TRUSTED COMPUTING

Material on TCG is based on slide material from Dries Schellekens http://www.esat.kuleuven.be/cosic/seminars/slides/Trusted Platforms.ppt

Special trusted computing devices

- Secure Cryptoprocessors
 - HSM: Dedicated microprocessor system with physical protection features
 - Tamper-detecting and tamper-evident containment.
 - Automatic zeroization of secrets in the event of tampering.
 - Chain of trust boot-loader which authenticates the operating system before loading it.
 - Chain of trust operating system which authenticates application software before loading it.
 - Hardware-based capability registers, implementing a one-way privilege separation model.
 - Possibly battery backup
 - Smart cards: payment cards, SIM (UICC) cards, access/ID cards

NFC

HSM (Hardware (or Host) Security Modules)

 Special Computers with high-grade protection with purpose to to store critical information and keys

- Some can be small pci card/smartcard like
- Some can be large desktop box like

- HSM in cloud environment:
 - Barbican

HSM trustworthiness

Security Certifications

FIPS 140-2: Federal Information Processing Standard

CC-EAL: Common Criteria Evaluation Assurance Level

HSM APIs

Frequently used

- PKCS#11 (aka Cryptoki)
- OpenSSL Engine
- Microsoft CAPI
- Java Cryptography Extension

SECURITY DEVICES

SMARTCARDS RFID, NFC

SMARTCARDS

Parts of this material has been compiled from various open sources

In this lecture

- Cards of today
- Smartcard history
- Standards
- Hardware
- JavaCard
- Security issues
- Attacks on cards and crypto engines

Cards of today

- Java cards
- SIM cards
- eCash cards
- Contact / Contactless Smart Cards
- Proximity cards
- Hybrid/twin cards
- Combi cards

History

- Plastic cards: 1950
- Magnetic Stripe Card
 - Very cheap to produce
 - Can store dynamic data
 - Easy to manipulate and copy (not all always!)
- Integrated Circuit Card (ICC): 1974
 - Cheap to produce (Semiconductor technology)
 - Can store dynamic data and can compute
 - Can be hardened against unauthorised manipulation

Some Milestones for ICC cards

History (1/6)

1974 - Roland Moreno invented a card with integrated circuit

• 1979 - Release of the Bull CP8 card

History (4/6)

1991: The SIM card for GSM

Original Full size of 1991 (1FF=1 Form Factor)

 $Picture: https://en.wikipedia.org/wiki/Subscriber_identity_module\#/media/File:GSM_SIM_card_evolution.svg$

 The first SIM card was developed by the German smartcard vendor Giesecke & Devrient.

History (6/6)

- March 1999 Version 2.1 JavaCard with :
 - The JavaCard 2.1 API Specification
 - The JavaCard 2.1 Runtime Environment Specification
 - The JavaCard 2.1 Virtual Machine Specification

Standardisation (3/5)

- ISO 7816-3 (standard)
 - Protocol for asynchronous d :half-duplex
- ETSI SCP (organisation)
 - Mainly sets the standards used for (U)SIMs

Picture: https://en.wikipedia.org/wiki/Subscriber_identity_module#/media/File:GSM_SIM_card_evolution.svg

Standardisation (4/5)

- Command format
 - Protocol: APDU Application Protocol Data Unit
 - Communication between cardreader (CAD) and Smartcard
 - Command messages

APDU for Commands						APDU for Response			Compulsory		
cla	ins	P1	P2	K	data	le		data	sw1	sw2	Optional

Smart Card Acceptance Devices (CAD)

ISO 7816-4 standard

Terminals

- Have memory, logic, power
- ATMS, gas pumps

Readers

- Connect to a computer
- USB, serial, parallel port

Special security requirements for different use cases: access, payment, etc

I/O (Input/Output)

- Contact Interface
 - Vcc = 5 Volt (3 Volt)
 - Vpp not used anymore
 - CLK (3.5712, 4.9152, 10 MHz.)
 - UART for I/O

C1=Vcc	C5=GND
C2=RST	C6=Vpp
C3=CLK	C7=I/O
C4=RFU	C8=RFU

- Contactless Interface (125 kHz & 13.56 MHz)
 - Close coupled, a few millimeters
 - Proximity, less than 10 centimeter
 - Vicinity, more than 10 centimeter

Contactless Interface

- Power from CAD
- Modulation:
 - CAD → Card : AM, FM, PM
 - Card → CAD: AM
- Anti collision

Data Transmission T=0 protocol

- Byte oriented
- TPDU (Transmission Protocol Data Unit) ≈ APDU
 - CAD transmits CLA, INS, P1, P2, P3
 - Card transmits procedure byte ACK
 - Following communication depends on Command
 - Communications end with status bytes SW1, SW2
- Transmission errors detected via parity bit and corrected via second time transmission
- Poor separation of application and data link layer

Data Transmission T=1 protocol

Block oriented

P	rologue	е	Information	Epilogue		
NAD	NAD PCB LEN		APDU	EDC		
1 Byte 1 Byte 1 Byte		1Byte	0 - 254 Bytes	1-2 Bytes		

- Block types:
 - I application data
 - R receive confirmation
 - S protocol control data
- Good separation of application and data link layer which is good for multi application cards

Yet T=0 is the one that is most often used.

Transmission errors detected with EDC: LRC (XOR byte) or CRC (x¹⁶+x¹²+x⁵+1), correction via S-block + PCB

Relationship between Client/Host

- Half duplex communication
- Master-Slave
- Who's who?
 - Host master
 - Applet slave

 Thus: Smartcard is passive and waits for a command. (Except at power up when it sends on its own the ATR=Answer To Reset response

Examples – PIN Verify Command

```
CLA -80
INS -20
P1 -00
P2 -00
Lc -03
L -010203
Le -00
```

So the command is: 80 20 00 00 03 010203 00

Architecture Smart Card

Memory

- ROM Read only from the birth of the card,
 - JCRE, applications, native code
- EEPROM Persistent memory, 10 years
- RAM Transient Memory, very expensive, "fast"

Example: Infineon SLE66

- Smart card IC processor product with advanced security mechanisms (cryptographic engine, physical protection)
- Certifed according to EAL5

Filters/Sensors

These are part of the mechanisms to protect the card against attacks

- Over/under voltage
- Too slow/too fast clock
- Penetration on ASIC

Smart card Life-cycle (1/2)

Production

ROM: programing of code and constants

Initialisation

EEPROM (Electrical Erasable Programmable ROM): programming

Personalisation

EEPROM: programming of user/application specific data

JavaCard

JavaCard

- Java Card is a stripped down version of Java for smart card
 - Familiar features including objects, inheritance, packages, dynamic object creation, virtual methods, interfaces, and exceptions.

- Java Card makes multi-application cards based on a common platform possible
 - open up smart card development
 - use a real language and (re)use of standard SW development tool e.g.
 JBuilder

Bibliography

- JavaCard spec http://www.oracle.com/technetwork/java/embedded/javacard/downloa ds/releasenotes-jsp-1440109.html
- Java Card Techniques for Smart Cards, Chen, Zhiqun, Addison Wesley, 2000
- RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification and Near-Field Communication, 3rd Edition Klaus Finkenzeller, Dorte Muller (Translated by) Wiley, June 2010
- Smart Card Handbook, 4th Edition, Wolfgang Rankl, Wolfgang Effing, Wiley, June 2010

Recommended: 1088 "European" pages

ATTACKS

Two inroads for Attacks

- Traditional Mathematical Attacks
 - Algorithm modeled as ideal mathematical object
 - Attack would typically generalize
 - Attacks mostly theoretical rather than operational
- Implementation Attacks
 - Physical implementation is attacked
 - Reverse engineering
 - Probing
 - Vulnerabilities are difficult to control
 - Attacks are often operational—historically used to crack ciphers
 - Attack strategies are specific and do not generalize

Leakage Attacks

Sidechannel attacks – example in CPU

Use side information

- •Timing
- Cache misses

Simple Power Analysis

- (E.g., Kocher 1998) Attacker directly uses power consumption to learn bits of secret key. Wave forms visually examined.
- Big features like rounds of DES, square vs. multiply in RSA exponentiation, and small features, like bit value.
- Relatively easy to defend against.

Attacking Modular Exponentiation

- Modular exponentiation is at heart of public-key cryptosystems
- Square-and-multiply in RSA; analogous double-and-add in Elliptic Curve
- Our Goal: Model, devise attacks, and implement attacks!

Review Square-and-Multiply Method

Compute: Me mod N

```
exp1(M, e, N)

{

R = M

for (i = n - 2 down to 0)

{

R = R^2 \mod N

if (ith bit of e is a 1)

R = R \cdot M \mod N

Secret

Key

}

return R

}
```

Example: e = 83 → 1010011

i	е	R
-	1	М
5	0	M ²
4	1	М ⁵
3	0	М ¹⁰
2	0	М ²⁰
1	1	M 41
0	1	M ₈₃

Countermeasures for Power Analysis Attacks

- Software Countermeasures
 - Time randomization: add random delays
 - Permuted execution
 - Data Masking Techniques
- Hardware Countermeasures
 - Noise generation, power signal filtering, novel circuit designs
 - But must consume some energy to process data

Summary

There is a potential risk of DPA to recover key from a smartcard

 Today the problem is rather well understand and countermeasures against DPA are included in the crypto and card design.

There always lures the danger of fault insertion

But still: August 2015

Attack presented at BlackHat conference 2015

RADIO FREQUENCY IDENTIFICATION (RFID) AND NEAR FIELD COMMUNICATION (NFC)

In this lecture

- Automatic Identification Techniques
- What is RFID and NFC
- Brief history of RFID
- Standards
- Applications
- Security issues

Automatic Identification Technologies

- OCR (Optical Character Recognition)
- Magnetic Stripe
- Barcode
- 2D Code
- RFID (Radio Frequency Identification)
- Biometrics
- New chipless methods (SAW, Radar ...)
- NFC (Near Field Communication)
 - Radio, capacitive, inductive, ...

What is RFID?

- Radio Frequency Identification
- It is a type of automatic identification system.
- Purpose: to enable data to be transmitted by a portable device, called a tag.

History of RFID

- January 23, 1973: the first U.S. patent for an active RFID tag with rewritable memory
- Mid-1980s: it became commercialized
 - Developed a passive RFID tag to track cows

RFID - short facts ...

Advantages

- data can be modified and completed
- no ,line of sight' contact required
- several transponders can be processed at the same time
- speed and high processing rate

Disadvantages, Limitations ...

• Interference at metal surfaces, water, humidity

reading distance, environment ...

Chip producers

• EM, Infineon, Philips, STM TI, ...

NFC - Technical Basics

- Wireless Short Range Communication Technology
 - Based on RFID technology at 13,56 MHz
 - Operating distance typical up to 10 cm
 - Compatible with today's field proven contactless RFID technology
 - Data exchange rate today up to 424 kilobits/s

RFID object

NFC

Security of NFC

- RFID and NFC industry is working hard to build reliability into the infrastructure
- An important next step is to build trust
- Much discussion so far has focused on privacy
- Next to come is demand for : authentication
- Analogy: Internet from 30 years ago to present

RFID vs NFC

- Simply put
- RFID is a technology that interacts like 'Hi, here I am --look at me!'.
- NFC and contactless is technology where the interaction is like, 'I'm not talking to you until I know you're someone I should talk to", which assumes some authentication.

But this distinction can be blurred in a particular system

Mifare and FeliCa

- FeliCa is the name of Sony contact less smart card mainly used in Japan, Singapore, (US?)
- MIFARE is the name of NXP proprietary technologies based upon various levels of the ISO/IEC 14443 Type A 13.56 MHz contactless smart card standard.

But: What about Attacks

- **Skimming**: Reading legitimate tag data to produce fraudulent clones.
- Swapping: Steal RFID/NFC-tagged products then replace with counterfeit-tagged decoys.
- Denial of Service: Seeding a system with fake, but authentic acting tags.

Breaking NFC

- Search for open tools
- Hacking of MIFARE film
 - Mifare (Little Security, Despite Obscurity), Karsten Nohl, Henryk Plötz
 - https://www.youtube.com/watch?v=QJyxUvMGLr0

Mifare - variants

Droken or security weaknesses reported

- MIFARE Classic *)
- MIFARE Ultralight and MIFARE Ultralight EV1
- MIFARE Ultralight C
- MIFARE DESFIRE
- MIFARE DESFire EV1
- MIFARE Plus
- MIFARE SAM av2

*) Not supported in NFC standard but NXP chipsets often supports this.

http://www.ru.nl/ds/research/rfid/

Can we avoid expensive crypto?

- RSA and ECC are fine by have problem
 - Complex
 - Relatively slow on low-power hardware:
 - Not fast enough to be used in speed gates
- Alternatives exist
 - But beware when implementing.

Hopper-Blum Authentication

Repeat for *q* rounds.

Authenticate Bob if he passes $\approx (1 - \eta)q$ rounds.

Inner product $((a_1, ..., a_k) \cdot (x_1, ..., x_k)) \in_{\mathbb{R}} \{0, 1\}$

Security Against Bad Bob

Computer(x)

Adversary

Security Against Passive Eavesdroppers

Find an x' that allows you to answer a $(1-\eta)$ fraction of a challenges

Learning Parity with Noise (LPN)

This problem is well studied:

Crypto and learning problems

• LPN algorithm has $O(2^{\frac{\kappa}{\log k}})$ complexity

Shortest Vector Problem reduction

Concrete Security

Key Size (k)	Best Attack
64	2 ³⁵
128	2 ⁵⁶
192	2 ⁷²
224	280
256	288
288	2 ⁹⁶

Estimates!

Active Attack against HB

Adversary takes majority of z_i values to get noise-free parity bit and recovers matching coordinate in x

Extended Protocol: HB+

Security Against Bad Bob

Security against Active Attacks

Blinding sees that we get randomization in the responses and we are back to LPN