

FEEG 2005 Structures: Lecture 5

Rectangular Strips and Arbitrary Open Sections Under Torsion

Summary of last lecture

- We developed the theory for torsion of arbitrary closed thin-walled sections:
 - 1) Stress:

$$\tau = \frac{T}{2A_m t}$$

NOTE: A_m is the area enclosed by the median line!

– 2) Deformation (Twist):

$$\frac{d\phi}{dx} = \frac{T}{4A_m^2} \oint \frac{1}{Gt} ds$$

If G is constant:

This lecture

- What about torsion of thin-walled open sections?
 - 1) Stress: $\tau = ?$
 - 2) Deformation (twist): $\phi = ?$

 These sections are made of mostly rectangular strips, if we can derive a theory for a single rectangular strip, we can generalise this for arbitrary sections.

https://vevox.app/#/m/191031393

Question

 For a constant applied torque T at the end of a bar and similar thickness t, which cross section does twist more?

/edg/

1. Tube with radius R

Son

2. Tube with radius R and a slit along the length

3. A rectangle with length $2\pi R$

https://vevox.app/#/m/191031393

Question

• What's the ratio of the twist angle in a tube with a slit to the twist angle of a tube without slit ($\frac{\phi_{open}}{\phi_{closed}}$ =?) if R/t=10? =?

- 10
- 0.1
- 0.003

Open sections vs closed sections

• Last lecture: shear flow is constant in closed sections. $(q = \tau t = constant)$

• But if the section is not closed, q = 0 at the slit.

 We can estimate the torsion of open sections with thin rectangular sections.

Assumptions: torsion of rectangular strips

- Assume the rectangular strip is thin (thickness 10x smaller than length). Therefore:
 - 1. Shear stress across the thickness can be approximated as a linear variation $\tau = \tau_{max} \frac{y}{t/2}$

2. Shear stress distribution along the strip is constant except for areas close to the edges ($z = \pm b/2$) where it decreases

Rectangular strip made of co-centric closed tubes

• Consider the rectangular strip as a concentric series of closed tubes

that all have the same angle of twist ϕ (compatibility):

• We can use closed section equation $\tau = \frac{T}{2A_m t}$ for the assumed concentric tubes.

Area enclosed by the median line for each concentric close tiny beause b>>t

tube

• $A_m = 2y \left[b - 2 \left(\frac{t}{2} - y \right) \right] = 2yb - 2yt + 2y^2 \approx 2yb$

Max shear stress in a thin rectangle section

• Replacing T by dT and t by dy in $\tau = \frac{T}{2A_m t}$ as the infinitesimal torque and infinitesimal thickness of this closed section, we can write:

$$\tau = \frac{dT}{2(2yb)dy} \Rightarrow dT = 4\tau yb \ dy$$

• $T = \int dT = \int_0^{t/2} 4\tau y b \ dy = \int_0^{t/2} 4\tau_{max} \frac{y}{t/2} y b \ dy = \frac{8b\tau_{max}}{t} \int_0^{t/2} y^2 \ dy = \int_0^{t/2} \frac{y^3}{t} \int_0^{t/2} dt = \int_0^{t/2} dt = \int_0^{t/2} \frac{y^3}{t} \int_0^{t/2} dt = \int_0^{t/2} \frac{y^3}{t} \int_0^{$

Shear stress in rectangular strips

• For a rectangular strip the shear stress is: $\tau = 2y\frac{T}{J}$ (0 $\leq y \leq t/2$) where: $J = \frac{bt^3}{3}$

$$\tau = 2y\frac{T}{J} \quad (0 \le y \le t/2)$$

• The max shear occurs at the outer surface (y = t/2): $\tau_{max} = \pm \frac{Tt}{I}$

$$\tau_{max} = \pm \frac{Tt}{J}$$

Shear stress and twist angle of a rectangular strip

Using our previous eq. for the rate of twist of a closed tube:

$$\frac{d\phi}{dx} = \frac{1}{2A_m G} \oint \tau ds \implies \phi = \frac{L}{2A_m G} \oint \tau ds \quad \text{or} \quad \tau = \frac{2A_m G \phi}{L \oint ds}$$
Using the geometry of the thin strip:

- - The perimeter $\oint ds$ is approximately 2b
 - The area A_m is approximately 2yb

•
$$\tau = \frac{2A_m G\phi}{L \phi ds} = \frac{4by G\phi}{2Lb} = 2yG\frac{\phi}{L}$$
 where $0 \le y \le t/2$

Twist of a rectangular strip

- Combine these equations:
- $T = \int_0^{t/2} 4\tau by \, dy$ and $\tau = 2yG\frac{\phi}{\tau}$

•
$$T = \int_0^{t/2} 4\left(2yG\frac{\phi}{L}\right)by \, dy = \left[8b\frac{y^3}{3}G\frac{\phi}{L}\right]_0^{t/2}$$

•
$$T=G\frac{bt^3}{3}\frac{\phi}{l}$$
 or $\phi=\frac{TL}{GJ}$ equation sawe
• where $J=\frac{bt^3}{3}$ is the torsional constant for a thin rectangular strip

Extension to arbitrary open sections

 Most opens sections are made of a series of rectangular strips:

 Narrow curved sections will have similar shear stress distribution

• Assumptions: All rectangular strips in the arbitrary section undergo the same twist ' ϕ ' which is constant over the section (compatibility)

Narrow rectangle and slotted tube (cutalong) tube sections can be treated by the same method

Shear Stress and Twist for Arbitrary Open Sections - Sugt add all recease elements in year cross getting.

$$J = \frac{bt^3}{3}$$

$$\tau = 2y \frac{T}{I}$$

$$\tau_{max} = \pm \frac{Tt}{J}$$

$$\phi = \frac{TL}{GJ}$$

For N elements:

$$J \approx \sum_{i}^{N} \frac{b_i t_i^3}{3}$$

$$\tau_i = 2y_i \frac{T}{J}$$

$$0 \le y \le t/2$$

$$\tau_{i,max} = \pm \frac{Tt_i}{J}$$

$$\phi = \frac{TL}{GJ}$$

Angle of twist is the same for all elements.

What happens if the section is not 'thin-walled'?

- The coefficient of the torsional constant J must be modified from 1/3 to account for this!
- Using an exact analytical solution (not covered here) we obtain:

Shear stress:
$$\tau_{max} = \pm \frac{Tt}{J_{\alpha}}$$

Where: $J_{\alpha} = \alpha b t^3$ $J_{\beta} = \beta b t^3$

Angle of twist: $\phi = \frac{TL}{GJ_{\beta}}$

b/t	1.0	1.2	1.5	2.0	2.5	3.0	4.0	5.0	6.0	10.0	∞
	0.208										
β	0.141	0.166	0.196	0.229	0.249	0.263	0.281	0.291	0.299	0.312	1/3

Question

- What's the ratio of the twist angle in a tube with a slit to the twist angle of a tube without slit ($\frac{\phi_{open}}{\phi_{closed}}$ =?) if R/t=10? =?
- 300
- 10
- 0.1
- 0.003

Open circular section vs closed circular section

Close section

•
$$\phi_{CS} = \frac{TL}{GJ_{CS}}$$
 where $J_{CS} = \frac{4A_m^2}{\oint \frac{ds}{t}}$

•
$$J_{CS} = \frac{4A^2}{\oint \frac{ds}{t}} = \frac{4(\pi R^2)^2 t}{2\pi R} = 2\pi R^3 t$$

•
$$\phi_{OS} = \frac{TL}{GJ} \text{ where } J_{OS} \approx \sum_{i}^{N} \frac{b_{i} t_{i}^{S}}{3}$$

•
$$J_{OS} = \frac{bt^3}{3} = \frac{2\pi Rt^3}{3}$$

$$\frac{\phi_{open}}{\phi_{closed}} = \frac{J_{CS}}{J_{OS}} = \frac{2\pi R^3 t}{\frac{2}{3}\pi R t^3} = 3\left(\frac{R}{t}\right)^2$$

If R/t=10 then $J_{CS}/J_{OS}=300 \Rightarrow$ The OS CIRCULAR tube will twist 300 times more (twist angle ϕ) than the CS CIRCULAR tube when subjected to the same torsional moment T!

https://vevox.app/#/m/191031393

Question

• Why J_{OS} open sections is significantly smaller than J_{CS} closed sections?

Summary: Torsion in Thin-Walled Sections

Closed Sections:

Open Sections:

$$\tau_{max} = \frac{T_{max}}{2A_m t_{min}}$$

$$\phi = \frac{TL}{GJ}$$

$$J = \frac{4A_m^2}{\oint \frac{ds}{t}}$$

$$\phi = \frac{TL}{GJ}$$

$$J \approx \sum_{i}^{N} \frac{b_i t_i^3}{3}$$

Closed sections are much better at supporting torsion!

Next: Example 1/2 – Have a go first!

• For the cross section shown calculate the maximum shear stress and angle of twist if a torsional moment of 30 Nm is applied to the section. The geometrical parameters of the section are: a = 40mm, b = 100mm, c=80mm, t=3mm. The section is made of steel (G = 79 GPa) and is 1m long.

Next: Example 2/2 – Have a go first!

- For the thin-walled rectangular section shown a torsional moment of 50 Nm is applied, consider two cases: 1) where the section is fully closed and 2) a small slit is cut in one of the corners (i.e. the section is open).
- What is the maximum shear stress and rate of twist for each case?
- The geometrical parameters of the section are: a = 35mm, b = 75mm, t=2mm. The section is made of steel (G = 79 GPa).

