假定 x_1, x_2, x_3 是 \mathbb{R}^3 的一个基,试求由

 $\mathbf{y}_1 = \mathbf{x}_1 - 2\mathbf{x}_2 + 3\mathbf{x}_3$, $\mathbf{y}_2 = 2\mathbf{x}_1 + 3\mathbf{x}_2 + 2\mathbf{x}_3$, $\mathbf{y}_3 = 4\mathbf{x}_1 + 13\mathbf{x}_2$ 生成的子空间 $L(\mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3)$ 的基.

2.

在 \mathbf{R}^2 中,设 $\mathbf{x} = (\xi_1, \xi_2)$,证明 $T_1 \mathbf{x} = (\xi_2, -\xi_1)$ 与 $T_2 \mathbf{x} = (\xi_1, -\xi_2)$ 是 \mathbf{R}^2 的两个线性变换,并求 $T_1 + T_2$, $T_1 T_2$ 及 $T_2 T_1$.

3.

$$T_{1}\mathbf{X} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{X}, \quad T_{2}\mathbf{X} = \mathbf{X} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
$$T_{3}\mathbf{X} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \mathbf{X} \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

求 T_1 , T_2 , T_3 在基 E_{11} , E_{12} , E_{21} , E_{22} 下的矩阵.