Reversible isothermal expansion

KK Fig. 6.7 weights next flow fre gas.

The work is do that the temper

The weights are removed little by little and work is done by

The work is done slowly enough that the temperature is always tre same: Isothermal.

Therefore, it is always in thermodynamic equilibrium: its most probable configuration. Consider the situation in which the volume changes from V, to Vz.

pV=NZ, Since N and T are fixed, The pressure is $\Rightarrow p_2 = p_1 \frac{V_1}{V_2}$ [pressure 15 lower at larger volume] P, V, = P2 V2

The entropy is given by the Sackur-Tetrode equation $\sigma = N \left[ln \left(\frac{n_0}{n_0} \right) + \frac{s}{z} \right]$ with $n_0 = \left(\frac{m \tau}{2\pi \hbar^2} \right)^{3/2}$

 $\sigma = N \left[ln(NQ) + ln V - ln N + \frac{5}{2} \right]$ since N and T are fixed

02-01=N/m(20)-ln(20)+lnV2-lnV,-lnN+lnN+2-2

02-01 = N lm (V2/V1)

larger volume

KK Eq. 6-56

The work done against the piston is

(117)

$$W = \int_{V_1}^{V_2} P dV = \int_{V_1}^{V_2} (NT/V) dV = NT \int_{V_1}^{V_2} \frac{dV}{V}$$
 Since N and Tare constant

 $W = Nz \ln V \Big|_{V_1}^{V_2} = Nz \ln (V_2/V_1) \quad KK Eq. 6.57$

Notice also $W = \tau(\sigma_z - \sigma_i)$

The work done by the gas 15 -W.

The internal energy of the ideal gas is $U = \frac{3}{2}NC$. Since both N and C are fixed, the internal energy remains the same. From the thermodynamic identity, 7dd = dU + PdV but dU = 0 in isothermal case

 $\int \gamma d\theta = \int \rho dV = \Rightarrow 0 = -W \text{ or } Q+W=0$ $\int_{\text{wax}} w_{\text{wax}} dy_{\text{namics}}$ heat flow done

heat flow can increase the internal energy of agas, but work done by the gas decreases the internal energy. If the & temperature remains constant, the work done by the gas comes takes from the heat flow.

The weights are removed little by little and work is done by the gas.

The work is done slowly enough that the entropy is always the same, so Isentropic. The term "adiabatic" means

no heat transfer, but isentropic is more precise. Consider the situation in which the volume changes from Vz to VI.

The entropy is given by the Sackur - Tetrode equation

$$G = N \left[ln (n_Q) + ln V - ln N + \frac{5}{2} \right]$$

$$J = N \left[\ln z^{3/2} + \ln V + \ln \left(\frac{m}{2\pi \hbar^2} \right)^{3/2} - \ln N + \frac{5}{2} \right]$$

$$d = N \left[\ln z^{3/2} + \ln V + constant \right]$$
 KK Eq. 6.61

$$\sigma_2 - \sigma_1 = N \left[\ln \tau_2^{3/2} - \ln \tau_1^{3/2} + \ln V_2 - \ln V_1 + const. \right] = 0$$

In
$$\left(\frac{\tau_2}{\tau_1}\right)^{3/2} = -\ln\left(\frac{V_2}{V_1}\right) = \ln\left(\frac{V_1}{V_2}\right) \Rightarrow \tau_1^{3/2}V_1 = \tau_2^{3/2}V_2$$

KKEq

temperature is lower at

[arger volume]

Since $pV = N\tau \Rightarrow pA = \frac{N\tau}{V}$ and $\frac{\tau_1}{\tau_2} = \left(\frac{V_2}{V_1}\right)^{2/3}$

and of the r_2 r_2 r_3 r_4 r_5 r_5

Since
$$PV = NT \Rightarrow p = \frac{NT}{PV}$$
 and $\frac{T_1}{T_2} = \left(\frac{V_2}{V_1}\right)^{2/3}$

$$\frac{N_{1}}{P_{1}} = \frac{\frac{N_{1}}{V_{2}}}{\frac{N_{1}}{V_{1}}} = \frac{V_{1}}{V_{2}} \cdot \frac{C_{2}}{C_{1}} = \frac{V_{1}}{V_{2}} \left(\frac{V_{1}}{V_{2}}\right)^{2/3} = \frac{V_{1}^{5/3}}{V_{2}^{5/3}}$$

50
$$p_1 V_1^{5/3} = p_2 V_2^{5/3}$$
 KK Eq. 6.65 $p_2 = p_1 \left(\frac{V_1}{V_2}\right)^{5/3}$

$$P_2 = P_1 \left(\frac{V_1}{V_2}\right)^{5/3}$$

Since
$$pV = N\tau$$
, $V = \frac{N\tau}{p}$ [pressure is lower at larger volume]

$$T_1^{3/2} \frac{\chi T_1}{P_1} = T_2^{3/2} T_2 \chi$$

$$\frac{7^{3/2} N T_1}{P_1} = \frac{7^{3/2} T_2 N}{P_2} \Rightarrow \frac{T_1}{P_1} = \frac{5/2}{P_2} \quad \text{KK Eq. 6.64}$$

The work done against the piston by the gas is

Since
$$p_1V_1^{5/3} = p_2V_2^{5/3} \implies pV^{5/3} = constant = pVV^{2/3}$$

$$pVdV^{2/3} + VV^{2/3}dp + V^{2/3}pdV = 0$$

 $V^{2/3} \left[Vdp + pdV \right] + pVdV^{2/3} = 0$

$$\sqrt{2/3} \left[Vdp + pdV \right] + pVdV' = 0$$

$$V^{2/3} d(pV) + pV(\frac{2}{3})V^{-1/3}dV = 0$$

$$\frac{dx^n}{dx} = nx^{n-1}$$

$$\Rightarrow dx^n = x^n dx nx^n dx$$

$$V^{2/3}d(pV) + (\frac{2}{3})pV \frac{V^{2/3}}{V}dV = 0$$

$$\frac{2}{3} p x^{2/3} dV = -x^{2/3} d(pV)$$

$$pdV = -\frac{3}{2}d(pV)$$

Since
$$pV = N\tau$$
, $pdV = -\frac{3}{2}d(N\tau) = -\frac{3}{2}Nd\tau$

$$W = \int_{V_1}^{V_2} p dV = -\frac{3}{2} N \int_{T_1}^{T_2} d\tau = -\frac{3}{2} N (T_2 - T_1)$$

Remember that
$$U = \frac{3}{2}N^{2}$$
, so

$$U_{z} - U_{1} = \frac{3}{2}N(\tau_{z} - \tau_{1})$$
 KK Eq. 6.71
 $W = -\Delta U$

expansion into a vacuum > Irreversible

insulator

A hole is opened in the partition to permit expansion. The expansion is happens rapidly and, since there was nothing to expand against, no work Is done. Because the expansion is rapid, the system is only in thermo-

dynamic equilibrium before expansion and after the gas fills both chambers. Since the expansion is rapid and the system is isolated, no heat flows.

No work is done and no heat flows, so du=0 and U2 = U1 = 3NT. The temperature of the gas is the same before and ofter.

The change in entropy is
$$\sigma = N \left[\ln \left(\frac{n_Q V}{N} \right) + \frac{5}{2} \right]$$

 $\sigma_2 - \sigma_1 = N \ln \left(\frac{V_2}{V_i} \right)$ The hermodynamic equation does not in the system was not in the many

The thermodynamic equation does not hold because the system was not in they mudynamic equil.

per .		and the second s		The state of the s
Expansion type	<u></u> <u>Au</u>	40	W	Q
Reversible Isothermal expansion	0	$N \ln \left(\frac{V_z}{V_1}\right)$	$-NT ln(\frac{Vz}{V_1})$	$\left(\left(\frac{V_2}{V_1} \right) \right)$
Reversible Isentrapic expansion	$-\frac{3}{2}NT_{1}\left[1-\left(\frac{V_{1}}{V_{2}}\right)^{2}\right]$	0	$\left[-\frac{3}{2}NC_{1}\left[-\left(\frac{V_{1}}{V_{2}}\right)^{2}\right]\right]$	0
Irreversible expansion into Vacuum	0	$N \operatorname{Im}\left(\frac{V_2}{V_1}\right)$	0	
				The second secon