NUM2

Macierze

$$A_1 = \begin{bmatrix} 2.554219275 & 0.871733993 & 0.052575899 & 0.240740262 & 0.316022841 \\ 0.871733993 & 0.553460938 & -0.070921727 & 0.255463951 & 0.707334556 \\ 0.052575899 & -0.070921727 & 3.409888776 & 0.293510439 & 0.847758171 \\ 0.240740262 & 0.255463951 & 0.293510439 & 1.108336850 & -0.206925123 \\ 0.316022841 & 0.707334556 & 0.847758171 & -0.206925123 & 2.374094162 \end{bmatrix} \\ \begin{bmatrix} 2.645152285 & 0.544589368 & 0.009976745 & 0.327869824 & 0.424193304 \\ 0.544589368 & 1.730410927 & 0.082334875 & -0.057997220 & 0.318175706 \\ 0.009976745 & 0.082334875 & 3.429845092 & 0.252693077 & 0.797083832 \\ 0.327869824 & -0.057997220 & 0.252693077 & 1.191822050 & -0.103279098 \\ 0.424193304 & 0.318175706 & 0.797083832 & -0.103279098 & 2.502769647 \end{bmatrix}$$

podobne ($||A_1-A_2||_2pprox 1.5$), ale są bardzo różnie uwarunkowane ($\kappa(A_1)pprox 2*10^{10}$, $\kappa(A_2)pprox 4$).

Rozwiązania równań $A_i y_i = b$ dla $i \in \{1,2\}$

$$y_1 = egin{bmatrix} 0.22508473495990142 \ -0.006021565485049292 \ 1.841831908916832 \ -5.153442622506757 \ -0.21762272712559458 \end{bmatrix}$$

$$y_2 = egin{bmatrix} 0.5774717195360792 \ -1.273784582148229 \ 1.6767500841827974 \ -4.815794904985598 \ 0.20156347400904132 \end{bmatrix}$$

Te rozwiązania - podobnie jak macierze A_1 i A_2 - są podobne ($||y_1-y_2||_2\approx 1.4$, $||y_1-y_2||_\infty\approx 1.3$).

Rozwiązania równań z zaburzeniem $A_i y_i = b + \Delta b$ dla $i \in \{1,2\}$

Poniższe rozwiązania zostały obliczone dla losowo wygenerowanego

$$\Delta b = egin{bmatrix} 2.84831921827574*10^{-8} \ 4.777274103738421*10^{-7} \ 1.297061957666344*10^{-7} \ -4.461524903902332*10^{-7} \ 7.450432787690413*10^{-7} \end{bmatrix} (||\Delta b||_2 pprox 10^{-6}).$$

 $y_{1 \, \mathrm{zaburzone}} = \begin{bmatrix} -402.1413556396401 \\ 1447.5653003045172 \\ 190.33740507510794 \\ -390.6901319542491 \\ -478.85749273575254 \end{bmatrix}$ $\begin{bmatrix} 0.5774716818712454 \\ -1.2737843533620266 \\ 1.6767500797927792 \\ -4.8157952341313255 \\ 0.20156373681052478 \end{bmatrix}$

Te rozwiązania różnią się od siebie o wiele bardziej niż macierze A_1 i A_2 ($||y_1|_{\mathrm{zaburzone}} - y_2|_{\mathrm{zaburzone}}||_2 \approx 1636$). Większość tej różnicy jest spowodowana przez $y_1|_{\mathrm{zaburzone}}$, które się bardzo różni od y_1 ($||y_1|_{\mathrm{zaburzone}} - y_1||_2 \approx 1634$). Różnica między $y_2|_{\mathrm{zaburzone}}$ i y_2 jest o wiele mniejsza ($||y_2|_{\mathrm{zaburzone}} - y_2||_2 \approx 5*10^{-7}$).

Dla innych wartości Δb o podobnej normie, $y_{1\,\mathrm{zaburzone}}$ zmienia się o wiele bardziej niż $y_{2\,\mathrm{zaburzone}}$. Różnice $||y_{i\,\mathrm{zaburzone}}-y_i||$ są podobne do tych w powyższym przykładzie, i są rzędu $\kappa(A_i)*||\Delta b||$.