ECE380 Digital Logic

Introduction to Logic Circuits: Variables, functions, truth tables, gates and networks

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 2-1

Logic circuits

- Logic circuits perform operations on digital signals
 - Implemented as electronic circuits where signal values are restricted to a few discrete values
- In binary logic circuits there are only two values, 0 and 1
- The general form of a logic circuit is a switching network

Electrical & Computer Engineering

Boolean algebra

- Direct application to switching networks
 - Work with 2-state devices → 2-valued Boolean algebra (switching algebra)
 - Use a Boolean variable (X, Y, etc.) to represent an input or output of a switching network
 - Variable may take on only two values (0, 1)
 - -X=0, X=1
 - These symbols are <u>not</u> binary numbers, they simply represent the 2 states of a Boolean variable
 - They are <u>not</u> voltage levels, although they commonly refer to the low or high voltage input/output of some circuit element

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 2-3

Variables and functions

- The simplest binary element is a switch that has two states
- If the switch is controlled by x, we say the switch is open if x = 0 and closed if x = 1

(a) Two states of a switch

(b) Symbol for a switch

Electrical & Computer Engineering

Variables and functions

- Assume the switch controls a lightbulb as shown
 - The output is defined as the state of the light L
 - If the light is on -> L=1
 - If the light is off -> L=0
- The state of L, as function of x is
 - -L(x)=x
- L(x) is a **logic function**
- x is an input variable

(a) Simple connection to a battery

(b) Using a ground connection as the return path

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 2-5

Variables and functions (AND)

- Consider the possibility of two switches controlling the state of the light
- Using a series connection, the light will be on only if both switches are closed

$$-L(x_1, x_2) = x_1 \cdot x_2$$

- L=1 iff (if and only if) x_1 AND x_2 are 1

The logical AND function (series connection)

"·" AND operator $x_1 \cdot x_2 = x_1 x_2$

The circuit implements a logical **AND** function

Electrical & Computer Engineering

Variables and functions (OR)

- Using a parallel connection, the light will be on only if either or both switches are closed
 - $-L(x_1, x_2) = x_1 + x_2$
 - L=1 if x_1 OR x_2 is 1 (or both)

The logical OR function (parallel connection)

"+" OR operator

The circuit implements a logical **OR** function

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 2-7

Variables and functions

 Various series-parallel connections would realize various logic functions

-
$$L(x_1, x_2, x_3) = (x_1 + x_2) \cdot x_3$$

Electrical & Computer Engineering

Variables and functions

 What would the following logic function look like if implemented via switches?

$$-L(x_1, x_2, x_3, x_4) = (x_1 \cdot x_2) + (x_3 \cdot x_4)$$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 2-9

Inversion

- Before, actions occur when a switch is closed.
 What about the possibility of an action occurring when a switch is opened?
 - $-L(x)=\bar{x}$
 - Where L=1 if x=0 and L=0 if x=1
- L(x) is the inverse (or complement) of x

 \bar{X} , X', NOT X

The circuit implements a logical **NOT** function

Electrical & Computer Engineering

Inversion of a function

- If a function is defined as
 - $f(x_1, x_2) = x_1 + x_2$
- Then the complement of *f* is

$$-\overline{f}(x_1, x_2) = \overline{x_1 + x_2} = (x_1 + x_2)'$$

- Similarily, if
 - $f(x_1, x_2) = x_1 \cdot x_2$
- Then the complement of f is

$$-\overline{f}(x_1, x_2) = \overline{x_1 \cdot x_2} = (x_1 \cdot x_2)'$$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 2-11

Truth tables

- Tabular listing that fully describes a logic function
 - Output value for all input combinations (valuations)

X_1	<i>X</i> ₂	$X_1 \cdot X_2$	X	X_1 X_2	$x_1 + x_2$	X_1	X_1'
0	0	0	0	0	0	0	1
0	1	0	0	1	1	1	0
1	0	0	1	0	1	N	от
1	1	1	1	1	1		

AND

OR

Electrical & Computer Engineering

Truth tables

Truth table for AND and OR functions of three variables

x_1	x_2	x_3	$x_1 \cdot x_2 \cdot x_3$	$x_1 + x_2 + x_3$
0	0	0	0	0
0	0	1	U	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 2-13

Truth tables of functions

• If L(x,y,z)=x+yz, then the truth table for L is:

	+				
X	у	Z	yz	x+yz	
0	0	0	0	0	
0	0	1	0	0	
0	1	0	0	0	
0	1	1	1	1	
1	0	0	0	1	
1	0	1	0	1	
1	1	0	0	1	
1	1	1	1	1	

Electrical & Computer Engineering

Logic gates and networks

- Each basic logic operation (AND, OR, NOT) can be implemented resulting in a circuit element called a *logic gate*
- A logic gate has one or more inputs and one output that is a function of its inputs

AND gates

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 2-15

Logic gates and networks

$$x_1$$
 x_2
 $x_1 + x_2$
 x_2
 $x_1 + x_2 + \dots + x_n$

OR gates

 $x - x_1 + x_2 + \dots + x_n$

NOT gate

Electrical & Computer Engineering

Logic gates and networks

- A larger circuit is implemented by a network of gates
 - Called a logic network or logic circuit

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 2-17

Logic gates and networks

 Draw the truth table and the logic circuit for the following function

$$- F(a,b,c) = ac+bc'$$

а	b	С	ас	bc'	ac+bc'
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	1	1
0	1	1	0	0	0
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	1	1
1	1	1	1	0	1

Electrical & Computer Engineering

Analysis of a logic network

 To determine the functional behavior of a logic network, we can apply all possible input signals to it

Network that implements $= \bar{x}_1 + x_1 \cdot x_2$

Electrical & Computer Engineering

Dr. D. J. Jackson Lecture 2-19

Analysis of a logic network

 The function of a logic network can also be described by a timing diagram (gives dynamic behavior of the network)

Electrical & Computer Engineering