Pré-Prática Ressonância Paramagnética Eletrônica

Edmur C. Neto - 12558492 Rafael F. Gigante - 12610500

Instituto de Física de São Carlos Universidade de São Paulo

20/03/2024

- Descoberto pelo físico soviético Yevgeny Zavoisky;
- Estuda a interação entre radiação e matéria em materiais paramagnéticos na presença de um campo externo;
- Exemplo: Substâncias com elétrons desemparelhados.

Figura 1: Ilustração de um material paramagnético

ightarrow Momento Magnético associado ao Momento Angular Total $ec{J}=ec{L}+ec{S}$

$$ec{\mu}=-g_jrac{\mu_b}{\hbar}ec{J}$$
 , sendo g_j o fator giromagnético e $\mu_b=rac{\hbar e}{2m_e}$ o magneton de Bohr

ightharpoonup Ao aplicar um campo externo $ec{B_0}$, observamos a energia $E=-ec{\mu}_j\cdotec{B_0}$, portanto, $E=g_j\;\mu_b\;B_0\;m_j$, com $m_j=-j,-j+1,\cdots,j-1,j$

Para um elétron desemparelhado (m_j = ½, -½) temos:

Figura 2: Ilustração do Efeito Zeeman

Aplicamos um campo $\vec{B_1}$ alternado perpendicular a $\vec{B_0}$

$$\vec{B}_1 = \vec{B}_{HF} \cdot sen(2\pi\nu t)$$

Se satisfazer as regras de seleção:

$$\Delta m_i = \pm 1$$

е

$$h\nu = \Delta E = g_i \; \mu_b \; B_0$$

Temos a ressonância do sistema.

ightharpoonup Estudo da largura à meia altura δB_0

Princípio da Incerteza: $\delta E \cdot T \geq \frac{\hbar}{2}$

$$\delta E = g \; \mu_b \; \delta B_0 \; \Rightarrow \; \delta B_0 = \frac{\hbar}{2 \; g_j \; \mu_b \; T}$$

Figura 3: Representação da absorção em função do campo magnético homogêneo

OBJETIVOS

- Ressonância Paramagnética Eletrônica em DPPH:
 - 1. Determinar o campo magnético de ressonância B_0 em função da frequência de ressonância ν ;
 - Determinar o fator g da molécula de DPPH;
 - 3. Determinar a largura à meia altura δB_0 do sinal ressonante.

- Equipamento a ser utilizado:
 - Unidade controle ESR;
 - 2. Unidade básica ESR;
 - Par de bobinas de Helmholtz;
 - 4. Osciloscópio;
 - 5. Amperímetro;
 - 6. Amostra da molécula DPPH;
 - 7. Pequenas bobinas de diversas configurações de espiras.

Figura 4: Esquema do experimento 1

Figura 5: (a) Esquema do experimento 1, (b) Amostra de DPPH utilizada e (c) Bobinas para a corrente alternada.

- Ajuste do aparato experimental:
 - Definir a frequência de ressonância como ν = 15 MHz;
 - Ajustar as escalas temporais e de amplitude do osciloscópio;
 - Modificar o campo gerado pelas bobinas de Helmholtz até que os sinais de ressonância figuem igualmente espaçados.
- Ajuste da mudança de fase:
 - Mudar o osciloscópio para o modo XY e visualizar o padrão;
 - Haverá uma diferença de fase entre o campo da bobina da bobina e o campo modulado;
 - Ajustar a fase na unidade de controle até que os sinais de ressonância coincidam.

- Determinando o campo de ressonância:
 - Ajustar o campo na unidade de controle até que o sinal de ressonância fique simétrico;
 - Medir a corrente que está passando pelas bobinas de Helmholtz junto com a frequência de ressonância v;
 - Incrementar a frequência de ressonância em 5 MHz e repetir o processo até 135 MHz.

- Determinando a largura à meia altura do campo:
 - Ajustar a condição de ressonância para ν = 50MHz;
 - Expandir o sinal de ressonância na direção X até que ocupe toda a tela do osciloscópio variando a tensão modulada;
 - Medir o valor RMS da corrente modulada;
 - Medir a largura à meia altura do sinal de ressonância no osciloscópio.

Visualização do estado de ressonância no osciloscópio

Figura 6: Visualização no osciloscópio da tensão no indutor e da varredura do campo magnético homogêneo

- \triangleright Determinando a relação entre ν e B_0 ;
- Determinação do fator g da amostra.

Sabendo
$$\nu = B_0 \frac{g_j \mu_b}{h} \Rightarrow g_j = \frac{\alpha h}{\mu_b}$$

sendo α o coeficiente angular.

$$g_{\rm J} = g_{\rm S} \approx 2.0023.$$

Figura 7: Gráfico da variação da frequência de ressonância em função do campo magnético do par de bobinas Helmholtz

ightharpoonup Cálculo da largura à meia altura δB_0

Campo de um par de bobina de Helmholtz: $B=\mu_0 \ [rac{4}{5}]^{rac{3}{2}} \ rac{n}{r} \ I$

$$\Rightarrow \delta B_0 = \mu_0 \left[\frac{4}{5} \right]^{\frac{3}{2}} \frac{n}{r} \delta I$$

Sendo
$$\delta I = \frac{\delta U}{U_{mod}} I_{mod}$$

$$\delta B_0$$
 (DPPH) = 0.15–0.81 mT

OBJETIVOS

- Absorção de ressonância de um circuito oscilador de RF (radio frequency) passivo:
 - 1. Medir a tensão U_1 na bobina do circuito oscilador de RF em função da frequência com acoplamento indutivo para um circuito oscilador passivo;
 - 2. Medir a tensão U_2 na bobina do circuito oscilador passivo em função da frequência.

- Equipamento a ser utilizado:
 - Unidade controle ESR;
 - 2. Unidade básica ESR;
 - 3. Osciloscópio;
 - 4. Amperímetro;
 - 5. Amostra da molécula DPPH;
 - 6. Pequenas bobinas de diversas configurações de espiras.

Figura 8: Esquema do experimento 2

- Realização do experimento:
 - Definir a escala 3/6 no capacitor variável no circuito oscilador passivo;
 - Definir a frequência mínima na Unidade de ESR;
 - Medir a frequência v na Unidade de Controle, a voltagem U₂ da bobina passiva no osciloscópio e a voltagem U₁ da bobina RF;
 - Aumentar a frequência e repetir as medidas;
 - Refazer as medidas com as escalas 2/6 e 1/6 no capacitor variável.

➤ Determinando a relação entre as tensões U₁ e U₂ dos circuitos com a frequência.

$$\nu_0 = \frac{1}{2\pi \sqrt{L_2 C_2}}$$

Figura 9: Gráfico da variação da tensão dos circuitos 1 e 2 em função da frequência.

