CSE235 데이터베이스 시스템 (Database Systems) Lecture 07: 관계데이터 연산

담당교수: 전강욱(컴퓨터공학부) kw.chon@koreatech.ac.kr

지난시간 복습

- 관계 데이터 모델에 관해 학습
 - □ 개념적 구조를 **행과 열로 구성된 표(릴레이션) 형태**로 다루는 모델
 - □ 관련 용어: 릴레이션, 튜플, 속성, 차수, 카디널리티 등
- 릴레이션(relation)의 특성
 - □ 튜플의 유일성, 무순서
 - 속성의 무순서, 원자성
- 릴레이션의 키
 - 튜플들을 유일하게 구별하는 속성 또는 속성들의 집합
 - 유일성, 최소성
 - □ 키의 종류: 기본키, 수퍼키, 외래키, 대체키 슈퍼키(유일성)

지난시간 복습 (계속)

- 관계 데이터 모델의 제약 (무결성 제약조건)
 - □ 개체 무결성 제약조건(entity integrity constraint): 기본키를 구성하는 모든 속성은 null 값이 올 수 없음
 - □ 참조 무결성 제약조건(referential integrity constraint): 외래키는 참조할 수 없는 값을 가질 수 없음(단, null 값은 허용)

WORKS_ON 외래키(FK)

P	RO	JE	CT	_

▶기본키(PK)

			· /			\ /	
ESSN	PNO	HOURS		PNAME	<u>PNUMBEŘ</u>	PLOCATION	DNUM
123456789	1	32.5		ProductX	1	Bellaire	5
123456789	2	7.5		ProductY	2	Sugarland	5
666884444	3	40		ProductZ	3	Houston	5
453453453	1	20		Computerization	10	Stafford	4
453453453	2	20		Reorganization	20	Houston	1
333445555	2	10		Newbenefits	30	Stafford	4
333445555	3	10	1		•	•	

복습 문제

- 릴레이션의 속성을 튜플이라고 한다. ()
- 속성 하나가 가질 수 있는 모든 값의 집합을 해당 속성의() 라고 한다.
- 관계 데이터 모델에서는 속성의 값으로 더는 분해할 수 없는 원자 값만 사용할 수 있다. ()
- Null 값은 특정 속성에 해당되는 값이 없음을 나타낸다. ()
- 최소성과 유일성을 모두 만족하는 키를 수퍼키라고한다.
 ()

복습 문제 (계속)

- 기본키의 속성은 null이 아니어야 하고, 중복이 불가능해 야 한다. ()
- 위의 제약 조건은 ()라고 한다.
- 동일한 구조의 관점에서 모든 데이터를 논리적으로 구성 하며 선언적인 질의어를 통한 데이터 접근을 제공하는 데이터 모델을 (A)(이)라고 하고, 하나의 릴레이션에서 속성 전체 개수를 릴레이션의 (B)(이)라하고, 하나의 릴 레이션에서 튜플의 전체 개수를 릴레이션의 (C)(이)라 한다.

개요

■ 관계 데이터 연산

- 관계 대수
 - □ 일반 집합 연산자
 - □ 순수 관계 연산자

■ 관계 해석

관계 데이터 연산의 개념

■ 데이터 모델은 데이터 구조+<mark>연산</mark>+제약조건

관계 데이터 연산의 개념 (계속)

- 관계 데이터 모델의 연산
- 원하는 데이터를 얻기 위해 릴레이션에 필요한 처리 요구를 수행하는 것
- 관계 대수와 관계 해석: 기능과 표현력은 동등함
 - 관계 대수: 원하는 결과를 얻기 위해 데이터의 처리 과 정을 순서대로 기술하는 절차적 언어
 - 관계 해석: 원하는 결과를 얻기 위해 처리를 원하는 데 이터가 무엇인지만 기술하는 비절차적 언어

관계 데이터 연산의 개념 (계속)

- 관계 대수나 관계 해석은 개념적인 언어(DBMS 에서 사용되진 않음)
- 관계 대수나 관계 해석은 데이터 언어의 유용성 검증의 기준으로 사용
 - 관계 대수나 관계 해석으로 기술할 수 있는 모든 질의 (query)를 기술할 수 있는 데이터 언어를 관계적으로 완전(relationally complete)하다고 판단
 - 질의(query): 데이터에 대한 처리 요구

관계 대수

- 원하는 결과를 얻기 위해 릴레이션의 처리 과정을 순서 대로 기술하는 언어
 - 절차 언어(procedural language)
- 릴레이션을 다루는 연산들의 모임
 - □ 수학적 집합 연산
 - 합집합, 교집합, 차집합, 카티션 프로덕트
 - 관계 데이터베이스를 위한 특별 연산
 - 셀렉트(select), 프로젝트(project), 조인(join)
- 릴레이션에 대한 연산의 결과도 릴레이션
 - □ 중첩(nested)된 수식의 표현 가능
 - □ a.k.a., 폐쇄 특성(closure property)

관계 대수 (계속)

- 일반 집합 연산자 (set operation)
 - 릴레이션이 튜플의 집합이라는 개념을 이용하는 연산자
 - □ 피연산자(i.e., 릴레이션)가 두 개 필요
 - i.e., 합집합(∪), 교집합(∩), 차집합(-), 카티션 프로덕트(X)
- 합집합, 교집합, 차집합의 합병 가능(union-compatible) 조건
 - 두 릴레이션의 차수가 같아야 함
 - □ 두 릴레이션에서 서로 대응되는 속성의 도메인이 같아야 함

<u>CID</u>	<u>NAME</u>	AGE
INT	CHAR(20)	INT
100	Kim	32
200	Lee	7
300	Park	40
400	Kang	20
500	Yeom	20
600	Hwang	10
700	Chang	10

EID	NAME	AGE
INT	CHAR(20)	INT
100	Kim	32
200	Lee	37
300	Park	44
400	Kang	20
500	Yeom	63
600	Hwang	38
700	Chang	20

합병 가능한 릴레이션들.

일반 집합 연산자

- 합집합 (union, ∪)
 - $\square R \cup S = \{ t \mid t \in R \lor t \in S \}$
 - $|R \cup S| \le |R| + |S|$
- 교집합 (intersect, ∩)
 - $R \cap S = \{ t \mid t \in R \land t \in S \}$
 - $|R \cap S| \leq \min\{|R|, |S|\}$
- 차집합 (difference,-)
 - □ RS = $\{t \mid t \in R \land t \notin S\}$
 - \square $|RS| \le |R|$
- 카티션 프로덕트 (cartesian product,×)
 - \square R×S = { r·s | r∈R \land s∈S }
 - □ |R×S| = |R|×|S| 차수(degree) = R의 차수 + S의 차수
 - □ · : 접속(concatenation)

일반집합연산자: 합집합(union)

- 합병 가능한 두 릴레이션 R과 S의 합집합: R∪S
 - 릴레이션 R에 속하거나 릴레이션 S에 속하는 모든 튜플로 결과 릴레이션 구성
 - □ i.e., $R \cup S = \{ t \mid t \in R \lor t \in S \}$

■ 결과 릴레이션 특성

- 차수는 R과 S의 차수와 동일
- 카디널리티는 릴레이션 R과 S의 카디널리티를 더한 것과 같거나 작음
 - $|R \cup S| \le |R| + |S|$

■ 교환적 특징 및 결합적 특징

- \square RUS = SUR
- \square (RUS)UT = RU(SUT)

일반집합연산자: 교집합(intersection)

- 합병 가능한 두 릴레이션 R과 S의 교집합: R ∩ S
 - 릴레이션 R에 속하거나 릴레이션 S에 둘 다 속하는 모든
 튜플로 결과 릴레이션 구성
 - □ i.e., $R \cap S = \{t \mid t \in R \land t \in S\}$
- 결과 릴레이션 특성
 - □ 차수는 R과 S의 차수와 동일
 - 카디널리티는 릴레이션 R과 S의 어떤 카디널리티보다크지 않음
 - $|R \cap S| \leq \min\{|R|, |S|\}$
- 교환적 특징 및 결합적 특징
 - \square R \cap S = S \cap R
 - $\square (R \cap S) \cap T = R \cap (S \cap T)$

일반집합연산자: 차집합(difference)

- 합병 가능한 두 릴레이션 R과 S의 합집합: R-S
 - 릴레이션 R에 존재하고 릴레이션 S에 존재하지 않는 튜 플로 결과 릴레이션 구성
- 결과 릴레이션 특성
 - □ 차수는 R과 S의 차수와 동일
 - □ R-S의 카디널리티는 |R|과 같거나 작음
 - □ S-R의 카디널리티는 |S|과 같거나 작음
- 교환적 및 결합적 특징 없음

일반집합연산자: 카디션프로덕트 (cartesian product)

- 두 릴레이션 R과 S의 카디션프로덕트: R×S
 - 릴레이션 R에 속한 각 튜플과 릴레이션 S에 속한 각 튜플을 모두 연결
- 결과 릴레이션 특성
 - 차수는 릴레이션 R과 S의 차수의 합과 동일
 - 카디널러티는 릴레이션 R과 S의 카디널리티를 곱한 것과 동일
- 교환적 특징 및 결합적 특징
 - \square R×S=S×R
 - \square R×(S×T)=(R×S)×T

합집합, 교집합, 차집합 예제

(a) STUDENT FN LN

Susan Yao

Ramesh Shah

Johnny Kohler

Barbara Jones

Amy Ford

Jimmy

Emest

Wang

Gilbert

INSTRUCTOR	FNAME	LNAME
	John	Smith
	Ricardo	Browne
	Susan	Yao
	Francis	Johnson
	Ramesh	Shah

STUDENT U INSTRUCTOR

(b)

FN	LN
Susan	Yao
Ramesh	Shah
Johnny	Kohler
Barbara	Jones
Amy	Ford
Jimmy	Wang
Emest	Gilbert
John	Smith
Ricardo	Browne
Francis	Johnson

STI	IDFNT	JSTRI	JCTOR
JIL	JULINI	43 I I 7 (

FN	LN
Susan	Yao
Ramesh	Shah

STUDENT - INSTRUCTOR

(d)

FN	LN	
Johnny	Kohler	
Barbara	Jones	
Amy	Ford	
Jimmy	Wang	
Emest	Gilbert	

INSTRUCTOR - STUDENT

(e)

(C)

FNAME	LNAME
John	Smith
Ricardo	Browne
Francis	Johnson

Illustrating the set operations UNION, INTERSECTION, and DIFFERENCE. (a) Two union compatible relations. (b) STUDENT \cup INSTRUCTOR. (c) STUDENT \cap INSTRUCTOR. (d) STUDENT - INSTRUCTOR. (e) INSTRUCTOR - STUDENT.

카디션프로덕트 예제

FEMALE_ EMPS	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry,Bellaire,TX	F	43000	888665555	4
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5

EMPNAMES	FNAME	LNAME	SSN
11	Alicia	Zelaya	999887777
	Jennifer	Wallace	987654321
	Joyce	English	453453453

EMP_DEPENDENTS

 $3 \times 7 = 21$

FNAME	LNAME	SSN	ESSN	DEPENDENT_NAME	SEX	BDATE	
Alicia	Zelaya	999887777	333445555	Alice	F	1986-04-05	
Alicia	Zelaya	999887777	333445555	Theodore	M	1983-10-25	
Alicia	Zelaya	999887777	333445555	Joy	F	1958-05-03	
Alicia	Zelaya	999887777	987654321	Abner	M	1942-02-28	
Alicia	Zelaya	999887777	123456789	Michael	M	1988-01-04	
Alicia	Zelaya	999887777	123456789	Alice	F	1988-12-30	
Alicia	Zelaya	999887777	123456789	Elizabeth	F	1967-05-05	
Jennifer	Wallace	987654321	333445555	Alice	F	1986-04-05	
Jennifer	Wallace	987654321	333445555	Theodore	M	1983-10-25	
Jennifer	Wallace	987654321	333445555	Joy	F	1958-05-03	
Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	
Jennifer	Wallace	987654321	123456789	Michael	M	1988-01-04	
Jennifer	Wallace	987654321	123456789	Alice	F	1988-12-30	
Jennifer	Wallace	987654321	123456789	Elizabeth	F	1967-05-05	
Joyce	English	453453453	333445555	Alice	F	1986-04-05	
Joyce	English	453453453	333445555	Theodore	M	1983-10-25	
Joyce	English	453453453	333445555	Joy	F	1958-05-03	
Joyce	English	453453453	987654321	Abner	M	1942-02-28	
Jayce	English	453453453	123456789	Michael	M	1988-01-04	
Joyce	English	453453453	123456789	Alice	F	1988-12-30	
Joyce	English	453453453	123456789	Elizabeth	F	1967-05-05	

ACTUAL_DEPENDENTS	FNAME	LNAME	SSN	ESSN	DEPENDENT_NAME	SEX	BDATE	
	Jennifer	Wallace	987654321	987654321	Abner	M	1942-02-28	

RESULT	FNAME	LNAME	DEPENDENT_NAME
	Jennifer	Wallace	Abner

An illustration of the CARTESIAN PRODUCT operation.

순수 관계 연산자

- 릴레이션의 구조와 특성을 이용하는 연산자
 - 셀렉트 (select)
 - □ 프로젝트 (project)
 - □ 조인 (join)
 - □ 디비전 (division)

순수 관계 연산자: 셀렉트(select)

- 릴레이션에서 조건을 만족하는 튜플들만을 선택하여 결과 릴레이션 구성
- 하나의 릴레이션(i.e., R)을 대상으로 연산을 수행
 - 연산 형식: σ_{<조건식>}(R)
 - □ 데이터 언어적 표현법: R where <조건식>
 - □ 조건식: R의 속성들에 대한 임의의 부울식
 - a.k.a., 비교식, 프레디킷(predicate)
 - <속성 이름> <비교연산자> <상수값>
 - <속성 이름> <비교연산자> <속성 이름>
 - 비교연산자: =, <, ≤, >, ≥, ≠, SUBSTRING_OF (문자열 연산시 이용)

순수 관계 연산자: 셀렉트(계속)

EMPLOYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
THEORY	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	T	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	M	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	null	1

 $\sigma_{\text{(DNO=4 AND SALARY>25000) OR (DNO=5 AND SALARY>30000)}}$ (EMPLOYEE)

a)	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
	Franklin	Т	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry,Bellaire,TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 FireOak,Humble,TX	M	38000	333445555	5

순수 관계 연산자: 셀렉트(계속)

- 논리연산자 이용
 - AND, OR, NOT 연산자 이용 가능
- 교환법칙 성립
 - $\sigma_{<\Delta_{1}>}(\sigma_{<\Delta_{1}>}(R)) = \sigma_{<\Delta_{1}>}(\sigma_{<\Delta_{1}>}(R))$
- 결합법칙 성립
 - $\sigma_{<\Delta_{1}>}(\sigma_{<\Delta_{1}>}(...(\sigma_{<\Delta_{1}>}(R))...)) = \sigma_{<\Delta_{1}>}(\pi_{<\Delta_{1}>}(R))$

순수 관계 연산자: 프로젝트(project)

- 릴레이션에서 선택한 속성의 값으로 결과 릴레이 션을 구성
- 하나의 릴레이션(i.e., R)을 대상으로 연산을 수행
 - □ 연산 형식: Π_{<속성 목록>}(R)
 - □ 데이터 언어적 표현법: R[속성 목록]
- 결과 릴레이션의 튜플 수는 원래 릴레이션의 튜플 수보다 작거나 같음
 - □ 릴레이션은 중복 튜플을 인정하지 않음

순수 관계 연산자: 프로젝트(계속)

EMPLOYEE	FNAME	MINIT	LNAME	<u>SSN</u>	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNC
THEORY	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Trees	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	M	25000	987654321	4
	James	Е	Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	null	1

Π_{FNAME, LNAME, SALARY}(EMPLOYEE)

0)	LNAME	FNAME	SALARY
	Smith	John	30000
	Wong	Franklin	40000
	Zelaya	Alicia	25000
	Wallace	Jennifer	43000
	Narayan	Ramesh	38000
	English	Joyce	25000
	Jabbar	Ahmad	25000
	Borg	James	55000

Π_{SEX, SALARY} (EMPLOYEE)

순수 관계 연산자: 조인(join)

- 조인 속성을 이용해 두 릴레이션(i.e., R과 S)을
 조합하여 결과 릴레이션을 구성
 - □ R과 S로부터 값이 같은 튜플만을 결합하여 생성된 튜 플들을 결과 릴레이션에 포함
 - □ 조인 속성: 두 릴레이션이 공통으로 가지고 있는 속성
 - 표현법: R⋈S
 - □ a.k.a., 자연조인(natural join)

세타조인(theta join, Θ-join)

- □ 자연 조인에 비하여 더 일반화된 조인
- 주어진 조인 조건을 만족하는 두 릴레이션의 모든 튜 플을 연결하여 생성된 새로운 튜플로 결과 릴레이션을 구성
- 결과 릴레이션의 차수는 두 릴레이션의 차수를 더한 것과 같음
- □ 표현법: R⋈<조인조건>S (두 릴레이션들 R과 S에 대해)
 - <조건> AND <조건> AND ... AND <조건>
 - 각 조건의 형태는 A_iOB_i 이며, Ai 는 R의 속성, Bj는 S의 속성
 - $\Theta = \{=, <, \leq, >, \geq, \neq\}$

■ 동일 조인(equi-join)

□ Θ연산자가 "="인 세타조인

DEPARTMENT	DNAME	DNUMBER	MGRSSN	MGRSTARTDATE
Aurelmann so	Research	5	333445555	1988-05-22
7. 2. 1	Administration	4	987654321	1995-01-01
Hallscores with	Headquarters	1	888665555	1981-06-19

EMPLOYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
I TIPO EOU	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Total	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	M	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	null	1

DEPT_MGR ← **DEPARTMENT** ⋈_{MGRSSN=SSN}**EMPLOYEE**

DEPT_MGR	DNAME	DNUMBER	MGRSSN	 FNAME	MINIT	LNAME	SSN	
	Research	5	333445555	 Franklin	Т	Wong	333445555	
	Administration	4	987654321	 Jennifer	S	Wallace	987654321	
	Headquarters	1	888665555	 James	E	Borg	888665555	

Figure 7.13 Illustrating the JOIN operation.

- 세미 조인(semi-join)
 - 조인 속성으로 프로젝트 연산을 수행한 릴레이션을 이용하는 조인
 - □ 표현법: R⋉S(두 릴레이션들 R과 S에 대해)
 - S를 조인 속성으로 프로젝트 연산 후에 R에 자연조인하여 결과 릴레이션을 구성
 - 불필요한 속성을 미리 제거하여 연산 비용을 줄이는 효과
 - □ 교환적 특징이 없음
 - $R \ltimes S \neq S \ltimes R$

릴레이션 R

(b) LNAME **FNAME** SALARY Smith John 30000 Wona Franklin 40000 Alicia 25000 Zelaya Wallace Jennifer 43000 Narayan Ramesh 38000 English 25000 Joyce Jabbar Ahmad 25000 Borg James 55000

릴레이션 S

(c) SEX SALARY M 30000 M 40000 25000 F 43000 M 38000 M 25000 M 55000

Π_{SALARY} (S)

세미조인연산

$R \ltimes S$

LNAME	FNAME	SALARY
Smith	John	30000
Wong	Franklin	40000
Zelaya	Alicia	25000
Wallace	Jennifer	43000
Narayan	Ramesh	38000
English	Joyce	25000
Jabbar	Ahmad	25000
Borg	James	55000

- 외부 조인(outer-join)
 - 자연 조인 연산에서 제외되는 모든 튜플을 결과 릴레이션에 포함시키는 조인
 - 동일 조인이나 자연 조인 연산에서 조인 조건을 만족하지 않는 튜플들은 결과 릴레이션에도 나타나지 않음
 - 조인에 참여하는 릴레이션의 모든 튜플들이 조인 여부과 관계 없이 결과 릴레이션에서 나타내고 싶은 경우 사용됨
 - 외부 조인에서 상대방 릴레이션에 대응되는 튜플이 없으면 빈 속성에 NULL 값 할당
 - 표현법: R ⋉S (두 릴레이션들 R과 S에 대해)

■ 외부 조인 종류

- □ 왼쪽 외부 조인 (left outer join)
 - R スプマック R의 모든 튜플들이 결과 릴레이션에 존재
- □ 오른쪽 외부 조인 (right outer join)
 - R▶<
 CS는 S의 모든 튜플들이 결과 릴레이션에 존재
- □ 완전 외부 조인(full outer join)
 - RI★IS는 R과 S의 모든 튜플들이 결과 릴레이션에 존재

S	Α	B1
	1	가
	2	나
	3	다

Т	B2	С
	나	#
	다	%
	라	\$
	마	@

조인

$$V \leftarrow S \bowtie_{R1=R2} T$$

왼쪽 외부조인

$$V \leftarrow S \bowtie_{B1=B2} T \qquad V \leftarrow S \bowtie_{B1=B2} T$$

V			
Α	B1	B2	С
1	가	null	null
2	나	나	#
3	다	다	%

오른쪽 외부조인

$$V \leftarrow S \bowtie_{B1=B2} T$$

양쪽 외부조인

$$V \leftarrow S M_{B1=B2}T$$

V			
Α	B1	B2	С
1	가	null	null
2	나	나	#
3	다	다	%
null	null	라	\$
null	null	마	@

DEPARTMENT DNAME		DNUMBER	MGRSSN	MGRSTARTDATE	
Aardbieds w	Research	5	333445555	1988-05-22	
	Administration	4	987654321	1995-01-01	
	Headquarters	1	888665555	1981-06-19	

EMPLOYEE	FNAME	MINIT	LNAME	SSN	BDATE	ADDRESS	SEX	SALARY	SUPERSSN	DNO
d ill borgon	John	В	Smith	123456789	1965-01-09	731 Fondren, Houston, TX	М	30000	333445555	5
	Franklin	Total	Wong	333445555	1955-12-08	638 Voss, Houston, TX	M	40000	888665555	5
	Alicia	J	Zelaya	999887777	1968-07-19	3321 Castle, Spring, TX	F	25000	987654321	4
	Jennifer	S	Wallace	987654321	1941-06-20	291 Berry, Bellaire, TX	F	43000	888665555	4
	Ramesh	K	Narayan	666884444	1962-09-15	975 Fire Oak, Humble, TX	M	38000	333445555	5
	Joyce	Α	English	453453453	1972-07-31	5631 Rice, Houston, TX	F	25000	333445555	5
	Ahmad	V	Jabbar	987987987	1969-03-29	980 Dallas, Houston, TX	M	25000	987654321	4
	James	E	Borg	888665555	1937-11-10	450 Stone, Houston, TX	M	55000	null	1

RESULT

TEMP \leftarrow EMPLOYEE $\bowtie_{MGRSSN=SSN}$ DEPARTMENT RESULT \leftarrow $\Pi_{FNAME, MINIT, LNAME, DNAME}$ (TEMP)

FINAIVIE	MIMI	LIVAIVIE	DINAIVIE
John	В	Smith	null
Franklin	T	Wong	Research
Alicia	J	Zelaya	null
Jennifer	S	Wallace	Administration
Ramesh	K	Narayan	null
Joyce	A	English	null
Ahmad	V	Jabbar	null
James	E	Borg	Headquarters

순수 관계 연산자: 디비전(division)

- 표현법: T(Y)=R(Z)÷S(X) (X⊆Z이고, Y=Z-X)
 - □ S의 모든 튜플과 관련이 있는 R의 튜플로 결과 릴레이션을 구성
 - $T1 = \Pi_{Y}(R)$
 - $T2 = \Pi_Y((S \times T1) R)$
 - T = T1 T2
 - 이경우 R이 S의 모든 속성을 포함하고 있어야 연산 가능

SSN_PNOS	ESSN	PNO
	123456789	1
	123456789	2
	666884444	3
	453453453	1
	453453453	2
	333445555	2
	333445555	3
	333445555	10
	333445555	20
	999887777	30
	999887777	10
	987987987	10
	987987987	30
	987654321	30
	987654321	20
	888665555	20

SMITH_PNOS	PNO
Anna and a second	1
	2

SSNS	SSN
Landa Com	123456789
	453453453

순수 관계 연산자: 디비전(계속)

관계 대수를 이용한 질의 표현

 Retrieve the name and address of all employees who work for the 'Research' department

Referential integrity constraints displayed on the COMPANY relational database schema diagram.

관계 대수를 이용한 질의 표현(계속)

 For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birthdate

Referential integrity constraints displayed on the COMPANY relational database schema diagram.

관계 해석

- 처리를 원하는 데이터가 무엇인지만 기술하는 언어
 - □ 비절차적 언어(nonprocedural language)
- 수학의 프레디킷 해석(predicate calculus)에 기반
- 분류
 - 튜플 관계 해석(tuple relational calculus)
 - 도메인 관계해석(domain relational calculus)

감사합니다!

담당교수: 전강욱(컴퓨터공학부)

kw.chon@koreatech.ac.kr

Appendix

담당교수: 전강욱(컴퓨터공학부)

kw.chon@koreatech.ac.kr

Retrieve the name and address of all employees who work for the 'Research' department.

```
\begin{split} & \text{RESEARCH\_DEPT} \leftarrow \sigma_{\text{DNAME}='Research'}(\text{DEPARTMENT}) \\ & \text{RESEARCH\_EMPS} \leftarrow (\text{RESEARCH\_DEPT} \bowtie_{\text{DNUMBER}=\text{DNO}} \text{EMPLOYEE}) \\ & \text{RESULT} \leftarrow \pi_{\text{FNAME, LNAME, ADDRESS}}(\text{RESEARCH\_EMPS}) \end{split}
```

QUERY 2

For every project located in 'Stafford', list the project number, the controlling department number, and the department manager's last name, address, and birthdate.

```
\begin{split} & \text{STAFFORD\_PROJS} \leftarrow \sigma_{\text{PLOCATION='Stafford'}}(\text{PROJECT}) \\ & \text{CONTR\_DEPT} \leftarrow (\text{STAFFORD\_PROJS} \bowtie_{\text{DNUM=DNUMBER}} \text{DEPARTMENT}) \\ & \text{PROJ\_DEPT\_MGR} \leftarrow (\text{CONTR\_DEPT} \bowtie_{\text{MGRSSN=SSN}} \text{EMPLOYEE}) \\ & \text{RESULT} \leftarrow \pi_{\text{PNUMBER, DNUM, LNAME, ADDRESS, BDATE}}(\text{PROJ\_DEPT\_MGR}) \end{split}
```

Find the names of employees who work on all the projects controlled by department number 5.

```
\begin{aligned} & \text{DEPT5\_PROJS(PNO)} \leftarrow \pi_{\text{PNUMBER}}(\sigma_{\text{DNUM}=5}(\text{PROJECT})) \\ & \text{EMP\_PRJO(SSN, PNO)} \leftarrow \pi_{\text{ESSN, PNO}}(\text{WORKS\_ON}) \\ & \text{RESULT\_EMP\_SSNS} \leftarrow \text{EMP\_PRJO} \div \text{DEPT5\_PROJS} \\ & \text{RESULT} \leftarrow \pi_{\text{LNAME, FNAME}}(\text{RESULT\_EMP\_SSNS} * \text{EMPLOYEE}) \end{aligned}
```

QUERY 5

List the names of all employees with two or more dependents.

Strictly speaking, this query cannot be done in the basic relational algebra. We have to use the AGGREGATE FUNCTION operation with the COUNT aggregate function. We assume that dependents of the same employee have distinct DEPENDENT_NAME values.

$$\begin{split} T_1(\text{SSN, NO_OF_DEPTS}) &\leftarrow_{\text{ESSN}} \, \widetilde{\mathscr{C}}_{\text{COUNT DEPENDENT_NAME}}(\text{DEPENDENT}) \\ T_2 &\leftarrow \sigma_{\text{NO_OF_DEPS} \geq 2}(T_1) \\ \text{RESULT} &\leftarrow \pi_{\text{LNAME, FNAME}}(T_2 * \text{EMPLOYEE}) \end{split}$$

Make a list of project numbers for projects that involve an employee whose last name is 'Smith', either as a worker or as a manager of the department that controls the project.

```
\begin{split} & \text{SMITHS}(\text{ESSN}) \leftarrow \pi_{\text{SSN}}(\sigma_{\text{LNAME}='\text{Smith}'}(\text{EMPLOYEE})) \\ & \text{SMITH}\_\text{WORKER}\_\text{PROJ} \leftarrow \pi_{\text{PNO}}(\text{WORKS}\_\text{ON} * \text{SMITHS}) \\ & \text{MGRS} \leftarrow \pi_{\text{LNAME}, \text{ DNUMBER}}(\text{EMPLOYEE} \bowtie_{\text{SSN}=\text{MGRSSN}} \text{DEPARTMENT}) \\ & \text{SMITH}\_\text{MANAGED}\_\text{DEPTS}(\text{DNUM}) \leftarrow \pi_{\text{DNUMBER}}(\sigma_{\text{LNAME}='\text{Smith}'}(\text{MGRS})) \\ & \text{SMITH}\_\text{MGR}\_\text{PROJS}(\text{PNO}) \leftarrow \pi_{\text{PNUMBER}}(\text{SMITH}\_\text{MANAGED}\_\text{DEPTS} * \text{PROJECT}) \\ & \text{RESULT} \leftarrow (\text{SMITH}\_\text{WORKER}\_\text{PROJS} \cup \text{SMITH}\_\text{MGR}\_\text{PROJS}) \end{split}
```

Retrieve the names of employees who have no dependents.

$$\begin{aligned} &\text{ALL_EMPS} \leftarrow \pi_{\text{SSN}}(\text{EMPLOYEE}) \\ &\text{EMPS_WITH_DEPS}(\text{SSN}) \leftarrow \pi_{\text{ESSN}}(\text{DEPENDENT}) \\ &\text{EMPS_WITHOUT_DEPS} \leftarrow (\text{ALL_EMPS} - \text{EMPS_WITH_DEPS}) \\ &\text{RESULT} \leftarrow \pi_{\text{LNAME, FNAME}}(\text{EMPS_WITHOUT_DEPS} * \text{EMPLOYEE}) \end{aligned}$$

QUERY 7

List the names of managers who have at least one dependent.

```
\begin{split} & \text{MGRS}(\text{SSN}) \leftarrow \pi_{\text{MGRSSN}}(\text{DEPARTMENT}) \\ & \text{EMPS\_WITH\_DEPS}(\text{SSN}) \leftarrow \pi_{\text{ESSN}}(\text{DEPENDENT}) \\ & \text{MGRS\_WITH\_DEPS} \leftarrow (\text{MGRS} \cap \text{EMPS\_WITH\_DEPS}) \\ & \text{RESULT} \leftarrow \pi_{\text{LNAME, FNAME}}(\text{MGRS\_WITH\_DEPS} * \text{EMPLOYEE}) \end{split}
```

- 조인 속성을 이용해 두 릴레이션(i.e., R과 S)을
 조합하여 결과 릴레이션을 구성
 - □ R과 S로부터 **관련있는 튜플만을 결합하여 생성**된 튜 플들을 결과 릴레이션에 포함
 - 관련성의 여부를 조건으로 표시하며, 이를 조인 조건 이라고 함
 - □ 조인조건
 - <조건> AND <조건> AND ... AND <조건>
 - 각 조건의 형태는 A;⊖B; 이며, A; 는 R의 속성, B;는 S의 속성
 - $\Theta = \{=, <, \leq, >, \geq, \neq\}$
 - □ 표현법: R⋈_{<조인조건>}S