Presentaciones Latex con Emacs

Lenin G. Falconí

2024-04-27

Outline

- 1 Configuración e Instalación
- 2 Emacs
- 3 Arquitectura de Computadores ICCD332

Procedimiento I

Se requiere realizar los siguientes ajustes para que Emacs opere:

- Instalar WSL o un distro de Linux: Se pueden seguir los pasos de la Guía de Instalación
- Instalar Emacs:

```
sudo apt-get update
sudo apt install emacs
```

Instalar LATEX (básica o completa): sudo apt install texlive-full

Existen otras opciones para Latex que consumen menos recursos (ver enlace):

```
sudo apt install texlive-latex-extra
```

- Instalar Python
- 5 Configurar el archivo en ~/.emacs.d/init.el

Instalación de Python I

Para instalar python se utilizará el entorno de anaconda o mamba. Existen recomendaciones en favor de mamba. La dirección del repositorio de Github se encuentra en el enlace miniforge

- Abra el subsistema de Linux para Windows: guía de instalación
- ② Descargue e instale Mamba: Descargar ejecutable desde github wget colocar/direccion/archivo_sh_Linux_x86_64 sudo_chmod_+x_Miniforge3_Linux_x86_64

```
sudo chmod +x Miniforge3-Linux-x86_64
./Miniforge3-Linux-x86_64
```

- Siga los pasos que indica el instalador y reinicie el shell cerrando la aplicación wsl o cerrando el terminal si está en Ubuntu
- Oree un entorno con las librerías a utilizar

```
mamba create --name iccd332
mamba activate iccd332
mamba install python=3.11
python --version
```


Paquetes recomendados de Instalación Python

Instalar los siguientes paquetes para disponer del shell avanzado de lpython y el complemento rise para convertir un jupyter-notebook en una presentación tipo reveal.js

```
mamba install ipython
mamba install jupyter
pip install jupyterlab-rise
```

Configuración Emacs I

- El comportamiento de Emacs es completamente configurable por el usuario a través del archivo ~/.emacs.d/init.el
- El archivo init.el puede generar instalaciones y activaciones para emacs por lo que se sugiere reiniciar emacs para que las configuraciones surtan efecto
- Abra el archivo init.el en Emacs y escriba la siguiente configuración

```
;; Configure Org Babel to load Python
(org-babel-do-load-languages
'org-babel-load-languages
'((python . t))); This line activates Python
;;
(setq python-shell-interpreter "/path/to/anaconda/envs/myenv/bin/python")
```

Table: Comandos de Emacs

Comando	Acción	Comando	Acción
C-x C-s	guardar	C-x C-c	Salir Emacs
C-n	siguiente renglón	С-р	anterior renglón
C-f	avanza un carácter	C-b	atrás un carácter
M-f	avanza una palabra	M-b	atrás una palabra
C-a	ir a inicio	C-e	ir al fin
C-SPC	selecciona región	C-g	cancelar comando
C-d	Borrar un carácter	M-d	borrar palabra

Hacer una presentación en Emacs I

- Abrir emacs ejecuntando 'emacs' desde la línea de comandos
- Genere un archivo de extensión .org
 - C-x C-f
 - presentacion.org
- 3 Active el modo org para beamer: M-x org-beamer-mode
- Ocoloque el encabezado por defecto y el de beamer
 - C-c C-e # default
 - C-c C-e # beamer Observar: el encabezado de beamer sólo se activa si el modo org-beamer está habilitado
- ⑤ En opciones, cambiar H:1 a H:2 para que los títulos se interpreten como Secciones de la presentación y las Subsecciones como título de la presentación
- Utilice el sistema de marcas de Emacs para escribir la presentación

Hacer una presentación en Emacs II

- * Sección/Título
- ** Título Presentación/Subtítulo
- Una palabra encerrada entre ** equivale a '**negrita**'
- Una palabra encerrada entre / equivale a '/cursiva/'
- En el shell, instale el diccionario de español para la corrección ortográfica

```
sudo apt install aspell aspell-es
```

- Puede cambiar de diccionario en el buffer usando M-x ispell-change-dictionary
- Puede activar un modo de revisión al vuelo: M-x flyspell-mode

Algunos Hacks I

- Para insertar propiedades: C-c C-x p
- Para insertar código: C-c C-,
- Para insertar código: M-x org-insert-template-structures y escoge la opción s
- Para insertar un tag: C-c C-c
- Para insertar un link: M-x org-insert-link
- Para generar el archivo pdf: org-beamer-export-to-pdf

El Computador

Un computador es un sistema complejo conformado por varios subsistemas electrónicos. Para poder estudiarlo se adopta la perspectiva de entender su organización y su arquitectura. En general un computador puede hacer las siguientes operaciones:

- procesar información
- almacenar información
- o comunicarse con periféricos de entrada/salida i.e. E/S

El CPU

La arquitectura principal usada en los computadores es la Von Neumann. El componente principal del sistema es el CPU, o unidad de procesamiento central, que es un micro chip. El mismo está formado de:

- Unidad Aritmética Lógica: ALU
- Unidad de control
- Registros

A more complex slide

This slide illustrates the use of Beamer blocks. The following text, with its own headline, is displayed in a block:

Theorem (Org mode increases productivity)

- org mode means not having to remember LATEX commands.
- it is based on ascii text which is inherently portable.
- Emacs!
- $\int e^{-st} f(t) dt$

Two Columns

- this slide consists of two columns
- the first (left) column has no heading and consists of text
- second (right) column has an image and is enclosed in an example block

Configurar Org-Babel Python

Consiste en editar el archivo ~/.emacs.d/init.el para que emacs tenga el comportamiento deseado. Para instrucciones referirse al slide Configuración Emacs

Este slide muestra cómo hacer una referencia a otra sección

Babel

Python code

```
import numpy as np
def greet(name):
    return f"Hello {name}"
return greet("Alice")
```

The output

Hello Alice