TRIGONOMETRY Chapter 24

Ángulos coterminales

TRIGONOMETRÍA SACO OLIVEROS

ÁNGULOS COTERMINALES

De la figura: $\theta y \omega$ son las medidas de dos ángulos coterminales.

ÁNGULOS COTERMINALES

Siendo $\alpha y \beta$ las medidas de dos ángulos coterminales, se verifica lo siguiente:

$$\alpha - \beta = 360^{\circ} n \quad ; n \in \mathbb{Z}$$

$$R.T.(\alpha) = R.T.(\beta)$$

Es decir:

$$sen \alpha = sen \beta$$
 $cos \alpha = cos \beta$
 $tan \alpha = tan \beta$
 $cot \alpha = cot \beta$
 $sec \alpha = sec \beta$

 $csc\alpha = csc\beta$

Indique cuáles de los siguientes ángulos son coterminales.

- l. 200° y 160°
- II. 540° y –120°
- III. 400° y –320°

Recuerda:

 α y β son ángulos coterminales, entonces: α - β = 360° n; n $\in \mathbb{Z}$

Resolución:

I) 200° - 160° = 40° (no es múltiplo de 360°)

II) **540° - (-120°)** =660° (no es múltiplo de 360°)

III)400° - (-320°) = 720°(si es múltiplo de 360°)

Rpta: 400° y -320° ángulos coterminales

Calcule un ángulo coterminal del ángulo -250°

Resolución:

$$\alpha$$
 - (-250°) = 360°(n)
Si n = 1
 α + 250° = 360° (1)
 α + 250° = 360°

 $\alpha = 110^{\circ}$

110° es un ángulo coterminal de -250°

Recuerda:

 α y β son ángulos coterminales, entonces: $\alpha - \beta = 360^\circ$ n; $n \in \mathbb{Z}$

Renato compró un terreno en forma de rectángulo, tal como se muestra en la figura.

 $\mathbf{b} = (20 \cos \alpha) \mathbf{m}$

Si α y 60° son ángulos coterminales, ¿cuál es el área de dicho terreno?

Resolución:

Por propiedad de ángulos coterminales $RT(\alpha) = RT(\beta)$

Entonces:

$$\cos \alpha = \cos 60^\circ = 1/2$$

$$\tan \alpha = \tan 60^{\circ} = \sqrt{3}$$

Reemplazar:

b=20cos
$$\alpha$$
 h=3 $\sqrt{3}$ tan α

b=20(1/2)
$$h=3\sqrt{3}.\sqrt{3}$$

ángulos Siendo y 30° coterminales, efectúe

$$E = csc^2\theta + tan^2\theta$$

$$csc\theta = csc30^{\circ} = 2$$

$$\tan\theta = \tan 30^{\circ} = \frac{\sqrt{3}}{3}$$

$$E = csc^2\theta + tan^2\theta$$

$$\mathbf{E} = 2^2 + \left(\frac{\sqrt{3}}{3}\right)^2$$

$$E = 4 + \frac{3}{9}$$

$$E = 4 + \frac{3}{9}$$
 $E = 4 + \frac{1}{3}$

$$E = \frac{12+1}{3}$$

$$E = \frac{13}{3}$$

Del gráfico

Reduzca

$$M = \frac{5csc\beta}{csc\alpha} - \frac{2tan\alpha}{tan\beta}$$

$$M = \frac{5csc\beta}{csc\alpha} - \frac{2tan\alpha}{tan\beta}$$

$$csc\alpha = csc\beta$$

 $tan\alpha = tan\beta$

Reemplazamos

$$M = \frac{5\csc\beta}{\csc\beta} - \frac{2\tan\alpha}{\tan\alpha}$$

$$M = 5(1) - 2(1)$$

$$\mathbf{M}=\mathbf{5}-\mathbf{2}$$

¡Muy bien!

Del gráfico

Efectúe

$$\mathbf{P} = \sqrt{2}\mathbf{csc}\boldsymbol{\theta} + 3\mathbf{tan}\boldsymbol{\theta}$$

$$P = \sqrt{2}csc\theta + 3tan\theta$$

Reemplazamos:

$$P = \sqrt{2} \csc 45^{\circ} + 3 \tan 45^{\circ}$$

$$P = \sqrt{2} (\sqrt{2}) + 3(1)$$

$$P = 2 + 3$$

$$csc\theta = csc45^{\circ}$$

$$tan\theta = tan45^{\circ}$$

El príncipe Vegueta plantea el siguiente acertijo a sus estudiantes para determinar al delegado si se sabe lo siguiente:

$$\alpha + \beta = 810^{\circ}$$

 $\alpha - \beta = 360^{\circ}(n)$

Donde n es el primer número primo, siendo α y β ángulos.

Determine: $M = tan\alpha + tan\beta$

Resolución:

Recuerda:

n es el primer número primo

$$n = 2, 3, 5, 7 \dots$$

Entonces n = 2

Reemplazamos

$$\alpha + \beta = 810^{\circ}$$

 $\alpha - \beta = 360^{\circ}(2)$

$$lpha + eta = 810^{\circ} + \ lpha - eta = 720^{\circ}$$

$$2\alpha = 1530^{\circ}$$
 $\alpha = 765^{\circ}$
 $\beta = 45^{\circ}$

Determine:

$$M = tan765^{\circ} + tan45^{\circ}$$

$$M = tan45^{\circ} + tan45^{\circ}$$

$$M = 2tan45^{\circ}$$

$$M = 2(1)$$

$$M=2$$

