Predicting Inflation Crisis in 13 African Countries

By Camille Kirongozi

Research Question and Hypothesis

Research question: Which factors are significantly associated with inflation crisis in the 13 African countries observed?

Hypothesis: Null hypothesis, there are no significant factors that are associated with inflation crisis at a .05 significance level. Alternative hypothesis, there are factors associated to inflation crisis at the .05 significance level.

The four assumptions of the logistic regression:

- 1. A binary outcome variable: The outcome variable was the inflation_crisis variable which had values 1 and 0.
- 2. Independent observations: This means there should be no repeated observations in the dataset. The dataset did not include any repeated observations. Each observation was a yearly economic summary for a country.
- 3. Absence of multicollinearity: I ran a variance inflation factor (VIF) command on the model I decided to use, and no variables had a value of more than ten. A value of ten would indicate multicollinearity.
- 4. A linearity between the numeric independent variables and the log odds: To test this assumption, I created a plot for the only numeric variable exch_usd against the log odds of the dependent variable. Linearity was observed.

Data Analysis Process

• Removed the following columns: case number, three letter country code, country name, independence, and

Warning message: glm.fit: fitted probabilities numerically 0 or 1 occurred

- Altered the banking crisis variable to have values 1/0 instead of crisis/no crisis.
- Removed some rows bases on the outliers found in the exch_usd and currency_crises variables.
- The steps reduced the number of variables from 14 to 9 and the number of observations from 1059 to 1053.
- Produced a summary statistic report for the cleaned data set along with univariate and bivariate plots.
- Data set was split into Train/Test set using an 80/20 ratio.
- Using the training set, I created the first logistic regression model to include all variables and then a second with only significant variables.

Results

- Rejected the null hypothesis.
- The final logistic regression model provided predictions at an accuracy rate of 90%.

```
alm(formula = inflation crises ~ .. family = binomial(link = "logit").
   data = train_set)
Deviance Residuals:
            1Q Median
-1.9226 -0.3683 -0.3629 -0.3377 2.8080
Coefficients:
                              Estimate Std. Error z value Pr(>|z|)
(Intercept)
                              -1.618467 8.282938 -0.195 0.84508
                                                  -0.128 0.89830
svstemic_crisis1
                                                  -0.290
exch_usd
                                                  -2.993
domestic_debt_in_default1
                              0.094502 0.576391
                                                  0.164 0.86977
sovereign_external_debt_default1 1.217979 0.400236
                                                  3.043 0.00234 **
gdp_weighted_default
                              -1.785009
                                       2.669839
                                                  -0.669 0.50376
currency_crises1
                              banking_crisis1
                              1.368875 0.668353 2.048 0.04055 *
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 645.10 on 841 degrees of freedom
Residual deviance: 503.72 on 833 degrees of freedom
AIC: 521.72
Number of Fisher Scoring iterations: 5
```

```
qlm(formula = inflation_crises ~ exch_usd + sovereiqn_external_debt_default +
   currency_crises + banking_crisis, family = binomial(), data = train_set)
Deviance Residuals:
             1Q Median
                              3Q
-1.9189 -0.3630 -0.3626 -0.3391 2.8059
Coefficients:
                               Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                          0.16171 -16.613 < 2e-16 ***
exch_usd
                                -0.00471
                                           0.00151 -3.119 0.001817 **
sovereign_external_debt_default1 1.14020
                                           0.29572 3.856 0.000115 ***
currency_crises1
                                2.08868
                                           0.24828 8.413 < 2e-16 ***
bankina_crisis1
                                1.21861
                                           0.34902 3.492 0.000480 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 645.10 on 841 degrees of freedom
Residual deviance: 504.46 on 837 degrees of freedom
AIC: 514.46
Number of Fisher Scoring iterations: 5
```

Limitations

- The data provided only included some basic economic information for the countries.
- The years included in the data set were 1860 to 2014.
- One country had data starting from 1860, and only eleven out of thirteen countries had data in 2014.
- I was limited in making the predictions at a one hundred percent accuracy rate.

Proposed Action/Expected Benefits

- Focus on economic development by creating more jobs and implementing monetary policies to prevent currency and banking crisis.
- Promote narrow banking to address banking crisis.
- adopting a floating exchange rate and raise interest rates to address currency crisis.
- Taking the following actions should alleviate the sovereign external debt in default and in turn the exchange rate to USD.
- The countries can expect to observe less occurrences of inflation crisis.

The End

Thank you for your time and attention.

Works Cited

"A Box and Whiskers Plot (in the Style of Tukey) - geom_boxplot." - geom_boxplot • ggplot2, 2021, https://ggplot2.tidyverse.org/reference/geom_boxplot.html. Chiri. "Africa Economic, Banking and Systemic Crisis Data." Kaggle, 21 July 2019, https://www.kaggle.com/chirin/africa-economic-banking-and-systemic-crisis-data.

Cloud Team, IBM. "Python vs. r. What's the Difference?" IBM, 23 Mar. 2021, www.ibm.com/cloud/blog/python-vs-

r#:~:text=R%20is%20an%20open%20source,elegant%20tools%20for%20data%20reporting.&text=Creating%20visualizations,learning%20and%20deep%20learning%20algorit hms.

"Currency Crisis: Causes, Signs, Impacts and Possible Solutions." Penpoin., 15 Sept. 2021, https://penpoin.com/currency-crisis/.

Gelman, Andrew. "Statistical Modeling, Causal Inference, and Social Science." Statistical Modeling Causal Inference and Social Science, 10 Jan. 2020, https://statmodeling.stat.columbia.edu/2020/01/10/linear-or-logistic-regression-with-binary-outcomes/.

Hartman, Mitchell. "Why Is Inflation Necessary?" Marketplace, 12 Sept. 2019, https://www.marketplace.org/2019/09/12/why-is-inflation-necessary/.

Pennacchi, George. Narrow Banking. ANNUALREVIEWS; Journal: ARFE: Annual Review of Financial Economic, 2012, https://gpennacc.web.illinois.edu/GPNarrowBankARFE.pdf.

Rulphus, Adam, and Roman Ahmed. "Logistic Regression Model: "Glm.fit: Fitted Probabilities Numerically 0 or 1 Occurred "." RStudio Community, 19 June 2018, https://community.rstudio.com/t/logistic-regression-model-glm-fit-fitted-probabilities-numerically-0-or-1-occurred/9828/15.

- Schreiber-Gregory, Deanna. Logistic and Linear Regression Assumptions: Violation Recognition and Control. Henry M Jackson Foundation for the Advancement of Military Medicine, 2018, https://www.lexjansen.com/wuss/2018/130_Final_Paper_PDF.pdf.
- Vettoretti, Martina, and Barbara Di Camillo. "A Variable Ranking Method for Machine Learning Models with Correlated Features: In-Silico Validation and Application for Diabetes Prediction." Applied Sciences, vol. 11, no. 16, 2021, p. 7740., https://doi.org/10.3390/app11167740.
- Vidhya, Analytics. "Logistic Regression R: Introduction to Logistic Regression." Analytics Vidhya, 1 Nov. 2015, https://www.analyticsvidhya.com/blog/2015/11/beginners-guide-on-logistic-regression-in-r/.