NANYANG TECHNOLOGICAL UNIVERSITY SCHOOL OF ELECTRICAL & ELECTRONIC ENGINEERING EE4341/EE6341 ADVANCED ANALOG CIRCUITS TUTORIAL 6

- 1. Fig. 1 shows a class-A power amplifier with a capacitor coupled load $R = 100 \Omega$. The BJT has a current gain $\beta = 50$. The power supply $V_{CC} = +12$ V and the BJT is to be biased at $V_{CEQ} = 6$ V. Assume $V_{BE} = 0.7$ V and $V_{CE,sat} = 0$ V for your calculation. Ignore the output resistance of the BJT and the reactance of coupling capacitors.
 - (a) Determine the value of R_C for maximum possible conversion efficiency.
 - (b) Calculate the DC biasing I_{CQ} and the value of R_B to provide the biasing.
 - (c) Calculate the peak load voltage and current, and the conversion efficiency.

Figure 1

- 2. An emitter follower power amplifier with a load $R_L = 1 \text{ k}\Omega$ is shown in Fig. 2. The transistor parameters are: $\beta = 200$, $V_{BE} = 0.7 \text{ V}$ and $V_{CE(sat)} = 0.2 \text{ V}$.
 - (a) Determine the value of R that will produce maximum possible output signal swing.
 - (b) What is the value of I_Q and the maximum and minimum values of i_{EI} and i_L ?
 - (c) Calculate the conversion efficiency.

- 3. Consider a BiCMOS follower amplifier circuit shown in Fig. 3. The BJT parameters are: $V_{BE} = 0.7 \text{ V}$ and $V_{CE(sat)} = 0.2 \text{ V}$. The MOSFET parameters are: $V_{TN} = -1.8 \text{ V}$ and $K_n = \frac{1}{2} k_n' \left(\frac{W}{L}\right) = 12 \text{ mA/V}^2$.
 - (a) Determine the maximum and minimum values of output voltage and the corresponding values of input voltage for the amplifier to operate in the linear region when:
 - (i) R_L is removed (open-circuit)
 - (ii) $R_L = 500 \Omega$
 - (b) Determine the smallest possible value of R_L if a 2 V peak sine wave is produced at output. What is the corresponding conversion efficiency?

Figure 3