Algorytmy optymalizacji dyskretnej 2022/23

LABORATORIUM 2

Programowanie liniowe i całkowitoliczbowe

Termin realizacji: 4. zajęcia

Warunek zaliczenia listy: realizacja co najmniej trzech spośród zadań 1–5 (wraz ze sprawozdaniem).

Uwaga: W każdym z poniższych zadań należy uogólnić metodę rozwiązania, tj. oddzielić model od danych tak, aby można było zadawać dane w pliku, na podstawie których solver będzie generował egzemplarz problemu i go rozwiązywał. Należy także maksymalnie sparametryzować zapis modelu.

Zadanie 0.

Przeczytaj opis języka GNU MathProg (lub np. pakietu JuMP z języka Julia) i zapoznaj się z jego możliwościami.

Zadanie 1. [3 pkt]

Pewne przedsiębiorstwo lotnicze musi podjąć decyzję o zakupie paliwa do samolotów odrzutowych, mając do wyboru trzech dostawców. Samoloty tankują paliwo regularnie na czterech lotniskach, które obsługują.

Firmy paliwowe poinformowały, że mogą dostarczyć następujące ilości paliwa w nadchodzącym miesiącu: Firma $1-275\,000$ galonów, Firma $2-550\,000$ galonów i Firma $3-660\,000$ galonów. Niezbędne ilości paliwa do odrzutowców na poszczególnych lotniskach są odpowiednio równe: na lotnisku $1-110\,000$ galonów, na lotnisku $2-220\,000$ galonów, na lotnisku $3-330\,000$ galonów i na lotnisku $4-440\,000$ galonów.

Koszt jednego galonu paliwa (w \$) z uwzględnieniem kosztów transportu dostarczonego przez poszczególnych dostawców kształtuje się na każdym z lotnisk następująco:

	Firma 1	Firma 2	Firma 2
Lotnisko 1	10	7	8
Lotnisko 2	10	11	14
Lotnisko 3	9	12	4
Lotnisko 4	11	13	9

Wyznacz plan zakupu i dostaw paliwa na lotniska, który minimalizuje koszty. Następnie na jego podstawie odpowiedz na poniższe pytania.

- (a) Jaki jest minimalny łączny koszt dostaw wymaganych ilości paliwa na wszystkie lotniska?
- (b) Czy wszystkie firmy dostarczają paliwo?
- (c) Czy możliwości dostaw paliwa przez firmy są wyczerpane?

Zapisz model programowania liniowego w wybranym języku i rozwiąż go za pomocą solvera GLPK (lub np. Cbc).

Zadanie 2. [3 pkt]

Dana jest sieć połączeń między n miastami reprezentowana za pomocą skierowanego grafu G=(N,A), gdzie N jest zbiorem miast (wierzchołków), |N|=n, A jest zbiorem połączeń między miastami (łuków), |A|=m. Dla każdego połączenia z miasta i do miasta j, $(i,j)\in A$, dane są koszt przejazdu c_{ij} oraz czas przejazdu t_{ij} (im mniejszy koszt, tym dłuższy czas przejazdu). Dane są również dwa miasta $i^{\circ}, j^{\circ} \in N$.

Celem jest znalezienie połączenia (ścieżki) między zadanymi dwoma miastami, którego całkowity koszt jest najmniejszy i całkowity czas przejazdu nie przekracza z góry zadanego czasu przejazdu T.

- (a) Zapisz model programowania całkowitoliczbowego w wybranym języku. Rozwiąż własny egzemplarz problemu ($n \ge 10$) za pomocą solvera GLPK (lub np. Cbc).
- (b) Czy ograniczenie na całkowitoliczbowość zmiennych decyzyjnych jest potrzebne? Sprawdź, jakie będą wartości zmiennych decyzyjnych, jeśli usuniemy ograniczenie na ich całkowitoliczbowość (tj. mamy przypadek, w którym model jest modelem programowania liniowego).
- (c) Czy po usunięciu ograniczenia na czasy przejazdu w modelu bez ograniczeń na całkowitoliczbowość zmiennych decyzyjnych i rozwiązaniu problemu otrzymane połączenie jest akceptowalnym rozwiązaniem?

Zadanie 3. [3 pkt]

Zapisz model dla zadania 3. z Listy 2 na ćwiczenia w wybranym języku i rozwiąż go dla podanych tam danych za pomocą solvera GLPK (lub np. Cbc).

W opisie rozwiązania przedstaw optymalny przydział radiowozów dla każdej zmiany i dzielnicy oraz podaj całkowitą liczbę wykorzystywanych radiowozów.

Zadanie 4. [3 pkt]

Pewna firma przeładunkowa posiada teren, na którym składuje kontenery z cennym ładunkiem. Teren podzielony jest na $m \times n$ kwadratów. Kontenery składowane są w wybranych kwadratach. Zakłada się, że kwadrat może być zajmowany przez co najwyżej jeden kontener. Firma musi rozmieścić kamery, żeby monitorować kontenery. Każda kamera może obserwować k kwadratów na lewo, k kwadratów na prawo, k kwadratów w górę i k kwadratów w dół. Kamera nie może być umieszczona w kwadracie zajmowanym przez kontener.

Zaplanuj rozmieszczenie kamer w kwadratach tak, aby każdy kontener był monitorowany przez co najmniej jedną kamerę oraz liczba użytych kamer była jak najmniejsza.

Zapisz model programowania całkowitoliczbowego w wybranym języku. Rozwiąż własny egzemplarz problemu $(m,n\geqslant 5;$ rozwiązania dla $\geqslant 2$ różnych wartości parametru k) za pomocą solvera GLPK (lub np. Cbc).

Zadanie 5. [3 pkt]

Zakład może produkować cztery różne wyroby $P_i, i \in 1, 2, 3, 4$, w różnych kombinacjach. Każdy z wyrobów wymaga pewnego czasu obróbki na każdej z trzech maszyn. Czasy te są podane w poniższej tabeli (w minutach na kilogram wyrobu). Każda z maszyn jest dostępna przez 60 godzin w tygodniu. Produkty P_1, P_2, P_3 i P_4 mogą być sprzedane po cenie, odpowiednio, 9, 7, 6 i 5 za kilogram. Koszty zmienne (koszty pracy maszyn) wynoszą, odpowiednio, 2 za godzinę dla maszyn M_1 i M_2 oraz 3 za godzinę dla maszyny M_3 . Koszty materiałowe wynoszą 4 na każdy kilogram wyrobu P_1 i 1 na każdy kilogram wyrobu P_2, P_3 i P_4 . W tabeli podany jest także maksymalny tygodniowy popyt na każdy z wyrobów (w kilogramach).

Produkt	Maszyna		ıa	Maksymalny popyt
	$\overline{M_1}$	M_2	M_3	tygodniowy
$\overline{P_1}$	5	10	6	400
P_2	3	6	4	100
P_3	4	5	3	150
P_4	4	2	1	500

Wyznacz optymalny tygodniowy plan produkcji poszczególnych wyrobów i oblicz zysk z ich sprzedaży. Zapisz model programowania liniowego w wybranym języku i rozwiąż go za pomocą solvera GLPK (lub np. Cbc).

Rozwiązania problemów z zadań 1–5 przedstaw w zwięzłym sprawozdaniu (plik pdf), które powinno zawierać:

1. opis modeli

- (a) definicje zmiennych decyzyjnych (opis, jednostki),
- (b) ograniczenia (nie umieszczaj źródeł modelu),
- (c) funkcja celu,
- 2. krótki opis rozwiązywanych egzemplarzy, uzyskane wyniki oraz ich interpretację.

W sprawozdaniu do opisu modeli (zmienne, ograniczenia, funkcja celu) **należy zastosować zapis matematyczny** (a nie zapis w wybranym języku modelowania)!

Do sprawozdania należy dołączyć pliki z modelami programowania liniowego lub całkowitolicz-bowego. Pliki powinny być skomentowane – powinny zawierać imię i nazwisko autora, komentarze zmiennych, zaetykietowane ograniczenia oraz komentarze ograniczeń.