ĐỀ THI THỬ CUỐI KỲ MÔN GIẢI TÍCH 2 - Học kì 20212 Nhóm ngành 2 Thời gian làm bài: 90 phút

Chú ý: Thí sinh không được sử dụng tài liệu và giám thị phải kí xác nhận số đề vào bài thi.

Câu 1. (1 điểm): Cho hàm ẩn y=y(x) xác định bởi phương trình $x^3-xy^2+x^2y-y=1$. Tính y'(0).

Câu 2. (1 điểm): Viết phương trình tiếp tuyến tại điểm A(2;1;0) của đường cong $x=\frac{t+2}{t+1}; y=\frac{1}{t^3+1}; z=t^2+2t.$

Câu 3. (1 **diểm):** Đổi thứ tự lấy tích phân $\int_{0}^{1} dx \int_{\sqrt{1-x^2}}^{x+1} f(x;y)dy$

Câu 4. (1 **điểm):** Tính tích phân $\iint\limits_D y dx dy$ trong đó D giới hạn bởi $\begin{cases} x^2 + y^2 = 2x \\ x^2 + y^2 = 4x \\ x = y; \ y = 0 \end{cases}$

Câu 5: (1 điểm) Tính tích phân đường $I = \int\limits_C (xy+x+2y^2)dS$, trong đó C là biên của

 $\mathrm{hình}\; x^2+y^2\leq 2x$

Câu 6: (1 điểm) Tính tích phân đường $I=\int\limits_L (x^2+y^2)dx+(2xy+x^2)dy$ với L là

đường $x^2+y^2=2x$ theo chiều ngược kim đồng hồ

Câu 7: (1 diễm) Cho trường vecto $\vec{F} = e^{-x} \left(\frac{1}{x+y} - \ln{(x+y)} \right) \vec{i} + \frac{e^{-x}}{x+y} \vec{j}$

Chứng minh F là trường thế và tìm hàm thế vị.

Câu 8. (1 điểm): Tìm cực trị của hàm số $z = x^4 + y^4 - 2(x - y)^2$.

Câu 9. (1 điểm): Tìm α, β để tích phân đường: $\int\limits_{L} \frac{y(1-x^2+\alpha y^2)dx+x(1-y^2+\beta x^2)dy}{(1+x^2+y^2)^2}$

không phụ thuộc vào đường lấy tích phân L. Tính tích phân ấy từ điểm A(0,0) đến điểm B(a,b) ứng với các giá trị α,β đã tìm được.

Câu 10. (1 điểm): Tính tích phân $I=\iint\limits_D (|x|-|y|+2y+\sin x)(x^2+y^2)dxdy$ với miền $D:a^2\leq x^2+y^2\leq b^2$ với $b\geq a\geq 0$.

– Chúc các bạn hoàn thành tốt bài thi –

• *Xét hàm số* $F(x,y) = x^3 - xy^2 + x^2y - y - 1$ Giải câu 1. Khi đó ta có

$$F(x,y) = x^3 - xy^2 + x^2y - y - 1 = 0$$

$$\Rightarrow F'_x(x,y) = 3x^2 - y^2 + 2xy$$

$$F'_y(x,y) = -2xy + x^2 - 1$$

• Với
$$x = 0 \Rightarrow y = -1 \Rightarrow \begin{cases} F'_x(0, -1) = -1 \\ F'_y(0, -1) = -1 \end{cases} \Rightarrow y'(0) = -\frac{F'_x(0, 1)}{F'_y(0, 1)} = -1$$

Giải câu 2.

$$Diểm \ A(2;1;0) \ \text{ting với } t=t_0 \text{ thi} \begin{cases} x_A=\frac{t+2}{t+1} \\ y_A=\frac{1}{t^3+1} \\ z_A=t^2+2t \end{cases} \Leftrightarrow t_0=0$$

$$Ta \ c\acute{o}: \begin{cases} x' = \frac{-1}{(t+1)^2} \\ y' = \frac{-3t^2}{(t^3+1)^2} \\ z' = 2t+2 \end{cases} \Rightarrow \begin{cases} x'(0) = -1 \\ y'(0) = 0 \\ z'(0) = 2 \end{cases}$$

$$\begin{cases} x = 2 - t \\ y = 1 \\ z = 2t \end{cases} \quad (t \in \mathbb{R})$$

 $\Rightarrow \textit{Phương trình tiếp tuyến cần tìm là:} \begin{cases} x=2-t \\ y=1 \\ z=2t \end{cases}$ Giải câu 3. Xét miền $D: \begin{cases} 0 \leq x \leq 1 \\ \sqrt{1-x^2} \leq y \leq x+1 \end{cases}$

$$\begin{aligned} & \textit{Chia mi\`en } D = D_1 \cup D_2 \; \textit{v\'oi} \; D_1 : \begin{cases} 0 \leq y \leq 1 \\ \sqrt{1 - y^2} \leq x \leq 1 \end{cases} & \textit{v\'oi} \; D_2 : \begin{cases} 1 \leq y \leq 2 \\ y - 1 \leq x \leq 1 \end{cases} \\ & \Rightarrow \int\limits_0^1 dx \int\limits_{\sqrt{1 - x^2}}^{x + 1} f(x;y) \, dy = \int\limits_0^1 dy \int\limits_{\sqrt{1 - y^2}}^1 f(x;y) \, dx + \int\limits_1^2 dy \int\limits_1^{y - 1} f(x;y) \, dx \end{cases}$$

Giải câu 4.

$$y = x$$

$$y = x$$

$$0$$

$$2$$

$$2$$

$$4$$

$$x$$

$$D \ \, \text{D} \ \, \text{T} \ \, \begin{cases} x = r \cos \varphi \\ y = r \sin \varphi \end{cases} \ \, \Rightarrow |J| = r \text{. Min } \ \, D \text{ trở thành} \ \, \begin{cases} 2 \cos \varphi \leq r \leq 4 \cos \varphi \\ 0 \leq \varphi \leq \frac{\pi}{4} \end{cases}$$

Từ đó, ta có:

$$I = \int_{0}^{\frac{\pi}{4}} d\varphi \int_{2\cos\varphi}^{4\cos\varphi} r \cdot r \sin\varphi \, dr$$

$$= \int_{0}^{\frac{\pi}{4}} \left(\frac{r^3}{3} \sin\varphi \Big|_{r=2\cos\varphi}^{r=4\cos\varphi} \right) \, d\varphi$$

$$= \int_{0}^{\frac{\pi}{4}} \frac{56}{3} \cos^3\varphi \cdot \sin\varphi \, d\varphi$$

$$= -\frac{14}{3} \cos^4\varphi \Big|_{0}^{\frac{\pi}{4}} = \frac{7}{2}$$

Giải câu 5. Tính tích phân đường $I=\int\limits_C (xy+x+2y^2)dS$, trong đó C là biên của hình $x^2+y^2\leq 2x$
Ta có: x^2+y^2 $leq2x\Leftrightarrow (x-1)^2+y^2\leq 1\Rightarrow C: (x-1)^2+y^2\leq 1$
Đặt $\begin{cases} x-1=\cos t \\ y=\sin t \end{cases}$
với $0\leq t\leq 2\pi$

Ta có:

$$I = \int_{0}^{2\pi} ((\cos t + 1)\sin t + \cos t + 1 + 2\sin^{2} t)\sqrt{(-\sin t)^{2} + (\cos t)^{2}}dt$$

$$= \int_{0}^{2\pi} (\cos t \sin t + \sin t + \cos t + 1 + 2\sin^{2} t)dt$$

$$= \int_{0}^{2\pi} (1 + 2\sin^{2} t)dt$$

$$= 4\pi$$

Giải câu 6. Tính tích phân đường $I=\int\limits_L (x^2+y^2)dx+(2xy+x^2)dy$ với L là đường

 $x^2 + y^2 = 2x$ theo chiều ngược kim đồng hồ

$$D \check{a} t \begin{cases} P = x^2 + y^2 \\ Q = 2xy + x^2 \end{cases}$$

Gọi D là miền được giới hạn bởi $L \Rightarrow D : (x-1)^2 + y^2 \le 1$ Dễ thấy P, Q và các đạo hàm riêng của chúng liên tục trên D. Do đó áp dụng công thức Green ta có:

$$I = \int_{L} Pdx + Qdy$$
$$= \iint_{D} (Q'_{x} - P'_{y}) dxdy$$
$$= \iint_{D} 2x dx dy$$

$$D \check{a}t: \begin{cases} x = r\cos\varphi + 1 \\ y = r\sin\varphi \end{cases} \Rightarrow \begin{cases} |J| = r \\ 0 \le r \le 1 \end{cases} \quad Ta \ c\acute{o}: \\ \le \varphi \le 2\pi \end{cases}$$

$$I = \int_{0}^{2\pi} d\varphi \int_{0}^{1} 2(r\cos\varphi + 1)rdr$$
$$= \int_{0}^{2\pi} (\frac{2}{3}\cos\varphi + 1)d\varphi$$
$$= 2\pi$$

Giải câu 7. Cho trường vecto $\vec{F} = e^{-x} \left(\frac{1}{x+y} - \ln(x+y) \right) \vec{i} + \frac{e^{-x}}{x+y} \vec{j}$ Chứng minh F là trường thế và tìm hàm thế vị.

$$\begin{split} & \text{ D \it at } \left\{ \begin{array}{l} P = e^{-x} \left(\frac{1}{x+y} - \ln \left(x + y \right) \right) \\ Q = \frac{e^{-x}}{x+y} \\ & \text{ Ta $c\'ot$: $P'_y = e^{-x} \left(\frac{1}{(x+y)^2} - \frac{1}{x+y} \right) = Q'_x \\ \Rightarrow \overrightarrow{rot} \vec{F} = \left(Q'_x - P'_y \right) \vec{k} = 0 \\ \Rightarrow \vec{F} \text{ $l\^{a}$ một trường thể.} \\ & \text{ $H\^{a}m$ thể v \it i$ của \vec{F} l\^{a}:} \\ & u = \int\limits_{x_0}^x P(t,y_0) dt + \int\limits_{y_0}^y Q(x,t) dt \\ & \text{ $Chon$ $x_0 = 0, y_0 = 1 Ta $c\'ot$:} \end{split}$$

$$u = \int_{0}^{x} e^{-t} \left(\frac{1}{t+1} - \ln(1+t) \right) + \int_{1}^{y} \frac{e^{-x}}{x+t} dt$$
$$= e^{-t} \ln(t+1) \Big|_{0}^{x} + e^{-x} \ln(t+1) \Big|_{1}^{y} + C$$
$$= e^{-x} \ln(x+y) + C$$

Giải câu 8. Hàm số $z = x^4 + y^4 - 2(x - y)^2$ xác định $\forall (x, y) \in \mathbb{R}^2$. Ta có:

$$p = z_x' = 4x^3 - 4(x - y)$$

$p = z'_{x} = 4x^{3} - 4(x - y)$ $q = z'_{y} = 4y^{3} + 4(x - y)$

Cho p,q đồng thời triệt tiêu, ta được hệ phương trình $\begin{cases} x^3 - (x-y) = 0 \\ y^3 + (x-y) = 0 \end{cases}$ $\Leftrightarrow \begin{cases} x^3 + y^3 = 0 \\ x^3 - (x - y) = 0 \end{cases} \Leftrightarrow \begin{cases} (x + y)(x^2 - xy + y^2) = 0 \\ x^3 - (x - y) = 0 \end{cases}$

Rõ ràng (0;0) là một nghiệm của hệ ấy.

Nếu
$$(x;y) \neq (0;0)$$
, ta có: $x^2 - xy + y^2 = \frac{(x-y)^2}{2} + \frac{x^2}{2} + \frac{y^2}{2} > 0$

Vậy hệ phương trình tương đương với hệ $\left\{ \begin{array}{l} x+y=0 \\ x^3-(x-y)=0 \end{array} \right.$

Từ hệ này, ta suy ra:

$$x^3 - 2x = 0$$

Do đó với $x \neq 0$, ta được $x^2 = 2$, vậy hệ có 2 nghiệm $(\sqrt{2}, -\sqrt{2})$ và $(-\sqrt{2}, \sqrt{2})$. Tóm lại ta có 3 điểm tới hạn $M_0(0;0), M_1(\sqrt{2}, -\sqrt{2}), M_2(-\sqrt{2}, \sqrt{2})$.

Ta có:

$$r = 12x^2 - 4$$
; $s = 4$; $t = 12y^2 - 4$

Tại các điểm M_1 , M_2 ta có r=20, s=4, t=20, do đó: $s^2-rt=16-400<0$, hàm số đạt cực tiểu tại M_1 , M_2

$$z_{min} = z(M_1) = z(M_2) = -8$$

Tại điểm M_0 , ta có: r=-4, s=4, t=-4, $s^2-rt=0$, ta chưa kết luận ngay được. Ta có:

$$z(M_0) = z(0;0) = 0$$

Ta xét dấu của hiệu $z(M) - z(M_0)$ khi M chạy trong một lân cận của M_0 , ta có:

$$z(x; -x) = 2x^3 - 8x^2 = -2x^2(4 - x^2) < 0 = z(M_0) \text{ v\'oi } 0 < |x| < 2$$
$$z(x; x) = 2x^4 > 0 = z(M_0) \text{ v\'oi } \forall x \neq 0$$

Vậy đấu của $z(M)-z(M_0)$ thay đổi khi M chạy trong lân cận của M_0 . Hàm số không đạt cực trị tại M_0 .

Giải câu 9. Ta có:

$$P(x,y) = \frac{y(1-x^2+\alpha y^2)}{(1+x^2+y^2)^2} = \frac{y-yx^2+\alpha y^3}{(1+x^2+y^2)^2}$$

$$Q(x,y) = \frac{x(1-y^2+\beta x^2)}{(1+x^2+y^2)^2} = \frac{x-xy^2+\beta x^3}{(1+x^2+y^2)^2}$$

Do đó:

$$\frac{\partial P}{\partial y} = \frac{1 - x^4 + 3(\alpha + 1)x^2y^2 + 3(\alpha - 1)y^2 - \alpha y^4}{(1 + x^2 + y^2)^3}$$
$$\frac{\partial Q}{\partial x} = \frac{1 - y^4 + 3(\beta + 1)x^2y^2 + 3(\beta - 1)x^2 - \beta x^4}{(1 + x^2 + y^2)^3}$$

Các hàm số $P,Q,\frac{\partial P}{\partial y},\frac{\partial Q}{\partial x}$ liên tục trên R^2 . Do đó, muốn tích phân đường $\int\limits_L Pdx+Qdy$

không phụ thuộc vào đường L, thì điều kiện cần và đủ là: $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ $\Rightarrow D$ ồng nhất hệ số $\Rightarrow \alpha = \beta = 1$

Với $\alpha = \beta = 1$, tích phân đường $\int\limits_L Pdx + Qdy$ không phụ thuộc vào đường đi. Để tích phân ấy từ $A \to B$, ta chọn đường lấy tích phân là đoạn thẳng nối AB:

$$y = \frac{b}{a}x \Rightarrow dy = \frac{b}{a}dx$$

Dặt $k = \frac{b}{a}$ suy ra dy = kdxTa được:

$$I = \int_{L} Pdx + Qdy = \int_{0}^{a} \frac{kx(1 - x^{2} + k^{2}x^{2})dx + x(1 - k^{2}x^{2} + x^{2})kdx}{(1 + x^{2} + k^{2}x^{2})^{2}}$$

$$= \int_{0}^{a} \frac{2kxdx}{[1 + (1+k^2)x^2]^2}$$
$$= \frac{ka^2}{1 + (1+k^2)a^2} = \frac{ab}{1+a^2+b^2}$$

Giải câu 10.

$$I = \iint_{D} (|x| - |y| + 2y + \sin x)(x^{2} + y^{2}) dx dy$$

$$= \iint_{D} (|x| - |y|)(x^{2} + y^{2}) dx dy + 2 \iint_{D} y(x^{2} + y^{2}) dx dy + \iint_{D} \sin x(x^{2} + y^{2}) dx dy$$

$$= I_{1} + 2I_{2} + I_{3}$$

Ta có: Miền D đối xứng qua trực Ox và trực Oy mà hàm $f(x,y)=y(x^2+y^2)$ là hàm lẻ đối với y và $g(x,y)=\sin x(x^2+y^2)$ là hàm lẻ đối với x nên $I_2=I_3=0$.

Mặt khác: $h(x,y) = (|x| - |y|)(x^2 + y^2)$ là hàm chẵn đối với x và với y nên

$$I_1 = 4 \iint_{D^+} (x - y)(x^2 + y^2) dx dy \ v \hat{\sigma} i \ D^+ : \begin{cases} a^2 \le x^2 + y^2 \le b^2 \\ x \ge 0, y \ge 0 \end{cases}$$

$$\begin{split} & \textit{D} \breve{a} t \left\{ \begin{array}{l} x = r \cos \varphi \\ y = r \cos \varphi \end{array} \right. \Rightarrow |J| = r \, \textit{v} \grave{a} \, D^+_{r,\varphi} \colon \left\{ \begin{array}{l} a \leq r \leq b \\ 0 \leq \varphi \leq \frac{\pi}{2} \end{array} \right. \\ & \Rightarrow I_1 = 4 \int\limits_0^{\frac{\pi}{2}} d\varphi \int\limits_a^b (r \cos \varphi - r \sin \varphi) r^2 . r dr = 4 \int\limits_0^{\frac{\pi}{2}} (\cos \varphi - \sin \varphi) d\varphi \int\limits_a^b r^4 dr = 0 \\ & \textit{V} \grave{a} \textit{y} \, I = 0. \end{split} \right. \end{split}$$

CLB HÔ TRỢ HỌC TẬP