Machine Learning Assignment 1

ANA RAQUEL MACEIRAS - UP200604342

GROUP B

Introduction

https://www.statista.com/chart/17727/global-data-creation-forecasts/

https://medium.com/30-days-of-machine-learning/day-3-k-nearest-neighbors-and-bias-variance-tradeoff-75f84d515bdb

Attributes selection

kNN – k parameter hypertunning

Logistic Regression, QDA and kNN models: ROC curves, ROC AUC and decision boundaries

Logistic Regression

Accuracy score on training set: 0.7587 Accuracy score on test set: 0.7483 Accuracy score on 5-fold test data: 0.8015 +/- 0.0282

F1 score on training set: 0.5892 F1 score on test set: 0.5581

F1 score on 5-fold test data: 0.6339 \pm - 0.1365

QDA

Accuracy score on training set: 0.7654
Accuracy score on test set: 0.755
Accuracy score on 5-fold test data: 0.7951 +/- 0.0363

F1 score on training set: 0.6137 F1 score on test set: 0.5843

F1 score on 5-fold test data: 0.6278 +/- 0.1356

kNN

Accuracy score on training set: 0.7671
Accuracy score on test set: 0.7285
Accuracy score on 5-fold test data: 0.788 +/- 0.0274

F1 score on training set: 0.6154
F1 score on test set: 0.5287

F1 score on 5-fold test data: 0.6111 \pm 0.1113

Logistic Regression

```
Weighted F1 score on training set: 0.5564
Weighted F1 score on test set: 0.5435
```

Weighted F1 score on 5-fold test data: 0.5409 +/- 0.027

Classification	report:			
	precision	recall	f1-score	support
CYT	0.507	0.753	0.606	93
ERL	0.000	0.000	0.000	1
EXC	0.000	0.000	0.000	7
ME1	0.455	0.556	0.500	9
ME2	0.000	0.000	0.000	10
ME3	0.667	0.688	0.677	32
MIT	0.617	0.592	0.604	49
NUC	0.641	0.477	0.547	86
POX	0.667	0.500	0.571	4
VAC	0.000	0.000	0.000	6
accuracy			0.569	297
macro avg	0.355	0.356	0.351	297
weighted avg	0.541	0.569	0.544	297

kNN

Best k = 17

Weighted F1 score on training set: 0.6207 Weighted F1 score on test set: 0.5693 Weighted F1 score on 5-fold test data: 0.5664 +/- 0.0411

Classification report:

	precision	recall	f1-score	support
CYT	0.530	0.656	0.587	93
ERL	0.000	0.000	0.000	1
EXC	0.667	0.571	0.615	7
ME1	0.462	0.667	0.545	9
ME2	0.333	0.200	0.250	10
ME3	0.719	0.719	0.719	32
MIT	0.681	0.653	0.667	49
NUC	0.560	0.488	0.522	86
POX	0.667	0.500	0.571	4
VAC	0.000	0.000	0.000	6
accuracy			0.579	297
macro avg	0.462	0.445	0.448	297
weighted avg	0.568	0.579	0.569	297

Decision Tree

Weighted F1 score on training set: 0.5986
Weighted F1 score on test set: 0.5512

Weighted F1 score on 5-fold test data: 0.5519 +/- 0.0611

Classification report:

014001110401011	precision	recall	f1-score	support
CYT	0.526	0.538	0.532	93
ERL	0.000	0.000	0.000	1
EXC	0.571	0.571	0.571	7
ME1	0.571	0.889	0.696	9
ME2	0.500	0.300	0.375	10
ME3	0.711	0.844	0.771	32
MIT	0.617	0.592	0.604	49
NUC	0.522	0.547	0.534	86
POX	0.000	0.000	0.000	4
VAC	0.000	0.000	0.000	6
accuracy			0.566	297
macro avg	0.402	0.428	0.408	297
weighted avg	0.542	0.566	0.551	297

Achieved results comparison

Conclusions

- In classification problems, as in the case of the two problem here presented, machine learning models try to approximate the Bayes (true) Decision Boundary.
- Models that have hyperparameter that tune their performance, as was the case of kNN and decision trees, can be optimize in order to balance the variance and bias errors in order to not incur in overfitting or underfitting, respectively.
- In the case of the two problems presented in this work, we could not see significant differences between the performance of the proposed models, indicating that simpler models can perform as good as more complex model depending on the data.
- By using even more complex models or sampling models, especially in the yeast dataset which had unbalanced classes, one could expect to obtain better prediction scores.