MATH 307

Assignment #1

Due Friday, January 21, 2022

For each problem, include the statement of the problem. Leave a blank line. At the beginning of the next line, write **Solution** or **Proof** – as appropriate.

- 1. Label the following statements as being true or false. Provide some justification from the text for your label.
 - (a) Every vector space contains a zero vector.
 - (b) A vector space may have more than one zero vector.
 - (c) In any vector space au = bu implies that a = b.
 - (d) In any vector space au = av implies that u = v.
 - (e) In $\mathcal{P}(\mathbf{F})$ only polynomials of the same degree may be added.
 - (f) If f and q are polynomials of degree n, then f + q is a polynomial of degree n.
 - (g) If f is a polynomial of degree n and c is a nonzero scalar, then cf is a polynomial of degree n.
 - (h) A nonzero element of \mathbf{F} may be considered to be an element of $\mathcal{P}(\mathbf{F})$ having degree zero.
 - (i) Two functions in \mathbf{F}^S are equal if and only if they have the same values at each element of S.
- 2. Let v_1, \ldots, v_4 be four vectors in a vector space V. Verify $(v_1 + v_2) + (v_3 + v_4) = [v_2 + (v_3 + v_1)] + v_4$. Use the definition, properties, and theorems on pp.12-15 to justify each step in the transitions from the LHS to the RHS.
- 3. Which vectors in \mathbb{R}^3 are linear combinations of (1,0,-1),(0,1,1),(1,1,1)?
- 4. Let $V = \mathbf{R}^2$ with new operations

$$(x,y) + (x_1, y_1) = (x + x_1, y + y_1)$$

 $c(x,y) = (cx, y)$

Is V a vector space? Justify.

5. Let $V = \mathbf{R}^2$ with *new* operations

$$(x,y) + (x_1, y_1) = (x + x_1, 0)$$

 $a(x,y) = (ax, 0)$

Is V a vector space? Justify.

6. Consider \mathbb{R}^n with new operations

$$v \boxplus w = v - w$$
$$a \cdot v = -av$$

Which of the parts of the definition of vector space are satisfied with these new operations?

- 7. Which subsets of $\mathcal{P}(\mathbf{R})$ form a vector space? Justify.
 - (a) All p(x) such that p(0) = 1.
 - (b) All p(x) such that p(0) = 0.
 - (c) All p(x) such that 2p(0) 3p(1) = 0.