L1 with Shape Constraints

```
In[1506]:= x = 0; Remove["Global`*"]; DateList[Date[]] // Most
Out[1506]= {2020, 4, 29, 20, 47}
```

Log utility and C-D production

We analyze the discrete-time growth model with Cobb-Douglas production function and quadratic utility.

We choose parameters so that the steady state is k=1.

```
[n[1507]:= \beta = 95/100; \alpha = 1/4; ftrue[x_] = x + A x^{\alpha};

A=(1-\beta)/(\alpha \beta); kss=1; css = ftrue[1]-1;

We choose the log utility function
```

```
In[1509]:= utrue[x_] = Log[x];
```

Choose production and utility function

$$In[1510] = f[x_] = ftrue[x]; \quad u[c_] = utrue[c];$$

$$Define Euler equation error function$$

$$In[1511] = Eulerf[x_] = u'[cf[x]] - \beta u'[cf[f[x] - cf[x]]] \times f'[f[x] - cf[x]]$$

$$Out[1511] = \frac{1}{cf[x]} - \frac{19\left(1 + \frac{1}{19\left(\frac{4x^{1/4}}{19} + x - cf[x]\right)^{3/4}\right)}{20 cf\left[\frac{4x^{1/4}}{19} + x - cf[x]\right]}$$

Choose domain, approximation, and nodes

Set the range over which we solve the problem

```
ln[1512] = xmin = .2; xmax = 2.0;
                                           Choose approximation
  In[1513]:= degreecf = 9;
                                           cf[x_] = Sum[a[i] x^i, {i, 0, degreecf}];
                                           Choose approximation nodes
  In[1515]:= numpts = 17;
                                           delx = (xmax - xmin) / (numpts - 1);
                                            nodes = Table[x, {x, xmin, xmax, delx}]
Out[1517] = \{0.2, 0.3125, 0.425, 0.5375, 0.65, 0.7625, 0.875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875, 0.9875
                                                   1.1, 1.2125, 1.325, 1.4375, 1.55, 1.6625, 1.775, 1.8875, 2.
```

Display the Euler equation error function (don't look too closely; it is ugly)

In[1518]:= Eulerf[x];

Create the optimization problem

Create simple initial guess for a

The following creates an initial guess for the a[i] coefficients that is zero at k=0, and is css at k=1

```
ln[1519]:= varsa = Variables[cf[7^{1/7}]]
Out[1519] = \{a[0], a[1], a[2], a[3], a[4], a[5], a[6], a[7], a[8], a[9]\}
In[1520]:= inita = Table[0, {Length[varsa]}];
       inita[[2]] = css // N;
       vvarsa = {varsa, inita} // Transpose
Out[1522]= \{\{a[0], 0\}, \{a[1], 0.210526\}, \{a[2], 0\}, \{a[3], 0\}, 
         \{a[4], 0\}, \{a[5], 0\}, \{a[6], 0\}, \{a[7], 0\}, \{a[8], 0\}, \{a[9], 0\}\}
```

vvarsa is the list of variables and initial conditions we feed to the optimizer.

Replace equations with upper and lower bounds

If we pursued a nonlinear equation approach, we would try to solve the equation

```
Eulerf[k] = 0
```

for all k in the set of approximation nodes.

We do not do that because we may have more nodes than a[i] coefficients. Also, we want to add conditions to steer the solution in the right direction.

We replace the Euler equations with lower and upper bounds

```
|n|_{1523} EulerBnds = Table [-\lambda 1] [i] \le Eulerf[nodes[[i]]] \le \lambda u[i], \{i, 1, Length[nodes]\};
       We constrain the \lambda's to be nonnegative
```

```
ln[1524] = \lambda bnds = Table[{\lambda l[i] \ge 0, \lambda u[i] \ge 0}, {i, 1, Length[nodes]}];
```

We want to create an optimization problem that pushes all the bounds as close to zero as possible.

Define the objective in terms of the bounds

Our objective is the sum of the magnitude of the bounds (now you see why the λ 's must be nonnegative).

```
ln[1525]:= fitobj = Sum[\lambdal[i] + \lambdau[i], {i, 1, Length[nodes]}];
```

Our initial guesses for the λ 's are numbers that are large enough so that all the Euler equation error bounds are true at the initial guess.

```
In[1526]:= varsλ = Variables[fitobj];
         init\lambda = Table[100000, \{Length[vars\lambda]\}];
         vvars\lambda = \{vars\lambda, init\lambda\} // Transpose
Out[1528]= \{\{\lambda [1], 100000\}, \{\lambda [2], 100000\}, \{\lambda [3], 100000\}, 
           \{\lambda [4], 100000\}, \{\lambda [5], 100000\}, \{\lambda [6], 100000\}, \{\lambda [7], 100000\},
           \{\lambda [8], 100000\}, \{\lambda [9], 100000\}, \{\lambda [10], 100000\}, \{\lambda [11], 100000\},
           \{\lambda | [12], 100000\}, \{\lambda | [13], 100000\}, \{\lambda | [14], 100000\},
           \{\lambda | [15], 100000\}, \{\lambda | [16], 100000\}, \{\lambda | [17], 100000\}, \{\lambda | [1], 100000\},
           \{\lambda u[2], 100000\}, \{\lambda u[3], 100000\}, \{\lambda u[4], 100000\}, \{\lambda u[5], 100000\},
           \{\lambda u[6], 100000\}, \{\lambda u[7], 100000\}, \{\lambda u[8], 100000\}, \{\lambda u[9], 100000\},
           \{\lambda u[10], 100000\}, \{\lambda u[11], 100000\}, \{\lambda u[12], 100000\}, \{\lambda u[13], 100000\},
           \{\lambda u[14], 100000\}, \{\lambda u[15], 100000\}, \{\lambda u[16], 100000\}, \{\lambda u[17], 100000\}\}
```

Add shape constraints

We impose the requirement that there is positive savings at xmin and negative savings at xmax.

```
ln(1529) = consbnd = \{f[xmax] \ge cf[xmax] \ge f[xmax] - xmax, 0 \le cf[xmin] \le f[xmin] - xmin\};
      Impose monotonicity at the approximation nodes
In[1530]:= ConsMono = Table[cf'[nodes[[i]]] ≥ 0, {i, 1, Length[nodes]}];
```

Collect all variables and constraints

Collect all variables

```
In[1531]:= vars = Union[vvarsa, vvarsλ];
      Collect all constraints
In[1532]:= Constraints = Union[λbnds, ConsMono, EulerBnds, consbnd] // Flatten;
```

Solve

Solve the optimization problem

```
In[1533]:= {errsum, sola} = FindMinimum[{fitobj, Constraints}, vars]
Out[1533]= \{0.000340554, \{a[0] \rightarrow 0.0428438, a[1] \rightarrow 0.348768, a[2] \rightarrow -0.605764, a[2] \}
                a[3] \rightarrow 1.15677, a[4] \rightarrow -1.55843, a[5] \rightarrow 1.41578, a[6] \rightarrow -0.844387.
                a[7] \rightarrow 0.315808, \ a[8] \rightarrow -0.0670288, \ a[9] \rightarrow 0.00615191, \ \lambda l[1] \rightarrow 1.76841 \times 10^{-7}.
                \lambda l[2] \rightarrow 1.33367 \times 10^{-7}, \lambda l[3] \rightarrow 1.40437 \times 10^{-6}, \lambda l[4] \rightarrow 8.09838 \times 10^{-8},
                \lambda l[5] \rightarrow 1.33705 \times 10^{-7}, \lambda l[6] \rightarrow 0.0000513749, \lambda l[7] \rightarrow 3.78552 \times 10^{-7},
                \lambda l[8] \rightarrow 8.10743 \times 10^{-8}, \lambda l[9] \rightarrow 8.11184 \times 10^{-8}, \lambda l[10] \rightarrow 3.53446 \times 10^{-6},
                \lambda [[11] \rightarrow 0.0000217609, \lambda [[12] \rightarrow 1.18514 \times 10^{-7}, \lambda [[13] \rightarrow 8.12917 \times 10^{-8},
                \lambda [14] \rightarrow 1.98148 \times 10^{-7}, \lambda [15] \rightarrow 0.0000362548, \lambda [16] \rightarrow 9.65944 \times 10^{-8},
                \lambda [17] \rightarrow 2.03279 \times 10^{-7}, \lambda [1] \rightarrow 1.67058 \times 10^{-7}, \lambda [2] \rightarrow 2.38453 \times 10^{-7},
                \lambda u[3] \rightarrow 8.71537 \times 10^{-8}, \lambda u[4] \rightarrow 0.000110718, \lambda u[5] \rightarrow 2.37445 \times 10^{-7},
                \lambda u[6] \rightarrow 8.10702 \times 10^{-8}, \lambda u[7] \rightarrow 1.08675 \times 10^{-7}, \lambda u[8] \rightarrow 0.0000501108,
                \lambda u[9] \rightarrow 0.0000395757, \lambda u[10] \rightarrow 8.33016 \times 10^{-8}, \lambda u[11] \rightarrow 8.12903 \times 10^{-8},
                \lambda u[12] \rightarrow 3.00678 \times 10^{-7}, \lambda u[13] \rightarrow 0.000021683, \lambda u[14] \rightarrow 1.51401 \times 10^{-7},
                \lambda u[15] \rightarrow 8.11376 \times 10^{-8}, \lambda u[16] \rightarrow 6.07801 \times 10^{-7}, \lambda u[17] \rightarrow 1.48446 \times 10^{-7} \}
```

Verify solution quality

Check the constraints

```
In[1534]:= consbnd /. sola
Out[1534]= {True, True}

In[1535]:= EulerBnds /. sola
Out[1535]= {True, True, True
```

Define consumption function implied by the solution

$$In[1537]:= csol[x] = cf[x] /. sola$$

Plot the Euler equation errors normalized by u'[css]

Summary

Plot consumption and savings functions

In[1540]:= {Plot[csol[x], {x, xmin, xmax}], Plot[f[x] - x - csol[x], {x, xmin, xmax}]}

Lessons

Should use constrained optimization

Must worry about shape

Must keep optimization problems well-conditioned