

Departamento de Matemáticas 4ºESO - Académicas

icas s

Examen Global

Instrucciones:

- Si solo tienes una evaluación pendiente: Tienes que hacer todos los ejercicios del bloque correspondiente a la evaluación, incluido el "postre". (5 ejercicios en total). Tiempo: 50 minutos
- Si tienes más de una pendiente: Tienes que hacer los dos primeros ejercicios de cada evaluación. (6 ejercicios en total). Tiempo: 50 minutos
- Si tienes todo aprobado tienes que hacer de cada evaluación el último ejercicio o ejercicio "postre" y otro a elegir. (6 ejercicios en total) Tiempo: 50 minutos

1^a Evaluación

1. Calcula (1 punto)

(a) Racionaliza $\frac{2+\sqrt{2}}{2-\sqrt{2}}$ (puntos)

Solución: $2\sqrt{2} + 3$

(b) Aplica la definición de logaritmo para calcular: $\log_4 \sqrt[3]{16}$ (1 punto)

Solución: $\frac{2}{3}$

(c) Sabiendo que $\log x = 2$ y $\log y = -1$, calcula: $\log(\frac{\sqrt{x \cdot y}}{100 \cdot x^2})$ (2 puntos)

Solución: $\log(\frac{\sqrt{x \cdot y}}{100 \cdot x^2}) = \frac{3 \log(x)}{2} - \frac{\log(y)}{2} + 2 = 2 - \frac{-1}{2} + \frac{3 \cdot 2}{2} = \frac{11}{2}$

2. Resuelve las siguientes ecuaciones: (1 punto)

(a) $2 + \sqrt{2x+3} = 2x - 1$

Solución: $2 + \sqrt{2x + 3} = 2x - 1 \rightarrow x = 3$

(b) $3^{x-1} + 3^x + 3^{x+1} = 117$

Solución:
$$3^{x-1} + 3^x + 3^{x+1} = 117 \rightarrow x = 3$$

3. Halla el valor de k para que $3x^2 + kx - 2$ sea divisible por x + 2 (1 punto)

Solución:
$$\rightarrow 10 - 2k = 0 \rightarrow k = 5$$

4. Simplifica la fracción algebraica: (1 punto)

$$\frac{3x^4 - 3x^3 - 6x^2}{2x^3 - 2x^2 - 4x}$$

Solución:
$$\frac{3x^4 - 3x^3 - 6x^2}{2x^3 - 2x^2 - 4x} = \frac{3x^2(x-2)(x+1)}{2x(x-2)(x+1)} = \frac{3x}{2}$$

5. **Ejercicio "postre":** Indica a cuáles de los conjuntos \mathbb{N} (naturales), \mathbb{Z} (1 punto) (enteros), \mathbb{Q} (racionales), \mathbb{R} (reales) pertenecen cada uno de los siguientes números:

	N	\mathbb{Z}	Q	\mathbb{R}
$ \begin{array}{r} \frac{8}{16} \\ \sqrt[3]{-27} \\ 2.01 \end{array} $				
$\sqrt[3]{-27}$				
3,01				
12				
$ \begin{array}{c c} -\frac{4}{4} \\ -\sqrt{25} \end{array} $				
$\sqrt{8}$				
4				
π				
$\sqrt{-4}$				
$\frac{39}{13}$				

2^a Evaluación

6. Si se aumenta la base de un rectángulo en 4 cm y se disminuye la altura en 2 cm se tiene la misma área; en cambio, si la base se disminuye en 10 cm y se aumenta la altura en 10 cm, entonces el área es 40 cm2 menor. Averigua las dimensiones del rectángulo.

(1 punto)

Solución:
$$\begin{cases} (x+4)(y-2) = xy \\ (x-10)(y+10) = xy-40 \end{cases} \to x = 16, \ y = 10 \to \text{Base}$$
 16 cm y altura 10 cm

7. Contesta a las siguientes cuestiones:

(1 punto)

(a) Resuelve $\frac{x^2-4}{x^2-9} \ge 0$

Solución: $(-\infty, -3) \cup [-2, 2] \cup (3, \infty)$

(b) Calcula el dominio de: $f(x) = \sqrt{x^2 + 3x + 2}$

Solución: $(-\infty, -2] \cup [-1, \infty)$

- 8. Representación gráfica
- 9. Sistema de inecuaciones
- 10. **Ejercicio postre:** Resuelve el siguiente sistema no lineal: (1 punto)

$$\begin{cases} x^2 + y^2 = 25 \\ xy + 12 = 0 \end{cases}$$

Solución: $\rightarrow [\{x = -4, y = 3\}, \{x = -3, y = 4\}, \{x = 3, y = -4\}\}, \{x = 4, y = -3\}]$

3^a Evaluación