Layer Data

© Prof. Dr. Holger D. Hofmann, - 21 -

Layer-based Inter-Computer Communication

Prof. Dr. Holger D. Hofmann, - 23

OSI Reference Model

- The OSI Reference Model is a "reference guide" for understanding network functionality.
- Each of the 7 layers (numbered from bottom to top) represents one step in the process of sending data packets from a source to a destination.

The Postal Analogy

How would the OSI compare to the regular Post Office

Application

A- Write a 20 page letter to a foreign country.

Presentation

P- Translate the letter so the receiver can read it.

S- Insure the intended recipient can receive letter.

Session

■ **T-** Separate and number pages. Like registered mail, tracks delivery and requests another package if one is "lost" or "damaged" in the mail.

Transport

 N- Postal Center sorting letters by zip code to route them closer to destination.

Network

■ **D-** Local Post Office determining which vehicles to deliver letters.

Data-Link

■ **P-** Physical Trucks, Planes, Rail, autos, etc which carry letter between stations.

Physical

"All People Seem To Need Data Processing"

OSI Reference Model and TCP/IP Protocol

Internet Protocol Suite

- 5. Application Layer
 - DHCP · DNS · FTP · Gopher · HTTP · IMAP4 · IRC · NNTP · POP3 · SIP · SMTP · SNMP · SSH · TELNET · RPC · SOAP · NTP · ...
- 4. Transport Layer
 - TCP · UDP · ...
- 3. Network/Internet Layer
 - IP (IPv4 · IPv6) · IPsec · ARP · RARP · ...
- 2. Data Link Layer
 - 802.11 (WLAN) · (Wi-Fi) · WiMAX · ATM · Token ring · Ethernet · FDDI · GPRS · PPP · ISDN · ...
- 1. Physical Layer
 - Ethernet physical layer · Modems · Optical fiber · Coaxial cable · Twisted pair · …

© Prof. Dr. Holger D. Hofmann, - 27

WiFi is secure, but...

Is Wifi still secure?

WiFi is no longer a viable secure connection?

tinyurl.com/4sq5fn

- Wifi (WPA, WPA2) is said to be "secure"
- Max. Password Length: 63

Characters	
A-Z	26
a-z	26
0-9	10
äüö/\?!-&%\$"()=+#ß	18
Sum:	80

- Can only be attacked by "brute-force" attacks
- Russian Company ELMSOFT announces in 2008 "to break Wi-Fi encryption up to 100 times faster than by using CPU only" (tinyurl.com/4585wv)

Should be all return to cable-based networks?

Prof. Dr. Holger D. Hofmann, - 29

The Approach of Wifi Hacking

- Logging of Network Traffic (esp. Authentication)
- Offline Brute-Force Attack (pot. dictionary-based)
- Max. Password Length: 63, Number of Characters: 80
 - -> 80^n permutations for a password of length n
- Dictionaries can speed-up the hacking... however
 - language-specific dictionaries are required ("Vogel", "Bird", "Uccello")
 - what about combination of words and numbers/spec. characters like
 - "Vogel0815", "Bird;!\$%&", ...

How long does it actually take?

	Passwort Length	Permutations	100 PWs/sec (years)	1000 PWs/sec (years)	100.000 PWs/sec (years)	1 Mio. PWs/sec (years)	10 Mio. PWs/sec (years)	100 Mio. PWs/sec (years)		
	1	80	2,53678E-08	2,53678E-09						
	2	6400	2,02943E-06	2,02943E-07	2,02943E-09	2,02943E-10	2,02943E-11	2,02943E-12		
	3	512000	0,000162354	1,62354E-05	1,62354E-07	1,62354E-08	1,62354E-09	1,62354E-10		
	4	40960000	0,012988331	0,001298833	1,29883E-05	1,29883E-06	1,29883E-07	1,29883E-08		
	5	3276800000	1,039066464	0,103906646	0,001039066	0,000103907	1,03907E-05	1,03907E-06		
	6	2,62144E+11	83,1253171	8,31253171	0,083125317	0,008312532	0,000831253	8,31253E-05		
	7	2,09715E+13	6650,025368	665,0025368	6,650025368	0,665002537	0,066500254	0,006650025		
	8	1,67772E+15	532002,0294	53200,20294	532,0020294	53,20020294	5,320020294	0,532002029		
- (9	1,34218E+17	42560162,35	4256016,235	42560,16235	4256,016235	425,6016235	42,56016235		
- 30	10	1,07374E+19	3404812988	340481298,8	3404812,988	340481,2988	34048,12988	3404,812988		
ınn,	20	1,15292E+38	3,65589E+28	3,65589E+27	3,65589E+25	3,65589E+24	3,65589E+23	3,65589E+22		
fme	30	1,23794E+57	3,92548E+47	3,92548E+46	3,92548E+44	3,92548E+43	3,92548E+42	3,92548E+41		
H.	40	1,32923E+76	4,21495E+66	4,21495E+65	4,21495E+63	4,21495E+62	4,21495E+61	4,21495E+60		
er D	50	1,42725E+95	4,52577E+85	4,52577E+84	4,52577E+82	4,52577E+81	4,52577E+80	4,52577E+79		
olge	60	1,5325E+114	4,8595E+104	4,8595E+103	4,8595E+101	4,8595E+100	4,8595E+99	4,85951E+98		
Dr. Holger D. Hofmann,	63	7,8464E+119	2,4881E+110	2,4881E+109	2,4881E+107	2,4881E+106	2,4881E+105	2,4881E+104		
				Cara? Dua:	~1 000 DWo	1000				

Core2 Duo: ~1.000 PWs/sec.

-> 100 times faster: 100.000 PWs/sec.

-> 100 PCs: 10 Mio. PWs/sec

Exercise 1.2

© Prof. Dr. Holger D. Hofmann, -