2. kontrolná písomka z matematickej logiky (10. 5. 2012)

Príklad 1.

Nájdite riešenie sylogizmov pomocou prirodzenej dedukcie (ak je potrebné, uveďte aj nutné vedľajšie podmienky pre existenciu riešenia)

- (a) každý S je V každý I je V ?
- (b) žiadny I nie je S <u>každý V je S</u>
- (c) každý J je I každý J je S

Príklad 2.

Pomocou prirodzenej dedukcie dokážte

(a)
$$\vdash p \land q \Rightarrow p \lor q$$

(b)
$$\{p \Rightarrow q, p \Rightarrow r\} \vdash (p \Rightarrow (q \land r))$$

Príklad 3.

Pomocou tabul'kovej metódy zistite, či formula Lukasiewiczovej 3-hodnotovej logiky $(p\Rightarrow q)\Rightarrow (\neg q\Rightarrow \neg p)$ je tautológia.

Príklad 4.

Pomocou sémantického tabla zistite, či formula fuzzy logiky je tautológia: $p \Rightarrow (\neg p \Rightarrow q)$.

Príklad 5.

Pomocou sémantického tabla zistite, či formula predikátovej logiky

$$\varphi = (\forall x) (P(x) \Rightarrow Q(x)) \Rightarrow ((\forall x) P(x) \Rightarrow (\forall x) Q(x))$$

je tautológia.

Príklad 6 (prémiový).

Dokáže priamo z definície, že negácie kvantifikátorov sú určené formulami

$$\neg(\forall x) p(x) \equiv (\exists x) \neg p(x)$$

$$\neg(\exists x) p(x) \equiv (\forall x) \neg p(x)$$

Poznámka: Prémiový 6. príklad sa nemusí počítať, poskytuje určitú šancu tým, čo nevyriešili ostatné príklady. **Každý príklad je hodnotený 5 bodmi.**

Riešenie

Príklad 1.

Nájdite riešenie sylogizmov pomocou prirodzenej dedukcie (ak je potrebné, uveďte aj nutné vedl'ajšie podmienky pre existenciu riešenia)

$$\forall x [A(x) \Rightarrow V(x)]$$
$$\forall x [I(x) \Rightarrow V(x)]$$

nie je čo dokazovať riešenie: neexistuje

1
$$\forall x \lceil I(x) \Rightarrow \neg S(x) \rceil$$

$$2 \quad \forall x \big[V(x) \Rightarrow S(x) \big]$$

- 3 $I(t) \Rightarrow \neg S(t)$ odstránenie $\forall v(1)$
- 4 $V(t) \Rightarrow S(t)$ odstránenie \forall v (2)
- $S(t) \Rightarrow \neg I(t)$ inverzia implikácie v (3)
- $V(t) \Rightarrow \neg I(t)$ hypotetický sylogizmus na (4) a (5)
- $\forall x (V(x) \Rightarrow \neg I(x))$ zavedenie $\forall v (6)$, riešenie

riešenie: žiadny V nie je I.

1
$$J(a)$$
 dodatočný predpoklad

$$2 \quad \forall x \lceil J(x) \Rightarrow I(x) \rceil$$

$$3 \quad \forall x \big[J(x) \Rightarrow S(x) \big]$$

4
$$J(a) \Rightarrow I(a)$$
 odstránenie \forall v (2)

4
$$J(a) \Rightarrow I(a)$$
 odstránenie \forall v (2)
5 $J(a) \Rightarrow S(a)$ odstránenie \forall v (3)
6 $I(a)$ modus ponens na (1

6
$$I(a)$$
 modus ponens na (1) a (4)

7
$$S(a)$$
 modus ponens na (1) a (5)

8
$$I(a) \wedge S(a)$$
 introdukcia \wedge na (6) a (7)

9
$$\exists x (I(x) \land S(x))$$
 zavedenie $\exists v (8)$

riešenie: niektorý I je S (za predpokladu, že existuje aspoň jeden objekt s vlastnosťou J).

Príklad 2.

Pomocou prirodzenej dedukcie dokážte

(a)
$$\varphi = p \land q \Rightarrow p \lor q$$

1	$p \wedge q$	akt. pomocného predpokladu
2 3 4 5	$ p q p \lor q p \land q \Rightarrow p \lor q $	eliminácia konjunjkcie na 1 eliminácia konjunkcie na 1 introdukcia disjunkcie na 2 deaktivácia pomocného predpokladu

(b)
$$\{p \Rightarrow q, p \Rightarrow r\} \vdash (p \Rightarrow (q \land r))$$

1 2 3	$p \Rightarrow q$ $p \Rightarrow r$ p	 predpoklad predpoklad akt. pomocného predpokladu
4 5 6	q r $q \wedge r$ $p \Rightarrow q \wedge r$	aplikácia m.p. na 1 a 3 aplikácia m.p. na 2 a 3 introdukcia konjunkcie na 4 a 5 deaktivácia pomocného predpokladu

Príklad 3.

Pomocou tabuľkovej metódy zistite, či formula je tautológia Lukasiewiczovej 3-hodnotovej logiky.

$$(\phi \Rightarrow \psi) \Rightarrow (\neg \psi \Rightarrow \neg \phi)$$

φ	Ψ	φ⇒ψ	¬ψ	¬φ	−ψ⇒−φ	$(\varphi \Rightarrow \psi) \Rightarrow (\neg \psi \Rightarrow \neg \varphi)$
0	0	1	1	1	1	1
0	1/2	1	1/2	1	1	1
0	1	1	0	1	1	1
1/2	0	1/2	1	1/2	1/2	1
1/2	1/2	1	1/2	1/2	1	1
1/2	1	1	0	1/2	1	1
1	0	0	1	0	0	1
1	1/2	1/2	1/2	0	1/2	1
1	1	1	0	0	1	1

Formula je tautológia.

Príklad 4. Pomocou sémantického tabla zistite, či formula fuzzy logiky je tautológia: $p \Rightarrow (\neg p \Rightarrow q)$.

Riešenie:

Formula je tautológia.

Príklad 5. Pomocou sémantického tabla zistite, či formula predikátovej logiky je tautológia

$$\varphi = (\forall x) (P(x) \Rightarrow Q(x)) \Rightarrow ((\forall x) P(x) \Rightarrow (\forall x) Q(x))$$

Riešenie: Negácia formuly φ má tvar

$$\neg \varphi = (\forall x) (P(x) \Rightarrow Q(x)) \land (\forall x) P(x) \land (\exists x) \neg Q(x)$$

sémantické tablo k tejto formule má tvar

to form the twint
$$(\forall x)(P(x)\Rightarrow Q(x)) \land (\forall x)P(x) \land (\exists x)\neg Q(x)$$

$$(\forall x)(P(x)\Rightarrow Q(x))$$

$$(\forall x)P(x)$$

$$(\exists x)\neg Q(x)$$

$$P(t)\Rightarrow Q(t) \quad \forall t\in U$$

$$\neg P(t) \quad \forall t'\in U$$

$$\neg Q(a) \quad \exists a\in U$$

$$t=a$$

$$\neg P(t) \quad Q(t) \quad x$$

Sémantické tablo je uzavreté, preto formula φ je tautológia.

Príklad 6 (premiový).

Dokáže priamo z definície, že negácie kvantifikátorov sú určené formulami

$$\neg(\forall x) p(x) \equiv (\exists x) \neg p(x), \ \neg(\exists x) p(x) \equiv (\forall x) \neg p(x)$$

Riešenie: Kvantifikátory sú definované takto

$$(\forall x) p(x) \equiv_{def} \bigwedge_{x \in U} p(x) \equiv p(a) \land p(b) \land \dots \land p(u) \land \dots$$

$$(\exists x) p(x) \equiv_{def} \bigvee_{x \in U} p(x) \equiv p(a) \lor p(b) \lor \dots \lor p(u) \lor \dots$$

Použitím De Morganových zákonov pre konjukcia/disjunkciu negácie týchto formúl dostaneme

$$\neg(\forall x) p(x) \equiv_{def} \bigvee_{x \in U} \neg p(x) \equiv \neg p(a) \lor \neg p(b) \lor \dots \lor \neg p(u) \neg \dots \equiv (\exists x) \neg p(x)$$

$$\neg(\exists x) p(x) \equiv_{def} \bigwedge_{x \in U} \neg p(x) \equiv \neg p(a) \land \neg p(b) \land \dots \land \neg p(u) \neg \dots \equiv (\forall x) \neg p(x)$$

QED.