

ORACLE

金融行业高性能最佳实践

李宪文 高级技术顾问

最为开放 完整和领先的架构 Grid+SOA

低成本、高性能、易伸缩、高可用、安全、集中管理

用户

真实世界可伸缩性的领导者

- Winter TopTen™- 世界上最大的和负载最高的数据库调查
- 世界上最大的商业数据库
 - Yahoo @ 100TB
- 世界上最大的Linux数据仓库
 - Amazon.com @ 24.7TB
- 世界上最大的Linux OLTP数据库
 - Amazon.com @ 4TB
- 世界上最大的科学计算数据库
 - Max Planck @ 222TB
- 世界上最大的Unix OLTP数据库
 - US Patent & Trademark Office @ 16.4TB
- Oracle运行着十大中的九个最大的Unix OLTP数据库
- Oracle运行着十大中的十个最大的Linux DSS和OLTP数据库

即将到来的里程碑

- 出现Petabyte (1000 TB)的数据库
 - 现在最大的是300TB
 - LOB数据快速的增长

• 现在最大的是100 到 300 核

- 出现 <u>Terabyte 缓存区</u>
 - 在基准测试中已经使用了这么大的缓存区

Oracle已经为伸缩性做好准备

- 25年的投入

- Scale-up在大型SMPs
- Scale-out在集群服务器
- 并行操作
 - Query, DML, DDL, Loads, Unloads, Recovery
- 行级锁
- 读一致性

• 可伸缩的可用性

- RAC
- Flashback
- Data Guard
- RMAN
- 在线表重定义
- 只读表空间

• 可伸缩的管理

- 网格控制
- 自动优化
- 数据库资源管理器
- 自动工作负载库

可伸缩的存储

- 表分区
 - 自动存储管理
 - Bigfile表空间
- 可传输表空间
- 9种索引类型

SMP纵向扩展

- 非常成熟
 - 20年的经验
- 许多用户使用大型的SMPs
 - 64 到 128 CPUs
 - Sun E25K, HP Superdome, IBM Regatta
- 单一系统映像
 - 易于管理
 - 易于编写应用
- 工作的很好,但是成本很高
- 处理能力有上限
- 需要一台备机实现高可用性

真正应用集群架构

共用缓冲区/磁盘架构

RAC: 伸缩性

消息传递成本和集群大小无关

真正应用集群(RAC) 低成本、高性能

案例:澳大利亚银行

无与伦比的成本与性能优势

- 最近将其5+ TB 集团数据 仓库从SMP 43cpu Sun E10k 迁移到运行Oracle 10g的基于Intel的服务器 集群上
- 在他们的生产机和新的 Oracle集群上,他们运行 了查询测试
- 结果对于他们,证明了 Oracle的性能和成本优势
- Sun E10k = \$1M USD+
- 4 x Intel servers = \$150k USD

充分验证的可伸缩性

RAC 8+节点的用户

- Citigroup
- Burlington Coat Factory
- J2 Global Communications
- Genworth Financial
- Amazon.com
- MSDS
- Mercado Libre
- Yahoo! Overture
- Babcock Engineering
- Ordnance Survey
- Dell
- Yahoo!

- SAIC
- Fairmont Hotels
- ADESLAS
- Evite.com
- Quelle AG
- Telstra
- Gas Natural
- MyTravel
- Thompson
- AOL
- Vivo
- Sagawa Kyubin

自动存储管理ASM

- · 是推荐的和最好的Oracle数据库存储 管理方式
 - 比文件系统易于管理
 - 相当于裸卷的性能
 - 内置在Oracle数据库
 - 所有数据库的共享存储池
- 免费, 广泛使用
 - > 65%的10g RAC部署在ASM
 - > 25%的10g用户在使用ASM
 - · 许多VLDB超过10TB

自动存储管理

使用ASM降低数据管理成本

"节省成本的最好方法是减少复杂性"

为何要数据分区(Data Partitioning)

- 表与索引数据的爆炸性增长
 - 在大型数据库系统中 表数据量通常 >> 10GB
 - 现在表的数据量比以前中等规模的数据库还大!!
- 超大规模表与索引的要求
 - 部分数据区失败不会对其他数据区造成影响
 - 数据管理操作可在固定的维护窗口下运行
 - 数据大量增长的情况下,保持执行效率
- 解决方案: Data Partitioning
 - 分而治之

Oracle 分区 (Partitioning)

高性能、高可用、易管理

ORDERS

大表

难于管理

ORDERS

分区(范围、哈希、 列表)

分而治之

易于管理

提高性能

ORDERS

组合分区(范围-哈希,范围-列表)

更高性能

更灵活的适合业务需 求

分区裁剪

- 减少读取数据的内部机制
 - 只有相关的分区会被访问
- 对应用透明
 - 自动分析SQL语句
- 两种分区裁剪方式
 - 静态裁剪
 - 动态裁剪

静态分区裁剪

```
select sum(amount_sold) from sales
where times_id
between '01-MAR-2004' and '31-MAY-2004';
```

- 相关的分区在解析时知道
 - Look for actual values in PSTART/PSTOP columns in the plan
- 优化器对SQL语句有准确的信息

动态分区裁剪

04-Jan 04-Feb 04-Mar 04-Apr 04-May 04-Jun

- 复杂查询的高级裁剪机制
 - E.g. beneficial for Star schemas
- 循环语句在运行时评估相关的分区
 - Look for the word 'KEY' in PSTART/PSTOP columns in the Plan

```
select sum(amount_sold)
  from sales s, times t
  where
  t.time_id = s.time_id
  and t.month in
  ('05-Mar', '05-Apr', '05-May');
```

完全分区智能的连接

×相同分区的表会智能的处理

Partitions containing the same Subset of data are joined Joins returning no data are suppressed right away

×透明的性能提高

Common improvement of 15 – 30%

Lineitem	Orders	Lineitem	Orders
Sub-1	97-Apr Sub-1	Sub-1	97-Apr Sub-1
Sub-2	Sub-2	Sub-2	Sub-2
Sub-3	Sub-3	Sub-3	Sub-3

部分分区智能的连接

 If Lineitem table is partitioned by the join key, then Orders table can be re-distributed to enable partition-wise join

OLTP索引热点消除

- 数据以单向增长的方式插入
 - 唯一键值索引
 - 在打包应用中常见
- 全局哈希分区索引
 - 数据插入到多个分区中
 - 消除热点

Weblogic Enterprise Edition

构建可靠的Web应用集群

- 通过硬件设备提供可靠的负载均衡
- 通过Weblogic集群提供应用的高可用性

TimesTen和Coherence

Oracle TimesTen内存数据库

针对物理内存而优化的应用层数据库,可以获得极高的响应速度并实现实时数据缓存

"针对性能要求高的 系统的应用层数据 管理解决方案"

TimesTen内存数据库

- 内存中的RDBMS
 - 全部数据库在内存中
 - 标准的访问接口ODBC/JDBC, SQL 92
 - 与Oracle数据库兼容
- 极高的性能
 - 极快的响应时间
 - 高吞吐量
 - 支持嵌入式
- 持续性和持久性
 - 数据库存放在磁盘上
 - 支持事务的ACID属性
- 实时的服务
 - 在线的非阻塞的操作
 - 实时的数据库变更通知
- 几乎不需要管理

内存数据库与磁盘数据库的比较

数据库特性	Oracle Database 10g	Oracle TimesTen In-Memory Database
目标应用	关键业务应用	关键业务应用
数据模型	关系型 - SQL	关系型 - SQL
优化	磁盘为中心	内存为中心
典型部署方式	数据库层	应用层
架构	客户机/服务器	嵌入式(直接数据访问)
响应时间	毫秒到秒级	微秒到毫秒级
数据容量	TB到PB级	GB级
可扩展性	Cluster (RAC) & SMP	SMP

架构比较

极快的响应速度

Average Response Time

TimesTen In-Memory Database

Cache Connect to Oracle

- 从Oracle数据库缓存表
- 用户配置的缓存组
 - 缓存独立的表或有关联的表
 - 缓存行和列的全集或子集
- 只读的或可更新的
 - 想常规的数据库表一样访问缓存表
- 自动的数据同步
 - 从TimesTen到Oracle
 - 从Oracle到TimesTen

从Oracle数据库缓存数据

Cache Group—描述缓存在TimesTen内存数据库中的Oracle数据,支持SQL WHERE语句

例子:缓存多于500个购买订单的 重要客户的名字和地址

CREATE CACHE GROUP PremierUsers
FROM CUSTOMER (
NAME VARCHAR2(100) NOT NULL,
ADDR VARCHAR2(100))
WHERE CUSTOMER.ORDER > 500;

案例: ODS 项目

TimesTen 用于

- § 解决数据库服务器性能处理瓶颈
- § 提升BO报表展现的性能

性能指标

§ 展现速度提高在3倍以上

配置

- § 4-CPU server
- § AIX 平台 v5.0, 7856MB
- § TimesTen6.0.2
- § Oracle DB 9i
- § BO Server 为 BosinessObject XI

TimesTen的价值

- § 提高展现速度
- § 移植工作量较少

什么是Coherence

- Tangosol, 领先的可靠内存数据网格软件供应商
- 支持极速的事务处理(XTP)
- 标准的Java Archive "JAR",标准的动态链接库"DLL" for .NET
- 使用于应用层
- 比应用服务器更强的数据管理
- 比应用服务器更好的伸缩性能

"最复杂java.util.Map实现"

Oracle Coherence数据网格

分布式内存数据管理

数据虚拟化

- 通过一个单一的一致的数据视图 提供一个可靠的数据层
- 提供动态数据能力包括容错和负载均衡
- 保证数据能力和处理能力同步扩展

分布式数据管理

数据网格使用场景

缓存

应用从数据网格请求数据,而不是后台数据源

分析

应用从数据网格运行查询和场景建模

数据网格作为一个记录事物系统, 存放数据和业务逻辑

事件

基于事件自动的处理

案例: FedEx

提高在线跟踪性能

- 公司介绍
- 领先的运输、电子商务和商业服务供应商
- 运营4个业务: FedEx Express, FedEx Ground, FedEx Freight, 和 FedEx Kinko's
- 行业: 货物空运服务
- 挑战
- 扩展在线包裹跟踪系统,处理增长的运送量和每个包裹的跟踪数据
- 由于系统性能,客户满意度下降了24%
- 管理和季节性相关的运输成本
- 解决方案
- Oracle Coherence
- Oracle数据库

- 结果
- 部署了Oracle Coherence在中间层的 内存中虚拟化数据,使包裹的状态信息 可以在线立即得到
- 平均减少了68%的页面刷新时间
- 在6个月提高了38%的客户满意度
- 通过扩展在线服务选项减少了客户服务成本和提高了客户满意度
- 通过为数据网格动态增加低成本服务器应对季节性业务高峰

真正应用测试

- 价值
 - 技术的快速采用
 - 更高的测试质量
- 业务受益
 - 成本更低
 - 风险更低
- 特性
 - 数据库重放
 - SQL Performance Analyzer (SPA)

通过高级测试实现业务灵活性

数据库重放

测试生产级的系统更改

使用数据库重放的真正应用测试

- 在测试环境中重放生产负载
- 在对生产环境进行更改前识别、分析和修复潜在的不稳定因素
- 在生产环境中捕获负载
 - 使用实际负载、时限和并行特性捕获完整生产负载
 - 将捕获的负载移到测试系统

- 在测试系统中做出需要的更改
- 使用完整生产特性重放负载
- 执行提交排序
- 分析和报告
 - 错误
 - 数据差异
 - 性能差异

分析和报告

LoadRunner 与数据库重放对比 电子商务套件测试

总测试时间

数据库重放: ½ 个月

LoadRunner: 7½个月

数据库重放对比

Ü只有 Oracle 才能构建的技术

	第三方 负载测试工具	Oracle 数据库重放
负载	人工模拟负载	实际应用程序负载
测试范围	1-5% 的工作流	100%的工作流
测试工作量	•简单应用程序:数周 •复杂应用程序:数月	•简单应用程序:数天 •复杂应用程序:数天

SQL Performance Analyzer

- 测试更改对 **SQL** 查询性能的影响
- 在生产环境中捕获 SQL 负载(包括统计信息和绑定变量)
- 在测试环境中重新执行 **SQL** 查询
- 分析性能更改 提升和降低

SPA 报告

SQL Performance Analyzer 优点

从:

手动创建负载

综合负载

耗时数月的手动分析

部分负载

高风险

最为开放 完整和领先的架构 Grid+SOA

低成本、高性能、易伸缩、高可用、安全、集中管理

用户

ORACLE IS THE INFORMATION COMPANY