Sistemas de ingeniería Primer parcial I-2015

Pregunta 1

Una carpintería fabrica mesas y sillas. Un trabajador tarda dos horas en preparar una mesa y treinta minutos en preparar una silla, en la carpintería trabajan 4 trabajadores en un turno de ocho horas/día. los clientes suelen comprar cuando menos una mesa y cuatro sillas, lo que significa que la carpintería debe producir por lo menos cuatro veces más sillas que mesas. El precio de venta de una mesa es de 135 Bs. y 50 Bs. de una silla. Determinar la combinación de mesas y sillas en la producción diaria para maximizar las ventas.

Solución

Sea

 $x_1 =$ número de mesas $x_2 =$ número de sillas

La ganancia (función objetivo) por turno será

$$135x_1 + 50x_2$$

La función objetivo debe maximizarse

$$\text{Max } z = 135x_1 + 50x_2$$

El número de mesas y sillas ensambladas por un trabajador (primera restricción) en un turno de ocho horas es

$$2x_1 + 0.5x_2 \le 8$$

Pero en la carpintería trabajan cuatro personas, debido a esto el tiempo de ensamble se reducirá a la cuarta parte

$$\frac{2}{4}x_1 + \frac{0.5}{4}x_2 \leqslant 8$$

La restricción se multiplicará por 40 para evitar problemas de redondeo

$$20x_1 + 5x_2 \leqslant 320$$

Debido a que por cada mesa se vende minimanente cuatro sillas, la producción debe evitar un déficit de mesas (segunda restricción)

$$4x_1 \geqslant x_2$$

Reordenando

$$4x_1 - x_2 \ge 0$$

El modelo de programación lineal del problema será

$$\text{Max } z = 135x_1 + 50x_2$$

sujeto a

$$20x_1 + 5x_2 \leqslant 320$$
$$4x_1 - x_2 \geqslant 0$$
$$x_1, x_2 \geqslant 0$$

Antes de resolver se realizará un análisis dimensional

$$135 \left[\frac{\text{Bs}}{\text{mesas}} \right] \cdot x_1[\text{mesas}] + 50 \left[\frac{\text{Bs}}{\text{sillas}} \right] \cdot x_2[\text{sillas}] = z[\text{Bs}]$$

$$20 \left[\frac{\text{hr}}{\text{mesas}} \right] \cdot x_1[\text{mesas}] + 5 \left[\frac{\text{hr}}{\text{sillas}} \right] \cdot x_2[\text{sillas}] \leqslant 320[\text{hr}]$$

$$4 \left[\frac{\text{sillas}}{\text{mesas}} \right] \cdot x_1[\text{mesas}] - x_2[\text{sillas}] \geqslant 0[\text{sillas}]$$

Transformando el modelo a su forma estándar

$$\text{Max } z = 135x_1 + 50x_2$$

suieto a

$$20x_1 + 5x_2 + s_1 = 320$$
$$4x_1 - x_2 - s_2 + R_2 = 0$$
$$x_1, x_2, s_1, s_2, R_2 \geqslant 0$$

Usando el método de la gran M

$$z - 135x_1 - 50x_2 + MR_2 = 0$$

$$20x_1 + 5x_2 + s_1 = 320$$

$$4x_1 - x_2 - s_2 + R_2 = 0$$

Reemplazando M = 100

$$z - 135x_1 - 50x_2 + 100R_2 = 0$$

$$20x_1 + 5x_2 + s_1 = 320$$

$$4x_1 - x_2 - s_2 + R_2 = 0$$

En forma tabular

Ba	ásicas	x_1	x_2	s_2	s_1	R_2	Solución
	z	-135	-50	0	0	100	0
	s_1	20	5	0	1	0	320
	R_2	4	-1	-1	0	1	0

Tabla inicial (las variables artificiales son iguales a cero)

Básicas						Solución
\overline{z}	-535	50	100	0	0	0
s_1	20	5	0	1	0	320
R_2	4	-1	-1	0	1	0

Tabla óptima

Básicas	x_1	x_2	s_2	s_1	R_2	Solución
\overline{z}	0	0	8.13	8.38	91.88	2680
x_2	0	1	0.50	0.10	-0.50	32
x_1	1	0	-0.13	0.03	0.13	2680 32 8

Las variables de decisión son

$$x_1 = 8 \text{ [mesas]}$$

 $x_2 = 32 \text{ [sillas]}$

Reemplazando en la función objetivo

$$\text{Max } z = 135(8) + 50(32) = 2680 \text{ [Bs]}$$

Pregunta 2

Resolver el siguiente problema de programación lineal

$$Min z = 2x_1 + 3x_2 - 5x_3$$

sujeto a

$$x_1 + x_2 + x_3 = 7$$

$$2x_1 - 5x_2 + x_3 \ge 10$$

$$x_2 \ge 1$$

$$x_1, x_2, x_3 \ge 0$$

Y realizar un análisis de sensibilidad en las ecuaciones de restricción

Solución

Transformando a su forma estándar

$$Min z = 2x_1 + 3x_2 - 5x_3$$

sujeto a

$$x_1 + x_2 + x_3 + R_1 = 7$$

$$2x_1 - 5x_2 + x_3 - s_2 + R_2 = 10$$

$$x_2 - s_3 + R_3 = 1$$

$$x_1, x_2, x_3, s_2, s_3, R_1, R_2, R_3 \ge 0$$

Usando el método de dos fases

$$r -R_1 - R_2 - R_3 = 0$$

$$x_1 + x_2 + x_3 + R_1 = 7$$

$$2x_1 - 5x_2 + x_3 - s_2 + R_2 = 10$$

$$x_2 - s_3 + R_3 = 1$$

En forma tabular

Básicas	x_1	x_2	x_3	s_2	s_3	R_1	R_2	R_3	Solución
r	0	0	0	0	0	-1	-1	-1	0
R_1	1	1	1	0	0	1	0	0	0 7 10 1
R_2	2	-5	1	-1	0	0	1	0	10
R_3	0	1	0	0	-1	0	0	1	1

Tabla inicial primera fase (las variables artificiales son iguales a cero)

Básicas	x_1	x_2	x_3	s_2	s_3	R_1	R_2	R_3	Solución
\overline{r}	3	-3	2	-1	-1	0	0	0	18
R_1	1	1	1	0	0	1	0	0	7
R_2	2	-5	1	-1	0	0	1	0	18 7 10 1
R_3	0	1	0	0	-1	0	0	1	1

Iteración 3

Básicas	x_1	x_2	x_3	s_2	s_3	R_1	R_2	R_3	Solución
\overline{r}	0	0	-0.14	-0.14	-1	-1.29	-0.86	0	0.43
x_2	0	1	0.14	0.14	0	0.29	-0.14	0	0.57
x_1	1	0	0.86	-0.14	0	0.71	0.14	0	6.43
R_3	0	0	-0.14	-0.14	-1	-0.29	0.14	1	0.43 0.57 6.43 0.43

No tiene solución factible debido a que $r \neq 0$

Pregunta 3

Resuelva el siguiente problema de programación lineal mediante su problema dual y de la tabla óptima del primal

$$Min z = 5x_1 + 6x_2 + x_3$$

sujeto a

$$2x_1 + 3x_2 + 2x_3 \ge 5$$
$$5x_1 - x_2 + 6x_3 \ge 4$$
$$x_1, x_2, x_3 \ge 0$$

Solución

El problema dual será

$$\operatorname{Max} w = 5y_1 + 4y_2$$

sujeto a

$$2y_1 + 6y_2 \le 1$$
$$3y_1 - y_2 \le 6$$
$$2y_1 + 5y_2 \le 5$$
$$y_1, y_2 \ge 0$$

Transformando a su forma estándar

$$\operatorname{Max} w = 5y_1 + 4y_2$$

sujeto a

$$2y_1 + 6y_2 + s_1 = 1$$
$$3y_1 - y_2 + s_2 = 6$$
$$2y_1 + 5y_2 + s_3 = 5$$
$$y_1, y_2, s_1, s_2, s_3 \geqslant 0$$

Usando el método de Gauss-Jordan

$$w - 5y_1 - 4y_2 = 0$$

$$2y_1 + 6y_2 + s_1 = 1$$

$$3y_1 - y_2 + s_2 = 6$$

$$2y_1 + 5y_2 + s_3 = 5$$

Tabla inicial

Básicas	y_1	y_2	s_1	s_2	s_3	Solución
w	$ \begin{array}{c c} 91 \\ -5 \\ 2 \\ 3 \\ 2 \end{array} $	-4	0	0	0	0
s_1	2	6	1	0	0	1
s_2	3	-1	0	1	0	6
s_3	2	5	0	0	1	5

Tabla óptima

Básicas	y_1	y_2	s_1	s_2	s_3	Solución
\overline{w}	0	11	2.5	0	0	2.5
x_1	1	3	0.5	0	0	0.5
s_2	0	-10	-1.5	1	0	4.5
s_3	0	-1	-1	0	1	2.5 0.5 4.5 4

Tabla óptima primal

Básicas						Solución
\overline{z}	-4	-4.5	0	-0.5	0	2.5 2.5 11
x_3	1	1.5	1	-0.5	0	2.5
s_2	1	10	0	-3	1	11