Conceitos Preliminares

Teoria da Computação – Ciência da Computação

Prof. Daniel Saad Nogueira Nunes

Sumário

Noções Matemáticas

Lógica

Noções Matemáticas

- ► Antes de iniciar o nosso estudo em TC, precisamos revisar e abordar conceitos matemáticos básicos.
- Notações e ferramentas que vamos usar.

Sumário

Noções Matemáticas

Conjuntos

Sequências e Tuplas

Funções

Relaçõe

Grafos

Linguagens e Cadeias

Conjuntos

Conjuntos

- Um conjunto é um grupo de objetos representado como uma unidade.
- Conjuntos podem ter objetos de tipos variados: números, símbolos, pessoas, . . .
- Objetos que estão em um conjunto são denominados de elementos.
- Uma forma de descrever quais elementos estão em um conjunto é utilizar a notação de chaves:

$$\{7, 21, 57\}$$

Conjuntos

Notação (Pertinência)

- Os símbolos ∈ e ∉ são utilizados para denotar pertinência e não-pertinência de elementos em conjuntos.
- \triangleright Ex: $7 \in \{7, 21, 57\}$.
- \triangleright Ex: $8 \notin \{7, 21, 57\}$

Conjuntos

Notação (⊆)

- Dizemos que um conjunto A está contido em um conjunto B, se todo o elemento de A está em B.
- ightharpoonup Representamos por $A \subseteq B$.

Conjuntos

Notação (Igualdade)

- Dois conjuntos A e B são iguais se todo o elemento de A está em B e vice-versa.
- ightharpoonup Em outras palavras, A=B, sse, $A\subseteq B$ e $B\subseteq A$.

Conjuntos

Notação (⊊)

- Dizemos que um conjunto A está propriamente contido em um conjunto B, se todo o elemento de A está em B, mas B não é igual a A.
- ightharpoonup Representamos por $A \subsetneq B$.

Conjuntos

Notação (Ø)

- O conjunto vazio é aquele que não possui elementos.
- ► Representado por ∅.

Conjuntos

- A ordem na descrição não importa.
- Repetições também são ignoradas. Conjuntos são indistinguíveis considerando repetições.
- ightharpoonup Ex: $\{1,2,3\} = \{3,2,1\}.$
- ightharpoonup Ex: $\{1, 1, 1, 1, 2, 3, 4\} = \{1, 2, 3, 4\}.$
- Multiconjuntos: levam em consideração repetições.

Conjuntos

Definição (Cardinalidade)

- A cardinalidade corresponde ao número de elementos que um conjunto possui.
- ightharpoonup Denotamos por |A|.
- ightharpoonup Em especial $|\emptyset| = 0$.

Conjuntos

- Alguns conjuntos são finitos.
- ► Alguns conjuntos são infinitos.
- ightharpoonup Ex: $|\{1,2,3,4\}|=4$.
- ightharpoonup Ex: $\mathbb{N} = \{1, 2, 3, \ldots\}$ é infinito.
- ▶ Ex: $\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\}$ é infinito.
- ► Ex: R é infinito.
- ▶ Curiosidade: $|\mathbb{R}| > |\mathbb{Z}| = |\mathbb{N}|$.

Conjuntos

- Outra maneira de definir conjuntos, é colocando uma propriedade sobre os elementos.
- ▶ Conjunto dos pares: $P = \{x | x = 2y \text{ com } y \in \mathbb{Z}\}$
- ▶ Conjunto dos ímpares: $I = \{x | x = 2y + 1 \text{ com } y \in \mathbb{Z}\}$
- ► Conjunto dos primos: $\Pi = \{x | x \in \mathbb{N} \land x > 1 \land \neg \exists y (1 < y < x \land x \mod y = 0)\}$

Conjuntos

Definição (União)

A união de dois conjuntos A e B corresponde a $C = \{x | x \in A \text{ ou } x \in B\}$.

A união de conjuntos é representada através do símbolo ∪

- ightharpoonup Exemplo $\{1,2\} \cup \{2,3\} = \{1,2,3\}.$
- ightharpoonup Em especial $A \cup \emptyset = A$.

Conjuntos

Definição (Interseção)

A interseção de dois conjuntos A e B corresponde a $C = \{x | x \in A \text{ e } x \in B\}$.

A interseção de conjuntos é representada através do símbolo \cap .

- ► Exemplo $\{1,2\} \cap \{2,3\} = \{2\}.$
- ightharpoonup Em especial $A \cap \emptyset = \emptyset$.

Conjuntos

Definição (Complemento)

O complemento de um conjunto A é outro conjunto cujos elementos em consideração são exatamente aqueles que não estão em A.

Denotamos o complemento de A por \bar{A} .

Conjuntos

Definição (Produto Cartesiano)

Se A e B são conjuntos, o produto cartesiano de A por B é dado por:

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

Conjuntos

Conjuntos

Conjuntos

Notação (Produto Cartesiano)

$$\underbrace{A \times A \times A \dots A}_{k} = A^{k}$$

- ightharpoonup Ex: \mathbb{R}^2 , o plano cartesiano.
- ightharpoonup Ex: \mathbb{R}^3 , espaço tridimensional.
- ightharpoonup Ex: \mathbb{R}^n .
- $\blacktriangleright \ \mathsf{Ex:} \ \mathbb{N}^2 = \{(1,1), (1,2) \dots (2,1), (2,2) \dots \}$

Conjuntos

Definição (Partes de um Conjunto)

As partes de um cojunto A, denotada por $\mathcal{P}(A)$, corresponde ao conjunto dos subconjuntos de A.

Se
$$|A| = n$$
, então $|\mathcal{P}(A)| = 2^n$

 $\qquad \qquad \mathsf{Ex:} \ \mathcal{P}(\{1,2,3\}) = \{\emptyset,\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Sumário

Noções Matemáticas

Conjuntos

Sequências e Tuplas

Funções

Relaçõe

Grafos

Linguagens e Cadeias

Sequências e Tuplas

Definição (Sequências)

Sequências de objetos são listas destes objetos. Diferentemente dos conjuntos, a ordem aqui importa, bem como as repetições.

Sequências e Tuplas

- ightharpoonup Ex: F = (1, 1, 2, 3, 5, 8, ...).
- ightharpoonup Ex: $\Pi' = (2, 3, 5, 7, 11, ...).$
- ightharpoonup Ex: $(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) \neq (1)$.

Sequências e Tuplas

Notação

Tuplas Uma sequência de k elementos é denominado uma k-tupla.

- ► Ex: (7,21,57) é uma tripla.
- ► Ex: (1,4) é um par.
- ightharpoonup Ex: (1,5,3,4,7,8,1) é uma 7-tupla.

Sumário

Noções Matemáticas

Conjuntos

Sequências e Tuplas

Funções

Relações

Grafos

Linguagens e Cadeias

Funções

Funções

Funções são objetos matemáticos que mapeia elementos de um conjunto em outro.

Se f mapeia elementos de D em CD, denotamos por:

$$f:D\to CD$$

D é chamado de domínio e CD é chamado de contradomínio.

Para ser uma função, cada elemento de ${\cal D}$ deve ter exatamente 1 mapeamento.

Funções

- ightharpoonup Ex: $f(x): \mathbb{N} \to \mathbb{N}$ com $x \mapsto x^2$. Então f(2)=4, f(3)=9, f(20)=400.
- ightharpoonup Ex: $+: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ com $(x,y) \mapsto x$ mais y. Então +(2,2) = 4, +(1,5) = 6.

Funções

Definição

Funções Injetoras

- Se $x \neq y \rightarrow f(x) \neq f(y)$ a função é dita injetora.
- Ou seja, elementos diferentes do domínio são mapeados em elementos diferentes no contradomínio.

Funções

Definição

Funções Sobrejetoras

- Seja $f: D \to CD$ e o conjunto imagem $I = \{f(x), x \in D\}$.
- f é dita sobrejetora quando |I| = |CD|, ou seja, todos os elementos do contradomínio foram mapeados.

Funções

Definição

Funções Bijetoras São aquelas que são Injetoras e Sobrejetoras.

Mapeamento um para um.

Sumário

Noções Matemáticas

Conjuntos

Sequências e Tuplas

Funções

Relações

Grafos

Linguagens e Cadeias

Relações

Definição (Relações)

Uma relação ou predicado é um subconjunto de algum conjunto com alguma propriedade específica.

Relações

- $\blacktriangleright \ \, \mathsf{Exemplos} \colon \, P \subseteq \mathbb{N} \,\, \mathsf{e} \,\, P := \{x | x \,\, \mathsf{\acute{e}} \,\, \mathsf{par}\}.$
- $\blacktriangleright <\subseteq \mathbb{N} \times \mathbb{N} \text{ e} <:= \{(a,b)|a < b\}.$

Relações

Notação

Relações Se R é uma relação e $x \in R$, dizemos que x vale, x é verdadeiro ou simplesmente x tem a propriedade R.

Relações

Sumário

Noções Matemáticas

Conjuntos

Sequências e Tuplas

Funções

Relações

Grafos

Linguagens e Cadeias

Grafo Simples

Definição (Grafo simples)

Um grafo simples, é uma dupla G=(V,E) sendo V o conjunto de vértices e $E\subseteq\{\{u,v\}\,|u,v\in V,u\neq v\}$ as arestas.

Grafos

Grafos

Neste exemplo temos:

$$V = \{0, 1, 2, \dots, 13\}$$

е

$$E = \left\{ \begin{array}{l} \left\{0,1\right\}, \left\{0,2\right\}, \left\{1,4\right\}, \left\{4,5\right\}, \left\{5,2\right\}, \left\{2,3\right\}, \left\{3,6\right\}, \left\{6,9\right\}, \\ \left\{9,8\right\}, \left\{9,11\right\}, \left\{8,10\right\}, \left\{10,12\right\}, \left\{12,13\right\}, \left\{13,11\right\}, \left\{10,7\right\} \end{array} \right\} \right.$$

Grafos

Definição (Subgrafo)

$$G'=(V',E')$$
 é um subgrafo de $G=(V,E)$, quando $V'\subseteq V$ e $E'\subseteq E$.

Grafos

Grafos

- Grafos também podem ser direcionados.
- ▶ Neste caso, a orientação das arestas faz diferença.

Grafos

Definição (Grafo direcionado)

Um grafo direcionado, é uma dupla G=(V,E) sendo V o conjunto de vértices e $E\subseteq V^2$ o conjunto de arestas.

Grafos

Grafos

Neste exemplo temos:

$$V = \{2, 3, 5, 7, 8, 9, 10, 11\}$$

е

$$E = \left\{ \begin{array}{l} (5,11), (11,2), (11,10), (3,10), \\ (3,8), (8,9), (11,9), (7,11), (7,8) \end{array} \right\}$$

Grafos

- Modelam vários problemas práticos.
- ► Teoria dos grafos estuda estes objetos.

Sumário

Noções Matemáticas

Conjuntos

Sequências e Tuplas

Funções

Relaçõe

Grafos

Linguagens e Cadeias

Linguagens e Cadeias

Definição (Alfabeto)

Um alfabeto é qualquer conjunto não vazio e finito de símbolos.

- ▶ Ex: $\Sigma = \{0, 1\}$.
- $\blacktriangleright \ \mathsf{Ex:} \ \Sigma = \{a, \dots, z, A, \dots, Z\}.$
- ightharpoonup Ex: Γ = {0, 1, x, y, z}.

Linguagens e Cadeias

Definição (Cadeias, Palavras ou Strings)

Cadeias, palavras ou strings são sequências finitas de símbolos de alfabetos.

- ▶ Supondo $\Sigma = \{0, 1\}$, então w = 01101101 é uma cadeia válida.
- Suponho $\Sigma = \{a, \dots, z\}$, então w = abracadabra é uma cadeia válida.

Linguagens e Cadeias

Notação (Tamanho de Cadeias)

Seja $w = w_1 w_2 w_3 \dots w_n$ uma cadeia sobre o alfabeto Σ . Denotamos |w| = n como o tamanho de n.

Em particular, a cadeia vazia, ε , tem tamanho $|\varepsilon| = 0$.

Linguagens e Cadeias

Notação (Concatenação)

Suponha cadeias $x=x_1x_2...x_n$ e $y=y_1y_2...y_m$ sobre o alfabeto Σ . $xy=x_1x_2...x_ny_1y_2...y_m$ denota a concatenação de x com y.

Em especial
$$\underbrace{xxx\dots x}_k = x^k$$
.

Linguagens e Cadeias

Notação (Inverso)

Seja $w=w_1w_2\ldots w_n$ uma cadeia sobre o alfabeto $\Sigma.$ $w^R=w_nw_{n-1}\ldots w_1$ denota o inverso de w.

Linguagens e Cadeias

Definição (Ordem lexicográfica)

A ordem lexicográfica de cadeias da precedência para cadeias menores, e em caso de empate, segue-se a ordem do dicionário.

Para $\Sigma = \{0,1\}$, a ordem lexicográfica sobre todas as palavras sobre o alfabeto Σ é:

$$(\varepsilon, 0, 1, 00, 01, 10, 11, 000, \ldots)$$

Linguagens e Cadeias

Definição (Linguagem)

 ${\it Uma\ linguagem\ } L$ é um conjunto de palavras.

- ightharpoonup Ex: $L_1 = \{ww^R | \text{ w \'e uma cadeia sobre } \Sigma\}$
- ▶ Ex: $L_2 = \{w | w = w^R\}$

Linguagens e Cadeias

Notação (Σ^*)

 Σ^* é a linguagem formada por todas as cadeias sobre o alfabeto Σ .

- ▶ Para $\Sigma = \{0,1\}$, $\Sigma^* = \{\varepsilon, 0, 1, 00, 01, 10, 11, \ldots\}$.
- $\qquad \qquad \text{Para } \Sigma = \{A,C,G,T\}, \ \Sigma^* = \{\varepsilon,A,C,G,T,AA,AC,AG,AT,\ldots\}.$

Sumário

Noções Matemáticas

Lógica

Lógica

► Por que a lógica é importante?

Lógica

- Utilizamos lógica no dia a dia, na vida profissional e na pessoal.
- ► Elaboramos conceitos.
- Fazemos observações.
- Formalizamos teorias.
- Utilizamos raciocínio lógico para derivar conclusões a partir de premissas.
- Utilizamos demonstrações ou provas para convencer os outros que estamos corretos.

Proposições

- Na matemática, uma proposição é uma sentença que pode ser falsa ou verdadeira, mas nunca as duas.
- Por exemplo:
 - "6 é par" é uma proposição verdadeira.
 - ▶ "4 é ímpar" é uma proposição falsa.

Sumário

Lógica

Operadores Lógicos

Quantificadores

Definições

leoremas

Provas

Técnicas de Prova

Operadores lógicos

 Podemos combinar proposições para criar outras mais complexas através dos operadores lógicos.

Operadores lógicos

Negação

Sejam p uma proposição.

- ▶ Não p (¬p) é verdadeiro quando p é falso.
- ▶ Não p (¬p) é falso quando p é verdadeiro.

Operadores lógicos

Conjunção

- ightharpoonup p e q $(p \land q)$ é verdadeiro quando p e q são verdadeiros.
- ▶ Caso contrário, $p \land q$ é falso.

Operadores lógicos

Disjunção

- ightharpoonup p ou q $(p \lor q)$ é verdadeiro quando p ou q são verdadeiros.
- ▶ Caso contrário, $p \lor q$ é falso.

Operadores lógicos

Implicação

- ▶ Se p então q $(p \Rightarrow q)$ é verdadeiro quando p é falso **ou** q é verdadeiro.
- ightharpoonup Caso contrário, $p \Rightarrow q$ é falso.

Operadores lógicos

Implicação

- ▶ Se p então q $(p \Rightarrow q)$ é verdadeiro quando p é falso **ou** q é verdadeiro.
- ightharpoonup Caso contrário, $p \Rightarrow q$ é falso.
- ▶ Se p é falso, dizemos que $p \Rightarrow q$ é vacuamente verdadeiro.

Operadores lógicos

Bi-implicação

- ▶ p se, e somente se, q ($p \Leftrightarrow q$) é verdadeiro quando p e q são falsos ou p e q são verdadeiros.
- ightharpoonup Caso contrário, $p \Leftrightarrow q$ é falso.
- ▶ Se $p \Leftrightarrow q$ é verdadeiro, dizemos que p e q são equivalentes.

Sumário

Lógica

Operadores Lógicos

Quantificadores

Definições

Teoremas

Provas

Técnicas de Prova

Quantificadores

- ► Considere a afirmação "x é par".
- Não podemos dizer se esta afirmação é verdadeira ou falsa, pois não sabemos quem é x.

Quantificadores

- Existem três maneiras básicas de conseguir obter um valor verdade para a afirmação.
 - 1. Dizer quem é x. x=6 por exemplo tornaria a afirmação verdadeira.
 - 2. Para todo x inteiro, x é par. O que tornaria a afirmação incorreta, pois nem todo inteiro é par.
 - 3. Existe x inteiro, x é par. O que tornaria a afirmação correta, pois existe inteiros pares.

Quantificadores

- ► As frases "para todo" e "existe" são chamados de quantificadores.
- ightharpoonup Podemos utilizar os símbolos \forall e \exists para representá-los de maneira mais compacta.

Quantificadores

▶ Talvez as coisas fiquem mais claras com uma definição matemática.

Quantificadores

Definição (Número par)

Um número x é dito par se e somente se existe um inteiro y tal que x=2y.

Quantificadores

lackbox Ou seja, estamos definido que um inteiro x é par, se e somente se existe algum y que multiplicado por 2 é igual a x.

Quantificadores

Utilizando a mesma estratégia, podemos definir os números ímpares.

Quantificadores e Relações

Definição (Número ímpar)

 ${\it Um\ n\'umero\ }x$ é dito ímpar se e somente se existe um inteiro y tal que x=2y+1.

Quantificadores

- Os quantificadores podem ser aplicados à propriedades (relações).
- ▶ Seja $P \subseteq \mathbb{N}$ a relação dos inteiros pares e $I \subseteq \mathbb{N}$ a relação dos números ímpares.
 - ▶ Podemos dizer que $\exists x P(x)$ é verdadeiro?
 - Podemos dizer que $\exists x I(x)$ é verdadeiro?
 - Podemos dizer que $\forall x P(x)$ é verdadeiro?
 - ▶ Podemos dizer que $\forall x I(x)$ é verdadeiro?

Quantificadores e Relações

Considerando os inteiros:

- ▶ O que $\forall x \exists y (x = 2y)$ quer dizer?
- ▶ O que $\exists x \exists y (x = 2y)$ quer dizer?
- ▶ O que $\forall x(\exists y(x=2y) \lor \exists y(x=2y+1))$ quer dizer?

Quantificadores e Relações

A ordem dos quantificadores também é muito importante.

Quantificadores e Relações

Considerando < como a relação de menor entre inteiros:

- $ightharpoonup \forall x \exists y (x < y) \text{ \'e verdadeiro?}$
- $ightharpoonup \exists x \forall y (x < y) \text{ \'e verdadeiro?}$

Sumário

Lógica

Operadores Lógicos Quantificadores

Definições

Teoremas

Provas

Técnicas de Prova

Definições

Definição (Definições)

Definições descrevem os objetos e noções que utilizamos. Uma definição pode ser simples, como a de conjuntos que utilizamos, ou complexa, como a de segurança em sistemas criptográficos.

Ao definir devemos utilizar uma linguagem livre de ambiguidades, para que ser bem claro sobre o que estamos falando.

Afirmações

Definição (Afirmações)

Afirmações matemáticas expressam que determinado objeto possui determinada propriedade.

Independente de serem verdadeiras ou falsas, também devem ser precisas.

Prova

Definição (Prova)

Uma prova é uma sequência válida de passos dedutivos chegando a uma conclusão.

Sumário

Lógica

Operadores Lógicos
Quantificadores
Definicões

Teoremas

Provas

Técnicas de Prova

Teoremas

Definição (Teoremas)

Teoremas são enunciados matemáticos verdadeiros e que podem ser provados.

Lemas

- Existem teoremas complexos de obter a prova.
- Para facilitar, podemos provar afirmações menores.
- Estas afirmações são chamadas de Lemas.
- Utilizamos Lemas para concluir os teoremas de maneira mais simples.

Corolário

 Corolários são afirmações verdadeiras que decorrem imediatamente de um teorema.

Sumário

Lógica

Operadores Lógicos

Quantificadores

Definições

Teorema

Provas

Técnicas de Prova

Provas

- Uma prova ou demonstração matemática pode ser vista como um argumento para convencer outra pessoa que algo é verdadeiro.
- Uma boa prova deve ser a mais didática possível.
- Algumas estruturas são comuns dependendo da afirmação a qual se quer provar.

Estrutura de provas

Queremos provar que p é verdadeiro:

- ightharpoonup Prove diretamente que p é verdadeiro.
- Assuma que p é falso e chegue em uma contradição.

Estrutura de provas

Queremos provar que $p \wedge q$ é verdadeiro:

lackbox Prove diretamente que p vale e prove que q vale.

Estrutura de provas

Queremos provar que $p \lor q$ é verdadeiro:

- \triangleright Assuma que p é falso e deduza que q obrigatoriamente tem que ser verdadeiro.
- ightharpoonup Assuma q falso e deduza que p obrigatoriamente tem que ser verdadeiro.
- Prove que p é verdadeiro.
- Prove que q é verdadeiro.

Estrutura de provas

Queremos provar que $p \Rightarrow q$ é verdadeiro:

- Assuma que p vale e deduza que q também vale.
- ightharpoonup Assuma q falso e deduza que p tem que ser falso também.

Estrutura de provas

Queremos provar que $p \Leftrightarrow q$ é verdadeiro:

▶ Prove $p \Rightarrow q$ e prove $q \Rightarrow p$.

Estrutura de provas

Queremos provar que $\exists x P(x)$ é verdadeiro:

lacktriangle Basta encontrar um x que satisfaça a propriedade.

Estrutura de provas

Queremos provar que $\forall x P(x)$ é verdadeiro:

lacktriangle Não assuma nada sobre x e prove que P(x) vale.

Provas

Por exemplo, vamos provar que, para todo inteiro x, se x é ímpar, então x+1 é par.

Provas

- Como queremos mostrar que o resultado vale para qualquer x, não podemos assumir absolutamente nada sobre ele.
- ► Como o teorema diz respeito a uma implicação (se, então), assumimos a primeira parte e tentamos provar a segunda.

Provas

Demonstração.

Assuma x impar.

Como x é ímpar, temos que existe um y tal que x = 2y + 1.

Adicionando 1 a ambos os lados, temos que x + 1 = 2y + 2.

Tome w = y + 1, substituindo temos: x + 1 = 2w.

Portanto x+1 é par.

Sumário

Lógica

Operadores Lógicos

Quantificadores

Definições

Teoremas

Provas

Técnicas de Prova

Prova por casos

Prova por casos

A prova por casos divide a prova em diversos casos, transformando-a em múltiplas provas mais simples.

Prova por casos

▶ Vamos pegar o seguinte teorema para ilustrar a técnica de prova por casos:

Teorema

Para qualquer inteiro x, o inteiro x(x+1) é par.

ightharpoonup Temos dois casos: x é par ou x é ímpar.

Prova por casos

Demonstração.

Caso 1: $x \in par$.

- ightharpoonup Como x é par, temos que existe um y tal que x=2y.
- Assim, temos que:

$$x(x+1) = 2y(2y+1)$$

- ▶ Tome w = y(2y + 1).
- Assim:

$$x(x+1) = 2y(2y+1) = 2w$$

▶ Logo x(x+1) é par.

Prova por casos

Demonstração.

Caso 2: $x \in \text{impar.}$

- ▶ Como x é ímpar, temos que existe um y tal que x = 2y + 1.
- Assim, temos que:

$$x(x+1) = (2y+1)(2y+2) = (2y+1)(y+1)2$$

- ► Tome w = (2y + 1)(y + 1).
- Assim:

$$x(x+1) = (2y+1)(2y+2) = (2y+1)(y+1)2 = 2w$$

▶ Logo x(x+1) é par.

Prova por Construção

Muitos teoremas afirmam a existência de um tipo particular de objeto.

Provas por construção mostram que é possível construir um objeto do referido tipo.

Exemplo

Um grafo k-regular é aquele que todos os nós tem grau k.

Teorema

Para qualquer n > 2 par, existe um grafo 3-regular com n nós.

Demonstração.

$$E = \{\{i, i+1\} | 0 \le i \le n-2\} \cup \{n-1, 0\} \cup \{(i, i+n/2) | 0 \le i \le n/2 - 1\}$$

Prova por Contradição

Prova por Contradição

Assume-se que um teorema é falso. Uma vez concluído o absurdo, podemos concluir que o teorema é de fato verdadeiro.

Exemplo I

Teorema

 $\sqrt{2}$ é irracional.

Demonstração.

Exemplo II

Suponha $\sqrt{2}$ racional.

Logo $\sqrt{2} = \frac{n}{m}$, uma fração reduzida. Obviamente, n ou m é ímpar.

Elevando os dois lados ao quadrado temos:

 $2=rac{n^2}{m^2}$, e portanto $n^2=2m^2$, então n^2 é par, e n também é.

Se n é par, temos n=2k para algum k.

Substituindo, temos $n^2=(2k)^2=4k^2$. Logo $4k^2=2m^2$ e portanto $m^2=2k^2$ o que torna m^2 par e consequentemente m par. Mas n e m não podem ser simultaneamente pares. Contradição.

 $\sqrt{2}$ tem que ser irracional.

Prova por Indução

Prova por Indução

Prova-se o caso base. Assume que a propriedade vale para todo k < n. Tentamos provar que vale para n utilizando as hipóteses de indução e o caso base.

Prova por Indução

Teorema

O n ésimo termo de uma P.A de razão r é $a_0 + rn$.

Demonstração.

Para n = 0, $a_0 = a_0$. Suponha que a propriedade vale para todo k < n.

Sabemos que $a_n = a_{n-1} + r$, pela definição da P.A. Aplicando a hipótese de indução sobre a_{n-1} , temos:

$$a_n = a_0 + r(n-1) + r = a_0 + rn$$