MATH 4753 Project Template

Wayne Stewart 10 April, 2018

Abstract

This project is all about applications of SLR to real data using R

Contents

Introduction	2
What are the variables?	2
Sub sub headings can be useful	2
Plot data	2
How were the data collected?	4
What is the story behind the data?	4
Why was it gathered?	4
What is your interest in the data?	4
Include pictures 	4
What problem do you wish to solve?	4
Theory needed to carry out SLR	4
Main result 1	4
Main result 2	4
Main result 3 etc	4
Validity with mathematical expressions	4
Checks on validity	4
Straight trend line	4
Use trendscatter	4
Errors distributed Normally	4
Shapiro-wilk	4
Constant variance	4
Residual vs fitted values	4
trendscatter on Residual Vs Fitted	4
Zero mean value of ϵ	5
Independence of data	5
Analysis of the data	5
Make sure you include many great plots	5
Add the trend to the data	5
Summary lm object	5
Interpretation of all tests	5
Interpretation of multiple R squared	5
Interpretation of all point estimates	5
Calculate cis for β parameter estimates	5
Use of predict()	5
Use of ciReg()	5
Check on outliers using cooks plots	5
Model selection if you compared models	5
Use adjusted R^2	5

Figure 1: Dr. Wayne Stewart

Conclusion	5
Answer your research question	5
Suggest ways to improve model or experiment	5
References	5

Introduction

Here you should introduce the data and the problem you wish to solve. Use your own subheadings. Fill with informative sentences and pictures and links. You may includee sub-sub headings. You can cite from your bibliography (see Millar 2011 and Crawley (2012))

What are the variables?

```
data(mtcars)
head(mtcars)
```

	mpg	cyl	disp	hp	drat	wt	qsec	vs	am	gear	carb
Mazda RX4	21.0	6	160	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225	105	2.76	3.460	20.22	1	0	3	1

```
names(mtcars)

## [1] "mpg" "cyl" "disp" "hp"  "drat" "wt"  "qsec" "vs"  "am"  "gear"
## [11] "carb"
```

Sub sub headings can be useful

Plot data

```
library(ggplot2)
## Warning: package 'ggplot2' was built under R version 3.4.4
g = ggplot(mtcars, aes(x = disp, y = mpg, color = cyl)) + geom_point()
g = g + geom_smooth(method = "loess")
g
```


Figure 2: MTCARS

How were the data collected?

What is the story behind the data?

Why was it gathered?

What is your interest in the data?

Include pictures

What problem do you wish to solve?

Theory needed to carry out SLR

Main result 1

Main result 2

Main result 3 etc

Validity with mathematical expressions

The following function was taken from https://rpubs.com/therimalaya/43190

Checks on validity

Straight trend line

Use trendscatter

Errors distributed Normally

$$\epsilon_i \sim N(0, \sigma^2)$$

Shapiro-wilk

Constant variance

Residual vs fitted values

trendscatter on Residual Vs Fitted

Zero mean value of ϵ

Independence of data

Analysis of the data

Make sure you include many great plots

Add the trend to the data

Summary lm object

Interpretation of all tests

Interpretation of multiple R squared

Interpretation of all point estimates

Calculate cis for β parameter estimates

Use of predict()

Use of ciReg()

Check on outliers using cooks plots

Remember to interpret this plot and all other plots

Model selection if you compared models

Use adjusted R^2

$$R_{adi}^2 =$$

Conclusion

Answer your research question

Suggest ways to improve model or experiment

References

Crawley, Michael J. 2012. "Regression." In *The R Book*, 449–97. Chichester, UK: John Wiley & Sons, Ltd. Millar, Russell B. 2011. "Latent Variable Models." In *Statistics in Practice*, 202–32. Chichester, UK: John Wiley & Sons, Ltd.