Statistical Mean Reversion of Airline and Oil Company Stock Prices CSC 265 Final Project

Dominick Harasimiuk - 30702462 Source Code Available At: https://github.com/DominickH20/statistical-mean-reversion

May 7, 2021

Abstract

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

1 Introduction

The intent of this project is to build a reliable statistical mean reversion trading strategy on correlated baskets of stocks, specifically airline and oil company stocks. Airline companies are exposed to very similar pools of risk, and the same can be said for oil companies. Because of this, one would expect their stock prices to move together when these underlying risk factors change. Because airlines are large consumers of oil, one might expect the airline and oil sectors to exhibit some relationship as well.

1.1 Statistical Mean Reversion

This project aims to develop a model for how these companies behave in relation to one another. This model can be thought of as the "mean" in this mean reversion concept. I utilize this model in the context of a trading strategy by computing the expected stock return at time t, call it e_t . The expected return can be compared to the actual return, a_t at that same time period t. This generates a residual, $r_t = a_t - e_t$. If this residual is sufficiently positive, then the strategy concludes that the stock in question has grown too much over the period, so it would sell. Likewise, if the r_t is sufficiently negative, then the strategy judges that stock has underperformed over the period relative to its peers, so it would buy. In both cases the strategy is betting on convergence to the statistical relationship between the securities. In this paper, I outline such strategies on pairs of securities as well as baskets of securities, using principal component analysis to handle the multicollinearity problem for regression models implemented on such data.

1.2 Data

1.2.1 Scope

The data used in the subsequent analyses were obtained from the Alpaca Markets historical market data API. The securities examined in this study are the following: American Airlines (AAL), Delta Airlines (DAL), Southwest Airlines (LUV), Allegiant Airlines (ALGT), United Airlines (UAL), Chevron (CVX), Marathon Oil (MRO), Murphy Oil (MUR), Exxon Mobil (XOM), Devon Energy (DVN), SPDR S&P 500 ETF, and iShares Treasury Bond ETF (TLT). There are 5 airline companies, 5 oil companies, and 2 market factors (SPY and TLT). The motivation behind including the market factors in this study is that they help parameterize what is going on in equity and debt markets at any given point in time.

1.2.2 Data Format

The data range from the start of 2016 to May 1st 2021. The years 2020 and 2021 are held out as test data while the rest of the data is used to train the models. Given the occurrence of the pandemic in 2020, this is a particularly challenging test set. The data is organized in a *bar* format. Bars are a common way of aggregating financial data and are structured as follows:

$$B_S = \begin{bmatrix} \text{bar}_0, & \text{bar}_1, & ..., & \text{bar}_n \end{bmatrix}$$

$$\text{bar}_i = \begin{bmatrix} \text{datetime}_i & \text{open}_i & \text{high}_i & \text{low}_i & \text{close}_i & \text{volume}_i \end{bmatrix}$$

Where S is some security, and B_S is the bar set for that security. Each bar summarizes a section of trading activity. The open and close are the first and last trades occurring within the timeframe of the bar, while the high and low are the highest and lowest trade prices observed within the timeframe of the bar. The volume represents the number of shares that traded within the bar. For this analysis, only the closing prices are used.

1.2.3 Data Cleaning

The data set was cleaned and imputed before use in any models. There were missing bars for several securities, so the most abundant time series (SPY) was used as a baseline for bar availability. For every bar in SPY, if there was not an analogous bar present in each other security, S, then the most recent bar in S was backfilled in its place.

There were also several outliers present in the data that would obstruct the fitting of linear models. **PLOT HERE** In order for the models to be able to learn the usual relationship between the securities, I used the middle 99% of data *for training only*. The models were still evaluated on train and test data that included outliers. The outlier removal was solely done to improve the fit of the linear models.

1.3 Returns and Markouts

1.3.1 Returns

Asset returns represent a scaled first difference in the data, so they eliminate the serial component in the time series data along with the complications associated with this. The actual return as mentioned above can be defined as follows:

 $a_t = \frac{P_t - P_{t-1}}{P_{t-1}}$

Normal approximations have been used for asset returns on the monthly time scale, however, over short intervals this assumption breaks down. The hourly returns used in this study are abundant close to 0 and extreme returns occur with greater frequency than under normality assumptions. **PLOT?** Despite this fact, OLS is a *BLUE* estimator, so we can still confidently estimate a line despite the distribution not being normal.

1.3.2 Markouts

Markouts are a way of computing hypothetical trade profits or losses. At every point along the time series, we hypothetically enter a trade and hold for some predefined number of time periods, after which we exit the trade. Note that the entry can be a selling (short selling) or buying trade, while the exit is simply the opposite side of the entry transaction. To specify this more rigorously, we can write:

 $M_{t,k} = \begin{cases} P_{t+k} - P_t & \text{if Buy} \\ P_t - P_{t+k} & \text{if Sell} \end{cases}$

This is the markout at time t, held for k periods. Notice that $M_{t,k}^B = -M_{t,k}^S$, meaning that the profit or loss of a buying and selling trade at a given point in time are exact opposites (since the asset can only move one direction). A good trading signal is one that is able to separate positive from negative markouts.

2 Pairwise Mean Reversion

Overview Here

2.1 Pairwise Correlations

Include plots of correlations, no outliers

2.2 Pairwise OLS

Include regression plot, coefficient plots

2.3 Residual OLS for Forecasting

Can include the coefficient plot if I want to, Good intuition but not testable

2.4 Profit and Loss Analysis

Introduce cumulative markout sums and parameter tuning. include the PNl curves, and some pnl heatmaps comment on allegiant

3 Principal Component Basket Mean Reversion

overview of goal and intuition here

3.1 Dimensionality Reduction

variance explained - show plots of first 4 PCs correlation with returns anomalies with coefficients

3.2 Basket OLS

Describe fit and any coefficient plots here describe feature selection

3.3 Basket Lasso for Feature Selection

Omit this - mention briefly

3.4 Profit and Loss Analysis

plots of some pnls, also buying and selling matrices Discuss why there is shortfall

4 Discussion

discuss shortfall of full strategy and why this might have occurred dangers of assuming things revert to mean, mention correlation breakdowns during covid mention statistical issues with fit - high Dimensionality and lasso doing a poor job of feature selection because there are so many data points close to the 0.0

5 Conclusion

highlight what was accomplished and what takeaways and next steps are

6 Appendix

UAL

CVX

 MRO

MUR

XOM

DVN

Table 1: Airline PC Regression RMSE Ticker PC1Full Lasso AAL0.003519 0.0034870.003487 DAL 0.0027620.0027250.002725LUV0.0028190.0028390.002819ALGT 0.0035610.0035540.003554

 $0.002931 \mid 0.002902 \mid 0.002902$

0.002124

0.004640

0.004530

0.002044

0.004275

0.002125

0.004641

0.004530

0.002044

0.004278

Table 2: Oil PC Regression RMSE						
\mathbf{Ticker}	PC1	Full	Lasso			
CVX	0.002338	0.002136	0.002136			
MRO	0.004708	0.004647	0.004647			
MUR	0.004573	0.004536	0.004536			
XOM	0.002240	0.002047	0.002047			
DVN	0.004302	0.004281	0.004284			

Table 3: Airline and Oil PC Regression RMSE							
	\mathbf{Ticker}	PC1	Full	Lasso			
	AAL	0.004306	0.003475	0.003478			
	DAL	0.003450	0.002721	0.002722			
	LUV	0.003363	0.002809	0.002809			
	ALGT	0.003865	0.003552	0.003553			
	UAL	0.003602	0.002896	0.002896			

0.002320

0.004851

0.004661

0.002231

0.004414

Table 4: Full PC Regression RMSE						
\mathbf{Ticker}	PC1	Full	Lasso			
AAL	0.004301	0.003458	0.003458			
DAL	0.003446	0.002713	0.002713			
LUV	0.003359	0.002801	0.002801			
ALGT	0.003863	0.003543	0.003545			
UAL	0.003598	0.002891	0.002891			
CVX	0.002316	0.002104	0.002105			
MRO	0.004854	0.004634	0.004635			
MUR	0.004666	0.004530	0.004531			
XOM	0.002227	0.001996	0.001996			
DVN	0.004418	0.004271	0.004275			
SPY	0.001469	0.001329	0.001330			
TLT	0.001574	0.001546	0.001546			