Securing Critical Internet
Technologies
Computer Security
Peter Reiher
March 9, 2021

Outline

- Routing security
- DNS security

Lecture 18 Page 2

Routing Security

- Routing protocols control how packets flow through the Internet
- If they aren't protected, attackers can alter packet flows at their whim
- Most routing protocols were not built with security in mind

Routing Protocol Security Threats

- Threats to routing data secrecy
 - -Usually not critical
- Threats to routing protocol integrity
 - Very important, since tampering with routing integrity can be bad
- Threats to routing protocol availability
 - -Potential to disrupt Internet service

What Could Really Go Wrong?

- Packets could be routed through an attacker
- Packets could be dropped
 - Routing loops, blackhole routing, etc.
- Some users' service could be degraded
- The Internet's overall effectiveness could be degraded
 - Slow response to failures
 - Total overload of some links
- Many types of defenses against other attacks presume correct routing

Where Does the Threat Occur?

- At routers, mostly
- Most routers are well-protected
 - -But...
 - Several vulnerabilities have been found in routers
- Also, should we always trust those running routers?

Different Types of Routing Protocols

- Link state
 - Tell everyone the state of your links
- Distance vector
 - Tell nodes how far away things are
- Path vector
 - Tell nodes the complete path between various points
- On demand protocols
 - Figure out routing once you know you two nodes need to communicate

Popular Routing Protocols

- BGP
 - Path vector protocol used in core Internet routing
 - Arguably most important protocol to secure
- RIP
 - Distance vector protocol for small networks
- OSPF
- ISIS
- Ad hoc routing protocols

Fundamental Operations To Be Protected

- One router tells another router something about routing
 - A path, a distance, contents of local routing table, etc.
- A router updates its routing information
- A router gathers information to decide on routing

Protecting BGP

- BGP is probably the most important protocol to protect
- Handles basic Internet routing
- Works at autonomous system (AS) level
 - -Rather than router level

BGP Issues

- BGP is spoken (mostly) between routers in autonomous systems
- On direct network links to their partner
- Over TCP sessions that are established with known partners
 - -Easily encrypted, if desired
- Isn't that enough to give reasonable security?

Lecture 18 Page 11

A Counterexample

- Pakistan became upset with YouTube over posting of "blasphemous" video (2008)
- Responded by injecting a BGP update that sent all traffic to YouTube to a site in Pakistan
 - Which probably dropped it all
- Rendered YouTube unavailable worldwide (well, 2/3s of world)
 - Probably due to error, not malice

How Did This Happen?

- Pakistan injected a BGP update advertising a path to YouTube
 - Which they had no right to do
- It got automatically propagated by BGP
- Everyone knows YouTube isn't in Pakistan
- But the routing protocol didn't
- Security required to prevent other future incidents

Another Example

- In 2010, China rerouted a lot of US traffic through its servers
 - -Traffic purely internal to the US
 - Lots of military, government,
 commercial traffic
- Based on bogus BGP route advertisements
- Possibly errors, not attacks, but . . .

A Side Issues on This Story

- Much Internet design assumes major parties play by the rules
- Pakistan didn't
- Not desirable to base Internet's security on this assumption
- Though sometimes not many other choices

Basic BGP Security Issue

A wants to tell everyone how to get to 1.2.3.*

Lecture 18 Page 16

Well, What Could Go Wrong?

Two Sub-Problems

- Security of Origin (SOA)
 - Who is allowed to advertise a path to an IP prefix?
- Path Validation (PV)
 - –Is the path someone gives to me indeed a correct path?

How Do We Solve These Problems?

- SOA Advertising routers must prove prefix ownership
 - And right to advertise paths to that prefix
- PV Paths must be signed by routers on them
 - Must avoid cut-and-paste and replay attacks

S-BGP

- One example solution
- A protocol designed to solve most of the routing security issues for BGP
- Intended to be workable with existing BGP protocol
- Key idea is to tie updates to those who are allowed to make them
 - -And to those who build them

Some S-BGP Constraints

- Can't change BGP protocol
 - Or packet format
- Can't have messages larger than max BGP size
- Must be deployable in reasonable way

An S-BGP Example

G

How can B know that A should advertise

1.2.3.*?

A can provide a certificate proving ownership

Lecture 18 Page 22

Securing BGP Updates

A wants to tell everyone how to get to 1.2.3.*

Lecture 18 Page 23

Who Needs To Prove What?

- A needs to prove (to B-E) that he owns the prefix
- B needs to prove (to C-E) that A wants the prefix path to go through B
- C needs to prove (to D-E) the same
- D needs to prove (to E) the same

So What Does A Sign?

- A clearly must provide proof he owns the prefix
- He also must prove he originated the update
- And only A can prove that he intended the path to go through B
- So he has to sign for all of that

Address Attestations in S-BGP

- These are used to prove ownership of IP prefix spaces
- IP prefix owner provides attestation that a particular AS can originate its BGP updates
- That AS includes attestation in updates

Route Attestations

- To prove that path for a prefix should go through an AS
- The previous AS on the path makes this attestation
 - -E.g., B attests that C is the next AS hop

How Are These Signatures Done?

- Via public key cryptography
- Certificates issued by proper authorities
 - ICANN at the top
 - Hierarchical below ICANN
- Certificates not carried with updates
 - -Otherwise, messages would be too big
 - Off-line delivery method proposed

S-BGP and IPSec

- S-BGP generates the attestations itself
- But it uses IPSec to deliver the BGP messages
- Doing so prevents injections of replayed messages
- Also helps with some TCP-based attacks

−E.g., SYN floods

S-BGP Status

- Not getting traction in networking community
- Probably not going to be the ultimate solution
- IETF working group is looking at various protocols with similar approaches
 - -BGPsec, for example

Other BGP Security Approaches

- Filter BGP updates from your neighbors
 - Don't accept advertisements for prefixes they don't own
 - Requires authoritative knowledge of who owns prefixes
- Use Resource PKI to distribute certificates on who owns what prefixes
- Sanity check routes
- Continuous monitoring of routing system

DNS Security

- The Domain Name Service (DNS) translates human-readable names to IP addresses
 - -E.g., the siger.cs.ucla.edu translates to 131.179.192.144
 - DNS also provides other similar services
- It wasn't designed with security in mind

DNS Threats

- Threats to name lookup secrecy
 - Definition of DNS system says this data isn't secret
- Threats to DNS information integrity
 - Very important, since everything trusts that this translation is correct
- Threats to DNS availability
 - Potential to disrupt Internet service

What Could Really Go Wrong?

- DNS lookups could be faked
 - Meaning packets go to the wrong place
- The DNS service could be subject to a DoS attack
 - Or could be used to amplify one
- Attackers could "bug" a DNS server to learn what users are looking up

Where Does the Threat Occur?

- Unlike routing, threat can occur in several places
 - At DNS servers
 - -But also at DNS clients
 - Which is almost everyone
- Core problem is that DNS responses aren't authenticated

The DNS Lookup Process

lookup thesiger.cs.ucla.edu

ping thesiger.cs.ucla.edu

Should result in a ping packet being sent to 131.179.191.144

answer 131.179.191.144

If the answer is wrong, in standard DNS the client is screwed

How Did the DNS Server Perform the Lookup?

- Leaving aside details, it has a table of translations between names and addresses
- It looked up the siger.cs.ucla.edu in the table
- And replied with whatever the address was

Where Did That Table Come From?

- Ultimately, the table entries are created by those owning the domains
 - −On a good day . . .
- And stored at servers that are authoritative for that domain
- In this case, the UCLA Computer Science Department DNS server ultimately stored it
- Other servers use a hierarchical lookup method to find the translation when needed

Doing Hierarchical Translation

Where Can This Go Wrong?

- Someone can spoof the answer from a DNS server
 - -Relatively easy, since UDP is used
- One of the DNS servers can lie
- Someone can corrupt the database of one of the DNS servers

The Spoofing Problem

lookup thesiger.cs.ucla.edu

answer 131.179.191.144

Unfortunately, most DNS stub resolvers will take the first answer

answer 97.22.101.53

DNS Servers Lying

lookup thesiger.cs.ucla.edu

answer 97.22.101.53

thesiger.cs.ucla.edu 131.178.192.144

That wasn't very nice of him!

DNS Cache Poisoning

lookup thesiger.cs.ucla.edu

answer 97.22.101.53

thesiger.cs.ucla.edu	97.22.101.53

Unless the server is authoritative for the name, the lookup is in a server cache

The attacker "poisoned" the DNS

The DNSSEC Solution

- Sign the translations
- Who does the signing?
 - The server doing the response?
 - Or the server that "owns" the namespace in question?
- DNSSEC uses the latter solution

Implications of the DNSSEC Solution

- DNS databases must store signatures of resource records
- There must be a way of checking the signatures
- The protocol must allow signatures to be returned

Checking the Signature

- Basically, use certificates to validate public keys for namespaces
- Who signs the certificates?
 - -The entity controlling the higher level namespace
- This implies a hierarchical solution

The DNSSEC Signing Hierarchy

- In principle, ICANN signs for itself and for top level domains (TLDs)
 - -Like .com, .edu, country codes, etc.
- Each TLD signs for domains under it
- Those domains sign for domains below them
- And so on down

An Example

- Who signs the translation for the signs concluded to 131.179.192.144?
- The UCLA CS DNS server
- How does someone know that's the right server to sign?
- Because the UCLA server says so
 - Securely, with signatures
- The edu server verifies the UCLA server's signature
- Ultimately, hierarchical signatures leading up to ICANN's attestation of who controls the edu namespace
- Where do you keep that information?
 - In DNS databases

Using DNSSEC

- To be really secure, you must check signatures yourself
- Next best is to have a really trusted authority check the signatures
 - And to have secure, authenticated communications between trusted authority and you

A Major Issue

- When you look up something like cs.ucla.edu, you get back a signed record
- What if you look up a name that doesn't exist?
- How can you get a signed record for every possible non-existent name?

The DNSSEC Solution

- Names are alphabetically orderable
- Between any two names that exist, there are a bunch of names that don't
- Sign the whole range of non-existent names
- If someone looks one up, give them the range signature

For Example,

•

•

lasr.cs.ucla.edu	131.179.192.136	
pbsicas.uslaceduedu	13 NOT 729SS126NED	
pducanuckquedu.edu	131.179.128.16	
pelican.cs.ucla.edu	131.179.128.17	
toucan.cs.ucla.edu •	131.179.128.16	

You get authoritative information that the name isn't assigned

•

Foils spoofing attacks

> host last.cs.ucla.edu

Status of DNSSEC

- Working implementations available
- In use in some places
- Heavily promoted
 - -First by DARPA
 - −Now by DHS
- Beginning to get out there

Status of DNSSEC Deployment

- ICANN has signed the root
 - Over 1300 TLDs have signed
 - Including .com, .gov, .edu, .org, .net
 - Not everyone below has signed, though
- Many "islands" of DNSSEC signatures
 - Signing for themselves and those below them
 - In most cases, just for themselves
- Utility depends on end machines checking signatures

Using DNSSEC

- Actually installing and using DNSSEC not quite as easy as it sounds
- Lots of complexities down in the weeds
- Particularly hard for domains with lots of churn in their namespace
 - -Every new name requires big changes to what gets signed

Lecture 18 Page 55

Other DNS Security Solutions

- Encrypt communications with DNS servers
 - Prevents DNS cache poisoning
 - But assumes that DNS server already has right record
- Ask multiple servers
 - Majority rules or require consensus
- Use packet sequence number randomization to make it hard to poison a cache

Conclusion

- Correct Internet behavior depends on a few key technologies
 - -Especially routing and DNS
- Initial (still popular) implementations of those technologies are not secure
- Work is ongoing on improving their security