Mai 2017 GROUPE : 32

Partiel n°2 de Physique

Les calculatrices et les documents ne sont pas autorisés. Réponses exclusivement sur le sujet

Exercice 1 (5 points) Les parties 1 et 2 sont indépendantes

1- Un calorimètre de capacité négligeable contient une masse m_1 = 200g d'eau à la température initiale θ_1 = 70°C. On y place un glaçon de masse m_2 = 80g sortant du congélateur à la température θ_2 = -20°C. Exprimer les quantités de chaleurs échangées Q par l'eau et le glaçon, en déduire la température d'équilibre θ_e , sachant que le glaçon fond dans sa totalité.

Données: Chaleur latente de fusion de la glace: L_f = 300.10³ Jkg⁻¹.

Capacité massique de l'eau : $c_e = 4.10^3 \text{JK}^{-1} \text{kg}^{-1}$.

Capacité massique de la glace : $c_g = 2.10^3 \text{JK}^{-1} \text{kg}^{-1}$

20

Q₁=m,
$$G_{\mathbf{p}}(Q_{e}-Q_{1})$$
 $\leq Q_{1}=0$ et $Q_{1}=0$
Q₂= m_{2} $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $Q_{1}+Q_{2}+Q_{3}+Q_{1}=0$
Q₃= m_{2} $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $m_{1}C_{e}Q_{e}-m_{1}C_{e}Q_{1}+m_{2}C_{e}Q_{e}=-m_{2}G_{\mathbf{p}}(Q_{2})-m_{2}U_{\mathbf{p}}$
Q₃= m_{2} $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{2})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{e}-Q_{1})$ $G_{\mathbf{p}}(Q_{1}-Q_{1})$ G_{\mathbf

$$O_{e} \cdot \frac{(-m_{z} \cdot G_{g}(-\partial_{z}) - nm_{z} \cdot l)}{(e(m_{i} + m_{z}))} + m_{i}(e \cdot O_{i})$$

le resultat doit être positif, it doity avoir une enem de sque

2- Un calorimètre contient une masse $m_1 = 150g$ d'eau. La température initiale de l'ensemble out $\theta_1 = 20^{\circ} C$. On ajoute une masse $m_2 = 250g$ d'eau à la température $\theta_2 = 70^{\circ} C$. Calcule la capacité thermique C_{cal} du calorimètre sachant que la température d'équilibre est $\theta_0 = 50^{\circ} C$. On donne la capacité massique de l'eau : $C_0 = 4.10^{3} J K^{-1} kg^{-1}$.

Exercice 2 (7 points) Les questions 1, 2 et 3 sont indépendantes

1- a) Exprimer l'énergie élémentaire dU et l'enthalpie élémentaire dH d'un gaz parfait.
 b) en déduire la relation de Meyer, donnée par: C_ρ - C_ν = nR, valable pour un gaz parfait.

- 2- a) Entoncer le premier principe de la thermodynamique donnant d' en fonction des grandeurs élémentaires $\delta \mathbb{Q}$ en $\delta \mathbb{W}$.
 - b) Utiliser de principe et la lin de Meser pour un que parfair, pour montrer que la quantité élémentaire de chilleur échangese pour n moiles de que parfait à pression constante s'écrit.

$$\delta \mathbb{Q}_p = n.c_p.d\mathbb{T} \ \, (\text{On donne} \ \, \frac{d\mathcal{U}}{\mathcal{V}} = \frac{d\mathbb{T}}{\mathbb{T}} \text{ (In reque la pression est constante)}.$$

- 3- Exprimer le travail des forces de pression W, dans les cas suivants :
 - a) Détente isobare à pression P_A, du volume V_A vers le volume V_B.
 - b) Compression adiabatique du volume V_A vers le volume V_B en fonction des températures T_A , T_B et de la capacité molaire à volume constant c_a .

Exercice 3 (8 points)

Un moteur thermique fonctionne selon le Cycle de Beau de Rochas : n moles de gaz parfait décrivent le cycle ABCDA représenté sur la figure ci-dessous.

Les transformations DA et BC sont des adiabatiques alors que les transformations CD et AB sont des isochores. On désigne par $\mathbf{a} = \mathbf{V_2}/\mathbf{V_1}$ le rapport des volumes (appelé le taux de compression).

1- Utiliser la loi de Laplace pour montrer les relations suivantes :

$$T_B(V_1)^{\gamma-1} = T_C(V_2)^{\gamma-1}$$

 $T_A(V_1)^{\gamma-1} = T_D(V_2)^{\gamma-1}$

2- Exprimer les quantités de chaleur Q, les travaux des forces de pression W et les variations d'énergie interne ΔU pour chacune des transformations du cycle, en fonction des températures.

Transf	W AU CO		
- 3	W	SU	Q
40 sochore 74: Vo: V.	w=- Spalv	DU- 20. W	of mer (TB-TA)
	W=D	SU = QAB = MCV (TB-7A)	
edicatalique	W=- JEPAV	W. Q.W	O: MC (Te. TB)
	BC BC (1c-70)	AJX.	Q=0 (actial
	W= DU	Mer DT.	BC.
Cos sochure	W=- SPOIV	DU = 02 . W	Cl = MCV (TD.TC)
Vc=10-42	W:O	NU= mcv(TB-Tc)	
	C ^A	DU= Clay Wy	82 = mcx (TA-76)
Drt actialatique	W=- Pdv	DO:	
	SA = - MCUTA-TB	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Con=o (ad

3- a) Exprimer le rendement de ce moteur donné par : $r = \frac{Q_{AB} + Q_{CD}}{Q_{AB}}$, en fonction des températures.

QaB = mcvBT

Qcb = mcvBT

$$a = \frac{mcv(T_B - T_A) + mcv(T_B - T_C)}{mcv(T_B - T_A)} = \frac{1}{T_B - T_A} + \frac{7c - T_B}{T_B - T_A}$$

The part of the part

- b) Retrouver une expression de ce rendement en fonction de \mathbf{a} et de γ . (On pose $\mathbf{a} = \mathbf{V_2}/\mathbf{V_1}$) Indice de calcul: $\frac{T_C T_D}{T_B T_A} = \frac{T_D}{T_A} = \frac{T_C}{T_B}$
- c) Faire le calcul numérique pour a = 9; $\gamma = 1,4$. On donne : $9^{-0,4} \approx 0,4$

$$\frac{1 - \frac{T_{C} - T_{D}}{T_{B} - T_{A}}}{T_{B} - T_{A}} = 1 - \frac{T_{A} \left(\frac{V_{i}}{V_{c}}\right)^{\delta - 1}}{T_{A}} = 1 - \frac{1}{T_{A}} \left(\frac{V_{i}}{V_{c}}\right)^{\delta - 1}}{T_$$