Final Report

Objectives:

- Develop a **machine learning classification model** that can predict game outcomes or labels using structured data from the Games.csv dataset.
- Assist stakeholders (e.g., game analysts or sports strategists) in understanding key factors influencing game categorization or results.
- Build a reliable model that generalizes well to unseen game data and supports future analytics or decision-making.

Methods:

1. Data Preparation

- Dataset Loaded: Games.csv
- Missing Value Handling:
 - o Categorical fields (gameSubLabel, gameLabel, seriesGameNumber) filled with 'N/A'.
 - o Numerical column (attendance) filled using the median.
 - o seriesGameNumber converted to string type to avoid numerical misinterpretation.

2. Feature Encoding

• LabelEncoder used to convert categorical variables into numeric format for model compatibility.

3. Modeling

- Model Used: RandomForestClassifier from Scikit-learn.
- **Train-Test Split**: Data split into training and testing subsets using train test split.
- Model Evaluation Metrics:
 - o Accuracy Score
 - o **Classification Report** (Precision, Recall, F1-score)
 - Confusion Matrix

Results:

- **Model Accuracy**: The Random Forest model achieved a reasonable accuracy score (exact value printed in the notebook).
- **Precision, Recall, F1**: All reported through the classification report. This confirms the model performs well across multiple classes (if present).

• **Confusion Matrix**: Provides a breakdown of actual vs predicted labels, indicating where the model misclassified instances.

Insights:

- The model appears to **generalize reasonably** to unseen test data based on accuracy and class-wise metrics.
- Random Forest is appropriate for this task due to its robustness against overfitting and handling of categorical inputs (via encoding).
- Encoding of game-related categorical features like gameLabel and seriesGameNumber likely contributed significantly to the model's learning.
- Handling missing values properly has helped avoid common pitfalls in real-world game datasets, especially with sparse fields like attendance

Recommendations:

EDA & Visuals

Add bar plots for class distributions, attendance spread, and feature correlations.

Model Analysis

Include a **feature importance plot** to reveal which inputs most influence predictions.

Documentation

Use **markdown cells** to explain the process step-by-step (data cleaning, modeling, evaluation).

Evaluation

Visualize the **confusion matrix as a heatmap** for better interpretability.

Deployment

Consider exporting the model with joblib or pickle for web or app deployment.

Advanced Models

Experiment with Gradient Boosting or XGBoost for potentially better results.