Tarea 4

Eduardo Navarro

Septiembre 2021

1. Introducción

Siguiendo las indicaciones de la clase se realizó un diagrama de voronoi al cual le aplicamos pruebas estadísticas para ver el impacto de la profundidad a la que puede llegar en relación a las semillas.

2. Desarrollo

Con las instrucciones de la tarea [2] se prosiguió a formar los diagramas para la posterior recolección de los datos modificando el código proporcionado en [3] para la obtención de estos mismos, se añadió un for para variar las semillas y se analizó la matriz obtenida exportando los archivos a un .xlsx.

Listing 1: Código para la obtención del número de semillas y exportación.

```
library(writexl)
library(ggplot2)
datos = data.frame()
n <- 15
for (k in c(5, 10, 15)) {...
return(grieta)
}
...
manhattanm <- foreach(r = 1:1, .combine=c) %dopar% propaga(r)
manhattanm
datos = rbind(datos, manhattanm)
write_xlsx(datos, "tarea4datos.xlsx")</pre>
```

Con los datos obtenidos se obtuvo la tabla 1.

Tabla 1: Datos de máximas distancias obtenidas a diferentes semillas

rep	5	10	15
1	2	8	5
2 3	- 8	3	4
	2	8	9
4	8	4	4
5	8	9	3
6	2	4	3
7 8	3	8	9
	8	3	5
9	3	8	4
10	3	9	3
11	8	4	9
12	8	3	9
13	3	3	4
14	2	4	5
15	3	4	3

Con los datos de la tabla 1 se consiguió la gráfica 1 donde podemos observar las distancias y el efecto de las semillas en la distribución

Gráfica 1: Distancia mayor obtenida a diferentes semillas

A los datos de la tabla 1 se les hicieron las pruebas estadísticas de Shapiro–Wilk [4] y en base a los resultados obtenidos se realizó la prueba de Kruskal-Wallis [1]

Tabla 2: Resultados de la prueba Shapiro-Wilk

semillas	W	p
5	0.70075	0.000253
10	0.77555	0.001816
15	0.76464	0.001339

Tabla 3: Resultados de la prueba Kruskal-Wallis

_		
H(2)	p-value	
3.2546	0.1965	

Listing 2: Código de las pruebas estadísticas realizadas.

```
#Shapiro Wilk

lshap = lapply(tarea4datos, shapiro.test)

lshap [[1]]

lshap = lapply(tarea4datos, shapiro.test)

lshap [[2]]

lshap = lapply(tarea4datos, shapiro.test)

lshap [[3]]

#Kruskal Wallis

cinco <- c(2, 8, 2, 8, 8, 2, 3, 8, 3, 3, 8, 8, 3, 2, 3)

diez <- c(8, 3, 8, 4, 9, 4, 8, 3, 8, 9, 4, 3, 3, 4, 4)

quince <- c(5, 4, 9, 4, 3, 3, 9, 5, 4, 3, 9, 9, 4, 5, 3)

kruskal.test(list(cinco, diez, quince))
```

3. Conclusiones

Al obtenerse una p menor a 0.05 en la prueba de Shapiro-Wilk se tiene que los datos no vienen de una distribución normal. Esto puede deberse a la diversa cantidad de caminos por los que la grieta se va formando en relación a la distancia máxima alcanzada. Lo mismo para la prueba de Kruskal Wallis donde la p es pequeña y no podemos rechazar la hipótesis nula donde las medianas son iguales. De forma general podemos concluir que hay más caminos formados mientras más semillas haya, por lo tanto; se crean más caminos para acercarnos, pero de la misma forma para alejarnos.

Referencias

- [1] José Antonio: Estadística Aplicada. Kruskall-wallis en RStudio, 2020. URL https://www.youtube.com/watch?v=WEjudFpbCcE.
- [2] Elisa Schaeffer. Simulación P4 AD21, 2021. URL https://www.twitch.tv/videos/1149701396.
- [3] Elisa Schaeffer. Práctica 4: diagramas de Voronoi. https://elisa.dyndns-web.com/teaching/comp/par/p4. html/, 2021. [Online; accessed 14-September-2021].
- [4] El Tío Estadístico. Cómo hacer la PRUEBA DE NORMALIDAD en R, 2020. URL https://www.youtube.com/watch?v=LAzSb6jCFbs.