1988 年全国硕士研究生招生考试试题

(试卷 Ⅲ)

一、填空题(本题共5小题,每小题4分,满分20分)

(1) 设
$$f(x) = \begin{cases} 2x + a, & x \leq 0, \\ e^x(\sin x + \cos x), & x > 0 \end{cases}$$
 在 $(-\infty, +\infty)$ 内连续,则 $a =$ _____.

(2)
$$\partial f(t) = \lim_{x \to \infty} t \left(1 + \frac{1}{x} \right)^{2tx}, \mathcal{M} f'(t) = \underline{\qquad}.$$

(3)
$$\partial f(x)$$
 连续, $\iint_0^{x^3-1} f(t) dt = x, \iint_0^{x^3-1} f(7) = \underline{\qquad}$.

$$(4) \lim_{x \to 0^{+}} \left(\frac{1}{\sqrt{x}}\right)^{\tan x} = \underline{\hspace{1cm}}.$$

$$(5) \int_0^4 e^{\sqrt{x}} dx = \underline{\qquad}.$$

二、选择题(本题共5小题,每小题4分,满分20分)

(1)
$$f(x) = \frac{1}{3}x^3 + \frac{1}{2}x^2 + 6x + 1$$
 的图形在点(0,1) 处的切线与 x 轴交点的坐标是()

$$(A) \left(-\frac{1}{6},0\right).$$

$$(B)(-1,0).$$

$$(C)\left(\frac{1}{6},0\right)$$

(2) 若
$$f(x)$$
 与 $g(x)$ 在($-\infty$, $+\infty$) 上皆可导,且 $f(x)$ < $g(x)$,则必有()

$$(A)f(-x) > g(-x).$$

$$(B)f'(x) < g'(x).$$

$$(C) \lim_{x \to x_0} f(x) < \lim_{x \to x_0} g(x).$$

$$(D) \int_0^x f(t) dt < \int_0^x g(t) dt.$$

(3) 若函数
$$y = f(x)$$
, 有 $f'(x_0) = \frac{1}{2}$,则当 $\Delta x \rightarrow 0$ 时,该函数在 $x = x_0$ 处的微分 dy 是()

(A) 与 Δx 等价的无穷小.

(B) 与 Δx 同阶的无穷小.

(C) 比 Δx 低阶的无穷小.

(D) 比 Δx 高阶的无穷小.

(4) 由曲线
$$y = \sin^{\frac{3}{2}} x$$
 (0 $\leq x \leq \pi$) 与 x 轴围成的平面图形绕 x 轴旋转而成的旋转体的体积为(

 $(A) \frac{4}{3}$

(B)
$$\frac{4}{3}\pi$$
.

$$(C) \frac{2}{3} \pi^2$$
.

(D)
$$\frac{2}{3}\pi$$
.

(5) 设函数
$$y = f(x)$$
 是微分方程 $y'' - 2y' + 4y = 0$ 的一个解,且 $f(x_0) > 0$, $f'(x_0) = 0$,则 $f(x)$ 在点 x_0 处(

(A) 有极大值.

(B) 有极小值.

(C) 某邻域内单调增加.

(D) 某邻域内单调减少.

历年考研数学真题解析及复习思路(数学二)

三、(本题共3小题,每小题5分,满分15分)

(1) 已知
$$f(x) = e^{x^2}$$
, $f[\varphi(x)] = 1 - x$ 且 $\varphi(x) \ge 0$, 求 $\varphi(x)$ 并写出它的定义域.

(2) 巳知
$$y = 1 + xe^{xy}$$
,求 $y' \Big|_{x=0}$, $y'' \Big|_{x=0}$.

(3) 求微分方程
$$y' + \frac{1}{x}y = \frac{1}{x(x^2 + 1)}$$
 的通解(一般解).

四、(本题满分12分)

作函数 $y = \frac{6}{x^2 - 2x + 4}$ 的图形,并填写下表.

单调增加区间	
单调减少区间	
极值点	
极值	
凹(U) 区间	
凸(∩)区间	
拐点	
渐近线	

五、(本题满分8分)

将长为 a 的一段铁丝截成两段,一段围成正方形,另一段围成圆形,问这两段铁丝各长为多少时,正方形与圆形的面积之和为最小?

六、(本题满分10分)

设函数 y = y(x) 满足微分方程 $y'' - 3y' + 2y = 2e^x$,且其图形在点(0,1) 处的切线与曲线 $y = x^2 - x + 1$ 在该点处的切线重合,求函数 y = y(x).

七、(本题满分7分)

设
$$x \ge -1$$
,求 $\int_{-1}^{x} (1 - |t|) dt$.

八、(本题满分8分)

设 f(x) 在 $(-\infty, +\infty)$ 上有连续导数,且 $m \leq f(x) \leq M$.

(1)
$$\Re \lim_{a\to 0^+} \frac{1}{4a^2} \int_{-a}^a [f(t+a) - f(t-a)] dt;$$

(2) 证明:
$$\left| \frac{1}{2a} \int_{-a}^{a} f(t) dt - f(x) \right| \le M - m(a > 0).$$