Some notation is not agreed upon by everyone, for sets A, B.

- their difference is $A B = A \setminus B = \{x \in A \text{ and } x \notin B\}$
- their symmetric difference is $A \oplus B = A \triangle B = \{x \in A \text{ or } x \in B, \text{ but } x \notin A \cap B\}$
- 1. Warm up: Answer the following questions.
 - (a) What are the sizes of the following sets:

$$A = \{x : x(x-2)(x-1) = 0\}$$
 $B = \mathcal{P}(A)$ $C = A \times B$

(b) Describe the following sets using a single symbol for each:

$$X = \{\frac{x+y}{z} : x, y \in \mathbf{Z}, z \in \mathbf{N}\} \quad Y = \{\frac{a^2 - b^2}{a - b} : a, b \in \mathbf{N}, a \neq b\} \quad Z = \{10q : q \in \mathbf{Q}\}$$

(c) Determine which of the following statements are True and which are False.

$$A \cup \emptyset = A$$
 $\{\emptyset\} = \emptyset$ $(A \cup B) - C = (A - C) \cup (B - C)$ $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$

Note. Notation $\{\frac{x+y}{z}: x,y\in \mathbf{Z},\ z\in \mathbf{N}\}$ etc. is named "extended set-builder notation"; is introduced in (Rosen, 2.3.1, Definition 4, p.149); also https://bit.ly/3qAlZOS.

2. Consder the sets A, B, C of natural numbers, presented as a Venn diagram.

Write out all the elements contained in the following sets.

(a) $A \cup B$

(e) $A \cap B \cap C$

(b) C-B

(f) $(A \cap B \cap C) - C$

(c) $C \cap A$

(g) $\overline{A \cup B}$

(d) $(A \cup C) - (B \cap C)$

- (h) $\overline{A} \cup \overline{B}$
- 3. (Adapted from Rosen ex. 2.2.35) Prove the following set identity:

$$\overline{A \cup B} \cap \overline{B \cup C} \cap \overline{A \cup C} = \overline{A} \cap \overline{B} \cap \overline{C}.$$

Choose the proof method you prefer. For example:

- Use set identities (Rosen, p.136)
- Build a membership table (Rosen, p.138)
- Shade regions in two Venn diagrams and compare the left-side and the right-side.
- 4. (Adapted from Rosen ex. 2.2.56) Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ for each of the following A_i , where i is a natural number.

- (a) $A_i = \{i, i+1, i+2, \dots\}$
- (e) $A_i = [-i, i]$

(b) $A_i = \{0, i\}$

(f) $A_i = (i, \infty)$

(c) $A_i = \{-i, i\}$

(g) $A_i = [i, \infty)$

(d) $A_i = (0, i)$

- (h) $A_i = \{-i, -i+1, \dots, i-1, i\}$
- 5. Let A, B be sets, and let $f: A \to B$ be a function.
 - (a) Using logical symbols, express the following statements.
 - i. f is injective
 - ii. f is surjective
 - iii. the range of f is a proper subset of B
 - iv. there is an element in B whose preimage contains three distinct elements
 - (b) Let $f_1: A_1 \to B_1$ be a function, with $A_1 \subseteq A$, $B_1 \subseteq B$, and $f_1(a) = f(a)$ for every $a \in A_1$.
 - i. Prove that if f is injective, then f_1 is injective.
 - ii. Prove that if f_1 is surjective and $A_1 = A$, then f is surjective.

Note. Recall that the set B from the function $f:A\to B$ is called the *codomain* of f, but the set $\{b\in B\mid \exists a\in A\ (f(a)=b)\}$ is called the *range* of f. Function is surjective iff the range is the same as the codomain.

- 6. (a) Prove that $f: \mathbf{R} \to \mathbf{R}$ given by f(x) = x is injective.
 - (b) Prove that $g: \mathbf{R} \to \mathbf{R}^2$ given by g(x) = (x, 0) is injective.
 - (c) Prove that $k \colon \mathbf{R}^2 \to \mathbf{R}$ given by k(x,y) = x is surjective.
- 7. Consider the following functions.

- (a) Find inverses of each of them.
- (b) Prove by construction that the all the functions f, g, h are surjections.
- 8. Compute the range of the following functions.
 - (a) $f: \mathbf{R} \to \mathbf{R}$ given by $f(x) = \lfloor 2x + 5 \rfloor$
 - (b) $g: [0, \infty) \to \mathbf{R}$ given by g(x) = |x + 3| 1
 - (c) $h: (-\infty, 1] \to \mathbf{R}$ given by $h(x) = e^x \sin^2(x)/2$
 - (d) $k \colon \mathbf{R} \to \mathbf{R}$ given by $k(x) = \arctan(x)$
- 9. Recall Russel's paradox: let X be the set of all sets, and let $S = \{Y \in X : Y \notin Y\}$. Then the claim $S \in S$ is equivalent to the claim $S \notin S$. Use Russel's paradox to prove that 0 = 1.
- 10. Do some experiments in the Coq environment.
 - (a) Tautologies from SUNY Buffalo CSE 191 File (the file in Week3 in ORTUS).
 - (b) Two Nonconstructive Proofs of the Same Lemma (Week3 in ORTUS).

- (c) Proofs from Rosen2019 textbook (1.7.5, 1.7.6) (Week3 in ORTUS).
- 11. Optionally, you can do some set/list operations in Python to solve numeric examples.
 - (a) Check universal quantifier using "all".

"The square of a positive integer $n \in [1; 1000]$ never gives remainder 3 when divided by 7 (but it does sometimes give remainder 2 when divided by 7)":

$$\forall n \in \mathbf{Z}^+ \ \forall k \in \mathbf{Z} \ (1 \le n \le 1000 \ \rightarrow \ n^2 \ne 7k + 3) \ .$$

Run from Python command-line:

You should get output True.

(b) Use "map".

"The last digits of the numbers in this set $\{7x \mid x \in \mathbf{Z} \land x \in [a, a+10)\}$ are all different." Run from Python command-line:

```
a = 2021
list(range(a,a+10))
list(map(lambda x: 7*x % 10, range(a,a+10)))
len(set(list(map(lambda x: 7*x % 10, range(a,a+10)))))
```

You should get output [7, 4, 1, 8, 5, 2, 9, 6, 3, 0] and 10.

(c) Use Cartesian product and "filter".

"The equation $u^2 + v^2 = 113$ has an integer solution (u,v), but the equation $u^2 + v^2 = 127$ does not." (See Fermat's Christmas Theorem, https://youtu.be/DjI1NICfjOk" – any prime number in the form 4k + 1 can be represented as a sum of two squares in exactly one way.).

$$\exists u, v \in \mathbf{Z}^+ (u^2 + v^2 = 113).$$

Run from Python command-line:

```
from itertools import product
x = list(product(range(1,12),range(1,12)))
list(filter(lambda x: x[0]**2 + x[1]**2 == 113, x))
```

You should get this output: [(7, 8), (8, 7)].