Fujie Tang (汤富杰), Ph.D.

Contact Room B513-1, Wenxuan Building, Phone: +86-18064430278 Information

Xiangan Campus, Xiamen University, E-mail:tangfujie@xmu.edu.cn

Xiangan District, Xiamen, Fujian 361001, P. R. China.

https://fujiepku.github.io ORCID: 0000-0001-9761-5359

Academic Positions

Associate Professor, PI

2024.01-Present

Pen-Tung Sah Institute of Micro-Nano Science and Technology

Xiamen University, Xiamen, Fujian, China

Associate Researcher

2024.01-Present

Laboratory of AI for Electrochemistry (AI4EC Lab)

Tan Kah Kee Innovation Laboratory (嘉庚创新实验室, IKEEM),

Xiamen, Fujian, China

CSI Postdoctoral Scholar

2019.10-2023.10

Joint Postdoc in Computational Chemical Science Center in Princeton University,

Temple University, Philadelphia, PA, U. S. A.

Supervisor: Prof. Xifan Wu

Postdoctoral Fellow

2018.10-2019.09

Department of Physics,

Temple University, Philadelphia, PA, U. S. A.

Supervisor: Prof. Xifan Wu

EDUCATION

Peking University, Beijing, P. R. China

Ph.D., Condensed Matter Physics

2013.09-2018.06

• Thesis Topic: Structures and Dynamics of Interfacial Water

• Supervisor: Prof. Limei Xu

Max Planck Institute for Polymer Research, Mainz, Germany

Visiting Ph.D. Student

2016.01-2016.10

• Supervisors: Dr. Yuki Nagata & Prof. Mischa Bonn

Peking University, Beijing, P. R. China

B.S., Major in Physics

2009.09-2013.07

• Advisor: Prof. Tongjun Yu

RESEARCH Interests

- 1. First-principles calculations in the condensed phase materials, algorithms and applications:
 - electronic structure level: density functional theory, quantum chemistry, GW-BSE excited states calculations;
 - atomic/molecular structure and dynamic level: ab initio molecular dynamics simulation, path-integral molecular dynamics simulation, deep potential molecular dynamics simulation;
- 2. Advanced computational spectroscopic methods in the condensed phase materials, algorithms and applications:
 - Sum-frequency generation (SFG) spectroscopy, X-ray absorption (XAS) spectroscopy, optical spectroscopy, photoemission spectroscopy, etc.;
- 3. Accurate modeling of the condensed phase systems, such as:
 - phase transition, molecular structure and exciton dynamics of liquid water, ice under extreme conditions, amorphous/disorder systems;
 - charge transfer, exciton dynamics at the solid surface, solid/liquid interface, confined water, low-dimensional material surface;
 - chemical reaction and moelcular structure of aqueous solution, ionic liquid, etc.;

RESEARCH EXPERIENCE

CSI Postdoctoral Scholar: Temple University

2019.10-present

Work with Profs. Xifan Wu, Diana Y. Qiu, Michael L. Klein, and Roberto Car

- Developed a novel GW-BSE workflow to calculate XAS spectra of liquid water from *ab initio*, revealed many-body effects beyond conventational BSE calculations;
- Simulated the impact of nuclear quantum effects on the photoemssion spectra of Cl⁻ anion aqueous solutions;
- Studied the optical spectra of liquid water and ice by using GW-BSE method, established the connections between spectral feature and its molecular origins;
- Applied machine learning approach to stabilize the OH radical structure in solution, and computed the redox/oxidized potential of OH/OH⁻;

Visiting Scholar: University of California at Berkeley

2019.06-2019.07

Host: Prof. Steven G. Louie

Initiated the XAS calculation by using GW-BSE method with BerkeleGW package;

Postdoctoral Fellow: Temple University

2018.10-2019.09

Work with Prof. Xifan Wu

 Proposed a method to probe the ferroelectricity in a molecular crystal by using XAS spectroscopy, validated by experiment;

Research Assistant: Peking University

2013.09 - 2018.06

Work with Prof. Limei Xu, Dr. Yuki Nagata, and Prof. Mischa Bonn

- Developed a new free-OH definition to investigate the water/air interface, found the exponential decay orientational behaviors of the free-OH groups, confirmed by experiment;
- Applied classical molecular dynamics simulation and theoretical SFG calculation to investigate the ice/air interface, found excess H-bond phenomenon at ice surface and a new vibrational band of ice SFG spectra, confirmed by experiment;
- Proposed a microscopic mechnism to explain the slipperiness of ice, with the combination
 of molecular dynamics simulation, theoretical SFG calculation and experimental
 measurement;

Visiting Student: Max Planck Institute for Polymer Research
2016.01-2016.10
Work with Dr. Yuki Nagata & Prof. Mischa Bonn

- Applied ab initio molecular dynamics simulation and theoretical SFG calculation to investigate the TiO₂/water interfaces, found chemisorbed and physisoribed water molecules at surface, confirmed by experiment;
- Investigate the ionic liquid by using *ab initio* molecular dynamics simulation, found its interface stabilized by π^+ - π^+ stacking interaction of imidazolium cations;

Awards and Honors

•	Springer Thesis Award of 2018, Springer Nature Singapore.	2018.08
•	The Excellent Doctoral Dissertation of Peking University.	2018.07
•	Distinguished Graduate of Peking University.	2018.07
•	National Scholarship for Doctoral Students, Ministry of Education, P. R. Top Honor for Graduate Student from Government.	China. 2017.10
•	Merit Students in Peking University. Peking University.	2017.10

					. 0 -		
•	Selected by	Everest	Program,	A National	Program fo	or Training Top Stud	lents

2016.09

2010.09

• Special Scholarship for Doctoral Students. Peking University.

in Fundamental Disciplines, Ministry of Education, P. R. China.

• The 3rd Class Scholarship for Fresh Students, Peking University. 2009.09

PEER REVIEWED JOURNALS

Highlights: 25 published papers, first/co-first/corresponding/co-corresponding author papers = 15, cited 1394 times, h-index = 13. (Updated: Mar-11-2025)

Google Scholar: https://scholar.google.com/citations?user=-Rx1hiIAAAAJ&hl=en

- 1. Qi You, Yan Sun, Feng Wang, Jun Cheng*, **Fujie Tang***. Decoding the Competing Effects of Dynamic Solvation Structures on NMR Chemical Shifts of Battery Electrolytes via Machine Learning. Submitted. (*corresponding author)
- 2. Yongkang Wang[#], **Fujie Tang**[#], Xiaoqing Yu, Kuo-Yang Chiang, Chun-Chieh Yu, Tatsuhiko Ohto, Yunfei Chen, Yuki Nagata, Mischa Bonn. Interfaces Govern

- Structure of Angstrom-scale Confined Water. Submitted. (#equal contribution)
- 3. Fanjie Xu, Wentao Guo, Feng Wang, Lin Yao, Hongshuai Wang, **Fujie Tang***, Zhifeng Gao*, Linfeng Zhang, Weinan E, Zhong-Qun Tian, Jun Cheng*. Towards a Unified Benchmark and Framework for Deep Learning-Based Prediction of Nuclear Magnetic Resonance Chemical Shifts. *Nat. Comput. Sci.*. Accepted. (*corresponding author)
- Fujie Tang, Diana Y. Qiu and Xifan Wu. Optical Absorption Spectroscopy Probes Water Wire and Its Ordering in a Hydrogen-bond Network. *Phys. Rev.* X. 2025, 15, 011048.
 - Featured news in Viewpoint of *Physics* magazine "Shedding Light on Water Wires" written by Davide Donadio and Giulia Galli.
- 5. Xianglong Du, Weizhi Shao, Chenglong Bao, Linfeng Zhang, Jun Cheng*, Fujie Tang*. Revealing the Molecular Structures of α-Al₂O₃ (0001)-water Interface by Machine Learning Based Computational Vibrational Spectroscopy. J. Chem. Phys., 2024, 161, 124702. (*corresponding author) (JCP Editor's Pick)
- 6. Yongkang Wang[#], Fujie Tang[#], Xiaoqing Yu, Tatsuhiko Ohto, Yuki Nagata, Mischa Bonn. Heterodyne-Detected Sum-Frequency Generation Vibrational Spectroscopy Reveals Aqueous Molecular Structure at the Suspended Graphene/Water Interface. Angew. Chem. Int. Ed., 2024, 63, e202319503. (#equal contribution)
- 7. Yu Qiao, Ren Hu, Yu Gu, Fujie Tang, Siheng Luo, Haitang Zhang, Jinghua Tian, Jun Cheng, Zhongqun Tian. Exploring New Generation of Characterization Approaches for Energy Electrochemistry –from Operando to Artificial Intelligence. Sci. Sin. Chim., 2024, 54, 338-352. (In Chinese)
- 8. Fujie Tang*, Kefeng Shi and Xifan Wu. Exploring the Impact of Ions on Oxygen K-Edge X-ray Absorption Spectroscopy in NaCl Solution using the GW-Bethe-Salpeter-Equation Approach. *J. Chem. Phys.*, 2023, **159**, 174501. (*corresponding author)
- Chun-Chieh Yu, Takakazu Seki, Kuo-Yang Chiang, Fujie Tang, Shumei Sun, Mischa Bonn and Yuki Nagata. Polarization-Dependent Heterodyne-Detected Sum Frequency Generation Spectroscopy as a Tool to Explore Surface Molecular Orientation and Ångströmscale Depth Profiling. J. Phys. Chem. B, 2022, 126, 6113-6124.
- Fujie Tang, Zhenglu Li, Chunyi Zhang, Steven G. Louie, Roberto Car, Diana Y.
 Qiu and Xifan Wu. Many-body Effects in the X-ray Absorption Spectra of Liquid
 Water. Proc. Natl. Acad. Sci. U.S.A., 2022, 119, e2201258119.
- Hongwei Wang, Fujie Tang, Massimiliano Stengel, Hongjun Xiang, Qi An, Tony Low, and Xifan Wu. Convert Widespread Paraelectric Perovskite to Ferroelectrics. Phys. Rev. Lett., 2022, 128, 197601.

- 12. Chunyi Zhang, Fujie Tang, Mohan Chen, Linfeng Zhang, Diana Y. Qiu, John P. Perdew, Michael L. Klein, Xifan Wu. Modeling Liquid Water by Climbing up Jacob's Ladder in Density Functional Theory Facilitated by Using Deep Neural Network Potentials. J. Phys. Chem. B, 2021, 125, 11444–11456.
 Selected as a Cover Art Article.
- Fujie Tang, Jianhang Xu, Diana Y. Qiu and Xifan Wu. Nuclear Quantum Effects on the Quasiparticle Properties of the Chloride Anion Aqueous Solution within the GW Approximation. *Phys. Rev. B*, 2021, 104, 035117.
- Chunyi Zhang, Linfeng Zhang, Jianhang Xu, Fujie Tang, Biswajit Santra, and Xifan Wu, Isotope Effects in X-ray Absorption Spectra of Liquid Water, *Phys. Rev. B*, 2020, 102, 115155.
- Hongwei Wang, Fujie Tang, Pratikkumar H. Dhuvad, and Xifan Wu, Interface Enhanced Functionalities in Oxide Superlattices under Mechanical and Electric Boundary Conditions, npj Comput Mater, 2020, 6, 52.
- Fujie Tang, Tatsuhiko Ohto, Shumei Sun, Jeremy R. Rouxel, Sho Imoto, Ellen H. G. Backus, Shaul Mukamel, Mischa Bonn, and Yuki Nagata. Molecular Structure and Modeling of Water-Air and Ice-Air Interfaces Monitored by Sum-frequency Generation. Chem. Rev., 2020, 120, 3633-3667.
- 17. Fujie Tang, Xuanyuan Jiang, Hsin-Yu Ko, Jianhang Xu, Mehmet Topsakal, Guanhua Hao, Alpha T. N'Diaye, Peter A. Dowben, Deyu Lu, Xiaoshan Xu, and Xifan Wu. Probing Ferroelectricity by X-ray Absorption Spectroscopy in Molecular Crystals. Phys. Rev. Materials, 2020, 4, 034401.
- 18. Tatsuhiko Ohto, Mayank Dodia, Jianhang Xu, Sho Imoto, Fujie Tang, Frederik Zysk, Thomas D. Kuhne, Yasuteru Shigeta, Mischa Bonn, Xifan Wu, Yuki Nagata. Accessing the Accuracy of Density Functional Theory through Structure and Dynamics of the Water-Air Interface. J. Phys. Chem. Lett., 2019, 123, 099602.
- 19. Ruidan Zhang, Jichao Dong, Ting Luo, **Fujie Tang**, Xingxing Peng, Chuanyao Zhou, Xueming Yang, Limei Xu, Zefeng Ren. Adsorption Structure and Coverage-Dependent Orientation Analysis of Submonolayer Acetonitrile on TiO₂(110). *J. Phys. Chem. C*, 2019, **123**, 17915-17924.
- 20. Shumei Sun#, Fujie Tang#, Sho Imoto, Daniel R. Moberg, Tatsuhiko Ohto, Francesco Paesani, Mischa Bonn, and Yuki Nagata. Orientational Distribution of Free OH Groups of Interfacial Water is Exponential. *Phys. Rev. Lett.*, 2018. 121, 246101. (#equal contribution)
- Bart Weber, Yuki Nagata, Stephania Ketzetzi, Fujie Tang, Wilbert J. Smit, Huib J. Bakker, Ellen H. G. Backus, Mischa Bonn, and Daniel Bonn. Molecular Insight into the Slipperiness of Ice. J. Phys. Chem. Lett., 2018, 9, 2838.
 - Highlighted by Nature "Why your feet slip and slide on ice?"

- Fujie Tang, Tatsuhiko Ohto, Taisuke Hasegawa, Wen Jun Xie, Limei Xu, Mischa Bonn, and Yuki Nagata. Definition of Free O-H Groups of Water at the Air-Water Interface. J. Chem. Theory Comput., 2018, 14, 357.
- 23. Wilbert J. Smit#, Fujie Tang#, M. Alejandra Sanchez, Ellen H. G. Backus, Limei Xu, Taisuke Hasegawa, Mischa Bonn, Huib J. Bakker, and Yuki Nagata. Excess Hydrogen Bond at the Ice-Vapor Interface around 200 K. Phys. Rev. Lett., 2017. 119, 133003. (#equal contribution)
- 24. Wilbert J. Smit, Fujie Tang, Yuki Nagata, M. Alejandra Sanchez, Taisuke Hasegawa, Ellen H. G. Backus, Mischa Bonn, and Huib J. Bakker. Observation and Identification of a New OH Stretch Vibrational Band. J. Phys. Chem. Lett., 2017, 8, 3656.
- 25. Saman Hosseinpour#, Fujie Tang#, Fenglong Wang, Ruth A. Livingstone, Simon J. Schlegel, Tatsuhiko Ohto, Mischa Bonn, Yuki Nagata, and Ellen H. G. Backus. Chemisorbed and Physisorbed Water at the TiO₂/Water Interface. J. Phys. Chem. Lett., 2017, 8, 2195. (#equal contribution)
- 26. Fujie Tang, Tatsuhiko Ohto, Taisuke Hasegawa, Mischa Bonn and Yuki Nagata. π⁺-π⁺ Stacking of Imidazolium Cations Enhances Molecular Layering of Room Temperature Ionic Liquids at Their Interfaces. *Phys. Chem. Chem. Phys.*, 2017, 19, 2850.
- 27. Fivos Perakis, Luigi De Marco, Andrey Shalit, Fujie Tang, Zachary R. Kann, Thomas D. Kuhne, Renato Torre, Mischa Bonn, and Yuki Nagata. Vibrational Spectroscopy and Dynamics of Water. Chem. Rev., 2016, 116, 7590.

BOOKS & BOOK CHAPTERS

- Fujie Tang. Structures and Dynamics of Interfacial Water: Input from Theoretical Vibrational Sum-frequency Spectroscopy. Springer Thesis Series 2019 (Recognizing Outstanding Ph.D. Research), ISBN 978-981-13-8964-1, by Springer Nature Singapore.
- Fujie Tang, Takakazu Seki, Chun-Chieh Yu, Yuki Nagata. Microscopic Structure
 of Ice Surface Viewed through Sum-frequency Generation Spectroscopy. Chapter
 3 of "Chemistry of the Cryosphere", Advances in Atmospheric Chemistry, Vol.
 3, pp. 139-171 (2021), by World Scientific Publishing.
- 3. Fujie Tang, Xifan Wu. Theoretical X-ray Absorption Spectroscopy of Liquid Water Using First Principles Calculations. Chapter 1 of "Properties of Water from Numerical and Experimental Perspectives", pp. 1-24 (2022), by CRC Press.

PRESENTATIONS AND POSTERS

- Fujie Tang. Invited Talk. The 15th National Conference of Theoretical and Computational Chemistry, Changchun, Jilin, P. R. China. 2024.08
- Fujie Tang. Invited Talk. The 13th National Conference on Soft Matter and Biological Physics, Xi'an, Shaanxi, P. R. China.
 2024.04

- Fujie Tang. Invited Talk. American Physical Society, March Meeting, Minneapolis, MN, U. S. A.
 2024.03
- Fujie Tang. Oral Presentation. American Physical Society, March Meeting, Las Vegas, NV, U. S. A.
 2023.03
- Fujie Tang. Seminar Talk. The Chemistry in Solution and at Interfaces (CSI)
 Center, Princeton University, Princeton, NJ, U. S. A.
 2022.12
- Fujie Tang. Poster. International Workshop on Recent Developments in Electronic Structure (ES22), Columbia University, New York City, NY, U. S. A. 2022.06
- Fujie Tang. Oral Presentation (virtual). American Physical Society, March Meeting.
 2022.03
- 8. **Fujie Tang**. Seminar Talk (virtual). The Chemistry in Solution and at Interfaces (CSI) Center, Princeton University, Princeton, NJ, U. S. A. 2022.01
- Fujie Tang. Invited Seminar Talk (virtual). Department of Physics, University of California at Berkeley, Berkeley, CA, U. S. A.
- Fujie Tang. Seminar Talk (virtual). Department of Physics, Temple University,
 Philadelphia, PA, U. S. A.

 2021.07
- Fujie Tang. Seminar Talk (virtual). The Chemistry in Solution and at Interfaces
 (CSI) Center, Princeton University, Princeton, NJ, U. S. A.
 2021.04
- Fujie Tang. Oral Presentation (virtual). American Physical Society, March Meeting.
 2021.03
- Fujie Tang. Seminar Talk. Department of Physics, Temple University, Philadelphia,
 PA, U. S. A.
 2020.06
- 14. **Fujie Tang**. Seminar Talk. The Chemistry in Solution and at Interfaces (CSI) Center, Temple University, Philadelphia, PA, U. S. A. 2019.12
- Fujie Tang. Invited Seminar Talk. Department of Mechanical Engineering, Stanford University, Stanford, CA, U. S. A.
 2019.07
- Fujie Tang. Invited Seminar Talk. Department of Physics, University of California at Berkeley, Berkeley, CA, U. S. A.
 2019.06
- Fujie Tang. Oral Presentation. American Physical Society, March Meeting, Boston, MA, U. S. A.
 2019.03
- 18. **Fujie Tang**. Oral Presentation. The Forum of "PFUNT-Physics Five Universities The National Top", Peking University, Beijing, P. R. China. 2017.12
- Fujie Tang. Oral Presentation. The Autumn Meeting for Chinese Physical Society, Sichuan University, Chengdu, P. R. China.
 2017.09

- Fujie Tang. Invited Talk. The 11th National Soft Matter Physics Conference, Xiamen University, Xiamen, P. R. China.
 2017.03
- Fujie Tang. Oral Presentation. The 4th Young Scientist Symposium of Soft Matter Physics, Soochow University, Soochow, P. R. China. 2015.10

Language and

• Language: English(Fluent), Mandarin(Native).

SOFTWARE SKILLS

- Computer Skills: C, C++, Fortran, Python, UNIX shell scripting, MATLAB, Mathematica.
- Softwares: CP2K, DeePMD-kit, LAMMPS, ORCA, QUANTUM ESPRESSO, GROMACS and BerkeleyGW.

Journal Reviewer Physical Review Letters, Physical Review A, Physical Review B, Physical Review Materials, Journal of Physical Chemistry, Chemical Physics Letters, Frontiers in Chemistry, International Journal of Quantum Chemistry, Journal of Colloid and Interface Science

Professional Society

Memberships

American Physics Society, American Chemical Society, Chinese Chemical Society

References

Prof. Limei Xu

Professor

International Center for Quantum Materials

Peking University, Beijing, P. R. China

Phone: +86-10-62755043E-mail: limei.xu@pku.edu.cn

Dr. Yuki Nagata

Group Leader

The Molecular Spectroscopy Department

Max Planck Institute for Polymer Research, Mainz, Germany

Phone: +49-6131-379-380

E-mail: nagata@mpip-mainz.mpg.de

Prof. Xifan Wu

Professor

Department of Physics

Temple University, Philadelphia, PA, U. S. A.

 $\label{eq:Phone: +1-215-204-7627}$ E-mail: xifanwu@temple.edu

Prof. Diana Y. Qiu

Assistant Professor

Department of Mechanical Engineering and Materials Science

Yale University, New Haven, CT, U. S. A.

 $\label{eq:Phone: +1-719-210-6447} Phone: +1-719-210-6447 \\ E-mail: diana.qiu@yale.edu$

Prof. Mischa Bonn

Director

The Molecular Spectroscopy Department

Max Planck Institute for Polymer Research, Mainz, Germany

Phone: +49-6131-379-161

E-mail: bonn@mpip-mainz.mpg.de