Transformers

LATEST SUBMISSION GRADE
100%
 Question 1 A Transformer Network, like its predecessors RNNs, GRUs and LSTMs, can process information one word at a time. (Sequential architecture).
1 / 1 point
True
⊙
False
Correct
Correct! A Transformer Network can ingest entire sentences all at the same time.
2. Question 2
Transformer Network methodology is taken from: (Check all that apply)
1 / 1 point
Attention mechanism.
Correct
Convolutional Neural Network style of processing.
Correct
None of these.

)

Question 3

Convolutional Neural Network style of architecture.

The concept of *Self-Attention* is that:

1 / 1 point

O

Given a word, its neighbouring words are used to compute its context by selecting the lowest of those word values to map the Attention related to that given word.

 \circ

Given a word, its neighbouring words are used to compute its context by taking the average of those word values to map the Attention related to that given word.

Ö

Given a word, its neighbouring words are used to compute its context by selecting the highest of those word values to map the Attention related to that given word.

•

Given a word, its neighbouring words are used to compute its context by summing up the word values to map the Attention related to that given word.

Correct

4.

Question 4

Which of the following correctly represents Attention?

1 / 1 point

 $Attention(Q, K, V) = min(\frac{QK^T}{\sqrt{L}})VAttention(Q, K, V) = min(\frac{dkQKT}{V})VAttention(Q, K, V) = min(\frac{d$

(

 $Attention(Q, K, V) = softmax(\frac{QK^T}{(a_k)})VAttention(Q, K, V) = softmax(\dkQKT)V$

 \circ

 $Attention(Q, K, V) = min(\frac{QV^T}{\sqrt{k}})KAttention(Q, K, V) = min(\frac{dkQVT}{K})KAttention(Q, K, V) = min(\frac{d$

O

 $Attention(Q, K, V) = softmax(\frac{QV^T}{(sqrt{d_k})})KAttention(Q, K, V) = softmax(\dkQVT) + softma$

Correct

5.

Question 5

Are the following statements true regarding Query (Q), Key (K) and Value (V)?

Q = interesting questions about the words in a sentence

K = specific representations of words given a Q

V = qualities of words given a Q

1 / 1 point

•

False

 \bigcirc

True

Correct

Correct! Q = interesting questions about the words in a sentence, K = qualities of words given a Q, V = specific representations of words given a Q

6.

Question 6

 $Attention(W_i^QQ, W_i^KK, W_i^VV)$

i*i* here represents the computed attention weight matrix associated with the ith*ith* "word" in a sentence.

⊚

False

 \bigcirc

True

Correct

Correct! ii here represents the computed attention weight matrix associated with the ithith "head" (sequence).

7.

Question 7

Following is the architecture within a Transformer Network. (without displaying positional encoding and output layers(s))

What information does the *Decoder*take from the *Encoder* for its second block of *Multi-Head Attention*? (Marked *XX*, pointed by the independent arrow)

(Check all that apply)

Q

V

K

Correct

V

V

Correct

8.

Question 8

Following is the architecture within a Transformer Network. (without displaying positional encoding and output layers(s))

What is the output layer(s) of the *Decoder*? (Marked YY, pointed by the independent arrow)

1 / 1 point

 \odot

Linear layer followed by a softmax layer.

 \circ

Softmax layer

 \circ

Softmax layer followed by a linear layer.

 \circ

Linear layer
Correct
9. Question 9 Why is positional encoding important in the translation process? (Check all that apply)
1 / 1 point ▼
Position and word order are essential in sentence construction of any language.
Correct
It helps to locate every word within a sentence.
It is used in CNN and works well there.
Providing extra information to our model.
Correct
10.Question 10Which of these is a good criteria for a good positionial encoding algorithm?1 / 1 point
▼ point
It should output a unique encoding for each time-step (word's position in a sentence).
Correct
Distance between any two time-steps should be consistent for all sentence lengths.
Correct
The algorithm should be able to generalize to longer sentences.
Correct
None of the these.