

planetmath.org

Math for the people, by the people.

corollary of Schur decomposition

Canonical name CorollaryOfSchurDecomposition

Date of creation 2013-03-22 13:43:38 Last modified on 2013-03-22 13:43:38

Owner Daume (40) Last modified by Daume (40)

Numerical id 7

Author Daume (40) Entry type Corollary Classification msc 15-00 **theorem:** $A \in \mathbb{C}^{n \times n}$ is a normal matrix if and only if there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ such that $Q^H A Q = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ (the diagonal matrix) where A is the conjugate transpose. [?]

proof: Firstly we show that if there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ such that $Q^H A Q = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ then $A \in \mathbb{C}^{n \times n}$ is a normal matrix. Let $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ then A may be written as $A = QDQ^H$. Verifying that A is normal follows by the following observation $AA^H = QDQ^HQD^HQ^H = QDD^HQ^H$ and $A^HA = QD^HQ^HQDQ^H = QD^HDQ^H$. Therefore A is normal matrix because $DD^H = \operatorname{diag}(\lambda_1\bar{\lambda}_1, \dots, \lambda_n\bar{\lambda}_n) = D^HD$. Secondly we show that if $A \in \mathbb{C}^{n \times n}$ is a normal matrix then there exists a unitary matrix $Q \in \mathbb{C}^{n \times n}$ such that $Q^HAQ = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$. By Schur decompostion we know that there exists a $Q \in \mathbb{C}^{n \times n}$ such that $Q^HAQ = T(T)$ is an upper triangular matrix. Since A is a normal matrix then A is also a normal matrix. The result that A is a diagonal matrix comes from showing that a normal upper triangular matrix is diagonal (see theorem for normal triangular matrices). QED

References

[GVL] Golub, H. Gene, Van Loan F. Charles: Matrix Computations (*Third Edition*). The Johns Hopkins University Press, London, 1996.