Chapter02) 컴퓨터 구조

CPU

CPU란?

CPU 구조

PC - Program Counter

메모리에서 읽어 들일 명령어의 주소를 저장

IR - Instruction Register

현재 CPU가 해석하고 있는 명령어를 저장

MAR - Memory Address Register

메모리의 주소를 저장

MBR - Memory Buffer Register

메모리와 주고받을 데이터와 명령어를 저장

- CPU가 실행할 프로그램은 1000 ~1500번지까지 저장
- 1000번지에는 1101가 저장되어 있음

Flag Register

연산 결과 또는 CPU 상태에 대한 부가 정보인 플래그 값 저장

플래그 레지스터

음수	결과 != 0	올림수, 빌림수 발생 X	발생 X	불가능	사용자 모드
1	0	0	0	0	0
부호 플래그	제로 플래그	캐리 플래그	오버플로우 플래그	인터럽트 플래그	슈퍼 바이저 플래그

스택 포인터

스택 영역의 최상단 스택 데이터 위치를 가리킴

인터럽트

CPU의 작업을 방해하는 신호

비동기

CPU에 의해 발생하는 인터럽트 == 예외

입출력 장치에 의해 발생하는 인터럽트 == 알림

비동기 인터럽트

프린터에 프린트를 명령했을 때, 완료 여부는 어떻게 확인할까?

비동기 인터럽트

프린터에 프린트를 명령했을 때, 완료 여부는 어떻게 확인할까?

비동기 인터럽트

프린터에 프린트를 명령했을 때, 완료 여부는 어떻게 확인할까?

CPU가 인터럽트를 처리한다는 것은..

인터럽트 서비스 루틴을 실행하고, 본래 수행하던 작업으로 다시 되돌아온다!!

