Equivalencias al PIM

Prof. Jhon Fredy Tavera Bucurú

2025

Prerequisitos

 $PIM \rightarrow PBO$

Teorema (Algoritmo de la división)

 $PBO \rightarrow PIF$

 $PIF \rightarrow PIM$

Equivalencias, Principio de inducción matemática

Definición (Relación de Orden en N)

Dado $m, n \in \mathbb{N}$, decimos que:

$$m \le n$$
 si existe un $p \in \mathbb{N}$ tal que $n = m + p$.

Si $p \neq 0$ decimos que m < n.

Nota: Esta relación \leq cumple ser reflexiva, antisimetrica y transitiva por tanto define una relación de orden sobre el conjunto de los números naturales \mathbb{N} .

Propiedades:

- 1. Reflexiva: Si $n \in \mathbb{N}$ entonces $n \leq n$.
- 2. Transitiva Si $m, n, r \in \mathbb{N}$ con $m \le n$ y $n \le r$, entonces $m \le r$.
- 3. Ley de la tricotomía: Dados $m, n \in \mathbb{N}$, una y solo una de las siguientes afirmaciones es verdadera:

$$m < n, \quad m = n, \quad n < m.$$

- 4. Compatibilidad con la Suma: Si $m \in \mathbb{N}$ con $m \le n$, entonces para todo $p \in \mathbb{N}$, $m + p \le n + p$.
- 5. Compatibilidad con el Producto: Si $m \in \mathbb{N}$ con $m \le n$, entonces para todo $p \ne 0$, $mp \le np$.
- 6. Si $m, n \in \mathbb{N}$ son tales que m < n, entonces $m^+ \le n$.
- 7. Si $m, n \in \mathbb{N}$ son tales que $m < n^+$, entonces $m \le n$.
- 8. Propiedad Cancelativa: Si $m, n, k \in \mathbb{N}$ son tales que mk = nk y $k \neq 0$, entonces m = n.

Definición: Mínimo de un Conjunto

Definición

Sea S un subconjunto no vacío de números naturales. Decimos que un elemento m es el **mínimo** de S si y solo si se cumplen las siguientes condiciones:

- 1. $m \in S$
- 2. $m \le s$ para todo $s \in S$

Corolario

Si $S \subset \mathbb{N}$ entonces Min(S) es único.

. **Demostración:** Suponga que r = Min(S) y r' = Min(S), entonces $r \le s$, $\forall s \in S$, en particular $r \le r'$, por un argumento similar $r' \le r$, ahora por la ley de la tricotomia r = r'.

Teorema

Todo subconjunto no vacío S de números naturales posee un mínimo. Es decir, existe $m \in S$ tal que para todo $s \in S$, $m \le s$.

Teorema

Todo subconjunto no vacío S de números naturales posee un mínimo. Es decir, existe $m \in S$ tal que para todo $s \in S$, $m \le s$.

Demostración: Si $0 \in S$, entonces el Min(S) = 0. Si $0 \notin S$ entonces Sea

$$T = \{ n \in \mathbb{N} \mid n \le s \text{ para todo } s \in S \}.$$

Como $S \neq \emptyset$, tenemos que $T \neq \mathbb{N}$, Consideremos la propiedad pertenecer al conjunto T, es decir P(n) es verdadera sii $n \in T$ y apliquemos PIM.

Base de Inducción como $0 \in T$ entonces P(0) es verdadera.

Paso Inductivo (falla) Note que si el paso inductivo se cumpliera entonces P(n) seria verdadera $\forall n \in \mathbb{N}$, es decir $T = \mathbb{N}$, cosa que no es verdad, por tanto existe $m \in T$ tal que $m+1 \notin T$.

Paso Inductivo (falla) Note que si el paso inductivo se cumpliera entonces P(n) seria verdadera $\forall n \in \mathbb{N}$, es decir $T = \mathbb{N}$, cosa que no es verdad, por tanto existe $m \in T$ tal que $m+1 \notin T$. Ahora

- ▶ $m \in T$ entonces por definición de T, tenemos $m \leq s$, $\forall s \in S$.
- ▶ $m \le s$ para todo $s \in S$, entonces m es igual a algún elemento de S o m < s para todo $s \in S$. Si m < s entonces $m+1 \le s$ y en consecuencia $m+1 \in T$, lo cual es absurdo. Por lo tanto, $m \in S$.

Por lo tanto,
$$m = \min S$$
.

Teorema (Algoritmo de la división)

Teorema

Sean a, b enteros con b>0. Entonces existen enteros únicos q, r tales que

$$a = bq + r$$
 con $0 \le r < b$.

Demostración.

1 Existencia. Sea

$$S = \{a - bx \mid x \in \mathbb{Z} \text{ y } a - bx \ge 0\}$$

Veamos que $S \neq \emptyset$. Si $a \geq 0$, $a - b0 = a \in S$. Si a < 0, como $b \geq 1$ tenemos que $a - ab = a(1 - b) \geq 0$ y así $a - ab \in S$. Luego $S \neq \emptyset$.

Teorema (Algoritmo de la división)

Ahora, por el PBO, S tiene un mínimo r y en consecuencia existe un entero q tal que

$$a - bq = r \quad \text{con} \quad 0 \le r.$$

Por otra parte

$$r - b = (a - bq) - b = a - (q + 1)b,$$

Ya que a - qb es el menor entero positivo y a - (q+1)b < a - qb, entonces a - (q+1)b < 0, por tanto r - b < 0 es decir r < b.

Teorema (Algoritmo de la división)

2 Unicidad. Supongamos que a = bq + r = bq' + r' como el minimo de un conjunto es único, se tiene que r = r' = Min(S) y por tanto q = q'.

Ejemplo

Sea a = 17 y b = 5.

Ejemplo

Sea a = 17 y b = 5. Como a > b, tenemos que:

$$17 = 5 \cdot 3 + 2, \ 0 \le 2 < 5$$

Ejemplo

Sea
$$a = 3 y b = 5$$
.

Ejemplo

Sea a = 17 y b = 5. Como a > b, tenemos que:

$$17 = 5 \cdot 3 + 2, \ 0 \le 2 < 5$$

Ejemplo

Sea a = 3 y b = 5. Como a < b, tenemos que:

$$3 = 5 \cdot 0 + 3, \ 0 \le 3 < 5$$

Ejemplo

Sea $a = -7 \ y \ b = 5$.

Ejemplo

Sea a = 17 y b = 5. Como a > b, tenemos que:

$$17 = 5 \cdot 3 + 2, \ 0 \le 2 < 5$$

Ejemplo

Sea a = 3 y b = 5. Como a < b, tenemos que:

$$3 = 5 \cdot 0 + 3, \ 0 \le 3 < 5$$

Ejemplo

Sea a = -7 y b = 5. Como a es negativo, tenemos que:

$$-7 = 5 \cdot (-2) + 3, \ 0 \le 3 < 5$$

$PBO \rightarrow PIF$

Teorema

Sea a un número natural. Sea S un subconjunto de $\{k \in \mathbb{N} \mid k \geq a\}$ que satisface:

- 1. $a \in S$.
- 2. (Principio de Inducción del PIF) Para cada n > a, $n \in S$ siempre que $k \in S$ para todo $k \in \mathbb{N}$ tal que $a \le k < n$.

Entonces

$$S = \{k \in \mathbb{N} \mid k \ge a\}.$$

$PBO \rightarrow PIF$

Demostración: La demostración es por contradicción.

Supongamos que $S
eq \{k \in \mathbb{N} \mid k \geq a\}$ y sea

 $T = \{k \in \mathbb{N} \mid k \geq a\} - S$. Luego $T \neq \emptyset$ y por el PBO tiene un mínimo m.

Además, puesto que $a \in S$ entonces m > a y para todo k tal que $a \le k < m$, la minimalidad de m nos garantiza que $k \in S$, y por la condición 2 concluimos que $m \in S$ lo cual es una contradicción. \square

$PIF \rightarrow PIM$

Teorema

Sea S un subconjunto que satisface:

- 1. $a \in S$.
- 2. (Principio de Inducción del PIM) Si $n \ge a$ y $n \in S$ entonces $n+1 \in S$.

Entonces

$$S = \{ n \in \mathbb{N} \mid n \ge a \}.$$

Nota: La propiedad P(n) es verdadera sii $n \in S$.

$PIF \rightarrow PIM$

Demostración: Lo demostraremos buscando que se cumplan las dos condiciones para poder aplicar el PIF, note que el enciso 1 de la hipotesis es justamente la Base de Inducción del PIF, solo nos falta ver que se cumpla el Paso Inductivo del PIF. Paso inductivo PIF: Sea k talque $a \le k \le n$ donde P(k) es verdadero, en particular P(n) es verdadero, ahora por el paso inductivo del PIM (enciso 2 hipotesis), se tiene que P(n+1) es verdadera, por tanto se cumple el Paso inductivo del PIF. Por PIF, P(n) es verdadera para todo $n \ge a$, es decir $S = \{n \in \mathbb{N} \mid n > a\}$.

Ejemplo (PIF por PBO)

Sea $F_0 = 0$, $F_1 = 1$, $F_{n+1} = F_n + F_{n-1}$. Sean α, β las raíces de $x^2 = x + 1$, esto es

$$\mathbf{P}(n): \quad F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}.$$

Probar por PIM que para todo $n \in \mathbb{N}$, $\mathbf{P}(n)$ es verdadera

Note que; n=0: $\frac{1-1}{\alpha-\beta}=0=F_0$; n=1: $\frac{\alpha-\beta}{\alpha-\beta}=1=F_1$. Ahora, considere el conjunto

$$S = \{n \ge 0 : \mathbf{P}(n) \text{ es falsa}\}$$

Supongamos por reducción al absurdo que S es no vacío, entonces por PBO, existe $m=\min S$ (necesariamente $m\geq 2$). Entonces $\mathbf{P}(m-1)$ y $\mathbf{P}(m-2)$ son verdaderas.

Usando la recurrencia de Fibonacci y la hipótesis para m-1, m-2:

$$F_{m} = F_{m-1} + F_{m-2}$$

$$= \frac{\alpha^{m-1} - \beta^{m-1}}{\alpha - \beta} + \frac{\alpha^{m-2} - \beta^{m-2}}{\alpha - \beta}$$

$$= \frac{\alpha^{m-2}(\alpha + 1) - \beta^{m-2}(\beta + 1)}{\alpha - \beta}.$$

Como $\alpha^2=\alpha+1$ y $\beta^2=\beta+1$, se obtiene

$$F_{m} = \frac{\alpha^{m-2}\alpha^{2} - \beta^{m-2}\beta^{2}}{\alpha - \beta} = \frac{\alpha^{m} - \beta^{m}}{\alpha - \beta},$$

esto es, P(m) es verdadera, lo que es absurdo, pues contradice la existencia de m.

Conclusión. $S = \emptyset$ y, por tanto, $\mathbf{P}(n)$ vale para todo $n \in \mathbb{N}$:

Ejemplo (PIF por PIM)

Sea $F_0=0,\ F_1=1,\ F_{n+1}=F_n+F_{n-1}.$ Sean α,β las raíces de $x^2=x+1,$ esto es

$$\mathbf{P}(n): \quad F_n = \frac{\alpha^n - \beta^n}{\alpha - \beta}.$$

Probar por PIM que para todo $n \in \mathbb{N}$, $\mathbf{P}(n)$ es verdadera

Note que;
$$n = 0$$
: $\frac{1-1}{\alpha-\beta} = 0 = F_0$; $n = 1$: $\frac{\alpha-\beta}{\alpha-\beta} = 1 = F_1$.

Consideremos el conjunto

$$S = \{n \geq 2 : \mathbf{P}(n) \text{ es falsa}\}$$

Y supongamos por reducción al absurdo que S es no vacío. Sea

$$T = \{n \ge 0 : \mathbf{P}(n) \text{ es verdadera y } n \le s, \ \forall s \in S\}$$

Considere la propiedad Q, de modo de que Q(n) es verdadera sii $n \in T$

Demostración

Base de Inducción sobre Q.

$$n=0$$
: $\frac{1-1}{\alpha-\beta}=0=F_0$; entonces $P(0)$ es verdadera

$$n=1$$
: $\frac{\alpha-\beta}{\alpha-\beta}=1=F_1$; entonces $P(1)$ es verdadera

Como 0,1 son menores que cualquier otro natural, se tiene que Q(0), Q(1) es verdadera.

Paso Inductivo sobre Q.

Ya que $S \neq \emptyset$ entonces $T \neq \mathbb{N}$, por tanto existe un n tal que $\mathbf{Q}(n)$ es verdadera pero $\mathbf{Q}(n+1)$ no lo es.

Es decir, $\mathbf{P}(n)$ es veradera y $n \le s \ \forall s \in S$, por otro lado $\mathbf{P}(n+1)$ no es veradera o $n+1 \not\le s \ \forall s \in S$. Sin embargo si $\mathbf{P}(n+1)$ no es veradera por definición de S, $n+1 \in S$.

Por construcción de T, para todo $0 \le k \le n$ se tiene que $\mathbf{P}(k)$ es verdadero, en particular P(n-1) es verdadera tambien.

Por definición de la secuencia de números de Fibonacci

$$F_{n+1} = F_n + F_{n-1}$$

además se puede probar que

$$F_{n+1} = \frac{\alpha^{n+1} - \beta^{n+1}}{\alpha - \beta}$$

Esto es P(n+1) es verdadera, lo cúal es absurdo. Portanto $S = \emptyset$.