

SÍLABO MECÁNICA CLÁSICA (100000F1I1) 2024 - Ciclo 2 Agosto

1. DATOS GENERALES

1.1.Carrera: Ingeniería de Sistemas e Informática

Ingeniería Industrial Ingeniería Civil

Ingeniería Empresarial

Ingeniería de Seguridad Industrial y Minera

Ingeniería de Software Ingeniería Mecánica Ingeniería Mecatrónica Ingeniería Electrónica Ingeniería Ambiental Ingeniería Biomédica

Ingeniería Eléctrica y de Potencia Ingeniería de Redes y Comunicaciones

Ingeniería de Seguridad y Auditoría Informática

Ingeniería de Telecomunicaciones Ingeniería de Diseño Computacional Ingeniería de Diseño Gráfico

Ingeniería de Minas

Ingeniería en Seguridad Laboral y Ambiental

Ingeniería Aeronáutica Ingeniería Automotriz

Ingeniería Eléctrica y de Potencia

1.2. Créditos: 3.78

1.3. Enseñanza de curso: Presencial

1.4. Horas semanales: 4.56

2. FUNDAMENTACIÓN

Esta asignatura permitirá que el estudiante desarrolle habilidades básicas de análisis y razonamiento cuantitativo aplicando modelos matemáticos a sistemas mecánicos concretos para explicar el por qué y cómo funcionan estos sistemas. Así mismo incorporará herramientas conceptuales importantes de la mecánica clásica que son necesarios para afrontar con éxito sus cursos posteriores y su formación profesional.

3. SUMILLA

Esta asignatura es de naturaleza teórico práctico, busca desarrollar los elementos de la mecánica clásica. En ese sentido, abarca los siguientes tópicos: Medición y unidades, cinemática, estática, dinámica, trabajo y energía y rotación del sólido rígido.

4. LOGRO GENERAL DE APRENDIZAJE

Al finalizar el curso, el estudiante utiliza conceptos de la mecánica clásica en casos aplicados al campo de la ingeniería.

5. UNIDADES Y LOGROS ESPECÍFICOS DE APRENDIZAJE

Unidad de aprendizaje 1:	Semana 1,2,3 y 4
Medición, unidades y cinemática.	

Logro específico de aprendizaje:

Al finalizar la unidad, el estudiante explica el movimiento de una partícula calculando magnitudes a partir de las ecuaciones de movimiento y/o gráficas de movimiento.

Temario:

- Presentación del curso. Presentación del Proyecto. El método científico y sus aplicaciones en la ingeniería.
 Magnitudes físicas.
- Conversión de unidades. Ecuaciones dimensionales. El sistema internacional de medidas. Teoría de errores.
- Magnitudes vectoriales Representación de un vector. Módulo y dirección de un vector. Suma y resta de vectores.
- Desplazamiento, velocidad media e instantánea, rapidez y aceleración.
- Movimiento rectilíneo uniforme. Movimiento uniformemente variado. Movimiento de caída libre. Gráfica de funciones aplicados al movimiento: MRU, MRUV
- Movimiento en dos dimensiones
- Movimiento circular. Sesión Integradora 1.

Unidad de aprendizaje 2:

Semana 5 y 6

Estática.

Logro específico de aprendizaje:

Al finalizar la unidad, el estudiante aplica las condiciones de equilibrio en cuerpos rígidos en su estado de reposo o equilibrio dinámico.

Temario:

- Fuerzas. Tercera ley de Newton. Fuerza de fricción. Primera condición de equilibrio. Diagrama de cuerpo libre.
- Producto vectorial y sus propiedades.
- Momento de una fuerza. Centro de masa. Segunda condición de equilibrio.

Unidad de aprendizaje 3:

Dinámica.

Semana 7,8,9 y 10

Logro específico de aprendizaje:

Al finalizar la unidad, el estudiante aplica las leyes de la dinámica en el movimiento de partículas y en el cálculo de magnitudes físicas.

Temario:

- Cantidad de movimiento lineal. Impulso y colisiones (choques)
- Segunda ley de Newton: descomposición vectorial de fuerzas.
- Segunda ley de Newton: diagrama de cuerpo libre y aplicaciones.
- Segunda ley de Newton para una partícula en movimiento circular uniforme y no uniforme.
- Movimiento armónico simple. Dinámica de un M.A.S.
- Sesión integradora 2

Unidad de aprendizaje 4:

Trabajo y energía.

Semana 11,12 y 13

Logro específico de aprendizaje:

Al finalizar la unidad, el estudiante determina magnitudes físicas utilizando la ley de conservación de la energía mecánica y el teorema trabajo-energía.

Temario:

- Producto escalar. Trabajo realizado por una fuerza constante. Trabajo realizado por una fuerza variable.
- Energía cinética. Energía potencial de un sistema.
- Conservación de la energía mecánica
- Teorema del trabajo energía cinética. Fuerza conservativa y no conservativa. Energía del MAS

Unidad de aprendizaje 5:

Rotación del sólido rígido..

Semana 14,15,16,17 y 18

Logro específico de aprendizaje:

Al finalizar la unidad, el estudiante aplica los modelos matemáticos de la mecánica al movimiento del cuerpo rígido en el cálculo de su momento de inercia.

Temario:

- Cinemática de rotación: posición, velocidad y aceleración angular. Momento de inercia. Cinemática rotacional: objeto rígido bajo aceleración constante. Dinámica Rotacional.
- Rotación de un cuerpo solido. Cantidades angulares y traslación: rotación y traslación.
- Energía cinética de rotación. Aplicación del momento de inercia y momento de torsión. Rodamiento sin deslizamiento.
- Sesión integradora 3
- Primera sesión de exposiciones del proyecto final.
- Segunda sesión de exposiciones del proyecto final.

6. METODOLOGÍA

Para el desarrollo de los aprendizajes del curso, una de las estrategias que se propone es la exposición del docente que proporciona la construcción de los conocimientos a partir de ejemplos y casuísticas que faciliten la comprensión. Asimismo, se promueve la participación activa y permanente del estudiante a través del desarrollo de ejercicios, lecturas, absolución de preguntas, en forma individual y grupal (aprendizaje colaborativo) lo que permite un trabajo metacognitivo, a través de la actividad autónoma del estudiante en el desarrollo de las evaluaciones del curso (aprendizaje autónomo). Por ello es importante que el estudiante asista a las clases, habiendo leído los temas correspondientes a cada sesión. Finalmente, se utilizan otros recursos, como: pizarra, multimedia, videos (aprendizaje para la era digital) y comunicación a través de medios complementarios como correos electrónicos para fomentar una mayor interacción con el estudiante.

7. SISTEMA DE EVALUACIÓN

El cálculo del promedio final se hará de la siguiente manera:

Donde:

Tipo	Descripción	Semana	Observación
LC1	LABORATORIO CALIFICADO 1	3	Evaluación Grupal
PC1	PRÁCTICA CALIFICADA 1	5	Evaluación Individual
LC2	LABORATORIO CALIFICADO 2	7	Evaluación Grupal
PC2	PRÁCTICA CALIFICADA 2	10	Evaluación Individual
APF	AVANCE DE PROYECTO FINAL	11	Evaluación Grupal
LC3	LABORATORIO CALIFICADO 3	12	Evaluación Grupal
LC4	LABORATORIO CALIFICADO 4	14	Evaluación Grupal
PC3	PRÁCTICA CALIFICADA 3	16	Evaluación Individual
PA	PARTICIPACIÓN EN CLASE	17	Evaluación Individual. Promedio de las sesiones integradoras realizadas en el curso.
PROY	PROYECTO FINAL	18	Evaluación Grupal

Indicaciones sobre Fórmulas de Evaluación:

- 1. La nota mínima aprobatoria final es de 12.
- 2. En este curso, no aplica examen rezagado.
- 3. El sistema de evaluación de los cursos de "Mecánica Clásica" y de "Laboratorio de Mecánica Clásica" es único y están relacionados entre sí, dado que esos cursos se complementan y se realizan en simultáneo.
- 4. Los laboratorios calificados se realizan en el curso de "Laboratorio de Mecánica Clásica" según los horarios registrados en la matrícula.

8. FUENTES DE INFORMACIÓN

Bibliografía Base:

 S e r w a y . Fisíca para ciencias e ingeniería volumen 1. Cengage. https://utp.vitalsource.com/reader/books/9786075266718/pageid/0

Bibliografía Complementaria:

- Halliday, David. FÍSICA. Firmas Press. https://tubiblioteca.utp.edu.pe/cgi-bin/koha/opac-detail.pl? biblionumber=36745
- Young, Hugh D. Física Universitaria. Jorge Sarmiento Editor Universitas. https://tubiblioteca.utp.edu.pe/cgi-bin/koha/opac-detail.pl?biblionumber=36753

9. COMPETENCIAS

Carrera	Competencias específicas		
Ingeniería de Sistemas e Informática			
Ingeniería Industrial			
Ingeniería Biomédica			
Ingeniería Electrónica			
Ingeniería Eléctrica y de Potencia			
Ingeniería Mecatrónica			
Ingeniería de Sistemas e Informática			
Ingeniería de Software			
Ingeniería de Redes y Comunicaciones			
Ingeniería de Seguridad y Auditoría Informática			
Ingeniería de Telecomunicaciones	Competencia básica en STEM (Science, Technology, Engineering and		
Ingeniería de Diseño Computacional	Mathematics)		
Ingeniería de Diseño Gráfico			
Ingeniería Empresarial			
Ingeniería Industrial			
Ingeniería de Minas			
Ingeniería de Seguridad Industrial y Minera			
Ingeniería en Seguridad Laboral y Ambiental			
Ingeniería Aeronáutica			
Ingeniería Automotriz			
Ingeniería Mecánica			
Ingeniería Civil			
Ingeniería de Software	Competencia básica en STEM (science, technology, engineering and		
Ingeniería Ambiental	mathematics)		

10.CRONOGRAMA DE ACTIVIDADES

Unidad de aprendizaje	Semana	Sesión	Tema	Actividades y evaluaciones
Unidad 1 Medición, unidades y cinemática	1	1	Presentación del curso. Presentación del Proyecto. El método científico y sus aplicaciones en la ingeniería. Magnitudes físicas.	El docente realiza la presentación del curso y del proyecto. Desarrolla el tema de la sesión. Los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
		2	Conversión de unidades. Ecuaciones dimensionales. El sistema internacional de medidas. Teoría de errores.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
	2	3	Magnitudes vectoriales Representación de un vector. Módulo y dirección de un vector.Suma y resta de vectores.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
		4	Desplazamiento, velocidad media e instantánea, rapidez y aceleración.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
	3	5	Movimiento rectilíneo uniforme. Movimiento uniformemente variado. Movimiento de caída libre. Gráfica de funciones aplicados al movimiento: MRU, MRUV	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
			Evaluación	LABORATORIO CALIFICADO 1
			Movimiento en dos dimensiones	El docente desarrolla el tema

		6		de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
	4	7	Movimiento circular. Sesión Integradora 1.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas. Desarrollo de la sesión integradora 1
		8	Evaluación	PRÁCTICA CALIFICADA 1
Unidad 2 Estática	5	9	Fuerzas. Tercera ley de Newton. Fuerza de fricción. Primera condición de equilibrio. Diagrama de cuerpo libre.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
	6	10	Producto vectorial y sus propiedades.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
		11	Momento de una fuerza. Centro de masa. Segunda condición de equilibrio.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
	7	12	Cantidad de movimiento lineal. Impulso y colisiones (choques)	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.

			Evaluación	LABORATORIO CALIFICADO 2
		13	Segunda ley de Newton: descomposición vectorial de fuerzas.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
Unidad 3	8	14	Segunda ley de Newton: diagrama de cuerpo libre y aplicaciones.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
Dinámica	9	15	Segunda ley de Newton para una partícula en movimiento circular uniforme y no uniforme.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
		16	Movimiento armónico simple. Dinámica de un M.A.S.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
		17	Sesión integradora 2	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
		18	Evaluación	PRÁCTICA CALIFICADA 2
		19	Producto escalar. Trabajo realizado por una fuerza constante. Trabajo realizado por una fuerza variable.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes,

Unidad 4	11	20	Evaluación	resolviendo ejercicios y problemas. • AVANCE DE PROYECTO FINAL
	12	21	Energía cinética. Energía potencial de un sistema.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
Trabajo y energía			Evaluación	LABORATORIO CALIFICADO 3
	13	22	Conservación de la energía mecánica	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
		23	Teorema del trabajo - energía cinética. Fuerza conservativa y no conservativa. Energía del MAS	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
	14	24	Cinemática de rotación: posición, velocidad y aceleración angular. Momento de inercia. Cinemática rotacional: objeto rígido bajo aceleración constante. Dinámica Rotacional.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
			Evaluación	LABORATORIO CALIFICADO 4
		25	Rotación de un cuerpo solido. Cantidades angulares y traslación: rotación y traslación.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.

Unidad 5 Rotación del sólido rígido.	15	26	Energía cinética de rotación. Aplicación del momento de inercia y momento de torsión. Rodamiento sin deslizamiento.	El docente desarrolla el tema de la sesión y los estudiantes participan con sus aportes, resolviendo ejercicios y problemas.
	16	27	Sesión integradora 3	Desarrollo de la sesión integradora 3
		28	Evaluación	PRÁCTICA CALIFICADA 3
		29	Primera sesión de exposiciones del proyecto final.	Los estudiantes exponen su proyecto final.
	17	30	Segunda sesión de exposiciones del proyecto final.	Los estudiantes exponen su proyecto final.
			Evaluación	PARTICIPACIÓN EN CLASE
	18	31	Evaluación	PROYECTO FINAL