Modeling Thermal Systems

System Schematic

System Schematic

Heater

Specifications	Value
Manufacturer	Omega Engineering Inc
Model Number	SRMU100202P
Heater Resistance	350 ohms
Heater Area	4 in ²
Heater Thickness	0.1 in

Aluminum Plate

Property	Value
Melting Point	775 ⁰ K
Density, ρ	2770 kg/m^3
Specific Heat, cp	875 J / (kg - ⁰ K)
Thermal Conductivity, k	177 W / (m - ⁰ K)

Sensors

Specification	AD590	AD22100
Rated Temperature Range	-55° C to 150° C	0° C to 100° C
Nominal Output at 0° C	273.2 μΑ	1.126 V
Nominal Output at 25° C	298.2 μΑ	1.836 V
Temperature Coefficient	1 μA/° C	18.43 mV / ° C
Absolute Error	± 5.5° C	± 2.0° C
Nonlinearity	0.8° C	0.5° C

Microcontroller Circuit

red LED \Rightarrow above temperature band yellow LED \Rightarrow within temperature band green LED \Rightarrow below temperature band

Control Program

Control Program FlowChart

Temperature Signal

Note: hysteresis temperature 5⁰ C Note: to turn on the heater & fan, the signal input must go LO

Thermal Control Circuit

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

F. R. Stolfi 11 Thermal Systems

Sensors

Specification	AD590	AD22100
Rated Temperature Range	-55° C to 150° C	0° C to 100° C
Nominal Output at 0° C	273.2 μΑ	1.126 V
Nominal Output at 25° C	298.2 μΑ	1.836 V
Temperature Coefficient	1 μA/° C	18.43 mV / ° C
Absolute Error	± 5.5° C	± 2.0° C
Nonlinearity	0.8° C	0.5° C

AD22100 Temperature Sensor Schematic

Temperature Measurement

Ambient Sensor Circuit

- Reference for sensor & A/D converter provided by voltage reference
- Passive filter & OpAmp buffer

REF198 Temperature Reference

REF198-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS (@ $V_s = 5.0 \text{ V}$, $T_A = 25^{\circ}\text{C}$, unless otherwise noted.)

Parameter	Symbol	Condition	Min	Typ	Max	Unit
INITIAL ACCURACY ¹ E Grade F Grade G Grade	Vo	I _{OUT} = 0 mA	4.094 4.091 4.086	4.096	4.098 4.101 4.106	v v v
LINE REGULATION ² E Grade F and G Grades	$\Delta V_O/\Delta V_{IN}$	$4.5 \text{ V} \le \text{V}_{\text{S}} \le 15 \text{ V}, \text{I}_{\text{OUT}} = 0 \text{ mA}$		2 4	4 8	ppm/V ppm/V
LOAD REGULATION ² E Grade F and G Grades	$\Delta V_{O}/\Delta V_{LOAD}$	$V_S = 5.4 \text{ V}, 0 \text{ mA} \le I_{OUT} \le 30 \text{ mA}$		2 4	4 8	ppm/mA ppm/mA
DROPOUT VOLTAGE	$V_S - V_O$	$V_S = 4.6 \text{ V}, I_{LOAD} = 10 \text{ mA}$ $V_S = 5.4 \text{ V}, I_{LOAD} = 30 \text{ mA}$			0.50 1.30	V V
LONG-TERM STABILITY ³	DVo	1,000 Hours @ 125°C		1.2		mV
NOISE VOLTAGE	e _N	0.1 Hz to 10 Hz		40		μV p-p

NOTES

Specifications subject to change without notice.

¹Initial accuracy includes temperature hysteresis effect.

²Line and load regulation specifications include the effect of self-heating.

³Long-term drift is guaranteed by 1,000 hours life test performed on three independent wafer lots at 125°C, with an LTPD of 1.3.

Feedback Sensor Circuit

- Scales reading to span A/D converter
- Offsets reading to eliminate ambient temperature
- Filters reading for anti-aliasing

Defining Equations

Feedback Sensor

$$V_{\text{feedback}} = \left(34.75 \frac{\text{mV}}{{}^{0}\text{ K}}\right) \left(\text{Temperature } ({}^{0}\text{K})\right) - 10.29 \text{ V}$$

Ambient Sensor

$$V_{ambient} = \left(18.43 \frac{mV}{{}^{0}C}\right) \left(Temperature ({}^{0}C)\right) + 1.126 V$$

Temperature Sensor Plot

Hint to Simplify Program

Gain =
$$\frac{34.75}{18.43}$$
 = 1.9 \approx 2

Assume ambient temperature $= 25^{\circ} \text{ C}$

- \Rightarrow Desired temperature = 75° C
- \Rightarrow Heater turn on temperature = 70° C
- \Rightarrow Fan turn on temperature = 80° C

Program

Values

Ambient Sensor

$$V_{ambient} = \left(18.43 \ \frac{mV}{^{0}C}\right) \left(Temperature \ (25 \ ^{0}C)\right) + 1.126 V = 1.59 V$$

$$ADRES = \frac{1.59}{4.096} \ 255 = 99 \ (in binary)$$

Feedback Sensor

$$V_{\text{feedback}} = \left(34.75 \ \frac{\text{mV}}{^{0} \ \text{K}}\right) \left(\text{Temperature} \ \left(\left(70 + 273.16\right) \, ^{0} \text{K}\right)\right) - 10.29 \ \text{V} = 1.64 \ \text{V}$$

$$ADRES = \frac{1.64}{4.096} \ 255 \ = 102$$

Values

Feedback Sensor

$$V_{\text{feedback}} = \left(34.75 \ \frac{\text{mV}}{^{0} \ \text{K}}\right) \left(\text{Temperature} \ \left((80 + 273.16) \ ^{0} \text{K}\right)\right) - 10.29 \ \text{V} = 1.98 \ \text{V}$$

$$ADRES = \frac{1.98}{4.096} \ 255 \ = 123$$

Code:

If ambient value is 99:

If plate is less than 102

If greater than 123

If between 102 & 123

- turn off fan & turn on heater

turn on fan & turn off heater

do NOTHING

2 Byte Addition & Subtraction

Two Byte Add

• Two Byte Subtract

MOVF	ArgA1,W	MOVF	ArgA1,W
ADDWF	ArgB1,F	SUBWF	ArgB1,F
MOVF	ArgA0,W	MOVF	ArgA0,W
BTFSC	STATUS,C	BTFSS	STATUS,C
INCFSZ	ArgA0,W	INCFSZ	ArgA0,W
ADDWF	ARGB0,F	SUBWF	ArgB0,F

Subtract SUBWF Command

SUBWF f,d

Example 1: SUBWF REG1,1

Case 1: Before Instruction

REG1= 3 W = 2 C = x 7 = x

After Instruction

REG1= 1 W = 2

C = 1 ; result is positive

z = 0

Case 2: Before Instruction

REG1= 2 W = 2 C = x 7 = x

After Instruction

REG1= 0 W = 2

C = 1 ; result is zero

7 = 1

Case 3: Before Instruction

REG1= 1 W = 2 C = x

Z = After Instruction

REG1= 0xFF

= 0

= x

C = 0 ; result is negative

SUBWF Subtract W from f

Operands: $0 \le f \le 127$

 $d \in [0,1]$

[label]

Operation: (f) - (W) → destination

Status Affected: C, DC, Z

Encoding: 00 0010 dfff ffff

Description: Subtract (2's complement method) W register from register 'f'. If 'd' is 0 the

result is stored in the W register. If 'd' is 1 the result is stored back in reg-

ister 'f'.

Words: 1 Cycles: 1

Q Cycle Activity:

Syntax:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	register 'f'	data	destination

Add ADDWF Command

ADDWF

Add W and f

Syntax: [label] ADDWF f,d

Operands: $0 \le f \le 127$

 $d \in [0,1]$

Operation: $(W) + (f) \rightarrow destination$

Status Affected: C, DC, Z

Encoding: 00 0111 dfff ffff

Description: Add the contents of the W register with register 'f'. If 'd' is 0 the result is stored in the

W register. If 'd' is 1 the result is stored back in register 'f'.

Words: 1 Cycles: 1

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to
	register 'f'	data	destination

Subtract SUBLW Command

Example 1: SUBLW 0x02

> Before Instruction Case 1:

> > W = 0x01= x = x

After Instruction

W = 0x01

= 0

= 1 ; result is positive

Case 2: Before Instruction

> W = 0x02= χ Z = x

After Instruction

= 0x00

= 1 ; result is zero

Case 3: Before Instruction

> W = 0x03= x = x

After Instruction

W = 0xFF

= 0 ; result is negative

= 0

Example 2 MYREG SUBLW

Before Instruction

W = 0x10

Address of MYREG † = 0x37

† MYREG is a symbol for a data memory location

After Instruction

W = 0x27

= 1 ; result is positive

SUBLW

Subtract W from Literal

[label] SUBLW k Syntax:

Operands: $0 \le k \le 255$ Operation: $k - (W) \rightarrow W$ Status Affected: C. DC. Z

Encoding: 11 110x

kkkk kkkk

Description: The W register is subtracted (2's complement method) from the

literal 'k'. The result is placed in the W register.

Words: Cycles:

Q Cycle Activity:

Q1	Q2	Q3	Q4
Decode	Read	Process	Write to W
	literal 'k'	data	register

A.C. Power

- The heat loss in the resistive heater is independent of the direction of the current.
- If the current is sinusoidal, the power loss is proportional to the rms (root mean square) current. That is, the rms current of an a. c. source is equivalent to the d. c. current of a d. c. source in terms of power dissipated across the resistive element.
- The power dissipated across the resistive heater with a sinusoidal source is:

$$Q_{\text{heater}} = P_{\text{heater}} = R_{\text{heater}} \text{ Irms}_{\text{heater}}^{2}$$

$$\text{Irms}_{\text{heater}} = \sqrt{\frac{1}{T} \int_{T} \left(I_{\text{max}} \cos (\omega t + \phi) \right)^{2} dt}$$

$$= \sqrt{I_{\text{max}}^{2} \frac{1}{T} \int_{T} \left(\frac{1}{2} + \frac{1}{2} \cos (2 \omega t + 2 \phi) \right) dt}$$

$$= \frac{I_{\text{max}}}{\sqrt{2}}$$

50 % A.C. Power

switch is closed ½ the time

Columbia University
Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

F. R. Stolfi 29 Thermal Systems

25 % A.C. Power

switch is closed ¼ the time

A.C. Power - Phase Control

25 % Power

Columbia University Mechanical Engineering

Mechatronics & Embedded Microcomputer Control

A.C. Power Driver

Columbia University Mechanical Engineering Mechatronics & Embedded Microcomputer Control

F. R. Stolfi 33 Thermal Systems

Connector

White		Heater Control
Yellow		Fan Control
Green		Plate Temperature
Blue		Ambient Temperature
Orange		Voltage Reference
Red		+ 5 V
Black	•	Ground
	wires	

Ports

Port A Pin 1 – Ambient Sensor

Port A Pin 2 – Plate Sensor

Port A Pin 3 – Reference Voltage

Port C Pin 5 – Toggle Switch

Port D Pin 0 – Red LED

Port D Pin 1 – Yellow LED

Port D Pin 2 – Green LED

Port D Pin 3 – Blue LED (on / off)

Port D Pin 6 – Heater (on -= low)

Port D Pin 7 - Fan (on -= low)

Simplifications in Modeling

Approximation	Mathematical Simplification
Neglect small effects	Reduces the number and complexity of the equations of motion
Assume the environment is independent of system operation	Reduces the number and complexity of the equations of motion
Replace distributed characteristics with appropriate lumped elements	Leads to ordinary (rather than partial) differential equations
Assume linear relationships	Makes equations linear; allows superposition of solutions
Assume constant parameters	Leads to constant coefficients in the differential equations
Neglect uncertainty and noise	Avoids statistical treatment

Simplifying Assumptions

- The temperature of the plate is uniform.
- There in no heat loss through the sides of the plate, i.e., heat conduction is onedimensional through the plate.
- The thermal conductivity of the plate is constant, i.e., independent of time, temperature, space, or direction of heat flow.
- The heat loss due to radiation is negligible compared to the convective heat loss from the plate.
- The heat convection coefficient is constant and is evaluated at the operating temperature of the plate.
- The heat loss through the insulating (wood) layer is negligible, i.e., heat loss through the insulating layer, and subsequent convective heat loss from the bottom supporting Plexiglas plate, is negligible compared to the other heat losses in the system.
- The sensor dynamics are negligible, i.e., the sensor dynamics are very fast relative to the dynamics of the rest of the system. This includes the dynamics of the OpAmp interface circuit.
- Ambient air temperature is unaffected by the heat flux from the plate.

Thermal Components

- There are only 2 types of thermal components
 - Thermal capacitance
 - Thermal resistance

Thermal Capacitance

- Heat flows into a body of solid, liquid, or gas, this thermal energy may show up in various forms such as mechanical work or changes in kinetic energy of a flowing fluid.
- Assume the addition of thermal energy does not cause significant mechanical work or kinetic energy change, the added energy shows up as stored internal energy and manifests itself as a rise in temperature of the body.
- Provided that there is no change of phase and that the range of temperatures is not excessive, the relationship between the temperature of the body and the heat stored can be considered to be linear.

Thermal Capacitance Equations

 $Q_{in}(t) - Q_{out}(t) = net heat flow rate into body$

$$\int_{t_0}^{t} \left[Q_{in} \left(\lambda \right) - Q_{out} \left(\lambda \right) \right] d\lambda = \text{net heat supplied between times } t_0 \text{ and } t$$

Assume that heat supplied during this time interval equals a constant C times ΔT .

$$C \Delta T = C[T(t) - T(t_0)] = \int_{t_0}^{t} [Q_{in}(\lambda) - Q_{out}(\lambda)] d\lambda$$

where **C** is the thermal capacitance (J / 0 C) and is equal to $M \sigma$, where M is the mass of the body (kg) and σ is the specific heat of the body (J / [kg - 0 C]). Differentiating the above equation results in:

$$\dot{T} = \frac{1}{C} \left[Q_{in}(t) - Q_{out}(t) \right]$$

Thermal Resistance

- Whenever two objects have different temperatures, there is a tendency for heat to be transferred from the hot region to the cold region in an attempt to equalize temperatures.
- For a given temperature difference, the rate of heat transfer varies depending on the thermal resistance of the path between the hot and cold region.
- The nature and magnitude of the thermal resistance depend on the modes of heat transfer involved:
 - Conduction
 - Convection
 - Radiation

Conduction

• In conduction, heat flows from one body to another through the medium connecting them at a rate proportional to the temperature difference between the points:

$$Q(t) = \frac{1}{R} \left[T_1(t) - T_2(t) \right]$$

- **R** is the thermal resistance ($[{}^{0}C s] / J$ or ${}^{0}C / W$) which equals L / Ak, where A is the cross-sectional area of the heat flux path, L is the length of the path, and k is the thermal conductivity of the material ($W / [m {}^{0}C]$).
- We can use this equation only when the body is being treated as a thermal resistance and does not store any heat.

Convection

• Many practical situations involve heat flow through fluid / solid interfaces by convection. In this case, heat flows by conduction through a thin layer of fluid (called the boundary layer) which adheres to the solid wall. At the interface between the boundary layer and the main body of fluid, the heat is carried away by the constantly moving fluid particles into the main stream.

$$Q(t) = h A \left[T_1(t) - T_2(t) \right]$$

- **h** is the film coefficient of heat transfer $(J / [s m^2 {}^0C])$ or $W / [m^2 {}^0C]$) and **A** is the surface area (m^2) .
- While techniques exist to estimate **h**, in practice the value is often experimentally determined and usually varies with temperature. For the purpose of this case study, we will assume that **h** is a constant.

Radiation

• Two bodies can exchange thermal energy with no physical contact by the process of radiation. The rate of heat transfer depends on a surface property of each body called the emissivity, geometrical factors involving the portion of the emitted radiation from one body that actually strikes the other body, the surface areas involved, and the temperatures of the two bodies. For a typical configuration and materials, the defining equation takes the form:

$$Q(t) = \varepsilon A \left[T_1^4(t) - T_2^4(t) \right]$$

• For this equation, the temperatures are absolute.

Thermal Source

 $egin{aligned} \mathbf{R}_{\mathrm{heater}} \ \mathbf{I}_{\mathrm{heater}} \ \mathbf{V}_{\mathrm{heater}} \end{aligned}$

is the heater resistance is the heater current is the heater voltage.

Heat Source

- If we assume 100% conversion efficiency, the heat flux produced by the resistive heater is equivalent to the power dissipated across the resistive element.
- The power dissipated across the resistive heater P_{heater} (J / s or W) is given by:

$$Q_{\text{heater}} = P_{\text{heater}} = V_{\text{heater}} I_{\text{heater}} = \frac{V_{\text{heater}}}{R_{\text{heater}}}$$

Thermal Model

Thermal Model

Since we are modeling a heat flux Q_{heater} rather than a temperature, the value of R_{cond} is not needed in the model.

Defining Equations

$$\begin{split} Q_{\text{heater}} &= I_{\text{heater}}^{2} R_{\text{heater}} \\ Q_{\text{conv}}(t) &= \frac{1}{R_{\text{conv}}} \left[T_{\text{p}}\left(t\right) - T_{\text{a}}\left(t\right) \right] \\ \dot{T}_{\text{p}} &= \frac{1}{C_{\text{p}}} \left[Q_{\text{heater}}\left(t\right) - Q_{\text{conv}}\left(t\right) \right] &= \frac{1}{C_{\text{p}}} \left[Q_{\text{heater}}\left(t\right) - \frac{1}{R_{\text{conv}}} \left[T_{\text{p}}\left(t\right) - T_{\text{a}}\left(t\right) \right] \right] \end{split}$$

First Order Differential Equation

$$\dot{T}_p + \frac{1}{R_{conv} C_p} T_p = \frac{1}{C_p} Q_{heater} + \frac{1}{R_{conv} C_p} T_a$$

Operating Point

At the operating point:

$$T_{p}(t) = \overline{T}_{p}$$

$$T_{p}(t) = \overline{T}_{p}$$
 $Q_{heater}(t) = \overline{Q}_{heater}$ $\dot{T}_{p} = 0$

$$\dot{T}_p = 0$$

$$\frac{1}{R_{conv} C_p} \overline{T}_p = \frac{1}{C_p} \overline{Q}_{heater} + \frac{1}{R_{conv} C_p} T_a$$

$$\overline{T}_{p} = R_{conv} \overline{Q}_{heater} + T_{a}$$

Incremental Variables

$$\hat{T}_{p}(t) = T_{p}(t) - \overline{T}_{p}$$

$$\hat{Q}_{heater}(t) = Q_{heater}(t) - \overline{Q}_{heater}$$

$$\dot{\hat{T}}_{p} + \frac{1}{R_{conv} C_{p}} \left(\hat{T}_{p} + \overline{T}_{p} \right) = \frac{1}{C_{p}} \left(\hat{Q}_{heater} + \overline{Q}_{heater} \right) + \frac{1}{R_{conv} C_{p}} T_{a}$$

$$\dot{\hat{T}}_{p} + \frac{1}{R_{conv} C_{p}} \hat{T}_{p} = \frac{1}{C_{p}} \hat{Q}_{heater}$$

Observations

- If $\overline{Q}_{heater} > 0$ then $\overline{T}_{p} > T_{a}$ and the plate is being heated.
- If $\overline{Q}_{heater} < 0$ then $\overline{T}_{p} < T_{a}$ and the plate is being cooled.
- If $\overline{Q}_{heater} = 0$ then the nominal plate temperature is

$$\overline{T}_{p} = T_{a}$$
 and $\hat{Q}_{heater}(t) \approx Q_{heater}(t)$.

Transfer Function

$$s \hat{T}_{p}(s) + \frac{1}{R_{conv} C_{p}} \hat{T}_{p}(s) = \frac{1}{C_{p}} \hat{Q}_{heater}(s)$$

$$\frac{\hat{\mathbf{T}}_{p}(s)}{\hat{\mathbf{Q}}_{heater}(s)} = \frac{\frac{1}{C_{p}}}{s + \frac{1}{R_{conv} C_{p}}} = \frac{R_{conv}}{(R_{conv} C_{p}) s + 1} = \frac{R_{conv}}{\tau s + 1}$$

