

Transformações da Intensidade no Domínio Espacial

V Vasconcelos

Processamento de Imagem Médica

Transformações de Intensidade

Qualquer operação de processamento de imagem transforma o valor dos pixels:

1 – Transformações

- 2 Processamento de Vizinhança para alterar o nível de cinzento de um pixel precisamos de conhecer o valor dos pixels na sua vizinhança.
- 3 Operações de Ponto o valor do nível de cinzento de um pixel é alterado sem qualquer envolvimento do valor dos vizinhos.

Processamento de Imagem Médica

Domínio Espacial

Manipulação directa dos pixels da imagem:

$$g(x,y) = T[f(x,y)]$$

f(x,y) - imagem de entrada g(x,y) - imagem de saída

T - operador aplicado sobre um ponto (x,y) da imagem f ou sobre uma vizinhança.

Processamento de Imagem Médica

3

Transformações de Intensidade *Melhoria de Contraste*

T - função de tranformação da intensidade (ou nível de cinzento)

$$s = T(r)$$

Sendo:

r = nível de cinzento original de f(x,y)s = nível de cinzento após aplicação de T(x,y)

A imagem obtida é mais contrastada que a original:

- Os níveis abaixo de k são escurecidos
- Os níveis acima de k são tornados mais claros

Processamento de Imagem Médica

Transformações de Intensidade Thresholding

Caso particular da situação anterior, binarização:

•A aplicação de *T(r)* dá origem a uma imagem binária (dois níveis de cinzento)

Processamento de Imagem Médica

5

Brilho e Contraste

Muitas técnicas de processamento de imagem baseiam-se nas características estatística da imagem, como o **brilho** e o **contraste.**

 Brilho pode ser calculado como a média de todos os pixels da imagem I, com com n pixels

$$\overline{v} = \frac{1}{n} \sum_{i,j} v(i,j)$$

• O desvio padrão σ dá a medida de contraste

$$\sigma = \sqrt{\frac{1}{n} \sum_{i,j} \left(v(i,j) - \overline{v} \right)^2}$$

agem Retirada da Referé

Processamento de Imagem Médica

Brilho e Contraste

É possível alterar o **brilho** e o **contraste** para valores pretendidos. Para isso tem de ser calculado o **ganho** (g) e **b** (bias)

$$g = \frac{\sigma_{novo}}{\sigma} \qquad b = \overline{v}_{novo} - g\overline{v}$$

Os novos valores dos pixels são obtidos através de

$$v(i, j)_{novo} = gv(i, j) + b$$

A desvantagem deste método é o facto de ser **global**, o **ganho** e **bias** são calculados em toda a imagem. Como alternativa, podemos calcular estas grandezas vizinhança m*m do pixel (i,j)

$$g = \frac{\sigma_{novo}}{\sigma_{(i,j)}} \quad e \quad b = \overline{v}_{novo} - g_{(i,j)} \overline{v}_{(i,j)} \quad \longrightarrow \quad v(i,j)_{novo} = gv_{(i,j)} + b_{(i,j)}$$

Processamento de Imagem Médica

.

Funções Usadas no Realce da Imagem

Realce da imagem (image enhancement) consiste no seu processamento de modo a que o resultado seja mais adequado do que a imagem original para uma aplicação específica.

Não existem soluções globais. Orientada ao Problema

Processamento de Imagem Médica

Três Funções de Transformação de Intensidade

- Lineares
 - Identidade e Negativa
- Logarítmicas
 - Log e inverse-log
- Função Power-law (Transformações Gama)
 - nth power / nth root

Processamento de Imagem Médica

0

Megativo da Imagem

Imagem com nível de cinzento na gama [0, L-1] onde L = 2ⁿ; n = 1, 2...

$$s = L - r - 1$$

- Inverte os níveis de intensidade de uma imagem.
- Adequada para melhorar detalhes brancos ou cinza englobado em regiões escuras de uma imagem, especialmente quando a área de preto é dominante no tamanho.

Processamento de Imagem Médica

Transformação Logarítmica

$$s = c \log (1 + |r|)$$

- c é uma constante que pode ser definida com base na intensidade máxima encontrada na imagem
- As curvas Log mapeiam uma gama estreita de valores de níveis de cinza da imagem de entrada numa gama extendida na imagem de saída.
- Usada para expandir os pixels mais escuros numa imagem enquanto comprime os valores com os níveis

mais alayadas

13

Exemplo Imagem Logarítimica (compressão da gama dinâmica de uma imagem)

Espectro de Fourier com uma Gama de 0... 1.5×10^6

Visualização pouco conseguida

Resultado após aplicação da Tranformação Log , c = 1. Gama $0 \dots 6.2$ Expansão dos níveis mais escuros

Processamento de Imagem Médica

Inversa da Transformação Logarítmica

- Inversa da Tranformação Logarítimica
- Usada para expandir os pixels mais claros numa imagem enquanto comprime os valores com os níveis mais baixos.

Processamento de Imagem Médica

1.5

Transformação Pow-Law (Gama)

 $s = cr^{\gamma}$

c e γ são constantes positivas.

Curvas *Power-law* com valores fraccionários de γ mapeiam uma gama estreita de valores de entrada com baixa intensidade numa gama mais alargada de valores de saída. O contrário é verdade para valores mais elevados de entrada.

Diagrama para vários valores de γ (c = 1 em todos os casos).

Processamento de Imagem Médica

escura,

Transformação Piecewise-Linear

Vantagem:

A forma da função pode ser arbitrariamente complexa

Desvantagem:

A sua especificação requer uma intervenção considerável do utilizador.

Processamento de Imagem Médica

10

Transformação Piecewise-Linear Realce do Contraste (Contrast Stretching)

 $\begin{array}{c|c} L-1 \\ \hline \vdots \\ 3L/4 \\ \hline \\ 0 \\ \hline \\ L/2 \\ \hline \\ 0 \\ \hline \\ L/4 \\ \hline \\ (r_1,s_1) \\ \hline \\ 0 \\ \hline \\ L/4 \\ \hline \\ L/2 \\ \hline \\ 3L/4 \\ L-1 \\ \hline \\ Input gray level, r \\ \end{array}$

- Aumenta a gama dinâmica dos níveis de cinzento na imagem.
- Os pontos (r_1,s_1) e (r_2,s_2) controlam a forma da função.
- Se $r_1 = s_1$ e $r_2 = s_2$ a transformação é a função identidade.
- Se r₁ = r₂ e s₁ = 0 e s₂ = L-1, a transformação equivale à aplicação de um limiar (thresholding).

Processamento de Imagem Médica

Realce do Contraste (Contrast Stretching)

Imagem Original

- $r_{min}=12$
- r_{max} =84

a) b) c) d)

- (b) imagem com baixo contraste.
- (c) resultado para: $(r_1,s_1) = (r_{min},0)$ and $(r_2,s_2) = (r_{max},L-1)$
- (d) resultado de aplicação de um limiar (thresholding), m obtido através do valor médio de intensidade da imagem.

Processamento de Imagem Médica

21

Transformações de Intensidade Histograma

- •O histograma é uma característica estatística da imagem muito importante.
- •Indica o número de pixels presentes para cada um dos níveis de intensidade que podem ocorrer na imagem

$$H(k) = n_k$$

onde

k=0...L-1, sendo [0, L-1] a gama de intensidades da imagem n_k é o nº de pixels da imagem com intensidade k

 $^{\circ}$ O histograma normalizado, obtém-se dividindo cada uma das componentes do histograma pelo n° total de pixels da imagem de M x N . Representa a probabilidade de ocorrer um determinado nível de cinzento -

função densidade de probabilidade.

$$h(k) = \frac{n_k}{MN}$$

Processamento de Imagem Médica

Referências Bibliográficas

- 1. R. C. Gonzalez, R. E. Woods, Digital image processing, Pearson/Prentice Hall, 3rd Ed, 2008.
- 2. R. C. Gonzalez, R. E. Woods, S. L. Eddins, Digital image processing using Matlab, Gatesmark Publishing, 2nd Ed, 2009.
- 3. G. Dougherty, Digital Image Processing for Medical Applications, Cambridge University Press, 2009.
- 4. L. G. Shapiro, G. C. Stockman, Computer Vision, Prentice Hall, 2001.
- 5. K. Najarian, R. Splinter, Biomedical Signal and Image Processing, CRC Press, 2005.

Processamento de Imagem Médica