Week 2

10/3:

Solving Simple ODEs

2.1 Separable ODEs

• Do not sit on the left side of the classroom: The sun sucks!

• Separable (ODE): An ODE of the form

$$\frac{\mathrm{d}y}{\mathrm{d}t} = f(t)g(y)$$

where y is a real^[1], unknown, scalar function of t.

• Solving separable ODEs: Formally, evaluate

$$\int \frac{\mathrm{d}y}{q(y)} = \int f(t) \,\mathrm{d}t$$

• Rearrange the initial separable ODE to $dy/dt \cdot 1/g = f$ and invoke the law of composite differentiation to get

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\int_{y_0}^{y(t)} \frac{\mathrm{d}w}{g(w)} - \int_{t_0}^t f(\tau) \,\mathrm{d}\tau \right] = 0$$

• It follows that

$$\int_{y_0}^{y(t)} \frac{\mathrm{d}w}{g(w)} = \int_{t_0}^t f(\tau) \,\mathrm{d}\tau$$

 \bullet Examples:

1. Exponential growth.

- We have that

$$\frac{\mathrm{d}y}{\mathrm{d}t} = ky$$

for k > 0 and $y(0) = y_0 > 0$.

- The solution is

$$\frac{1}{y} \cdot \frac{dy}{dt} = k$$
$$\log y(t) - \log y_0 = kt$$
$$y(t) = y_0 e^{kt}$$

 $^{^{1}\}mathrm{We'll}$ deal with complex functions later.

- 2. Logistic growth.
 - We have that

$$\frac{\mathrm{d}y}{\mathrm{d}t} = ky\left(1 - \frac{y}{M}\right)$$

for k, M > 0 and $y(0) = y_0 > 0$.

- The solution is

$$\frac{M \, \mathrm{d}y}{y(M-y)} = k \, \mathrm{d}t$$

$$\log \frac{y}{M-y} - \log \frac{y_0}{M-y_0} = kt$$

$$\frac{y(M-y_0)}{y_0(M-y)} = \mathrm{e}^{kt}$$

$$y \cdot \frac{M-y_0}{y_0} = (M-y)\mathrm{e}^{kt}$$

$$y \cdot \frac{M-y_0}{y_0} + y\mathrm{e}^{kt} = M\mathrm{e}^{kt}$$

$$y \left(\frac{M-y_0}{y_0} + \mathrm{e}^{kt}\right) = M\mathrm{e}^{kt}$$

$$y \left(\frac{M-y_0+y_0\mathrm{e}^{kt}}{y_0}\right) = M\mathrm{e}^{kt}$$

$$y \left(\frac{M+y_0(\mathrm{e}^{kt}-1)}{y_0}\right) = M\mathrm{e}^{kt}$$

$$y(t) = \frac{My_0\mathrm{e}^{kt}}{M+y_0(\mathrm{e}^{kt}-1)}$$

- Sketches the graph of logistic growth and discusses the turning point (for which there is a formula; zero of the second derivative) as well as general trends.
- If $y_0 < 0$, the solution is not physically meaningful, but it is mathematically insightful.
 - When we integrate, the arguments of our logarithms now have absolute values.

$$\log \left| \frac{y}{M - y} \right| - \log \left| \frac{y_0}{M - y_0} \right| = kt$$

■ We need to make sure that the denominator of the final logistic form is never equal to zero, but now that y_0 is negative, as t increases, the denominator will approach zero exponentially. It reaches zero when

$$M + y_0(e^{kt} - 1) = 0$$

$$e^{kt} = -\frac{M}{y_0} + 1$$

In other words, $t_{\text{max}} = (1/k) \log(1 - M/y_0)$ because when $t = t_{\text{max}}$, the equation blows up.

- This is an example of **finite lifespan**.
- If $y_0 > M$, then you will exponentially decrease to M.
- 3. Lotka-Volterra predator-prey model.
 - We have that

$$r' = k_1 r - awr \qquad \qquad w' = -k_2 w + bwr$$

where r is rabbits and w is wolves.

- We can rename the variables to

$$\begin{cases} x' = Ax - Bxy \\ y' = -Cy + Dxy \end{cases}$$

- Dividing, we get

$$\frac{x'}{y'} = \frac{Ax - Bxy}{-Cy + Dxy}$$
$$\frac{By - A}{y}y' + \frac{Dx - C}{x}x' = 0$$

- Use the fact that x, y are independent variables, so both terms in the above equation are equal to zero?
- Invoke the law of composite differentiation twice and, from the above, know that 0 + 0 = 0, so we can add the two solutions:

$$\frac{\mathrm{d}}{\mathrm{d}t}(By(t) - A\log y(t)) + \frac{\mathrm{d}}{\mathrm{d}t}(Dx(t) - C\log x(t)) = 0$$

$$By(t) - A\log y(t) + Dx(t) - C\log x(t) = E$$

- Sketches some of the trajectories (they're all closed curves in the xy-plane).

Figure 2.1: Lotka-Volterra solution curves.

- Properties of the curves:
 - The implicit relation which determines them: By the implicit function theorem, the y derivative of the LHS is B A/y and the x-derivative of the LHS is D C/x. When the partial derivatives are equal to zero, (C/D, A/B) becomes interesting. Turning points happen when the y-coordinate is A/B or the x-coordinate is C/D.
- Finite lifespan: Even if the RHS of dy/dt = f(t, y) is very regular, the solution can still blow up at some finite time.
- Consider the following variation on the E-L equation from the Brachistochrone problem.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \sqrt{\frac{B-y}{y}}$$

- Finding the **primitives**.

- What are these "primitives" Shao keeps talking about?
- We should have

$$\int \sqrt{\frac{y}{B-y}} \, \mathrm{d}y = x$$

- Change of variables: $y = B \sin^2 \phi$ and $dy = 2B \cos \phi \sin \phi d\phi$. Thus,

$$\int \sqrt{\frac{y}{B-y}} \, \mathrm{d}y = \int \frac{\sin \phi}{\cos \phi} \cdot 2B \cos \phi \sin \phi \, \mathrm{d}\phi = 2B \int \sin^2 \phi \, \mathrm{d}\phi$$

- The solution is

$$\begin{cases} x = B\phi - \frac{B}{2}\sin(2\phi) + C\\ y = B\sin^2\phi \end{cases}$$

- This is a parameterization of a cycloid.
- Later in the week, we will do the SHM, the pendulum, the Kepler 2-body problem, and the Michaelis-Menten equation.
- Separable ODEs are a subset of ODEs of exact form.
- ODEs of exact form are of the form

$$g(x,y)\frac{\mathrm{d}y}{\mathrm{d}x} + f(x,y) = 0$$

where for some F(x,y), $g=\partial F/\partial y$, $f=\partial F/\partial x$, and partials commute. Equivalently,

$$\frac{\partial g}{\partial x} = \frac{\partial f}{\partial y}$$

is our necessary and sufficient condition.

• By the law of composite differentiation,

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[F(x, y(x)) \right] = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial y} \cdot y'(x)$$
$$= f(x, y(x)) + g(x, y(x))y'(x)$$
$$= 0$$

- We solve these with an integrating factor $\mu \neq 0$ such that $(\mu g, \mu f)$ satisfy the constraint.

2.2 Office Hours (Shao)

- **Primitive**: An antiderivative.
- Law of composite differentiation: The chain rule.
- Went over how Shao has been applying the law of composite differentiation with respect to separable ODEs:
 - Rearrange the initial separable ODE as follows.

$$\frac{1}{g(y)} \cdot \frac{\mathrm{d}y}{\mathrm{d}t} = f(t)$$

– Define dH/dy = 1/g(y). Then, continuing from the above, we have by the law of composite differentiation that

$$\frac{\mathrm{d}H}{\mathrm{d}y} \cdot \frac{\mathrm{d}y}{\mathrm{d}t} = f(t)$$
$$\frac{\mathrm{d}H}{\mathrm{d}t} = f(t)$$

– From the definition of H, we know that $H(y) = \int_{y_0}^y \mathrm{d}w \,/g(w)$. We also have from the FTC that $f(t) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{t_0}^t f(\tau) \,\mathrm{d}\tau$. Thus, continuing from the above, we have that

$$\frac{\mathrm{d}}{\mathrm{d}t}(H) = f(t)$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\int_{y_0}^{y} \frac{\mathrm{d}w}{g(w)} \right] = \frac{\mathrm{d}}{\mathrm{d}t} \int_{t_0}^{t} f(\tau) \,\mathrm{d}\tau$$

$$\frac{\mathrm{d}}{\mathrm{d}t} \left[\int_{y_0}^{y(t)} \frac{\mathrm{d}w}{g(w)} - \int_{t_0}^{t} f(\tau) \,\mathrm{d}\tau \right] = 0$$

as desired.

– It follows since $y(t_0) = y_0$ that $C = H(y_0) = 0$, so we can take the above to

$$\int_{y_0}^{y(t)} \frac{\mathrm{d}w}{g(w)} = \int_{t_0}^t f(\tau) \,\mathrm{d}\tau$$

knowing that our constant of integration is zero.

• Take away from Brachistochrone problem: Just an example of a BDE; we won't have to answer questions on it.

2.3 ODEs of Exact Form

10/5: • Last time, we discussed separable ODEs.

- Today, we will study **exact form** equations, as discussed last class.
- Exact form (ODE): An ODE of the form

$$g(x,y)\frac{\mathrm{d}y}{\mathrm{d}x} + f(x,y) = 0$$

where

$$\frac{\partial g}{\partial x} = \frac{\partial f}{\partial y}$$

• For equations of this form, there exists F(x,y) such that

$$\frac{\partial F}{\partial x} = f$$
 $\frac{\partial F}{\partial y} = g$ $F(x, y(x)) = C$

for some $C \in \mathbb{R}$.

- To solve equations of this form, we need an **integrating factor**.
- Integrating factor: A number or function μ such that

$$\mu g \frac{\mathrm{d}y}{\mathrm{d}x} + \mu f = 0$$

$$\frac{\partial}{\partial x}(\mu g) = \frac{\partial}{\partial y}(\mu f)$$

• For linear homogeneous equations dy/dt = p(t)y, we have

$$y(t) = y_0 \exp\left[\int_{t_0}^t p(\tau) d\tau\right]$$

• Recall that $e^{a+ib} = e^a(\cos b + i\sin b)$, so

$$e^{ix} = \cos x + i \sin x$$
 $\cos x = \frac{1}{2} (e^{ix} + e^{-ix})$ $\sin x = \frac{1}{2i} (e^{ix} - e^{-ix})$

- Example: If y' = ky, then $y' = -\lambda y$.
- If we have an inhomogeneous linear equation dy/dt = p(t)y + f(t), then

$$\frac{\mathrm{d}y}{\mathrm{d}t} - py - f = 0$$

but

$$0 = \frac{\mathrm{d}}{\mathrm{d}t}(1) \neq \frac{\mathrm{d}}{\mathrm{d}y}(-p(t)y - f(t))$$

• We wish to find an integrating factor $\mu(t,y)$ such that

$$\mu(t,y)\frac{\mathrm{d}y}{\mathrm{d}t} - \mu(t,y)p(t)y - \mu(t,y)f(t) = 0$$

and

$$\frac{\mathrm{d}}{\mathrm{d}t}(\mu) = \frac{\mathrm{d}}{\mathrm{d}y}(-\mu py - \mu f)$$

• Solution: Take μ to be a function of t, alone. Then

$$\mu'(t) = \frac{\mathrm{d}}{\mathrm{d}y}(-\mu py - \mu f) = -\mu(t)p(t)$$

and we now have a homogeneous linear equation with solution

$$\mu(t) = \exp\left[-\int_{t_0}^t p(\tau)d\tau\right]$$

– If we let $P(t) = \int_{t_0}^t p(\tau) d\tau$, then

$$\begin{split} {\rm e}^{-P(t)}y'(t) - p(t)y(t){\rm e}^{-P(t)} &= {\rm e}^{-P(t)}f(t) \\ \frac{{\rm d}}{{\rm d}t}\Big({\rm e}^{-P(t)}y(t)\Big) &= {\rm e}^{-P(t)}f(t) \\ {\rm e}^{-P(t)}y(t) &= \int_{t_0}^t {\rm e}^{-P(\tau)}f(\tau){\rm d}\tau \end{split}$$

– Thus, we finally have the solution to the inhomogeneous problem as follows: The IVP y' = py + f, $y(t_0) = y_0$ has solution

$$y(t) = y_0 e^{P(t) - P(t_0)} + e^{P(t)} \int_0^t e^{-P(\tau)} f(\tau) d\tau$$

where P is any anti-derivative of p.

• In particular, when p(t) = a, we get the **Duhamel formula** (which we should memorize).

• **Duhamel formula**: The following equation, which is the solution to an inhomogeneous linear equation with p(t) = a.

$$y(t) = y_0 e^{a(t-t_0)} + \int_{t_0}^t e^{a(t-\tau)} f(\tau) d\tau$$

- Important for computing forced oscillation.
- Inspecting the inhomogeneous solution.
 - The first term is the solution to the homogeneous form. The second term deals with the initial value.
- Given an inhomogeneous equation, you can always write its solution as the combination of the solution to the homogeneous problem plus a particular solution, i.e.,

$$y = y_h + y_p$$

- "The general solution equals the homogeneous solution plus a particular solution."
- This is related to linear algebra, where the solution to Ax = b is a particular solution x_p plus any vector $x \in \ker A$.
- Thus, this idea will reappear in the theory of systems of linear ODEs.
- We now look at systems of linear ODEs.
- \bullet Consider the harmonic oscillator: A particle of mass m connected to an ideal spring (obeys Hooke's law) with no friction or gravity.
 - Newton's second law: The acceleration is proportional to the restoring force.
 - Hooke's law: The restoring force is of magnitude kx in the opposite direction to the displacement.
 - Thus, the ODE is of the form

$$x'' = -\frac{k}{m}x$$

• Consider an ODE of the form

$$y'' + ay' + by = 0$$

for $a, b \in \mathbb{C}$.

– Aim: Find $\mu, \lambda \in \mathbb{C}$ such that

$$(y' - \mu y)' - \lambda(y' - \mu y) = 0$$

- To find the parameters, we expand the above to

$$y'' - (\mu + \lambda)y' + \mu\lambda y = 0$$

- Comparing with the original form, we have that $a = -(\mu + \lambda)$ and $b = \mu \lambda$.
- It follows that μ, λ are the roots of $x^2 + ax + b = 0$, which we will call the **characteristic polynomial** of the ODE.
- Example:
 - Consider

$$y' - \mu y = Ae^{\lambda t}$$

- By the Duhamel equation, we have that a particular solution is of the form

$$A \int_0^t e^{\mu(t-\tau)} e^{\lambda \tau} d\tau$$

- Thus, general solutions are of the form

$$y(t) = Be^{\mu t} + Ce^{\mu t} \int_0^t e^{(\lambda - \mu)\tau} d\tau$$

- Evaluating the integral, we get

$$y(t) = Be^{\mu t} + Ce^{\mu t} \frac{e^{(\lambda - \mu)t} - 1}{\lambda - \mu}$$

which simplifies (by incorporating constants, etc.) to

$$y(t) = A_1 e^{\mu t} + B_1 e^{\lambda t}$$

for $\mu \neq \lambda$, or

$$y(t) = A_1 e^{\mu t} + B_1 t e^{\mu t}$$

for $\mu = \lambda$.

- If our equation is of the form y'' + ay' + by = f(t), then we just need to apply the Duhamel formula twice.
- Returning to the simple harmonic oscillator problem, we substitute $\omega = \sqrt{k/m}$ to get

$$x'' = \omega^2 x$$

- The characteristic polynomial is

$$0 = x^2 + \omega^2 = (x + i\omega)(x - i\omega)$$

- Thus, solutions are of the form

$$x = A_1 e^{i\omega t} + B_1 e^{-i\omega t}$$

- It follows that the period is $T = 2\pi/\omega$.
- To get a real (usable) solution, apply Euler's formula to get

$$x(t) = A_1(\cos \omega t + i \sin \omega t) + B_1(\cos \omega t - i \sin \omega t)$$

= $A \cos \omega t + B \sin \omega t$

where $A = A_1 + B_1$, $B = iA_1 - iB_1$.

- To match the initial condition $x(0) = x_0, x'(0) = v_0$, we use

$$x(t) = x_0 \cos \omega t + \frac{v_0}{\omega} \sin \omega t$$

- In other words,

$$\begin{cases} A = x_0 \\ \omega B = v_0 \end{cases} \qquad \begin{cases} A_1 + B_1 = x_0 \\ i\omega A_1 - i\omega B_1 = v_0 \end{cases}$$

so

$$\begin{cases} A = x_0 \\ B = \frac{v_0}{\omega} \end{cases} \qquad \begin{cases} A_1 = \frac{1}{2} \left[x_0 - \frac{iv_0}{\omega} \right] \\ B_1 = \frac{1}{2} \left[x_0 + \frac{iv_0}{\omega} \right] \end{cases}$$

2.4 ODE Examples

- 10/7: • Today, we will investigate a variety of examples of ODEs arising in real life.
 - Michaelis-Menten kinetics: If E is an enzyme, S is its substrate, and P is the product, then the mechanism is

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_2} E + P$$

- The concentrations that we are concerned with are [E], [S], [ES], [P].
- From the above mechanism, we can write the four rate laws

$$\frac{d}{dt}[S] = -k_1[E][S] + k_{-1}[ES]$$

$$\frac{d}{dt}[E] = -k_1[E][S] + (k_{-1} + k_2)[ES]$$
(2)

$$\frac{\mathrm{d}}{\mathrm{d}t}[E] = -k_1[E][S] + (k_{-1} + k_2)[ES]$$
(2)

$$\frac{d}{dt}[ES] = k_1[E][S] - (k_{-1} + k_2)[ES]$$
(3)

$$\frac{\mathrm{d}}{\mathrm{d}t}[P] = k_2[ES] \tag{4}$$

• We can reduce these rate laws to the 2D system

$$\frac{d}{dt}[S] = -k_1([E]_0 - [ES])[S] + k_{-1}[ES]$$
(5)

$$\frac{d}{dt}[ES] = k_1([E]_0 - [ES])[S] - (k_{-1} + k_2)[ES]$$
(6)

- QSSA: Quasi steady-state assumption.
 - Assume that $[E]_0/[S]_0 \ll 1$.
 - Also assume that $d[ES]/dt \approx 0$.
- Then

$$[ES] = \frac{[E]_0[S]}{K_M + [S]}$$

where $k_M = (k_{-1} + k_2)/k_1$.

• Sub in the above to Equation 5:

$$\frac{\mathrm{d}}{\mathrm{d}t}[S] = -\frac{k_2[E]_0[S]}{k_M + [S]}$$

- Note that $v_{\text{max}} = k_2[E]_0$.
- The above is now a differential equation of separable form; it's solution is

$$\int_{[S]_0}^{[S]} -\frac{(k_M + z) dz}{z v_{\text{max}}} = \int_0^t dt$$
$$-\frac{k_M}{v_{\text{max}}} \log \frac{[S]}{[S]_0} - \frac{1}{v_{\text{max}}} ([S] - [S]_0) = t$$
$$-\frac{k_M}{v_{\text{max}}} \frac{[S]}{[S]_0} e^{-v_{\text{max}}^{-1}([S] - [S]_0)} = e^t$$

• The above equation is of the following form, for x > 0, $w(x) \sim s$, $x \sim 0$, and $w(x) \sim \log x$??

$$w(x)e^{w(x)} = x$$

- Harmonic oscillator.
- Recall that

$$x'' + \frac{k}{m}x = 0$$

• Substituting $\omega = \sqrt{k/m}$, we can solve the above for

$$x(t) = x(0)\cos(\omega t) + \frac{x'(0)}{\omega}\sin(\omega t)$$

- This is an integrable system with n degrees of freedom and n-1 scalar conservation laws??
- Conservation of mechanical energy:

$$E = \frac{1}{2}m|x'|^2 + \frac{1}{2}kx^2$$

Figure 2.2: Conservation of mechanical energy in the harmonic oscillator.

- Differentiating wrt. x yields

$$0 = mx'x'' + kxx'$$
$$= \frac{d}{dt} \left(\frac{1}{2} m(x')^2 \right) + \frac{d}{dt} \left(\frac{1}{2} kx^2 \right)$$

- This means that the solution is an ellipse in the xx'-plane, where each ellipse corresponds to an initial displacement and velocity.
- Mathematical pendulum.
- Equation of motion:

$$0 = l\theta' + g\sin\theta$$
$$= \ell\theta''\theta' + g\sin\theta \cdot \theta'$$
$$= \frac{\mathrm{d}}{\mathrm{d}t} \left(\underbrace{\frac{\ell}{2} |\theta'|^2 - g\cos\theta}_{E} \right)$$

• It follows from the above that

$$\frac{\ell}{2}|\theta'|^2 - g\cos\theta_0 = -g\cos\theta$$

$$\frac{d\theta}{dt} = \sqrt{\frac{2g}{\ell}(\cos\theta_0 - \cos\theta)}$$

$$\int_{\theta_0}^{\theta} \sqrt{\frac{\ell}{2g(\cos\theta_0 - \cos\phi)}} d\phi = t$$

- This is an elliptical integral (and thus cannot be expressed in terms of the elementary functions).
- Suppose θ_0 is small. Then θ is small, and we can invoke the small angle approximation $\sin \theta \approx \theta$.
 - This yields an approximate equation of motion:

$$\ell\theta'' + q\theta = 0$$

- From here, we can determine that $\theta(t) \approx \theta_0 \cos \sqrt{g/\ell} \cdot t$ and $T = 2\pi \sqrt{\ell/g}$.
- Kepler problem.
- Two bodies of mass m_1, m_2 are located at positions x_1, x_2 pulling on each other gravitationally.
- From Newton's second and third law, we get

$$m_1 x_1'' = \frac{U'(|x_1 - x_2|)^{x_1 - x_2}}{|x_1 - x_2|}$$
 $m_2 x_2'' = \frac{U'(|x_1 - x_2|)^{x_1 - x_2}}{|x_1 - x_2|}$

• Conservation of momentum:

$$(m_1x_1 + m_2x_2)'' = 0$$

$$m_1x_1' + m_2x_2' = C$$

- Let $M = m_1 + m_2$. Then

$$\frac{m_1}{M}x_1 + \frac{m_2}{M}x_2$$

- moves inertially.
- Define the center of mass to be the origin.
- Conservation of angular momentum:

$$[\mu(x_1-x_2)'\times(x_1-x_2)]'=0$$

- $-\mu = m_1 m_2 / (m_1 + m_2).$
- \times indicates the cross product.
- $L = \mu(x_1 x_2) \times (x_1 x_2).$
- Conservation of mechanical energy:

$$\mu q'' + U'(|q|)\frac{q}{|q|} = 0$$

$$\frac{\mu}{2}|q'|^2 + U(|q|) = E$$

$$-q=x_1-x_2.$$

- Introduce polar coordinates (r, ϕ) .
 - Then $r^2 \phi' / 2 = \ell_0$, $r = r(\phi)$, and $dr/d\phi = r'(t)/\phi'(t)$.
 - It follows that

$$\frac{\mu}{2}(|r'|^2+|\phi'|^2)+U(r)=E$$

- Then

$$\left(\frac{\mathrm{d}r}{\mathrm{d}\phi}\right)^2 + r^2 = \frac{2G\mu r^3}{\ell_0^2} + \frac{2Er^4}{\mu\ell_0^2}$$

- The substitution $\mu = 1/r$ yields

$$\left(\frac{\mathrm{d}\mu}{\mathrm{d}\phi}\right)^2 + \mu^2 = \frac{2G\mu}{\ell_0^2}\mu + \frac{2E}{\mu\ell_0^2}$$

- Differentiating again gives

$$2\frac{\mathrm{d}\mu}{\mathrm{d}\phi}\frac{\mathrm{d}^2\mu}{\mathrm{d}\phi^2} + 2\frac{\mathrm{d}\mu}{\mathrm{d}\phi}\mu = \frac{2G\mu}{\ell_0^2}\frac{\mathrm{d}\mu}{\mathrm{d}\phi}$$

– Substituting $\mu = \cos(t)$ gives

$$\frac{\mathrm{d}^2 \mu}{\mathrm{d}\phi^2} + 2\mu = \frac{2G\mu}{\ell_0^2}$$

or

$$r = \frac{1}{G\mu/\ell_0^2 + \varepsilon\cos(\phi - \phi_0)}$$

■ This is a conic section!