

- Form myelin electrical insulation, increasing conduction velocity by at least 50 times.
- Provide vital metabolic support for axons (purple).
- Involved in multiple sclerosis, amyotrophic lateral sclerosis and the inhibition of repair after spinal-cord injury.

Astrocytes (red and green)

- Ensheath synapses, regulate neuronal excitability and synaptic transmission.
- Respond to injury by secreting extracellular matrix proteins.
- Implicated in neurogenesis, cell migration, and many neurological and psychiatric disorders.

Microglia (green)

- Highly motile and responsive to nervoussystem injury and infection.
- Monitor electrical activity in neurons and prune synaptic connections (red).
- Involved in almost all nervous-system diseases and in certain psychiatric conditions.

Interneurons

neurotransmitters

The action potential is a rapid and transient nerve impulse, with the feature of an "all or nothing" phenomenon

Amplitude of about 100 mV (millivolts)

Duration of about 1 ms (milliseconds)

It starts from the axon hillock

It is conducted along the axon

Ventral pathway

(V1-V4 to temporal lobe and hippocampus) object recognition

Dorsal pathway

(V1-V3 to premotor area and prefrontal cortex) action-related visual processing

Dorsal pathway (magnocellular pathway):

depth, motion, contrast, luminance

Ventral pathway (parvocellular pathway):

color, shape

The properties of **dorsal** and **ventral** pathways are determined by the properties of **M-cells**, **P-cells** and their respective target cells in LGN and visual cortical areas)

Genetic contributions to ASD population

three-chambered social approach test

Frontotemporal dementia

Location: frontotemporal Macro: cerebral atrophy

Micro: tau deposits, Pick bodies

Alzheimer's disease

Location: temporoparietal Macro: cerebral atrophy Micro: Aß plaques, tangles

Dementia with Lewy bodies

Location: frontotemporal Macro: cerebral atrophy Micro: Lewy bodies

Huntington's disease

Location: basal ganglia Macro: neostriatal atrophy

Micro: neuronal loss and astrocytosis

Parkinson's disease

Location: midbrain

Macro: pallor of substantia nigra

Micro: Lewy bodies

Amyotrophic Lateral Sclerosis

Location: motor cortex, brainstem, spinal cord Macro: atrophy of motor neurones and muscles Micro: inclusions (Bunina bodies, Lewy body-like)

PARKINSON'S DISEASE(DEGENERATIVE STAGES)

nature biotechnology

Optogenetics enables functional analysis of human embryonic stem cell-derived grafts in a Parkinson's disease model

Julius A Steinbeck^{1,2}, Se Joon Choi³, Ana Mrejeru³, Yosif Ganat^{1,2}, Karl Deisseroth⁴⁻⁶, David Sulzer^{3,7,8}, Eugene V Mosharov³ & Lorenz Studer^{1,2}

