Algebra And Number - AN3 - Exponent Laws

Proving Exponent Laws

1. **Prove That** $(a^m)(a^n) = a^{m+n}$:

\boxed{m}	n	$(a^m)(a^n)$	a^{m+n}
8	2	$(a^8)(a^2) = (a \cdot a \cdot a) \cdot (a \cdot a)$	a^{10}
5	4		
3	1		
4	3		
3	2		
5	3		
7	2		

Proof:

$$(a^m)(a^n) = \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{m} \cdot \underbrace{a \cdot a \cdot a \cdot a \cdot a}_{n} = a^{m+n}$$

Practice

i.
$$x^5x^7$$

iii.
$$\kappa^{41}\kappa^{23}$$

v.
$$\varphi^4 \varphi^{234}$$

vii.
$$\heartsuit^{12} \heartsuit^3$$

ii.
$$m^3m^{13}$$

iv.
$$\alpha^3 \alpha^7 \alpha^{20}$$

vi.
$$au^{16} au^{12}$$

viii.
$$\alpha^5 \alpha^{15} \alpha^2$$

2. Prove That $a^m \div a^n = a^{m-n}$:

m	n	$\frac{a^m}{a^n}$	a^{m-n}
8	2	$\frac{a^8}{a^2} = \frac{\cancel{a} \cdot \cancel{a} \cdot a \cdot a \cdot a \cdot a \cdot a \cdot a}{\cancel{a} \cdot \cancel{a}}$	a^6
5	4		
3	1		
4	3		
3	2		

Proof:

Practice

i.
$$\frac{x^{15}}{x^7}$$

iii.
$$\frac{\phi^{10}}{\phi^3}$$

v.
$$\frac{\pi^{300}}{\pi^{100}}$$

vii.
$$\frac{\omega^{435}}{\omega^{17}\omega^{12}}$$

ii.
$$\frac{\gamma^{17}}{\gamma 7}$$

iv.
$$\frac{2^8}{2^4}$$

vi.
$$\frac{y^{20}}{y^{10}y^7}$$

viii.
$$\frac{r^{1234}}{r^{456}}$$

3. Prove That $(a^m)^n = a^{mn}$:

m	n	$(a^m)^n$	a^{mn}
8	2	$(a^8)^2 = (a^8) \cdot (a^8) = (a \cdot a $	a^{16}
5	4		
3	1		
4	3		
3	2		
5	3		
7	3		
4	2		
10	3		

Proof:

$$(a^m)^n =$$

$$=a^{mn}$$

Practice

i.
$$(x^{10})^2$$

iii.
$$(\heartsuit^{17})^3$$

v.
$$(z^2 z^2)^3$$

vii.
$$(\gamma^5)^a$$

ii.
$$(\alpha^9)^2$$

iv.
$$(m^{15})^3$$

vi.
$$(\kappa^4)^2$$

viii.
$$(\phi^5\phi^3)^4$$

4. Prove That $(ab)^m = a^m b^m$:

m	$(ab)^m$	$a^m b^m$
2	$(ab)^2 = (ab) \cdot (ab) = a \cdot b \cdot a \cdot b = a \cdot a \cdot b \cdot b$	a^2b^2
3		
4		
5		
6		
7		
8		
9		
10		

Proof:

$$(ab)^m =$$

$$=a^mb^m$$

Practice

- i. $(xy)^5$
- iii. $(\alpha\beta)^{10}$
- v. $(\gamma^2 x)^2$
- vii. $(x^3y^2)^{10}$

- ii. $(xy)^{17}$
- iv. $(ab)^7$
- vi. $(\omega^3 \alpha^2)^5$
- viii. $(xyz)^7$

5. Prove That $\left(\frac{a}{b}\right)^n = \left(\frac{a^n}{b^n}\right), \ b \neq 0$:

n	$\left(\frac{a}{b}\right)^n$	$\left(\frac{a^n}{b^n}\right)$
2	$\left(\frac{a}{b}\right)^2 = \left(\frac{a}{b}\right) \cdot \left(\frac{a}{b}\right) = \frac{a \cdot a}{b \cdot b}$	$\left(\frac{a^2}{b^2}\right)$
3		
4		
5		
6		
7		

Proof:

$$\left(\frac{a}{b}\right)^n =$$

$$= \left(\frac{a^n}{b^n}\right)$$

Practice

i.
$$\left(\frac{a}{b}\right)^{12}$$

iii.
$$\left(\frac{x}{z}\right)^5$$

v.
$$\left(\frac{m}{n}\right)^{54}$$

vii.
$$\left(\frac{\gamma^4 \alpha}{\beta}\right)^3$$

ii.
$$\left(\frac{\alpha}{\beta}\right)^{25}$$

iv.
$$\left(\frac{x}{z}\right)^5$$

vi.
$$\left(\frac{\alpha\beta}{x}\right)^{13}$$

viii.
$$\left(\frac{\gamma^3}{\beta^2\alpha}\right)^3$$