IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re the Application of

Minoru YAMADA et al.

Application No.:

09/812,99

Docket No.: 109016

Filed: March 21, 2001

For:

NEAR-FIELD OPTICAL HEAD

CLAIM FOR PRIORITY

Director of the U.S. Patent and Trademark Office Washington, D.C. 20231

Sir:

The benefit of the filing date of the following prior foreign application filed in the following foreign country is hereby requested for the above-identified patent application and the priority provided in 35 U.S.C. §119 is hereby claimed:

Japanese Patent Application No. 2000-081580 filed March 23, 2000. In support of this claim, a certified copy of said original foreign application: is filed herewith. was filed on ____ in Parent Application No. ____ filed ____. will be filed at a later date.

It is requested that the file of this application be marked to indicate that the requirements of 35 U.S.C. §119 have been fulfilled and that the Patent and Trademark Office kindly acknowledge receipt of this document.

Respectfully submitted,

Registration No. 27,075

Thomas J. Pardini Registration No. 30,411

JAO:TJP/zmc

Date: August 13, 2001

OLIFF & BERRIDGE, PLC P.O. Box 19928 Alexandria, Virginia 22320 Telephone: (703) 836-6400

DEPOSIT ACCOUNT USE AUTHORIZATION Please grant any extension necessary for entry; Charge any fee due to our Deposit Account No. 15-0461

日本国特許庁

PATENT OFFICE
JAPANESE GOVERNMENT

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed the this Office.

出願年月日 Pate of Application: NUG 132000

名 00年 3月23日

· 願 番号 《Na TRAD"

特願2000-081580

類 人 licant (s):

ティーディーケイ株式会社

CERTIFIED COPY OF PRIORITY DOCUMENT

2001年 4月 6月

特 許 庁 長 官 Commissioner, Patent Office 及川耕

【書類名】 特許願

【整理番号】 P-01233

【提出日】 平成12年 3月23日

【あて先】 特許庁長官 近藤 降彦 殿

【国際特許分類】 G11B 7/125

【発明の名称】 近接場光を用いる光ヘッド

【請求項の数】 6

【発明者】

【住所又は居所】 石川県金沢市寺町4丁目5番10号

【氏名】 山田 実

【発明者】

【住所又は居所】 東京都中央区日本橋一丁目13番1号 ティーディーケ

イ株式会社内

【氏名】 木ノ内 充

【特許出願人】

【識別番号】 000003067

【氏名又は名称】 ティーディーケイ株式会社

【代理人】

【識別番号】 100059258

【弁理士】

【氏名又は名称】 杉村 暁秀

【選任した代理人】

【識別番号】 100072051

【弁理士】

【氏名又は名称】 杉村 興作

【選任した代理人】

【識別番号】 100098383

【弁理士】

【氏名又は名称】 杉村 純子

特2000-081580

【手数料の表示】

【予納台帳番号】 015093

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【書類名】 明細書

【発明の名称】 近接場光を用いる光ヘッド

【特許請求の範囲】

【請求項1】 それぞれ電流注入電極に電気的に接続されたクラッド層で活性層を挟み、一方のクラッド層中の活性層との界面或いは活性層に近接して周期的な波状形状構造を有する第1の反射部材を形成し、一方の端面に微小開口の出射窓を有する第2の反射部材を形成し、他方の端面に第3の反射部材を形成した分布帰還型レーザを具え、この分布帰還型レーザの出射窓から射出されるレーザ光を近接場に配置した光記録媒体に照射するようにしたことを特徴とする近接場光を用いる光へッド。

【請求項2】 前記電流注入電極を介して分布帰還型レーザへ注入される電流の 大きさを光記録媒体に記録すべき情報に応じて変化させて、強度変調されたレー ザ光を光記録媒体へ照射して情報を記録するように構成した請求項1に記載の近 接場光を用いる光へッド。

【請求項3】 前記分布帰還型レーザへの注入電流を一定に維持して一定強度のレーザ光を光記録媒体へ照射し、光記録媒体から反射されるレーザ光を前記出射窓を経て分布帰還型レーザへ戻し、前記電流注入電極間に生じる電圧変化を検出して光記録媒体に記録されている情報を再生するように構成した請求項1または2に記載の近接場光を用いる光ヘッド。

【請求項4】 前記分布帰還型レーザへの注入電流を一定に維持して一定強度のレーザ光を光記録媒体へ照射し、光記録媒体から反射されるレーザ光を前記出射窓を経て分布帰還型レーザへ戻し、この分布帰還型レーザで増幅され、前記第3の反射部材から出射されるレーザ光を受光して光記録媒体に記録されていた情報の再生信号を出力する光検出器を設けたことを特徴とする請求項1または2に記載の近接場光を用いる光ヘッド。

【請求項5】 前記分布帰還型レーザの第2の反射部材の内側に誘電体膜を設けたことを特徴とする請求項1~4の何れかに記載の近接場光を用いる光ヘッド。

【請求項6】 前記分布帰還型レーザの第3の反射部材を多層誘電体膜で構成したことを特徴とする請求項1~5の何れかに記載の近接場光を用いる光ヘッド。

【発明の詳細な説明】

[0001]

【発明の属する技術】

本発明は、光記録媒体に情報を記録したり、光記録媒体に記録された情報を再生するための光ヘッドに関するものであり、特に近接場光を用いて高密度記録を 実現できる光ヘッドに関するものである。

[0002]

【従来の技術】

従来の一般的な光へッドは、記録時においては、半導体レーザからのレーザ光を光ディスクに照射して、光ディスク材料を熱的に変化させている。再生時には、半導体レーザからのレーザ光を光ディスクに照射し、その反射光の強度や偏波面などを光検出器で検出している。光ディスクに記録される情報密度は、対物レンズで集光されたレーザ光のビーム径で定まり、光波長の1/2が限界とされている。また、光源としての半導体レーザと光検出器とは別の素子であるため、光へッドのサイズや重量が大きくなり、部品点数が増えるのでコスト高となるばかりではなく、半導体レーザから出射したレーザ光に対し、最大でも1/4のエネルギーしか光検出器に戻って来ないので、再生信号のSN比が小さいという問題もある。

[0003]

このような問題を軽減するために、例えば特開平9-145603号公報や特開平10-255302号公報に記載されているような近接場光を利用した光へッドが提案されている。この光ヘッドは、光の出射部付近には近接場或いは近傍界と呼ばれる光成分が存在し、この成分を利用することにより波長の1/2以下の極微小領域を用いて光による情報の記録や再生が可能であるという事実に基づいている。

[0004]

また、光が半導体レーザへ入射すると、半導体レーザの電流注入電極間の電圧が変化することから、半導体レーザ自身を光検出器として利用した光ヘッドが、例えば特開昭57-133531号公報や特開昭63-74128号公報におい

て提案されている。このような光ヘッドでは、原理的には半導体レーザから出射 したレーザ光の100%が半導体レーザへ戻って来る。

[0005]

【発明が解決すべき課題】

上述したように、近接場と半導体レーザによる光検出法とを併用した新しい光 ヘッドの開発が進められている。しかしながら、近接場といえども、出射光のビーム径を小さくするために、半導体レーザの出射窓の大きさを小さくすると、出力できるレーザ光量は少なくなり、光記録媒体への情報の記録を正確に行うことができなくなる。したがって、必要な光量を確保するために微小化に限界があり、記録密度を格段と上げることは困難である。

[0006]

また、半導体レーザへの光の再入射は半導体レーザの動作を不安定にさせ、戻り光雑音と呼ばれる過剰雑音を発生させることが知られており、例えばT. Morik awa et al, Electronics Letters, Vol. 12, p.435, 1976に記載されている。このような過剰雑音によって、光検出に誤動作が入り、光記録媒体に記録されている情報を正確に再生することができないという問題がある。

[0007]

したがって、本発明の目的は、上述した従来の問題を解消若しくは軽減し、レーザ光のビーム径を十分に小さくして記録密度を上げることができると共に十分な光量のレーザ光を出射して正確な情報の記録を行うことができる光ヘッドを提供しようとするものである。

[0008]

本発明の他の目的は、半導体レーザへの戻り光があっても安定なレーザ動作が可能であり、光記録媒体に記録された情報を正確に再生することができる光ヘッドを提供しようとするものである。

[0009]

本発明のさらに他の目的は、半導体レーザとは別個の光検出器を用いても、半 導体レーザから出射されるレーザ光のエネルギーを有効に利用して情報の再生を 行うことができる光ヘッドを提供しようとするものである。

[0010]

【課題を解決するための手段】

本発明による近接場光を用いる光へッドは、それぞれ電流注入電極に電気的に接続されたクラッド層で活性層を挟み、一方のクラッド層中の活性層ととの界面或いは活性層と近接して周期的な波状形状構造を有する第1の反射部材を形成し、一方の端面に微小開口の出射窓を有する第1の反射部材を形成し、他方の端面に第3の反射部材を形成した分布帰還型レーザを具え、この分布帰還型レーザの前記出射窓から射出されるレーザ光を近接場に配置した光記録媒体に照射するようにしたことを特徴とするものである。

[0011]

このような本発明による光ヘッドは、情報を光記録媒体へ書き込む記録用光ヘッドとして構成することができる。このような記録用光ヘッドにおいては、前記電流注入電極を介して分布帰還型レーザへ注入される電流を光記録媒体に記録すべき情報に応じて変化させ、強度変調されたレーザ光を光記録媒体へ照射して光記録媒体の材料に熱的な変化を与えて情報を記録するように構成することができる。

[0012]

また、本発明による光ヘッドは、光記録媒体に記録された情報を読み取る再生 用光ヘッドとしても構成することができる。このような再生用光ヘッドの好適な 実施例においては、前記分布帰還型レーザへの注入電流を一定に維持して一定強 度のレーザ光を光記録媒体へ照射し、光記録媒体から反射されるレーザ光を前記 出射窓を経て分布帰還型レーザへ戻し、前記電流注入電極間に生じる電圧変化を 検出して光記録媒体に記録されている情報を再生するように構成することができ る。このような再生用光ヘッドの構成と、上述した記録用光ヘッドの構成とを併 せることにより記録再生用光ヘッドとすることができる。

[0013]

さらに、再生用光ヘッドとしての他の好適な実施例においては、前記分布帰還型レーザへの注入電流を一定に維持して一定強度のレーザ光を光記録媒体へ照射し、光記録媒体から反射されるレーザ光を前記出射窓を経て分布帰還型レーザへ

戻し、分布帰還型レーザで増幅され、前記第3の反射部材から出射されるレーザ 光を受光して光記録媒体に記録されていた情報の再生信号を出力する光検出器を 設ける。このような再生用光ヘッドの構成と、上述した記録用光ヘッドの構成と を併せることによっても記録再生光ヘッドを得ることができることは勿論である

[00014]

さらに、本発明による光ヘッドにおいては、前記分布帰還型レーザの前端に設けた第2の反射部材を、微小開口の出射窓を形成した金属膜と、その内側に設けた誘電体膜とで構成するのが好適である。この場合、金属膜の内側に設けた誘電体膜は電気的な絶縁と光出射の効率を上げるためのものである。また、出射窓を設けた第2の反射部材と対向する第3の反射部材は、最適な反射率を得るための多層誘電体膜で構成するのが好適である。

[0015]

【発明の実施の形態】

図1は、本発明による光ヘッドの一実施例の構成を示す線図的な断面図である。本例の光ヘッドは、情報を光記録媒体へ書き込む記録用光ヘッドとして構成されている。本発明の光ヘッドは、基本的に分布帰還型レーザ(DFBレーザと称する)11を具えるものである。このDFBレーザ11は、ダブルヘテロ構造、量子井戸構造或いは歪量子井戸構造より成る活性層12を、クラッド層13および14で挟み、一方のクラッド層13中に、活性層12に接近して周期的な波状形状構造を有する第1の反射部材15を形成した構造となっている。活性層12およびクラッド層13、14は、III-V族或いはII-VI族の化合物半導体によって作られている。図1では、クラッド層13の、活性層12に接近する位置に波状形状構造を持った第1の反射部材15が設けられているとしたが、この波状形状構造を有する第1の反射部材15が設けられているとしたが、この波状形状構造を有する第1の反射部材15は活性層12とクラッド層13との界面に設けることもできる。また、クラッド層13の上には低抵抗の電極接続層16が設けられ、その上に一方の電極17が設けられている。さらに、これらの半導体層は基板18によって支持され、この基板には他方の電極19が設けられている。本例では、基板18およびクラッド層14はn型の半導体材料で形成され、活性層

12は真性半導体材料で形成され、クラッド層13および電極接続層16はp型 半導体材料で形成されている。

[0016]

DFBレーザ11の出射側の端面には第2の反射部材20を設け、反対画の端面には第3の反射部材23が設けてある。第2の反射部材20は、電気的な絶縁と、光出射の効率を上げるための誘電体膜21と、不要な光出射を防ぎ、レーザ内に効率良く光を戻すための反射鏡として作用する金属膜22とで構成されている。この金属膜22のほぼ中央には、レーザ光を出射させるための微小開口の出射窓22aを形成する。この出射窓22aの直径は、レーザ光の波長λに対してほぼλ/100からλの範囲の値とすることができる。また、DFBレーザ11の出射側端面とは反対側の後端面に設けた第3の反射部材23は、最適な反射率を得るために多層誘電体膜で構成する。

[0017]

それぞれクラッド層13および14と電気的に接続された電流注入電極17および19を、それぞれ導線24および25を介して注入電流源26に接続する。この注入電流源26によって電極17から電極19へ電流を流すことによってレーザを発振させることができる。ここで、基板18およびクラッド層14をP型半導体材料で形成し、クラッド層13および電極接続層16をn型の半導体材料で形成する場合には、電極間を流れる電流の向きは逆となる。

[0018]

本例の光へッドは、DFBレーザ11の第2の反射部材20に設けた出射窓22aに対向して近接配置された光記録媒体27へ情報を書き込む記録用光ヘッドとして構成されている。図面では出射窓22aと光記録媒体27との間の距離を大きく描いてあるが、実際には出射窓22aの直径と同程度のほぼえ/100からえの範囲の値である。注入電流源26へ記録すべき情報信号を供給してDFBレーザ11へ注入する電流の大きさを情報信号に応じて変化させることにより、DFBレーザの出射窓22aから出射されるレーザ光の強度を変化させる。このように強度変調されたレーザ光を光記録媒体27へ照射することによって光記録媒体の材料に熱的な変化を与え、情報を高密度で書き込むことができる。

[0019]

図2は、本発明による光ヘッドの第2の実施例の構成を線図的に示すものであり、前例と同様の部分は同じ符号を付けて示し、その詳細な説明は省略する。本例の光ヘッドは、光記録媒体27へ情報を書き込む記録用光ヘッドとして作用すると共に光記録媒体に記録された情報を読み取る再生用光ヘッドとしても作用するものである。本例の光ヘッドによって光記録媒体27に情報を記録する動作は上述した第1の実施例と同様であり、記録すべき情報信号によって注入電流源26からDFBレーザ11へ注入される電流を変調し、これに応じて強度変調されたレーザ光を、出射窓22aを経てDFBレーザの近接場に配置された光記録媒体27へ照射し、光記録媒体の材料に熱的な変化を与えて情報を書き込むことができる。

[0020]

一方、光記録媒体27に高密度で記録されている情報を読み出す場合には、注入電流源26から一定の注入電流をDFBレーザ11へ供給し、強度が一定のレーザ光を発生させ、これを出射窓22aを経て光記録媒体27へ照射する。この光記録媒体27に記録された情報で変調され、光記録媒体から反射されるレーザ光を出射窓22aを経てDFBレーザ11へ入射させる。このように光記録媒体27で反射され、DFBレーザ11へ入射する戻りレーザ光によってDFBレーザの発振しきい値電流が変化するので、レーザ内部の光子数が変化し、その結果として電極17および19間の電圧が変化する。これらの電極17および19間の電圧の変化を電圧変化検出回路28によって検出することによって、光記録媒体27に記録されていた情報を表す再生信号を得ることができる。

[0021]

図3は、本発明による光ヘッドの第3の実施例の構成を示すものである。本例の光ヘッドも、前例と同様に記録用および再生用光ヘッドとして機能するものである。ただし、本例ではDFBレーザ11の第3の反射部材23の後方に、光検出器31を配置し、DFBレーザの第3の反射部材から出射されるレーザ光を受光して情報を表す再生信号を出力するようにしたものである。

[0022]

本例の光検出器31は、IV族半導体或いはIII-V族またはII-VI族化合物半導体によって形成されている基板32、光吸収層33およびキャップ層34からなり。このキャップ層の上には入射窓35aを有する電極35が形成され、基板32の他方の表面にも電極36が形成されている。このような構造を有する光検出器31自体は公知であるが、本発明では他の任意の構造の光検出器を用いることができる。

[0023]

光記録媒体27に記録された情報の読み取りを行う場合には、注入電流源26から一定の注入電流をDFBレーザ11へ供給し、一定の輝度を有するレーザ光を第2の反射部材20の出射窓22aから出射させ、光記録媒体27へ照射する。光記録媒体27に記録された情報で変調され、光記録媒体で反射されるレーザ光を出射窓22aを経てDFBレーザ11へ入射させる。この戻りレーザ光により、上述したようにレーザ発振しきい値電流が変化し、レーザ内部の光子数が変化する。したがって、DFBレーザ11の第3の反射部材23を経て後方へ出射されるレーザ光の強度も変化する。このように光記録媒体27に記録された情報に応じて強度変調され、DFBレーザで増幅されたレーザ光を光検出器31で受光して、光電変換することによって、記録情報を表す再生信号をきわめて高い感度で得ることができる。

[0024]

図 2 に示した第 2 の実施例についての計算例を次に説明する。 D F B レーザ 1 1 の活性層 1 2 を G a A s で形成し、クラッド層 1 3 および 1 4 を A 1 G a A s で形成し、第 2 および第 3 の反射部材 2 0 および 2 3 間の距離として定義される共振器長を $L=150\mu$ mとする。また、第 1 の反射部材 1 5 を構成する波状形状構造の周期は、波長 $\lambda=0$. 8 5 5 μ m のレーザ光が発振されるように構成する

[0025]

図4は、このようなDFBレーザ11を用い、出射窓22aから出射したレーザ光が光記録媒体27で反射され、出射窓からDFBレーザへ戻り、レーザ内の光と結合するまでの総合的な戻り光率「を横軸に取り、DFBレーザ11の電極

17および19間の電圧変化を検出する電圧変化検出回路28において検出される電圧変化 Δ V(mV)を縦軸に取って示すグラフである。図4において、曲線Aは本発明による光ヘッドの特性を示すものであり、第1の反射部材15を構成する波状形状構造によりレーザ内での反射を表す係数が κ L = 3、第3の反射部材23による電力反射率がR_b = 0.0、第2の反射部材20による電力反射率がR_f = 0.95の場合である。また、第2および第3の反射部材20および23との境界における第1の反射部材15の波状形状構造の形状、すなわち位相は、検出電圧の絶対値が大きくなるように最適化してある。

[0026]

図4の曲線Bは、通常のファブリィペロー型共振器を用いた場合、つまり本発明のように波状形状構造が存在せず、全端面および後端面に設けた反射鏡を用いて発振させた場合の特性を示すものである。この場合は、 $R_b=0.5$ 、 $R_f=0.95$ である。曲線AおよびBにおいてもレーザ発振のしきい値はほぼ同じである。

[0027]

図4から明らかなように、波状形状構造を有する第1の反射部材15を設けた DFBレーザを用いる本発明の光ヘッドの方が、このような波状形状構造を持た ない光ヘッドに比べて検出感度が6倍程度増大している。この感度増加の理由は 完全には解明されていないが、以下のような理由によるものであると考えられる

[0028]

DFBレーザ11の第2の反射部材20の出射窓22a付近では、金属膜22で反射される光と、出射窓から再入射してくる光成分とが合波してレーザ内部へ戻る。これらの成分が同位相であれば互いに強め合い、逆位相であれば弱め合う。ファブリイペロー共振器の場合には、複数の共振器縦モードが存在しており、戻り光が存在する場合も存在しない場合にも共に、最も低いしきい値となるモードで発振する。

[0029]

一方、波状形状構造が存在する場合には、この波状形状構造によって発振縦モ

9

ードが1本に選択されている。そして、波状形状構造を有する第1の反射部材15と、第2の反射部材20および第3の反射部材23とによる複合共振器となるので、第3の反射部材23を構成する多層誘電体膜の反射率R_b、第1の反射部材15を構成する波状形状構造と、第2の反射部材20および第3の反射部材23とのそれぞれの境界での形状(位相)、第2の反射部材20の誘電体膜21の光学的膜厚、金属膜22の反射率R_f、戻り光の位相などによって発振しきい値が敏感に変化する。したがって、戻り光の有無や強弱の変化を電圧の変化として検出する場合、波状形状構造を有する第1の反射部材15を含めたDFBレーザの種々の構造と、戻り光の位相関係とを最適化することによって検出感度を上げることができる。

[0030]

なお、ファブリィペロー共振器の場合には、戻り光によって発振縦モードが移動するので、モードホッピング雑音(戻り光雑音の一種)が増加してしまうことが、例えばM. Yamada, IEEE Journal of Quantum Electronics, Vol. QE-22, P. 1052, 1989に記載されている。これに対し本発明の光ヘッドでは、波状形状構造を有する第1の反射部材15を具えるDFBレーザ11を用いているので、発振縦モードが1本で不動であるので、戻り光によるモードホッピング雑音は生じない。

[0031]

図2に示した本発明の光へッドの第2の実施例のように、光記録媒体25から 反射されるレーザ光を出射窓22aを経てDFBレーザ11へ戻し、DFBレーザで増幅されて第3の反射部材23を経て後方に出射されるレーザ光をDFBレーザとは別個の光検出器31で受光して再生信号を取り出すようにした光へッド においても、上述したところと同様の作用効果が得られる。さらに、このように DFBレーザ11とは別に光検出器31を設ける場合には、DFBレーザ11への電流注入用導線24および25と、再生信号を出力する出力端子とが電気的に 絶縁されているので、さらに安定したレーザ動作が得られるという利点もある。

[0032]

本発明は上述した実施例にのみ限定されるものではなく、幾多の変更や変形が

可能である。例えば、上述したDFBレーザ11は単なる一例であり、周知の種々の構造を有するものとすることができる。また、波状形状構造を有する第1の反射部材15の周期構造は、波状のものに限られるものではなく、例えば方形波状の周期構造を有するものとすることができる。ただし、どのような周期構造でも、それを3角関数でフーリェ級数展開した場合の、波状波形成分がDFBとしての意味を持つので、本明細書ではこのような周期構造を総称して波状形状構造と称している。

[0033]

【発明の効果】

上述したように、本発明による光ヘッドにおいては、波状形状構造を有する第1の反射部材15と、微小開口の出射窓22aを有する第2の反射部材20と、これとは反対側の端面に設けられた第3の反射部材23を有する分布帰還型レーザ11を用い、出射窓から出射されるレーザ光を、出射窓の近接場に配置した光記録媒体へ照射するようにしたので、戻り光があってもレーザ動作を安定とすることができ、きわめて高密度の記録を行うことができる。また、再生の場合には、光記録媒体で反射されるレーザ光を出射窓を経てDFBレーザへ入射させ、このような戻り光によって発振しきい値電流が変化し、これによりレーザ内部の光子数が変化し、電流注入電極17および19間の電圧が変化するので、これを電圧変化検出回路28で検出したり、第3の反射部材23から出射されるレーザ光の強度が変化するので、これを光検出器31で検出することにより高感度で情報信号の再生が可能となる。

【図面の簡単な説明】

- 【図1】 図1は、本発明による光ヘッドの第1の実施例を示す線図的な断面図である。
- 【図2】 図2は、本発明による光ヘッドの第2の実施例を示す線図的な断面図である。
- 【図3】 図3は、本発明による光ヘッドの第3の実施例を示す線図的な断面図である。
- 【図4】 図4は、第2の実施例の検出感度特性を、ファブリィペロー共振器と

比較して示すグラフである。

【符号の説明】

11 DFBレーザ、 12 活性層、 13、14 クラッド層、 15 波 状形状構造を有する第1の反射部材、 16 電極接続層、 17 電極、 1 8 基板、 19 電極、 20 第2反射部材、 21 誘電体層、 22 金属膜、 22a 出射窓、 23 第3の反射部材、24、25 導線、 2 6 注入電流源、 27 光記録媒体、 28 電圧変化検出回路、 31 光 検出器、 32 基板、 33 光吸収層、 34 キャップ層、 35、36 電極 【書類名】

図面

【図1】

【図2】

【図3】

【図4】

【書類名】

要約書

【要約】

【課題】 簡単な構成でありながら、情報を光密度で光記録媒体へ記録し、高密度で記録された情報を高感度で読み取れる光ヘッドを提供する。

【解決手段】 クラッド層13、14で活性層12を挟み、一方のクラッド層中の活性層に近接して周期的な波状形状構造を有する第1反射部材15を形成し、一方の端面に微小開口の出射窓22aを形成した金属膜22を含む第2反射部材20を形成し、他方の端面に多層誘電体膜で第3反射部材23を形成した分布帰還型レーザ11の前記出射窓から射出される情報で強度変調されたレーザ光を近接場に配置した光記録媒体27に照射して記録を行う。光記録媒体で反射されるレーザ光を前記出射窓を経て分布帰還型レーザへ戻し、電流注入電極間に生じる電圧変化を検出して記録情報を再生するか、戻り光を分布帰還型レーザで増幅し、前記第3反射部材から出射されるレーザ光を光検出器で受光して再生する。

【選択図】

図 2

出願人履歴情報

識別番号

[000003067]

1. 変更年月日

1990年 8月30日

[変更理由]

新規登録

住 所

東京都中央区日本橋1丁目13番1号

氏 名

ティーディーケイ株式会社