WOJSKOWA AKADEMIA TECHNICZNA

Wydział Cybernetyki

SPRAWOZDANIE Z ĆWICZENIA LABORATORYJNEGO NR 8

Temat ćwiczenia:

Modelowanie układu regulacji z regulatorami P, PI, PID

Prowadzący: mgr inż. Małgorzata Rudnicka - Schmidt

Wykonał: kpr. pchor. Damian KRATA (Nr albumu: 59223)

Grupa: I4X3S1

Data wykonania ćwiczenia: 19.01.2016r.

Zadanie:

Przy projektowaniu układów regulacji staramy się uzyskać jak najkrótszy czas regulacji, mały uchyb w stanie ustalonym oraz ograniczone przeregulowanie. Należy tu zauważyć, że jednoczesne spełnienie tych wymagań jest trudne i wymaga kompromisu. Aby uzyskać dużą dokładność w stanie ustalonym, współczynnik wzmocnienia układu otwartego musi być duży, co zazwyczaj prowadzi do dużych czasów regulacji lub wręcz wzbudzenia się układu. Występuje, zatem przeciwieństwo między wymaganiami dokładności statycznej i stabilności. Aby uzyskać poprawę, jakości regulacji stosowane są regulatory. Jednym z nich jest regulator PID.

Opis teoretyczny regulatora PID:

Regulator PID (ang. Proportional-Integral-Derivative controller, regulator proporcjonalno-całkująco-różniczkujący) znajduje zastosowanie w automatyce do regulacji procesów, jest jednym ze składników pętli sprzężenia zwrotnego w układzie regulacji. Składa się z 3 członów: P (proporcjonalnego), I (całkującego) oraz D (różniczkującego) połączonych równolegle. Działa w ten sposób, że mierzy "wyjście" procesu oraz może sterować "wejściem", przy czym celem jest utrzymanie wartości wyjściowej na pewnym z góry zadanym poziomie, który jest zwany wartością zadaną. Dodatkowo wartość zadana może się zmieniać w czasie. Regulatora PID używa się np. do sterowania temperaturą procesu, w tym wypadku działa on jak bardzo dokładny termostat. Może również sterować ciśnieniem, prędkością przepływu, składem chemicznym, siłą, prędkością i innymi zmiennymi. Regulatory znajdują zastosowanie w przemyśle samochodowym, w tym przypadku ich zadaniem jest utrzymywanie stałej prędkości samochodu bez względu na warunki jazdy (tzw. tempomat).

Opis badanego obiektu regulacji

Obiektem regulacji jest układ trzech zbiorników wody ze swobodnym przepływem. Zadaniem regulacji jest utrzymywanie stałego poziomu w trzecim zbiorniku.

Schemat zastosowania regulatora

Oznaczenia:

- $c_1(t)$ powierzchnia lustra wody w 1 zbiorniku;
- $c_2(t)$ powierzchnia lustra wody w 2 zbiorniku;
- $c_3(t)$ powierzchnia lustra wody w 3 zbiorniku;
- $r_1(t)$ współczynnik charakterystyczny oporu przepływu przez otwór odpływowy 1 zbiornika;
- $r_2(t)$ współczynnik charakterystyczny oporu przepływu przez otwór odpływowy 2 zbiornika;
- $r_3(t)$ współczynnik charakterystyczny oporu przepływu przez otwór odpływowy 3 zbiornika;

Dane wejściowe

$$c_1 = 10,$$
 $c_2 = 5,$ $c_3 = 2,$ $r_1 = 0.3,$ $r_2 = 2,$ $r_3 = 3$

Obliczenia:

$$d_{11} = \frac{1}{r_1 \cdot c_1} = 0.33,$$

$$d_{12} = \frac{1}{r_1 \cdot c_2} = 0,67$$

$$d_{22} = \frac{1}{r_2 \cdot c_2} = 0.1,$$

$$d_{23} = \frac{1}{r_2 \cdot c_3} = 0.25,$$

$$d_{33} = \frac{1}{r_3 \cdot c_3} = 0.1667,$$

$$A = \begin{pmatrix} -d_{11} & d_{11} & 0 \\ d_{12} & -d_{12} - d_{22} & d_{22} \\ 0 & d_{23} & -d_{23} - d_{33} \end{pmatrix} = \begin{pmatrix} -0.33 & 0.33 & 0 \\ 0.67 & -0.77 & 0.1 \\ 0 & 0.25 & -0.4167 \end{pmatrix},$$

$$B = \begin{pmatrix} \frac{1}{c_1} \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0.1 \\ 0 \\ 0 \end{pmatrix},$$

$$C = [0 \ 0 \ 1],$$

$$\begin{aligned} w_0 &= d_{11} \cdot d_{22} \cdot d_{33} = 0.0056, \\ w_1 &= d_{11} \cdot (d_{22} + d_{23} + d_{33}) + d_{12} \cdot (d_{23} + d_{33}) + d_{22} \cdot d_{33} = 0.4667, \\ w_2 &= d_{11} + d_{12} + d_{22} + d_{23} + d_{33} = 1.5167, \end{aligned}$$

$$a_{3} = \frac{1}{w_{0}} = 180,$$

$$a_{2} = \frac{w_{2}}{w_{0}} = 273,$$

$$a_{1} = \frac{w_{1}}{w_{0}} = 84,$$

$$b_{o} = \frac{d_{12} \cdot d_{23}}{c_{1} \cdot w_{0}} = 3.$$

Transmitancja obiektu regulacji ma postać:

$$G(s) = \frac{b_0}{a_3 s^3 + a_2 s^2 + a_1 s + 1}$$

Realizacja zadania.

Model zbudowany do pomiary współczynnika wzmocnienia k_g i t_g

Wykres, z którego został odczytany okres oscylacji t_g .

$$k_g = 42.1$$

$$t_g = 9.27$$

Parametry w zależności od typu regulatora

• Regulator P

$$k = 0.5 \cdot k_g = 21.05$$

Regulator PI

$$k = 0.45 \cdot k_g = 18.945, \qquad t_i = \frac{t_g}{1.2} = 7.725$$

• Regulator PID

$$k = 0.6 \cdot k_g = 25.26$$
, $t_i = \frac{t_g}{2} = 4.635$, $t_d = \frac{t_g}{8} = 1.1588$

Model zbudowany do pomiary wartości czasu regulacji t_r , przeregulowania χ i uchybu ustalonego e_{ust} przy wymuszeniu skokowym

Wykres odpowiadający odpowiedzi skokowej badanego układu

Gdzie:

- Wykres turkusowy (chyba) jest dla regulatora typu PID
- Wykres żółty jest dla regulatora typu P
- Wykres fioletowy jest dla regulatora typu PI

Poniżej wykres dla dłuższego czasu symulacji:

Pomierzone wartości czasu regulacji t_r , przeregulowania χ i uchybu ustalonego e_{ust} przy wymuszeniu skokowym

• Dla układu z regulatorem P

$$t_r = 93,14s$$

$$y_{max} = 1,55$$

$$\chi = \frac{y_{max} - y_{ust}}{y_{ust}} \cdot 100\% = \frac{1,55 - 0.981}{0.981} = 58\%$$

$$e_{ust} = 1 - 0.981 = 0.019$$

• Dla układu z regulatorem PI

$$t_r = 272,63s$$
 $y_{max} = 1,94$

$$\chi = \frac{y_{max} - y_{ust}}{y_{ust}} \cdot 100\% = \frac{1,94 - 1}{1} = 94\%$$
 $e_{ust} = 1 - 1 = 0$

• Dla układu z regulatorem PID

$$t_r = 45,22s$$
 $y_{max} = 1,71$
 $\chi = \frac{y_{max} - y_{ust}}{y_{ust}} \cdot 100\% = \frac{1.71 - 1}{1} = 71\%$
 $e_{ust} = 1 - 1 = 0$

Wnioski

Z wykresów odpowiedzi skokowych badanych układów przy wymuszeniu skokowym oraz zmierzonych wartości: czasu regulacji t_r , przeregulowania χ i uchybu ustalonego e_{ust} przy wymuszeniu skokowym wynika jednoznacznie, że najlepszymi parametrami charakteryzuje się regulator PID. Z zerowym uchybem, dobrym współczynnikiem przeregulowania wynoszącym 71% oraz najlepszym czasem regulacji 45,22s.

Regulator typu P posiada dobry czas regulacji 93,14, natomiast pojawia się przy nim względnie małym uchybem 0,019.

Regulator typu PI charakteryzuje się bardzo długim czasem regulacji wynoszącym 272,63s, i największym współczynnikiem przeregulowania 94%, oraz zerowym uchybem.