Exercice 4

2/ Donner la grammaire du langage suivant :

L2= L'ensemble des nombres binaires sans 0 inutiles en tête.

Corrigé

10010 ∈ L2 mais 01110 ∉ L2 (le zéro mis en rouge dans le nombre 01110 est inutile).

Les mots de L2 commencent par 1 sauf le nombre zéro. Après le 1^{er} symbole, le mot contient une suite quelconque de 0 et1.

On peut énumérer les premiers mots du langage :

On peut décrire les mots du langage L2 comme suit :

L2 =
$$\{1w / w \in \{0, 1\}^*\} \cup \{0\}$$

Maintenant, considérons la grammaire suivante :

$$bin \rightarrow 1bin/0/1$$

On peut dériver des mots en utilisant la règle 1 comme suit :

$$bin \Rightarrow 1 bin \Rightarrow 11 bin \Rightarrow 111 bin \Rightarrow$$

De façon générale, la règle 1 permet de générer une séquence de 1 :

bin
$$\Rightarrow$$
1ⁿ bin n≥0.

Puis, en utilisant la règle 2 ou la règle 3, on aura alors :

$$bin \Rightarrow 1^n bin \Rightarrow 1^n 0$$
 ou $bin \Rightarrow 1^n bin \Rightarrow 1^n 1$

Donc, la grammaire ci-dessus génère les mots composés d'une séquence de 1 se terminant soit par 0 sot par 1. Donc, elle ne génère pas tous les mots de L2. On ne peut pas générer, par exemple 101.

On utilisera un deuxième non-terminal pour générer les mots se trouvant après le 1^{er} symbole. En effet, le mot se trouvant après le 1^{er} symbole appartient à $\{0, 1\}^*$.

bin \rightarrow 1 suite /*Le premier symbole est 1*/

 $bin \rightarrow 0$

suite \rightarrow 0 suite/1 suite/ ϵ

Donc, G2=({0, 1}, {bin, suite}, bin, P2)