Discussion - June 22
Linear combinations
1. Write [3] as a lin.comb. of [0] and [1], if possible.
2. Write [3] as a lin.comb. of [1] and [1], if possible.
$\begin{bmatrix} -2 \end{bmatrix}$
3. What are all the ways [] can be written as
3. What are all the ways [] can be written as a linear combination of [], [-1], and [0]?
Span /(1)
1. Geometrically, describe Span {[1]}.
([1][2])
2. Geometrically, describe Span {[],[-]}.
3. What vector is always in the span of any collection of vectors in IRM?
yectors in IK !
4 Mak water => => 602 - 11 ((() =>) - 1027
4. What vectors $\vec{u}, \vec{v} \in \mathbb{R}^2$ are such that $Span \{\vec{u}, \vec{v}\} = \mathbb{R}^2$?
(in other words, "which span IR2"?)
E 1.11 12 1.12 (5 C 07)?
5. What rectors are in Span {[8]}?
) (
Logic III
1. It it is raining, There are puddles on the ground.
1. If it is raining, there are puddles on the ground. a) If it is not raining, then what? b) If there are puddles on the ground, then what? I conclude anything c) If there are no puddles on the ground, then what? ofherwise, give a plausible.
b) If there are puddles on the ground, then what? 3 conclude anything of the are puddles on the ground, then what? 3 otherwise, give
c) It there are no judicies on the ground, then what; I a plausible
Scenario.
2. For every cute cat, there is a cuter cat. There is a cute cat, cuter than every other cat.
I here is a cute cos, cuter than every other cat.
No these mean the same thing? How would you disprove them? (i.e., what are their logical negations?)