Customer_Experience_in_R

R Programming: Customer Experience in R

Example

[1] 7

```
# Importing the data.table
library("data.table")
library(stats)
library(psych)
library(ggplot2)
##
## Attaching package: 'ggplot2'
## The following objects are masked from 'package:psych':
##
##
      %+%, alpha
# Reading our dataset
#fread accepts http and https URLs directly as well as operating system commands
#such as sed and awk output.
hospitality_dt <- fread('http://bit.ly/HospitalityDataset')</pre>
View(hospitality_dt)
attach(hospitality_dt)
# What is the structure of the data?
# ---
head(hospitality_dt)
     user_id gender timestamp survey_completion score amount
                                                                    branch
                                      TIMEDOUT -
## 1: 621602 M 11:58.1
                                                       1320
                                                              Nairobi South
                F 45:20.0
## 2: 242833
                                      FINISHED
                                                   5 1460 Nairobi Central
                                                              Nairobi South
## 3: 621602
                M 00:36.0
                                      TIMEDOUT
                                                   - 1270
## 4: 621602
                 M 10:15.0
                                      TIMEDOUT
                                                       700
                                                              Nairobi North
## 5: 6345755
                 M 54:58.1
                                      TIMEDOUT
                                                        680
                                                              Nairobi North
## 6: 751525
                 M 35:52.7
                                      TIMEDOUT
                                                        460
                                                              Nairobi West
# How many variables and observations are there?
ncol(hospitality_dt)
```

```
nrow(hospitality_dt)
## [1] 296852
#learn more about the dataset
help(hospitality_dt)
## No documentation for 'hospitality_dt' in specified packages and libraries:
## you could try '??hospitality_dt'
??hospitality dt
## starting httpd help server ... done
str(hospitality dt)
## Classes 'data.table' and 'data.frame':
                                           296852 obs. of 7 variables:
                    : int 621602 242833 621602 621602 6345755 751525 6591998 401557 17887026 169745
## $ user_id
                             "M" "F" "M" "M" ...
## $ gender
                      : chr
                             "11:58.1" "45:20.0" "00:36.0" "10:15.0" ...
## $ timestamp
                      : chr
                             "TIMEDOUT" "FINISHED" "TIMEDOUT" "TIMEDOUT" ...
## $ survey_completion: chr
                             "-" "5" "-" "-" ...
## $ score
                      : chr
## $ amount
                      : int
                             1320 1460 1270 700 680 460 570 1820 260 690 ...
## $ branch
                      : chr
                             "Nairobi South" "Nairobi Central" "Nairobi South" "Nairobi North" ...
## - attr(*, ".internal.selfref")=<externalptr>
class(hospitality_dt)
## [1] "data.table" "data.frame"
typeof(hospitality_dt)
## [1] "list"
length(hospitality_dt)
## [1] 7
names(hospitality_dt) #display variable names
                           "gender"
## [1] "user_id"
                                              "timestamp"
## [4] "survey_completion" "score"
                                              "amount"
## [7] "branch"
\#attributes(hospitality\_dt) \#names(hospitality\_dt), class(hospitality\_dt), row.names(hospitality\_dt)
summary(hospitality_dt)
      user_id
                         gender
                                          timestamp
                                                            survey_completion
##
              61047
                      Length: 296852
##
                                         Length: 296852
                                                            Length: 296852
  1st Qu.: 374968
                      Class :character
                                         Class :character
                                                            Class : character
                                         Mode :character
                                                            Mode :character
## Median : 688580
                      Mode :character
## Mean : 2940497
## 3rd Qu.: 1257064
## Max. :18234387
##
                                         branch
      score
                          amount
## Length: 296852
                     Min. : 1
                                      Length: 296852
## Class:character 1st Qu.: 420
                                      Class : character
## Mode :character Median : 770
                                      Mode :character
                      Mean : 1079
##
```

```
3rd Qu.: 1360
##
                       Max.
                               :66250
#distribution of input variables
table(hospitality_dt$gender)
##
##
        F
               М
## 145009 151843
table(hospitality_dt$score)
##
                                     2
                                                                         7
##
               0
                      1
                             10
                                            3
                                                   4
                                                          5
                                                                  6
                                                                                8
## 260450
                    333 23713
            1161
                                   358
                                          343
                                                 368
                                                         869
                                                                688
                                                                      1495
                                                                              3487
##
        9
##
     3587
table(hospitality_dt$branch)
##
              #N/A Nairobi Central
                                       Nairobi East
##
                                                      Nairobi North
                                                                       Nairobi South
##
                              53831
                                              20208
                                                               58088
                                                                               46222
##
      Nairobi West
                         Satellite
             79606
##
                              38896
# What is the missing data?
sum(is.na(hospitality_dt))
## [1] 0
# NB: Let's deal with "-" in our scores variable
# Assumption is that those customers did not fill in the survey
hospitality_dt$score[hospitality_dt$score == "-"] <- NA
head(hospitality_dt)
      user_id gender timestamp survey_completion score amount
                                                                         branch
## 1: 621602
                       11:58.1
                                         TIMEDOUT
                                                  <NA>
                                                           1320
                                                                  Nairobi South
                   М
## 2: 242833
                   F
                       45:20.0
                                         FINISHED
                                                      5
                                                           1460 Nairobi Central
## 3: 621602
                   М
                       00:36.0
                                         TIMEDOUT
                                                           1270
                                                                  Nairobi South
                                                   <NA>
## 4: 621602
                       10:15.0
                                         TIMEDOUT
                                                   <NA>
                                                            700
                                                                  Nairobi North
                       54:58.1
## 5: 6345755
                   М
                                         TIMEDOUT <NA>
                                                            680
                                                                  Nairobi North
## 6: 751525
                       35:52.7
                                         TIMEDOUT <NA>
                                                            460
                                                                   Nairobi West
# Getting rid of missing data, check size and preview
# Size of original dataset was 296852
hospitality_dt1 <- na.omit(hospitality_dt)</pre>
nrow(hospitality_dt1)
## [1] 36402
head(hospitality_dt1)
##
       user_id gender timestamp survey_completion score amount
```

FINISHED

5

1460 Nairobi Central

1:

242833

F

45:20.0

```
## 2: 1697459
                       39:01.6
                                                          690
                                         TIMEDOUT
                                                                  Nairobi East
## 3: 17144551
                   F
                       55:19.5
                                         TIMEDOUT
                                                     0
                                                          1380 Nairobi Central
## 4: 17887216
                   F
                       00:38.1
                                        TIMEDOUT
                                                     9
                                                          990
                                                                Nairobi South
## 5:
       630299
                       03:49.9
                                                           840
                                                                 Nairobi West
                   F
                                         TIMEDOUT
                                                     9
## 6:
       607011
                       20:46.1
                                         TIMEDOUT
                                                     10
                                                           460
                                                                 Nairobi South
View(hospitality dt1)
attach(hospitality_dt1)
## The following objects are masked from hospitality_dt:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user id
str(hospitality_dt1)
## Classes 'data.table' and 'data.frame':
                                          36402 obs. of 7 variables:
                             242833 1697459 17144551 17887216 630299 607011 17249001 6345132 17237328
   $ user id
                      : int
                              "F" "M" "F" "F" ...
## $ gender
                       : chr
## $ timestamp
                      : chr
                              "45:20.0" "39:01.6" "55:19.5" "00:38.1" ...
                              "FINISHED" "TIMEDOUT" "TIMEDOUT" "TIMEDOUT" ...
## $ survey_completion: chr
                              "5" "9" "0" "9" ...
## $ score
                      : chr
## $ amount
                              1460 690 1380 990 840 460 1200 2230 1080 1110 ...
                       : int
## $ branch
                              "Nairobi Central" "Nairobi East" "Nairobi Central" "Nairobi South" ...
                      : chr
## - attr(*, ".internal.selfref")=<externalptr>
class(hospitality_dt1)
## [1] "data.table" "data.frame"
typeof(hospitality_dt1)
## [1] "list"
length(hospitality_dt1)
## [1] 7
names(hospitality_dt1) #display variable names
## [1] "user id"
                           "gender"
                                               "timestamp"
## [4] "survey_completion" "score"
                                               "amount"
## [7] "branch"
summary(hospitality_dt1)
                          gender
##
       user_id
                                          timestamp
                                                             survey_completion
                      Length: 36402
                                         Length: 36402
##
  \mathtt{Min.} :
             61047
                                                            Length: 36402
   1st Qu.: 473412
                      Class :character
                                          Class : character
                                                             Class :character
## Median : 941226
                      Mode :character
                                         Mode :character
                                                            Mode :character
  Mean : 4362453
  3rd Qu.: 2616159
##
##
   Max.
          :18234387
##
                           amount
      score
                                         branch
## Length:36402
                      Min. :
                                  1
                                      Length: 36402
## Class:character 1st Qu.: 430
                                      Class : character
                      Median: 800
## Mode :character
                                      Mode :character
##
                      Mean : 1123
##
                       3rd Qu.: 1420
```

##

##	1120	1128	1130	1135	1136	1140	1150	1155	1160	1170	1175	1180	1185
##	129	2	106	1	2	152	161	1	140	99	1	184	1
##	1190	1200	1204	1208	1210	1215	1220	1230	1240	1244	1250	1255	1256
##	108	176	1	1	116	1	126	97	96	1	95	1	1
##	1260	1270	1280	1285	1290	1295	1296	1300	1310	1320	1330	1340	1350
##	111	104	106	1	103	1	1	125	91	125	83	98	101
##	1360	1364	1370	1378	1380	1385	1390	1400	1405	1410	1420	1430	1435
##	85	1	77	1	92	1	93	97	1	82	83	67	1
##	1440	1450	1460	1470	1480	1485	1490	1493	1500	1510	1520	1530	1540
##	91	56	72	71	88	1	55	1	119	65	66	59	80
##	1550	1560	1565	1570	1575	1580	1584	1590	1594	1600	1608	1610	1620
##	65	83	1	64	1	49	1	53	1	79	1	52	58
##	1630	1640	1645	1650	1659	1660	1670	1680	1690	1700	1705	1706	1710
##	59	64	1	54	1	73	54	56	47	72	1	1	55
##	1712	1720	1730	1735	1740	1750	1751	1760	1770	1780	1790	1800	1810
##	1	59	59	1	52	61	1	65	48	60	48	63	60
##	1820	1826	1830	1836	1840	1850	1860	1870	1880	1890	1900	1910	1920
##	52	1	49	1	59	46	61	51	48	39	67	50	61
##	1930	1935	1940	1950	1960	1970	1980	1984	1990	2000	2010	2020	2030
##	31	1	52	53	54	33	68	1	31	132	43	47	45
##	2040	2050	2060	2064	2070	2080	2082	2090	2100	2110	2112	2120	2130
##	56	33	38	1	44	46	1	55	40	38	1	43	37
##	2140	2150	2160	2170	2180	2190	2200	2210	2220	2230	2240	2248	2250
##	48	39	45	55	62	48	57	41	38	43	46	1	35
##	2260	2270	2272	2280	2290	2300	2305	2310	2320	2330	2340	2346	2350
##	50	32	1	55	44	58	1	43	53	43	51	1	45
##	2360	2370	2380	2390	2400	2410	2420	2424	2430	2440	2450	2460	2470
##	51	39	45	26	47	41	38	1	45	50	36	54	50
##	2480	2490	2500	2510	2520	2530	2540	2550	2560	2570	2580	2590	2592
##	33	29	56	29	46	27	31	27	34	41	48	18	1
##	2600	2610	2620	2630	2632	2640	2649	2650	2660	2670	2680	2690	2700
##	34	42	32	27	1	45	1	24	39	29	38	23	31
##	2710	2720	2727	2730	2740	2750	2760	2770	2780	2790	2800	2810	2820
##	25	23	1	22	24	23	30	29	27	27	30	23	21
##	2824	2830	2840	2850	2860	2870	2880	2890	2900	2910	2920	2930	2940
##	1	20	26	18	20	14	30	18	22	21	17	20	21
##	2950	2960	2970	2971	2980	2990	3000	3010	3020	3030	3035	3040	3050
##		18		1	20		46				1		
##	3060		3080		3100			3130	3140				3180
##	12		11		6			13	14		10		10
##	3190		3210	3220	3230	3240	3250		3270	3280	3290		3310
##	12			16	9	12		10	9		13		10
##	3320	3330	3340	3350	3360	3370	3376	3380	3390	3400	3410	3420	3430
##	11	7	12	9	8	14	1		11	11	7		6
##	3440	3450	3460	3470	3480	3490	3500		3520	3530	3540	3550	3560
##	12	8		11	11			3		9		8	9
##	3570	3580	3590	3600	3610	3620	3630	3640	3650	3660	3670		3690
##	8	15		47	5	7	7	5		16		8	6
##	3700	3710	3720	3730	3740	3750	3760	3770	3780	3790	3800	3810	3820
##	27	6		7	8	7		6		5	8		3
##	3830	3840	3848	3850	3860	3870	3880		3900	3910	3920		3940
##	9		1			6	8				8		7
##	3950	3960		3980	3990		4000		4020	4030	4040		4060
##	2	8	8	6	8	1	22	5	4	4	5	3	8

```
table(hospitality_dt1$branch)
##
##
              #N/A Nairobi Central
                                      Nairobi East
                                                     Nairobi North
                                                                     Nairobi South
                                              2718
##
                 1
                              6405
                                                              6694
                                                                               5749
##
      Nairobi West
                         Satellite
##
              8791
# What is the overall proportion of repeat customers?
#duplicated() function uses logical values to determine duplicated values.
#duplicated(hospitality_dt1$user_id)
sum(duplicated(hospitality_dt1$user_id))
## [1] 6749
dim(hospitality_dt1[duplicated(hospitality_dt1$user_id),])[1] #gives you number of duplicates
table(duplicated(hospitality_dt1$user_id))
##
## FALSE TRUE
## 29653 6749
mean(duplicated(hospitality_dt1$user_id))
## [1] 0.1854019
sum(duplicated(hospitality_dt1$user_id)) / nrow(hospitality_dt1)
## [1] 0.1854019
# How many times do customers come back on average?
#unique() function uses numeric indicators to determine unique values.
library(plyr)
#unique(hospitality dt1$user id)
#count(unique(hospitality_dt1$user_id))
#table(unique(hospitality_dt1$user_id))
dim(hospitality_dt1[unique(hospitality_dt1$user_id),])[1] #gives you number of uniques
## [1] 29653
# How many customers are repeat customers per branch?
sum(duplicated(hospitality_dt1[,c('user_id','branch')]))
## [1] 4574
```

```
# What is the NPS?
# Importing our NPS library
library(NPS)
# Converting score column to numeric
hospitality_dt1$score <- as.numeric(as.character(hospitality_dt1$score))
# Computing our NPS
nps(hospitality_dt1$score)
## [1] 0.6367782
# Here are the proportions of respondents giving each Likelihood to
# recommend response
prop.table(table(hospitality_dt1$score))
##
##
                        1
                                    2
                                                3
## 0.031893852 0.009147849 0.009834624 0.009422559 0.010109335 0.023872315
## 0.018900060 0.041069172 0.095791440 0.098538542 0.651420252
# Plotting a histrogram of the scores
# Lets first import tidyverse
library(tidyverse)
## -- Attaching packages ------
## v tibble 2.1.3
                              0.8.3
                      v dplyr
## v tidyr
          1.0.0
                      v stringr 1.4.0
## v readr
          1.3.1
                      v forcats 0.4.0
## v purrr
           0.3.3
## -- Conflicts -----
## x ggplot2::%+%()
                       masks psych::%+%()
## x ggplot2::alpha()
                       masks psych::alpha()
## x dplyr::arrange()
                       masks plyr::arrange()
## x dplyr::between()
                       masks data.table::between()
## x purrr::compact()
                       masks plyr::compact()
## x dplyr::count()
                       masks plyr::count()
## x dplyr::failwith()
                       masks plyr::failwith()
## x dplyr::filter()
                       masks stats::filter()
## x dplyr::first()
                       masks data.table::first()
## x dplyr::id()
                       masks plyr::id()
## x dplyr::lag()
                       masks stats::lag()
## x dplyr::last()
                       masks data.table::last()
                       masks plyr::mutate()
## x dplyr::mutate()
## x dplyr::rename()
                       masks plyr::rename()
```

```
## x dplyr::summarise() masks plyr::summarise()
## x dplyr::summarize() masks plyr::summarize()
## x purrr::transpose() masks data.table::transpose()
hist(
   hospitality_dt1$score, breaks = -1:10,
   col = c(rep("red", 7), rep("yellow", 2), rep("green", 2))
)
```

Histogram of hospitality_dt1\$score


```
# Here's a barplot. It's very similar, though for categorical responses
# it's often slightly easier to interpret
#
barplot(
  prop.table(table(hospitality_dt1$score)),
  col = c(rep("red", 7), rep("yellow", 2), rep("green", 2))
)
```



```
# Is there a relationship between NPS segment and amount spent?
#
ggplot(hospitality_dt1, aes(x=score, y=amount)) + geom_point()
```


Exercise

```
#Build a data model with unique id only
hospitality_dt1[!duplicated(hospitality_dt1$user_id),] #gives you unique rows
##
           user_id gender timestamp survey_completion score amount
                                                                               branch
            242833
                             45:20.0
##
       1:
                                               FINISHED
                                                                 1460 Nairobi Central
          1697459
                             39:01.6
##
       2:
                                               TIMEDOUT
                                                             9
                                                                  690
                                                                         Nairobi East
                         М
##
       3: 17144551
                         F
                             55:19.5
                                               TIMEDOUT
                                                             0
                                                                 1380 Nairobi Central
                             00:38.1
                                                             9
                                                                  990
                                                                        Nairobi South
##
       4: 17887216
                         F
                                               TIMEDOUT
##
       5:
            630299
                             03:49.9
                                               TIMEDOUT
                                                             9
                                                                  840
                                                                         Nairobi West
##
## 29649:
            423355
                         М
                             00:28.5
                                               FINISHED
                                                           10
                                                                 1040
                                                                            Satellite
## 29650:
           1235116
                         М
                             04:42.4
                                               TIMEDOUT
                                                            8
                                                                  580
                                                                         Nairobi West
## 29651: 18205871
                         Μ
                             40:54.7
                                               FINISHED
                                                            3
                                                                 1600
                                                                        Nairobi South
## 29652:
            677307
                         F
                             25:32.0
                                               FINISHED
                                                                         Nairobi West
                                                           10
                                                                  570
## 29653:
             97324
                             54:03.2
                                               FINISHED
                                                           10
                                                                  530 Nairobi Central
#Data with unique id only
hospitality_dt2u <- hospitality_dt1[!duplicated(hospitality_dt1$user_id),]
View(hospitality_dt2u)
attach(hospitality_dt2u)
```

```
## The following objects are masked from hospitality_dt1:
##
       amount, branch, gender, score, survey_completion, timestamp,
##
##
       user_id
## The following objects are masked from hospitality_dt:
##
       amount, branch, gender, score, survey_completion, timestamp,
##
##
       user id
nrow(hospitality_dt2u)
## [1] 29653
mean(hospitality_dt2u$amount)
## [1] 1139.029
# Converting score column to numeric
hospitality_dt2u$score <- as.numeric(as.character(hospitality_dt2u$score))
# Computing our NPS
nps(hospitality_dt2u$score)
## [1] 0.6227026
# proportions of respondents giving each Likelihood to
prop.table(table(hospitality_dt2u$score))
##
##
## 0.033824571 0.009476276 0.010251914 0.009712339 0.010218190 0.024550636
## 0.019627019 0.042963612 0.099011904 0.096516373 0.643847166
#Histogram
hist(
  hospitality_dt2u$score, breaks = -1:10,
  col = c(rep("red", 7), rep("yellow", 2), rep("green", 2))
```

Histogram of hospitality_dt2u\$score


```
#Barplot
barplot(
  prop.table(table(hospitality_dt2u$score)),
  col = c(rep("red", 7), rep("yellow", 2), rep("green", 2))
)
```


ggplot(hospitality_dt2u, aes(x=score, y=amount)) + geom_point()

#For the unique userID data: separate the genders, find the average amount spent, find average NPS
hospitality_dt2uF <- hospitality_dt2u[hospitality_dt2u\$gender == "F"]
View(hospitality_dt2uF)
attach(hospitality_dt2uF)</pre>

```
## The following objects are masked from hospitality_dt2u:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt1:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
head(hospitality_dt2uF)
```

##		user_id	gender	timestamp	survey_completion	score	${\tt amount}$	branch
##	1:	242833	F	45:20.0	FINISHED	5	1460	Nairobi Central
##	2:	17144551	F	55:19.5	TIMEDOUT	0	1380	Nairobi Central
##	3:	17887216	F	00:38.1	TIMEDOUT	9	990	Nairobi South
##	4:	630299	F	03:49.9	TIMEDOUT	9	840	Nairobi West
##	5:	6345132	F	42:13.1	TIMEDOUT	10	2230	Satellite

```
## 6: 17237328
                    F
                        59:23.9
                                          TIMEDOUT
                                                           1080
                                                                   Nairobi West
nrow(hospitality_dt2uF)
## [1] 14966
mean(hospitality_dt2uF$amount)
## [1] 1149.317
# Converting score column to numeric
hospitality dt2uF$score <- as.numeric(as.character(hospitality dt2uF$score))
# Computing our NPS
nps(hospitality_dt2uF$score)
## [1] 0.6015635
prop.table(table(hospitality dt2uF$score))
##
                                              3
##
                                  2
                                                                                6
## 0.03821997 0.01109181 0.01209408 0.01082454 0.01175999 0.02712816 0.02011225
            7
                       8
                                  9
                                             10
## 0.04102633 0.09494855 0.09615128 0.63664306
hospitality_dt2uM <- hospitality_dt2u[hospitality_dt2u$gender == "M"]
View(hospitality_dt2uM)
attach(hospitality_dt2uM)
## The following objects are masked from hospitality_dt2uF:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt2u:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user id
## The following objects are masked from hospitality_dt1:
##
##
       amount, branch, gender, score, survey completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
head(hospitality_dt2uM)
       user_id gender timestamp survey_completion score amount
##
                                                                       branch
## 1: 1697459
                    М
                        39:01.6
                                          TIMEDOUT
                                                            690 Nairobi East
                        20:46.1
## 2:
       607011
                    М
                                          TIMEDOUT
                                                      10
                                                            460 Nairobi South
## 3: 17249001
                    М
                        35:08.6
                                         TIMEDOUT
                                                       7
                                                           1200 Nairobi South
## 4:
       703633
                    M
                        07:30.7
                                         TIMEDOUT
                                                      10
                                                            360
                                                                    Satellite
## 5:
        668285
                    М
                        24:28.9
                                         TIMEDOUT
                                                       7
                                                            590 Nairobi North
## 6: 17355338
                                         TIMEDOUT
                                                            420 Nairobi South
                    М
                        49:13.1
                                                      10
```

```
nrow(hospitality_dt2uM)
## [1] 14687
mean(hospitality_dt2uM$amount)
## [1] 1128.545
# Converting score column to numeric
hospitality_dt2uM$score <- as.numeric(as.character(hospitality_dt2uM$score))
# Computing our NPS
nps(hospitality_dt2uM$score)
## [1] 0.6442432
prop.table(table(hospitality_dt2uM$score))
##
##
             0
                                     2
                                                 3
                         1
## 0.029345680 0.007830054 0.008374753 0.008579015 0.008647103 0.021924151
                                     8
## 0.019132566 0.044937700 0.103152448 0.096888405 0.651188126
#Add a column with the word 'repeat' for repeated user ID and 'non-repeat' for unique user ID
#Data with repeated id only
hospitality_dt1[duplicated(hospitality_dt1$user_id),] #qives you duplicate rows
##
          user_id gender timestamp survey_completion score amount
##
      1: 17430789
                       F
                           28:02.5
                                            FINISHED
                                                         9
                                                               570 Nairobi Central
                       F
##
                           17:03.2
      2:
           328437
                                            FINISHED
                                                         10
                                                              1600
                                                                     Nairobi South
##
           668285
                           36:33.7
                                            TIMEDOUT
                                                         9
                                                               170
                                                                     Nairobi South
      3:
##
           206998
                       F
                           32:55.0
                                            FINISHED
                                                               950
                                                                     Nairobi North
      4:
                                                        10
      5:
           323566
                           08:43.0
                                            TIMEDOUT
                                                               500 Nairobi Central
##
## 6745:
           444277
                       F
                           01:03.8
                                            FINISHED
                                                        10
                                                               200
                                                                     Nairobi North
## 6746: 17158635
                           30:29.0
                                                               680
                                                                      Nairobi West
                       M
                                            FINISHED
                                                        10
## 6747: 2246544
                       F
                           37:53.3
                                            FINISHED
                                                         10
                                                               580
                                                                      Nairobi East
## 6748: 1147687
                       М
                           58:04.0
                                            FINISHED
                                                         9
                                                               300
                                                                     Nairobi South
## 6749:
          314116
                           58:53.3
                                            FINISHED
                                                               200
                                                                     Nairobi North
                       М
                                                          9
hospitality_dt2r <- hospitality_dt1[duplicated(hospitality_dt1$user_id),]
View(hospitality dt2r)
attach(hospitality_dt2r)
## The following objects are masked from hospitality_dt2uM:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt2uF:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user id
```

```
## The following objects are masked from hospitality_dt2u:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt1:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user id
## The following objects are masked from hospitality_dt:
##
       amount, branch, gender, score, survey_completion, timestamp,
##
##
       user_id
nrow(hospitality_dt2r)
## [1] 6749
#Whatever is on the left of the <- sign "gets" whatever is on the right
hospitality_dt2r$repeat_customer<-"repeat"
hospitality_dt2u$repeat_customer<-"non-repeat"
#To join two data frames (datasets) vertically
hospitality_dt1new <- rbind(hospitality_dt2r, hospitality_dt2u)
View(hospitality dt1new)
attach(hospitality_dt1new)
## The following objects are masked from hospitality_dt2r:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt2uM:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt2uF:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality dt2u:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user id
## The following objects are masked from hospitality_dt1:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
## The following objects are masked from hospitality_dt:
##
##
       amount, branch, gender, score, survey_completion, timestamp,
##
       user_id
```

```
head(hospitality_dt1new)
      user_id gender timestamp survey_completion score amount
##
                                                                       branch
## 1: 17430789
                   F
                       28:02.5
                                        FINISHED
                                                          570 Nairobi Central
                       17:03.2
## 2:
       328437
                   F
                                        FINISHED
                                                    10
                                                         1600
                                                                Nairobi South
                   M
## 3:
       668285
                       36:33.7
                                        TIMEDOUT
                                                    9
                                                          170
                                                                Nairobi South
## 4:
       206998
                   F
                       32:55.0
                                        FINISHED
                                                    10
                                                          950
                                                                Nairobi North
                                                          500 Nairobi Central
## 5:
       323566
                       08:43.0
                                        TIMEDOUT
                                                    9
                   M
## 6: 1317686
                   М
                       13:35.8
                                        TIMEDOUT
                                                    10
                                                         1420
                                                                Nairobi South
##
     repeat customer
## 1:
              repeat
## 2:
              repeat
## 3:
              repeat
## 4:
              repeat
## 5:
              repeat
## 6:
              repeat
nrow(hospitality_dt1new)
## [1] 36402
str(hospitality_dt1new)
## Classes 'data.table' and 'data.frame':
                                           36402 obs. of 8 variables:
## $ user_id
                             17430789 328437 668285 206998 323566 1317686 317437 624684 336668 390899
                      : int
                             "F" "F" "M" "F" ...
## $ gender
                      : chr
                             "28:02.5" "17:03.2" "36:33.7" "32:55.0" ...
## $ timestamp
                      : chr
                             "FINISHED" "FINISHED" "TIMEDOUT" "FINISHED" ...
## $ survey_completion: chr
                             9 10 9 10 9 10 10 5 9 10 ...
## $ score
                      : num
## $ amount
                             570 1600 170 950 500 1420 190 780 1100 990 ...
                      : int
                             "Nairobi Central" "Nairobi South" "Nairobi South" "Nairobi North" ...
## $ branch
                      : chr
## $ repeat_customer : chr
                             "repeat" "repeat" "repeat" ...
## - attr(*, ".internal.selfref")=<externalptr>
class(hospitality_dt1new)
## [1] "data.table" "data.frame"
typeof(hospitality_dt1new)
## [1] "list"
length(hospitality_dt1new)
## [1] 8
names(hospitality_dt1new) #display variable names
## [1] "user_id"
                          "gender"
                                              "timestamp"
## [4] "survey completion" "score"
                                              "amount"
## [7] "branch"
                          "repeat_customer"
summary(hospitality_dt1new)
##
      user id
                                          timestamp
                                                            survey_completion
                         gender
## Min.
              61047
                      Length: 36402
                                         Length: 36402
                                                            Length: 36402
## 1st Qu.: 473412
                     Class :character
                                         Class :character
                                                            Class : character
## Median: 941226
                      Mode :character
                                         Mode :character
                                                            Mode :character
```

Mean : 4362453

```
3rd Qu.: 2616159
##
##
    Max.
             :18234387
##
         score
                             amount
                                               branch
                                                                  repeat customer
            : 0.000
                                :
                                           Length: 36402
##
    Min.
                        Min.
                                      1
                                                                 Length: 36402
##
    1st Qu.: 8.000
                        1st Qu.: 430
                                           Class : character
                                                                  Class : character
##
    Median :10.000
                        Median :
                                    800
                                           Mode : character
                                                                 Mode :character
    Mean
           : 8.785
                        Mean
                                : 1123
    3rd Qu.:10.000
                        3rd Qu.: 1420
##
            :10.000
##
    Max.
                        Max.
                                 :33520
#distribution of input variables
table(hospitality_dt1new$gender)
##
##
        F
               М
## 18138 18264
table(hospitality_dt1new$score)
##
##
        0
               1
                      2
                             3
                                    4
                                           5
                                                  6
                                                         7
                                                                8
                                                                        9
                                                                             10
    1161
##
             333
                    358
                           343
                                  368
                                         869
                                                688
                                                      1495
                                                             3487
                                                                    3587 23713
table(hospitality_dt1new$amount)
##
                                          30
                                                                      70
                                                                             80
                                                                                     85
                                                                                           90
##
        1
               2
                      5
                            10
                                   20
                                                 40
                                                        50
                                                               60
                                           5
                                                                7
                                                                                           10
##
       10
               1
                      1
                             6
                                    4
                                                 11
                                                         8
                                                                       6
                                                                              6
                                                                                     1
##
       95
              99
                    100
                           110
                                  120
                                         128
                                                130
                                                       136
                                                              140
                                                                     150
                                                                            152
                                                                                   160
                                                                                          162
##
                                   10
                                                  7
                                                                      31
                                                                                   116
                                                                                            3
        1
               1
                     63
                            12
                                           1
                                                         1
                                                               12
                                                                              3
##
     168
             170
                    175
                           176
                                  180
                                         184
                                                185
                                                       190
                                                              192
                                                                     200
                                                                            202
                                                                                   208
                                                                                          210
##
        1
             607
                      1
                            29
                                  110
                                           3
                                                  6
                                                        73
                                                                7
                                                                     702
                                                                              1
                                                                                     7
                                                                                           63
##
     211
             215
                    216
                           220
                                  230
                                         234
                                                240
                                                       250
                                                              256
                                                                     258
                                                                            260
                                                                                   264
                                                                                          265
##
        2
               1
                      3
                          1310
                                  353
                                           2
                                                155
                                                       271
                                                                2
                                                                       1
                                                                            284
                                                                                      1
                                                                                             2
##
     270
                           293
                                  296
                                         300
             280
                    290
                                                304
                                                       305
                                                              308
                                                                     310
                                                                            315
                                                                                   320
                                                                                          330
##
     555
             71
                    294
                             1
                                    9
                                         352
                                                  2
                                                         2
                                                                1
                                                                     208
                                                                                   123
                                                                                          144
                                                                              1
##
     336
             337
                    340
                                  349
                                         350
                                                       356
                                                                     367
                                                                                          375
                           347
                                                352
                                                              360
                                                                            368
                                                                                   370
##
        9
               2
                    218
                                         173
                                                 13
                                                              142
                                                                              3
                                                                                   577
                             1
                                    1
                                                         1
                                                                       1
                                                                                            1
     377
                                         390
##
             380
                    384
                           385
                                  388
                                                391
                                                       392
                                                              393
                                                                     395
                                                                            398
                                                                                   400
                                                                                          405
##
             138
                      7
                             6
                                         317
                                                                       3
                                                                                   631
                                                                                             2
        1
                                                  1
                                                         1
                                                                1
                                                                              1
                    410
                           416
                                         422
##
     406
             408
                                  420
                                                424
                                                       425
                                                              430
                                                                     432
                                                                                   448
                                                                            440
                                                                                          450
##
                                  488
        1
               1
                     89
                             1
                                           1
                                                  2
                                                         1
                                                              180
                                                                       1
                                                                            773
                                                                                     1
                                                                                          231
     460
                           472
                                  480
##
             465
                    470
                                         490
                                                493
                                                       495
                                                              498
                                                                     500
                                                                            510
                                                                                   512
                                                                                          515
##
     274
               1
                    469
                             1
                                  336
                                         242
                                                  1
                                                         1
                                                                1
                                                                     408
                                                                            137
                                                                                      1
                                                                                             1
##
     520
             525
                    527
                           528
                                  530
                                         534
                                                540
                                                       544
                                                                     552
                                                                            555
                                                                                          568
                                                              550
                                                                                   560
                                  250
##
     274
               1
                      1
                             1
                                           1
                                                270
                                                         1
                                                              194
                                                                       2
                                                                              4
                                                                                   196
                                                                                            2
                                  592
##
     570
            576
                    580
                           590
                                         600
                                                604
                                                       605
                                                              608
                                                                     610
                                                                                   616
                                                                                          620
                                                                            615
##
     194
               2
                    199
                           184
                                    1
                                         335
                                                  1
                                                         4
                                                                1
                                                                     140
                                                                                      1
                                                                                          213
                                                                              1
##
     624
             625
                    630
                           640
                                  650
                                         656
                                                660
                                                       663
                                                              664
                                                                     666
                                                                            670
                                                                                   672
                                                                                          680
##
        3
               2
                    168
                           282
                                  146
                                           1
                                                263
                                                         2
                                                                1
                                                                       1
                                                                            169
                                                                                      3
                                                                                          174
##
     688
             690
                    696
                           700
                                  702
                                         704
                                                707
                                                       710
                                                              720
                                                                     725
                                                                            728
                                                                                   730
                                                                                          735
##
                           284
                                           2
                                                                                   207
                                                                                            2
        3
             316
                      3
                                                  1
                                                       166
                                                              169
                                                                       1
                                    1
                                                                              1
##
     736
            740
                    748
                           750
                                  752
                                         755
                                                760
                                                       765
                                                              768
                                                                     770
                                                                            780
                                                                                   790
                                                                                          792
##
            337
                           226
                                           2
                                                                                            2
        2
                      1
                                    2
                                                145
                                                         1
                                                                1
                                                                     159
                                                                            247
                                                                                   118
##
     800
             808
                    809
                           810
                                  816
                                         820
                                                828
                                                       830
                                                              832
                                                                     840
                                                                            847
                                                                                   850
                                                                                          853
```

##

##	860	864	870	872	880	886	888	890	900	904	905	910	920
##	210	2	127	4	298	1	1	248	194	1	1	169	267
##	928	930	932	940	945	948	950	952	960	965	970	975	980
##	2	163	1	223	1	1	192	1	185	1	133	1	169
##	985	987	990	996	1000	1006	1008	1010	1020	1021	1030	1035	1040
##	1	1	171	1	350	1	2	121	122	1	116	1	173
##	1047	1050	1053	1060	1065	1070	1080	1090	1097	1100	1104	1110	1112
##	1	147	2	148	1	114	163	185	1	155	1	134	1
##	1120	1128	1130	1135	1136	1140	1150	1155	1160	1170	1175	1180	1185
##	129	2	106	1	2	152	161	1	140	99	1	184	1
##	1190	1200	1204	1208	1210	1215	1220	1230	1240	1244	1250	1255	1256
##	108	176	1	1	116	1	126	97	96	1	95	1	1
##	1260	1270	1280	1285	1290	1295	1296	1300	1310	1320	1330	1340	1350
##	111 1360	104 1364	106 1370	1 1378	103	1 1385	1 1390	125 1400	91 1405	125	83 1420	98 1430	101 1435
## ##	85	1304	77	1370	1380 92	1305	93	97	1405	1410	83	67	1435
##	1440	1450	1460	1470	1480	1485	93 1490	1493	1500	82 1510	1520	1530	1540
##	91	56	72	71	88	1400	55	1493	119	65	66	59	80
##	1550	1560	1565	1570	1575	1580	1584	1590	1594	1600	1608	1610	1620
##	65	83	1	64	1	49	1	53	1	79	1	52	58
##	1630	1640	1645	1650	1659	1660	1670	1680	1690	1700	1705	1706	1710
##	59	64	1	54	1	73	54	56	47	72	1	1	55
##	1712	1720	1730	1735	1740	1750	1751	1760	1770	1780	1790	1800	1810
##	1	59	59	1	52	61	1	65	48	60	48	63	60
##	1820	1826	1830	1836	1840	1850	1860	1870	1880	1890	1900	1910	1920
##	52	1	49	1	59	46	61	51	48	39	67	50	61
##	1930	1935	1940	1950	1960	1970	1980	1984	1990	2000	2010	2020	2030
##	31	1	52	53	54	33	68	1	31	132	43	47	45
##	2040	2050	2060	2064	2070	2080	2082	2090	2100	2110	2112	2120	2130
##	56	33	38	1	44	46	1	55	40	38	1	43	37
##	2140	2150	2160	2170	2180	2190	2200	2210	2220	2230	2240	2248	2250
##	48	39	45	55	62	48	57	41	38	43	46	1	35
##	2260	2270	2272	2280	2290	2300	2305	2310	2320	2330	2340	2346	2350
##	50	32	1	55	44	58	1	43	53	43	51	1	45
##	2360	2370	2380	2390	2400	2410	2420	2424	2430	2440	2450	2460	2470
##	51	39	45	26	47	41	38	1	45	50	36	54	50
##	2480	2490	2500	2510	2520	2530	2540	2550	2560	2570	2580	2590	2592
##	33	29	56	29	46	27	31	27	34	41	48		1
##	2600		2620	2630	2632			2650	2660	2670	2680		2700
## ##	34 2710	42 2720	32 2727	27 2730	1 2740	45 2750	1 2760	24 2770	39 2780	29 2790	2800	23 2810	31 2820
##	2710	2720	1	2730	24	2730	30	2170	2780	2790	30	23	2020
##	2824	2830	2840	2850	2860	2870	2880	2890	2900	2910	2920	2930	2940
##	1	20	26	18	20	14		18	22	21		20	21
##	2950	2960	2970	2971	2980	2990	3000	3010	3020	3030	3035	3040	3050
##	16	18	15	1	20	23		10	14	17	1	15	14
##	3060	3070	3080	3090	3100	3110	3120	3130	3140	3150	3160	3170	3180
##	12	18	11	14	6	13	16	13	14	22	10	11	10
##	3190	3200	3210	3220	3230	3240	3250	3260	3270	3280	3290	3300	3310
##	12	27	15	16	9	12	15	10	9	14	13	16	10
##	3320	3330	3340	3350	3360	3370	3376	3380	3390	3400	3410	3420	3430
##	11	7	12	9	8	14	1	13	11	11	7	8	6
##	3440	3450	3460	3470	3480	3490	3500	3510	3520	3530	3540	3550	3560
##	12	8	6	11	11	14	15	3	9	9	12	8	9

```
##
                   1
                         1
                                      1
                                            1
                                                   1
                                                         2
                                                               1
                                                                            1
       1
             1
                                1
                                                                     1
## 11150 11360 12000 12100 12330 12540 12580 12840 13230 13770 14410 15080 15440
                          1
                                      1
                                            1
                                                   1
                                                               1
                                                                     1
                                1
                                                         1
## 16575 16820 17160 17380 17455 18960 20139 20970 21220 21640 22130 22900 23820
##
             1
                   1
                          1
                                1
                                      1
                                            1
                                                   1
                                                         1
                                                               1
                                                                     1
## 25000 30000 30670 33520
##
       1
             1
                   1
table(hospitality_dt1new$branch)
##
##
              #N/A Nairobi Central
                                       Nairobi East
                                                       Nairobi North
                                                                        Nairobi South
##
                               6405
                                                2718
                                                                6694
                                                                                 5749
                 1
      Nairobi West
##
                          Satellite
##
              8791
                               6044
table(hospitality_dt1new$repeat_customer)
## non-repeat
                  repeat
##
        29653
                    6749
Model (Gender-factor, score - numeric, amount - numeric)
# Can we build a logistic regression model to predict
# whether a customer will be a repeat customer or not?
hospitality_dt1new$repeat_customer <- factor(hospitality_dt1new$repeat_customer,
                                              levels = c("repeat", "non-repeat"),
                                       labels = c(0,1))
# Converting repeat customer column to numeric
hospitality_dt1new$repeat_customer <- as.numeric(as.character(hospitality_dt1new$repeat_customer))
head(hospitality_dt1new)
       user_id gender timestamp survey_completion score amount
                                                                           branch
                    F
                         28:02.5
                                                             570 Nairobi Central
## 1: 17430789
                                          FINISHED
                                                        9
        328437
## 2:
                    F
                         17:03.2
                                                            1600
                                          FINISHED
                                                       10
                                                                   Nairobi South
## 3:
        668285
                    М
                         36:33.7
                                                       9
                                                             170
                                                                   Nairobi South
                                          TIMEDOUT
## 4:
        206998
                    F
                         32:55.0
                                          FINISHED
                                                       10
                                                             950
                                                                   Nairobi North
## 5:
        323566
                    М
                         08:43.0
                                          TIMEDOUT
                                                        9
                                                             500 Nairobi Central
## 6: 1317686
                    Μ
                         13:35.8
                                          TIMEDOUT
                                                       10
                                                            1420
                                                                   Nairobi South
      repeat_customer
## 1:
                    0
## 2:
                    0
## 3:
                    0
## 4:
                    0
## 5:
                    0
```

9440 9580 9600 9655 9720 9780 9800 9930 10000 10130 10150 10270 10410

```
## 6:
                    0
hospnew.glm = glm(formula=repeat_customer ~ amount + score + gender , data = hospitality_dt1new,
                  family=binomial)
hospnew.glm
##
## Call: glm(formula = repeat_customer ~ amount + score + gender, family = binomial,
      data = hospitality_dt1new)
##
##
## Coefficients:
## (Intercept)
                     amount
                                   score
                                              genderM
##
     1.8627815
                  0.0000707
                              -0.0443532
                                           -0.1300867
##
## Degrees of Freedom: 36401 Total (i.e. Null); 36398 Residual
## Null Deviance:
                        34910
## Residual Deviance: 34800
                                AIC: 34800
summary(hospnew.glm)
##
## Call:
  glm(formula = repeat_customer ~ amount + score + gender, family = binomial,
##
       data = hospitality_dt1new)
##
## Deviance Residuals:
##
      Min
                 1Q
                     Median
                                   3Q
                                           Max
## -2.3541
            0.5695
                     0.6366
                               0.6600
                                        0.6976
##
## Coefficients:
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.863e+00 6.072e-02 30.679 < 2e-16 ***
## amount
               7.070e-05 1.339e-05
                                      5.281 1.29e-07 ***
              -4.435e-02 6.224e-03 -7.126 1.03e-12 ***
## score
              -1.301e-01 2.706e-02 -4.807 1.53e-06 ***
## genderM
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
      Null deviance: 34909 on 36401 degrees of freedom
## Residual deviance: 34795 on 36398 degrees of freedom
## AIC: 34803
##
## Number of Fisher Scoring iterations: 4
#amount spent, score and male gender are significant.
#The logistic regression coefficients give the change in the log odds of the outcome for
#a one unit increase in the predictor variable.
#For a one unit increase in amount spent, the log odds of being a repeat customer increases
#by 0.0000707
#For every one unit change in score, the log odds of repeat (versus non-repeat) decreases
```

#by -0.0443532

```
#Visiting Stony Hill coffee house being male versus being female changes the log odds of
#being a repeat customer by -0.1300867.
#confidence intervals for the coefficient estimates
## CIs using profiled log-likelihood
confint(hospnew.glm)
## Waiting for profiling to be done...
##
                       2.5 %
                                    97.5 %
## (Intercept) 1.744776e+00 1.982818e+00
               4.481482e-05 9.727911e-05
## amount
               -5.665899e-02 -3.225732e-02
## score
## genderM
              -1.831450e-01 -7.706445e-02
## CIs using standard errors
confint.default(hospnew.glm)
##
                       2.5 %
                                    97.5 %
## (Intercept) 1.743777e+00 1.981786e+00
## amount
               4.446038e-05 9.694222e-05
## score
              -5.655231e-02 -3.215412e-02
              -1.831252e-01 -7.704813e-02
## genderM
#exponentiate the coefficients and interpret them as odds-ratios
## odds ratios only
exp(coef(hospnew.glm))
## (Intercept)
                    amount
                                 score
                                           genderM
    6.4416292
               1.0000707
                             0.9566160
                                         0.8780193
#To put it all in one table, we use cbind to bind the coefficients and confidence intervals
#column-wise.
## odds ratios and 95% CI
exp(cbind(OR = coef(hospnew.glm), confint(hospnew.glm)))
## Waiting for profiling to be done...
                             2.5 %
                      OR
                                      97.5 %
## (Intercept) 6.4416292 5.7246174 7.2631852
              1.0000707 1.0000448 1.0000973
## amount
               0.9566160 0.9449162 0.9682574
## score
## genderM
              0.8780193 0.8326474 0.9258302
#For every one unit increase in amount spent, the odds of being a repeat customer
#(versus non-repeat) increases by a factor of 1.0000707
#We may also wish to see measures of how well our model fits. This can be particularly
#useful when comparing competing models.
#The output produced by summary (hospnew.qlm) included indices of fit,
#including the null and deviance residuals and the AIC.
```

```
#whether the model with predictors fits significantly better than a model with just an
#intercept (i.e., a null model).
#The test statistic is the difference between the residual deviance for the model
#with predictors and the null model. The test statistic is distributed chi-squared
#with degrees of freedom equal to the differences in degrees of freedom between the
#current and the null model (i.e., the number of predictor variables in the model).
#To find the difference in deviance for the two models (i.e., the test statistic),
#we use the command:
with(hospnew.glm, null.deviance - deviance)
## [1] 113.5097
#The degrees of freedom for the difference between the two models is equal to the number of
#predictor variables in the model, and can be obtained using:
with(hospnew.glm, df.null - df.residual)
## [1] 3
#the p-value can be obtained using:
with(hospnew.glm, pchisq(null.deviance - deviance, df.null - df.residual, lower.tail = FALSE))
## [1] 1.927131e-24
#To see the model's log likelihood, we type:
logLik(hospnew.glm)
## 'log Lik.' -17397.51 (df=4)
\#The\ chi\ -square\ of\ 113.5097\ with\ 3\ degrees\ of\ freedom\ and\ an\ associated\ p\ -value\ of\ less
#than 0.001 (1.927131e-24) tells us that our model as a whole fits significantly better
#than an empty model. This is sometimes called a likelihood ratio test.
#(the deviance residual is -2*log likelihood)
#-2*-17397.51=34795.02
Model (Gender-factor, score - factor, amount - numeric)
#convert score to a factor to indicate that score should be treated as a categorical variable.
hospitality_dt1new$score <- factor(hospitality_dt1new$score)</pre>
hospnew1.glm = glm(formula=repeat_customer ~ amount + score + gender , data = hospitality_dt1new,
                  family=binomial)
hospnew1.glm
```

#One measure of model fit is the significance of the overall model. This test asks

##

```
## Call: glm(formula = repeat_customer ~ amount + score + gender, family = binomial,
##
       data = hospitality_dt1new)
##
## Coefficients:
## (Intercept)
                    amount
                                 score1
                                              score2
                                                           score3
                                                                         score4
    1.826e+00
                 6.983e-05
                             -1.601e-01
##
                                          -1.284e-01
                                                       -1.957e-01
                                                                    -3.129e-01
##
       score5
                    score6
                                 score7
                                              score8
                                                           score9
                                                                        score10
##
   -2.027e-01
                -1.365e-01
                             -8.466e-02
                                          -1.646e-01
                                                       -4.629e-01
                                                                    -4.126e-01
##
       genderM
##
   -1.327e-01
##
## Degrees of Freedom: 36401 Total (i.e. Null); 36389 Residual
## Null Deviance:
                       34910
## Residual Deviance: 34770
                               AIC: 34790
summary(hospnew1.glm)
##
## Call:
## glm(formula = repeat_customer ~ amount + score + gender, family = binomial,
       data = hospitality_dt1new)
##
## Deviance Residuals:
##
      Min
                1Q
                    Median
                                  3Q
                                          Max
## -2.3335
           0.5621
                     0.6367
                              0.6665
                                        0.7152
##
## Coefficients:
##
                Estimate Std. Error z value Pr(>|z|)
## (Intercept) 1.826e+00 8.777e-02 20.803 < 2e-16 ***
## amount
               6.983e-05 1.339e-05
                                      5.217 1.82e-07 ***
## score1
              -1.601e-01 1.736e-01 -0.922
                                              0.3567
## score2
              -1.284e-01
                          1.708e-01 -0.752
                                              0.4521
                                              0.2506
## score3
              -1.957e-01 1.704e-01 -1.149
## score4
              -3.129e-01
                          1.614e-01 -1.939
                                              0.0525 .
## score5
              -2.027e-01 1.257e-01 -1.612
                                             0.1070
              -1.365e-01 1.360e-01 -1.004
## score6
                                              0.3155
              -8.466e-02 1.125e-01 -0.752
                                              0.4518
## score7
## score8
              -1.646e-01 9.747e-02 -1.689
                                              0.0913 .
              -4.629e-01 9.524e-02 -4.860 1.17e-06 ***
## score9
## score10
              -4.126e-01 8.723e-02 -4.729 2.25e-06 ***
              -1.327e-01 2.708e-02 -4.900 9.61e-07 ***
## genderM
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
##
       Null deviance: 34909
                            on 36401 degrees of freedom
## Residual deviance: 34767
                            on 36389 degrees of freedom
## AIC: 34793
##
## Number of Fisher Scoring iterations: 4
#We can test for an overall effect of score using the wald.test function of the aod library.
#The order in which the coefficients are given in the table of coefficients is the same
```

```
#as the order of the terms in the model.
#This is important because the wald.test function refers to the coefficients by their order
#in the model. We use the wald.test function. b supplies the coefficients, while Sigma supplies
#the variance covariance matrix of the error terms, finally Terms tells R which terms in the
#model are to be tested, in this case, terms 3 to 12.
library(aod)
wald.test(b = coef(hospnew1.glm), Sigma = vcov(hospnew1.glm), Terms = 3:12)
## Wald test:
## -----
##
## Chi-squared test:
## X2 = 78.9, df = 10, P(> X2) = 8.4e-13
#The chi-squared test statistic of 78.9, with 10 degrees of freedom is associated with
#a p-value of 8.4e-13 indicating that the overall effect of score is statistically significant.
#We can also test additional hypotheses about the differences in the coefficients for the
#different levels of score.
#Below we test that the coefficient for score=4 is equal to the coefficient for score=5.
#The first line of code below creates a vector l that defines the test we want to perform.
#In this case, we want to test the difference (subtraction) of the terms for score=4 and
#score=5 (i.e., the 6th and 7th terms in the model). To contrast these two terms, we multiply
#one of them by 1, and the other by -1. The other terms in the model are not involved in the
#test, so they are multiplied by 0. The second line of code below uses L=l to tell R that we
#wish to base the test on the vector l (rather than using the Terms option as we did above).
1 \leftarrow cbind(0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0)
wald.test(b = coef(hospnew1.glm), Sigma = vcov(hospnew1.glm), L = 1)
## Wald test:
## -----
##
## Chi-squared test:
## X2 = 0.45, df = 1, P(> X2) = 0.5
#The chi-squared test statistic of 0.45 with 1 degree of freedom is associated with a p-value
#of 0.5, indicating that the difference between the coefficient for score=4 and the coefficient
#for score=5 is statistically not significant.
#Below we test that the coefficient for score=8 is equal to the coefficient for score=9.
m \leftarrow cbind(0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0)
wald.test(b = coef(hospnew1.glm), Sigma = vcov(hospnew1.glm), L = m)
## Wald test:
## -----
##
## Chi-squared test:
## X2 = 22.9, df = 1, P(> X2) = 1.7e-06
```

#The chi-squared test statistic of 22.9 with 1 degree of freedom is associated with a p-value #of 1.7e-06, indicating that the difference between the coefficient for score=8 and the #coefficient for score=9 is statistically significant.

#how well our model fits. This can be particularly #useful when comparing competing models.

#To find the difference in deviance for the two models (i.e., the test statistic), #we use the command:

with(hospnew1.glm, null.deviance - deviance)

[1] 141.8541

#The degrees of freedom for the difference between the two models is equal to the number of #predictor variables in the model, and can be obtained using:

with(hospnew1.glm, df.null - df.residual)

[1] 12

#the p-value can be obtained using:

with(hospnew1.glm, pchisq(null.deviance - deviance, df.null - df.residual, lower.tail = FALSE))

[1] 2.52885e-24

#To see the model's log likelihood, we type:

logLik(hospnew1.glm)

'log Lik.' -17383.34 (df=13)

#The chi-square of 141.8541 with 12 degrees of freedom and an associated p-value of #less than 0.001 (2.52885e-24) tells us that our model as a whole fits significantly better #than an empty model. This is sometimes called a likelihood ratio test.

#(the deviance residual is -2*log likelihood) #-2*-17383.34=34766.68

#amount spent, Two terms of score (9 and 10) and male gender are significant.

 $\#The\ logistic\ regression\ coefficients\ give\ the\ change\ in\ the\ log\ odds\ of\ the\ outcome\ for\ \#a\ one\ unit\ increase\ in\ the\ predictor\ variable.$

#For a one unit increase in amount spent, the log odds of being a repeat customer increases #by 0.00006983

#Ranking the Visit to Stony Hill coffee house with a score of 1 verses score of 0, changes #the log odds of being a repeat customer by -0.1601

 $\#Visiting\ Stony\ Hill\ coffee$ house being male versus being female changes the log odds of $\#being\ a\ repeat\ customer\ by\ -0.1327.$

```
#confidence intervals for the coefficient estimates
## CIs using profiled log-likelihood
confint(hospnew1.glm)
## Waiting for profiling to be done...
##
                       2.5 %
                                    97.5 %
## (Intercept) 1.656924e+00 2.001187e+00
## amount
                4.395304e-05 9.641197e-05
## score1
               -4.942257e-01
                              1.876942e-01
## score2
               -4.572990e-01
                             2.133936e-01
## score3
               -5.239745e-01 1.449628e-01
## score4
               -6.250790e-01 8.448885e-03
## score5
               -4.489203e-01 4.437360e-02
## score6
               -4.017752e-01 1.319643e-01
## score7
               -3.062864e-01 1.350283e-01
## score8
               -3.581797e-01 2.411979e-02
## score9
               -6.523597e-01 -2.787826e-01
## score10
               -5.869369e-01 -2.447564e-01
## genderM
               -1.857835e-01 -7.962413e-02
## CIs using standard errors
confint.default(hospnew1.glm)
                                    97.5 %
##
                       2.5 %
## (Intercept) 1.653783e+00 1.997818e+00
## amount
                4.359632e-05 9.607306e-05
## score1
               -5.003917e-01
                              1.802826e-01
## score2
               -4.631704e-01
                              2.063385e-01
## score3
               -5.295949e-01
                             1.381916e-01
## score4
               -6.292354e-01 3.380439e-03
## score5
               -4.491069e-01 4.379945e-02
## score6
               -4.031526e-01 1.300756e-01
## score7
               -3.051674e-01 1.358562e-01
## score8
               -3.556398e-01 2.642787e-02
## score9
               -6.496094e-01 -2.762587e-01
## score10
               -5.835333e-01 -2.415828e-01
               -1.857636e-01 -7.960758e-02
## genderM
#exponentiate the coefficients and interpret them as odds-ratios
## odds ratios only
exp(coef(hospnew1.glm))
## (Intercept)
                    amount
                                score1
                                            score2
                                                         score3
                                                                     score4
##
     6.2077640
                 1.0000698
                             0.8520973
                                                                  0.7313029
                                         0.8794875
                                                      0.8222575
##
        score5
                    score6
                                                                    score10
                                score7
                                            score8
                                                         score9
##
     0.8165609
                 0.8723728
                             0.9188286
                                         0.8482279
                                                      0.6294341
                                                                  0.6619548
##
       genderM
##
     0.8757404
#To put it all in one table, we use cbind to bind the coefficients and confidence intervals
#column-wise.
## odds ratios and 95% CI
```

```
exp(cbind(OR = coef(hospnew1.glm), confint(hospnew1.glm)))
## Waiting for profiling to be done...
                             2.5 %
                      OR
                                      97.5 %
## (Intercept) 6.2077640 5.2431560 7.3978329
## amount 1.0000698 1.0000440 1.0000964
## score6
             0.8723728 0.6691311 1.1410676
           0.9188286 0.7361757 1.1445691
0.8482279 0.6989475 1.0244130
0.6294341 0.5208154 0.7567044
## score7
## score8
## score9
           0.6619548 0.5560278 0.7828952
## score10
            0.8757404 0.8304533 0.9234634
## genderM
#For every one unit increase in amount spent, the odds of being a repeat customer
#(versus non-repeat) increases by a factor of 1.0000698
```