

FIG. 1A

00000000000000000000000000000000

FIG. 1B

09355654 054604

FIG. 1C

09355654 054604

FIG. 1D

FIG. 2

PROT 5555555555555555

FIG. 3A

FIG. 3B

FIG. 3C

FIG. 3D

FIG. 3E

FIG. 3F

M

PROGRESS REPORTS

FIG. 3G

FIG. 4

FIG. 5

FIG. 6B

FIG. 6A

FIG. 7A

FIG. 7B

Fig. 8 : Impedance Matched Absorbing Module

Fig 9 - Aliasing Module

FIG. 10

0623344544444444

Universal Frequency
Up-conversion (UFC) module 1010
→

FIG. II

Universal Frequency
Up-Conversion
(UFW) Module 1290

FIG. 12

09855654 09855654

INFORMATION
SIGNAL
1302

FIG. 13A

OSCILLATING
SIGNAL
1304

FIG. 13B

FREQUENCY MODULATED
INPUT SIGNAL
1306

FIG. 13C

HARMONICALLY
RICH SIGNAL
(shown as source wave)
1308

SEE FIG. 13E

FIG.
13

EXPANDED VIEW OF
HARMONICALLY RICH
SIGNAL 1310

(SHOWN SEPARATELY)

SEE FIG. 1310

HARMONICS OF
SIGNAL 1310
(SHOWN SEPARATELY)

FUNDAMENTAL
FREQUENCY
1310A

SEE FIG. 1310

THIRD HARMONIC
1310B

FIG. 13E

FIG. 13E

FIG. 13E

FIG. 13F

FIG. 13F

FIG. 13F

FIFTH HARMONIC
1310C

FIFTH HARMONIC
1310C

FIFTH HARMONIC
1310C

HARMONICS OF
SIGNAL 1312
(SHOWN SEPARATELY)

FUNDAMENTAL
FREQUENCY
1312A

FIG. 13G

FIFTH HARMONIC
1312C

FIFTH HARMONIC
1312C

FIFTH HARMONIC
1312C

FIG. 13 (cont)

REPORT NO. 13-55555

HARMONICS OF
SIGNALS 1310 AND
1312, (SHOWN
SIMULTANEOUSLY BUT
NOT SUMMED)

FIG. 13H

FIG. 13I

FIG. 13 (cont.)

Unified Downconverting and
Filtering (UDF) Module 1402

FIG. 14

FIGURE F-350

FIG. 15

FIG. 16A

TC039475 • 0555555555555555

FIG. 16 B

FIG. 16C

FIG. 16D

1975-05-25 09:55:00

FIG 16 E

1650 1652 1654 1656

FIG. 16 F

FIG. 16 6

FIG. 16H

09885351 051601

Fig. 16I

0.6V 0.8V 1.0V

Fig. 16J

CONFIDENTIAL - FEDERAL BUREAU OF INVESTIGATION

0.95 0.90 0.85 0.80 0.75 0.70

F16. 16L

0.9666666666666667

FIG. 16M

FIG. 16N

FIG: 160

1102 1704 1705 1706 1707 1708 1709 1710 1711 1716 1718 1722 1724 1726 1738 1750 1752

F16, 17

FIG. 18A

"T GAGE" PEGGEE

FIG. 18B

092656341 091510

FIG. 18C

000000000000000000000000

FIG. 18D

09855854 051603

FIG. 18E

FIG. 19

FIG. 20A

7004759 075555860

FIG. 20B

0 9 8 5 5 8 5 4 0 5 4 6 0 3

F16. 20C

T0350-T5555555

FIG. 20D

Fig. 20E

FIG. 20F

FIG. 21

FIG. 22

FIG. 23

9905-0000000

1995 1996 1997 1998 1999

F16.24B

F09T50 "Tage 860

FIG. 24C

FIG. 24D

0606060606060606060

FIG. 24E

09855894 05460

FIG. 24 F

0996556040 0996556040

Fig. 24 G

Fig. 24 H

Fig. 24 I

Fig. 24 J

Fig. 24 K

2445

2446

2448

F16. 25A

F16. 25A

0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3

卷之三

0965569400 1610

09855854. 05.6.00

2702

F16. 27A

05355854 054604

09833341 054600

FIG. 28

FIG. 29

EXEMPLARY RECEIVER FOR
UNIVERSAL FREQUENCY DOWN-CONVERSION

FIG. 30

EXEMPLARY TRANSMITTER USING
THE PRESENT INVENTION

0 9855854 05460

FIG. 31A

TRANSMITTER USING PRESENT INVENTION IN A
HALF DUPLEX COMMUNICATIONS CIRCUIT WITH A
UNIVERSAL FREQUENCY DOWN-CONVERTER (FM & PM)

09855654 654663

FIG. 31B

FIG. 31C

09655604 0964604

FIG. 32

TRANSMITTER USING PRESENT INVENTION IN
A HALF-DUPLEX COMMUNICATIONS CIRCUIT
WITH A UNIVERSAL FREQUENCY DOWN-CONVERTER(AM)

09855854 024684

FIG. 33

TRANSMITTER USING PRESENT INVENTION IN FULL DUPLEX COMMUNICATIONS CIRCUIT WITH UNIVERSAL FREQUENCY DOWN-CONVERTER

09935534 09935534

F16. 34

09355601 05160

F16. 35

0965533 021601

FIG. 36

FIG. 37

FIG. 38

FIG. 39

FIG. 40

FIG. 41

1000 900 800 700 600 500

F16.42

FIG. 43

F16.44 F16.45 F16.46

F16.44

0 5 0 5 0 5 0 5 0 5 0

FIG. 45A

FIG. 45B

FIG. 45C

FIG. 45D

FIG. 45E

F16 F46

f16. 46

F16 46

F16 47

0935535 0935535 0935535

F16, 48

F16. 49

0 50 100 150 200 250 300

FIG. 50

FIG. 51

FIG. 52

0925585 T 05460

F16 53

FIG. 54

FIG. 55

FIG. 56

PROBLEMS

FIG. 57

09353500 051600

FIG. 58

Fig. 59

100 99 98 97 96 95 94

FIG. 60

FIG. 61

METHOD FOR DOWN-CONVERTING AN ELECTROMAGNETIC SIGNAL

6200

RECEIVE A RF INFORMATION SIGNAL

~6202

ELECTRICALLY COUPLE THE RF INFORMATION SIGNAL TO A CAPACITOR

~6204

CONTROL A CHARGING AND DISCHARGING CYCLE OF THE CAPACITOR WITH A SWITCHING DEVICE ELECTRICALLY COUPLED TO THE CAPACITOR

~6206

PERFORM A PLURALITY OF CHARGING AND DISCHARGING CYCLES OF THE CAPACITOR, THEREBY FORMING A DOWN-CONVERTED INFORMATION SIGNAL

~6208

END

~6210

FIG. 62

00000001 - 00000004