Protokolle

- Damit Computer einander "verstehen"
- Codierungsvorschriften für Daten und Ablaufbeschreibungen
- Kommunizierende Computer müssen das gleiche Protokoll anwenden

Beispiele für bekannte Netze, Dienste und Protokolle

Internet

- Das Internet ist bezüglich der Geräte und Verbindungskomponenten kein eindeutig identifizierbares Rechnernetz.
- Es ist ein weltumspannendes, offenes Netz, das auf der Verwendung der TCP/IP-Protokollen* und den dazu gehörenden Diensten basiert.
- Ein auf TCP/IP-Protokollen und Diensten aufbauendes Rechnernetz innerhalb eines Unternehmens wird Intranet genannt.

* TCP = Transmission Control Protocol IP = Internet Protocol

Bekannte Internetdienste und ihre Protokolle

- Die drei populärsten Dienste auf dem Internet sind: E-Mail, WWW und File Transfer (FTP).
- Die dazu gehörenden Protokolle sind:
 SMTP (Simple Mail Transfer Protocol) für E-Mail.

HTTP (Hypertext Transfer Protocol) für das World Wide Web.

FTP (File Transfer Protocol) für das Übermitteln von Dateien.

 Moderne Browser verstehen alle drei Protokolle und können somit Mail-Server, WWW-Server und FTP-Server ansprechen.

Protokolle der verschiedenen Schichten

Schicht 7: Anwendung	Telnet, FTP, HTTP, SMTP
Schicht 6: Darstellung	Telnet, FTP, HTTP, SMTP, NetBIOS
Schicht 5: Kommunikation	TFTP, Telnet, FTP, HTTP, SMTP, NetBIOS
Schicht 4: Transport	TCP, UDP, SPX, NetBEUI
Schicht 3: Vermittlung	IP, IPX, X.25, NetBEUI, AppleTalk- over-IP
Schicht 2: Sicherung	LLC/MAC, ARP, Ethernet
Schicht 1: Übertragung	Ethernet, Token Ring, FDDI, X.25, Frame Relay.

Identifikation in der Bitübertragungsschicht: Hardwareadresse des PCs (-> MAC-Adresse)

- Jede Netzwerkkarte erhält vom Hersteller eine zwölfstellige, hexadezimale, Hardwareadresse. (Media Access Control address, z.B. 00 04 7D B5 90 F4)
- Kooperation der Hersteller stellt sicher, dass diese Adresse weltweit eindeutig ist.
- Diese Hardwareadresse ist nicht mit der IP-Adresse (z.B. 129.132.17.9) zu verwechseln, für deren Vergabe sie die Grundlage ist (Vermittlungsschicht).

arp –a: anzeigen des arp - caches

Ports (englisch für Anschlüsse)

Adresskomponenten, die in Netzwerkprotokollen eingesetzt werden, um Datensegmente den richtigen Diensten (Protokollen) zuzuordnen. Dieses Konzept ist z.B. in TCP und UDP implementiert. (z. B. 216.239.33.100:80)

Kann Werte von 0 bis 65535 annehmen.

Well Known Ports

25 SMTP E-Mail-Versand

21 FTP Dateitransfer

53 DNS Auflösung von Domainnamen in IP-Adressen

80 HTTP Webserver

31337 Back Orifice (Trojaner)

Bitrate und Baudrate

Émile Baudot

Bit Rate and Baud Rate

- Bitrate: Anzahl der übertragenen Nutzdaten in Bits pro Zeiteinheit. -> Datenübertragungsrate
- Typischerweise wird in Bit pro Sekunde (Bit/s) gemessen.
- Baudrate: Anzahl der übertragenen Symbole pro Sekunde.
- Baud nennt man auch Schrittgeschwindigkeit oder Symbolrate -> 1 Baud ist die Geschwindigkeit, wenn 1 Symbol pro Sekunde übertragen wird.
- Ursprünglich gab die Baudrate die Signalisierungsgeschwindigkeit beim Telegrafen an, also die Anzahl der Morsezeichen pro Sekunde.

Ethernet

Robert Metcalfe im Juni 1976 am Xerox Palo Alto Research Center: Funktionsprinzip von Ethernet

Bei **Ethernet** spricht man von einer paketvermittelnden Netzwerktechnik, deren Standards auf den Schichten 1 und 2 des OSI-Schichtenmodells die Adressierung und die Zugriffskontrolle auf unterschiedliche Übertragungsmedien definieren.

IEEE Normen auf Layer 1 und 2 :

2	802.1 Internet-Working	802.2 Logical Li	802.2 Logical Link Control (LLC)							
_		802.1 Media Acc	cess Control	(MAC)						
1		802.3 Ethernet	802.4 Token-Bus	802.5 Token-Ring	802.11 Wireless LAN					

- Es existieren zahlreiche Ethernet-Standards
- Diese unterscheiden sich u.a. in der Übertragungsrate und dem Übertragungsmedium.
- Es existieren Versionen für Koaxialkabel, Twisted-Pair-Kabel und Glasfaser-Kabel bis maximal 10 Gbit/s (100 Gbit/s in Planung).

2 Übertragungsverfahren existieren:

- Basisband (BASE)
- Breitband (BROAD)

Standard	MBit/s	Obertragungsmedium
10BASE2/5	10	Koaxialkabel (50 Ohm Wellenwiderstand)
10BROAD36	10	Koaxialkabel (75 Ohm Wellenwiderstand)
10BASE-F	10	Glasfaserkabel
10BASE-T	10	Twisted-Pair-Kabel
100BASE-FX	100	Glasfaserkabel
100BASE-T4	100	Twisted-Pair-Kabel (Cat 3)
100BASE-TX	100	Twisted-Pair-Kabel (Cat 5)
1000BASE-LX	1.000	Glasfaserkabel
1000BASE-SX	1.000	Glasfaserkabel (Multimodefasern)
1000BASE-ZX	1.000	Glasfaserkabel (Singlemodefasern)
1000BASE-CX	1.000	Doppelt-twinaxiale Kupferkabel
1000BASE-T	1.000	Twisted-Pair-Kabel (Cat 5)
1000BASE-TX	1.000	Twisted-Pair-Kabel (Cat 6)
10GBASE-SR	10.000	Glasfaserkabel (Multimodefasern)
10GBASE-LR	10.000	Glasfaserkabel (Singlemodefasern)
10GBASE-CX4	10.000	Doppelt-twinaxiale Kupferkabel
10GBASE-T	10.000	Twisted-Pair-Kabel (Cat 6e)

10BASE5 z.B. bedeutet. . .

- Übertragungsrate: 10 MBit/s
- Übertragungsverfahren:
- Basisband
- Maximale Segmentlänge:
- 5 * 100m = 500m

Protokolle beim Ethernet

- Ethernet verwendet das Address Resolution Protocol (ARP) um die logischen Adressen der Vermittlungsschicht (IPv4-Adressen) in MAC-Adressen aufzulösen
- Bei IPv6 wird das Neighbor
 Discovery Protocol (NDP)
 verwendet, dessen Funktionalität
 identisch ist und das ähnlich arbeitet

Bei Ethernet verwendete Medientypen

Ethernet Rahmenformat

- Die Präambel besteht aus der 7 Bytes langen Bitfolge 101010...1010 :
- Synchronisiert bei Bus-Topologien den Empfänger auf die Bit-Abstände.
- Darauf folgt der 1 Byte große SFD mit der Bitfolge 10101011.

- Die Datenfelder für die physischen Adressen (MAC-Adressen) von Sender und Ziel sind jeweils 6 Bytes lang.
- Der 4 Bytes lange optionale VLAN-Tag (VLAN -> Virtual LAN) enthält unter anderem :
- eine 12 Bits lange VLAN-ID und ein 3 Bits großes Feld zur Priorisierung.

- Das Datenfeld Typ enthält das verwendete Protokoll der nächsthöheren Schicht.
- Bei IPv4 hat das Datenfeld Typ den Wert 0x0800
- Bei IPv6 hat das Datenfeld Typ den Wert 0x86DD
- Enthalten die Nutzdaten eine ARP-Nachricht, hat das Datenfeld Typ den Wert 0x0806
- Mindestgröße eines Ethernet-Rahmens: 72
 Bytes, Maximale Größe: 1526 Bytes.
- Der VLAN-Tag vergrößert die maximale Größe um 4 Bytes.
- Jeder Rahmen kann maximal 1500 Bytes Nutzdaten enthalten.
- Mit dem Datenfeld Pad werden Rahmen bei Bedarf auf die erforderliche Mindestgröße von 72 Bytes gebracht -> das ist nötig, damit die Kollisionserkennung via CSMA/CD funktioniert
- Abschließend folgt eine 32 Bits lange Prüfsumme, die aber nicht die Präambel und den SFD einschließt.

MAC-Broadcast-Adresse

- Möchte ein Netzwerkgerät einen Rahmen explizit an alle anderen Geräte im gleichen physischen Netz senden, fügt es im Rahmen in das Feld der Zieladresse die Broadcast-Adresse ein.
- Bei dieser MAC-Adresse haben alle 48 Bits den Wert 1 -> Hexadezimale Schreibweise:

FF-FF-FF-FF

 Rahmen, die im Zielfeld die Broadcast-Adresse tragen, werden von Bridges und Switches nicht in andere physische Netze übertragen.

Umwandlung in einen Datenstrom auf Layer 1

Nachdem der Datenstrom als Folge von Bytes bereitgestellt wurde, werden nun abhängig vom physischen Medium und der Übertragungsrate ein oder mehrere Bits in einen Leitungscode kodiert, um einerseits die physischen Eigenschaften des Mediums zu berücksichtigen und andererseits dem Empfänger eine Taktrückgewinnung zu ermöglichen.

Leitungscode:

- legt bei der digitalen Telekommunikation fest, wie die zur Informationsübertragung genutzten Symbole auf der physischen Ebene übertragen werden.
- dabei werden bestimmte Pegelfolgen, etwa Lichtintensitäten auf Glasfasern oder Spannungen oder Ströme auf elektrischen Leitungen, binären Bitsequenzen im Datenstrom zugeordnet.

Beispiele für Leitungscodes:

- Non Return to Zero (NRZ) (RS-232)
- Return to Zero (RZ) (IrDA -> Infrarot)
- Manchesterkodierung (IEEE 802.3)
- 8b10b (Gigabit-Ethernet, PCIe, USB 3.0, HDMI)
- 64b66b (10-Gigabit-Ethernet)

logisch High Pegelwechsel +1→0 logisch Low Pegelwechsel -1→0

Return-to-Zero-Leitungscode

CSMA/CD

In Busnetzen gilt grundsätzlich:

- Wartezeit und übertragbare Datenmenge sind nicht eindeutig vorhersagbar.
- Alle Teilnehmer stehen in Bezug auf den Medienzugriff im direktem Wettbewerb.

Ethernet verwendet das Medienzugriffsverfahren Carrier Sense Multiple Access / Collision Detection (CSMA/CD)

Carrier Sense (CS) heißt:

- Jedes Netzwerkgerät hört vor dem Senden den Kanal ab, und sendet nur dann, wenn der Kanal frei ist.
- •Die Netzwerkgeräte können also zwischen einer freien und einer besetzten Verbindungsleitung unterscheiden.

Multiple Access (MA) heißt:

Alle Netzwerkgeräte greifen auf dasselbe Übertragungsmedium konkurrierend zu.

Collision Detection (CD)

Jedes Netzwerkgerät hört auch während des Sendens den Kanal ab, um auftretende

Kollisionen zu
entdecken und wenn
nötig eine
Fehlerbehandlung
durchzuführen.

Kollisionsdomäne

- Der Bereich, in dem sich Kollisionen ausdehnen können.
- Eine Kollisionsdomäne ist ein Netzwerk oder ein Teil eines Netzwerks, in dem mehrere Netzwerkgeräte ein gemeinsames Übertragungsmedium nutzen.
- Sie umfasst alle Netzwerkgeräte, die gemeinsam um den Zugriff auf ein Übertragungsmedium konkurrieren.

Kollisionsdomänen entsprechen Netzwerksegmenten.

- Repeater und Hubs vergrößern die Kollisionsdomäne.
- Bridges, Switches und Router teilen die Kollisionsdomäne.
- Zur Kollisionserkennung verwendet der kabelgebundene Netzwerkstandard Ethernet das Medienzugriffsverfahren CSMA/CD.
- Bei Funknetzen ist eine sichere Kollisionserkennung unmöglich.
- Aus diesem Grund verwendet WLAN zur Kollisionsvermeidung das Medienzugriffsverfahren CSMA/CA.

Behandlung von Kollisionen:

Kollisionserkennung
Carrier Sense Multiple
Access/Collision Detection
Ethernet

Kollisionsvermeidung
Carrier Sense Multiple
Access/Collision Avoidance
WLAN

Broadcast-Domänen

- Logischer Verbund von Netzwerkgeräten, bei dem ein Broadcast alle Teilnehmer der Domäne erreicht.
- Geräte aus Schicht 3 (Router, Layer-3-Switche) teilen die Broadcast-Domäne
- Geräte aus Schicht 1 und 2 (Repeater, Hubs, Bridges, Layer-2-Switche) unterbrechen sie nicht.
- Broadcast-Domänen bestehen aus einer oder mehreren Kollisionsdomänen.
- Die Geräte aus Schicht 1 (Repeater, Hubs) unterbrechen die Kollisionsdomäne nicht.
- Die Geräte aus Schicht 2 und 3 (Bridges, Layer-2-Switche, Router, Layer-3-Switche) unterbrechen die Kollisionsdomäne.

Broadcast-Domänen entsprechen Netzen.

Unicast, Multicast, Broadcast und Anycast

Unicast -> Eine IP-Adresse hat einen einzelnen Empfänger.

Multicast -> Eine IP-Adresse kann eine Gruppe von Empfängern bezeichnen. Einem Netzwerkgerät können auch mehrere IP-Adressen zugeordnet sein.

Broadcast (engl.; Rundruf)
-> eine Nachricht, bei der
Datenpakete von einem
Punkt aus an alle Teilnehmer
eines Nachrichtennetzes
übertragen werden.

Bei Anycast erreicht man über eine Adresse einen einzelnen Empfänger aus einer Gruppe Es antwortet der Empfänger, der über die kürzeste Route erreichbar ist.

Zusammenhang zwischen MAC-Adressen und IP-Adressen

Ausschließlich physische Adressierung via MAC-Adressen ist in Computernetzen mit eventuell globalen Ausmaßen nicht sinnvoll. -> Grund: Wartbarkeit (und Kollisionsdomänen)

Es sind logische Adressen nötig, die von der konkreten Hardware unabhängig sind

-> IP-Adressen

MAC Address	IP Address
00-16-E6-42-C4-33	192.168.1.100

2. N		Configures packets for intra-subnet and inter-						
3 - Network		subnet communications	IPv4, IPv6 , IPX					
2 – Data Link	LLC	Applies physical addresses to the data creating a	NAAC addusaasa					
Z – Data Link	MAC	switchable frame.	MAC addresses					
1 - Physical		Converts the data into the format appropriate for	Hubs, fiber optics, copper,					
2 111751001		the associated media.	electricity, RF					

Aufbau von IP-Adressen

- IPv4-Adressen sind 32 Bits (4 Bytes) lang.
- Daher können 2³² = 4.294.967.296 Adressen dargestellt werden.
- Üblich ist die Darstellung in der sogenannten Dotted decimal notation.
- Die 4 Oktette werden als vier durch Punkte voneinander getrennte ganze Zahlen in Dezimaldarstellung im Bereich von 0 bis 255 geschrieben.
- Beispiel: 141.52.166.25

Adressraum = Menge aller gültigen Netzadressen

Kennt sich das ZDF mit IP-Adressierung aus?

- Die 32 Bits einer IPv4-Adresse bestehen aus den beiden Feldern:
- Netzadresse (Network Identifier bzw. Netzwerk-ID)
- Hostadresse (Host Identifier bzw. Host-ID)

Klassen für IP-Adressen (Classful network):

Klasse A: 7 Bits für Netzadresse und

24 Bits für Hostadresse

Klasse B: 14 Bits für Netzadresse und

16 Bits für Hostadresse

Klasse C: 21 Bits für Netzadresse und

E-Netz:

8 BI	8 Bits für Hostadresse																													
Oktett:	1				2					3							4													
Bit:	1 2	3	4 !	5 6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8	1	2	3	4	5	6	7	8
A-Netz:	: 0 Netzadresse														Н	osta	adr	ess	se											
B-Netz:	1 0		Net	zad	ress	se																			Hostadresse					
C-Netz:	1 1 0 Netzadresse H								Н	osta	adr	ess	se																	
D-Netz:	1 1 1 0 Multicast-Adressen																													

Reservierte Adressen

- Ursprünglich wurden IPv4-Adressen in Klassen von A bis C eingeteilt
- Klassen D und E für spezielle Aufgaben.

Präfixe und Hostadressen bei IP-Adressklassen

- Die Präfixe legen die Netzklassen und ihre Adressbereiche fest.
- $2^7 = 128$ Klasse A-Netze mit jeweils maximal $2^{24} = 16.777.216$ Hostadressen.
- $2^{14} = 16.384$ Klasse B-Netze mit jeweils maximal $2^{16} = 65.536$ Hostadressen.
- $2^{21} = 2.097.152$ Klasse C-Netze mit jeweils maximal $2^8 = 256$ Hostadressen.
- Klasse D enthält Multicast-Adressen (zum Beispiel für IPTV).
- Klasse E ist für Experimente reserviert.

Klasse	Präfix	Adressbereich	Netzteil	Hostteil
Α	0	0.0.0.0 - 127.255.255.255	7 Bits	24 Bits
В	10	128.0.0.0 - 191.255.255.255	14 Bits	16 Bits
C	110	192.0.0.0 - 223.255.255.255	21 Bits	8 Bits
D	1110	224.0.0.0 - 239.255.255.255	_	_
Е	1111	240.0.0.0 - 255.255.255.255	_	_

Beispiele Class-A-Netze:

- General Electric 3.0.0.0
- •IBM 9.0.0.0
- Columbia University 15.0.0.0
- •Hewlett Packard 16.0.0.0
- •Apple 17.0.0.0
- •M.I.T 18.0.0.0

Probleme der Netzklassen:

- Sie können nicht dynamisch an Veränderungen angepasst werden.
- Sie verschwenden viele Adressen.

Lösung:

- 1993: Einführung des klassenlosen Routings –
 Classless Interdomain Routing (CIDR).
- •Subnetting -> Unterteilung logischer Netze in Teilnetze (Subnetze).
- •Supernetting -> Zusammenfassen von mehreren Netzen mit teilweise gleichem Netzwerkanteil.

Die Netzmaske (netmask)

Netzanteil Hostanteil

Ip-Adresse: 192.168.168 0

Netzmaske: 255.255.255 0

192.168.168 00000000
255.255.255 00000000

- Alle Knoten in einem Netzwerk bekommen eine Netzmaske zugewiesen.
- Länge: 32 Bits (4 Bytes).

NOT Netzmaske

Geräteteil

UND

- Mit ihr wird die Anzahl der Subnetze und Hosts festgelegt.
- Die Netzmaske unterteilt die Hostadresse der IP-Adresse in Netznummer und Hostadresse.

	IPv4-Adresse	11000000 10101000 00000001 10000001 192.168.1.129
UND	Netzmaske	11111111 11111111 11111111 00000000 255.255.255.0
=	Netzwerkteil	11000000 10101000 00000001 00000000 192.168.1.0
	IPv4-Adresse	11000000 10101000 00000001 10000001

00000000 00000000 00000000 11111111

00000000 00000000 00000000 10000001

CIDR Classless Interdomain Routing

Seit Einführung des CIDR 1993 werden IP-Adressbereiche in der Notation :

- Anfangsadresse/Netzbits vergeben.
- Die Netzbits sind die Anzahl der Einsen im Netzwerkteil der Netzmaske.

	Verkürzt	te Schreibweise					
Schreibweise mit Subnetzmaske	Binäre Schreibweise	mit CIDR-Suffix					
10.0.0.1/255.0.0.0	11111111.00000000.00000000.000000	10.0.0.1/8					
192.168.0.1/255.255.255.0	11111111.11111111.11111111.000000000	192.168.0.1/24					

Subnet Mask	Slash Notation	Hosts/Subnet
255.255.255.0	/24	254
255.255.255.128	/25	126
255.255.255.192	/26	62
255.255.255.224	/27	30
255.255.255.240	/28	14
255.255.255.248	/29	6
255.255.255.252	/30	2

Subnetting

- wird dafür genutzt, um große aber auch kleinere physikalische Netzwerke in logische Teilnetze zu unterteilen.
- Ein Subnet, Subnetz bzw. Teilnetz ist ein physikalisches Segment eines Netzwerks, in dem IP-Adressen mit der gleichen Netzwerkadresse benutzt werden.
- Diese Teilnetze können über Router miteinander verbunden werden und bilden dann ein großes zusammenhängendes Netzwerk.

Gründe für Subnetting:

- Trennen von Netzwerken unterschiedlicher Topologie.
- Trennen von Netzwerken nach Standorten, Gebäuden und Etagen.
- Trennen von Netzwerken nach Abteilungen und Bereichen.
- Trennen des Netzwerks zur Reduzierung des Verkehrsaufkommens.

Wichtige Wiederholung!

Jeweils die erste und letzte IP-Adresse eines IP-Adressbereichs (z. B. 192.168.0.0 bis 192.168.0.255) kennzeichnen die Netzwerk-Adresse (192.168.0.0) und die Broadcast-Adresse (192.168.0.255). Diese Adressen können an keinen Host vergeben werden. Deshalb muss die Anzahl der IP-Adressen um zwei reduziert werden, damit man auf die richtige Anzahl nutzbarer IP-Adressen kommt.

VLSM (Variable Length Subnet Mask):

VLSM bedeutet übersetzt soviel wie Subnetzmaske mit variabler Länge. VLSM ermöglicht einem Netz, mehr als eine Teilnetzmaske zuzuweisen.

Wiederholung: Wie errechnet der Computer die Subnetzadresse und die Hostadresse?

IP-Adresse AND Netzmaske = Subnetzadresse

IP-Adresse AND (NOT Netzmaske) = Hostadresse

Beispiel für ein Subnet :

Beispiele für mögliche Subnets:

Netz ohne Subnetze:

Netz mit 2 Subnetzen:

Netz mit 4 Subnetzen:

Netz mit 8 Subnetzen:

Die Tabelle zeigt die möglichen Aufteilungen eines Klasse C-Netzes in Subnetze.

Netzbits	/24	/25	/26	/27	/28	/29	/30	/31	/32
Netzmaske	0	128	192	224	240	248	252	254	255
Subnetzbits	0	1	2	3	4	5	6	7	8
Subnetze	1	2	4	8	16	32	64	128	256
Hostbits	8	7	6	5	4	3	2	1	0
Hostadressen	256	128	64	32	16	8	4	2	_
Hosts	254	126	62	30	14	6	2	0	_

Aufteilen eine Klasse-C-Netzes mithilfe dieser Tabelle :

Beispiel 1: Ein Klasse C-Netz soll in 5 Subnetze mit jeweils maximal 25 Hosts aufgeteilt werden:

- Jedes Subnetz benötigt eine Subnetznummer.
- Für 5 Subnetze sind 3 Subnetzbits nötig.
- Mit Hilfe der restlichen 5 Bits im Hostteil können in jedem Subnetz bis zu 32 – 2 = 30 Hosts adressiert werden.
- Somit ist die Schrägstrichdarstellung /27 geeignet.

Beispiel 2:

Gegeben: Ein Netz: IP: 192.168.168.0

Netzmaske: 255.255.255.0

(Oder anders geschrieben: 192.168.168.0/24)

Aufgabe:

Das vorhandene Netz ist in 4 Subnetze zu unterteilen.

Vorgehensweise: Damit ein Netz in kleinere Subnetze unterteilt werden kann, muss der Netzanteil um eine entsprechende Anzahl von Bits in der Netzmaske erweitert werden.

Anzahl von bits:	1	2	3	4	5	6	7	8	
Anzahl der Subnetze:	2	4	8	16	32	64	128	256	

Mit 1 bit können 2¹ = 2 Subnetze aufgebaut werden.

Es sind aber 4 Subnetze notwendig.

Mit 2 bits können 2² = 4 Subnetze aufgebaut werden.

-> Wir brauchen 4 Subnetze.

Netzanteil Hostanteil 192.168.168 00000000 255.255.255 00000000 Vorher

Wir "klauen" dem Hostanteil 2 Bits:

Netzanteil Hostanteil
192.168.168.00 000000
255.255.255.11 000000 Nachher

- -> Der Hostanteil besteht nun aus 6 Bits Jedem Subnetz stehen deshalb 2⁶ = 64 IP-Adressen zur Verfügung :
- Eine IP-Adresse für die Netzadresse des Subnets.
- · Eine IP-Adresse für den Broadcast.
- 62 IP-Adressen für die Hosts.

Nun haben wir automatisch die Netzadresse vom 1. Subnetz :

192.168.168.00000000 255.255.255.11000000

Oder komplett in dezimaler Schreibweise:

192.168.168.0

255.255.255.192

Hilfsmittel		
Dezimalzahl	Binärzahl	
128	10000000	
192	11000000	
224	11100000	
240	11110000	
248	11111000	
252	11111100	
254	11111110	
255	11111111	

Beim Broadcast werden alle Hostbits auf "1" gesetzt.

Broadcast: 192.168.168.00111111

Und wieder in dezimaler Schreibweise:

192.168.168.63

Was wir bisher haben:

1 IP 62 IPs 1 IP

Subnetzadresse	Host-IP-Range	Broadcast
192.168.168.0		192.168.168.63

Der Host-IP-Range ist der IP-Adress-Bereich zwischen der Subnetzadresse und der Broadcastadresse :

Subnetzadresse	Host-IP-Range	Broadcast
192.168.168.0	192.168.168.1 - 192.168.168.62	192.168.168. 63

Das ist das 1. Subnetz.

Wenn man nun die Broadcastadresse des

1. Subnetzes um 1 erhöht, bekommt man die

Subnetzadresse des 2. Subnetzes :

Subnetzadresse	Host-IP-Range	Broadcast
192.168.168.0	192.168.168.1 - 192.168.168.62	192.168.168.63
192.168.168.64		

Wenn man nun zur Adresse des **2. Subnetzes** 62 (-> 62 IPs) hinzuaddiert haben wir den Host-IP-Range.

Wenn ich dazu noch eine 1 hinzuaddiere haben wir die Broadcastadresse des 2. Subnetzes:

Subnetzadresse	Host-IP-Range	Broadcast
192.168.168. <mark>0</mark>	192.168.168.1 - 192.168.168.62	192.168.168. <mark>63</mark>
192.168.168.64	192.168.168.65 - 192.168.168.126	192.168.168.127

Für die zwei weiteren Subnetze sind die gerade gezeigten Schritte zu wiederholen.

-> Nun haben wir eine Tabelle mit allen möglichen Subnetzen, den Host-IPs und den Broadcastadressen :

1 IP 62 IPs 1 IP

Subnetzadresse	Host-IP-Range	Broadcast	
192.168.168. <mark>0</mark>	192.168.168.1 - 192.168.168.62	192.168.168. <mark>63</mark>	
192.168.168.64	192.168.168. <mark>65</mark> - 192.168.168. <mark>126</mark>	192.168.168.127	
192.168.168. <mark>128</mark>	192.168.168. 129 - 192.168.168. 190	192.168.168. <mark>191</mark>	
192.168.168.192	192.168.168. 193 - 192.168.168. 254	192.168.168.255	

Aufgabe:

Ein Netz mit der Netzwerkadresse 172.96.0.0 soll in vier Teilnetze aufgeteilt werden.

- a) Zu welcher Adressklasse gehört dieses Netz?
- b) Welche Netzmaske gehört dazu?
- c) Erstellen sie eine Tabelle mit Subnetzmaske(n), Netzwerkadressen, Broadcastadressen und den Bereichen für die verfügbaren Hosts.

Verwenden sie die Dezimal- und die Binärschreibweise.

IPv4-Adressbereiche zur besonderen Nutzung

IANA (Internet Assigned Numbers Authority)

- -> Für Europa -> RIPE (Réseaux IP Européens)
- Sind für die Vergabe von IP-Nummern zuständig.

10.0.0.0/8 172.16.0.0/12 192.168.0.0/16

- Adressbereich für private Netze, der ohne Registrierung der Adresse benutzt werden darf.
- Adressen aus diesem Bereich dürfen allerdings im öffentlichen Internet nicht auftreten.

Spezielle IP-Adressen

127.0.0.0 - 127.255.255.255

Loopback-Adressen: Jedes an eine dieser Adressen geschickte Paket soll den Host nicht verlassen, sondern intern zurückgeschickt werden.

224.0.0.0 sind Netzwerke für Multicastsendungen.

255.255.255 für Broadcastsendungen für die jeweiligen Netzwerke. "Limited Broadcast"

Router Teil 2

Primäre Aufgabe:

Weiterleitung (Forwarding) der IP-Pakete.

Um diese Aufgabe zu erfüllen, müssen die Router für jedes eintreffende Paket die korrekte Schnittstelle (Port) ermitteln.

Die Aufgabe eines Routers ist ein komplexer Vorgang, der sich in 4 Schritte einteilen lässt:

- 1. Ermittlung der verfügbaren Routen.
- Auswahl der geeignetsten Route unter Berücksichtigung verschiedener Kriterien.
- 3. Herstellen einer physikalischen Verbindung zu anderen Netzwerken.
- 4. Anpassen der Datenpakete an die Übertragungstechnik (Fragmentierung).

Arbeitsweise der Netzwerkgeräte auf Layer 3

- Wird ein Datenpaket in das Netzwerk gesendet, prüft das IP-Protokoll des sendenden Rechners, ob das Datenpaket für das eigene Netzwerk bestimmt ist.
- Dabei wird die eigene IP-Adresse und die Subnetzmaske mit der IP-Adresse und Subnetzmaske des Ziels verglichen und so die Netzwerk-IP ermittelt.
- Befindet sich das Ziel im eigenen Netzwerk, wird das Datenpaket direkt an die Zieladresse geleitet.
- Sind die beiden Netzwerk-IPs unterschiedlich, wird das Datenpaket an den Router geschickt.
- 5. Der Router hat für beide Netzwerke eine IP-Adresse, besitzt somit eine Schnittstelle zu beiden Netzwerken und prüft anhand der Routingtabelle, ob es möglich ist, das Datenpaket an das andere Netzwerk weiter zu leiten.
- Ist es möglich, schickt der Router die Daten in das andere Netzwerk.

Jeder Router verwaltet eine lokale Routing-Tabelle.

Die Routing-Tabelle enthält:

- die dem Router bekannten logischen Netze.
- die Information, welches logische Netz über welchen Port (-> Hardware) erreichbar ist.

Um sich die Routingtabelle des eigenen Rechners anzusehen gibt man **route print** auf der Kommandozeile ein.

Beispiel für eine IPv4 Routingtabelle:

Active Routes:

Metric	Interface	Gateway Address	Netmask	Network Address
1	172.16.2.128	172.16.1.9	0.0.0.0	0.0.0.0
1	172.16.2.128	172.16.2.1	0.0.0.0	0.0.0.0
1	127.0.0.1	127.0.0.1	255.0.0.0	127.0.0.0
1	172.16.2.128	172.16.2.128	255.255.255.0	172.16.2.0
1	127.0.0.1	127.0.0.1	255.255.255.255	172.16.2.128
1	172.16.2.128	172.16.2.128	255.255.255.255	172.16.255.255
1	220.1.3.118	220.1.3.118	225.255.255.0	192.1.3.0
1	127.0.0.1	127.0.0.1	255.255.255.255	220.1.3.118
1	220.1.3.118	220.1.3.118	224.0.0.0	224.0.0.0
1	172.16.2.128	172.16.2.128	224.0.0.0	224.0.0.0
1	172.16.2.128	172.16.2.128	255.255.255.255	255.255.255.255

				otariariaria.
======================================	==========	===========	==========	.===:
Netzwerkziel	Netzwerkmaske	Gateway	Schnittstelle Me	trik
0.0.0.0	0.0.0.0	192.168.1.1	192.168.1.107	20
127.0.0.0	255.0.0.0	Auf Verbindung	127.0.0.1	306
127.0.0.1	255.255.255.255	Auf Verbindung	127.0.0.1	306
127.255.255.255	255.255.255.255	Auf Verbindung	127.0.0.1	306
169.254.0.0	255.255.0.0	Auf Verbindung	192.168.1.107	30
169.254.255.255	255.255.255.255	Auf Verbindung	192.168.1.107	276
192.168.1.0	255.255.255.0	Auf Verbindung	192.168.1.107	276
192.168.1.107	255.255.255.255	Auf Verbindung	192.168.1.107	276
192.168.1.255	255.255.255.255	Auf Verbindung	192.168.1.107	276
192.168.40.0	255.255.255.0	Auf Verbindung	192.168.40.1	276
192.168.40.1	255.255.255.255	Auf Verbindung	192.168.40.1	276
192.168.40.255	255.255.255.255	Auf Verbindung	192.168.40.1	276
192.168.179.0	255.255.255.0	Auf Verbindung	192.168.179.1	276 276
192.168.179.1 192.168.179.255	255.255.255.255 255.255.255.255	Auf Verbindung	192.168.179.1 192.168.179.1	276
224.0.0.0	240.0.0.0	Auf Verbindung Auf Verbindung	127.0.0.1	306
224.0.0.0	240.0.0.0	Auf Verbindung	192.168.1.107	276
224.0.0.0	240.0.0.0	Auf Verbindung	192.168.179.1	276
224.0.0.0	240.0.0.0	Auf Verbindung	192.168.40.1	276
255.255.255.255	255.255.255.255	Auf Verbindung	127.0.0.1	306
255.255.255.255	255.255.255.255	Auf Verbindung	192.168.1.107	276
255.255.255.255	255.255.255.255	Auf Verbindung	192.168.179.1	276
255.255.255.255	255.255.255.255	Auf Verbindung	192.168.40.1	276
=============		===========		====

- Netzwerkziel: Hier sind die Netzwerk-IPs der Zielnetze aufgelistet.
- Netzwerkmaske: Die zugehörige Subnetzmaske für das Zielnetz.
- Gateway: Das Gateway gibt an, wohin das Datenpaket geschickt wird, um das Netzwerkziel zu erreichen. Ist man bereits direkt an das Netzwerk angeschlossen, steht in der Spalte Auf Verbindung. Ansonsten die IP-Adresse des Routers, der die Weiterleitung übernimmt.
- Schnittstelle: Die Schnittstelle ist die IP-Adresse der Netzwerkkarte, über die das Datenpaket an das Ziel geschickt wird.
- Metrik: Jede Route wird anhand von "Kosten" ermittelt. Je niedriger die Kosten sind, umso schneller gelangt man an das Ziel. Wenn für ein Zielnetzwerk mehrere Routen vorhanden sind, wird automatisch die Route mit den niedrigsten Kosten genommen. Je mehr Router zwischengeschaltet sind, umso höher sind die Kosten.

Statisches und dynamisches Routing

Statisches Routing

-> ein fester durch einen Administrator vorgegebener Weg.

Dynamisches Routing

 -> ein durch ein Routingprotokoll, das automatisch Topologieänderungen berücksichtigt, ermittelter Weg.

Routingfähige Protokolle und Routing-Protokolle

- Man unterscheidet grundsätzlich routingfähige Protokolle (z.B. TCP/IP) und Routing-Protokolle (z.B. RIP).
- Die Wegbestimmung (Routing) ist der Prozess, bei dem die Weiterleitungstabellen (Routing-Tabellen) mit Hilfe von Routing-Protokollen erstellt werden.
- Die Weiterleitungstabellen sind nötig, damit die Bestimmung des besten Weges, also zu den niedrigsten Kosten, zum Ziel möglich ist.
- Diese Routing-Protokolle werden zwischen den Routern ausgeführt.

Hauptklassen von Routing-Protokollen:

- Distanzvektor-Routing-Protokolle
 Beispiel: Routing Information Protocol (RIP)
- Link-State-Routing-Protokolle
 Beispiele: Border Gateway Protocol (BGP) und Open Shortest Path First (OSPF)

Router sind in **autonomen Systemen** (AS) organisiert.

Jedes AS besteht aus einer Gruppe von logischen Netzen, die :

- das Internet Protocol verwenden.
- von der gleichen Organisation (z.B. einem Internet Service Provider, einem Unternehmen oder einer Universität) betrieben und verwaltet werden.
- das gleiche Routing-Protokoll verwenden.
- Die miteinander verbundenen AS bilden in ihrer Gesamtheit das Internet.

