Posiciones en la esfera celeste

Mauro Jélvez

October 2024

Posiciones aparentes y movimiento de los cuerpos celestes

Cielo nocturno

Un observador en el punto O verá el cielo como media-esfera.

- El cielo se ve azul durante el dia debido a la difusión de Rayleigh $\sigma \approx \nu^4 \approx 1/\lambda^4$
- Durante la noche las estrellas están "colgadas en la parte interna de la esfera
- Las estrellas están muy lejos y parece que casi no cambian las posiciones sobre la esfera.
- Hiparco primer catálogo

Constelaciones

- Figuras de estrellas brillantes
- Griegos nombraron 48 constelaciones
- 12 de las 88 constelaciones del firmamento corresponden a la eclíptica y se conocen como las del zodiaco.

Designaciones

En 1603 se introduce el catálogo Uranometría que fue el primer atlas en cubrir toda la esfera celeste. Con un nuevo sistema para designar a las estrellas, que ha venido a conocerse como designación de Bayer en base a números y letras.

Esfera Celeste

- Tiene radio mucho mayor que el de la tierra.
- Vale para las estrellas lejanas.
- No vale para los objetos del sistema solar.
- El plano que pasa por el centro divide la esfera en dos partes iguales.
- Circulo máximo en r=R

- Circulo máximo QDQ'C y EDE'C
- Polos \pm 90°PP' para QQ'
- Plano que no pasa por el centro corta el círcula que no es máximo LL'
- Dos círculos máximos se cruzan en puntos opuestos CD
- Por dos puntos opuestos pueden pasar número infinito de círculos máximos
- Por dos puntos arbitrarios más cerca del centro de la esfera puede pasar solamente un plano que corta el círculo máximo

Esfera celeste vista del observador en el hemisferio norte

• El arco del círculo máximo es la distancia más corta entre dos puntos sobre la esfera celeste

Sistema Horizontal

Los sistemas de coordenadas fijan la posición de un astro sobre la esfera celeste. Plano fundamental - hotizente y polos en Z y Z'

- M un astro con paralelo celeste skMp s,p diferentes de EQ
- Círculo máximo ZMZ' vertical del astro con 2 coordenadas (ángulos) A y H
- A: Ángulo entre los planos del vertical del astro y la parte sur del meridiano A=SM'=SOM'
- h: Distancia angular entre el astro y el horizonte, medida por el vertical h±90 para ZZ'
- $\bullet\,$ h=0 en el horizonte, h>0 astro visible, h<0 astro no visible
- Z: distancia cenital

- a) (h,A) variable debido a la rotación de la esfera celeste
- b) (h,A) se pueden medir de forma directa
- c) No es útil para los mapas y catálogos estelares

Sistemas ecuatoriales

1er sistema (ecuatoriales celestes)

- Coordenadas cuales no se cambian con el tiempo
- Plano fundamental ecuador celeste QQ'
- PMP' círculo horario (rota con la esfera por la razón que no contiene ZZ')

- 1) Ascensión recta α : Ángulo entre el círculo horario cero y el circulo horario del astro $\alpha = \gamma M' = \gamma OM'$, se mide por el ecuadoren dirección opuesta de la dirección de la rotación de la esfera celeste. Entre 0 y 260 grados o 0 y 24 horas
- 2) Declinación δ : Distancia angular entre el astro y ecuador celeste, medida por el círculo horario. $\delta=MM'=MOM'$ con $-90(P')\leq \delta\leq 90(P)$
- (α, δ) no cambian con el tiempo (relativos al respecto a γ) útiles para los catálogos y mapas.
- (α, δ) no pueden medirse directamente.

2do sistema (ecuatoriales locales)

- 1) En lugar de la ascención recta se introduce el ángulo horario t. El ángulo entre la parte sur del meridiano celeste y círculo horario del astro. t=Q'M'=Q'OM' y se mide en la dirección de rotación del cielo entre 0 y 24 horas
- 2) Declinación δ : Es la segunda coordenada. $t_{\gamma} = Q'\gamma = s$ se llama tiempo sidéreo. Obvio $s = \alpha$
 - -a)t = 0 (el astro pasa por el meridiano) s= α

Coordenadas galácticas esféricas (l, b)

Con $b \in [-90, 90]$ y $l \in [0, 360]$

- El polo norte galáctico está en AR=12:51.4, DEC=+27:08(2000.0)
- El centro galáctico está en AR=17:45.6, DEC=-28.56 (2000)
- \bullet La inclinación del ecuador galáctico sobre el ecuador celestial es de 62.6°
- \bullet La intersección o línea de nodos de los dos ecuadores es AR=282.89°, DEC=0:00 (2000.0) a l=33 y b=0

 $\frac{\sin A}{\sin a} = \frac{\sin B}{\sin b} = \frac{\sin C}{\sin c}$

 $\sin a \quad \sin b \quad \sin c$ $\sin a \cos B = \sin c \cos b - \cos c \sin b \cos A$

 $\cos a = \cos b \cos c + \sin b \sin c \cos A$ $\sin A \cos b = \sin C \cos B + \cos C \sin B \cos a$

Coordenadas galácticas cilíndricas (R, θ, z)

Advertencia Los anterior es un sistema zurdo como se define.

Sistema de coordenadas cartesianas (X_{GC}, Y_{GC}, Z_{GC})

- $X_{GC} = d\cos(b)\cos(l)$
- $Y_{GC} = d\cos(b)\sin(l)$
- $Z_{GC} = d\sin(b)$

- El sol tiene $(X_{GC}, Y_{GC}, Z_{GC}) = (0, 0, 0)$
- El centro galáctico tiene coordenadas de $(X_{GC}, Y_{GC}, Z_{GC}) = (R_0, 0, 0)$ donde R_0 es la distancia al centro galáctico.

Transformación de coordenadas

- $\sin(A)\cos(a) = \sin(h)\cos(\delta)$
- $\cos(A)\cos(a) = \cos(h)\cos(\delta)\sin(\phi) \sin(\delta)\cos(\phi)$
- $\sin(a) = \cos(h)\cos(\delta)\cos(\phi) + \sin(\delta)\sin(\phi)$

Donde ϕ es la altura del polo norte.

- $\sin(l_N l)\cos(b) = \cos(\delta)\sin(\alpha \alpha_P)$
- $\cos(l_N l)\cos(b) = -\cos(\delta)\sin(\delta_p)\cos(\alpha \alpha_P) + \sin(\delta)\sin(\delta_P)$
- $\sin(b) = \cos(\delta)\cos(\delta_P)\cos(\alpha \alpha_P) + \sin(\delta)\sin(\delta_P)$
- Donde la dirección del polo norte galáctico es $\alpha_P=12$ h 51.4 min, $\delta_P=27^\circ08'$ y la longitud galáctica del polo celestial es $l_N=123.0^\circ$