

UiO: Faculty of Mathematics and Natural Sciences University of Oslo

Applied Finite Differences

On the application of finite differences to a wide range of physical systems ruled by PDE's

Federico Gil Terán First Edition

2021

Abstract

In the beautiful and complicated world of physics it is common to come across systems whose evolution in time is utterly complicated and usually it is, as a matter of fact, an evolution ruled by partial differential equations.

It is widely accepted that those equations are considerably hard to solve, however not always is it needed to compute the exact function that solves the problem, but instead find its evolution in fixed window of time with as little error as possible.

The approach is as follows, by applying a semi-discretization to the partial differential equation (PDE) that rules the problem, a system of ordinary differential equations (ODE's) is obtained, which are significantly easier to solve for.

At this point a wide range of paths open ahead. There are several well known methods that solve this problems efficiently such as Euler, Trapeze and the θ -method, all of which will be carefully described in following chapters.

Contents

Αb	stract	1
Co	ntents	iii
Lis	t of Figures	v
Lis	t of Tables	vii
1	Introduction	1
2	The Second Chapter	3
3	The Third Chapter 3.1 First Section	5 5
4	The Fourth Chapter	7
5	The Fifth Chapter	9
6	The Sixth Chapter	11
7	The Seventh Chapter	13
8	The Eighth Chapter	15
9	The ninth Chapter	17
10	The Tenth Chapter	19
$\mathbf{A}\mathbf{p}$	pendices	21
A	The First Appendix A.1 First Section	23 23 23

List of Figures

List of Tables

Introduction

sec:intro

General perception of PDE's

The Second Chapter

sec:second

Semi-discretization applied to 1d-heat equation building of the toeplitz matrix eval and evec of the matrix $\,$

The Third Chapter

sec:third

3.1 First Section

approximation of the solution PVI LSODE

The Fourth Chapter

sec:fourth

" θ method"

The Fifth Chapter

sec:fifth

euler method

The Sixth Chapter

sec:sixth

Trapeze method

The Seventh Chapter

sec:Seventh

Comparison of the methods

The Eighth Chapter

sec:eighth

applying finite differences to the wave function

The ninth Chapter

sec:ninth

applying finite differences to Schrödinger's equation (quantum mechanics)

The Tenth Chapter

sec:tenth

applying finite differences to the Navier-Stokes equation for fluid dynamics simulation $\,$

APPENDIX A

The First Appendix

sec:first-app

A.1 First Section

 ${\it Toeplitz\ matrix}$

A.2 Second Section

Thomas algorithm