Communications and Signal Processing Lab

Assignment No.-3

EE21MTECH14002

1. Decimation:

When we use a low pass filter also known as anti-aliasing filter before downsampling a signal than this is known as decimation and the signal that is generated from this process is known as decimated signal.

If we have a input signal let's say $\mathbf{x}[\mathbf{n}]$ and low pass filter with impulse response $\mathbf{h}[\mathbf{n}]$ and cut off frequency equals π/M . Then $\mathbf{x}[\mathbf{n}]$ is a signal generated at the output of a lowpass filter. Since, $\mathbf{x}[\mathbf{n}]$ contains more samples than $\mathbf{x}[\mathbf{n}]$ due to convolution we only consider samples in the main lobe of a signal i.e. **sinc** and we discard first and last (**Lh-1/2**) samples where **Lh** is a length of a impulse response array. Then this new $\mathbf{x}[\mathbf{n}]$ is passed from a down-sampler or compressor that compress $\mathbf{x}[\mathbf{n}]$ by a factor of 'M' and generate $\mathbf{x}[\mathbf{n}]$. This $\mathbf{x}[\mathbf{n}]$ is nothing but our decimated signal and this complete process is known as **Decimation**.

Anti-Aliasing Filter

 $Wc = \pi/M$, Gain= 1

Designing of Anti-Aliasing Filter:

The simplest method for the designing of the finite impulse response filter is known as windowing method.

Step1: Let the desired ideal frequency response of a low pass filter is $H_d(e^{jw})$. Wc= π/M

Step2: Take IFFT of $H_d(e^{jw})$ to get $h_d[n]$.

Step3: Since $h_d[n]$ has infinite length, truncate it using a finite length window function w[n] to get h[n].

$$h[n] = h_d[n] \times w[n]$$

Step4: We can see our practical filter frequency response by taking FFT of h[n] which is $H(e^{jw})$ and you can plot magnitude and phase response.

2. Interpolation:

Interpolation is just the opposite of decimation. When we use a low pass filter also known as anti-imaging filter after upsampling of a received signal than this is known as Interpolation and the signal that is generated from this process is known as Interpolated signal.

If we have a received signal let's say xd[n]. Then we upsample with signal using a upsampler of scaling factor 'L'. Upsampler gives xu[n] as its output then we pass this output from a anti-imaging filter whose cut-off frequency is equals π/L and gain equals "L" then we get y[n] as a output of anti-imaging filter we discard first and last (Lh-1/2) samples from y[n] where Lh is a length of a impulse response array. This y[n] is a interpolated signal and this process is know as interpolation.

Anti-Imaging Filter

 $Wc = \pi/L$, Gain= L

Designing of Anti-Imaging Filter:

The simplest method for the designing of the finite impulse response filter is known as windowing method.

Step1: Let the desired ideal frequency response of a low pass filter is $H_d(e^{jw})$. Wc= π/L

Step2: Take IFFT of $H_d(e^{jw})$ to get $h_d[n]$.

Step3: Since $h_d[n]$ has infinite length, truncate it using a finite length window function w[n] to get h[n].

$$h[n] = h_d[n] \times w[n]$$

Step4: We can see our practical filter frequency response by taking FFT of h[n] which is $H(e^{jw})$ and you can plot magnitude and phase response.