

台塑公司 麥寮正丁醇廠

目錄

- 1. 麥寮正丁醇廠製程說明
- 🧼 2. 改善動機
- 🔷 3. 解決方案
- ↓ 4. AI模型開發歷程
- 🔵 5. 各階段詳細說明
- 🥟 6. 效益說明
- 7. 結論及後續推動事項

1. 麥寮正丁醇廠製程說明

2. 改善動機

▶ 異構物分離塔是透過沸點差異分離正/異丁醛,目前使用6個單迴路 來控制分離後正丁醛與異丁醛的品質,不易找到最節能操作條件。

TIC:溫度控制器、FIC:流量控制器、LIC:液位控制器

2. 改善動機

> 本塔控制延遲時間長,動態反應極為緩慢,導致控制效果不佳。

3.1解決方案

► 結合Aspen模擬、AI品質模型進行高階控制,在符合品質目標前提下,實現自動控制與節能之目標。

比較Aspen模擬與現況操作的 差異,探索節能改善空間。

透過AI預測品質變化,作為 後續調整控制參考依據。

透過AI預測製程變化趨勢, 計算最佳操作策略,實現穩定 及節能的動態控制模式。

3.2蒸餾塔AI專案-開發手法比較

其他蒸餾塔AI專案 (以往手法) 麥寮正丁醇廠-異構物分離塔 (本案新手法)

Aspen 功能 模擬不同操作條件, 提供大量數據給AI分析。 比較現況與Aspen模擬差異點, 探索節能改善方向。

控制手法

間接控制:AI計算出最佳操作條件,人為判斷後再設定

直接控制:AI可於設定操作範 圍內,自動控制。

訓練數據

歷史數據(穩定)+ Aspen模擬數據

線上DCS控制器測試 收集數據

模型架構

品質預測模型 (深度神經網路 DNN) 品質預測模型 (迴歸分析 Ridge regression)

控制建議模型 (增強式學習)

自動控制模型 (AI高階控制器)

4.開發歷程

2018/11

2019/01

2019/02

正式上線 2019/08

持續調整

Start

——→ 測試

進程	第一階段	第二階段	第三階段	第四階段
項目	Aspen模擬 (前期評估)	AI品質模型	AI高階控制器	正式上線 實現最佳化控制
演算法	熱力學模型	Ridge演算法	FIR演算法	1. 節能效果: 塔底溫度
說明	1.應用Aspen軟體 模好與現外 的能與與不可 的能之之。 2.穩定性制度 出底 出底 出來 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的 的	1.選用製程變數, 預測塔底不絕數 濃度,使用調練 分析演算法訓練 模型。 2.模型驗證MAE 為 0. 0033%,達 模型設定目標 MAE<0. 005%。	收集每個控制 一個控制 一個控制 一個控制 一個控制 一個控制 一個控制 一個控制 一	哈底温度 106.5→105℃ 單位蒸汽用量 減少0.12噸/噸。 2.品質控制: 塔底不純物濃度 均符合管制標準 (<0.05%)。

MAE: 平均絕對誤差(Mean Absolute Error)

5.1第一階段:Aspen模擬

▶開發目的:應用Aspen軟體建立C130穩態模型,透過模擬分析模型與現況的差異,探索節能改善空間。

▶模擬結果-1:

C130塔底溫度目前控制在106.5℃,於相同條件下,Aspen模擬 結果顯示塔底不純物濃度較現況低,表示現有操作條件尚有 改善空間。

5.1第一階段:Aspen模擬

▶ 模擬結果-2:

當異丁醛出料量控制 0.72T/Hr以上, 塔底不純物 可控制在0.02%以下。

塔底不純物濃度 VS 異丁醛出料量

▶ 現況說明:

現有PID控制操作範圍介於 0.6~0.9T/Hr,尚有改善空間。 後續希望透過AI將其有效 控制在0.72T/Hr以上。

PID控制(現況)

PID: Proportional-Integral and Derivative

▶ 開發目標:

本案目的為在符合品質規範下達到節能優化,透過AI預測品質 數據,提供後續控制模型操作參考依據。

Stepl. 收集製程與品質檢驗數據

- (1)時間:2018年1月~ 2019年1月
- (2)筆數:630組數據(合計20,160筆)
- (3)資料自動擷取:

Step2.資料前處理

- > 資料自動過濾:
 - (1) 設定製程操作上下限為過濾條件,去除開車初期數據。
 - (2) 3倍標準差以外的數據,視為異常值,予以剔除。

5.2第二階段:AI品質模型

Step3.模型建立(演算法選定)

- 因濃度估算目標為連續型數值,選擇5種迴歸演算法進行建模。
- ▶ 經檢討後選擇11個製程變數進行模型訓練及驗證。

迴歸分析演算法	訓練(MAE,%)	驗證(MAE,%)
嶺迴歸(Ridge regression)	0.0024	0.0028
偏最小平方迴歸(PLS)	0.0025	0.0034
決策樹(Decision tree)	0.0027	0.0044
隨機森林(Random Forest)	0.0035	0.0037
梯度提升決策樹(XGBoost)	0.0060	0.0072

➤ Ridge演算法的訓練與驗證的MAE值較小,故選用Ridge做為模型的演算法。

MAE: 平均絕對誤差(Mean Absolute Error)

5.2第二階段:AI品質模型

Step3.模型建立 (Ridge權重係數)

項次	製程變數 (X_n)	權重(W _n)
1	塔中壓力	-0.00009
2	冷風扇控制溫度	-0.00023
3	塔頂迴流流量	-0.00136
4	塔側異丁醛出料量	-0.00164
5	混丁醛入料	+0.00086
6	S3蒸氣流量	-0.00002
7	#105塔板溫度	-0.00001
8	塔底溫度	-0.00021
9	塔底正丁醛出料量	+0.00379
10	塔底液位	+0.00057
11	塔底迴流量	+0.00078

$$\mathbf{Y}$$
(塔底不純物濃度) = $\sum_{n=1}^{n} w_n X_n + b$

- 1. 權重 (w_n) 正負號表示製程變數 (X_n) 與濃度的相關性
 - + 表示製程變數愈大,對應不純物濃度愈高
 - 表示製程變數愈大,對應不純物濃度愈低

2. 舉例:

以塔底溫度為例,溫度愈高,異丁醛越容易由 塔側分離,塔底不純物(異丁醛)濃度愈低。

Ridge模型演算結果:

11個製程變數均符合化工操作原理。

Step4.線上驗證

- ➤ 將Ridge模型部署上線,驗證時間2019/2/21~2019/4/18。
- ▶ 驗證結果:品質變化趨勢相近,MAE為0.0033%,符合目標 MAE(<0.005%)。</p>

5.3第三階段:AI高階控制器

► 將AI品質模型計算後的預測值寫入高階控制器,作為調整控制的參考依據。

高階控制器功能:

- 戶計算多變數間影響 程度及時間,可於 多個控制迴路, 找到最佳操作 條件。
- ▶預測延遲時間內變化趨勢,提供穩定控制方式。

5.3第三階段:計算最佳控制路徑

- > 以汽車駕駛為例,如何透過預測找出最佳控制路徑
 - (1)根據當前的狀態去預測多組操作輸入,獲得控制路徑之變化。
 - (2)計算各路徑整體誤差,誤差總和最小者為最佳路徑。

5.3第三階段:DCS控制測試(收集數據)

▶於DCS系統上調整操作參數,並收集製程參數的變化趨勢。

- (1)調整方式:在不影響製程品質及製程安全的操作範圍內,透過 線上調整來收集數據。
- (2)測試時間:2019/03/22~2019/04/26,每15秒1筆,合計282萬筆數據。

5.3第三階段:演算法介紹

➤ FIR(Finite Impulse Response)演算法:

讓AI學習操作參數(輸入)與製程反應(輸出)在動態時間序列的變化關係。

演算方程式 $y_t = 0x_t + 1x_{t-1} + 4x_{t-2} + 9x_{t-3} + 4x_{t-4} + 1x_{t-5} + 0x_{t-6}$ 假設操作參數(x)在各時間點均為(x)4,時間點(x)6,數程反應(x)6。

5.3第三階段:建立模型

>透過FIR演算法,建立多對多的動態模型矩陣。

5.3第三階段:計算最佳控制方式

> 如何透過動態模型找出最佳控制方式

計算目標函數(J)找到最佳設定值,每60秒重新估算一次,藉由不斷更新控制策略,朝向正確的方向,使用穩定、節能的方式控制。

5.4第四階段:正式上線-實現最佳化控制

➤ 正式上線前:設定AI可控範圍 基於製程安全前提,製造課長依據專業知識、know-how、 Aspen模擬結果及現場操作經驗,指示現場盤控人員設定各參數 控制上下限,AI僅能於範圍內自動調整控制。

AI高階控制器-操作範圍設定畫面

AI高階控制器狀態:Active 通訊狀態:正常						
製程參數			目前	變數切換	控制下限	控制上限
01	TC1306	C130#110溫度	88.95	ON	88.0	91.5
02	TC1305	C130#105溫度	91.57	ON	91.0	93.0
03	TC1300	C130塔底溫度	106.3	ON	106.2	108.5
04	FC1300	C130至C140出料量	29.89	ON	20.0	32.0
05	LC1310	C130塔底液位	61.24	ON	60.0	82.0
06	LV1321	V132液位	45.32	ON	25.0	65.0
07	NBA1300	塔底異丁醛濃度	0.034	ON	0.01	0.05

5.4第四階段:AI上線自動控制

➤ 2019/8/14上線測試,依據AI計算結果,同時對多個參數進行 微幅調整,讓製程在產量穩定狀況下,降低塔底迴流進而減少 蒸汽流量,朝向節能的方向調整。

5.4第四階段:測試結果

- ➤ AI上線控制後塔底溫度由106.5°C降至106.2°C。
- ▶單位蒸汽用量減少0.03噸/噸;塔底不純物降至0.008%,品質提升。

5.4第四階段:進階調整

- 利用品質餘裕空間,持續降低塔底溫度,進一步節省蒸汽用量。
- ▶ 調整方法:將塔底溫度操作下限下修至105.5°C,讓AI自動控制。
- ▶ 測試結果: 塔底溫度調降至105.5°C,單位蒸汽用量再減少0.05噸/噸,
 - 塔底不純物濃度為0.019%,仍小於管制目標0.05%。

5.4第四階段:品質提升原因

▶ 藉由AI高階控制器穩定控制異丁醛出料量,有助於降低塔底不純物濃度,提升品質。

5.4第四階段:第二次降溫測試

- ▶ 測試時間:2020/2/1~2020/2/28
- ▶ 塔底溫度操作下限由105.5°C下修至105°C,交由AI自動控制, 單位蒸汽用量由0.65降至0.61噸/噸,減少0.04噸/噸;塔底不純物濃度 符合管制目標。

5.4第四階段:近期控制狀態

▶ 數據範圍: 2020/4/15~2020/5/25

6.1效益說明

- ▶投資費用:7,265千元
 - a. Aspen軟體設計費用:735千元
 - b. AI品質預測模型:330千元
 - c. AI高階控制器: 6, 200千元
- >效益計算:

現況產能:30噸/小時

蒸汽用量由21.6噸/小時降至18噸/小時;單位蒸汽用量減少0.12噸/噸

- a. 節省蒸汽量:30噸/小時×0.12噸/噸×8,000小時/年=28,800噸/年
- b. 年效益: 28,800噸/年×726元/噸=20,909千元/年
- ▶回收年限: 0.35年

6.2 開發技術來源

項目	Aspen 化工模擬軟體	AI 品質預測模型	A 高階哲	
技術來源	美國Aspen (艾斯本) 技術公司	電子專案組 雲端運算專案組 資料科學	英維思有限公司 (Invensys Ltd.)	
開發工具	Aspen Plus	Python	SimSci APC	
整合開發部門	電子專案組-雲端運算專案組-資料科學			
開發時間	2個月	2個月	9個月	
開發費用	735千元	330千元	硬體 (含工時費用) 3,060千元	軟體 (含技師費用) 3,140千元
技術難易度	中	低	高	

[※] 硬體費用900千元,電子組工程師工時費用2,160千元。 軟體費用1,583千元,技師費用1,557千元

7. 結論及後續推動事項

- ➤ Aspen軟體應用方式: 以往是透過Aspen模擬不同操作條件,提供大量數據給AI分析, 本案以Aspen模擬進行前期評估,比較現況操作差異點, 探索節能改善空間。
- AI高階控制器是以系統面進行多變數間相關性分析,輔以 AI品質模型,計算出最佳設定值及控制方式,有效解決因 延遲時間控制不穩等問題,實現穩定及節能的動態控制模式。
- > 本案將持續精進,並推廣至其它類似精餾塔製程,擴大效益。

7. 結論及後續推動事項

▶ 將蒸餾塔專案平行展開至其他廠區,合計8案彙總如下表:

部門	單位	主題	應用技術	預完日
	麥寮 正丁醇廠	氫化段精餾塔(C150)操作最佳化	Aspen模擬 AI高階控制模組	2021/3
	麥寮 AE廠	共沸蒸餾塔(C402)操作優化改善	Aspen模擬 增強式學習	2020/12
台麗朗 事業部	林園 AE廠	BA區蒸餾塔(C906)操作最佳化	Aspen模擬 增強式學習	2021/3
	寧波 AE廠	BA區蒸餾塔(C802)操作最佳化	Aspen模擬 增強式學習	2021/3
	仁武 台麗朗廠	DMF蒸餾塔AI節能優化	Aspen模擬 深度神經網路(DNN)	2021/3
塑膠 事業部	仁武 VCM廠	C103重沸塔AI應用操作優化	Aspen模擬 深度神經網路(DNN)	2020/12
化學品 事業部	麥寮 C4廠	2-丁烯塔(C220)操作優化	Aspen模擬 AI高階控制模組	2020/9
	麥寮 ECH廠	成品純化區C410B/C420B精餾塔	Aspen模擬 機器學習	2020/12

報告完畢恭請派

