Probabilités

I. Ensembles dénombrables

I.1. Généralités

Définition. Un ensemble D est dit **dénombrable** s'il existe une bijection de \mathbb{N} dans D. Il est dit **au plus dénombrable** s'il est au plus dénombrable.

Proposition I.1. Les parties de \mathbb{N} sont au plus dénombrables.

Proposition I.2. Un ensemble A est au plus dénombrable si et seulement s'il existe une injection de A dans \mathbb{N} .

I.2. Exemples

Proposition I.3. Les ensembles \mathbb{N}^2 , \mathbb{Z} et \mathbb{Q} sont dénombrables. L'ensemble \mathbb{R} n'est pas dénombrable.

I.3. Propriétés

Proposition I.4. Si I est un ensemble au plus dénombrable, et si, pour tout $i \in I$, A_i est un ensemble au plus dénombrable, alors $\bigcup_{i \in I} A_i$ est au plus dénombrable.

Exemple : racines n-ièmes de l'unité, n décrivant \mathbb{N} .

Proposition I.5. Si les ensembles A_1, \ldots, A_n sont finis ou dénombrables, alors leur produit cartésien $A_1 \times A_2 \times \cdots \times A_n$ est au plus dénombrable.

Définition. Si $(a_i)_{i\in I}$ est une famille de nombres complexes, on appelle **support** de la famille, l'ensemble $J = \{j \in I \mid a_j \neq 0\}$.

Proposition I.6. Si la famille $(a_i)_{i\in I}$ de nombres complexes est sommable, alors son support est au plus dénombrable.

II. Espace probabilisable

II.1. Rappels sur les opérations ensemblistes

En probabilités, s'il n'y a pas d'ambiguïté sur l'ensemble de travail Ω , le complémentaire $\Omega \setminus A$ d'une partie A de Ω sera noté \overline{A} .

On rappelle que, si $(A_i)_{i \in I}$ est une famille, finie ou infinie, de parties d'un même ensemble E, on pose

$$\bigcup_{i \in I} A_i = \left\{ x \in E \mid \exists i \in I \quad x \in A_i \right\} \quad \text{et} \quad \bigcap_{i \in I} A_i = \left\{ x \in E \mid \forall i \in I \quad x \in A_i \right\}$$

On a alors, pour toute partie B de E:

on a alors, pour toute partie
$$B$$
 de E :
$$\circ B \cap \left(\bigcup_{i \in I} A_i\right) = \bigcup_{i \in I} \left(B \cap A_i\right) \quad \text{et} \quad B \cup \left(\bigcap_{i \in I} A_i\right) = \bigcap_{i \in I} \left(B \cup A_i\right);$$

$$\circ \overline{\bigcup_{i \in I} A_i} = \bigcap_{i \in I} \overline{A_i} \quad \text{et} \quad \overline{\bigcap_{i \in I} A_i} = \bigcup_{i \in I} \overline{A_i}.$$

II.2. Tribus

Définition. On dit qu'un ensemble \mathcal{T} de parties d'un ensemble Ω est une tribu sur Ω si :

- $\Omega \in \mathcal{T}$:
- $\forall A \in \mathcal{T} \quad \overline{A} \in \mathcal{T}$;
- pour toute famille $(A_n)_{n\in\mathbb{N}}$ dénombrable d'éléments de \mathcal{T} , $\bigcup_{n\in\mathbb{N}} A_n \in \mathcal{T}$.

Les ensembles $\mathcal{T}_1 = \{\emptyset, \Omega\}$ (tribu grossière), $\mathcal{T}_2 = \mathcal{P}(\Omega)$ et $\mathcal{T}_3 = \{\emptyset, A, \overline{A}, \Omega\}$ (où $A \in \mathcal{P}(E)$) sont des tribus sur Ω .

Définition. On appelle **espace probabilisable** tout couple (Ω, \mathcal{T}) où Ω est un ensemble et \mathcal{T} une tribu sur Ω .

L'ensemble Ω est alors appelé l'univers. Les éléments de \mathcal{T} sont appelés événements; \varnothing est l'événement impossible, Ω est l'événement certain. L'événement \overline{A} est appelé événement contraire de A; deux événements A et B tels que $A \cap B = \varnothing$ sont dits incompatibles.

Une famille d'événements $(A_i)_{i\in I}$ finie ou dénombrable est appelée un système complet d'événements si les A_i sont deux à deux incompatibles, et vérifient $\bigcup_{i\in I}A_i=\Omega$.

Proposition II.1. Si $(A_i)_{i\in I}$ est un système complet d'événements et si $B\in \mathcal{T}$, alors $B=\bigcup_{i\in I}(A_i\cap B)$ et les $A_i\cap B$ sont deux à deux incompatibles.

II.3. Propriétés

Proposition II.2. Soit (Ω, \mathcal{T}) un espace probabilisable. Alors :

- $\circ \varnothing \in \mathcal{T}$;
- \circ si $(A_n)_{n\in\mathbb{N}}$ est une famille dénombrable d'événements, alors $\bigcap_{n\in\mathbb{N}} A_n \in \mathcal{T}$;
- o si $(A_1, ..., A_n)$ est une famille **finie** d'événements, alors $\bigcap_{i=1}^n A_i$ et $\bigcup_{i=1}^n A_i$ sont dans \mathcal{T} ;
- \circ si A et B sont des événements, alors $A \setminus B \in \mathcal{T}$.

III. Espace probabilisé

III.1. Probabilité

Définition. Si (Ω, \mathcal{T}) est un espace probabilisable, on appelle **probabilité** sur (Ω, \mathcal{T}) toute application $P: \mathcal{T} \longrightarrow \mathbb{R}$ vérifiant

- $\forall A \in \mathcal{T} \quad P(A) \in [0,1]$;
- $P(\Omega) = 1$;
- pour toute suite (A_n) d'événements deux à deux incompatibles, $P(\bigcup_{n\in\mathbb{N}} A_n) = \sum_{n\in\mathbb{N}} P(A_n)$.

Un espace probabilisé est un triplet (Ω, \mathcal{T}, P) où P est une probabilité sur l'espace probabilisable (Ω, \mathcal{T}) .

III.2. Premières propriétés

Proposition III.1. Soit (Ω, \mathcal{T}, P) un espace probabilisé. Alors :

- $\circ P(\varnothing) = 0;$
- \circ si (A_1, \ldots, A_n) est une famille **finie** d'événements deux à deux disjoints, alors

$$P(\bigcup_{i=1}^{n} A_i) = \sum_{i=1}^{n} P(A_i)$$

- $\circ \ \forall (A,B) \in \mathcal{T}^2 \quad P(A \cup B) = P(A) + P(B) P(A \cap B) ;$
- $\circ \ \forall A \in \mathcal{T} \quad P(\overline{A}) = 1 P(A) ;$
- $\circ \ \forall (A,B) \in \mathcal{T}^2 \ (A \subset B \Longrightarrow P(A) \leqslant P(B)).$

III.3. Continuité monotone

Théorème III.2. Soit (Ω, \mathcal{T}, P) un espace probabilisé. Soit $(A_n)_{n \in \mathbb{N}}$ une suite d'événements.

 \triangleright Si la suite (A_n) est croissante pour l'inclusion, c'est-à-dire si $A_n \subset A_{n+1}$ pour tout n, alors

$$P(\bigcup_{n=0}^{+\infty} A_n) = \lim_{n \to +\infty} P(A_n)$$

 \triangleright Si la suite (A_n) est décroissante pour l'inclusion, c'est-à-dire si $A_{n+1} \subset A_n$ pour tout n, alors

$$P(\bigcap_{n=0}^{+\infty} A_n) = \lim_{n \to +\infty} P(A_n)$$

Corollaire III.3. Soit (Ω, \mathcal{T}, P) un espace probabilisé. Soit $(A_n)_{n \in \mathbb{N}}$ une suite quelconque d'événements. Alors $P\left(\bigcup_{k=0}^{+\infty} A_k\right) = \lim_{n \to +\infty} P\left(\bigcup_{k=0}^{n} A_k\right)$ et

$$P\left(\bigcap_{k=0}^{+\infty} A_k\right) = \lim_{n \to +\infty} P\left(\bigcap_{k=0}^{n} A_k\right).$$

Théorème III.4. Soit (Ω, \mathcal{T}, P) un espace probabilisé. Soit $(A_i)_{i \in I}$ une famille finie ou dénombrable d'événements. Alors $P(\bigcup_{i \in I} A_i) \leq \sum_{i \in I} P(A_i)$.

III.4. Événements négligeables, presque sûrs

Définition. Soit (Ω, \mathcal{T}, P) un espace probabilisé. Un événement A est dit **négligeable** si P(A) = 0; il est dit **presque sûr** si P(A) = 1.

Proposition III.5. Un réunion finie ou dénombrable d'événements négligeables est encore négligeable; une intersection finie ou dénombrable d'événements presque sûrs est encore presque sûre.

Définition. Une famille $(A_i)_{i\in I}$ finie ou dénombrable d'événements est appelée **système quasi-complet** si les A_i sont deux à deux incompatibles et $P(\bigcup_{i\in I} A_i) = \sum_{i\in I} P(A_i) = 1$.

III.5. Probabilité discrète

Définition. Soit Ω un ensemble. Une distribution de probabilité discrète sur Ω est une famille de réels positifs, indexée par Ω , et de somme 1.

Proposition III.6. Soit $(p_{\omega})_{\omega \in \Omega}$ une distribution de probabilité discrète sur l'ensemble Ω . L'application $P: \mathcal{P}(\Omega) \longrightarrow \mathbb{R}_+$, $A \longmapsto \sum_{\omega \in A} p_{\omega}$ définit une probabilité sur l'espace $(\Omega, \mathcal{P}(\Omega))$.

Si Ω est fini ou dénombrable, toute probabilité sur $\mathcal{P}(\Omega)$ peut s'obtenir de cette manière.

IV. Conditionnement et indépendance

IV.1. Probabilité conditionnelle

Proposition IV.1. Soit (Ω, \mathcal{T}, P) un espace probabilisé. Soit B un événement tel que $P(B) \neq 0$. Alors, l'application $P_B : \mathcal{T} \longrightarrow \mathbb{R}$, $A \longmapsto \frac{P(A \cap B)}{P(B)}$ définit une probabilité sur \mathcal{T} , appelée **probabilité conditionnée** à B.

Le nombre $P(A \cap B)/P(B)$ sera noté $P_B(A)$ ou $P(A \mid B)$.

IV.2. Propriétés

Proposition IV.2 (Probabilités composées). Soient A_1, \ldots, A_n des événements vérifiant $P(\bigcap_{k=1}^{n-1} A_k) \neq 0$; alors

$$P\left(\bigcap_{k=1}^{n} A_k\right) = P(A_1) \times P_{A_1}(A_2) \times P_{A_1 \cap A_2}(A_3) \times \dots \times P_{A_1 \cap \dots \cap A_{n-1}}(A_n)$$

Proposition IV.3 (Probabilités totales). Soit $(A_i)_{i\in I}$ une famille finie ou dénombrable d'événements. Si $(A_i)_{i\in I}$ est un système quasi-complet d'événements, alors, pour tout événement B, la famille $(P(B \cap A_i))_{i\in I}$ est sommable, et

$$P(B) = \sum_{i \in I} P(B \cap A_i) = \sum_{i \in I} P_{A_i}(B)P(A_i)$$

Par convention, $P_{A_i}(B)P(A_i) = 0$ si $P(A_i) = 0$.

Proposition IV.4 (Formule de Bayes). Soient A et B deux événements, tels que $P(A)P(B) \neq 0$. Alors $P_B(A) = \frac{P_A(B)P(A)}{P(B)}$.

Si $(A_i)_{i\in I}$ est un système quasi-complet d'événements, alors, pour tout $k\in I$ et tout événement B tel que $P(B)\neq 0$, $P_B(A_k)=\frac{P_{A_k}(B)P(A_k)}{\sum_{i\in I}P_{A_i}(B)P(A_i)}$.

IV.3. Indépendance

Définition. Deux événements A et B sont dits **indépendants** si $P(A \cap B) = P(A)P(B)$; si $P(B) \neq 0$, cela revient à dire que P(A|B) = P(A).

Les événements d'une famille $(A_i)_{i\in I}$ sont dits mutuellement indépendants si, pour toute partie finie J de I, on a

$$P\left(\bigcap_{i\in J}A_i\right) = \prod_{i\in J}P(A_i)$$

Proposition IV.5. Si les événements de la famille $(A_i)_{i\in I}$ sont mutuellement indépendants, alors c'est aussi le cas pour toute famille obtenue en remplaçant certains événements A_i par l'événement contraire \overline{A}_i .

IV.4. Un espace utile

Soit Ω l'ensemble $\{0,1\}^{\mathbb{N}}$ des suites dont les termes valent 0 ou 1 ("suite de succès (1) ou échecs (0)", ou "suite de pile ou face"); soit (p_n) une suite de réels appartenant à [0,1] (" p_n = probabilité de succès au rang n").

On admet qu'il existe une tribu \mathcal{T} sur Ω et une probabilité P sur \mathcal{T} telles que

- o pour tout $n_0 \in \mathbb{N}$, l'ensemble S_{n_0} des suites $u = (u_n)$ vérifiant $u_{n_0} = 1$ est un événement ("succès au rang n_0 "), dont la probabilité vaut p_{n_0} ;
- \circ les événements $(S_n)_{n\in\mathbb{N}}$ sont mutuellement indépendants.