Length and Magnitude vectors in \mathbb{R}^n

Michael Brodskiy

Professor: Lynn Knight

April 7, 2021

- The length (norm) Let $\overrightarrow{v} \in \mathbb{R}^n$ such that $\overrightarrow{v} = (v_1, v_2, \dots, v_n)$, then $||\overrightarrow{v}|| = \sqrt{v_1^2 + v_2^2 + \dots + v_n^2}$
- A unit vector in the direction of \overrightarrow{u} can be found using $\frac{\overrightarrow{u}}{||\overrightarrow{u}||}$
- Let $\overrightarrow{v} \in \mathbb{R}^n$ and c be a scalar. Then $||c\overrightarrow{v}|| = |c|||\overrightarrow{v}||$
- Distance between vectors For two vectors $\overrightarrow{u} = (u_1, u_2, \dots, u_n)$ and $\overrightarrow{v} = (v_1, v_2, \dots, v_n)$, the distance between the two is given by $\sqrt{(u_1 v_1)^2 + (u_2 v_2)^2 + \dots + (u_n v_n)^2}$
- Properties:

1.
$$d(\overrightarrow{u}, \overrightarrow{v}) \geq 0$$

2.
$$d(\overrightarrow{u}, \overrightarrow{v}) = 0$$
 iff $\overrightarrow{u} = \overrightarrow{v}$

3.
$$d(\overrightarrow{u}, \overrightarrow{v}) = d(\overrightarrow{v}, \overrightarrow{u})$$

- Dot Product $-\overrightarrow{u} \cdot \overrightarrow{v} = u_1v_1 + u_2v_2 + \cdots + u_nv_n$
- Properties:

1.
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

$$2. \ \overrightarrow{u}(\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u}\overrightarrow{v} + \overrightarrow{u}\overrightarrow{w}$$

3.
$$c(\overrightarrow{u}\overrightarrow{v}) = (c\overrightarrow{u})\overrightarrow{v}$$

4.
$$\overrightarrow{v} \cdot \overrightarrow{v} = ||\overrightarrow{v}||^2$$

5.
$$\overrightarrow{v} \cdot \overrightarrow{v} \ge 0$$
 or $\overrightarrow{v} \cdot \overrightarrow{v} = 0$ iff $\overrightarrow{v} = 0$

• Angle Between Vectors:

$$\cos(\theta) = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||\overrightarrow{u}|||\overrightarrow{v}||}, \quad 0 \le \theta \le \pi$$

1.
$$\overrightarrow{u} \cdot \overrightarrow{v} > 0 \Rightarrow 0 \leq \theta \leq \pi$$

2.
$$\overrightarrow{u} \cdot \overrightarrow{v} < 0 \Rightarrow \frac{\pi}{2} \le \theta \le \pi$$

3.
$$\overrightarrow{u} \cdot \overrightarrow{v} = 0 \Rightarrow \theta = \frac{\pi}{2}$$
 (orthogonal)