SoRec : Social Recommendation using Probabilistic

SoReg: Recommender Systems with Social Regularization

Matrix Factorization

김지완

Contents

- Introduction
- 2. Related Work
- 3. Social Recommendation Framework
 - Social Network Matrix Factorization (SoRec)
 - Social Regularization (SoReg)
- 4. Experimental Analysis SoRec / SoReg
- 5. Conclusion and Future Work
- 6. Implementation

Content Based Filtering / Collaborative Filtering

- Content Based Filtering
 Using Items' Features to Recommend Items Similar to What User Likes
 No Need for Other Users' Information / Good At Cold Start User
 Need for Domain Knowledge for Feature Engineering
- Collaborative Filtering
 Using Similarity Between Users/Items to Recommend Items Similar to What User Likes
 No Need Items Feature Information / Generally Good Performance
 Poor Recommendation on Cold Start User

Memory Based (Neighborhood Based) / Model Based (Latent Factor Based)

Underlying Assumption : Active User will prefer those items which the similar users prefer

→ Widely Employed in Large, Famous Commercial Systems like Amazon, Netflix

Inherent Weakness of Collaborative Filtering

- Sparsity of User Item Matrix
 Memory Based Models Fails to find similar users
- 2. Cold Start Problem Memeory → Similarity - Cosine / Pearson Correlation Coefficient Model → Not Updated Latent Vector
- 3. In Reality, People turn to friends for Movie, Music, and Book Recommendation As People are affected by Company they keep, Using Only User-Item Matrix is not unrealistic

Traditional Recommender System Assume IID (Independent and Identically Distributed)

→ Ignore Social Interaction Between Users

Trust-Aware Recommendation [SoRec]

Traditional Recommender System's Assumption

→ Active User will prefer those items which the similar users prefer

Additional Assumpotion for Social Network

→ Trust Relations can be employed to enhance traditional recommender systems

Fusing User's Social Network Graph with User-Item Rating Matrix for More Accurate and Personalized Recommendation → Social Recommendation

SoRec's Probabilistic Factor Analysis

Connect Social Network Structure and the User-Item Rating Matrix Through Shared User Latent Feature Space Based on Probabilistic Factor Analysis

In Shorts, Probabilsitic Matrix Factorization with Graph Matrix and User-Item Matrix

- 1. Good at Cold Start : Good Performance on users that have few ratings or even none at all
- 2. Large Data Applicable : Linear Scale with the number of Observations

Social Recommendation in Real Sense [SoReg]

Social Recommendation is different from Trust Relationships

- 1. Trust-Aware Recommender Systems cannot represent the concept of "Social Recommendation" like Social Friend Networks
- Trust-Aware recommender systems are based on the Assumption that Users have similar tastes with other users they trust
 - → the tastes of one user's friends may vary significantly
- 3. To provide more proactive and personalized recommendation results to online users

Traditional Recommender Systems Memory Based (Neighborhood Based)

Widely adopted in Commercial Domain

User Based : Recommend Items based on Other Similar Users

Item Based : Recommend Items based on Other Similar Items

→ Similarity between Users/Items is Important !

Traditional Recommender Systems - Similarity Function

PCC Algorithm

$$Sim(i,f) = \frac{\displaystyle\sum_{j \in I(i) \cap I(f)} (R_{ij} - \overline{R}_i) \cdot (R_{fj} - \overline{R}_f)}{\sqrt{\displaystyle\sum_{j \in I(i) \cap I(f)} (R_{ij} - \overline{R}_i)^2} \cdot \sqrt{\displaystyle\sum_{j \in I(i) \cap I(f)} (R_{fj} - \overline{R}_f)^2}},$$

VSS Algorithm

$$Sim(i,f) = \frac{\sum\limits_{j \in I(i) \cap I(f)} R_{ij} \cdot R_{fj}}{\sqrt{\sum\limits_{j \in I(i) \cap I(f)} R_{ij}^2} \cdot \sqrt{\sum\limits_{j \in I(i) \cap I(f)} R_{fj}^2}},$$

Generally PCC achieve higher performance since it considers the differences of user rating style

Traditional Recommender Systems

Model Based (Latent Factor Based)

There are many model-based approach : Clustering Model, Aspect Model, Latent Factor Model

$$R \approx U^T V$$
,

Finding Low Dimensional Factors U, V

Proposed Many Variants with Additional Condition on U, V

- Low-Rank Matrix Factorization
- Singular Value Decomposition
- Constraining Norm of U, V
- Probabilistic Semantic Analysis

However, All of above are IID Condition without Considering Social Network

Trust-aware Recommender Systems [SoRec]

Collaborative Filitering Process is informed by the reputation of users which is computed by propagating trust

→ Increase Coverage while not reducing Accuracy

Previous Models Before SoRec are not Trust-aware in the real sense

→ Only use Social Information heuristically on Generating Recommendation

In SoRec,

Trust Network and User-item Network simultaneously and seamlessly

Social Recommender Systems [SoReg]

"Social Recommender Systems" is Using Social Freinds Network to Imporve Recommender Systems

Many Related Works including SoRec Study Social Recommendation Problem

- → They all have some Disadvantages
- → Not a "Social Recommender System" in Real Sense
- Only exploring Similar Users to generate Recommendations
- Utilizes Only Trust Information in the experimental analysis
- Using Social Information heuristically on Generating Recommendation

SoRec - Toy Example

R : User-Item Rating Matrix

C : Social Network Matrix (Weighted Adjacency Matrix)

→ Matrix Factorization Simultaneously with R ~ UV / C ~ UZ with Shared U

	11	12	13	14	15	16	17	19
u_1	5	2		3		4		
u_2	4	3			5			
u ₃	4		2				2	4
и4								
u_5	5	1	2		4	3		
и6	4	3		2	4		3	5

u_1	5	2	2.5	3	4.8	4	2.2	4.8
u_2	4	3	2.4	2.9	5	4.1	2.6	4.7
u_3	4	1.7	2	3.2	3.9	3.0	2	4
<i>u</i> ₄	4.8	2.1	2.7	2.6	4.7	3.8	2.4	4.9
u_{ς}	5	1	2	3.4	4	3	1.5	4.6
46	4	3	2.9	2	4	3.4	3	5

(c) Predicted User-Item Matrix

 i_2 i_3 i_4 i_5 i_6 i_7 i_8

SoRec - Matrix Factorzation

m : Users

n : Items

l : Latent Dimension

U : Shared User Latent Feature (1 by m)

V : Item Latent Feature (l by n)

Z : Factor Latent Feature for Social (1 by m)

R : User - Item Rating Matrix (m by n)

C : Socail Network Matrix (m by m)

SoRec - Matrix Factorzation

Bayes' Rule

$$P(\theta|D) \propto P(\theta) P(D|\theta)$$

Posterior Prior Likelihood

- Posterior : The Probability of θ , given Observed D
- Prior : Initial Probabilty of $\boldsymbol{\theta}$
- Likelihood : The Probability of D, given $\boldsymbol{\theta}$

SoRec - Matrix Factorization

Bayes' Rule

Social Network Matrix $p(U,Z|C,\sigma_C^2,\sigma_U^2,\sigma_Z^2) \\ \propto p(C|U,Z,\sigma_C^2)p(U|\sigma_U^2)p(Z|\sigma_Z^2) \\ \text{Likelihood} \\ \text{Prior}$ User-Item Matrix $p(U,V|R,\sigma_R^2,\sigma_U^2,\sigma_V^2) \\ \propto p(R|U,V,\sigma_R^2)p(U|\sigma_U^2)p(V|\sigma_V^2) \\ \text{Likelihood} \\ \text{Prior}$

SoRec - Matrix Factorzation

Bayes' Rule

Prior

 $p(U|\sigma_U^2) = \prod \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}),$

$$i=1$$

$$m$$

$$M(Z|_{-2}) \qquad \prod_{i=1}^{m} M(Z|_{0},_{-2}\mathbf{I})$$

$$p(Z|\sigma_Z^2) = \prod^m \mathcal{N}(Z_k|0,\sigma_Z^2\mathbf{I}).$$

$$p(Z|\sigma_Z^2) = \prod_{k=1} \mathcal{N}(Z_k|0, \sigma_Z^2\mathbf{I}).$$

$$p(V|\sigma_V^2) = \prod_{i=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I}).$$

SoRec - Matrix Factorzation

Bayes' Rule

Likelihood

Social Network Matrix
$$p(C|U,Z,\sigma_C^2) = \prod_{i=1}^m \prod_{k=1}^m \left[\mathcal{N}\left(c_{ik}|g(U_i^TZ_k),\sigma_C^2\right) \right]^{I_{ik}^C}$$

User-Item Matrix
$$p(R|U,V,\sigma_R^2) = \prod^m \prod^n \left[\mathcal{N}\left(r_{ij}|g(U_i^TV_j),\sigma_R^2\right) \right]^{I_{ij}^R}$$

$$\begin{aligned} & \text{SoRec} \\ & \text{Social Network Matrix Factorization} \end{aligned} \qquad & p(C|U,Z,\sigma_C^2) = \prod_{i=1}^m \prod_{j=1}^n \left[\mathcal{N}\left(c_{ik}^*|g(U_i^TZ_k),\sigma_C^2\right) \right]^{I_{ik}^C} \\ & p(U,Z|C,\sigma_C^2,\sigma_U^2,\sigma_Z^2) & c_{ik}^* = \sqrt{\frac{d^-(v_k)}{d^+(v_i)+d^-(v_k)}} \times c_{ik}, \\ & \propto & p(C|U,Z,\sigma_C^2)p(U|\sigma_U^2)p(Z|\sigma_Z^2) \\ & \text{Likelihood} & \text{Prior} \end{aligned}$$

$$= & \prod_{i=1}^m \prod_{j=1}^n \left[\mathcal{N}\left(c_{ik}|g(U_i^TZ_k),\sigma_C^2\right) \right]^{I_{ik}^C}$$

$$- \prod_{i=1}^{m} \prod_{k=1}^{m} \left[\mathcal{N}\left(C_{ik} | g(C_i|Z_k), \sigma_C\right) \right] \times \prod_{i=1}^{m} \mathcal{N}(U_i | 0, \sigma_U^2 \mathbf{I}) \times \prod_{i=1}^{m} \mathcal{N}(Z_k | 0, \sigma_Z^2 \mathbf{I}).$$

SoRec

User-Item Rating Matrix Factorzation

$$\begin{split} p(U, V | R, \sigma_R^2, \sigma_U^2, \sigma_V^2) & \propto & p(R | U, V, \sigma_R^2) p(U | \sigma_U^2) p(V | \sigma_V^2) \\ & = & \prod_{\text{Likelihood}}^m \prod_{\text{Prior}}^n \left[\mathcal{N} \left(r_{ij} | g(U_i^T V_j), \sigma_R^2 \right) \right]^{I_{ij}^R} \\ & \times & \prod_{i=1}^m \mathcal{N}(U_i | 0, \sigma_U^2 \mathbf{I}) \times \prod_{i=1}^n \mathcal{N}(V_j | 0, \sigma_V^2 \mathbf{I}). \end{split}$$

SoRec

$$\begin{split} & \ln p(U, V, Z | C, R, \sigma_C^2, \sigma_R^2, \sigma_U^2, \sigma_V^2, \sigma_Z^2) = \\ & - \frac{1}{2\sigma_R^2} \sum_{i=1}^m \sum_{j=1}^n I_{ij}^R (r_{ij} - g(U_i^T V_j))^2 \\ & - \frac{1}{2\sigma_C^2} \sum_{i=1}^m \sum_{k=1}^m I_{ik}^C (c_{ik}^* - g(U_i^{I\!\!I} Z_k))^2 \\ & - \frac{1}{2\sigma_U^2} \sum_{i=1}^m U_i^T U_i - \frac{1}{2\sigma_V^2} \sum_{j=1}^n V_j^T V_j - \frac{1}{2\sigma_Z^2} \sum_{k=1}^m Z_k^T Z_k \\ & - \frac{1}{2} \left(\left(\sum_{i=1}^m \sum_{j=1}^n I_{ij}^R \right) \ln \sigma_R^2 + \left(\sum_{i=1}^m \sum_{k=1}^m I_{ik}^C \right) \ln \sigma_C^2 \right) \\ & - \frac{1}{2} \left(m l \ln \sigma_U^2 + n l \ln \sigma_V^2 + m l \ln \sigma_Z^2 \right) + \mathcal{C}, \end{split}$$

For Convenience of Calculation, Log for Posterior Probability

Maximizing Log Posterior for Social Recommenation

SoRec

$$\mathcal{L}(R, C, U, V, Z) =$$

$$\frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{j=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2}$$

$$+\frac{\lambda_U}{2}\|U\|_F^2 + \frac{\lambda_V}{2}\|V\|_F^2 + \frac{\lambda_Z}{2}\|Z\|_F^2, \tag{9}$$

Maximizing Log Posterior for Social Recommenation

→ Same With Minimizing Above (9) Equation

SoRec

$$\begin{split} \frac{\partial \mathcal{L}}{\partial U_i} &= \sum_{j=1}^n I_{ij}^R g'(U_i^T V_j)(g(U_i^T V_j) - r_{ij}) V_j \\ &+ \lambda_C \sum_{k=1}^m I_{ik}^C g'(U_i^T Z_k)(g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i, \\ \frac{\partial \mathcal{L}}{\partial V_j} &= \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j)(g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j, \\ \frac{\partial \mathcal{L}}{\partial Z_k} &= \lambda_C \sum_{i=1}^m I_{ik}^C g'(U_i^T Z_k)(g(U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k, (10) \end{split}$$

SoReg - Adding Social Regularization Term

Original Models

$$\min_{U,V} \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_i^T V_j)^2 + \frac{\lambda_1}{2} ||U||_F^2 + \frac{\lambda_2}{2} ||V||_F^2,$$
 (4)

Social Regularization Model

$$\min_{U,V} \mathcal{L}_1(R, U, V) = \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^n I_{ij} (R_{ij} - U_i^T V_j)^2$$

$$\text{Regularization Term}$$

$$+ \frac{\lambda_1}{2} ||U||_F^2 + \frac{\lambda_2}{2} ||V||_F^2, \quad (5)$$

SoReg - Adding Social Regularization Term

Model 1: Average-based Regularization

$$\min_{U,V} \mathcal{L}_{1}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\alpha}{2} \sum_{i=1}^{m} \|U_{i} - \frac{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) \times U_{f}}{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f)} \|_{F}^{2},
+ \frac{\lambda_{1}}{2} \|U\|_{F}^{2} + \frac{\lambda_{2}}{2} \|V\|_{F}^{2}.$$
(8)

Model 2 : Individual-based Regularization

$$\min_{U,V} \mathcal{L}_{2}(R, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}$$

$$+ \frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) \|U_{i} - U_{f}\|_{F}^{2}$$

$$+ \lambda_{1} \|U\|_{F}^{2} + \lambda_{2} \|V\|_{F}^{2}.$$
(11)

SoReg

Model 1: Average-based Regularization

From Intution that we will consult lots of our friends for valuable suggestions

$$\min_{U,V} \mathcal{L}_{1}(R,U,V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\alpha}{2} \sum_{i=1}^{m} \|U_{i} - \frac{1}{|\mathcal{F}^{+}(i)|} \sum_{f \in \mathcal{F}^{+}(i)} U_{f}\|_{F}^{2}
+ \frac{\lambda_{1}}{2} \|U\|_{F}^{2} + \frac{\lambda_{2}}{2} \|V\|_{F}^{2},$$
(5)

User's Taste (Latent Vector) should be close to the average tastes of all friends

SoReg

Model 1: Average-based Regularization

Among all of these friends, some friends may have similar tastes with this user, while some other friends may have totally different tastes

Not Just Arithmethic Mean \rightarrow Weighted Mean

$$\min_{U,V} \mathcal{L}_{1}(R,U,V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2}
+ \frac{\alpha}{2} \sum_{i=1}^{m} \|U_{i} - \frac{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i,f) \times U_{f}}{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i,f)} \|_{F}^{2},
+ \frac{\lambda_{1}}{2} \|U\|_{F}^{2} + \frac{\lambda_{2}}{2} \|V\|_{F}^{2}.$$
(8)

SoReg

Model 2 : Individual-based Regularization

Model 1's approach is insensitive to those users whose friends have diverse tastes $\min_{U,V} \mathcal{L}_2(R,U,V) = \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^n I_{ij} (R_{ij} - U_i^T V_j)^2 \\ + \frac{\beta}{2} \sum_{i=1}^m \sum_{f \in \mathcal{F}^+(i)} Sim(i,f) \|U_i - U_f\|_F^2$

$$2 \sum_{i=1}^{r} \sum_{f \in \mathcal{F}^{+}(i)} Stm(t, f) || t_{i} - t_{f} ||_{F}$$

$$+ \lambda_{1} || U ||_{F}^{2} + \lambda_{2} || V ||_{F}^{2}.$$
(11)

it indirectly models the propagation of tastes

SoReg - Adding Social Regularization Term

Model 1: Average-based Regularization

$$\begin{split} \frac{\partial \mathcal{L}_{1}}{\partial U_{i}} &= \sum_{j=1}^{n} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) V_{j} + \lambda_{1} U_{i} \\ &+ \alpha (U_{i} - \frac{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) \times U_{f}}{\sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f)}) \\ &+ \alpha \sum_{g \in \mathcal{F}^{-}(i)} \frac{-Sim(i, g) (U_{g} - \frac{\sum_{f \in \mathcal{F}^{+}(g)} Sim(g, f) \times U_{f}}{\sum_{f \in \mathcal{F}^{+}(g)} Sim(g, f)})}{\sum_{f \in \mathcal{F}^{+}(g)} Sim(g, f)}, \\ &+ \alpha \sum_{g \in \mathcal{F}^{-}(i)} \frac{-Sim(i, g) (U_{g} - \frac{\sum_{f \in \mathcal{F}^{+}(g)} Sim(g, f)}{\sum_{f \in \mathcal{F}^{+}(g)} Sim(g, f)})}{\sum_{f \in \mathcal{F}^{+}(g)} Sim(g, f)}, \\ &\frac{\partial \mathcal{L}_{2}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}. \end{split}$$

 $\frac{\partial \mathcal{L}_1}{\partial V_i} = \sum_{i=1}^m I_{ij} (U_i^T V_j - R_{ij}) U_i + \lambda_2 V_j.$ (9)

Model 2: Individual-based Regularization

$$\begin{split} \frac{\partial \mathcal{L}_2}{\partial U_i} &= \sum_{j=1}^n I_{ij} (U_i^T V_j - R_{ij}) V_j + \lambda_1 U_i \\ &+ \beta \sum_{f \in \mathcal{F}^+(i)} Sim(i,f) (U_i - U_f) \\ &+ \beta \sum_{g \in \mathcal{F}^-(i)} Sim(i,g) (U_i - U_g), \\ \\ \frac{\partial \mathcal{L}_2}{\partial V_i} &= \sum_{g \in \mathcal{F}^-(i)} I_{ij} (U_i^T V_j - R_{ij}) U_i + \lambda_2 V_j. \end{split}$$

SoReg Vs SoRec

$$\begin{split} & \text{SoReg} \\ & \mathcal{L}(R,C,U,V,Z) = \\ & \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T}V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T}Z_{k}))^{2} \\ & + \frac{\lambda_{U}}{2} \|U\|_{F}^{2} + \frac{\lambda_{V}}{2} \|V\|_{F}^{2} + \frac{\lambda_{Z}}{2} \|Z\|_{F}^{2}, \end{split} \tag{9} \\ & + \lambda_{1} \|U\|_{F}^{2} + \lambda_{2} \|V\|_{F}^{2}. \end{split} \tag{11}$$

Complexity Analysis

SoReg Vs SoRec

```
SoRec
                                                                                                    SoRea
Objective Function : O(p_R l + p_c l)
                                                                       Objective Function : O(p_R l + p_c l)
\frac{\partial L}{\partial U}: O(p_R l + p_c l)
                                                                      \frac{\partial L}{\partial U}: O(p_R l + p_c l)
\frac{\partial L}{\partial V}: O(p_R l)
                                                                      \frac{\partial L}{\partial V}: O(p_R l)
\frac{\partial L}{\partial Z}: O(p_c l)
                                                                       Total: O(p_p l + p_c l)
Total: O(p_R l + p_c l)
```

p: Number of Observation

Datasets - Epinions

	SoRec	SoReg	Implementation			
	User Item Matrix					
User	40,163	51,670	49,289			
Item	139,529	83,509	139,738			
Ratings	664,824	631,064	664,824			
Sparsity	0.011%	0.014%	0.010%			
	Social Network					
User	40,163	51,670	49,289			
Edges	487,183	511,799	487,183			

Epinions have Trust / Distrust -> Only Use Trust

Datasets - Epinions

MAE (Mean Absolute Error)

$$MAE = \frac{1}{T} \sum_{i,j} |R_{ij} - \widehat{R}_{ij}|$$

RMSE (Root Mean Square Error)

$$RMSE = \sqrt{\frac{1}{T} \sum_{i,j} (R_{ij} - \widehat{R}_{ij})^2}.$$

Datasets - Epinions

Training Data 80%

,	MMMF	PMF	SoRec	SoReg
MSE	1.0275	1.0182	0.9240	0.8443

SoReg Results

Dataset	Training	Metrics	UserMean	ItemMean	NMF	PMF	RSTE	SR1 _{vss}	SR1 _{pcc}	SR2 _{vss}	SR2pcc
Epinions	90%	MAE Improve	0.9134 9.61%	0.9768 15.48%	0.8712 5.23%	0.8651 4.57%	0.8367 1.33%	0.8290	0.8287	0.8258	0.8256
		RMSE Improve	1.1688 8.12%	1.2375 13.22%	1.1621 7.59%	1.1544 6.97%	1.1094 3.20%	1.0792	1.0790	1.0744	1.0739
	80%	MAE Improve	0.9285 9.07%	0.9913 14.83%	0.8951 5.68%	0.8886 4.99%	0.8537 1.10%	0.8493	0.8491	0.8447	0.8443
		RMSE	1.1817 7.30%	1.2584 12.95%	1.1832 7.42%	1.1760 6.85%	1.1256	1.1016	1.1013	1.0958	1.0954

SoRec Results

Training Data	Dimensionality = 10								
Training Data	MMMF	PMF	CPMF	SoRec					
99%	0.9916	0.9885	0.9746	0.8932					
80%	1.0275	1.0182	0.9923	0.9240					
50%	1.1012	1.0857	1.0632	0.9751					
20%	1.2413	1.2276	1.1864	1.0944					

Impact of Parameter λ_c

 $\lambda_c=0$, then Only use Matrix Factorization $\lambda_c=\inf$ then Only use Social Information

$$\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2} + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2} + \frac{\lambda_{Z}}{2} ||Z||_{F}^{2},$$
(9)

Figure 4: Impact of Parameter λ_C

Performance on Different Users

Good Performance when users only supply a few ratings or even have no rating records

CONCLUSIONS AND FUTURE WORK

- In SoRec, Distrust Information isn't investigated
 whether the distrust information is useful to increase the prediction quality
 how to incorporate it
- 2. In SoRec, Social Network MF ignore Network Diffusion
- 3. In SoReg, Need More Effective Algorithm to find Suitable Group of Friends

1. SoRec and SoReg Both used Mapping function f, g, h

$$f(x) = \frac{x-1}{R_{max}-1}, h(x) = \frac{x+1}{2}$$
$$g(x) = \frac{1}{1+e^{-x}}$$

- 2. SoReg Used Learning Rate = 0.05
- 3. SoReg used Thresholds to low similiarity

Data Loading - User Item Rating Matrix

```
with open("data/epinion/ratings data.txt") as rd :
    n user = 0
    n item - 0
   lines = rd.readlines()
   np.random.shuffle(lines)
   train size = int(len(lines) * 0.5)
   train data, train row, train col = [], [], []
   test data, test row, test col - [], [], []
   train data real, test data real = []. []
   for i. line in enumerate(lines) :
       user, item, rating = line.split(" ")
       if i < train size :
           if (int(user) > user max) or (int(item) > item max) :
           train data.append((int(rating)-1) / 4)
           train data real.append(int(rating))
           train row.append(int(user) - 1)
           train col.append(int(item) - 1)
           if (int(user) > user max) or (int(item) > item max) :
           test data.append((int(rating)-1) / 4)
           test data real.append(int(rating))
           test row.append(int(user) - 1)
           test col.append(int(item) - 1)
train R = sps.csr matrix((train data, (train row, train col)), shape = (user max, item max), dtype = 'float64').todok()
test R = sps.csr matrix((test data, (test row, test col)), shape = (user max, item max), dtype = 'float64').todok()
```

Data Loading - Social Network Matrix

```
with open("./data/epinion/trust data.txt") as td :
    lines = td.readlines()
    data, row, col = [], [], []
    for line in lines :
        user1, user2, = line.split(" ")
        if (int(user1) > user max) or (int(user2) > user max) :
        data.append(1)
        row.append(int(user1) - 1)
        col.append(int(user2) - 1)
C = sps.coo matrix((data, (row, col)), shape = (user max, user max), dtype = 'float64')
indegree = C.sum(axis = 0)
outdegree - C.sum(axis - 1)
C star = copy.deepcopy(C)
for k in range(C star.data.shape[0]) :
    i = C star.row[k]
    j = C star.col[k]
    C star.data[k] = np.sqrt(indegree[0, j] / (indegree[0, j] + outdegree[i, 0]))
C star = sps.dok matrix(C star)
```

SoRec - Loss Function

network loss = 0.

$$\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T}V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T}Z_{k}))^{2} + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2} + \frac{\lambda_{Z}}{2} ||Z||_{F}^{2},$$

$$(9)$$

$$\text{rating_loss = 0.} \text{for rating. (user_index, item_index) in zip(train_R.values(), train_R.keys()):} \text{rating_loss += (rating - g(np.dot(U[:, user_index], V[:, item_index])))**2/2}$$

```
for trust, (user_1, user_2) in zip(c_star.values(), c_star.keys()):
    network_loss += lambda_C * (trust - g(np.dot(U[:, user_1], Z[:, user_2]))) ** 2 / 2

norm_loss = 0.
    norm_loss += 0.
    norm_loss += lambda_U * np.linalg.norm(U) / 2
    norm_loss += lambda_V * np.linalg.norm(V) / 2
    norm_loss += lambda_Z * np.linalg.norm(Z) / 2
```

SoRec - Gradients

$$\begin{split} \frac{\partial \mathcal{L}}{\partial U_i} &= \sum_{j=1}^n I_{ij}^R g'(U_i^T V_j)(g(U_i^T V_j) - r_{ij}) V_j \\ &+ \lambda_C \sum_{k=1}^m I_{ik}^C g'(U_i^T Z_k)(g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i, \\ \frac{\partial \mathcal{L}}{\partial V_j} &= \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j)(g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j, \\ \frac{\partial \mathcal{L}}{\partial Z_k} &= \lambda_C \sum_{i=1}^m I_{ik}^C g'(U_i^T Z_k)(g(U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k, \end{split}$$
 for rating, (user index, item index) in zin(train 8, values()), train 8, keys());

```
for rating, (user_index, item_index) in zip(train_R.values(), train_R.keys()):

u = U[:, user_index]

v = V[:, item_index]

U_grads[:, user_index] += (g2(np.dot(u, v)) * (g(np.dot(u, v)) - rating) * v)

V_grads[:, item_index] += (g2(np.dot(u, v)) * (g(np.dot(u, v)) - rating) * u)
```

SoRec - Gradients

$$\begin{split} \frac{\partial \mathcal{L}}{\partial U_i} &= \sum_{j=1}^n I_{ij}^R g'(U_i^T V_j)(g(U_i^T V_j) - r_{ij}) V_j \\ &+ \lambda_C \sum_{k=1}^m I_{ik}^C g'(U_i^T Z_k)(g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i, \\ \frac{\partial \mathcal{L}}{\partial V_j} &= \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j)(g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j, \\ \frac{\partial \mathcal{L}}{\partial Z_k} &= \lambda_C \sum_{i=1}^m I_{ik}^C g'(U_i^T Z_k)(g(U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k, (10) \\ \end{split}$$
for trust, (user_1, user_2) in zip(C_star.values(), C_star.keys()) : ut = U[:, user_1] u2 = Z[:, user_2] \\ U_grads[:, user_1] += lambda_C * g2(np.dot(u1, u2)) * (g(np.dot(u1, u2)) - trust) * u2 \\ Z_grads[:, user_2] += lambda_C * g2(np.dot(u1, u2)) * (g(np.dot(u1, u2)) - trust) * u1 \end{split}

SoRec - Gradients

$$\begin{split} \frac{\partial \mathcal{L}}{\partial U_i} &= \sum_{j=1}^n I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) V_j \\ &+ \lambda_C \sum_{k=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) Z_k + \lambda_U U_i \\ \frac{\partial \mathcal{L}}{\partial V_j} &= \sum_{i=1}^m I_{ij}^R g'(U_i^T V_j) (g(U_i^T V_j) - r_{ij}) U_i + \lambda_V V_j, \\ \frac{\partial \mathcal{L}}{\partial Z_k} &= \lambda_C \sum_{i=1}^m I_{ik}^C g'(U_i^T Z_k) (g(U_i^T Z_k) - c_{ik}^*) U_i + \lambda_Z Z_k \end{split}$$
(10)

```
SoReg
Model 2 - Loss Function
```

```
\min_{U,V} \mathcal{L}_{2}(R,U,V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij} (R_{ij} - U_{i}^{T} V_{j})^{2} 

+ \frac{\beta}{2} \sum_{i=1}^{m} \sum_{f \in \mathcal{F}^{+}(i)} Sim(i,f) \|U_{i} - U_{f}\|_{F}^{2} 

+ \lambda_{1} \|U\|_{F}^{2} + \lambda_{2} \|V\|_{F}^{2}. 

(11)
```

```
rating_loss = 0.
for rating, (user_index, item_index) in zip(train_R.values(), train_R.keys()):
    rating_loss +* (rating - g(np.dot(U[:, user_index], V[:, item_index])))**2 / 2
network_loss = 0.
for user_idx in (range(n_user)) :
    u_vec = U[:, user_idx]
    for out_user_idx in outdegree[user_idx].keys() :
        sim_ij = get_similarity(user_idx, out_user_idx)
        network_loss ++ beta * sim_ij * np.linalg.norm(u_vec - U[:, out_user_idx]) / 2
norm_loss = 0.
norm_loss += lambda_1 * np.linalg.norm(U) / 2
norm_loss += lambda_2 * np.linalg.norm(V) / 2
```

SoReg Model 2 - Gradients

$$\frac{\partial \mathcal{L}_2}{\partial U_i} = \left[\sum_{j=1}^n I_{ij} (U_i^T V_j - R_{ij}) V_j + \lambda_1 U_i \right]
+ \beta \sum_{f \in \mathcal{F}^+(i)} Sim(i, f) (U_i - U_f)
+ \beta \sum_{g \in \mathcal{F}^-(i)} Sim(i, g) (U_i - U_g),
\frac{\partial \mathcal{L}_2}{\partial V_j} = \left[\sum_{i=1}^m I_{ij} (U_i^T V_j - R_{ij}) U_i + \lambda_2 V_j. \right]$$
(12)

```
for rating, (user_index, item_index) in (zip(train_R.values(), train_R.keys())) :
    u = U[:, user_index]
    v = V[:, item_index]

U_grads[:, user_index] += g2(np.dot(u, v)) * (g(np.dot(u, v)) - rating) * v
    V_grads[:, item_index] += g2(np.dot(u, v)) * (g(np.dot(u, v)) - rating) * u
```

SoReg Model 2 - Gradients

$$\frac{\partial \mathcal{L}_2}{\partial U_i} = \sum_{j=1}^n I_{ij} (U_i^T V_j - R_{ij}) V_j + \lambda_1 U_i
+ \sum_{f \in \mathcal{F}^+(i)} Sim(i, f) (U_i - U_f)
+ \sum_{g \in \mathcal{F}^-(i)} Sim(i, g) (U_i - U_g)
\frac{\partial \mathcal{L}_2}{\partial V_j} = \sum_{i=1}^m I_{ij} (U_i^T V_j - R_{ij}) U_i + \lambda_2 V_j.$$
(12)

SoReg Model 2 - Gradients

$$\frac{\partial \mathcal{L}_{2}}{\partial U_{i}} = \sum_{j=1}^{n} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) V_{j} + \lambda_{1} U_{i}
+ \beta \sum_{f \in \mathcal{F}^{+}(i)} Sim(i, f) (U_{i} - U_{f})
+ \beta \sum_{g \in \mathcal{F}^{-}(i)} Sim(i, g) (U_{i} - U_{g}),
\frac{\partial \mathcal{L}_{2}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$

$$\frac{\partial \mathcal{L}_{2}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$

$$\frac{\partial \mathcal{L}_{2}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$

$$\frac{\partial \mathcal{L}_{2}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$

$$\frac{\partial \mathcal{L}_{2}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$

$$\frac{\partial \mathcal{L}_{2}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$

$$\frac{\partial \mathcal{L}_{2}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$

$$\frac{\partial \mathcal{L}_{2}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$

$$\frac{\partial \mathcal{L}_{2}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$

$$\frac{\partial \mathcal{L}_{3}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) U_{i} + \lambda_{2} V_{j}.$$

total sim += sim ij if total sim != 0.0 : similar vec /= total sim

norm loss += lambda 1 * np.linalg.norm(U) / 2 norm loss += lambda 2 * np.linalg.norm(V) / 2

norm loss = 0.

SoRea

Model 1 - Loss Function

network loss += alpha * np.linalg.norm(u vec - similar vec) / 2

```
\min_{U,V} \mathcal{L}_1(R, U, V) = \frac{1}{2} \sum_{i=1}^m \sum_{j=1}^n I_{ij} (R_{ij} - U_i^T V_j)^2
rating loss = 0.
                                                                                                         +\frac{\alpha}{2}\sum_{i=1}^{m}\|U_i - \frac{\sum_{f\in\mathcal{F}^+(i)}Sim(i,f)\times U_f}{\sum_{f\in\mathcal{F}^+(i)}Sim(i,f)}\|_F^2,
for rating, (user index, item index) in zip(train R.values(), train R.keys()):
    rating_loss += (rating - g(np.dot(U[:, user_index], V[:, item index])))**2 / 2
network loss = 0.
                                                                                                         +\frac{\lambda_1}{2}\|U\|_F^2+\frac{\lambda_2}{2}\|V\|_F^2.
for user idx in range(n user) :
                                                                                                                                                                                 (8)
    u vec = U[:, user idx]
    similar vec = np.zeros like(U[:, user idx])
    total sim = 0.0
    for out user idx in outdegree[user idx] :
         sim ii = get similarity(user idx, out user idx)
         similar vec += sim ij * U[:, out user idx]
```

SoReg Model 1 - Gradients

```
for user idx in range(n user) :
   u vec = U[:, user idx]
   sim ig vec = np.zeros like(u vec)
   for in user idx in indegree[user idx].keys() :
        sim ig = get similarity(user idx, in user idx)
        if sim ig == 0 :
       u g = U[:, in user idx]
       sim gf sum = 0.0
       sim gf uf = np.zeros like(u g)
        for out user idx in outdegree[in user idx].keys() :
            sim gf = get similarity(in user idx, out user idx)
           sim gf sum += sim gf
            sim gf uf +- sim gf * U[:, out user idx]
        if sim gf sum == 0 :
        sim ig vec += -sim ig * (u g - sim gf uf / sim gf sum)
   U grads[:, user idx] += alpha * sim ig vec / sim gf sum
```

$$\frac{\partial \mathcal{L}_{1}}{\partial U_{i}} = \sum_{j=1}^{n} I_{ij} (U_{i}^{T} V_{j} - R_{ij}) V_{j} + \lambda_{1} U_{i}
+ \alpha \left(U_{i} - \frac{\sum_{f \in \mathcal{F}+(i)} Sim(i, f) \times U_{f}}{\sum_{f \in \mathcal{F}+(i)} Sim(i, f)}\right)
- \alpha \sum_{g \in \mathcal{F}-(i)} \frac{-Sim(i, g) \left(U_{g} - \frac{\sum_{f \in \mathcal{F}+(g)} Sim(g, f) \times U_{f}}{\sum_{f \in \mathcal{F}+(g)} Sim(g, f)}\right)}{\sum_{f \in \mathcal{F}+(g)} Sim(g, f)},
\frac{\partial \mathcal{L}_{1}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij} \left(U_{i}^{T} V_{j} - R_{ij}\right) U_{i} + \lambda_{2} V_{j}.$$
(9)

Training Data 50% Latent Dimension : 10

Learing Speed is Slow / Much Higher than Paper MAE

SoReg Model 2 Train

SoReg Model 1 Val

30

SoReg Model 1 Train SoReg Model 2 Val

Training Data 50% Latent Dimension : 10

Due to User Similarity Calculation, Small Size Data Used

User : 10000 Item : 30000

1 Epoch Time → SoRec : 11s / SoReg Model 1 : 15s / SoReg Model 2 : 12s

Due to User Similarity Calculation, Small Size Data Used

User : 10000 Item : 30000

- 1. 학습 시간이 오래걸리는 부분들을 찾아내기 어려웠음
 - SoReg 모델에서 User Similarity 구하는 과정
 - SoReg 모델에서 Indegree / Outdegree 구하는 과정
 - → 미리 구한 뒤, 사전 형태로 저장

- 2. Gradient Exploding 하는 경우가 SoRec, SoReg 에서 모두 자주 발생
 - Learning Rate 설정
 - Gradient 계산 과정에서 Overflow 체크