Roadmap

- ☐ Birth of modern cryptography
- Computational security
 - Necessary evils associated with computational security
- ☐ Defining efficient algorithms and negligible probability asymptotically

Perfect Security: The Impractical Goal

- ☐ Perfect secrecy is always desirable. But comes with a heavy price
 - Key as long as the message
 - Fresh key for every instance of encryption
- Practical perfectly-secure encryption --- cheating
- Modern cryptography follows a different "approach"
 - > Attempt to get "closer" to perfect secrecy
 - Getting rid of the practical limitations imposed by perfect secrecy --- shorter, re-usable key

Birth of Modern Cryptography

Implications:

- Relatively much shorter key ?
- ☐ Key can be re-used

Computationally bounded

Learns additional info. about the plain-text with a negligible prob.

Computational security

(Modern Cryptography)

Computational Security: The Basic Idea

- Two relaxations to the model of perfect-security to achieve key reusability
 - Security preserved only against efficient adversaries running in a feasible/practical amount of time
 - Adversaries are allowed to break the scheme with some probability, which is so small that we do not bother
 - Under certain assumptions, the amount of time required to break the scheme will be of order of few lifetimes
 - Acceptable, as most applications do not require ever-lasting security
 - The above relaxations are necessary if key reusability is the goal

Relaxation I: Security Only Against Efficient Adversaries

Consider an encryption scheme where same key is used to encrypt multiple messages

- Consider an adversary, launching a brute-force key-recovery attack in the KPA model
 - \diamond Adversary gets access to $(m_1, c_1), ..., (m_t, c_t)$, where each $c_i \leftarrow \operatorname{Enc}_k(m_i)$
 - \bullet Checks if there is some $k \in \mathcal{K}$, such that $\operatorname{Deq}_{\mathcal{K}}(c_i) := m_i$, for each (m_i, c_i)
 - Running time: $\mathcal{O}(|\mathcal{K}|)$ success probability: 1

Relaxation II: Allowing the Scheme to be Broken with a Small Probability

Consider an encryption scheme where same key is used to encrypt multiple messages

- Consider an adversary, launching a guessing key-recovery attack in the KPA model
 - Adversary gets access to $(m_1, c_1), ..., (m_t, c_t)$, where each $c_i \leftarrow \text{Eng}(m_i)$
 - Randomly guess a $k \in \mathcal{K}$, and check if $Dec_k(c_i) := m_i$, for each (m_i, c_i)
 - Running time: $\mathcal{O}(|1|)$, success probability: $1/|\mathcal{K}|$

Key-Reusability: Necessary Evils

- ☐ Unavoidable to prevent two extreme attacks on such a system in the KPA model
 - \clubsuit Brute force key recovery attack: Running time: $\mathcal{O}(|\mathcal{K}|)$, success probability: 1
 - \clubsuit Guessing key-recovery attack: Running time: $\mathcal{O}(|1|)$, success probability: $1/|\mathcal{K}|$
- Relaxation I: Goal is to achieve security only against efficient adversaries
- Relaxation II: Small probability of a break in the scheme

Key-Reusability: Necessary Evils

- Relaxation I: Security targeted only against efficient adversaries
- Relaxation II: Small probability of a break in the scheme
- ☐ How to mathematically define efficient adversaries?
- ☐ How to mathematically define small (negligible) probability?

Defining Efficient Algorithms and Negligible Probability Asymptotically

- \square Security parameter n --- publicly known (part of the scheme)

Running time of the users

Running time of the adversary

Success probability of the attacker

Functions of the security parameter n

Defining Efficient Algorithms Asymptotically

- Efficient algorithms --- algorithms with a polynomial running time
 - Algorithm A has a polynomial running time, if there exists a polynomial p(.), such for every input $x \in \{0, 1\}^*$, the computation of A(x) terminates within p(|x|) steps, where |x| denotes the length of the string x
- Requirement from any cipher (Gen, Enc, Dec)
 - Gen, Enc and Dec should be efficient algorithms
 - Running time of Gen, Enc and Dec should be a polynomial function of the security parameter n

Defining Negligible Probability Asymptotically

- Negligible functions --- functions which are asymptotically smaller than the inverse of every polynomial function
 - Function f(n) is a negligible function in n, if for every polynomial p(n), there exists some N, such that $f(n) < \frac{1}{p(n)}$, for all n > N

 \approx

- For every constant c, there exists some N, such that $f(n) < n^{-c}$, for all n > N
- \square Example : 2^{-n} , $2^{-\sqrt{n}}$, $n^{-n \log n}$ are all negligible functions

Negligible and Polynomial Functions: Closure Properties

- \square Let $P_1(n)$ and $P_2(n)$ be two arbitrary polynomial functions. Then
 - $\triangleright P_1(n) + P_2(n)$, as well as $P_1(n) \times P_2(n)$ are polynomial functions
- \square Let $\operatorname{negl}_1(n)$ and $\operatorname{negl}_2(n)$ be two arbitrary $\operatorname{negligible}$ functions. Then
 - \triangleright negl₁(n) + negl₂(n), as well as $P(n) \times \text{negl}_1(n)$ are negligible functions
 - No amplification of a negligible advantage
 - \clubsuit Ex: Prob. that n fair coin-flips turn out to be $(0, ..., 0) : 2^{-n}$ (negligible)
 - \clubsuit Even if the experiment repeated polynomial number of times, (0, ..., 0) will occur in any of these experiments with a negligible prob.

Asymptotic Security in Practice

- \square Need to carefully select n while deploying a scheme, for meaningful security
 - * Consider an encryption scheme, for which an adversary can break the scheme with prob. 2^{40} . 2^{-n} , by doing computations for n^3 minutes
 - \clubsuit the scheme is asymptotically secure, as 2^{40} . 2^{-n} is negligible
- \square What value of n should be used while deploying the scheme in practice?
 - $n = 40 \Rightarrow$ attacker's success probability will be 1, after doing computation for 40^3 minutes (6 weeks)
 - $n = 50 \Rightarrow$ attacker's success probability will be 1/1000, after doing computation for 50^3 minutes (3 months)
 - $n = 500 \Rightarrow$ attacker's success probability will be 2^{-460} , after doing computation for 200 years

Asymptotic Security in Practice

(Slide courtesy: Arpita Patra)

User's running also increases

Adversary's job becomes harder

 $min \xrightarrow{n} max$