Final Problems 3

Due Friday Oct 20.

- 1. Show that the following languages are not regular:
 - (a) $\{xx \mid x \in \{a,b\}^*\}$
 - (b) $\{xy \in \{a,b\}^* \mid |x| = |y| \text{ and } \exists i : [i\text{th character of } x] = [i\text{th character of } y]\}$
 - (c) $\{a^n b^m \mid n < m \text{ and both } n \text{ and } m \text{ are multiples of } 4\}$
 - (d) $\{a^n b^m c^t \mid m < t \text{ or } m < n\}$
- 2. For any fixed integer k we can define the following regular language:

$$L_k = \{w \in \{a,b\}^* \mid \text{the } k\text{th-to-last character of } w \text{ is } b\}$$

For example, $L_3 = (a+b)^*b(a+b)(a+b)$. Recall that L_k can be described by an NFA with k+1 states. Prove that any DFA for L_k must have at least 2^k states.

Hint: use a pigeonhole principle argument similar to the first proof that $\{a^nb^n \mid n \geq 0\}$ is non-regular, to show that any DFA with fewer than 2^k states must make a mistake.