```
#import data set
In [1]:
          import pandas as pd
In [2]:
          data=pd.read_csv('C:\\Users\\DELL\\Downloads\\Salary_Data.csv')
In [3]:
          data
Out[3]:
             YearsExperience
                              Salary
                             39343.0
          0
                        1.3
                             46205.0
          2
                             37731.0
                        2.0
                             43525.0
          3
                             39891.0
          4
          5
                        2.9
                             56642.0
                             60150.0
          6
          7
                             54445.0
                        3.2 64445.0
          8
                        3.7
                             57189.0
          9
                             63218.0
         10
                        3.9
                             55794.0
         11
         12
                             56957.0
         13
                        4.1
                             57081.0
         14
                        4.5
                             61111.0
         15
                             67938.0
         16
                        5.1
                             66029.0
         17
                             83088.0
         18
                        5.9
                             81363.0
```

	YearsExperience	Salary
19	6.0	93940.0
20	6.8	91738.0
21	7.1	98273.0
22	7.9	101302.0
23	8.2	113812.0
24	8.7	109431.0
25	9.0	105582.0
26	9.5	116969.0
27	9.6	112635.0
28	10.3	122391.0
29	10.5	121872.0

```
In [4]: data.head()
```

Out[4]:	YearsExperie	Salary	
	0	1.1	39343.0
	1	1.3	46205.0
	2	1.5	37731.0
	3	2.0	43525.0
	4	2.2	39891.0

1 Salary 30 non-null float64

dtypes: float64(2)

memory usage: 608.0 bytes

In [6]: #correlation
 data.corr()

 Out[6]:
 YearsExperience
 Salary

 YearsExperience
 1.000000
 0.978242

Salary 0.978242 1.000000

In [7]: #histogram
import seaborn as sn

sn.distplot(data['YearsExperience'])

C:\Users\DELL\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level functi
on with similar flexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[7]: <AxesSubplot:xlabel='YearsExperience', ylabel='Density'>

In [8]: sn.distplot(data['Salary'])

C:\Users\DELL\anaconda3\lib\site-packages\seaborn\distributions.py:2551: FutureWarning: `distplot` is a deprecated fu
nction and will be removed in a future version. Please adapt your code to use either `displot` (a figure-level functi
on with similar flexibility) or `histplot` (an axes-level function for histograms).
 warnings.warn(msg, FutureWarning)

Out[8]: <AxesSubplot:xlabel='Salary', ylabel='Density'>


```
In []: #prediction for new model
In [9]: #fitting yearsexperience and salary together
    import statsmodels.formula.api as smf
    model=smf.ols('YearsExperience~Salary',data=data).fit()
In [10]: sn.regplot(x="YearsExperience",y="Salary",data=data)
Out[10]: <AxesSubplot:xlabel='YearsExperience', ylabel='Salary'>
```

```
120000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 1000000 - 100000 - 100000 - 100000 - 100000 - 100000 - 100000 - 10000
```

```
#coefficients
In [12]:
          model.params
Out[12]: Intercept
                      -2.383161
         Salary
                      0.000101
         dtype: float64
In [13]:
          #t and p values
          print(model.tvalues,'\n',model.pvalues)
         Intercept
                       -7.281283
         Salary
                      24.950094
         dtype: float64
          Intercept
                       6.300123e-08
         Salary
                      1.143068e-20
         dtype: float64
          #r squared values
In [14]:
          print(model.rsquared, model.rsquared adj)
         0.9569566641435086 0.9554194021486339
          model.summary()
In [20]:
                         OLS Regression Results
Out[20]:
```

Dep. \	YearsExperience			ı	0.	957		
	OLS			Adj. R-squared:		0.	955	
Method:		Least Squares		F-statistic:		62	22.5	
Date:		Fri, 16 Apr 2021		Prob (F-statistic):		1.14e	-20	
	01:04:34			Log-Likelihood:		-26.	168	
No. Observations:		30				AIC	: 56	3.34
Df Re	28			BIC	: 59	9.14		
D			1					
Covariance Type:			nor	robust				
	coef	std	err	t	P> t	[0.025	0.975]	
Intercept	-2.3832	0.3	327	-7.281	0.000	-3.054	-1.713	
Salary	0.0001	4.06e	-06	24.950	0.000	9.3e-05	0.000	
Om	3.544 Durbin-Watson:			1.587				
Prob(Omnibus):		0.170	Jar	que-Ber	a (JB):	2.094		
Skew:		-0.412	0.412 Pro k		b(JB):	0.351		
Kurtosis:		2.003		Cor	nd. No.	2.41e+05		

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.41e+05. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [ ]:
```