Link to code:

https://colab.research.google.com/drive/16IPsu3lg-QFqOYQHu2gwluSzQl6 Hhza4?usp=sharing

1. code
import pandas as pd
import numpy as np
import re
from math import radians, sin, cos, sqrt, atan2
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score, confusion_matrix, classification_report, roc_curve, auc
====================================
==
Phase 1: Data Preprocessing

```
#
______
# Data Import and Cleaning
file_path = 'Food_Delivery_Time_Prediction (1).csv'
df = pd.read_csv(file_path)
# Handle missing values (no missing values were found)
# Feature Engineering
median_delivery_time = df['Delivery_Time'].median()
df['Delivery_Status'] = df['Delivery_Time'].apply(lambda x: 'Delayed' if x >= median_delivery_time
else 'Fast')
def parse_location(location_str):
  match = re.search(r'((-?\d+\.?\d^*),\s^*(-?\d+\.?\d^*))', location\_str)
  if match:
    return float(match.group(1)), float(match.group(2))
  return None, None
df[['Customer_Lat', 'Customer_Long']] = df['Customer_Location'].apply(lambda x:
pd.Series(parse_location(x)))
```

```
pd.Series(parse_location(x)))
def haversine distance(lat1, lon1, lat2, lon2):
  R = 6371
  lat1_rad, lon1_rad, lat2_rad, lon2_rad = map(radians, [lat1, lon1, lat2, lon2])
  dlon = lon2_rad - lon1_rad
  dlat = lat2 rad - lat1 rad
  a = sin(dlat / 2)**2 + cos(lat1_rad) * cos(lat2_rad) * sin(dlon / 2)**2
  c = 2 * atan2(sqrt(a), sqrt(1 - a))
  distance = R * c
  return distance
df['Haversine Distance'] = df.apply(lambda row: haversine distance(row['Customer Lat'],
row['Customer_Long'], row['Restaurant_Lat'], row['Restaurant_Long']), axis=1)
# Encode categorical features
categorical_cols = ['Weather_Conditions', 'Traffic_Conditions', 'Order_Priority', 'Order_Time',
'Vehicle_Type', 'Delivery_Status']
for col in categorical_cols:
  le = LabelEncoder()
  df[col + ' Encoded'] = le.fit transform(df[col])
```

df[['Restaurant_Lat', 'Restaurant_Long']] = df['Restaurant_Location'].apply(lambda x:

```
columns_to_drop = [
  'Order_ID', 'Customer_Location', 'Restaurant_Location', 'Distance',
  'Delivery_Time', 'Weather_Conditions', 'Traffic_Conditions',
  'Order_Priority', 'Order_Time', 'Vehicle_Type', 'Delivery_Status'
df_preprocessed = df.drop(columns=columns_to_drop)
# Save the preprocessed data to a CSV file for future use
df_preprocessed.to_csv("preprocessed_classification_data.csv", index=False)
#
______
# Phase 2: Classification using Naive Bayes, K-Nearest Neighbors, and Decision Tree
______
X = df_preprocessed.drop('Delivery_Status_Encoded', axis=1)
y = df_preprocessed['Delivery_Status_Encoded']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
continuous features = [
  'Delivery Person Experience', 'Restaurant Rating', 'Customer Rating',
  'Order_Cost', 'Tip_Amount', 'Customer_Lat', 'Customer_Long',
  'Restaurant_Lat', 'Restaurant_Long', 'Haversine_Distance'
]
scaler = StandardScaler()
X_train_scaled = X_train.copy()
X_test_scaled = X_test.copy()
X_train_scaled[continuous_features] = scaler.fit_transform(X_train[continuous_features])
X_test_scaled[continuous_features] = scaler.transform(X_test[continuous_features])
# Naive Bayes Classifier
nb_model = GaussianNB()
nb model.fit(X train scaled, y train)
y_pred_nb = nb_model.predict(X_test_scaled)
conf_matrix_nb = confusion_matrix(y_test, y_pred_nb)
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix_nb, annot=True, fmt='d', cmap='Blues', xticklabels=['Fast', 'Delayed'],
yticklabels=['Fast', 'Delayed'])
plt.xlabel('Predicted')
```

```
plt.ylabel('Actual')
plt.title('Confusion Matrix for Naive Bayes')
plt.savefig('naive_bayes_confusion_matrix.png')
plt.close()
# K-Nearest Neighbors (KNN) Classifier
knn_model = KNeighborsClassifier(n_neighbors=1)
knn_model.fit(X_train_scaled, y_train)
y_pred_knn = knn_model.predict(X_test_scaled)
conf_matrix_knn = confusion_matrix(y_test, y_pred_knn)
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix_knn, annot=True, fmt='d', cmap='Blues', xticklabels=['Fast', 'Delayed'],
yticklabels=['Fast', 'Delayed'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix for K-Nearest Neighbors (K=1)')
plt.savefig('knn_confusion_matrix.png')
plt.close()
```

```
# Decision Tree Classifier
dt_model = DecisionTreeClassifier(random_state=42, max_depth=2, min_samples_split=2)
dt_model.fit(X_train_scaled, y_train)
y_pred_dt = dt_model.predict(X_test_scaled)
conf_matrix_dt = confusion_matrix(y_test, y_pred_dt)
plt.figure(figsize=(8, 6))
sns.heatmap(conf_matrix_dt, annot=True, fmt='d', cmap='Blues', xticklabels=['Fast', 'Delayed'],
yticklabels=['Fast', 'Delayed'])
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix for Decision Tree')
plt.savefig('decision_tree_confusion_matrix.png')
plt.close()
# ROC Curves for all models
y_prob_nb = nb_model.predict_proba(X_test_scaled)[:, 1]
y_prob_knn = knn_model.predict_proba(X_test_scaled)[:, 1]
y_prob_dt = dt_model.predict_proba(X_test_scaled)[:, 1]
fpr_nb, tpr_nb, _ = roc_curve(y_test, y_prob_nb)
```

```
roc_auc_nb = auc(fpr_nb, tpr_nb)
fpr_knn, tpr_knn, _ = roc_curve(y_test, y_prob_knn)
roc_auc_knn = auc(fpr_knn, tpr_knn)
fpr_dt, tpr_dt, _ = roc_curve(y_test, y_prob_dt)
roc_auc_dt = auc(fpr_dt, tpr_dt)
plt.figure(figsize=(10, 8))
plt.plot(fpr_nb, tpr_nb, color='blue', lw=2, label=f'Naive Bayes (AUC = {roc_auc_nb:.2f})')
plt.plot(fpr_knn, tpr_knn, color='green', lw=2, label=f'KNN (AUC = {roc_auc_knn:.2f})')
plt.plot(fpr_dt, tpr_dt, color='red', lw=2, label=f'Decision Tree (AUC = {roc_auc_dt:.2f})')
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curves')
plt.legend(loc="lower right")
plt.savefig('all_models_roc_curves.png')
plt.close()
```

2. Data Visualizations

3. Final Report

Model Comparison

I evaluated three classifiers for predicting delivery status: **Naive Bayes**, **K-Nearest Neighbors (KNN)**, and **Decision Tree**. The performance metrics for each model are as follows:

Model	Accuracy	Precision (Delayed)	Recall (Delayed)	F1-Score (Delayed)	AUC
Naive Bayes	0.53	0.50	0.63	0.56	0.56

KNN (K=1)	0.53	0.50	0.47	0.49	0.53
Decision Tree	0.47	0.46	0.58	0.51	0.49

Weaknesses: All three models performed poorly, with accuracies hovering around 50.
This suggests they are unable to reliably distinguish between "Fast" and "Delayed"

• Strengths: The Naive Bayes classifier showed a slightly better ability to identify "Delayed" deliveries, with the highest recall and F1-score for this class. However, none of the models can be considered effective for this task.

Actionable Insights and Recommendations

deliveries based on the given features.

- Model Selection: The current models are not suitable for this task. I would recommend exploring more advanced machine learning models that can handle complex, non-linear relationships, such as Random Forests, Gradient Boosting Machines, or Neural Networks.
- 2. **Feature Engineering**: The current features, even after engineering, may not be sufficient. Consider incorporating additional features, such as:
 - Real-time traffic data: The Traffic_Conditions feature is a broad category.
 Real-time traffic speed and congestion data could provide more predictive power.
 - Historical delivery data: A delivery person's past performance in similar conditions or areas could be a valuable feature.
 - Restaurant and customer behavior: Features like average order preparation time at a restaurant or a customer's typical order size could also be predictive.
- 3. **Data Collection**: The small dataset size (200 entries) is a significant limitation. Collecting a larger and more diverse dataset with a wider range of features would likely lead to better model performance.

1.