Numéro d'anonymat :

Durée: 2 heures

Examen de langages formels (première session)

Seule, une feuille A4 recto-verso est autorisée Interdiction de communiquer tout document.

REMPLIR LES CADRES ET RENDRE CE DOCUMENT AINSI COMPLÉTÉ UN EXCÈS DE REPONSES FAUSSES SERA SANCTIONNÉ PAR DES POINTS NÉGATIFS

TOUTES LES PROPRIETES PRESENTEES EN COURS POURRONT ETRE UTILISEES

Exercice 1:

Appliquer l'algorithme vu en cours pour éliminer les ϵ -transitions de l'automate suivant : On justifiera comment est obtenu l'automate sans ϵ -transitions.

En notant δ la fonction de transition de l'automate de départ, et en notant δ ' la fonction de transition de l'automate équivalent sans ϵ -transitions :

$$\delta'(0,a) = \delta(\hat{\epsilon}(0),a) = \delta(\{0,1,2,3,4\},a) = \{1,2,3,4\}$$

$$\delta'(1,a) = \delta(\hat{\varepsilon}(1),a) = \delta(\{1,2,3,4\},a) = \{2,3,4\}$$

$$\delta'(2,a) = \delta'(\hat{\epsilon}(2),a) = \delta(\{2,3,4\},a) = \{3,4\}$$

$$\delta'(3,a) = \delta(\hat{\epsilon}(3),a) = \delta(\{3,4\},a) = \{4\}$$

$$\delta'(4,a) = \delta(\hat{\epsilon}(4),a) = \delta(4,a) = \{\}$$

L'ensemble F' des états terminaux de l'automate sans ϵ -transitions contient tous les états e tel que $\hat{\epsilon}(e)$ contienne l'état terminal 4, à savoir : $\{0, 1, 2, 3, 4\}$

Exercice 2 : Soit $A = (\Sigma, E, i, F, \delta)$ un automate déterministe complet, avec comme langage associé :

$$L_A = \{ \epsilon, a \}$$

1) Prouver que $\delta(i,a) \neq i$

$$\varepsilon \in L(A) \implies \delta^*(i,\varepsilon) \in F \implies \delta^*(i,\varepsilon) = i \in F$$
Et
$$\delta(i,a) = i \implies \delta(i,aa) = i \in F \implies aa \in L_A \quad \text{(contradictoire)}$$

2) Prouver que l'automate A contient au moins 2 états terminaux distincts.

Les deux états terminaux distincts sont i et $\delta(i,a)$:

La question précédente a montré que i est un état terminal et que $\delta(i,a) \neq i$

Il ne reste plus qu'à démontrer que $\delta(i,a)$ est un état terminal, ce qui résulte immédiatement du fait que a est un élément de L_A donc que $\delta^*(i,a) = \delta(i,a) \in F$.

Exercice 3 : Soit $A = (\Sigma, E, I, F, \delta)$ un automate indéterministe avec ϵ -transitions dont le langage associé est noté L_A

Définir un automate A' = $(\Sigma, E', I', F', \delta)$ dont le langage associé sera $L_A U\{\epsilon\}$ et dont la fonction de transition δ est la même que celle de A.

 $E' = E \cup \{x\}$ où x n'est pas un élément de E.

 $I' = I U \{x\}$

 $F' = F U \{x\}$

 $\delta' = \delta$

Remarque : rendre terminal des états initiaux ou rendre initial des états terminaux n'est pas correct sauf si l'automate est standard.

Exercice 4 : Soit $A = (\Sigma, E, i, F, \delta)$ un automate déterministe et complet, dont le langage associé est noté L(A). Prouver que si F=E, alors $L(A) = \Sigma^*$

 $L(A)\subseteq \Sigma^*$:

car le langage associé est défini sur l'alphabet Σ , il ne contient pas conséquent que des mots de Σ^*

 $\Sigma^* \subseteq L(A)$:

car $\forall m \in \Sigma^*$, $\delta^*(i,m) \in E$ puisque l'automate est complet.

Comme F=E, on en déduit que $\forall m \in \Sigma^*$, $\delta^*(i,m) \in F$ et donc $\forall m \in \Sigma^*$, $m \in L(A)$

Exercice 5 : Soit L_G le langage défini par la grammaire G d'axiome S, d'alphabet $\Sigma = \{a,b\}$ et de productions :

$$S \rightarrow aSbS \mid bSaS \mid \varepsilon$$

a) Montrer que le mot abab est un mot du langage L_G en explicitant une chaîne de dérivation donnant abab.

$$S \rightarrow aSbS \rightarrow abS \rightarrow abaSbS \rightarrow ababS \rightarrow abab$$

b) En utilisant ce même mot abab, prouver que la grammaire G est ambiguë.

c) En notant $L_E = \{m \in \{a,b\}^*, |m|_a = |m|_b\}$, expliquer pourquoi, pour tout mot m non vide de L_E , on a: $\begin{bmatrix} m = a \, m_1 b \, m_2 & \text{avec} & m_1 \in L_E \\ & \text{ou} \\ m = b \, m_1 a \, m_2 & \text{avec} & m_1 \in L_E \end{bmatrix}$

Il est fortement recommandé d'appuyer son explication par un dessin.

Soit m un mot non vide de L_E . Supposons que la première lettre de m soit un « a ». Le cas où b est la première lettre de m est équivalent à celui traité.

En reprenant la visualisation classique des mots définis sur un alphabet à 2 lettres, on « voit » qu'il existe forcément un moment où la courbe associée à m rejoint l'axe des x à partir du demi plan supérieur, dont avec comme dernière lettre « b » pour rejoindre l'axe horizontale.

Donc $m=am_1bm_2$ avec am_1b qui a autant

de a que de b

Donc $m=am_1bm_2$ avec m_1 qui a autant

de a que de b , i.e. $m_1 \in L_E$

d) Prouver que si un mot m de L_E vérifie $m=a\,m_1\,b\,m_2$ avec $m_1\in L_E$ alors $m_2\in L_E$

$$m \in L_E$$
 et $m = a m_1 b m_2$ et $m_1 \in L_E$ $\Rightarrow |a m_1 b m_2|_a = |a m_1 b m_2|_b$ et $|m_1|_a = |m_1|_b$
 $\Rightarrow |m_1|_a + |m_2|_a = |m_1|_a + |m_2|_b$ et $|m_1|_a = |m_1|_b$
 $\Rightarrow |m_2|_a = |m_2|_b$
 $\Rightarrow m_2 \in L_E$

e) Prouver que $L_E \subseteq L_G$ par un raisonnement par induction dont on précisera bien la propriété prouvée par induction.

$$\Pi(n) = \left(|m|_a = |m|_b \text{ et } |m| \le n \implies S \xrightarrow{*} m \right)$$

 Π (0) est vrai car $|m| \le 0 \Rightarrow m = \varepsilon \Rightarrow S \rightarrow \varepsilon = m$

Hypothèse : $\Pi(n)$ vrai.

Montrons $\Pi(n+1)$:

$$|m|_{a} = |m|_{b} \text{ et } |m| = n+1 \Rightarrow \begin{vmatrix} m = a m_{1} b m_{2} & \text{et } m_{1} \in L_{E}, m_{2} \in L_{E} \\ m = b m_{1} a m_{2} & \text{et } m_{1} \in L_{E}, m_{2} \in L_{E} \\ m = \epsilon \end{vmatrix}$$

$$\Rightarrow \begin{vmatrix} m = a m_{1} b m_{2} & \text{et } S \stackrel{*}{\Rightarrow} m_{1} \text{ et } S \stackrel{*}{\Rightarrow} m_{2} \\ m = b m_{1} a m_{2} & \text{et } S \stackrel{*}{\Rightarrow} m_{1} \text{ et } S \stackrel{*}{\Rightarrow} m_{2} \\ m = \epsilon \end{vmatrix}$$

$$\Rightarrow \begin{vmatrix} S \stackrel{1}{\Rightarrow} a S b S \stackrel{*}{\Rightarrow} a m_{1} b m_{2} = m \\ S \stackrel{1}{\Rightarrow} b S a S \stackrel{*}{\Rightarrow} b m_{1} a m_{2} = m \\ m = \epsilon \end{vmatrix}$$

$$\Rightarrow S \stackrel{*}{\Rightarrow} m$$

$$(C.f. \text{ remarque ci-dessous})$$

Remarque : La propriété de la question d précédente s'étend naturellement pour $m=b m_1 a m_2$

f) Soit $L_{G'}$ le langage défini par la grammaire G' d'axiome S', d'alphabet $\Sigma = \{a,b\}$ et de productions : $S' \to S' a S' b S' \mid S' b S' a S' \mid \varepsilon$

Prouver que $L_{G'} \subseteq L_E$ en démontrant par induction que $S' \xrightarrow{\leq n} m \Rightarrow |m|_a = |m|_b$

Soit
$$\Pi(n) = S' \stackrel{\leq n}{\to} m \Rightarrow |m|_a = |m|_b$$

$$\Pi(1) \text{ est vrai car } S' \xrightarrow{\leq 1} m \Rightarrow m = \epsilon \Rightarrow |m|_a = |\epsilon|_a = 0$$

$$|m|_b = |\epsilon|_b = 0$$

$$|m|_b = |\epsilon|_b = 0$$

Hypothèse : $\Pi(n)$ est vrai.

Montrons que $\Pi(n+1)$ est vrai pour $n \ge 1$:

$$S' \rightarrow S'aS'bS' \xrightarrow{n} m$$
ou
$$S' \rightarrow M \Rightarrow S' \rightarrow S'bS'aS' \xrightarrow{n} m$$
ou
$$S' \rightarrow C \xrightarrow{n} m$$

Le dernier cas est impossible. Traitons le premier cas, le second étant « symétrique ».

$$S' \rightarrow S'aS'bS' \stackrel{n}{\rightarrow} m \quad \Rightarrow \quad \exists m_1, m_2, m_3 \text{ tel que } S \stackrel{\leq n}{\rightarrow} m_1 \text{ et } S \stackrel{\leq n}{\rightarrow} m_2 \text{ et } S \stackrel{\leq n}{\rightarrow} m_3 \text{ et } m = m_1 a m_2 b m_3$$

$$\Rightarrow \quad \forall i \in \{1, 2, 3\} , \quad |m_i|_a = |m_i|_b$$

$$\Rightarrow \quad |m|_a = |m_1 a m_2 b m_3|_a = 1 + \sum_{i=0}^3 |m_i|_a$$

$$\Rightarrow \quad |m|_b = |m_1 a m_2 b m_3|_b = 1 + \sum_{i=0}^3 |m_i|_b$$

$$\Rightarrow \quad |m|_b = |m|_b$$

g) Prouver que $L_G \subseteq L_{G'}$ par un raisonnement par induction (bien préciser la propriété prouvée par induction).

$$\Pi(n) = S \xrightarrow{\leq n} m \Rightarrow S \xrightarrow{\leq n} m$$

$$\Pi(1)$$
 est vrai car $S \to m \Rightarrow m = \epsilon \Rightarrow S' \to \epsilon = m$

Hypothèse : $\Pi(n)$ vrai

Montrons $\Pi(n+1)$ avec $n \ge 1$

$$S \xrightarrow{n+1} m \Rightarrow S \xrightarrow{s} bS \xrightarrow{n} m$$
ou
$$S \xrightarrow{n+1} m \Rightarrow S \xrightarrow{s} bS \xrightarrow{n} m$$
ou
$$S \xrightarrow{s} \epsilon \xrightarrow{n} m$$

Le dernier cas est impossible. Traitons le premier cas, le second étant « analogue ».

$$S \rightarrow aSbS \stackrel{n}{\rightarrow} m \implies \exists m_1, m_2 \text{ tel que } m = a m_1 b m_2 \text{ et } S \stackrel{\leq n}{\rightarrow} m_1 \text{ et } S \stackrel{\leq n}{\rightarrow} m_2$$

$$\Rightarrow \exists m_1, m_2 \text{ tel que } m = a m_1 b m_2 \text{ et } S' \stackrel{*}{\rightarrow} m_1 \text{ et } S' \stackrel{*}{\rightarrow} m_2$$

$$\Rightarrow S' \stackrel{1}{\rightarrow} S' a S' b S' \stackrel{1}{\rightarrow} a S' b S' \stackrel{*}{\rightarrow} a m_1 b m_2 = m$$

$$\Rightarrow S' \stackrel{*}{\rightarrow} m$$