SYN flood攻击及SYN cookie原理分析

1.简介

- SEED: 计算机安全教育的教学实验平台
- http://www.cis.syr.edu/~wedu/seed/
- 纽约雪城大学 杜文亮 (Du, Wenliang)教授设计和实现,从2002年 开始得到NSF 1.2M\$的资助

•

1. 简介

• SEED内容包含一下几类:

Software Security Labs

These labs cover some of the most common vulnerabilities in general software. The labs show students how attacks work in exploiting these vulnerabilities.

Network Security Labs

These labs cover topics on network security, ranging from attacks on TCP/IP and DNS to various network security technologies (Firewall, VPN, and IPSec).

Web Security Labs

These labs cover some of the most common vulnerabilities in web applications. The labs show students how attacks work in exploiting these vulnerabilities.

System Security Labs

These labs cover the security mechanisms in operating system, mostly focusing on access control mechanisms in Linux.

Cryptography Labs

These labs cover three essential concepts in cryptography, including secrete-key encryption, one-way hash function, and public-key encryption and PKI.

Mobile Security Labs

These labs focus on the smartphone security, covering the most common vulnerabilities and attacks on mobile devices. An Android VM is provided for these labs.

1.简介

- 网络安全主要包括10大实验
- 分为攻击类、破解类、实现类
- 难度越大, 消耗的时间越长

2.TCP/IP Attack Lab

- Netwox Tools作为报文生成工具
- Wireshark 报文截获工具
- 启动 ftp and telnet Servers
- Task 1 : SYN Flooding Attack
- Task 2: TCP RST Attacks on telnet and ssh Conr
- Task 3: TCP RST Attacks on Video Streaming Applications
- Task 4: TCP Session Hijacking
- Task 5: Creating Reverse Shell using TCP Session Hijacking
- 注意: 攻击者可以观察到被攻击者的流量

2.TCP/IP Attack Lab

- netwox Tools一共提供了200多个工具
- •运行netwox, 进入界面后
- 选项3搜索工具
- 选项4显示帮助

• VirtualBox新建虚拟机

• 导入SEED 虚拟机镜像文件, 运行虚拟机

- •普通用户登陆,有特权操作再su
- 超级用户 User ID: root, Password: seedubuntu.
- 普通用户 User ID: seed, Password: dees

- 利用GNS3配置如图网络
- SEED ubuntu 攻击 SEED Ubuntu target
- 配置好两台主机的地址和路由

- ###配置IP地址命令:
- ip address显示地址
- sudo ip address add 192.168.1.1/24 dev eth0 添加IP
- sudo ip address del 192.168.1.1/24 dev eth0 删除IP
- ####增加路由
- ip route显示路由
- sudo ip route add 192.168.1.0/24 dev eth0
- sudo ip route del 192.168.1.0/24 dev eth0
- ####增加路由
- ip route add {NETWORK/MASK} via {GATEWAYIP}
- ####增加默认路由
- ip route add default via 192.168.1.1
- 永久修改网络配置,图形界面配置

- SEED Ubuntu target上启动telnet服务: service service openbsd-inetd start
- 攻击命令: netwox 76 -i 192.168.1.1 --dst-port 23
- 可以在SEED ubuntu 或者 SEED Ubuntu target 上用 tcpdump或者wireshark观察攻击报文:

如左图

• 可以在SEED ubuntu 或者 SEED Ubuntu target 上用 tcpdump或者wireshark观察建立连接:

netstat –n --tcp

51255 E027 20 20 021151E0124E115512012011201	13211001111		
54300 2017-10-10 01:43:20.1884.154.181.150	192.168.1.1	TCP	54 65215 > telnet [SYN] Seq=0 Win=1
54301 2017-10-10 01:43:20.1885.196.20.65	192.168.1.1	TCP	54 20742 > telnet [SYN] Seq=0 Win=1
54302 2017-10-10 01:43:20.18215.242.85.205	192.168.1.1	TCP	54 55554 > telnet [SYN] Seq=0 Win=1
54303 2017-10-10 01:43:20.18235.66.71.192	192.168.1.1	TCP	54 13891 > telnet [SYN] Seq=0 Win=1
54304 2017-10-10 01:43:20.18199.119.85.176	192.168.1.1	TCP	54 22236 > telnet [SYN] Seq=0 Win=1
54305 2017-10-10 01:43:20.18250.28.170.152	192.168.1.1	TCP	54 40593 > telnet [SYN] Seq=0 Win=1
54306 2017-10-10 01:43:20.1885.46.61.5	192.168.1.1	TCP	54 24379 > telnet [SYN] Seq=0 Win=1
54307 2017-10-10 01:43:20.18140.160.183.7	192.168.1.1	TCP	54 46476 > telnet [SYN] Seq=0 Win=1
54308 2017-10-10 01:43:20.18160.51.137.110	192.168.1.1	TCP	54 4209 > telnet [SYN] Seq=0 Win=15
54309 2017-10-10 01:43:20.18164.172.63.160	192.168.1.1	TCP	54 42296 > telnet [SYN] Seq=0 Win=1
54310 2017-10-10 01:43:20.18214.226.143.243	192.168.1.1	TCP	54 12905 > telnet [SYN] Seq=0 Win=1
54311 2017-10-10 01:43:20.18158.135.1.187	192.168.1.1	TCP	54 27490 > telnet [SYN] Seq=0 Win=1
54312 2017-10-10 01:43:20.1888.105.135.216	192.168.1.1	TCP	54 38478 > telnet [SYN] Seq=0 Win=1
54313 2017-10-10 01:43:20.18106.184.234.51	192.168.1.1	TCP	54 14685 > telnet [SYN] Seq=0 Win=1
54314 2017-10-10 01:43:20.18175.223.116.73	192.168.1.1	TCP	54 51819 > telnet [SYN] Seq=0 Win=1
54315 2017-10-10 01:43:20.18117.100.95.247	192.168.1.1	TCP	54 25032 > telnet [SYN] Seq=0 Win=1
54316 2017-10-10 01:43:20.1833.235.252.70	192.168.1.1	TCP	54 31955 > telnet [SYN] Seq=0 Win=1
54317 2017-10-10 01:43:20.18228.121.93.182	192.168.1.1	TCP	54 53197 > telnet [SYN] Seq=0 Win=1
54318 2017-10-10 01:43:20.18242.154.145.226	192.168.1.1	TCP	54 43806 > telnet [SYN] Seq=0 Win=1
54319 2017-10-10 01:43:20.18221.97.17.147	192.168.1.1	TCP	54 5892 > telnet [SYN] Seq=0 Win=15
54320 2017-10-10 01:43:20.180.224.147.194	192.168.1.1	TCP	54 45396 > telnet [SYN] Seq=0 Win=1
54321 2017-10-10 01:43:20.18171.209.31.170	192.168.1.1	TCP	54 33517 > telnet [SYN] Seq=0 Win=1
54322 2017-10-10 01:43:20.1876.104.85.107	192.168.1.1	TCP	54 26048 > telnet [SYN] Seq=0 Win=1
54323 2017-10-10 01:43:20.1910.170.246.158	192.168.1.1	TCP	54 40877 > telnet [SYN] Seq=0 Win=1
54324 2017-10-10 01:43:20.1975.117.137.28	192.168.1.1	TCP	54 39197 > telnet [SYN] Seq=0 Win=1

3.进一步观察linux内核tcp syn cookie机制

配置内核参数的两种方式:

- cat /proc/sys/net/ipv4/tcp_syncookies
- echo 0 > /proc/sys/net/ipv4/tcp_syncookies
- sysctl –a | grep net.ipv4.tcp_max_syn_backlog
- sysctl -w net.ipv4.tcp_max_syn_backlog = 5

3.进一步观察linux内核tcp syn cookie机制

比较打开和关闭SEED Ubuntu target内核tcp syn cookie参数, syn flood攻击的效果:

- 1. 设置SEED Ubuntu target上, net.ipv4.tcp_max_syn_backlog=5
- 2. 设置SEED Ubuntu target上, net.ipv4. tcp_syncookies=0
- 3. 从SEED Ubuntu 上用netwox的syn flood攻击SEED Ubuntu target
- 4. 同时从SEED Ubuntu 上用telnet 主机 SEED Ubuntu target,看能否建立连接?

3.进一步观察linux内核tcp syn cookie机制

打开SEED Ubuntu target内核tcp syn cookie参数,同时从SEED Ubuntu 上用telnet 主机 SEED Ubuntu target,看能否建立连接?

tcp	0	0 192.168.1.1:23	22.224.155.182:52094	SYN_RECV
tcp	0	0 192.168.1.1:23	189.139.210.0:20778	SYN_RECV
tcp	0	0 192.168.1.1:23	164.137.146.32:18220	SYN_RECV
tcp	0	0 192.168.1.1:23	100.229.76.182:19860	SYN_RECV
tcp	0	0 192.168.1.1:23	212.27.223.87:8677	SYN_RECV
tcp	0	0 192.168.1.1:23	110.79.206.115:34932	SYN_RECV
tcp	0	0 192.168.1.1:23	28.159.20.213:14411	SYN_RECV
tcp	0	0 192.168.1.1:23	22.171.142.87:12212	SYN_RECV
tcp	0	0 192.168.1.1:23	170.146.198.103:14936	SYN_RECV
tcp	0	0 192.168.1.1:23	17.109.77.151:2538	SYN_RECV
tcp	0	0 192.168.1.1:23	59.5.227.216:55137	SYN_RECV
tcp	0	0 192.168.1.1:23	3.195.165.46:18763	SYN_RECV
tcp	0	0 192.168.1.1:23	137.106.108.145:7119	SYN_RECV
tcp	0	0 192.168.1.1:23	251.176.58.181:11704	SYN_RECV
tcp	0	0 192.168.1.1:23	25.144.20.99:34867	SYN_RECV
tcp	0	0 192.168.1.1:23	51.155.83.87:53745	SYN_RECV
tcp	0	0 192.168.1.1:23	74.146.226.240:10513	SYN_RECV
tcp	0	0 192.168.1.1:23	17.122.201.58:9180	SYN_RECV
tcp	0	0 192.168.1.1:23	192.168.1.2:36833	ESTABLISHED

4. 实验报告要求

- 1. 写出完整的实验配置过程,包括拓扑结构和配置命令
- 2. 用截图的方式描述实验结果
- 3. 描述tcp syn cookie的原理
- 4. 交实验报告, 2018-12-20之前以附件形式发送到邮箱 **hust_network@163.com**, 报告文件名称: 学院专业-学号-名字-实验二.doc