TARGETED ADVERTISING IN ELECTIONS

BY

Maria (Masha) Titova

VANDERBILT UNIVERSITY

STANFORD GSB POLITICAL ECONOMY SEMINAR, NOVEMBER 1, 2022

MOTIVATION

- ► Targeted Advertising was an important part of winning campaigns in recent U.S. Presidential Elections:
 - ♦ **2016 Trump**: used voter data from Cambridge Analytica
 - ♦ 2008 Obama: first social media campaign
 - ♦ 2000 Bush: targeting voters by mail

CAN TARGETED ADVERTISING SWING ELECTIONS? \rightarrow Yes

Preview of Results

- \blacktriangleright some elections are unwinnable for challengers without targeted advertising
 - (pivotal) voters prefer policies on opposite sides of status quo
 - no public message convinces them to approve challenger's policy
- ▶ any such election can be won with targeted advertising
 - challenger makes each voter believe his policy is a sufficient improvement over status quo
 - challenger wins if his policy is sufficiently close to status quo
 - voters regret their choices
- ▶ if voters become more extreme, challenger's odds of winning increase

RELATED LITERATURE: VOTER PERSUASION

- ▶ public voter persuasion
 - verifiable info: Milgrom (1981), Grossman (1981), Caillaud and Tirole (2007), Board (2009), Jackson and Tan (2013), Janssen and Teteryatnikova (2017), Titova (2022)
 - ♦ cheap talk: Crawford and Sobel (1982), Schnakenberg (2015), Jeong (2019)
 - ♦ info design: Kamenica and Gentzkow (2011), Alonso and Câmara (2016)

Related Literature: Private Voter Persuasion

▶ private voter persuasion

- ♦ verifiable info: Schipper and Woo (2019)
 - unraveling does not have to happen if only one candidate advertises
- - sender prefers private communication if his messages are verifiable
- \diamond info design: **Arieli and Babichenko (2019)**, Bardhi and Guo (2018), Chan et al. (2019), Heese and Lauermann (2019)
 - sender does not need commitment to benefit from targeted advertising
 - $\bullet\,$ targeting does not just improve odds of winning, it swings unwinnable elections

▶ polarization & targeted advertising through media

- ♦ Hu, Li, and Segal (2019), Prummer (2020), Perego and Yuksel (2022)
 - more polarization \rightarrow more challengers swing unwinnable elections

Model Setup

- ightharpoonup policy space is X := [-1, 1]
 - \diamond policies range from far-left (-1) to far-right (1)
 - ♦ status quo policy is fixed, known, normalized to 0
- ▶ challenger (he/him)
 - \diamond privately observes his policy $x \in X$
 - x is drawn from common atomless prior $\mu_0 \in \Delta X$ with full support
 - \diamond gets 1 if wins the election, 0 otherwise
 - winning requires unanimous approval of both voters

MODEL SETUP: COMMUNICATION

- ▶ challenger communicates with voter using verifiable messages
 - \diamond each message m
 - is a statement about policy: $m \subseteq X$
 - contains a grain of truth: $x \in m$
- ightharpoonup example: m = [-1/2, 0], or "my policy is moderately left"

Model Setup: Voters

- ▶ voters have spatial preferences and status quo bias
- ▶ voter (she/her) with bliss point $v \in X$ has

utility of approval
$$u_v(\text{approve}, x) = -|v - x|$$

utility of rejection $u_v(\text{reject}, x) = -|v - 0| + \varepsilon$

net payoff from approval approval set

$$\alpha_v(x) := -|v - x| + |v| - \varepsilon$$
$$A_v := \{x \in X \mid \alpha_v(x) \ge 0\}$$

▶ two voters: left (with $v = L < -\varepsilon$) and right (with $v = R > \varepsilon$)

Voter's Preferences: Illustration

TIMELINE AND EQUILIBRIUM CONCEPT

```
challenger challenger voter v \in \{L, R\} voter v \in \{L, R\} learns his \rightarrow selects m_L \rightarrow privately observes \rightarrow chooses between policy x \in X and m_R message m_v approval and rejection
```

▶ Perfect Bayesian Equilibrium

- \diamond for every policy $x \in X$, private messages $m_L \subseteq X$ and $m_R \subseteq X$ maximize challenger's utility subject to $x \in m_L$ and $x \in m_R$
- voter approves whenever expected net payoff from approval is non-negative under her posterior
 - does not condition on the event of being pivotal
- voters' posteriors are Bayes-consistent

Incompatible Voters

ightharpoonup left and right voters prefer policies on opposite sides of status quo

Lemma 1

If voters hold a common belief, then at most one of them prefers to approve.

Unwinnable Election

- \blacktriangleright baseline election is <u>unwinnable</u> for challenger <u>without targeted advertising</u>
 - no advertising
 - full disclosure
 - public disclosure
- ▶ true for any communication protocol (evidence, cheap talk, Bayesian persuasion) that induces common posterior

EQUILIBRIUM OUTCOMES

- ▶ focus on equilibrium sets of approved policies
 - \diamond voter $v \in \{L, R\}$ approves set of policies $W_v \subseteq X$, rejects $W_v^c := X \setminus W_v$
 - \diamond direct implementation: when talking to v, challenger sends message
 - W_v if his policy is $x \in W_v \leftarrow$ recommendation to approve
 - W_v^c if his policy is $x \notin W_v \leftarrow$ recommendation to reject
- ▶ Titova (2022): $(W_L, W_R) \subseteq X^2$ is an equilibrium outcome iff $\forall v \in \{L, R\}$
 - $\diamond A_v \subseteq W_v$: challenger does not want to deviate to full disclosure
 - $\diamond \int_{W_{v}} \alpha_{v}(x) d\mu_{0}(x) \geq 0$: voter's **obedience constraint**

CHALLENGER-PREFERRED EQUILIBRIUM

- ▶ I focus on challenger-preferred PBE
 - one with highest odds of unanimous approval/winning
- ▶ problem:

problem:
$$(\overline{W}_L, \overline{W}_R) = \arg\max_{(W_L, W_R) \subseteq X^2} \int_{W_L \cap W_R} d\mu_0(x)$$
 subject to
$$\int_{W_v} \alpha_v(x) d\mu_0(x) \ge 0 \text{ for each } v \in \{L, R\}$$

I call $(\overline{W}_L, \overline{W}_R)$ the (challenger-preferred) equilibrium outcome (under targeted advertising)

THEOREM 1

Theorem 1: Swinging Unwinnable Elections

In equilibrium of the baseline election game, the challenger's ex-ante odds of winning are always positive.

idea of proof: for each voter $v \in \{L, R\}$

- ▶ observe that v always approves own approval set: $\int_{A_v} \alpha_v(x) d\mu_0(x) > 0$
- ▶ select subset $B_v \subseteq A_{-v}$ of the other voter's approval set that satisfies

$$\int_{A_v} \alpha_v(x) d\mu_0(x) + \int_{B_v} \alpha_v(x) d\mu_0(x) \ge 0 \quad \text{ and } \quad \mu_0(B_v) > 0$$

- ightharpoonup let $W_n = A_n \cup B_n$
- we have $\mu_0(W_L \cap W_R) = \mu_0(B_R \cup B_L) > 0$
- ⇒ odds in equilibrium are positive

Auxiliary Problem

\rightarrow question: what is the largest subset of $[l, r] \subseteq X$ can voter v approve?

$$\max_{W \subseteq [l,r]} \mu_0(W) \quad \text{subject to} \quad \int_W \alpha_v(x) d\mu_0(x) \ge 0$$
 (AUX)

▶ answer: Alonso and Câmara (2016) and Titova (2022)

Corollary 2

Consider voter $v \in X \setminus [-\varepsilon, \varepsilon]$. Then, the solution to Problem (AUX) with $l \in [-1, |A_v|]$ and $r \in [[A_v], 1]$ is an interval $I_v(l, r)$ such that

- ▶ if $\int_{r}^{r} \alpha_v(x) d\mu_0(x) \geq 0$, then $I_v(l,r) = [l,r]$
- ▶ otherwise, $I_v(l,r) = \{x \in [l,r] \mid \alpha_v(x) \ge -c_v^*(l,r)\}$, where $c_v^*(l,r) > 0$ is obtained from the binding constraint $\int\limits_{I_v(l,r)} \alpha_v(x) d\mu_0(x) = 0$

LARGEST UNCONSTRAINED INTERVAL OF APPROVED POLICIES

- ▶ solve (AUX) for l = -1 and r = 1 to get $I_v(-1, 1) =: I_v^{UC} = [a_v^{UC}, b_v^{UC}]$ ♦ v's largest unconstrained interval of approved policies
- ightharpoonup example: left voter, v = L

LARGEST ASYMMETRIC INTERVAL OF APPROVED POLICIES

 \triangleright left voter: how many right policies can she approve?

$$I_L^{AS} = [\lfloor A_L \rfloor, b_L^{AS}] := I_L(\lfloor A_L \rfloor, 1)$$

right voter: how many left policies can she approve?

$$I_R^{AS} = \begin{bmatrix} a_R^{AS}, \lceil A_R \rceil \end{bmatrix} := I_R(-1, \lceil A_R \rceil)$$

CANDIDATE SOLUTION

WHEN CANDIDATE SOLUTION FAILS, CASE 1

▶ when status quo bias ε is too large:

▶ [A1]:
$$\int_{\lfloor A_L \rfloor}^{\varepsilon} \alpha_L(x) d\mu_0(x) \ge 0$$
 and $\int_{-\varepsilon}^{\lceil A_R \rceil} \alpha_R(x) d\mu_0(x) \ge 0$ rules this out

When Candidate Solution Fails, Case 2

▶ right voter is significantly more persuadable, or $\int_{-A}^{|A_R|} \alpha_R(x) d\mu_0(x) > 0$

ightharpoonup [A2]: left voter is not significantly more persuadable than the right voter

$$\int_{\lfloor A_L \rfloor}^{\lceil A_R \rceil} \alpha_L(x) d\mu_0(x) \le 0$$

Theorem 2

Theorem 2: Equilibrium Intervals of Approved Policies

If $[\mathbf{A1*}]$ and $[\mathbf{A2}]$ hold, then \overline{W}_L and \overline{W}_R are intervals. Almost surely,

- (1) if neither voter is significantly more persuadable than the other, then
 - $\blacktriangleright \ \overline{W}_L = \left[\lfloor A_L \rfloor, b_L^{AS} \right] \text{ and } \overline{W}_R = \left[a_R^{AS}, \lceil A_R \rceil \right]$
 - \blacktriangleright equilibrium set of unanimously approved policies is $\overline{W} = [a_R^{AS}, b_L^{AS}]$
- (2) if right voter is significantly more persuadable than left voter, then
 - $\blacktriangleright \ \overline{W}_R = \left[a_R^{AS}, \lceil A_R \rceil \right]$
 - ▶ the *left* voter's equilibrium set of approved policies is her largest interval of approved policies constrained from the left by a_R^{AS} , or $\overline{W}_L = I_L(a_R^{AS}, 1)$
 - ▶ the equilibrium set of unanimously approved policies is $\overline{W} = \overline{W}_L$

Theorem 2: Case 1

Theorem 2

If [A1] and [A2] hold, then \overline{W}_L and \overline{W}_R are intervals. Almost surely, (1) if neither voter is significantly more persuadable than the other, then

$$\blacktriangleright \ \overline{W}_L = \left[\lfloor A_L\rfloor, b_L^{AS}\right] \text{ and } \overline{W}_R = \left[a_R^{AS}, \lceil A_R \rceil\right]$$

 \blacktriangleright equilibrium set of unanimously approved policies is $\overline{W} = [a_R^{AS}, b_L^{AS}]$

THEOREM 2, CASE 2

Theorem 2

If $[{\bf A1*}]$ and $[{\bf A2}]$ hold, then \overline{W}_L and \overline{W}_R are intervals. Almost surely,

- (2) if right voter is significantly more persuadable than left voter, then
 - $\blacktriangleright \ \overline{W}_R = \left[a_R^{AS}, \lceil A_R \rceil \right]$
 - ▶ the *left* voter's equilibrium set of approved policies is her largest interval of approved policies constrained from the left by a_R^{AS} , or $\overline{W}_L = I_L(a_R^{AS}, 1)$
 - \blacktriangleright the equilibrium set of unanimously approved policies is $\overline{W}=\overline{W}_L$

Theorem 2, Case 2.5

Theorem 2

If $[\mathbf{A1*}]$ and $[\mathbf{A2}]$ hold, then \overline{W}_L and \overline{W}_R are intervals. Almost surely, (2) if right voter is significantly more persuadable than left voter, then

- $\blacktriangleright \ \overline{W}_R = \left[a_R^{AS}, \lceil A_R \rceil \right]$
- ▶ the *left* voter's equilibrium set of approved policies is her largest interval of approved policies constrained from the left by a_R^{AS} , or $\overline{W}_L = I_L(a_R^{AS}, 1)$
- \blacktriangleright the equilibrium set of unanimously approved policies is $\overline{W}=\overline{W}_L$

Calculating Equilibrium Intervals of Approved Policies

identifying $(\overline{W}_L,\overline{W}_R)$ requires solving 2 (AUX) problems

algorithm:

- ▶ calculate $\rho_v := \int_{|A_L|}^{\lceil A_R \rceil} \alpha_v(x) d\mu_0(x)$ for each $v \in \{L, R\}$
 - \diamond if $\rho_R, \rho_L \leq 0$, neither voter is more persuadable than the other
 - solve 2x (AUX) problems to find a_R^{AS} and b_L^{AS}
 - \diamond if $\rho_R > 0 \ge \rho_L$, the *right* voter is significantly more persuadable
 - solve 1x (AUX) problem to find a_R^{AS}
 - solve 1x (AUX) problem to find $I_L(a_R^{AS}, 1)$
 - \diamond if $\rho_L > 0 \ge \rho_R$, the left voter is significantly more persuadable
 - solve 1x (AUX) problem to find b_L^{AS}
 - solve 1x (AUX) problem to find $I_R(-1, b_L^{AS})$

Extremism and Polarization

- \blacktriangleright voter with bliss point $v \in X \setminus [-\varepsilon, \varepsilon]$ becomes more extreme if |v| increases
- baseline electorate becomes more polarized if *left* and/or *right* voter becomes more extreme
 - \diamond most polarized electorate is L = -1 and R = 1
 - \diamond larger distance between L and R doesn't always imply higher polarization

More Extreme → More Persuadable

▶ as a voter becomes more extreme, she becomes more persuadable

Lemma 2

If $R < R' \le 1$, then $\left[a_R^{AS}, \lceil A_R \rceil\right] \subseteq \left[a_{R'}^{AS}, \lceil A_{R'} \rceil\right]$, with $a_R^{AS} \ge a_{R'}^{AS}$ and $\left\lceil A_R \right\rceil \le \left\lceil A_{R'} \right\rceil$; the former inequality is strict unless $a_R^{AS} = -1$.

THEOREM 3

Theorem 3: Comparative Statics

Suppose that L and R satisfy $[\mathbf{A1*}]$ and $[\mathbf{A2}]$. Then, as the right voter becomes more extreme,

- ▶ challenger's odds of winning increase;
- ▶ equilibrium set of unanimously approved policies shifts to the left.

Comparative Statics

Welfare and Regret

 \triangleright if v's set of approved states is W_v , her ex-ante utility is

$$\mathbb{E}_{\mu_0} \Big[\mathbb{1}(x \in W_v) \cdot \left(-|v-x| \right) + \mathbb{1}(x \in W_v^c) \cdot \left(-|v| + \varepsilon \right) \Big]$$

▶ subtract $-|v| + \varepsilon$ to get $\int_{W_v} \alpha_v(x) d\mu_0(x)$

Definition

Consider $v \in X$ and her set of approved policies W_v . Then, v's

- welfare is $\int_{W} \alpha_v(x) d\mu_0(x)$;
- ▶ amount of regret is $-\int_{W_v \setminus A_v} \alpha_v(x) d\mu_0(x)$.

COMMUNICATION BENCHMARKS

- ▶ full disclosure outcome (A_L, A_R)
 - ♦ also the challenger-worst equilibrium of baseline game
- ightharpoonup public disclosure outcome $\left(W_L^{PD},W_R^{PD}\right)$
 - challenger's odds of winning are zero
- ▶ targeted advertising outcome $(\overline{W}_L, \overline{W}_R)$

Welfare Comparison

	v's welfare	v's regret	challenger's odds of winning
full disclosure	$\int_{A_v} \alpha_v(x) d\mu_0(x) > 0$	0	0
public disclosure	$\int_{W_v^{PD}} \alpha_v(x) d\mu_0(x) \ge 0$	≥ 0	0
targeted advertising	$\int_{\overline{W}_v} \alpha_v(x) d\mu_0(x) = 0$	> 0	$\mu_0(\overline{W}_L \cap \overline{W}_R) > 0$

LARGE ELECTORATES AND UNWINNABLE ELECTIONS

- ▶ large electorate: set of bliss points $V = \{v_1, \dots, v_n\}$ with $v_1 \leq \dots \leq v_n$
- $\triangleright \mathcal{D}$ is set of decisive coalitions
 - \diamond challenger wins (and gets 1) iff he convinces every voter in some $D \in \mathcal{D}$

Lemma: Unwinnable Elections

The following statements are equivalent:

- \blacktriangleright election is unwinnable for the challenger without targeted advertising;
- ▶ no policy of the challenger is preferred to the status quo under complete information;
- ▶ there is no $D \in \mathcal{D}$ such that $v < -\varepsilon \ \forall v \in D \ \text{OR} \ v > \varepsilon \ \forall v \in D$.

UNWINNABLE ELECTIONS: EXAMPLE

▶ simple majority rule – which elections are unwinnable?

(version of the) Median Voter Theorem

Under simple majority rule, election is unwinnable for the challenger without targeted advertising if and only if the median voter's bliss point is in $[-\varepsilon, \varepsilon]$.

SWINGING LARGE UNWINNABLE ELECTIONS

- \triangleright for any (minimal) decisive coalition D, identify
 - $\diamond \text{ the left pivot: } L := \max_{v \in D \text{ s.t. } v < 0} v$
 - every other voter on the left is convinced if L is convinced
 - $\diamond \text{ the right pivot: } R := \min_{v \in D \text{ s.t. } v > 0} v$
 - every other voter on the right is convinced if R is convinced
- \triangleright solve baseline election for L and R
 - \diamond if L or R is in $[-\varepsilon, \varepsilon]$ then election remains unwinnable under TA
 - ♦ otherwise, use Theorem 2
- maximizing odds of winning requires doing this for every minimal winning coalition

Conclusion

- ▶ some elections are unwinnable without targeted advertising
 - (pivotal) voters prefer policies on opposite sides of status quo
- ▶ any such election can be won with targeted advertising
 - challenger makes each voter believe his policy is sufficient improvement over status quo
 - challenger wins if his policy is not too far from status quo
 - voters regret their choices
- ▶ if voters become more extreme, challenger's odds of winning increase

Thank You!