Group Theory Quick Sheet

1. Groups

Definition 1 (Group). A group (G, \cdot) is a set with a binary operation such that for all $a, b, c \in G$: (1) (ab)c = a(bc); (2) there exists $e \in G$ with ea = ae = a; (3) for each a there exists a^{-1} with $aa^{-1} = a^{-1}a = e$. If ab = ba for all a, b, G is abelian.

Lemma 2 (Uniqueness of identity). A group has a unique identity element.

Proof. \Box

Lemma 3 (Uniqueness of inverses). Each element of a group has a unique inverse.

Proof.

Lemma 4 (Inverse of a product). For all $a, b \in G$, $(ab)^{-1} = b^{-1}a^{-1}$.

Proof.

Definition 5 (Order of an element). The *order* of $a \in G$ is the least $m \ge 1$ such that $a^m = e$ (if it exists); otherwise the order is ∞ .

Definition 6 (Cyclic groups). A group G is cyclic if $G = \langle g \rangle = \{g^n : n \in \mathbb{Z}\}$ for some $g \in G$.

2. Subgroups and Homomorphisms

Definition 7 (Subgroup). A nonempty subset $H \subseteq G$ is a *subgroup* (written $H \subseteq G$) if for all $a, b \in H$, $ab^{-1} \in H$.

Definition 8 (Normal subgroup). A subgroup $N \leq G$ is normal (written $N \leq G$) if $gNg^{-1} = N$ for all $g \in G$.

Definition 9 (Homomorphism). A map $\varphi: G \to H$ is a homomorphism if $\varphi(ab) = \varphi(a)\varphi(b)$ for all $a, b \in G$.

Proposition 10 (Kernel and image). For a homomorphism $\varphi : G \to H$, the kernel $\operatorname{Ker} \varphi = \{g \in G : \varphi(g) = e_H\}$ and the image $\operatorname{Im} \varphi = \varphi(G)$ are subgroups; moreover $\operatorname{Ker} \varphi \subseteq G$.

Proof.

Proposition 11 (Injectivity criterion). A homomorphism $\varphi : G \to H$ is injective if and only if $\operatorname{Ker} \varphi = \{e\}.$

Proof.

Definition 12 (Cosets and index). For $H \leq G$ and $g \in G$, the *left coset* is $gH = \{gh : h \in H\}$. The index [G : H] is the number of left cosets.

Theorem 13 (Lagrange's Theorem). If G is finite and $H \leq G$, then |H| divides |G| and [G:H] = |G|/|H|.

Proof.

Corollary 14 (Order divides group order). If G is finite and $a \in G$, then $ord(a) \mid |G|$.

Proof.

Definition 15 (Quotient group). If $N \subseteq G$, the set of cosets G/N is a group with (gN)(hN) = (gh)N.

3. Isomorphism Theorems

Theorem 16 (First Isomorphism Theorem). For a homomorphism $\varphi: G \to H$, there is a natural isomorphism $G/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$.

Proof.

Theorem 17 (Second Isomorphism Theorem). If $A \leq G$ and $N \subseteq G$, then $A \cap N \subseteq A$, $AN \subseteq G$, and $A/(A \cap N) \cong AN/N$.

Proof.

Theorem 18 (Third Isomorphism Theorem). If $N \subseteq G$ and $K \subseteq G$ with $N \subseteq K$, then $K/N \subseteq G/N$ and $(G/N)/(K/N) \cong G/K$.

Proof.

4. Group Actions

Definition 19 (Group action). An action of G on a set X is a map $G \times X \to X$, $(g, x) \mapsto g \cdot x$, such that $e \cdot x = x$ and $g \cdot (h \cdot x) = (gh) \cdot x$.

Definition 20 (Orbit and stabilizer). For $x \in X$, the *orbit* is $Orb(x) = \{g \cdot x : g \in G\}$ and the *stabilizer* is $Stab(x) = \{g \in G : g \cdot x = x\}$.

Theorem 21 (Orbit–Stabilizer). If G is finite and acts on X, then $|\operatorname{Orb}(x)| = [G : \operatorname{Stab}(x)]$ and $|\operatorname{Orb}(x)| |\operatorname{Stab}(x)| = |G|$.

Proof.

Theorem 22 (Class equation). For the conjugation action of G on itself,

$$|G| = |Z(G)| + \sum [G : C_G(g_i)],$$

where Z(G) is the center, $C_G(g)$ the centralizer, and the sum runs over representatives of noncentral conjugacy classes.

Proof.

Remark 23 (Burnside's lemma (Cauchy–Frobenius)). For a finite action $G \curvearrowright X$, the number of orbits is

 $\#(X/G) = \frac{1}{|G|} \sum_{g \in G} |\{x \in X : g \cdot x = x\}|.$

5. Sylow Theory

Definition 24 (Sylow <i>p</i> -subgroup). Let $ G = p^n m$ with $p \nmid m$. A Sylow <i>p</i> -subgroup is a subgroup of order p^n . The set $\mathrm{Syl}_p(G)$ has size $n_p = \mathrm{Syl}_p(G) $.
Theorem 25 (Sylow existence). If $ G = p^n m$ with $p \nmid m$, then G has a subgroup of order p^n .
Proof.
Theorem 26 (Sylow conjugacy). Any two Sylow p-subgroups of G are conjugate.
Proof. \Box
Theorem 27 (Sylow counting). The number n_p of Sylow p-subgroups satisfies $n_p \equiv 1 \pmod{p}$ and $n_p \mid m$.
Proof.
Theorem 28 (Cauchy's Theorem). If a prime p divides $ G $, then G contains an element of order p .
Proof. \Box
Corollary 29 (Normal Sylow criterion). If $n_p = 1$, then the unique Sylow p-subgroup is normal in G .
Proof. \Box
6. Miscellaneous Facts
Theorem 30 (Subgroups of cyclic groups). Every subgroup of a cyclic group is cyclic.
Proof.
Theorem 31 (Subgroups by divisors). If G is cyclic of order n , then for each $d \mid n$ there is a unique subgroup of order d .
Proof.
i vooj.
Proposition 32 (Normalizer test for normality). A subgroup $N \leq G$ is normal if and only if $gNg^{-1} = N$ for all $g \in G$.
Proposition 32 (Normalizer test for normality). A subgroup $N \leq G$ is normal if and only if
Proposition 32 (Normalizer test for normality). A subgroup $N \leq G$ is normal if and only if $gNg^{-1} = N$ for all $g \in G$.
Proposition 32 (Normalizer test for normality). A subgroup $N \leq G$ is normal if and only if $gNg^{-1} = N$ for all $g \in G$. Proof. Proposition 33 (Centralizer index and class size). For $x \in G$, the size of the conjugacy class of x
Proposition 32 (Normalizer test for normality). A subgroup $N \leq G$ is normal if and only if $gNg^{-1} = N$ for all $g \in G$. Proof. Proposition 33 (Centralizer index and class size). For $x \in G$, the size of the conjugacy class of x equals $[G:C_G(x)]$.
Proposition 32 (Normalizer test for normality). A subgroup $N \leq G$ is normal if and only if $gNg^{-1} = N$ for all $g \in G$. Proof. Proposition 33 (Centralizer index and class size). For $x \in G$, the size of the conjugacy class of x equals $[G:C_G(x)]$. Proof. Proposition 34 (Coprime orders multiply in abelian groups). If G is abelian and $a,b \in G$ have

Remark 35 (Handy notation). Z(G) center, $C_G(x)$ centralizer, $N_G(H)$ normalizer, $\operatorname{Aut}(G)$ auto-

morphism group, $\operatorname{Inn}(G)$ inner automorphisms.