Assignment 7.2 Introduction to Lectlode

of eating problems designed to enhance one's problem. Solving skills, particularly in the scalm of algorithms and data structures

thaving solved over \$50 question on lectrodes, I have greatly enhanced my problem solving abilities, algorithmic thinking, I technical Interview properdness.

Problem 1: - Two Sum: -

Description:

The "two sum" problem asks for I wo distinct indices of the numbers in an array that add up to a specific larget. Given an array of integers 'nums' and an integers 'target', the goal is to treturn the indices of the two numbers such that they add up to 'target'.

Approach :-

- DB rute force Method: Check all pairs of elements to find the pair that sums up to target. This method is simple but in efficient with a time complexity of O(n2).
- 2 Mashmap Solution: Use a hesh map to store the difference blow the target I weach element while iterating through the array This method reduces time complexity to O(n).

Code:vedor xint > two sum (vedor xint & nums, int +) onesp kint, int smp; Vector kint rans; for (int i=0; i< nums. size (); i++) { if (mp. find (darget nums. [i)) != mp. end ()) ? ans. push_back (mp[-larget_nums [i]); ans. pwh.back (i); return ans; mp[nums (i)]=i; return ans;

Problem 2: - horgest substring without seperating characters

String 's', lask is to find the length of longest substring without prepeating characters. This problem is a classic example

Approach:

1) Sliding Window Technique: - Use 2 pointers to represent the Current window of characters, expand the window by moving the right pointer pointer and shrink it by moving the left pointer & when a seperating characters is encountered.

Problem 3:-Merge Intervals:-

Description:

Criter is collection of intervals, the goal is to maye all overlapping interval. For Ex. given [[1,3], [2,6], [8,10][15,18]], the result should be [[1,6],[8,10],[15,18]].

(5)

Approach i

3

Dort & menge: - First, soot the intervals by their start time, Then iterate through the intervals & merge them if they overlap.

```
(2) Efficient Me giry :-
 Use a single list to store the intergral intervals, updality the
last interval in list if www.interval overlaps
  Cale:
    bool Sort cal (vedor kint > da, vedor kint > db)
     2
        geturn alo] <610];
    Vector < vector < int >> menje (vector < vector < int >> & int er)
         vector exector exint or ano ;
         Sort (inter-begin() , inter-end (), sortcol);
         for (auto it : inter)
             if (ans. empty ())
             3 ans. push back (it);
               else if (ans.back()[1) < i + [0] (lit [0] ) zans.back()[1)
               Lans bush back (it);
             Clse
              { ans back ()[o] = min (it[o], ans. back(1[o]);
                ans. back (ICI) = mux (it (1) , ano. back (ILU);
```

deturn ans;