第四节 函数的单调性与极值

习题 3-4

- 1. 判断下列命题是否正确:
- (1) 若函数 f(x) 在 (a,b) 内可导, 且单调增加, 则在 (a,b) 内必有 f'(x) > 0;
- (2) 若函数 f(x) 和 g(x) 在 (a,b) 内可导,且 f'(x) > g'(x),则在 (a,b) 内必有 f(x) > g(x);
 - (3) 若函数 f(x) 在点 x_0 处取得极大值,则必有 $f'(x_0) = 0$;
- (4) 若函数 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,且 f'(x) > 0,f(a) = 0,则在 (a,b) 内必有 f(x) > 0.
- 解 (1) 不正确. 反例: $f(x) = x^3$. 易知该函数在(-1,1)内可导,且单调增加,但在(-1,1)内函数不满足 f'(x) > 0(由于 f'(0) = 0).
- (2) 不正确. 反例: f(x) = 2x, g(x) = x + 1, $x \in (0, \frac{1}{2})$. 易知此二函数在 $(0, \frac{1}{2})$ 内可导, 且f'(x) > g'(x), 但在 $(0, \frac{1}{2})$ 内却有f(x) < g(x).
- (3) 不正确. 反例: f(x) = -|x|. 易知此函数在点 $x_0 = 0$ 处取得极大值, 但显然函数在该点处不可导.
 - (4) 正确. 依题知, f(x) 在[a,b]上单调增加, 故对 $\forall x \in (a,b)$, f(x) > f(a) = 0.
 - 2. 判断下列函数的单调性:

(1)
$$f(x) = \arctan x - x;$$
 (2) $f(x) = x - \ln(1 + x^2).$

- 解 (1) $f(x) = \arctan x x$, $f'(x) = \frac{1}{1+x^2} 1 = \frac{-x^2}{1+x^2} \le 0$, 且仅在点 x = 0 处有 f'(0) = 0,故 f(x) 在整个定义域上单调减少.
- (2) $f(x) = x \ln(1 + x^2)$, $f'(x) = 1 \frac{2x}{1 + x^2} = \frac{(x 1)^2}{1 + x^2} \ge 0$, 且仅在点 x = 1处有 f'(1) = 0, 故 f(x) 在整个定义域上单调增加.
 - 3. 确定下列函数的单调区间:

(1)
$$y = x^3 - 6x^2 - 15x + 2;$$
 (2) $y = \frac{\ln x}{r};$

(3)
$$y = (x-1)(x+1)^3;$$
 (4) $y = x + \frac{5}{2x}(x > 0);$

(5)
$$y = \ln(x + \sqrt{1 + x^2});$$
 (6) $y = x + |\sin 2x|.$

解 (1) $y = x^3 - 6x^2 - 15x + 2$, $y' = 3x^2 - 12x - 15 = 3(x - 5)(x + 1)$, 驻点为 x = -1及x = 5.

当 $x \in (-\infty, -1)$ 时, y' > 0,当 $x \in (-1, 5)$ 时, y' < 0,当 $x \in (5, +\infty)$ 时, y' > 0, 故函数的单增区间为 $(-\infty, -1] \cup [5, +\infty)$,单减区间为 [-1, 5].

(2)
$$y = \frac{\ln x}{x}$$
, $y' = \frac{1 - \ln x}{x^2}$, 驻点为 $x = e$.

当 $x \in (0,e)$ 时, y' > 0,当 $x \in (e,+\infty)$ 时, y' < 0,故函数的单增区间为 (0,e],单减区间为 $[e,+\infty)$.

当 $x \in (-\infty, \frac{1}{2})$ 时, y' < 0, 当 $x \in (\frac{1}{2}, +\infty)$ 时, y' > 0, 故函数的单增区间为 $[\frac{1}{2}, +\infty)$,单减区间为 $(-\infty, \frac{1}{2}]$.

(4)
$$y = x + \frac{5}{2x}$$
, $y' = 1 - \frac{5}{2x^2} = \frac{(\sqrt{2}x - \sqrt{5})(\sqrt{2}x + \sqrt{5})}{2x^2}$, $\stackrel{\text{def}}{=} x > 0$ 时,驻点为 $x = \sqrt{\frac{5}{2}}$.

当 $x \in (0, \sqrt{\frac{5}{2}})$ 时, y' < 0, 当 $x \in (\sqrt{\frac{5}{2}}, +\infty)$ 时, y' > 0, 故函数 $y = x + \frac{5}{2x}(x > 0)$ 的 单增区间为 $[\sqrt{\frac{5}{2}}, +\infty)$, 单减区间为 $(0, \sqrt{\frac{5}{2}}]$.

(5)
$$y = \ln(x + \sqrt{1 + x^2})$$
, $y' = \frac{1}{x + \sqrt{1 + x^2}} (1 + \frac{x}{\sqrt{1 + x^2}}) = \frac{1}{\sqrt{1 + x^2}} > 0$, 故函数的单增区间为 $(-\infty, +\infty)$, 无单减区间.

(6) $y = x + |\sin 2x|$, 对 ∀ $k \in \mathbb{Z}$, 有

$$y = \begin{cases} x + \sin 2x, & k\pi \le x \le k\pi + \frac{\pi}{2}, \\ x - \sin 2x, & k\pi + \frac{\pi}{2} < x < k\pi + \pi. \end{cases}$$

当 $k\pi < x < k\pi + \frac{\pi}{2}$ 时 , $y' = 1 + 2\cos 2x$. 令 y' = 0, 可 得 $x = k\pi + \frac{\pi}{3}$, 且 当

 $k\pi < x < k\pi + \frac{\pi}{3}$ 时, y' > 0, $\stackrel{\text{def}}{=} k\pi + \frac{\pi}{3} < x < k\pi + \frac{\pi}{2}$ 时, y' < 0.

当 $k\pi + \frac{\pi}{2} < x < k\pi + \pi$ 时,即 $2k\pi + \pi < 2x < 2k\pi + 2\pi$ 时, $y' = 1 - 2\cos 2x$. 令 y' = 0, 可得 $2x = 2k\pi + \pi + \frac{2\pi}{3}$,即 $x = k\pi + \frac{\pi}{2} + \frac{\pi}{3}$,且当 $k\pi + \frac{\pi}{2} < x < k\pi + \frac{\pi}{2} + \frac{\pi}{3}$ 时, y' > 0,当 $k\pi + \frac{\pi}{2} + \frac{\pi}{3} < x < k\pi + \pi$ 时, y' < 0.

综上所述,可知函数的单增区间为 $[k\pi,k\pi+\frac{\pi}{3}]$ $\cup [k\pi+\frac{\pi}{2},k\pi+\frac{\pi}{2}+\frac{\pi}{3}]$,可统一写成 $[\frac{k\pi}{2},\frac{k\pi}{2}+\frac{\pi}{3}](k\in\mathbf{Z})$; 单减区间为 $[k\pi+\frac{\pi}{3},k\pi+\frac{\pi}{2}]$ $\cup [k\pi+\frac{\pi}{2}+\frac{\pi}{3},k\pi+\pi]$,可统一写成 $[\frac{k\pi}{2}+\frac{\pi}{3},\frac{k\pi}{2}+\frac{\pi}{2}](k\in\mathbf{Z})$.

4. 利用函数的单调性证明下列不等式:

(1)
$$\cos x > 1 - \frac{x^2}{2} \quad (x \neq 0);$$

(3)
$$\stackrel{\text{def}}{=} x > 0 \text{ fr}, \quad x - \frac{x^2}{2} < \ln(1+x) < x;$$

(4)
$$\stackrel{\text{\tiny \pm}}{=} x \in (0, \frac{\pi}{2})$$
 $\stackrel{\text{\tiny \pm}}{=} 1$, $2x < \sin x + \tan x$.

解 (1) 令 $f(x) = \cos x - 1 + \frac{x^2}{2}$, 则当 x > 0 时, $f'(x) = x - \sin x > 0$,故 f(x) 单 调增加,所以当 x > 0 时,f(x) > f(0) = 0; 又当 x < 0 时, $f'(x) = x - \sin x < 0$,故 f(x) 单 调 减 少,所 以 当 x < 0 时,f(x) > f(0) = 0,因此当 $x \neq 0$ 时,总有 f(x) > f(0) = 0,即 $\cos x > 1 - \frac{x^2}{2}$.

(2)
$$\diamondsuit f(x) = 1 + x \ln(x + \sqrt{1 + x^2}) - \sqrt{1 + x^2}$$
, $\emptyset \stackrel{\text{def}}{=} x > 0$ \emptyset ,

$$f'(x) = \ln(x + \sqrt{1 + x^2}) + x \frac{1}{\sqrt{1 + x^2}} - \frac{2x}{2\sqrt{1 + x^2}} = \ln(x + \sqrt{1 + x^2}) > 0,$$

故 f(x) 单调增加,又 f(0) = 0,所以当 x > 0 时, f(x) > f(0) = 0,即

$$1 + x \ln(x + \sqrt{1 + x^2}) > \sqrt{1 + x^2}$$
.

(3)
$$\diamondsuit f_1(x) = \ln(1+x) - x + \frac{x^2}{2}, \ f_2(x) = \ln(1+x) - x, \ \text{M} \stackrel{\text{def}}{=} x > 0 \text{ B},$$

$$f_1'(x) = \frac{1}{1+x} - 1 + x = \frac{x^2}{1+x} > 0, \quad f_2'(x) = \frac{1}{1+x} - 1 = \frac{-x}{1+x} < 0,$$

所以当x > 0时, $f_1(x) > f_1(0) = 0$, $f_2(x) < f_2(0) = 0$, 即当x > 0时,

$$x - \frac{x^2}{2} < \ln(1+x) < x.$$

(4)
$$\diamondsuit f(x) = \sin x + \tan x - 2x$$
, $\bigcup f'(x) = \cos x + \sec^2 x - 2$, $\Box \preceq x \in (0, \frac{\pi}{2})$ $\Box d = \sin x + 2 \sec^2 x \tan x = \sin x (2 \sec^3 x - 1) > 0$,

故 f'(x) 在区间 $(0,\frac{\pi}{2})$ 内单调增加,所以当 $x \in (0,\frac{\pi}{2})$ 时, f'(x) > f'(0) = 0,从而 f(x) 在区间 $(0,\frac{\pi}{2})$ 内单调增加,所以当 $x \in (0,\frac{\pi}{2})$ 时, f(x) > f(0) = 0,即 $2x < \sin x + \tan x$.

5. 判别 e^π 和 π^e 的大小.

解 令 $f(x) = x \ln a - a \ln x$, 其中 a 为大于 1 的正常数, 则有

$$f'(x) = \ln a - \frac{a}{x}$$

显然当 $x>a\ge e$ 时,f'(x)>0,故当 $x>a\ge e$ 时,f(x)>f(a)=0,即 $x\ln a>a\ln x$,从而 $a^x>x^a$.

现在令 $a=e, x=\pi$, 上面的不等式仍成立, 即有 $e^{\pi} > \pi^{e}$.

6. 求下列函数的极值:

(1)
$$f(x) = x^3 - 4x^2 - 3x$$
; (2) $f(x)$

(2)
$$f(x) = e^x \cos x, x \in [0, 2\pi];$$

(3)
$$f(x) = 2x + 3\sqrt[3]{x^2}$$
; (4) $f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0, \\ 0, & x = 0; \end{cases}$

(5)
$$f(x) = \frac{1}{x} \ln^2 x;$$
 (6) $f(x) = x^{\frac{2}{3}} e^{-x}.$

解 (1) $f(x) = x^3 - 4x^2 - 3x$, $f'(x) = 3x^3 - 8x - 3 = (x - 3)(3x + 1)$, 驻点为 $x = -\frac{1}{3}$ 及x = 3.

f'(x) > 0, 故函数在 $x = -\frac{1}{3}$ 处取得极大值 $f(-\frac{1}{3}) = \frac{14}{27}$, 在 x = 3 处取得极小值 f(3) = -18.

(2) 当 $x \in [0, 2\pi]$ 时, $f(x) = e^x \cos x$, $f'(x) = e^x (\cos x - \sin x)$, 驻点为 $x_1 = \frac{\pi}{4}$ 及 $x_2 = \frac{5}{4}\pi$.又 $f''(x) = -2e^x \sin x$, $f''(x_1) < 0$, $f''(x_2) > 0$,所以函数在 $x_1 = \frac{\pi}{4}$ 处取得极 大值 $f(\frac{\pi}{4}) = \frac{\sqrt{2}}{2}e^{\frac{\pi}{4}}$,在 $x_2 = \frac{5}{4}\pi$ 处取得极小值 $f(\frac{5}{4}\pi) = -\frac{\sqrt{2}}{2}e^{\frac{5}{4}\pi}$.

(3) $f(x) = 2x + 3\sqrt[3]{x^2}$, $f'(x) = 2 + \frac{2}{\sqrt[3]{x}} = \frac{2}{\sqrt[3]{x}}(\sqrt[3]{x} + 1)$. 令 f'(x) = 0, 可 得 x = -1. 当 x = 0 时,f'(x) 不存在.

当 $x \in (-\infty, -1)$ 时, f'(x) > 0, 当 $x \in (-1, 0)$ 时, f'(x) < 0,当 $x \in (0, +\infty)$ 时, f'(x) > 0,故函数在 x = -1 处取得极大值 f(-1) = 1,在 x = 0 处取得极小值 f(0) = 0.

- (4) 当 $x \neq 0$ 时, $f(x) = e^{-\frac{1}{x^2}} > 0$, 而 f(0) = 0, 由极值的定义知,函数在 x = 0 处取得极小值 f(0) = 0.
 - (5) $f(x) = \frac{1}{x} \ln^2 x$, $f'(x) = \frac{1}{x^2} \ln x (2 \ln x)$, 驻点为 x = 1 及 $x = e^2$.

当 $x \in (0,1)$ 时, f'(x) < 0, 当 $x \in (1,e^2)$ 时, f'(x) > 0, 当 $x \in (e^2,+\infty)$ 时, f'(x) < 0, 故函数在 x = 1 处取得极小值 f(1) = 0,在 $x = e^2$ 处取得极大值 $f(e^2) = 4e^{-2}.$

(6) $f(x) = x^{\frac{2}{3}}e^{-x}$, 易知 f(x) 在 x = 0 处不可导. 令 $f'(x) = x^{-\frac{1}{3}}e^{-x}(\frac{2}{3} - x) = 0$, 可得驻点为 $x = \frac{2}{3}$.

当 $x \in (-\infty,0)$ 时, f'(x) < 0, 当 $x \in (0,\frac{2}{3})$ 时, f'(x) > 0, 当 $x \in (\frac{2}{3},+\infty)$ 时, f'(x) < 0, 故函数在 x = 0 处取得极小值 f(0) = 0,在 $x = \frac{2}{3}$ 处取得极大值 $f(\frac{2}{3}) = (\frac{2}{3})^{\frac{2}{3}} e^{-\frac{2}{3}}.$

7. 若 f(x) 在点 x = a 的某邻域内有定义, 且有

$$\lim_{x \to a} \frac{f(x) - f(a)}{(x - a)^2} = 1,$$

那么, f(x) 在x = a 处是否有极值?若有极值,是极大值还是极小值?

解 依题,由极限的保号性知,存在正数 δ ,当 $x \in U(a,\delta)$ 时,f(x) > f(a),由极值的定义知,函数f(x)在x = a处取得极小值f(a).

8. 证明方程 $x^3 + x - 1 = 0$ 有且仅有一个正实根.

证 令 $f(x) = x^3 + x - 1$,则有 f(0) = -1 < 0,f(1) = 1 > 0,由零点定理知,函数 f(x) 在区间 (0,1) 内至少有一个零点.又 $f'(x) = 3x^2 + 1 > 0$,所以 f(x) 是单调增加的,从而函数 f(x) 有且仅有一个零点(在区间 (0,1) 内),即方程 $x^3 + x - 1 = 0$ 有且仅有一个正实根.

9. 讨论方程 $\ln x = ax (a > 0)$ 有几个实根.

解 令
$$f(x) = \ln x - ax$$
, 则有 $f'(x) = \frac{1}{x} - a$. 令 $f'(x) = 0$, 可得驻点为 $x = \frac{1}{a}$.

当 $x \in (0, \frac{1}{a})$ 时, f'(x) > 0, 当 $x \in (\frac{1}{a}, +\infty)$ 时, f'(x) < 0, 故函数在 $x = \frac{1}{a}$ 处取得极大值 $f(\frac{1}{a}) = \ln \frac{1}{a} - 1 = -\ln a - 1$.

又 $\lim_{x\to 0^+} f(x) = -\infty$, $\lim_{x\to +\infty} f(x) = -\infty$, 所以 $f(\frac{1}{a}) = -\ln a - 1$ 是函数的最大值,即点 $(\frac{1}{a}, -\ln a - 1)$ 为曲线 f(x) 的最高点,因此

当
$$f(\frac{1}{a}) = -\ln a - 1 < 0$$
, 即 $a > e^{-1}$ 时, 方程 $\ln x = ax (a > 0)$ 无实根;

当
$$f(\frac{1}{a}) = -\ln a - 1 = 0$$
, 即 $a = e^{-1}$ 时, 方程 $\ln x = ax (a > 0)$ 有且仅有一个实根;

当
$$f(\frac{1}{a}) = -\ln a - 1 > 0$$
,即 $0 < a < e^{-1}$ 时,方程 $\ln x = ax (a > 0)$ 有两个实根.

10. 函数 f(x) 对于一切实数 x 满足下列方程:

$$xf''(x) + 3x[f'(x)]^2 = 1 - e^{-x}$$
.

若 f(x) 在点 $x = C(C \neq 0)$ 处有极值, 试证它是极小值.

解 依题 f(x) 二阶可导,故当 f(x) 在点 $x = C(C \neq 0)$ 处取得极值时,应有 f'(C) = 0.在已知方程两端令 x = C,可得

$$f''(C) = \frac{1 - e^{-C}}{C}.$$

当 C < 0 时,可得 f''(C) > 0,当 C > 0 时,同样可得 f''(C) > 0,故函数 f(x) 在 $x = C(C \neq 0)$ 处取得极小值.