Murat Osmanoglu

• For a cartesian product set $A \times B = \{(x,y) | x \in A \land y \in B\}$, a binary relation from A to B is a subset of $A \times B$, i.e. $R \subseteq A \times B$

- For a cartesian product set $A \times B = \{(x,y) | x \in A \land y \in B\}$, a binary relation from A to B is a subset of $A \times B$, i.e. $R \subseteq A \times B$
- if $(a,b) \in R$, then a is said to be related to b by R, i.e aRb

- For a cartesian product set $A \times B = \{(x,y) | x \in A \land y \in B\}$, a binary relation from A to B is a subset of $A \times B$, i.e. $R \subseteq A \times B$
- if $(a,b) \in R$, then a is said to be related to b by R, i.e aRb
- Let A be the set of students and B be the set of courses

```
A = {Ahmet, Efe, Buse, Pelin, . . .}
B = {Math, Physics, Discrete, Algorithms, . . .}
```

- For a cartesian product set $A \times B = \{(x,y) | x \in A \land y \in B\}$, a binary relation from A to B is a subset of $A \times B$, i.e. $R \subseteq A \times B$
- if $(a,b) \in R$, then a is said to be related to b by R, i.e aRb
- Let A be the set of students and B be the set of courses

```
A = {Ahmet, Efe, Buse, Pelin, . . .}
B = {Math, Physics, Discrete, Algorithms, . . .}
```

Let R be the relation such that if student a is taking course b, $(a,b) \in R$.

- For a cartesian product set $A \times B = \{(x,y) | x \in A \land y \in B\}$, a binary relation from A to B is a subset of $A \times B$, i.e. $R \subseteq A \times B$
- if $(a,b) \in R$, then a is said to be related to b by R, i.e aRb
- Let A be the set of students and B be the set of courses

```
A = {Ahmet, Efe, Buse, Pelin, . . .}
B = {Math, Physics, Discrete, Algorithms, . . .}
```

Let R be the relation such that if student a is taking course b, $(a,b) \in R$.

(Ahmet, Physics) $\in R$, (Efe, Discrete) $\notin R$

$$R = \{(a, 1), (b, 2), (c, 2)\}$$

$$R = \{(a, 1), (b, 2), (c, 2)\}$$

$$R = \{(a, 1), (b, 2), (c, 2)\}$$

R	1	2
а	1	0
b	0	1
С	0	1

$$R = \{(a, 1), (b, 2), (c, 2)\}$$

R	1	2
а	1	0
b	0	1
С	0	1

$$R = \{(a, 1), (b, 2), (c, 2)\}$$

 the number of relations that can be defined from A to B:

$$2^{|A||B|}$$

A relation can be defined on a single set A as a subset of AxA

A relation can be defined on a single set A as a subset of AxA

$$A = \{1, 2, 3\}$$

$$R = \{(1, 1), (1, 2), (2, 2), (3, 2)\}$$

A relation can be defined on a single set A as a subset of AxA

$$A = \{1, 2, 3\}$$

$$R = \{(1, 1), (1, 2), (2, 2), (3, 2)\}$$

$$R \subseteq A \times B$$

R(A): the image of R, $R(A) = \{y \in B | (x, y) \in R, \exists x \in A\}$

$$R \subseteq A \times B$$
domain codomain

$$R(A)$$
: the image of R , $R(A) = \{y \in B | (x, y) \in R, \exists x \in A\}$

Function is a relation that satisfies two conditions:

$$R(A)$$
: the image of R , $R(A) = \{y \in B | (x, y) \in R, \exists x \in A\}$

Function is a relation that satisfies two conditions:

• for every element x of the domain, there is an element y in the codomain such that (x,y) is an element of the relation

$$R \subseteq A \times B$$
domain range

$$R(A)$$
: the image of R , $R(A) = \{y \in B | (x, y) \in R, \exists x \in A\}$

Function is a relation that satisfies two conditions:

• for every element x of the domain, there is an element y in the codomain such that (x,y) is an element of the relation

• for every element x of the domain, there is only one element y of the codomain such that (x,y) is an element of the relation

$$R \subseteq A \times B$$
domain codomain

$$R(A)$$
: the image of R , $R(A) = \{y \in B | (x, y) \in R, \exists x \in A\}$

Function is a relation that satisfies two conditions:

• for every element x of the domain, there is an element y in the codomain such that (x,y) is an element of the relation

Let
$$R \subseteq A \times B$$
 be the relation, $\forall x [(x \in A) \rightarrow (\exists y \in B \ s.t.(x,y) \in R)]$

• for every element x of the domain, there is only one element y of the codomain such that (x,y) is an element of the relation

$$R \subseteq A \times B$$
domain codomain

$$R(A)$$
: the image of R , $R(A) = \{y \in B | (x, y) \in R, \exists x \in A\}$

Function is a relation that satisfies two conditions:

• for every element x of the domain, there is an element y in the codomain such that (x,y) is an element of the relation

Let
$$R \subseteq A \times B$$
 be the relation, $\forall x [(x \in A) \rightarrow (\exists y \in B \ s.t.(x,y) \in R)]$

• for every element x of the domain, there is only one element y of the codomain such that (x,y) is an element of the relation

Let
$$R \subseteq A \times B$$
 be the relation, $\forall x[((x,y_1) \in R \land (x,y_2) \in R) \rightarrow (y_1 = y_2)]$

Reflexivity

Reflexivity

• A relation on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$

Reflexivity

• A relation on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$

$$R_1 = \{(1, 1), (1, 2), (2, 2), (3, 2), (3, 3)\}$$

R_2	1	2	3
1	1	0	0
2	0	1	0
3	0	1	1

Reflexivity

• A relation on a set A is called reflexive if $(a, a) \in R$ for every element $a \in A$

$$R_1 = \{(1, 1), (1, 2), (2, 2), (3, 2), (3, 3)\}$$

R_2	1	2	3
1	1	0	0
2	0	1	0
3	0	1	1

Symmetry

• A relation on a set A is called symmetric if $(a, b) \in R$, then $(b, a) \in R$

- A relation on a set A is called symmetric if $(a,b) \in R$, then $(b,a) \in R$
- If the relation is not symmetric, it is called asymmetric.

- A relation on a set A is called symmetric if $(a,b) \in R$, then $(b,a) \in R$
- If the relation is not symmetric, it is called asymmetric.
- If for all $(a,b) \in R$, $(b,a) \notin R$ or a=b, then it is called antisymmetric

- A relation on a set A is called symmetric if $(a,b) \in R$, then $(b,a) \in R$
- If the relation is not symmetric, it is called asymmetric.
- If for all $(a,b) \in R$, $(b,a) \notin R$ or a=b, then it is called antisymmetric

R_2	1	2	3	R_3
		0		
2	0	1	1	• 1
3	1	0	1	
	=			

$$R_1 = \{(1, 1), (1, 2), (2, 1), (3, 2), (3, 3)\}$$

<u>Symmetry</u>

- A relation on a set A is called symmetric if $(a,b) \in R$, then $(b,a) \in R$
- If the relation is not symmetric, it is called asymmetric.
- If for all $(a,b) \in R$, $(b,a) \notin R$ or a=b, then it is called antisymmetric

antisymmetric				
R_2	1	2	3	
1	1	0	0	
2	0	1	1	
3	1	0	1	

$$R_1 = \{(1, 1), (1, 2), (2, 1), (3, 2), (3, 3)\}$$
asymmetric

Transitivity

Transitivity

• A relation on a set A is called symmetric if $(a,b) \in R \land (b,c) \in R$, then $(a,c) \in R$

Transitivity

• A relation on a set A is called symmetric if $(a,b) \in R \land (b,c) \in R$, then $(a,c) \in R$

$$R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 1)\}$$

R_2	1	2	3
1	1	0	0
2	0	1	1
3	1	0	1

Transitivity

• A relation on a set A is called symmetric if $(a,b) \in R \land (b,c) \in R$, then $(a,c) \in R$

$$R_1 = \{(1, 1), (1, 2), (2, 1), (2, 2), (3, 2), (3, 1)\}$$

R_2	1	2	3
1	1	0	0
2	0	1	1
3	1	0	1

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

• Since $a \cdot a \ge 0$ for all $a \in Z$,

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

• Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$.

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

• Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

- Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.
- $[(a,b) \in R]$

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

- Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.
- $[(a,b) \in R] \to (a.b \ge 0) \to (b.a \ge 0)$

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

- Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.
- $[(a,b) \in R] \to (a.b \ge 0) \to (b.a \ge 0)$

 $\rightarrow R$ is symmetric

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

- Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.
- $[(a,b) \in R] \to (a.b \ge 0) \to (b.a \ge 0)$

 $\rightarrow R$ is symmetric

• $[(a,b) \in R \land (b,c) \in R]$

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

- Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.
- $[(a,b) \in R] \to (a,b \ge 0) \to (b,a \ge 0)$

 $\rightarrow R$ is symmetric

• $[(a,b) \in R \land (b,c) \in R] \rightarrow [(a,b \ge 0) \land (b,c \ge 0)]$

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

- Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.
- $[(a,b) \in R] \rightarrow (a.b \ge 0) \rightarrow (b.a \ge 0)$ $\rightarrow R \text{ is symmetric}$
- $[(a,b) \in R \land (b,c) \in R] \rightarrow [(a,b \ge 0) \land (b,c \ge 0)]$

$$\rightarrow (a.b.b.c \ge 0)$$

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

- Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.
- $[(a,b) \in R] \to (a,b \ge 0) \to (b,a \ge 0)$

 $\rightarrow R$ is symmetric

•
$$[(a,b) \in R \land (b,c) \in R] \rightarrow [(a.b \ge 0) \land (b.c \ge 0)]$$

 $\rightarrow (a.b.b.c \ge 0)$
 $\rightarrow (a.c \ge 0)$

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

- Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.
- $[(a,b) \in R] \to (a.b \ge 0) \to (b.a \ge 0)$

 $\rightarrow R$ is symmetric

•
$$[(a,b) \in R \land (b,c) \in R] \rightarrow [(a.b \ge 0) \land (b.c \ge 0)]$$

 $\rightarrow (a.b.b.c \ge 0)$
 $\rightarrow (a.c \ge 0)$
 $\rightarrow (a,c) \in R$

Let R be a relation on Z such that $(a, b) \in R$ if $a, b \ge 0$

- Since $a \cdot a \ge 0$ for all $a \in Z$, $(a, a) \in R$ for all $a \in Z$. Thus, R is reflexive.
- $[(a,b) \in R] \to (a.b \ge 0) \to (b.a \ge 0)$

 $\rightarrow R$ is symmetric

•
$$[(a,b) \in R \land (b,c) \in R] \rightarrow [(a,b \ge 0) \land (b,c \ge 0)]$$

$$\rightarrow$$
 (a.b.b.c \geq 0)

$$\rightarrow$$
 (a. $c \ge 0$)

$$\rightarrow$$
 $(a,c) \in R$

 $\rightarrow R$ is transitive

Consider the division operator, $\prime | \prime$, as a relation on integers :

$$(a,b) \in '|' \rightarrow a \mid b$$

Consider the division operator, $\prime | \prime$, as a relation on integers :

$$(a,b) \in '|' \rightarrow a \mid b$$

• Since $a \mid a$, $(a, a) \in '|'$ for all $a \in Z$.

Consider the division operator, '|', as a relation on integers : $(a,b) \in '|' \rightarrow a \mid b$

• Since $a \mid a$, $(a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.

Consider the division operator, '|', as a relation on integers: $(a,b) \in '|' \rightarrow a \mid b$

- Since $a \mid a$, $(a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.
- $[(a,b) \in '|']$

Consider the division operator, '|', as a relation on integers : $(a,b) \in '|' \rightarrow a \mid b$

- Since $a \mid a, (a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.
- $[(a,b) \in '|'] \rightarrow (a \mid b)$

Consider the division operator, '|', as a relation on integers : $(a,b) \in '|' \rightarrow a \mid b$

- Since $a \mid a, (a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.
- $[(a,b) \in '|'] \rightarrow (a \mid b) \rightarrow (either \ a = b \text{ or } b \nmid a)$

Consider the division operator, '|', as a relation on integers:

$$(a,b) \in '|' \to a \mid b$$

- Since $a \mid a$, $(a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.
- $[(a,b) \in '|'] \rightarrow (a \mid b) \rightarrow (either \ a = b \text{ or } b \nmid a)$
 - \rightarrow '|' is antisymmetric

Consider the division operator, $|\cdot|$, as a relation on integers:

$$(a,b) \in '|' \rightarrow a \mid b$$

- Since $a \mid a$, $(a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.
- $[(a,b) \in '|'] \rightarrow (a \mid b) \rightarrow (either \ a = b \text{ or } b \nmid a)$ $\rightarrow '|' \text{ is antisymmetric}$
- $[(a,b) \in '|' \land (b,c) \in '|']$

Consider the division operator, '|', as a relation on integers:

$$(a,b) \in '|' \rightarrow a \mid b$$

- Since $a \mid a, (a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.
- $[(a,b) \in '|'] \rightarrow (a \mid b) \rightarrow (either \ a = b \text{ or } b \nmid a)$ $\rightarrow '|' \text{ is antisymmetric}$
- $[(a,b) \in '|' \land (b,c) \in '|'] \rightarrow [(a \mid b) \land (b \mid c)]$

Consider the division operator, '|', as a relation on integers:

$$(a,b) \in '|' \rightarrow a \mid b$$

- Since $a \mid a, (a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.
- $[(a,b) \in '|'] \rightarrow (a \mid b) \rightarrow (either \ a = b \text{ or } b \nmid a)$ $\rightarrow '|' \text{ is antisymmetric}$
- $[(a,b) \in '|' \land (b,c) \in '|'] \to [(a \mid b) \land (b \mid c)]$ $\to [b = x. a \land c = y. b, \exists x, y \in Z]$

Consider the division operator, $|\cdot|$, as a relation on integers:

$$(a,b) \in '|' \rightarrow a \mid b$$

- Since $a \mid a, (a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.
- $[(a,b) \in '|'] \rightarrow (a \mid b) \rightarrow (either \ a = b \text{ or } b \nmid a)$ $\rightarrow '|' \text{ is antisymmetric}$
- $[(a,b) \in '|' \land (b,c) \in '|'] \rightarrow [(a \mid b) \land (b \mid c)]$ $\rightarrow [b = x. a \land c = y. b, \exists x, y \in Z]$ $\rightarrow (c = x. y. a)$

Consider the division operator, $\prime | \prime$, as a relation on integers :

$$(a,b) \in '|' \rightarrow a \mid b$$

- Since $a \mid a, (a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.
- $[(a,b) \in '|'] \rightarrow (a \mid b) \rightarrow (either \ a = b \text{ or } b \nmid a)$ $\rightarrow '|' \text{ is antisymmetric}$
- $[(a,b) \in '|' \land (b,c) \in '|'] \rightarrow [(a \mid b) \land (b \mid c)]$ $\rightarrow [b = x. a \land c = y. b, \exists x, y \in Z]$ $\rightarrow (c = x. y. a)$ $\rightarrow a \mid c \rightarrow (a,c) \in '|'$

Consider the division operator, $\prime | \prime$, as a relation on integers :

$$(a,b) \in '|' \rightarrow a \mid b$$

- Since $a \mid a, (a, a) \in '|'$ for all $a \in Z$. Thus, '|' is reflexive.
- $[(a,b) \in '|'] \rightarrow (a \mid b) \rightarrow (either \ a = b \text{ or } b \nmid a)$
 - \rightarrow '|' is antisymmetric

•
$$[(a,b) \in '|' \land (b,c) \in '|'] \rightarrow [(a \mid b) \land (b \mid c)]$$

$$\rightarrow [b = x. a \land c = y. b, \exists x, y \in Z]$$

$$\rightarrow$$
 (c = x . y . a)

$$\rightarrow a \mid c \rightarrow (a, c) \in ' \mid '$$

 \rightarrow '|' is transitive

•
$$A = \{1, 2, ..., n\}$$

- $A = \{1, 2, ..., n\}$
- there are $|AxA| = n^2$ pairs

- $A = \{1, 2, ..., n\}$
- there are $|AxA| = n^2$ pairs
- a reflexive relation must contain the pairs (1, 1), ..., (n, n)

- $A = \{1, 2, ..., n\}$
- there are $|AxA| = n^2$ pairs
- a reflexive relation must contain the pairs (1, 1), . . . , (n, n)
- take these pairs out, (n^2-n) remaining pairs

- $A = \{1, 2, ..., n\}$
- there are $|AxA| = n^2$ pairs
- a reflexive relation must contain the pairs (1, 1), ..., (n, n)
- take these pairs out, (n^2-n) remaining pairs
- $2^{(n^2-n)}$ different relations can be formed with the (n^2-n) remaining pairs

- $A = \{1, 2, ..., n\}$
- there are $|AxA| = n^2$ pairs
- a reflexive relation must contain the pairs (1, 1), ..., (n, n)
- take these pairs out, (n^2-n) remaining pairs
- $2^{(n^2-n)}$ different relations can be formed with the (n^2-n) remaining pairs
- add each of them the pairs (1, 1), ..., (n, n) to make them reflexive

How many symmetric relations can be defined on a set A of n elements?

How many symmetric relations can be defined on a set A of n elements?

•
$$A = \{1, 2, ..., n\}$$

How many symmetric relations can be defined on a set A of n elements?

- $A = \{1, 2, ..., n\}$
- there are $|AxA| = n^2$ pairs

How many symmetric relations can be defined on a set A of n elements?

•
$$A = \{1, 2, ..., n\}$$

$$A_1 = \{(a_i, a_i) | 1 \le i \le n\}$$
 $A_2 = \{(a_i, a_j) | 1 \le i, j \le n \text{ and } i \ne j\}$

How many symmetric relations can be defined on a set A of n elements?

•
$$A = \{1, 2, ..., n\}$$

$$A_1 = \{(a_i, a_i) | 1 \le i \le n\}$$
 $A_2 = \{(a_i, a_j) | 1 \le i, j \le n \text{ and } i \ne j\}$
 $|A_1| = n$ $|A_2| = n^2 - n$

How many symmetric relations can be defined on a set A of n elements?

•
$$A = \{1, 2, ..., n\}$$

$$A_{1} = \{(a_{i}, a_{i}) | 1 \leq i \leq n\}$$

$$|A_{2}| = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n \text{ and } i \neq j\}$$

$$|A_{1}| = n$$

$$|A_{2}| = n^{2} - n$$

$$A_{3} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n,$$

$$i \neq j, and (a_{j}, a_{i}) \notin A_{3}\}$$

How many symmetric relations can be defined on a set A of n elements?

How many subsets of the set (a b c

- $A = \{1, 2, ..., n\}$
- there are $|AxA| = n^2$ pairs

 How many subsets of the set {a,b,c,d} with the cardinality 3 contains the element a?

$$A_{1} = \{(a_{i}, a_{i}) | 1 \leq i \leq n\}$$

$$|A_{2}| = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n \text{ and } i \neq j\}$$

$$|A_{1}| = n$$

$$|A_{2}| = n^{2} - n$$

$$A_{3} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n,$$

$$i \neq j, and (a_{j}, a_{i}) \notin A_{3}\}$$

How many symmetric relations can be defined on a set A of n

elements?

•
$$A = \{1, 2, ..., n\}$$

• there are $|AxA| = n^2$ pairs

 How many subsets of the set {a,b,c,d} with the cardinality 3 contains the element a?

$$\{a, . , .\}$$

$$A_{1} = \{(a_{i}, a_{i}) | 1 \leq i \leq n\}$$

$$A_{2} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n \text{ and } i \neq j\}$$

$$|A_{1}| = n$$

$$|A_{2}| = n^{2} - n$$

$$A_{3} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n,$$

$$i \neq j, and (a_{j}, a_{i}) \notin A_{3}\}$$

How many symmetric relations can be defined on a set A of n

elements?

•
$$A = \{1, 2, ..., n\}$$

• there are $|A \times A| = n^2$ pairs

 How many subsets of the set {a,b,c,d} with the cardinality 3 contains the element a?

$$\{a, \ldots, a\} \qquad {4 \choose 2} = 6$$

$$A_1 = \{(a_i, a_i) | 1 \le i \le n\}$$

 $|A_1| = n$

$$A_2 = \{(a_i, a_j) | 1 \le i, j \le n \text{ and } i \ne j\}$$

 $|A_2| = n^2 - n$

$$A_3 = \{(a_i, a_j) | 1 \le i, j \le n, \\ i \ne j, and (a_j, a_i) \notin A_3 \}$$

How many symmetric relations can be defined on a set A of n elements?

•
$$A = \{1, 2, ..., n\}$$

$$A_{1} = \{(a_{i}, a_{i}) | 1 \leq i \leq n\}$$

$$|A_{1}| = n$$

$$A_{2} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n \text{ and } i \neq j\}$$

$$|A_{2}| = n^{2} - n$$

$$A_{3} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n,$$

$$i \neq j, and (a_{j}, a_{i}) \notin A_{3}\}$$

$$|A_{3}| = (n^{2} - n)/2$$

How many symmetric relations can be defined on a set A of n elements?

•
$$A = \{1, 2, ..., n\}$$

$$A_{1} = \{(a_{i}, a_{i}) | 1 \leq i \leq n\}$$

$$|A_{1}| = n$$

$$A_{2} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n \text{ and } i \neq j\}$$

$$|A_{2}| = n^{2} - n$$

$$A_{3} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n,$$

$$i \neq j, and (a_{j}, a_{i}) \notin A_{3}\}$$

$$|A_{3}| = (n^{2} - n)/2$$

How many symmetric relations can be defined on a set A of n elements?

•
$$A = \{1, 2, ..., n\}$$

$$A_{1} = \{(a_{i}, a_{i}) | 1 \leq i \leq n\}$$

$$|A_{1}| = n$$

$$A_{2} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n \text{ and } i \neq j\}$$

$$|A_{2}| = n^{2} - n$$

$$A_{3} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n,$$

$$i \neq j, and (a_{j}, a_{i}) \notin A_{3}\}$$

$$|A_{3}| = (n^{2} - n)/2$$

How many symmetric relations can be defined on a set A of n elements?

- $A = \{1, 2, ..., n\}$
- there are $|AxA| = n^2$ pairs

$$A_{1} = \{(a_{i}, a_{i}) | 1 \leq i \leq n\}$$

$$|A_{2}| = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n \text{ and } i \neq j\}$$

$$|A_{2}| = n^{2} - n$$

$$|A_{3}| = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n,$$

$$|A_{3}| = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n,$$

$$|A_{3}| = (n^{2} - n)/2$$

$$(2n 2^{\frac{n^{2} - n}{2}})$$

How many symmetric relations can be defined on a set A of n elements?

•
$$A = \{1, 2, ..., n\}$$

• there are $|A \times A| = n^2$ pairs

$$A_{1} = \{(a_{i}, a_{i}) | 1 \leq i \leq n\}$$

$$A_{2} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n \text{ and } i \neq j\}$$

$$|A_{1}| = n$$

$$|A_{2}| = n^{2} - n$$

$$A_{3} = \{(a_{i}, a_{j}) | 1 \leq i, j \leq n,$$

$$i \neq j, \text{ and } (a_{j}, a_{i}) \notin A_{3}\}$$

$$|A_{3}| = (n^{2} - n)/2$$

$$\left(2^{n} 2^{\frac{n^{2} - n}{2}}\right) = 2^{(n^{2} + n)/2}$$

<u>Union</u>: Given $R, S \subseteq A \times B$,

$$T = R \cup S = \{(x, y) | (x, y) \in R \lor (x, y) \in S\}$$

<u>Union</u>: Given $R, S \subseteq A \times B$,

$$T = R \cup S = \{(x, y) | (x, y) \in R \lor (x, y) \in S\}$$

Intersection: Given $R, S \subseteq A \times B$,

$$T = R \cap S = \{(x, y) | (x, y) \in R \land (x, y) \in S\}$$

<u>Union</u>: Given $R, S \subseteq A \times B$,

$$T = R \cup S = \{(x, y) | (x, y) \in R \lor (x, y) \in S\}$$

Intersection: Given $R, S \subseteq A \times B$,

$$T = R \cap S = \{(x, y) | (x, y) \in R \land (x, y) \in S\}$$

Complement: Given $R \subseteq A \times B$,

$$T = \overline{R} = \{(x, y) | (x, y) \notin R \}$$

<u>Union</u>: Given $R, S \subseteq A \times B$,

$$T = R \cup S = \{(x, y) | (x, y) \in R \lor (x, y) \in S\}$$

Intersection: Given $R, S \subseteq A \times B$,

$$T = R \cap S = \{(x, y) | (x, y) \in R \land (x, y) \in S\}$$

Complement: Given $R \subseteq A \times B$,

$$T = \overline{R} = \{(x, y) | (x, y) \notin R \}$$

Inverse: Given $R \subseteq A \times B$,

$$T = R^{-1} = \{(y, x) \in B \times A | (x, y) \in R \}$$

<u>Union</u>: Given $R, S \subseteq A \times B$,

$$T = R \cup S = \{(x, y) | (x, y) \in R \lor (x, y) \in S\}$$

Intersection: Given $R, S \subseteq A \times B$,

$$T = R \cap S = \{(x, y) | (x, y) \in R \land (x, y) \in S\}$$

Complement: Given $R \subseteq A \times B$,

$$T = \overline{R} = \{(x, y) | (x, y) \notin R \}$$

Inverse: Given $R \subseteq A \times B$,

$$T = R^{-1} = \{(y, x) \in B \times A | (x, y) \in R \}$$

<u>Composition</u>: Given $R \subseteq A \times B$ and $S \subseteq B \times C$

$$T = S \circ R = \{(x, z) | (x, y) \in R \land (y, z) \in S\}$$

R	1	2
а	1	0
b	0	1
С	1	0

5	u	٧
1	0	0
2	1	1

R	1	2
а	1	0
b	0	1
С	1	0

S ₀ R	u	٧
α		
b		
С		

5	J	٧
1	0	0
2	1	1

R	1	2
а	1	0
b	0	1
С	1	0

S ₀ R	J	٧
a	0	
b		
С		

5	J	V
1	0	0
2	1	1

R	1	2
а	1	0
b	0	1
С	1	0

S ₀ R	u	٧
a	0	0
b		
С		

5	u	٧
1	0	0
2	1	1

R	1	2
а	1	0
b	0	1
С	1	0

S ₀ R	u	٧
a	0	0
b	1	
С		

5	J	٧
1	0	0
2	1	1

R	1	2
а	1	0
b	0	1
С	1	0

S ₀ R	u	٧
a	0	0
b	1	1
С		

5	u	V
1	0	0
2	1	1

R	1	2
а	1	0
b	0	1
С	1	0

S ₀ R	u	٧
a	0	0
b	1	1
С	0	0

S	u	V
1	0	0
2	1	1

R	1	2
а	1	0
b	0	1
С	1	0

S ₀ R	u	٧
a	0	0
b	1	1
С	0	0

5	J	V
1	0	0
2	1	1

S^{-1}	1	2
u	0	1
V	0	1

•
$$A = \{1, 2, 3\}, R = \{(1, 1), (2, 1), (3, 2)\}$$

R	1	2	3
1	1	0	0
2	1	0	0
3	0	1	0

R	1	2	3	R	1	2	3
1	1	0	0	1	1	0	0
2	1	0	0	2	1	0	0
3	0	1	0	3	0	1	0

R 1 2 3 R 1 2 3 RoR 1 2 1 1 0 0 1 1 0 0 1 2 1 0 0 2 1 0 0 2	
2 1 0 0 2 1 0 0 2	
3 0 1 0 3 0 1 0 3	

R	1	2	3	R	1	2	3		RoR	1	2	3
1(1	0	0	R 1 2	1	0	0	-	1	1		
2	1	0	0	2	1	0	0		2			
3	0	1	0	3	0	1	0		3			
'	I					'						

		3	K	1	(4)	3	R∘R	1	2	3
1 1	0	0	1	1	0	0	1	1		
2 1	0	0	2	1	0	0	2			
3 0	1	0	3	0	1	0	RoR 1 2 3			

R	1	2	3	R	1	2	3	RoR	1	2	3
1(1	0	0	1	1	0	0	1	1	0	
2	1	0	0	2	1	0	0	2			
3	0	1	0	3	0	1	0	RoR 1 2 3			

R 1 2 3 R 1 2 3 R 1 1 0 0 1 1 0 0 1		
	1 1 0	
2 1 0 0 2 1 0 0 2	2	
3 0 1 0 3 0 1 0 3	3	

R	1	2	3	R	1	2	3	RoR	1	2	3
1(1	0	0	1	1	0	0	1			
2	1	0	0	2	1	0	0	2			
3	0	1	0	3	0	1	0	3			

R	1	2	3	R	1	2	3		R∘R	1	2	3
1	1	0	0	1	1	0	0	_	1	1	0	0
2	1	0	0	2	1	0	0		2	1	0	0
3	0	1	0	3	0	1	0		3	0	1	0

Operations

• $A = \{1, 2, 3\}, R = \{(1, 1), (2, 1), (3, 2)\}$

R	1	2	3	R	1	2	3	RoR	1	2	3
1	1	0	0	1	1	0	0	1	1	0	0
2	1	0	0	2	1	0	0	2	1	0	0
3	0	1	0	3	0	1	0	3	0	1	0

•
$$R^2 = R \circ R = \{(1,1), (2,1), (3,2)\}$$

Operations

• $A = \{1, 2, 3\}, R = \{(1, 1), (2, 1), (3, 2)\}$

R	1	2	3	R	1	2	3	RoR	1	2	3
1	1	0	0	1	1	0	0	1	1	0	0
2	1	0	0	2	1	0	0	2	1	0	0
3	0	1	0	3	0	1	0	3	0	1	0

•
$$R^2 = R \circ R = \{(1,1), (2,1), (3,2)\}$$

 $R^3 = R^2 \circ R = \{(1,1), (2,1), (3,2)\}$

Operations

• $A = \{1, 2, 3\}, R = \{(1, 1), (2, 1), (3, 2)\}$

R	1	2	3	R	1	2	3	R∘R	1	2	3
1	1	0	0	1	1	0	0	1	1	0	0
2	1	0	0	2	1	0	0	2	1	0	0
3	0	1	0	3	0	1	0	3	0	1	0

•
$$R^2 = R \circ R = \{(1, 1), (2, 1), (3, 2)\}$$

 $R^3 = R^2 \circ R = \{(1, 1), (2, 1), (3, 2)\}$

• The relation R on a set A is transitive if and only if $R^n \subseteq R$ for some $n \in Z^+$

<u>Definition</u>: A relation R on a set A is called an equivalence relation if it's reflexive, symmetric, and transitive. If $(a, b) \in R$, then a and b are called equivalent, i.e. $a \sim b$.

• Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a - b is an integer. R is an equivalence relation?

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a b is an integer. R is an equivalence relation?
 - $\forall a \in \mathbb{R}$, since $a a = 0 \in \mathbb{Z}$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a b is an integer. R is an equivalence relation?
 - $\forall a \in \mathbb{R}$, since $a a = 0 \in \mathbb{Z}$, $(a, a) \in R$ (reflexive)

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a b is an integer. R is an equivalence relation?
 - $\forall a \in \mathbb{R}$, since $a a = 0 \in \mathbb{Z}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R]$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a b is an integer. R is an equivalence relation?
 - $\forall a \in \mathbb{R}$, since $a a = 0 \in \mathbb{Z}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a-b \in \mathbb{Z}]$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a b is an integer. R is an equivalence relation?
 - $\forall a \in \mathbb{R}$, since $a a = 0 \in \mathbb{Z}$, $(a, a) \in R$ (reflexive)

-
$$[(a,b) \in R] \rightarrow [a-b \in \mathbb{Z}]$$

 $\rightarrow [b-a \in \mathbb{Z}]$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a b is an integer. R is an equivalence relation?
 - $\forall a \in \mathbb{R}$, since $a a = 0 \in \mathbb{Z}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a-b \in \mathbb{Z}]$ $\rightarrow [b-a \in \mathbb{Z}] \rightarrow [(b,a) \in R]$ (symmetric)

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a b is an integer. R is an equivalence relation?
 - $\forall a \in \mathbb{R}$, since $a a = 0 \in \mathbb{Z}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a-b \in \mathbb{Z}]$ $\rightarrow [b-a \in \mathbb{Z}] \rightarrow [(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R]$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a b is an integer. R is an equivalence relation?
 - $\forall a \in \mathbb{R}$, since $a a = 0 \in \mathbb{Z}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a-b \in \mathbb{Z}]$ $\rightarrow [b-a \in \mathbb{Z}] \rightarrow [(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow [a-b \in \mathbb{Z} \land b-c \in \mathbb{Z}]$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a b is an integer. R is an equivalence relation?
 - $\forall a \in \mathbb{R}$, since $a a = 0 \in \mathbb{Z}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a-b \in \mathbb{Z}]$ $\rightarrow [b-a \in \mathbb{Z}] \rightarrow [(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow [a-b \in \mathbb{Z} \land b-c \in \mathbb{Z}]$ $\rightarrow [a-c \in \mathbb{Z}]$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if a b is an integer. R is an equivalence relation?
 - $\forall a \in \mathbb{R}$, since $a a = 0 \in \mathbb{Z}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a-b \in \mathbb{Z}]$ $\rightarrow [b-a \in \mathbb{Z}] \rightarrow [(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow [a-b \in \mathbb{Z} \land b-c \in \mathbb{Z}]$ $\rightarrow [a-c \in \mathbb{Z}] \rightarrow [(a,c) \in R]$ (transitive)

<u>Definition</u>: A relation R on a set A is called an equivalence relation if it's reflexive, symmetric, and transitive. If $(a, b) \in R$, then a and b are called equivalent, i.e. $a \sim b$.

• Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b \pmod{m}$. R is an equivalence relation?

- Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b \pmod{m}$. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since $a \equiv a \pmod{m}$

- Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b \pmod{m}$. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since $a \equiv a \pmod{m}$, $(a, a) \in R$ (reflexive)

- Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b \pmod{m}$. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since $a \equiv a \pmod{m}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a \equiv b \pmod{m}]$

- Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b \pmod{m}$. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since $a \equiv a \pmod{m}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a \equiv b \pmod{m}]$ $\rightarrow [b \equiv a \pmod{m}]$

- Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b \pmod{m}$. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since $a \equiv a \pmod{m}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a \equiv b \pmod{m}]$ $\rightarrow [b \equiv a \pmod{m}] \rightarrow [(b,a) \in R]$ (symmetric)

- Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b \pmod{m}$. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since $a \equiv a \pmod{m}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a \equiv b \pmod{m}]$ $\rightarrow [b \equiv a \pmod{m}] \rightarrow [(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R]$

- Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b \pmod{m}$. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since $a \equiv a \pmod{m}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a \equiv b \pmod{m}]$ $\rightarrow [b \equiv a \pmod{m}] \rightarrow [(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow [a \equiv b \pmod{m} \land b \equiv c \pmod{m}]$

- Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b \pmod{m}$. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since $a \equiv a \pmod{m}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a \equiv b \pmod{m}]$ $\rightarrow [b \equiv a \pmod{m}] \rightarrow [(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow [a \equiv b \pmod{m} \land b \equiv c \pmod{m}]$ $\rightarrow [a \equiv c \pmod{m}]$

- Let R be a relation defined on integers such that $(a, b) \in R$ if and only if $a \equiv b \pmod{m}$. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since $a \equiv a \pmod{m}$, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow [a \equiv b \pmod{m}]$ $\rightarrow [b \equiv a \pmod{m}] \rightarrow [(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow [a \equiv b \pmod{m} \land b \equiv c \pmod{m}.]$ $\rightarrow [a \equiv c \pmod{m}] \rightarrow [(a,c) \in R]$ (transitive)

<u>Definition</u>: A relation R on a set A is called an equivalence relation if it's reflexive, symmetric, and transitive. If $(a, b) \in R$, then a and b are called equivalent, i.e. $a \sim b$.

• Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since |a-a|=0<1

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since |a a| = 0 < 1, $(a, a) \in R$ (reflexive)

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since |a a| = 0 < 1, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R]$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since |a a| = 0 < 1, $(a, a) \in R$ (reflexive)
 - [(a,b) ∈ R] → [|a-b| < 1]

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since |a a| = 0 < 1, $(a, a) \in R$ (reflexive)

-
$$[(a,b) \in R]$$
 → $[|a-b| < 1]$
 → $[|b-a| < 1]$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since |a a| = 0 < 1, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R]$ → [|a-b| < 1]→ [|b-a| < 1] → $[(b,a) \in R]$ (symmetric)

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since |a a| = 0 < 1, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R]$ → [|a-b| < 1]→ [|b-a| < 1] → $[(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R]$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since |a a| = 0 < 1, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R]$ → [|a-b| < 1]→ [|b-a| < 1] → $[(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R]$ → $[|a-b| < 1 \land |b-c| < 1]$

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since |a a| = 0 < 1, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R]$ → [|a-b| < 1]→ [|b-a| < 1] → $[(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow [|a-b| < 1 \land |b-c| < 1]$ for $a=1,b=\frac{1}{10}$, and $c=-\frac{2}{10}$

<u>Definition</u>: A relation R on a set A is called an equivalence relation if it's reflexive, symmetric, and transitive. If $(a, b) \in R$, then a and b are called equivalent, i.e. $a \sim b$.

- Let R be a relation defined on real numbers such that $(a,b) \in R$ if and only if |a-b| < 1. R is an equivalence relation?
 - $\forall a \in \mathbb{Z}$, since |a a| = 0 < 1, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R]$ → [|a-b| < 1]→ [|b-a| < 1] → $[(b,a) \in R]$ (symmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow [|a-b| < 1 \land |b-c| < 1]$ for $a = 1, b = \frac{1}{10}$, and $c = -\frac{2}{10}$ |a-b| < 1 and |b-c| < 1, but |a-c| > 1 (not transitive)

$$[a]_R = \{ s \in A | (a, s) \in R \}$$

<u>Definition</u>: Let R be an equivalence relation on a set A. The set of all elements related to an element a is called the equivalence class of a, denoted by $[a]_R$

$$[a]_R = \{ s \in A | (a, s) \in R \}$$

 What are the equivalence classes of 2 and 1 for the congruence relation of module 5?

$$[a]_R = \{ s \in A | (a, s) \in R \}$$

- What are the equivalence classes of 2 and 1 for the congruence relation of module 5?
 - (2, s) ∈ R

$$[a]_R = \{ s \in A | (a, s) \in R \}$$

- What are the equivalence classes of 2 and 1 for the congruence relation of module 5?
 - $(2,s) \in R \rightarrow 2 \equiv s \pmod{5}$

$$[a]_R = \{ s \in A | (a, s) \in R \}$$

- What are the equivalence classes of 2 and 1 for the congruence relation of module 5?
 - $(2,s) \in R \to 2 \equiv s \pmod{5} \to 5 \mid (2-a)$

$$[a]_R = \{ s \in A | (a, s) \in R \}$$

- What are the equivalence classes of 2 and 1 for the congruence relation of module 5?
 - $(2,s) \in R \to 2 \equiv s \pmod{5} \to 5 \mid (2-a)$
 - $[2]_R = \{..., -3, 2, 7, 12, ...\}$

$$[a]_R = \{ s \in A | (a, s) \in R \}$$

- What are the equivalence classes of 2 and 1 for the congruence relation of module 5?
 - $(2,s) \in R \to 2 \equiv s \pmod{5} \to 5 \mid (2-a)$
 - $[2]_R = \{..., -3, 2, 7, 12, ...\}$
 - $[1]_R = \{..., -4, 1, 6, 11, ...\}$

• Let R_n be a relation on the set of strings built with $\{0,1\}$.

$$(s,t) \in R_n$$
 if $s = t$,

$$(s,t) \in R_n$$
 if $s=t$, or $l(s), l(t) \ge n$ and $s[1..n] = t[1..n]$

$$(s,t) \in R_n \qquad \text{if} \qquad s=t,$$

$$\text{or } l(s), l(t) \geq n \text{ and } s[1..n] = t[1..n]$$

$$\text{length of } s \qquad \text{first n bits of } s$$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

$$(s,t) \in R_n \qquad \text{if} \qquad \mathbf{s} = \mathbf{t},$$

$$\text{or } l(s), l(t) \geq n \text{ and } s[1..n] = t[1..n]$$

$$\text{length of s} \qquad \text{first n bits of } s$$

• $(01,01) \in R_3$, $(11,10) \notin R_3$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

$$(s,t) \in R_n \qquad \text{if} \qquad \mathbf{s} = \mathbf{t},$$

$$\text{or } l(s), l(t) \geq n \text{ and } s[1..n] = t[1..n]$$

$$\text{length of } \mathbf{s} \qquad \text{first n bits of } \mathbf{s}$$

• $(01,01) \in R_3$, $(11,10) \notin R_3$ $(101,101) \in R_3$, $(101,110) \notin R_3$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

$$(s,t) \in R_n \qquad \text{if} \qquad s=t,$$

$$\text{or } l(s), l(t) \geq n \text{ and } s[1..n] = t[1..n]$$

$$\text{length of } s \qquad \text{first n bits of } s$$

• $(01,01) \in R_3$, $(11,10) \notin R_3$ $(101,101) \in R_3$, $(101,110) \notin R_3$ $(0111,0110) \in R_3$, $(1101,1011) \notin R_3$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

$$(s,t) \in R_n \qquad \text{if} \qquad \mathbf{s} = \mathbf{t},$$

$$\text{or } l(s), l(t) \geq n \text{ and } s[1..n] = t[1..n]$$

$$\text{length of s} \qquad \text{first n bits of s}$$

• $(01,01) \in R_3$, $(11,10) \notin R_3$ $(101,101) \in R_3$, $(101,110) \notin R_3$ $(0111,0110) \in R_3$, $(1101,1011) \notin R_3$ $(01001,0101111000) \in R_3$, $(1100,10011111) \notin R_3$

$$(s,t) \in R_n$$
 if $s=t$, or $l(s), l(t) \ge n$ and $s[1..n] = t[1..n]$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

• for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)
- if $(a,b) \in R_3$,

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)
- if $(a,b) \in R_3$, either a = b or a[1...3] = b[1...3]

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)
- if $(a,b) \in R_3$, either a=b or a[1..3]=b[1..3]thus $(b,a) \in R_3$ (symmetric)

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)
- if $(a,b) \in R_3$, either a = b or a[1..3] = b[1..3]thus $(b,a) \in R_3$ (symmetric)
- if $(a,b) \in R_3 \land (b,c) \in R_3$,

```
(s,t) \in R_n if s=t,  \text{or } l(s), l(t) \ge n \text{ and } s[1..n] = t[1..n]
```

- for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)
- if $(a,b) \in R_3$, either a = b or a[1..3] = b[1..3]thus $(b,a) \in R_3$ (symmetric)
- if $(a,b) \in R_3 \land (b,c) \in R_3$, either a=b and b=c, or a=b and b[1...3]=c[1...3], or a[1...3]=b[1...3] and b=c, or a[1...3]=b[1...3] and b[1...3]=c[1...3],

```
(s,t) \in R_n if s=t,  \text{or } l(s), l(t) \ge n \text{ and } s[1..n] = t[1..n]
```

- for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)
- if $(a,b) \in R_3$, either a = b or a[1..3] = b[1..3]thus $(b,a) \in R_3$ (symmetric)
- if $(a,b) \in R_3 \land (b,c) \in R_3$, either a = b and b = c, then a = cor a = b and b[1...3] = c[1...3], or a[1...3] = b[1...3] and b = c, or a[1...3] = b[1...3] and b[1...3] = c[1...3],

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)
- if $(a,b) \in R_3$, either a = b or a[1..3] = b[1..3]thus $(b,a) \in R_3$ (symmetric)
- if $(a,b) \in R_3 \land (b,c) \in R_3$, either a=b and b=c, then a=cor a=b and b[1...3]=c[1...3], then a[1...3]=c[1...3]or a[1...3]=b[1...3] and b=c, or a[1...3]=b[1...3] and b[1...3]=c[1...3],

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)
- if $(a,b) \in R_3$, either a = b or a[1..3] = b[1..3]thus $(b,a) \in R_3$ (symmetric)
- if $(a,b) \in R_3 \land (b,c) \in R_3$, either a=b and b=c, then a=cor a=b and b[1...3]=c[1...3], then a[1...3]=c[1...3]or a[1...3]=b[1...3] and b=c, then a[1...3]=c[1...3]or a[1...3]=b[1...3] and b[1...3]=c[1...3],

```
(s,t) \in R_n if s = t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)
- if $(a,b) \in R_3$, either a = b or a[1..3] = b[1..3]thus $(b,a) \in R_3$ (symmetric)
- if $(a,b) \in R_3 \land (b,c) \in R_3$, either a=b and b=c, then a=cor a=b and b[1..3]=c[1..3], then a[1..3]=c[1..3]or a[1..3]=b[1..3] and b=c, then a[1..3]=c[1..3]or a[1..3]=b[1..3] and b[1..3]=c[1..3], then a[1..3]=c[1..3]

```
(s,t) \in R_n if s = t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- for all $a \in S$, since a = a, $(a, a) \in R_3$ (reflexive)
- if $(a,b) \in R_3$, either a = b or a[1..3] = b[1..3]thus $(b,a) \in R_3$ (symmetric)
- if $(a,b) \in R_3 \land (b,c) \in R_3$, either a=b and b=c, then a=c or a=b and b[1..3]=c[1..3], then a[1..3]=c[1..3] or a[1..3]=b[1..3] and b=c, then a[1..3]=c[1..3] or a[1..3]=b[1..3] and b[1..3]=c[1..3], then a[1..3]=c[1..3] (transitive)

$$(s,t) \in R_n$$
 if $s=t$, or $l(s), l(t) \ge n$ and $s[1..n] = t[1..n]$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

$$(s,t) \in R_n$$
 if $s=t$, or $l(s), l(t) \ge n$ and $s[1..n] = t[1..n]$

• $[0]_{R_3} = \{0\}, [1]_{R_3} = \{1\},$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

```
(s,t) \in R_n if s = t,
or l(s), l(t) \ge n and s[1...n] = t[1...n]
```

• $[0]_{R_3} = \{0\}, [1]_{R_3} = \{1\}, [00]_{R_3} = \{00\}, [01]_{R_3} = \{01\}, [10]_{R_3} = \{10\}, [11]_{R_3} = \{11\}$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

• $[0]_{R_3} = \{0\}, [1]_{R_3} = \{1\}, [00]_{R_3} = \{00\}, [01]_{R_3} = \{01\}, [10]_{R_3} = \{10\}, [11]_{R_3} = \{11\}, [\varepsilon]_{R_3} = \{\varepsilon\}$

```
(s,t) \in R_n if s = t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- $[0]_{R_3} = \{0\}, [1]_{R_3} = \{1\}, [00]_{R_3} = \{00\}, [01]_{R_3} = \{01\}, [10]_{R_3} = \{10\}, [11]_{R_3} = \{11\}, [\varepsilon]_{R_3} = \{\varepsilon\}$
- $[000]_{R_3} = \{000,0000,0001,000000,00001,\dots\}$

```
(s,t) \in R_n if s = t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- $[0]_{R_3} = \{0\}, [1]_{R_3} = \{1\}, [00]_{R_3} = \{00\}, [01]_{R_3} = \{01\}, [10]_{R_3} = \{10\}, [11]_{R_3} = \{11\}, [\varepsilon]_{R_3} = \{\varepsilon\}$
- $[000]_{R_3} = \{000,0000,0001,00000,00001,\dots\}$ $[001]_{R_3} = \{001,0010,0011,00100,00101,\dots\}$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- $[0]_{R_3} = \{0\}, [1]_{R_3} = \{1\}, [00]_{R_3} = \{00\}, [01]_{R_3} = \{01\}, [10]_{R_3} = \{10\}, [11]_{R_3} = \{11\}, [\varepsilon]_{R_3} = \{\varepsilon\}$
- $[000]_{R_3} = \{000,0000,0001,00000,00001,\dots\}$ $[001]_{R_3} = \{001,0010,0011,00100,00101,\dots\}$ \vdots $[111]_{R_3} = \{111,1110,1111,11100,11101,\dots\}$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- $[0]_{R_3} = \{0\}, [1]_{R_3} = \{1\}, [00]_{R_3} = \{00\}, [01]_{R_3} = \{01\}, [10]_{R_3} = \{10\}, [11]_{R_3} = \{11\}, [\varepsilon]_{R_3} = \{\varepsilon\}$
- $[000]_{R_3} = \{000,0000,0001,00000,00001,\dots\}$ $[001]_{R_3} = \{001,0010,0011,00100,00101,\dots\}$ \vdots $[111]_{R_3} = \{111,1110,1111,11100,11101,\dots\}$
- $[\varepsilon]_{R_3} \cup [0]_{R_3} \cup \cdots \cup [111]_{R_3}$

• Let R_n be a relation on the set of strings built with $\{0,1\}$. For any two strings s and t,

```
(s,t) \in R_n if s=t, or l(s), l(t) \ge n and s[1..n] = t[1..n]
```

- $[0]_{R_3} = \{0\}, [1]_{R_3} = \{1\}, [00]_{R_3} = \{00\}, [01]_{R_3} = \{01\}, [10]_{R_3} = \{10\}, [11]_{R_3} = \{11\}, [\varepsilon]_{R_3} = \{\varepsilon\}$
- $[000]_{R_3} = \{000,0000,0001,00000,00001,\dots\}$ $[001]_{R_3} = \{001,0010,0011,00100,00101,\dots\}$ \vdots $[111]_{R_3} = \{111,1110,1111,11100,11101,\dots\}$
- $[\varepsilon]_{R_3} \cup [0]_{R_3} \cup \cdots \cup [111]_{R_3} = S$, the set of all strings

• A given set S can be decomposed into disjoint subsets A_i . For a family of sets $A = \{A_i | i \in I\}$ such that $A_i \cap A_j \neq \emptyset$, a given set S can be written as

$$S = A_1 \cup \ldots \cup A_n$$

• A given set S can be decomposed into disjoint subsets A_i . For a family of sets $A = \{A_i | i \in I\}$ such that $A_i \cap A_j \neq \emptyset$, a given set S can be written as

$$S = A_1 \cup ... \cup A_n$$

$$S = \{1, 2, 3, 4, 5, 6\} \text{ can be written as } S = A_1 \cup A_2 \cup A_3 \text{ where}$$

$$A_1 = \{1, 2, 3\}, A_1 = \{4, 5\}, A_1 = \{6\}$$

• A given set S can be decomposed into disjoint subsets A_i . For a family of sets $A = \{A_i | i \in I\}$ such that $A_i \cap A_j \neq \emptyset$, a given set S can be written as

$$S = A_1 \cup ... \cup A_n$$

$$S = \{1, 2, 3, 4, 5, 6\} \text{ can be written as } S = A_1 \cup A_2 \cup A_3 \text{ where}$$

$$A_1 = \{1, 2, 3\}, A_1 = \{4, 5\}, A_1 = \{6\}$$

 Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partitition of S.

• A given set S can be decomposed into disjoint subsets A_i . For a family of sets $A = \{A_i | i \in I\}$ such that $A_i \cap A_j \neq \emptyset$, a given set S can be written as

$$S = A_1 \cup ... \cup A_n$$

$$S = \{1, 2, 3, 4, 5, 6\} \text{ can be written as } S = A_1 \cup A_2 \cup A_3 \text{ where}$$

$$A_1 = \{1, 2, 3\}, A_1 = \{4, 5\}, A_1 = \{6\}$$

• Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partitition of S. If there is a partition of S, then there is an equivalence relation that has A_i as its equivalence classes.

• A given set S can be decomposed into disjoint subsets A_i . For a family of sets $A = \{A_i | i \in I\}$ such that $A_i \cap A_j \neq \emptyset$, a given set S can be written as

$$S = A_1 \cup ... \cup A_n$$

$$S = \{1, 2, 3, 4, 5, 6\} \text{ can be written as } S = A_1 \cup A_2 \cup A_3 \text{ where}$$

$$A_1 = \{1, 2, 3\}, A_1 = \{4, 5\}, A_1 = \{6\}$$

• Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. If there is a partition of S, then there is an equivalence relation that has A_i as its equivalence classes.

$$R = \{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1), (2, 1), (3, 1),$$

• A given set S can be decomposed into disjoint subsets A_i . For a family of sets $A = \{A_i | i \in I\}$ such that $A_i \cap A_j \neq \emptyset$, a given set S can be written as

$$S=A_1\cup\ldots\cup A_n$$

$$S=\{1,2,3,4,5,6\} \text{ can be written as } S=A_1\cup A_2\cup A_3 \text{ where}$$

$$A_1=\{1,2,3\}, A_1=\{4,5\}, A_1=\{6\}$$

• Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. If there is a partition of S, then there is an equivalence relation that has A_i as its equivalence classes.

$$R = \{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1), (4, 4), (4, 5), (5, 4), (5, 5),$$

• A given set S can be decomposed into disjoint subsets A_i . For a family of sets $A = \{A_i | i \in I\}$ such that $A_i \cap A_j \neq \emptyset$, a given set S can be written as

$$S=A_1\cup\ldots\cup A_n$$

$$S=\{1,2,3,4,5,6\} \text{ can be written as } S=A_1\cup A_2\cup A_3 \text{ where}$$

$$A_1=\{1,2,3\}, A_1=\{4,5\}, A_1=\{6\}$$

• Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. If there is a partition of S, then there is an equivalence relation that has A_i as its equivalence classes.

$$R = \{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1), (4, 4), (4, 5), (5, 4), (5, 5), (6, 6)\}$$

<u>Definition</u>: A relation R on a set A is called a partial order if it's reflexive, antisymmetric, and transitive. A set S together with a partial order R is called partially ordered set or poset, (S, R)

Consider 'greater than or equal' relation (≥) defined on integers.
 (≥) is a partial order?

- Consider 'greater than or equal' relation (≥) defined on integers.
 (≥) is a partial order?
 - $\forall a \in \mathbb{Z}$, since $a \geq a$, $(a, a) \in (\geq)$ (reflexive)

- Consider 'greater than or equal' relation (≥) defined on integers.
 (≥) is a partial order?
 - $\forall a \in \mathbb{Z}$, since $a \ge a$, $(a, a) \in (\ge)$ (reflexive)
 - [(*a*, *b*) ∈ *R*]

- Consider 'greater than or equal' relation (≥) defined on integers.
 (≥) is a partial order?
 - $\forall a \in \mathbb{Z}$, since $a \ge a$, $(a, a) \in (\ge)$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a \ge b)$

- Consider 'greater than or equal' relation (≥) defined on integers.
 (≥) is a partial order?
 - $\forall a \in \mathbb{Z}$, since $a \ge a$, $(a, a) \in (\ge)$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a \ge b) \rightarrow (b \not\ge a \text{ if } a \ne b)$ (antisymmetric)

- Consider 'greater than or equal' relation (≥) defined on integers.
 (≥) is a partial order?
 - $\forall a \in \mathbb{Z}$, since $a \ge a$, $(a, a) \in (\ge)$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a \ge b) \rightarrow (b \not\ge a \text{ if } a \ne b)$ (antisymmetric)
 - $[(a,b) \in R \land (b,c) \in R]$

- Consider 'greater than or equal' relation (≥) defined on integers.
 (≥) is a partial order?
 - $\forall a \in \mathbb{Z}$, since $a \ge a$, $(a, a) \in (\ge)$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a \ge b) \rightarrow (b \not\ge a \text{ if } a \ne b)$ (antisymmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow (a \ge b \land b \ge c)$

- Consider 'greater than or equal' relation (≥) defined on integers.
 (≥) is a partial order?
 - $\forall a \in \mathbb{Z}$, since $a \ge a$, $(a, a) \in (\ge)$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a \ge b) \rightarrow (b \not\ge a \text{ if } a \ne b)$ (antisymmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow (a \ge b \land b \ge c)$ $\rightarrow (a \ge c)$

- Consider 'greater than or equal' relation (≥) defined on integers.
 (≥) is a partial order?
 - $\forall a \in \mathbb{Z}$, since $a \ge a$, $(a, a) \in (\ge)$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a \ge b) \rightarrow (b \not\ge a \text{ if } a \ne b)$ (antisymmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow (a \ge b \land b \ge c)$ $\rightarrow (a \ge c) \rightarrow [(a,c) \in R]$ (transitive)

<u>Definition</u>: A relation R on a set A is called a partial order if it's reflexive, antisymmetric, and transitive. A set S together with a partial order R is called partially ordered set or poset, (S, R)

• Consider a relation R on integers such that $(a, b) \in R$ if a - b is a non-negative integer. R is a partial order?

- Consider a relation R on integers such that $(a, b) \in R$ if a b is a non-negative integer. R is a partial order?
 - $\forall a \in \mathbb{Z}$, since a a = 0, $(a, a) \in R$ (reflexive)

- Consider a relation R on integers such that $(a, b) \in R$ if a b is a non-negative integer. R is a partial order?
 - $\forall a \in \mathbb{Z}$, since a a = 0, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R]$

- Consider a relation R on integers such that $(a, b) \in R$ if a b is a non-negative integer. R is a partial order?
 - $\forall a \in \mathbb{Z}$, since a a = 0, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a-b \text{ is a non-negative integer})$

- Consider a relation R on integers such that $(a, b) \in R$ if a b is a non-negative integer. R is a partial order?
 - $\forall a \in \mathbb{Z}$, since a a = 0, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a-b)$ is a non-negative integer) $\rightarrow (b-a)$ is a negative integer if $a \neq b$ (antisymmetric)

- Consider a relation R on integers such that $(a, b) \in R$ if a b is a non-negative integer. R is a partial order?
 - $\forall a \in \mathbb{Z}$, since a a = 0, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a-b)$ is a non-negative integer) $\rightarrow (b-a)$ is a negative integer if $a \neq b$ (antisymmetric)
 - $[(a,b) \in R \land (b,c) \in R]$

- Consider a relation R on integers such that $(a, b) \in R$ if a b is a non-negative integer. R is a partial order?
 - $\forall a \in \mathbb{Z}$, since a a = 0, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a-b)$ is a non-negative integer) $\rightarrow (b-a)$ is a negative integer if $a \neq b$ (antisymmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow (a-b \text{ and } b-c \text{ are non-negative integer})$

- Consider a relation R on integers such that $(a, b) \in R$ if a b is a non-negative integer. R is a partial order?
 - $\forall a \in \mathbb{Z}$, since a a = 0, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a-b)$ is a non-negative integer) $\rightarrow (b-a)$ is a negative integer if $a \neq b$ (antisymmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow (a-b \text{ and } b-c \text{ are non-negative integer})$ $\rightarrow (a-c \text{ is a non-negative integer})$

- Consider a relation R on integers such that $(a, b) \in R$ if a b is a non-negative integer. R is a partial order?
 - $\forall a \in \mathbb{Z}$, since a a = 0, $(a, a) \in R$ (reflexive)
 - $[(a,b) \in R] \rightarrow (a-b)$ is a non-negative integer) $\rightarrow (b-a)$ is a negative integer if $a \neq b$ (antisymmetric)
 - $[(a,b) \in R \land (b,c) \in R] \rightarrow (a-b \text{ and } b-c \text{ are non-negative integer})$ $\rightarrow (a-c \text{ is a non-negative integer})$ $\rightarrow [(a,c) \in R]$ (transitive)

<u>Definition</u>: The elements a and b of a poset (S, R) are called comparable if either aRb or bRa.

<u>Definition</u>: The elements a and b of a poset (S, R) are called comparable if either aRb or bRa.

• Consider the poset $(\mathbb{Z}^+, '|')$.

<u>Definition</u>: The elements a and b of a poset (S, R) are called comparable if either aRb or bRa.

- Consider the poset $(\mathbb{Z}^+, '|')$.
 - Since 3|9, 3 and 9 are comparable.

<u>Definition</u>: The elements a and b of a poset (S, R) are called comparable if either aRb or bRa.

- Consider the poset $(\mathbb{Z}^+, '|')$.
 - Since 3/9, 3 and 9 are comparable.
 - Since 7/5 or 5/7, 5 and 7 are not comparable

<u>Definition</u>: The elements a and b of a poset (S, R) are called comparable if either aRb or bRa.

- Consider the poset $(\mathbb{Z}^+, '|')$.
 - Since 3/9, 3 and 9 are comparable.
 - Since 7/5 or 5/7, 5 and 7 are not comparable

<u>Definition</u>: If every pair of elements in S are comparable, then R is called total order. (S, R) is called totally ordered set.

<u>Definition</u>: The elements a and b of a poset (S, R) are called comparable if either aRb or bRa.

- Consider the poset $(\mathbb{Z}^+, '|')$.
 - Since 3|9, 3 and 9 are comparable.
 - Since 7/5 or 5/7, 5 and 7 are not comparable

<u>Definition</u>: If every pair of elements in S are comparable, then R is called total order. (S, R) is called totally ordered set.

• the poset $(\mathbb{Z}^+, '|')$ is not totally ordered set.

<u>Definition</u>: The elements a and b of a poset (S, R) are called comparable if either aRb or bRa.

- Consider the poset $(\mathbb{Z}^+, '|')$.
 - Since 3|9, 3 and 9 are comparable.
 - Since 7/5 or 5/7, 5 and 7 are not comparable

<u>Definition</u>: If every pair of elements in S are comparable, then R is called total order. (S, R) is called totally ordered set.

- the poset $(\mathbb{Z}^+, '|')$ is not totally ordered set.
- the poset (\mathbb{Z}^+, \leq) is a totally ordered set.

<u>Definition</u>: The elements a and b of a poset (S, R) are called comparable if either aRb or bRa.

- Consider the poset $(\mathbb{Z}^+, '|')$.
 - Since 3/9, 3 and 9 are comparable.
 - Since 7/5 or 5/7, 5 and 7 are not comparable

<u>Definition</u>: If every pair of elements in S are comparable, then R is called total order. (S, R) is called totally ordered set.

- the poset $(\mathbb{Z}^+, '|')$ is not totally ordered set.
- the poset (\mathbb{Z}^+, \leq) is a totally ordered set.
 - For every $a, b \in \mathbb{Z}^+$, either $a \le b$ or $b \le a$. Thus, either $(a, b) \in (\le)$ or $(b, a) \in (\le)$

<u>Definition</u>: Consider a poset (S, R). An element a is called maximal if there is no $b \in S$ such that aRb. An element a is called minimal if there is no $b \in S$ such that bRa.

<u>Definition</u>: Consider a poset (S, R). An element a is called maximal if there is no $b \in S$ such that aRb. An element a is called minimal if there is no $b \in S$ such that bRa.

• Consider the poset (S, '|') where $S = \{2, 4, 5, 10, 12, 15, 20, 30\}$

<u>Definition</u>: Consider a poset (S, R). An element a is called maximal if there is no $b \in S$ such that aRb. An element a is called minimal if there is no $b \in S$ such that bRa.

- Consider the poset (5, '|') where $5 = \{2, 4, 5, 10, 12, 15, 20, 30\}$
 - maximal elements of (5, '|') {12, 20, 30}

<u>Definition</u>: Consider a poset (S, R). An element a is called maximal if there is no $b \in S$ such that aRb. An element a is called minimal if there is no $b \in S$ such that bRa.

- Consider the poset (5, '|') where $5 = \{2, 4, 5, 10, 12, 15, 20, 30\}$
 - maximal elements of (5, '|') {12, 20, 30}
 - minimal elements of (S, '|') {2, 5}

<u>Definition</u>: Consider a poset (S, R). An element a is called maximal if there is no $b \in S$ such that aRb. An element a is called minimal if there is no $b \in S$ such that bRa.

- Consider the poset (5, '|') where $5 = \{2, 4, 5, 10, 12, 15, 20, 30\}$
 - maximal elements of (5, '|') {12, 20, 30}
 - minimal elements of (S,'|') {2, 5}

<u>Definition</u>: An element a is called the greatest element if bRa for all $b \in S$. An element a is called the least element if aRb for all $b \in S$.

<u>Definition</u>: Consider a poset (S, R). An element a is called maximal if there is no $b \in S$ such that aRb. An element a is called minimal if there is no $b \in S$ such that bRa.

- Consider the poset (5, '|') where $5 = \{2, 4, 5, 10, 12, 15, 20, 30\}$
 - maximal elements of (5, '|') {12, 20, 30}
 - minimal elements of (5, '|') {2, 5}

<u>Definition</u>: An element a is called the greatest element if bRa for all $b \in S$. An element a is called the least element if aRb for all $b \in S$.

Consider the power set of a given set S.

<u>Definition</u>: Consider a poset (S, R). An element a is called maximal if there is no $b \in S$ such that aRb. An element a is called minimal if there is no $b \in S$ such that bRa.

- Consider the poset (5, '|') where $5 = \{2, 4, 5, 10, 12, 15, 20, 30\}$
 - maximal elements of (5, '|') {12, 20, 30}
 - minimal elements of (5, '|') {2, 5}

<u>Definition</u>: An element a is called the greatest element if bRa for all $b \in S$. An element a is called the least element if aRb for all $b \in S$.

- Consider the power set of a given set S.
 - \emptyset is the least element of $(P(S),\subseteq)$ since $\emptyset\subseteq T$ for any $T\in P(S)$

<u>Definition</u>: Consider a poset (S, R). An element a is called maximal if there is no $b \in S$ such that aRb. An element a is called minimal if there is no $b \in S$ such that bRa.

- Consider the poset (5, '|') where $5 = \{2, 4, 5, 10, 12, 15, 20, 30\}$
 - maximal elements of (5, '|') {12, 20, 30}
 - minimal elements of (S,'|') {2, 5}

<u>Definition</u>: An element a is called the greatest element if bRa for all $b \in S$. An element a is called the least element if aRb for all $b \in S$.

- Consider the power set of a given set S.
 - \emptyset is the least element of $(P(S),\subseteq)$ since $\emptyset \subseteq T$ for any $T \in P(S)$
 - S is the greatest element of $(P(S),\subseteq)$ since $T\subseteq S$ for any $T\in P(S)$

• Let $A = \{0, 1, 2\}$, $B = A \times A$, R be a relation defined on B such that $((a,b),(c,d)) \in R$

• Let $A = \{0, 1, 2\}$, B = AxA, R be a relation defined on B such that $((a,b),(c,d)) \in R$ if a < c or

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

• Let $A = \{0, 1, 2\}$, $B = A \times A$, R be a relation defined on B such that

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

 $- ((0,1), (1,0)) \in R \text{ since } a < c$

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a, b) \in B$,

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$,

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $((a,b),(c,d)) \in R$ such that $(a,b) \neq (c,d)$,

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $((a,b),(c,d)) \in R$ such that $(a,b) \neq (c,d)$, either a < c, then $((c,d),(a,b)) \notin R$

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $((a,b),(c,d)) \in R$ such that $(a,b) \neq (c,d)$, either a < c, then $((c,d),(a,b)) \notin R$ or a = c and b < d, then $((c,d),(a,b)) \notin R$

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $\big((a,b),(c,d)\big) \in R$ such that $(a,b) \neq (c,d)$, symmetric either a < c, then $\big((c,d),(a,b)\big) \notin R$ or a = c and b < d, then $\big((c,d),(a,b)\big) \notin R$

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $\big((a,b),(c,d)\big) \in R$ such that $(a,b) \neq (c,d)$, symmetric either a < c, then $\big((c,d),(a,b)\big) \notin R$ or a = c and b < d, then $\big((c,d),(a,b)\big) \notin R$
 - for all $((a,b),(c,d)) \in R$ and $((c,d),(e,f)) \in R$,

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $\big((a,b),(c,d)\big) \in R$ such that $(a,b) \neq (c,d)$, symmetric either a < c, then $\big((c,d),(a,b)\big) \notin R$ or a = c and b < d, then $\big((c,d),(a,b)\big) \notin R$
 - for all $((a,b),(c,d)) \in R$ and $((c,d),(e,f)) \in R$, either a < c and c < e, or a < c, and c = e and $d \le f$, or a = c and $d \le f$, and c < e, or a = c and $b \le d$, and c = e and $d \le f$,

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $\big((a,b),(c,d)\big) \in R$ such that $(a,b) \neq (c,d)$, symmetric either a < c, then $\big((c,d),(a,b)\big) \notin R$ or a = c and b < d, then $\big((c,d),(a,b)\big) \notin R$
 - for all $((a,b),(c,d)) \in R$ and $((c,d),(e,f)) \in R$, either a < c and c < e, then a < e, $((a,b),(e,f)) \in R$ or a < c, and c = e and $d \le f$, or a = c and $d \le f$, and c < e, or a = c and $b \le d$, and c = e and $d \le f$,

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $\big((a,b),(c,d)\big) \in R$ such that $(a,b) \neq (c,d)$, symmetric either a < c, then $\big((c,d),(a,b)\big) \notin R$ or a = c and b < d, then $\big((c,d),(a,b)\big) \notin R$
 - for all $((a,b),(c,d)) \in R$ and $((c,d),(e,f)) \in R$, either a < c and c < e, then a < e, $((a,b),(e,f)) \in R$ or a < c, and c = e and $d \le f$, then a < e, $((a,b),(e,f)) \in R$ or a = c and $d \le f$, and c < e, or a = c and $b \le d$, and c = e and $b \le f$,

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $\big((a,b),(c,d)\big) \in R$ such that $(a,b) \neq (c,d)$, symmetric either a < c, then $\big((c,d),(a,b)\big) \notin R$ or a = c and b < d, then $\big((c,d),(a,b)\big) \notin R$
 - for all $((a,b),(c,d)) \in R$ and $((c,d),(e,f)) \in R$, either a < c and c < e, then a < e, $((a,b),(e,f)) \in R$ or a < c, and c = e and $d \le f$, then a < e, $((a,b),(e,f)) \in R$ or a = c and $d \le f$, and c < e, then a < e, $((a,b),(e,f)) \in R$ or a = c and $b \le d$, and $b \le d$, and $b \le d$, and $b \le d$,

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $\big((a,b),(c,d)\big) \in R$ such that $(a,b) \neq (c,d)$, symmetric either a < c, then $\big((c,d),(a,b)\big) \notin R$ or a = c and b < d, then $\big((c,d),(a,b)\big) \notin R$
 - for all $((a,b),(c,d)) \in R$ and $((c,d),(e,f)) \in R$, either a < c and c < e, then a < e, $((a,b),(e,f)) \in R$ or a < c, and c = e and $d \le f$, then a < e, $((a,b),(e,f)) \in R$ or a = c and $d \le f$, and c < e, then a < e, $((a,b),(e,f)) \in R$ or a = c and $b \le d$, and c = e and $d \le f$, then a = e and $b \le f$, $((a,b),(e,f)) \in R$

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - for all $(a,b) \in B$, since a = a and $b \le b$, $((a,b),(a,b)) \in R$, reflexive
 - for all $((a,b),(c,d)) \in R$ such that $(a,b) \neq (c,d)$, symmetric either a < c, then $((c,d),(a,b)) \notin R$ or a = c and b < d, then $((c,d),(a,b)) \notin R$
 - for all $((a,b),(c,d)) \in R$ and $((c,d),(e,f)) \in R$, transitive either a < c and c < e, then a < e, $((a,b),(e,f)) \in R$ or a < c, and c = e and $d \le f$, then a < e, $((a,b),(e,f)) \in R$ or a = c and $d \le f$, and c < e, then a < e, $((a,b),(e,f)) \in R$ or a = c and $b \le d$, and c = e and $d \le f$, then a = e and $b \le f$, $((a,b),(e,f)) \in R$

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a = c and $b \le d$
- R is partial order relation?
 - Is there a least element?

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - Is there a least element? (0,0)

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - Is there a least element? (0,0)
 - Is there a greatest element?

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - Is there a least element? (0,0)
 - Is there a greatest element? (2, 2)

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - Is there a least element? (0.0)
 - Is there a greatest element? (2, 2)
 - Is it total order?

• Let $A = \{0, 1, 2\}$, $B = A \times A$, R be a relation defined on B such that

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - Is there a least element?

Is there a greatest element?

- Is it total order?

for all
$$a, b \in B$$
, $(a, b) \in R$ or $(b, a) \in R$

• Let $A = \{0, 1, 2\}$, $B = A \times A$, R be a relation defined on B such that

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - Is there a least element?

- Is there a greatest element?

Is it total order?

for all
$$a, b \in B$$
, $(a, b) \in R$ or $(b, a) \in R$

- How many elements are in R?

• Let $A = \{0, 1, 2\}$, B = AxA, R be a relation defined on B such that

$$((a,b),(c,d)) \in R$$
 if $a < c$ or $a = c$ and $b \le d$

- $((0,1), (1,0)) \in R \text{ since } a < c$
- $((0,1),(0,2)) \in R$ since a=c and $b \leq d$
- R is partial order relation?
 - Is there a least element?

- Is there a greatest element?

- Is it total order?

for all
$$a, b \in B$$
, $(a, b) \in R$ or $(b, a) \in R$

- How many elements are in R?

$$(0,0)R(0,1)R(0,2)R(1,0)R(1,1)R(1,2)R(2,0)R(2,1)R(2,2)$$

• a type of directed graph used to represent finite posets.

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},\leq)$: $(x,y)\in(\leq)$ if $x\leq y$

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},\leq)$: $(x,y)\in(\leq)$ if $x\leq y$

 consider the elements of the set as vertices 3

2

1

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},\leq)$: $(x,y)\in(\leq)$ if $x\leq y$

- consider the elements of the set as vertices
- if $(x, y) \in (\leq)$, draw a line from x to y

3

2

1

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},\leq)$: $(x,y)\in(\leq)$ if $x\leq y$

- consider the elements of the set as vertices
- if $(x, y) \in (\leq)$, draw a line from x to y

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},\leq)$: $(x,y)\in(\leq)$ if $x\leq y$

- consider the elements of the set as vertices
- if $(x, y) \in (\leq)$, draw a line from x to y

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},\leq)$: $(x,y)\in(\leq)$ if $x\leq y$

- consider the elements of the set as vertices
- if $(x, y) \in (\leq)$, draw a line from x to y

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},\leq)$: $(x,y)\in(\leq)$ if $x\leq y$

- consider the elements of the set as vertices
- if $(x, y) \in (\leq)$, draw a line from x to y

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},\leq)$: $(x,y)\in(\leq)$ if $x\leq y$

- consider the elements of the set as vertices
- if $(x, y) \in (\leq)$, draw a line from x to y

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3,4,6\},R)$: $(x,y) \in R$ if x divides y

a type of directed graph used to represent finite posets.

• consider the poset $(\{1, 2, 3, 4, 6\}, R)$: $(x, y) \in R$ if x divides y

4

2 3

1

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1, 2, 3, 4, 6\}, R)$: $(x, y) \in R$ if x divides y

$$2$$
 3

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1, 2, 3, 4, 6\}, R)$: $(x, y) \in R$ if x divides y

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1, 2, 3, 4, 6\}, R)$: $(x, y) \in R$ if x divides y

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1, 2, 3, 4, 6\}, R)$: $(x, y) \in R$ if x divides y

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1, 2, 3, 4, 6\}, R)$: $(x, y) \in R$ if x divides y

<u>Hasse Diagram</u>

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1, 2, 3, 4, 6\}, R)$: $(x, y) \in R$ if x divides y

maximal elements

maximal elements

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1, 2, 3, 4, 6\}, R)$: $(x, y) \in R$ if x divides y

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},R)$: $(X,Y) \in R$ if $X \subseteq Y$

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},R)$: $(X,Y) \in R$ if $X \subseteq Y$

{1,2,3}

{1,2}

{1,3}

{2,3}

{1}

{2}

{3}

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},R)$: $(X,Y) \in R$ if $X \subseteq Y$

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},R)$: $(X,Y) \in R$ if $X \subseteq Y$

{1,2,3}

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},R)$: $(X,Y) \in R$ if $X \subseteq Y$

- a type of directed graph used to represent finite posets.
- consider the poset $(\{1,2,3\},R)$: $(X,Y) \in R$ if $X \subseteq Y$

<u>Definition</u>: Consider a poset (S, R).

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A.

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

• Consider the poset $(\mathbb{Z}^+, '|')$

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

- Consider the poset (Z⁺, '|')
 - for the set $A = \{3, 9, 12\}$;

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

- Consider the poset (Z⁺, '|')
 - for the set $A = \{3, 9, 12\}$;

if u|3, u|9, u|12, then u is a lower bound:

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

- Consider the poset (Z⁺, '|')
 - for the set $A = \{3, 9, 12\}$;

if u|3, u|9, u|12, then u is a lower bound: 1 and 3

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

- Consider the poset $(\mathbb{Z}^+, '|')$
 - for the set $A = \{3, 9, 12\}$;

if u|3, u|9, u|12, then u is a lower bound: 1 and 3

if 3|v, 9|v, 12|v, then v is an upper bound:

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

- Consider the poset (Z⁺, '|')
 - for the set $A = \{3, 9, 12\}$;

if u|3, u|9, u|12, then u is a lower bound: 1 and 3

if 3|v, 9|v, 12|v, then v is an upper bound : 36, 72, ...

- Consider the poset $(\mathbb{Z}^+, '|')$
 - for the set $A = \{3, 9, 12\}$; if u|3, u|9, u|12, then u is a lower bound : 1 and 3 if 3|v, 9|v, 12|v, then v is an upper bound : 36, 72, ...
 - for the set $B = \{1, 2, 4, 5, 10\}$;

- Consider the poset (Z⁺, '|')
 - for the set $A = \{3, 9, 12\}$; if u|3, u|9, u|12, then u is a lower bound : 1 and 3 if 3|v, 9|v, 12|v, then v is an upper bound : 36, 72, ...
 - for the set B = $\{1, 2, 4, 5, 10\}$; if u|1, u|2, u|4, u|5, u|10, then u is a lower bound :

- Consider the poset (Z⁺, '|')
 - for the set $A = \{3, 9, 12\}$; if u|3, u|9, u|12, then u is a lower bound : 1 and 3 if 3|v, 9|v, 12|v, then v is an upper bound : 36, 72, ...
 - for the set B = $\{1, 2, 4, 5, 10\}$; if u|1, u|2, u|4, u|5, u|10, then u is a lower bound : 1

- Consider the poset (Z⁺, '|')
 - for the set $A = \{3, 9, 12\}$; if u|3, u|9, u|12, then u is a lower bound : 1 and 3 if 3|v, 9|v, 12|v, then v is an upper bound : 36, 72, ...
 - for the set B = {1, 2, 4, 5, 10}; if u|1, u|2, u|4, u|5, u|10, then u is a lower bound : 1 if 1|v, 2|v, 4|v, 5|v, 10|v, then v is an upper bound :

- Consider the poset $(\mathbb{Z}^+, '|')$
 - for the set $A = \{3, 9, 12\}$; if u|3, u|9, u|12, then u is a lower bound : 1 and 3 if 3|v, 9|v, 12|v, then v is an upper bound : 36, 72, ...
 - for the set B = {1, 2, 4, 5, 10}; if u|1, u|2, u|4, u|5, u|10, then u is a lower bound : 1 if 1|v, 2|v, 4|v, 5|v, 10|v, then v is an upper bound : 20, 40, ...

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

• Consider the poset $(P(S), \subseteq)$ where $S = \{1, 2, 3, 4\}$

- Consider the poset $(P(S), \subseteq)$ where $S = \{1, 2, 3, 4\}$
 - for the set $A = \{\{1\}, \{2\}, \{1,2\}\}\}$;

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

- Consider the poset $(P(S), \subseteq)$ where $S = \{1, 2, 3, 4\}$
 - for the set $A = \{\{1\}, \{2\}, \{1,2\}\};$

if $U\subseteq\{1\}$, $U\subseteq\{2\}$, $U\subseteq\{1,2\}$, then U is a lower bound:

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

- Consider the poset $(P(S), \subseteq)$ where $S = \{1, 2, 3, 4\}$
 - for the set $A = \{\{1\}, \{2\}, \{1,2\}\};$

if $U\subseteq\{1\}$, $U\subseteq\{2\}$, $U\subseteq\{1,2\}$, then U is a lower bound : \emptyset

<u>Definition</u>: Consider a poset (S, R). If there is an element $u \in S$ such that aRu for all $a \in A$, then u is called an upper bound of A. If there is an element $v \in S$ such that vRa for all $a \in A$, then v is called an lower bound of A.

- Consider the poset $(P(S), \subseteq)$ where $S = \{1, 2, 3, 4\}$
 - for the set $A = \{\{1\}, \{2\}, \{1,2\}\};$

if $U\subseteq\{1\}$, $U\subseteq\{2\}$, $U\subseteq\{1,2\}$, then U is a lower bound : \emptyset

if $\{1\}\subseteq V$, $\{2\}\subseteq V$, $\{1,2\}\subseteq V$, then V is an upper bound :

- Consider the poset $(P(S), \subseteq)$ where $S = \{1, 2, 3, 4\}$
 - for the set $A = \{\{1\}, \{2\}, \{1,2\}\};$

```
if U\subseteq\{1\}, U\subseteq\{2\}, U\subseteq\{1,2\}, then U is a lower bound : \emptyset
```

if
$$\{1\}\subseteq V$$
, $\{2\}\subseteq V$, $\{1,2\}\subseteq V$, then V is an upper bound :

<u>Definition</u>: Topological sorting of n elements from a poset (S, R) is $s_1s_2...s_n$ such that there is no $(s_i, s_j) \in R$ where j < i

• Consider the poset (5, '|') where $5 = \{2, 15, 8, 3, 6, 20\}$

- Consider the poset (5, '|') where $5 = \{2, 15, 8, 3, 6, 20\}$
 - 2, 3, 6, 8, 15, 20

- Consider the poset (5, '|') where $5 = \{2, 15, 8, 3, 6, 20\}$
 - 2, 3, 6, 8, 15, 20
 - 3, 2, 8, 6, 15, 20

- Consider the poset (5, '|') where $5 = \{2, 15, 8, 3, 6, 20\}$
 - 2, 3, 6, 8, 15, 20
 - 3, 2, 8, 6, 15, 20
 - 3, 2, 6, 8, 20, 15

- Consider the poset (5, '|') where $5 = \{2, 15, 8, 3, 6, 20\}$
 - 2, 3, 6, 8, 15, 20
 - 3, 2, 8, 6, 15, 20
 - 3, 2, 6, 8, 20, 15
 - 3, 6, 2, 8, 20, 15 is not,

- Consider the poset (S, '|') where S = {2, 15, 8, 3, 6, 20}
 - 2, 3, 6, 8, 15, 20
 - 3, 2, 8, 6, 15, 20
 - 3, 2, 6, 8, 20, 15
 - 3, 6, 2, 8, 20, 15 is not, i.e. $(2, 6) \in '|'$ since 2|6, but 6 comes before 2 in the sorting.


```
input: a finite poset (S,R) output: topological sorting of elements in S initialize an empty queue Q while S \neq \emptyset a = a minimal element of S S = S - \{a\} add a to Q return Q
```

```
input: a finite poset (S, R) output: topological sorting of elements in S initialize an empty queue Q while S \neq \emptyset a = a minimal element of S S = S - \{a\} add a to Q return Q
```



```
input: a finite poset (S, R) output: topological sorting of elements in S initialize an empty queue Q while S \neq \emptyset a = a minimal element of S S = S - \{a\} add a to Q return Q
```



```
input: a finite poset (S, R) output: topological sorting of elements in S initialize an empty queue Q while S \neq \emptyset a = a minimal element of S S = S - \{a\} add a to Q return Q
```



```
input: a finite poset (S, R) output: topological sorting of elements in S initialize an empty queue Q while S \neq \emptyset
a = a \text{ minimal element of S}
S = S - \{a\}
add a to Q
return Q
```



```
input: a finite poset (S, R) output: topological sorting of elements in S initialize an empty queue Q while S \neq \emptyset
a = a \text{ minimal element of S}
S = S - \{a\}
add a to Q
return Q
```


<u>Definition</u>: Topological sorting of n elements from a poset (S, R) is $s_1s_2...s_n$ such that there is no $(s_i, s_j) \in R$ where j < i

Q:HKALXB

<u>Definition</u>: Topological sorting of n elements from a poset (S, R) is $s_1s_2...s_n$ such that there is no $(s_i, s_j) \in R$ where j < i

```
input: a finite poset (S, R) output: topological sorting of elements in S initialize an empty queue Q while S \neq \emptyset a = a minimal element of S S = S - \{a\} add a to Q return Q
```

Q:HKALXBE

<u>Definition</u>: Topological sorting of n elements from a poset (S, R) is $s_1s_2...s_n$ such that there is no $(s_i,s_j) \in R$ where j < i

```
input: a finite poset (S, R)  
output: topological sorting of elements in S

initialize an empty queue Q
while S \neq \emptyset
    a = a minimal element of S
    S = S - \{a\}
    add a to Q
return Q
```

Q:HKALXBED