Άσκηση 3η

ΣΥΣΤΗΜΑΤΑ ΕΛΕΓΧΟΥ ΚΛΕΙΣΤΟΥ ΒΡΟΧΟΥ ΚΑΙ ΜΑΤLAB

1. Συστήματα ελέγχου κλειστού βρόχου.

<u>Ορισμός συστήματος ελέγχου κλειστού βρόχου</u>: Σύστημα ελέγχου κλειστού βρόχου είναι εκείνο στο οποίο η δράση ελέγχου εξαρτάται και από την έξοδο. Τα συστήματα κλειστού βρόχου ονομάζονται και συστήματα ανάδρασης.

<u>Ορισμός ανάδρασης</u>: Ανάδραση είναι εκείνη η συγκεκριμένη ιδιότητα ενός συστήματος κλειστού βρόχου η οποία επιτρέπει τη σύγκριση της εξόδου του με την είσοδο στο σύστημα, έτσι ώστε η επιθυμητή δράση ελέγχου να αποτελεί συνάρτηση της εξόδου και της εισόδου του συστήματος. Πρέπει να σημειωθεί ότι η έξοδος μπορεί να προέρχεται από κάποια άλλη ελεγχόμενη μεταβλητή και η είσοδος εκτός από το σύστημα μπορεί να επιδρά και σε κάποιο υποσύστημα. Επίσης, η ανάδραση είναι εκείνο το χαρακτηριστικό των συστημάτων ελέγχου κλειστού βρόχου το οποίο τα κάνει να ξεχωρίζουν από τα συστήματα του ανοικτού βρόχου.

2. Συστήματα ελέγχου κλειστού βρόχου και Matlab

Με το Matlab μπορούμε να δηλώσουμε ένα σύστημα κλειστού βρόχου με την εντολή feedback().

Σύνταξη εντολής: Συνολικό σύστημα κλειστού βρόχου = feedback(sys1,sys2,sign) όπου sys1 η συνάρτηση μεταφοράς του συστήματος, sys2 η συνάρτηση μεταφοράς του κλάδου ανάδρασης και sign το πρόσημο του κλάδου ανάδρασης κατά την είσοδο του στο συγκριτή.

Παράδειγμα 1

Να γίνει η δήλωση στο Matlab του συστήματος ελέγχου κλειστού βρόχου με **μοναδιαία αρνητική** ανάδραση.


```
>> a1 = [10];

>> b1 = [1 2 5];

>> sys1 = tf(a1, b1)

>> sys2 = 1

>> sys = feedback(sys1, sys2, -1)  
>> sys1
```

Transfer function:

10

$$s^2 + 2s + 5$$

$$sys2 = 1$$

Transfer function:

10

$$s^2 + 2 s + 15$$

Παράδειγμα 2

Να γίνει η δήλωση στο Matlab του συστήματος ελέγχου κλειστού βρόχου Σχήμα 2.

Όπου
$$G_1(s) = \frac{1}{s+10}$$
 $G_2(s) = \frac{1}{s+1}$ $G_3(s) = \frac{s^2+1}{s^2+4s+4}$ $G_4(s) = \frac{s+1}{s+6}$

Kai
$$H_1(s) = \frac{s+1}{s+2}$$
 $H_2(s) = 2$ $H_3(s) = 1$

Πρέπει να σημειωθεί ότι για τη δήλωση του συστήματος θα κάνουμε μια σειρά από συνεχείς απλοποιήσεις του συστήματος, ώστε να καταλήξουμε στην τελική του μορφή.

Κώδικας Matlab

```
a1 = [1];
b1 = [1 \ 10];
g1 = tf(a1, b1);
a2 = [1];
b2 = [1 \ 1];
g2 = tf(a2, b2);
a3 = [1 \ 0 \ 1];
b3 = [1 4 4];
g3 = tf(a3, b3);
a4 = [1 \ 1];
b4 = [1 6];
g4 = tf(a4, b4);
a5 = [1 \ 1];
b5 = [1 \ 2];
h1 = tf(a5, b5);
h2 = 2;
h3 = 1;
sys1 = h2/g4;
sys2 = series(g3, g4);
sys3 = feedback(sys2, h1, +1);
sys4 = series(sys3, g2);
sys5 = feedback(sys4, sys1, -1);
sys6 = series(g1, sys5);
sys = feedback(sys6, h3, -1);
sys
```

Αποτέλεσμα

Transfer function:

$$s^5 + 4 s^4 + 6 s^3 + 6 s^2 + 5 s + 2$$

 $12 \text{ s}^6 + 205 \text{ s}^5 + 1066 \text{ s}^4 + 2517 \text{ s}^3 + 3128 \text{ s}^2 + 2196\text{s} + 712$

Πρακτικό Άσκησης 3

Ασκηση 1

- α) Βρείτε τη Συνάρτηση Μεταφοράς του συστήματος που δίνεται παρακάτω με αρνητική και θετική ανάδραση και δείτε τη διαφορά.
- β) Βρείτε τη Συνάρτηση Μεταφοράς των συστημάτων με το κλασικό τρόπο.

- α) Βρείτε τη Συνάρτηση Μεταφοράς κλειστού βρόχου του συστήματος που δίνεται παρακάτω.
- β) Βρείτε τη Συνάρτηση Μεταφοράς του συστήματος με το κλασικό τρόπο.

Άσκηση 3

- α) Βρείτε τη Συνάρτηση Μεταφοράς κλειστού βρόχου του συστήματος που δίνεται παρακάτω.
- β) Βρείτε τη Συνάρτηση Μεταφοράς του συστήματος με το κλασικό τρόπο.

