UCICS 143 W'12
Operating Systems
Project: Scheduling Algorithms
Programming & Analysis

Andrew Maltun

Erik Westrup

Observations

- Preemptive vs. non-preemptive
 - Response time == wait time for non-PE algos
 - Response time < wait time for PE
 - With small sigma, PE converge on non-PE algos
 - After all jobs are in queue, PE/non-PE are equal
 - PE advantage is larger when:
 - Std. deviation of job times/prios is large (bigger chance of being preempted)
 - Jobs enter queue slowly (once queue is filled, PE==non-PE)
- When jobs execute faster than they arrive, FCFS, SJFS, Prio all converge to FCFS (i.e. for job size == 20)
 - As job size increases, algos diverge
- SJFS may do arbitrarily better or worse depending on when short/long jobs arrive (i.e. badly if lots of short jobs come at the end, and jobs come in fast. First jobs will wait a long time)

More Observations

- Essentially two regimes:
 - Jobs still entering queue (R1)
 - All jobs in queue (R2)
 - May be that different algos are optimal in each regime
 - FCFS optimal for R2 since at this point it makes sense to target jobs in order with highest wait + turn times already? Or SJFS?
 - What is optimal

FJFS Results

SJF Results

Comparative Results

Comparison: FCFS vs. SJF vs. SFJPE

Single-Priority-Queue Results

Priority Queue Analysis

Round Robin Results: q=5

Round Robin Results: q=20

Round Robin Results

Multi-Queue Results

