

Session 10: λ -calculus and summary

COMP2221: Functional programming

Laura Morgenstern

laura.morgenstern@durham.ac.uk

λ -calculus

Introduction

- \bullet λ -calculus: rule system to describe computations solely via function abstraction and application
- Inspired functional programming languages
- Simplest known Turing-complete programming language
- → Proof of Turing-completeness:

```
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-11
```

Definition of λ **-expressions**

- Inductive definition to build all λ -expressions:
 - Variable v is a λ -expression.
 - ightarrow Variables represented by lower-case letters
 - If M is a λ -expression, then $(\lambda v.M)$ is a λ -expression.
 - ightarrow Abstraction aka definition of a function with parameter v and body M
 - ightarrow λ denotes start of function definition
 - If M and N are λ -expressions, then (MN) is a λ -expression.
 - \rightarrow Application of M to N
- Note: Functions take exactly one argument, currying used to model multi-argument functions

Examples

Valid λ -expressions:

- $x \rightarrow a$ variable
- $(\lambda x.x)$ \rightarrow the identity function
- $((\lambda x.x)e) \rightarrow$ the identity function applied to an expression e
- $(\lambda x.(\lambda y.(xy))) \rightarrow$ nested function, i.e. currying
- $(((\lambda x.(\lambda y.(xy)))a)b) \rightarrow$ nested function applied to expressions a and b

Conventions to avoid ambiguity

- Application is left-associative, e.g., MNP is equivalent to ((M N) P); instead of (M (N P))
- Abstraction is right-associative
- Application has precedence over abstraction, e.g. $\lambda x.\lambda y.xy$ is equivalent to $\lambda x.(\lambda y.(xy))$; instead of $\lambda x.(\lambda y.x)y$

Free vs. bound variables

Bound variables

A variable is *bound* if it occurs in a function that takes a variable of the same name as input. For instance, x in $\lambda x.x$ is bound. A variable binds to the closest function argument considering its enclosing functions.

Free variables

A variable is *free* if it is not bound. For instance, x in $\lambda y.x$ is free.

Transformation rules

β -Reduction to evaluate expressions

 β -reduction allows to substitute the argument of an abstraction with the value of an application $((\lambda x.M[x])N) \rightarrow (M[x:=N])$.

Example 1:

$$(\lambda x.x)a = a$$
$$(\lambda x.y)a = y$$

Example 2:

$$((\lambda x.(\lambda y.(xy)))a)b = (\lambda y.(ay))b = ab$$

• Normalform: A λ expression is in β -normalform if no β -reduction is possible, i.e., if the expression cannot be reduced any further.

Transformation rules: α -Conversion

α -Conversion to rename variables

 α -conversion allows to resolve name conflicts by renaming bound variables as such $(\lambda x.M[x]) \rightarrow (\lambda y.M[y])$.

$$\lambda x.x \equiv \lambda y.y$$
$$\lambda x.(\lambda x.x) \equiv \lambda x.(\lambda y.y)$$

- ullet Prevent capturing free variables when eta-reducing expressions
- \rightarrow For instance, β -reduction would change the semantics of the inner function in $(\lambda x.(\lambda y.xy))y$ without prior α -conversion

Summary

Summer exam

- Closed book in-person exam, tests knowledge, comprehension, application and synthesis
- Format: reading and writing Haskell code + conceptual and theory questions
- ⇒ Practice programming in Haskell
- ⇒ Think about functional paradigms, look for them elsewhere. Has your mindset changed?

Relevant past paper questions

```
2023 all
2022 Q1 (not (d)) and Q2
2021 Q1 (not (e))
2020 Q1 and Q2
2019 Q2 (the only Haskell question)
2018 Q1 (b-e, g) (not (a), (f))
```

Content overview

- Functional programming paradigm
- Types system: built-in types, type checking, polymorphism, type classes, algebraic data types
- \bullet Functions: currying, λ -expressions and higher-order functions
- Lists: pattern matching, comprehensions
- Recursion: structure, classification, and complexity
- Evaluation: expression graphs, lazy vs. eager
- Abstractions for computational patterns: functors, foldables, and monads
- \bullet λ -calculus: syntax and reduction rules

Functional programming paradigm

- Programming *paradigm* where the building block of computation is the *application of functions* to arguments
- Functional programs specify a data-flow to describe what computations should proceed (instead of how they should proceed)
- Algebraic programming style dominated by function application and composition
- \Rightarrow a functional language is one that $\emph{supports}$ and $\emph{encourages}$ programming in this style

Data types

Type: collection of values

Haskell built-in types

- Int, Integer, Char, String, ...
- Lists [1,2,3]
- Tuples (1,2,3)

Haskell custom data types

- ullet type keyword for synonyms
- data keyword for new algebraic types (sum and product types)

Polymorphism

- Polymorphism: functions that are defined generically for many types.
- Types of polymorphism: parametric, ad-hoc, subtype polymorphism
 - Type variables: length :: [a] -> Int "a" is a type variable, length is generic over the type of the list.
 - Haskell uses parametric polymorphism "generic functions"
- Constraining polymorphic functions: type classes
 - (+) :: Num a => a -> a -> a "+ works on any type a as long as that type is numeric"
 - Relevant type classes: Num "numeric", Eq "equality", Ord "ordered", Functor, Foldable, Monad
 - ⇒ Include class constraints in type definitions when appropriate

Lists

 Pattern matching: can match literal values but also match a list pattern, and bind the values

 List comprehensions: construct new lists based on generator and guard expressions

```
[x \mid x \leftarrow [1..5], even x]
```

Recursion

Recursion: a function that calls itself until it reaches a base case.

Definition (Tail recursion)

A function is *tail recursive* if the *last result of a recursive call* is the result of the function itself.

Definition (Linear recursion)

The recursive call contains only a *single* self reference.

Definition (Multiple recursion)

The recursive call contains *multiple* self references.

Definition (Direct recursion)

The function calls itself recursively.

Definition (Mutual/indirect recursion)

Multiple functions call each other recursively.

Functions

- Saw nameless or anonymous functions (λ -expressions), and syntax
- Formalises idea of functions defined using currying

```
add x y = x + y

-- Equivalently

add = \x -> (\y -> x + y)
```

Definition (Higher order function)

A function that does at least one of the following

- take one or more functions as arguments
- returns a function as its result
- Due to currying, every function of more than one argument is higher-order in Haskell

Generalizing computational patterns

- Functor for mappable types
- Foldable for types that can be reduced
- Monads for types that describe actions to compose and structure computations
- Instances must obey some equational laws

Evaluation strategies

- Lazy evaluation
 - Infinite data structures are fine (as long as we don't try and consider all of their elements)
- ullet Call by name (lazy, outermost) vs. call by value (eager, innermost) o contrast with imperative languages
- Think about expression as a graph of computations: multiple different evaluation orders possible

λ -calculus

- \bullet $\lambda\text{-calculus:}$ set of rules to transform expressions of the following form
 - v (Variables; lower case letters)
 - (MN) (Application of M to N)
 - $(\lambda v.M)$ (Abstraction aka function with parameter v and body M)
 - with M and N being expressions of the same form
- ullet lpha-conversion: solving name conflicts by renaming variables
- \bullet $\beta\mbox{-reduction:}$ reducing expressions by applying functions to arguments

Thank you!