Екзаменаційна робота з предмету "Теорія міри та інтегралу"

Студента 3 курсу групи МП-31 Захарова Дмитра

16 грудня 2023 р.

Білет 5

Питання 1.

Умова. Лінійні системи диференціальних рівнянь, властивості розв'язків, фундаментальна система розв'язків (Φ CP), фундаментальна матриця розв'язків (Φ MP).

Відповідь. Нехай $\mathbf{A}(t) = \{a_{ij}(t)\}_{i,j=1}^n \in \mathbb{R}^{n \times n}$ і маємо вектор-функції $\mathbf{x}(t), \boldsymbol{\beta}(t)$.

Означення: Лінійна неоднорідна система диференціальних рівнянь

Лінійною неоднорідною системою диференціальних рівнянь (ЛНС) називають рівняння виду

$$\dot{\mathbf{x}} = \mathbf{A}(t)\mathbf{x} + \boldsymbol{\beta}$$

Означення: Лінійна однорідна система диференціальних рівнянь

Лінійною однорідною системою рівнянь(ЛОС) називають вираз з попереднього означення при $\boldsymbol{\beta} \equiv \mathbf{0}$.

Розглянемо першу ж теорему, що вказує на єдиність розв'язку Коші.

Теорема: Єдиність розв'язку Коші ЛНС

Якщо $\mathbf{A}(t), \boldsymbol{\beta} \in \mathcal{C}[\alpha, \beta]$ і $t_0 \in [\alpha, \beta]$, то $\forall \mathbf{x}_0 \in \mathbb{R}^n$ існує єдиний розв'язок задачі Коші для ЛНС, що задовольняє умові $\dot{\mathbf{x}}(t_0) = \mathbf{x}_0$ і визначене на всьому відрізку $[\alpha, \beta]$.

Доведення. Оскільки права частина ЛНС неперервна й задовольняє умові Ліпшиця по \mathbf{x} в шарі $[\alpha, \beta] \times \mathbb{R}^n$, то отримуємо те, що треба довести.

Розглянемо властивості розв'язків таких рівнянь.

Твердження: Властивості розв'язків ЛОС

- 1. Якщо $\{\mathbf{x}_j\}_{j=1}^k$ розв'язки ЛОС, то $\sum_{i=1}^k \alpha_i \mathbf{x}_i$ теж є розв'язком ЛОС. Інакшими словами, множина розв'язків ЛОС утворюють лінійний простір.
- 2. Принцип суперпозиції: Якщо $\mathbf{x}_1, \mathbf{x}_2$ розв'язки ЛНС, то $\mathbf{x}_1 \mathbf{x}_2$ розв'язки ЛОС.

Доведення.

Пункт 1. Підставимо вираз $\sum_{i=1}^{k} \alpha_i \mathbf{x}_i$ у ліву частину ЛОС:

$$\frac{d}{dt} \sum_{i=1}^{k} \alpha_i \mathbf{x}_i = \sum_{i=1}^{k} \alpha_i \dot{\mathbf{x}}_i = \sum_{i=1}^{k} \alpha_i \mathbf{A}(t) \mathbf{x}_i = \mathbf{A}(t) \sum_{i=1}^{k} \alpha_i \mathbf{x}_i \blacksquare$$

Пункт 2. Розглянемо похідну $\mathbf{x}_1 - \mathbf{x}_2$:

$$\frac{d}{dt}(\mathbf{x}_1 - \mathbf{x}_2) = \dot{\mathbf{x}}_1 - \dot{\mathbf{x}}_2 = (\mathbf{A}(t)\mathbf{x}_1 + \boldsymbol{\beta}) - (\mathbf{A}(t)\mathbf{x}_2 + \boldsymbol{\beta})$$
$$= \mathbf{A}(t)\mathbf{x}_1 - \mathbf{A}(t)\mathbf{x}_2 = \mathbf{A}(t)(\mathbf{x}_1 - \mathbf{x}_2) \blacksquare$$

Тепер розглянемо означення фундаментальної системи розв'язків (ФСР).

Означення: Фундаментальна система розв'язків

Набір з n лінійно незалежних розв'язків ЛОС називаються фундаментальною системою розв'язків.

Розглянемо теорему про існування ФСР.

Теорема: Існування ФСР

Якщо $\mathbf{A}(t) \in \mathcal{C}[\alpha, \beta]$, то існує ФСР $\{\mathbf{x}_k\}_{k=1}^n$, причому він утворює базис лінійного простору множини розв'язків ЛОС.

Доведення. Нехай $t_0 \in [\alpha, \beta]$, а \mathbf{e}_k – це вектор, де кожен елемент $e_{kj} = \delta_{kj}$ (δ – це символ Кронекера). Позначимо $\mathbf{x}_k(t)$ – розв'язок задачі Коші нашої системи, що задовольняє умові $\mathbf{x}_k(t_0) = \mathbf{e}_k$.

Доведемо, що $\{\mathbf{x}_k(t)\}_{k=1}^n$ – лінійно незалежні. Нехай $\sum_{k=1}^n \alpha_k \mathbf{x}_k(t) \equiv \mathbf{0}$. Тому якщо підставимо 0, то маємо $\sum_{k=1}^n \alpha_k \mathbf{e}_k = \mathbf{0}$. Проте, це автоматично означає, що $\alpha_k \equiv 0$, протиріччя.

Доведемо друге твердження теореми. Нехай $\mathbf{x}(t)$ – розв'язок ЛОС. Тоді $\mathbf{x}(t_0) = \mathbf{x}_0$ можна розкласти по базису $\{\mathbf{e}_k\}_{k=1}^n$, тобто знайдуться ненульові $\{\alpha_k\}_{k=1}^n \subset \mathbb{R}$, що $\mathbf{x}_0 = \sum_{k=1}^n \alpha_k \mathbf{e}_k$. Доведемо, що $\mathbf{x}(t) = \sum_{k=1}^n \alpha_k \mathbf{x}_k(t)$. Права і ліва частини є розв'язками ЛОС, причому при $t = t_0$ вони збігаються. У силу єдності розв'язків задачі Коші ці розв'язки збігаються всюди.

Розглянемо наслідок.

Твердження: Наслідок існування ФСР

Нехай $\widetilde{\mathbf{x}}(t)$ — окремий розв'язок ЛНС. Тоді будь-який розв'язок ЛНС має вигляд

$$\mathbf{x}(t) = \widetilde{\mathbf{x}}(t) + \sum_{k=1}^{n} \alpha_k \mathbf{x}_k$$

Доведення. Це є наслідком попередньої теореми та принципу суперпозиції. ■

Також розглянемо означення фундаментальної матриці розв'язків (ФМР).

Означення: Фундаментальна матриця розв'язків

Фундамантальної матрицею розв'язків ЛОС називають матрицю Ф, стопці якої є вектор-функціями із ФСР, тобто

$$\Phi(t) = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{bmatrix} \in \mathbb{R}^{n \times n}$$

Помітимо, що в такому разі ця матриця задовольняє матричному диференціальному рівнянню

$$\dot{\Phi}(t) = \mathbf{A}(t)\Phi(t),$$

причому загальний розв'язок ЛОС можна записати у вигляді $\mathbf{x}(t) = \Phi(t)\mathbf{b}$, де $\mathbf{b} \in \mathbb{R}^n$ – постійний вектор.

Також, вкажемо деякі факти, пов'язані з фундаментальною матрицею розв'язків, проте залишемо їх без доведення (оскільки це не є безпосередньо питаннями білету).

Теорема: Формула Ліувиілля-Остроградського

Якщо $\mathbf{A}(t) \in \mathcal{C}[\alpha, \beta]$, то

$$\det \Phi(t) = \det \Phi(t_0) \exp \int_{t_0}^t \operatorname{tr} \mathbf{A}(\tau) d\tau$$

Залишаємо цей факт без доведення.

Твердження: Метод варіації

Нехай $\Phi(t)$ – Φ MP. Тоді розв'язок ЛНС можна знайти за формулою

$$\mathbf{x}(t) = \int_{t_0}^t \Phi(t) \Phi^{-1}(\tau) \boldsymbol{\beta}(\tau) d\tau$$

Доведення. Шукаємо ЛНС у вигляді $\mathbf{x}(t) = \Phi(t)\mathbf{u}(t)$ (варіюємо сталу). Тоді $\dot{\mathbf{x}}(t) = \dot{\Phi}\mathbf{u} + \Phi\dot{\mathbf{u}} = \mathbf{A}\Phi\mathbf{u} + \Phi\dot{\mathbf{u}}$. Підставляємо у рівняння ЛНС:

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \boldsymbol{\beta} \iff \mathbf{A}\Phi\mathbf{u} + \Phi\dot{\mathbf{u}} = \mathbf{A}\Phi\mathbf{u} + \boldsymbol{\beta} \iff \Phi\dot{\mathbf{u}} = \boldsymbol{\beta}$$

Отже розв'язок $\mathbf{u}=\int_{[t_0,t]}\Phi^{-1}(\tau)\boldsymbol{\beta}(\tau)d\tau$. Підставляючи у $\mathbf{x}(t)$, отримуємо відповідь. \blacksquare

Означення: Матриця Коші

Матрицею Коші ЛНС називається $\mathbf{K}(t,\tau) = \Phi(t)\Phi^{-1}(\tau)$.

При цьому, з методу варіації, розв'язок Коші ЛНС можна записати так:

$$\mathbf{x}(t) = \mathbf{K}(t, t_0)\mathbf{x}_0 + \int_{t_0}^t \mathbf{K}(t, \tau)\boldsymbol{\beta}(\tau)d\tau$$

Питання 2.

Умова. Теорема Ляпунова про асимптотичну стійкість.

Відповідь. Нехай ми розглядаємо систему

$$\dot{\mathbf{x}} = f(t, \mathbf{x}), \ f(t, \mathbf{x}) \in \mathcal{C}^1([t_0, +\infty) \times \mathcal{U}_r(\mathbf{0}))$$
 (1)

Функція Ляпунова допомагає досліджувати нульовий розв'язок системи на стійкість (нульовим розв'язком $\mathbf{x}_0(t), t \geq t_0$ називаємо такий розв'язок, що $f(t, \mathbf{x}_0(t)) = 0 \,\forall t \geq t_0$).

Сформулюємо теорему Ляпунова про звичайну стійкість, оскільки в подальшому ми будемо на неї спиратись.

Теорема: Ляпунова про стійкість

Нехай для системи $\boxed{1}$ існує деяка скалярна функція $V(\mathbf{x})$ (функція Ляпунова), яка задовольняє наступним умовам:

- 1. $V(\mathbf{x}) \in \mathcal{C}^1(\mathcal{U}_r(\mathbf{0}))$
- 2. $V(\mathbf{x}) > 0 \ \mathbf{x} \neq \mathbf{0}$
- 3. $V(\mathbf{0}) = 0$
- 4. $\dot{V}(t,\mathbf{x})\Big|_{(1)} = \sum_{k=1}^{n} \frac{\partial V}{\partial x_k} \cdot f_k(t,\dot{\mathbf{x}}) \leq 0$

Тоді розв'язок $\mathbf{x} \equiv \mathbf{0}$ – стійкий.

Переходимо власне до meopemu Ляпунова npo асимпmomuчну cmiŭ- $\kappa icm b$.

Теорема: Ляпунова про асимптотичну стійкість

Нехай для системи 1 існує функція Ляпунова V(x), яка задовольняє в деякій кулі $\mathcal{U}_r(\mathbf{0})$ умовам 1-3 з попередньої теореми та умові:

1.
$$\dot{V}(\mathbf{x})\Big|_{(1)} \leq W(\mathbf{x}), \ W(\mathbf{x}) \in \mathcal{C}(\mathcal{U}_r(\mathbf{0})) \wedge W(\mathbf{x}) < 0 \ \mathbf{x} \neq \mathbf{0}$$

Тоді розв'язок $\mathbf{x} \equiv \mathbf{0}$ асимптотично стійкий.

Доведення. З попередньої теореми одразу випливає, що $\mathbf{x} \equiv \mathbf{0}$ – стій-кий розв'язок. За означенням, це означає, що $\forall \epsilon > 0 \; \exists \delta(\epsilon) > 0$, що для

будь-якого розв'язку $\mathbf{x}(t,\mathbf{x}_0)$ задачі Коші $\begin{cases} \dot{\mathbf{x}}=f(t,\mathbf{x}) \\ \mathbf{x}(t_0)=\mathbf{x}_0 \end{cases}$, $f(t,\mathbf{0})=\mathbf{0}$,

і для будь-якого $t \geq t_0$, з того, що $\|\mathbf{x}_0\| \leq \delta$ випливає $\|\mathbf{x}(t,\mathbf{x}_0)\| < \epsilon$. Залишилося лише довести, що $\mathbf{x}(t,\mathbf{x}_0) \xrightarrow[t \to \infty]{} \mathbf{0}$.

Нехай $\mathbf{x}_0 \in \mathcal{U}_{\delta}(\mathbf{0})$. З четвертої умови теореми випливає, що функція $V \circ \mathbf{x}(t, \mathbf{x}_0)$ монотонно спадає і, окрім того, $V \circ \mathbf{x}(t, \mathbf{x}_0) \geq 0$, тому існує

$$\lim_{t \to \infty} V \circ \mathbf{x}(t, \mathbf{x}_0) =: \ell \ge 0$$

Доведемо від протилежного, що $\ell = 0$. Отже нехай $\ell > 0$, тоді $\forall t \geq t_0 : V \circ \mathbf{x}(t, \mathbf{x}_0) \geq \ell > 0$. Але тоді $\exists \mu > 0 : \|\mathbf{x}(t, \mathbf{x}_0)\| \geq \mu \, \forall t \geq t_0$, де $\mu := \inf_{t \geq t_0} \|\mathbf{x}(t, \mathbf{x}_0)\| > 0$.

Розглянемо $\max_{\mu \leq \|\mathbf{x}\| \leq \rho} W(\mathbf{x}) = w < 0$ з умови (4) теореми. Оскільки траєкторія $\mathbf{x}(t, \mathbf{x}_0)$ належить кільцю $\mu \leq \|\mathbf{x}\| \leq \rho$, то $W \circ \mathbf{x}(t, \mathbf{x}_0) \leq w \ \forall t \geq t_0$. Тоді з умови (4) теореми випливає $\frac{d}{dt} (V \circ \mathbf{x}(t, \mathbf{x}_0)) \leq w$ або ж

$$\int_{[t_0,t]} \frac{dV \circ \mathbf{x}(\tau, \mathbf{x}_0)}{d\tau} = V \circ \mathbf{x}(t, \mathbf{x}_0) - V(\mathbf{x}_0) \le w(t - t_0)$$

Звідки отримуємо $V \circ \mathbf{x}(t, \mathbf{x}_0) \leq V(\mathbf{x}_0) + w(t - t_0) \xrightarrow[t \to \infty]{} -\infty$, а це суперечить умовам (2) та (3) теореми. Отже $\ell = 0$, тобто

$$\lim_{t \to \infty} V \circ \mathbf{x}(t, \mathbf{x}_0) = 0$$

Тепер покажемо $\mathbf{x}(t,\mathbf{x}_0) \xrightarrow[t \to \infty]{} \mathbf{0}$ знову від протилежного, тобто

$$\exists \eta > 0 \ \exists \{t_n\}_{n \in \mathbb{N}} \ t_n \xrightarrow[n \to \infty]{} +\infty : \|\mathbf{x}(t_n, \mathbf{x}_0)\| \ge \eta$$

Позначимо $m:=\min_{\eta\leq \|\mathbf{x}\|\leq \rho}V(\mathbf{x})>0$ і оскільки $\eta\leq \|\mathbf{x}(t_n,\mathbf{x}_0)\|\leq \rho$, то $V(\mathbf{x}(t_n,\mathbf{x}_0))\geq m>0$, що суперечить тому, що границя нульова. Таким чином $\exists \lim_{t\to\infty}\mathbf{x}(t,\mathbf{x}_0)=0$.

Питання 3.

Умова. Поставити задачу Коші для рівняння $y \cdot y''' + \sqrt{y - y'} = 3t$ й перейти до нормальної системи.

Відповідь. Спочатку помітимо,

$$y''' = \frac{3t - \sqrt{y - y'}}{y}$$

Позначимо $y_1=y,y_2=y',y_3=y''$. В такому разі, очевидно, що $y_2'=y_3,y_1'=y_2$ і окрім того,

$$y_3' = \frac{3t - \sqrt{y_1 - y_2}}{y_1}$$

Тому нормальна система має вигляд:

$$\frac{d}{dt} \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix} = \begin{bmatrix} y_2 \\ y_3 \\ \frac{3t - \sqrt{y_1 - y_2}}{y_1} \end{bmatrix}$$

Поставимо початкову умову. Нехай y(0) = 1, y'(0) = 0, y''(0) = 0. Тоді

$$\begin{bmatrix} y_1(0) \\ y_2(0) \\ y_3(0) \end{bmatrix} = \begin{bmatrix} y(0) \\ y'(0) \\ y''(0) \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Відповідь. Якщо позначити $\mathbf{y}:=[y,y',y'']^{\top},$ то маємо нормальну систему $\dot{\mathbf{y}}=f(t,\mathbf{y}),$ де

$$f(t, \mathbf{y}) = \begin{bmatrix} y_2 \\ y_3 \\ \frac{3t - \sqrt{y_1 - y_2}}{y_1} \end{bmatrix}, \ \mathbf{y}(0) = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

Питання 4.

Умова. Дослідити на стійкість нульову точку спокою системи

$$\begin{cases} \dot{x} = \ln(4y + e^{-3x}) \\ \dot{y} = 2y - 1 + \sqrt[3]{1 - 6x} \end{cases}$$
 (2)

і визначити її тип.

Відповідь. По-перше, помітимо, що $(x,y)=\mathbf{0}$ це дійсно точку спокою, оскільки $\ln(4y+e^{-3x})\Big|_{(x,y)=\mathbf{0}}=2y-1+\sqrt[3]{1-6x}\Big|_{(x,y)=\mathbf{0}}=0.$

Знайдемо Якобіан:

$$J(x,y) := \frac{\partial \mathbf{f}}{\partial \mathbf{x}} = \begin{bmatrix} -\frac{3e^{-3x}}{e^{-3x} + 4y} & \frac{4}{e^{-3x} + 4y} \\ -\frac{2}{(1 - 6x)^{2/3}} & 2 \end{bmatrix}$$

Підставляємо нашу точку спокою:

$$J(0,0) = \begin{bmatrix} -3 & 4 \\ -2 & 2 \end{bmatrix}$$

Характеристичний поліном $\chi_J(\lambda) = (-3 - \lambda)(2 - \lambda) + 8$ або $\chi_J(\lambda) = \lambda^2 + \lambda + 2$. Корні цього поліному $\lambda = -\frac{1}{2} \pm \frac{\sqrt{7}}{2}i$. Оскільки $-\frac{1}{2} < 0$, то перед нами **стійкий фокус**.

Відповідь. (0,0) це стійкий фокус.