Variable continue à densité: 1 4> 5' le 3 une fonction de répartition & continue ou continue par morceaux, 3 la densité de X.

+(b)-+(a) = Sa f(x)dx = P(a < x < b)

VaER, F(a) = 5-00 f(ne)does

1) Si l'on demande a prouver que f peut être

- Prove que tre EIR, f(ne) 70 - Stro B(nextre = 1 (converge et = 1)

Densité de CXX+B=Y, alors HXER, fy(0e) = 1 x fx (2-B)

si x ~ d (m, 02), Fx (ne) = 0 (2c-m) P(-1,96 < 2 < 1,96) = \$(1,96) = 95% E(x)=m Var(x)=02 0(x)=0 Esperance de X: E(X) = 5-00 ref(x) dres (si DV, X n'a pas Sentre de gravité de la distribution. d'espérance) 1) E(XX+B) = XE(X)+B 2) E(X+Y) = E(X) +E(Y) 3) Y 4 E.R. continue, E (4(x)) = J-00 4(x) f(x) dx (if if cv) Variance de X:1 Var(X) = $E((X-E(X))) = \int_{-\infty}^{+\infty} (x-E(X))^2 f(x) dx$ Ecart-type de X:10 (X)= VVara Inegalité de Tchebycher: (YE>O, P(1X-E(X))>E) \ Var(X)

25 Var (XX+B) = x2 Var (X) 1 (XX+B) = | X1 O(X)

3) Var (X+4) = Var (X) + Var (Y) (cixet yinds)

End Pall -

Distribution a 2 variables: X et 41

F: | (2,4) +> P(x,4) E.]-00, 22] x]-00,4]

= P(X < x et 4 sy)

P(a(x&b et c&y&d)=F(b,d)-F(b,c)-F(a,d) + F(a,c)

lim F(a,y) = 0 lim F() (, b) = 0

lim F(x,y)=1.

L'ésinte du coupe (X,Y)

 $f(x,y) = \frac{\partial^2 F}{\partial x \partial y}(x,y)$

Plasxib et cxxid) = Sa Sc f(se, y) dydse

Densité marginale	de X et 4:
Densité marginale dex	: fx 2+ > fx f(x,y)dy
del	: fy: y >)_ & f(x, y) dx
Densité X+4: Bx+4:	20 -> Stoo f(20-4,4) dy
Variable indépendant	ToS: 1
Xet Y indépendante:	=> (x14) E12, f(x,4)=fx(x)x fy(y)
P(XEEa, b]et YEE4d])	= P(x E Eash] x P(4 E Ec, d)) = (Sa fx(x)dsc)x(Safy(y)dy)
	(y,y)dy= 5-00 fx (no-4) fy (y)dy
Types de converge	unce.
$\overline{X}_{n} = \frac{X_{1} + X_{2}!}{n}$.+ Xn
Convergence 1: Vers "	ne constante
Xn: Fx= Y= E(Xn) Y: - C -> IR W -> C	
	P(Y=c)=1 (une cst).

