Rank-65858 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_3^3 + X_0^2 X_1 + X_0^2 X_2 + X_1^2 X_2 + X_0 X_1 X_2 = 0$$

(1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)

The point rank of the equation over GF(8) is 1243948182

General information

Number of lines	3
Number of points	73
Number of singular points	3
Number of Eckardt points	0
Number of double points	3
Number of single points	21
Number of points off lines	49
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{3}
Type of lines on points	$2^3, 1^{21}, 0^{49}$

Singular Points

The surface has 3 singular points:

0:
$$P_{41} = \mathbf{P}(\gamma^6, \gamma^5, 1, 0) = \mathbf{P}(6, 3, 1, 0)$$

1: $P_{54} = \mathbf{P}(\gamma^5, \gamma^3, 1, 0) = \mathbf{P}(3, 5, 1, 0)$
2: $P_{64} = \mathbf{P}(\gamma^3, \gamma^6, 1, 0) = \mathbf{P}(5, 6, 1, 0)$

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & \gamma^5 & 0 \\ 0 & 1 & \gamma^6 & 0 \end{bmatrix}_{225} = \begin{bmatrix} 1 & 0 & 3 & 0 \\ 0 & 1 & 6 & 0 \end{bmatrix}_{225} = \mathbf{Pl}(4, 0, 2, 0, 0, 1)_{683}$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & \gamma^{3} & 0 \\ 0 & 1 & \gamma^{5} & 0 \end{bmatrix}_{368} = \begin{bmatrix} 1 & 0 & 5 & 0 \\ 0 & 1 & 3 & 0 \end{bmatrix}_{368} = \mathbf{Pl}(7, 0, 4, 0, 0, 1)_{716}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & \gamma^{6} & 0 \\ 0 & 1 & \gamma^{3} & 0 \end{bmatrix}_{443} = \begin{bmatrix} 1 & 0 & 6 & 0 \\ 0 & 1 & 5 & 0 \end{bmatrix}_{443} = \mathbf{Pl}(2, 0, 7, 0, 0, 1)_{756}$$

Rank of lines: (225, 368, 443)

Rank of points on Klein quadric: (683, 716, 756)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_{64} = (5, 6, 1, 0) = \ell_0 \cap \ell_1$$

$$P_{54} = (3, 5, 1, 0) = \ell_0 \cap \ell_2$$

 $P_{41} = (6, 3, 1, 0) = \ell_1 \cap \ell_2$

Single Points

The surface has 21 single points: The single points on the surface are:

$0: P_6 = (2, 1, 0, 0)$ lies on line ℓ_0
1: $P_8 = (4, 1, 0, 0)$ lies on line ℓ_1
$2: P_{11} = (7, 1, 0, 0)$ lies on line ℓ_2
$3: P_{13} = (2,0,1,0)$ lies on line ℓ_2
4: $P_{15} = (4, 0, 1, 0)$ lies on line ℓ_0
5: $P_{18} = (7,0,1,0)$ lies on line ℓ_1
6: $P_{22} = (3, 1, 1, 0)$ lies on line ℓ_1
7: $P_{24} = (5, 1, 1, 0)$ lies on line ℓ_2
8: $P_{25} = (6, 1, 1, 0)$ lies on line ℓ_0
9: $P_{27} = (0, 2, 1, 0)$ lies on line ℓ_0
10: $P_{28} = (1, 2, 1, 0)$ lies on line ℓ_2

11: $P_{29} = (2, 2, 1, 0)$ lies on line ℓ_1

12: $P_{37} = (2,3,1,0)$ lies on line ℓ_0

13: $P_{43} = (0, 4, 1, 0)$ lies on line ℓ_1

14: $P_{44} = (1, 4, 1, 0)$ lies on line ℓ_0 15: $P_{47} = (4, 4, 1, 0)$ lies on line ℓ_2

16: $P_{55} = (4, 5, 1, 0)$ lies on line ℓ_1 17: $P_{66} = (7, 6, 1, 0)$ lies on line ℓ_2

18: $P_{67} = (0, 7, 1, 0)$ lies on line ℓ_2

19: $P_{68} = (1,7,1,0)$ lies on line ℓ_1

20: $P_{74} = (7,7,1,0)$ lies on line ℓ_0

The single points on the surface are:

Points on surface but on no line

The surface has 49 points not on any line: The points on the surface but not on lines are:

$$\begin{array}{lll} 0: \, P_4 = (1,1,1,1) & 5: \, P_{120} = (6,5,0,1) \\ 1: \, P_{75} = (1,0,0,1) & 6: \, P_{125} = (3,6,0,1) \\ 2: \, P_{82} = (0,1,0,1) & 7: \, P_{138} = (0,0,1,1) \\ 3: \, P_{83} = (1,1,0,1) & 8: \, P_{139} = (1,0,1,1) \\ 4: \, P_{103} = (5,3,0,1) & 9: \, P_{146} = (0,1,1,1) \end{array}$$

10: $P_{166} = (5, 3, 1, 1)$ $30: P_{424} = (7,3,5,1)$ 11: $P_{183} = (6, 5, 1, 1)$ $31: P_{428} = (3,4,5,1)$ 12: $P_{188} = (3, 6, 1, 1)$ $32: P_{436} = (3, 5, 5, 1)$ 13: $P_{213} = (4, 1, 2, 1)$ $33: P_{441} = (0,6,5,1)$ 14: $P_{238} = (5, 4, 2, 1)$ $34: P_{446} = (5, 6, 5, 1)$ 15: $P_{242} = (1, 5, 2, 1)$ $35: P_{447} = (6, 6, 5, 1)$ 16: $P_{270} = (5, 0, 3, 1)$ $36: P_{453} = (4,7,5,1)$ 17: $P_{287} = (6, 2, 3, 1)$ $37: P_{460} = (3,0,6,1)$ 18: $P_{295} = (6, 3, 3, 1)$ $38: P_{480} = (7, 2, 6, 1)$ $39: P_{481} = (0, 3, 6, 1)$ 19: $P_{299} = (2, 4, 3, 1)$ $20: P_{305} = (0, 5, 3, 1)$ $40: P_{484} = (3, 3, 6, 1)$ $21: P_{308} = (3, 5, 3, 1)$ $41: P_{487} = (6, 3, 6, 1)$ $22: P_{310} = (5, 5, 3, 1)$ $42: P_{499} = (2, 5, 6, 1)$ $23: P_{317} = (4, 6, 3, 1)$ 43: $P_{500} = (3, 5, 6, 1)$ $24: P_{318} = (5, 6, 3, 1)$ $44: P_{510} = (5, 6, 6, 1)$ $25: P_{344} = (7, 1, 4, 1)$ $45: P_{518} = (5,7,6,1)$ $26: P_{378} = (1, 6, 4, 1)$ 46: $P_{531} = (2, 1, 7, 1)$ $27: P_{391} = (6,7,4,1)$ $47: P_{540} = (3, 2, 7, 1)$ $28: P_{399} = (6, 0, 5, 1)$ 48: $P_{546} = (1, 3, 7, 1)$ 29: $P_{423} = (6, 3, 5, 1)$

Line Intersection Graph

 $\begin{array}{c|c}
 & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
2 & 1 & 1 & 0
\end{array}$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_{64}	P_{54}

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_{64}	P_{41}

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_{54}	P_{41}

The surface has 73 points:

The points on the surface are:

$0: P_4 = (1, 1, 1, 1)$	$12: P_{29} = (2, 2, 1, 0)$	$24: P_{74} = (7,7,1,0)$
$1: P_6 = (2, 1, 0, 0)$	$13: P_{37} = (2, 3, 1, 0)$	$25: P_{75} = (1,0,0,1)$
$2: P_8 = (4, 1, 0, 0)$	$14: P_{41} = (6, 3, 1, 0)$	$26: P_{82} = (0, 1, 0, 1)$
$3: P_{11} = (7, 1, 0, 0)$	15: $P_{43} = (0, 4, 1, 0)$	$27: P_{83} = (1, 1, 0, 1)$
$4: P_{13} = (2,0,1,0)$	$16: P_{44} = (1, 4, 1, 0)$	$28: P_{103} = (5, 3, 0, 1)$
$5: P_{15} = (4,0,1,0)$	$17: P_{47} = (4, 4, 1, 0)$	$29: P_{120} = (6, 5, 0, 1)$
$6: P_{18} = (7,0,1,0)$	$18: P_{54} = (3, 5, 1, 0)$	$30: P_{125} = (3, 6, 0, 1)$
$7: P_{22} = (3, 1, 1, 0)$	$19: P_{55} = (4, 5, 1, 0)$	$31: P_{138} = (0,0,1,1)$
$8: P_{24} = (5, 1, 1, 0)$	$20: P_{64} = (5, 6, 1, 0)$	$32: P_{139} = (1,0,1,1)$
$9: P_{25} = (6, 1, 1, 0)$	$21: P_{66} = (7, 6, 1, 0)$	$33: P_{146} = (0, 1, 1, 1)$
$10: P_{27} = (0, 2, 1, 0)$	$22: P_{67} = (0, 7, 1, 0)$	$34: P_{166} = (5, 3, 1, 1)$
$11: P_{28} = (1, 2, 1, 0)$	$23: P_{68} = (1, 7, 1, 0)$	$35: P_{183} = (6, 5, 1, 1)$

$36: P_{188} = (3, 6, 1, 1)$	$49: P_{344} = (7, 1, 4, 1)$	$62: P_{480} = (7, 2, 6, 1)$
$37: P_{213} = (4, 1, 2, 1)$	$50: P_{378} = (1, 6, 4, 1)$	$63: P_{481} = (0, 3, 6, 1)$
$38: P_{238} = (5, 4, 2, 1)$	$51: P_{391} = (6,7,4,1)$	$64: P_{484} = (3,3,6,1)$
$39: P_{242} = (1, 5, 2, 1)$	$52: P_{399} = (6, 0, 5, 1)$	$65: P_{487} = (6, 3, 6, 1)$
$40: P_{270} = (5, 0, 3, 1)$	$53: P_{423} = (6, 3, 5, 1)$	$66: P_{499} = (2, 5, 6, 1)$
$41: P_{287} = (6, 2, 3, 1)$	$54: P_{424} = (7, 3, 5, 1)$	$67: P_{500} = (3, 5, 6, 1)$
$42: P_{295} = (6, 3, 3, 1)$	$55: P_{428} = (3, 4, 5, 1)$	$68: P_{510} = (5, 6, 6, 1)$
$43: P_{299} = (2,4,3,1)$	$56: P_{436} = (3, 5, 5, 1)$	$69: P_{518} = (5, 7, 6, 1)$
$44: P_{305} = (0, 5, 3, 1)$	$57: P_{441} = (0, 6, 5, 1)$	$70: P_{531} = (2, 1, 7, 1)$
$45: P_{308} = (3, 5, 3, 1)$	$58: P_{446} = (5, 6, 5, 1)$	71: $P_{540} = (3, 2, 7, 1)$
$46: P_{310} = (5, 5, 3, 1)$	$59: P_{447} = (6, 6, 5, 1)$	72: $P_{546} = (1, 3, 7, 1)$
$47: P_{317} = (4, 6, 3, 1)$	$60: P_{453} = (4, 7, 5, 1)$	
$48: P_{318} = (5, 6, 3, 1)$	$61: P_{460} = (3, 0, 6, 1)$	