CONCOURS D'ENTRÉE EN 1^{ERE} ANNÉE DE L'ÉCOLE NORMALE SUPÉRIEUR DE YAOUNDÉ (ENSY), SESSION DE 2014

 $\underline{S\acute{E}RIE}:SCIENCES\ PHYSIQUES$ $\underline{\acute{E}preuve\ de}:PHYSIQUES$

Exercice 1:

Un circuit électrique comporte : une bobine de résistance $R=10\Omega$, une source de tension $u=50\sqrt{2}\sin\omega t$ (la pulsation ω est réglable), un ampèremètre donnant l'intensité efficace I, d'impédance négligeable. Lorsque $\omega=1000rad/s$, I=0.1A

- 1) Calculer l'inductance de la bobine, le déphasage de la tension par rapport à l'intensité. Écrire l'expression de l'intensité instantanée
- 2) Quelle capacité C faut-il placer en série avec la bobine pour que l'intensité soit en phase avec la tension u aux bores de l'ensemble? Quelle est alors l'intensité efficace I_0 ? Déterminer les tensions efficaces U_B et U_C aux bornes de la bobine et de la capacité. Évaluer le rapport $Q = U_C/U$. La pulsation reste égale à 1000 rad/s
- 3) Le circuit reste celui du 2). On fait varier très légèrement la pulsation ω autour de ω_0 . On posera $\omega = \omega_0$ $(1 + \varepsilon)$. $\varepsilon << 1$. $\omega_0 = 1000 rad$ /s . Que représente ε ? Montrer que l'impédance du circuit est approximativement égale à $R(1 + 4Q^2\varepsilon^2)^{1/2}$. Représenter graphiquement les variations de l'intensité efficace I en fonction de ε , $\varepsilon \in \{-0,1; 0,1\}$

Exercice 2:

Soit un radionucléide dont l'activité a diminué de 90% en 2 heures 40 minutes.

- 1. Calculer sa durée de demi-vie ainsi que sa constante de temps et sa constante de désintégration
- 2. Après quelle durée ne reste t-il plus que 1,0% de la quantité initiale?

Exercice 3:

On constitue un pendule pesant en suspendant à un point fixe O, par une tige rigide de longueur l et de masse négligeable, une boule sphérique homogène de masse m et de rayon r = l/5. Le système ainsi constitué peut tourner sans frottement autour d'un axe (Δ) horizontal et passant par O, on écarte légèrement le pendule pesant de sa

Retrouvez d'autres sujets sur notre site : campus 12

position d'équilibre stable d'un angle θm et on le laisse effectuer de petites oscillations. On néglige tous les frottements.

- 1. Etablir le moment d'inertie de ce pendule par rapport à l'axe (Δ) .
- 2. Etablir l'équation différentielle du mouvement du pendule
- **3.** Ecrire l'expression de la période propre T_0 des oscillations de faibles amplitudes du pendule puis calculer sa valeur numérique.

Données : $g = 9.8 \text{ m. s}^{-2}$; l = 0.75 m.

Exercice 4 : (les différentes parties sont indépendantes)

I/ Quelle est dans les trois cas suivants, la masse d'un échantillon de substance radioactive contenant 1mCi de ¹³¹I, de ⁶⁰Co, de ²³⁸U. On donne:

Nombre d'Avogadro : $\mathcal{N} = 6.023 \times 10^{23}$

Période de : $^{131}I = 8,08$ jours ; $^{60}Co = 5,24$ ans ; $^{238}U = 5,5$. 109 ans

II/ Une fiole de $^{99m}_{43}Tc$ a une activité de ^{30}Mbq à $^{18}heures$.

- 1. Quelle était son activité à 12 heures ; quelle sera son activité le lendemain à 12 heures puis à 18 heures
- 2. Quelle est en Mbq la radioactivité d'un échantillon de $^{99m}_{43}Tc$ en équilibre de régime avec 10 Mbq de son père le $^{99}_{42}Mo$?

Période : $^{99m}_{43}Tc = 6$ heures ; $^{99}_{42}Mo = 67$ heures

Exercice 5:

Un conducteur roule à vitesse constante de V_0 sur une route rectiligne. Comme il est en excès de 110 km/h, un gendarme à moto démarre à l'instant où la voiture passe à sa hauteur et accélère uniformément. Le gendarme atteint la vitesse de 90 km/h au bout de 10 s.

- 1. Quel sera le temps nécessaire au motard pour rattraper la voiture?
- 2. Quelle distance aura-t-il parcourue?
- 3. Quelle vitesse aura-il alors atteint?