

Overview

- Data on credit card transactions, composed of transaction logs, customer and card info.
- Spanning from Jan 2016 –
 December 2019
- Existing fraudulent transactions, interested in a model to identify future ones.

Data - EDA

- Around ~7 million transactions ranging from -\$500-\$6k
- 0.12% categorized as fraudulent.
- 2,000 customers, 1,610 with transactions.
- ~6k cards, customers can have multiple cards.

Data - EDA

- 70% of transactions used a Chip,
 17% were swipes and ~13% online.
- ~2% of all invoices were cancellations
- ~89% of all cards have chips.
- Error types for transactions are listed.
- Some transactions are international.

Num Credit Cards	Counts	Percentage %
3	449	22.45
1	416	20.80
2	388	19.40
4	376	18.80
5	206	10.30
6	105	5.25
7	40	2.00
8	17	0.85
9	3	0.15

Data - Data Quality

- ~12.5% merchants are missing location information.
- No fraudulent activity for most of 2017, this might've been a data truncation issue.

Data – Feature Engineering

Create additional features:

- Transaction took place between 10AM and 8PM.
- User is retired.
- Merchant and Customer States match
- International transaction
- Debt to Income Ratio
- Zip Median to Income Ratio

Model

- Need to use Recall as the preferred evaluation metric.
- XGBoost as choice of model, powerful library for gradient boosting.
- Why?
 - GPU acceleration
 - Class imbalance support
 - Works great with tabular data

Model - Training

- Encode all the selected categorical columns.
- Split into Training, Testing and Validation datasets stratified on the fraud column.
- Tune hyperparameters, set recall as the preferred metric to maximize.

Slice Plot

Results

• The best model, based on the best tuning parameters had the following classification metrics:

Accuracy: 1.0

Precision: 0.902

Recall: 0.831

F-1 Score: 0.865

Results

- Feature importance for XGBoost model
- Suggests that the merchant code is the most important feature followed by the amount, income bracket and location.

Conclusion

- Model did a decent job at predicting fraudulent transactions.
- Improvements possible through additional features, such as customers state data during transaction rather than at present.
- Further explorations can include the use of other boosting algorithms, or advanced deep learning models such as GAN's.

Questions?

