General presentation guidelines:

- 1. Explain the problem description clearly with proper language and notations.
- 2. Design the algorithm with pseudo code and analyze the running time with accurate asymptotic notations.
- 3. Implement your algorithm using any programming language (Java, C++, Python, etc.) and illustrate the execution with an example input.
- 4. Document and upload your implementation codes to a public GitHub account.
- 5. Upload your presentation slides to Moodle.

The presentation is 12 minutes plus 2-3 minutes Q/A. Asking questions will get extra credit.

Problem: An independent set of a graph G = (V, E) is a set $U \subseteq V$ of vertices such that there are no edges between vertices in U. Given a graph with node weights, the maximum-weigh independent set problem asks for the independent set of a given graph with the maximum total weight. In general, this problem is NP-hard. For this programming problem, you need to solve the problem on trees: given a tree with node weights, find the independent set of the tree with the maximum total weight. For example, the maximum-weight independent set of the tree in Figure 1 has weight 47.

Figure 1: The maximum-weight independent set of the tree has weight 47. The red vertices give the independent set.

We assume that the nodes of the tree are $[n] = \{1, 2, 3, ..., n\}$. We root the tree at vertex 1, and for each vertex $i \in [2, n]$, the parent of i is a vertex j < i.

Input:

- The input is taken from the standard input (console).
- The first line of input contains one integer n, the number of vertices in the tree.
- The next n lines contain two integers each, where the i-th line contains two integers p_i and w_i , where p_i is the parent of i and w_i is the weight of i. We assume p_1 = 0, which is useless. For all $i \in [2, n]$, we have $1 \le p_i < i$.

Output:

- The output is printed onto the standard output (console).
- You only need to output one integer, the weight of the maximum-weight independent set.

Example Input:	Example Input (Continued):	Example Output:	This is the
11	2 5	47	example from
0 15	2 5		the problem
1 8	3 7		description.
1 16	4 2		
1 18	4 9		
2 3	6 4		

Constraints:

- $\bullet \ 1 \le n \le 10^6.$
- $1 \le n \le 10^6$ for every $i \in [n]$.
- It is expected that your program will terminate in 10 seconds.