

Countably Unitable Subset Algebra

1 Why

We aim toward defining a notion of length on the real line, a function from subsets of the real numbers to a non-negative real number or infinity. A function with natural properties of length can not be defined for all subsets of the real numbers, but can on Such a function does not exist

We fail for all sets, but we succeed on a subset space whose distinguished sets are a sigma algebra.

2 Definition

A **sigma algebra** a subset algebra which is closed under countable unions.

2.1 Notation

Let A be a set and $A \subset 2^A$. We denote the subset algebra of A and A by (A, A), read aloud as "A, script A."

3 Properties

Proposition 1 For any set A, 2^A is a sigma algebra.

Proposition 2 The intersection of a family of sigma algebras is a sigma algebra.

4 Generation

Proposition 3 Let A a set and \mathcal{B} a set of subsets. There is a unique smallest sigma algebra (A, \mathcal{A}) with $\mathcal{B} \subset \mathcal{A}$.

We call the unique smallest sigma algebra containing B the **generated sigma algebra** of B.