Chapter	10.11p	170-17	3 ; ex 7	
Twain essa 0.230, 0.20	ys = [0,2 29, 0.235	25,0.20 ,0.217]	2,0.21 $h=8$	7, 0.240,
Snodgrass	essays = [0.209, 0	205,0	.196, 0.210,
(a) perform means . Use	1950 1 1990			0.2011 n=10 lity of the
means . Use mator , Rep eent conpol	ort the	p-value	etric p	lug-in esti- a 95 per
of means.	ence Inte	ral fo	~ the	difference
	st: W=	se		
		0	have: +0,230+0	7,229 +0,235+92#
x = 0,23	19) 5 (Xi -	V 12		
Var (XI ² =	n-1	-(0,2	319-0,2	25) ^{\alpha} +

llean difference: 0,0222 Wald statistic: 3,708 $\frac{Var(x_1)^2}{n_1} + \frac{Var(x_2)}{n_2} = 0,0059871920,006$ $0.0222 = 3.7 \approx 9$ 1 Mx approximately 4 std. deviations the data falls which is very small and less than 0,05. p-value: ≈0,00003 So, we reject the null hypothesis - that the Series pollow distributions with different means Considence intervals [0,0222 - 8,96 0,006 ; 0,0222 +1,96-0,006] 10,1044; 0,03396] (b) Now use a permutation test to avoid the use of large sample methods. What is your con clusion? We got p-value = 0,000455 still very small, and we have strong evidence to reject Ho.

```
import numpy as np
X = [0.225, 0.262, 0.217, 0.240, 0.230, 0.229, 0.235, 0.217]
Y = [0.209, 0.205, 0.196, 0.210, 0.202, 0.207, 0.224, 0.223, 0.220, 0.201]
X = np.array(X)
Y = np.array(Y)
N = 1000000
all_data = np.concatenate([X, Y])
nx = len(X)
# by calculations in part a
diff_hat = 0.0222
cnt = 0
for i in range(1000000):
    np.random.shuffle(all_data)
   x = all_data[:nx]
   y = all_data[nx:]
    diff = x.mean() - y.mean()
    if diff > diff_hat:
        cnt += 1
p_value = cnt / N
print(p_value)
```

Chapter 13.10 p. 226-229: ex. 6, data source:

6. Get the passenger car mileage data from

http://lib.stat.cmu.edu/DASL/Datafiles/carmpgdat.html

(a) Fit a simple linear regression model to predict MPG (miles per gallon) from HP (horsepower). Summarize your analysis including a plot of the data with the fitted line.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression

data = pd.read_csv('data.csv')

X = data['HP'].values.reshape(-1, 1)
Y = data['MPG'].values

model = LinearRegression()
model.fit(X, Y)
```

```
print(model.intercept_, model.coef_)
plt.scatter(X, Y)
plt.plot(X, model.predict(X), color='green')
plt.xlabel("Horsepower")
plt.ylabel("Miles per gallon")
plt.show()
```

```
intercept_ - 134.7307189183848
coef_ - [-0.66723438]
```


(b) Repeat the analysis but use log(MPG) as the response. Compare the analyses.

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.linear_model import LinearRegression

data = pd.read_csv('data.csv')

X = data['HP'].values.reshape(-1, 1)
Y = np.log(data['MPG']).values
model = LinearRegression()
model.fit(X, Y)
print(model.intercept_, model.coef_)
plt.scatter(X, Y)
plt.plot(X, model.predict(X), color='green')
plt.xlabel("Horsepower")
```

plt.ylabel("Miles per gallon") plt.show()

intercept_ - 4.965981466781696

coef_ - [-0.00749009]

