E-ISSN : 2655-8238

P-ISSN: 2964-2132

Sistem Pendukung Keputusan Dengan Menerapkan Metode TOPSIS Untuk Menentukan Siswa Terbaik

M.Yusuf Al-Hakim Syah^a, M.Rudi Sanjaya^b, Endang Lestari^c, Bayu Wijaya Putra^d

a.c.dSistem Informasi, Fakultas Ilmu Komputer, Universitas Sriwijaya, <u>yusufallesyah@gmail.com</u>bLaboratotium Pemrograman Internet, Fakultas Ilmu Komputer, Universitas Sriwijaya, <u>m.rudi.sjy@ilkom.unsri.ac.id</u>

Submitted: 10-04-2023, Reviewed: 15-04-2023, Accepted 27-04-2023 https://doi.org/10.47233/jteksis.v5i2.794

Abstract

The process of selecting the best student in SMA N 4 OKU is currently based solely on the grades from the report book, which is not an optimal approach as there are many other aspects to consider. In SMA N 4 OKU, for the selection of the best students they only make a decisions by evaluating the grades from the report book, although there are many aspects to consider in selecting the best students. To address this issue, the TOPSIS method can be used to create a decision support system that considers criteria such as absence, individuality, extracurricular activities, accomplishments, and academic records. This method uses the Euclidean distance, a principle that the selected alternative must be the farthest from the negative ideal solution and closest to the positive ideal solution. The result of this research is a website-based decision support system that helps teachers select the best students in SMA N 4 OKU by taking into account various criteria. By using this method, the school can ensure that the best students are selected based on a comprehensive evaluation, which will ultimately contribute to the betterment of the school and its students.

Keywords: TOPSIS, decision support system, Euclidean, students, accomplishment

Abstrak

Teknologi komputer yang kompleks dan canggih sangat membantu dalam pengambilan keputusan, termasuk dalam memilih siswa terbaik di sekolah. SMA N 4 OKU saat ini hanya menggunakan nilai rapor sebagai kriteria utama dalam memilih siswa terbaik. Namun, sebenarnya ada banyak aspek lain yang juga perlu dipertimbangkan, seperti absensi, nilai kepribadian, kegiatan ekstrakurikuler, prestasi, dan nilai raport. Jadi sistem pendukung keputusan diperlukan untuk membantu guru dalam memilih siswa terbaik di SMA N 4 OKU berdasarkan kriteria-kriteria yang telah ditetapkan . Salah satu metode yang dapat digunakan adalah metode TOPSIS yang mengukur jarak antara alternatif dengan solusi ideal positif & negatif menggunakan jarak Euclidean. Penelitian ini berhasil mengembangkan aplikasi website sistem pendukung keputusan untuk memudahkan proses pemilihan siswa terbaik di SMA N 4 OKU dengan mempertimbangkan kriteria-kriteria yang telah ditetapkan.

Keywords: TOPSIS, sistem pendukung keputusan, Euclidean, siswa, prestasi

This work is licensed under Creative Commons Attribution License 4.0 CC-BY International license

PENDAHULUAN

Prestasi akademik adalah kemampuan untuk memecahkan masalah yang sulit, menguasai, membandingkan dan mengungguli siswa lain sambil mengatasi permasalahan dan mencapai standar yang tinggi. (Susanti, 2019). Siswa berprestasi adalah sebuah bukti yang bagus bagi pihak sekolah. Beberapa faktor yang harus dipersiapkan untuk menghasilkan siswa yang berprestasi adalah membentuk sebuah motivasi kepada siswa-siswi untuk menumbuhkan minat belajar [1].

Seiring berjalannya waktu, jumlah siswa aktif di SMA N 4 OKU terus bertambah. Kualitas dari hasil belajar setiap individu siswa juga semakin berbeda. Untuk menilai siswa terbaik tidak bisa hanya dilihat dari aspek nilai raport saja karena beberapa siswa dapat melakukan dengan baik dalam satu bidang ilmu pengetahuan tetapi tidak pada yang lain. Begitu juga siswa lainnya, banyak siswa lain dengan tingkat pencapaian yang berbeda dalam setiap bidang. Oleh karena itu, sulit untuk memilih

dan mengidentifikasi siswa mana yang berkinerja terbaik dibandingkan yang lain.

Berdasarkan hasil observasi khususnya sekolah SMA N 4 OKU. Bahwa perlu sebuah sistem untuk menentukan pemilihan siswa terbaik karena pada sekolah SMA N 4 OKU tidak ada sistem tersebut. Maka dari itu perlu nya sebuah sistem untuk mempermudah pemilihan siswa terbaik di SMA N 4 OKU dengan mempertimbangkan 5 kriteria yaitu : absensi dengan bobot 3, kepribadian dengan bobot 2, ekstrakulikuler dengan bobot 2, prestasi dengan bobot 4 dan nilai raport dengan bobot 5.

Untuk membantu pengambilan keputusan dapat dilakukan dengan metodologi atau pendekatan menggunakan Sistem Pendukung Keputusan (SPK). SPK menerapkan Sistem Informasi Berbasis Komputer (CBIS) yang adaptif dan dapat disesuaikan dengan apa yang dirancang untuk mendukung keputusan pada masalah tertentu yang tidak beraturan [2].

Jurnal Teknologi Dan Sistem Informasi Bisnis Vol. 5 No. 1 Januari 2023 Hal. 149-154 http://jurnal.unidha.ac.id/index.php/jteksis

E-ISSN : 2655-8238 P-ISSN : 2964-2132

Sistem Pendukung Keputusan atau DSS adalah sebuah sistem informasi komputer yang membantu dalam pengambilan keputusan dengan memproses data dan menyajikan informasi interaktif. Ini adalah sistem komputer yang mengubah data menjadi informasi untuk membantu pengambilan keputusan dalam masalah semi terstruktur. [7]

Sistem adalah kelompok unsur yang saling terkait untuk mencapai tujuan tertentu (Mulyadi, 2016). Keputusan adalah respon yang disadari terhadap beberapa alternatif setelah dilakukan analisis terhadap kemungkinan-kemungkinan dan akibat yang akan didapatkan. Keputusan terakhir didasarkan pada setiap keputusan, tindakan, dan opini yang dapat berupa pilihan jawaban. Keputusan dibuat secara sadar dan rasional oleh organ yang berwenang dengan kewenangan yang ada padanya [6].

TOPSIS adalah metode dalam pengembangan Sistem Pendukung Keputusan yang menggunakan prinsip geometris. Metode ini memilih alternatif yang memiliki jarak paling jauh dari solusi ideal negatif dan terpendek dari solusi ideal positif menggunakan jarak Euclidean [8]. Solusi ideal negatif dihitung dengan menjumlahkan nilai terendah pada semua atribut, sedangkan solusi ideal positif dihitung dengan menjumlahkan nilai semua atribut. tertinggi pada **TOPSIS** mempertimbangkan kedua solusi tersebut dengan memilih korelasi relatif pada solusi ideal positif untuk menemukan solusi yang optimal. [3].

METODE PENELITIAN

Pada penelitian ini, memakai metode TOPSIS dan untuk pembangunan sistem nya memakai metode Waterfall. Metode ini adalah model pengembangan sistem yang sekuensial dan sistematik sehingga dapat dipahami dengan mudah [10]. Pada gambar 1 berikut menampilkan tahap dalam penelitian ini.

Gambar 1. Kerangka Penelitian

2.1. Metode TOPSIS

Dari sudut pandang geometris, metode TOPSIS memakai prinsip yaitu alternatif wajib memiliki jangka yang terjauha dari solusi ideal negatif dan terdekat dengan solusi ideal positif dengan memakai jarak Euclidean (jarak antara 2 poin) untuk memilih korelasi dari sebuah alternatif [9]. Solusi ideal negatif diartikan bahwa total dari semua nilai terendah yang didapat untuk setiap atribut, di sisi lain solusi ideal positif mencakup semua nilai tertinggi yang dicapai dari setiap atribut [4].

Prosedur TOPSIS secara umum terdiri dari tahap dan rumus akan dijelaskan seperti dibawah ini: [5]

A. Pada semua alternatif A1 dan kriteria Cj ditentukan menggunakan matriks ternormalisasi dengan rumus berikut:

$$R_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^{m} x^2_{ij}}}$$

 X_{ij} = Matriks Keputusan R_{ij} = Matriks Normalisasi i = 1,2...,mj = 1,2,...,n

Data Kriteria ini adalah akar dari penilaian untuk alternatif (siswa). Data kriteria terbagi menjadi 2 yaitu cost dan benefit. Cost adalah makin kecil nilai maka semakin baik, sedangkan benefit adalah makin besar nilai semakin baik.

E-ISSN: 2655-8238

P-ISSN: 2964-2132

Tabel 2. Data Kriteria

Kode	Kriteria	Atribut
C1	Absensi	Benefit
C2	Kepribadian	Benefit
C3	Prestasi	Benefit
C4	Ekstrakulikuler	Benefit
C5	Nilai Raport	Benetif

C. Data Bobot Kriteria

Bobot Kriteria sebagai penentu kriteria yang paling diprioritaskan. Semakin jika kriteria memiliki bobot yang besar maka kriteria semakin di prioritaskan.

Tabel 3. Data Bobot Kriteria

Kode	Kriteria	Bobot
C1	Absensi	3
C2	Kepribadian	2
С3	Prestasi	4
C4	Ekstrakulikuler	2
C5	Nilai Raport	5

D. Nilai Alternatif

Range

Kod

Bobot Kriteria sebagai penentu kriteria yang paling diprioritaskan. Semakin jika kriteria memiliki bobot yang besar maka kriteria semakin di prioritaskan.

Tabel 4. Skala Penilaian Alternatif

Keterangan

Nilai

e			
C1	0 ketidak harian	Sangat bagus	100
	1 ketidak hadiran	Bagus	95
	2-4 ketidak	Cukup	90
	hadiran	Kurang	85
	5 ketidak hadiran	Sangat kurang	80
	6> ketidak hadiran		
C2	Kedisiplinan	Sangat Bagus	100
	Kesopanan	Baik	95
	Bertanggung	Cukup	90
	jawab	Kurang	85
	Rajin	Sangat Kurang	80
	Jujur		
C3	5> Piagam	Sangat Bagus	5
C3		0 0	
	4 Piagam	Baik	4
	3 Piagam	Cukup	3
	1-2 Piagam	Kurang	2
~ .	0 Piagam	Sangat Kurang	1
C4	90-100	Sangat Bagus	100
	80-89	Bagus	95
	60-79	Cukup	90
	50-59	Kurang	85
	0-49	Sangat Kurang	80
C5	1100-1200	Sangat Bagus	100
	1000-1099	Bagus	95
	900-999	Cukup	90
	800-899	Kurang	85
	700-799	Sangat Kurang	80

B. Yjj adalah bobot nilai ternormalisasi. Untuk menghitung matriks keputusan ternormalisasi terbobot :

i = 1,2,...,m j = 1,2,...,n Yij = Wij Rij

$$A^{+} = (y_{1}^{+}, y_{2}^{+}, ...,_{n}^{+})$$

$$A^{-} = (y_{1}^{-}, y_{2}^{-}, ...,_{n}^{-})$$
(2)

$$y_1^+ = \begin{cases} \max y_{ij} \\ \min y_{ij} \end{cases}$$
$$y_1^- = \begin{cases} \max y_{ij} \\ \min y_{ij} \end{cases}$$

j = 1, 2, ..., n

C. Jarak antara Ai dan solusi ideal positif memiliki rumus seperti dibawah ini :

$$D_{i}^{+} = \sqrt{\sum_{j=1}^{n} (y_{ij} - y_{i})^{2}}$$
(4)

i = 1,2,...,m

D. Jarak antara Ai dan solusi ideal negatif memiliki rumus seperti dibawah ini :

$$D_{i}^{-} = \sqrt{\sum_{j=1}^{n} (y_{ij} - y_{i}^{-})^{2}}$$
(5)

i = 1,2,...m

E. Berikut adalah rumus nilai preferensi semua alternatif (Vi):

$$V_{i} = \frac{D_{i}^{-}}{D_{i}^{-} + D_{i}^{+}}$$
(6)

i = 1,2,...m

HASIL DAN PEMBAHASAN

3.1 Data

Berikut adalah data untuk menyelesaikan kalkulasi metode TOPSIS dalam pemilihan siswa terbaik :

A. Data Alternatif

Data Alternatif ini adalah data siswa yang menjadi kandidat untuk pemilihan siswa terbaik.

Tabel 1. Data Alternatif

Tabel I. Data Alternatii			
Alternatif	Nama		
A1	Melsa Berliana		
A2	Komang Amelia		
A3	Agung		
A4	Herlina		
A5	Adika		
A6	Deswita Adelia		
A7	Nur Okta		
A8	Revalina Azahra		
A9	Aditya Putra		
A10	Ahlia Khoirunisa		

B. Data Kriteria

Jurnal Teknologi Dan Sistem Informasi Bisnis Vol. 5 No. 1 Januari 2023 Hal. 149-154 http://jurnal.unidha.ac.id/index.php/jteksis

E-ISSN: 2655-8238

P-ISSN: 2964-2132

Selanjutnya adalah menentukan nilai kriteria disetiap alternatif (siswa) untuk menyelesaikan perhitungan.

Tabel 5. Nilai Alternatif					
Alternatif	C.1	C.2	C.3	C.4	C.5
A1	80	95	2	95	95
A2	90	90	3	90	90
A3	95	90	4	90	95
A4	100	100	5	100	100
A5	90	95	1	85	85
A6	95	90	3	90	90
A7	95	95	4	95	95
A8	85	80	2	85	80
A9	95	90	2	85	100
A10	85	85	4	95	95

3.2 Langkah-langkah kalkulasi metode TOPSIS

A. Menggunakan perhitungan persamaan (1). Maka dapatlah nilai keputusan matriks ternormalisasi

	[0,192	0,2259	0,1418	0,2236	ס,2201ך
	0,216	0,214	0,2127	0,2118	0,2085
	0,228	0,214	0,2836	0,2118	0,2201
	0,24	0,2378	0,3544	0.2353	0,2317
R:	0,216	0,2259	0,0709	0,2	0,1969
к .	0,228	0,214	0,2127	0,2118	0,2085
	0,228	0,2259	0,2836	0,2236	0,2201
	0,204	0,1902	0,1418	0,2	0,1853
	0,228	0,213	0,1418	0,1883	0,2317
	L0,204	0,2021	0,2836	0,2236	0,2201

B. Menghitung matriks keputusan ternormalisasi yang terbobot W = (3,2,4,2,5)

Menggunakan perhitungan persamaan (2), berikut adalah nilai matriks keputusan ternormalisasi yang terbobot

г0,5761	0,4518	0,5671	0,4472	$1,1005^{-}$
0,6481	0,428	0,8507	0,4236	1,0426
0,6481	0,428	1,1342	0,4236	1,1005
0,7201	0,4756	1,4178	0,4707	1,1584
0,6481	0,4518	0,2836	0,4001	0,9847
0,6481	0,428	0,8507	0,4236	1,0426
0,6481	0,4518	1,1342	0,4472	1,1005
0,6121	0,3805	0,5671	0,4001	0,9267
0,6841	0,428	0,5671	0,3762	1,1584
L0 6121	0.4042	1 1342	0.4472	1 1005

Y:

C. Menghitung solusi ideal negatif & solusi ideal positif.

Menggunakan kalkulasi persamaan (3), didapatlah solusi ideal negatif & positif sebagai berikut:

Tobal 6 Salusi Ideal Desitif & Magatif

Kriteria	A +	A-
C1	0,7201	0,576
C2	0,4756	0,38
С3	1,4178	0,284

C4	0,4707	0,377
C5	1,1584	0,927

D. Menghitung jarak diantara alternatif menggunakan solusi ideal negatif & solusi ideal positif.

Memakai kalkulasi persamaan (4) dan (5), didapatlah jangka solusi ideal negatif & positif.

Tabel 7. Jarak Solusi Ideal Postif & Negatif

Alternatif	D+	D-
A1	0,8657	0,3466
A2	0,5869	0,5871
A3	0,2997	0,8767
A4	0	1,1739
A5	1,1518	0,1194
A6	0,5835	0,5926
A7	0,2941	0,8799
A8	0,8964	0,2869
A9	0,8583	0,384
A10	0,3185	0,8713

E. Terkakhir dengan memakai persamaan (6), didapatlah nilai preferensi dari semua alternatif dan perankingan siswa terbaik.

Tabel 8.Nilai Preferensi dan Perankingan Siswa

Ranking	Alternatif (Siswa)	Nilai Preferensi (V _i)
1	Herlina	1
2	Nur Okta	0,7495
3	Agung	0,7452
4	Ahlia Khoirunisa	0,7323
5	Deswita Adelia	0,5039
6	Komang Amelia	0,5001
7	Aditya Putra	0,3091
8	Melsa Berliana	0,2859
9	Revalina Azahra	0,242
10	Adika	0,0939

Tampilan Website SPK Pemilihan Siswa Terbaik

A. Login

Gambar 2. Halaman Login

B. Data Kriteria

E-ISSN: 2655-8238

P-ISSN: 2964-2132

Kriteria

Gambar 3. Halaman data kriteria C. Data Alternatif (Siswa)

Gambar 4. Halaman data alternatif

D. Input Nilai

Gambar 5. Halaman input nilai

E. Data Nilai

Gambar 6. Halaman data nilai

F. Matriks Ternormalisasi

Gambar 7. Halaman matriks ternormalisasi

G. Nilai Bobot Ternormalisasi

Gambar 8. Halaman nilai bobot ternormalisasi

H. Solusi Ideal Positif & Negatif

Gambar 9. Halaman solusi ideal positif & negatif

Jarak Solusi Ideal Positif & Negatif

Gambar 10. Halaman jarak solusi ideal positif & negatif

Nilai Preferensi & Perankingan

Gambar 11. Halaman nilai preferensi dan perankingan

KESIMPULAN

Dari penelitian yang telah dilakukan, terdapat beberapa kesimpulan yang dapat diambil. Pertama, pembuatan aplikasi sistem pendukung keputusan dapat meningkatkan efektivitas dan efisiensi dalam pemilihan siswa terbaik di SMA N 4 OKU. Kedua, dengan menggunakan metode TOPSIS, guru dapat memilih siswa terbaik berdasarkan preferensi tertinggi dengan menghitung nilai dari lima kriteria yang meliputi prestasi,

E-ISSN: 2655-8238 P-ISSN: 2964-2132

Research Paper Mathematical and Statistical Sciences 7, 76-81. https://www.researchgate.net/publication/342347772

[10] Aldi, F. (2022). Web-Based New Student Admission Information System Using Waterfall Method. Sinkron, 7(1), 111-119. https://doi.org/10.33395/sinkron.v7i1.11242

kepribadian, kegiatan ekstrakulikuler, dan nilai rapor.

UCAPAN TERIMAKASIH

absensi,

Kerjasama dari berbagai pihak yang turut serta berkontribusi sangat membantu dalam kelancaran dan keberhasilan penelitian ini. Saya ingin menyampaikan terima kasih yang sebesarbesarnya kepada Bapak M. Rudi Sanjaya, S.Kom., M.Kom. selaku dosen pembimbing, Ibu Jumiati selaku kepala sekolah SMA N 4 OKU. Ibu Mukhtamira selaku wakil kepala sekolah bidang akademik dan teman-teman saya yang telah membantu dalam penelitian ini sehingga dapat terlaksana sampai selesai.

DAFTAR PUSTAKA

- [1] Teknik, J., & Informatika, D. (n.d.). Sistem Pendukung Keputusan Penentuan Siswa Berprestasi Menggunakan Metode TÔPSIS pada SMA Sinar Husni (Vol. 6).
- [2] Sikumbang, E. D., & Muhammad, I. M. (2021). Metode Topsis Dalam Sistem Pendukung Keputusan Pemilihan Siswa Berprestasi. In Universitas Bina Sarana Informatika Jl. Kramat Raya No (Vol. 5, Issue 1).
- [3] Simanjuntak, R., Safii, M., & Saputra, W. (2020). Sistem Pendukung Keputusan Pemilihan Siswa Terbaik Dengan Menggunakan Metode Topsis di SMA Sultan Agung Pematangsiantar. Prosiding Seminar Nasional Riset Dan Information Science (SENARIS), 2, 331–341.
- [4] Nur Fitriana, A., Kunci -Sekolah, K., & Pendukung Keputusan, S. (2015). Sistem Pendukung Keputusan Untuk Menentukan Prestasi Akademik Siswa dengan Metode TOPSIS. Citec Journal, 2(2).
- [5] Yuyut Lesmana, A., & Nugroho, A. C. (n.d.). PENGGUNAAN METODE TOPSIS UNTUK SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN SISWA BERPRESTASI DI MAN 1 METRO (Vol. 1, Issue 2).
- [6] Lisdiyanto, A. (2023). Sistem Penilaian Kinerja Tridharma Dosen Menggunakan SAW. Jurnal Teknologi Dan Sistem Bisnis, 5(1), https://doi.org/10.47233/jteksis.v5i1.760
- [7] Pratama Putra, P., Toresa, D., Ersan Fadrial, Y., Sari, P., Muzawi, R., & Sahrun, N. (2022). SISTEM PENDUKUNG PENENTUAN KEPUTUSAN PENERIMA MENGGUNAKAN METODE SAW. Jurnal Teknologi Dan Informasi Bisnis-JTEKSIS, 4(2),https://doi.org/10.47233/jteksis.v4i2.457
- [8] Daulay Sekolah Tinggi Teknologi Pekanbaru, S. (n.d.). LECTURER PERFORMANCE DECISION SUPPORT SYSTEM USING THE TOPSIS METHOD BASED ON WEB. In Journal of Applied Engineering and Technological Science (Vol. 2, Issue 1).
- [9] Zulqarnain, R. M., Saeed, M., Dayan, F., Ahmad, B., Zulqarnain, R. M., Saeed, M., Ahmad, N., Dayan, F., & Ahmad, B. (2020). Application of TOPSIS Method for Decision Making Topological Invariant and bounds of graphs View project Neutrosophic Measure Theory View project Application of TOPSIS Method for Decision Making. International Journal of Scientific Research in