Formulae

FRL General

- · Number of choices -
 - $A = \{1, 2, 3, 4, 5\}$
 - Let's form a sub-set of A with no constraints. Here, for each of the 5 elements, we may or may not include them in the subset. So, we have 2 choices per element. Total number of choices:
 - 2^5 for 5 elements
 - 2^n for n elements
 - If we had 3 choices per element, Total number of choices would be:
 - 3^5 for 5 elements
 - 3^n for n elements

FRL Reflexive Relations

- ullet Total number of relations: n^2
- ullet Total number of Diagonal elements: n
- ullet Total number of Non-Diagonal elements: Total number of elements in AxA Total number of diagonal elements = n^2-n
- Total number of reflexive relations: $2^{Non-Diagonal} = 2^{n^2-n}$
- ullet Total number of non-reflexive relations: $2^{n^2}-2^{n^2-n}$
- ullet Smallest possible size: n
- Largest possible size: n^2

FRL Irreflexive Relations

Total number of Non-Diagonal elements: Total number of elements in AxA - Total

number of diagonal elements = $n^2 - n$

- All non-reflexive relations are not irreflexive relations.
- ullet Total number of irreflexive relations: 2^{n^2-n}

• Smallest possible size: $0 (\{\})$

• Largest possible size: $n^2 - n$

FRL Comparison of relations

$$A = \{1, 2, 3\}, AxA = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)\}$$

Parameter	Reflexive	Irreflexive	Symmetric	Anti-symmetric	Asymı
Cardinality of smallest relation	n	Ø	Ø	Ø	Ø
Cardinality of largest relation	n^2	n^2-n	n^2	$(n^2+n)/2$	$(n^2 -$
Number of relations	2^{n^2-n}	2^{n^2-n}	$2^{n}.2^{(n^2-n)/2)}$	$2^n.3^{(n^2-n)/2}$	$3^{(n^2-n)}$

Set Theory

Set

A well-defined unordered collection of distinct elements.

- Unordered: Set {1,2,3,4} is same as {2,3,4,1}.
- Distinct: Set {1,2,3,4} is same as {1,1,2,2,3,4}.

Null/Empty set

A set with no elements, denoted by Φ or $\{\}$.

- Cardinality of an empty set is 0.
- {Φ} is not an empty set.
- Φ is present in every set.

Subset

If every element of Set A also exists in Set B, denoted by \subseteq .

- **Example**: If $A = \{1,2,3,4\}$, $A' = \{1,2,3,4,5\}$, then $A \subseteq A'$.
- Every set is a subset of itself.
- Trivial subset: A set which contains all elements of A, is if A={1,2,3,4} and A'={1,2,3,4}.
- Proper subset: A set which is not a trivial subset of A, ie the subset can't be same / can't have the same length as A.
- If $A \subseteq B \& B \subseteq A$, then A=B. #Note

Cardinality

Number of elements in a set.

Power Set

If 'A' is a finite set, then it is the set of all subsets of 'A'.

• Example: If $A=\{1,2,3\},\ P(A)=\{\{\Phi\},\{1\},\{2\},\{3\},\{1,2\},\{2,3\},\{1,3\},\{1,2,3\}\}.$

- ullet If cardinality of a set is n, the number of elements in the power set is $2^n=8$, ie $|P(a)|=|2^n|$
- Write all the sets starting with cardinality 0, then 1, then 2 ... and so on.

Cartesian product

Product of all elements of 1 set, with all elements of the other set.

- **Example**: If A={a,b} and B={1,2,3}, then:
 - $AxB = \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\} \ | \ \text{If an element is (m,n)}, \\ \text{then m} \in A \ \& \ n \in B.$
 - $\circ \ BxA = \{(1,a), (1,b), (2,a), (2,b), (3,a), (3,b)\}$
- Total number of products, assuming Cardinality(A)=m & Cardinality(B)=n, is mxn.
- First multiply element 1 of A with element 1 of B, then element 1 of A with element 2 of B ... and so on.
- The order needs to be maintained, as is apparent in the example.
- AxB is not same as BxA, unless A=B.

Relations, also check Cartesian Product

If A and B are two sets and AxB is their cartesian product, then any subset of AxB can form a relation from A to B.

- Example:
 - $\circ \ \{(a,1),(a,2)\}$ | Valid
 - $\circ \ \{(b,1),(b,2),(a,1)\}$ | Valid
 - $\circ \{(1, a), (2, a)\} \mid \text{Not Valid}$
- Total number of relations: 2^{mxn} .

Reflexive Relation

- Formulae
- A Relation 'R' on a set 'A' is said to be Reflexive if $(x,x) \in R \forall x \in A$
- Every element of a set is related to itself.
- Points to remember:
 - i. All elements must be present.
 - ii. All of them must be related to themselves.
 - iii. After putting in all valid elements, we can put extra elements.
 - iv. The difference between a diagonal relation is that a reflexive relation may also contain extra elements.
- Example 0: $A = \{1, 2, 3\}$

$$\circ \ AxA = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$$

- Possible Reflexive relations:
 - $\{(1,1),(2,2),(3,3)\}$: Smallest
 - $\{(1,1),(2,2),(3,3),(2,1)\}$: We may also put extra elements as long as the original condition has been satisfied.
 - $\{(1,1),(2,2),(3,3),(2,1),(2,3)\}$
 - $\{(1,1),(2,2),(3,3),(2,1),(2,3),(3,1)\}$
 - $\{(1,1),(2,2),(3,3),(2,1),(2,3),(3,1),(3,2)\}$
 - $\{(1,1),(2,2),(3,3),(2,1),(2,3),(3,1),(3,2),(3,3)\}$: Largest
- ullet Example 1: Check for reflexive relation: $\{(x,y), x-y \ ext{is an integer}\}$
 - \circ (2,3) cannot be in an answer, since it doesn't satisfy point 2.
 - $\circ (1,1), (2,2), (3,3)$, etc. will satisfy the equation, as 1-1=0, which is an integer. So it is a reflexive relation.
- ullet Example 2: Check for reflexive relation: $\{(x,y), x-y ext{ is an odd number}\}$
 - \circ (1,1),(2,2),(3,3), etc. will not satisfy the equation, as 1-1=0, which is not an odd number. So it is not a reflexive relation.

Irreflexive Relation

- Formulae
- ullet A Relation 'R' on a set 'A' is said to be Irreflexive if $(x,y)
 otin R\ orall\ (x,y)$
- No element of the set should be related to itself.
- Points to remember:
 - i. We exclude all diagonal elements, and include the non-diagonal elements.
 - ii. A not reflexive relation is not the same as an Irreflexive relation. Example:

- $A = \{1, 2, 3\}, R = \{(1, 1), (2, 2)\}$
- Here, R is not a reflexive relation since it does not include (3,3). But, R is not in Irreflexive relation either, because it includes (1,1) & (2,2). So, it is just not a reflexive relation.
- Example 0: $A = \{1, 2, 3\}$
 - $\circ \ AxA = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
 - $\circ R = \{(1,2), (1,3), (2,1), (2,3), (3,1), (3,2)\}$

Symmetric Relation

- A Relation 'R' is symmetric, if for every $(x,y) \in R, \ (y,x) \in R \ orall \ (x,y) \in A$.
- If (x,y) is present in a Relation 'R' on a set 'A', then (y,x) must also be present in the set.
- We first check if (x,y) is present. We check for (y,x) only if (x,y) is present. It is not necessary for all possible relations to be present.
- Example 0: $A = \{1, 2, 3\}$
 - $\circ \ AxA = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$

 - $\{(1,2),(1,3),(1,1)\}$: This is NOT a symmetric relation, because (3,1) is not present for (1,3).
- Example 1: Check: 'perpendicular-to' on a set of all lines.

Solution: If a line $L1 \perp L2$, then obviously $L2 \perp L1$. So, this is a symmetric relation.

- Example 2: Check: 'brother of' of all humans on Earth.
 Solution: If X is a brother of Y, Y may be a sister of X. So, it's not symmetric.
- Example 3: Check: 'complement of', on a set of numbers.
 Solution: If x is a complement of y, then y is also a complement of x. So, the relation is symmetric.

Anti-symmetric Relation

• A Relation 'R' is anti-symmetric, if for every $(x,y) \in R, \ (y,x) \in R \ orall \ (x,y) \in A, only \ if \ (x=y).$

- If (x, y) is present in a Relation 'R' on a set 'A', then (y, x) should only also be present in the relations if x = y. Otherwise, it must not be present.
- We first check if (x,y) is present. We check for (y,x) only if (x,y) is present. It is not necessary for all possible relations to be present.
- Example 0: $A = \{1, 2, 3\}$
 - $\circ \ AxA = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
 - \circ $\{(2,1),(3,1),(1,1)\}$: TRUE, for (2,1),(1,2) must not be present since $(2\neq 1)$. For (1,1), it's Symmetric pair is (1,1), which is fine since (1=1).
 - $\circ \{(1,2),(2,1),(1,3),(1,1)\}$: FALSE, because (2,1) is present.

Asymmetric Relation

- A Relation 'R' is asymmetric, if for every $(x,y) \in R, \ (y,x) \notin R \ \forall \ (x,y) \in A$.
- If (x,y) is present in a Relation 'R' on a set 'A', then (y,x) should only also be present in the relationsif x=y. Otherwise, it must not be present.
- We first check if (x, y) is present. We check for (y, x) only if (x, y) is present. It is not necessary for all possible relations to be present.
- Example 0: $A = \{1, 2, 3\}$
 - $\circ \ AxA = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$
 - $\circ \ \{(2,1),(3,1),(2,3)\}$: TRUE, for all (x,y),(y,x) is not present in the relation.
 - $\{(2,2),(3,1),(2,3),(1,1)\}$: FALSE, because (1,1) is present, and it's duplicate ie (1,1) should not be present.
- Every Asymmetric relation is anti-symmetric. An Asymmetric relation is more restrictive than an anti-symmetric relation, since an asymmetric relation does not allow (y, x) (for every (x, y)) to be present even if (x = y).
- Every Anti-symmetric relations is not asymmetric. An anti-symmetric relation allows (y,x) to be present if (x=y).

Transitive Relation

- A Relation 'R' is Transitive, if for every $(x,y) \in R \ \& \ (y,z) \in R$, $(x,z) \in R \ \lor \ (x,y) \in A$.
- If (x,y) & (y,z) is present in a Relation 'R' on a set 'A', then (x,z) should also be present in the relation.

- If any or x,y or z is not present in the relation, then the relation is transitive by default.
- Example 0: $A = \{1, 2, 3\}$
 - $\circ \{(1,1),(2,2)\}$: TRUE, x,y & z are not present together.
 - \circ \${ Φ }: TRUE, none of the elements are present.
 - $\circ \ \{(1,2),(2,3)\} \colon \mathsf{FALSE}, \ \mathsf{since} \ (x,z) \ \mathsf{ie} \ (1,3) \ \mathsf{is} \ \mathsf{not} \ \mathsf{present}.$ $\mathsf{x} = \mathsf{1}, \ \mathsf{y} = \mathsf{2}, \ \mathsf{z} = \mathsf{3}$
 - $\circ \{(1,1),(1,2),(2,1)\}$: TRUE, since in both cases the conditions are matching.

$$x = 1, y = 1, z = 2 z = 1, y = 2, z = 1$$

Equivalence Relation

- A Relation 'R' is equivalence, if it is reflexive, symmetric or transitive.
- Example 0: $A = \{1, 2, 3\}$
 - $\circ \{(1,1),(2,2),(3,3)\}$: TRUE
 - $\circ \ \{(1,1),(2,2),(3,3),(2,1),(1,2)\} \colon \mathsf{TRUE}$
 - $\{(1,1),(2,2),(3,3),(3,2),(1,3)\}$: FALSE, because (2,3) is not present for (3,2), so it's not symmetric.
 - \circ { }: FALSE, since (1,1),(2,2),(3,3) is not present, so it is not a reflexive relation.

Partially Ordered Set

- A Relation 'R' is said to be a partial-ordering relation if R is reflexive, antisymmetric as well as transitive.
- Partially odered set: A set 'A' with Partial-Ordering relation 'R' defined on 'A' is called POSET, defined by [A;R]
- Example 0: $A = \{1, 2, 3\}$
 - $\circ \ \{(1,1),(2,2),(3,3)\}$: TRUE
 - ${}_{\circ}\ \{(1,1),(2,2),(3,3),(1,2),(2,3),(1,3)\}{:}\ \mathsf{TRUE}$
 - \circ [A, \leq] is a POSET: TRUE,
 - $(1 \le 1)$ is true, so relation is reflexive.
 - $(1 \leq 1)$ is true, and for $(1.5 \leq 2.5)$, $(2.5 \leq 1, 5)$ is not true. So, relation

is anti-symmetric. $(1\leq 2.5),\,(2.5\leq 3),\,\text{then}\,\,(1\leq 3)\,\,\text{is also true. So, the relation is transitive.}$

Totally Ordered Set

• A POSET {A,R} is called a totally ordered set if every pair of elements in set A are comparable, ie, if:

$$aRb\ or\ bRa\ orall\ (a,b)\in A$$

- The set has to mandatorily be a Partially Ordered Set. In other words, every TOS is a POSET.
- ullet Example 0: $(A,\div)\in R\ orall (A\in I)$, I=Integers: FALSE.

$$A = \{1,2,3,4,5,6,7,8...\infty\}$$

Reflexive: $(1,1),(2,2),(3,3)\in R$

Anti-symmetric: $(4,2) \in R$ but (2,4)
otin R

Transitive: If $(8,4) \in R\&(4,2) \in R$, then $(8,2) \in R$.

TOS: (2,3),(4,8), etc. are not comparable when the domain consists only of positive integers.

- Example 1: $(A, \leq) \in R \ \forall (A \in R)$, I=Real numbers: TRUE.
- Example 2: $(A, \in) \in R \ \forall A \in \{\emptyset\}, \{\{a\}, \{b\}, \{a, b\}\}$: FALSE. $\{a\}$ is not comparable with $\{b\}$.

Comparison of all relations

See comparison of relations in section formulae.

• Explanation:

$$A = \{1,2,3\} \ AxA = \{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(2,2)\}$$

- Reflexive:
 - Smallest: $\{(1,1),(2,2),(3,3)\}\ |$ Cardinality: n
 - Largest: $\{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\} \mid \text{Cardinality: } n^2$

Number of relations: For $\{(1,1),(2,2),(3,3)\}$ ie n elements, we don't have a choice. For the rest $\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}$ ie (n^2-n) elements, we have 2 choices per pair. So, the total number of choices: $2^{n^2}-2^n=2^{n^2-n}$

o Irreflexive:

- Smallest: {} | Cardinality: Ø
- Largest: $\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}$ | Cardinality: n^2-n
- Number of relations: 2^{n^2-n}

Symmetric:

- Smallest: {} | Cardinality: Ø
- \blacksquare Largest: $\{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\} \mid$ Cardinality: n^2
- Number of relations: For $\{(1,1),(2,2),(3,3)\}$ ie n elements, we have 2 choices per pair. For the rest $\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}$ ie (n^2-n) elements, if (1,2) is present, (2,1) also needs to be present. So, we have 2 choices per respective double-pair. Total number of choices: $2^n.2^{(n^2-n)/2}$

o Anti-symmetric:

- Smallest: {} | Cardinality: Ø
- \blacksquare Largest: $\{(1,1),(2,2),(3,3),(1,2),(1,3),(2,3)\}$ OR $\{(1,1),(2,2),(3,3),(2,1),(3,1),(3,2)\}$ | Cardinality: $n+[(n^2-n)/2]=(2n+n^2-n)/2=(n^2+n)/2$
- Number of relations: For $\{(1,1),(2,2),(3,3)\}$ ie n elements, we have 2 choices per pair. For the rest $\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}$ ie (n^2-n) elements, if (1,2) is present, (2,1) must not be present and vice versa. So, we can either take (1,2) or (2,1) exclusively, or we can exclude both. We have 3 choices per double-pair. Total number of choices: $2^n.3^{(n^2-n)/2}$

Asymmetric:

- Smallest: {} | Cardinality: Ø
- Largest: $\{(1,2),(1,3),(2,3)\}$ OR $\{(2,1),(3,1),(3,2)\}$ | Cardinality: $(n^2-n)/2$

■ Number of relations: For $\{(1,1),(2,2),(3,3)\}$ ie n elements, we cannot take them. For the rest $\{(1,2),(2,1),(1,3),(3,1),(2,3),(3,2)\}$ ie (n^2-n) elements, if (1,2) is present, (2,1) must not be present and vice versa. So, we can either take (1,2) or (2,1) exclusively, or we can exclude both. We have 3 choices per double-pair. Total number of choices: $3^{(n^2-n)/2}$

o Transitive:

- Smallest: {} | Cardinality: Ø
- \blacksquare Largest: $\{(1,1),(2,2),(3,3),(1,2),(2,1),(1,3),(3,1),(2,3),(2,2)\} \mid \text{Cardinality: } n^2$