CSE460: VLSI Design

Lecture 8: Logic Function Synthesis using k-map

Review: Logic Function Synthesis using k-map

- The Karnaugh map (or k-map) is an alternative to the truth-table form for representing a function
- The map consists of cells that correspond to the rows of the truth table

x_1	x_2	
0	0	m_0
0	1	m_1
1	0	m_2
1	1	m_3

x_1	x_2	x_3	
0	0	0	m_0
0	0	1	m_1
0	1	0	m_2
0	1	1	m_3
1	0	0	m_4
1	0	1	m_5
1	1	0	m_6
1	1	1	m_7
			1

Consider a logic function, Y = f(A,B)

A	В	Y
0	0	0
0	1	1
1	0	0
1	1	1

- Minterm (SOP) Group 2ⁿ no. of 1 and skip 0. n = 0,1,2,3....
 (Make groups larger as possible)
- Grouping can be square/rectangle shaped or along row/column (Not along diagonal). Groups can be overlapped.
- The inputs which are <u>varying</u> in a group, can be <u>omitted</u>. The others (**fixed**) can be written as **product** form. **Invert** the variables which are fixed with the value **0**.
- Don't cares (d) can be used 0/1 as per convenience.

K-map:

A omitted.
B fixed with 1.
Y = B

A	В	Y
0	0	1
0	1	0
1	0	1
1	1	0

$$Y = B$$

- Minterm (SOP) Group 2ⁿ no. of 1 and no 0. n = 0,1,2,3....
 (Make groups larger as possible)
- Grouping can be square/rectangle shaped or along row/column (Not along diagonal). Groups can be overlapped.
- The inputs which are varying in a group, can be omitted.
- Don't cares (d) can be used 0/1 as per convenience.
- Edges are connected.

(a) The function of Figure 2.23

(b) The function of Figure 2.48

x 1	x2	х3	x4	Minterms
0	0	0	0	m0
0	0	0	1	m1
0	0	1	0	m2
0	0	1	1	m3
0	1	0	0	m4
0	1	0	1	m5
0	1	1	0	m6
0	1	1	1	m7
1	0	0	0	m8
1	0	0	1	m9
1	0	1	0	m10
1	0	1	1	m11
1	1	0	0	m12
1	1	0	1	m13
1	1	1	0	m14
1	1	1	1	m15

$$f = x_2 \overline{x}_3 + x_3 \overline{x}_4$$