CHAPITRE 3:

Les relations binaires et les applications

Cours 1

Les applications

1. Définition:

Soient E et F deux ensembles.

Une application f de E dans F est une relation qui associe à tout élément x de E un unique élément y de F noté y = f(x).

E est appelé ensemble de départ de f .

F est appelé ensemble d'arrivée de f.

y = f(x) est appelé l'image de x par f.

x est appelé l'antécédent de y.

Une application f de E dans F s'écrit : $f: E \rightarrow F$

$$x \mapsto f(x) = y$$

Exemples:

f est-elle une application?

1.

Oui f est une application.

Non f n'est pas une application car 1 a deux images

Non f n'est pas une application car 2 n'a pas d'image.

2. $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = \cos x - 2$$

Oui f est une application

3. $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = \frac{x+2}{x-3}$$

Non f n'est pas une application car 3 n'a pas d'image.

4. $f: R - \{3\} \rightarrow R$

$$x \mapsto f(x) = \frac{x+2}{x-3}$$

Oui f est une application

Généralité:

L'ensemble des applications de E dans F est noté par A(E, F).

2. Exemples d'applications :

Soient E et F deux ensembles et $k \in F$.

2.1. Application identité

On définit l'application identité de E, notée Id_E par : $\forall x \in E : Id_E(x) = x$

$$Id_E: E \to F$$
$$x \mapsto Id_E(x) = x$$

2.2.Application constante

Une application f de E dans F est dite *constante* si : $\exists k \in F, \forall x \in E : f(x) = k$ $f: E \to F$

$$x \mapsto f(x) = k$$

2.3. Application caractéristique :

Soient E un ensemble et A une partie de E.

On définit l'application caractéristique de A, notée χ_A , par :

$$\chi_A : E \to F$$

$$x \mapsto \chi_A(x) = \begin{cases} 1 & \text{si} \quad x \in A \\ 0 & \text{si} \quad x \notin A \end{cases}$$

3. Egalité de deux applications :

Soient $f: E \to F$ et $g: G \to H$ deux applications.

On dit que f et g sont égales si et seulement si les trois conditions suivantes sont vérifiées :

- 1. E = G.
- 2. F = H
- 3. $\forall x \in E : f(x) = g(x)$.

Exemples:

1.
$$f: R \to R$$

 $x \mapsto f(x) = \cos^2 x$
 $f = g$
 $g: R \to R$
 $x \mapsto g(x) = 1 - \sin^2 x$

2.
$$f: R \to R$$
 $g: R_+ \to R$ $h: R \to R_+$
 $x \mapsto f(x) = x^2$ $x \mapsto g(x) = x^2$ $x \mapsto h(x) = x^2$
 $f \neq g, f \neq h \text{ et } g \neq h$

4. Restriction et prolongement d'une application :

Soit $f: E \to F$ une application.

4.1. Soit
$$A \subset E$$
. La *restriction* de f à A , est l'application $g: A \to F$ définie par $\forall x \in A: g(x) = f(x)$.

 g est notée par f_{A} .

Exemples:

1.
$$f: R \to R$$
 $g: R_+ \to R$ $x \mapsto f(x) = x^2$ $x \mapsto g(x) = x^2$

2.
$$f: \mathbb{R} \to \mathbb{R}$$
 $g: \mathbb{R}_{-} \to \mathbb{R}$ $x \mapsto f(x) = |x|$ $x \mapsto g(x) = -x$ $g = f_{/\mathbb{R}}$

4.2. Soit H un ensemble tel que $E \subset H$. On appelle *prolongement* de f à H toute application $h: H \to F$ telle que $h_{/E} = f$.

3

Exemples:

1.
$$f: \mathbb{R}^* \to \mathbb{R}$$

 $x \mapsto f(x) = \sin x$

Déterminer un prolongement de f à \mathbb{R} .

$$h: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto h(x) = \begin{cases} \frac{\sin x}{x} & x \neq 0 \\ 1 & x = 0 \end{cases}$$

h est un prolongement de f à \mathbb{R} .

2.
$$f: [0,1] \to \mathbb{R}$$

$$x \mapsto f(x) = \sqrt{x}$$

Déterminer des prolongement de f à [-1,1].

$$h_1:[-1,1] \rightarrow \mathbb{R}$$

$$x \mapsto h_1(x) = \begin{cases} \sqrt{x} & x \in]0,1] \\ x+1 & x \in [-1,0] \end{cases}$$

$$h_2:[-1,1] \rightarrow \mathbb{R}$$

$$x \mapsto h_2(x) = \sqrt{|x|} = \begin{cases} \sqrt{x} & x \in]0,1\\ \sqrt{-x} & x \in [-1,0] \end{cases}$$

$$h_3:[-1,1] \rightarrow \mathbb{R}$$

$$x \mapsto h_3(x) = \begin{cases} \sqrt{x} & x \in]0,1] \\ \sin^2 x & x \in [-1,0] \end{cases}$$

 h_1, h_2 et h_3 sont des prolongement de f à [-1,1].

Remarque:

Une application $f: E \to F$ admet une restriction unique à une partie A de E, mais elle admet des prolongements à tout ensemble H tel que a $E \subset H$.

5. Composition des applications :

Soient $f: E \to F$ et $g: F \to G$ deux applications.

On définit une application de E dans G notée $g \circ f$ par :

$$\forall x \in E : g \circ f(x) = g(f(x))$$

On l'appelle application composée de f et g.

$$E \xrightarrow{f} F \xrightarrow{g} G$$

Exemples:

1.
$$f: \mathbb{R} \to \mathbb{R}$$

$$g: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto g(x) = 2x - 3$

$$x \mapsto f(x) = x^2$$

 $x \mapsto g(x) = 2$

Déterminer $g \circ f$ et $f \circ g$.

$$g \circ f : \mathbf{R} \to \mathbf{R}$$

Soit
$$x \in \mathbb{R}$$
: $g \circ f(x) = g(f(x)) = g(x^2) = 2x^2 - 3$.

Donc
$$g \circ f : \mathbf{R} \to \mathbf{R}$$

$$x \mapsto g \circ f(x) = 2x^2 - 3$$

$$f \circ g : \mathbf{R} \to \mathbf{R}$$

Soit
$$x \in \mathbb{R}$$
: $f \circ g(x) = f(g(x)) = f(2x-3) = (2x-3)^2 = 4x^2 - 12x + 9$

Donc
$$f \circ g : \mathbf{R} \to \mathbf{R}$$

$$x \mapsto f \circ g(x) = 4x^2 - 12x + 9$$

Remarque:

$$g \circ f \neq g \circ f$$
.

Proposition:

Soient E, F et G des ensembles ; et $f: E \to F$, $g: F \to G$ et $h: G \to H$ des applications :

- 1. $h \circ (g \circ f) = (h \circ g) \circ f$.
- **2.** Si E=G, alors on peut définir $g\circ f$ et $f\circ g$, mais en général ces applications ne sont pas égales.
- **3.** $f \circ Id_E = f$ et $Id_F \circ f = f$.

En effet:

$$E \xrightarrow{Id_E} E \xrightarrow{f} F$$

Soit
$$x \in E$$
: $f \circ Id_E(x) = f(Id_E(x)) = f(x)$.

$$E \xrightarrow{f} F \xrightarrow{Id_F} F$$

Soit
$$x \in E : Id_F \circ f(x) = Id_F(f(x)) = f(x)$$
.

6. Image directe et Image réciproque :

6.1. Image directe:

Soit $f: E \to F$ une application et $A \subseteq E$

On appelle image directe de A par f, l'ensemble des images des éléments de A par f.

$$f(A) = \{ y \in F / \exists x \in E : y = f(x) \}$$

$$f(A) = \{ f(x) \in F / x \in A \}$$

Exemples:

1. *f* :

$$A = \{1,2\} \qquad f(A) = \{c,a\}$$

$$A = \{2,3,4\} \qquad f(A) = \{a,b\}$$

$$A = \{3,4\} \qquad f(A) = \{b\}$$

2.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = 2x - 3$$

Déterminer $f(\{0,2,-3\})$
 $f(\{0,2,-3\}) = \{f(x) \in \mathbb{R}/x \in \{0,2,-3\}\}$
 $x \in \{0,2,-3\} \Rightarrow x = 0 \lor x = 2 \lor x = -3$
 $f(0) = -3$, $f(2) = 1$ et $f(-3) = -9$
Donc $f(\{0,2,-3\}) = \{-3,1,-9\}$

3. $f: \mathbb{R} \to \mathbb{R}$

$$x \mapsto f(x) = \frac{2}{3+x^2}$$
Déterminer $f([0,1])$

$$f([0,1]) = \{f(x) \in \mathbb{R}/x \in [0,1]\}$$

$$x \in [0,1] \Rightarrow 0 \le x \le 1$$

$$\Rightarrow 0 \le x^2 \le 1 \text{ car } x^2 \text{ est croissante sur } \mathbb{R}_+$$

$$\Rightarrow 3 \le 3 + x^2 \le 4$$

$$\Rightarrow \frac{1}{4} \le \frac{1}{3+x^2} \le \frac{1}{3}$$

$$\Rightarrow \frac{1}{2} \le \frac{2}{3+x^2} \le \frac{2}{3}$$

Donc $f([0,1]) = \left[\frac{1}{2}, \frac{2}{3}\right]$

4.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = x^2$$
Déterminer $f([-2,2])$

$$[-2,2] = [-2,0] \cup [0,2]$$

$$f([-2,2]) = f([-2,0] \cup [0,2]) = f([-2,0]) \cup f([0,2]) = [0,4] \cup [0,4] = [0,4].$$

5.
$$f: \mathbb{R}^2 \to \mathbb{R}$$

$$(x,y) \mapsto f(x,y) = 2x^2 + y$$

Déterminer $f(\{(-1,0),(0,0),(3,-4),(1,0)\})$

$$f(\{(-1,0),(0,0),(3,-4),(1,0)\}) = \{f(x,y) \in \mathbb{R}/(x,y) \in \{(-1,0),(0,0),(3,-4),(1,0)\}\}$$

$$(x, y) \in \{(-1,0), (0,0), (3,-4), (1,0)\} \Rightarrow (x, y) = (-1,0) \lor (x, y) = (0,0) \lor (x, y) = (3,-4) \lor (x, y) = (1,0)$$

$$f(-1,0) = 2$$
, $f(0,0) = 0$, $f(-3,4) = 22$ et $f(1,0) = 2$
Donc $f(\{(-1,0),(0,0),(3,-4),(1,0)\}) = \{2,0,22\}$

6.
$$f: R \to R^2$$

 $x \mapsto f(x) = (\sin x, \cos x)$
Déterminer $f\left(\left\{0, 2\pi, \pi, \frac{\pi}{4}\right\}\right)$
 $f\left(\left\{0, 2\pi, \pi, \frac{\pi}{4}\right\}\right) = \left\{f(x) \in R/x \in \left\{0, 2\pi, \pi, \frac{\pi}{4}\right\}\right\}$
 $x \in \left\{0, 2\pi, \pi, \frac{\pi}{4}\right\} \Rightarrow x = 0 \lor x = 2\pi \lor x = \pi \lor x \frac{\pi}{4}$
 $f(0) = (\sin 0, \cos 0) = (0, 1)$
 $f(2\pi) = (\sin (2\pi), \cos(2\pi)) = (0, 1)$
 $f(\pi) = (\sin (\pi), \cos(\pi)) = (0, -1)$
 $f\left(\frac{\pi}{4}\right) = \left(\sin\left(\frac{\pi}{4}\right), \cos\left(\frac{\pi}{4}\right)\right) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
Donc $f\left(\left\{0, 2\pi, \pi, \frac{\pi}{4}\right\}\right) = \left\{(0, 1), (0, -1), \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)\right\}$

Remarque:

Soit $f: E \to F$ une application.

$$f(E) = \{ f(x) \in F / x \in E \}$$

On note f(E) par Im f et on lit image de f ou bien im de f.

Exemples:

1.
$$f: R \to R$$

 $x \mapsto f(x) = x^2$.
 $f(E) = f(R) = \{f(x) \in R \mid x \in R\} = \{x^2 \in R \mid x \in R\}$
 $\forall x \in R: x^2 \ge 0$. Donc $f(R) = R_+$

2.
$$f : R \to R$$

 $x \mapsto f(x) = e^x$
 $f(E) = f(R) = \{f(x) \in R \mid x \in R\} = \{e^x \in R \mid x \in R\} = R^*_+$

3.
$$f:]0,+\infty[\to \mathbb{R}$$

 $x \mapsto f(x) = \ln x$
 $f(E) = f([0,+\infty[)] = \{f(x) \in \mathbb{R} / x \in [0,+\infty[]\} = \{\ln x \in \mathbb{R} / x \in [0,+\infty[]\} = \mathbb{R}$

4.
$$f : R \to R$$

 $x \mapsto f(x) = \sin x$
 $f(E) = f(R) = \{ f(x) \in R / x \in R \} = \{ \sin x \in R / x \in R \} = [-1,1].$

Proposition : Soient $f: E \to F$ une application, et A_1, A_2 des parties de E.

- **1.** $f(\phi) = \phi$.
- 2. $A_1 \subset A_2 \Rightarrow f(A_1) \subset f(A_2)$.
- 3. $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
- **4.** $f(A_1 \cap A_2) \subset f(A_1) \cap f(A_2)$.

6.2. Image réciproque :

Soit $f: E \to F$ une application et $B \subseteq F$

On appelle *image réciproque* de B par f, notée $f^{-1}(B)$ l'ensemble des antécédents des éléments de B par f.

$$f^{-1}(B) = \{x \in E / f(x) \in B\}.$$

$$\forall x \in E; \ x \in f^{-1}(B) \Leftrightarrow f(x) \in B.$$

Exemples:

1. *f* :

$$f^{-1}(\{a,c\}) = \{2,1\}$$
 $f^{-1}(\{b,c\}) = \{3,4,1\}$ $f^{-1}(\{d\}) = \phi$

2.
$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto f(x) = -x^2 - 2x + 3$$
.

Déterminer $f^{-1}(\{0,4,5\})$.

$$f^{-1}(\{0,4,5\}) = \{x \in \mathbb{R}/f(x) \in \{0,4,5\}\}$$

$$f(x) \in \{0,4,5\} \implies f(x) = 0 \land f(x) = 4 \land 0$$

$$f(x) \in \{0,4,5\} \Rightarrow f(x) = 0 \lor f(x) = 4 \lor f(x) = 5$$

$$f(x)=0 \Rightarrow -x^2-2x+3=0$$

 $\Delta = 16 > 0$ donc les solutions sont $x_1 = 1 \lor x_2 = -3$.

$$f(x) = 4 \Rightarrow -x^2 - 2x + 3 = 4$$
$$\Rightarrow -x^2 - 2x - 1 = 0$$
$$\Rightarrow x^2 + 2x + 1 = 0$$
$$\Rightarrow (x+1)^2 = 0$$
$$\Rightarrow x+1 = 0$$

$$\Rightarrow x = -1$$

$$f(x) = 5 \Rightarrow -x^2 - 2x - 2 = 0$$

$$\Rightarrow x^2 + 2x + 2 = 0$$

$$\Delta = -4 < 0 \quad \text{donc pas de solutions dans } \mathbb{R}.$$

$$f^{-1}(\{0,4,5\}) = \{1,-3,-1\}$$

3.
$$f: R - \{1\} \to R$$

 $x \mapsto f(x) = \frac{3}{1-x}$
Déterminer $f^{-1}([1,2])$.
 $f^{-1}([1,2]) = \{x \in R - \{1\} / f(x) \in [1,2]\}$
 $f(x) \in [1,2] \Rightarrow 1 \le f(x) \le 2$
 $\Rightarrow 1 \le \frac{3}{1-x} \le 2$
 $\Rightarrow \frac{1}{2} \le \frac{1-x}{3} \le 1$
 $\Rightarrow \frac{3}{2} \le 1 - x \le 3$
 $\Rightarrow \frac{1}{2} \le -x \le 2$
 $\Rightarrow -2 \le x \le -\frac{1}{2}$
 $f^{-1}([1,2]) = \left[-2, -\frac{1}{2}\right]$.

4.
$$f: \mathbb{R} \to \mathbb{R}^2$$

 $x \mapsto f(x) = (\sin x, \cos x)$
Déterminer $f^{-1}\left(\left\{\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\right\}\right) = \left\{x \in \mathbb{R}/f(x) \in \left\{\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\right\}\right\}$
 $f^{-1}\left(\left\{\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\right\}\right) = \left\{x \in \mathbb{R}/f(x) \in \left\{\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\right\}\right\}$
 $f(x) \in \left\{\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\right\} \Rightarrow f(x) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \lor f(x) = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$
 $f(x) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \Rightarrow (\sin x, \cos x) = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$
 $\Rightarrow \sin x = \frac{\sqrt{2}}{2} \land \cos x = \frac{\sqrt{2}}{2}$
 $\Rightarrow x = \frac{\pi}{4} + 2k\pi \text{ avec } k \in \mathbb{Z}$

$$f(x) = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right) \Rightarrow (\sin x, \cos x) = \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)$$

$$\Rightarrow \sin x = \frac{\sqrt{3}}{2} \wedge \cos x = -\frac{1}{2}$$

$$\Rightarrow x = 2\frac{\pi}{3} + 2k\pi \quad \text{avec } k \in \mathbb{Z}$$

$$f^{-1}\left(\left\{\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right), \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)\right\}\right) = \left\{\frac{\pi}{4} + 2k\pi, 2\frac{\pi}{3} + 2k\pi/k \in \mathbb{Z}\right\}$$

$$f^{-1}(\left\{(0,0)\right\}) = \left\{x \in \mathbb{R}/f(x) \in \left\{(0,0)\right\}\right\}$$

$$f(x) \in \left\{(0,0)\right\} \Rightarrow f(x) = (0,0)$$

$$f(x) = (0,0) \Rightarrow (\sin x, \cos x) = (0,0) \text{ impossible car sin } 2x + \cos^2 x = 0 \neq 1$$
Donc
$$f^{-1}(\left\{(0,0)\right\}) = \phi$$

Proposition : Soient $f: E \to F$ une application, et B, B_1, B_2 des parties de F .

1.
$$B_1 \subset B_2 \Rightarrow f^{-1}(B_1) \subset f^{-1}(B_2)$$

2.
$$f^{-1}(B_1 \cup B_2) = f^{-1}(B_1) \cup f^{-1}(B_2)$$

3.
$$f^{-1}(B_1 \cap B_2) = f^{-1}(B_1) \cap f^{-1}(B_2)$$

4.
$$f^{-1}(C_F^B) = C_E^{f^{-1}(B)}$$