

Outline

- ➤ Motivation
- ➤ Dataset and methodology
- > Key findings
- ➤ Modeling
- ➤ Summary, next steps
- > References

Motivation

- ➤ Predicting the functionality and aging of water pumps in the state of Tanzania in order to timely suggest maintenance
- ➤ Allowing continuous access to clean and fresh water
- ➤ Scheduling needed maintenance before loss of functionality in order to save on cost

1

Benefit to the population, the government of Tanzania, private companies and public agencies involved

Dataset

- > Originally made available by the Government of Tanzania and Taarifa
- > Used in competitions, typically as an example of classification problem
- ➤ About 60k entries, each representing a water pump
- ➤ 40 attributes, mainly categorical, many geographical, population and amount of water
- ➤ Each water pump classified as "functional", "non-functional", "needs repair"

Dataset (cont.)

- The data is sparse and has high cardinality
- ➤ Most of the attributes are categorical
- Some entries look wrong

- Categories are label-encoded
- ➤ Missing values are filled using transformation of other attributes

```
Percentage of missing values in funder: 7.4
 Percentage of missing values in installer: 7.5
 Percentage of missing values in wpt name: 6.0
 Percentage of missing values in subvillage: 0.6
 Percentage of missing values in public meeting: 5.6
 Percentage of missing values in scheme management: 6.5
 Percentage of missing values in scheme_name: 47.4
 Percentage of missing values in permit: 5.1
 Number of columns of float64 type: 3
  ['amount_tsh', 'longitude', 'latitude']
 Number of columns of str type: 29
  ['date_recorded', 'funder', 'installer', 'wpt_name', 'basin', 'subvillage', 'region', 'lga', 'war
 management', 'scheme name', 'extraction type', 'extraction type group', 'extraction type class',
 group', 'payment', 'payment_type', 'water_quality', 'quality_group', 'quantity', 'quantity_group',
 'source_class', 'waterpoint_type', 'waterpoint_type_group', 'status_group']
 Number of columns of int64 type: 6
  ['gps height', 'num private', 'region code', 'district code', 'population', 'construction year']
 Number of columns of bool type: 2
  ['public meeting', 'permit']
gps height
                                                                                  funder 1898
Mean: 669.0 Median: 370.0 Std: 693.0 Q25: 0.0 Q75: 1320.0
                                                                                  installer 2146
                                                                                  wpt name 37400
district code
                                                                                  basin 9
Mean: 6.0 Median: 3.0 Std: 10.0 Q25: 2.0 Q75: 5.0
                                                                                  subvillage 19288
                                                                                  region 21
Mean: 180.0 Median: 25.0 Std: 472.0 Q25: 0.0 Q75: 215.0
                                                                                  lga 125
                                                                                  ward 2092
construction year
Mean: 1301.0 Median: 1986.0 Std: 951.0 Q25: 0.0 Q75: 2004.0
                                                                                  scheme_management 13
                                                                                  extraction type 18
recorded vear
                                                                                  extraction type group 13
Mean: 2012.0 Median: 2012.0 Std: 1.0 Q25: 2011.0 Q75: 2013.0
                                                                                  extraction_type_class 7
                                                                                  management 12
Mean: 318.0 Median: 0.0 Std: 2998.0 Q25: 0.0 Q75: 20.0
                                                                                  payment 7
                                                                                  payment type 7
longitude
                                                                                  auantity 5
Mean: 34.0 Median: 34.91031805 Std: 7.0 Q25: 33.0951871375 Q75: 37.179490449999996
                                                                                  quantity_group 5
                                                                                  source 10
Mean: -6.0 Median: -5.023822095 Std: 3.0 Q25: -8.54190396 Q75: -3.32691784
                                                                                  source type 7
                                                                                  waterpoint type 7
                                                                                  waterpoint_type_group 6
                                                                                  status group 3
```

Methodology

- > Data wrangling, clean-up and visualizations
- ➤ Using water pumps' status as the event, calculating the age of water pumps from construction year and recorded date (to be used as a timeline/time to event), both needed for survival analyses
- Applying various algorithms (Kaplan Meyer, Cox, Support Vector Machine and Random Forest Survival) to make predictions and compare the results using the C-index (a metric that has the same interpretation as AUC of ROC in classification problems)

Water pumps count

The minority classes in the status group will be combined for the purpose of modeling

Water pumps functionality

The number of pumps in each group is similar across the various basins, while there's more variation if looking at regions

Water pumps over the years

- Some basins haven't seen a significant increase in the number of water pumps
- The number of pumps needing maintenance hasn't changed much

1400

1200

1000

800

600

200

construction_year

construction year

Water pumps by region

Color coding corresponds to functionality

Population by region

- For observations with null population in the original data, the mean of the regions in the same basin has been calculated
- ➤ Regions in purple indicate no observation is available (not present in original data)

Population and amount of water

- ➤ Data is skewed
- ➤ Log scale is used in the plots

Box and histogram plots of population

Box and histogram plots of amount_tsh

Kaplan Meier Estimate

- Overall the rate of decrease is constant for about 25 years, then it becomes steeper and finally it flattens
- ➤ When looking at the single basins, the behavior is quite different

Kaplan Meier Estimate (cont.)

➤ Other features affect the curve, for example the water quantity

Other models areconsidered

Models comparison

- Cox regression
- > SVM
- ➤ Random Survival Forest
- C (concordance) index is similar to AUC ROC

C- index			
	Cox	SMV	Random Forest
Training set	0.629	0.583	0.867
Test set	0.624	0.582	0.797

Prediction

Select a water pump and plot survival probability and hazard for the Cox regression and Random Survival Forest model

Summary

- Random Survival Forest gave the best results in terms of concordance index
- > Cox linear regression model can't learn the complexity of the data

Next Steps

- ➤ Look into feature selection
- Try SVM with non-linear kernel and other algorithms available in the scikit-survival package

References

- 1. https://www.drivendata.org/competitions/7/pump-it-up-data-mining-the-water-table/
- 2. https://github.com/aspds18/Springboard_capstone2
- 3. https://scikit-survival.readthedocs.io/en/latest/api.html
- 4. Pölsterl, S., Navab, N., and Katouzian, A., <u>Fast Training of Support Vector Machines for Survival Analysis</u>. Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2015, Porto, Portugal, Lecture Notes in Computer Science, vol. 9285, pp. 243-259 (2015)

References

- 5. Pölsterl, S., Navab, N., and Katouzian, A., <u>An Efficient Training Algorithm for Kernel Survival Support Vector Machines</u>. 4th Workshop on Machine Learning in Life Sciences, 23 September 2016, Riva del Garda, Italy
- 6. Pölsterl, S., Gupta, P., Wang, L., Conjeti, S., Katouzian, A., and Navab, N., <u>Heterogeneous ensembles for predicting survival of metastatic, castrate-resistant prostate cancer patients</u>. F1000Research, vol. 5, no. 2676 (2016).