理论力学 AI(2008-2009)

一、概念题(30分,每空3分)

1. 某平面任意力系向 A、B 两点简化的结果均为一个力和一个力偶,若已知向 B 点简化的力为 F_B 、力偶为 M_B ,且 F_B 与AB连线的夹角为 60^0 ,AB=a,如题图 1 所示。则该力系向 A 点简化所得的力为______,力偶为_____。

题1图

2. 如图所示的铰接四连杆机构OABD,在杆 O_1A 和 O_2B 上分别作用着矩为 M_1 和 M_2 的力偶,而使机构在图示位置处于平衡。已知OA=r, $O_2B=2r$, $\theta=30^\circ$,不计各杆自重,则 M_1 和 M_2 之间的关系为_______。

- 3. 在边长为 a 的正六面体的侧面上作用一力 F , 力 F 对 x 轴之矩为______; 力 F 对 y 轴之矩为______。
- 4. 一人高 h_2 ,在路灯下以匀速 v_c 行走,灯距地面的高为 h_1 ,则人影的顶端M沿地面移动的速度为_____。

5. 薄板 BC 用等长的杆 AB、CD 支承,如图所示。在其自身平面内运动,在图示瞬时, $AB \perp BC$, $BC \perp CD$ 。若杆 AB 以匀角速度 ω 转动,则_____。

- A. $v_B = v_C$, $a_B = a_C$ B. $v_B = v_C$, $a_B \neq a_C$
- C. $\omega_{BC}=0$, $\alpha_{BC}=0$ D. $\omega_{BC}\neq 0$, $\alpha_{BC}\neq 0$

6、双直角曲杆可绕O轴转动,图示瞬时A点的加速度 $a_A=30$ cm/s²,方向如图所示。则 B点的加速度大小为_____cm/s 2 ,方向与直线OB成_____角。

7. 用八根直杆铰接成正六边形,挂于A点,如图所示。设六边的每根匀质杆长为I,重P, 且不计 BF、CE 杆的重量。则 CE 杆的内力为______

二、正方形薄板由球铰链 A 以及三根连杆 CE、CF、DF 支持成水平位置,如图所示。 已知 AE = DG = CF, 并不计薄板和各连杆的重量, 试证: (1) 当铅垂力 P 作用于 B 点时, 板不能平衡: (2) 当铅垂力作用于板中点 O 时,则为静不定问题。(6 分)

三、在图示机构中,杆 OA、AB 长度均为 I=1 m,且互相垂直,其重量不计。长方体 C 的重为 P=500 N,它与地面的摩擦系数 f=0.35,O 为固定支座,A、B 为铰链。在 OA 杆上作用一力偶矩为 M 的力偶。求图示位置欲使机构平衡时 M 的最大值。(15 分)

四、在图示结构中,已知: F=10 kN, M=56 kN·m, $\theta=60^0$,L=2 m; B、C处为 铰接,各杆件的自重不计。试求: (1) 固定端支座 A 的反力; (2) 支座 D 的约束反力。 (18 分)

五、如图所示平面机构中,半径为R的半圆环OC与固定竖直杆AB的交点处套有小环M,半圆环OC绕垂直于图面的水平轴O以匀角速度 ω 转动,从而带动小环M运动。在图示瞬时,OC连线垂直于AB杆。试用点的合成运动理论求该瞬时小环M的绝对速度和绝

六、如图所示平面机构, O_1B 和杆OC的长度均为r,等边三角形板ABC的边长为 2r,三个顶点分别与杆 O_1B 、OC及套筒铰接,直角弯杆EDF穿过套筒A,其DF段置于水平槽内。在图示瞬时,杆 O_1B 水平,B、C、O三点在同一铅垂线上;杆OC的角速度为 ω ,角加

速度为零。试求此瞬时杆 EDF 的速度和加速度。(15分)

