





### Olimpiada Națională de Matematică

#### Etapa Județeană/a Sectoarelor Municipiului București, 16 martie 2019

### CLASA a VI-a – soluții

**Problema 1.** În jurul punctului O se consideră unghiurile  $\widehat{A_0OA_1}=1^\circ, \ \widehat{A_1OA_2}=2^\circ, \widehat{A_2OA_3}=3^\circ, \ldots, \ \widehat{A_{25}OA_{26}}=26^\circ$  și  $\widehat{A_{26}OA_0}$ .

- a) Determinați măsura unghiului  $\widehat{A}_{26}\widehat{OA}_{0}$ .
- b) Pentru câte valori ale numărului natural  $n, 1 \le n \le 25$ , ave<br/>m $\widehat{A_0OA_n} > \widehat{A_0OA_{n+1}}$ ?

Gazeta Matematică

## **Problema 2.** O mulțime M de numere întregi are proprietățile:

i) 1 este element al lui M;

3

- ii) dacă x și y sunt elemente ale lui M, atunci 2x + 3y este element al lui M;
- iii) dacă x, y sunt numere întregi şi 4x 3y este element al lui M, atunci  $x \cdot y$  este element al lui M.

Arătați că mulțimea M conține numerele 2, 3, 4, 5 și 2019.

| S     | oluţie. Din i) și ii)               | reiese $5 = 2$ .       | $1 + 3 \cdot 1 \in M$ |               |                   | 1p      |
|-------|-------------------------------------|------------------------|-----------------------|---------------|-------------------|---------|
| D     | in iii) și $5 = 4 \cdot 2$ -        | $-3 \cdot 1 \in M$ res | iese $2 \cdot 1 = 2$  | $\in M \dots$ |                   | 1p      |
|       |                                     |                        |                       |               |                   |         |
| D     | in iii) și $4 = 4 \cdot 1$          | $-3 \cdot 0 \in M$     | reiese $1 \cdot 0$ =  | $=0\in M.$    | Folosind acum ii) | obţinem |
| S = 2 | $2 \cdot 0 + 3 \cdot 1 \in M \dots$ |                        |                       |               | ·                 | 1p      |

# **Problema 3.** Fie mulţimea $A = \{1, 2, 3, ..., 100\}.$

- a) Dați exemplu de submulțime B cu 11 elemente, a mulțimii A, având proprietatea: oricum am lua două elemente din B, cel mai mare divizor comun al lor este cel puțin 9.
- b) Arătați că, oricum am alege o submulțime C cu 11 elemente, a mulțimii A, există două elemente distincte din C al căror cel mai mare divizor comun este cel mult 9.

| Soluție. a) Luăm $B$ formată din cei 11 multipli ai lui 9, aflați în $A$                                                        |
|---------------------------------------------------------------------------------------------------------------------------------|
| b) Observăm că, dacă $a > b$ , atunci $(a, b) \le a - b \dots 2p$                                                               |
| Dacă împărțim $A$ în 10 grupe de câte 10 numere consecutive, există o grupă care                                                |
| conține două elemente din $C$                                                                                                   |
| Diferența acestor elemente este cel mult 9, deci, conform observației, cel mai mare                                             |
| divizor comun al lor este cel mult 92p                                                                                          |
| <b>Problema 4.</b> O mulţime va fi numită <i>interesantă</i> dacă elementele ei sunt numere prime şi este îndeplinită condiţia: |
| oricum am alege trei elemente distincte ale mulțimii, suma numerelor alese este număr prim.                                     |
| Determinați care este numărul maxim de elemente pe care le are o mulțime interesantă.                                           |
| Soluție. Răspunsul este patru                                                                                                   |
| să fie divizibilă cu 3.                                                                                                         |
| Intr-adevăr, dacă trei dintre numerele alese dau același rest la împărțirea cu 3, atunci                                        |
| suma lor este divizibilă cu 3. În caz contrar, pentru fiecare rest la împărțirea cu 3 avem                                      |
| cel mult două numere dintre cele alese, deci avem cel puțin un număr care la această                                            |
| împărțire dă restul 0, un număr care dă restul 1 și un număr care dă restul 2; suma                                             |
| acestor numere este divizibilă cu 33p                                                                                           |
| Din cele de mai sus reiese că o mulțime interesantă nu poate avea cinci sau mai multe                                           |
| elemente, deoarece în acest caz găsim trei numere cu suma divizibilă cu 3, iar suma lor                                         |
| este mai mare decât 3. O mulțime interesantă de patru numere este 7, 13, 17, 23 3p                                              |