DATEN, DATENTYPEN EINGABE, AUSGABE

#Grundlagen

VARIABLEN

- können ihren Wert ändern (sind variabel)
 Spezialfall: Konstanten
- werden als Platzhalter verwendet
- können Informationen speichern
- haben einen Namen, einen Wert und einen Typ
- haben einen Gültigkeitsbereich

IDEE

In Python:

ÜBERSICHT DATENTYPEN (UV)

- Zahlen
 - Ganzzahlig (Integer)
 - Dezimalbrüche (Float)
- Sequentielle Datentypen
 - Text (Strings)
 - Listen
 - In einer Liste kann eine Folge beliebiger Objekte gespeichert werden, zum Beispiel Strings, Integers, Float-Zahlen aber auch Listen und Tupel selbst

Durda

DATENTYP ZAHL

Allgemein:

Name_der_Variable=Wert

Hinweis:

= Zuweisungsoperator (kein Gleichheitszeichen)

BERECHNUNGEN

Operation	Zeichen	Beispiel		
Addition	+	3+5		
Subtraktion	-	3-5		
Division	1	3/5		
Multiplikation	*	3*5		
Potenzieren	**	3**5		
Ganzzahlige Division	//	16//3		
Rest der ganzzahligen Division (modulo)	%	16%3		

EINFACHE EINGABE

- Eingabe mittels input()
 - input() liefert immer Zeichenkette
 - gegebenenfalls muss eine Typumwandlung in das gewünschte Datenformat durchgeführt werden
 - int() Zeichenkette nach Integer
 - float() String nach Gleitkommazahl
 - str() –Zahl nach Zeichenkette

```
eingabe=input("Deine Zahl?")
eingabe2=int(input("Deine Zahl?"))
eingabe3=float(input("Deine Zahl?"))
```

EINFACHE AUSGABE

Ausgabe mittels print()

```
print(23)
print("Hallo")
eingabe=input("Dein Name?")
print("Hallo", eingabe)
```

AUFGABE I - PROGRAMM

 Schreibe ein Programm, das zwei Zahlen einliest und die Summe sowie das Produkt ausgibt. Formatiere die Ausgabe sinnvoll:
 Das Produkt von ... und ... ist ...

```
#Das ist ein Kommentar
#Eingabe
zahl1=int(input("Zahl 1?"))
zahl2=int(input("Zahl 2?"))
#Verarbeitung
ergebnis=zahl1 + zahl2
#Ausgabe
print("Die Summe von",zahl1, "und ", zahl2, "ist: ", ergebnis)
```

Durda 21.03.2022

ZEICHENKETTEN

- Zeichenketten sind Folge gleichartiger Elemente (Zeichen)
- Zugriff auf einzelne Zeichen:

```
zeichenkette="Hallo Kurs"
```

```
print(zeichenkette[0])
print(zeichenkette[6])
print(zeichenkette[-1])
```

0	1	2	3	4	5	6	7	8	9
Н	a	I	I	0		K	u	r	S
-10	-9	-8	-7	-6	-5	-4	-3	-2	-1

SLICING

Welche Auswirkung hat der folgende Zugriff?

```
zeichenkette[1:3]
zeichenkette[4:8]
zeichenkette[:7]
zeichenkette[3:]
```

Ausgabe von Teilzeichenketten von/ab/bis bestimmten Index

LÄNGEN, VERKETTUNG

Länge mittels len()

```
print(len(zeichenkette))
```

Verkettung mit Operator +

```
vorname="Thomas"
nachname="Müller"

print(vorname + nachname)
print(vorname + " "+nachname)
```

LISTEN

- Sequenz gleichartiger Objekte
 - Liste von Zahlen
 - Liste von Zeichen (Zeichenketten)
 - Liste von Listen

BEISPIELE

```
liste1=[1,2,3,4,5]
liste2=["grün", "rot", "blau"]
liste3=[[1], [1,2], [1,2,3]]
print(liste1[0])
print(liste2[1])
print(liste3[2])
rot
[1, 2, 3]
```

LISTENOPERATIONEN

- . → Handout
- Aufgabe:
 - Lesen Sie 5 Zahlen ein und speichern Sie die Werte in einer Liste
 - Berechnen Sie das arithmetische Mittel der Werte und geben Sie die Liste und das arithmetische Mittel aus.