MIT WORLD PEACE UNIVERSITY

Maths First Year B. Tech, Trimester 3 Academic Year 2021-22

POLAR CURVE TRACING

Notes

Prepared By

109054. Krishnaraj Thadesar

Division 9 Batch I3

June 2, 2022

Physics Formulas

Contents

	Tracing of Rose Curves 1.1 Rules	2
2	Numericals	2
3	Reduction Formula	9

1 Tracing of Rose Curves

1.1 Rules

- 1. Symmetry same as polar curve tracing.
- 2. Pole Again same as polar.
- 3. Tangents at pole Again same as polar.
- 4. The curve $r = a \sin n\theta$ or $r = a \cos n\theta$ consists:
 - (a) n equal loops if n is odd
 - (b) 2n equal loops if n is even
- 5. For drawing the loops, divide each quadrant into n equal parts. $r = a \sin n\theta$ or $r = a \cos n\theta$
 - (a) For sin first loop is drawn along $\theta = \frac{\pi/2}{n}$ For cos first loop is drawn along $\theta = 0$
 - (b) If n is even draw loops in two sectors consecutively from $\theta = 0$ to $\theta = 2\pi$
 - (c) If n is odd, draw loops in the two sectors alternatively keepign two sectors between loops vacant.
- 6. Angle between radius vector and tangents. use the Formula $\tan \phi = \frac{r}{\frac{dr}{d\theta}}$ and find ϕ Also find points where phi = 0 or ∞
- 7. Prepare the table of values of r and θ
 - (a) $\sin n\theta$,

for
$$n\theta = 0, \pi, 2\pi, 4\pi \dots$$

 $\implies \theta = 0, \frac{\pi}{n}, \frac{2\pi}{n}, \frac{3\pi}{n}$

(b) $\cos n\theta$

for
$$n\theta = \frac{-\pi}{2}, \frac{\pi}{2}, \frac{3\pi}{2}, \frac{5\pi}{2} \dots$$

 $\theta = \frac{-\pi}{2n}, \frac{\pi}{2n}, \frac{3\pi}{2n}, \frac{5\pi}{2n}$

2 Numericals

- Q1. Trace the curve $r = a \sin 3\theta$
 - 1. If r is replaced by -r, and θ is replaced by $-\theta \implies$ the curve is symmetric about the perpendicular line passing through the pole that is $\theta = \frac{\pi}{2}$
 - 2. For r = 0 and $\theta = 0$, the curve passes through the pole.

3 Reduction Formula

We willuse reduction formula to find the integration of examples like these.

$$\int dx$$