

COMP9020

Foundations of Computer Science

Lecture 7: Functions

Applications of Functions and Big-O notation

- Functions, methods, procedures in programming
- Computer programs "are" functions
- Graphical transformations
- Algorithmic analysis

Outline

Functions recap

Functional composition

Inverse functions

Matrices

Introduction to Big-O notation

Outline

Functions recap

Functional composition

Inverse functions

Matrices

Introduction to Big-O notation

Properties of Binary Relations $R \subseteq S \times T$

A binary relation $R \subseteq S \times T$ is:

Definition				
(Fun)	functional	For all $s \in S$ there is		
		at most one $t \in \mathcal{T}$ such that $(s,t) \in \mathcal{R}$		
(Tot)	total	For all $s \in S$ there is		
		at least one $t \in \mathcal{T}$ such that $(s,t) \in \mathcal{R}$		
(Inj)	injective	For all $t \in \mathcal{T}$ there is		
		at most one $s \in S$ such that $(s,t) \in R$		
(Sur)	surjective	For all $t \in T$ there is		
		at least one $s \in S$ such that $(s,t) \in R$		
(Bij)	bijective	Injective and surjective		

Functions

Definition

A **function**, $f: S \to T$, is a binary relation $f \subseteq S \times T$ that satisfies (Fun) and (Tot). That is, for all $s \in S$ there is *exactly one* $t \in T$ such that $(s, t) \in f$.

We write f(s) for the unique element related to s.

We write T^S for the set of all functions from S to T.

Graphical representation

Functions

 $f:S\longrightarrow T$ describes pairing of the sets: it means that f assigns to every element $s\in S$ a unique element $t\in T$. To emphasise where a specific element is sent, we can write $f:x\mapsto y$, which means the same as f(x)=y

		Symbol	
S	domain of f	Dom(f)	(inputs)
Τ	co-domain of f	Codom(f)	(possible outputs)
<i>f</i> (<i>S</i>)	image of f	Im(f)	(actual outputs)
$= \{ f$	$(x): x \in Dom(f) \ \}$		

Example

Example

The **identity** function on S

$$\operatorname{Id}_{S}(x) = x, x \in S$$

- $Dom(Id_S) = S$
- $Codom(Id_S) = S$
- $Im(Id_S) = S$

Important!

The domain and co-domain are critical aspects of a function's definition.

$$f: \mathbb{N} \to \mathbb{Z}$$
 given by $f(x) = x^2$

and

$$g: \mathbb{N} \to \mathbb{N}$$
 given by $g(x) = x^2$

are different functions even though they have the same behaviour!

Injective functions

Function $f: S \to T$ is called an **injection** or **1-1** (**one-to-one**) if it satisies (Inj)

Examples (of functions that are injective)

- $f: \mathbb{N} \longrightarrow \mathbb{N}$ with $f(x) \mapsto x$
- set complement (for a fixed universe)

Examples (of functions that are not injective)

- absolute value, floor, ceiling
- length of a word

Graphical representation: Injective

Surjective functions

Function $f: S \to T$ is called a **surjection** or **onto** if it satisies (Sur). That is, if

$$Im(f) = Codom(f)$$

Examples (of functions that are surjective)

- $f: \mathbb{N} \longrightarrow \mathbb{N}$ with $f(x) \mapsto x$
- Floor, ceiling

Examples (of functions that are not surjective)

- $f: \mathbb{N} \longrightarrow \mathbb{N}$ with $f(x) \mapsto x^2$
- $f: \{a, \ldots, e\}^* \longrightarrow \{a, \ldots, e\}^*$ with $f(w) \mapsto awe$

Graphical representation: Surjective

Functions on finite sets

NB

For a **finite** set S and $f: S \longrightarrow S$ the properties

- 1 surjective, and
- 2 injective

are equivalent.

Outline

Functions recap

Functional composition

Inverse functions

Matrices

Introduction to Big-O notation

Composition of functions

Question

If $f: S \to T$ and $g: T \to U$ are functions, then f; g is a relation. When is it a function?

Composition of Functions

Definition

If $f:S\to T$ and $g:T\to U$ then the **composition of** f **and** g, written $g\circ f$, is the function given by

$$(g \circ f)(x) = g(f(x)).$$

That is, $g \circ f = f$; g.

Facts

Composition is associative

$$h \circ (g \circ f) = (h \circ g) \circ f$$

• For $g: S \to T$

$$g \circ \mathsf{Id}_S = g$$
 and $\mathsf{Id}_T \circ g = g$.

Iteration of Functions

If a function maps a set into itself, i.e. when Dom(f) = Codom(f), the function can be composed with itself — **iterated**

$$f \circ f, f \circ f \circ f, \ldots$$
, also written f^2, f^3, \ldots

Exercises

Exercises

Let $f, g : \mathbb{Z} \to \mathbb{Z}$ be given by $f(n) = n^2 + 3$ and g(n) = 5n - 11. What is:

- $f \circ g(n) =$
- $g \circ f(n) =$
- $g^2(n) =$

Outline

Functions recap

Functional composition

Inverse functions

Matrices

Introduction to Big-O notation

Converse of a function

Question

 f^{\leftarrow} is a relation; when is it a function?

Inverse Functions

Definition

If f^{\leftarrow} is a function then it is called the **inverse function**; denoted f^{-1} .

NB

 f^{-1} only exists if f is a bijection.

 f^{\leftarrow} always exists.

 f^{-1} is the procedure of "undoing" f.

Properties of the inverse

Fact

If $f: S \to T$ and f^{-1} exists then:

$$f^{-1} \circ f = Id_S$$
 and $f \circ f^{-1} = Id_T$.

Conversely, if $f:S\to T$ and $g:T\to S$ and

$$g \circ f = Id_S$$
 and $f \circ g = Id_T$

then f^{-1} exists and is equal to g.

Exercises

Exercises

RW: 1.7.5 f and g are 'shift' functions $\mathbb{N} \longrightarrow \mathbb{N}$ defined by f(n) = n + 1, and $g(n) = \max(0, n - 1)$

- (c) Is f injective? surjective?
- (d) Is g injective? surjective?
- (e) Do f and g commute, i.e. $\forall n ((f \circ g)(n) = (g \circ f)(n))$?

Exercises

Exercises

RW: 1.7.6 $\Sigma = \{a, b, c\}$

(c) Is length : $\Sigma^* \longrightarrow \mathbb{N}$ surjective?

(d) length $(2) \stackrel{?}{=}$

RW: 1.7.12 Verify that $f: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R} \times \mathbb{R}$ defined by

 $\overline{f(x,y)} = (x+y,x-y)$ is invertible.

Outline

Functions recap

Functional composition

Inverse functions

Matrices

Introduction to Big-O notation

Matrices

An $m \times n$ matrix is a rectangular array with m horizontal rows and n vertical columns.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

NB

Matrices are important objects in Computer Science, e.g. for

- optimisation
- graphics and computer vision
- cryptography
- information retrieval and web search
- machine learning

Matrix Motivation

Solving linear equations:

$$5x = 15$$

5x + 3y = 15

$$A = \begin{pmatrix} 5 & 3 \\ 4 & -2 \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \qquad \mathbf{b} = \begin{pmatrix} 15 \\ 12 \end{pmatrix}$$
$$A\mathbf{x} = \mathbf{b}$$
$$x' = 5x + 3y \qquad x'' = 2x' + y' \\ y' = 4x - 2y \qquad y'' = 3x' + 3y'$$
$$A = \begin{pmatrix} 5 & 3 \\ 4 & -2 \end{pmatrix} \qquad \mathbf{x} = \begin{pmatrix} x \\ y \end{pmatrix} \qquad \mathbf{x}' = \begin{pmatrix} x' \\ y' \end{pmatrix}$$

 $B = \begin{pmatrix} 2 & 1 \\ 3 & 3 \end{pmatrix} \qquad \mathbf{x}'' = \begin{pmatrix} x'' \\ y'' \end{pmatrix}$

Basic Matrix Operations

The transpose A^T of an $m \times n$ matrix $A = [a_{ii}]$ is the $n \times m$ matrix whose entry in the *i*th row and *j*th column is a_{ii} .

Example

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & 4 \\ 3 & 2 & -1 & 2 \\ 4 & 0 & 1 & 3 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & 4 \\ 3 & 2 & -1 & 2 \\ 4 & 0 & 1 & 3 \end{bmatrix} \qquad \mathbf{A}^{\mathsf{T}} = \begin{bmatrix} 2 & 3 & 4 \\ -1 & 2 & 0 \\ 0 & -1 & 1 \\ 4 & 2 & 3 \end{bmatrix}$$

NB

A matrix M is called symmetric if $M^T = M$

The **sum** of two $m \times n$ matrices $\mathbf{A} = [a_{ij}]$ and $\mathbf{B} = [b_{ij}]$ is the $m \times n$ matrix whose entry in the *i*th row and *j*th column is $a_{ij} + b_{ij}$.

Example

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & 4 \\ 3 & 2 & -1 & 2 \\ 4 & 0 & 1 & 3 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 1 & 0 & 5 & 3 \\ 2 & 3 & -2 & 1 \\ 4 & -2 & 0 & 2 \end{bmatrix}$$

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 3 & -1 & 5 & 7 \\ 5 & 5 & -3 & 3 \\ 8 & -2 & 1 & 5 \end{bmatrix}$$

Fact

$$A + B = B + A$$
 and $(A + B) + C = A + (B + C)$

Given $m \times n$ matrix $\mathbf{A} = [a_{ii}]$ and $c \in \mathbb{R}$, the scalar product $c\mathbf{A}$ is the $m \times n$ matrix whose entry in the *i*th row and *j*th column is $c \cdot a_{ii}$.

Example

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & 4 \\ 3 & 2 & -1 & 2 \\ 4 & 0 & 1 & 3 \end{bmatrix}$$

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 & 4 \\ 3 & 2 & -1 & 2 \\ 4 & 0 & 1 & 3 \end{bmatrix} \qquad 2\mathbf{A} = \begin{bmatrix} 4 & -2 & 0 & 8 \\ 6 & 4 & -2 & 4 \\ 8 & 0 & 2 & 6 \end{bmatrix}$$

The **product** of an $m \times n$ matrix $\mathbf{A} = [a_{ij}]$ and an $n \times p$ matrix $\mathbf{B} = [b_{jk}]$ is the $m \times p$ matrix $\mathbf{C} = [c_{ik}]$ defined by

$$c_{ik} = \sum_{j=1}^n a_{ij}b_{jk}$$
 for $1 \le i \le m$ and $1 \le k \le p$

Example

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \cdot \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{bmatrix}$$

NB

The rows of **A** must have the same number of entries as the columns of **B**.

The product of a $1 \times n$ matrix and an $n \times 1$ matrix is usually called the inner product of two n-dimensional vectors.

Example

Consider

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \qquad \mathbf{B} = \begin{bmatrix} 2 & -1 \\ -6 & 3 \end{bmatrix}$$

Calculate AB, BA

$$\mathbf{AB} = \begin{bmatrix} -10 & 5 \\ -20 & 10 \end{bmatrix} \qquad \mathbf{BA} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

NB

In general, $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \cdot \mathbf{A}$

Example: Computer Graphics

Rotating an object w.r.t. the x axis by degree α :

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix} \cdot \begin{bmatrix} 5 & 5 & 7 & 7 & 5 & 7 & 5 & 7 \\ 1 & 1 & 1 & 1 & 3 & 3 & 3 & 3 \\ 9 & 7 & 7 & 9 & 7 & 7 & 9 & 9 \end{bmatrix}$$

Outline

Functions recap

Functional composition

Inverse functions

Matrices

Introduction to Big-O notation

Motivation

Want to compare functions, particularly functions from $\mathbb N$ to $\mathbb R$

Options:

- Equality: f(n) = g(n) for all n
- (Pointwise) comparison: $f(n) \le g(n)$ for all n
- (Almost all) comparison: $f(n) \le g(n)$ for all but finitely many n
- Asymptotic growth: $\lim_{n\to\infty} \frac{f(n)}{g(n)}$

37

Motivating example: Algorithmic analysis

Example

Want to compare algorithms – particularly ones that can solve *arbitrarily large* instances.

We would like to be able to talk about the resources (running time, memory, energy consumption) required by a program/algorithm as a function f(n) of some parameter n (e.g. the size) of its input.

e.g. How long does a given sorting algorithm take to run on a list of n elements?

Motivating example: Algorithmic analysis

Issues

- The exact resources required for an algorithm are difficult to pin down. Heavily dependent on:
 - Environment the program is run in (hardware, choice of language, external factors, etc)
 - Choice of inputs used
- Cost functions can be complex, e.g.

$$2n\log(n) + (n-100)\log(n)^2 + \frac{1}{2^n}\log(\log(n))$$

Need to identify the "important" aspects of the function.

Solution

Look at the **asymptotic growth**: how do the costs **scale** as n gets large?

"Big-O" Asymptotic Upper Bounds

Definition

Let $f,g:\mathbb{N}\to\mathbb{R}_{\geq 0}$. We say that g is asymptotically less than f (or: f is an upper bound of g) if there exists $n_0\in\mathbb{N}$ and a real constant c>0 such that for all $n\geq n_0$,

$$g(n) \leq c \cdot f(n)$$

Write O(f(n)) for the class of all functions g that are asymptotically less than f.

Example

$$g(n) = 3n + 1 \implies g(n) \le 4n$$
, for all $n \ge 1$

Therefore,
$$3n + 1 \in O(n)$$

Example

$$\frac{1}{10}n^2 \in O(n^2) \qquad 10n\log n \in O(n\log n) \qquad O(n\log n) \subsetneq O(n^2)$$

The traditional notation has been

$$g(n) = O(f(n))$$

instead of $g(n) \in O(f(n))$.

It allows one to use O(f(n)) or similar expressions as part of an equation; of course these 'equations' express only an approximate equality. Thus,

$$T(n) = 2 \cdot T\left(\frac{n}{2}\right) + O(n)$$

means

"There exists a function $f(n) \in O(n)$ such that $T(n) = 2T(\frac{n}{2}) + f(n)$."

Alternative definition

Fact

$$f(n) \in O(g(n))$$
 if and only if $\lim_{n \to \infty} \frac{f(n)}{g(n)} < \infty$.

Properties

Fact

Suppose $f(n) \in O(g(n))$, $g(n) \in O(h(n))$ and $j(n) \in O(k(n))$.

- Then:
 - $f(n) \in O(h(n))$
 - $f(n) + j(n) \in O(g(n) + k(n))$
 - $f(n) \cdot j(n) \in O(g(n) \cdot k(n))$

Examples

Examples

$$5n^2 + 3n + 2 \in O(n^2)$$

$$n^3 + 2^{100}n^2 + 2n + 2^{2^{100}} \in O(n^3)$$

Generally, for constants $a_k \dots a_0$,

$$a_k n^k + a_{k-1} n^{k-1} + \ldots + a_0 \in O(n^k)$$

44

"Big-Omega" Asymptotic Lower Bounds

Definition

Let $f,g:\mathbb{N}\to\mathbb{R}$. We say that g is asymptotically greater than f (or: f is an lower bound of g) if there exists $n_0\in\mathbb{N}$ and a real constant c>0 such that for all $n\geq n_0$,

$$g(n) \ge c \cdot f(n)$$

Write $\Omega(f(n))$ for the class of all functions g that are asymptotically greater than f.

Example

$$g(n) = 3n + 1 \implies g(n) \ge 3n$$
, for all $n \ge 1$

Therefore,
$$3n + 1 \in \Omega(n)$$

"Big-Theta" Notation

Definition

Two functions f, g have the same order of growth if they scale up in the same way:

There exists $n_0 \in \mathbb{N}$ and real constants c > 0, d > 0 such that for all $n \geq n_0$,

$$c \cdot f(n) \leq g(n) \leq d \cdot f(n)$$

Write $\Theta(f(n))$ for the class of all functions g that have the same order of growth as f.

If $g \in O(f)$ (or $\Omega(f)$) we say that f is an upper bound (lower bound) on the order of growth of g; if $g \in \Theta(f)$ we call it a **tight bound**.

Properties

Observe that, somewhat symmetrically

$$g \in \Theta(f) \iff f \in \Theta(g)$$

We obviously have

$$\Theta(f(n)) \subseteq O(f(n))$$
 and $\Theta(f(n)) \subseteq \Omega(f(n))$,

in fact

$$\Theta(f(n)) = O(f(n)) \cap \Omega(f(n)).$$

At the same time the 'Big-Oh' is not a symmetric relation

$$g \in O(f) \not\Rightarrow f \in O(g),$$

but

$$g \in O(f) \Leftrightarrow f \in \Omega(g)$$

Observations

Fact

• For all $k, \epsilon > 0$:

$$O((\log n)^k) \subsetneq O(n^{\epsilon})$$
 and $O(n^k) \subsetneq O((1+\epsilon)^n)$.

• All logarithms have the same order, irrespective of base:

$$O(\log_2 n) = O(\log_3 n) = \ldots = O(\log_{10} n) = \ldots$$

• Exponentials to different bases have different orders:

$$O(r^n) \subsetneq O(s^n) \subsetneq O(t^n) \dots$$
 for $r < s < t \dots$

Similarly for polynomials

$$O(n^k) \subsetneq O(n^l) \subsetneq O(n^m) \dots$$
 for $k < l < m \dots$

Examples

Examples

Here are some of the most common functions occurring in the analysis of the performance of programs (algorithm complexity), arranged in increasing asymptotic growth:

1,
$$\log \log n$$
, $\log n$, \sqrt{n} , $\sqrt{n}(\log n)$, n , $n(\log \log n)$, $n \log n$, $n\sqrt{n}$, n^2 , $n^2 \log n$, n^3 , n^{12} , $2^{\sqrt{n}}$, 1.01^n , 2^n , 3^n , $n!$, n^n , 2^{n^2} , ...

NB

 $O(1) \equiv const$, although technically it could be any function that varies between two constants c and d.

49

Exercises

Exercises

True or false?

RW: 4.3.5 (a)
$$2^{n+1} \in O(2^n)$$

(b)
$$(n+1)^2 \in O(n^2)$$

(c)
$$2^{2n} \in O(2^n)$$

(d)
$$(200n)^2 \in O(n^2)$$

RW: 4.3.6 (b)
$$\log(n^{73}) \in O(\log n)$$

(c)
$$\log(n^n) \in O(\log n)$$

(d)
$$(\sqrt{n}+1)^4 \in O(n^2)$$