Análisis numérico

Facultad de Ciencias, UNAM SISTEMAS DE ECUACIONES NO LINEALES

Jorge Zavaleta Sánchez

 $Semestre\ 2022\text{-}1$

Índice

	Preliminares	1
	Ceros de una función	3
	Método de bisección	3
	Método de Newton	4
	Método de la secante	6
	Preliminares	
[1]:	# Modulos	
	import numpy as np	
	import matplotlib.pyplot as plt	
	import ipywidgets as widgets # Controles	
	from ipywidgets import interact, interact_manual	
[2]:	# Funciones auxiliares	
	## Derivada numerica	
	<pre>def derivada(f,x,tol = 1e-12, maxiter = 500):</pre>	
	"""Calcula la derivada de f en x $(f'(x))$ mediante diferencias progresivas.	
	- Entrada >	
	f (function) - Funcion de la cual se quiere conocer su derivada.	
	$x\ (float)$ - Punto donde se quiere conocer el valor de f' .	
	tol (float) - Opcional. Tolerancia para la diferencia entre dos \sqcup	
	\hookrightarrow aproximaciones.	
	maxiter (int) - Opcional. Numero maximo de iteraciones.	
	- Salida >	
	$dfx\ (float)$ - Valor aproximado de $f'(x)$.	
	d,h,it = np.inf,0.5,1	
	$dfx_a = f(x+1) - f(x)$	
	<pre>while abs(d) > tol and it < maxiter:</pre>	

```
dfx = (f(x+h) - f(x)) / h
    d = dfx - dfx_a
    dfx_a = dfx
    h /= 2
    it += 1
    return dfx

## Funciones de prueba
fun1 = lambda x:x**2-1.0
fun2 = lambda x:x**2-4.0*np.sin(x)
```

Ceros de una función

Dada una función continua $f: [a, b] \subset \mathbb{R} \to \mathbb{R}$, se quiere encontrar un cero o raíz de f. Esto es, se quiere saber si existe $x_0 \in [a, b]$ tal que $f(x_0) = 0$. Existen varios algoritmos para buscar ceros de funciones y a continuación se mostrarán algunos de ellos.

Método de bisección

El algoritmo más simple para la búsqueda de raíces de una función continua f en el intervalo [a,b] es el método de bisección. Si existe una raíz en el intervalo [a,b], el método consiste en ir dividiendo el intervalo a la mitad y seleccionar el subintervalo que contiene la raíz. Para garantizar la existencia de la raíz en el intervalo [a,b] y en los subintervalos subsecuentes, el método se basa en el siguiente teorema

Teorema 1 (Bolzano). Si f es una función continua en el intervalo [a,b] con f(a)f(b) < 0, entonces existe $c \in (a,b)$ tal que f(c) = 0.

La idea es ir cambiando los extremos de los subintervalos para cumplir con las hipótesis del teorema y así garantizar que se seleccione el intervalo que contiene la raíz

Algoritmo (método de bisección)

```
Algoritmo 1: Bisección

Entrada: f función continua en [a,b], a y b

Salida: Raíz de f

1 Definir tol

2 Mientras (b-a) > tol hacer

3 | Calcular

m = \frac{b+a}{2}

4 | Si f(b)f(m) \le 0 entonces

5 | a = m

6 | de lo contrario

7 | b = m

8 devolver m
```

```
[3]: def biseccion(f,a,b,tol = 1e-8, maxiter = 500):

"""Busca un cero de la funcion f mediante el metodo de biseccion en el□

intervalo (a,b).

- Entrada >

f (function) - Funcion de la cual se quiere conocer su raiz.

a (float) - Extremo inferior del intervalo.

b (float) - Extremo superior del intervalo.
```

```
tol (float)
                        - Opcional. Tolerancia para la diferencia entre dos\sqcup
\hookrightarrow aproximaciones.
     maxiter (float) - Opcional. Numero maximo de iteraciones.
   - Salida >
      cero (float) - Valor aproximado de un cero .
                   - Número de iteraciones que le toma al metodo encontrar un_\sqcup
\hookrightarrow cero.
   H H H
   it = 0
   while abs(b-a) > tol and it < maxiter:
        it += 1
        m = (b+a)/2
        if f(b)*f(m) <= 0:
            a = m
        else:
            b = m
   return m, it
```

Ejemplos

Un cero de la función f1 es 1.0000e+00 ya que f(1.0000e+00) = 1.1176e-08 El método necesito 30 iteraciones

Un cero de la función f2 es -5.5879e-09 ya que f(-5.5879e-09) = 2.2352e-08 El método necesito 29 iteraciones

Nota: Si la función evaluada en los extremos del intervalo de búsqueda no tienen signos contrarios, el algoritmo puede no converger al cero a pesar de que se encuentre del intervalo.

En el ejemplo anterior para la función $f(x) = x^2 - 4\sin(x)$, si se toma el intervalo de búsqueda [-4,2] el método no converge ya que f(-4)f(2) > 0.

Método de Newton

El método de Newton (conocido también como el método de Newton-Raphson) también es un algoritmo para buscar aproximaciones de los ceros o raíces de una función real. Este método incluso puede ser usado para buscar el máximo o mínimo de una función, al buscar los ceros de su primera derivada.

Una forma de obtener el algoritmo es desarrollando la función f(x) en series de Taylor, alrededor del punto x_n

$$f(x) = f(x_n) + (x - x_n)f'(x_n) + (x - x_n)^2 \frac{f''(x_n)}{2!} + \cdots$$

Si se trunca el desarrollo a partir del término de grado 2, y evaluamos en x_{n+1}

$$f(x_{n+1}) = f(x_n) + f'(x_n)(x_{n+1} - x_n)$$

Si además se supone que x_{n+1} tiende a la raíz, se ha de cumplir que $f(x_{n+1}) = 0$, luego, sustituyendo en la expresión anterior, obtenemos el algoritmo al despejar x_{n+1}

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Esta última ecuación nos da un algoritmo iterativo que genera una sucesión de puntos a partir de un valor inicial arbitrario x_0 que generalmente convergerá siempre que este estimado inicial esté lo suficientemente cerca del cero desconocido, y que $f'(x_0) \neq 0$.

Algoritmo (método de Newton)

```
Algoritmo 2: Newton
```

```
Entrada: f función continua en [a,b], x_0 aproximación inicial Salida: Raíz de f
```

Sanaa, maiz a

- 1 Definir tol
- **2** n = 0
- 3 Mientras $|x_n x_{n+1}| > tol$ hacer

```
4 | Si f'(x_n) = 0 entonces
5 | detener
```

6 Calcular

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

7 n = n + 1

8 devolver x_n

```
[5]: def newton(f,x,tol = 1e-8, maxiter = 500):

"""Busca un cero de la funcion f mediante el metodo de Newton

- Entrada >
    f (function) - Funcion de la cual se quiere conocer su raiz.
    x (float) - Punto inicial.
    tol (float) - Opcional. Tolerancia para la diferencia entre dos

→ aproximaciones.

maxiter (float) - Opcional. Numero maximo de iteraciones.

- Salida >
    cero (float) - Valor aproximado de un cero .
```

```
it (int)
                    - Número de iteraciones que le toma al metodo encontrar un_{\sqcup}
\hookrightarrow cero.
   11 11 11
   it,h = 0.1
   # Se calcula el cero mediante Newton
   while abs(h) > tol and it < maxiter:
       try:
            h = f(x)/derivada(f,x)
       except ZeroDivisionError:
            print(f'La derivada de la función en {x} es cero')
            return None
       cero = x - h
       x = cero
       it += 1
   return cero, it
```

Ejemplos

Un cero de la función f1 es 1.0000e+00 ya que f(1.0000e+00) = 0.0000e+00 El método necesito 7 iteraciones

Un cero de la función f2 es -1.0572e-18 ya que f(-1.0572e-18) = 4.2286e-18 El método necesito 4 iteraciones

```
[7]: # Tomando un punto inicial no adecuado.
r = newton(lambda x:x**2-1,0)
print(r)
```

La derivada de la función en O es cero None

Método de la secante

Dado que no siempre es fácil tener información de la derivada en el método de Newton, se puede usar una aproximación para esta. Usando diferencias progresivas

$$f'(x) = \frac{f(x+h) - f(x)}{h}$$

y tomando $h = x_{n-1} - x_n$ se tiene que

$$f'(x_n) = \frac{f(x_{n-1}) - f(x_n)}{x_{n-1} - x_n} = \frac{f(x_n) - f(x_{n-1})}{x_n - x_{n-1}}$$

Luego, sustituyendo la última expresión en

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

se tiene que

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

Al igual que para el método de Newton, esta última ecuación nos da un algoritmo iterativo que genera una sucesión de puntos a partir de dos valores iniciales arbitrarios x_0 y x_1 .

Algoritmo (método de la secante)

```
Entrada: f función continua en [a,b], x_0 y x_1 aproximaciones iniciales. Salida: Raíz de f
```

- 1 Definir tol
- **2** n = 1
- 3 Mientras $|x_n x_{n+1}| > tol$ hacer

Algoritmo 3: Secante

- 4 Si $f(x_n) f(x_{n-1}) = 0$ entonces
- 5 detener
- Galcular Calcular

$$x_{n+1} = x_n - f(x_n) \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})}$$

n = n + 1

8 devolver x_{n+1}

```
[8]: def secante(f,x0,x1,tol = 1e-8, maxiter = 500):

"""Busca un cero de la funcion f mediante el metodo de la secante

- Entrada >

f (function) - Funcion de la cual se quiere conocer su raiz.

x0 (float) - Primera aproximación.

x1 (float) - Segunda aproximación.

tol (float) - Opcional. Tolerancia para la diferencia entre dos⊔

→aproximaciones.

maxiter (float) - Opcional. Numero maximo de iteraciones.

- Salida >

cero (float) - Valor aproximado de un cero .
```

```
it (int) - Número de iteraciones que le toma al metodo encontrar un
cero.
"""

it = 0
while abs(x0 - x1) > tol and it < maxiter:
    try:
        x0,x1 = x1,x0 - f(x0)*(x1-x0)/(f(x1)-f(x0))
except ZeroDivisionError:
    print('La recta secante no tiene interseccion con el eje x')
    return None
it += 1
return x1,it</pre>
```

Ejemplos

Un cero de la función f1 es 1.0000e+00 ya que f(1.0000e+00) = 0.0000e+00 El método necesito 9 iteraciones

Un cero de la función f2 es 1.9338e+00 ya que f(1.9338e+00) = 1.2434e-14 El método necesito 6 iteraciones

```
[10]: # Tomando puntos iniciales no adecuados.
r = secante(lambda x:x**2-1,-2,2)
print(r)
```

La recta secante no tiene interseccion con el eje ${\bf x}$ None