

Outline

Introduction

My work

The impact of ...

1

... dynamics and metallicity...

2

... a galactic **tidal field**...

3

... different initial **structural properties** of SCs...

on the formation and evolution of double compact-object binaries

Gravitational waves

GWs

- Direct confirmation of General Relativity
- GWs from BH-BH binaries during inspiral and merger events
- Now it is the perfect time:
 Adv. Virgo/LIGO!!
- Investigate processes with no EM emission
- Multi-messenger astronomy for those objects emitting both EM and (strong) GW signals

"... ripples in the space-time propagating at the speed of light... "

Dynamics

YSC Facts

• YSCs are birthplace for ~ 80% of stars in the local universe (Lada&Lada, 2003)

• They dissolve into the galactic disk because of the galactic tidal field, releasing their content

YSC Facts

- YSCs are birthplace for ~ 80% of stars in the local universe (Lada&Lada, 2003)
- They dissolve into the galactic disk because of the galactic tidal field, releasing their content
- (Collisional) YSCs are

```
• young (< 100 Myr)
```

- \circ relatively massive ($10^3-10^7 M_{\odot}$),
- $\circ \ \ {\rm dense} \ (10^3-10^6 \ {\rm pc}^{-3} \)$

groups of stars

• YDSCs are sites of intense dynamical activity: central $t_{
m relax} \sim 10-100$ Myr

Stellar encounters

3-body encounters ightarrow hardening & exchanges

BHs have high masses \Rightarrow high probability to acquire a companion through 3-body exchange

Stellar evolution

Stellar evolution

- N-body + stellar evolution
- Each particle is a star (with its physics)
 Updated to take into account different metallicities

My work

The impact of ...

... dynamics and metallicity...

... a galactic tidal field...

... different initial structural properties of SCs...

on the formation and evolution of double compact-object binaries.

Coalescence timescale

- Analysis of the binary properties: SMA, eccentricity, mass, ...
- Derived the time needed to coalesce because of GWs emission (Peters 1964):

$$t_{
m GW} \propto rac{a^4(1-e^2)^{7/2}}{m_1m_2m_T}$$

• 7 BH-BH in less than t_H over 600 simulations

Merger rates

What else?

The results I obtained, however, stand on two critical assumptions:

- SCs live **unperturbed** in **isolation** for 100 Myr
- Random realizations of a single SC model

Both these assumptions can heavily affect our estimate of BH demographics.

Tidal fields

Why?

- YSCs are **not isolated** in the universe
- Overestimate the cluster lifetime
- Dynamical interactions
- Interesting:
 - Cluster close to the galactic center
 - Cluster in the solar region
 - Eccentric orbit

Tidal fields: which one?

Starlab public version

Spherical bulge (Plummer) only

My upgraded version

Bulge + disk + halo (Milky Way-like potential)

(Ziosi+2015a in prep., Allen&Santillan 1991)

Why?

Which?

Test

Polar orbit to test the code superimposed to the galactic density map.

Tidal fields

Why?

Which?

Test

Structural properties

- Which **characteristics** of the SCs are **more important**?
- Calibrate our results on the real population
- $\sim 10^3$ simulations (Ziosi+2015b, in prep.)

Gravitational well depth W_0 3, 5, 9

Number of stars N_* : $1 imes 10^4, 5 imes 10^4, 1 imes 10^5, 5 imes 10^5$

Virial radius $r_{
m v}$ (pc) 1, 3, 5 Metallicity Z (${
m Z}_{\odot}$) 0.1, 1

Primordial binaries fraction $f_{\rm PB}$ 0.05, 0.1, 0.2

Structural properties - Highlights

https://github.com/brunetto/sltools

Conclusions

- I analyzed 600 simulations to study the impact of dynamics and metallicity on the formation and evolution of DCOBs (Ziosi+2014):
 - Low metallicity favours the early formation of heavy and stable BH-BH binaries
 - It's likely that a massive BH acquires a companion through dynamical exchanges
 - Metallicity has a role in determining the final merger rates
- I implemented and tested **Allen&Santillan tidal field** in StarLab: runs and analysis in progress (Ziosi+2015a, in prep.)
- I prepared a grid of simulations to study clusters with **different initial conditions**: runs and analysis in progress (Ziosi+2015b, in prep.)

