Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables

Панаетов Александр

Higher School of Economic

20 февраля 2020 г.

Обзор

- Lossless compression
- 2 Asymmetric Numeral Systems
- 3 Latent Variable Model
- Bits-Back Coding with ANS
- 5 Hierarchical Latent Variables
- 6 Bit-Swap
- Results

Lossless compression

- Есть данные $x=(x_1,...,x_D)$ из дискретного распределения p_{data} . Хотим отправить их получателю, используя при этом минимальное число бит (в среднем по распределению p_{data}), гарантируя при этом возможность получателю полностью восстановить данные.
- Entropy coding схемы используя вероятностную модель $p_{\theta}(x)$ требуют $\log p_{\theta}(x)$ бит. Если p_{θ} хорошо приближает p_{data} , то это оптимальный алгоритм.

Asymmetric Numeral Systems

- ANS позволяет используя p(x) кодировать x используя примерно $-\log p(x)$ бит (константный оверхед около 2 бит)
- Важное свойство если мы кодируем x в одном порядке, то декодируем в обратном

Latent Variable Model

ullet $p_{ heta}(x)$ - приближает $p_{data}(x)$, $q_{ heta}(z|x)$ приближает $p_{ heta}(z|x)$. Тогда:

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz = \int p_{\theta}(x|z) p(z) dz$$

$$\log p_{\theta}(x) = \mathbb{E}_{q_{\theta}(z|x)} \log \frac{p_{\theta}(x, z)}{q_{\theta}(z|x)} + \mathbb{E}_{q_{\theta}(z|x)} \log \frac{q_{\theta}(x, z)}{p_{\theta}(z|x)}$$

$$L(\theta) = \mathbb{E}_{q_{\theta}(z|x)} [\log p_{\theta}(x, z) - \log q_{\theta}(z|x)]$$

Bits-Back Coding with ANS

- Пусть у нас теперь всем известны $p_{\theta}(x|z)$, p(z), $q_{\theta}(z|x)$, хотим отправить x
- Можно сделать так:
 - \bullet сэмплируем z из $q_{\theta}(z|x)$
 - ullet отправляем на стек x используя $p_{ heta}(x|z)$
 - ullet отправляем на стек z используя p(z)
- Лучше также, но z получаем так: используя $q_{\theta}(z|x)$ забираем $\log q_{\theta}(z|x)$ бит из нашего стека и получаем z. Там мы по сути отправляем на это количество бит меньше, чем в предыдущем варианте.
- Итого всего тратим бит:

$$N_{total} - N_{init} = \log q_{\theta}(z|x) - \log p_{\theta}(x|z) - \log p(z)$$

Bits-Back Coding with ANS

Hierarchical Latent Variables

 Теперь рассмотрим модель с несколькими латентными переменными, которые образуют марковскую цепь

$$z_L o z_{L-1} o ... o z_1 o x$$
 $p_{ heta}(x) = \int p_{ heta}(x|z_1)p(z_1)dz_1$
 $p_{ heta}(z_1) = \int p_{ heta}(z_1|z_2)p(z_2)dz_2$
...
 $p_{ heta}(z_{L-1}) = \int p_{ heta}(z_{L-1}|z_L)p(z_L)dz_L$
 $p_{ heta}(x) = \int p_{ heta}(x|z_1)_{ heta}(z_1|z_2)...p(z_L)dz_{1:L}$
 $L(\theta) = \mathbb{E}_{q_{ heta}(\cdot|x)}[\log p_{ heta}(x,z_{1:I}) - \log q_{ heta}(z_{1:L}|x)]$

Hierarchical Latent Variables

• Посмотрим теперь на количество бит требуемое для начальной инициализации:

$$N_{init} = \sum -\log q_{\theta}(z_{i+1}|z_i)$$

• N_{init} достаточно быстро растет с ростом нашей модели

Bit-Swap

- Идея теперь обобщить прошлый подход с использованием $q_{\theta}(z|x)$ для того, чтобы забрать из стека информацию, которую потом сможем восстановить.
- Будем не последовательно декодировать все z_i , а сначала только z_1 . А потом уже чередуем декодирование новой z_{i+1} с кодированием старой z_i
- Так мы точно потратим меньше бит на N_{init} :

$$N_{init}^{BitSwap} \leq \sum \max(0, \log rac{p_{ heta}(z_{i-1}|z_i)}{q_{ heta}(z_{i+1}|z_i)}) \leq \sum -\log q_{ heta}(z_{i+1}|z_i) = N_{init}^{BBANS}$$

• Поскольку ничего не понятно, сейчас будут картинки и все станет понятно

Bit-Swap

Bit-Swap

Algorithm 1 BB-ANS for lossless compression with hierarchical latent variables. The operations below show the procedure for encoding a dataset \mathcal{D} onto a bitstream.

```
Input: data \mathcal{D}, depth L, p_{\theta}(\mathbf{x}, \mathbf{z}_{1:L}), q_{\theta}(\mathbf{z}_{1:L}|\mathbf{x})
Require: ANS
Initialize: bitstream
repeat
    Take \mathbf{x} \in \mathcal{D}
    decode \mathbf{z}_1 with q_{\boldsymbol{\theta}}(\mathbf{z}_1|\mathbf{x})
    for i = 1 to L - 1 do
        decode \mathbf{z}_{i+1} with q_{\theta}(\mathbf{z}_{i+1}|\mathbf{z}_i)
    end for
    encode x with p_{\theta}(\mathbf{x}|\mathbf{z}_1)
    for i = 1 to L - 1 do
        encode \mathbf{z}_i with p_{\theta}(\mathbf{z}_i|\mathbf{z}_{i+1})
    end for
    encode \mathbf{z}_L with p(\mathbf{z}_L)
until \mathcal{D} = \emptyset
Send: bitstream
```

Algorithm 2 Bit-Swap (ours) for lossless compression with hierarchical latent variables. The operations below show the procedure for encoding a dataset \mathcal{D} onto a bit-stream.

```
Input: data \mathcal{D}, depth L, p_{\boldsymbol{\theta}}(\mathbf{x}, \mathbf{z}_{1:L}), q_{\boldsymbol{\theta}}(\mathbf{z}_{1:L}|\mathbf{x})
Require: ANS
Initialize: bitstream
repeat
Take \mathbf{x} \in \mathcal{D}
decode \mathbf{z}_1 with q_{\boldsymbol{\theta}}(\mathbf{z}_1|\mathbf{x})
encode \mathbf{x} with p_{\boldsymbol{\theta}}(\mathbf{x}|\mathbf{z}_1)
for i=1 to L-1 do
decode \mathbf{z}_{i+1} with q_{\boldsymbol{\theta}}(\mathbf{z}_{i+1}|\mathbf{z}_i)
encode \mathbf{z}_i with p_{\boldsymbol{\theta}}(\mathbf{z}_i|\mathbf{z}_{i+1})
end for
encode \mathbf{z}_L with p(\mathbf{z}_L)
until \mathcal{D} = \varnothing
Send: bitstream
```

Результаты

	MNIST	CIFAR-10	ImageNet (32×32)
Uncompressed	8.00	8.00	8.00
GNU Gzip	1.65	7.37	7.31
bzip2	1.59	6.98	7.00
LZMA	1.49	6.09	6.15
PNG	2.80	5.87	6.39
WebP	2.10	4.61	5.29
BB-ANS	1.48	4.19	4.66
Bit-Swap	1.29	3.82	4.50

Источники

- Friso H. Kingma, Pieter Abbeel, Jonathan Ho "Bit-Swap: Recursive Bits-Back Coding for Lossless Compression with Hierarchical Latent Variables" (2019)
- James Townsend, Thomas Bird, David Barber "PRACTICAL LOSSLESS COMPRESSION WITH LATENT VARIABLES USING BITS BACK CODING"(2019)

Вопросы

- Как BB-ANS кодирует х
- В чем заключается отличие Bit-Swap от BB-ANS?
- ullet Верхняя оценка N_{init} у Bit-Swap и нижняя оценка у BB-ANS