UNIVERSIDAD DE CONCEPCION

FACULTAD DE CIENCIAS

FISICAS Y MATEMATICAS

DEPARTAMENTO DE INGENIERIA MATEMATICA

ALGEBRA Y ALGEBRA LINEAL 520142

PRACTICA 21: Independencia Lineal, Bases y Dimensión

I. **Problema.** Decidir la independencia lineal del subconjunto \boldsymbol{A} del espacio vectorial $\boldsymbol{V},$ si:

V	A
\mathbb{R}^3	$\{\ [3, 6, 1], [2, 1, 1], [-1, 0, -1]\ \}$
$\mathcal{P}_2(\mathbb{R})$	$\{ x^2 + x + 1, x - 1, (x - 1)^2 \}$
$\mathcal{M}_2(\mathbb{R})$	$\left\{\left(\begin{array}{cc}1&0\\0&1\end{array}\right),\left(\begin{array}{cc}1&1\\0&0\end{array}\right),\left(\begin{array}{cc}1&1\\1&1\end{array}\right)\right\}$

[En Práctica] (3^{er} caso)

II. **Problema**. Sea A subconjunto de un \mathbb{K} -espacio vectorial V. Se dice que $B\subseteq A$ es subconjunto $\mathbf{L.I.}$ Maximal de A, si:

(i)
$$B$$
 es l.i (ii) $\forall v \in A/B : B \cup \{v\}$ es l.d.

En tal caso B es una base de $\langle A \rangle$.

(2.1) Sea $V = \mathcal{P}_2(\mathbb{R})$. Utilice el *Lema de Dependencia Lineal* para determinar el subconjunto L.I. Maximal de

$$A = \{ x^2 + 2x + 3, -3x^2 - x - 3, -2x^2 + x, 6x^2 + 3x + 10 \}$$

(2.2) Repetir el problema anterior si $V = \mathcal{M}_2(\mathbb{R})$ y

$$A=\left\{\left(egin{array}{cc}1&0\2&1\end{array}
ight),\,\left(egin{array}{cc}2&1\3&4\end{array}
ight),\,\left(egin{array}{cc}1&1\1&3\end{array}
ight),\,\left(egin{array}{cc}0&1\-1&0\end{array}
ight)
ight\}$$

(2.3) Análogamente, si $V = \mathbb{R}^4$, determinar el conjunto L.I. Maximal de

$$A = \{\ [1,0,2,1],\ [2,1,3,4],\ [1,1,1,3],\ [0,1,-1,0]\ \}$$

[En Práctica](2.2)

III. **Problema.** Demostrar que si $\{v_1, \ldots, v_n\}$ es l.i. en un \mathbb{K} espacio vectorial V, entonces también lo será:

$$\{v_1-v_2,v_2-v_3,\ldots,v_{n-1}-v_n,v_n\}$$

IV. Problema. Sea $A = \{ p_0, p_1, \ldots, p_m \} \subseteq \mathcal{P}_m(\mathbb{R})$ tal que cada vector de A se anula en x = 1, es decir: $p_j(1) = 0, j = 0, 1, \ldots, m$. Entonces A es l.d. en $\mathcal{P}_m(\mathbb{R})$.

[En Práctica]

V. **Problema.** Encuentre una base y determine la dimensión de los siguientes subespacios:

$$egin{array}{lll} W_1 &=& \{\; [x_1,\,x_2,\,x_3,\,x_4,\,x_5] \in \mathbb{R}^5 \; : \; x_1 = 3x_2 \; \wedge \; x_3 = 7x_4 \; \} \ W_2 &=& \left\{ \left(egin{array}{lll} a & b & b \\ 0 & a & c \\ 0 & c & a \end{array}
ight) \in \mathcal{M}_3(\mathbb{R})
ight\} \ W_3 &=& \left\{ p \in \mathcal{P}_3(\mathbb{R}) \; : \; \int_1^1 t \cdot p'(t) dt = 0 \;
ight\} \ W_4 &=& \left\{ \; A \in \mathcal{M}_2(\mathbb{R}) \; : \; A = A^t \;
ight\} (\mathbb{K} = \mathbb{R}) \ W_5 &=& \left\{ \; A \in \mathcal{M}_2(\mathbb{C}) \; : \; A = A^t \;
ight\} (\mathbb{K} = \mathbb{R}) \ W_6 &=& \left\{ \; A \in \mathcal{M}_2(\mathbb{C}) \; : \; A = A^t \;
ight\} (\mathbb{K} = \mathbb{C}) \end{array} \quad \begin{array}{lll} [En \ Práctica](W_5, W_6) \ \end{array}$$

- VI. Problema. Sea $V = \mathbb{R}^4$ y sus subespacios $F = \langle \{\vec{a}, \vec{b}, \vec{c}\} \rangle$ y $G = \langle \{\vec{d}, \vec{e}\} \rangle$ donde $\vec{a} = [1, 2, 3, 4], \ \vec{b} = [2, 2, 2, 6], \ \vec{c} = [0, 2, 4, 4], \ \vec{d} = [1, 0, -1, 2]$ y $\vec{e} = [2, 3, 0, 1].$
 - (6.1) Determinar las dimensiones de F, G, $F \cap G$ y F + G y dar una base para cada uno de estos subespacios.
- VII. **Problema.** Muestre que el conjunto $\boldsymbol{\beta}$ es base del espacio vectorial \boldsymbol{V} y encontrar el vector coordenada $[\boldsymbol{w}]$, si:

$oldsymbol{V}$	$oldsymbol{eta}$	$oldsymbol{w}$
\mathbb{R}^3	$\{\ [1,\ 1,\ 0],\ [2,\ 0,\ 3],\ [-1,\ 1,\ 0]\ \}$	[2,2,3]
$\mathcal{P}_3(\mathbb{R})$	$\{\ (t-1)^3,\ (t-1)^2,\ (t-1),\ 1\ \}$	$\boxed{t^2+t+1}$
$\mathcal{M}_2(\mathbb{R})$	$\left\{\left(\begin{array}{cc}1 & 1\\0 & 0\end{array}\right), \left(\begin{array}{cc}1 & 0\\1 & 0\end{array}\right), \left(\begin{array}{cc}0 & 0\\1 & 1\end{array}\right), \left(\begin{array}{cc}0 & -1\\0 & 1\end{array}\right)\right\}$	$\left \left(egin{array}{cc} 1 & -1 \ 1 & 0 \end{array} ight) ight $

[En Práctica](2º caso)