Арунова Маргарита БПМИ2011

Определение. Индекс подгруппы H в группе G – это число левых смежных классов G по H. **Обозначение:** [G:H].

Теорема (Лагранж). Пусть G – конечная группа, $H \subseteq G$ – подгруппа. Тогда $|G| = |H| \cdot [G:H]$.

Следствие. Пусть G – конечная группа и $H \subseteq G$ – подгруппа. Тогда |H| делит |G|.

Следствие. Пусть G – конечная группа и $g \in G$. Тогда $\operatorname{ord}(g)$ делит |G|.

Следствие. Пусть G – конечная группа и $g \in G$. Тогда $g^{|G|} = e$.

Следствие. Пусть G – группа и |G| – простое число. Тогда G – циклическая подгруппа, порождаемая любым своим неединичным элементом.

Следствие (Малая теорема Ферма). Пусть \bar{a} – ненулевой вычет по простому модулю p. Тогда выполняется $\bar{a}^{p-1} = \bar{1}$.

Определение. Подгруппа $H \subseteq G$ называется *нормальной*, если gH = Hg для всех $g \in G$. **Обозначение:** $H \lhd G$.

Предложение. Пусть H – подгруппа группы G. Следующие условия эквивалентны:

- (a) $H \triangleleft G$
- (б) $gHg^{-1}=H$ для всех $g\in G$
- (в) $gHg^{-1}\subseteq H$ для всех $g\in G$

Пусть H — **нормальная** подгруппа в G. Обозначим через G/H множество всех смежных классов G по H и введём на нём бинарную операцию. Положим $(g_1H)(g_2H)=(g_1g_2)H$.

Данная операция задана корректно. Описанная $(G/H,\cdot)$ – группа.

Определение. $(G/H,\cdot)$ называется факторгруппой группы G по нормальной подгруппе H.

Пусть (G, \circ) и (F, \cdot) – группы.

Определение. Отображение $\varphi: G \to F$ называется *гомоморфизмом*, если $\varphi(a \circ b) = \varphi(a) \cdot \varphi(b)$ для любых $a, b \in G$.

Определение. Гомоморфизм $\varphi: G \to F$ называется *изоморфизмом*, если φ – биекция.

Определение. Группы G, F называются *изоморфными*, если существует изоморфизм $\varphi: G \to F$.

Обозначение: $G \simeq F, \ G \cong F, \ G \stackrel{\sim}{\to} F.$

Определение. \mathcal{A} дро гомоморфизма φ – это множество $\ker \varphi = \{g \in G \mid \varphi(g) = e_f\} \subseteq G$.

Определение. Образ гомоморфизма φ – это множество $\operatorname{Im} \varphi = \varphi(G) \subseteq F$.

Теорема (о гомоморфизме групп). $G/\ker \varphi \simeq \operatorname{Im} \varphi$

Задание 1. Пусть G – группа невырожденных верхнетреугольных матриц (2 × 2)-матриц с коэффициентами из \mathbb{Q} . Докажите, что все содержащиеся в G матрицы вида

$$\begin{pmatrix} a^3 & b \\ 0 & a^2 \end{pmatrix}$$

образуют нормальную подгруппу в G.

- 1. Обозначим описанное множество матриц H. Покажем, что H подгруппа. Для этого нужно проверить три следующих условия:
 - (a) $e \in H$
 - (6) $x, y \in H \Rightarrow x \circ y \in H$
 - (B) $x \in H \Rightarrow x^{-1} \in H$

Рассмотрим каждое из условий.

— Найдём нейтральный элемент группы G, то есть такой элемент e, что $x \circ e = e \circ x = x$. Этот элемент — единичная матрица размера 2×2 . Действительно, матрица E невырожденная, при умножении матрицы X на E слева или справа получается матрица X.

Нейтральный элемент лежит в H. Матрица E имеет описанный вид. В данном случае значения $a=1\in\mathbb{Q},\,b=0\in\mathbb{Q}.$

- Проверим, что произведение двух матриц из H также матрица, лежащая в H:

$$\begin{pmatrix} a^3 & b \\ 0 & a^2 \end{pmatrix} \cdot \begin{pmatrix} c^3 & d \\ 0 & c^2 \end{pmatrix} = \begin{pmatrix} a^3c^3 & a^3d + c^2b \\ 0 & a^2c^2 \end{pmatrix} = \begin{pmatrix} (ac)^3 & a^3d + c^2b \\ 0 & (ac)^2 \end{pmatrix} \in H$$

Проверку на то, что матрица невырождена и имеет коэффициенты из \mathbb{Q} можно не делать, так как рассматриваемые матрицы — элементы группы G, а значит, заданная бинарная операция не выводит из описанного множества матриц.

— Для каждого элемента x из H найдём обратный ему, то есть такой, что $x \cdot x^{-1} = x^{-1} \cdot x = e$. Так как матрицы из G (и как следствие из H) невырожденные, для каждой матрицы из H существует обратная.

Произведение матрицы из H на обратную коммутативно и равно E, а это нейтральный элемент в H, значит, обратная к рассматриваемой матрице может быть обратным элементом к этой матрице в H.

Чтобы проверить, что для X матрица X^{-1} – обратный элемент в H, достаточно проверить, что матрица X^{-1} имеет описанный вид, то есть матрица X^{-1} лежит в H. Невырожденность матрицы X^{-1} очевидна.

$$X^{-1} = \frac{1}{\det X} \begin{pmatrix} X_{11} & X_{21} \\ X_{12} & X_{22} \end{pmatrix} = \frac{1}{a^5} \begin{pmatrix} a^2 & -b \\ 0 & a^3 \end{pmatrix} = \begin{pmatrix} 1/a^3 & -b/a^5 \\ 0 & 1/a^2 \end{pmatrix} = \begin{pmatrix} (1/a)^3 & -b/a^5 \\ 0 & (1/a)^2 \end{pmatrix} \in H$$

Полученные коэффициенты принадлежат \mathbb{Q} : значение $(\det X)^{-1}$ существует и принадлежит множеству рациональных чисел, а произведение рациональных чисел – рациональное.

Таким образом, H – подгруппа в G по определению.

2. Докажем, что H – нормальная подгруппа в G. Для этого воспользуемся эквивалентным условием: $H \lhd G \Leftrightarrow gHg^{-1} \subseteq H$ для всех $g \in G$. Данное условие означает, что для любого элемента $g \in G$ и любого элемента $h \in H$ значение $ghg^{-1} \in H$.

Рассмотрим произвольные матрицы $g \in G$ и $h \in H$:

$$g = \begin{pmatrix} p & q \\ 0 & r \end{pmatrix} \qquad \qquad h = \begin{pmatrix} a^3 & b \\ 0 & a^2 \end{pmatrix}$$

Проверим, что $ghg^{-1} \in H$:

$$\begin{pmatrix} p & q \\ 0 & r \end{pmatrix} \cdot \begin{pmatrix} a^3 & b \\ 0 & a^2 \end{pmatrix} \cdot \begin{pmatrix} p & q \\ 0 & r \end{pmatrix}^{-1} = \begin{pmatrix} p & q \\ 0 & r \end{pmatrix} \cdot \begin{pmatrix} a^3 & b \\ 0 & a^2 \end{pmatrix} \cdot \begin{pmatrix} r/pr & -q/pr \\ 0 & p/pr \end{pmatrix} =$$

$$= \begin{pmatrix} p & q \\ 0 & r \end{pmatrix} \cdot \begin{pmatrix} a^3 & b \\ 0 & a^2 \end{pmatrix} \cdot \begin{pmatrix} 1/p & -q/pr \\ 0 & 1/r \end{pmatrix} = \begin{pmatrix} pa^3 & pb + qa^2 \\ 0 & ra^2 \end{pmatrix} \cdot \begin{pmatrix} 1/p & -q/pr \\ 0 & 1/r \end{pmatrix} =$$

$$= \begin{pmatrix} pa^3 & pb + qa^2 \\ 0 & ra^2 \end{pmatrix} \cdot \begin{pmatrix} 1/p & -q/pr \\ 0 & 1/r \end{pmatrix} = \begin{pmatrix} a^3 & -qa^3 + qa^2 + pb/r \\ 0 & a^2 \end{pmatrix} \in H$$

Полученная матрица имеет описанный вид и лежит в подгруппе H. В силу произвольности g и h условие $gHg^{-1}\subseteq H$ выполнено.

3. Таким образом, множество в G, состоящее из матриц вида

$$\begin{pmatrix} a^3 & b \\ 0 & a^2 \end{pmatrix}$$

образует нормальную подгруппу в G.

Задание 2. Найдите все гомоморфизмы из группы \mathbb{Z}_{20} в группу \mathbb{Z}_{12} .

1. Пусть $\varphi: \mathbb{Z}_{20} \to \mathbb{Z}_{12}$ – гомоморфизм. Если $\varphi(1) = a$, то для каждого $x \in \mathbb{Z}_{20}$:

$$\varphi(x) = \varphi(\underbrace{1+1+\ldots+1}_{x \ pas}) = \underbrace{\varphi(1)+\varphi(1)+\ldots+\varphi(1)}_{x \ pas} = \underbrace{a+a+\ldots+a}_{x \ pas} = xa$$

Таким образом, гомоморфизм φ однозначно определяется образом единицы.

2. Известно, что для любого гомоморфизма $\varphi:G_1\to G_2$ значение $\varphi(e_{G_1})=e_{G_2}$. Для искомых гомоморфизмов для каждого $t\in\mathbb{Z}$ должно выполнятся

$$\begin{cases} \varphi(0) = 0 \\ \varphi(0) = \varphi(20t) = 20ta \end{cases} \Leftrightarrow 20ta = 0$$

То есть 20ta = 0 в \mathbb{Z}_{12} для любого $t \in \mathbb{Z}$. Последнее равенство равносильно

$$20ta \equiv 0 \mod 12 \iff 5ta \equiv 0 \mod 3 \iff -ta \equiv 0 \mod 3 \iff ta \equiv 0 \mod 3$$

Так как равенство должно выполнятся для всех $t \in \mathbb{Z}$, оно должно выполнятся для t=1. Если равенство выполняется для t=1, то оно выполняется и для любого другого значения t. При t=1 получим уравнение $a\equiv 0 \mod 3$, решения которого удовлетворяют $at\equiv 0 \cdot t \equiv 0 \mod 3$ для любого другого значения t.

- 3. Для того , чтобы найти все возможные допустимые значения a нужно решить описанное сравнение $a \equiv 0 \mod 3$ в \mathbb{Z}_{12} . Решение этого уравнения: $a \in \{0, 3, 6, 9\}$.
- 4. Таким образом, искомые гомоморфизмы это отображения $\varphi: \mathbb{Z}_{20} \to \mathbb{Z}_{12}$, имеющие следующий вид $\varphi(x) = xa$ для каждого $x, a \in \{0, 3, 6, 9\}$

Otbet:
$$\varphi(x) = 0 \quad \forall x \in \mathbb{Z}$$

 $\varphi(x) = 3x \quad \forall x \in \mathbb{Z}$
 $\varphi(x) = 6x \quad \forall x \in \mathbb{Z}$
 $\varphi(x) = 9x \quad \forall x \in \mathbb{Z}$

Задание 3. Пусть H — подгруппа всех элементов конечного порядка в группе ($\mathbb{C} \setminus \{0\}, \times$). Докажите, что $H \simeq \mathbb{Q}/\mathbb{Z}$, где группы \mathbb{Q} и \mathbb{Z} рассматриваются с операцией сложения.

1. Если существует изоморфизм $H \simeq \mathbb{Q}/\mathbb{Z}$, то существует биективный гомоморфизм $\varphi: H \to \mathbb{Q}/\mathbb{Z}$. Значит, в силу того, что φ – биекция, существует φ^{-1} . Известно, что если φ – изоморфизм, то φ^{-1} также изоморфизм.

Таким образом, чтобы доказать изоморфность H и \mathbb{Q}/\mathbb{Z} можно доказать $\mathbb{Q}/\mathbb{Z} \simeq H$.

2. Каждый элемент подгруппы H имеет конечный порядок, следовательно, для $h \in H$ существует такое натуральное k, что $h^k = e$. Нейтральный элемент в группе ($\mathbb{C} \setminus \{0\}, \times$) – это единица. Получаем, что H – это подгруппа, состоящая из элементов, являющихся корнем единицы натуральной степени, то есть верно следующее

$$h \in H \iff \exists n \in \mathbb{N}: \ h^n = 1, \iff h = \cos\frac{2\pi k}{n} + i\sin\frac{2\pi k}{n}, \ n \in \mathbb{N}, \ k \in \{0, 1, \dots, n-1\}$$

3. Рассмотрим отображение $\varphi: \mathbb{Q} \to H$ заданное формулой $x \mapsto e^{2\pi x i}$. Покажем, что данное отображение – гомоморфизм:

$$\varphi(x+y) = e^{2\pi(x+y)i} = e^{2\pi xi + 2\pi yi} = e^{2\pi xi} \cdot e^{2\pi yi} = \varphi(x) \cdot \varphi(y)$$

Получаем, что для любых $x,y\in\mathbb{Q}$ выполнено $\varphi(x+y)=\varphi(x)\cdot\varphi(y)$, значит, построенное отображение – гомоморфизм.

4. Найдем ядро отображения, то есть такие элементы $x \in \mathbb{Q}$, что $\varphi(x) = e_H$. Нейтральный элемент подгруппы $H \subseteq \mathbb{C} \setminus \{0\}$ – это нейтральный элемент $\mathbb{C} \setminus \{0\}$, значит, $e_H = 1$. Получаем следующее уравнение:

$$\varphi(x) = e^{2\pi x i} = \cos 2\pi x + i \sin 2\pi x = 1 \iff \begin{cases} \cos 2\pi x = 1 \\ \sin 2\pi x = 0 \end{cases} \Leftrightarrow \begin{cases} 2\pi x = 2\pi m \\ 2\pi x = \pi n \end{cases} \quad m, n \in \mathbb{Z} \Leftrightarrow \begin{cases} x = m \\ 2x = n \end{cases} \quad m, n \in \mathbb{Z} \Leftrightarrow x = m, m \in \mathbb{Z} \end{cases}$$

Таким образом, ядро отображения – это множество целых чисел \mathbb{Z} .

- 5. Покажем, что $\operatorname{Im} \varphi = H$.
 - Для каждого $x \in \mathbb{Q}$ верно, что $\varphi(x) \in H$. Представим элемент x в виде $x_0 + \frac{p}{q}$, где x_0 целая часть числа x, а несократимая дробь $\frac{p}{q}$ дробная часть числа x, причём будем представлять x так, чтобы $\frac{p}{q} \geqslant 0$ и $p \in \mathbb{N} \cup \{0\}, \ q \in \mathbb{N}, \ p < q$.

Получаем следующее:

$$\varphi\left(x_0 + \frac{p}{q}\right) = \varphi\left(x_0\right) \cdot \varphi\left(\frac{p}{q}\right) = 1 \cdot \varphi\left(\frac{p}{q}\right) = \varphi\left(\frac{p}{q}\right) = e^{\frac{2\pi p}{q}i} = \cos\frac{2\pi p}{q} + i\sin\frac{2\pi p}{q} \neq 0$$

Последнее выражение — это корень степени q из единицы.

Не трудно в этом убедиться, возведя полученное комплексное число в степень q:

$$\left(\cos\frac{2\pi p}{q} + i\sin\frac{2\pi p}{q}\right)^q = \cos\frac{2\pi pq}{q} + i\sin\frac{2\pi pq}{q} = \cos2\pi p + i\sin2\pi p = 1 + 0i = 1$$

Образ каждого элемента – это это корень натуральной степени из единицы, значит, $\operatorname{Im} \varphi \subseteq H$.

— Покажем, что для каждого элемента $h \in H$ существует элемент $x \in \mathbb{Q}$, такой что $\varphi(x) = h$. Любой элемент из h при его представлении в тригонометрической форме имеет вид:

$$h = \cos \frac{2\pi p}{q} + i \sin \frac{2\pi p}{q}, \ p \in \mathbb{N} \cup \{0\}, \ q \in \mathbb{N}, \ p < q$$

Возьмём элемент $x=\frac{p}{q}\in\mathbb{Q}$ и покажем, что $\varphi(x)=h$:

$$\varphi\left(\frac{p}{q}\right) = e^{\frac{2\pi p}{q}i} = \cos\frac{2\pi p}{q} + i\sin\frac{2\pi p}{q} = h$$

Таким образом, $H \subseteq \operatorname{Im} \varphi$.

- Получаем, требуемое: $H \subseteq \operatorname{Im} \varphi$, $\operatorname{Im} \varphi \subseteq H \Leftrightarrow H = \operatorname{Im} \varphi$.
- 6. По теореме о гомоморфизме групп получаем $\mathbb{Q}/\ker\varphi\simeq\operatorname{Im}\varphi$, то есть $\mathbb{Q}/\mathbb{Z}\simeq H$ (по построению отображения $\ker\varphi=\mathbb{Z},\,\operatorname{Im}\varphi=H$). Последнее выражение равносильно $H\simeq\mathbb{Q}/\mathbb{Z}.$

Задание 4. Пусть $m, n \in \mathbb{N}$. Докажите, что следующие условия эквиваленты:

- (1) m и n взаимнопросты
- (2) для всякой группы G, всякой подгруппы $A \subseteq G$ порядка m и всякой подгруппы $B \subseteq G$ порядка n выполняется условие $A \cap B = \{e\}$.
- 1. Докажем, что пересечение $H_1 \cap H_2$ подгрупп $H_1 \subseteq G$ и $H_2 \subseteq G$ также подгруппа в G. Для этого проверим выполнение следующих условий:
 - (a) $e \in H_1 \cap H_2$
 - (6) $x, y \in H_1 \cap H_2 \Rightarrow x \circ y \in H_1 \cap H_2$
 - (B) $x \in H_1 \cap H_2 \Rightarrow x^{-1} \in H_1 \cap H_2$

Рассмотрим каждое из условий.

- Каждая из подгрупп содержит нейтральный элемент e. Этот элемент один и тот же в обеих подгруппах, так как и H_1 , и H_2 подгруппы одной и той же группы. Таким образом, $e \in H_1 \cap H_2$.
- Если элементы $x, y \in H_1 \cap H_2$, то оба элемента лежат и в H_1 , и в H_2 . Так как H_1 подгруппа и $x, y \in H_1$ выполняется $x \circ y \in H_1$. Аналогично и для подгруппы H_2 : $x, y \in H_2 \Rightarrow x \circ y \in H_2$. Элемент $x \circ y$ лежит и в H_1 , и в H_2 , значит, $x \circ y \in H_1 \cap H_2$.
- Если элемент $x \in H_1 \cap H_2$, то $x \in H_1$ и $x \in H_2$. В силу того, что H_1 и H_2 подгруппы $x^{-1} \in H_1$ и $x^{-1} \in H_2$. Обратный элемент лежит в обеих подгруппах, значит, он лежит в их пересечении.

Все условия выполнены. Получаем, что $H_1 \cap H_2$ – подгруппа в G. Заметим, что данное утверждение верно и для пересечения большего количества подгрупп.

Утверждение можно усилить: $H_1 \cap H_2$ — подгруппа в H_1 и H_2 . Множество $H_1 \cap H_2$ является подмножеством групп H_1 и H_2 и удовлетворяет всем условиям подгруппы, значит, $H_1 \cap H_2$ — подгруппа в H_1 и H_2 .

2. Из предыдущего пункта получаем, что $A\cap B$ – подгруппа в A и в B. По теореме Лагранжа для конечной группы G и подгруппы $H\subseteq G$ выполнено $|G|=|H|\cdot [G:H]$. Таким образом, для конечных A и B и их подгруппы $A\cap B$

$$\begin{cases} |A| = |A \cap B| \cdot [A : A \cap B] \\ |B| = |A \cap B| \cdot [B : A \cap B] \end{cases} \Rightarrow \begin{cases} |A| \stackrel{?}{:} |A \cap B| \\ |B| \stackrel{?}{:} |A \cap B| \end{cases} \Leftrightarrow \begin{cases} m \stackrel{?}{:} |A \cap B| \\ n \stackrel{?}{:} |A \cap B| \end{cases}$$

Пусть порядок группы $A\cap B$ больше единицы, то есть $|A\cap B|=d>1$. Тогда из делимости m на d и n на d следует, что $\mathrm{HOД}(m,n)\geq d>1$. Получаем противоречие с тем, что m и n взаимнопросты.

Порядок пересечения $A \cap B$ не может быть больше единицы. В то же время, $A \cap B$ – подгруппа, значит она содержит нейтральный элемент, то есть порядок $A \cap B$ не меньше единицы. Из этого следует, что $|A \cap B| = 1 \Leftrightarrow A \cap B = \{e\}$.

3. Таким образом, если m и n – взаимнопросты, то $A \cap B = \{e\}.$

4. Докажем в обратную сторону: если $A \cap B = \{e\}$, то HOД(m,n) = 1. Предположим противное: пусть $A \cap B = \{e\}$, но m и n не взаимнопросты. Рассмотрим циклическую группу $G = \langle a \rangle$ с образующим a порядка $m \cdot n$ и подгруппы $A = \langle a^n \rangle$ и $B = \langle a^m \rangle$.

Нетрудно убедиться, что порядки A и B равны m и n соответственно. Минимальная степень t элемента a, при которой $a^t = e$, равна $m \cdot n$ (по построению G). Порядок группы A – это порядок a^n , то есть минимальная степень s, такая что $a^{sn} = e$. Минимум достигается при $s \cdot n = m \cdot n \Leftrightarrow s = m$. Аналогично $|B| = \operatorname{ord}(a^m) = n$.

Опишем все общие элементы A и B. Заметим, что если a^t лежит и в A, и в B, то $a^t = a^{pn}$ и $a^t = a^{qm}$, то есть элементы, которые лежат в пересечении – это элементы удовлетворяющие равенству $a^{pn} = a^{qm}$ для каких-то целых p и q. Данные числа p и q равны:

$$p = \alpha \cdot \frac{m}{\mathrm{HOД}(m,n)}, \; q = \alpha \cdot \frac{n}{\mathrm{HOД}(m,n)}, \;\;$$
 где $\alpha \in \mathbb{Z}$

В пересечении лежат элементы вида $a^{\alpha \frac{mn}{\text{HOД}(m,n)}} = a^{\alpha \text{HOK}(m,n)}$.

Получаем, что $A \cap B = \langle a^{\mathrm{HOK}(m,n)} \rangle$. Порядок этой группы равен порядку образующей, а порядок образующей равен

$$\frac{mn}{\text{HOK}(m,n)} = \text{HOД}(m,n) > 1$$

Последнее означает, что $|A \cap B| > 1 = |\{e\}|$, значит, $A \cap B \neq \{e\}$. Получаем противоречие.

- 5. Таким образом, если $A \cap B = \{e\}$, то HOД(m, n) = 1.
- 6. Получаем, что описанные условия эквивалентны.

Несмотря на то, что условия эквиваленты, из тривиального пересечения **каких-то** двух подгрупп не следует взаимная простота m и n. В качестве примера приведём $\mathbb{Z}_2 \times \mathbb{Z}_2$ по сложению.

На множестве $\mathbb{Z}_2 \times \mathbb{Z}_2$ зададим бинарную операцию $(g_1, g_2)(g_1', g_2') = (g_1g_1', g_2g_2')$. Проверим, что $\mathbb{Z}_2 \times \mathbb{Z}_2$ – группа, то есть проверим выполнение следующих условий:

ассоциативность:

$$((a_1, a_2)(b_1, b_2))(c_1, c_2) = (a_1b_1, a_2b_2)(c_1, c_2) = ((a_1b_1)c_1, (a_2b_2)c_2) = (a_1b_1c_1, a_2b_2c_2)$$
$$(a_1, a_2)((b_1, b_2)(c_1, c_2)) = (a_1, a_2)(b_1c_1, b_2c_2) = (a_1(b_1c_1), a_2(b_2c_2)) = (a_1b_1c_1, a_2b_2c_2)$$

— существование нейтрального элемента: $e=(e_{\mathbb{Z}_2},e_{\mathbb{Z}_2}),$ где $e_{\mathbb{Z}_2}$ — нейтральный элемент \mathbb{Z}_2

$$(e_{\mathbb{Z}_2}, e_{\mathbb{Z}_2})(g_1, g_2) = (e_{\mathbb{Z}_2}g_1, e_{\mathbb{Z}_2}g_2) = (g_1, g_2) = (g_1e_{\mathbb{Z}_2}, g_2e_{\mathbb{Z}_2}) = (g_1, g_2)(e_{\mathbb{Z}_2}, e_{\mathbb{Z}_2})$$

— существование обратного элемента: $\forall g=(g_1,g_2)$ из $\mathbb{Z}_2\times\mathbb{Z}_2$ существует $g^{-1}=(g_1^{-1},g_2^{-1})$

$$(g_1^{-1}, g_2^{-1})(g_1, g_2) = (g_1^{-1}g_1, g_2^{-1}g_2) = (e_{\mathbb{Z}_2}, e_{\mathbb{Z}_2}) = (g_1g_1^{-1}, g_2g_2^{-1}) = (g_1, g_2)(g_1^{-1}, g_2^{-1})$$

Рассмотрим две подгруппы этой группы: $\langle (0,1) \rangle$, $\langle (1,0) \rangle$. Порядок этих групп равен двум:

$$\langle (0,1) \rangle = \{(0,0), \ (0,1)\} \ \Rightarrow \ \left| \langle (0,1) \rangle \right| = 2 \quad \ \langle (1,0) \rangle = \{(0,0), \ (1,0)\} \ \Rightarrow \ \left| \langle (1,0) \rangle \right| = 2$$

Заметим, что пересечение этих подгрупп тривиально, но их порядки не взаимнопросты.