Reinforcement Learning: Policy/value iteration

AI/ML Teaching

Goals

• Brief concept of Reinforcement Learning (RL)

Markov Decision Process (MDP)

Model-free

Policy Iteration: Iterative Policy Evaluation

- Problem: Evaluate a given policy π
- Solution: Iterative application of Bellman expectation backup
- $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{\pi}$: converges to v_{π}
- At each iteration k+1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - s': successor state of s

$$egin{aligned} v_{k+1}(s) &= \sum_{a \in \mathcal{A}} \pi(a|s) \left(\mathcal{R}_s^a + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}_{ss'}^a v_k(s')
ight) \ \mathbf{v}^{k+1} &= \mathcal{R}^{m{\pi}} + \gamma \mathcal{P}^{m{\pi}} \mathbf{v}^k \end{aligned}$$

 v_k for the Random Policy

$$k = 0$$

$$0.0 \quad 0.0 \quad 0.0 \quad 0.0$$

$$k = 3$$

$$\begin{vmatrix}
0.0 & -2.4 & -2.9 & -3.0 \\
-2.4 & -2.9 & -3.0 & -2.9 \\
-2.9 & -3.0 & -2.9 & -2.4 \\
-3.0 & -2.9 & -2.4 & 0.0
\end{vmatrix}$$

$$k = 1$$

$$0.0 | -1.0 | -1.0 | -1.0$$

$$-1.0 | -1.0 | -1.0 | -1.0$$

$$-1.0 | -1.0 | -1.0 | -1.0$$

$$-1.0 | -1.0 | -1.0 | 0.0$$

$$k = 10$$

$$0.0 | -6.1 | -8.4 | -9.0$$

$$-6.1 | -7.7 | -8.4 | -8.4$$

$$-8.4 | -8.4 | -7.7 | -6.1$$

$$-9.0 | -8.4 | -6.1 | 0.0$$

$$k = \infty$$

$$0.0 | -14. | -20. | -22.$$

$$-14. | -18. | -20. | -20.$$

$$-20. | -20. | -18. | -14.$$

$$-22. | -20. | -14. | 0.0$$

Policy Iteration: How to Improve a Policy

- Given a policy π
 - Policy evaluation: Evaluate the policy π

$$v_{\pi}(s) = \mathbb{E}[R_{t+1} + \gamma R_{t+2} + \cdots | S_t = s]$$

• Policy improvement: Improve the policy by greedy action w.r.t v_π

$$\pi' = \operatorname{greedy}(v_{\pi})$$

• Policy iteration always converges to π^*

Can we stop before convergence?

 v_k for the Random Policy

Greedy Policy w.r.t. v_k

0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0

0.0	-2.4	-2.9	-3.0
-2.4	-2.9	-3.0	-2.9
-2.9	-3.0	-2.9	-2.4
-3.0	-2.9	-2.4	0.0

k = 1

0.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	-1.0
-1.0	-1.0	-1.0	0.0

		\leftrightarrow	\leftrightarrow
Ť	\Leftrightarrow	\Leftrightarrow	\leftrightarrow
\Leftrightarrow	\Leftrightarrow	\Leftrightarrow	ţ
\leftrightarrow	\Leftrightarrow	→	

0.0	-6.1	-8.4	-9.0
-6.1	-7.7	-8.4	-8.4
-8.4	-8.4	-7.7	-6.1
-9.0	-8.4	-6.1	0.0

	←	←	\	
1	Ţ	Ç	ļ	optimal policy
1	₽	₽	ţ	policy
₽	\rightarrow	\rightarrow		
				· 💆

k = 2

0.0	-1.7	-2.0	-2.0
-1.7	-2.0	-2.0	-2.0
-2.0	-2.0	-2.0	-1.7
-2.0	-2.0	-1.7	0.0

0.0	-14.	-20.	-22.
-14.	-18.	-20.	-20.
-20.	-20.	-18.	-14.
-22.	-20.	-14.	0.0

Generalized Policy Iteration

- Policy evaluation: Any policy evaluation algorithm
 - Policy evaluation of k = 1 iteration \rightarrow value iteration (next slide)
 - Monte-Carlo/TD (next lecture)
- Policy improvement: Any policy improvement algorithm
 - Greedy policy improvement
 - ϵ -greedy improvement (next lecture)
- Contraction Mapping theorem
- Policy Improvement Theorem
- GLIE (greedy in the limit with infinite exploration)

Value Iteration

- Problem: Find optimal policy π
- Solution: Iterative application of Bellman optimality backup
- $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_*$
- At each iteration k+1
 - For all states $s \in S$
 - Update $v_{k+1}(s)$ from $v_k(s')$
 - s': successor state of s

- Problem: Evaluate a given policy π
- Solution: Iterative application of Bellman expectation backup
- $v_1 \rightarrow v_2 \rightarrow \cdots \rightarrow v_{\pi}$: converges to v_{π}

$$egin{aligned} v_{k+1}(s) &= \max_{a \in \mathcal{A}} \ \left(\mathcal{R}^a_s + \gamma \sum_{s' \in \mathcal{S}} \mathcal{P}^a_{ss'} v_k(s')
ight) \ \mathbf{v}_{k+1} &= \max_{a \in \mathcal{A}} \mathcal{R}^a + \gamma \mathcal{P}^a \mathbf{v}_k \end{aligned}$$

Summary

- Prediction: value function v_{π}
- Control: optimal value function v_* and optimal policy π_*

Problem	Bellman Equation	Algorithm	
Prediction	Pollman Expectation Equation	Iterative	
Prediction	Bellman Expectation Equation	Policy Evaluation	
Control	Bellman Expectation Equation	Policy Iteration	
Control	+ Greedy Policy Improvement		
Control	Bellman Optimality Equation	Value Iteration	

Practice

- Frozen Lake
 - Reward schedule
 - Reach goal: +1
 - Reach hole/frozen: 0
 - Action space
 - 0: left
 - 1: down
 - 2: right
 - 3: up

Reference

• David Silver, COMPM050/COMPGI13 Lecture Notes