Министерство образования Республики Беларусь Учреждение образования «Гомельский государственный технический университет имени П.О. Сухого»

Кафедра «Физика и электротехника»

Электромеханика

Лабораторная работа № 4 «Асинхронные электродвигатели»

Выполнил:

студент группы ЭС-31

Ляховский И.Г.

Принял доцент

Козлов А.В.

Цель работы:

- изучить устройство и принцип действия асинхронных двигателей различного назначения;
- ознакомиться с системой условных обозначений и разметкой выводов статора и ротора;
- освоить методику проверки разметки выводов и методику испытания трёхфазных асинхронных электродвигателей с короткозамкнутым ротором под нагрузкой;
- приобрести навыки запуска и реверсирования асинхронного трёхфазного двигателя с короткозамкнутым ротором.

Задание на эксперимент

Исследовать работу АД под нагрузкой. Для этого следует:

- -собрать схему рис. 10.9a с применением измерительного комплекта K505, либо набора приборов (по указанию преподавателя);
- собрать цепь питания электромагнитного тормоза рис. 10.10a, либо схему регулировки момента нагрузки на основе генератора постоянного тока рис. 10.10b и установить момент M=0 (ключ K_{π} разомкнут);
- ЛАТр установить в положение минимума $U_{\rm вых}$, либо $R_{\rm H}$ в цепи якоря установить на максимальное сопротивление и, зашунтировав перемычками токовые цепи амперметра и ваттметра в цепи статора, произвести запуск АД;
- убрать перемычки и снять зависимость показаний измерительных приборов от момента M на валу, регулируя величину момента M либо реостатом M_н. Число оборотов определять с помощью тахометра. Данные занести в таблицу M

Рис. 10.9. Схема включения статорных обмоток АД при его лабораторном испытании под нагрузкой

Рис. 10.10. Цепь регулировки момента М на валу АД

Таблица 1

№	Измерение					Вычисления				
Измерено	I_{Φ} ,	U_{Φ} ,	P_{Φ} ,	n2,	M,	cos φ1	P_1 ,	P_2 ,	η	S
	À	B	Вт	об/мин	Н/м		Вт	Вт		
1	1,6	133	35	1494	0	0,16	105	0	0	0,004
2	1,7	133	80	1485	1	0,35	240	155,49	0,648	0,01
3	1,8	133	120	1477	2	0,5	360	309,32	0,859	0,015
4	2,1	132	180	1463	3	0,65	540	459,58	0,895	0,025
5	2,4	131	225	1450	4	0,72	675	607,33	0,905	0,033
6	2,7	130	273	1437	5	0,78	819	752,36	0,909	0,042
7	3,2	129	330	1419	6	0,79	990	891,52	0,901	0,054
8	3,65	128	385	1401	7	0,82	1155	1026,91	0,889	0,066
9	4,3	127	455	1372	8	0,83	1365	1149,32	0,895	0,085

$$P_2 = \frac{M \cdot n_2}{9550}, \text{кВт}$$

где n_2 - измеряемая тахогенератором частота вращения ротора, об/мин.

В качестве регулируемой нагрузки может быть использован также генератор постоянного тока, сопряженный с валом ротора испытуемого ТАД. При этом в якорной цепи генератора включается последовательно амперметр с регулировочным реостатом. Шкала амперметра может быть отградуирована в единицах тормозного момента, т.е. в Н·м.

Коэффициент мощности АД определяют по формуле

$$\cos \varphi = \frac{P_{\Phi}}{U_{\Phi} \cdot I_{\Phi}} = \frac{P_1}{\sqrt{3} \cdot U_{\pi} \cdot I_{\pi}},$$

а коэффициент полезного действия

$$\eta = \frac{P_2}{P_1}.$$

$$P_1 = 3P_{\phi}$$
 , $S = 1 - \frac{n_2}{n_1}$.

Построим графики зависимости η , n2, S, M, I_{Φ} , $\cos \varphi 1$ от P_2

График зависимости η от P_2

График зависимости n2 от P_2

График зависимости S от P_2

График зависимости М от P_2

График зависимости I_{Φ} от P_2

График зависимости $\cos \varphi 1$ от P_2

Вывод: в ходе данной лабораторной работы мы освоили методику проверки разметки выводов и методику испытания трёхфазных асинхронных электродвигателей с короткозамкнутым ротором под нагрузкой, приобрели навыки запуска и реверсирования асинхронного трёхфазного двигателя с короткозамкнутым ротором, а также сняли значения приведенных нам величин и построили график зависимости $\eta = f(P_2)$.