Homework 4

Deadline: May 31, 2022

1. Let $\mathbf{x}_1, \dots, \mathbf{x}_N$ sampled from

$$\mathcal{N}\left(\begin{bmatrix} \mu_1 \\ \mu_2 \end{bmatrix}, \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix}\right)$$

with $\sigma_1, \sigma_2 > 0$. Define

$$r = \frac{\sum_{\alpha=1}^{N} (x_{1\alpha} - \bar{x}_1)(x_{2\alpha} - \bar{x}_2)}{\sqrt{\sum_{\alpha=1}^{N} (x_{1\alpha} - \bar{x}_1)^2} \sqrt{\sum_{\alpha=1}^{N} (x_{2\alpha} - \bar{x}_2)^2}}.$$

for i, j = 1, ..., p.

- (a) Use Fisher's z to test the hypothesis $\rho = \rho_0$ against the alternatives $\rho \neq \rho_0$ at the 0.01 level with r = 0.5 and N = 50.
- (b) Use Fisher's z to obtain a confidence interval for ρ with confidence 0.95 based on r=0.65 and N=25.
- (c) Prove that when N=2 and $\rho=0$, we have $\Pr(r=1)=\Pr(r=-1)=0.5$.
- 2. Let $\mathbf{z}_1, \dots, \mathbf{z}_n$ be independently distributed according to $\mathcal{N}(\mathbf{0}, \mathbf{I})$ and

$$\mathbf{W} = \sum_{lpha=1}^n \sum_{eta=1}^n b_{lphaeta} \mathbf{z}_lpha \mathbf{z}_eta^ op.$$

Prove that if $\mathbf{a}^{\top}\mathbf{W}\mathbf{a}$ is distributed according to χ^2 -distribution with m degrees of freedom for all \mathbf{a} such that $\|\mathbf{a}\|_2 = 1$, then $\mathbf{W} \sim \mathcal{W}(\mathbf{I}, m)$.

3. Suppose \mathbf{x}_{α} is an observation from $\mathcal{N}_q(\mathbf{B}\mathbf{z}_{\alpha}, \mathbf{\Sigma})$ for $\alpha = 1, \dots, N$, where $[\mathbf{z}_1, \dots, \mathbf{z}_N] \in \mathbb{R}^{N \times q}$ of rank q is given and $N \geq p + q$, the maximum likelihood estimator of \mathbf{B} is given by

$$\hat{\mathbf{B}} = \mathbf{C}\mathbf{A}^{-1}.$$

where

$$\mathbf{C} = \sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$$
 and $\mathbf{A} = \sum_{\alpha=1}^{N} \mathbf{z}_{\alpha} \mathbf{z}_{\alpha}^{\top}$.

Show that $\mathbf{B} = \hat{\mathbf{B}}$ minimizes the generalized variance

$$\det\left(\sum_{\alpha=1}^{N}(\mathbf{x}_{\alpha}-\mathbf{B}\mathbf{z}_{\alpha})(\mathbf{x}_{\alpha}-\mathbf{B}\mathbf{z}_{\alpha})^{\top}\right).$$

4. Let $\mathbf{y}^{(1)}, \dots, \mathbf{y}^{(q)}$ be a set of random vectors each with p components. Suppose that

$$\mathbb{E}[\mathbf{y}^{(g)}] = \mathbf{0}$$
 and $\mathbb{E}[\mathbf{y}^{(g)}\mathbf{y}^{(h)}^{\top}] = \delta_{gh}\mathbf{\Sigma}_g$

1

for g, h = 1, ..., q, where $\delta_{gh} = 1$ for g = h and $\delta_{gh} = 0$ otherwise. Let **C** be an $q \times q$ orthogonal matrix such that each element of the last row is $1/\sqrt{q}$. Define

$$\mathbf{z}^{(g)} = \sum_{h=1}^{q} c_{gh} \mathbf{y}^{(h)}$$

for $g = 1, \ldots, q$. Prove that

$$\mathbb{E}ig[\mathbf{z}^{(q)}\mathbf{z}^{(g)}^{ op}ig] = \mathbf{0}$$

for $g=1,\ldots,q-1$ if and only if $\mathbf{\Sigma}_1=\cdots=\mathbf{\Sigma}_q.$