Chapitre 12: Fonctions circulaires réciproques

I La fonction Arcsin

A) Etude

Soit
$$f: [-\frac{\pi}{2}, \frac{\pi}{2}] \rightarrow [-1;1]$$
.
 $x \mapsto \sin x$

Alors f est continue et strictement croissante, de plus $f(-\frac{\pi}{2}) = -1$ et $f(\frac{\pi}{2}) = 1$.

Donc f est une bijection de $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ dans $\left[-1;1\right]$.

B) Définition

Arcsin est la fonction de [-1;1] dans $[-\frac{\pi}{2}, \frac{\pi}{2}]$ qui est la réciproque de la bijection $f:\left[-\frac{\pi}{2},\frac{\pi}{2}\right]\to\left[-1;1\right].$

 $x \mapsto \sin x$

On a ainsi:

$$\forall x \in [-1;1], \forall y \in \mathbb{R}, (y = \operatorname{Arcsin}(x) \iff y \in [-\frac{\pi}{2}, \frac{\pi}{2}] \text{ et } \sin y = x)$$

Arcsin(x) est l'unique arc entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$ dont le sinus est x.

C) Propriétés de la fonction Arcsin

Elles résultent des propriétés de la fonction $x \mapsto \sin x$ sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ et des théorèmes portant sur les fonctions réciproques des bijections continues et strictement monotones sur un intervalle :

- $\forall x \in [-1;1], -\frac{\pi}{2} \le \operatorname{Arcsin}(x) \le \frac{\pi}{2}$
- Arcsin est continue
- Arcsin est strictement croissante
- Arcsin est impaire (car $x \mapsto \sin x$ l'est sur $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$)

En effet:

Soit $x \in [-1;1]$.

Alors $-\operatorname{Arcsin}(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, et $\sin(-\operatorname{Arcsin}(x)) = -\sin(\operatorname{Arcsin}(x)) = -x$, donc

- $-\operatorname{Arcsin}(x)$ est l'unique arc entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$ dont le sinus est -x, c'est-à-dire que $-\operatorname{Arcsin}(x) = \operatorname{Arcsin}(-x)$.

- Arcsin est de classe
$$C^{\infty}$$
 sur $]-1;1[$, et de plus :
$$\forall x \in]-1;1[,(Arcsin)'(x)=\frac{1}{\sqrt{1-x^2}}]$$

Soit $x \in]-1;1[$. Posons $\alpha = Arcsin(x)$. Alors $\alpha \in]-\frac{\pi}{2},\frac{\pi}{2}[$, et $\sin \alpha = x$

Comme sin est dérivable en α , et $(\sin)'(\alpha) = \cos(\alpha) \neq 0$, Arcsin est dérivable en

$$x \text{ et } (Arcsin)'(x) = \frac{1}{\cos \alpha}.$$

Mais $\cos^2 \alpha + \sin^2 \alpha = 1$, et $\cos \alpha > 0$.

Donc $\cos \alpha = \sqrt{1 - \sin^2 \alpha}$, et de plus $\sin \alpha = x$ donc $\cos \alpha = \sqrt{1 - x^2}$

Donc finalement (Arcsin)'(x) =
$$\frac{1}{\sqrt{1-x^2}}$$
.

Donc Arcsin est bien dérivable sur]-1;1[, et sa dérivée sur]-1;1[est $x \mapsto \frac{1}{\sqrt{1-x^2}}$, qui est de classe C^{∞} sur]-1;1[.

Donc Arcsin est bien de classe C^{∞} sur]-1;1[

- Arcsin n'est pas dérivable en -1 ni en 1, mais sa courbe présente aux points d'abscisses -1 et 1 une demi tangente verticale. En effet, Arcsin est dérivable sur]-1;1[et (Arcsin)' a une limite à gauche en 1 (respectivement à droite en -1) qui est $+\infty$, d'où le résultat avec le théorème liant limite de la dérivée et limite du taux d'accroissement.
- Enfin, la courbe représentative de Arcsin dans un repère orthonormé (O, \vec{i}, \vec{j}) se déduit de celle de sin restreint à $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ par la symétrie orthogonale par rapport à la première bissectrice :

La courbe est elle-même un résultat de cours, elle résume l'essentiel des points précédents. Noter aussi la position de la courbe par rapport à la tangente à l'origine.

II La fonction Arccos

A) Etude

La fonction $[0,\pi] \rightarrow [-1;1]$ est une bijection continue et strictement croissante. $x \mapsto \cos x$

B) Définition

Arccos est la fonction de [-1;1] dans $[0,\pi]$ qui est la réciproque de la bijection $[0,\pi] \to [-1;1]$. $x \mapsto \cos x$

On a donc:

$$\forall x \in [-1,1], \forall y \in \mathbb{R}, (y = \operatorname{Arccos}(x) \Leftrightarrow y \in [0,\pi] \operatorname{et} \cos y = x)$$

Ou:

Arccos(x) est l'unique arc entre 0 et π dont le cosinus est x.

C) Propriétés de la fonction Arccos

- $\forall x \in [-1;1], 0 \le \operatorname{Arccos}(x) \le \pi$
- Arccos est continue
- Arccos est strictement décroissante
- Arccos est de classe C^{∞} sur]-1;1[, et de plus :

$$\forall x \in]-1;1[,(Arccos)'(x) = \frac{-1}{\sqrt{1-x^2}}$$

En effet:

Soit $x \in]-1;1[$. Posons $\alpha = \operatorname{Arccos}(x)$. Alors $\alpha \in]0,\pi[$, et $\cos \alpha = x$

Comme cos est dérivable en α , et $(\cos)'(\alpha) = -\sin(\alpha) \neq 0$, Arccos est dérivable

en x et (Arccos)'(x) =
$$\frac{1}{-\sin \alpha} = \frac{-1}{\sqrt{1-\cos^2 \alpha}} = \frac{-1}{\sqrt{1-x^2}}$$
.

D'où, comme pour Arcsin, Arccos est de classe C^{∞} sur]-1;1[.

- Arccos n'est pas dérivable en -1 ni en 1, mais sa courbe présente aux points d'abscisses -1 et 1 une demi tangente verticale.
- La courbe représentative de Arccos dans un repère orthonormé (O, \vec{i}, \vec{j}) se déduit de celle de cosinus restreint à $[0, \pi]$ par la symétrie orthogonale par rapport à la première bissectrice :

- La fonction cos est paire sur \mathbb{R} , mais Arccos n'est pas paire (car cos n'est pas paire sur $[0,\pi]$!)
- En revanche, la courbe présente un centre de symétrie : le point de coordonnées $(0, \frac{\pi}{2})$. Cela se traduit par la formule : $\forall x \in [-1;1]$, $Arccos(x) + Arccos(-x) = \pi$

Rappel:

La courbe de f présente un centre de symétrie en $A(x_0, y_0) \underset{\text{def}}{\Leftrightarrow} I$ est centré en x_0 et

$$\forall h \in \mathbb{R}, \left((x_0 + h \in I) \Rightarrow \frac{f(x_0 + h) + f(x_0 - h)}{2} = y_0 \right)$$

Démonstration:

Soit $x \in [-1;1]$.

Alors $Arccos(x) \in [0, \pi]$ et cos(Arccos(x)) = x

Donc π - Arccos $(x) \in [0, \pi]$ et $\cos(\pi - \operatorname{Arccos}(x)) = -\cos(\operatorname{Arccos}(x)) = -x$

Donc $\pi - \operatorname{Arccos}(x) = \operatorname{Arccos}(-x)$ (car $\pi - \operatorname{Arccos}(x) \in [0, \pi]$)

- On déduit la courbe de Arccos de celle de Arcsin en opérant une symétrie orthogonale par rapport à Ox, puis une translation de vecteur $\frac{\pi}{2}\vec{j}$, ce qui se traduit par la formule : $\forall x \in [-1;1]$, $Arcsin(x) + Arccos(x) = \frac{\pi}{2}$ ($Arccos(x) = (-Arcsin(x)) + \frac{\pi}{2}$)

Démonstration:

Soit $x \in [-1;1]$.

Alors $Arccos(x) \in [0, \pi]$.

Donc $\frac{\pi}{2}$ - Arccos $(x) \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$, et:

 $\sin(\frac{\pi}{2} - \operatorname{Arccos}(x)) = \sin(\frac{\pi}{2})\cos(\operatorname{Arccos}(x)) - \cos(\frac{\pi}{2})\sin(\operatorname{Arccos}(x))$ $= 1 \times \cos(\operatorname{Arccos}(x)) - 0 = x$

Donc $\frac{\pi}{2}$ - Arccos(x) = Arcsin(x)

Soit $Arcsin(x) + Arccos(x) = \frac{\pi}{2}$.

III La fonction Arctan

A) Etude

La fonction $]-\frac{\pi}{2}, \frac{\pi}{2}[\to \mathbb{R}]$ est une bijection continue et strictement croissante. $x \mapsto \tan x$

B) Définition

Arctan est la fonction de \mathbb{R} dans $]-\frac{\pi}{2},\frac{\pi}{2}[$ qui est réciproque de la bijection précédente.

On a donc:

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (y = \operatorname{Arctan}(x) \Leftrightarrow y \in]-\frac{\pi}{2}, \frac{\pi}{2}[\text{ et tan } y = x)$$

Ou:

Arctan(x) est l'unique arc entre $-\frac{\pi}{2}$ et $\frac{\pi}{2}$ dont la tangente est x.

C) Propriétés de la fonction Arctan

- $\forall x \in \mathbb{R}, -\frac{\pi}{2} \le \operatorname{Arctan}(x) \le \frac{\pi}{2}$
- Arctan est strictement croissante sur \mathbb{R} .
- $\lim_{\infty} Arctan = -\frac{\pi}{2}$, $\lim_{\infty} Arctan = \frac{\pi}{2}$
- Arctan est impaire.
- Arctan est de classe C^{∞} sur \mathbb{R} , et de plus :

$$\forall x \in \mathbb{R}, (Arctan)'(x) = \frac{1}{1+x^2}$$

En effet :

Soit $x \in \mathbb{R}$, notons $\alpha = \operatorname{Arctan}(x)$. Alors $\alpha \in]-\frac{\pi}{2}, \frac{\pi}{2}[$, et $\tan \alpha = x$. Comme tan est dérivable en α et $\tan'(\alpha) = 1 + \tan^2 \alpha \neq 0$, Arctan est dérivable en x, et :

(Arctan)'(
$$\alpha$$
) = $\frac{1}{1 + \tan^2 \alpha} = \frac{1}{1 + x^2}$

- Courbe représentative :

- On a:

$$\forall x > 0$$
, Arctan $\left(\frac{1}{x}\right) + Arctan\left(\frac{1}{x}\right) = \frac{\pi}{2}$

$$\forall x < 0, \operatorname{Arctan}(x) + \operatorname{Arctan}(\frac{1}{x}) = -\frac{\pi}{2}$$

Démonstration:

Soit $x \in \mathbb{R}^*$. Notons $\alpha = \operatorname{Arctan}(x)$

Si x > 0:

Alors
$$\alpha \in]0, \frac{\pi}{2}[$$
. Donc $\frac{\pi}{2} - \alpha \in]0, \frac{\pi}{2}[$, et $\tan(\frac{\pi}{2} - \alpha) = \frac{1}{\tan \alpha} = \frac{1}{x}$.

Donc
$$\frac{\pi}{2} - \alpha = \operatorname{Arctan}(\frac{1}{x})$$
, c'est-à-dire $\operatorname{Arctan}(x) + \operatorname{Arctan}(\frac{1}{x}) = \frac{\pi}{2}$.

Si
$$x < 0$$
, alors $-x > 0$,

donc $\operatorname{Arctan}(-x) + \operatorname{Arctan}(\frac{1}{-x}) = \frac{\pi}{2}$, soit $-\operatorname{Arctan}(x) - \operatorname{Arctan}(\frac{1}{x}) = \frac{\pi}{2}$ car Arctan est impaire, donc $\operatorname{Arctan}(x) + \operatorname{Arctan}(\frac{1}{x}) = -\frac{\pi}{2}$.

IV La fonction Arccotan

Arccotan est la fonction de $\mathbb R$ dans $]0,\pi[$ qui est la réciproque de la bijection $]0,\pi[\to\mathbb R$

 $x \mapsto \cot(x)$

Ainsi, $\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (y = \operatorname{Arccotan}(x) \Leftrightarrow y \in]0, \pi[\text{ et cotan } y = x)$

- Arccotan est continue et strictement décroissante sur R.
- $\lim_{-\infty} \operatorname{Arccotan} = \pi$ et $\lim_{+\infty} \operatorname{Arccotan} = 0$
- Arccotan est de classe C^{∞} sur \mathbb{R} et $\forall x \in \mathbb{R}$, $(\operatorname{Arccotan})'(x) = \frac{-1}{1+x^2}$

- On a:

 $\forall x > 0$, Arccotan(x) + Arccotan $(\frac{1}{x}) = \frac{\pi}{2}$

 $\forall x < 0, \operatorname{Arccotan}(x) + \operatorname{Arccotan}(\frac{1}{x}) = \frac{3\pi}{2}$

Démonstration:

Soit $x \in \mathbb{R}^*$. Notons $\alpha = \operatorname{Arccotan}(x)$

Si x > 0:

Alors $\alpha \in]0, \frac{\pi}{2}[$. Donc $\frac{\pi}{2} - \alpha \in]0, \frac{\pi}{2}[$, et:

$$\cot \left(\frac{\pi}{2} - \alpha\right) = \frac{1}{\tan\left(\frac{\pi}{2} - \alpha\right)} = \tan \alpha = \frac{1}{\cot \alpha} = \frac{1}{x}.$$

Donc $\frac{\pi}{2} - \alpha = \operatorname{Arccotan}(\frac{1}{x})$, c'est-à-dire $\operatorname{Arccotan}(x) + \operatorname{Arccotan}(\frac{1}{x}) = \frac{\pi}{2}$

Si x < 0:

Alors $\alpha \in]\frac{\pi}{2}, \pi[$. Donc $\frac{3\pi}{2} - \alpha \in]\frac{\pi}{2}, \pi[$, et:

$$\cot \left(\frac{3\pi}{2} - \alpha\right) = \frac{1}{\tan\left(\frac{3\pi}{2} - \alpha\right)} = \tan \alpha = \frac{1}{\cot \alpha} = \frac{1}{x}$$

Donc $\frac{3\pi}{2} - \alpha = \operatorname{Arccotan}(\frac{1}{x})$, soit $\operatorname{Arccotan}(x) + \operatorname{Arccotan}(\frac{1}{x}) = \frac{3\pi}{2}$