МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе № 6

по дисциплине «Параллельные алгоритмы»

Тема: ОПТИМИЗАЦИЯ ДОСТУПА К ПАМЯТИ В МОДЕЛИ OPENCL

Студентка гр. 0303	Костебелова Е. К.
Преподаватель	 Сергеева Е.И.

Санкт-Петербург 2023

Цель работы.

Познакомиться с моделью памяти в OpenCL и реализовать алгоритм умножения матриц на видеокарте при помощи OpenCL.

Выполнение работы.

Работа была выполнена в среде Microsoft Visual Studio: подключены библиотеки и настроено окружение.

Из предыдущей лабораторной работы были взяты вспомогательные функции для выбора девайса, создания контекста, загрузки текста kernel в программу.

Чтобы уменьшить обращение к глобальной памяти, сначала kernel загружает блок из глобальной памяти в локальную и вычисляет частичную сумму.

Затем переходит к следующему блоку и проделывает те же самые действия.

Таким образом мы смогли снизили затраты на перемещение данных из глобальной памяти. Схема вычисления блока элементов итоговой матрицы:

Исследование.

Сравним данную реализацию с алгоритмом Штрассена, которую мы реализовывали в 4-й лабораторной работе

Таблица 1 – Сравнение производительности для разных размеров матрицы.

Размер матрицы	Время вычисления	Время вычисления GPU
	Штрассена	(миллисекунды)
	(миллисекунды)	
128	28	2406
256	88	5500
512	379	30280
1024	1965	229382
2048	12218	1878897
4096	279839	15139791

Из результатов таблицы можно понять, что перемножения матриц на GPU с использованием OpenCL намного медленнее, чем алгоритм Штрассена на CPU. Однако теоретически должно быть выяснено противоположное — перемножение на GPU должно быть в разы быстрее Штрассена.

Выводы.

В данной лабораторной работе была написана программа, которая перемножает матрицы на GPU используя локальную память. Время вычислений было сравнено с результатами из 4-й лабораторной работы. Использование OpenCL для перемножения матриц теоретически позволяет эффективно использовать ресурсы графического процессора и ускорить вычисления, однако на практике для моего устройства это утверждение оказалось неверным.