Movimento retilíneo

Max Jáuregui

13 de Abril de 2018

1 Velocidades média e instantânea

Vamos estudar o movimento de um corpo em uma linha reta, a qual vamos considerar como sendo paralela ao eixo x.

Se em dois instantes de tempo t_1 e t_2 o corpo se encontra respectivamente nas posições x_1 e x_2 , definimos o **deslocamento** do corpo no intervalo $[t_1, t_2]$ por $\Delta x = x_2 - x_1$. Definimos também a **velocidade média** do corpo no intervalo $[t_1, t_2]$ por

$$v_m = \frac{\Delta x}{\Delta t} = \frac{x_2 - x_1}{t_2 - t_1} \,.$$

Suponhamos que a posição de um automóvel em cada instante de tempo t seja dada por $x(t) = (10 \,\mathrm{m/s^2})t^2 + 5 \,\mathrm{m}$. A velocidade média no intervalo $[0 \,\mathrm{s}, 1 \,\mathrm{s}]$ é dada por

$$v_m = \frac{x(1 \,\mathrm{s}) - x(0 \,\mathrm{s})}{1 \,\mathrm{s} - 0 \,\mathrm{s}} = \frac{15 \,\mathrm{m} - 5 \,\mathrm{m}}{1 \,\mathrm{s}} = 10 \,\frac{\mathrm{m}}{\mathrm{s}}.$$

No intervalo [0, 9 s, 1 s], a velocidade média será

$$v_m = \frac{x(1 s) - x(0, 9 s)}{1 s - 0, 9 s} = \frac{15 m - 13, 1 m}{0, 1 s} = 19 \frac{m}{s}.$$

Calculando a velocidade média nos intervalos $[0,99 \, \mathrm{s}, 1 \, \mathrm{s}]$, $[0,999 \, \mathrm{s}, 1 \, \mathrm{s}]$, ..., vamos perceber que os valores obtidos vão se aproximar cada vez mais de $20 \, \mathrm{m/s}$. Logo, é razoável definirmos a velocidade no instante t=1s como sendo $20 \, \mathrm{m/s}$. Essa velocidade é chamada de **velocidade instantânea** e é definida para qualquer instante t por

$$v(t) = \lim_{\Delta t \to 0} \frac{x(t + \Delta t) - x(t)}{\Delta t}$$
.

O limite do lado direito é conhecido como a **derivada** de x(t) em relação a t e é denotada por $\frac{dx}{dt}$.

Sobre derivadas precisamos saber o seguinte:

1.
$$\frac{d}{dt}[x(t) \pm y(t)] = \frac{dx}{dt} \pm \frac{dy}{dt}$$
;

Figura 1: Exemplo de um gráfico x versus t

2.
$$\frac{d}{dt}[ax(t)] = a\frac{dx}{dt}$$
;

$$3. \ \frac{d}{dt}(t^n) = nt^{n-1};$$

4.
$$\frac{d}{dt}(c) = 0$$
.

Usando essas regras podemos derivar qualquer polinômio; por exemplo, se $p(t) = 10t^3 - 2t^2 + 6$, então $\frac{dp}{dt} = 30t^2 - 4t$.

Se a posição de um corpo segue a equação $x(t) = (5 \text{ m/s}^3)t^3 - (10 \text{ m/s}^2)t^2 + 20 \text{ m}$, qual é a velocidade instantânea do corpo no instante t = 2 s? A velocidade instantânea em qualquer instante t está dada por

$$v(t) = \frac{dx}{dt} = \left(15 \frac{\mathrm{m}}{\mathrm{s}^3}\right) t^2 - \left(20 \frac{\mathrm{m}}{\mathrm{s}^2}\right) t.$$

Logo, no instante $t = 2 \,\mathrm{s}$, vamos ter que $v(2 \,\mathrm{s}) = 60 \,\mathrm{m/s} - 40 \,\mathrm{m/s} = 20 \,\mathrm{m/s}$.

2 Gráficos x versus t

Conhecendo a posição de um corpo, que se move em linha reta, em cada instante de tempo, podemos construir um gráfico x versus t representando os pares ordenados (t,x(t)) em um plano cartesiano. O objetivo dessa seção é obter informação sobre o movimento de um corpo a a partir de um gráfico x versus t.

Exemplo: Da figura 1 podemos obter a seguinte informação qualitativa sobre o movimento do corpo: O corpo inicialmente está na origem; logo depois se move à direita (assume valores de x maiores do que $x(0\,\mathrm{s})$); no instante t_1 o corpo atinge a posição $x(t_1)$ e logo depois desse instante, o corpo se move à esquerda (assume valores de x menores do

Figura 2: Cálculo da velocidade média usando um gráfico x versus t.

que $x(t_1)$); no instante t_2 o corpo passa pela origem e continua se movendo à esquerda; no instante t_3 o corpo atinge a posição $x(t_3)$ e depois desse instante se move à direita passando novamente pela origem no instante t_4 .

Um gráfico x versus t também pode nos dar informação sobre as velocidades média e instantânea. Por exemplo, da figura 2 vemos que

$$\tan \theta = \frac{x(t_2) - x(t_1)}{t_2 - t_1}$$
.

Portanto, a velocidade média no intervalo $[t_1, t_2]$ é a tangente do ângulo formado entre o eixo x e a reta secante ao gráfico x versus t que passa pelos pontos $(t_1, x(t_1))$ e $(t_2, x(t_2))$.

Na figura 3 consideramos um instante t_3 , com $t_1 < t_3 < t_2$. A velocidade média no intervalo $[t_1, t_3]$ será, pelo que vimos, $\tan \beta$, que nesse caso é menor do que $\tan \theta$. Considerando instantes t cada vez mais próximos de t_1 , a reta secante ao gráfico x versus t que passa pelos pontos $(t_1, x(t_1))$ e (t, x(t)) vai se aproximar da reta tangente ao gráfico que passa pelo ponto $(t_1, x(t_1))$. Se essa reta tangente faz um ângulo α com o eixo x, então $\tan \alpha$ será o valor limite da velocidade média, ou seja, $\tan \alpha$ será a velocidade instantânea no instante t_1 . Como essa velocidade instantânea é a derivada da função x(t) em relação a t avaliada no instante t_1 , obtemos a seguinte relação que dá uma interpretação geométrica da derivada:

$$v(t_1) = \frac{dx}{dt}(t_1) = \tan \alpha.$$

.

A figura 4 ilustra como podemos obter o sinal da velocidade instantânea em qualquer instante de tempo a partir de um gráfico x versus t. Além disso, da figura 4 também podemos obter que $|v(t_1)| < |v(t_2)|$, pois a tangente que passa pelo ponto $(t_2, x(t_2))$ é

Figura 3: Cálculo da velocidade instantânea usando um gráfico x versus t.

mais vertical (mais inclinada) do que a que passa pelo ponto $(t_1, x(t_1))$. Analogamente, vamos ter que $v(t_3) < v(t_4)$. Nesse caso ambas as velocidades são positivas e, por conseguinte, não precisamos considerar o valor absoluto.

3 Acelerações média e instantânea

De forma análoga à velocidade média, definimos a **aceleração média** no intervalo $[t_1, t_2]$ por

$$a_m = \frac{v(t_2) - v(t_1)}{t_2 - t_1} \,,$$

onde $v(t_2)$ e $v(t_1)$ são as velocidades instantâneas nos instantes t_2 e t_1 respectivamente. A **aceleração instantânea** em um instante t será definida então por

$$a(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(\Delta t)}{\Delta t} = \frac{dv}{dt}.$$

Como $v = \frac{dx}{dt}$, então

$$a(t) = \frac{d}{dt} \left(\frac{dx}{dt} \right) = \frac{d^2x}{dt^2} \,,$$

onde a última expressão é chamada de **segunda derivada** de x(t) em relação a t.

Suponhamos que a posição de um corpo em cada instante de tempo esteja dada por $x(t) = (5 \,\mathrm{m/s^3})t^3 - (10 \,\mathrm{m/s^2})t^2 + 20 \,\mathrm{m}$. A velocidade isntantânea em qualquer instante t está dada por $v(t) = (15 \,\mathrm{m/s^3})t^2 - (20 \,\mathrm{m/s^2})t$. Logo, $v(0 \,\mathrm{s}) = 0 \,\mathrm{m/s}$ e $v(1 \,\mathrm{s}) = -5 \,\mathrm{m/s}$. Com essa informação podemos encontrar que a aceleração média no intervalo $[0 \,\mathrm{s}, 1 \,\mathrm{s}]$ é

$$a_m = \frac{v(1 s) - v(0 s)}{1 s - 0 s} = -5 m/s^2.$$

Figura 4: Sinais da velocidade instantânea.

Por outro lado, a aceleração instantânea em um instante t qualquer está dada por

$$a(t) = \frac{dv}{dt} = (30 \,\mathrm{m/s^3})t - 20 \,\mathrm{m/s^2}$$
.

Em particular, a aceleração instantânea no instante t = 1 s será $a(1 \text{ s}) = 10 \text{ m/s}^2$.

Assim como obtivemos as velocidades média e instantânea a partir de um gráfico x versus t, as acelerações média e instantânea podem ser obtidas exatamente da mesma forma a partir de um gráfico v versus t. A situação é diferente usando um gráfico x versus t; porém, nesse caso é possível pelo menos determinar os sinais das acelerações média e instantânea. Por exemplo, consideremos o gráfico x versus t dado na figura 4. Nele podemos determinar o sinal da velocidade instantânea em qualquer instante e, mais ainda, estimar o módulo dela. Logo, a aceleração média no intervalo $[0\,\mathrm{s},t_1]$ vai ser negativa, pois $v(t_1)<0\,\mathrm{m/s}$ e $v(0\,\mathrm{s})=0\,\mathrm{m/s}$; enquanto que a aceleração média no intervalo $[0\,\mathrm{s},t_3]$ vai ser positiva, pois $v(t_3)>0\,\mathrm{m/s}$. Além disso, a aceleração média no intervalo $[t_3,t_4]$ vai ser positiva, pois $v(t_4)>v(t_3)$.

Para determinar o sinal da aceleração instantânea em um determinado instante t_0 a partir de um gráfico x versus t, precisamos analisar as inclinações das retas tangentes em pontos ao redor de $(t_0, x(t_0))$. Se em uma vizinhança pequena ao redor do instante t_0 o gráfico x versus t é aproximadamente uma linha reta, então a aceleração instantânea no ponto t_0 será igual a $0 \,\mathrm{m/s^2}$. Se nessa vizinhança pequena o gráfico tem forma de \smile , a aceleração instantânea no instante t_0 será positiva. Nesse caso também dizemos que o gráfico x versus t tem **curvatura positiva** no ponto t_0 . Por outro lado, se em uma vizinhança pequena de t_0 o gráfico de x versus t tem forma de \frown , a aceleração instantânea no instante t_0 será negativa e diremos também que o gráfico tem **curvatura negativa** no ponto t_0 . Por exemplo, da figura 4 podemos ver que $a(0 \,\mathrm{s}) > 0 \,\mathrm{m/s^2}$, $a(t_1) < 0 \,\mathrm{m/s^2}$, $a(t_2) > 0 \,\mathrm{m/s^2}$, $a(t_3) > 0 \,\mathrm{m/s^2}$ e $a(t_4) > 0 \,\mathrm{m/s^2}$. Como o gráfico x versus t tem curvatura negativa (\frown) no instante t_2 e curvatura positiva (\smile) no instante t_3 , entre os instantes t_2

e t_3 deve existir um instante t^* para o qual todo instante justo antes de t^* tem curvatura negativa e todo instante justo depois de t^* tem curvatura positiva. O ponto $(t^*, x(t^*))$ é chamado de um **ponto de inflexão** do gráfico e a aceleração instantânea no instante t^* é $0 \,\mathrm{m/s^2}$.

4 Cálculo do deslocamento usando um gráfico v versus t

Consideremos um corpo que se move em linha reta com velocidade instantânea constante $v(t) = v_0$. O gráfico v versus t está dado na figura ??. A área da região limitada pelo gráfico entre os instantes t_1 e t_2 é igual a $v_0(t_2 - t_1)$. Por outro lado, como a velocidade instantânea é uma constante v_0 , a velocidade média em qualquer intervalo de tempo será igual a v_0 . Em particular, no intervalo $[t_1, t_2]$ a velocidade média é

$$v_m = \frac{x(t_2) - x(t_1)}{t_2 - t_1} = v_0.$$

Portanto, $x(t_2) - x(t_1) = v_0(t_2 - t_1)$, ou seja, o deslocamento $x(t_2) - x(t_1)$ é igual à área da região limitada pelo gráfico entre os instantes t_1 e t_2 e o eixo t.

No caso geral em que o gráfico v versus t é uma curva arbitrária, fixados dois instantes t_1 e t_2 , subdividimos o intervalo $[t_1,t_2]$ em vários subintervalos de comprimento pequeno. Em cada subintervalo consideramos que a velocidade é constante. Dessa maneira, o gráfico v versus t vai ser aproximado pelo gráfico de uma função escalonada. Além disso a soma das áreas dos degraus formados pelo gráfico da função escalonada é aproximadamente igual à área da região limitada pelo gráfico v versus t entre os instantes t_1 e t_2 e o eixo t. Por outro lado, essa soma de áreas vai ser aproximadamente igual a $x(t_2) - x(t_1)$. Logo, no limite quando o número de pontos de subdivisão se tora muito grande e, consequentemente, o comprimento dos subintervalos muito pequeno, o erro cometido nas aproximações se torna desprezível. Dessa maneira, vamos ter que o deslocamento $x(t_2) - x(t_1)$ é igual à área da região limitada pelo gráfico v versus t entre os instantes t_1 e t_2 e o eixo t. Essa área é usualmente denotada por

$$\int_{t_1}^{t_2} v(t) dt,$$

e é chamada de **integral** de v(t) no intervalo $[t_1, t_2]$. Portanto, temos encontrado que

$$x(t_2) - x(t_1) = \int_{t_1}^{t_2} v(t) dt$$
.

Vamos ver agora como calculamos a integral de uma função. Para isso vamos invocar o chamado **teorema fundamental do cálculo** que, para nossos fins, diz o seguinte:

$$\int_{t_1}^{t_2} v(t) dt = V(t)|_{t_1}^{t_2} = V(t_2) - V(t_1),$$

¹Pelo teorema do valor médio.

onde V(t) é qualquer função que satisfaz a condição

$$\frac{dV}{dt} = v(t) .$$

Vejamos alguns exemplos:

• Se v(t) = c é a função constante, considerando V(t) = ct, vemos que $\frac{dV}{dt} = c = v(t)$. Logo, pelo teorema fundamental do cálculo,

$$\int_{t_1}^{t_2} v(t) dt = \int_{t_1}^{t_2} c dt = ct|_{t_1}^{t_2} = c(t_2 - t_1).$$

• Se v(t)=ct, considerando $V(t)=at^2$, vemos que $\frac{dV}{dt}=2at$. Logo, para ter $\frac{dV}{dt}=v(t)$, devemos ter 2at=ct, ou seja, a=c/2. Dessa maneira, a função $V(t)=ct^2/2$ é tal que $\frac{dV}{dt}=v(t)$. Logo, pelo teorema fundamental do cálculo,

$$\int_{t_1}^{t_2} v(t) dt = \int_{t_1}^{t_2} ct dt = ct|_{t_1}^{t_2} = \frac{c}{2} (t_2^2 - t_1^2).$$

Dos exemplos anteriores podemos inferir que, se $v(t)=ct^2$, a função que devemos encontrar com o objetivo de calcular $\int_{t_1}^{t_2} v(t) dt$ deve ser $V(t)=ct^3/3$. Se $v(t)=ct^3$, devemos ter $V(t)=ct^4/4$. Portanto, em geral vamos ter a seguinte fórmula de integração:

$$\int_{t_1}^{t_2} ct^n \, dt = \left. \frac{c}{n+1} t^{n+1} \right|_{t_1}^{t_2} . \tag{1}$$

Exemplo:

$$\int_{1}^{2} (5t^{2} - 3t + 4) dt = \int_{1}^{2} 5t^{2} dt - \int_{1}^{2} 3t dt + \int_{1}^{2} 4 dt$$

$$= \frac{5}{3}t^{3}\Big|_{1}^{2} - \frac{3}{2}t^{2}\Big|_{1}^{2} + 4t\Big|_{1}^{2}$$

$$= \frac{5}{3}(8 - 1) - \frac{3}{2}(4 - 1) + 4(2 - 1)$$

$$= \frac{35}{3} - \frac{9}{2} + 4$$

$$= \frac{67}{6}.$$

5 Movimento com aceleração constante

Consideremos um corpo que se move em linha reta com aceleração instantânea $a(t) = a_0$, para qualquer instante t. Logo, como $a(t) = \frac{dv}{dt}$, vamos ter que

$$\frac{dv}{dt} = a_0.$$

Integrando ambos os lados dessa equação de 0 s até t_1 , temos

$$\int_{0 \, \mathbf{s}}^{t_1} \frac{dv}{dt} \, dt = \int_{0 \, \mathbf{s}}^{t_1} a_0 \, dt \, .$$

Pelo teorema fundamental do cálculo, o lado esquerdo dessa equação vai ser igual a $v(t)|_{0s}^{t_1}$; no lado direito calculamos a integral usando a fórmula (1). Logo, vamos ter

$$v(t_1) - v(0 s) = a_0(t_1 - 0 s)$$
.

Como t_1 é um instante arbitrário, podemos substituir t_1 por t. dessa maneira, vamos ter a relação

$$v(t) = v(0s) + a_0t. (2)$$