

Cálculo I - Primeira Prova 03/05/2022

Nome:				

Nome:	_
Todas as questões devem ser justificadas através de cálculos e/ou argumentação.	
Utilize resultados estudados na disciplina em todas as questões. BOA PROVA!	!!
Questão 01 (6,0): Considere uma função $y = f(x)$ que satisfaça todas as condições	abaixo:
$f(0) = 0, f(1) = 2, f(-1) = -2, \lim_{x \to \infty} f(x) = 1, \lim_{x \to -\infty} f(x) = -1, \lim_{x \to -1^+} f(x) = -\infty, \lim_{x \to 1^-} f(x) = \infty \text{ e } \lim_{x \to 1^+} f(x) = 3$	$\underset{-1}{n} f(x) = -3,$
Sobre essa função e seu gráfico são feitas algumas afirmativas. Classifique cada u VERDADEIRA ou FALSA, justificando:	ıma delas como
(a) O gráfico de f tem exatamente três assíntotas, sendo duas horizontais e uma vert	ical.
(b) Podemos afirmar que f é uma função contínua em $x = 0$.	

Questão 02 (6,0): Em um dia frio de inverno, uma bebida quente é levada para fora de casa, em que
a temperatura do ar é $-5^\circ\mathrm{C}$. De acordo com a Lei do Resfriamento de Newton, a temperatura T de
uma bebida (em $^{\circ}$ C) nesta situação varia em função do tempo t (em minutos) segundo a função

$$T(t) = -5 + Ae^{-kt}$$

Em que A e k são constantes. Suponha que a bebida ao ser levada para fora de casa seja 80° C, e que 20 minutos depois seja 25° C.

- (b) Calcule a temperatura da bebida após meia hora.
- (c) Calcule em que instante a temperatura chega a 0°C.

$$g(x) = \begin{cases} (a-b)cos(2x) & se \ x > 0 \\ be^x - a \, sen(3x) & se \ x < 0 \\ 5 & se \ x = 0 \end{cases}$$
 seja contínua em $x = 0$.

Questão 04 (6,0): Uma pessoa na margem de um rio vê, sob um ângulo de $\frac{\pi}{3}$ rad, o topo de uma				
torre na margem oposta. Quando ela se afasta 40 metros perpendicularmente à margem do rio, este				
ângulo passa a ser de $\frac{\pi}{6}$ rad.				
	Faça um esboço que represente esta situação.			
(b)	Calcule a largura do rio e a altura da torre.			

Questão 05 (6,0): Verifique (usando conceitos estudados em C1) que no ponto em que $x=1$ na parábola de equação $y=x-x^2$ a reta tangente é paralela à reta que passa pelos pontos (0,0) e		
(2,-2).		