

Probability and Stochastic Processes

Jointly Continuous Random Variables, Joint PDF, Conditional PDF, Transformations of Random Variables

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

09/12 September 2024

Jointly Continuous Random Variables

Jointly Continuous Random Variables

Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be random variables defined with respect to \mathscr{F} .

Definition (Jointly Continuous Random Variables)

X and Y are said to be jointly continuous if $(X,Y):\Omega\to\mathbb{R}^2$ is a continuous random variable, i.e., there exists a function $f_{X,Y}:\mathbb{R}^2\to[0,+\infty)$ such that the joint CDF of X and Y may be expressed as

$$F_{X,Y}(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) \, dv \, du \qquad \forall x,y \in \mathbb{R}.$$

The function $f_{X,Y}$ is called the joint PDF of X and Y.

Remark:

X continuous, *Y* continuous \implies *X*, *Y* jointly continuous

Properties of Joint PDF

$$\bullet \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f_{X,Y}(u,v) \, dv \, du = 1.$$

Properties of Joint PDF

$$\bullet \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f_{X,Y}(u,v) \, dv \, du = 1.$$

•
$$\int\limits_{-\infty}^{+\infty} f_{X,Y}(u,v)\,dv = f_X(u)$$
 for all $u\in\mathbb{R}$.

This says if X and Y are jointly continuous, then X is a continuous RV

Properties of Joint PDF

$$\bullet \int\limits_{-\infty}^{+\infty} \int\limits_{-\infty}^{+\infty} f_{X,Y}(u,v) \, dv \, du = 1.$$

- $\int\limits_{-\infty}^{+\infty}f_{X,Y}(u,v)\,dv=f_X(u)$ for all $u\in\mathbb{R}$.
 - This says if X and Y are jointly continuous, then X is a continuous RV

•
$$\int\limits_{-\infty}^{+\infty} f_{X,Y}(u,v)\,du=f_Y(v)$$
 for all $v\in\mathbb{R}$.

This says if X and Y are jointly continuous, then Y is a continuous RV

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Conditional CDF of X conditioned on $\{Y = y\}$: $\mathbb{P}(\{X \le x\} | \{Y = y\})$. However, this conditional probability is not defined because $\mathbb{P}(\{Y = y\}) = 0$.

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Conditional CDF of X conditioned on $\{Y = y\}$: $\mathbb{P}(\{X \le x\} | \{Y = y\})$. However, this conditional probability is not defined because $\mathbb{P}(\{Y = y\}) = 0$.

Remedy:

Fix $y \in \mathbb{R}$ and $\varepsilon > 0$ such that $\mathbb{P}\big(\{Y \in (y - \varepsilon, y + \varepsilon)\}\big) > 0$. Define conditional probability with respect to the event $\{Y \in (y - \varepsilon, y + \varepsilon)\}$, and let $\varepsilon \downarrow 0$.

$$\mathbb{P}(\{X \le x\} | \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\}) = \frac{\mathbb{P}(\{X \le x\} \cap \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}{\mathbb{P}(\{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}$$

$$\mathbb{P}(\{X \le x\} | \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\}) = \frac{\mathbb{P}(\{X \le x\} \cap \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}{\mathbb{P}(\{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}$$

$$= \frac{\int\limits_{-\infty}^{x} \int\limits_{\gamma - \varepsilon}^{\gamma + \varepsilon} f_{X,Y}(u, v) \, dv \, du}{\int\limits_{\gamma - \varepsilon}^{\gamma + \varepsilon} f_{Y}(v) \, dv}$$

$$\mathbb{P}(\{X \leq x\} | \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\}) = \frac{\mathbb{P}(\{X \leq x\} \cap \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}{\mathbb{P}(\{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}$$

$$= \frac{\int_{-\infty}^{x} \int_{\gamma - \varepsilon}^{\gamma + \varepsilon} f_{X,Y}(u, v) \, dv \, du}{\int_{\gamma - \varepsilon}^{x} f_{Y}(v) \, dv}$$

$$\approx \frac{\int_{-\infty}^{x} f_{X,Y}(u, \gamma) \, du \cdot 2\varepsilon}{f_{Y}(\gamma) \cdot 2\varepsilon}$$

$$\mathbb{P}(\{X \le x\} | \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\}) = \frac{\mathbb{P}(\{X \le x\} \cap \{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}{\mathbb{P}(\{Y \in (\gamma - \varepsilon, \gamma + \varepsilon)\})}$$

$$= \frac{\int_{-\infty}^{x} \int_{\gamma - \varepsilon}^{\gamma + \varepsilon} f_{X,Y}(u, v) \, dv \, du}{\int_{\gamma - \varepsilon}^{x} f_{Y}(v) \, dv}$$

$$\approx \frac{\int_{-\infty}^{x} f_{X,Y}(u, \gamma) \, du \cdot 2\varepsilon}{f_{Y}(\gamma) \cdot 2\varepsilon}$$

$$= \int_{-\infty}^{x} \underbrace{\int_{-\infty}^{x} f_{X,Y}(u, \gamma) \, du}_{\text{conditional PDF}} \, du$$

Conditional CDF for Jointly Continuous Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Definition (Conditional CDF for Jointly Continuous Random Variables)

The conditional CDF of X, conditioned on the event $\{Y = \gamma\}$, is the function $F_{X|Y=\gamma}: \mathbb{R} \to [0,1]$ defined as

$$F_{X|Y=y}(x) = \int_{-\infty}^{x} \frac{f_{X,Y}(u,y)}{f_{Y}(y)} du, \qquad x \in \mathbb{R},$$

defined for all $y \in \mathbb{R}$ such that $f_Y(y) > 0$.

Conditional PDF for Jointly Continuous Random Variables

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X:\Omega\to\mathbb{R}$ and $Y:\Omega\to\mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Definition (Conditional PDF for Jointly Continuous Random Variables)

The conditional PDF of X, conditioned on the event $\{Y = \gamma\}$, is the function $f_{X|Y=\gamma}: \mathbb{R} \to [0,+\infty)$ defined as

$$f_{X|Y=y}(x) = rac{f_{X,Y}(x,y)}{f_Y(y)}, \qquad x \in \mathbb{R},$$

defined for all $y \in \mathbb{R}$ such that $f_Y(y) > 0$.

Independence and Joint Continuity

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ and $Y : \Omega \to \mathbb{R}$ be jointly continuous random variables defined with respect to \mathscr{F} .

Definition (Joint Continuity and Independence)

X and Y are independent if

$$f_{X,Y}(x,y) = f_X(x) \cdot f_Y(y) \qquad \forall x,y \in \mathbb{R}.$$

Remark:

•
$$X \perp \!\!\! \perp Y \quad \Longleftrightarrow \quad f_{X|Y=y} = f_X \text{ for all } y \text{ such that } f_Y(y) > 0$$

Conditional PMF Summary

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and Y be random variables defined with respect to \mathscr{F} .

• If *X* and *Y* are jointly discrete,

$$p_{X|Y=y}(x)=rac{p_{X,Y}(x,y)}{p_{Y}(y)}, \qquad x\in\mathbb{R},\; p_{Y}(y)>0.$$

• For any event $A \in \mathscr{F}$,

$$\mathbb{P}(\{X \in A\} | \{Y = \gamma\}) = \sum_{\mathbf{y} \in A} p_{X|Y = \gamma}(\mathbf{x}).$$

• For any events $A, B \in \mathscr{F}$,

$$\mathbb{P}(\{X \in A\} | \{Y \in B\}) = \frac{\mathbb{P}(\{X \in A\} \cap \{Y \in B\})}{\mathbb{P}(\{Y \in B\})} = \frac{\sum\limits_{x \in A} \sum\limits_{y \in B} p_{X,Y}(x,y)}{\sum\limits_{y \in B} p_{Y}(y)}$$

Conditional PDF Summary

Fix a probability space $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and Y be random variables defined with respect to \mathscr{F} .

• If *X* and *Y* are jointly continuous,

$$f_{X|Y=y}(x) = rac{f_{X,Y}(x,y)}{f_Y(y)}, \qquad x \in \mathbb{R}, f_Y(y) > 0.$$

• For any event $A \in \mathscr{F}$,

$$\mathbb{P}(\{X \in A\} | \{Y = \gamma\}) = \int_A f_{X|Y=\gamma}(u) \, du.$$

• For any events $A, B \in \mathscr{F}$,

$$\mathbb{P}(\{X \in A\} | \{Y \in B\}) = \frac{\mathbb{P}(\{X \in A\} \cap \{Y \in B\})}{\mathbb{P}(\{Y \in B\})} = \frac{\int\limits_{x \in A} \int\limits_{y \in B} f_{X,Y}(x,y) \, dy \, dx}{\int\limits_{y \in B} f_{Y}(y) \, dy}$$

Example

Let $f_{X,Y}(x,y)=1$ inside the triangle, and 0 elsewhere. Compute the marginal PDFs of X and Y, and the conditional PDF of X conditioned on $\{Y=y\}$ for various values of y. Argue if X and Y are independent.

Transformations of Random Variables

Transformations of Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X : \Omega \to \mathbb{R}$ be a random variable defined with respect to \mathscr{F} .

Consider $f: \mathbb{R} \to \mathbb{R}$.

Define $Y:\Omega \to \mathbb{R}$ as Y=f(X), i.e.,

$$Y(\omega) = f(X(\omega)), \qquad \omega \in \Omega.$$

- For what functions f is Y = f(X) a random variable with respect to \mathscr{F} ?
- Given the CDF/PMF/PDF of X, what is the CDF/PMF/PDF of Y = f(X)?

Picture

Borel-Measurable Functions – 1

Definition (Borel-Measurable Function)

A function $f: \mathbb{R} \to \mathbb{R}$ is said to be Borel-measurable if

$$f^{-1}(B) = \{x \in \mathbb{R} : f(x) \in B\} \in \mathscr{B}(\mathbb{R}) \qquad \forall B \in \mathscr{B}(\mathbb{R}).$$

Remarks:

• Every continuous function is Borel-measurable. Thus,

$$f(x) = |x|, \quad f(x) = x^2, \quad f(x) = e^x, \quad f(x) = \log x,$$

are Borel-measurable

• $X:\Omega \to \mathbb{R}$ random variable wrt \mathscr{F} $f:\mathbb{R} \to \mathbb{R}$ Borel-measurable $\Longrightarrow f(X):\Omega \to \mathbb{R}$ random variable with respect to \mathscr{F}

Borel-Measurable Functions – 2

Definition (Borel-Measurable Function)

A function $f: \mathbb{R}^n \to \mathbb{R}^m$ is said to be Borel-measurable if

$$f^{-1}(B) = \{x \in \mathbb{R}^n : f(x) \in B\} \in \mathscr{B}(\mathbb{R}^n) \qquad \forall B \in \mathscr{B}(\mathbb{R}^m).$$

Implication for m = 1:

- X_1,\ldots,X_n random variables wrt $\mathscr{F}, \qquad f:\mathbb{R}^n \to \mathbb{R}$ Borel-measurable $\Longrightarrow f(X_1,\ldots,X_n):\Omega\to\mathbb{R}$ random variable with respect to \mathscr{F}
- Every continuous function $f:\mathbb{R}^n \to \mathbb{R}$ is Borel-measurable. Thus, for instance,

$$f(x_1,\ldots,x_n)=\sum_{i=1}^n x_i$$

is Borel-measurable

Maximum of Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be random variables defined with respect to \mathscr{F} , with joint CDF F_{X_1, \ldots, X_n} .

- Show that $Y_n = \max\{X_1, \dots, X_n\}$ is a random variable with respect to \mathscr{F} .
- Derive the CDF of Y_n .
- Simplify the CDF of Y_n when X_1, \ldots, X_n are i.i.d..

Minimum of Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be random variables defined with respect to \mathscr{F} , with joint CDF F_{X_1, \ldots, X_n} .

- Show that $Z_n = \min\{X_1, \dots, X_n\}$ is a random variable with respect to \mathscr{F} .
- Derive the CDF of Z_n .
- Simplify the CDF of Z_n when X_1, \ldots, X_n are i.i.d..

Minimum of i.i.d. Exponential Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X_1, \ldots, X_n be independent, with $X_i \sim \text{Exponential}(\lambda_i)$ for each $i \in \{1, \ldots, n\}$. Find the distribution of $Z = \min\{X_1, \ldots, X_n\}$.

Sums of Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let X and Y be random variables with respect to \mathscr{F} .

- Show that X + Y is a random variable with respect to \mathscr{F} .
- In the cases when X and Y are jointly discrete/continuous, derive the PMF/PDF of X + Y.
- Simplify the PMF/PDF when *X* and *Y* are independent.

Sum of Two Independent Exponentials

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $X \sim \text{Exponential}(\mu_1)$ and $Y \sim \text{Exponential}(\mu_2)$. Assume $X \perp Y$. Determine the distribution of Z = X + Y.

Sum of Random Number of Random Variables

Fix $(\Omega, \mathscr{F}, \mathbb{P})$.

Let $\{X_i : i \in \mathbb{N}\}$ be a collection of i.i.d. random variables defined with respect to \mathscr{F} and having a common CDF F.

Let N be a positive integer-valued random variable defined with respect to \mathscr{F} and having the PMF p_N .

Let *N* be independent of $\{X_i : i \in \mathbb{N}\}$.

Consider the sum

$$\mathcal{S}_N := \sum_{i=1}^N X_i; \qquad \qquad \mathcal{S}_N(\omega) = \sum_{i=1}^{N(\omega)} X_i(\omega), \quad \omega \in \Omega.$$

- Show that $S_N : \Omega \to \mathbb{R}$ is a random variable with respect to \mathscr{F} .
- Determine the CDF of S_N .