# 平成17年度 日本留学試験(第1回)

# 試験問題

### 平成17年度(2005年度)日本留学試験

## 理科

(80分)

### 【物理・化学・生物】

(3科目の中から、2科目を選んで解答してください。)

#### I 注意事項

- 1. 試験開始の合図があるまで、この問題用紙の中を見ないでください。
- 2. 各科目は、次のページにあります。

| 科目 | ページ |        |    |  |  |
|----|-----|--------|----|--|--|
| 物理 | 1   | ~      | 13 |  |  |
| 化学 | 15  | $\sim$ | 25 |  |  |
| 生物 | 27  | $\sim$ | 38 |  |  |

- 3. 解答は、解答用紙に鉛筆 (HB) で記入してください。
- 4. 問題用紙の余白は、メモに使ってもいいです。
- 5. 監督者の許可なしに、部屋の外に出ることはできません。
- 6. 試験が終わっても、この問題用紙を持ち帰ることはできません。
- 7. 受験番号と名前を下の欄に、受験票と同じように記入してください。

#### II 解答上の注意

- 1. 各問題には、その解答を記入する行番号 **1** , **2** , **3** , ・・・がついています。解答は問題の文の指示にしたがって、解答用紙(マークシート)の対応する解答欄にマークしてください。
- 2. 解答用紙に書いてある注意事項も必ず読んでください。

| 受験番号 | * | * |  |   |  |
|------|---|---|--|---|--|
| 名 前  |   |   |  | • |  |

### 物理

「解答科目」記入方法

解答科目には「物理」、「化学」、「生物」がありますので、この中から2科目を選んで解答してください。選んだ2科目のうち、1科目を解答用紙のおもて面に解答し、もう1科目を裏面に解答してください。

「物理」を選択する場合は、右のように、解答用紙の左上 にある「解答科目」の「物理」を〇で囲み、その下のマー ク欄をマークしてください。選択した科目が正しくマーク されていないと、採点されません。



 $oxed{I}$  次の問い  $oxed{A}$  (問1), $oxed{B}$  (問2), $oxed{C}$  (問3,4), $oxed{D}$  (問5,6), $oxed{E}$  (問1) に答えなさい。ただし,重力加速度(acceleration due to gravity)の大きさを $oxed{g}$ とする。

**A** 図のように、なめらかな水平面に質量mの物体 A を置き、伸び縮みしない軽いひもをつけて、なめらかな滑車 (pulley) を通して、

同じ質量mのおもりを1個つるした。このとき Aは、一定の力で引かれ、等加速度運動をした。

問1 おもりを2個に変えて、同じ実験を行った。 このときAを引く力の大きさは、おもりが 1個の場合の何倍になるか。正しいものを、 次の①~④の中から一つ選びなさい。



1 倍

1

②  $\frac{4}{3}$ 

 $3 \frac{3}{2}$ 

**4** 2

 ${f B}$  図のように、水平面上に半径 ${\cal R}$ の円状のレール(railway)がある。このレールの上を一定の速さで走っている列車の床の中央に、幅a、高さbの一様な箱が立ててある。ただし、a、b は ${\cal R}$  に比べて十分小さいものとする。また、箱と列車の床との静止摩擦(static friction)は十分大きく、箱は床の上をすべることはないものとする。



問2 箱が倒れないで走行できる列車の最大の速さはいくらか。正しいものを、次の①~④ の中から一つ選びなさい。 **2** 

- ①  $\sqrt{\frac{gRa}{b}}$
- $\bigcirc$   $\sqrt{\frac{2gRa}{b}}$
- $\sqrt{\frac{gRb}{a}}$
- $\sqrt{\frac{2gRb}{a}}$

 ${f C}$  図のように、斜面上に置かれた質量mの物体を考える。斜面の傾斜角 (angle of inclination)  $\theta$  をゆっくりと大きくしていくと、ある角度  $\theta$  のとき物体がすべり出した。物体と斜面の間との動摩擦係数 (coefficient of kinetic friction) を  $\mu$  とする。



問 3 斜面の角度を θ のままに保ったところ、物体は一定の加速度で斜面に沿って下っていった。加速度の大きさはいくらか。正しいものを、次の①~④の中から一つ選びなさい。

- ①  $g(\cos \theta_1 \mu' \sin \theta_1)$
- ②  $g(\sin \theta_1 \mu' \cos \theta_1)$
- 3  $g(\tan \theta_1 \mu')$

問4 その後、斜面の角度を $\theta_0$ にしたところ、物体は等速度で斜面に沿って下っていった。  $\theta_0$ と $\theta_1$ の大小関係について正しいものを、次の①~⑤の中から一つ選びなさい。 4

- θ₂はθ₁に等しい。
- ②  $\theta_2$ は $\theta_1$ よりも大きい。
- ③  $\theta_{\alpha}$  は  $\theta_{\alpha}$  よりも大きい場合と  $\theta_{\alpha}$  に等しい場合がある。
- ④  $\theta_2$ は $\theta_1$ よりも小さい。
- ⑤  $\theta_{\alpha}$ は  $\theta_{\alpha}$  よりも小さい場合と  $\theta_{\alpha}$  に等しい場合がある。

#### 理科-4

 $\blacksquare$  水平に置かれた細い管の中をなめらかに動くことのできる電荷 (charge) Q, 質量Mの 小球 A と、電荷 Q、質量mの小球 B を考える。最初、A は静止しており、B は A から 十分離れた位置で速さvでAに向かって運動していた。クーロンの法則(Coulomb's law)の比例定数を んとする。



問5 AとBが最も接近したとき、AとBの速度は等しくなる。このとき、AとBの速さ 5 はいくらか。正しいものを、次の①~④の中から一つ選びなさい。

- ①  $\frac{m+M}{m}v$  ②  $\frac{m+M}{M}v$  ③  $\frac{m}{m+M}v$  ④  $\frac{M}{m+M}v$

問 6 AとBが最も接近したときの距離はいくらか。正しいものを,次の①~④の中から 6 一つ選びなさい。

②  $\sqrt{\frac{2k_0Q^2(m+M)}{mMv^2}}$ 

 $\sqrt{\frac{k_0Q^2(m+M)}{mMv^2}}$ 

**F** 惑星 (planet) のまわりを,周期Tで半径rの円軌道(circular orbit)を描く衛星 (satellite) がある。

問1 惑星の質量は、r、Tとそれぞれどのような関係にあるか。正しいものを、次の 7 ①~⑥の中から一つ選びなさい。

- ① r に比例し、T に反比例する。 ② r に比例し、 $T^2$  に反比例する。
- ③  $r^2$  に比例し、T に反比例する。
- ④  $r^2$  に比例し、 $T^2$  に反比例する。
- ⑤  $r^3$ に比例し、T に反比例する。
- ⑥  $r^3$ に比例し、 $T^2$ に反比例する。

| II | 次の問い A      | (問1,     | 2),  | В | (問3)     | に答えなさい。 |
|----|-------------|----------|------|---|----------|---------|
| 11 | 74-21-9- 22 | (1-1 . 1 | ~ /, |   | (1m) 0 \ | にこんなこりっ |

**A** 単原子分子 (monoatomic molecule) の理想気体 A と B をそれぞれ別の容器に入れ、同じ温度、同じ体積に保った。A の分子 1 個の質量を  $m_A$  とし、B のそれを  $m_B$  とする。 容器内の A、B の全質量をそれぞれ  $M_A$ 、 $M_B$  とする。

- **間1** A の分子の速さの 2 乗の平均は、B のそれの何倍か。正しいものを、次の①~⑤の中から一つ選びなさい。
  - ① 1 ②  $\frac{m_{\rm B}}{m_{\rm A}}$  ③  $\frac{m_{\rm A}}{m_{\rm B}}$  ④  $\frac{M_{\rm B}}{M_{\rm A}}$  ⑤  $\frac{M_{\rm A}}{M_{\rm B}}$
- **問2** Aの圧力は、Bの圧力の何倍か。正しいものを、次の①~④の中から一つ選びなさい。
  - ① 1 ②  $\frac{m_A}{m_B}$  ③  $\frac{M_A}{M_B}$  ④  $\frac{M_A m_B}{M_B m_A}$

#### 理科一6

**B** 図のような容積 5.00 ℓ のガラスの容器に、温度 27 °C、1 気圧の理想気体が入っていて、断面積 25 cm²の管とつながっている。管の内部(斜線部)には水銀(mercury)が入っている。最初、容器の底(A)と図の右の管の水銀の高さ(B)は同じであった。ガラスと水銀の熱膨張(thermal expansion)は無視できるものとする。1 気圧は高さ 760 mmの水銀柱(column of mercury)に相当する圧力であり、1 気圧=760 mmHgと表すことができる。



問3 容器を暖めたら、右の管の水銀の高さ(B)が2.0 cm 上昇した。容器内の気体の温度はいくらになったか。最も適当なものを、次の①~⑤の中から一つ選びなさい。

10°C

- **①** 30
- ② 35
- **③** 38
- **4**3
- **⑤** 46

**A** 長さLの両端を固定した弦が基本振動 (fundamental vibration) をしている。弦を伝わる波の速さをv, 空気中を伝わる音波 (sound wave) の速さをVとする。

- 問1 空気中を伝わる音波の波長はいくらか。正しいものを、次の①~⑥の中から一つ選びなさい。 **11** 
  - ①  $\frac{Lv}{V}$
- $2 \frac{2Lv}{V}$
- $3 \frac{4Lv}{V}$

- $\underbrace{LV}_{v}$

#### 理科一8

B 図のように、単色光 (monochromatic light) を回折格子 (diffraction grating) に垂 直に入射させ、遠方にあるスクリーン(screen)上で干渉じま(interference fringes)を 観測した。



問2 回折格子の格子定数 (grating spacing) を2倍にしたら,スクリーン上の明線 (bright line) と明線の間隔は何倍になるか。最も適当なものを、次の①~⑤の中から 12 倍 一つ選びなさい。

- ①  $\frac{1}{4}$  ②  $\frac{1}{2}$  ③ 1 ④ 2
- **⑤** 4

問3 回折格子からスクリーンの間をすべて水で満たしたとき、明線と明線の間隔は空気中 で観測した場合の何倍か。ただし、水の屈折率 (refractive index) を1.3とする。最 13 倍 も適当なものを、次の①~⑤の中から一つ選びなさい。

- 0.6
- **②** 0.8
- **③** 1.0 **④** 1.3 **⑤** 2.0

**A** 図の ABC は正三角形 (equilateral triangle) である。A と B にそれぞれ + Q の電荷 (charge) を置いた。このとき,A の電荷に働く N 静電気力の大きさを F₀ とする。 A ... ↑

問1 Cに-Qの電荷を置いたとき、Aの電荷に働く静電気力の大きさは $F_0$ の何倍か。また、静電気力の向きはどうなるか。正しいものを、次の① $\sim$ \$の中から一つ選びなさい。



|     | 大きさ | 向き |
|-----|-----|----|
| 1   | 1 倍 | N  |
| 2   | 1倍  | Е  |
| 3   | 1倍  | S  |
| 4   | 1倍  | W  |
| (5) | √3倍 | N  |
| 6   | √3倍 | E  |
| 7   | √3倍 | S  |
| 8   | √3倍 | W  |

#### 理科-10

- **B** 電気容量  $C_0$  の平行板コンデンサー (capacitor) と起電力 (electromotive force) E の 電池を接続した。十分に時間が経ったとき、このコンデンサーには静電エネルギー (electrostatic energy)  $U_0$  が蓄えられた。
- 問 2 この後、コンデンサーを電池から切り離してから、極板(plate)の間を比誘電率 (relative permittivity)  $\varepsilon_r$  の誘電体 (dielectric) ( $\varepsilon_r > 1$ ) で満たした。その結果、コンデンサーの極板間の電位差(potential difference) V はどのような値に変わるか。また、このとき、コンデンサーに蓄えられているエネルギーU は  $U_0$  とどのような関係にあるか。正しいものを、次の①~⑥の中から一つ選びなさい。
  - ①  $V = \varepsilon_r E$ ,  $U > U_0$

 $2 V = \frac{E}{\epsilon_r}, \quad U > U_0$ 

 ${f C}$  起電力 (electromotive force)  ${f E}$  , 内部抵抗 (internal resistance)  ${f r}$  の電池と,抵抗 (resistance)  ${f R}$  をつないで,図のような回路 (circuit) をつくった。

問3 Rの値を変化させたとき、Rで単位時間あたりに発生する熱量 (heat quantity) P はどのように変化するか。最も適当なものを、次の①~⑤の中から一つ選びなさい。













D 磁束密度(magnetic flux density)の大きさBの一様な磁場(uniform magnetic field) 中の電流に働く力について考える。磁場の向きを y 軸の正の方向とする。

最初に、図1のように、xy 平面内を大きさIの直線電流が点 $P(x_0, y_0)$ 、 $Q(x_1, y_1)$ を通 り P から Q へ向かう方向に流れている場合を考える。ただし、 $x_0 < x_1$ 、 $y_0 < y_1$  とする。



問 4 電流の PQ 間の部分が磁場から受ける力の大きさはいくらか。正しいものを、次の ①~④の中から一つ選びなさい。 17

(1)  $IB(x_1-x_0)$ 

- ②  $IB(y_1 y_0)$
- (3)  $IB\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}$
- 4  $IB \frac{(x_1-x_0)(y_1-y_0)}{\sqrt{(x_1-x_0)^2+(y_1-y_0)^2}}$

電流の PQ 間の部分が磁場から受ける力のx軸まわりの力のモーメント(torque)の 問 5 大きさはいくらか。PQ間の部分が受ける力は、合力 (resultant force) が PQ の中点 (middle point) に作用していると考えてよい。正しいものを、次の①~⑧の中から一 つ選びなさい。 18

①  $\frac{IB}{2}(x_1^2-x_0^2)$ 

- ②  $\frac{IB}{2}(x_1-x_0)(y_1+y_0)$
- ③  $\frac{IB}{2}(x_1+x_0)(y_1-y_0)$
- (4)  $\frac{IB}{2}(y_1^2-y_0^2)$

次に、図2のような、点 A(0, a)、B(a, 0)、C(0, -a)、D(-a, 0)を頂点とする正方 形のコイル (coil) に A  $\rightarrow$  B  $\rightarrow$  C  $\rightarrow$  D  $\rightarrow$  A の向きに大きさ I の電流が流れている場合を 考える。ただし a>0 とする。



間 6 コイルを流れる電流が磁場から受ける力のx軸まわりの力のモーメント (torque) の 大きさはいくらか。正しいものを、次の①~⑤の中から一つ選びなさい。 19

- ① 0 ②  $\frac{1}{2}IBa^2$  ③  $IBa^2$  ④  $2IBa^2$  ⑤  $4IBa^2$

物理の問題はこれで終わりです。解答欄の  $20 \sim 75$  は空欄にしてください。

この問題用紙を持ち帰ることはできません。