In [1]:

1 import pandas as pd
2 import numpy as np
3 import matplotlib.pyplot as plt
4 import seaborn as sns
5 %matplotlib inline

In [34]: 1 print(cancer.DESCR)

Optimization Methods and Software 1, 1992, 23-34].

This database is also available through the UW CS ftp server:

ftp ftp.cs.wisc.edu
cd math-prog/cpo-dataset/machine-learn/WDBC/

.. topic:: References

- W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on Electronic Imaging: Science and Technology, volume 1905, pages 861-870, San Jose, CA, 1993.
- O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and prognosis via linear programming. Operations Research, 43(4), pages 570-577, July-August 1995.
- W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) 163-171.

Out[2]:

mean ncavity	mean concave points	mean symmetry	mean fractal dimension	 worst radius	worst texture	worst perimeter	worst area	worst smoothness	worst compactness	worst concavity	worst concave points	worst symmetry	worst fractal dimension
0.3001	0.14710	0.2419	0.07871	 25.38	17.33	184.60	2019.0	0.1622	0.6656	0.7119	0.2654	0.4601	0.11890
0.0869	0.07017	0.1812	0.05667	 24.99	23.41	158.80	1956.0	0.1238	0.1866	0.2416	0.1860	0.2750	0.08902
0.1974	0.12790	0.2069	0.05999	 23.57	25.53	152.50	1709.0	0.1444	0.4245	0.4504	0.2430	0.3613	0.08758
0.2414	0.10520	0.2597	0.09744	 14.91	26.50	98.87	567.7	0.2098	0.8663	0.6869	0.2575	0.6638	0.17300
0.1980	0.10430	0.1809	0.05883	 22.54	16.67	152.20	1575.0	0.1374	0.2050	0.4000	0.1625	0.2364	0.07678

Testing Accuracy:

	precision	recall	f1-score	support
0	0.96	0.98	0.97	54
1	0.99	0.98	0.98	89
accuracy			0.98	143
macro avg	0.98	0.98	0.98	143
weighted avg	0.98	0.98	0.98	143

Training Accuracy:

	precision	recall	f1-score	support	
0	0.98	0.99	0.99	155	
1	1.00	0.99	0.99	271	
accuracy			0.99	426	
macro avg	0.99	0.99	0.99	426	
weighted avg	0.99	0.99	0.99	426	

```
In [17]:
           1 from sklearn.preprocessing import StandardScaler
              scaler = StandardScaler()
              scaler.fit(df)
Out[17]: StandardScaler()
In [19]:
           1 scaled data = scaler.transform(df)
           1 from sklearn.decomposition import PCA
In [20]:
In [40]:
           1 pca = PCA(n components=4)
           1 pca_df = pca.fit_transform(df)
In [41]:
           pca df = pd.DataFrame(pca df,columns = ['PC1','PC2','PC3','PC4'])
In [42]:
           1 pca df.head()
In [43]:
Out[43]:
                 PC1
                          PC2
                                   PC3
                                           PC4
          0 9.192837
                      1.948583 -1.123167 3.633731
            2.387802 -3.768172 -0.529292
                                       1.118264
          2 5.733896 -1.075174 -0.551747 0.912083
          3 7.122953 10.275589 -3.232790 0.152547
          4 3.935302 -1.948072 1.389767 2.940640
```

Out[44]: <matplotlib.collections.PathCollection at 0x20ef8dd4508>


```
1 pca.explained variance ratio .sum()
In [45]:
Out[45]: 0.7923850582446045
In [51]:
           1 from sklearn.linear model import LogisticRegression
           2 from sklearn.model selection import train test split
           3 from sklearn.metrics import classification report
             model = LogisticRegression()
             x train,x test,y train,y test = train test split(pca df,cancer['target'],random state=1)
             model.fit(x train,y train)
              print("Testing Accuracy : \n",classification report(model.predict(x test),y test),"\n")
          10
          11
          12 print("Training Accuracy : \n", classification report(model.predict(x train), y train))
         Testing Accuracy:
                        precision
                                      recall f1-score
                                                         support
                             0.93
                                                 0.94
                                                             53
                    0
                                       0.96
                                                 0.97
                                                             90
                    1
                             0.98
                                       0.96
                                                 0.96
                                                            143
             accuracy
                                                 0.96
                            0.95
            macro avg
                                       0.96
                                                            143
         weighted avg
                             0.96
                                       0.96
                                                 0.96
                                                            143
         Training Accuracy:
                        precision
                                     recall f1-score
                                                         support
                    0
                             0.96
                                       0.97
                                                 0.96
                                                            154
                            0.99
                                                 0.98
                    1
                                       0.97
                                                            272
                                                 0.97
                                                            426
             accuracy
```

426

426

0.97

0.97

0.97

0.97

0.97

0.97

macro avg

weighted avg

In []: 1