Logistic regression

Model fit & Exploratory data analysis

Dr. Maria Tackett

10.30.19

Click for PDF of slides

Announcements

- Reading 10 for Monday
- Project Proposal due TODAY at 11:59p
- <u>Electronic Undergraduate Research Conference</u>

Packages

```
library(tidyverse)
library(knitr)
library(broom)
library(pROC) #ROC curves
```


Risk of coronary heart disease

This data is from an ongoing cardiovascular study on residents of the town of Framingham, Massachusetts. The goal is to predict whether a patient has a 10-year risk of future coronary heart disease.

Response:

TenYearCHD:

- 0 = Patient doesn't have 10-year risk of future coronary heart disease
- 1 = Patient has 10-year risk of future coronary heart disease

Predictor:

- **age**: Age at exam time.
- currentSmoker: 0 = nonsmoker; 1 = smoker
- totChol: total cholesterol (mg/dL)

Logistic Regression Model

- Suppose $P(Y_i = 1 | X_i) = p_i$ and $P(Y_i = 0 | X_i) = 1 p_i$
- The logistic regression model is

$$\log\left(\frac{p_i}{1 - p_i}\right) = \beta_0 + \beta_1 X_i$$

■ $\log\left(\frac{p_i}{1-p_i}\right)$ is called the **logit** function

Modeling risk of coronary heart disease

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-2.111	0.077	-27.519	0.000	-2.264	-1.963
ageCent	0.081	0.006	13.477	0.000	0.070	0.093
currentSmoker1	0.447	0.099	4.537	0.000	0.255	0.641
totCholCent	0.003	0.001	2.339	0.019	0.000	0.005

Logistic Regression Model

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 X_i$$

• We can calculate p_i by solving the logit equation:

$$p_{i} = \frac{\exp\{\beta_{0} + \beta_{1}X_{i}\}}{1 + \exp\{\beta_{0} + \beta_{1}X_{i}\}}$$

ROC Curve

- Receiver Operating Characteristic (ROC) curve:
 - *X-axis*: 1 specificity
 - *Y-axis*: Sensitivity
- Evaluated with a lot of different values for the threshold
- Logistic model fits well if the area under the curve (AUC) is close to 1
- ROC in R
 - Use the roc function in the pROC to calculate AUC
 - Use geom_roc layer in ggplot to plot the ROC curve

ROC Curve

.small[

[1] 0.6972743

Not useful: Raw residuals vs. predicted

■ Include type.residuals = "response" in the augment function to get the raw residuals.

$$e_i = Y_i - \hat{p}_i$$

Binned Residuals

It is not useful to plot the raw residuals, so we will examine binned residual plots

When examining binned residuals

- Look for patterns
- Nonlinear trend may be indication that squared term or log transformation of predictor variable required
- If bins have average residuals with large magnitude
 - Look at averages of other predictor variables across bins
 - Interaction may be required if large magnitude residuals correspond to certain combinations of predictor variables

Binned plot vs. predicted values

- Use the binnedplot function in the arm package.
 - Tip: Don't load the **arm** package to avoid conflicts with tidyverse

Binned Residual vs. Predicted Values

Making binned residual plot

- Calculate raw residuals
- Order observations either by the values of the predicted probabilities (or by numeric predictor variable)
- Use the ordered data to create g bins of approximately equal size. Default value: $g = \sqrt{n}$
- Calculate average residual value in each bin
- Plot average residuals vs. average predicted probability (or average predictor value)

Residuals vs. Age

Make binned plot with predictor on x axis

Binned Residual vs. Age

Residuals vs. totChol

Binned Residual vs. Total Cholesterol

Residuals vs. categorical predictors

- Calculate average residual for each level of the predictor
 - Are all means close to 0? If not, there is a problem with model fit.

Residuals

Let's look at the binned residuals versus AgeCent separately for those who currently smoke and those who do not

Current Smokers: Binned Residuals vs. Age

Current Non-Smokers: Binned Residuals vs. Age

Model with interaction term

term	estimate	std.error	statistic	p.value	conf.low	conf.high
(Intercept)	-2.159	0.088	-24.498	0.000	-2.337	-1.992
ageCent	0.090	0.009	9.988	0.000	0.072	0.107
totCholCent	0.002	0.001	2.293	0.022	0.000	0.005
currentSmoker1	0.507	0.111	4.570	0.000	0.292	0.727
ageCent:currentSmoker1	-0.015	0.012	-1.241	0.215	-0.039	0.009

- 1. What is the effect of age on the odds of being at risk of heart disease for smokers?
- 2. What is the effect of age on the odds of being at risk of heart disease for non-smokers?
- 3. Is the effect of age on being at risk of heart disease significantly different for the two groups?

Binned residuals

Binned Residuals vs. Predicted Probability

Residuals vs. quantitative predictor

arm::binnedplot(x=risk_m_int_aug\$ageCent,y=risk_m_int_aug\$.resid,>

Binned Residuals vs. Age

Residuals vs. categorical predictor

Binned Residuals vs. Age: Smokers vs. Non-Smokers

Smokers: Binned Residuals vs. Age

Non-Smokers: Binned Residuals vs. Age

Binned Residuals vs. total cholesterol

Binned Residuals vs. Total Cholesterol

Exploratory Data Analysis

Exploratory Data Analysis

Categorical predictors:

- Examine the percentage of y = 1 for each level (category)
- You can visualize using a stacked bar chart

Quantitative predictors:

- Use side-by-side boxplots to examine the distribution of the predictor for each level of the response
- Use binned plots to examine how the probability of y=1 changes as the predictor increases

EDA: TenYearCHD vs. Age

EDA: TenYearCHD vs. totChol

TenYearCHD vs. currentSmoker

```
ggplot(data = heart_data, aes(x = currentSmoker, fill = as.factore
geom_bar(position = "fill") +
labs(y = "Proportion",
    fill = "At Risk of Heart Disease",
    title = "Risk of Heart Disease vs. Smoking Status")
```


Drop-in-deviance test

Comparing Nested Models

- Suppose there are two models:
 - Model 1 includes predictors x_1, \dots, x_q
 - Model 2 includes predictors $x_1, \ldots, x_q, x_{q+1}, \ldots, x_p$
- We want to test the hypotheses

$$H_0: \beta_{q+1} = \dots = \beta_p = 0$$

$$H_a$$
: at least 1 β_j is not0

- We used a Nested F Test to compare two nested models in linear regression
- We will use the **drop-in-deviance test** in logistic regression

Deviance residual

- The **deviance residual** is the a measure of how much the observed data differs from what is measured using the likelihood ratio
- The deviance residual for the i^{th} observation is

$$d_i = \operatorname{sign}(Y_i - \hat{p}_i) \sqrt{2 \left[Y_i \log \left(\frac{Y_i}{p_i} \right) + (1 - Y_i) \log \left(\frac{1 - Y_i}{1 - \hat{p}_i} \right) \right]}$$

where $sign(Y_i - \hat{p}_i)$ is positive when $Y_1 = 1$ and negative when $Y_i = 0$.

Drop-in-Deviance Test

- The deviance statistic for Model k is $D_k = \sum_{i=1}^n d_i^2$
- To test the hypotheses

$$H_0: \beta_{q+1} = \dots = \beta_p = 0$$

 H_a : at least 1 β_j is not0

the drop-in-deviance statistic is $D_1 - D_2$

■ When the sample size is large, the drop-in-deviance statistic has an approximately Chi-squared distribution with degrees of freedom equal to the difference in number of predictor variables in Model 1 and Model 2

Should we add **Education** to the model?

- Suppose
 - Model 1 includes AgeCent, currentSmoker, totCholCent
 - Model 2 includes AgeCent, currentSmoker, totCholCent, education (categorical)

```
# Deviances
(dev_model1 <- glance(model1)$deviance)</pre>
```

```
## [1] 2894.989
```


(dev_model2 <- glance(model2)\$deviance)</pre>

Should we add education to the model?

```
# Drop-in-deviance test statistic
(test_stat <- dev_model1 - dev_model2)

## [1] 7.783615

# p-value
1 - pchisq(test_stat, 3) #3 = number of new model terms in model2

## [1] 0.05070196</pre>
```


Should we add **Education** to the model?

- We can use the **anova** function to conduct this test
 - Add test = "Chisq" to conduct the drop-in-deviance test

Appex: Framingham Study

- We will analyze data from a cardiovascular study on residents in Framingham, MA
- **Goal**: Predict whether or not a participant has a 10-year risk of future coronary heart disease
- Original data contains information from 4,000+ participants. We will use 500 for this analysis.

