Généralités sur les espaces vectoriels 1

- ▶ Notion d'espace vectoriel Un ensemble E dont les éléments sont des « vecteurs » $\vec{u} \in E$:
 - ▶ il y a un « vecteur nul » 0.
 - on y fait des **combinaisons linéaires** de \vec{u} , \vec{v} : $\lambda \vec{u} + \mu \vec{v}$ (règles de calcul usuelles).
- ▶ **Appliquer le vocabulaire** sur les exemples au programme :
 - Les espaces cartésiens \mathbb{R}^n (à coordonnées)
 - ▶ Les espaces de matrices $\mathcal{M}_{n,p}(\mathbb{R})$
 - Les espaces de polynômes $\mathbb{R}[X]$, $\mathbb{R}_n[X]$
- ▶ L'espace des fonctions $f: D \to \mathbb{R}$, définies sur $D \subseteq \mathbb{R}$, noté $\mathcal{F}(D,\mathbb{R})$.
- ▶ L'espace des suites réelles $\mathbb{R}^{\mathbb{N}}$.
- **Combinaisons linéaires** de $\vec{u}_1, \vec{u}_2, ..., \vec{u}_p$:

les vecteurs qui s'écrivent $\vec{v} = \lambda_1 \vec{u}_1 + \lambda_2 \vec{u}_2 + ... + \lambda_k \vec{u}_k = \sum_{i=1}^k \lambda_i \vec{u}_i$ pour des coef^{ts} $\lambda_1, ..., \lambda_k \in \mathbb{R}$.

2 **Sous-espaces vectoriels**

Appliquer la définition

Un **sous-espace vectoriel** F d'un espace vectoriel E est un sous-ensemble $F \subseteq E$ qui

est non-vide.

(On vérifie que F contient le **vecteur nul**, soit : $\vec{0} \in F$.)

- est **stable** par combinaisons linéaires : pour tous $\lambda, \mu \in \mathbb{R}$ on a encore : $\lambda \cdot \vec{u} + \mu \vec{v} \in F$. $\vec{u}, \vec{v} \in F$
- Lecture d'une définition ensembliste

L'énoncé: $F = \{\vec{u} \in E, \text{ "équation / prop}^{\text{té}} \text{ de "} \vec{u}\}$

se lit: F est l'ensemble des vecteurs $\vec{u} \in E$ qui vérifient «équation / prop^{té}».

$$\rightsquigarrow$$
 pour vérifier : $\vec{u} \in F$ on montre : «équation / prop^{té}»

▶ **Sous-espace engendré** par des vecteurs $\vec{u}_1, ..., \vec{u}_k$, noté $\text{Vect}(\vec{u}_1, ..., \vec{u}_k)$.

C'est l'**ensemble** des vecteurs qui sont **combinaison linéaire** des vecteurs $\vec{u}_1, ..., \vec{u}_k$.

Intersection de deux sous-espaces vectoriels

Si F et G sont deux s-e.v. de E, alors $F \cap G$ est aussi un s-e.v. de E.

 $(où F \cap G = \{vecteurs de E qui appartiennent à la fois à F et à G\})$ = $\{vecteurs\ de\ F\ qui\ appartiennent\ aussi\ a\ G\}$

Applications linéaires

Linéarité

 $f: E \rightarrow F$ est **linéaire** si :

$$\begin{array}{l} \forall \lambda, \mu \in \mathbb{R} \\ \forall \, \vec{u}, \, \vec{v} \in F \end{array} \right\} \qquad \underbrace{ f \left(\lambda \, \vec{u} + \mu \, \vec{v} \right) }_{\text{image de la c.l.}} = \underbrace{ \lambda f \left(\vec{u} \right) + \mu f \left(\vec{v} \right) }_{\text{c.l. des images}}$$

Vocabulaire (*-morphismes)

	quelconque	E = F (E est stable par f)
qcque	app. lin.	endom.
bijectif	iso m.	autom.

▶ Noyau d'une applon linéaire $f: E \rightarrow F$

L'ensemble des vecteurs annulés : $Ker(f) = {\vec{v} \in E, f(\vec{v}) = \vec{0}}.$

- ▶ Le noyau de $f: E \rightarrow F$ est un sous-espace vectoriel de E.
- L'application f est injective ssi $Ker(f) = \{\vec{0}\}.$
- ▶ Image d'une application linéaire l'ensemble des valeurs : $Im(f) = \{\vec{y} \in F, \exists \vec{x} \in E, \vec{y} = f(\vec{x})\}$
- ▶ Opérations sur les applications linéaires comb^{ns} linéaires ($\mathcal{L}(E,F)$ est un (ev.)), compositions.
- $\varphi_A : \begin{cases} \mathbb{R}^p \to \mathbb{R}^n \\ \vec{X} \mapsto A \cdot \vec{X}. \end{cases}$ ▶ Applⁿ lin. associée à une matrice $A \in \mathcal{M}_{n,p}(\mathbb{R})$

4 Questions de cours

1. Expliquer la structure d'espace vectoriel sur $\mathbb{R}^{\mathbb{N}}$.

2. Montrer que $\{P \in \mathbb{R}[X], P(5) = 0\}$ est un espace vectoriel.

3. Définition du noyau d'une applin. De quel espace vectoriel est-ce un *s-e.v.*?

4. Définition d'un sous-espace vectoriel d'un espace E.

5. Définition du sous-espace vectoriel engendré par des vecteurs $\vec{u}_1, \dots, \vec{u}_k$.

