1 Set Theory Review

1.1 Union and Intersection

$$A\cup B=\{x:x\in A\quad\text{or}\quad x\in B\}$$

$$A \cap B = \{x : x \in A \text{ and } x \in B\}$$

1.2 Complement

$$A^C = \{x : x \notin A\}$$

1.3 Disjoint Sets

Two sets A; and A; are disjoint if

$$A_i\cap A_j=\emptyset \quad \forall i,j\,i\neq j$$

1.4 Collectively Exhaustive Sets

Sets $A_i, ..., A_n$ are collectively exhaustive if

$$\cup_{i=1}^N A_i = S$$

1.5 Partition

Sets $A_i,...,A_n$ are called a partition of S if $A_i,...,A_n$ are disjoint and collectively exhaustive.

1.6 Properties of Sets

1.6.1 Commutative

$$A \cap B = B \cap A$$
 $A \cup B = B \cup A$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A\cap (B\cap C)=(A\cap B)\cap C$$

1.6.3 Distributive

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

$$A\cap (B\cup C)=(A\cap B)\cup (A\cap C)$$

1.7 Relative Complement/Difference

$$A-B=\{x:x\in A\quad\text{and}\quad x\notin B\}$$

$$A - B = A \cap B^C$$

$$(A \cup B)^C = A^C \cap B^C \quad (A \cap B)^C = A^C \cup B^C$$

2 Probability Theory Introduction

2.1 Relative Frequency

Suppose that an experiment is repeated n times under identical conditions. Let $N_0(n)$, $N_1(n)$, ..., $N_k(n)$ be the number of times the outcome k happens. Then the relative frequency of outcome k is

$$f_k(n) = \frac{N_k(n)}{n}$$
 where $\lim_{n \to \infty} f_k(n) = p_k$

2.2 Axioms of Probability

$$P(A) \ge 0$$
 $P[S] = 1$

$$A\cap B=\varnothing\quad\longrightarrow\quad P(A\cup B)=P(A)+P(B)$$

$$P\left[\bigcup_{k=1}^{\infty} A_k\right] = \sum_{k=1}^{\infty} P[A_k]$$

If A_1, A_2 is a sequence of events s.t. $A_i \cap A_i = \emptyset$ $i \neq j$

2.3 Bavesian Probability

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

3 Counting Methods and Sampling

	•
Permutations of n distinct objects (k- tuples):	n!
Number of ordered samples with size k with replacement:	n ^k
Number of ordered samples with size k without replacement:	$\frac{n!}{(n-k)!}$
Number of unordered samples with size k without replacement:	$\binom{n}{k} = \frac{n!}{k!(n-k)!}$
Number of unordered samples with size k and with replacement:	$\binom{n-1+k}{k} = \binom{n-1+k}{n-1+k}$

3.1 Rinomial Coefficient

$$\binom{n}{k} = \frac{n!}{k! (n-k)!} \qquad \binom{n}{k} = \binom{n}{n-k}$$

4 Conditional Probability

If A and B are related, then the conditional probability o A given that B (and P[B] > 0) has occurred is

$$P[A|B] = \frac{P[A \cap B]}{P[B]}$$

5 Theorem of Total Probability

For B_1 , B_2 , ..., B_n mutually exclusive events whose union equals the sample space S (e.g. $B_1,...,B_n$ is a partition

$$P[A] = P[A|B_1]P[B_1]... + P[A|B_n]P[B_n]$$
 6 Bayes Rule

For $B_1, B_2, ..., B_n$ a partition of sample space S,

$$P[B_j|A] = \frac{P[A \cap B_j]}{P[A]} = \frac{P[A|B_j]P[B_j]}{\sum_{k=1}^n P[A|B_k]P[B_k]}$$

If knowledge of the occurrence of event B does not alter the probability of event A, then event A is independent of

$$P[A] = P[A|B] = \frac{P[A \cap B]}{P[B]}$$

Define A, B to be independent if

$$P[A \cap B] = P[A]P[B]$$

Then

$$P[A|B] = P[A]\,,\, P[B|A] = P[B]$$

$$P[A^C \cap B^C] = P[A^C]P[B^C]$$

7.1 Notes on Independence

If two events have nonzero probability (P[A] > 0, P[B] >0), and are mutually exclusive, then they cannot be inde-

7.2 Triplet Independence

For three events A, B, C to be independent,

- · A,B,C Pairwise Independent
- · knowledge of occurrence of any two events (e.g. A, B) should not effect the prob of the third (C)

7.2.1 Pairwise Independence

$$P[A \cap B] = P[A]P[B] \quad P[A \cap C] = P[A]P[C]$$

$P[B \cap C] = P[B]P[C]$ 7.2.2 Independence of Events

$$P[C|A\cap B] = \frac{P[A\cap B\cap C]}{P[A\cap B]} = P[C]$$

Finally, for Triplet Independence, we must have

$$P[A \cap B \cap C] = P[A]P[B]P[C]$$

8 Sequential Experiments 8.1 Bernoulli Trials

Let k be the num of successes in n independent Bernoulli trials. Then the probabilities of k are given by binomial

$$p_n(k) = \binom{n}{k} p^k (1-p)^{n-k}$$
 for $k = 0,...,n$

Let $B_1, B_2, ..., B_M$ be a partition of the sample space S, and let $P[B_i] = p_i$. Also, the events are disjoint:

$$p_1+p_2+\ldots+p_M=1$$

The multinomial probability law is

$$P[(k_1,...,k_M)] = \frac{n!}{k_1!...k_M!} p_1^{k_1}...p_M^{k_M}$$

8.3 Geometric Probability Law

The probability that more than K trials are required before a success (with probability p, q = 1 - p) occurs in a series of repeated independent Bernoulli trials is

$$P[m > K] = p \sum_{m=K+1}^{\infty} q^{m-1} = pq^{K} \frac{1}{1-q} = q^{K}$$

The probability that K trials are required for a success (with probability p, q = 1 - p) is

$$P[m = K] = (p)(1-p)^{(K-1)} = pq^{(K-1)}$$

8.3.1 Hypergeometric Distribution

$$P(X=k) = \frac{\binom{K}{k}\binom{N-K}{n-k}}{\binom{N}{n}}$$

Where K is the number of success in the population, k is the number of observed successes, N is the population size, and n is the sample size.

A Random Variable X is a function that assigns a real number $X(\zeta)$ to each outcome ζ in the sample space of a random experiment.

10 Discrete Random Variable (DRV)

A Discrete Random Variable X is defined as a random variable that assumes values from a countable set.

10.1 PMF

$$p_X(x)=P[X=x]=P[\{\zeta:X(\zeta)=x\}\quad x\in\mathbb{R}$$
 For x_k in S_X , $p_X(x_k)=P[A_k]$
10.1.1 PMF Properties

$$p_X(x) \ge 0 \quad \forall x$$

$$\sum_{x \in S_X} p_X(x) = \sum_k p_X(x_k) = \sum_k P[A_k] = 1$$

$$P[X \mathrm{in} B] = \sum_{x \in B} p_X(x) \quad \text{where } B \subset S_X$$

Let X be a DRV with PMF $P_X(x)$, and $\exists C, P[C] > 0$. The Conditional PMF is given by

$$p_X(x|C) = P[X=x|C] = \frac{P[\{X=x\} \cap C]}{P[C]}$$

10.3 Expected Value

The expected value (or mean) of a DRV is

$$E[X] = \sum_{x \in S_X} x p_X(x) = \sum_k x_k p_X(x_k)$$

$$\exists E[|x|] = \sum_{L} |x_k p_X(x_k)| < \infty$$

10.4 Variance, Standard Deviation The **variance** of a random variable X is

$$\sigma_X^2 = \text{VAR}[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

The Standard Deviation is

$$\sigma_X = STD[X] = \sqrt{VAR[X]}$$

10.5 Expected Value and Variance Properties

$$E[g(X) + h(X)] = E[g(X)] + E[h(X)]$$
$$E[aX] = aE[X] \quad E[X + c] = E[X] + c$$

$$VAR(cX) = c^2 VAR(X)$$
 $VAR(X + c) = VAR(X)$

10.6 Conditional Expected Value

For X a DRV, and suppose we know B has occured,

$$\begin{split} m_{X|B} &= E[X|B] = \sum_{x \in S_X} x p_X(x|B) \\ &= \sum x_k P_X(x_k|B) \end{split}$$

10.7 Conditional Variance

11.1 Properties of the CDF

$$VAR[X|B] = E[(X - m_{X|B})^2|B] =$$

$$\sum_{k=1}^{\infty} (X_k - m_{X|B})^2 p_X(x_k|B) = E[X^2|B] - m_{X|B}^2$$

11 Cumulative Distribution Function

PMF's use events $\{X = b\}$, whereas Cumulative Distributi on Functions (CDF) use events $\{X \leq b\}$.

$F_X(x) = P[X \le x]$

$0 \le F_X(x) \le 1$

$$\lim_{x \to \infty} F_X(x) = 1 \qquad \lim_{x \to -\infty} F_X(x) = 0$$

$$F_X(a) \leq F_X(b) \ \forall a < b$$

$$F_X(b) = \lim_{h \to 0} F_X(b+h) = F_X(b^+)$$

$$P[a < X \le b] = F_X(b) - F_X(a)$$

 $P[X = b] = F_X(b) - F_X(b^-)$

$$P[X>x]=1-F_X(x)$$

11.2 CDF of a Discrete RV $F_X(x) = \sum p_X(x_k) = \sum P_X(x_k)u(x - x_k)$

$x_k \leq x$ 11.3 CDF of a Continuous RV

$$F_X(x) = \int_{-\infty}^x f(t)dt$$

11.4 Conditional CDF

$$F_X(x|C) = \frac{P\big[\{X \leq x\} \cap C\big]}{P\big[C\big]} \ \text{if} \ P\big[C\big] > 0$$

12 Probability Density Function

$$f_X(x) = \frac{d}{dx} F_X(x)$$

12.1 Properties of the PDF

$$f_X(x) \geq 0 \qquad 1 = \int_{-\infty}^{\infty} f_X(x) dx$$

$$P[a \le X \le b] = \int_{a}^{b} f_X(x) dx$$

$$F_X(x) = \int_{-\infty}^{x} f_X(t) dt$$

$$u(x) = \int_{-\infty}^{x} \delta(t)dt$$

$$f_X(x) = \frac{d}{dx} F_X(x) = \sum_k p_X(x_k) \delta(x - x_k)$$

$$f_X(x|C) = \frac{d}{dx} F_X(x|C)$$

Suppose events $B_1, B_2, ..., B_n$ partition the sample space

$$F_X(x) = \sum_{i=1}^n P[X \le x | B_i] P[B_i]$$
$$= \sum_{i=1}^n F_X(x | B_i) P[B_i]$$

$$f_X(x) = \frac{d}{dx} F_X(x) = \sum_{i=1}^{n} f_X(x|B_i) P[B_i]$$

13 Gaussian (Normal) RV
The PDF for the Gaussian Random Variable is given in the

$$\phi(z) = \phi\left(\frac{x-m}{\sigma}\right) = P[X \leq x] = F_X(x)$$

$$\phi(x) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-t^2/2} dt$$

$$Q(x) = \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-t^2/2} dt$$

$$Q(z) = 1 - \phi(z) = P[X > x]$$

Q(0) = 1/2 Q(-x) = 1 - Q(x)

13.3 Standard Gaussian RV To move from any Gaussian to Standard (i.e. X ~ $N(m, \sigma^2) \rightarrow z \sim N(0, 1)$, use

$$z = \frac{x - m}{}$$

14 Other Features of CRV's 14.1 Expected Value

 $E[X] = \int_{-\infty}^{+\infty} t f_X(t) dt$

14.1.1 Expected Value of Y=g(X)

$$E[Y] = \int_{-\infty}^{\infty} g(x) f_X(x) dx$$

$$E[X|A] = \int_{-\infty}^{\infty} x f_X(x|A) dx$$

14.2 Variance, Standard Deviation

The variance of a random variable X is

$$VAR[X] = E[(X - E[X])^{2}] = E[X^{2}] - (E[X])^{2}$$
The standard deviation is

$$STD[X] = \sqrt{VAR[X]}$$

14.3 Nth Moment The **nth moment** of a random variable X is given by

$$E[X^n] = \int_{-\infty}^{\infty} x^n f_X(x) dx$$

15 Functions of RVs - CDF, PDF of Y

$$f_Y(y) = \sum_{i=1}^{n} \frac{f_X(x_i)}{|g'(i)|}$$

$$f_Y(y) = \sum_k \frac{f_X(x)}{dy/dx} \bigg|_{x = x_k} = \sum_k f_X(x) \bigg| \frac{dx}{dy} \bigg| \bigg|_{x = x_k}$$

16.1 Markov Inequality Suppose X is a RV with mean E[X]. Then

$$P[X \ge a] \le \frac{E[X]}{a}$$
 for X nonnegative

Suppose X is a RV with mean m = E[X] and variance σ^2 .

$$P[|X-m| \geq a] \leq \frac{\sigma^2}{a^2} \qquad D^2 = (X-m)^2 \longrightarrow$$

$$P[D^2 \ge a^2] \le \frac{E[(X-m)^2]}{a^2} = \frac{\sigma^2}{a^2}$$

$$P[X \le a] = e^{-sa} E[e^{sX}]$$

$$\phi_X(\omega) = E\left[e^{j\omega X}\right] = \int_{-\infty}^{\infty} f_X(x)e^{j\omega x} dx$$

$f_X(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \phi_X(\omega) e^{-j\omega x} d\omega$

Characteristic Function for DRV's
$$\phi_X(\omega) = \sum P_X(x_k)e^{j\omega x}k \quad , X \text{ a DRV}$$

$$\phi_X(\omega) = \sum_{i=1}^{\infty} P_X(k)e^{j\omega k}$$
 , $X \in \mathbb{Z}$

17.2 Moment Theorem

$$E[X^n] = \frac{1}{i^n} \frac{d^n}{d\omega^n} \phi_X(\omega) \Big|_{\omega=0}$$

$$M(s)=E[e^{sX}]=\Phi(-js)$$
 19 Probability Generating Function
$$G_N(z)=E\left[z^N\right]=\sum^{\infty}p_N(k)z^k$$

19.1 Characteristic Function

$$G_N(e^{j\omega}) = \phi_N(\omega)$$

 $X(s) = \int_{0}^{\infty} f_X(x)e^{-sx}dx = E[e^{-sX}]$

19.2 PMF Relationship

PMF:
$$p_N(k) = \frac{1}{k!} \frac{d^k}{dz^k} G_N(k) \Big|_{z=0}$$

$$\begin{split} P[X \text{ in } B] &= \sum_{\left(x_{j}, y_{k}\right) \text{ in } B} \sum_{p_{X,Y}\left(x_{j}, y_{k}\right)} \\ &\sum_{j=1}^{\infty} \sum_{k=1}^{\infty} p_{X,Y}\left(x_{j}, y_{k}\right) = 1 \end{split}$$

22 Marginal PMF

$$p_X(x_j) = P[X = x_j] = \sum_{k=1}^{\infty} p_{X,Y}(x_j, y_k)$$

 $E[X^n] = (-1)^n \frac{d^n}{ds^n} X(s) \Big|_{s=0}$

 $p_{X,Y}(x,y) = P[\{X = x\} \cap \{Y = y\}]$

$$F_{X,Y}(x_1,y_1)=P[X\leq x_1,Y\leq Y_1]$$

23.1 Properties of the Joint CDF

$$\begin{split} F_{X,Y}(x_1,y_1) &\leq F_{X,Y}(x_2,y_2) \\ \text{for } x_1 \leq x_2,y_1 \leq y_2 \\ F_{X,Y}(x_1,-\infty) &= 0, F_{X,Y}(-\infty,y_1) = 0, F_{X,Y}(\infty,\infty) = 0 \end{split}$$

$$F_X(x_1) = F_{X,Y}(x_1,\infty)$$
 $F_Y(y_1) = F_{X,Y}(\infty,y_1)$

$$\lim_{x \to a^{+}} F_{X,Y}(x,y) = F_{X,Y}(a,y)$$

$$\lim_{x \to b^+} F_{X,Y}(x,y) = F_{X,Y}(x,b)$$

$$P[x_1 < X \le x_2, y_1 < Y \le y_2] = F_{X,Y}(x_2, y_2)$$
$$-F_{X,Y}(x_2, y_1) - F_{X,Y}(x_1, y_2) + F_{X,Y}(x_1, y_1)$$

$$f_{XY}(x,y) = \frac{\partial^2 F_{XY}(x,y)}{\partial x \partial y}$$

$$P[X \in B] = \int_{B} \int f_{X,Y}(x,y) dx dy$$

$$F_{XY}(x,y) = P[X \le x, Y \le y]$$

$$F_{XY}(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f_{XY}(x,y) dx dy$$

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f_{XY}(x, y) dx dy = 1$$

 $f_X(x) = \int_{-\infty}^{\infty} f_{XY}(x, y) dy$

 $f_{\mathbf{Y}}(x) \ge 0$ $f_{\mathbf{Y}}(y) \ge 0$ 26 Independence of RV's

$$X$$
 and Y are independent if for any $X \in A$, $Y \in B$

$$P[X \in A, Y \in B] = P[X \in A]P[Y \in B]$$

If
$$X$$
, Y independent, then
$$p_{XY}(x_j,y_k) = P[X=x_j,Y=y_k] =$$

$$P[X = x_i]P[Y = y_k] = p_X(x_i)p_Y(y_i)$$

$$F_{XY}(x,y) = F_{X}(x)F_{Y}(y)$$

$$f_{XY}(x,y) = f_{X}(x)f_{Y}(y)$$
 if X, Y jointly cont.
27 Expected Value for Functions of 2 RVs

$$E[X] = g(x_j, y_k) p_{XY}(x_j, y_k)$$

X. Y independent iff

If X, Y discrete:

 $E[X] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f_{XY}(x, y) dx dy$

$$E[X+Y] = E[X] + E[Y]$$

27.1 Expected Value and Independence

Let
$$g(X,Y) = g_1(X)g_2(Y)$$
, and X,Y independent
$$Z = XY \leftrightarrow E[Z] = E[XY] = E[X]E[Y]$$

$$E[g(X,Y)] = E[g_1(X)]E[g_2(Y)]$$

28 Joint Moment
If X, Y discrete:

$$E[X^jY^k] = \sum_i \sum_n x_i^j y_n^k p_{XY}(x_i, y_n)$$

$$E[X] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^j y^k f_{XY}(x, y) dx dy$$

$$E[XY] = E[X^{j=1}Y^{k=1}]$$

If E[XY] = 0, then X, Y are orthogonal. 28.2 Central Moment

$$E[(X-E[X])^j \cdot (Y-E[Y])^k]$$

$$VAR(X) = E[(X - E[X])^{2} \cdot (Y - E[Y])^{0}]$$

$$VAR(X) = E[(X - E[X])^{2}]$$

$$COV(X, Y) = E[(X - E[X])(Y - E[Y])]$$

$$= E[(X - E[X])^{1} \cdot (Y - E[Y])^{1}] = E[XY] - E[X]E[Y]$$
If $E[X] = 0$ and/or $E[Y] = 0$, then

$$COV(X, Y) = E[XY]$$

29.1 Correlation Coefficient

$$\rho_{XY} = \frac{\text{COV}(X, Y)}{\sigma_X \sigma_Y}, \quad -1 \le \rho_{XY} \le 1$$

If X, Y uncorrelated, then

$$COV(X,Y) = 0$$
, $E[XY] = E[X]E[Y]$, $\rho_{XY} = 0$ If X,Y independent, then they are uncorrelated.

29.2 Covariance Properties

$$COV(X, X) = VAR(X)$$
 $COV(X, Y) = COV(Y, X)$

$$COV(\alpha X, Y) = \alpha COV(X, Y)$$

$$COV(X + c, Y) = COV(X, Y)$$

$$COV(X+t,T) = COV(X,T)$$

 $\{1, 2, ..., L\}$

 $\{0, 1, ..., n\}$

 $\{r, r+1, \ldots\} r \in \mathbb{R}$

{0, 1, 2, ...}

{1.2....}

{0, 1, 2, ...}

 $\{1, 2, ..., L\}$

COV(X + Y, Z) = COV(X, Z) + COV(Y, Z)

30 Conditional Probabilities

RV

Uniform

Bernoulli

Binomial

ve Binomial

Geometric v1

Geometric v2

Poisson

Zipf

30.1 Case 1: X, Y Discrete - Conditional PMF

$$p_Y(y|x) = P[Y = y|X = x] =$$

42 Common Discrete Random Variable

$$= \frac{P[X=x,Y=y]}{P[X=x]} = \frac{p_{XY}(x,y)}{p_{Y}(x)}$$

$$p_Y(y_k|x_j) = \frac{p_{XY}(x_j, y_k)}{p_X(x_j)} \longrightarrow$$

$$p_{XY}(x_j,y_k) = p_Y(y_k|x_j) \cdot p_X(x_j)$$

$$P[Y \in A | X = x_k] = \sum_{y_j \in A} p_Y(y_j | x_k)$$

$$P[Y \in A] = \sum_{x_k} P[Y \in A | X = x_k] p_X(x_k)$$

$$F_Y(y|x_k) = \frac{P[Y \leq y, X = x_k]}{P[X = x_k]}, \quad P[X = x_k] > 0$$

$$f_Y(y|x_k) = \frac{d}{dy} F_Y(y|x_k)$$

If X, Y independent,

$$P[Y \in A | X = x_k] = \int_{v \in A} f_Y(y | x_k) dy$$

$$f_Y(y|x) = \frac{d}{dy}F_Y(y|x) = \frac{f_{XY}(x,y)}{f_{X}(x)}$$

$$P[Y \in A | X = x] = \int_{y \in A} f_Y(y|x) dy$$

$$P[Y \in A] = \int_{-\infty}^{\infty} P[Y \in A | X = x] f_X(x) dx$$

If
$$X$$
, Y independent,

$$f_Y(y|x) = \frac{f_X(x)f_Y(y)}{f_X(x)} = f_Y(y)$$

$$f_Y(y|x) = \frac{f_{XY}(x,y)}{f_{Y}(x)}$$

$$f_{XY}(x,y) = f_Y(y|x)f_X(x) = f_X(x|y)f_Y(y)$$

$$f_Y(y|x) = \frac{f_{XY}(x|y)f_Y(y)}{f_X(x)}$$

31 Conditional Expectation

E[X]

 $\underline{L+1}$

np

31.1 X,Y Discrete

 $p_X(k)$

(1 - p)p

 $\binom{n}{k} p^k (1-p)^{n-1}$

 $\binom{k-1}{r-1} p^r (1-p)^{k-r}$

 $(1-p)^{k}p$

 $(1-p)^{k-1}p$

 $\frac{\alpha^k}{11}e^{-\alpha}$ $k=0,1,...,\alpha>0$

 $\frac{1}{c_L} \frac{1}{k}$, $c_L = \sum_{i=1}^{L} \frac{1}{i}$

$$E[Y|x] = \sum_{v_k} p_Y(v_k|x)$$

VAR[X]

 L^2-1

p(1-p)

np(1-p)

r(1-p)

 $\frac{L(L+1)}{2c_L}$

 $G_X(z)$

 $\frac{z}{L} \frac{1-z^L}{1-z}$

q + pz

 $(q + pz)^n$

 $\left(\frac{pz}{1-qz}\right)$

 $\frac{p}{1-qz}$

 $\frac{pz}{1-qz}$

31.2 X.Y Continuous

$$E[Y|x] = \int_{-\infty}^{\infty} y f_Y(y|x) dy$$

31.3 Law of total Expectation

Since E[Y|x] = g(X), we define E[g(x)]

$$E[E[Y|x]] = \int_{-\infty}^{\infty} E[Y|x] f_X(x) dx = E[Y]$$

for any function h(Y), where E[h(Y)] = E[E[h(Y|x)]]

$$E[Y^k] = E[E[Y^k|x]]$$

32 Functions of Two RVs Let Z = g(X, Y) (function of two RVs). Then,

$$F_Z(z) = P[X \in R_z] = \iint_{(x,y) \in R_z} f_{XY}(x,y) dx dy$$

$$f_Z(z) = \frac{d}{dz} F_Z(z) = \int_{-\infty}^{\infty} f_{XY}(x, z - x) dx$$

If X, Y independent, then

$$f_Z(z) = f_X(x) * f_Y(y) = \int_{-\infty}^{\infty} f_X(x) f_Y(z - x) dx$$

33 Transformations of Two RVs Let W = (X, Y) and $Z_1 = g_1(W)$ and $Z_2 = g_2(W)$

$$F_{z_1,z_2}(z_1,z_2) = P[g_1(W) \le z_1,g_2(X) \le z_2]$$

$$F_{z_1,z_2}(z_1,z_2) = \iint_{W:g_k(W) \leq z_k} f_{XY}(x,y) dx dy$$

34 Linear Transformations

$$\begin{bmatrix} V \\ W \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} X \\ Y \end{bmatrix} = A \begin{bmatrix} X \\ Y \end{bmatrix}$$

Assume A is invertible:

$$\begin{bmatrix} X \\ Y \end{bmatrix} = A^{-1} \begin{bmatrix} V \\ W \end{bmatrix}$$
34.1 Joint PDF of Linear Transformation

Let Z = g(X, Y). The vector Z is:

$$Z = AW$$
 $Z = \begin{bmatrix} V \\ W \end{bmatrix}$ $W = \begin{bmatrix} X \\ Y \end{bmatrix}$

$$f_Z(z) = \frac{f_W(A^{-1}z)}{|A|} \quad |A| = \det \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

35 Joint Gaussian RVs The random variables X, Y are jointly gaussian if:

$$f_{X,Y}(x,y) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho_{XY}^2}}\exp(A)$$

$$A = \frac{-1}{2(1 - \sigma_{xxx}^2)} \left[\left(\frac{x - m_1}{\sigma_1} \right)^2 - \right]$$

$$2\rho_{XY}\left(\frac{x-m_1}{\sigma_1}\right)\left(\frac{y-m_2}{\sigma_2}\right)+\left(\frac{y-m_2}{\sigma_2}\right)^2$$

35.1 Joint Standard (Normal) Gaussian If X N(0,1), Y N(0,1), then

$$f_{XY}(x,y) = \frac{1}{2\pi\sqrt{1-\rho_{XY}^2}} \exp(A)$$

$$A = \frac{1}{2(1 - \rho^2)} \left(x^2 - 2\rho_{XY} \cdot xy + y^2 \right)$$

$$f_{XY}(x,y) = g(r) = C \exp \left[\frac{-r^2}{2\sigma^2} \right]$$

35.2 Independence (m=0. σ=1)

If X, Y independent \leftrightarrow

$$COV(X, Y) = 0$$
 $\rho_{XY}(x, y) = 0$

$$f_{XY}(x,y) = \frac{1}{2\pi} \exp\left(-\frac{1}{2}(x^2+y^2)\right)$$

35.3 Independence (m=0)

If X N(0,1), Y N(0,1), then

$$f_{XY}(x,y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{1}{2\sigma^2}(x^2 + y^2)\right)$$

35.4 Constant A If A (exponent of Joint Gaussian) is a constant K

$$K = \left[\left(\frac{x - m_1}{\sigma_1} \right)^2 - \ldots + \left(\frac{y - m_2}{\sigma_2} \right)^2 \right]$$

$$f_X Y(x, y) = C \exp \left[-\frac{1}{2(1 - \rho^2)} K \right] = \text{constant}$$

$$\theta = \frac{1}{2} \arctan^{-1} \tan \left(\frac{2\rho X Y \sigma_1 \sigma_2}{\sigma_1^2 - \sigma_2^2} \right)$$

35.6 Conditional PDF

The conditional PDF of X given Y = v is

$$f_X(x|y) = \frac{f_{XY}(x,y)}{f_Y(y)} = \frac{1}{2\pi\sigma_1^2\sqrt{1-\rho_{XY}^2}}$$

$$\exp \left(\frac{-1}{2(1 - \rho_{XY}^2 \sigma_1^2)} \left[x - \rho_{XY} \frac{\sigma_1}{\sigma_2} (y - m_2) - m_1 \right]^2 \right)$$

35.7 Conditional Expectation

$$E[(X - m_1)(Y - m_2)|Y] = (y - m_2)E[X - m_1|Y = y]$$
$$= (y - m_2) \left(\rho_{XY} \frac{\sigma_1}{\sigma_2} (y - m_2)\right) = \rho_{XY} \frac{\sigma_1}{\sigma_2} (y - m_2)^2$$

$$COV(X,Y) = E[(X - m_1)(Y - m_2)]$$

= $E[E[(X - m_1)(Y - m_2)|Y]] = \rho_{XY} \sigma_1 \sigma_2$

Let $X_1, X_2, ..., X_n$ be a sequence of RVs, with

$$S_n = X_1 + X_2 + \ldots + X_n$$

36.1 Mean and Variance of Sum of RVs

$$\begin{split} E[X_1 + X_2 + \ldots + X_n] &= E[X_1] + E[X_2] + \ldots + E[X_n] \\ &\text{VAR}(X_1 + \ldots + X_n) = \sum_{k=1}^n \text{VAR}(X_k) \\ &+ \sum_{j=1} \sum_{k=1} \text{COV}(X_j, X_k), \quad j \neq k \end{split}$$

If $X_1, X_2, ..., X_n$ independent, then

$$\operatorname{VAR}(X_1 + \ldots + X_n) = \operatorname{VAR}(X_1) + \ldots + \operatorname{VAR}(X_n)$$

36.2 PDF of Sums of Independent RVs Let $X_1, X_2, ..., X_n$ independent, then

$$\begin{split} \phi_{S_n}(\omega) &= E[e^{j\omega S_n}] = E[e^{j\omega(X_1 + X_2 + \ldots + X_n)}] \\ &= E[e^{j\omega X_1}] \ldots E[e^{j\omega X_n}] = \phi_{X_1}(\omega) \ldots \phi_{X_n}(\omega) \end{split}$$

$$f_{S_n} = \mathcal{F}^{-1} \left[\phi_{X_1}(\omega) \dots \phi_{X_n}(\omega) \right]$$

37 Independent Identically Distributed RVs (iid)

If $X_1, X_2, ..., X_n$ iid RVs. with

$$E[X_j] = m_X$$
 $VAR(X_j) = \sigma_X^2$ for $j = 1,...,n$

37.1 Mean and Variance of iid RVs

$$E[S_n] = E[X_1] + \ldots + E[X_n] = n \cdot m_X$$

$$VAR(S_n) = n \cdot VAR(X_i) = n\sigma_x^2$$

37.2 PDF of iid RVs

$$\begin{split} \phi_{X_k}(\omega) &= \phi_X(\omega), k=1,...,n \leftrightarrow \phi_{S_N}(\omega) = \left[\phi_X(\omega)\right]^n \\ f_{S_n} &= \mathcal{F}^{-1}(\phi_{S_n}(\omega)) = \mathcal{F}^{-1}(\phi_X(\omega)^n) \end{split}$$
 38 Sample Mean

$$M_n = \frac{1}{n} \sum_{j=1}^n X_j$$

38.1 Expected Value and Varianceof Sample Mea

$$E[M_n] = E\left[\frac{1}{n}\sum_{j=1}^n X_j\right] \to E[M_n] = \frac{1}{n}\sum_{j=1}^n E[X_j]$$

$$\mathrm{VAR}(M_n) = E\left[(M_n - E[M_n])^2\right] = \mathrm{VAR}(S_n)/n^2$$
 if X_1,\dots,X_n iid RVs:

$$E[M_n] = m_X \leftrightarrow E[S_n] = n \cdot m_X$$

$$VAR(S_n) = n\sigma^2 \leftrightarrow VAR(M_n) = \frac{\sigma^2}{n}$$

38.2 Sample Mean Chebyshev Boun

$$\begin{split} P[|Z - E[Z]| &\geq \epsilon] \leq \frac{\text{VAR}(Z)}{\epsilon^2} \quad , \epsilon > 0 \\ \\ P[|M_n - m_X| &\geq \epsilon] &\leq \frac{\sigma^2}{2} \end{split}$$

$$P[|M_n - m_X| < \epsilon] \ge 1 - \frac{\sigma^2}{n\epsilon^2}$$

39 Laws of Large Numbers

Weak Law:
$$\lim_{n\to\infty} P[|M_n - m_{\mathcal{X}}| < \epsilon] = 1$$

Strong Law:
$$P\left[\lim_{n\to\infty} M_n = m_X\right] = 1$$

40 Central Limit Theorem Let $S_n = X_1, X_2, ..., X_n$ iid RVs

$$\lim_{n\to\infty} P[Z_n \le z] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{z} e^{-x^2/2} dx$$

$$\sum_{k=0}^{n} a^k = \frac{1-a^{n+1}}{1-a}, a \neq 1$$

$$\sum_{k=0}^{n} ka^{k} = \frac{a}{(1-a)^{2}} \left[1 - (n+1)a^{n} + na^{n+1} \right], a \neq 1$$

$$\sum_{k=0}^{n} k = \frac{n(n+1)}{2}$$

$$\sum_{k=0}^{n} k^2 = \frac{(n(n+1)(2n+1))}{6}$$

$$\sum_{k=0}^{n} k^3 = \frac{(n^2(n+1)^2)}{4}$$

$$\sum_{k=0}^{\infty} a^k = \frac{1}{1-a}$$

$$\sum_{k=0}^{\infty} k a^k = \frac{a}{(1-a)^2}$$
$$\sum_{k=0}^{\infty} k^2 a^k = \frac{a^2 + a}{(1-a)^3}$$

Approx.

Q(x)

Uniform	[a, b]	$\frac{1}{b-a}$	2	12	$i\omega(b-a)$	$\frac{x-a}{b-a}$, $x \in [a,b]$
Exponential	[0,∞)	$\lambda e^{-\lambda x}$	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$	$\frac{\lambda}{\lambda - j\omega}$	$1 - e^{-\lambda x}$
Gaussian (Normal)	(-∞,∞)	$\frac{e^{-(x-m)^2/2\sigma^2}}{\sigma\sqrt{2\pi}}$	m	σ^2	$e^{jm\omega-\sigma^2\omega^2/2}$	Φ(x)
Gamma	(0,∞)	$\frac{\lambda(\lambda x)^{\alpha-1}e^{-\lambda x}}{\Gamma(\alpha)}$	$\frac{\alpha}{\lambda}$	$\frac{\alpha}{\lambda^2}$	$\left(\frac{1}{1-j\omega/\lambda}\right)^{\alpha} \alpha > 0, \lambda > 0$	
m-1 Erlang	(0,∞)	$\frac{\lambda e^{-\lambda x}(\lambda x)^{m-2}}{(m-1)!}$			$\left(\frac{1}{1-j\omega/\lambda}\right)^m$	
χ-Squared (k DoF)	(0,∞)	$\frac{x^{(k-2)/2}e^{-x/2}}{2^{k/2}\Gamma(k/2)}$			$\left(\frac{1}{1-2j\omega}\right)^{k/2}$	
Laplacian	(-∞,∞)	$\frac{\alpha}{2}e^{-\alpha x }$	0	$\frac{2}{\alpha^2}$	$\frac{\alpha^2}{\omega^2 + \alpha^2}$	$\begin{cases} \frac{1}{2}e^{-x\alpha} & x \leq 0 \\ 1 - \frac{1}{2}e^{-x\alpha} & x \geq 0 \end{cases}$
Rayleigh	[0,∞)	$\frac{x}{\alpha^2}e^{-x^2/2\alpha^2}$	$\alpha\sqrt{\pi/2}$	$(2-\pi/2)\alpha^2$		$1 - e^{-x^2/(2\alpha^2)}$
Pareto	$[x_m,\infty)$	$\alpha \frac{x_m^{\alpha}}{x^{\alpha+1}}$, $x \ge x_m$, 0 else	$\frac{\alpha x_m}{\alpha - 1}$	$\frac{\alpha x_m^2}{(\alpha-2)(\alpha-1)^2}$		$1 - \left(\frac{x_m}{x}\right)^{\alpha}$
Cauchy	(-∞,+∞)	$\frac{\alpha/\pi}{x^2+\alpha^2}$			$e^{-\alpha w }$	
Beta	0 < x < 1	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}$	$\frac{\alpha}{\alpha + \beta}$	αβ		

44 Q(X) for STANDARD Gaussian

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7	5.00E-01 4.60E-01 4.21E-01 3.845E-01 3.09E-01 2.74E-01 2.12E-01 1.84E-01 1.59E-01	5.00E-01 4.58E-01 3.45E-01 3.45E-01 3.45E-01 2.71E-01 2.39E-01 1.82E-01 1.57E-01	2.7 2.8 3.0 3.1 3.3 3.4 3.5	3.47E-03 2.56EE-03 1.85EE-04 6.87E-04 4.83EE-04 4.337E-04 2.33EE-04 1.08EE-04	3.46E-03 2.55EE-03 1.85EE-03 9.66EE-04 4.83EE-04 4.83EE-04 2.35EE-04 1.58EE-04
0.123.4 0.23.4 0.5.6 0.7.8 0.9.0 1.1.23.4 1.5.6 1.7.8 1.2.2.4 1.2.2.4 2.2.3.4 2.3.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2.4 2	1.39E-01 1.39E-01 1.15E-01 9.68E-02 8.08E-02 5.48E-02 4.46E-02 2.28E-02 1.79E-02 1.79E-03 6.21E-03 4.66E-03	1.34E-01 1.1-01 1.0-01	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	7.24E.05 4.81E.05 3.40E.06 1.90E.08 4.087E.11 1.12E.11 1.12E.11 6.28E.11 1.13E.11 1.13E.11 1.13E.11 1.13E.11 1.13E.11 1.13E.11 1.13E.11 1.13E.11 1.13E.11 1.13E.11 1.13E.11	7.23E 05 4.81E 05 3.40E 05 3.40E 07 1.90E 08 4.02E 11 1.22E 14 6.22E 14 6.22E 14 1.13E 21 1.13E 21 7.62E 24

x

Approx.