

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут»

Лабораторна робота №15

з дисципліни «Комп'ютерні мережі»

«Дослідження роботи послідовних інтерфейсів в мережі Frame Relay. Протокол маршрутизації RIP»

Виконала студентка групи: КВ-11
ПІБ: Михайліченко Софія Віталіївна
Перевірив:

Мета роботи:

Ознайомитися з роботою послідовних інтерфейсів. За допомогою програми симуляції комп'ютерних мереж Cisco Packet Tracer отримати практичні навички в налаштуванні RIP маршрутизації.

Завдання до лабораторної роботи:

- 1. Побудуйте тестову мережу.
- 2. Виконайте основні налаштування мережевих пристроїв.
- 3. Виконайте додаткові налаштування маршрутизаторів для забезпечення можливості роботи у мережі Frame Relay.
- 4. Налаштуйте на маршрутизаторах маршрутизацію за протоколом RIP.
- 5. Впевніться в правильності налаштувань RIP-маршрутизації, перевіривши за допомогою команди ping встановлення логічного з'єднання між маршрутизаторами та між хостами.
- 6. Результати спостережень занесіть у звіт.

Короткі теоретичні відомості:

Frame Relay — це мережа з комутацією кадрів, яка використовується для передачі даних між віддаленими мережевими пристроями. Вона забезпечує високошвидкісну передачу даних і ϵ ефективною для територіально розподілених корпоративних мереж.

Frame Relay підтримує два типи віртуальних з'єднань:

- PVC (Permanent Virtual Circuit): Постійне з'єднання, яке існує навіть при відсутності даних.
- SVC (Switched Virtual Circuit): Тимчасове з'єднання, яке створюється на момент передачі даних.

DLCI: Ідентифікатор каналу передачі даних, який використовується для маршрутизації кадрів у мережі Frame Relay.

RIP (Routing Information Protocol) — це дистанційно-векторний протокол маршрутизації, який використовується для обміну інформацією про маршрути між маршрутизаторами. RIP транслює оновлення маршрутизації кожні 30 секунд, використовуючи широкомовні або групові повідомлення (в залежності від версії: RIPv1 або RIPv2). Таблиця містить інформацію про шляхи до мереж, що підключені до маршрутизатора. Коли маршрутизатор отримує пакет, він перевіряє адресу призначення в таблиці маршрутизації і пересилає пакет через відповідний інтерфейс.

DHCP: Використовується для автоматичного призначення IP-адрес пристроям у мережі. Налаштування DHCP включає створення пулу адрес, вказання адреси шлюзу за замовчуванням та виключення певних адрес.

Для роботи з протоколом Frame Relay маршрутизатори повинні бути налаштовані на відповідні інтерфейси, а також потрібно виконати зіставлення IP-адрес з DLCI.

Порядок виконання роботи:

Побудова досліджуваної топології

У програмі Раскеt Tracer створюємо модель комп'ютерної мережі відповідно до топології, що зображена у методичці. У роботі використовуємо комутатори Cisco 2960, маршрутизатори Cisco 2811 і пристрій Cloud(тип комутатора), який емулює мережу WAN.

Початковий вигляд мережі:

Пристрій Cloud на стороні провайдера в глобальній мережі є пристроєм, що задає швидкість роботи каналу передачі DCE (Data Communication Equipment), а маршрутизатори R1, R2 і R3 на стороні клієнта виконують роль DTE (Data Terminal Equipment). Ролі пристроїв залежать від serial-кабелю, яким вони з'єднуються, тому з'єднання пристроїв Router і Cloud виконується за допомогою спеціального кабелю DCE – DTE.

Насамперед встановимо на маршрутизатори R1, R2 і R3 додаткові модулі з послідовним інтерфейсом. Для цього спочатку вимикаємо маршрутизатор і вибираємо модуль W1C-1T, до складу якого входить один послідовний порт, і перетягуємо його на перше гніздо маршрутизатора:

Комп'ютери і маршрутизатори з'єднуємо перехресним кабелем, маршрутизатори і пристрій Cloud з'єднуємо кабелем Serial DCE, решту з'єднань виконуємо прямим мідним кабелем. Звертаємо увагу, що сторона DCE кабелю Serial має бути під'єднана до пристрою Cloud:

Подальші налаштування виконуємо користуючись інтерфейсом командного рядка.

Виконуємо основні мережеві налаштування на маршрутизаторі R1:

```
Router>enable
Router$ configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) $ int $ 0/0/0
R1 (config-if) $ ip address 192.168.1.1 255.255.255.0
R1 (config-if) $ ip address 192.168.1.1 255.255.255.0
R1 (config-if) $ do write
Building configuration...
[OK]
R1 (config-if) $ interface Serial0/0/0, changed state to up
R1 (config-if) $ interface Serial0/0/0, changed state to up
R1 (config-if) $ int fa0/0
R1 (config-if) $ interface FastEthernet0/0, changed state to up
$ \frac{1}{2} \text{LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up}
$ R1 (config-if) $ interface FastEthernet0/0, changed state to up
R1 (config-if) $ interface FastEthernet0/0, changed state to up
R1 (config-if) $ interface FastEthernet0/0, changed state to up
R1 (config-if) $ interface FastEthernet0/0, changed state to up
R1 (config-if) $ interface FastEthernet0/0, changed state to up
R1 (config-if) $ interface FastEthernet0/0, changed state to up
R1 (config-if) $ interface FastEthernet0/0, changed state to up
R1 (config-if) $ interface FastEthernet0/0, changed state to up
R1 (config-if) $ interface FastEthernet0/0, changed state to up
```

Виконуємо основні мережеві налаштування на маршрутизаторі R2:

```
Router>enable
Router$conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config)$host R2
R2(config)$int s0/0/0
R2(config-if)$ip address 192.168.1.2 255.255.255.0
R2(config-if)$pi shutdown
R2(config-if)$do wr
Building configuration...
[OK]
R2(config-if)$ int fa0/0
R2(config-if)$ int fa0/0
R2(config-if)$ int shutdown
R2(config-if)$ int paddress 192.168.20.1 255.255.255.0
R2(config-if)$ int shutdown
R2(config-if)$ int paddress 192.168.20.1 255.255.255.0
R2(config-if)$ int shutdown
R2(config-if)$ int shutdown
R2(config-if)$ with shutdown
```

Виконуємо основні мережеві налаштування на маршрутизаторі R3:

```
Router3
                                                                                               \Box
   Router#conf t
  Enter configuration commands, one per line. End with CNTL/Z.
  Router(config) #host R3
R3(config) #int s0/0/0
R3(config-if) # ip address 192.168.1.3 255.255.255.0
R3(config-if) #no shutdown
  R3(config-if)#
  %LINK-5-CHANGED: Interface Serial0/0/0, changed state to up
  R3(config-if)#do wr
  Building configuration...
  R3(config-if)#int fa0/0
  R3(config-if)#
%LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up
  %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up
  R3(config-if)# do write
  Building configuration.
 [OK]
R3(config-if)#
```

Вигляд мережі після налаштування маршрутизавторів:

Повертаємось до налаштувань маршрутизатора R2 і запустимо службу DHCP:

```
R2(config) #ip dhcp pool dick
R2(dhcp-config) #network 192.168.20.0 255.255.255.0
R2(dhcp-config) #default-router 192.168.20.1
R2(dhcp-config) #exit
R2(config) #ip dhcp excluded-address 192.168.20.1
R2(config) #do write
Building configuration...
[OK]
R2(config) #
```

Виконуємо основні мережеві налаштування на комп'ютерах РС2 і РС3:

Виконуємо основні мережеві налаштування на комп'ютерах РС0 і РС1:

На кожному маршрутизаторі виконуємо налаштування послідовних інтерфейсів для роботи з протоколом Frame Relay. Також виконуємо зіставлення ІР-адрес послідовних інтерфейсів із ідентифікаторами віртуальних каналів мережі Frame Relay:


```
R3>enable
R3#conf t
Enter configuration commands, one per line. End with CNTL/Z.
R3(config)#int s0/0/0
R3(config-if)#encapsulation frame-relay
R3(config-if)#
%LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0/0/0, changed state to up
R3(config-if)#frame-relay map ip 192.168.1.1 301 broadcast
R3(config-if)#do write
Building configuration...
[OK]
R3(config-if)#end
R3#
%SYS-5-CONFIG_I: Configured from console by console
R3#
```

На кожному маршрутизаторі виконуємо налаштування протоколу маршрутизації RIP:

```
Router1
  R1#conf t
  Enter configuration commands, one per line. End with CNTL/Z.
  Rl(config) #router rip
  R1(config-router) #net 192.168.10.0
  R1(config-router) #net 192.168.1.0
  Rl(config-router) #no auto-summary
  Rl(config-router)#do write
  Building configuration...
  [OK]
  R1(config-router) #end
  R1#
  %SYS-5-CONFIG_I: Configured from console by console
 R1#
Router2
   Enter configuration commands, one per line. End with CNTL/Z.
   R2(config) # router rip
   R2(config-router) #net 192.168.20.0
   R2(config-router) #net 192.168.1.0
   R2(config-router)#no auto-summary
   R2(config-router)#do write
   Building configuration...
   [OK]
   R2(config-router)#end
   R2#
   %SYS-5-CONFIG_I: Configured from console by console
   R2#
```

```
Router3
```

```
R3#conf t
Enter configuration commands, one per line. End with CNTL/2.
R3(config) #router rip
R3(config-router) #net 192.168.30.0
R3(config-router) #net 192.168.1.0
R3(config-router) #no auto-summary
R3(config-router) #do write
Building configuration...
[OK]
R3(config-router) #end
R3#
%SYS-5-CONFIG_I: Configured from console by console
R3#
```

Виконаємо налаштування пристрою Cloud-PT, який емулює WAN. Пристрій Cloud-PT в Cisco Packet Tracer може бути конфігурований як комутатор Frame Relay, до якого маршрутизатори підключаються за допомогою вкладок Serial і Frame Relay в "Cloud-PT".

Налаштовуємо інтерфейс Serial1:

Налаштовуємо інтерфейс Serial2:

Налаштовуємо інтерфейс Serial3:

Переходимо до налаштування Frame Relay. Натискаємо Frame Relay. У вікні, що з'явилося зв'язуємо порти маршрутизаторів з відповідними портами комутаторів мережі Frame Relay.

Налаштування завершені. Переглянути виконані налаштування можна за допомогою команди show ір route rip. Вона відображає значення таймера процесу маршрутизації та мережеву інформацію, пов'язану з маршрутизацією

```
R1>enable
Rl#show ip route rip
     192.168.10.0/24 is variably subnetted, 2 subnets, 2 masks
     192.168.20.0/24 [120/1] via 192.168.1.2, 00:00:06, Serial0/0/0
     192.168.30.0/24 [120/1] via 192.168.1.3, 00:00:24, Serial0/0/0
 R2>enable
 R2#show ip route rip
     192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
      192.168.10.0/24 [120/1] via 192.168.1.1, 00:00:13, Serial0/0/0
      192.168.20.0/24 is variably subnetted, 2 subnets, 2 masks
    192.168.30.0/24 [120/1] via 192.168.1.3, 00:00:15, Serial0/0/0
 R3>enable
  R3#show ip route rip
       192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
      192.168.10.0/24 [120/1] via 192.168.1.1, 00:00:17, Serial0/0/0
      192.168.20.0/24 [120/1] via 192.168.1.2, 00:00:24, Serial0/0/0
```

Перевірку працездатності тестової мережі виконуємо за допомогою команди ріпд в режимі симуляції. Із PC1 перевіримо доступність PC0:

Роутер R1 інкапсулює IP пакет у Frame Relay кадр, в поле Address заголовку вставляє DLCI= $103(67_{16}=103_{10})$ і відправляє кадр на Cloud в напрямку R3.

В пристрої Cloud аналізується заголовок кадру Frame Relay, ідентифікатор віртуальної мережі DLCI=103 замінюється на DLCI 301(12d₁₆) і кадр відправляється до R3.

Маршрутизатор R3 також проглядає заголовок Frame Relay і знаходить там DLCI 12d. Далі заголовок Frame Relay відкидається, IP пакет інкапсулюється в кадр Ethernet і надсилається на PC0 (в заголовок кадру вставляється MAC-адреса PC0 із таблиці ARP).

Після завершення передачі заданної кількості ІСМР-пакетів маршрутизатори повертаються до режиму обміну інформацією про маршрути за допомогою протоколу RIP.

Проходження ICMP-пакетів по мережі Frame Relayчерез R3:

Проходження ICMP-пакетів по мережі Frame Relayчерез R3 (закінчення):

			_
15.042		Router2	RIPv1
15.042		Router2	RIPv1
15.042		Router2	RIPv1
15.043	Router2	Switch0	RIPv1
15.043	Router2	Cloud0	RIPv1
15.043		Router2	RIPv1
15.044	Router2	Cloud0	RIPv1
15.044	Switch0	PC2	RIPv1
15.044	Switch0	PC3	RIPv1
15.044	Cloud0	Router3	RIPv1
15.045	Cloud0	Router1	RIPv1
15.997		Switch0	STP
15.998	Switch0	Router2	STP
15.998	Switch0	PC2	STP
15.998	Switch0	PC3	STP
16.642		Switch0	DTP
16.643	Switch0	Router2	DTP
16.850		Switch0	DTP
16.851	Switch0	PC2	DTP
17.681		Router3	RIPv1
17.681		Router3	RIPv1
17.681		Router3	RIPv1
17.682	Router3	PC0	RIPv1
17.682	Router3	Cloud0	RIPv1
17.682	-	Router3	RIPv1
17.683	Router3	Cloud0	RIPv1
17.683	Cloud0	Router1	RIPv1
17.684	Cloud0	Router2	RIPv1
17.997		Switch0	STP
17.998	Switch0	Router2	STP
17.998	Switch0	PC2	STP
17.998	Switch0	PC3	STP
19.995		Switch0	STP
19.996	Switch0	Router2	STP
19.996	Switch0	PC2	STP
19.996	Switch0	PC3	STP
21.876		Router1	RIPv1
21.876		Router1	RIPv1
21.876		Router1	RIPv1
21.877	Router1	PC1	RIPv1
21.877	Router1	Cloud0	RIPv1
21.877		Router1	RIPv1
21.878	Router1	Cloud0	RIPv1
21.878	Cloud0	Router2	RIPv1
21.879	Cloud0	Router3	RIPv1

Маршрутизатори збирають інформацію від безпосередньо під'єднаних сусідніх маршрутизаторів, а ті в свою чергу збирають інформацію від інших сусідів. Протоколу RIP надається спільний доступ до налаштованих маршрутів в мережі через широкомовні трансляції. Ці трансляції називаються оновленнями маршрутизації.

Відображення інформації про прив'язки статичних IP-адрес до відповідних DLCI за допомогою команди show frame-relay map:

```
Rl#show frame-relay map
  Serial0/0/0 (up): ip 192.168.1.2 dlci 102, static,
                broadcast,
                 CISCO, status defined, active
  Serial0/0/0 (up): ip 192.168.1.3 dlci 103, dynamic,
                 broadcast,
                 CISCO, status defined, active
  R1#
 R2#show frame-relay map
 Serial0/0/0 (up): ip 192.168.1.3 dlci 203, static,
                 broadcast,
                 CISCO, status defined, active
 Serial0/0/0 (up): ip 192.168.1.1 dlci 201, dynamic,
                broadcast,
                 CISCO, status defined, active
R3#show ip route rip
    192.168.1.0/24 is variably subnetted, 2 subnets, 2 masks
    192.168.10.0/24 [120/1] via 192.168.1.1, 00:00:17, Serial0/0/0 192.168.20.0/24 [120/1] via 192.168.1.2, 00:00:24, Serial0/0/0
R3#show frame-relay map
Serial0/0/0 (up): ip 192.168.1.1 dlci 301, static,
```

broadcast.

broadcast.

CISCO, status defined, active Serial0/0/0 (up): ip 192.168.1.2 dlci 302, dynamic,

CISCO, status defined, active

Висновок:

У цій лабораторній роботі було налаштовано мережу з використанням технології **Frame Relay** та протоколу маршрутизації **RIP** у Cisco Packet Tracer.

Спочатку була створена тестова мережа з маршрутизаторами, комутаторами та комп'ютерами. Для з'єднання маршрутизаторів використовували послідовні інтерфейси, а для комунікації між ними — віртуальну мережу Frame Relay. Налаштували відповідні ІР-адреси та присвоїли кожному маршрутизатору DLCI-ідентифікатори, що дозволило коректно передавати дані.

Далі було налаштовано протокол RIP версії 2, який забезпечив автоматичний обмін маршрутною інформацією між маршрутизаторами. Це дозволило мережі адаптуватися до змін у топології без необхідності ручного налаштування кожного маршруту.

Після цього перевірили працездатність мережі за допомогою команди **ping**. Дані успішно передавалися між пристроями через Frame Relay, маршрутизатори обробляли пакети та пересилали їх далі. Аналіз таблиці маршрутів показав, що протокол RIP правильно налаштував маршрути для всіх мережевих вузлів.

У результаті роботи вдалося налаштувати та протестувати мережу, розібратися в принципах роботи Frame Relay і RIP, а також отримати практичні навички роботи з маршрутизаторами у Cisco Packet Tracer.