主管 领导 核 签字

哈尔滨工业大学(深圳)2017/2018 学年春季学期

高等数学 B 试题

题号	_	=	Ξ	四	五	六	七	八	九	+	总分
得分											
阅卷人											

注意行为规范

遵守考场纪律

一、填空题(每小题1分,共5小题,满分5分)

1. 函数 $f(x,y) = x^2 + (y-1)\sin(xy)$ 在点 (-1,1) 处对自变量 x 的偏导数

$$\frac{\partial f}{\partial x}\Big|_{(-1,1)} = \underline{\hspace{1cm}}.$$

2. 函数 $f(x, y) = x^2 y^3$ 在点 (2, 1) 处沿从点 (2, 1) 到点 (1, 2) 的方向的方向导

数
$$\frac{\partial f}{\partial l}\Big|_{(2,1)} = \underline{\qquad}$$

3. 由方程 $e^{2yz} + x + y^2 + z = \frac{7}{4}$ 所确定的函数 z = f(x, y) 在点 $\left(\frac{1}{2}, \frac{1}{2}\right)$ 处的全

微分
$$dz\Big|_{(\frac{1}{2},\frac{1}{2})} = ____.$$

4. 空间曲线 $x = e^t \cos t$, $y = e^t \sin t$, $z = e^t$ 在点 (1,0,1) 处的法平面方程

5. 设方程组 $\begin{cases} 2x = z^2 - y^2 \\ t = yz \end{cases}$ 确定了隐函数组 $\begin{cases} y = \varphi(x,t) \\ z = \psi(x,t) \end{cases}$, 则

$$\frac{\partial z}{\partial x} = \underline{\hspace{1cm}}$$

二、选择题(每小题1分,共5小题,满分5分,每小题中给出的四个选项中只有一个是符合题目要求的,把所选项的字母填在题后的括号内)

1. 函数
$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$
, 则 $f(x,y)$ 在点 $(0,0)$ 处(

(A)	不连续	
(A)	小半粱	•

- (B) 连续但偏导数不存在;
- (C) 偏导数存在但不可微;
- (D) 可微.

2. 设函数 f(x,y) 可微, 且对任意 x,y 都有 $\frac{\partial f(x,y)}{\partial x} > 0$, $\frac{\partial f(x,y)}{\partial y} < 0$, 则使不等式

 $f(x_1, y_1) < f(x_2, y_2)$ 成立的一个充分条件是(

- (A) $x_1 > x_2, y_1 < y_2;$ (B) $x_1 > x_2, y_1 > y_2;$
- (C) $x_1 < x_2, y_1 < y_2$; (D) $x_1 < x_2, y_1 > y_2$.
- 3. 函数 $z = x^3 3x + y^2$ 在点(1,0) 处()
- (A) 取得极大值; (B) 取得极小值; (C) 未取得极值; (D) 取得最小值.

4. 设D是由直线y=x,y=-1及x=1围成的平面闭区域,f(x)是连续的奇函数,则下列积分 正确的是(

- (A) $\iint_{D} f(x)f(y)dxdy = 0$; (B) $\iint_{D} [f^{2}(x) + f^{2}(y)]dxdy = 0$; (C) $\iint_{D} f^{2}(x)f(y)dxdy = 0$; (D) $\iint_{D} f(x)f^{2}(y)dxdy = 0$.

5. 设平面薄片所占的闭区域 D 是由直线 y = x, x + y = 2 和 x 轴所围成,各点的面密度等于该 点到原点(0,0)距离的平方,则该薄片的质量等于(

- (A) $\frac{3}{4}$; (B) $\frac{4}{3}$; (C) $\frac{5}{4}$; (D) $\frac{5}{6}$.

三、(5分) 求微分方程 $y'' + 2y' - 3y = e^{-3x}$ 的通解.

六、(4分) 计算二重积分 $\iint\limits_D(\left|x-y\right|+2)\,\mathrm{d}x\mathrm{d}y$,其中 D 是由不等式 $x^2+y^2\leq 1$ 所确定的区域.

七、(2 分) 设函数 f(t)连续, 试证 $\iint_D f(x-y) dx dy = \int_{-A}^A f(t) (A-|t|) dt$, 其中 $D = \left\{ (x,y) \left| |x| \le \frac{A}{2}, |y| \le \frac{A}{2} \right\}, A > 0. \right\}$