	12 Hz
POI [16]*	ONLINE	66.1	79.5	34.0%	20.8%	805	3093	5061	55914	10 Hz
SORT [12]*	ONLINE	59.8	79.6	25.4%	22.7%	1423	1835	8698	63245	60 Hz
Deep SORT (Ours) [⋆]	ONLINE	61.4	79.1	32.8%	18.2%	781	2008	12852	56668	40 Hz

감사합니다.