¿Podemos programar únicamente con bucles for?

Antonio Casares Santos

VallaENEM 2020

Un primer ejemplo

Input: $n \in \mathbb{N}$, $n \ge 2$.

Problema: Encontrar el primer divisor de *n* mayor que 1.

```
Function BuscarDivisor(n)

encontrado:=0

d:=2

While encontrado==0

if d divide n

encontrado==1

else
 d:=d+1

return d

Function BuscarDivisor2(n)

For d from 2 to n

if d divide n

return d
```

¿Podemos eliminar siempre los bucles While?

¿Por qué queremos eliminar los bucle While?

→ Los bucles While crean problemas desde un punto de vista teórico.

```
While 1+1==2
a:=1
```

Programa que no termina.

```
n:=0
test:=1
While test==1
  n:=n+1
  test:=0
For p,q primos menores que n:
    if p+q=n
       test:=1
print("La conjetura de Goldbach es falsa!")
```

¿Termina este programa?

Los comienzos de la computación

En la década de 1930 se proponen distintos modelos de computación.

Función computable

Función $f: \mathbb{N}^k \to \mathbb{N}$ para la que podemos dar una lista de instrucciones precisas (un programa) tal que tras aplicar estas instrucciones a un $\vec{n} \in \mathbb{N}^k$, obtenemos $f(\vec{n})$.

→ Suponemos que tenemos todo el tiempo y memoria que necesitemos.

Observación

Existen (muchas!) funciones que no son computables.

Hay 2^{\aleph_0} funciones $f:\mathbb{N}\to\mathbb{N}$, pero sólo un número numerable de programas que podemos escribir.

Un modelo sin bucles While: funciones recursivas primitivas

Thoralf Skolem

Kurt Gödel

Rózsa Péter

Funciones base:

Porque... jsi, $0 \in \mathbb{N}$!

- ► EI 0
- Función sucesor s(n) = n + 1
- ▶ Igualdad: Igual(n, m) es 1 si n = m, 0 en caso contrario.

Método de iteración:

- Bucles For (¡sin modificar el índice de recursión!).
- → Copiar y pegar programas → Composición de funciones

Funciones que obtenemos

```
→Todas las constantes c \in \mathbb{N}: 4 = s(s(s(s(0)))).

Function Suma(n,m)

Function Multiplicacion(n,m)

suma:=n

For i from 1 to m

suma:= s(suma)

return suma

mult:=0

For i from 1 to m

mult:= mult+n

return mult
```

Funciones que obtenemos

```
→Todas las constantes c \in \mathbb{N}: 4 = s(s(s(s(0)))).
   Function Suma(n,m)
                             Function Multiplicacion(n,m)
   suma:=n
                             mult:=0
   For i from 1 to m
                              For i from 1 to m
     suma:= s(suma)
                                                           Bucles For
                                \#mult := mult + n
                                suma:=mult
                                                           Imbricados
   return suma
                                For i from 1 to m
                                  suma:= s(suma)
                                mult:=suma
```

return mult

Funciones que obtenemos

→Todas las constantes $c \in \mathbb{N}$: 4 = s(s(s(s(0)))).

```
Function Suma(n,m)

suma:=n

For i from 1 to m

suma:= s(suma)

return suma

Function Multiplicacion(n,m)

mult:=0

For i from 1 to m

mult:= mult+n

return mult
```

```
→Exponenciación(n,m): añadir un 
bucle For. 
exp:= exp · n
```

 \rightarrow Podemos programar condicionales if, comparaciones \leq , y definir funciones por casos.

¿Obtenemos todas las funciones que desearíamos?

La función de Ackermann

Wilhelm Ackermann

Definición (Función de Ackermann¹)

$$Ack : \mathbb{N}^2 \to \mathbb{N}$$

$$Ack(0,n) = n+2$$

$$Ack(1,0) = 0$$

$$Ack(k,0) = 1 \quad para \ k > 1$$

$$Ack(k,n) = Ack(k-1,Ack(k,n-1)) \quad si \ k > 0 \ y \ n > 0$$

$$Ack(1,2) = Ack(0, Ack(1,1)) = Ack(0, Ack(0, Ack(1,0))) =$$

= $Ack(0, Ack(0,0)) = Ack(0,2) = 4$

¹ Versión de Rózsa Péter obtenida de apuntes de Paul Rozière (IRIF).

```
Ack(0, n) = n + 2
                                                         Ack_k(n) = Ack(k, n)
    Ack(1,0) = 0
    Ack(k,0) = 1 k > 1
    Ack(k, n) = Ack(k - 1, Ack(k, n - 1))
                                    Ack_0(n) = n + 2
0 Bucles For
                 Ack_1(n) = Ack_0(Ack_1(n-1)) = Ack_1(n-1) + 2
                                     Ack_1(n) = 2 \cdot n
1 Bucle For
                  Ack_2(n) = Ack_1(Ack_2(n-1)) = 2 \cdot Ack_2(n-1)
                                      Ack_2(n) = 2^n
2 Bucles For
imbricados
                                                              Ack(3,5) ≥Número de partículas
                                                              en el universo observable...
                                  Ack_3(n) = 2^{Ack_3(n-1)}
                                                               elevado a 100!!
3 Bucles For
                                     Ack_3(n) = 2^{2^{n-2}}
```

Jerarquía para las funciones definidas con bucles For

Proposición

Si una función $f: \mathbb{N} \to \mathbb{N}$ se define con un programa usando menos de k bucles For imbricados, entonces

$$f(n) < Ack_{k+1}(n)$$

para n suficientemente grande.

Función diagonal

$$D(n) = Ack(n, n)$$

Teorema

La función D(n) no puede ser computada por un programa utilizando únicamente bucles For.

Demostración

Teorema

La función D(n) = Ack(n, n) no puede ser computada por un programa utilizando únicamente bucles For.

Proof.

- Si D(n) fuese computada por un programa, éste utilizaría un máximo de k bucles For imbricados, para un k fijo.
- $D(n) < Ack_{k+1}(n)$

Imposible, pues para n > k + 1 se cumple:

$$D(n) = Ack(n, n) > Ack(k + 1, n)$$

Conclusión

Para que nuestro modelo de computación incluya todas las funciones "intuitivamente calculables" necesitamos poder utilizar bucles While.

Conclusiones

Casi todas las funciones "usuales" son computables con bucles For. Sólo hay que poder acotar el número de repeticiones de los bucles.

→ Algunos programas no terminarán.

Teorema (El problema de la parada, Turing, 1936)

No se puede determinar algorítmicamente si un programa va a terminar o no.

Proof.

Por diagonalización.

¡Gracias por su atención!