9. Exponenciální rovnice s "hezkými" výsledky

Úloha 1. Nalezněte všechna řešení těchto velmi zajímavých rovnic:

(a)
$$\sqrt{5} \cdot 25^{2x-1} = 125^x$$

(b)
$$\left(\frac{\sqrt{7}}{\sqrt[3]{7}}\right)^x = \frac{\sqrt{7}}{49^x \cdot 7^x}$$

(c)
$$4^x = 2^{x^2}$$

(d) $5^x \cdot 2^x = 100^{x-1}$

(e)
$$3^x + 3^{x+1} = 108$$

(e)
$$3^{x} + 3^{x} = 108$$

(f) $2^{x+1} + 2^{x-1} + 2^{x+3} = \frac{21}{8}$

(g)
$$7 \cdot 4^{-x+2} = 3 \cdot 4^{-x+3} - 5$$

(h) $3^x \cdot \left(\frac{1}{2}\right)^x + 3^{x+1} \cdot \left(\frac{1}{2}\right)^{x+1} = \frac{5}{2}$

(h)
$$3^{2} \cdot (\frac{1}{2}) + 3^{2} \cdot (\frac{1}{2}) =$$

(i) $4^{2x} - 6 \cdot 4^{x} + 8 = 0$

* Úloha 2 (zcela nesouvisející). Určete poslední cifru následujících čísel: (a)
$$2^{1000}$$
 (c) 5^{1000} (d) 7^{1000} (e) 10^{1000} (f) 11^{1000}

(j)
$$\frac{1}{4} \cdot 2^x + \frac{1}{2} \cdot 4^x = 9$$

(1)
$$9 \cdot 3^x + 3^{-x} = 10$$

(m)
$$8^{2x+1} + 4 = 8^x + 8^{x+\frac{5}{3}}$$

 \star (n) $256 \cdot 2^{4^x} = 64^{2^x}$
 \star (o) $3^x + 3^{x+1} = 7 \cdot 4^x - 4^{x+1}$

* (p)
$$2^{x-1} - 2^{x-2} = 5^{x-3} + 2^{x-3}$$

* (q) $4^x + 6^x = 2 \cdot 9^x$

$$\star$$
 (r) $16^x = 8 \cdot 4^x + 2 \cdot 8^x$

$$8 \cdot 4^x + 2 \cdot 8^x$$

(k) $2 \cdot \left(\frac{1}{4}\right)^x - 3 \cdot \left(\frac{1}{2}\right)^x = \left(1 + \left(\frac{1}{2}\right)^x\right) \cdot \left(\frac{1}{4}\right)^{-1}$

```
1. (a) \{\frac{3}{2}\} (b) \{\frac{3}{19}\} (c) \{0;2\} (d) \{2\} (e) \{3\} (f) \{-2\} (g) \{2\} (h) \{-1\} (i) \{\frac{1}{2};2\} (j) \{2\} (k) \{-2\} (l) \{-2;0\} (m) \{-1;\frac{2}{3}\} (n) \{1;2\} (o) \{1\} (p) \{3\} (q) \{0\} (r) \{2\}
2. (a) 6 (b) 1 (c) 5 (d) 1 (e) 0 (f) 1
```