线性代数第八次作业

2024年5月-日

本次作业

《线性代数习题册 (第三版)》

• 51~54页: 向量组的极大线性无关组和秩

日忌

向量组的极大线 性无关组和秩

ー、填空題 1 2

3 4 二三四五六

习题答案会上传至 github 中.

图: github 链接二维码

1. 设向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性无关, $\alpha_1, \alpha_2, \dots, \alpha_s, \beta$ 线性相关,则 $r\{\alpha_1, \alpha_2, \dots, \alpha_s\} = r\{\alpha_1, \alpha_2, \dots, \alpha_s, \beta\}$.

解: 首先显然有 $s=r\{\alpha_1,\alpha_2,\cdots,\alpha_s\}\leqslant r\{\alpha_1,\alpha_2,\cdots,\alpha_s,\beta\}$, 又由 $\alpha_1,\cdots,\alpha_s,\beta$ 线性相关,那么

$$r\{\alpha_1, \cdots, \alpha_s, \beta\} < s+1$$

那么即可得到 $r\{\alpha_1, \dots, \alpha_s, \beta\} = s$, 因此等号成立.

注: 此结论在后面经常使用, 以及以下延伸:

- ①若 $\alpha_1, \dots, \alpha_n$ 线性无关, 那么 $\alpha_1, \dots, \alpha_n, \beta$ 线性无关等价于 β 不能被 $\alpha_1, \dots, \alpha_n$ 线性表出;
- ②若 $\alpha_1, \dots, \alpha_n$ 线性无关, 那么 $\alpha_1, \dots, \alpha_n$, β 线性相关等价于 β 能被 $\alpha_1, \dots, \alpha_n$ 线性表出, 此时可将 β 记为 $k_1\alpha_1 + \dots + k_n\alpha_n$;

向量组的极大线 性无关组和秩 一、填空题

2. 设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 的秩为 r, 向量 β 不能由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出,则 $r\{\alpha_1, \alpha_2, \cdots, \alpha_s, \beta\} = \underline{r+1}$.

注: 对于任意向量组, 以下三条性质知道两个即可推出另一个:

- ①秩为 r
- ②存在 r个向量线性无关
- ③存在 *r*个向量可以线性表出向量组所有向量

并且此时满足②③的 r个向量即为极大线性无关组.

如此题要证明秩为 r+1, 那么只需要找到 r+1个向量线性无关且可以表出其它向量即可 (当然②③所要求的 r个向量可以不一样).

向景组的基土线

性无关组和秩 一、填空题 2. 设向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 的秩为 r, 向量 β 不能由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出,则 $r\{\alpha_1, \alpha_2, \cdots, \alpha_s, \beta\} = \underline{r+1}$.

解: 因为 $r\{\alpha_1,\cdots,\alpha_s\}=r$, 那么找到其一个极大无关组 $\alpha_{i_1},\cdots,\alpha_{i_r}$; 另一方面,因为 β 不能由 $\alpha_1,\alpha_2,\cdots,\alpha_s$ 线性表出,那么 自然也不能被 $\alpha_{i_1},\cdots,\alpha_{i_r}$ 线性表出,因此不难证明 $\alpha_{i_1},\cdots,\alpha_{i_r}$, 多线性无关 (证明是简单的),即

$$r+1=r\{\alpha_{i_1},\cdots,\alpha_{i_r},\beta\}$$

另一方面, 由极大线性无关组的性质可知 $\alpha_{i_1}, \dots, \alpha_{i_r}$ 可以线性表出 $\alpha_1, \dots, \alpha_s$, 自然有 $\alpha_{i_1}, \dots, \alpha_{i_r}$, β 可以线性表出 $\alpha_1, \dots, \alpha_s$, β 综上可知 $\alpha_{i_1}, \dots, \alpha_{i_r}$, β 满足②和③, 因此可知秩为 r+1.

注: 在已知 $r+1=r\{\alpha_{i_1},\cdots,\alpha_{i_r},\beta\}$ 后也可以直接通过秩不等式 $r+1=r\{\alpha_{i_1},\cdots,\alpha_{i_r},\beta\}\leqslant r\{\alpha_1,\cdots,\alpha_s,\beta\}$ $\leqslant r\{\alpha_1,\cdots,\alpha_s\}+r\{\beta\}$ =r+1

得到结果.(其中 $r\{\beta\} = 0$ 由 $\beta \neq 0$ 保证)

3. 已知向量组 α_1, α_2 的秩为 2, 向量组 $\alpha_1, \alpha_2, \alpha_3$ 的秩为 2, 向量组 $\alpha_1, \alpha_2, \alpha_4$ 的秩为 3, 则向量组 $\alpha_1, \alpha_2, \alpha_4 - \alpha_3$ 的秩为 3.

解: 由题意可知 α_1 , α_2 线性无关, 且 α_1 , α_2 , α_3 线性相关, 那么根据前面结论 (1. 注) 可知 α_3 可被 α_1 , α_2 线性表出, 可写为 $\alpha_3 = k_1\alpha_1 + k_2\alpha_2$, 因此对于方程组

$$\begin{bmatrix} \alpha_1, \alpha_2, \alpha_4 - \alpha_3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \Rightarrow \begin{bmatrix} \alpha_1, \alpha_2, \alpha_3 - k_1 \alpha_1 - k_2 \alpha_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

$$\begin{bmatrix} \alpha_1, \alpha_2, \alpha_4 \end{bmatrix} \begin{bmatrix} 1 & 0 & -k \\ 0 & 1 & -k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0 \Leftrightarrow \begin{bmatrix} 1 & 0 & -k \\ 0 & 1 & -k \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 0$$

进而得到 x_1, x_2, x_3 只有零解, 所以 $\alpha_1, \alpha_2, \alpha_4 - \alpha_3$ 线性无关, 秩为 3.

注: 如果将 $\alpha_1, \alpha_2, \alpha_4 - \alpha_3$ 作为矩阵的列向量, 那该矩阵只是 $[\alpha_1, \alpha_2, \alpha_4]$ 做了两次初等列变换, 秩当然不变, 即 $r([\alpha_1, \alpha_2, \alpha_4]) = r([\alpha_1, \alpha_2, \alpha_4 - k_1\alpha_1]) = r([\alpha_1, \alpha_2, \alpha_4 - k_1\alpha_1])$

向量组的极大线

4. 设 4阶矩阵 A按列分块为 $A = [\alpha_1, \alpha_2, \alpha_3, \alpha_4]$, 其中 $B = \begin{bmatrix} 1 & 0 & 2 & 1 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}, 则向量 \alpha_3 = \underline{\alpha_1 + \alpha_2}, \alpha_4 = \underline{\alpha_1 - \alpha_2}$

解: 矩阵的列向量在初等行变换前后线性相关、线性无关和线性表 出系数关系不变, 因此从 B可以看出要找到 α_3 , α_4 满足: 任意向量秩 为 1(即非零), 任意两个向量秩为 2, 任意三个向量秩为 2, 四个向量 秩为 2. 经验证反证 $\alpha_3 = \alpha_1 + \alpha_2$ 和 $\alpha_4 = \alpha_1 - \alpha_2$ 满足所有要求, 即 为答案.

注: 因为初等行变换等价于左乘初等矩阵, 因此此题也可以求可逆 矩阵 P使得 $PA = B \Rightarrow A = P^{-1}B$, 因此对 [P, B]作初等行变换为 $[I, P^{-1}B]$ 即可.

二、求下列向量组的秩与一个极大线性无关组.

1.
$$\alpha_1 = (0, 1, -1, 2)^T$$
, $\alpha_2 = (0, 3, -3, 6)^T$, $\alpha_3 = (1, 1, -2, 1)^T$, $\alpha_4 = (-1, 0, 1, 2)^T$;

解: 对 $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ 作初等行变换,

$$\begin{bmatrix} 0 & 0 & 1 & -1 \\ 1 & 3 & 1 & 0 \\ -1 & -3 & -2 & 1 \\ 2 & 6 & 1 & 2 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 3 & 1 & 0 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

可以看到三个主元分别在第 1,3,4 列, 因此其中一组极大线性无关组为 $\alpha_1, \alpha_3, \alpha_4$.

注:除了观察主元,观察余子式也可以找到线性无关的向量,如上述后三列前三行的三阶余子式

$$\begin{vmatrix} 3 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{vmatrix} = 3 \neq 0$$

因此他们的列向量 (3 维) 线性无关, 故他们的伸长组 (即原来的 4 维) α_2 , α_3 , α_4 线性无关, 为一个极大线性无关组

二、求下列向量组的秩与一个极大线性无关组.

2.
$$\alpha_1 = (1, 0, 3, 6)^T$$
, $\alpha_2 = (-1, 2, -2, -5)^T$, $\alpha_3 = (1, k, 5, 8)^T$, $\alpha_4 = (0, 2, 1, 1)^T$;

解: 对 $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ 作初等行变换,

$$\begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 2 & k & 2 \\ 3 & -2 & 5 & 1 \\ 6 & -5 & 8 & 1 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & -1 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & k - 4 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

可以看到三个主元分别在第 1,2 列, 第三列需要进行讨论;

k = 4时秩为 3, 极大线性无关组为 $\alpha_1, \alpha_2, \alpha_3$;

 $k \neq 4$ 时秩为 2, 极大线性无关组为 α_1, α_2 .

三、设 4维向量组 $\alpha_1 = (1+k,1,1,1)^T$, $\alpha_2 = (2,2+k,2,2)^T$, $\alpha_3 = (3,3,3+k,3)^T$, $\alpha_4 = (4,4,4,4+k)^T$. 问当 k为何值时,向量组 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关? 当 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 线性相关时,求其一个极大 线性无关组,并用该极大线性无关组线性表出向量组中的其余向量.

解: 对 $[\alpha_1, \alpha_2, \alpha_3, \alpha_4]$ 作初等行变换.

$$\begin{bmatrix} 1+k & 2 & 3 & 4 \\ 1 & 2+k & 3 & 4 \\ 1 & 2 & 3+k & 4 \\ 1 & 2 & 3 & 4+k \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} k & 0 & 0 & -k \\ 0 & k & 0 & -k \\ 0 & 0 & k & -k \\ 1 & 2 & 3 & 4+k \end{bmatrix}$$

当 k=0时, 显然线性相关, 此时极大线性无关组为 α_1 , 表出情况为 $\alpha_2=2\alpha_1,\alpha_3=3\alpha_1,\alpha_4=4\alpha_4$; 当 $k\neq 0$ 时, 继续化简

$$\begin{bmatrix} k & 0 & 0 & -k \\ 0 & k & 0 & -k \\ 0 & 0 & k & -k \\ 1 & 2 & 3 & 4+k \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 1 & 2 & 3 & 4+k \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -1 \\ 0 & 0 & 0 & 10+k \end{bmatrix}$$

可知 k = -10时线性相关, 极大线性无关组为 $\alpha_1, \alpha_2, \alpha_3$, 表出关系 为 $\alpha_4 = -\alpha_1 - \alpha_2 - \alpha_3$.

目录

向量组的极大线 性无关组和秩

五六七

四、已知秩 $(\alpha_1, \alpha_2, \alpha_3) = 3$, 秩 $(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = 4$, 秩 $(\alpha_1, \alpha_2, \alpha_3, \alpha_5) = 4$. 求秩 $(\alpha_1, \alpha_2, \alpha_3, \alpha_5 - \alpha_4)$

解: 由题意和前面的结论, α_4 可被 $\alpha_1,\alpha_2,\alpha_3$ 线性表出, 记为 $\alpha_4=k_1\alpha_1+k_2\alpha_2+k_3\alpha_3$, 断言 $\alpha_1,\alpha_2,\alpha_3,\alpha_5-\alpha_4$ 线性无关, 即秩为 4, 若

$$x_{1}\alpha_{1} + x_{2}\alpha_{2} + x_{3}\alpha_{3} + x_{4}(\alpha_{5} - \alpha_{4}) = 0$$

$$\Rightarrow x_{1}\alpha_{1} + x_{2}\alpha_{2} + x_{3}\alpha_{3} + x_{4}(\alpha_{5} - k_{1}\alpha_{1} - k_{2}\alpha_{2} - k_{3}\alpha_{3}) = 0$$

$$\Rightarrow (x_{1} - k_{1}x_{4})\alpha_{1} + (x_{2} - k_{2}x_{4})\alpha_{2} + (x_{3} - k_{3}x_{4})\alpha_{3} + x_{4}\alpha_{5} = 0$$

$$\Rightarrow \begin{cases} x_{1} - k_{1}x_{4} = 0 \\ x_{2} - k_{2}x_{4} = 0 \\ x_{3} - k_{3}x_{4} = 0 \end{cases} \Rightarrow \begin{bmatrix} 1 & 0 & 0 & -k_{1} \\ 0 & 1 & 0 & -k_{2} \\ 0 & 0 & 1 & -k_{3} \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \end{bmatrix} = 0$$

最后得到 x_1, x_2, x_3, x_4 只有零解, 因此 $r(\alpha_1, \alpha_2, \alpha_3, \alpha_5 - \alpha_4) = 4$.

注: 此题同选择题第三题, 两种方法实际上是一样的.

五、向量组 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关, 而向量组 $\alpha_1, \alpha_2, \cdots, \alpha_r, \beta, \gamma$ 线性相关, 证明: 或者 β 与 γ 中至少有一个可由 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性表出, 或者向量组 $\alpha_1, \alpha_2, \cdots, \alpha_r, \beta$ 与 $\alpha_1, \alpha_2, \cdots, \alpha_r, \gamma$ 等价.

证明: 假设 β , γ 都不可以被 $\alpha_1, \dots, \alpha_r$ 线性表出, 那么只需证明此时后者成立.

采用反证法, 若不然两个向量组不等价, 不妨设 β 不能被 $\alpha_1, \cdots, \alpha_r, \gamma$ 线性表出, 那么也不能被 $\alpha_1, \cdots, \alpha_r$ 线性表出, 即可得 到 $\alpha_1, \cdots, \alpha_r, \beta$ 线性无关, 结合 $\alpha_1, \cdots, \alpha_r, \beta, \gamma$ 线性相关, 这表示 γ 可被 $\alpha_1, \cdots, \alpha_r, \beta$ 线性表出, 即

$$\gamma = x_1 \alpha_1 + \dots + x_r \alpha_r + y \beta$$

若 y = 0, 那么表示 γ 可被 $\alpha_1, \dots, \alpha_r$ 线性表出, 与假设矛盾; 若 $y \neq 0$, 那么变形得到

$$\beta = \frac{1}{\nu}(\gamma - x_1\alpha_1 + \dots + x_r\alpha_r)$$

这表示 β 可被 $\alpha_1, \dots, \alpha_r, \gamma$ 线性表出, 也与假设矛盾. 综上得证.

六、证明: 向量组 $\beta_1, \beta_2, \dots, \beta_t$ 能由向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表出 的充分必要条件是

$$r(\alpha_1, \alpha_2, \cdots, \alpha_s) = r(\alpha_1, \alpha_2, \cdots, \alpha_s, \beta_1, \beta_2, \cdots, \beta_t).$$

证明: 必要性, 首先显然有

$$r(\alpha_1, \alpha_2, \cdots, \alpha_s) \leq r(\alpha_1, \alpha_2, \cdots, \alpha_s, \beta_1, \beta_2, \cdots, \beta_t)$$

另一方面, 由题意 $\beta_1, \beta_2, \dots, \beta_t$ 能由向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 线性表出, **议表示**

$$r(\alpha_1, \alpha_2, \cdots, \alpha_s) \geqslant r(\alpha_1, \alpha_2, \cdots, \alpha_s, \beta_1, \beta_2, \cdots, \beta_t)$$

因此等号成立.

充分性. 因为 $\alpha_1, \alpha_2, \cdots, \alpha_s, \beta_1, \beta_2, \cdots, \beta_t$ 可以表出 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 且他们秩相等, 因此他们等价, 故 $\alpha_1, \alpha_2, \dots, \alpha_s, \beta_1, \beta_2, \dots, \beta_t$ 也可 被 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出, 即 $\beta_1, \beta_2, \cdots, \beta_t$ 可被 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性 表出. 得证.

目录

七、设向量组 $\alpha_1 = (1,0,1)^T$, $\alpha_2 = (0,1,1)^T$, $\alpha_3 = (1,3,5)^T$ 不能由 向量组 $\beta_1 = (1,1,1)^T$, $\beta_2 = (1,2,3)^T$, $\beta_3 = (3,4,k)^T$ 线性表出. 1. 求 k的值:

解: 由题意即

$$\begin{bmatrix} \beta_1, \beta_2, \beta_3 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} = \begin{bmatrix} \alpha_1, \alpha_2, \alpha_3 \end{bmatrix}$$

无解, 故对增广矩阵作初等行变换.

$$\begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 1 \\ 1 & 2 & 4 & 0 & 1 & 3 \\ 1 & 3 & k & 1 & 1 & 5 \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 1 & 3 & 1 & 0 & 1 \\ 0 & 1 & 1 & -1 & 1 & 2 \\ 0 & 0 & k - 5 & 2 & -1 & 0 \end{bmatrix}$$

要使上述方程无解, 只需要 k-5=0, 得到 k=5.

目录

向量组的极大性无关组和移一、填空题 1 2 3 4 二 三

七、设向量组 $\alpha_1=(1,0,1)^T,\alpha_2=(0,1,1)^T,\alpha_3=(1,3,5)^T$ 不能由向量组 $\beta_1=(1,1,1)^T,\beta_2=(1,2,3)^T,\beta_3=(3,4,k)^T$ 线性表出. 2. 将 β_1,β_2,β_3 用 $\alpha_1,\alpha_2,\alpha_3$ 线性表出.

解: 由题意即解下面的矩阵方程

$$\begin{bmatrix} \alpha_1,\alpha_2,\alpha_3 \end{bmatrix} \begin{bmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{bmatrix} = \begin{bmatrix} \beta_1,\beta_2,\beta_3 \end{bmatrix}$$

无解, 故对增广矩阵作初等行变换.

$$\begin{bmatrix} 1 & 0 & 1 & 1 & 1 & 3 \\ 0 & 1 & 3 & 1 & 2 & 4 \\ 1 & 1 & 5 & 1 & 3 & k \end{bmatrix} \rightarrow \cdots \rightarrow \begin{bmatrix} 1 & 0 & 0 & 2 & 1 & 10 - k \\ 0 & 1 & 0 & 4 & 2 & 25 - 3k \\ 0 & 0 & 1 & -1 & 0 & k - 7 \end{bmatrix}$$

即得到

$$\begin{cases} \beta_1 = 2\alpha_1 + 4\alpha_2 - \alpha_3 \\ \beta_2 = \alpha_1 + 2\alpha_2 \\ \beta_3 = (10 - k)\alpha_1 + (25 - 3k)\alpha_2 + (k - 7)\alpha_3 \end{cases}$$