Maps

Peter Rowlett

Sheffield Hallam Universip.rowlett@shu.ac.uk

Maps

- For two sets A and B, we define a map θ from A to B where there is some rule that assigns to each element of A a corresponding element of B.
- ightharpoonup We write $\theta: A \to B$.
- ▶ For $x \in A$, we write $\theta(x) \in B$.
- ightharpoonup A is called the *domain* of θ .
- ▶ B is called the *range* of θ .

Example

- ▶ If P is the set of all people, we can define a map $\theta: P \to \mathbb{Z}$ using the rule:
 - if $x \in P$, then $\theta(x)$ is the age of x in years on their last birthday.

Example

- ▶ If P is the set of all people, we can define a map $\theta: P \to \mathbb{Z}$ using the rule:
 - ▶ if $x \in P$, then $\theta(x)$ is the age of x in years on their last birthday.
- ▶ We can define a second map $\phi: P \to \mathbb{Z}$ using the rule:
 - ▶ if $x \in P$, then $\phi(x)$ is the height of x in millimetres measured to the nearest millimetre.

Example

- ▶ If P is the set of all people, we can define a map $\theta: P \to \mathbb{Z}$ using the rule:
 - if $x \in P$, then $\theta(x)$ is the age of x in years on their last birthday.
- ▶ We can define a second map $\phi: P \to \mathbb{Z}$ using the rule:
 - if $x \in P$, then $\phi(x)$ is the height of x in millimetres measured to the nearest millimetre.
- Note that θ and ϕ are not equal. For two maps to be equal, we require three conditions to all be true:
 - 1. θ and ϕ have the same domain;
 - 2. θ and ϕ have the same range;
 - 3. for every $x \in A$, $\theta(x) = \phi(x)$.

Functions

- ► Functions provide examples of maps between sets.
- ▶ For example, let $f : \mathbb{R} \to \{y \in \mathbb{R} \mid y \ge 0\}$ be defined so that

$$f(x) = x^2$$
 for all $x \in \mathbb{R}$.

Injective, surjective, bijective maps

Injective (one-to-one)

- ▶ A map $\theta: A \to B$ is *injective* if whenever x and y are distinct elements of A, then $\theta(x)$ and $\theta(y)$ are distinct elements of B.
- ► We can say

$$\theta(x) = \theta(y) \implies x = y.$$

Surjective

▶ A map $\theta: A \to B$ is *surjective* if for each element $y \in B$ there is at least one element of $x \in A$ such that $\theta(x) = y$.

Bijective

▶ A map $\theta: A \to B$ is *bijective* if it is both injective and surjective.

Injective, surjective and bijective

- ▶ The definition of a map $\theta: A \to B$ says every element $x \in A$ is assigned a corresponding $\theta(x) \in B$.
- ▶ A surjective map is one where there are no elements in *B* left out they all have an element in *A* mapped onto them.
- ► An injective map is one where each element *A* is assigned a different element in *B*.
- ► A bijective map is one where every element in *B* has a unique element in *A* associated with it.

Inverse map

- ▶ With a bijective map $\theta: A \to B$, we can define its inverse, $\theta^{-1}: B \to A$ using the rule:
 - if $y \in B$, let $\theta^{-1}(y) = x$, where x is the unique element in A such that $\theta(x) = y$.
- ▶ The inverse map is only defined when a map is bijective.
- $ightharpoonup heta^{-1}$ is itself bijective.
- $(\theta^{-1})^{-1} = \theta.$

Using maps to compare sets

- We say a finite set A has cardinality n (i.e. |A| = n) if we can count the elements of A and get the 'answer' n.
- ightharpoonup Say $A = \{a_1, a_2, \dots a_n\}$ and let

$$\mathbb{Z}(n) = \{x \in \mathbb{Z} \mid 1 \le x \le n\}.$$

 \blacktriangleright We can think of this as a bijective map $\theta: \mathbb{Z}(n) \to A$ so that

$$\theta(1) = a_1, \quad \theta(2) = a_2, \quad \dots \quad \theta(n) = a_n.$$

Peter Rowlett SHU Maps 11 / 1

- Another way to represent this is by arranging the elements of $\mathbb{Z}(n)$ and the elements of A in one-to-one correspondance, which would demonstrate that |A| = n.
- ▶ For example, let C be the set of colours of the rainbow. Then

С	red	orange	yellow	green	blue	indigo	violet
$\mathbb{Z}(7)$	1	2	3	4	5	6	7

we see that |C| = 7.

We can do this counting in whatever order seems sensible, for example the following is an equally good map from $\mathbb{Z}(7)$ to C which demonstrates that |C| = 7.

С	orange	indigo	violet	green	yellow	red	blue
$\mathbb{Z}(7)$	1	2	3	4	5	6	7

Peter Rowlett SHU Maps 13 / 17

- ► This method of counting by producing a bijective map between sets does not just apply to finite sets.
- ▶ For example, we can show that the set of positive integers \mathbb{Z}^+ is the same cardinality as the natural numbers (excluding zero) \mathbb{N} by producing a map as follows

► We can carry on this map forever, so there are same number of elements in each set.

- lacktriangle We can also produce a map between $\mathbb N$ and the positive even numbers.
- For example, I could simply say $\theta(x) = 2x$, so θ maps a number n onto the nth even number.

- lacktriangle We can also produce a map between $\mathbb N$ and the positive even numbers.
- For example, I could simply say $\theta(x) = 2x$, so θ maps a number n onto the nth even number.

► So there are the same number of natural numbers as there are positive even numbers.

 Peter Rowlett SHU
 Maps
 15 / 17

- lacktriangle We can also produce a map between $\mathbb N$ and the positive even numbers.
- For example, I could simply say $\theta(x) = 2x$, so θ maps a number n onto the nth even number.

- ► So there are the same number of natural numbers as there are positive even numbers.
- It may be surprising that what feels like 'half' of \mathbb{N} can be the same size as the whole of \mathbb{N} , but infinity is weird.

- ightharpoonup We can also produce a map between $\mathbb N$ and the whole of $\mathbb Z$.
- ► For example, I could define a map like this

- \blacktriangleright We can also produce a map between $\mathbb N$ and the whole of $\mathbb Z$.
- ► For example, I could define a map like this

► Hopefully you agree that this will eventually collect all the integers, positive and negative.

- \blacktriangleright We can also produce a map between $\mathbb N$ and the whole of $\mathbb Z$.
- ► For example, I could define a map like this

- ► Hopefully you agree that this will eventually collect all the integers, positive and negative.
- ▶ So there are the same number of natural numbers as there are integers.

- \blacktriangleright We can also produce a map between $\mathbb N$ and the whole of $\mathbb Z$.
- ► For example, I could define a map like this

- ► Hopefully you agree that this will eventually collect all the integers, positive and negative.
- So there are the same number of natural numbers as there are integers.
- It may be surprising that a set which feels like twice as big as \mathbb{N} can be the same size \mathbb{N} , but infinity is weird.

- ightharpoonup In fact, there are a lot of sets that are the same cardinality as \mathbb{N} .
- ▶ We call this cardinality \aleph_0 ("aleph nought").

- ightharpoonup In fact, there are a lot of sets that are the same cardinality as \mathbb{N} .
- ▶ We call this cardinality \aleph_0 ("aleph nought").
- ➤ Such sets are called countably infinite, which means we could sit and count them if we had an infinite amount of time.

- ightharpoonup In fact, there are a lot of sets that are the same cardinality as \mathbb{N} .
- ▶ We call this cardinality \aleph_0 ("aleph nought").
- ➤ Such sets are called countably infinite, which means we could sit and count them if we had an infinite amount of time.
- ► This is not always the case.

- ightharpoonup In fact, there are a lot of sets that are the same cardinality as \mathbb{N} .
- ▶ We call this cardinality \aleph_0 ("aleph nought").
- ➤ Such sets are called countably infinite, which means we could sit and count them if we had an infinite amount of time.
- ► This is not always the case.
- ► For example, we cannot make an ordering of \mathbb{R} that would allow us to write down a bijective map $\theta : \mathbb{R} \to \mathbb{N}$.

- ightharpoonup In fact, there are a lot of sets that are the same cardinality as \mathbb{N} .
- ▶ We call this cardinality \aleph_0 ("aleph nought").
- ➤ Such sets are called countably infinite, which means we could sit and count them if we had an infinite amount of time.
- ► This is not always the case.
- ▶ For example, we cannot make an ordering of \mathbb{R} that would allow us to write down a bijective map $\theta : \mathbb{R} \to \mathbb{N}$.
- ightharpoonup We say $\mathbb R$ is *uncountable*, and there are *more* real numbers than integers.

- ightharpoonup In fact, there are a lot of sets that are the same cardinality as \mathbb{N} .
- ▶ We call this cardinality \aleph_0 ("aleph nought").
- ➤ Such sets are called countably infinite, which means we could sit and count them if we had an infinite amount of time.
- ► This is not always the case.
- ▶ For example, we cannot make an ordering of \mathbb{R} that would allow us to write down a bijective map $\theta : \mathbb{R} \to \mathbb{N}$.
- lackbox We say $\mathbb R$ is *uncountable*, and there are *more* real numbers than integers.
- ▶ In fact, there are more real numbers between 0 and 1 than there are integers. etc.