

The Learning Problem

Statistical Methods for Machine Learning

Christian Igel Department of Computer Science

Machine learning

Machine learning is a branch of computer science and applied statistics covering software that improves its performance at a given task based on sample data or experience.

Why machine learning?

- Computer systems are required for tasks for which solutions cannot be specified in the traditional way, e.g., because
 - the designer's knowledge is limited, and/or
 - the sheer complexity and variability precludes an accurate description.
- However, large amounts of data describing the task are often available or can be automatically obtained.
- To take proper advantage of this information, we need systems that self-adapt and automatically improve based on sample data – systems that learn.
- Machine learning (ML) is a vital ingredient of data mining, data analytics, knowledge discovery, etc.

Machine learning turns data into knowledge

Outline

- Supervised Learning Scenario
- Nearest Neighbor Classification
- 3 Cross-validation for Hyperparameter Selection
- Generalization and Regularization
- Summary

Outline

- Supervised Learning Scenario
- Nearest Neighbor Classification
- Cross-validation for Hyperparameter Selection
- 4 Generalization and Regularization
- Summary

Inductive inference

Learning is goal-directed changing of behaviour based on experience.

Supervised machine learning formalizes and automates the process of *inductive inference*:

- Observe a phenomenon
- Construct a model of that phenomenon
- Make predictions using this model

Binary classification

two classes: {apples, pears}, $\{-1, 1\}$

Supervised learning

The goal of supervised learning is to uncover an unknown relation between

- input space X,
 e.g., real-valued vector
 describing color and shape of fruit, and
- output space \(\mathcal{Y} \),
 e.g., \(\{ \text{apples}, \text{ pears} \} \),

based on sample input-output data $S = \{(x_1, y_1), \dots, (x_\ell, y_\ell)\}.$

I.i.d. assumption

• I.i.d. (identically, independently distributed) assumption: Each pattern is drawn independently from an (unknown) stable distribution p over $(\mathcal{X}, \mathcal{Y})$:

$$p((x,y)) = p(x) \cdot p(y \mid x)$$

 Example: Probability of (red, 8 cm, round) is always the same for each training or test pattern

Probability of being an apple is the same for each fruit that is (red, 8 cm, round)

The goal of learning

Given sample data, we want to find a hypothesis predicting output from input showing good average performance on patterns $(x_i, y_i) \sim p$.

Broad division of supervised learning

- Classification: Assigning an input to one class of a finite set of classes $\mathcal{Y} = \{\mathcal{C}_1, \dots, \mathcal{C}_m\}$, $2 \leq m < \infty$.
- **2** Regression: Given an input, predict corresponding output from $\mathcal{Y} \subseteq \mathbb{R}^m$, $1 \leq m < \infty$.
- **3** Density estimation: Given an input x, predict the probability distribution p(y|x) on \mathcal{Y} .

We focus on classification and regression in the following.

Learning machines

- A hypothesis h: X → Y maps inputs to outputs, a hypothesis class H is a set of such functions
 E.g., a hypothesis makes a prediction whether a fruit is an apple or a pear given shape, color, and size
- Applying a learning algorithm means coming up with a hypothesis given sample data (formally, it maps from $\{((x_1,y_1),\ldots,(x_\ell,y_\ell))\,|\,1\leq i\leq \ell<\infty, x_i\in\mathcal{X},y_i\in\mathcal{Y}\}$ to \mathcal{H}).

Loss/risk functions

The quality of the prediction of a hypothesis is quantified by a *task-dependent* loss function.

A function $L: \mathcal{Y} \times \mathcal{Y} \to [0, \infty[$ with the property L(y,y) = 0 for $y \in \mathcal{Y}$ is called a *loss function*.

Typical loss for classification is the 0-1 loss:

$$L(y, \hat{y}) = \begin{cases} 0 & \text{if } y = \hat{y} \\ 1 & \text{otherwise} \end{cases}$$

Goal of learning

Goal: Given sample data, we want to find a hypothesis h showing good average performance on patterns $(x,y) \sim p$.

That is, we want to find h minimizing the *risk*:

$$\mathcal{R}_p(h) = \mathbb{E}_{(x,y) \sim p} \{ L(y, h(x)) \}$$

The *empirical risk* of h on sample data S ($|S| = \ell$) is defined as:

$$\mathcal{R}_S(h) = \frac{1}{\ell} \sum_{i=1}^{\ell} L(y_i, h(x_i))$$

Typical loss functions

• Classification: Under the 0-1 loss $L(y,h(x)) = \mathbb{I}\{h(x) \neq y\}$ the risk of hypothesis h is the probability of error

$$\mathcal{R}_p(h) = \Pr(h(X) \neq Y) = \mathbb{E}_p\{\mathbb{I}\{h(X) \neq Y\}\}\$$

and the empirical risk on sample data S ($|S| = \ell$) counts errors:

$$\mathcal{R}_S(h) = \frac{1}{\ell} \sum_{i=1}^{\ell} \mathbb{I}\{h(x_i) \neq y_i\}$$

(indicator function $\mathbb{I}\{\cdot\}$ is 1 if its argument is true and 0 otherwise)

Regression: Under the squared error

$$L(y, \hat{y}) = (y - \hat{y})^2$$

the empirical risk corresponds to the sum-of-squares error

Bayes risk and consistency

 \bullet Minimum risk over all possible measurable functions h is the Bayes risk

$$\mathcal{R}_p^{\mathsf{Bayes}} = \mathcal{R}_p(h^{\mathsf{Bayes}}) = \inf_h \mathcal{R}_p(h)$$

usually differs from $\mathcal{R}_p^* = \mathcal{R}_p(h^*) = \inf_{h \in \mathcal{H}} \mathcal{R}_p(h)$

for $\mathcal{Y} = \{-1, 1\}$ we have

$$h^{\mathsf{Bayes}}(x) = \mathrm{sgn}\left[\mathbb{E}_p(Y \mid X = x)\right]$$

(here
$$sgn(x) := 2\mathbb{I}\{x > 0\} - 1$$
)

• Algorithm a is consistent if $\lim_{\ell\to\infty} \mathcal{R}_S(a(S)) = \mathcal{R}_p^{\mathsf{Bayes}}$ almost surely

Outline

- Supervised Learning Scenario
- Nearest Neighbor Classification
- Cross-validation for Hyperparameter Selection
- Generalization and Regularization
- Summary

Distinguishing stars and galaxies

A typical classification task

L. K. Polsterer, P.-C. Zinn, F. Gieseke. Finding New High-Redshift Quasars by Asking the Neighbours. Monthly Notices of the Royal Astronomical Society (MNRAS) 428(1):226–235, 2013

Nearest neighbor classification

- Idea:
 - Given training data $S = \{(x_1, y_1), \dots, (x_\ell, y_\ell)\}$ and new data point x
 - Look in S for x_i most similar to x
 - Assign new record to class of x_i
- This requires a notion of similarity

Recall: Metric

Definition: A *metric* or *distance function* on \mathcal{X} is a function $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ with:

- $\mathbf{0}$ $d(x,y) \ge 0$ with d(x,y) = 0 if and only if x = y,
- \mathbf{Q} d(x,y) = d(y,x) (symmetry),

Example: Euclidean metric

$$d(\mathbf{p}, \mathbf{q}) = \sqrt{(p_1 - q_1)^2 + (p_2 - q_2)^2 + \dots + (p_n - q_n)^2}$$

for
$$p = (p_1, ..., p^n)^T$$
, $q = (q_1, ..., q^n)^T \in \mathbb{R}^n$

1-Nearest neighbor (1-NN) classification

Algorithm 1: 1-nearest neighbor

Input: metric $d: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$, training data $S = \{(x_1, y_1), \dots\} \in (\mathcal{X} \times \{-1, 1\})^{\ell}$, new input x to be classified

Output: predicted label y of x

$$\mathbf{1} (x_{\min}, y_{\min}) = \operatorname{argmin}_{(x_i, y_i) \in S} d(x_i, x)$$

Result: $y = y_{\min}$

K-Nearest neighbor (K-NN) classification

Algorithm 2: *K*-nearest neighbor

Input: metric d, training data $S = \{(x_1, y_1), \dots, (x_\ell, y_\ell)\},$ input x to be classified, number of neighbors K

Output: predicted label y of x

1 while $|S^{\star}| < K$ do

/* ties broken at random */
$$(x_{\min}, y_{\min}) = \operatorname{argmin}_{(x_i, y_i) \in S} d(x_i, x)$$
3 $S \leftarrow S \setminus \{(x_{\min}, y_{\min})\}$
4 $S^* \leftarrow S^* \cup \{(x_{\min}, y_{\min})\}$

/* ties broken at random

Result:
$$y = \operatorname{argmax}_c |\{(x, y) \mid (x, y) \in S^* \land y = c\}|$$

aspect ratio

Influence of K

C. M. Bishop. Pattern Recognition and Machine Learning, Springer, 2006

Outline

- Supervised Learning Scenario
- Nearest Neighbor Classification
- 3 Cross-validation for Hyperparameter Selection
- Generalization and Regularization
- Summary

Hyperparameter selection

- The results of K-NN depends on the number of neighbors now, how choose K?
- ullet Algorithm parameters such as K are called *hyperparameters*.
- Finding hyperparameters is often called model selection.
- A standard method for selection of a few hyperparameters is κ -fold cross-validation.

Cross-validation

C. M. Bishop. Pattern Recognition and Machine Learning, Springer, 2006

- Split S into κ (almost) even parts
- ullet Train κ times on $\kappa-1$ parts and test on the held-out part
- Take hyperparameters maximizing mean test performance for building the model using all data

Outline

- Supervised Learning Scenario
- Nearest Neighbor Classification
- Cross-validation for Hyperparameter Selection
- Generalization and Regularization
- Summary

Learning by heart is not enough

- 1-NN has always zero error on the training set. And on a test set?
- Minimizing empirical risk does not imply good generalization (i.e., good performance on patterns not seen during training).
- Overfitting: The hypothesis faithfully reflects idiosyncrasies of the training data rather than the underlying distribution.

Learning strategies

• Empirical risk minimization given \mathcal{H} ("learning by heart restricted to \mathcal{H} ")

$$h_S = \operatorname*{argmin}_{h \in \mathcal{H}} \mathcal{R}_S(h)$$

Regularized risk minimization

$$h_S = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left[\mathcal{R}_S(h) + \operatorname{penalty}(h) \right]$$

Examples of regularization

• Using the norm for regularization

$$h_S = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left[\mathcal{R}_S(h) + \gamma ||h|| \right] \qquad (\gamma > 0)$$

Bayesian normalization

$$p(h \mid S) = \frac{p(S \mid h)p(h)}{p(S)} \propto p(S \mid h)p(h)$$

posterior
$$\propto$$
 likelihood \times prior

instead of maximizing the a posteriori probability (MAP) it is convenient to minimize its negative logarithm

likelihood
$$\propto \exp(-\gamma \mathcal{R}_S(h))$$
 yields for MAP

$$h_S = \underset{h \in \mathcal{H}}{\operatorname{argmin}} \left[\gamma \mathcal{R}_S(h) - \log \operatorname{prior}(h) \right]$$

Early stopping

- There are ways of avoiding overfitting not falling in the general regularization framework outlined before.
- Early-stopping: The learning algorithm
 - partitions sample S into training $S_{\rm train}$ and validation $S_{\rm val}$ data,
 - produces iteratively a sequence of hypotheses

$$h_1, h_2, h_3, \ldots$$

based on S_{train} , ideally corresponding to a nested sequence of hypothesis spaces $\mathcal{H}_1 \subseteq \mathcal{H}_2 \dots$ with $h_i \in \mathcal{H}_i$ and

- non-decreasing complexity and
- decreasing empirical risk $\mathcal{R}_{S_{\mathsf{train}}}(h_i) > \mathcal{R}_{S_{\mathsf{train}}}(h_{i+1})$ on S_{train} ,
- ullet monitors empirical risk $\mathcal{R}_{S_{
 m val}}(h_i)$ on the validation data, and
- outputs the hypothesis h_i minimizing $\mathcal{R}_{S_{\text{val}}}(h_i)$.

Early stopping example

Errors & bounds

Typical bound:

With probability of at least $1 - \delta$

$$\mathcal{R}_p(h_S) \le \mathcal{R}_S(h_S) + B(\ell, \delta, \mathcal{H})$$

Carefully check assumptions and to which entities expectations refer!

Free lunch...

No free lunch

- If there is no assumption how the past (training data) is related to the future (test data), prediction is impossible.
- If there is no a priori restriction on the possible phenomena that are expected, it is impossible to generalize and thus no algorithm is superior to another.
- Any consistent algorithm can have arbitrarily bad behavior when given a finite, incomplete training set.

$\begin{aligned} \text{Generalization} &= \mathsf{Data} + \mathsf{Knowledge} \\ &\quad \mathsf{OLIVIER} \ \mathsf{BOUSQUET} \end{aligned}$

O. Bousquet, S. Boucheron, G. Lugosi. Introduction to Statistical Learning Theory. In Advanced Lectures in Machine Learning, LNAI 3176, 2004

Prior knowledge

But in real-world applications we can make assumptions about the expected phenomena!

Prior knowledge can be incorporated by

- a proper restriction of the hypothesis space,
- a proper definition of neighbourhood/similarity (e.g., by defining a proper scalar product inducing a metric), and/or
- penalising the "complexity" of classifiers (i.e., preferring "simple" solutions).

Outline

- Supervised Learning Scenario
- Nearest Neighbor Classification
- Cross-validation for Hyperparameter Selection
- Generalization and Regularization
- Summary

Summary

- The goal of supervised learning is to uncover an unknown relation between an input and an output space given examples.
- Memorizing training examples is not enough to achieve generalization (i.e., to classify correctly unseen examples).
- Incorporation of prior knowledge is required for generalization, for example by restricting the hypotheses space, by carefully designed distance measures, and/or by penalties on solution complexity.
- Nearest neighbor classification is a simple algorithm giving good (baseline) results in practice.
- Cross-validation can be used to find hyperparameters.

