§1 单边逆矩阵

程光辉

2019年12月2日

定义 1 设 $A \in \mathbb{C}^{m \times n}$, 如果有 $G \in \mathbb{C}^{n \times m}$, 使得

 $GA = E_n$

则称 G 为 A 的左逆矩阵,记为 $G=A_L^{-1}$. 如果有 $G\in \mathbb{C}^{n\times m}$,使得

 $AG = E_m,$

则称 G 为 A 的右逆矩阵,记为 $G=A_R^{-1}$.

定理 1 设 $A \in \mathbb{C}^{m \times n}$, 则

- (1) A 左可逆的充要条件是 A 为列满秩矩阵;
- (2) A 右可逆的充要条件是 A 为行满秩矩阵.

证明: (1) 充分性: 因 A 为列满秩矩阵,则 A^HA 为满秩矩阵,进而

$$\left(A^{H}A\right)^{-1}A^{H}A=GA=E_{n},$$

其中 $G = (A^H A)^{-1} A^H$ 为矩阵 A 的左逆.

必要性:因为 $A_L^{-1}A=E_n$,则

$$\operatorname{rank}(A) \ge \operatorname{rank}(A_L^{-1}A) = \operatorname{rank}(E_n) = n,$$

因此, rank(A) = n, 即 A 为列满秩矩阵.

推论 1 设 $A \in \mathbb{C}^{m \times n}$, 则

- (1) A 左可逆的充要条件是 $N(A) = \{0\}$;
- (2) A 右可逆的充要条件是 $R(A) = C^m$.

证明: (1) 充分性: 因为 $N(A) = \{0\}$,则 Ax = 0 只有零解,系数矩阵列满秩,即 A 左可逆的.

必要性: A 左可逆,则 $A_L^{-1}A = E$,对 $\forall x \in \mathbf{N}(A)$,有

$$x = Ex = A_L^{-1}Ax = A_L^{-1}0 = 0,$$

即 $N(A) = \{0\}.$

初等变换求左 (右) 逆矩阵:

$$(1) \ P \begin{bmatrix} A & E_m \end{bmatrix} = \begin{bmatrix} E_n & G \\ O & \star \end{bmatrix};$$

(2)
$$\begin{bmatrix} A \\ E_n \end{bmatrix} Q = \begin{bmatrix} E_m & O \\ G & \star \end{bmatrix}.$$

例1设矩阵 A为

$$A=egin{bmatrix}1&-2\0&1\0&0\end{bmatrix},$$

求 A 的一个左逆矩阵 A_L^{-1} .

解: 经行初等变换, 有

$$egin{bmatrix} A & E_3 \end{bmatrix} = egin{bmatrix} 1 & -2 & 1 & 0 & 0 \ 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \end{bmatrix}
ightarrow egin{bmatrix} 1 & 0 & 1 & 2 & 0 \ 0 & 1 & 0 & 1 & 0 \ 0 & 0 & 0 & 0 & 1 \end{bmatrix},$$

因此, $A_L^{-1} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.

例 2 设矩阵 A 为

$$A = egin{bmatrix} 1 & 2 & -1 \ 0 & -1 & 2 \end{bmatrix},$$

求 A 的一个右逆矩阵 A_R^{-1} .

解: 经列初等变换,有

$$egin{bmatrix} A \ E_3 \end{bmatrix} = egin{bmatrix} 1 & 2 & -1 \ 0 & -1 & 2 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}
ightarrow egin{bmatrix} 1 & 0 & 0 \ 0 & -1 & 2 \ 1 & -2 & 1 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}
ightarrow egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 1 & 2 & -3 \ 0 & -1 & 2 \ 0 & 0 & 1 \end{bmatrix},$$

因此,
$$A_R^{-1} = egin{bmatrix} 1 & 2 \ 0 & -1 \ 0 & 0 \end{bmatrix}.$$

定理 2 设 $A \in \mathbb{C}^{m \times n}$ 是左可逆矩阵, 则

$$G = \begin{bmatrix} A_1^{-1} - BA_2A_1^{-1} & B \end{bmatrix} P$$

是 A 的左逆矩阵,其中 $B\in \mathbf{C}^{n imes(m-n)}$ 的任意矩阵,行初等变换矩阵 P 满足 $PA=egin{bmatrix}A_1\\A_2\end{bmatrix}$, A_1 是 n 阶可逆矩阵.

证明:直接验证,即

$$GA = egin{bmatrix} A_1^{-1} & BA_2A_1^{-1} & B \end{bmatrix} egin{bmatrix} A_1 \ A_2 \end{bmatrix} = E_n.$$

定理 3 设 $A \in \mathbb{C}^{m \times n}$ 是右可逆矩阵, 则

$$G = Q \begin{bmatrix} A_1^{-1} - A_1^{-1} A_2 D \\ D \end{bmatrix}$$

是 A 的右逆矩阵,其中 $D\in \mathbf{C}^{(n-m) imes m}$ 的任意矩阵,列初等变换矩阵 Q 满足 $AQ=egin{bmatrix}A_1&A_2\end{pmatrix}$, A_1 是 m 阶可逆矩阵.

定理 4 设 $A \in \mathbb{C}^{m \times n}$ 是左可逆矩阵, A_L^{-1} 是 A 的左逆矩阵,则方程组 Ax = b 有解的充要条件是

$$(E_m - AA_L^{-1})b = 0.$$
 (1)

若 (1) 成立,则方程组 Ax = b 有唯一解

$$x = \left(A^H A\right)^{-1} A^H b.$$

证明: (必要性) 设 x_0 是方程组 Ax = b 的解,则

$$(AA_L^{-1})b = (AA_L^{-1})(Ax_0) = A(A_L^{-1}A)x_0 = AE_nx_0 = Ax_0 = b,$$

进而有 $(E_m - AA_L^{-1})b = 0$.

(充分性) 因为 $(E_m-AA_L^{-1})b=0$,故有 $AA_L^{-1}b=b$,即方程组 Ax=b 有解 $A_L^{-1}b$.

(唯一性) 设 x_0 , x_1 是 Ax = b 的解,则 $A(x_0 - x_1) = b - b = 0$. 又因为 A 为列满秩矩阵,故只有零解,即 $x_0 = x_1$.

定理 5 设 $A\in {\bf C}^{m\times n}$ 是右可逆矩阵,则方程组 Ax=b 对任何 $b\in {\bf C}^m$ 都有解,若 $b\neq 0$,则方程组的解可表示为

$$x = A_R^{-1}b.$$

证明: 因为 $b=E_mb=AA_R^{-1}b=(AA_R^{-1})b$,故 $x=A_R^{-1}b$ 是 Ax=b 的解.

