5.6 PROC MEANS

```
(continuous, metric, measurable)
                                                                     (elementary statistics,
                                                                         가
   procedure .
5.6.1
    (mean):
                                                                                                   (n)
                                    (arithmetic average)
(x_1, x_2, \dots, x_n) \bar{x} = \frac{1}{n} \sum_{i=1}^n x_i = \frac{x_1 + x_2 + \dots + x_n}{n} (1, 4, 6, 5, 6, 2)
(1+4+6+5+6+2)/6=4
      (median):
                                                       (order statistics)
                                                                     x_{(1)},x_{(2)},\ldots,x_{(n)}
                                                                   n M = x_{(n+1)/2},
                (order statistics) .
                                                                                          가 n
        M = [x_{(n/2)} + x_{(\{n+2\}/2)}]/2
                                                                  (order statistics):
                (observation) (x_1, x_2, ..., x_n)
                                                                                                  x_{(1)},
가
                                   x_{(1)}, x_{(2)}, ..., x_{(n)}
     ) x_{(1)} \le x_{(2)} \le ... \le x_{(n)} ) x_{(1)} ) x_{(n)} ) (range): x_{(n)} - x_{(1)}
         6 (1, 4, 6, 5, 6, 2) (1) x_{(1)} = 1, x_{(6)} = 6 x_{(6)} - x_{(1)} = 5 .
                                                                    (1, 2, 4, 5, 6, 6)
    (depth):
                                                     (depth)
                                                                                         . (Tukey
  )
                                                    1 . Depth( =M)=(n+1)/2
        Depth(Q1) = Depth(Q3) = ([Depth(M)] + 1)/2 \qquad . ( \qquad )[x] = x
                         (1, 4, 6, 5, 6, 2)
                                                                     (6+1)/2=3.5
            ([3.5]+1)/2=(3+1)/2=2
```

```
(
)가
                                                                           가
                   (outlier)
            좌우대칭(종 모양)
                                우로 치우침
                                                       좌로 치우침
                                                       평균<중앙값
             평균=중앙값
                                중앙값<평균
                   (1, 2, 3, 4, 5, 6, 7, 8, 9, 55)
    \overline{x} = 10
                        M = [x_{(5)} + x_{(6)}]/2 = (5+6)/2 = 5.5
                                                                      (10+1)/2=5.5
                      ([5.5+1])/2=3 .
                                                            Q_1 	 x_{(3)} = 4.
                                                       5.5가
                                                                    10
                   가
                                                가
                                           가
                                            (Central Limit Theorem)
 n
                                       가
                                                   가
```

► (Central Limit Theorem): n (20~30)

6.6.2 (: spread)

. (320)

.

가 . A

В

.

54

가 가 **IQR** 가 p%-percentile(): p%가 (1-p)%가 р% (First Quartile, Low Quartile) Q1 25%가 75%가 (Second 50%가 Quartile, Median) Q2 50%가 (Third Quartile, Upper Quartile) Q3 75%가 25%가 (Q3-Q1) IQR(Inter-Quartile Range) (1, 2, 4, 5, 6, 6) 6 (1, 4, 6, 5, 6, 2) (6+1)/2 = 3.5([3.5]+1)/2=2. $Q_2 = (4+5) = 4.5$, $Q_3 = x_{(5)} = 6$. $Q_1 = x_{(2)} = 2$, IQR = 6 - 2 = 4160 +1.5*IQR Q3 150 Q3 중앙값 140 Q1 130 Q1 -1.5*IQR 120 110. 가 (variance) : (x_i) (\bar{x})) (standard deviation) (σ^2) , (σ : sigma)

(s)

(s²),

IQR

•

•

$$: s^2 = \sum_{i=1}^n \frac{(x_i - \overline{x})^2}{n-1} = \frac{1}{n-1} \left[\sum_{i=1}^n x_i^2 - n(\overline{x})^2 \right], \quad s = \sqrt{s^2}$$

$$s^{2} = \frac{1}{6-1} \sum_{i=1}^{6} (x_{i} - 4)^{2} = \frac{(1-4)^{2} + (4-4)^{2} + \dots + (2-4)^{2}}{5} = 4.4, \quad s = \sqrt{4.4} = 2.098$$

:

.

가

가 .

Empirical Rule():

(1) 68.3% ±

(2) 95.5% ±2 *

(3) 99.7%() ±3 *

가

(CV: Coefficient of Variation):

가

가

가

100 (CV: Coefficient of

Variation) $V = \frac{s}{\overline{x}} \times 100(\%)$ \overline{x} , 0.5, B A, B Α 6 가 8.0 가 В $=0.5/3\times100(\%)$ =16.7 (%) В $=0.8/6\times100(\%)=13.3(\%)$ (standard error): (standard deviation)) s/\sqrt{n} (σ/\sqrt{n} (6.6.3 POTTERY.txt (CA) (MG) KEY-word key-word mean, $(\frac{E(X-\mu)^3}{\sigma^3})$ SKEWNESS(std, min, max 4 KURTOSIS $\frac{E(X-\mu)^4}{\sigma^4}$ (=0),=3) PROC MEANS DATA=POTTERY MEAN STD VAR CV 1 P5 P10 Q1 MEDIAN Q3 P90 P95 QRANGE RANGE; 2 VAR MG CA; RUN; 4.7512055 0.0102475

제10 백분위 수	제1 사분위수	중간값	제3 사분위수
0.6000000	0.6700000	3.8250000	4.5200000
0.0100000	0.0600000	0.1550000	0.2200000

제90 백분위 수	제95 백분위 수	사분위 범위	범위
5.6900000	5.9100000	3,8500000	6.7000000
0.2900000	0.3000000	0,1600000	0.3000000

CLASS BY . BY CLASS

PROC MEANS DATA=POTTERY MEAN STD VAR CV P5 P10 Q1 MEDIAN Q3 P90 P95 QRANGE RANGE;

VAR MG CA; CLASS SITE;

RUN;

Site	관측치 수	변수	평균값	표준편차	
A	5	Mg Ca	0.6060000 0.0520000	0.0634823 0.0342053	0.1 0.1
С	2	Mg Ca	3.8550000 0.2950000	0.1202082 0.0070711	0.1 0.00
I	5	Mg Ca	0.6740000 0.0260000	0.0320936 0.0260768	0.1 0.00
L	14	Mg Ca	4.8264286 0.2021429	1.0882209 0.0582011	1. 0.1

SAS OUTPUT SAS MG

key-woard=

```
PROC MEANS DATA=POTTERY MEAN STD VAR CV 4
            P5 P10 Q1 MEDIAN Q3 P90 P95 QRANGE RANGE;
    VAR MG;
     OUTPUT OUT=OUT1 MEAN=MG M STD=MG STD MEDIAN=MG MED;
                 ①
PROC PRINT DATA=OUT1; 3
RUN:
                                            OUTPUT
PROC MEANS DATA=POTTERY; 았으므로 MEAN,STD,MIN,MAX만 출력
    VAR MG CA;
     OUTPUT OUT=OUT1 MEAN=MG M CA M STD=MG STD CA STD;
                             ●毎日 半季●
RUN:
PROC PRINT DATA=OUT1;
RUN;
                                    CA_M
                                             MG_STD
                                                       CA_STD
Obs.
      _TYPE_
               _FREQ_
                          MG_M
 1 0
                 26
                        3.14154
                                  0.14654
                                            2.17973
                                                      0.10123
                                                               ? TYPE
  CLASS
                         SAS
                 0
                                                CLASS
PROC MEANS DATA=POTTERY;
     VAR MG CA;
     CLASS SITE;
    OUTPUT OUT=OUT1 MEAN=MG M CA M STD=MG STD CA STD;
RUN:
PROC PRINT DATA=OUT1;
RUN:
Site
                          MG_M
       _TYPE_
                _FREQ_
                                    CA_M
                                             MG_STD
                                                       CA_STD
                                   0.14654
                  26
5
2
5
14
                         3.14154
                                             2.17973
                                                      0.10123
                         0.60600
3.85500
0.67400
                                   0.05200
0.29500
0.02600
                                            0.06348
0.12021
0.03209
 A
C
I
L
                                                      0.00707
                                                      0.02608
                                   0.20214
                         4.82643
                                             1.08822
                                                      0.05820
```

5% 95%7 \dagger . STD (s) STDERR . s/\sqrt{n}

PROC MEANS DATA=POTTERY ALPHA=0.05 MEAN STD STDERR CLM; VAR MG CA;

S

RUN;

변수	평균값	표준편차	표준오차	평균에 대한95% 신뢰하한	평균에 대한95% 신뢰상한
Mg	3.1415385	2.1797260	0.4274794	2.2611281	4.0219489
Ca	0.1465385	0.1012301	0.0198529	0.1056507	0.1874262

$$H_0: \mu = \mu_0$$

$$\vdots \quad T = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} \sim t(n-1) \ or \ N(0,1)$$

$$7$$
 (Sign , Wilcoxon Ranks Sum)
$$\vdots \quad \overline{x} \pm t(n-1;1-\alpha/2) \frac{s}{\sqrt{n}}$$

E E			A: \JUNE08\MEAN1. doc
FITNESS.txt	(OXYGEN)		
	SAS	OUT1	
(T), p- , 95%	(가 CLM) .
가 :	50 .	가 :50 .	
, ,	()	"MEAN1"	

T, PROBT

PROC MEANS T P- () T, PROBT가 가 0 p- .

```
분석 변수 : Oxygen
PROC MEANS DATA=FITNESS T PROBT;
                                        t Value
                                                 Pr > [t]
     VAR OXYGEN;
                                          49.51
                                                   <.0001
RUN:
```

PROC MEANS

가

```
DATA FITNESS2;
    SET FITNESS;
    OXYGENO=OXYGEN-50;
분석 변수 : OXYGENO
PROC MEANS DATA=FITNESS2 T PROBT;
                                 t Value
                                        Pr > |t|
                       - 1 TO - 1
    VAR OXYGENO;
                                  -2.74
                                          0.0102
       柳森湖的
RUN:
```

PROCEDURE가 TTEST 가 . 95%

```
PROC TTEST DATA=FITNESS ALPHA=0.05 H0=50;
                          ①
                                      0
    VAR OXYGEN;
RUN:
```

Variable	N	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err
Oxygen	31	45.422	47.376	49.33	4.2571	5.3272	7.1208	0.9568

t-

T-Tests						
Variable	DF	t Value	$\text{Pr} \succ \textbf{t} $			
Oxygen	30	-2.74	0.0102			