List of threats used in the confirming experiment (GitHub Scenario)

Each threat has a unique ID alongside a description, the corresponding STRIDE threat (i.e., Spoofing, Tampering, Repudiation, Information disclosure, Denial of service, and Elevation of privilege), and assumptions used to validate the existence of the threat. The last column, whether the threat is valid or not, was not shown to the participants.

Unique	Description	STRIDE	Assumption	Affected	Real
ID	Description	threat	Assumption	Components	Keai
1	The attacker uses	EoP	1. The attacker can	Victim's	Yes
	the malicious code		submit code to a	Server	
	to gain root access		remote repository		
	to the server.		2. The server has		
			been pulled and		
			running the code		
			submitted by the		
			attacker;		
			3. Code run as root		
_			on the server.		
2	Not only can the	ID	1. An attacker can	Third-party	No
	attacker use these	(Information	browse the project's	services, the	
	third-party	Disclosure)	yml file;	remote code	
	services, but the		2. The developer has	repository	
	attacker can also push code to the		left the keys to the third-party services		
	remote code		they need to use in		
	repository where		the yml file that		
	the yml file is		configures GitHub		
	located.		Actions.		
3	An attacker submit	EoP	1. The attacker can	Victim's	Yes
	malicious code to		submit code to	server	
	the project on		remote repo;		
	GitHub and get a		2. The server has		
	shell of the server		pulled and been		
	running the code.		running the malicious		
			code submitted by		
			the attacker.		
4	An attacker submit	DoS	1. The attacker	Victim's	Yes
	malicious code can		submits malicious	server	
	crash the server		code that can cause		
	running the code,		Denial of Service		
	causing a Denial of		(DoS) to remote		
	Service (DoS).		repo; 2. The server has		
			pulled and been		
			running the code		
			submitted by the		
			attacker.		
			and		

5	The attacker can launch a push request to a repository on GitHub and can delete the repository.	ЕоР	The attacker has gained push access to the code repository on GitHub.	The remote code repository	No
6	An unauthenticated and nonprivileged attacker can still submit custom code into the remote repo to prepare the first step of another attack, e.g. turning off logging service or causing a Denial of Service.	EoP, Tampering	The attacker can reach the remote repo (e.g. through internet).	The remote code repository	No
7	If an attacker compromises a http protocol on GitHub, the attacker can steal other users' identities by using HTTP by running a man in the middle attack.	Spoofing	1. GitHub uses the HTTPS protocol; 2. The attacker has compromised the HTTP protocol on GitHub.	GitHub engine	No
8	An attacker uses leaked (e.g. on Github) configuration file to interact with the remote repo, potentially jeopardize running code and submitting malicious code.	Information Disclosure	1. The attacker finds the leaked information; 2. The attacker can (remotely) interact with the remote repo.	Victim's server	Yes
9	The attacker submits the same fake push request to other remote code repositories, causing a Denial of Service attack.	DoS	1. Permission management is properly implemented in the remote (GitHub) provided repository hosting service to differentiate user access to the code repository;	Other remote code repositories	No

			2. An attacker has the right to submit a bogus push request to a remote repository.		
10	Spoofing a remote repo admin by stealing the authentication credentials via a social engineering attack.	Spoofing	1. The attacker carries out a successful social engineering attack (attackers communicate legitimately with others, manipulating and exploiting human qualities to achieve their attack) and gets authentication credentials; 2. The credentials are valid.	The remote code repository	Yes