STAT115: Introduction to Biostatistics

University of Otago Ōtākou Whakaihu Waka

Lecture 7: Working with Conditional Probability

Outline

- Look more at (conditional) probability
- Start with another probability exercise

Birthday challenge

- How many people do you need for a good chance that two share a birthday?
 - ► Take a guess (but keep it to yourself)
- I'll start asking student's for their birthday until I get a match

Recap

- In the last lecture we talked about:
 - ▶ Joint probability: Pr(A and B)
 - ightharpoonup Marginal probability: Pr(A)
 - \blacktriangleright Conditional probability: $\Pr(B \mid A) = \frac{\Pr(A \text{ and } B)}{\Pr(A)}$
- Pick up from where we left off

Multiplication rule: general

Last lecture we saw how to find conditional probability

$$\Pr(B \mid A) = \frac{\Pr(A \text{ and } B)}{\Pr(A)}$$

If we rearrange this, we get the general multiplication rule

$$Pr(A \text{ and } B) = Pr(A) Pr(B \mid A)$$

We can 'switch' A and B so that we also have

$$Pr(A \text{ and } B) = Pr(B) Pr(A \mid B)$$

Multiplication rule: smallpox example

• Suppose we were told: "96.1% of the residents were not inoculated, and 85.9% of the residents who were not inoculated ended up surviving."

▶ What is the probability that a resident was not inoculated and lived?

Multiplication rule: smallpox example

- \bullet Suppose we were told: "96.1% of the residents were not inoculated, and 85.9% of the residents who were not inoculated ended up surviving."
 - ▶ What is the probability that a resident was not inoculated and lived?
- $\Pr(I^{\complement}) = 0.961$: 96.1% of the residents were not inoculated
- $\Pr(L \mid I^\complement) = 0.859$: 85.9% of the residents who were not inoculated ended up surviving
- $Pr(I^{\complement}$ and L): probability that a resident was not inoculated and lived

$$\Pr(I^{\complement} \text{ and } L) = \Pr(I^{\complement}) \Pr(L \mid I^{\complement})$$

$$= 0.961 \times 0.859$$

$$= 0.825$$

Joint and conditional probability (smallpox example)

- Order doesn't matter for the joint probability
 - Pr(A and B) = Pr(B and A)
 - ▶ Probability both A and B occur
- Order does matter for the conditional probability
 - $ightharpoonup \Pr(A \mid B)$ and $\Pr(B \mid A)$ are two different quantities
- Smallpox: compare $Pr(L \mid I)$ and $Pr(I \mid L)$.
 - $\Pr(L \mid I) = \frac{0.038}{0.039} = \frac{238}{244} = 0.975$
 - Probability of a resident living given inoculation
 - $ightharpoonup \Pr(I \mid L) = \frac{0.038}{0.863} = \frac{238}{5374} = 0.044$
 - Probability of a resident being inoculated given lived

		inoc		
		yes	no	Total
result	lived	238	5136	5374
	died	6	844	850
	Total	244	5980	6224

		inocu		
		yes	no	Total
result	lived	0.038	0.825	0.863
	died	0.001	0.136	0.137
	Total	0.039	0.961	1.000

Marginal probability: law of total probability

- Previously found "intuitively" from contingency table
- To find Pr(B)
 - lacksquare Sum over possible outcomes that could co-occur with the event B
- If there are two outcomes: A_1 and $A_2=A_1^\complement$
 - $ightharpoonup \Pr(B) = \Pr(A_1 \text{ and } B) + \Pr(A_1^{\complement} \text{ and } B)$
 - Smallpox: find Pr(L) and Pr(I)

		inoc		
		yes	no	Total
esult	lived	238	5136	5374
	died	6	844	850
	Total	244	5980	6224

		inocu		
		yes	no	Total
result	lived	0.038	0.825	0.863
	died	0.001	0.136	0.137
	Total	0.039	0.961	1.000

Marginal probability: law of total probability

- Previously found "intuitively" from contingency table
- To find Pr(B)
 - Sum over possible outcomes that could co-occur with the event B
- If there are two outcomes: A_1 and $A_2=A_1^\complement$
 - $ightharpoonup \Pr(B) = \Pr(A_1 \text{ and } B) + \Pr(A_1^{\complement} \text{ and } B)$

		inoc		
		yes	no	Total
sult	lived	238	5136	5374
	died	6	844	850
	Total	244	5980	6224

re

		inocu		
		yes	no	Total
result	lived	0.038	0.825	0.863
	died	0.001	0.136	0.137
	Total	0.039	0.961	1.000

- Smallpox: find Pr(L) and Pr(I)
 - $ightharpoonup \Pr(L) = \Pr(I \text{ and } L) + \Pr(I^{\complement} \text{ and } L) = 0.038 + 0.825 = 0.863$

Marginal probability: law of total probability

- Previously found "intuitively" from contingency table
- To find Pr(B)
 - Sum over possible outcomes that could co-occur with the event B
- ullet If there are two outcomes: A_1 and $A_2=A_1^{\complement}$
 - $ightharpoonup \Pr(B) = \Pr(A_1 \text{ and } B) + \Pr(A_1^{\complement} \text{ and } B)$

		inoc		
		yes	no	Total
ult	lived	238	5136	5374
uit	died	6	844	850
	Total	244	5980	6224

res

inoculated Total ves no lived 0.038 0.825 0.863 result died 0.001 0.136 0.137 Total 0.961 1.000 0.039

- Smallpox: find Pr(L) and Pr(I)
 - $Arr Pr(I) = Pr(I \text{ and } L) + Pr(I \text{ and } L^{\complement}) = 0.038 + 0.001 = 0.039$

Tree diagrams

- Tree diagrams are an alternate way to visualize outcomes and probabilities
- General form:

Tree diagrams: smallpox example

Bayes' theorem

- · An important result in probability theory
 - ▶ Underpins a lot of modern statistics/data science/AI
 - Hopefully return to this at the end of the semester

• Idea: find $Pr(A \mid B)$ from $Pr(B \mid A)$

$$\Pr(A \mid B) = \frac{\Pr(B \mid A) \Pr(A)}{\Pr(B)} = \frac{\Pr(B \mid A) \Pr(A)}{\Pr(B \mid A) \Pr(A) + \Pr(B \mid A^{\complement}) \Pr(A^{\complement})}$$

Bayes' theorem

- Example: sleep apnea
- A: patient has sleep apnea
- S: patient snores
- Question: we know our patient snores. What is the prob they sleep apnea?
 - ▶ 90% of patients with sleep apnea snore: $Pr(S \mid A) = 0.9$
 - ▶ 50% of patients without sleep apnea snore: $Pr(S \mid A^{\complement}) = 0.5$
 - ▶ 5% of the population have sleep apnea: Pr(A) = 0.05

Bayes' theorem

- Example: sleep apnea
- A: patient has sleep apnea
- S: patient snores
- Question: we know our patient snores. What is the prob they sleep apnea?
 - ▶ 90% of patients with sleep apnea snore: $Pr(S \mid A) = 0.9$
 - ▶ 50% of patients without sleep apnea snore: $\Pr(S \mid A^{\complement}) = 0.5$
 - ▶ 5% of the population have sleep apnea: Pr(A) = 0.05

$$Pr(A \mid S) = \frac{Pr(S \mid A) Pr(A)}{Pr(S \mid A) Pr(A) + Pr(S \mid A^{\complement}) Pr(A^{\complement})}$$
$$= \frac{0.9 \times 0.05}{0.9 \times 0.05 + 0.5 \times 0.95} = 0.087$$

Baves' theorem: example

- We had: $Pr(S \mid A) = 0.9$
 - ▶ Tempting to think that $Pr(A \mid S)$ will also be high
 - $ightharpoonup \Pr(A \mid S) \approx 0.09$ seems surprisingly low
 - Confusing conditional probabilities is a common mistake
- Another perspective:
 - ► How does the probability of patient having sleep apnea change
- In the general population, we have
 - Pr(A) = 0.05
- After learning that patient snores, the probability increases to
 - $Arr Pr(A \mid S) \approx 0.09$

Slide 13 Lecture 7

- It can be difficult to understand why $Pr(A \mid S)$ is low when $Pr(S \mid A)$ is high
- Construct a hypothetical ('expected') contingency table
 - ▶ Pretend there are 100 000 patients
 - Recall: Pr(A) = 0.05

		snores (S)		
		yes	no	Total
sleep apnea (A)	yes			5000
	no			95 000
	Total			100 000

- It can be difficult to understand why $Pr(A \mid S)$ is low when $Pr(S \mid A)$ is high
- Construct a hypothetical ('expected') contingency table
 - ▶ Pretend there are 100 000 patients
 - Recall: $Pr(S \mid A) = 0.9$

		snores (S)		
		yes	no	Total
sleep apnea (A)	yes	4500	500	5000
	no			95 000
	Total			100 000

- It can be difficult to understand why $Pr(A \mid S)$ is low when $Pr(S \mid A)$ is high
- Construct a hypothetical ('expected') contingency table
 - ▶ Pretend there are 100 000 patients
 - Recall: $Pr(S \mid A^{\complement}) = 0.5$

		snores (S)		
		yes	no	Total
sleep apnea (A)	yes	4500	500	5000
	no	47 500	47 500	95 000
	Total			100 000

- It can be difficult to understand why $\Pr(A \mid S)$ is low when $\Pr(S \mid A)$ is high
- Construct a hypothetical ('expected') contingency table
 - ▶ Pretend there are 100 000 patients

		snores (S)		
		yes	no	Total
sleep apnea (A)	yes	4500	500	5000
	no	47 500	47 500	95 000
	Total	52 000	48 000	100 000

Most of those who snore do not have sleep apnea!

•
$$Pr(A \mid S) = \frac{4500}{52\,000} = 0.087$$

Summary

- Looked in more detail at conditional probability
- Generalised the multiplication rule
- Tree diagrams
- Bayes' theorem
 - ▶ Using formula
 - ► Constructing an expected contingency table
- Next: begin exploring how to use probability to model data