

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina - Probabilidade e Estatística GABARITO DA AP1 2° semestre de 2009

Professores: Otton Teixeira da Silveira Filho e Regina Célia P. Leal Toledo

-

1ª. Questão (1.5 pontos) Fez-se uma pesquisa com 1000 pessoas em uma loja de departamentos com o objetivo de verificar a relação entre o número de cartões de crédito e a renda familiar, em salários mínimos (S.M.). Os resultados obtidos estão na tabela a seguir.

Renda	Não tem cartões de crédito	Tem um cartão de crédito	Tem mais de um cartão de crédito	
Menos 10 S.M.	250	80	20	
De [10 a 20) S.M.	100	200	40	
De (20 a 30] S.M.	50	40	60	
Mais de 30 S.M.	20	40	100	

Sabendo que uma pessoa foi escolhida ao acaso, calcule as seguintes probabilidades :

a) (0.3 pontos) De que a pessoa tenha renda de (20 a 30] S.M.

SOLUÇÂO

Chamando de P(sm) a probabilidade de que a pessoa escolhida tenha renda de (20 a 30] S.M, temos:

$$P(sm) = (50 + 40 + 60) / 1000 = 0.15$$

b) (0.3 pontos) Da pessoa ter mais de 1 cartão de crédito.

SOLUCÃO

Chamando de P(cartao) a probabilidade de que a pessoa tenha mais de um cartão de crédito, temos:

$$P(cartao) = (20 + 40 + 60 + 100) / 1000 = 0,22$$

c) (0.3 pontos) Dado que a pessoa tem renda entre 10 e 20 S.M., qual a probabilidade de que ela não tenha cartão de crédito?

SOLUÇÂO

Neste caso, vamos trabalhar somente com aqueles que têm renda entre 10 e 20 SM, ou seja, 340 pessoas. Assim, a probabilidade de que ela não tenha cartão de crédito é:

P(não cartão | entre 10 e 20 SM) = 100 / 340 ≈ 0,295

e) (0.6 pontos) Existe independência entre faixa de renda e o número de cartões de crédito ? Por que ?

SOLUÇÃO

Não existe independência. Para existir independência, para todos os pares (i,j) de faixa de renda (FR i) e a para a informação ter ou não cartões (C j) necessitaríamos ter:

$$P(FR_i \cap C_j) = P(FR_i) \times P(C_j).$$

Se para qualquer um desses pares isso não acontecer, é porque não existe dependência. Assim, por exemplo, pessoas com renda até 10 SM e que não têm cartões:

P(até 10 SM e não tem cartões) = 250 / 1000 = 0,25

e, P(até 10 SM) x P(não tem cartões) = 0,35 x 0,42 = 0,147 ≠ 0,25 !

2ª. Questão (2.0 pontos) Calcule a média, em salários mínimos (S.M.), a moda e o desvio padrão das pessoas que foram pesquisadas na loja de departamentos da questão anterior e que têm pelo menos um cartão de crédito e compare com a média, moda e desvio padrão daquelas que não têm cartão de crédito.

SOLUÇÃO

Assumimos aqui para cada faixa salarial, a média da faixa correspondente e assumimos para a última faixa, a média de 35 S.M.

Renda	Núm. Médio de S.M. por faixa (A)	Não tem cartões de crédito (B)	Tem um cartão de crédito (C)	Tem mais de um cartão de crédito (D)	Tem pelo menos um cartão (C) + (D)	(A) x (B)	(A) x (D)
Menos							
10 S.M.	5	250	80	20	100	1250	100
De [10 a							
20) S.M.	15	100	200	40	240	1500	600
De (20 a							
30] S.M.	25	50	40	60	100	1250	1500
Mais de							
30 S.M.	35	20	40	100	140	700	3500
SOMA		420	360	220	580	4700	5700

Média de quem não tem cartão = (4700) / (420) = 11,19 SMMédia de quem tem pelo menos um cartão de crédito = (5700) / 580 = 9,83 SM

Moda de quem não tem cartão = 250 (faixa de menos 10 SM) Moda de quem tem pelo menos um cartão = 240 (faixa de quem tem pelo menos 1 cartão)

Renda	Núm. Médio de S.M. por faixa (A)	Não tem cartões de crédito (B)	(B) x (A-med)^2	Tem pelo menos um cartão	(B) x ((C+D)- med)^2
Menos 10 S.M.	5	250	11.902,50	100	2.332,89
De [10 a 20) S.M.	15	100	961,00	240	6.414,94
De (20 a 30] S.M.	25	50	8.580,50	100	23.012,89
Mais de 30 S.M.	35	20	10.672,20	140	88.694,05
SOMA	_	420	32.116,20	580	120.454,76

Var(s/c) = 76,47	Var(c>0) = 207,68
Desvio	Desvio
padrão(s/c)= 8,74	padrão(c>0)= 14,41

<u>3ª. Questão</u> (1.5 pontos) Os clientes de um banco têm três opções de investimento: poupança, CDB e fundos.

20 % dos clientes do banco têm caderneta de poupança,

5 % dos clientes do banco têm CDB,

25 % dos clientes do banco têm aplicações em fundos.

Suponha que cada cliente só pode um destes investimentos no banco, ou seja, estas 3 modalidades de investimentos são exclusivas. O banco realizou uma pesquisa entre seus clientes para avaliar o interesse pelo lançamento de um novo tipo de seguro de vida. Dos clientes que aplicam em poupança, 10 % se mostraram interessados no seguro. Dos clientes que investem em CDB, 30 % se interessaram pelo seguro, e dentre os clientes que aplicam em fundos, 40 % demonstraram interesse pelo novo produto. Um cliente do banco é selecionado aleatoriamente.

a) (0.6 pontos) Qual a probabilidade dele se interessar pelo novo seguro de vida?

SOLUÇÃO

As seguintes probabilidades são dadas:

P(poupança) = 20% P(CDB) = 5%P(fundos) = 25%

As modalidades de investimento são exclusivas, logo:

 $P(poupança \cap CDB) = P(poupança \cap fundos) = P(CDB \cap fundos) = P(poupança \cap CDB \cap fundos) = 0.$

São dadas as seguintes probabilidades condicionais em termos do interesse por seguro de vida:

```
P(Seguro| poupança) = 10%
P(Seguro| CDB) = 30%
P(Seguro| fundos) = 40%
```

A probabilidade de um cliente escolhido aleatoriamente se interessar pelo novo seguro de vida é a probabilidade do seguinte evento:

```
seguro = (seguro \cap CDB) U (seguro \cap poupança) U (seguro \cap fundos) (a)
```

A união dos clientes em cada uma destas categorias forma o universo de clientes e a interseção destas 3 categorias é nula (quanto tomadas duas a duas ou em conjunto). Assim, o evento "se interessar pelo novo seguro" mostrado acima, é uma união de eventos mutuamente exclusivos e portanto sua probabilidade é apenas a soma das probabilidades dos eventos que compõem a união. Logo, , a probabilidade desejada torna-se:

 $P(\text{seguro} \cap \text{CDB}) + P(\text{seguro} \cap \text{poupança}) + P(\text{seguro} \cap \text{fundos})$ (b)

A probabilidade de cada uma dessas interseções pode ser escrita como:

 $P(seguro \cap CDB) = P(seguro \mid CDB).P(CDB)$

Da mesma forma para P(seguro ∩ poupança) e P(seguro ∩ fundos). Substituindo em (b) temos:

P(seguro) = P(seguro | CDB).P(CDB) +P(seguro | poupança).P(poupança)+P(seguro | fundos).P(fundos)
Logo,

 $P(\text{seguro}) = (0.30 \times 0.05) + (0.10 \times 0.20) + (0.40 \times 0.25) = 0.135 = 13.5\%$

b) (0.9 pontos) Dado que o cliente está interessado no novo seguro de vida, qual a probabilidade dele aplicar em poupança? E em CDB?

SOLUÇÃO

Aplicação direta do teorema de Bayes. Desejamos calcular:

P(CDB | seguro) e P(poupança | seguro)

Pela definição de probabilidade condicional:

P(CDB | seguro) = P (seguro \cap CDB) / Pr(seguro) = Pr(seguro | CDB).Pr(CDB)/Pr(seguro) P(CDB | seguro) = $(0.3 \times 0.05)/(0.135) = 0.111$

Da mesma forma:

 $Pr(poupança | seguro) = (0.10 \times 0.20)/(0.135) = 0.148$

4ª. Questão (1.0 pontos) Uma caixa contém 10 bolas brancas e 8 bolas pretas. Uma bola é selecionada ao acaso e então é retirada e substituída por duas bolas da cor oposta.

Qual a probabilidade de que a segunda bola selecionada seja branca?

SOLUÇÃO:

Seja $A_i = \{ \text{evento encontrar bola preta na i-ésima retirada} \}.$

Portanto $B_i = \{$ evento encontrar bola branca na i-esima retirada $\}$ é o complementar de A_i .

Inicialmente temos que $P(A_1) = \frac{8}{18}$ e $P(B_1) = \frac{10}{18}$.

O evento B_2 (bola branca na segunda retirada) pode ser escrito como:

$$B_2 = (B_2 \cap A_1) \cup (B_2 \cap B_1)$$

Onde $(B_2 \cap B_1)$ é o evento {bolas brancas nas 2 primeiras retiradas} e $(B_2 \cap A_1)$ é o evento {bola preta na 1ª retirada e branca na 2ª retirada }. Também é importante notar que $(B_2 \cap A_1)$ e $(B_2 \cap B_1)$ são mutuamente excludentes. As probabilidades desses dois eventos podem ser encontradas a partir das probabilidades condicionais do que aconteceu na 2ª retirada dado que foi observado na 1ª retirada.

Suponha que a 1ª retirada tenha resultado numa bola preta. Então, DEPOIS da 1ª retirada e ANTES da 2ª retirada, a caixa contém 19 bolas, das quais 12 são brancas e 7 pretas. Se a 1ª retirada consistiu numa bola branca, DEPOIS da 1ª retirada e ANTES da 2ª retirada, a caixa contém 9 bolas brancas e 10 bolas pretas.

Então, as probabilidades condicionais de uma bola branca na 2ª retirada sabendo o que aconteceu na 1ª retirada são especificamente:

$$P(B_2|A_1) = 12/19 \text{ e } P(B_2|B_1) = 9/19.$$

Pela definição de probabilidade condicional:

$$P(B_2 \cap B_1) = P(B_2|B_1)P(B_1) = \frac{9}{19} \frac{10}{18} = 0,2632 = 26,32\%$$

E também:

$$P(B_2 \cap A_1) = P(B_2|A_1)P(B_1) = \frac{12}{19} \frac{8}{18} = 0,2807 = 28,07\%$$

Finalmente:

$$P(B_2) = P(B_2 \cap B_1) + P(B_2 \cap A_1) = 0.5439 = 54.39\%$$

- 5ª. Questão (2.0 pontos) Um pote contém 30 biscoitos, 12 deles sabor morango e 18 sabor chocolate. 9 biscoitos são selecionados ao acaso. Seja X o número de biscoitos sabor chocolate retirados na amostra (dentre os 9 selecionados). Calcule qual a probabilidade de X ser igual a 4 quando:
 - a) (1.0 ponto) A amostragem é feita com reposição, ou seja, cada biscoito é selecionado e depois recolocado no pote.

SOLUÇÃO:

Aqui, N = 30 (tamanho da população = quantidade de biscoitos no pote), n = 9 (tamanho da amostra), X = número de biscoitos de chocolate na amostra, p = 18/30 (proporção de biscoitos de chocolate no pote).

Se a amostragem é com reposição:

$$P(X = x) = \binom{9}{x} (0.6)^x (0.4)^{9-x}$$

E, portanto, para X=4 temos:

$$P(X = 4) = {9 \choose 4} (0.6)^4 (0.4)^5 = (126)(0.1296)(0.01024) = 0.1672 = 16.72\%$$

b) (1.0 ponto) A amostragem é feita sem reposição, ou seja, cada biscoito selecionado não retorna ou pote.

SOLUÇÃO:

Novamente, N = 30 (tamanho da população = quantidade de biscoitos no pote), n = 9 (tamanho da amostra), X = número de biscoitos de chocolate na amostra, p = 18/30 (proporção de biscoitos de chocolate no pote).

Sendo a amostragem sem reposição:

$$P(X = x) = \frac{\binom{18}{x} \binom{12}{9-x}}{\binom{30}{9}}$$

E, portanto, para X=4 temos:

$$P(X=4) = \frac{\binom{18}{4}\binom{12}{5}}{\binom{30}{9}} = \frac{2423520}{1802700900} = 0.001344 = 0.1344\%$$

- <u>6ª. Questão</u> (2.0 pontos) Você trabalha em um *call center* que vende um determinado produto. Apenas 15% das ligações resultam numa venda. Calcule a probabilidade:
 - a) (1.0 pontos) de que sejam necessárias 10 ligações para que você consiga fazer a quarta venda

SOLUÇÃO:

ANULADO PELO MESMO MOTIVO DA QUESTÃO 8 LETRA B DA AD1!!

b) (1.0 pontos) se você fizer exatamente 20 ligações, qual a probabilidade de conseguir entre 2 e 4 vendas (incluindo 2 e 4!)?

SOLUÇÃO:

Agora o número de chamadas é fixado em 20 e queremos saber a probabilidade de completar 2, 3 ou 4 vendas. X é o número de chamadas que resultam em vendas dentre as 20 realizadas, e assim $X\sim Bin(20;0,15)$

$$P(X = x) = {20 \choose x} (0.15)^x (0.75)^{20-x} \text{ para x=0.1,2,...,20}$$

Agora calculamos esses valores para x = 2, 3 e 4:

$$P(X = 2) = {20 \choose 2} (0.15)^2 (0.75)^{18} = 0.0241$$

$$P(X = 3) = {20 \choose 3} (0.15)^3 (0.75)^{17} = 0.0289$$

$$P(X = 4) = {20 \choose 4} (0.15)^4 (0.75)^{16} = 0.0246$$

Portanto,

$$P(2 \le X \le 4) = P(X = 2) + P(X = 3) + P(X = 4) = 0.0776 = 7,76\%$$