Задачи по топологическому анализу данных

Листок 1

- Задача 1. Докажите, что гомеоморфизм пространств \cong является "отношением эквивалентности": если $X \cong Y$ и $Y \cong Z$, то $X \cong Z$. В кавычках, потому что отношение эквивалентности обычно рассматривают на множестве, а совокупность всех топологических пространств множеством не является (если их определять как положено, а не как на лекции).
- **Задача 2.** Докажите гомеоморфизм $(-1;1) \cong \mathbb{R}$.
- Задача 3. Докажите, что круг гомеоморфен квадрату.
- **Задача 4.** Докажите, что если $X \cong Y$ и X компакт, то Y тоже компакт. Если речь про подмножества в \mathbb{R}^n , то [напоминание] компакт это замкнутое ограниченное подмножество.

Определение.Введем на точках пространства X отношение эквивалентности: скажем, что $x \sim y$, если существует непрерывная кривая $p \colon [0;1] \to X$, такая что p(0) = x, p(1) = y.

Задача 5. Докажите, что это действительно отношение эквивалентности.

Класс эквивалентности точек относительно этого отношения эквивалентности называется κ омпонентой линейной связности пространства X.

- Задача 6. Докажите, что если $X \cong Y$, то у X и Y одинаковое число компонент линейной связности (то есть между компонентами связности X и компонентами связности Y можно установить биекцию).
- Задача 7. Пусть $f, g: [0,1] \to [0,1], f(x) = x, g(x) = 0$. Докажите, что отображения f и g гомотопны, построив явную гомотопию между ними.
- Задача 8. Докажите, что гомотопность является отношением эквивалентности на множестве непрерывных отображений из X в Y.
- **Задача 9.** Докажите, что гомотопическая эквивалентность является "отношением эквивалентности" на топологических пространствах.

Определение.Пространство X называется стягиваемым, если оно гомотопически эквивалентно точке.

- **Задача 10.** Докажите, что n-мерный шар стягиваем. Докажите, что любое выпуклое множество в \mathbb{R}^n стягиваемо.
- **Задача 11.*** Докажите, что геометрическая реализация конечного графа стягиваема тогда и только тогда, когда граф дерево.
- **Задача 12.** Пусть $f,g:X\to Y$ гомотопны и $h:Y\to Z$ какое-то отображение. Докажите, что $h\circ f$ и $h\circ g$ гомотопные отображения из X в Z. Аналогично, если $f\sim g\colon X\to Y$ и $k\colon Z\to X$, то $f\circ k\sim g\circ k$.

- Задача 13. Докажите, что число компонент связности является инвариантом гомотопической эквивалентности.
- **Задача 14.** (1) Придумайте алгоритм проверки одномерного симплициального комплекса на стягиваемость. (2) Придумайте алгоритм проверки двух одномерных симплициальных комплексов на гомотопическую эквивалентность.
- Задача 15.* Придумайте алгоритм проверки двух одномерных симплициальных комплексов на гомеоморфизм.