

COMP4161: Advanced Topics in Software Verification

June Andronick, Christine Rizkallah, Miki Tanaka, Johannes Åman Pohjola T3/2019

CSIRO

Last time...

- **→** Simply typed lambda calculus: λ^{\rightarrow}
- \rightarrow Typing rules for λ^{\rightarrow} , type variables, type contexts
- \rightarrow β -reduction in λ^{\rightarrow} satisfies subject reduction
- ightharpoonup β -reduction in λ^{\rightarrow} always terminates
- → Types and terms in Isabelle

Content

ATA	ll	I I I
1	CS	IRO

→ Intro & motivation, getting started	[1]
→ Foundations & Principles	
 Lambda Calculus, natural deduction 	[1,2]
 Higher Order Logic, Isar (part 1) 	[3ª]
Term rewriting	[4]
→ Proof & Specification Techniques	
 Inductively defined sets, rule induction 	[5]
 Datatypes, recursion, induction, Isar (part 2) 	$[6, 7^b]$
 Hoare logic, proofs about programs, invariants 	[8]
 C verification 	[9]
 Practice, questions, exam prep 	[10 ^c]

^aa1 due; ^ba2 due; ^ca3 due

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

Proofs in Isabelle

General schema:

```
lemma name: "<goal>"
apply <method>
apply <method>
...
done
```

→ Sequential application of methods until all subgoals are solved.

The Proof State

- 1. $\bigwedge x_1 \dots x_p . \llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$ 2. $\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$

The Proof State

1.
$$\bigwedge x_1 \dots x_p$$
. $\llbracket A_1; \dots; A_n \rrbracket \Longrightarrow B$

2.
$$\bigwedge y_1 \dots y_q . \llbracket C_1; \dots; C_m \rrbracket \Longrightarrow D$$

 $x_1 \dots x_p$ Parameters

 $A_1 \dots A_n$ Local assumptions

B Actual (sub)goal

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- → *MyTh*: name of theory. Must live in file *MyTh*.thy
- \rightarrow ImpTh_i: name of imported theories. Import transitive.

Isabelle Theories

Syntax:

```
theory MyTh imports ImpTh_1 \dots ImpTh_n begin (declarations, definitions, theorems, proofs, ...)* end
```

- → *MyTh*: name of theory. Must live in file *MyTh*.thy
- → *ImpTh_i*: name of *imported* theories. Import transitive.

Unless you need something special: theory *MyTh* imports Main begin ... end

$$\frac{A \wedge B}{A \wedge B} \text{ conjl} \qquad \frac{A \wedge B}{C} \qquad \text{conjE}$$

$$\frac{A \vee B}{A \vee B} \frac{A \vee B}{A \vee B} \text{ disjl1/2} \qquad \frac{A \vee B}{C} \qquad \text{disjE}$$

$$\frac{A \longrightarrow B}{A \longrightarrow B} \text{ impl} \qquad \frac{A \longrightarrow B}{C} \qquad \text{impE}$$

$$\frac{A \cap B}{A \cap B} \text{ conjl} \qquad \frac{A \cap B}{C} \text{ conjE}$$

$$\frac{A \cap B}{A \cap B} \frac{A \cap B}{A \cap B} \text{ disjI} 1/2 \qquad \frac{A \cap B}{C} \text{ disjE}$$

$$\frac{A \cap B}{A \cap B} \text{ impl} \qquad \frac{A \cap B}{C} \text{ impE}$$

$$\frac{A \cap B}{A \cap B} \text{ conjl} \qquad \frac{A \cap B}{C} \text{ conjE}$$

$$\frac{A}{A \vee B} \frac{B}{A \vee B} \text{ disjl1/2} \qquad \frac{A \vee B}{C} \text{ disjE}$$

$$\frac{A \cap B}{A \cap B} \text{ impl} \qquad \frac{A \cap B}{C} \text{ impE}$$

$$\frac{A \quad B}{A \land B} \text{ conjl} \qquad \frac{A \land B \quad \llbracket A; B \rrbracket \implies C}{C} \text{ conjE}$$

$$\frac{A}{A \lor B} \quad \frac{B}{A \lor B} \text{ disjl1/2} \qquad \frac{A \lor B \quad A \implies C \quad B \implies C}{C} \text{ disjE}$$

$$\frac{A \implies B}{A \implies B} \text{ impl} \qquad \frac{A \longrightarrow B}{C} \text{ impE}$$

$$\frac{A \quad B}{A \land B} \text{ conjl} \qquad \frac{A \land B \quad \llbracket A; B \rrbracket \implies C}{C} \text{ conjE}$$

$$\frac{A}{A \lor B} \quad \frac{B}{A \lor B} \text{ disjl1/2} \qquad \frac{A \lor B \quad A \implies C \quad B \implies C}{C} \text{ disjE}$$

$$\frac{A \implies B}{A \implies B} \text{ impl} \qquad \frac{A \longrightarrow B \quad A \quad B \implies C}{C} \text{ impE}$$

Proof by assumption

apply assumption

proves

1.
$$\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$$

by unifying C with one of the B_i

Proof by assumption

apply assumption

proves

1.
$$\llbracket B_1; \ldots; B_m \rrbracket \Longrightarrow C$$

by unifying C with one of the B_i

There may be more than one matching B_i and multiple unifiers.

Backtracking!

Explicit backtracking command: back

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow .

apply (rule <intro-rule>)

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \dots A_n$

Intro rules

Intro rules decompose formulae to the right of \Longrightarrow .

Intro rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ To prove A it suffices to show $A_1 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C:

- \rightarrow unify A and C
- \rightarrow replace C with n new subgoals $A_1 \dots A_n$

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow .

apply (erule <elim-rule>)

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

→ If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Elim rules

Elim rules decompose formulae on the left of \Longrightarrow .

Elim rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ means

 \rightarrow If I know A_1 and want to prove A it suffices to show $A_2 \dots A_n$

Applying rule $[\![A_1;\ldots;A_n]\!] \Longrightarrow A$ to subgoal C: Like **rule** but also

- → unifies first premise of rule with an assumption
- → eliminates that assumption

$$\frac{A = B}{A = B} \text{ iffI} \qquad \frac{A = B}{C} \text{ iffE}$$

$$\frac{A = B}{A = B} \text{ iffD1} \qquad \frac{A = B}{B} \text{ iffD2}$$

$$\frac{A = B}{A = B} \text{ iffD2}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffI} \qquad \frac{A = B}{C} \qquad \text{iffE}$$

$$\frac{A = B}{A} \text{ iffD1} \qquad \frac{A = B}{B} \text{ iffD2}$$

$$\frac{A = B}{A} \text{ notE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \text{ iffI} \qquad \frac{A = B \quad [A \longrightarrow B; B \longrightarrow A]] \Longrightarrow C}{C} \text{ iffE}$$

$$\frac{A = B}{A} \text{ iffD1} \qquad \frac{A = B}{B} \text{ iffD2}$$

$$\frac{A \Longrightarrow B \Longrightarrow A}{A = B} \text{ iffI} \qquad \frac{A = B \quad [A \longrightarrow B; B \longrightarrow A] \Longrightarrow C}{C} \text{ iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \text{ iffD1} \qquad \frac{A = B}{B \Longrightarrow A} \text{ iffD2}$$

$$\frac{A = B}{A \Longrightarrow B} \text{ notE}$$

$$\frac{A \Longrightarrow B \Longrightarrow A}{A = B} \text{ iffl} \qquad \frac{A = B \quad \llbracket A \longrightarrow B; B \longrightarrow A \rrbracket \Longrightarrow C}{C} \text{ iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \text{ iffD1} \qquad \frac{A = B}{B \Longrightarrow A} \text{ iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \text{ notI} \qquad \frac{\neg A}{P} \text{ notE}$$

$$\frac{A \Longrightarrow B \Longrightarrow A}{A = B} \text{ iffl} \qquad \frac{A = B \quad [\![A \longrightarrow B; B \longrightarrow A]\!] \Longrightarrow C}{C} \text{ iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \text{ iffD1} \qquad \frac{A = B}{B \Longrightarrow A} \text{ iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \text{ notI} \qquad \frac{\neg A \quad A}{P} \text{ notE}$$

$$\frac{A \Longrightarrow B \quad B \Longrightarrow A}{A = B} \quad \text{iffl} \qquad \frac{A = B \quad \llbracket A \longrightarrow B; B \longrightarrow A \rrbracket \Longrightarrow C}{C} \quad \text{iffE}$$

$$\frac{A = B}{A \Longrightarrow B} \quad \text{iffD1} \qquad \qquad \frac{A = B}{B \Longrightarrow A} \quad \text{iffD2}$$

$$\frac{A \Longrightarrow False}{\neg A} \quad \text{notI} \qquad \qquad \frac{\neg A \quad A}{P} \quad \text{notE}$$

$$\frac{False}{P} \quad \text{FalseE}$$

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans $\frac{s=t}{P} \frac{P}{t}$ subst

Equality

$$\frac{s=t}{t=t}$$
 refl $\frac{s=t}{t=s}$ sym $\frac{r=s}{r=t}$ trans $\frac{s=t}{P} \frac{P}{t}$ subst

Rarely needed explicitly — used implicitly by term rewriting

$$\overline{P = True \lor P = False}$$
 True-or-False

$$P = True \lor P = False$$
 True-or-False

$$\overline{P \vee \neg P}$$
 excluded-middle

$$\frac{\neg A \Longrightarrow \textit{False}}{A} \ \text{ccontr} \qquad \frac{\neg A \Longrightarrow A}{A} \ \text{classical}$$

$$\overline{P = \mathit{True} \lor P = \mathit{False}} \quad \mathsf{True\text{-}or\text{-}False}$$

$$\overline{P \lor \neg P} \quad \mathsf{excluded\text{-}middle}$$

$$\underline{\neg A \Longrightarrow \mathit{False}}_{A} \quad \mathsf{ccontr} \quad \underline{\neg A \Longrightarrow A}_{A} \quad \mathsf{classical}$$

→ excluded-middle, ccontr and classical not derivable from the other rules.

$$\overline{P = True \lor P = False}$$
 True-or-False

$$\overline{P \vee \neg P}$$
 excluded-middle

$$\frac{\neg A \Longrightarrow False}{A}$$
 ccontr $\frac{\neg A \Longrightarrow A}{A}$ classical

- → excluded-middle, ccontr and classical not derivable from the other rules.
- → if we include True-or-False, they are derivable

They make the logic "classical", "non-constructive"

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Cases

$$\overline{P \vee \neg P}$$
 excluded-middle

is a case distinction on type bool

Isabelle can do case distinctions on arbitrary terms:

Safe rules preserve provability

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE $\frac{A}{A \wedge B} \text{ conjl}$

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE $\frac{A}{A \wedge B} \text{ conjl}$

Unsafe rules can turn a provable goal into an unprovable one

Safe rules preserve provability

$$\frac{A}{A \wedge B}$$
 conjl

Unsafe rules can turn a provable goal into an unprovable one

$$\frac{A}{A \vee B}$$
 disjl1

Safe rules preserve provability conjl, impl, notl, iffl, refl, ccontr, classical, conjE, disjE $\frac{A}{A \wedge B} \text{ conjl}$

Unsafe rules can turn a provable goal into an unprovable one disjl1, disjl2, impE, iffD1, iffD2, notE $\frac{A}{A \vee B} \text{ disjl1}$

Apply safe rules before unsafe ones

What we have learned so far...

- \rightarrow natural deduction rules for \land , \lor , \longrightarrow , \neg , iff...
- → proof by assumption, by intro rule, elim rule
- → safe and unsafe rules
- → indent your proofs! (one space per subgoal)
- → prefer implicit backtracking (chaining) or *rule_tac*, instead of *back*
- → prefer and defer
- → oops and sorry

Assignment

Assignment 1 will be out on Monday, the 30rd of September!

Reminder: DO NOT COPY

Assignment

Assignment 1 will be out on Monday, the 30rd of September!

Reminder: DO NOT COPY

- → Assignments and exams are take-home. This does NOT mean you can work in groups. Each submission is personal.
- → For more info, see Plagiarism Policy