Вероятностное тематическое моделирование несбалансированных текстовых коллекций

Панкратов Виктор Владимирович

Московский физико-технический институт Кафедра интеллектуальных систем

Научный руководитель: д.ф.-м.н. Воронцов К.В.

16/12/2023

Постановка задачи: вероятностная модель

Заданы три множества:

D - множество документов, W - множество слов, T - множество тем Задано $n_{\rm wd}$ - число вхождений слова w в документ d.

Предположение о порождении коллекции

Появление слова $w \in W$ в документе $d \in D$ описывается двумя матрицами: Φ, Θ .

$$\phi_{\mathrm{wt}} = \mathrm{p}(\mathrm{w}|\mathrm{t})$$
 $\theta_{\mathrm{td}} = \mathrm{p}(\mathrm{t}|\mathrm{d})$

Задача: восстановить Φ, Θ . Критерий качества:

$$\sum_{d \in D} \sum_{w \in d} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td} + \sum_{i} \tau_{i} R_{i}(\Phi, \Theta) \rightarrow \max_{\Phi, \Theta} \tag{1}$$

максимизация правдоподобия, используется ЕМ-алгоритм

Проблема несбалансированности

Проблема несбалансированности: максимизация правдоподобия приводит к дроблению крупных тем(A) и слиянию мелких(C).

Цель работы

Предложить и экспериментально проверить решение проблемы несбалансированности с помощью регуляризатора.

Семантическая неоднородность

Гипотеза условной независимости:

$$p(w, d|t) = p(w|t)p(d|t)$$

Проверка - статистика семантической неоднородности.

$$S_{t} = KL(p(w, d|t)||p(w|t)p(d|t))$$

Тема - кластер размерности |W|, центр которого - p(w|t). S_t - удаленность p(w|d,t) от центра кластера.

Регуляризатор семантической неоднородности

Статистика семантической неоднородности

$$S_t = \mathrm{KL}(\hat{p}(w,d|t)||p(w|t)p(d|t)) = \sum_{d \in D} \sum_{w \in d} \hat{p}(w,d|t) \, \text{ln} \, \frac{\hat{p}(w,d|t)}{p(w|t)p(d|t)}$$

Здесь $\hat{\mathbf{p}}$ - частотные оценки вероятности. Преобразовывая и суммируя по всем темам:

$$\sum_{t \in T} S_t = \sum_{d \in D} \sum_{w \in d} \left(\sum_{t \in T} \hat{p}(w,d|t) \right) \text{ln} \, \frac{\hat{p}(w|d)}{p(w|d)}$$

Используется регуляризатор, полученный из статистики семантической неоднородности:

$$R = \sum_{d \in D} \sum_{w \in d} \beta_{dw} n_{dw} \ln \sum_{t \in T} \phi_{wt} \theta_{td}, \quad \beta_{dw} = \sum_{t \in T} \frac{p(t|d, w)}{p(t)}$$
(2)

Сравнение двух моделей

Пусть на одной коллекции построены две тематические модели,

- Φ_1 матрица вероятностей p(w|t), полученная первой моделью
- Φ_2 матрица вероятностей p(w|t), полученная второй моделью

Для всех пар і, ј проверяются равенства:

$$\underset{k}{\text{arg min}} \ \left(\operatorname{dist}(\Phi_1[i], \Phi_2[k]) \right) = j \tag{3}$$

$$\underset{k}{\text{arg min}} \ \left(\operatorname{dist}(\Phi_1[k], \Phi_2[j]) \right) = i \tag{4}$$

Здесь dist – косинусное расстояние.

Взаимно близкие темы: (3),(4) выполнены для некоторых i,j.

Подготовка данных

Для экспериментов использовалась коллекция 20newsgroups 1 . Она преобразовывалась согласно следующему алгоритму

- Составляется матрица n_{dw}
- Удаляются не монотематические документы. Для этого строится произвольная тематическая модель, для каждого документа d считается $t_d = \operatorname{argmax} \ p(t|d)$ и проверяется $\frac{p(t_d|d)}{p(t_i|d)} > 2 \ \forall t_i \neq t_d$
- Для каждого генерируемого документа выбирается его тема
- Документ генерируется как множество случайно выбранных сочетаний из 10 подряд идущих слов в исходных документах соответствующей темы

¹http://gwone.com/jason/20Newsgroups/

Эксперимент, другие датасеты

Полученные в предыдущем семестре результаты повторяются на других датасетах - выделить все взаимно близкие к исходным темы при подборе регуляризаторов не удается.

Эксперимент, число документов

Коэффициент регуляризации зависит от размера коллекции