Système éclipse ★

C2-04

Pas de corrigé pour cet exercice.

Le schéma-blocs sous la forme suivante avec un gain unitaire pour le capteur de vitesse.

$$H_L(p) = \frac{K_L}{1 + \tau_L p}$$
 et $H_G(p) = \frac{K_G}{1 + \tau_G p}$ avec $\tau_G = \tau_L = 20$ ms, $K_L = 1 \times 10^{-3}$ N⁻¹s⁻¹ et $K_G = 2 \times 10^{-5}$ mN⁻¹s⁻¹.

Le cahier des charges donne les valeurs des critères d'appréciation adoptés :

- ▶ la précision : en régime permanent à vitesse constante, soit $\varepsilon_S = 0$ et à accélération constante, soit $\varepsilon_T = 0$; ε_S désigne l'erreur statique de position et ε_T l'erreur statique de vitesse ou erreur de traînage;
- ▶ la rapidité : le temps de réponse à 5 % tel que : $t_{R5\%} \le 1 \text{ s}$;
- ▶ la stabilité : marge de phase ≥ 45 ° et marge de gain ≥ 10 dB.

On considère que le système n'est pas perturbé et que $T_G(p) = 0$. On choisit tout d'abord une correction intégrale telle que $C_V(p) = \frac{K_i}{p}$.

Question 1 Le cahier des charges est-il respecté en terme de précision?

Question 2 Calculer numériquement le temps de réponse à 5 % optimal obtenu avec cette correction. Préciser la valeur de K_i permettant d'obtenir ce temps de réponse

Question 3 Tracer l'allure du diagramme de Bode de la FTBO corrigée avec ce correcteur.

Question 4 Indiquer la marge de phase.

Question 5 Calculer la valeur de K_i limite assurant le cahier des charges en terme de marge de phase.

Question 6 Vérifier cette valeur en vous aidant du diagramme de Bode partiel de la fonction $C_V(p).H_L(p)$, donné ci-dessous pour la valeur particulière : $K_i = 7000$.

Question 7 Que pensez vous de cette valeur, vis-à-vis du comportement du système, comparée à celle trouvée précédemment.

Question 8 Un correcteur de type $C_V(p) = \frac{K_i}{p^2}$, permettrait-il d'obtenir les performances attendues en terme de précision et pourquoi?

Question 9 Permet-il d'assurer la stabilité du système et pourquoi?

Corrigé voir .

