ریاضی عمومی ۲

ارائه دهنده: دکتر داریوش کیانی

دانشکدهٔ ریاضی و علوم کامپیوتر دانشگاه صنعتی امیرکبیر

اطرح درس

- ۹ کاربردهای مشتقات جزئی
 - ۱۰ انتگرال دوگانه
 - 🚺 🚺 انتگرال سهگانه
- 🚻 انتگرال روی خم (یا انتگرال خط)
 - ۱۳ انتگرال روی سطح
 - 🚻 قضایای دیورژانس و استوکس
 - ۱۵ مقدمهای بر جبرخطی

- \mathbb{R}^3 یادآوری هندسه تحلیلی در \mathbb{R}^2 و \mathbb{R}^3
 - ۲ توابع برداری و خمها (منحنیها)
 - ت معرفی توابع چندمتغیره
- مات جزئی مشتق پذیری میشتق چهتاگ

 - 🖊 توابع ضمني

مشتقات جزئی توابع چندمتغیره-بخش دوم

توجه

فرض کنید z=f(x,y,s,t) یک تابع چندمتغیره باشد. در این صورت، نمادگذاری زیر نیز استفاده می شود:

$$\left(\frac{\partial z}{\partial t}\right)_{x,y,s} = \frac{\partial}{\partial t}f(x,y,s,t) = f_4(x,y,s,t)$$

در این صورت، گاهی میگوییم که متغیر t از متغیرهای y ، y و z مستقل است.

قرارداد

از این پس، وقتی صحبت از مشتقات جزئی یک تابع مثل $f:D\subseteq\mathbb{R}^n\to\mathbb{R}$ در نقاطی از دامنهاش میشود، فقط مشتقات جزئی f در نقاطی از نقاط یادشده مدنظر است که در درون f قرار میگیرند.

قرارداد

فرض کنید
$$T:I\subseteq\mathbb{R} o \mathbb{R}^n$$
 و $T:I\subseteq\mathbb{R} o \mathbb{R}^n$ اگر $T:I:I:\mathbb{R} o \mathbb{R}$ اگر $T:I:I:\mathbb{R} o \mathbb{R}$ فرض کنید $T:I:I:\mathbb{R} o \mathbb{R}$ و $T:I:I:\mathbb{R} o \mathbb{R}$ انگاه تابع زیر را داریم:

$$\widetilde{f}: I \subseteq \mathbb{R} \to \mathbb{R}, \quad \widetilde{f}(t) = f(\gamma(t)) = f(x_1(t), \dots, x_n(t))$$

در این صورت، به منظور سادگی، تابع \widetilde{f} را مجدداً با f نمایش میدهیم؛ یعنی داریم:

$$z(t) = f(t) = f(x_1(t), \dots, x_n(t))$$

قرار داد

در حالت کلی، فرض کنید $z=f(x_1,\ldots,x_n)$ و $f:D\subseteq\mathbb{R}^n o z$. اگر

$$F: E \subseteq \mathbb{R}^m \to \mathbb{R}^n, \ F(t_1, \dots, t_m) = (x_1(t_1, \dots, t_m), \dots, x_n(t_1, \dots, t_m))$$

آنگاه تابع $\mathbb{R} \to \mathbb{R}$ را بهصورت زیر داریم:

$$\widetilde{f}(t_1, \dots, t_m) = f(F(t_1, \dots, t_m)) = f(x_1(t_1, \dots, t_m), \dots, x_n(t_1, \dots, t_m))$$

در این صورت، به منظور سادگی، تابع \tilde{f} را مجدداً با f نمایش میدهیم؛ یعنی داریم:

$$z(t_1,\ldots,t_m) = f(t_1,\ldots,t_m) = f(x_1(t_1,\ldots,t_m),\ldots,x_n(t_1,\ldots,t_m))$$

Kiani-Saeedi Madani-Saki

تذكر

اگر $z=f(x_1,\ldots,x_n)$ و بهازای هر $1\leq i\leq n$ و بهازای هر را باشد، آنگاه اگر از متغیر

میتوان از نماد $\frac{dz}{dt}$ استفاده کرد. $\frac{\partial z}{\partial t}$

قاعدهٔ زنجیرهای

حالتی از قاعدهٔ زنجیرهای: فرض کنید $\mathbb{R}^2 o \mathbb{R}^2$ تابعی با مشتقات جزئی اول پیوسته باشد و z=f(x,y) همچنین فرض کنید که x=x(t) و y=y(t) روی z=zمشتق پذیر باشند. اگر همواره (x(t),y(t)) در درون D قرار بگیرد، آنگاه روی I داریم:

$$\frac{dz}{dt} = \frac{\partial z}{\partial x}\frac{dx}{dt} + \frac{\partial z}{\partial y}\frac{dy}{dt}$$

یعنی بهازای هر $t_0 \in I$ ، داریم:

$$\frac{dz}{dt}(t_0) = \frac{\partial z}{\partial x}(x(t_0), y(t_0))\frac{dx}{dt}(t_0) + \frac{\partial z}{\partial y}(x(t_0), y(t_0))\frac{dy}{dt}(t_0)$$

توجه کنید که در تساویهای بالا، $\frac{\partial z}{\partial x}$ و $\frac{\partial z}{\partial v}$ را میتوان بهترتیب با $\frac{\partial f}{\partial x}$ و را کزین کرد؛ زیرا مطلب مشابهی در مورد حالتها یا صورتبندیهای دیگر قاعدهٔ زنجیرهای که در z=f(x,y)ادامه مي آيند نيز صادق است.

دیاگرام درختی قاعدهٔ زنجیرهای اسلاید قبل:

$$rac{dz}{dt}=$$
 ضرب مسیرهای قرمز z حاصل ضرب مسیرهای آبی $rac{\partial z}{\partial t} rac{dx}{dt} + rac{\partial z}{\partial y} rac{dy}{dt}$

در حالتی کلی تر، فرض کنید که $\mathbb{R}^n \to \mathbb{R}^n$ دارای مشتقات جزئی اول پیوسته باشد و $z=f(x_1,\dots,x_n)$ در جازای هر $z=f(x_1,\dots,x_n)$ در درون $z=f(x_1,\dots,x_n)$

$$\frac{dz}{dt} = \frac{\partial z}{\partial x_1} \frac{dx_1}{dt} + \dots + \frac{\partial z}{\partial x_n} \frac{dx_n}{dt}$$

یعنی بهازای هر $I=(x_1(t_0),\ldots,x_n(t_0))$ با فرض $t_0\in I$ داریم:

$$\frac{dz}{dt}(t_0) = \frac{\partial z}{\partial x_1}(P)\frac{dx_1}{dt}(t_0) + \dots + \frac{\partial z}{\partial x_n}(P)\frac{dx_n}{dt}(t_0)$$

ry / √ Kiani-Saeedi Madani-Saki

فرض کنید $\mathbb{R}^4 \to \mathbb{R}$ تابعی بر حسب متغیرهای x,y,z,t و با مشتقات جزئی اول پیوسته باشد. به علاوه، فرض کنید که هر یک از توابع x,y,z تابعی از t هستند. در این صورت، مطلوب است $\frac{dT}{dt}$.

پاسخ: با توجه به اینکه T(t) = T(x(t), y(t), z(t), t)، داریم:

$$\frac{dT}{dt} = \frac{\partial T}{\partial x}\frac{dx}{dt} + \frac{\partial T}{\partial y}\frac{dy}{dt} + \frac{\partial T}{\partial z}\frac{dz}{dt} + \frac{\partial T}{\partial t}$$

در مثال قبل، فرض كنيد:

$$T(x, y, z, t) = x^2 + y^2 + z + t, \quad x(t) = y(t) = t, \quad z(t) = t^2$$

در این صورت، بنابر اسلاید قبل، داریم:

$$\frac{dT}{dt} = \frac{\partial T}{\partial x}\frac{dx}{dt} + \frac{\partial T}{\partial y}\frac{dy}{dt} + \frac{\partial T}{\partial z}\frac{dz}{dt} + \frac{\partial T}{\partial t}$$
$$= (2x)(1) + (2y)(1) + (1)(2t) + 1$$
$$= 2t + 2t + 2t + 1 = 6t + 1$$

البته، ميتوانيم مستقيماً به جاي (x(t), x(t), x(t)) و (x(t), x(t), x(t), x(t)) در ضابطهٔ T جایگذاری کنیم. در این صورت، داریم:

$$T(t)=(x(t))^2+(y(t))^2+z(t)+t=t^2+t^2+t^2+t=3t^2+t$$
بنابراین، داریم $\frac{dT}{dt}=6t+1$ بنابراین، داریم

TV / 1T Kiani-Saeedi Madani-Saki

گرادیان یک تابع چندمتغیره

فرض کنید مشتقات جزئی اول $\mathbb{R}^n o \mathbb{R}$ او جود دارند. گرادیان f با نماد ∇f تابعی بهصورت D است، و $\nabla f:E\subseteq \mathbb{R}^n o \mathbb{R}^n$ در هر تابعی بهصورت زیر تعریف می شود: $(a_1,\dots,a_n)\in E$

$$\nabla f(a_1, \dots, a_n) = \left(\frac{\partial}{\partial x_1} f(a_1, \dots, a_n), \dots, \frac{\partial}{\partial x_n} f(a_1, \dots, a_n)\right)$$

فرض کنید $\mathbb{R}^3 \to \mathbb{R}$ به صورت $f: \mathbb{R}^3 \to \mathbb{R}$ تعریف می شود. در این صورت، داریم:

$$\nabla f(1,2,3) = \left(\frac{\partial}{\partial x} f(1,2,3), \frac{\partial}{\partial y} f(1,2,3), \frac{\partial}{\partial z} f(1,2,3)\right)$$
$$= (yz^2, xz^2, 2xyz)_{(x,y,z)=(1,2,3)} = (18,9,12)$$

TV / 10

صورتبندی دیگری از حالت اول قاعدهٔ زنجیرهای

فرض کنید که $\mathbb{R}^n \to \mathbb{R}^n$ وارای مشتقات جزئی اول پیوسته باشد و $I \in D \subseteq \mathbb{R}^n \to \mathbb{R}^n$ روی بازهٔ $I \in I$ مشتقپذیر $I \in I \in \mathbb{R}^n$ روی بازهٔ $I \in I \in \mathbb{R}^n$ مشتقپذیر باشند و همواره $I \subseteq I \in \mathbb{R}^n$ در درون $I \in I \in \mathbb{R}^n$ قرار گیرد، آنگاه با فرض $I \subseteq I \in I$ داریم: که $I \subseteq I$ روی $I \in I$ داریم:

$$\frac{dz}{dt} = \frac{\partial z}{\partial x_1} \frac{dx_1}{dt} + \dots + \frac{\partial z}{\partial x_n} \frac{dx_n}{dt}$$

$$= \left(\frac{\partial z}{\partial x_1}, \dots, \frac{\partial z}{\partial x_n}\right) \cdot \left(\frac{dx_1}{dt}, \dots, \frac{dx_n}{dt}\right)$$

$$= \nabla z \cdot \frac{d\gamma}{dt}$$

یعنی بهازای هر $t_0 \in I$ ، داریم:

$$\frac{dz}{dt}(t_0) = \nabla z(x_1(t_0), \dots, x_n(t_0)) \cdot \frac{d\gamma}{dt}(t_0).$$

روی E داریم:

حالت دیگری از قاعدهٔ زنجیرهای

z=f(x,y) فرض کنید $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ تابعی با مشتقات جزئی اول پیوسته باشد و $x,y:E\subseteq\mathbb{R}^2\to\mathbb{R}$ همچنین، فرض کنید که $x,y:E\subseteq\mathbb{R}^2\to\mathbb{R}$ نیز توابعی دارای مشتقات جزئی اول باشند و $x,y:E\subseteq\mathbb{R}^2\to\mathbb{R}$ و $x\in x$ و $x\in x$ اگر همواره $x\in x$ همواره $x\in x$ و رون $x\in x$

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial t} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial t}$$

یعنی بهازای هر $E \in (x(s_0,t_0),y(s_0,t_0))$ ، با فرض $P = (x(s_0,t_0),y(s_0,t_0))$ داریم:

$$\frac{\partial z}{\partial s}(s_0, t_0) = \frac{\partial z}{\partial x}(P)\frac{\partial x}{\partial s}(s_0, t_0) + \frac{\partial z}{\partial y}(P)\frac{\partial y}{\partial s}(s_0, t_0)$$
$$\frac{\partial z}{\partial t}(s_0, t_0) = \frac{\partial z}{\partial x}(P)\frac{\partial x}{\partial t}(s_0, t_0) + \frac{\partial z}{\partial y}(P)\frac{\partial y}{\partial t}(s_0, t_0)$$

دیاگرام درختی حالت دوم قاعدهٔ زنجیرهای:

دیاگرام درختی حالت دوم قاعدهٔ زنجیرهای:

$$rac{\partial z}{\partial t} =$$
حاصل ضرب مسیرهای نارنجی $+$ حاصل ضرب مسیرهای نارنجی $+$ $\frac{\partial z}{\partial x} rac{\partial y}{\partial t}$ $+$ $\frac{\partial z}{\partial y} rac{\partial y}{\partial t}$

در حالت کلی، فرض کنید $\mathbb{R}^n o \mathbb{R}^n$ تابعی با مشتقات جزئی اول پیوسته باشد و $i \leq i \leq n$ همچنين، فرض کنيد که بهازای هر $z = f(x_1, \dots, x_n)$ $x_i = x_i(t_1, \dots, t_m)$ نيز تابعي داراي مشتقات جزئي اول باشد و $x_i : E \subseteq \mathbb{R}^m o \mathbb{R}$ E اگر همواره $(x_1(t_1,\ldots,t_m),\ldots,x_n(t_1,\ldots,t_m))$ در درون D قرار بگیرد، آنگاه روی داريم:

$$\frac{\partial z}{\partial t_1} = \frac{\partial z}{\partial x_1} \frac{\partial x_1}{\partial t_1} + \dots + \frac{\partial z}{\partial x_n} \frac{\partial x_n}{\partial t_1}$$

$$\vdots$$

$$\frac{\partial z}{\partial t_m} = \frac{\partial z}{\partial x_1} \frac{\partial x_1}{\partial t_m} + \dots + \frac{\partial z}{\partial x_n} \frac{\partial x_n}{\partial t_m}$$

Kiani-Saeedi Madani-Saki

بنابراین، میتوان دستگاه قبل را بهصورت ماتریسی زیر نوشت:

$$\underbrace{\begin{bmatrix} \frac{\partial z}{\partial t_1} \\ \vdots \\ \frac{\partial z}{\partial t_m} \end{bmatrix}}_{m \times 1} = \underbrace{\begin{bmatrix} \frac{\partial x_1}{\partial t_1} & \dots & \frac{\partial x_n}{\partial t_1} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_1}{\partial t_m} & \dots & \frac{\partial x_n}{\partial t_m} \end{bmatrix}}_{m \times n} \underbrace{\begin{bmatrix} \frac{\partial z}{\partial x_1} \\ \vdots \\ \frac{\partial z}{\partial x_n} \end{bmatrix}}_{n \times 1}$$

با ترانهاده گرفتن از دو طرف تساوی بالا، معادلاً داریم:

$$\underbrace{\left[\begin{array}{ccc} \frac{\partial z}{\partial t_1} & \cdots & \frac{\partial z}{\partial t_m} \end{array}\right]}_{1 \times m} = \underbrace{\left[\begin{array}{ccc} \frac{\partial z}{\partial x_1} & \cdots & \frac{\partial z}{\partial x_n} \end{array}\right]}_{1 \times n} \underbrace{\left[\begin{array}{ccc} \frac{\partial x_1}{\partial t_1} & \cdots & \frac{\partial x_1}{\partial t_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial x_n}{\partial t_1} & \cdots & \frac{\partial x_n}{\partial t_m} \end{array}\right]}_{n \times m}$$

TV / T1

، فرض کنید $G:\mathbb{R}^3 o X$ با مشتقات جزئی پیوسته و با متغیرهای x,y,z باشد

$$x(u, v) = uv$$
, $y(u, v) = u^2 + v$, $z(u, v) = u + v^2$

$$\frac{\partial G}{\partial x}(1,2,2)=3,\quad \frac{\partial G}{\partial y}(1,2,2)=4,\quad \frac{\partial G}{\partial z}(1,2,2)=5$$
 حال، اگر

آنگاه $\frac{\partial G}{\partial u}$ بهازای (1,1)=(u,v)=(1,1) برابر با کدام گزینه است؟

- 16 ٣
- 17 4

بنابراین، اگر
$$P = (x(1,1),y(1,1),z(1,1)) = (1,2,2)$$
 آنگاه داریم:

$$\begin{split} \frac{\partial G}{\partial u}(1,1) &= \frac{\partial G}{\partial x}(P)\frac{\partial x}{\partial u}(1,1) + \frac{\partial G}{\partial y}(P)\frac{\partial y}{\partial u}(1,1) + \frac{\partial G}{\partial z}(P)\frac{\partial z}{\partial u}(1,1) \\ &= (3(v) + 4(2u) + 5(1))_{(u,v)=(1,1)} = 16 \end{split}$$

پس گزینهٔ ۳ درست است.

توابع همگن

تابع $\mathbb{R} \to \mathbb{R}$ را بهطور مثبت همگن از درجهٔ k گوییم، هرگاه بهازای هر $f:D\subseteq \mathbb{R}^n \to \mathbb{R}$ ر درجهٔ k گوییم، هر $f(tx_1,\ldots,tx_n)=t^kf(x_1,\ldots,x_n)$ نتىجە گرفت كە:

$$f(tx_1,\ldots,tx_n)=t^k f(x_1,\ldots,x_n)$$

TY / YA Kiani-Saeedi Madani-Saki

است؛ زیرا: $f(x,y) = x^2 + xy - y^2$ تابع $x^2 + xy - y^2$ بهطور مثبت همگن از درجهٔ $x^2 + y^2 + y^2$

$$t > 0, (x, y) \in \mathbb{R}^2 \implies$$

 $f(tx, ty) = (tx)^2 + (tx)(ty) - (ty)^2$
 $= t^2(x^2 + xy - y^2) = t^2 f(x, y)$

است؛ زیرا: $f(x,y) = \sqrt{x^2 - y^2}$ تابع تابع تابع $f(x,y) = \sqrt{x^2 - y^2}$

$$t > 0, (x, y) \in D_f \implies$$

 $f(tx, ty) = \sqrt{(tx)^2 - (ty)^2} = t\sqrt{x^2 - y^2} = tf(x, y)$

است؛ زيرا: $f(x,y)=rac{2xy}{x^2+y^2}$ تابع $f(x,y)=rac{2xy}{x^2+y^2}$ به طور مثبت همگن از درجهٔ 0

$$t > 0, (x, y) \in \mathbb{R}^2 \setminus \{(0, 0)\} \implies$$

$$f(tx, ty) = \frac{2(tx)(ty)}{(tx)^2 + (ty)^2} = \frac{2xy}{x^2 + y^2} = f(x, y)$$

است؛ زيرا: $f(x,y,z)=rac{x-y+5z}{yz-z^2}$ تابع

$$t > 0, (x, y, z) \in D_f \Longrightarrow$$

$$f(tx, ty, tz) = \frac{tx - ty + 5tz}{(ty)(tz) - (tz)^2} = \frac{1}{t} \frac{x - y + 5z}{yz - z^2} = t^{-1} f(x, y, z)$$

: نیرا: $f(x,y) = x^2 + y$ تابع y

$$t > 0, (x,y) \in \mathbb{R}^2 \implies$$

 $f(tx,ty) = (tx)^2 + (ty) = t(tx+y) \implies f(t(1,1)) = t(t+1)$

با برهان خلف فرض کنید که تابع f به طور مثبت همگن از درجهٔ k است. آنگاه داریم با برهان خلف فرض کنید که $f(t(1,1))=t^k$ اما در این صورت، با جایگذاری $t(t+1)=t^k$ به تناقض میرسیم. t=t

تابع $\sqrt{2}$ است؛ زیرا: $f(x,y)=x^{\sqrt{2}}+y^{\sqrt{2}}$ است؛ زیرا:

$$t > 0, (x, y) \in D_f \implies$$

 $f(tx, ty) = (tx)^{\sqrt{2}} + (ty)^{\sqrt{2}} = t^{\sqrt{2}} \left(x^{\sqrt{2}} + y^{\sqrt{2}} \right) = t^{\sqrt{2}} f(x, y)$

قضية اويلر

فرض کنید $P=(a_1,\ldots,a_n)\in D$ تابعی با مشتقات جزئی اول پیوسته و بهطور مثبت همگن از درجهٔ k باشد. بهازای هر نقطهٔ درونی $P=(a_1,\ldots,a_n)\in D$ داریم:

$$\sum_{i=1}^{n} a_i f_i(a_1, \dots, a_n) = k f(a_1, \dots, a_n)$$

اثبات: فرض کنید $P=(a_1,\dots,a_n)\in D$ یک نقطهٔ درونی است. در این صورت، تعریف میکنیم:

$$g(t) = f(ta_1, \dots, ta_n) = t^k f(a_1, \dots, a_n), \quad t > 0$$

بنابراین، از یکسو $g'(t)=kt^{k-1}f(a_1,\dots,a_n)$ از سویی دیگر، اگر بهازای هر $g(t)=f(x_1(t),\dots,x_n(t))$ ، آنگاه $1\leq i\leq n$

لذا بنابر قاعدهٔ زنجیرهای داریم:

ر قاعدهٔ زنجیرهای داریم:
$$g'(t) = \sum_{i=1}^n x_i'(t) f_i(x_1(t), \dots, x_n(t)) = \sum_{i=1}^n a_i f_i(ta_1, \dots, ta_n)$$
: داریم:

$$g'(t) = kt^{k-1}f(a_1, \dots, a_n) = \sum_{i=1}^n a_i f_i(ta_1, \dots, ta_n)$$

حال، با قراردادن t=1، حكم اثبات مىشود.

فرض كنيد

$$f(x, y, z) = \sin\left(\cos\left(e^{\frac{x^8 + y^8 + x^4 y^4}{z^8}}\right)\right).$$

در این صورت، مقدار $xf_1(x,y,z) + yf_2(x,y,z) + zf_3(x,y,z)$ را محاسبه کنید.

WV / W1

پاسخ: میدانیم f به طور مثبت همگن از درجهٔ 0 است و مشتقات جزئی اول پیوسته دارد و لذا بنابر قضیهٔ اویلر داریم:

$$xf_1(x, y, z) + yf_2(x, y, z) + zf_3(x, y, z) = 0$$

TV / TT

مثالهاي تكميلي

تاکنون مثالهای مفهومی و کاربردی مختلفی را از این مبحث دیدیم. در ادامه، به مثالهای بیشتری از این مبحث توجه فرمایید. برای درک بهتر، ابتدا به مسائل فکر کنید و سعی کنید که آنها را حل بفرمایید. سپس پاسخها را با دقت مطالعه و بررسی نمایید.

TV / TT Kiani-Saeedi Madani-Saki

فرض کنید تابع $T:\mathbb{R}^2 o \mathbb{R}$ به به به ورت زیر تعریف شده است. مقدار $\nabla f(0,0)$ برابر با کدام گزینه است؟

$$f(x,y) = \begin{cases} x + y + \frac{xy}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$

- (0,0)
- (1,1)
- (2,2)
- (3,3) §

$$\nabla f(0,0) = (f_1(0,0), f_2(0,0))$$

در حالي که:

$$f_1(0,0) = \lim_{h \to 0} \frac{f(h,0) - f(0,0)}{h} = \lim_{h \to 0} \frac{(h+0+0) - 0}{h} = 1$$
 $f_2(0,0) = \lim_{h \to 0} \frac{f(0,h) - f(0,0)}{h} = \lim_{h \to 0} \frac{(0+h+0) - 0}{h} = 1$
بنابراین، داریم: $\nabla f(0,0) = (1,1)$

$$\nabla f(0,0) = (1,1)$$

و از این رو، گزینهٔ ۲ درست است.

فرض كنيد

$$f(x, y, z) = \sqrt[4]{\frac{x^8 + y^8 + z^8}{yz}} \sin\left(\frac{x}{y}\right) \cos\left(\frac{x}{z}\right).$$

در این صورت، مقدار $\frac{\pi}{4}f_1\left(\frac{\pi}{4},1,1\right)+f_2\left(\frac{\pi}{4},1,1\right)+f_3\left(\frac{\pi}{4},1,1\right)$ را محاسبه کنید.

پاسخ: میدانیم f به طور مثبت همگن از درجهٔ $\frac{3}{2}$ است و مشتقات جزئی اول پیوسته دارد. لذا با فرض $(a_1,a_2,a_3)=\left(\frac{\pi}{4},1,1\right)$ در قضیهٔ اویلر، داریم:

$$\frac{\pi}{4}f_1\left(\frac{\pi}{4},1,1\right) + f_2\left(\frac{\pi}{4},1,1\right) + f_3\left(\frac{\pi}{4},1,1\right) = \frac{3}{2}f\left(\frac{\pi}{4},1,1\right)$$

TV / TV