MATH 263: Section 003, Tutorial 2

Mohamed-Amine Azzouz mohamed-amine.azzouz@mail.mcgill.ca

September 13^{th} 2021

1 Review of the Material from Week 1

1.1 Ordinary and Partial Differential Equations

Ordinary Differential Equations (ODE's) are differential equations involving a single variable function and its derivatives. For example:

$$y''(x) + y(x) = \cos x$$

Partial Differential Equations (PDE's) are differential equations involving a multi-variable function and its partial derivatives. For example:

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}$$

1.2 Order of a Differential Equation (DE)

The **order of a DE** corresponds to the highest derivative it contains. For example,

$$y^{(69)}(x) + y(x)^2 = \sin x$$

is a 69^{th} order ODE.

1.3 Verify Whether a Function Solves a DE

Given a solution to verify, one simply needs to compute its derivatives and substitute them in the differential equation.

1.4 Initial and Boundary Value Problems and Conditions

An initial value problem (IVP) is a differential equation with initial value conditions. Those conditions are restrictions on the solution's value and derivatives at a point, such as y(0) = 1, y'(1) = 0.

A boundary value problem (BVP) uses boundary value conditions, which are multiple restrictions on the solution's value, such as y(0) = 1, y(1) = -1, y(2) = 7. In general, an n^{th} order ODE will require n initial conditions to produce a unique solution.

1.5 Autonomous ODE's

Autonomous ODE's only contain the dependent variable, they are of the form:

$$y^{(n)} = f(y, y', y'', \dots, y^{(n-1)})$$

1.6 Linear and Non-Linear ODE's

A linear ODE can be written as a linear combination of y and its derivatives as such:

$$\sum_{k=0}^{n} a_k(x) \ y^{(k)} = g(x)$$

An example would be:

$$x^2 y''(x) + 2x y'(x) - y(x) = \cos x$$

Otherwise, the ODE is **non-linear**.

Note: when the right hand side g(x) is 0, the ODE is also homogeneous.

1.7 Slope Fields

A slope field is a graphical representation of a family of functions satisfying y' = f(x, y). For some point (x, y), one draws the slope y' = f(x, y) to qualitatively represent the solutions. Given a slope field, starting at an initial condition and tracing along the field sketches the particular solution.

2 Tutorial 2

2.1 Separable ODE's

A **separable ODE** is of the form:

$$\frac{dy}{dx} = f(x)g(y)$$

Problem 2.1. Solve the IVP:

$$\frac{dy}{dx} = \frac{x}{y}\sqrt{1+x^2}$$

for
$$y(0) = -\sqrt{\frac{5}{3}}$$
.

Solution: Bring all the x's and dx's on one side, and all the y's and dy's on the other side:

$$y \ dy = x\sqrt{1+x^2} \ dx$$

Then, integrate both sides:

$$\int y \ dy = \int x\sqrt{1+x^2} \ dx$$

Using integration by parts, we obtain:

$$\frac{1}{2}y^2 + C_1 = \frac{1}{3}(1+x^2)^{\frac{3}{2}} + C_2$$

Note: don't forget your constants of integration!

$$y^{2} = \frac{2}{3}(1+x^{2})^{\frac{3}{2}} + 2(C_{2} - C_{1})$$

Let $C_0 = 2(C_2 - C_1)$:

$$y^{2} = \frac{2}{3}(1+x^{2})^{\frac{3}{2}} + C_{0}$$
$$y = \pm \sqrt{\frac{2}{3}(1+x^{2})^{\frac{3}{2}} + C_{0}}$$

 $y(0) = -\sqrt{\frac{5}{3}}$. Since $y(x) \leq 0$, take the negative root:

$$y(0) = -\sqrt{\frac{5}{3}} = -\sqrt{\frac{2}{3} + C_0}$$

$$\frac{5}{3} = \frac{2}{3} + C_0$$
$$C_0 = 1.$$

Therefore,

$$y(x) = -\sqrt{1 + \frac{2}{3}(1 + x^2)^{\frac{3}{2}}}.$$

2.2 Solving First Order Linear ODE's: Integrating Factors

A first order linear ODE is of the form:

$$y' + p(x)y = q(x)$$

Problem 2.2a. Determine the general solution of:

$$xy' + 2y = e^{-x}$$

Then, determine the solution's long term behaviour.

Solution: First divide both sides by x:

$$y' + \frac{2}{x} y = \frac{1}{x} e^{-x}$$

Then, find an integrating factor μ to simplify the left side:

$$\mu y' + (\frac{2}{x}\mu) \ y = \mu \frac{1}{x} \ e^{-x}$$

We want $\frac{2}{x}\mu = \mu' = \frac{d\mu}{dx}$ since $\frac{d}{dx}(\mu y) = \mu y + \mu' y$:

$$\frac{2}{x}dx = \frac{1}{\mu}d\mu$$

$$\mu = e^{\int \frac{2}{x} dx} = e^{2\ln|x|}$$

$$\mu = x^2$$

Now, undo the product rule from the left side:

$$\frac{d}{dx}(x^2y) = x^2 \frac{1}{x} e^{-x} = x e^{-x}$$

$$x^2 y = \int x \ e^{-x} \ dx$$

$$x^2y = -x \ e^{-x} - e^{-x} + C$$

$$y(x) = -e^{-x} \frac{x+1}{x^2} + \frac{C}{x^2}$$

To find the long term behaviour, find $\lim_{x\to\infty} y(x)$:

$$\lim_{x \to \infty} -e^{-x} \, \frac{x+1}{x^2} + \frac{C}{x^2}$$

$$= \lim_{x \to \infty} -e^{-x} \left(\frac{1}{x} + \frac{1}{x^2} \right) + \frac{C}{x^2} = 0$$

Note: since $p(x) = \frac{2}{x}$, which is not defined at x = 0, $\lim_{x\to 0} y(x)$ does not exist (Existence and Uniqueness Theorem).

Problem 2.2b. Solve the IVP:

$$\cos x \ y' + \sin x \ y = \tan x$$

for $y(x_0) = 1$, $0 \le x_0 \le \frac{\pi}{2}$. For which value(s) of x_0 does the IVP have no solution?

Solution: divide both sides by $\cos x$:

$$y' + \tan x \ y = \tan x \sec x$$

The integrating factor μ is

$$\mu = e^{\int \tan x \, dx} = e^{\ln|\sec x|} = |\sec x| = \sec x$$

Note: $|\sec x| = \sec x$ since $\sec x = \frac{1}{\cos x} \ge 0$ for $0 \le x_0 < \frac{\pi}{2}$. Multiplying by the integrating factor we get:

$$\frac{d}{dx}(y\sec x) = \tan x \sec^2 x$$

$$y \sec x = \int \tan x \sec^2 x \ dx$$

Making the substitution $u = \tan x$, we get:

$$y \sec x = \frac{1}{2} \tan^2 x + C_0 = \frac{1}{2} \sec^2 x + C_0 - \frac{1}{2} = \frac{1}{2} \sec^2 x + C_1$$

$$y(x) = \frac{1}{2}\sec x + C_1\cos x.$$

IVP: $y(x_0) = 1$. Note that for $x_0 = \frac{\pi}{2}$, the IVP does not have a solution. Applying the Existence and Uniqueness Theorem, this is because $p(x) = \tan x$ and $q(x) = \tan x \sec x$, which are not defined at $x_0 = \frac{\pi}{2}$. A more appropriate IVP with a unique solution would be $y(x_0 = 0) = 1$:

$$y(0) = 1 = \frac{1}{2}\sec 0 + C_1\cos 0.$$

$$1 = \frac{1}{2} \cdot 1 + C_1 \cdot 1.$$

$$C_1 = \frac{1}{2}$$

Therefore, the solution to the second IVP is:

$$y(x) = \frac{1}{2}\sec x + \frac{1}{2}\cos x.$$

2.3 Homogeneous First Order ODE's

A homogeneous **ODE** is of the form:

$$\frac{dy}{dx} = F(\frac{y}{x})$$

Note: **not** the same as the definition given in 1.6.

Let $v = \frac{y}{x} \Rightarrow y = vx \Rightarrow y' = xv' + v$. Then substitute and solve for v to find y.

Problem 2.3. Determine the general solution of:

$$xy' = y + x e^{\frac{y}{x}}$$

Solution:

$$y' = \frac{y}{x} + e^{\frac{y}{x}}$$

Using the substitution from above:

$$xv' + v = v + e^{v}$$

$$xv' = x\frac{dv}{dx} = e^{v}$$

$$\int e^{-v} dv = \int \frac{1}{x} dx$$

$$-e^{-v} = C + \ln|x|$$

$$-v = \ln(C_0 - \ln|x|), (C_0 = -C)$$

$$v = -\ln(C_0 - \ln|x|)$$

$$y = vx = -x\ln(C_0 - \ln|x|)$$

Note: Other types of substitution to solve ODE's exist, such as v = y'(x) or v = ax + by.

2.4 Bernoulli Equations

A **Bernoulli equation** is of the form:

$$\frac{dy}{dx} + P(x)y = Q(x)y^n$$

When $n \notin \{0,1\}$, we can let $v = y^{1-n}$, making the ODE linear for v.

Problem 2.4. Solve the IVP:

$$y' + \frac{y}{x} = xy^3$$

for x > 0 and $y(1) = \frac{1}{2}$.

Solution: n=3, so let $v=y^{1-n}=y^{-2}\Rightarrow y=v^{\frac{-1}{2}}\Rightarrow y'=\frac{-1}{2}v^{\frac{-3}{2}}v'$. Substituting back in the ODE:

$$\frac{-1}{2}v^{\frac{-3}{2}}v' + \frac{1}{x}v^{\frac{-1}{2}} = x v^{\frac{-3}{2}}$$

Multiply everything by $v^{\frac{3}{2}}$, which makes the ODE linear for v:

$$\frac{-1}{2}v' + \frac{1}{x}v = x$$

$$v' - \frac{2}{x}v = -2x$$

$$\mu = e^{\int \frac{-2}{x} dx} = x^{-2}$$

$$\frac{d}{dx}(x^{-2}v) = -2xx^{-2} = \frac{-2}{x}$$

$$(x^{-2}v) = \int \frac{-2}{x} dx = -2\ln x + C$$

$$v = x^{2}(C - 2\ln x)$$

$$y = v^{\frac{-1}{2}} = \frac{1}{\sqrt{v}} = \frac{1}{x\sqrt{(C - 2\ln x)}}$$

Now, the constant C is:

$$y(1) = \frac{1}{2} = \frac{1}{1\sqrt{(C - 2 \ln 2)}}$$

 $2 = \sqrt{C} \Rightarrow C = 4.$

Therefore,

$$y(x) = \frac{1}{x\sqrt{(4-2\ln x)}}.$$