UNIVERSITY OF BERN

BACHELOR THESIS

Indoor positioning using Raspberry Pi with UWB

Author: Mischa WENGER

Supervisor: Jose Carrera and Zhongliang ZHAO

Head of Research

PROFESSOR DR. TORSTEN BRAUN

Communication and Distributed Systems Institute of Computer Science

July 21, 2018

Declaration of Authorship

I, Mischa WENGER, declare that this thesis titled, "Indoor positioning using Raspberry Pi with UWB" and the work presented in it are my own. I confirm that:

- This work was done wholly or mainly while in candidature for a research degree at this University.
- Where any part of this thesis has previously been submitted for a degree or any other qualification at this University or any other institution, this has been clearly stated.
- Where I have consulted the published work of others, this is always clearly attributed.
- Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work.
- I have acknowledged all main sources of help.
- Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself.

Signed:			
Date:			

"Thanks to my solid academic training, today I can write hundreds of words on virtually any topic without possessing a shred of information, which is how I got a good job in journalism."

Dave Barry

UNIVERSITY OF BERN

Abstract

Faculty Name Institute of Computer Science

Bachelor of Science in Computer Science

Indoor positioning using Raspberry Pi with UWB

by Mischa WENGER

The Thesis Abstract is written here (and usually kept to just this page). The page is kept centered vertically so can expand into the blank space above the title too...

Acknowledgements

The acknowledgments and the people to thank go here, don't forget to include your project advisor. . .

Contents

De	eclara	tion of Authorship	iii
Ał	strac	t	vii
Ac	knov	vledgements	ix
1	Intro	oduction	1
	1.1	Motivation	1
		1.1.1 Indoor difficulties vs Outdoor	
		1.1.2 Important Applications	1
	1.2	Idea	
		1.2.1 Ranging Positioning System with different Inputs	2
	1.3	Contributions	2
		1.3.1 Comparison of three different implementations	3
2	The	oretical Background and Related Work	5
	2.1	Range based localization	5
		2.1.1 Two way ranging, time difference of arrival	5
		2.1.2 Triangulation, Trilateration	5
		2.1.3 Weighting	
	2.2	UWB Theory	6
	2.3	Particle Filter	6
A	Freq	uently Asked Questions	7
		How do I change the colors of links?	7
Bi	bliog	raphy	9

List of Figures

List of Tables

xvii

List of Abbreviations

GPS Global Positioning System IMU Inertial Measurement Units

IoT Internet of ThingsM2M Machine 2(to) Machine

RSSI Received Signal Strengh Indication

TDOA Time Difference Of Arrival

TWR Two Way Ranging UWB Ultra WideBand

Physical Constants

Speed of Light $c_0 = 2.99792458 \times 10^8 \,\mathrm{m \, s^{-1}}$ (exact)

xxi

List of Symbols

a distance

P power $W(J s^{-1})$

 ω angular frequency rad

xxiii

For/Dedicated to/To my...

Chapter 1

Introduction

1.1 Motivation

In the last twenty years, the number of mobile devices in use has tremendously increased. In the first quater of 2018 more than 380 Million smartphones have been sold worldwide *Gartner Gartner Says Worldwide Sales of Smartphones Returned to Growth in First Quarter of 2018*. However, in the past few years, not only smartphones have been sold, but also a new market of mobile gadgets and connected devices, summed up as Internet of Things, has evolved. In 2017, more than 20 Billion devices were connected to the internet. Forecasts predict 30 Billion devices in 2020 and already more than 70 Billion in 2025. *Statista Internet of Things - number of connected devices worldwide* 2015-2025

This increase in mobile computing has also increased the demand of accurate real-time positioning systems, which led to an active research mainly in indoor positioning system technologies, as there are established solutions for outdoor positioning.

1.1.1 Indoor difficulties vs Outdoor

For outdoor applications, primarily the Global Positioning System (GPS) is in use. For indoor application in the other hand, GPS has limitations that make it almost useless. Due to the environmental conditions indoors, with heavy walls armoured with steel and other distractions, additional signal loss is encountered which makes it hard to detect and decode GPS signals. Kerem Ozsoy and Tekin, 2013 In addition, higher buildings in the neighborhood can reflect transmitted signals, which leads to false position estimations. As GPS is mainy applied as 2D positioning system, it will not provide 3D indoor information such as the current floor level For this purposes we are forced to use alternative technologies that provide even higher accurracy indoors than GPS would achieve outdoors. There are many different approaches to do indoor positioning, which made it an attractive and active research field.

1.1.2 Important Applications

There are various possible use cases for devices that track their indoor position. These use cases can be grouped into two groups. On the one hand applications for pedestrians with a smartphone and on the other hand real machine to machine (M2M) applications.

Some examples for Smartphones:

Location of person in need For emergency services every second counts to get to the position of persons in need. An accurate positioning system that indicates additional information such as the floor level could save lifes.

Security Guards Real time tracking of security guards on their patrol. A security system can check autonomous if all security guards are on the right tracks.

Museum guidance Tourists visiting a museum could easily be guided through the museum with customized location based information.

Examples for Machine to machine (M2M):

Logistic An autonomous storage system can find articles in a big storehouse according to the exact position of the carrier vehicle. Numerous vehicles can be in use at the same time.

Cleaning An autonomous cleaning machine keeps track of its position, such that the floor can efficiently be cleaned.

Indoor post roboter An autonomous roboter can collect letters in the building and bring them to the internal post office.

1.2 Idea

For an object in space, there are several basic ideas to keep track of its current location. We can define a starting position and keep track of every move the device registers. E.g. every visitor in the museum starts at the entrance and will then walk through the building. Alternatively the object can be tracked by defining at least three triangulation points and periodically measure the distance from these points to the device. There are various ways to measure this distance, some with higher and some with lower accuracy.

1.2.1 Ranging Positioning System with different Inputs

Our idea was to not only use one of the mentioned approaches, but to combine them to in one alorithm. We would use a range positoning system combined with motion detection of the device and even integrate environmental restrictions, given by floor topologies like walls. By combining different methods we hope to compensate measurement errors and thus minimize the overall errors.

1.3 Contributions

In this thesis we present a real-time indoor positioning system on Raspberry Pi based on a particle filter implementation in smartphones, developed in previous works of the University of Bern. Neto, 2018 We adapted the inputs of the particle filter to range-based localization using ultra wideband (UWB) instead of Wi-Fi and added motions measured by inertial measurement units (IMU) of the target. We expound results of our experiments, where we tested different variants of our implementation and other algorithms in a real test scenario and compared the accuracy of the estimated position.

Our main contributions are:

- We implemented a real-time localization system on raspberry pi using UWB and IMU sensors.
- We compared our implementation to an UWB based localization system provided by Uniset Company on complex indoor trajectories.

1.3. Contributions 3

1.3.1 Comparison of three different implementations

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

Chapter 2

Theoretical Background and Related Work

In this section we explain the different types of range measuring in range-based localization systems. For comparison reasons, we shortly introduce variants of received signal strength indication (RSSI), which is the mostly used indoor localization technique. We then briefly explain two slightly less common methods, which were used in our system - two way ranging (TWR) and time difference of arrival (TDOA). We also include some background theory about our implementation and the particle filter.

These are the main parts of this section:

First a short overview of range based localization with the mean principles of RSSI, TWR and TDOF as well as the concept of triangulation/trilateration and the weighting process. Second we present background information about ultra wideband (UWB) and finally information about the particle filter is given.

2.1 Range based localization

Range based localization systems are depending on an infrastructure in the area of the localization:

- **Target Node (TAG)** which is the device that is localized.
- Anchor Nodes (AN)that are placed on carefully chosen points in the building, to cover the whole area the best.

2.1.1 Two way ranging, time difference of arrival

2.1.2 Triangulation, Trilateration

Nunc posuere quam at lectus tristique eu ultrices augue venenatis. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Aliquam erat volutpat. Vivamus sodales tortor eget quam adipiscing in vulputate ante ullamcorper. Sed eros ante, lacinia et sollicitudin et, aliquam sit amet augue. In hac habitasse platea dictumst.

2.1.3 Weighting

Morbi rutrum odio eget arcu adipiscing sodales. Aenean et purus a est pulvinar pellentesque. Cras in elit neque, quis varius elit. Phasellus fringilla, nibh eu tempus venenatis, dolor elit posuere quam, quis adipiscing urna leo nec orci. Sed nec nulla auctor odio aliquet consequat. Ut nec nulla in ante ullamcorper aliquam at sed dolor.

Phasellus fermentum magna in augue gravida cursus. Cras sed pretium lorem. Pellentesque eget ornare odio. Proin accumsan, massa viverra cursus pharetra, ipsum nisi lobortis velit, a malesuada dolor lorem eu neque.

2.2 UWB Theory

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

2.3 Particle Filter

Sed ullamcorper quam eu nisl interdum at interdum enim egestas. Aliquam placerat justo sed lectus lobortis ut porta nisl porttitor. Vestibulum mi dolor, lacinia molestie gravida at, tempus vitae ligula. Donec eget quam sapien, in viverra eros. Donec pellentesque justo a massa fringilla non vestibulum metus vestibulum. Vestibulum in orci quis felis tempor lacinia. Vivamus ornare ultrices facilisis. Ut hendrerit volutpat vulputate. Morbi condimentum venenatis augue, id porta ipsum vulputate in. Curabitur luctus tempus justo. Vestibulum risus lectus, adipiscing nec condimentum quis, condimentum nec nisl. Aliquam dictum sagittis velit sed iaculis. Morbi tristique augue sit amet nulla pulvinar id facilisis ligula mollis. Nam elit libero, tincidunt ut aliquam at, molestie in quam. Aenean rhoncus vehicula hendrerit.

Appendix A

Frequently Asked Questions

A.1 How do I change the colors of links?

The color of links can be changed to your liking using:

\hypersetup{urlcolor=red}, or

\hypersetup{citecolor=green}, or

\hypersetup{allcolor=blue}.

If you want to completely hide the links, you can use:

\hypersetup{allcolors=.}, or even better:

\hypersetup{hidelinks}.

If you want to have obvious links in the PDF but not the printed text, use:

\hypersetup{colorlinks=false}.

Bibliography

- Gartner Gartner Says Worldwide Sales of Smartphones Returned to Growth in First Quarter of 2018. https://www.gartner.com/newsroom/id/3876865. Accessed: 2018-07-18
- Kerem Ozsoy, Ayhan Bozkurt and Ibrahim Tekin (2013). "Indoor Positioning Based on Global Positioning System Signals". In: 11.1.
- Neto, José Luis Carrera Villacrés Zhongliang Zhao Torsten Braun Zan Li Augusto (2018). "A Real-time Indoor Tracking System in Smartphones". In: 11.2.
- Statista Internet of Things number of connected devices worldwide 2015-2025. https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/. Accessed: 2018-07-19.