Using Computer Vision To Diagnose Pneumonia

By: Vivienne DiFrancesco

What is pneumonia?

Pneumonia affects people of all ages with 50,000 deaths from pneumonia in the US each year.

2

Childhood pneumonia

About the disease

Symptoms:

- Cough
- Chest pain
- Fatigue
- Fever, chills

Treatments:

- Antibiotics
- Cough medicine
- Pain relievers
- Hospital stay

Prevention:

- Vaccines
- Good hygiene
- Keep healthy habits

4

If we had technological tools that could help doctors diagnose patients more accurately and quickly, it would reduce costs, ease suffering, and save lives.

Normal X-Ray Images

The Data

Over 5,800 X-rays of children between one and five.

Pneumonia X-Ray Images

Convolutional Neural Network (CNN)

- Main principle behind the term "computer vision"
- Scans across the pixels of images to take in the details of the pictures
- Computer makes many of these scans, compiles them, scans again.

Method

- 1. Build simple CNN model as a base
- 2. Test out different parameters and compare to the base model
- 3. Combine parameters that improve performance to come up with a best overall model

Best Model Results

- Overall accuracy of 94%
- Low number of false positives and false negatives

Recommendation 1: Use a simpler model

Complex

Simple

Recommendation 2: Oversample the data to correct for class imbalance

Recommendation 3: Use image size to your advantage

Confusion Matrix For 32 Pixel Images With ReLU CNN Model - 0.8 0.9 0.097 - 0.7 -0.6**Frue Label** -0.5-0.4-0.30.086 0.91 -0.2-0.1normal pneumonia Predicted Label

128 Pixels

32 Pixels

Recommendations

- Use a simpler model
- Oversample the data to correct for class imbalance
- Use image size to your advantage based on the goals with using the model

Future Work

- Test out pretrained models for greater accuracy
- Continue testing different parameters or options
- Add more data!
 - Train the model to predict adult X-ray images?

Thank you for your time

Any questions?

Appendix

Recommendation 1: Use a simpler model

Comparison of layers

Layer (type)	Output	Shape			Param #
conv2d_9 (Conv2D)	(None,	96,	96,	32)	4736
max_pooling2d_7 (MaxPooling2	(None,	48,	48,	32)	0
conv2d_10 (Conv2D)	(None,	48,	48,	64)	18496
conv2d_11 (Conv2D)	(None,	48,	48,	64)	36928
max_pooling2d_8 (MaxPooling2	(None,	24,	24,	64)	0
conv2d_12 (Conv2D)	(None,	24,	24,	128)	73856
conv2d_13 (Conv2D)	(None,	24,	24,	128)	147584
max_pooling2d_9 (MaxPooling2	(None,	12,	12,	128)	0

Layer (type)	Output Shape				Param #
conv2d_68 (Conv2D)	(None,	96,	96,	64)	9472
max_pooling2d_57 (MaxPooling	(None,	48,	48,	64)	0
conv2d_69 (Conv2D)	(None,	48,	48,	128)	73856
max_pooling2d_58 (MaxPooling	(None,	24,	24,	128)	0

Complex

Simple