Recitation 4

Wednesday 19^{th} November, 2014

Contents

1	Line	ear Vector Spaces	2
	1.1	Examples	2
	1.2	Exercises	2
	1.3	Linear Combinations	Δ

1 Linear Vector Spaces

1.1 Examples

- 1. $\mathbb{R}^n = \{(x_1, \dots, x_n); x_1, \dots, x_n \in \mathbb{R}\}\$
- 2. $\mathbb{C}^n = \{(x_1, \dots, x_n); x_1, \dots, x_n \in \mathbb{C}\}\$
- 3. $C([0,1]) = \{f : [0,1] \to \mathbb{R}; f \text{ is continuous} \}$ where $(f+g)(x) = f(x) + g(x), (\alpha f)(x) = \alpha f(x); \alpha \in \mathbb{R}, f \in C([0,1])$
- 4. Matrices over \mathbb{F} with matrix addition and scalar multiplication as per standard definitions.
- 5. $\mathbb{R}_n[x] = \{p(x) = p_0 + p_1 x + \dots + p_n x^n; p_0, \dots, p_n \in \mathbb{R}\}$ where $(p+q)(x) = (p_0 + q_0) + \dots + (p_n + q_n) x^n, (\alpha p)(x) = \alpha(p(x)) = (\alpha p_0) + \dots + (\alpha p_n) x^n$

1.2 Exercises

Example 1. Is

$$W_1 = \{(a, b, c) \in \mathbb{R}^3; a + b + c = 0\}$$

a subspace of \mathbb{R}^3 ?

Solution.

$$0+0+0=0 \Rightarrow (0,0,0) \in W_1$$

$$v, u \in W_1$$

$$\therefore v_1 + v_2 + v_3 = u_1 + u_2 + u_3 = 0$$

$$\therefore v_1 + u_1 + v_2 + u_2 + v_3 + u_2 = 0$$

$$\therefore v + u = (v_1 + u_1, v_2 + u_2, v_3 + u_3) \in W_1$$

$$\alpha \in \mathbb{R}$$

$$v = (v_1, v_2, v_3) \in W_1$$

$$\therefore v_1 + v_2 + v_3 = 0$$

$$\therefore \alpha v = (\alpha v_1, \alpha v_2, \alpha v_3)$$

$$\alpha v_1 + \alpha v_2 + \alpha v_3 = 0$$

$$\therefore \alpha v \in \mathbb{R}$$

Example 2. Is

$$W_2 = \{(a, b, c) \in \mathbb{R}^3; a \ge 0\}$$

a subspace of \mathbb{R}^3 ?

Solution. W_2 is not a linear subspace of \mathbb{R}^3 , as for $\alpha=-1,v=(1,0,0)$, $\alpha v=(-1,0,0)\notin W_2$

Example 3. Is

$$W_3 = \{ p(x) \in \mathbb{R}_3[x]; p(0) = 1 \}$$

a subspace of \mathbb{R}^3 ?

Solution.

$$0(0) = 0 \neq 1$$
$$\therefore 0 \notin W_3$$

Hence, W_3 is not a linear subspace of $R_3[x]$.

Example 4. Show that the solutions space of homogeneous linear system is a linear subspace.

Solution. Let A be the matrix representing the homogeneous matrix, with n variables over \mathbb{F} .

$$N(A) = \{x; x \in \mathbb{F}^n, Ax = 0\}$$

$$x = 0 \in N(A)$$

$$\therefore A \cdot 0 = 0$$

$$\therefore 0 \in N(A)$$

$$x, y \in N(A)$$

$$Ax = Ay = 0$$

$$\therefore A(x + y) = Ax + Ay = 0$$

$$\therefore x + y \in N(A)$$

$$\lambda \in \mathbb{F}$$

$$x \in N(A)$$

$$\therefore Ax = 0$$

$$\therefore A(\lambda x) = \lambda(Ax)$$

$$= \lambda \cdot 0$$

$$= 0$$

$$\therefore \lambda x \in N(A)$$

Therefore, N(A) is a linear subspace.

1.3 Linear Combinations

Let V be a linear vector space over $\mathbb F$ and $K\subset V$ be a finite set of vectors from V.

$$k = \{v_1, \dots, v_n\}$$

Every expression of the form

$$\sum_{i=1}^{n} \alpha_i v_i = 0; \alpha_1, \dots, \alpha_n \in \mathbb{F}$$

is called a linear combination of K.

K is said to be linearly dependent if $\exists \alpha_1, \ldots, \alpha_n$, not all zeros, s.t.

$$\sum_{i=1}^{n} \alpha_i v_i = 0$$

otherwise, K is said to be linearly dependant, i.e.

$$\alpha_1 = \dots = \alpha_n = 0$$