JEE Mains 2019 Chapter wise Question Bank

Coordination Compounds - Questions

Q1

Two complexes $[Cr(H_2O)_6]Cl_3(A)$ and $[Cr(NH_3)_6]Cl_3(B)$ are violet and yellow coloured, respectively. The incorrect statement regarding them is:

- (1) Δ_0 values of (A) and (B) are calculated from the energies of violet and yellow light, respectively.
- (2) both are paramagnetic with three unpaired electrons.
- (3) both absorb energies corresponding to their complementary colors.
- (4) Δ_0 value for (A) is less than that of (B).

9 Jan Morning

Q2

The highest value of the calculated spin only magnetic moment (in BM) among all the transition metal complexes is:

(1) 5.92

(2) 6.93

(3) 3.87

(4) 4.90

9 Jan Morning

Q3

The complex that has highest crystal field splitting energy (Δ) is:

- (1) $[Co(NH_3)_5(H_2O)]Cl_3$
- (2) $K_2[CoCl_4]$
- (3) [Co(NH₃)₅Cl]Cl₂
- (4) $K_3[Co(CN)_6]$

9 Jan Evening

Q4

Homoleptic octahedral complexes of a metal ion 'M³⁺, with three monodentate ligands L₁, L₂ and L₃ absorb wavelengths in the region of green, blue and red respectively. The increasing order of the ligand strength is:

- $\begin{array}{llll} \text{(1)} & L_3 < L_1 < L_2 & & \text{(2)} & L_3 < L_2 < L_1 \\ \text{(3)} & L_1 < L_2 < L_3 & & \text{(4)} & L_2 < L_1 < L_3 \end{array}$

9 Jan Evening

Q5

The total number of isomers for a square planar complex $[M(F)(Cl)(SCN)(NO_2)]$ is:

(1) 16

(2) 8

(3) 4

(4) 12

10 Jan Morning

Q6

The difference in the number of unpaired electrons of a metal ion in its high-spin and low-spin octahedral complexes is two. The metal ion is:

- (1) Ni^{2+}
- (2) Fe^{2+}
- (3) Co^{2+}
- (4) Mn^{2+}

10 Jan Evening

Q7

A reaction of cobalt(III) chloride and ethylenediamine in a 1 : 2 mole ratio generates two isomeric products A (violet coloured) and B (green coloured). A can show optical activity, but, B is optically inactive. What type of isomers does A and B represent?

- (1) Geometrical isomers
- (2) Coordination isomers
- (3) Linkage isomers
- (4) Ionisation isomers

10 Jan Evening

Q8

Match the metals (column I) with the coordination compound(s)/enzyme(s) (column II):

(column I)		(column II)	
Metals		Coordination	
		compound(s)/enzyme(s)	
(A) Co	(i)	Wilkinson catalyst	
(B) Zn	(ii)	Chlorophyll	
(C) Rh	(iii)	Vitamin B ₁₂	
(D) Mg	(iv)	Carbonic anhydrase	
(1) (4) (;;;).	(D) (iv)	(C) (i) (D) (ii)	

- (1) (A)-(iii); (B)-(iv); (C)-(i); (D)-(ii)
- (2) (A)-(i); (B)-(ii); (C)-(iii); (D)-(iv)
- (3) (A)-(ii); (B)-(i); (C)-(iv); (D)-(iii)
- (4) (A)-(iv); (B)-(iii); (C)-(i); (D)-(ii)

11 Jan Morning

Q9

The coordination number of Th in $K_4[Th(C_2O_4)_4(H_2O)_2]$

$$(C_2O_4^{2-} = oxalato)$$

- (1) 14
- (2) 6
- (3) 8
- (4) 10

11 Jan Evening

Q10

The number of bridging CO ligand(s) and Co-Co bond(s) in $Co_2(CO)_8$, respectively are:

- (1) 2 and 1
- (2) 2 and 0
- (3) 0 and 2
- (4) 4 and 0

11 Jan Evening

Q11

The pair of metal ions that can give a spin only magnetic moment of 3.9 BM for the compex $[M(H_2O)_6]Cl_2$, is:

- (1) V^{2+} and Co^{2+}
- (2) V^{2} + and Fe^{2+}
- (3) Co^{2+} and Fe^{2+}
- (4) Cr^{2+} and Mn^{2+}

12 Jan Morning

Q11

The metal d-orbitals that are directly facing the ligands in $K_3[Co(CN)_6]$ are:

- (1) d_{xy} and $d_{x^2-y^2}$ (2) $d_{x^2-y^2}$ and d_{z^2}
- (3) d_{xz} , d_{vz} and d_{z^2}
- (4) d_{xy} , d_{xz} and d_{yz}

JEE Mains 2019 Chapter wise Question Bank

12 Jan Morning

Q12

The magnetic moment of an octahedral homoleptic Mn(II) complex is 5.9 BM. The suitable ligand for this complex is:

- (1) Ethylenediamine
- (2) CN-
- (3) NCS-
- (4) CO

12 Jan Evening

Q13

The major product of the following reaction is:

$$\begin{array}{c} Cl \\ \hline \\ O \end{array} + \begin{array}{c} Cl \\ \hline \\ (ii) \text{ AlCl}_3, \text{ heat} \end{array}$$

$$(2) \qquad CO_2H \qquad CI \qquad CO_2H \qquad C$$

CO₂H

8 April Morning

Q14

To download more free study materials, visit www.mathongo.com

The following ligand is:

- (1) hexadentate
- (2) tetradentate
- (3) bidentate
- (4) tridentate

8 April Morning

Q14

The compound that inhibits the growth of tumors is:

- (1) $trans-[Pt(Cl)_2(NH_3)_2]$ (2) $cis-[Pd(Cl)_2(NH_3)_2]$
- (3) cis-[Pt(Cl)₂(NH₃)₂] (4) trans-[Pd(Cl)₂(NH₃)₂]

8 April Evening

Q15

The calculated spin-only magnetic moments (BM) of the anionic and cationic species of [Fe(H₂O)₆]₂ and [Fe(CN)₆], respectively, are:

- (1) 0 and 4.9
- (2) 2.84 and 5.92
- (3) 4.9 and 0
- (4) 0 and 5.92

8 April Evening

Q16

JEE Mains 2019 Chapter wise Question Bank

The one that will show optical activity is: (en = ethane 1, 2-diamine)

9 April Morning

Q17

The degenerate orbitals of $[Cr(H_2O)_6]^{3+}$ are:

- (1) d_{xz} and d_{vz}
- (2) d_{yz} and dz^2
- (3) d_z^2 and d_{xz}
- (4) d_{x^2} v^2 and d_{xy}

9 April Morning

Q18

The correct statements among I to III are:

- (I) Valence bond theory cannot explain the color exhibited by transition metal complexes.
- (II) Valence bond theory can predict quantitatively the magnetic properties of transition metal complexes.
- (III) Valence bond theory cannot distinguish ligands as week and strong field ones.
- (1) (II) and (III) only
- (2) (I), (II) and (III)
- (3) (I) and (III) only
- (4) (I) and (II) only

9 April Evening

To download more free study materials, visit www.mathongo.com

Q19

The maximum possible denticities of a ligand given below towards a common transition and inner-transition metal ion, respectively, are:

- (1) 8 and 6
- (2) 6 and 8
- (3) 6 and 6
- (4) 8 and 8

9 April Evening

Q20

Three complexes, $[CoCl(NH_3)_5]^{2+}(I)$, $[Co(NH_3)_5H_2O]^{3+}(II)$ and $[Co(NH_3)_6]^{3+}$ (III) absorb light in the visible region. The correct order of the wavelength of light absorbed by them is:

- (1) (III) > (I) > (II)
- (2) (III) > (II) > (I)
- (3) (II) > (I) > (III) (4) (I) > (II) > (III)

10 April Morning

Q21

The crystal field stabilization energy (CFSE) of [Fe(H₂O)₆] Cl, and K, [NiCl₄], respectively are:

- (1) $-0.6\Delta_o$ and $-0.8\Delta_t$ (2) $-0.4\Delta_o$ and $-0.8\Delta_t$
- (3) $-2.4\Delta_0$ and $-1.2\Delta_t$ (4) $-0.4\Delta_0$ and $-1.2\Delta_t$

10 April Evening

Q22

The complex ion that will lose its crystal field stabilization energy upon oxidation of its metal to +3 state is:

and ignore pairing energy)

- (1) $[Co(phen)_3]^{2+}$
- (2) $[Ni(phen)_2]^{2+}$
- (3) $[Zn(phen)_3]^{2+}$
- (4) [Fe(phen),]²⁺

12 April Morning

Q23

JEE Mains 2019 Chapter wise Question Bank

Complete removal of both the axial ligands (along the z-axis) from an octahedral complex leads to which of the following splitting patterns? (relative orbital energies not on scale)

12 April Morning

Q24

The compound used in the treatment of lead poisoning is:

- (1) D-penicillamine
- (2) desferrioxime B
- (3) Cis-platin
- (4) EDTA

12 April Evening

Q25

The coordination numbers of Co and Al in [Co(Cl)(en),]Cl and $K_3[Al(C_2O_4)_3]$, respectively, are :

(en = ethane-1, 2-diamine)

- (1) 5 and 3
- (2) 3 and 3
- (3) 6 and 6
- (4) 5 and 6

12 April Evening

JEE Mains 2019 Chapter wise Question Bank

Coordination Compounds - Answers

Q1

(1) E.C. of $Cr^{3+} (3d^3)$: 1111

For complex A $[Cr(H_2O)_2]^{3+}$:

For complex B $[Cr(NH_3)_6]^{3+}$:

Here, both the complexes (A) and (B) are paramagnetic with 3 unpaired electrons each. Also H_2O is a weak field ligand which causes lesser splitting than NH_3 which is comparatively stronger field ligand. Hence, the (Δ_0) value of (A) and (B) are calculated from the wavelengths of light absorbed and not from the wavelengths of light emitted

9 Jan Morning

Q2

(1) Magnetic moment, $\mu = \sqrt{n(n+2)}BM$ (where, n = no. of unpaired electrons)

As transition metal atom/ion in a complex may have unpaired electrons ranging from zero to 5. So, maximum number of unpaired electrons that may be present in a complex is 5.

:. Maximum value of magnetic moment among all the transition metal complexes is

9 Jan Morning

Q3

(4) In case of similar metal atom or ion, the value of coordination number and the strength of the ligands determine the value of crystal field splitting energy.

Greater the co-ordination number and strength of value of the ligand, greater will be the value of CFSE.

Strength of ligands : $CN^- > NH_3 > H_2O > Cl^-$

 \therefore K₃[Co(CN)₆] has the highest crystal field splitting energy.

9 Jan Evening

Q4

(1) Lesser the wavelength of light absorbed (more energy) greater will be ligand strength.

Energy: Blue > Green > Red Ligand strength: L_2 > L_1 > L_3

9 Jan Evening

Q5

(4) No. of isomers

 $[M(F)(Cl)(SCN)(NO_2)] \rightarrow 3$

 $[M(F)(Cl)(SCN)(ONO)] \rightarrow 3$

 $[M(F)(Cl)(NCS)(NO_2)] \rightarrow 3$

 $[M(F)(Cl)(NCS)(ONO)] \rightarrow 3$

Total = 12

10 Jan Morning

Q6

To download more free study materials, visit www.mathongo.com

(3)

Metal ion	No. of unpaired elec.		Difference
	High spin	Low spin	in the unpaired electrons
Ni ²⁺ (3d ⁸)	2	2	0
$Mn^{2+} (3d^5)$	5	1	4
$Fe^{2+}(3d^6)$	4	0	4
$Co^{2+} (3d^7)$	3	1	2

10 Jan Evening

Q7

(1) Reaction for the given condition can be written as:

$$[CoCl_6]^{3-} + 2(en)$$

 \longrightarrow

 $[CoCl_2(en)_2]^+$

(1:2 mole ratio)

(cis-trans-isomer)

A = optically active (*cis*-isomer), violet

B = optically inactive (trans-isomer), green

10 Jan Evening

Q8

(1) Wilkinson catalyst : [Rh(PPh)₃Cl]

Chlorophyll: C₅₅H₇₂O₅N₄Mg

Vitamin B₁₂ contains Co.

Carbonic anhydrase contains a Zn ion.

11 Jan Morning

Q9

(4) $K_4[Th(C_2O_4)_4(H_2O)_2]$

 $C_2O_4^{2-}$ (oxalato): bidentate ligand

H₂O (aqua): monodentate

 \therefore Co-ordination no. of Th = 2 × 4 + 2 = 10

11 Jan Evening

Q10

JEE Mains 2019 Chapter wise Question Bank

(1) The structure of Co₂(CO)₈ is represented as

It contains two bridging CO ligands and one metal – metal (Co - Co) bond.

11 Jan Evening

Q11

(1) Given $\mu = 3.9 \text{ BM}$

$$\mu = \sqrt{n(n+2)} B.M.; 3.9 = \sqrt{n(n+2)}; n = 3$$

So, the central metal ion has 3 unpaired electrons.

 \therefore Configuration is either d^3 or d^7

As H_2O is a weak field ligand. V^{2+} and Co^{2+} will have 3 unpaired electrons.

 V^{2+} has d^3 configuration; Co^{2+} has d^7 configuration.

12 Jan Morning

Q11

(2) $K_3[Co(CN)_6]$ is an octahedral complex. During splitting of d orbitals in octahederal complexes, $d_{x^2-y^2}$ and d_{z^2} orbitals point towards the direction of ligands (i.e. they experience more repulsion and will be raised in energy by $\frac{3}{5}\Delta_0$).

12 Jan Morning

Q12

(3) Electronic configuration of Mn is, $Mn^{2+}: 3d^5 \ 1 \ 1 \ 1 \ 1 \ 1$

Presence of 5 unpaired e^- shows that the complex of Mn^{2+} has only weak field ligand (NCS⁻).

12 Jan Evening

Q13

(4)

8 April Morning

Q14

(2) It has four atoms containing lone pair of e⁻, therefore, it will be able to donate these lone pairs and acts as a tetradentate ligand.

8 April Morning

Q14

(3) cis-Platin is used as an anti-cancer drug.

8 April Evening

Q15

(3) $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$: cationic species of $[\text{Fe}(\text{H}_2\text{O})_6]_2$ $[\text{Fe}(\text{CN})_6]^{4-}$: anionic species of $[\text{Fe}(\text{CN})_6]$ Magnetic Moment $(\mu) = \sqrt{n(n+2)}$ Where n = no. of unpaired electrons Now, $[\text{Fe}(\text{H}_2\text{O})_6]^{2+}$ $[\text{Fe}(\text{CN})_6]^{4-}$ n = 4 n = 0 $\therefore \mu = \sqrt{4(4+2)}$ $\mu = 0$

8 April Evening

Q16

JEE Mains 2019 Chapter wise Question Bank

(3)

No plane of symmetry or centre of symmetry Hence it is optically active.

9 April Morning

Q17

(1) Cr^{3+} has d^3 configuration and forms an octahedral inner orbitals complex.

The set of degenerate orbitals are

$$(d_{xy}, d_{yz} \text{ and } d_{xz}) \text{ and } (d_{x^2-y^2} \text{ and } d_{z^2}).$$

9 April Morning

Q18

(3) Valence bond theory cannot distinguish between weak field ligands and strong field ligands. Therefore, it cannot predict quantitatively the magnetic properties of transition metal complexes.

9 April Evening

Q19

(2) The maximum possible denticites of the given ligand towards transition metal ion is 6 and towards inner transition metal ion (due to greater ionic radii and more atomic orbitals) is 8.

9 April Evening

Q20

(4) Wavelength of the energy absorbed by the coordination compound is inversely proportional to ligand field strength of the given co-ordination compound. The strong field ligand causes higher splitting of the d-orbitals. The decreasing order of ligand field strength is NH₃ > H₂O > Cl. Therefore decreasing order of absorbed wavelength is (I) > (II) > (III).

10 April Morning

Q21

(2) $[Fe(H_2O)_6]^{2+}$ $t_{2g}^4 e_g^2$ $CFSE = (-4 \times 0.4 + 2 \times 0.6) \Delta_0 = -0.4 \Delta_0$ $[NiCl_4]^{2-}$ $e^4 t_2^4$ $CFSE = (-4 \times 0.6 + 4 \times 0.4) \Delta_t = -0.8 \Delta_t$

10 April Evening

Q22

(4)
$$\operatorname{Ni}^{2+}(d^8) \longrightarrow \operatorname{Ni}^{3+}(d^7)$$
 $t_{2g}^6 e_g^2 \longrightarrow t_{2g}^6 e_g^1$
 $\operatorname{Co}^{2+}(d^7) \longrightarrow \operatorname{Co}^{3+}(d^6)$
 $t_{2g}^6 e_g^1 \longrightarrow t_{2g}^6 e_g^0$
 $\operatorname{Zn}^{2+}(d^{10}) \longrightarrow \operatorname{Zn}^{3+}(d^9)$
 $t_{2g}^6 e_g^4 \longrightarrow t_{2g}^6 e_g^3$
 $\operatorname{Fe}^{2+}(d^6) \longrightarrow \operatorname{Fe}^{3+}(d^5)$
 $t_{2g}^6 e_g^0 \longrightarrow t_{2g}^5 e_g^0$

So, only Fe²⁺ will lose crystal field stabilisation energy upon oxidation to +3, others will gain crystal field stabilisation energy.

12 April Morning

Q23

(1) After removal of both axial ligands from octahedral complex the field becomes square planar and the order of energy becomes

$$d_{x^2-y^2} > d_{xy} > d_{z^2} > d_{xz} = d_{yz}$$

12 April Morning

Q24

(4) EDTA is used in the treatment of lead poisoning. Deferrioxime B is used in treatment of iron poisoning and D-penicillamine is used in treatment of heavy metal poisoning, while *cis*-platin is used for treating cancer.

12 April Evening

Q25

JEE Mains 2019 Chapter wise Question Bank

(4) [Co(en), Cl] Cl

Cl-- monodentate ligand

en - bidentate ligand

 \therefore Co-ordination Number of Co = $(2 \times 2) + 1 = 5$

 $K_3[Al(C_2O_4)_3]$

C₂O₄²⁻- bidentate ligand

 \therefore Co-ordination Number of Al = 2 × 3 = 6

12 April Evening