St. Xavier's College (Autonomous), Kolkata

Department of Statistics

MSc in Data Science

Semester 1

Paper 3

(Module I)

Linear Algebra

Determinant and Rank

Determinant is a scalar associated with a square matrix in a particular way.

Applications: computing inverse of a non-singular matrix, solving system of linear equations by Cramer's rule, the Jacobian used in transforming a multiple integral and many others.

The determinant of an nxn matrix $A = \{a_{ij}\}$ is given by

$$|A| = \sum_{j=1}^{n} a_{ij} (-1)^{i+j} |M_{ij}|$$
 for any i=1,...,n [Expanding by the elements of a row]

$$|A| = \sum_{i=1}^{n} a_{ij} (-1)^{i+j} |M_{ij}|$$
 for any j=1,...,n [Expanding by the elements of a column]

Where, $|M_{ij}|$ is the *minor* of a_{ij} : the determinant derived from A by crossing out the row and column corresponding to a_{ij} .

- 1. $C_{ij} = (-1)^{i+j} |M_{ij}|$: Cofactor of a_{ij} (signed minor).
- 2. Determinant of a transpose of a matrix equals the determinant of the matrix itself: |A'| = |A|
- 3. A is non-singular if $|A| \neq 0$. In that case, $|A^{-1}| = \frac{1}{|A|}$.
- 4. If 2 rows of A are same, |A| = 0.
- 5. Adding to one row (column) of a determinant any multiple of another row (column) does not affect the value of the determinant.
- 6. |AB| = |A| |B| where A and B are square matrices of the same order.
- 7. The determinant of a lower triangular matrix is the product of its diagonal elements.

Note that 6 and $4 \Rightarrow$ Any determinant can be evaluated as the determinant of a lower triangular matrix.

- 8. |AB| = |BA| as |A||B| = |B||A|
- 9. $|A^2| = |A|^2, ..., |A^K| = |A|^K$
- 10. For orthogonal matrix A, $|A| = \pm 1$ (As $AA' = I \Rightarrow |A|^2 = 1$)
- 11. For idempotent matrix A, |A| = 0 or 1 (As $A^2 = A \Rightarrow |A|^2 = |A|$)
- 12. Similar matrices have the same determinant. Two matrices A and B are similar if \exists a non-singular matrix P such that $B = P^{-1}AP \Rightarrow |B| = |P^{-1}||A||P| = |A|$.

- 13. Let A be a square matrix of order ≥ 2 . Then Adjoint or Adjugate of the matrix A is defined as $Adj(A) = (C_{ij})^T$, where C_{ij} : Cofactor of a_{ij} (signed minor).
- 14. Properties of Adjoint matrix:
 - i. A(adj A) = (adj A) A = A I, where I is the identity matrix of order n
 - ii. For a zero matrix 0, adj(0) = 0
- iii. For an identity matrix I, adj(I) = I
- iv. If A is non-singular, $A^{-1} = \frac{1}{|A|} A dj(A)$.
- v. For any scalar k, $adj(kA) = k^{n-1} adj(A)$
- vi. $adj(A^T) = (adj A)^T$
- vii. $\det(\operatorname{adj} A)$, i.e. $\operatorname{adj} A = (\det A)^{n-1}$
- viii. Suppose A and B are two matrices of order n, then adj(AB) = (adj B)(adj A)
- ix. For any non-negative integer p, $adj(A^p) = (adj A)^p$
- x. If A is invertible, then the above formula also holds for negative k.
- 15. Cramer's Rule: Let A be a non-singular matrix of order n. then the solution to the

system of equations
$$A\underline{x} = \underline{b}$$
 is given by $\frac{|A_j|}{|A|}$

Where A_j denotes the matrix obtained from A by replacing jth column \underline{a}_{*j} by b.

- 16. If A and D are square matrices of possibly different orders, $\begin{vmatrix} A & B \\ 0 & D \end{vmatrix} = \begin{vmatrix} A & 0 \\ C & D \end{vmatrix} = |A| \cdot |D|$.
- 17. Determinant of a partitioned matrix:
 - i. If A and D are square and A is non-singular, $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |A| \cdot |D CA^{-1}B|$.
 - ii. If D is non-singular, $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |D| \cdot |A BD^{-1}C|$.
- 18. Let A, B, C and D be mxm matrices, then if A is non-singular and A commutes with C, $\begin{vmatrix} A & B \\ C & D \end{vmatrix} = |AD CB|$.
- 19. The rank of a non-null matrix A is the largest integer k for which A has a non-vanishing minor of order k.