Table 3.2.1.4 제어시스템 예비 주요인자(압력)

공기유량(WA)	측정불확도 압력(Pa)	비고
am_p	24.7	예비 주요인자
am_dp	7.6	-
순추력(FN)	측정불확도 압력(Pa)	비고
ps01_avg	31.9	-
ps02_avg	30.4	_
p05_avg	30.4	_
ps05_avg	31.3	-
ps_cell	84.5	예비 주요인자

④ [4단계] 선정된 예비 주요인자의 측정불확도 타입별 크기 비교

측정불확도는 A-type과 B-type으로 구분되며 이 중 A-type은 통상적으로 알고 있는 random error와 유사하고 B-type은 bias error와 유사하여 A-type은 제어성능향상으로 개선의 여지가 있으며 B-type은 센서 자체의 정확도 향상으로 개선할 수 있다. 따라서 A-type 측정불확도가 큰 인자가 제어시스템에 의존도가 높으며 나아가 제어시스템 향상을 통해 측정시스템 향상의 여지가 크다고 할 수 있다. 즉, A-type 측정불확도가 큰 인자가 본 과제에서 도출하고자 하는 주요 제어인자에 적합하다.

Table 3.2.1.5 주요인자 측정불확도 비교

예비 주요인자	측정불확도 [Pa]		用고	
	A	В		
am_p (유량계 전압력)	19.7	15.0	공기유량 측정불확도 기여도는 작으나 A-type 측정불확도 절대값이 지배적이므로 지속적인 확인이 필요함 → 주요인자 확정	
am_dp (유량계 차압)	1.2	7.5	공기유량 측정불확도 기여도는 크나 B-type 측정불확도 절대값이 지배적이므로 제어시스템 변화에 영향이 미비함	
ps_cell (시험부 정압)	79.0	30.0	순추력 측정불확도 기여도가 크며 A-type 측정불확도 절대값이 지배적이므로 제어시스템 변화에 따른 영향이 큼 → 주요인자 확정	

(라) 주요인자 도출 결과

이상과 같은 과정을 거쳐 본 설비 제어시스템이 관심을 가질 주요인자는 시험부로 공급되는 공기의 유량을 측정하는 밴츄리 유량계의 전압력(am_p)과 시험부 정압력(ps_cell)을 도출하였다. 이러한 결과는 각 변수가 고공환경시험 조건 중 가장 중요한 속도와 고도 모사의 주요 인자임에서도 그 적절성을 확인할 수 있다.