Численное решение 1D-уравнения Лапласа

Харитонов Фёдор, 203

Апрель 2025

Постановка задачи

Рассматривается краевая задача Дирихле для уравнения Лапласа:

$$-u''(x) = f(x), \quad x \in (0,1), \quad u(0) = a, \quad u(1) = b,$$

где точное решение выбрано как $u(x) = \sin(x)$. Тогда

$$f(x) = \sin(x), \quad a = 0, \quad b = \sin(1).$$

Цель — численно найти приближённое решение задачи с использованием метода конечных разностей и оценить сходимость по C- и дискретной L_2 -нормам.

Метод численного решения

Интервал (0,1) разбивается на равномерную сетку:

$$x_i = ih, \quad h = \frac{1}{N}, \quad i = 0, \dots, N.$$

Искомые значения $y_i \approx u(x_i)$. Аппроксимация:

$$-\frac{y_{i-1}-2y_i+y_{i+1}}{h^2}=f(x_i), \quad i=1,\ldots,N-1.$$

Получается линейная система с трёхдиагональной матрицей, решаемая методом прогонки.

Результаты численных экспериментов

N	h	C-норма ошибки	L_2 -норма ошибки	Время (сек.)
10	0.100000	4.982481e-05	3.586575e-05	0.000018
20	0.050000	1.247618e-05	8.963554e-06	0.000005
40	0.025000	3.124523e-06	2.240686e-06	0.000006
80	0.012500	7.811125e-07	5.601585e-07	0.000011
160	0.006250	1.952889e-07	1.400388e-07	0.000018

Таблица 1: Сходимость численного решения при разных N

Графики

Рис. 1: Зависимость ошибки от шага сетки

Рис. 2: Зависимость времени вычислений от числа узлов N

Выводы

Наблюдаем квадратичную сходимость численного метода, что соответствует ожидаемой точности $O(h^2)$ аппроксимации второй производной. Время вычислений растёт линейно с увеличением числа узлов N.