PATENT ABSTRACTS OF JAPAN

(11) Publication number: 2003160656 A

(43) Date of publication of application: 03.06.03

(51) Int. CI

C08G 63/87 D01F 6/62

(21) Application number: 2001362329

(22) Date of filing: 28.11.01

(71) Applicant:

TEIJIN LTD

(72) Inventor:

TSUKAMOTO RYOJI

YAMAMOTO TOMOYOSHI

(54) METHOD OF MANUFACTURING POLYESTER AND FIBER

(57) Abstract:

PROBLEM TO BE SOLVED: To provide a method of manufacturing a polyester with improved color clarity which has such excellent performance as excellent color and moldability and very little deposit generation on a spinning spinneret after continuous spinning for a long COPYRIGHT: (C)2003,JPO time through the spinneret.

SOLUTION: The polyester has ethylene terephthalate as a principal repeating unit and is obtained by polycondensation using as a source material terephthalic acid obtained by hydrolyzing dimethyl terephthalate obtained by depolymerizing a polyalkylene terephthalate and using as a catalyst a precipitate obtained by heating in a glycol a specific titanium compound and a specific phosphorus compound.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-160656 (P2003-160656A)

(43)公開日 平成15年6月3日(2003.6.3)

(51) Int.Cl. ⁷		識別記号	F I	テーマコード(参考)
C 0 8 G	63/87		C 0 8 G 63/87	4 J 0 2 9
D01F	6/62	306	D01F 6/62	306E 4L035
				306L
		ZAB		ZAB

審査請求 未請求 請求項の数10 OL (全 8 頁)

(21) 出願番号 特願2001-362329(P2001-362329) (71) 出願人 000003001 帝人株式会社 大阪府大阪市中央区南本町1丁目6番7号 (72) 発明者 塚本 亮二 愛媛県松山市北吉田町77番地 帝人株式会社 社松山事業所内 (72) 発明者 回本 智義 愛媛県松山市北吉田町77番地 帝人株式会社松山事業所内 (74) 代理人 100077263 弁理士 前田 純博

最終頁に続く

(54) 【発明の名称】 ポリエステルの製造方法及び繊維

(57)【要約】

【課題】 色調に優れ、紡糸口金を通して長時間連続的に紡糸しても口金付着物の発生量が非常に少なく、成形性に優れているという優れた性能を有する、鮮明性の改善されたポリエステルの製造方法を提供すること。

【解決手段】 エチレンテレフタレートを主たる繰り返し単位とするポリエステルであって、原料のテレフタル酸がポリアルキレンテレフタレートを解重合して得られたテレフタル酸ジメチルを加水分解して得られたテレフタル酸を使用し、触媒として、特定のチタン化合物と特定のリン化合物とをグリコール中で加熱することにより得られた析出物を用いて重縮合反応させる。

【特許請求の範囲】

【請求項1】 芳香族ジカルボン酸とアルキレングリコ ールとを、エステル化反応、次いで重縮合反応させて得 られる、エチレンテレフタレートを主たる繰り返し単位 とするポリエステルポリマーの製造方法であって、

該芳香族ジカルボン酸として、ポリアルキレンテレフタ レートをメタノール解重合して得られたリサイクルされ たテレフタル酸ジメチルを加水分解して得られたテレフ タル酸を、ポリエステルを構成する全酸成分を基準とし*

 $R_1O-[Ti(OR_2)(OR_3)]_m-OR_4$

*て70重量%以上使用し、かつ、触媒として、下記式 (I) で表されるチタン化合物と下記式(II) で表さ れるリン化合物とを、チタン元素のモル数に対するリン 元素のモル数(P/Ti)が1~4となる範囲とし、グ リコール中で加熱することにより得られた析出物を用い て重縮合反応させることを特徴とする、ポリエステルの 製造方法。

【化1】

(I)

(上記式中、R₁, R₂, R₃, およびR₄は炭素数2~10個のアルキル基を表し 、R1, R2, R3, およびR4は互いに同一であっても異なっていてもどちらでも よい。mは1~3の整数を表す。)

【化2】

$$(R_5)_n$$
— $(O)_p$ — P — $(OH)_{3\cdot n}$
 $||$
 O

(上記式中、R₅は炭素数2~18のアルキル基、または炭素数6~20のアリー ル基であり、nは1または2、pは0または1である。)

【請求項2】 リサイクルされたテレフタル酸がポリエ チレンテレフタレートを解重合して回収されたテレフタ ル酸ジメチルを加水分解して得られたテレフタル酸であ る、請求項1記載のポリエステルの製造方法。

【請求項3】 テレフタル酸中に不純物として含まれる 4-カルボキシベンズアルデヒド、パラトルイル酸、安 息香酸及びヒドロキシテレフタル酸ジメチルの含有量が 30 1 p p m以下である、請求項2記載のポリエステルの製 造方法。

【請求項4】 式(II)中のpの数値が0であるリン 化合物を用いる、請求項1記載のポリエステルの製造方 法。

【請求項5】 リン化合物がモノアリールホスホン酸で ある請求項2記載のポリエステルの製造方法。

【請求項6】 式(II)中のpの数値が1であるリン 化合物を用いる、請求項1記載のポリエステルの製造方 法。

【請求項7】 リン化合物がモノアルキルホスフェート である、請求項4記載のポリエステルの製造方法。

【請求項8】 前記式(I)のチタン化合物が、チタン テトラアルコキシド類、オクタアルキルトリチタネート 類、及びヘキサアルキルジチタネート類から選ばれるポ リエステル製造用触媒を用いる、請求項1記載のポリエ ステルの製造方法。

【請求項9】 前記式(I)のチタン化合物を予め下記 一般式(III)の多価カルボン酸及び/又はその酸無 水物と反応モル比(2:1)~(2:5)の範囲の組成 50 ンテレフタレート及びポリテトラメチレンテレフタレー

で反応せしめた後、前記式(II)のリン化合物と反応 させる、請求項1記載のポリエステルの製造方法。

(上記式中、qは2~4の整数を表わす)

【請求項10】 請求項1~9のいずれか記載の方法に よって製造されたポリエステルを溶融紡糸することによ って得られる、ポリエステル繊維。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明はポリエステルの製造 方法及び繊維に関し、さらに詳しくは、ポリアルキレン テレフタレートを解重合し、回収して得られるテレフタ ル酸ジメチルを原料として用い、特定のチタン化合物と リン化合物とを含むポリエステル製造用触媒を用いて、 色調に優れ、紡糸口金を通して長時間連続的に紡糸して も口金付着物の発生量が非常に少なく、成形性に優れて いるという優れた性能を有する、鮮明性の改善されたポ リエステルの製造方法及び繊維に関する。

[0002]

【従来の技術】ポリエステル、特にポリエチレンテレフ タレート、ポリエチレンナフタレート、ポリトリメチレ

40

20

トは、その機械的、物理的、化学的性能が優れているため、繊維、フィルム、その他の成形物に広く利用されている。

【0003】例えばポリエチレンテレフタレートは、通常テレフタル酸とエチレングリコールとを直接エステル化反応させるか、テレフタル酸ジメチルのようなテレフタル酸の低級アルキルエステルとエチレングリコールとをエステル交換反応させるか又はテレフタル酸とエチレンオキサイドとを反応さて、テレフタル酸のエチレングリコールエステル及び/又はその低重合体を生成させ、次いでこの反応生成物を重合触媒の存在下で減圧加熱して所定の重合度になるまで重縮合反応させることによって製造されている。

【0004】これらの重縮合反応段階で使用する触媒の種類によって、反応速度および得られるポリエステルの品質が大きく左右されることはよく知られている。ポリエチレンテレフタレートの重縮合触媒としては、アンチモン化合物が、優れた重縮合触媒性能を有し、かつ、色調の良好なポリエステルが得られるなどの理由から最も広く使用されている。

【0005】しかしながら、アンチモン化合物を重縮合触媒として使用した場合、ポリエステルを長時間にわたって連続的に溶融紡糸すると、口金孔周辺に異物(以下、単に口金異物と称することがある。)が付着堆積し、溶融ポリマー流れの曲がり現象(ベンディング)が発生し、これが原因となって紡糸、延伸工程において毛羽及び/又は断糸などを発生するという成形性の問題がある。

【0006】該アンチモン化合物以外の重縮合触媒として、チタンテトラブトキシドのようなチタン化合物を用いることも提案されているが、このようなチタン化合物を使用した場合、上記のような、口金異物堆積に起因する成形性の問題は解決できるが、得られたポリエステル自身が黄色く変色しており、また、溶融熱安定性も不良であるという新たな問題が発生する。

【0007】上記着色問題を解決するために、コバルト化合物をポリエステルに添加して黄味を抑えることが一般的に行われている。確かにコバルト化合物を添加することによってポリエステルの色調(カラーb値)は改善することができるが、コバルト化合物を添加することに 40よってポリエステルの溶融熱安定性が低下し、ポリマーの分解も起こりやすくなるという問題がある。

【0008】また、他のチタン化合物として、特公昭48-2229号公報には水酸化チタンを、また特公昭47-26597号公報にはαーチタン酸を、それぞれポリエステル製造用触媒として使用することが開示されている。しかしながら、前者の方法では水酸化チタンの粉末化が容易でなく、一方、後者の方法ではαーチタン酸が変質し易いため、その保存、取り扱いが容易でなく、したがっていずれも工業的に採用するには適当ではな

く、さらに、良好な色調(カラーb値)のポリマーを得ることも困難である。

【0009】また、特公昭59-46258号公報にはチタン化合物とトリメリット酸とを反応させて得られた生成物を、また特開昭58-38722号公報にはチタン化合物と亜リン酸エステルとを反応させて得られた生成物を、それぞれポリエステル製造用触媒として使用することが開示されている。確かに、この方法によれば、ポリエステルの溶融熱安定性はある程度向上しているものの、得られるポリマーの色調(カラーb値)が十分なものではなく、したがってポリマー色調(カラーb値)のさらなる改善が望まれている。

【0010】口金異物を抑制するには、前記のように触媒としてアンチモンを使用しないことが有効な手段であるが、アンチモンを使用しない方法では、糸のカラーが低下してしまうため、従来は使用に供することができなかった。

【0011】したがって触媒としてアンチモンを使用せず、かつ色相に優れたポリエステル繊維が求められていた。

【0012】その一方で、最近ではポリエチレンテレフタレート等のポリエステルは例えばPETボトルなどを回収して洗浄、粉砕後、再溶融して衣料などを中心とした繊維製品に再生利用されている。しかしながら、市場から回収されてくるPETボトルなどのポリエステルは様々な不純物を含んでいる事が多く、品質なども異なっていることが多い為、特に長繊維などに再生利用する場合、混入している不純物やポリマー品質差などの影響で製糸工程が不安定となり、効率よく再生繊維を製造することが困難であるという問題を抱えていた。

[0013]

【発明が解決しようとする課題】本発明の目的は、上記 従来技術が有していた問題点を解消し、色調に優れ、紡 糸口金を通して長時間連続的に紡糸しても口金付着物の 発生量が非常に少なく、成形性に優れているという優れ た性能を有する、色相の改善されたポリエステル繊維を 提供することにある。更に本発明の他の目的はリサイク ルされた原料を用いることにより、より環境に優しい繊 維製品を提供することにある。

[0014]

【課題を解決するための手段】本発明者らは上記従来技術に鑑み鋭意検討を重ねた結果、本発明を完成するに至った。

【0015】すなわち、本発明の目的は、芳香族ジカルボン酸とアルキレングリコールとを、エステル化反応、次いで重縮合反応させて得られる、エチレンテレフタレートを主たる繰り返し単位とするポリエステルポリマーの製造方法であって、該芳香族ジカルボン酸として、ポリアルキレンテレフタレートをメタノール解重合して得られたリサイクルされたテレフタル酸ジメチルを加水分

*となる範囲とし、グリコール中で加熱することにより得

られた析出物を用いて重縮合反応させることを特徴とす

解して得られたテレフタル酸を、ポリエステルを構成す る全酸成分を基準として70重量%以上使用し、かつ、 触媒として、下記式(I)で表されるチタン化合物と下 記式(II)で表されるリン化合物とを、チタン元素の モル数に対するリン元素のモル数 (P/Ti) が1~4* $R_1O-[Ti(OR_2)(OR_3)]_m-OR_4$

る、ポリエステルの製造方法によって達成される。 [0016] 【化4】 **(I)**

(上記式中、R₁, R₂, R₃, およびR₄は炭素数2~10個のアルキル基を表し 、R1、R2、R3、およびR4は互いに同一であっても異なっていてもどちらでも よい。mは1~3の整数を表す。)

[0017]

(上記式中、R5は炭素数2~18のアルキル基、または炭素数6~20のアリー ル基であり、nは1または2、pは0または1である。)

【0018】更に、本発明の他の目的は、請求項1~9 20 のいずれか記載の方法によって製造されたポリエステル を溶融紡糸することによって得られる、ポリエステル繊 維によって達成される。

[0019]

【発明の実施の形態】以下、本発明について詳しく説明 する。

【0020】本発明におけるポリエステルは、芳香族ジ カルボン酸とアルキレングリコールとを、エステル化反 応、次いで重縮合反応させて得られる、エチレンテレフ タレートを主たる繰返し単位とするポリエステルであ る。このポリエステルは、エチレンテレフタレート単位 を構成する成分以外の第3成分を共重合した、共重合ポ リエチレンテレフタレートであってもよい。上記第3成 分(共重合成分)は、ジカルボン酸成分またはグリコー ル成分のいずれでもよい。第3成分として好ましく用い られるジカルボン酸成分としては、2,6-ナフタレン ジカルボン酸、イソフタル酸、フタル酸等のような芳香 族ジカルボン酸、アジピン酸、アゼライン酸、セバシン 酸、デカンジカルボン酸等のような脂肪族ジカルボン 酸、シクロヘキサンジカルボン酸等のような脂環式ジカ ルボン酸等、グリコール成分としては、トリメチレング リコール、テトラメチレングリコール、1,4-シクロ ヘキサンジメタノール等が例示でき、これらは単独また は二種以上を使用することができる。

【0021】本発明のポリエステルの製造方法は芳香族 ジカルボン酸としてポリアルキレンテレフタレートを解 重合することによって得られたテレフタル酸ジメチルを 加水分解して得られたテレフタル酸を、ポリエステルを 構成する全酸成分を基準として70重量%以上使用する

としてはポリエチレンテレフタレートが好ましく、特に 回収されたPETボトル、回収されたポリエステル繊維 製品、回収されたポリエステルフィルム製品、更にはこ れら製品の製造工程において発生する屑ポリマーなど回 収されたポリエステルが好ましく用いられる。また、ポ リアルキレンテレフタレートを解重合することによって 得られたテレフタル酸ジメチルを加水分解して得られた テレフタル酸が70重量%未満の場合、最終的に得られ るポリエステル、あるいはポリエステル繊維中に含まれ る成分の内、回収されたテレフタル酸に由来する成分の 30 比率が50%を下回ってしまう為、環境にやさしい製品 であるという印象が弱くなり好ましくない。ポリアルキ レンテレフタレートを解重合することによって得られた テレフタル酸ジメチルを加水分解して得られたテレフタ ル酸は好ましくは80重量%以上、さらに好ましくは9 0重量%以上である。

【0022】本発明に用いる、ポリアルキレンテレフタ レートを解重合することによって得られたテレフタル酸 ジメチルを加水分解して得られたテレフタル酸の製造方 法については特に限定はないが、例えば、ポリエチレン テレフタレートをエチレングリコールで解重合した後、 メタノールでエステル交換反応し、得られたテレフタル 酸ジメチルを再結晶や蒸留で精製したテレフタル酸ジメ チルを高温高圧下で水とともに加水分解する方法等が挙 げられる。

【0023】本発明に用いる、ポリアルキレンテレフタ レートを解重合することによって得られたテレフタル酸 ジメチル中を加水分解して得られたテレフタル酸の不純 物ついては、4-カルボキシベンズアルデヒド、パラト ルイル酸、安息香酸及びヒドロキシテレフタル酸ジメチ 必要がある。ここで、該ポリアルキレンテレフタレート 50 ルの含有量が1ppm以下であることが好ましい。

【0024】本発明のポリエステルの製造方法におい て、下記一般式(I)で表されるチタン化合物と下記一 般式 (II) で表されるリン化合物とをチタン元素のモ ル数に対するリン元素のモル数 (P/Ti) が1~4と*

*なる範囲の組成で反応せしめたチタン/リン反応物を用 いて重合されている必要がある。

[0025]

[1Ł6]

 $R_1O-[Ti(OR_2)(OR_3)]_m-OR_4$

(上記式中、 R_1 , R_2 , R_3 , および R_4 は炭素数2~10個のアルキル基を表し 、R₁, R₂, R₃, およびR₄は互いに同一であっても異なっていてもどちらでも よい。mは1~3の整数を表す。)

[0026]

$$(R_5)_n - (O)_p - P - (OH)_{3-n}$$

$$\qquad \qquad \qquad (II)$$

(上記式中、 R_s は炭素数2~18のアルキル基、または炭素数6~20のアリー ル基であり、nは1または2、pは0または1である。)

【0027】ここでチタン元素のモル数に対するリン元 素のモル数(P/Ti)が1より小さい場合、得られる ポリエステルの色調が、不良になり、かつその耐熱性が 低下することがあり好ましくなく、4より大きい場合、 ポリエステル生成反応に対する触媒活性が不十分になり 好ましくない。チタン元素のモル数に対するリン元素の モル数 (P/Ti) は1.2~3.5の範囲が好まし く、1.5~3.0の範囲がさらに好ましい。

【0028】また、チタン化合物成分(I)とリン化合 物成分(II)との触媒調製は、エチレングリコール中 で加熱反応されている必要があるが、反応方法としては 例えばリン化合物 (II) からなる成分とエチレングリ コールとを混合して、リン化合物成分の一部又は全部を 溶媒中に溶解し、この混合液にチタン化合物成分(I) を滴下し、反応系を0℃~200℃の温度に30分間以 上、好ましくは60~150℃の温度に40~90分 間、加熱することによって行われる。この反応におい て、反応圧力については格別の制限はなく、通常常圧下 で行われる。

【0029】ここで上記式(I)で表されるチタン化合 物としては例えば、チタンテトラブトキシド、チタンテ トライソプロポキシド、チタンテトラプロポキシド、チ タンテトラエトキシドなどのチタンテトラアルコキシド や、オクタアルキルトリチタネート、ヘキサアルキルジ チタネート、アルキルチタネート、酢酸チタン等を挙げ ることができる。

【0030】また上記式(II)で表されるリン化合物 としては式中のpが0の場合は、例えば、フェニルホス ホン酸、メチルホスホン酸、エチルホスホン酸、プロピ ルホスホン酸、イソプロピルホスホン酸、ブチルホスホ ン酸、トリルホスホン酸、キシリルホスホン酸、ビフェ

ホン酸、2-カルボキシフェニルホスホン酸、3-カル ボキシフェニルホスホン酸、4-カルボキシフェニルホ スホン酸、2、3-ジカルボキシフェニルホスホン酸、 2, 4-ジカルボキシフェニルホスホン酸、2, 5-ジ カルボキシフェニルホスホン酸、2.6-ジカルボキシ フェニルホスホン酸、3,4-ジカルボキシフェニルホ スホン酸、3,5-ジカルボキシフェニルホスホン酸、 2, 3, 4-トリカルボキシフェニルホスホン酸、2, 3, 5-トリカルボキシフェニルホスホン酸、2, 3, 6-トリカルボキシフェニルホスホン酸、2,4,5-トリカルボキシフェニルホスホン酸、2、4、6-トリ 30 カルボキシフェニルホスホン酸等を挙げることができる が、中でもモノアリールホスホン酸が好ましい。

【0031】また、pが1の場合は例えば、モノメチル ホスフェート、モノエチルホスフェート、モノトリメチ ルホスフェート、モノーnーブチルホスフェート、モノ ヘキシルホスフェート、モノヘプチルホスフェート、モ ノノニルホスフェート、モノデシルホスフェート、モノ ドデシルホスフェート、モノフェニルホスフェート、モ ノベンジルホスフェート、モノ (4-ドデシル) フェニ ルホスフェート、モノ(4-メチルフェニル)ホスフェ ート、モノ(4 -エチルフェニル)ホスフェート、モノ (4-プロピルフェニル) ホスフェート、モノ (4-ド デシルフェニル) ホスフェート、モノトリルホスフェー ト、モノキシリルホスフェート、モノビフェニルホスフ ェート、モノナフチルホスフェート、モノアントリルホ スフェート等が挙げられる。

【0032】上記式(I)で表されるチタン化合物は予 め下記式(III)の多価カルボン酸及び/又はその無 水物と反応させて使用する方法も好ましく用いられる。 その場合、チタン化合物と多価カルボン酸及び/又はそ ニルホスホン酸、ナフチルホスホン酸、アントリルホス 50 の無水物の反応モル比は(2:1) \sim (2:5)の範囲

が好ましい。特に好ましい範囲は(1:1)~(1: 2) である。

[0033]

【化8】

(上記式中、qは2~4の整数を表わす)

【0034】本発明のポリエステルの製造方法におい て、チタン元素量は全ジカルボン酸成分に対し2~40 ミリモル%の範囲にあるように添加することが好まし い。チタン元素量が2ミリモル%未満の場合は重合反応 が遅くなり、40ミリモル%を超える場合は得られるポ リエステルの色調が、不良になり、かつその耐熱性が低 下することがあり好ましくない。チタン元素量は5~3 5ミリモル%の範囲が好ましく、10~30ミリモル% の範囲がさらに好ましい。

【0035】該チタン化合物は、全添加量の一部及び/ 又はその全量をエステル化反応終了後に反応系内に添加 する方法が好ましく採用される。

【0036】なお、該エステル化反応の際には、0.0 5~0.20MPaの加圧下にて実施する方法が好まし いが、一旦加圧反応下で製造したオリゴマーに対して、 テレフタル酸とエチレングリコールを追添加することを 繰り返していく製造方法の場合は、常圧下でエステル化 反応を実施しても良い。尚、該エステル化反応はテレフ タル酸がエステル化反応の自己触媒となるので、別途に 触媒を添加する必要はないが、エステル化反応時に該チ タン化合物が存在していても差し支えない。

【0037】本発明におけるポリエステルの固有粘度 は、 $0.40 \sim 0.80$ の範囲にあることが好ましく、 さらに0.45~0.75、特に0.50~0.70の 範囲が好ましい。固有粘度が 0. 40未満であると、繊 維の強度が不足するため好ましくない。他方、固有粘度 が0.80を越えると、原料ポリマーの固有粘度を過剰 に引き上げる必要があり不経済である。

【0038】本発明のポリエステルの製造方法において は、必要に応じて少量の添加剤、例えば滑剤、顔料、染 料、酸化防止剤、固相重合促進剤、蛍光増白剤、帯電防 止剤、抗菌剤、紫外線吸収剤、光安定剤、熱安定剤、遮 光剤、艶消剤等を添加してもよく、特に艶消剤として酸 化チタンなどは好ましく添加される。

【0039】本発明のポリエステル繊維を製造する時の 製造方法としては特に限定はなく、従来公知のポリエス テルを溶融紡糸する方法を用いることができるが、例え ばポリエステルを270℃~300℃の範囲で溶融紡糸 して製造することが好ましく、溶融紡糸の速度は400

特開2003-160656 10

がこの範囲にあると、得られる繊維の強度も十分なもの であると共に、安定して巻き取りを行うこともできる。 また延伸はポリエステル繊維を巻き取ってから、あるい は一旦巻き取ることなく連続的に延伸処理することによ って、延伸糸を得ることができる。さらに本発明のポリ エステル繊維には風合いを高める為に、アルカリ減量処 理も好ましく実施される。

【0040】本発明のポリエステル繊維を製造する際に おいて、紡糸時に使用する口金の形状について制限は無 10 く、円形、異形、中実、中空等のいずれも採用すること ができる。

[0041]

【実施例】以下、本発明をさらに下記実施例により具体 的に説明するが、本発明の範囲はこれら実施例により何 等限定を受けるものではない。尚、2-ヒドロキシテレ フタル酸ジメチル量、固有粘度、色相、ジエチレングリ コール量、チタン含有量及び紡糸口金に発生する付着物 の層については、下記記載の方法により測定した。

【0042】(1)テレフタル酸ジメチル中の4-カル ボキシベンズアルデヒド、パラトルイル酸、安息香酸及 び2-ヒドロキシテレフタル酸ジメチル量:得られたテ レフタル酸を2 N-アンモニア水に溶解後、(株) 島津 製作所社製液体クロマトグラフシステム (LC-6) A)、STR ø D S - Hカラムで分離測定して求めた。

【0043】(2)固有粘度:ポリエステルポリマーの 固有粘度は、35℃オルソクロロフェノール溶液にて、 常法に従って35℃において測定した粘度の値から求め た。

【0044】(3)色調(カラーL値及びカラーb 30 値):ポリマー試料を290℃、真空下で10分間溶融 し、これをアルミニウム板上で厚さ3.0±1.0mm のプレートに成形後ただちに氷水中で急冷し、該プレー トを160℃、1時間乾燥結晶化処理後、色差計調整用 の白色標準プレート上に置き、プレート表面のカラーL 値及びb値を、ミノルタ(株)社製ハンター型色差計C R-200を用いて測定した。L値は明度を示し、その 数値が大きいほど明度が高いことを示し、b値はその値 が大きいほど黄色味の度合いが大きいことを示す。

【0045】(4) ジエチレングリコール(DEG) の 共重合量: 抱水ヒドラジンを用いてポリマーを分解し、 ガスクロマトグラフィー(日立製作所(株)製「263 -70」)を用い、常法に従って測定した。

【0046】 (5) 触媒のチタン金属含有量:触媒化合 物中のチタン金属濃度は、(株)リガク社製蛍光X線測 定装置3270を用いて測定した。

【0047】(6)紡糸口金に発生する付着物の層:ポ リエステルをチップとなし、これを290℃で溶融し、 孔径0.15mmφ、孔数12個の紡糸口金から吐出 し、600m/分で2日間紡糸し、口金の吐出口外縁に ~5000m/分で紡糸することが好ましい。紡糸速度 50 発生する付着物の層の高さを測定した。この付着物層の

12

高さが大きいほど吐出されたポリエステルメルトのフィラメント状流にベンディングが発生しやすく、このポリエステルの成形性は低くなる。すなわち、紡糸口金に発生する付着物層の高さは、当該ポリエステルの成形性の指標である。

【0048】 [参考例1]

回収テレフタル酸の製造:エチレングリコール200部を500mlセパラブルフラスコに投入し、更に炭酸ソーダ1.5部、粉砕されたPETボトル等からなるポリエチレンテレフタレート屑50部を投入し、撹拌しなが 10 ら昇温して、185℃とした。この状態を4時間保持したところ、ポリエチレンテレフタレート屑は溶解し解重合反応が完結した。得られた解重合物を減圧蒸留で濃縮し、留分としてエチレングリコール150部回収した。

【0049】この濃縮液にエステル交換反応触媒として 炭酸ソーダ0.5部とメタノール100部を投入し、常 圧で液温を75℃、1時間撹拌し、エステル交換反応を 実施した。

【0050】得られた混合物を40℃まで冷却し、ガラス製フィルターで濾過した。フィルター上に回収できた 20 粗テレフタル酸ジメチルを100部のMeOH中に投入し、40℃に加温・撹拌洗浄し、再度ガラス製のフィルターで濾過した。この洗浄は2回繰り返した。

【0051】フィルター上に捕捉できた粗テレフタル酸ジメチルを蒸留装置に仕込み、圧力6.65kPa還流比0.5の条件で減圧蒸留を実施し、留分としてテレフタル酸ジメチルを得た。

【0052】次に、得られたテレフタル酸ジメチルを100部、水を200部混合し、180℃でテレフタル酸ジメチルと水を撹拌保持し、加水分解反応装置へ供給した。加水分解反応装置の液温を250℃とし、撹拌しながら反応させ、加水分解反応で生成するメタノールを水とともに留出させた。得られたテレフタル酸/水スラリー中のテレフタル酸/水重量比は約1/1の重量比であった。得られたスラリー中の4ーカルボキシベンズアルデヒド、パラトルイル酸、安息香酸及び2ーヒドロキシテレフタル酸ジメチル量はテレフタル酸に対して1重量ppm以下であった。

【0053】次に、得られたテレフタル酸/水スラリー 166部、エチレングリコール4150部を遠心分離機 40 に投入し混合した。該テレフタル酸/水/エチレングリコールの重量比は1:1:50であり、このテレフタル酸のエチレングリコールスラリーを遠心分離機により処理して、テレフタル酸のケークを得た。このテレフタル酸ケークのテレフタル酸/水/エチレングリコールの重量比は約83:0.4:14.3であった。該スラリーに更にエチレングリコールを加えて混合し、最終的に重量比66:34のテレフタル酸/エチレングリコールスラリーとした。

【0054】 [参考例2] エチレングリコール131重 50 応生成物を熟成させた。その後反応系を常温に冷却し、

量部中にフェニルホスホン酸3.6重量部を120℃に10分間加熱して溶解した。このエチレングリコール溶液134.5重量部に、さらにエチレングリコール40重量部を加えた後、これにチタンテトラブトキシド3.8重量部を溶解させた。得られた反応系を120℃で60分間撹拌し、チタン化合物とフェニルホスホン酸とを反応させ、反応生成物を含む触媒の白色スラリーを得た。この触媒スラリーのチタン含量は0.3重量%、チタン元素のリン元素に対するモル比(P/Ti)は2.0であった。

【0055】[参考例3] エチレングリコール2.5重量部に無水トリメリット酸0.8重量部を溶解し、この溶液にチタンテトラブトキシド0.7重量部 (無水トリメリット酸のモル量を基準として0.5 mol%)を滴下し、この反応系を空気中、常圧下、80℃に60分間保持してチタンテトラブトキシドと無水トリメリット酸とを反応させ、反応生成物を熟成させた。その後反応系を常温に冷却し、これにアセトン15重量部を加え、析出物をNo.5ろ紙で濾過し、採取し、これを100℃の温度で2時間乾燥した。得られた反応生成物のチタン含有量は11.2重量%であった。

【0056】次に、エチレングリコール131重量部中 にフェニルホスホン酸3.6重量部を120℃に10分 間加熱して溶解した。このエチレングリコール溶液13 4. 5重量部に、さらにエチレングリコール40重量部 を加えた後、これに上記チタン化合物 5.0 重量部を溶 解させた。得られた反応系を120℃で60分間撹拌 し、チタン化合物とフェニルホスホン酸とを反応させ、 反応生成物を含む触媒の白色スラリーを得た。この触媒 スラリーのチタン含量は0.3重量%、チタン元素のリ ン元素に対するモル比 (P/Ti) は2.0であった。 【0057】 [参考例4] エチレングリコール131重 量部中にモノーn-ブチルホスフェート3.5重量部を 120℃に10分間加熱して溶解した。このエチレング リコール溶液134.5重量部に、さらにエチレングリ コール40重量部を加えた後、これにチタンテトラブト キシド3.8重量部を溶解させた。得られた反応系を1 20℃で60分間撹拌し、チタン化合物とモノーnーブ チルホスフェートとを反応させ、反応生成物を含む触媒 の白色スラリーを得た。この触媒スラリーのチタン含量 は0.3重量%、チタン元素のリン元素に対するモル比 (P/Ti) は2.0であった。

【0058】 [参考例5] エチレングリコール2.5重量部に無水トリメリット酸0.8重量部を溶解し、この溶液にチタンテトラブトキシド0.7重量部(後記ポリエステルの製造に用いられる無水トリメリット酸のモル量を基準として0.5mol%)を滴下し、この反応系を空気中、常圧下、80℃に60分間保持してチタンテトラブトキシドと無水トリメリット酸とを反応させ、反応生成物を執成させた。その後反応系を掌温に冷却し

30

14

13

これにアセトン15重量部を加え、析出物をNo.5ろ紙で濾過し、採取し、これを100℃の温度で2時間乾燥した。得られた反応生成物のチタン含有量は11.2重量%であった。

【0059】次に、エチレングリコール131重量部中にモノーnーブチルホスフェート3.5重量部を120℃に10分間加熱して溶解した。このエチレングリコール溶液134.5重量部に、さらにエチレングリコール40重量部を加えた後、これに上記チタン化合物5.0重量部を溶解させた。得られた反応系を120℃で60分間撹拌し、チタン化合物とモノーnーブチルホスフェートとを反応させ、反応生成物を含む触媒の白色スラリーを得た。この触媒スラリーのチタン含量は0.3重量%、チタン元素のリン元素に対するモル比(P/Ti)は2.0であった。

【0060】 [実施例1] 参考例1で製造したテレフタル酸/エチレングリコールスラリー200部を撹拌機、精留塔及びメタノール留出コンデンサーを設けた反応器に仕込み、270℃、0.3MPaの加圧下で240分間エステル化反応させた。得られた反応物の半分を除去した後、残った半分を250℃に保ち、参考例1で製造したテレフタル酸/エチレングリコールスラリー100部を常圧下で150分間かけて反応系内に供給し、その後、常圧下で90分間かけてエステル化反応させた。

【0061】この間、反応系内の温度は250℃に保った。更に得られた反応物の半分を除去した後、同様に参*

*考例1で製造したテレフタル酸/エチレングリコールスラリー100部を供給してエステル化反応を行い、反応物中のジエチレングリコールが安定するまでこの操作を繰り返した。

【0062】反応物中のジエチレングリコールが安定した後、該エステル化反応によって得られた反応物の半分を重縮合反応装置に移し、参考例2で調製したチタン触媒1.27部を添加して、285℃まで昇温し、26.67Pa以下の高真空にて重縮合反応を行って、固有粘10 度0.63、ジエチレングリコール量が1.0重量%であるポリエステルを得た。

【0063】得られたポリエステルを常法に従いチップ化し、乾燥した。次にこの乾操したチップを用い、常法に従って333dtex/36filの原糸を作り、4.0倍に延伸して83.25dtex/36filのマルチフィラメントを得た。結果を表1に示す。

【0064】 [実施例2~5、比較例1] 実施例1において、チタン化合物を表1記載のとおりに変更したこと以外は実施例1と同様に行った。結果を表1に示す。

【0065】 [比較例2] 実施例1において、チタン化合物に代えて三酸化二アンチモン0.0313部とリン酸トリメチル0.0028部とを添加したこと以外は同様の操作を行った。結果を表1に示す。

[0066]

【表1】

	チタン化合物		Sb化合物 固		有 DEG	カラー		製糸特性		
	種類	添加量	(Sb ₂ O ₂)	粘度	(wt%)	上値	b値	強度	伸度	口金異物高さ
		(mmol%)	(mmol%)					(cN/dtex)	(%)	(µm)
実施例1	参考例2	20	_	0.63	1.0	80.1	3.2	3.8	28	2
実施例2	参考例3	20	_	0.63	1.1	80.2	3.1	3.8	27	2
実施例3	参考例4	20	_	0.63	1.0	79.9	2.9	3.7	26	2
実施例4	参考例5	20	_	0.63	1.0	80.2	3.1	3.6	25	3
実施例5	参考例4	10		0.63	1.0	79.9	3.0	3.7	26	1
比較例1	ТВТ	20	_	0.63	1.1	77.8	18.0	3.6	26	2
比較例2	_	_	27	0.63	1.0	71.7	3.0	3.7	28	49

40

TBT: テトラーn-ブトキシチタン

[0067]

【発明の効果】本発明によれば、チタン金属化合物を触媒として使用する際の欠点であった色相の悪化を解消

し、ポリエステルが持つ、優れた特性を保持しながら、 色相が優れたポリエステル繊維を提供することができ る。

フロントページの続き

F ターム(参考) 4J029 AA03 AB04 AE02 CB06A JB131 JC571 JC581 JC591 JF321 KA00 KE03 KE05 4L035 GG02