

Teste Intermédio Matemática A

Versão 1

Teste Intermédio

Matemática A

Versão 1

Duração do Teste: 90 minutos | 19.05.2010

12.º Ano de Escolaridade

Decreto-Lei n.º 74/2004, de 26 de Março

Na folha de respostas, indique claramente a versão do teste. A ausência dessa indicação implica a classificação das respostas aos itens de escolha múltipla com zero pontos.

Formulário

Comprimento de um arco de circunferência

 αr (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de figuras planas

$$\textbf{Losango:} \ \ \frac{\textit{Diagonal maior} \times \textit{Diagonal menor}}{2}$$

Trapézio:
$$\frac{Base\ maior + Base\ menor}{2} \times Altura$$

Sector circular:
$$\frac{\alpha r^2}{2}$$
 (α – amplitude, em radianos, do ângulo ao centro; r – raio)

Áreas de superfícies

Área lateral de um cone:
$$\pi r g$$

($r - raio da base; g - geratriz$)

Área de uma superfície esférica:
$$4\,\pi\,r^2$$
 $(r-raio)$

Volumes

Pirâmide:
$$\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$$

Cone:
$$\frac{1}{3} \times \acute{A}rea\ da\ base \times Altura$$

Esfera:
$$\frac{4}{3} \pi r^3$$
 $(r - raio)$

Trigonometria

$$sen(a + b) = sen a \cdot cos b + sen b \cdot cos a$$

$$\cos(a+b) = \cos a \cdot \cos b - \sin a \cdot \sin b$$

$$tg(a+b) = \frac{tg a + tg b}{1 - tg a \cdot tg b}$$

Complexos

$$(\rho \operatorname{cis} \theta)^n = \rho^n \operatorname{cis} (n \theta)$$

$$\sqrt[n]{\rho \cos \theta} \ = \ \sqrt[n]{\rho} \ \cos \frac{\theta + 2 k \pi}{n} \ , \ k \in \{0,..., \, n-1\}$$

Probabilidades

$$\mu = x_1 p_1 + \dots + x_n p_n$$

$$\sigma = \sqrt{(x_1 - \mu)^2 p_1 + \dots + (x_n - \mu)^2 p_n}$$

Se
$$X \in N(\mu, \sigma)$$
, então:

$$P(\mu - \sigma < X < \mu + \sigma) \approx 0.6827$$

$$P(\mu - 2\sigma < X < \mu + 2\sigma) \approx 0.9545$$

$$P(\mu - 3\sigma < X < \mu + 3\sigma) \approx 0.9973$$

Regras de derivação

$$(u+v)' = u' + v'$$

$$(u.v)' = u'.v + u.v'$$

$$\left(\frac{u}{v}\right)' = \frac{u' \cdot v - u \cdot v'}{v^2}$$

$$(u^n)' = n \cdot u^{n-1} \cdot u' \qquad (n \in \mathbb{R})$$

$$(\operatorname{sen} u)' = u' \cdot \cos u$$

$$(\cos u)' = -u' \cdot \sin u$$

$$(\operatorname{tg} u)' = \frac{u'}{\cos^2 u}$$

$$(e^u)' = u' \cdot e^u$$

$$(a^u)' = u' \cdot a^u \cdot \ln a \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

$$(\ln u)' = \frac{u'}{u}$$

$$(\log_a u)' = \frac{u'}{u \cdot \ln a} \qquad (a \in \mathbb{R}^+ \setminus \{1\})$$

Limites notáveis

$$\lim \left(1 + \frac{1}{n}\right)^n = e$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

$$\lim_{x \to 0} \frac{\ln(x+1)}{x} = 1$$

$$\lim_{x \to +\infty} \frac{\ln x}{x} = 0$$

$$\lim_{x \to +\infty} \frac{e^x}{x^p} = +\infty \quad (p \in \mathbb{R})$$

GRUPO I

- · Os cinco itens deste grupo são de escolha múltipla.
- Em cada um deles, são indicadas quatro opções, das quais só uma está correcta.
- Escreva, na sua folha de respostas, apenas o número de cada item e a letra correspondente à opção que seleccionar para responder a esse item.
- Não apresente cálculos, nem justificações.
- Se apresentar mais do que uma opção, a resposta será classificada com zero pontos, o mesmo acontecendo se a letra transcrita for ilegível.
- 1. Seja g uma função **contínua**, de domínio $\mathbb R$ Qual dos seguintes conjuntos **não pode** ser o contradomínio da função g?
 - (A)]0,2[
- (B) \mathbb{R}
- (C) \mathbb{R}^-
- **(D)** $\mathbb{R} \setminus \{0\}$
- 2. Na figura 1, está parte da representação gráfica de uma função polinomial $\,f\,$ O ponto de abcissa $\,2\,$ é o único ponto de inflexão do gráfico da função $\,f\,$

Figura 1

Qual das expressões seguintes pode definir f'', segunda derivada da função f?

- (A) $(x-2)^2$ (B) $(2+x)^2$ (C) 2-x (D) x-2

3. Seja a um número real diferente de zero.

Qual é o valor de $\lim_{x\to 0} \frac{e^{ax}-1}{ax^2+a^2x}$?

- (A) $\frac{1}{a}$ (B) $\frac{1}{2a}$ (C) 0
- (D) $+\infty$
- 4. Quantos números naturais de três algarismos diferentes se podem escrever, não utilizando o algarismo 2 nem o algarismo 5 ?
 - **(A)** 256
- **(B)** 278 **(C)** 286 **(D)** 294
- 5. Um teste é constituído por oito perguntas de escolha múltipla.

A sequência das oito respostas correctas às oito perguntas desse teste é A A B D A D A A

O Pedro, que não se preparou para o teste, respondeu ao acaso às oito perguntas.

Qual é a probabilidade de o Pedro ter respondido correctamente a todas as perguntas, sabendo que escolheu cinco opções A, uma opção B e duas opções D?

- (A) $\frac{1}{56}$ (B) $\frac{1}{112}$ (C) $\frac{1}{168}$ (D) $\frac{1}{224}$

GRUPO II

Nas respostas aos itens deste grupo, apresente **todos os cálculos** que tiver de efectuar e **todas as justificações** necessárias.

Atenção: quando, para um resultado, não é pedida a aproximação, apresente sempre o **valor exacto**.

1. Seja $\mathbb C$ o conjunto dos números complexos; i designa a unidade imaginária.

Determine $\frac{(1+2i)(3+i)-i^6+i^7}{3i}$, sem recorrer à calculadora.

Apresente o resultado na forma x+yi, com $x\in\mathbb{R}$ e $y\in\mathbb{R}$

2. Seja Ω o espaço de resultados associado a uma certa experiência aleatória.

Sejam X e Y dois acontecimentos ($X\subset\Omega$ e $Y\subset\Omega$) de probabilidade não nula.

Prove que

$$P(\overline{X} \cap \overline{Y}) = P(X) \times P(Y|X) + P(\overline{X}) - P(Y)$$

(P designa probabilidade, \overline{X} e \overline{Y} designam os acontecimentos contrários de X e de Y, respectivamente, e P(Y|X) designa uma probabilidade condicionada)

3. Considere a função $\,f,\,\,$ de domínio $\,\mathbb{R}\,,\,\,$ definida por $\,f(x)=\,3\,+\,4\,\,x^2\,e^{-x}$

Resolva os itens seguintes, usando exclusivamente métodos analíticos.

- **3.1.** Mostre que o gráfico da função f tem uma única assimptota e escreva uma equação dessa assimptota.
- **3.2.** Mostre que a função f tem um único mínimo relativo e determine-o.
- **3.3.** Seja g a função, de domínio $\mathbb{R}\setminus\{0\}$, definida por

$$g(x) = x + \ln[f(x) - 3]$$
 (ln designa logaritmo de base e)

Determine os zeros da função g

4. Na figura 2, está representado um triângulo rectângulo [ABC], cujos catetos, [AB] e [BC], medem 5 unidades.

Considere que um ponto $\,P\,$ se desloca sobre o cateto $\,[BC]$, nunca coincidindo com $\,B\,$ nem com $\,C\,$

Para cada posição do ponto P , seja x a amplitude, em radianos, do ângulo BAP $\left(x\in\left]0\,,\frac{\pi}{4}\right[\,\right)$

Figura 2

Resolva os itens 4.1. e 4.2., usando exclusivamente métodos analíticos.

- **4.1.** Mostre que $f(x) = \frac{5}{\cos x} 5 \lg x + \sqrt{50} + 5$
- **4.2.** Seja r a recta tangente ao gráfico da função f no ponto de abcissa $\frac{\pi}{6}$ Determine o declive da recta r
- **4.3.** Existe um valor de $\,x\,$ para o qual o **perímetro** do triângulo $\,[APC]\,$ é igual a $\,16\,$ Determine esse valor, arredondado às centésimas, **recorrendo às capacidades** gráficas da calculadora.

Apresente o(s) gráfico(s) visualizado(s) na calculadora e assinale o ponto relevante para a resolução do problema.

FIM

COTAÇÕES

CDUDO II		450
GRUPO II		150 pontos
1		15 pontos
2		20 pontos
3		60 pontos
	3.1. 20 p	ontos
	3.2. 20 p	ontos
	3.3.	ontos
4		55 pontos
	4.1. 20 p	ontos
	4.2.	ontos
	4.3.	ontos