II. seminární práce z předmětu Počítačové zpracování signálu (KI/PZS)

Jaroslav Radimský

1. Zadání

Ve zdrojové databázi najdete celkem 208 hlasových záznamů písmene "a". Pomocí vybrané techniky v časové nebo frekvenční oblasti klasifikujte zvukové záznamy na dobré a patologické. V případě patologických poté klasifikujte jednotlivé poruchy. Jejich výčet najdete buď v hlavičkových souborech, nebo v propisu databáze.

Pro klasifikaci do jednotlivých skupin použijte veškeré techniky, které jste si v rámci kurzu osvojili, včetně Fourierovy a kepstrální analýzy. Úpěšnost Vašeho postupu porovnejte s anotacemi, resp. rozřazením do skupin, které provedli experti, kteří data pořizovali.

2. Postup řešení

1. Načtení a zpracování dat

- Data jsou načtena z databáze pomocí knihovny wfdb.
- Každý záznam je uložen jako signál se vzorkovací frekvencí Fs.
- Diagnóza je extrahována z hlavičky záznamu.

2. Extrahované příznaky

- RMS (Root Mean Square) charakterizuje energii signálu.
- Spektrální centroid a šířka pásma určují těžiště spektra a jeho šířku.
- Míra nulového průchodu (Zero Crossing Rate) určuje složitost signálu.
- Poměr harmonických složek k šumu (HNR).
- Fourierova analýza dominantní frekvence signálu.
- Kepstrální analýza MFCC koeficienty pro charakterizaci zvuku.

3. Klasifikace

- Byly stanoveny prahové hodnoty pro jednotlivé příznaky na základě experimentální analýzy. (metoda "pokus, omyl")
- Kombinací hodnot příznaků byla provedena klasifikace na zdravé a patologické vzorky.

3. Výsledky

Matching healthy rows: 15/57 Matching pathological rows: 133/150 Accuracy: 71.50 %

Obrázek 1: Výstup programu

rec ord	official diagnoses	my diagnos es	rms	spectral centroid	spectral bandwidth	zero crossing rate	hnr	dominant frequency	mfcc1	mfcc2
1	hyperkinetic dysphonia	patholo gical	0.1276 6713	1163.55719 49572538	731.0976564 10909	0.2298763020833 3334	0.000448 25392239 9759	801.68067 22689075	- 89.8783226 364702	53.3125147 88988445
2	healthy	patholo gical	0.2849 3783	1010.74672 2234556	682.7103298 247268	0.2160677083333 3333	0.000190 72420581 528108	641.59663 86554622	- 115.652657 7403312	36.0732737 85724055
3	hyperkinetic dysphonia	patholo gical	0.2549 6635	1394.78597 5593656	943.5421446 03211	0.206953125	0.000289 74250054 432664	716.59663 86554622	- 57.8454358 754803	- 3.43484961 40474474
4	hypokinetic dysphonia	patholo gical	0.0498 3058	1352.93411 34405154	967.5040425 435845	0.1608854166666 6667	0.000513 32272177 73771	190.33613 44537815	- 206.126466 01923262	13.0427082 10503395
5	hypokinetic dysphonia	patholo gical	0.1807 9129	1313.60757 5963377	876.6817531 74304	0.236875	0.000478 43890998 08591	980.04201 68067227	- 104.151934 45147534	8.18084310 9510425
6	hyperkinetic dysphonia	patholo gical	0.1924 8195	1269.71354 37103236	817.6781247 443415	0.1877669270833 3334	0.000259 04401953 206883	115.12605 042016807	- 44.6236672 98767955	18.7711690 01210172
7	hyperkinetic dysphonia	patholo gical	0.1226 9918	1105.72965 73037042	854.6934588 395143	0.1602864583333 3333	0.000461 39492343 47734	102.52100 840336135	- 73.3448276 2217941	57.9834925 9589235
8	reflux laryngitis	patholo gical	0.1727 943	1138.90361 08699174	747.7562111 619958	0.1804427083333 3334	0.000460 54374039 636894	750.21008 40336135	- 123.041726 52074206	32.6623805 1786333

Tabulka 1: Část výstupní tabulky se všemi spočítanými hodnotami

4. Zdroje a literatura

- 1. https://en.wikipedia.org/wiki/Root_mean_square
- 2. https://en.wikipedia.org/wiki/Spectral_centroid#:~:text=The%20spectral%20centroid%20is%20a,called%20center%20of%20spectral%20mass.
- 3. https://www.mathworks.com/help/audio/ref/spectralcentroid.html
- 4. https://en.wikipedia.org/wiki/Zero-crossing rate#:~:text=The%20zero-crossing%20rate %20(ZCR,feature%20to%20classify%20percussive%20sounds.
- 5. https://www.sciencedirect.com/topics/engineering/zero-crossing-rate

%2FEO9Km84hrUyu2AzZf%2Fm76bGt5gyxAgFLr6RUJZUMg%2F11Uv1m74Zr8dVbD %2BtGS8DqHoX

%2FkwbN75pEY79sb01F9ki9bA6qQq6bp7%2FrZKOSgEzMJdWADHBSHKJG0b0ESMA KjTA%2FK3oTBzpq0SKaA9hDpdty5uu4%2Ff

%2Fx9Fd1b6%2FKesCUAX7ELczvGFL6AWcwtBHz

 $\frac{\%2Be5oZzxzDQAlSgfHiF9ZNyttmDLt29FlQokZVO8KMKtpyaeL3c8eC9RjBj4kyStTah5n}{Gc2nYcncj5jQ5bs60Ttzyc6Z6bFff2r7rLXo5p8gWpc21GxJEpid}$

 $\frac{\%2FVSKwQatJX2vXR5TDohZPVSx8Qu0x7D0Arn9GYFApvtBZODrANQh2brnbbS0Y6a}{DRY\%2F0LLduSbdxB57LiD9MxsRO239qPj0QLydSi\%2BFraQuUhYSr5yz\%2BMkuHGfp}\\ \frac{\%2BotJ2kbcWhb7EOuUEwzj4UvaHunIKASM2xoXHn1mFkR3YJNab0rrEAxKz}{}$

%2Bo0D2KA8XCyElLVnNAtJ8e1e

 $\frac{\%2Fb9ZWLw7il1yDtSBa6PlTWJUhem8mzeZDPll0MOhw120S9xwUND3mmyXRZtydO}{QjV\%2BaXcgi7iihUw\%2BMPZ45\%2B3GfSbVPK6ZZzvanCTwvP}$

%2FQTtlcJsQCH4FMsmhQPZ

%2FOL0K58CiDLQKmpY1kfO3OlVlsfG2a99Hzc1n32jyVWXxFz5DnYIX02cNZznU73QncfMtC3HXIMKn%2Bnb0GOrEBbeVGQSzjtLyLidEw3cC

 $\frac{\%2BW835Jv3f6ZaXYyqydNKamOIqlTyX0JZRYMOtPddzu8jKv0dPdszQ5hRHjSY5VmIq}{G\%2B5pgcSgHSY3Xitc\%2B\%2F4mUa0DCaWcduvmhj8PyPkMwr}$

%2Bm65wygrTyFt75SE7iZIOblcaIT7YH3h%2FT2WTvCGGR1pL53wLwaqoJLOZCWs %2FVjDvLxa4cMNG9u%2Fo7hp2A4OX3VfQY3%2BPfp6du%2B%2BCf5vIF

%2FTKZ&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-

 $\underline{Date=20250208T172046Z\&X-Amz-SignedHeaders=host\&X-Amz-Expires=300\&X-Amz-Credential=ASIAQ3PHCVTY3F3BU3UG\%2F20250208\%2Fus-east-Date-Part of the following stress of the property of the prope$

1%2Fs3%2Faws4 request&X-Amz-

 $\frac{Signature=6fe951787717f6a1bf3290c2aadca8ea55e003fcf8d94cc6fbf8d71bad5d7fca\&hash}{=0ce40d5d0ee0e03b9708d57ae6e35dabf4b35e1ab9bc4b50b09020d9bafefec1\&host=68042c}{943591013ac2b2430a89b270f6af2c76d8dfd086a07176afe7c76c2c61\&pii=S187705091831}{6739\&tid=spdf-7ae6b501-3a86-49c4-9d8f-}$

<u>0c058d726a4e&sid=e027b8144eb0104987089e758d1c37094167gxrqb&type=client&tsoh=d3d3LnNjaWVuY2VkaXJlY3QuY29t&ua=1915575f0304530e0456&rr=90ed4ad33c1ff9a0&cc=cz</u>