sine basis 01

Statistics:

Design matrix p-values adjusted for search volume

Otatiotics.			p-values adjusted for search volume										
set-l	evel	cluster-level				peak-level					mm mm mm		
р	$p c p_{\text{FWE-corrFDR-}}$			$k_{E} p_{uncorr}$		p _{FWE-corrFDR-corr}			$(Z_{\equiv}) p_{\text{uncorr}}$				
<u>,</u>		1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.781 0.781 0.781 0.781 0.781 0.781 0.781 0.781	3 5 4 12 9 5 11 8 8	0.598 0.485 0.536 0.273 0.343 0.485 0.294 0.372 0.372	1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000	0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991	2.78 2.77 2.77 2.77 2.77 2.77 2.77 2.77	2.77 2.76 2.76 2.76 2.76 2.76 2.76 2.76	0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003	38 -32 46 -12	0 -66 -20 -66 -54 -34 -44	-36 26 24 46 38 48 44 20 76
		1.000 1.000 1.000 1.000 1.000	0.781 0.776 0.781 0.781 0.781	21 12 23 5 14 9	0.152 0.273 0.135 0.485 0.237 0.343	1.000 1.000 1.000 1.000 1.000 1.000	0.991 0.991 0.991 0.991 0.991 0.991	2.76 2.75 2.76 2.75 2.74 2.73 2.73	2.75 2.74 2.75 2.74 2.73 2.72 2.72	0.003 0.003 0.003 0.003 0.003	-32 -40 -2 16 -20 56 -42	64 60 -36 48 -10 30 36	-40 -40 12 28 -14 0 28

table shows 3 local maxima more than 8.0mm apart

0.485

0.404

0.372

0.404

5

1.000 0.781

1.000 0.781

1.000 0.781 8

1.000 0.781 7

Height threshold: T = 2.33, p = 0.010 (1.000) egrees of freedom = [1.0, 498.0] Extent threshold: k = 0 voxels FWHM = 6.7 6.6 6.8 mm mm mm; 3.3 3.3 3.4 {voxels} Expected voxels per cluster, $\langle k \rangle = 10.794$ Volume: 1704456 = 213057 voxels = 5261.9 resels Expected number of clusters, $\langle c \rangle = 222.53$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 37.51 voxels) FWEp: 5.106, FDRp: 5.255, FWEc: 202, FDRage 202

1.000 0.991

1.000 0.991

1.000 0.991

0.991

1.000

2.71 2.70

2.69

2.70 2.69 0.004

2.70 2.68 0.004

2.70

0.004

0.004

-46

58

6

-56

50 -62

-38

20

14