MATH 465 - INTRODUCTION TO COMBINATORICS LECTURE 13

1. Partitions

A partition $\lambda = (\lambda_1, \lambda_2, ...)$ of n is a sequence $\lambda_1 \geq \lambda_2 \geq ... \geq 0$ of integers λ_i such that $\lambda_1 + \lambda_2 + ... = n$. The nonzero λ_i are called the parts of λ and we write $|\lambda| = n$.

Example 1.1. $\lambda = (4, 2, 2, 1)$ is a partition of n = 9 with 4 parts. When the parts are small, we typically write $\lambda = 4221$ instead of (4, 2, 2, 1) etc.

Equivalently, a partition is a way of writing n as a sum $\lambda_1 + \lambda_2 + \cdots + \lambda_k$, where we disregard the order of the summands. Compare this with a weak composition of n where the summands are ordered.

We denote by p(n) the number of partitions of n.

Example 1.2.

n	Partitions of n	p(n)
0	Ø (empty partition)	1
1	1	1
2	2,11	2
3	3, 21, 111	3
4	4, 31, 22, 211, 1111	5
5	5, 41, 32, 311, 221, 2111, 11111	7
6	6, 51, 42, 411, 33, 321, 3111, 222, 2211, 21111, 111111	11

There is no closed formula for p(n), but there is a nice generating function.

Theorem 1.3 (Euler).

$$\sum_{n=0}^{\infty} p(n)x^n = (1+x+x^2+\cdots)(1+x^2+x^4+\cdots)(1+x^3+x^6+\cdots)\cdots$$
$$= \frac{1}{(1-x)(1-x^2)(1-x^3)\cdots}.$$

Remark 1.4 (Technical remark-the (x)-adic topology). There is an infinite product in the statement of the theorem, so we should say what it means. If $F_1(x), F_2(x), \ldots$ are formal power series, we say that $F_k(x)$ converges to the formal power series $F(x) = \sum_{n\geq 0} a_n x^n$ (written $\lim_{k\to\infty} F_k(x) = F(x)$) if for every n, there is a number $\delta(n)$ such that the coefficient of x^n in $F_k(x)$ is a_n if $k \geq \delta(n)$. In other words, the coefficient of x^n in $F_k(x)$ eventually becomes constant and equal to a_n . Let us look at some examples.

(1) Let
$$F_k(x) := 1 + x + x^2 + \dots + x^k$$
. We have

$$\lim_{k \to \infty} F_k(x) = 1 + x + x^2 + \dots = \frac{1}{1 - x},$$

because every coefficient stabilizes to 1. More generally, if $F(x) = \sum_{n>0} a_n x^n$ and $F_k(x) := \sum_{n=0}^k a_n x^n$, then $\lim_{k \to \infty} F_k(x) = F(x)$. (2) Let $F_k(x) := x^k$. Then, $\lim_{k \to \infty} F_k(x) = 0$.

- (3) Let $F_k(x) := \frac{1}{k}x^k$. Then, $\lim_{k\to\infty} F_k(x)$ does not exist since the coefficient of x does not stabilize.
- (4) Let $F_k(x) = \frac{1}{(1-x)(1-x^2)\cdots(1-x^k)}$. Then, we define

$$\frac{1}{(1-x)(1-x^2)(1-x^3)\cdots} := \lim_{k \to \infty} F_k(x).$$

The sequence $F_1(x), F_2(x), \ldots$ converges because for any k, the coefficient of x^k stabilizes after F_k , i.e, $[x^k]F_k(x) = [x^k]F_{k+1}(x) = [x^k]F_{k+2}(x) = \cdots$, since

$$F_{k+1}(x) = F_k(x)(1 + x^{k+1} + x^{2(k+1)} + \cdots) = F_k(x) + \text{terms divisible by } x^{k+1}.$$

Notice that computing any coefficient is still a finite process and does not involve taking any limits of numbers.

Proof. Let A_k denote the set of partitions all of whose parts are k, so k, kk, kkk etc. Since any partition splits uniquely into a partition μ_1 with all parts equal to 1, a partition μ_2 with all parts equal to 2 etc, we have a bijection

$$\{\text{partitions}\} \xrightarrow{\sim} A_1 \times A_2 \times A_3 \times \cdots$$

Consider the weight function $\alpha(\lambda) = |\lambda|$ on {partitions} and the weight function $\beta_k(\mu_k) =$ $|\mu_k|$ on A_k . Then, we have the additivity property $\alpha(\lambda) = \beta_1(\mu_1) + \beta_2(\mu_2) + \cdots$. Using the multiplication principle for generating functions, we get

$$\sum_{n=0}^{\infty} p(n)x^n = (1+x+x^2+\cdots)(1+x^2+x^4+\cdots)(1+x^3+x^6+\cdots)\cdots$$
$$= \frac{1}{(1-x)(1-x^2)(1-x^3)\cdots}.$$

Theorem 1.5 (Euler). The generating function for partitions with parts $\leq k$ is

$$\frac{1}{(1-x)(1-x^2)\cdots(1-x^k)}.$$

Theorem 1.6 (Euler). The generating function for partitions with distinct parts is

$$(1+x)(1+x^2)(1+x^3)(1+x^4)\cdots$$

Theorem 1.7 (Euler). The generating function for partitions with distinct parts all of which $are \leq k is$

$$(1+x)(1+x^2)\cdots(1+x^k).$$

2. Odd parts vs. distinct parts

Theorem 2.1 (Euler). The number of partitions of n into odd parts equals the number of partitions of n into distinct parts.

Example 2.2.

Proof 1.

$$\prod_{n=1}^{\infty} (1+x^n) = \prod_{n=1}^{\infty} \frac{1-x^{2n}}{1-x^n} = \prod_{n=1}^{\infty} \frac{1}{1-x^{2n-1}}.$$

Proof 2. Let S be the set of partitions of n. The first number is $|S - (A_1 \cup A_2 \cup \cdots)|$ where $A_i = \{\text{partitions of } n \text{ containing a part equal to } 2i\}.$

The second number is $|S - (B_1 \cup B_2 \cup \cdots)|$ where

 $B_i = \{ \text{partitions of } n \text{ containing at least two parts equal to } i \}.$

We next convince ourselves that, for distinct i, j, k, \ldots , we have

$$|A_i| = p(n-2i) = |B_i| |A_i \cap A_j| = p(n-2i-2j) = |B_i \cap B_j| |A_i \cap A_j \cap A_k| = p(n-2i-2j-2k) = |B_i \cap B_j \cap B_k|$$

By the inclusion-exclusion formula, the theorem follows.

3. Ferrers shapes/Young diagrams

The Ferrers shape (also called a Young diagram) associated with a partition $\lambda = (\lambda_1, \lambda_2, ...)$ is a collection of unit boxes on the square grid which is made up of contiguous rows of lengths $\lambda_1, \lambda_2, ...$ located one under another so that their left ends are aligned. The column lengths of this shape form the conjugate partition λ' . In other words, the number of parts of λ' that equal i is $\lambda_i - \lambda_{i+1}$.

Example 3.1. Consider the partition $\lambda = 431$. The conjugate partition must have

$$4-3=1$$
 part equal to 1,
 $3-1=2$ parts equal to 2,
 $1-0=1$ parts equal to 3.

$$\lambda = 431 \qquad \qquad \lambda' = 3221$$

Proposition 3.2. The number of partitions of n with the largest part equal to k is equal to the number of partitions of n with exactly k parts.

The number of partitions of n with the largest part at most k is equal to the number of partitions of n with at most k parts.

Proof. The largest part of λ is the number of parts of λ' .

Corollary 3.3. The generating function for partitions with at most k parts is given by

$$\frac{1}{(1-x)(1-x^2)\cdots(1-x^k)}.$$

4. Partitions in a box

Let g(m, n, a) denote the number of partitions of a whose shape fits into the $m \times n$ rectangle. Equivalently, the number of parts is $\leq m$, and the largest part is $\leq n$.

Example 4.1. $g(3,4,6) = |\{42,411,33,321,22\}| = 5.$

Proposition 4.2.

$$\sum_{a} g(m, n, a) = \binom{m+n}{m}.$$

Proof. The partitions counted on the left-hand side are in bijection with lattice paths connecting two opposite corners of an $m \times n$ rectangle.

Proposition 4.3. g(m, n, a) = g(m - 1, n, a - n) + g(m, n - 1, a).

Proof. Each lattice path $(0,0) \to (n,m)$ passes either through (n,m-1) or through (n-1,m), but not both. This gives a bijection between

- lattice paths $(0,0) \to (n,m)$ carving out a shape of size a, and
- the disjoint union of the following two categories of lattice paths:
 - lattice paths $(0,0) \rightarrow (n,m-1)$ carving out a shape of size a-n;
 - lattice paths $(0,0) \rightarrow (n-1,m)$ carving out a shape of size a.