CHAPTER 10:

LÍNEAR DISCRIMINATION

Some slides adapted from:

- E. Alpaydin, cmpe.boun.edu.tr/~ethem/i2ml3e
- M.A Carreira-Perpinan, faculty.ucmerced.edu/mcarreiraperpinan/teaching/CSE176/lecturenotes.pdf

Classification examples

Classification

- In previous lectures we looked at classification:
 - Training time: learn a set of discriminant functions {g_i(x)}
 - Test time: given a new instance x, choose class k with highest value of {g_i(x)}

Likelihood- vs. Discriminant-based Classification

- □ There are two approaches to learning the discriminant functions $g_i(\mathbf{x})$:
 - Likelihood-based
 - Discriminant-based

- \square Assume a model for $p(\mathbf{x}|C_i)$
- □ Estimate $p(\mathbf{x}|C_i)$ and $p(C_i)$ from the data
- □ Use Bayes' rule to calculate $P(C_i|\mathbf{x})$ e.g. $g_i(\mathbf{x}) = \log P(C_i|\mathbf{x})$

- We learn both
 - Class boundaries
 - where $p(\mathbf{x}|C_i) = p(\mathbf{x}|C_j)$
 - Class densities

- Generative approach
- Previous chapters: parametric and nonparametric methods for finding $p(\mathbf{x}|C_i)$

Discriminant-based Classification

- Learn only class boundaries
- □ Assume a model for $g_i(\mathbf{x}|\Phi_i)$, learn this directly
- No density estimation

Discriminant-based Classification

- Estimating the boundaries is enough; no need to accurately estimate the densities inside the boundaries
- A simpler problem than density estimation
- This and following chapters: Discriminant functions

Linear Discriminant

- Define a model $g_i(\mathbf{x}|\Phi_i)$ for each class discriminant
- The linear discriminant has the form:

$$g_i(\mathbf{x} | \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0} = \sum_{j=1}^d \mathbf{w}_{ij} \mathbf{x}_j + \mathbf{w}_{i0}$$

- Assumption: instances from one class are linearly separable from instances of other classes
- Learning means finding the values of $\{Φ_i\}$ that optimize separation

Linear Discriminant

Advantages:

- Faster to train
- Simple at test time: O(d) space/computation
- Simple interpretation:
- Output is weighted sum of attributes
- Sign of weights: are effects positive/negative
- Magnitudes of weight: How important

Linear Discriminant

- Deprimed when $p(\mathbf{x}|C_i)$ are Gaussian with shared covariance matrix
- Useful when classes are (almost) linearly separable
- In many cases, good enough
 - Try linear discrimination before more complex models

- When a linear model (linear in x) is not good enough
 - We can add higher order terms
- Example: Quadratic discriminant:

$$g_i(\mathbf{x} | \mathbf{W}_i, \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{x}^T \mathbf{W}_i \mathbf{x} + \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

- Alternative: preprocess input
- Higher-order (product) terms:

$$z_1 = x_1, z_2 = x_2, z_3 = x_1^2, z_4 = x_2^2, z_5 = x_1x_2$$

Map from **x** to **z** using nonlinear basis functions and use a linear discriminant in **z**-space

- Linear combination of non-linear functions of x
- Discriminant:

$$g_i(\mathbf{x}) = \sum_{j=1}^k w_j \phi_{ij}(\mathbf{x})$$

where $\phi_{ij}(\mathbf{x})$ are basis functions

- Linear combination of non-linear functions of x
- Discriminant:

$$g_i(\mathbf{x}) = \sum_{j=1}^k w_j \phi_{ij}(\mathbf{x})$$

where $\phi_{ij}(\mathbf{x})$ are basis functions

Basis function examples:

(basis functions are used in later chapters; neural nets and SVMs)

- = $\sin(x_1)$
- $= \exp(-(x_1 m)^2/c)$
- $\bullet \exp(-\|\boldsymbol{x} \boldsymbol{m}\|^2/c)$
- $= \log(x_2)$
- $1(x_1 > c)$
- $1(ax_1 + bx_2 > c)$

Two Classes

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

choose
$$\begin{cases} C_1 & \text{if } g(x) > 0 \\ C_2 & \text{otherwise} \end{cases}$$

Two Classes

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

w is orthogonal to the hyperplane

The origin
$$\mathbf{x} = \mathbf{0}$$
 is on the
$$\begin{cases} \text{positive side} & \text{if } w_0 > 0 \\ \text{boundary} & \text{if } w_0 = 0 \\ \text{negative side} & \text{if } w_0 < 0 \end{cases}$$

Two Classes

$$g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$$

w is orthogonal to the hyperplane - determines orientation

Determines location wrt origin

The origin
$$\mathbf{x} = \mathbf{0}$$
 is on the
$$\begin{cases} \text{positive side} & \text{if } w_0 > 0 \\ \text{boundary} & \text{if } w_0 = 0 \\ \text{negative side} & \text{if } w_0 < 0 \end{cases}$$

Geometry

Multiple Classes

- □ With K > 2 classes
- Two common ways to classify:
 - One-vs-all (linear separability)
 - One-vs-one (pairwise linear separability)

One-vs-all

K discriminants:

$$g_i(\mathbf{x} | \mathbf{w}_i, \mathbf{w}_{i0}) = \mathbf{w}_i^T \mathbf{x} + \mathbf{w}_{i0}$$

- Training:
 - train each g_i to classify instances of C_i vs all other instances
- Testing:
 - Choose with largest discriminant

Choose
$$C_i$$
 if
$$g_i(\mathbf{x}) = \max_{j=1}^{\kappa} g_j(\mathbf{x})$$

One-vs-all

One-vs-one

K(K-1)/2 discriminants

$$g_{ij}(\mathbf{x} | \mathbf{w}_{ij}, \mathbf{w}_{ij0}) = \mathbf{w}_{ij}^{\mathsf{T}} \mathbf{x} + \mathbf{w}_{ij0}$$

- One for each pair of classes
- Training:
 - train g_{ij} to classify instances of C_i vs instances of C_j
 - ignore instances of other classes
- Testing:
 - choose C_i if $\forall j \neq i, g_{ij}(\mathbf{x}) > 0$
 - Or pick the class with largest summed discriminant

$$g_i(\mathbf{x}) = \sum_{j \neq i} g_{ij}(\mathbf{x})$$

One-vs-one

Both methods divide the input space into K convex decision regions

How do we find w?

- We know what we want!
 - To find w
- But how do we do that?
 - In some cases w can be found analytically
 - But often this is not possible: Iterative optimization instead

www.mec.ca

- There are many different iterative optimization methods
- Gradient Descent is a popular one
 - Simple
 - Reasonably effective
 - But can be very slow

- Error function: E(w|X) with parameters w on sample X
- Want to find the optimal w (with minimal error):

$$\mathbf{w}^* = \operatorname{arg\ min}_{\mathbf{w}} E(\mathbf{w} \mid X)$$

- Error function: E(w|X) with parameters w on sample X
- Want to find the optimal w (with minimal error):
 w*=arg min_w E(w | X)
- Begin: Set random w
- Iterate:
 - Calculate update term: $\Delta w_i = -\eta \frac{\partial E}{\partial w_i}, \forall i$
 - Set new (updated) w:

$$w_i = w_i + \Delta w_i$$

Gradient (vector of partial derivatives)

$$\nabla_w E = \left[\frac{\partial E}{\partial w_1}, \frac{\partial E}{\partial w_2}, \dots, \frac{\partial E}{\partial w_d}\right]^T$$

Learning factor (η):

$$\Delta w_i = -\eta \frac{\partial E}{\partial w_i}, \forall i$$

Stop iterating when:

$$\nabla E(\mathbf{w}) \approx \mathbf{0}$$

Logistic Regression

Image via flickr, CC

Previous chapters: Sigmoid posterior

Instead of first estimating densities, then calculating posteriors: We want to model the posterior directly using the logistic function

Sigmoid (Logistic) Function

Transform a linear discriminant to a posterior probability:

Calculate $g(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + w_0$ and choose C_1 if $g(\mathbf{x}) > 0$, or Calculate $y = \text{sigmoid}(\mathbf{w}^T \mathbf{x} + w_0)$ and choose C_1 if y > 0.5

Why does the logistic approach work? We know that:

• For Gaussian class densities with equal covariance: $g_i(x) = w_i^T x + w_{i0}$

Parameters can be calculated analytically:

$$w_i = \Sigma^{-1} \mu_i$$

$$w_{i0} = -\frac{1}{2} \mu_i^T \Sigma^{-1} \mu_i + \log P(C_i)$$

Log odds is linear (again for Gaussian with shared cov):

So the Log-Odds (logit(P(C₁|x))) is linear:

$$\log \frac{P(C_1|\mathbf{x})}{1 - P(C_1|\mathbf{x})} = \mathbf{w}^T \mathbf{x} + w_0$$

- The *inverse* of the log-odds is the logistic function
- Which means that:

$$P(C_1|\mathbf{x}) = \text{sigmoid}(\mathbf{w}^T\mathbf{x} + w_0) = \frac{1}{1 + \exp[-(\mathbf{w}^T\mathbf{x} + w_0)]}$$

 So the posterior can be described by a sigmoid:

$$P(C_1|\mathbf{x}) = \text{sigmoid}(\mathbf{w}^T\mathbf{x} + w_0) = \frac{1}{1 + \exp[-(\mathbf{w}^T\mathbf{x} + w_0)]}$$

- We showed this in the case of two
 Gaussian class densities with shared cov
- It also holds in some other cases

K>2 classes, softmax

• When there are more than two classes: Softmax

$$\mathbf{x}$$

 $y_i = \hat{P}(C_i|\mathbf{x}) = \frac{\exp[\mathbf{w}_i^T \mathbf{x} + w_{i0}]}{\sum_{j=1}^K \exp[\mathbf{w}_j^T \mathbf{x} + w_{j0}]}, i = 1, ..., K$

- If the 'linear output' for one class (C_k) is much larger than for the others:
 - $P(C_k|\mathbf{x})$ will be close to one
 - Close to 0 for other classes
 - Together they all sum to 1

Examples

How do we find the correct parameters?

K= 2: We have a training set with input data and labels e.g [house price, size,] \rightarrow {sold, not sold}

We want to learn the parameters for

$$P(C_1|\mathbf{x}) = \text{sigmoid}(\mathbf{w}^T\mathbf{x} + w_0) = \frac{1}{1 + \exp[-(\mathbf{w}^T\mathbf{x} + w_0)]}$$

K= 2: We have a training set with input data and labels e.g [house price, size,] \rightarrow {sold, not sold}

We want to learn the parameters for

$$P(C_1|\mathbf{x}) = \text{sigmoid}(\mathbf{w}^T\mathbf{x} + w_0) = \frac{1}{1 + \exp[-(\mathbf{w}^T\mathbf{x} + w_0)]}$$

There are two ways of doing that:

- Model the outcome as a Bernoulli distribution. Find the Maximum Likelihood parameter estimates.
- Use least-square regression, considering the labels {0,1} real values.

K= 2: We have a training set with input data and labels e.g [house price, size,] \rightarrow {sold, not sold}

We want to learn the parameters for

$$P(C_1|\mathbf{x}) = \text{sigmoid}(\mathbf{w}^T\mathbf{x} + w_0) = \frac{1}{1 + \exp[-(\mathbf{w}^T\mathbf{x} + w_0)]}$$

There are two ways of doing that:

- Model the outcome as a Bernoulli distribution. Find the Maximum Likelihood parameter estimates.
- Use least-square regression, considering the labels {0,1} real values.

In both cases: No closed-form solution. Need Gradient Descent

The ML & Bernoulli approach

- Labels are a Bernoulli distribution
- Γ $r^t | \mathbf{x}^t \sim \text{Bernoulli}(y^t)$
- Sample likelihood is
- $l(\mathbf{w}, w_0 | \mathcal{X}) = \prod_t (y^t)^{(r^t)} (1 y^t)^{(1 r^t)}$
- Turn this into an error function to minimize
- $\square E(\mathbf{w}, w_0 | \mathcal{X}) = -\sum_t r^t \log y^t + (1 r^t) \log(1 y^t)$
- (this is Cross Entropy)

The ML & Bernoulli approach

- □ To do Gradient Descent we need the derivative $\frac{dy}{da} = y(1-y)$
- This gives update equations for the descent:

$$\Delta w_{j} = -\eta \frac{\partial E}{\partial w_{j}} = \eta \sum_{t} \left(\frac{r^{t}}{y^{t}} - \frac{1 - r^{t}}{1 - y^{t}} \right) y^{t} (1 - y^{t}) x_{j}^{t}$$

$$= \eta \sum_{t} (r^{t} - y^{t}) x_{j}^{t}, j = 1, \dots, d$$

$$\Delta w_{0} = -\eta \frac{\partial E}{\partial w_{0}} = \eta \sum_{t} (r^{t} - y^{t})$$

The ML & Bernoulli approach

- Initialize with weights near 0
- Stop when all samples are classified correctly
 - or even before (regularization)

K>2 Classes

- Similar, but labels are modelled as multinomial instead of Bernoulli
- We have the softmax instead of a single logistic function

$$y_i = \hat{P}(C_i|\mathbf{x}) = \frac{\exp[\mathbf{w}_i^T \mathbf{x} + w_{i0}]}{\sum_{j=1}^K \exp[\mathbf{w}_j^T \mathbf{x} + w_{j0}]}, i = 1, ..., K$$

- Another way to train the logistic classifier: Least squares regression
- "Discrimination by regression"
- Can be useful when classes are not mutually exclusive and exhaustive

Two-way classification:

- Use the class codes {0,1} as numeric target values for regression
- Fit to the logistic function by minimizing sum-ofsquares

Function to fit:

$$y^t = \text{sigmoid}(\mathbf{w}^T \mathbf{x}^t + w_0) = \frac{1}{1 + \exp[-(\mathbf{w}^T \mathbf{x}^t + w_0)]}$$

Fit by minimizing sum of square Error:

$$E(\mathbf{w}, w_0 | \mathcal{X}) = \frac{1}{2} \sum_{t} (r^t - y^t)^2$$

Update equations for gradient descent

$$\Delta w = \eta \sum_{t} (r^t - y^t) y^t (1 - y^t) x^t$$
$$\Delta w_0 = \eta \sum_{t} (r^t - y^t) y^t (1 - y^t)$$

- Can also be used for K>2 classes
- A separate logistic function is fit for each class
- The resulting class probabilities P(C|x) don't necessarily sum to one!!
 - So x may be predicted to belong to more than one class, or none at all

Sources & resources

- Linear and GLM-intro:byclb.com/TR/Tutorials/neural_networks/ch9_1.htm
- Math animations (esp. linear algebra & calculus)
 youtube.com/channel/UCYO_jab_esuFRV4b17AJtAw
- Various stats topics explained youtube.com/user/joshstarmer
- Machine learning lectures, Cornell youtube.com/playlist? list=PLI8OIHZGYOQ7bkVbuRthEsaLr7bONzbXS