Politechnika Białostocka	Data: 26.05.2015r
Wydział Informatyki	
Przedmiot: Modelowanie i analiza systemów	Prowadzący:
informatycznych	dr inż. Walenty Oniszczuk
Sprawozdanie nr: 11	
Temat : metoda MVA	Ocena:
Autor: Łukasz Świderski	
Studia: stacjonarne, II stopnia, semestr 1	

1. Treść zadania

System składa się z jednostki centralnej, trzech stacji dysków i teminali. Przetwarzane są trzy typy transakcji. Użytkownicy pierwszej klasy przechowują dane na dysku pierwszym i drugim, drugiej – na drugim i trzecim, zaś prace administracyjne – trzecia klasa, wymagają dostępu do wszystkich dysków.

Liczebność źródeł $N^1 = 15$, $N^2 = 13$, $N^3 = 2$

Schemat w/w układu:

Wartości poszczególnych symboli użytych na rysunku:

W sieciach zamkniętych terminale przedstawione są jako stanowisko obsługi typu IS (Infinitivie Server – nigdy nie ma kolejek). Czasy "myślenia" yżytownikó: kl. 1: 10sek, kl. 2: 20sek, kl. 3: 150sek,

Prawdopodobieństwo przejść z CPU:

	Terminale	Dysk1	Dysk2	Dysk3
N^1	0.1	0.7	0.2	0.0
N^2	0.2	0.0	0.3	0.5
N^3	0.1	0.35	0.25	0.3

Wizualizacja wników: histogramy dla węzłów

- Średni czas w kolejce w/g klas,
- Średni czas w węźle w/g klas,
- Średnia liczba zadań w kolejce w/g klas,
- Obciążenie węzłów w/g klas,
- Przepustowość węzłów ogólna i w/g klas

2. Część teoretyczna

AMOK –jest pakietem programowym, umożliwiającym praktyczne stosowanie modeli teorii masowej obsługi, a w szczególności modelowania systemów komputerowych. Został on stworzony do opisu i oceny efektywności takich systemów, lecz może znaleźć zastosowanie wszędzie tam, gdzie stosuje się teorie masowej obsługi i model w postaci sieci stanowisk obsługi, między którymi krążą klienci ustawieni w razie potrzeby w kolejki, może odnosić się do wieku sytuacji i obiektów.

MVA – w medodzie MVA wykorzystywana jest metoda wartości średnich, pozwalająca na dokładne rozwiązywanie zamkniętych sieci dekomponowanych. Jeżeli w sieci znajdują się stanowiska z regulaminem naturalnym i różnymi od wykładniczych rozkładami czasów obsługi, a więc sieć nie jest dekomponowana, wyniki obliczeń są przybliżone. Dopuszczalny jest podział klientów na klasy. Podejście do rozwiąznaia sieci kolejkowej metodą wartości średnich pozwala na otrzymanie "miar pracy" stanowisk wprost, bez obliczania stałej normalizacyjnej, stanowiącego istotny numeryczny w innych metodach.

3. Rozwiazanie

```
SOUR mva
*DECLARATION*
/CLASS/ NAME=kl 1[15]
/CLASS/ NAME=kl_2[13]
/CLASS/ NAME=kl_3[2]
/STATION/ NAME=TERMINAL
/STATION/ NAME=CPU
/STATION/ NAME=DYSK1
/STATION/ NAME=DYSK2
/STATION/ NAME=DYSK3
*END*
*DESCRIPTION*
/STATION/ NAME=TERMINAL
 SCHEDULE=IS
SERVICE(:kl_1) = COX[1.0,5,0.5,10]

SERVICE(:kl_2) = ERL[3,20]

SERVICE(:kl_3) = EXP[150]
 TRANSIT=CPU;
/STATION/ NAME=CPU
 SCHEDULE=PS
SERVICE(:kl_1) = ERL[2,0.11]

SERVICE(:kl_2) = ERL[4,0.07]

SERVICE(:kl_3) = ERL[6,0.9]
 TRANSIT(:kl^{-}1) = [0.1] TERMINAL, [0.7] DYSK1, [0.2] DYSK2;
 TRANSIT(:kl_2)=[0.2]TERMINAL,[0.3]DYSK2,[0.5]DYSK3;
 TRANSIT(:kl 3)=[0.1]TERMINAL,[0.35]DYSK1,[0.25]DYSK2,[0.3]DYSK3;
/STATION/ NAME=DYSK1
 SCHEDULE=FIFO
 SERVICE=EXP[0.15]
 TRANSIT=CPU;
/STATION/ NAME=DYSK2
 SCHEDULE=FIFO
 SERVICE=EXP[0.11]
TRANSIT=CPU;
/STATION/ NAME=DYSK3
 SCHEDULE=FIFO
 SERVICE=EXP[0.18]
 TRANSIT=CPU;
*END*
```

C:\winamok>amok-32 zad11.amk MVA

Vyniki.tx				druk		
		WYNIKI	(prosty wy	ASCII)	:	
"Bez podz	ziału na kl	asy"				
			CZAS			
			OBSŁ.	LICZBA KL.	WYKORZYST.	PRZEPUST
1.Stan.	TERMIN	AL	15.497365	18.592228		1.1997025
2.Stan.	CPU		0.9496202	8.8322926	0.9831265	9.3008684
3.Stan.	DYSK1		0.4246873	1.9506846	0.6889838	4.5932257
		QUEUE	0.2746873	1.2617008		4.5932257
		SERVER	0.1500000	0.6889838	0.6889838	
4.Stan.	DYSK2		0.1431613	0.3055185	0.2347494	2.1340854
		QUEUE	0.0331613	0.0707691		2.1340854
		SERVER	0.1100000	0.2347494	0.2347494	
5.Stan.	DYSK3		0.2323938	0.3192754	0.2472938	1.3738547
		QUEUE	0.0523938	0.0719815		1.3738547
		SERVER	0.1800000	0.2472938 druk	0.2472938	
		WYNIKI	(prosty wy	ASCII)	:	
Dla klasy	"kl_1"					
			CZAS			
					WYKORZYST.	
1.Stan.	TERMIN	AL		6.5187913		0.6518791
	CPU				0.7170669	
3.Stan.	DYSK1				0.6844730	4.5631534
		QUEUE		1.2521578		4.5631534
		SERVER			0.6844730	
4.Stan.	DYSK2				0.1434134	1.3037581
		QUEUE		0.0435044		1.3037581
		SERVER		0.1434134 druk	0.1434134	
		WYNIKI	(prosty wy	ASCII)	:	
Dla klasy	kl_2					
			CZAS	11670 4 14	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	DD7501167
1 C+	TEDNAIR	Λ.Ι.			WYKORZYST.	
	TERMIN	AL		10.784627	0.4007300	0.5392313
	CPU				0.1887309	
3.Stan.	DYSK2	OHEHE			0.0889731	0.8088471
			0.0327895			0.8088471
4 C±a :-	DVCK3	SERVER			0.0889731	1 2400705
4.Stan.	DYSK3	OHEHE				1.3480785
			0.0522918			1.3480785
		SERVER		druk	0.2426541	
51 11		WYNIKI	(prosty wy	ASCII)	:	
Dla klasy	KI_3					

			CZAS			
			OBSŁ.	LICZBA KL.	WYKORZYST.	PRZEPUST.
1.Stan.	TERMINA	AL	150.00000	1.2888099		0.0085920
2.Stan.	CPU		8.0062518	0.6879026	0.0773286	0.0859206
3.Stan.	DYSK1		0.4673337	0.0140537	0.0045108	0.0300722
		QUEUE	0.3173337	0.0095429		0.0300722
		SERVER	0.1500000	0.0045108	0.0045108	
4.Stan.	DYSK2		0.1445883	0.0031057	0.0023628	0.0214801
		QUEUE	0.0345883	0.0007429		0.0214801
		SERVER	0.1100000	0.0023628	0.0023628	
5.Stan.	DYSK3		0.2377319	0.0061278	0.0046397	0.0257762
		QUEUE	0.0577319	0.0014881		0.0257762
		SERVER	0.1800000	0.0046397	0.0046397	

3)

Podsumowanie:

Niestety pod systemem Windows 8.1 nie udało mi się uruchomić poprawnie programu winamok, jednakże program amok-32 po wywołaniu z odpowiednimi parametrami uruchomił się z poziomu wiersza poleceń.