VJEROJATNOST I STATISTIKA

ZADACI ZA VJEŽBU

5. Neprekinute slučajne varijable

FER, Zagreb

SADRŽAJ:

Zadaci za vježbu iz udžbenika Nevena Elezovića: Slučajne varijable Cjelina 5 – Neprekinute slučajne varijable

*** Prije rješavanja zadataka treba proći teoretsko gradivo ove cjeline ***

1. Formule	3
2. Zadaci	4
3. Rješeni zadaci	9
4. Službena rješenja	24
5. Literatura	27

NAPOMENA

Zadaci KOJI SU potrebni rješavati su od 1-35, te zadaci 64-83, ostali zadaci su teoretskog tipa i nisu potrebni.

Zadaci koji nedostaju: 7,17, 24, 25, 28, 29, 30, 33,34,35, 73,74,79,80

Posebna zahvala LORD OF THE LIGHT na rješenjima nekih zadataka, dok su velika većina zadataka od 1-22 preuzeta od -v+v sa fer2.net materijala!

FORMULE:

5. NEPREKINUTE SLUČAJNE VARIJABLE

Funkcija razdiobe slučajne varijable X: F(X) := P(X < x)Svojstva funkcije razdiobe: $P(X_1 \le X < x_2) = F(X_2) - F(X_1)$

Neprekinuta slučajna varijabla ako postoji nenegativna funkcija takva da vrijedi: $\mathbf{F}(\mathbf{x}) = \int_{-\infty}^{x} f(t) dt$ Gustoća razdiobe vjerojatnosti slučajne varijable X:

$$f(x) = \frac{dF(x)}{dx}$$

IEDNOLIKA RAZDIOBA

Biramo *na sreću* broj unutar intervala [*a*,*b*] s jednakim vjerojatnostima. Slučajna varijabla bi opisivala pokus *biranja na sreću* elementa iz intervala.

Oznaka: 2/(a,b)

Vjerojatnost: $P(X = x_k) = \frac{1}{n}$

Funkcija razdiobe: $F(x) = \frac{x-a}{b-a}$, $a \le x \le b$

Gustoća razdiobe: $f(x) = \frac{1}{b-a}$, $a \le x \le b$

Karakteristična funkcija: $\vartheta(t) = E(e^{itX}) = \int_{-\infty}^{\infty} e^{itx} dF(x)$

Očekivanje: $\mathbf{E}(\mathbf{X}) = \int_{-\infty}^{\infty} x f(x) dx = \frac{\mathbf{a} + \mathbf{b}}{2}$

Disperzija: $D(X) = \int_{-\infty}^{\infty} x^2 f(x) dx - [E(X)]^2 = \frac{(b-a)^2}{12}$

Nezavisnost: $P(X \in A, Y \in B) = P(X \in A)P(Y \in A)$

Svojstva očekivanja i disperzije: E(sX + tY) = sE(X) + tE(Y); $D(sX) = s^2D(X)$

Transformacija funkcije gustoće: $Y = \Psi(X)$, ako je funkcija Ψ rastuća ili padajuća, vrijedi:

$$g(y) = f(x) \left| \frac{dx}{dy} \right|$$
, $y = \Psi(x)$

ti.

$$g(y) = f(\Psi^{-1}(y)) \left| \frac{d\Psi^{-1}(y)}{dy} \right|$$

ZADACI:

§ 5. Zadatci za vježbu

- 1. Može li za neku vrijednost argumenta biti
 - a) funkcija razdiobe veća od jedinice,
 - b) gustoća razdiobe veća od jedinice,
 - c) funkcija razdiobe negativna,
 - d) gustoća razdiobe negativna,
 - e) funkcija razdiobe prekidna,
 - f) gustoća razdiobe prekidna?
- 2. Koje od ovih funkcija su funkcije razdiobe:

 - **a**) $\frac{3}{4} + \frac{1}{2\pi} \arctan \lg x;$ **b**) $\frac{1}{2} + \frac{1}{\pi} \arctan \lg x;$
 - c) $\frac{2x}{1+x}$, x > 0;
 - d) $2^{-e^{-x}}$;
 - **e**) $1 e^{-x}$, x > 1?
- 3. Pokaži da su funkcije
 - **a**) 1 |1 x|, 0 < x < 2; **b**) |x|, -1 < x < 1;

 - c) $\frac{e^x}{(1+e^x)^2}$, $x \in \mathbb{R}$;
 - $\mathbf{d}) \ \frac{2}{\pi} \cdot \frac{e^{x}}{1 + e^{2x}} \ , \ x \in \mathbf{R}$

gustoće neke razdiobe.

- **4.** Odredi konstantu C tako da sljedeće funkcije budu gustoće razdioba:

 - **a)** $f(x) = C, x \in [a, b];$ **b)** $f(x) = C|x a|, x \in [c, d].$
- 5. Odredi konstantu C tako da sljedeće funkcije budu gustoće razdioba

 - **a**) $f(x) = Cx^3 e^{-\lambda x}, x > 0;$ **b**) $f(x) = Ce^{\alpha(x-a)^2}, x > 0.$
- 6. Slučajna varijabla X zadana je gustoćom razdi-

obe $f(x) = \frac{C}{x^2}$, x > 1. Odredi konstantu C te vjerojatnost događaja $\{1 < X < 2\}$.

7. Slučajna varijabla X zadana je funkcijom gusto-

$$f(x) = Cx^2 e^{-ax}, x > 0.$$

Odredi konstantu C te vjerojatnost događaja $\{0 <$ $X<\frac{1}{a}$ \}.

- 8. Odredi funkciju razdiobe slučajne varijable X ako je njezina gustoća razdiobe
 - a) $\sin x$, $0 < x < \frac{\pi}{2}$;
 - **b**) $x \frac{1}{2}$, 1 < x < 2;
 - c) $3\sin^2 3x$, $\frac{\pi}{6} < x < \frac{\pi}{3}$.
- 9. Diskretna slučajna varijabla X zadana je razdiobom

$$X \sim \begin{pmatrix} -2 & -1 & 0 & 1 & 2 \\ 0.1 & 0.2 & 0.2 & 0.3 & 0.2 \end{pmatrix}$$
.

Odredi funkciju razdiobe i nacrtaj njezin graf. Izračunaj vjerojatnost događaja $\{|X| \leq 1\}$.

10. Gustoća razdiobe slučajne varijable X iznosi

$$f(x) = \frac{2}{\pi}\cos^2 x, x \in (-\frac{\pi}{2}, \frac{\pi}{2}).$$

Izračunaj vjerojatnost da od tri realizacije varijable X, točno dvije padnu unutar intervala $(0, \frac{\pi}{4})$.

- 11. Ako za slučajne varijable X i Y vrijedi P(X < 1) = 0.9, P(Y < 2) = 0.5, pokaži da je $P(X+Y<3) \geqslant 0.4$.
- 12. Za slučajnu varijablu X je P(0 < X < 1) = 0.3, a za varijablu Y je P(-1 < Y < 0) = 0.9. Dokaži da je $P(-1 < X + Y < 1) \ge 0.2$.

- 13. Slučajna varijabla X zadana je funkcijom gustoće
 - **a**) f(x) = Cx, 0 < x < 1; **b**) f(x) = Cx, 0 < x < 2;

 - c) $f(x) = C(x^2 + 2x), 0 < x < 1;$

d) $f(x) = Ce^{-|x|}$, $x \in \mathbb{R}$. Odredi konstantu C. Izračunaj E(X) i D(X).

- 14. Slučajna varijabla X zadana je funkcijom razdiobe
 - a) $F(x) = \frac{1}{4}x$, 0 < x < 4;
- b) $F(x) = 1 e^{-\lambda x}$, x > 0. Odredi očekivanje od X.

15. Funkcija razdiobe slučajne varijable X zadana je slikom. Odredi očekivanje od X.

16. Slučajna varijabla ima jednoliku razdiobu na intervalu [a,b]. Odredi tu razdiobu ako je poznato E(X)=4 i D(X)=3.

17. Slučajna varijabla X zadana je gustoćom razdiobe

$$f(x) = \frac{1}{n!}x^n e^{-x}, x > 0.$$

Odredi očekivanje i disperziju od X.

* * *

- 18. Točka pada na sreću unutar kruga polumjera R. Udaljenost te točke do središta kruga je vrijednost slučajne varijable X. Odredi njezinu funkciju razdiobe, očekivanje i disperziju.
- 19. Zadan je trokut s osnovicom a i visinom v na osnovicu. Točka se bira na sreću unutar trokuta. Za vrijednost slučajne varijable X uzimamo udaljenost točke do osnovice. Izračunaj očekivanje varijable X.
- **20.** U prostoru su zadane dvije koncentrične kugle s polumjerima r i R (r < R). Na sreću odabiremo točku unutar manje kugle. Neka je X udaljenost te točke do površine veće kugle. Odredi i skiciraj funkciju razdiobe varijable X, te izračunaj očekivanje slučajne varijable X.
- **21.** Duljine stranica pravokutnika ABCD su 3 cm i 4 cm. Biramo na sreću točku T unutar pravokutnika. Slučajna varijabla X je udaljenost točke T do najbliže stranice pravokutnika. Izračunaj matematičko očekivanje E(X) slučajne varijable X.
- **22.** Točka T na sreću se bira unutar jednakostraničnog trokuta stranice a. Ako je X udaljenost točke T do najbliže stranice trokuta, izračunaj očekivanu vrijednost te udaljenosti.

- 23. Točka T bira se na sreću unutar pravilnog šesterokuta stranice a. Vrijednost slučajne varijable X je udaljenost točke T do najbliže stranice šesterokuta. Skiciraj funkciju gustoće i izračunaj očekivanje varijable X.
- **24.** Unutar kvadrata $\{(x,y): 0 \leqslant x,y \leqslant 1\}$ izabrana je na sreću točka i potom opisan krug maksimalne površine sa središtem u toj točki, a koji leži unutar kvadrata. Odredi funkciju razdiobe površine tog kruga i izračunaj vjerojatnost da je ona veća od $\frac{\pi}{16}$.
- **25.** U kocki duljine brida 1 bira se na sreću točka S. Neka je X volumen najveće kugle koja se može upisati u kocku, a središte joj je točka S. Odredi i skiciraj funkciju distribucije F_X te izračunaj očekivanje E(X).
- **26.** U jednakostraničnom trokutu sa stranicom duljine a, na sreću se odabire točka. Vrijednost slučajne varijable X je površina najvećeg kruga upisanog u trokut, sa središtem u odabranoj točki. Nađi i skiciraj gustoću vjerojatnosti slučajne varijable X.
- 27. Na kružnici polumjera R izabrane su dvije točke A i B i zatim spojene sa središtem kružnice S. Izračunaj matematičko očekivanje površine trokuta ABS. Kolika je vjerojatnost da je ta površina veća od $R^2/4$?
- **28.** Unutar jednakokračnog trapeza, čija veća baza ima duljinu 2 a krakovi i kraća baza duljinu 1, odabire se na sreću točka i opisuje krug čije je središte u odabranoj točki, a dodiruje najbližu stranicu trapeza. Odredi i skiciraj funkciju razdiobe vjerojatnosti $F_X(x)$ duljine polumjera tako konstruiranog kruga.

* * *

29. Zadan je trapez prema slici. Točka se bira na sreću unutar trapeza. Za vrijednost slučajne varijable X uzimamo udaljenost točke do veće osnovice. Odredi i skiciraj funkciju gustoće te izračunaj E(X). Provjeri rezultat ako je a=c ili c=0.

- **30.** Duljine stranica pravokutnika ABCD su 3 cm i 4 cm. Biramo na sreću točku T unutar pravokutnika. Neka je X slučajna varijabla: udaljenost točke T do dijagonale \overline{AC} . Nađi i skiciraj funkciju razdiobe varijable X.
- 31. Unutar kvadrata sa stranicom $a=4\,\mathrm{cm}$ bira se na sreću točka. Vrijednost slučajne varijable X je udaljenost te točke do bliže dijagonale kvadrata. Nađi očekivanu vrijednost te udaljenosti.

- **32.** Unutar kvadrata ABCD stranice duljine a, bira se na sreću točka. Vrijednost slučajne varijable X je udaljenost točke do pravca koji prolazi polovištima E, F stranica \overline{AB} odnosno \overline{AD} . Odredi i skiciraj gustoću vjerojatnosti slučajne varijable X
- 33. Unutar kocke ABCDEF brida duljine a bira se na sreću točka T. Slučajna varijabla X je udaljenost te točke do brida \overline{AB} . Nađi E(X).
- **34.** Točka T odabire se na sreću unutar jednakokračnog trokuta kome je duljina osnovice 6, a duljina krakova 5. Vrijednost slučajne varijable X je udaljenost točke T do visine spuštene na osnovicu trokuta. Skiciraj gustoću vjerojatnosti varijable X i izračunaj njezino očekivanje E(X).

* * *

- 35. Unutar intervala [0,1] na sreću su izabrane dvije točke. Neka je X udaljenost među njima. Odredi zakon razdiobe varijable X te izračunaj E(X), D(X), $E(X^n)$.
- **36.** Biramo na sreću tri broja unutar intervala [a, b]. Neka je X drugi po veličini među njima. Odredi i skiciraj funkciju gustoće varijable X.
- 37. n točaka izabrano je na sreću unutar intervala [0,1]. Neka X_k označava vrijednost koju poprima k-ta točka slijeva. Odredi gustoću slučajne varijable X_k .
- **38.** Unutar intervala (0,1) biraju se na sreću tri broja, a, b i c. Neka je X najveći među njima. Odredi i skiciraj funkciju gustoće od X te izračunaj očekivanje E(X).
- **39.** Na sreću odabrana točka unutar intervala [0,1] dijeli ga na dva dijela. Označimo sa X duljinu većeg dijela. Odredi funkciju razdiobe i očekivanje varijable X.
- **40.** Na odresku [0, T] na sreću je odabrano n točaka. Te točke ga dijele na n+1 dio. Duljina svakog dijela je slučajna varijabla. Pokaži da sve te slučajne varijable imaju iste funkciju razdiobe. Odredi tu funkciju.
- **41.** Na sreću odabrana točka T unutar dužine \overline{AB} duljine l dijeli tu dužinu na dva dijela. Neka je X = ||AT| |TB||. Odredi i skiciraj funkciju gustoće varijable X te izračunaj E(X) i D(X).

* * *

42. Točke A, B biraju se na sreću na dvije susjedne stranice kvadrata sa stranicom 1. Neka je slučajna varijabla X udaljenost među njima. Odredi i skiciraj funkciju gustoće od X.

- **43.** Točka T_1 slučajno se odabire na dijagonali \overline{AC} , a točka T_2 na dijagonali \overline{BD} kvadrata ABCD stranice 2. Vrijednost slučajne varijable X jednaka je udaljenosti točaka T_1 i T_2 . Nađi gustoću vjerojatnosti od X i skicirajte njezin graf.
- **44.** Kroz središte S kvadrata ABCD stranice a povlačimo na sreću pravac. Ako su sjecišta pravca sa rubom kvadrata točke T_1 i T_2 , naďi očekivanu vrijednost duljine odsječka $\overline{T_1T_2}$.
- **45.** U pravokutniku sa stranicama 3 i 4 na sreću odabiremo po jednu točku na dvije nasuprotne kraće stranice. Udaljenost među odabranim točkama je slučajna varijabla X. Nađi i skiciraj pripadnu gustoću razdiobe F_X .
- **46.** Točka T na sreću se bira na obodu pravokutnika ABCD sa stranicama 3 i 4. Slučajna varijabla X je udaljenost točke do vrha A. Odredi i skiciraj funkciju razdiobe $F_X(x)$.
- **47.** Točka T bira se na sreću na osnovici \overline{AB} jednakostraničnog trokuta ABC stranice 2 cm. Slučajna varijabla X predstavlja kvadrat udaljenosti točke T do vrha C. Odredi razdiobu i očekivanje od X.
- **48.** Točka T na sreću se bira na obodu kvadrata ABCD stranice a. Vrijednost slučajne varijable X je udaljenost točke T do polovišta stranice \overline{AB} . Odredi i skiciraj funkciju razdiobe $F_X(x)$ varijable X.
- **49.** Točka se bira na sreću unutar kvadrata stranice 2. Vrijednost slučajne varijable X je udaljenost do najbližeg vrha kvadrata. Odredi i skiciraj funkciju gustoće varijable X.
- **50.** U jednakokračnom trokutu ABC duljina krakova \overline{AC} i \overline{BC} je 20 cm, a kut među tim krakovima $\gamma=120^\circ$. Točka T odabire se na sreću unutar trokuta. Ako je slučajna varijabla X definirana kao udaljenost točke T do vrha C, odredi i skiciraj pripadnu funkciju razdiobe F_X .

* * *

- **51.** Unutar kvadrata stranice a bira se na sreću točka T. Neka su $X_1 \leqslant X_2 \leqslant X_3 \leqslant X_4$ udaljenosti točke T do stranica kvadrata. Odredi funkciju razdiobe i očekivanje slučajne varijable X_2 .
- **52.** Točka se bira na sreću unutar jednakostraničnog trokuta stranice a. Neka je X najveća od udaljenosti točke do stranica trokuta. Odredi gustoću i očekivanje varijable X.
- **53.** Zadana je kružnica k polumjera R i točka A udaljena od središta kružnice za d, d > R. Na kružnici biramo na sreću točku T. Vrijednost slučajne varijable X je udaljenost od T do A. Nađi gustoću f_X varijable X.

- **54.** Kružnica k podijeljena je promjerom na dvije polukružnice. Točku T₁ biramo na sreću na jednoj, a točku T_2 na drugoj polukružnici. Udaljenost točaka T_1 i T_2 je slučajna varijabla X. Odredi i skiciraj pripadnu funkciju razdiobe F_X .
- 55. Točka T slučajno se odabire na četvrtini luka AB kružnice polumjera R, sa središtem u točki S. Neka je X manja od udaljenosti točke T do dužina \overline{AS} odnosno \overline{BS} . Odredi i skiciraj funkciju gustoće slučajne varijable X i izračunaj njezino očekivanje.
- **56.** U trapezu ABCD čiji krakovi iznose d a osnovice 2d i 3d, bira se na sreću točka T. Vrijednost slučajne varijable X je manja od udaljenosti točke T do produženih krakova trapeza. Odredi i skiciraj gustoću od X.

57. Neka je F funkcija razdiobe neprekidne slučajne varijable X. Pokaži da je

$$\int_{-\infty}^{\infty} F(x)dF(x) = \frac{1}{2}.$$

- 58. Neka je X proizvoljna ograničena slučajna varijabla, s vrijednostima unutar intervala [a,b]. Dokaži
 - $\mathbf{a}) \ \ a \leqslant \mathbf{E}(X) \leqslant b \, ;$
 - **b**) $D(X) \leq \frac{1}{4}(b-a)^2$;
- c) Veličina $\stackrel{\cdot}{E}(X-m)^2$ poprima minimum za m = E(X).
- 59. Koji uvjet moraju zadovoljavati nezavisne slučajne varijable X i Y da bi bilo

$$D(XY) = D(X)D(Y)$$
?

60. Neka je X diskretna slučajna varijabla, koja poprima samo pozitivne vrijednosti i ima konačno očekivanje E(X). Pokaži da za svaki $a \in \mathbb{R}^+$ vrijedi

$$P\{X > a\} < \frac{E(X)}{a}.$$

61. Nezavisne slučajne varijable X i Y imaju očekivanja E(X) = a, E(Y) = b. Dokaži da za disperziju slučajne varijable XY vrijedi

$$D(XY) = D(X) D(Y) + a^2 D(Y) + b^2 D(X).$$

62. Slučajna varijabla X ima gustoću f koja je parna, po dijelovima neprekidna funkcija na intervalu $[-\pi,\pi]$, jednaka nuli van tog intervala. Dokaži da je

$$D(X) = rac{\pi^3}{3} + 4\pi \sum_{n=1}^{\infty} (-1)^n rac{a_n}{n^2},$$

gdje su a_n koeficijenti Fourierovog reda funkcije

63. Nenegativna slučajna varijabla X ima funkciju razdiobe F(x). Dokaži da za svaki realni $\alpha \neq 0$ vrijedi

$$E(X^{\alpha}) = |\alpha| \int_0^{\infty} x^{\alpha - 1} (1 - F(x)) dx.$$

- **64.** Slučajna varijabla X ima jednoliku razdiobu na intervalu [-1,2]. Odredi i skiciraj funkciju razdiobe varijable a) $Y = X^2$; b) Y = |X - 1|.
- 65. Slučajna varijabla X ima jednoliku razdiobu na intervalu $[0, 4\pi]$. Odredi funkciju razdiobe i gustoću razdiobe slučajne varijable $Y = \sin X$.
- **66.** Slučajna varijabla X ima jednoliku razdiobu na intervalu [-2,2]. Odredi i skiciraj funkciju razdiobe F_Y slučajne varijable

$$Y=\min\{X^2,-X+2\}.$$

- 67. Slučajna varijabla X ima jednoliku razdiobu na intervalu [-1,5]. Odredi i skiciraj gustoću razdiobe slučajne varijable Y = |X - 1|. Izračunaj $\boldsymbol{E}(Y)$.
- 68. Slučajna varijabla X ima jednoliku razdiobu na intervalu [-1,1]. Odredi funkciju razdiobe slučajne varijable $Y = 1/X^2$. Postoji li očekivanje E(Y)?

69. Slučajna varijabla X poprima samo pozitivne vrijednosti. Neka je f_X njezina funkcija gustoće. Odredi gustoću razdiobe slučajne varijable

- **a**) $Y = X^3$;
- **b**) Y = 1/X;
- c) $Y = \sqrt{X}$;
- $\mathbf{d}) Y = e^{X}$:
- **e**) $y = e^{-X}$:
- f) $Y = \ln X$.

70. Slučajna varijabla X ima gustoću f_X . Odredi gustoće slučajnih varijabli

- a) $Y = \operatorname{arc} \operatorname{tg} X$;
- **b**) $Y = \operatorname{tg} X$;

- **c**) Y = |X|; **e**) $Y = \frac{1}{X^2}$;
- d) $Y = X^2$; f) $Y = \frac{1}{1 + X^2}$;
- **g**) $Y = \sqrt{R^2 X^2}$;
- **h**) $Y = e^{-X^2}$:
- i) $Y = a \sin \omega X$, $(a, \omega > 0)$.
- 71. Neka je F funkcija razdiobe slučajne varijable X. Odredi funkciju razdiobe slučajne varijable $Y=e^X$.
- 72. Slučajna varijabla X ima gustoću f(x). Odredi gustoću slučajne varijable $Y = |1 + \mathring{X}|$.
- 73. Slučajna varijabla X ima gustoću razdiobe f. Odredi gustoću slučajne varijable $Y = \min\{X, X^{2}\}$.

74. Neka je F funkcija razdiobe slučajne varijable X. Nađi funkciju razdiobe slučajnih varijabli **a**) aX + b, **b**) X^2 , **c**) |X|, **d**) $\sin X$, **e**) g(X), g proizvoljna rastuća funkcija.

* * *

75. Slučajna varijabla X zadana je funkcijom razdiobe

$$F(x) = 1 - e^{-2x}, \quad x > 0.$$

Napiši funkciju razdiobe varijable $Y = X^2$.

76. Slučajna varijabla X zadana je gustoćom razdiobe

$$f(x) = C|\sin x|, \qquad |x| \leqslant \pi.$$

Izračunaj funkciju gustoće slučajne varijable $Y = X^2$ i očekivanje E(Y).

77. Slučajna varijabla X ima gustoću

$$f(x) = e^{-x}, x > 0.$$

Odredi gustoću razdiobe i očekivanje slučajne varijable Y = |X - 1|.

78. Slučajna varijabla X zadana je gustoćom

$$f(x) = Ce^{-2x}, \qquad x \geqslant 1.$$

Odredi konstantu C. Odredi gustoću razdiobe slučajne varijable $Y = \frac{1}{1-X}$.

79. Slučajna varijabla X zadana je gustoćom

$$f(x) = e^{-x}, \quad x > 0.$$

Odredi gustoću slučajne varijable $Y = \frac{1}{1+X}$.

80. Neka je *X* Cauchyjeva slučajna varijabla s gustoćom

$$f_X(x) = \frac{1}{\pi(1+x^2)}$$
, $x \in \mathbf{R}$.

Nađi i skiciraj funkciju razdiobe G_Y slučajne varijable $Y=\min\{\frac{1}{X}\,,\,|X|\}$.

81. Slučajna varijabla X ima normalnu razdiobu N(2,1). Izračunaj gustoću razdiobe vjerojatnosti varijable Y=|X|, te vjerojatnost događaja $\{Y<1\}$.

82. Gustoća vjerojatnosti f_X slučajne varijable X iznosi

$$f_X(x) = \frac{1}{2}\sin x$$
, $\mathbf{0} \leqslant x \leqslant \pi$

Odredi i skiciraj gustoću vjerojatnosti slučajne varijable $Y = \frac{1}{2} \sin X$, te izračunaj njezino očekivanje.

83. Neka je X slučajna varijabla zadana gustoćom

$$f_X(x) = \left\{ egin{array}{ll} rac{1}{4} \,, & x \in [-4, -2], \ rac{1}{8} \,, & x \in [-1, 3]. \end{array}
ight.$$

Odredi i skiciraj funkciju razdiobe slučajne varijable $Y = X^2$.

- **84.** Slučajna varijabla X ima normalnu razdiobu N(1,2). Odredi funkciju gustoće slučajne varijable $Y=X^2+1$. Izračunaj vjerojatnost događaja $\{\,|\,Y-E(Y)|<1\,\}$.
- 85. Slučajna varijabla X ima eksponencijalnu razdiobu $E(\lambda)$. Odredi zakon razdiobe i izračunaj očekivanje diskretne slučajne varijable $Y = \lfloor X \rfloor$ (najveće cijelo od X).
- 86. Slučajna varijabla X ima gustoću razdiobe

$$f(x) = \frac{1}{\sqrt{2\pi}} \cdot \frac{1}{x^2} \cdot \exp\left\{-\frac{1}{2x^2}\right\}.$$

Odredi gustoću razdiobe slučajne varijable Y = 1/X.

87. Slučajna varijabla X ima Cauchyjevu razdiobu. Pokaži da slučajne varijable $\frac{1}{X}$, $\frac{2X}{1-X^2}$, $\frac{3X-X^3}{1-3X^2}$ imaju također Cauchyjevu razdiobu.

* * *

- 88. Promjer kruga d izmjeren je približno, u granicama $a\leqslant d\leqslant b$. Ako d ima jednoliku razdiobu na intervalu [a,b], izračunaj očekivanje i disperziju površine kruga.
- 89. U rombu stranice 10 cm oštri kut α je slučajna varijabla s gustoćom razdiobe

$$f(lpha) = \left\{ egin{array}{ll} rac{3}{\pi} \,, & 0 \leqslant lpha \leqslant rac{\pi}{4} \,, \ C \,, & rac{\pi}{4} \leqslant lpha \leqslant rac{\pi}{2} . \end{array}
ight.$$

Izračunaj konstantu C, funkciju razdiobe površine romba i vjerojatnost da je ta površina veća od $50 \,\mathrm{cm}^2$.

90. Unutar dužine duljine 2 na sreću je odabrana točka koja ju dijeli na dva dijela. Neka je X površina pravokutnog trokuta čije su katete ti dijelovi. Odredi i skiciraj funkciju razdiobe $F_X(x)$.