WEEKLY UPDATE

MEGHAN PENDYALA

February 12th

1. Weekly Progress

1.1. Summarizing Wound Healing

- 1. Vascular response
 - Platelets aggregate at the wound to prevent loss of blood
 - Blood vessels near the wound site constrict or dilate to either prevent blood flow or bring in more white blood cells
- 2. Inflammatory response
 - Neutrophils arrive to phagocytize any bacterial inhibition
 - Monocytes phagocytize any dead tissue near the wound site
- 3. Granulation tissue formation
 - New fibroblasts and blood vessels (angiogenesis) enter the wound
 - New extracellular matrix (ECM) proteins are synthesized and the ECM begins to form
- 4. Contraction of the wound
 - Fibroblasts become more specialized and turn into myofibroblasts
 - The myofibroblasts contains actin filaments, which contract the wound
- 5. Wound remodeling
 - Continued formation of the ECM
 - Long-term process to regain original strength of skin

1.2. Literature Review

• Study: A mathematical model for the capillary endothelial cell-extracellular matrix interactions in wound-healing angiogenesis (Olsen, Sherratt, Maini, Arnold)

- Study: A mathematical model of wound healing and subsequent scarring (Cumming, McElwain, Upton)
- Study: A mathematical model for collagen fibre formation during foetal and adult dermal wound healing (Dale, Sherratt, Maini)
- Study: Monitoring wound healing in a 3D wound model by hyperspectral imaging and efficient clustering (Wahabzada, et. al.)
- Study: Computational Approach To Characterize Causative Factors and Molecular Indicators of Chronic Wound Inflammation (Nagaraja, et. al.)

2. To-Do

Ш	How fibroblast proliferation	occurs	
	Number of fibroblasts/ideal	density	of fibroblasts
	Density vs healing time		