Funktionen mehrerer Variablen

FS 2024 Prof. Dr. Bernhard Zgraggen Autoren:

Laurin Heitzer, Flurin Brechbühler

Version:

0.1.20240613

 $\underline{https://github.com/P4ntomime/funktionen-mehrerer-variablen}$

Inhaltsverzeichnis

Dim	ensionen, Schnitte und Kontouren	2	5	Integration (bi-variat)
1.1	Dimensionen	2		5.1 Normalbereich
1.2	Schnitte	2		5.2 Zweidimensionale Koordinatensysteme
1.3	Kontouren, Levelsets, Niveaulinien, Höhenlinen,	2		5.3 2D Transformation Polar zu Kartesisch
				5.4 Derivative, Ableitung
Able	eitungen, DGL und Gradienten (bi-variat)	3		5.5 Anwendungsformeln Doppelintegral
2.1	Partielle Ableitung	3		
2.2	Gradient (Nabla-Operator)	3	6	Integration (multi-variat)
2.3	Totale Ableitung	3		6.1 Dreidimensionale Koordinatensysteme
2.4	Linearapproximation (Tangential approximation)	3		6.2 Längenintegrale
2.5	DGL	3		6.3 Flächenintegrale
2.6	Richtungselement (Tangentiallinie an Kontouren)	3		6.4 Volumenintegrale
2.7	Gradientenfeld \(\perp \) Kontouren	3		6.5 Anwendungen Trippel-Integrale
2.8	?Wie heisst dieser Abschnitt?	3	7	Differenziation und Integration von Kurven
2.9	Richtungs-Ableitung	3	′	Differenziation und integration von Kurven
			8	(Ober-)Flächenintegrale
Extr	rema von Funktionen finden	4		()
3.1	Extrema von Funktionen zweier Variablen finden	4	9	Vektoranalysis
3.2	Extrema von Funktionen mehrerer Variablen finden	4		9.1 Vektorfelder
3.3	Lokales oder Globales Extremum	4		9.2 Divergenz (Volumenableitung)
3.4	Extrema von Funktionen zweier Variablen mit NB finden	4		9.3 Integralsatz von Gauss
3.5	Extrema von Funktionen mehrerer Variablen mit NB finden	4		9.4 Poisson-Gleichung (Laplace-Gleichung)
				9.5 Rotation eines Vektorfelds (rot(), curl())
Sup	port Vector Machine (SVM)	5		9.6 Integralsatz von Stokes
4.1	Lineare Trennbarkeit von Daten	5		9.7 Anwendungen: Maxwell-Gleichungen

7 7

1 Dimensionen, Schnitte und Kontouren

1.1 Dimensionen

$$f: \mathbb{D}_f(\subseteq \mathbb{R}^m) \longrightarrow \mathbb{W}_f(\subseteq \mathbb{R}^n)$$

m Anzahl Dimensionen von \mathbb{D}_f , wobei $\mathbf{m} \in \mathbb{N}$

n Anzahl Dimensionen von \mathbb{W}_f , wobei $n \in \mathbb{N}$

 \vec{f} wenn Output vektoriell

\triangle Variablen sind abhängig von einander!

Multi-Variat:

f ist "Multi-Variat", wenn:

ti-Variat", wenn: f ist nicht

• Input mehrdimensional ist

· Output mehrdimensional ist

 Input und Output mehrdimensional sind f ist nicht "Multi-Variat", wenn:Input und Output Skalare sind

I am a market and a market and

1.1.1 Raumzeit

Raum 3D
$$(x; y; z) \mathbb{R}^3$$

Zeit 1D $(t) \mathbb{R}^1$ $\mathbb{R}^1 \times \mathbb{R}^3 = \text{Raumzeit 4D } (t; x; y; z)$

1.1.2 Stationärer Fall

$$t \to \infty \to \text{Stationär}$$

$$T(x; y; z) \frac{\Delta T}{\Delta t} \to 0$$

1.1.3 Einheitsvektoren (Koordinatenvektoren)

$$\hat{x} = \vec{i} = \hat{i} = \vec{e_1} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$

$$\hat{y} = \vec{j} = \hat{j} = \vec{e_2} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$

$$\hat{z} = \vec{k} = \hat{k} = \vec{e}_3 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

1.2 Schnitte

 ${\sf Schnitt} = {\sf Restriktion} \to {\sf Teilmenge} \ {\sf vom} \ {\sf Definitionsbereich} \ \mathbb{D}_f$

1.2.1 Partielle Funktion

- Nur eine Variable ist frei! (wählbar)
- Alle anderen Variablen sind fix!

 \(\Delta \) \(\mathbb{W}_f \) Analyse!

Beispiel: Schnitte

x-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur x,z-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y_0; f(x; y_0))$
- x-Wert ist variabel
- y-Wert ist fixiert \Leftrightarrow $y_0 = 2$

y-Linien

- Fläche wird geschnitten mit Ebene, die parallel zur y,z-Ebene liegt.
- Bestehen aus den (x; y; z) Punkten (x₀; y; f(x₀; y))
- x-Wert ist fixiert $\Leftrightarrow x_0 = 3$
- y-Wert ist variabel

1.2.2 Bedingungen

Initial $bedingungen \rightarrow Beziehen sich auf die Zeit$

Randbedingungen → Beziehen sich auf räumliche Ebenen

1.3 Kontouren, Levelsets, Niveaulinien, Höhenlinen, ...

Bei Kontouren, Levelsets, Niveaulinien oder Höhenlinien ist der Output der Funktion f konstant.

$$\vec{y} = \vec{f}(\vec{x}) = \text{const. wobei } \vec{x} \subset \mathbb{D}_f$$

Beispiel: Höhenlinien

Kontouren (Höhenlinien)

- Fläche wird geschnitten mit einer Ebene, die parallel zur x,y-Ebene liegt
- Bestehen aus den (x; y; z) Punkten $(x; y; f(x; y) = z_0)$
- x-Wert ist variabel
- y-Wert ist variabel
- z-Wert ist fixiert $\Leftrightarrow z_0 = 3$

2 Ableitungen, DGL und Gradienten (bi-variat)

$$f: \mathbb{D}_f \subseteq \mathbb{R}^2 \to \mathbb{W}_f \subseteq \mathbb{R}$$
 skalar

2.1 Partielle Ableitung

Ableitung einer Partiellen Funktion.

Beispiel: Bi-Variate Funktion

f(x, y): y fixieren = const. = y_0 ; x einzige freie Variable

Notationen

1. Ordnung:
$$f(x; y_0) \Rightarrow \frac{\partial f}{\partial x} = f_x(x; y_0)$$
2. Ordnung:
$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial x^2} = f_{xx}$$

$$\frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = \frac{\partial^2 f}{\partial y \partial x} = f_{xy}$$

2.1.1 Schwarz-Symmetrie

Wenn f_{xx} , f_{yy} , f_{xy} & f_{yx} stetig (sprungfrei) sind, dann gilt:

$$f_{xy} \stackrel{!}{=} f_{yx}$$

2.2 Gradient (Nabla-Operator)

Spaltenvektor mit partiellen Ableitungen

2.3 Totale Ableitung

Für Fehlerrechnung benützt, da man hierbei die Abstände von (x; y; z) zu einem festen Punkt $(x_0; y_0; z_0)$ erhält. (relative Koordinaten)

$$D(f; (x_0, y_0, \ldots)) : \mathbb{R}^2 \xrightarrow{\longrightarrow} \mathbb{R}^1;$$
 "gute Approximation"

$$f(x = x_0 + \Delta x; y = y_0 + \Delta y; \dots) = (D_{11}; D_{12}) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} + f(x_0; y_0) + R_1$$

Wobei R_1 dem "Rest" entspricht. (Ähnlich wie bei Taylorreihe

$$\frac{R_1}{d = \sqrt{\Delta x^2 + \Delta y^2}} \rightarrow 0 \text{ ("gut", "schneller gegen 0 als } d")$$

$$D(f;(x_0;y_0)) = \left(D_{11} = \frac{\partial f}{\partial x}(x_0;y_0); D_{12} = \frac{\partial f}{\partial y}(x_0;y_0)\right)$$
$$= (\nabla f)^{\text{tr}} \text{ wenn } \frac{\partial f}{\partial x}; \frac{\partial f}{\partial y} \text{ stetig bei } A$$

2.4 Linearapproximation (Tangential approximation)

$$f(x; y) \approx f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix}$$
 linear in Δx und Δy

2.4.1 Tangentialebene

$$g(x;y) = f(x_0; y_0) + D(f; (x_0; y_0)) \cdot \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$$

$$g(x; y) = f(x_0; y_0) + f_x(x_0; y_0) \cdot (x - x_0) + f_y(x_0; y_0) \cdot (y - y_0)$$

2.4.2 Tangentialer Anstieg (Totale Differential)

$$\mathrm{d}f \stackrel{!}{=} \frac{\partial f}{\partial x} \, \mathrm{d}x + \frac{\partial f}{\partial y} \, \mathrm{d}y \quad \text{bezüglich } A = \underbrace{(x_0; y_0)}$$

2.4.3 Differential-Trick (df Trick)

$$\begin{cases} f = c = \text{const.} & |d(\dots)| \\ df = dc \stackrel{!}{=} 0 \end{cases} \qquad f_x dx + f_y dy = 0 \quad \text{für Kontourlinien}$$

2.4.4 Implizite (Steigungs-)Funktion

$$y'(x) = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{f_x}{f_y \neq 0} \lor x'(y) = \frac{\mathrm{d}x}{\mathrm{d}y} = -\frac{f_y}{f_x \neq 0}$$
 $y_0 = -\frac{P_0}{y'} \to 0$

2.5 DGL

$$y' = \left(-\frac{f_x}{f_y}\right); \ y(x_0) = y_0$$

right-hand-side (r.h.s.) Funktion

2.6 Richtungselement (Tangentiallinie an Kontouren)

$$\vec{r} = \left(dx = h; dy = y' dx = -\frac{f_x}{f_y} dx \right)^{tt}$$

2.7 Gradientenfeld \(\perp \) Kontouren

Skalarprodukt
$$\nabla f \cdot \begin{pmatrix} dx \\ dy = y' dx \end{pmatrix} \stackrel{!}{=} 0$$

2.8 ?Wie heisst dieser Abschnitt?

$$s(t): P_0 + t \cdot \hat{v} \mid t \in \mathbb{R}$$

$$s(t): f(x_0 + t \cdot \hat{v}_1; y_0 + t \cdot \hat{v}_2)$$

$$\frac{ds(t)}{dt} = \dot{s}(t): \qquad t \mapsto \overbrace{\begin{pmatrix} x_0 + t \cdot v_1 \\ y_0 + t \cdot v_2 \end{pmatrix}}^{\left(x_0 + t \cdot v_1\right)} \mapsto f(x, y)$$

2.9 Richtungs-Ableitung

$$\frac{\partial f}{\partial \hat{v}} \stackrel{!}{=} D(f; (x_0; y_0)) \cdot \hat{v} \stackrel{\mathrm{Def.}}{\Leftrightarrow} \mathrm{grad}(f)^{\mathrm{tr}} \cdot \hat{v} = f_x \cdot v_1 + f_y \cdot v_2$$

Beispiel: Richtungs-Ableitung

$$\vec{x}: \vec{v} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \hat{e}_1 \quad \Rightarrow \quad \frac{\partial f}{\partial \hat{e}_1} = f_x \cdot 1 + f_y \cdot 0 = \underline{f_x}$$

2.9.1 Spezialfälle

• $\alpha = \frac{\pi}{2} \Rightarrow \text{rechter Winkel}$ • $\frac{\partial f}{\partial \hat{v}}$ extremal - $\alpha = 0 \text{ (max)}$: $\nabla f \cdot \hat{v} > 0 \Rightarrow \text{grad}(f) \text{ liegt auf } \hat{v}$ - $\alpha = \pi \text{ (min)}$: $\nabla f \cdot \hat{v} < 0 \Rightarrow \text{grad}(f) \text{ liegt invers auf } \hat{v}$

Trigo: $\nabla f \cdot \hat{v} \wedge \frac{\partial f}{\partial \hat{v}} \implies \cos(\alpha) \cdot |\nabla f|$

3 Extrema von Funktionen finden

Stationäritätsbedingung: $\nabla f \stackrel{!}{=} \vec{0}$

3.1 Extrema von Funktionen zweier Variablen finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \quad \Rightarrow \begin{cases} f_x = 0 \\ f_y = 0 \end{cases} \Rightarrow x_0 \text{ und } y_0 \text{ bestimmen}$$

2. Zweite Partielle Ableitungen bestimmen:

$$f_{xx} = \dots$$
 $f_{xy} = f_{yx} = \dots$ $f_{yy} = \dots$

3. Determinante Δ der Hesse-Matrix H bestimmen:

 $\Delta = f_{xx}(x_0; y_0) \cdot f_{yy}(x_0; y_0) - \left(f_{xy}(x_0; y_0)\right)^2$

4. Auswertung:

$\Delta > 0$	AND	$f_{xx}(x_0;y_0)<0$	\Longrightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{yy}(x_0;y_0)<0$	\Rightarrow	lokales Maximum
$\Delta > 0$	AND	$f_{xx}(x_0;y_0) > 0$	\Rightarrow	lokales Minimum
$\Delta > 0$	AND	$f_{yy}(x_0; y_0) > 0$	\Rightarrow	lokales Minimum
$\Delta < 0$			\Longrightarrow	Sattelpunkt
$\Delta = 0$?	Multi-variate-Taylor-logik

3.2 Extrema von Funktionen mehrerer Variablen finden

1. Gradient von f Null-setzten und kritische Stellen finden:

$$\nabla f = \begin{pmatrix} f_x \\ f_y \\ \vdots \\ f_t \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \Rightarrow x_0, y_0, \dots, t_0 \text{ bestimmer}$$

2. Zweite Partielle Ableitungen für Hesse-Matrix H bestimmen:

$$\mathbf{H} = \begin{pmatrix} f_{xx} & f_{xy} & \cdots & f_{xt} \\ f_{yx} & f_{yy} & \cdots & f_{yt} \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx} & f_{ty} & \cdots & f_{tt} \end{pmatrix}$$

- Symmetrien beachten!
- Nicht doppelt rechnen! $\Rightarrow f_{xt} = f_{tx}$
- $\Rightarrow \int xt$

3. Hesse-Matrix H mit gefundenen Stellen füllen:

$$\mathbf{H}(x_0, y_0, \dots t_0) = \begin{pmatrix} f_{xx}(x_0, y_0, \dots t_0) & f_{xy}(x_0, y_0, \dots t_0) & \cdots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) & \cdots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \cdots & f_{tt}(x_0, y_0, \dots t_0) \end{pmatrix}$$

4. Eigenwerte λ_i der Hesse-Matrix bestimmen:

det $(\mathbf{H}(x_0, y_0, \dots t_0) - \lambda \cdot \mathbf{E}) = 0$ Nullstellen λ_i finden \rightarrow Eigenwerte

Zur Erinnerung:

$$\mathbf{E} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & 1 \end{pmatrix}, \quad \lambda \cdot \mathbf{E} = \begin{pmatrix} \lambda & 0 & \dots & 0 \\ 0 & \lambda & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & & \lambda \end{pmatrix}$$

$$\mathbf{H}(x_0, y_0, \dots t_0) - \lambda \cdot \mathbf{E} = \dots$$

$$\dots = \begin{cases} f_{xx}(x_0, y_0, \dots t_0) - \lambda & f_{xy}(x_0, y_0, \dots t_0) & \dots & f_{xt}(x_0, y_0, \dots t_0) \\ f_{yx}(x_0, y_0, \dots t_0) & f_{yy}(x_0, y_0, \dots t_0) - \lambda & \dots & f_{yt}(x_0, y_0, \dots t_0) \\ \vdots & \vdots & \ddots & \vdots \\ f_{tx}(x_0, y_0, \dots t_0) & f_{ty}(x_0, y_0, \dots t_0) & \dots & f_{tt}(x_0, y_0, \dots t_0) - \lambda \end{cases}$$

5. Auswertung:

$\lambda_i < 0 \ \forall i$	\Longrightarrow	lokales Maximum
$\lambda_i > 0 \ \forall i$	\Longrightarrow	lokales Minimum
$\lambda_i > 0$ und $\lambda_i < 0$	\Longrightarrow	Sattelpunkt

Erklärung

- $\lambda_i < 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind negativ}$
- $\lambda_i > 0 \ \forall i \Leftrightarrow \text{Alle } \lambda_i \text{ sind positiv}$

3.3 Lokales oder Globales Extremum

Für eine beliebige die Funktion f(x, y, ..., t) gilt:

$f(x, y, \dots, t) \le M_{\text{max}}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Maxinum
$f(x, y, \dots, t) > M_{\text{max}}$	$\exists (x,y,\ldots,t)\in \mathbb{D}_f$	\Rightarrow	kein globales Maximum
$f(x, y, \dots, t) \ge M_{\min}$	$\forall (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	globales Minimum
$f(x, y, \dots, t) < M_{\min}$	$\exists (x, y, \dots, t) \in \mathbb{D}_f$	\Rightarrow	kein globales Minimum

 M_{max} : grösstes lokales Maximum M_{min} : kleinstes lokales Minimum

3.4 Extrema von Funktionen zweier Variablen mit NB finden

1. Nebenbedingung (NB) in Standartform bringen:

Standartform: $n(x, y) \stackrel{!}{=} 0$

 $\stackrel{!}{=} 0$ Nebenbedingung: x + y = 1

Standartform der Nebenbedingung: x + y - 1 = 0

2. Lagrancge-Funktion $\mathcal L$ aufstellen:

 $\mathcal{L}(x, y, \lambda) = f(x, y) + \lambda \cdot n(x, y)$ Am besten gleich ausmultiplizieren

3. Gradient der Lagrancge-Funktion $\mathcal L$ Null-setzten und kritische Stellen finden:

$$\nabla \mathcal{L} = \begin{pmatrix} \mathcal{L}_x \\ \mathcal{L}_y \\ \mathcal{L}_A \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow x_0 \text{ und } y_0 \text{ bestimmen}$$

4. Zweite Partielle Ableitungen bestimmen:

$$\mathcal{L}_{\lambda\lambda} \stackrel{!}{=} 0 \qquad \qquad \mathcal{L}_{\lambda x} = \mathcal{L}_{x\lambda} = n_x = \dots$$

$$\mathcal{L}_{xx} = \dots \qquad \qquad \mathcal{L}_{\lambda y} = \mathcal{L}_{y\lambda} = n_y = \dots$$

$$\mathcal{L}_{yy} = \dots \qquad \qquad \mathcal{L}_{xy} = \mathcal{L}_{yx} = \dots$$

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}}(x_0, y_0) = \begin{pmatrix}
\mathcal{L}_{\lambda\lambda}(x_0, y_0) & \mathcal{L}_{\lambda x}(x_0, y_0) & \mathcal{L}_{\lambda y}(x_0, y_0) \\
\mathcal{L}_{x\lambda}(x_0, y_0) & \mathcal{L}_{xx}(x_0, y_0) & \mathcal{L}_{xy}(x_0, y_0) \\
\mathcal{L}_{y\lambda}(x_0, y_0) & \mathcal{L}_{yx}(x_0, y_0) & \mathcal{L}_{yy}(x_0, y_0)
\end{pmatrix}$$

$$= \begin{pmatrix}
0 & n_x(x_0, y_0) & n_y(x_0, y_0) \\
n_x(x_0, y_0) & \mathcal{L}_{xx}(x_0, y_0) & \mathcal{L}_{xy}(x_0, y_0) \\
n_y(x_0, y_0) & \mathcal{L}_{yx}(x_0, y_0) & \mathcal{L}_{yy}(x_0, y_0)
\end{pmatrix}$$

6. Determinante der geränderten Hesse Matrix bestimmen:

 $\det\left(\overline{\mathbf{H}}\right) = \dots$

7. Auswertung

$\det\left(\overline{\mathbf{H}}\right) > 0$	\Longrightarrow	lokales Maximum
$\det\left(\overline{\mathbf{H}}\right) < 0$	\Longrightarrow	lokales Minimum
$det(\overline{\mathbf{H}}) = 0$	\Longrightarrow	keine Aussage möglich

3.5 Extrema von Funktionen mehrerer Variablen mit NB finden

1. Nebenbedingung (NB) in Standartform bringen:

Standartform: $n(x, y, ..., t) \stackrel{!}{=} 0$

2. Lagrancge-Funktion \mathcal{L} aufstellen:

 $\mathcal{L}(x, y, ..., t, \lambda) = f(x, y, ..., t) + \lambda \cdot n(x, y, ..., t)$ Am besten gleich ausmultiplizieren

3. Gradient der Lagrancge-Funktion \mathcal{L} Null-setzten und kritische Stellen finden:

$$\nabla \mathcal{L} = \begin{pmatrix} \mathcal{L}_{x} \\ \mathcal{L}_{y} \\ \vdots \\ \mathcal{L}_{t} \\ \mathcal{L}_{\lambda} \end{pmatrix} \stackrel{!}{=} \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_{0}, y_{0}, ..., t_{0} \text{ bestimmen}$$

4. Zweite Partielle Ableitungen bestimmen:

$$\mathcal{L}_{\lambda\lambda} \stackrel{!}{=} 0 \\
\mathcal{L}_{xx} = \dots \\
\mathcal{L}_{yy} = \dots \\
\vdots \\
\mathcal{L}_{tt} = \mathcal{L}_{x\lambda} = n_{x} = \dots \\
\mathcal{L}_{\lambda y} = \mathcal{L}_{y\lambda} = n_{y} = \dots \\
\mathcal{L}_{xy} = \mathcal{L}_{yx} \\
\mathcal{L}_{xt} = \mathcal{L}_{tx} \\
\mathcal{L}_{yy} = \mathcal{L}_{yx} \\
\mathcal{L}_{yt} = \mathcal{L}_{tx} \\
\vdots \\
\mathcal{L}_{tt} = \mathcal{L}_{t\lambda} = n_{t} = \dots$$

5. Geränderte Hesse Matrix $\overline{\mathbf{H}}$ aufstellen und kritische Stellen einsetzen:

$$\overline{\mathbf{H}}(x_0, y_0, \dots t_0) = \begin{pmatrix} \mathcal{L}_{\lambda l}(\dots) & \mathcal{L}_{\lambda l}(\dots) & \mathcal{L}_{\lambda l}(\dots) & \dots & \mathcal{L}_{\lambda l}(\dots) \\ \mathcal{L}_{x l}(\dots) & \mathcal{L}_{x x}(\dots) & \mathcal{L}_{x y}(\dots) & \dots & \mathcal{L}_{x l}(\dots) \\ \mathcal{L}_{y l}(\dots) & \mathcal{L}_{y x}(\dots) & \mathcal{L}_{y y}(\dots) & \dots & \mathcal{L}_{y l}(\dots) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathcal{L}_{t l}(\dots) & \mathcal{L}_{t x}(\dots) & \mathcal{L}_{t y}(\dots) & \dots & \mathcal{L}_{t l}(\dots) \\ n_{x}(\dots) & \mathcal{L}_{x x}(\dots) & \mathcal{L}_{t y}(\dots) & \dots & \mathcal{L}_{x l}(\dots) \\ n_{y}(\dots) & \mathcal{L}_{y x}(\dots) & \mathcal{L}_{y y}(\dots) & \dots & \mathcal{L}_{y l}(\dots) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n_{t}(\dots) & \mathcal{L}_{t x}(\dots) & \mathcal{L}_{t y}(\dots) & \dots & \mathcal{L}_{t l}(\dots) \end{pmatrix}$$

6. Determinante der geränderten Hesse Matrix bestimmen:

 $\det(\overline{\mathbf{H}}) = ...$

7. Auswertung

$\det\left(\overline{\mathbf{H}}\right) > 0$	\Longrightarrow	lokales Maximum
$\det\left(\overline{\mathbf{H}}\right) < 0$	\Longrightarrow	lokales Minimum
$det(\overline{\mathbf{H}}) = 0$	\Longrightarrow	keine Aussage möglich

4 Support Vector Machine (SVM)

4.1 Lineare Trennbarkeit von Daten

4.1.1 Allgemeines

<u>Datenpunkte:</u> (2D Beispiel)

$$A:(\underbrace{(x_1,x_2)};y_1), \quad B:(\underbrace{(x_1,x_2)};y_2), \quad C:(\underbrace{(x_1,x_2)};y_3), \quad \cdots, \quad N:(\underbrace{(x_1,x_2)};y_n)$$

 \vec{x}_j sind Datenvektoren

 $y_j \in \{\pm 1\}$ klassifiziert die jeweiligen Datenvektoren

<u>Hyperebenen:</u>

$$\vec{w}^{tr} \cdot \vec{x} + b = 0$$

 \overrightarrow{w} : Normalenvektor, $\overrightarrow{w} \in \mathbb{R}^d$ und $\overrightarrow{w} \neq 0$

b: Konstante, $b \in \mathbb{R}$

Dimmension der Hyperebene = d - 1

Abstand der Hyperebene zum Ursprung: $\frac{|b|}{|\vec{w}|}$

Klassifizierung:

$$\vec{w}^{tr} \cdot \vec{x} + b > 0$$
 $\Rightarrow \vec{x}$ gehört zur Klasse $y = +1$ $\vec{w}^{tr} \cdot \vec{x} + b < 0$ $\Rightarrow \vec{x}$ gehört zur Klasse $y = -1$

Klassifizierung der Trainigsdaten:

$$\vec{w}^{tr} \cdot \vec{x}_j + b \ge 0$$
 $\Rightarrow \vec{x}_j$ gehört zur Klasse $y = +1$
 $\vec{w}^{tr} \cdot \vec{x}_j + b \le 0$ $\Rightarrow \vec{x}_j$ gehört zur Klasse $y = -1$

Zielfunktion:

$$\frac{2}{\left|\vec{w}\right|} = \frac{2}{w}$$

4.1.2 Das primale Optimierungsproblem

$$\frac{1}{2}\vec{w}^{tr} \cdot \vec{w} = \frac{1}{2} \left| \vec{w} \right|^2 = \frac{1}{2} w^2 \rightarrow \min! \quad \text{s.t.} \quad \left(\vec{w}^{tr} \cdot \vec{x}_j + b \right) y_j \ge 1 \quad (j = 1, \dots, N)$$

4.1.3 Das duale Optimierungsproblem

Nebenbedingung:

$$\underbrace{1 - \left(\vec{w}^{tr} \cdot \vec{x}_j + b\right) y}_{g_j(\vec{w}^{tr}, b)} \leq 0 \Leftrightarrow g_j(\vec{w}^{tr}, b) \leq 0 \quad (j = 1, \dots, N)$$

Lagrange-Funktion:

Zusammengesetzt aus dem primalen Problem und den Nebenbedingungen.

$$\begin{split} L(\vec{w}^{tr}, b, \vec{a}) &= L(w_1, w_2, ..., w_d, b, \alpha_1, \alpha_2, ..., \alpha_N) \\ &= \frac{1}{2} \vec{w}^{tr} \cdot \vec{w} + \sum_{j=1}^{N} \alpha_j \left(\underbrace{1 - \left(\vec{w}^{tr} \cdot \vec{x}_j + b \right) y_j}_{g_j(\vec{w}^{tr}, b)} \right) \end{split}$$

Stationaritätsbedingungen:

Aus der Bedingung, dass grad(L) = 0 sein muss, lassen sich folgende Formeln ableiten:

$$\boxed{grad_{\{\vec{w}^{tr},b\}}\left(L(\vec{w}^{tr},b,\vec{\alpha})\right) = \vec{0}} \Leftrightarrow \left| \vec{w} = \sum_{j=1}^{N} \alpha_{j} y_{j} \vec{x}_{j} \right| \text{ und } \left| \sum_{j=1}^{N} \alpha_{j} y_{j} = 0 \right|$$

Das duale Problem

Die oben erhaltenen Summen können nun in die Lagrange-Fkt. eingesetzt werden. Daraus entsteht

$$L(\vec{\alpha}) = \sum_{j=1}^{N} \alpha_j - \underbrace{\frac{1}{2} \sum_{j,j'=1}^{N} \alpha_j \alpha_{j'} y_j y_{j'} \vec{x}_j^{\prime r} \cdot \vec{x}_{j'}}_{=\frac{1}{2} \vec{w}^{\prime r} \cdot \vec{w}} \quad \rightarrow \quad \text{max!} \quad \text{s.t.} \quad \alpha_j \geq 0 \land \sum_{j=1}^{N} \alpha_j y_j = 0$$

Formulieren des dualen Optimierungsproblems mit den Lagrange-Variablen α_j : Vorgenehsbeispiel für 3 Datenpunkte:

1. Lagrange-Funktion $L(\vec{\alpha})$ aufstellen:

$$L(\vec{\alpha}) = \sum_{j=1}^{N} \alpha_j - \frac{1}{2} \sum_{j,j'=1}^{N} \alpha_j \alpha_{j'} y_j y_{j'} \vec{x}_j^{tr} \cdot \vec{x}_{j'} \quad \to \quad \text{max!}$$

Finden der Lagrange-Variablen α_i :

1. Stationaritätsbedingungen aufstellen:

a:
$$\alpha_j \ge 0$$
 und **b:** $\sum_{j=1}^N \alpha_j y_j = 0$

2. Nebenrechnung:

b umstellen nach einer Variablen (z.B. α_1) und in Lagrange-Funktion ersetzen

3. Gradient von verkürzter Lagrange-Funktion berechnen und restliche α finden: $\nabla(L_{neu}(\alpha_2,\alpha_3)) \implies \alpha_2 = ..., \ \alpha_3 = ...$

4. Fehlendes α berechnen:

 α_2 und α_3 in ${\bf 2.~b}$ einsetzen und α_1 berechnen

Lösen des dualen Optimierungsproblems:

1. Normalenvektor \vec{w} finden:

$$\vec{\vec{w}} = \sum_{j=1}^{N} \alpha_j y_j \vec{x}_j$$

2. Konstante b finden:

Mit Stützvektor-Datenpunkt aus Klasse y = +1:

$$b=+1-\vec{w}^{tr}\cdot\vec{x}_{\cdots}=\cdots$$

Mit Stützvektor-Datenpunkt aus Klasse y = -1:

$$b = -1 - \vec{w}^{tr} \cdot \vec{x}_{...} = ...$$

5 Integration (bi-variat)

Als bi-variate Integrale versteht man Integrale, die siech über zwei unabhängige Variablen erstrecken. Sie haben die Form

$$\int_{\Omega} f(\omega) \cdot d\omega = \int_{Y} \int_{Y} f(x; y) \cdot dy \cdot dx$$

wobei $\Omega \subset \mathbb{R}^2$, $X \subset \mathbb{R}$ und $Y \subset \mathbb{R}$ ist.

5.1 Normalbereich

TODO: WTF ist ein Normalbereich? Schnitte sind Strecken (Intervalle) für x, y, ...

5.2 Zweidimensionale Koordinatensysteme

Neben den Kartesischen Koordinatensystemen kommen in zweidimensionalen Räumen auch Polare Koordinatensysteme zum Einsatz. Die beiden Systeme können mit Hilfe der Trigonometrie in einander überführt werden.

5.2.1 Umrechnung Kartesisch ↔ Polar

Polar zu Kartesisch

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r * \cos \varphi \\ r * \sin \varphi \end{pmatrix}$$

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} r * \cos \varphi \\ r * \sin \varphi \end{pmatrix} \qquad \qquad \begin{pmatrix} r \\ \varphi \end{pmatrix} = \begin{pmatrix} \sqrt{x^2 + y^2} \\ \tan^{-1} \frac{y}{x} \end{pmatrix}$$

Dabei ist zu beachten, dass \tan^{-1} nur werte von -180° bis 180° liefert. φ wird also, je nach dem in welchem Quadranten sich \vec{p} befindet, nach folgendem Schema berechnet:

$$\frac{180^{\circ} + \tan^{-1} \frac{y}{x}}{180^{\circ} + \tan^{-1} \frac{y}{x}} \xrightarrow{} \tan^{-1} \frac{y}{x}$$

Um eine ganzes Integral vom einen Koordinatensystem ins andere zu überführen, muss zum einen die Funktion f(x, y) zu $f(r, \varphi)$ (oder umgekehrt) umgeschrieben, sowie die differentiale angepasst werden. Hier dafür einige gängige Elemente:

	Kartesisch	Polar
x-Achsenelement	$\mathrm{d}x$	$dx = \cos\varphi dr - r\sin\varphi d\varphi$
y-Achsenelement	dy	$dx = \sin \varphi dr + r \cos \varphi d\varphi$
Linienelement	$ds^2 = dx^2 dy^2$	$\mathrm{d}s^2 = \mathrm{d}r^2 + r^2 \mathrm{d}\varphi^2$
Flächenelement	dA = dx dy	$dA = r dr d\varphi$

5.3 2D Transformation Polar zu Kartesisch

TODO: Das isch ja ds gliiche wie obe beschribe, oder? Wänn da no meh ane sött wüsstich nöd was... -Flurin T = Transformation

Polar $(r, \varphi) \xrightarrow{T} (x, y)$ Kartesisch

$$\begin{pmatrix} x = r \cdot \cos(\varphi) \mathbb{R} \\ y = r \cdot \sin(\varphi) \mathbb{R} \end{pmatrix} 2D$$

Die Funktionen für x und y sind skalare Funktion.

$$x = x(r; \varphi)$$
 $y = y(r; \varphi)$

5.4 Derivative, Ableitung

TODO: Idk was da ane söll -Flurin

5.5 Anwendungsformeln Doppelintegral

Allgemein	Kartesische Koordinaten	Polarkoordinaten				
Flächeninhalt o	Flächeninhalt einer ebenen Figur					
$A = \int_A da$	$= \int\limits_X \int\limits_Y \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} r \mathrm{d}r \mathrm{d}\varphi$				
Oberfläche ein	er Ebene in drei Dimensionen					
$S = \int_{A} \frac{1}{\cos \gamma} \mathrm{d}a$	$= \iint\limits_{X} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} \sqrt{r^2 + r^2 \left(\frac{\partial z}{\partial r}\right)^2 + \left(\frac{\partial z}{\partial \varphi}\right)^2} dr d\varphi$				
Volumen eines	Zylinders					
$V = \int_A z \mathrm{d}a$	$= \int\limits_X \int\limits_Y z \mathrm{d}y \mathrm{d}x$	$= \iint_{\Phi} zr dr d\varphi$				
Trägheitsmom	ent einer ebenen Figur, bezogen au	f die x-Achse				
	$= \int\limits_X \int\limits_Y y^2 \mathrm{d}y \mathrm{d}x$	$= \iint_{\Phi} r^3 \sin^2 \varphi dr d\varphi$				
Trägheitsmom	ent einer ebenen Figur, bezogen au	If den Pol (0, 0)				
$I_x = \int_A r^2 \mathrm{d}a$	$= \int\limits_X \int\limits_Y (x^2 + y^2) \mathrm{d}y \mathrm{d}x$	$= \iint_{\Phi} r^3 \mathrm{d}r \mathrm{d}\varphi$				
Masse einer eb	enen Figur mit Dichtefunktion ϱ					
$m = \int_{A} \varrho \mathrm{d}a$	$= \int\limits_X \int\limits_Y \varrho(x,y) \mathrm{d}y \mathrm{d}x$	$= \int_{\Phi} \int_{R} \varrho(x, y) r dr d\varphi$				
Koordinaten des Schwerpunkts einer homogenen, ebenen Figur						
$\int_{A} x da$	$\int_{V} \int_{V} x dy dx$	$\iint_{\Omega} r^2 \cos \varphi dr d\varphi$				
$x_{COG} = \frac{A}{A}$	$=\frac{2}{\int\int\int dy dx}$	$= \frac{\overset{\circ}{\Phi} \overset{\circ}{R}}{\int \int r \mathrm{d}r \mathrm{d}\varphi}$				
$x_{COG} = \frac{\frac{\int_{A}^{A} A da}{A}}{y_{COG}}$ $y_{COG} = \frac{\int_{A}^{A} y da}{A}$	$= \frac{\int\limits_{X}^{X} \int\limits_{Y}^{Y} y dy dx}{\int\limits_{U}^{U} \int\limits_{U}^{U} dy dx}$	$= \frac{\int_{\Phi}^{\Phi} \int_{r}^{R} \sin \varphi dr d\varphi}{\int_{R}^{R} \int_{r}^{R} r dr d\varphi}$				

6 Integration (multi-variat)

6.1 Dreidimensionale Koordinatensysteme

Kartesisch Zylindrisch Kubisch
TODO: Bild Kartesisch TODO: Bild Zylindrisch TODO: Bild Sphärisch

6.2 Längenintegrale

6.2.1 Längenelemente

$$(dl)^2 = (dx)^2 + (dy)^2 + (dz)^2 = \dots$$

6.2.2 Länge einer Funktion

$$\int f(x, y, z) \, \mathrm{d}l = \dots$$

6.3 Flächenintegrale

6.3.1 Flächenelemente

$$ds = f(dx, dy, dz) = \dots$$

6.3.2 Flächeninhalt einer Oberfläche

$$\int_{C} f(x, y, z) \, \mathrm{d}s = \dots$$

6.4 Volumenintegrale

6.4.1 Volumenelemente

 $ds = f(dx, dy, dz) = \dots$

6.4.2 Volumen eines Körpers

$$\int_{\mathcal{U}} f(x, y, z) \, \mathrm{d}v = \dots$$

6.5 Anwendungen Trippel-Integrale

Allgemein	Kartesische Koordinaten	Zylinderkoordinaten	Kugelkoordinaten		
Beispiel					
$A = \int_A da$	$= \iint\limits_X \iint\limits_Y \int\limits_Z \mathrm{d}z \mathrm{d}y \mathrm{d}x$	=	=		

7 Differenziation und Integration von Kurven

8 (Ober-)Flächenintegrale

9 Vektoranalysis

9.1 Vektorfelder

- Jedem Punkt P im Raum ist ein Vektor \vec{V} zugeordnet
- Kann als $\vec{V}(\vec{r})$ geschrieben werden, wobei \vec{r} ein Ortsvektor mit fixem Ursprung $\vec{0}$ ist

9.2 Divergenz (Volumenableitung)

- Beschreibt, wie stark sich ein Vektorfeld in einem Punkt ausbreitet oder zusammenzieht
- Beispiel: Vektorfeld das die Geschwindigkeit von Wasser in eineem Fluss beschreibt
 - An Punkten mit positiver Divergenz fliesst Wasser hinaus (Quelle)
 - An Punkten mit negativer Divergenz fliesst Wasser hinein (Senke)

$$\nabla \cdot \vec{V} = \operatorname{div} \vec{V} = \lim_{\Delta V \to 0} \frac{\oint_{(s)} \vec{V} \cdot d\vec{S}}{\Delta V}$$

9.2.1 Kartesisch

$$\overrightarrow{\text{div } \overrightarrow{V} = \nabla \cdot \overrightarrow{V} = \underbrace{\left(\frac{\partial}{\partial x}; \frac{\partial}{\partial y}; \frac{\partial}{\partial z}\right)}_{V_z} \cdot \underbrace{\begin{pmatrix} V_x \\ V_y \\ V_z \end{pmatrix}}_{V_z} = \frac{\partial V_x}{\partial x} + \frac{\partial V_y}{\partial y} + \frac{\partial V_z}{\partial z}$$

9.2.2 Zylinderkoordinaten

$$\operatorname{div} \vec{V} = \frac{1}{r} \frac{\partial}{\partial r} (rV_r) + \frac{1}{r} \frac{\partial V_{\varphi}}{\partial \varphi} + \frac{\partial V_z}{\partial z}$$

9.3 Integralsatz von Gauss

$$\int_{(V)} \operatorname{div} \vec{A} \, dV = \oint_{(S) = \partial V} \vec{A} \cdot d\vec{S}$$

Fluss durch eingeschlossenen Körper = Gesamter Fluss durch geschlossenen Rand des Körpers

9.4 Poisson-Gleichung (Laplace-Gleichung)

$$\Delta \phi = \operatorname{div} \left(\operatorname{grad}(\phi) \right) = \nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = f(\vec{r})$$
 $\Delta :$ Laplace-Operator $\phi :$ Potentialfeld $\phi :$ Ouellfunktion

9.4.1 Laplace-Gleichung

 $\Delta \phi = f = 0$ \Rightarrow Spezialfall der Poisson-Gleichung ohne äussere Quellfunktion

9.5 Rotation eines Vektorfelds (rot(), curl())

Beschreibt, wie stark und in welche Richtung sich ein Vektorfeld an einem Punkt rotiert. Wobei der Vektor selbst die Rotationsachse beschreibt und dessen Betrag proportional zur Rotationsgeschwindigkeit ist. Beispiel: Wirbelfelder

$$\operatorname{rot} \vec{A} = \nabla \times \vec{A} = \begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \\ \frac{\partial}{\partial z} \end{pmatrix} \times \begin{pmatrix} A_x \\ A_y \\ A_z \end{pmatrix} = \begin{pmatrix} \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \\ \frac{\partial A_z}{\partial z} - \frac{\partial A_z}{\partial x} \\ \frac{\partial A_z}{\partial x} - \frac{\partial A_z}{\partial y} \end{pmatrix}$$

- $|\operatorname{rot} \vec{A}| < 0$: Uhrzeigersinn
- $|\operatorname{rot} \vec{A}| = 0$: Wirbelfrei
- $|\operatorname{rot} \vec{A}| > 0$: Gegenuhrzeigersinn

Gauss: div $(rot(\vec{A})) \stackrel{!}{=} 0$

9.6 Integralsatz von Stokes

$$\oint_{(C)=\partial S} \vec{A} \cdot d\vec{r} = \int_{(S)} \operatorname{rot} \vec{A} \cdot d\vec{S}$$

 ∂S muss anhand Rechter-Hand-Regel orientiert sein.

Stokes sagt aus, dass die Summe der Verwirbelungen in einer Fläche, der Summe der Vektoren dessen Randes entsprechen.

9.7 Anwendungen: Maxwell-Gleichungen

-TBD-