「離散数学・オートマトン」演習問題 04 (解答例)

2024/10/28

1 関係: Relations

課題 1 N 上の関係 R と S を

$$R = \{(m, n) \mid m = 2n\} \tag{1.1}$$

$$S = \{(m, n) \mid m = n + 3\}$$
 (1.2)

とするとき、 $R \circ S$ 、 R^2 、 R^{-1} を求めなさい。

Consider the relations R and S on N defined by Eqs. (1.1) and (1.2). Find $R \circ S$, R^2 , and R^{-1} .

解答例

・ $R\circ S=\{(x,y)\mid \exists z,xSz\wedge zRy\}$ は $R\circ S=\{(x,y)\mid \exists z,xSz\wedge zRy\} \text{ is equivalent to }$

$$R\circ S=\{(x,y)\mid \exists z,x=z+3 \land z=2y\}$$

である。これより以下を得る。

This implies

$$R \circ S = \{(m, n) \mid m = 2n + 3\}$$

・ $R^2=\{(x,y)\mid \exists z,xRz\wedge zRy\}$ は $R^2=\{(x,y)\mid \exists z,xRz\wedge zRy\} \text{ is equivalent to}$

$$R^2 = \{(x,y) \mid \exists z, x = 2z \land z = 2y\}$$

である。これより以下を得る。

This implies

$$R \circ R = \{(m,n) \mid m = 4n\}$$

$$R^{-1} = \{ (m, n) \mid 2m = n \}$$

課題 2 $\Sigma = \{a, b, c, d\}$ 上の関係を考える。

Consider the relation on $\Sigma = \{a, b, c, d\}$.

$$R = \{(a, a), (a, b), (b, d), (c, d), (d, b)\}$$
(1.3)

 $R^i=R^j$ となる最小の $i\neq j$ の組を求めよ。また、 R^* を求めよ。

Find the smallest pair of $i \neq j$ such that $R^i = R^j$. Also, find R^* .

解答例 R^2 を求める。

First we obtain \mathbb{R}^2 .

$$aRa \wedge aRa \Rightarrow aR^{2}a$$
 $aRa \wedge aRb \Rightarrow aR^{2}b$
 $aRb \wedge bRd \Rightarrow aR^{2}d$
 $bRd \wedge dRb \Rightarrow bR^{2}b$
 $cRd \wedge dRb \Rightarrow cR^{2}b$
 $dRb \wedge bRd \Rightarrow dR^{2}d$

同様に R^3 と R^4 を求める。

Similarly, we obtain R^3 and R^4 .

$$aR^{2}a \wedge aRa \Rightarrow aR^{3}a$$

 $aR^{2}a \wedge aRb \Rightarrow aR^{3}b$
 $aR^{2}b \wedge bRd \Rightarrow aR^{3}d$
 $bR^{2}b \wedge bRd \Rightarrow bR^{3}d$
 $cR^{2}b \wedge bRd \Rightarrow cR^{3}d$
 $dR^{2}d \wedge dRb \Rightarrow dR^{3}b$

 $aR^{3}a \wedge aRa \Rightarrow aR^{4}a$ $aR^{3}a \wedge aRb \Rightarrow aR^{4}b$ $aR^{3}b \wedge bRd \Rightarrow aR^{4}d$ $aR^{3}d \wedge dRb \Rightarrow aR^{4}b$ $bR^{3}d \wedge dRb \Rightarrow bR^{4}b$ $cR^{3}d \wedge dRb \Rightarrow cR^{4}b$ $dR^{3}b \wedge bRd \Rightarrow dR^{4}d$

以上から $R^2=R^4$ を得る。従って、 $R^*=R^0\cup R\cup R^2\cup R^3$ となる。しかし、 R^3 の要素は $R^0\cup R\cup R^2$ に含まれているため、 $R^*=R^0\cup R\cup R^2$ で十分である。

Thus, we have $R^2 = R^4$. Therefore, $R^* = R^0 \cup R \cup R^2 \cup R^3$. However, the elements of R^3 are included in $R^0 \cup R \cup R^2$, so $R^* = R^0 \cup R \cup R^2$ is sufficient.

$$\begin{split} R^* &= \{(a,a),(b,b),(c,c),(d,d)\} \cup \{(a,a),(a,b),(b,d),(c,d),(d,b)\} \\ &\quad \cup \{(a,a),(a,b),(a,d),(b,b),(c,b),(d,d)\} \\ &= \{(a,a),(b,b),(c,c),(d,d),(a,b),(a,d),(b,d),(c,b),(c,d),(d,b)\} \end{split}$$

この課題に対応するコードは、以下の Github から取得できます。

The code corresponding to this exercise can be obtained from the following Github. https://github.com/discrete-math-saga/RelationsAndOrder/

課題 3 R 上の以下の関係 S を考える。この関係は同値関係であることを示せ。

Consider the relation S on R defined as follows. Show that this relation is an equivalence relation.

$$S = \{(x, y) \mid \sin(x) = \sin(y), x, y \in R\}$$
(1.4)

解答例 S が反射律、対称律、推移律を満たすことを示す。

We show that S satisfies the reflexive, symmetric, and transitive properties.

- 反射律: $\sin(x) = \sin(x)$ より、 $(x,x) \in S$ である。 Reflexive: Since $\sin(x) = \sin(x), (x,x) \in S$.
- 対称律: $\sin(x) = \sin(y)$ ならば、 $\sin(y) = \sin(x)$ である。 つまり $xSy \Leftrightarrow ySx$ である。

Symmetric: If $\sin(x) = \sin(y)$, then $\sin(y) = \sin(x)$. That is, $xSy \Leftrightarrow ySx$.

• 推移律: $\sin(x) = \sin(y) \wedge \sin(y) = \sin(z)$ ならば、 $\sin(x) = \sin(z)$ である。つまり $xSy \wedge ySz \Rightarrow xSz$ である。

Transitive: If $\sin(x) = \sin(y) \wedge \sin(y) = \sin(z)$, then $\sin(x) = \sin(z)$. That is, $xSy \wedge ySz \Rightarrow xSz$.

以上より、S は同値関係である。

Therefore, S is an equivalence relation.

2 順序: Orders

課題 4 全体集合 U を考える。その部分集合 $A\subseteq U$ に対する関係 \subseteq は、半順序であって全順序でないことを示せ。

Consider the whole set U. Show that the relation \subseteq on the subset $A \subseteq U$ is a partial order but not a total order.

解答例 はじめに、反射律、推移律、反対称律を示し、半順序であることを示す。

First, we show the reflexive, transitive, and antisymmetric properties to demonstrate that it is a partial order.

• 反射律:ある集合 A について、 $A \subseteq A$ は明らか Reflexive: For any set A, $A \subseteq A$ is obvious.

• 推移律: $C \subseteq B \land B \subseteq A$ ならば、 $C \subseteq A$ である。

Transitive: If $C \subseteq B \land B \subseteq A$, then $C \subseteq A$.

• 反対称律: $B\subseteq A\land A\subseteq B$ ならば、A=B である。 Antisymmetric: If $B\subseteq A\land A\subseteq B$, then A=B.

次に、二つの集合 $A\subseteq U$ と $B\subseteq U$ を考える。 $A\cap B$ が A または B と等しくない場合、A と B の間には関係 \subseteq は成り立たない。つまり、関係 \subseteq は全順序ではない。

Next, consider two sets $A \subseteq U$ and $B \subseteq U$. If $A \cap B$ is not equal to A or B, the relation \subseteq does not hold between A and B. That is, the relation \subseteq is not a total order.