A similar technique used for database design is Entity-Relationship Modeling (ER Modeling). FORTRAN, the first widely used high-level language to have a functional implementation, came out in 1957, and many other languages were soon developed—in particular, COBOL aimed at commercial data processing, and Lisp for computer research. Different programming languages support different styles of programming (called programming paradigms). Debugging is a very important task in the software development process since having defects in a program can have significant consequences for its users. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. The first computer program is generally dated to 1843, when mathematician Ada Lovelace published an algorithm to calculate a sequence of Bernoulli numbers, intended to be carried out by Charles Babbage's Analytical Engine. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. As early as the 9th century, a programmable music sequencer was invented by the Persian Banu Musa brothers, who described an automated mechanical flute player in the Book of Ingenious Devices. Integrated development environments (IDEs) aim to integrate all such help. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Following a consistent programming style often helps readability. Programmable devices have existed for centuries. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. There are many approaches to the Software development process. Many applications use a mix of several languages in their construction and use. For example, when a bug in a compiler can make it crash when parsing some large source file, a simplification of the test case that results in only few lines from the original source file can be sufficient to reproduce the same crash. The academic field and the engineering practice of computer programming are both largely concerned with discovering and implementing the most efficient algorithms for a given class of problems. By the late 1960s, data storage devices and computer terminals became inexpensive enough that programs could be created by typing directly into the computers. Ideally, the programming language best suited for the task at hand will be selected. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. However, because an assembly language is little more than a different notation for a machine language, two machines with different instruction sets also have different assembly languages. Unreadable code often leads to bugs, inefficiencies, and duplicated code.