INDIVIDUAL TEST S.-T YAU COLLEGE MATH CONTESTS 2012

Probability and Statistics

Please solve 5 out of the following 6 problems, or highest scores of 5 problems will be counted.

- 1. Solve the following two problems:
- 1) An urn contains b black balls and r red balls. One of the balls was drawn at random, and putted back in the urn with a additional balls of the same color. Now suppose that the second ball drawn at random is red. What is the probability that the first ball drawn was black?
 - 2) Let (X_n) be a sequence of random variables satisfying

$$\lim_{a \to \infty} \sup_{n > 1} P(|X_n| > a) = 0.$$

Assume that sequence of random variables (Y_n) converges to 0 in probability. Prove that (X_nY_n) converges to 0 in probability.

- **2.** Solve the following two problems:
- 1) Let (Ω, \mathcal{F}, P) be a probability space, \mathcal{G} be a sub-algebra of \mathcal{F} . Assume that X is a non-negative integrable random variable. Set $Y = E[X|\mathcal{G}]$. Prove that
 - (a) $[X > 0] \subset [Y > 0]$,a.s.;
 - (b) $[Y > 0] = \text{ess.inf}\{A : A \in \mathcal{G}, [X > 0] \subset A\}.$
- 2) Let X and Y have a bivariate normal distribution with zero means, variances σ^2 and τ^2 , respectively, and correlation ρ . Find the conditional expectation E(X|X+Y).
- **3.** Suppose that $\{p(i,j): i=1,2,\cdots,m; j=1,2,\cdots,n\}$ is a finite bivariate joint probability distribution, that is,

$$p(i,j) > 0, \sum_{i=1}^{m} \sum_{j=1}^{n} p(i,j) = 1.$$

(i) Can $\{p(i,j)\}$ be always expressed as

$$p(i,j) = \sum_{k} \lambda_k a_k(i) b_k(j)$$

for some finite $\lambda_k \ge 0$, $\sum_k \lambda_k = 1$, $a_k(i) \ge 0$, $\sum_{i=1}^m a_k(i) = 1$, $b_k(j) \ge 0$, $\sum_{j=1}^n b_k(j) = 1$?

- (ii) Prove or disprove the above relation by use of conditional probability.
- **4.** Let X_1, \dots, X_m be an independent and identically distributed (i.i.d.) random sample from a cumulative distribution function (CDF) F, and Y_1, \dots, Y_n an i.i.d. random sample from a CDF G. We want to test $H_0: F = G$ versus $H_1: F \neq G$. The total sample size is N = m + n. Consider the following two nonparametric tests.
 - The Wilcoxon rank sum tests. The test proceeds by first ranking the pooled X and Y samples and then taking the sum of the ranks associated with the Y sample. Let R_{y_1}, \dots, R_{y_n} be the rankings of the sample $y_1 < \dots < y_n$ from the pooled sample in increasing order. The Wilcoxon rank sum statistic is defined as $W = \sum_{j=1}^{n} R_{y_j}$.
 - The Mann-Whitney *U*-test. Let $U_{ij} = 1$ if $X_i < Y_j$, and $U_{ij} = 0$ otherwise. The Mann-Whitney *U*-statistic is defined as $U = \sum_{i=1}^{m} \sum_{j=1}^{n} U_{ij}$. The probability $\gamma = P(X < Y)$ can be estimated as U/(mn). The decision rule is based on assessing if $\gamma = 0.5$.

Assume that there are no tied data values.

- (a) Show that $W = U + \frac{1}{2}n(n+1)$, which shows that the two test statistics differ only by a constant and yield exactly the same p-values.
- (b) Using the central limit theorem, the Wilcoxon rank sum statistic W can be converted to a Z-variable, which provides an easy-to-use approximation. The transformation is

$$Z_W = \frac{W - \mu_W}{\sigma_W},$$

where μ_W and σ_W^2 are the mean and variance of W under H_0 . Show that $\mu_W = \frac{1}{2}n(N+1)$ and $\sigma_W^2 = \frac{1}{12}mn(N+1)$.

- **5.** Let X be a random variable with $EX^2 < \infty$, and Y = |X|. Assume that X has a Lebesgue density symmetric about 0. Show that random variables X and Y are uncorrelated, but they are not independent.
- **6.** Let E_1, \dots, E_n be i.i.d. random variables with $E_i \sim \text{Exponential}(1)$. Let U_1, \dots, U_n be i.i.d. uniformly (on [0,1]) distributed random variables. Further, assume that E_1, \dots, E_n and U_1, \dots, U_n are independent.
 - (a) Find the density of $X = (E_1 + \cdots + E_m)/(E_1 + \cdots + E_n)$, where m < n.
 - (b) Show that $Y = \frac{(n-m)X}{m(1-X)}$ is distributed as the F-distribution with degrees of freedom (2m, 2(n-m))
 - (c) Find the density of $(U_1 \cdots U_n)^{-X}$.