Homework 1

1. Prove that $\mathbb{E}[\langle \mu, x^k \rangle^2] - (\mathbb{E}\langle \mu, x^k \rangle)^2 \to 0$ as $N \to \infty$.

As we did in the calculation of $\mathbb{E}\langle \mu, x^k \rangle$, we can rephrase $\mathbb{E}[\langle \mu, x^k \rangle^2] - (\mathbb{E}\langle \mu, x^k \rangle)^2$ as follows:

$$\begin{split} &\mathbb{E}\left[\langle\mu,x^{k}\rangle^{2}\right]-\left(\mathbb{E}\langle\mu,x^{k}\rangle\right)^{2} \\ &=\mathbb{E}\left[\left(\frac{1}{N}\sum_{j=1}^{N}\lambda_{j}^{k}\right)^{2}\right]-\left(\frac{1}{N}\mathbb{E}\sum_{j=1}^{N}\lambda_{j}^{k}\right)^{2} \\ &=\frac{1}{N^{2}}\left(\mathbb{E}\left[\left(\sum_{j=1}^{N}\lambda_{j}^{k}\right)^{2}\right]-\left(\mathbb{E}\sum_{j=1}^{N}\lambda_{j}^{k}\right)^{2}\right) \\ &=\frac{1}{N^{2}}\left(\mathbb{E}\left[\left(\operatorname{tr}H^{k}\right)^{2}\right]-\left(\mathbb{E}\left[\operatorname{tr}H^{k}\right]\right)^{2}\right) \\ &=\frac{1}{N^{2}}\left(\mathbb{E}\left[\sum_{i_{1},\ldots,i_{k}=1}^{N}\sum_{i'_{1},\ldots,i'_{k}=1}^{N}H_{i_{1},i_{2}}\cdots H_{i_{k},i_{1}}H_{i'_{1},i'_{2}}\cdots H_{i'_{k},i'_{1}}\right] \\ &-\left(\mathbb{E}\sum_{i_{1},\ldots,i_{k}=1}^{N}H_{i_{1},i_{2}}\cdots H_{i_{k},i_{1}}\right)^{2}\right) \\ &=\frac{1}{N^{2}}\sum_{\mathbf{i},\mathbf{i}'\in\{1,2,\ldots,N\}^{k}}\left(\mathbb{E}\left[T_{\mathbf{i}}T_{\mathbf{i}'}\right]-\mathbb{E}T_{\mathbf{i}}\,\mathbb{E}T_{\mathbf{i}'}\right) \end{split}$$

where $T_{(i_1,...,i_k)} = H_{i_1,i_2}H_{i_2,i_3}\cdots H_{i_k,i_1}$.

Like a way we defined a graph for each $\mathbf{i} \in \{1, \dots, N\}^k$, we may associate a pair $(\mathbf{i}, \mathbf{i}')$ to a graph as follows:

Let $\mathbf{i} = (i_1, \dots, i_k), \mathbf{i}' = (i'_1, \dots, i'_k) \in \{1, \dots, N\}^k$. Define the graph $G_{\mathbf{i}} = (V_{\mathbf{i}}, E_{\mathbf{i}})$ associated with \mathbf{i} where $V_{\mathbf{i}} = \{i_j : j \in \{1, \dots, k\}\}$ and $E_{\mathbf{i}} = \{\{i_j, i_{j+1}\} : j \in \{1, \dots, k\}\}$ with $i_{k+1} \coloneqq i_1$. Also, define the graph $G_{\mathbf{i}, \mathbf{i}'} = (V_{\mathbf{i}, \mathbf{i}'}, E_{\mathbf{i}, \mathbf{i}'})$ associated with $\{\mathbf{i}, \mathbf{i}'\}$ where $V_{\mathbf{i}, \mathbf{i}'} = V_{\mathbf{i}} \cup V_{\mathbf{i}'}$

and
$$E_{\mathbf{i},\mathbf{i}'} = E_{\mathbf{i}} \cup E_{\mathbf{i}'}$$
.

Traversing the graph $G_{\mathbf{i}}$ or $G_{\mathbf{i},\mathbf{i}'}$, let $N_{\mathbf{i}}$ or $N_{\mathbf{i},\mathbf{i}'}(e)$ ($e \in E_{\mathbf{i}}$ or $e \in E_{\mathbf{i},\mathbf{i}'}$) be the number of times the traverse passes e (in any direction), respectively.

With these definitions, we obtain

$$\begin{split} \mathbb{E}\left[T_{\mathbf{i}}T_{\mathbf{i}'}\right] &= \prod_{\substack{e \in E_{\mathbf{i},\mathbf{i}'} \\ e \text{ is a loop}}} \mathbb{E}\left[H_e^{N_{\mathbf{i},\mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i},\mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[H_e^{N_{\mathbf{i},\mathbf{i}'}(e)}\right] \\ &= \prod_{\substack{e \in E_{\mathbf{i},\mathbf{i}'} \\ e \text{ is a loop}}} \mathbb{E}\left[H_{11}^{N_{\mathbf{i},\mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i},\mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[H_{12}^{N_{\mathbf{i},\mathbf{i}'}(e)}\right], \end{split}$$

where $H_e = H_{ij}$ if $e = \{i, j\}$, due to the identical distribution conditions. Similarly,

$$\mathbb{E}\left[T_{\mathbf{i}}\right] = \prod_{\substack{e \in E_{\mathbf{i}} \\ e \text{ is a loop}}} \mathbb{E}\left[H_e^{N_{\mathbf{i}}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}} \\ e \text{ is a non-loop}}} \mathbb{E}\left[H_e^{N_{\mathbf{i}}(e)}\right]$$

$$= \prod_{\substack{e \in E_{\mathbf{i}} \\ e \text{ is a loop}}} \mathbb{E}\left[H_{11}^{N_{\mathbf{i}}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}} \\ e \text{ is a non-loop}}} \mathbb{E}\left[H_{12}^{N_{\mathbf{i}}(e)}\right].$$

Because $\mathbb{E}H_{11} = \mathbb{E}H_{12} = 0$, unless $N_{\mathbf{i},\mathbf{i}'}(e) = N_{\mathbf{i}}(e) + N_{\mathbf{i}'}(e) \geq 2$ for all $e \in E_{\mathbf{i},\mathbf{i}'}$, we have $\mathbb{E}\left[T_{\mathbf{i}}T_{\mathbf{i}'}\right] - \mathbb{E}T_{\mathbf{i}}\mathbb{E}T_{\mathbf{i}'} = 0$. Also when $E_{\mathbf{i}} \cap E_{\mathbf{i}'} = \emptyset$, we have $\mathbb{E}\left[T_{\mathbf{i}}T_{\mathbf{i}'}\right] = \mathbb{E}\left[T_{\mathbf{i}}\right]\mathbb{E}\left[T_{\mathbf{i}'}\right]$ due to the independence conditions. Moreover, when there is a bijection on $\{1,\ldots,N\}$ which maps \mathbf{i} to \mathbf{j} and \mathbf{i}' to \mathbf{j}' , then we have

$$\mathbb{E}\left[T_{\mathbf{i}}T_{\mathbf{i'}}\right] - \mathbb{E}T_{\mathbf{i}}\,\mathbb{E}T_{\mathbf{i'}} = \mathbb{E}\left[T_{\mathbf{j}}T_{\mathbf{j'}}\right] - \mathbb{E}T_{\mathbf{j}}\,\mathbb{E}T_{\mathbf{j'}}$$

due to the identical distribution (by applying the bijection on the product). So, this defines an equivalence relation on $(\{1,\ldots,N\}^k)^2$.

Now, we will count those equivalence classes (of $(\mathbf{i}, \mathbf{i}')$'s) by $|V_{\mathbf{i}, \mathbf{i}'}| (\leq 2k)$. Let us \mathcal{G}_v denote the set of all representatives for equivalence classes of $a_{\mathbf{i}, \mathbf{i}'}$'s (defined by the bijection on $\{1, \ldots, N\}$) with $|V_{\mathbf{i}, \mathbf{i}'}| = v$, $N_{\mathbf{i}, \mathbf{i}'}(e) \geq 2$ for every $e \in E_{\mathbf{i}, \mathbf{i}'}$, and $E_{\mathbf{i}} \cap E_{\mathbf{i}'} \neq \emptyset$. Note that the cardinality of an equivalence class is exactly $v!\binom{N}{v}$, if N is sufficiently large, that is, $N \geq v$.

Using this observation, we have (when $N \geq 2k$)

$$\begin{split} &\mathbb{E}\left[\langle \mu, x^k \rangle^2\right] - \left(\mathbb{E}\langle \mu, x^k \rangle\right)^2 \\ &= \frac{1}{N^2} \sum_{\mathbf{i}, \mathbf{i}' \in \{1, 2, \dots, N\}^k} \left(\mathbb{E}\left[T_{\mathbf{i}} T_{\mathbf{i}'}\right] - \mathbb{E}T_{\mathbf{i}} \mathbb{E}T_{\mathbf{i}'}\right) \\ &= \frac{1}{N^2} \sum_{\mathbf{i}, \mathbf{i}' \in \{1, 2, \dots, N\}^k} \left(\mathbb{E}\left[T_{\mathbf{i}} T_{\mathbf{i}'}\right] - \mathbb{E}T_{\mathbf{i}} \mathbb{E}T_{\mathbf{i}'}\right) \\ &= \frac{1}{N^2} \sum_{v=1}^{2k} v! \binom{N}{v} \sum_{(\mathbf{i}, \mathbf{i}') \in \mathcal{G}_v} \left(\mathbb{E}\left[T_{\mathbf{i}} T_{\mathbf{i}'}\right] - \mathbb{E}T_{\mathbf{i}} \mathbb{E}T_{\mathbf{i}'}\right) \\ &= \frac{1}{N^2} \sum_{v=1}^{2k} v! \binom{N}{v} \sum_{(\mathbf{i}, \mathbf{i}') \in \mathcal{G}_v} \left(\prod_{\substack{e \in E_{\mathbf{i}, \mathbf{i}'} \\ e \text{ is a loop}}} \mathbb{E}\left[H_{11}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}, \mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[H_{12}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}, \mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[H_{12}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}, \mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[H_{12}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}, \mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[\hat{H}_{12}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}, \mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[\hat{H}_{12}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}, \mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[\hat{H}_{12}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[\hat{H}_{12}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[\hat{H}_{12}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[\hat{H}_{12}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \cdot \prod_{\substack{e \in E_{\mathbf{i}'} \\ e \text{ is a non-loop}}} \mathbb{E}\left[\hat{H}_{12}^{N_{\mathbf{i}, \mathbf{i}'}(e)}\right] \right)$$

where $\hat{H}_{ij} := N^{-1/2}H_{ij} \sim \mathcal{N}(0,1)$. Since any k-th moment of a standard normal random variable are finitely well-defined, $\sum_{(\mathbf{i},\mathbf{i}')\in\mathcal{G}_v}(\cdots)$ in the last line of the equation above does not depend on N. Denoting those terms (independent of N) as C_v , we have

$$\mathbb{E}\left[\langle \mu, x^k \rangle^2\right] - \left(\mathbb{E}\langle \mu, x^k \rangle\right)^2 = \sum_{v=1}^{2k} C_v \cdot v! \cdot N^{-(k+2)} \binom{N}{v}.$$

Therefore, it suffices to prove that $\mathcal{G}_v = \emptyset$ so that $C_v = 0$ for $v \ge k+2$, since other (lower degree) terms disappears as $N \to \infty$, since $\binom{N}{v} \sim N^v$.

Suppose $(\mathbf{i}, \mathbf{i}') \in \mathcal{G}_v$. Since $E_{\mathbf{i}} \cap E_{\mathbf{i}'} \neq \emptyset$, $G_{\mathbf{i}, \mathbf{i}'}$ is connected, with v vertices and $\leq k$ edges, as every edge should be passed more than once during traverse. Since $v = |V(G_{\mathbf{i}, \mathbf{i}})| \leq |E(G_{\mathbf{i}, \mathbf{i}})| + 1 \leq k + 1$ for a connected graph $G_{\mathbf{i}, \mathbf{i}}$, we have $\mathcal{G}_v = \emptyset$ when $v \geq k + 2$. This completes the proof. \square