Name: Allan Rodrigues

Class: TE IT A Roll no: 59

St. Francis Institute of Technology, Mumbai-400 103 Department Of Information Technology

A.Y. 2021-2022

Experiment – 7: a) To Implement any one of the clustering algorithm using WEKA (K Means, Agglomerative, Divisive)

- 1. Aim: : To Implement any one of the clustering algorithm using WEKA (K Means, Agglomerative, Divisive)
- 2. Objectives: After study of this experiment, the students will be able to Implement K Means
- 3. Outcomes: After study of this experiment, the students will be able to
 - **CO 4:** Design and Implement various clustering data mining techniques such as Partitioning methods, Hierarchical Methods, Density Based methods along with identification and analysis of outlier.
- 4. **Prerequisite:** Introduction to all the three clustering algorithms & Problem solving approach.
- 5. **Requirements:** Personal Computer, Windows XP operating system/Windows 7, Internet Connection, Microsoft Word, WEKA tool.
- 6. Theory:
 - a. What is Clustering in Data Mining?
 - b. Difference Between Classification & Clustering
 - c. Study of Algorithms for Clustering
 - d. Implementation of Clustering Algorithms in WEKA
- **7.** Laboratory Exercise: Implementation of Clustering Algorithm using WEKA, Printout of implementation along with coding and snapshot.
- 8. Post-Experiments Exercise
 - a. Ouestions:
 - Difference between supervised and unsupervised learning
 - b. Conclusion:
 - Summary of Experiment
 - Importance of Experiment
 - Application of Experiment
- 9. **Reference:** Data Mining: Concept & Techniques, 3rd Edition, Jiawei Han, Micheline Pei, Elsevier.

1) What is clustering in data mining?

Cluster Analysis is the process to find similar groups of objects in order to form clusters. It is an unsupervised machine learning-based algorithm that acts on unlabelled data. A group of data points would comprise together to form a cluster in which all the objects would belong to the same group.

2) Difference between classification and clustering?

classification	clustering
It is used for supervised learning	It is used for unsupervised learning
Process of classifying the input instances based on	Grouping the instances based on their similarity
their corresponding class labels	without the help of class labels
It has labels so there is need of training and testing	There is no need of training and testing dataset
dataset for verifying the model created	-
Examples: Logistic regression, Naive Bayes	Examples: k-means clustering algorithm, Fuzzy
classifier, Support vector machines, etc.	c-means clustering algorithm, Gaussian (EM)
	clustering algorithm, etc.

3) Study of algorithms for clustering

- ➤ K-means clustering algorithm
- > DBSCAN clustering algorithm
- > Gaussian Mixture Model algorithm
- Agglomerative Hierarchy clustering algorithm

•	`	റ	`
	1	×	١
	,		,

	Allan Rodrigues TE ITA	Rajdhani (DATE / /	
	Exp 7a - Bil		
	5 (a - B)C		
0.4			
	Supervised learning	1 2 2 and 1 2	
	D Algorithms are trained using	i) Algorithm are trained	
	labeled data	using unlabeled data.	
	2) It predicts the output	2) It finds hidden pattern	
	0	Pn data	
	3) It produces an accurate	3) It may give less accord	
(result	regult as compared to	
	a) uses oppose analysis	Supervised learning	
1	10 000	4) Wes mad-time analyses	
7		data	
		Old 1	
h	conclusion		
	we performed k-	means algorithm on	
	bank dataset in weka		
(clustering helps on understanding the		
	natural grouping in a dataset claytering		
	natural grouping in a dataset classering quality depends on the method & the		
Polentification of Hidden spatterns			
	K-means can be applied to data		
	a smaller number of dimensions, is numeric		
-	and is continuous, such as document clustering, customer segmentation, insurance fraud detection et		
We let			