

LM741

SNOSC25D -MAY 1998-REVISED OCTOBER 2015

LM741 Operational Amplifier

1 Features

- Overload Protection on the Input and Output
- No Latch-Up When the Common-Mode Range is Exceeded

2 Applications

- Comparators
- Multivibrators
- DC Amplifiers
- · Summing Amplifiers
- Integrator or Differentiators
- Active Filters

3 Description

The LM741 series are general-purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439, and 748 in most applications.

The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and output, no latch-up when the common-mode range is exceeded, as well as freedom from oscillations.

The LM741C is identical to the LM741 and LM741A except that the LM741C has their performance ensured over a 0°C to +70°C temperature range, instead of -55°C to +125°C.

Device Information⁽¹⁾

PART NUMBER	PACKAGE	BODY SIZE (NOM)	
	TO-99 (8)	9.08 mm × 9.08 mm	
LM741	CDIP (8)	10.16 mm × 6.502 mm	
	PDIP (8)	9.81 mm × 6.35 mm	

 For all available packages, see the orderable addendum at the end of the data sheet.

Typical Application

Table of Contents

1	Features 1	7.3 Feature Description	
2	Applications 1	7.4 Device Functional Modes	8
3	Description 1	8 Application and Implementation	9
4	Revision History2	8.1 Application Information	9
5	Pin Configuration and Functions	8.2 Typical Application	9
6	Specifications4	9 Power Supply Recommendations	10
•	6.1 Absolute Maximum Ratings 4	10 Layout	11
	6.2 ESD Ratings	10.1 Layout Guidelines	. 11
	6.3 Recommended Operating Conditions4	10.2 Layout Example	. 11
	6.4 Thermal Information	11 Device and Documentation Support	. 12
	6,5 Electrical Characteristics, LM7415	11.1 Community Resources	. 12
	6.6 Electrical Characteristics, LM741A 5	11.2 Trademarks	. 12
	6.7 Electrical Characteristics, LM741C6	11.3 Electrostatic Discharge Caution	. 12
7	Detailed Description 7	11.4 Glossary	. 12
•	7.1 Overview 7	12 Mechanical, Packaging, and Orderable	
	7.2 Functional Block Diagram	Information	12

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (October 2004) to Revision D

Page

•	Added Applications section, Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section	•
•	Removed NAD 10-Pin CLGA pinout	3
•	Removed obselete M (S0-8) package from the data sheet	
	Added recommended operating supply voltage spec	
	Added recommended operating temperature spec	

Changes from Revision C (March 2013) to Revision D

Page

Added Applications section, Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section
 Removed NAD 10-Pin CLGA pinout
 Removed obselete M (S0-8) package from the data sheet
 Added recommended operating supply voltage spec
 Added recommended operating temperature spec
 4

5 Pin Configuration and Functions

Pin Functions

PI	N	I/O	DESCRIPTION
NAME	NO.	1/0	DESCRIPTION
INVERTING INPUT	2	I	Inverting signal input
NC	8	N/A	No Connect, should be left floating
NONINVERTING INPUT	3	I	Noninverting signal input
OFFSET NULL	1, 5	•	Offset null pin used to eliminate the offset voltage and balance the input voltages.
OFFSET NULL	1, 5	I	Onset hull pin used to eliminate the onset voltage and balance the input voltages.
OUTPUT	6	0	Amplified signal output
V+	7	I	Positive supply voltage
V-	4	ı	Negative supply voltage

Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) $^{(1)(2)(3)}$

		MIN	MAX	UNIT
Cumply valtage	LM741, LM741A		±22	v
Supply voltage	LM741C		±18	V
Power dissipation (4)			500	mW
Differential input voltage			±30	V
Input voltage (5)			±15	V
Output short circuit duration	tput short circuit duration		Continuous	
Operating temperature	LM741, LM741A	– 50	125	°C
	LM741C	0	70	
l	LM741, LM741A		150	°C
Junction temperature	LM741C		100	
	PDIP package (10 seconds)		260	°C
Soldering information	CDIP or TO-99 package (10 seconds)		300	°C
Storage temperature, T _{stg}		- 65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

			VALUE	UNIT
$V_{(ESD)}$	Electrostatic discharge	Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 ⁽¹⁾	±400	٧

Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001. JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	NOM	MAX	UNIT
Supply voltage (VDD-GND)	LM741, LM741A	±10	±15	±22	V
	LM741C	±10	±15	±18	
Temperature	LM741, LM741A	– 55		125	°C
	LM741C	0		70	

6.4 Thermal Information

			LM741			
THERMAL METRIC (1)		LMC (TO-99)	NAB (CDIP)	P (PDIP)	UNIT	
		8 PINS	8 PINS	8 PINS		
$R_{\theta JA}$	Junction-to-ambient thermal resistance	170	100	100	°C/W	
R ₀ JC(top)	Junction-to-case (top) thermal resistance	25	_	_	°C/W	

For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

For military specifications see RETS741X for LM741 and RETS741AX for LM741A.

If Military/Áerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications.

For operation at elevated temperatures, these devices must be derated based on thermal resistance, and T_i max. (listed under "Absolute Maximum Ratings"). $T_j = T_A + (\theta_{jA} P_D)$. (5) For supply voltages less than ±15 V, the absolute maximum input voltage is equal to the supply voltage.

6.5 Electrical Characteristics, LM741⁽¹⁾

PARAM	METER	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
land to effect the later of the		D < 40 k0	T _A = 25°C		1	5	mV
Input offset volt	age	$R_{\rm S} \le 10 \text{ k}\Omega$	$T_{AMIN} \le T_A \le T_{AMAX}$			6	mV
Input offset volt adjustment rang		T _A = 25°C, V _S = ±20 V			±15		mV
langut offerst over		T _A = 25°C			20	200	A
Input offset curi	ent	$T_{AMIN} \le T_A \le T_{AMAX}$			85	500	nA
In a state of the	4	T _A = 25°C			80	500	nA
Input bias curre	HIL	$T_{AMIN} \le T_A \le T_{AMAX}$				1.5	μΑ
Input resistance	9	$T_A = 25^{\circ}C, V_S = \pm 20 V$		0.3	2		МΩ
Input voltage ra	nge	$T_{AMIN} \le T_A \le T_{AMAX}$		±12	±13		V
l amma ainmala	ltana nain	$V_S = \pm 15 \text{ V}, V_O = \pm 10 \text{ V}, R_L \ge 2$	T _A = 25°C	50	200		V/mV
Large signal vo	itage gairi	kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$	25			
Output valtage		V = 145 V	R _L ≥ 10 kΩ	±12	±14		V
Output voltage	swing	$V_S = \pm 15 \text{ V}$	$R_L \ge 2 k\Omega$	±10	±13		
Output short cir	cuit current	T _A = 25°C			25		mA
Common-mode	rejection ratio	$R_S \le 10 \Omega$, $V_{CM} = \pm 12 V$, $T_{AMIN} \le T_A \le T_{AMAX}$		80	95		dB
Supply voltage	rejection ratio	$V_S = \pm 20 \text{ V to } V_S = \pm 5 \text{ V}, R_S \le 10 \Omega, T_{AMIN} \le T_A \le T_{AMAX}$		86	96		dB
Transient	Rise time	T = 25°C unity goin			0.3		μs
response	Overshoot	T _A = 25°C, unity gain			5%		
Slew rate		T _A = 25°C, unity gain			0.5		V/µs
Supply current		T _A = 25°C			1.7	2.8	mA
			T _A = 25°C		50	85	
Power consump	otion	V _S = ±15 V	$T_A = T_{AMIN}$		60	100	mW
			$T_A = T_{AMAX}$		45	75	

⁽¹⁾ Unless otherwise specified, these specifications apply for $V_S = \pm 15 \text{ V}$, $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}\text{C} \leq T_A \leq +70^{\circ}\text{C}$.

6.6 Electrical Characteristics, LM741A⁽¹⁾

PARAMETER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT
lancet offent veltage	D < 50.0	T _A = 25°C		0.8	3	mV
Input offset voltage	$R_S \le 50 \Omega$	$T_{AMIN} \le T_A \le T_{AMAX}$			4	mV
Average input offset voltage drift					15	μV/°C
Input offset voltage adjustment range	T _A = 25°C, V _S = ±20 V		±10			mV
Input offeet current	T _A = 25°C			3	30	nA
input offset current	$T_{AMIN} \le T_A \le T_{AMAX}$				70	IIA
Average input offset current drift					0.5	nA/°C
Input bigg gurrant	T _A = 25°C			30	80	nΑ
Input offset voltage adjustment range Input offset current Average input offset current drift Input bias current Input resistance	$T_{AMIN} \le T_A \le T_{AMAX}$				0.21	μΑ
Input registance	$T_A = 25$ °C, $V_S = \pm 20 \text{ V}$	$T_A = 25^{\circ}C, V_S = \pm 20 \text{ V}$		6		ΜΩ
input resistance	$T_{AMIN} \le T_A \le T_{AMAX}, V_S = \pm 20 \text{ V}$		0.5			IVILZ
Large signal voltage gain	1.3 1, 10 -11 1, 11	T _A = 25°C	50			
		$T_{AMIN} \le T_A \le T_{AMAX}$	32			V/mV
	$V_S = \pm 5 \text{ V}, V_O = \pm 2 \text{ V}, R_L \ge 2 \text{ k}\Omega$	$T_{AMIN} \le T_A \le T_{AMAX}$	10			

⁽¹⁾ Unless otherwise specified, these specifications apply for $V_S = \pm 15 \text{ V}$, $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}\text{C} \leq T_A \leq +70^{\circ}\text{C}$.

TEXAS INSTRUMENTS

Electrical Characteristics, LM741A⁽¹⁾ (continued)

PARAN	METER	TEST	CONDITIONS	MIN	TYP	MAX	UNIT	
Output valtage	au din a	V = 100 V	R _L ≥ 10 kΩ	±16			.,	
Output voltage	swing	$V_S = \pm 20 \text{ V}$	$R_L \ge 2 k\Omega$	±15			V	
Outrot also at air		T _A = 25°C		10	25	35	^	
Output short cir	cuit current	$T_{AMIN} \le T_A \le T_{AMAX}$		10		40	mA	
Common-mode rejection ratio		$R_S \le 50 \Omega$, $V_{CM} = \pm 12 V$, $T_{AMIN} \le T_A \le T_{AMAX}$		80	95		dB	
Supply voltage rejection ratio		$V_S = \pm 20 \text{ V to } V_S = \pm 5 \text{ V}, R_S \le 50 \Omega, T_{AMIN} \le T_A \le T_{AMAX}$		86	96		dB	
Transient	Rise time	T = 25°C			0.25	0.8	μs	
response	Overshoot	T _A = 25°C, unity gain			6%	20%		
Bandwidth (2)		T _A = 25°C		0.437	1.5		MHz	
Slew rate		T _A = 25°C, unity gain		0.3	0.7		V/µs	
			T _A = 25°C		80	150		
Power consum	ption	V _S = ±20 V	$T_A = T_{AMIN}$			165	mW	
			$T_A = T_{AMAX}$			135		

⁽²⁾ Calculated value from: BW (MHz) = 0.35/Rise Time (μ s).

6.7 Electrical Characteristics, LM741C⁽¹⁾

PARAM	ETER	TEST CO	NDITIONS	MIN	TYP	MAX	UNIT
Input offset voltage		D < 10 k0	T _A = 25°C		2	6	mV
		R _S ≤ 10 kΩ	$T_{AMIN} \le T_A \le T_{AMAX}$			7.5	mV
Input offset voltage adjustment range		T _A = 25°C, V _S = ±20 V			±15		mV
Input offset current		T _A = 25°C			20	200	nA
input onset current		$T_{AMIN} \le T_A \le T_{AMAX}$				300	ПА
Input bias current		T _A = 25°C			80	500	nA
Input bias current		$T_{AMIN} \le T_A \le T_{AMAX}$				8.0	μΑ
Input resistance		$T_A = 25$ °C, $V_S = \pm 20 \text{ V}$	$T_A = 25^{\circ}C, V_S = \pm 20 \text{ V}$		2		МΩ
Input voltage range		T _A = 25°C		±12	±13		V
Large signal voltage	anin	$V_S = \pm 15 \text{ V}, V_O = \pm 10 \text{ V}, R_L$ $\ge 2 \text{ k}\Omega$	T _A = 25°C	20	200		V/mV
Large signal voltage	gain		$T_{AMIN} \le T_A \le T_{AMAX}$	15			V/IIIV
Output voltage ewin	~	V = +15 V	$R_L \ge 10 \text{ k}\Omega$	±12	±14		V
Output voltage swing	9	V _S = ±15 V	$R_L \ge 2 k\Omega$	±10	±13		
Output short circuit of	current	T _A = 25°C	T _A = 25°C		25		mΑ
Common-mode reject	ction ratio	$R_S \le 10 \text{ k}\Omega, V_{CM} = \pm 12 \text{ V}, T_A$	$MIN \le T_A \le T_{AMAX}$	70	90		dB
Supply voltage reject	tion ratio	$V_S = \pm 20 \text{ V to } V_S = \pm 5 \text{ V}, R_S = \pm 5 \text{ V}$	$V_S = \pm 20 \text{ V to } V_S = \pm 5 \text{ V}, R_S \le 10 \Omega, T_{AMIN} \le T_A \le T_{AMAX}$		96		dB
Tuesdant seeman	Rise time	T = 25°C Init. Cair			0.3		μs
Transient response	Overshoot	T _A = 25 C, Officy Gain	T _A = 25°C, Unity Gain		5%		
Slew rate		T _A = 25°C, Unity Gain	T _A = 25°C, Unity Gain		0.5		V/µs
Supply current		T _A = 25°C			1.7	2.8	mA
Power consumption		V _S = ±15 V, T _A = 25°C			50	85	mW

⁽¹⁾ Unless otherwise specified, these specifications apply for $V_S = \pm 15 \text{ V}$, $-55^{\circ}\text{C} \leq T_A \leq +125^{\circ}\text{C}$ (LM741/LM741A). For the LM741C/LM741E, these specifications are limited to $0^{\circ}\text{C} \leq T_A \leq +70^{\circ}\text{C}$.

7 Detailed Description

7.1 Overview

The LM74 devices are general-purpose operational amplifiers which feature improved performance over industry standards like the LM709. It is intended for a wide range of analog applications. The high gain and wide range of operating voltage provide superior performance in integrator, summing amplifier, and general feedback applications. The LM741 can operate with a single or dual power supply voltage. The LM741 devices are direct, plug-in replacements for the 709C, LM201, MC1439, and 748 in most applications.

7.2 Functional Block Diagram

7.3 Feature Description

7.3.1 Overload Protection

The LM741 features overload protection circuitry on the input and output. This prevents possible circuit damage to the device.

7.3.2 Latch-up Prevention

The LM741 is designed so that there is no latch-up occurrence when the common-mode range is exceeded. This allows the device to function properly without having to power cycle the device.

7.3.3 Pin-to-Pin Capability

The LM741 is pin-to-pin direct replacements for the LM709C, LM201, MC1439, and LM748 in most applications. Direct replacement capabilities allows flexibility in design for replacing obsolete parts.

7.4 Device Functional Modes

7.4.1 Open-Loop Amplifier

The LM741 can be operated in an open-loop configuration. The magnitude of the open-loop gain is typically large thus for a small difference between the noninverting and inverting input terminals, the amplifier output will be driven near the supply voltage. Without negative feedback, the LM741 can act as a comparator. If the inverting input is held at 0 V, and the input voltage applied to the noninverting input is positive, the output will be positive. If the input voltage applied to the noninverting input is negative, the output will be negative.

7.4.2 Closed-Loop Amplifier

In a closed-loop configuration, negative feedback is used by applying a portion of the output voltage to the inverting input. Unlike the open-loop configuration, closed loop feedback reduces the gain of the circuit. The overall gain and response of the circuit is determined by the feedback network rather than the operational amplifier characteristics. The response of the operational amplifier circuit is characterized by the transfer function.

8 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

8.1 Application Information

The LM741 is a general-purpose amplifier than can be used in a variety of applications and configurations. One common configuration is in a noninverting amplifier configuration. In this configuration, the output signal is in phase with the input (not inverted as in the inverting amplifier configuration), the input impedance of the amplifier is high, and the output impedance is low. The characteristics of the input and output impedance is beneficial for applications that require isolation between the input and output. No significant loading will occur from the previous stage before the amplifier. The gain of the system is set accordingly so the output signal is a factor larger than the input signal.

8.2 Typical Application

Figure 1. LM741 Noninverting Amplifier Circuit

8.2.1 Design Requirements

As shown in Figure 1, the signal is applied to the noninverting input of the LM741. The gain of the system is determined by the feedback resistor and input resistor connected to the inverting input. The gain can be calculated by Equation 1:

Gain = 1 +
$$(R2/R1)$$
 (1)

The gain is set to 2 for this application. R1 and R2 are 4.7-k resistors with 5% tolerance.

8.2.2 Detailed Design Procedure

The LM741 can be operated in either single supply or dual supply. This application is configured for dual supply with the supply rails at ±15 V. The input signal is connected to a function generator. A 1-Vpp, 10-kHz sine wave was used as the signal input. 5% tolerance resistors were used, but if the application requires an accurate gain response, use 1% tolerance resistors.

Typical Application (continued)

8.2.3 Application Curve

The waveforms in Figure 2 show the input and output signals of the LM741 non-inverting amplifier circuit. The blue waveform (top) shows the input signal, while the red waveform (bottom) shows the output signal. The input signal is 1.06 Vpp and the output signal is 1.94 Vpp. With the 4.7-k Ω resistors, the theoretical gain of the system is 2. Due to the 5% tolerance, the gain of the system including the tolerance is 1.992. The gain of the system when measured from the mean amplitude values on the oscilloscope was 1.83.

Figure 2. Waveforms for LM741 Noninverting Amplifier Circuit

9 Power Supply Recommendations

For proper operation, the power supplies must be properly decoupled. For decoupling the supply lines, a 0.1-µF capacitor is recommended and should be placed as close as possible to the LM741 power supply pins.

10

Product Folder Links: LM741

10 Layout

10.1 Layout Guidelines

As with most amplifiers, take care with lead dress, component placement, and supply decoupling in order to ensure stability. For example, resistors from the output to an input should be placed with the body close to the input to minimize pick-up and maximize the frequency of the feedback pole by minimizing the capacitance from the input to ground. As shown in Figure 3, the feedback resistors and the decoupling capacitors are located close to the device to ensure maximum stability and noise performance of the system.

10.2 Layout Example

Figure 3. LM741 Layout

11 Device and Documentation Support

11.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support *TI's Design Support* Quickly find helpful E2E forums along with design support tools and contact information for technical support.

11.2 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

11.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

11.4 Glossary

SLYZ022 — TI Glossary.

This glossary lists and explains terms, acronyms, and definitions.

12 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

12