TECHNISCHE UNIVERSITÄT BERLIN

AIM-3: SCALABLE DATA ANALYSIS & DATA MINING

Unsupervised Clustering of Hacker News Stories

Authors:
Bram Leenders & Marc Romeyn

July 13, 2015

1 Introduction

1.1 WHAT IS HACKERNEWS

Hacker News is a social news site: it aggregates news by allowing users to submit stories. Interesting submissions can be upvoted by other users and all submissions are ranked by popularity.

The content on Hacker News is mostly related to science, in particular computer science. The guidelines for what content can be posted are very broad; the guidelines specify on topic as "anything that gratifies one's intellectual curiosity".

Over the last eight years Hacker News has experienced rapid growth, resulting in a daily 2.6 million pageviews and 3.5 unique visitors per month². One of the reasons suggested for this popularity is Hacker News' similarity to how Reddis used to be³: user-submitted content with a very minimalistic, terminal-like interface.

1.2 RESEARCH QUESTION

The world changed a lot over the last eight years, especially in the field of computer science. The userbase of Hacker News and their interests have changed as well. In this research, we want to see how they changed. Informally phrased, we want to find trends in the popularity of several topics over the last eight years. This lead to the following research question:

RESEARCH QUESTION: what trends can we detect in the popularity of news topics on Hacker News?

This question depends on two other questions, since we have not yet specified what we mean by popular nor what topics we mean exactly. These subquestions are:

SUBQUESTION 1: how does one quantify the popularity of a topic? SUBQUESTION 2: what topics does the Hacker News content consist of?

1.3 OUTLINE

We will address the first subquestion by ranking posts and users over the entire Hacker News history. This will help characterize the dataset and show how various ways of measurent often give similar results, and demonstrate some flaws in several ways of measuring popularity. Dividing the content in topics is a more academically challenging task. We have used two methods to divide the articles into categories: latent Dirichlet allocation and a combination of Word2Vec and k-means. Both methods are explained in section 4. The results of this classification and the trends are shown in section 5.

https://news.ycombinator.com/newsguidelines.html

²https://news.ycombinator.com/item?id=9219581

³http://techcrunch.com/2013/05/18/the-evolution-of-hacker-news/

2 Dataset

As explained in the previous section, our analysis is on the set of all stories posted on Hacker News. It is a large set of news articles, blog posts, essays, tutorials and other types of textual media. Nearly all of it is English, although there are a few other languages used as well. Let us first describe what exactly we refer to when we use the word story. To do this, we will describe the four catagories of content on Hacker News:

- Stories: the majority of submissions are stories. A story can be either a link to another webpage or a relatively short text by the submittor.
- Jobs: companies sponsored by YCombinator (the seed investor behind Hacker News) can post job offers on Hacker News. The percentage of jobs is very small: well under one percent of the total volume.
- Polls: users can submit multiple choice questions for other users to answer.
- Comments: the three types mentioned above can receive comments by other users.

Since this research focuses only on the stories, we have left out the other three types. The dataset used in our research contains all stories between February 19th 2007 (the date Hacker News was launched⁴) and June 10th 2015 (the day we ran our crawler). This is a time span of 3033 days, during which a total of over 1.5 million stories were submitted.

2.1 Data Retrieval

To crawl all stories, we used the official Hacker News API⁵. This API returns some basic metadata about the story, such as the submitter, title, points (upvotes), a (possibly empty) story text and a (possibly empty) url. Stories generally either have a story text or a url, most only have a url.

For the stories with a non-empty story text field, fetching the story from the API is enough. For other stories, we also fetched the content linked to by the url. An important remark here is that some urls (especially the old ones) have become invalid over the course of time. Whenever the content was no longer available, we set the text to an empty string (the metadata can still be processed for user statistics etc.).

To crawl all stories (including the linked content), we used a homemade crawler that fetches the content, strips out meaningless text and html and saves the result in chunks of 1 day's worth of content. The code for this crawler is publicly available on GitHub⁶.

The algorithm used for the extraction of meaningfull content is $GoOse^7$. It uses heuristics to rank the importance and relevance of html elements on a webpage. For example: if it detects a $\langle div \rangle$... $\langle div \rangle$ block with a lot of words inside, then that is likely to be important. If,

⁴https://news.ycombinator.com/hackernews.html

⁵https://hn.algolia.com/api

 $^{^6}$ https://github.com/bcleenders/AIM/tree/master/crawler

⁷https://github.com/advancedlogic/GoOse

on the other hand, it finds an html block <button>Login</button>, then it will remove the block for it is probably not a relevant part of the text of the page.

The resulting dataset is about 4.4 GB in size.

3 Initial Analysis

We have now established some semantics of the data gathered for our research. Before diving into the data analysis, we will first quantify the data by providing the reader with some statistics.

3.1 OVERALL ACTIVITY

Statistics		
Stories	1,544,261	
Submitters	165,126	
Upvotes	16,668,848	
Comments	7,383,865	

An interesting remark, is that January 6th 2014 did not have any submissions. The reason for this was a long downtime of the Hacker News website ⁸.

3.2 Upvote Distribution

If users like a story, they can express their approval by upvoting it. These upvotes are then used to rank the stories by popularity and calculate the (currently) most popular submissions. Since the formula for determining a posts "score" strongly favours newly submitted stories, even stories with few upvotes can spike to the frontpage.

To enter the frontpage (the top 30), a story often needs at least ten upvotes, stories that stay on the frontpage for a longer period of time will often have over a hundred upvotes. The distribution of upvotes per story can be seen in figure 3.1. Stories placed in buckets of size 100 based on the number of upvotes they received. The graph plots the size of each bucket Note that these graphs are scaled logarithmically: in the graph showing all posts (figure 3.1a), 97.5% of the stories are in the first bucket, i.e. only 2.5% of the stories get over 100 upvotes. The second graph (3.1b) is a zoomed in version with a bucket size of 1, and shows the distribution for points with 30 upvotes or less, a set of over 1.4 million stories.

There are only six stories with over 2100 upvotes. For completeness' sake, these are the stories whose popularity is quite literally "off the charts":

⁸https://twitter.com/hackernewsonion/status/420068968464789505 - "Hacker News is DOWN, but your chances of getting into YC if you know how to scale a plain text website are UP."

Figure 3.1: Distributions of upvotes over posts (log scale)

Most upvoted stories		
Title	Points	
Steve Jobs has passed away	4271	
Tim Cook Speaks Up	3086	
2048	2732	
Don't Fly During Ramadan	2617	
Hyperloop	2549	
Microsoft takes NET open source and cross platform	2376	

3.3 TOP USERS

In figure 3.2, we show the statistics for some of the most active submitters. These statistics illustrate that Hacker News has a very active group of users. Together, this top 10 submitted 45,190 stories, which equals an average of 1.5 stories per user per day over the last 7 years.

Figure 3.2: Top 10 submitters by submitted stories

If we take the top 10 not by the number of stories a user has submitted but by the number of comments his or her stories have received, we get the rankings in figure 3.3.

Figure 3.3: Top 10 submitters by received comments

The interesting second place in this top 10 is user "_whoishiring". This user has almost no posts (a mere 114) but received 26,649 comments. Experienced Hacker News readers may have already expected this, for this user starts a monthly thread where companies can post job offers and others can respond to these. As such, the user only posts one story per month but its stories are discussed very actively.

3.4 TOP DOMAINS

As already stated in the description of the dataset, many of the stories are links to external sites. To provide some insights into which sites attract a lot of attention from the Hacker News community, we made three top ten lists that rank the sites by the same criteria as we did in the previous section: by number of stories, by points and by number of comments.

Most popular domains		
By Number of Stories	By Points	By Comments
techcrunch.com (27.711)	github.com (400.373)	techcrunch.com (172.854)
github.com (26.596)	techcrunch.com (365.207)	nytimes.com (153.471)
youtube.com (21.977)	nytimes.com (287.234)	github.com (127.812)
nytimes.com (18.125)	arstechnica.com (176.633)	arstechnica.com (80.666)
medium.com (14.172)	wired.com (161.698)	wired.com (75.406)
arstechnica.com (12.657)	medium.com (132.468)	washingtonpost.com (56.257)
wired.com (10.867)	bbc.co.uk (98.031)	medium.com (53.924)
bbc.co.uk (8.118)	washingtonpost.com (97.537)	bbc.co.uk (51.828)
en.wikipedia.org (7.058)	youtube.com (96.339)	theatlantic.com (41.530)
businessinsider.com (6.877)	theatlantic.com (77.628)	online.wsj.com (36.729)

These rankings provide some insights into what types on news are popular. The big geeky news sites (Techcrunch, Ars Technica and Wired) are present and are about as popular as the big newspapers (NY Times, BBC, Washington Post).

The high ranking of github.com (a code hosting site, *not* a news site) can be explained by the large number of open source projects hosted on GitHub that submit links to new versions and press releases on Hacker News. Some examples of these projects are Facebook's React framework, Twitter's Bootstrap, SQLite and io.js.

Notably, GitHub's competitors (e.g. BitBucket, GitLab and Beanstalk) do not show up in these rankings. This demonstrates GitHub's overpowering popularity in the code hosting market, at least in the open source community.

In the top lists given above, we have provided the number of articles, points and comments on groups of articles. The strong similarity between the different methods of ranking indicates a strong correlation between how well a story scores on various features. This is in line with what one might expect: people post, like and comment most of things they consider most interesting.

3.5 MEASURING POPULARITY

First and foremost, our popularity must account for different lengths of months and a smaller userbase in the early years of Hacker News. To do so, we must use relative scores per month, rather than providing absolute number.

We have decided to base our popularity measure on all three features we used for the rankings above: number of articles, number of upvotes and number of comments. If a topic receives 2% of the arcticles, 2% of the upvotes and 5% of the comments, the popularity score is 3% (the average of the three).

To give a formal definition: let S_m be the set of all stories in month m and T_i all stories in the topic number i. With these two definitions, $S_m \cup T_i$ is the set of all stories on a topic i in month m. Furthermore, let s_u (resp. s_c) be the number of upvotes (resp. comments) story s has received. Then, given a topic id i and a month m, the score for that topic in that month is:

$$score(i, m) = \frac{1}{3} \frac{|\{s \in S_m \cup T_i\}|}{|\{s \in S_m\}|} + \frac{1}{3} \frac{\sum_{s \in S_m \cup \in T_i} s_u}{\sum_{s \in S_m} s_u} + \frac{1}{3} \frac{\sum_{s \in S_m \cup \in T_i} s_c}{\sum_{s \in S_m} s_c}$$

4 TOPIC DETECTION

It's data reduction and clustering, really... Say that we did two types of unsupervised clustering: k-means and LDA. K-means

4.1 LATENT DIRICHLET ALLOCATION

Some explanation what the F this is

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor

nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.2 WORD2VEC & K-MEANS

Explain two steps and how awesome it worked

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

4.3 DISCUSS IMPLEMENTATION

5 RESULTS

In this section, we will show and discuss some of the results of the research described in the earlier sections. More specifically: we show how exactly the popularity of various topics changed over time. Since we have a thousand topics, we cannot show charts for every individual topic. Instead, we picked a few topics we consider to be interesting and show these. Note that, since there are 1,000 topics, the average popularity is 10 basis points (10‱). The popularity is positively skewed, however: roughly a third of the months/topic combinations have a popularity below 1‱. To stress this point, we include figure 5.1.

Figure 5.1: Popularity distribution - popularity (in bp) vs. number of topic/months

5.1 POPULARITY PLOTS

In this section, we will show some awesome plots of how the popularity of various topics changed over time.

Figure 5.2: Popularity of Docker, CoreOS, etcd, containers, OpenStack

Comments — Articles — Points

We start the overview with a trend plot (figure 5.2) of a new and upcoming technique: containerization. Docker and CoreOS were released in 2014 and before that, containerization was already used as a term for seperating Linux processes (which explains earlier peaks). The trends show how the release of Docker 1.0 (June 2014) created a lot of buzz, and the sustained popularity afterwards.

Figure 5.3: Popularity of Elon Musk, SpaceX, Tesla, Hyperloop

Elon Musk is described by Wired.com as a "maverick entrepreneur" due to his big and risky projects. We see this reflected in the chart of his popularity (figure 5.3). Halfway 2010, Elon was out of cash (despite a 200 million dollar buyout from PayPal), which sparked some interest. The big spike late 2012 marks his expressed intent to have SpaceX (his spacecraft company) fly to Mars. The biggest spike in the chart, halfway 2013, marks the introduction of Hyperloop, a high-speed transportation system.

Figure 5.4: Popularity of keynote, Apple, @scale, developers conference

In the popularity charts of keynote-related topics (figure 5.4), one can see yearly patterns of spiking popularity. Each June has a spike of over 0.1%, which corresponds to Apple's annual WWDC (Worldwide Developers Conference). The spikes smaller than 0.1% are just noise.

On the topic of Apple: not only it's products spark the interest of the Hacker News community; it's former CEO also had a big impact in the community. We show figure 5.5 to indicate the enormous impact the death of Steve Jobs had. He shares this topic group with his co-founder Steve Wozniak, but the news of his death (October 5th, 2011) dwarfs all other events in Hacker News history.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, plac-

erat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

6 CONCLUSION

The goal of this research was to find out how the popularity of topics on Hacker News evolves over time. To answer this question, we defined a measure of popularity based on the number of articles, number of upvotes and number of comments.

We then continued by dividing the dataset 1.5 million articles into topics using two unsupervised clustering algorithms: Word2Vec in combination with k-means and Latent Dirichlet allocation.

The resulting distribution of stories over these topics we used to determine the popularity of topics. We did this by comparing three types of metadata: the number of stories in a topic and the number of upvotes and comments these stories received.

Looking at the popularity plotted over time, we have seen three types of "trends":

- Single events, e.g. deaths and product releases (Steve Jobs, Hyperloop). These cause big spikes during the month of the event, but don't have long-lasting effects.
- Recurring evens, e.g. annual conferences (WWDC). These clearly show up in the results, although they are generally not as extreme compared to single-time events.
- Long-lasting trends, e.g. concepts or technologies (Raspberry Pi, Docker/CoreOS). These topics attract attention over a longer span of time, but even within these time spans the months with big news (product releases) generally have a much higher (by a factor of two or three) popularity. Only really big topics have such a long-lasting trend.