

Machine Learning (IS ZC464) Session 15: Problem Solving and Review Session

Problem 1: Classification using neural networks

- Consider a binary classification problem with two classes A and B
- Consider the following training data

 Design of a neural network appropriately and classify the test input feature vector <3,3>.
 Draw and annotate your neural network.

Solution

Neural network design should focus on

- Establish if data is linearly separable
- output modeling,
- number of layers,
- number of processing neurons,
- Number of input and output neurons in each layer,
- activation function(s) and
- the weights

Establish if data is linearly separable

Plot the data on a 2 D Cartesian plane

Output modeling

- Number of classes = 2
- How many bits can represent the class labels?

Answer: Only 1, i.e. if y=0, it is class A or if y = 1, it is class B

Number of layers

 If data is linearly separable, then use 1 hidden layer

Number of processing neurons

- How many linear decision boundaries are required?
- In this problem 2 decision boundaries are required and since the data is linearly separable, only lines are used as decision boundaries
- Only 2 processing neurons are required

innovate achieve lead

Number of input and output neurons in each layer

- Number of output neurons: one as discussed
- For number of input neurons, look at the feature vector size
- <1,2,A> <7,11,B> <2,2,A>, <4,3,A>, <6,12,B>
- It is 2.
- Hence number of input neurons = 2

activation function

- Step function if discrete valued output is expected
- g(weighted sum of inputs say n) = 1 if n>T
 0 otherwise
- What should be the threshold?

Weights

- How to compute weights?
- How many weights are needed?
- Draw a neural network for some idea.

How to get the weights?

- Method 1: Approximation
- Method 2: parameters of the decision line
- Method 3: gradient descent
- Method 4: Genetic algorithm

Using method 2 for weight computation

- <1,2,A><7,11,B><2,2,A>,<4,3,A>,<6,12,B>
- For feature vectors

$$<1,2>$$
, the weighted sum n = 1*0+2*6 = 12

Understand that threshold should be any number between 19 and 65.

Problem 2: Classification using k-nearest neighbors

- Consider a binary classification problem with two classes A and B
- Consider the following training data

Take k = 3 and classify <3,10>

Problem 3: Genetic algorithm

Given a sequence of numbers
23, 45, 11, 10, 2, 101, 1

 Design a genetic algorithm based solution to find the maximum of given numbers

 Complexity of the problem is same as that of searching a list of n numbers to find maximum value.

Chromosome formulation

Let us define a feasible solution as a bit string

a₆a₅a₄a₃a₂a₁a₀

where a_i is a binary digit having a value equal to 1 or 0 indicating whether an element at ith position **from right** is in the given sequence is included in the bit string or not.

Example bit string 0011001 is a string that includes from sequence 23, 45, 11, 10, 2, 101, 1 the elements 1, 10 and 11

Fitness function formulation

- To find out maximum we compute the maximum of the numbers 1, 10 and 11 (for example) which is 11.
- i.e. fitness function is given by

 $f(a_6a_5a_4a_3a_2a_1a_0) = Maximum of numbers$ whose representational bits are 1s

Initial population

 For the sequence 23, 45, 11, 10, 2, 101, 1 we generate 5 initial chromosome population as follows

Chromosome bit string	Elements included	Fitness value
0010100	2, 11	11
1010101	1,2,11,23	23
0010101	1,2,11	11
1010010	101,11,23	101
0000110	101,2	101

Pool of fit parents

- A pool of parent chromosomes with threshold value say T= 5 is considered in this example
- Then all initial parents are fit to be included in the parent selection

Parent selection: roulette wheel

S. No.	Chromoso me bit string	Elements included	Fitnes s value	probability	Cumulative frequency
1	0010100	2, 11	11	11/247=0.045	0.045
2	0010101	1,2,11	11	11/247=0.045	0.090
3	1010101	1,2,11,23	23	23/247=0.093	0.183
4	1010010	101,11,23	101	101/247=0.40 85	0.5915
5	0000110	101,2	101	101/247=0.40 85	1.0000

Use random number generator and generate two numbers between 0 and 1

If rand() = 0.3, then select 4th bit string
If rand() = 0.017, then select

innovate achieve lead

Crossover and mutation probability

- Crossover probability P_c: to select parents to produce new offsprings by cross over operation
- Mutation probability P_m : to select randomly the bits from each bit string for mutation operation

Crossover and mutation probability

- If given $p_c = 0.8$
- This means that out of 5 potential parent chromosomes we will select 4 using roulette wheel method.

- And $p_m = 0.3$
- This means that out of 7 bits, about 2 bits (as against a number 2.1) will be mutated

Parent selection: 4 parents

S. No.	Chromoso me bit string	Elements included	Fitnes s value	probability	Cumulative frequency
1	0010100	2, 11	11	11/247=0.045	0.045
2	0010101	1,2,11	11	11/247=0.045	0.090
3	1010101	1,2,11,23	23	23/247=0.093	0.183
4	1010010	101,11,23	101	101/247=0.40 85	0.5915
5	0000110	101,2	101	101/247=0.40 85	1.0000

If rand() = 0.3, then select 4th bit string
If rand() = 0.017, then select
1stbit string

If rand() = 0.629, then select 5th bit string
If rand() = 0.17, then select 3rd bit string

Crossover and mutation operations using one point crossover between 3rd and 4th bit

Re-compute fitness: given sequence 23, 45, 11, 10, 2, 101, 1

Generation 1	Elements included	Fitness value
0010100	2, 11	11
1010101	1,2,11,23	23
1010010	101,11,23	101
0000110	101,2	101

Generation 2	Elements included	Fitness value
1110101	1, 2, 11, 45, 23	45
1010001	1, 11, 23	23
0100110	101, 2, 45	101
1000111	1,101,2,23	101

Average fitness = 236/4 = 59

Average fitness = 270/4 = 67.5

Session 1: Introduction

- Learning experience from past
- Learning -- humans vs. machines
- Why machine learning?
- Machine learning and Artificial intelligence
- Intelligent systems
- Examples vehicle recognition, fruit recognition and face recognition: attributes and their significance
- Traditional vs. Machine learning
- etc.

Session 2: Regression

- Training and testing in learning systems
- Prediction training and testing
- (X,Y) input output pair
- Understanding error
- Function approximation: given training (x,y) pairs
- Best hypothesis-minimum error tradeoff
- Learning parameters defining a hypothesis
- Line fitting slope and intercept
- Squared mean error
- etc.

Session 3: Classification

- Decision boundaries and regions
- Binary classification
- Linear separability
- Discriminant functions
- Identifying the decision boundary on 2D plane
- Classifying a test vector using h(x) = x₂-mx₁-c
- etc.

innovate achieve lead

Session 4: Classification Algorithms

- K-Nearest Neighbors
- Lazy learning
- Distance based weighted k-NN algorithm
- Bayes' Theorem
- Naïve Bayes' Classifier
- Problem solving- classifying a test pattern
- etc.

Session 5: Decision tree and data visualization

- Decision tree classifier
- Decision tree and Its limitations
- Attributes and their significance in decision tree based classification
- Leaf and non leaf nodes of a decision tree
- Information content entropy of the given set of observations
- Splitting the observations based on decision key and attribute selected for splitting
- Gain and remainder computations
- Data visualization
- Scatter plots
- Parallel coordinate graphs
- Pearson Correlation coefficient
- etc.

Session 6: Feature Engineering

- What is feature engineering
- Machine learning model with feature engineering
- Dimensionality reduction
- Feature Extraction techniques
- Bag of words
- TF-IDF, n-grams, stemming
- Image features, glimpse of transform based features
- Feature selection algorithms etc.

Session 7: Evaluation of Classification models

Overfitting

Bias and variance

Partitioning the data

Hold out, Cross validation and bootstrapping methods

Class-wise accuracy

true/false positives/negatives

Precision and recall

sensitivity analysis

ROC curves

Confusion matrix etc.

Session 8: Review

Session 9: Neural Networks

- Human nervous system : some inspiration
- Artificial neuron
- Simulation of a single neuron to perform logical AND-weight, threshold, weighted input, activation function, training and testing, unseen patterns for testing
- XOR simulation, why non linearly separable data, why two neurons, threshold, weights, activation functions for the required neurons
- etc.
- Neural network simulation for XOR and related computations
- Fruit recognition example and it neural network simulation-output modeling, weights etc
- Feed forwards neural network architecture
- Significance of layers
- Learning factors
- etc.

Session 10: Neural Networks

- Error surface for Neural Network based classification
- Computing Gradient
- Delta rule of weight update in gradient descent method
- Learning rate
- Weights as knowledge classification of unseen pattern using acquired weights
- Chain rule of partial derivatives used for computing the delta of weight + understanding of the derivation of the term for weight update
- etc.

Session 11: MLP and RBFNN

- Multilayer feed forward neural network
- Face recognition problem
- Radial basis function neural network

Session 12: Genetic Algorithms

- Evolutionary algorithms and their applications
- Population based algorithm
- Chromosome as bit string
- Representing rules as bit strings
- Search as combinatorial problem
- Fitness value
- Crossover and mutation
- etc.

Session 13: Genetic Algorithms

- Roulette wheel method
- Fittest parent-pool of parents
- Exploration and exploitation
- Application of genetic algorithm in unsupervised clustering, clustering as an optimization problem, fitness function for clustering
- Limitation of GA
- etc.

Session 14: Support Vector Machines

- Support vector machines
- Support vectors understanding
- Margin and decision boundary
- Computation of the margin
- What to optimize in SVM?
- Kernel functions
- etc.

Session 15: Problem solving and review

Syllabus for Comprehensive examination

 All topics and the corresponding depth of concepts covered during lecture sessions 1 to 15.