

16:12:57 08-12-23 Simulated 2,3-Dibromopropanoic acid signal.

Experiment Information

Parameter	F1
Nucleus	^{1}H
Transmitter Frequency (MHz)	500
Sweep Width (Hz)	600
Sweep Width (ppm)	1.2
Transmitter Offset (Hz)	2050
Transmitter Offset (ppm)	4.1

4.600 - 4.400 ppm

Osc.	а	φ (°)	f(Hz)	f(ppm)	$\eta(s^{-1})$	ſ
1	$1.0004 \\ \pm 1.3876 \times 10^{-3}$	8.2802×10^{-2} $\pm 7.9531 \times 10^{-2}$	2.2344×10^{3} $\pm 2.0361 \times 10^{-3}$	$4.4688 \\ \pm 4.0723 \times 10^{-6}$	$6.9995 \\ \pm 1.2772 \times 10^{-2}$	1.0023
2	$0.99842 \\ \pm 1.4413 \times 10^{-3}$	2.5957×10^{-2} $\pm 8.2878 \times 10^{-2}$	$2.243 \times 10^{3} $ $\pm 2.0799 \times 10^{-3}$	4.486 $\pm 4.1598 \times 10^{-6}$	$6.9913 \\ \pm 1.3017 \times 10^{-2}$	1.0005
3	$\begin{array}{c} 1.0002 \\ \pm 1.4456 \times 10^{-3} \end{array}$	-6.5178×10^{-3} $\pm 8.2881 \times 10^{-2}$	2.257×10^3 $\pm 2.0863 \times 10^{-3}$	4.514 $\pm 4.1726 \times 10^{-6}$	$7.0169 \\ \pm 1.3082 \times 10^{-2}$	1.0017
4	0.99804 $\pm 1.3876 \times 10^{-3}$	4.9217×10^{-2} $\pm 7.9756 \times 10^{-2}$	2.2656×10^{3} $\pm 2.0404 \times 10^{-3}$	$4.5312 \\ \pm 4.0808 \times 10^{-6}$	$6.9955 \\ \pm 1.279 \times 10^{-2}$	1

4.020 - 3.820 ppm

Osc.	а	φ (°)	f(Hz)	f(ppm)	$\eta(s^{-1})$	ſ
1	1.0035	-1.1133×10^{-3}	1.9386×10^{3}	3.8772	7.0167	1.0052
	$\pm 1.2575 \times 10^{-3}$ 0.99852	$\pm 7.1748 \times 10^{-2}$ -2.1454×10^{-2}	$\pm 1.9405 \times 10^{-3}$ 1.9588×10^{3}	$\pm 3.881 \times 10^{-6}$ 3.9176	$\pm 1.2206 \times 10^{-2}$ 7.0111	
2	$\pm 3.8331 \times 10^{-3}$	±0.22074	$\pm 3.6287 \times 10^{-3}$	$\pm 7.2574 \times 10^{-6}$	$\pm 2.2801 \times 10^{-2}$	1.0003
3	1.0026	-2.4786×10^{-2}	1.9612×10^3	3.9224	7.0301	1.004
	$\pm 3.8441 \times 10^{-3}$ 1.0009	± 0.21966 -6.9312×10^{-2}	$\pm 3.6347 \times 10^{-3}$ 1.9814×10^{3}	$\pm 7.2695 \times 10^{-6}$ 3.9628	$\pm 2.2765 \times 10^{-2}$ 7.0042	
4	$\pm 1.2561 \times 10^{-3}$	$\pm 7.1886 \times 10^{-2}$	$\pm 1.9407 \times 10^{-3}$	$\pm 3.8815 \times 10^{-6}$		1.0028

3.800 - 3.600 ppm

Osc.	а	φ (°)	f(Hz)	f(ppm)	$\eta(s^{-1})$	\int
1	1.0015	6.6528×10^{-2}	1.8356×10^{3}	3.6712	7.0086	1.0032
	$\pm 1.3836 \times 10^{-3}$	$\pm 7.9181 \times 10^{-2}$	$\pm 2.0225 \times 10^{-3}$	$\pm 4.045 \times 10^{-6}$	$\pm 1.2697 \times 10^{-2}$	
2	0.99953	-6.1993×10^{-3}	1.8442×10^{3}	3.6884	6.9937	1.0016
2	$\pm 1.4671 \times 10^{-3}$	$\pm 8.407 \times 10^{-2}$	$\pm 2.081 \times 10^{-3}$	$\pm 4.162 \times 10^{-6}$	$\pm 1.3079 \times 10^{-2}$	
3	1.0023	5.367×10^{-2}	1.8558×10^{3}	3.7116	7.0212	1.0038
	$\pm 1.4693 \times 10^{-3}$	$\pm 8.412 \times 10^{-2}$	$\pm 2.0914 \times 10^{-3}$	$\pm 4.1828 \times 10^{-6}$	$\pm 1.3102 \times 10^{-2}$	
4	0.99981	4.9889×10^{-2}	1.8644×10^{3}	3.7288	7.0057	1 0016
	$\pm 1.3837 \times 10^{-3}$	$\pm 7.9332 \times 10^{-2}$	$\pm 2.0249 \times 10^{-3}$	$\pm 4.0498 \times 10^{-6}$	$\pm 1.2713 \times 10^{-2}$	1.0016

Estimation performed using NMR-EsPy.

Author: Simon Hulse For more information:

https://foroozandehgroup.github.io/NMR-EsPy

https://github.com/foroozandehgroup/NMR-EsPy

simon.hulse@chem.ox.ac.uk

If used in a publication, please cite:

Simon G. Hulse, Mohammadali Foroozandeh. "Newton meets Ockham: Parameter estimation and model selection of NMR data with NMR-EsPy". J. Magn. Reson. 338 (2022) 107173.

https://doi.org/10.1016/j.jmr.2022.107173