- Algorithms testing
 - Random walk (classic)
 - Random walk (modified)
 - Cliff
- Roadmap: where are we going?
- Future lines (18/05/2017)

ALGORITHMS TESTING

- Random walk (classic)
- RANDOM WALK (MODIFIED)
- CLIFF
- Roadmap: where are we going?
- Future lines (18/05/2017)

Random walk (modified)

Modified version

- Nstates/2 states with random reward between 1 and 2. Last state on the right more reward, 150, to assure convergence.
- Nstates parametrizable (Nstates = 13 was chosen for testing)
- Always starting at state 2 (first state on the left)
- Optimal policy: finishing at T2
- Random transition matrix (i.e. when action is "left", you go **left** with $p_{left} = 0.8 1$ probability and **right** with $p_{right} = 1 p_{left}$ probability)

Comparison

Comparison between DA TD (model-free), SARSA and Q-learning. All of them with optimal parameters.

¿Comparar también con model-based?

Comparison

Comparison between DA TD (model-free), SARSA and Q-learning. All of them with optimal parameters.

¿Comparar también con model-based?

Cliff

- Algorithms testing
 - Random walk (classic)
 - Random walk (modified)
 - Cliff
- ROADMAP: WHERE ARE WE GOING?
- Future lines (18/05/2017)

Roadmap: where are we going?

Algorithm	Compare with	Problems to test with
 Dual-Ascent (DA): Model based → exact solution (DP) Model free → stochastic gradient (RL) 	SARSAQ-learningDouble Q-learning	Random walk (classical)Random walk (modified)Cliff
2. DA with Linear Function Approximation (DA-LFA)	LSPILSTDGTD2Variance reduction	 Chain walk (RL course version) Mountain car iiContinuous STATE SPACE!!
3. DA with Non-Linear Function Approximation (DA-NLFA)	Deep Q-learning (DQN)Neural fitted Q-iteration (NFQ)	 Mountain Car Cart-Pole Videogames Neural networks Python OpenAl

- Algorithms testing
 - Random walk (classic)
 - Random walk (modified)
 - Cliff
- Roadmap: where are we going?
- **FUTURE LINES (18/05/2017)**

Future lines (18/05/2017)

Complete simulations