

KORSZERŰ VIZSGÁLATI MÓDSZEREK LABORATÓRIUM

Elektronmikroszkópia

Katona Dávid

Mérőtársak: Máthé Marcell, Olar Alex

MÉRÉS DÁTUMA: 2018. 04. 12.

Tartalomjegyzék

1.	A mérés célja	2
2.	A mérés menete	2
3.	Eredmények 3.1. Kalibráció	2 2 4
4.	Hibaforrások, hibaszámítás	6

1. A mérés célja

A gyakorlat során a transzmissziós elektronmikroszkóppal ismerkedtünk meg. A mérés célja a mikroszkóp kameraállandójának meghatározása (kalibrálás) polikristályos Ni minta segítségével. A mérés további célja a kalibráció ismeretében Si egykristály minta diffrakciós képén reciprokrácspontok beazonosítása, indexelése, illetve a zónatengely meghatározása.

2. A mérés menete

A mérés során először polikristályos Ni mintát helyeztünk a készülékbe. A katódfűtés és a nagyfeszültség rákapcsolása után diffrakciós üzemmódban készítettünk felvételt a mintáról. A nagyfeszültség és a katódfűtés lekapcsolása után a mintát kicseréltük elvékonyított Si-egykristály mintára. A behelyezés után a megfelelő vákuum elérését követően visszakapcsoltuk a katódfűtést valamint a nagyfeszültséget. Amplitúdo-kontraszt képi módban megkerestük a kristály elvékonyított részét, majd konvergens megvilágítás mellett, a minta két irányban való döntésével a Kikuchi-sávok metszéspontját megkerestük. A konvergens megvilágítást megszüntetve határolt területű diffrakciós képet készítettünk a mintáról.

3. Eredmények

3.1. Kalibráció

A kalibrációhoz polikristályos Ni mintáról készített felvételt mutatja az 1. ábra. A köröket átmérőjüknél elmetszve (fekete vonal, melyet egy merőleges irányú metszet azonos köréhez tartozó két pont átlagaként kaptam) határoztam meg azok hosszát (2. ábra) úgy, hogy a csúcsokra konstans hátterű Lorentz-görbéket illesztettem. A hibákat a görbe-illesztésből kaptam. A kapott sugarakat és a hozzájuk tartozó síkseregeket az 1. táblázat mutatja. A sugarakat 1/d szerint ábrázolva origón átmenő egyenes meredekségeként kapjuk a kameraállandót (3. ábra): $L\lambda = (366.25 \pm 0.30)$ Åpx. A hibát az egyenesillesztés hibájából kaptam.

 $^{^1\}mathrm{A}$ síksereg adatokat a http://www.energia.mta.hu/~labar/Ni_cF4_04-010-6148.pdf oldalon látható 04-010-6148 számú adatlapról vettem.

1.ábra. Polikristályos nikkel minta diffrakciós képe. A vízszintes fekete vonal az elemzett metszetet mutatja.

2. ábra. Intenzitás a pixel függvényében a jelzett vonal mentén.

R_j [px]	d_j [Å]	$\{hkl\}$
179.69 ± 0.06	2.037180	{111}
206.65 ± 0.11	1.764250	{200}
293.81 ± 0.09	1.247510	{220}
344.26 ± 0.07	1.063880	{311}
357.85 ± 0.31	1.018590	{222}
415.2 ± 0.34	0.882125	{400}
454.49 ± 0.22	0.809493	{331}

1. táblázat. Nikkel minta diffrakciós gyűrűinek sugara (R_j) és a hozzájuk tartozó síksereg távolság (d_j) és indexek

3. ábra. Kalibrációs egyenes. (A hibákat technikai okból nem tüntettem fel, mivel igen kicsik a pontokat jelölő X méretéhez képest)

3.2. Szilícium-egykristály diffrakciós képe

Szilícium-egykristály diffrakciós képét mutatja (megjelölt pontokkal) a 4. ábra. Az egyes pontok a direkt nyalábhoz viszonyított koordinátáit megmértem pixelben, mely-

ből képen mért távolságot számolva a hozzá tartozó síksereg távolságát a kameraállandó ismeretében kiszámoltam. Mivel itt a pontokra való illesztést "szemre" végeztem, emiatt a hibák is nagyobbak a kalibrációs felvételhez viszonyítva. A pontokat 04-002-0118 számú adatlap² alapján azonosítottam be. Az eredményeket a 2. táblázat mutatja. A hibákat a koordinátameghatározás hibájából (± 1 px) becsültem.

4. ábra. Si-egykristály diffrakciós képe

pont	x [px]	y [px]	d [Å]	$\{hkl\}$	1. indexelés	2. indexelés
A	101	164	1.902 ± 0.022	{220}	(220)	$(20\bar{2})$
В	221	-24	1.648 ± 0.069	{311}	$(3\bar{1}1)$	$(\bar{1}1\bar{3})$
С	123	-186	1.642 ± 0.016	{311}	$(1\bar{3}1)$	$(\bar{3}1\bar{1})$
D	-99	-160	1.947 ± 0.023	{220}	$(\bar{2}\bar{2}0)$	$(\bar{2}02)$
E	-219	24	1.662 ± 0.070	{311}	$(\bar{3}1\bar{1})$	$(1\bar{1}3)$
F	-120	187	1.648 ± 0.016	{311}	$(\bar{1}3\bar{1})$	$(3\bar{1}1)$
G	320	141	1.047 ± 0.008	{511}	(511)	$(11\bar{5})$
Н	24	-348	1.050 ± 0.044	{511}	$(\bar{1}\bar{5}1)$	$(\bar{5}11)$

2. táblázat. Indexelt pontok koordinátái, hozzájuk tartozó síkseregek távolsága, indextípusa, és két alternatív vektoriálisan helyes indexelése.

 $^{^2}$ http://www.energia.mta.hu/ \sim labar/Si cF8 04-002-0118.pdf

A vektoriálisan helyes indexelést a következő módszer szerint végeztem: "A" pont permutációja tetszőleges, valamint 2 helyen az előjele is (12 lehetőség), majd "B" pont indexelése 4-féle lehet (2: a 3-as melyik 2 ketteshez kerülhet, valamint a 0-hoz kerülő 1-es előjele kétféle lehet), hogy az összegük ("G") {511} típusú legyen. Így összesen 48 féle ekvivalens megoldás létezik. A többi pontot "A" és "B"-ből egyértelműen lehet képezni (pl. $\vec{C} = \vec{B} - \vec{A}$).

A zónatengely meghatározásához a reciprokrács-vektorokat kell keresztszorozni jobb-sodrású rendszer szerint. Az 1. indexelés szerint tehát:

$$\vec{B} \times \vec{A} = (B_2 A_3 - B_3 A_2, B_3 A_1 - B_1 A_3, B_1 A_2 - B_2 A_1) =$$

$$= (-1 \cdot 0 - 1 \cdot 2, 1 \cdot 2 - 3 \cdot 0, 3 \cdot 2 - (-1) \cdot 2) = (\bar{2}, 2, 8) \sim (\bar{1}, 1, 4)$$

4. Hibaforrások, hibaszámítás

A kalibráció kiértékelésekor lehetséges hiba, ha nem pont az átmérőket mérjük, azonban a merőleges irányban vett metszetek átlagát véve ezt igyekeztem kiküszöbölni. Az illesztésnél bizonytalanságot okoznak az egybeolvadó csúcsok (pl. 4-5. és 7-8. csúcs esetén). Az egykristály-diffrakciónál a pontok helyének meghatározása igen bizonytalan, mivel azok nem kör alakúak. Emiatt több próbálkozásból számoltam hibát, amely kb. 1 pixelnek adódott. A síksereg-távolság hibájába a kalibráció hibáját és a képen való távolságmeghatározás hibáját független hibaként adtam össze, így adódtak a fenti értékek.