Methods

Overview

Overview

```
"Excess" vs "baseline"
```

Overview

```
"Excess" vs "baseline"
```

Excess: actual events – baseline

Overview

```
"Excess" vs "baseline"
```

- Excess: actual events baseline
- Baseline: expected number of events

Overview

```
"Excess" vs "baseline"
```

- Excess: actual events baseline
- Baseline: expected number of events
 - Seasonal variation

Overview

"Excess" vs "baseline"

- Excess: actual events baseline
- Baseline: expected number of events
 - Seasonal variation

Overview

"Excess" vs "baseline"

- Excess: actual events baseline
- Baseline: expected number of events
 - Seasonal variation

"Actual deaths" vs "reported/registered deaths"

Overview

"Excess" vs "baseline"

- Excess: actual events baseline
- Baseline: expected number of events
 - Seasonal variation

"Actual deaths" vs "reported/registered deaths"

- Reporting coverage
 - Rich countries, almost 100%
 - Only 2/3 countries register at least 90% deaths

Overview

"Excess" vs "baseline"

- Excess: actual events baseline
- Baseline: expected number of events
 - Seasonal variation

"Actual deaths" vs "reported/registered deaths"

- Reporting coverage
 - Rich countries, almost 100%
 - Only 2/3 countries register at least 90% deaths
- Reporting delay
 - paper based / electronic reporting
 - cause of death examination

Reporting delay and correction

Reporting delay and correction

Reporting delay and correction

A common problem

e.g. Norway all cause mortality,

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020–2021, median delay within a few days; 5% deaths still un-registered after 4 weeks

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020–2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020–2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country
- Strategies:

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020–2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country
- Strategies:
 - Use complete data only, exclude data from recent weeks (Wang2022)

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020–2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country
- Strategies:
 - Use complete data only, exclude data from recent weeks (Wang2022)
 - Delay adjustment / correction

Reporting delay and correction

A common problem

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020–2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country
- Strategies:
 - Use complete data only, exclude data from recent weeks (Wang2022)
 - Delay adjustment / correction

Correct for delays using statistical models (prediction, nowcast)

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020-2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country
- Strategies:
 - Use complete data only, exclude data from recent weeks (Wang2022)
 - Delay adjustment / correction

- Correct for delays using statistical models (prediction, nowcast)
- Regression model based on historical reporting delays

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020–2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country
- Strategies:
 - Use complete data only, exclude data from recent weeks (Wang2022)
 - Delay adjustment / correction

- Correct for delays using statistical models (prediction, nowcast)
- · Regression model based on historical reporting delays
 - e.g. real number = 100

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020-2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country
- Strategies:
 - Use complete data only, exclude data from recent weeks (Wang2022)
 - Delay adjustment / correction

- Correct for delays using statistical models (prediction, nowcast)
- Regression model based on historical reporting delays
 - e.g. real number = 100
 - 60 are reported within 7 days (1 week)

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020-2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country
- Strategies:
 - Use complete data only, exclude data from recent weeks (Wang2022)
 - Delay adjustment / correction

- Correct for delays using statistical models (prediction, nowcast)
- Regression model based on historical reporting delays
 - e.g. real number = 100
 - 60 are reported within 7 days (1 week)
 - 25 are reported in 8–14 days (2nd week)

Reporting delay and correction

- e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020–2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country
- Strategies:
 - Use complete data only, exclude data from recent weeks (Wang2022)
 - Delay adjustment / correction

- Correct for delays using statistical models (prediction, nowcast)
- · Regression model based on historical reporting delays
 - e.g. real number = 100
 - 60 are reported within 7 days (1 week)
 - 25 are reported in 8–14 days (2nd week)
 -

Reporting delay and correction

- · e.g. Norway all cause mortality,
 - Before 2020, median (50%) delay 10 days
 - 2020-2021, median delay within a few days; 5% deaths still un-registered after 4 weeks
- Regional differences within the same country
- Strategies:
 - Use complete data only, exclude data from recent weeks (Wang2022)
 - Delay adjustment / correction

- Correct for delays using statistical models (prediction, nowcast)
- Regression model based on historical reporting delays
 - e.g. real number = 100
 - 60 are reported within 7 days (1 week)
 - 25 are reported in 8–14 days (2nd week)
 -
- Need to **train** and **validate** model on different parts of data

Baseline estimation, excess reporting

Training: 5 years historical weekly data, selected weeks (15–26, 36–25 in Euromomo)

- Training: 5 years historical weekly data, selected weeks (15–26, 36–25 in Euromomo)
- Models
 - Simple model: 5 year weekly average (Bernard 2021)
 - Regression model for counts: quasi-poisson
 - Trend (demographic shift), seasonality (winter)

- Training: 5 years historical weekly data, selected weeks (15–26, 36–25 in Euromomo)
- Models
 - Simple model: 5 year weekly average (Bernard 2021)
 - Regression model for counts: quasi-poisson
 - Trend (demographic shift), seasonality (winter)
- Prediction
 - Estimates with intervals for risk levels
 - Z <= 2, no excess
 - 2-4: low excess; 4-7 moderate excess; 7-10 high excess

- Training: 5 years historical weekly data, selected weeks (15–26, 36–25 in Euromomo)
- Models
 - Simple model: 5 year weekly average (Bernard 2021)
 - Regression model for counts: quasi-poisson
 - Trend (demographic shift), seasonality (winter)
- Prediction
 - Estimates with intervals for risk levels
 - Z <= 2, no excess
 - 2-4: low excess; 4-7 moderate excess; 7-10 high excess
- Excess reporting: absolute counts, z-score (Euromomo), others:
 e.g. P-score (Karlinsky2021)

- Training: 5 years historical weekly data, selected weeks (15–26, 36–25 in Euromomo)
- Models
 - Simple model: 5 year weekly average (Bernard 2021)
 - Regression model for counts: quasi-poisson
 - Trend (demographic shift), seasonality (winter)
- Prediction
 - Estimates with intervals for risk levels
 - Z <= 2, no excess
 - 2-4: low excess; 4-7 moderate excess; 7-10 high excess
- Excess reporting: absolute counts, z-score (Euromomo), others:
 e.g. P-score (Karlinsky2021)

Existing implementations

Existing implementations

Euromomo (SSI Denmark)

Existing implementations

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)

Existing implementations

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - Removed spring 2020 (covid), only train on spring and autumn data

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - Removed spring 2020 (covid), only train on spring and autumn data
 - Only national level results sent to Euromomo, no county level

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - Removed spring 2020 (covid), only train on spring and autumn data
 - Only national level results sent to Euromomo, no county level
- Sykdomspulsen (our own method, under development)

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - Removed spring 2020 (covid), only train on spring and autumn data
 - Only national level results sent to Euromomo, no county level
- Sykdomspulsen (our own method, under development)
 - Aims to produce consistent estimates for national and county

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - Removed spring 2020 (covid), only train on spring and autumn data
 - Only national level results sent to Euromomo, no county level
- Sykdomspulsen (our own method, under development)
 - Aims to produce consistent estimates for national and county
 - Flexibility to include different methods of delay adjustment

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - Removed spring 2020 (covid), only train on spring and autumn data
 - Only national level results sent to Euromomo, no county level
- Sykdomspulsen (our own method, under development)
 - Aims to produce consistent estimates for national and county
 - Flexibility to include different methods of delay adjustment
- Economist excess mortality (gradient boosting)

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - · Removed spring 2020 (covid), only train on spring and autumn data
 - Only national level results sent to Euromomo, no county level
- Sykdomspulsen (our own method, under development)
 - Aims to produce consistent estimates for national and county
 - Flexibility to include different methods of delay adjustment
- Economist excess mortality (gradient boosting)

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - · Removed spring 2020 (covid), only train on spring and autumn data
 - Only national level results sent to Euromomo, no county level
- Sykdomspulsen (our own method, under development)
 - Aims to produce consistent estimates for national and county
 - Flexibility to include different methods of delay adjustment
- Economist excess mortality (gradient boosting)
- World Mortality Dataset (Kalinsky et. al. 2021)

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - · Removed spring 2020 (covid), only train on spring and autumn data
 - Only national level results sent to Euromomo, no county level
- Sykdomspulsen (our own method, under development)
 - Aims to produce consistent estimates for national and county
 - Flexibility to include different methods of delay adjustment
- Economist excess mortality (gradient boosting)
- World Mortality Dataset (Kalinsky et. al. 2021)

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - · Removed spring 2020 (covid), only train on spring and autumn data
 - Only national level results sent to Euromomo, no county level
- Sykdomspulsen (our own method, under development)
 - Aims to produce consistent estimates for national and county
 - Flexibility to include different methods of delay adjustment
- Economist excess mortality (gradient boosting)
- World Mortality Dataset (Kalinsky et. al. 2021)
- Wang 2022 paper on Lancet (model ensembles)

- Euromomo (SSI Denmark)
 - Age groups: 0-14, 15-44, 45-64, 65-74, 75-84 (and 65+, 85+)
 - · Removed spring 2020 (covid), only train on spring and autumn data
 - Only national level results sent to Euromomo, no county level
- Sykdomspulsen (our own method, under development)
 - Aims to produce consistent estimates for national and county
 - Flexibility to include different methods of delay adjustment
- Economist excess mortality (gradient boosting)
- World Mortality Dataset (Kalinsky et. al. 2021)
- Wang 2022 paper on Lancet (model ensembles)

Discussion

· Very different **country profile** in terms of delay structure and mortality pattern, affects choice of methods

- · Very different **country profile** in terms of delay structure and mortality pattern, affects choice of methods
- Different methods produce different results, can be misleading (complex ML vs regression)

- · Very different country profile in terms of delay structure and mortality pattern, affects choice of methods
- · Different methods produce different results, can be misleading (complex ML vs regression)
- Input data from different sources (SSB vs Freg)

- · Very different country profile in terms of delay structure and mortality pattern, affects choice of methods
- · Different methods produce different results, can be misleading (complex ML vs regression)
- Input data from different sources (SSB vs Freg)
- Data processing is key

- · Very different country profile in terms of delay structure and mortality pattern, affects choice of methods
- Different methods produce different results, can be misleading (complex ML vs regression)
- Input data from different sources (SSB vs Freg)
- Data processing is key
 - How much delay to correct for? Should it be corrected?

- · Very different country profile in terms of delay structure and mortality pattern, affects choice of methods
- Different methods produce different results, can be misleading (complex ML vs regression)
- Input data from different sources (SSB vs Freg)
- Data processing is key
 - How much delay to correct for? Should it be corrected?
 - Should heatwave and influenza season be removed?

- · Very different country profile in terms of delay structure and mortality pattern, affects choice of methods
- Different methods produce different results, can be misleading (complex ML vs regression)
- Input data from different sources (SSB vs Freg)
- Data processing is key
 - How much delay to correct for? Should it be corrected?
 - Should heatwave and influenza season be removed?
- Results presentation, public communication

- · Very different country profile in terms of delay structure and mortality pattern, affects choice of methods
- Different methods produce different results, can be misleading (complex ML vs regression)
- Input data from different sources (SSB vs Freg)
- Data processing is key
 - How much delay to correct for? Should it be corrected?
 - Should heatwave and influenza season be removed?
- · Results presentation, public communication
 - How much is excess, how to set threshold for alerts?

- · Very different country profile in terms of delay structure and mortality pattern, affects choice of methods
- Different methods produce different results, can be misleading (complex ML vs regression)
- Input data from different sources (SSB vs Freg)
- Data processing is key
 - How much delay to correct for? Should it be corrected?
 - Should heatwave and influenza season be removed?
- · Results presentation, public communication
 - How much is excess, how to set threshold for alerts?
 - · e.g. 1 excess deaths in one week, vs high level of 'normal' deaths in one month

Normomo with Sykdomspulsen

Data and processing

Folkeregisteret via Evry (platform)

- Folkeregisteret via Evry (platform)
 - Receive on every Tuesday

- Folkeregisteret via Evry (platform)
 - Receive on every Tuesday
 - · Individual level data: date of death, date of registration, age, gender, county (not sensitive)

- Folkeregisteret via Evry (platform)
 - Receive on every Tuesday
 - · Individual level data: date of death, date of registration, age, gender, county (not sensitive)
 - 11 counties -> national

- Folkeregisteret via Evry (platform)
 - Receive on every Tuesday
 - Individual level data: date of death, date of registration, age, gender, county (not sensitive)
 - 11 counties -> national
 - Daily -> weekly

- Folkeregisteret via Evry (platform)
 - Receive on every Tuesday
 - · Individual level data: date of death, date of registration, age, gender, county (not sensitive)
 - 11 counties -> national
 - Daily -> weekly
- Registration delay

- Folkeregisteret via Evry (platform)
 - Receive on every Tuesday
 - · Individual level data: date of death, date of registration, age, gender, county (not sensitive)
 - 11 counties -> national
 - Daily -> weekly
- Registration delay
 - Death <-> registered: possible underreporting

- Folkeregisteret via Evry (platform)
 - Receive on every Tuesday
 - · Individual level data: date of death, date of registration, age, gender, county (not sensitive)
 - 11 counties -> national
 - Daily -> weekly
- Registration delay
 - Death <-> registered: possible underreporting
 - Delay correction: nowcasting (prediction of current situation)

- Folkeregisteret via Evry (platform)
 - Receive on every Tuesday
 - · Individual level data: date of death, date of registration, age, gender, county (not sensitive)
 - 11 counties -> national
 - Daily -> weekly
- Registration delay
 - Death <-> registered: possible underreporting
 - Delay correction: nowcasting (prediction of current situation)
 - EuroMOMO (MOMO pkg), ours (nowcast pkg), ···

From data to reports

Email (internal)

Resultater fra NorMOMO 2022-01-11

Resultater fra overvåkingssystemet for dødelighet (NorMOMO) er tilgjengelig på N:/sykdomspulsen_normomo_restricted_output/2022-01-11 (tilgangsbegrenset)

Her er nye resultater fra overvåkingssystemet for generell dødelighet i Norge (NorMOMO).

NorMOMO er basert på ukentlig oppdaterte anonyme data fra Folkeregisteret og analyseres ved bruk av EuroMOMO-modellen.

Under følger en oppsummering av forrige ukes resultater. Resultatene er til intern bruk, må tolkes med varsomhet og kan justeres noe grunnet forsinkelse i rapporteringen av dødsfall.

Tabell 1. Antall registrerte dødsfall de 8 og 4 siste ukene og nivå av dødelighet.

		1	Antall dødsfall	l		Dødelighetsnivå		
Alder	År-uke	Registrert ¹	$Korrigert^2$	Z-score ³	Overdødelighet ⁴	Normalt ⁵	Forhøyet	Betydelig forhøyet
	2022-01	827	892	-0,51	0	823 - 1006	1006 - 1101	>1101
Totalt	2021-52	883	888	-0,50	0	820 - 1000	1000 - 1093	>1093
	2021-51	936	957	1,19	0	815 - 993	993 - 1084	>1084
	2021-50	973	1.02e+03	2,82	37	810 - 984	984 - 1074	>1074
	2021-49	1043	1.1e+03	4,74	122	804 - 974	974 - 1062	>1062
	2021-48	969	998	2,82	35	797 - 964	964 - 1049	>1049
	2021-47	960	982	2,72	30	790 - 953	953 - 1036	>1036
	2021-46	921	934	1,82	0	782 - 941	941 - 1023	>1023

From data to reports

Email (internal)

Resultater fra NorMOMO 2022-01-11

Resultater fra overvåkingssystemet for dødelighet (NorMOMO) er tilgjengelig på N:/sykdomspulsen_normomo_restricted_output/2022-01-11 (tilgangsbegrenset)

Her er nye resultater fra overvåkingssystemet for generell dødelighet i Norge (NorMOMO).

NorMOMO er basert på ukentlig oppdaterte anonyme data fra Folkeregisteret og analyseres ved bruk av EuroMOMO-modellen.

Under følger en oppsummering av forrige ukes resultater. Resultatene er til intern bruk, må tolkes med varsomhet og kan justeres noe grunnet forsinkelse i rapporteringen av dødsfall.

Tabell 1. Antall registrerte dødsfall de 8 og 4 siste ukene og nivå av dødelighet.

		1	Antall dødsfall	l		Dødelighetsnivå		
Alder	År-uke	Registrert ¹	Korrigert ²	Z-score ³	Overdødelighet ⁴	Normalt ⁵	Forhøyet	Betydelig forhøyet
	2022-01	827	892	-0,51	0	823 - 1006	1006 - 1101	>1101
Totalt	2021-52	883	888	-0,50	0	820 - 1000	1000 - 1093	>1093
	2021-51	936	957	1,19	0	815 - 993	993 - 1084	>1084
	2021-50	973	1.02e+03	2,82	37	810 - 984	984 - 1074	>1074
	2021-49	1043	1.1e+03	4,74	122	804 - 974	974 - 1062	>1062
	2021-48	969	998	2,82	35	797 - 964	964 - 1049	>1049
	2021-47	960	982	2,72	30	790 - 953	953 - 1036	>1036
	2021-46	921	934	1,82	0	782 - 941	941 - 1023	>1023

[euromomo input] [Norway] [2022 1]

Please find attached the current week's results.

Sincerely,

Norway

Email (to Euromomo)

References and links

- Normomo (FHI) https://www.fhi.no/sv/influensa/influensaovervaking/overvakingssystem-for-dodelighet-eu/
- Nowcast package https://github.com/sykdomspulsen-org/nowcast
- Euromomo https://www.euromomo.eu
- MOMO package https://github.com/EuroMOMOnetwork/MOMO
- Economist https://www.economist.com/graphic-detail/coronavirus-excess-deaths-estimates
- · World Mortality Dataset https://ourworldindata.org/covid-excess-mortality