CLAIMS

1	1. A method of creating an electrically active pattern, the method comprising the steps
2	of:
3	a. providing a colloidal suspension of nanoparticles, the nanoparticles exhibiting
4	a desired electrical characteristic and being surrounded by an insulative shell;
5	b. applying the suspension to a substrate, the applied suspension being
6	substantially insulative owing to the nanoparticle shells; and
7	c. exposing the applied suspension to energy in a desired pattern, the energy
8	removing the shells from the nanoparticles and fusing the nanoparticles
9	together, thereby causing exposed portions of the applied suspension to
10	exhibit the electrical characteristic.
11	
1	2. The method of claim 1 further comprising the step of drying areas of the applied
2	suspension that have not received energy, the dried areas remaining insulative.
3	
1	3. The method of claim 1 wherein the suspension is applied to the substrate as a film.
2	
1	4. The method of claim 3 wherein the applied suspension is spin-coated to produce a
2	uniform film.
3	

- 1 5. The method of claim 3 further comprising the step of applying a second suspension
- of nanoparticles over the film and exposing the applied second suspension to energy in
- a desired pattern, the energy removing the shells from the nanoparticles of the second
- 4 suspension and fusing them together without damaging the underlying film.

5

- 1 6. The method of claim 5 wherein the nanoparticles of the second suspension have an
- 2 electrical characteristic different from the nanoparticles of the underlying film.

3

- 1 7. The method of claim 5 further comprising repeating the application and exposing
- 2 steps to form a plurality of additional contiguous layers.

3

- 8. The method of claim 1 wherein the suspension is applied to the substrate in a pattern
- 2 by displacement.

3

- 9. The method of claim 8 wherein the displacement is performed so as to apply the
- 2 suspension to the substrate in a substantially planar pattern.

3

- 1 10. The method of claim 9 further comprising the steps of again performing the
- 2 displacement so as to apply a second suspension onto the previously applied pattern
- and exposing the applied second suspension to energy in a desired pattern, the energy
- 4 removing the shells from the nanoparticles of the second suspension and fusing them
- 5 together without affecting the underlying pattern.

6

- 1 11. The method of claim 8 wherein the displacement is performed so as to produce a
- 2 first layer with projecting features; a second layer over the first layer, the first-layer
- 3 projections penetrating the second layer; and a third layer over the second layer in
- 4 contact with the first-layer projections.

5

- 1 12. The method of claim 8 wherein the displacement is performed so as to produce a
- 2 first layer; a second layer over the first layer, the second layer having gaps therein; and
- a third layer over the second layer in contact with the first layer through the second-
- 4 layer gaps.

5

- 1 13. The method of claim 8 wherein the displacement is performed with a plurality of
- 2 suspensions different materials to form a patterned layer thereof on the substrate.

3

- 1 14. The method of claim 1 wherein the shells have a surface charge and the substrate
- 2 has a complementary charge in a pattern thereover, the applying step comprising
- 3 spreading the particles over the substrate and removing particles not immobilized by
- 4 the substrate charge.

5

- 1 15. The method of claim 14 wherein the applying and removing steps produce a new
- 2 layer, and further comprising the step of applying a surface charge to the new layer and
- repeating the applying, exposing, and removing steps with a new colloidal suspension
- 4 of nanoparticles.

5

1	16. The method of claim 1 wherein the nanoparticles are conductive.
2	
1	17. The method of claim 1 wherein the nanoparticles are semiconductive.
2	
1	18. The method of claim 1 wherein the energy is in the form of electromagnetic
2	radiation.
3	
1	19. The method of claim 18 wherein the energy is provided by a laser.
2	
1	20. The method of claim 18 wherein the energy is provided by exposing the applied
2	suspension to a radiation source through a patterned photomask.
3	
1	21. The method of claim 1 wherein the energy is thermal.
2	
1	22. The method of claim 1 wherein the nanoparticles consist of a chemical compound,
2	the particles having a melting point lower than that of the compound in bulk.
3	