# Exuberant and Uninformed: How Financial Markets (Mis-)Allocate Capital during Booms

Ilja Kantorovitch\*
Universitat Pompeu Fabra & Barcelona GSE

Job Market Paper

November 4, 2020 Click here for the latest version

#### **Abstract**

I develop a macroeconomic model with a central emphasis on the informational role of financial markets. Economic agents save by purchasing financial claims on firms. Crucially, agents produce information about firm productivity to guide their trading decisions. In the aggregate, this information determines the financial market's ability to allocate more capital to productive firms and, thus, pins down total factor productivity (TFP). Using this framework, I study how information varies in response to fundamental (productivity) and non-fundamental (sentiment) macroeconomic shocks. Both lead to similar co-movements in output, asset prices, and investment but affect traders' information production differently. Productivity booms crowd in information and, thus, amplify the initial shock by further increasing TFP. In contrast, sentiment shocks, defined as waves of optimism or pessimism, crowd out information production, which dampens sentiment booms through a decrease in TFP. I show that information production in the competitive equilibrium is generally constrained inefficient for two reasons. First, each agent produces information to extract rent from others (rent-extracting behavior). Second, atomistic agents do not internalize that their information production helps improve capital allocation and TFP (information spillover). Finally, I show that asset purchase programs can be an effective way to address financial market inefficiencies.

**Keywords**: Financial Markets; Information Production; Misallocation; Macroeconomics; Booms

**JEL Codes**: D80, E32, E44, G14

<sup>\*</sup>Email Address: ilja.kantorovitch@upf.edu. I want to thank Vladimir Asriyan, Alberto Martín, and Victoria Vanasco for their guidance and advice on this project. I acknowledge support from the German National Academic Foundation throughout my studies. I also thank Edouard Schaal, Isaac Baley, Filippo Ippolito, and the participants of the CREi Macro Lunch, the 1st NuCamp Virtual PhD Workshop and the VMACS Junior Conference for their insightful comments and feedback.

## 1 Introduction

Financial markets play a central role in allocating capital to its most productive uses, yet they do not always fulfill this role well. The last twenty-five years, for instance, have been characterized by successive booms and busts in financial markets.<sup>1</sup> These cycles are hard to justify on fundamental grounds (Martin and Ventura, 2018). Against this backdrop, there are growing concerns that such booms lead to the deterioration of capital allocation, ultimately reducing aggregate productivity.<sup>2</sup> The general narrative is as follows: during booms, the perception is that all investments perform well. Thus, agents are less prone to produce information about specific investments, so markets eventually become less informative and the allocation of resources worsens. This narrative is loose and cannot be fully evaluated without a theory of information production and its macroeconomic effects.

The goal of this paper is to provide such a theory. Specifically, this paper is used to develop a tractable macroeconomic framework in which financial markets play the key role of aggregating information. The central feature of the framework is that information is endogenous, in the sense that agents can decide to engage in costly information production. The framework can thus shed light on the two-way interaction between the state of the macroeconomy and agents' incentives to produce information. The agents' information production, in turn, determines financial markets' ability to allocate more capital to productive firms and, ultimately, aggregate productivity.

I model a dynamic economy populated by traders and firms. Firms are subject to idiosyncratic productivity shocks. Traders must decide in which firms to invest, but they have imperfect information about firm productivity. To make their investment decisions, traders combine their private information with a public signal that is provided by financial markets, which effectively aggregates the information of all traders.

The model is based on three core assumptions. First, I assume that aggregate shocks are publicly observable, but traders disagree about the distribution of firm productivity; whereas the former part is for simplicity and can be altered, the latter is a central modelling assumption to motivate trade. The source of disagreement is that each trader receives an imperfect signal about firm productivity, which features both idiosyncratic and correlated noise. The idiosyncratic noise captures agent-specific information, while the correlated noise

<sup>&</sup>lt;sup>1</sup>For example, the dot-com bubbles in the US and the housing bubbles in the US and Southern Europe.

<sup>&</sup>lt;sup>2</sup>Gopinath et al. (2017) document a rise in capital misallocation during the housing boom, which has been documented for Southern Europe, and García-Santana et al. (2020) are studying this with relation to Spain. Doerr (2018) provides similar evidence for the US. Gorton and Ordoñez (2020) relate credit booms in general to changes to TFP. They have found that "bad" booms can lead to a decrease in TFP. Similarly, Borio, Karroubi, et al. (2015) have shown that credit booms lead to a worsening of allocative efficiency of labor.

captures a common "sentiment" across agents. From an economic standpoint, this sentiment is meant to capture a range of phenomena that drives asset prices away from their fundamental value, such as herding, network effects, social learning, extrapolative expectations, or bubbles (see Kindleberger and Aliber, 2015; Shiller, 2015, 2017). Second, traders can exert a costly effort to produce additional information about the productivity of firms, which effectively raises the precision of their signal. Third, to avoid the well-known Grossman-Stiglitz paradox (see Grossman and Stiglitz, 1980) and to justify the production of information in equilibrium, traders are assumed to be overconfident. This assumption effectively micro-founds noise trading, which is usually implemented in an ad-hoc fashion and is an indispensable ingredient in in the literature on informative markets.<sup>3</sup> I formalize overconfidence by assuming that each trader believes the noise in her signal to be fully idiosyncratic. In a nutshell, each trader believes that she is not prone to sentiments even though she understands that everyone else is.

I derive two key results. The first is that the precision of information depends on the state of the economy. In particular, I study how information production reacts to two types of macroeconomic shocks: sentiment and productivity. Sentiment shocks, defined as waves of optimism or pessimism, formally drive the correlated component of individual signals. Sentiment and productivity shocks lead to similar co-movements in output, investment, wages, and asset prices. However, they have different effects on information production, which is a central object in the model that drives the allocation of capital. More precise information strengthens the correlation between the size of a firm and its productivity, thereby raising allocative efficiency. Consequently, an economy with higher information production thus allocates more capital to productive firms and has a higher TFP.

In particular, information production increases in productivity. This is due to a scale effect: since high productivity raises the optimal size of a firm, it also boosts the benefits of acquiring more precise information about it. However, information production is non-monotonic in sentiment. The reason is that, from the viewpoint of an individual trader, the benefit of acquiring information depends on the marginal impact of this information on the trader's investment decisions. But if sentiment regarding a specific firm is too high or too low, a trader knows what her optimal strategy is even without precise information: namely, not

<sup>&</sup>lt;sup>3</sup>The Grossman-Stiglitz paradox states that no equilibrium exists in models of financial markets with costly information production when there is no noise to keep prices from being perfectly revealing. The absence of noise leads to perfectly revealing asset prices, which destroys the incentive for individual information production. In turn, prices cannot be informative if agents do not produce information. Therefore, no equilibrium exists. Many models of informative financial markets (Grossman and Stiglitz, 1980; Kyle, 1985; Albagli, Hellwig, and Tsyvinski, 2011a) circumvent this problem by introducing so-called noise traders. These agents are non-optimizing and trade randomly. I effectively micro-found noise trading by assuming that agents are overconfident.

to invest in firms where sentiment is high (i.e., firms that are "overvalued") and to invest in firms where sentiment is low (i.e., firms that are "undervalued"). Thus, extreme sentiments discourage the production of information.

This leads to a third key result of the paper: while productivity-driven booms are endogenously amplified by information production's effect on the allocation of capital, sentiment-driven booms may be dampened. Productivity booms *crowd in* information production, which improves allocative efficiency, thereby further increasing productivity. Sentiment-driven booms, however, may *crowd out* information production, thus reducing allocative efficiency and, hence, overall productivity. This final result resonates well with the narrative outlined above, which increasingly perceives booms as fueling resource misallocation (e.g. Gopinath et al., 2017; Doerr, 2018; García-Santana et al., 2020). My model provides a formal justification for this narrative; insofar as booms are predominantly driven by sentiment, they weaken the incentives to produce information. It also captures a dichotomy of "good" (productivity-driven) and "bad" (sentiment-driven) booms, as in Gorton and Ordoñez (2020).

On the normative front, information production is always at an inefficient level in the competitive equilibrium due to two inefficiencies. First, traders produce information to extract trading rents from other traders, potentially driving information production above its optimal level. Secondly, atomistic traders take prices as given and do not take into account the productivity-improving effect of collective information production. This information spillover can lead to information production being too low. Whether information production is too low or too high in the competitive equilibrium depends on how important the cross-sectional allocation of capital is. In particular, information production is too low exactly when firms are highly substitutable and the allocation of capital matters, and vice versa.

Moreover, my model sheds light on two pressing policy debates. First, it suggests that a social planner should stabilize the economy in the face of sentiment shocks, which lead to fluctuations in asset prices and investment that are not justified by fundamentals. This policy prescription of "leaning against the wind", which is not exclusive to my model, is often criticized on informational grounds: namely, it requires the planner to be able to distinguish sentiment- from productivity-driven fluctuations in real time. My model suggests that, although they look similar in many respects, both types of fluctuations can indeed be distinguished through their effects on information production and thus on the dispersion in asset prices. In particular, whereas productivity booms boost information production and thus increase dispersion in firm valuations, sentiment booms discourage information production and thus reduce the dispersion in firm valuations.

A second policy debate refers to the effects of large-scale asset purchases by policymakers. There is the widespread perception that asset purchases can distort prices and, thus, worsen the allocation of resources.<sup>4</sup> My model yields a simple yet robust insight: whether this concern is justified depends on whether asset purchases reduce or aggravate the aggregate mispricing of assets. By reducing the supply of assets in the hands of traders, asset purchases in the model change the marginal trader's identity and thus raise equilibrium prices. If asset prices were initially depressed due to low productivity, the common perception laid out above is correct: by distorting prices upward, asset purchases discourage information production and thus worsen the allocation of capital. However, if asset prices were initially depressed due to negative sentiment, this conclusion does not hold. On the contrary, by undoing the effects of negative sentiment, asset purchases fuel information production, thereby improving the allocation of resources.

Finally, the paper makes a methodological contribution by providing a tractable macroe-conomic model of information production and aggregation. With a few exceptions,<sup>5</sup> the role of financial markets as aggregators of dispersed information has received little attention in macroeconomics.<sup>6</sup> The primary reason is that most standard models of informative financial markets rely on non-optimizing agents, such as noise traders, which are not straightforward to reconcile with general-equilibrium analysis. Instead, my model relies on a small behavioral deviation-overconfidence-which means that traders do not adequately perceive the idiosyncratic and correlated components in their signals. This misperception motivates them to produce costly information as they believe in having an informational edge over the market. This simple assumption is grounded on empirical evidence,<sup>7</sup> and it avoids the Grossman-Stiglitz paradox.

### 1.1 Literature Review

A recent literature studies the link between information production and the business cycle (Veldkamp, 2005; Ambrocio, 2019; Farboodi and Kondor, 2019; Asriyan, Laeven, and Martin, 2019; Chousakos, Gorton, and Ordonez, 2020).<sup>8</sup> This paper shows that the source of

<sup>&</sup>lt;sup>4</sup>For example, see da Silva and Rungcharoenkitkul (2017), DNB (2017), Fernandez, Bortz, and Zeolla (2018), Borio and Zabai (2018), Acharya et al. (2019), and Kurtzman and Zeke (2020). In particular, the dutch central bank argues in their 2016 annual report (DNB, 2017): "The large-scale purchase programmes and the flood of liquid assets has set the risk compass in financial markets spinning, with misallocations as a result."

<sup>&</sup>lt;sup>5</sup>Some exceptions are Peress (2014), David, Hopenhayn, and Venkateswaran (2016), and Straub and Ulbricht (2018).

<sup>&</sup>lt;sup>6</sup>The idea of markets as aggregators of dispersed information dates back to Hayek (1945): "The economic problem of society is (...) rather a problem of how to secure the best use of resources known to any of the members of society, for ends whose relative importance only these individuals know. Or, to put it briefly, it is a problem of the utilization of knowledge which is not given to anyone in its totality."

<sup>&</sup>lt;sup>7</sup>See for example Eyster et al. (2018), Grimm and Mengel (2018), and Enke and Zimmermann (2019).

<sup>&</sup>lt;sup>8</sup>See also Van Nieuwerburgh and Veldkamp (2006), Angeletos, Lorenzoni, and Pavan (2010), Ordonez (2013), Gorton and Ordoñez (2014), Fajgelbaum, Schaal, and Taschereau-Dumouchel (2017), and Straub

fluctuations is important in determining the relationship between the cycle and information production. Similar to Asriyan, Laeven, and Martin (2019) and Chousakos, Gorton, and Ordonez (2020), booms can crowd out information from financial markets.

This paper builds on the literature on informative financial markets (Grossman and Stiglitz, 1980; Kyle, 1985; Vives, 2010; Albagli, Hellwig, and Tsyvinski, 2011a). In this literature, limits to arbitrage keep arbitrageurs from fully eliminating mispricing and, therefore, incentives to trade and produce information persist in equilibrium. My model's market microstructure is similar to Albagli, Hellwig, and Tsyvinski (2011a). Whereas Albagli, Hellwig, and Tsyvinski (2011a) use noise traders to keep prices from being fully revealing, I make the model more tractable by assuming instead that traders are overconfident.

A strand of the literature uses the insight that prices can be informative to study the role of this information in economic decisions, as surveyed in Bond, Edmans, and Goldstein (2012). For example, secondary markets can be sources of information for managers (Holmström and Tirole, 1993; Dow and Gorton, 1997). Information is important in my model as a measure of allocative efficiency without any firms actively learning from prices. Similar to Dow, Goldstein, and Guembel (2017), I study the two-way feedback between the financial and real economy when traders produce information endogenously. A number of papers has brought this paradigm to macroeconomics (Peress, 2014; David, Hopenhayn, and Venkateswaran, 2016; Albagli, Hellwig, and Tsyvinski, 2017; Straub and Ulbricht, 2018; Asriyan, 2020). My contribution is to study the effects of aggregate shocks on information production and the allocation of capital. From a normative perspective, I show under which conditions information production is likely to be too high or low in the competitive equilibrium.

There is ample empirical evidence that asset prices are indeed informative. See Morck, Yeung, and Yu (2013) for a survey on the literature that uses "non-synchronicity" as a measure of price-informativeness. Morck, Yeung, and Yu (2000) found that more developed countries have stock markets that are more informative. Focusing instead on the cross-section of firms, Durnev, Morck, and Yeung (2004) found that non-synchronicity is positively related to the efficiency of corporate investment. More recently, Bai, Philippon, and Savov (2016) and Farboodi, Matray, et al. (2020) have shown that prices have become better predictors of corporate earnings in the US since the 1960s. The latter emphasize that this has been mainly the case for large growth firms. Finally, Bennett, Stulz, and Wang (2020) provide evidence that price informativeness increases firm productivity. Price informativeness is closely related to the allocative efficiency of financial markets in my model.

and Ulbricht (2018) for related work.

<sup>&</sup>lt;sup>9</sup>Non-synchronicity has been suggested by Roll (1988) as a measure of firm-specific information in asset prices. The main idea is that as the volatility of asset prices increasingly relates to firm-specific factors, prices also become increasingly informative about firms.

The results of my model are broadly consistent with empirical evidence on how price informativeness varies over the business cycle. Dávila and Parlatore (2020) proposed an identification procedure to estimate price informativeness from price and earnings data, which is closely related to information production in my model. Comparing fluctuations around the corresponding trends for the US reveals a highly positive correlation between price informativeness and TFP growth as can be seen in Figure 15. From 1995 to 2001, price informativeness and TFP growth were increasing, pointing to a productivity-driven expansion. In contrast, the housing boom from 2002 to 2008 eventually even led to a decline in TFP and a steep fall in price informativeness, which indicates a sentiment-driven boom during these years. This interpretation is in line with Borio, Karroubi, et al. (2015), who suggested that TFP growth slowed between 2002 and 2008 because of the financial boom, not despite it.

In this model, traders suffer from correlation neglect. This bias has been studied in the literature and documented repeatedly in experimental settings (Chandrasekhar, Larreguy, and Xandri, 2012; Brandts, Giritligil, and Weber, 2015; Eyster et al., 2018; Grimm and Mengel, 2018; Enke and Zimmermann, 2019). When receiving information from multiple sources, neglecting correlated noise in the signals can lead to an overly precise posterior. Therefore, correlation neglect leads to overconfidence, which plays a central role in the literature on behavioral biases, especially in relation to financial markets (Glaser and Weber, 2010; Daniel and Hirshleifer, 2015).

Finally, a broad literature studies the role of sentiments in macroeconomics (see Nowzohour and Stracca, 2020, for a survey). There are different definitions of sentiments, ranging from self-fulfilling beliefs (Martin and Ventura, 2018; Asriyan, Fuchs, and Green, 2019) to news and noise shocks (Angeletos, Lorenzoni, and Pavan, 2010; Schmitt-Grohé and Uribe, 2012). In this model, sentiments are waves of non-fundamental optimism or pessimism. When a positive sentiment shock hits, agents become optimistic about productivity and vice versa.

## 2 Model

#### 2.1 Households and Traders

The model is populated by overlapping generations of households indexed by  $i \in [0, 1]$ . As is common in the New Keynesian literature, I assume that each household i consists of a unit

<sup>&</sup>lt;sup>10</sup>Intuitively, relative price informativeness is the weight an otherwise uninformed observer puts on the information embodied in the price relative to her prior. In my model, the weight only varies due to changes in the information production by traders.

mass of traders indexed by  $ij \in [0,1] \times [0,1]$  (see for example Blanchard and Galí, 2010). Households pool resources, borrow on behalf of traders, and distribute consumption equally, whereas traders individually maximize the utility for the household given by

$$U_{it} = C_{it,t} + \delta \mathbb{E} \left\{ C_{it,t+1} \right\} - \int_0^1 IA(\beta_{ijt}) dj, \tag{1}$$

where  $C_{it,t}$  is youth consumption,  $C_{it,t+1}$  is old age consumption,  $\delta \in (0,1)$  is the discount factor, and  $\int_0^1 IA(\beta_{ijt})dj$  are information production costs, which are introduced in more detail in a later section.

When young, traders each inelastically supply one unit of labor, they receive wage  $W_t$  and buy shares of intermediate good firms in a competitive financial market. To avoid unbounded demands by risk-neutral traders, demand for each stock is limited to the interval  $[\kappa_L, \kappa_H]$  where  $\kappa_L \leq 0$  and  $\kappa_H > 1$ .<sup>11</sup> Traders also choose the precision  $\beta_{ijt}$  of a noisy signal of firm productivity to inform their trading decision subject to a utility cost  $IA(\beta_{ijt})$ . Finally, the household lends and borrows through risk-free bonds with return  $R_{t+1}$ .

## 2.2 Technologies

#### 2.2.1 Final Good Sector

There are many identical final good firms owned by households. The production function for the final good, which also serves as the numéraire, is Cobb-Douglas over labor and a CES-aggregate of intermediate goods. Aggregate output is

$$Y_t = L^{1-\alpha} \left( \int_0^1 Y_{jt}^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\alpha\theta}{\theta-1}}, \tag{2}$$

where  $\theta \in (0, \infty)$  is the elasticity of substitution between varieties and  $\alpha$  is the share of intermediate goods.  $Y_{jt}$  is an intermediate good produced by firm j. The final good can be consumed or invested in firm capital. L is supply of labor, which is normalized to one.

#### 2.2.2 Intermediate Good Sector

For each generation, there is a unit mass of intermediate good firms  $j \in [0, 1]$  with production function

$$Y_{jt} = A_{jt-1}^{\frac{\theta}{\theta-1}} K_{jt},\tag{3}$$

<sup>&</sup>lt;sup>11</sup>See Albagli, Hellwig, and Tsyvinski (e.g., 2011a) and Dow, Goldstein, and Guembel (2017) for similar approaches and Appendix B for a further elaboration.

where  $K_{jt}$  is firm capital and  $\ln{(A_{jt-1})} \stackrel{iid}{\sim} \mathcal{N}(a_{t-1}, \sigma_a^2)$  is firm productivity. Note that time subscript t-1 is used as agents learn about firm-productivity in the period prior to production. Capital takes time to build, such that investment takes place in t but production in t+1 and depreciates fully after production. Each firm sells a unit mass of claims to total firm-revenue to households and finances capital investment with the proceeds:<sup>12</sup>

$$P_{it} = K_{it+1}. (4)$$

#### 2.2.3 Information

Trader ij is only active in the market for shares of firm j, for which she is an expert as she receives signal

$$s_{ijt} = a_{jt} + \frac{\eta_{ijt} + \varepsilon_{jt}}{\sqrt{\beta_{ijt}}},\tag{5}$$

where  $a_{jt} \stackrel{iid}{\sim} \mathcal{N}(a_t, \sigma_a^2)$  is firm productivity,  $\eta_{ijt} \stackrel{iid}{\sim} \mathcal{N}(0, 1)$  is idiosyncratic noise,  $\varepsilon_{jt} \stackrel{iid}{\sim} \mathcal{N}(\varepsilon_t, \sigma_\varepsilon^2)$  is correlated noise, which is interpreted as *sentiment*, and  $\beta_{ijt}$  is a information precision parameter chosen by trader ij.<sup>13</sup> Both idiosyncratic and correlated noise are iid over time and across markets; idiosyncratic noise is also iid between traders. A high realization of  $\eta_{ijt}$  means that trader ij is optimistic about firm j relative to other traders in the same market. Similarly, a high realization of  $\varepsilon_{jt}$  means that traders in market j are, collectively, too optimistic.

Assumption 1 (Overconfidence). Trader ij believes the information structure to be

$$s_{ijt} = a_{jt} + \frac{\eta_{ijt}}{\sqrt{\beta_{ijt}}}$$
$$s_{-ijt} = a_{jt} + \frac{\eta_{-ijt} + \varepsilon_{jt}}{\sqrt{\beta_{-ijt}}}.$$

Following Assumption 1, traders believe that sentiment  $\varepsilon_{jt}$  drives the beliefs of all traders but not their own beliefs. As a result, traders are overconfident and willing to produce costly information to exploit mispricing induced through sentiment shocks  $\varepsilon_{jt}$ . Finally, trader ij chooses the precision of her private signal  $\beta_{ijt}$  subject to a convex cost function  $IA(\beta_{ijt})$  with standard properties IA(0) = 0, IA'(0) = 0,  $IA''(\cdot) > 0$ .

<sup>&</sup>lt;sup>12</sup>See Appendix C for a micro-foundation and further discussion.

<sup>&</sup>lt;sup>13</sup>See section 7.2 for the effect of uncertainty about aggregate shocks.

<sup>&</sup>lt;sup>14</sup>This assumption is necessary to avoid the Grossman-Stiglitz paradox Grossman and Stiglitz (1980). It states that informationally efficient markets are impossible in the absence of noise when information is costly. In that case, markets would already reveal all information and, therefore, destroy the incentive to produce costly information in the first place.



Figure 1: Intraperiod timing.

### 2.2.4 Aggregate Shocks

Two classes of shocks drive the economy. Aggregate productivity shocks move the mean of the distribution of firm-specific productivity shocks,  $a_{jt} \sim \mathcal{N}\left(a_t, \sigma_a^2\right)$ , and aggregate sentiment shocks drive the mean of firm-specific sentiment shocks,  $\varepsilon_{jt} \sim \mathcal{N}\left(\varepsilon_t, \sigma_\varepsilon^2\right)$ , similar to Angeletos, Lorenzoni, and Pavan (2010). The sentiment shock  $\varepsilon_t$  is meant to capture a range of phenomena that lead to non-fundamental price movements in financial markets, e.g., herding, informational cascades, social learning, bubbles, liquidity trading (see Kindleberger and Aliber, 2015; Shiller, 2015, 2017).

For simplicity, traders perfectly observe aggregate shocks  $\{a_t, \varepsilon_t\}$  before their information production decision, but firm-specific shocks  $\{a_{jt}, \varepsilon_{jt}\}$  need to be learned. The laws of motion for the aggregate shocks are irrelevant for this setup, as the dynamic model is a repetition of static problems. It follows that the information set of trader ij consists of the private signal  $s_{ijt}$ , share prices  $\{P_{jt}\}$  for all markets  $j \in [0,1]$ , and the mean and variances of firm-specific shocks  $\{a_t, \varepsilon_t\}$ , i.e.,  $\mathcal{I}_{ij} = \{s_{ijt}, \{P_{jt}\}, a_t, \varepsilon_t\}$ . In other words, traders have rational beliefs about aggregates, but disagree about the productivity of intermediate firms based on public information in the forms of prices and private signals.

## 2.3 Timing

The timing is laid out in Figure 1. At the beginning of each period, young traders work in the final good sector and receive wage  $W_t$ . Then, traders choose the precision of their signal and the financial market opens. At the end of the period, both investment and consumption take place.

## 2.4 Notation

Traders think that their private signals do not contain correlated noise  $\varepsilon_{jt}$  as in Assumption 1. Therefore, expectations that condition on private signals are distorted and, for example, trader ij's expectations about revenue are  $\tilde{\mathbb{E}}\{\Pi_{jt+1}|s_{ijt},P_{jt}\}$ .

The determinants of functions are usually omitted to save on notation. For example, the

firm j's revenue is denoted by  $\Pi_{jt+1}$  instead of  $\Pi(A_{jt}, K_{jt+1}, Y_{t+1})$ .  $A_{jt}$  is indexed by t instead of t+1, as traders can learn about firm productivity in period t.

## 2.5 The Household's Problem and The Trader's Problem

Household i takes interest rate  $R_{t+1}$  as given and decides how much to borrow or lend. Furthermore, households are also prone to the behavioral bias of Assumption 1 but do not observe the private signals of traders in the household. The household's problem is then

$$\max_{B_{it+1}} C_{it,t} + \delta \tilde{\mathbb{E}}_t \left\{ C_{it,t+1} \right\} - \int_0^1 IA\left(\beta_{ijt}\right) dj$$
 (P1)

$$s.t. \quad C_{it,t} = W_t - \int_0^1 x_{ijt} P_{jt} dj - B_{it+1}$$
 (6)

$$C_{it,t+1} = \int_0^1 x_{ijt} \Pi_{jt+1} dj + R_{t+1} B_{it+1}$$
 (7)

$$C_{it,t}, C_{it,t+1} \ge 0. \tag{8}$$

Households optimally choose how to much lend or borrow subject to the budget constraints during youth and old age. The first constraint (6) states that today's consumption is equal to wages  $W_t$  minus the costs of buying stocks  $\int_0^1 x_{ijt} P_{jt} dj$  and saving through the bond market  $B_{it+1}$ . Constraint (7) states that old age consumption is equal to revenue  $\int_0^1 x_{ijt} \Pi_{jt+1} dj$  plus income from lending on the bond market  $R_{t+1}B_{it+1}$ . Although household i is overly optimistic of the return of its portfolio due to overconfidence, each household correctly values the portfolio of all other households. Therefore, limiting borrowing by the natural borrowing constraint as in (8) rules out defaulting on any borrowing through bonds.

Household i's optimal saving decision is given by

$$B_{it+1} \begin{cases} = -\frac{\int_{0}^{1} x_{ijt} \Pi_{jt+1} dj}{R_{t+1}} & \text{if } R_{t+1} < \frac{1}{\delta} \\ \in \left[ -\frac{\int_{0}^{1} x_{ijt} \Pi_{jt+1} dj}{R_{t+1}}, W_{t} - \int_{0}^{1} x_{ijt} P_{jt} dj \right] - & \text{if } R_{t+1} = \frac{1}{\delta} \\ = W_{t} - \int_{0}^{1} x_{ijt} P_{jt} dj & \text{if } R_{t+1} > \frac{1}{\delta} \end{cases}$$
 (9)

If interest rate  $R_{t+1}$  is below  $\frac{1}{\delta}$ , it is optimal to borrow as much as possible. If the interest is equal to  $\frac{1}{\delta}$ , household i is indifferent between borrowing and saving. Finally, if the interest rate is above  $\frac{1}{\delta}$ , then is optimal to save as much as possible. Plugging (6) and (7) into (P1) and using the solution for the saving decision (9) yields trader ij's problem

$$\max_{\beta_{ijt}} \quad \tilde{\mathbb{E}}_{t} \left\{ \lambda_{t} \max_{x_{ijt}} \tilde{\mathbb{E}} \left\{ x_{ijt} \left( \frac{1}{R_{t+1}} \Pi_{jt+1} - P_{jt} \right) | s_{ijt}, P_{jt} \right\} \right\} - IA \left( \beta_{ijt} \right)$$
 (P2)

$$s.t. \quad x_{ijt} \in [\kappa_L, \kappa_H] \tag{10}$$

$$\beta_{ijt} \ge 0, \tag{11}$$

where  $\lambda_t = \max\{1, \delta R_{t+1}\}$  and terms that do not depend on the decision by trader ij were dropped. The problem is split into two parts, which are solved in reverse chronological order. Given information production  $\beta_{ijt}$  and realizations of the private signal  $s_{ijt}$  and price  $P_{jt}$ , trader ij chooses demand  $x_{ijt}$  for share j subject to the position limits (10). Using the solution to the trading problem, trader ij decides on the information precision  $\beta_{ijt}$  to increase the likelihood of trading profitably subject to a non-negativity constraint. Trader ij can use the household i's pooled resources and borrow through the household for trading. The term  $\lambda_t$  reflects that the value of an additional unit of wealth during youth may be above one.

# 3 Equilibrium Characterization

## 3.1 Input Markets

Wages and intermediate good prices are determined competitively,

$$W_t = \frac{\partial Y_t}{\partial L} = (1 - \alpha) Y_t \tag{12}$$

$$\rho_{jt} = \frac{\partial Y_t}{\partial Y_{jt}} = \alpha Y_t^{\alpha_Y} Y_{jt}^{-\frac{1}{\theta}},\tag{13}$$

where  $\alpha_Y = \frac{\alpha\theta - \theta + 1}{\alpha\theta}$ . Wages are equal to the share  $(1 - \alpha)$  of output. The price for intermediate good j is downward sloping in the quantity produced of the same good. Finally, the revenue of intermediate good firm j is given by

$$\Pi_{jt+1} = \rho_{jt+1} Y_{jt+1}. \tag{14}$$

## 3.2 Trader's Decisions

**Trading** If price  $P_{jt}$  exceeds expectations of revenue  $\Pi_{jt+1}$  using the interest rate on bonds  $R_{t+1}$  as the benchmark rate, trader ij sells  $-\kappa_L$  shares; when these values coincide trader ij is indifferent between buying and selling. When expectations exceed price, trader ij buys

 $\kappa_H$  shares:

$$x(s_{ijt}, P_{jt}) = \begin{cases} \kappa_L & \text{if } \frac{1}{R_{t+1}} \tilde{\mathbb{E}} \left\{ \Pi_{jt+1} | s_{ijt}, P_{jt} \right\} < P_{jt} \\ \in [\kappa_L, \kappa_H] & \text{if } \frac{1}{R_{t+1}} \tilde{\mathbb{E}} \left\{ \Pi_{jt+1} | s_{ijt}, P_{jt} \right\} = P_{jt} \\ \kappa_H & \text{if } \frac{1}{R_{t+1}} \tilde{\mathbb{E}} \left\{ \Pi_{jt+1} | s_{ijt}, P_{jt} \right\} > P_{jt} \end{cases}$$
(15)

Information Acquisition As laid out in (15), the trading decision is driven by the realization of the private signal  $s_{ijt}$  relative to price  $P_{jt}$ . Consequently, trader ij chooses information precision  $\beta_{ijt}$  to improve her ability to identify profitable trading opportunities. A central object in this context is the subjective probability of buying conditional on realizations of productivity  $a_{jt}$ , sentiment  $\varepsilon_{jt}$ , trader ij's information choice  $\beta_{ijt}$ , and the symmetric choice of all other traders in the market  $\beta_{jt}$ . Taking expectations with respect to the realizations of idiosyncratic noise,  $\eta_{ijt}$ , yields the probability of buying

$$\mathcal{P}\left\{x_{ijt} = \kappa_H | a_{jt}, \varepsilon_{jt}, \beta_{ijt}, \beta_{jt}\right\} = \int_{-\infty}^{\infty} \phi\left(\eta_{ijt}\right) 1_{\tilde{\mathbb{E}}\left\{\Pi_{jt+1} | s_{ijt}, P_{jt}\right\} > P_{jt}} d\eta_{ijt}$$
(16)

where  $\phi(\cdot)$  is the standard-normal pdf.<sup>15</sup>

The first-order condition for the information production decision is obtained after plugging (15) into (P2). Evaluating the expectations with respect to the realizations of the idiosyncratic noise  $\eta_{ijt}$  and taking the symmetric information production decisions of all other traders as given  $(\beta_{-ijt} = \beta_{jt})$ , leads to the first-order condition:

$$\widetilde{MB}\left(\beta_{ijt},\beta_{jt}\right) = \max\left\{1,\delta R_{t+1}\right\}\widetilde{\mathbb{E}}_{t} \left\{ \left(\kappa_{H} - \kappa_{L}\right) \underbrace{\frac{\partial \mathcal{P}\left\{x_{ijt} = \kappa_{H} | a_{jt}, \varepsilon_{jt}, \beta_{ijt}, \beta_{jt}\right\}}{\partial \beta_{ijt}}}_{\text{Change in the probability of buying}} \underbrace{\left(\frac{1}{R_{t+1}} \Pi_{jt+1} - P_{jt}\right)}_{\text{Rents}}\right\} = IA'\left(\beta_{ijt}\right).$$
(17)

The marginal benefit of acquiring information consists of two parts. The first is the probability of buying in state  $(a_{jt}, \varepsilon_{jt})$  given information choices  $(\beta_{ijt}, \beta_{jt})$ . The second component is trading rents given by the difference between the net present value of firm revenue minus the price of the stock.

#### 3.3 Financial Market

**Market-Clearing** At the symmetric equilibrium  $(\forall j : \beta_{ijt} = \beta_{jt})$ , traders buy  $\kappa_H$  shares whenever their private signals are above some threshold,  $\hat{s}(P_{jt})$ , are indifferent between buying and selling when their private signals coincides with the threshold, and sell otherwise. After normalizing the supply of shares in each market j to one, the market-clearing condition

 $<sup>^{15}\</sup>mathrm{A}$  more detailed derivation can be found in Appendix A.

becomes

$$\kappa_{H} \left( 1 - \Phi \left( \sqrt{\beta_{jt}} \left( \hat{s} \left( P_{jt} \right) - a_{jt} \right) - \varepsilon_{jt} \right) \right) - \kappa_{L} \Phi \left( \sqrt{\beta_{jt}} \left( \hat{s} \left( P_{jt} \right) - a_{jt} \right) - \varepsilon_{jt} \right) = 1, \quad (18)$$

which can be used to solve for the threshold signal

$$\hat{s}(P_{jt}) = a_{jt} + \frac{\varepsilon_{jt} + \Phi^{-1}\left(\frac{\kappa_H - 1}{\kappa_H + \kappa_L}\right)}{\sqrt{\beta_{jt}}}.$$
(19)

**Price Signal** Traders learn from prices, which is equivalent to observing a noisy signal of the form

$$z_{jt} = \hat{s}\left(P_{jt}\right) - \frac{\Phi^{-1}\left(\frac{\kappa_H - 1}{\kappa_H + \kappa_L}\right)}{\sqrt{\beta_{jt}}} = a_{jt} + \frac{\varepsilon_{jt}}{\sqrt{\beta_{jt}}}.$$
 (20)

When price  $P_{jt}$  is high, traders realize that this can be due to two reasons: either firm j is productive (high  $a_{jt}$ ) or other traders are very optimistic (high  $\varepsilon_{jt}$ ). Therefore, prices are a noisy signal of firm productivity. The combination of dispersed information and position limits for asset demand ensure that the signal is normally distributed as  $z_{jt} \sim \mathcal{N}(a_{jt}, \sigma_{\varepsilon}^2/\beta_{ijt})$  for all values of  $\kappa_L$  and  $\kappa_H$ . I call  $z_{jt}$  the price signal and expectations condition on  $z_{jt}$  instead of  $P_{jt}$ .

A crucial object in my analysis is the precision of the price signal  $\beta_{jt}\sigma_{\varepsilon}^{-2}$ , also referred to as price informativeness in the literature. If  $\beta_{jt}\sigma_{\varepsilon}^{-2}$  is high, financial markets efficiently aggregate information and asset prices are informative about firm productivity. This naturally leads to productive firms receiving, on average, more capital which improves the allocative efficiency of financial markets. I focus on the endogenous component  $\beta_{jt}$ .

As is evident now, the values of  $\kappa_H$  and  $\kappa_L$  do not matter for price signal  $z_{jt}$ . They only pin down the identity of the marginal trader, which has a predictable effect on the price. For instance, the marginal trader is relatively optimistic for  $\kappa_H - \kappa_L > 2$ , which means that price is set by a trader who received a private signal with positive idiosyncratic noise  $(\eta_{ijt} > 0)$ . As a result, the price would be upward biased. Choosing  $\kappa_H = 2$  and  $\kappa_L = 0$  ensures that the choice of position limits does not introduce a bias in share prices as the marginal trader has on average unbiased beliefs  $(\eta_{ijt} = 0)$ .

The following proposition shows that the described equilibrium is unique. Moreover, the price  $P_{jt}$  is equal to the valuation of the marginal trader who is just indifferent between buying or not buying and who observed the private signal  $s_{ijt} = z_{jt}$ . Any trader who is more optimistic than the marginal trader  $(s_{ijt} > z_{jt})$  buys two shares, whereas more pessimistic

 $<sup>^{16}{\</sup>rm This}$  mechanism plays an important role in Fostel and Geanakoplos (2012) and Simsek (2013) and is treated more in-depth in Appendix B.

traders buy nothing.

**Proposition 1.** Observing  $P_{jt}$  is equivalent to observing the signal (20) whenever  $K_{jt+1}$  is non-decreasing in  $z_{jt}$ . In the unique equilibrium, in which demand  $x(s_{ijt}, P_{jt})$  is non-increasing in  $P_{jt}$ , the price is equal to the valuation of the trader with the private signal  $s_{ijt} = z_{jt}$ ,

$$P(z_{jt}) = \frac{1}{R_{t+1}} \tilde{\mathbb{E}} \left\{ \Pi_{jt+1} | s_{ijt} = z_{jt}, z_{jt} \right\}.$$
 (21)

## 3.4 Bond and Capital Market

The net supply of bonds is equal to zero,  $\int_0^1 B_{it+1} di = 0$ . Moreover, as all households are ex-ante identical, positions in bond markets are zero for all households,  $\forall i : B_{it+1} = 0$ . There is no excess demand or supply for bonds whenever the return on bonds  $R_{t+1}$  is equal to the return that traders expect to earn on the stock market. This is the case whenever

$$R_{t+1} = \frac{\int_0^1 \tilde{\mathbb{E}} \left\{ \prod_{jt+1} | s_{ijt} = z_{jt}, z_{jt} \right\} dj}{\int_0^1 P_{jt} dj},$$
(22)

which is derived by integrating (18) on both sides.

The aggregate value of the stock market is equal to the aggregate capital stock as all revenue from financial markets is invested by firms as follows from aggregating (4),

$$\int_0^1 P_{jt} dj = K_{t+1}. \tag{23}$$

## 3.5 Equilibrium Definition

In equilibrium, all traders choose the same information precision for all markets  $(\forall ij : \beta_{ijt} = \beta_t)$  and expect all other traders to choose the same.

**Definition 1.** A symmetric, competitive equilibrium consists of prices  $\{W_t, \rho_{jt+1}, P_{jt}, R_{t+1}\}$  and allocations  $\{B_{it+1}, x_{ijt}, \beta_{ijt}, K_{jt+1}\}$  such that:

- 1. Given prices  $\{W_t, \rho_{jt+1}, P_{jt}, R_{t+1}\}$  and allocations  $\{x_{ijt}, \beta_{ijt}\}$ ,  $B_{it+1}$  solves the household's problem P1.
- 2. Given prices  $\{P_{jt}, R_{t+1}\}$  and allocations  $\{B_{it+1}, \beta_{jt}, K_{jt+1}\}$ ,  $\{x_{ijt}, \beta_{ijt}\}$  solve the trader's problem P2.
- 3. Prices are such that markets for labor, intermediate goods, shares, bonds, and capital clear, i.e., (12), (13), (18), (22) and (23) hold.

# 4 Properties of the Equilibrium

In the following, I work out the properties of the equilibrium abstracting from the information production decision until the next section. I focus on how the the allocation of capital can be expressed in terms of beliefs of the marginal trader and how these beliefs respond to shocks both idiosyncratic and aggregate. Next, I demonstrate how the allocation of capital through the stock market leads to total factor productivity, which depends on the information choice. Finally, I show that the market allocation is distorted and derive the constrained efficient allocation.

As shown in (21), the beliefs of the marginal trader determine share prices. Therefore, they play a central role for the allocation of capital both in the cross-section and aggregate. The marginal trader's expectations are a weighted sum of the realization of both idiosyncratic and aggregate productivity and sentiment shocks,

$$\ln \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\} = \omega_p \left( \beta_{jt} \right) a_t + \omega_a \left( \beta_{jt} \right) a_{jt} + \omega_\varepsilon \left( \beta_{jt} \right) \left( \varepsilon_{jt} - \varepsilon_t \right) + \omega_{s\varepsilon} \left( \beta_{jt} \right) \varepsilon_t + \frac{1}{2} \mathbb{V}_{jt}. \tag{24}$$

The weights  $\{\omega_p(\beta_{jt}), \omega_a(\beta_{jt}), \omega_{\varepsilon}(\beta_{jt}), \omega_{s\varepsilon}(\beta_{jt})\}$  depend on information production  $\beta_{jt}$ .  $\mathbb{V}_{jt}$  is related to the uncertainty of the marginal trader and does not depend on shocks.<sup>17</sup>

The first two terms capture the effect of aggregate and idiosyncratic productivity shocks. If traders do not produce information ( $\beta_{jt} = 0$ ), traders rely solely upon their prior  $a_t$  ( $\omega_p(0) = 1$  and  $\omega_a(0) = 0$ ). As traders produce more information, they shift weight from their prior to the realization of firm productivity ( $\lim_{\beta_{jt}\to\infty}\omega_a(\beta_{jt})=1$ ). This leads to a higher sensitivity of the allocation of capital to firm-specific productivity shocks and improves the allocative efficiency of financial markets.

In contrast to the weights on productivity shocks, the weights on sentiment shocks are hump-shaped in  $\beta_{jt}$ . If traders do not produce information, they do not have a signal to learn from and, therefore, their expectations cannot be moved by noise  $(\omega_{\varepsilon}(0) = \omega_{s\varepsilon}(0) = 0)$ . For perfect information, traders receive signals that do not contain noise in the first place  $(\lim_{\beta_{jt}\to\infty}\omega_{\varepsilon}(\beta_{jt}) = \omega_{s\varepsilon}(\beta_{jt}) = 0)$ . If  $\beta_{jt}$  goes to either extreme, both idiosyncratic and aggregate sentiment shocks do not affect the beliefs of traders.

The aggregate sentiment shock  $\varepsilon_t$  moves the beliefs of traders although  $\varepsilon_t$  is common knowledge. This effect stems from the behavioral bias in Assumption 1. Traders correct the price signal  $z_{jt}$  for the aggregate sentiment shock but mistakenly believe that their private signal  $s_{ijt}$  is unaffected by sentiment and, therefore, do not correct their private signal in a similar way.

<sup>&</sup>lt;sup>17</sup>See Appendix A for derivations.

## 4.1 Capital Allocation and TFP

The results so far can be combined to derive the allocation of capital and total factor productivity in equilibrium as captured in the following Proposition.

## Proposition 2 (Market Allocation). Under the market allocation:

(i) Firm capital is given by

$$K_{jt+1} = \frac{\tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\}^{\theta}}{\int_0^1 \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\}^{\theta} dj} K_{t+1}.$$
 (25)

(ii) The aggregate production function is

$$Y_t = A(a_{t-1}, \beta_{t-1}) K_t^{\alpha}$$
(26)

with total factor productivity

$$\ln A\left(a_{t-1}, \beta_{t-1}\right) = \underbrace{\frac{\alpha \theta}{\theta - 1} \left(a_{t-1} + \frac{\sigma_a^2}{2}\right)}_{exogenous} + \underbrace{\kappa^a \left(\beta_{t-1}\right) \sigma_a^2 - \kappa^{\varepsilon} \left(\beta_{t-1}\right) \sigma_{\varepsilon}^2}_{allocative efficiency}. \tag{27}$$

(iii)  $A(a_{t-1}, \beta_{t-1})$  is monotonically increasing in  $\beta_{t-1}$  if  $\sigma_{\varepsilon}^2$  is small enough.

The first part of the Proposition highlights that capital is allocated to firms with higher realizations of the price signal  $z_{jt}$  whether it is driven by sentiment or productivity. Moreover, changes to aggregate investment  $K_{t+1}$  lead a proportional change in firm capital for all firms. Consequently, total factor productivity (TFP) has both an exogenous and endogenous component. The exogenous component is related to the realization of the aggregate productivity shock  $a_t$ , which mechanically increases the productivity of all firms. The endogenous component captures instead the allocational efficiency of financial markets, which is determined by aggregate information production  $\beta_t$ .

However, the market does not allocate capital efficiently given the available information. As traders are overconfident, expectations in (25) condition also on the private signal  $s_{ijt}$ , although it is uninformative after observing  $z_{jt}$ . In other words,  $P_{jt}$  behaves as if the precision of the market signal  $z_{jt}$  was  $\beta_{jt} + \beta_{jt}\sigma_{\varepsilon}^{-2}$ , although its true precision is  $\beta_{jt}\sigma_{\varepsilon}^{-2}$ . Therefore, the price overreacts to the price signal  $z_{jt}$ .<sup>18</sup>

<sup>&</sup>lt;sup>18</sup>This distortion has been studied intensively in Albagli, Hellwig, and Tsyvinski (2011a, 2015) and is called the "information aggregation wedge." Its general equilibrium implications are studied in Albagli, Hellwig, and Tsyvinski (2017). In contrast to this paper, their model features a combination of rational and noise traders. Therefore, the information aggregation wedge does not require a behavioral price-setting traders. Furthermore, it arises in any informative financial market model in which traders learn from both



Figure 2: Total factor productivity as defined in (27). If the variance of sentiment shocks  $\sigma_{\varepsilon}^2$  is sufficiently large, financial markets may worsen allocative efficiency relative to the case in which capital is equally distributed between firms ( $\beta_t = 0$ ).

This distortion can be so severe that an increase in information production  $\beta_t$  leads to a decrease in TFP, as seen in Figure 2. As traders produce more precise information, they also wrongly put more weight on their private signal. The overall effect on TFP depends on the balance between the beneficial effect of an increase in price informativeness  $\beta_t \sigma_{\varepsilon}^{-2}$  and an increased weight on the private signal.

This price distortion leads to ex-ante misallocation of capital, i.e., output can be increased by reallocating capital between firms given the same publicly available information  $\{z_{jt}\}$ . A social planner would use the available information efficiently, leading to the *constrained* efficient allocation summarized in the following Proposition.

**Proposition 3** (Constrained Efficient Allocation). Under the constrained efficient allocation:

(i) Firm capital is

$$K_{jt+1}^{eff} = \frac{\mathbb{E}\left\{A_{jt}|z_{jt}\right\}^{\theta}}{\int_{0}^{1} \mathbb{E}\left\{A_{it}|z_{jt}\right\}^{\theta} dj} K_{t+1}.$$
 (28)

(ii) TFP  $A^{eff}(a_{t-1}, \beta_{t-1})$  is monotonically increasing in aggregate information production  $\beta_{t-1}$ .

a heterogeneous private signal and the price. It does not arise in models in which the information set of informed agents is homogeneous (Grossman and Stiglitz, 1980) or in models where traders do not observe the price before submitting market orders (Kyle, 1985). In the former case, informed agents cannot learn anything from the price, and in the latter, it is not possible to learn from the price before trading. Both of these models restrict the analysis to linear models, whereas non-linearity arises naturally in macroeconomic models; therefore, a different model is used here.



Figure 3: Market allocation of capital  $K_{jt}$  as in (25) and the constrained efficient allocation  $K_{jt}^{eff}$  as in (28).

(iii)  $A^{eff}(a_{t-1}, \beta_{t-1}) \ge A(a_{t-1}, \beta_{t-1})$ , with strict inequality for interior values of  $\beta_{t-1}$ .

The constrained efficient allocation assigns the correct precision  $\beta_t \sigma_{\varepsilon}^{-2}$  to the price signal  $z_{jt}$ . Relative to the market allocation, the constrained efficient allocation redistributes capital from firms that were previously too large to firms that were too small, as seen in Figure 3. Moreover, TFP is monotonically increasing in aggregate information production  $\beta_{t-1}$  under the constrained efficient allocation, because the interaction with the behavioral bias is removed.

The following Corollary provides conditions under which the market and constrained efficient allocation coincide.

Corollary 1. The market allocation and constrained efficient allocation  $(K_{jt} = K_{jt}^{eff})$  coincide if

- (i) symmetric information production in market j  $\beta_{jt}$  goes to zero or infinity.
- (ii) the variance of firm-specific productivity shocks  $\sigma_a^2$  goes to zero or infinity.
- (iii) the variance of firm-specific sentiment shocks  $\sigma_{\varepsilon}^2$  goes to zero.

As Corollary 1 shows, the behavioral bias disappears both when households have perfect information or when households have no information at all  $(\beta_{jt} \in \{0, \infty\})$ , as in both cases traders put zero weight on their private signal. There is also no distortion if the prior is arbitrarily noisy  $(\sigma_a^2 \to \infty)$ , as in that case both the market and the efficient allocation put full weight on the price signal  $z_{jt}$ . If the prior is arbitrarily precise  $(\sigma_a^2 \to 0)$ , the weight is zero for both. Finally, if the variance of sentiment shocks goes to zero, financial markets perfectly aggregate information as the price signal  $z_{jt}$  converges to firm productivity  $a_{jt}$ .

#### Aggregate Investment 4.2

Aggregate investment in this economy is in one of two regions. In the first region, traders consume during youth and investment is pinned down by  $R_{t+1} = \frac{1}{\delta}$ . In the second region, the interest rate is so high  $(R_{t+1} > \frac{1}{\delta})$  that traders exhaust their wages for investment. Finally,  $R_{t+1} < \frac{1}{\delta}$  cannot arise in equilibrium as investment would collapse to zero and the interest rate  $R_{t+1}$  would go to infinity. Taken together, aggregate investment is equal to

$$K_{t+1} = \min \left\{ \left( \alpha \delta A_t^{\alpha_Y} \left( \int_0^1 \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\}^{\theta} dj \right)^{\frac{1}{\theta}} \right)^{\frac{1}{1-\alpha}}, W_t \right\}.$$
 (29)

Aggregate shocks and information production determine investment in the elastic region. Aggregate productivity and sentiment shocks increase investment, as traders expect all firms to be more productive. An increase in aggregate information production  $\beta_t$  has ambivalent effects, as it may increase or decrease TFP  $A_t$  and the average expectations of firm productivity  $\int_0^1 \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\}^{\theta} dj \text{ may be hump-shaped in } \beta_t.$ 

#### 5 Main Results

As laid out in the prior section, the model has several sources of non-monotonicity. Not only may TFP be locally decreasing in aggregate information production  $\beta_t$ , but also aggregate investment  $K_{t+1}$  may be non-monotonic in  $\beta_t$ . These pathological cases are not due to a friction that can easily be removed, but, rather, arise through the imperfect aggregation of information in a market with dispersed information.

Economic intuition tells us that better information usually leads to better economic outcomes. Indeed, the model allows for this intuition to hold by restricting the parameter space. As Corollary 1 shows, the distortion vanishes as the variance of firm-specific sentiment shocks  $\sigma_{\varepsilon}^2$  goes to zero. Therefore, there must be some threshold M>0, such that whenever  $\sigma_{\varepsilon}^2$  is below that threshold, TFP and aggregate investment  $K_{t+1}$  are increasing in  $\beta_t$  for a neutral stance of sentiment ( $\varepsilon_t = 0$ ). For the following analysis, I assume that this is the case as captured in the following Assumption.

**Assumption 2.** The variance of firm-specific sentiment shocks  $\sigma_{\varepsilon}^2$  is low enough such that

$$(i) \frac{\partial A(a_t, \beta_t)}{\partial \beta_t} > 0.$$

(i) 
$$\frac{\partial A(a_t, \beta_t)}{\partial \beta_t} > 0$$
.  
(ii) for  $\varepsilon_t = 0$ :  $\frac{\partial K_{t+1}(\beta_t)}{\partial \beta_t} \ge 0$ .

## 5.1 Aggregate Shocks and Information Acquisition

Recent experiences during stock and credit booms have raised concerns about increasing capital misallocation during these episodes (Gopinath et al., 2017; Doerr, 2018; Gorton and Ordoñez, 2020). This model can be used as a laboratory to think about the effects of productivity and sentiment shocks that may drive such episodes and their effects on the incentive to produce information, thereby affecting allocative efficiency. The following Proposition starts with the effect of aggregate sentiment shocks.

#### **Proposition 4.** There exists a threshold $\bar{\varepsilon}$ such that:

- (i) Information production is increasing in the sentiment shock if  $\varepsilon_t < \bar{\varepsilon}$
- (ii) Information production is decreasing in the sentiment shock if  $\varepsilon_t > \bar{\varepsilon}$  where the threshold  $\bar{\varepsilon}$  is negative for  $\theta > \frac{1}{1-\alpha}$  and positive for  $\theta < \frac{1}{1-\alpha}$ .

Proposition 4 shows that the effect of relatively small sentiment shocks ( $\varepsilon_t \approx 0$ ) on information production is ambiguous and depends on the parameters of the model. However, sentiment shocks always crowd out information production once they are sufficiently large. Moreover, note that aggregate sentiment shocks do not affect price informativeness directly but only through information production.

At first, it may seem surprising that aggregate sentiment shocks crowd out information production, especially as in this model, firm-specific sentiment shocks incentivize information production in the first place. This is because knowledge about an aggregate sentiment shock changes the incentive to produce firm-specific information. In particular, there are two direct channels through which sentiment shocks affect the incentive to produce information:

- 1. Sentiment shocks make valuations more extreme and, therefore, trading less information-sensitive. A relatively imprecise yet unbiased signal is sufficient to identify grossly mispriced firms and trade accordingly. Moreover, sentiment shocks make subtle mispricing rarer, for which precise information is helpful as shown in Figure 4. This effect crowds out information production for positive and negative sentiment shocks equally. Moreover, firms with such subtle mispricing must appear relatively unproductive in an otherwise exuberant market and consequently attract less capital, as in Figure 5. This relative size effect crowds out information production for positive sentiment shocks, as learning about smaller firms is unattractive.
- 2. Aggregate sentiment shocks increase aggregate investment  $K_{t+1}$ , which leads to an increase in the absolute size of all firms and a rise in the incentive to produce information.



Figure 4: Left panel: The probability of buying depending on the realization of the firm-specific sentiment shock  $\varepsilon_{jt}$ . Right panel: The derivative of the probability of buying. The trading decision is most information-sensitive, i.e., varies most with the realization of the sentiment shock  $\varepsilon_{jt}$  around zero.

To further build intuition for this result, I use (25) in (17) to rewrite the marginal benefit of information production evaluated at the symmetric equilibrium,

$$\widetilde{MB}\left(\beta_{ijt},\beta_{jt}\right)\Big|_{\beta_{ijt}=\beta_{jt}} \propto \widetilde{\mathbb{E}}\left\{\underbrace{\frac{\partial \mathcal{P}\left\{x_{ijt}=2\right\}}{\partial \beta_{ijt}}\Big|_{\beta_{ijt}=\beta_{jt}}}_{\text{Relative Size}} \left(\frac{K_{jt+1}}{K_{t+1}}\right)^{\frac{\theta-1}{\theta}} \underbrace{K_{t+1}^{\alpha}}_{\text{Absolute Size}} \left(A_{jt}-\widetilde{\mathbb{E}}\left\{A_{jt}|s_{ijt}=z_{jt},z_{jt}\right\}\right)\right\}.$$
(30)

The information sensitivity channel materializes through the interaction of the change in the buying probability with the distribution of firm-specific sentiment shocks  $\varepsilon_{jt}$ . In the symmetric equilibrium  $(\beta_{ijt} = \beta_{jt})$ , traders expect to buy whenever they are more optimistic than the marginal trader, i.e.,  $s_{ijt} \geq z_{jt} \iff \eta_{ijt} \geq \varepsilon_{jt}$ . The resulting probability of buying is  $\Phi(-\varepsilon_{jt})$  where  $\Phi(\cdot)$  is the standard-normal cdf. Consequently, the derivative of the buying probability with respect to the realization of the firm-specific sentiment shock  $\varepsilon_{jt}$  is  $-\phi(\varepsilon_{jt})$  where  $\phi(\cdot)$  is the standard-normal pdf. As shown in Figure 4, the trading decision is most elastic for relatively small realizations of the firm-specific sentiment shock  $\varepsilon_{jt}$ . However, aggregate sentiment shocks push the distribution of  $\varepsilon_{jt}$  to the more inelastic regions toward the extremes.

Formally, this effect can be captured by multiplying the change in the buying probability

with the distribution of sentiment shocks

$$\phi\left(\varepsilon_{jt}\right) f\left(\varepsilon_{jt}\right) \propto \exp\left\{-\frac{\varepsilon_t^2}{2\left(1+\sigma_\varepsilon^2\right)}\right\} \tilde{f}(\varepsilon_{jt}),$$
 (31)

where  $f(\varepsilon_{jt})$  is the pdf of  $\varepsilon_{jt} \sim \mathcal{N}\left(\varepsilon_{t}, \sigma_{\varepsilon}^{2}\right)$  and  $\tilde{f}\left(\varepsilon_{jt}\right)$  is the pdf of  $\varepsilon_{jt}$  as if its distribution was  $\mathcal{N}\left(\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}, \frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}\right)$ . The information sensitivity channel is captured by the term  $\exp\left\{-\frac{\varepsilon_{t}^{2}}{2(1+\sigma_{\varepsilon}^{2})}\right\}$ , which is symmetrically decreasing around zero. Somewhat surprisingly, the decline in information sensitivity does not depend on the actual pass-through of sentiment shocks to expectations. The reason can be found in the trading decision, which does not depend on the actual mispricing caused by sentiment shocks but only on the realization of the firm-specific sentiment shock  $\varepsilon_{jt}$ . Therefore, aggregate sentiment shocks can discourage information production, even if they do not significantly affect actual prizes.

The additional effect of a decline in information sensitivity on the relative size of firms, for which information remains valuable, is captured by taking expectations of the relative firm-size  $\left(\frac{K_{jt+1}}{K_{t+1}}\right)^{\frac{\theta-1}{\theta}}$  with the density  $\tilde{f}\left(\varepsilon_{jt}\right)$ ,

$$\int_{0}^{1} \tilde{f}(\varepsilon_{jt}) \left(\frac{K_{jt+1}}{K_{t+1}}\right)^{\frac{\theta-1}{\theta}} dj \propto \exp\left\{-\left(\theta-1\right) \omega_{s\varepsilon} \varepsilon_{t}\right\},\tag{32}$$

where  $\omega_{s\varepsilon} = \frac{\sqrt{\beta_t}}{\sigma_a^{-2} + \beta_t \left(1 + \sigma_{\varepsilon}^{-2}\right)}$ . For a positive sentiment shock, information production becomes effectively directed toward smaller firms, which weakens the incentive to produce information, which is illustrated in Figure 5 and is formally captured by  $\exp \{-(\theta - 1) \omega_{s\varepsilon} \varepsilon_t\}$ .

The relative size effect is increasing in the elasticity of substitution and in the pass-through of aggregate sentiment shocks  $\omega_{s\varepsilon}$ , which is non-monotonic in information production  $\beta_t$ . If intermediate goods are close substitutes, firms that are perceived as unproductive attract very little capital. Moreover, if aggregate sentiment shocks have a large effect on expectations, these priced firms will be even smaller and information production will be even less attractive.

The absolute size effect is captured by changes in aggregate investment. Restricting our attention to shocks for which  $K_{t+1} < W_t$  leads to

$$K_{t+1}^{\alpha} \propto \exp\left\{\frac{\alpha}{1-\alpha}\omega_{s\varepsilon}\varepsilon_{t}\right\}.$$
 (33)

As long as traders do not fully invest their wages, the *absolute size* effect can be captured by  $\exp\left\{\frac{\alpha}{1-\alpha}\omega_{s\varepsilon}\varepsilon_{t}\right\}$ . Intuitively, the effect on investment is stronger when  $\alpha$  and therefore the returns to scale increase. A further increase in the sentiment shock is ineffectual for the *absolute size* channel once traders fully invest their wages, but incentivizes nonetheless more information production through an increase in the value of resources, as captured by



Figure 5: Firms that are fairly priced and for which information is valuable are in the center of the firm-size distribution under neutral sentiment ( $\varepsilon_t = 0$ ). In contrast, for positive sentiment shocks, the same firms are in the left part of the firm-size distribution as they appear to be unproductive relative to other firms.

$$\max\{1, R_{t+1}\delta\}$$
 in (P2).

Putting all three effects together yields the marginal benefit of information production for a given symmetric information production choice  $(\beta_{ijt} = \beta_{jt})$  as

$$\widetilde{MB}\left(\beta_{ijt}, \beta_{jt}\right)\Big|_{\beta_{ijt} = \beta_{jt}} \propto \exp\left\{\underbrace{-\frac{\varepsilon_t^2}{2\left(1 + \sigma_\varepsilon^2\right)}}_{Information-Sensitivity}\underbrace{-\frac{(\theta - 1)\omega_{s\varepsilon}\varepsilon_t}{Relative\ Size}} + \underbrace{\frac{\alpha}{1 - \alpha}\omega_{s\varepsilon}\varepsilon_t}_{Absolute\ Size}\right\}.$$
(34)

For the empirically plausible calibration  $\theta-1>\frac{\alpha}{1-\alpha}$ , positive sentiment shocks always crowd out information, as the increase in aggregate investment is dominated by a larger decrease in size of fairly priced firms. Conversely, negative sentiment shocks initially crowd in information, as fairly priced firms turn out to be relatively large although aggregate investment goes down. Finally, the information sensitivity channel always dominates for large shocks.

Productivity shocks have quite different effects on the incentive to produce information. Whereas sentiment shocks affect trading in multiple ways, productivity shocks leave the buying decisions unaffected. The reason is that traders believe that sentiment shocks affect only other traders, whereas productivity shocks affect all traders. The only channel through which productivity shocks change the incentive to produce information is through an increase in aggregate investment (absolute size channel) and dividends for all firms. This result is captured in the following Proposition.

**Proposition 5.** Positive (negative) productivity shocks crowd in (out) information.



Figure 6: Information production is non-monotonic in the sentiment shock, with the peak  $\bar{\varepsilon}$  being negative for  $\theta > \frac{1}{1-\alpha}$ . Information production is monotonically increasing in the productivity shock.

The model provides a rationale for the different impact of "good" and "bad" booms as in Gorton and Ordoñez (2020). Whereas productivity-driven "good" booms increase information production and improve allocative efficiency, sentiment-driven "bad" booms *crowd out* information and increase capital misallocation. The results of both Propositions 4 and 5 are pictured in Figure 6.

#### 5.2 Real Feedback

Financial markets do not only react to aggregate shocks, but also shape the economy's response to aggregate shocks. In the following, aggregate shocks hit an economy that is in steady state. Whether shocks amplify or dampen the effect of shocks on output is determined relative to an economy for which the information choice is fixed at the endogenous steady state level  $\beta^*$ .

In the economy with fixed information precision  $\beta^*$ , the only effect of aggregate shocks is the direct effect on TFP and investment. Positive shocks of both types increase investment, whereas only productivity shocks also have a direct effect on TFP. The opposite is true for negative shocks, which depress investment and TFP in the case of productivity shocks. Whereas the direct effect of aggregate shocks are straightforward, the indirect effects are more subtle.

There are two indirect effects of sentiment shocks, both of which lead to a non-monotonic response of the economy. First, sentiment shocks affect the allocative efficiency of financial markets through their effect on information production, which also decreases investment.

The cost of misallocation through a decrease in information production depends on the elasticity of substitution between intermediate goods. If the elasticity of substitution is large, misallocation between firms is costly. Moreover, a high elasticity of substitution also leads to a stronger decrease in information production for a positive sentiment shock. In contrast, the costs of misallocating capital are low if the elasticity of substitution is small.

The second effect concerns the pass-through of sentiment shocks. Since traders are unaffected by sentiment if they produce either no or perfect information  $(\beta_t \in \{0, \infty\})$ , the effect of a given sentiment shock on beliefs must be maximized for an interior value of information precision. Therefore, a change in information production by traders may increase or decrease the effect of a given sentiment shock on their beliefs, which depends on whether steady state information precision  $\beta^*$  is above or below the threshold  $\frac{\sigma_a^{-2}}{1+\sigma_\varepsilon^{-2}}$ . If  $\beta^*$  is above (below) the threshold, then the effect of aggregate sentiment shocks is locally decreasing (increasing) in information production. For example, a positive sentiment shock crowds out information production, which leads to an amplification of the shock if the resulting precision choice  $\beta^*$  is still above the threshold  $\frac{\sigma_a^{-2}}{1+\sigma_\varepsilon^{-2}}$ .

The results for the case with  $\beta^* < \frac{\sigma_a^{-2}}{1+\sigma_{\varepsilon}^{-2}}$  are captured in the following Proposition and are visualized in Figure 7.

**Proposition 6.** (i) For  $\theta > \frac{1}{1-\alpha}$  and  $\beta^* < \frac{\sigma_a^{-2}}{1+\sigma_{\varepsilon}^{-2}}$ , information production dampens positive sentiment shocks.

(ii) Large positive sentiment shocks eventually lead to a decrease in aggregate investment if  $\lim_{\varepsilon_t \to \infty} \sqrt{\beta_t(\varepsilon_t)} \varepsilon_t = 0$ .

The second result of Proposition 6 captures that the costs of misallocation must be eventually so large that they outweigh the investment-stimulating effect of sentiment shocks. Moreover, the direct effect of sentiment shocks vanishes as sentiment shocks grows large, as long as information production declines fast enough. This result is captured in the following Corollary.

Corollary 2. If information production declines fast enough as sentiment shocks grow large, then aggregate investment approaches its level without information production  $\beta_t = 0$  and sentiment shock  $\varepsilon_t = 0$ . Formally,

$$\lim_{\varepsilon_t \to \pm \infty} \sqrt{\beta_t(\varepsilon_t)} \varepsilon_t = 0 \Rightarrow \lim_{\varepsilon_t \to \pm \infty} K(\beta_t(\varepsilon_t), \varepsilon_t) = K(0, 0).$$

These results may initially seem counterintuitive, since sufficiently large positive sentiment shocks possibly decrease prices and output, because the decrease information production can outweigh the expansionary effect of sentiment shocks and eventually drive the pass-through of sentiment shocks to zero. Moreover, this section studies only *anticipated* sentiment



Figure 7: Whether information production dampens or amplifies sentiment shocks depends on the size of the shock and the parameters. As information production affects both allocative efficiency and the pass-through of sentiment shocks, large sentiment shocks eventually drive information so low that investment and output decrease.

shocks. If the same shock was unknown prior to the information production decision, positive sentiment shocks would unambiguously increase investment as in the economy with exogenous information precision.

Similar forces are active for negative shocks with the exception that negative sentiment shocks initially crowd in information production if the elasticity of substitution is large enough  $(\theta > \frac{1}{1-\alpha})$ . If strong enough, this indirect effect can even lead to negative sentiment shocks being initially expansionary. In contrast, if the elasticity of substitution is relatively small  $(\theta < \frac{1}{1-\alpha})$ , then negative sentiment shocks always crowd out information production and are, therefore, initially amplified.

Similar to the previous section, the indirect effect of productivity shocks leads generally to amplification. As follows from Proposition 5, positive productivity shocks crowd in information production, which leads to an improvement in the allocation of capital and incentivizes additional investment. Therefore, compared to the economy with fixed information precision, the reaction of both output and investment to a productivity shock are larger if information precision is allowed to adjust, as can be seen in Figure 8. This result is captured in the following Proposition.

**Proposition 7.** Information production amplifies productivity shocks.



Figure 8: Productivity shocks crowd in information production, which leads to an additional increase in TFP and Aggregate Investment  $K_{t+1}$ . As a result, the effect of productivity shocks is amplified.

#### 5.2.1 Numerical Illustration

This section provides a numerical illustration of booms driven by productivity and sentiment shocks, focusing on the region of parameters and shocks for which sentiment shocks are expansionary and dampened by information production. To capture the notion of booms, aggregate shocks build up over time according to the auto-regressive process

$$y_t = \begin{cases} \rho y_{t-1} + \zeta & t \in [0, B] \\ 0 & \text{otherwise.} \end{cases},$$

where  $y_t$  is the aggregate shock,  $\zeta$  is a constant innovation, and  $\rho \in (0,1)$  is the persistence. After the boom is over, the aggregate shock returns to a neutral stance and remains there.

The expansionary effect of sentiment shocks is dampened, as can be seen in Figure 9. Optimistic expectations lead to an increase in investment, but traders decide to cut back on information production, which decreases the allocative efficiency of financial markets. In total, output still increases because the sentiment shock leads to an offsetting increase in investment. In this case, the endogenous response of traders dampens the effect of a positive sentiment shock.

In contrast, productivity-driven booms are generally amplified by an increase in information production, as seen in Figure 10. This mirrors the result from Proposition 8. Expectations of higher productivity tomorrow cause an increase in investment today, which triggers more information production. As a result, the endogenous response of traders amplifies the effect of productivity shocks. Times of high productivity are also times in which financial



Figure 9: Sentiment-driven booms are dampened by information production.

markets allocate capital efficiently.

# 6 Is there a Role for Policy?

After studying the positive properties of the model, I turn now to the normative implications. There are two sources of inefficiency in this model. First, there are two externalities with respect to the information production decision that work in opposite directions. On the one hand, traders produce information to extract rents from other traders and ignore the negative effects they impose on others. On the other hand, the individual information production decision does not affect the allocation of capital, whereas collective information production is crucial for aggregate productivity. Traders ignore this positive externality of information production. Whether information production is inefficiently high or low depends on the strength of the rent-stealing motive relative to the usefulness for information in allocating capital.

Second, traders' overconfidence distorts the allocation of capital between firms as described in section 4.1, and lets aggregate sentiment shocks drive investment. A state- and price-dependent tax/subsidy on dividends is sufficient to fix this distortion. The formal analysis has been delegated to Appendix D as the focus of this paper is on information production.



Figure 10: Productivity-driven booms are amplified by information production.

For the following welfare analysis, I abstract from well-known inter-generational trade-offs using a two-period model. Traders are born with an endowment, produce information, and buy shares. Production takes place in the second period and the final good sector combines intermediate goods into the final good without labor,

$$Y_1 = \left(\int_0^1 Y_{j1}^{\frac{\theta-1}{\theta}} dj\right)^{\frac{\alpha\theta}{\theta-1}}.$$
 (35)

The setup is otherwise identical to the main model.

The section proceeds in the following steps. First, I explain in detail why information production is inefficient in the competitive equilibrium and for which parameters it is likely to be either too high or too low. Next, I consider the optimal intervention if the social planner can only steer the information choice, but cannot decide on aggregate investment. Finally, I propose an implementation for a policy that incentivizes or discourages information production.

## 6.1 Static Information Choice

Endow a social planner with the ability to dictate a level of information production  $\beta_{ij0}$  to each trader, but households autonomously decide on consumption and investment.<sup>19</sup> Moreover, the social planner observes aggregate shocks  $\{a_0, \varepsilon_0\}$  before taking her decision. The corresponding maximization problem is

$$\max_{\{\beta_{ij0}\}} C_0 + \delta C_1 - \int_0^1 IA(\beta_{ij0}) dj$$
 (SP1)

s.t. 
$$C_1 = A_0(\{\beta_{ij0}\}) K_1^{\alpha}$$
 (36)

$$C_0 = W_0 - K_1 (37)$$

$$K_1 = \min \left\{ \left( \alpha \delta A_t^{\alpha_Y} \left( \int_0^1 \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\}^{\theta} dj \right)^{\frac{1}{\theta}} \right)^{\frac{1}{1-\alpha}}, W_t \right\}$$
(38)

$$\beta_{ij0} \ge 0. \tag{39}$$

The social planner maximizes welfare subject to a number of constraints. Old age consumption is equal to aggregate production as in (36), for which total factor productivity  $A(\{\beta_{ij0}\})$  depends on information production. Youth consumption as in (37) depends on aggregate investment, which also depends on implicitly on information production, as seen in (38). Finally, (39) is a non-negativity constraint on information production.

Since all traders and firms are ex-ante homogeneous, the social planner chooses the same level of information precision  $\beta_0 = \beta_{ij0}$  for all traders and markets. The marginal benefit of increasing  $\beta_0$  for the social planner is

$$MB^{SP}(\beta_0) = \delta \underbrace{\frac{\partial A_0(\beta_0)}{\partial \beta_0}}_{\text{Change in TFP}} K_1(\beta_0)^{\alpha} + \left(\alpha A_0(\beta_0) K_1(\beta_0)^{\alpha-1} - \frac{1}{\delta}\right) \delta \underbrace{\frac{\partial K_1(\beta_0)}{\partial \beta_0}}_{\text{Change in Investment}}. (40)$$

The social planner targets both TFP  $A_0(\beta_0)$  and aggregate investment  $K_1(\beta_0)$ . Note that the latter effect is only relevant if aggregate investment is efficiently high or low, which is generally the case due to the price distortion described in section 4.1 and aggregate sentiment shocks.

The first observation is that (40) does not coincide with the marginal benefit in (17). Moreover, the difference cannot be expressed in the form of a simple wedge. This finding leads directly to the following Proposition.

<sup>&</sup>lt;sup>19</sup>The full planner's problem is covered in the Appendix D.

**Proposition 8.** Information production is inefficiently high or low in the competitive equilibrium.

The reason for this result is that the information production decision is subject to two externalities with opposing effects. First, traders produce information to extract rents from other traders, i.e., they ignore a negative externality. In other words, traders seek to get a larger piece of a fixed pie of trading profits. Second, as atomistic traders take prices as given, they do not take into account the allocation-improving effect of collective information production, i.e., they do not take into account the spillover of information production. If all traders produce more precise information, the allocation of capital improves and aggregate productivity increases. Both externalities are explained in more detail in what follows.

Traders think that their information allows them to systematically buy undervalued shares, thus earning a rent. Acquiring more precise information allows them to better identify profitable trading opportunities even better. However, if trader ij decides to buy two shares, these two shares cannot be bought by another trader. Consequently, any rent that accrues to trader ij must be subtracted from rents that are earned by other traders. Although this rent-extracting behavior drives information production in the first place, it can also lead to inefficiently high information production.

In contrast, the social benefit of information production stems from an improvement in the allocation of capital. However, this effect only arises if traders *collectively* produce more precise information. In contrast, individual information production and trading have only infinitesimal effects on prices, which are ignored by price-taking traders in their information production decision. Therefore, information production has a positive *spillover*, which can lead to information production being too low in the competitive equilibrium.

Two simple examples can be constructed to showcase situations in which information production is unambiguously too high or too low in equilibrium. First, assume that the social planner confiscates rents and redistributes them equally. Traders have no incentive to produce information, but the social planner still values information for its effect on the allocation of capital. In this case, information production is inefficiently low. Second, let firm output be given exogenously, such that  $Y_{jt} = A_{jt}$ . Traders can still make bets on firm revenue by buying or selling options. However, information production has no social value as production is given exogenously. In this case, information production is inefficiently high.

Cases with too much and too little information can be produced in the clearest way by varying the elasticity of substitution, which captures the importance of capital allocation for aggregate productivity. The comparison between the planner's choice and the competitive outcome is in Figure 11. First, consider the case of no substitution with  $\theta \to 0$ . In that case, every intermediate good is necessary to produce the final good and the necessary mix is



Figure 11: Low elasticity of substitution: Too much information production. High elasticity of substitution: Too little information production.

pinned down by firm productivities. It follows that an equal distribution of capital becomes optimal and information about firm productivity has no social value since it no longer aids the optimal allocation. In other words, TFP becomes flat in information. Nonetheless, traders find it profitable to produce information as firm revenue still depends on the realization of firm productivity.

Second, if the elasticity of substitution grows arbitrarily large  $\theta \to \infty$ , intermediate goods become increasingly substitutable and the allocation of capital more important. In contrast, traders find it at some point unattractive to produce information as most firms will be unable to attract capital, and only the firm with the highest combination of productivity and sentiment shock receives the economy's capital stock. As a result, the planner's information precision choice is eventually above the outcome in the competitive equilibrium. The market underproduces information exactly when it is most valuable.

## 6.2 Responding to Aggregate Shocks

The social planner increases information production in response to both negative and positive sentiment shocks for two reasons. First, traders expect that extracting rents becomes less information-sensitive when a sentiment shock hits the economy. However, the value of information for the allocation of capital is only affected insofar as aggregate investment changes. Second, the social planner also seeks to also steer investment through the information production decision. For example, when a positive sentiment shock hits the economy, then acquiring more precise information eventually dampens the impact of the sentiment shock.



Figure 12: Information production under the social planner and in the competitive economy depending on the realization of aggregate shocks.

The resulting response is asymmetric for positive and negative shocks, as positive shocks increase investment, which makes information more valuable, whereas negative shocks lower investment.

In contrast, the social planner's choice in response to productivity shocks is pro-cyclical. An increase in exogenous productivity  $a_0$  incentivizes information production in two ways. First, note that TFP can be decomposed into two parts,  $A_0 = A_0(a_0) A_0(\beta_0)$ , where the first is exogenously driven by  $a_0$  and the second is related to allocative efficiency through  $\beta_0$ . Therefore, an increase in  $a_0$  amplifies the improvement in the allocative efficiency through an increase in  $\beta_0$ . Second, positive productivity shocks lead to an increase in investment which additionally incentivizes information production.

The social planner's choice is shown in comparison to the competitive equilibrium in Figure 12. For the chosen parameters, the social planner chooses generally more precise information than traders choose in the competitive equilibrium. Sentiment shocks widen the difference between the social planner's choice and the competitive outcome, whereas productivity shocks leave the gap largely unchanged. How the social planner can implement this policy is discussed in the following section.

## 6.3 Implementation

Traders are taking a gamble when they decide to buy shares in a given asset. The social planner can incentivize information production by increasing the stakes for each trade. This idea can be implemented through a redistribution of dividends between over- and underperforming firms as shown in the following Corollary.

Corollary 3. A state-dependent  $tax/subsidy \tau(a_{jt}, z_{jt})$  on dividends with the properties,

(i) No price distortions: 
$$\tilde{\mathbb{E}} \{ \tau (a_{j0}, z_{j0}) \Pi_{j1} | s_{ij0} = z_{j0}, z_{j0} \} = \tilde{\mathbb{E}} \{ \Pi_{j1} | s_{ij0} = z_{j0}, z_{j0} \}$$

(ii) Monotonicity of beliefs: 
$$\frac{\partial \tilde{\mathbb{E}}\{\tau(a_{j0},z_{j0})\Pi_{j1}|s_{ij0},z_{j0}\}}{\partial s_{ij0}} > 0$$

(iii) Monotonicity of prices: 
$$\frac{\partial \tilde{\mathbb{E}}\{\tau(a_{j0},z_{j0})\Pi_{j1}|s_{ij0}=z_{j0},z_{j0}\}}{\partial z_{j0}} > 0$$

increases (decreases)  $\widetilde{MB}(\beta_{ij0}, \beta_{j0})$  when

$$\tau\left(a_{j0}, z_{j0}\right) \geq (\leq) \, 1 \iff \Pi_{j1} \geq \tilde{\mathbb{E}} \left\{ \Pi_{j1} | s_{ij0} = z_{j0}, z_{j0} \right\} \ and \ \frac{\partial \mathcal{P} \left\{ x_{ij0} = 2 | a_{j0}, \varepsilon_{j0}, \beta_{ij0}, \beta_{j0} \right\}}{\partial \beta_{ij0}} \geq 0$$

$$\tau\left(a_{j0}, z_{j0}\right) \leq (\geq) \, 1 \iff \Pi_{j1} \leq \tilde{\mathbb{E}} \left\{ \Pi_{j1} | s_{ij0} = z_{j0}, z_{j0} \right\} \ and \ \frac{\partial \mathcal{P} \left\{ x_{ij0} = 2 | a_{j0}, \varepsilon_{j0}, \beta_{ij0}, \beta_{j0} \right\}}{\partial \beta_{ij0}} \leq 0$$

and there exists for all  $z_{j0}$  some  $a_{j0}$  for which the inequalities are strict.

Intuitively, the social planner can make assets more or less risky by taxing/subsidizing dividends depending on realized productivity and market expectations. For example, subsidizing dividend payments of over-performing firms and taxing under-performing firms makes any investment riskier and information production more attractive. To avoid distorting prices, subsidies and taxes must offset each other in expectations.

As an illustration, the following combination of a tax  $\tau(a_{j0}, z_{j0})$  and a lump-sum transfer  $T(a_{j0}, z_{j0})$  encourage information production,

$$\tau (a_{j0}, z_{j0}) = \begin{cases} 0 & a_{j0} < z_{j0} \\ 1 & a_{j0} \ge z_{j0} \end{cases}$$

$$T (a_{j0}, z_{j0}) = \begin{cases} 0 & a_{j0} < z_{j0} \\ \tilde{\mathbb{E}} \{ \Pi_{j1} | a_{j0} < z_{j0}, s_{ij0} = z_{j0}, z_{j0} \} & a_{j0} \ge z_{j0} \end{cases}.$$

I assume  $a_0 = -\frac{\sigma_a^2}{2}$  as a normalization. In other words, the tax is confiscatory if the realization of the productivity shock  $a_{j0}$  is below the price signal  $z_{j0}$ , i.e., the firm disappoints market expectations. The expected tax revenue from the perspective of the marginal trader is transferred to buyers if the realization of  $a_{j0}$  is above  $z_{j0}$ , i.e., the firm exceeds market expectations. A tax schedule that incentivizes information production, therefore, increases both the potential downsides and upsides of any trade. The before- and after-tax dividend schedule is shown in Figure 13 for the case with  $z_{j0} = 0$ .



Figure 13: The tax schedule incentivizes information production.

Information production can be discouraged by flattening the dividend function instead. A straightforward and common implementation is through a progressive dividend tax in combination with the deduction of losses from realized gains, effectively offsetting part of the incurred losses by reducing the tax owed. In the model, the social planner can completely crowd out information production by buying all shares and selling shares that are claims on aggregate output. As there is no aggregate uncertainty, such shares pay a deterministic dividend and traders do not produce information.

To recapitulate, the social planner generally chooses a level of information production that deviates from the competitive equilibrium. If the efficient allocation of capital is sufficiently important, e.g., through a high elasticity of substitution, then the social planner chooses a higher level of information precision than the competitive equilibrium. Moreover, the social planner should seek to increase information production in response to both negative and positive sentiment shocks. In contrast, the information production should increase with the productivity shock. Finally, taxes and subsidies that increase the exposure to risk stemming from firm productivity increase the incentive to produce information.

## 7 Discussion

#### 7.1 Asset Purchases

In the last decade, central banks have repeatedly used asset purchases to stabilize financial markets and spur both growth inflation (see Gagnon, Sack, et al., 2018, for a brief overview). These interventions were accompanied by concerns that asset purchases might harm market

efficiency and lead to an increase in capital misallocation.<sup>20</sup> Although this model is too stylized to give a full assessment of asset purchases, it can be used to shed light on the effect of asset purchases on information production in financial markets.<sup>21</sup>

In this model, asset purchases have real effects by exploiting that information is dispersed between traders. The mechanism works as follows: Asset purchases reduce the number of shares in the hands of traders, which leads to an upward shift in the identity of the marginal trader. The marginal trader turn out to be more optimistic than in absence of asset purchases, and consequently, asset prices increase. Additionally, announced asset purchases have an effect on information production. Then, the resulting reduction in the asset supply distorts prices upward, which discourages information production similar to a positive sentiment shock. Therefore, this model can provide a rationale for the concerns about asset purchases and declines in market efficiency.

However, the asset purchases can also be used to reduce aggregate distortions in financial markets, for example through negative sentiment shocks. When a sufficiently large negative sentiment shock hits the economy, traders anticipate that prices will be depressed, which discourages information production as trading becomes less information-sensitive. The central bank can offset the downward bias on asset prices by purchasing assets. This counter-measure can lead to unbiased prices, which restore the incentive to produce information for traders at the same time as increasing asset prices. This logic is captured in the following Proposition and is visualized in Figure 14.

**Proposition 9.** Let the social planner produce  $d^{SP} \in (-1,1)$  units of assets, such that  $1-d^{SP}$  shares are left for traders. Then,

- (i) asset purchases ( $d^{SP} > 0$ ) undo negative sentiment shocks both in terms of investment and information production.
- (ii) asset sales ( $d^{SP} < 0$ ) undo positive sentiment shocks both in terms of investment and information production.

In other words, asset purchases and sales can *increase* market efficiency by countering sentiment shocks. This finding is relevant for central banks in deciding when to start shrinking the size of their balance sheets. Central banks can avoid the adverse effects of asset sales by

<sup>&</sup>lt;sup>20</sup>See da Silva and Rungcharoenkitkul (2017), DNB (2017), Fernandez, Bortz, and Zeolla (2018), Borio and Zabai (2018), Acharya et al. (2019), and Kurtzman and Zeke (2020). In particular, the dutch central bank argues in their 2016 annual report (DNB, 2017): "The large-scale purchase programmes and the flood of liquid assets has set the risk compass in financial markets spinning, with misallocations as a result."

<sup>&</sup>lt;sup>21</sup>Although most central banks focused on buying government bonds as a form of quantitative easing, also interventions in corporate bond markets were common, which can be interpreted through the lens of my model (Gagnon, Sack, et al., 2018). Moreover, the Bank of Japan also bought directly shares in stock ETFs (Okimoto, 2019).



Figure 14: Asset purchases counter negative sentiment shocks.

waiting until sentiment has reached a more neutral level. A reduction in asset holdings can then even increase information production and market efficiency.

## 7.2 Uncertainty

#### 7.2.1 Traders have Imperfect Information about Aggregate Shocks

The analysis so far has assumed that traders observed aggregate states perfectly before they decided on information precision. This assumption is not crucial for the results, which also hold when traders have only imperfect information about aggregate states when they make their information production decision.

The simplest setting to think about the effects of uncertainty is to reveal aggregate shocks after the information production decision but before trading. Furthermore, assume that aggregate productivity and sentiment shocks are auto-correlated.<sup>22</sup> Then, the laws of motion for aggregate shocks are given by

$$a_t = \rho_a a_{t-1} + \xi_t^a \tag{41}$$

$$\varepsilon_t = \rho_{\varepsilon} \varepsilon_{t-1} + \xi_t^{\varepsilon}, \tag{42}$$

<sup>&</sup>lt;sup>22</sup>An alternative would be not to reveal aggregate shocks before trading takes place. In this setting traders learn from private and public signals also about aggregate states. Similarly, the social planner can use publicly available information to guide her interventions. The insights are broadly the same as in the case when aggregate shocks are revealed after the information production decision.

where  $\rho_a \in (0,1)$  and  $\rho_{\varepsilon} \in (0,1)$  capture the persistence of aggregate shocks and  $\xi_t^a \sim \mathcal{N}\left(0,\sigma_{\xi a}^2\right)$  and  $\xi_t^{\varepsilon} \sim \mathcal{N}\left(0,\sigma_{\xi \varepsilon}^2\right)$  are the corresponding innovations. Traders are able to learn about past aggregate states by observing past aggregate investment  $K_t$  and output  $Y_t$ . Whereas  $K_t$  is moved by both productivity and sentiment, output  $Y_t$  reacts only to productivity after controlling for  $K_t^{\alpha}$ . For example, if investment was high but output was disappointing, investment must have been driven by a positive sentiment shock. The prior for traders about aggregate states is then given by

$$a_t | a_{t-1} \sim \mathcal{N}\left(\rho_a a_{t-1}, \sigma_{\xi a}^2\right) \tag{43}$$

$$\varepsilon_t | \varepsilon_{t-1} \sim \mathcal{N} \left( \rho_{\varepsilon} \varepsilon_{t-1}, \sigma_{\varepsilon_{\varepsilon}}^2 \right).$$
 (44)

In this setting, past sentiment shocks generate expectations about future sentiment shocks. The analysis of Proposition 4 still applies, as traders evaluate the value of information for different realizations of the sentiment shock  $\varepsilon_t$ .

#### 7.2.2 Policy under Uncertainty

The policy analysis is not substantially changed under aggregate uncertainty if the social planner has to take her decision before aggregate shocks are revealed. Indeed, negative effects of sentiment shocks on information production can be offset without knowing the exact realization, as only expectations of sentiment shocks affect information production. The social planner can collect through surveys information about traders' expectations of sentiment to implement a policy that offsets the effect of sentiment shocks on information production.

The effect of uncertainty is more subtle when the social planner also tries to steer investment. In this case, the realization of sentiment shocks matters. Therefore, any intervention that does not explicitly condition on the realization of the sentiment shock has to weigh the costs and benefits of taxes or subsidies on investment in different states. Increasing information production can diminish the impact of sentiment shocks for all realizations.

A special case arises when traders are informed about aggregate shocks, but the social planner is not. In this case, multiple indicators can be used by the social planner to identify whether a boom is driven by sentiment or productivity. A sentiment-driven boom crowds out information production and decreases the variance of prices, leading all firms to look more alike. In contrast, a productivity-driven boom crowds in information, leading to more dispersion in asset prices and firm capital. For example, if asset prices increase across the board and the dispersion in asset prices or returns between firms shrinks, the social planner wants to lower investment and increase information production. Instead, if there are still

winners and losers even as asset prices are booming, price discovery still occurs, and traders are acquiring information. Using dispersion in asset prices and returns is more attractive than measuring information production directly, as to whether asset prices reflect fundamentals can only be backed out after production happened. However, asset prices are available continuously. This result is captured in the following Proposition.

**Proposition 10.** If the variance of sentiment shocks is sufficiently small,

- (i) the cross-sectional variance in asset prices is increasing in  $\beta_t$ .
- (ii) the cross-sectional variance in asset price returns is increasing in  $\beta_t$ .

Finally, if the policy needs to be decided before prices form and aggregate shocks are persistent, past realizations of price-earnings ratios can also be informative regarding future aggregate shocks. For example, if investment was high, but output was relatively low, then investment must have been driven by sentiment, and future investment is also likely to be driven by sentiment.

## 7.3 Empirical Evidence

Many measures seek to capture a notion of information in financial markets. However, there is no consensus on any single measure. Roll (1988) suggested a measure that attributes movements in asset prices uncorrelated with the market or industry portfolio with new firm-specific information. However, they can also stem from firm-specific noise. Chousakos, Gorton, and Ordonez (2020) employed a measure that follows a similar idea.

In contrast, Bai, Philippon, and Savov (2016) and Farboodi, Matray, et al. (2020) suggested a measure that uses asset prices to forecast earnings. According to this measure, financial markets are informative if firms with higher earnings also have a higher market capitalization. The downside of their approach is that it implicitly assumes that the data generating processes for earnings and prices are identical between firms, as they run regressions for cross-sections of firms.

Dávila and Parlatore (2020) avoided these objections by providing a micro-founded procedure to estimate (relative) price informativeness at the firm level, allowing for different data generating processes for each firm. Relative price informativeness captures a notion of how precise the price signal is relative to prior uncertainty, which coincides exactly with  $\frac{\beta_{jt}\sigma_e^{-2}}{\sigma_a^{-2}+\beta_{jt}\sigma_e^{-2}}$  in my model. Their measure can be used to provide suggestive evidence that information precision indeed depends on the cycle. I use an estimate of utilization-adjusted TFP following Basu, Fernald, and Kimball (2006) from the San Francisco Fed to verify the connection between information and aggregate productivity and as an indicator for the type of shock that drives the cycle.

Using data from the US between 1995 and 2017, Figure 15 provides suggestive evidence that information in financial markets varies depending on what type of shock drives the cycle. Because the model focuses on cycles instead of long-run developments, both time series are detrended using a cubic time trend between 1995 and 2017 and smoothed with a two-year moving average. The resulting time series is shown in the left graph, whereas the original can be seen on the right. Both graphs have gray bars that indicate recessions following the methodology of the NBER for dating recessions. The first striking observation is that the cyclical components of price informativeness and TFP growth are positively related. As so far as cyclical movements in TFP growth capture changes to allocational efficiency, this provides evidence that information in financial markets indeed impacts TFP.

A second exercise allows us to back out which type of shocks drove the expansions up to 2001 and from 2002 to 2008. The period between 1995 and 2001 was marked by an acceleration in TFP growth, accompanied by an increase in price informativeness. This suggests that this period was driven by technological innovations, for example, the introduction of advanced information technologies. In contrast, the expansion between 2002 and 2008 was marked by a sharp decline in TFP growth into negative territory and a fall in price informativeness. Through the lens of the model, an expansion accompanied by a decline in TFP signals a sentiment boom (see also Borio, Karroubi, et al., 2015; Doerr, 2018). The finding that price informativeness was also declining verifies the model's prediction that information production declines during sentiment booms.



Figure 15: Price informativeness (black) as measured in Dávila and Parlatore (2020) and utilization-adjusted TFP growth (red) taken from the Federal Reserve of San Francisco following Basu, Fernald, and Kimball (2006). Grey bars indicate recessions following the NBER dating methodology. The time series have been detrended using a cubic time trend and smoothed with a two-year moving average. Through the lens of the model, productivity drove the expansion until 2001, as indicated by a rise in information and TFP growth. In contrast, sentiment drove the expansion from 2002 to 2008 as indicated by the decline in information and TFP growth.



Figure 16: Price informativeness (black) as measured in Dávila and Parlatore (2020) and utilization-adjusted TFP growth (red) following Basu, Fernald, and Kimball (2006) taken from the Federal Reserve of San Francisco. Grey bars indicate recessions following the NBER dating methodology. Raw time series.

## 8 Conclusion

I develop a tractable framework to study information production in financial markets embedded in a standard macroeconomic model. In such a model, total factor productivity has an endogenous component that depends on the traders' decentralized information production. When asset prices are more informative, more capital is allocated to the most productive firms, and total factor productivity increases. I add to the literature by studying the effect of aggregate shocks on information production.

I prove that sentiment shocks, defined as waves of non-fundamental optimism or pessimism, crowd out information production as trading becomes less information sensitive. Although such optimism increases investment, it also worsens the allocation of capital. This result rationalizes through a novel information mechanism the empirical finding that credit booms often worsen aggregate productivity (Borio, Karroubi, et al., 2015; Gopinath et al., 2017; Doerr, 2018; Gorton and Ordoñez, 2020). In contrast, expectations of heightened productivity crowd in information, thereby improving capital allocation and aggregate productivity beyond the initial shock. This dichotomy mirrors the "good" and "bad" booms of Gorton and Ordoñez (2020). My model suggests that "good" booms are driven by productivity, whereas "bad" booms are driven by sentiment.

From a normative perspective, I show that information production is too high or too low in the competitive equilibrium. There are two externalities with opposing effects. On the one hand, traders produce information to increase trading rents at the expense of other traders. This rent-extracting behavior can lead to too much information production. On the other hand, traders do not take into account the allocation improving effect of *collective* information production. This information spillover can lead to information production being too low. Generally, information production is too low in the competitive equilibrium exactly when the allocation of capital matters and, hence, information is most valuable.

Finally, I apply the model to evaluate the effect of large-scale asset purchases programs. I show that asset purchases can discourage information production. This finding confirms the concerns of policymakers about such programs (e.g., DNB, 2017). However, asset purchases can also improve capital allocation if they effectively reduce aggregate mispricing of assets. Therefore, policymakers need to know which force is currently driving the cycle to react appropriately. The model suggests that dispersion in asset prices and returns identify the source of fluctuations in real-time. For example, sentiment booms decrease information production, which lowers the dispersion in asset prices and returns and lets firms appear more alike.

## References

- Acharya, Viral V, Tim Eisert, Christian Eufinger, and Christian Hirsch (2019). "Whatever it takes: The real effects of unconventional monetary policy". The Review of Financial Studies 32.9, pp. 3366–3411.
- Albagli, Elias, Christian Hellwig, and Aleh Tsyvinski (2011a). A Theory of Asset Prices based on Heterogeneous Information. NBER Working Paper No. 17548. National Bureau of Economic Research.
- (2011b). Information Aggregation, Investment, and Managerial Incentives. Tech. rep. National Bureau of Economic Research.
- (2015). A Theory of Asset Prices Based on Heterogeneous Information. Working Paper.
- (2017). Imperfect Financial Markets and Shareholder Incentives in Partial and General Equilibrium. NBER Working Paper No. 23419. National Bureau of Economic Research.
- Ambrocio, Gene (2019). "Rational exuberance booms". Review of Economic Dynamics 35, pp. 263–282.
- Angeletos, George-Marios, Guido Lorenzoni, and Alessandro Pavan (2010). Beauty Contests and Irrational Exuberance: A Neoclassical Approach. NBER Working Paper No. 15883. National Bureau of Economic Research.
- Asriyan, Vladimir (2020). Balance Sheet Channel with Information-Trading Frictions in Secondary Markets. Working Paper. CREi.
- Asriyan, Vladimir, William Fuchs, and Brett Green (2019). "Liquidity sentiments". *American Economic Review* 109.11, pp. 3813–48.
- Asriyan, Vladimir, Luc Laeven, and Alberto Martin (2019). Collateral Booms and Information Depletion. Tech. rep. 1064.
- Bai, Jennie, Thomas Philippon, and Alexi Savov (2016). "Have financial markets become more informative?" *Journal of Financial Economics* 122, pp. 625–654.
- Basu, Susanto, John G Fernald, and Miles S Kimball (2006). "Are Technology Improvements Contractionary?" American Economic Review 96.5, pp. 1418–1448.
- Bennett, Benjamin, René Stulz, and Zexi Wang (2020). "Does the stock market make firms more productive?" *Journal of Financial Economics* 136, pp. 281–306.
- Blanchard, Olivier and Jordi Galí (2010). "Labor Markets and Monetary Policy: A New Keynesian Model with Unemployment". *American Economic Journal: Macroeconomics* 2.2, pp. 1–30.
- Bond, Philip, Alex Edmans, and Itay Goldstein (2012). "The Real Effects of Financial Markets". *Annual Review of Financial Economics* 4, pp. 339–360.

- Borio, Claudio, Enisse Karroubi, Christian Upper, and Fabrizio Zampoli (2015). Financial Cycles, Labor Misallocation, and Economic Stagnation. Tech. rep. 534.
- Borio, Claudio and Anna Zabai (2018). "Unconventional monetary policies: a re-appraisal". Research Handbook on Central Banking. Edward Elgar Publishing.
- Brandts, Jordi, Ayça Ebru Giritligil, and Roberto A. Weber (2015). "An experimental study of persuasion bias and social influence in networks". *European Economic Review*.
- Chandrasekhar, Arun G, Horacio Larreguy, and Juan Pablo Xandri (2012). Testing Models of Social Learning on Networks: Evidence From a Framed Field Experiment. Tech. rep.
- Chousakos, Kyriakos, Gary Gorton, and Guillermo Ordonez (2020). The Macroprudential Role of Stock Markets. Tech. rep. UPenn mimeo.
- Daniel, Kent and David Hirshleifer (Sept. 2015). "Overconfident Investors, Predictable Returns, and Excessive Trading". *Journal of Economic Perspectives*. Vol. 29. 4. American Economic Association, pp. 61–88.
- Da Silva, Luiz Awazu Pereira and Phurichai Rungcharoenkitkul (Apr. 5, 2017). QE experiences and some lessons for monetary policy: defending the important role central banks have played. Speech for the Eurofi High Level Seminar 2017, Malta, 5-7 April 2017. URL: https://www.bis.org/speeches/sp170407.pdf (visited on 10/25/2020).
- David, Joel M, Hugo A Hopenhayn, and Venky Venkateswaran (2016). "Information, Misallocation, and Aggregate Productivity". Quarterly Journal of Economics 131.2, pp. 943–1005.
- Dávila, Eduardo and Cecilia Parlatore (2020). *Identifying Price Informativeness*. Working Paper No. 25210. National Bureau of Economic Research.
- DNB (2017). 2016 Annual report. Tech. rep. De Nederlandsche Bank.
- Doerr, Sebastian (2018). "Collateral, Reallocation, and Aggregate Productivity: Evidence from the U.S. Housing Boom". SSRN Electronic Journal, pp. 1–66.
- Dow, James, Itay Goldstein, and Alexander Guembel (2017). "Incentives for Information Production in Markets where Prices Affect Real Investment". *Journal of the European Economic Association* 15.4, pp. 877–909.
- Dow, James and Gary Gorton (1997). "Stock Market Eefficiency and Economic Efficiency: is there a Connection?" *Journal of Finance* 52.3, pp. 1087–1129.
- Durnev, Art, Randall Morck, and Bernard Yeung (Feb. 2004). "Value-Enhancing Capital Budgeting and Firm-specific Stock Return Variation". 59.1, pp. 65–105.
- Enke, Benjamin and Florian Zimmermann (2019). "Correlation Neglect in Belief Formation". Review of Economic Studies 86.1, pp. 313–332.
- Eyster, Erik, Georg Weizsäcker, H U Berlin, Klaus M Schmidt, and Matthew Rabin (2018). An Experiment On Social Mislearning. Tech. rep.

- Fajgelbaum, Pablo D, Edouard Schaal, and Mathieu Taschereau-Dumouchel (2017). "Uncertainty traps". Quarterly Journal of Economics 132.4, pp. 1641–1692.
- Farboodi, Maryam and Péter Kondor (2019). "Rational Sentiments and Economic Cycles".
- Farboodi, Maryam, Adrien Matray, Laura Veldkamp, and Venky Venkateswaran (2020). Where Has All the Data Gone? Tech. rep. National Bureau of Economic Research.
- Fernandez, Rodrigo, Pablo Bortz, and Nicolas Zeolla (2018). The Politics of Quantitative Easing. Tech. rep. The Centre for Research on Multinational Corporations.
- Fostel, Ana and John Geanakoplos (2012). "Tranching, CDS, and asset prices: How financial innovation can cause bubbles and crashes". *American Economic Journal: Macroeconomics* 4.1, pp. 190–225.
- Gagnon, Joseph E, Brian Sack, et al. (2018). *QE: A User's Guide*. Tech. rep. Peterson Institute for International Economics.
- García-Santana, Manuel, Enrique Moral-Benito, Josep Pijoan-Mas, and Roberto Ramos (2020). "Growing Like Spain: 1995–2007". International Economic Review 61.1, pp. 383–416.
- Glaser, Markus and Martin Weber (2010). "Overconfidence". Behavioral finance: Investors, corporations, and markets, pp. 241–258.
- Gopinath, Gita, Şebnem Kalemli-Özcan, Loukas Karabarbounis, and Carolina Villegas-Sanchez (2017). "Capital Allocation and Productivity in South Europe". Quarterly Journal of Economics 132.4, pp. 1915–1967.
- Gorton, Gary and Guillermo Ordoñez (2014). "Collateral Crises". American Economic Review 104.2, pp. 343–378.
- (2020). "Good Booms, Bad Booms". Journal of the European Economic Association 18.2, pp. 618–665.
- Grimm, Veronika and Friederike Mengel (Oct. 2018). "Experiments on Belief Formation in Networks". Journal of the European Economic Association.
- Grossman, Sanford (1976). "On the Efficiency of Competitive Stock Markets Where Trades Have Diverse Information Author". *Journal of Finance* 31.2.
- Grossman, Sanford and Joseph Stiglitz (1980). "On the impossibility of informationally efficient markets". American Economic Review 70.3, pp. 393–408.
- Hayek, Friedrich August (1945). "The use of knowledge in society". American Economic Review 35.4, pp. 519–530.
- Holmström, Bengt and Jean Tirole (1993). "Market liquidity and performance monitoring". Journal of Political Economy 101.4, pp. 678–709.
- Jordà, Oscar, Moritz Schularick, and Alan M Taylor (2010). Financial Crises, Credit Booms, and External Imbalances: 140 Years of Lessons. NBER Working Paper No. 16567. National Bureau of Economic Research.

- Keys, Benjamin J, Tanmoy Mukherjee, Amit Seru, and Vikrant Vig (2010). "Did securitization lead to lax screening? Evidence from subprime loans". Quarterly Journal of Economics 125.1, pp. 307–362.
- Kindleberger, Charles P and Robert Z Aliber (2015). Manias, panics and crashes: a history of financial crises. Palgrave Macmillan.
- Krishnamurthy, Arvind and Tyler Muir (2017). How Credit Cycles across a Financial Crisis. Tech. rep. 23850. National Bureau of Economic Research.
- Kurtzman, Robert and David Zeke (2020). "Misallocation costs of digging deeper into the central bank toolkit". Review of Economic Dynamics.
- Kyle, Albert S (1985). "Continuous Auctions and Insider Trading". *Econometrica*, pp. 1315–1335.
- Martin, Alberto and Jaume Ventura (2018). "The Macroeconomics of Rational Bubbles: A User's Guide". Annual Review of Economics 10, pp. 505–539.
- Morck, Randall, Bernard Yeung, and Wayne Yu (2000). "The information content of stock markets: Why do emerging markets have synchronous stock price movements?" *Journal of Financial Economics* 58.1-2, pp. 215–260.
- (2013). "R 2 and the Economy". Annual Review of Financial Economics 5.1, pp. 143–166.
- Nowzohour, Laura and Livio Stracca (2020). "More than a Feeling: Confidence, Uncertainty, and Macroeconomic Fluctuations". *Journal of Economic Surveys* 34.4, pp. 691–726.
- Okimoto, Tatsuyoshi (2019). The Bank of Japan's exchange-traded fund purchases and implications for the future.
- Ordonez, Guillermo (2013). "The Asymmetric Effects of Financial Frictions". *Journal of Political Economy* 121.5, pp. 844–895.
- Peress, Joel (2014). "Learning from Stock Prices and Economic Growth". Review of Financial Studies 27.10, pp. 2998–3059.
- Roll, Richard (July 1988). "R2". The Journal of Finance 43.3, pp. 541-566.
- Schmitt-Grohé, Stephanie and Martin Uribe (2012). "What's News in Business Cycles". Econometrica 80.6, pp. 2733–2764.
- Shiller, Robert J (2015). Irrational Exuberance. Princeton University Press.
- (2017). "Narrative economics". American Economic Review 107.4, pp. 967–1004.
- Simsek, Alp (2013). "Belief disagreements and collateral constraints". *Econometrica* 81.1, pp. 1–53.
- Straub, Ludwig and Robert Ulbricht (2018). "Endogenous Uncertainty and Credit Crunches".
- Tobin, J. (1972). The New Economics One Decade Older: The Eliot Janeway Lectureson Historical Economics in Honour of Joseph Schumpeter. Princeton University Press.

- Van Nieuwerburgh, Stijn and Laura Veldkamp (2006). "Learning asymmetries in real business cycles". *Journal of monetary Economics* 53.4, pp. 753–772.
- Veldkamp, Laura (2005). "Slow Boom, Sudden Crash". Journal of Economic theory 124.2, pp. 230–257.
- Vives, Xavier (2010). Information and learning in markets: the impact of market microstructure. Princeton University Press.

# A Trading

I assume that every household i consists of many traders indexed by  $ij \in [0, 1]$ . The information set of each trader consists of  $\{s_{ijt}, \{z_{jt}\}, a_t, \varepsilon_t\}$ , i.e., traders observe their private signal, all public signals and the aggregate states. This setting allows that traders have rational expectations about aggregates, but still disagree about firm-specific variables, which motivates trade. I impose that  $\kappa_H = 2$  and  $\kappa_L = 0$  to avoid distortions in asset prices that stem from the choice of position limits.

The beliefs of traders about firm productivity  $A_{jt}$  are relevant for their trading decision

$$\tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt},z_{jt}\right\} = \exp\left\{\omega_{p,ijt}a_t + \omega_{s,ijt}s_{ijt} + \omega_{z,ijt}\left(z_{jt} - \frac{\varepsilon_t}{\sqrt{\beta_{jt}}}\right) + \frac{1}{2}\mathbb{V}_{ijt}\right\}$$

$$\tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt} = z_{jt}, z_{jt}\right\} = \exp\left\{\omega_{p,jt}a_t + \omega_{s,jt}z_{jt} + \omega_{z,jt}\left(z_{jt} - \frac{\varepsilon_t}{\sqrt{\beta_{jt}}}\right) + \frac{1}{2}\mathbb{V}_{jt}\right\},$$

where  $a_{jt} \sim \mathcal{N}(a_t, \sigma_a^2)$ ,  $\varepsilon_{jt} \sim \mathcal{N}(\varepsilon_t, \sigma_\varepsilon^2)$  and  $\omega$ -terms are the corresponding Bayesian weights,

$$\omega_{z,ijt} = \frac{\beta_{jt}\sigma_{\varepsilon}^{-2}}{\sigma_{a}^{-2} + \beta_{ijt} + \beta_{jt}\sigma_{\varepsilon}^{-2}} \quad \omega_{z,jt} = \frac{\beta_{jt}\sigma_{\varepsilon}^{-2}}{\sigma_{a}^{-2} + \beta_{jt} + \beta_{jt}\sigma_{\varepsilon}^{-2}}$$

$$\omega_{s,ijt} = \frac{\beta_{ijt}}{\sigma_{a}^{-2} + \beta_{ijt} + \beta_{jt}\sigma_{\varepsilon}^{-2}} \quad \omega_{s,jt} = \frac{\beta_{jt}}{\sigma_{a}^{-2} + \beta_{jt} + \beta_{jt}\sigma_{\varepsilon}^{-2}}$$

$$\omega_{p,ijt} = \frac{\sigma_{a}^{-2}}{\sigma_{a}^{-2} + \beta_{ijt} + \beta_{jt}\sigma_{\varepsilon}^{-2}} \quad \omega_{p,jt} = \frac{\sigma_{a}^{-2}}{\sigma_{a}^{-2} + \beta_{jt} + \beta_{jt}\sigma_{\varepsilon}^{-2}},$$

and  $\{\mathbb{V}_{jt},\mathbb{V}_{ijt}\}$  stand for posterior uncertainty

$$\mathbb{V}_{ijt} = \frac{1}{\sigma_a^{-2} + \beta_{ijt} + \beta_{jt}\sigma_{\varepsilon}^{-2}}, \quad \mathbb{V}_{jt} = \frac{1}{\sigma_a^{-2} + \beta_{jt} + \beta_{jt}\sigma_{\varepsilon}^{-2}}.$$

Alternatively, the beliefs of the marginal trader who observed  $s_{ijt} = z_{jt}$  can be expressed as a function of shocks,

$$\ln \tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt}=z_{jt},z_{jt}\right\} = \omega_{p,jt}a_t + \omega_{s\varepsilon,jt}\varepsilon_t + \omega_{a,jt}a_{jt} + \frac{\omega_{a,jt}}{\sqrt{\beta_{jt}}}\left(\varepsilon_{jt}-\varepsilon_t\right) + \frac{1}{2}\mathbb{V}_{jt},$$

where  $\omega_{a,jt} = \omega_{z,jt} + \omega_{s,jt}$ ,  $\omega_{\varepsilon,jt} = \omega_{a,jt} / \sqrt{\beta_{jt}}$  and  $\omega_{s\varepsilon,jt} = \omega_{s,jt} / \sqrt{\beta_{jt}}$ .

Trader ij buys shares of firm j whenever

$$\tilde{\mathbb{E}}\left\{\Pi_{jt+1}|s_{ijt},z_{jt}\right\} \ge \tilde{\mathbb{E}}\left\{\Pi_{jt+1}|s_{ijt}=z_{jt},z_{jt}\right\}$$

which is equivalent to

$$\widetilde{\mathbb{E}}\left\{A_{jt}|s_{ijt},z_{jt}\right\} \ge \widetilde{\mathbb{E}}\left\{A_{jt}|s_{ijt}=z_{jt},z_{jt}\right\}.$$

The above inequality leads to

$$\omega_{p,ijt}a_{t} + \omega_{s,ijt}s_{ijt} + \omega_{z,ijt}\left(z_{jt} - \frac{1}{\sqrt{\beta_{t}}}\varepsilon_{t}\right) + \frac{\mathbb{V}_{ijt}}{2} \geq \omega_{p,jt}a_{t} + \omega_{s,jt}z_{jt} + \omega_{z,jt}\left(z_{jt} - \frac{1}{\sqrt{\beta_{t}}}\varepsilon_{t}\right) + \frac{\mathbb{V}_{jt}}{2}$$

$$\iff \eta_{ijt} \geq \frac{\sqrt{\beta_{ijt}}}{\omega_{s,ijt}}\left(\omega_{p,ijt}a_{t} + \omega_{z,ijt}\left(z_{jt} - \frac{1}{\sqrt{\beta_{t}}}\varepsilon_{t}\right) + \frac{\mathbb{V}_{ijt}}{2}\right) + \sqrt{\beta_{ijt}}a_{jt}$$

$$-\frac{\sqrt{\beta_{ijt}}}{\omega_{s,ijt}}\left(\omega_{p,jt}a_{t} + \omega_{s,jt}z_{jt} + \omega_{z,jt}\left(z_{jt} - \frac{1}{\sqrt{\beta_{t}}}\varepsilon_{t}\right) + \frac{\mathbb{V}_{jt}}{2}\right)$$

Since  $\eta_{ijt}$  is standard-normally distributed, the perceived probability of buying can be written in closed form

$$\mathcal{P}\left\{x_{ijt} = 2|a_{jt}, \varepsilon_{jt}, \beta_{ijt}, \beta_{jt}\right\} = \Phi\left(-\frac{\sqrt{\beta_{ijt}}}{\omega_{s,ijt}}\left(\omega_{p,ijt}a_t + \omega_{z,ijt}\left(z_{jt} - \frac{1}{\sqrt{\beta_t}}\varepsilon_t\right) + \frac{1}{2}\mathbb{V}_{ijt}\right) + \sqrt{\beta_{ijt}}a_{jt}\right) - \frac{\sqrt{\beta_{ijt}}}{\omega_{s,ijt}}\left(\omega_{p,jt}a_t + \omega_{s,jt}z_{jt} + \omega_{z,jt}\left(z_{jt} - \frac{1}{\sqrt{\beta_t}}\varepsilon_t\right) + \frac{1}{2}\mathbb{V}_{jt}\right),$$

where  $\Phi(\cdot)$  is the standard-normal cdf and the weights on the realizations of shocks depend on the information precision choice of trader ij and of all other traders -ij. For a symmetric information choice  $(\beta_{ijt} = \beta_{jt})$ , the buying probability can be simplified to

$$\mathcal{P}\left\{x_{ijt} = 2|a_{jt}, \varepsilon_{jt}, \beta_{ijt}, \beta_{jt}\right\}|_{\beta_{ijt} = \beta_{jt}} = \Phi\left(-\varepsilon_{jt}\right).$$

Traders think that they are more likely to buy shares when the realization of the sentiment shock is relatively low and shares are therefore cheap relative to their fundamental value.

Finally, traders choose their information precision taking the symmetric choice of all other traders as given. The derivative of the probability of buying with respect to  $\beta_{ijt}$  is

$$\frac{\partial \mathcal{P}\left\{x_{ijt} = 2|a_{jt}, \varepsilon_{jt}, \beta_{ijt}, \beta_{jt}\right\}}{\partial \beta_{ijt}} = \phi \left(-\frac{\sqrt{\beta_{ijt}}}{\omega_{s,ijt}} \left(\omega_{p,ijt} a_t + \omega_{z,ijt} \left(z_{jt} - \frac{1}{\sqrt{\beta_t}} \varepsilon_t\right) + \frac{1}{2} \mathbb{V}_{ijt}\right) + \sqrt{\beta_{ijt}} a_{jt} \right) - \frac{\sqrt{\beta_{ijt}}}{\omega_{s,ijt}} \left(\omega_{p,jt} a_t + \omega_{s,jt} z_{jt} + \omega_{z,jt} \left(z_{jt} - \frac{1}{\sqrt{\beta_t}} \varepsilon_t\right) + \frac{1}{2} \mathbb{V}_{jt}\right)\right) \\
* \left(-\frac{1}{2\beta_{ijt}^{3/2}} \left(\sigma_a^{-2} a_t + \beta_{jt} \sigma_\varepsilon^{-2} \left(z_{jt} - \frac{\varepsilon_t}{\sqrt{\beta_{jt}}}\right) + \frac{1}{2}\right) + \frac{a_{jt}}{2\sqrt{\beta_{ijt}}} - \left(\frac{1}{\sqrt{\beta_{ijt}}} - \frac{1}{2\beta_{ijt}^{3/2}} (\mathbb{V}_{ijt})^{-1}\right) \left(\omega_{p,jt} a_t + \omega_{s,jt} z_{jt} + \omega_{z,jt} \left(z_{jt} - \frac{\varepsilon_t}{\sqrt{\beta_{jt}}}\right) + \frac{1}{2} \mathbb{V}_{jt}\right)\right)$$

where  $\phi(\cdot)$  is the standard normal pdf. For a symmetric information choice  $(\beta_{ijt} = \beta_{jt})$  this

expression can be simplified to

$$\left.\frac{\partial\mathcal{P}\left\{x_{ijt}=2|a_{jt},\varepsilon_{jt},\beta_{ijt},\beta_{jt}\right\}}{\partial\beta_{ijt}}\right|_{\beta_{ijt}=\beta_{jt}}=\phi\left(\varepsilon_{jt}\right)\left[\frac{1}{2\sqrt{\beta_{it}}}\left(a_{jt}+z_{jt}\right)-\frac{1}{\sqrt{\beta_{jt}}}\left(\omega_{p,jt}a_{t}+\omega_{s,jt}z_{jt}+\omega_{z,jt}\left(z_{jt}-\frac{\varepsilon_{t}}{\sqrt{\beta_{jt}}}\right)+\frac{1}{2}\mathbb{V}_{jt}\right)\right].$$

## B Position Limits

## **B.1** Exogenous Position Limits

In the main text, I have assumed that traders can buy up to two units of each stock. Assume now that traders' position limits are given by  $x_{ijt} \in [0, \kappa_H]$ . Consider first some special cases.

Let  $\kappa_H \in [0,1)$ . In this case, the traders are collectively not able to clear the market. The result is that the stock price collapses to zero, all traders produce  $\kappa_H$  units of firm j's stock, and the price is uninformative, because it does not vary according to firm productivity. Similarly, if  $\kappa_H = 1$ , traders are able to clear the market, but the same outcome arises.

In contrast, if there are no upper limits to how much traders can buy  $(\kappa_H = \infty)$ , the most optimistic trader alone can clear the whole market. Expectations about dividends and the interest rate  $R_{t+1}$  go to infinity, but prices are finite. Information becomes useless for traders because the probability of buying in any given market is zero.

To avoid these edge cases, I focus position limits for which the market clearing condition gives an interior solution for the threshold, i.e.,  $\kappa_H \in (1, \infty)$ . The market clearing condition leads to the threshold  $\hat{s}(P_{it})$ ,

$$\kappa_{H} \left( 1 - \Phi \left( \sqrt{\beta_{jt}} \left( \hat{s} \left( P_{jt} \right) - a_{jt} \right) - \varepsilon_{jt} \right) \right) = 1.$$

$$\iff \hat{s} \left( P_{jt} \right) = a_{jt} + \frac{\varepsilon_{jt} + \Phi^{-1} \left( 1 - \frac{1}{\kappa_{H}} \right)}{\sqrt{\beta_{jt}}}$$

The resulting expectations of dividends can be written by multiplying the price under  $\kappa_H = 2$  with a factor related to  $\kappa_H$ ,

$$\tilde{\mathbb{E}}\left\{\Pi_{jt+1}|s_{ijt}=z_{jt}+\Phi^{-1}\left(1-\frac{\kappa_H}{2}\right)/\sqrt{\beta_{jt}},z_{jt}\right\}=\underbrace{\exp\left\{\Phi^{-1}\left(1-\frac{1}{\kappa_H}\right)/\sqrt{\beta_{jt}}\right\}^{\theta}}_{\text{bias through choice of position limits}}\tilde{\mathbb{E}}\left\{\Pi_{jt+1}|s_{ijt}=z_{jt},z_{jt}\right\}.$$

Consequently, the interest rate is also distorted,

$$R_{t+1} = \exp\left\{\Phi^{-1}\left(1 - \frac{\kappa_H}{2}\right) / \sqrt{\beta_{jt}}\right\}^{\theta} \frac{\int_0^1 \tilde{\mathbb{E}}\left\{\Pi_{jt+1} | s_{ijt} = z_{jt}, z_{jt}\right\} dj}{K_{t+1}}.$$

For  $\kappa_H = 2$  the marginal trader is neither optimistic nor pessimistic and, therefore, the bias due to the choice of position limits is equal to zero.

Holding  $K_{t+1}$  constant leads to an unchanged allocation of capital,

$$K_{jt+1} = \frac{\tilde{\mathbb{E}}\left\{\Pi_{jt+1}|s_{ijt} = z_{jt} + \Phi^{-1}\left(1 - \frac{1}{\kappa_H}\right)/\sqrt{\beta_{jt}}, z_{jt}\right\}}{R_{t+1}}$$
$$= \frac{\tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt} = z_{jt}, z_{jt}\right\}^{\theta}}{\int_0^1 \tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt} = z_{jt}, z_{jt}\right\}^{\theta} dj} K_{t+1}.$$

A different interest rate will affect aggregate investment through 29. If buyers are relatively optimistic ( $\kappa_H > 2$ ), then the interest and aggregate investment increase. Setting  $\kappa_H = 2$  is for the model without the information choice inconsequential and only avoids introducing a multiplicative factor for expectations of dividends.

For the information production decision, the choice of position limits has similar effects as aggregate sentiment shocks or reductions in asset supply. The main idea is the same: when the aggregate sentiment shock is positive, traders expect to buy in fewer states of the world, making information less valuable. The same effect is present when setting the position limit  $\kappa_H > 2$ ; however, it is counteracted by traders acquiring more units if they trade, which is absent in the case of sentiment shocks. Depending on which effect dominates, the maximum information choice is achieved for  $\kappa_H < 2$  or  $\kappa_H > 2$ .

Position limits affect the analysis for sentiment shocks and revert the logic outlined in the main text. For example, assume that  $\kappa_H = 1 + \eta$ , where  $\eta > 0$  is a small number. Then almost all traders need to buy shares to clear the market. It follows that trading is information-insensitive because all traders expect to buy  $\kappa_H$  units of nearly all firms irrespective of the private signal. Different from the intuition before, a positive sentiment shock makes traders think that the trading decision becomes more information-sensitive. Recall that the trading decision is most information-sensitive if the ex-ante probability of buying is  $\frac{1}{2}$ . As the increase in the sentiment shock pushes the ex-ante probability of trading towards  $\frac{1}{2}$  from below, a sentiment shock can make the trading decision more information-sensitive.

The choice of  $\kappa_H = 2$  in the main text guarantees that the marginal trader is, on average, neither optimistic nor pessimistic absent sentiment shocks. Moreover, considering aspects outside of the model, excess or lack of demand can lead to the entry or exit of traders because prices are predictably under- or overpriced. It can also lead to the additional entry or exit of firms for the same reason. Both forces tend to undo the effects of too much or too little demand. Finally, denoting position limits in units of shares is mainly an analytical simplification when including risk-neutral traders in the financial markets.

## B.2 Short-Selling

Short-selling was ruled out in the main text for analytical convenience, but its presence would not affect the results of the model. Assume that traders can take also negative positions, such that  $x_{ijt} \in [-2, 2]$ . The market clearing condition becomes

$$\underbrace{2\left(1 - \Phi\left(\sqrt{\beta_{jt}}\left(\hat{s}\left(P_{jt}\right) - a_{jt}\right) - \varepsilon_{jt}\right)\right)}_{\text{buying}} - \underbrace{2\Phi\left(\sqrt{\beta_{jt}}\left(\hat{s}\left(P_{jt}\right) - a_{jt}\right) - \varepsilon_{jt}\right)}_{\text{selling}} = 1,$$

and the threshold is

$$\hat{s}\left(P_{jt}\right) = a_{jt} + \frac{\varepsilon_{jt} + \Phi^{-1}\left(\frac{1}{4}\right)}{\sqrt{\beta_{jt}}}.$$

In contrast to before, more traders need to be buying to clear the market, because previously inactive traders now short stocks and thereby increase their supply. Therefore, short-selling leads to a lower price because the marginal trader will be more pessimistic than before. The bias can be avoided by imposing asymmetric position limits, e.g.,  $x_{ijt} \in [-2, 4]$ , in which case the marginal trader still is identified by the signal  $\hat{s}(P_{jt}) = a_{jt} + \varepsilon_{jt}/\sqrt{\beta_{jt}}$ .

### **B.3** Endogenous Position Limits

Finally, let traders choose position limits  $x_{ijt} \in [\kappa_L, \kappa_H]$  subject to cost  $c^L(\kappa_L)$  and  $c^H(\kappa_H)$  before trading takes place. One interpretation funds and credit lines have to be allocated between markets, which can be costly. It may be, however, valuable if traders expect that some markets are under- or overpriced. For example, if market j is hit by a positive sentiment shock, traders may want to extend their ability to short-sell in this market while reducing their ability to buy. Generally, this possibility will tend to imperfectly counteract the effects of sentiment shocks.

The effect on the information production decision is more subtle. Consider as a partial equilibrium example that trader ij received private information that shares of firm j will be underpriced. In anticipation of a depressed market, trader ij extends her ability to buy but completely forgoes short-selling. Intuitively, the opportunity cost of buying when prices are too high is captured by  $(\kappa_H - \kappa_L) * Loss$ . Therefore, the value of information is increasing in  $\kappa_H - \kappa_L$ . Whether the adjustment of position limits increases information production depends, therefore, on whether  $\kappa_H - \kappa_L$  is increased as a result.

More formally, the expected trading rents can be written as

$$\widetilde{EU}(\beta_{ijt}, \beta_{jt}) = \widetilde{\mathbb{E}} \left\{ (\kappa_H \mathcal{P} \left\{ \text{Buy} \right\} + \kappa_L \mathcal{P} \left\{ \text{Sell} \right\}) * \text{Profits} \right\}.$$

Because there are no trading costs, it must be that  $\mathcal{P}\{\text{Sell}\}=1-\mathcal{P}\{\text{Buy}\}$ :

$$\widetilde{EU}\left(\beta_{ijt},\beta_{jt}\right) = \mathbb{\tilde{E}}\left\{\left[\left(\kappa_{H} - \kappa_{L}\right)\mathcal{P}\left\{\text{Buy}\right\}\right] * \text{Profits}\right\} - \kappa_{L}\mathbb{\tilde{E}}\left\{\text{Profits}\right\}.$$

Taking the derivative with respect to  $\beta_{ijt}$  yields

$$\widetilde{MB}(\beta_{ijt}, \beta_{jt}) = \widetilde{\mathbb{E}}\left\{ \left[ (\kappa_H - d_L) \frac{\partial \mathcal{P}\{\text{Buy}\}}{\partial \beta_{ijt}} \right] * \text{Profits} \right\}.$$

The marginal benefit to produce information is proportional to  $\kappa_H - \kappa_L$ . Therefore, if traders decide to expand  $\kappa_H - \kappa_L$  in response to a shock, it will tend to increase information production.

## C Intermediate Good Firms

### C.1 Micro-Foundation

Intermediate good firms sell their whole revenue stream to traders to focus the analysis on information frictions. This assumption can be micro-founded by assuming that there are at least two entrepreneurs without private wealth for each variety j. Entrepreneurs need to turn to financial markets to fund their projects, but the market is competitive in the sense that, at most, one entrepreneur for each variety j can sell her shares to traders. A mechanism chooses the entrepreneur who promises the highest rate of return on her shares. If there is a tie, the successful entrepreneur is chosen at random among the entrepreneurs who offer the highest return.

Formally, the entrepreneur's problem is

$$\max_{K_{jkt+1},D_{jkt+1}(A_{jt},K_{jkt+1})} C_{jkt} + \delta \mathbb{E} \left\{ C_{jkt+1} \right\}$$

$$\tag{46}$$

$$s.t. \quad K_{jkt+1} + C_{jkt} \le P_{jkt}. \tag{47}$$

$$C_{jkt+1} \le \prod_{jkt+1} (A_{jt}, K_{jkt+1}) - D_{jkt+1} (A_{jt}, K_{jkt+1})$$
 (48)

$$C_{jkt}, C_{jkt+1}, K_{jkt+1}, D_{jkt+1} (A_{jt}, K_{jkt+1}) \ge 0$$
 (49)

where

$$P_{jkt} = \begin{cases} 0 & \text{if } \exists k' \neq k : R_{jkt+1} < R_{jk't+1} \\ 0 & \text{w.p. } 1 - \frac{1}{|k''|} \\ \frac{1}{R_{t+1}} \tilde{\mathbb{E}} \left\{ D_{jkt+1} \left( A_{jt}, K_{jkt+1} \right) | s_{ijt} = z_{jt}, z_{jt} \right\} & \text{w.p. } \frac{1}{|k''|} \\ \frac{1}{R_{t+1}} \tilde{\mathbb{E}} \left\{ D_{jkt+1} \left( A_{jt}, K_{jkt+1} \right) | s_{ijt} = z_{jt}, z_{jt} \right\} & \text{if } \forall k' \neq k : R_{jkt+1} = R_{jk''t+1} \text{ and } \forall k' \neq k : R_{jkt+1} \geq R_{jk't+1} . \end{cases}$$

$$(50)$$

The entrepreneur maximizes her utility over consumption today and tomorrow using the same utility function as households.<sup>23</sup> When young, entrepreneurs can either consume or invest in their firm. When old, entrepreneurs pay out a dividend  $D_{jkt+1}$  and consume what remains of revenue  $\Pi_{jkt+1}$ .

The entrepreneur is only able to sell her shares at a positive price if she offers the highest return in market j. If the entrepreneur promises a lower rate of return  $R_{jkt+1}$  than some other entrepreneur k', she will not be able to sell her shares and will raise nothing. If she promises the highest rate of return in the economy, but another entrepreneur promises this same highest return, she will be able to sell her shares with probability 1/|k''| where |k''| is the number of entrepreneurs which promise the highest return. If only she promises the highest return, she will be able to sell her shares with probability one. Finally, the rate of return is given by

$$R_{jkt+1} = \frac{\mathbb{E}\left\{D_{jkt+1}\left(A_{jt}, K_{jkt+1}\right)\right\}}{K_{jkt+1}}.$$
 (51)

There is perfect competition between entrepreneurs because productivity  $A_{jt}$  is attached to the variety j instead of to the entrepreneur jk and all entrepreneurs sell at the same price  $\rho_{jt+1}$ . Therefore, the only equilibrium is one in which at least two entrepreneurs choose

$$D_{jkt+1}(A_{jt}, K_{jkt+1}) = \Pi_{jkt+1}(A_{jt}, K_{jkt+1})$$
(52)

$$K_{jkt+1} = P_{jkt} \tag{53}$$

It is easy to verify that this is the only equilibrium. Any entrepreneur k who chooses (52) and (53) can only deviate by either investing less or paying a lower dividend. It follows that another entrepreneur exists who promises a higher return on investment, and, following (50) entrepreneur k is unable to sell her shares. Similarly, any entrepreneur who does not choose (52) and (53) does not have a profitable deviation. Choosing to invest less or promising a lower dividend leads to no change, as the rate of return is only further depressed. Investing more or promising a higher dividend is similarly inconsequential as long as the entrepreneur does not choose (52) and (53). If she chooses to deviate to (52) and (53), she still earns zero profits but gets to produce with positive probability. Therefore, (52) and (53) are an equilibrium.

To show that at least two entrepreneurs choosing (52) and (53) is the only equilibrium, it is necessary to show that profitable deviations exist for all other choices of investment and

 $<sup>^{23}</sup>$ Entrepreneurs can only raise funds by selling claims to revenue and cannot otherwise borrow or lend. This setting guarantees that asset prices are an invertible function of  $z_{jt}$ , a noisy signal of firm productivity, without which the equilibrium in the financial market does not exist. See Albagli, Hellwig, and Tsyvinski (2011b, 2017) for a discussion of this issue.

dividends. First, consider that only one entrepreneur k chooses (52) and (53) and that all others either invest strictly less or pay a lower dividend in some states. Then entrepreneur k can raise her profits by either investing less or promising a lower dividend while still promising the highest rate of return. Second, assume that all entrepreneurs choose an investment and dividend policy that leads to positive profits in at least some states. In this case, there is a profitable deviation for any entrepreneur. Entrepreneur k can invest more or pay a larger dividend to promise the highest rate of return while keeping positive profits. Therefore, the only equilibrium is given by at least two entrepreneurs choosing (52) and (53).

## C.2 Entrepreneurs with Market Power: Equity

Alternatively, assume that there is only one entrepreneur per variety. Furthermore, assume that entrepreneurs are patient and restricted to selling equity contracts as captured in the following Assumption.

Assumption 3 (*Equity Contracts*). Entrepreneurs can only sell claims to a fraction  $\lambda_{jt}(P_{jt}, P_t) \in [0, 1]$  of firm-revenue.

The share of revenue that is sold to the market is allowed to depend on price  $P_{jt}$  and on the aggregate value of stock market,  $P_t$ . The entrepreneur's maximization problem is

$$\max_{\lambda_{jt}, K_{jt+1}} \mathbb{E}\left\{ C_{jt+1} \middle| P_{jt} \right\} \tag{54}$$

$$C_{jt+1} \le \Pi(A_{jt}, K_{jt+1}) - D(A_{jt}, K_{jt+1})$$
 (55)

$$D(A_{it}, K_{it+1}) = \lambda_{it}(P_{it}, P_t) \Pi(A_{it}, K_{it+1})$$
(56)

$$0 \le K_{jt+1} \le P_{jt},\tag{57}$$

The entrepreneur maximizes her consumption, which consists of firm revenue  $\Pi(A_{jt}, K_{jt+1})$  after paying dividends  $D(A_{jt}, K_{jt+1})$  subject to constraints (55), (56) and (57). The first constraint states that consumption can be at most revenue minus dividends. The second constraint follows from Assumption 3. The final constraint imposes non-negativity on investment and states that entrepreneurs cannot borrow additional funds from other sources. Plugging in the constraints into the objective yields the simplified problem

$$\max_{\lambda_{jt}(P_{jt}, P_t), K_{jt+1}} \mathbb{E} \left\{ \Pi_{jt+1} - \lambda_{jt} \left( P_{jt}, P_t \right) \Pi_{jt+1} | z_{jt} \right\}$$

$$0 \le K_{jt+1} \le P_{jt}$$

The asset price  $P_{jt}$  can be expressed as

$$P_{jt} = \alpha \frac{\lambda_{jt} \left( P_{jt}, P_t \right)}{R_{t+1}} Y_t^{\alpha_Y} \tilde{\mathbb{E}} \left\{ A_{jt} \middle| s_{ijt} = z_{jt}, z_{jt} \right\} K_{jt+1}^{\frac{\theta - 1}{\theta}}.$$

It is optimal for the entrepreneur to invest everything she raises, which allows firm capital to be written as

$$P_{jt} = K_{jt+1} = \left(\alpha \frac{\lambda_{jt} \left(P_{jt}, P_t\right)}{R_{t+1}} Y_t^{\alpha_Y} \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\} \right)^{\theta}.$$

Plugging this back into the entrepreneur's problem leads to the simplified problem

$$\max_{\lambda_{jt}(P_{jt},P_t)} \left(1 - \lambda_{jt}(P_{jt},P_t)\right) \lambda_{jt}(P_{jt},P_t)^{\theta-1} \left(1 - \alpha^{\theta-1}\right) \mathbb{E}\left\{A_{jt}|z_{jt}\right\} \left(\tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt} = z_{jt}, z_{jt}\right\} \frac{Y_t^{\alpha_Y}}{R_{t+1}}\right)^{\theta-1}.$$

The first-order condition to the simplified problem is

$$\frac{\partial}{\partial \lambda_{jt}} \left( 1 - \lambda_{jt} \left( P_{jt}, P_t \right) \right) \lambda_{jt} \left( P_{jt}, P_t \right)^{\theta - 1} = 0$$

$$\Rightarrow (\theta - 1) \lambda_{jt} \left( P_{jt}, P_t \right)^{\theta - 2} - \theta \lambda_{jt} \left( P_{jt}, P_t \right)^{\theta - 1} = 0$$

$$\Rightarrow \forall j, t : \quad \lambda_{jt} = \frac{\theta - 1}{\theta}$$

Therefore, all entrepreneurs irrespective of firm-specific and aggregate asset prices sell a constant fraction  $\lambda_{jt} = \frac{\theta-1}{\theta}$  of revenue to the financial market. The resulting dividend per share is

$$D_{jt+1} = \alpha \frac{\theta - 1}{\theta} Y_{t+1}^{\alpha_Y} A_{jt} K_{jt+1}^{\frac{\theta - 1}{\theta}}.$$

Assigning market power to entrepreneurs, therefore, effectively leads to a markup on the price of the intermediate good as traders only receive a fraction  $\frac{\theta-1}{\theta}$  of firm revenue for completely funding firm investment. The effect is to depress investment, which can be undone through an ad-valorem subsidy of  $\tau = \frac{\theta}{\theta-1}$  in the market for intermediate goods.

# C.3 Entrepreneurs with Market Power: Credit Markets

The main focus of this paper is to study booms that are caused by productivity or sentiment. The available literature extensively studies such booms in credit markets. The model can be extended to cover debt securities that are centrally traded instead of stock markets. Assume

that the entrepreneur's technology is given by

$$Y_{jt} = \begin{cases} A_t^{\frac{\theta - 1}{\theta}} K_{jt} & \text{w.p. } \pi_{jt} \\ 0 & \text{w.p. } 1 - \pi_{jt} \end{cases}.$$

In the main text, entrepreneurs were sure to succeed but their productivity was uncertain. Now, assume instead that entrepreneurs run projects that are either successful and give a certain payoff or fail and produce nothing. Success or failure is determined by the realization of a normally distributed variable,

$$P(Y_{jt} > 0) = P(a_{jt} > \bar{a}) = \Phi\left(\frac{a_t - \bar{a}}{\sqrt{\sigma_a^2}}\right) = \pi_t.$$

The entrepreneur's project succeeds whenever  $a_{jt} \sim \mathcal{N}\left(a_t, \sigma_a^2\right)$  has a realization above the threshold  $\bar{a}$ . Households have dispersed information about the firm-specific shock  $s_{ijt} = a_{jt} + \frac{\eta_{ijt} + \varepsilon_{jt}}{\sqrt{\beta_{ijt}}}$  where  $\eta_{ijt}$  is idiosyncratic noise and  $\varepsilon_{jt}$  is correlated noise. Same as before, traders suffer from correlation neglect and perceive only their own signal to be  $s_{ijt} = a_{jt} + \eta_{ijt}/\sqrt{\beta_{ijt}}$ . The household's problem is the same as in the main model.

To finance their projects, entrepreneurs issue a unit mass of debt securities with the payoff

$$X_{jt} = \begin{cases} \lambda_{jt} & \text{if } Y_{jt} > 0\\ 0 & \text{otherwise} \end{cases}.$$

The security pays an amount  $\lambda_{jt}$  when the project succeeds and pays zero otherwise.<sup>24</sup> The entrepreneur maximizes the revenue that she can keep in case of success after repaying debt obligations

$$\max_{\lambda_{jt}, K_{jt+1}} \rho_{jt+1} Y_{jt+1} \left( a_{jt}, K_{jt+1} \right) - X_{jt} \left( a_{jt}, \lambda_{jt} \right)$$
$$0 \le K_{jt+1} \le P_{jt}.$$

The entrepreneur invests all raised funds,  $K_{jt+1} = P_{jt}$ . Using  $P(a_{jt} > \bar{a} | s_{ijt} = z_{jt}, z_{jt}) = P(\tilde{a}_{jt+1} > \bar{a})$  where  $\tilde{a}_{it+1} \sim \mathcal{N}\left(\tilde{\mathbb{E}}\left\{A_{jt} | s_{ijt} = z_{jt}, z_{jt}\right\}, \mathbb{V}\right)$  are the posterior beliefs of the

Quantity and payoffs can be interchanged by denoting the mass of securities by  $\lambda_{jt}$  so the payoff in the good state is normalized to one. Instead, the quantity is normalized to one and the payoff is allowed to vary.

marginal trader, the price of debt and firm capital can then be written as

$$K_{jt+1} = P_{jt} = \frac{\lambda_{jt}}{R_{t+1}} \Phi\left(\frac{\tilde{\mathbb{E}}\left\{A_{jt} | s_{ijt} = z_{jt}, z_{jt}\right\}}{\sqrt{\mathbb{V}}}\right), \tag{58}$$

where  $\mathbb{V} = (\sigma_a^{-2} + \beta_{jt} (1 + \sigma_{\varepsilon}^{-2}))^{-1}$  is the posterior uncertainty. The solution to the entrepreneur's problem is

$$\lambda_{jt} = \left(\frac{\theta - 1}{\theta} \alpha Y_{t+1}^{\alpha_Y} A_{t+1}\right)^{\theta} \frac{\Phi\left(\frac{\tilde{\mathbb{E}}\left\{A_{jt} \mid s_{ijt} = z_{jt}, z_{jt}\right\}}{\sqrt{\mathbb{V}}}\right)^{\theta - 1}}{\left(R_{t+1}\right)^{\theta - 1}},\tag{59}$$

which depends on the market valuation of debt or equivalently the interest rate that entrepreneur j faces. Using (58) and (59) in the expression for firm-revenue allows the entrepreneur's decision to be expressed as a fraction of output,

$$\frac{\lambda_{jt}}{\rho_{jt+1}Y_{jt+1}(a_{jt}, K_{jt+1})} = \frac{\theta - 1}{\theta}.$$
 (60)

This result recovers the optimal equity contract from section C.2.

In contrast to the model with equity, there is an additional channel through which shocks affect information production. The binary payoff function introduces changes in the variance of outcomes for firms driven by productivity and sentiment shocks. The variance of outcomes is captured by  $\pi_{jt} (1 - \pi_{jt})$ , whereas riskiness normally would only be captured by the probability of failure,  $1 - \pi_{jt}$ . Intuitively, a project is entirely safe whenever the probability of success,  $\pi_{jt}$ , is equal to one. In this case, learning about the firm-specific shock,  $a_{jt}$ , is inconsequential. The same reasoning applies if the project is sure to fail  $(\pi_{jt} = 0)$ . Therefore, the effect of changes to  $a_t$  is ambiguous. Positive shocks to  $a_t$  trigger additional information production only when  $\pi_{jt}$  was low before, but they crowd out information when debt becomes safe as a consequence. Therefore, the aggregate shocks affect the (perceived) riskiness of debt.<sup>25</sup>

Although this model abstracts from banks and credit intermediation, it replicates the main stylized facts of credit booms before financial crises. First, credit booms are episodes of sharp increases in lending and economic activity (Jordà, Schularick, and Taylor, 2010). This is the case in the model presented here, as the volume of credit increases in response to a positive aggregate shock. As a result, investment and economic activity increase. Second,

 $<sup>\</sup>overline{\phantom{a}^{25}}$ An alternative interpretation is that productivity shocks affect productivity conditional on success,  $A_{t+1}$ . In this case, productivity shocks would have no effect on the riskiness of debt and would behave similar to a productivity shock in the model with equity markets.

credit becomes riskier as lending standards are relaxed, and riskier firms get access to credit (Keys et al., 2010). In response to a sentiment shock, all firms are considered to be safer than they actually are. Because there is more scope for a change in beliefs for relatively risky firms, the sentiment shock leads to a disproportionate increase in funding for risky firms (low  $\pi_{jt}$ ). Third, credit spreads decrease in the boom phase before a financial crisis (Krishnamurthy and Muir, 2017). In the case of sentiment driven booms, all firms are perceived to be safer than they actually are and, therefore, spreads are low.

## D Full Social Planner Problem

In the main text, the social planner could only intervene by choosing information precision. Now, the social planner can choose consumption, information production and investment in the aggregate and cross-section to maximize social welfare, defined as the sum of the utilities of all traders. Therefore, the social planner is able to achieve the second best by fixing all inefficiencies. The maximization problem is

$$\max_{K_{j1}, C_0, C_1, \beta_{j0}} C_0 + \delta \mathbb{E}_0 \{ C_1 \} - \int_0^1 IA(\beta_{j0}) dj$$
 (SP1)

$$s.t. \quad K_1 = W_0 - C_0 \tag{61}$$

$$C_1 \le Y_1(\{K_{j1}\}, \{\beta_{j0}\})$$
 (62)

$$C_0 \le W_0 \tag{63}$$

$$K_{j1}, C_0, C_1, \beta_{j0} \ge 0.$$
 (64)

Constraint (61) states that aggregate capital in period 1 is equal to endowments  $W_0$  minus youth consumption  $C_0$ . (62) and (63) are resource constraints. (64) are non-negativity constraints on consumption, information production and capital. The solution to the social planner's problem is given in the following Proposition.

**Proposition 11.** The social planner's allocation under perfect information about aggregate shocks  $\{a_0, \varepsilon_0\}$  is given by  $\{C_0^{SP}, K_{j1}^{SP}, K_1^{SP}, \beta_0^{SP}\}$ , where

$$K_{j1}^{SP} = \frac{\mathbb{E}\left\{A_{j0}|z_{j0}\right\}^{\theta}}{\int_{0}^{1} \mathbb{E}\left\{A_{j0}|z_{j0}\right\}^{\theta} dj} K_{1}^{SP}$$
(65)

leading to aggregate output

$$Y_1^{SP} = A_0^{SP} (K_1^{SP})^{\alpha} \quad with \ A_0^{SP} = \left( \int_0^1 \mathbb{E} \{A_{j0} | z_{j0}\}^{\theta} dj \right)^{\frac{\alpha}{\theta - 1}}.$$
 (66)

The interest rate is

$$R_1^{SP} = \alpha A_0^{SP} \left( K_1^{SP} \right)^{\alpha - 1}, \tag{67}$$

which leads to aggregate investment

$$K_1^{SP} = \min\left\{ \left(\alpha \delta A_0^{SP}\right)^{\frac{1}{1-\alpha}}, W_0 \right\}. \tag{68}$$

The symmetric information production choice is

for all 
$$\beta_{j0} = \beta_0^{SP} : \delta \left. \frac{\partial A_0^{SP}}{\partial \beta_0} \right|_{\beta_0 = \beta_0^{SP}} \left( K_1^{SP} \right)^{\alpha} = \left. \frac{\partial I A_0}{\partial \beta_0} \right|_{\beta_0 = \beta_0^{SP}}.$$
 (69)

The social planner fixes the two aforementioned inefficiencies. First, the social planner distributes capital optimally by attributing the correct precision to the price signal  $z_{jt}$  as in (28) and (65). As a result, ex-ante marginal products of capital are equalized between firms. This reallocation of capital leads to an increase in TFP as in Proposition 3 compared to the competitive allocation. Second, the social planner chooses information production  $\beta_0^{SP}$  to increase TFP instead of trading rents. Given that the social planner optimally distributes capital between firms as in (65), an increase in  $\beta_0^{SP}$  always benefits  $A_0^{SP}$ .

# D.1 Implementation

In this section, I investigate how the social planner can implement the centralized allocation through the use of taxes and subsidies. Net proceeds and costs of taxes and subsidies are distributed lump-sum between old traders.

The social planner can apply a tax/subsidy on dividend income to achieve the constrained efficient allocation of capital. Under this state-dependent tax/subsidy, traders receive

$$\Pi_{j1}^{DE} = \tau^{Bias}(z_{j0}) \Pi_{j1}, \quad \text{where } \tau^{Bias}(z_{j0}) = \frac{\mathbb{E}\{A_{j0}|z_{j0}\}}{\tilde{\mathbb{E}}\{A_{j0}|x_{ij0} = z_{j0}, z_{j0}\}}.$$
 (70)

As seen in Figure 3,  $\tau^{Bias}(z_{j0})$  is a subsidy on dividends whenever  $K_{j1}^{eff} < K_{j1}$ . If the social planner has information about aggregate shocks, the tax/subsidy corrects also for aggregate sentiment shocks through the marginal trader's expectations  $\mathbb{E}\{A_{j0}|x_{ij0}=z_{j0},z_{j0}\}$ . A tax (subsidy) can lower (increase) investment in response to a positive (negative) sentiment shock.

Moreover, a tax/subsidy  $\tau^{Info}(\beta_{ij0})$  on information production is sufficient to induce the socially optimal level,

$$\frac{\partial IA^{DE}(\beta_{ij0})}{\partial \beta_{ij0}} = \tau^{Info}(\beta_{ij0}) \frac{\partial IA(\beta_{ij0})}{\partial \beta_{ij0}}, \quad \tau^{Info}(\beta_{ij0}) = \frac{\widetilde{MB}(\beta_{ij0}, \beta_{j0}) \Big|_{\beta_{ij0} = \beta_{j0}}}{\delta \frac{\partial A_0}{\partial \beta_0} K_1^{\alpha}}.$$
 (71)

Applying the after-tax marginal cost leads directly to the first-order condition as in (69). The results are summarized in the following Proposition:

**Proposition 12.** The social planner's allocation  $\{K_1^{SP}, K_{j1}^{SP}, \beta_0^{SP}\}$  can be implemented through taxes/subsidies (70) and (71).

Alternatively, the social planner can use transaction taxes to implement the optimal capital allocation. Since Tobin (1972), financial transaction taxes have been discussed with the objective of reducing volatility by making short-term speculation less profitable. This analysis is inapplicable here as assets are short-lived and only traded once. Nonetheless, a transaction tax can be used to drive a wedge between how much traders pay for shares and how much is invested in capital. The following Proposition shows how such a transaction tax can be used to stabilize investment against sentiment shocks and reallocate capital across firms.

Corollary 4. (i) Aggregate investment can be stabilized with respect to sentiment shocks through a transaction tax,

$$K_{j1}^{DE} = \tau^{Trans} \left( \varepsilon_0 \right) P_{j0}, \quad \tau^{Trans} \left( \varepsilon_0 \right) = \exp \left\{ -\omega_{s\varepsilon} \varepsilon_0 \right\}, \quad \omega_{s\varepsilon} = \frac{\sqrt{\beta_0}}{\sigma_a^{-2} + \beta_0 \left( 1 + \sigma_{\varepsilon}^{-2} \right)}. \tag{72}$$

(ii) Dividend tax/subsidy (70) can be substituted by a state-dependent transaction tax,

$$K_{j1}^{DE} = \tau^{Trans} (P_{j0}) P_{j0}, \quad \tau^{Trans} (P_{j0}) = \frac{\mathbb{E} \{A_{j0} | z_{j0}\}}{\tilde{\mathbb{E}} \{A_{j0} | s_{ij0} = z_{j0}, z_{j0}\}}.$$
 (73)

# E Information Structure

This model assumes that traders are overconfident in that they wrongly believe that sentiment drives the beliefs of all other traders but does not drive their own beliefs. Whereas it is empirically reasonable to assume that behavioral biases play a role in financial markets, I chose this approach for tractability. Avoiding the introduction of non-optimizing agents greatly simplifies embedding a model of informative financial markets in a macro setting and facilitates the welfare analysis. Moreover, overconfidence is sufficient to motivate costly

information production and to avoid the Grossman-Stiglitz paradox. This assumption is not necessary for deriving the main result that sentiment shocks crowd out information and can identically be derived with noise trades in partial equilibrium.

In the following, I walk through different assumptions for the information structure and their relationships to information aggregation and production.

#### **Exogenous Public Signals**

The simplest case is one in which traders do not have private signals but instead observe public signals of the form  $z_{jt} = a_{jt} + \varepsilon_{jt}/\sqrt{\beta}$ . This setting mirrors the allocation in Proposition 3. However, it has nothing to say about the origin of the signal. How does it come about, and what determines its precision?

### Heterogeneous Private Signals

To say something about the aggregation of information, endow traders with heterogeneous private signals

$$s_{ijt} = a_{jt} + \frac{\eta_{ijt} + \varepsilon_{jt}}{\sqrt{\beta_{jt}}}.$$

Following the same steps as in section 3.3 leads to the market equilibrium under the assumption of rationality and overconfidence.

Under rationality the efficient allocation of capital is achieved, but information production is ruled out. As in the model with overconfidence, observing the asset price is isomorphic to observing  $z_{jt} = \int s_{ijt}dj$ . Rational traders realize that they have nothing to learn from their private signal after observing the public signal  $z_{jt}$ . However, setting up this equilibrium requires that traders use their private signals to make buying decision. In this setting, traders are indifferent between buying and not buying, as they all share the same information set. Therefore, the indifference can be broken in favor of buying whenever  $s_{ijt} \geq z_{jt}$ .

The main drawback of this approach is that it rules out costly information production. The private signal  $s_{ijt}$  becomes fully uninformative after observing the public signal  $z_{jt}$  in equilibrium  $(\forall i : \beta_{ijt} = \beta_{jt})$ . In this case, the trader finds it optimal to deviate to  $\beta_{ijt} < \beta_{jt}$ , which guarantees an informative private signal. However, since traders are ex-ante homogeneous, no asymmetric equilibrium can exist. There is no equilibrium with costly information production and rationality, similar to the result in Grossman and Stiglitz (1980).

To overcome this problem, I assume that traders think that their private signal does not contain sentiment. Therefore, they do not discard their private signal  $s_{ijt}$  after observing the

 $<sup>^{26}</sup>$ This class of equilibria is referred to as "fully revealing rational expectations equilibrium," and this class is studied in Grossman (1976).

price signal  $z_{it}$ . The posterior of trader ij becomes

$$a_{jt}|s_{ijt}, z_{jt} \sim \mathcal{N}\left(\frac{\beta_{ijt}s_{ijt} + \beta_{jt}\sigma_{\varepsilon}^{-2}z_{jt}}{\sigma_{a}^{-2} + \beta_{ijt} + \beta_{jt}\sigma_{\varepsilon}^{-2}}, \frac{1}{\sigma_{a}^{-2} + \beta_{ijt} + \beta_{jt}\sigma_{\varepsilon}^{-2}}\right),$$

where I have marked in blue terms that follow from the overconfidence assumption. It follows that traders have posteriors that are too precise, as they think that their private signals remain informative after observing  $z_{jt}$ . This misperception motivates traders to invest in their private signal with the anticipation of trading rents. Finally, this bias leads to an overreaction of prices to the price signal  $z_{jt}$  as described in section 4.1. This price distortion appears also in models with rational and noise traders, if rational traders learn from prices and have heterogeneous private signals.<sup>27</sup> The main focus of this paper, however, is not on the price distortion, but rather on time-varying price informativeness and the allocational efficiency of financial markets.

## F Proofs

**Proof of Proposition 1**. This proof follows the same steps as the proof for Proposition 1 in Albagli, Hellwig, and Tsyvinski (2017) as the financial market in this model is isomorphic to their version. It is repeated here for completeness. The only difference is that  $K_{jt+1}$  depends on the price signal  $z_{jt}$ , whereas k in Albagli, Hellwig, and Tsyvinski (2017) is determined before trading takes place. Therefore, it is necessary to assume that  $K_{jt+1}(z_{jt})$  is non-decreasing in  $z_{jt}$  as the price might otherwise be not invertible, which is confirmed ex-post.

There must be a threshold  $\hat{s}(P_{jt})$  such that all households with  $s_{ijt} \geq \hat{s}(P_{jt})$  find it profitable to buy two units of share j and otherwise abstain from trading. It follows that the price must be equal to the valuation of the trader who is merely indifferent between buying and not buying,

$$P_{it} = \tilde{\mathbb{E}} \{ D(A_{it}, K_{it+1}) | s_{iit} = \hat{s}(P_{it}), P_{it} \}.$$

This monotone demand schedule leads to total demand  $2\left(1 - \Phi\left(\sqrt{\beta_{jt}}\left(\hat{s}\left(P_{jt}\right) - a_{jt}\right) - \varepsilon_{jt}\right)\right)$ . Equalizing total demand with a normalized supply of one leads to the market clearing condition

$$2\left(1 - \Phi\left(\sqrt{\beta_{jt}}\left(\hat{s}\left(P_{jt}\right) - a_{jt}\right) - \varepsilon_{jt}\right)\right) = 1$$

with the unique solution  $\hat{s}(P_{jt}) = z_{jt} = a_{jt} + \frac{\varepsilon_{jt}}{\sqrt{\beta_{jt}}}$ . If  $P_{jt}$  is pinned down by  $z_{jt}$ , then  $P_{jt}$  is invertible, given that  $K_{jt+1}$  is non-decreasing in  $z_{jt}$ . It follows, then, that observing  $P_{jt}$  is equivalent to observing  $z_{jt} \sim \mathcal{N}\left(a_{jt}, \beta_{jt}^{-1} \sigma_{\varepsilon}\right)$ . Traders treat the signal  $z_{jt}$  and their

<sup>&</sup>lt;sup>27</sup>For a more detailed discussion, see Albagli, Hellwig, and Tsyvinski (2011a, 2015).

private signal  $s_{ijt} \sim \mathcal{N}\left(a_{jt}, \beta_{ijt}^{-1}\right)$  as mutually independent. Using this result, the price can be restated as

$$P(z_{jt}, K_{jt+1}) = \tilde{\mathbb{E}} \{ D(A_{jt}, K_{jt+1}) | s_{ijt} = z_{jt}, z_{jt} \}$$

where posterior expectations of trader ij are given by

$$a_{jt}|s_{ijt}, z_{jt} \sim \mathcal{N}\left(\frac{\sigma_a^{-2}a_t + \beta_{ijt}s_{ijt} + \beta_{jt}\sigma_\varepsilon^{-2}z_{jt}}{\sigma_a^{-2} + \beta_{ijt} + \beta_{jt}\sigma_\varepsilon^{-2}}, \frac{1}{\sigma_a^{-2} + \beta_{ijt} + \beta_{jt}\sigma_\varepsilon^{-2}}\right).$$

It remains to show the uniqueness of the above solution. Begin with the assumption that demand  $d(s_{ijt}, P_{jt})$  is non-increasing in  $P_{jt}$ . It follows that  $\hat{s}(P_{jt})$  is non-decreasing in  $P_{jt}$ . There are two cases to differentiate. First, if  $\hat{s}(P_{jt})$  is strictly increasing in  $P_{jt}$ , then the price is indeed uniquely pinned-down by  $z_{jt}$  and invertible; it can be expressed like above. Secondly, assume that the threshold is flat over some interval, such that  $\hat{s}(P_{jt}) = \hat{s}$  over some interval  $P_{jt} \in (P', P'')$  for  $P' \neq P''$ . Furthermore, choose  $\epsilon > 0$  small enough such that  $\hat{s}(P_{jt})$  is increasing to the left and the right of the interval, i.e., over  $P_{jt} \in (P' - \epsilon, P')$  and  $P_{jt} \in (P'', P'' + \epsilon)$ . In these regions,  $\hat{s}(P_{jt})$  is monotonically increasing in  $P_{jt}$ , which is uniquely pinned down by  $z_{jt}$  and invertible; observing the price is equivalent to observing the signal  $z_{jt}$ . In this case the price can be expressed as before for  $z_{jt} \in (\hat{s}(P' - \epsilon), \hat{s})$  and  $z_{jt} \in (\hat{s}, \hat{s}(P'' + \epsilon))$ . This leads to a contradiction in the assumption that  $P' \neq P''$ , because  $P(z_{jt}, K_{jt+1})$  is both continuous and monotonically increasing in  $z_{jt}$ . Therefore,  $\hat{s}(P_{jt})$  cannot be flat and the above solution is indeed unique.

**Proof of Proposition 2.** (i) Using (4) in (21) leads to the expression for firm capital

$$K_{jt+1} = \left(\frac{\alpha Y_{t+1}^{\alpha_Y}}{R_{t+1}} \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\} \right)^{\theta}.$$
 (74)

Plugging  $R_{t+1}$  from (22) into (21) using (74) leads to

$$K_{jt+1} = \frac{\tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\}^{\theta}}{\int_{0}^{1} \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\}^{\theta} dj} K_{t+1}.$$

Finally, plugging this expression for firm capital into the aggregate production function leads

to

$$\begin{split} Y_t &= \left( \int_0^1 Y_{jt}^{\frac{\theta-1}{\theta}} di \right)^{\frac{\alpha\theta}{\theta-1}} \\ &= \left( \int_0^1 A_{jt-1} K_{jt}^{\frac{\theta-1}{\theta}} di \right)^{\frac{\alpha\theta}{\theta-1}} \\ &= \frac{\left( \int_0^1 A_{jt-1} \tilde{\mathbb{E}} \left\{ A_{jt-1} \middle| s_{ijt-1} = z_{jt-1}, z_{jt-1} \right\}^{\theta-1} dj \right)^{\frac{\alpha\theta}{\theta-1}}}{\left( \int_0^1 \tilde{\mathbb{E}} \left\{ A_{jt-1} \middle| s_{ijt-1} = z_{jt-1}, z_{jt-1} \right\}^{\theta} dj \right)^{\alpha}} K_t^{\alpha} \\ &= A_{t-1} L^{1-\alpha} K_t^{\alpha} \end{split}$$

where total factor productivity is

$$\begin{split} A_{t-1} &= \frac{\left(\int_0^1 A_{jt-1} \tilde{\mathbb{E}} \left\{A_{jt-1} \middle| s_{ijt-1} = z_{jt-1}, z_{jt-1} \right\}^{\theta-1} dj\right)^{\frac{\alpha}{\theta-1}}}{\left(\int_0^1 \tilde{\mathbb{E}} \left\{A_{jt-1} \middle| s_{ijt-1} = z_{jt-1}, z_{jt-1} \right\}^{\theta} dj\right)^{\alpha}} \\ &= \exp \left\{\theta a_{t-1} + \left((\theta-1)\omega_a + 1\right)^2 \frac{\sigma_a^2}{2} + (\theta-1)^2 \omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{2} + (\theta-1)\omega_{s\varepsilon}\varepsilon_{t-1} + \frac{(\theta-1)}{2} \mathbb{V}\right\}^{\frac{\alpha\theta}{\theta-1}} \\ &: \exp \left\{\theta a_{t-1} + \theta^2 \omega_a^2 \frac{\sigma_a^2}{2} + \theta^2 \omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{2} + \theta \omega_{s\varepsilon}\varepsilon_{t-1} + \frac{\theta}{2} \mathbb{V}\right\}^{\alpha} \\ &= \exp \left(\frac{\alpha\theta}{\theta-1} a_{t-1} + \left(\frac{\alpha\theta}{\theta-1} \left((\theta-1)\omega_a + 1\right)^2 - \alpha\theta^2 \omega_a^2\right) \frac{\sigma_a^2}{2} + \left(\alpha\theta \left(\theta-1\right) - \alpha\theta^2\right) \omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{2}\right) \\ &= \exp \left(\frac{\alpha\theta}{\theta-1} a_{t-1} + \alpha\theta \left((\theta-1)\omega_a^2 + 2\omega_a + \frac{1}{\theta-1} - \theta\omega_a^2\right) \frac{\sigma_a^2}{2} - \alpha\theta\omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{2}\right) \\ &= \exp \left(\frac{1}{\theta-1} \left(a_{t-1} + \frac{\sigma_a^2}{2}\right) + \omega_a \left(2 - \omega_a\right) \frac{\sigma_a^2}{2} - \omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{2}\right)^{\alpha\theta} \,. \end{split}$$

The weights  $\{\omega_a, \omega_{\varepsilon}, \omega_{s\varepsilon}\}$  and  $\mathbb{V}$  are derived in Appendix A. Finally, total factor productivity can be expressed as

$$\ln A_{t-1}\left(a_{t-1}, \beta_{t-1}\right) = \underbrace{\frac{\alpha \theta}{\theta - 1} \left(a_{t-1} + \frac{\sigma_a^2}{2}\right)}_{\text{exogenous}} + \underbrace{\kappa^a \left(\beta_{t-1}\right) \sigma_a^2 - \kappa^{\varepsilon} \left(\beta_{t-1}\right) \sigma_{\varepsilon}^2}_{\text{allocative efficiency}}$$

where 
$$\kappa^a(\beta_{t-1}) = \frac{\omega_a(2-\omega_a)}{2}$$
 and  $\kappa^{\varepsilon}(\beta_{t-1}) = \frac{\omega_{\varepsilon}^2}{2}$ .

(iii)  $\omega_a(\beta_t)$  is monotonically increasing in  $\beta_t$ . In the case with  $\beta_t = 0$  or  $\beta_t \to \infty$ , no noise enters the posterior of traders. Therefore, the Bayesian weight on realizations of correlated noise,  $\omega_{\varepsilon}(\beta_t)$ , must be hump-shaped. It follows then from (27) that if  $\sigma_{\varepsilon}^2$  is large enough

relative to  $\sigma_a^2$ , TFP is an inversely hump-shaped function of  $\beta_t$ . Reversely, if  $\sigma_{\varepsilon}^2$  is small enough relative to  $\sigma_a^2$ ,  $A(a_{t-1}, \beta_{t-1})$  is monotonically increasing in  $\beta_{t-1}$ .

**Lemma 1.** Denote the Bayesian weights  $\omega_a^{eff} = \frac{\beta \sigma_{\varepsilon}^{-2}}{\sigma_a^{-2} + \beta_t \sigma_{\varepsilon}^{-2}}, \omega_{\varepsilon}^{eff} = \frac{\sqrt{\beta} \sigma_{\varepsilon}^{-2}}{\sigma_a^{-2} + \beta_t \sigma_{\varepsilon}^{-2}}$  and posterior uncertainty  $\mathbb{V}^{eff} = \frac{1}{\sigma_a^{-2} + \beta_t \sigma_{\varepsilon}^{-2}}$ , then

$$\underbrace{\left(\omega_{a}^{eff}\right)^{2}\sigma_{a}^{2} + \left(\omega_{\varepsilon}^{eff}\right)^{2}\sigma_{\varepsilon}^{2}}_{=Var(\mathbb{E}\left\{a_{jt}|z_{jt}\right\})} + \underbrace{\mathbb{V}^{eff}}_{Var\left(a_{jt}|z_{jt}\right)} = \underbrace{\sigma_{a}^{2}}_{Var\left(a_{jt}\right)}.$$

Proof.

$$\begin{split} \left(\omega_{a}^{eff}\right)^{2}\sigma_{a}^{2} + \left(\omega_{\varepsilon}^{eff}\right)^{2}\sigma_{\varepsilon}^{2} + \mathbb{V}^{eff} &= \frac{\beta_{t}^{2}\sigma_{\varepsilon}^{-4}}{\left(\sigma_{a}^{-2} + \beta_{t}\sigma_{\varepsilon}^{-2}\right)^{2}}\sigma_{a}^{2} + \frac{\beta_{t}\sigma_{\varepsilon}^{-4}}{\left(\sigma_{a}^{-2} + \beta_{t}\sigma_{\varepsilon}^{-2}\right)^{2}}\sigma_{\varepsilon}^{2} + \frac{1}{\sigma_{a}^{-2} + \beta_{t}\sigma_{\varepsilon}^{-2}} \\ &= \left(\mathbb{V}^{eff}\right)^{2}\left(\sigma_{a}^{-2} + 2\beta_{t}\sigma_{\varepsilon}^{-2} + \beta_{t}^{2}\sigma_{\varepsilon}^{-4}\sigma_{a}^{2}\right) \\ &= \left(\mathbb{V}^{eff}\right)^{2}\left(\sigma_{a}^{-4} + 2\beta_{t}\sigma_{\varepsilon}^{-2}\sigma_{a}^{-2} + \beta_{t}^{2}\sigma_{\varepsilon}^{-4}\right)\sigma_{a}^{2} \\ &= \left(\mathbb{V}^{eff}\right)^{2}\left(\sigma_{a}^{-2} + \beta_{t}\sigma_{\varepsilon}^{-2}\right)^{2}\sigma_{a}^{2} \\ &= \sigma_{a}^{2}. \end{split}$$

**Proof of Proposition 3**. (i) An efficient allocation of capital equalizes marginal products between firms. Demand for firm capital follows from the following maximization problem

$$\max_{K_{jt+1}} \alpha Y_{t+1}^{\alpha_Y} \mathbb{E} \left\{ A_{jt} | z_{jt} \right\} K_{jt+1}^{\frac{\theta-1}{\theta}} - R_{t+1} K_{jt+1}$$

with the first-order condition

$$K_{jt+1} = \left(\frac{\mathbb{E}\left\{A_{jt}|z_{jt}\right\}}{R_{t+1}}\alpha Y_{t+1}^{\alpha_Y}\right)^{\theta}.$$

Integrating over all firms on both sides yields

$$R_{t+1} = \left( \int_0^1 \mathbb{E} \left\{ A_{jt} | z_{jt} \right\}^{\theta} dj \right)^{\frac{1}{\theta}} \alpha Y_{t+1}^{\alpha_Y} K_{t+1}^{-\frac{1}{\theta}}.$$

Plugging this expression back into the first-order condition leads to the constrained efficient allocation

$$K_{jt+1} = \frac{\mathbb{E} \{A_{jt} | z_{jt}\}^{\theta}}{\int_{0}^{1} \mathbb{E} \{A_{jt} | z_{jt}\}^{\theta} dj} K_{t+1}.$$

(ii) Plugging (28) into (26) leads to

$$Y_t = A_{t-1}^{eff} K_t^{\alpha},$$

where the constrained efficient level of total factor productivity is

$$A_{t-1}^{eff} = \frac{\left(\int_{0}^{1} A_{jt} \mathbb{E} \left\{ A_{jt} | z_{jt-1} \right\}^{\theta-1} di \right)^{\frac{\alpha \theta}{\theta-1}}}{\left(\int_{0}^{1} \mathbb{E} \left\{ A_{jt} | z_{jt-1} \right\}^{\theta} di \right)^{\alpha}}.$$

The analytical expression can be obtained by evaluating the conditional expectations and using the constrained efficient Bayesian weights and posterior uncertainty,

$$\omega_p^{eff} = \frac{\sigma_a^{-2}}{\sigma_a^{-2} + \beta_{t-1}\sigma_\varepsilon^{-2}}, \quad \omega_a^{eff} = \frac{\beta_{t-1}\sigma_\varepsilon^{-2}}{\sigma_a^{-2} + \beta_{t-1}\sigma_\varepsilon^{-2}}, \quad \omega_\varepsilon^{eff} = \frac{\sqrt{\beta_{t-1}}\sigma_\varepsilon^{-2}}{\sigma_a^{-2} + \beta_{t-1}\sigma_\varepsilon^{-2}}, \quad \mathbb{V}^{eff} = \frac{1}{\sigma_a^{-2} + \beta_{t-1}\sigma_\varepsilon^{-2}}$$

which leads to

$$\begin{split} A_{t-1}^{eff} &= \frac{\left(\int_{0}^{1} A_{it-1} \mathbb{E} \left\{A_{it-1} | z_{it-1} \right\}^{\theta - 1} di\right)^{\frac{\delta \omega}{\theta - 1}}}{\left(\int_{0}^{1} \mathbb{E} \left\{A_{it-1} | z_{it-1} \right\}^{\theta} di\right)^{\alpha}} \\ &= \exp \left\{\theta a_{t-1} + \left((\theta - 1) \, \omega_{a}^{eff} + 1\right)^{2} \frac{\sigma_{a}^{2}}{2} + (\theta - 1)^{2} \left(\omega_{\varepsilon}^{eff}\right)^{2} \frac{\sigma_{\varepsilon}^{2}}{2} + \frac{(\theta - 1)}{2} \mathbb{V}^{eff}\right\}^{\frac{\alpha \theta}{\theta - 1}} \\ &: \exp \left\{\theta a_{t-1} + \theta^{2} \left(\omega_{a}^{eff}\right)^{2} \frac{\sigma_{a}^{2}}{2} + \theta^{2} \left(\omega_{\varepsilon}^{eff}\right)^{2} \frac{\sigma_{\varepsilon}^{2}}{2} + \frac{\theta}{2} \mathbb{V}^{eff}\right\}^{\alpha} \\ &= \exp \left(\frac{\alpha \theta}{\theta - 1} a_{t-1} + \left(\frac{\alpha \theta}{\theta - 1} \left((\theta - 1) \, \omega_{a}^{eff} + 1\right)^{2} - \alpha \theta^{2} \left(\omega_{a}^{eff}\right)^{2}\right) \frac{\sigma_{a}^{2}}{2} + \left(\alpha \theta \left(\theta - 1\right) - \alpha \theta^{2}\right) \left(\omega_{\varepsilon}^{eff}\right)^{2} \frac{\sigma_{\varepsilon}^{2}}{2}\right) \\ &= \exp \left(\frac{\alpha \theta}{\theta - 1} a_{t-1} + \alpha \theta \left((\theta - 1) \left(\omega_{a}^{eff}\right)^{2} + 2\omega_{a}^{eff} + \frac{1}{\theta - 1} - \theta \left(\omega_{a}^{eff}\right)^{2}\right) \frac{\sigma_{a}^{2}}{2} - \alpha \theta \left(\omega_{\varepsilon}^{eff}\right)^{2} \frac{\sigma_{\varepsilon}^{2}}{2}\right) \\ &= \exp \left(\frac{1}{\theta - 1} \left(a_{t-1} + \frac{\sigma_{a}^{2}}{2}\right) + 2\omega_{a}^{eff} \frac{\sigma_{a}^{2}}{2} - \left(\left(\omega_{a}^{eff}\right)^{2} \frac{\sigma_{a}^{2}}{2} + \left(\omega_{\varepsilon}^{eff}\right)^{2} \frac{\sigma_{\varepsilon}^{2}}{2}\right)\right)^{\alpha \theta} \\ &= \exp \left(\frac{1}{\theta - 1} \left(a_{t-1} + \frac{\sigma_{a}^{2}}{2}\right) + 2\omega_{a}^{eff} \frac{\sigma_{a}^{2}}{2} - \omega_{a}^{eff} \frac{\sigma_{a}^{2}}{2}\right)^{\alpha \theta} \\ &= \exp \left(\frac{1}{\theta - 1} \left(a_{t-1} + \frac{\sigma_{a}^{2}}{2}\right) + \omega_{a}^{eff} \frac{\sigma_{a}^{2}}{2} - \omega_{a}^{eff} \frac{\sigma_{a}^{2}}{2}\right)^{\alpha \theta} \\ &= \exp \left(\frac{1}{\theta - 1} \left(a_{t-1} + \frac{\sigma_{a}^{2}}{2}\right) + \omega_{a}^{eff} \frac{\sigma_{a}^{2}}{2}\right)^{\alpha \theta}. \end{split}$$

TFP under the efficient allocation of capital can be similarly decomposed in two expressions,

$$\ln A_{t-1}^{eff} = \underbrace{\frac{\alpha \theta}{\theta - 1} \left( a_{t-1} + \frac{\sigma_a^2}{2} \right)}_{\text{exogenous}} + \underbrace{\alpha \theta \omega_a^{eff} \frac{\sigma_a^2}{2}}_{\text{allocative efficiency}}.$$

It follows that

$$\frac{\partial \omega_a^{eff}}{\partial \beta_{t-1}} > 0 \Rightarrow \frac{\partial A_{t-1}^{eff}}{\partial \beta_{t-1}} > 0.$$

(iii) As under both allocations capital is distributed equally between firms for  $\beta_{t-1} = 0$ , total factor productivity also coincides,

$$A_{t-1}^{eff} = A_{t-1} = \exp\left(\frac{\alpha\theta}{\theta - 1} \left(a_{t-1} + \frac{\sigma_a^2}{2}\right)\right).$$

In the perfect information  $(\beta_{t-1} = \infty)$  case the efficient and market allocation also coincide,

$$A_{t-1}^{eff} = A_{t-1} = \exp\left(\frac{1}{\theta - 1} \left(a_{t-1} + \frac{\sigma_a^2}{2}\right) + \frac{\sigma_a^2}{2}\right)^{\alpha\theta}.$$

For  $\beta_t \in (0, \infty)$ , TFP under the constrained efficient capital allocation must be higher than under the market allocation, as is the allocation is explicitly derived to maximize firm-production given the available information information, which guarantees that ex-ante marginal products of capital are equalized given an aggregate level of investment.<sup>28</sup>

**Proof of Corollary 1.** The distortion vanishes of the expectations of the marginal trader  $\tilde{\mathbb{E}}\{A_{jt}|s_{ijt}=z_{jt},z_{jt}\}$  and  $\mathbb{E}\{A_{jt}|z_{jt}\}$  coincide, i.e.,  $K_{jt+1}=K_{jt+1}^{eff}$ .

(i) When the private signal is infinitely noisy, both the expectations converge to the unconditional expectation,

$$\lim_{\beta \to 0} \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\} = \lim_{\beta \to 0} \mathbb{E} \left\{ A_{jt} | z_{jt} \right\} = \mathbb{E} \left\{ A_{jt} \right\}.$$

When the private signal is infinitely precise, both expectations converge to the actual realization of  $A_{it}$ ,

$$\lim_{\beta \to \infty} \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\} = \lim_{\beta \to \infty} \mathbb{E} \left\{ A_{jt} | z_{jt} \right\} = A_{jt}$$

(ii) When the variance of firm-specific productivity shocks goes to zero, i.e., the prior

<sup>&</sup>lt;sup>28</sup>Direct proof is in the making.

becomes arbitrarily precise, both expectations converge to  $\exp\{a_t\}$ 

$$\lim_{\sigma_a^2 \to 0} \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\} = \lim_{\beta \to 0} \mathbb{E} \left\{ A_{jt} | z_{jt} \right\} = \exp \left\{ a_t \right\}.$$

When the variance of firm-specific productivity shocks goes to infinity, i.e., the prior becomes arbitrarily noisy, both allocations coincide because they put full weight on the price signal  $z_{jt}$ ,

$$\lim_{\sigma_a^{-2} \to 0} \omega_z = \lim_{\sigma_a^{-2} \to 0} \omega_z^{eff} = 1$$

where

$$\omega_z = \frac{\beta_t \left( 1 + \sigma_{\varepsilon}^{-2} \right)}{\sigma_a^{-2} + \beta_t \left( 1 + \sigma_{\varepsilon}^{-2} \right)}, \quad \omega_z^{eff} = \frac{\beta_t \sigma_{\varepsilon}^{-2}}{\sigma_a^{-2} + \beta_t \sigma_{\varepsilon}^{-2}}.$$

(iii) When the variance of firm-specific sentiment shocks goes to zero, financial markets perfectly aggregate dispersed information as the precision of the price signal goes to infinity.

**Lemma 2** (Joining two Normal PDFs ). Let  $f(\varepsilon_{jt})$  be the pdf of  $\varepsilon_{jt} \sim \mathcal{N}(\varepsilon_t, \sigma_{\varepsilon}^2)$  and  $\phi(\cdot)$  the standard-normal pdf. Then

$$f(\varepsilon_{jt}) \phi(\varepsilon_{jt}) = \exp\left\{-\frac{\varepsilon_t^2}{2(1+\sigma_\varepsilon^2)}\right\} \sqrt{\frac{1}{2\pi(1+\sigma_\varepsilon^2)}} \tilde{f}(\varepsilon_{jt})$$

where  $\tilde{f}(\varepsilon_{jt})$  is the transformed pdf of  $\varepsilon_{jt} \sim \mathcal{N}\left(\frac{\varepsilon_t}{1+\sigma_{\varepsilon}^2}, \frac{\sigma_{\varepsilon}^2}{1+\sigma_{\varepsilon}^2}\right)$ .

*Proof.* Write out the pdfs explicitly,

$$\phi\left(\varepsilon_{jt}\right) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{\varepsilon_{jt}^2}{2}\right\}$$

$$f\left(\varepsilon_{jt}\right) = \frac{1}{\sqrt{2\pi\sigma_{\varepsilon}^2}} \exp\left\{-\frac{\left(\varepsilon_{jt} - \varepsilon_t\right)^2}{2\sigma_{\varepsilon}^2}\right\}$$

$$f\left(\varepsilon_{jt}\right) \phi\left(\varepsilon_{jt}\right) = \frac{1}{\sqrt{2\pi\sigma_{\varepsilon}^2}} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{\varepsilon_{jt}^2}{2} - \frac{\left(\varepsilon_{jt} - \varepsilon_t\right)^2}{2\sigma_{\varepsilon}^2}\right\}.$$

Rearranging the term inside the exponential function,

$$\begin{split} \frac{\left(\varepsilon_{jt}-\varepsilon_{t}\right)^{2}}{\sigma_{\varepsilon}^{2}}+\varepsilon_{jt} &= \frac{\varepsilon_{jt}-2\varepsilon_{jt}\varepsilon_{t}+\varepsilon_{t}^{2}}{\sigma_{\varepsilon}^{2}}+\varepsilon_{jt} \\ \text{join fractions} &= \frac{\left(1+\sigma_{\varepsilon}^{2}\right)\varepsilon_{jt}-2\varepsilon_{t}\varepsilon_{jt}+\varepsilon_{t}^{2}}{\sigma_{\varepsilon}^{2}} \\ \text{divide by } \left(1+\sigma_{\varepsilon}^{2}\right) &= \frac{\varepsilon_{jt}-2\varepsilon_{jt}\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}+\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}} \\ \text{add and substract} &= \frac{\varepsilon_{jt}-2\varepsilon_{jt}\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}+\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}+\frac{\left(\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}-\left(\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}} \\ \text{exchange terms} &= \frac{\varepsilon_{jt}-2\varepsilon_{jt}\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}+\left(\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}+\frac{\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}-\left(\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}} \\ \text{join paranthesis again} &= \frac{\left(\varepsilon_{jt}-\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}+\frac{\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}-\left(\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}} \\ &= \frac{\left(\varepsilon_{jt}-\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}+\frac{1-\frac{1}{1+\sigma_{\varepsilon}^{2}}}{\frac{1+\sigma_{\varepsilon}^{2}}{\varepsilon}}\varepsilon_{t}^{2} \\ &= \frac{\left(\varepsilon_{jt}-\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}+\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}\varepsilon_{t}^{2} \\ &= \frac{\left(\varepsilon_{jt}-\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}+\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}\varepsilon_{t}^{2} \\ &= \frac{\left(\varepsilon_{jt}-\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}+\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}\varepsilon_{t}^{2}} \\ &= \frac{\left(\varepsilon_{jt}-\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}+\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}\varepsilon_{t}^{2} \\ &= \frac{\left(\varepsilon_{jt}-\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}+\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}\varepsilon_{t}^{2}} \\ &= \frac{\left(\varepsilon_{jt}-\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}+\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}} \end{aligned}$$

This allows to write

$$f\left(\varepsilon_{jt}\right)\phi\left(\varepsilon_{jt}\right) = \frac{1}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{\varepsilon_{jt}}{2} - \frac{\left(\varepsilon_{jt} - \varepsilon_{t}\right)^{2}}{2\sigma_{\varepsilon}^{2}}\right\}$$

$$= \frac{1}{\sqrt{\sigma_{\varepsilon}^{2}}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{1}{2} \frac{\left(\varepsilon_{jt} - \frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}\right\} \exp\left\{-\frac{1}{2} \left(\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}\right)\right\}$$

$$= \frac{1}{\sqrt{\sigma_{\varepsilon}^{2}}} \sqrt{\frac{\sigma_{\varepsilon}^{2}}{2\pi\left(1+\sigma_{\varepsilon}^{2}\right)}} \frac{1}{\sqrt{2\pi\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}} \exp\left\{-\frac{1}{2} \frac{\left(\varepsilon_{jt} - \frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}}\right)^{2}}{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}\right\} \exp\left\{-\frac{1}{2} \left(\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}\right)\right\}$$

$$= \exp\left\{-\frac{1}{2} \left(\frac{\varepsilon_{t}^{2}}{1+\sigma_{\varepsilon}^{2}}\right)\right\} \sqrt{\frac{1}{2\pi\left(1+\sigma_{\varepsilon}^{2}\right)}} \tilde{f}(\varepsilon_{jt}).$$

**Lemma 3** (Auxiliary Results Market Allocation). Denote the Bayesian weights  $\omega_a = \frac{\beta_{jt}(1+\sigma_{\varepsilon}^{-2})}{\sigma_a^{-2}+\beta_{jt}(1+\sigma_{\varepsilon}^{-2})}$ ,

$$\omega_{\varepsilon} = \frac{\omega_{a}}{\sqrt{\beta_{jt}}}, \ \omega_{z\varepsilon,it} = \frac{\sqrt{\beta_{jt}}\sigma_{\varepsilon}^{-2}}{\sigma_{a}^{-2} + \sqrt{\beta_{jt}}(1 + \sigma_{\varepsilon}^{-2})}, \ and \ posterior \ uncertainty \ \mathbb{V} = \frac{1}{\sigma_{a}^{-2} + \beta_{t}(1 + \sigma_{\varepsilon}^{-2})}, \ then$$

$$(i) \ \omega_{a}^{2}\sigma_{a}^{2} + \omega_{\varepsilon}^{2} \frac{\sigma_{\varepsilon}^{2}}{1 + \sigma_{\varepsilon}^{2}} + \mathbb{V} = \sigma_{a}^{2},$$

$$(ii) \ \omega_{a}^{2}\sigma_{a}^{2} + \omega_{\varepsilon}^{2} \frac{\sigma_{\varepsilon}^{2}}{1 + \sigma_{\varepsilon}^{2}} = \sigma_{a}^{2} - \mathbb{V} = \omega_{a}\sigma_{a}^{2},$$

$$(iii) \ \frac{\omega_{a}}{1 + \sigma_{\varepsilon}^{2}} = \omega_{z\varepsilon}.$$

Proof. (i)

$$\begin{split} \omega_{a}^{2}\sigma_{a}^{2} + \omega_{\varepsilon}^{2}\frac{\sigma_{\varepsilon}^{2}}{1 + \sigma_{\varepsilon}^{2}} + \mathbb{V} &= \frac{\sigma_{a}^{2}\beta^{2}\left(1 + \sigma_{\varepsilon}^{-2}\right)^{2}}{\left(\sigma_{a}^{-2} + \beta\left(1 + \sigma_{\varepsilon}^{-2}\right)\right)^{2}} + \frac{\beta\left(1 + \sigma_{\varepsilon}^{-2}\right)}{\left(\sigma_{a}^{-2} + \beta\left(1 + \sigma_{\varepsilon}^{-2}\right)\right)^{2}} + \frac{\sigma_{a}^{-2} + \beta\left(1 + \sigma_{\varepsilon}^{-2}\right)}{\left(\sigma_{a}^{-2} + \beta\left(1 + \sigma_{\varepsilon}^{-2}\right)\right)^{2}} \\ &= \frac{\sigma_{a}^{-2} + 2\beta\left(1 + \sigma_{\varepsilon}^{-2}\right) + \sigma_{a}^{2}\beta^{2}\left(1 + \sigma_{\varepsilon}^{-2}\right)^{2}}{\left(\sigma_{a}^{-2} + \beta\left(1 + \sigma_{\varepsilon}^{-2}\right)\right)^{2}} \\ &= \frac{\sigma_{a}^{-4} + 2\sigma_{a}^{-2}\beta\left(1 + \sigma_{\varepsilon}^{-2}\right) + \beta^{2}\left(1 + \sigma_{\varepsilon}^{-2}\right)^{2}}{\left(\sigma_{a}^{-2} + \beta\left(1 + \sigma_{\varepsilon}^{-2}\right)\right)^{2}} \sigma_{a}^{2} \\ &= \frac{\left(\sigma_{a}^{-2} + \beta\left(1 + \sigma_{\varepsilon}^{-2}\right)\right)^{2}}{\left(\sigma_{a}^{-2} + \beta\left(1 + \sigma_{\varepsilon}^{-2}\right)\right)^{2}} \sigma_{a}^{2} \\ &= \sigma_{a}^{2} \end{split}$$

(ii) The first equality follows from (i). Then

$$\sigma_a^2 - \mathbb{V} = \sigma_a^2 - \frac{1}{\sigma_a^{-2} + \beta \left(1 + \sigma_\varepsilon^{-2}\right)}$$

$$= \frac{\sigma_a^2 \sigma_a^{-2} + \sigma_a^2 \beta \left(1 + \sigma_\varepsilon^{-2}\right) - 1}{\sigma_a^{-2} + \beta \left(1 + \sigma_\varepsilon^{-2}\right)}$$

$$= \frac{\beta \left(1 + \sigma_\varepsilon^{-2}\right)}{\sigma_a^{-2} + \beta \left(1 + \sigma_\varepsilon^{-2}\right)} \sigma_a^2$$

$$= \omega_a \sigma_a^2.$$

(iii) 
$$\frac{\omega_{\varepsilon}}{1+\sigma_{\varepsilon}^2} = \frac{\omega_{\varepsilon}}{\sigma_{\varepsilon}^2(1+\sigma_{\varepsilon}^{-2})} = \frac{\omega_{\varepsilon}\sigma_{\varepsilon}^{-2}}{(1+\sigma_{\varepsilon}^{-2})} = \omega_{z\varepsilon}.$$

**Lemma 4.** In the symmetric equilibrium with  $\beta_{ijt} = \beta_{jt}$  for  $K_{t+1} < W_t$ ,

(i) Sentiment shocks  $\varepsilon_t$  affect the marginal benefit of information production through three channels,

$$MB\left(\beta_{ijt},\beta_{jt}\right)|_{\beta_{ijt}=\beta_{jt}} \propto \exp\left\{\underbrace{-\frac{\varepsilon_t^2}{2\left(1+\sigma_\varepsilon^2\right)}}_{\text{Information-Sensitivity}}\underbrace{-\left(\theta-1\right)\omega_{s\varepsilon}\varepsilon_t}_{Relative\text{Size}} + \underbrace{\frac{\alpha}{1-\alpha}\omega_{s\varepsilon}\varepsilon_t}_{Absolute\ Size}\right\}.$$

(ii) Productivity shocks  $a_t$  increase the marginal benefit of information production,

$$MB(\beta_{ijt}, \beta_{jt})|_{\beta_{ijt} = \beta_{jt}} \propto \exp\left\{\left(\frac{\alpha\theta - \theta + 1}{\theta - 1} + \frac{\alpha}{1 - \alpha} + 1\right)a_t\right\}.$$

**Proof of Lemma 4.** (i) Assume  $a_t = 0$  without loss of generality. The marginal benefit to increasing  $\beta_{ijt}$  is

$$MB\left(\beta_{ijt},\beta_{jt}\right)\big|_{\beta_{ijt}=\beta_{jt}} = \int_{-\infty}^{\infty} g\left(a_{jt}\right) \int_{-\infty}^{\infty} f\left(\varepsilon_{jt}\right) \frac{\partial \mathcal{P}\left\{x_{ijt}=2\right\}}{\partial \beta_{ijt}} \bigg|_{\beta_{ijt}=\beta_{jt}} \alpha A_{t}^{\alpha_{Y}}$$

$$* \frac{\left(A_{jt} - \mathbb{E}\left\{A_{jt} \middle| s_{ijt} = z_{jt}z_{jt}\right\}\right) \tilde{\mathbb{E}}\left\{A_{jt} \middle| s_{ijt} = z_{jt}, z_{jt}\right\}^{\theta-1}}{\left(\int_{0}^{1} \tilde{\mathbb{E}}\left\{A_{jt} \middle| s_{ijt} = z_{jt}, z_{jt}\right\}^{\theta} di\right)^{\frac{\theta-1}{\theta}}} K_{t+1}^{\alpha} d\varepsilon_{jt} da_{jt},$$

$$(75)$$

where  $g\left(a_{jt}\right)$  is the pdf of  $a_{jt} \sim \mathcal{N}\left(0, \sigma_a^2\right)$  and  $f\left(\varepsilon_{jt}\right)$  is the pdf of  $\varepsilon_{jt} \sim \mathcal{N}\left(\varepsilon_t, \sigma_\varepsilon^2\right)$ . The most immediate effect comes from changes to aggregate investment  $K_{t+1}^{\alpha}$ . For  $\delta R_{t+1} = 1$ ,

$$K_{t+1}^{\alpha} = \left(\alpha \delta A_t^{\alpha_Y} \left( \int_0^1 \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\}^{\theta} di \right)^{\frac{1}{\theta}} \right)^{\frac{\alpha}{1-\alpha}} \propto \exp \left\{ \frac{\alpha}{1-\alpha} \omega_{s\varepsilon} \varepsilon_t \right\}.$$
 (76)

The *Scale* channel is summarized by  $\exp\left\{\frac{\alpha}{1-\alpha}\omega_{s\varepsilon}\varepsilon_{t}\right\}$ . Next, the derivative of the probability of buying at  $\beta_{ijt}=\beta_{jt}$  is

$$\left. \frac{\partial \mathcal{P}\left\{ x_{ijt} = 2 \right\}}{\partial \beta_{ijt}} \right|_{\beta_{ijt} = \beta_{jt}} = \phi\left(\varepsilon_{jt}\right) \left( \frac{\omega_{p,it}}{\sqrt{\beta_{jt}}} a_{jt} + \frac{\varepsilon_{jt}}{2\beta_{jt}} - \frac{\omega_{\varepsilon,it}\varepsilon_{jt} - \omega_{z\varepsilon,it}\varepsilon_{t}}{\sqrt{\beta_{jt}}} + \frac{1}{2} \frac{\mathbb{V}_{jt}}{\sqrt{\beta_{jt}}} \right),$$

where  $\phi(\cdot)$  is the standard-normal pdf. Combine  $f(\varepsilon_{jt})$  with  $\phi(\varepsilon_{jt})$  using Lemma (2),

$$\phi\left(\varepsilon_{jt}\right)f\left(\varepsilon_{jt}\right) = \exp\left\{-\frac{\varepsilon_{t}^{2}}{2\left(1+\sigma_{\varepsilon}^{2}\right)}\right\}\sqrt{\frac{1}{2\pi\left(1+\sigma_{\varepsilon}^{2}\right)}}\tilde{f}(\varepsilon_{jt}),\tag{77}$$

where  $\tilde{f}(\varepsilon_{jt})$  is the pdf of a fictional variable  $\varepsilon_{jt} \sim \mathcal{N}\left(\frac{\varepsilon_t}{1+\sigma_{\varepsilon}^2}, \frac{\sigma_{\varepsilon}^2}{1+\sigma_{\varepsilon}^2}\right)$ . The Information-Sensitivity channel is summarized by  $\exp\left\{-\frac{\varepsilon_t^2}{2(1+\sigma_{\varepsilon}^2)}\right\}$ . For the rest of the proof, substitute

$$\varepsilon_{jt} = \sqrt{\frac{\sigma_{\varepsilon}^2}{1 + \sigma_{\varepsilon}^2}} x + \frac{\varepsilon_t}{1 + \sigma_{\varepsilon}^2}$$
$$d\varepsilon_{jt} = \sqrt{\frac{\sigma_{\varepsilon}^2}{1 + \sigma_{\varepsilon}^2}} dx$$

Substitute  $\varepsilon_{jt}$  out of  $\left. \frac{\partial \mathcal{P}\{x_{ijt}=2\}}{\partial \beta_{ijt}} \right|_{\beta_{ijt}=\beta_{jt}}$ ,

$$\left. \frac{\partial \mathcal{P}\left\{ x_{ijt} = 2 \right\}}{\partial \beta_{ijt}} \right|_{\beta_{ijt} = \beta_{jt}} = \frac{\omega_{p,it}}{\sqrt{\beta_{jt}}} a_{jt} + \left( \frac{1}{2\beta_{jt}} - \frac{\omega_{\varepsilon,it}}{\sqrt{\beta_{jt}}} \right) \sqrt{\frac{\sigma_{\varepsilon}^2}{1 + \sigma_{\varepsilon}^2}} x + \frac{\varepsilon_t}{2\beta_{jt} \left( 1 + \sigma_{\varepsilon}^2 \right)} + \frac{1}{2} \frac{\mathbb{V}_{jt}}{\sqrt{\beta_{jt}}} a_{jt} + \frac{1}{2} \frac{\mathbb{V}_{jt}}{\sqrt{\beta_{jt}}}$$

Substitute  $\varepsilon_{jt}$  out of  $\tilde{\mathbb{E}}\{A_{jt}|s_{ijt}=z_{jt},z_{jt}\},$ 

$$\begin{split} \tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt} = z_{jt}, z_{jt}\right\} &= \exp\left\{\omega_a a_{jt} + \omega_\varepsilon \varepsilon_{jt} - \omega_{z\varepsilon} \varepsilon_t + \frac{1}{2}\mathbb{V}\right\} \\ &= \exp\left\{\omega_a a_{jt} + \omega_\varepsilon \sqrt{\frac{\sigma_\varepsilon^2}{1 + \sigma_\varepsilon^2}} x + \omega_\varepsilon \frac{\varepsilon_t}{1 + \sigma_\varepsilon^2} \omega_{z\varepsilon} \varepsilon_t + \frac{1}{2}\mathbb{V}\right\} \\ &= \exp\left\{\omega_a a_{jt} + \omega_\varepsilon \sqrt{\frac{\sigma_\varepsilon^2}{1 + \sigma_\varepsilon^2}} x + \frac{1}{2}\mathbb{V}\right\} \end{split}$$

Substitute  $\varepsilon_{it}$  out of the firm-specific multiplier for firm capital,

$$\frac{\tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt}=z_{jt},z_{jt}\right\}^{\theta-1}}{\left(\int_{0}^{1}\tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt}=z_{jt},z_{jt}\right\}^{\theta}di\right)^{\frac{\theta-1}{\theta}}} = \exp\left\{\left(\theta-1\right)\omega_{a}a_{jt} + \left(\theta-1\right)\omega_{\varepsilon}\sqrt{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}x + \left(\theta-1\right)\omega_{\varepsilon}\frac{\varepsilon_{t}}{1+\sigma_{\varepsilon}^{2}} - \left(\theta-1\right)\omega_{\varepsilon}\varepsilon_{t} - \frac{\left(\theta-1\right)\theta}{2}\left(\omega_{a}^{2}\sigma_{a}^{2} + \omega_{\varepsilon}^{2}\sigma_{\varepsilon}^{2}\right)\right\} \\
\propto \exp\left\{\left(\theta-1\right)\omega_{a}a_{jt} + \left(\theta-1\right)\omega_{\varepsilon}\sqrt{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}x - \left(\theta-1\right)\omega_{\varepsilon}\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}\varepsilon_{t}\right\} \\
= \exp\left\{\left(\theta-1\right)\omega_{a}a_{i} + \left(\theta-1\right)\omega_{\varepsilon}\sqrt{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}x - \left(\theta-1\right)\omega_{s\varepsilon}\varepsilon_{t}\right\} \\
= \exp\left\{\left(\theta-1\right)\omega_{a}a_{i} + \left(\theta-1\right)\omega_{\varepsilon}\sqrt{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}x - \left(\theta-1\right)\omega_{s\varepsilon}\varepsilon_{t}\right\}$$

$$(78)$$

where I used Lemma 3 (iii) repeatedly. The *Size* channel is summarized through  $\exp \{-(\theta - 1) \omega_{s\varepsilon} \varepsilon_t\}$ . It remains to show that there are no other terms in  $MB(\beta_{ijt}, \beta_{jt})$  that depend on  $\varepsilon_t$ . It is sufficient to show that

$$\int_{-\infty}^{\infty} g\left(a_{jt}\right) \int_{-\infty}^{\infty} \tilde{f}\left(\varepsilon_{jt}\right) \frac{\left(A_{jt} - \mathbb{E}\left\{A_{jt} \middle| s_{ijt} = z_{jt} z_{jt}\right\}\right) \tilde{\mathbb{E}}\left\{A_{jt} \middle| s_{ijt} = z_{jt}, z_{jt}\right\}^{\theta - 1}}{\left(\int_{0}^{1} \tilde{\mathbb{E}}\left\{A_{jt} \middle| s_{ijt} = z_{jt}, z_{jt}\right\}^{\theta} di\right)^{\frac{\theta - 1}{\theta}}} d\varepsilon_{jt} da_{jt} \stackrel{!}{=} 0.$$

Substituting  $\varepsilon_{it}$  out leads to

$$\begin{split} &\int_{-\infty}^{\infty}g\left(a_{jt}\right)\int_{-\infty}^{\infty}\frac{1}{\sqrt{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}}\phi\left(x\right)\frac{\left(A_{jt}-\mathbb{E}\left\{A_{jt}|s_{ijt}=z_{jt}z_{jt}\right\}\right)\tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt}=z_{jt},z_{jt}\right\}^{\theta-1}}{\left(\int_{0}^{1}\tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt}=z_{jt},z_{jt}\right\}^{\theta}di\right)^{\frac{\theta-1}{\theta}}}\sqrt{1+\sigma_{\varepsilon}^{2}}dxda_{jt}\\ &\propto\int_{-\infty}^{\infty}g\left(a_{jt}\right)\int_{-\infty}^{\infty}\phi\left(x\right)\left(A_{jt}\tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt}=z_{jt},z_{jt}\right\}^{\theta-1}-\mathbb{E}\left\{A_{jt}|s_{ijt}=z_{jt}z_{jt}\right\}^{\theta}\right)dxda_{jt}\\ &=\int_{-\infty}^{\infty}g\left(a_{jt}\right)\int_{-\infty}^{\infty}\phi\left(x\right)\left(\exp\left\{\left((\theta-1)\omega_{a}+1\right)a_{jt}+(\theta-1)\omega_{\varepsilon}\sqrt{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}x+\frac{(\theta-1)}{2}\mathbb{V}\right\}-\exp\left\{\theta\omega_{a}a_{jt}+\theta\omega_{\varepsilon}\sqrt{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}x+\frac{\theta}{2}\mathbb{V}\right\}\right)dxda_{jt}\\ &\propto\int_{-\infty}^{\infty}g\left(a_{jt}\right)\int_{-\infty}^{\infty}\phi\left(x\right)\left(\exp\left\{\left((\theta-1)\omega_{a}+1\right)a_{jt}+(\theta-1)\omega_{\varepsilon}\sqrt{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}x-\frac{\mathbb{V}}{2}\right\}-\exp\left\{\theta\omega_{a}a_{jt}+\theta\omega_{\varepsilon}\sqrt{\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}}x\right\}\right)dxda_{jt}\\ &=\int_{-\infty}^{\infty}g\left(a_{jt}\right)\left(\exp\left\{\left((\theta-1)\omega_{a}+1\right)a_{jt}+\frac{(\theta-1)^{2}\omega_{\varepsilon}^{2}}{2}\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}-\frac{\mathbb{V}}{2}\right\}-\exp\left\{\theta\omega_{a}a_{jt}+\frac{\theta^{2}\omega_{\varepsilon}^{2}}{2}\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}\right\}\right)da_{jt}\\ &=\exp\left\{\frac{\left((\theta-1)\omega_{a}+1\right)^{2}\omega_{\varepsilon}^{2}}{2}\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}-\frac{\mathbb{V}}{2}\right\}-\exp\left\{\frac{\theta^{2}\omega_{a}^{2}}{2}\frac{\sigma_{\varepsilon}^{2}}{1+\sigma_{\varepsilon}^{2}}\right\}. \end{split}$$

It remains to show that

$$((\theta - 1)\omega_a + 1)^2 \sigma_a^2 + (\theta - 1)^2 \omega_{\varepsilon}^2 \frac{\sigma_{\varepsilon}^2}{1 + \sigma_{\varepsilon}^2} - \mathbb{V} \stackrel{!}{=} \theta^2 \omega_a^2 \sigma_a^2 + \theta^2 \omega_{\varepsilon}^2 \frac{\sigma_{\varepsilon}^2}{1 + \sigma_{\varepsilon}^2}.$$

Using Lemma 3 (i), the LHS is equal to

$$\left( \left( \theta^2 - 2\theta + 1 \right) \omega_a^2 + 2 \left( \theta - 1 \right) \omega_a \mathcal{H} \right) \sigma_a^2 + \left( \theta^2 - 2\theta + 1 \right) \omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{1 + \sigma_\varepsilon^2} \mathcal{A}_a^2 + \omega_a^2 \sigma_a^2 + \omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{1 + \sigma_\varepsilon^2}$$

$$= \left( \left( \theta^2 - 2\theta + 2 \right) \omega_a^2 + 2 \left( \theta - 1 \right) \omega_a \right) \sigma_a^2 + \left( \theta^2 - 2\theta + 2 \right) \omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{1 + \sigma_\varepsilon^2}$$

$$= 2 \left( \theta - 1 \right) \omega_a \sigma_a^2 + \left( \theta^2 + 2 \left( 1 - \theta \right) \right) \left( \omega_a^2 + \omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{1 + \sigma_\varepsilon^2} \right)$$

$$= 2 \left( \theta - 1 \right) \omega_a \sigma_a^2 + \left( \theta^2 + 2 \left( 1 - \theta \right) \right) \left( \omega_a \sigma_a^2 \right)$$

$$= \theta^2 \omega_a \sigma_a^2.$$

Using Lemma 3 (ii), the RHS is equal to

$$\frac{\theta^2 \omega_a^2}{2} \sigma_a^2 + \frac{\theta^2 \omega_\varepsilon^2}{2} \frac{\sigma_\varepsilon^2}{1 + \sigma_\varepsilon^2} = \theta^2 \omega_a \sigma_a^2.$$

Combining both confirms the conjecture. The marginal benefit of information production depends on  $\varepsilon_t$  only through the multiplicative effects in (76), (77) and (78), such that

$$MB\left(\beta_{ijt}, \beta_{jt}\right)|_{\beta_{ijt} = \beta_{jt}} \propto \exp\left\{\underbrace{\frac{\alpha}{1 - \alpha}\omega_{s\varepsilon}\varepsilon_t}_{Scale}\underbrace{-\frac{\varepsilon_t^2}{2\left(1 + \sigma_{\varepsilon}^2\right)}}_{Information-Sensitivity}\underbrace{-\left(\theta - 1\right)\omega_{s\varepsilon}\varepsilon_t}_{Size}\right\}.$$

(ii) Follow the same strategy as in (i). Start with the expressions for aggregate investment,  $K_{t+1}^{\alpha}$ , and productivity  $A_t^{\alpha_Y}$  in (75). For  $\delta R_{t+1} = 1$ , they are equal to

$$A^{\alpha_Y} K_{t+1}^{\alpha} = A^{\alpha_Y} \left( \alpha \delta A_t^{\alpha_Y} \left( \int_0^1 \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\}^{\theta} di \right)^{\frac{1}{\theta}} \right)^{\frac{\alpha}{1-\alpha}},$$

where

$$A_t^{\alpha_Y} \propto \exp\left\{\frac{\alpha\theta - \theta + 1}{\theta - 1}a_t\right\}, \quad \left(\int_0^1 \tilde{\mathbb{E}}\left\{A_{jt}|s_{ijt} = z_{jt}, z_{jt}\right\}^{\theta} di\right)^{\frac{1}{\theta}} \propto \exp\left\{a_t\right\}.$$

Putting both together yields

$$A_t^{\alpha_Y} K_{t+1}^{\alpha} \propto \exp\left\{ \left( \frac{\alpha \theta - \theta + 1}{\theta - 1} + \frac{\alpha}{1 - \alpha} \right) a_t \right\}.$$

Again, using substitution with

$$a_{jt} = \sqrt{\sigma_a^2} y + a_t,$$

It follows that

$$A_{jt} = \exp\{a_t\} \exp\left\{\sqrt{\sigma_a^2}y\right\}$$
$$\mathbb{E}\left\{A_{jt}|s_{ijt} = z_{jt}z_{jt}\right\} \propto \exp\{a_t\}$$

which yields

$$\frac{\left(A_{jt} - \mathbb{E}\left\{A_{jt} \middle| s_{ijt} = z_{jt} z_{jt}\right\}\right) \tilde{\mathbb{E}}\left\{A_{jt} \middle| s_{ijt} = z_{jt}, z_{jt}\right\}^{\theta - 1}}{\left(\int_{0}^{1} \tilde{\mathbb{E}}\left\{A_{jt} \middle| s_{ijt} = z_{jt}, z_{jt}\right\}^{\theta} di\right)^{\frac{\theta - 1}{\theta}}} \propto \exp\left\{a_{t}\right\}$$

The change in the trading probability does not depend on  $a_t$ 

$$\frac{\partial \mathcal{P}\left\{d_{ij} = 2|a_{jt}, \varepsilon_{jt}, \beta_{ijt}, \beta_{jt}\right\}}{\partial \beta_{ijt}}\bigg|_{\beta_{ijt} = \beta_{jt}} = \phi\left(\varepsilon_{jt}\right)\left(\frac{\omega_p}{\sqrt{\beta_{jt}}}\sqrt{\sigma_a^2}y + \frac{\varepsilon_{jt}}{2\beta_{jt}} - \frac{\omega_\varepsilon\varepsilon_{jt} - \omega_{z\varepsilon}\varepsilon_t}{\sqrt{\beta_{jt}}} + \frac{1}{2}\frac{\mathbb{V}_{jt}}{\sqrt{\beta_{jt}}}\right).$$

Finally,

$$MB\left(\beta_{ijt}, \beta_{jt}\right)|_{\beta_{ijt}=\beta_{jt}} \propto \exp\left\{\left(\frac{\alpha\theta - \theta + 1}{\theta - 1} + \frac{\alpha}{1 - \alpha} + 1\right)a_t\right\}$$

**Proof of Proposition 4**. (i) and (ii) follow from Lemma 4 (i). The cutoff can be derived by taking the derivative with respect to  $\varepsilon_t$ ,

$$\frac{\partial}{\partial \varepsilon_t} \left( -\frac{\varepsilon_t^2}{2(1+\sigma_{\varepsilon}^2)} - (\theta - 1) \,\omega_{s\varepsilon} \varepsilon_t + \frac{\alpha}{1-\alpha} \omega_{s\varepsilon} \varepsilon_t \right) \stackrel{!}{=} 0$$

$$\iff -\frac{\bar{\varepsilon}}{1+\sigma_{\varepsilon}^{2}} - (\theta - 1)\,\omega_{s\varepsilon} + \frac{\alpha}{1-\alpha}\omega_{s\varepsilon} = 0$$

$$\iff \frac{\bar{\varepsilon}}{1+\sigma_{\varepsilon}^{2}} = \left(\frac{1}{1-\alpha} - \theta\right)\omega_{s\varepsilon}$$

$$\iff \bar{\varepsilon} = \left(1 + \sigma_{\varepsilon}^{2}\right)\left(\frac{1}{1-\alpha} - \theta\right)\omega_{s\varepsilon}$$

where  $\omega_{s\varepsilon} = \frac{\sqrt{\beta_t}}{\sigma_a^{-2} + \beta_t \left(1 + \sigma_{\varepsilon}^{-2}\right)}$ . For  $\varepsilon_t < \bar{\varepsilon}$ , information production  $\beta_t$  is increasing in  $\varepsilon_t$ . For

 $\varepsilon_t > \bar{\varepsilon}$ , information production  $\beta_t$  is decreasing in  $\varepsilon_t$ .

**Proof of Proposition 5.** Follows from Lemma 4 
$$(ii)$$
.

**Proof of Proposition 6**. (i) Using the result from Proposition 4 (ii) and the assumption that  $\theta > \frac{1}{1-\alpha}$ , it must be that positive sentiment shocks crowd out information production. Moreover, as  $\beta^* < \frac{\sigma_a^{-2}}{1+\sigma_{\varepsilon}^{-2}}$ , it must be that the pass-through of aggregate sentiment shock  $\omega_{s\varepsilon}$  is smaller for when the information choice is allowed to adjust compared to the fixed information level  $\beta^*$ . As a result, sentiment shocks are dampened by information production in financial markets, as less precise information by itself leads to less investment and the sentiment shock is less powerful through a decrease in the pass-through.

(ii)  $\lim_{\varepsilon_t \to \infty} \sqrt{\beta_t(\varepsilon_t)} \varepsilon_t = 0$  guarantees that the pass-through of sentiment shocks goes faster to zero than the sentiment shock goes to infinity, i.e., the direct effect of sentiment shocks on investment disappears as shocks become arbitrarily large. Moreover, Lemma 4 (i) shows that through the information-sensitivity effect  $\lim_{\varepsilon_t \to \infty} \beta_t(\varepsilon_t) = 0$ .

**Proof of Proposition 8**. Since  $\widetilde{MB}(\beta_{ijt}, \beta_{jt}) \propto \kappa_H - \kappa_L$  whereas  $MB^{SP}(\beta_t)$  is not a function of position limits  $\{\kappa_H, \kappa_L\}$ , it must that  $\widetilde{MB}(\beta_{ijt}, \beta_{jt})\Big|_{\beta_{ijt} = \beta_{jt} = \beta_t} \neq MB^{SP}(\beta_t)$  for almost all values of  $\beta_t$ . Therefore, the information production in the competitive economy and social planner allocation do not coincide almost everywhere.

**Proof of Corollary 3.** The marginal benefit of information production after applying the  $\tan z$  subsidy  $\tau (a_{i0}, z_{i0})$  is

$$\widetilde{MB}\left(\beta_{ij0},\beta_{j0}\right) \propto \widetilde{\mathbb{E}}\left\{2\frac{\partial \mathcal{P}\left\{x_{ij0}=2\right\}}{\partial \beta_{ij0}}\left(\tau\left(a_{j0},z_{j0}\right)\Pi_{j1}-\widetilde{\mathbb{E}}\left\{\tau\left(a_{j0},z_{j0}\right)\Pi_{j1}|s_{ij0}=z_{j0},z_{j0}\right\}\right)\right\}.$$

Assume that a tax fulfills the following conditions

$$\tau\left(a_{j0}, z_{j0}\right) \ge (\le) \, 1 \iff \Pi_{j1} \ge \tilde{\mathbb{E}}\left\{\Pi_{j1} \middle| s_{ij0} = z_{j0}, z_{j0}\right\} \text{ and } \frac{\partial \mathcal{P}\left\{x_{ij0} = 2\right\}}{\partial \beta_{ij0}} \ge 0$$

$$\tau(a_{j0}, z_{j0}) \le (\ge) 1 \iff \Pi_{j1} \le \tilde{\mathbb{E}} \{\Pi_{j1} | s_{ij0} = z_{j0}, z_{j0}\} \text{ and } \frac{\partial \mathcal{P} \{x_{ij0} = 2\}}{\partial \beta_{ij0}} \le 0$$

and for all  $z_{j0}$  there is at least some  $a_{j0}$  for which the inequalities are strict. In the first case,  $\tau\left(a_{j0},z_{j0}\right)\geq 1$  whenever the trading rents  $\Pi_{j1}-\tilde{\mathbb{E}}\left\{\tau\left(a_{j0},z_{j0}\right)\Pi_{j1}|s_{ij0}=z_{j0},z_{j0}\right\}$  are positive and acquiring additional information leads to an increase of the probability of trading in

that state. The same reasoning applies for  $\tau(a_{j0}, z_{j0}) \leq 1$  and losses. This set of taxes increases  $\widetilde{MB}(\beta_{ij0}, \beta_{j0})$ . The reverse reasoning applies when  $\tau(a_{j0}, z_{j0}) \geq 1$  for losses and  $\tau(a_{j0}, z_{j0}) \leq 1$  for gains, which leads to a decrease in  $\widetilde{MB}(\beta_{ij0}, \beta_{j0})$ .

**Proof of Proposition 9.** Let the social planner buy  $d^{SP} \in (-1,1)$  units of shares in all markets. The market clearing condition for market j becomes

$$2\left(1 - \Phi\left(\sqrt{\beta_{j0}} \left(\hat{s}\left(P_{j0}\right) - a_{j0}\right) - \varepsilon_{j0}\right)\right) = 1 - d^{SP},$$

Keeping position limits fixed, the exogenous demand  $d^{SP}$  changes the identity of the marginal trader. If the social planner purchases more assets, the marginal trader becomes more optimistic on average. The threshold signal becomes,

$$\hat{s}\left(P_{j0}, d^{SP}\right) = a_{j0} + \frac{\varepsilon_{j0} + \Phi^{-1}\left(\frac{1+d^{SP}}{2}\right)}{\sqrt{\beta_{j0}}}.$$

It follows immediately that asset purchases or sales with  $d^{SP} = 2\Phi(-\varepsilon_0) - 1$  ensure that the marginal trader holds unbiased beliefs,

$$\hat{s}\left(P_{j0}, d^{SP}\right) = a_{j0} + \frac{\varepsilon_{j0} - \varepsilon_0}{\sqrt{\beta_{j0}}}.$$

As a result, the asset purchases/sells force the trader to correct also the private signal for the sentiment shock. It follows that prices are unbiased and aggregate investment is at the level in absence of the sentiment shock.

Traders expect to buy in equilibrium whenever  $s_{ijt} > \hat{s} \left( P_{j0}, d^{SP} \right)$ . Asset purchases/sells reverting the threshold for the private signal towards its level in absence of the aggregate sentiment shock  $\varepsilon_0 = 0$ , effectively undoing any change to the incentive to produce information, because the trader thinks that she is unaffected by the sentiment shock and markets became unaffected by the sentiment shock.

**Proof of Proposition 10.** (i) Denote  $k_{jt+1} = \ln K_{jt+1}$ . Using (25) allows to write the the variance of the log of firm capital stocks as

$$Var (k_{jt+1}) = \theta^2 Var \left( \ln \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\} \right)$$
$$= \theta^2 \left( \omega_a^2 \frac{\sigma_a^2}{2} + \omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{2} \right).$$

As  $\omega_a^2$  is monotonically increasing in  $\beta_t$  and  $\omega_\varepsilon^2$  is hump-shaped in  $\beta_t$ , it follows that there

exists some threshold  $0 < M < \infty$  such that

$$\sigma_{\varepsilon}^2 < M : \frac{\partial Var(k_{jt+1})}{\partial \beta_t} > 0.$$

This assumption is in accordance with Assumption 2.

(ii) Denote  $\Delta y_{jt+1} = y_{jt+1} - y_{jt}$ . Then

$$\Delta k_{jt+1} = \Delta \theta \ln \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\} + \Delta \ln \int_{0}^{1} \tilde{\mathbb{E}} \left\{ A_{jt} | s_{ijt} = z_{jt}, z_{jt} \right\} dj + \Delta K_{t+1}.$$

Deriving the variance of  $\Delta k_{jt+1}$  across firms yields

$$Var\left(\Delta k_{jt+1}\right) = 2\theta^2 \left(\omega_a^2 \frac{\sigma_a^2}{2} + \omega_\varepsilon^2 \frac{\sigma_\varepsilon^2}{2}\right)$$

as  $a_{jt}$  and  $\varepsilon_{jt}$  are both iid. It follows that for the same threshold  $0 < M < \infty$  as in (i)

$$\sigma_{\varepsilon}^2 < M : \frac{\partial Var\left(\Delta k_{jt+1}\right)}{\partial \beta_t} > 0.$$

**Proof of Proposition 11.** The social planner's allocation is given by equalizing the marginal products of capital for each firm given the market signals  $\{z_{jt}\}$ . The maximization problem of the social planner for firm capital allocation is therefore

$$\max_{K_{j1}} \mathbb{E} \left\{ \left( \int_0^1 Y_{j1}^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\alpha\theta}{\theta-1}} | z_{jt} \right\} - R_1^{SP} K_{j1},$$

for some interest rate  $R_1^{SP}$ . The resulting first-order condition for firm capital is

$$K_{j1}^{SP} = \left( \left( R_1^{SP} \right)^{-1} \alpha Y_1^{\alpha_Y} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\} \right)^{\theta}.$$

Integrating on both sides yields

$$R_{1}^{SP} = \alpha Y_{1}^{\alpha_{Y}} \left( \int_{0}^{1} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta} dj \right)^{\frac{1}{\theta}} \left( K_{1}^{SP} \right)^{-\frac{1}{\theta}}.$$

Substituting  $R_1^{SP}$  out of  $K_{j1}^{SP}$  yields (65). Following the same steps as in the proof for

Proposition 3, leads to

$$Y_1^{SP} = A_0^{SP} K_1^{\alpha}$$
, where  $A_0^{SP} = \left( \int_0^1 \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta} dj \right)^{\frac{\alpha}{\theta - 1}}$ .

Substituting  $Y_1^{SP}$  out of the expression for  $R_1^{SP}$  then leads to (67). trader consumption follows as in 68 using  $R_1^{SP}$  instead of  $R_{t+1}$ . Finally, taking  $K_1^{SP}$  as given and plugging in  $Y_1^{SP}$  in (SP1), (69) follows after taking the derivative with respect to  $\beta_t$ .

**Proof of Proposition 12.** Show that the decentralized allocations coincide with the social planner's allocations. The proof follows the same steps as the derivation of the equilibrium in the main section. Households receive from firm j the dividend

$$\hat{\Pi}_{j1} = \tau^{Bias}(z_{j0}) \,\Pi_{j1} = \frac{\mathbb{E}\left\{A_{j0}|z_{j0}\right\}}{\tilde{\mathbb{E}}\left\{A_{i0}|s_{ij0} = z_{i0}, z_{i0}\right\}} \alpha Y_1^{\alpha_Y} A_{j0} K_{j1}^{\frac{\theta-1}{\theta}}$$

and expected dividends become

$$\tilde{\mathbb{E}}\left\{\hat{\Pi}_{j1}|s_{ij0} = z_{j0}, z_{j0}\right\} = \alpha Y_1^{\alpha_Y} \mathbb{E}\left\{A_{j0}|z_{j0}\right\} K_{j1}^{\frac{\theta-1}{\theta}}.$$

The price is using  $P_{j0} = K_{j1}$ 

$$P_{j0} = \frac{1}{R_1} \tilde{\mathbb{E}} \left\{ \hat{\Pi}_{j1} | s_{ij0} = z_{j0}, z_{j0} \right\} = \left( \frac{1}{R_1} \alpha Y_1^{\alpha_Y} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\} \right)^{\theta}.$$

This allows to adjust the expression for expected dividends,

$$\tilde{\mathbb{E}}\left\{\hat{\Pi}_{j1}|s_{ij0} = z_{j0}, z_{j0}\right\} = \left(\frac{1}{R_1}\right)^{\theta - 1} \left(\alpha Y_1^{\alpha_Y} \mathbb{E}\left\{A_{j0}|z_{j0}\right\}\right)^{\theta},$$

which is then used in the expression for the interest rate  $R_1$ 

$$R_{1} = \frac{\int_{0}^{1} \widetilde{\mathbb{E}} \left\{ \widehat{\Pi}_{j1} | s_{ij0} = z_{j0}, z_{j0} \right\} dj}{\int_{0}^{1} P_{j0} dj}$$

$$= \left( \frac{1}{R_{1}} \right)^{\theta - 1} (\alpha Y_{1}^{\alpha_{Y}})^{\theta} \int_{0}^{1} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta} dj K_{1}^{-1}$$

$$R_{1} = \alpha Y_{1}^{\alpha_{Y}} \left( \int_{0}^{1} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta} dj \right)^{\frac{1}{\theta}} K_{1}^{-\frac{1}{\theta}}.$$

Using this result again in the expression for the price yields

$$K_{j1}^{DE} = \frac{\mathbb{E}\left\{A_{j0}|z_{j0}\right\}^{\theta}}{\int_{0}^{1} \mathbb{E}\left\{A_{j0}|z_{j0}\right\}^{\theta} dj} K_{1} = K_{j1}^{SP}.$$

As in the main text, the entrepreneur chooses  $\lambda_{jt} = \frac{\theta-1}{\theta}$ . Plugging this into the expression for the interest rate  $R_1$  and substituting  $Y_1^{\alpha_Y}$  leads to

$$R_1 = \alpha \left( \int_0^1 \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta} dj \right)^{\frac{1}{\theta}} K_1^{\alpha - 1} = R_1^{SP}.$$

This result also leads directly to  $K_1^{DE} = K_1^{SP}$ . Finally, the first-order condition for information production of trader ij is

$$MB\left(\beta_{ij0}, \beta_{j0}\right) = \frac{\partial IA^{DE}}{\partial \beta_{ij0}} = \tau^{Info}\left(\beta_{ij0}, \beta_{j0}\right) \frac{\partial IA\left(\beta_{ij0}\right)}{\partial \beta_{ij0}} = \frac{MB\left(\beta_{ij0}, \beta_{j0}\right)}{\frac{\partial Y_1}{\partial \beta_0}\Big|_{\beta_0 = \beta_{ij0}}} \frac{\partial IA\left(\beta_{ij0}\right)}{\partial \beta_{ij0}}$$

$$\iff \frac{\partial Y_1}{\partial \beta_0}\Big|_{\beta_0 = \beta_{ij0}} = \frac{\partial IA\left(\beta_{ij0}\right)}{\partial \beta_{ij0}}$$

which is the same first-order condition as in (69) and therefore  $\beta_0^{DE} = \beta_0^{SP}$ .

**Proof of Corollary 4.** (i) First, denote  $\omega_{s\varepsilon} = \frac{\sqrt{\beta}}{\sigma_a^{-2} + \beta(1 + \sigma_{\varepsilon}^{-2})}$  as the weight on the correlated noise in the private signal. The transaction tax/subsidy  $\tau^{Trans}(\varepsilon_0) = \exp\{-\omega_{s\varepsilon}\varepsilon_0\}$  leads to traders paying  $P_{j0}$  but only  $\tau^{Trans}P_{j0}$  is collected by the entrepreneur. The transaction tax/subsidy is aimed to stabilize aggregate asset prices with respect to aggregate sentiment shocks. It is a tax when traders are exuberant and a subsidy when they are depressed. The proof follows the same steps as for Proposition 12 with the difference that  $K_{j1} = \tau^{Trans}P_{j0}$  and therefore firm capital is

$$K_{j1} = \left(\frac{1}{R_1} \alpha Y_1^{\alpha_Y} \tilde{\mathbb{E}} \left\{ A_{j0} | s_{ij0} = z_{j0}, z_{j0} \right\} \tau^{Trans}(\varepsilon_0) \right)^{\theta}$$

Following the same steps as before, the interest rate is

$$R_{1} = \alpha Y_{1}^{\alpha_{Y}} \left( \int_{0}^{1} \tilde{\mathbb{E}} \left\{ A_{j0} | s_{ij0} = z_{j0}, z_{j0} \right\}^{\theta} dj \right)^{\frac{1}{\theta}} \tau^{Trans}(\varepsilon_{0}) K_{1}^{-\frac{1}{\theta}}.$$

Since  $\left(\int_0^1 \tilde{\mathbb{E}} \left\{A_{j0} | s_{ij0} = z_{j0}, z_{j0}\right\}^{\theta} dj\right)^{\frac{1}{\theta}} \propto \exp\left\{\omega_{s\varepsilon}\varepsilon_0\right\}$ , it follows that the transaction tax/subsidy  $\tau^{Trans}(\varepsilon_0) = \exp\left\{-\omega_{s\varepsilon}\varepsilon_0\right\}$  keeps the interest rate  $R_1$  from moving with the aggregate sen-

timent shock  $\varepsilon_t$  and stabilizes, therefore, aggregate investment with respect to sentiment shocks.

(ii) Similarly, allow now the transaction tax to vary with the share price,

$$\tau^{Trans}(P_{j0}) = \frac{\mathbb{E}\{A_{j0}|z_{j0}\}}{\tilde{\mathbb{E}}\{A_{j0}|s_{ij0} = z_{j0}, z_{j0}\}}.$$

Same as before, the traders pays  $P_{j0}$  but only  $\tau^{Trans}(P_{j0}) P_{j0}$  is collected by the entrepreneur. Firm-capital is then equal to

$$K_{j1} = \left(\frac{1}{R_1} \alpha Y_1^{\alpha_Y} \tilde{\mathbb{E}} \left\{ A_{j0} | s_{ij0} = z_{j0}, z_{j0} \right\} \tau^{Trans} (P_{j0}) \right)^{\theta}$$
$$= \left(\frac{1}{R_1} \alpha Y_1^{\alpha_Y} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\} \right)^{\theta}$$

It remains to show that also the interest rate  $R_{t+1}$  coincides with  $R_t^{SP}$ . The aggregate market values of the stock market and capital stock are given by

$$K_{1} = \int_{0}^{1} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta} dj \left( \frac{1}{R_{1}} \alpha Y_{1}^{\alpha_{Y}} \right)^{\theta}$$

$$P_{0} = \int_{0}^{1} P_{j0} dj = \int_{0}^{1} \tilde{\mathbb{E}} \left\{ A_{j0} | s_{ij0} = z_{j0}, z_{j0} \right\} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta - 1} dj \left( \frac{1}{R_{1}} \alpha Y_{1}^{\alpha_{Y}} \right)^{\theta}$$

$$\Rightarrow P_{t} = \frac{\int_{0}^{1} \tilde{\mathbb{E}} \left\{ A_{j0} | s_{ij0} = z_{j0}, z_{j0} \right\} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta - 1} dj}{\int_{0}^{1} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta} dj} K_{1}$$

This allows to write the interest rate and substitute  $P_t$ 

$$R_{1} = \alpha Y_{1}^{\alpha_{Y}} \left( \int_{0}^{1} \widetilde{\mathbb{E}} \left\{ A_{j0} | s_{ij0} = z_{j0}, z_{j0} \right\} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta - 1} dj \right)^{\frac{1}{\theta}} P_{0}^{-\frac{1}{\theta}}$$
$$= \alpha Y_{1}^{\alpha_{Y}} \left( \int_{0}^{1} \mathbb{E} \left\{ A_{j0} | z_{j0} \right\}^{\theta} dj \right)^{\frac{1}{\theta}} K_{1}^{-\frac{1}{\theta}}.$$

It follows the transaction tax  $\tau^{Trans}(P_{j0})$  corrects for the mispricing between firms and stabilizes aggregate investment with respect to the sentiment shock.