

Сопряженные множества

Сопряженное множество

Пусть $S\subseteq \mathbb{R}^n$ — произвольное непустое множество. Тогда его сопряжённое множество определяется как:

$$S^* = \{y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -1 \ \forall x \in S\}$$

Множество S^{**} называется двойным сопряжённым множеством к S, если:

$$S^{**} = \{y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -1 \ \forall x \in S^* \}$$

• Множества S_1 и S_2 называются **взаимно** сопряжёнными, если $S_1^* = S_2, \ S_2^* = S_1.$

Рис. 1: Выпуклые множества можно описывать двойственным образом — через элементы множества и через множество опорных гиперплоскостей

∂ ດ **⊘**

Сопряженное множество

Пусть $S \subseteq \mathbb{R}^n$ — произвольное непустое множество.

Тогда его сопряжённое множество определяется как:

$$S^* = \{y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -1 \ \forall x \in S\}$$

Множество S^{**} называется двойным сопряжённым множеством к S, если:

$$S^{**} = \{y \in \mathbb{R}^n \mid \langle y, x \rangle \geq -1 \ \forall x \in S^* \}$$

- Множества S_1 и S_2 называются **взаимно** сопряжёнными, если $S_1^* = S_2, \ S_2^* = S_1.$
- Множество S называется **самосопряжённым**, если $S^* = S$.

Рис. 1: Выпуклые множества можно описывать двойственным образом — через элементы множества и через множество опорных гиперплоскостей

⊕ດ Ø

• Сопряжённое множество всегда замкнуто, выпукло и содержит нуль.

- Сопряжённое множество всегда замкнуто, выпукло и содержит нуль.
- Для произвольного множества $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- Сопряжённое множество всегда замкнуто, выпукло и содержит нуль.
- Для произвольного множества $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

• Если $S_1 \subseteq S_2$, то $S_2^* \subseteq S_1^*$.

- Сопряжённое множество всегда замкнуто, выпукло и содержит нуль.
- Для произвольного множества $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- Если $S_1 \subseteq S_2$, то $S_2^* \subseteq S_1^*$.
- $\bullet \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*.$

- Сопряжённое множество всегда замкнуто, выпукло и содержит нуль.
- Для произвольного множества $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- Если $S_1 \subseteq S_2$, то $S_2^* \subseteq S_1^*$.
- $\bullet \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*.$
- Если S замкнуто, выпукло и содержит 0, то $S^{**} = S$.

- Сопряжённое множество всегда замкнуто, выпукло и содержит нуль.
- Для произвольного множества $S \subseteq \mathbb{R}^n$:

$$S^{**} = \overline{\mathbf{conv}(S \cup \{0\})}$$

- Если $S_1 \subseteq S_2$, то $S_2^* \subseteq S_1^*$.
- $\bullet \left(\bigcup_{i=1}^m S_i\right)^* = \bigcap_{i=1}^m S_i^*.$
- Если S замкнуто, выпукло и содержит 0, то $S^{**} = S$.
- $S^* = (\overline{S})^*$.

i Example

Доказать, что $S^* = \left(\overline{S}\right)^*$.

i Example

Доказать, что $S^* = \left(\overline{S}\right)^*$.

•
$$S \subset \overline{S} \implies (\overline{S})^* \subset S^*$$
.

i Example

Доказать, что
$$S^* = \left(\overline{S}\right)^*$$
.

- $S \subset \overline{S} \implies (\overline{S})^* \subset S^*$.
- ullet Пусть $p\in S^*$ и $x_0\in \overline{S},\; x_0=\lim_{k o\infty}x_k.$ Тогда в силу непрерывности функции $f(x)=p^Tx$ имеем:

$$p^Tx_k \geq -1 \ \Rightarrow \ p^Tx_0 \geq -1.$$
 Следовательно, $p \in \left(\overline{S}\right)^*$, и значит $S^* \subset \left(\overline{S}\right)^*$.

i Example

Доказать, что $(\mathbf{conv}(S))^* = S^*$.

i Example

Доказать, что $(\mathbf{conv}(S))^* = S^*$.

 $\bullet \ S \subset \mathbf{conv}(S) \ \Rightarrow \ \left(\mathbf{conv}(S)\right)^* \subset S^*.$

i Example

Доказать, что $(\mathbf{conv}(S))^* = S^*$.

- $S \subset \mathbf{conv}(S) \Rightarrow (\mathbf{conv}(S))^* \subset S^*$.
- ullet Пусть $p \in S^*$ и $x_0 \in \mathbf{conv}(S)$, то есть

$$x_0 = \sum_{i=1}^{k} \theta_i x_i, \ x_i \in S, \ \sum_{i=1}^{k} \theta_i = 1, \ \theta_i \ge 0$$

♥ ೧ 0

i Example

Доказать, что $(\mathbf{conv}(S))^* = S^*$.

- $S \subset \mathbf{conv}(S) \Rightarrow (\mathbf{conv}(S))^* \subset S^*$.
- Пусть $p \in S^*$ и $x_0 \in \mathbf{conv}(S)$, то есть

$$x_0 = \sum_{i=1}^k \theta_i x_i, \ x_i \in S, \ \sum_{i=1}^k \theta_i = 1, \ \theta_i \ge 0$$

Тогда

$$p^Tx_0 = \sum_{i=1}^k \theta_i \, p^Tx_i \ \geq \ \sum_{i=1}^k \theta_i \cdot (-1) = 1 \cdot (-1) = -1.$$

i Example

Доказать, что $(\mathbf{conv}(S))^* = S^*$.

- $S \subset \mathbf{conv}(S) \Rightarrow (\mathbf{conv}(S))^* \subset S^*$.
- Пусть $p \in S^*$ и $x_0 \in \mathbf{conv}(S)$, то есть

$$x_0 = \sum_{i=1}^k \theta_i x_i, \ x_i \in S, \ \sum_{i=1}^k \theta_i = 1, \ \theta_i \ge 0$$

Тогда

$$p^Tx_0 = \sum_{i=1}^k \theta_i \, p^Tx_i \ \geq \ \sum_{i=1}^k \theta_i \cdot (-1) = 1 \cdot (-1) = -1.$$

• Значит, $p \in (\mathbf{conv}(S))^*$, и, следовательно, $S^* \subset (\mathbf{conv}(S))^*$.

i Example

Докажите, что если B(0,r) — это шар радиуса r в некоторой норме с центром в нуле, то $\left(B(0,r)\right)^*=$ B(0, 1/r).

i Example

Докажите, что если B(0,r) — это шар радиуса r в некоторой норме с центром в нуле, то $\left(B(0,r)\right)^*=B(0,1/r).$

• Пусть $B(0,r)=X,\; B(0,1/r)=Y.$ Возьмём вектор $p\in X^*$, тогда для любого $x\in X$: $p^Tx>-1.$

i Example

Докажите, что если B(0,r) — это шар радиуса r в некоторой норме с центром в нуле, то $\left(B(0,r)\right)^*=B(0,1/r).$

- Пусть $B(0,r) = X, \ B(0,1/r) = Y.$ Возьмём вектор $p \in X^*$, тогда для любого $x \in X$: $p^T x > -1.$
- Среди всех точек шара X возьмём такую $x \in X$, для которой скалярное произведение с p минимально: p^Tx . Это точка $x = -\frac{p}{\|p\|}r$.

$$p^T x = p^T \left(-\frac{p}{\|p\|} r \right) = -\|p\|r \ge -1$$

$$||p|| \le \frac{1}{r} \in Y$$

Следовательно, $X^* \subset Y$.

Сопряженные множества

i Example

Докажите, что если B(0,r) — это шар радиуса r в некоторой норме с центром в нуле, то $\left(B(0,r)\right)^*=$ B(0, 1/r).

- Пусть B(0,r) = X, B(0,1/r) = Y. Возьмём вектор $p \in X^*$, тогда для любого $x \in X$: $p^T x > -1$.
- ullet Среди всех точек шара X возьмём такую $x \in X$. для которой скалярное произведение с pминимально: p^Tx . Это точка $x=-rac{p}{\|p\|}r$.

$$p^T x = p^T \left(-\frac{p}{\|p\|} r \right) = -\|p\|r \ge -1$$

$$||p|| \le \frac{1}{r} \in Y$$

Следовательно, $X^* \subset Y$.

• Теперь пусть $p \in Y$. Нужно показать, что $p \in X^*$, то есть $\langle p, x \rangle \geq -1$. Достаточно применить неравенство Коши-Буняковского:

$$\|\langle p, x \rangle\| \le \|p\| \|x\| \le \frac{1}{r} \cdot r = 1$$

Последнее верно, так как $p \in B(0,1/r)$ и $x \in B(0,r)$. Следовательно. $Y \subset X^*$.

Двойственный конус

Сопряжённым (двойственным) к конусу K называется множество K^{*} такое, что:

$$K^* = \{ y \mid \langle x, y \rangle \ge 0 \quad \forall x \in K \}$$

Чтобы показать, что это определение напрямую вытекает из предыдущих определений, напомним, что такое сопряжённое множество и что такое конус при $\forall \lambda>0.$

$$\{y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -1 \ \forall x \in S\} \ \rightarrow \ \{\lambda y \in \mathbb{R}^n \mid \langle y, x \rangle \ge -\frac{1}{\lambda} \ \forall x \in S\}$$

⊕ n ø

• Пусть K — замкнутый выпуклый конус. Тогда $K^{**} = K$.

- Пусть K замкнутый выпуклый конус. Тогда $K^{**} = K$.
- Для произвольного множества $S \subseteq \mathbb{R}^n$ и конуса $K \subseteq \mathbb{R}^n$:

$$\left(S+K\right)^*=S^*\cap K^*$$

- Пусть K замкнутый выпуклый конус. Тогда $K^{**} = K$.
- Для произвольного множества $S \subseteq \mathbb{R}^n$ и конуса $K \subseteq \mathbb{R}^n$:

$$\left(S+K\right)^{*}=S^{*}\cap K^{*}$$

• Пусть $K_1, ..., K_m$ — конусы в \mathbb{R}^n , тогда:

$$\left(\sum_{i=1}^{m} K_i\right)^* = \bigcap_{i=1}^{m} K_i^*$$

- Пусть K замкнутый выпуклый конус. Тогда $K^{**}=K$.
- ullet Для произвольного множества $S \subseteq \mathbb{R}^n$ и конуса $K \subseteq \mathbb{R}^n$:

$$\left(S+K\right)^{*}=S^{*}\cap K^{*}$$

• Пусть $K_1, ..., K_m$ — конусы в \mathbb{R}^n , тогда:

$$\left(\sum_{i=1}^{m} K_i\right)^* = \bigcap_{i=1}^{m} K_i^*$$

• Пусть K_1, \dots, K_m — конусы в \mathbb{R}^n . Если их пересечение имеет внутреннюю точку, то:

$$\left(\bigcap_{i=1}^m K_i\right)^* = \sum_{i=1}^m K_i^*$$

i Example

Найдите сопряжённый конус для монотонного неотрицательного конуса:

$$K = \{x \in \mathbb{R}^n \mid x_1 \geq x_2 \geq \ldots \geq x_n \geq 0\}$$

i Example

Найдите сопряжённый конус для монотонного неотрицательного конуса:

$$K = \{x \in \mathbb{R}^n \mid x_1 \geq x_2 \geq \ldots \geq x_n \geq 0\}$$

Заметим, что:

$$\sum_{i=1} x_i y_i = y_1 (x_1 - x_2) + (y_1 + y_2) (x_2 - x_3) + \ldots + (y_1 + y_2 + \ldots + y_{n-1}) (x_{n-1} - x_n) + (y_1 + \ldots + y_n) x_n$$

Так как во всей представленной сумме второй множитель в каждом слагаемом неотрицателен, то:

$$y_1 > 0, \ y_1 + y_2 > 0, \dots, \ y_1 + \dots + y_n > 0$$

Следовательно, $K^* = \left\{ y \mid \sum\limits_{i=1}^k y_i \geq 0, \;\; k = \overline{1,n} \right\}.$

Многогранники

Множество решений системы линейных неравенств и равенств является многогранником:

$$Ax \leq b, \quad Cx = d$$

Здесь $A \in \mathbb{R}^{m \times n}, \ C \in \mathbb{R}^{p \times n}$, а знак неравенства понимается покомпонентно.

i Theorem

Пусть $x_1,\dots,x_m\in\mathbb{R}^n.$ Тогда сопряжённым к многогранному множеству

$$S = \mathbf{conv}(x_1, \dots, x_k) + \mathbf{cone}(x_{k+1}, \dots, x_m)$$

является многогранник:

$$S^* = \left\{ p \in \mathbb{R}^n \; \big| \; \langle p, x_i \rangle \geq -1, \; i = \overline{1, k}; \; \; \langle p, x_i \rangle \geq 0, \; i = \overline{k+1, m} \right\}$$

Рис. 3: Polyhedra

Сопряженные множества

Доказательство

ullet Пусть $S=X,\ S^*=Y.$ Возьмём некоторое $p\in X^*$, тогда $\langle p,x_i
angle \geq -1,\ i=\overline{1,k}.$ В то же время, для любого $\theta > 0$, $i = \overline{k+1,m}$:

$$\langle p, x_i \rangle \geq -1 \to \langle p, \theta x_i \rangle \geq -1$$

$$\langle p, x_i \rangle \geq -\frac{1}{\theta} \to \langle p, x_i \rangle \geq 0.$$

Следовательно, $p \in Y \to X^* \subset Y$.

Доказательство

ullet Пусть $S=X,\ S^*=Y.$ Возьмём некоторое $p\in X^*$, тогда $\langle p,x_i
angle \geq -1,\ i=\overline{1,k}.$ В то же время, для любого $\theta > 0$, $i = \overline{k+1}$:

$$\langle p, x_i \rangle \ge -1 \to \langle p, \theta x_i \rangle \ge -1$$

$$\langle p, x_i \rangle \ge -\frac{1}{\theta} \to \langle p, x_i \rangle \ge 0.$$

Следовательно. $p \in Y \to X^* \subset Y$.

ullet Предположим, наоборот, что $p\in Y$. Для любой точки $x\in X$: $x=\sum_{i=1}^m heta_i x_i, \quad \sum_{i=1}^\kappa heta_i=1, \quad heta_i\geq 0$ Тогда:

$$\langle p,x\rangle = \sum_{i=0}^{m} \theta_i \langle p,x_i\rangle = \sum_{i=0}^{k} \theta_i \langle p,x_i\rangle + \sum_{i=0}^{m} \theta_i \langle p,x_i\rangle \geq \sum_{i=0}^{k} \theta_i (-1) + \sum_{i=0}^{k} \theta_i \cdot 0 = -1.$$

Следовательно. $p \in X^* \to Y \subset X^*$.

Сопряжённые функции

Сопряжённые функции

Напомним, что для отображения $f:\mathbb{R}^n \to \mathbb{R}$ функция, определяемая как

$$f^*(y) = \max_x \left[y^T x - f(x) \right]$$

называется его сопряжённой. Выражение выше называется преобразованием Лежандра.

Геометрическая интуиция

Геометрическая интуиция

 $\min_{v,y,z}$ Сопряжённые функции

Предположим, что f — замкнутая и выпуклая функция. Тогда f сильно выпукла с параметром $\mu\Leftrightarrow \nabla f^*$ является липшицевой с параметром $1/\mu$.

Предположим, что f — замкнутая и выпуклая функция. Тогда f сильно выпукла с параметром $\mu \Leftrightarrow \nabla f^*$ является липшицевой с параметром $1/\mu$.

Доказательство " \Rightarrow ": напомним, если q сильно выпукла с минимайзером x, то

$$g(y) \geq g(x) + \frac{\mu}{2} \|y - x\|^2, \quad$$
для всех y

Предположим, что f — замкнутая и выпуклая функция. Тогда f сильно выпукла с параметром $\mu \Leftrightarrow \nabla f^*$ является липшицевой с параметром $1/\mu$.

Доказательство " \Rightarrow ": напомним, если q сильно выпукла с минимайзером x, то

$$g(y) \geq g(x) + \frac{\mu}{2} \|y - x\|^2, \quad$$
 для всех y

Введём обозначения $x_u = \nabla f^*(u)$ и $x_v = \nabla f^*(v)$, тогда

$$f(x_v) - u^T x_v \geq f(x_u) - u^T x_u + \frac{\mu}{2} \|x_u - x_v\|^2$$

$$f(x_u) - v^T x_u \geq f(x_v) - v^T x_v + \frac{\mu}{2} \|x_u - x_v\|^2$$

Предположим, что f — замкнутая и выпуклая функция. Тогда f сильно выпукла с параметром $\mu \Leftrightarrow \nabla f^*$ является липшицевой с параметром $1/\mu$.

Доказательство " \Rightarrow ": напомним, если q сильно выпукла с минимайзером x, то

$$g(y) \geq g(x) + \frac{\mu}{2} \|y - x\|^2, \quad$$
 для всех y

Введём обозначения $x_u = \nabla f^*(u)$ и $x_v = \nabla f^*(v)$, тогда

$$\begin{split} f(x_v) - u^T x_v &\geq f(x_u) - u^T x_u + \frac{\mu}{2} \|x_u - x_v\|^2 \\ f(x_u) - v^T x_u &\geq f(x_v) - v^T x_v + \frac{\mu}{2} \|x_u - x_v\|^2 \end{split}$$

Сложив эти неравенства, применяя неравенство Коши–Шварца и преобразуя, получаем:

$$||x_u - x_v||^2 \le \frac{1}{u} ||u - v||^2$$

Доказательство "\Leftarrow": для простоты обозначим $g=f^*$ и $L=\frac{1}{\mu}$. Так как ∇g является липшицевой с константой L, то и $g_x(z)=g(z)-\nabla g(x)^Tz$ также липшицева, следовательно

$$g_x(z) \leq g_x(y) + \nabla g_x(y)^T(z-y) + \frac{L}{2}\|z-y\|_2^2$$

Доказательство "\Leftarrow": для простоты обозначим $g=f^*$ и $L=\frac{1}{\mu}$. Так как ∇g является липшицевой с константой L, то и $g_x(z)=g(z)-\nabla g(x)^Tz$ также липшицева, следовательно

$$g_x(z) \leq g_x(y) + \nabla g_x(y)^T(z-y) + \frac{L}{2}\|z-y\|_2^2$$

Минимизируя обе части по z и преобразуя, получаем

$$\frac{1}{2L}\|\nabla g(x) - \nabla g(y)\|^2 \leq g(y) - g(x) + \nabla g(x)^T(x-y)$$

Доказательство "\Leftarrow": для простоты обозначим $g=f^*$ и $L=\frac{1}{\mu}$. Так как ∇g является липшицевой с константой L, то и $g_x(z) = g(z) - \nabla g(x)^T z$ также липшицева, следовательно

$$g_x(z) \leq g_x(y) + \nabla g_x(y)^T(z-y) + \frac{L}{2}\|z-y\|_2^2$$

Минимизируя обе части по z и преобразуя, получаем

$$\frac{1}{2L}\|\nabla g(x) - \nabla g(y)\|^2 \leq g(y) - g(x) + \nabla g(x)^T(x-y)$$

Меняя местами x, y и складывая, получаем

$$\frac{1}{L}\|\nabla g(x) - \nabla g(y)\|^2 \leq (\nabla g(x) - \nabla g(y))^T(x-y)$$

Доказательство "\Leftarrow": для простоты обозначим $g=f^*$ и $L=\frac{1}{\mu}$. Так как ∇g является липшицевой с константой L, то и $g_x(z)=g(z)-\nabla g(x)^Tz$ также липшицева, следовательно

$$g_x(z) \leq g_x(y) + \nabla g_x(y)^T(z-y) + \frac{L}{2}\|z-y\|_2^2$$

Минимизируя обе части по z и преобразуя, получаем

$$\frac{1}{2L}\|\nabla g(x) - \nabla g(y)\|^2 \leq g(y) - g(x) + \nabla g(x)^T(x-y)$$

Меняя местами x, y и складывая, получаем

$$\frac{1}{L}\|\nabla g(x) - \nabla g(y)\|^2 \leq (\nabla g(x) - \nabla g(y))^T(x-y)$$

Положим $u = \nabla f(x), v = \nabla g(y)$; тогда $x \in \partial g^*(u), y \in \partial g^*(v)$, и выше получаем

$$(x-y)^T(u-v) \ge \frac{\|u-v\|^2}{I},$$

что и доказывает утверждение.

Свойства сопряжённых функций

Напомним, что для отображения $f:\mathbb{R}^n o \mathbb{R}$ функция, определяемая как

$$f^*(y) = \max_x \left[y^T x - f(x) \right]$$

называется его сопряжённой.

Сопряжённые функции часто возникают в двойственных задачах, так как

$$-f^*(y) = \min_x \left[f(x) - y^T x \right]$$

Свойства сопряжённых функций

Напомним, что для отображения $f:\mathbb{R}^n \to \mathbb{R}$ функция, определяемая как

$$f^*(y) = \max_x \left[y^T x - f(x) \right]$$

называется его сопряжённой.

Сопряжённые функции часто возникают в двойственных задачах, так как

$$-f^*(y) = \min_x \left[f(x) - y^T x \right]$$

ullet Если f замкнута и выпукла, то $f^{**}=f$. Кроме того,

$$x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x) \Leftrightarrow x \in \arg\min_z \left[f(z) - y^T z \right]$$

Свойства сопряжённых функций

Напомним, что для отображения $f:\mathbb{R}^n \to \mathbb{R}$ функция, определяемая как

$$f^*(y) = \max_x \left[y^T x - f(x) \right]$$

называется его сопряжённой.

Сопряжённые функции часто возникают в двойственных задачах, так как

$$-f^*(y) = \min_x \left[f(x) - y^T x \right]$$

• Если f замкнута и выпукла, то $f^{**}=f$. Кроме того,

$$x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x) \Leftrightarrow x \in \arg\min_{\boldsymbol{z}} \left[f(\boldsymbol{z}) - y^T \boldsymbol{z} \right]$$

• Если f строго выпукла, то

$$\nabla f^*(y) = \arg\min_{z} \left[f(z) - y^T z \right]$$

Покажем, что $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, предполагая, что f выпукла и замкнута.

ullet Доказательство \Leftarrow : Пусть $y\in\partial f(x)$. Тогда $x\in M_y$ — множество точек максимума $y^Tz-f(z)$ по z. Но

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in \mathcal{M}} \{z\})).$$

Следовательно, $x \in \partial f^*(y)$.

Покажем, что $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, предполагая, что f выпукла и замкнута.

ullet Доказательство \Leftarrow : Пусть $y\in\partial f(x)$. Тогда $x\in M_u$ — множество точек максимума $y^Tz-f(z)$ по z. Но

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in M} \{z\})).$$

Следовательно, $x \in \partial f^*(y)$.

• Доказательство \Rightarrow : Из показанного выше, если $x \in \partial f^*(y)$, то $y \in \partial f^*(x)$, но $f^{**} = f$.

Покажем, что $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, предполагая, что f выпукла и замкнута.

ullet Доказательство \Leftarrow : Пусть $y\in\partial f(x)$. Тогда $x\in M_u$ — множество точек максимума $y^Tz-f(z)$ по z. Но

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in M} \{z\})).$$

Следовательно, $x \in \partial f^*(y)$.

• Доказательство \Rightarrow : Из показанного выше, если $x \in \partial f^*(y)$, то $y \in \partial f^*(x)$, но $f^{**} = f$.

Покажем, что $x \in \partial f^*(y) \Leftrightarrow y \in \partial f(x)$, предполагая, что f выпукла и замкнута.

ullet Доказательство \Leftarrow : Пусть $y\in\partial f(x)$. Тогда $x\in M_u$ — множество точек максимума $y^Tz-f(z)$ по z. Но

$$f^*(y) = \max_z \{y^T z - f(z)\} \quad \text{ and } \quad \partial f^*(y) = \operatorname{cl}(\operatorname{conv}(\bigcup_{z \in M_+} \{z\})).$$

Следовательно. $x \in \partial f^*(y)$.

• Доказательство \Rightarrow : Из показанного выше, если $x \in \partial f^*(y)$, то $y \in \partial f^*(x)$, но $f^{**} = f$.

Очевидно, $y \in \partial f(x) \Leftrightarrow x \in \arg\min_{z} \{f(z) - y^T z\}$

Наконец, если f строго выпукла, то мы знаем, что $f(z)-y^Tz$ имеет единственный минимизатор по z, и им должна быть $\nabla f^*(y)$.