

Skript Topologie II.

Mitschrift der Vorlesung "Topologie II." von Prof. Dr. Arthur Bartels

Jannes Bantje

9. November 2015

Aktuelle Version verfügbar bei

GitHub

https://github.com/JaMeZ-B/latex-wwu

✓

GitHub ist eine Internetplattform, auf der viele OpenSource-Projekte gehostet werden. Diese Plattform nutzen wir zur Zusammenarbeit, also findet man hier neben den PDFs auch die TFX-Dateien. Außerdem ist über diese Plattform auch direktes Mitarbeiten möglich, siehe nächste Seite.

Sciebo die Campuscloud

https://uni-muenster.sciebo.de/public.php?service=files&t=965ae79080a473eb5b6d927d7d8b0462

Sciebo ist ein Dropbox-Ersatz der Hochschulen in NRW, der von der Uni Münster in leitender Position auf Basis der OpenSource-Software Owncloud aufgebaut wurde. Wenn man auf den Link klickt, kann man die Freigabe zum eigenen Speicher hinzufügen und hat dann immer automatisch die aktuellste Version.

Bittorrent Sync B6WH2DISQ5QVYIRYIEZSF4ZR2IDVKPN3I

BTSync ist ein peer-to-peer Dateisynchronisations-Tool. Dabei werden die Dateien nur auf den Computern der Teilnehmer an einer Freigabe gespeichert. Ein RasPi ist permanent online, sodass stets die aktuellste Version verfügbar ist. Clients ☑ gibt es für jedes Betriebssystem. Zugang ist über das obige "Secret" bzw. den QR-Code möglich.

Vorlesungshomepage

https://wwwmath.uni-muenster.de/das/ist/kein/echter/Link.htmla Hier ist ein Link zur offiziellen Vorlesungshomepage.

Vorwort — Mitarbeit am Skript

Dieses Dokument ist eine Mitschrift aus der Vorlesung "Topologie II., WiSe 2015", gelesen von Prof. Dr. Arthur Bartels. Der Inhalt entspricht weitestgehend dem Tafelanschrieb. Für die Korrektheit des Inhalts übernehme ich keinerlei Garantie! Für Bemerkungen und Korrekturen – und seien es nur Rechtschreibfehler – bin ich sehr dankbar. Korrekturen lassen sich prinzipiell auf drei Wegen einreichen:

- ▶ Direktes Mitarbeiten am Skript: Den Quellcode poste ich auf GitHub (siehe oben), also stehen vielfältige Möglichkeiten der Zusammenarbeit zur Verfügung: Zum Beispiel durch Kommentare am Code über die Website und die Kombination Fork + Pull Request. Wer sich verdient macht oder ein Skript zu einer Vorlesung, die ich nicht besuche, beisteuern will, dem gewähre ich gerne auch Schreibzugriff.
 - Beachten sollte man dabei, dass dazu ein Account bei github.com notwendig ist, der allerdings ohne Angabe von persönlichen Daten angelegt werden kann. Wer bei GitHub (bzw. dem zugrunde liegenden Open-Source-Programm "git") verständlicherweise Hilfe beim Einstieg braucht, dem helfe ich gerne weiter. Es gibt aber auch zahlreiche empfehlenswerte Tutorials im Internet.¹
- ▶ *Indirektes* Mitarbeiten: T_EX-Dateien per Mail verschicken.

Dies ist nur dann sinnvoll, wenn man einen ganzen Abschnitt ändern möchte (zB. einen alternativen Beweis geben), da ich die Änderungen dann per Hand einbauen muss! Ich freue mich aber auch über solche Beiträge!

¹zB. https://try.github.io/levels/1/challenges/1🗹, ist auf Englisch, aber dafür interaktives LearningByDoing

Inhaltsverzeichnis

1 Kohomologie	1
2 Die Paarung zwischen Kohomologie und Homologie	5
3 Produkte auf Kohomologie	7
4 Kommutativität des ∪-Produktes	10
5 Azyklische Kettenkomplexe	13
Index	A
Abbildungsverzeichnis	E
Todo list	P

1 Kohomologie

1.1 Definition. Sei R ein Ring. Ein R-Kokettenkomplex (C^*, d^*) ist eine Folge von R-Moduln $(C^n)_{n \in \mathbb{N}}$ zusammen mit R-linearen Abbildungen $d^n \colon C^n \to C^{n+1}$, sodass $d^{n+1} \circ d^n = 0$ gilt. Der n-te Kohomologiemodul von (C^*, d^*) ist definiert als

$$H^{n}(C^{*}, d^{*}) = \frac{\ker d^{n} \colon C^{n} \to C^{n+1}}{\operatorname{im} d^{n-1} \colon C^{n-1} \to C^{n}}$$

Sei (D^*,d^*) ein weiterer Kokettenkomplex. Eine *Kokettenabbildung* ist eine Folge von R-linearen Abbildungen $f^n\colon C^n\to D^n$, sodass $d^n_D\circ f^n=f^{n+1}\circ d^n_C$ für alle n gilt. Ist auch $g^n\colon C^n\to D^n$ eine Kokettenabbildung, so nennen wir eine R-lineare Abbildung $h^n\colon C^n\to D^{n-1}$ mit

$$f^n - g^n = h^{n+1} \circ d_C^n + d_D^{n-1} \circ h^n$$

eine Kokettenhomotopie zwischen f und g. Zu jeder Kokettenabbildung $f^n \colon C^n \to D^n$ gibt es eine induzierte Abbildung auf Kohomologie genau wie bei Homologie.

1.2 Bemerkung.

i) Sei (C_*, d_*) ein R-Kettenkomplex und V ein R-Modul. Dann erhalten wir einen R-Kokettenkomplex (C^*, d^*) durch

$$C^n := \operatorname{Hom}_R(C_n, V)$$

und $d^n\colon C^n\to C^{n+1}$ definiert durch $\alpha\mapsto\alpha\circ d_{n+1}$. Dieser Kokettenkomplex (C^*,d^*) heißt der V-duale R-Kokettenkomplex zu (C_*,d_*) . Ist V=R, so nennen wir ihn auch kürzer dualer Kokettenkomplex

- ii) Benutzen wir $\mathbb Z$ statt $\mathbb N$ als Indexmenge, so können wir durch $(C^n,d^n)\leadsto (C_n\coloneqq C^{-n},d_n\coloneqq d^{-n})$ jeden Kokettenkomplex einem Kettenkomplex zuordnen. Dieser Prozess ist offensichtlich umkehrbar.
- $\textbf{1.3 Beispiel}.\quad \text{Es sei } (C_*,d_*) = \left(\mathbb{Z} \xleftarrow{d_1}{\mathbb{Z}} \mathbb{Z} \longleftarrow 0 \longleftarrow \ldots\right) \text{ ein Kettenkomplex. Dann ist}$

$$H_k(C_*,d_*) = \begin{cases} \mathbb{Z}/2\mathbb{Z}, & \text{ falls } k = 0\\ 0, & \text{ sonst} \end{cases}$$

Der Z-duale Kokettenkomplex hat dann folgende Gestalt

Damit ist die Kohomologie $H^k(C^*, d^*) = 0$ für $k \neq 1$ und isomorph zu $\mathbb{Z}/2\mathbb{Z}$ für k = 1. Es gilt also nicht immer $H^*(\operatorname{Hom}(C_*; R), d^*) = \operatorname{Hom}(H_*(C_*, d_*), R)$.

1.4 Definition. Sei (X, A) ein Paar von topologischen Räumen und V eine abelsche Gruppe. Der *singuläre Kokettenkomplex* von (X, A) mit Koeffizienten in V ist definiert durch

$$C^*_{\text{sing}}(X, A; V) := \text{Hom}_{\mathbb{Z}}(C^{\text{sing}}_*(X, A), V)$$

und $d_{\mathrm{sing}}^*(\alpha) \coloneqq -(-1)^{|\alpha|} \cdot \alpha \circ d_{*+1}^{\mathrm{sing}}$. Dabei ist $|\alpha| = n$ für $\alpha \in C_{\mathrm{sing}}^n(X,A;R)$. Die Kohomologie von $(C_{\mathrm{sing}}^*(X,A;V), d_{\mathrm{sing}}^*)$ heißt die *singuläre Kohomologie* von (X,A) mit Koeffizienten in R.

1 Kohomologie

- **1.5 Bemerkung.** Sei R ein kommutativer Ring und V ein R-Modul. Dann ist der singuläre Kokettenkomplex $(C^*_{\mathrm{sing}}(X,A;V),d^*_{\mathrm{sing}})$ isomorph zum V-dualen R-Kokettenkomplex des R-Kettenkomplexes $(C^{\mathrm{sing}}_*(X,A;R),d^{\mathrm{sing}}_*)$, da $C^{\mathrm{sing}}_*(X,A;R) \cong R \otimes C^{\mathrm{sing}}_*(X,A)$ und $\mathrm{hom}_{\mathbb{Z}}(W,V) \cong \mathrm{hom}_R(R \otimes W,V)$ für jeden \mathbb{Z} -Modul W.
- **1.6 Definition.** Sei $f: (X, A) \to (Y, B)$ eine stetige Abbildung von Paaren. Dann erhalten wir eine Kokettenabbildung $f^*: C^*_{\text{sing}}(Y, B; V) \to C^*_{\text{sing}}(X, A; V)$ durch

$$f^*(\alpha) := \alpha \circ f_*$$

- **1.7 Bemerkung.** Ist $g: (Y, B) \to (Z, C)$ eine weitere Abbildung von Paaren, so gilt $(g \circ f)^* = f^* \circ g^*$.
- **1.8 Definition.** Seien $\mathbb C$ und $\mathbb D$ Kategorien. Ein *kontravarianter Funktor* $F \colon \mathbb C \to \mathbb D$ ordnet jedem Objekt C in $\mathbb C$ ein Objekt D in $\mathbb D$ zu und jedem Morphismus $f \colon C \to C'$ einem Morphismus $F(f) \colon F(C') \to F(C)$ in $\mathbb D$ zu. Dabei muss gelten:
 - i) $F(id_C) = id_{F(C)}$
 - ii) Für $C \xrightarrow{f} C' \xrightarrow{f'} C''$ gilt $F(f' \circ f) = F(f) \circ F(f')$.

Kürzer ist ein kontravarianter Funktor $F: \mathcal{C} \to \mathcal{D}$ das selbe wie ein kovarianter Funktor $\mathcal{C}^{op} \to \mathcal{D}$.

- **1.9 Beispiel.** Es gibt zahlreiche Beispiele für kontravariante Funktoren:
 - i) id: $\mathcal{C} \to \mathcal{C}^{op}$ ist kontravariant.
 - ii) Sei V eine abelsche Gruppe. Wir erhalten einen kontravarianten Funktor

$$\operatorname{Hom}(-,V)\colon \mathbb{Z}\operatorname{-Mod}\longrightarrow \mathbb{Z}\operatorname{-Mod}$$

iii) Sei V eine abelsche Gruppe. Dann sind

$$C^*_{\rm sing}(-,V)\colon Top^2 \longrightarrow \mathbb{Z}\text{-Kokettenkomplexe}$$
 $H^*_{\rm sing}\big(C^*_{\rm sing}(-,V),d^*_{\rm sing}\big)\colon Top^2 \longrightarrow Gr\text{-}\mathbb{Z}\text{-Mod}$

kontravariante Funktoren.

- 1.10 Satz. Singuläre Kohomologie hat die folgenden Eigenschaften:
 - i) Dimensionsaxiom: Es gilt $H_{\text{sing}}^n(\{pt\}; V) = V$, falls n = 0 ist und sonst 0.
 - ii) Paarfolge: Es gibt eine natürliche Transformation ϑ^* : $H^*(A;V) \to H^{*+1}(X,A;V)$ sodass für jedes Paar

$$0 \longrightarrow H^0(X,A;V) \longrightarrow H^0(X;V) \longrightarrow H^0(A;V) \stackrel{\delta}{\longrightarrow} H^1(X,A;V) \longrightarrow \dots$$

eine lange exakte Folge ist. 8 bezeichnet man auch als verbindende Abbildung.

- **iii) Ausschneidung:** Sei $L \subseteq A$ mit $\overline{L} \subseteq \mathring{A}$. Dann induziert die Inklusion $i: (X \setminus L, A \setminus L) \hookrightarrow (X, A)$ einen Isomorphismus $i^*: H^*(X, A; V) \to H^*(X \setminus L, A \setminus L; V)$.
- **iv) Homotopieinvarianz:** Sind $f, g: (X, A) \to (Y, B)$ homotope Abbildungen von Paaren, so gilt $f^* = g^*$ für die induzierten Abbildungen in singulärer Kohomologie.

2 1 Kohomologie

Beweis: Für singuläre Homologie haben wir die entsprechenden Aussagen schon bewiesen. In allen vier Fällen folgt die Aussage für Kohomologie aus schon bewiesenen Aussagen über den singulären Kettenkomplex.

Wir führen dies an dieser Stelle nur für iv) aus, die anderen Punkte wurden teilweise in den Übungen bewiesen. Seien $f,g:X\to Y$ homotop. Dann gibt es eine Kettenhomotopie $H\colon C_*^{\rm sing}(X)\to C_{*+1}^{\rm sing}(Y)$ zwischen den auf dem singulären Kettenkomplex induzierten Abbildungen f_* und g_* . Es gilt also

$$d_{n+1} \circ H + H \circ d_n = f_* - g_*$$

 $\text{H induziert H$^\#$: $C^*_{\mathrm{sing}}(Y;V) \to C^{*-1}_{\mathrm{sing}}(X;V)$ mit $H^\#(\alpha) \coloneqq (-1)^{|\alpha|} \cdot \alpha \circ H$. Es gilt nun für $\alpha \in C^n_{\mathrm{sing}}(Y;V)$ and $A \in C^n_{\mathrm{sing}}(Y;V)$ is the sum of the sum of$

$$\begin{split} \big(d^{n-1} \circ H^\# + H^\# \circ d^n\big)(\alpha) &= d^{n-1} \circ H^\#(\alpha) + H^\# \circ d^n(\alpha) \\ &= d^{n-1} \big((-1)^n \cdot (\alpha \circ H) \big) - (-1)^n \cdot H^\#(\alpha \circ d_{n+1}) \\ &= (-1)^n \cdot \big((-1)^n \alpha \circ H \circ d_n - (-1)^{n+1} \alpha \circ d_{n+1} \circ H \big) \\ &= \alpha \circ H \circ d_n + \alpha \circ d_{n+1} \circ H \\ &= \alpha (f_* - g_*) = f^*(\alpha) - g^*(\alpha) \end{split}$$

Damit ist $f^* - g^* = 0$ in Kohomologie, da die linke Seite für $\alpha \in \ker d^n$ im Bild von d^{n-1} liegt. \square

1.11 Bemerkung. Sei (X,A) ein Paar von topologischen Räumen. Der Verbindungshomomorphismus $\mathfrak{d}\colon H^n(A;V)\to H^{n+1}(X,A;V)$ kann wie folgt beschrieben werden: Sei $\alpha\colon C_n(A)\to V$ ein Kozykel. Setze α durch $\hat{\alpha}(\sigma)=0$ für $\sigma\colon |\Delta^n|\to X$, im $\sigma\not\subseteq A$ zu $\hat{\alpha}\colon C_n(X)\to V$ fort. Dann ist

$$\partial[\alpha] = [d^n \hat{\alpha}] = [\hat{\alpha} \circ d_{n+1}] \in H^{n+1}(X, A; V)$$

- **1.12 Beispiel.** Die Gruppe $H^0(X;V)$ ist die Gruppe aller Abbildungen $\xi\colon X\to V$, die konstant auf Wegzusammenhangskomponenten sind. Die Gruppe $H^0(X,A;V)$ besteht aus allen solchen Abbildungen, die zusätzlich auf A trivial sind.
- **1.13 Definition.** Seien $(V_i)_{i\in I}$ R-Moduln. Mit $V:=\prod_{i\in I}V_i$ bezeichnen wir das *Produkt* der V_i . Element in V sind I-Folgen $(\nu_i)_{i\in I}$ mit $\nu_i\in V_i$. Die R-Modulstruktur ist erklärt durch

$$(v_i)_{i \in I} + (w_i)_{i \in I} \coloneqq (v_i + w_i)_{i \in I}$$
$$r \cdot (v_i)_{i \in I} \coloneqq (r \cdot v_i)_{i \in I}$$

Für jedes $i_0 \in I$ erhalten wir eine R-lineare Abbildung $\pi_{i_0} \colon V \to V_{i_0}$, $(\nu_i)_{i \in I} \mapsto \nu_{i_0}$

- **1.14 Bemerkung** (Universelle Eigenschaft des Produktes). Seien V_i für $i \in I$ R-Moduln. Sei W ein weiterer R-Modul. Dann gibt es zu jeder Folge $(f_i \colon W \to V_i)_{i \in I}$ von R-linearen Abbildungen eine eindeutige R-lineare Abbildung $f \colon W \to \prod_{i \in I} V_i$ mit $f_i = \pi_i \circ f$. Diese ist gegeben durch $f(w) \coloneqq (f_i(w))_{i \in I}$.
- **1.15 Bemerkung.** Ist I endlich, so gilt $\bigoplus_{i \in I} V_i = \prod_{i \in I} V_i$.
- **1.16 Bemerkung.** Es seien V_i für $i \in I$ R-Moduln und W ein weiterer R-Modul. Seien $j_{i_0} \colon V_{i_0} \to \bigoplus_{i \in I} V_i$ die Inklusionen $\nu_{i_0} \mapsto (\nu_i)_{i \in I}$ mit $\nu_i = \nu_{i_0}$ für $i = i_0$ und 0 sonst. Dann erhalten wir einen Isomorphismus

$$\begin{array}{ccc} \operatorname{Hom}_{\mathsf{R}} \bigl(\bigoplus_{\mathfrak{i}} V_{\mathfrak{i}}, W\bigr) & \stackrel{\cong}{\longrightarrow} & \prod_{\mathfrak{i} \in I} \operatorname{Hom}_{\mathsf{R}} (V_{\mathfrak{i}}, W) \\ f & \longmapsto & (f \circ \mathfrak{j}_{\mathfrak{i}})_{\mathfrak{i} \in I} \end{array}$$

1 Kohomologie 3

1.17 Satz. Sei $X = \coprod_{i \in I} X_i$ die Summe von topologischen Räumen X_i . Dann induzieren die Inklusionen $j_i \colon X_i \to X$ einen Isomorphismus

$$\begin{array}{ccc} H^*(X,V) & \stackrel{\cong}{\longrightarrow} & \prod_{i \in I} H^*(X_i,V) \\ \xi & \longmapsto & \left((j_i)^*(\xi) \right)_{i \in I} \end{array}$$

Beweis: Die $(j_i)_{i\in I}$ induzieren einen Isomorphismus von Kettenkomplexen $\phi\colon\bigoplus_{i\in I}C_*(X_i)\to C_*(X)$ mittels $(\alpha_i)_{i\in I}\mapsto\sum_{i\in I}(j_i)_*(\alpha_i)$. Wegen

$$\operatorname{Hom}\Bigl(\bigoplus\nolimits_{\mathfrak{i}\in I}C_*(X_{\mathfrak{i}}),V\Bigr)\cong\prod_{\mathfrak{i}\in I}\operatorname{Hom}(C_*(X_{\mathfrak{i}}),V)$$

erhalten wir einen Isomorphismus von Kokettenkomplexen

$$\begin{array}{ccc} C^*(X;V) & \stackrel{\cong}{\longrightarrow} & \prod_{\mathfrak{i} \in I} C^*(X_{\mathfrak{i}};V) \\ \alpha & \longmapsto & \left(j_{\mathfrak{i}}^*(\alpha) \right)_{\mathfrak{i} \in I} \end{array}$$

Dieser induziert den behaupteten Isomorphismus in Kohomologie.

1.18 Definition. Die reduzierte Kohomologie von X, $\tilde{H}^*(X; V)$ ist definiert als der Kokern von $p^* \colon H^*(\{pt\}; V) \to H^*(X; V)$, also als der Quotient $H^*(X; V)/\operatorname{im} p^*$.

1.19 Bemerkung. Für reduzierte Kohomologie gilt analog zu reduzierter Homologie

$$H^n(X;V) \cong \begin{cases} \tilde{H}^n(X;V), & \text{falls } n \neq 0 \\ \tilde{H}^0(X;V) \oplus V, & \text{falls } n = 0 \end{cases}$$

1.20 Beispiel. Viele Berechnungen für Homologiegruppen lassen sich problemlos auf Kohomologie übertragen. Zum Beispiel ist die reduzierte Kohomologie der Sphäre gegeben durch

$$\tilde{H}^{l}(S^{n};V) \cong H^{l}(D^{n},S^{n-1};V) \cong \begin{cases} V, & \text{falls } l=n \\ 0, & \text{sonst} \end{cases}$$

4 1 Kohomologie

2 Die Paarung zwischen Kohomologie und Homologie

2.1 Definition. Sei V ein \mathbb{Z} -Modul, (X, A) ein Paar von topologischen Räumen. Wir definieren die *Paarung* zwischen Kohomologie und Homologie

$$H^n(X,A;V) \times H_n(X,A) \longrightarrow V$$
 , $(\xi,x) \longmapsto \xi(x)$

wie folgt: Wähle $\alpha \in C^n_{\rm sing}(X,A;V)$ mit $[\alpha] = \xi$ und $\alpha \in C^{\rm sing}_n(X,A)$ mit $[\alpha] = x$. Dann setze $\xi(x) \coloneqq \alpha(\alpha)$.

2.2 Bemerkung.

 $\bullet \ \ \text{Sei} \ \ \beta \in C^{\mathfrak{n}-1}_{\operatorname{sing}}(X,A;V) \ \ \text{und} \ \ b \in C^{\operatorname{sing}}_{\mathfrak{n}+1}(X,A). \ \ \text{F\"{ur}} \ \ \alpha \in \ker d^{\mathfrak{n}}, \ \alpha \in \ker d_{\mathfrak{n}} \ \ \text{folgt}$

$$\big(\alpha+d^{n-1}(\beta)\big)\big(\alpha+d_{n+1}(b)\big)=\alpha(\alpha)\pm\underbrace{\alpha\big(d_{n+1}(b)\big)}_{=0}+\underbrace{d^{n-1}(\beta)\big(\alpha+d_{n+1}(b)\big)}_{=0}$$

Damit folgt, dass die Paarung wohldefiniert ist.

▶ Für $r \in \mathbb{Z}$, $x, x' \in H_n(X, A)$, $\xi, \xi' \in H^n(X, A; V)$ gelten folgende Regeln

$$(\mathbf{r} \cdot \boldsymbol{\xi})(\mathbf{x}) = \mathbf{r} \cdot \boldsymbol{\xi}(\mathbf{x}) = \boldsymbol{\xi}(\mathbf{r} \cdot \mathbf{x}) \qquad (\boldsymbol{\xi} + \boldsymbol{\xi}')(\mathbf{x}) = \boldsymbol{\xi}(\mathbf{x}) + \boldsymbol{\xi}'(\mathbf{x}) \qquad \boldsymbol{\xi}(\mathbf{x} + \mathbf{x}') = \boldsymbol{\xi}(\mathbf{x}) + \boldsymbol{\xi}(\mathbf{x}')$$

• Wir können $(\xi, x) \mapsto \xi(x)$ auch als interpretieren als Homomorphismus

$$\begin{array}{ccc} f \colon H^n(X,A;V) & \longrightarrow & \operatorname{Hom}_{\mathbb{Z}} \big(H_n(X,A),V \big) \\ \xi & \longmapsto & \big(x \mapsto \xi(x) \big) \end{array}$$

- **2.3 Satz.** Für die eben definierte Abbildung $f: H^n(X, A; V) \to \operatorname{Hom}_{\mathbb{Z}}(H_n(X, A), V)$ gilt
 - (i) f ist surjektiv
 - (ii) Ist V ein Q-Vektorraum, so ist f auch injektiv.

Um den Satz beweisen zu können, benötigen wir zunächst zwei technische Aussagen:

2.4 Lemma. Untergruppen freier abelscher Gruppen sind frei.

Beweis: Sei C eine Untergruppe von $\mathbb{Z}[S]$. Sei \mathbb{M} die Menge der Tripel (T, R, φ) mit

- ▶ $T \subseteq R \subseteq S$.
- $\varphi \colon \mathbb{Z}[T] \to \mathbb{Z}[R] \cap C$ ein Isomorphismus.

Wir definieren eine partielle Ordnung auf ${\mathfrak M}$ durch

$$(T,R,\phi)\leqslant (T',R',\phi'):\iff T\subseteq T',R\subseteq R',\phi'|_T=\phi$$

 $\mathfrak M$ ist nicht leer ($T=R=\emptyset$) und jede aufsteigende Kette besitzt eine obere Schranke (Vereinigung der Kette) in $\mathfrak M$. Das Lemma von Zorn liefert uns nun die Existenz eines maximalen Elements (T,R,ϕ) $\in \mathfrak M$. Zu zeigen bleibt R=S.

Angenommen es existiert ein $s \in S \setminus R$. Ist $C \cap \mathbb{Z}\big[R \cup \{s\}\big] = C \cap \mathbb{Z}[R]$, so ist $(T,R,\phi) \lneq (T,R \cup \{s\},\phi) \in \mathbb{M}$ im Widerspruch zur Maximalität von (T,R,ϕ) . Sei also $\mathbb{Z}[R] \cap C \subsetneq \mathbb{Z}\big[R \cup \{s\}\big] \cap C$. Betrachte nun das Diagramm in Abbildung 1

Nun ist $\mathbb{Z}[R] \cap C = \mathbb{Z}[R] \cap (\mathbb{Z}[R \cup \{s\}] \cap C)$ und damit muss auch der von i_0 und i_1 induzierte Homomorphismus $i_2 \colon \mathbb{Z}^{[R \cup \{s\}]} \cap C/\mathbb{Z}[R] \cap C \to \mathbb{Z}[\{s\}]$ injektiv sein. Es folgt, dass im $i_2 = \mathfrak{m} \cdot \mathbb{Z}[\{s\}]$ ist für ein $\mathfrak{m} > 0$. Sei $c \in \mathbb{Z}[R \cup \{s\}] \cap C$ ein Urbild von $\mathfrak{m} \cdot s$ unter $p \circ i_1$. Nun können wir ϕ durch $s \mapsto c$ zu $\phi^+ \colon \mathbb{Z}[T \cup \{s\}] \to \mathbb{Z}[R \cup \{s\}] \cap C$ fortsetzen. Es folgt, dass ϕ^+ ein Isomorphismus ist im Widerspruch zur Maximalität von (T, R, ϕ) .

Abbildung 1: Diagramm zum Beweis von Lemma 2.4

2.5 Lemma. Sei A_0 eine Untergruppe der abelschen Gruppe A, V ein \mathbb{Q} -Vektorraum und $\beta_0 \colon A_0 \to V$ ein Gruppenhomomorphismus. Dann gibt es eine Fortsetzung $\beta \colon A \to V$ von β_0 zu einem Gruppenhomomorphismus.

Beweis: Die Inklusion i: $A_0 \to A$ induziert nach Aufgabe 1 vom ersten Übungsblatt einen injektiven \mathbb{Q} -Vektorraum-Homomorphismus

$$\mathbb{Q} \otimes i : \mathbb{Q} \otimes A_0 \longrightarrow \mathbb{Q} \otimes A, \qquad q \otimes a_0 \mapsto q \otimes i(a_0)$$

Nun können wir die \mathbb{Q} -lineare Abbildung $q \otimes a_0 \mapsto q \cdot \beta_0(a_0) \in V$ von $\mathbb{Q} \otimes A_0$ zu $\overline{\beta} \colon \mathbb{Q} \otimes A \to V$ fortsetzen. Dann ist $a \mapsto \overline{\beta}(1 \otimes a)$ die gesuchte Fortsetzung von β_0 .

Beweis (von Satz 2.3):

(i) Sei $\phi\colon H_n(X,A)\to V$ gegeben. Sei $\mathfrak{p}\colon \ker d_n \twoheadrightarrow H_n(X,A)$ die Projektion. Betrachte die kurze exakte Folge

$$\ker d_{\mathfrak{n}} \stackrel{\mathfrak{i}}{\longleftarrow} C^{\operatorname{sing}}_{\mathfrak{n}}(X,A) \stackrel{d_{\mathfrak{n}}}{\longrightarrow} \operatorname{im} d_{\mathfrak{n}}$$

Als Untermodul des freien Moduls $C^{\rm sing}_{n-1}(X,A)$ ist im d_n nach Lemma 2.4 frei, insbesondere spaltet die kurze exakte Sequenz und es gilt $C^{\rm sing}_n(X,A)\cong \ker d_n\oplus \operatorname{im} d_n$. Daher können wir $\phi\circ p\colon \ker d_n\to V$ zu $\alpha\colon C^{\rm sing}_n(X,A)\to V$ fortsetzen. Genauer: Sei $s\colon \operatorname{im} d_n\to C^{\rm sing}_n(X,A)$ ein Spalt. Dann können wir $\alpha\colon C^{\rm sing}_n(X,A)\to V$ definieren durch $\alpha(\mathfrak{a})\coloneqq \phi\circ p\big(\mathfrak{a}-s\big(d_n(\mathfrak{a})\big)\big)$. Es folgt

$$d^n(\alpha)(\alpha) = \alpha \circ d_{n+1}(\alpha) = \phi \circ p\big(d_{n+1}(\alpha) - d_{n+1}\big(s(d_n\alpha)\big)\big) = 0$$

und damit $[\alpha] \in H^n(X, A; V)$ sowie $f([\alpha]) = \varphi$, womit die Surjektivität gezeigt ist.

- (ii) Sei $\alpha \in C^n_{\mathrm{sing}}(X,A;V)$ mit $d^n(\alpha) = 0$. Sei $[\alpha] \in \ker f$, also $\alpha(\alpha) = 0$ für alle $\alpha \in \ker d_n$. Dann faktorisiert α über im $d_n \subseteq C_{n-1}(X,A)$, denn α liegt im Kern von d^n und induziert $\beta_0 \colon \operatorname{im} d_n \to V$ mit $\alpha = \beta_0 \circ d_n$ durch Einschränkung auf den Summanden im d_n .
 - Ist V ein Q-Vektorraum, so können wir β_0 nach Lemma 2.5 zu β : $C_{n-1}(X,A) \to V$ fortsetzen. Es folgt $\alpha = \beta \circ d_n = \pm (d^{n-1}\beta) = 0$ und damit $[\alpha] = 0$ in $H^n(X,A;V)$.
- **2.6 Korollar.** Für den Sonderfall der \mathbb{Q} -Vektorräume gilt $H^n(X,A;\mathbb{Q}) \cong \operatorname{Hom}_{\mathbb{Z}}(H_n(X,A);\mathbb{Q})$. \square
- **2.7 Bemerkung.** Es gilt sogar $H^n(X, A; \mathbb{Q}) \cong \operatorname{Hom}_{\mathbb{Q}}(H_n(X, A; \mathbb{Q}), \mathbb{Q})$.

3 Produkte auf Kohomologie

3.1 Definition. Sei $\sigma: |\Delta^n| \to X$ ein singulärer Simplex in X. Für $0 \le p \le n$ definieren wir

Revision 3

$$\sigma|_{[0,...,p]}: |\Delta^p| \longrightarrow X$$
 , $\sigma|_{[p,...,n]}: |\Delta^{n-p}| \longrightarrow X$

durch
$$\sigma|_{[0,...,p]}(t_0,...,t_p) = \sigma(t_0,...,t_p,0,...,0)$$
 und $\sigma|_{p,...,n}(t_p,...,t_n) = \sigma(0,...,0,t_p,...,t_n)$

- **3.2 Bemerkung.** Wir schreiben auch $\sigma|_{[0,...,\ell,...,n]}$ für die i-te Seite von σ .
- **3.3 Definition.** Sei R ein Ring und A, B \subseteq X. Wir definieren das *Cup-Produkt* (\cup -Produkt) auf dem singulären Kokettenkomplex

$$\cup \colon C^p_{\scriptscriptstyle \mathrm{sing}}(X,A;R) \otimes C^q_{\scriptscriptstyle \mathrm{sing}}(X;R) \longrightarrow C^{p+q}_{\scriptscriptstyle \mathrm{sing}}(X,A;R)$$

$$durch \ (\alpha \cup \beta)(\sigma) := (-1)^{p \cdot q} \cdot \alpha(\sigma|_{[0,...,p]}) \cdot \beta(\sigma|_{[p,...,p+q]}).$$

Zeichnung für n = 2 einfügen

- 3.4 Lemma.
 - 1) $d^{p+q}(\alpha \cup \beta) = d^p(\alpha) \cup \beta + (-1)^p \cdot \alpha \cup d^q(\beta)$
 - 2) Das ∪-Produkt ist assoziativ.
 - 3) Für $f: X \to X'$ mit $f(A) \subseteq A'$, $f(B) \subseteq B'$ gilt $f^*(\alpha \cup \beta) = f^*(\alpha) \cup f^*(\beta)$ für $\alpha \in C^p_{\mathrm{sing}}(X', A'; R)$, $\beta \in C^q_{\mathrm{sing}}(X', B'; R)$.
 - **4)** Sei $1_X \in C^0_{\text{sing}}(X; R)$ mit $1_X(\sigma) = 1_R$ für alle $\sigma: |\Delta^0| \to X$. Dann gilt $1_X \cup \alpha = \alpha = \alpha \cup 1_X$.

Beweis: Übung bzw. Notizen auf Homepage

T_EXen wenn Zeit

3.5 Definition. Die vom ∪-Produkt auf dem singulären Kokettenkomplex induzierte Abbildung in Kohomologie

$$\cup$$
: $H^p(X, A; R) \otimes H^q(X, B; R) \longrightarrow H^{p+q}(X, A \cup B; R)$

ist das \cup -Produkt in Kohomologie $[\alpha] \cup [\beta] := [\alpha \cup \beta]$. Mit 1) folgt, dass das Cup-Produkt in Kohomologie wohldefiniert ist. Nach 2) ist es assoziativ. Nach 3) sind induzierte Abbildungen in Kohomologie multiplikativ. Nach 4) ist $[1_X] \in H^0(X; \mathbb{R})$ ein Einselement bezüglich \cup in H^* .

3.6 Definition. Seien (X, A) und (Y, B) zwei Paare von topologischen Räumen. Seien $p_X \colon X \times Y \to X$ und p_Y die Projektionen. Das \times -Produkt

$$\times: H^p(X, A; R) \otimes H^q(Y, B; R) \longrightarrow H^{p+q}(X \times Y, A \times Y \cup X \times B; R)$$

ist definiert durch $\xi \times \zeta := p_X^*(\xi) \cup p_Y^*(\zeta).$

3.7 Bemerkung. Das \cup -Produkt kann wie folgt aus dem \times -Produkt zurückgewonnen werden: Sei $\Delta\colon (X,A\cup B)\to (X\times X,A\times X\cup X\times B)$ die Diagonalabbildung $\Delta(x):=(x,x)$, dann gilt für $\xi\in H^p(X,A;R),\,\zeta\in H^q(X,B;R)$

$$\xi \cup \zeta = \Delta^*(\xi \times \zeta)$$

3.8 Beispiel. Wir betrachten das \cup -Produkt auf in der 0-ten Kohomologie \cup : $H^0(X;R) \otimes H^0(X;R) \to H^0(X;R)$. Sei $A,B \subseteq X$ beide Vereinigungen von Wegzusammenhangskomponenten von X. Seien $1_A,1_B \in C^0(X;R)$ definiert durch

$$1_{A}(\sigma) = \begin{cases} 1, & \text{falls im } \sigma \subseteq A \\ 0, & \text{sonst} \end{cases}$$

und 1_B analog. Dann ist $[1_A] \cup [1_B] = [1_{A \cap B}]$.

3.9 Lemma. Sei (X, A) ein Paar von topologischen Räumen und Y ein weiterer topologischer Raum. Seien ∂ : $H^p(A; R) \to H^{p+1}(X, A; R)$ und ∂^{\times} : $H^{p+q}(A \times Y; R) \to H^{p+q+1}(X \times Y, A \times Y; R)$ die Verbindungshomomorphismen in den Paarfolgen. Dann gilt für $\xi \in H^p(A; R)$ und $\zeta \in H^q(X; R)$

$$\mathfrak{d}^{\times}(\xi \times \zeta) = (\mathfrak{d}\xi) \times \zeta$$

Beweis: Sei $\xi = [\alpha]$ und $\zeta = [\beta]$. Setze $\alpha \colon C_p(A) \to R$ durch $\hat{\alpha}(\sigma) = 0$ für $\sigma \colon |\Delta^p| \to X$ mit Bild nicht in A zu $\hat{\alpha} \colon C_p(X) \to R$ fort. Dann ist $\left[(d^p \hat{\alpha}) \right] = \mathfrak{d}[\alpha]$ Weiter ist

$$\vartheta^\times(\xi\times\zeta)=\vartheta^\times(p_A^*\xi\cup p_Y^*\zeta)=\vartheta^\times\big[p_A^*\alpha\cup p_Y^*\beta\big]=\Big(d^{p+q}\big(p_X^*(\hat\alpha)\cup p_Y^*(\beta)\big)\Big)$$

da $p_X^*(\hat{\alpha}) \cup p_Y^*(\beta)$ eine Fortsetzung von $p_Y^*(\alpha) \cup p_Y^*(\beta)$ ist. Weiter gilt

$$\begin{split} &= \left[p_X^*(d^p(\hat{\alpha})) \cup p_Y^*(\beta) \pm p_X^*(\hat{\alpha}) \cup p_Y^*(d^q\beta) \right] \\ &= p_X^* \left[d^p(\hat{\alpha}) \right] \cup p_Y^*[\beta] = \left[d^p(\alpha) \right] \times [\beta] \\ &= \delta \xi \times \zeta \end{split}$$

3.10 Lemma. Sei $\xi \in H^1(D^1, \partial D^1; R)$ ein Erzeuger. Dann ist für jeden Raum X die Abbildung

$$H^{p}(X; R) \longrightarrow H^{p+1}(D^{1} \times X, \partial D^{1} \times X; R)$$
, $\eta \longmapsto \xi \times \eta$

ein Isomorphismus.

Beweis: Wir betrachten folgendes Diagramm

$$H^{0}(D^{1};R) \otimes H^{p}(X;R) \xrightarrow{\times} H^{p}(D^{1} \times X;R)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$H^{0}(\partial D^{1};R) \otimes H^{p}(X;R) \xrightarrow{\times} H^{p}(\partial D^{1} \times X;R)$$

$$\downarrow \qquad \qquad \downarrow$$

$$H^{1}(D^{1},\partial D^{1};R) \otimes H^{p}(X;R) \xrightarrow{\times} H^{p+1}(D^{1} \times X,\partial D^{1} \times X;R)$$

Behauptung: Beide Spalten sind kurz exakt:

Betrachte

$$0 \longrightarrow H^0(D^1;R) \stackrel{j^*}{\longrightarrow} H^0(\partial D^1;R) \longrightarrow H^1(D^1,\partial D^1;R) \longrightarrow 0$$

Seien $j\colon \partial D^1\hookrightarrow D^1$ und $i_\pm\colon \{\pm 1\}\hookrightarrow \partial D^1$ die Inklusionen. Sei weiter $\mathfrak{p}\colon D^1\to \{-1\}$ die Projektion. Dann gilt $\mathfrak{p}^*\circ i_-^*\circ j^*=\mathrm{id}_{H^0(D^1;R)}$. Insbesondere spaltet die Sequenz und bleibt exakt nach $\otimes H^p(X;R)$. Genauso überlegt man sich, dass die Paarfolge

$$\ldots \longrightarrow H^p \big(D^1 \times X, \partial D^1 \times X; R \big) \stackrel{0}{\longrightarrow} H^p \big(D^1 \times X; R \big) \longrightarrow H^p \big(\partial D^1 \times X; R \big) \longrightarrow \ldots$$

in eine kurze exakte Folge

$$0 \longrightarrow H^p \big(D^1 \times X; R \big) \longrightarrow H^p \big(\partial D^1 \times X; R \big) \longrightarrow H^{p+1} \big(D^1 \times X, \partial D^1 \times X; R \big) \longrightarrow 0$$

zerfällt. Die ersten zwei \times -Produkte sind Isomorphismen. Dies folgt für das erste aus $H^0(D^1) \cong R$ und der Betrachtung des Erzeugers $1_R \in R$. Für das zweite \times -Produkt betrachte

Diagramm vervollständigen

$$\begin{array}{c} H^0(\{-1\}) \otimes H^p(X) \\ & \downarrow^{(p_{-1})^* \otimes \mathrm{id}} \\ H^0(\partial D^1) \otimes H^p(X) \stackrel{\times}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} H^p(\partial D^1 \times X) \\ & \downarrow^{(\mathfrak{i}_{+1} \times \mathrm{id}_X)^n} \end{array}$$

Nach Lemma 3.9 kommutiert das Diagramm und damit ist auch das dritte \times -Produkt ein Isomorphismus. \Box

3.11 Proposition. Sei X ein topologischer Raum. Dann ist $H^p(S^1 \times X; R) \cong H^p(X; R) \oplus H^{p-1}(X; R)$.

Beweis: Die Paarfolge zu $(S^1 \times X, \{pt\} \times X)$ zerfällt in kurze exakte Folgen

$$H^p(S^1 \times X, \{pt\} \times X; r) \longleftrightarrow H^p(S^1 \times X; R) \xrightarrow{i^*} H^p(\{pt\} \times X; R)$$

Die Surjektivität folgt, da $\pi(\lambda, x) = (\mathrm{pt}, x)$ einen Spalt induziert. Damit folgt $H^p(S^1 \times X; R) \cong H^p(X; R) \oplus H^p(S^1 \times X, \{\mathrm{pt}\} \times X; R)$. Die Behauptung folgt mittels Ausschneidung:

$$H^{p}\big(S^{1}\times X,\{\mathrm{pt}\}\times X;R\big)\cong H^{p}\big(D^{1}\times X,\partial D^{1}\times X;R\big)\overset{3.10}{\cong}H^{p-1}(X;R)$$

3.12 Bemerkung. Sei $\xi \in H^1(S^1;R)$ ein Erzeuger und $\pi_X \colon S^1 \times X \to X$ die Projektion. Dann ist der Isomorphismus aus Proposition 3.11 gegeben durch

$$H^p(X; R) \oplus H^{p-1}(X; R) \longrightarrow H^p(S^1 \times X; R)$$
, $(\eta_1, \eta_2) \longmapsto (\pi_X^*(\eta_1) + \xi \times \eta_2)$

4 Kommutativität des ∪-Produktes

Revision 4

4.1 Definition. Eine *graduierte Algebra* ist ein graduierter Modul $A^* = \bigoplus_p A^p$ zusammen mit einer R-Algebrastruktur, für die das Produkt mit der Graduierung verträglich ist: Für $a \in A^p$ und $b \in A^q$ ist $a \cdot b \in A^{p+q}$. Sie heißt *graduiert-kommutativ*, falls gilt

$$a \cdot b = (-1)^{p \cdot q} \cdot b \cdot a$$

für alle $a \in A^p$ und $b \in A^q$.

- **4.2 Bemerkung.** Das \cup -Produkt auf $C^*_{\text{sing}}(X; R)$ ist *nicht* graduiert kommutativ. (siehe 3.3)
- **4.3 Lemma.** Für $\sigma: |\Delta^p| \to X$ sei $\overline{\sigma}: |\Delta^n| \to X$ definiert durch

$$\overline{\sigma}(t_0,\ldots,t_p):=(-1)^{\frac{p\,(p+1)}{2}}\sigma(t_p,\ldots,t_0)$$

Sei $\operatorname{Sp}: C_{\mathfrak{p}}(X,A;R) \to C_{\mathfrak{p}}(X,A;R)$ definiert durch $\operatorname{Sp}(\sigma) := \overline{\sigma}$. Sei $\operatorname{Sp}^*: C^{\mathfrak{p}}(X,A;R) \to C^{\mathfrak{p}}(X,A;R)$ definiert durch $\operatorname{Sp}^*(\alpha) := \alpha \circ \operatorname{Sp}$. Es gilt

- a) Sp ist eine Kettenabbildung, Sp* ist eine Kokettenabbildung
- **b)** Ist R kommutativ, so gilt $\beta \cup \alpha = (-1)^{p \cdot q} \operatorname{Sp}^*(\operatorname{Sp}^*(\alpha) \cup \operatorname{Sp}^*(\beta))$

Beweis: a) Sei $\sigma: |\Delta^p| \to X$ ein singulärer Simplex. Dann gilt

$$\begin{split} \mathrm{Sp}(d_p\sigma) &= \mathrm{Sp}\bigg(\sum_{i=0}^p (-1)^i\sigma|_{[0,...,\rlap/{x},...,p]}\bigg) = \sum_{i=0}^p (-1)^i\,\mathrm{Sp}\big(\sigma|_{[0,...,\rlap/{x},...,p]}\big) \\ &= \sum_{i=0}^p (-1)^i (-1)^{\frac{p\,(p-1)}{2}} \big(\sigma|_{[p,...,\rlap/{x},...,0]}\big) \end{split}$$

wobei \not i an der p - i-ten Stellen von vorn steht. Weiter ist

fertig machen

Nun ist $\frac{p(p-1)}{2} \equiv \frac{p(p+1)}{2} + p =$ und es folgt die Gleichheit.

b) Für $\sigma: |\Delta^n| \to X$ gilt

$$\begin{split} (\mathrm{Sp}^*(\mathrm{Sp}^*(\alpha) \cup \mathrm{Sp}^*(\beta)))(\sigma) &= (-1)^{\frac{n(n+1)}{2}} \cdot (\mathrm{Sp}^*(\alpha) \cup \mathrm{Sp}^*(\beta)) \big(\sigma|_{[n,...,0]}\big) \\ &= (-1)^{\frac{n(n+1)}{2}} (-1)^{p \cdot q} \, \mathrm{Sp}^*(\alpha) \big(\sigma_{[n,...,n-p]}\big) \cdot \mathrm{Sp}^*(\beta) \big(\sigma|_{[n-p,...,0]}\big) \\ &= (-1)^{\frac{n(n+1)}{2}} (-1)^{p \cdot q} (-1)^{\frac{p(p+1)}{2}} (-1)^{\frac{q(q+1)}{2}} \alpha \big(\sigma|_{[q,...,n]}\big) \beta(\sigma|_{0,...,q}) \\ &= (-1)^{\frac{n(n+1)}{2}} (-1)^{p \cdot q} (-1)^{\frac{p(p+1)}{2}} (-1)^{\frac{q(q+1)}{2}} \beta(\sigma|_{0,...,q}) \alpha \big(\sigma|_{[q,...,n]}\big) \\ &\stackrel{!}{=} (-1)^{p \cdot q} (\beta \cup \alpha)(\sigma) = (-1)^{p \cdot q} (-1)^{p \cdot q} \beta(\sigma|_{0,...,q}) \alpha \big(\sigma|_{[q,...,n]}\big) \end{split}$$

Weiter gilt nun

$$\frac{n(n+1)}{2} + \frac{p(p+1)}{2} + \frac{q(q+1)}{2} = (1+\ldots+n) + (1+\ldots+p) + (1+\ldots+q)$$

$$\equiv ((p+1)+\ldots+n) + (1+\ldots+q)$$

$$= (n+1)q = (p+q+1)q = pq + q^2 + q \equiv p \cdot q$$

da
$$q^2 \equiv q$$
.

- **4.4 Lemma.** Sp: $C_*(X, A) \to C_*(X, A)$ ist kettenhomotop zur Identität.
- **4.5 Satz.** Das ∪-Produkt in Kohomologie ist graduiert kommutativ.

Beweis: Seien $\xi \in H^p(X, A; R)$, $\eta \in H^q(X, B; R)$. Wähle $\alpha \in C^p(X, A; R)$, $\beta \in C^q(X, B; R)$ mit $\xi = [\alpha]$ und $\eta = [\beta]$. Dann ist

$$\begin{split} \xi \cup \eta &= [\alpha \cup \beta] = (-1)^{p\,q} \cdot \left[\operatorname{Sp}^* \big(\operatorname{Sp}^*(\beta) \cup \operatorname{Sp}^*(\alpha) \big) \right] = (-1)^{p\,q} \cdot \left[\operatorname{Sp}^*(\beta) \cup \operatorname{Sp}^*(\alpha) \right] \\ &= (-1)^{p\,q} \cdot \left[\operatorname{Sp}^*(\beta) \right] \cup \left[\operatorname{Sp}^*(\alpha) \right] \\ &= (-1)^{p\,q} \cdot [\beta] \cup [\alpha] = (-1)^{p\,q} \cdot \eta \cup \xi \end{split} \quad \Box$$

4.6 Proposition. Sei $\tau_* \colon C_*^{\sin g} \to C_*^{\sin g}$ eine natürliche Transformation durch Kettenabbildungen. Induziert τ die triviale Abbildung auf $H_0(\{pt\})$, so ist τ_* kettenhomotop zur Identität, das heißt es gibt eine natürliche Transformation $\eta_* \colon C_*^{\sin g} \to C_{*+1}^{\sin g}$ mit

$$d_{*+1}^{\scriptscriptstyle \mathrm{sing}} \circ \eta_* + \eta_{*+1} \circ d_*^{\scriptscriptstyle \mathrm{sing}} = \tau_*$$

Beweis: Da τ auf $H_0(\mathrm{pt})$ trivial ist, ist $\tau(\mathrm{id}_{|\Delta^0|})=0$. Es folgt für $\sigma\colon |\Delta^0|\to X$

$$\tau(\sigma) = \tau(\sigma_*(\mathrm{id}_{|\Lambda^0|})) = \sigma_*(\tau(\mathrm{id}_{|\Lambda^0|})) = 0$$

Es folgt, dass $\tau_0\colon C_0(X)\to C_0(X)$ trivial ist. Wir setzen $\eta_0=0$ und und definieren η_1,η_2,\ldots induktiv: Seien η_1,\ldots,η_{k-1} schon konstruiert mit $d_{l+1}^{\rm sing}\circ\eta_l+\eta_{l-1}\circ d_l^{\rm sing}=\tau_l$ für $l=0,\ldots,k-1$. Es folgt

$$\begin{split} d_k^{\mathrm{sing}} \circ \left(\tau_k - \eta_{k-1} \circ d_k^{\mathrm{sing}}\right) &= d_k^{\mathrm{sing}} \circ \tau_k - \underbrace{d_k^{\mathrm{sing}} \circ \eta_{k-1}}_{} \circ d_k^{\mathrm{sing}} \\ &= \tau_{k-1} \circ d_k^{\mathrm{sing}} - \left(\tau_{k-1} - \eta_{k-2} \circ d_{k-1}^{\mathrm{sing}}\right) \circ d_k^{\mathrm{sing}} = 0 \end{split}$$

Betrachte $\mathrm{id}_{|\Delta^k|}\in C_k^{\mathrm{sing}}(|\Delta^k|).$ Da $\mathsf{H}_k\big(|\Delta^k|\big)=0$ und

$$d_k^{\mathrm{sing}}\Big(\tau_k\big(\mathrm{id}_{|\Delta^k|}\big)-\eta_{k-1}\big(d_k^{\mathrm{sing}}\big(\mathrm{id}_{|\Delta^k|}\big)\big)\Big)=0$$

gibt es $\alpha_k \in C_{k+1}(|\Delta^k|)$ wobei $d_{k+1}^{\mathrm{sing}}(\alpha_k)$ das Innere der Klammer ist. Für $\sigma\colon |\Delta^k| \to X$ setzen wir nun $\eta_k(\sigma) := \sigma_*(\alpha_k)$.

4.7 Korollar. Seien τ, τ' zwei natürliche Transformationen $C_*^{\rm sing} \to C_*^{\rm sing}$ durch Kettenabbildungen mit $H_0(\tau) = H_0(\tau')$ für $X = \{ {\rm pt} \}$, so sind τ und τ' kettenhomotop.

Beweis: Betrachte $\tau - \tau'$ und wende Proposition 4.6 an.

4.8 Definition. Sei R ein kommutativer Ring. Die *freie graduiert kommutative Algebra*¹ in Erzeugern a_1, \ldots, a_k von Grad $|a_1|, \ldots, |a_k|$ über R ist die graduiert kommutative Algebra $\Lambda_R[a_1, \ldots, a_k]$, deren Elemente von Grad N formale Linearkombinationen der Form

$$\sum_{\substack{i_1,\ldots,i_n\\i_1|\alpha_1|+\ldots+i_n|\alpha_n|=N,i_j\in\{0,1\}\\\text{für }|\alpha_j|\text{ ungerade}}} r_{i_1,\ldots,i_n}\cdot\alpha_1^{i_1}\cdot\alpha_2^{i_2}\cdots\alpha_n^{i_n}$$

Das Produkt ist das eindeutige R-lineare assoziative graduiert kommutative Produkt mit $\alpha_{\lambda}^{j} \cdot \alpha_{\lambda'}^{j'} = \alpha_{\lambda}^{j} \alpha_{\lambda'}^{j'}$ für $\lambda < \lambda'$ und $\alpha_{\lambda}^{j} \cdot \alpha_{\lambda}^{j'} = \alpha_{\lambda}^{j+j'}$ für $|\alpha_{\lambda}|$ ungerade.

4.9 Beispiel. Sind alle $|a_i|$ gerade, so ist $\Lambda_R[a_1,\ldots,a_n]$ der Polynomring über R in den Variablen a_1,\ldots,a_n . Sind alle $|a_i|$ ungerade, so ist $\Lambda_R[a_1,\ldots a_n]$ die äußere Algebra in den Variablen a_1,\ldots,a_n .

4.10 Satz. Sei R ein kommutativer Ring. Sei $\xi \in H^1(S^1;R)$ ein Erzeuger. Sei $\mathfrak{p}_i \colon T^n = (S^1)^n \to S^1$ die Projektion auf die i-te Koordinate. Sei $\xi_i := (\mathfrak{p}_i)^*(\xi) \in H^1(T^n;R)$. Dann ist

$$H^*(T^n; R) \cong \Lambda_R[\xi_1, \dots, \xi_n]$$

als graduiert kommutative Ringe.

Beweis: Per Induktion nach n. Für n=0 ist die Aussage klar. Für den Induktionsschritt erinnern wir uns daran, dass $\xi \times -$: $H^p(T^{n-1};R) \to H^p(T^n;R)$ ein Isomorphismus ist. Damit folgt die Behauptung.

4.11 Beispiel. $\xi_1 \cdots \xi_n$ ein Erzeuger ein Erzeuger von $H^n(T^n;R)$.

 $[\]alpha^2 = 0$ falls α ungerade

5 Azyklische Kettenkomplexe

Frage. Sei $f: C_* \to D_*$ eine Kettenabbildung, die einen Isomorphismus in Homologie induziert. Ist dann f schon eine Kettenhomotopieäquivalenz?

Revision 5

Frage. Sei \mathcal{U} eine offene Überdeckung von X. Dann haben wir schon gesehen, dass die Inklusion i: $C_*^{\mathcal{U}}(X;R) \to C_*^{\text{sing}}(X;R)$ einen Isomorphismus in Homologie induziert. Ist i eine Kettenhomotopieäquivalenz?

5.1 Definition. Ein R-Kettenkomplex heißt *azyklisch*, falls seine Homologiegruppen trivial sind, also falls der Kettenkomplex eine lange exakte Folge ist.

5.2 Beispiel.

$$0 \longrightarrow \mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \longrightarrow \mathbb{Z}/2\mathbb{Z} \longrightarrow 0$$

ist ein azyklischer Kettenkomplex, der nicht kettenkontraktibel ist, da es keine nicht trivialen Abbildungen $\mathbb{Z}/2\mathbb{Z} \to \mathbb{Z}$ gibt. Damit ist die Antwort auf die erste Frage "Nein".

5.3 Definition. Ein R-Modul P heißt *projektiv*, falls es zu jeder surjektiven, R-linearen Abbildung $f: M \to N$ und jeder R-linearen Abbildung $\phi: P \to N$ eine R-lineare Abbildung $\hat{\phi}: P \to M$ gibt mit $\phi = f \circ \hat{\phi}$. Anders ausgedrückt kommutiert folgendes Diagramm:

$$P \xrightarrow{\hat{\phi}} N$$

- **5.4 Beispiel.** Freie Moduln sind projektiv.
- **5.5 Satz.** Für einen R-Modul P sind äquivalent:
 - i) P ist projektiv
 - ii) P ist ein direkter Summand in einem freien R-Modul.

Beweis: Zur ersten Implikation:

$$R[S]$$

$$\downarrow p$$

$$\downarrow p$$

$$\downarrow p$$

$$\downarrow p$$

Mit $R[S] \cong P \oplus \ker p$ folgt nun die gewünschte Aussage. Die umgekehrte Implikation ergibt sich wie folgt:

 $\hat{\varphi} := \hat{\psi} \circ i$, dann gilt $f \circ \hat{\varphi} = f \circ \hat{\psi} \circ i = \varphi \circ p \circ i = \varphi$.

5.6 Satz. Sei C_* ein azyklischer R-Kettenkomplex. Sind alle Kettenmoduln C_n projektiv, so ist C_* kettenkontrahierbar.

Beweis: Wir konstruieren induktiv $s_n\colon C_n\to C_{n+1}$, sodass $d_{n+1}\circ s_n+s_{n-1}\circ d_n=\mathrm{id}_{C_n}$ gilt. Für n=0 gehen wir wie folgt vor: Da C_* azyklisch ist, ist $d_1\colon C_1\to C_0$ surjektiv und es gibt $s_0\colon C_0\to C_1$ mit $d_1\circ s_0=\mathrm{id}_{C_0}$, weil C_0 projektiv ist.

Zum Induktionsschritt $(n-1)\mapsto n$: Da C_+ azyklisch ist, ist $d_{n+1}\colon C_{n+1}\to \operatorname{im} d_{n+1}=\ker d_n$ surjektiv. Wegen

$$\begin{split} d_n(\mathrm{id}_{C_n} - s_{n-1} \circ d_n) &= d_n - \underbrace{d_n \circ s_{n-1}}_{=\mathrm{id}_{C_{n-1}} - s_{n-2} \circ d_{n-1}} \circ d_n \\ &= d_n - (-s_{n-2} \circ d_{n-1} + \mathrm{id}_{C_{n-1}}) \circ d_n = 0 \end{split}$$

liegt das Bild von $\mathrm{id}_{C_n} - s_{n-1} \circ d_n$ im Kern von d_n . Da C_n projektiv ist, gibt es $s_n \colon C_n \to C_{n+1}$ mit $d_{n+1} \circ s_n = \mathrm{id}_{C_n} - s_{n-1} \circ d_n$.

5.7 Satz. Sei $f: C_* \to D_*$ eine Kettenabbildung. Seien alle Kettenmoduln von C_* und D_* projektiv. Dann sind äquivalent:

- (i) f ist eine Kettenhomotopieäquivalenz
- (ii) f induziert einen Isomorphismus in Homologie.

Beweis: Die Implikation (i) \Rightarrow (ii) ist klar (siehe Topologie I.) Die zweite Implikation besprechen wir später.

Verweis hinzufügen, wenn da

5.8 Definition. Sei $f: C_* \to D_*$ eine Kettenabbildung. Der $\textit{Kegel} \; \mathrm{Keg}(f)_*$ von f ist der Kettenkomplex, dessen n-ter Kettenmodul $D_n \oplus C_{n-1}$ ist und dessen n-te Randabbildung gegeben ist durch

$$d_n^{\mathrm{Keg}(f)} := \begin{pmatrix} d_n^D & f \\ 0 & -d_{n-1}^C \end{pmatrix}$$

Die $Einhängung\ \Sigma C_*\ von\ C_*$ ist der Kettenkomplex, dessen n-ter Kettenmodul C_{n-1} ist und dessen n-te Randabbildung $-d_{n-1}^C$ ist.

5.9 Lemma. f induziert genau dann einen Isomorphismus in Homologie, wenn $Keg(f_*)$ azyklisch ist.

Beweis: Betrachte die lange exakte Folge zur kurzen exakten Folge von Kettenkomplexen

$$0 \longrightarrow D_* \stackrel{i}{\longrightarrow} \operatorname{Keg}(f)_* \stackrel{p}{\longrightarrow} \Sigma C_* \longrightarrow 0$$

Der Verbindungshomomorphismus $H_{n+1}(\Sigma C_*) \to H_n(D_*)$ entspricht unter $H_{n+1}(\Sigma C_*) \cong H_n(C_*)$ genau der von f induzierten Abbildung.

5.10 Lemma. f ist genau dann eine Kettenhomotopieäquivalenz, wenn $Keg(f)_*$ kettenkontraktibel ist.

Beweis: Sei $\binom{\alpha_n}{\gamma_n} \frac{\beta_{n-1}}{\delta_{n-1}}$ eine Kettenkontraktion für Keg(f). Es folgt

$$f_n \circ \gamma_n + d_{n+1}^D \circ \alpha_n + \alpha_{n-1} \circ d_n^D = id_{D_n}$$
 (1)

$$d_{n+1}^{D} \circ \beta_{n-1} + f_n \circ \delta_{n-1} + d_{n-1} \circ f_{n-1} - \beta_{n-2} \circ d_{n-1}^{C} = 0$$
 (2)

$$-d_n^C \circ \gamma_n + \gamma_n \circ d_n^D = 0 \tag{3}$$

$$-d_{n}^{C} \circ \delta_{n-1} + \gamma_{n-1} \circ f_{n-1} - \delta_{n-2} \circ d_{n-1}^{C} = id_{C_{n-1}}$$

$$(4)$$

Daraus folgt

$$\gamma$$
 ist eine Kettenabbildung (1')

$$id_D \simeq f \circ g \text{ via } \alpha$$
 (3')

$$\gamma \circ f \simeq id_C \text{ via } \delta$$
 (4')

Es folgt, dass γ eine Kettenabbildung ist, $\mathrm{id}_D \simeq f \circ g$ via α und $\gamma \circ f \simeq \mathrm{id}_C$ via δ . Damit ist f eine Kettenhomotopieäquivalenz mit Kettenhomotopieinversem γ . Gelten umgekehrt (1'), (3') und (4'), so setzt man $\hat{\delta} := \delta + \gamma \circ f - \delta \gamma f$ und $\beta := \alpha f \gamma + \alpha^2 f + f \delta^2$ und

$$S := \begin{pmatrix} \alpha & \beta \\ \gamma & \hat{\delta} \end{pmatrix}$$

eine Kettenkontraktion für Keg(f).

Beweis (von Satz 5.7 zweite Implikation): Ist $H_n(f)$ ein Isomorphismus, so ist Keg(f) azyklisch. Die direkte Summen von projektiven Moduln ist wieder projektiv sind, sind die Kettenabbildungen von Keg(f) projektiv, falls die von C_* und D_* projektiv sind. Daher ist Keg(f) kettenkontraktibel und f eine Kettenhomotopieäquivalenz.

Index

Die *Seitenzahlen* sind mit Hyperlinks versehen und somit anklickbar

Ausschneidung, 2 azyklischer Kettenkomplex, 13

Cup-Produkt, ∪-Produkt, 7

Dimensionsaxiom, 2 dualer Kokettenkomplex, 1

Einhängung, 14

freie graduiert kommutative Algebra, 12

graduiert-kommutativ, 10 graduierte Algebra, 10

Homotopieinvarianz, 2

induzierte Abbildung Kohomologie, 1 singuläre Kokettenkomplexe, 2

Kegel, 14
Kohomologiemodul, 1
Kokettenabbildung, 1
Kokettenhomotopie, 1
Kokettenkomplex, 1
V-dualer Kokettenkomplex, 1
kontravarianter Funktor, 2

Paarfolge, 2 Paarung, 5 Produkt, 3 projektiver Modul, 13

singuläre Kohomologie, 1 singuläre Kokettenkomplex, 1

verbindende Abbildung, 2

Abbildungsverzeichnis

1 Diagramm zum Beweis von Lemma 2.4	6			
To-do's und andere Baustellen				
Revision 3	7			
Zeichnung für $n=2$ einfügen	7			
T _E Xen wenn Zeit	7			
Diagramm vervollständigen	9			
Revision 4	10			
fertig machen	10			
Revision 5	13			
Verweis hinzufügen, wenn da	14			

B