AbcRanger: a fast and scalable random forest library for ABC model choice and parameter estimation

F.-D. Collin ² A. Estoup ¹ J.-M. Marin ² L. Raynal ²

¹CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ. Montpellier ²Université de Montpellier, CNRS, IMAG UMR 5149

First building block: ABC simulations

Observed data 4 Based on a distance **3** Compute summary $\rho(*,*)$ and a tolerance statistic μ_i for each ε , decide whether simulation the summary statistic $\rho(\mu_i,\mu) \stackrel{?}{\leq} \varepsilon$ value is close enough to the corresponding **1** Compute summary value on obseved data statistic μ from observed data Reference Table Prior distribution of parameters summary stats. model parameter θ 2 Given a certain model, perform n simulations, each **6** We store all selected with a parameter drawn simulations (parameters from the prior distribution and summary statistics) in a reference table. Simulated data

Figure 1. ABC details

Given an observed data, the basic idea of ABC (Approximate Bayesian Computations) is to approximate the likelihood of a parametrized model with selected simulations, by comparing the observed data and simulated ones via computed summary statistics. The table of summary statistics for simulated data is called the reference table.

ABC posterior methodologies

Model choice: Simulate data for several models and choose the best model to fit our data Parameter estimation: Simulate data for one model and infer one or several parameters for this model given the observed data

A sensible workflow is to first choose a model and then infer its parameters.

1 Compute simulations with several models, and the reference table with model-indexed lines using a simulator (DIYAC, PyABC etc.)

Figure 2. ABC workflow with AbcRanger

Challenges of ABC

in the context of population genetics recent advances

Number of simulated data: could be > 100 000

Number of summary statistics: could range from several hundred to tens of thousands (scenario with several populations and combinatory "explosion"): how to select the meaningful ones?

Classical Methods for ABC (k-nn and local methods) doesn't cope very well with this situation.

Our solution

[3] and [4] proposed a novel approach, relying on Random Forests to provide both model choice and parameter estimation methodologies

Second building block: Random Forests

CART

Random Forests are based on a CART (Classification and Regression Trees) algorithm.

Figure 3. An example of CART and the associated partition of the two dimensional predictor space. Each splitting condition takes the form $X_i \leq s$ input data, either classes and the prediction at a leaf is denoted \hat{y}_{ℓ} .

A CART is a machine learning algorithm whose principle is to partition the predictor space into disjoint subspaces, in an iterative manner, and each one is assigned a prediction value which will be used for test data falling in this subspace.

Once the partitioning is done, we have a binary tree structure which could predict outcomes from an or continuous values.

Random Forests

Figure 4. Random Forest

Random Forests [1] are a three pronged ex-

tension of CART:

Ensemble method Training a set of CART (not just one), and getting the majority vote (resp. mean) for classification (resp. regression)

Bootstrapping Training data is random sampled (with replacement) for each tree

Feature bagging At each node of a growing tree, find the best split on a random subset of the features

Advantages in an ABC setting:

- robust to noise
- (almost) free variable importance
- free (out-of-bag) cross-validation procedure
- easy parallelization
- good scaling properties on number of samples and on number of features (summary statistics)
- classifier and regressor

Computational challenges with ABC/Random Forests

With 100 000 lines and more than 10 000 summary statistics, each tree could reach over 1 gigabyte of memory size. Typically we need 500 or 1000 trees for good prediction performance, so, even with state of the art RF packages like [5], memory constraints are preventing completion of the training.

A new implementation of Random Forest for ABC

Since ABC procedures only use trained Random Forests on a known set of observations, we have altered the random forest training computation by using only a subset of in-memory trees at a time and accumulating the required outcomes (predictions and statistics)

Figure 5. Window of growing trees

References

- [1] L. Breiman. Random forests. Machine Learning, 45(1):5-32, 2001.
- [2] L. Breiman, J. Friedman, C. J. Stone, and R. A. Olshen. Classification and Regression Trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, 1984.
- Cornuet, Mathieu Gautier, and Christian P Robert. Reliable abc model choice via random forests. Bioinformatics,
- 32(6):859-866, 2015.
- [4] Louis Raynal, Jean-Michel Marin, Pierre Pudlo, Mathieu Ribatet, Christian P Robert, and Arnaud Estoup. ABC random forests for Bayesian parameter inference. Bioinformate ics, 35(10):1720-1728, 10 2018.
- [3] Pierre Pudlo, Jean-Michel Marin, Arnaud Estoup, Jean-Marie [5] Marvin N Wright and Andreas Ziegler. Ranger: a fast implementation of random forests for high dimensional data in c++ and r. arXiv preprint arXiv:1508.04409, 2015.