Novo Espaço – Matemática A 11.º ano

Proposta de teste de avaliação [novembro - 2020]

A figura 1 corresponde a uma fotografia de um dodecaedro regular, poliedro em que as 12 1. faces são pentágonos regulares. Na figura 2 está representada uma das faces do poliedro regular.

Sabe-se que $\overline{BE} = 1,6 \,\mathrm{m}$.

Figura 1

Figura 2

Determina:

- as amplitudes dos ângulos internos do triângulo [ABE], em graus;
- 1.2. o perímetro de cada face do poliedro. Apresenta o resultado, em metros, arredondado às décimas.
- 2. Na figura está representado o círculo trigonométrico. Sabe-se que:
 - o ponto A pertence ao 1.º quadrante e à circunferência;
 - o ponto B é a projeção ortogonal de A sobre o eixo Ox;

Seja α a amplitude do ângulo $COA\left(\alpha \in \left[0, \frac{\pi}{2}\right]\right)$.

- **2.1.** Qual é a medida da área do triângulo [ABC] para $\alpha = \frac{\pi}{3}$?
 - (A) $\frac{\sqrt{3}}{8}$ (B) $\frac{1}{4}$ (C) $\frac{\sqrt{2}}{4}$

Proposta de teste de avaliação [novembro - 2020]

- **2.2.** Qual das expressões seguintes representa a área do triângulo [ABC], em função de α ?
 - (A) $\frac{\sin(\alpha)\cos(\alpha)}{2}$

(B) $\frac{\sin(\alpha) - \sin(\alpha)\cos(\alpha)}{2}$

(C) $\frac{\cos(\alpha) + \sin(\alpha)}{2}$

- **(D)** $\frac{\cos(\alpha) 2\sin(\alpha)}{4}$
- Em qual dos seguintes intervalos a expressão $\sin\left(x+\frac{\pi}{2}\right)\sin(\pi+x)$ toma sempre valores **3.** negativos?

- (A) $\left] -\frac{\pi}{2}, 0 \right[$ (B) $\left] 0, \pi \right[$ (C) $\left[\frac{\pi}{2}, \pi \right]$ (D) $\left[-\pi, -\frac{\pi}{2} \right]$
- Qual é a solução da equação $1-2\sin x=0$ no intervalo $\left|-\frac{3\pi}{2},0\right|$? 4.
- **(B)** $-\frac{7\pi}{6}$ **(C)** $-\frac{5\pi}{6}$ **(D)** $-\frac{\pi}{6}$
- Considera a função f, de domínio \mathbb{R} , definida por $f(x) = 3 2\cos(x)$. 5.

Na figura está representada parte do gráfico da função f, em referencial o.n. Oxy.

Sabe-se que:

- os pontos A, B e C pertencem ao gráfico de f;
- o ponto A tem abcissa $\frac{3\pi}{2}$;
- o ponto B tem abcissa pertencente a $\frac{3\pi}{2}$, 3π e a ordenada é mínimo da função;
- o ponto C tem ordenada 4 e abcissa pertencente a $\left| \frac{3\pi}{2}, 3\pi \right|$.

- 5.1 Sabendo que $\tan(\alpha \pi) = \frac{1}{2}$ e $\alpha \in [\pi, 2\pi[$, determina o valor de $f(\alpha)$.
- **5.2** Determina as coordenadas do ponto:
 - **a**) A
 - **b**) *B*
 - **c**) *C*
- **6.** Na figura está representado o círculo trigonométrico. Sabe-se que:
 - o ponto A tem coordenadas (1,0);
 - o ponto *B* pertence ao 1.º quadrante e à circunferência;
 - o ponto F é o simétrico de B em relação ao ponto O;
 - o ponto C é a interseção da semirreta $\dot{O}B$ com a reta definida por x=1;

Seja
$$\alpha$$
 a amplitude do ângulo $AOB\left(\alpha \in \left]0, \frac{\pi}{2}\right[\right)$.

- **6.1.** Determina as coordenadas do ponto F se o ponto C tiver coordenadas (1,3).
- **6.2.** Seja f a função, de domínio $\left[0, \frac{\pi}{2}\right]$, definida por $f(x) = \frac{\sin^2(x)\tan(x)}{2}$.
 - a) Mostra que a medida da área do trapézio [BCDE] é dada por $f(\alpha)$.
 - **b)** Atendendo ao resultado da alínea anterior e recorrendo às capacidades gráficas da calculadora, determina o valor de α para que a medida da área do trapézio [*BCDE*] seja 3. Apresenta o resultado arredondado às décimas.

FIM

Cotações														Total
Questões	1.1.	1.2.	2.1.	2.2.	3.	4.	5.1.	5.2. a)	5.2. b)	5.2. c)	6.1.	6.2. a)	6.2. b)	
Pontos	15	15	12	12	12	12	20	12	15	15	20	20	20	200