- 28.) a.) Let $u \in \mathbb{R}$ be an upper bound of S, thus $u \geq x$ for all $x \in S$, thus $-u \leq -x$ for all $x \in S$, thus $-u \leq y$ for all $y \in -S$, thus -u is a lower bound of -S, thus -S is bounded below. Q.E.D.
 - b.) Let $u = \sup(S)$. Since u is an upper bound of S, -u is a lower bound of -S. For the sake of establishing a contradiction, suppose there exists $v \in \mathbb{R}$ such that -u < v and v is a lower bound of -S, thus u > -v. Since v is a lower bound of -S, $v \le y$ for all $y \in -S$, thus $-v \ge -y$ for all $y \in -S$, thus $-v \ge x$ for all $x \in S$, thus -v is an upper bound of S, but since u > -v, $u \ne \sup(S) \Rightarrow \leftarrow$, thus $-\sup(S) = -u = \inf(-S)$. Q.E.D.
- 30.) a.) For unbounded sets, infinite suprema and infima make sense, as for all $x \in \mathbb{R}$, $-\infty < x < \infty$. In addition, there exists no $y \in \mathbb{R}$ such that $y < -\infty$ or $y > \infty$, thus $\sup(S) = \infty$ and $\inf(S) = -\infty$.
 - b.) ***
- 33.) Let $x, y \in \mathbb{R}$, and consider |x|:

$$|x| = |x - y + y| \le |x - y| + |y|$$

$$\implies |x| \le |x - y| + |y|$$

$$\implies |x| - |y| \le |x - y|$$

$$\implies (|x| - |y|) - (|x| - |y|) - |x - y| \le |x| - |y| \le |x - y|$$

$$\implies 0 - |x - y| = -|x - y| \le |x| - |y| \le |x - y|$$

$$\implies |x| - |y| \le |x - y|$$

Thus the inequality holds. Q.E.D.

- 36.) When learning the various integration techniques taught in calculus 2, I noticed that some of them involved manipulating the dx term. I initially found this confusing, as I though that $\frac{d}{dx}$ was a single operator that could not be separated. I later found out that this was not the case, and that it can often be treated just like a fraction. What helped me to realize this was when I watched a video series that explained calculus in a more intuitive, less purely algebraic way. In this context, dx being a separate variable simply made sense.
- 38.) Let $u = \sup(S)$, thus $u \ge x$ for all $x \in S$. For the sake of establishing a contradiction, suppose $u \notin S$, then for some $\epsilon > 0$, $u = x + \epsilon$ for some $x \in S$. Consider $x + \frac{\epsilon}{2}$. Since $\epsilon > 0$, $\frac{\epsilon}{2} > 0$,
- 39.) a.) A sequence is defined as a function x(n) such that $x: \mathbb{N} \to \mathbb{R}$.

b.) The sequence $\{x_n\}_{n=1}^{\infty}$ converges to $L \in \mathbb{R}$ if and only if

$$\forall \epsilon > 0 : \exists k \in \mathbb{N} : n \ge k \implies |x_n - L| < \epsilon$$

- 40.) awd
- 41.) awd
- 42.) We can simplify the fraction to $\frac{7}{25n-10}$.
- 43.) a.) $\lim_{n \to \infty} \frac{1}{10n} = 10$
 - b.) $\lim_{n\to\infty} \sin n$ diverges
 - c.) Suppose $x_n \to 15$ and $x_n \to -77$. Since $x_n \to 15$, x_n gets arbitrarily close to 15. Also, since $x_n \to -77$, x_n gets arbitrarily close to -77. However, as x_n gets closer to 15, x_n moves farther from -77, and vice versa, thus x_n cannot get arbitrarily close to both, thus x_n cannot converge to both.
- 44.) a.) Let $\{x_n\}_{n=1}^{\infty}$ be a sequence such that $x_n \to L$, then by definition for all n > k for some $k \in \mathbb{N}$, $|x_n L| < \epsilon$ for some $\epsilon > 0$. By the reverse triangle inequality, we know that $\Big||x_n| |L|\Big| < |x_n L| < \epsilon$. Let $\epsilon_1 = |x_n L|$, thus $\Big||x_n| |L|\Big| < \epsilon_1$ for some $\epsilon_1 > 0$ given n > k, thus $|x_n| \to |L|$. Q.E.D.
 - b.) Consider the sequence $\{x_n\}_{n=1}^{\infty}$ such that $x_n =$