Package 'bspme'

January 13, 2024

Type Package
Title Bayesian Spatial Measurement Error Models
Version 1.0.1
Author Changwoo Lee[aut, cre], Eun Sug Park[aut]
Maintainer Changwoo Lee <c.lee@stat.tamu.edu></c.lee@stat.tamu.edu>
Description Scalable methods for fitting Bayesian linear and generalized linear models in the presence of spatial exposure measurement error. These models typically arise from a two-stage Bayesian analysis of environmental exposures and health outcomes. From a first-stage model, predictions of the covariate of interest ("exposure") and their uncertainty information (typically contained in MCMC samples) are used to form a multivariate normal prior distribution for exposure in a second-stage regression model. This package also provides implementation of the methods used in Lee et al. (2024) https://arxiv.org/abs/2401.00634 .
License GPL (>= 3)
Encoding UTF-8
LazyData true
Roxygen $list(markdown = TRUE)$
RoxygenNote 7.2.3
Imports BayesLogit, coda, fields, spam, spNNGP
Depends Matrix, $R (>= 2.10)$
<pre>URL https://changwoo-lee.github.io/bspme/</pre>
BugReports https://github.com/changwoo-lee/bspme/issues
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
bglm_me

2 bglm_me

bglm_	_me		Ва	ye.	sia	ın	ge	ene	era	aliz	zec	l l	in	еа	rı	mo	de	els	·и	vit	h	sp	ati	ial	! e	хĮ	00	sui	re	m	ea	sı	ıre	_
Index																																		11
	vecchia_cov		•														•				•													9
	health_sim NO2_Jan2012 .																																	

ment error.

Description

This function fits a Bayesian generalized linear model in the presence of spatial exposure measurement error for covariate(s) X. One of the most important features of this function is that it allows a sparse matrix input for the prior precision matrix of X for scalable computation. As of version 1.0.0, only the Bayesian logistic regression model is supported among GLMs, and function $bglm_me()$ runs a Gibbs sampler to carry out posterior inference using Polya-Gamma augmentation (Polson et al., 2013). See the below "Details" section below for the model description and Lee et al. (2024) for an application example in environmental epidemiology.

Usage

```
bglm_me(
    Y,
    X_mean,
    X_prec,
    Z,
    family = binomial(link = "logit"),
    nburn = 5000,
    nsave = 5000,
    nthin = 1,
    prior = NULL,
    saveX = FALSE
)
```

Arguments

Υ	vector <int>, n by 1 binary response vector.</int>
X_mean	<i>vector</i> < <i>num</i> >, n by 1 prior mean vector μ_X . When there are q multiple exposures subject to measurement error, it can be a length q list of n by 1 vectors.
X_prec	$matrix < num >$, n by n prior precision matrix Q_X , which allows sparse format from Matrix package. When there are q multiple exposures subject to measurement error, it can be a length q list of n by n matrices.
Z	<i>matrix</i> < <i>num</i> >, n by p matrix containing p covariates that are not subject to measurement error.
family	<i>class family</i> , a description of the error distribution and the link function to be used in the model. Currently, it only supports binomial(link = "logit").
nburn	integer, number of burn-in iterations (default=5000).
nsave	<i>integer</i> , number of posterior samples (default=5000). Total number of MCMC iteration is nburn + nsave * nthin.

bglm_me 3

nthin *integer*, thin-in rate (default=1).

prior list, list of prior parameters of the regression model. Default is list(var_beta

= 100).

saveX logical, default FALSE, whether save posterior samples of X (exposure).

Details

Let Y_i be a binary response, X_i be a $q \times 1$ covariate vector that is subject to spatial exposure measurement error, and Z_i be a $p \times 1$ covariate vector without measurement error. Consider a logistic regression model, independently for each $i = 1, \ldots, n$,

$$\log(Pr(Y_i = 1)/Pr(Y_i = 0)) = \beta_0 + X_i^{\top} \beta_X + Z_i^{\top} \beta_Z.$$

Spatial exposure measurement error of X_i (for $i=1,\ldots,n$) is incorporated into the model using a multivariate normal prior. For example, when q=1, we have an n-dimensional multivariate normal prior on $X=(X_1,\ldots,X_n)^{\top}$,

$$(X_1, \ldots, X_n) \sim N_n(\mu_X, Q_X^{-1}).$$

Most importantly, it allows a sparse matrix input for the prior precision matrix Q_X for scalable computation, which can be obtained by Vecchia approximation. When q>1, q independent n-dimensional multivariate normal priors are assumed.

We consider normal priors for regression coefficients,

$$\beta_0 \sim N(0, V_\beta), \quad \beta_{X,j} \stackrel{iid}{\sim} N(0, V_\beta), \quad \beta_{Z,k} \stackrel{iid}{\sim} N(0, V_\beta)$$

where var_beta corresponds to V_{β} .

Value

List of the following:

posterior nsave by (q+p) matrix of posterior samples of β_x and β_z as a coda::mcmc object.

time time taken for running MCMC (in seconds)

 X_save (if saveX = TRUE) posterior samples of X

References

Polson, N. G., Scott, J. G., & Windle, J. (2013). Bayesian inference for logistic models using Pólya–Gamma latent variables. Journal of the American statistical Association, 108(504), 1339-1349.

Lee, C. J., Symanski, E., Rammah, A., Kang, D. H., Hopke, P. K., & Park, E. S. (2024). A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology. arXiv preprint arXiv:2401.00634.

Examples

Not run:

library(bspme)

data(NO2_Jan2012)

data(health_sim)

library(fields)

library(maps)

Obtain the predicted exposure mean and covariance at simulated health subject locations

4 bglm_me

```
# based on NO2 data obtained on Jan 10, 2012
# using a Gaussian process prior with mean zero and exponential covariance kernel
# with a fixed range 8 (in km) and standard deviation 1.
# exposure data
data_jan10 = NO2_Jan2012[NO2_Jan2012$date == as.POSIXct("2012-01-10"),]
coords_monitor = cbind(data_jan10$lon, data_jan10$lat)
# health data
coords_health = cbind(health_sim$lon, health_sim$lat)
distmat_xx <- rdist.earth(coords_monitor, miles = F)</pre>
distmat_xy <- rdist.earth(coords_monitor, coords_health, miles = F)</pre>
distmat_yy <- rdist.earth(coords_health, miles = F)</pre>
a = 8; sigma = 1; # assume known
Sigmaxx = fields::Matern(distmat_xx, smoothness = 0.5, range = a, phi = sigma^2)
Sigmaxy = fields::Matern(distmat_xy, smoothness = 0.5, range = a, phi = sigma^2)
Sigmayy = fields::Matern(distmat_yy, smoothness = 0.5, range = a, phi = sigma^2)
# posterior predictive mean and covariance of exposure at health subject locations
X_mean <- t(Sigmaxy) %*% solve(Sigmaxx, data_jan10$lnN02)</pre>
X_cov <- Sigmayy - t(Sigmaxy) %*% solve(Sigmaxx, Sigmaxy) # n_y by n_y</pre>
# visualize
# monitoring station exposure data
quilt.plot(cbind(data_jan10$lon, data_jan10$lat),
           data_jan10$lnN02, main = "NO2 exposures (in log) at 21 monitoring stations",
         xlab = "longitude", ylab = "latitude", xlim = c(-96.5, -94.5), ylim = c(29, 30.5))
maps::map("county", "Texas", add = T)
# posterior predictive mean of exposure at health subject locations
quilt.plot(cbind(health_sim$lon, health_sim$lat),
        X_mean, main = "posterior predictive mean of exposure at health subject locations",
         xlab = "longitude", ylab = "latitude", xlim = c(-96.5, -94.5), ylim = c(29, 30.5))
maps::map("county", "Texas", add = T)
# posterior predictive sd of exposure at health subject locations
quilt.plot(cbind(health_sim$lon, health_sim$lat),
       sqrt(diag(X_cov)), main = "posterior predictive sd of exposure at health subject locations",
         xlab = "longitude", ylab = "latitude", xlim = c(-96.5, -94.5), ylim = c(29, 30.5))
maps::map("county", "Texas", add = T)
# vecchia approximation
run_vecchia = vecchia_cov(X_cov, coords = cbind(health_sim$lon, health_sim$lat),
                          n.neighbors = 10)
Q_sparse = run_vecchia$Q
run_vecchia$cputime
# fit the model, binary response
fit = bglm_me(Y = health_sim$Ybinary,
                X_{mean} = X_{mean}
                X_prec = Q_sparse, # sparse precision matrix
                Z = health_sim$Z,
                family = binomial(link = "logit"),
```

blm_me 5

blm_me

Bayesian linear regression models with spatial exposure measurement error.

Description

This function fits a Bayesian linear regression model in the presence of spatial exposure measurement error for covariate(s) X. One of the most important features of this function is that it allows a sparse matrix input for the prior precision matrix of X for scalable computation. Function $blm_me()$ runs a Gibbs sampler to carry out posterior inference; see the below "Details" section below for the model description, and Lee et al. (2024) for an application example in environmental epidemiology.

Usage

```
blm_me(
    Y,
    X_mean,
    X_prec,
    Z,
    nburn = 5000,
    nsave = 5000,
    nthin = 1,
    prior = NULL,
    saveX = FALSE
)
```

Arguments

Υ	vector <int>, n by 1 continuous response vector.</int>
X_mean	$vector < num >$, n by 1 prior mean vector μ_X . When there are q multiple exposures subject to measurement error, it can be a length q list of n by 1 vectors.
X_prec	$matrix < num >$, n by n prior precision matrix Q_X , which allows sparse format from Matrix package. When there are q multiple exposures subject to measurement error, it can be a length q list of n by n matrices.
Z	<i>matrix</i> < <i>num</i> >, n by p matrix containing p covariates that are not subject to measurement error.
nburn	integer, number of burn-in iterations (default=5000).

nsave *integer*, number of posterior samples (default=5000). Total number of MCMC

iteration is nburn + nsave * nthin.

6 blm_me

nthin integer, thin-in rate (default=1).

prior list, list of prior parameters of the regression model. Default is list(var_beta = 100, a_Y = 0.01, b_Y = 0.01).

saveX logical, default FALSE, whether save posterior samples of X (exposure).

Details

Let Y_i be a continuous response, X_i be a $q \times 1$ covariate vector that is subject to spatial exposure measurement error, and Z_i be a $p \times 1$ covariate vector without measurement error. Consider a normal linear regression model,

$$Y_i = \beta_0 + X_i^{\top} \beta_X + Z_i^{\top} \beta_Z + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma_Y^2), \quad i = 1, \dots, n.$$

Spatial exposure measurement error of X_i for $i=1,\ldots,n$ is incorporated into the model using a multivariate normal prior. For example when q=1, we have an n-dimensional multivariate normal prior on $X=(X_1,\ldots,X_n)^{\top}$,

$$(X_1, \ldots, X_n) \sim N_n(\mu_X, Q_X^{-1}).$$

Most importantly, it allows a sparse matrix input for the prior precision matrix Q_X for scalable computation, which can be obtained by Vecchia approximation. When q>1, q independent n-dimensional multivariate normal priors are assumed.

We consider semiconjugate priors for regression coefficients and error variance,

$$\beta_0 \sim N(0, V_\beta), \quad \beta_{X,i} \stackrel{iid}{\sim} N(0, V_\beta), \quad \beta_{Z,k} \stackrel{iid}{\sim} N(0, V_\beta), \quad \sigma_Y^2 \sim IG(a_Y, b_Y).$$

where var_beta corresponds to V_{β} , and a_Y and b_Y correspond to hyperparameters of an inverse gamma prior for σ_V^2 .

Value

list of the following:

posterior nsave by (q + p + 1) matrix of posterior samples of β_X , β_Z , σ_Y^2 as a coda::mcmc object. **time** time taken for running MCMC (in seconds)

 X_save (if saveX = TRUE) posterior samples of X

References

Lee, C. J., Symanski, E., Rammah, A., Kang, D. H., Hopke, P. K., & Park, E. S. (2024). A scalable two-stage Bayesian approach accounting for exposure measurement error in environmental epidemiology. arXiv preprint arXiv:2401.00634.

Examples

Not run:

library(bspme)

data(NO2_Jan2012)

 $data(health_sim)$

library(fields)

library(maps)

Obtain the predicted exposure mean and covariance at simulated health subject locations

based on NO2 data obtained on Jan 10, 2012

using a Gaussian process prior with mean zero and exponential covariance kernel

blm_me 7

```
# with a fixed range 8 (in km) and standard deviation 1.
# exposure data
data_jan10 = NO2_Jan2012[NO2_Jan2012$date == as.POSIXct("2012-01-10"),]
coords_monitor = cbind(data_jan10$lon, data_jan10$lat)
# health data
coords_health = cbind(health_sim$lon, health_sim$lat)
distmat_xx <- rdist.earth(coords_monitor, miles = F)</pre>
distmat_xy <- rdist.earth(coords_monitor, coords_health, miles = F)</pre>
distmat_yy <- rdist.earth(coords_health, miles = F)</pre>
a = 8; sigma = 1; # assume known
Sigmaxx = fields::Matern(distmat_xx, smoothness = 0.5, range = a, phi = sigma^2)
Sigmaxy = fields::Matern(distmat_xy, smoothness = 0.5, range = a, phi = sigma^2)
Sigmayy = fields::Matern(distmat_yy, smoothness = 0.5, range = a, phi = sigma^2)
# posterior predictive mean and covariance of exposure at health subject locations
X_mean <- t(Sigmaxy) %*% solve(Sigmaxx, data_jan10$lnN02)</pre>
X_cov <- Sigmayy - t(Sigmaxy) %*% solve(Sigmaxx, Sigmaxy) # n_y by n_y</pre>
# visualize
# monitoring station exposure data
quilt.plot(cbind(data_jan10$lon, data_jan10$lat),
           data_jan10$lnNO2, main = "NO2 exposures (in log) at 21 monitoring stations",
         xlab = "longitude", ylab = "latitude", xlim = c(-96.5, -94.5), ylim = c(29, 30.5))
maps::map("county", "Texas", add = T)
# posterior predictive mean of exposure at health subject locations
quilt.plot(cbind(health_sim$lon, health_sim$lat),
        X_mean, main = "posterior predictive mean of exposure at health subject locations",
         xlab = "longitude", ylab = "latitude", xlim = c(-96.5, -94.5), ylim = c(29, 30.5))
maps::map("county", "Texas", add = T)
# posterior predictive sd of exposure at health subject locations
quilt.plot(cbind(health_sim$lon, health_sim$lat),
       sqrt(diag(X_cov)), main = "posterior predictive sd of exposure at health subject locations",
         xlab = "longitude", ylab = "latitude", xlim = c(-96.5, -94.5), ylim = c(29, 30.5))
maps::map("county", "Texas", add = T)
# vecchia approximation
run_vecchia = vecchia_cov(X_cov, coords = cbind(health_sim$lon, health_sim$lat),
                          n.neighbors = 10)
Q_sparse = run_vecchia$Q
run_vecchia$cputime
# fit the model, continuous response
fit = blm_me(Y = health_sim$Y,
                X_{mean} = X_{mean}
                X_prec = Q_sparse, # sparse precision matrix
                Z = health_sim$Z,
                nburn = 5000,
                nsave = 5000,
                nthin = 1)
```

8 NO2_Jan2012

```
fit$cputime
summary(fit$posterior)
library(bayesplot)
bayesplot::mcmc_trace(fit$posterior)
## End(Not run)
```

health_sim

Simulated health data

Description

Simulated health data associated with ln(NO2) concentration on Jan 10, 2012. For details, see health_sim.R.

Usage

```
data(health_sim)
```

Format

A data frame with n = 2000 rows and 6 variables:

Y simulated continuous health outcome

Ybinary simulated binary health outcome

lon simulated health subject longitude

lat simulated health subject latitude

Z simulated covariate (p=1) that is not subject to measurement error

X_true true ln(NO2) exposure used for simulating health outcome

N02_Jan2012

Daily average NO2 concentrations in and around the Harris County, Texas, in Jan 2012

Description

This dataset contains daily average NO2 (nitrogen dioxide) concentrations obtained from 21 monitoring stations in and around Harris County, Texas, in January 2012.

Usage

```
data(NO2_Jan2012)
```

vecchia_cov 9

Format

A data frame with 651 (21 sites x 31 days) rows and 5 variables:

date date in POSIXct format

site_name monitoring station name

lon monitoring station longitude

lat monitoring station latitude

lnNO2 natural logarithm of daily average NO2 concentrations, measured in parts per billion by volume (ppbv)

vecchia_cov

Run Vecchia approximation given a covariance matrix

Description

Given a multivariate normal (MVN) distribution with covariance matrix Σ , this function finds a sparse precision matrix (inverse covariance) Q based on the Vecchia approximation (Vecchia 1988, Katzfuss and Guinness 2021), where $N(\mu, Q^{-1})$ is the sparse MVN that approximates the original MVN $N(\mu, \Sigma)$. The algorithm is based on the pseudocode 2 of Finley et al. (2019).

Usage

```
vecchia_cov(Sigma, coords, n.neighbors, ord = NULL, KLdiv = FALSE)
```

Arguments

Sigma *matrix*<*num*>, n by n covariance matrix

coords matrix<num>, n by 2 coordinate matrix for nearest neighborhood search

n.neighbors integer, the number of nearest neighbors (k) to determine conditioning set of

Vecchia approximation

ord vector<int>, length n vector, ordering of data. If NULL, ordering based on the

first coordinate will be used.

KLdiv logical, If TRUE, return KL divergence $D_{KL}(p||\tilde{p})$ where p is multivariate nor-

mal with original covariance matrix and \tilde{p} is the approximated multivariate nor-

mal with sparse precision matrix.

Value

list of the following:

Q n by n sparse precision matrix in Matrix format

ord ordering used for Vecchia approximation

cputime time taken to run Vecchia approximation

KLdiv (if KLdiv = TRUE) KL divergence $D_{KL}(p||\tilde{p})$ where p is the multivariate normal with original covariance matrix and \tilde{p} is the approximated multivariate normal with a sparse precision matrix.

10 vecchia_cov

References

Vecchia, A. V. (1988). Estimation and model identification for continuous spatial processes. Journal of the Royal Statistical Society Series B: Statistical Methodology, 50(2), 297-312.

Katzfuss, M., & Guinness, J. (2021). A General Framework for Vecchia Approximations of Gaussian Processes. Statistical Science, 36(1).

Finley, A. O., Datta, A., Cook, B. D., Morton, D. C., Andersen, H. E., & Banerjee, S. (2019). Efficient algorithms for Bayesian nearest neighbor Gaussian processes. Journal of Computational and Graphical Statistics, 28(2), 401-414.

 $Zhang, L., (2020), public \ Github \ repository \ https://github.com/LuZhangstat/NNGP_STAN.$

Examples

```
n = 1000
coords = cbind(runif(n), runif(n))
Sigma = fields::Exp.cov(coords, aRange = 1)
fit5 = vecchia_cov(Sigma, coords, n.neighbors = 5, KLdiv = TRUE)
fit5$KLdiv
fit10 = vecchia_cov(Sigma, coords, n.neighbors = 10, KLdiv = TRUE)
fit10$KLdiv
```

Index

```
bglm_me, 2
blm_me, 5
family, 2
health_sim, 8
Matrix, 2, 5, 9
mcmc, 3, 6
NO2_Jan2012, 8
vecchia_cov, 9
```