Szilárdtestek sűrűségének mérése

Mig András 2019 Március 02.

A méréseket végezte: Karsai Alexandra és Mig András

A mérések dátuma: 2019.03.01

A mérés

1. A mérés célja

A mérés célja, hogy meghatározzuk három ismeretlen méretű és tömegő test sűrűségét egy Mohr-Westphal mérleggel, majd a korábban tolómérővel és csavar mikromérővel, valamint analitikai mérleggel megmért testekkel ősszehasonlítsuk őket. Ezután a szakirodalmat felhasználva megállapítjuk, hogy milyen fémből készülhettek a testek, sűrűségük alapján.

2. Eszközök és összeállítás

A mérés elvégzéséhez szükségünk vsan egy tolómérőre, egy csavar mikrométerre, egy analítikai mérlegre és egy Mohr-Westphal mérlegre. A Mohr-Westphal mérleg alsó mérőedényét belehelyezzük a vízba, majd hogy kiegyensúlyozzuk, a felsőbe 20 gramm tömegű súlyt helyezünk.

3. Referencia testek mérése

Adott három, különböző anyagból készült test. Két hasáb, egy henger. A hasábok oldalait tolómérővel, a henger átmérőjét és magasságát csavar mikrométerrel megmérjük. Ezek után lemérjük a testek tömegét az analítikai mérlegen.

	a [mm]	b [mm]	c [mm]	h [mm]	d [mm]	m [g]
Henger	_	_	_	19	13,5	32,15
1. Hasáb	28,8	16	15,3	_	_	63,55
2. Hasáb	28,4	16	12,1	_	_	15,5

A mérési bizonytalanság $\Delta x=0.005$ mm a henger, $\Delta x=0.025$ mm a hasábok esetén. A tömeg bizonytalansága 0.05 gramm

4. Tömeg és felhajtó erő mérése Mohr-Westphal mérleggel

Hogy a mérleg nyelve egyensúlyban legyen, 20 grammal kell kiegyensúlyozni. Belehelyezzük a mérendő testet a felső tálcába, majd ismert tömegű súlyokkal kiegyensúlyozuk a mérleget. Ezután áthelyezzük a testet a merülő tálcába és kiegyensúlyozzuk ismét a mérleget lovasok felhelyezésével, különböző vályatokba, amelyek 1-9-ig futnak, az első van legközelebb, a kilencedik legtávolabb a mérleg felfüggesztésétől, egyenlő távolságonként.

Minták	Tömegek [g]									
Willian	10	5	2	1	0,5	0,2	0,1	0,05	0,01	$\Delta \mathrm{m}$
1. Henger	_	1	1	1	_	1	_	1	2	
2. Henger		1	_	1	_	_	1	1	_	0,005
3. Henger	1	1	_	_	_	_	_	1	_	

1. táblázat. Szükséges tömegek a kiegyensúlyozáshoz

Minták	Lov	vasok pozíciói			
Williak	Nagy	Közepes	Kicsi		
1. Henger	1	5	_		
2. Henger	1	5	5		
3. Henger	1	7	8		

2. táblázat. Lovasok elhelyezése a kiegyensúlyozáshoz

Kiértékelés

1. Elméleti háttér

Ismert térfogatú és tömegű test sűrűségét $\rho=\frac{m}{V}$ összefüggéssel számolhatjuk ki Ezt használjuk ki, amikor a referencia tömegek sűrűségét szeretnénk kiszámolni.

Mivel tudjuk, hogy a Mohr-Westphal mérleg kiegyensúlyozásához 20 gramm tömegű súly szükséges, Ebből a 20 grammból levonva a plusz súlyokat, amik a kiegyensúlyozáshoz voltak szükségesek, megkapjuk az ismeretlen test tömegét. Ez után a vízbe merülő tálcára áthelyezzük a testet. A mérleg karjára ható forgató nyomaték, ami a nehézségi erőből származik nem változik meg. Ezzel szemben még is kitér a mérleg az egyensúlyi helyzetből. Az új forgatónyomaték ami fellép a felhajtó erőből származik, aminek nagysága Arkhimédész-törvénye szerint:

$$F = \rho \cdot V,\tag{1}$$

ahol F a felhajtó erő nagysága, ρ a folyadék sűrűsége, V pedig a test által kiszorított folyadék térfogata, ami ebben az esetben megegyezika a test térfogatával, mivel az teljesen elmerül a folyadékban. A felhalytó erő iránya ellentétes a nehézségi gyorsulás irányával.

A mérleg nyelve akkor kerül egyensúlyba, ha a forgatónyomatékok kiegyenlítik egymást. A forgató nyomatékot a következő összefüggéssel számolhatjuk:

$$M = F \cdot l, \tag{2}$$

ahol l az erőkar hossza, F pedig az erő erőkarra merőleges komponense. Az így fellépő forgatónyomatékot a lovasok nehézségéből származó forgatónyomatékkal ellensúlyozzuk.

2. A referencia testek sűrűségei

A testek rendre vas, réz és aluminium

	$V [cm^3]$	m [g]	$\rho \left[\frac{\mathrm{g}}{\mathrm{cm}^3} \right]$	$\rho_{tenyleges} \left[\frac{\mathrm{g}}{\mathrm{cm}^3} \right]$	rel. hiba
Henger	3,82763	32,15	8.3994	7,85	7%
1. Hasáb	7,05024	63,55	9,01388	8,96	0,6%
2. Hasáb	5691,84	15,5	2,7232	2,7	8,6%

3. Mohr-Westphlal mérleggel mért testek

A testek tömegét megkapjuk, ha a 20 grammból levonjuk, az a tömeget, ami szükséges volt a kiegyensúlyozáshoz, így:

	m_{sulyok} [g]	m [g]
1.henger	8,27	11,73
2.henger	6,15	13,85
3.henger	15,05	4,95

Ahogy a mérés leírásába szerepel, a legnagyobb lovas súlya egyenlő 10ml 20°C-os desztillált víz súlyával. A közepes ennek tizede, a kicsi a százada. A (2) egyenlet szerint az egyes lovasok forgatónyomatéka kiszámítható a súlyuk és a tengelytől vett távolságból. A mérlegen a vályatok egyenlő távolságban vannak, a tizedik vályatban van a mért test felfüggesztve. Ezek szerint:

$$10F = k_1G + k_2\frac{G}{10} + k_3\frac{G}{100},$$

ahol G a legnagyobb lovas súlya, \mathbf{k}_n a vályat, amelybe az adott lovast helyeztük, a legnagyobbtól számozva. Mivel G egyenlő 10ml víz tömegével, ezért

$$V = k_1 + \frac{k_2}{10} + \frac{k_3}{100},$$

azaz:

	k_1	k_2	k_3	$V [cm^3]$
1. henger	1	5	_	1,5
2. henger	1	5	5	1,55
3. henger	1	7	8	1,78

Ezek után felhasználva az (1) egyenletet:

	m [g]	$V [cm^3]$	$\rho[\frac{\mathrm{g}}{\mathrm{cm}^3}]$	$\rho_{tenyleges}[\frac{\mathrm{g}}{\mathrm{cm}^3}]$	rel. hiba
1. henger	11,73	1,5	7,82	7,85	$0,\!4\%$
2. henger	13,85	1,55	8,94	8,96	0,2%
3. henger	4,95	1,78	2,78	2,7	2,9%

Terjedéses hibaszámítás

Mivel a térfogatot csak az oldalak hosszánal szorzásásval kapjuk meg, nem tudjuk közvetlenül mérni, ezért annak bizonytalanságát is csak kiszámítani

tudjuk. Feltételezve, hogy a bizonytalanságok kicsik relatíve kicsik a szorzathoz képest, a hibák a következőképpen adódnak össze:

$$\Delta x = \left| \frac{\delta x}{\delta a} \right| \Delta a + \left| \frac{\delta x}{\delta b} \right| \Delta b + \left| \frac{\delta x}{\delta c} \right| \Delta c,$$

azaz a térfogat relatív bizonytalanság az első hasábnál 28,656 mm³, a másodiknál 24,791 mm³, a hengernél pedig 10,921 mm³.

Diszkusszió

Láthatjuk, hogy a két méréssel közel azonos eredményeket kaptunk, a hibák betudhatók a műszerek bizonytalanságának. Az oldal hosszak megmérése azzal az előnnyel jár, hogy jóval gyorsabb a mérést elvégezni, míg a Mohr-Westphal mérleggel bonyolúltabb alakú testeknek is kiszámíthatjuk a sűrűségét. Bár már korábban használtuk, ezeket az adatokat, megállíthatjuk, hogy a megvizsgált kis hengerek rendre vas, réz és aluminium. Ezek sűrűségével összevetve láthatjuk, hogy a mérleggel való mérés a relatív hibája 0,5% alatt van, azzaz pontos mérésnek tekinthetjük.