Tarefa Prática 2

Modelação e Caracterização de Tráfego

PG39254 - Igor Araújo PG39255 - Matheus Gonçalves PG41017 - I-Ping

Departamento de Informática Universidade do Minho Braga - Portugal 11 de março de 2020

Sumário

Sumário
Objetivo
Parte I - Captura e análise de tráfego
Parte 2 - Filtragem de tráfego
Conclusão
Resultados
Anexo I
Referências

Objetivo

O objetivo desse trabalho é realizar a captura, visualização, análise e filtragem de tráfego de rede, onde no final desse relatório o grupo vai estar mais familiarizado com as ferramentas e os conceitos de captura e análise de tráfego.

Parte I - Captura e análise de tráfego

a) Inicie a captura de tráfego na interface de rede disponível. Faça uma primeira análise comparativa dos cabeçalhos e formatos dos PDUs do protocolos TCP, UDP e IP. Identifique para cada um deles os campos geralmente utilizados na classificação de tráfego:

O protocolo TCP possui header que contém diversos campos, mas os campos que são utilizados geralmente para identificação e classificação de um tráfego são as portas de origem e destino, e da mesma maneira para o UDP. Além destas, para a melhor classificação do tráfego é utilizado também os campos da PDU da camada de redes IP, que utilizam os endereços de origem e destino IP o número de protocolo, assim é formada a 5 tupla. Em posse desses parâmetros é possível em muitos casos classificar o tráfego. Porém a cada dia novas aplicações com diversos tipos de tráfegos são enviadas através de tráfegos encriptados o que torna ainda mais difícil sua identificação e classificação. Pode-se observar tais campos mencionados na figura 1.

```
▼ Internet Protocol Version 4, Src: 172.26.63.165, Dst: 193.137.16.65

     0100 .... = Version: 4
      ... 0101 = Header Length: 20 bytes (5)
   > Differentiated Services Field: 0x00 (DSCP: CS0, ECN: Not-ECT)
     Total Length: 87
     Identification: 0xe71e (59166)
   > Flags: 0x0000
     Fragment offset: 0
     Time to live: 128
     Protocol: UDP (17)
     Header checksum: 0x95ed [validation disabled]
     [Header checksum status: Unverified]
     Source: 172.26.63.165
     Destination: 193.137.16.65
∨ User Datagram Protocol, Src Port: 49941, Dst Port: 53
     Source Port: 49941
     Destination Port: 53
     Length: 67
     Checksum: 0x28e1 [unverified]
     [Checksum Status: Unverified]
     [Stream index: 9]
    [Timestamps]
> Domain Name System (query)
```

Figura 1. Exemplificação de PDU.

- b) Utilizando o sniffer em modo de captura, proceda à invocação de várias aplicações conhecidas, nomeadamente:
 - Acesso via browser ao URL: http://marco.uminho.pt
 - Acesso ftp (anonymous): ftp.di.uminho.pt
 - Acesso em tftp para router-ext (193.136.9.33)
 - Acesso via telnet para router-ext (193.136.9.33) ou para router-lab (192.168.90.254)
 - Acesso ssh para qualquer host da sala de aula
 - Resolução de nomes usando nslookup www.uminho.pt
 - traceroute cisco.uminho.pt

e construa uma tabela onde, para cada aplicação, conste o protocolo de transporte e a porta de atendimento do servidor (quando aplicável).

Protocolo de Transporte	Porta de Origem	Porta de Destino
HTTP	6	87837
FTP	7	78
TFTP		69
TELNET	545	23
SSH	88	22
DNS	88	53
ICMP	88	53

Tabela 1. Tabela de aplicações

Parte 2 - Filtragem de tráfego

- a) Explore e descreva:
 - i A utilidade dos filtros de captura e visualização;
 - ii A sintaxe e semântica dos filtros.

Dê alguns exemplos simples de utilização dos mesmos.

INICIO RESPOSTA

- b) Baseando-se nas tramas capturadas acima (1.b), e em outros exemplos que achar conveniente, explore a utilidade e utilização dos filtros de captura e visualização, nomeadamente na captura/visualização de:
 - protocolos aplicacionais;

- protocolos de transporte;
- endereços IP;
- pacotes com valores específicos nos campos principais dos cabeçalhos de transporte e rede (ver opção "+Expression");
- pacotes com flags de iniciação e termino de conexões TCP;
 Exemplifique a exploração que realizou, indicando a sintaxe utilizada nos filtros e, muito sucintamente os resultados obtidos.

INICIO RESPOSTA

c) Para uma das aplicações que usam o protocolo TCP (e.g. Telnet router-ext), explore a opção "Analyse - Follow TCP Stream". Indique os filtros automaticamente aplicados por essa opção. Discuta eventuais fragilidades de segurança e confidencialidade dos dados.

Com a opção de filtragem via menu Analyse > Follow > TCP Stream, é possível selecionar um pacote entra vários capturados e reunir todos os pacotes que pertencem ao mesmo stream de dados. Neste caso foi feito inicialmente uma filtragem pelo protocolo Telnet, conforme visto na figura 2 abaixo:

Figura 2. Exemplo lista de stream.

Em seguida foi utilizado o menu Analyse > Follow > TCP Stream, mencionado anteriormente e com isso foi possível agrupar todos os pacotes pertencentes ao stream de pacotes pertencentes ao stream do pacote selecionado, inclusive aqueles que não são exclusivamente de protocolo Telnet, conforme visto a seguir na figura 3.

Como pode também ser visto na figura 3 o filtro que é gerado pelo menu executado basicamente é filtrar na captura pelo stream TCP de número 6 que sintaticamente possui a expressão (tcp.stream eq 6), o trecho tcp.stream indica intuitivamente que quer se filtrar por streams TCP e a parte (eq 6) indica que o stream especifico que se deseja é o de número igual (eq) a 6. E o mais interessante do resultado da ação executado pelo menu selecionado é a reconstrução e apresentação das trocas de mensagens trocadas entre origem e destino, de tal forma que seja possível capturar e entender uma troca de mensagens por completo, se forem enviados em texto claro, que é o caso do protocolo Telnet. Tal resultado é visualizado na figura 4

Figura 3. Exemplo lista de stream.

Figura 4. Montando o stream.

Os trechos apresentados marcados em azul foram recebidos pelo destinatário e em vermelho pela a origem, que está a tentar aceder ao equipamento via protocolo Telnet. Assim vemos de forma clara o password que foi digitado pelo utilizador. Desta forma mostra a fragilidade do protocolo Telnet, bem como outros protocolos que transmitem suas mensagens via texto claro, caso sejam transmitidos conteúdos sensíveis como senhas, informações bancárias e outros, tais dados estarão expostos e a comprometer a confidencialidade das informações caso haja um utilizador malicioso a sniffar os pacotes que são transmitidos pela rede.

d) Analise e identifique dados estatísticos da sua captura de pacotes.

Dentre as capturas realizadas selecionou-se a referente ainda ao Telnet. Na tela principal já é possivel verificar a quantidade de pacotes capturados no total e quantos estão sendo exibidos, quando há um filtro aplicado.

CRIAR TABELA AQUI:

Quantidade de pacotes capturados: 352

Total de pacotes exibidos: 50(14.2%)

Outra opção para se obter mais estatísticas é utilizar o menu Statistics, nele há uma lista de opções. Uma delas que é interessante é o Conversation, nesta são compiladas todas as conversas entre origm X e destindo Y para os protocolos Ethernet, Ipv4, Ipv6, TCP e UDP, sendo essas opções distribuídas em abas, conforme visto abaixo na figura 5.

Figura 5. Tabela conversation.

Outra estatistica interessante é listagem hierárquica dos protocolos, nela pode-se ver a representatividade de cada protocolo e subprotocolo no total da captura. Essa estatística pode ser visualizada na figura 6.

E outra forma de visualizar estatísticas é na opção File Properties do menu Statistics, que pode ser visualizado na figura 7 Quantidade de pacotes capturados: 352 Total de pacotes exibidos: 50(14.2%)

Conclusão

INICIO CONCLUSAO

Figura 6. Tabela de estatística hierárquica.

Resultados

Os resultados dos experimentos se encontram na tabela 1.

	Parâmet	ros	Geração			o até chegar à solução			Desempenho	
$\overline{\text{Grade}}$	Mutação	População	95%	de confiança	-	,				
3x3	0,1	10	2	1000	16	167	435	1670	$96,\!17\%$	
3x3	0,01	10	1	1000	12	132	383	1320	92,42%	
3x3	0,001	10	2	1000	40	197	430	1970	97,87%	
3x3	0	10	2	1000	32	135	404	1350	$92,\!85\%$	
3x3	0,1	100	1	6	2	3	4	300	$44,\!37\%$	
3x3	0,01	100	1	7	2	3	4	300	$44,\!37\%$	
3x3	0,001	100	1	7	2	3	4	300	$ 44,\!37\% $	
3x3	0	100	1	8	2	3	4	300	$ 44,\!37\% $	
3x3	0,1	1000	1	2	1	1	1	1000	$85,\!84\%$	
3x3	0,01	1000	1	2	1	1	1	1000	$85,\!84\%$	
3x3	0,001	1000	1	2	1	1	1	1000	$85,\!84\%$	
3x3	0	1000	1	3	1	1	1	1000	$85,\!84\%$	
4x4	0,1	10	406	1000	1000	1000	1000	10000		
4x4	0,01	10	535	1000	1000	1000	1000	10000		
4x4	0,001	10	241	1000	1000	1000	1000	10000		
4x4	0	10	185	1000	1000	1000	1000	10000		
4x4	0,1	100	5	27	11	14	17	1400	2,11%	

Tabela 2. Resultados brutos

Figura 7. File Properties.

Anexo I

Test	Metric	Plataform	Description
Download (TCP)	Download speed	Whiteboxes, Routers, Android, iOS	The download speed in Mbps when downloading (using TCP) random bytes from a test server
	missions	Whiteboxes, Routers Whiteboxes,	The number of retransmitted TCP segments/packets The download speed during the
	Sustained down- load speed Percentage of	Routers Whiteboxes, Routers Whiteboxes,	first 5 seconds of a test The download speed of the test during the last 5 seconds Download speed result as a percen-
	Percentage of Advertised	Routers Whiteboxes, Routers	tage of the user's best ever result Download speed result as a percentage of their package's advertised downstream speed
Download (HTML5)	Download speed	Web	The download speed in Mbps when downloading (using TCP) random bytes from a test server using HTML5 APIs(WebSockets and Fetch)
Download (Lightweight UDP)	Download speed	Whiteboxes, Routers	The download speed in Mbps when downloading (using UDP) from a test server, using less data than the TCP test
Download (Hard- ware accelerate-	Download speed	Broadcom-based Routers	The download speed in Mbps when downloading (using UDP) random

Referências

- [1] de Castro, L.N.: Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. CRC Press (2006).
- [2] Felleisen, M., Findler, R.B., Flatt, M.: The Racket Manifesto. LIPIcs-Leibniz. (2015).
- [3] Deb, K., Agrawal, S.: Understanding interactions among genetic algorithm parameters. Foundations of Genetic Algorithms. (1999).