Ι

Lesson

After going through this lesson, you are expected to:

- Characterize the roots of a quadratic equation using the discriminant.
- Describe the relationship between the coefficients and the roots of a quadratic equation.

Roots of quadratic equation can be imaginary number, equal or two distinct roots. It can be determined by the value of b^2 - 4ac.

Learning Task 1. Complete the table given below and find the relations among constants a, b and c in the quadratic equation standard form.

Equation	_	b	С	h2 4aa	Roots	
	а			b ² – 4ac	\mathbf{x}_1	\mathbf{x}_2
$x^2 + 4x + 3 = 0$						
$x^2 - 5x + 4 = 0$						+
$x^2 - 49 = 0$				Lame		
$4x^2 - 25 = 0$						
$2x^2 + 7x + 3 = 0$						

The expression b^2 – 4ac, is the quadratic equation's discriminant. The discriminant determines the nature of the roots of a quadratic equation.

 b^2 - 4ac = 0, then the roots are real and equal

 b^2 - 4ac > 0, then the roots are real and unequal

 b^2 - 4ac < 0, then the roots are not real

Illustrative Examples:

1. Find the nature of roots of the equation $x^2 + 4x + 3 = 0$.

The values of a, b and c in the equation are 1, 4 and 3, respectively.

Evaluating $b^2 - 4ac$,

$$b^{2} - 4ac = (4)^{2} - 4(1)(3)$$
$$= 16 - 12$$
$$= 4$$

Since b^2 - 4ac > 0, then the equation has two real and unequal roots.

PIVOT 4A CALABARZON

To check, solve for the roots of the equation.

Checking,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-4 \pm \sqrt{4^2 - 4(1)(3)}}{2(1)}$$

$$x = \frac{-4 \pm \sqrt{16 - 12}}{2}$$

$$x = \frac{-4 \pm 2}{2}$$

$$x = -1$$
 or -3 (rational and unequal)

When the value of the determinant b2 - 4ac is greater than zero and is not a perfect square, then the roots are irrational numbers and unequal.

2. Determine the nature of roots of the equation $x^2 - 6x + 9 = 0$.

The values of a, b and c in the equation are 1, -6 and 9, respectively.

Evaluating b² – 4ac,

Since $b^2 - 4ac = 0$, then the roots of quadratic equation are real and equal.

Check:
$$x^2 - 6x + 9 = 0$$

 $(x - 3)^2 = 0 \longrightarrow x - 3 = 0 \longrightarrow x = 3$

3. What kind of roots does the equation $x^2 + 2x + 3 = 0$ have?

The values of a, b and c in the equation are 1, 2 and 3, respectively.

Evaluating b^2 – 4ac,

$$b^{2} - 4ac = (2)^{2} - 4(1)(3)$$
$$= 4 - 12$$
$$= -8$$

Since b - 4ac < -8, the n the roots are not real.

The sum and product of the roots of a given quadratic equation (in one variable) as you have noticed in the activity table have relations among the constants a, b and c of said equation in standard form. This is given by the actual sum and product of the roots in using the Quadratic Formula to solve a given quadratic equation: given that the roots are:

$$\mathbf{x}_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $\mathbf{x}_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$

Sum of the Roots =
$$x_1 + x_2$$

$$= \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b + \sqrt{b^2 - 4ac}}{2a} + \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b + \sqrt{b^2 - 4ac} - b - \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b - b}{2a}$$

$$= \frac{-2b}{2a}$$

$$= \frac{-2b}{2a}$$

$$= \frac{-b}{a}$$

$$x_1 + x_2 = -\frac{b}{a}$$
Product of the Roots = $x_1 \cdot x_2$

$$= \frac{-b + \sqrt{b^2 - 4ac}}{2a} \cdot \frac{-b - \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{(-b)^2 - (\sqrt{b^2 - 4ac})^2}{4a^2}$$

$$= \frac{b^2 - b^2 + 4ac}{4a^2}$$

$$= \frac{4ac}{4a^2}$$

$$= \frac{4ac}{4a^2}$$

$$= \frac{a}{a}$$

$$= \frac{a}{a}$$

$$= \frac{a}{a}$$

So, the sum of the roots of a given quadratic equation is the ratio $-\frac{b}{a}$,

while the product of its roots is the ratio $\frac{c}{a}$. In general, all you need to do is

write the quadratic equation in standard form and identify the values of the constants a, b and c. In finding the sum and product of the roots of the equations:

a.
$$x^2 + 5x + 4 = 0$$
, the values of $a = 1$, $b = 5$ and $c = 4$, respectively.

Substituting values in the ratio $-\frac{b}{a}$ for

Sum of roots,
$$x_1 + x_2 = -\frac{b}{a} = -\frac{5}{1} = -5$$
, while for

Product of roots,
$$x_1 \cdot x_2 = \frac{c}{a} = \frac{4}{1} = 4$$
.

Checking:

Using factoring,
$$(x + 4)(x + 1) = 0$$

Using factoring, (x + 4)(x + 1) = 0 Factoring the quadratic trinomial part

$$x + 4 = 0$$
: $x + 1 = 0$

x + 4 = 0; x + 1 = 0 Zero Product Property

$$x = -4$$
; $x = -1$ by APE

$$x_1 + x_2 = -4 - 1 = -5$$
 Sum of roots

$$x_1 \cdot x_2 = (-4)(-1) = 5$$
 Product of roots

b.
$$2x^2 - 5x + 3 = 0$$
, the values of a = 2, b = -5 and c = 3, respectively.

Substituting values in the ratio \underline{b} for

Sum of roots, $x_1 + x_2 = -\frac{b}{a} = -\frac{5}{2}$, while for

Product of roots, $x_1 \cdot x_2 = \frac{c}{a} = \frac{3}{2}$.

Checking:

Using factoring, (2x - 3)(x - 1) = 0

Factoring the quadratic trinomial part

$$2x - 3 = 0; x - 1 = 0$$

Zero Product Property

$$2x = 3; \quad x = 1$$

Learning Task 2. Complete the table

Equation	а	b	С	Discriminant	Nature of the Roots
$x^2 - 6x - 27 = 0$					
$x^2 - 25 = 0$					
$x^2 + 10x + 25 = 0$					
$2x^2 - 5x + 3 = 0$					

Learning Task 3. Do the following:

A. Characterize the roots of the following quadratic equations using the discriminant.

1.
$$x^2 + 4x + 3 = 0$$

$$4. 4x^2 - 4x + 1 = 0$$

$$2. x^2 - 5x + 4 = 0$$

$$5. 2x^2 + 6x + 3 = 0$$

3.
$$x^2 + 7 = 0$$

B. Complete the table.

Equation	а	b	С	Ro	oots	$x_1 + x_2$	X 1 • X 2
				\mathbf{x}_1	\mathbf{x}_2		
$x^2 + 5x + 4 = 0$							
$x^2 - 6x - 27 = 0$							L
$x^2 - 25 = 0$					1	1000	
$x^2 + 10x + 25 = 0$)
$2x^2 - 5x + 3 = 0$							

A

Learning Task 4. Solve the problem by applying the sum and product of roots of quadratic equations.

The perimeter of a rectangular metal plate is 36 dm and its area is 80 dm². Find its dimensions. (Relate the measures to the sum and product of a quadratic equation.)

The perimeter of a rectangle is twice the sum of its length and width while its area is the product of its length and width. Such that,

Perimeter = 2(L + w) and Area = $L \cdot w$