Mabelle Planting Rover Agriculture Technology IoT

Instructor: Dr. Noel Maalouf

Presented by: Vanessa Hanna | Kevin Aoun | Ghadi Eid

Overview

- Introduction
 - System requirements
 - Functionalities
 - Hardware Components
- Modules
 - M1: Balancing Platform
 - M2: Planting and Sensing Mechanism NPK Sensor
 - M3: Data-driven decision making
 - M4: IoT Dashboard
- Conclusion and References

Introduction

- Develop innovative agricultural robot
- Automate planting, fertilizing, watering
- Sensors measure soil moisture, nutrients
- Data transmitted to server
- User-friendly dashboard for monitoring
- Enhance crop cultivation efficiency

System Requirements

- 1. Self-leveling base
- 2. Plant seeds using a designed gripper.
- 3. Collect from the soil the needed data.
- 4. Transmit the data needed from the robot to the main server through wireless connection.
- 5. From the data received and relative data from APIs, the robot should make a decision about the amount of water to be supplied and fertilizer using neural networks.

System Requirements

- 6. The data received, in addition to the results analyzed, will be displayed on a user-friendly dashboard.
- 7. Controlled amounts of water and fertilizer will be supplied to the seeds based on the results found.
- 8. Obstacle avoidance mechanism

Modern Control Techniques

- Balance control on uneven surfaces:
 - Mechanism, motors, sensors, controller
- Precise, fast planting:
 - Needle-like gripper inserts seed at specific depth
 - Drops seed without soil distortion
- Control water, fertilizer based on received data

But how does it all *actually* happen?

Core Functionalities [1]

Self-Leveling Base

- Fragile components on self-balancing platform
- Linkage system with 3 points of contact
- Three servo motors tilt upper base
- Controller: Fuzzy inference system

Core Functionalities [2]

Planting seeds

- Container, gripper designed on SOLIDWORKS
- Seed pushed into tube using gravity
- Water mixed with 20-20-20 NPK pumps seed
- Gripper tip opens hole in soil for seed

Core Functionalities [3]

Collect NPK (Nitrogen-Potassium-Phosphorus) Data

- Gripping mechanism for NPK sensor designed on SOLIDWORKS
- Holds NPK sensor fixed in ground for measurement
- Values logged on Arduino for later action

NPK sensor communication protocol explained later (M2)

Core Functionalities [4]

Sending the Data and Data Display

- Arduino R4 with built-in Wi-Fi sends NPK values via Arduino cloud
- Values fetched from Python for NPK determination
- Combined with temperature, humidity sensor outputs
- Displayed on user-friendly interface with predicted values
- User can upload data, collected for research purposes

Core Functionalities [5]

Data-Driven Decision Making

- Gather the values of the NPK, temperature, humidity
- In addition to rain intensity from an API
- Deep Learning Techniques: Neural Network fine-tuned on our preprocessed data
- Predict the needed values of water and NPK levels that should be added to the soil for an optimal growth

Core Functionalities

Our Building Blocks

Self-Leveling Base

Collecting NPK Data

Decision Making (ANN)

Data Sending and Display

Planting Seeds
Mechanism

Hardware Components

Sensors

- MPU 6050
- Soil Sensors (3 in 1 NPK sensor)
- MAX485 TTL to RS-485 Module
- Humidity and Temperature Sensor (DHT11)

Actuators

- Servo Motors (DS3218, MG996)
- DC Motors
- Pump

Mechanical Components

- 3D printed balancing mechanism
- Ready-made rover model
- 3D printed Gripper, robotic arm
- Seed, Fertilizer and Water Containers

Controllers

- Arduino UNO R4 Wi-Fi
- Arduino UNO R3
- L298n Motor driver

M1: Balancing Platform

A Delicate Fuzzy Balance

- Robot maintains balance on uneven surfaces to prevent spills
- Mechanism comprises three servo motors with 120-degree displacement
- SolidWorks-designed links connect servos to upper platform
- Mamdani Fuzzy IS uses MPU6050 data (roll and pitch)
- System dictates servo rotation angles to maintain platform level
- MATLAB-designed inference system tested with dummy values
- .fis file imported as C++ Arduino code

M1: Balancing Platform

A Delicate Fuzzy Balance

Input 1 - Pitch

Input 2 - Roll

Overall View + Outputs

M2: Planting and Sensing Mechanism

A Full Circle of Efficiency

Notes:

- NPK sensor deployed every 3 seeds for analysis
- Rover returns when seeds planted match requirement
- Fertilizer: 20-20-20 NPK fertilizer used, pump adds as needed..

M2: Planting and Sensing Mechanism

A Full Circle of Efficiency

Figure 1: Planting Arm

Figure 2: Sensing Arm

M3: Data-Driven Decision Making

A Lot of Neurons Were Involved

Synthetic Data Generation

- 600 initial NPK data points (No T, H)
- Generated to replicate real-world conditions
- Augmented, Balanced, Binned (3.55k entries)
- Developed guidelines based on available experiments and discussion with experts

Building the ANN

- Visualized and Preprocessed
 Synthetic Data (pandas,
 Tensorboard)
- Constructed and trained NN model, monitored Loss and Accuracy
- Model exported to ONNX for quick inference

Wireless Synchronized Communication

- Rover sends NPK, temperature, humidity to server via Arduino Cloud IoT
- Values fetched from cloud, classified, processed by ANN, outputs sent back to cloud and rover

M3: Data-Driven Decision Making

A Lot of Neurons Were Involved

Inputs:

- NPK (Sensor, Encoded)
- W, H

Outputs:

NPKW (To be Added)

M4: IoT User Dashboard

Monitoring Success

User Input:

- Number of planting positions
- Distance to be planted
- Ability to export the historical data
- Turns on Rover remotely

Monitoring:

- Current NPK logs
- Temperature and Humidity with respect to time
- Weather Forecast
- Heatmap of each nutrient with respect to the distance

M4: IoT User Dashboard

Monitoring Success

Conclusion

Discovering New fields

- IoT application and data communication
- Decision making and data generation
- Agriculture perspective and applications

Areas of Improvement

- More compact design with less wires prone to damage
- Adding the type of seeds as an option in the decision making
- More efficient planting mechanism
- More accurate sensors
- Experimentally proven data

References

- http://www.makeproto.com/projects/fuzzy/matlab_arduino_FIST/index.php
- https://arduinokitproject.com/soil-npk-sensor-arduino-tutorial/
- https://content.ces.ncsu.edu/extension-gardener-handbook/1-soils-and-plant-nutrients
- https://agri.bot/docs/use-of-npk-00050-in-pea-crop/
- https://www.mdpi.com/2073-4395/10/12/1951
- https://www.sare.org/publications/managing-cover-cropsprofitably/legume-cover-crops/field-peas/
- https://www.researchgate.net/publication/248423122_Thermal_time_require ments_for_the_development_of_green_pea_Pisum_sativum_L
- https://plants.usda.gov/DocumentLibrary/factsheet/pdf/fs_pisa6.pdf

