

(11) EP 0 779 363 A2

(12)

EUROPEAN PATENT APPLICATION

- (43) Date of publication: 18.06.1997 Bulletin 1997/25
- (21) Application number: 96309004.8
- (22) Date of filing: 11.12.1996

- (51) Int CL⁶: **C12N 15/82**, C12N 15/54, C12N 9/10, C08B 30/00, C12N 5/10, A01H 5/00
- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE
- (30) Priority: 12.12.1995 GB 9525353
- (71) Applicant: National Starch and Chemical Investment Holding Corporation Wilmington, Delaware 19809 (US)
- (72) Inventors:
 - Smith, Alison Mary Norwich NR2 2BB (GB)

- Marshall, Jacqueline Warwick CV34 5SA (GB)
- Edwards, Elizabeth Ann Norwich NR9 3DB (GB)
- Martin, Catherine Rosemary Norwich NR15 1JW (GB)
- (74) Representative: Lipscombe, Martin John et al Keith W Nash & Co, Pearl Assurance House, 90-92 Regent Street Cambridge CB2 1DP (GB)
- (54) Improvements in or relating to soluble starch synthase
- (57) Disclosed is altered starch extracted from a transformed potato plant or the progeny thereof, which starch, as extracted, has a viscosity onset temperature as determined by differential scanning calorimetry which is reduced by at least 5°C compared to starch extracted from equivalent, non-transformed plants, together with a nucleic acid sequence comprising at least 200bp and exhibiting at least 80% sequence identity with the corresponding region of the DNA sequence shown in Figure 6, operably linked in the sense or antisense orientation to a promoter operable in a plant, and host cells and plants comprising the sequence.

Description

5

10

15

20

25

30

35

40

45

50

55

Field of the Invention

This invention relates, interalia, to a soluble enzyme, obtainable from potato tubers, having starch synthase activity, to nucleic acid sequences encoding the same, to constructs and transgenic plants comprising the nucleic acid sequences, to a method of altering the starch composition of a plant, and to altered starch obtainable from a transgenic plant.

Background of the invention

In the storage organs of most species of plants multiple forms of both granule-bound and soluble starch synthases have been found (for review, see Smith & Martin 1993, In: Biosynthesis and manipulation of plant products (D. Grierson, Ed.) Blackie Academic and Professional (Glasgow), pp1-54). In most cases it is not known whether these forms are distinct gene products and, for the most part, what their detailed functions are. The exception to this is in the case of a widely-distributed and highly conserved class of granule-bound starch synthases of approximately 60 kDa, which are collectively referred to as granule-bound starch synthase I (GBSS I; Martin & Smith, 1995 Plant Cell 7, 971-985). Experiments with the waxy and amf mutants of cereals and potatoes respectively (Macdonald & Preiss, 1985 Plant Physiol. 78, 849-852 1985; Hovenkamp-Hermelink *et al.*, 1987 Theor. Appl. Genet. 7, 217-221) and antisense potato plants (Visser *et al.*, 1991 Mol. Gen. Genet. 22, 289-296, Kuipers *et al.*, 1994 Plant Cell 6, 43-52) have shown that when the level of GBSS I protein is reduced, the ratio of amylose to amylopectin in the starch is also reduced. Where GBSS I is absent, the starch contains only amylopectin. This suggests that GBSS I is responsible for amylose synthesis.

However, the detailed functions of other isoforms of starch synthase are as yet unknown. In general, in conjunction with starch branching enzyme, they must be responsible for amylopectin synthesis but it is unknown whether different isoforms make different contributions to its structure. The first step in trying to understand the functions of these starch synthases is to characterise all of the isoforms in one organ. A few isoforms of starch synthase, other than GBSS I, have been identified at a detailed biochemical and molecular level in pea (Smith, 1990 Planta 182, 599-604: Denyer & Smith 1992 Planta 186, 609-617, Dry et al. 1992 Planta 186, 609-617) and rice (Baba et al., 1993 Plant Physiol. 103, 565-573), and at a detailed biochemical level in maize (Mu et al., 1994 Plant J. 6, 151-159) and wheat (Denyer et al., 1995 Planta 196, 256-265). However only in the case of pea and maize has the quantitative importance of the isoforms been estimated. A complete picture of the role and importance of all the isoforms of starch synthase is not available for any other storage organ.

Carbohydrate metabolism and starch synthesis has been extensively studied in potato tuber (Hajirezaei et al., 1993 Planta 192, 16-30; Geigenberger & Stitt 1993 Planta 189, 329-339; Geigenberger et al., 1994 Planta 193, 486-493; Sonnewald et al., 1994 Plant Cell Environ. 17, 649-658) and this organ has great potential as a source of commercially important starches created through genetic manipulation (Shewmaker & Stalker 1992 Plant Physiol. 100, 1083-1086; Visser & Jacobsen 1993 Trends Biotech. 11, 63-68; Muller-Rober & Koßmann, 1994 Plant Cell Environ. 17, 601-613). One of the major gaps in understanding starch synthesis in this organ and hence in the ability to manipulate its starch in useful ways, is the nature of its starch synthases.

In potato, until recently, only two starch synthases have been characterised in any great detail; GBSS I and GBSS II. GBSS I is exclusively granule-bound, it has a molecular weight of 59 kDa. The gene has been cloned and its predicted amino acid sequence is very similar to that of the waxy gene product in cereals (Vos-Scheperkeuter *et al.*, 1986 Plant Physiol. 82, 411 4 16: van der Leij *et al.*, 1991 Mol. Gen. Genet. 228, 240-248). GBSS II has an apparent molecular weight, as judged by SDS-PAGE, of 92 kDa and it is both bound into the starch granule and present as a soluble form. Its predicted amino acid sequence (having an expected molecular weight of 80kDa) is similar to GBSS II in pea embryos, an isoform which accounts for 60-70 % of the soluble starch synthase activity of the pea embryo (Denyer & Smith 1992 cited above). However, GBSS II accounts for only approximately 10-15% of the total soluble starch synthase activity in potato tubers (Edwards *et al.*, 1995 Plant J. 8, 283-294).

There have been several reported characterisations of the starch synthases found in the soluble fraction of potato tubers (Frydman & Cardini 1966 Arch. Biochem. Biophys. 116, 9-18; Catz et al., 1989 An. Asoc. Quim. Argent. 77, 47-51) and a few attempts have been made to purify the major soluble starch synthases (Hawker et al., 1972. Phytochem. 11, 1278-1293; Baba et al., 1990 Phytochem. 29, 719-723; Ponstein 1990. Starch synthesis in potato tubers. Ph. D. Thesis, State University Groningen, The Netherlands). These reports disagree on both the number of soluble starch synthases and their molecular weights. The quantitative contribution of the putative forms is not known, and where multiple forms are postulated, it is not known whether they are independent gene products.

After the priority date of the present application, two publications have been made which provide information about a further starch synthase found in potato. One of these publications is by the present inventors (Marshall *et al.*, 1996), The Plant Cell 8, 1121-1135). The other publication is PCT patent application WO 96/15248 (published 23rd May 1996),

in the name of Institut Für Genbiologische Forschung Berlin GMBH. The PCT application includes the European Patent Office in the list of designated territories.

WO 96/15248 discloses the nucleotide sequence of a full length cDNA clone ("SSSA") said to encode an isoform of soluble starch synthase enzyme from potato, together with the predicted amino acid sequence of the enzyme. The application further discloses the use of a 1.2kb portion of the cDNA clone, operably linked in the antisense orientation to the CaMV 35S promoter, to transform potato plants. In addition WO 96/15248 discloses the sequence of a cDNA clone ("SSSB") said to encode a second isoform of the potato soluble starch synthase. Similarly, a portion (1.8kb) of this sequence was introduced into potato plants in the antisense orientation.

In fact, the present inventors have found that the nucleotide sequence disclosed in WO 96/15248 contains an error, causing a frame shift, such that most of the predicted amino acid sequence is incorrect.

It was found that the transformed plants disclosed in WO 96/15248 had reduced enzyme activity. Starch obtained from the tubers of the transformed plants was found to have altered properties compared to starch obtained from control wild type plants. It was stated that the starch from the transformed plants exhibited a lower viscosity onset temperature than starch from control plants. (By way of explanation, when aqueous suspensions of starch granules are heated, the granules swell and absorb water, in a process known as gelatinisation. A number of techniques are available for the analysis of gelatinisation, a particularly convenient method being differential scanning calorimetry or the viscoamylograph, in which the viscosity of a stirred starch suspension is monitored under a defined temperature/time regime. Such analysis typically shows a particular temperature, the "viscosity onset temperature", at which the process of gelatinisation begins and which causes a marked increase in viscosity of the starch suspension).

In a few instances, the transformed plants disclosed in WO 96/15248 gave rise to starch in which the "Verkleister-ungstemperatur" (equivalent to the viscosity onset temperature, V) was 2 to 3°C lower compared to starch from equivalent, but untransformed, plants. However, it is apparent that the results of subsequent experiments (described in example 13 in the document) gave a value of V for starch from control plants which was lower than that found for starch from transformed plants in previous experiments. Accordingly, the person skilled in the art is not able to deduce that starch from the transformed plants described in WO 96/15248 displayed a viscosity onset temperature which was consistently significantly lower than that of control plants.

Summary of the Invention

5

10

15

20

25

30

35

40

45

50

55

In a first aspect the invention provides a polypeptide obtainable from a soluble extract of potato tubers and having starch synthase activity, in substantially isolated form.

Typically the polypeptide will have an apparent molecular weight, as judged by SDS-PAGE, in the range 100-140 kDa, or will be a functional equivalent of such a polypeptide. More particularly, the polypeptide may have an apparent molecular weight of 140, 120 or 110 kDa. Particular functional equivalents envisaged are breakdown products of the polypeptide, which seem to occur naturally. Another particular functional equivalent is the polypeptide obtainable from developing tubers of the Desiree cultivar, which polypeptide has an apparent molecular weight, as judged by SDS-PAGE, of 100 kDa. Typically the polypeptide will comprise the amino acid sequence shown in Figure 6.

In another aspect the invention provides a nucleic acid sequence directing the expression of at least a portion of one of the polypeptides defined above. Preferably the sequence comprises at least 200-300bp, more preferably at least 300-600bp, and most preferably in excess of 600bp. Typically the nucleic acid sequence will comprise the nucleotide sequence shown in Figure 6, although those skilled in the art will appreciate that, due to the degeneracy of the genetic code, a nucleotide sequence substantially different to that shown in Figure 6 may encode a polypeptide having substantially the same amino acid sequence as that shown in Figure 6. Such nucleic acid sequences are to be considered as functional equivalents and thus fall within the scope of the present invention. Other functional equivalents are those nucleic acid sequences which are not substantially different and which may hybridise, under standard laboratory hybridisation conditions, to either strand of the nucleotide sequence shown in Figure 6.

Comparison with known starch synthase sequences, with the benefit of the disclosure herein, will enable those skilled in the art to identify regions of the sequence shown in Figure 6 which are not evolutionarily conserved, and so more amenable to alteration (e.g. addition, deletion or substitutions), whilst retaining functional equivalence.

Desirably such functional equivalents will possess at least 80% sequence identity, preferably at least 85% sequence identity, and more preferably at least 90% sequence identity with the nucleotide sequence shown in Figure 6. Desirably the nucleotide sequence of the invention, or a functional equivalent sequence will, when introduced into a suitable plant in a suitable manner (known to those skilled in the art), alter the synthesis of starch in the plant.

For the purposes of the present specification, the sequences encoding polypeptides with starch synthase activity, or portions of such sequences, disclosed in WO 96/15248 are not considered as functional equivalents of the sequence shown in Figure 6.

In a particular embodiment, the invention provides a nucleic acid sequence comprising at least 200 bp and exhibiting at least 80% sequence identity with the corresponding region of the DNA sequence shown in Figure 6, operably

linked in the sense or antisense orientation to a promoter operable in a plant.

Those skilled in the art will readily be able to conduct a sequence alignment between the other sequence and that detailed in Figure 6. The % identity of the two sequences is to be compared in those regions which are aligned by readily available computer programs (e.g. MegAlign), which align corresponding regions of sequences. Advantageously the % identity between the two sequences will be at least 85%, preferably at least 90%, and the corresponding region of the sequence shown in Figure 6 may comprise a 5' and/or a 3' untranslated region ("UTR") and/or a translated region.

Thus, in another aspect the invention provides a nucleic acid construct (typically DNA) comprising the nucleic acid sequence of the invention in operable linkage to a promoter active in a plant. The nucleic acid sequence may be operably linked to the promoter in either the sense or the anti-sense orientation. Anti-sense methods are well known in altering one or more characteristics of a plant into which the anti-sense sequence is inserted (see for example EP-A-0 458 367, EP-B-0 240 208 and US 5, 107, 065). Similarly, "sense suppression" is a method which is becoming increasingly widely adopted and documented (for a review, see Matzke & Matzke 1995 Plant Physiology 107, 679-685). Either approach could be used with the nucleic acid sequence of the invention, so as to alter one or more characteristics of a plant into which the sequence was introduced. Those skilled in the art will be aware that anti-sense inhibition or sense suppression may be achieved by the use of 5' or 3'non-translated portions of the relevant gene, or use of coding portions of the gene, or any combination thereof.

It is believed that antisense methods are mainly operable by the production of antisense mRNA which hybridises to the sense mRNA, preventing its translation into functional polypeptide, possibly by causing the hybrid RNA to be degraded (e.g. Sheehy et al., 1988 PNAS 85, 8805-8809; Van der Krol et al., Mol. Gen. Genet. 220, 204-212). Sense suppression also requires homology between the introduced sequence and the target gene, but the exact mechanism is unclear. It is apparent however that, in relation to both antisense and sense suppression, neither a full length nucleotide sequence, nor a "native" sequence is essential. Preferably the nucleic acid sequence used in the method will comprise at least 200-300bp, more preferably at least 300-600bp, of the full length sequence, but by simple trial and error other fragments (smaller or larger) may be found which are functional in altering the characteristics of the plant. It is also known that untranslated portions of sequence can suffice to inhibit expression of the homologous gene coding portions may be present within the introduced sequence, but they do not appear to be essential under all circumstances.

The invention further provides a host cell into which has been introduced a nucleic acid sequence in accordance with the invention defined above. Typically the host cell will be a plant cell, and conveniently the sequence is introduced in a nucleic acid construct and subsequently integrated into the host cell genome.

In a further aspect the invention provides a plant or part thereof (e.g. plant cell), into which has been introduced a sequence in accordance with the invention, or the progeny of such a plant or part thereof. Desirably the plant or part thereof into which the sequence is introduced, will comprise a natural gene which shares sequence homology with the introduced sequence. In preferred embodiments the introduced sequence will exhibit at least 70% homology with a starch synthase gene naturally present in the plant or part thereof, although the level of homology may be increased with advantage, such that the expression of the gene product of the naturally present gene in the plant is substantially inhibited. Conveniently the sequence of the invention will be introduced as part of a nucleic acid construct, as described above. Typically the plant will be one of commercial significance, such as one of the following: potato, tomato, rice, wheat, pea, cassava, sweet potato, barley, oat and maize.

Those skilled in the art will appreciate that introduction of the nucleic acid sequence of the invention into a plant might alter the starch composition thereof. In another aspect therefore the invention provides altered starch extracted from a plant into which has been introduced the nucleic acid sequence of the invention, or altered starch extracted from the progeny of such a plant. The invention also provides a method of altering one or more characteristics of a plant, comprising introducing into the plant a nucleic acid sequence in accordance with the invention.

In particular the invention provides altered starch extracted from a transformed potato plant or the progeny thereof, which starch, as extracted, has a viscosity onset temperature as determined by differential scanning calorimetry which is reduced by at least 5°C compared to starch extracted from equivalent, non-transformed plants. Preferably the viscosity onset temperature is reduced by at least 7°C. In another embodiment the invention provides altered starch extracted from a transformed potato plant or the progeny thereof, which starch, as extracted, has a viscosity onset temperature as determined by differential scanning calorimetry, of less than 60°C, preferably less than 55°C.

The starch defined above will typically also exhibit (as extracted) a reduced endotherm peak temperature, as determined by differential scanning calorimetry, compared to starch extracted from equivalent, non-transformed plants. Desirably the endotherm peak temperature will be reduced by at least 5°C and/or will be less than 59°C. The inventors have found that such properties as those defined above may be embodied in potato starch having a substantially normal amylose content (i.e. around 25 - 30% amylose).

Starch can be modified in various ways (e.g. chemical cross-linking, derivatisation, partial hydrolysis) after it has been extracted from a plant source, which modifications can affect the physical properties, especially the pasting properties, of the starch. Hence, use of the term "as extracted" is intended to signify that the starch is analysed without

5

10

15

20

25

30

35

40

45

50

undergoing such modifications as can alter the pasting properties thereof.

"Equivalent, non-transformed" plants are those plants which have substantially identical genotypes to the plants of the invention, with the exception of the introduced nucleic acid sequence present in the transformed plants of the invention.

The invention will now be further described by way of illustrative example and with reference to the accompanying drawings, in which;

Figure 1 shows the elution profile of starch synthase from developing Desiree potato tubers on a first Mono QTM anion-exchange column. Partially purified starch synthase, after DEAE-Sepharose and Blue Sepharose chromatography, was applied to a 1ml Mono QTM column at pH 7.5. The enzyme was eluted with a 25ml gradient of 0-450 mM KCl at 0.5 ml.min⁻¹. Samples (20 μl) of each 1 ml fraction were assayed for starch synthase activity (-Φ-), and absorbance at 280 nm (⁵/₋);

Figure 2 shows the activity and protein in fractions of purified starch synthase from a second Mono Q[™] column of peak I and peak II. Top panels show SDS-PAGE of fractions containing starch synthase activity. Each track contains 10 μI of fraction. Bottom panels show starch synthase activity in 20 μI samples from each 0.5 mI fraction;

Figure 3 shows the cross-reaction of antiserum to SSS to the purified starch synthases from mature Estima tubers and to extracts, soluble and granule-bound, from mature Estima and developing Desiree tubers. Samples (10 µl of purified soluble starch synthase, 20 µl soluble extract and 20 µl of supernatant from granule-bound proteins) were subjected to SDS-PAGE and blotted, and then the blots were probed with antiserum to SSS, 1/2500 dilution. (1) purified preparation of starch synthase proteins from mature Estima. (2) Partially purified soluble starch synthase from mature Estima tubers. (3) Starch-granule-bound proteins from mature Estima tubers. (4) Soluble extract from developing Desiree tubers. (5) Starch-granule-bound proteins from developing Desiree tubers. Sizes of proteins were estimated from molecular weight standards on the same gels, and are indicated in kDa;

÷ 🏂

. . .

. 3

Figure 4 shows the immunoprecipitation of starch synthase activity in soluble extract from developing Desiree tubers with antiserum to SSS. Soluble extract was incubated with increasing volumes of pre-immune serum-(O) and antiserum (•), as described in Materials and Methods (below). After centrifugation the supernatant was assayed for starch synthase activity. Starch synthase activity is expressed as a percentage of activity of incubations containing 20 g.L⁻¹ BSA in PBS. Values are from two separate experiments with the line joining the means; 34

Figure 5 shows native polyacrylamide gel electrophoresis of soluble extract from developing Desiree tubers stained for starch synthase activity. Soluble extract was incubated (as described in Materials and Methods) in the presence of (1) 20 g.L⁻¹ BSA in PBS; (2) pre-immune serum, 1/1000 dilution; (3) antiserum to SSS, 1/1000 dilution; and (4) antiserum to the GBSS II from pea embryo. After centrifugation, the supernatant was mixed 5:1 with 2 g.L⁻¹ bromophenol blue in 500 ml.L⁻¹ glycerol and 40 μl was loaded onto the gel. The bands of starch synthase activity are indicated by arrows;

Figure 6 shows the DNA sequence of a cDNA clone for potato soluble starch synthase. The amino acid sequence of the encoded polypeptide is shown below in the single letter code. The ADP-glucose binding domain is boxed and the sequences identified by protein sequencing are underlined; and

Figure 7 shows a schematic representation of A) plasmid pRAT4 and B) plasmid pPATRAT.

EXAMPLES

1

5

10

15

20

25

30

35

40

45

50

55

Example 1

In this example are presented data on the identification and purification to homogeneity of the major isoform of soluble starch synthase from potato tuber.

MATERIALS AND METHODS

Plant material.

Potato tubers (Solanum tuberosum L.) of cultivars Desiree (developing) or Estima (mature) were used. Desirée

tubers were grown in pots of soil based compost (25 cm diameter) in a greenhouse with minimum temperature of 12°C and supplementary lighting in winter, and were freshly harvested prior to experiments from actively-growing plants. Estima tubers were bought locally.

Purification of soluble starch synthase.

5

10

15

20

25

30

35

40

45

50

55

(A) Small scale. The extraction and subsequent purification were carried out at 4°C. Approximately 500g of Desiree potato tubers were chopped into small pieces and homogenised in an electric blender with 25g polyvinylpolypyrolidone (PVPP) and 500 ml of ice-cold medium A containing 100 mM Tris-HCI (pH 7.5), 10 mM ethylenediamine-tetraacetic acid (EDTA), 5 mM dithiothreitol (DTT), 1 g.L⁻¹ sodium metabisulphite, 0.5 mg.L⁻¹ leupeptin, 0.7 mg.L⁻¹ pepstatin A and 50 ml.L⁻¹ glycerol. The homogenate was passed through two layers of muslin and the filtrate was centrifuged at 10,000g for 10 min. The supernatant was brought to 40% saturation with powdered (NH₄)₂SO₄. The precipitate was collected by centrifugation (15,000g for 15 min), re-dissolved in a minimal volume of medium A and dialysed twice, each time against 1L of medium A for 1 h.

The dialysed extract was applied, at a flow rate of 4 ml.min⁻¹, to a column (5 cm internal diameter "i.d.", 10 cm long) of diethylaminoethyl (DEAE)-Sepharose Fast Flow™ (Pharmacia, Uppsala, Sweden), equilibrated with medium A. The column was washed with 500 ml of medium A followed by a 250-ml gradient of 0-1 M KCl in the same medium. Fractions of 10 ml were collected and assayed for starch synthase activity. The eight to ten fractions containing the highest activity were pooled and dialysed twice, each time against 1 L of medium B containing 50 mM Tris-HCl (pH 7.5), 1 mM EDTA, 1 mM DTT, 0.5 mg.L⁻¹ leupeptin, 0.7 mg.L⁻¹ pepstatin A and 50 ml.L⁻¹ glycerol for 1 h.

The dialysed extract was applied, at a flow rate of 1 ml.min⁻¹, to a column (1.6 cm i.d., 16 cm long), of Blue Sepharose, equilibrated with medium B. The column was washed with 100 ml medium B followed by a 100ml gradient of 0-1 M KCI in the same medium. Fractions of 0.5 ml were collected and assayed for starch synthase activity. The ten fractions with the highest activity were pooled and dialysed twice, each time against 1 L of medium B for 1 h.

The dialysed extract was applied, at a flow rate of 0.5 ml.min⁻¹, to a first 1-ml Mono Q[™] column (Pharmacia), equilibrated with medium B. The column was washed with 25 ml of medium B. followed by a 25-ml gradient of 0-450 mM KCl in the same medium. Fractions of 0.5 ml were collected and assayed for starch synthase activity. The fractions from each of two peaks of starch synthase activity were pooled and purified separately as follows:

To the eluate of the first Mono Q™ column, an equal volume of 1 M sodium citrate in medium B was added. This was then applied, at a flow rate of 0.5 ml.min⁻¹, to a column (1.0 cm i.d., 4 cm long) of cyclohexa-amylose (CHA)-Sepharose (prepared according to Vretblad, 1974 FEBS Lett. 47, 86-89), equilibrated with 0.5 M sodium citrate in medium B. The column was washed with 20 ml medium B containing 0.5 M sodium citrate and the protein was eluted from the column with 30 ml of medium B containing no citrate. Fractions of 1 ml were collected and assayed for starch synthase activity. The fractions with starch synthase activity were pooled and dialysed overnight against 5 L of medium C containing 50 mM Tris-HCI (pH 8.0), 1 mM EDTA, 1 mM DTT, 0.5 mg.L⁻¹ Leupeptin, 0.7 mg.L⁻¹ pepstatin A and 50 ml.L⁻¹ glycerol.

The dialysed extract was applied, at a flow rate of 0.5 ml.min⁻¹, to a second 1ml Mono Q™ column equilibrated with medium C. The column was washed with 25 ml of medium C followed by a 25ml gradient of 0-450 mM KCl in the same medium. Fractions of 0.5 ml were collected and assayed for starch synthase activity.

(B) Large scale.

The procedures were as described above, with the following modifications. Five kg of Estima potato tubers were homogenised in 5 L medium A containing 250g PVPP, filtered through two layers of muslin and centrifuged at 10,000g for 10 min. Polyethylene glycol (PEG) 6000 at a concentration of 500 g.L⁻¹ in medium A was slowly added to the supernatant until the concentration of PEG was 100 g.L⁻¹. The precipitate was collected by centrifugation (15,000g for 20 min) and re-dissolved in a minimal volume of medium A.

The extract was mixed gently for 1 h with 900ml slurry of DEAE-Sepharose which had been equilibrated with medium A, then filtered and the filtrate discarded. The DEAE-Sepharose was washed with 2 L medium A then incubated for 1 hr in 500 ml medium A containing 400 mM KCI, filtered and washed with a further 500 ml medium A containing 400 mM KCI. The filtrates were combined and brought to 50% saturation with powdered (NH₄)₂SO₄. The precipitated proteins were collected by centrifugation (15,000g for 15 min), re-dissolved in a minimal volume of medium B and dialysed overnight against 5 L of medium B.

The dialysed sample was applied, at a flow rate of 2 ml.min⁻¹, to a Blue Sepharose column (5 cm i.d., 15 cm long) which had been equilibrated with medium B. The column was washed with 300 ml medium B followed by a 600ml gradient of 0-1 M KCl in the same medium, at a flow rate of 5 ml.min⁻¹. Fractions of 15 ml were collected and assayed for starch synthase activity. The ten fractions with the highest starch synthase activity were pooled and dialysed ovemight against 5 L medium B.

The dialysed eluate was applied to a first 1ml Mono Q™ column, equilibrated with medium B, as described above, except that all the fractions containing starch synthase activity were pooled together.

The Mono Q[™] eluate was applied to a CHA-Sepharose column as described above, except that the column was 1.0 cm i.d., 20 cm long. The column was washed with 50 ml medium B containing 0.5 M sodium citrate and eluted with 80 ml medium B without citrate. The fractions with starch synthase activity were pooled and dialysed ovemight against 5 L of medium C.

The dialysed extract was applied to a second 1ml Mono Q™ column equilibrated with medium C, as described above. Fractions containing starch synthase activity were stored at -20°C.

Preparation of antibody.

10

20

25

30

35

40

45

50

55

The fractions containing starch synthase activity from 5 large-scale purifications were run on preparative sodium dodecyl sulphate (SDS)-polyacrylamide gels (as described below). The gel slices containing starch synthase proteins were electroeluted and the proteins dialysed against water, then freeze-dried. Protein (50 µg) was re-dissolved in 250 µl of phosphate-buffered saline (PBS), mixed with 250 µl Freund's complete adjuvant, and injected intramuscularly into a rat. Subsequent injections were of 75 µg protein dissolved in 250 µl PBS mixed with 250 µl Freund's incomplete adjuvant and were repeated at 14-day intervals. Serum was collected from 14 days after the third injection.

Assay of soluble starch synthase activity.

Soluble starch synthase activity was measured using the resin method as described in Jenner et al. (1994).

Preparation of crude soluble potato tuber extract.

Samples (0.5-2.0 g fresh weight) from either developing Desiree or mature Estima potato tuber were homogenised in 4 volumes of 50 mM Tris-HCI (pH 7.5), 1 mM EDTA, 1 mM DTT, 1 g.L⁻¹ sodium metabisulphite, 0.5 mg.L⁻¹ leupeptin, 0.7 mg.L⁻¹ pepstatin A and 50 ml.L⁻¹ glycerol, then centrifuged at 10,000g for 10 min. The supernatant is referred to as "soluble extract".

, ;

A 44.

* 🔭

÷.,

*

4

*

4 .

Partial purification of soluble starch synthase activity.

Crude soluble potato extract from mature Estima tubers (5-10 g fresh weight) was dialysed twice, each time against 1 L of buffer B for 1 hr. The dialysed extract was applied to a lml Mono Q™ column, equilibrated with medium B, as described above and the peak fraction of starch synthase activity (referred to as "partially purified soluble starch synthase") was stored at -20°C.

SDS-polyacrylamide gel electrophoresis (PAGE) and immunoblotting.

Protein samples were dialysed against distilled water then mixed 1:1 with double-strength sample buffer (Laemmli, U.K. (1970). Nature 227, 680-685) and boiled for 2 min immediately prior to application to gels. For granule-bound proteins, starch granules were washed twice in 20 g.L⁻¹ SDS at room temperature, boiled for 3 min at 100 mg.ml⁻¹ in sample buffer (Laemmli, U.K. (1970). Nature 227, 680-685) and then centrifuged at 10,000g for 10 min. The supernatant was applied to the gel.

Gels (10.2 cm long, 7.3 cm wide, 0.75 mm thick) were 75 g.L⁻¹ acrylamide (37.5:1 w/w acrylamide:bis-acrylamide) and 1 g.L⁻¹ SDS and were run according to Laemmli (1970). Immunoblots were prepared and developed according to Bhattacharyya *et al.*, (1990) Cell 60, 115-122. The nitrocellulose filters were either incubated with crude rat serum followed by alkaline phosphatase-congugated goat anti-rat antiserum (Sigma, Poole, Dorset, UK) or the immunoglobulin fraction of rabbit serum to GBSS II from pea embryo (Smith (1990) Planta 182, 599-604), followed by alkaline phosphatase-conjugated goat anti-rabbit antiserum (Sigma).

Native polyacrylamide gel electrophoresis.

Gels (dimension as above, except Imm thick) of 90 g.L⁻¹ acrylamide (37.5:1 w/w acrylamide:bis-acrylamide) were cast in 400 mM Tris-HCI (pH 8.6), 100 ml.L⁻¹ glycerol, 8 g.L⁻¹ glycogen and polymerised with 0.4 g.L⁻¹ ammonium persulphate and 0.2 ml.L⁻¹ N,N,N',N'-tetramethylethylenediamine (TEMED) and were overlaid with a stacking gel of 53 g.L⁻¹ acrylamide (37.5:1 w/w acrylamide:bis-acrylamide) cast in 155 mM Tris-HCI (pH 6.8), 98 ml.L⁻¹ glycerol, polymerised with 0.5 g.L⁻¹ ammonium persulphate and 0.2 ml.L⁻¹ TEMED. Soluble extracts were mixed 5:1 with 2 g.L⁻¹ bromophenol blue in 500 ml.L⁻¹ glycerol immediately prior to loading. Gels were run at 4°C, at 175 mV in 190 mM

glycine, 25 mM Tris.

5

10

15

20

25

30

35

40

45

50

The gel was assayed for starch synthase activity as follows. The gel was washed twice, each time for 10 min in 20 ml 100 mM Bicine, 0.5 M sodium citrate (pH 8.5), 0.5 M EDTA and 100 ml.L⁻¹ glycerol at 4°C. The gel was incubated at room temperature for 20 hrs by gently shaking in wash medium containing 12 mM ADPG and 2 mM DTT. The buffer was removed and 1 ml of Lugol's iodine solution (3.3 g.L⁻¹ I₂ and 6.7 g.L⁻¹ KI, acidified with a few drops of 2M HCI) was added. After colour development, the gel was washed and stored in 70 ml.L⁻¹ acetic acid.

Immunoprecipitation.

Soluble extracts (100µl) were incubated with 0-20µl rat serum or 20µl of the immunoglobulin fraction of rabbit serum to GBSS II from pea embryo (Smith (1990) Planta 182, 599-604) for 1.5 h at room temperature on a rotating table. To the extract containing rat serum, 20µl polyclonal antiserum to rat IgG at 2.5 g.L-1 specific antibody (Sigma) was added and incubated for a further 0.5 h. To both extracts, 50 µl Protein A-Sepharose at 60 g.L-1 in 50 mM Tris-HCI (pH 7.5) was added and then incubated for 0.5 h, followed by centrifugation at 10,000g for 10 min. The supernatants were assayed for starch synthase activity. Controls contained bovine serum albumin at 20 g.L-1 in PBS in place of serum.

Isolation of starch granules.

Purified starch was prepared from potato tubers as described by Edwards et al. (1995).

Measurement of protein.

Protein was assayed using the BioRad Protein Assay Dye Reagent (BioRad Munchen, Germany) with a standard curve of bovine serum albumin.

RESULTS

Purification of soluble starch synthases.

The soluble starch synthase activity from developing tubers of Desirée and mature tubers of Estima eluted from both DEAE-Sepharose and Blue Sepharose columns as a single peak of activity. However, subsequent chromatography on a Mono QTM column at pH 7.5 separated two major peaks of starch synthase activity, designated peak I and peak II according to their elution order from the column (Figure 1). These two peaks of starch synthase activity were then purified separately by cyclohexa-amylose and Mono QTM chromatography. A typical purification from developing Desiree tubers is shown in Table 1. The specific activity of peak I was 5.1 μmol.(mg protein)⁻¹.min⁻¹, a purification of 400-fold relative to the initial supernatant. The specific activity of peak II was 8.8 μmol.(mg protein)¹.min⁻¹, a purification of 700-fold relative to the initial supernatant (Table 1).

Table 1 shows the purification of soluble starch synthase from developing potato tubers of Desiree. Fractions were prepared as described above. The values shown in the table are from a typical purification.

TABLE 1

		IADLE		The Second Co.
FRACTION	TOTAL ACTIVITY (μmol glucose incorporated min ⁻¹)	ACTIVITY RECOVERED (%)	TOTAL PROTEIN (mg)	SPECIFIC ACTIVITY (µmol glucose incorporated min ⁻¹ . mg protein ⁻¹)
Initial Supernatant	28.9	100	2210.6	0.013
0 to 40% (NH ₄) ₂ SO ₄	17.1	61.0	1018.6	0.017
DEAE-Sepharose	7.51	26.8	45.1	0.166
Blue-Sepharose	4.59	16.4	10.4	0.441
Peak I				
Mono Q (pH 7.5)	0.95	3.4	1.70	0.56
Cyclohexa-amylose	0.53	1.9	0.20	2.65

TABLE 1 (continued)

FRACTION	TOTAL ACTIVITY (µmol glucose incorporated min ⁻¹)	ACTIVITY RECOVERED (%)	TOTAL PROTEIN (mg)	SPECIFIC ACTIVITY (µmol glucose incorporated min ⁻¹ . mg protein ⁻¹)
Peak I				
Mono Q (pH 8.0)	0.15	0.5	0.03	5.13
Peak II				
Mono Q (pH 7.5)	2.45	8.8	2.90	0.85
Cyclohexa-amylose	2.27	8.1	0.40	5.67
Mono Q (pH 8.0)	0.26	0.9	0.03	0.84

TABLE 2

INCUBATION	INHIBITION OF STARCH SYNTHASE ACTIVITY (%)
Pre-immune serum	0.3 ± 0.9
Antiserum to potato SSS	74 ± 4
Antiserum to pea GBSS II	9 ± 4
Antiserum to potato SSS + pea GBSS II	80 ± 8

Table 2 shows the immunoprecipitation of starch synthase activity in soluble extract from developing Desiree tubers. Soluble extract was incubated in the presence of antiserum (1/10 dilution of rat antiserum; or 1/5 dilution of the immunoglobulin fraction of rabbit serum to GBSS II from pea embryo; or 1/10 dilution of rat antiserum plus 1/5 dilution of the immunoglobulin fraction of rabbit serum to GBSS II), as described in Material and Methods. After centrifugation the supernatant was assayed for starch synthase activity. Values are percentage inhibition relative to controls in which BSA at 20 g.I⁻¹ in PBS was substituted for serum. The values are the mean of four experiments ± standard error.

Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) of the fractions from the second Mono QTM column for peak I showed that the distribution of a protein of 120 kDa matched the distribution of the starch synthase activity (Figure 2). Further chromatography on Mono QTM did not eliminate contaminating proteins. SDS-PAGE of the fractions from the final Mono QTM column for peak II showed that the distribution of the major protein of 110 kDa matched the starch synthase activity (Figure 2).

Antibodies raised to the 59 kDa starch-granule-bound protein (the GBSS I isoform) from pea embryo did not recognise any proteins from either peak I or peak II. Antibodies raised to the 77 kD GBSS II from pea embryo very weakly recognised the 120 and 110 kDa proteins from peak I and II respectively (data not shown).

Preparation of antibody.

In order to obtain sufficient protein for preparation of an antibody, peaks I and II from mature Estima tubers were combined and purified together in large-scale preparations (referred to as "soluble starch synthase", SSS). Both the 120- and 110 kDa proteins were excised and eluted from gels of the purified preparations and were injected into the same rat.

The antiserum to the SSS was used to probe blots of extracts from mature Estima and developing Desiree tubers (Figure 3). On all of the immunoblots, the pre-immune serum did not cross-react with any of the proteins. On immunoblots of the gels of the purified preparation of soluble starch synthase from mature Estima tubers, the antiserum recognised strongly the two proteins to which it was raised. The antiserum also recognised a minor protein of 140 kDa. On immunoblots of gels of partially purified soluble starch synthase from mature Estima tubers, the antiserum recognised proteins of 140 kDa and 120 kDa. On immunoblots of gels of starch-granule-bound proteins from mature Estima tubers, the antiserum recognised a protein of 140 kDa. There were some faint indications that a 120 kDa protein on the starch was also recognised. A protein of 140 kDa was recognised by the antiserum both in the soluble extracts and on starch granules of developing tubers of Desiree. The 120 kDa protein (approximately 100 kDa) recognised extracts from these tubers, which also contained a lower molecular weight protein (approximately 100 kDa) recognised

5

10

15

20

25

30

35

40

45

50

by the antiserum. This protein is not GBSS II since the rat antiserum did not recognise GBSS II on starch granules (data not shown).

Immunoprecipitation of starch synthase activity.

To discover whether the proteins recognised by the antiserum to SSS represent the major soluble starch synthases, the antiserum was used in immunoprecipitation experiments with soluble extracts from developing Desiree tubers.

Incubation of soluble extract with pre-immune serum from the rat did not affect soluble starch synthase activity, but the antiserum to SSS precipitated starch synthase activity (Figure 4). The maximum inhibition of starch synthase activity was approximately 75 % which was achieved by incubating with volumes greater than 2µI of antiserum. A small proportion of the remaining starch synthase activity can be accounted for by GBSS II (Table 2). When soluble extract is incubated with antiserum raised to GBSS II from pea embryo (which recognises GBSS II in potato, Edwards *et al.*, 1995), approximately 9% of the starch synthase activity is inhibited. When the potato extract is mixed with both antibodies, the starch synthase activity is reduced by approximately 80%.

Native polyacrylamide gel electrophoresis of soluble extracts of developing Desirée tubers revealed two major groups of bands which had starch synthase activity (Figure 5). We have previously shown through antisense and immunoprecipitation experiments that the lower group of bands is attributable to GBSS II. Tubers in which GBSS II protein has been severely reduced by antisense transformation lack the lower group of bands. When the soluble extract was immunoprecipitated with antiserum to GBSS II from pea embryo and the supernatant subjected to native PAGE, the lower bands were missing (Edwards *et al.*, 1995 cited previously). Immunoprecipitation of soluble extract from developing Desiree tubers with rat antiserum to SSS shows that the upper group of bands is attributable to these starch synthases. When the supernatant from the immunoprecipitation experiment was subjected to native PAGE, the upper group of bands was missing but the lower group was unaffected. The pre-immune serum from rat had no effect on the bands of starch synthase activity.

DISCUSSION

5

10

15

20

25

30

35

40

45

50

55

The inventors have purified two proteins with starch synthase activity from the soluble fraction from mature Estima tubers, with molecular weights of 110 and 120 kDa respectively. Immunoblots show that the antiserum raised to these purified proteins (soluble starch synthases. SSS) recognises the proteins to which it was raised, and that it also recognises a higher molecular weight protein of 140 kDa in the purified preparation (Figure 3). The 140 kDa protein is in soluble extracts and on starch granules of both mature Estima and developing Desiree tubers, whereas the 120 kDa protein is either barely or not detectable in tubers, and the 110 kDa protein is not detectable at all. This strongly suggests that the two starch synthase proteins to which antibodies have been raised may both be active breakdown products of the larger 140 kDa protein, although the 140 kDa polypeptide might simply be an immunologically cross-reactive entity. Although most of the breakdown undoubtedly occurs during purification (despite the purification being carried out at 4°C and with the inclusion of PVPP and protease inhibitors), some of the breakdown may also occur *in vivo*. Breakdown of enzymes *in vivo* has been observed during the purification of starch branching enzyme from potato tubers. Using fresh harvested tubers for the purification resulted in a predominately high molecular weight starch branching enzyme being isolated, but when stored tubers were used, a wide range of molecular weight proteins were isolated (Blennow & Johansson, 1991 Phytochem. 30, 437-444).

The fact that the antiserum to SSS recognises the 140 kDa protein in both Estima and Desiree tubers suggests that there is no difference between the two cultivars in their major starch synthases, and vindicates the use of these two different cultivars in the work reported herein. The occurrence of a 100 kDa protein antigenically related to the 140 kDa protein in Desiree tubers is interesting, and at present it is not known what that protein may be. Its absence from Estima tubers could reflect the fact that these cultivars were stored rather than developing tubers, or could represent a difference between cultivars.

Specific activities of the purified soluble starch synthases from potato tuber are comparable with or greater than these of soluble starch synthases from other storage organs. Purification to homogeneity of isoforms of soluble starch synthase resulted in specific activities of 16 μmol.(mg protein)⁻¹.min⁻¹ from pea embryo (Denyer & Smith 1992 cited previously), 14 μmol.(mg protein)⁻¹ min⁻¹ from wheat (Denyer *et al.*, 1995 cited previously) and 9 μmol.(mg protein)⁻¹. min from maize (Mu *et al.* (1994) Plant J. 6, 151-159). The specific activity of the soluble starch synthase reported in this application is 7- to 300-fold higher than that of the partial purifications of soluble starch synthase activity from potato tuber reported by Hawker *et al.*, 1972 Phytochem. *11*, 1278-1293: 0.64 μmol.(mg protein)⁻¹.min⁻¹), Baba *et al.* (1990) Phytochem. 29, 719-723: 0.03 μmol.(mg protein)⁻¹.min⁻¹) and Ponstein (1.35 and 0.91 μmol.(mg protein)⁻¹. min⁻¹).

The immunoprecipitation experiments also suggest that the purified proteins are the major soluble starch synthases in potato tuber, or are products directly derived from such synthases. The antiserum raised against the soluble starch

synthase from potato precipitates 75 % of the total soluble starch synthase activity in crude extract (Figure 5). The remainder of the activity is partly due to GBSS II (Table 2), but the possibility of further minor isoforms cannot be ruled out.

The purified soluble starch synthase is likely to represent a novel class of starch synthase. It is not related to the major soluble starch synthase in pea embryo (GBSS II), which is clearly related to the minor, soluble 92 kDa GBSS II in potato. The soluble starch synthase is only very weakly recognised by the antibody raised to GBSS II from pea. It is not related to the GBSS I proteins either: the starch synthase from potato tuber is not recognised by the antibody raised to GBSS I from pea embryo. These results reinforce the view that storage organs differ profoundly in the nature and number of active isoforms of starch synthase (Smith *et al.*, 1995 Plant Physiol. *107*, 1; Edwards *et al.*, and Denyer *et al.*, both cited previously).

Example 2

5

10

15

20

25

30

35

40

45

50

55

ISOLATION OF A cDNA CLONE FOR SOLUBLE STARCH SYNTHASE FROM POTATO TUBERS

The antiserum raised to the purified starch synthase protein from Estima tubers was used for immunoscreening of a λgt 11 library (provided by C Grierson, John Innes Centre, Norwich) containing cDNA inserts with *Eco*RI linkers, constructed from developing Estima tuber poly[A] RNA.

Approximately 1.5 x 10⁶ plaque-forming units were probed with the antiserum at a dilution of 1/1000. The second antibody was an anti-rat immunoglobulin linked to horseradish peroxidase (Amersham International, Amersham, UK). Two positive clones were isolated. These were both 1.1 kb in length and contained poly(A) tracts at their 3' ends. One of these was cloned into the EcoRl site of pBluescript SK + to give plasmid pRAT2. A 5' *EcoRl-ECORV* fragment from this clone was used as a probe on the λgt11 library. Filters were washed in 0.1 x SSC (1 x SSC is 0.15 M NaCl, 0.015 M sodium citrate), 0.5 g L⁻¹ SDS at 65°C. Seven clones of 1.3, 1.53, 1.75, 1.88, 2.15, 2.21, and 2.4 kb were isolated. The longest clone was subcloned as an *EcoRl* fragment into pBluescript SK+ to give plasmid pRAT20. A 600-bp 5' fragment from pRAT20 was used to probe a random primed λgt11 library prepared from cDNA of developing tubers. Three positive clones were isolated. The longest was 2.3 kb and was subcloned as an *EcoRl* fragment into pBluescript SK+ to give pRAT24.

₹2£

2

 $\mathcal{J}_{i,j}^{x,-}$

£.

<u>, 1777</u>

 \equiv

The 2.3 and 2.4kb partial clones overlapped. The full-length composite cDNA was 4.127kb. The DNA sequence of the full length cDNA, and the predicted polypeptide sequence, are shown in Figure 6. DNA sequences were determined according to Sanger *et al.* (1977) by using Sequenase™ (United States Biochemical). Sequence data_were analysed using the Genetics Computer Group (Madison, WI) computer program (Devereux *et al.* 1984 Nucl.—Acids Res. 12, 387-395).

To check the identity of the cDNA, the amino acid sequence it predicted was compared with amino acid sequences of two peptides obtained by digestion with endoproteinase Lys-C of the 110-kD protein purified from tubers of cultivar Estima. The peptide sequences FIPIPYTSENVVEGK (Seq. ID No. 1) and HIPVFGG (Seq. ID No. 2) corresponded precisely to predicted sequences from the clone. Attempts to obtain N-terminal amino acid sequence of the purified proteins for comparison with the sequence predicted from the cDNA clone were unsuccessful.

On RNA gel blots of poly(A)+RNA from developing tubers, a partial cDNA clone recognised a single transcript of \sim 4 kb. This size is considerably greater than those of the transcripts for GBSSI and GBSSII and is consistent with the transcript encoding a protein in the range of 110 to 140 kD.

The deduced amino acid sequence of the soluble starch synthase revealed a protein of 1230 amino acids and a predicted size of 139 kD (Figure 6). At the N terminus was a sequence of ~60 amino acids rich in serine and basic residues and low in acidic residues, which is typical of a chloroplast transit peptide. Based on the consensus of Gavel and von Heinje (1990 FEBS Lett. 261, 455-458), the most likely cleavage site would be between amino acids 60 (Cys) and 61 (Ala), because the serine-rich region ends before this point. Cleavage in this region would give a mature protein of ~132 kD. The structure is somewhat similar to that of GBSSII in that it contains a C-terminal region homologous with starch synthases and bacterial glycogen synthases and an N-terminal extension. The N-terminal extension shows little sequence similarity to the N-terminal extensions of GBSSII from pea or potato (in turn, they show little similarity to each other; Edwards et al., (1995) Plant J. 8, 283-294) or to any other sequence in the data bases. The N-terminal domain resembles those of pea and potato GBSSII in that it shows considerable predicted flexibility (Chou-Fasman algorithm; see Dry et al., (1992) Plant J. 2, 193-202); all these extensions may therefore serve similar roles. At the C-terminal end of the N-terminal extension of the soluble starch synthase are two proline residues; multiple proline residues have been noted previously at the C-terminal ends of N-terminal extensions of both starch synthases and starch-branching enzymes (Dry et al., (1992) Plant J. 2, 193-202; Burton et al., 1995).

The roles of these N-terminal extensions are not known, but it seems likely that they are involved in determining properties such as interaction with starch polymers rather than contributing to basic catalytic properties. The C-terminal region from amino acid 780 to the end shows greatest similarity to glycogen synthases from bacteria, although there

is also similarity to other starch synthases from plants. The KTGG motif close to the N terminus of this region beginning with position 794 is conserved (KVGGL). This domain is thought to be involved in ADP/ADP-glucose binding (Furukawa et al., 1990 J. Biol. Chem. 265, 2086-2090). Interestingly, a second domain with a similar structure is also conserved in the C termini of all bacterial glycogen synthases and starch synthases (including the motif beginning at position 1143, T/V GGLXDT I/V); this may represent a second domain involved in ADP/ADP-glucose binding. The whole region around this second domain is widely conserved among α -1,4-glucosyltransferases, indicating close involvement with the catalytic process.

Over the rest of the soluble starch synthase protein, there are several other domains showing conservation between different starch synthases. However, it also shows some notable gaps in its sequence when aligned with GBSSI and GBSII, for example, between amino acids 828 to 829 (13 amino acids), 894 to 895 (10 amino acids), and 944 to 945 (35 amino acids). These regions may confer specific properties on GBSSI and GBSII compared with the soluble synthase.

Example 3

5

10

15

20

25

30

35

40

45

50

POTATO TRANSFORMATION

Binary vectors containing a partial cDNA for soluble starch synthase ("SSS") in the antisense orientation, under the control of a) the double 35S promoter or b) the patatin promoter have been constructed. The 2 x 35S construct is detailed below.

Construction of Antisense Binary Vector

The 1.1-kb *Pst-Eco*RV fragment from pRAT2 encoding the 3' end of the soluble starch synthase was subcloned in an antisense orientation between the cauliflower mosaic virus double 35S promoter and cauliflower mosaic virus terminator (*Pstt-Smal*) in pJIT60 (Guerineau and Mullineaux, 1993 "Plant transformation and expression vectors". In Plant Molecular Biology Labfax R.R.D. Croy, Ed. (Oxford, UK BIOS Scientific Publishers) p121-148), producing pRAT3. The *Xhol*-partial *Sst*I fragment from pRAT3, encompassing the promoter, antisense cDNA, and terminator, was ligated between the *Sall-Sst*I sites of the plant transformation vector pBIN19 (Bevan, 1984 Nucl. Acids Res. 12, 8711-8721), resulting in plasmid pRAT4. This plasmid is illustrated schematically in Figure 7, which Figure also shows the plasmid pPATRAT comprising the patatin promoter.

Transformation of Potato

Binary plasmid pRAT4 was introduced into *Agrobacterium tumefaciens* by the freeze-thaw method of An *et al.*, (1988 Binary Vectors. In Plant Molecular Biology Manual A3. Eds, Gelvin S.B. and Schilpercort R.A. ppl-19). Preparation of Agrobacterium inoculum carrying the antisense construct, inoculation of tuber discs of potato cultivar Desiree, regeneration of shoots, and rooting of shoots were as described by Edwards *et al.* (1995 Plant J. 8, 283-294).

Thirteen independently transformed plants and four independent control plants (transformed with the vector alone) were transferred to a soil-based compost and allowed to develop tubers. The presence of the SSS antisense construct was confirmed by DNA gel blotting (data not shown). Six of the transgenic plants had levels of SSS transcript indistinguishable from those of the control plants on RNA gel blots. However, seven independent transformants (named 1, 2, 9, 18, 19, 25 and 26) had strongly reduced or undetectable levels of SSS transcript. The loss or reduction of detectable transcript was specific for SSS, and there was little variation in the level of transcript for GBSSI among the plants studied (data shown in Marshall *et al.*, 1996 The Plant Cell 8, 1121-1135).

Tubers of the transformants with unaltered levels of SSS transcript had soluble starch synthase activities that were indistinguishable from those of the control plants and from values typical of those obtained from developing Desiree tubers in general (Edwards *et al.* (1995) Plant J. 8, 283-294 1995). Tubers of the seven transformants with reduced or undetectable levels of SSS transcript had significantly reduced activities, and three plants displayed activities that were 30% or less of the average value of the control plants. Table 3 shows that the observed reductions in soluble starch synthase activity were reproducible from one tuber to another. They were also reproducible through tuber development.

Table 3. Effects of Reduced Activity of SSS on Soluble and Granule-Bound Starch Synthase Activity and Amylose Content of Starch.

Plant ^a	Soluble Activity ^b (nmol min ⁻¹ g ⁻¹ Fresh Weight)	Granule-Bound Activity ² (nmol min ⁻¹ g ⁻¹ Fresh Weight)	Amylose Content ^d (% Total Starch)
1	ND°	ND	27.8
2	ND	ND	29.5, 29.8
9	18.3 <u>+</u> 3.9 (4)	118	28.6
18	$23.6 \pm 6.7(3)$	97	29.3
25	29.5 <u>+</u> 3.6 (4)	113	27.3
26	33.3 <u>+</u> 8.3 (3)	80	30.1
Control	98.4 <u>+</u> 4.9 (9)	106 <u>+</u> 12	26.4, 28.9
Desiree	ND	ND	27.8, 29.2

Plant numbers refer to individual transgenic plants with reduced SSS activity. Tubers are from a single plant, except for the control line, in which three different plants (each an independent, control transformant) were used.

b Soluble activity was measured by using duplicate samples from tubers of 12 to 70 g fresh weight harvested at intervals during plant development. Values are the means + SE of measurements made with the number of tubers given within parentheses.

d Amylose content was measured by using starch extracted from two or three tubers per mature plant. Values are the means of measurements made with two separate samples taken from the bulk starch preparations: two values are given when independent starch preparations were used. Wild-type Desiree plants used for these measurements were grown in the same greenhouse at the same time as the transgenic

c Granule-bound activities are the means of measurements made by using duplicate samples from a single tuber (12 to 70 g fresh weight) harvested at maturity.

plants.

5

10

15

20

25

30

35

40

45

50

55

e ND, not determined.

Reductions in Starch Synthase Activity Are Specifically Due to Loss of SSS

To discover whether the reductions in activity were specifically attributable to loss of SSS, two sorts of experiments were undertaken. First, isoforms were visualised on native gels of crude, soluble extracts of transformed tubers. The group of bands attributable to SSS was present in extracts from control plants and from all six of the transformants with soluble starch synthase activities comparable with control activities. It was absent from extracts of all seven transformants with reduced starch synthase activities. Other groups of bands on the gels, including those attributable to GBSSII, were present in all extracts (data shown in Marshall *et al.*, 1996).

Second, crude, soluble extracts from a plant with strongly reduced activity were incubated with the antiserum raised against SSS. The antiserum inhibited activity by 16%, compared with 75 % inhibition in extracts of untransformed tubers of cultivar Desiree (Table 2).

Loss of starch synthase activity from the soluble fraction in transgenic tubers was accompanied by dramatic reductions in the amount of the 140-kD protein recognised by the antiserum in soluble and granule-bound fractions of the tuber. The protein was not detected, or detected only very weakly relative to controls, on immunoblots of these fractions from tubers of the six transgenic lines with the largest reductions in starch synthase activity. In contrast, the soluble protein of 105 kD also recognised by the antiserum was present in equal amounts in all lines examined (data shown in Marshall *et al.*, 1996).

Reduction in SSS Activity Alters Granule Shape but Has Little Effect on Starch and Amylose Content

Tubers of the seven transformants with reduced activities of soluble starch synthase had starch granules with strikingly altered morphology. Two types of granule were present: simple granules with deep, often T-shaped cracks centered on the hilum, and granules that appeared to be large clusters of tiny, spherical granules. A range of different sizes of both types of granule was present in tubers at various developmental stages (data not shown).

In spite of the alteration in granule morphology, tubers of transformants with reduced activity of SSS were indistinguishable from control tubers with respect to total starch content. This was true of both developing tubers and tubers of mature plants on which the haulm was senescent. The starch of these plants also displayed no significant alteration in amylose content (Table 3).

Reduction in SSS Activity Does Not Affect Other Isoforms of Starch Synthase

It was thought possible that the reduction in SSS in transformed tubers may have secondary effects on other isoforms of starch synthase. Any alterations in other isoforms could seriously affect deductions about the importance and role of SSS and might prevent alteration of starch properties in transformed plants. Effects of the reduction in SSS on GBSSI were assessed by measuring granule-bound starch synthase activity in crude extracts of tubers and examining gels of granule-bound proteins. There was no difference in granule-bound activity between control plants and those in which soluble starch synthase activity was reduced (Table 3). More than 95 % of the starch synthase activity of intact starch granules of wild-type potatoes is attributable to GBSSI (Edwards *et al.* (1995) Plant J. 8, 283-294 1995). Reductions in SSS also had no obvious effect on the amount of GBSSI protein bound to starch granules (data not shown).

Effects of reductions in SSS on GBSSII were assessed in three ways. First, amounts of GBSSII protein in the soluble and granule-bound fractions of the tuber were visualised by immunoblotting. There were no obvious differences between control plants and those in which SSS was reduced.

Second. as described above, GBSSII was visualised on native gels of crude, soluble extracts stained for starch synthase activity. Again, there were no marked or consistent differences between control plants and those in which SSS was reduced.

Third, immunoprecipitation experiments were used to assess the proportion of the residual activity attributable to GBSSII in tubers in which SSS was reduced. The antiserum raised against GBSSII of pea embryos, which recognises GBSSII of potatoes (Edwards *et al.* 1995 cited above), inhibited ~40% of the activity in tubers in which soluble starch synthase activity was reduced by ~80% (line 9) compared with 9% in control and wild-type tubers (Table 2). Using these figures and starch synthase activities from Table 3, the activity attributable to GBSSII is 7.3 nmol min⁻¹g⁻¹ fresh

weight in line 9 and 8.8 nmol min⁻¹g⁻¹ fresh weight in control tubers. This indicates that the reduction in SSS has little effect on the soluble activity of GBSSII.

Example 4

Detailed analysis of starch from tubers obtained from transformed Potato plants

Despite the results of crude analysis described in Example 3, indicating that the starch from transformed plants was essentially unaltered, it was decided to perform more detailed analysis of the starch, by Differential Scanning Calorimetry and Viscoamylograph. Analysis was performed as described in WO 95/26407 and WO 96/34968.

Surprisingly it was found that certain physical properties of the starch were consistently significantly altered. In particular, it was found that the viscosity onset temperature was significantly reduced compared to starch obtained from equivalent control plants which did not contain the SSS antisense construct. The results are shown in Table 4.

Starch from AS major soluble starch synthase tubers

5

10

15

20

25

30

35

40

45

50

55

4	
7 ABLE	

1	-							
			osa		RVA	SSS activity	Apparent	Granule morphology
Plant line	Plant n°	Peak	Onset	Delta H	Onset	(nmol/min/	amylose*	Comments
		(၁.)	(၁,)	(J/g)	(5)	mg of tuber)	(%/M %)	
Rat 4.1		65.8	61.7	16.1	63.4		27.82	unusual granules: some compound, some
	_	65.5	61.6	16.0				with large cracks
Ral 4.2	1	63.4	59.4	17.0	62.0		29.76	unusual granules (as Rat 4.1)
		63.6	59.6	16.7				DSC endotherm double peak
	2	64.0	60.1	16.9	61.5		29.45	
		63.1	59.3	17.4				
Désirée	-	67.6	64.4	17.5	65.6		29.16	
(control)		67.5	64.4	17.2				
	2	67.3	64.6	16.9	65.6	* * * · · · · · · · · · · · · · · · · ·	27.80	
		67.3	64.7	17.5				
Rat 4.9		57.4	53.2	14.5	:	18.3\$	28.60	unusual granules (as Rat 4.1)
		57.4	53.2	14.0				
Rat 4.18		58.6	54.3	(14.5)		23	29.31	unusual granules (as Rat 4.1), but smaller
		58.5	54.3	(16.0)				than controls. DSC endotherm broad
Rat 4.25		59.0	54.3	14.8		24	27 32	unusual granules (as Rat 4 1)
	1	59.0	54.2	14.9				
Rat 4.26		(9.69)	54.9	(16.2)		30	30.10	unusual granules (as Rat 4 1)
		(59.8)	54.9	(16.9)				DSC endotherm double peak
Luc 1		63.7	61.0	17.1		110	26.43	
(control)		63.6	61.3	17.6				
Luc 6		64.6	62.0	17.9		116	28.85	
(control)		64.5	62.0	17.3				

Soluble starch synthase activity SSS activity endotherm onset temperature Differential scanning catorimetry Onset: DSC

Peak: endotherm peak temperature
Delta H: endotherm enthalpy

RVA Rapid visco analyser
Onset: visco

Onset: viscosity onset temperature

SEQUENCE LISTING

5	(1) GENERAL INFORMATION:
10	 (i) APPLICANT: (A) NAME: National Starch and Chemical Investment
15	(ii) TITLE OF INVENTION: Improvements in or Relating to Soluble Starch Synthase
	(iii) NUMBER OF SEQUENCES: 4
20	(iv) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
25	(D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
	(2) INFORMATION FOR SEQ ID NO: 1:
30	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 15 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
35	(ii) MOLECULE TYPE: peptide
	(iii) HYPOTHETICAL: NO
40	(v) FRAGMENT TYPE: internal
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:
1 5	Phe Ile Pro Ile Pro Tyr Thr Ser Glu Asn Val Val Glu Gly Lys 1 5 10 15
	(2) INFORMATION FOR SEQ ID NO: 2:
50	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 7 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: (D) TOPOLOGY: linear
55	(ii) MOLECULE TYPE: peptide

	(111)	HANDLHFLIC	AL: NO						
	(v)	FRAGMENT T	YPE: inter	nal					
5	(xi)	SEQUENCE D	ESCRIPTION	: SEQ I(0 NO: 2:				
	His	Ile Pro Va	Phe Gly	Gly					
10	l		5						
	(2) INFO	RMATION FOR	SEQ ID NO	: 3:					
15	(i)	(B) TYPE: (C) STRAN	HARACTERIS H: 4127 ba nucleic a DEDNESS: s DGY: linea	se pairs cid ingle	S				
20	(ii)	MOLECULE T	YPE: cDNA						
25	(vi)	(B) STRAII	DURCE: ISM: Solan N: Desiree E TYPE: tu		rosum				
	(vii)	IMMEDIATE ((A) LIBRA	SOURCE: RY: lambda	gtll					
30	(ix)	FEATURE: (A) NAME/! (B) LOCAT	KEY: CDS ION:1433	835					
35	(ix)	FEATURE: (A) NAME/I (B) LOCAT	(EY: sig_p ION:1433	eptide 22					
-10	(ix)	FEATURE: (A) NAME/I (B) LOCAT	(EY: mat_p ION:3233	eptide 832					
	(xi)	SEQUENCE D	ESCRIPTION	: SEQ II	0 NO: 3:				
45	GAATTCGC	GG CCGCAGATA	AG TGTGTTG	ATG AAG(GAGAAGA	GAGATATT	TC ACATO	GGATG	60
43	TTCTATTT	GA TTCTGTGG	TG AACAAGA	GTT TTA	CAAAGAA	CATTCCTT	т тетт	тттсс	120
50	TTGGTTCT	TG TGTGGGTC		_		F CCA CTG Pro Leu -55			172
	TTG AGT Leu Ser -50	TGC ACA AGT Cys Thr Ser	GTC TCC A Val Ser A -45	AT GCA A	ATA ACC Ile Thr -40	CAC CTC / His Leu l	AAG ATC Lys Ile	AAA Lys -35	220
55									

		ATT	-			_	_				Thr			_	_		268
5		TCT Ser															316
10		TGT Cys															364
15		AGT Ser															412
20		ATG Met															460
		AAA Lys	_	-													508
25		GTT Val															556
30		AGG Arg 80															604
<i>35</i>		AAA Lys															652
40	•	AGT Ser	_				Gly	Asp	Asp		Asp					AAC Asn	700
40		TCA Ser								Phe					Val		748
45		GAA Glu		Ser					Glu					Ser			796
50	AGC Ser	CAT His 160	GCT Ala	GTG Val	GGT Gly	ACA Thr	AAA Lys 165	Leu	TAT Tyr	GAG G1u	ATA Ile	TTG Leu 170	CAG Gln	GTG Val	GAT Asp	GTT Val	844
55	GAG Glu 175	CCA Pro	CAA Gln	CAA Gln	TTG Leu	AAA Lys 180	Glu	AAT Asn	AAT Asn	GCT Ala	GGG Gly 185	Asn	GTT Val	GAA Glu	TAC Tyr	ддд Lys 190	892

	GGA Gly	CCT Pro	GTA Val	GCA Ala	AGT Ser 195	AAG Lys	CTA Leu	TTG Leu	GAA Glu	ATT Ile 200	ACT Thr	AAG Lys	GCT Ala	AGT Ser	GAT Asp 205	GTG Val	940
.	GAA Glu	CAC His	ACT Thr	GAA Glu 210	AGC Ser	AAT Asn	GAG G1u	ATT	GAT Asp 215	GAC Asp	TTA Leu	GAC Asp	ACT Thr	AAT Asn 220	AGT Ser	TTC Phe	988
10	TTT Phe	AAA Lys	TCA Ser 225	GAT Asp	TTA Leu	ATT	GAA G1u	GAG G1u 230	GAT Asp	GAG Glu	CCA Pro	TTA Leu	GCT Ala 235	GCA Ala	GGA Gly	ACA Thr	1036
15	GTG Val	GAG G1u 240	ACT Thr	GGA Gly	GAT Asp	TCT Ser	TCT Ser 245	CTA Leu	AAC Asn	TTA Leu	AGA Arg	TTG Leu 250	GAG Glu	ATG Met	GAA Glu	GCA Ala	1084
20	AAT Asn 255	CTA Leu	CGT Arg	AGG Arg	CAG Gln	GCT Ala 260	ATA Ile	GAA Glu	AGG Arg	CTT Leu	GCC Ala 265	GAG Glu	GAA Glu	AAT Asn	TTA Leu	TTG Leu 270	1132
	CAA G1n	GGG Gly	ATC Ile	AGA Arg	TTA Leu 275	TTT Phe	TGT Cys	TTT Phe	CCA Pro	GAG Glu 280	GTT Val	GTA Va l	AAA. Lys	CCT Pro	GAT Asp 285	GAA Glu	1180
25	GAT Asp	GTC Val	GAG Glu	ATA Ile 290	TTT Phe	CTT Leu	AAC Asn	AGA Arg	GGT Gly 295	CTT Leu	TCC Ser	ACT Thr	TTG Leu	AAG Lys 300	AAT Asn	GAG Glu	1228
30	TCT Ser	GAT Asp	GTC Val 305	TTG Leu	ATT	ATG Met	GGA Gly	GCT Ala 310	TTT Phe	AAT Asn	GAG Glu	TGG Trp	CGC Arg 315	TAT Tyr	AGG Arg	TCT Ser	1276
35													GAT Asp			TCT Ser	1324
40	TGC Cys 335	AAG Lys	ATC Ile	CAT	GTT Val	CCC Pro 340	AAG Lys	GAA G1u	GCA Ala	TAC Tyr	AGG Arg 345	GCT Ala	GAT Asp	TTT Phe	GTG Va 1	TTT Phe 350	1372
													AAT Asn			AGT Ser	1420
4 5													GAA GTu				1468
50													AAA Lys 395			GCT Ala	1516
55													GAA Glu			AAA Lys	1564

	GCT Ala 415	GAA G1u	ATT	GAA G1u	GCT Ala	GAC Asp 420	AGA Arg	GCA Ala	CAA Gln	GCA Ala	AAG Lys 425	GAA Glu	GAG Glu	GCT Ala	GCA Ala	AAG Lys 430	1612
5														AAG Lys			1660
10	GAT Asp	ATC Ile	ACC Thr	TGG Trp 450	TAC Tyr	ATA []e	GAG Glu	CCA Pro	AGT Ser 455	GAA Glu	TTT Phe	AAA Lys	TGC Cys	GAG Glu 460	GAC Asp	AAG Lys	1708
15		_	_							_				CAT His			1756
20														GGT Gly			1804
														GAT Asp		TGG Trp 510	1852
25														GAT Asp			1900
30													-	AAC Asn 540	-		1948
<i>35</i>														GAG Glu			1996
														CAG Gln			2044
40	AGA Arg 575	AGG Arg	CTT Leu	AGA Arg	GAA Glu	GCG Ala 580	GCT Ala	ATG Met	CGT Arg	GCT Ala	AAG Lys 585	GTT Val	GAA Glu	AAA Lys	ACA Thr	GCA A1a 590	2092
45				_										TTT Phe			2140
50														CAA Gln 620			2188
<i>55</i>														CTT Leu		GGT Gly	2236

	AAA Lys	CCT Pro 640	GAA Glu	ATT Ile	TGG Trp	TTC Phe	AGA Arg 645	TGT Cys	TCA Ser	TTT Phe	AAT Asn	CGC Arg 650	TGG Trp	ACT Thr	CAC His	CGC Arg	2284
5										TCG Ser							2332
10										TTG Leu 680					_	GAT Asp	2380
15										GGG Gly					_	AGC Ser	2428
20										GGA Gly						CCT Pro	2476
										GAA Glu							2524
25					_		_			AGT Ser						-	2572
30										TTA Leu 760						TTG Leu	2620
<i>35</i>										TTT Phe						_	2668
40										GGA Gly							2716
										TTA Leu							2764
45										TTT							2812
50										TTT Phe 840						CAT His	2860
<i>55</i>										GCT Ala		-		_		CAA Gln	2908

		Thr											TTC Phe 875			CAT His	2956
5													ATG Met			GCA Ala	3004
10	GAC Asp 895	AAA Lys	GCT Ala	ACA Thr	ACA Thr	GTT Val 900	TCA Ser	CCA Pro	ACT Thr	TAC Tyr	TCA Ser 905	CAG Gln	GAG Glu	GTG Val	TCT Ser		3052
15													GGT Gly			AAT Asn	3100
20	GGG Gly	ATT	GAC Asp	CCA Pro 930	GAT Asp	ATT Ile	TGG Trp	GAT Asp	CCT Pro 935	TTA Leu	AAC Asn	GAT Asp	AAG Lys	TTC Phe 940	ATT Ile	CCG Pro	3148
	ATT Ile	CCG Pro	TAC Tyr 945	ACT Thr	TCA Ser	GAA Glu	AAC Asn	GTT Val 950	GTT Val	GAG G1u	GGC Gly	AAA Lys	ACA Thr 955	GCA Ala	GCC Ala	AAG Lys	3196
25	GAA Glu	GCT Ala 960	TTG Leu	CAG Gln	CGA Arg	AAA Lys	CTT Leu 965	Gly	CTG Leu	AAA Lys	CAG Gln	GCT Ala 970	GAC Asp	CTT Leu	CCT Pro	TTG Leu	3244
30	GTA Val 975	GGA Gly	ATT	ATC Ile	ACC Thr	CGC Arg 980	TTA Leu	ACT Thr	CAC His	CAG Gln	AAA Lys 985	Gly	ATC []e	CAC His	CTC Leu	ATT Ile 990	3292
<i>35</i>	AAA Lys	CAT His	GCT Ala	ATT Ile	TGG Trp 995	CGC Arg	ACC Thr	TTG Leu	GAA Glu	CGG Arg 100	Asn	GGA Gly	CAG Gln	GTA Val	GTC Val 100	TTG Leu 5	3340
	CTT Leu	GGT Gly	TCT Ser	GCT Ala 101	Pro	GAT Asp	CCT Pro	AGG Arg	GTA Val 101	Gln	AAC Asn	AAT Asn	TTT	GTT Val 102	ุAsก	TTG Leu	3388
40	GCA Ala	AAT Asn	CAA Gln 102	Leu	CAC His	TCC Ser	AAA Lys	TAT Tyr 103	Asn	GAC Asp	CGC Arg	GCA Ala	CGA Arg 103	Leu	TGT Cys	CTA Leu	3436
45	ACA Thr	TAT Tyr 104	Asp	GAG Glu	CCA Pro	CTT Leu	TCT Ser 104	His	CTG Leu	ATA	TAT Tyr	GCT Ala 105	Gly	GCT Ala	GAT Asp	TTT	3484
50	ATT 116 105	e Leu	GTT Val	CCT Pro	TCA Ser	ATA 116	Phe	GAG Glu	CCA Pro	TGT Cys	GGA Gly 106	/ Leu	ACA I Thr	CAA Gln	CTT Leu	ACC Thr 1070	3532
55	GC1 A1a	ATO Met	AGA Arç	TAT Ty:	GG1 G13 107	/ Ser	ATT Tle	Γ CCA e Pro	A GT(GT6 Val 108	l Arç	F AAA J Lys	A ACT Thr	GGA Gly	4 GGA 7 G15 108	CTT Leu 85	3580

	TAI GAI ACT GTA ITT GAI GIT GAC CA: GAC AAA GAG AGA GCA CAA CAG 3628 Tyr Asp Thr Val Phe Asp Val Asp His Asp Lys Glu Arg Ala Gln Gln 1090 1095 1100]
5	TGT GGT CTT GAA CCA AAT GGA TTC AGC TTT GAT GGA GCA GAT GCT GGC 3676 Cys Gly Leu Glu Pro Asn Gly Phe Ser Phe Asp Gly Ala Asp Ala Gly 1105 1110 1115	ŀ
10	GGA GTT GAT TAT GCT CTG AAT AGA GCT CTC TCT GCT TGG TAC GAT GGT 3724 Gly Val Asp Tyr Ala Leu Asn Arg Ala Leu Ser Ala Trp Tyr Asp Gly 1120 1125 1130	
15	CGG GAT TGG TTC AAC TCT TTA TGC AAG CAG GTC ATG GAA CAA GAT TGG 3772 Arg Asp Trp Phe Asn Ser Leu Cys Lys Gln Val Met Glu Gln Asp Trp 1135 1140 1145 1150	
20	TCT TGG AAC CGA CCT GCT CTT GAT TAT TTG GAG CTT TAC CAT GCT GCT 3820 Ser Trp Asn Arg Pro Ala Leu Asp Tyr Leu Glu Leu Tyr His Ala Ala 1155 1160 1165	
	AGA AAG TTA GAA TAG TTAGTTTGTG AGATGCTAGC AGAAAAATTC ACGAGATCTG 3875 Arg Lys Leu Glu * 1170	
25	CAATCTGTAC AGGTTCAGTG TTTGGGTCTG GACAGCTTTA TCATTTCCTA TATCAAAGTA 393	5
	TAAATCAAGT CTACACTGAG GATCAATAGC AGACAGTCCT CAAGTTCATT TCATTTTTTG 399	5
<i>30</i>	GGGCAAACAT ATGAAAGAGC TTAGCCTCTT AATAATGTCG GCCTATTGAT GATTATTTGT 405	5
	TTTGGGAAGA AATGAGAAAT CAAAGGATGC AAAATAAAAA AAAAAAAAAA	5
	CGTGCCGAAT TC 4127	
35	(2) INFORMATION FOR SEQ ID NO: 4:	
40	(i) SEQUENCE CHARACTERISTICS:(A) LENGTH: 1231 amino acids(B) TYPE: amino acid(D) TOPOLOGY: linear	
45	(ii) MOLECULE TYPE: protein (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:	
	Met Asp Val Pro Phe Pro Leu His Arg Ser Leu Ser Cys Thr Ser Val -60 -55 -50 -45	
50	Ser Asn Ala Ile Thr His Leu Lys Ile Lys Pro Ile Leu Gly Phe Val -40 -35 -30	
	Ser His Gly Thr Thr Ser Leu Ser Val Gln Ser Ser Ser Trp Arg Lys -25 -20 -15	
5 <i>5</i>	Asp Gly Met Val Thr Gly Val Ser Phe Ser Ile Cys Ala Asn Phe Ser -10 -5	

	Gly 5	Arg	Arg	Arg	Arg	Lys 10	Val	Ser	Thr	Pro	Arg 15	Ser	Gin	Gly	Ser	Ser 20
5	Pro	Lys	Gly	Phe	Va1 25	Pro	Arg	Lys	Pro	Ser 30	Gly	Met	Ser	Thr	G1n 35	Arg
	Lys	Val	Gln	Lys 40	Ser	Asn	Gly	Asp	Lys 45	Glu	Ser	Lys	Ser	Thr 50	Ser	Thr
10	Ser	Lys	G1u 55	Ser	Glu	Ne	Ser	Asn 60	Gln	Lys	Thr	Val	Glu 65	Ala	Arg	Val
15	Glu	Thr 70	Ser	Asp	Asp	Asp	Thr 75	Lys	Gly	Val	Val	Arg 80	Asp	His	Lys	Phe
	Leu 85	Glu	Asp	Glu	Asp	G1u 90	Ile	Asn	Gly	Ser	Thr 95	Lys	Ser	Ne	Ser	Met 100
20	Ser	Pro	Val	Arg	Val 105	Ser	Ser	Gln	Phe	Val 110	Glu	Ser	Glu	Glu	Thr 115	Gly
	Gly	Asp	Asp	Lys 120	Asp	Ala	Val	Lys	Leu 125	Asn	Lys	Ser	Lys	Arg 130	Ser	Glu
25	Glu	Ser	Gly 135	Phe	Пе	[le	Asp	Ser 140	Val	Ile	Arg	Glu	Gln 145	Ser	G1y	Ser
<i>30</i>	Gln	Gly 150	G1u	Thr	Asn	Ala	Ser 155	Ser	Lys	Gly	Ser	His 160	Ala	Val	Gly	Thr
	Lys 165	Leu	Tyr	Glu	He	Leu 170	Gln	Val	Asp	Val	Glu 175	Pro	Gln	Gln	Leu	Lys 180
35	Glu	Asn	Asn	Ala	Gly 185	Asn	Va1	Glu	Tyr	Lys 190	Gly	Pro	Val	Ala	Ser 195	Lys
	Leu	Leu	Glu	Ile 200	Thr	Lys	Ala	Ser	Asp 205		Glu	His	Thr	Glu 210	Ser	Asn
40	Glu	He	Asp 215	Asp	Leu	Asp	Thr	Asn 220	Ser	Phe	Phe	Lys	Ser 225	Asp	Leu	Ile
	Glu	G1u 230	Asp	Glu	Pro	Leu	Ala 235		Gly	Thr	Val	Glu 240	Thr	Gly	Asp	Ser
45	Ser 245	Leu	Asn	Leu	Arg	Leu 250	Glu	Met	Glu	Ala	Asn 255	Leu	Arg	Arg	Gln	Ala 260
50	Ile	Glu	Arg	Leu	A1a 265		Glu	Asn	Leu	Leu 270		Gly	Ile	Arg	Leu 275	Phe
	Cys	Phe	Pro	Glu 280	Val	Val	Lys	Pro	Asp 285	G1u	Asp	Val	Glu	11e 290	Phe	Leu
55	Asn	Arg	Gly 295		Ser	Thr	Leu	Lys 300		G1u	Ser	Asp	Va 305	Leu	Ile	Met

	Gly	Ala 310	Phe	Asn	Glu	Trp	Arg 315	Tyr	Arg	Ser	Phe	Thr 320	Thr	Arg	Leu	Thr
5	G1u 325	Thr	His	Leu	Asn	Gly 330	Asp	Trp	Trp	Ser	Cys 335	Lys	Пe	His	Vaî	Pro 340
10	Lys	Glu	Ala	Tyr	Arg 345	Ala	Asp	Phe	Val	Phe 350	Phe	Asn	Gly	Gln	Asp 355	Val
	Tyr	Asp	Asn	Asn 360	Asp	Gly	Asn	Asp	Phe 365	Ser	Ile	Thr	Val	Lys 370	Gly	Gly
15	Met	Gln	Ile 375	Ile	Asp	Phe	Glu	Asn 380	Phe	Leu	Leu	Glน	G1u 385	Lys	Trp	Arg
	Glu	Gln 390	Glu	Lys	Leu	Ala	Lys 395	Glu	Gln	Ala	Glu	Arg 400	Glu	Arg	Leu	Ala
20	G1u 405	Glu	Gln	Arg	Arg	Ile 410	Glu	Ala	Glu		Ala 415		Пe	Glu	Ala	Asp 420
	Arg	Ala	Gln	Ala	Lys 425	Glu	Glu	Ala	Ala	Lys 430	Lys	Lys	Lys	Val	Leu 435	Arg
25	Glu	Leu	Met	Val 440	Lys	Ala	Thr	Lys	Thr 445	Arg	Asp	He	Thr	Trp 450	Tyr	He
30	Glu	Pro	Ser 455	Glu	Phe	Lys	Cys	G1u 460	Asp	Lys	Val	Arg	Leu 465	Tyr	Tyr	Asn
	Lys	Ser 470	Ser	Gly	Pro	Leu	Ser 475	His	Ala	Lys	Asp	Leu 480	Trp	Ile	His	Gly
<i>35</i>	Gly 485	Tyr	Asn	Asn	Trp	Lys 490	Asp	Gly	Leu	Ser	Ile 495	Val	Lys	Lys	Leu	Val 500
	Lys	Ser	Glu	Arg	Ile 505	Asp	Gly	Asp	Trp	Trp 510	Tyr	Thr	Glu	Val	Val 515	He
40	Pro	Asp	Gln	Ala 520	Leu	Phe	Leu	Asp	Trp 525	Val	Phe	Ala	Asp	Gly 530	Pro	Pro
45	Lys	His	Ala 535	Ile	Ala	Tyr	Asp	Asn 540	Asn	His	Arg	Gln	Asp 545	Phe	His	Ala
	Ile	Va 1 550	Pro	Asn	His	Ile	Pro 555	Glu	Glu	Leu	Tyr	Trp 560	Val	Glu	Glu	G1u
50	His 565	Gln	Ile	Phe	Lys	Thr 570	Leu	Gln	Glu	Glu	Arg 575	Arg	Leu	Arg	Glu	Ala 580
	Ala	Met	Arg	Ala	Lys 585	Va1	Glu	Lys	Thr	A1a 590	Leu	Leu	Lys	Thr	G1u 595	Thr
55	Lys	Glu	Arg	Thr 600	Met	Lys	Ser	Phe	Leu 605	Leu	Ser	Gln	Lys	His 610	Val	Val

	Tyr	Thr	Glu 615	Pro	Leu	Asp	De	G1n 620	Ala	Gly	Ser	Ser	Va 1 625	Thr	Val	Tyr
5	Tyr	Asn 630	Pro	Ala	Asn	Thr	Va 1 635	Leu	Asn	Gly	Lys	Pro 640	Glu	He	Trp	Phe
40	Arg 645	Cys	Ser	Phe	Asn	Arg 650	Trp	Thr	His	Arg	Leu 655	Gly	Pro	Leu	Pro	Pro 660
10	Gin	Lys	Met	Ser	Pro 665	Ala	Glu	Asn	Gly	Thr 670	His	Val	Arg	Ala	Thr 675	Val
15	Lys	Val	Pro	Leu 680	Asp	Ala	Tyr	Met	Met 685	Asp	Phe	Val	Phe	Ser 690		Arg
	Glu	Asp	Gly 695	Gly	He	Phe	Asp	Asn 700	Lys	Ser	Gly	Met	Asp 705	Tyr	His	Ile
20		/10										720				
	Ile 725	Ala	Val	Glu	Met	Ala 730	Pro	Пe	Ala	Lys	Val 735	Gly	Gly	Leu	Gly	Asp 740
25	Val	Val	Thr	Ser	Leu 745	Ser	Arg	Ala	Val	Gln 750	Asp	Leu	Asn	His	Asn 755	Val
30	Asp	Ile	Ile	Leu 760	Pro	Lys	Tyr	Asp	Cys 765	Leu	Lys	Met	Asn	Asn 770	Val	Lys
	Asp	Phe	Arg 775	Phe	His	Lys	Asn	Tyr 780	Phe	Trp	Gly	Gly	Thr 785	Glu	Ile	Lys
<i>35</i>		790					G1u 795					800				
	G1n 805	Asn	Gly	Leu	Phe	Ser 810	Lys	Gly	Cys	Val	Tyr 815	Gly	Cys	Ser	Asn	Asp 820
40	Gly	Glu	Arg	Phe	Gly 825	Phe	Phe	Cys	His	A1a 830	Ala	Leu	Glu	Phe	Leu 835	Leu
45	Gln	Gly	Gly	Phe 340	Ser	Pro	Asp	Ile	Ile 845	His	Cys	His	Asp	Trp 850	Ser	Ser
` -	Ala	P∩o	Val 855	Ala	Trp	Leu	Phe	Lys 860	Gīu	Gln	Tyr	Thr	His 865	Tyr	Gly	Leu
50	Ser	Lys 870	Ser	Arg	Ile	Val	Phe 875	Thr	Ile	His	Asn	Leu 880	Glu	Phe	Gly	Ala
	Asp 885	Leu	He	Gly	Arg	Ala 890	Met	Thr	Asn	Ala	Asp 895	Lys	Ala	Thr	Thr	Val 900
55	Ser	Pro	Thr	Tyr	Ser 905	Gln	Glu	Val	Ser	Gly 910	Asn	Pro	Val	Ile	Ala 915	Pro

	His	Leu	His	Lys 920	Phe	His	Gly			Asn	Gly	Ile	Asp	Pro 930	Asp	Ne
5	Trp	Asp	Pro 935	Leu	Asn	Asp	Lys	Phe 940	Пe	Pro	Пe	Pro	Tyr 945	Thr	Ser	Glu
10	Asn	Va 1 950	Val	Glu	Gly	Lys	Thr 955	Ala	Ala	Lys	Glu	Ala 960	Leu	Gln	Arg	Lys
	Leu 965	Gly	Leu	Lys	Gln	Ala 970	Asp	Leu	Pro	Leu	Va1 975	Gly	He	Ile	Thr	Arg 980
15	Leu	Thr	His	Gln	Lys 985	Gly	Ile	His	Leu	Ile 990	Lys	His	Ala	Ile	Trp 995	Arg
	Thr	Leu	Glu	Arg 1000	Asn)	Gly	Gln	Val	Val 1009	Leu 5	Leu	Gly	Ser	Ala 1010	Pro)	Asp
20	Pro	Arg	Val 101	Gln 5	Asn	Asn	Phe	Val 1020	Asn)	Leu	Ala	Asn	Gln 1029		His	Ser
25	Lys	Tyr 103	Asn 0	Asp	Arg	Ala	Arg 1039	Leu	Cys	Leu	Thr	Tyr 104	Asp 0	Glu	Pro	Leu
	_		Leu													
30	Phe	Glu	Pro	Cys	Gly 106	Leu 5	Thr	Gln	Leu	Thr 107	Ala O	Met	Arg	Tyr	Gly 107	Ser S
25	Ile	Pro	Val		Arg O	Lys	Thr	Gly	Gly 108	Leu 5	Tyr	Asp	Thr	Val 109	Phe 0	Asp
<i>3</i> 5	Val	Asp	His 109	Asp 5	Lys	Glu	Arg	Ala 110	Gln 0	Gln	Cys	G1y	Leu 110	Glu 5	Pro	Asn
40	Gly	Phe 111	Ser 0	Phe	Asp	Gly	Ala 111	Asp 5	Ala	Gly	Gly	Val 112	Asp 0	Tyr	Ala	Leu
	Asn 112	Arg 25	Ala	Leu	Ser	Ala 113	Trp 0	Tyr	Asp	Gly	Arg 113	Asp 5	Trp	Phe	Asn	Ser 1140
45	Leu	ı Cys	Lys	Gln		Met 5			Asp	Trp 115		Trp	Asn	Arg	Pro 115	Ala 5
50	Leu	ı Asp) Tyr	Leu 116	Glu 0	ı Leu	Tyr	His	Ala 116	Ala 55	Arg	Lys	Leu	Glu 117	* 0	

55 Claims

1. Altered starch extracted from a transformed potato plant or the progeny thereof, which starch, as extracted, has a viscosity onset temperature as determined by differential scanning calorimetry which is reduced by at least 5°C

compared to starch extracted from equivalent, non-transformed plants.

- 2. Altered starch according to claim 1, wherein the viscosity onset temperature is reduced by at least 7°C compared to starch extracted from equivalent, non-transformed plants.
- 3. Altered starch extracted from a transformed potato plant or the progeny thereof, which starch, as extracted, has a viscosity onset temperature as determined by differential scanning calorimetry, of less than 60°C.
- 4. Altered starch according to claim 3 which, as extracted, has a viscosity onset temperature of less than 55°C.
- 5. Altered starch according to any one of claims 1-4 which, as extracted, has a reduced endotherm peak temperature (as extracted) as determined by differential scanning calorimetry compared to starch extracted from equivalent, non-transformed plants.
- 6. Altered starch according to any one of claims 1-5 which, as extracted, has an endotherm peak temperature as determined by differential scanning calorimetry which is reduced by at least 5°C compared to starch extracted from equivalent, non-transformed plants.
- 7. Altered starch according to any one of claims 1-6 which, as extracted, has an endotherm peak temperature as determined by differential scanning calorimetry, of less than 59°C.
 - 8. Altered starch according to any one of the preceding claims, having a substantially normal amylose content.
- A polypeptide obtainable from a soluble extract of potato tubers and having starch synthase activity, in substantially isolated form.
 - 10. A polypeptide according to claim 9, having an apparent molecular weight, as judged by SDS-PAGE, in the range of 100-140 kDa, or a functional equivalent thereof.
- 11. A polypeptide according to claim 9 or 10, having an apparent molecular weight, as judged by SDS-PAGE, of 140 kDa.
 - 12. A polypeptide according to claim 9 or 10, having an apparent molecular weight, as judged by SDS-PAGE, of 120 kDa.
 - 13. A polypeptide according to claim 9 or 10, having an apparent molecular weight, as judged by SDS-PAGE, of 110 kDa.
 - 14. A polypeptide according to claim 9 or 10, obtainable from developing tubers of S. tuberosum cultivar Desirée, having an apparent molecular weight, as judged by SDS-PAGE, of 100 kDa.
 - 15. A polypeptide according to any one of claims 9-14, comprising the amino acid sequence shown in Figure 6.
- 16. A nucleic acid sequence comprising at least 200bp and exhibiting at least 80% sequence identity with the corresponding region of the DNA sequence shown in Figure 6, operably linked in the sense or antisense orientation to a promoter operable in a plant.
 - 17. A sequence according to claim 16 comprising at least 300-600bp.
- 18. A sequence according to claim 16 or 17, exhibiting at least 85% sequence identity with the corresponding region of the DNA sequence shown in Figure 6.
 - 19. A sequence according to any one of claims 16, 17 or 18 exhibiting at least 90% sequence identity with the corresponding region of the DNA sequence shown in Figure 6.
 - 20. A sequence according to any one of claims 16-19, comprising a 5' and/or a 3' untranslated region.
 - 21. A sequence according to any one of claims 16-20, encoding at least a portion of a polypeptide in accordance with

5

10

35

40

any one of claims 9-15.

15

25

30

35

40

45

50

55

- 22. A sequence according to any one of claims 16-21, excluding sequences disclosed in WO 96/15248.
- 5 23. A nucleic acid construct comprising the nucleic acid sequence of any one of claims 16-22.
 - 24. A host cell into which has been introduced a nucleic acid sequence according to any one of claims 16-22.
- 25. A host cell according to claim 24, wherein the nucleic acid sequence is introduced in a construct according to claim 23.
 - 26. A host cell according to claim 24 or 25, wherein the introduced sequence is integrated into the host cell genome.
 - 27. A plant host cell according to any one of claims 24, 25 or 26.
 - 28. A plant or part thereof, into which has been introduced a nucleic acid sequence according to any one of claims 16-22, or the progeny of such a plant or part thereof.
- 29. A plant or part thereof according to claim 28, wherein the plant is selected from the group consisting of : potato, tomato, rice, wheat, peal cassava, sweet potato, barley, oat and maize.
 - 30. A plant according to claim 28 or 29, comprising starch in accordance with any one of claims 1-8.
 - 31. Starch extracted from a plant according to claim 28 or 29.
 - 32. Starch according to claim 31, having altered properties, as extracted, relative to starch extracted from equivalent but untransformed plants.
 - 33. Starch according to claim 31 or 32, and in accordance with any one of claims 1-8.
 - 34. A method of producing altered starch from transformed potato plants or their progeny, the method comprising extracting starch from a potato plant, at least the tubers of which comprise a nucleic acid sequence in accordance with any one of claims 16-22, said sequence having been artificially introduced into the potato plant or a predecessor thereof.

Fig. 5

GAATICGESGCCGCAGATAGIGIGITGATGAAGGAGAGAGAGAGATAITICACAIGGGAIGIICTAITIGAITCTGTGGTGAACAAGAGITITACAAAGAACAITCCTTITICITITICC AACCAAGAACACACCCAGICGGIACCIACAAGGIAAAGGIGACGIAICIAGIAACICAACGIGIICACAGAGGIIACGIIAIITGGGIGGGIICAAGIIITGGAIAAGACCCAAACAGAG M D / F F P L 4 P S L S C T S V S N A 1 T - L K 1 K P 1 L G F / 3 Xmn (TOATGGAACDACAAGTETATCAGTACAATETICTTCATGGAGGAAGGATGGAATGGTTACTGGGGTTTCATTTTCATTTTGTGCAAATTTCTCGGGAAGAGACGGGAGAAAGTTTGAAC AGTACETTGGTGTTGAGAFAGICATGTFAGAAGAAGTAGETCCTTCCTACCTTACCAATGACEEEAAAGTAAAAGGTAAACACGTTTAAAGAGGGCTTCTTGTGCCTCTTTTCAAAGTTG H G T T S L S V O S S S W R K O G M V, T Q V S F S 1 C A M F S G R R R R K V S T Sca t AGGATEETEAGTTECGAGAAGTGGATTECCEAAACAGGGTTCCTTCGGGAGTCCETACTCGTGCGTTCTTTCEAAGTCTTCTGCGTTACCAGTATTTCTTTCATTTTCATGAAGTTGTAG P R S O G S S P K G = V P R K P S G M S * Q R K V Q K S N G O K E S K S I S I S TADAGAATCTGAAATTTECAACEAGAAGACGGTTGAAGCAAGAGTTGAAACTAGTGACGATGACACTAAAGGAGTGGTGAGGGACCACAAGTTTCTGGAGGATGAAATCAATGG ATTICITAGACITTAAAGGIIGGICIICIGCCAACITIGIICICAACITIGAICACIGGICACTGOTACIGTGATTICTCACCACTCCEIGGIGIICAAAGACEICCIACIECIACIIIAGITACS KESEISNOKTYEARVEISOOOTKS VVRDHYFLEDEDFING ITCTACTAAATCAATAAGTATGTCACCTGTTCGTGTATCATCTCAATTTGTTGAAAGIGAAGAACTGGTGGTGATGACAAGGATGCTGTAAAGITAAACAAATCAAAGATCGGAAGA AAGATGATTTAGTTATTCATACAGTGGACAAGCACATAGTAGAGTTAAACAACTTTCACTTCTTTGACCACGACTACTGTTCCTAGGACATTTCAATTTGTTTAGTTTCTCTAGGCTTCT 5 + K 5 | 5 H 5 P 7 R 7 S 5 0 F 7 E 5 E E T C C D D K D A 7 K L N K S K R S E E GAGIGGITITATAAIIGAIICIGTAATAAGAGAACAAAGIGGAICICAGGGGGAAACIAAIGCCAGIAGGAAGGCAIGCIGIGGGTACAAAACIITAIGAGAIAIIGCAGGIGGA CTUACCAAAATATTAACTAAGACATTATTCTCTTGTTTCACCTAGAGTEECCCTTTGATTACGGTCATGTTCGGTTGGGTAGGACACCCATGTTTTGAAATACTCTATAACGTCCACGT S G F ; | D S V | R E D S G S D G E T N A S S K C S H A / G T K L 1 E | L G V D TGTTSAGCCACACAATTGAAAGAAAATAATGCTSGGAATGTTGAATACAAAGGACCTGTAGCAAGTAAGCTATTGGAAATTACTAAGGCTAGTGATGTSGAACACACTGAAAGCAATGA ACAACTEGGTGTTGTTAACTTTCTTTTATT4CGACCCTTACAACTTATGTTTCCTGGACATCGTTCATTCGATAACCTTTAATGATTCCGATCACTACACCTTGTGTGACTTTCGTTACT VERSOLKENNAGNIETKSPVASKLLETIKASDVEHTESNE Pst I GATIGATGACITAGACACIAATAGITTCITTAAATCAGATTTAATIGAAGAGGATGAGCCATTAGCTGCAGGAACAGIGGAGACIGGAGATTCITCICTAAACTTAAGATTGGAGAIGGA CTAACTACTBAATCTSTGATTATCAAAGAAATTTAGTCTAAATTAACTTCTCCTACTCGGTAATCGACGTCTGTCACCTCTGACCTCTAAGAAGAGAGTTTGAATTCTAACCTCTACCT FOOLOTHSFEKSOLFEEDEPLAAGTVETSOSSINLRLEME Sna8 I AGCAMATETACGTANGCAGGETATAGAAAGGETTGCCGAGGAAATTTATTGCAAGGGATEAGATTATTTTGTTTTECAGAGGTTGTAAAACCTGATGAAGATGTEGAGATATTTTTTAA ANLRRGALERLAEENLLOGIRLFCFPEVVKPDEDVEIFLN CAGAGGTCTTTCCACTTIGAAGAAIGAGICIG4TGTCTIGATTATGGGAGCTTTTAATGAGTGGCGCTATAGGTCTTTTACTACAAGGCTAAGTGAGACTCATCTCAATGGAGAFTGGTG GTCTCCAGAAAGGTGAAACTTCTTACTCAGACTACAGAACTAATACCCTCGAAAATTACTCACCGCGATATCCAGAAAATGATGTTC3GATTGACTCTGAGTAGAGTTACCTCTAACCAC RELITERNES DULT HEAFNEWRY RSFFFFFFFHL NGOWW GTETTGEAAGATCEATGTTEECAAGGAAGCATACAGGGETGATTTTGTGTTTTTTAATGGACAAGATGTCTATGACAACAATGATGGAAATGAETTCAGTATAACTGTGAAAGGTSGTAT CAGAACGITEIAGGTACAAGGGTICCITCGTAIGTCCCGACIAAAACACAAAAAATTACCTGIICTACAGATACIGTIGIIACIACCITTACIGAAGICATATTGACACITICCACCATA SEKIHIPKELIRADE VEFNGGOVYONN DGN DE SITIK GGM

Fig. 6 (cc)

GCASA TEATTONETT TONANAT FILT TO TTANGAGANA TO GAGAGANA AGGAGA AGAGAAAT TO CINANGACANG LIGAAAGAGAAAAAGACTAGAAAGACAAAGAAGAAGAAAAAAAA	560
COLLIAN TARGET AND TELL AND ARTHUR FOR THE TELEFORE FOR THE STANGARD FOR THE FOR THE FOR THE FOR THE FOR THE FER THE FOR THE F	3.73
O TO FERFULTIEN REOFFICAKED A EREPLA EFCARIE A E	
EcoR V	
: GAAAGSTGALATTGAAGSTGASAGAAGCASAAGCAAAGGAAGAGAAAAAAGAAAAAGAAAG	
CHINGAGI TIMACTICGAGIGICICATO TOSTILOCTICICOSALLITICITICITICATA ACCACCATATA CACCATATA COSTACIA CACCATATA GIGACCATATA DI	680
- K 4 F 1 E A D = 4 J A F E E A A K 4 K 4 K 4 K 4 K 4 K 4 K 4 F F F F F F	
Bam⊬ I	
GCCAARTGAATTTAAATGCGAGGACAAGGTCAGGTTATACTATAACAAAAGTTCAGGTCCTCTCTCCCATGCTAAGGACTTGTGGGATCCAUGGAGGATATAATAATTGGAAGGATGTTT	1800
DOCTEACT BAATT TACGET CONTINUES TO ANTATONIA FOR TAIT TO ANGIO DAGGO DAGGO TACGA DAGGO DAGGO DAGGO TACAT FATTANCO TACCA DA	
a recreency of the same that we have a solution to a visit of the same of the	
Herd III	
	1920
CAGATAACAGIITTIGGAACAATIIAGAKIITETTAICTAGCACIAACCACCATAIGTITECAAUAATAAGGACTAGTCTGTGAAAAAGAAACCTAACCCAAAAAUGACTAGCAGGIGGGI	
STYRELTRIBED ANT TEVVIPODAL FLOWVEABSPPK	
Sob I	
april .	
	2040
CGT4CGGTA&CGA&TACTATTGTT>GGGGGTTGTGAAGGTACGGTAACAGGGGTTGGTGAAGGCCTCCTTAATATAACECAACTCTTGTAGTCTAGAAATTCTGTGAAGTCTT	
на ; ауриминоренатурянгреецумучеено чектьое.	
GGAGAGAGGCTTAGAGAAGCGGCTATGCGTGCTAAGGTTGAAAAAACAGCACTTCTGAAAAACTGAAACAAAGGAAGAACTATGAAATT1TTTTTTACTGTGTGAGAAGCATGTAGTATA	2160
SOFOTO TECHNATOROTEGEORATACSCAGAFTECARCIFETTTS FOR TOLANGES TITES ACTITED TO TECHNOTICAL ACTIONS TO A AND ACAGAGE OF TECHNOTICAL ACTIONS TO A AND ACAGAGE OF TECHNOTICAL ACTIONS TO A ACAGAGE OF TECHNOTICAL ACTIONS TO ACAGAGE OF THE STATE ACAT CALL ACTIONS TO ACA	
ERRERAMBAK FERTALLK "ETKERTMKSFLLSOKHV "Y	
EcoR V Sca 1	
TACTGAACO TOTTGATATOCAAGOIGGANGONOOGICAGAGITTACTATLATNOOGGCAATACAGIACTTAATGGTAAACOTGAAAFTIGHITTIAGATGITCATTTAATCGCTGGACTGA	2250
ATGACTICSAGAACTATAGGTICSACSI TCGTCGCAGTGTCAAATG4TATTAGGGCGGTTATGTGATGAATTACCATTTGGACTTTAAACCAAGTCTACAAGTAAATTAGCGACTTGAG	
TERECIBASS S V T V Y Z H P & N T V L N G K P E T 4 F R C S F N R W T H	
Ns. 1	
COSCUEGGGECCATEGCCACCECAGAAAAEGECGCCEGCEGAAAAEGGCACCCAEGTCAGAGGAACEGEGAAGGEECCAETGGAEATATGATGGATGGATETECCGAGAGAGAGA	
GOOGGAGGAACGGTGCAGTCTTTACAGCGGAGACTTTACCGTGGGTACAGTCTCGTTGACACGTAACGTACGT	2400
PLGPLPPQLMSPAENGTH, PATVKVPLOTEMMOFVPSERE	
Nsi i	
AGAIGGIGGGATITITGACAATAAGAGUUGAATGGACTATGACATACCIGIGTITGGAGGAGTEGCTAAAGAACCTCGAATGCATATIGTGUATATTGCTGTGGAAATGGCACCAATIGC	2520
TOTACCACECTAAAAACTGTTATTCTCGCCTTACCTGATAGTGTATGGAC4CAAACTTCCTCGAGCGATTTCTTGGAGGTTACGTATAACAGGTATAACAACAACAGCTTTACCGTGGTTAACG	2320
DIGLEDHES INDVHIPATIONARE PRHHILALAVE MARIA	
Stu I	
###@##################################	2540

r , solgovers as parto, whenever the exposite partocal x may r , s	
	2760
JANES JEANGINTITITANTANANANULUBATTOTANTET TATET TATET TATET TELANGITECAGAGAGREAGATANANACO TONGARTET EGGEGAATAAAAGGITENGGGAC	

F.g. 6 (con)

EcoR	٧
•	
•	

GTCTA																																							2880
CAGAI	4CCA4	CATC	5110	AT O	CCA	CTT	GC T	دمد	7CC V	1.3.4	ĞΛΛ	GAS	AGT	300	3000	, A	ACC	::	44A() A A (GAC:	֚֚֓֞֞֞֞֓֓֞֞֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	CCA	CC f	4.4	ATC.	5 G G	ec:	ATA	GŢΔ,	ACT.	47C	G G 1	ΔÇĪ	44C	ឮ≙ពួ	IATO	ACG	
y ·	a	C 3	N	0	Ç	ξ	R	F	3	F	F	C	н		Α .	Δ	Ł	į	F	t	Ł	•)	Ç	C	F	\$	ρ	C	i	i	4	c	н	ı 0) 'a	<i>i</i> 5	; ;	5 A	
																														B g	111								
	recti	, , , , ,	c v t			C A A	TAT		25.20	rta	100	i e i	3 & C	:C.3:	111	r 1 (CTA	. 7 A	a se	;;c,	ACG	ΔΙΔ	AÇ A î	ΔΑΙ	re r	-Ca	ΔIT	ጉርር	GGC	-		CAT	760	GAG	AG(AA:	FGAC	TAA	
	ACGA!													_		_		_		-					_							•							3000
iguat.	; A((; A :	ه از از از ش	LAA	AL 1 L	, (,) ,	.,,,			. 13			- ,,,,				U			• • •	_						_	_			_				. <u>-</u>			u	_	
	4 4	W (F	<	٤	G	•	ī	н	•	g C	: !	-	5	Ķ	ŝ	₹	1	7	F	7	•	Н	И	٠	E	F	(. U	' (. i	Į.	, :	, .		ñ.	T N	
																											N	o I										Bst)	(1
CGEAG	4 C 4 A 4	GOTAC) A C	AGIT	702	1004	440 1	rta	cto	4C :	CG4	4GG	IG I	C T G	GAA	AC	cc t	GTA	AFT	٥٥٥	CCT	CA	cci	(CAI	CAA	G: I	CC/	A T G		151	GAA	IGG	GA.	7 TG:	¥CC!	ZAG.	2 7 A	:::G	3120
acata	1111	CCATO	113	TEAL	AAG	GG	: 10:	4 A F	C+C	fgt	rcea	rce	4CAI	GAC	<u> </u>	1 G	GGA	[7]	TAA	C GC	GGA	G T	GGA.	AGTI	GT-	CAA	GG"	(4C)	ATA	TCA	1611	ACC	.c t	AACI	raar	STE	TAT.	AAAC	
	С .	Δ 1	. :	· .	5	þ	ï	,	, G	; (a 6	Ε	v	S	G	H	ρ.		i	2	ρ	H	Ĺ	4	K	; =	. ;	-	s :		<i>(</i>)	N (3	ı ;	9	ρ	o	i w	
-					-																				المناحد	a III													
Bami																															* * 1	cac'	TCA	4 A C	400	CIC	ACC	TTCC	
	C111A															_		o							_		_		1								•		36.00
CCTAC	CAAAI	፣ ተኗር ነ	TATI	CAA	C17	ACCI	[14	∆ G.	, (A I	(j) (اهدى	i L		1 (5)	, A A I	. д д	i, 1%	·Ļ.	, ('	1 (, 1	l L. i.e.		41		150	, -,	• • • •		,										
0	s [N 9	י פ	F	1	Þ	ı	ρ	y Y	ŗ	ŧ	5	Ē	N	٧	٧	Ξ	C	K	1	A	4	×	Ε	,	٤ ١	_	ū	R	K (Ļ '	3 1	L		0	۲.	Ð	f b	•
TTTGO	TAGGA	ATTA	TC A(ccs	ett	AAC	TCA	C C A	AGAA	LAG	GAA	TÇE	ACC	TC	477/	444	CAT	GC	TATI	rtg	GCG:	ÇAC	CTT	GG A	AÇ	GG A	ACG	GAC	AGG	TAG	TC T	TGC	ΓſG	GTT	CTG	cro	CTG	ATCC	3360
	ATCCT			_																		_	_									•							
	y ô			ı R		Ť	. +		ስ ነ	<	G	ì	H	L	1	×	4	Δ	ī	¥	R	:		. €	<u> </u>	j l	14	G	C	v	٧	L	L	G	5	۵	P	G G	,
·	•	•	•																		.									***	ete	400	TC 1		ATC		ec ro	in thi	
	TACA												_					_				•						_	-T			,							
ATCC	AIGT	TTTGT	TAA	AÇA	114	AAA	CCG	;[[FAGI	ITA	AÇG	TGA	(GG)	T	414	1 1 4	AL il	انده	ևւն	166	لمین ا	6 - 0	ئوات,	111	, I A	146	100	, (,)	טיטו	4,44	0 ~0	. 40	Ας,	~, ~			, , ,		
2	v g	31	N	F 4	i N	1 (; د	74 (G	L	H	S	κ	ť	М	٥	P	4	R	٤	ί	2 1	- 1	1	•	Э	Ε	?	L	Ĵ	H	ĩ	i	Ý	Δ	C	Δ	ס
					Ssp																																		
7178	A T T C T .	ACTTO	CII	CAAI	[att	TGA	rec(. 4 † 1	ລາວ	GA(, T A &	λ (), Δ (, A A (. T T	ACC	GC	TAT	GAG	414	TGG	110	AA.	r = C	CAG	TCĢ	TGC	STA	ΔΔ.	ag re	GAG	ÇAÇ	ווו	` A [(iat:	4C T+	374	7 6 7,	GATG	7 + 3600
	TAAGA	_	_												_							_		_															
F		١,	3	c		: 1		Þ	r	r:		•	o.		ī	3		F	įΥ	· 5			!	Ρ	٧	٧	R	ĸ	ī	;	Č	ī_	r	ือ	ĭ	٧	F	э	v
-		•	·	3	' '	•	•	Ī	-	•	-	-	•	-																				C					
Hine :																											_		-	. = .	=			Sac				***	
	CATGA																																						
40.70	GTAST	\$1110	170	76 761	GTG	176	$T \subset \Delta$	C 4 C	ÇAG	AA(C 7 7 1	GG T	TTA	CCI	TAA(, , ,	. ር. 2	4 <i>-</i> 7.	.700	: T C	115	íáC	GAE	CGC	Cit	,4A;	, i A	АІА	الآميان	يا به د	1 : 4	!	, t, A	<u>. ۸</u> له با	-64	(, , A	200	μ. υ <u>.</u>	
3	н 6) X	٤	₹	Δ :	۵	ũ	Ç	ū	١.	Ē	P	N	G	F	9	F		0 0	2 4	Α .)	A	G	G	Ą	Ð	7	7	F	N	R	4	L	3	Δ	¥	*	מ
feat	00004	TTAG	17C:	ACT	רזד מדל	TAT	4 0 0	AGC	C46.	:10	ATG	GAA	. C A A	GA"	T T G (GT:	ITTG	G A	ACC(GACC	c ra	575	110	Δ ΙΤ	47	FTG	GAG	est	TAC	(AT	102	SCŢ	4 G A	AAG	7 T A	GAA	LTAG	17A(ar → 3840
	acce	4									ightarrow									_		_		_					+ -		-	•							
			_				_	v	2	. •		_	٥		ړ.		e ',	J	u (D	Þ	Λ	;	C	ų	1	£	L	v	H	Ą	4	R	Ķ	Ł	Ę			
Ç	۶.) ~	۲	и	Ċ	L		*	·u	•	17	-	u	U	•	•	J .	•				_	-	Ū		-	_												
								Bgi																															
	rgaga"									_	_	_		_		_									-	-													
140	LC TC T	4(3 <u>4</u> ;	CST	្តែក	774	4GT	'GE1	rċ:	AÇA	car	TAG	SAC.	ነቸር.	TCC	AAG	TC	AC A	44(CCA	GAC	STO	100	CAA	A I A	G T 4	ΔΔG	G A 7	A	1G i i	7 Q A	1 47	7.7.4	Gii	i Ç 4G	ja Tr	5 °G√	A (**	CCFA	G.t
																								4				• ^ .						4.C.A	4 A F	C 4.C	A A A	τελλ	A.C.
	GCAGA																																						
747	CGTST	STEAC	5625	TTC.	AAG i	TAL	AGT/	434	. 4 4 4	CC	.CS1	1 T T	GTA	T 4(. 171	Çĭ	LGA	Ą1(, G G A	44 ريا			≖(.		. , 44 £						r= Q _p ('		r41	_ , •	•		-
													C	י פ																									
							_				 -		Eco																										
	GCAAA				+			-+-				+	_	-	41;	27																							
C 7.	catti	·AIT	1 6 1		1 4 6	4 1 1		* 1 1		_ p= "_a"	رعز	JUL		U																									

			ŧ
•	•		1
		•	
	•		

(11) EP 0 779 363 A3

(12)

,

EUROPEAN PATENT APPLICATION

- (88) Date of publication A3: 20.05.1998 Bulletin 1998/21
- (43) Date of publication A2: 18.06.1997 Bulletin 1997/25
- (21) Application number: 96309004.8
- (22) Date of filing: 11.12.1996

- (51) Int CL⁶: **C12N 15/82**, C12N 15/54, C12N 9/10, C08B 30/00, C12N 5/10, A01H 5/00
- (84) Designated Contracting States:

 AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC

 NL PT SE
- (30) Priority: 12.12.1995 GB 9525353
- (71) Applicant: National Starch and Chemical Investment Holding Corporation
 Wilmington, Delaware 19809 (US)
- (72) Inventors:
 - Smith, Alison Mary Norwich NR2 2BB (GB)

- Marshall, Jacqueline Warwick CV34 5SA (GB)
- Edwards, Elizabeth Ann Norwich NR9 3DB (GB)
- Martin, Catherine Rosemary Norwich NR15 1JW (GB)
- (74) Representative: Lipscombe, Martin John et al Keith W Nash & Co, Pearl Assurance House, 90-92 Regent Street Cambridge CB2 1DP (GB)
- (54) Improvements in or relating to soluble starch synthase
- (57) Disclosed is altered starch extracted from a transformed potato plant or the progeny thereof, which starch, as extracted, has a viscosity onset temperature as determined by differential scanning calorimetry which is reduced by at least 5°C compared to starch extracted from equivalent, non-transformed plants, together with a nucleic acid sequence comprising at least 200bp and exhibiting at least 80% sequence identity with the corresponding region of the DNA sequence shown in Figure 6, operably linked in the sense or antisense orientation to a promoter operable in a plant, and host cells and plants comprising the sequence.

EUROPEAN SEARCH REPORT

Application Number

EP 96 30 9004

Category	Citation of document with indi of relevant passag		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int.Cl.6)
X.D	EDWARDS A ET AL: "B MOLECULAR CHARACTERI STARCH SYNTHASE FROM PLANT JOURNAL, vol. 8, no. 2, Augus pages 283-294, XP002 * the whole document	ZATION OF A NOVEL POTATO TUBERS" t 1995. 031375	9	C12N15/82 C12N15/54 C12N9/10 C08B30/00 C12N5/10 A01H5/00
X		il 1995. 060102	9-11	
A,D	WO 95 26407 A (NAT S :COOKE DAVID (GB): G (GB)) 5 October 1995 ★ the whole document	IDLEY MICHAEL JOHN	1-34	
P.X. D	WO 96 15248 A (INST FORSCHUNG :KOSSMANN FRANZI) 23 May 1996 * the whole document	JENS (DE): SPRINGER	1-12, 15-21, 23-34	TECHNICAL FIELDS SEARCHED (Int.CI.6) C12N C08B A01H
P,X	MARSHALL J. ET AL.: the major starch synfraction of potato to the PLANT CELL, vol. 8. no. 7, July pages 1121-1135. XPC * the whole document	thase in the soluble ubers" 1996. 002060103	1-34	
	The present search report has b	een drawn up for all claims		
	Place of search	Date of completion of the search		Examiner
<u>i</u>	THE HAGUE	25 March 1998	Ka	ınia, T
X pa	CATEGORY OF CHED DOCUMENTS strict any relevant if taxon alone articularly relevant if combined with anoticularly chinelogical background co-written disclosure termediate document	U document cited	ocument, but purate in the applicate for other reason	iblished on, or on