Лекция 11 от 21.11.2016 Функциональные последовательности. Интегрирование и дифференцирование.

Частные случаи двойных пределов

Повторим и немного продолжим результаты прошлой лекции.

Утверждение 1. Пусть \mathcal{B} — база на X и $\forall n \in \mathbb{N}$ существует предел $\lim_{\mathcal{B}} f_n(x) = a_n$, и при этом $f_n(x) \stackrel{X}{\rightrightarrows} f(x)$. Тогда существуют и равны пределы $\lim_{n \to \infty} a_n$ и $\lim_{\mathcal{B}} f(x)$:

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \lim_{\mathcal{B}} f_n(x) = \lim_{\mathcal{B}} \lim_{n \to \infty} f_n(x) = \lim_{\mathcal{B}} f(x).$$

Отметим, что равномерная сходимость это удобное, но завышенное требование.

Следствие 1. Пусть $\mathcal{B}-$ база на X и $\forall n\in\mathbb{N}$ существует предел $\lim_{\mathcal{B}} f_n(x)=a_n,$ и при этом $\sum_{n=1}^{\infty} f_n(x) \stackrel{X}{\Rightarrow} S(x)$. Тогда существуют и равны пределы $\sum_{n=1}^{\infty} a_n$ и $\lim_{\mathcal{B}} S(x)$:

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \lim_{\mathcal{B}} f_n(x) = \lim_{\mathcal{B}} \sum_{n=1}^{\infty} f_n(x) = \lim_{\mathcal{B}} S(x).$$

То есть при наличии равномерной сходимости порядок этих действий не важен.

Это действительно следствие предыдущего утверждения, потому что

$$S(x) = S_n(x) = f_1(x) + \ldots + f_n(x) \xrightarrow{\mathcal{B}} a_1 + \ldots + a_n.$$

Следствие 2. Пусть I — невырожденный промежуток на \mathbb{R} u $\forall n \in \mathbb{N}$: $f_n(x) \in C(I)$ u $f_n(x) \overset{I}{\underset{n \to \infty}{\Longrightarrow}} f(x)$. Тогда $f(x) \in C(I)$.

Следствие 3. Пусть I — невырожденный промежуток на \mathbb{R} u $\forall n \in \mathbb{N}$: $f_n(x) \in C(I)$ u $\sum\limits_{n=1}^{\infty} f_n(x) \stackrel{I}{\Rightarrow} S(x)$. Тогда $S(x) \in C(I)$.

Связь с интегрированием

Вспомним, что интеграл Римана это тоже предел по базе.

Утверждение 2. Пусть $\forall n \in \mathbb{N}$: $f_n(x) \in R[a,b]$, то есть интегрируема по Риману на отрезке [a,b], $u \in f_n(x) \stackrel{[a,b]}{\underset{n \to \infty}{\Longrightarrow}} f(x)$. Тогда $f(x) \in R[a,b]$ u

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} \lim_{n \to \infty} f_n(x)dx = \lim_{n \to \infty} \int_{a}^{b} f_n(x)dx.$$

Можно сказать, это теорема о перестановке интеграла и предельного перехода.

Перед тем как приступить к доказательству, задумаемся: а может быть, требование равномерной сходимости это слишком строго? Однако поточечной явно не хватает. Подтвердим это несколькими примерами.

• Пронумеруем все рациональные числа: r_1, r_2, \ldots , и определим функции следующим образом:

$$f_n(x) = \begin{cases} 1, & x \in \{r_1, \dots, r_n\}; \\ 0, & \text{иначе.} \end{cases}$$

Поточечно это будет сходиться к функции Дирихле, каждая отдельная функция f_n интегрируема, а вот $\{f_n\}$ — нет.

$$f_n(x) = \begin{cases} 0, & x \in [0, 1/n); \\ 1/x, & x \in [1/n, 1]. \end{cases}$$

По отдельности все функции интегрируемы, а поточечно это будет стремится к

$$f(x) = \begin{cases} 1/x, & x \in (0,1]; \\ 0, & x = 0. \end{cases}$$

• Функция $f_n(x)$ задает равнобедренный треугольник с основанием на оси OX от 0 до 1/n и высотой 2n. Тогда каждый интеграл равен 1, а поточечно f_n стремятся к нулю. То есть все существует, но равенства нет.

Итого, поточечной сходимости явно недостаточно. Но честно говоря, равномерной сходимости действительно хватает с избытком, но об этом как-нибудь потом.

Теперь приступим к доказательству.

Доказательство. Покажем, что это частный случай теоремы о перестановке пределов.

Пусть $X = \{(\tau, \xi)\}$ — это множество всех отмеченных разбиений [a, b] (то есть таких, на каждом отрезке которого зафиксирована произвольная точка ξ_i), $\sigma_n(\tau, \xi)$ — значение интегральной суммы Римана для функции $f_n(x)$, соответствующее отмеченному разбиению (τ, ξ) . Тогда $\{\sigma_n(\tau, \xi)\}_{n=1}^{\infty}$ — последовательность функций, определенных на X. Также обозначим за $\sigma(\tau, \xi)$ интегральную сумму Римана для функции f(x).

Докажем, что $\sigma_n(\tau,\xi) \overset{X}{\underset{n\to\infty}{\Longrightarrow}} \sigma(\tau,\xi)$. Действительно, зафиксируем произвольное $\varepsilon>0$, тогда $\exists N\in\mathbb{N}\ \forall n>N\ \forall x\in[a,b]:\ |f_n(x)-f(x)|<\frac{\varepsilon}{b-a}.$

Тогда $\forall n>N$ и $\forall (\tau,\xi)\in X$ (M — количество отрезков в разбиении $\tau,$ Δ_m — длина m-ого отрезка):

$$|\sigma(\tau,\xi) - \sigma_n(\tau,\xi)| = \left| \sum_{m=1}^M f_n(\xi_m) \Delta_m - \sum_{m=1}^M f(\xi_m) \Delta_m \right| \leqslant \sum_{m=1}^M |(f_n(\xi_m) - f(\xi_m)) \Delta_m| \leqslant \frac{\varepsilon}{b-a} \sum_{m=1}^M \Delta_m = \varepsilon.$$

Получается, что $\forall n \in \mathbb{N}$ и существует предел $\lim_{\mathcal{B}} \sigma_n(\tau, \xi) = \int\limits_a^b f_n(x) \mathrm{d}x$ (здесь \mathcal{B} — база Римана).

Вспомним, что $\sigma_n \overset{X}{\underset{n \to \infty}{\Longrightarrow}} \sigma$, а значит, по теореме о перестановке двух пределов, существуют и

равны пределы $\lim_{n\to\infty} \int_a^b f_n(x) dx$ и $\lim_{\mathcal{B}} \sigma(\tau,\xi) = \int_a^b f(x) dx$.

Следствие 4. Пусть $\forall n \in N \colon f_n(x) \in R[a,b] \ u \sum_{n=1}^{\infty} f_n(x) \overset{[a,b]}{\Longrightarrow} S(x)$. Тогда $S(x) \in R[a,b] \ u$

$$\int_{a}^{b} S(x) dx = \int_{a}^{b} \left(\sum_{n=1}^{\infty} f_n(x) \right) dx = \sum_{n=1}^{\infty} \int_{a}^{b} f_n(x) dx.$$

Связь с дифференцированием

Утверждение 3. Пусть I — невырожденный промежуток на \mathbb{R} и $\forall n \in \mathbb{N}$ $f_n(x) \in C^1(I)$ (то есть непрерывно дифференцируема), $\exists x_0 \in I$ такое, что $\{f_n(x_0)\}_{n=1}^{\infty}$ сходится, и при этом $f'_n(x) \stackrel{I}{\Rightarrow} g(x)$. Тогда $f_n(x) \stackrel{I}{\to} f(x)$ (поточечно!), причем на каждом ограниченном подмножестве I сходимость будет равномерной, $f(x) \in C^1(I)$ и f'(x) = g(x) на I.

Что это вообще означает? Фактически это похоже на перестановку пределов:

$$(\lim_{n\to\infty} f_n(x))' = \lim_{n\to\infty} f'_n(x).$$

Доказательство. Вообще говоря, это сразу следует из прошлого утверждения и формулы Ньютона—Лейбница. Но распишем.

Заметим, что $\forall x \in I$: $f_n(x) = f_n(x_0) + \int_{x_0}^x f'_n(t) dt$. При этом $f_n(x_0) \underset{n \to \infty}{\Longrightarrow} \alpha$ (так как вообще не зависит от x), а $f'_n(t) \overset{I}{\Longrightarrow} g(x)$.

Получается, что $f_n(x)$ поточечно на I сходится к $\alpha + \int_{x_0}^x g(t) dt = f(x)$. При этом очевидно $f(x) \in D(I)$ (т.е. дифференцируема) и f'(x) = g(x). Итого, $f(x) \in C^1(I)$.

Осталось показать равномерную сходимость на ограниченном подмножестве I.

Для любого E — ограниченного подмножества I — верно, что $\int\limits_{x_0}^x f_n'(t)\mathrm{d}t \stackrel{E}{\underset{n\to\infty}{\Longrightarrow}} \int\limits_{x_0}^x g(t)\mathrm{d}t$. Действительно, в силу ограниченности E, $\exists C>0 \ \forall x\in E: \ |x_0-x|< C$.

Зафиксируем произвольное $\varepsilon > 0$. Тогда $\exists N \in \mathbb{N} \ \forall n > N \ \forall t \in E : \ |f_n'(t) - g(t)| < \varepsilon/C$. Значит, $\forall n > N \ \text{и} \ \forall x \in E$:

$$\left| \int_{x_0}^x f_n'(t) dt - \int_{x_0}^x g(t) dt \right| \leqslant \left| \int_{x_0}^x |f_n'(t) - g(t)| dt \right| \leqslant \varepsilon/C|x_0 - x| < \varepsilon.$$

В первом переходе модуль появился, потому что мы не знаем взаимное расположение точек x_0 и x.

Можно доказать более общее утверждение, которое отличается от предыдущего заменой $C^1(I)$ на D(I), то есть достаточно того, что функции дифференцируемы. Но мы этим заниматься не будем.

А нужно ли нам, чтобы существовала такая точка x_0 ? Конечно! Пусть, например, $f_n(x) = n$. Тогда в каждой точке расходимость к бесконечности. А с другой стороны, $f'_n(x) = 0$ и последовательность производных сходится.