Lecture 13 – Combinational logic circuits 2

7-segment decoder

 Let us choose common cathode LED display to make the function

- In the other rows, we fill all the outputs as don't care, because we are sure that these are not going to be input anyway
- Thus, we have six don't care conditions

Α	В	С	D	а	b	С	d	е	f	g
0	0	0	0	1	1	1	1	1	1	0
0	0	0	1	0	1	1	0	0	0	0
0	0	1	0	1	1	0	1	1	0	1
0	0	1	1	1	1	1	1	0	0	1
0	1	0	1	0	1	1	0	0	1	1
0	1	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	1	1	1	1	1
0	1	1	1	1	1	1	0	0	0	0
1	0	0	0	1	1	1	1	1	1	1
1	0	0	1	1	1	1	1	0	1	1

7-segment decoder

- Thus, the K-map for output a will look like this (A=w, B=x, C=y, D=z)
 - We have two clusters of 8: y and w
 - Two clusters of four: xz and x'z'
- Thus, the logic function for a can be:

$$F_a = y + w + xz + x'z'$$

- Or we can have PoS as:
 - One cluster of two: xy'z'
 - One min-term: w'x'y'z
- Thus,

$$F_a = (x' + y + z)(w + x + y + z')$$

This can be done for all the other outputs

7-segment decoder

- Thus, the K-map for output c will look like this
- Consider PoS:
- The max term cluster of two is represented by yz'x'
- In PoS form:

$$c = y' + z + x$$

This can be done for all the other outputs

Binary adder

- Digital computers perform a variety of information-processing tasks
- Among the functions encountered are the various arithmetic operations
- The most basic arithmetic operation is the addition of two binary digits:
 - 0+0=0, 1+0=1, 0+1= 1, 1+1 = 10
- A combinational circuit that performs the addition of two bits is called a *half adder*

Half Adder

y	C	S
0	0	0
1	0	1
0	0	1
1	1	0
	0 1	0 0 1 0 0 0

Binary adder

• Circuit that performs the addition of three bits (two significant bits and a previous carry) is a *full adder*

Full Adder

x	y	z	C	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Binary adder

• We can use two half adders to create a full adder

Full Adder

x	y	z	c	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1
			1	

- Addition of n-bit numbers requires a chain of n full adders or a chain of one-half adder and n-1 full adders
- Consider a 2-bit adder:

4-bit adder:

Adder expansion by cascading

Cascading of two 4-bit adders to form an 8-bit adder

- Consider again the 4-bit adder: Can we make this circuit through the normal route?
- Note that the classical method would require a truth table (and K-map) with $2^9 = 512$ entries, since there are nine inputs to the circuit
- By using an iterative method of cascading a standard function, it is possible to obtain a simple and straightforward implementation

- The addition of two binary numbers in parallel implies that all the bits of the augend and addend are available for computation at the same time
- As in any combinational circuit, the signal must propagate through the gates before the correct output sum is available in the output terminals
- The total propagation time is equal to the propagation delay of a typical gate, times the number of gate levels in the circuit
- The longest propagation delay time in an adder is the time it takes the carry to propagate through the full adders
- Since each bit of the sum output depends on the value of the input carry, the value of S_i at any given stage in the adder will be in its steady-state final value only after the input carry to that stage has been propagated

- The number of gate levels for the carry propagation can be found from the circuit of the full adder
- The signals at P_i and G_i settle to their steady-state values after they propagate through their respective gates
- These two signals are common to all half adders and depend on only the input augend and addend bits
- The signal from the input carry C_i to the output carry C_{i+1} propagates through an AND gate and an OR gate, which constitute two gate levels
- If there are four full adders in the adder, the output carry C_4 would have 2 * 4 = 8 gate levels from C_0 to C_4
- For an *n* -bit adder, there are 2*n* gate levels for the carry to propagate from input to output

14

- There are several techniques for reducing the carry propagation time in a parallel adder
- An obvious solution to this problem is to actually make the 2ⁿ truth-table, K-map and get a two level implementation (either SoP or PoS)
- The most widely used technique employs the principle of carry lookahead logic

• With the definition of P and G, we can write:

$$S_i = P_i \oplus C_i$$
 and $C_{i+1} = G_i + P_i C_i$

- G_i is called a *carry generate*, and it produces a carry of 1 when both A_i and B_i are 1, regardless of the input carry C_i
- P_i is called a *carry propagate*, because it determines whether a carry into stage i will propagate into stage i+1

• We now write the Boolean functions for the carry outputs of each stage and substitute the value of each C_i from the previous equations $(C_{i+1} = G_i + P_i C_i)$:

$$C_0 = input \ carry$$

$$C_1 = G_0 + P_0C_0$$

$$C_2 = G_1 + P_1C_1 = G_1 + P_1G_0 + P_1P_0C_0$$

$$C_3 = G_2 + P_2C_2 = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$$

- Since the Boolean function for each output carry is expressed in sum-ofproducts form only dependent on P and G, each function can be implemented with one level of AND gates followed by an OR gate (or by a two-level NAND)
- Note that this circuit can add in less time because C_3 does not have to wait for C_2 and C_1 to propagate; in fact, C_3 is propagated at the same time as C_1 and C_2
- This gain in speed of operation is achieved at the expense of additional complexity (hardware)

