ANÁLISE MATEMÁTICA IV

FICHA 5 – SISTEMAS DE EQUAÇÕES LINEARES E EQUAÇÕES DE ORDEM SUPERIOR À PRIMEIRA

(1) Considere a matriz

$$A = \left[\begin{array}{cc} 3 & 2 \\ 2 & 3 \end{array} \right] .$$

- (a) Quais são os valores próprios de A?
- (b) Quais são os vectores próprios de A?
- (c) Determine uma matriz de mudança de base, S, que diagonaliza A, e determine a sua inversa, S^{-1} .
- (d) Calcule e^{At} .
- (e) Determine a solução do seguinte problema de valor inicial:

$$\left[\begin{array}{c} \dot{y}_1 \\ \dot{y}_2 \end{array}\right] = A \left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] \qquad \text{com} \qquad \left[\begin{array}{c} y_1(0) \\ y_2(0) \end{array}\right] = \left[\begin{array}{c} 1 \\ 2 \end{array}\right] \; .$$

(f) Determine a solução geral da seguinte equação diferencial:

$$\left[\begin{array}{c} \dot{y}_1 \\ \dot{y}_2 \end{array}\right] = A \left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] .$$

(g) Escreva duas funções $y: \mathbb{R} \to \mathbb{R}^2$ que constituam uma base do espaço vectorial das soluções da equação da alínea anterior.

Resolução:

(a) Os valores próprios são os zeros do polinómio característico:

$$\det(A - \lambda I) = 0 \iff (3 - \lambda)^2 - 4 = 0$$
$$\iff \lambda^2 - 6\lambda + 5 = 0$$
$$\iff \lambda = 1 \text{ ou } \lambda = 5.$$

Os valores próprios de A são 1 e 5.

(b) Os vectores próprios de A associados ao valor próprio 1 satisfazem

$$(A-I)v = 0 \iff \left[\begin{array}{cc} 2 & 2 \\ 2 & 2 \end{array} \right] \left[\begin{array}{c} a \\ b \end{array} \right] = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \iff a = -b \; .$$

Logo, os vectores próprios de A associados ao valor próprio 1 são os vectores da forma

$$v=a\left[egin{array}{c} 1 \\ -1 \end{array}
ight] \qquad {\it com} \qquad a\in \mathbb{R} \; .$$

Os vectores próprios de A associados ao valor próprio 5 satisfazem

$$(A-5I)v=0 \iff \left[\begin{array}{cc} -2 & 2 \\ 2 & -2 \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \iff a=b \; .$$

Logo, os vectores próprios de A associados ao valor próprio 5 são os vectores da forma

$$v=a\left[egin{array}{c} 1 \\ 1 \end{array}
ight] \qquad {\it com} \qquad a\in \mathbb{R} \; .$$

(c) Mudando para uma base de vectores próprios de A, a transformação linear dada por A fica diagonal. Tome-se, por exemplo, a matriz de mudança de base

$$S = \left[\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array} \right]$$

cujas primeira e segunda colunas são vectores próprios de A associados aos valores próprios 1 e 5, respectivamente. A mudança inversa é

$$S^{-1} = \left[\begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right] .$$

Então tem-se

$$A = S \left[\begin{array}{cc} 1 & 0 \\ 0 & 5 \end{array} \right] S^{-1} \ .$$

(d) De acordo com a alínea anterior,

$$e^{At} = S \begin{bmatrix} e^t & 0 \\ 0 & e^{5t} \end{bmatrix} S^{-1} = \begin{bmatrix} \frac{e^t + e^{5t}}{2} & \frac{e^{5t} - e^t}{2} \\ \frac{e^{5t} - e^t}{2} & \frac{e^t + e^{5t}}{2} \end{bmatrix}$$
.

(e) A solução deste problema de valor inicial é

$$y(t) = e^{At} \begin{bmatrix} y_1(0) \\ y_2(0) \end{bmatrix} = \begin{bmatrix} \frac{e^t + e^{5t}}{2} & \frac{e^{5t} - e^t}{2} \\ \frac{e^{5t} - e^t}{2} & \frac{e^t + e^{5t}}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} \frac{3e^{5t} - e^t}{2} \\ \frac{3e^{5t} + e^t}{2} \end{bmatrix}, \ \forall t \in \mathbb{R} \ .$$

(f) A solução geral desta equação diferencial é dada, por exemplo, pela expressão

$$y(t) = S \left[\begin{array}{cc} e^t & 0 \\ 0 & e^{5t} \end{array} \right] \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] = \left[\begin{array}{c} c_1 e^t + c_2 e^{5t} \\ c_2 e^{5t} - c_1 e^t \end{array} \right] \;, \; \forall t \in \mathbb{R} \; \; \textit{onde} \; c_1, c_2 \in \mathbb{R} \;.$$

Comentário: A solução acima pode ser escrita

$$y(t) = S \left[\begin{array}{cc} e^t & 0 \\ 0 & e^{5t} \end{array} \right] S^{-1} S \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] = e^{At} S \left[\begin{array}{c} c_1 \\ c_2 \end{array} \right] \;, \; \forall t \in \mathbb{R} \; \; \textit{onde} \; c_1, c_2 \in \mathbb{R} \;.$$

Equivalentemente, poder-se-ia ter respondido que a solução geral é dada por

$$y(t) = e^{At} \left[egin{array}{c} c_1 \ c_2 \end{array}
ight] \; , \; orall t \in \mathbb{R} \; \; extit{onde} \; c_1, c_2 \in \mathbb{R}$$

As colunas de e^{At} formam uma base das soluções da equação dada. Como S é uma matriz invertível, as colunas de $e^{At}S$ também formam uma base das soluções da equação. Optou-se pela expressão $e^{At}S$ porque esta dá uma expressão mais simples para a solução geral. \diamondsuit

(g) Compõe-se uma base para o espaço vectorial das soluções da equação da alínea anterior, por exemplo, com as colunas da matriz

$$S \left[\begin{array}{cc} e^t & 0 \\ 0 & e^{5t} \end{array} \right] = \left[\begin{array}{cc} e^t & e^{5t} \\ -e^t & e^{5t} \end{array} \right] \ ,$$

ou seja, com as funções $x_1:\mathbb{R} \to \mathbb{R}^2$ e $x_2:\mathbb{R} \to \mathbb{R}^2$ dadas por

$$x_1(t) = \left[egin{array}{c} e^t \\ -e^t \end{array}
ight] \qquad {
m e} \qquad x_2(t) = \left[egin{array}{c} e^{5t} \\ e^{5t} \end{array}
ight] \; .$$

De facto, $x_1(t)$ e $x_2(t)$ são funções linearmente independentes, são soluções da equação da alínea anterior e qualquer outra solução y(t) é da forma $y(t) = c_1x_1(t) + c_2x_2(t)$ para algum $c_1 \in \mathbb{R}$ e algum $c_2 \in \mathbb{R}$.

(2) Para cada uma das matrizes A seguintes, determine e^{At} .

(a)
$$A = \begin{bmatrix} 0 & 1 \\ -1 & -2 \end{bmatrix} \qquad A = \begin{bmatrix} 3 & 0 \\ 1 & 3 \end{bmatrix}$$

(c)
$$A = \begin{bmatrix} 1 & -2 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 2 & 1 & 1 \\ 0 & 3 & 0 \\ -1 & 1 & 4 \end{bmatrix}$$

Resolução:

(a) Esta matriz A só tem um valor próprio:

$$\det(A - \lambda I) = 0 \iff (-\lambda)(-2 - \lambda) + 1 = 0$$
$$\iff \lambda^2 + 2\lambda + 1 = 0$$
$$\iff \lambda = -1.$$

Os vectores próprios são dados por

$$\begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \iff -a = b.$$

Escolhe-se o vector $v=\begin{bmatrix}1\\-1\end{bmatrix}$ para base do espaço próprio e procura-se um vector próprio generalizado, w, a associado a v:

$$\left[\begin{array}{cc} 1 & 1 \\ -1 & -1 \end{array}\right] \left[\begin{array}{c} c \\ d \end{array}\right] = \left[\begin{array}{c} 1 \\ -1 \end{array}\right] \quad \Longleftrightarrow \quad c+d=1 \; .$$

Escolhe-se a solução $w=\left[\begin{array}{c} 1 \\ 0 \end{array}\right]$. Logo, uma decomposição de Jordan para A é

$$A = \underbrace{\left[\begin{array}{cc} 1 & 1 \\ -1 & 0 \end{array}\right]}_{S} \underbrace{\left[\begin{array}{cc} -1 & 1 \\ 0 & -1 \end{array}\right]}_{I} \underbrace{\left[\begin{array}{cc} 0 & -1 \\ 1 & 1 \end{array}\right]}_{S^{-1}} \; .$$

Conclui-se que

$$e^{At} = \underbrace{\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} e^{-t} & te^{-t} \\ 0 & e^{-t} \end{bmatrix}}_{e^{Jt}} \underbrace{\begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}}_{S^{-1}}$$
$$= \begin{bmatrix} e^{-t} & (1+t)e^{-t} \\ -e^{-t} & -te^{-t} \end{bmatrix} \begin{bmatrix} 0 & -1 \\ 1 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} (1+t)e^{-t} & te^{-t} \\ -te^{-t} & (1-t)e^{-t} \end{bmatrix}.$$

Comentário: Quando se detecta que esta matriz 2×2 tem apenas o valor próprio -1, pode-se concluir que a sua forma canónica de Jordan tem apenas um bloco. Com

efeito, se a forma canónica de Jordan J tivesse dois blocos, seria a matriz diagonal J=-I, pelo que a própria matriz A teria que ser

$$A = SJS^{-1} = S(-I)S^{-1} = -SS^{-1} = -I$$
,

o que é falso.

(b) Nota-se que a matriz transposta A^t é um bloco de Jordan. Como

$$e^{A^{t}t} = \sum_{k=0}^{+\infty} \frac{(A^{t}t)^{k}}{k!} = \sum_{k=0}^{+\infty} \frac{(A^{k}t^{k})^{t}}{k!} = \left(\sum_{k=0}^{+\infty} \frac{A^{k}t^{k}}{k!}\right)^{t} = \left(e^{At}\right)^{t},$$

calcula-se

$$e^{A^t t} = \left[\begin{array}{cc} e^{3t} & te^{3t} \\ 0 & e^{3t} \end{array} \right]$$

e conclui-se que

$$e^{At} = \left(e^{A^t t}\right)^t = \left[\begin{array}{cc} e^{3t} & 0\\ te^{3t} & e^{3t} \end{array}\right] .$$

(c) Os valores próprios da matriz são as soluções da equação

$$\begin{vmatrix} 1 - \lambda & -2 & 2 \\ 0 & -1 - \lambda & 1 \\ 0 & 0 & -\lambda \end{vmatrix} = 0 \iff (1 - \lambda)(-1 - \lambda)\lambda = 0$$
$$\iff \lambda = 1 \text{ ou } \lambda = -1 \text{ ou } \lambda = 0.$$

Os vectores próprios associados a 1 são os vectores que verificam

$$\begin{bmatrix} 0 & -2 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff b = c = 0.$$

Escolhe-se o vector $v=\left[egin{array}{c} 1 \\ 0 \\ 0 \end{array}\right]$ para base do espaço próprio de 1.

Os vectores próprios associados a -1 são os vectores que verificam

$$\begin{bmatrix} 2 & -2 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \quad \Longleftrightarrow \quad \begin{cases} a = b \\ c = 0 \end{cases}.$$

Escolhe-se o vector $v = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$ para base do espaço próprio de -1.

Os vectores próprios associados a 0 são os vectores que verificam

$$\begin{bmatrix} 1 & -2 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \iff \begin{cases} a = 0 \\ b = c \end{cases}.$$

Escolhe-se o vector $v = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ para base do espaço próprio de 0.

Assim, uma decomposição de Jordan para A é

$$A = \underbrace{\left[\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array}\right]}_{S} \underbrace{\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{array}\right]}_{J} \underbrace{\left[\begin{array}{ccc} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{array}\right]}_{S^{-1}}.$$

Conclui-se que

$$e^{At} = \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} e^{t} & 0 & 0 \\ 0 & e^{-t} & 0 \\ 0 & 0 & 1 \end{bmatrix}}_{e^{Jt}} \underbrace{\begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}}_{S^{-1}}$$

$$= \begin{bmatrix} e^{t} & e^{-t} & 0 \\ 0 & e^{-t} & 1 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} e^{t} & e^{-t} - e^{t} & e^{t} - e^{-t} \\ 0 & e^{-t} & 1 - e^{-t} \\ 0 & 0 & 1 \end{bmatrix}.$$

Comentário: Ao encontrar 3 valores próprios diferentes para esta matriz 3×3 , pode-se concluir logo que ela é diagonalizável, ou seja, que existe uma base formada por vectores próprios de A, pois valores próprios diferentes admitem vectores próprios linearmente independentes. \diamondsuit

(d) Os valores próprios da matriz são as soluções da equação

$$\begin{vmatrix} 2-\lambda & 1 & 1\\ 0 & 3-\lambda & 0\\ -1 & 1 & 4-\lambda \end{vmatrix} = 0 \iff (2-\lambda)(3-\lambda)(4-\lambda) + (3-\lambda) = 0$$
$$\iff \lambda = 3 \text{ ou } \lambda^2 - 6\lambda + 9 = 0$$
$$\iff \lambda = 3,$$

portanto A tem apenas o valor próprio 3. Os vectores próprios são os vectores que verificam

$$\begin{bmatrix}
-1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0
\end{bmatrix} \iff -a+b+c=0.$$

Como há exactamente uma condição linear a que os vectores próprios têm obedecer, o espaço próprio tem dimensão 3-1=2. Toma-se os vectores

$$v_1 = \left[egin{array}{c} 1 \ 1 \ 0 \end{array}
ight] \qquad ext{e} \qquad v_2 = \left[egin{array}{c} 1 \ 0 \ 1 \end{array}
ight]$$

para formar uma base do espaço próprio, tendo tido o cuidado de escolher o vector v_2 pertencente ao espaço das colunas da matriz A-3I. Calcula-se agora um vector próprio generalizado w associado a v_2 :

$$\begin{bmatrix}
-1 & 1 & 1 \\
0 & 0 & 0 \\
-1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
a \\
b \\
c
\end{bmatrix} = v_2 = \begin{bmatrix}
1 \\
0 \\
1
\end{bmatrix}.$$

Toma-se, por exemplo, $w = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$.

Consequentemente, uma decomposição de Jordan para A é

$$A = \underbrace{\left[\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right]}_{S} \underbrace{\left[\begin{array}{ccc} 3 & 0 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 3 \end{array}\right]}_{J} \underbrace{\left[\begin{array}{ccc} 1 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{array}\right]}_{S^{-1}}.$$

Conclui-se que

$$e^{At} = \underbrace{\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} e^{3t} & 0 & 0 \\ 0 & e^{3t} & te^{3t} \\ 0 & 0 & e^{3t} \end{bmatrix}}_{e^{Jt}} \underbrace{\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}}_{S^{-1}}$$

$$= \begin{bmatrix} e^{3t} & e^{3t} & te^{3t} \\ e^{3t} & 0 & e^{3t} \\ 0 & e^{3t} & te^{3t} \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 1 \\ -1 & 1 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} (1-t)e^{3t} & te^{3t} & te^{3t} \\ 0 & e^{3t} & 0 \\ -te^{3t} & te^{3t} & (1+t)e^{3t} \end{bmatrix}.$$

(3) Considere a matriz

$$A = \left[\begin{array}{cc} -1 & 1 \\ -1 & -1 \end{array} \right] .$$

- (a) Calcule e^{At} .
- (b) Determine a solução do seguinte problema de valor inicial

$$\left[\begin{array}{c} \dot{y}_1 \\ \dot{y}_2 \end{array}\right] = A \left[\begin{array}{c} y_1 \\ y_2 \end{array}\right] + \left[\begin{array}{c} e^{-t} \\ 0 \end{array}\right] \quad \text{com} \quad \left[\begin{array}{c} y_1(0) \\ y_2(0) \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \; .$$

Resolução:

(a) Os valores próprios da matriz são as soluções de

$$\det(A - \lambda I) = 0 \iff \begin{vmatrix} -1 - \lambda & 1 \\ -1 & -1 - \lambda \end{vmatrix} = 0$$

$$\iff (-1 - \lambda)^2 + 1 = 0$$

$$\iff \lambda = -1 \pm i.$$

Os vectores próprios associados a -1+i são os vectores que verificam

$$\left[\begin{array}{cc} -i & 1 \\ -1 & -i \end{array}\right] \left[\begin{array}{c} a \\ b \end{array}\right] = \left[\begin{array}{c} 0 \\ 0 \end{array}\right] \quad \Longleftrightarrow \quad ia = b \; .$$

Uma base do espaço próprio de -1+i é constituída pelo vector $v_1=\left[\begin{array}{c}1\\i\end{array}\right]$.

Os vectores próprios associados a -1-i são os vectores conjugados dos vectores próprios associados a -1+i. (De facto, se λ e $\overline{\lambda}$ são valores próprios complexos conjugados de uma matriz real A, então $(A-\lambda I)v=0 \iff (A-\overline{\lambda}I)\overline{v}=0$.) Uma base do espaço próprio de -1-i é constituída pelo vector $v_2=\overline{v_1}=\begin{bmatrix} 1\\ -i \end{bmatrix}$.

Logo, uma decomposição de Jordan para A é

$$A = \underbrace{\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} -1+i & 0 \\ 0 & -1-i \end{bmatrix}}_{J} \underbrace{\begin{bmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{1}{2} & \frac{i}{2} \end{bmatrix}}_{S^{-1}}.$$

Conclui-se que

$$e^{At} = \underbrace{\begin{bmatrix} 1 & 1 \\ i & -i \end{bmatrix}}_{S} \underbrace{\begin{bmatrix} e^{(-1+i)t} & 0 \\ 0 & e^{(-1-i)t} \end{bmatrix}}_{e^{Jt}} \underbrace{\begin{bmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{1}{2} & \frac{i}{2} \end{bmatrix}}_{S^{-1}}$$

$$= e^{-t} \begin{bmatrix} e^{it} & e^{-it} \\ ie^{it} & -ie^{-it} \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{1}{2} & \frac{i}{2} \end{bmatrix}$$

$$= e^{-t} \begin{bmatrix} \cos t & \sin t \\ -\sin t & \cos t \end{bmatrix}.$$

Comentário: Apesar do método de resolução envolver complexos, a resposta tinha que ser real, pois a matriz dada é real e a exponencial de uma matriz real é real. \diamondsuit

(b) Em termos de

$$y(t) = \left[\begin{array}{c} y_1(t) \\ y_2(t) \end{array} \right] \;, \qquad y_0 = \left[\begin{array}{c} 0 \\ 0 \end{array} \right] \qquad \ e \qquad \ b(t) = \left[\begin{array}{c} e^{-t} \\ 0 \end{array} \right] \;,$$

este problema de valor inicial escreve-se

$$\begin{cases} \dot{y} = Ay + b(t) \\ y(0) = y_0 \end{cases}.$$

A solução é dada, por exemplo, pela fórmula de variação das constantes:

$$y(t) = e^{At}y_0 + \int_0^t e^{A(t-s)}b(s) ds$$

$$= 0 + \int_0^t e^{-(t-s)} \begin{bmatrix} \cos(t-s) & \sin(t-s) \\ -\sin(t-s) & \cos(t-s) \end{bmatrix} \begin{bmatrix} e^{-s} \\ 0 \end{bmatrix} ds$$

$$= \int_0^t e^{-t} \begin{bmatrix} \cos(t-s) \\ -\sin(t-s) \end{bmatrix} ds$$

$$= e^{-t} \begin{bmatrix} \int_0^t \cos(t-s) ds \\ -\int_0^t \sin(t-s) ds \end{bmatrix}$$

$$= e^{-t} \begin{bmatrix} \sin t \\ \cos t - 1 \end{bmatrix}.$$

Conclui-se que a solução é

$$\begin{bmatrix} y_1(t) \\ y_2(t) \end{bmatrix} = \begin{bmatrix} e^{-t} \sin t \\ e^{-t} (\cos t - 1) \end{bmatrix}.$$

(4) Resolva o seguinte sistema de equações diferenciais:

$$\begin{cases} \frac{dy_1}{dt} &= 2y_1 + 2y_2 + t \\ \frac{dy_2}{dt} &= 2y_1 + 2y_2 \ . \end{cases}$$

Resolução: Este sistema fica mais simples se for traduzido nas incógnitas $x_1=y_1-y_2$ e $x_2=y_1+y_2$. Como

$$\begin{cases} \dot{y_1} - \dot{y_2} &= t \\ \dot{y_1} + \dot{y_2} &= 4(y_1 + y_2) + t \end{cases},$$

as novas funções satisfazem

$$\begin{cases} \dot{x_1} = t \\ \dot{x_2} = 4x_2 + t \end{cases}$$

A solução geral da primeira equação é

$$x_1(t) = \frac{t^2}{2} + c_1$$

onde c_1 é uma constante real arbitrária. A segunda equação admite o factor de integração e^{-4t} e resolve-se como se segue:

$$\dot{x_2} = 4x_2 + t \iff e^{-4t}\dot{x_2} - 4e^{-4t}x_2 = te^{-4t} \\
\iff \frac{d}{dt} \left(e^{-4t}x_2 \right) = te^{-4t} \\
\iff e^{-4t}x_2 = \int te^{-4t} dt + c_2 \\
\iff x_2(t) = e^{4t} \left(-\frac{t}{4}e^{-4t} - \frac{1}{16}e^{-4t} + c_2 \right) \\
\iff x_2(t) = -\frac{t}{4} - \frac{1}{16} + c_2 e^{4t}$$

onde c_2 é uma constante real arbitrária. Como $y_1=\frac{1}{2}(x_1+x_2)$ e $y_2=\frac{1}{2}(x_2-x_1)$, conclui-se que a solução geral pedida é

$$\begin{cases} y_1(t) = \frac{t^2}{4} + k_1 - \frac{t}{8} - \frac{1}{32} + k_2 e^{4t} \\ y_2(t) = -\frac{t}{8} - \frac{1}{32} + k_2 e^{4t} - \frac{t^2}{4} - k_1 \end{cases}.$$

onde $k_1=rac{c_1}{2}$ e $k_2=rac{c_2}{2}$ são constantes reais arbitrárias.

Comentário: Em alternativa, poder-se-ia ter aplicado a fórmula de variação das constantes ao sistema original.

- (5) Determine a solução geral de cada uma das seguintes equações diferenciais escalares:
 - (a) $y^{(2)} + 4\dot{y} + 4y = 0$;
 - (b) $y^{(2)} + 4\dot{y} + 4y = 1$;
 - (c) $y^{(2)} + 4\dot{y} + 4y = e^{-2t}$;
 - (d) $y^{(2)} + 4\dot{y} + 4y = 1 + e^{-2t}$.

Resolução:

(a) Esta equação pode ser escrita

$$(D^2 + 4D + 4)y = 0$$

onde $D=\frac{d}{dt}$ é o operador de derivação em ordem a t. Como $\lambda^2+4\lambda+4=(\lambda+2)^2$ tem apenas a raiz -2 com multiplicidade 2, conclui-se que a solução geral é

$$y(t) = c_1 e^{-2t} + c_2 t e^{-2t}$$
, $\forall t \in \mathbb{R}$ onde $c_1, c_2 \in \mathbb{R}$.

(b) Esta equação pode ser escrita

$$(D^2 + 4D + 4)y = 1. (*)$$

A sua solução geral pode ser obtida somando uma solução particular à solução geral da equação homogénea associada, a qual foi resolvida na alínea (a). Para encontrar uma solução particular, aplica-se o método dos coeficientes indeterminados. Um aniquilador de 1 é D. A equação homogénea auxiliar $D(D^2+4D+4)y=0$ tem solução geral $a_1+a_2e^{-2t}+a_3te^{-2t}$. Como a família $a_2e^{-2t}+a_3te^{-2t}$ é constituída exclusivamente por soluções da equação homogénea associada a (\star) , estes termos não adiantam na busca de uma solução particular de (\star) . Vai-se então determinar a constante a_1 , substituindo-a na equação (\star) e impondo que seja uma solução particular:

$$(D^2 + 4D + 4)a_1 = 1 \iff 4a_1 = 1 \iff a_1 = \frac{1}{4}$$
.

Conclui-se que a solução geral é

$$y(t) = c_1 e^{-2t} + c_2 t e^{-2t} + \frac{1}{4}$$
, $\forall t \in \mathbb{R}$ onde $c_1, c_2 \in \mathbb{R}$.

(c) Esta equação pode ser escrita

$$(D^2 + 4D + 4)u = e^{-2t}$$
. $(\star\star)$

A sua solução geral pode ser obtida somando uma solução particular à solução geral da equação homogénea associada, a qual foi resolvida na alínea (a). Para encontrar uma solução particular, aplica-se o método dos coeficientes indeterminados. Um aniquilador de e^{-2t} é D+2. A equação homogénea auxiliar $(D+2)(D^2+4D+4)y=0$, que é equivalente a $(D+2)^3y=0$, tem solução geral $a_1e^{-2t}+a_2te^{-2t}+a_3t^2e^{-2t}$. Como a família $a_1e^{-2t}+a_2te^{-2t}$ é constituída exclusivamente por soluções da equação homogénea associada a $(\star\star)$, estes termos não adiantam na busca de uma solução particular de $(\star\star)$. Vai-se então determinar a constante a_3 , substituindo $a_3t^2e^{-2t}$ na equação $(\star\star)$ e impondo que seja uma solução particular:

$$(D^{2} + 4D + 4)(a_{3}t^{2}e^{-2t}) = e^{-2t}$$

$$\iff (4a_{3}t^{2}e^{-2t} - 8a_{3}te^{-2t} + 2a_{3}e^{-2t}) + 4(-2a_{3}t^{2}e^{-2t} + 2a_{3}te^{-2t}) + 4a_{3}t^{2}e^{-2t} = e^{-2t}$$

$$\iff \begin{cases} 4a_{3} - 8a_{3} + 4a_{3} = 0 \\ -8a_{3} + 8a_{3} = 0 \end{cases} \iff a_{3} = \frac{1}{2},$$

onde o sistema de equações para a_3 foi obtido igualando os coeficientes de t^2e^{-2t} , te^{-2t} e e^{-2t} nos membros esquerdo e direito. Conclui-se que a solução geral é

$$y(t) = c_1 e^{-2t} + c_2 t e^{-2t} + \frac{1}{2} t^2 e^{-2t} \ , \quad \forall t \in \mathbb{R} \quad \text{ onde } c_1, c_2 \in \mathbb{R} \ .$$

(d) Esta equação pode ser escrita

$$(D^2 + 4D + 4)y = 1 + e^{-2t}$$
.

A sua solução geral pode ser obtida somando uma solução particular à solução geral da equação homogénea associada, a qual foi resolvida na alínea (a). Encontra-se uma solução particular somando as soluções particulares determinadas nas alíneas (b) e (c), as quais correspondem a cada uma das parcelas do membro direito da equação. Conclui-se que a solução geral é

$$y(t) = c_1 e^{-2t} + c_2 t e^{-2t} + \frac{1}{4} + \frac{1}{2} t^2 e^{-2t}$$
, $\forall t \in \mathbb{R}$ onde $c_1, c_2 \in \mathbb{R}$.

Comentário: Em alternativa, na alínea (d) poder-se-ia ter aplicado o método dos coeficientes indeterminados para calcular uma solução particular, notando que o aniquilador da soma $1 + e^{-2t}$ é a composição dos aniquiladores de 1 e de e^{-2t} , ou seja, é D(D+2). \diamondsuit

- (6) Determine a solução que verifica as condições iniciais $y(0) = \dot{y}(0) = 0$ e $y^{(2)}(0) = 1$ para as seguintes equações diferenciais escalares:
 - (a) $y^{(3)} 4y^{(2)} + 5\dot{y} = e^t + t$;
 - (b) $y^{(3)} 4y^{(2)} + 5\dot{y} = e^{2t}\cos t$.

Resolução:

(a) A equação diferencial pode ser escrita

$$(D^3 - 4D^2 + 5D)y = e^t + t . (*)$$

A sua solução geral pode ser obtida somando uma solução particular à solução geral da equação homogénea associada

$$(D^3 - 4D^2 + 5D)y = 0. (\star)_H$$

Como $\lambda^3-4\lambda^2+5\lambda=\lambda(\lambda^2-4\lambda+5)$ tem as raízes simples 0, 2+i e 2-i, a solução geral complexa da equação homogénea associada $(\star)_H$ é

$$a_1+a_2e^{(2+i)t}+a_3e^{(2-i)t}\ ,\quad \forall t\in\mathbb{R}\quad \mbox{ onde }a_1,a_2,a_3\in\mathbb{C}\ .$$

enquanto que a solução geral real de $(\star)_H$ é

$$y_H(t) = c_1 + c_2 e^{2t} \cos t + c_3 e^{2t} \sin t$$
, $\forall t \in \mathbb{R}$ onde $c_1, c_2, c_3 \in \mathbb{R}$.

Para obter uma solução particular de (\star) , aplica-se o método dos coeficientes indeterminados. Um aniquilador de e^t+t é $D^2(D-1)$, obtido compondo aniquiladores das parcelas t e e^t . A equação homogénea auxiliar $D^2(D-1)(D^3-4D^2+5D)y=0$, que é equivalente a $D^3(D-1)(D-2-i)(D-2+i)y=0$, tem solução geral real $b_1+b_2t+b_3t^2+b_4e^t+b_5e^{2t}\cos t+b_6e^{2t}\sin t$. Como a família $b_1+b_5e^{2t}\cos t+b_6e^{2t}\sin t$ é constituída exclusivamente por soluções da equação homogénea associada $(\star)_H$, estes termos não adiantam na busca de uma solução particular de (\star) . Vai-se então determinar as constantes b_2,b_3 e b_4 , substituindo $b_2t+b_3t^2+b_4e^t$ na equação (\star) e impondo que seja uma solução particular:

$$(D^{3} - 4D^{2} + 5D)(b_{2}t + b_{3}t^{2} + b_{4}e^{t}) = e^{t} + t$$

$$\iff b_{4}e^{t} - 4(2b_{3} + b_{4}e^{t}) + 5(b_{2} + 2b_{3}t + b_{4}e^{t}) = e^{t} + t$$

$$\iff \begin{cases} b_{4} - 4b_{4} + 5b_{4} = 1\\ 10b_{3} = 1\\ -8b_{3} + 5b_{2} = 0 \end{cases} \iff \begin{cases} b_{4} = \frac{1}{2}\\ b_{3} = \frac{1}{10}\\ b_{2} = \frac{4}{25} \end{cases}$$

onde o sistema de equações para b_2 , b_3 e b_4 foi obtido igualando os coeficientes de e^t , t e 1 nos membros esquerdo e direito. Logo, uma solução particular de (\star) é

$$y_P(t) = \frac{4}{25}t + \frac{1}{10}t^2 + \frac{1}{2}e^t$$
, $\forall t \in \mathbb{R}$.

Conclui-se que a solução geral de (*) é

$$y(t) = \underbrace{c_1 + c_2 e^{2t} \cos t + c_3 e^{2t} \sin t}_{y_H(t)} + \underbrace{\frac{4}{25}t + \frac{1}{10}t^2 + \frac{1}{2}e^t}_{y_P(t)}, \ \forall t \in \mathbb{R} \ \ \textit{onde} \ c_1, c_2, c_3 \in \mathbb{R} \ .$$

Para achar a solução particular que satisfaz as condições iniciais dadas, calcula-se a primeira e a segunda derivadas da solução geral:

$$\dot{y}(t) = c_2 e^{2t} (2\cos t - \sin t) + c_3 e^{2t} (2\sin t + \cos t) + \frac{4}{25} + \frac{1}{5}t + \frac{1}{2}e^t$$

$$y^{(2)}(t) = c_2 e^{2t} (3\cos t - 4\sin t) + c_3 e^{2t} (3\sin t + 4\cos t) + \frac{1}{5} + \frac{1}{2}e^t$$

e impõe-se as condições:

$$\begin{cases} y(0) = c_1 + c_2 + \frac{1}{2} = 0 \\ \dot{y}(0) = 2c_2 + c_3 + \frac{4}{25} + \frac{1}{2} = 0 \\ y^{(2)}(0) = 3c_2 + 4c_3 + \frac{1}{5} + \frac{1}{2} = 1 \end{cases} \iff \begin{cases} c_1 = \frac{22}{250} \\ c_2 = -\frac{147}{250} \\ c_3 = \frac{129}{250} \end{cases}$$

Portanto a resposta é

$$y(t) = \frac{22}{250} - \frac{147}{250}e^{2t}\cos t + \frac{129}{250}e^{2t}\sin t + \frac{4}{25}t + \frac{1}{10}t^2 + \frac{1}{2}e^t, \ \forall t \in \mathbb{R}.$$

(b) A equação diferencial pode ser escrita

$$(D^3 - 4D^2 + 5D)y = e^{2t}\cos t$$
 . $(\star\star)$

A sua solução geral pode ser obtida somando uma solução particular à solução geral da equação homogénea associada

$$(D^3 - 4D^2 + 5D)y = 0 ,$$

cuja solução geral real foi obtida na alínea anterior:

$$y_H(t) = c_1 + c_2 e^{2t} \cos t + c_3 e^{2t} \sin t$$
, $\forall t \in \mathbb{R}$ onde $c_1, c_2, c_3 \in \mathbb{R}$.

Para encontrar uma solução particular de $(\star\star)$, aplica-se o método dos coeficientes indeterminados. Um aniquilador de $e^{2t}\cos t$ é $(D-2)^2+1$. A equação homogénea auxiliar $[(D-2)^2+1](D^3-4D^2+5D)y=0$, que é equivalente a $D(D-2-i)^2(D-2+i)^2y=0$, tem solução geral real

$$b_1 + b_2 e^{2t} \cos t + b_3 e^{2t} \sin t + b_4 t e^{2t} \cos t + b_5 t e^{2t} \sin t$$
.

Como a família $b_1 + b_2 e^{2t} \cos t + b_3 e^{2t} \sin t$ é constituída exclusivamente por soluções da equação homogénea associada, estes termos não adiantam na busca de uma solução particular de $(\star\star)$. Vai-se então determinar as constantes b_4 e b_5 , substituindo $b_4 t e^{2t} \cos t + b_5 t e^{2t} \sin t$ na equação $(\star\star)$ e impondo que seja uma solução particular:

$$(D^{3} - 4D^{2} + 5D)(b_{4}te^{2t}\cos t + b_{5}te^{2t}\sin t) = e^{2t}\cos t$$

$$\iff (-2b_{4} + 4b_{5}) \cdot e^{2t}\cos t + (-4b_{4} - 2b_{5}) \cdot e^{2t}\sin t + 0 \cdot te^{2t}\cos t + 0 \cdot te^{2t}\sin t = e^{2t}\cos t$$

$$\iff \begin{cases} -2b_{4} + 4b_{5} = 1\\ -4b_{4} - 2b_{5} = 0 \end{cases} \iff \begin{cases} b_{4} = -\frac{1}{10}\\ b_{5} = \frac{1}{5} \end{cases}$$

onde o sistema de equações para b_4 e b_5 foi obtido igualando os coeficientes de $e^{2t}\cos t$ e $e^{2t}\sin t$ nos membros esquerdo e direito. Logo, uma solução particular de $(\star\star)$ é

$$y_P(t) = -\frac{1}{10}te^{2t}\cos t + \frac{1}{5}te^{2t}\sin t \ , \quad \forall t \in \mathbb{R} \ .$$

Conclui-se que a solução geral de (**) é

$$y(t) = \underbrace{c_1 + c_2 e^{2t} \cos t + c_3 e^{2t} \sin t}_{y_H(t)} \underbrace{-\frac{1}{10} t e^{2t} \cos t + \frac{1}{5} t e^{2t} \sin t}_{q_P(t)},$$

para todo o t em \mathbb{R} onde $c_1, c_2, c_3 \in \mathbb{R}$.

Para achar a solução particular que satisfaz as condições iniciais dadas, calcula-se a primeira e a segunda derivadas da solução geral:

$$\dot{y}(t) = c_2 e^{2t} (2\cos t - \sin t) + c_3 e^{2t} (2\sin t + \cos t)$$
$$-\frac{1}{10} e^{2t} \cos t - \frac{1}{10} t e^{2t} (2\cos t - \sin t)$$
$$+\frac{1}{5} e^{2t} \sin t + \frac{1}{5} t e^{2t} (2\sin t + \cos t)$$

$$y^{(2)}(t) = c_2 e^{2t} (3\cos t - 4\sin t) + c_3 e^{2t} (3\sin t + 4\cos t)$$
$$-\frac{1}{10} e^{2t} (4\cos t - 2\sin t) - \frac{1}{10} t e^{2t} (3\cos t - 4\sin t)$$
$$+\frac{1}{5} e^{2t} (4\sin t + 2\cos t) + \frac{1}{5} t e^{2t} (3\sin t + 4\cos t)$$

e impõe-se as condições.

$$\begin{cases} y(0) = c_1 + c_2 = 0 \\ \dot{y}(0) = 2c_2 + c_3 - \frac{1}{10} = 0 \\ y^{(2)}(0) = 3c_2 + 4c_3 - \frac{4}{10} + \frac{2}{5} = 1 \end{cases} \iff \begin{cases} c_1 = \frac{3}{25} \\ c_2 = -\frac{3}{25} \\ c_3 = \frac{17}{50} \end{cases}.$$

Portanto a resposta é

$$y(t) = \frac{3}{25} - \frac{3}{25}e^{2t}\cos t + \frac{17}{50}e^{2t}\sin t - \frac{1}{10}te^{2t}\cos t + \frac{1}{5}te^{2t}\sin t , \ \forall t \in \mathbb{R} .$$