Policy Gradient Methods for Reinforcement Learning with Function Approximation

Reminders

- REINFORCE algorithm performs Monte Carlo sampling of the stochastic policy, and updates the policy using policy gradient calculated from the partial returns \$(G t)\$ of episodes
 - Unbiased estimate of the gradient, but slow due to slow
 - Improves greatly aided with value function approximation

Overview

- Explicitly represent the policy with function approximator (parametrised)
- Update the parameters according to the gradient of expected reward
- Previous work:
 - Approximation of value-function + greedy deterministic policy
 - Optimal policy often stochastic and policy highly noise (from v-f) dependent
- Function approximators: e.g. NN with state as input and action probabilities as output
 - Update parameters using the policy gradient: $\frac{j}{\frac{J}}$
- Here, small changes in \$\theta\$ cause only small changes in (stochastic) policy and thus statevisitation distribution, while small changes in v-f with deterministic policy have a larger influence
- Then, two different objectives used:
 - Global average reward:
 - $\$ | \lim_{n\to\infty} \mathbb{E}_\pi\left[\sum^N r_i\right] = \sum_s d^\pi(s)\sum_a \pi(s,a | \theta)\mathbb{E}[r|a,s]\$\$
 - Long-term reward from a start state (**prevalent**):
 - $\$, \pi\left[\sum {t=1}^\infty \gamma^{t-1}r t \middle| s o\right] \$\$

Key ingredients

- Convergence of the policy iteration with arbitrary differentiable function approximation (local optimum)
- Policy gradient theorem:
 - $\frac{\beta}{\rho (s) \sum_a \frac{partial }{ \phi(s,a)} } { \phi(s,a)}$
- The effect of policy changes on the state distribution \$\frac{\partial d^\pi(s)}{\partial \theta}\$
 does not appear
 - Convenient for sampling: simply draw samples following π to obtain unbiased estimate $\frac{\pi}{\sqrt p}(s,a)\right(s,a)$ of the gradient
- Good, but still need to approximate Q!
 - Using actual returns leads to REINFORCE
 - Function approximation for \$Q^\pi\$ speeds up learning and gives better performance

Comments

Well written and easy to follow

- Gives a lot of insights and useful comments on the matter
- Especially found useful comparisons with REINFORCE algorithm and insights about sampling
- Can see strong collaboration influences
- Sutton's book acts as a great supplement for understanding the paper