Morning

Formal Language And Automata

- > Languages
- > Autamata
- > Computation

Sentence and Alphabet

- > sentence/string = sequence of symbols chosen from the alphabet Σ example : Mouse love rice.
- > alphabet = set of symbols

example: ASCII, 中文国标, Σ = $\{0,1\}$

 $symbols \Rightarrow sentences \Rightarrow language$

Rules/Grammar

```
> rules = by which sentence is generated
  example: rules for English
     <sentence> → <noun-phrase><predicate>
     <noun-phrase> → <article><noun>
      \langle article \rangle \rightarrow a|an|the
      \langle noun \rangle \rightarrow wolf | sheep
      <verb> → loveleat
```

Examples of language

example 1.1

```
L={w|w consists of 0's and 1's, rule and end with 0}
```

```
L={ 0,00,10,000,010,100,110,0000,.....}
```

11111100∈L, 1∉L, 0001∉L, 20∉L

Examples of language

example 1.2 rule
$$L=\{0^n1^n \mid n \ge 0\}$$

alphabet = $\{0,1\}$

 $L=\{\epsilon, 01, 0011, 000111, 00001111, 0000011111,\}$

ε: empty string

example 1.3 The empty language

$$L = \{ \} = \phi$$

L: contains no string

Kleene star operation

```
\Sigma^*: the set of all possible strings from alphabet \Sigma \Sigma = \{ \text{ a, b} \} \Sigma^* = \{ \text{ $\epsilon$, a,b,aa,ab,ba,bb,aaa,aab,aba,baa,.....} \}
```

The + operation

```
\Sigma = \{ a, b \}
\Sigma^+ = \Sigma^* - \{ \epsilon \}
= \{ a,b,aa,ab,ba,bb,aaa,aab,aba,baa,..... \}
```

example 1.4

L={ $w \in \{0, 1\}^*$ | all 0's precede all 1's in w } L={ ϵ , 0, 1, 00, 01, 11, 000, 001, 011, 111, }

example 1.5

```
L_1 = \{w \in \{0,1\}^* \mid \text{ no prefix of } w \text{ contains } 1\}
   =\{\epsilon, 0, 00, 000, 0000, 00000, 000000, \dots \}
L_2=\{w\in\{0,1\}^*\mid \text{ no prefix of } w \text{ starts with } 1\}
  =\{\epsilon, 0.00, 01.000, 001.010, 011.0000, 0001, \dots\}
  =\{w \in \{0,1\}^* \mid \text{ the first character of } w \text{ is } 0 \} \cup \{\varepsilon\}
 L_3 = \{w \in \{0,1\}^* \mid \text{ every prefix of } w \text{ starts with } 1\}
   = \phi
```

example 1.6

L={ w | w is a sentence in English }

Bolt won two gold medals in Daegu.

The sheep eats grass.

The grass eats sheep.

Formal language focus on form, not meaning

String operations

$$w=a_1a_2....a_n$$

$$v=b_1b_2....b_n$$

Concatenation

$$wv = a_1 a_2 \dots a_n b_1 b_2 \dots bn$$

abbabbbaaa

Reverse

$$\mathbf{w}^{\mathsf{R}} = \mathbf{a}_{\mathsf{n}} \mathbf{a}_{\mathsf{n}-1} \dots \mathbf{a}_{\mathsf{1}}$$

Another operation

$$\mathbf{w}^{n} = \mathbf{w} \mathbf{w} \dots \mathbf{w}$$

- \rightarrow w = abb \Rightarrow w²=abbabb, w³=abbabbabb
- \triangleright definition: $w^0 = \varepsilon$

The empty string

A string with no letters : ϵ

$$|\varepsilon| = ?$$

$$\triangleright$$
 we = ? $\epsilon w = ?$

Operations on languages

> The usual set operations

$$L_1 \cup L_2 = \{ w \mid w \in L_1 \text{ or } w \in L_2 \}$$
 $L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$
 $L_1 - L_2 = \{ w \mid w \in L_1 \text{ and } w \notin L_2 \}$

> Reverse

$$L^{R} = \{ w^{R} \mid w \in L \}$$

Example
$$L = \{a^nb^n \mid n \ge 1\} \Rightarrow L^R = \{b^na^n \mid n \ge 1\}$$

Operations on languages

Concatenation

$$L_1L_2 = \{ wv \mid w \in L_1 \text{ and } v \in L_2 \}$$

Example
$$L = \{ a^n b^n \mid n \ge 1 \}$$
, $K = \{ b^n a^n \mid n \ge 1 \}$ $LK = \{ a^n b^n b^n a^n \mid n \ge 1 \}$ $LK = \{ a^n b^n b^m a^m \mid n \ge 1 \}$ $L^2 = ?$

Automata

- ◆ Alan MarthisonTuring
 - On Computable Numbers
 With an Application to
 the Entscheidungs Problem

Turing Machine

Automata

- Finite Automata
 - Deterministic Finite Automata
 - Non-deterministic Finite Automata
- Push Down Automata

Computation

Computation for computer

Computation

- ◆ Computable Problems
 - write a program to solve
- ◆ Intractable Problems
 - find someway to work around

Undecidable Problem

```
main()
   Int n, total, x, y, z;
   scanf("%d", &n);
  total=3;
   while(1){
      for(x=1;x<=total-2;x++)
         for(y=1;y<=total-x-1;y++){
            z=total-x-y;
            if(exp(x,n)+exp(y,n)==exp(z,n))
                printf("hello,world\n");
      total++;
```

Undecidable Problem

automaton

Content

Automata Grammars Languages Construction Properties Design Finite Regular Regular Expression Language Automaton Generate Recognize Push Down Context Free Context Free Language Automaton Grammar Recursively (Phrase Turing Machine Enumerable Grammar)

Text book

1. Introduction to Automata Theory, Languages, and Computation (Third Edition)

John E. HopcroftRajeev MotwaniJeffrey D. Ullman

Text book

2. An Introduction to Formal Languages and Automata (Third Edition)

—— Peter Linz

Goal

- 1. Understanding "theoretical" concepts
- ---- method of formal description
- 2. Get a sense of how to reason formally
- 3. Improving reading in English

Homework

- · All exercises listed on cms.hit.edu.cn
- Need not submit
- Check by free talk
- · One or two times of free talk

Project

- Design a DFA for the elevator
- Team member 2-3
- Presentation

Honor and Collaboration

- Collaboration is strongly encouraged
- Solutions must be written independently
- Responsible for Understanding and explaining

Exam

Only final exam

Open exam

You are allowed to refer to text-book, class handouts, and notes during the exam

Closed exam

Nothing allowed except one pen

Grading Policy

Homework: 20%

Project: 20%

• Final exam: 60%

Instructor

Office -- No. 218, Computer Building

Te - 13936169569

E-mail -- sdl@hit.edu.cn

Good good study day up