Programare logică

Terminare. Confluență. Completare

Logica ecuațională și rescrierea

- ■Terminarea unui sistem de rescriere este nedecidabilă.
- Pentru sisteme de rescriere particulare putem decide asupra terminării.
- ■Dacă E este o mulţime de ecuaţii a.î. R_E este un sistem de rescriere complet atunci deducţia ecuaţională $E \vdash (\forall X)t \doteq_s t'$ este decidabilă:
 - $\blacksquare t \stackrel{*}{\to} fn(t)$
 - $\blacksquare t' \stackrel{*}{\rightarrow} fn(t')$
 - $\blacksquare E \vdash (\forall X)t \doteq_s t' \Leftrightarrow fn(t) = fn(t')$
- Pentru sisteme de rescriere noetheriene, confluenţa este decidabilă.

Terminarea

 (S,Σ) signatură, R un sistem de rescriere (TRS)

Propoziţie. Dacă fiecărui termen t îi poate fi asociat un număr natural $t\mapsto \mu(t)\in\mathbb{N}$ astfel încât $t\to_R t'\Rightarrow \mu(t)>\mu(t')$ oricare tşi t', atunci R este noetherian.

- $\blacksquare R = \{x 0 \to x, succ(x) succ(y) \to x y\}$ noetherian $\mu(t) := \text{lungimea lui t}$ (nr. de simboluri din scrierea lui t în forma prefix)
- $\blacksquare R = \{f(g(x), y) \to f(y, y)\}$ nu este noetherian $f(g(x), g(x)) \to_R f(g(x), g(x)) \to_R \cdots$

Arborele de reducere

 (S, Σ) signatură, R un sistem de rescriere (TRS)

- Arborele de reducere al termenului t este definit astfel:
 - rădăcina arborelui are eticheta t,
 - descendenţii nodului cu eticheta u sunt etichetaţi cu termenii u' care verifică $u \to_R u'$.
- Orice nod al unui arbore de reducere are un număr finit de descendenți deoarece R este o mulțime finită.
- ■Dacă R se termină atunci $\mu(t) := \hat{\mathbf{n}}$ nălţimea arborelui de reducere asociat lui t. $t \to_R t' \Rightarrow \mu(t) > \mu(t')$

Arbore de reducere

$$R = \{x + 0 \to x, x + succ(y) \to succ(x + y)\}$$

Terminare

 (S,Σ) signatură, R un sistem de rescriere (TRS)

Lema lui König. Dacă R este noetherian atunci orice termen are un arbore de reducere finit.

- Sunt echivalente
 - R este noetherian
 - ■oricărui termen t îi poate fi asociat un număr natural $\mu(t) \in \mathbb{N}$ astfel încât $t \to_R t'$ implică $\mu(t) > \mu(t')$ ($\mu(t)$ este o măsură strict descrescătoare în raport cu relaţia de rescriere).

Terminare

 (S, Σ) signatură, R un sistem de rescriere (TRS)

Propoziție. Fie A o (S, Σ) -algebră astfel îincât:

- $\bullet A_s = \mathbb{N} \text{ or. } s \in S,$
- \bullet or. $\sigma: s_1 \dots s_n \to s$, dacă $k_i > k'_i$ atunci

$$A_{\sigma}(k_1,\ldots,k_i,\ldots k_n) > A_{\sigma}(k_1,\ldots,k_i',\ldots k_n),$$

 \bullet $\tilde{a}(l) > \tilde{a}(r)$ or. $l \to r \in R$ or. $a: Var(l) \to A$.

Atunci R este noetherian

$$lackbox{\blacksquare} R = \{x+0 o 0, x + succ(y) o succ(x+y)\}$$
 $A_0 := 1, A_{succ}(k) := k+1,$
 $A_+(k,m) := k+2*m$
 $(k+_A m := k+2*m) \text{ or. } k, m \in \mathbb{N}.$

Confluență. Perechi critice

 (S, Σ) signatură, R un sistem de rescriere (TRS)

Fie $l_1 \rightarrow r_1$, $l_2 \rightarrow r_2 \in R$ astfel încât:

- $\blacksquare Var(l_1) \cup Var(l_2) = \emptyset,$
- $lackbox{1}{lackbox{1}} = c[z \leftarrow t]$ unde $nr_z(c) = 1$, t nu este variabilă (t este subtermen al lui l_1 care nu este variabilă),
- lacksquare c.g.u pentru t și l_2 ($\Rightarrow \theta(t) = \theta(l_2)$).

Atunci $(\theta(r_1), \theta(c)[z \leftarrow \theta(r_2)])$ este pereche critică.

Confluență. Perechi critice

$$l_1
ightarrow r_1, l_2
ightarrow r_2 \in R,$$
 $Var(l_1) \cup Var(l_2) = \emptyset,$ $l_1 = c[z
ightarrow t],$ $heta(t) = heta(l_2) ext{ c.g.u}$

Teorema Perechilor Critice.

Dacă R este noetherian atunci sunt echivalente:

- $\blacksquare R$ este confluent,
- lacksquare $t_1 \downarrow_R t_2$ oricare (t_1, t_2) pereche critică.

Exemplu

 $R = \{f(f(x)) \rightarrow x\}$ este confluent.

Determinăm perechile critice:

$$\bullet \ l_1 := f(f(x)), \ r_1 := x, \ l_2 := f(f(y)), \ r_2 := y$$

• Subtermenii lui l_1 care nu sunt variabile sunt f(f(x)) şi f(x).

(1)
$$t := f(f(x)), c = z, \theta := \{x \leftarrow y\}$$

 $\theta(r_1) = y, \theta(c)[z \leftarrow \theta(r_2)] = y$

(2)
$$t := f(x), c = f(z), \theta := \{x \leftarrow f(y)\}$$

 $\theta(r_1) = f(y), \theta(c)[z \leftarrow \theta(r_2)] = f(y)$

Perechile critice sunt (y,y) şi (f(y),f(y)). Deoarece $y\downarrow y$ şi $f(y)\downarrow f(y)$, sistemul de rescriere R este confluent.

Completarea unui TRS

 (S,Σ) signatură

Intrare. R un sistem de rescriere (TRS) noetherian.

Iniţializare. T := R

Se execută următorii paşi, cât timp este posibil:

- (1) $CP := CP(T) = \{(t_1, t_2) | (t_1, t_2) \text{ pereche critică în } T\}$
- (2) Dacă $t_1 \downarrow t_2$ oricare $(t_1, t_2) \in CP$, atunci STOP (T este completarea lui R).
- (3) Dacă $(t_1, t_2) \in CP$, $t_1 \not\downarrow t_2$, atunci dacă $T \cup \{fn(t_1) \rightarrow fn(t_2)\}$ e noetherian, atunci

$$T:=T\cup\{fn(t_1) o fn(t_2)\},$$
 altfel dacă $T\cup\{fn(t_2) o fn(t_1)\}$ e noetherian, atunci

$$T := T \cup \{fn(t_2) \rightarrow fn(t_1)\},$$
 altfel STOP (R nu are completare).

leşire. T completarea lui R (T este noetherian şi confluent)

sau faptul că R nu are completare.

Exemplu

$$S:=\{s\}, \Sigma:=\{*:ss o s\}, E:=\{orall \{x,y,a\}(x*y)*(y*a)\doteq y)\}$$
 $R_E:=\{(x*y)*(y*a)\to y\}, \ \mu(t):=$ lungimea termenului t Determinăm perechile critice:

$$\bullet l_1 := (x * y) * (y * a), r_1 := y, l_2 := (x' * y') * (y' * a'), r_2 := y'$$

• Subtermenii lui l_1 care nu sunt variabile sunt (x * y) şi y * a.

(1)
$$t := x * y, c = z * (y * a), \theta := \{x \leftarrow x' * y', y \rightarrow y' * a'\}$$

 $\theta(r_1) = y' * a', \theta(c)[z \leftarrow \theta(r_2)] = y' * ((y' * a') * a)$

(2)
$$t := y * a, c = (x * y) * z, \theta := \{y \to x' * y', a \to y' * a'\}$$

 $\theta(r_1) = x' * y', \theta(c)[z \leftarrow \theta(r_2)] = (x * (x' * y')) * y'$

$$CP = \{(y * a, y * ((y * a) * a)), (x * y, (x * (x * y)) * y)\}$$

$$R_E \cup \{y * ((y * a) * a) \rightarrow y * a, (x * (x * y)) * y \rightarrow x * y\}$$
 este complet