Esercizi di ripasso

- Contando anche le parole senza senso, quanti sono gli anagrammi di:
 - TENTACOLO
 - ALGORITMO
 - PRESTARE.
- Partendo da un gruppo di 8 donne e 6 uomini, quanti comitati di 3 donne e 2 uomini sipossono formare?
- Quante targhe si possono formare di 4 lettere (tra 22) e 3 cifre (tra 10)?
- Se X e Y sono due variabili casuali discrete con P(X=2,Y=3)=1/3, P(X=3,Y=3)=1/4, P(X=3,Y=4)=1/4 e P(X=2,Y=4)=1/6 calcola $E[XY^3]$ e le probabilità marginali.
- Data la densità $f(x) = Ce^{-x}$ per $0 \le x \le 1$, calcolare C e la CDF di X.
- Data la variabile aleatoria X con distribuzione $f(x) = C(1 + 2x^2)$ per $x \in [0, 1]$, determinare il valore della costante C, calcolare E[X] e calcolare $P\{0 < X < 1/2\}$.
- Data la v.a. Continua X con pdf $f(x) = C(x^3 + 3x)$ definita nell'intervallo $0 \le x \le 2$, si chiede di:
 - Determinare il valore di C.
 - Determinare la probabilitá $P\{\frac{1}{2} \le X \le \frac{3}{2}\}$
 - Calcolare $E[2X^4]$.
- Per quale motivo non puo essere che H(X)=2, H(Y)=3 e H(X,Y)=6? Che cosa puoi dire di X e Y se, invece, H(X,Y)=5?
- Calcola la codifica di Huffman per i simboli $X = \{a, b, c, d, e, f\}$ se p(a) = p(b) = p(c) = 1/16, p(d) = 5/16, p(e) = 1/8 e p(f) = 3/8.
- Se H(X) = 4, H(Y) = 3 e H(X|Y) = 2, determina l'entropia congiunta H(X,Y), l'entropia condizionata H(Y|X) e la mutua informazione I(X,Y).
- Sia dato l'insieme di simboli $X = \{x_1, x_2, x_3, x_4\}$, fornisci un esempio di codifica binaria univocamente decifrabile ma non istantanea e un esempio di codifica istantanea.
- Sia dato $X = \{x_1, x_2, x_3, x_4\}$ e l'insieme di interi $\{L_1, L_2, L_3, L_4\}$ con $L_1 = 1, L_2 = 2, L_3 = 3$ e $L_4 = 3$. Per quale motivo non può esistere una codifica istantanea C che abbia gli interi L_i come lunghezze delle rappresentazioni $C(x_i)$?
- Un cassetto contiene tre dadi a sei facce oneste e quattro dadi con P(1) = P(2) = 1/10, P(3) = P(4) = 3/20 e P(5) = P(6) = 1/4. Prendendo un dado a caso, qual'è la probabilità a priori che il dado sia onesto? Se lanciando il primo dado ottengo 3, come cambia la probabilità?

• Data la seguente matrice di transizione

$$\mathbf{P} = \begin{pmatrix} 0.6 & 0.4 \\ 0.2 & 0.8 \end{pmatrix},$$

- a) Calcolare la probabilità di transizione dallo stato s_1 allo stato s_2 in due passi.
- b) Discutere l'irriducibilità e la regolarità di P determinando la sua distribuzione stazionaria.
- Sia data una sequenza di campioni indipendenti (x_1,\ldots,x_n) campionati dalla stessa distribuzione X con media $E[X]=\mu$ e varianza $Var[X]=\sigma^2$. Dato lo stimatore $\hat{\sigma}^2(x_1,\ldots,x_n)=\frac{1}{n}\left(\sum_{i=1}^n x_i\right)^2-2x_2x_3$, calcolarne la distorsione. Se risulta distorto, modificarlo in modo da ottenere uno stimatore corretto.
- Un'urna contiene cinque monete di tipo A, tre moneta di tipo B e due monete di tipo C. La probabilità di ottenere testa è 1/3 lanciando una moneta di tipo A, 1/6 lanciando una moneta di tipo B e 5/6 lanciando una moneta di tipo C. Calcolare la probabilità di ottenere testa lanciando una moneta estratta a caso. Assumendo di aver ottenuto testa, con quale probabilità è una moneta di tipo A?