ofin

Lucrare scrisa la analisa matematica sessure iarna 2021

1.60 Yead. como. si abs como seria:

\[\begin{align*} & \frac{1}{2} \\ \frac{1}{

Dit apoi o fit g en prop de mai sus. Vereficare

4, 1) Z (-1) n +1 . she In le an = str ton

0 = ton = 10 = str ton ton = 1 =) an str (sin cu termeni posilivi)

lim str ton = str 0 = 0

1 t n = 2: an strict descrescation (m esta in cadranul I si) Librida S (-1) not som in convergente absolut convergente: \$\frac{2}{n} | 1) not du th = \frac{2}{n-1} stu th str =1 \(\frac{1}{2} yn \sigma \(\text{Xn} = \) \(\frac{1}{2} \) \(\text{Mn} \) \(\text{Tn} \) \(\text{Mn} \ (a) $S_{i}^{2-\frac{1}{2}} = \int_{i}^{2-\frac{1}{2}} \frac{1}{x^{2}+1} dx = S_{i}^{2-\frac{1}{2}} = \lim_{v \to \infty} S_{i} \left(\frac{1}{x} - \frac{1}{(x^{2}+1)} \right) dx =$ - lim (Sixdx - Six. M/ dx) = lim bix (Six (arctisx) dx = = lim lub - lut - carcty x/1 + Si = lam III lan x1, - 150 (x2+1) dx = lam lav - 0 - 12 la (x2+1) 1, = = lem lav - ½ la(v²+1) + ½ la 2 = lem la v²+1)² + ½ la 2 = = lim lu 502+1 + lu J2 = lam lu \$5000 + lu J2 = lu 1+lu J2 = lu 52 (3) $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = (x + xy + y^2) \sqrt{e^x} = (x + xy + y^2) e^{\frac{x}{2}}$ $f(x^0) = 0 = 0$ pot enter of (v,y/= (1+y) (ex + (x+xy+y2)e2. 12=10)

$$\begin{aligned} & \frac{d}{dy} \left(x, y \right) = \sqrt{x^2} \left(x + 2y \right) = e^{\frac{x}{2}} \left(x + 2y \right) \\ & \nabla \left(x, y \right) = \left(\frac{1}{2} e^{\frac{x}{2}} \left(2 + 2y + x + xy + y^2 \right), e^{\frac{x}{2}} \left(x + 2y \right) \right) \\ & \frac{1}{4} e^{\frac{x}{2}} \left(2 + 2y + x + xy + y^2 \right) = 0 \\ & e^{\frac{x}{2}} \left(x + 2y \right) = 0 \end{aligned} = e^{\frac{x}{2}} = 0, \text{ by postbil} \begin{cases} x \text{ now } x + xy = 0 \Rightarrow x > -2, y \\ y = -\frac{x}{2} \end{cases} \\ & \frac{1}{2} e^{\frac{x}{2}} \left(2 + x + x - \frac{x^2}{2} + \frac{x}{4} \right) = 0 \Rightarrow 1 2 - \frac{x^2}{4} = 0 \Rightarrow 1 2 - \frac{x}{4} \end{aligned} = 0 \Rightarrow 1 2 - \frac{x}{4} = 0 \Rightarrow 1 2 \Rightarrow 1$$

12:0 f=1 0 (u1, u2) indéfaut défauté =1 (252, -52) pot ja HIP/(-252,52) = (1/4 e - 52 (4 + 452 42 - 252 - 4 + 2) 1/2 e - 52 (2 - 252 + 252) 2 e - 52 $H(1/252, 52) = \frac{1}{5}e^{-52}(2+252) e^{-52} = \frac{1}{5}e^{-52}(1-152) e^{-52} = \frac{1}{5}e^{-52}(1-152) e^{-52} = \frac{1}{5}e^{-52}(1-152) = \frac{1}{5}e^{-52}$ $\Delta_{1} > 0 \left(\frac{1}{2} - \frac{\sqrt{2}}{2} \right) > 0$ $\Delta_{2} = \left(\frac{1}{2} - \frac{\sqrt{2}}{2} \right) + \left(\frac{1}{2} \left(\frac{1}{1} + \frac{\sqrt{2}}{2} \right) + \left(\frac{1}{2} - \frac{1}{2} + \frac$ =10(u1,u2) poster defende 21(-252,52) pet de menden (3) q: (0, ∞) -> R fd de cls C1. $-u \cdot \frac{dg}{du} \left(u,v\right) + \frac{v}{v+2u} \cdot \frac{dg}{dt} \left(u,v\right) = 1, \forall (u,v) \in (0,a)^{2}$ ûn var (x, y) a (0,00) , u = x , v = x + 2 y (=)-k . \$ (\$ 1 x + 2 y) + x(x+2 y) . \$ (\$, x+2 y)=1 (2) - # · # () () () + x · # 9 (2 , x+24) =1 (10,0)2-1R, f(x,y)=(#,1x+2y) gof: (0,∞1-)R 0/90/1/v,y/=09(f(x,y)).7(//(x,y)).

915

T(gol)(v,y) = \$ \$ (\$ x (gol)(x,y), \$ y (gol/(v,y)) = = (de f(v,y), de f(v,y)). ((xtry)). (x+2y)'y = = (+ 4 ((x,y), + 4) ((x,y)) - 4 + 4 ((x,y)) - 4 1 $\begin{pmatrix} \frac{1}{2} \\ 2 \end{pmatrix}$ = \frac{1}{\times \langle \lan $= \pm \cdot (= \pm) + \times G(0, \infty)^2$ Jh Jh Lv,y/ = 1 Statedork +C alegem h (x,y/= lux g(f(x,y/) = bux g(tx, x+2y) = bux = g(u, v) la « tubuie sous in functer de xy u si v ln x = ln (v-2g) = ln (v-24.x/=ln(v-2u.x)

5/5