

# Applied Machine Learning in Engineering

Lecture 05, May 16, 2023

Prof. Merten Stender

Cyber-Physical Systems in Mechanical Engineering, Technische Universität Berlin

www.tu.berlin/cpsme merten.stender@tu-berlin.de

## Recap: Lecture 04



Unsupervised learning: finding data groups of similar characteristics

#### Cluster validity metrics

- Within-cluster sum of squares SSE
- Between-cluster sum of squares BSS

#### K-means clustering

- Basic algorithm
- Ellbow curve method: finding the optimal K
- Sensitivity to centroid initialization





## Recap: Lecture 04



- Simplest and very efficient clustering algorithm
- Prototype-based, finding *K* (user-defined) clusters by optimal centroid placement
- 1. Placement of *K* random centroids
- 2. Loop until converged:
  - 1. Assign data points  $\mathbf{x}_i$  to closest centroid  $\mathbf{m}_k$  to build cluster  $C_k$
  - 2. Update centroid position by averaging across  $x_i \in C_k$







## Recap: Exercise 04



- From scratch implementation of K-means clustering
- Assigning cluster labels
- Finding index of closest centroid by np.argmin() function

```
dists = [] # storing distances from all points to all centroids
for k in range(K): # iterate over all K centroids

# compute distance from all x to current centroid m_k
dists.append(np.linalg.norm(x-centroids[k, :], ord=norm_ord, axis=1))

dists = np.vstack(dists) # shape: [K, N]

# find the row index of minimum per column, i.e. the index of the closest centroid cluster_labels = np.argmin(dists, axis=0) # shape: N, 1
```

## Recap: Exercise 04



- From scratch implementation of K-means clustering
- Updating centroids
- Handling empty clusters

```
centroids_new = []
# loop over clusters and re-compute cluster coordinates by averaging
for k in range(K):
   # boolean index, true when data point belongs to current cluster k
   in cluster = labels == k
   # check if cluster is empty. if so, re-locate the centroid in order to
   # keep the clustering going
   if any(in_cluster):
        # compute mean coordinates across all d dimensions for data points in cluster
           # mean results for sum of squares
           centroids new.append(np.mean(x[in cluster], axis=0))
       elif norm == 'L1':
            # medin results for sum of differences
           centroids new.append(np.median(x[in cluster], axis=0))
   elif any(in_cluster) is False: # no data point assigned to this cluster
        print(f'Iteration {k}: ATTENTION! At least one cluster is empty')
        if not centroids new: # check if we have existing centroids
           existing centroids = None
        else:
           existing_centroids = np.vstack(centroids_new)
        centroids_new.append(relocate_empty_centroid(
           x=x, centroids=existing_centroids))
        print(f'relocated empty centroid to {centroids_new[-1]}')
centroids = np.vstack(centroids_new)
```

## Today

Cyber-Physical Systems in Mechanical Engineering TU Berlin

- Recognize different types of clusterings
- Understand different cluster densities
- Understand density-based clustering
- Evaluate suitable clustering techniques

## Agenda



#### **Machine Learning:**

- DBSCAN
- Silhouette coefficient
- Data normalization

#### Python:

Lambda functions

## Types of Clusterings



**Clustering** = the entity of clusters = the overall result of a clustering process

- Three dimensions / characteristics of different clusterings (how to compare clusterings?)
- 1. Nesting
- 2. Exclusiveness
- 3. Completeness

## Types of Clusterings: Nesting



#### Partitional clusterings

- Non-overlapping clusters
- Each labeled data point belongs to exactly one cluster
- (not every points requires an assignment)
- Example: animals → dogs, cats, horses



#### Hierarchical clusterings

- Nested clusters with subclusters
- A data point can belong to multiple clusters across levels
- Example: cars → sedan | SUV | sportscar



## Types of Clusterings: Exclusiveness



#### Exclusive clusterings

- Each data point is assigned to a single cluster
- Example: animals → dogs, cats, horses

#### Overlapping (non-exclusive) clusterings

- Allow data points to belong to more than one cluster
- Overlap can be hierarchical, but not necessarily
- Example: students in double-degree programs





## Types of Clusterings: Completeness



#### Complete clusterings

- Each data point is assigned to one or more cluster(s)
- No data point remains without a cluster label

#### Incomplete clusterings

- Not every data point is assigned a cluster label
- Data points without label represent outliers or noise





### Quizz



- 1. Illustrate a partitional, incomplete clustering
- 2. Illustrate a non-exclusive complete clustering
- 3. Illustrate a hierarchical overlapping complete clustering

#### Solution







#### Clusters



#### Clusters = a set of points assigned to a group

- Clusters have different characteristic properties, so-called types:
  - 1. Distribution
  - 2. Density
  - 3. Size or variance

## Types of Clusters: Distribution



- Distribution of points within a cluster
  - Examples:
  - Gaussian distribution
  - Uniform distribution
- Clusters that follow some distribution can be represented by prototypes (,centroids') that meaningfully describe the cluster, such as the average of all points in the cluster

Note that any real-world data will only approximately reveal some theoretic distribution



## Types of Clusters: Density



Density: the form of a cluster is given by a high-density region surrounded by a low-density region of data points

- Examples:
  - Circular / annular shapes
  - Any complex shape
  - Entangled structures

Density-based clusters can, typically, not be represented by prototypes such as centroids!



dimension 1

-0.5

## Types of Clusters: Size / Variance



#### Size:

- Number of samples per cluster
- Expansion (hypervolume) w.r.t. to the data range and other clusters

- Clusters can be large or small compared to the entity of clusters and the data range
- Small clusters may be prone to being assigned to larger clusters





## **Density-based Clustering**



#### K-means

- Built for prototype-based clusters (globular shape)
- No outlier handling (exclusive and complete clustering)



#### **DBSCAN\***

- Built for density-based clusters (any shape)
- Allows for incomplete clusterings



<sup>\*</sup> Density-based spatial clustering of applications with noise

## **DBSCAN**: Encoding Density



■ Reachability  $\approx$  we can jump from one point to point by max.  $\epsilon$  stepsize in a given norm



■ Density-based clustering:  $\epsilon$  neighborhood

## **DBSCAN: Handling Outliers**



Outliers: single / few data points. Define a minimum number of points per cluster N<sub>min</sub>



■ Density-based clustering:  $\epsilon$  neighborhood +  $N_{\min}$ 

## **DBSCAN: Single Link Effect**



- One may need to have a certain  $\epsilon$  value
- Few points could now link two clusters





■ Density-based clustering:  $\epsilon$  neighborhood +  $N_{\min}$  + minimal number of points within  $\epsilon$ 

### **DBSCAN:** Definition



- 3 different types of data points:
  - Core point  $x_{core}$  has at least  $N_{min}$  points within  $\epsilon$  neighborhood (incl. itself). Interior of a cluster
  - Edge point  $x_{edge}$  is reachable from a core point within  $\epsilon$  but is not a core pnt. Edge of a cluster
  - Outliers  $x_{outlier}$  is not reachable from any other point within a distance  $\epsilon$ . Not a cluster member







#### DBSCAN: Pseudo-Code



#### Basic implementation

#### Algorithm 2 DBSCAN algorithm

- 1: Find all core points within the data set, set i = 0
- 2: while unlabeled core points exist do
- 3: Increment cluster counter i+=1
- 4: Assign arbitrary unlabeled core point to cluster  $C_i$
- 5: **while** unlabeled core points are directly reachable from cluster  $C_i$  **do**
- 6: Expand cluster  $C_i$  by directly reachable core points
- 7: end while 

  ▶ Cluster contains only core points up to here
- 8: Extend cluster  $C_i$  by all directly reachable unlabeled non-core points
- 9: end while
- 10: Label unassigned points as outliers

▶ We have found i clusters now

## **DBSCAN** Example



- Assign the correct type of points!
- Minimum number of points  $N_{\min} = 3$ ,  $\epsilon = 2.0$





## **DBSCAN** Example



#### Solution





### **DBSCAN:** Definition



- Clusters are given by core points and their edge points
- DBSCAN determines the number of clusters itself
- Built for density-based clusters, i.e. nested or entangled clusters
- Incomplete clustering: outliers are identified
- Two hyperparameters:  $N_{\min}$  and  $\epsilon$



## **DBSCAN:** Convergence



- Note: DBSCAN is not strictly deterministic / exactly repeatable
  - Different core point to start new cluster may result in edge points ending up in different clusters
  - Minor effect in most cases, corrections possible through extensions to basic algorithm
  - Only very weak effect of different cluster initialization

#### Computational complexity:

■ Theoretically:  $O(N \cdot T)$ , where T is the time to find points in  $\epsilon$  neighborhood

• Worst case:  $O(N^2)$  (searching the complete space for neighbors).

• Efficient search:  $O(N \cdot \log N)$  (using kd-trees or other neigborhood search algorithms)

## Short Note: Hyperparameters



- Learnable machine learning parameters  $\rightarrow$  parameters  $\theta$
- Configuration of machine learning models→ hyperparameters
- Examples for hyperparameters encountered so far:
  - Choice of norm ||·|| for linear regression
  - Centroid initialization, convergence criterion, number of repetitions for K-means clustering
  - $\epsilon$  and  $N_{\min}$  for DBSCAN
- Set of learnable parameter values: an actual realization of an algorithm configured by a set of hyperparameters.
- Repetitive fitting / different training data → different learnable parameter values for the same hyperparameters
- scikit-learn: hyperparameters returned by method get\_params()

## **DBSCAN: Choosing Hyperparameters**



- How to choose  $\epsilon$  and  $N_{\min}$ ?
- Increasing N<sub>min</sub>
  - Increases robustness against outliers
  - Creates more points labeled outliers
  - Creates more (and smaller) clusters
  - Cuts links between clusters

- Finding a meaningful clustering is thus a tradeoff between many dense and fewer cluster of less density.
- DBSCAN does not perform well on clusters of very different density: fixed combination of both hyperparameters may not be optimal

#### • Increasing $\epsilon$

- Creates larger clusters
- Labels less points outliers
- Creates larger (and fewer) clusters



## Handling Value Ranges Across Dimensions



- Multidimensional data sets store attributes related to different quantities
- Different quantities come with different value ranges and underlying distributions
- Example: simplistic description of cars

■ Number of seats: 2 – 5 range: 3

■ Horse power: 80 – 400 hp range: 320 hp

■ Maximum speed: 140 – 220 km/h range: 80 km/h

■ Weight: 1000 – 2000 kg range: 1000 kg

- Distance metric in the *n*-dimensional feature space: one scale for all dimensions
  - Strongest weighting of largest absolute variance / range
- How to select an  $\epsilon$ -neighborhood for comparing  $\begin{bmatrix} 1600 \\ 140 \end{bmatrix}$  and  $\begin{bmatrix} 1200 \\ 180 \end{bmatrix}$  ( $\begin{bmatrix} kg \\ km/h \end{bmatrix}$ ) ?  $\Delta = \begin{bmatrix} 400 \\ 40 \end{bmatrix}$ ?

#### **Data Normalization**



- Linear rescaling values from a range  $[\min(x), \max(x)]$  to  $[a^*, b^*]$ , typically [0, 1] or [-1, 1]
  - Sensitive to outliers and extreme values
  - No outlier removal or assumption about underlying distribution

$$\tilde{\mathbf{x}} = \frac{\mathbf{x} - \min(\mathbf{x})}{\max(\mathbf{x}) - \min(\mathbf{x})} \cdot (b^* - a^*) + a^*$$



#### **Data Normalization**



- Z-scoring (scikit-learn: <u>StandardScaler()</u>)
  - Centering the data
  - Some robustness against outliers
  - No similar value range guaranteed across dimensions!





## **Cluster Validity Metrics**



 Within-cluster sum of squares SSE, between-cluster sum of squares BSS, not expressive for density-based clusters, i.e. lacking representative centroids (prototypes)

#### Silhouette coefficient

$$S = \frac{1}{N} \sum_{i} \frac{b_i - a_i}{\max(a_i, b_i)}$$

Mean intra-cluster distance

$$a_i = \frac{1}{N_k} \sum_{\mathbf{x}_j \in C_k} ||\mathbf{x}_i - \mathbf{x}_j||, \quad \mathbf{x}_i \in C_k$$

(cohesion)

(mean distance from  $x_i$  to points in same cluster)

Mean nearest-cluster distance

$$\mathbf{b}_i = \frac{1}{N_k} \sum_{\mathbf{x}_j \in C_k} ||\mathbf{x}_i - \mathbf{x}_j||, \ x_i \in C_i, j \neq i$$

(separation)

(mean distance from  $x_i$  to points in closest foreign cluster)

- Range: [-1,1]
  - -1 worst value (sample assigned to ,wrong' cluster)
  - 0 indicating overlapping clusters
  - 1 best value



## Overview on Clustering Techniques





- From scikit-learn (link)
- Many more algorithms available
- Know your data distribution before using a clustering algorithm!



# Python

## Learning Curve





#### Lambda Functions



- Small one-line function
- Useful for simple expressions or one-time usage
- Has one expression, can have multiple arguments, one return object
- Does not have a name

```
fun = lambda x : x**2 - 2
diff_fun = lambda x : 2*x

def Newton(X,M):
    err = fun(X)
    num = 1
    while err > 10**(-7) and num < 100:
        num += num
        X = X-(fun(X)/(diff_fun(X))
        err = fun(X)
    return(X)</pre>
```

```
def fun(x):
    return x**2-2

def diff_fun(x):
    return 2*x

def Newton(X,M):
    err = fun(X)
    num = 1
    while err > 10**(-7) and num < 100:
        num += num
        X = X-fun(X)/diff_fun(X)
        err = fun(X)
    return(X)</pre>
```

Syntax: lambda arg1, arg2: return val

```
(lambda a, b, c: a*b*c) (1, 2, 3)
>> 6

lambda a, b: (a + 1, b * 1) # multiple returns
```



## Exercise 05

May 17, 2023

#### Exercise 05



- 1. Implement a z-scaling class with the following methods
  - Zscaler.fit(x) ⇒ estimating mean and std. deviation from data x
  - Zscaler.transform(x)  $\rightarrow$  z-scale data x
  - Zscaler.inverse\_transform(x) → undo the z-scaling
  - Validate against scikit-learn implementation using the data set
- 2. Cluster a given data set using K-means and DBSCAN
  - Evaluate cluster validity metrics SSE and silhouette coefficient
  - Find the optimal number of clusters



# Questions?