Machine Learning Regression Project:

Health Care Analytics-Detection of Parkinson's Disease by vocal frequency analysis

Abstract:

Parkinson's disease (PD) is a progressive disorder of central nervous system that affects movement of body parts controlled by the nerves. Almost 70%-90% of patients with PD shows an affected voice. Various studies revealed that voice is one of the earliest indicators of PD.

Objective:

<u>This project will predict UPDRS (Unified Parkinson's Disease Rating Scale)</u> score based on the collected voice features. UPDRS generally ranges from 0 to 176, with 0 corresponding to a healthy state and 176 to a severe affliction. The higher the score, the worse the parkinsonism.

Description of Parkinson's Dataset:

The dataset contains a range of biomedical vocal measurements from people with early-stage Parkinson's disease through a telemonitoring device. The main aim of the data is to predict 'total_UPDRS' based on the 16 voice measures (starting from Jitter to PPE) as mentioned below.

Dataset Source:

https://archive.ics.uci.edu/ml/datasets/Parkinsons+Telemonitoring

Attribute Information:

- **subject#** Serial Number
- age Patient's age
- sex Patient's gender '0': male, '1': female

- test time Time since admission into trial. Integer part represents number of days since recruitment
- total UPDRS Clinician's total UPDRS score
- Jitter Measures of variation in fundamental frequency
- Shimmer Several measures of variation in amplitude
- NHR (Noise to Harmonies Ratio) measures of ratio of noise to tonal components in voice
- HNR (Harmonics to Noise Ratio) measures of ratio of noise to tonal components in voice
- RPDE (Recurrence Period Density Entropy) Dynamic complex measurement
- **DFA (Detrended Fluctuation Analysis)** Signal fractal scaling exponent
- PPE (Pitch Period Entropy) A nonlinear measure of fundamental frequency variation

Implementation of this Project in Real Life:

The first sign of PD is change in quality of voice: a reduced volume, monotone pitch etc. Since detection of early stages of Parkinson's Disease is very crucial, this project shows how assessment of voice can be used for day to day monitoring (local or remote) of PD patients. As a result, the entire screening process will be cost effective and also individual's quality of life can be improved through early treatment of this disease.

Libraries Required:

```
In [1]:
        import numpy as np
        import pandas as pd
        import seaborn as sns
        from scipy import stats
        import statistics as stat
        import statsmodels.api as sm
        import matplotlib.pyplot as plt
        from IPython.display import Math, display
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.neighbors import KNeighborsRegressor
        from sklearn.ensemble import RandomForestRegressor
        from sklearn.linear model import LinearRegression, Lasso
        from sklearn.metrics import mean_squared_error, r2_score, accuracy_score
        from sklearn.preprocessing import StandardScaler, MinMaxScaler, PolynomialFeatures
        from sklearn.model selection import train test split, RandomizedSearchCV, cross validate
```

Given Dataset:

```
parkinsons df = pd.read csv('parkinsons.csv')
         parkinsons_df.head()
            subject# age sex test_time total_UPDRS Jitter(%) Jitter(Abs) Jitter:PPQ5 Jitter:DDP ... Shimmer(dB) Shimmer:APQ3 Shimmer:AP
Out[2]:
         0
                   1 72.0 male
                                                 34.398
                                                          0.00662
                                                                    0.000034
                                                                                0.00401
                                                                                            0.00317
                                                                                                        0.01204 ...
                                                                                                                           0.230
                                                                                                                                         0.01438
                                                                                                                                                        0.013
                                    5.6431
         1
                   2 72.0 male
                                   12.6660
                                                 34.894
                                                          0.00300
                                                                    0.000017
                                                                                0.00132
                                                                                            0.00150
                                                                                                        0.00395 ...
                                                                                                                           0.179
                                                                                                                                         0.00994
                                                                                                                                                        0.010
         2
                   3 72.0 male
                                   19.6810
                                                 35.389
                                                          0.00481
                                                                    0.000025
                                                                                0.00205
                                                                                            0.00208
                                                                                                        0.00616 ...
                                                                                                                           0.181
                                                                                                                                         0.00734
                                                                                                                                                        0.008
                                                                                                        0.00573 ...
                                                                                                                           0.327
                   4 72.0 male
                                   25.6470
                                                 35.810
                                                          0.00528
                                                                    0.000027
                                                                                0.00191
                                                                                            0.00264
                                                                                                                                         0.01106
                                                                                                                                                        0.012
                   5 72.0 male
                                   33.6420
                                                 36.375
                                                          0.00335
                                                                    0.000020
                                                                                0.00093
                                                                                            0.00130
                                                                                                        0.00278 ...
                                                                                                                           0.176
                                                                                                                                         0.00679
                                                                                                                                                        0.009
```

5 rows × 21 columns

Exploratory Data Analysis:

Parkinson's dataset has 5883 rows & 21 columns

Displaying all Features:

How many different datatypes do these 21 columns contain?

```
In [5]: pd.value_counts(parkinsons_df.dtypes)
```

```
Out[5]: float64 19 int64 19 object 10 dtype: int64
```

Displaying Non-Numerical Features:

How many unique values are present inside non-numerical feature:

Lets convert object datatype to categorical datatype for 'sex' column:

```
In [8]: parkinsons_df['sex'] = parkinsons_df['sex'].astype('category')
parkinsons_df.dtypes
```

```
int64
         subject#
Out[8]:
                            float64
         age
         sex
                           category
                            float64
         test time
         total UPDRS
                            float64
         Jitter(%)
                            float64
         Jitter(Abs)
                            float64
         Jitter:RAP
                            float64
         Jitter: PP05
                            float64
         Jitter:DDP
                            float64
         Shimmer
                            float64
         Shimmer(dB)
                            float64
         Shimmer:APO3
                            float64
         Shimmer:APQ5
                            float64
         Shimmer: APO11
                            float64
         Shimmer:DDA
                            float64
         NHR
                            float64
                            float64
         HNR
         RPDE
                            float64
                            float64
         DFA
         PPE
                            float64
         dtype: object
```

Displaying Numerical Features:

```
In [9]: numeric_col = parkinsons_df.select_dtypes(include=np.number).columns.tolist()
    print(numeric_col)

['subject#', 'age', 'test_time', 'total_UPDRS', 'Jitter(%)', 'Jitter(Abs)', 'Jitter:RAP', 'Jitter:PPQ5', 'Jitter:DDP', 'Shimmer', 'Shimmer(dB)', 'Shimmer:APQ3', 'Shimmer:APQ5', 'Shimmer:APQ11', 'Shimmer:DDA', 'NHR', 'HNR', 'RPDE', 'DFA', 'PPE']
```

Among these numerical features; subject# represents only serial number. So we can drop this column.

But before drop, lets create a copy of this dataframe so that it doesn't affect original dataframe.

Creating a copy of Original Dataframe:

```
In [10]: df1 = pd.DataFrame()
    df1 = parkinsons_df.copy()
```

dropping 'subject' column:

```
In [11]: df1.drop(['subject#'], axis=1, inplace = True)
```

Breaking numerical columns into two following parts:

```
In [12]: continuous_input_cols = numeric_col[1:3] + numeric_col[4:]
    target_col = numeric_col[3]
    print('numeric input columns: \n\n', continuous_input_cols)
    print('\n')
    print('Target Column: ', target_col)

numeric input columns:
    ['age', 'test_time', 'Jitter(%)', 'Jitter(Abs)', 'Jitter:RAP', 'Jitter:PPQ5', 'Jitter:DDP', 'Shimmer', 'Shimmer'
APQ3', 'Shimmer:APQ5', 'Shimmer:APQ11', 'Shimmer:DDA', 'NHR', 'HNR', 'RPDE', 'DFA', 'PPE']

Target Column: total_UPDRS

In [13]: print('Now dataset has {} rows & {} columns' .format(df1.shape[0], df1.shape[1]))

Now dataset has 5883 rows & 20 columns
```

Statistical Description of Numerical Features:

```
In [14]: df1.describe()
```

Out[14]:		age	test_time	total_UPDRS	Jitter(%)	Jitter(Abs)	Jitter:RAP	Jitter:PPQ5	Jitter:DDP	Shimmer	Shimmer(dB)	Shimmer:AP
	count	5882.000000	5882.000000	5880.000000	5881.000000	5879.000000	5880.000000	5878.000000	5879.000000	5881.000000	5880.000000	5880.0000
	mean	64.807378	92.832029	29.024227	0.006152	0.000044	0.002987	0.003277	0.008961	0.034022	0.310866	0.0171
	std	8.818435	53.437616	10.697383	0.005622	0.000036	0.003123	0.003731	0.009369	0.025825	0.230180	0.0132
	min	36.000000	-4.262500	7.000000	0.000830	0.000002	0.000330	0.000430	0.000980	0.003060	0.026000	0.0016
	25%	58.000000	46.847000	21.371000	0.003580	0.000022	0.001580	0.001822	0.004730	0.019130	0.175000	0.0092
	50%	65.000000	91.494500	27.576000	0.004900	0.000034	0.002250	0.002490	0.006750	0.027480	0.253000	0.0137
	75%	72.000000	138.430000	36.399000	0.006800	0.000053	0.003290	0.003460	0.009870	0.039730	0.365000	0.0205
	max	85.000000	215.490000	54.992000	0.099990	0.000446	0.057540	0.069560	0.172630	0.268630	2.107000	0.1626
4												>

Inference:

- People aged from 36 to 85 are being affected by Parkinson's Disease
- there are some negative test time present in this dataset. So we need to remove it
- Speech UPDRS values are ranging between 7 to 54.9
- for the columns: "Jitter:DDP", "Jitter:PPQ5", "Jitter:RAP", "NHR"; **(SD/MEAN)** > **1**. It means for these three columns mean values are not reliable.

Lets nullify -ve values from Test_Time column:

Checking if there exists any NaN value in dataframe:

After nullification total number of records where test time is a negative value is = 0

```
df1.isnull().sum(axis=0)
In [16]:
                            1
          age
Out[16]:
                            3
          sex
          test time
                           13
         total UPDRS
                            3
          Jitter(%)
          Jitter(Abs)
          Jitter:RAP
          Jitter:PP05
          Jitter:DDP
          Shimmer
          Shimmer(dB)
          Shimmer:APO3
                            3
          Shimmer:APO5
                            3
          Shimmer:APQ11
          Shimmer:DDA
                            2
          NHR
          HNR
                            2
          RPDE
          DFA
          PPE
          dtype: int64
```

Handling NaN values:

```
In [17]: total_nan_values = sum(df1.isna().sum())
    print('total number of null values = ', total_nan_values)
    nan_percent = (total_nan_values / df1.shape[0]) * 100
    print('Percentage of null values w.r.t total records = {}%' .format(np.round(nan_percent,2)))

total number of null values = 69
Percentage of null values w.r.t total records = 1.17%
```

Since NaN% is < 5%; so lets drop these NaN values:

```
In [18]: df1.dropna(inplace=True)
  print('now dataframe has {} rows & {} columns' .format(df1.shape[0], df1.shape[1]))
  now dataframe has 5863 rows & 20 columns
```

Checking if there exists any duplicate value in dataframe:

```
In [19]: df1.duplicated(keep='first').sum()
Out[19]: 0
```

Visualizing Histograms of Numerical Features:

```
In [20]: df1[numeric_col[1:]].hist(rwidth=0.9, figsize = (12,10))
    plt.tight_layout();
```


Inference:

- Age, test_time seemed to be bi-modal distributions
- HNR seemed to follow a left skkewed distribution
- Target feature 'total_UPDRS' is almost following a normal distribution
- Jitter, Shimmer, NHR, DFA, PPE these features are seeming to rightly skewed.

```
In [21]: ip_features_tobe_transformed = ['Jitter(%)', 'Jitter(Abs)', 'Jitter:RAP', 'Jitter:PPQ5', 'Jitter:DDP',
                                          'Shimmer', 'Shimmer(dB)', 'Shimmer:APQ3', 'Shimmer:APQ5',
                                          'Shimmer:APQ11', 'Shimmer:DDA', 'NHR']
```

Later(may be before train-test split), we will apply log transformation on these features to make them close to normal distribution

Visualizing target feature with respect to each numeric input feature:

```
plt.figure(figsize=(12,20))
In [22]:
         for i in range(0, len(continuous input cols)):
             axi = plt.subplot(6,3,i+1)
             sns.scatterplot(data=df1, x=continuous input cols[i], y='total UPDRS', ax=axi)
         plt.tight layout();
```


An example of strong evidence of Multicollinearity:

```
In [23]: plt.figure(figsize=(8,4))
sns.scatterplot(data = df1, x = 'Shimmer:APQ5', y = 'Shimmer:APQ11', hue = 'total_UPDRS');
```


Insights:

- here we can see as Shimmer:APQ5 is increasing; Shimmer:APQ11 variable values are also increasing
- so we will handle multicollinearity after findling the correlation coefficients between numeric features

Relationship between Shimmer & Jitter Components:

```
In [24]: plt.figure(figsize=(8,4))
sns.lineplot(data=df1, x='Jitter(%)', y='Shimmer(dB)', c='yellowgreen')
plt.xlim(0,0.045);
```


Insights:

- Jitter represents variability of fundamental frequency while Shimmer refers to amplitude variation of sound wave.
- So we can see there is a strong correlation between Shimmer & Jitter Components

Visualizing Output feature w.r.t Input features:

```
shadow=True, wedgeprops={'edgecolor':'black'})
plt.ylabel('')
plt.title('% of Voice Samples based on Gender');
```

% of Voice Samples based on Gender

In given dataset, almost 68% voice samples are of males and remaing 32% are of females.

Males are more prone to Parkinson's Disease?

```
In [26]: plt.figure(figsize=(5,3))
    sns.barplot(data=df1, x = 'sex', y = 'total_UPDRS', errorbar=None, palette='hls')
    plt.grid(axis='y', alpha=0.1)
    plt.title('total_UPDRS vs sex');
```


It can be understood, in given dataset males are showing higher tendency towards Parkinson's Disease compared to females.

total_UPDRS vs Age:

```
In [27]: plt.figure(figsize=(11,3))
sns.barplot(data=df1, x = 'age', y = 'total_UPDRS', hue = 'sex', errorbar=None, palette='BuGn')
plt.title('total_UPDRS vs Age');
```

total_UPDRS vs Age

Here we can see, Males aged to 71 are highly prone towards parkinson's disease.

Feature Extraction (Age Group) for Visualization Purpose:

```
In [28]: pdf2 = df1.copy()
    def age_group(data):
        if (data['age'] >= 30) and (data['age']<=60):
            return 'middle aged'
        elif data['age'] > 60:
            return 'old'

pdf2['Age_Group'] = pdf2.apply(age_group, axis=1)
```

Distribution based on different Age Groups:

```
plt.ylabel('')
plt.title('Age Group wise Distribution');
```

Age Group wise Distribution

Jitter(%) Vs. Age Group:

```
In [30]: plt.figure(figsize=(5,4))
  tdf = pdf2.groupby('Age_Group').agg({'Jitter(%)':'mean'})
  sns.barplot(data=tdf, x=tdf.index, y='Jitter(%)', palette='Paired')
  plt.ylabel('Average Jitter %')
  plt.title('Jitter(%) based on Age Group');
```


It shows: Average Jitter% for older people is significantly greater than that of middle aged people

Analyzing Amplitude Variation (Shimmer) of Voice Signals:

```
ax2.set_title('For Middle Aged Females')
plt.suptitle('Visualization of amplitude variation of vocal signals', fontsize=15)
plt.tight_layout();
```

Visualization of amplitude variation of vocal signals

For middle aged people; shimmer(dB) increased significantly with decreasing voice loudness.

Analyzing Vocal Jitter Components:

```
ax=ax2, c='magenta')
ax2.axhline(y=0.5, c='black', ls='--')
ax2.set_title('For Females')
plt.suptitle('Visualization of Jitter components', fontsize=15)
plt.tight_layout();
```

Visualization of Jitter components

Inference:

- for a healthy person, acceptable normal threshold is 0.5% jitter
- both male & females have high jitter values
- higher mean jitter % may be associated with parkinson disease
- Due to lack of control on vocal chord vibrartion cycle of glottis, jitter value gets impacted

How HNR & NHR are related to each other?

```
In [33]: plt.figure(figsize=(8,4))
    sns.scatterplot(data=pdf2, x='NHR', y='HNR', color='brown')
    plt.title('HNR vs. NHR');
```


Insights:

- HNR & NHR asses presence of noise in voice signal
- we can see; NHR & HNR are inversely related to each other
- a lower NHR & higher HNR indicates superior voice quality

HNR vs total_UPDRS:

```
In [34]: plt.figure(figsize=(8,4))
sns.regplot(data=pdf2, x='total_UPDRS', y='HNR', color='cadetblue', scatter_kws={'s':0.5},
```

```
line_kws={'color':'brown', 'ls':'--'})
plt.title('HNR vs total_UPDRS');
```


People who are highly affected by PD, have lower HNR values

Correlation Matrix for Numerical Features (without using HeatMap):

```
In [35]:
    rough_df = pd.DataFrame()
    rough_df = df1[continuous_input_cols]
    rough_df.insert(loc=18, column = 'total_UPDRS', value = df1['total_UPDRS'])

    corr_mat = rough_df.corr()
    plt.figure(figsize=(15,7))
    plt.imshow(corr_mat, cmap='coolwarm')
    matrix = corr_mat.values
    for j in range(0, matrix.shape[0]):
        for k in range(0, matrix.shape[1]):
```

```
plt.text(k, j, np.round(matrix[j][k],1), ha = 'center', va = 'center')
    plt.xticks(ticks=range(0,len(matrix)), labels = corr_mat.columns, rotation = 90)
    plt.yticks(ticks=range(0,len(matrix)), labels = corr_mat.columns)
plt.title('Correlation Matrix');
```

Correlation Matrix

Insights:

- Here we can see, many input features are having high correlation coefficients (>=0.7) with other input features. That means there exists Multicollinearity condition.
- HNR is showing high negative correlation coefficient with other features.
- lets see an example: all 5 jitter components are having high correlation with each other but have same correlation (very low) with target feature. So how to decide which feature should we eliminate?
- Lets use Lasso Regression to get the feature importance

Feature Selection using Lasso (L1) Regression:

```
In [36]: # Creating another dataframe to perform Lasso & then One-Hot encoding technique for cata. columns:
         df2 = pd.DataFrame()
         df2 = pd.get dummies(df1, drop first=True)
In [37]: # Seperating Input & Output Feature:
         v trial = df2['total UPDRS']
         x trial = df2.drop(['total UPDRS'], axis = 1)
In [38]: # Standardizing numerical features:
         stdscaler = StandardScaler()
         for c in x trial.columns:
             x trial[c] = stdscaler.fit_transform(x_trial[[c]])
In [39]: # Model Fitting:
         lasso = Lasso(alpha=0.2)
         lasso.fit(x trial, y trial)
         lasso df = pd.DataFrame()
         lasso df['input feature names'] = x trial.columns
         lasso df['abs feature importance'] = np.abs(lasso.coef )
         lasso_df.sort_values(by=['abs feature importance'], ascending=False, inplace=True)
         plt.figure(figsize=(8,4))
         sns.barplot(data=lasso df, y='input feature names', x='abs feature importance', orient='h',
                     palette='RdPu r')
         plt.xlabel('feature importance');
```


Conclusion:

- The features we will drop are: 'Jitter:PPQ5', 'Jitter:DDP', 'Shimmer', 'Shimmer(dB)', 'Shimmer:APQ5', 'Shimmer:APQ11', 'Shimmer:DDA', 'Jitter:RAP', 'Jitter(%)'.
- Including to above features, we will also drop 'NHR'; as we have already seen linear relationship between HNR & NHR

Avoiding Multicollinearity Problem:

```
In [40]: eliminated_input_features = \
    list(lasso_df[lasso_df['abs feature importance'] == 0]['input feature names'])
    df1.drop(eliminated_input_features, axis=1, inplace = True)
    df1.drop(['NHR'], axis=1, inplace=True)
    print('Now dataframe has {} rows and {} columns' .format(df1.shape[0], df1.shape[1]))
    eliminated_input_features.append('NHR')
```

Now dataframe has 5863 rows and 10 columns

Whether we really overcame Multicollinearity?

Still there are some input features where absolute value of correlation coefficient is greater than or equal to 0.7 but as of now, we will not remove them as we may loose important information.

Finally Numerical & Categorical Columns are:

```
In [42]: print('Numerical Features : \n',df1.select_dtypes(include=np.number).columns.tolist())
    print('\nCategorical Features: \n',df1.select_dtypes(exclude=np.number).columns.tolist())

Numerical Features :
    ['age', 'test_time', 'total_UPDRS', 'Jitter(Abs)', 'Shimmer:APQ3', 'HNR', 'RPDE', 'DFA', 'PPE']

Categorical Features:
    ['sex']
```

Log transformation on selected Input Features:

Histogram Before Log Transform


```
In [45]: df1[ip_features_tobe_transformed] = np.log10(df1[ip_features_tobe_transformed])
    df1[ip_features_tobe_transformed].hist(rwidth=0.9, figsize = (8,3))
    plt.title('Log Transformed Input Features')
    plt.suptitle('Histogram After Log Transform')
    plt.tight_layout();
```

Histogram After Log Transform

Seperating Input features & Target variable:

print('Shape of y is = ',y.shape)

```
In [46]: y = df1['total UPDRS']
          x = df1.drop(['total_UPDRS'], axis=1)
         display(x.head())
In [47]:
          print('Shape of X is = ',x.shape)
                  sex test_time Jitter(Abs) Shimmer:APQ3
                                                           HNR
                                                                  RPDE
                                                                           DFA
                                                                                    PPE
          0 72.0 male
                                 -4.471083
                          5.6431
                                                -1.842241 21.640 0.41888 0.54842 0.16006
          1 72.0 male
                        12.6660
                                 -4.774691
                                                -2.002614 27.183 0.43493 0.56477 0.10810
          2 72.0 male
                         19.6810
                                 -4.609065
                                                -2.134304 23.047 0.46222 0.54405 0.21014
          3 72.0 male
                                                -1.956245 24.445 0.48730 0.57794 0.33277
                         25.6470
                                 -4.575118
                                                -2.168130 26.126 0.47188 0.56122 0.19361
          4 72.0 male
                        33.6420
                                -4.696804
         Shape of X is = (5863, 9)
In [48]:
          display(y.head())
```

```
0   34.398
1   34.894
2   35.389
3   35.810
4   36.375
Name: total_UPDRS, dtype: float64
Shape of y is = (5863,)
```

Train-Test Split:

```
In [49]: x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3,random_state=1234)
```

Checking Shape of Train datasets:

```
In [50]: display(x_train.head())
    print('Shape of X_train is = ',x_train.shape)
```

	age	sex	test_time	Jitter(Abs)	Shimmer:APQ3	HNR	RPDE	DFA	PPE
3238	60.0	male	26.816	-4.270835	-1.706196	16.738	0.61163	0.73042	0.18762
4939	62.0	female	86.294	-3.927860	-1.114922	7.892	0.68254	0.60741	0.32934
2805	67.0	male	137.870	-4.231362	-1.774691	22.221	0.45891	0.74948	0.20871
2056	65.0	male	138.460	-4.573489	-2.183096	25.577	0.48626	0.57716	0.17616
5467	85.0	female	148.660	-4.505845	-1.817300	22.001	0.49705	0.58209	0.14473

```
In [51]: display(y_train)
  print('Shape of y_train is = ',y_train.shape)
```

Shape of X_{train} is = (4104, 9)

```
3238
        16.022
       31.818
4939
2805
       16.475
2056
       21.194
5467
       24.198
        . . .
666
        43.495
3282
       19.581
1321
       26.006
       39.696
725
2868
        44.338
Name: total UPDRS, Length: 4104, dtype: float64
Shape of y train is = (4104,)
```

Checking Shape of Test datasets:

```
In [52]: display(x_test.head())
    print('Shape of X_train is = ',x_test.shape)
```

	age	sex	test_time	Jitter(Abs)	Shimmer:APQ3	HNR	RPDE	DFA	PPE
1364	58.0	male	87.353	-3.992679	-1.945387	21.683	0.54519	0.69943	0.27026
5218	67.0	male	70.777	-4.314258	-1.870955	18.868	0.55549	0.66144	0.25109
3039	57.0	female	117.880	-5.035269	-2.272459	29.682	0.48401	0.57020	0.21354
4594	59.0	male	17.578	-4.477556	-2.143271	24.307	0.54678	0.77564	0.14520
3258	60.0	male	165.760	-4.207608	-1.604674	15.424	0.63582	0.75027	0.31550
Shape of X_train is = (1759, 9)									

```
In [53]: display(y_test)
print('Shape of y_train is = ',y_test.shape)
```

```
1364
        19.0000
5218
        27.6670
3039
        9.9866
4594
        33,2270
3258
        19.7230
        . . .
3492
        33,7140
5120
        40.6370
2602
       26,6630
704
        40,8400
4919
        32,0000
Name: total UPDRS, Length: 1759, dtype: float64
Shape of y train is = (1759,)
```

Pre-processing on Train Dataset:

User Defined Function for Outlier Treatment:

- User can either remove all outliers ("Y") or they can adjust outliers to nearest whisker ("N")
- Lets assume, Business has decided to remove all outliers, if its volume is less than 5%

```
In [54]:
         def outlier treatment(dataframe, column name):
              count1 = count2 = total count = axis1 = axis2 = Q1 = Q3 = IQR = 0
             low limit = upper limit = percent = 0
             choice = ''
             plt.figure(figsize=(8,3))
              axis1 = plt.subplot(1,2,1)
             sns.boxplot(data = dataframe, x = column_name, ax = axis1)
              plt.title('Box Plot for %s' %(column name))
              axis2 = plt.subplot(1,2,2)
             sns.histplot(data = dataframe, x = column_name, kde = True, ax = axis2,
                          color ='navy', line kws = {'lw':3, 'ls':'-'})
             plt.title('Histogram Plot for %s' %(column name))
             plt.tight layout();
             Q1 = dataframe[column name].quantile([0.25,0.75]).values[0]
             Q2 = np.percentile(dataframe[column name], 50)
             Q3 = dataframe[column name].quantile([0.25,0.75]).values[1]
```

```
IQR = Q3 - Q1
low limit = Q1 - (1.5*IQR)
upper limit = Q3 + (1.5*IQR)
count1 = sum(dataframe[column name] < low limit)</pre>
count2 = sum(dataframe[column name] > upper limit)
total count = count1 + count2
print('01
                                                          = ', np.round(01,2))
print('02
                                                          = ', np.round(02,2))
print('03
                                                          = ', np.round(03,2))
                                                          = ', np.round(IOR,2))
print('IQR
if count1 > 0:
    print('Lower Limit Value
                                                              = ', np.round(low limit,2))
    print('Total number of outliers(<Q1-1.5*IQR) for {}</pre>
                                                              = {}'
          .format(column name, count1))
if count2 > 0:
    print('Upper Limit Value
                                                              = ', np.round(upper limit,2))
    print('Total number of outliers(>03+1.5*IOR) for {}
                                                              = {}'
          .format(column name, count2))
percent = np.round((total count/(dataframe[column name].shape[0]))*100,2)
if total count > 0:
    print('Percentage of Outliers
                                                              = {}%'.format(percent))
    choice = input('Do you want to remove all outliers from {} column? \
           \n(press y to confirm / else press n to adjust all outliers to upper or lower limit): '
                   .format(column name.upper()))
    while (choice.lower() != 'y') and (choice.lower() != 'n'):
        print('invalid choice..please try again')
        choice = input('Do you want to remove all outliers from \{\} column (y/n)?'
                       .format(column name.upper()))
    if choice.lower() == 'v':
        dataframe.loc[(dataframe[column name] < low limit), column name] = np.nan</pre>
        dataframe.loc[(dataframe[column name] > upper limit), column name] = np.nan
        dataframe.dropna(axis=0, inplace = True)
    elif choice.lower() == 'n':
        if count1 > 0:
            dataframe.loc[(dataframe[column name]<low limit),column name] = low limit</pre>
        if count2 > 0:
            dataframe.loc[(dataframe[column name]>upper limit),column name] = upper limit
    plt.figure(figsize=(8,3))
    axis1 = plt.subplot(1,2,1)
    sns.boxplot(data = dataframe, x = column_name, ax = axis1)
    plt.title('Box Plot for %s without Outliers' %(column name))
    axis2 = plt.subplot(1,2,2)
    sns.histplot(data = dataframe, x = column name, kde = True, ax = axis2,
```

```
color='navy', line_kws = {'lw':3, 'ls':'-'})
plt.title('Histogram Plot for %s without Outliers' %(column_name))
plt.tight_layout();
```

1. Outlier Treatment for Train Dataset:

```
In [55]: outlier treatment(x train, 'age')
         Q1
                                                           = 58.0
         Q2
                                                              66.0
         Q3
                                                             72.0
         IOR
                                                             14.0
         Lower Limit Value
                                                           = 37.0
         Total number of outliers(<Q1-1.5*IQR) for age
                                                            = 62
         Percentage of Outliers
                                                           = 1.51%
         Do you want to remove all outliers from AGE column?
         (press y to confirm / else press n to adjust all outliers to upper or lower limit): y
```



```
outlier_treatment(x_train, 'Jitter(Abs)')
In [57]:
         Q1
                                                              -4.64
         Q2
                                                              -4.45
         Q3
                                                              -4.27
         IOR
                                                             0.37
                                                              -5.2
         Lower Limit Value
         Total number of outliers(<Q1-1.5*IQR) for Jitter(Abs)
                                                                    = 23
         Upper Limit Value
                                                           = -3.71
         Total number of outliers(>Q3+1.5*IQR) for Jitter(Abs)
                                                                    = 40
         Percentage of Outliers
                                                           = 1.56%
         Do you want to remove all outliers from JITTER(ABS) column?
         (press y to confirm / else press n to adjust all outliers to upper or lower limit): y
```


Box Plot for Jitter(Abs) without Outliers

Histogram Plot for Jitter(Abs) without Outliers


```
In [58]: outlier_treatment(x_train, 'Shimmer:APQ3')
```

```
Q1
                                                  = -2.02
Q2
                                                     -1.86
Q3
                                                    -1.69
IQR
                                                    0.34
Lower Limit Value
                                                    -2.53
Total number of outliers(<Q1-1.5*IQR) for Shimmer:APQ3
                                                            = 20
Upper Limit Value
                                                  = -1.18
Total number of outliers(>Q3+1.5*IQR) for Shimmer:APQ3
                                                            = 47
Percentage of Outliers
                                                  = 1.68%
Do you want to remove all outliers from SHIMMER:APQ3 column?
(press y to confirm / else press n to adjust all outliers to upper or lower limit): y
```



```
Q1
                                                 = 19.48
Q2
                                                    21.91
Q3
                                                 = 24.34
IQR
                                                   4.86
Lower Limit Value
                                                 = 12.18
Total number of outliers(<Q1-1.5*IQR) for HNR
                                                  = 37
Upper Limit Value
                                                 = 31.63
Total number of outliers(>Q3+1.5*IQR) for HNR
                                                  = 7
Percentage of Outliers
                                                 = 1.12%
```

Do you want to remove all outliers from HNR column?

(press y to confirm / else press n to adjust all outliers to upper or lower limit): y


```
outlier_treatment(x_train, 'RPDE')
In [60]:
         Q1
                                                           = 0.47
         Q2
                                                              0.54
         Q3
                                                              0.61
         IQR
                                                              0.14
         Lower Limit Value
                                                             0.26
         Total number of outliers(<Q1-1.5*IQR) for RPDE
                                                             = 3
         Upper Limit Value
                                                           = 0.82
         Total number of outliers(>Q3+1.5*IQR) for RPDE
                                                             = 8
         Percentage of Outliers
                                                           = 0.28%
         Do you want to remove all outliers from RPDE column?
         (press y to confirm / else press n to adjust all outliers to upper or lower limit): y
```

30


```
outlier treatment(x train, 'PPE')
In [62]:
         Q1
                                                           = 0.16
         Q2
                                                              0.21
         Q3
                                                              0.26
         IQR
                                                              0.1
         Upper Limit Value
                                                           = 0.41
         Total number of outliers(>Q3+1.5*IQR) for PPE
                                                            = 97
         Percentage of Outliers
                                                           = 2.51%
         Do you want to remove all outliers from PPE column?
         (press y to confirm / else press n to adjust all outliers to upper or lower limit): y
```


After elimination of outliers; we noticed histograms of input columns of train dataset, look almost like a Normal Distribution.

```
In [63]: print('Now Train Data contains {} rows & {} columns' .format(x_train.shape[0], x_train.shape[1]))
```

Now Train Data contains 3760 rows & 9 columns

Since we have removed outliers from X_train; so we have to reflect that change in y_train also:

```
In [64]: y_train = y_train[x_train.index]
    print('Shape of y_train = ', y_train.shape)
Shape of y_train = (3760,)
```

Box Plot of Train Target:

```
In [65]: plt.figure(figsize=(8,3))
    ax1 = plt.subplot(1,2,1)
    sns.boxplot(x=y_train.values, ax=ax1)
    ax1.set_title('Box plot of Train-Target')
    ax2 = plt.subplot(1,2,2)
    sns.histplot(x=y_train.values, ax=ax2, color='navy', line_kws = {'lw':3, 'ls':'-'})
    ax2.set_title('Histogram of Train-Target')
    plt.suptitle('Visualization of Normality of Train-Target')
    plt.tight_layout();
```

Visualization of Normality of Train-Target

we can say, target variable is approximately normally distributed & there is no outlier

2. Normalization of X_train:

(we will be doing min-max normalization)

```
In [66]: num_ip_cols = x_train.columns.tolist()
    num_ip_cols.remove('sex')
    scaler = MinMaxScaler()
    x_train[num_ip_cols] = scaler.fit_transform(x_train[num_ip_cols])
```

3. One Hot Encoding on X_train:

```
In [67]: x_train = pd.get_dummies(x_train, drop_first=True)
    display(x_train.head())
    print('Shape of X_train = ', x_train.shape)
    print('Shape of y_train = ', y_train.shape)
```

	age	test_time	Jitter(Abs)	Shimmer:APQ3	HNR	RPDE	DFA	PPE	sex_male
3238	0.305556	0.122831	0.628101	0.610684	0.234253	0.646577	0.687881	0.421975	1
2805	0.500000	0.639135	0.655141	0.559466	0.516416	0.366727	0.748474	0.476105	1
2056	0.444444	0.641878	0.420780	0.254076	0.689121	0.416844	0.200661	0.392562	1
5467	1.000000	0.689299	0.467116	0.527604	0.505095	0.436616	0.216334	0.311894	0
2162	0.444444	0.055930	0.738563	0.461630	0.518320	0.710383	0.669952	0.705636	1
Shape of X_train = (3760, 9) Shape of y_train = (3760,)									

Pre-processing on Test Dataset:

1. Outlier Treatment for Test Dataset:

```
In [68]: outlier_treatment(x_test, 'age')
```

Do you want to remove all outliers from AGE column?

(press y to confirm / else press n to adjust all outliers to upper or lower limit): y


```
outlier_treatment(x_test, 'Jitter(Abs)')
Q1
                                                     -4.65
Q2
                                                     -4.46
Q3
                                                     -4.27
IOR
                                                    0.37
                                                     -5.21
Lower Limit Value
Total number of outliers(<Q1-1.5*IQR) for Jitter(Abs)
                                                           = 8
Upper Limit Value
                                                  = -3.71
Total number of outliers(>Q3+1.5*IQR) for Jitter(Abs)
                                                           = 15
Percentage of Outliers
                                                  = 1.34%
Do you want to remove all outliers from JITTER(ABS) column?
(press y to confirm / else press n to adjust all outliers to upper or lower limit): y
```


Histogram Plot for Jitter(Abs) without Outliers 150 - 125 - 100 - 75 - 50 - 25 - 5.00 - 4.75 - 4.50 - 4.25 - 4.00 - 3.75 Jitter(Abs)

```
outlier treatment(x test, 'Shimmer:APQ3')
In [71]:
         Q1
                                                            = -2.04
         Q2
                                                              -1.86
         Q3
                                                              -1.69
         IQR
                                                              0.36
         Lower Limit Value
                                                             -2.58
         Total number of outliers(<Q1-1.5*IQR) for Shimmer:APQ3
                                                                     = 4
         Upper Limit Value
                                                            = -1.15
         Total number of outliers(>Q3+1.5*IQR) for Shimmer:APQ3
                                                                     = 14
         Percentage of Outliers
                                                            = 1.06%
         Do you want to remove all outliers from SHIMMER:APQ3 column?
         (press y to confirm / else press n to adjust all outliers to upper or lower limit): y
```


In [72]: outlier_treatment(x_test, 'HNR')

```
Q1
                                                 = 19.55
Q2
                                                    21.96
Q3
                                                 = 24.52
IQR
                                                   4.97
Lower Limit Value
                                                 = 12.1
Total number of outliers(<Q1-1.5*IQR) for HNR
                                                  = 28
Upper Limit Value
                                                 = 31.96
Total number of outliers(>Q3+1.5*IQR) for HNR
                                                  = 3
Percentage of Outliers
                                                 = 1.85%
Do you want to remove all outliers from HNR column?
```

bo you want to remove all outliers from HNR column?


```
outlier treatment(x test, 'RPDE')
In [73]:
         Q1
                                                           = 0.47
         Q2
                                                              0.54
         Q3
                                                              0.61
         IQR
                                                              0.14
         Upper Limit Value
                                                             0.81
         Total number of outliers(>Q3+1.5*IQR) for RPDE
                                                             = 1
         Percentage of Outliers
                                                           = 0.06%
         Do you want to remove all outliers from RPDE column?
         (press y to confirm / else press n to adjust all outliers to upper or lower limit): y
```



```
outlier treatment(x test, 'PPE')
In [75]:
         Q1
                                                           = 0.16
         Q2
                                                              0.2
         Q3
                                                              0.26
         IQR
                                                              0.1
         Upper Limit Value
                                                           = 0.41
         Total number of outliers(>Q3+1.5*IQR) for PPE
                                                            = 38
         Percentage of Outliers
                                                           = 2.31%
         Do you want to remove all outliers from PPE column?
         (press y to confirm / else press n to adjust all outliers to upper or lower limit): y
```


Since we have removed outliers from X_test; so we have to reflect that change in y_test also:

```
In [76]: print('Now Test Data contains {} rows & {} columns' .format(x_test.shape[0], x_test.shape[1]))
    y_test = y_test[x_test.index]
    print('Shape of y_test = ', y_test.shape)
```

```
Now Test Data contains 1609 rows & 9 columns
Shape of y_test = (1609,)
```

Box Plot of Test Target:

```
In [77]: plt.figure(figsize=(8,3))
    ax1 = plt.subplot(1,2,1)
    sns.boxplot(x=y_test.values, ax=ax1)
    ax1.set_title('Box plot of Test-Target')
    ax2 = plt.subplot(1,2,2)
    sns.histplot(x=y_test.values, ax=ax2, color='navy', line_kws = {'lw':3, 'ls':'-'})
    ax2.set_title('Histogram of Test-Target')
    plt.suptitle('Visualization of Normality of Test-Target')
    plt.tight_layout();
```

Visualization of Normality of Test-Target

we can say, target variable is approximately normally distributed & there is no outlier

2. Normalization of X_test:

```
In [78]: x_test[num_ip_cols] = scaler.transform(x_test[num_ip_cols])
```

3. One Hot Encoding on X_test:

```
In [79]: x_test = pd.get_dummies(x_test, drop_first=True)
    display(x_test.head())
    print('Shape of X_test = ', x_test.shape)
    print('Shape of y_test = ', y_test.shape)
```

	age	test_time	Jitter(Abs)	Shimmer:APQ3	HNR	RPDE	DFA	PPE	sex_male
1364	0.250000	0.404275	0.818641	0.431826	0.488730	0.524830	0.589363	0.634079	1
5218	0.500000	0.327211	0.598356	0.487483	0.343866	0.543704	0.468591	0.584878	1
3039	0.222222	0.546199	0.104455	0.187254	0.900371	0.412721	0.178535	0.488502	0
4594	0.277778	0.079882	0.486495	0.283856	0.623765	0.527743	0.831638	0.313100	1
3258	0.305556	0.768799	0.671412	0.686598	0.166632	0.690904	0.750986	0.750192	1
Shape of X_test = (1609, 9) Shape of y_test = (1609,)									

Peforming Normalization & One-Hot Encoding Technique on x (for cross-validation):

	age	test_time	Jitter(Abs)	Shimmer:APQ3	HNR	RPDE	DFA	PPE	sex_male
(0.734694	0.024395	0.512347	0.474403	0.551717	0.328638	0.097793	0.194544	1
1	0.734694	0.057046	0.380157	0.394396	0.704771	0.348330	0.144300	0.121335	1
2	0.734694	0.089659	0.452270	0.328699	0.590568	0.381812	0.085362	0.265104	1
3	0.734694	0.117396	0.467050	0.417529	0.629169	0.412583	0.181761	0.437884	1
4	0.734694	0.154566	0.414069	0.311823	0.675585	0.393664	0.134202	0.241814	1
	Shape of X = (5863, 9) Shape of y = (5863,)								

Model Implementation:

1. Linear Regression (Ordinary Least Square):

```
In [82]: x_train_modf = sm.add_constant(x_train)
  ols_model = sm.OLS(y_train, x_train_modf)
  result = ols_model.fit()
  print(result.summary())
```

OLS Regression Results

=======================================			
Dep. Variable:	total_UPDRS	R-squared:	0.142
Model:	OLS	Adj. R-squared:	0.140
Method:	Least Squares	F-statistic:	69.17
Date:	Fri, 02 Jun 2023	<pre>Prob (F-statistic):</pre>	2.33e-118
Time:	06:01:24	Log-Likelihood:	-14002.
No. Observations:	3760	AIC:	2.802e+04
Df Residuals:	3750	BIC:	2.809e+04
Df Model:	9		

Covariance Type: nonrobust

==========	coef	std err	t	P> t	[0.025	0.975]
const age	35.5545 10.4540	2.094 0.783	16.979 13.343	0.000 0.000	31.449 8.918	39.660 11.990
test_time	2.9735	0.662	4.495	0.000	1.676	4.271
Jitter(Abs) Shimmer:APQ3	-5.4216 -8.4589	2.011 1.456	-2.696 -5.811	0.007 0.000	-9.364 -11.313	-1.479 -5.605
HNR RPDE	-14.7742 2.2415	1.939 1.280	-7.620 1.751	0.000 0.080	-18.575 -0.268	-10.973 4.751
DFA	-9.7973	0.905	-10.825	0.000	-11.572	-8.023
PPE sex_male	7.8518 2.0495	1.459 0.425	5.383 4.825	0.000 0.000	4.992 1.217	10.712 2.882
Omnibus:		112.343	 Durbin-V	 Watson:	=======	1.956
<pre>Prob(Omnibus): Skew:</pre>		0.000 0.369	Jarque-E Prob(JB)	Bera (JB):		106.505 7.46e-24
Kurtosis:		2.631	Cond. No			34.6
=========		=========			========	======

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Linear Regression Equation:

 $y = 35.55 + 10.45(Age) + 2.97(test_time) - 5.42(log(Jitter(Abs))) - 8.46(log(Shimmer:APQ3)) - 14.77(HNR)) + 2.24(RPDE) - 9.8(DFA) + 7.85(PPE) + 2.05(sex)$

```
In [83]: y_pred_mlr = result.predict(sm.add_constant(x_test))
mlr_score = np.round(r2_score(y_test, y_pred_mlr),4)
no_of_rows = x_test.shape[0]
```

```
tot_no_of_input_cols = x_test.shape[1]
mlr_adj_r2_score = 1 - ((1-mlr_score)*(no_of_rows - tot_no_of_input_cols - 1))

mlr_train_r2 = 0.142
mlr_rmse = np.round(np.sqrt(mean_squared_error(y_test,y_pred_mlr)),2)

print('Model RMSE Value = ', mlr_rmse)
print('Test R2 score = ', mlr_score)
print('Test Adjusted R2-score = ', np.round(mlr_adj_r2_score,4))

Model RMSE Value = 9.8
Test R2 score = 0.1288
Test Adjusted R2-score = 0.1234
```

Modified OLS (by removing less important features as per previous OLS model):

```
In [84]: x_train_modf1 = \
    x_train_modf.drop(['RPDE'], axis=1)
    result1 = sm.OLS(y_train, x_train_modf1).fit()
    print(result1.summary())
```

OLS Regression Results

Dep. Variable: Model: Method: Date: Time:	L	total_UPDRS OLS east Squares 02 Jun 2023 06:01:24	Adj. R- F-stati Prob (F	squared:		0.142 0.140 77.39 1.16e-118 -14004.
No. Observatio	ns:	3760	_			2.803e+04
Df Residuals:		3751				2.808e+04
Df Model:		8				
Covariance Typ	e:	nonrobust				
=========	coef	std err		P> t		0.975]
const	37.1527	1.885	19.708	0.000	33.457	40.849
age	10.4913	0.783	13.392	0.000	8.955	12.027
test_time	2.9501	0.662	4.459	0.000	1.653	4.247
Jitter(Abs)	-4.5063	1.942	-2.320	0.020	-8.314	-0.699
Shimmer:APQ3	-8.8997	1.434	-6.205	0.000	-11.712	-6.088
HNR	-15.9144	1.827	-8.712	0.000	-19.496	-12.333
DFA	-10.0814	0.891	-11.319			
PPE	7.7901	1.459	5.341	0.000	4.930	10.650
sex_male	2.0991	0.424	4.952	0.000		
Omnibus: Prob(Omnibus): Skew: Kurtosis:		111.596 0.000 0.356 2.612	Jarque- Prob(JB	Bera (JB):):		1.958 103.083 4.13e-23 31.3
Val. CO2T2.		2.012	Conu. N	.		21.3

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Insight:

We can see here; after removal of RPDE (where pvalue of t-test was greater than 0.05); R2 score didn't improve that much. So we will stick to our previous OLS model only.

Reason behind getting Low Accuracy Score in Linear Regression model:

```
In [85]: plt.figure(figsize=(10,9))
```

```
ax1 = plt.subplot(3,3,1)
sns.regplot(data=df1, x='age', y ='total UPDRS', ax=ax1, color='black', scatter kws={'s':1},
            line kws={'color':'red'})
ax2 = plt.subplot(3,3,2)
sns.regplot(data=df1, x='test time', y='total UPDRS', ax=ax2, color='blue', scatter kws={'s':1},
           line kws={'color':'red'})
ax3 = plt.subplot(3,3,3)
sns.regplot(x=df1['Jitter(Abs)'], y=df1['total UPDRS'], ax=ax3, color='green',
            scatter kws={'s':1}, line kws={'color':'red'})
ax4 = plt.subplot(3,3,4)
sns.regplot(x=df1['Shimmer:APQ3'], y=df1['total UPDRS'], ax=ax4, color='orange',
            scatter kws={'s':1}, line kws={'color':'red'})
ax5 = plt.subplot(3,3,5)
sns.regplot(data=df1, x='HNR', y='total UPDRS', ax=ax5, color='cyan', scatter kws={'s':1},
            line kws={'color':'red'})
ax7 = plt.subplot(3,3,6)
sns.regplot(data=df1, x='RPDE', y='total UPDRS', ax=ax7, color='violet', scatter kws={'s':1},
            line kws={'color':'red'})
ax8 = plt.subplot(3,3,7)
sns.regplot(data=df1, x='DFA', y='total UPDRS', ax=ax8, color='grey', scatter kws={'s':1},
            line kws={'color':'red'})
ax9 = plt.subplot(3,3,8)
sns.regplot(data=df1, x ='PPE', y='total UPDRS', ax=ax9, color='yellow', scatter kws={'s':1},
            line kws={'color':'red'})
plt.tight layout();
```


Residual Analysis:

```
In [86]: res_df = pd.DataFrame()
    res_df['y_test'] = y_test
    res_df['y_predicted'] = y_pred_mlr
    res_df['residuals'] = res_df['y_test'] - res_df['y_predicted']
    res_avg = np.average(res_df['residuals'])
    res_df
```

Out[86]:		y_test	y_predicted	residuals
	1364	19.0000	26.488680	-7.488680
	5218	27.6670	32.576025	-4.909025
	3039	9.9866	27.060686	-17.074086
	4594	33.2270	21.984504	11.242496
	3258	19.7230	31.255728	-11.532728
	•••			
	914	24.0820	32.847408	-8.765408
	5120	40.6370	26.581853	14.055147
	2602	26.6630	26.298683	0.364317
	704	40.8400	32.247267	8.592733
	4919	32.0000	32.107153	-0.107153

1609 rows × 3 columns

Residual Plot based on Linear Regression model:

```
In [87]: plt.figure(figsize=(8,4))
    sns.scatterplot(data = res_df, x = 'y_predicted', y = 'residuals')
    plt.axhline(y = 0, color = 'r')
    plt.title('Residual Plot\naverage of residuals = %s' %(np.round(res_avg,2)));
```


The above residual plot shows; homoscedasticity property.

Still we will perfrom statistical test to be sure about **homoscedasticity**.

Goldfeld Quandt Test:

H0: Error terms are homoscedastic

Ha: Error terms are heteroscedastic

```
In [88]: import statsmodels.stats.api as sm
    from statsmodels.compat import lzip

print('p-value = ', sm.het_goldfeldquandt(res_df['residuals'], x_test)[1])
    print("\nSince p-value is more than 0.05; we can't reject Null Hypothesis (H0)")
    print("It means error terms are homoscedastic; which we infered from the above residual plot.")

p-value = 0.2769238928475486

Since p-value is more than 0.05; we can't reject Null Hypothesis (H0)
    It means error terms are homoscedastic; which we infered from the above residual plot.
```

Durbin-Watson Test to check presence of Autocorrelation:

H0: There is no correlation among the residuals

Ha: The residuals are autocorrelated.

```
In [89]: from statsmodels.stats.stattools import durbin_watson
    print('Test Statistic = ', durbin_watson(res_df['residuals']))
    print('\nSince test statistic is almost equal to 2; so we would consider autocorrelation \
    not to be problematic for this regression model')

Test Statistic = 1.989462704528598
```

Since test statistic is almost equal to 2; so we would consider autocorrelation not to be problematic for this regression model

Plotting Distribution of Residuals and corresponding Q-Q plot:

From above plot, we can see; residuals are roughly approximating a normal distribution of mean close to 0. Which was another important assumption of Linear Regression Model; validated successfully.

2. Gradient-Descent Approach for Linear Regression:

```
In [91]:
        # Creating Design Matrix:
        X = x train.values
        print(X)
        print('\nSize of X = ', X.shape)
        [[0.30555556 0.12283071 0.62810099 ... 0.68788149 0.42197526 1.
                    [0.44444444 0.64187779 0.42077978 ... 0.20066124 0.39256198 1.
         [0.52777778 0.68320852 0.42739109 ... 0.59117497 0.42959807 1.
         [0.72222222 0.0973721 0.43064246 ... 0.29148652 0.31104666 1.
                                                                         11
         [0.66666667 0.70403661 0.47090607 ... 0.33449898 0.41581541 1.
        Size of X = (3760, 9)
        Y = y_train.values
In [92]:
        print('Y = ',Y)
```

```
print('\nSize of Y = ', Y.shape)
         Y = [16.022 \ 16.475 \ 21.194 \ \dots \ 26.006 \ 39.696 \ 44.338]
         Size of Y = (3760,)
In [93]: # Initializing Variables:
          b = 0
          W = np.ones(X.shape[1])
          learning rate = 0.08
          print('W = ',W)
         print('Size of W = ', W.shape)
         W = [1. 1. 1. 1. 1. 1. 1. 1. 1.]
         Size of W = (9,)
In [94]: def derivative of L wrt W():
              dLdW = []
              i = 0
              for j in range(0, X.shape[1]):
                  x j = X[:,j]
                  s = i = a = 0
                  for i in range(0, x j.shape[0]):
                      a = x j[i]*(Y[i]-Y predicted[i])
                      s = s + a
                  dLdW.append((-2/n)*s)
              return (np.array(dLdW))
```

Logic for finding optimized coefficients and intercept value:

```
In [95]: epoc = np.arange(start=0, stop = 9501, step = 1)
    n = 0
    loss_function = []
    n = x.shape[0]
    k = 0
    w0_store = []

for k in epoc:
    Y_predicted = np.dot(X,W) + b
    L = (1/n) * np.sum((Y - Y_predicted)**2)
    loss_function.append(L)
    dLdw = derivative_of_L_wrt_W()
    W = W - (learning_rate * dLdw)
```

```
dLdB = (-2/n)*np.sum(Y - Y_predicted)
w0_store.append(b)
b = b - (learning_rate * dLdB)
```

Coefficient values based on Training Dataset:

```
In [96]: print('Intercept Term (W0) = ', b)
print('\nW = \n', W)

Intercept Term (W0) = 34.00006001401304

W =
   [ 10.43249047   2.99247819   -4.97029479   -7.69642426   -13.3502108
        2.62031275   -9.76881674   8.01556605   1.98012956]
```

Visualization of Loss Function w.r.t Epoc:

```
In [97]: fig,ax = plt.subplots(1,2,figsize=(10,4))
    ax[0].plot(epoc, loss_function, label = 'learning rate = %s' %(learning_rate))
    ax[0].set_xlabel('Number of Iterations')
    ax[0].set_ylabel('Loss Function')
    ax[0].legend()

ax[1].plot(w0_store, loss_function, 'g-')
    ax[1].plot(b,L,'ro', label = 'Stop Point (b = %s)\nLoss Function = %s' %(np.round(b,3),np.round(L,4)))
    ax[1].set_xlabel('Intercept Term (b)')
    ax[1].set_ylabel('Loss Function')
    ax[1].grid(axis = 'y', alpha = 0.3, ls = '--')
    ax[1].legend()

plt.suptitle('Visualization of Loss Function')
    plt.tight_layout()
    plt.show()
```

Visualization of Loss Function


```
In [98]: print('After 9500 iterations, we have achieved the optimal coefficient values.')
print('At that point, value of Loss Function is = {}' .format(np.round(L,4)))
```

After 9500 iterations, we have achieved the optimal coefficient values. At that point, value of Loss Function is = 64.4539

Finding Y_Predicted value based on test data:

```
In [99]: y_pred_grad_desc_mlr = np.dot(x_test.values,W) + b
    res_df1 = pd.DataFrame()
    res_df1['y_test'] = y_test
    res_df1['y_predicted'] = y_pred_grad_desc_mlr
    res_df1['residuals'] = res_df1['y_test'] - res_df1['y_predicted']
    res_df1
```

Out[99]:		y_test	y_predicted	residuals
	1364	19.0000	26.581391	-7.581391
	5218	27.6670	32.394264	-4.727264
	3039	9.9866	27.225381	-17.238781
	4594	33.2270	21.955466	11.271534
	3258	19.7230	31.109830	-11.386830
	•••			
	914	24.0820	32.795177	-8.713177
	5120	40.6370	26.542289	14.094711
	2602	26.6630	26.364461	0.298539
	704	40.8400	32.304419	8.535581
	4919	32.0000	31.994424	0.005576

1609 rows × 3 columns

Model (using Gradient Descent) Metrics:

```
In [100... print('Expectation of Residuals = ', np.round(np.mean(res_df1['residuals']),2))
print('R2 Score = ', np.round(r2_score(y_test,y_pred_grad_desc_mlr),4))

Expectation of Residuals = -0.12
R2 Score = 0.129
```

3. Polynomial Regression Model:

```
for d in deg:
    poly = x_train_poly = x_test_poly = mlr1 = y_pred_poly = mlr1_score = ''

poly = PolynomialFeatures(degree=d)
    x_train_poly = poly.fit_transform(x_train)
    x_test_poly = poly.transform(x_test)

mlr1 = LinearRegression()
    mlr1.fit(x_train_poly, y_train)
    y_pred_poly = mlr1.predict(x_test_poly)
    y_pred_poly_trans.append(y_pred_poly)
    mlr1_train_score = mlr1.score(x_train_poly, y_train)
    mlr1_test_score = mlr1.score(x_test_poly, y_test)
    train_r2_score_poly.append(mlr1_train_score)
    test_r2_score_poly.append(mlr1_test_score)
```

Visualization of Best R2 score for different polynomial degrees:

	Polynomial_Degree	Train_R2_Score	Test_R2_Score
0	1	0.142375	0.128835
1	2	0.312183	0.293227
2	3	0.534457	0.457631
3	4	0.691363	0.424140

We found Optimal Polynomial Degree as 3

Fitting data to 3rd degree Polynomial Model:

```
opt deg = 3
In [103...
           pr = PolynomialFeatures(degree=opt deg)
           x train pr 2 = pr.fit transform(x train)
           x test pr 2 = pr.transform(x test)
           len(pr.powers_)
In [104...
Out[104]:
           # Shape of input train data:
In [105...
           np.round(x_train,2).shape
           (3760, 9)
Out[105]:
          # Shape of transformed input train data:
In [106...
           np.round(x_train_pr_2,2).shape
```

```
Out[106]: (3760, 220)
```

it means due to polynomial transformation from 9 input columns, 220 input columns have been created.

```
In [107... # Shape of transformed input test data:
    np.round(x_test_pr_2,2).shape

Out[107]: (1609, 220)
```

Polynomial Model Metrics:

```
LR 2 = LinearRegression()
In [108...
          LR 2.fit(x train pr 2, y train)
          poly intercept = LR 2.intercept
          poly coef = LR 2.coef
          y pred polynomial train = LR 2.predict(x train pr 2)
          y pred polynomial test = LR 2.predict(x test pr 2)
          poly rmse = np.sqrt(mean squared error(y test, y pred polynomial test))
          poly score test = r2 score(y test, y pred polynomial test)
          poly score train = r2 score(y train, y pred polynomial train)
          print('Intercept Value
                                        = ', poly intercept, '\n')
          print('Coefficients value = \n', poly coef, '\n')
          print('Model(test) RMSE Value = ', poly rmse)
          print('\nTrain Accuracy score = ', poly_score_train)
          print('Test Accuracy score = ', poly score test)
```

Intercept Value = -133.4767358482746

```
Coefficients value =
[-4.45444241e-12 -7.91278636e+01 1.13725737e+02 2.15711504e+02
-1.09235843e+02 4.82084810e+02 3.64950172e+02 -1.89272965e+02
 2.28234615e+02 -4.77203366e+01 1.48225008e+02 -2.33965054e+01
 -2.68079011e+02 -9.55800620e+00 -1.17113033e+02 -1.71590914e+02
 3.09884264e+02 2.03702539e+02 5.93881031e+01 5.51691211e+01
 1.21013898e+02 -8.83100231e+01 -1.49564534e+02 -2.00859784e+02
 -9.72350057e+01 -4.69523039e+01 -1.55258235e+01 -3.89824957e+02
 1.98374195e+02 -3.28636703e+02 1.24853313e+02 -9.70923681e+00
 -4.12228193e+01 2.10843371e+01 1.86036015e+02 3.01352736e+02
 4.66834989e+00 1.14206921e+02 -3.30395309e+02 1.74434957e+00
 -4.03401169e+02 -4.93464936e+02 6.60652050e+01 -5.72181389e+02
 1.16807126e+02 -1.40251095e+02 8.57957101e+01 -3.93097115e+02
 -2.60695290e+01 3.87645963e+01 1.54587075e+02 5.17489277e+01
 -2.24435337e+01 8.45544830e+01 -4.77203366e+01 -6.49892135e+01
 -5.92558458e+01 2.49514280e+02 1.13049340e+01 -1.95230481e+01
 -3.42674575e+01 -6.55164425e+01 -2.17433570e+02 4.02013287e+01
 1.34839990e+01 3.43598306e+01 4.12879122e+00 4.16272470e+01
 7.33736740e+01 -4.63301816e+01 1.32422066e+01 -7.12570857e-01
 -8.24175156e+01 1.40086635e+01 -4.57458397e+01 2.07218105e+02
 -8.03348010e+01 7.32179627e+01 2.90853921e+00 -6.64065148e+01
 -3.80920040e+01 -7.49000658e+01 7.51275489e+01 1.12785347e+02
 1.92602821e+01 1.11822608e+02 2.81293869e+02 -1.24555924e+02
 1.03660179e+02 -1.39892933e+02 7.88009279e+01 -1.92509827e+02
 -8.71630724e+00 -3.79177773e+01 1.70997475e+01 -2.07015105e+01
 -6.86311738e+01 -6.91268188e+01 -7.64695686e+01 5.93881031e+01
 -1.97963817e+01 1.81217009e+01 -2.68640022e+01 -5.08571802e+01
 -2.70757121e+01 2.56989023e+01 -2.07099813e+01 2.45782291e+00
 -1.08312227e+02 -1.89126254e+01 -1.82545596e+02 -4.54856832e+01
 1.06896435e+02 7.35159974e+01 -2.28423565e+01 1.17726617e+01
 8.84238396e+01 7.73002303e+01 7.13598267e+01 1.00816799e+01
 -7.69425983e+00
                6.94133268e+01 1.34370852e+02 6.83849109e+01
 9.91242255e+01 2.18825443e+01 4.90145237e+01 4.23350767e+01
 3.32036662e+01 2.80273492e+01 -7.54328842e+01 -2.80472132e+00
 2.48651630e+01 -4.16955871e+01 1.61476536e+01 -1.55258235e+01
 4.87057400e+01 2.76044354e+02 3.41226559e+02 -3.25401729e+02
 4.99428969e+02 2.43848564e+00 6.34714979e+01 -9.07583494e+01
 -9.09117698e+01 -4.93919852e+01 -1.00630699e+02 -2.93070140e+02
 -1.31373373e+02 2.51314929e+02 -2.20787763e+02 7.95546319e+01
 -4.56235784e+01 -2.03013717e+01 9.34380514e+00 -1.20698281e+01
 3.87270601e+02 1.73359406e+02 -2.52225649e+02 -2.96610538e+02
 -2.23253307e+02 4.47603630e+01 -4.61432574e+01 2.10843371e+01
```

```
-6.63120229e+01 -1.52083050e+02 -8.91470019e+00 -1.73006459e+01
 1.09639499e+02 6.84948562e+00 -1.59905805e+02 6.83478439e+01
 -1.09420888e+02 1.16400493e+02 -5.22296241e+01 -9.31366564e+01
 -1.32467935e+02 9.98703775e+01 6.71280404e+01 -3.98504704e+01
 -1.03300706e+01 2.57730988e+01 1.87618010e+02 5.50105239e+01
 1.74434957e+00 8.99542302e+01 1.27936781e+02 -3.14278539e+01
 2.00784404e+02 -9.09926035e+01 3.87080498e+01 1.80175104e+01
  3.38560195e+02 6.14028146e+01 8.96741326e+01 -1.36683875e+02
 -9.96832198e+01 1.66880456e+02 -8.50280833e+01 1.16807126e+02
 -7.16770792e+00 4.23750344e+01 1.69757490e+02 -1.61226382e+01
 2.07767149e+01 -6.93514789e+01 1.61162604e+01 -7.65808434e+01
 -1.74722255e+02 -2.60695290e+01 3.15234083e+00 9.76590778e+01
 3.58325894e+01 2.62210877e+01 5.14230779e+01 5.17489277e+01
 -3.69176797e+01 -2.75616544e+01 8.45544830e+01 -4.77203366e+01]
Model(test) RMSE Value = 7.729429057103282
Train Accuracy score = 0.5344571681758907
Test Accuracy score = 0.45763138487608734
```

Residual Analysis for Polynomial Model:

```
In [109... # Creation of residuals:
    res_df2 = pd.DataFrame()
    res_df2['y_test'] = y_test
    res_df2['y_predicted'] = y_pred_polynomial_test
    res_df2['residuals'] = res_df2['y_test'] - res_df2['y_predicted']
    res_df2
```

Out[109]:		y_test	y_predicted	residuals
	1364	19.0000	26.632697	-7.632697
	5218	27.6670	29.337952	-1.670952
	3039	9.9866	15.418318	-5.431718
	4594	33.2270	26.993768	6.233232
	3258	19.7230	27.769226	-8.046226
	•••			
	914	24.0820	35.327536	-11.245536
	5120	40.6370	26.852865	13.784135
	2602	26.6630	27.434998	-0.771998
	704	40.8400	37.496185	3.343815
	4919	32.0000	38.983404	-6.983404

1609 rows × 3 columns

plt.tight_layout();

Visualization of Residuals

4. Fitting data to KNN Regression:

```
In [111...
# Finding Optimized value of K:
k = 0
no_of_iteration = 100
knn_train_r2_score = []
knn_test_r2_score = []

for k in np.arange(1,(no_of_iteration+1)):
    knn = KNeighborsRegressor(n_neighbors=k)
    knn.fit(x_train, y_train)
    test_r2_score_knn = r2_score(y_test, knn.predict(x_test))
    knn_test_r2_score_append(test_r2_score_knn)
    train_r2_score_knn = r2_score(y_train, knn.predict(x_train))
    knn_train_r2_score.append(train_r2_score_knn)

plt.figure(figsize=(5,4))
```

```
plt.plot(range(1,(no_of_iteration+1)), knn_train_r2_score, 'b-', label = 'Train_R2_Score')
plt.plot(range(1,(no_of_iteration+1)), knn_test_r2_score, 'r-', label = 'Test_R2_Score')
plt.title('Finding Optimal Value of K')
plt.xlabel('K values')
plt.ylabel('R2 Score')
plt.grid(axis='y', alpha=0.7, ls = ':')
plt.legend();
```

Finding Optimal Value of K 1.0 Train R2 Score Test R2 Score 0.9 0.8 R2 Score 0.7 0.6 0.5 0.4 20 40 60 80 100 0 K values

Optimal K value = 10

```
In [112... # Fitting data to KNN model:
    knn1 = KNeighborsRegressor(n_neighbors=10)
    knn1.fit(x_train, y_train)
    y_pred_knn1 = knn1.predict(x_test)
    knn1_score = r2_score(y_test, y_pred_knn1)
    knn1_rmse = np.sqrt(mean_squared_error(y_test, y_pred_knn1))
    knn1_score_train = r2_score(y_train, knn1.predict(x_train))
    print('Model RMSE Value = ', knn1_rmse)
```

5. Fitting data to Decision Tree Model:

```
In [113...

dt = DecisionTreeRegressor(random_state=1234)
    dt.fit(x_train, y_train)
    y_pred_dt_test = dt.predict(x_test)
    dt_train_accuracy = dt.score(x_train, y_train)
    dt_test_accuracy = dt.score(x_test, y_test)
    print('Train Score = ', dt_train_accuracy)
    print('Test Score = ', dt_test_accuracy)
    print('RMSE value = ', np.sqrt(mean_squared_error(y_test, y_pred_dt_test)))

Train Score = 1.0
    Test Score = 0.9681309970296073
    RMSE value = 1.8736323595942144
```

Clearly we can see, our model is overfitting on training data.

Finding Optimum Max_Depth value to reduce Overfitting through Cross Validation:

```
dtc_avg_test_rmse = dtc_cv1['test_neg_root_mean_squared_error'].mean()
    avg_test_rmse_list.append(dtc_avg_test_rmse)
    dtc_1 = ''

temp_df1 = pd.DataFrame()
temp_df1['max depth'] = range(1,16)
temp_df1['avg train score'] = avg_train_list
temp_df1['avg train neg rmse'] = avg_train_rmse_list
temp_df1['avg test neg rmse'] = avg_test_rmse_list
temp_df1['avg test neg rmse'] = avg_test_rmse_list
temp_df1.set_index(['max depth'], inplace=True)
temp_df1
```

Out[114]:

avg train score avg train neg rmse avg test neg rmse

max depth			
1	17.310058	-9.717098	-10.570089
2	26.361359	-9.165704	-12.120625
3	40.635859	-8.231268	-12.967619
4	54.338547	-7.216169	-13.500898
5	65.560933	-6.247469	-13.523626
6	74.731500	-5.337877	-13.415499
7	83.694999	-4.265832	-14.058069
8	90.784421	-3.186803	-12.753062
9	94.803086	-2.374387	-12.910925
10	97.056133	-1.769853	-12.703328
11	98.572939	-1.245139	-12.672758
12	99.198399	-0.930837	-13.187003
13	99.638960	-0.627799	-13.381661
14	99.802956	-0.465467	-13.263260
15	99.912276	-0.309513	-13.417728

From here, we can choose optimum 'max depth' value as 7 or 8 lets choose it as 8

Decision Tree with Optimized Hyperparameter:

```
In [115...

dtc_2 = DecisionTreeRegressor(random_state=1234, max_depth=8)

dtc_2.fit(x_train, y_train)
    y_pred_dtc2_test = dtc_2.predict(x_test)
    dtc2_train_accuracy = dtc_2.score(x_train, y_train)
    dtc2_test_accuracy = dtc_2.score(x_test, y_test)
    dtc2_rmse = np.sqrt(mean_squared_error(y_test, y_pred_dtc2_test))

print('Train Score = ', dtc2_train_accuracy)
    print('Test Score = ', dtc2_test_accuracy)
    print('RMSE value = ', dtc2_rmse)

Train Score = 0.9451672867640711
    Test Score = 0.9207799006327337
    RMSE value = 2.9540499300221317
```

6. Fitting data to Random Forest Model:

Summary:

Out[117]:

model			
linear regression	0.142000	0.128800	9.800000
polynomial regression	0.534457	0.457631	7.729429
knn	0.722355	0.675120	5.982205
decision tree	0.945167	0.920780	2.954050
random forest	0.996129	0.977041	1.590286

train r2

test r2

rmse

Based on least RMSE, we can say random forest is the best performing model among all.

Future Scope of this Project:

- Corr test to check whether the correlation coefficients are really significant or not
- Multivariate Outlier Analysis
- Applying more non-linear models to improve rmse