QUESTIONS BRÈVES - B

B1	$\frac{\sqrt{3}}{7\sqrt{5}} = \frac{\sqrt{15}}{35}$	
B2	$\frac{8}{\sqrt{2}} = 4\sqrt{2}$	
ВЗ	$\sqrt{11} - \sqrt{6} = \sqrt{5}$	
B4	$\sqrt{5} - \sqrt{2} = \frac{3}{\sqrt{5} + \sqrt{2}}$	
B5	$\sqrt{\frac{20}{63}} = \frac{2\sqrt{5}}{3\sqrt{7}}$	
В6	$\sqrt{43} - \sqrt{42} < \sqrt{116} - \sqrt{115}$	
B7	$\sqrt{10} + \sqrt{12} > 2\sqrt{11}$	
B8	$\sqrt{3+2\sqrt{2}}=1+\sqrt{2}$	
В9	$\sqrt{3-2\sqrt{2}}=1-\sqrt{2}$	
B10	$\sqrt{5-2\sqrt{6}} = \sqrt{3}-\sqrt{2}$	
B11	$\forall x \in \mathbb{R}, \ \sqrt{x^2} = x$	
B12	$\forall x \in \mathbb{R}, \ \sqrt{x^4} = x^2$	
B13	$\forall x \in [0, +\infty[\ ,\ \sqrt{x^3} = \left(\sqrt{x}\right)^3$	
B14	$\exists n \in \mathbb{N}; \ \sqrt{n^2 + 6n + 9} \notin \mathbb{N}$	
B15	$\forall (n,p) \in \mathbb{N}^2, \ \sqrt{n+p} > \sqrt{n} + \sqrt{p}$	
B16	$\forall n \in \mathbb{N}^{\star}, \ \frac{\sqrt{n}}{n+\sqrt{n}} < \frac{1}{\sqrt{n}+1}$	
B17	$\forall n \in \mathbb{N}^*, \ \frac{n+1}{n\sqrt{n}} < \frac{\sqrt{n}+1}{n}$	
B18	$\forall n \in \mathbb{N}, \left(\sqrt{2}\right)^{2n} = 2^n \text{ et } \left(\sqrt{2}\right)^{2n+1} = 2^n \sqrt{2}$	
B19	La suite $\left(\sqrt{n}\right)_{n\in\mathbb{N}}$ comporte 3 termes en progression arithmétique	

B20	$\exists n \in \mathbb{N}, \left(\sqrt{2}\right)^n > 1234,56$	*
B21	$\exists n \in \mathbb{N}; \ n\sqrt{2} \in \mathbb{N}$	*
B22	$\forall (n,p) \in \mathbb{N}^{\star 2}, \ \frac{1}{\sqrt{n}} + \frac{1}{\sqrt{p}} \leqslant \frac{2\max\{\sqrt{n},\sqrt{p}\}}{\sqrt{np}}$	
B23	$\forall (n,p) \in \mathbb{N}^{*2}, \ \frac{1}{\sqrt{n}} - \frac{1}{\sqrt{n+p}} = \frac{p}{\sqrt{n(n+p)}(\sqrt{n+p} + \sqrt{n})}$	
B24	$\forall (n,p) \in \mathbb{N}^{*2}, \frac{n+\sqrt{p}}{\sqrt{n+p}} < \sqrt{n} + \sqrt{\frac{p}{n}}$	
B25	$\forall n \in \mathbb{N}^*, \ 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}} \geqslant \sqrt{n}$	*
B26	$\forall n \in \mathbb{N}^*, \ \sqrt{\frac{1}{2}} + \sqrt{\frac{2}{3}} + \sqrt{\frac{3}{4}} + \dots + \sqrt{\frac{n}{n+1}} \le n$	
B27	$\forall n \in \mathbb{N}^{\star}, \ \sum_{k=1}^{n} \frac{k^2}{\sqrt{k+1}} < \sum_{k=1}^{n} k \sqrt{k}$	
B28	$\forall n \in \mathbb{N}^{\star}, \ \sum_{k=1}^{n} \frac{k}{k+1} \geqslant \sum_{k=1}^{n} \sqrt{\frac{k}{k+1}}$	
B29	$\forall n \in \mathbb{N}^{\star}, \sum_{k=1}^{n} \frac{k}{k+1} \geqslant \frac{n}{2}$	
B30	$\forall n \in \mathbb{N}^{\star}, \sum_{k=1}^{n} \frac{k}{k+1} \geqslant \sum_{k=1}^{n} \frac{\sqrt{k}}{\sqrt{k}+1}$	
B31	$\lim_{n\to\infty} \left(\sqrt{n+1} - \sqrt{n}\right) = 0$	
B32	$\lim_{n \to \infty} \frac{\sqrt{n^2 + n + 2}}{2n + 1} = 1$	
B33	$\lim_{n \to -\infty} \frac{\sqrt{n^2 + n + 1}}{n + 4} = 1$	
B34	$\lim_{n\to\infty} \left(\sqrt{2} - 1\right)^n = 0$	
B35	$\forall x \in [-1, +\infty[\ ,\ \sqrt{1+x} \leqslant 1 + \frac{x}{2}]$	
B36	$\forall x \in \mathbb{R}, \ \sqrt{x^2 + x + 1} \geqslant 1$	
B37	$\forall x \in]-1,1[, \sqrt{\frac{1+x}{1-x}} \ge 1+x$	
B38	$\forall (x,y) \in [0,+\infty[^2, \sqrt{xy} \leqslant \frac{x+y}{2}]$	*
B39	$\forall (x,y) \in [0,+\infty[^2,\left(\sqrt{x}+\sqrt{y}\right)^2 \geqslant 2(x+y)$	
B40	$\forall (x,h) \in [0,+\infty[^2, \sqrt{x+h} - \sqrt{x} \le \sqrt{h}]$	
B41	$\lim_{n\to\infty}\sin\left(\pi\left(\sqrt{2}+1\right)^n\right)=0$	*