

TKACHENKO, V., inzh.

Organization of the assembly of large-panel apartment houses.
Stroitel' 8 no.5 My '62. (MIRA 15:7)
(Apartment houses)

REZNICHENKO, V.A.; TKACHENKO, V.A.; MIKELADZE, G.Sh.; KARYAZIN, I.A.;
KOZLOV, V.M.; NADIRADZE, Ye.M.; SOLOV'YEV, V.I.; GOGORISHVILI,
B.P.; Prinimali uchastiye: PKHAKADZE, Sh.S.; METREVELI, A.I.;
CHIKASHUA, D.S.; KHROMOVA, N.V.; KAVETSKIY, G.D.; TSKHVEDIANI,
R.N.; ARABIDZE, T.V.

Making titanium slag in an electric closed reduction furnace.
Titan i ego splavy no.8:28-40 '62. (MIRA 16:1)
(Titanium--Electrometallurgy)

ACCESSION NR: AP4022707

S/0020/64/155/002/0289/0291

AUTHOR: Tkachenko, V. A.

TITLE: On the spectral analysis of the one-dimensional Schroedinger operator
with periodic complex-valued potential

SOURCE: AN SSSR. Doklady*, v. 155, no. 2, 1964, 289-291

TOPIC TAGS: ordinary differential equation, boundary value problem, spectral
theory, Hilbert space, functional analysis, Schroedinger operator, one
dimensional spectral analysisABSTRACT: The author presents results concerning the geometric structure of the
closed differential operator T acting on $L_2(-\infty, \infty)$, defined by the operation

$$-\frac{d^2}{dx^2} + q(x) \quad (I)$$

where $q(x)$ is a continuous complex-valued periodic function, of period 1. Use is
made of the method suggested by I. M. Gel'fand in the case of real $q(x)$.
Together with T , consider the family of operators $T_t (-\pi \leq t \leq \pi)$ on $L_2(0,1)$,

Card 1/4

ACCESSION NR: AP4022707

defined by (1) and the boundary conditions

$$y(1) = e^{ity}(0), y'(1) = e^{ity'}(0)$$

The spectrum of T is the union Σ of the spectra of all T_t , and consists of a countable family of bounded, simple analytic arcs $\Gamma_1, \Gamma_2, \dots$. Σ is also the union of the roots of the set of equations $A(\lambda) = \cos t$, for $-\pi \leq t \leq \pi$, where $A(\lambda)$ is an entire function. Each Γ_k may be given by an equation of the form

$$\lambda = \omega_k(\cos t) \quad (2)$$

where ω_k is an invertible function. Let Δ be a closed connected subset of one of the Γ_k which does not include either end-point (at which $A'(\lambda) = 0$), and let $\delta < [\pi - \pi, \pi]$ be the pre-image of Δ under (2). For each $t \in \delta$, let φ_t, ψ_t be the characteristic functions of T_t and $T_{\bar{t}}$ corresponding to the characteristic values $\lambda(t) = \omega_k(\cos t)$ and $\lambda(\bar{t})$, respectively, normalized so that

$$\int |\varphi_t|^2 dx = \int \varphi_t \bar{\psi}_t dx = 1.$$

Extend φ_t and ψ_t to the whole real axis by setting

$$\begin{aligned} \varphi_t(x+m) &= e^{imt}\varphi_t(x), & \psi_t(x+m) &= e^{imt}\psi_t(x) \\ (0 < x < 1, m = 0, \pm 1, \pm 2, \dots) \end{aligned}$$

Card

2/4

ACCESSION NR: AP4022707

Finally, for any $f \in L_2(-\infty, +\infty)$, let $a(t) = \chi_{\delta} \int_{-\infty}^{\infty} f(x) \overline{\psi_t(x)} dx$, where χ_{δ} is the characteristic function of δ , and let $E(\Delta)$ be the operator defined by

$$E(\Delta)f(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} a(t) \psi_t(x) dt. \quad (4)$$

Then $E(\Delta)$ has some properties of a resolution of the identity: $E(\Delta)$ is bounded, $E(\Delta_1)E(\Delta_2) = E(\Delta_1 \cap \Delta_2)$ hence $E(\Delta)$ is a projection operator. If $f \in L_2(-\infty, +\infty)$ and $E(\Delta)f = 0$ for all Δ , then $f = 0$. If M denotes the linear closure of the set of functions of form (4), then M is dense in $L_2(-\infty, +\infty)$, and T coincides with the closure of the operator S induced by T on M . For any Δ , the range of $E(\Delta)$ lies in the domain of T and is invariant under T (and so is the range of $I-E(\Delta)$). The last result mentioned is that if $A'(\lambda) \neq 0$ for all $\lambda \in \mathbb{C}$, then there is a unitary equivalence between T and the closure of an operator represented by an infinite triangular matrix (operating on a Hilbert space of vector functions). "The author expresses his gratitude to I. M. Glazman for posing the problem, and to Yu. I. Lyubich for a discussion of the results."

ASSOCIATION: Khar'kovskiy Politekhnicheskiy Institut im. V. I. Lenin
(Kharkov Polytechnic Institute)

Card 3/4

ACCESSION NR: AP4022707

SUBMITTED: 22Nov63

DATE ACQ: 08Apr64

ENCL: 00

SUB CODE: MA

NO REF SOV: 004

OTHER: 000

Card 4/4

BLAGOV, V.A., inzh.; TKACHENKO, V.A., inzh.; KUDRETS, V.S., inzh.

Manufacture of plastic ship furniture by the method of
compressed air molding. Sudostroenie 30 no. 5144-46 My '64.
(MIRA 1756)

SHVARTSER, A.Ya., inzh.; SHAPOVALOV, S.I., kand.tekhn.nauk; LUGOVAYA, G.V.,
inzh.; GLAZUNOV, F.A., inzh.; TKACHENKO, V.A., inzh.; MOZNAIM,
G.I., inzh.

Electric slag hard facing of beaters in impact-action crushing
machines. Svar. proizv. no.3:22-25 Mr '63. (MIRA 16:3)

1. Donetskiy politekhnicheskiy institut (for Lugovaya).
2. Yasinovatskiy mashinostroitel'nyy zavod (for Moznaim).
(Hard facing) (Crushing machines)

MITROKHIN, A. K., inzh.; TKACHENKO, V. A., teknik

Machine for winding transformers and relays. Energetik 12 no.
4:18-19 Ap '64. (MIRA 17:?)

TKACHENKO, V. A.

Spectrum analysis of Schrodinger's one-dimensional operator with
a periodic complex-valued potential. Dokl. AN SSSR 155 no. 2:
289-291 Mr '64. (MIRA 17:5)

1. Khar'kovskiy politekhnicheskiy institut im. V. I. Lenina.
Predstavлено академиком S. N. Bernshteynom.

TKACHENKO, Vera (Moskva)

"Class supervisor." Sov. profsoiuzy 18 no.4:37 F '62,
(Conduct of life) (MIRA 15:3)

TKACHENKO, Vera

Life is in your hands. Sov. profsciuz 17 no.16:44-45 Ag '61.

(Stalingrad--Malpractice)

(MIRA 14:7)

TKACHENKO, V., inzh.

Reusable panel holder. Stroitel' no.1:26 Ja '61.
(Building--Tools and implements) (MIRA 14:2)

TKACHENKO, V., inzh.

Using ordinary presses in tensile-testing of steel pieces.
Stroitel' no.1:27 Ja '60. (MIRA 13:5)
(Steel, Structural--Testing)

TKACHENKO, V.

In the mountains and valleys of Rumania. Vokrug sveta no.1:30-32
Ja '54. (MLRA 7:1)
(Rumania--Description and travel)

TKACHENKO, V.

TKACHENKO, V.

"In new Rumania." Vl.P'iankov, P.Mel'nikov. Reviewed by V.Tkachenko.
Vokrug sveta no.6:61-62 Je '54. (MLRA 7:6)
(Rumania--Description and travel) (P'iankov, Vl.) (Mel'nikov, P.)

BLAGOV, V.A.; TKACHENKO, V.A.; TSARINNIKOV, V.V.

Use of plastics in shipbuilding. Mor. stbor. 47 no.3;68-74 Mr '64.
(MIRA 18:7)

KORNEVA, N.K.; ANDREYEV, V.L.; DOROFEEV, G.A.; GRINEVICH, I.P.; VINOKUROV,
Ye.B.; TKACHENKO, V.A.

Study of the operation of ports in heavy duty open-hearth
furnaces. Stal' 25 no.4:324-325 Ap '65. (MIRA 18:11)

1. Donetskiy institut chernoy metallurgii.

LYUBICH, Yu.I.; TKACHENKO, V.A.

Uniqueness and approximation theorems for a local Laplace transformation. Dokl. AN SSSR 164 no.2:273-276 S '65.
(MIRA 18:9)
1. Khar'kovskiy gosudarstvennyy universitet im. A.M. Gor'kogo i
Khar'kovskiy politekhnicheskiy institut im. V.I. Lenina.
Submitted February 16, 1965.

BLAGOV, V.^{h.}, inzh.; TKACHENKO, V.A., inzh.

Industrial area for manufacturing plastic furniture for ships.
Sudostroenie 27 no.10:64-65 O '61. (MIRA 14-12)

(Furniture)

(Plastics)

(Ships-Equipment and supplies)

KOSTYUK, D.I., kand.tekhn.nauk, dots.; TKACHENKO, V.A., inzh.

Effect of the reference shape of toothed racks according to
the All-Union State Standard 3058-54 on the efficiency of
flanking. Izv.vys.ucheb.zav.; mashinostr. no.7/8:95-108
'58. (MIRA 12:8)

1. Khar'kovskiy aviatsionnyy institut.
(Gearing)

TKACHENKO, V.A.; KOZLOV, V.M.; GUSEVA, N.S.

Investigating certain regularities in the reduction of iron-titanium
concentrates in the solid phase. Titan i ego splavy no.9:70-81 '63.
(MIRA 16:9)

(Titanium—Electrometallurgy)

DYURGEROV, N.G.; RYLOV, L.A.; ISHCHENKO, Yu.L.; TKACHENKO, V.A.;
BARILOV, O.A.; ZHIDKOV, A.I.; GRIGORIEV, G.G.

Using GSR-9000 generators for submerged arc welding.
Mashinostroitel' no.9:33 S '62. (MIRA 15:9)

MIKHAYLOV, V.G., doktor tekhn.nauk; KRAPIVIN, M.G., kand.tekhn.nauk;
KARYUK, G.G., kand.tekhn.nauk; KOZHENTSEV, Yu.T., aspirant;
GARASHCHENKO, P.A., aspirant; MALYAROV, G.P., aspirant;
KOGAN, K.B., inzh.; SUKACH, V.D., inzh.; TKACHENKO, V.A., inzh.;
LINENKO, Yu.P., inzh.; MOZNAIM, G.I., inzh.; MARTYMEMKO, I.A., inzh.

Cutting tool for the cutter loader. Ugol' Ukr. 6
no.8:37-39 Ag '62. (MIRA 15:11)
(Coal mining machinery)

TKACHENKO, V. A.

"The Architecture of a Sanatorium Complex." Cand in Architecture, Acad of Architecture Ukrainian SSR, 25 Dec 54. (PU, 15 Dec 54)

Survey of Scientific and Technical Dissertations Defended at USSR Higher Educational Institutions (12)

SO: SUM No. 556, 24 Jun 55

TKACHENKO, V A

884
.T6

Arkhitektura sanatoriya (Architecture of sanatoriums) Kiyev,
Izd-vo Akademii arkhitektury Ukrainskoy SSR, 1954.

153 p. illus., diagrs., map, tables.

At head of T.-P.: "Akademiya arkhitektury Ukrainskoy SSR. Institut
arkhitektury sooruzheniy".

TKACHENKO, V. A.

NEVRAYEV, G.A., kandidat meditsinskikh nauk; SVIRSKIY, V.L., kandidat arkhitektury.

"Architecture of a sanatorium." V.A. Tkachenko. Reviewed by.
G.A. Nevraev, V.L. Svirskii. Vop.kur.fizioter. I lech. fiz.
kul't. no.2:80-82 Ap-Je '55. (MLRA 8:8)
(Sanatoriums) (Tkachenko, V.A.)

TKACHENKO, V. A.

LYSAYA, L. G. Institut Arkhitektury Sooruzheniy Akademii Arkhitektury USSR. i
TKACHENKO, V. A. Ml. Nauchnyye sotrudniki, SHTEYNBERG, YA. A. Ch- Korr. Akademii
Arkhitektury USSR

Seriya 2-etazhnykh shlakoblochnykh zhilykh domov s primeneniem konstruktsiy zaboro-
skogo izgotovleniya

Page 73

SO: Collections of Annotations of Scientific Research Work on Construction, completed
in 1950. Moscow, 1951

TKACHENKO, V.A.; KAZLOV, V.M.; GUSEVA, N.S.; Prinimali uchastiye: RAPORT,
M.B.; MIKHAYLOV, N.S.

Making high-titanium slags of iron-titanium concentrates from coastal
placers. Titan i ego splavy no.9:86-95 '63. (MIRA 16:9)
(Titanium—Electrometallurgy)

25 (1)

SOV/145-58-7/8-11/24

AUTHORS: Kostyuk, D.I., Candidate of Technical Sciences, Docent
and Tkachenko, V.A., Engineer

TITLE: Influence of Toothed Rack Initial Form According to
the GOST 3058-54 on the Efficiency of Flanking

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy - Mashino-
stroyeniye, 1958, Nr 7-8, pp 95-108 (USSR)

ABSTRACT: A theoretical substantiation of flanking angle values
is given in the work by M.S. Polotskiy, "Initial and
Working Form of Toothed Rack". TsNIITMASH, Book 13.
Theory and Estimation of Toothed Gears and Slide Bea-
rings, Mashgiz, 1948 [1]. The above work is based on
the GOST 3058-45 which was later superseded by the
GOST 3058-54. The new GOST gives for the flanking ang-
les considerably lesser values (sometimes by twice
smaller) than is the case with the GOST 3048-45. The
purpose of this article is to establish the optimum
flanking angles when meshing different pairs of too-
thed wheels. The authors analyze two cases: 1) Driv-

Card 1/4

SOV/145-58-7/8-11/24

Influence of Toothed Rack Initial Form According to the GOST 3058-
54 on the Efficiency of Flanking

ing wheel pitch is greater than that of driven wheel,
that is, $t_1 > t_2$; 2) Driving wheel pitch is smaller
than that of driven wheel: $t_1 < t_2$. For the first case,
the flanking angles are defined by diagrams a, b, c
(Fig 1); for the second case - by diagrams a, b, c
(Fig 2). In Fig 3, profiles of driving and driven wheel
teeth at the beginning of their meshing are shown;
Fig 4 illustrates position of the teeth at the initial
and final moment of their meshing. The efficiency of
flanking is expressed by the function

$$\frac{v_k}{v_f} = \frac{c_1}{k} \sqrt{\frac{\Delta_a}{d_1}} , \text{ where } v_k \text{ is impact speed}$$

v_f - impact speed of flanked
teeth; c_1 - coefficient for standard gears determined
in Table 4;

Card 2/4

SOV/145-58-7/8-11/24

Influence of Toothing Rack Initial Form According to the GOST 3058-54 on the Efficiency of Flanking

$K = \frac{V_s}{V_k}$, where V_s is central impact speed; $\Delta_o = t_1 - t_2$; α_f - angle of flanking. The values expressing the efficiency of flanking obtained by the authors exceed by 1.4-1.93 times those received by experimental method; the same values calculated by the method of M.S. Polotskiy are by 2.5-3.3 times greater than the experimental ones. After the research, the authors arrive at the following conclusions: 1) When the difference in gear pitches is slight, the efficiency of flanking is not over 1.15; 2) When this difference approaches its maximum permissible value, the flanking efficiency varies between 1 and 6.9; 3) the maximum efficiency is obtained when the number of teeth on both gears $Z_1 = Z_2$ (the gear ratio is equal to 1); 4) efficiency of flanking is small when the number of

Card 3/4

SOV/145-58-7/8-11/24

Influence of Toothing Rack Initial Form According to the GOST 3058-54 on the Efficiency of Flanking

teeth and the flanking angles are large; in some cases the flanking may even result in a negative effect; 5) increasing the modulus (at equal angles α_f) diminishes the efficiency; 6) efficiency is increased with the increased degree of accuracy in manufacturing toothed gears. There are 6 tables, 7 figures and 3 references, 2 of which are Soviet and 1 German.

ASSOCIATION: Khar'kovskiy aviationsionnyy institut (Khar'kov Aviation Institute)

SUBMITTED: December 17, 1957

✓

Card 4/4

TKACHENKO, V.A., inzh.

Increasing the efficiency of planetary mechanisms of boring units.
Vest.mashinostr. 42 no.6:10-14 Je '62. (MIRA 15;6)
(Drilling and boring machinery) (Gearing)

RYDCHENKO, V.M., inzh.; TKACHENKO, V.A., inzh.

Determining the coefficient of basic load of a tightened bolt
joint. Vest.mashinostr. 42 no.8:15-18 Ag '62. (MIRA 15:8)
(Bolts and nuts)

REZNICHENKO, V.A.; TKACHENKO, V.A.; SIRYAPOV, G.V.; KOZLOV, V.M.;
SIDORENKO, G.D.

Reduction of ilmenite concentrates in a fluidized bed. Titan
i ego splavy no.5:60-64 '61. (MIRA 15:2)
(Titanium--Metallurgy)
(Fluidization)

POLYAKOV, Ye.M., inzh.; TKACHENKO, V.A., inzh.

Establish contours of old flooded workings exactly.

Bezop.truda v prom. 4 no.7:11 J1 '60.

(MIRA 13:8)

(Mining engineering)

SOV/98-59-6-14/20

14(10)

AUTHORS: Konopkin, B.K., Candidate of Technical Sciences and
Tkachenko, V.A., Engineer; Zababurin, I.A., Candidate of Technical Sciences

TITLE: On Hydraulic Resistances of the Sub-Surface Flat
Floodgates of Round Cross-Section

PERIODICAL: Gidrotekhnicheskoye stroitel'stvo, 1959, Nr 6,
pp 48-49 (USSR)

ABSTRACT: In the first part of this article the first two authors criticize the article under the same title by I.A. Zababurin published in Nr 2 (1956) of this periodical, and in the second part, Zababurin defends his viewpoint. His opponents find that the resistance coefficient as given by Zababurin is exaggerated and, as a result, the real passing capacity of the floodgate will be different from that indicated by Zababurin. The latter explains that his opponents checked his formula with a model of a floodgate, different from the one he described, and which

Card 1/2

SOV/98-59-6-14/20

On Hydraulic Resistances of the Sub-Surface Flat Floodgates of
Round Cross-Section

is at present widely used. There are 2 diagrams.

Card 2/2

Translation from: Referativnyy zhurnal. Metallurgiya, 1958, Nr 12, p 56 (USSR) SOV/137-58-12-24328

AUTHORS: Rapoport, M. B., Tkachenko, V. A.

TITLE: Production of Titanium Lacquers (Proizvodstvo titanovykh lakov)

PERIODICAL: V sb.: Legkiye metally. Nr 4. Leningrad, 1957, pp 108-111

ABSTRACT: Studies by VAMI [All-Union Aluminum and Magnesium Institute] on the technology of production of Ti slag from ilmenite concentrate are presented. Experimental melts yield slag containing 1-2% FeO and 80-90% TiO₂.

M. M.

Card 1/1

25 (1)

SOV/145-58-7/8-11/24

AUTHORS: Kostyuk, D.I., Candidate of Technical Sciences, Docent
and Tkachenko, V.A., Engineer

TITLE: Influence of Toothed Rack Initial Form According to
the GOST 3058-54 on the Efficiency of Flanking

PERIODICAL: Izvestiya vysshikh uchebnykh zavedeniy - Mashino-
stroyeniye, 1958, Nr 7-8, pp 95-108 (USSR)

ABSTRACT: A theoretical substantiation of flanking angle values
is given in the work by M.S. Polotskiy, "Initial and
Working Form of Toothed Rack", TsNIITMASH, Book 13.
Theory and Estimation of Toothed Gears and Slide Bea-
rings, Mashgiz, 1948 [1]. The above work is based on
the GOST 3058-45 which was later superseded by the
GOST 3058-54. The new GOST gives for the flanking ang-
les considerably lesser values (sometimes by twice
smaller) than is the case with the GOST 3048-45. The
purpose of this article is to establish the optimum
flanking angles when meshing different pairs of too-
thed wheels. The authors analyze two cases: 1) Driv-

Card 1/4

SOV/145-58-7/8-11/24

Influence of Toothed Rack Initial Form According to the GOST 3058-54 on the Efficiency of Flanking

ing wheel pitch is greater than that of driven wheel, that is, $t_1 > t_2$; 2) Driving wheel pitch is smaller than that of driven wheel: $t_1 < t_2$. For the first case, the flanking angles are defined by diagrams a, b, c (Fig 1); for the second case - by diagrams a, b, c (Fig 2). In Fig 3, profiles of driving and driven wheel teeth at the beginning of their meshing are shown; Fig 4 illustrates position of the teeth at the initial and final moment of their meshing. The efficiency of flanking is expressed by the function

$$\frac{v_k}{v_f} = \frac{C_1}{K} \sqrt{\frac{\Delta_a}{d_1}}$$

where v_k is impact speed of non-flanked teeth; v_f - impact speed of flanked teeth; C_1 - coefficient for standard gears determined in Table 4;

Card 2/4

SOV/145-58-7/8-11/24

Influence of Toothing Rack Initial Form According to the GOST 3058-54 on the Efficiency of Flanking

$K = \frac{V_s}{V_k}$, where V_s is central impact speed; $\Delta_o = t_1 - t_2$; α_f - angle of flanking. The values expressing the efficiency of flanking obtained by the authors exceed by 1.4-1.93 times those received by experimental method; the same values calculated by the method of M.S. Polotskiy are by 2.5-3.3 times greater than the experimental ones. After the research, the authors arrive at the following conclusions: 1) When the difference in gear pitches is slight, the efficiency of flanking is not over 1.15; 2) When this difference approaches its maximum permissible value, the flanking efficiency varies between 1 and 6.9; 3) the maximum efficiency is obtained when the number of teeth on both gears $Z_1 = Z_2$ (the gear ratio is equal to 1); 4) efficiency of flanking is small when the number of

Card 3/4

SOV/145-58-7/8-11/24

Influence of Toothed Rack Initial Form According to the GOST 3058-
54 on the Efficiency of Flanking

teeth and the flanking angles are large; in some cases the flanking may even result in a negative effect; 5) increasing the modulus (at equal angles α_f) diminishes the efficiency; 6) efficiency is increased with the increased degree of accuracy in manufacturing toothed gears. There are 6 tables, 7 figures and 3 references, 2 of which are Soviet and 1 German.

ASSOCIATION: Khar'kovskiy aviationsionnyy institut (Khar'kov Aviation Institute)

SUBMITTED: December 17, 1957

Card 4/4

TKACHENKO, V. A.

1857

Arkhitektura senatornogo kompleksa. Analiz praktiki I printsipy
projektirovaniya primenitel'no k usloviyam Ukr. SSR. Kiev, 1954
20 sm. 22 sm. (Akad. Arkhitektury Ukr. SSR. In-t Arkhitektury sooruzheniy).
100 ekz. B. Ts.- (54-55122)

SO: Knizhnaya Letopis', Vol. 1, 1955

5/14/759/000/00/020/000
R031/Z435

AUTHOR: Zolotukhin, V.K.
TITLE: The Scientific-Technical Conference at Bhar'kor.

PARTIODICAL: Aviation Institute

UBLINNIA, 1959, Nr 4, pp 161-165 (USSR)
In May 1959, the 16th Conference of Professional and Technical Staff took place.

Mathematics and Mechanics Section, or Radiometric Spectral Representation of Mathematical Perturbances by Candidate of Physical Functions for Functions of N.Taranova, of Physical Correctness G.S.Shabot "Existence, Real Parts" by Equations by Docent, Candidate of Mathematical Sciences M.N.Tikhonov, Candidate of Physical and Problems in Chelyabinsk M.N.Tikhonov "On the Application of Radiometric Synthesis of Four Bar Linkages of Some Properties of Physical and Mathematical by Properties of Functions on the Structural Docent, Candidate of their Conjugate Fourier Series by Built, Candidate of Physical and Mathematical Sciences Read Technological Section. The Following Papers were in the Length of de Broglie Wavelengths of Waves and the Acceleration of Particles by Candidate of Physical and Mathematical Sciences I.Yanushkevich "The Problem of Determining the Properties of Conductors by Electron-Grids" by Senior Instructor P.P.Rozhdestveni, "An Investigation of the Structure of Semiconductors by Assistant Instructor I.V.Surzhikov "On the Structure of Matter" by Assistant Professor V.I.Gorobets "On the Results of Chemical and Radio Technology Sciences E.I.Krech-Paseko of Control Line Semiconductors in the Optimum Science and Semiconductors in an Electric Drive with of the Radiation by Docent, Candidate of Technical Sciences A.M.Pershuk, Candidate of Technical Sciences in Synchronous Machines by Senior Instructor S.V.Komilov "An Experiment on Investigating Electric Fields" by Assistant Professor A.I.Loboda "A Discrete Transformer of Current into Current by Docent, Candidate of Technical Sciences G.M.Mil'man" by General Engineer, Candidate of Technical Sciences in Aviation "The Adaptation of Measured Instruments" by Assistant of a Thermobaric Chamber to the Simulation of the Shaking of a Mine Shaft to the Mechanical Results of Investigations of a Mine Shaft in Quick and Certain Temperatures and Humidities of Sand by Doctorate in Geology L.I.Ulyashenko, Candidate of Technical Sciences O.I.Golovayev "The Construction of Technical Satellite Plastics" by Docent, Candidate of Technical Threaded Connections of Work Hardening V.A.Tschernyayev "Investigation of the Performance of Assistant V.M.Sudchenko" by Assistant V.M.Sudchenko

"The Influence of Work Hardening on the Performance of Assistant V.M.Sudchenko" by Assistant V.M.Sudchenko

Card #11

The Following Papers were in the Length of de Broglie Wavelengths of Waves and the Acceleration of Particles by Candidate of Physical and Mathematical Sciences I.Yanushkevich "The Problem of Determining the Properties of Conductors by Electron-Grids" by Senior Instructor P.P.Rozhdestveni, "An Investigation of the Structure of Semiconductors by Assistant Instructor I.V.Surzhikov "On the Structure of Matter" by Assistant Professor V.I.Gorobets "On the Results of Chemical and Radio Technology Sciences E.I.Krech-Paseko of Control Line Semiconductors in the Optimum Science and Semiconductors in an Electric Drive with of the Radiation by Docent, Candidate of Technical Sciences A.M.Pershuk, Candidate of Technical Sciences in Synchronous Machines by Senior Instructor S.V.Komilov "An Experiment on Investigating Electric Fields" by Assistant Professor A.I.Loboda "A Discrete Transformer of Current into Current by Docent, Candidate of Technical Sciences G.M.Mil'man" by General Engineer, Candidate of Technical Sciences in Aviation "The Adaptation of Measured Instruments" by Assistant of a Thermobaric Chamber to the Simulation of the Shaking of a Mine Shaft to the Mechanical Results of Investigations of a Mine Shaft in Quick and Certain Temperatures and Humidities of Sand by Doctorate in Geology L.I.Ulyashenko, Candidate of Technical Sciences O.I.Golovayev "The Construction of Technical Satellite Plastics" by Docent, Candidate of Technical Threaded Connections of Work Hardening V.A.Tschernyayev "Investigation of the Performance of Assistant V.M.Sudchenko" by Assistant V.M.Sudchenko

1/

TKACHENKO, Viktor Andreevich; DOBROVOL'SKIY, V.A., prof., doktor
tekhn. nauk, retsenzent; D'YACHENKO, S.K., dots., kand.
tekhn. nauk, retsenzent; KOSTYUK, D.I., kand. tekhn. nauk,
otv. red.; TRET'YAKOVA, A.N., red.; KOGAN, Ye.M., tekhn.
red.

[Designing multisatellite planetary transmissions] Pro-
ektirovanie mnogosatellitnykh planetarnykh peredach.
Khar'kov, Izd-vo Khar'kovskogo gos.univ. im. A.M.Gor'kogo,
1961. 181 p.

(Gearing)

(MIRA 15:8)

DRUCHENKO, V.A.; TKACHENKO, V.A.; MARCHENKO, N.A., kand. tekhn. nauk,
nauchnyy red.; DONSKOY, Ya.Ye., red.; SHEVCHENKO, M.G.,
tekhn. red.

[Ultrasonics are an asset to industrial production] Ul'tra-
zvuk pomogaet proizvodstvu. Khar'kov, Khar'kovskoe knizhnoe
izd-vo, 1963. 55 p. (MIRA 16:7)
(Ultrasonic waves--Industrial applications)

RYDCHENKO, V.M., assistent; TKACHENKO, V.A., starshiy prepodavatel'

Determining stresses in a tightly bolted joint taking into consideration the changes in the rigidity of intermediate parts. Izv. vys.ucheb.zav.; mashinostr.no.1:44-48 '63.

1. Khar'kovskiy aviatsionnyy institut.
(Bolts and nuts) (Strains and stresses)

(MIRA 16:5)

L 22948-66 EWT(m)/ETC(m)-6/T WW/DJ
ACC NR: AP6007892 SOURCE CODE: UR/0420/65/000/002/0042/0050

AUTHOR: Tkachenko, V. A.

ORG: none

TITLE: Theoretical and experimental determination of the dynamic loads on the teeth of planetary gears

SOURCE: Samoletostroyeniye i tekhnika vozdushnogo flota, no. 2, 1965, 42-50

TOPIC TAGS: dynamic load, transmission gear, impact stress

ABSTRACT: The author investigates the AI gear described earlier by V. A. Tkachenko (Kopredeleniyu dinamicheskikh nagruzok na zub'yakh planetarnykh peredach. Trudy KhAI, vyp. 22, Izd-vo KhGU, 1963). The following conditions are imposed: (1) During the impact, prior to the attainment of the maximum force of the impact, the static load is transmitted by the couple ahead; (2) the specific rigidities of the tooth engagements during impact are constant; (3) the number of teeth of the wheels are multiples of the number of satellites; in this case the impacts appear simultaneously in the engagement of the central wheel with all the satellites. In the first approximation, it is assumed that the appearing impact does not cause variations in the load in the engagement of the other central wheel with the satellites. The results of the tests conducted are analyzed. It is found that the dynamic load increases with an increase in peripheral speed. At a lower static load the increase in the dynamic load is

Card 1/2

L 22948-66

ACC NR: AP6007892

more appreciable; at a higher load the increase in the dynamic load (at speeds above 8 m/sec) is slower. The dynamic load increases with an increase in the mass of the components. There is a less marked increase in the dynamic load with an increase in the mass of the satellites. At lower static loads the influence of the mass is greater than that at higher loads. A comparison of the curves of the variation of mass effect coefficients obtained theoretically and experimentally lead to the conclusion that the formulas derived are fundamentally correct. A final recommendation requires further work. Orig. art. has: 3 figures and 30 formulas.

SUB CODE: 20¹³ / SUBM DATE: none / ORIG REF: 004

Card 2/2

ACC NR: AP7005597

(A)

SOURCE CODE: UR/0413/67/000/002/0023/0024

INVENTOR: Verigin, V. N.; Tkachenko, V. A.; Varyushenkov, A. M.

ORG: None

TITLE: A method for producing technically pure silicon. Class 12, No. 190356
[announced by the All-Union Scientific Research and Design Institute of the Aluminum,
Magnesium and Electrode Industry (Vsesoyuznyy nauchno-issledovatel'skiy i proyektornyy
institut alyuminiyevoy, magniyevoy i elektrodnay promyshlennosti)]

SOURCE: Izobreteniya, promyshlennyye obraztsy, tovarnyye znaki, no. 2, 1967, 23-24

TOPIC TAGS: silicon, metal purification, quartz

ABSTRACT: This Author's Certificate introduces: 1. A method for producing technically pure silicon by reduction of silicon-containing raw material. To provide a wider range of raw materials and reduce the cost of the product, a silicon-containing material such as quartzite fines or quartz sand is mixed with a reducing agent such as green and partially metamorphosed minerals, coal with poor sintering properties, lignin or products formed by low-temperature carbonization or coking of these materials. The resultant silicon is then pressed and subjected to conventional treatment. 2. A modification of this method with intensification by conducting the reduction process in the presence of organic additives, specifically wastes from the wood processing industry as briquets or in some other form.

SUB CODE: 11, 07/ SUBM DATE: 16Jan65

Card 1/1

UDC: 546.28-121

KOMPAN, Ye.G.; RUTGAYZER, I.D.; TKACHENKO, V.A., otv. za vypusk;
LYSENKO, I.F., red.; CHERNYSHENKO, Ya.T., tekhn. red.

[Use of plastic materials in the machinery manufacture; list
of literature (for inventors, efficiency promoters, and in-
novators of the industry)] Primenenie plastmass v mashino-
stroenii; katalog literatury (v pomoshch' izobretateliam, ra-
tsionalizatoram i novatoram proizvodstva). Khar'kov, Izd-vo
TsBTI Khar'kovskogo SNKh, 1960. 55 p. (MIRA 16:7)

1. Khar'kov. TSentral'naya nauchno-tehnicheskaya biblioteka.
(Plastics) (Machinery industry)

REZNICHENKO, Vladlen Alekseyevich; ROPOORT, Mikhail Borisovich;
TKACHENKO, Vasiliy Andreyevich; DMITROVSKIY, Ye. B., kand. tekhn. nauk,
otv. red.; MANOVSKIY, G.M., red. fzd.-va; GOLUB', S.P., tekhn. red.; LAVT,
tekhn. red.

[Titanium metallurgy; investigating the electric melting
of titanium slags] Metallurgiya titana; issledovanie
elektroplavki titanovykh shlakov. Moskva, Izd-vo AN SSSR,
1963. 198 p. (MIRA 16:9)
(Titanium--Electrometallurgy)

ZYKOV, A.I.; TKACHENKO, V.D.; OSTROVSKIY, Ye.K.

Measurement of the reflection coefficient of a periodic wave
guide in pulsed operation. Radiotekh. i elektron. 5 no.12:
1933-1936 D'60. (MIRA 13:11)

1. Fiziko-tehnicheskiy institut AN USSR.
(Wave guides)

ACC NR: AP7005881

SOURCE CODE: UR/0181/66/008/012/3683/3684

AUTHOR: Volod'ko, L. V.; Lappo, M. T.; Lomako, V. M.; Tkachev, V. D.

ORG: Belorussian State University im. V. I. Lenin, Minsk (Belorusskiy gosudarstvenny universitet)

TITLE: Modulation of light reflected from silicon p-n junctions irradiated with fast neutrons

SOURCE: Fizika tverdogo tela, v. 8, no. 12, 1966, 3683-3684

TOPIC TAGS: pn junction, neutron irradiation, fast neutron, light reflection, light modulation

ABSTRACT: Working on the assumption that the spectra of modulated reflected light can yield information on the energy spectrum of radiation damage in semiconductor crystals, especially directly in the vicinity of p-n junctions, the authors have measured the dependence of the intensity of reflected light on the magnitude of the current through a p-n junction in n-type silicon with specific resistivity 0.5 ohm-cm. The junction was prepared by diffusion, the light was produced by an incandescent lamp, and the reflected light was measured with a monochromator. The nonequilibrium carriers were injected by applying unipolar current pulses at 20 cps frequency in the forward direction. Reflection from nonirradiated control samples was observed over the entire spectral range (0.8 - 2.5 μ) and exhibited no structure. Irradiation with neutrons (integral dose from 10^{15} to 10^{18} neut/cm²) produced a clear-cut structure in the spec-

Card 1/2

UDC: none

ACC NR: AP7005881

tral region from 1 to 2.5 μ . The shape of the spectra depend on the irradiation dose and on the subsequent heat treatment, thus pointing to a direct connection between the observed maxima and the damage produced by the radiation. From a comparison of the data obtained with earlier results (FTT v. 5, 3188, 1963) on the photoconductivity in irradiated silicon crystals, it is concluded that the maxima observed on the structure are correlated with the radiation-damage levels determined in the earlier paper.
Orig. art. has: 2 figures.

[02] [WA95]

SUB CODE: 20/ SUBM DATE: 01Jul66/ ORIG REF: 001/ OTH REF: 001

Card 2/2

ACC NR: AP/007511

SOURCE CODE: UR/0250/67/011/001/0013/0015

AUTHOR: Sevchenko, A. N. (Academician AN BSSR); Tkachev, V. D.
Lugakov, P. F.

ORG: Belorussian State University im. V. I. Lenin (Belorusskiy
gosudarstvennyy universitet)

TITLE: Electric and photoelectric properties of p-type silicon single
crystals irradiated with fast neutrons

SOURCE: AN BSSR. Doklady, v. 11, no. 1, 1967, 13-15

TOPIC TAGS: neutron irradiation, silicon single crystal, crystal
property, PHOTOELECTRIC PROPERTY, ELECTRIC PROPERTY

ABSTRACT: An investigation was made of the electric and photoelectric
properties of silicon p-type single crystals irradiated with fast neu-
trons. The investigated crystals contained about 10^{18} oxygen atoms per
cubic centimeter. Initial resistivity was 1 and 30 ohm·cm for lower-
and higher-purity crystals respectively. The specimens were irradiated
in a reactor with various fast neutron fluxes (1×10^{13} — 5×10^{18}
neutrons/cm²). The electrical conductivity was measured before and
after irradiation, and the photoconductivity spectra were taken at room
and nitrogen temperatures. It is shown that the increase of integral

Card 1/2

UDC: none

ACC NR: AP7007511

flux of fast neutrons leads to an increase in resistivity, i.e., to compensation of the principal chemical impurity. In the higher-purity crystals (30 ohm·cm), a larger change in resistivity at smaller irradiation doses (10^{15} neutrons/cm²) was observed than in the lower-purity crystals (1 ohm·cm), in which the resistivity begins to change only at fluxes exceeding 10^{15} neutrons/cm². The photoconductivity spectra of p-type silicon crystals with a 30 ohm·cm resistivity irradiated with a flux of 1×10^{15} neutrons/cm² show a rise in photoconductivity in the region of wavelengths: 3.1, 2.8, 2.6, 2.2, 1.65, and 1.25 μm, which correspond to the energy minima necessary to bring electrons from the valence band to free levels: $E_v+0.40$ ev, $E_v+0.45$ ev, $E_v+0.76$ ev ($E_c-0.40$ ev), and $E_v+0.99$ ev ($E_c-0.16$ ev) with the formation of majority carriers (holes). The photoconductivity spectra of a crystal irradiated with a flux of 1×10^{16} neutrons/cm² show that in the range 1.4-1.6 μm optical quenching of the photoconductivity occurs. The rise in photoconductivity can be associated with centers which introduce into the forbidden band of p-type silicon the following levels: $E_v+0.30$ ev, $E_v+0.35$ ev, $E_v+0.38$ ev, $E_v+0.40$ ev, and $E_v+0.45$ ev. When the crystals are irradiated with a flux of 1×10^{17} neutrons/cm² a series of centers appears on the photoconductivity spectrum which introduce deep levels into the forbidden band. In the range 2.5-3.6 μm, a longwave optical photoconductivity quenching takes place. Orig. art. has: 2 figures.

[WA95] [JA]

SUB CODE: 20/ SUBM DATE: none

Card 2/2

ATAMALYAN, E.G.; SKLOVSKIY, G.O.; TKACHENKO, V.G. [deceased].

Studying strain distribution in members of the VAS-42 A-shaped
derrick. Neft. khoz. 35 no.9:28-31 S '57. (MIRA 11:1)
(Oil well drilling--Equipment and supplies)
(Strains and stresses)

TRACHENKO, V. G.

"On the Kinetics of the Oxidizing-Reducing Potentials. IV," by A. I. Vinjan S. S.
Appenin, and stud. V. G. Trachenko (U. 1500)

SO: Journal of General Chemistry (Zhurnal Obshchei Khimii) 1944, Volume 16, No. 10

20412

S/109/60/005/012/010/035
E192/E482

9,1310

AUTHORS: Zykov, A.I., Tkachenko, V.D. and Ostrovskiy, Ye.K.

TITLE: Pulse Measurement of the Reflection Factor of a
Periodic WaveguidePERIODICAL: Radiotekhnika i elektronika, 1960, Vol.5, No.12,
pp.1933-1936

TEXT: The paper presents a method and experimental results of measuring the reflection factor of a diaphragmed waveguide under pulse conditions. It is found that the distortion of the pulse envelope in such a waveguide 3.5 m long is very severe and the SWR measured under stationary conditions does not reflect the true situation. The envelope settling time is much greater than the pulse duration (2μ sec). The form of pulse reflected back to the input of the waveguide at various frequencies is shown in Fig.3. Under such conditions, the SWR measured by a pulse method can only have a formal significance; in the present paper the SWR was measured at the centre of the pulse. Under these conditions, differences of up to 35% between the pulse and stationary SWR's were found. There are 3 figures and 1 table.

Card 1/2

Pulse Measurement of ...

20412
S/109/60/005/012/010/035
E192/E482

ASSOCIATION: Fiziko-tehnicheskiy institut AN UkrSSR
(Physicotechnical Institute AS UkrSSR)

SUBMITTED: February 29, 1960

Fig.3.

Рис. 3. Форма отраженного импульса на входе диафрагмированного волновода при различных частотах

Card 2/2

TKACHENKO, V.F.

Effect of intrusions on the metamorphism of coals in the South
Donets Basin deposit. Geol.zhur. 22 no.4:89-94 '62.

(MIRA 15:9)

1. Trudivs'ka GRP.

(Donets Basin--Coal geology) (Metamorphism)

TKACHENKO, V.F.

Time of the formation of tectonic structures in the southwestern margin
of the Donets Basin. Geol. zhur. 24 no.1:97-101 '64. (MIRA 18:7)

1. Dnepropetrovskaya ekspeditsiya Ukrainskogo nauchno-issledovatel'skogo
gornorudnogo instituta.

TKACHENKO, V.F.

Tectonics of the southern wing of the Kalmius-Torets trough in
the Donets Basin. Trudy UkrNIGRI no. 5:35-42 '63.

(MIRA 18:3)

TRACHENKO, V.F.

Origin of some coal bed "washouts" in the Donets Basin. Geol. zhur.
24 no. 2:48-51 '64 (MIRA 18:2)

1. Dnepropetrovskaya ekspeditsiya, Ukrainskiy nauchno-issledo-
vatel'skiy gornorudnyy institut.

MILERYAN, Ye.A.; TKACHENKO, V.G.

Influence of exercise on the value of the spatial threshold of
tactile differentiation. Vop.psikhол. 7 no.3:60-69 My-Je '61.
(MIRA 14:6)

1. Institut psikhologii USSR.
(Exercise) (Senses and sensation) (Skin)

L 05706-57 EMP(k)/EMT(d)/EMT(m)/EMP(n)/T/EMP(1)/EMP(w)/EMT(r)/EMT(l)/EMT(j) T.P.(c)
ACC NR: AP6029677 (N) SOURCE CODE: UR/0136/66/000/008/0090/0092
JD/HM/JG

AUTHOR: Kharchenko, G. K.; Tkachenko, V. G.

ORG: none

TITLE: Titanium cladding of steel with a vanadium insert

SOURCE: Tsvetnyye metally, no. 8, 1966, 90-92

TOPIC TAGS: metal cladding, titanium cladding, titanium ~~and~~ steel, metal property

ABSTRACT: Titanium cladding of steel with a vanadium insert has been tested. The cladding was done by rolling a pack consisting of electrolytically polished steel, vanadium, and titanium sheets in a two-high vacuum mill 170 at 1000C. It was found that the bond strength of clad sheets was over 30 kg/mm². Fracture occurred in the steel-vanadium transition zone, because of the layer containing brittle vanadium carbides with microhardness of over 1150 kg/mm². Alloying the steel with up to 20% carbon-forming elements did not reduce the diffusion of carbon from steel to vanadium. Diffusion of carbon increases with increased reduction. Therefore, rolling should be performed at the lowest possible temperature and reduction. In another experiment, high-purity vanadium (less than 0.02% carbon) was diffusion bonded to titanium, and to titanium and iron, in vacuum at 900C. Two diffusion layers were found in the transition zone between titanium and vanadium. One, on the vanadium side, was β -titanium (microhardness - 200—300 kg/mm²); the other consisted of α -phase and

Card 1/2

UDC: 669.868

27
B
10

L 05706-67

ACC NR: AP6029677

oversaturated α' -phase (microhardness - 400—500 kg/mm²). The microstructure of the transition zone between iron and vanadium showed again the presence of vanadium carbides. Orig. art. has: 3 figures. [TD]

SUB CODE: 11, 13/ SUBM DATE: none/ ORIG REF: 003/ OTH REF: 003/ ATD PRESS: 5069

Card 2/2

KHARCHENKO, G.K.; TKACHENKO, V.G.

Preparation of test pieces for the mechanical testing of
bimetals. 1Svet. met. 38 no.2:70-90 F 165.

(MFA 19:1)

TKACHENKO, V.G., assistant

Amylase activity of the saliva in some precancerous diseases of man. Trudy GMU no.54:71-75 '64. (MIRA 18;8)

1. Iz kafedry biologicheskoy khimii (zav.- doktorant A.S. Stepanenko) Cheskogo meditsinskogo instituta.

"APPROVED FOR RELEASE: 07/16/2001

CIA-RDP86-00513R001755920010-1

TKACHENKO, V.G.,
A. L. ROTMYAM, ZhOKh 16, 1599-1612 (1946)

APPROVED FOR RELEASE: 07/16/2001

CIA-RDP86-00513R001755920010-1"

PETROV, Mikhail Aleksandrovich; TKACHENKO, Vladimir Gerasimovich;
TSYBULEVSKIY, B.L., red.; YERKHOVA, Ye.A., tekhn. red.

[Black guard of the Pentagon] Chernaia gvardiia Pentagona.
Moskva, Izd-vo In-ta mezhdunarodnykh otnoshenii, 1962. 55 p.
(United States--Army) (MIRA 15:6)

TKACHENKO, V.I.

A new *Calligonum* species in Kirghizia (Uzum-Akhmat-Tau). Trudy Inst.
bot. i rast, KirFAN SSSR no.1:25-26 '54. (MLRA 10:1)
(Maryn Valley--*Calligonum*)

KUNCHEL'EC, Anna Ivanovna; TELEGINSKO, V.I., ed.

[New trees and shrubs in the western Issykkul' region;
introduction, biology, and recommendations] Novye de-
rev'ja i kustarniki v Zapadnom Priissykkuze; introduk-
tsiya, biologija, rekomendatsii. Frunze, Izd-vo AN Kirgiz.
SSR, 1964. 139 p. (MIRA 11:8)

BOGATYREV, K.P.; VADKOVSKAYA, O.A.; GERASIMOV, I.P.; GERASIMOV, Iv.P.;
YEROKHINA, A.A.; IVANOVA, Ye.N.; LETKOV, L.A.; LIVEROVSKIY, Yu.A.;
LOBOVA, Ye.V.; NOGINA, N.A.; ROZOV, N.N.; RUDNEVA, Ye.H.; TKACHEVKO,
V.I.; UFIMTSEVA, K.A.; FRIILAND, V.M.

Academician L.I.Prasolov; obituary. Izv.AN SSSR Ser.geog. no.2:
73-78 Mr-Ap '54. (MLRA 7:5)

(Prasolov, Leonid Ivanovich, 1875-1954)

TKACHENKO, V.I.

"Technology of automobile and tractor construction." D.P.Maslov,
V.V.Sasov, P.G.Nizhanskii. Reviewed by V.I.Tkachenko. Avt.trakt.
(MLRA 7:10)
prom. no.10:32-32 O '54.

1. Altayskiy traktornyj zavod.
(Automobiles--Design and construction) (Maslov, D.P.)
(Sasov, V.V.) (Nizhanskii, P.G.)

TKACHENKO, V.I.; KUNCHENKO, A.I.

Trees and shrubs of the Far East in northern Kirghizia. Biul.
Glav.bot. sada no.19:16-21 '54. (MIRA 8:2)

1. Botanicheskiy sad Kirgizskogo filiala Akademii nauk SSSR.
(Kirghizistan—Trees) (Kirghizistan—Shrubs)

NIKITINA, Ye.V.; PROTOPOPOV, G.F.; ROZHEVITS, R.Yu. [deceased]; POPOVA, K.I.,
KASHCHENKO, L.I.; SMIRNOV, L.A.; TKACHENKO, V.I.; YAKUBOVA, P.A.;
GOLOVKOVA, A.G.; AYDAROVA, P.A.; SHPOTA, Ye.I.; SHEVCHENKO, D.A.;
SHISHKIN, Boris Konstantinovich, professor, doktor biologicheskikh
nauk, nauchnyy redaktor; VVEDENSKIY, A.I., nauchnyy redaktor;
YEVRUSHENKO, G.A., professor, otvetstvennyy redaktor; KOVALEV, V.N.,
otvetstvennyy redaktor; SEREBRYAKOV, V.I., tekhnicheskiy redaktor

[The flora of Kirghizistan; classification of the plants of
Kirghizistan] Flora Kirgizskoi SSR: opredelitel' rastenii Kirgizskoi
SSR. Sost. E.V. Nikitina i dr. Frunze, Izd-vo Akademii nauk Kirgizskoi
SSR. Vol.1. [Pteridophyta, Gymnospers and Monocotyledons of the
Angiosperms] Paporotnikoobraznye, golosemennye i odnodol'nye iz
pokrytosemennykh. 1952. 103 p. Vol. 2. [Grasses and sedges] Zlaki
i osokovye. 1950. 315 p. Vol.3. [Aroidae - Orchidaceae] Aroidnye -
Orkhidnye. 1951. 148 p. Vol.4. [Salicaceae - Polygonaceae] Ivvoye -
Grechishnye. 1953. 153 p. Vol. 5. [Families: Chenopodiaceae,
Amaranthaceae, Portulacaceae, Caryophyllaceae] Semeistva: Marevye,
Amarantovye, Portulakovye, Gvozdichnye. 1955. 185 p. Vol. 6.
[Families: Ceratophyllaceae, Ranunculaceae, Berberidaceae,
Papaveraceae, Capparidaceae, Cruciferae] Semeistva: Rogolistnikovye,
Liutikovye, Barbarisovye, Makovye, Kapersovye, Krestotsvetnye. 1955.
297 p. (MIRA 9:10)

1. Chlen-korrespondent Akademii nauk SSSR (for Shishkin)
(Kirghizistan--Botany)

GAREYEV, E.Z., kand.sel'skokhoz.nauk; TKACHENKO, V.I., kand.biolog.nauk;
KUNCHENKO, A.I., mladshiy nauchnyy sotr.; SHPÄK, R.L., mladshiy
nauchnyy sotr.; KRIVOSHEYEVA, L.S., mladshiy nauchnyy sotr.;
NIKITINA, Ye.V., kand.biol.nauk, red.; ANOKHINA, M.G., tekhn.red.

[Guide to the botanical garden] Putevoditel' po Botanicheskому
саду. Frunze, 1957. 78 p. (MIRA 11:1)

1. Akademiya nauk Kirgizskoy SSR, Frunze. Botanicheskiy sad.
2. Akademiya nauk Kirgizskoy SSR, Botanicheskiy sad, Institut
botaniki (for Kareyev, Tkachenko, Kunchenko, Shpak, Krivosheyeva,
Nikitina).

(Frunze--Botanical gardens)

NIKITINA, Ye.V.; POPOVA, L.I.; AYDAROVA, R.A.; KASHCHENKO, L.I.; PROTOPOPOV, G.F.; UBUKYEVA, A.U.; TKACHENKO, V.I.; KORNEVA, I.G.; OBOZOV, A.O.; GOLOVKOVA, A.G.; VVEDENSKIY, A.I., nauchnyy redaktor; TSYBINA, Ye.V., tekhnicheskiy redaktor

[Flora of the Kirghiz S.S.R.; guide to plants of the Kirghiz S.S.R.]
Flora Kirgizskoi SSR; opredelitel' rastenii Kirgizskoi SSR. Frunze,
Izd-vo AN Kirgizskoi SSR. Vol.7. 1957. 642 p. (MLRA 10:9)
(Kirghizistan--Botany)

TKACHENKO, V.I.; KUNCHENKO, A.I.

Raising birch in the Frunze Botanical Garden. Biul.Glav.bot.sada
(MLRA 10:5)
no.27:18-20 '57.

1.Botanicheskiy sad Akademii nauk Kirgizskoy SSR.
(Frunze--Birch)

GAN, P.A.; DZHANAYEVA, V.M.; KUNCHENKO, A.I.; LYSOVA, N.V.; NIKITINA,
Ye.V.; PROTOPOPOV, G.P.; PRUTENSKIY, D.I.; TEACHENKO, V.I.;
ANOKHINA, M.G., tekhn.red.

[Trees and shrubs of Kirghizistan] Derev'ia i kustarniki
Kirgizii. Frunze. No.1. [Gymnosperms] Golosemennye. 1959.
119 p. (MIRA 13:2)

1. Akademiya nauk Kirgizskoi SSR, Frunze. Institut botaniki.
Sektor lesa.

(Khirghizistan--Gymnosperms)

NIKITINA, Ye.V.; AYDAROVA, R.A.; KASHCHENKO, L.I.; UBUKEYEVA, A.U.;
POPOVA, L.I.; TKACHENKO, V.I.; GOLOVKOVA, A.G., SHPOTA, Ye.I.;
FILATOVA, N.S.; SHARASHOVA, V.S.; VVEDENSKIY, A.I., nauchnyy red.;
VYKHODTSEV, I.V., red.; ANOKHINA, M.G., tekhn.red.

[Flora of the Kirghiz S.S.R.; key to the plants of the Kirghiz
S.S.R.] Flora Kirgizskoi SSR; opredelitei' rastenii Kirgizskoi
SSR. Sost. E.V.Nikitina i dr. Nauchn.red. A.I.Vvedenskii. Frunze,
Izd-vo Akad.nauk Kirgizskoi SSR. Vol.8. [The carrot, dogwood, winter-
green, heath, primrose, leadwort, olive, gentian, dogbone, milkweed,
and morning-glory families] Semeistva: zontichnye, kizilovye, grushan-
kovye, vereskovye, pervotsvetnye, svinchatkovye, maslinovye, gore-
chavkovye, kutrovye, lastovnevye, v'iunkovye. 1959. 222 p. Vol.9.
[The mint and nightshade families] Semeistva: gubotsvetnye i pasle-
novye. 1960. 213 p. (MIRA 13:7)

(Kirghizistan--Dicotyledons)

TKACHENKO, V.I.

A new honeysuckle from the Kirghiz Range. Izv. AN Kir.SSR.
Ser.biol.nauk 1 no.3:147-149 '59. (MIREA 13:7)
(KIRGHIZ RANGE--HONEYSUCKLE)

TKACHENKO, V.I.

Results of tree and shrub introductions at the Botanical Garden
of the Institute of Botany of the Academy of Sciences of the
Kirghiz S.S.R. Trudy Bot.inst.Ser.6 no.7:469-470 '59.
(MIRA 13:4)

1. Botanicheskiy sad Instituta botaniki AN KirgSSR, Frunze.
(Kirghizistan--Trees)
(Kirghizistan--Shrubs)

TKACHENKO, V.I.; GAREYEV, E.Z., otv.red.; BUTENKO, N.P., red.izd-va;
ANOKHINA, M.G., tekhn.red.

[Trees and shrubs of the North American flora in the botanical
garden of Frunze] Derev'ia i kustarniki severoamerikanskoi
flory v usloviakh Botanicheskogo sada goroda Frunze. Frunze,
Izd-vo Akad.nauk Kirgizskoi SSR, 1960. 129 p. (MIRA 13:7)
(Frunze--Plant introduction) (Trees) (Shrubs)

TKACHENKO, V.I.

Injury of trees and shrubs due to sharp drops in temperature
during the vegetative period. Biul.Glav.bot.sada no.36:43-46
'60. (MIRA 13:7)

1. Botanicheskiy sad Akademii nauk Kirgizskoy SSR, g. Frunze.
(Kirghizistan--Plants--Frost resistance)
(Trees)
(Shrubs)

DZHANAYEVA, Valentina Mikhaylovna; TKAChENKO, V.I., otv. red.

[Juniper in Kirghizistan; its composition, biology, and growing] Archa v Kirgizii; sostav, biologija i vyrazchivanie. Frunze, Ilim, 1965. 97 p. (MIRA 18:12)

NIKITINA, Ye.V.; AYDAROVA, R.A.; DZHANAYEVA, V.M.; UBUKEYEVA, A.U.;
ARBAYEVA, Z.S.; SUDNITSYMA, I.G.; SULTANOVA, R.M.; GOREUNOVA,
N.V.; TKACHENKO, V.I.; FILATOVA, N.S.; CHERNEVA, O.V.;
VVEDENSKIY, A.I., nauchn. red.; VYKHODTSEV, I.V., otv. red.

[Flora of the Kirghiz S.S.R.; a guide to the plants of the
Kirghiz S.S.R.] Flora Kirgizskoi SSR; opredeliteľ' rastenii
Kirgizskoi SSR. Frunze, Ilim. Vol.11. 1965. 606 p.
(MIRA 18:11)

TKACHENKO, V.I.

Raising wild apple trees of Kirghizistan in the Botanical Garden.
Izv. AN Kir.SSR.Ser.biol.nauk 5 no.4:19-33 '63. (MIRA 17:4)

TKACHENKO, V.I.

Results of the introduction of trees and shrubs and their use
in the greenbelts and parks of the Republic. Izv. AN Kir. SSR.
Ser. biol. nauk 5 no.2:13-19 '63. (MIRA 16:9)

SHPAK, Raisa Lukinichna; TKACHENKO, V.I., otv. red.; SORONBAYEVA,
N.V., red. izd-va; PCPOVA, M.G., tekhn. red.

[Annual cycle in the development of some tulips of
Kirghizistan] Godovoï tsikl razvitiia nekotorykh tiul'pa-
nov Kirgizii. Frunze, Izd-vo Akad.nauk Kirgizskoi SSR,
1963. 65 p. (MIRA 16:7)
(Kirghizistan--Tulips)

TKACHENKO, V.I.

New species of plants in the collection of the Frunze Botanical Garden. Biul. Glav. bot. sada no.45:55-59 '62. (MIRA 16:2)

1. Botanicheskiy sad AN Kirgizskoy SSR, Frunze.
(Frunze--Poplar)
(Frunze—Honeysuckle)

TKACHENKO, V.I.

Biology of trees and shrubs in the Frunze Botanical Garden. Izv.
AN Kir.SSR.Ser.biol.nauk 4 no.3:33-42 '62. (MIRA 15:11)
(FRUNZE--WOODY PLANTS)
(FRUNZE--PLANT INTRODUCTION)

TKACHENKO, V.I.

Replenishing tree and shrub species for landscape gardening in
Frunze. Izv.AN Kir.SSR,Ser.biol.nauk 4 no.3:15-20 '62.
(MIRA 15:11)

(FRUNZE—LANDSCAPE GARDENING)
(FRUNZE—WOODY PLANTS)

GAI, F.A.; DZIANAYEVA, V.M.; KARAFAKORBUT, I.G.; KIVOSHEYEVA, L.S.; KUNCHEIKO, A.I.; ORLOVA, N.A.; PHOTOPPOV, G.F.; PRUTENSKIY, D.I.; TKACHEMKO, V.L.; SOROBAYEVA, N.V., red. izd-va; POPOVA, M.G., tekhn. red.

[Trees and shrubs of Kirghizia] Derev'ia i kustarniki Kirgizii. Frunze, Izd-vo AN Kirgizskoi SSR. No.2. [Families: Liliaceae-Moraceae] Semeistva lileinye-tutovye. 1961. 211 p.

(MIRA 15:10)

1. Akademiya nauk Kirgizskoy SSR, Frunze. Institut botaniki. Sektor lesa.

(Kirghizistan--Angiosperms)

NIKITINA, Ye.V.; AYDAROVA, R.A.; UBUKEYEVA, A.U.; FILATOVA, N.S.;
SUDNITSYNA, I.G.; TKACHENKO, V.I.; SHARASHOVA, V.S.;
KASHCHENKO, L.I.; SHPOTA, Ye.I.; VVEDENSKIY, A.I., nauchnyy
red.; VYKHODTSEV, I.V., otv. red.; SORONBAYEVA, N.V., red.
izd-va; ANOKHINA, M.G., tekhn. red.

[Flora of the Kirghiz S.S.R.; classification key of the plants
of the Kirghiz S.S.R.] Flora Kirgizskoi SSSR; opredelitel' ra-
stenii Kirgizskoi SSSR. Sost. E.V.Nikitina i dr. Nauchn. red.
A.I.Vvedenskii. Frunze, Izd-vo Akad.nauk Kirgizskoi SSR.
Vol.10. [Families: Cuscutaceae, Polemoniaceae, Boraginaceae,
Verbenaceae, Scrophulariaceae, Bignoniaceae, Orobanchaceae,
Lentibulariaceae, Plantaginaceae, Rubiaceae, Caprifoliaceae,
Adoxaceae, Valerianaceae, Morinaceae, Dipsacaceae, Cucurbitaceae,
Campanulaceae, Lobeliaceae] Semeistva: Fovilikovye, Siniukhovye,
Burachnikovye, Verbenovye, Norichnikovye, Bignonievye, Zarazi-
khovye, Fuzyrchatkovye, Podorozhnikovye, Marenovye, Zhimolostnye,
Adoksovye, Valerianovye, Morinovye, Vorstankovye, Tykvennye,
Kolokol'chikovye, Lobelievye. 1962. 387 p. (MIRA 15:9)
(Kirghizistan--Dicotyledons)