Date 1110012023 0010010000

88842

GTA Name Merritt

Lab 10: Rotational Motion PHYS 2305

Pre-lab Assignment

Question Pre-1: What is the moment of inertia of the ring in Figure 10. 1 with total mass M, inner radius R_1 , and outer radius R_2 rotating about the axis shown?

$$I = \frac{1}{2} M \left(R_1^2 \cdot R_2^2 \right)$$

Figure 10. 1

Question Pre-2: The disk in Figure 10. 2 has total mass M and radius R and is initially at rest. You apply a net torque $\Sigma \vec{\tau}$ to it, which causes the disk to start rotating about the axis shown. What is the angular acceleration of the disk?

Since
$$I = (\frac{1}{2}mR^2) a$$

$$\alpha = \frac{2T}{MR^2}$$

Figure 10. 2

Question Pre-3: Refer to Section 1.1. In Figure 10. 3, everything is initially at rest. The hanging mass has a mass M and the rotational platform has a moment of inertia I. The hanging mass is then released, causing the platform to rotate. After some time, the mass has fallen through a distance h. At this time, the hanging mass is falling with speed v, and the platform has an angular speed ω .

In terms of the quantities given in this problem, write an expression that relates the total kinetic energy of the rotating platform + falling mass to the gravitational potential energy of the mass.

Rotational
$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1$

Question Pre-4: An object with a moment of inertia I_1 is rotating at a constant angular velocity $\vec{\omega}_1$. Another second object with a moment of inertia I_2 is dropped from rest on the first object, and then both objects rotate together. What is the angular velocity of both objects after the collision?

$$T_{1}\omega_{1} = T_{2}\omega_{2}$$

$$T_{1}\widetilde{\omega}_{1} = (T_{1}+T_{2})\widetilde{\omega}_{2}$$

$$T_{2}\widetilde{\omega}_{2} = T_{1}\widetilde{\omega}_{3}$$

$$T_{3}\widetilde{\omega}_{4} = T_{2}\widetilde{\omega}_{3}$$