GORITHM

Puzzle from the Lab

16 October 2025

Prof. Dr. Sebastian Wild

CS594 (Winter 2025-26) Philipps-Universität Marburg version 2025-10-16 20:30

Outline

Puzzle from the Lab

- 1.1 Protein Sequencing
- 1.2 The Turnpike Problem
- 1.3 Backtracking Algorithm
- 1.4 A Pseudopolynomial Algorithm
- 1.5 Back to the Lab

1.1 Protein Sequencing

Proteins: The Workhorses of the Cell

- ▶ What are they? Chains of amino acids, folded into specific 3D shapes. The shape determines the function.
- ► What do they do? Almost everything!
 - ► They act as *enzymes* (catalyzing chemical reactions)
 - provide structural support (cell walls, muscles!),
 - transport molecules (e. g., hemoglobin),
 - ▶ send signals (some hormones, e. g., insulin)
 - and more

Primary Protein Structure

3D Structure of hemoglobin

https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png

Proteins: The Workhorses of the Cell

▶ What are they? Chains of amino acids, folded into specific 3D shapes. The shape determines the function.

- ► What do they do? Almost everything!
 - ► They act as *enzymes* (catalyzing chemical reactions)
 - provide structural support (cell walls, muscles!),
 - transport molecules (e. g., hemoglobin),
 - ▶ send signals (some hormones, e. g., insulin)
 - and more
- → Target of many activities across bioinformatics
 - analyzing amino acid sequence
 - predicting structure (AlphaFold)
 - study interaction networks
 - design new proteins as potential drugs
 - ▶ ...

https://commons.wikimedia.org/wiki/File:1GZX_Haemoglobin.png

Amino Acids

Amino acid	3-letter code	Molecular formula	Mass (Da)
Alanine	Ala	C ₃ H ₅ NO	71.03711
Cysteine	Cys	C ₃ H ₅ NOS	103.00919
Aspartic acid	Asp	$C_4H_5NO_3$	115.02694
Glutamic acid	Glu	$C_5H_7NO_3$	129.04259
Phenylalanine	Phe	C ₉ H ₉ NO	147.06841
Glycine	Gly	C ₂ H ₃ NO	57.02146
Histidine	His	$C_6H_7N_3O$	137.05891
Isoleucine	Ile	$C_6H_{11}NO$	113.08406
Lysine	Lys	$C_6H_{12}N_2O$	128.09496
Leucine	Leu	$C_6H_{11}NO$	113.08406
Methionine	Met	C ₅ H ₉ NOS	131.04049
Asparagine	Asn	$C_4H_6N_2O_2$	114.04293
Proline	Pro	C ₅ H ₇ NO	97.05276
Glutamine	Gln	$C_5H_8N_2O$	128.05858
Arginine	Arg	$C_6H_{12}N_4O$	156.10111
Serine	Ser	$C_3H_5NO_2$	87.03203
Threonine	Thr	$C_4H_7NO_2$	101.04768
Valine	Val	C ₅ H ₉ NO	99.06841
Tryptophan	Trp	$C_{11}H_{10}N_2O$	186.07931
Tyrosine	Tyr	C ₉ H ₉ NO ₂	163.06333

- ► 1 Da = $\frac{1}{12}$ of a carbon-12 atom $\approx 1.66 \times 10^{-27}$ kg.
 - ► We will use rounded integer weights
- ► Monoisotopic mass: sum of atomic masses of most abundant isotopes.
- ► Only shows 20 *proteinogenic* amino acids (those encoded in DNA)

Compeau & Pevzner, Bioinformatics Algorithms, https://cogniterra.org/lesson/29925/step/1

[▶] Dalton (Da): unit of molecular mass.

Protein Sequencing

How to determine the sequence of amino acids in a protein?

- ▶ indirect option: via *genes*
 - ... we will come back to that
 - ▶ not always possible (e. g., for non-ribosomal peptides)
- ▶ (more) direct option: *mass spectrometry*
 - 1. Shatter (many copies) molecule into pieces
 - 2. Measure *spectrum* of particle masses* (which masses occur how often)

■ Mass Spectrometry https://youtu.be/mBT73Pesiog

→ from this, reconstruct what the molecule was!?

1.2 The Turnpike Problem

Turnpike Problems

■ The Sopranos Opening https://youtu.be/mJpNmYeooQE

Turnpike Problems

■ The Sopranos Opening https://youtu.be/mJpNmYeooQE

- → Turnpike = toll road
- ▶ typically, price for road ∝ length of segment on road
- ► Can enter and leave at any pair of exits

Ideal Spectra

Back to mass spectrometry . . .

Simplifying assumptions

- perfect integer molecular weights, no isotopes
- ▶ all breakpoints realized
- multiplicities of weights correctly observed
- no contamination

Ideal Spectra

Back to mass spectrometry . . .

Simplifying assumptions

- perfect integer molecular weights, no isotopes
- ▶ all breakpoints realized
- multiplicities of weights correctly observed
- ▶ no contamination

```
Definition 1.1 (Difference multiset) molecular weights / distances / turnpike tolls Given P = P[0..n) \in \mathbb{N}_{\geq 1}^n a sequence of numbers, define the prefix sums S[0..n] = \operatorname{prefSum}(P[0..n)) via S[i] = P[0] + \cdots + P[i-1].
```

Ideal Spectra

Back to mass spectrometry . . .

Simplifying assumptions

- perfect integer molecular weights, no isotopes
- ▶ all breakpoints realized
- multiplicities of weights correctly observed
- no contamination

Definition 1.1 (Difference multiset)

molecular weights / distances / turnpike tolls

Given $P = P[0..n) \in \mathbb{N}_{\geq 1}^n$ a sequence of numbers, define the *prefix sums* $S[0, n] = \operatorname{prefSum}(P[0, n])$

define the *prefix sums* $\bar{S}[0..n] = \text{prefSum}(P[0..n)) \text{ via } S[i] = P[0] + \cdots + P[i-1].$

The *difference multiset* ΔS is the multiset

multiset

$$\Delta S = \{ \{S[j] - S[i] : 0 \le i < j \le n \} \}.$$

Important: Keep duplicates / multiplicities of distances! \rightarrow $|\Delta S[0..n]| = \binom{n+1}{2}$

The Turnpike Problem

Definition 1.2 (Turnpike Problem)

Given: a multiset *D* with $|D| = \binom{n}{2}$

Goal: Find sequence *P* with $\Delta(\text{prefSum}(P)) = D$ (or state that no such *P* exists).

⋖

The Turnpike Problem

Definition 1.2 (Turnpike Problem)

Given: a multiset *D* with $|D| = \binom{n}{2}$

Goal: Find sequence *P* with $\Delta(\text{prefSum}(P)) = D$ (or state that no such *P* exists).

Examples:

Examples:
1.
$$P_1 = [3,5,1,2]$$
 $O \in \mathcal{C}$ $O \cap \mathcal{C}$ $O \in \mathcal{C}$ $O \cap \mathcal{C}$

The Turnpike Problem

Definition 1.2 (Turnpike Problem)

Given: a multiset D with $|D| = \binom{n}{2}$

Goal: Find sequence *P* with $\Delta(\text{prefSum}(P)) = D$ (or state that no such *P* exists).

Examples:

2.
$$P_2 = [1, 1, 1, 1, 1]$$

$$\Rightarrow S_2 = [0, 1, 2, 3, 4, 5]$$

$$\Rightarrow D_2 = \Delta S_2 = \{\{1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 4, 4, 5\}\}$$

3512

3. For $D = \{1, 1, 1\}$ no set S exists such that $D = \Delta S$ Any two points a < b will give $\Delta(0, a, b) = \{\{a, b, b - a\}\}$ $4 a \neq b$

Clicker Question

1.3 Backtracking Algorithm

Systematic Solution

Consider $\Delta S = \{\{\underline{1}, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 15, \underline{17}, \underline{18}\}\}.$

Backtracking Turnpike

```
procedure turnpikeBacktracking(D)
        d := \max D
        P := \{0, d\} // sorted set
 3
        return turnpikeRec(P, D)
 5
  procedure turnpikeRec(P, D)
       // Invariant: \Delta P \subseteq D
 7
        if \Lambda P == D
 8
            return P
 9
        d := \max(D \setminus \Delta P)
10
       // Option 1: Distance d from left end
11
       P' := P \cup \{d\}
12
       if \Delta P' \subseteq D
13
            R := turnpikeRec(P', D)
14
            if R \neq NO DIFFERENCE MULTISET
15
                 return R
16
       // else try Option 2: Distance d from right
17
        P' := P \cup \{(\max D) - d\}
18
        if \Delta P' \subseteq D
19
            return turnpikeRec(P', D)
20
       // else: no option worked!
21
        return NO DIFFERENCE MULTISET
22
```

Backtracking Turnpike

```
procedure turnpikeBacktracking(D)
        d := \max D
        P := \{0, d\} // sorted set
        return turnpikeRec(P, D)
  procedure turnpikeRec(P, D)
        // Invariant: \Delta P \subseteq D
        if \Lambda P == D
             return P
 9
        d := \max(D \setminus \Delta P)
10
       // Option 1: Distance d from left end
11
       P' := P \cup \{d\}
12
       if \Delta P' \subseteq D
13
             R := turnpikeRec(P', D)
14
             if R \neq NO DIFFERENCE MULTISET
15
                 return R
16
       // else try Option 2: Distance d from right
17
        P' := P \cup \{(\max D) - d\}
18
        if \Delta P' \subset D
19
             return turnpikeRec(P', D)
20
       // else: no option worked!
21
        return NO DIFFERENCE MULTISET
22
```

Correctness

- After placing a few points in prefix sums P, largest remaining distance must be measured from one endpoint.
- Otherwise we are immediately missing a larger distance ¶
- $\rightsquigarrow\,$ only two checked options are possible
- invariant explicitly checked for recursive calls
- invariant at return guarantees correct answer

Backtracking Turnpike

```
procedure turnpikeBacktracking(D)
        d := \max D
        P := \{0, d\} // sorted set
        return turnpikeRec(P, D)
   procedure turnpikeRec(P, D)
        // Invariant: \Delta P \subseteq D
        if \Lambda P == D
             return P
 9
        d := \max(D \setminus \Delta P)
10
       // Option 1: Distance d from left end
11
       P' := P \cup \{d\}
12
       if \Delta P' \subseteq D
13
             R := turnpikeRec(P', D)
14
             if R \neq NO DIFFERENCE MULTISET
15
                 return R
16
       // else try Option 2: Distance d from right
17
        P' := P \cup \{(\max D) - d\}
18
        if \Delta P' \subset D
19
             return turnpikeRec(P', D)
20
       // else: no option worked!
21
        return NO DIFFERENCE MULTISET
22
```

Correctness

- After placing a few points in prefix sums P, largest remaining distance must be measured from one endpoint.
- Otherwise we are immediately missing a larger distance ¶
- → only two checked options are possible
- invariant explicitly checked for recursive calls
- invariant at return guarantees correct answer

Running time

- ▶ worst case: exponential! → see tutorials
- not known whether problem is NP-hard(!)