所有试题均做在答题纸上,否则不计分!。

一.(59 分)图 1 是某单总线结构计算机,机器字长 8 位,IR 为指令寄存器,PC 为程序计数器,M 为主存,AR 为地址寄存器,DR 为数据缓冲寄存器, ALU 能完成算术加、减运算和逻辑运算,R0~R3 是通用寄存器。各部件的控制信号均已标出,控制信号的命名准则是:'-'符号前的是数据发送方部件,'-'符号后的是数据接收方部件, 并且控制信号中的 B 表示 IB 总线,另外,J1#控制指令译码,R/W#控制存储器读/写(=1:读;=0:写),CS#是存储器的片选信号。例如 B-DA1 表示由总线 IB 将数据打入暂存器 DA1 的控制信号。4

1. (15 分)假如该机另具有浮点运算部件(图 1 中未画出),两个二进制补码数据 X 和 Y 分别放在浮点寄存器 f0 和 f1 中,浮点数格式为:阶码 4 位,包含 1 位符号位,尾数 8 位,包含 1 位符号位,阶码和尾数均用补码表示,排列顺序为: ↩

已知:(X)₁₀= -2.875, Y 的规格化浮点表示为 F64H。↓

- (1) (2分) 写出 X 的规格化浮点数表示形式。√
- (2) (2分) 求 Y 的二进制真值。₽

- (4)(3分)假如使用图 1 中的 ALU 和相关部件来完成浮点数乘法中的阶码运算,两个阶码分别存放在 R0 和 R1 中,"和"存放在 R0 中,请用微程序流程图描述阶码加法运算的过程。↩
- (5)(3 分)按照该浮点数格式,写出其规格化浮点数可表示数据的范围。↩

2. (3 分)假如该机采用微程序控制器,其控制存储器容量为 256*40 位,下址字段可寻址整个控制存储器,有 7 个转移控制状态(采用译码形式),微指令格式如下,其 3 个字段分别是几位? →

3.(5 分)有一段程序在图 1 所示模型机上运行,该程序段用汇编语言描述如下所示,已知所有指令都是 2 字节,假如存储器按字节编址,该程序被装入内存地址低端,起始地址为 0,请问存放最后一条指令 JMP LL 内存地址是 ① 和 ② ,LL 是标号,按照相对寻址方式,无条件转移指令 JMP LL的 8 位二进制偏移量是 ③ →

LL: MOV R₀, 40H; 40H \rightarrow R₀ \leftarrow ADD R₀, [10H]; R₀+[10H] \rightarrow R₀ \leftarrow STA [10H], R₀; R₀ \rightarrow [10H] \leftarrow OUT [PORTAR], R₀; R₀ \rightarrow LED \leftarrow JMP LL; PC+偏移量 \rightarrow PC \leftarrow

- 4. (6分)结合图1所示的模型机实例,谈谈微程序控制器由哪些部件组成,各部件主要功能是什么?↓
- 5. (12 分)假如该模型机支持的机器指令格式如下,根据指令功能,指令字长可为 1~2 字节。↓

OP (4位) 中 MOD (2位) 中 RD (2位) 中 中 ADDR/ DATA / DISP中

其中,RD 为源/目的寄存器号,MOD 为寻址方式码字段,指令第二字为地址、数据或偏移量;源操作数由 MOD 字段和指令第二字共同确定。除了 HALT 指令为单字指令外,其他指令均为双字指令;操作码字段解释见表 1-1,MOD 字段解释见表 1-2,RD 字段解释见表 1-3。↩

表 1-1₽

指令助记符₽	操作码↩	指令助记符↩	操作码₽
MOV₽	0000₽	SBB4 ³	0100₽
ADD€	0001₽	JMP₽	1000₽
SUB ₄ 3	0010₽	₽	₽
AND₽	0011₽	HALT₽	1111₽

表 1-2						
MOD₽	寻址方式₽					
00₽	立即寻址₽					
01₽	直接寻址↩					
10₽	变址寻址(SI)↩					
11₽	间接寻址₽					

	表 1-3↩						
₽	RD₽	寄存器₽	ę.				
₽	00₽	R0₽	¢)				
٠	01₽	R1₽	ته				
₽ ³	10₽	R2₽	ę.				
₽ ³	11₽	R3₽	ę.				

- (1)(2分)指令 ADD R1,((40H))的功能: R1 = ((40H))+R1;指令使用间接寻址,则该指令机器码第一字节为 H,第二字节为 H。 \leftarrow
- (2)(10分)内存地址的部分单元内容如表 2: ₽

表 2↩

单元地址↩	内容↵	单元地址↩	内容↵	单元地址↩	内容↩
10H₽	80H₽	20H₽	10H₽	24H₽	39 H ₽
11H₽	90H₽	21H₽	11 H ₽	25 H ₽	03H
12H₽	10H₽	22 H ₽	05 H €	26H₽	F0H₽
13H₽	11 H ₽	23H₽	12H₽	27 H ₽	20 H ₽

若(PC)=20H,变址寄存器(SI)=10H,R0、R1和R3寄存器内容初始为0;则此时启动程序执行,问执行了几条指令程序停止?请按以下格式,写出每条指令的助记符、寻址方式、EA、操作数和执行结果。↩

指令序号。 指令助记符	源操作数及寻址方式↩	执行结果₽	Ç
-------------	------------	-------	---

- 6. (6 分)图 1 所示模型机经改造升级后,扩大了主存容量,并在 CPU 与主存之间添加了一个 Cache,假设 CPU 总是从 Cache 取得数据,在一段时间内,Cache 完成存取的次数为 2100 次,主存完成的存取次数为 400 次,已知 Cache 的存储周期为 12ns,主存的存储周期为 80ns。则 Cache 的命中率为__④__, Cache/主存系统的平均访问时间为__⑤__ns。设升级后的主存容量为 128KB,存储器**按字节编址**; Cache 容量 8KB,每块 8 字节,Cache 按照 4 路组相联方式组织,则主存字节地址___⑥___位;其中"标记"字段__⑦__位,Cache 组地址___⑧__位,主存地址 09B3H 映射到 Cache 的__⑨__组。↩
- 7. (6分)假如图 1 所示模型机的存储器采用 4 体交叉方式进行组织,当连续读出多个字,访存时间比顺序编址方式___①___(长/短)。为了提高访问存储器的速度还可以采用___①___存储器。虚拟存储器的是___②___,设置虚拟存储器的主要目地是___③__。↩

- 二. (41 分) 图 2 是实现 32 位 MIPS 单周期的 CPU 结构和数据通路,ALU 有 16 种运算功能,加 法时 ALU_OP=0100;减法时 ALU_OP=0101;位或非运算 ALU_OP=0011;位与运算 ALU_OP=0010 ↔ 1. (4 分) 访问 IO 设备实际上就是通过端口地址访问 IO 接口中的寄存器,假如为实现独立编址的输入输出功能,使用 I 型指令格式实现输入指令 in 和输出指令 out 的功能,端口地址由指令低 16 位 I₁₅₋₀ 提供,读写 IO 设备的控制信号分别是 IO_R 和 IO_W,按照表 1 格式,仿照 xori 指令的写法,分别写出 in 和 out 指令的格式和指令功能描述。↩

表 1₽

指令₽	功能描述₽	₽
xori rt,rs,imm₽	逻辑异或: rs⊕imm→rt₽	Ç
47	4	٠
47	±	٠

2.(6 分)为实现 IN 和 OUT 指令的数据通路,写出译码与控制单元所需设置的控制信号以二**进制**形式填入表 2。若某信号无论取何值都不影响指令的功能,则该信号填"-"。↩

表 2~

指令↩	w r s↔	IO_R	IO_W	imm_s	rt imm s	wr data s∉	ALU_OP₽	Write Reg	Mem_Write	PC_s↔
in∻	÷.	47	42	47	¢.	¢	4	4	4	ţ.
out∂	٩	ته	ته	ت	٦	₽.	₽	₽	₽.	ته

3.(8分)假如图2所示MIPS系统中,有如下3条指令,↓

指令助记符₽	指令功能描述↩	
nor rd, rs, rt	,位或非:~(<u>rsirt</u>)→ <u>rd</u> ₽	
andi rt, rs, imm	;位与: (rs)&imm→rt↩	
sw rt. offset(rs)	;存数:rt →mem(rs +offset)⊌	

写出上述 3 条指令的数据通路对应的控制信号之值、指令格式类型填入表 3。↩

表 3 指令格式与控制信号表4

	77 - 32 - (14 - 7)32 - (14 - 7) 7 - (14 - 7											
指令↩	W_r_se	imm_s	rt_imm_s	wr data s	ALU_OP	Write Reg₽	Mem_Write	PC_s	指令↓ 格式↓			
nor⊕	Į.	ţ.	4	٩	₽	P	4	4	¢.			
andi₽	į.	t)	٠	ت	ė.	ę.	42	ت	t)			
SW€	Į.	٦	ę.	ę.	÷.	₽	₽	٠	¢.			

- 7. (12 分)假如该 MIPS 系统的数据存储器容量为 32M×32 位,位于存储器空间的最低端,试问: ↩
- (1) (4分) 数据存储器的地址范围是: ___**②** ___ H~ __**②** ___ H。↓
- (3)(6分)画出上述 SRAM 芯片扩展成数据存储器的连接图,请清晰标示地址、数据和控制信号线。↩

PC_s[1:0] 译码及 控制单元 Write_Reg ALU OP R Data A →OF 寄存器堆 Inst addr M F R Data B 指令存储器 clk rst M W D imm offset wr data s 控制流 IO W 输出设备 IO R 输入设备

图 2 MIPS 单周期 CPU 结构和数据通路↓