jorge's rmarkdown

Jorge Reyes 2024-02-28

Getting all of the data to join into one.

```
data1 <- read.csv("Criminal_Offenses_On_campus.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename with(~ paste0(.x," all campus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_all_campus, unique_id = unique_id_all_campus)
data2 <- read.csv("Criminal_Offenses_On_campus_Student_Housing_Facilities.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename with(~ paste0(.x," student housing"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_student_housing, unique_id = unique_id_student_housing)
data3 <- read.csv("Criminal_Offenses_Noncampus.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_crim_offense_noncampus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_crim_offense_noncampus, unique_id = unique_id_crim_offense_noncampus
data4 <- read.csv("Criminal_Offenses_Public_property.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_crim_offense_public"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_crim_offense_public, unique_id = unique_id_crim_offense_public)
data5 <- read.csv("Arrests On campus.csv") |>
  mutate(unique id = paste0(OPEID, " ", Campus.ID)) |>
  rename_with(~ paste0(.x, "_arrests_campus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_arrests_campus, unique_id = unique_id_arrests_campus)
data6 <- read.csv("Arrests_On_campus_Student_Housing_Facilities.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_arrests_stuhousing"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_arrests_stuhousing, unique_id = unique_id_arrests_stuhousing)
data7 <- read.csv("Arrests_Noncampus.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_arrests_noncampus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_arrests_noncampus, unique_id = unique_id_arrests_noncampus)
data8 <- read.csv("Arrests_Public_Property.csv") |>
  mutate(unique id = paste0(OPEID, " ", Campus.ID)) |>
  rename_with(~ paste0(.x, "_arrests_public"), recycle0 = TRUE) |>
```

```
rename(Survey.year = Survey.year_arrests_public, unique_id = unique_id_arrests_public)
data9 <- read.csv("Disciplinary_Actions_On_campus.csv") |>
  mutate(unique id = paste0(OPEID, " ", Campus.ID)) |>
  rename_with(~ paste0(.x, "_disciplinary_campus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_disciplinary_campus, unique_id = unique_id_disciplinary_campus)
data10 <- read.csv("Disciplinary Actions Student Housing Facilities.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_disciplinary_housing"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_disciplinary_housing, unique_id = unique_id_disciplinary_housing)
data11 <- read.csv("Disciplinary Actions Noncampus.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_disciplinary_noncampus"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_disciplinary_noncampus, unique_id = unique_id_disciplinary_noncampus
data12 <- read.csv("Disciplinary_Actions_Public_Property.csv") |>
  mutate(unique_id = paste0(OPEID, "_", Campus.ID)) |>
  rename_with(~ paste0(.x, "_disciplinary_public"), recycle0 = TRUE) |>
  rename(Survey.year = Survey.year_disciplinary_public, unique_id = unique_id_disciplinary_public)
# This is our datasets being joined into one
dataset <- data1 |> left_join(data2) |>
 left join(data3) |>
 left join(data4) |>
 left join(data5) |>
 left join(data6) |>
 left_join(data7) |>
 left_join(data8) |>
 left_join(data9) |>
 left_join(data10) |>
 left_join(data11) |>
 left_join(data12)
## Joining with 'by = join_by(Survey.year, unique_id)'
## Joining with 'by = join_by(Survey.year, unique_id)'
## Joining with 'by = join_by(Survey.year, unique_id)'
## Joining with 'by = join by(Survey.year, unique id)'
## Joining with 'by = join_by(Survey.year, unique_id)'
#remove NAs
dataset[is.na(dataset)] <- 0</pre>
#remove repeated columns (like unitid repeating for each xcel file)
\#(3/4/24) just fixed some problems w this
```

```
cols_to_remove <- c("Unitid_student_housing", "Institution.name_student_housing", "OPEID_student_housing
## had to change this dataset name before removing the campuses ##
cleaned <- dataset[, !names(dataset) %in% cols_to_remove]</pre>
```

remove campuses

Removes campuses outside of Colorado.

```
to_remove1 <- c("Jacksonville", "San Diego", "Memphis", "Dunnam", "Ft. Drum", "San Luis Obispo", "Syrac
#check vector length
#length(to_remove1)
matches <- unique(grep(paste(to_remove1,collapse="|"),</pre>
                        cleaned$Campus.Name_all_campus, value=TRUE))
cleaned_1 <- cleaned |> filter(!Campus.Name_all_campus %in% matches)
to_remove2 <- c("Albuquerque", "Wiesbaden", "Beale", "Gateway", "Ocala Metropolitan Campus", "Baton Rou
#length(to_remove2)
matches <- unique(grep(paste(to_remove2,collapse="|"),</pre>
                        cleaned_1$Campus.Name_all_campus, value=TRUE))
cleaned 2 <- cleaned 1 |> filter(!Campus.Name all campus %in% matches)
to_remove3 <- c("Webster University St. Louis-Main Campus", "Space Coast", "Fort Worth", "San Francisco
#length(to_remove3)
matches <- unique(grep(paste(to_remove3,collapse="|"),</pre>
                        cleaned_2$Campus.Name_all_campus, value=TRUE))
cleaned_data <- cleaned_2 |> filter(!Campus.Name_all_campus %in% matches)
# take a look
#head(cleaned_data)
#new column combining liquor law violations across disciplinary, arrests and location (public, stuhousi
cleaned_data$all_liquor_violations <- cleaned_data$Liquor.law.violations_arrests_campus + cleaned_data$
numeric_data <- select(cleaned_data, where(is.numeric))</pre>
# figure margins too large
#pairs(numeric_data)
ggplot(cleaned_data, aes(y=Institution.Size_all_campus, x=all_liquor_violations)) +
  geom_point() +
  geom_smooth(method = "lm")
```



```
#cleaned_data$all_liquor_violations[16]

year_factor <- as.factor(cleaned_data$Survey.year)

#ggplot(cleaned_data, aes(x=year_factor, y=all_liquor_violations)) +

# geom_bar(stat= "identity", aes(fill=year_factor)) +

#xlab("Year") +

#ylab("Liquor Law Violations") +

#ggtitle("Barplot of Total Liquor Violations v. Year")

ggplot(cleaned_data, aes(x = year_factor, y = all_liquor_violations, fill = year_factor)) +

geom_bar(stat = "identity") +

labs(x = "Year", y = "Liquor Law Violations", fill = "Year") +

ggtitle("Barplot of Total Liquor Violations vs. Year") +

theme(legend.position = "none")</pre>
```

Barplot of Total Liquor Violations vs. Year

Tests

[1] 0.354183

```
mean(cleaned_data$Negligent.manslaughter_all_campus)

## [1] 0

mean(cleaned_data$Sex.offenses...Forcible_all_campus)

## [1] 0.1454261

mean(cleaned_data$Rape_all_campus)

## [1] 0.5402658

mean(cleaned_data$Fondling_all_campus)
```

```
mean(cleaned_data$Sex.offenses...Non.forcible_all_campus)
## [1] 0.0007818608
mean(cleaned_data$Incest_all_campus)
## [1] O
mean(cleaned_data$Statutory.rape_all_campus)
## [1] 0.002345582
mean(cleaned_data$Robbery_all_campus)
## [1] 0.129007
mean(cleaned_data$Burglary_all_campus)
## [1] 1.628616
mean(cleaned data$Motor.vehicle.theft all campus)
## [1] 0.8350274
mean(cleaned_data$Arson_all_campus)
## [1] 0.1196247
library(dplyr)
library(knitr)
# Sample data creation (assuming 'cleaned' is your data frame)
means <- round(c(mean(cleaned_data$Negligent.manslaughter_all_campus),</pre>
                 mean(cleaned_data$Sex.offenses...Forcible_all_campus),
                 mean(cleaned_data$Rape_all_campus),
                 mean(cleaned_data$Fondling_all_campus),
                 mean(cleaned_data$Sex.offenses...Non.forcible_all_campus),
                 mean(cleaned_data$Incest_all_campus),
                 mean(cleaned_data$Statutory.rape_all_campus),
                 mean(cleaned_data$Robbery_all_campus),
                 mean(cleaned_data$Burglary_all_campus),
                 mean(cleaned_data$Motor.vehicle.theft_all_campus),
                 mean(cleaned_data$Arson_all_campus)), 3)
sds <- round(c(</pre>
  sd(cleaned_data$Negligent.manslaughter_all_campus),
  sd(cleaned data$Sex.offenses...Forcible all campus),
  sd(cleaned_data$Rape_all_campus),
```

```
sd(cleaned_data$Fondling_all_campus),
  sd(cleaned_data$Sex.offenses...Non.forcible_all_campus),
  sd(cleaned_data$Incest_all_campus),
  sd(cleaned_data$Statutory.rape_all_campus),
  sd(cleaned_data$Robbery_all_campus),
  sd(cleaned_data$Burglary_all_campus),
  sd(cleaned_data$Motor.vehicle.theft_all_campus),
  sd(cleaned data$Arson all campus)
), 3)
# Creating data frame
summary_df <- data.frame(</pre>
  Variable = c("Negligent Manslaughter", "Sex Offenses (Forcible)", "Rape",
                "Fondling", "Sex Offenses (Non-forcible)", "Incest",
                "Statutory Rape", "Robbery", "Burglary", "Motor Vehicle Theft",
                "Arson"),
  Mean = means,
  StandardDeviation = sds
)
# Sorting the data frame by Mean in descending order
sorted_summary_df <- summary_df %>%
  arrange(desc(Mean), desc(StandardDeviation))
# Creating the kable
knitr::kable(sorted_summary_df, caption = "Average Values of Different Campus Offenses",
             col.names = c("Variables", "Average", "Standard Deviation"))
```

Table 1: Average Values of Different Campus Offenses

Variables	Average	Standard Deviation
Burglary	1.629	5.381
Motor Vehicle Theft	0.835	3.291
Rape	0.540	2.145
Fondling	0.354	1.476
Sex Offenses (Forcible)	0.145	1.006
Robbery	0.129	0.565
Arson	0.120	0.662
Statutory Rape	0.002	0.048
Sex Offenses (Non-forcible)	0.001	0.028
Negligent Manslaughter	0.000	0.000
Incest	0.000	0.000

EDA, Jorge's Part

```
 \begin{tabular}{ll} \# test <- cleaned\_data \ |> mutate(liquor\_violations\_capita = Liquor.law.violations\_disciplinary\_campus/1e \\ \# cleaned\_data \ |> filter(Liquor.law.violations\_disciplinary\_campus > 25) \ |> group\_by(Institution.name\_al \\ \# summarize(all\_offense\_capita = sum(all\_liquor\_violations)/Institution.Size\_all\_campus) \ |> \\ \end{tabular}
```

Liquor Law Violations Per College Campus (Schools with 1000+ Violations

Institution

```
sd(x, na.rm=TRUE)),
                          simplify = FALSE) |> bind_rows()
# transpose so table is legible
ttrain_means_sd <- t(train_means_sd)
# create kable table
#knitr::kable(ttrain_means_sd, digits = 5, caption = "Training Data, metrics to compare to test", col.n
# create df of testing data means and sd of each column
test_means_sd \leftarrow sapply(test[,c(7:20, 22:86)],
                          function(x) c(mean(x, na.rm = TRUE),
                                        sd(x, na.rm=TRUE)),
                          simplify = FALSE) |> bind_rows()
ttest_means_sd <- t(test_means_sd)</pre>
#knitr::kable(ttest_means_sd, digits = 5, caption = "Test Data, metrics to compare to training", col.na
## kable tables for hw 5
train_means <- round(c(mean(train$Negligent.manslaughter_all_campus),</pre>
           mean(train$Sex.offenses...Forcible_all_campus),
           mean(train$Rape_all_campus),
           mean(train$Fondling_all_campus),
           mean(train$Sex.offenses...Non.forcible_all_campus),
           mean(train$Incest_all_campus),
           mean(train$Statutory.rape_all_campus),
           mean(train$Robbery_all_campus),
           mean(train$Burglary_all_campus),
           mean(train$Motor.vehicle.theft_all_campus),
           mean(train$Arson_all_campus)), 3)
train_sds <- round(c(</pre>
  sd(train$Negligent.manslaughter_all_campus),
  sd(train$Sex.offenses...Forcible_all_campus),
  sd(train$Rape_all_campus),
  sd(train$Fondling_all_campus),
  sd(train$Sex.offenses...Non.forcible_all_campus),
  sd(train$Incest_all_campus),
  sd(train$Statutory.rape_all_campus),
  sd(train$Robbery_all_campus),
  sd(train$Burglary_all_campus),
  sd(train$Motor.vehicle.theft_all_campus),
  sd(train$Arson_all_campus)
), 3)
train_pres <- data.frame(</pre>
  Variable = c("Negligent Manslaughter", "Sex Offenses (Forcible)", "Rape",
               "Fondling", "Sex Offenses (Non-forcible)", "Incest",
               "Statutory Rape", "Robbery", "Burglary", "Motor Vehicle Theft",
               "Arson"),
  Mean = train_means,
  StandardDeviation = train_sds
```

Table 2: Training Data

Variable	Mean	SD
Negligent Manslaughter	0.000	0.000
Sex Offenses (Forcible)	0.131	0.988
Rape	0.514	2.041
Fondling	0.332	1.362
Sex Offenses (Non-forcible)	0.000	0.000
Incest	0.000	0.000
Statutory Rape	0.002	0.046
Robbery	0.137	0.581
Burglary	1.555	5.217
Motor Vehicle Theft	0.826	3.259
Arson	0.103	0.639

```
test_means <- round(c(mean(test$Negligent.manslaughter_all_campus),</pre>
           mean(test$Sex.offenses...Forcible_all_campus),
           mean(test$Rape all campus),
           mean(test$Fondling_all_campus),
           mean(test$Sex.offenses...Non.forcible_all_campus),
           mean(test$Incest_all_campus),
           mean(test$Statutory.rape_all_campus),
           mean(test$Robbery_all_campus),
           mean(test$Burglary_all_campus),
           mean(test$Motor.vehicle.theft_all_campus),
           mean(test$Arson_all_campus)), 3)
test_sds <- round(c(</pre>
  sd(test$Negligent.manslaughter_all_campus),
  sd(test$Sex.offenses...Forcible all campus),
  sd(test$Rape_all_campus),
  sd(test$Fondling all campus),
  sd(test$Sex.offenses...Non.forcible_all_campus),
  sd(test$Incest all campus),
  sd(test$Statutory.rape_all_campus),
  sd(test$Robbery_all_campus),
  sd(test$Burglary_all_campus),
  sd(test$Motor.vehicle.theft_all_campus),
  sd(test$Arson_all_campus)
), 3)
test_pres <- data.frame(</pre>
  Variable = c("Negligent Manslaughter", "Sex Offenses (Forcible)", "Rape",
               "Fondling", "Sex Offenses (Non-forcible)", "Incest",
               "Statutory Rape", "Robbery", "Burglary", "Motor Vehicle Theft",
               "Arson"),
 Mean = test means,
  StandardDeviation = test sds
```

```
knitr::kable(test_pres, caption = "Test Data", col.names = c("Variable", "Mean", "SD"))
```

Table 3: Test Data

Variable	Mean	\overline{SD}
Negligent Manslaughter	0.000	0.000
Sex Offenses (Forcible)	0.188	1.058
Rape	0.619	2.431
Fondling	0.422	1.774
Sex Offenses (Non-forcible)	0.003	0.056
Incest	0.000	0.000
Statutory Rape	0.003	0.056
Robbery	0.106	0.514
Burglary	1.850	5.850
Motor Vehicle Theft	0.863	3.390
Arson	0.169	0.728

Clustering method

I will use hierarchical clustering because it doesn't require a choice of K.

Method here is 'complete'

```
train_num <- train |> as_tibble() |> select(-where(is.character))
\# Remove all the columns I do not want
train_num <- train_num[, !names(train_num) %in% c('Unitid_all_campus', 'OPEID_all_campus', 'Campus.ID_a
# Performing clustering
set.seed(432)
dist_matrix <- dist(train_num, method = "euclidean")</pre>
h_clus_complete <- hclust(dist_matrix, method = "complete")</pre>
## Plotting
dend_data <- dendro_data(h_clus_complete)</pre>
label_names <- dend_data$labels</pre>
label_names$h <- 0</pre>
ggplot() +
  geom_segment(data = dend_data$segments, aes(x = x, y = y, xend = xend, yend = yend)) +
  geom_text(data = label_names, aes(x = x, y = h, label = label), hjust = 1, angle = 45) +
  theme_minimal() +
  theme(axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.title.x = element_blank()) +
  labs(y = "Height") +
  ggtitle("Dendrogram Produced from Hierarchical Clustering, Complete Method")
```

Dendrogram Produced from Hierarchical Clustering, Complete Method

Method here is 'average'

```
# Performing clustering
set.seed(432)
dist_matrix <- dist(train_num, method = "euclidean")</pre>
h_clus_avg <- hclust(dist_matrix, method = "average")</pre>
## Plotting
dend_data1 <- dendro_data(h_clus_avg)</pre>
label_names1 <- dend_data1$labels</pre>
label_names1$h <- 0</pre>
ggplot() +
  geom_segment(data = dend_data1$segments, aes(x = x, y = y, xend = xend, yend = yend)) +
  geom_text(data = label_names1, aes(x = x, y = h, label = label), hjust = 1, angle = 45) +
  theme_minimal() +
  theme(axis.text.x = element_blank(),
        axis.ticks.x = element_blank(),
        axis.title.x = element_blank()) +
  labs(y = "Height") +
  ggtitle("Dendrogram Produced from Hierarchical Clustering, Method of Averaging")
```

Dendrogram Produced from Hierarchical Clustering, Method of Averaging

will try K means clustering, getting too many clusters from hierarchical clustering

```
alc_2cols1 <- train_num[ , c("all_liquor_violations", "Institution.Size_all_campus")]</pre>
set.seed(421)
km.out <- kmeans(alc_2cols1, centers = 3, nstart = 20)</pre>
km.out
## K-means clustering with 3 clusters of sizes 536, 97, 326
##
## Cluster means:
##
  all_liquor_violations Institution.Size_all_campus
## 1
          20.76866
                         976.4328
## 2
         380.19588
                        22326.0103
## 3
          71.97546
                         9736.0583
##
## Clustering vector:
  ## [38] 3 1 1 1 1 3 1 1 1 1 1 3 1 3 1 1 1 3 3 1 1 1 3 3 1 3 1 1 1 1 1 3 1 1 1 1 1 1 1 3
```

```
## [482] 3 1 3 1 1 1 3 1 1 1 1 1 1 1 3 3 1 3 3 1 3 1 1 1 3 1 3 1 3 1 3 1 3 1 1 1 3 1 1
## [667] 1 1 3 1 1 3 3 1 1 1 3 3 1 1 1 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 2 1 3 3 2 3 1 1 3 3
## [889] 3 1 1 3 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 3 1 1 3 3 3 3 3 3 3 1 1 1 3 1 3
##
## Within cluster sum of squares by cluster:
## [1] 801514625 2520528102 2941684316
## (between_SS / total_SS = 87.5 %)
##
## Available components:
##
## [1] "cluster"
          "totss"
                  "tot.withinss"
      "centers"
              "withinss"
## [6] "betweenss"
      "size"
          "iter"
              "ifault"
```

Plotting optimal number of clusters

```
nclust <- 10
wss <- numeric(nclust)
set.seed(421)
## Looping through different number of clusters
for (i in 1:nclust) {
  km.out <- kmeans(alc_2cols1, centers = i, nstart = 20)</pre>
  wss[i] <- km.out$tot.withinss</pre>
}
## Plotting
wss_df <- tibble(clusters = 1:nclust, wss = wss)</pre>
sc_plot <- ggplot(wss_df, aes(x = clusters, y = wss, group = 1)) +</pre>
  geom_point(size = 3) +
  geom_line() +
 scale_x_continuous(breaks = c(2, 4, 6, 8, 10)) +
  scale y continuous(labels = scales::comma) +
 xlab("Number of Clusters") +
 ylab("Within Cluster Sum of Squares") +
  ggtitle("Optimal Number of Clusters, Scree Plot")
sc_plot +
```

```
geom_hline(
  yintercept = wss,
  linetype = 'dashed',
  col = c(rep('black',4),'red', rep('black', 5))
)
```

Optimal Number of Clusters, Scree Plot

Now plotting with the optimal number of clusters

```
k <- 5
set.seed(421)
km.out <- kmeans(alc_2cols1, centers = k, nstart = 20)

train_num$cluster_id <- factor(km.out$cluster)
ggplot(train_num, aes(Institution.Size_all_campus, all_liquor_violations, color = cluster_id)) +
    geom_point(alpha = 0.40) +
    xlab("Institution Size (Number of Students Enrolled)") +
    ylab("Liquor Violations") +
    ggtitle("Plot of Clustered Liquor Law Violations by Institution Size") +
    labs(color = "Cluster #")</pre>
```

Plot of Clustered Liquor Law Violations by Institution Size


```
idx <- which(km.out$cluster == 5)</pre>
train[idx,]$Institution.name_all_campus
    [1] "University of Colorado Boulder"
##
##
    [2] "Colorado State University-Fort Collins"
   [3] "University of Colorado Boulder"
##
   [4] "Colorado State University-Fort Collins"
##
    [5] "University of Colorado Boulder"
   [6] "Colorado Technical University-Colorado Springs"
##
   [7] "Colorado State University-Fort Collins"
    [8] "University of Colorado Boulder"
##
##
    [9] "Colorado State University-Fort Collins"
  [10] "University of Colorado Boulder"
  [11] "University of Colorado Boulder"
  [12] "Colorado State University-Fort Collins"
  [13] "Colorado State University-Fort Collins"
  [14] "Colorado State University-Fort Collins"
idx <- km.out$cluster</pre>
idx <- which(km.out$cluster == 5)</pre>
train[idx,]
```

OPEID all campus

<int>

Survey.year Unitid_all_campus Institution.name_all_campus

<int> <chr>

A tibble: 14 x 86

<int>

##

```
##
             2014
                             126614 University of Colorado Boulder
                                                                              137000
##
  2
             2021
                             126818 Colorado State University-For~
                                                                              135000
             2012
##
  3
                             126614 University of Colorado Boulder
                                                                              137000
                             126818 Colorado State University-For~
##
  4
             2019
                                                                              135000
## 5
             2019
                             126614 University of Colorado Boulder
                                                                              137000
## 6
             2019
                             126827 Colorado Technical University~
                                                                             1014800
## 7
                             126818 Colorado State University-For~
             2020
                                                                              135000
                             126614 University of Colorado Boulder
## 8
             2011
                                                                              137000
## 9
             2013
                             126818 Colorado State University-For~
                                                                              135000
## 10
             2016
                             126614 University of Colorado Boulder
                                                                              137000
                             126614 University of Colorado Boulder
## 11
             2021
                                                                              137000
## 12
             2018
                             126818 Colorado State University-For~
                                                                              135000
## 13
             2017
                             126818 Colorado State University-For~
                                                                              135000
             2012
                             126818 Colorado State University-For~
                                                                              135000
## 14
## # i 82 more variables: Campus.ID_all_campus <int>,
## #
       Campus.Name_all_campus <chr>, Institution.Size_all_campus <dbl>,
       Murder.Non.negligent.manslaughter_all_campus <int>,
## #
## #
       Negligent.manslaughter all campus <int>,
## #
       Sex.offenses...Forcible_all_campus <dbl>, Rape_all_campus <dbl>,
## #
       Fondling all campus <dbl>, Sex.offenses...Non.forcible all campus <dbl>,
## #
       Incest_all_campus <dbl>, Statutory.rape_all_campus <dbl>, ...
```

train[idx,]\$Institution.name_all_campus

```
[1] "University of Colorado Boulder"
##
   [2] "Colorado State University-Fort Collins"
##
   [3] "University of Colorado Boulder"
## [4] "Colorado State University-Fort Collins"
## [5] "University of Colorado Boulder"
## [6] "Colorado Technical University-Colorado Springs"
##
   [7] "Colorado State University-Fort Collins"
##
  [8] "University of Colorado Boulder"
## [9] "Colorado State University-Fort Collins"
## [10] "University of Colorado Boulder"
## [11] "University of Colorado Boulder"
## [12] "Colorado State University-Fort Collins"
## [13] "Colorado State University-Fort Collins"
## [14] "Colorado State University-Fort Collins"
```

Now clustering with 2 predictors.

```
## 2
     20.76866
         2016.172
                  976.4328
## 3
     380.19588
         2015.753
                 22326.0103
##
## Clustering vector:
 ## [482] 1 2 1 2 2 2 1 2 2 2 2 2 1 1 2 1 1 2 1 2 2 2 1 2 1 2 1 2 1 1 2 2 2 1 2 2
## [667] 2 2 1 2 2 1 1 2 2 2 1 1 2 2 2 1 1 2 2 1 2 2 2 2 2 2 2 2 2 3 2 1 1 3 1 2 2 1 1
## Within cluster sum of squares by cluster:
## [1] 2941687388 801520125 2520529082
## (between_SS / total_SS = 87.5 %)
## Available components:
##
## [1] "cluster"
       "centers"
           "totss"
                "withinss"
                     "tot.withinss"
## [6] "betweenss"
       "size"
           "iter"
                "ifault"
nclust <- 10
wss <- numeric(nclust)
set.seed(421)
## Looping through different number of clusters
for (i in 1:nclust) {
km.out2 <- kmeans(alc_2cols2, centers = i, nstart = 20)</pre>
wss[i] <- km.out2$tot.withinss
}
## Plotting
wss_df2 <- tibble(clusters = 1:nclust, wss = wss)</pre>
sc_plot2 <- ggplot(wss_df2, aes(x = clusters, y = wss, group = 1)) +</pre>
geom point(size = 3) +
geom line() +
```

```
scale_x_continuous(breaks = c(2, 4, 6, 8, 10)) +
scale_y_continuous(labels = scales::comma) +
xlab("Number of Clusters") +
ylab("Within Cluster Sum of Squares") +
ggtitle("Optimal Number of Clusters Plot")
sc_plot2 +
geom_hline(
    yintercept = wss,
    linetype = 'dashed',
    col = c(rep('black',4),'red', rep('black', 5))
)
```

Optimal Number of Clusters Plot


```
k <- 5

set.seed(421)
km.out2 <- kmeans(alc_2cols2, centers = k, nstart = 20)

train_num$cluster_id2 <- factor(km.out2$cluster)
p1 <- ggplot(train_num, aes(Survey.year, all_liquor_violations, color = cluster_id2)) +
    geom_point(alpha = 0.40) +
    xlab("Survey Year") +
    ylab("Liquor Violations") +
    ggtitle("Plot of Clustered Liquor Law Violations by Survey Year") +
    labs(color = "Cluster #")</pre>
```

```
train_num$cluster_id2 <- factor(km.out2$cluster)
p2 <- ggplot(train_num, aes(Institution.Size_all_campus, all_liquor_violations, color = cluster_id2)) +
    geom_point(alpha = 0.40) +
    xlab("Institution Size (Number of Students Enrolled)") +
    ylab("Liquor Violations") +
    ggtitle("Plot of Clustered Liquor Law Violations by Size of Institution") +
    labs(color = "Cluster #")
p1</pre>
```

Plot of Clustered Liquor Law Violations by Survey Year

p2

Plot of Clustered Liquor Law Violations by Size of Institution


```
#grid.arrange(p1, p2, ncol = 2)
```

Clustering with our new dataset

```
alc_2cols1 <- train[ , c("all_liquor_violations", "Institution.Size_all_campus")]</pre>
set.seed(421)
km.out <- kmeans(alc_2cols1, centers = 3, nstart = 20)</pre>
km.out
## K-means clustering with 3 clusters of sizes 536, 97, 326
##
## Cluster means:
  all_liquor_violations Institution.Size_all_campus
         20.76866
                       976.4328
## 1
                      22326.0103
## 2
        380.19588
## 3
         71.97546
                       9736.0583
##
## Clustering vector:
  ##
  ##
```

```
## [260] 3 3 1 1 1 1 1 1 2 3 1 1 1 1 1 3 3 3 1 1 3 1 1 3 1 1 3 1 3 1 1 3 1 1 2 1
## [482] 3 1 3 1 1 1 3 1 1 1 1 1 1 1 3 3 1 3 3 1 3 1 1 1 3 1 3 1 3 1 3 1 3 1 1 1 3 1 1
## [667] 1 1 3 1 1 3 3 1 1 1 3 3 1 1 1 3 3 1 1 1 3 1 1 1 1 1 1 1 1 1 3 1 2 1 3 3 2 3 1 1 3 3
## [889] 3 1 1 3 1 1 3 3 1 1 1 1 1 1 3 3 1 1 1 1 1 1 3 3 3 1 1 3 3 3 3 3 3 3 1 1 1 3 1 3
## Within cluster sum of squares by cluster:
## [1] 801514625 2520528102 2941684316
## (between_SS / total_SS = 87.5 %)
## Available components:
## [1] "cluster"
          "centers"
                 "totss"
                                "tot.withinss"
                         "withinss"
## [6] "betweenss"
          "size"
                 "iter"
                         "ifault"
nclust <- 10
wss <- numeric(nclust)
set.seed(421)
## Looping through different number of clusters
for (i in 1:nclust) {
km.out <- kmeans(alc_2cols1, centers = i, nstart = 20)</pre>
wss[i] <- km.out$tot.withinss
}
## Plotting
wss_df <- tibble(clusters = 1:nclust, wss = wss)</pre>
sc_plot <- ggplot(wss_df, aes(x = clusters, y = wss, group = 1)) +</pre>
geom_point(size = 3) +
geom_line() +
scale_x_continuous(breaks = c(2, 4, 6, 8, 10)) +
scale_y_continuous(labels = scales::comma) +
xlab("Number of Clusters") +
vlab("Within Cluster Sum of Squares") +
ggtitle("Optimal Number of Clusters")
sc_plot +
geom_hline(
 yintercept = wss,
 linetype = 'dashed',
```

```
col = c(rep('black',4),'red', rep('black', 5))
)
```

Optimal Number of Clusters


```
k <- 5

set.seed(421)
km.out <- kmeans(alc_2cols1, centers = k, nstart = 20)

train_num$cluster_id <- factor(km.out$cluster)
ggplot(train_num, aes(Institution.Size_all_campus, all_liquor_violations, color = cluster_id)) +
    geom_point(alpha = 0.40) +
    xlab("Institution Size (Number of Students Enrolled)") +
    ylab("Liquor Violations") +
    ggtitle("Plot of Clustered Liquor Law Violations by Institution Size") +
    labs(color = "Cluster #")</pre>
```


Most Recent Attempt

```
library(cluster)
test_num <- test |> as_tibble() |> select(-where(is.character))
test_num <- test_num[, !names(test_num) %in% c('Unitid_all_campus', 'OPEID_all_campus', 'Campus.ID_all_
cols_test <- train_num[ , c("all_liquor_violations", "Survey.year", "Institution.Size_all_campus")]</pre>
kmTEST <- kmeans(cols_test, centers = k, nstart = 20)</pre>
sil <- silhouette(kmTEST$cluster, dist(train_num))</pre>
## Warning in dist(train_num): NAs introduced by coercion
library(dplyr)
data_frame <- data.frame(sil_width = sil[, "sil_width"],</pre>
                          cluster = sil[, "cluster"])
avg_sil_scores_by_cluster <- data_frame %>%
  group_by(cluster) %>%
  summarise(avg_silhouette = mean(sil_width))
print(avg_sil_scores_by_cluster)
## # A tibble: 5 x 2
     cluster avg_silhouette
```

```
##
       <dbl>
                      <dbl>
## 1
           1
                      0.670
## 2
           2
                      0.836
## 3
           3
                      0.658
           4
                      0.582
## 4
## 5
           5
                      0.643
```

Table 4: Average Silhouette Scores by Cluster

Cluster	Average Silhouette Score
1	0.6702670
2	0.8359748
3	0.6577862
4	0.5818711
5	0.6429205

 \mathbf{x}

```
ggplot(data_frame, aes(x = factor(cluster), y = sil_width, fill = factor(cluster))) +
  geom_boxplot() +
  labs(x = "Cluster", y = "Silhouette Width") +
  theme_minimal()
```


plot(sil, col = 1:5, border = NA)

Average silhouette width: 0.74

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.