Notes - 3.6 A Summary of Curve Sketching

Juan J. Moreno Santos

October 2023

So far, we have reviewed the following characteristic of a function in each of the following sections:

• x-intercepts and y-intercepts (Section P.1)

• x-intercepts and y-intercepts	(Section P.1)
• Symmetry	(Section P.1)
Domain and range	(Section P.3)
Continuity	(Section 1.4)
 Vertical asymptotes 	(Section 1.5)
 Differentiability 	(Section 2.1)
Relative extrema	(Section 3.1)
 Concavity 	(Section 3.4)
 Points of inflection 	(Section 3.4)
 Horizontal asymptotes 	(Section 3.5)
 Infinite limits at infinity 	(Section 3.5)

1 Guidelines for analyzing the graph of a function.

- 1. Determine the domain and range of the function.
- 2. Determine the intercepts, asymptotes, and symmetry of the graph.
- 3. Locate the x-values for which f'(x) and f''(x) either are zero or do not exist. Use those results to determine relative extrema and inflection points.

2 Examples

2.1 Sketching the graph of a rational function

Using calculus, you can be certain that you have determined all characteristics of the graph of *f*.

Figure 3.45

EXAMPLE 1 Sketching the Graph of a Rational Function

Analyze and sketch the graph of $f(x) = \frac{2(x^2 - 9)}{x^2 - 4}$.

Solution

First derivative: $f'(x) = \frac{20x}{(x^2 - 4)^2}$

Second derivative: $f''(x) = \frac{-20(3x^2 + 4)}{(x^2 - 4)^3}$

x-intercepts: (-3,0),(3,0)

y-intercept: $\left(0,\frac{9}{2}\right)$

Vertical asymptotes: x = -2, x = 2

Horizontal asymptote: y = 2

Critical number: x = 0

Possible points of inflection: None

Domain: All real numbers except $x = \frac{1}{2}$

Symmetry: With respect to y-axis

Test intervals: $(-\infty, -2), (-2, 0), (0, 2), (2, 0)$

The table shows how the test intervals are used to determine sever the graph. The graph of f is shown in Figure 3.45.

f(x)	f'(x)	f"(x)	Characteri
	_	_	Decreasing, co
Undef.	Undef.	Undef.	Vertical
	_	+	Decreasing,
$\frac{9}{2}$	0	+	Relative
	+	+	Increasing, c
Undef.	Undef.	Undef.	Vertical
	+	_	Increasing, co
	Undef.	Undef. Undef. - 2 0 +	- - Undef. Undef. - + 2/2 0 + + +

(4, 6)Relative minimum (0, -2)Relative maximum $f(x) = \frac{x^2 - 2x + 4}{x - 2}$

Figure 3.47

EXAMPLE 2 Sketching the Graph of a Rational Fu

Analyze and sketch the graph of $f(x) = \frac{x^2 - 2x + 4}{x - 2}$.

Solution

First derivative:
$$f'(x) = \frac{x(x-4)}{(x-2)^2}$$

Second derivative:
$$f''(x) = \frac{8}{(x-2)^3}$$

x-intercepts: None

(0, -2)y-intercept:

Vertical asymptote: x = 2

Horizontal asymptotes: None

> $\lim_{\substack{x \to -\infty \\ x = 0, x = 4}} f(x) = -\infty, \lim_{x \to \infty}$ End behavior:

Critical numbers:

Possible points of inflection: None

> All real numbers except Domain:

Test intervals: $(-\infty, 0), (0, 2), (2, 4),$

The analysis of the graph of f is shown in the table, an Figure 3.47.

	f(x)	f'(x)	f"(x)	Chara
$-\infty < x < 0$		+	_	Increasing
x = 0	-2	0	_	Rel
0 < x < 2		_	_	Decreasin
x = 2	Undef.	Undef.	Undef.	Ver
2 < x < 4		_	+	Decreasi
<i>x</i> = 4	6	0	+	Rel
4 < <i>x</i> < ∞		+	+	Increasi

у с

A slant asymptote Figure 3.48

Although the graph of the function in Example 2 has no leaders have a slant asymptote. The graph of a rational function factors and whose denominator is of degree 1 or greater) has a degree of the numerator exceeds the degree of the denominator the slant asymptote, use long division to rewrite the rational first-degree polynomial and another rational function.

$$f(x) = \frac{x^2 - 2x + 4}{x - 2}$$
 Write original equation.

$$= x + \frac{4}{x - 2}$$
 Rewrite using long division.

In Figure 3.48, note that the graph of f approaches the slant approaches $-\infty$ or ∞ .

2.2 Sketching the graph of a radical function

EXAMPLE 3 Sketching the Graph of a Radical Function

Analyze and sketch the graph of $f(x) = \frac{x}{\sqrt{x^2 + 2}}$.

Solution

$$f'(x) = \frac{2}{(x^2 + 2)^{3/2}}$$
 $f''(x) = -\frac{6x}{(x^2 + 2)^{5/2}}$

The graph has only one intercept, (0, 0). It has no vertical asymptotherizontal asymptotes: y = 1 (to the right) and y = -1 (to the left) no critical numbers and one possible point of inflection (at x = 0). If function is all real numbers, and the graph is symmetric with respect analysis of the graph of f is shown in the table, and the graph is shown

Characteris	f"(x)	f'(x)	f(x)	
Increasing, co	+	+		$-\infty < x < 0$
Point of	0	$\frac{1}{\sqrt{2}}$	0	x = 0
Increasing, con	_	+		$0 < x < \infty$

Figure 3.49

EXAMPLE 4 Sketching the Graph of a Radical Function

Analyze and sketch the graph of $f(x) = 2x^{5/3} - 5x^{4/3}$.

Solution

$$f'(x) = \frac{10}{3}x^{1/3}(x^{1/3} - 2)$$
 $f''(x) = \frac{20(x^{1/3} - 1)}{9x^{2/3}}$

The function has two intercepts: (0, 0) and $(\frac{125}{8}, 0)$. There are no call asymptotes. The function has two critical numbers (x = 0) possible points of inflection (x = 0) and (x = 1). The domain is a analysis of the graph of (x = 0) in the table, and the graph is so

Figure 3.50

	f(x)	f'(x)	f"(x)	Characte
$-\infty < x < 0$		+	_	Increasing,
x = 0	0	0	Undef.	Relati
0 < x < 1		_	_	Decreasing,
x = 1	-3	_	0	Point
1 < x < 8		_	+	Decreasing
x = 8	-16	0	+	Relati
8 < <i>x</i> < ∞		+	+	Increasing

EXAMPLE 5 Sketching the Graph of a Polynomial Funct

Analyze and sketch the graph of $f(x) = x^4 - 12x^3 + 48x^2 - 64x$.

Solution Begin by factoring to obtain

$$f(x) = x^4 - 12x^3 + 48x^2 - 64x$$

= $x(x - 4)^3$.

Then, using the factored form of f(x), you can perform the following

First derivative: $f'(x) = 4(x-1)(x-4)^2$

Second derivative: f''(x) = 12(x-4)(x-2)

x-intercepts: (0,0), (4,0)

y-intercept: (0,0)

Vertical asymptotes: None

None Horizontal asymptotes:

> $\lim_{\substack{x \to -\infty \\ x = 1, x = 4}} f(x) = \infty, \lim_{\substack{x \to \infty}} f(x) =$ End behavior:

Critical numbers:

Possible points of inflection: x = 2, x = 4

Domain: All real numbers

 $(-\infty, 1), (1, 2), (2, 4), (4, \infty)$ Test intervals:

The analysis of the graph of f is shown in the table, and the graph i 3.51(a). Using a computer algebra system such as Maple [see Figure you verify your analysis.

	f(x)	f'(x)	f"(x)	Characteris
$-\infty < x < 1$		_	+	Decreasing, co
x = 1	-27	0	+	Relative
1 < x < 2		+	+	Increasing, co
x = 2	-16	+	0	Point of
2 < x < 4		+	-	Increasing, con
x = 4	0	0	0	Point of
4 < <i>x</i> < ∞		+	+	Increasing, co

Generated by Maple

(b) A polynomial function of even degree must have at least one relative extremum.

Figure 3.51