

A brief Intro

What we have and what we do.

→ The RAVDESS dataset

Ryerson Audio-Visual Database of Emotional **Speech** and Song. 24 actors, 60 trials per actor. 1440 files.

→ Eight distinct emotions

neutral, calm, happy, sad, angry, fearful, disgust, surprised. 96 neutral samples, 192 samples for each others.

→ A CNN approach

Build a CNN network to train the classifier and test its accuracy.

_

How to distinguish these eight emotions effectively?

Figure showing the **emotion counts** of the investigated dataset.

_

We tried two approaches.

Based on Fequency Spectrogram

Based on Mel-Frequency Cepstral Coefficients (MFCCs)

Spoiler alert!

We adopted the MFCCs to create figures used as the input data for the CNN networks. The reason for this will be explained later.

Fequency Spectrogram: Merge merge merge!

A spectrogram of **one speech clip** with a fear emotion.

A spectrogram of the merging of **all speech clips** with a fear emotion.

Fequency Spectrogram: Different, but too much noise.

A spectrogram of the merging of all speech clips with a **surprise** emotion.

A spectrogram of the merging of all speech clips with a **fear** emotion.

Data Transformation

The process of transforming Audio waves to MFCC Spectrograms.

→ Audio(.wav)

Time Domain Original Human Speech Data

→ MFCC Spectrograms(.png)

Time Domain Image that contains all the features of the audio

Audio Wave

Normalization

Cut around all examples to 3 seconds

Example of a waveplot of an original audio file

Why not use Frequency Spectrograms?

Frequency spectrograms also contains features. However, humans are not able to tell the difference between these frequency domain features.

Thus, we introduce MFCC.

Frequencies

Transform all from time domain to frequency domain

Using STFT and calculating energy to generate Frequency Spectrograms

MFCC

Mel-scale makes the spectrogram more human auditory-liked.

$$m = 2595 \log_{10} \left(1 + \frac{f}{700} \right).$$

https://wiki.aalto.fi/display/ITSP/Cepstrum+and+MFC

Triangular overlapping windows also leave more low frequencies information.

Note

We directly use

librosa.feature.mfcc()

to transform audio wave to mfcc matrix.

 $N_mfcc = 22$

Data Preparation

We cut down the spectrogram size from ($432 \times 288 \times 3$) to ($240 \times 210 \times 3$).

Only reserve the most dense information area as CNN input.

Split the train set and test set with an ratio of 8 : 2.

CNN network: Use more conv layers to reduce params count

Layer (type)	Output Shape	Param #
conv2d_6 (Conv2D)	(None, 210, 240, 32)	128
conv2d_7 (Conv2D)	(None, 210, 240, 16)	4624
dropout_5 (Dropout)	(None, 210, 240, 16)	0
max_pooling2d_2 (MaxPooling 2D)	g (None, 42, 48, 16)	0
conv2d_8 (Conv2D)	(None, 42, 48, 16)	2320
dropout_6 (Dropout)	(None, 42, 48, 16)	0
conv2d_9 (Conv2D)	(None, 42, 48, 16)	2320
dropout_7 (Dropout)	(None, 42, 48, 16)	0
conv2d_10 (Conv2D)	(None, 42, 48, 16)	2320
dropout_8 (Dropout)	(None, 42, 48, 16)	0
max_pooling2d_3 (MaxPooling 2D)	g (None, 14, 16, 16)	0
conv2d_11 (Conv2D)	(None, 14, 16, 32)	4640
dropout_9 (Dropout)	(None, 14, 16, 32)	0
flatten_1 (Flatten)	(None, 7168)	0
dense_1 (Dense)	(None, 8)	57352

```
loss='categorical_crossentropy'
optimizer = Adam(learning_rate = 0.001),
metrics=['accuracy'])
batch_size = 16, epochs = 50
```

CNN network: A model with accuracy of roughly 60 percent.

3 independent runs of the classifier, obtaining **a test accuracy of more than 60 percent**. Stabilize below 70 percent as training budgets increase. Unstable predicting correctness for now.

```
Epoch 50/50
72/72 [============] - 2s 34ms/step - loss: 0.3101 - accuracy: 0.9236 - val_loss: 1.3528 - val_accuracy: 0.6111
Test loss: 1.3528270721435547
Test accuracy: 0.6111111044883728
```

Visualizing the boundary: Pattern within chaos

Visualizing the boundary: Pattern within chaos

Confusion matrix: How's prediction going?

Surprise and calm are most likely to be correctly identified. Fear and disgust are most likely to be misinterpreted.

Confusion matrix: How's prediction going?

Fear may sound like happy, but happy sounds unlikely to be fear. The classifier have a tendency for being happy and not being fearful.

Conclusions

- Extract features from audio speech to MFCC spectrogram.
- A CNN model that makes prediction on emotions.

Future Works

- Fine-Tune the CNN model.
- Create our own dataset to make predictions.
- Test the emotion classification performance of the model on other languages.