Bojanje i sparivanje u grafovima

DISKRETNE STRUKTURE S TEORIJOM GRAFOVA

Damir Horvat

FOI, Varaždin

Bojanje vrhova grafa

- Za svaki graf G vrijedi $\gamma(G) \leqslant \Delta(G) + 1$.
- Brooks Neka je G jednostavni i povezani graf koji nije potpun, niti je neparni ciklus. Tada je $\gamma(G) \leqslant \Delta(G)$.
- Ako je K_r podgraf grafa G, tada je $\gamma(G) \geqslant r$.
- Teorem o četiri boje Za svaki planarni graf G je $\gamma(G) \leqslant 4$.
- Neka je G jednostavni graf. Ako K_r nije podgraf grafa G za neki $4 \leqslant r \leqslant \Delta(G) + 1$, tada vrijedi $\gamma(G) \leqslant \frac{r-1}{r} \left(\Delta(G) + 2\right)$.
- Neka je V_i skup svih vrhova stupnja i u jednostavnom grafu G. Neka je $s = \max_{i \geqslant \frac{\Delta(G)+2}{2}} k(V_i)$. Tada je $\gamma(G) \leqslant \left\lceil \frac{s}{s+1} (\Delta(G)+2) \right\rceil$.

Neka svojstva planarnih grafova

- Neka je G planarni graf s ω komponenata povezanosti. Tada je $\nu-\varepsilon+\phi=1+\omega.$
- Neka je G jednostavni planarni graf s barem tri vrha. Tada je $\varepsilon \leqslant 3\nu 6$.
- K_{3,3} i K₅ nisu planarni grafovi.
- Ako je G jednostavni planarni graf, tada je $\delta(G) \leqslant 5$.
- Neka je G planarni graf čiji struk je jednak k, k>3. Tada je $\varepsilon\leqslant \frac{k}{k-2}(\nu-2)$.
- Graf G je planarni ako i samo ako ne sadrži podgraf homeomorfan s K_5 ili $K_{3,3}$.

Bojanje vrhova grafa

• Neka je G neprazni graf bez petlji. Graf G je bipartitni graf ako i samo ako je $\gamma(G)=2$.

$$\gamma(K_n) = n$$
 $\gamma(C_n) = \begin{cases} 2, & \text{ako je } n \text{ paran} \\ 3, & \text{ako je } n \text{ neparan} \end{cases}$

• Neka su G_1 i G_2 disjunktni grafovi. Tada je

$$\gamma(G_1 \vee G_2) = \gamma(G_1) + \gamma(G_2).$$

Nadalje, $G_1 \vee G_2$ je kritični graf akko su G_1 i G_2 kritični grafovi.

- Kőnig Ako je G bipartitni graf, tada je $\gamma'(G) = \Delta(G)$.
- Vizing, Gupta Ako je G jednostavni graf, tada je $\gamma'(G) = \Delta(G)$ ili $\gamma'(G) = \Delta(G) + 1$.
- ullet Neka je G jednostavni graf su vrhova iu bridova. Ako vrijedi

$$\varepsilon > \Delta(G) \cdot \left| \frac{\nu}{2} \right|,$$

tada je $\gamma'(G) = \Delta(G) + 1$.

4 / 41

Bojanje bridova grafa

$$\gamma'(C_n) = \begin{cases} 2, & \text{ako je } n \text{ paran} \\ 3, & \text{ako je } n \text{ neparan} \end{cases}$$

$$\gamma'(\mathcal{K}_n) = egin{cases} n-1, & ext{ako je } n ext{ paran} \ n, & ext{ako je } n ext{ neparan} \end{cases}$$

$$\gamma'(K_{m,n}) = \max\{m,n\}$$

6/41

Bojanje bridova grafa

• Vizing Neka je G graf bez petlji. Tada vrijedi

$$\Delta(G) \leqslant \gamma'(G) \leqslant \Delta(G) + \mu(G)$$

gdje je $\mu(G)$ multiplicitet grafa G, tj. maksimalni broj bridova između dva vrha u grafu G.

- Shannon Neka je G graf bez petlji. Tada je $\gamma'(G) \leqslant \left\lfloor \frac{3\Delta(G)}{2} \right\rfloor$.
- Neka je G jednostavni planarni graf za koji vrijedi $\Delta(G) \geqslant 8$. Tada je $\gamma'(G) = \Delta(G)$.

Zadatak 1

Neka je G jednostavni planarni graf koji ima 100 bridova. Koliko minimalno vrhova ima graf G?

Rješenje

$$\varepsilon \leq 3\nu - 6$$

$$3\nu \geqslant \varepsilon + 6$$

$$\nu \geqslant \frac{\varepsilon + 6}{3}$$

$$\nu \geqslant \frac{100+6}{3}$$

$$\nu \geqslant \frac{106}{3} \approx 35.33$$

$$\nu \geqslant 36$$

Neka je G jednostavni planarni graf s barem tri vrha. Tada je $\varepsilon \leqslant 3\nu - 6$.

Graf G ima barem 36 vrhova.

Zadatak 2

Odredite kromatske i bridno kromatske brojeve grafova G_1 , G_2 i G_3 . Jesu li neki od zadanih grafova kritični grafovi?

8/41

9/41

•
$$\Delta(G_1) = 5 \implies \gamma'(G_1) = 5$$
 ili $\gamma'(G_1) = 6$

$$arepsilon > \Delta(G) \cdot \left \lfloor rac{
u}{2}
ight
floor \Rightarrow \ \gamma'(G) = \Delta(G) + 1$$

- $\nu = 6$, $\varepsilon = 10$
- $\varepsilon > \Delta(G_1) \cdot \left\lfloor \frac{\nu}{2} \right\rfloor \longrightarrow 10 > 5 \cdot \left\lfloor \frac{6}{2} \right\rfloor \longrightarrow 10 > 15$

nejednakost ne vrijedi pa ne možemo donijeti konkretnu odluku za $\gamma'(G_1)$

kod Petersenovog grafa P nejednakost također ne vrijedi, ali je ipak $\gamma'(P) = \Delta(P) + 1$

 $\gamma'(G_1)=5$

10 / 41

Rješenje

- Za bojanje vrhova koji pripadaju neparnom ciklusu C_5 potrebne su 3 boje.
- Kako je unutarnji vrh susjedan sa svim vrhovima ciklusa C_5 , za njegovo bojanje potrebna je četvrta boja.

• Stoga je $\gamma(G_1) = 4$. G₁ nema 4-kliku.

• G_1 je kritični graf jer brisanjem bilo kojeg brida dobivamo podgraf koji ima manji kromatski broj od početnog grafa.

• Graf G_1 je 4-kritični graf.

• U grafu G₂ postoji 3-klika pa su potrebne barem 3 boje za bojanje vrhova grafa G_2 .

- G₂ nije kritični graf jer brisanjem brida e dobivamo podgraf čiji je kromatski broj i dalje jednak 3.
- Dakle, postoji barem jedan pravi podgraf grafa G_2 čiji je kromatski broj jednak kromatskom broju grafa G_2 . Stoga G_2 nije kritični graf.

• $\Delta(G_2) = 3 \implies \gamma'(G_2) = 3$ ili $\gamma'(G_2) = 4$

 $\left\{arepsilon > \Delta(G) \cdot \left\lfloor rac{
u}{2}
ight\} \; \Rightarrow \; \gamma'(G) = \Delta(G) + 1 \,
ight\}$

- $\nu = 5$, $\varepsilon = 7$
- $\varepsilon > \Delta(G_2) \cdot \left\lfloor \frac{\nu}{2} \right\rfloor \longrightarrow 7 > 3 \cdot \left\lfloor \frac{5}{2} \right\rfloor \longrightarrow 7 > 6$

nejednakost vrijedi pa možemo zaključiti da je $\gamma'(G_2) = 4$

• $\Delta(G_3) = 4 \implies \gamma'(G_3) = 4 \text{ ili } \gamma'(G_3) = 5$

 $arepsilon > \Delta(G) \cdot \left\lfloor rac{
u}{2}
ight
floor \ \ \gamma'(G) = \Delta(G) + 1$

- $\nu = 5$, $\varepsilon = 8$
- $\varepsilon > \Delta(G_3) \cdot \left\lfloor \frac{\nu}{2} \right\rfloor$ $\Rightarrow 8 > 4 \cdot \left\lfloor \frac{5}{2} \right\rfloor$ $\Rightarrow 8 > 8$

 $\gamma'(G_3)=4$

nejednakost ne vrijedi pa ne možemo donijeti konkretnu odluku za $\gamma'(G_3)$

14 / 41

- U grafu G_3 postoji 4-klika pa su potrebne barem 4 boje za bojanje vrhova grafa G_3 .
- $\bullet \quad \gamma(G_3)=4$
- G₃ nije kritični graf jer brisanjem brida e dobivamo podgraf čiji je kromatski broj i dalje jednak 4.
- Dakle, postoji barem jedan pravi podgraf grafa G₃ čiji je kromatski broj jednak kromatskom broju grafa G₃. Stoga G₃ nije kritični graf.

Zadatak 3

Pohlepnim algoritmom pronađite jedno bojanje vrhova grafa G tako da koristite:

- a) Welsh-Powellov algoritam,
- b) slučajni raspored vrhova,
- c) Brèlazov algoritam.

$$d(v_1) = 4$$
, $d(v_2) = 4$, $d(v_3) = 5$,
 $d(v_4) = 5$, $d(v_5) = 4$, $d(v_6) = 3$,
 $d(v_7) = 3$

• Sortiramo vrhove silazno prema njihovim stupnjevima.

$$v_3, v_4, v_1, v_2, v_5, v_7, v_6$$

• Dobivenim redoslijedom bojamo vrhove grafa G.

16 / 41

Brèlazov algoritam

 Redoslijed bojanja vrhova grafa se odreduje dinamički tokom izvođenja programa na temelju stupnjeva zasićenosti neobojanih vrhova s obzirom na trenutno obojane vrhove.

								_	-
	v_1	v ₂	<i>V</i> ₃	<i>V</i> ₄	<i>V</i> ₅	<i>v</i> ₆	<i>V</i> ₇	obojani vrh	boja
1.	0	1	*	1	1	1	1	<i>V</i> ₃	1
2.	1	2	*	2	*	1	1	<i>V</i> ₅	2
3.	2	*	*	2	*	1	2	V ₂	3
4.	2	*	*	*	*	2	2	<i>V</i> ₄	3
5.	*	*	*	*	*	2	2	<i>v</i> ₁	1
6.	*	*	*	*	*	2	*	V ₇	2
7.	*	*	*	*	*	*	*	<i>v</i> ₆	2

18 / 41

Slučajni raspored vrhova

 Odaberemo proizvoljni poredak vrhova.

$$V_1, V_2, V_5, V_6, V_4, V_3, V_7$$

• Odabranim redoslijedom bojamo vrhove grafa G.

• Dobiveno bojanje vrhova nije bojanje s minimalnim brojem boja jer je $\gamma(G) = 3$.

Pohlepno bojanje bridova grafa

Indirektna metoda

Problem bojanja bridova grafa G je identičan problemu bojanja vrhova njegovog linijskog grafa L(G). Dakle, umjesto da bojamo bridove grafa G, primijenimo neki pohlepni algoritam na bojanje vrhova grafa L(G).

Direktne metode

To su specijalizirane metode za bojanje bridova grafa G. Dvije najpoznatije takve metode su:

- Naivno pohlepno bojanje bridova
- Vizingova metoda

 C

Naivno pohlepno bojanje bridova

- Funkcionira na analogni način kao i pohlepno bojanje vrhova grafa sa slučajnim poretkom vrhova.
- Ova metoda koristi najviše $2\Delta(G) 1$ boja.
- Dakle, u najgorem mogućem slučaju koristi manje od dvostrukog broja potrebnih boja jer je uvijek $\gamma'(G) \geqslant \Delta(G)$.

Zbog čega ista takva pohlepna metoda nije toliko dobro učinkovita kod bojanja vrhova grafa?

20 / 41

Bergeov teorem

Sparivanje M u grafu G je najveće ako i samo ako G ne sadrži M-uvećani put.

Hallov teorem

Neka je G bipartitni graf s biparticijom (X,Y). Tada G sadrži sparivanje koje zasićuje svaki vrh u X ako i samo ako je $k(S(T)) \geqslant k(T)$ za svaki $T \subseteq X$.

22 / 41

Vizingova metoda

- Temelji se na konstruktivnom dokazu Vizingovog teorema u kojemu je opisan postupak rebojanja bridova.
- Kod bojanja bridova jednostavnog grafa u najgorem slučaju koristiti samo jednu boju više od minimalnog broja potrebnih boja.
- U općenitom slučaju, kod grafa G bez petlji koristit će samo $\mu(G)$ boja više od minimalnog broja potrebnih boja, pri čemu je $\mu(G)$ multiplicitet grafa G.
- Procedura za rebojanje bridova po potrebi mijenja boje nekim već obojanim bridovima kako bi se mogao obojati novi brid, a da se pritom ne koristi više od $\Delta(G) + \mu(G)$ boja.

Algoritam za najveće sparivanje

- Algoritam za najveće sparivanje u grafu G temelji se na konstruktivnom dokazu Bergeovog teorema.
- Modificiranim BFS ili DFS algoritmom se konstruira šuma alternirajućih stabala s obzirom na trenutno sparivanje *M*. Pomoću te šume se pronađe neki *M*-uvećani put.
- Pomoću dobivenog M-uvećanog puta se konstruira novo sparivanje M' za koje je k(M') = k(M) + 1. Isti postupak se ponavlja dalje za sparivanje M'.
- Postupak se ponavlja tako dugo dok postoje uvećani putovi s obzirom na trenutno sparivanje. Ako u nekom koraku više ne postoje *M*-uvećani putovi, tada je trenutno sparivanje *M* najveće sparivanje u grafu *G*.

24 / 41

25 / 41

Još neke napomene

- Najveće sparivanje u bipartitnom grafu može se pronaći i pomoću maksimalnog protoka koristeći Bellman-Fordov algoritam.
- Razlikujte maksimalno sparivanje od najvećeg sparivanja.
- Maksimalno sparivanje u grafu se lagano pronađe pohlepnim algoritmom.
- Maksimalno sparivanje u grafu općenito nije jedinstveno.
- Najveće sparivanje u grafu također općenito nije jedinstveno.

26 / 41

Edmondsov algoritam – grafovi koji nisu bipartitni

- Neparni ciklusi u grafu stvaraju probleme modificiranom BFS i DFS algoritmu. Stoga ova dva algoritma dobro funkcioniraju jedino na bipartitnim grafovima. Uz dodatnu modifikaciju mogu dobro funkcionirati na svim grafovima.
- Ako modificirani BFS ili DFS algoritam naide na cvijet u grafu (neparni ciklus duljine 2k + 1 čijih k bridova pripada sparivanju M), tada se taj cvijet stegne u njegov bazni vrh (vrh koji je susjedan s dva brida tog ciklusa koji ne pripadaju sparivanju M.)
- Na taj način pomažemo modificiranom BFS ili DFS algoritmu da pronađe *M*-uvećani put u grafu *G'* u kojemu su svi cvijetovi na koje je naišao u grafu *G* stegnuti u njihove bazne vrhove.
- Ponovnim rastezanjem svih stegnutih cvijetova pronalazi se *M*-uvećani put u početnom grafu *G*.

Zadatak 4

Zadan je graf G i sparivanje $M = \{\{v_2, v_3\}, \{v_5, v_6\}, \{v_7, v_8\}\}$ u grafu G čiji bridovi su deblje označeni na slici.

- a) Je li M maksimalno sparivanje u grafu G? Obrazložite odgovor.
- b) Napišite barem dva M-uvećana puta u grafu G ukoliko oni postoje.
- c) Je li M najveće sparivanje u grafu G? Ukoliko nije, pronađite jedno najveće sparivanje pomoću nekog M-uvećanog puta.

Rješenje

- a) M je maksimalno sparivanje u grafu G jer ne postoji sparivanje M'u grafu G za koje bi vrijedilo $M \subset M'$.
- b) Dva *M*-uvećana puta u grafu *G*:

c) M nije najveće sparivanje u grafu G jer postoje M-uvećani putovi.

28 / 41

Sparivanje $M_2 = \{\{v_1, v_7\}, \{v_5, v_6\}, \{v_2, v_8\}, \{v_3, v_4\}\}$ je najveće sparivanje u grafu G koje je ujedno i savršeno sparivanje jer su svi vrhovi M_2 -zasićeni.

30 / 41

-√√√√→

Sparivanje $M_1 = \{\{v_2, v_3\}, \{v_5, v_6\}, \{v_1, v_7\}, \{v_4, v_8\}\}$ je najveće sparivanje u grafu G koje je ujedno i savršeno sparivanje jer su svi vrhovi M_1 -zasićeni.

Zadatak 5

Tvornica ima pet velikih strojeva S_1, S_2, S_3, S_4, S_5 koji zajedno s ostalim manjim strojevima sudjeluju u proizvodnji. Radom spomenutih strojeva upravlja računalo. U pojedinom koraku proizvodnje računalo treba svakom stroju pridružiti određeni posao kojeg stroj treba obaviti. Međutim, svaki od spomenutih velikih strojeva može obavljati samo određene vrste poslova i ne može u jednom koraku proizvodnje obavljati više različitih poslova. U jednom od koraka proizvodnje veliki strojevi trebaju obaviti što je moguće veći broj poslova $P_1, P_2, P_3, P_4, P_5, P_6$. U donjoj tablici je prikazano koje sve poslove može obavljati pojedini stroj tako da je na odgovarajuće mjesto stavljen znak ✓.

	P_1	P_2	P_3	P_4	P_5	P_6
S_1	1	1	1			1
S_2				1	1	
<i>S</i> ₃				1	1	
S_4	1	1	1	1		1
S_5				1	1	

Pitanje je kako da računalo rasporedi poslove strojevima tako da u promatranom koraku proizvodnje bude obavljeno što je moguće više poslova.

- a) Modelirajte problem pomoću grafova tako da kratko i jasno opišete na koji ćete način konstruirati graf i na koji problem iz teorije grafova svodite ovaj realni problem.
- b) Može li računalo rasporediti poslove strojevima tako da niti jedan stroj ne miruje u promatranom koraku proizvodnje? Dokažite svoju tvrdnju jezikom teorije grafova.
- c) Napravite jedan optimalni raspored poslova strojevima za promatrani korak proizvodnje.

• $T \subset X$, $T = \{S_2, S_3, S_5\}$

b) Koristimo Hallov teorem.

• $S(T) = \{P_4, P_5\}$ Ne postoji sparivanje u G koje • k(S(T)) < k(T) zasićuje sve vrhove iz skupa X.

Nije moguće rasporediti poslove strojevima tako da niti jedan stroj ne miruje u promatranom koraku proizvodnje.

 P_3

34 / 41

32 / 41

Rješenje

a) Neka je G bipartitni graf s biparticijom (X, Y) pri čemu je $X = \{S_1, S_2, S_3, S_4, S_5\}$ i $Y = \{P_1, P_2, P_3, P_4, P_5, P_6\}$.

Vrhovi S_i i P_i su susjedni jedino ako stroj S_i može obavljati posao P_i .

Promatrani realni problem se svodi na traženje najvećeg sparivanja u grafu G.

Fakultet želi organizirati kolokvije iz tih predmeta tako da svaki student ima najviše jedan kolokvij iz nekog od tih predmeta u jednom danu.

- a) Modelirajte problem pomoću grafova tako da kratko i jasno opišete na koji način ćete konstruirati graf i na koji problem iz teorije grafova svodite ovaj realni problem.
- b) Koliko je minimalno dana potrebno kako bi se održali svi kolokviji iz navedenih predmeta? Dokažite svoju tvrdnju jezikom teorije grafova.
- c) Napravite jedan takav raspored održavanja kolokvija s minimalnim brojem dana.

38 / 41

Zadatak 6

Na prvoj godini diplomskog studija studenti mogu odabrati neke od 7 izbornih predmeta $P_1, P_2, P_3, P_4, P_5, P_6, P_7$. Ako postoji barem jedan student koji je upisao različite predmete P_i i P_j , tada je u donjoj tablici na odgovarajuće mjesto stavljen znak *.

	P_1	P_2	P_3	P_4	P_5	P_6	P ₇
P_1		*	*	*		*	*
P_2	*		*				*
P_3	*	*		*			
P_4	*		*		*	*	
P_5				*		*	
P_6	*			*	*		*
P ₇	*	*				*	

Rješenje

37 / 41

a) Neka je G graf sa skupom vrhova $\{P_1, P_2, P_3, P_4, P_5, P_6, P_7\}$. Različiti vrhovi P_i i P_j su susjedni jedino ako postoji barem jedan student koji je upisao predmete P_i i P_j .

Promatrani realni problem se svodi na određivanje kromatskog broja grafa G i bojanje njegovih vrhova.

- Pogledajmo podgraf $G P_7$.
- Za bojanje 3-klike $\{P_1, P_2, P_3\}$ potrebne su 3 boje.
- Vrh P_5 mora biti obojan bojom kojom je obojan vrh P_1 .
- Vrh P_4 mora biti obojan bojom kojom je obojan vrh P_2 .
- Vrh P_6 mora biti obojan bojom kojom je obojan vrh P_3 .
- Za vrh P_7 je potrebna četvrta boja.

40 / 41

