Theory Portion

- I. The training error is simply 0.1 due the probability of the distribution. If x > 0 there is a 0.9 chance of the random sample being correctly labeled to 1, and if $x \le 0$ there is a 0.9 chance of the random sample being labeled as 0. From this we know the true error is also 0.1 as $h(x) \ne f(x)$ of a random instance of x has a 0.1 chance to be miss classified.
- II. For this problem our goal is to proof that no other classifier, $g: X \to \{0,1\}$ has a lower error. That is, for every classifier $L_D(f_D) \le L_D(g)$

We know that the true error is: $L_D(h) = \mathbb{P}_{X \sim D}[h(x) \neq y]$ In this case of $g: X \to \{0,1\}$, $L_D(h) = \begin{cases} \Pr[y \neq 0 | x] & \text{if } (h(x) = 0 \\ \Pr[y \neq 1 | x] & \text{if } (h(x) = 1) \end{cases}$

Since the function consist of probability, we can perform some changes:

$$\Pr[y \neq 0 | x] \quad if(h(x) = 0 \equiv \Pr[y = 1 | x] \quad if(h(x) = 0)$$

$$\Pr[y \neq 1 | x] \quad if(h(x) = 1 \equiv 1 - \Pr[y = 1 | x] \quad if(h(x) = 1)$$

$$E(X) = \begin{cases} \Pr[y = 1 | x] & \text{if } (h(x) = 0) \\ 1 - \Pr[y = 1 | x] & \text{if } (h(x) = 1) \end{cases}$$

Which means that if $\Pr[y=1|x] < 1 - \Pr[y=1|x]$, we should choose h(x) = 0 to minimize loss or error, and similarly we choose h(x) = 1 if $\Pr[y=1|x] > 1 - \Pr[y=1|x]$. And if they are equal well the choice doesn't matter at that point.

Rearranging the first equation we can get 2Pr[y = 1|x] < 1 or Pr[y = 1|x] < 1/2

Same equation as the Bayes optimal predictor.

- III. a) The change of updating step doesn't not affect the outer loop that dictates the number of iterations that the perceptron goes through. Hence changing $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + y_i \mathbf{x}_i$ to $\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} + \eta y_i \mathbf{x}_i$ will perform the same amount of iterations.
 - b) The direction of the output $\mathbf{w}^{(t)}$ will not be affected since $0 < \eta < 1$ this means that the vector $\mathbf{w}^{(t)} + \eta y_i \mathbf{x}_i$ is only adding on a portion of what is adding before in the original perceptron algorithm. This is important because as the case of if $\mathbf{w}^{(t)}$ is a positive vector ie [6, 5] and $y_i \mathbf{x}_i$ is a negative vector, ie [-2, -2] the direction will not flip due to adding a large multiple of $y_i \mathbf{x}_i$ due to a large constant η . ie let say constant $\eta = 5$, then $\mathbf{w}^{(t)} + \eta y_i \mathbf{x}_i = [-4, -5]$ which has a different direction than original. But due to this $0 < \eta < 1$ constraint this will not happen.
- IV. First let us denote some variables: Let A be the event of $\exists h \in \mathcal{H} \text{ s. t. } L_{(\overline{\mathcal{D}}_{m,f})}(h) > \epsilon$, and B be the event of $L_{(S,f)}(h) = 0$

Now we write the probability with A and B:

$$Pr(A \text{ and } B)$$

Apply conditional probability:

$$Pr(A \text{ and } B) = Pr(B|A) Pr(A)$$

We are applying the union bound rule:

Lets first consider the Pr(A). Since the true error in corresponds with the mean distribution

$$\overline{D}_m = \tfrac{(D_1 + \dots + D_m)}{m} \text{ and that } \exists h \in \mathcal{H} \text{, thus the } D_m \left(L_{(\overline{D}_{m,f})}(h) > \epsilon \right) \leq |\mathcal{H}|$$

Lets then consider the Pr(B). The condition of B states that there is no training error respect to the function f. This means that for every single i^{th} sample in the sample set $h(x_i) = f(x_i)$. We know that $D(\{x_i: h(x_i) = y_i\}) = 1 - L_{(D,f)}(h) \le 1 - \epsilon$ and since we have m distribution, we can combine this two knowledge and form an equation: $D_m(\{S|x: L_S(h) = 0\}) \le (1 - \epsilon)^m \le \epsilon^{-em}$

We combine the A and B we get that $\Pr\left(\exists h \in \mathcal{H} \ s.t. \ L_{(\overline{\mathcal{D}}_{m,f})}(h) > \epsilon \ and \ L_{(S,f)}(h) = 0\right) \leq |\mathcal{H}| \epsilon^{-em}$