Devoir maison 14 - Primitives de fonctions trigonométriques

Pour tout entier naturel n on considère la fonction f_n définie sur $]-\pi,\pi[$ par :

$$f_n(x) = \int_0^x \frac{\cos^n(t)}{1 + \cos(t)} dt$$

1. Calculer $f_0(x), f_1(x)$ et $f_2(x)$.

On pourra effectuer le changement de variable $u = \tan \frac{t}{2}$.

- **2a.** Justifier que l'on peut réduire l'étude de f_n à l'intervalle $[0, \pi[$, puis étudier ses variations sur cet intervalle.
- **b.** Déterminer le développement limité de $f_n(x)$ à l'ordre 3 au voisinage de 0.
- c. En déduire l'équation de la tangente à la courbe représentative de f_n au point d'abscisse 0, et la position de cette courbe par rapport à la tangente (en discutant suivant les valeurs de n).
- **3a.** Montrer que :

$$\forall x \in \left[\frac{2\pi}{3}, \pi \left[, \quad \left| \int_{\frac{2\pi}{3}}^{x} \frac{\cos^{n}(t)}{1 + \cos(t)} dt \right| \ge \frac{1}{2^{n}} \left(\tan \frac{x}{2} - \sqrt{3} \right) \right]$$

- **b.** En déduire les limites de f_n en π et $-\pi$.
- c. Donner l'allure de la courbe représentative de f_n sur $]-\pi,\pi[$ en fonction des valeurs de n.
- 4. En remarquant que

$$\forall n \ge 1, \forall t \in]-\pi, \pi[, \quad \frac{\cos^n(t)}{1 + \cos(t)} = \cos(t) \frac{\cos^{n-1}(t)}{1 + \cos(t)},$$

trouver une relation entre $f_n(x), f_{n-1}(x)$ et $f_{n-2}(x)$ pour $n \ge 2$.