

ADVERSARIAL MACHINE LEARNING

ATTACK MODEL PROBLEM FORMULATION:

Targeted Attack

Non-Targeted Attack:

$$\underset{||\delta||_2}{\operatorname{arg\,min}} \text{ s.t. } \mathcal{F}(x+\delta) \neq \mathcal{F}(x)$$

$$\underset{||\delta||_2}{\operatorname{arg\,min}} \text{ s.t. } \mathcal{F}(x+\delta) = \ell \text{ Target Class}$$

EXPLANATION FOR ADVERSARIAL EXAMPLES

- In Explaining and Harnessing Adversarial Examples Goodfellow et al. argues that adversarial examples exist because of the piece wise linearity in deep neural models
- Adversarial Examples occur at the difference between model and real class boundary.
- So purpose of the attack model is to perturb the original input so that it falls into desired region.

ATTACK MODEL PROBLEM FORMULATION:

Non-Targeted Attack:

arg min s.t.
$$\mathcal{F}(x+\delta) \neq \mathcal{F}(x)$$
 $||\delta||_2$

Targeted Attack

$$\underset{||\delta||_2}{\operatorname{arg\,min}} \text{ s.t. } \mathcal{F}(x+\delta) = \ell \text{ Target Class}$$