Chapter 1: Vector Spaces

Juan Patricio Carrizales Torres

Aug 17, 2022

Problem 1.1. Let \mathcal{V} be a vector space over \mathbb{F} . Show that if $\alpha, \beta \in \mathbb{F}$ and if \mathbf{v} is a nonzero vector in \mathcal{V} , then $\alpha \mathbf{v} = \beta \mathbf{v} \implies \alpha = \beta$. [HINT: $\alpha - \beta \neq 0 \implies \mathbf{v} = (\alpha - \beta)^{-1} (\alpha - \beta) \mathbf{v}$.]

Proof. Suppose, to the contrary, that there are distinct $\alpha, \beta \in \mathbb{F}$ such that for some nonzero $\mathbf{v} \in \mathcal{V}$ we have $\alpha \mathbf{v} = \beta \mathbf{v}$. Then, $\alpha - \beta \neq 0$ and so $\mathbf{v} = (\alpha - \beta)^{-1}(\alpha - \beta)\mathbf{v}$. Hence,

$$\mathbf{v} = (\alpha - \beta)^{-1} \alpha \mathbf{v} - (\alpha - \beta)^{-1} \beta \mathbf{v} = (\alpha - \beta)^{-1} (\alpha \mathbf{v} - \beta \mathbf{v}).$$

Since $\alpha \mathbf{v} = \beta \mathbf{v}$, it follows that $\alpha \mathbf{v} - \beta \mathbf{v} = \beta \mathbf{v} - \beta \mathbf{v} = \mathbf{0}$. This implies that $\mathbf{v} = (\alpha - \beta)^{-1} \mathbf{0} = \mathbf{0}$. This is a contradiction to our assumption that \mathbf{v} was nonzero.

Another way to prove this directly is by using the fact, for some $\alpha \in \mathbb{F}$ and nonzero vector \mathbf{v} , that $\alpha \mathbf{v} = \mathbf{0} \implies \alpha = 0$. A proof reads as follows:

Let $\alpha, \beta \in \mathbb{F}$ and $\mathbf{v} \in \mathcal{V}$ be some nonzero vector such that $\alpha \mathbf{v} = \beta \mathbf{v}$. Then, $\alpha \mathbf{v} - \beta \mathbf{v} = \beta \mathbf{v} - \beta \mathbf{v} = \mathbf{0}$ and so $(\alpha - \beta)\mathbf{v} = \mathbf{0}$. Since \mathbf{v} is nonzero, it follows that $\alpha - \beta = 0$ and so $\alpha = \beta$.

Problem 1.2. Show that the space \mathbb{R}^3 endowed with the rule

$$\mathbf{x} \square \mathbf{y} = \begin{bmatrix} \max(x_1, y_1) \\ \max(x_2, y_2) \\ \max(x_3, y_3) \end{bmatrix}$$

for vector addition and the usual rule for scalar multiplication is not a vector space over \mathbb{R} .

Proof. We show that this space has no unique additive identity. Consider some $\mathbf{x} = (x_1, x_2, x_3)$. Then, both $\mathbf{y} = (x_1 - 1, x_2 - 1, x_3 - 1)$ and $\mathbf{z} = (x_1 - 2, x_2 - 2, x_3 - 2)$ are in \mathbb{R}^3 and they are distinct. Note that $\mathbf{x} \square \mathbf{y} = \mathbf{x}$ and $\mathbf{x} \square \mathbf{z} = \mathbf{x}$.

In fact, one can easily show that there is no vector that is an additive inverse of every vector (the zero vector $\mathbf{0}$) since one can easily construct a vector with elements lower than the ones from any other vector.

Problem 1.3. Let $\mathcal{C} \subset \mathbb{R}^3$ denote the set of vectors $\mathbf{a} = \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$ such that th polynomial

 $a_1 + a_2t + a_3t^2 \ge 0$ for every $t \in \mathbb{R}$. Show that it is closed under vector addition (i.e., $\mathbf{a}, \mathbf{b} \in \mathcal{C} \implies \mathbf{a} + \mathbf{b} \in \mathcal{C}$), but that \mathcal{C} is not a vector space over \mathbb{R} . [REMARK: A set \mathcal{C} with the indicated two properties is called a **cone**.]

Proof. We first show that C is closed under addition. Consider any $\mathbf{a}, \mathbf{b} \in C$. Then, for every $t \in \mathbb{R}$ we have $a_1 + a_2t + a_3t^2 \ge 0$ and $b_1 + b_2t + b_3t^2 \ge 0$. Then,

$$a_1 + a_2t + a_3t^2 + b_1 + b_2t + b_3t^2 = (a_1 + b_1) + (a_2 + b_2)t + (a_3 + b_3)t^2 \ge 0$$

for every $t \in \mathbb{R}$. Thus, $\mathbf{a} + \mathbf{b} = \begin{bmatrix} a_1 + b_1 \\ a_2 + b_2 \\ a_3 + b_3 \end{bmatrix} \in \mathcal{C}$. However, it is not close under scalar

multiplication. Consider some nonzero $\mathbf{v} \in \mathcal{C}$ and let $\alpha = -1$. Since $v_1 + v_2t + v_3t^2 \geq 0$ for every $t \in \mathbb{R}$, it follows that $(-v_1) + (-v_2)t + (-v_3)t^2 < 0$ for every positive t. Hence, $(-1)\mathbf{v} \notin \mathcal{C}$ and so it is not a vector space over \mathbb{R} .

Problem 1.4. Show that for each positive integer n, the space of polynomials

$$p(\lambda) = \sum_{j=0}^{n} a_j \lambda^j$$
 of degree $\leq n$

with coefficients $a_j \in \mathbb{C}$ is a vector space over \mathbb{C} under the natural rules of addition and scalar multiplication. [REMARK: You may assume that $\sum_{j=0}^{n} a_j \lambda^j = 0$ for every $\lambda \in \mathbb{C}$ if and only if $a_0 = a_1 = \cdots = a_n = 0$.]

Proof.
$$i++i$$

Problem 1.5. Let \mathcal{F} denote the set of continous real-valued functions f(x) on the interval $0 \le x \le 1$. Show that \mathcal{F} is a vector space over \mathbb{R} with respect to the natural rules of vector addition