331 – Intro to Intelligent Systems Week 05 Game Theory II Mixed Strategies R&N Chapter 17.5, 17.6

T.J. Borrelli

Mixed Strategies

- Mixed strategies allow us to deal with unpredictability (chance events)
- Unpredictability can be the result of:
 - -Uncertainty about the outcome of an event
 - -Uncertainty about the structure of the game
 - Uncertainty about the pure strategy of a player

Mixed Strategies

- Many games do not have a pure strategy Nash equilibrium
 - In these cases, using a pure strategy will not lead to an optimal strategy for both players
 - -In 1928 von Neumann showed that you can always find an optimal strategy for each player in a twoplayer zero-sum game if each player is allowed to use a mixed strategy – (sometimes you do one thing, and sometimes you do something else)
 - Nash later extended this result to non-zero sum games and non-cooperative games with more than two players

- Two players, Even and Odd
- Each player picks a number, 1, 2, or 3
- If the sum of the two numbers picked is even then Odd has to pay Even that amount
- If the sum of the two numbers picked is odd then Even has to pay Odd that amount
- For example, if Even picks 2 and Odd picks 3 then Even pays Odd \$5 (Even's payoff is -5 and Odd's payoff is 5)

		Odd player		
		1	2	3
5	1	2, -2	-3, 3	4, -4
Even player	2	-3, 3	4, -4	-5, 5
	3	4, -4	-5, 5	6, -6

This game has no pure Nash equilibrium. If the total is even, then Odd will want to change. If the total is odd, then Even will want to change.

- Assume the players do not know what their best mixed strategies are, so they arbitrarily choose to play each number a certain percentage of the time
 - -For example, suppose Odd chooses 1 30% of the time, 2 60% of the time, and 3 10% of the time

		Odd player		
		1 (0.3)	2 (0.6)	3 (0.1)
Face alexan	1	2, -2	-3, 3	4, -4
Even player	2	-3, 3	4, -4	-5, 5
	3	4, -4	-5, 5	6, -6

- What should Even do?
- What is the average payoff for Even, assuming she knows what Odd's mixed strategy is?
 - The average payoff is computed as the sum of every

		Odd player			Even's eveneted naveff	
		1 (0.3)	2 (0.6)	3 (0.1)	Even's expected payoff	
F	1	2, -2	-3, 3	4, -4	0.3(2) + 0.6(-3) + 0.1(4) = -0.8	
Even player	2	-3, 3	4, -4	-5, 5	0.3(-3) + 0.6(4) + 0.1(-5) = 1.0	
	3	4, -4	-5, 5	6, -6	0.3(4) + 0.6(-5) + 0.1(6) = -1.2	

• If Even always plays a fixed strategy of 2, then Odd will want to change his strategy to playing 3 100% of the time, so he can win \$5 each round

		Odd player			
		1 (0.3)	2 (0.6)	3 (0.1)	Even's expected payoff
5l	1 (0.4)	2, -2	-3, 3	4, -4	0.3(2) + 0.6(-3) + 0.1(4) = -0.8
Even player	2 (0.5)	-3, 3	4, -4	-5, 5	0.3(-3) + 0.6(4) + 0.1(-5) = 1.0
	3 (0.1)	4, -4	-5, 5	6, -6	0.3(4) + 0.6(-5) + 0.1(6) = -1.2
	Odd's expected	0.4(-2) + 0.5(3) +	0.4(3) + 0.5(-4) +	0.4(-4) + 0.5(5) +	
	payoff	0.1(-4) = 0.3	0.1(5) = -0.3	0.1(-6) = 0.3	

- But what is the <u>best</u> mixed strategy for each player?
 - -What are the optimal percentages for each option?
 - -The best mixed strategy for both players is the mixed Nash equilibrium
 - If your opponent plays his or her best strategy, then you cannot do any worse
 - If your opponent makes a mistake, then you can do better

Optimal Even-Odd Game

 Consider a simpler version of the Even-Odd game, where each player can say only 1 or 2

	Odd says 1	Odd says 2
Even says 1	2, -2	-3, 3
Even says 2	-3, 3	4, -4

Optimal Even-Odd Game

• Both Odd and Even should play "1" 7/12th of the time, and "2" 5/12th of the time

			Subtract Even's payoffs in column 2		Subtract Even's payoffs in column 1	
			4 - (-3) = 7	7/12	2- (-3) = 5 5/12	
				Odd says 1	Odd says 2	
Subtract Odd's payoffs in row 2	3 - (-4) = 7 7/12	Even says 1		2, -2	-3, 3	
Subtract Odd's payoffs in row	3 - (-2) = 5 5/12	Even says 2		-3, 3	<mark>4</mark> , -4	

Optimal Even-Odd Game

- The expected payoff for Even, playing a "1" in the optimal game is 7/12(2) + 5/12(-3) = -1/12
- The expected payoff for Even, playing a "2" in the optimal game is 7/12(-3) + 5/12(4) = -1/12
 Even loses 1/12 of a dollar on average each game
- Similarly, the expected payoff for Odd, playing a "1" or a "2" in the optimal game is +1/12
- Optimal game does not mean both players win. It means that this it the best both players can do under the circumstances (it's not a fair game!)

Non-Zero-Sum Games

- In a zero-sum game, each player's payoff is inversely linked to the other – if one player does well, then the other player does equally badly
- In a non-zero-sum game, a player's payoff is not necessarily affected by how well the other player does
 - -"I don't mind if you do well, as long as I am not worse off"

Non-Zero-Sum Games

- Consider working with a colleague on a project. You both get a bonus of \$6000 if the project is excellent, a bonus of \$3000 if the project is good, and a bonus of \$2000 if the project is fair.
- In order to get an excellent project, you both have to put in \$2000 of extra work. If only one of you does the extra work, you end up with a good project. If neither of you put in extra work the project will be fair

	Colleague works extra	Colleague slacks	
You work extra	4, 4 ———	1, 3 ↑	
You slack	3, 1,	2, 2	

Non-Zero-Sum Games

- The best overall strategy (the payoff dominant one) if for both of you to work extra
- But if you think your colleague might slack, then it is better for you to slack also
- There is nothing wrong with this line of reasoning – it is logically consistent
- However, communication, coupled with a binding agreement (a cooperative strategy) will lead to a better outcome for all involved