Лабораторная работа № 3

ИССЛЕДОВАНИЕ ПЕРЕХОДНЫХ ПРОЦЕССОВ В ЛИНЕЙНЫХ ЭЛЕКТРИЧЕСКИХ ЦЕПЯХ (Tina Ti)

ОПЫТ 1

Исследование переходного процесса в *RC*-цепи

К расчёту постоянной времени за время разряда $t_{\rm p}$ Напряжение уменьшается с U до $U_{\rm p}$

Расчёт постоянной времени цепи au

$$\tau = R1 * C0 = \frac{?,6046 \cdot 10^{-3}}{7}$$
 $\tau = R2 * C0 = \frac{7,8743 \cdot 10^{-3}}{7}$

	$ t_{\rm p} $, c	<i>U</i> , <i>B</i>	U_p, B	KS	t
X	19,94 w	7,54	258,774		5,
	$ au = \frac{t_{\mathrm{p}}}{}$	= 2,57	.70-3		$\tau =$

$\tau = \frac{t_{\rm p}}{\ln\left(\frac{U}{U_{\rm p}}\right)} = 2,52.70^{-3}$	$\tau = \frac{t_{\rm p}}{U} =$	7, 8 796-70
$\ln\left(\frac{\partial}{U_{\rm p}}\right)$	$\ln\left(\frac{\sigma}{U_{\rm p}}\right)$	

ОПЫТ 2 Исследование переходного процесса в *RL*-цепи

K расчёту постоянной времени за время разряда $t_{\rm p}$ Напряжение уменьшается с U до U_p

Расчёт постоянной времени цепи au

$$\tau = \frac{L0}{R1} = \frac{2,6052.15^3}{10^{-3}}$$

$$\tau = \frac{L0}{R2} = \frac{8,649.10^{-9}}{10^{-9}}$$

$ t_{\rm p} $, c	U, B	U_p, B
5,49 m	7,37	154,62m

$$\tau = \frac{t_{\rm p}}{\ln\left(\frac{U}{U_{\rm p}}\right)} = 2,36 \text{ Q2.} \cdot 10^{-5}$$

$$\begin{aligned} |t_{p}|, c & U, B & U_{p}, B \\ & 743u & 707 & 777, 9u \end{aligned}$$

$$\tau = \frac{t_{p}}{\ln\left(\frac{U}{U_{p}}\right)} = 7,9577.60^{-4}$$

$$\tau = \frac{t_{\rm p}}{\ln\left(\frac{U}{U_{\rm p}}\right)} = \gamma_{95} + \gamma_{60}^{-4}$$

ОПЫТ 3 Исследование переходного процесса в *RLC*-цепи

Осциллограмма тока при апериодическом процессе R = R0 Ом, L = L0 мГн, $C1 = 5 * C0 = \frac{435}{250} \text{мкФ}$

Осциллограмма тока при предельном апериодическом процессе R = R0 Ом, L = L0 мГн, C2 = C0 = 8 мкФ

Осциллограмма тока при колебательном процессе R = R0 Ом, L = L0 мГн, C3 = 0.05 * C0 = 435 мкФ

Тип переходного процесса	<i>R</i> 0, Ом	Выберите соотношение (<, >, =, ≈)	Критическое сопротивление, $R_{\rm kp}$, Ом
Апериодический	59, 8b		$R_{\rm Kp} = 2\sqrt{\frac{L0}{C1}} = 2\sqrt{\frac{7.8 \cdot 10^{-2}}{4.35 \cdot 10^{-4}}} = 26.76_{-0}$
Предельный апериодический	59,66	*	$R_{\rm kp} = 2\sqrt{\frac{L0}{C0}} = 2\sqrt{\frac{7.4 \cdot 10^{-2}}{87 \cdot 10^{-9}}} = \frac{5968}{5960} \text{OM}$
Колебательный	59,81	T	$R_{\rm Kp} = 2\sqrt{\frac{L0}{C3}} = 2\sqrt{\frac{9.6 \cdot 10^{-8}}{9.55 \cdot 10^{-6}}} = 269.60$

Расчёт параметров колебательного контура

. К расчёту параметров колебательного переходного процесса

Параметр	T _c , c	$i_m(t)$, A	$i_m(t+T)$, A
Значение	3,94 m	11,25	2,77

1. Период колебаний $T_c = 3.94 \, \text{d}$ с

(Определяется по осциллограмме колебательного процесса)

2. Частота собственных колебаний:
$$f_C = \frac{1}{T_C} = \frac{7}{3,94.75^3} = 253,87$$
 Гц

3. Угловая частота:
$$\omega_C = 2\pi f_C = 2*\pi*\frac{253.81 \text{ G}}{253.81 \text{ G}} = \frac{1599.7}{259.99} \text{ c}^{-1}$$

4. Декремент затухания
$$\Delta = \frac{i_m(t)}{i_m(t+T_c)} = \frac{77,95}{2,92} = \frac{9619}{2}$$

(определяется по осциллограмме колебательного процесса как отношение следующих друг за другом амплитуд тока)

5. Логарифмический декремент затухания: $\theta = \ln \Delta = 1,40.15$

7. Резонансная частота:
$$\omega_0 = \sqrt{\omega_{\rm C}^2 + \delta^2} = \sqrt{25943^2 + 35592^2} = 1633,89$$
 гц

8. Индуктивность:
$$L = \frac{1}{\omega_0^2 \times (0.05*c0)} = \frac{1}{763549^2 \cdot 6.05 \cdot 67.10^6} = \frac{8.67.10^9}{1.00}$$
 Гн

9. Активное сопротивление контура:
$$R = 2\delta L = \frac{2 \cdot 6.67 \cdot 15^{\circ}}{60 \text{ м}} = \frac{6.726}{0 \text{ м}}$$