Speech Enhancement in Multi-Speaker Environments

Joel Paul (M24DE2012)(G23AI1017)

April 2, 2025

An End-to-End Pipeline for Overlapping Speech Processing

In this project, I developed a system to enhance overlapping speech and identify speakers in multi-talker environments. The project involved fine-tuning speaker verification models, creating synthetic multi-speaker datasets, and integrating speech enhancement with identification. Below, I explain my workflow, challenges faced, and insights gained.

Abstract

I started by preparing datasets for the speaker verification model WavLM-BASELM from Hugging Face. Then I fine-tuned the base model using a LoRA adapter. Afterward, I generated datasets for multi-speakers using the pre-trained SpeechBrain model SepFormer for speech separation. Finally, I fine-tuned a speech enhancement pipeline using my fine-tuned WavLM-BASE along with SepFormer to achieve better results.

Pipeline Overview

- 1. **SepFormer Enhancer:** Separates overlapping voices using attention masks.
- 2. LoRA-Adapted WavLM: Identifies speakers from enhanced audio. 3. Post-Processor: Reduces artifacts using Wiener filtering.

Key Feature: The enhancer and identifier share intermediate embeddings for joint optimization.

I. Dataset Preparation

VoxCeleb2 Subsets

- **Training:** First 100 identities (12,800 clips). - **Testing:** Next 18 identities (6,400 clips).

Multi-Speaker Synthesis

Generated 2,000 overlapping clips (4-second duration) with 80% overlap between speakers.

II. Model Configurations

A. Speaker Verification (WavLM + LoRA)

- **Hardware:** 125GB RAM CPU (GPU unavailable) - **Batch Size:** 16 (limited by RAM) - **Loss Function:** ArcFace (margin=0.5, scale=64)

B. SepFormer Enhancer

Used pre-trained SpeechBrain/SepFormer-WHAM with: - 8 encoder layers - 4 attention heads - 256-dimensional embeddings

Fine-tuning of the enhancement pipeline was conducted on Google Colab Enterprise.

Key Results

1. Speaker Verification Performance

The results of speaker verification performance are summarized below:

Metric	Pre-trained	Fine-tuned
EER (%)	8.2	5.7 (↓ 31%)
TAR@1%FAR	0.63	0.81 († 29%)
ID Accuracy	72%	89% († 24%)

Table 1: Speaker Verification Metrics

Observation: Fine-tuning reduced EER by 31% but struggled with Indian accents (12% higher errors compared to American English).

2. Speech Enhancement Metrics

Speech enhancement/quality metrics before and after fine-tuning are shown below:

Model	$SDR(\uparrow)$	$SAR (\uparrow)$	PESQ (†)	$SIR (\uparrow)$
SepFormer	12.8	14.2	3.1	14.2
Enhanced Pipeline	14.1	15.8	3.4	15.1

Table 2: Speech Enhancement Metrics

Improvement Analysis: -+1.3 dB SDR: Joint training helped preserve speaker-specific features during separation. - PESQ Limitation: Scores plateaued at 3.4 due to residual artifacts in high-pitch regions.

3. Rank 1 Identification Accuracy After Enhancement

The accuracy results are summarized below:

Model	Pretrained (†)	Fine-tuned (\uparrow)
SepFormer	72.5	80.2
Enhanced Pipeline	75.2	85.8

Table 3: Rank 1 Identification Accuracy

Critical Insight: Integrating identification feedback during enhancement boosted accuracy by 5.6% in the fine-tuned model.

Conclusion

The pipeline achieved: - 85.8% speaker ID accuracy. - 14.1 $dB\,SDR$ on overlapping speech.

Key learnings: - LoRA adaptation is highly efficient for speaker verification. - Joint enhancement-identification training yields synergistic gains. - Regional language support requires explicit architectural changes.

Future work will focus on GPU optimization and accent-robust training using more data samples.

References

- 1.https://github.com/Knight-coderr1999/Multi-Speaker-Speech-Enhancement/blob/main/README.md
 - 2.https://huggingface.co/docs/transformers/en/model_doc/wavlm
 - 3.https://huggingface.co/docs/diffusers/main/en/training/lora
 - 4. https://github.com/speechbrain/speechbrain
 - 5. https://github.com/FilipTirnanic96/mfccextraction
 - 6. https://github.com/speechbrain/speechbrain