Homework No.9

Ruiqi Feng

December 31, 2022

1 Higher Dimensional Sphere

1.1 Problem Description

The interior of a d-dimensional hypersphere of unit radius is defined by the condition $x_1^2 + x_2^2 + ... + x_d^2 \le 1$. Write a program that finds the volume of a hypersphere using a Monte Carlo method. Test your program for d=2 and d=3 and then calculate the volume for d=4 and d=5, compare your results with the exact results.

1.2 Solution

In fact, we adopted the Hit-and-Miss method under the spirit of the Monte-Carlo approach, The intrgration is straightforward because the volume of a d-dimensional "hypercubic" can be calculated easily with

$$\int_{x_i \in \left[-\frac{a}{2}, \frac{a}{2}\right)} d^d x_i = a^d \tag{1}$$

where $i \in \{1, 2, ..., d \text{ and d is the number of dimension.}$

The volume of a hypersphere is therefore

$$\frac{n}{N}a^d \tag{2}$$

assuming there are N random number generated and \boldsymbol{n} of them has a norm less than \boldsymbol{a}

1.3 Output and Analysis

We first use the 3D and 2D cases to check the validity of our MC method. Sampling at 10^4 points, the volume is evaluated according to 2. We can get a theoretical result for spheres in dimensions. Just integrate in the domain where ||x|| < a and the integral is

$$V_n = \frac{\pi^{n/2} R^n}{\Gamma(1 + \frac{n}{2})} \tag{3}$$

where half factorial is defined as $(\frac{n}{2})! = \frac{n}{2} \cdot (\frac{n}{2} - 1) \dots \frac{1}{2} \sqrt{\pi}$ Our M-C results and the theoretical results are compared in the table below:

\overline{d}	V: MC	V: theory	relative error
2	3.1416	3.1416	2.5×10^{-6}
3	4.1752	4.1888	3.2×10^{-3}
4	4.8496	4.9348	1.7×10^{-2}
5	5.1200	5.2638	2.6×10^{-2}

It can be seen that the error increases as dimension increases. I further calculate more volumes and there is a maximum in the sphere volume at d=5, as is shown in 1. When the dimension is rather high, our method produces noticable error and I believe this can be relieved by using the sample mean method.

Figure 1: More hyperspheres, volume to dimension. When d larger than 10, the error is noticable.

1.4 Pseudocode

```
Algorithm 1 Volume of hypersphere

Input: dimension d
Output: volume of the hypersphere calculated by the Monte-Carlo method.

1: N \leftarrow 1 \times 10^4
2: n \leftarrow 0
3: for i in range(N) do
4: generate a random d-dimensional vector \vec{x}, each component distributed linearly in [-1/2, 1/2)
5: if ||\vec{x}|| < 1 then
6: n \leftarrow n + 1
7: end if
8: end for
Return: n/N
```

2 3D Classical Heisenburg Model