Final Exam: Microeconomics USFQ 2022

Victor H. Aguiar

December 16, 2022

Problem 1. Checking SARP.

Let $X = \mathbb{R}^L_+$, and consider the finite dataset of consumption bundles and prices $O^T = \{x^t, p^t\}_{t \in \{1, \dots, T\}}$ where $x^t \in X$ and $p^t \in \mathbb{R}^L_{++}$ for all t.

WARP is satisfied if $p^t \cdot x^t \geq p^t \cdot x^s$ $(x^t \succeq^D x^s)$ implies that we cannot have

 $p^s \cdot x^s > p^s \cdot x^t \ (x^s \succ^D x^t).$

GARP is satisfied if $x^1 \succeq^D x^2 \cdots \succeq^D x^n$ implies that we cannot have $x^n \succeq^D$

- Consider a data set O^3 with prices $p^1 = (4 \ 1 \ 5)'$, $p^2 = (5 \ 4 \ 1)'$, $p^3 = (1 5 4)'$, and bundles $x^1 = (4 1 1)'$, $x^2 = (1 4 1)'$, $x^3 = (1 4 1)'$ $(1 \ 1 \ 4)'.$
- 1. Does O^3 satisfies (i) WARP, (ii) GARP. Show that O^3 cannot be rationalized by a locally-nonsatiated utility function $u: \mathbb{R}^3_+ \to \mathbb{R}$, (i.e., u rationalizes O^3 if $x^t \in argmax_y u(y)$ subject to $p^t \cdot y \leq p^t \cdot x^t$ for all t).
- 2. Consider a preference function $r: \mathbb{R}^3_+ \times \mathbb{R}^3_+ \to \mathbb{R}$ such that $r(x,y) \geq (>)0$ means that x is preferred to y. We assume that the preference function is skew-symmetric r(x,y) = -r(y,x), and strictly increasing in the first entry (i.e., $r(\cdot,y)$ is strictly increasing for all $y \in \mathbb{R}^3_+$). We say $O^T = \{x^t, p^t\}_{t \in \{1, \dots, T\}}$ is strictly rationalized by a preference function r if $r(x^t, y) > 0$ for all y such that $p^t \cdot y \leq p^t \cdot y^t$. Show that any O^T that is rationalized by a skew-symmetric and strictly increasing preference function must satisfy WARP. Consider O^3 above that cannot be rationalized by a utility function but that can be rationalized by a skew-symmetric and strictly increasing (in the first entry) preference function, can the rationalizing preference function be transitive (i.e., $r(x,y) \ge 0, r(y,z) \ge 0$ $\implies r(x,z) \ge 0$?
- 3. Show that GARP is equivalent to WARP when there are two goods L=2.

Proof. 1)
$$p^{1\prime}*x^1=22, p^{1\prime}*x^2=13, p^{1\prime}*x^3=25, \\ p^{2\prime}*x^1=25, p^{2\prime}*x^2=22, p^{2\prime}*x^3=13, \\ p^{3\prime}*x^1=13, p^{3\prime}*x^2=25, p^{3\prime}*x^3=22, \\ \text{it is easy to check that if } p^{j\prime}*x^i < p^{j\prime}*x^j, \text{then } p^{i\prime}*x^j > p^{i\prime}*x^i \forall i,j=1,2,3 \\ \end{cases}$$

Therefore this data set satisfies WARP.

From 1), we can also find that

$$x^{1}R^{D}x^{2}, x^{2}R^{D}x^{3}, x^{3}R^{D}x^{1},$$

so that x^1Rx^3 , yet x^3Rx^1 , which violates SARP.

It cannot be rationalized by a LNS utility function, the solution to this is in any textbook of grad level micro.

2) Assume towards contradiction that we observe a violation of WARP and that the dataset admits a rationalizing preference function that is skew-symmetric and strictly increasing. Then we have $p^t \cdot x^t \geq p^t \cdot x^s$ ($x^t \succeq^D x^s$) and $p^s \cdot x^s > p^s \cdot x^t$ ($x^s \succeq^D x^t$). By rationalizability, $x^t \succeq^D x^s$ implies $r(x^t, x^s) \geq 0$, but we also have that $r(x^s, x^t) \geq 0$. There are two cases, either one of the inequalities are strict in which case skew-symmetry is violated, or both inequalities are in fact equalities. In the latter case, $r(x^t, x^s) = 0$ and $r(x^s, x^t) = 0$ cannot happen because $p^s \cdot x^s > p^s \cdot x^t$ means that there is x^k close enough to x^t such that $p^s \cdot x^s > p^s \cdot x^k$ and such that $r(x^s, x^k) < 0$ which by skew-symmetry means that $r(x^k, x^s) > 0$ contradicting the fact that x^s is a maximizer of r.

3)

If L=2, we want to show that if O^T fails GARP then there must be a cycle of length 2. Suppose towards contradiction that we have an irreducible cycle of size 3:

$$x^1 \succ^R x^2 \succ^R x^3 \succ^R x^1$$
.

This implies that no observed bundle is larger than another. Indeed if $x^t \ge x^s$ (in the vector order).

 $x^t \succeq^R x^s$ if $x^t \ge x^s$, then assume $x^2 \ge x^3$, then $p^1 x^1 \ge p^1 x^2 \implies p^1 x^1 \ge p^1 x^3$, so we can form the cycle

$$x^1 \succeq^R x^3 \succeq^R x^1$$
.

but that is a contradiction.

Since L=2, then the observed bundles can be ordered by the quantity of good 1 consumed in each bundle, this is a result from linear algebra.

Problem 2. Price preferences. Consider a consumer that is characterized by the following utility function $V: X \times W \to \mathbb{R}$, where the consumer chooses x^t when prices are p_t , such that

$$x^t \in argmax_{x \in \mathbb{R}_+^L} V(x, -p^t \cdot x)$$

The utility $V(x,\cdot)$ is **strictly** increasing in the second argument. This consumer receives utility from consuming x, and experiences disutility when spending $p^t \cdot x$. The optimal bundle purchased by this consumer will balance the trade-offs between these two forces.

Also define the indirect utility of price by:

$$V(p^t) = max_x V(x, -p^t \cdot x).$$

Finally let's define the price-revealed preference

$$p^s \succeq_p p^t$$
,

when

$$p^s x^t \le p^t x^t$$
.

Similarly $p^s \succ_p p^t$ when $p^s x^t < p^t x^t$.

a) Show that a data set generated by the consumer above collected in $O^T = \{p^t, x^t\}$ satisfies the Generalized Axiom of Price Revealed Preference (GAPP).

(GAPP: If $p^t \succeq_p p^k \succeq_p \cdots \succeq_p p^s$ then it cannot be that $p^s \succ_p p^t$.)

b) Show that a data set generated by the special case of the model above with the following utility:

$$x^t \in argmax_{x \in X} u(x) - p^t x,$$

satisfies both the Generalized Axiom of Price Revealed Preference and the Generalized Axiom of Revealed Preference (GARP).

(If $p^t \cdot x^t \ge p^t \cdot x^s$ then we say $x^t \succeq^D x^s$ and if $p^s \cdot x^s > p^s \cdot x^t$ then we say $x^s \succ^D x^t$. GARP is satisfied if $x^1 \succeq^D x^2 \cdots \succeq^D x^n$ then it cannot be that $x^n \succ^D x^1$.)

c) Show that a data set generated by the special case of the model introduced in (b), satisfies the (uncompensated law of demand):

$$(p^t - p^s)'(x^t - x^s) \le 0.$$

Proof. If $p^s \succeq_p p^t$ then $p^s \cdot x^t \leq p^t \cdot x^t$, this implies that

$$V(x^t, -p^s \cdot x^t) \ge V(x^t, -p^t \cdot x^t)$$

by the fact that the function V is strictly increasing in the second argument. Then notice that since $x^s \in argmax_xV(x, -p^s \cdot x)$ then

$$V(x^s, -p^s \cdot x^s) \ge V(x^t, -p^s \cdot x^t)$$

This implies:

$$V(p^s) = V(x^s, -p^s \cdot x^s) \geq V(x^t, -p^t \cdot x^t) = V(p^t).$$

In other words, if $p^s \succeq_p p^t$ then $V(p^s) \geq V(p^t)$.

Then, if $p^s \succeq_p p^t$ it cannot be that $p^t \succeq_p p^s$ as this will imply that $V(p^t) > V(p^s)$ and $V(p^s) \geq V(p^t)$ at the same time. An analogous argument applies for indirect price preference revelation.

b) Notice that I can write
$$x^t \in argmax_x u(x) - p^t x$$
 then $u(x^t) - p^t x^t \ge u(y) - p^t y$ for all $y \in \mathbb{R}^L_+$ then $u(x^t) - p^t x^t \ge u(x^s) - p^t x^s$ which implies $u(x^t) - u(x^s) \ge p^t x^t - p^t x^s$ Then if $p^t x^t - p^t x^s \ge 0 \iff x^t \ge D x^s$ this implies that $u(x^t) \ge u(x^s)$ with strict inequality if $p^t x^t > p^t x^s$. Then if a violation of WARP cannot happen since $x^t \ge D x^s$ and $x^s > D x^t$

would imply that

$$u(x^t) \ge u(x^s)$$

and

$$u(x^s) > u(x^t).$$

An analogous argument applies for indirect price preference revelation.

$$\begin{array}{l} \textit{Proof.} \ x^t \in argmax_x u(x) - p^t x \ \text{then} \\ u(x^t) - p^t x^t \geq u(y) - p^t y \ \text{for all} \ y \in \mathbb{R}_+^L \\ \text{(i)} \ u(x^t) - p^t x^t \geq u(x^s) - p^t x^s \\ \text{(ii)} \ u(x^s) - p^s x^s \geq u(x^t) - p^s x^t \\ \Longleftrightarrow \\ \text{(i)} \ u(x^t) - u(x^s) \geq p^t x^t - p^t x^s \\ \text{(ii)} \ u(x^s) - u(x^t) \geq p^s x^s - p^s x^t \\ \text{Then:} \ \text{(i)+(ii)} \\ 0 \geq [p^t x^t - p^t x^s] + [p^s x^s - p^s x^t] \\ [p^t - p^s]'[x^t - x^s] \leq 0. \end{array}$$