

Modelos Generativos Profundos

Clase 3: Introducción a las redes bayesianas

Fernando Fêtis Riquelme Otoño, 2025

Facultad de Ciencias Físicas y Matemáticas Universidad de Chile

Clase de hoy

Ejemplo inicial

Formulación de una red bayesiana

Ejemplo inicial

Se definirán 4 variables aleatorias binarias asociadas a un modelo probabilístico de juguete.

- Variable aleatoria x₁: el estudiante estudia para el examen.
- Variable aleatoria x₂: el estudiante responde bien las preguntas teóricas.
- Variable aleatoria x₃: el estudiante responde bien las preguntas prácticas.
- · Variable aleatoria x4: el estudiante aprueba el curso.

Se definirán 4 variables aleatorias binarias asociadas a un modelo probabilístico de juguete.

- Variable aleatoria x_1 : el estudiante estudia para el examen.
- Variable aleatoria x₂: el estudiante responde bien las preguntas teóricas.
- Variable aleatoria x₃: el estudiante responde bien las preguntas prácticas.
- · Variable aleatoria x4: el estudiante aprueba el curso.

Se definirán 4 variables aleatorias binarias asociadas a un modelo probabilístico de juguete.

- Variable aleatoria x_1 : el estudiante estudia para el examen.
- Variable aleatoria x₂: el estudiante responde bien las preguntas teóricas.
- Variable aleatoria x₃: el estudiante responde bien las preguntas prácticas.
- · Variable aleatoria x4: el estudiante aprueba el curso.

Se definirán 4 variables aleatorias binarias asociadas a un modelo probabilístico de juguete.

- Variable aleatoria x_1 : el estudiante estudia para el examen.
- Variable aleatoria x_2 : el estudiante responde bien las preguntas teóricas.
- **Variable aleatoria** x_3 : el estudiante responde bien las preguntas prácticas.
- · Variable aleatoria x4: el estudiante aprueba el curso.

Se definirán 4 variables aleatorias binarias asociadas a un modelo probabilístico de juguete.

- Variable aleatoria x_1 : el estudiante estudia para el examen.
- Variable aleatoria x_2 : el estudiante responde bien las preguntas teóricas.
- Variable aleatoria x₃: el estudiante responde bien las preguntas prácticas.
- · Variable aleatoria x4: el estudiante aprueba el curso.

Se definirán 4 variables aleatorias binarias asociadas a un modelo probabilístico de juguete.

- Variable aleatoria x_1 : el estudiante estudia para el examen.
- Variable aleatoria x₂: el estudiante responde bien las preguntas teóricas.
- Variable aleatoria x_3 : el estudiante responde bien las preguntas prácticas.
- **Variable aleatoria** *x*₄**:** el estudiante aprueba el curso.

Relaciones de dependencia del modelo

Se considerarán las siguientes relaciones de dependencia directa entre las 4 variables:

entre las 4 variables:

$$p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2|x_1)p(x_3|x_1)p(x_4|x_2, x_3)$$

$$x_4$$

$$p(x_1 = 0)$$
 $p(x_1 = 1)$
0.10 0.90

$p(x_1=0)$	$p(x_1=1)$
0.10	0.90

$$p(x_1 = 0)$$
 $p(x_1 = 1)$
0.10 0.90

<i>X</i> ₁	$p(x_2=0 x_1)$	$p(x_2=1 x_1)$
0	0.80	0.20
1	0.25	0.75

$$p(x_1 = 0)$$
 $p(x_1 = 1)$
0.10 0.90

<i>X</i> ₁	$p(x_3=0 x_1)$	$p(x_3=1 x_1)$
0	0.70	0.30
1	0.20	0.80

$$p(x_1 = 0)$$
 $p(x_1 = 1)$
0.10 0.90

<i>X</i> ₂	<i>X</i> ₃	$p(x_4 = 0 x_2, x_3)$	$p(x_4 = 1 x_2, x_3)$
0	0	0.95	0.05
1	0	0.35	0.65
0	1	0.40	0.60
1	1	0.01	0.99

- ¿Cuál es la probabilidad de que el estudiante responda bien las preguntas teóricas?
- ¿Cuál es la probabilidad de que el estudiante haya estudiado si no respondió bien las preguntas teóricas?
- ¿Cuál es la probabilidad de responder bien tanto las preguntas teóricas como las preguntas prácticas?
- ¿Cuál es la probabilidad de responder bien las preguntas prácticas si se respondieron bien las preguntas teóricas?

- ¿Cuál es la probabilidad de que el estudiante responda bien las preguntas teóricas?
- ¿Cuál es la probabilidad de que el estudiante haya estudiado si no respondió bien las preguntas teóricas?
- ¿Cuál es la probabilidad de responder bien tanto las preguntas teóricas como las preguntas prácticas?
- ¿Cuál es la probabilidad de responder bien las preguntas prácticas si se respondieron bien las preguntas teóricas?

- ¿Cuál es la probabilidad de que el estudiante responda bien las preguntas teóricas?
- ¿Cuál es la probabilidad de que el estudiante haya estudiado si no respondió bien las preguntas teóricas?
- ¿Cuál es la probabilidad de responder bien tanto las preguntas teóricas como las preguntas prácticas?
- ¿Cuál es la probabilidad de responder bien las preguntas prácticas si se respondieron bien las preguntas teóricas?

- ¿Cuál es la probabilidad de que el estudiante responda bien las preguntas teóricas?
- ¿Cuál es la probabilidad de que el estudiante haya estudiado si no respondió bien las preguntas teóricas?
- ¿Cuál es la probabilidad de responder bien tanto las preguntas teóricas como las preguntas prácticas?
- ¿Cuál es la probabilidad de responder bien las preguntas prácticas si se respondieron bien las preguntas teóricas?

- ¿Cuál es la probabilidad de que el estudiante responda bien las preguntas teóricas?
- ¿Cuál es la probabilidad de que el estudiante haya estudiado si no respondió bien las preguntas teóricas?
- ¿Cuál es la probabilidad de responder bien tanto las preguntas teóricas como las preguntas prácticas?
- ¿Cuál es la probabilidad de responder bien las preguntas prácticas si se respondieron bien las preguntas teóricas?

Formulación de una red bayesiana

Aprendizaje de una distribución conjunta

Se busca modelar una distribución conjunta $p(x_1,...,x_N)$. Por qué no usar KDE?

- · Distribución empírica
- · Kernel density estimation.

Aprendizaje de una distribución conjunta

Se busca modelar una distribución conjunta $p(x_1,...,x_N)$. Por qué no usar KDE?

- · Distribución empírica.
- · Kernel density estimation

Aprendizaje de una distribución conjunta

Se busca modelar una distribución conjunta $p(x_1,...,x_N)$. Por qué no usar KDE?

- Distribución empírica.
- Kernel density estimation.

Una red bayesiana utiliza un grafo dirigido acíclico para representar la distribución conjunta de un modelo probabilístico.

- Algunos conceptos de grafos: camino dirigido, DAG, nodos padres, orden topológico.
- · Factorización de una red bayesiana: propiedad de Markov.
- Modelos de variable latente: reducción de dimensionalidad, interpolación en el espacio latente, manipulación de atributos.

Una red bayesiana utiliza un grafo dirigido acíclico para representar la distribución conjunta de un modelo probabilístico.

- Algunos conceptos de grafos: camino dirigido, DAG, nodos padres, orden topológico.
- · Factorización de una red bayesiana: propiedad de Markov.
- Modelos de variable latente: reducción de dimensionalidad, interpolación en el espacio latente, manipulación de atributos.

Una red bayesiana utiliza un grafo dirigido acíclico para representar la distribución conjunta de un modelo probabilístico.

- Algunos conceptos de grafos: camino dirigido, DAG, nodos padres, orden topológico.
- · Factorización de una red bayesiana: propiedad de Markov.
- Modelos de variable latente: reducción de dimensionalidad, interpolación en el espacio latente, manipulación de atributos.

Una red bayesiana utiliza un grafo dirigido acíclico para representar la distribución conjunta de un modelo probabilístico.

- Algunos conceptos de grafos: camino dirigido, DAG, nodos padres, orden topológico.
- · Factorización de una red bayesiana: propiedad de Markov.
- Modelos de variable latente: reducción de dimensionalidad, interpolación en el espacio latente, manipulación de atributos.

- Modelos clásicos en ML: naïve Bayes, mixturas, cadenas de Markov, HHMs.
- Modelos generativos modernos: ARMs, VAEs, GANs, DMs, NFs.
- Modelos generativos condicionales: modalidades, arquitectura, comparación con modelos discriminativos.
- Generación de nuevas muestras: ancestral sampling, MCMC.

- Modelos clásicos en ML: naïve Bayes, mixturas, cadenas de Markov, HHMs.
- Modelos generativos modernos: ARMs, VAEs, GANs, DMs, NFs.
- Modelos generativos condicionales: modalidades, arquitectura, comparación con modelos discriminativos.
- Generación de nuevas muestras: ancestral sampling, MCMC.

- Modelos clásicos en ML: naïve Bayes, mixturas, cadenas de Markov, HHMs.
- Modelos generativos modernos: ARMs, VAEs, GANs, DMs, NFs.
- Modelos generativos condicionales: modalidades, arquitectura, comparación con modelos discriminativos.
- Generación de nuevas muestras: ancestral sampling, MCMC.

- Modelos clásicos en ML: naïve Bayes, mixturas, cadenas de Markov, HHMs.
- Modelos generativos modernos: ARMs, VAEs, GANs, DMs, NFs.
- Modelos generativos condicionales: modalidades, arquitectura, comparación con modelos discriminativos.
- Generación de nuevas muestras: ancestral sampling, MCMC.

- Modelos clásicos en ML: naïve Bayes, mixturas, cadenas de Markov, HHMs.
- Modelos generativos modernos: ARMs, VAEs, GANs, DMs, NFs.
- Modelos generativos condicionales: modalidades, arquitectura, comparación con modelos discriminativos.
- Generación de nuevas muestras: ancestral sampling, MCMC.

Inferencia

- Por lo general, las distintas redes bayesianas están motivadas por ideas simples.
- Lo que es más difícil es lograr obtener los parámetros de las distribuciones involucradas. Cada paradigma utiliza ur enfoque distinto.
- Esto es necesario para que el modelo sea similar a la distribución que busca modelar.

Inferencia

- Por lo general, las distintas redes bayesianas están motivadas por ideas simples.
- Lo que es más difícil es lograr obtener los parámetros de las distribuciones involucradas. Cada paradigma utiliza un enfoque distinto.
- Esto es necesario para que el modelo sea similar a la distribución que busca modelar.

Inferencia

- Por lo general, las distintas redes bayesianas están motivadas por ideas simples.
- Lo que es más difícil es lograr obtener los parámetros de las distribuciones involucradas. Cada paradigma utiliza ur enfoque distinto.
- Esto es necesario para que el modelo sea similar a la distribución que busca modelar.

Próxima clase

En la próxima clase.

- Se estudiará el problema de inferencia en redes bayesianas.
- Se revisará el enfoque de máxima verosimilitud junto a sus limitaciones.

Próxima clase

En la próxima clase.

- Se estudiará el problema de inferencia en redes bayesianas.
- Se revisará el enfoque de máxima verosimilitud junto a sus limitaciones.

Próxima clase

En la próxima clase.

- Se estudiará el problema de inferencia en redes bayesianas.
- Se revisará el enfoque de máxima verosimilitud junto a sus limitaciones.

Modelos Generativos Profundos Clase 3: Introducción a las redes bayesianas