证明: 由定义知, $0 \le a$,又由教材定理 19.1(2) 知, $a \le a \lor b = 0$ 。从而有 a = 0。同理可证 b = 0。

(2)

证明: 由定义知, $a \leq 1$,又由教材定理 19.1(1) 知, $1 = a \wedge b \leq a$ 。从而有 a = 1。同理可证 b = 1。

19.16

(1)

证明: 反设 L 中存在以自身为补元的元素 a。则对任意 $x \in L$,有 $x \leq 1 = a \vee a = a$ 和 $a = a \wedge a = 0 \leq x$,从而有 x = a。由 x 的任意性知, $L = \{a\}$,|L| = 1,矛盾。

(2)

证明:由于 $|L| \ge 3$,所以存在 $a \in T$,满足 $a \ne 0$ 且 $a \ne 1$ 。反设 a 有补元 b,则有 $a \lor b = 1$ 。由于 L 是链,所以 $a \preccurlyeq b$ 和 $b \preccurlyeq a$ 中至少有一式成立。若 $b \preccurlyeq a$,则由教材定理 19.2 有 $a = a \lor b = 1$,与 $a \ne 1$ 矛盾,因此只能有 $a \preccurlyeq b$ 。然而,若 $a \preccurlyeq b$,则 $a \land b = a \ne 0$,这与 $b \not \in a$ 的补元矛盾。所 以 $a \in L$ 不存在补元,从而 L 不是有补格。

19.17

证明: 由定义, 对任意 $a,b \in L_1$, 有 $\bar{a},\bar{b} \in L$, 从而 $\bar{a} \wedge \bar{b},\bar{a} \vee \bar{b} \in L$ 。而

$$(a \lor b) \land (\bar{a} \land \bar{b}) = (a \land (\bar{a} \land \bar{b})) \lor (b \land (\bar{a} \land \bar{b}))$$

$$= ((a \land \bar{a}) \land \bar{b}) \lor (b \land (\bar{b} \land \bar{a}))$$

$$= ((a \land \bar{a}) \land \bar{b}) \lor ((b \land \bar{b}) \land \bar{a})$$

$$= ((a \land \bar{a}) \land \bar{b}) \lor ((b \land \bar{b}) \land \bar{a})$$

$$= (0 \land \bar{b}) \lor (0 \land \bar{a})$$

$$= 0 \lor 0$$

$$= 0 \lor (2 \land \bar{a}) \land (2 \land \bar{b}) \land (2 \land \bar{b}$$

因此 $a \lor b$ 有补元 $\bar{a} \land \bar{b} \in L$,从而 $a \lor b \in L_1$ 。同理可证 $\overline{a \land b} = \bar{a} \lor \bar{b} \in L$,从而 $a \land b \in L_1$ 。 这就证明了 L_1 是子格。

19.18 共有如下 5 个 5 元格。