"ALGORITMI"

CORSO DI STUDIO IN INFORMATICA (laurea triennale) UNIVERSITÀ DEGLI STUDI DI CATANIA ANNO ACCADEMICO 2014/15

Seconda sessione di esami (I appello) - 22 giugno 2015

Si svolgano i seguenti esercizi, argomentando adeguatamente le risposte.

ESERCIZIO 1 (Equazione di ricorrenza)

Si risolva la seguente equazione di ricorrenza parametrica, al variare del parametro reale $\beta > 1$,

$$T(n) = 9 \cdot T\left(\frac{n}{\beta}\right) + n^2 \log n$$

e quindi si determini per quali valori di β si ha: (a) $T(n) = \Theta(n^2)$; (a) $T(n) = \mathcal{O}(n^2)$.

ESERCIZIO 2 (Ordinamento)

Si descriva l'algoritmo Counting-Sort (con pseudocodice), nonché il suo ambito di applicabilità. Quindi si determini la sua complessità computazionale.

ESERCIZIO 3 (Programmazione dinamica)

Si consideri la seguente operazione \oplus sui numeri naturali, definita da: $a \oplus b =_{Def} 2a + 3b$.

- (a) Si verifichi con un esempio a scelta che l'operazione \oplus non è associativa.
- (b) Utilizzando la metodologia della programmazione dinamica, si determini un algoritmo che, data una sequenza di numeri naturali a_1, a_2, \ldots, a_n , calcoli il valore massimo che l'espressione $a_1 \oplus a_2 \oplus \cdots \oplus a_n$ possa assumere al variare di tutte le possibili parentesizzazioni.

Si determini la complessità computazionale dell'algoritmo ottenuto.

ESERCIZIO 4 (Visita in profondità)

Sia dato il grafo orientato $\mathcal G$ rappresentato dalle seguenti liste di adiacenza:

$A \to B, C$	$E \to A, B, C$
$B \to C, D$	$F \rightarrow D, G, H$
$\mathrm{D} o \mathrm{E}$	$\mathrm{H} o \mathrm{G}$

Dopo aver descritto l'algoritmo di visita in profondità, lo si utilizzi per visitare il grafo \mathcal{G} a partire dal vertice A, rappresentando la foresta DFS ottenuta e indicando per ogni vertice i tempi di inizio e di fine visita.

Utilizzare i risultati della visita effettuata per stabilire se il grafo \mathcal{G} è aciclico.

ESERCIZIO 5 (Tavole hash)

(a) Data la funzione $h(x,i) =_{Def} (x+3i) \mod 19$, si illustri l'inserimento delle chiavi

in una tabella hash di dimensione 19, inizialmente vuota e organizzata con l'indirizzamento aperto, utilizzando h(x,i) come funzione hash.

(b) Si enunci l'ipotesi di hashing uniforme, si forniscano dei limiti superiori al numero medio di scansioni in ricerche con e senza successo in una tabella hash con fattore di carico α , assumendo l'ipotesi di hashing uniforme.