							Forest Kobayashi
Problem	5.6(4)	5.11	5.15(no normal)	5.17	5.23	Total	Math 147
Points			, , ,				HW 5 Solutions 03/13/2019

5.6(4). Show that \mathbb{R}^2 with the standard topology is normal.

Solution. First, we introduce some notation.

Notational Note: Let (X,\mathcal{F}) be a topological space. Let $x \in X$, and let $Y \subset X$. Then define

$$d(x,Y) = \inf_{y \in Y} d(x,y).$$

Main Proof: Let A, B be disjoint closed subsets of \mathbb{R}^2 . For each $a \in A$, $b \in B$, let

$$\epsilon_a = \frac{d(a,B)}{2} \qquad \qquad \epsilon_b = \frac{d(b,A)}{2}$$

and note that by part (1), $\epsilon_a, \epsilon_b > 0$. Define

$$U = \bigcup_{a \in A} B_{\epsilon_a}(a) \qquad \qquad V = \bigcup_{b \in B} B_{\epsilon_b}(b)$$

and observe $U, V \in \mathcal{I}_{std}$, with $A \subset U$ and $B \subset V$. We want to show $U \cap V = \emptyset$.

Suppose, to obtain a contradiction, that $U \cap V \neq \emptyset$. Let $x \in U \cap V$. Then there exist $a \in A$, $b \in B$ such that $x \in B_{\epsilon_a}(a) \cap B_{\epsilon_b}(b)$. It follows that

$$d(a,b) \le d(a,x) + d(x,b)$$

$$< \epsilon_a + \epsilon_b$$
(*)

WLOG, suppose $\epsilon_b \leq \epsilon_a$. Then

$$d(a,b) < 2\epsilon_a$$

$$= d(a,B)$$

$$\leq d(a,b)$$

so d(a,b) < d(a,b), a contradiction.¹ Hence, $U \cap V = \emptyset$, so U,V are disjoint open sets containing A and B respectively. Since A,B were arbitrarily chosen, it follows that \mathbb{R}^2 is normal, as desired.

¹The align environment given should be read as " $d(a,b) < 2\epsilon_a = d(a,B) \le d(a,b)$," not as $d(a,b) < 2\epsilon_a$, d(a,b) = d(a,B), and so on. Also, here our contradiction is d(a,b) < d(a,b), but we could also just skip (*) and directly contradict the triangle inequality by d(a,x) + d(x,b) < d(a,b). I prefer the former, just because it better matches arguments seen in Analysis.

5.11 (The Incredible Shrinking Theorem). A topological space X is normal if and only if for each pair of open sets U, V such that $U \cup V = X$, there exist open sets U', V' such that $\overline{U'} \subset U$ and $\overline{V'} \subset V$, and $U' \cup V' = X$.

I'll provide two solutions: one using Theorem 5.9, another using Theorem 5.10.

Solution 1: First, we prove a lemma. The (\Longrightarrow) direction will follow as a corollary.

Lemma 1. Let (X,\mathcal{T}) be normal. Let $U,V\in\mathcal{T}$ such that $U\cup V=X$. Then there exists $U' \in \mathcal{T}$ such that $\overline{U'} \subset U$, and $U' \cup V = X$.

I'll provide two proofs. The first uses theorem 5.9 (and is hence much cleaner), while the second uses the definition of normality (and is hence much longer / more involed). I included both, so that people who tried to use normality directly could see how to proceed.

Proof 1: Note that V^c is closed, and $V^c \subset U$. Then by theorem 5.9, there exists $U' \in \mathcal{T}$ such that

$$V^c \subset U' \subset \overline{U'} \subset U$$
.

Note that $V^c \subset U' \implies U' \cup V = X$. Hence, we have our desired U'.

Proof 2: $U, V \in \mathcal{T}$ implies U^c and V^c are closed. Observe that

$$U^c \cap V^c = (U \cup V)^c$$
$$= \varnothing,$$

hence U^c, V^c are disjoint closed sets. Then by definition of normality, there exist disjoint open sets U', V' such that

$$U^c \subset V'$$
 and $V^c \subset U'$.

Note that $V^c \subset U' \implies U' \cup V = X$. It remains to show $\overline{U'} \subset U$. Since $U' \cap V' = \varnothing$ and $U^c \subset V'$, we have $U' \subset V'^c \subset U$ and because V'^c is closed, $\overline{U'} \subset V'^c$ as well. This proves the claim.

$$U' \subset V'^c \subset U$$

Now, the main proof.

 (\Rightarrow) : Suppose X is normal.

Let $U, V \in \mathcal{T}$ such that $U \cup V = X$. Then by the lemma, there exists $U' \in \mathcal{T}$ such that $\overline{U'} \subset U$, and $U' \cup V = X$. Now, applying the lemma to the pair (V, U'), we obtain the desired V'.

 (\Leftarrow) : Suppose that $\forall U, V \in \mathcal{T}$ s.t. $U \cup V = X$, there exists $U', V' \in \mathcal{T}$ s.t. $\overline{U'} \subset U$, $\overline{V'} \subset V$, and $U' \cup V' = X$. WTS X is normal. We will apply Theorem 5.9.

Let $A \subset X$ be an arbitrary closed set, and let $U \in \mathcal{T}$ such that $A \subset U$. Observe that A^c is open, and $U^c \subset A^c$. It follows that $X = U \cup A^c$. Then by hypothesis, there exists $U', V' \in \mathcal{T}$ such that

$$\overline{U'} \subset U$$
 $\overline{V'} \subset A^c$

and $U' \cup V' = X$. From this it follows that $(U')^c \subset V'$, hence

$$(U')^c \subset V' \subset A^c$$
.

²I'm just proving it as a lemma so that I can offer two proofs. In an actual writeup, I'd just use one of them.

³At least one such U exists, namely X, hence we can freely declare U in this manner.

Taking the complement, we have

$$A \subset (V')^c \subset U'$$
,

and since $\overline{U'} \subset U$, this yields

$$A \subset U' \subset \overline{U'} \subset U$$

as desired. Since A and U were arbitrarily chosen, Theorem 5.9 implies X is normal. \checkmark

Solution 2: We employ Theorem 5.10.

 (\Rightarrow) : Suppose X is normal. Let $U, V \in \mathcal{T}$ such that $U \cup V = X$. Then U^c, V^c are closed, and by DeMorgan's Laws,

$$U^c \cap V^c = (U \cup V)^c = \varnothing,$$

hence they are disjoint as well. Then by Theorem 5.10, there exist disjoint $U_0, V_0 \in \mathcal{T}$ such that

$$U^c \subset U_0$$

$$V^c \subset V_0$$

$$U^c \subset U_0$$
 $V^c \subset V_0$ $\overline{U_0} \cap \overline{V_0} = \varnothing.$

Because $U_0 \subset \overline{U_0}$ and $V_0 \subset \overline{V_0}$, taking complements yields

$$(\overline{U_0})^c \subset (U_0)^c \subset U$$

$$(\overline{V_0})^c \subset (V_0)^c \subset V$$

$$(\overline{U_0})^c \subset (U_0)^c \subset U$$
 $(\overline{V_0})^c \subset (V_0)^c \subset V$ $(\overline{U_0})^c \cup (\overline{V_0})^c = X.$

Let $U' = (\overline{U_0})^c$ and $V' = (\overline{V_0})^c$, and note that these are open. Then the above can be reexpressed as

$$U' \subset (U_0)^c \subset U$$

$$U' \subset (U_0)^c \subset U$$
 $V' \subset (V_0)^c \subset V$ $U' \cup V' = X$,

$$U' \cup V' = X$$

and since $(U_0)^c$, $(V_0)^c$ are closed, Theorem 3.20 implies

$$U' \subset \overline{U'} \subset (U_0)^c \subset U$$

$$U' \subset \overline{U'} \subset (U_0)^c \subset U$$
 $V' \subset \overline{V'} \subset (V_0)^c \subset V$

as desired.

 (\Leftarrow) : Suppose $\forall U, V \in \mathcal{T}$ s.t. $U \cup V = X$, there exists $U', V' \in \mathcal{T}$ s.t. $\overline{U'} \subset U$, $\overline{V'} \subset V$, and $U' \cup V' = X$. WTS X is normal.

Let A, B be arbitrary disjoint closed sets. Then $U = A^c$, $V = B^c$ are open, and $U \cup V = X$ (DeMorgan's Laws).

By hypothesis, there exists $U', V' \in \mathcal{T}$ such that

$$\overline{U'} \subset U$$

$$\overline{V'} \subset V$$

$$\overline{U'} \subset U$$
 $\overline{V'} \subset V$ $U' \cup V' = X$.

Since $U' \subset \overline{U'}$ and $V' \subset \overline{V'}$, complementation yields

$$U^c \subset (\overline{U'})^c \subset (U')^c$$

$$U^{c} \subset (\overline{U'})^{c} \subset (U')^{c} \qquad V^{c} \subset (\overline{V'})^{c} \subset (V')^{c} \qquad (U')^{c} \cap (V')^{c} = \varnothing.$$

$$(U')^c \cap (V')^c = \varnothing.$$

Finally, substituting $U^c = A$ and $V^c = B$, we see $(\overline{U'})^c$, $(\overline{V'})^c$ are disjoint open sets separating A and B. Thus X is normal, as desired. \checkmark

5.15. Order topologies are T_1 , Hausdorff, and regular.

Solution. Let X be a totally ordered set, and \mathcal{T} be the associated order topology. Denote the elements of the canonical basis as follows:

- $(-\infty, a) = \{x \in X \mid x < a\}$
- $\bullet \ (a, \infty) = \{ x \in X \mid a < x \}$
- $(a,b) = \{x \in X \mid a < x < b\}.$

Square brackets will indicate inclusivity, as usual.

Note. Although the notation here is almost identical to that of the standard topology on \mathbb{R} , we need not have $X = \mathbb{R}$. In fact, X is guaranteed to have no algebraic structure whatsoever. Be sure to keep this in mind as we proceed!

- (1) We apply Theorem 5.1. Let $x \in X$ be arbitrary. Then $(-\infty, x) \cup (x, \infty)$ is open. By complement, $\{x\}$ is closed, hence (X, \mathcal{T}) is T_1 .
- (2) WLOG, suppose x < y. We proceed by casework.
 - (i) Suppose there exists $z \in X$ such that x < z < y. Then $U = (-\infty, x), V = (z, \infty)$ are disjoint open sets with $x \in U, y \in V$.
 - (ii) Suppose no such z exists. Then $U=(-\infty,y),\ V=(x,\infty)$ are disjoint open sets with $x\in U,\ y\in V.$

hence (X, \mathcal{T}) is Hausdorff.

Remark. By Theorem 5.7.2, we actually just need to show regularity now that we have T_1 . But in case you'd like to show Hausdorff constructively for extra practice, this is one way you might do it.

Also, here's a graphic of tenuous worth to "help" illustrate subcase (ii):

Figure 1: Subcase (ii)

Note the gap between x and y. U is the top interval, V is the bottom one.

(3) To show regularity, we will employ Theorem 5.8. But first, a small Lemma.

Lemma 2. Let $(a,b) \subset X$. Then $\overline{(a,b)} \subset [a,b]$. Proof: Note that $X - \underline{[a,b]} = (-\infty,a) \cup (b,\infty)$ is open, hence [a,b] is closed. By Theorem 3.20, we have $\overline{(a,b)} \subset [a,b]$.

Remark. We actually can't do better than this in the general case (i.e., we need not have $\overline{(a,b)} = [a,b]$). For example, you can find subspaces of the lexicographically ordered square that refuse to play nice. Also, if X is a discrete set (such as \mathbb{N} or \mathbb{Z}), plenty of counterexamples exist.

Let $x \in X$ be arbitrary, and let $U \in \mathcal{T}$ such that $x \in U$. Then there exist $a, b \in X \cup \{-\infty, \infty\}$ such that

$$x \in (a, b) \subset U^4$$

Claim: There exists $(a',b') \subset (a,b)$ such that $x \in (a',b') \subset \overline{(a',b')} \subset (a,b)$.

Proof of Claim: When typing this up, I found a slightly cleaner version of the argument I was using at http://web.math.ku.dk/~moller/e02/3gt/opg/S31.pdf, and have modified my proof accordingly.

Let A = (a, x), and B = (x, b). Then we have four subcases.

- i) Suppose that $A, B = \emptyset$. Then $(a, b) = \{x\}$, which is clopen. Hence take (a', b') = (a, b), and the claim holds. \checkmark
- ii) Suppose $A = \emptyset$ and $B \neq \emptyset$, and let $b' \in B$. Then let a' = a, and note (a', b') = [x, b'). Hence $x \in (a', b')$, and

 $\overline{(a',b')} = \overline{[x,b')} \subset [x,b'] \subset (a,b)$

so the claim holds. \checkmark

iii) Supposet $A \neq \emptyset$ and $B = \emptyset$. Analogously to the above, we let $a' \in A$ and b' = b, which yields

$$\overline{(a',b')} = \overline{(a',x]} \subset [a',x] \subset (a,b)$$

as desired. 🗸

iv) Suppose $A \neq \emptyset \neq B$. Then let $a' \in A$, $b' \in B$. It follows that

$$x \in (a', b') \subset \overline{(a', b')} \subset [a', b'] \subset (a, b)$$

as desired. 🗸

since these cases are exhaustive, this proves the claim. Then by Theorem 5.8, X is regular, as desired.

⁴Note, this is just a concise way of declaring a basic open set.

5.17. Let X and Y be regular. Then $X \times Y$ is regular.

Solution. We prove a lemma.

Lemma 3. Let $A \subset X$, $B \subset Y$. Then $\overline{A \times B} = \overline{A} \times \overline{B}$.

We use the notation $\mathcal{L}(S)$ to denote the limit points of a set S. Here're a few proofs:

Proof 1: The claim is equivalent to

$$p \in \overline{A \times B} \iff p \in \overline{A} \times \overline{B}.$$

We proceed by contrapositive. That is,

$$p \notin \overline{A \times B} \iff p \notin \overline{A} \times \overline{B}.^a$$

We prove both directions simultaneously.^b The following are equivalent:

- (1) $p = (p_x, p_y) \notin \overline{A \times B}$
- (2) There exists $U \in \mathcal{T}_{\text{prod}}$ s.t. $p \in U$ and $(U \{p\}) \cap (A \times B) = \emptyset$
- (3) For U quantified as above, there exists $B = U_A \times U_B \in \mathcal{B}_{prod}$ such that $p \in B$,

$$\emptyset = B \cap (A \times B)$$

$$= (U_A \times U_B) \cap (A \times B)$$

$$= (U_A \cap A) \times (U_B \cap B).$$

- (4) There exists $U_A \in \mathcal{T}_A$, $U_B \in \mathcal{T}_B$ such that at least one of $(U_A \cap A)$, $(U_B \cap B)$ is empty
- (5) At least one of $p_x \notin \overline{A}$, $p_y \notin \overline{B}$ is true
- (6) $p \notin \overline{A} \times \overline{B}$

 a Note, this is just saying that the set complements are equal.

^bThis introduces a mess with variable quantifications, but hopefully the argument makes sense

Proof 2: We prove the claim directly.

- (\subseteq) : Let $p=(p_A,p_B)\in \overline{A\times B}$. We want to show $p_A\in \overline{A}$ or $p_B\in \overline{B}$.
 - (1) Suppose $p \in A \times B$. Then we're done. \checkmark
 - (2) Now, suppose $p \in \mathcal{L}(A \times B)$. Let $U_A \in \mathcal{T}_A$ and $U_B \in \mathcal{T}_B$ be arbitrarily chosen. Then $U = U_A \times U_B \in \mathcal{T}_{prod}$, and hence

$$(U - \{p\}) \cap (A \times B) \neq \emptyset$$

Thus, let $q = (q_A, q_B) \in (U - \{p\}) \cap (A \times B)$. It follows that

$$\pi_x(q) \in (\pi_x(U - \{p\}) \cap \pi_x(A \times B))$$

or equivalently,

$$q_A \in (U_A - \{p_A\}) \cap A$$

and similarly, $q_B \in (U_B - \{p_B\}) \cap B$. Hence, $\overline{A \times B} \subset \overline{A} \times \overline{B}$.

 (\supseteq) : The reverse direction essentially consists of reversing the steps above. Note, you need to consider both of the cases $p \in \mathcal{L}(A) \times B$ and $p \in A \times \mathcal{L}(B)$.

^aThe or here is inclusive.

Proof 3: We prove the two directions separately.

(⊆) : The product of closed sets is closed. ^a Since $A \times B \subset \overline{A} \times \overline{B}$, Theorem 3.20 implies

$$\overline{A \times B} \subset \overline{\overline{A} \times \overline{B}} = \overline{A} \times \overline{B}.$$

 (\supseteq) : Use either of the arguments above.

^aAs justification, note that $(\overline{A})^c \times (\overline{B})^c$ is a product of open sets, and is thus open in \mathcal{I}_{prod} , hence $\overline{A} \times \overline{B}$ is closed.

We proceed by Theorem 5.8.

Let $p \in X \times Y$ be arbitrary, and let $U \in \mathcal{T}_{prod}$ such that $p \in U$. Then by definition of \mathcal{T}_{prod} , there exist $U_X \in \mathcal{T}_X$, $U_Y \in \mathcal{T}_Y$ such that

$$p \in U_X \times U_Y \subset U$$
.

Since X, Y are regular, there exist $V_X \in \mathcal{I}_X, V_Y \in \mathcal{I}_Y$ such that

$$\pi_x(p) \in V_X \subset \overline{V_X} \subset B_X$$
 and $\pi_y(p) \in V_Y \subset \overline{V_Y} \subset B_Y$.

Thus $p \in V_X \times V_Y$, which is open in \mathcal{I}_{prod} . Then

$$p \in V_X \times V_Y \subset \overline{V_X \times V_Y} = \overline{V_X} \times \overline{V_Y} \subset B_X \times B_Y \subset U$$

so by Theorem 5.8, $X \times Y$ is regular.

5.23. Let A be a closed subset of a normal space X. Then A is normal when given the relative topology.

Solution. Let \mathcal{T}_X be the topology on X, and \mathcal{C}_X be the set of closed sets in (X,\mathcal{T}) . Define $\mathcal{T}_A,\mathcal{C}_A$ analogously for the relative topology on A.

Let $B, C \in \mathcal{C}_A$ be disjoint. Then by Theorem 4.28, there exist $B', C' \in \mathcal{C}_X$ such that

$$B = B' \cap A$$
 $C = C' \cap A$.

Then since C_X is closed under arbitrary intersection, it follows that B, C are closed in (X, \mathcal{T}) as well.⁵ Then by normality, there exist disjoint $U, V \in \mathcal{T}_X$ such that $B \subset U$ and $C \subset V$. Observe

$$B = (B \cap A) \subset (U \cap A) \qquad C = (C \cap A) \subset (V \cap A),$$

and by definition, $(U \cap A)$, $(V \cap A)$ are open sets in (A, \mathcal{T}_A) . Since $U \cap V = \emptyset$, we have

$$(U \cap A) \cap (V \cap A) = \emptyset$$

as well, thus we have found disjoint open sets separating A, B. Hence, A is normal with the relative topology, as desired.

 $^{^{5}}$ OK, I know I defined \mathcal{C}_{X} above, but I was worried that all the script C's flying around were getting confusing!