Contents

1	ABSTRACT	1
2	INTRODUCTION	1
3	PROBLEM FORMULATION	2
4	${\bf ALGORITHM}\backslash {\bf METHODOLOGY}$	2
5	EVALUATION	2
6	CONCLUSION AND FUTURE PROSPECTS	6
7	Reviews from Prof. Jonathan Paxman for PhD Candidacy Proposal	9
Α	APPENDIX	11

1 ABSTRACT

250 words or less, concise summary of research conducted, results obtained, and conclusion reached <u>Background</u>: Place the question addressed in a broad context and highlight the purpose of the study.

Aim:

Approach: Methods: Describe briefly the main methods or treatments applied;

Significance: Results: Summarize the article's main findings;

<u>Conclusion</u>: Indicate the main conclusions or interpretations. The abstract should be an objective representation of the article, it must not contain results which are not presented and substantiated in the main text and should not exaggerate the main conclusions.

Examples: from "2018 Path Planning of Industrial Robot - RRT"

With the development of modern manufacturing industry, the application scenarios of industrial robot are becoming more and more complex. Manual programming of industrial robot requires a great deal of effort and time. **Therefore**, an autonomous path planning is an important development direction of industrial robot.

Among the path planning methods, the rapidly-exploring random tree (RRT) algorithm based on random sampling has been widely applied for a high-dimensional robotic manipulator because of its probability completeness and outstanding expansion. **However**, especially in the complex scenario, the existing RRT planning algorithms still have a low planning efficiency and some are easily fall into a local minimum.

To tackle these problems, this paper proposes an autonomous path planning method for the robotic manipulator based on an improved RRT algorithm. The method introduces regression mechanism to prevent over-searching configuration space. In addition, it adopts an adaptive expansion mechanism to continuously improve reachable spatial information by refining the boundary nodes in joint space, avoiding repeatedly searching for extended nodes. Furthermore, it avoids the unnecessary iteration of the robotic manipulator forward kinematics solution and its time-consuming collision detection in Cartesian space. The method can rapidly plan a path to a target point and can be accelerated out of a local minimum area to improve path planning efficiency.

The improved RRT algorithm proposed in this paper is simulated in a complex environment. The results reveal that the proposed algorithm can significantly improve the success rate and efficiency of the planning without losing other performance.

2 INTRODUCTION

- Novelty: Literature review
- Goal: What question you're trying to answer
- Motivation: Why you're asking the question

Guide: Goal: provide context and encourage reader to read the paper.

- 1. Background and motivation (1 paragraph)
- 2. Overview of the paper and contributions (1-2 paragraphs)
- 3. More details and summary of the approach
- 4. Summary of the results and conclusions.

Overview: Q4. Why should the community care?

Related work: Q1. What did the community know before you did whatever you did?

Contribution: Q3. Why exactly did you do?

We focus on....

We propose ABC algorithm...

We prove that

We demonstrate the EFG problem through x case studies (Section 3.4). We evaluate the ... (Section 4.5).

In this paper, we present discrete path planning of platonic solids including cube, tetrahedron, octahedron, icosahedron, and dodecahedron. These are types of convex polyhedra with equivalent faces constituted to congruent convex regular polygons....

Not much work has been done in path planning under considering rolling contact. [1] and [2] proposed XYZ method. In their work, they did XYZ (how they did).... However, they did not perform ABC.... => mention Types of rolling contact, and the paper of Z.Li

Literature in the path planning domain describes obstacles avoiding of two general types - continuous and discrete. **Continuous path planning**[][] **Discrete path planning**[][]. However, bla bla bla

Bla bla

On the other hand, bla bla bla...

Therefore, in this study, we present three cases of platonic path planning in terms of path finding for the same position and different orientation of initial configuration and goal configuration, direct searching for the long distance between two configuration, and bidirect search within obstacles.

Or: This paper presents a methodology for path planning of platonic solids in known environment. Bla bla ... ref Introduction from "Path planning in multi-scale ocean flows..."

A second contribution of this paper is a technique to compute

We explain our algorithms in Section II. We go over experiments and results in simulation in Section III. We verify our algorithms by executing them on a 3D model of the Statue of David and confirming that collision-free trajectories are efficiently generated. Our primary evaluation metric is time taken for the search. We discuss the performance of each individual search, as well as the advantages and short-comings. Finally, we discuss possible future steps for this work in Section IV.

3 PROBLEM FORMULATION

Here you are:

4 ALGORITHM\METHODOLOGY

<u>Version1</u>:

Example:

ALGORITHM 1: How to write algorithms

```
Result: Write here the result

initialization

while While condition do

instructions

if condition then

instructions1

instructions2

else

instructions3

end

end
```

Version2:

5 EVALUATION

<u>Simulations</u>: Our algorithm was implemented in MATLAB. Three case studies of path planning are considered for validation: same location and different orientation between initial configuration and goal configuration, long distance between two configuration, and bi-direction path finding.

Cube solid: Writing about cube solid properties

<u>Case study 1</u>: Dennis also went his own way and divided the sides of the triangles into equal-angles (as measured from the center of the geodesic), instead of equal-length pieces. This technique is slightly more effective at evenly distributing the triangles across the surface of the sphere. For example, compare an

ALGORITHM 2: Creation of edge set for a specific perfect matching number.

```
: N – number of vertices (should be even)
              I – perfect matching number, integer between 1 and (N-1)!!
   Output: E – vector of edges in sequential pairs
         [1,3,5,\ldots,\mathsf{N}-1]
                                                                                                    /* odd numbers from 1 to N-1 */
         [1, \mathtt{cumprod}(\mathsf{J})]
                                                                                                 /* cumulative double factorial */
   \mathsf{V} \leftarrow [1, 2, \dots, \mathsf{N}]
                                                                                 /* create initial list of available vertices */
   for j \leftarrow J do
       q \leftarrow (N+1-j)/2
                                                                                            /* index for 2nd to last entry in P */
        I \leftarrow \text{ceil}(I/P(q))
                                                                                              /* calculate smaller vertex index */
       E(i) \leftarrow V(end)
                                                                                              /* assign largest remaining value */
        remove element V(end)
                                                                                              /* remove largest remaining value */
        E(j+1) \leftarrow V(i)
                                                                                               /* assign smaller selected value */
       remove element V(i)
10
                                                                                           /* remove the smaller selected value */
       I \leftarrow I - ((i-1) \times P(q))
                                                              /* subtract to get index in subgraph with 2 vertices removed */
11
```

octahedron subdivided with frequency 20, using the linear technique (as outlined by the quiz) versus the angular technique Dennis used in this picture. Note how the linear technique has the triangles piling up along the edges of the original face of the octahedron, where the radial technique does a better job of spacing them out.

Figure 1: Blah Blah

<u>Case study 2</u>: Long distance between two configuration: Dennis also went his own way and divided the sides of the triangles into equal-angles (as measured from the center of the geodesic), instead of equal-length pieces. This technique is slightly more effective at evenly distributing the triangles across the surface of the sphere. For example, compare an octahedron subdivided with frequency 20, using the linear technique (as outlined by the quiz) versus the angular technique Dennis used in this picture. Note how the linear technique has the triangles piling up along the edges of the original face of the octahedron, where the radial technique does a better job of spacing them out.

Case study 3: Bi-direction path finding.

Case study 4: Cube path planning with obstacle avoiding.

(a) Long distance between two configurations

(b) Directly rolling from initial configuration to goal configuration $% \left(1\right) =\left(1\right) \left(1\right)$

Figure 2: Blah Blah 2

Figure 3: Blah Blah 3

<u>Tetrahedron solid</u>: Writing about cube solid properties

<u>Case study 1</u>: Dennis also went his own way and divided the sides of the triangles into equal-angles (as measured from the center of the geodesic), instead of equal-length pieces. This technique is slightly more effective at evenly distributing the triangles across the surface of the sphere. For example, compare an octahedron subdivided with frequency 20, using the linear technique (as outlined by the quiz) versus the angular technique Dennis used in this picture. Note how the linear technique has the triangles piling up along the edges of the original face of the octahedron, where the radial technique does a better job of spacing them out.

<u>Case study 2</u>: Long distance between two configuration: Dennis also went his own way and divided the sides of the triangles into equal-angles (as measured from the center of the geodesic), instead of equal-length pieces. This technique is slightly more effective at evenly distributing the triangles across the surface of the sphere. For example, compare an octahedron subdivided with frequency 20, using the linear technique (as outlined by the quiz) versus the angular technique Dennis used in this picture. Note how the linear technique has the triangles piling up along the edges of the original face of the octahedron, where the radial technique does a better job of spacing them out.

(a) The initial configuration is the same position but different orientation with goal configuration

(b) First four paths of the cube rolling

Figure 4: Blah Blah Tetra

(a) The initial configuration is the same position but different orientation with goal configuration

Figure 5: Blah Blah Tetra2

Case study 3: Bi-direction path finding.

Case study 4: Cube path planning with obstacle avoiding.

Octahedron solid: Writing about cube solid properties

<u>Icosahedron solid</u>: Writing about cube solid properties

<u>Dodecahedron</u>: Writing about cube solid properties

Experiments: Writing about cube solid properties

Discussion: Q2 & Q3

- Q2: What are the new things you learned after you did whatever you did?
- Q3: What exactly did you do?

• Discussion

- What your results mean
- Why it makes a difference
- Conclusion
- Broader implications
- Areas for further study

6 CONCLUSION AND FUTURE PROSPECTS

Questions: Q4. Why should the community care? Should do: - Overview of Q1, Q2, and Q3; plus - What does the community still not know?

Examples: - We have introduced a method of

- Most of our effort has focused on The results of our method often contain We believe that there is significant room for improvement by applying ABC methods to the XYZ problem.
- What do we not do?

In this study, we established a method for ... Although we focused on discrete path planning of platonic solid - regular convex polyhedra in known environment, as illustrated using ABC model and EFG example, the developed method/algorithm can be easily implemented to the complex convex polyhedra such as elipsoil ???. The contributions of this study can be summarized as follows:

Figure 6: First four paths of the cube rolling

Figure 7: Test

Refer to the Data Management Plan in Appendix A. [1]							

7 Reviews from Prof. Jonathan Paxman for PhD Candidacy Proposal

- Include a discussion of the motivation and advantages for rolling contact for in-hand manipulation
- Reduce the length of the discussion on modelling the kinematics of rolling motion
- Add a brief review of path planning for two general objects under nonholonomic constraints
- Simply the aims: remove specific techniques and algorithms, and describe the broad aim of the project general terms, and in one or two sentences. Ensure that specific objectives are framed so that the aim can be achieved.
- Include a section which describes how a discretised model will be produced such that the discrete planning algorithms described can be applied. How is this discrete model to be obtained from the continuous-time models discussed?
- If optimal planning is discussed, ensure you are specific about in what sense the solution is optimal. In some cases, optimality is not required, only a satisfactory or satisficing solution in the sense of a cost function being below some bound. In such cases, sampling-based solutions (such as RRT) are appropriate
- Please also review the writing for grammatical correctness (seek some assistance on this if needed).
- Note Robot Operating System (not Software) in Table 1.

[2], [3], [4], [5], [6].

References

- 1. Barraquand, J. & Latombe, J.-C. Robot Motion Planning: A Distributed Representation Approach. The International Journal of Robotics Research 10, 628-649. ISSN: 0278-3649. https://doi.org/10.1177/027836499101000604 (1991).
- 2. Benitez, A. & Vallejo, D. New Technique to Improve Probabilistic Roadmap Methods in Advances in Artificial Intelligence IBERAMIA 2004 (eds Lemaître, C., Reyes, C. A. & González, J. A.) (Springer Berlin Heidelberg), 514–523. ISBN: 978-3-540-30498-2.
- 3. Kavraki, L. & Latombe, J. Randomized preprocessing of configuration space for path planning: articulated robots in Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94) 3 (1994), 1764–1771 vol.3.
- 4. Chun Sheng, C. & Roth, B. On the spatial motion of a rigid body with point contact in Proceedings. 1987 IEEE International Conference on Robotics and Automation 4 (1987), 686–695.
- 5. Holland, J. H. Adaptation in Natural and Artificial Systems (In University of Michigan Press, Ann Arbor., 1975).
- 6. Alouges, F., Chitour, Y. & Long, R. A Motion-Planning Algorithm for the Rolling-Body Problem. *IEEE Transactions on Robotics* **26**, 827–836. ISSN: 1552-3098 (2010).

A APPENDIX