Long Directed Detours: Reduction to 2 Disjoint Paths

Ashwin Jacob, Michał Włodarczyk, Meirav Zehavi

Ref: Ignacy Buczek, Aleksander Katan

Fixed Parameter Tractable: $f(k)n^{O(1)}$

ullet Czy w wejściowym grafie G istnieje klika wielkości k?

- ullet Czy w wejściowym grafie G istnieje klika wielkości k?
- \bullet Czy wejściowa maszyna Turinga zatrzymuje się po co najwyżej k krokach?

- ullet Czy w wejściowym grafie G istnieje klika wielkości k?
- \bullet Czy wejściowa maszyna Turinga zatrzymuje się po co najwyżej k krokach?
- ullet Czy w wejściowym grafie G znajduje się ścieżka długości dokładnie k?

- ullet Czy w wejściowym grafie G istnieje klika wielkości k?
- ullet Czy wejściowa maszyna Turinga zatrzymuje się po co najwyżej k krokach?
- ullet Czy w wejściowym grafie G znajduje się ścieżka długości dokładnie k?
- ullet Czy między danymi wierzchołkami s oraz t w grafie G istnieje ścieżka długości dokładnie $\mathrm{dist}_G(s,t)+k$?

- ullet Czy w wejściowym grafie G istnieje klika wielkości k?
- ullet Czy wejściowa maszyna Turinga zatrzymuje się po co najwyżej k krokach?
- ullet Czy w wejściowym grafie G znajduje się ścieżka długości dokładnie k?
- ullet Czy między danymi wierzchołkami s oraz t w grafie G istnieje ścieżka długości dokładnie $\mathrm{dist}_G(s,t)+k$?
- ullet Czy między danymi wierzchołkami s oraz t w grafie G istnieje ścieżka długości przynajmniej dist $_G(s,t)+k$?

p-DISJOINT PATHS

Wejście: Graf G oraz p par terminali

Pytanie: Czy w G istnieje p rozłącznych wierzchołkowo ścieżek (poza końcami), które łączą pary terminali ze sobą?

p-DISJOINT PATHS

Wejście: Graf G oraz p par terminali

Pytanie: Czy w G istnieje p rozłącznych wierzchołkowo ścieżek (poza końcami), które łączą pary terminali ze sobą?

p-DISJOINT PATHS

Wejście: Graf G oraz p par terminali

Pytanie: Czy w G istnieje p rozłącznych wierzchołkowo ścieżek (poza końcami), które łączą pary terminali ze sobą?

LONGEST (s, t)-DETOUR

Wejście: Skierowany graf G oraz para wierzchołków (s,t)

Pytanie: Czy w G istnieje ścieżka z s do t długości przynajmniej distG(s,t)+k?

Tak, jeżeli w G da się rozwiązać 3-DISJOINT PATHS w czasie wielomianowym.

p-DISJOINT PATHS

Wejście: Graf G oraz p par terminali

Pytanie: Czy w G istnieje p rozłącznych wierzchołkowo ścieżek (poza końcami), które łączą pary terminali ze sobą?

LONGEST (s, t)-DETOUR

Wejście: Skierowany graf G oraz para wierzchołków (s,t)

Pytanie : Czy w G istnieje ścieżka z s do t długości przynajmniej distG(s,t)+k?

Tak, jeżeli w G da się rozwiązać 3-DISJOINT PATHS w czasie wielomianowym.

Tak, jeżeli w G da się rozwiązać 2-DISJOINT PATHS w czasie wielomianowym.

Trochę szczegółów

Trochę szczegółów

Trochę szczegółów

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

$$P'_{u,x} \cap P_{z,t} = \varnothing$$

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

$$P'_{u,x} \cap P_{z,t} = \varnothing$$

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

$$P'_{u,x} \cap P_{z,t} = \varnothing$$

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

$$P'_{u,x} \cap P_{z,t} = \varnothing$$

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

$$P'_{u,x} \cap P_{z,t} = \varnothing$$

$$j_2 \leqslant j_3 \qquad j_1 < j_2$$

$$egin{array}{c} s
ightarrow u \ u
ightarrow x: (k) \ x
ightarrow y \ y
ightarrow v: (k) \end{array} \qquad egin{array}{c} P'_{u,x} \cap P_{z,t} = \varnothing \ j_2 \leqslant j_3 & j_1 < j_2 \end{array}$$

 $2k-j_2$

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

$$P'_{u,x} \cap P_{z,t} = \varnothing$$

 $j_2 \leqslant j_3 \qquad j_1 < j_2$

 $2k - j_2$ $j_2 - j_1$

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

 L_0

$$P'_{u,x} \cap P_{z,t} = \varnothing$$

 $j_2 \leqslant j_3 \qquad j_1 < j_2$

Lemat 4

$$s \rightarrow u$$
 $u \rightarrow x : (k)$
 $x \rightarrow y$
 $y \rightarrow v : (k)$
 $v \rightarrow z : (2k)$
 $z \rightarrow t$

$$P'_{u,x} \cap P_{y,z} = \emptyset \Longrightarrow P'_{u,x} \cap P_{x,y} \subseteq \{x\}$$

$$s \rightarrow u$$
 $u \rightarrow x : (k)$
 $x \rightarrow y$
 $y \rightarrow v : (k)$
 $v \rightarrow z : (2k)$
 $z \rightarrow t$

$$P'_{u,x} \cap P_{y,z} = \emptyset \Longrightarrow P'_{u,x} \cap P_{x,y} \subseteq \{x\}$$

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

$$P'_{u,x} \cap P_{y,z} = \emptyset \Longrightarrow P'_{u,x} \cap P_{x,y} \subseteq \{x\}$$

Obserwacja:

$$P'_{u,x} \cap P_{y,z} = \emptyset \Longrightarrow P'_{u,x} \cap P_{x,t} \subseteq \{x\}$$

$$s \rightarrow u$$
 $u \rightarrow x : (k)$
 $x \rightarrow y$
 $y \rightarrow v : (k)$
 $v \rightarrow z : (2k)$
 $z \rightarrow t$

 $egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$

1: Zgadnij u, x, v.

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

- 1: Zgadnij u, x, v.
- 2: Znajdź najkrótszą $P_{s,u}'$.

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

- 1: Zgadnij u, x, v.
- 2: Znajdź najkrótszą $P_{s,u}'$.
- 3: Znajdź $P'_{u,x}$ długości k takie, że $P'_{u,x} \cap P_{y,z} = \emptyset$. \leftarrow ???

$$egin{array}{c} s
ightarrow u \ u
ightarrow x : (k) \ x
ightarrow y \ y
ightarrow v : (k) \ v
ightarrow z : (2k) \ z
ightarrow t \end{array}$$

- 1: Zgadnij u, x, v.
- 2: Znajdź najkrótszą $P_{s,u}'$.
- 3: Znajdź $P'_{u,x}$ długości k takie, że $P'_{u,x} \cap P_{y,z} = \emptyset$. \leftarrow ???
- 4: Znajdź rozłączne $P'_{x,v}$ i $P'_{v,t}$. \leftarrow 2-disjoint paths

Koślawe uniwersalne rodziny

$$\mathbf{F} \subseteq 2^U$$

 \mathbf{F} jest (n, p, q)-koślawą uniwersalną rodziną nad U (U rozmiaru n), jeżeli dla dowolnych

$$A \subseteq \binom{U}{\leqslant p} \qquad B \subseteq \binom{U-A}{\leqslant q}$$

istnieje $F \in \mathbf{F}$, że:

- \bullet $A \subseteq F$
- $B \cap F = \emptyset$

Koślawe uniwersalne rodziny

$$\mathbf{F} \subseteq 2^U$$

 \mathbf{F} jest (n, p, q)-koślawą uniwersalną rodziną nad U (U rozmiaru n), jeżeli dla dowolnych

$$A \subseteq \binom{U}{\leqslant p} \qquad B \subseteq \binom{U-A}{\leqslant q}$$

istnieje $F \in \mathbf{F}$, że:

- \bullet $A \subseteq F$
- $B \cap F = \emptyset$

Koślawe uniwersalne rodziny

$$\mathbf{F} \subseteq 2^U$$

 ${f F}$ jest (n,p,q)-koślawą uniwersalną rodziną nad U (U rozmiaru n), jeżeli dla dowolnych

$$A \subseteq \binom{U}{\leqslant p} \qquad B \subseteq \binom{U-A}{\leqslant q}$$

istnieje $F \in \mathbf{F}$, że:

- \bullet $A \subseteq F$
- \bullet $B \cap F = \emptyset$

$$\mathbf{F} \subseteq 2^U$$

 ${f F}$ jest (n,p,q)-koślawą uniwersalną rodziną nad U (U rozmiaru n), jeżeli dla dowolnych

$$A \subseteq \binom{U}{\leqslant p} \qquad B \subseteq \binom{U-A}{\leqslant q}$$

istnieje $F \in \mathbf{F}$, że:

- \bullet $A \subseteq F$
- $B \cap F = \emptyset$

$$\mathbf{F} \subseteq 2^U$$

 \mathbf{F} jest (n, p, q)-koślawą uniwersalną rodziną nad U (U rozmiaru n), jeżeli dla dowolnych

$$A \subseteq \binom{U}{\leqslant p} \qquad B \subseteq \binom{U-A}{\leqslant q}$$

istnieje $F \in \mathbf{F}$, że:

- \bullet $A \subseteq F$
- \bullet $B \cap F = \emptyset$

$$\begin{array}{ll} \text{Cel: } P'_{u,x} \text{ długości } k \text{ takie,} & |V(P_{y,z})| \leqslant 3k+1 \\ \dot{\text{ze}} \ P'_{u,x} \cap P_{y,z} = \emptyset & |V(P_{u,x})| \leqslant k+1 \end{array}$$

$$|V(P_{y,z})| \leq 3k + 1$$
$$|V(P_{u,x})| \leq k + 1$$

$$\mathbf{F} \subseteq 2^U$$

 ${f F}$ jest (n,p,q)-koślawą uniwersalną rodziną nad U (U rozmiaru n), jeżeli dla dowolnych

$$A \subseteq \binom{U}{\leqslant p} \qquad B \subseteq \binom{U-A}{\leqslant q}$$

istnieje $F \in \mathbf{F}$, że:

- \bullet $A \subseteq F$
- \bullet $B \cap F = \emptyset$

Cel:
$$P'_{u,x}$$
 długości k takie, $|V(P_{y,z})| \leq 3k+1$ że $P'_{u,x} \cap P_{y,z} = \emptyset$ $|V(P_{u,x})| \leq k+1$

Weźmy (n,k+1,3k+1)-koślawą rodzinę na V(G)

$$\binom{4k+2}{k+1} \cdot 2^{\mathsf{o}(4k+2)} \cdot \log n$$

$$\mathbf{F} \subseteq 2^U$$

 ${f F}$ jest (n,p,q)-koślawą uniwersalną rodziną nad U (U rozmiaru n), jeżeli dla dowolnych

$$A \subseteq \binom{U}{\leqslant p} \qquad B \subseteq \binom{U-A}{\leqslant q}$$

istnieje $F \in \mathbf{F}$, że:

- \bullet $A \subseteq F$
- \bullet $B \cap F = \emptyset$

Cel:
$$P'_{u,x}$$
 długości k takie, $|V(P_{y,z})| \leq 3k+1$ że $P'_{u,x} \cap P_{y,z} = \emptyset$ $|V(P_{u,x})| \leq k+1$

Weźmy (n,k+1,3k+1)-koślawą rodzinę na V(G)

$$\binom{4k+2}{k+1} \cdot 2^{\mathsf{o}(4k+2)} \cdot \log n$$

$$\mathbf{F} \subseteq 2^U$$

 \mathbf{F} jest (n, p, q)-koślawą uniwersalną rodziną nad U (U rozmiaru n), jeżeli dla dowolnych

$$A \subseteq \binom{U}{\leqslant p} \qquad B \subseteq \binom{U-A}{\leqslant q}$$

istnieje $F \in \mathbf{F}$, że:

- \bullet $A \subseteq F$
- \bullet $B \cap F = \emptyset$

Cel:
$$P'_{u,x}$$
 długości k takie, $|V(P_{y,z})| \leq 3k+1$ że $P'_{u,x} \cap P_{y,z} = \emptyset$ $|V(P_{u,x})| \leq k+1$

Weźmy (n, k+1, 3k+1)-koślawą rodzinę na V(G)

$$\binom{4k+2}{k+1} \cdot 2^{\mathsf{o}(4k+2)} \cdot \log n$$

$$\mathbf{F} \subseteq 2^U$$

 \mathbf{F} jest (n, p, q)-koślawą uniwersalną rodziną nad U (U rozmiaru n), jeżeli dla dowolnych

$$A \subseteq \binom{U}{\leqslant p} \qquad B \subseteq \binom{U-A}{\leqslant q}$$

istnieje $F \in \mathbf{F}$, że:

- \bullet $A \subseteq F$
- \bullet $B \cap F = \emptyset$

Cel:
$$P'_{u,x}$$
 długości k takie, $|V(P_{y,z})| \leq 3k+1$ że $P'_{u,x} \cap P_{y,z} = \emptyset$ $|V(P_{u,x})| \leq k+1$

Weźmy (n, k+1, 3k+1)-koślawą rodzinę na V(G)

$$\binom{4k+2}{k+1} \cdot 2^{\mathsf{o}(4k+2)} \cdot \log n$$

- 1: Sprawdź, czy istnieje ścieżka z s do t, jeżeli nie, zwróć NIE.
- 2: Jeżeli k = 0, zwróć TAK.
- 3: **for** $l \in [k, 2k 1]$ **do**
- 4: Uruchom EXACT (s,t)-DETOUR z parametrem l. Jeżeli algorytm, zwróci TAK, zwróć TAK.
- 5: end for

- 6: Oblicz L_i zbiory wierzchołków w odległości i od s. Ustal r jako maksymalną odległość.
- 7: Skonstruuj (n, k + 1, 3k + 1)-koślawą rodzinę uniwersalną \mathbf{F} nad V(G).
- 8: for $F \in \mathbf{F}$ do
- 9: for $p \in [r]$ i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do
- 10: Znajdź najkrótszą (s, u)-ścieżkę P_1 .
- 11: Znajdź (u,x)-ścieżkę P_2 o długości k w grafie $G[F \cap \bigcup_{i \geqslant p} L_i]$.
- 12: Jeżeli w $G (V(P_1) \cup V(P_2) \{x\})$ istnieje (x,t)-ścieżka przech. przez v, zwróć TAK.
- 13: **end for**
- **14**: **end for**
- 15: Zwróć NIE.

S

•

t.

- 6: Oblicz L_i zbiory wierzchołków w odległości i od s. Ustal r jako maksymalną odległość.
- 7: Skonstruuj (n, k + 1, 3k + 1)-koślawą rodzinę uniwersalną \mathbf{F} nad V(G).
- 8: for $F \in \mathbf{F}$ do
- 9: for $p \in [r]$ i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do
- 10: Znajdź najkrótszą (s, u)-ścieżkę P_1 .
- 11: Znajdź (u,x)-ścieżkę P_2 o długości k w grafie $G[F \cap \bigcup_{i \ge p} L_i]$.
- 12: Jeżeli w $G (V(P_1) \cup V(P_2) \{x\})$ istnieje (x,t)-ścieżka przech. przez v, zwróć TAK.
- 13: **end for**
- 14: end for
- 15: Zwróć NIE.

- 6: Oblicz L_i zbiory wierzchołków w odległości i od s. Ustal r jako maksymalną odległość.
- 7: Skonstruuj (n, k + 1, 3k + 1)-koślawą rodzinę uniwersalną \mathbf{F} nad V(G).
- 8: for $F \in \mathbf{F}$ do
- 9: for $p \in [r]$ i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do
- 10: Znajdź najkrótszą (s, u)-ścieżkę P_1 .
- 11: Znajdź (u,x)-ścieżkę P_2 o długości k w grafie $G[F \cap \bigcup_{i \geqslant p} L_i]$.
- 12: Jeżeli w $G (V(P_1) \cup V(P_2) \{x\})$ istnieje (x,t)-ścieżka przech. przez v, zwróć TAK.
- 13: end for
- 14: end for
- 15: Zwróć NIE.

- 6: Oblicz L_i zbiory wierzchołków w odległości i od s. Ustal r jako maksymalną odległość.
- 7: Skonstruuj (n, k + 1, 3k + 1)-koślawą rodzinę uniwersalną \mathbf{F} nad V(G).
- 8: for $F \in \mathbf{F}$ do
- 9: for $p \in [r]$ i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do
- 10: Znajdź najkrótszą (s, u)-ścieżkę P_1 .
- 11: Znajdź (u, x)-ścieżkę P_2 o długości k w grafie $G[F \cap \bigcup_{i \ge p} L_i]$.
- 12: Jeżeli w $G (V(P_1) \cup V(P_2) \{x\})$ istnieje (x,t)-ścieżka przech. przez v, zwróć TAK.
- 13: **end for**
- 14: end for
- 15: Zwróć NIE.

- 6: Oblicz L_i zbiory wierzchołków w odległości i od s. Ustal r jako maksymalną odległość.
- 7: Skonstruuj (n, k+1, 3k+1)-koślawą rodzinę uniwersalną ${\bf F}$ nad V(G).
- 8: for $F \in \mathbf{F}$ do
- 9: for $p \in [r]$ i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do
- 10: Znajdź najkrótszą (s, u)-ścieżkę P_1 .
- 11: Znajdź (u, x)-ścieżkę P_2 o długości k w grafie $G[F \cap \bigcup_{i \geqslant p} L_i]$.
- 12: Jeżeli w $G (V(P_1) \cup V(P_2) \{x\})$ istnieje (x,t)-ścieżka przech. przez v, zwróć TAK.
- 13: end for
- 14: end for
- 15: Zwróć NIE.

- 6: Oblicz L_i zbiory wierzchołków w odległości i od s. Ustal r jako maksymalną odległość.
- 7: Skonstruuj (n, k + 1, 3k + 1)-koślawą rodzinę uniwersalną \mathbf{F} nad V(G).
- 8: for $F \in \mathbf{F}$ do
- 9: for $p \in [r]$ i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do
- 10: Znajdź najkrótszą (s, u)-ścieżkę P_1 .
- 11: Znajdź (u,x)-ścieżkę P_2 o długości k w grafie $G[F \cap \bigcup_{i \geqslant p} L_i]$.
- 12: Jeżeli w $G (V(P_1) \cup V(P_2) \{x\})$ istnieje (x,t)-ścieżka przech. przez v, zwróć TAK.
- 13: end for
- 14: end for
- 15: Zwróć NIE.

- 6: Oblicz L_i zbiory wierzchołków w odległości i od s. Ustal r jako maksymalną odległość.
- 7: Skonstruuj (n, k+1, 3k+1)-koślawą rodzinę uniwersalną ${\bf F}$ nad V(G).
- 8: for $F \in \mathbf{F}$ do
- 9: for $p \in [r]$ i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do
- 10: Znajdź najkrótszą (s, u)-ścieżkę P_1 .
- 11: Znajdź (u,x)-ścieżkę P_2 o długości k w grafie $G[F \cap \bigcup_{i \geqslant p} L_i]$.
- 12: Jeżeli w $G (V(P_1) \cup V(P_2) \{x\})$ istnieje (x,t)-ścieżka przech. przez v, zwróć TAK.
- 13: **end for**
- 14: end for
- 15: Zwróć NIE.

- 6: Oblicz L_i zbiory wierzchołków w odległości i od s. Ustal r jako maksymalną odległość.
- 7: Skonstruuj (n, k + 1, 3k + 1)-koślawą rodzinę uniwersalną \mathbf{F} nad V(G).
- 8: for $F \in \mathbf{F}$ do
- 9: for $p \in [r]$ i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do
- 10: Znajdź najkrótszą (s, u)-ścieżkę P_1 .
- 11: Znajdź (u,x)-ścieżkę P_2 o długości k w grafie $G[F \cap \bigcup_{i \geqslant p} L_i]$.
- 12: Jeżeli w $G (V(P_1) \cup V(P_2) \{x\})$ istnieje (x,t)-ścieżka przech. przez v, zwróć TAK.
- 13: **end for**
- 14: end for
- 15: Zwróć NIE.

Złożoność

3: **for**
$$l \in [k, 2k - 1]$$
 do

4: EXACT
$$(s,t)$$
-DETOUR z parametrem l

7: Konstrukcja
$$\mathbf{F}$$
, czyli $(n, k+1, 3k+1)$ -koślawej rodziny uniwersalnej

8: for
$$F \in \mathbf{F}$$
 do

9: for
$$p \in [r]$$
 i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do

11: EXACT
$$k - (u, x)$$
-PATH

$$6.745^k n^{O(1)}$$

$$(\frac{256}{27})^k \cdot 2^{\mathsf{o}(k)} \cdot n^2$$

$$4.884^k n^{O(1)}$$

$$n^{O(1)}$$

Złożoność

3: **for**
$$l \in [k, 2k - 1]$$
 do

4: EXACT
$$(s,t)$$
-DETOUR z parametrem l

$$6.745^k n^{O(1)}$$

7: Konstrukcja
$$\mathbf{F}$$
, czyli $(n, k+1, 3k+1)$ -koślawej rodziny uniwersalnej

$$(\frac{256}{27})^k \cdot 2^{\mathsf{o}(k)} \cdot n^2$$

8: for
$$F \in \mathbf{F}$$
 do

9: for
$$p \in [r]$$
 i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do

11: EXACT
$$k - (u, x)$$
-PATH

$$4.884^k n^{O(1)}$$

12: 2-DISJOINT PATHS

$$n^{O(1)}$$

Złożoność

3: **for**
$$l \in [k, 2k - 1]$$
 do

4: EXACT
$$(s,t)$$
-DETOUR z parametrem l

7: Konstrukcja
$$\mathbf{F}$$
, czyli $(n, k+1, 3k+1)$ -koślawej rodziny uniwersalnej

8: for
$$F \in \mathbf{F}$$
 do

9: for
$$p \in [r]$$
 i $u, v, x \in V(G)$, gdzie $u, v \in L_p$ do

11: EXACT
$$k - (u, x)$$
-PATH

$$6.745^k n^{O(1)}$$

$$(\frac{256}{27})^k \cdot 2^{\mathsf{o}(k)} \cdot n^2$$

$$2.59606^k n^{O(1)}$$

$$n^{O(1)}$$

Dziękujemy za uwagę!