Кольца Ньютона

Шмаков Владимир, ФФКЭ - Б04-105 МФТИ - февраль 2023

Цель работы

- 1. Познакомиться с явлением интерференции в тонких плёнках
- 2. Измерить радиус кривизны стеклянной поверхности, используя метод интерференционных измерений

Оборудование

- Измерительный микроскоп
- Плосковыпуклая линза
- Пластинка из черного стекла
- Ртутная лампа ДРШ
- Линзы
- Призма прямого зрения
- Объектная шкала

Теоретические сведения

Интерференция волн - взаимное увеличение или уменьшение результирующей амплитуды двух или нескольких когерентных волн при их наложении друг на друга.

Простейшей схемой наблюдения интерференционной картины является схема Юнга:

Опыт раскрывает значения понятий когерентности и некогерентности, используемых для классификации пар источников света. Так, когерентность, означает постоянность разности фаз источников во времени.

Рассматривая интерференцию монохроматических волн с одинаковой частотой и поляризацией несложно получить условия для интерференционных максимумов и минимумов:

$$\Delta \phi = 2\pi m \, -$$
 максимум $\Delta \phi = (2m+1)\pi \, -$ минимум

В нашем опыте, интерференция наблюдается в тонком воздушном слое, образованном сферической поверхностью линзы и плоской стеклянной пластинкой:

Из условий интерференционного минимума и максимума ($\Delta=(2m+1)\lambda/2$, $\Delta=m\lambda$) получаем радиусы тёмных и светлых колец:

$$r_m^{dark} = \sqrt{m\lambda R}$$
 $r_m^{light} = \sqrt{\frac{(2m-1)\lambda R}{2}}$ (1)

Экспериментальная установка

Схема экспериментальной установки приведена на рисунке ниже:

Источником света служит ртутная лампа. Для получения монохроматического света используется монохроматор, состоящий из конденсора, коллиматора (щель и объектив) и системы призм. Зависимость длины волны света от угла призмы представлена на рисунке выше.

Монохроматический свет попадает на опак - иллюминатор, служащий для освещения изучаемой системы. Настройка установки производится в белом свете, измерение радиусов колец - в зеленом(длина волны $\lambda=546~{\rm HM}$).

Наблюдение биений

При освещении системы светом, содержащим две спектральные компоненты, наблюдается картина биений. То есть на исходную интерференционную картину накладывается другая картина(для длины волны λ_2).

То есть исходная картина "амплитудно модулируется" сигналом с пространственным периодом: $(\Lambda_1-\Lambda_2)/2$. Где Λ_1 - исходный пространственный период, Λ_2 - пространственный период для интерференционной картины с длиной λ_2 .

Для расчета разности длин волн $\Delta \lambda = |\lambda_1 - \lambda_2|$. Используем формулу

$$\Delta \lambda = \frac{\lambda_1}{\Delta m} \tag{2}$$

 Δm - количество полос между центрами четких систем

Обработка результатов эксперимента

Нахождение радиуса кривизны линзы

После калибровки установки, и установления цены деления $c=10~{\rm {\it MKM}}$, найдем диаметры колец.

Построим график зависимости квадратов радиусов колец от порядка m:

Найденный коэффициент наклона позволяет найти радиус кривизны линзы:

$$R=rac{lpha}{\lambda}, \quad \Delta R=rac{\Delta lpha R}{lpha}$$

Подставив данные, получим: $R = 1.3 \pm 0.1 \ c_{M}$

Определение разности длин волн

В ходе эксперимента получили $\Delta m=13$. Подставив полученное значение в формулу (2), получим разность длин волн $\Delta \lambda=42$ $_{\it HM}$.

Табличное значение составляет $33~{\rm {\it HM}}$ (наблюдали биения при $\lambda_1=546~{\rm {\it HM}}$ - зеленый и $\lambda_2=578~{\rm {\it HM}}$ - желтый). Столь большое расхождение полученных данных с табличным значением объясняется неточностью определения Δm .

Вывод

В ходе проведенного эксперимента удалось познакомиться с интерфернционным методом измерения радиуса кривизны. Полученный радиус кривизны линзы составил $1.3 \pm 0.1~cm$.

Получить радиус кривизны также позволяет формула линзы. Подставив измеренное фокусное расстояние f, и табличное значение n для стекла получили $R=12.3~{\rm MM}$.

Также был найден радиус кривизны, исходя из геометрических соображений. Значение составило $1.39 \, c_M$.

Таким образом, значение полученное методом интерференционных измерений совпало(в пределах погрешности) с другими оценками. Что говорит о возможности применения данного метода.

Плюсы метода заключаются в малой погрешности(в нашем эксперименте $\sim 7\%$), и в возможности его применения для нахождения радиусов кривизны маленьких объектов.