NAME: SAI PRANAV USN: 1BM20CS138

MACHINE LEARNING LAB OBSERVATION

Date: 1-04-2023

Lab 1: Exploring Datasets

IRIS DATASET:

- Features in the Iris dataset:
 - 1. sepal length in cm
 - 2. sepal width in cm
 - 3. petal length in cm
 - 4. petal width in cm
- Target classes to predict:
 - 1. Iris Setosa
 - 2. Iris Versicolour
 - 3. Iris Virginica

```
In [8]: from sklearn.datasets import load_iris
           iris=load_iris()
 In [9]: print(iris)
           {'data': array([[5.1, 3.5, 1.4, 0.2],
                  [4.9, 3., 1.4, 0.2],
[4.7, 3.2, 1.3, 0.2],
                  [4.6, 3.1, 1.5, 0.2],
[5., 3.6, 1.4, 0.2],
                  [5.4, 3.9, 1.7, 0.4],
                  [4.6, 3.4, 1.4, 0.3],
                  [5., 3.4, 1.5, 0.2],
                  [4.4, 2.9, 1.4, 0.2],
                  [4.9, 3.1, 1.5, 0.1],
                  [5.4, 3.7, 1.5, 0.2],
                  [4.8, 3.4, 1.6, 0.2],
                  [4.8, 3., 1.4, 0.1],
                  [4.3, 3., 1.1, 0.1],
                  [5.8, 4., 1.2, 0.2],
                  [5.7, 4.4, 1.5, 0.4],
                  [5.4, 3.9, 1.3, 0.4],
                  [5.1, 3.5, 1.4, 0.3],
                  [5.7, 3.8, 1.7, 0.3],
 In [5]: type(iris)
Out[5]: function
In [12]: iris.keys()
Out[12]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename', 'data_module'])
In [13]: iris
                  [4.7, 3.2, 1.6, 0.2],
                  [4.8, 3.1, 1.6, 0.2],
                  [5.4, 3.4, 1.5, 0.4],
                  [5.2, 4.1, 1.5, 0.1],
                  [5.5, 4.2, 1.4, 0.2],
                  [4.9, 3.1, 1.5, 0.2],
                  [5., 3.2, 1.2, 0.2],
                  [5.5, 3.5, 1.3, 0.2],
                  [4.9, 3.6, 1.4, 0.1],
                  [4.4, 3., 1.3, 0.2],
                  [5.1, 3.4, 1.5, 0.2],
                  [5. , 3.5, 1.3, 0.3],
                  [4.5, 2.3, 1.3, 0.3],
                  [4.4, 3.2, 1.3, 0.2],
                  [5., 3.5, 1.6, 0.6],
                  [5.1, 3.8, 1.9, 0.4],
                  [4.8, 3., 1.4, 0.3],
[5.1, 3.8, 1.6, 0.2],
```

```
In [17]: print(iris['target_names'])
          ['setosa' 'versicolor' 'virginica']
In [20]: n_samples,n_features=iris.data.shape
         print("no.of samples:",n_samples)
print("no.of features:",n_features)
          no.of samples: 150
         no.of features: 4
In [28]: iris.data[[12,26,89,114]]
Out[28]: array([[4.8, 3. , 1.4, 0.1],
                 [5., 3.4, 1.6, 0.4],
                 [5.5, 2.5, 4., 1.3],
                 [5.8, 2.8, 5.1, 2.4]])
In [29]: print(iris.data.shape)
          (150, 4)
In [31]: print(iris.target.shape)
          (150,)
In [32]: import numpy as np
         np.bincount(iris.target)
```

Scattered graph for samples vs features.

```
In [32]: import numpy as np
         np.bincount(iris.target)
Out[32]: array([50, 50, 50], dtype=int64)
In [42]: import matplotlib.pyplot as plt
         plt.scatter(n_samples,n_features)
Out[42]: <matplotlib.collections.PathCollection at 0x1d1c8c45550>
           4.20
           4.15
           4.10
           4.05
           4.00
           3.95
           3.90
           3.85
           3.80
                                       148
               142
                       144
                               146
                                               150
                                                       152
                                                              154
                                                                      156
                                                                              158
```

Scattered graph: with first two features (septal width vs septal length) The three colors represents three different classes respectively.

```
4.0 -

(E) 3.5 -

4.0 -

2.5 -

2.0 -

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 sepal length (cm)
```

WINE DATASET:

```
In [51]: from sklearn.datasets import load_wine
          wine=load_wine()
 In [52]: print(wine)
          {'data': array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
                  1.065e+03],
                 [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
                  1.050e+03],
                 [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
In [57]: wine.data
Out[57]: array([[1.423e+01, 1.710e+00, 2.430e+00, ..., 1.040e+00, 3.920e+00,
                 1.065e+03],
                 [1.320e+01, 1.780e+00, 2.140e+00, ..., 1.050e+00, 3.400e+00,
                  1.050e+03],
                 [1.316e+01, 2.360e+00, 2.670e+00, ..., 1.030e+00, 3.170e+00,
                 1.185e+03],
                 [1.327e+01, 4.280e+00, 2.260e+00, ..., 5.900e-01, 1.560e+00,
                 8.350e+02],
                 [1.317e+01, 2.590e+00, 2.370e+00, ..., 6.000e-01, 1.620e+00,
                  8.400e+02],
                 [1.413e+01, 4.100e+00, 2.740e+00, ..., 6.100e-01, 1.600e+00,
                 5.600e+02]])
In [58]: wine.keys()
Out[58]: dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names'])
In [60]: print(wine['target_names'])
         ['class_0' 'class_1' 'class_2']
```

Date: 15/04/2023

Lab 2: FIND-S ALGORITHM FOR ENJOY SPORT:

Program 2 – Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples. Read the training data from a .CSV file Data set:Enjoysport

a. Enjoysport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

Algorithm:

initialize h to the most specific hypothesis in H h- $(\emptyset, \emptyset, \emptyset, \emptyset, \emptyset, \emptyset)$

- 1. First training example X1=< Sunny, Warm. Normal, Strong Warm Same>. EnjoySport=+ve Observing. The first trainin example, it is clear that hypothesis h is too specific. None of the "Ø" constraints in h are satisfied by this example, so each is replaced by the next more general constraint that fits the example h1 = < Sunny, Warm, Normal, Strong Warm, Same>.
- 2.Consider the second training example x2 < Sunny, Warm, High, Strong, Warm, Same>. EnjoySport+ve. The second training example forces the algorithm to further generalize h, this time substituting a "?" in place of any attribute value in h that is not satisfied by the new example. Now h2 =< Sunny, Warm, ?, Strong, Warm, Same>
- 3. Consider the third training example x3< Rainy, Cold, High, Strong, Warm. Change EnjoySport ve. The FIND-S algorithm simply ignores every negative example. So the hypothesis remain as before, so 13=< Sunny, Warm, ?, Strong, Warm, Same>
- 4. Consider the fourth training example x4 <Sunny, Warm, High. Strong. Cool, Change, EnjoySport +ve. The fourth example leads to a further generalization of h as h4=< Sunny, Warm, ?, Strong, ?, ?>
- 5. So the final hypothesis is < Sunny, Warm, ?, Strong, ?, ?>

.3	classante
6/4123	classaute Diste 3
67	Lah Bo
	Lab Program Find S algorithm Detaset: enious outside
	Dataset: enjoysports. CEV file
2-1 010	The second of th
Sample	Sky firmp Humidity Wind Water Forcast sports
2)	SUMMY WAS THE TOTAL
3)	Sunny cold high Strang warm same 400-
4)	Sunny warm high strong warm same Yes. +
- V	na principality at the control of
*	Find S algorithm: Es a badic-concept-learning algo
	Y Defense
*	It finds what is most specific hypothesis that fits
	all the "Positive examples.
*	This algo starts with the most specific hypothesis
	and moves to the most general hypothesis.
	18214
	3 -> accepts any value general.
	MGD - (????) accepts executing.
	MSD -> (Q 9 60) accepts None
	Mull.
	initial nyto: (0,0,0) Y 2 h; = < 'sunny', wasn', normal, 'strong' warn
steration	Same'> tre
tevation 2	hz = ¿ 'Sunny' warm' high, 'Strong' warm' sam
iteration 3	hz = 'Surny', 'warm', 'high', 'strong', 'warm', 'sam hz = c'Rainy', 'cold', 'high', 'strong', warm', 'Change'> hy= c'Surny', warm', 'high', 'Strong', 'cool', 'Change'>
iteration 4	my= < Sunny, warm, high, Strong, cool, change,
	(Not considered).x)
	Call's shows the N/1) Hada
	Control of the Contro
	(35,13)
,)	Britialize 'h' to the most specific hypo in H.
i)	Britialize 'h' to the most specific hyso in H.
	all the reputer of the little
	For each positione training instance 'x' each attribute Constraint as in in it the constraint as is
	For each positive training instance 'x' each attribute Constraint as in his if the constraint as is
	For each positive training instance 'x' each attribute constraint as in the if the constraint as is set satisfied by 'x' then do nothing.
	For each paintere training instance 'x' each attribute Constraint as in the if the constraint as is set satisfied by 'x' then do nothing.
	For each positive training instance 'x' each attribute Constraint as in him if the countraint as is set satisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h.
	For each paintere training instance 'x' each attribute Constraint as in the if the constraint as is set satisfied by 'x' then do nothing.
	For each paritiese training instance 'x' each attribute Constraint as in bon if the constraint as is set datisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h.
	For each positive training instance 'x' each attribute Constraint as in him if the constraint as is set tatisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Rogram
	For each positive training instance 'x' each attribute Constraint as in bon if the constraint as is set latisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import csv
	For each paintere training instance 'x' each attribute Constraint as in his if the constraint as is set thatisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cur def updatethypothusis(x).
	For each paintiere training instance 'x' each attribute Constraint as in box if the constraint as is set latisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import cuy det updatetysothusis(ta); if h == []
	For each paintiere training instance 'x' each attribute Constraint as in his if the constraint as is set latisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import car det updatetypothesis(ta). if h == []
	For each paintiere training instance 'x' each attribute Constraint as in his if the constraint as is set that statisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import car det updatethypothusis(ta). if h == [] seturn x for in range (0, len(h)).
	For each positive training instance 'x' each attribute Constraint as in his if the constraint as is set thatisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import csv def updatetysothus(x): if h == [] return x for; in range [0, len(h)): if x[i] upper()! = h[i] upper().
	For each positive training instance 'x' each attribute Constraint as in him if the constraint as is set that statistical by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import csv def updatetypothusis(xo): if h == [] return x for; in range [0, len(h)): h[i] = '?'
	For each paintere training instance 'x' each attribute Constraint as in his if the constraint as is set thatisfied by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import csv def updatetysothus(x): if h == [] return x for; in range [0, len(n)): if x[i] upper()! = h[i], upper(). h[i]='?' Yeturn h
	For each positive training instance 'x' each attribute Constraint as in him if the constraint as is set that statistical by 'x' then do nothing. else replace as in h by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import csv def updatetypothusis(xo): if h == [] return x for; in range [0, len(h)): h[i] = '?'
	For each positive training instance 'x' each attribute Constraint as in he if the constraint as is set thatisfied by 'x' then do nothing. else replace as in he by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import csv def updatethypothusis(x): if h == [] return x for; in range [0, len(n)): if x[i] upper()! = h[i], upper(): h[i]='?' Yeturn h if name == 'main' data = []
	For each positive training instance 'x' each attribute Constraint as in he if the constraint as is set that statistical by 'x' then do nothing. else replace as in he by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cav det updatetypothusis(xa): if h == [] return x for; in range [0, len(h)): if x[i] upper()! = h[i], upper(): h[i]='?' Yeturn h if name == 'main' data = [] h = [] with open ("Desutop Finds. csv': 'x') as file!
	For each positive training instance 'x' each attribute Constraint as in he if the constraint as is set that is first the constraint as is set that is first then do nothing. Clue replace as in he by the next more general constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import csv det updatetysothusis(xa): if h == [] return x for; in range [0, len(h)): if x[i] upper()! = h[i], upper(): h[i] = '?' Yeturn h if name == 'main' data = [] with open ("Deutop Finds.csv' 'x') as file! reader = Csv yrader (file)
	For each paintere training instance 'x' each attribute Constraint as in he if the constraint as is set that is in he by the next more general Constraint that is required by 'x' hypothese h. Quitput hypothesis h. Program import car det updatethypothesis(x). if h == [] return x for; in range [0, len(h)). if x [i] upper()! = h [i], upper(): h [i] = 'y' Yeturn by if name == 'main' data = [] with open ("Desktop Finds. csv' x') as file! reader = csv, reader (file)
	For each paintere training instance 'x' each attribute Constraint as in he if the constraint as is set that is in he by the next more general Constraint that is required by 'x' hypothese h. Quitput hypothesis h. Program import car det updatethypothesis(x). if h == [] return x for; in range [0, len(h)). if x [i] upper()! = h [i], upper(). h [i] = '?' Yeturn by if name == 'main' data = [] with open ("Desktop Finds. csv' 'x') as file! reader = csv, reader (file) print (Data:") alata. append (vow)
	For each positive training instance 'x' each attribute Constraint as in he if the constraint as is set that is in he by the next more general Constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cur def updatethypothusis(x): if h == [] return x for; in range [0, len(n)): if x[i] upper()! = h[i], upper(): h[i] = 'y' Yeturn h if name == 'main' data = [] with open ("Desutop Finds. csv', 'x') as file! reader = csv, reader (file) print ("Data:") dara append (vow)
	For each positive training instance 'x' each attribute Constraint as in he if the constraint as is set that is in he by the next more general constraint that is required by 'x' hypothese h. Output hypothesis h. Program import cur def updatethypothusis(x): if h == [] return x for; in range [0, len(n)): if x[i] upper()! = h[i], upper(): h[i] = 'y' Yeturn h if name == 'main' data = [] with open ("Desutop Finds. csv' 'x') as file! reader = csv, reader (file) print ("Data:") clara. append (vow) if data:
	For each positive training instance 'x' each attribute Constraint as in he if the constraint as is set that stified by 'x' then do nothing. Clue replace as in he by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import cur def updatethypothusis(x): if h == [] return x for; in range [0, len(n)): if x[i] upper()! = h[i], upper(): h[i] = 'y' Yeturn h if name == 'main' data = [] with open ("Desutop Finds. csv', 'x') as file! reader = csv, reader (file) print ("Data:") clara append (vow) print ("row). if data: for x in data
	For each positive training instance 'x' each attribute Constraint as in he if the constraint as is set that stified by 'x' then do nothing. Clue replace as in he by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import cur det updatethypothusis(x): if h == [] return x for; in range [0, len(h)): if x [i] upper ()! = h [i], upper (): h [i] = '?' Yeturn h if name == 'main' data = [] with open ("Deutop Finds. csv' 'x') as file! reader = csv, reader (file) print ("Data:") clara append (vow) print ("Data:") of x [-1]. upper () == "Yei": x-Rol)
	For each positive training instance 'x' each attribute Constraint as in he if the constraint as is set that stified by 'x' then do nothing. Clue replace as in he by the next more general Constraint that is required by 'x' hypothese h. Dutput hypothesis h. Program import cur def updatethypothusis(x): if h == [] return x for; in range [0, len(n)): if x[i] upper()! = h[i], upper(): h[i] = 'y' Yeturn h if name == 'main' data = [] with open ("Desutop Finds. csv', 'x') as file! reader = csv, reader (file) print ("Data:") clara append (vow) print ("row). if data: for x in data

CREATING CSV FILE:


```
[ ] def findS(c,t):
    for i, val in enumerate(t):
        if val == "Yes":
            specific_hypothesis = c[i].copy()
            break

for i, val in enumerate(c):
        if t[i] == "Yes":
            for x in range(len(specific_hypothesis)):
                if val[x] != specific_hypothesis[x]:
                     specific_hypothesis[x] = '?'
                 else:
                      pass

return specific_hypothesis

print("\n The final hypothesis is:",findS(d,target))
```

The final hypothesis is: ['Sunny' 'Warm' '?' 'Strong' '?' '?']

SECOND DATASET: FIND-S ALGORITHM

example	citations	size	inLibrary	price	editions	buy
1	some	small	no	affordable	many	no
2	many	big	no	expensive	one	yes
3	some	big	always	expensive	few	no
4	many	medium	no	expensive	many	yes
5	many	small	no	affordable	many	yes

CREATING CSV FILE


```
import numpy as np
     import pandas as pd
[ ] from google.colab import drive
    drive.mount("/content/drive")
    Mounted at /content/drive
[ ] path ="/content/finds_1BM20CS066 - Sheet1.csv"
[ ] data = pd.read_csv(path)
[ ] print(data,"\n")
      citation
               size inLibrary price editions buy
        some small no affordable many
    0
                                                     no
          many
                 big
                         no expensive
    1
                                               one
                                                     yes
                 big always expensive
    2
          some
                                               few
                       no expensive
    3
          many medium
                                              many yes
    4
          many small
                           noo affordable
                                              many yes
[ ] d = np.array(data)[:,:-1]
    print("\n The attributes are: ",d)
     The attributes are: [['some' 'small' 'no' 'affordable' 'many']
     ['many' 'big' 'no' 'expensive' 'one']
     ['some' 'big' 'always' 'expensive' 'few']
     ['many' 'medium' 'no' 'expensive' 'many']
     ['many' 'small' 'noo' 'affordable' 'many']]
target = np.array(data)[:,-1]
    print("\n The target is: ",target)
\Box
    The target is: ['no' 'yes' 'no' 'yes' 'yes']
                                                       + Code
                                                                 + Text
[ ] def find s(d, target):
       for i, val in enumerate(target):
         if val=='yes':
           hypothesis=d[i].copy()
           break
       for i, var in enumerate(d):
         if target[i]=="yes":
           for x in range(len(hypothesis)):
              if var[x]!=hypothesis[x]:
                hypothesis[x]='?'
              else:
                pass
       return hypothesis
     print("The Hypothesis is",find_s(d,target))
     The Hypothesis is ['many' '?' '?' '?']
```

DATE: 15/04/2023

LAB 3: CANDIDATE- ELIMINATION- ENJOY SPORT

Program 3:For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.Data set:Enjoysport

Example	Sky	AirTemp	Humidity	Wind	Water	Forecast	EnjoySport
1	Sunny	Warm	Normal	Strong	Warm	Same	Yes
2	Sunny	Warm	High	Strong	Warm	Same	Yes
3	Rainy	Cold	High	Strong	Warm	Change	No
4	Sunny	Warm	High	Strong	Cool	Change	Yes

ALGORITHM:

Step1: Load Data set

Step2: Initialize General Hypothesis and Specific Hypothesis.

Step3: For each training example

Step4: If example is positive example

if attribute_value == hypothesis_value:

Do nothing

else:

replace attribute value with '?' (Basically generalizing it)

Step5: If example is Negative example

Make generalize hypothesis more specific.

12/4/23	Classmate Date Page 5
S. P.	Lab Program 2 Candidate Elimination Algorithm
and the same of th	Example Sky Arr Humidity wind water 1 Sunny warm Normal Strong warm 2 Sunny warm high strong warm 3 Raing Cold high strong warm 4 Sunny warm high strong warm 4 Sunny warm high strong cool.
	forcalt Enjoy sport Target Same Yes + ve variable. Same Yes + ve 6 attributes candidate Change No - ve concept learning Change Yes + ve and positive values.
<.	To find consistent hypothesis for a given solution of training example and General Go = ???? Most specific So = 25, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
101	first take generic attribute values. hypothesis Whenever matches retain generic values if matches experted is the and outcome the
e de u	No match > negative classification
*	All question marks match with example, hence +ve classification Target variable = +ve => GB

*	All null values doesn't match, hence -ve
	Classifier. But expected = +1/2 classición theretore
	it is inconsistent hypothesis. When inconsis exist write next general hypothesis that is:
	exist write next general humbleing that is:
	January rigrotius
>	Replace Null values by 1st examples.
	January Control of the Control of th
T)	G1 = 2 ? ? ? ? ? ? > 60
	S1 = 2????? ?> Sanny, warm, Normal, Strong, warm, un
TI)	61 = < 2) 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
/	Consider prev generic by Pothesis.
	52 = 510 ISV 17.000
	if match retain
	if match retain
	if Target value -ve - Start from i.
	If Target value +ve > Start I from G
0 1	Sz = 2 Sunny, warm, ? Strong, warm, same>
*	6B all ? matches with Si, hence +ve
	Classification and experd
_ *	SB, when inconsistency make it General (?)
TIN	S3 = Sumue mayor 7 Change Mayor Mone > - Ve
2	S3 = < Sunny, warm, ? Strong, warm, Jame > - 12.
×	Since all values are generic in Previous
	hytothesis, only Polible when example is the.
	and if there exist inconsistency then all hypotheti
	which are consistent with all the training examples seen now.
U.	The total complete the

- \	
	2 moter with all the attribute but expected -ve
1	hence inconsistency. The attribute but expected -ve
¥	All hugate at
>	All hypothesis which are consistent till now.
	Manage of the state of the stat
	import nume
	import numpy as up import Randas as pa.
	data = Pd. Datatran al pd.
	data = Pol. Datatrame (data = pd. read cov (enjoyepot sv)) Print (concepts)
	Print (Concepts)
	target = np. array (data: 1) ()
	Print (general. 1)
	Print (specific n).
	·
	X4 (+)
	Sy = large light, ? thick . Gy = ? light, ?? , ??? thick
	94 = < 22 light 775 < 2772 thicks
	Dataset Fuel Not - Torget
	Could Assily economy Passengers Type Valle.
	Sig Available low 2 sports N
	Small Available high -4 economy V small Not Available low 2 sports N
	Go = < ?????
0.11	So 3 6 th of the
	So 2 < P, g, g, g, g,
	C = c exall available link 1 2/2000
	S. = < &mall available high, L, economys G. = ????</td
	41 - 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
	Sand Comple 1 1. 10h 12 Promone
	Sz = < Small ? high 4, economy, Gz = { Small, ?'? ? ?? > - < ?? high ?? ?>;
	ar is singly
	& < ? ?? L1, ? > ; 2??? 2 economys.}

CREATING CSV FILE:


```
[ ] import numpy as np
         import pandas as pd
 [ ]
          from google.colab import drive
          drive.mount('/content/drive')
  [ ]
          data = pd.DataFrame(data=pd.read_csv('/content/enjoysport.csv.csv'))
 [ ] print(data,"\n")
         Sky AirTemp Humidity Wind Water Forecast EnjoySport
O Sunny Warm Normal Strong Warm Same Yes
Sunny Warm High Strong Warm Same Yes
Rainy Cold High Strong Warm Change No
Sunny Warm High Strong Cool Change Yes
[ ] concepts = np.array(data.iloc[:,0:-1])
[ ] print(concepts)
       [['Sunny' 'Warm' 'Normal' 'Strong' 'Warm' 'Same']
['Sunny' 'Warm' 'High' 'Strong' 'Warm' 'Same']
['Rainy' 'Cold' 'High' 'Strong' 'Warm' 'Change']
['Sunny' 'Warm' 'High' 'Strong' 'Cool' 'Change']]
[ ] target = np.array(data.iloc[:,-1])
     print(target)
       ['Yes' 'Yes' 'No' 'Yes']
[ ] import csv
```

```
csv_file = csv.reader(f)
        data = list(csv_file)
        specific = data[1][:-1]
        general = [['?' for i in range(len(specific))] for j in range(len(specific))]
        for i in data:
           if i[-1] == "Yes":
              for j in range(len(specific)):
                  if i[j] != specific[j]:
                     specific[j] = "?"
                     general[j][j] = "?"
           elif i[-1] == "No":
              for j in range(len(specific)):
                  if i[j] != specific[j]:
                     general[j][j] = specific[j]
                  else:
                     general[j][j] = "?"
           print("\nStep " + str(data.index(i)) + " of Candidate Elimination Algorithm")
           print(specific)
           print(general)
        gh = [] # gh = general Hypothesis
        for i in general:
           for j in i:
               if j != '?':
                  gh.append(i)
                  break
        print("\nFinal Specific hypothesis:\n", specific)
        print("\nFinal General hypothesis:\n", gh)
  Step 0 of Candidate Elimination Algorithm
  Final Specific hypothesis:
['Sunny', 'Warm', '?', 'Strong', '?', '?']
  Final General hypothesis:
[['Sunny', '?', '?', '?', '?'], ['?', 'Warm', '?', '?', '?', '?']]
[ ] def learn(concepts, target):
       specific_h = concepts[0].copy()
general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]
print("Step 0:")
       print("Specific Hypothesis: ", specific_h)
print("General Hypothesis: ", general_h)
print("-----")
       specific_h[x] = '?'
general_h[x][x] = '?'
if target[i] == "No":
    for x in range(len(specific_h)):
        if h[x] != specific_h[x]:
            general_h[x][x] = specific_h[x]
       general_h.remove(['?', '?', '?', '?', '?', '?'])
       return specific_h, general_h
    s_final, g_final = learn(concepts, target)
print("Final S:", s_final, sep="\n")
print("Final G:", g_final, sep="\n")
```

with open("'/content/enjoysport.csv.csv'") as f:

SECOND DATASET:

example	citations	size	inLibrary	price	editions	buy
1	some	small	no	affordable	many	no
2	many	big	no	expensive	one	yes
3	some	big	always	expensive	few	no
4	many	medium	no	expensive	many	yes
5	many	small	no	affordable	many	yes

CREATING CSV FILE:


```
[ ] import numpy as np
      import pandas as pd
[ ] data = pd.DataFrame(data=pd.read_csv('/content/finds_1BM20CS066 - Sheet1.csv'))
     print(data, "\n")
        citation
                       size inLibrary
                                                   price editions
                                                                       buy
                                      no affordable
      0
             some
                      small
                                                               many
                                                                        no
              many
                         big
                                             expensive
                                                                       yes
      2
              some
                         big
                                  always
                                             expensive
                                                                few
                                                                        no
                                              expensive
              many
                     medium
                                       no
                                                                many
                                                                       ves
                                           affordable
              many
                      small
                                      noo
                                                                many
[ ] concepts = np.array(data.iloc[:,0:-1])
      print("The attributes are: ",concepts)
      The attributes are: [['some' 'small' 'no' 'affordable' 'many']
['many' 'big' 'no' 'expensive' 'one']
['some' 'big' 'always' 'expensive' 'few']
['many' 'medium' 'no' 'expensive' 'many']
['many' 'small' 'noo' 'affordable' 'many']]
[ ] target = np.array(data.iloc[:,-1])
      print("\n The target is: ",target)
       The target is: ['no' 'yes' 'no' 'yes' 'yes']
```

```
[ ] def learn(concepts, target):
       specific_h = concepts[0].copy()
       print("\n Initialization of specific_h and general_h")
       print(specific_h)
       general_h = [["?" for i in range(len(specific_h))] for i in
      range(len(specific_h))]
      print(general_h)
       for i, h in enumerate(concepts):
            if target[i] == "yes":
                 for x in range(len(specific_h)):
                      if h[x]!= specific_h[x]:
                           specific_h[x] ='?'
                           general_h[x][x] = '?'
                      print(specific_h)
            print(specific_h)
            if target[i] == "no":
                 for x in range(len(specific_h)):
                      if h[x]!= specific_h[x]:
                           general_h[x][x] = specific_h[x]
                          general_h[x][x] = '?'
            print("\n Steps of Candidate Elimination Algorithm",i+1)
            print(specific_h)
            print(general_h)
       indices = [i for i, val in enumerate(general_h) if val ==
      ['?', '?', '?', '?', '?', '?']]
       for i in indices:
            general_h.remove(['?', '?', '?', '?', '?'])
      return specific_h, general_h
      s_final, g_final = learn(concepts, target)
 Initialization of specific_h and general_h
['some' 'small' 'no' 'affordable' 'many']
[['?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?']]
['some' 'small' 'no' 'affordable' 'many']
  Steps of Candidate Elimination Algorithm 1
 '?' '?' 'no' 'affordable' 'many']
 ['?' '?' 'no' 'affordable' 'many']
['?' '?' 'no' '?' 'many']
['?' '?' 'no' '?' '?']
['?' '?' 'no' '?' '?']
  Steps of Candidate Elimination Algorithm 2
 ['?' '?' 'no' '?' '?']
[['?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?']]
['?' 'no' '?' '?']
  Steps of Candidate Elimination Algorithm 3
 ['?' '?' 'no' '?' '?']
[['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', 'no', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?']
['?' '?' 'no' '?' '?']
 ['?' '?' 'no' '?' '?']
 ['?' '?' 'no' '?' '?']
 ['?' '?' 'no' '?' '?']
 ['?' '?' 'no' '?' '?']
  Steps of Candidate Elimination Algorithm 4
 ['?' '?' 'no' '?' '?']
[['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', 'no', '?', '?'], ['?', '?', '?', '?'], ['?', '?'],
['?' 'no' '?' '?']
 [,ذ, ,ذ, ,uo, ,ذ, ,ذ,]
  17: 17: 17: 17: 17:
 ָרְיכִּי יכִּי יכִּי יכִּי יכִּי יכִּי
 ['?' '?' '?' '?' '?' 
['?' '?' '?' '?' '?' ]
  Steps of Candidate Elimination Algorithm 5
 ['?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?']
print("\nFinal Specific_h:", s_final, sep="\n")
print("\nFinal General_h:", g_final, sep="\n")
Final Specific_h:
[1,5, 1,5, 1,5, 1,5, 1,5, 1,5, 1]
Final General_h:
```

Program 4:Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

ALGORITHM:

- · Create a Root node for the tree
- · If all Examples are positive, Return the single-node tree Root, with label = +
- · If all Examples are negative, Return the single-node tree Root, with label = -
- If Attributes is empty, Return the single-node tree Root, with label = most common value of Target_attribute in Examples

Otherwise Begin

- · A \leftarrow the attribute from Attributes that best* classifies Examples
- · The decision attribute for Root \leftarrow A
- · For each possible value, v_i , of A,
- · Add a new tree branch below *Root*, corresponding to the test $A = v_i$
- · Let *Examples* v_i , be the subset of Examples that have value v_i for A
- · If $Examples_{vi}$, is empty
- Then below this new branch add a leaf node with label = most common value of Target_attribute in Examples
- · Else below this new branch add the subtree ID3($Examples_{vi}$, Targe_tattribute, Attributes {A}))
- · End
- · Return Root

19/4/23					Page 9	
	Decisi	ion Free - Pla	y Glot	30	Talk	
1)	Day	Noothag	Tem	P Humio	lity Wind	Play
	2	Sunny	Hot	high	weak	No
		Sunny	Hot	- high	Strong	No
	3	Overcast	Hot	high	weak ?	Yes
	Ц	Rain	Mild	high	Weak	Yes
1.	5	Rain	loal	Morinal -	Weak	YU
3	6	Rain	(00)	Mormal.	Strong	No
	7	Overcast	Cool	Normal	Strong	Yes
	8	5° - Sunny	- Mild -	high	weak	No
	9	Sunny	Cool	Normal	Weak	Yes
NI _	10	Rain	Mild	Normal	weak	YU
	И	Sanny	Mild.	Morrial	Strong	Yes
	12	Overcast	Mild	high	Strong	Yes
	13	Overcust	hot	Normal	Weak	Yes
765	14	Rain	wild:	High.	Strong.	No
			1001/67	-12		
	2 -0	1146 D. 6370	1 + (-	· 5/14 (-1.	4854))	
	130	=1-(10)		Tourist Long		
1177			Gille - E			
		0113,-06	IIE)-		The second	
	Putor	mation Gain:	G(S, A,5	7)		
		= E(s)			(,)	
			VE Atil	A) S	1	
			(1)	Ad a Ch	W186 2 1 8	9/4
	En	tropy (s) =	- Par Ins	92 PO - PE	1092 Pm	
			0 10		J. C.	
	11/1	11 21 - 12-06	118	I S		

	Algorithm
	103 (Example, Target-attribute, attribute)
*	Create a root node for the tree.
*	If all examples are the,
	return the singlenode tree
	Root with label = +ve.
07 1 19	A ST ST STATE OF THE STATE OF T
*	If all examples are -ve,
	return the single node tree
	Root with label = -ve.
*	Otherwise Begin
\rightarrow	A the attribute from attributes that best * classifies examples.
\rightarrow	The decision attribute for root & A
→	Add a new tree-branch below root, corresponding to
-	4 000
\rightarrow	Let example Vi be the subject of example that have
	Values Vi from A-
\rightarrow	By example Vi that is empty.
6	Then a below this new branch at a reat
	Target attribute in example.


```
  [58] def entropy(S):
          attr=list(set(S))
          if len(attr)==1:
              return 0
          counts=[0,0]
          for i in range(2):
              counts[i]=sum([1 for x in S if attr[i]==x])/(len(S)*1.0)
          sums=0
          for cnt in counts:
              sums+=-1*cnt*math.log(cnt,2)
          return sums
5 [59] def compute_gain(data,col):
          attr,dic = subtables(data,col,delete=False)
          total_size=len(data)
          entropies=[0]*len(attr)
          ratio=[0]*len(attr)
          total_entropy=entropy([row[-1] for row in data])
          for x in range(len(attr)):
              ratio[x]=len(dic[attr[x]])/(total_size*1.0)
              entropies[x]=entropy([row[-1] for row in dic[attr[x]]])
              total_entropy-=ratio[x]*entropies[x]
          return total_entropy
[60] def build_tree(data,features):
          lastcol=[row[-1] for row in data]
          if(len(set(lastcol)))==1:
              node=Node("")
              node.answer=lastcol[0]
              return node
          n=len(data[0])-1
          gains=[0]*n
          for col in range(n):
              gains[col]=compute_gain(data,col)
          split=gains.index(max(gains))
          node=Node(features[split])
          fea = features[:split]+features[split+1:]
          attr,dic=subtables(data,split,delete=True)
          for x in range(len(attr)):
              child=build_tree(dic[attr[x]],fea)
              node.children.append((attr[x],child))
          return node
            def print_tree(node,level):
                   if node.answer!="":
                         print(" "*level, node.answer)
                         return
                   print(" "*level,node.attribute)
                   for value, n in node.children:
                         print(" "*(level+1), value)
                         print_tree(n,level+2)
```

```
[62] def classify(node,x_test,features):
            if node.answer!="":
                print(node.answer)
                return
            pos=features.index(node.attribute)
            for value, n in node.children:
                if x_test[pos]==value:
                    classify(n,x_test,features)
✓ [63]
        dataset, features=load_csv("1BM20CS066_ID3.csv")
        node1=build_tree(dataset,features)
        print("The decision tree for the dataset using ID3 algorithm is")
        print_tree(node1,0)
        testdata, features=load_csv("1BM20CS066_ID3.csv")
        for xtest in testdata:
            print("The test instance:",xtest)
            print("The label for test instance:")
           classify(node1,xtest,features)
        The decision tree for the dataset using ID3 algorithm is
          outlook
     D.
            rain
              wind
```

```
The decision tree for the dataset using ID3 algorithm is outlook

rain
wind
weak
yes
strong
no
sunny
humidity
high
no
normal
yes
overcast
yes
```

```
The test instance: ['sunny', 'hot', 'high', 'weak', 'no']
The label for test instance:
The test instance: ['sunny', 'hot', 'high', 'strong', 'no']
The label for test instance:
The test instance: ['overcast', 'hot', 'high', 'weak', 'yes']
The label for test instance:
yes
The test instance: ['rain', 'mild', 'high', 'weak', 'yes']
The label for test instance:
yes
The test instance: ['rain', 'cool', 'normal', 'weak', 'yes']
The label for test instance:
yes
The test instance: ['rain', 'cool', 'normal', 'strong', 'no']
The label for test instance:
The test instance: ['overcast', 'cool', 'normal', 'strong', 'yes']
The label for test instance:
yes
The test instance: ['sunny', 'mild', 'high', 'weak', 'no']
The label for test instance:
The test instance: ['sunny', 'cool', 'normal', 'weak', 'yes']
The label for test instance:
ves
The test instance: ['rain', 'mild', 'normal', 'weak', 'yes']
The label for test instance:
ves
The test instance: ['sunny', 'mild', 'normal', 'strong', 'yes']
The label for test instance:
ves
The test instance: ['overcast', 'mild', 'high', 'strong', 'yes']
The label for test instance:
yes
The test instance: ['overcast', 'hot', 'normal', 'weak', 'yes']
The label for test instance:
yes
The test instance: ['rain', 'mild', 'high', 'strong', 'no']
The label for test instance:
no
```

PROGRAM 5: Simple linear regression program

Dataset used:

	А		В
1	x		у
2		1	1
3		2	2
4		3	1.3
5		4	3.75
6		5	2.25
7			

ALGORITHM:

- The main function to calculate values of coefficients
- Initialize the parameters.
- Predict the value of a dependent variable by giving an independent variable.
- Calculate the error in prediction for all data points.
- Calculate partial derivatives w.r.t a0 and a1.
- Calculate the cost for each number and add them.
- Update the values of a0 and a1.


```
[ ] import numpy as np
    import matplotlib.pyplot as plt
[ ] def plot regression line(x, y, b):
      plt.scatter(x, y, color = "m",
          marker = "o", s = 30)
      y_pred = b[0] + b[1]*x
      plt.plot(x, y_pred, color = "g")
      plt.xlabel('x CO-EFF')
      plt.ylabel('y CO-EFF')
      plt.show()
[ ] def estimate_coef(x, y):
      n = np.size(x)
      m_x = np.mean(x)
      m_y = np.mean(y)
      SS_xy = np.sum(y*x) - n*m_y*m_x
      SS xx = np.sum(x*x) - n*m x*m x
      b_1 = SS_xy / SS_xx
      b_0 = m_y - b_1*m_x
      return (b_0, b_1)
```

```
def plot_regression_line(x, y, b):
    plt.scatter(x, y, color = "b",
        marker = "*", s = 30)

y_pred = b[0] + b[1]*x

plt.plot(x, y_pred, color = "y")

plt.xlabel('x')
    plt.ylabel('y')

plt.show()
```

```
def main():
  x = np.array([1,2,3,4,5])
 y = np.array([1,2,1.3,3.75,2.25])
  b = estimate_coef(x, y)
  print("Estimated coefficients:\nb_0 = {} \
    \nb_1 = {}".format(b[0], b[1]))
  plot_regression_line(x, y, b)
if __name__ == "__main__":
  main()
Estimated coefficients:
b_0 = 0.7850000000000001
b_1 = 0.4249999999999966
    3.5
    3.0
    2.5
    2.0
    1.5
    1.0
                                               3.5
                 1.5
                         2.0
                                2.5
                                                       4.0
                                                               4.5
         1.0
                                        3.0
                                                                      5.0
                                         X
```

Conclusion:

This model is not appropriate for this model. All the points of this dataset are away from the prediction line.

Program 6: Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few tes data sets.

Data set used:

1 outlook play 2 rainy Yes 3 sunny Yes 4 overcast Yes 5 overcast Yes 6 sunny No 7 rainy Yes 8 sunny Yes	
3 sunny Yes 4 overcast Yes 5 overcast Yes 6 sunny No 7 rainy Yes	
4 overcast Yes 5 overcast Yes 6 sunny No 7 rainy Yes	
5 overcast Yes 6 sunny No 7 rainy Yes	
6 sunny No 7 rainy Yes	
7 rainy Yes	
8 sunny Yes	
9 overcast Yes	
10 rainy No	
11 sunny No	
12 sunny Yes	
13 rainy No	
14 overcast Yes	
15 overcast Yes	

Algorithm:

 $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

Formula for naive bayes classifier is as follows \rightarrow

- 1. Convert the given dataset into frequency tables.
- 2. Generate Likelihood table by finding the probabilities of given features.
- 3. Now, use Bayes theorem to calculate the posterior probability.
- 4. Test accuracy of the result and visualizing the test set result.

```
△ 1BM20CS066_NBC.ipynb ☆
       File Edit View Insert Runtime Tools Help All changes saved
                                           + Code + Text
                                 \square \times
:= Files
      Q
                                          [7] import numpy as np
                                                 import math
       DB ...
                                                 import csv
{x}
     sample_data
                                                 import pdb
       ■ 1BM20CS066_NBC.csv
def read_data(filename):
                                                     with open(filename, 'r') as csvfile:
                                                        datareader = csv.reader(csvfile)
                                                         metadata = next(datareader)
                                                         traindata=[]
                                                         for row in datareader:
                                                            traindata.append(row)
                                                     return (metadata, traindata)
                                          [9] def splitDataset(dataset, splitRatio):
                                                     trainSize = int(len(dataset) * splitRatio)
                                                     trainSet = []
testset = list(dataset)
                                                     i=0
                                                     while len(trainSet) < trainSize:</pre>
                                                        trainSet.append(testset.pop(i))
                                                     return [trainSet, testset]
```

```
def classify(data,test):
        total size = data.shape[0]
        print("\n")
        print("training data size=",total_size)
        print("test data size=",test.shape[0])
        countYes = 0
         countNo = 0
         probYes = 0
        probNo = 0
        print("\n")
        print("target
                        count
                                 probability")
        for x in range(data.shape[0]):
            if data[x,data.shape[1]-1] == 'Yes':
                 countYes +=1
            if data[x,data.shape[1]-1] == 'No':
                countNo +=1
         probYes=countYes/total size
         probNo= countNo / total_size
         print('Yes',"\t",countYes,"\t",probYes)
         print('No',"\t",countNo,"\t",probNo)
         prob0 =np.zeros((test.shape[1]-1))
        prob1 =np.zeros((test.shape[1]-1))
        accuracy=0
        print("\n")
        print("instance prediction target")
        for t in range(test.shape[0]):
            for k in range (test.shape[1]-1):
                 count1=count0=0
                 for j in range (data.shape[0]):
                     #how many times appeared with no
                     if test[t,k] == data[j,k] and data[j,data.shape[1]-1]=='No':
                         count0+=1
                     #how many times appeared with yes
                     if test[t,k]==data[j,k] and data[j,data.shape[1]-1]=='Yes':
```

```
prob0[k]=count0/countNo
       prob1[k]=count1/countYes
    probno=probNo
   probyes=probYes
    for i in range(test.shape[1]-1):
       probno=probno*prob0[i]
       probyes=probyes*prob1[i]
   if probno>probyes:
       predict='No'
   else:
       predict='Yes'
   print(t+1,"\t",predict,"\t
                                ",test[t,test.shape[1]-1])
   if predict == test[t,test.shape[1]-1]:
       accuracy+=1
final_accuracy=(accuracy/test.shape[0])*100
print("accuracy",final_accuracy,"%")
return
```

count1+=1

```
metadata,traindata= read_data("/content/1BM20CS066_NBC.csv")
splitRatio=0.6
trainingset, testset=splitDataset(traindata, splitRatio)
training=np.array(trainingset)
print("\n The Training data set are:")
for x in trainingset:
    print(x)

testing=np.array(testset)
print("\n The Test data set are:")
for x in testing:
    print(x)
classify(training,testing)
```

output:

```
The Training data set are:
['rainy', 'Yes']
['sunny', 'Yes']
['overcast', 'Yes']
['overcast', 'Yes']
['sunny', 'No']
['rainy', 'Yes']
['sunny', 'Yes']
['overcast', 'Yes']
The Test data set are:
['rainy' 'No']
['sunny' 'No']
['sunny' 'Yes']
['rainy' 'No']
['overcast' 'Yes']
['overcast' 'Yes']
training data size= 8
test data size= 6
target count probability
Yes
      7 0.875
              0.125
No
       1
instance prediction target
     Yes
1
                  No
2
       Yes
                  No
3
       Yes
                  Yes
      Yes
4
                  No
5
       Yes
                  Yes
                   Yes
      Yes
accuracy 50.0 %
```

	Danve	Bayes	200		-
Training	Dataler				
100	Tire Over	Stolen			
Red SI	boxts, Domestic exts, Domestic	No	Size	=6	
Ked Sp	oxts, Domestic	Ver			
Tellow	SPORTS DOMESTIC	No I			
Lyellow,	SVV, Zongorte	1 NO]			
		, ,			
Test D	ata Set.				
Colox	Tion (111	SHAM		
Yellow		Nigin	Stolen.		
Yellow			Yes	Sita	-1
Rod		omestic		Site	
Red		mported	2 /		
	244.18	Morren	(3)		
Target	Count	Proba	bility.		
Yes	3	8	2_ J		
No	3	1/2			
Pustance		Target	7.1		_
	No	Yes			
2	No	No			
3	No	No			-
-	\lea	Yes.			
0	1 700	·/			
Accuracy	1: 75.0	[0		4	
D	(11)	P(D/h)	. P(W		
1	(NID) =	DIN	1100		
	March 1	1 (0)			

b(1) = Posterior Robotility n) = Prior Probability
P(1) = Probability over data set
P(D	(4) = corrent Probability
	9
9.5	alatur
	011.12
	Last 2

Program 7:K- means clustering

Algorithm:

Initialize k means with random values

For a given number of iterations:

Iterate through items:

Find the mean closest to the item by calculating the euclidean distance of the item with each of the means Assign item to mean

Update mean by shifting it to the average of the items in that cluster

Dataset:

		1	to 22 of 22 entries Filter
1	Name	Age	Income(\$)
2	Rob	27	70000
3	Michael	29	90000
4	Mohan	29	61000
5	Ismail	28	60000
6	Kory	42	150000
7	Gautam	39	155000
8	David	41	160000
9	Andrea	38	162000
10	Brad	36	156000
11	Angelina	35	130000
12	Donald	37	137000
13	Tom	26	45000
14	Arnold	27	48000
15	Jared	28	51000
16	Stark	29	49500
17	Ranbir	32	53000
18	Dipika	40	65000
19	Priyanka	41	63000
20	Nick	43	64000
21	Alia	39	80000
22	Sid	41	82000
21	Abdul	39	58000

	W-means Algorithms
0	Solect the number K to decide the number chypers.
	0.00
(3)	select vandons & points or centroids.
_	Assign each data point to their closest less which will form the Redefined K cluster
Q	Calculate the variance and new place centrois
	each auster.
6	Repeat the third steps, which means te-quigo
@	R) any re-assignment occurs go to step 4
705	FINISH (XXXX) = (XXXX)
677	Model is ready.
	GMM - Gausian Mixture model.

```
[1] import pandas as pd
from sklearn.cluster import KMeans
from sklearn.preprocessing import MinMaxScaler
from matplotlib import pyplot as plt
%matplotlib inline
```

df = pd.read_csv('/content/Kmeans_1BM20CS066.csv')
df.head(10)

	1	Name	Age	Income(\$)
0	2	Rob	27	70000
1	3	Michael	29	90000
2	4	Mohan	29	61000
3	5	Ismail	28	60000
4	6	Kory	42	150000
5	7	Gautam	39	155000
6	8	David	41	160000
7	9	Andrea	38	162000
8	10	Brad	36	156000
9	11	Angelina	35	130000

```
[4] scaler = MinMaxScaler()
scaler.fit(df[['Age']])
df[['Age']] = scaler.transform(df[['Age']])

scaler.fit(df[['Income($)']])
df[['Income($)']] = scaler.transform(df[['Income($)']])
df.head(10)
```

	1	Name	Age	Income(\$)	6
0	2	Rob	0.058824	0.213675	
1	3	Michael	0.176471	0.384615	
2	4	Mohan	0.176471	0.136752	
3	5	Ismail	0.117647	0.128205	
4	6	Kory	0.941176	0.897436	
5	7	Gautam	0.764706	0.940171	
6	8	David	0.882353	0.982906	
7	9	Andrea	0.705882	1.000000	
8	10	Brad	0.588235	0.948718	
9	11	Angelina	0.529412	0.726496	

```
plt.scatter(df['Age'], df['Income($)'])
```

(matplotlib.collections.PathCollection at 0x7f43820d1a50)


```
k_range = range(1, 11)
sse = []
for k in k_range:
    kmc = KMeans(n_clusters=k)
    kmc.fit(df[['Age', 'Income($)']])
    sse.append(kmc.inertia_)
sse
```

```
[5.434011511988178,
2.091136388699078,
0.4750783498553096,
0.3491047094419566,
0.2798062931046179,
0.2203764169077067,
0.1685851223602976,
0.13265419827245162,
0.1038375258660356,
0.08510915216361345]
```

```
plt.xlabel = 'Number of Clusters'
     plt.ylabel = 'Sum of Squared Errors'
     plt.plot(k_range, sse)
    [<matplotlib.lines.Line2D at 0x7f438004a6e0>]
      5
      4
      3
      2
      1
      0
                  2
                               4
                                            6
                                                                       10
[8]
   km = KMeans(n_clusters=3)
     km
```

11 Angelina 0.529412 0.726496

KMeans KMeans(n_clusters=3)

```
y_predict = km.fit_predict(df[['Age', 'Income($)']])
   🕒 /usr/local/lib/python3.10/dist-packages/sklearn/cluster/_kmeans.py:870: FutureWarning: The default value of `n_init` will change from 10 to 'auto' in 1.4. Set the value of
      warnings.warn(
array([1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2],
dtype=int32)
1 Name
                      Age Income($) cluster
             Rob 0.058824 0.213675
       1 3 Michael 0.176471 0.384615
       2 4 Mohan 0.176471 0.136752
       3 5 Ismail 0.117647 0.128205
       4 6 Kory 0.941176 0.897436
Age Income($) cluster
                Kory 0.941176 0.897436
           7 Gautam 0.764706 0.940171
       6 8 David 0.882353 0.982906
           9 Andrea 0.705882 1.000000
              Brad 0.588235 0.948718
```

	1	Name	Age	Income(\$)	cluster
0	2	Rob	0.058824	0.213675	1
1	3	Michael	0.176471	0.384615	1
2	4	Mohan	0.176471	0.136752	1
3	5	Ismail	0.117647	0.128205	1
11	13	Tom	0.000000	0.000000	1
12	14	Arnold	0.058824	0.025641	1
13	15	Jared	0.117647	0.051282	1
14	16	Stark	0.176471	0.038462	1
15	17	Ranbir	0.352941	0.068376	1

	1	Name	Age	<pre>Income(\$)</pre>	cluster
16	18	Dipika	0.823529	0.170940	2
17	19	Priyanka	0.882353	0.153846	2
18	20	Nick	1.000000	0.162393	2
19	21	Alia	0.764706	0.299145	2
20	22	Sid	0.882353	0.316239	2
21	21	Abdul	0.764706	0 111111	2

```
[14] km.cluster_centers_
```

```
array([[0.72268908, 0.8974359],
[0.1372549, 0.11633428],
[0.85294118, 0.2022792]])
```

<matplotlib.legend.Legend at 0x7f437d4c73a0>

Program 8: KNN ALGORITHM

Dataset used: Iris dataset

Algorithm:

- Select the number K of the neighbor
- o Calculate the Euclidean distance of K number of neighbors
- Take the K nearest neighbors as per the calculated Euclidean distance.
- Among these k neighbors, count the number of the data points in each category.
- Assign the new data points to that category for which the number of the neighbor is maximum.

```
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
def most common(lst):
    return max(set(lst), key=lst.count)
def euclidean(point, data):
    # Euclidean distance between points a & data
    return np.sqrt(np.sum((point - data)**2, axis=1))
class KNeighborsClassifier:
    def __init__(self, k=5, dist_metric=euclidean):
        self.k = k
        self.dist_metric = dist_metric
    def fit(self, X_train, y_train):
        self.X_train = X_train
        self.y_train = y_train
    def predict(self, X_test):
        neighbors = []
        for x in X_test:
            distances = self.dist_metric(x, self.X_train)
            y_sorted = [y for _, y in sorted(zip(distances, self.y_train))]
            neighbors.append(y sorted[:self.k])
        return list(map(most_common, neighbors))
```

```
def evaluate(self, X_test, y_test):
        y_pred = self.predict(X_test)
        accuracy = sum(y_pred == y_test) / len(y_test)
        return accuracy
iris = datasets.load_iris()
X = iris['data']
y = iris['target']
# Split data into train & test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# Preprocess data
ss = StandardScaler().fit(X_train)
X_train, X_test = ss.transform(X_train), ss.transform(X_test)
# Test knn model across varying ks
accuracies = []
ks = range(1, 30)
for k in ks:
    knn = KNeighborsClassifier(k=k)
    knn.fit(X_train, y_train)
    accuracy = knn.evaluate(X_test, y_test)
    accuracies.append(accuracy)
# Visualize accuracy vs. k
fig, ax = plt.subplots()
ax.plot(ks, accuracies)
ax.set(xlabel="k",
      ylabel="Accuracy",
      title="Performance of knn")
```

plt.show()

[(5-1 3.5 1.4 0.2] [4.9.3 1.40.2] (4.7 3.2 1.3 0.2] [4.6 3.1 1-5 0.2] [5.0 3-6 1.4 0.2] (6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8]] ((ast : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		K-nearest Neighbor Algorithm
Given 2 query instance X to be chaitied, Let XXX denote the K instances from train examples that are nearest to Xq. Return F (Xq) X	4	For each given training example (x, p(x)), and a example to the list training examples to the list training examples to the list training examples to the list
Cxamples that are nevert to xq. Return \$\frac{1}{4} \text{ (xq)} \text{ \frac{1}{2} \text{ (x;)}} \text{ (x;)} \\ \$\frac{2}{2} \text{ (xq)} \text{ \frac{1}{2} \text{ (x;)}} \\ \$\frac{2}{2} \text{ (xq)} \text{ (xq)} \\ \$\frac{2}{2} \text{ (xq)} \text{ (xq)} \\ \$\frac{2}{2} \text{ (xq)} \text{ (xq)} \\ \$\frac{2}{2} \text	4	
Return \$\frac{1}{4} \text{ (xg)} \times \frac{1}{4} \text{ (x)} \\ \$\frac{1}{4} \text{ (xg)} \text{ (xi)} \\ \$\frac{1}{4} (x		Let XI XX denote the K instance from Nan
\$\frac{1}{4} \text{Spale} \\ \text{OntPale}. \$\text{Spal} - \text{length} & \text{sepal} - \text{width} & \text{petal} - \text{length} & \text{setal} - \text{length} \\ \$\text{Spal} - \text{length} & \text{sepal} - \text{width} & \text{petal} - \text{length} & \text{setal} - \text{length} \\ \$\text{Upal} - \text{length} & \text{sepal} - \text{width} & \text{petal} - \text{length} & \text{setal} - \text{length} \\ \$\text{Upal} - \text{length} & \text{sepal} - \text{vision} \\ \$\text{Upal} - \text{length} & \text{sepal} - \text{length} \\ \$\text{Upal} - \text{length} & \text{sepal} - \text{length} \\ \$\text{length} - \text{length} & \text{length} - \text{length} \\ \$\text{length} - \text{length} & \text{length} - \text{length} - \text{length} \\ \$\text{length} - \text{length} - \text{length} -		examples that are nearest to xq.
\$\frac{1}{4} \text{Spale} \\ \text{OntPale}. \$\text{Spal} - \text{length} & \text{sepal} - \text{width} & \text{petal} - \text{length} & \text{setal} - \text{length} \\ \$\text{Spal} - \text{length} & \text{sepal} - \text{width} & \text{petal} - \text{length} & \text{setal} - \text{length} \\ \$\text{Upal} - \text{length} & \text{sepal} - \text{width} & \text{petal} - \text{length} & \text{setal} - \text{length} \\ \$\text{Upal} - \text{length} & \text{sepal} - \text{vision} \\ \$\text{Upal} - \text{length} & \text{sepal} - \text{length} \\ \$\text{Upal} - \text{length} & \text{sepal} - \text{length} \\ \$\text{length} - \text{length} & \text{length} - \text{length} \\ \$\text{length} - \text{length} & \text{length} - \text{length} - \text{length} \\ \$\text{length} - \text{length} - \text{length} -	y-	Return
Sepal- Ontrate. Sepal-length sepal-width petal-length retal-v [S-1 3.5 1.4 0.2] [4.9.3 1.40.2] [4.9.3 1.40.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] [5.0 3.6 1.4 0.2] [5.9.3 5.1.1.8] (ass : 0-Pris-sentosa 1-Bris Versicolor, 2-8x		The sur class
Sepal-length lepal-width petal-length Betal-u [[5-1 3.5 1.4 0.2] [4.9.3 1.40.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] [5.0 3.6 1.4 0.2] [5.9.3 5.(-1.8)] [6.2 3.4 5.4 2-3] [5.9.3 5.(-1.8)] [(ass : 0-Bris-Sentosa 1-Bris Versicolor, 2-8x		T (Xg) = Sii=1 + (N)
Sepal-length lepal-width petal-length Betal-u [[5-1 3.5 1.4 0.2] [4.9.3 1.40.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] [5.0 3.6 1.4 0.2] [5.9.3 5.(-1.8)] [6.2 3.4 5.4 2-3] [5.9.3 5.(-1.8)] [(ass : 0-Bris-Sentosa 1-Bris Versicolor, 2-8x		Sports
Sepal-length sepal-width petal-length retal-v [[5-1 3.5 1.4 0.2] [4.2.3 1.40.2] [4.4 3.2 1.8 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] [6.2 3.4 5.4 2.3] [5.9.3 5.1.1.8] [6.2 3.4 5.4 2.3] [5.9.3 5.1.1.8]		
[(S-1 3.5 1.4 0.2] [4.9.3 1.40.2] (4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] (6.2 3.4 5.4 9.3) [5.9.3 5.1.1.8] ((ass : 0-Bris-sentas 1-Bris Versicolor, 2-8x		CVISTRAL.
(4.7 3.2 1.3 0.2) [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2) [6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8)] ((ast : 0-Bris-Sentosa 1-Bris Versicolor, 2-8x		Sepal-length sepal-width petal-length Betal-n
(4.9.3 1.40.2) (4.7 3.2 1.3 0.2) [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2) 		
[5.0 3.6 1.4 0.2] [5.0 3.6 1.4 0.2] (6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8]] ((ast : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[[S-1 3.5 1.4 0.2]
[5.0 3.6 1.4 0-2] (6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8] ((ast : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[4.9.3 1.40.2]
(6.2 3.4 5.4 2.3) [5.9.3 5.1.1.8]] ((ast : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[4.9.3 1.40.2]
[5,9.3 5.1.1.8]] ((ass : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[4.a.3 1.40.2] (4.7 3.2 1.8 0.2] [4.6 3.1 1.5 0.2]
[5.9.3 5.1.1.8]] ((ass : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[4.a.3 1.40.2] (4.7 3.2 1.8 0.2] [4.6 3.1 1.5 0.2]
[5,9,3 5.1.1.8]] ((ass : 0-Bris-sentosa 1-Bris Versicolor, 2-8x		[4.a.3 1.40.2] (4.7 3.2 1.8 0.2] [4.6 3.1 1.5 0.2]
Class: O-Bris-sentosa, 1-Bris Versicolor, 2-8x		[4.4.3 1.40.2] (4.7 3.2 1.8 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2]
Vivaini ca		[4.9.3 1.40.2] (4.7 3.2 1.8 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2]
Vivaini ca		[4.9.3 1.40.2] (4.7 3.2 1.8 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2]
Virginica [000 0011111222 22]		$ \begin{bmatrix} 4.4.3 & 1.40.2 \\ 4.7 & 3.2 & 1.8 & 0.2 \end{bmatrix} \begin{bmatrix} 4.6 & 3.1 & 1.5 & 0.2 \end{bmatrix} \begin{bmatrix} 5.0 & 3.6 & 1.4 & 0.2 \end{bmatrix} \begin{bmatrix} 5.0 & 3.6 & 1.4 & 0.2 \end{bmatrix} \begin{bmatrix} 5.9 & 3.4 & 5.4 & 9.3 \end{bmatrix} \begin{bmatrix} 5.9.3 & 5.1.1.8 \end{bmatrix} $
[000 00111 11222 22]		[4.9.3 1.40.2] (4.7 3.2 1.8 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2]
		[4.9.3 1.40.2] (4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] (6.2 3.4 5.4 8.3) [5.9.3 5.1.1.8] ((ast : 0-Bris-Sentosa 1-Bris Versicolor, 2-8r) Vivainica
		[4.7 3.2 1.2 0.2] [4.7 3.2 1.3 0.2] [4.6 3.1 1.5 0.2] [5.0 3.6 1.4 0.2] [6.2 3.4 5.4 2.3] [5.9.3 5.1.1.8] [(ast : 0-Bris-sentose 1-Bris Versicolor, 2-8r

Contraion (0		28. 3 80	4 500
50 10	DJ	Wal III	y 1s	diam'r.
	4),	111111111	7	recommenda.
	out with	11.11.13	Nouth.	2
Activacy Met	vice		<i>n</i>	hipport
Track of	Precision	Recall	H- score	Sugart
- Ves - 12-15	of a section	1 July 3 8	1-01/02	20
0	1.00	1:00	1:00	
1	0.91	1.00	0.95	20
2	1:00	0.93	०.९न	15
1	N/2 11		-	
a. Imtal	0.98	0.98	0.95	45
avgltotal				31.113
			/-	
			when >	. 6
		0	Pro	

Program 9: Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.

Algorithm for k means clustering:

- Initialize k means with random values
- For a given number of iterations:
- Iterate through items:
- Find the mean closest to the item by calculating the euclidean distance of the item with each of the means
- Assign item to mean
- Update mean by shifting it to the average of the items in that clusters

Algorithm for EM algorithm:

- The very first step is to initialize the parameter values. Further, the system is provided with incomplete observed data with the assumption that data is obtained from a specific model.
- This step is known as Expectation or E-Step, which is used to estimate or guess the values of the missing or incomplete data using the observed data. Further, E-step primarily updates the variables.
- This step is known as Maximization or M-step, where we use complete data obtained from the 2nd step to update the parameter values. Further, M-step primarily updates the hypothesis.
- The last step is to check if the values of latent variables are converging or not.

Dataset: Iris dataset

```
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.cluster import KMeans
import sklearn.metrics as sm
import pandas as pd
import numpy as np

iris = datasets.load_iris()

X = pd.DataFrame(iris.data)
X.columns = ['Sepal_Length', 'Sepal_Width', 'Petal_Length', 'Petal_Width']

y = pd.DataFrame(iris.target)
y.columns = ['Targets']

model = KMeans(n_clusters=3)
model.fit(X)

plt.figure(figsize=(14,7))
colormap = np.array(['red', 'lime', 'black'])
```

```
# Plot the Original Classifications
plt.subplot(1, 2, 1)
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[y.Targets], s=40)
plt.title('Real Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
# Plot the Models Classifications
plt.subplot(1, 2, 2)
plt.scatter(X.Petal Length, X.Petal Width, c=colormap[model.labels], s=40)
plt.title('K Mean Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of K-Mean: ',sm.accuracy_score(y, model.labels_))
print('The Confusion matrixof K-Mean: ',sm.confusion_matrix(y, model.labels_))
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
scaler.fit(X)
xsa = scaler.transform(X)
xs = pd.DataFrame(xsa, columns = X.columns)
#xs.sample(5)
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n components=3)
gmm.fit(xs)
y_gmm = gmm.predict(xs)
#y cluster gmm
```

```
plt.subplot(2, 2, 3)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y_gmm], s=40)
plt.title('EM Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')

print('The accuracy score of EM: ',sm.accuracy_score(y, y_gmm))
print('The Confusion matrix of EM: ',sm.confusion_matrix(y, y_gmm))
```


	By- Algorithm
¥	Expectation step (E step): 8t involves the estimation of all nussing values in dataset so that after campeleting this step, there should not be any russing value.
×	Maximuze step (M-Step): This step involves the Use of estimated data in E-stop and updating the parameter
	Repeal E step and M step until the convergence of
0	Enifialize Parameter Values. Further, the system is provioled with incomplete observered data with as humption that data is obtained from specific mode
	E-Step, which is used to estimate or guess the value of the missing data Ving the observered data.
3	Maxination step, where we use the complete data obtained from 2nd step to update Parameter values.
	The last step is to check if value of variables are covering or not.
*	8/ yes, stop Procus else repeat Until Convergence

4	$\int (x_2-x_1)^2+(y_2-y_1)^2$
	X = x co-ordinate of point 1
	y = y co-ordinate of point!
	X2 = 2 co-ordinate of pt 2
	Y2 = y co-ordinate of pt 2
	012 103

Program 10:Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select the appropriate data set for your experiment and draw graphs.

Algorithm:

1. F is approximated near Xq using a linear function:

$$\hat{f}(x) = w_0 + \sum_{u=1}^k w_u K_u(d(x_u, x))$$

2. Minimize the squared error:

$$E_3(x_q) \equiv \frac{1}{2} \sum_{x \in k \text{ nearest nbrs of } x_q} (f(x) - \hat{f}(x))^2 K(d(x_q, x))$$

$$\Delta w_j = \eta \sum_{x \in k \text{ nearest nbrs of } x_q} K(d(x_q, x)) (f(x) - \hat{f}(x)) a_j(x)$$

It is weighted because the contribution of each training example is weighted by its distance from the query point.

Dataset: tip.csv

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

[] def kernel(point,xmat, k):
    m,n = np.shape(xmat)
    weights = np.mat(np.eye((m)))
    for j in range(m):
        diff = point - X[j]
        weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
    return weights

[] def localWeight(point,xmat,ymat,k):
    wei = kernel(point,xmat,k)
    w = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
    return W
```

```
def localWeightRegression(xmat,ymat,k):
        m,n = np.shape(xmat)
        ypred = np.zeros(m)
        for i in range(m):
            ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
        return ypred
[ ] def graphPlot(X,ypred):
        sortindex = X[:,1].argsort(0)
        xsort = X[sortindex][:,0]
        fig = plt.figure()
        ax = fig.add subplot(1,1,1)
        ax.scatter(bill,tip, color='green')
        ax.plot(xsort[:,1],ypred[sortindex], color = 'red', linewidth=5)
        plt.xlabel('Total bill')
        plt.ylabel('Tip')
        plt.show();
data = pd.read_csv('/content/tips.csv')
    bill = np.array(data.total_bill)
    tip = np.array(data.tip)
    mbill = np.mat(bill)
    mtip = np.mat(tip)
    m= np.shape(mbill)[1]
    one = np.mat(np.ones(m))
    X = np.hstack((one.T,mbill.T))
```

increase k to get smooth curves

graphPlot(X,ypred)

ypred = localWeightRegression(X,mtip,3)

