Correction du DS de 2007-2008

Question 1:

 $P1: (\neg(p \lor q) \Rightarrow \neg q) \Rightarrow (q \Rightarrow p)$

La question est ouverte, passons donc par la table de vérité :

p	q	$(p \lor q)$	$(q \Rightarrow p)$	$\neg(p\vee q)$	$\neg(p \lor q) \Rightarrow \neg q$	P1
0	0	0	1	1	1	1
0	1	1	0	0	1	0
1	0	1	1	0	1	1
1	1	1	1	0	1	1

P1 n'est pas une tautologie car la valuation v telle que v(p)=0 et v(q)=1 impose v(P1)=0.

 $P2: (\neg p \Rightarrow \neg q) \Rightarrow (p \Rightarrow q)$

La question est ouverte, passons donc par la table de vérité :

p	q	$\neg p \Rightarrow \neg q$	$p \Rightarrow q$	P2
0	0	1	1	1
0	1	0	1	1
1	0	1	0	0
1	1	1	1	1

P2 n'est pas non plus une tautologie car la valuation v telle que v(p)=1 et v(q)=0 impose v(P2)=0.

Question 2:

 $H1: p \Rightarrow (q \lor r)$

 $H2: (r \land \neg p) \Rightarrow (\neg q \land \neg p)$

$$C: (\neg p \Rightarrow \neg q) \land ((p \land r) \Rightarrow \neg q)$$

On peut relativement facilement trouver une valuation v telle que v(H1) = 1, v(H2) = 1 et v(C) = 0, ce qui indique que C n'est pas conséquence valide de $\{H1, H2\}$.

v(C)=0 en particulier quand v(p)=0 et v(q)=1, ceci indépendamment de v(r)

quand v(p) = 0 et v(q) = 1 alors v(H1) = 1 d'après la t. de v. de \Rightarrow et ceci toujours indépendamment de v(r)

quand
$$v(p)=0$$
 et $v(q)=1$ alors $v(\neg q \wedge \neg p)=0$, d'après la table de vérité de \Rightarrow il faut donc $v(r \wedge \neg p)=0$,ce qui impose $v(r)=1$

La valuation v telle que v(p) = 0, v(q) = 1 et v(r) = 1 indique donc que C n'est pas conséquence valide de $\{H1, H2\}$.

Question 3:

L'axiome A_1 de Lukasiewicz : $(P \Rightarrow Q) \Rightarrow ((Q \Rightarrow R) \Rightarrow (P \Rightarrow R))$

Est-ce un théorème pour SF_1 ?

Question 4:

L'axiome A_2 de Lukasiewicz : $(\neg P \Rightarrow P) \Rightarrow P$

Est-ce un théorème pour SF_1 ?

$$\begin{array}{lll} 1: & ((\neg P \Rightarrow P) \Rightarrow (\neg P \Rightarrow P)) \Rightarrow (((\neg P \Rightarrow P) \Rightarrow \neg P) \Rightarrow ((\neg P \Rightarrow P) \Rightarrow P)) & \text{Axiome 2} \\ 2: & ((\neg P \Rightarrow P) \Rightarrow (\neg P \Rightarrow P)) & \text{cf cours d\'emo de} \\ 3: & ((\neg P \Rightarrow P) \Rightarrow \neg P) \Rightarrow ((\neg P \Rightarrow P) \Rightarrow P) & \text{Modus Ponens} \\ 4: & ((\neg P \Rightarrow P) \Rightarrow \neg P) & \text{Axiome 1} \\ 5: & (\neg P \Rightarrow P) \Rightarrow P & \text{Modus Ponens} \end{array}$$

Question 5:

L'axiome A_3 de Lukasiewicz : $P \Rightarrow (\neg P \Rightarrow Q)$ Est-ce un théorème pour SF_1 ?

Question 6:

 SF_1 est sain. Ceci signifie que les théorèmes produits pae SF_1 sont des tautologies. Les axiomes de SFL étant des théorèmes de SF_1 ce sont donc des tautologies puisque SF_1 est sain. Et le modus ponens étant la règles d'inférence de SFL il produira une tautologie à partir de deux tautologies (vu en cours).

SFL est donc sain.

Question 7:

$$H1: p \Rightarrow q$$

$$C_1: \{\neg p \lor q\}$$

$$H2: (p \Rightarrow q) \Rightarrow r$$

$$H2: \neg(\neg p \lor q) \lor r$$

$$H2: (p \land \neg q) \lor r$$

$$C_2: \{p \lor r, \neg q \lor r\}$$

$$C: r$$

$$\neg C: \neg r$$

$$C_3: \{\neg r\}$$

donc il reste à montrer :

$$\{\neg p \lor q, p \lor r, \neg q \lor r, \neg r\} \vdash \Box$$

Question 8:

$$\begin{array}{c} P,P\Rightarrow Q\vdash_{SF_R}Q\\ P,\neg P\vee Q\vdash_{SF_R}Q\\ \text{or }P\text{ est une clause de la forme }l_1\vee l_2\vee\cdots\vee l_n\\ \neg P\text{ s'\'ecrit }\neg l_1\wedge\neg l_2\wedge\cdots\wedge\neg l_n\\ \neg P\vee Q\text{ s'\'ecrit alors}(\neg l_1\wedge\neg l_2\wedge\cdots\wedge\neg l_n)\vee Q\text{ ou encore :}\\ (\neg l_1\vee Q)\wedge(\neg l_2\vee Q)\wedge\cdots\wedge(\neg l_n\vee Q)\\ \text{et est donc logiquement \'equivalent \`a l'\'ensemble de clauses :}\\ \{\neg l_1\vee Q,\neg l_2\vee Q,\ldots,\neg l_n\vee Q\} \end{array}$$

Il faut finalement montrer:

$$l_1 \vee l_2 \vee \cdots \vee l_n, \neg l_1 \vee Q, \neg l_2 \vee Q, \ldots, \neg l_n \vee Q \vdash Q$$

En partant de $l_1 \vee l_2 \vee \cdots \vee l_n$ et $\neg l_1 \vee Q$ nous produisons la résolvante sans $l_1: l_2 \vee \cdots \vee l_n \vee Q$

Nous pouvons ensuite de la même façon éliminer l_2 , et en reproduisant n fois la Résolution sur la dernière résolvante obtenue nous obtiendrons la clause Q.

Question 9:

$$F: (\exists x \exists y (R(x,y)) \land \forall x \forall y (R(x,y) \Rightarrow R(y,x)) \land \forall x \forall y \forall z ((R(x,y) \land R(y,z)) \Rightarrow R(x,z))) \Rightarrow (\exists x R(x,x))$$

Il nous faut renommer les variables.

$$F': (\exists x \exists y (R(x,y)) \land \forall x_1 \forall y_1 (R(x_1,y_1) \Rightarrow R(y_1,x_1)) \land \forall x_2 \forall y_2 \forall z_2 ((R(x_2,y_2) \land R(y_2,z_2)) \Rightarrow R(x_2,z_2))) \Rightarrow (\exists x_3 R(x_3,x_3))$$

Pour montrer que F' est une tautologie (i.e. $\vdash F')$ il faut procéder de manière habituelle avec SF_R :

- 1. ajouter $\neg F'$ aux hypothèses (il n'y en a pas)
- 2. appliquer à $\neg F'$ les transformations de façons à aboutir à un ensemble de clauses
- 3. inférer la clause \Box

Clarifions tout d'abord cette immense formule :

$$F' \approx A \land B \land C \Rightarrow D$$
 en notant :

$$A : \exists x \exists y R(x, y)$$

$$B : \forall x_1 \forall y_1 (R(x_1, y_1) \Rightarrow R(y_1, x_1))$$

$$C : \forall x_2 \forall y_2 \forall z_2 ((R(x_2, y_2) \land R(y_2, z_2)) \Rightarrow R(x_2, z_2))$$

 $\neg F' \approx \neg (A \land B \land C \Rightarrow D)$

 $\neg F' \approx \neg (\neg (A \land B \land C) \lor D)$ $\neg F' \approx (A \land B \land C) \land \neg D$

or:

 $D: \exists x_3 R(x_3, x_3)$

$$A \approx \{R(a,b)\}$$

$$B \approx \forall x_1 \forall y_1 (\neg R(x_1, y_1) \lor R(y_1, x_1))$$

$$B \approx \neg R(x_1, y_1) \lor R(y_1, x_1)$$

$$B \approx \{\neg R(x_1, y_1) \lor R(y_1, x_1)\}$$

$$C \approx \forall x_2 \forall y_2 \forall z_2 ((R(x_2, y_2) \land R(y_2, z_2)) \Rightarrow R(x_2, z_2))$$

$$C \approx \forall x_2 \forall y_2 \forall z_2 (\neg R(x_2, y_2) \land R(y_2, z_2)) \lor R(x_2, z_2))$$

$$C \approx \forall x_2 \forall y_2 \forall z_2 (\neg R(x_2, y_2) \land R(y_2, z_2)) \lor R(x_2, z_2))$$

$$C \approx \forall x_2 \forall y_2 \forall z_2 (\neg R(x_2, y_2) \lor \neg R(y_2, z_2) \lor R(x_2, z_2))$$

$$C \approx \neg R(x_2, y_2) \lor \neg R(y_2, z_2) \lor R(x_2, z_2)$$

$$C \approx \{\neg R(x_2, y_2) \lor \neg R(y_2, z_2) \lor R(x_2, z_2)\}$$

$$\neg D \approx \neg (\exists x_3 R(x_3, x_3))$$

$$\neg D \approx \forall x_3 \neg R(x_3, x_3)$$

$$\neg D \approx \neg R(x_3, x_3)$$

$$\neg D \approx \neg R(x_3, x_3)$$

$$\neg D \approx \neg R(x_3, x_3)$$

${\it et\ finalement}$:

$$\neg F' : \{ R(a,b), \neg R(x_1,y_1) \lor R(y_1,x_1), \neg R(x_2,y_2) \lor \neg R(y_2,z_2) \lor R(x_2,z_2), \neg R(x_3,x_3) \}$$

Il reste donc à essayer d'inférer la clause vide.

Correction du DS de 2008-2009

Question 1:

 $A \approx B \text{ ssi } \forall v, v(A) = v(B)$

Il suffit alors de passer par la table de vérité :

A	B	$A \Rightarrow B$	$B \Rightarrow A$	$A \Rightarrow B \land B \Rightarrow A$
0	0	1	1	1
0	1	1	0	0
1	0	0	1	0
1	1	1	1	1

Les seules lignes où $A \approx B$ sont telles que $v(A \Rightarrow B \land B \Rightarrow A) = 1$, donc si $A \approx B$ alors $v(A \Rightarrow B \land B \Rightarrow A)$ est une tautologie.

Question 2:

Si $v(A \Rightarrow B \land B \Rightarrow A)$ est une tautologie, i.e. si $\forall v, v(A \Rightarrow B \land B \Rightarrow A) = 1$ alors, d'après la table de vérité de \land on a forcément $v(A \Rightarrow B) = 1$ et $v(B \Rightarrow A) = 1$. Et d'après la table de vérité précédente on a

- soit
$$v(A) = v(B) = 0$$

$$- \operatorname{soit} v(A) = v(B) = 1$$

c'est-à-dire $A \approx B$.

Question 3:

 $Sens \longrightarrow$

 \mathcal{E} est contradictoire.

Supposons que $\mathcal{E}-T$ ne soit pas contradictoire, i.e. que $\mathcal{E}-T$ soit satisfaisable,

alors
$$\exists v_i, \forall A \in \mathcal{E} - T, v_i(A) = 1$$
.

Donc si on rajoute une tautologie T à $\mathcal{E} - T$, la même valuation v_i est telle que $\forall A \in \mathcal{E}, v_i(A) = 1$. Ce qui signifie que \mathcal{E} est satisfaisable. Ce qui est faux.

 $Sens \longleftarrow$

 $\mathcal{E} - T$ est contradictoire.

A fortiori, tout ensemble le contenant est aussi contradictoire!

Question 4:

$$Sens \longrightarrow$$

 \mathcal{E} est contradictoire.

Supposons que $\mathcal{E} - \{B\}$ ne soit pas contradictoire, i.e. que $\mathcal{E} - \{B\}$ soit satisfaisable,

alors
$$\exists v_i, \forall A \in \mathcal{E} - \{B\}, v_i(A) = 1.$$

On a donc $v_i(A) = 1$ et $v_i(A \Rightarrow B) = 1$. Par conséquent, d'après la table de vérité de \Rightarrow , on a $v_i(B) = 1$. Donc si on rajoute B à $\mathcal{E} - \{B\}$, la même valuation v_i est telle que $\forall A \in \mathcal{E}, v_i(A) = 1$. Ce qui signifie que \mathcal{E} est satisfaisable. Ce qui est faux.

$$Sens \longleftarrow$$

 $\mathcal{E} - \{B\}$ est contradictoire.

A fortiori, tout ensemble le contenant est aussi contradictoire!

Question 5:

$$A_3' = (\neg A \Rightarrow \neg B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow A)$$
 est une tautologie.
Pour montrer cela on peut dresser la table de vérité de A_3'

A	B	$\neg A \Rightarrow \neg B$	$\neg A \Rightarrow B$	$(\neg A \Rightarrow B) \Rightarrow A$	A_3'
0	0	1	0	1	1
0	1	0	1	0	1
1	0	1	1	1	1
1	1	1	1	1	1

On constate que $\forall v, v(A_3') = 1$ ce qui signifie que A_3' est une tautologie.

Connaissant SF_1 on sait que SF'_1 est **sain**, puisque la règle d'inférence est la même, et qu'elle ne peut produire, à partir de deux tautologie, qu'une nouvelle tautologie.

Question 6:

$$P1 = (\neg A \Rightarrow \neg B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow A)$$
 Axiome

 $P2 = (\neg A \Rightarrow \neg B)$ hypothèse

 $P3 = (\neg A \Rightarrow B) \Rightarrow A \text{ modus ponens } P1 \text{ et } P2$

 $P4 = \neg A \Rightarrow B$ hypothèse

P5 = A modus ponens P3 et P4

Question 7:

Montrer

$$\vdash (\neg A \Rightarrow \neg B) \Rightarrow (B \Rightarrow A)$$

Cela revient à montrer, en utilisant deux fois le théorème syntaxique de la déduction :

$$\neg A \Rightarrow \neg B, B \vdash A$$

D'où la démonstration :

$$P1 = (\neg A \Rightarrow \neg B) \Rightarrow ((\neg A \Rightarrow B) \Rightarrow A)$$
 Axiome A'3

$$P2 = (\neg A \Rightarrow \neg B)$$
 hypothèse

$$P3 = (\neg A \Rightarrow B) \Rightarrow A \text{ modus ponens } P1 \text{ et } P2$$

$$P4 = B \Rightarrow (\neg A \Rightarrow B)$$
 Axiome A1

P5 = B hypothèse

 $P6 = (\neg A \Rightarrow B)$ modus ponens P4 et P5

P7 = A modus ponens P3 et P6

Question 8:

Montrer

$$\vdash (\neg P \Rightarrow P) \Rightarrow P$$

$$P1 = (\neg P \Rightarrow \neg P) \Rightarrow ((\neg P \Rightarrow P) \Rightarrow P)$$
 Axiome A'3 $P2 = (\neg P \Rightarrow \neg P)$ fait en TD $P3 = (\neg P \Rightarrow P) \Rightarrow P$ modus ponens $P1$ et $P2$

Question 9:

$$F1 = \forall x ((\exists y P(x, y)) \Rightarrow P(x, f(x)))$$

$$F2 = \forall x \exists y P(x, y)$$

$$F3 = \exists x P(f(f(x)), x)$$

$$G = \exists x \exists y \exists z (P(x, y) \land P(y, z) \land P(z, x))$$

Montrer
$$\{F1, F2, F3\} \vdash G$$

Pour
$$F1$$
: $\forall x(\neg(\exists y P(x,y)) \lor P(x,f(x)))$

$$\forall x((\forall y \neg P(x,y)) \lor P(x,f(x)))$$
$$\forall x \forall y \neg P(x,y)) \lor P(x,f(x))$$

$$\neg P(x,y) \lor P(x,f(x))$$

Pour F2:

Pour F3:

Pour $\neg G$:

$$\neg(\exists x\exists y\exists z(P(x,y)\land P(y,z)\land P(z,x)))$$

$$\forall x\forall y\forall z\neg(P(x,y)\land P(y,z)\land P(z,x)))$$

$$\forall x\forall y\forall z\neg P(x,y)\lor \neg P(y,z)\lor \neg P(z,x)))$$

$$\neg P(x,y) \lor \neg P(y,z) \lor \neg P(z,x)$$

En renommant les variables dans les clauses, SF_R va démarrer la Résolution avec :

$$\{\neg P(x,y) \lor P(x,f(x)), P(z,g(z)), P(f(f(a)),a), \neg P(u,v) \lor \neg P(v,w) \lor \neg P(w,u)\}$$

