

Contents

1	General approach				
	1.1	Defini	tion		
		1.1.1	Definition of a matrix		
		1.1.2	Notation		
		1.1.3	Examples		
	1.2	Partic	ular matrices		
		1.2.1	Null matrix		
		1.2.2	Column matrix		
		1.2.3	Row matrix		
		1.2.4	Square matrix		
		1.2.5	Diagonal matrix		
		1.2.6	Identity matrix		
		1.2.7	Triangular matrix		
	1.3	Transp	posed matrix		
		1.3.1	Definition		
		1.3.2	Notation		
		1.3.3	Example		
	1.4	Symm	etric matrix		
		1.4.1	Symmetric		
		1.4.2	Anti-Symmetric		
			s on matrices		
2	· F				
	2.1		on and external product		
		2.1.1	Definition		
		2.1.2	Elementary matrix		
		2.1.3	Proposition		
	2.2	Intern	al product		
		2.2.1	Definition		
		2.2.2	Remarks		
	2.3	Proper	rties of matrix calculus		
		2.3.1	Properties		
		2.3.2	Case of Square Matrices		
	2.4	Inverse	e of a matrix		
		2.4.1	Definition		
		2.4.2	Notation		
		2.4.3	How to find the inverse of a matrix		
3	Mat	trices o	of Linear Maps		
	3.1		tion and examples		
			Definition		

	3.1.2	Example
	3.1.3	Definition
		Example
3.2	Matrix	c interpretation of Linear Transformation
	3.2.1	Proposition
	3.2.2	Example
3.3	Matrix	c of g o f
	3.3.1	Proposition
	3.3.2	Example
3.4	Matrix	c of a bijection
	3.4.1	Proposition
	3.4.2	Example
	3.4.3	Proposition
	3.4.4	Examples

1 General approach

1.1 Definition

1.1.1 Definition of a matrix

We call matrix of n rows and p columns any mapping in the following form:

$$[1, n] \times [1, p] \rightarrow \mathbb{K}$$

 $i, j \qquad a_{ij}$

We denote such maps as tables of n rows and p columns, and we write:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}$$

 $\forall (i,j) \in [1,n] \times [1,p]$, we call a_{ij} a coefficient of the matrix. In this case coefficient if i-th row and j-th column.

1.1.2 Notation

We denote $M_{np}(\mathbb{K})$ the set of matrix of n rows and p columns with coefficient from \mathbb{K} .

1.1.3 Examples

$$A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \in M_{32}(\mathbb{R})$$

$$B = \begin{pmatrix} i \\ 1+i \\ 3 \end{pmatrix} \in M_{31}(\mathbb{C})$$

1.2 Particular matrices

Let $A \in M_{np}(\mathbb{K})$ then:

1.2.1 Null matrix

1. $[\forall (i,j) \in [1,n] \times [1,p], a_{ij}=0] \Rightarrow [A=0_{np}]$ We say A is the null matrix $M_{np}(\mathbb{K})$.

1.2.1.1 Example

$$A' = \begin{pmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{pmatrix} \in M_{32}(\mathbb{R})$$

1.2.2 Column matrix

2. $B \in M_{np}(\mathbb{K})$ and $p = 1 \Rightarrow B$ is a column matrix of n rows

1.2.2.1 Example

$$B' = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \in M_{31}(\mathbb{R})$$

1.2.3 Row matrix

3. $B \in M_{np}(\mathbb{K})$ and $n = 1 \Rightarrow \mathbb{C}$ is a row matrix of p columns

1.2.3.1 Example

$$C' = \begin{pmatrix} 1 & 2 & 3 \end{pmatrix} \in M_{13}(\mathbb{R})$$

1.2.4 Square matrix

We call square matrix any matrix with same number of rows and columns. We denote $M_n(\mathbb{K})$ the set of square matrix of n rows and columns with coefficient from \mathbb{K} .

4. $D \in M_{np}(\mathbb{K})$ and $n = p \Rightarrow D$ is a square matrix denote $M_n(\mathbb{K})$

1.2.4.1 Example

$$D' = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix} \in M_3(\mathbb{R})$$

1.2.5 Diagonal matrix

5. $\forall E \in M_n(\mathbb{R})$, if $\forall (i,j) \in [1,n]^2, i \neq j \Rightarrow a_{ij} = 0$ then we say E is a diagonal matrix

1.2.5.1 Example

$$E' = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \in M_2(\mathbb{R})$$
$$E'' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix} \in M_3(\mathbb{R})$$

1.2.6 Identity matrix

6. $\forall I_n \in M_n(\mathbb{R})$, if $\forall (i,j) \in [1,n]^2, i \neq j \Rightarrow a_{ij} = 0$ and $i = j \Rightarrow a_{ij} = 1$ then we say I_n is a identity matrix

1.2.6.1 Example

$$I_n' = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in M_2(\mathbb{R})$$

$$I_n'' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \in M_3(\mathbb{R})$$

1.2.7 Triangular matrix

- 6. $\forall F \in M_n(\mathbb{R})$, if $\forall (i,j) \in [1,n]^2, i > j \Rightarrow a_{ij} = 0$ then we say F is a lower triangular matrix
- 7. $\forall G \in M_n(\mathbb{R})$, if $\forall (i,j) \in [1,n]^2$, $i < j \Rightarrow a_{ij} = 0$ then we say G is a upper triangular matrix

1.2.7.1 Example

$$F' = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix} \in M_2(\mathbb{R})$$

$$G' = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix} \in M_2(\mathbb{R})$$

1.3 Transposed matrix

1.3.1 Definition

Let $A \in M_{np}(\mathbb{K})$. We call transposed matrix of A (or A transpose) a matrix B from $M_{pn}(\mathbb{K})$ such as:

$$\forall (i,j) \in [1,n] \times [1,p], a_{ij} = b_{ji}$$

1.3.2 Notation

We denote B as ${}^{t}\!A$

1.3.3 Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in M_{23}(\mathbb{R})$$

$${}^{t}A = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix} \in M_{32}(\mathbb{R})$$

1.4 Symmetric matrix

1.4.1 Symmetric

If ${}^{t}A = A$ then we say A is symmetric

1.4.1.1 Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} = {}^{t}A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix} \in M_{3}(\mathbb{R})$$

1.4.2 Anti-Symmetric

If ${}^{t}A = -A$ then we say A is Anti-symmetric

1.4.2.1 Example

$$A = \begin{pmatrix} 0 & -2 & 3 \\ 2 & 0 & -5 \\ -3 & 5 & 0 \end{pmatrix} = -^{t}A = \begin{pmatrix} 0 & 2 & -3 \\ -2 & 0 & 5 \\ 3 & -5 & 0 \end{pmatrix} \in M_{3}(\mathbb{R})$$

2 Operations on matrices

2.1 Addition and external product

2.1.1 Definition

1. We call internal operation in $M_{np}(\mathbb{K})$ denoted \oplus "internal addition" the one defined as follows:

$$\forall A, B \in M_{np}^2(\mathbb{K}), A + B = (a_{ij} + b_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$$
Where $A = a_{ij} \underset{\substack{1 \le i \le n \\ 1 \le j \le p}}{\text{and }} B = b_{ij} \underset{\substack{1 \le i \le n \\ 1 \le j \le p}}{\text{and }}$

2. We call "external multiplication" or "multiplication by a scalar" the one defined as follows:

$$\forall A \in M_{np}(\mathbb{K}), \forall \alpha \in \mathbb{K}, \alpha A = (\alpha a_{ij})_{\substack{1 \le i \le n \\ 1 < j < p}}$$

2.1.1.1 Example

$$(A,B) \in M_{2,3}(\mathbb{R})^2 \quad A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \text{ and } B = \begin{pmatrix} 7 & 8 & 9 \\ 10 & 11 & 12 \end{pmatrix}$$

$$A + B = \begin{pmatrix} 1+7 & 2+8 & 3+9 \\ 4+10 & 5+11 & 6+12 \end{pmatrix} = \begin{pmatrix} 8 & 10 & 12 \\ 14 & 16 & 18 \end{pmatrix}$$

$$\alpha = 3, \quad \alpha A = \begin{pmatrix} 3 \times 1 & 3 \times 2 & 3 \times 3 \\ 3 \times 4 & 3 \times 5 & 3 \times 6 \end{pmatrix} = \begin{pmatrix} 3 & 6 & 9 \\ 12 & 15 & 18 \end{pmatrix}$$

2.1.1.2 Proposition

 (M_{np}, \oplus, \cdot) is a vector space over \mathbb{K}

2.1.2 Elementary matrix

For $(n,p) \in \mathbb{N}^2$, $(i,j) \in [1,n] \times [1,p]$; We denote E_{ij} the matrix from $M_{np}(\mathbb{K})$ such that the ij-th coefficient is 1 and all other coefficient are 0.

 E_{ij} are called elementary matrix

2.1.2.1 Example

$$E_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$$

$$E_{22} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$E_{33} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

2.1.3 Proposition

1. $(E_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}$ is a basis of $M_{np}(\mathbb{K})$

2.
$$dim((E_{ij})_{\substack{1 \le i \le n \\ 1 \le j \le p}}) = np$$

Ex: $M_2(\mathbb{R})$ a (\mathbb{K}) -VS: $\mathbf{B} = \begin{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{pmatrix}$
B is a Standard basis of $M_2(\mathbb{R})$, $dim(M_2(\mathbb{R})) = 2^2 = 4$

2.2 Internal product

2.2.1 Definition

Let $(n, p, q) \in \mathbb{N}^3$ and $A = a_{ij} \underset{1 \leq j \leq p}{1 \leq i \leq n} \in M_{np}(\mathbb{K}), B = b_{ij} \underset{1 \leq j \leq q}{1 \leq i \leq p} \in M_{pq}(\mathbb{K})$. We call product of A and B the matrix C form $M_{nq}(\mathbb{K})$ such that:

$$\forall (i,j) \in [1,n] \times [1,q], c_{ij} = \sum_{k=1}^{p} a_{ik} b_{kj}$$

2.2.1.1 Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in M_{2,3}(\mathbb{R}) \quad \text{and} \quad B = \begin{pmatrix} 1 & 0 & 1 & 3 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 1 & 0 \end{pmatrix} \in M_{3,4}(\mathbb{R})$$

$$C = A \cdot B = \begin{pmatrix} 1 & 0 & 8 & 11 \\ 4 & 0 & 20 & 32 \end{pmatrix} \in M_{2,4}(\mathbb{R})$$

$$C_{2,3} = 4 \times 1 + 5 \times 2 + 6 \times 1 = 20$$

2.2.2 Remarks

- (R1) If A, B two matrices: we only can multiply A by B if the number of column of A is equal to the number of row of B.
- (R2) AB can exists but BA not or the other way around.

2.2.2.1 Example

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \cdot B = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} \Rightarrow M_{2,1}(\mathbb{R}), \text{ and exists but } BA \text{ does not exists}$$

R3) In the General case, where AB and BA exists: $AB \neq BA \quad \text{(multiplication of matrix is not commutative)}$ When AB = BA we say A and B commute.

2.3 Properties of matrix calculus

2.3.1 Properties

1. Let A, B two matrices such that AB exists. We can have AB = 0 and $(A \neq 0 \text{ or } B \neq 0)$

If
$$A = 0$$
 or $B = 0$ then $AB = 0$
 $AB = 0 \Rightarrow A = 0$ or $B = 0$

2.3.1.1 Example

$$\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} -2 & 3 \\ 2 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

2. $(n, p, q, r) \in \mathbb{N}^4$ and let $(A, B, C) \in M_{np}(\mathbb{K}) \times M_{pq}(\mathbb{K}) \times M_{qr}(\mathbb{K})$

$$A \cdot (B \cdot C) = (A \cdot B) \cdot C \otimes$$
 is commutative

3. $(A, B, C) \in M_{np}(\mathbb{K}) \times M_{pq}^2(\mathbb{K})$

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

- \otimes (Matrices multiplication) is distributive over matrix addition (\oplus).
- 4. $A \in M_{np}(\mathbb{K})$ and $B \in M_{pq}(\mathbb{K})$ and $\lambda \in \mathbb{K}$

$$\lambda \cdot (A \cdot B) = A \cdot \lambda \cdot B = A \cdot B \cdot \lambda$$

2.3.2 Case of Square Matrices

1.

$$\forall A \in M_n(\mathbb{K}), A \cdot I_n = I_n \cdot A = A$$

2. Let $(A, B) \in M_n(\mathbb{K})^2$, such that AB = BA Then:

$$(A+B)^n = \sum_{k=0}^n \binom{n}{k} A^k B^{n-k}$$

By convention, $A^0 = B^0 = I_n$

3.

$$\forall (A, B) \in M_n(\mathbb{K})^2, {}^t(A \cdot B) = {}^tA \cdot {}^tB$$

2.4 Inverse of a matrix

2.4.1 Definition

Let $A \in M_n(\mathbb{K})$ we say that A is invertible if:

$$\exists B \in M_n(\mathbb{K}), AB = BA = I_n$$

Then we say that B is the inverse of A and denote $B = A^{-1}$ (B is unique) Hence we have (in case of A invertible): $A \cdot A^{-1} = A^{-1} \cdot A = I_n$

2.4.2 Notation

The set of invertible matrices of $M_n(\mathbb{K})$ is denoted $GL_n(\mathbb{K})$

2.4.3 How to find the inverse of a matrix

We will use the following system: Where $A \in M_n(\mathbb{K}), (U, V) \in M_{n,1}(\mathbb{K})^2$:

$$A \cdot U = V$$

By solving this system (Gauss elimination algorithm) when A is invertible, we will have:

$$U = A^{-1} \cdot V$$

2.4.3.1 Example

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} A \cdot U = V \Rightarrow \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} x \\ y \\ z - x \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z - x \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} x \\ y \\ z - x - y \end{pmatrix}$$

$$\iff \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} x - y + z \\ -x + y + z \\ z - x - y \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} \frac{x - y + z}{2} \\ \frac{-x + y + z}{2} \\ \frac{x + y - z}{2} \end{pmatrix}$$

$$\iff \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

3 Matrices of Linear Maps

3.1 Definition and examples

3.1.1 Definition

Let $f \in \mathcal{L}(E, F)$, E and F finite dimensional \mathbb{K} -vector spaces such that: dim(E) = p and dim(F) = n where $(p, n) \in \mathbb{N}^2$ and $B = (e_1, e_2, \dots, e_n)$ basis of E and $B' = (e'_1, e'_2, \dots, e'_n)$ basis of E

$$\forall U \in E, \exists ! (\lambda_1, \lambda_2, \dots, \lambda_n) \in \mathbb{K}^p, \quad U = \sum_{i=1}^p \lambda_i e_i'$$

We say $\begin{pmatrix} U_1 \\ U_2 \\ \vdots \\ U_n \end{pmatrix}$ is the column matrix of coordinates $A \cdot U$ in B.

3.1.2 Example

Let
$$E = \mathbb{R}^2$$
, $U = \begin{pmatrix} 1 \\ 2 \end{pmatrix}_B$ with $B = (\begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix})$ and $B' = (\begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \end{pmatrix})$ Then:
$$U = \begin{pmatrix} 2 \\ 1 \end{pmatrix}_B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}_B + \begin{pmatrix} 1 \\ 0 \end{pmatrix}_B \Rightarrow U = \begin{pmatrix} 1 \\ 1 \end{pmatrix}_{B'}$$

3.1.3 Definition

We call matrix of $f \in \mathcal{L}(E, F)$ with respect to basis B and B' denoted $Mat_{BB'}(f)$ the matrix whose j - th column is composed of the coordinates of $f(e_j)$ in B', for all j from [1, p]. This is a matrix of p columns and p rows:

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1p} \\ a_{21} & a_{22} & \cdots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{np} \end{pmatrix}, \forall j \in [1, p], f(e_j) = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{pmatrix}_{B'} = \sum_{i=1}^{n} a_{ij} e_i$$

3.1.4 Example

$$f: \qquad \mathbb{R}^2 \xrightarrow{} \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} x+y \\ 2x+4y \\ -3y \end{pmatrix}$$

① basis for the domain
$$(\mathbb{R}^2)$$
: $\mathbf{B} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$)
basis for the codomain (\mathbb{R}^3) : $B' = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$)

$$\underbrace{2} \begin{pmatrix} x+y\\2x+4y\\-3y \end{pmatrix} \Rightarrow \begin{cases} f(\begin{pmatrix} 1\\0 \end{pmatrix}) = \begin{pmatrix} 1\\2\\0 \end{pmatrix}_{B'}\\ f(\begin{pmatrix} 0\\1 \end{pmatrix}) = \begin{pmatrix} 1\\4\\-3 \end{pmatrix}_{B'}$$

$$(3)$$

$$\forall U \in \mathbb{R}^2, U = x \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \cdot \begin{pmatrix} 0 \\ 1 \end{pmatrix} \Rightarrow f(U) = x \cdot f \begin{pmatrix} 1 \\ 0 \end{pmatrix} + y \cdot f \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 1 \\ 2 & 4 \\ 0 & -3 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 1 & 1 \\ 2 & 4 \\ 0 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}$$
so $f\left(\begin{pmatrix} 1 \\ -1 \end{pmatrix}\right) = \begin{pmatrix} 0 \\ -2 \\ 3 \end{pmatrix}$

3.2 Matrix interpretation of Linear Transformation

3.2.1 Proposition

Let E and F two finite dimensional K-VS, B and B' bases of respectively E and F. Let $U \in E$ and $f \in \mathcal{L}(E, F)$. Then:

$$Mat_{B'}(f(u)) = Mat_{BB'}(f) \cdot Mat_B(u)$$

3.2.2 Example

With the same function as before:

f: $\mathbb{R}^2 \longrightarrow \mathbb{R}^3$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} x+y \\ 2x+4y \\ -3y \end{pmatrix}$$

And with the same basis as before: $B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ and $B' = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$

And with $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ we have:

$$Mat_{B'}(f(u)) = Mat_{B'}(f) \cdot Mat_{B}(u)$$

$$= \begin{pmatrix} 1 & 1 \\ 2 & 4 \\ 0 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2 \end{pmatrix} = \begin{pmatrix} 3 \\ 10 \\ -6 \end{pmatrix} = f(u)$$

3.3 Matrix of g o f

3.3.1 Proposition

Let E, F and G three finite dimensional $\mathbb{K}\text{-VS}$, and B, B', B'' bases of respectively E, F and G. Considering $f \in \mathcal{L}(E, F)$ and $g \in \mathcal{L}(F, G)$, we have $g \circ f \in \mathcal{L}(E, G)$ and:

$$Mat_{BB''}(g \circ f) = Mat_{B'B''}(g) \cdot Mat_{BB'}(f)$$

3.3.2 Example

$$f: \quad \mathbb{R}^2 \longrightarrow \mathbb{R}^2 \qquad g: \quad \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} x+y \\ x-y \end{pmatrix} \qquad \begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} x+2y \\ x \\ -x+y \end{pmatrix} \qquad \text{And with the following}$$
basis:
$$B = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix})$$

$$Mat_B(f) = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \quad \text{and} \quad Mat_{BB'}(g) = \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ -1 & 1 \end{pmatrix}$$

$$\forall X = \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2, \quad g \circ f(X) = g(f(X)) = g\left(\begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}\right)$$

$$g \circ f(X) = \begin{pmatrix} 1 & 2 \\ 1 & 0 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 3 & -1 \\ 1 & 1 \\ 0 & -2 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix}$$

3.4 Matrix of a bijection

3.4.1 Proposition

Let E and F two \mathbb{K} -VS of same dimension. B a bases of E and B' a bases of F. Let $f \in \mathcal{L}(E,F)$ Then:

$$f$$
 bijective $\iff Mat_{BB'}(f)$ is invertible

3.4.2 Example

$$f: \qquad \mathbb{R}^2 \xrightarrow{} \mathbb{R}^2$$

$$\begin{pmatrix} x \\ y \end{pmatrix} \longmapsto \begin{pmatrix} 2x + y \\ x - 4y \end{pmatrix}$$

To find if f is bijective, we have to show that f is surjective or injective, because f is a endomorphism.

with:
$$B = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 and $Mat(f) = \begin{pmatrix} 2 & 1 \\ 1 & -4 \end{pmatrix}$

To prove f is injective, we have to show that $ker(f) = \{0_{\mathbb{R}^2}\}$

$$f(X) = \begin{pmatrix} 0 \\ 0 \end{pmatrix} \iff \begin{pmatrix} 2 & 1 \\ 1 & -4 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\iff \begin{pmatrix} 2 & 1 \\ 0 & -9 \end{pmatrix} : \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
$$\iff x = y = 0 \Rightarrow S = \{0_{\mathbb{R}^2}\}$$
$$\iff f \text{ is injective so } f \text{ is bijective}$$

Lets find the inverse of f, using two methods:

3.4.2.1 Method 1: Gauss elimination algorithm

$$\begin{pmatrix} 2 & 1 \\ 1 & -4 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$\iff \begin{pmatrix} 2 & 1 \\ 0 & -9 \end{pmatrix} : \begin{pmatrix} a \\ 2b - a \end{pmatrix}$$

$$\iff \begin{pmatrix} 18 & 0 \\ 0 & -9 \end{pmatrix} : \begin{pmatrix} 8a + 2b \\ 2b - a \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} \frac{4a+b}{9} \\ \frac{a-2b}{9} \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 4a+b \\ a-2b \end{pmatrix}$$

$$\iff \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{9} \begin{pmatrix} 4 & 1 \\ 1 & -2 \end{pmatrix} \cdot \begin{pmatrix} a \\ b \end{pmatrix}$$

3.4.2.2 Method 2: System, Gauss-Jordan

Operations on left must be done also on right:

$$\begin{pmatrix} 2 & 1 & 1 & 0 \\ 1 & -4 & 0 & 1 \end{pmatrix} \iff \begin{pmatrix} 2 & 1 & 1 & 0 \\ 0 & -9 & -1 & 2 \end{pmatrix}$$
$$\iff \begin{pmatrix} 18 & 0 & 8 & 2 \\ 0 & -9 & -1 & 2 \end{pmatrix}$$
$$\iff \begin{pmatrix} 1 & 0 & \frac{4}{9} & \frac{1}{9} \\ 0 & 1 & -\frac{1}{9} & -\frac{2}{9} \end{pmatrix}$$

With both methods we have:

$$[Mat_B(f)]^{-1} = \frac{1}{9} \begin{pmatrix} 4 & 1 \\ 1 & -2 \end{pmatrix}$$

3.4.3 Proposition

Let E and F two \mathbb{K} -VS of same dimension. B a bases of E and B' a bases of F. Let $f \in \mathcal{L}(E,F)$ Then:

$$f$$
 bijective $\iff Mat_{BB'}(f)$ is invertible

And in this case we have:

$$[Mat_{BB'}(f)]^{-1} = Mat_{BB'}(f^{-1})$$

3.4.4 Examples

3.4.4.1 Example 1

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

(1) Is A invertible, compute the inverse of A

$$\begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & -1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{pmatrix} \text{ There are pivot (circled) so A is invertible}$$

$$\iff \begin{pmatrix} 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 0 & 1 & -1 \\ 0 & 0 & 1 & -1 & 0 & 1 \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 0 & 1 & 1 & -1 \\ 0 & 1 & 0 & 0 & -1 & 1 \\ 0 & 0 & 1 & -1 & 0 & 1 \end{pmatrix}$$

$$\iff A^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix}$$

We can also compute A^{-1} this way: (if A is invertible we have:)

$$AX = U \iff X = A^{-1}U$$

$$\iff \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} R_1 \\ R_2 - R_1 \\ R_3 - R_1 \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{pmatrix} : \begin{pmatrix} a \\ b - a \\ c - a \end{pmatrix} \begin{pmatrix} R_1 \\ R_2 - R_3 \\ R_3 \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : \begin{pmatrix} a \\ b \\ c \end{pmatrix} \begin{pmatrix} R_1 + R_2 \\ -R_2 \\ R_3 \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} : \begin{pmatrix} a + b - c \\ -b + c \\ c - a \end{pmatrix}$$

$$\iff \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 & 1 & -1 \\ 0 & -1 & 1 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix}$$

② Let $f \in \mathcal{L}(\mathbb{R}^3)$, Show that f is an automorphism and determine f^{-1} f:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x+y \\ x+z \\ x+y+z \end{pmatrix} \qquad B = \begin{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \end{pmatrix}$$

A = MatB(f) so A invertible $\iff f$ is an automorphism so $A^{-1} = MatB(f^{-1})$

$$f^{-1} \in \mathcal{L}(R^3): \qquad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto \begin{pmatrix} x+y-z \\ -y+z \\ -x+z \end{pmatrix} \quad \text{(using } A^{-1}\text{)}$$
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \longmapsto A^{-1} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

3.4.4.2 Example 2

$$\phi: \qquad \mathbb{R}_2[X] \longrightarrow \mathbb{R}_2[X]$$

$$B = (1, X, X^2)$$

$$P \longmapsto XP' + P(X+1)$$

So we have: $\phi(1) = 1$ and $\phi(X) = 2X + 1$ and $\phi(X^2) = 3X^2 + 2X + 1$

So:
$$A = Mat_B(\phi) = \begin{pmatrix} (\phi(1) & \phi(X) & \phi(X^2)) \\ 1 & 1 & 1 \\ 0 & 2 & 2 \\ 0 & 0 & 3 \end{pmatrix} \begin{pmatrix} 1 \\ X \\ X^2 \end{pmatrix}$$

an invertible matrix (upper right triangle with non zero diagonal coefficient We have to find A^{-1} to find ϕ^{-1}

$$\begin{pmatrix}
\boxed{1} & 1 & 1 & 1 & 0 & 0 \\
0 & \boxed{2} & 2 & 0 & 1 & 0 \\
0 & 0 & \boxed{3} & 0 & 1 & 0
\end{pmatrix} \xrightarrow{3R_1 - R_3} \iff \begin{pmatrix}
3 & 3 & 0 & 3 & 0 & -1 \\
0 & 6 & 0 & 0 & 3 & -1 \\
0 & 0 & 3 & 0 & 0 & 1
\end{pmatrix} \xrightarrow{2R_1 - R_2} \xrightarrow{R_2} \xrightarrow{R_3}$$

$$\iff \begin{pmatrix}
6 & 0 & 0 & 6 & -3 & 0 \\
0 & 6 & 0 & 0 & 3 & -2 \\
0 & 0 & 3 & 0 & 0 & 1
\end{pmatrix} \xrightarrow{\frac{1}{6}R_1} \xrightarrow{\frac{1}{6}R_2}$$

$$\iff [Mat_B(\phi)]^{-1} = \begin{pmatrix}
1 & -\frac{1}{2} & 0 \\
0 & \frac{1}{2} & -\frac{1}{3} \\
0 & 0 & \frac{1}{3}
\end{pmatrix}$$

$$\implies [Mat_B(\phi)]^{-1} = \frac{1}{6} \begin{pmatrix}
6 & -3 & 0 \\
0 & 3 & -2 \\
0 & 0 & 2
\end{pmatrix}$$

Now find $Q \in \mathbb{R}_2[X]$, $\phi(Q)(X) = 1 + (X-1)^2$ $\phi^{-1}(1+(X-1)^2)$? we use the matrix to find the coordinates: $1+(X-1)^2=2-2X+X^2$

$$\frac{1}{6} \begin{pmatrix} 6 & -3 & 0 \\ 0 & 3 & -2 \\ 0 & 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}_B = \frac{1}{6} \begin{pmatrix} 18 \\ -8 \\ 2 \end{pmatrix}_B = \begin{pmatrix} 3 \\ -\frac{4}{3} \\ \frac{1}{3} \end{pmatrix}_B$$
$$\exists ! Q \in \mathbb{R}[X], \phi(Q) = \mathbb{R} \quad Q(X) = 3 - \frac{4}{3}X - \frac{1}{3}X^2$$