Análisis Matemático II

Licenciatura en Ciencias de la Computación - 2019

Práctico 5 - Funciones de varias variables

(1) Calcular las derivadas parciales de las siguientes funciones y evaluarlas en el punto dado.

a)
$$f(x,y) = x - y$$
, (3,2)

(d)
$$w = e^{y \ln z}$$
, (e, 2, e)

(a)
$$f(x,y) = x - y$$
, (3,2) (d) $w = e^{y \ln z}$, (e,2,e)
(b) $f(x,y,z) = \frac{xz}{y+z}$, (1,1,1) (e) $f(x,y,z) = x^3y^4z^5$, (0,-1,-1)
(c) $f(x,y) = xy + x^2$, (2,0) (f) $w = \ln(1 + e^{xyz})$, (2,0,-1)

(e)
$$f(x, y, z) = x^3 y^4 z^5$$
, $(0, -1, -1)$

(c)
$$f(x,y) = xy + x^2$$
, (2,0)

(f)
$$w = \ln(1 + e^{xyz}),$$
 (2, 0, -1)

(2) Obtener las ecuaciones de la recta normal al plano tangente y del plano tangente al gráfico de las siguientes funciones en los puntos dados.

(a)
$$f(x,y) = \cos\left(\frac{x}{y}\right)$$
, en $(\pi,4)$.

(b)
$$f(x,y) = \frac{x}{x^2 + y^2}$$
, en $(1,2)$.

(3) Para las siguientes funciones encontrar: (i) el gradiente en el punto indicado, (ii) una ecuación del plano tangente al gráfico de f en el punto dado, (iii) una ecuación de la recta tangente a la curva de nivel que pasa por el punto dado.

(a)
$$f(x,y) = \frac{x-y}{x+y}$$
, en (1,1).

(a)
$$f(x,y) = \frac{x-y}{x+y}$$
, en (1,1).
 (b) $f(x,y) = \frac{2xy}{x^2+y^2}$, en (0,2).

(4) Obtener la ecuación del plano tangente a la superficie de nivel de la función f que pasa por el punto dado.

(a)
$$f(x, y, z) = x^2y + y^2z + z^2x$$
, en $(1, -1, 1)$.

(b)
$$f(x, y, z) = \cos(x + 2y + 3z)$$
, en $(\pi/2, \pi, \pi)$.

(5) Calcular la derivada direccional de f en el punto P_o y en la dirección del vector \vec{u} dado.

(a)
$$f(x,y) = xe^{2y}$$
, $P_o = (2,0)$, $\vec{u} = (\frac{1}{2}, \frac{\sqrt{3}}{2})$.

(b)
$$f(x,y) = \ln(x^2 + y^2 + z^2)$$
, $P_o = (1,3,2)$, $\vec{u} = (\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}})$.

(6) ¿En qué dirección debemos movernos, partiendo de (1,1), para obtener la más alta y la más baja tasa de crecimiento de la función $f(x,y) = (x+y-2)^2 + (3x-y-6)^2$?

(7) Calcular las derivadas parciales segundas de las siguientes funciones.

(a)
$$z = x^2(1+y^2)$$

(b)
$$w = x^3 y^3 z^3$$

(8) Aplique la regla de la cadena para hallar dz/dt

(a)
$$z = x^2 + y^2 + xy$$
, $x = \sin t$, $y = e^t$

(a)
$$z = x^2 + y^2 + xy$$
, $x = \sin t$, $y = e^t$
 (b) $z = \cos(x + 4y)$, $x = 5t^4$, $y = 1/t$
 (c) $z = \sqrt{1 + x^2 + y^2}$, $x = \ln t$, $y = \cos t$
 (d) $\arctan(y/x)$, $x = e^t$, $y = 1 - e^{-t}$

(b)
$$z = \cos(x+4y), x = 5t^4, y = 1/t$$

(d)
$$\arctan(y/x), x = e^t, y = 1 - e^{-t}$$

- (9) Sea $u = \sqrt{x^2 + y^2}$ donde $x = e^{st}$, $y = 1 + s^2 \cos t$. Calcular $\frac{\partial u}{\partial t}$ usando la regla de la cadena y comparar con el resultado que se obtiene al reemplazar x e y en u y luego derivar.
- (10) Sea $f(x, y, z) = xyz^3$.
 - (a) Calcular $\frac{\partial f}{\partial z}(x, y, z)$.
 - (b) Sabiendo que $x = x(z) = \sin z$ e $y = y(z) = e^{4z}$, calcular $\frac{d}{dz}[f(x(z), y(z), z)]$ reemplazando x(z) e y(z) en la fórmula de f.
 - (c) Comprobar que $\frac{d}{dz}[f(x(z),y(z),z)] = \frac{\partial f}{\partial x} \cdot \frac{dx}{dz} + \frac{\partial f}{\partial y} \cdot \frac{dy}{dz} + \frac{\partial f}{\partial z}$.
- (11) Sea z = f(x, y), x = 2s + 3t, y = 3s 2t. Calcular,
 - (a) $\frac{\partial^2 z}{\partial z^2}$

(b) $\frac{\partial^2 z}{\partial s \partial t}$

- (c) $\frac{\partial^2 z}{\partial t^2}$
- (12) Encontrar y clasificar los puntos críticos de las siguientes funciones:
 - (a) $f(x,y) = x^2 + 2y^2 4x + 4y$
- (b) $f(x,y) = \frac{xy}{2 + x^2 + u^2}$
- (13) Encontrar los valores máximos y mínimos locales de $f(x,y) = \frac{x}{1+x^2+y^2}$
- (14) Encontrar los valores máximos y mínimos locales de $f(x,y) = xye^{-x^2-y^4}$
- (15) Calcular la distancia más corta desde el punto (1,0,-2) al plano x+2y+z=4.
- (16) Calcular los valores máximo y mínimo relativos, y punto o puntos sillas de las siguientes funciones

- (a) $f(x,y) = 9 2x + 4y x^2 4y^2$ (c) $f(x,y) = x^4 + y^4 4xy + 2$ (d) $f(x,y) = x^3y + 12x^2 + 8y$ (d) $f(x,y) = y^2 2y\cos x$ en $1 \le x \le 7$.