고려대학교 빅데이터 연구회

KU-BIG

Outlier Detection

유현우 박정진 정희정 송예은 심정은 양수형

Outlier Detection

이상 감지

Outlier Detection

목 차

Outlier / Novelty / Anomaly

Evaluate Measure

EDA

Methods to Use

Results - Statistcal Methods

Results - VAE Models

Conclusion

PART. 1 Outlier / Novelty / Anomaly

1) Outlier / Novelty / Anomaly

Outliers are also referred to as abnormalities, discordants, deviants, or anomalies in the data mining and statistics literature.

(Source: "Outlier Analysis" (Springer), Charu Aggarwal, 2017, http://charuaggarwal.net/outlierbook.pdf)

Outlier = Anomaly

2) Outlier(Anomaly) detection

The training data **contains outliers** which are defined as observations that are far from the others.

(Source: https://scikit-learn.org/stable/modules/outlier_detection.html)

2) Outlier(Anomaly) detection

- i) Unsupervised anomaly detection
- ii) Supervised anomaly detection
- iii) Semi-Supervised

3) Novelty detection

The training data **is not polluted by outliers** and we are interested in detecting whether a new observation is an outlier.

(Source: https://scikit-learn.org/stable/modules/outlier_detection.html)

PART. 2 Evaluate Measure

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	а	b
	Class=No	С	d

a: TP (True Positive)

b: FN (False Negative)

c: FP (False Positive)

d: TN (True Negative)

Accuracy =
$$\frac{a+d}{a+b+c+d} = \frac{TP+TN}{TP+FN+FP+TN}$$

(Source: JunGeol Baek, 2019 1st semester Data mining chapter 3. pp.79.)

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	а	b
	Class=No	С	d

a: TP (True Positive)

b: FN (False Negative)

c: FP (False Positive)

d: TN (True Negative)

$$Precision = \frac{a}{a+c} = \frac{TP}{TP + FP}$$

$$Recall = \frac{a}{a+b} = \frac{TP}{TP + FN}$$

(Source: JunGeol Baek, 2019 1st semester Data mining chapter 3. pp.93.)

	PREDICTED CLASS		
ACTUAL CLASS		Class=Yes	Class=No
	Class=Yes	а	b
	Class=No	С	d

a: TP (True Positive)

b: FN (False Negative)

c: FP (False Positive)

d: TN (True Negative)

$$TPR = \frac{a}{a+c} = \frac{TP}{TP + FP}$$

$$FPR = \frac{c}{c+d} = \frac{FP}{FP + TN}$$

(Source: JunGeol Baek, 2019 1st semester Data mining chapter 3. pp.84.)

X축: FPR = FP / (FP + TN)

Y축: TPR = TP/(TP + FN)

Diagonal line = Random Guessing

Area under ROC curve = AUC

Area under ROC curve = AUC

AUC Range : [0, 1]

100% 맞는 예측 모델일 경우 AUC = 1.

2) Better metric for class-imbalanced data

X축: Recall: TP/(TP+FN)

Y축: Precision: TP /(TP + FP)

In Case of imbalanced-Data

- ⇒ Precision이 FPR에 비해 False Positive를 더 민감하게 잡아낼 수 있다.
- ⇒ Imbalanced data에서 효과적인 metric!

PART. 3 EDA

Credit Card Dataset: (From Kaggle)

- Highly unbalanced data
- 492 frauds out of 284,807 transactions

Input variable:

- 28 input variable V, result of PCA transformation.
- Time: seconds (about 48 hours)
- Amount: transaction amount.

Plot of Time and V1

Plot of V12 and V17

2) Linear Relations

Correlation Matrix

- V's: PCA
- ⇒ Linearly independent

2) Nonlinear Relations

Mutual Information Matrix

- All V's are nonlinearly dependent.
- All Vs and amount are nonlinearly dependent.

PART. 4 Methods to Use

1) Statistical Methods

Standard Deviations

Boxplots

1) Statistical Methods

K-Nearest Neighbors

Support Vector Machine

https://en.wikipedia.org/wiki/Support-vector_machine

1) Statistical Methods

Isolation Forest

https://donghwa-kim.github.io/iforest.html

MSE loss function :
$$L_{AE}(\phi, \theta) = \frac{1}{n} \sum_{i=1}^{n} (x^{(i)} - f_{\theta}(g_{\phi}(x^{(i)}))^2$$

Autoencoder 제약의 효과?

단순히 입력을 바로 출력으로 복사하지 못하도록 방지

데이터를 효율적으로 표현하는 방법을 학습하도록 제어

<Decoder>

 θ^* : true parameter

1.
$$p_{\theta^*}(\mathbf{z})$$
에서 $\mathbf{z}^{(\mathbf{i})}$ 추출.

$$p_{\theta^*}(\mathbf{x}|\mathbf{z^{(i)}})$$
에서 $\mathbf{x^{(i)}}$ 생성

Optimal parameter : $\theta^* = \arg\max_{\theta} \sum_{i=1}^{n} \log p_{\theta}(\mathbf{x}^{(i)})$ Intractable !!

z : latent variable

 $p_{\theta}(\mathbf{z})$: prior

 $p_{\theta}(\mathbf{x}|\mathbf{z})$: Likelihood

 $p_{\theta}(\mathbf{z}|\mathbf{x})$: posterior

알려져 있는 분포 활용한 공 (z|x)를 활용한

 $p_{ heta}(\mathbf{z})$ 를 추론하고자 $p_{ heta}(\mathbf{z}|\mathbf{x})$ 를 이용하고, $p_{ heta}(\mathbf{z}|\mathbf{x})$ 를 추론하고자 $p_{ heta}(\mathbf{z}|\mathbf{x})$ 를 활용한다.

Variational Inference

- 1. $p_{\theta}(\mathbf{x})$ 를 계산하기 힘든 경우
- 2. $p_{\theta}(\mathbf{z}), p_{\theta}(\mathbf{x}|\mathbf{z})$ 를 더 복잡하 게 모델링하고 싶은 경우

Loss function:

$$egin{aligned} L_{ ext{VAE}}(heta,\phi) &= -\log p_{ heta}(\mathbf{x}) + D_{ ext{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{ heta}(\mathbf{z}|\mathbf{x})) \ &= -\mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z}|\mathbf{x})} p_{ heta}(\mathbf{x}|\mathbf{z}) + D_{ ext{KL}}(q_{\phi}(\mathbf{z}|\mathbf{x}) \| p_{ heta}(\mathbf{z})) \ &\stackrel{>}{\ominus} \ \theta^*,\phi^* &= rg\min_{ heta,\phi} L_{ ext{VAE}} \end{aligned}$$

PART. 5 Results – Statistcal Methods

1) K-Nearest Neighbors

Training: Test = 7:3

The number of testing data is about 85,000

1) K-Nearest Neighbors

```
K-Nearest Neighbours
Confusion Matrix
tn = 85281 \text{ fp} = 17
fn = 34 tp = 111
                                   Most of the data is normal -> Accuracy is not
Scores
                                   important, though it is 99%
Accuracy --> 0.999403110845827
Precison --> 0.8671875
Recall --> 0.7655172413793103
F1 --> 0.8131868131868132
Area under the curve: 0.882659
Average precision-recall score RF: 0.6642449088614026
             precision recall f1-score support
                  1.00
                            1.00
                                     1.00
                                              85298
                  0.87
                           0.77
                                     0.81
                                                145
                                     1.00
                                              85443
   accuracy
                  0.93
                            0.88
                                      0.91
                                              85443
   macro avg
weighted avg
                  1.00
                            1.00
                                      1.00
                                              85443
```

1) K-Nearest Neighbors

The Confusion Matrix of full dataset using best_parameters

Testing Sets	P = Normal	P = Outlier
Actual = Normal	85281	17
Actual = Outlier	34	111

2) Support Vector Machine

Time Consuming with Full data

Totally Imbalanced

Small, Balanced Sample

2) Support Vector Machine

The accuracy is 95.48872180451127 %
The recall from the confusion matrix is 92.1875 %

Testing Sets	P = Normal	P = Outlier
Actual = Normal	136	2
Actual = Outlier	10	118

3) Isolation Forest

```
In [6]: df=pd.read_csv("../data/creditcard.csv")
    y_true=df['Class']
    df_data=df.drop('Class',1)

In [7]: # create the forest
    sampleSize=10000
    ifor=iForest(df_data.sample(100000),10,sampleSize) ##Forest of 10 trees
```

Repeated Sampling of obs=10,000 for each tree

Forest of 10 trees

3) Isolation Forest

Paths of the Abnormal Data are shorter!

3) Isolation Forest

Testing Sets	P = Normal	P = Outlier
Actual = Normal	81154	4153
Actual = Outlier	16	120

PART. 6 Results - VAE Models

X_Training = 170,589

 $X_Validation = 56,863$

 $X_Test = 56,863 + 492 = 57,355$

Input Dim = 29

H Dim = 10

Z Dim = 2

2) $H1 \dim = 15$, $H2 \dim = 7$, $Z\dim = 2$

Input Dim = 29

H1 Dim = 15

H2 Dim = 7

Z Dim = 2

2) H1 dim = 15, H2 dim = 7, Zdim = 2

2) $H1 \dim = 15$, $H2 \dim = 7$, $Z\dim = 2$

3) H1 dim = 17, H2 dim = 9, Zdim = 5

Input Dim = 29

H1 Dim = 17

H2 Dim = 9

Z Dim = 5

3) H1 dim = 17, H2 dim = 9, Zdim = 5

3) H1 dim = 17, H2 dim = 9, Zdim = 5

4) H1 dim = 20, H2 dim = 15, Zdim = 10

Input
$$Dim = 29$$

$$H1 Dim = 20$$

$$H2 Dim = 15$$

$$Z Dim = 10$$

4) $H1 \dim = 20$, $H2 \dim = 15$, $Z\dim = 10$

4) H1 dim = 20, H2 dim = 15, Zdim = 10

Conclusion

- 1. VAE with 3rd Model shows the best performance.
- 2. Generally, VAE models show better performance.
- 3. Danger of Overfitting Exists in VAE model.
- 4. Statistical Models are not always the worst.

