Conversão eletromecânica de energia A - Lab

R. S. Salgado

Universidade Federal de Santa Catarina Departamento de Engenharia Elétrica Florianópolis, SC, Brasil

16 de abril de 2021

Ensaio de Circuito Aberto - Transformador Trifásico

- ▶ Ensaios de Ca e CC dos trafos $3\phi'$ s são realizados sob condições análogas as dos trafos $1\phi'$ s.
- o método dos dois wattímetros é geralmente utilizado para a medição de potência.

Ensaio de Circuito Aberto

- Observações:
 - ► Soma da potência medida pelos dois wattímetros: corresponde a potência total *P*₀ consumida pelo transformador a vazio;
 - Amperímetros e voltímetros: correntes e tensões de linha.
 - Cálculo dos parâmetros por fase:
 - ightharpoonup requer o conhecimento do tipo de conexão Δ ou Y do lado de BT.
 - usa-se os valores da tabela mostrada a seguir.

BT em Δ	BT em Y
$P_0/3$	$P_0/3$
V_n	$V_n/\sqrt{3}$
$I_0/\sqrt{3}$	10

Ensaio de Curto Circuito - Transformador Trifásico

Ensaio de Curto Circuito

- Observações:
 - Os wattímetros lêem a potência total do curto-circuito P_{cc} ;
 - os amperímetros lêem as correntes de linha nominais, e os voltímetros indicam as tensões de linha do curto-circuito.
 - Cálculo dos parâmetros por fase:
 - ightharpoonup requer o conhecimento do tipo de conexão Δ ou Y do lado de BT.
 - usa-se os valores da tabela mostrada a seguir.

AT em Δ	AT em Y
$P_{cc}/3$	$P_{cc}/3$
V_{cc}	$V_{cc}/\sqrt{3}$
$I_n/\sqrt{3}$	In

► Observações:

- Observações:
 - $\qquad \qquad \mathbf{W}_1 = V_{ab}I_a\cos\alpha_1;$

- Observações:
 - $V_1 = V_{ab}I_a \cos \alpha_1;$
 - $\mathbf{W}_2 = V_{cb}I_c \cos \alpha_2;$

- Observações:
 - $\mathbf{W}_1 = V_{ab}I_a \cos \alpha_1$;
 - $V_2 = V_{cb}I_c \cos \alpha_2;$
 - $ightharpoonup V_{ab}$ e V_{cb} : magnitude das tensões de linha \mathbf{V}_{ab} e \mathbf{V}_{cb} ;

- Observações:
 - $V_1 = V_{ab}I_a \cos \alpha_1;$
 - $V_2 = V_{cb}I_c \cos \alpha_2;$
 - $ightharpoonup V_{ab}$ e V_{cb} : magnitude das tensões de linha \mathbf{V}_{ab} e \mathbf{V}_{cb} ;
 - ▶ I_a e I_c : magnitude das orrentes de linha I_a e I_c ;

- Observações:
 - $V_1 = V_{ab}I_a \cos \alpha_1;$
 - $V_2 = V_{cb}I_c \cos \alpha_2;$
 - $ightharpoonup V_{ab}$ e V_{cb} : magnitude das tensões de linha \mathbf{V}_{ab} e \mathbf{V}_{cb} ;
 - ▶ I_a e I_c : magnitude das orrentes de linha I_a e I_c ;
 - α_1 é o ângulo entre V_{ab} e I_a ;

- Observações:
 - $V_1 = V_{ab}I_a \cos \alpha_1;$
 - $V_2 = V_{cb}I_c \cos \alpha_2;$
 - $ightharpoonup V_{ab}$ e V_{cb} : magnitude das tensões de linha \mathbf{V}_{ab} e \mathbf{V}_{cb} ;
 - ▶ I_a e I_c : magnitude das orrentes de linha I_a e I_c ;
 - α_1 é o ângulo entre V_{ab} e I_a ;
 - α_1 é o ângulo entre V_{cb} e I_c ;

- Observações:
 - $\mathbf{W}_1 = V_{ab}I_a \cos \alpha_1;$
 - $V_2 = V_{cb}I_c \cos \alpha_2;$
 - $ightharpoonup V_{ab}$ e V_{cb} : magnitude das tensões de linha \mathbf{V}_{ab} e \mathbf{V}_{cb} ;
 - ▶ I_a e I_c : magnitude das orrentes de linha I_a e I_c ;
 - α_1 é o ângulo entre V_{ab} e I_a ;
 - $ightharpoonup \alpha_1$ é o ângulo entre V_{cb} e I_c ;
 - Os ângulos α_1 e α_2 podem ser identificados com o auxílio do diagrama fasorial;

► Conexão Y:

Diagramas fasoriais das tensões:

▶ Conexão ∆:

Diagramas fasoriais das correntes:

Diagrama fasorial das tensões e correntes:

Observações:

- Observações:
 - ► Do diagrama fasorial:

- Observações:
 - ► Do diagrama fasorial:

•
$$\alpha_1 = 30^{\circ} + \phi$$
;

- Observações:
 - Do diagrama fasorial:

•
$$\alpha_1 = 30^{\circ} + \phi$$
;

• e
$$\alpha_2 = 30^{\circ} - \phi$$
;

- Observações:
 - ▶ Do diagrama fasorial:

•
$$\alpha_1 = 30^{\circ} + \phi$$
;

• e
$$\alpha_2 = 30^{\circ} - \phi$$
;

lacktriangledown ϕ é o ângulo do fator de potência do transformador;

- Observações:
 - ▶ Do diagrama fasorial:

•
$$\alpha_1 = 30^{\circ} + \phi$$
;

• e
$$\alpha_2 = 30^{\circ} - \phi$$
;

- lacktriangledown ϕ é o ângulo do fator de potência do transformador;
- ▶ tal que; $\cos \alpha_1 = \cos 30^{\circ} \cos \phi \sin 30^{\circ} \sin \phi$;

- Observações:
 - ▶ Do diagrama fasorial:

•
$$\alpha_1 = 30^{\circ} + \phi$$
;

• e
$$\alpha_2 = 30^{\circ} - \phi$$
;

- lacktriangledown ϕ é o ângulo do fator de potência do transformador;
- ▶ tal que; $\cos \alpha_1 = \cos 30^{\circ} \cos \phi \sin 30^{\circ} \sin \phi$;
- $e \cos \alpha_2$) = $\cos 30^{\circ} \cos \phi + \sin 30^{\circ} \sin \phi$;

- Observações:
 - ▶ Do diagrama fasorial:

•
$$\alpha_1 = 30^{\circ} + \phi$$
;

• e
$$\alpha_2 = 30^{\circ} - \phi$$
;

- lacktriangledown ϕ é o ângulo do fator de potência do transformador;
- ▶ tal que; $\cos \alpha_1 = \cos 30^{\circ} \cos \phi \sin 30^{\circ} \sin \phi$;
- $e \cos \alpha_2$) = $\cos 30^{\circ} \cos \phi + \sin 30^{\circ} \sin \phi$;
- então, $\mathbf{W}_1 + \mathbf{W}_2 = V_L I_L(\cos \alpha_1 + \cos \alpha_2);$

- Observações:
 - Do diagrama fasorial:

•
$$\alpha_1 = 30^{\circ} + \phi$$
;

• e
$$\alpha_2 = 30^{\circ} - \phi$$
;

- lacktriangledown ϕ é o ângulo do fator de potência do transformador;
- ▶ tal que; $\cos \alpha_1 = \cos 30^{\circ} \cos \phi \sin 30^{\circ} \sin \phi$;
- $e \cos \alpha_2$) = $\cos 30^{\circ} \cos \phi + \sin 30^{\circ} \sin \phi$;
- então, $\mathbf{W}_1 + \mathbf{W}_2 = V_L I_L(\cos \alpha_1 + \cos \alpha_2);$
- e portanto $\mathbf{W}_1 + \mathbf{W}_2 = \sqrt{3} V_L I_L \cos \phi$;

- Observações:
 - ▶ Do diagrama fasorial:

•
$$\alpha_1 = 30^{\circ} + \phi$$
;

• e
$$\alpha_2 = 30^{\circ} - \phi$$
;

- lacktriangledown ϕ é o ângulo do fator de potência do transformador;
- ▶ tal que; $\cos \alpha_1 = \cos 30^{\circ} \cos \phi \sin 30^{\circ} \sin \phi$;

•
$$e \cos \alpha_2$$
) = $\cos 30^{\circ} \cos \phi + \sin 30^{\circ} \sin \phi$;

• então,
$$\mathbf{W}_1 + \mathbf{W}_2 = V_L I_L(\cos \alpha_1 + \cos \alpha_2);$$

• e portanto
$$\mathbf{W}_1 + \mathbf{W}_2 = \sqrt{3} V_L I_L \cos \phi$$
;

• Adicionalmente,
$$\mathbf{W}_2 - \mathbf{W}_1 = V_L I_L \sin \phi$$
;

► Transformador trifásico convencional:

- Transformador trifásico convencional:
- ► Placa:

- Transformador trifásico convencional:
- Placa:
 - ▶ 150 kVA

- ► Transformador trifásico convencional:
- Placa:
 - ▶ 150 kVA
 - 415,69 V (Y) : 2400 V Δ

- Transformador trifásico convencional:
- Placa:
 - ▶ 150 kVA
 - ► 415,69 V (Y) : 2400 V △
 - ▶ 208,33: 36,08 A

- Transformador trifásico convencional:
- Placa:
 - ▶ 150 kVA
 - ► 415,69 V (Y) : 2400 V △
 - ▶ 208,33: 36,08 A
- Ensaio de CA medidas realizadas:

- Transformador trifásico convencional:
- ► Placa:
 - ▶ 150 kVA
 - ► 415,69 V (Y) : 2400 V △
 - ▶ 208,33: 36,08 A
- ► Ensaio de CA medidas realizadas:
 - ▶ 415,69 V; W_1 = -474,72 W e W_2 = 1503,70 W; 4,97 A;

- Transformador trifásico convencional:
- ▶ Placa:
 - ▶ 150 kVA
 - ► 415,69 V (Y) : 2400 V △
 - ▶ 208,33: 36,08 A
- Ensaio de CA medidas realizadas:
 - ▶ 415,69 V; W_1 = -474,72 W e W_2 = 1503,70 W; 4,97 A;
 - $W_1 + W_2 = 1029,30 W_{3\phi};$
 - $\sqrt{3}(W_2 W_1) = 3426,20 \ VAr_{3\phi};$
 - $\mathbf{Y}_m = 0.0060 j0.0198 \text{ S (BT)}.$

► Transformador trifásico convencional:

- Transformador trifásico convencional:
- ► Placa:

- Transformador trifásico convencional:
- ► Placa:
 - ▶ 150 kVA

- Transformador trifásico convencional:
- ► Placa:
 - ▶ 150 kVA
 - ► 415,69 V (Y) : 2400 V ∆

- Transformador trifásico convencional:
- ► Placa:
 - ▶ 150 kVA
 - ► 415,69 V (Y) : 2400 V ∆
 - ▶ 208,33: 36,08 A

- Transformador trifásico convencional:
- ► Placa:
 - ▶ 150 kVA
 - ► 415,69 V (Y) : 2400 V ∆
 - ▶ 208,33: 36,08 A
- ► Ensaio de CC medidas realizadas:

- Transformador trifásico convencional:
- ► Placa:
 - ▶ 150 kVA
 - 415,69 V (Y) : 2400 V Δ
 - ▶ 208,33: 36,08 A
- Ensaio de CC medidas realizadas:
 - ▶ 60 V; W_1 = 721,43 W e W_2 = 2128,60 W; 36,08 A;

- Transformador trifásico convencional:
- ► Placa:
 - ▶ 150 kVA
 - 415,69 V (Y) : 2400 V Δ
 - ▶ 208,33: 36,08 A
- ► Ensaio de CC medidas realizadas:
 - ▶ 60 V; W_1 = 721,43 W e W_2 = 2128,60 W; 36,08 A;
 - $W_1 + W_2 = 2850 \ W_{3\phi}$;
 - $\sqrt{3}(W_2 W1) = 2437,28 \ VAr_{3\phi};$

- Transformador trifásico convencional:
- ► Placa:
 - ▶ 150 kVA
 - ► 415,69 V (Y) : 2400 V △
 - ▶ 208,33: 36,08 A
- ► Ensaio de CC medidas realizadas:
 - ▶ 60 V; W_1 = 721,43 W e W_2 = 2128,60 W; 36,08 A;
 - $W_1 + W_2 = 2850 \ W_{3\phi}$;
 - $\sqrt{3}(W_2 W1) = 2437,28 \ VAr_{3\phi};$
 - ightharpoonup **Z**_{eq} = 0,7328 + j0,6268 Ω (AT, em Y);

- Transformador trifásico convencional:
- ► Placa:
 - ▶ 150 kVA
 - ► 415,69 V (Y) : 2400 V ∆
 - ▶ 208,33: 36,08 A
- ► Ensaio de CC medidas realizadas:
 - ▶ 60 V; W_1 = 721,43 W e W_2 = 2128,60 W; 36,08 A;
 - $W_1 + W_2 = 2850 \ W_{3\phi}$;
 - $\sqrt{3}(W_2 W1) = 2437,28 \ VAr_{3\phi};$
 - ightharpoonup **Z**_{eq} = 0,7328 + j0,6268 Ω (AT, em Y);
 - ightharpoonup **Z**_{eq} = 2,188 + j1,871 Ω (AT, em Δ).

Autotransformador trifásico:

- Autotransformador trifásico:
- ► Placa:

- Autotransformador trifásico:
- ► Placa:
 - ▶ 54,62 kVA

- Autotransformador trifásico:
- ► Placa:
 - ▶ 54,62 kVA
 - ▶ 220 V(Y):380 V(Y)

- Autotransformador trifásico:
- ► Placa:
 - ▶ 54,62 kVA
 - ▶ 220 V(Y):380 V(Y)
 - ▶ 143,76: 83 A

- Autotransformador trifásico:
- ► Placa:
 - ▶ 54,62 kVA
 - ► 220 V(Y):380 V(Y)
 - ▶ 143,76: 83 A
 - ▶ Medidas feitas nos ensaios de CA e CC:

- Autotransformador trifásico:
- ► Placa:
 - ▶ 54,62 kVA
 - ► 220 V(Y):380 V(Y)
 - ▶ 143,76: 83 A
 - ▶ Medidas feitas nos ensaios de CA e CC:
 - ► CA: 220 V; 0,90 A; 30 W e 190 W;

- Autotransformador trifásico:
- ► Placa:
 - ▶ 54,62 kVA
 - ► 220 V(Y):380 V(Y)
 - ▶ 143,76: 83 A
 - Medidas feitas nos ensaios de CA e CC:
 - CA: 220 V; 0,90 A; 30 W e 190 W;
 - ► CA: 5,70 V; 83 A; -170 W e 100 W;

- Autotransformador trifásico:
- Placa:
 - ▶ 54,62 kVA
 - ► 220 V(Y):380 V(Y)
 - ▶ 143,76: 83 A
 - ▶ Medidas feitas nos ensaios de CA e CC:
 - CA: 220 V; 0,90 A; 30 W e 190 W;
 - ► CA: 5,70 V; 83 A; -170 W e 100 W;
 - Diagrama esquemático: ver figura mostrada a seguir.

Autotransformador trifásico

▶ Diagrama esquemático - conexão $Y - \Delta$ (exemplo):

Autotransformador trifásico

▶ Diagrama esquemático - conexão Y - Y:

