Wireframe Documentation Thyroid Disease Prediction

Contents

1. DataProcessing	
1.1 Upload Dataset	3
1.2 Handling Missing Values	3
1.3 EDA	4
2. Model Building	2
2.1 Algorithms	5
2.2 Train Models	5
3.Model Evaluation	6
3.1 Evaluate Model Metrics Error! Bookmark not def	ined.
3.2 Compare Algorithms	6

	3.3 Most Effective Model for Evaluation	7
4.	Product Analysis	. 8
	4.1 Accuracy	9
	4.2 Future use	. 9
	4.3 Future Predictions	10

1. Data Processing

1.1 Upload Dataset

First upload the given dataset and remove the unnecessary columns.


```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

import API_config

file = open("dataset/thyroid.csv")
df = pd.read_csv(file)

df
```

1.2 Handling Missing Values

Missing values are cleared and the unwanted content are removed from the dataset.

1.3 EDA(Exploratory Data Analysis)

2. Model Building

2.1 Algorithms

- 1.Decisiontree
- 2.Random Forest
- 3.K-NN Classifier
- 4.SVM
- 5.Logisitic Regression

2.2 Train Models

SVM

- from sklearn.svm import SVC
 svm = SVC(kernel="sigmoid")
 sclf = svm.fit(X_train,y_train)
 y_pred = sclf.predict(X_test) .]: 3 4
- 1 accuracy_score(y_pred,y_test)
- 0.727803738317757

logisitic Regression

- from sklearn.linear_model import Logistic : 📗 : lr = LogisticRegression(max_iter=1000)
 lrclf = lr.fit(X_train,y_train)
 y_pred = lrclf.predict(X_test) accuracy_score(y_pred,y_test)
- 0.7492211838006231

3.Model Evaluation

ı [45]: from sklearn.metrics import accuracy score

3.1 Evaluation Metrics

KNN Classifier

- accuracy_score(y_pred,y_test) In [50]:
- Out[50]: 0.8419003115264797

Decision Tree and Random Forest

Decisiontree

- from sklearn.tree import DecisionTreeClassifier
 tree = DecisionTreeClassifier(max_depth=3)
 clf = tree.fit(X_train,y_train)
 treepredict = clf.predict(X_test) In [46]: In [47]: 1 accuracy_score(treepredict,y_test)
- Out[47]: 0.7975077881619937

Random Forest

- from sklearn.ensemble import RandomForestClassifier
 rf = RandomForestClassifier(max_depth=2,n_estimators=200)
 rclf = rf.fit(X_train,y_train)
 rfpred = rclf.predict(X_test)
 accuracy_score(rfpred,y_test) In [48]:
- Out[48]: 0.742601246105919

3.2 Compare Algorithms (With PCA-Accuracy may Differ)

Model	Accuracy Accuracy Accuracy
Decision Tree	0.8430685358255452
Random Forest Classifier	0.7387071651090342
KNN Classifier	0.7387071651090342
SVM	0.7422118380062306

3.3 Top Model for Evaluation

In [50]: 1 accuracy_score(y_pred,y_test)

Out[50]: 0.8419003115264797

4. Product Analysis

4.1 Accuracy

4.2 Future Use

Cured At Early Stages

4.3 Future Prediction

ure 1 Factors that Affect Thyroid Function (The Institute for Functional Medicine

