$11a_{318} (K11a_{318})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 970383u^{17} + 408499u^{16} + \dots + 1982053b + 372351, \\ &- 1777862u^{17} - 876895u^{16} + \dots + 1982053a - 4101509, \ u^{18} + u^{17} + \dots + u^2 - 1 \rangle \\ I_2^u &= \langle 7.25333 \times 10^{100}u^{59} + 1.20321 \times 10^{99}u^{58} + \dots + 5.25066 \times 10^{101}b - 1.15506 \times 10^{102}, \\ &- 3.92526 \times 10^{102}u^{59} + 3.63473 \times 10^{101}u^{58} + \dots + 8.92612 \times 10^{102}a + 1.52814 \times 10^{104}, \\ &u^{60} - u^{59} + \dots - 109u + 17 \rangle \\ I_3^u &= \langle -509u^{19} - 338u^{18} + \dots + 367b - 1165, \ 610u^{19} - 321u^{18} + \dots + 367a - 671, \ u^{20} - 8u^{18} + \dots + u - 1 \rangle \\ I_4^u &= \langle u^3 + b + 1, \ u^2 + a + u, \ u^4 + u - 1 \rangle \\ I_5^u &= \langle 638u^{11} - 606u^{10} + \dots + 697b - 1440, \ 936u^{11} + 352u^{10} + \dots + 697a - 1503, \\ u^{12} - 2u^{10} + u^9 - 5u^7 + 6u^6 + u^5 - 9u^4 + 5u^3 + 6u^2 - 2u - 1 \rangle \\ I_6^u &= \langle b + 1, \ a + 1, \ u - 1 \rangle \end{split}$$

* 6 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 115 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.

 $\begin{matrix} I_1^u = \langle 9.70 \times 10^5 u^{17} + 4.08 \times 10^5 u^{16} + \dots + 1.98 \times 10^6 b + 3.72 \times 10^5, \ -1.78 \times 10^6 u^{17} - 8.77 \times 10^5 u^{16} + \dots + 1.98 \times 10^6 a - 4.10 \times 10^6, \ u^{18} + u^{17} + \dots + u^2 - 1 \rangle \end{matrix}$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.896980u^{17} + 0.442418u^{16} + \cdots - 1.43884u + 2.06932 \\ -0.489585u^{17} - 0.206099u^{16} + \cdots + 1.33228u - 0.187861 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0859684u^{17} + 0.537916u^{16} + \cdots - 8.56326u + 0.601597 \\ 0.459466u^{17} - 0.352058u^{16} + \cdots + 1.86468u + 0.0670699 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.799368u^{17} + 0.226871u^{16} + \cdots - 7.13272u - 2.24851 \\ 0.229761u^{17} + 0.320704u^{16} + \cdots + 2.30647u + 0.343733 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.139285u^{17} + 0.903251u^{16} + \cdots - 3.05848u + 3.34917 \\ 0.00845336u^{17} - 0.364603u^{16} + \cdots + 1.75892u - 0.515882 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.515882u^{17} + 0.507429u^{16} + \cdots - 6.94486u - 1.75892 \\ 0.0450356u^{17} + 0.277375u^{16} + \cdots + 1.83513u + 0.418192 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.407395u^{17} + 0.236319u^{16} + \cdots - 0.106565u + 1.88146 \\ -0.489585u^{17} - 0.206099u^{16} + \cdots + 1.33228u - 0.187861 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -1.27985u^{17} - 0.522154u^{16} + \cdots + 3.59568u + 1.61964 \\ 0.328021u^{17} - 0.170017u^{16} + \cdots - 1.31924u - 0.426645 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.27985u^{17} - 0.522154u^{16} + \cdots + 3.59568u + 1.61964 \\ 0.328021u^{17} - 0.170017u^{16} + \cdots - 1.31924u - 0.426645 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$\frac{763801}{1982053}u^{17} + \frac{1992896}{1982053}u^{16} + \dots + \frac{433836}{1982053}u - \frac{27209831}{1982053}u^{16} + \dots$$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_9	$u^{18} + u^{17} + \dots + u^2 - 1$
c_2, c_8	$u^{18} + u^{17} + \dots + 50u + 4$
c_3, c_7, c_{10} c_{11}	$u^{18} - 2u^{17} + \dots + 3u + 1$
c_5	$u^{18} + 6u^{17} + \dots - 416u - 64$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_9	$y^{18} - 11y^{17} + \dots - 2y + 1$
c_2, c_8	$y^{18} - 13y^{17} + \dots - 1100y + 16$
c_3, c_7, c_{10} c_{11}	$y^{18} + 8y^{17} + \dots - 9y + 1$
c_5	$y^{18} + 56y^{16} + \dots - 37888y + 4096$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.969317		
a = -1.04231	-4.93604	-18.1160
b = -1.08420		
u = 0.503027 + 0.934053I		
a = 0.117406 + 1.399640I	5.93090 - 0.43570I	-2.98328 + 1.68118I
b = 0.129111 - 1.119030I		
u = 0.503027 - 0.934053I		
a = 0.117406 - 1.399640I	5.93090 + 0.43570I	-2.98328 - 1.68118I
b = 0.129111 + 1.119030I		
u = -1.155400 + 0.382844I		
a = -0.0504197 - 0.0044892I	-8.49225 + 3.12657I	-16.5106 - 4.5687I
b = 1.25719 + 0.67749I		
u = -1.155400 - 0.382844I		
a = -0.0504197 + 0.0044892I	-8.49225 - 3.12657I	-16.5106 + 4.5687I
b = 1.25719 - 0.67749I		
u = -1.219630 + 0.122646I		
a = 1.35114 + 1.57540I	-4.77876 + 5.57099I	-14.6445 - 6.8943I
b = 0.417269 - 0.993577I		
u = -1.219630 - 0.122646I		
a = 1.35114 - 1.57540I	-4.77876 - 5.57099I	-14.6445 + 6.8943I
b = 0.417269 + 0.993577I		
u = 1.306390 + 0.030156I		
a = -0.314125 - 0.649221I	-7.41832 + 1.14356I	-14.7481 - 6.1062I
b = 0.308458 - 0.604810I		
u = 1.306390 - 0.030156I		
a = -0.314125 + 0.649221I	-7.41832 - 1.14356I	-14.7481 + 6.1062I
b = 0.308458 + 0.604810I		
u = -1.244330 + 0.432653I		
a = -1.32213 - 0.57859I	0.46162 + 9.59091I	-11.3598 - 8.6982I
b = -0.507053 + 1.110690I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.244330 - 0.432653I		
a = -1.32213 + 0.57859I	0.46162 - 9.59091I	-11.3598 + 8.6982I
b = -0.507053 - 1.110690I		
u = -0.52847 + 1.35181I		
a = 0.436864 + 1.177610I	2.78527 - 3.16569I	-11.24611 + 7.60453I
b = -0.402613 - 0.935090I		
u = -0.52847 - 1.35181I		
a = 0.436864 - 1.177610I	2.78527 + 3.16569I	-11.24611 - 7.60453I
b = -0.402613 + 0.935090I		
u = 1.37244 + 0.65413I		
a = 0.72292 - 1.23621I	-3.9350 - 17.2773I	-12.8790 + 9.3490I
b = 0.73238 + 1.24612I		
u = 1.37244 - 0.65413I		
a = 0.72292 + 1.23621I	-3.9350 + 17.2773I	-12.8790 - 9.3490I
b = 0.73238 - 1.24612I		
u = -0.333926		
a = 0.701030	-0.538352	-18.5400
b = -0.239136		
u = 0.148267 + 0.251923I		
a = 3.22899 - 2.73957I	1.73441 + 2.46344I	-11.30045 - 4.80762I
b = -0.273082 + 0.887649I		
u = 0.148267 - 0.251923I		
a = 3.22899 + 2.73957I	1.73441 - 2.46344I	-11.30045 + 4.80762I
b = -0.273082 - 0.887649I		

II.
$$I_2^u = \langle 7.25 \times 10^{100} u^{59} + 1.20 \times 10^{99} u^{58} + \dots + 5.25 \times 10^{101} b - 1.16 \times 10^{102}, \ -3.93 \times 10^{102} u^{59} + 3.63 \times 10^{101} u^{58} + \dots + 8.93 \times 10^{102} a + 1.53 \times 10^{104}, \ u^{60} - u^{59} + \dots - 109 u + 17 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.439749u^{59} - 0.0407201u^{58} + \dots + 31.2675u - 17.1199 \\ -0.138141u^{59} - 0.00229154u^{58} + \dots - 8.07888u + 2.19983 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.106939u^{59} + 0.0813048u^{58} + \dots + 0.961685u + 8.85949 \\ -0.0242627u^{59} + 0.0260886u^{58} + \dots - 2.48933u - 0.0619791 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.0488347u^{59} - 0.0246562u^{58} + \dots + 10.6648u + 7.45876 \\ -0.144743u^{59} - 0.00850452u^{58} + \dots - 13.1254u + 2.03107 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.254240u^{59} - 0.0726928u^{58} + \dots - 28.4567u + 3.38184 \\ -0.312091u^{59} + 0.0424687u^{58} + \dots - 33.3786u + 6.15466 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.141036u^{59} - 0.0530891u^{58} + \dots + 1.08963u + 9.25438 \\ -0.159476u^{59} + 0.00805005u^{58} + \dots - 15.1320u + 2.28623 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.301608u^{59} - 0.0430116u^{58} + \dots + 23.1886u - 14.9200 \\ -0.138141u^{59} - 0.00229154u^{58} + \dots - 8.07888u + 2.19983 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.4514488u^{59} + 0.0218306u^{58} + \dots - 41.4070u - 0.151128 \\ 0.0195413u^{59} + 0.0319909u^{58} + \dots + 2.12465u + 0.466720 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.451448u^{59} + 0.0218306u^{58} + \dots - 41.4070u - 0.151128 \\ 0.0195413u^{59} + 0.0319909u^{58} + \dots + 2.12465u + 0.466720 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $0.457112u^{59} + 0.104838u^{58} + \cdots + 36.7319u 21.5900$

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_9	$u^{60} - u^{59} + \dots - 109u + 17$
c_2, c_8	$(u^{30} + 6u^{29} + \dots + 170u + 36)^2$
c_3, c_7, c_{10} c_{11}	$u^{60} - 2u^{59} + \dots + 2u - 1$
c_5	$(u^{30} - 2u^{29} + \dots + 2u - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_9	$y^{60} - 41y^{59} + \dots - 18409y + 289$
c_2, c_8	$(y^{30} - 22y^{29} + \dots - 460y + 1296)^2$
c_3, c_7, c_{10} c_{11}	$y^{60} + 32y^{59} + \dots + 20y + 1$
c_5	$(y^{30} - 2y^{29} + \dots - 84y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.173863 + 0.983906I		
a = -0.595302 - 1.227680I	-3.15719 - 4.84917I	-13.58414 + 3.73183I
b = 0.568581 + 1.096680I		
u = -0.173863 - 0.983906I		
a = -0.595302 + 1.227680I	-3.15719 + 4.84917I	-13.58414 - 3.73183I
b = 0.568581 - 1.096680I		
u = -0.884656 + 0.446724I		
a = -0.96473 - 1.07896I	-2.06368 + 5.36613I	-15.7641 - 4.3359I
b = -0.529022 - 0.052524I		
u = -0.884656 - 0.446724I		
a = -0.96473 + 1.07896I	-2.06368 - 5.36613I	-15.7641 + 4.3359I
b = -0.529022 + 0.052524I		
u = -0.952526 + 0.271233I		
a = -0.835395 + 0.173435I	1.57409 + 1.75671I	-11.26354 - 2.48942I
b = -0.615493 + 0.932690I		
u = -0.952526 - 0.271233I		
a = -0.835395 - 0.173435I	1.57409 - 1.75671I	-11.26354 + 2.48942I
b = -0.615493 - 0.932690I		
u = 0.903459 + 0.213520I		
a = -0.143616 + 1.243570I	1.72325 - 5.82388I	-14.0227 + 8.3964I
b = -0.06489 - 1.61687I		
u = 0.903459 - 0.213520I		
a = -0.143616 - 1.243570I	1.72325 + 5.82388I	-14.0227 - 8.3964I
b = -0.06489 + 1.61687I		
u = 0.918123 + 0.113673I		
a = 1.29720 - 2.26960I	-5.82415 - 2.23290I	-14.1085 - 2.1221I
b = 0.430781 + 1.048900I		
u = 0.918123 - 0.113673I		
a = 1.29720 + 2.26960I	-5.82415 + 2.23290I	-14.1085 + 2.1221I
b = 0.430781 - 1.048900I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.058310 + 0.321731I		
a = 0.993888 + 0.573737I	-0.48113 + 1.41291I	-11.00000 + 0.I
b = 0.319807 - 0.896497I		
u = -1.058310 - 0.321731I		
a = 0.993888 - 0.573737I	-0.48113 - 1.41291I	-11.00000 + 0.I
b = 0.319807 + 0.896497I		
u = -0.868439 + 0.693479I		
a = 0.592584 + 0.822702I	1.57409 + 1.75671I	-11.00000 + 0.I
b = -0.315851 - 1.166500I		
u = -0.868439 - 0.693479I		
a = 0.592584 - 0.822702I	1.57409 - 1.75671I	-11.00000 + 0.I
b = -0.315851 + 1.166500I		
u = -0.172475 + 0.855408I		
a = -0.33105 - 1.48907I	-2.27554 + 5.83321I	-13.60048 - 3.60394I
b = 0.616890 + 0.324785I		
u = -0.172475 - 0.855408I		
a = -0.33105 + 1.48907I	-2.27554 - 5.83321I	-13.60048 + 3.60394I
b = 0.616890 - 0.324785I		
u = -0.723442 + 0.483773I		
a = -1.08899 - 1.57094I	1.99201 + 3.02567I	-9.17011 - 1.57690I
b = -0.601195 + 1.083620I		
u = -0.723442 - 0.483773I		
a = -1.08899 + 1.57094I	1.99201 - 3.02567I	-9.17011 + 1.57690I
b = -0.601195 - 1.083620I		
u = 0.913487 + 0.729355I		
a = 0.84143 - 1.18997I	1.72325 - 5.82388I	0
b = 0.839696 + 0.905250I		
u = 0.913487 - 0.729355I		
a = 0.84143 + 1.18997I	1.72325 + 5.82388I	0
b = 0.839696 - 0.905250I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.681546 + 0.443831I		
a = 1.314210 - 0.385156I	1.99201 + 3.02567I	-9.17011 - 1.57690I
b = 0.168505 + 1.140690I		
u = 0.681546 - 0.443831I		
a = 1.314210 + 0.385156I	1.99201 - 3.02567I	-9.17011 + 1.57690I
b = 0.168505 - 1.140690I		
u = 0.639831 + 0.484680I		
a = 0.649950 - 0.261552I	2.17471 - 2.01374I	-7.73585 + 3.91188I
b = 0.343005 - 0.289428I		
u = 0.639831 - 0.484680I		
a = 0.649950 + 0.261552I	2.17471 + 2.01374I	-7.73585 - 3.91188I
b = 0.343005 + 0.289428I		
u = 1.036460 + 0.711450I		
a = 0.32156 - 1.74527I	-6.56195 - 4.20028I	0
b = 0.521860 + 1.024170I		
u = 1.036460 - 0.711450I		
a = 0.32156 + 1.74527I	-6.56195 + 4.20028I	0
b = 0.521860 - 1.024170I		
u = 1.26027		
a = -0.136432	-5.55198	0
b = -1.08341		
u = -0.673649 + 0.289156I		
a = -2.03586 - 1.79948I	-2.10401 + 5.43294I	-16.4599 - 1.4390I
b = -0.100294 - 0.250395I		
u = -0.673649 - 0.289156I		
a = -2.03586 + 1.79948I	-2.10401 - 5.43294I	-16.4599 + 1.4390I
b = -0.100294 + 0.250395I		
u = -0.205467 + 0.686465I		
a = -0.31789 + 1.74264I	3.74729 - 5.28000I	-5.18091 + 3.40493I
b = -0.325811 - 1.261230I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.205467 - 0.686465I		
a = -0.31789 - 1.74264I	3.74729 + 5.28000I	-5.18091 - 3.40493I
b = -0.325811 + 1.261230I		
u = 1.260710 + 0.276157I		
a = -0.837013 + 0.676075I	-2.06368 - 5.36613I	0
b = -0.599749 - 1.161530I		
u = 1.260710 - 0.276157I		
a = -0.837013 - 0.676075I	-2.06368 + 5.36613I	0
b = -0.599749 + 1.161530I		
u = 0.185453 + 1.290280I		
a = -0.326081 + 1.289900I	-0.13405 + 10.50230I	0
b = 0.552043 - 1.093600I		
u = 0.185453 - 1.290280I		
a = -0.326081 - 1.289900I	-0.13405 - 10.50230I	0
b = 0.552043 + 1.093600I		
u = 1.157510 + 0.625695I		
a = 1.029550 - 0.832056I	3.74729 - 5.28000I	0
b = 0.403736 + 0.982366I		
u = 1.157510 - 0.625695I		
a = 1.029550 + 0.832056I	3.74729 + 5.28000I	0
b = 0.403736 - 0.982366I		
u = 1.292280 + 0.285538I		
a = -0.858396 + 0.914234I	-2.10401 - 5.43294I	0
b = -0.583662 - 1.209510I		
u = 1.292280 - 0.285538I		
a = -0.858396 - 0.914234I	-2.10401 + 5.43294I	0
b = -0.583662 + 1.209510I		
u = -0.335964 + 0.575378I		
a = 0.270786 - 0.040171I	-0.48113 - 1.41291I	-11.50731 + 0.65666I
b = -0.749034 - 0.108799I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.335964 - 0.575378I		
a = 0.270786 + 0.040171I	-0.48113 + 1.41291I	-11.50731 - 0.65666I
b = -0.749034 + 0.108799I		
u = -1.290140 + 0.372995I		
a = 0.0208764 + 0.0986315I	-3.15719 + 4.84917I	0
b = -0.980371 - 0.207899I		
u = -1.290140 - 0.372995I		
a = 0.0208764 - 0.0986315I	-3.15719 - 4.84917I	0
b = -0.980371 + 0.207899I		
u = -0.099098 + 0.640186I		
a = 0.09004 - 1.81958I	2.17471 + 2.01374I	-7.73585 - 3.91188I
b = -0.212959 + 1.109000I		
u = -0.099098 - 0.640186I		
a = 0.09004 + 1.81958I	2.17471 - 2.01374I	-7.73585 + 3.91188I
b = -0.212959 - 1.109000I		
u = 1.291760 + 0.455145I		
a = -0.0309170 - 0.0318134I	-6.51599 - 10.49730I	0
b = 1.187980 - 0.445839I		
u = 1.291760 - 0.455145I		
a = -0.0309170 + 0.0318134I	-6.51599 + 10.49730I	0
b = 1.187980 + 0.445839I		
u = 1.306830 + 0.465197I		
a = -0.630886 + 1.147070I	-2.27554 - 5.83321I	0
b = -0.620144 - 1.216600I		
u = 1.306830 - 0.465197I		
a = -0.630886 - 1.147070I	-2.27554 + 5.83321I	0
b = -0.620144 + 1.216600I		
u = -1.269270 + 0.579030I		
a = 0.723396 + 1.171420I	-6.51599 + 10.49730I	0
b = 0.81690 - 1.22821I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.269270 - 0.579030I		
a = 0.723396 - 1.171420I	-6.51599 - 10.49730I	0
b = 0.81690 + 1.22821I		
u = 1.40424 + 0.40913I		
a = -0.380784 + 0.192994I	-7.98335	0
b = 0.481225 - 0.576338I		
u = 1.40424 - 0.40913I		
a = -0.380784 - 0.192994I	-7.98335	0
b = 0.481225 + 0.576338I		
u = -1.50639 + 0.03128I		
a = 0.313720 + 0.382658I	-5.82415 + 2.23290I	0
b = 0.350132 + 0.706526I		
u = -1.50639 - 0.03128I		
a = 0.313720 - 0.382658I	-5.82415 - 2.23290I	0
b = 0.350132 - 0.706526I		
u = -1.33093 + 0.72650I		
a = -0.54342 - 1.31576I	-0.13405 + 10.50230I	0
b = -0.605352 + 1.216900I		
u = -1.33093 - 0.72650I		
a = -0.54342 + 1.31576I	-0.13405 - 10.50230I	0
b = -0.605352 - 1.216900I		
u = -1.64506 + 0.30278I		
a = -0.056451 - 0.315590I	-6.56195 - 4.20028I	0
b = 0.504888 + 0.670086I		
u = -1.64506 - 0.30278I		
a = -0.056451 + 0.315590I	-6.56195 + 4.20028I	0
b = 0.504888 - 0.670086I		
u = 0.135724		
a = -10.1813	-5.55198	-15.3380
b = 0.678987		

III.
$$I_3^u = \langle -509u^{19} - 338u^{18} + \dots + 367b - 1165, \ 610u^{19} - 321u^{18} + \dots + 367a - 671, \ u^{20} - 8u^{18} + \dots + u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.66213u^{19} + 0.874659u^{18} + \dots - 4.53951u + 1.82834 \\ 1.38692u^{19} + 0.920981u^{18} + \dots + 1.83379u + 3.17439 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -0.250681u^{19} - 0.681199u^{18} + \dots + 1.98093u - 1.32425 \\ 0.752044u^{19} - 0.956403u^{18} + \dots + 5.05722u + 0.972752 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.594005u^{19} - 0.00544959u^{18} + \dots + 0.367847u - 1.74659 \\ -0.681199u^{19} - 1.19891u^{18} + \dots + 1.92643u - 1.25068 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.594005u^{19} - 0.994550u^{18} + \dots + 2.63215u - 0.253406 \\ 1.34060u^{19} + 0.599455u^{18} + \dots + 4.53678u + 4.12534 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -0.673025u^{19} - 1.02452u^{18} + \dots + 1.15531u - 3.35967 \\ -0.675749u^{19} - 0.749319u^{18} + \dots + 2.07902u - 0.656676 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.275204u^{19} + 1.79564u^{18} + \dots + 2.07902u - 0.656676 \\ 1.38692u^{19} + 0.920981u^{18} + \dots + 1.83379u + 3.17439 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1.65668u^{19} - 1.32425u^{18} + \dots + 3.38692u - 2.42234 \\ -1.35422u^{19} - 0.223433u^{18} + \dots - 2.91826u - 2.61035 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1.65668u^{19} - 1.32425u^{18} + \dots + 3.38692u - 2.42234 \\ -1.35422u^{19} - 0.223433u^{18} + \dots - 2.91826u - 2.61035 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes =
$$\frac{1598}{367}u^{19} - \frac{3955}{367}u^{18} + \dots + \frac{8778}{367}u - \frac{10786}{367}u^{18} + \dots$$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{20} - 8u^{18} + \dots + u - 1$
c_2	$(u^{10} - 5u^8 + 8u^6 + 4u^5 - 6u^4 - 3u^3 + 3u^2 - 1)^2$
c_3, c_{10}	$u^{20} + 3u^{19} + \dots - 8u^2 - 1$
<i>C</i> 5	$u^{20} + 8u^{14} - 52u^{12} - 138u^{10} + 104u^8 + 527u^6 + 296u^4 - 356u^2 - 31$
c_{6}, c_{9}	$u^{20} - 8u^{18} + \dots - u - 1$
c_7, c_{11}	$u^{20} - 3u^{19} + \dots - 8u^2 - 1$
c_8	$(u^{10} - 5u^8 + 8u^6 - 4u^5 - 6u^4 + 3u^3 + 3u^2 - 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_9	$y^{20} - 16y^{19} + \dots - 13y + 1$
c_2, c_8	$(y^{10} - 10y^9 + \dots - 6y + 1)^2$
c_3, c_7, c_{10} c_{11}	$y^{20} + 13y^{19} + \dots + 16y + 1$
C ₅	$(y^{10} + 8y^7 - 52y^6 - 138y^5 + 104y^4 + 527y^3 + 296y^2 - 356y - 319)^2$

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.006880 + 0.379394I		
a = 0.71131 + 2.12605I	-5.60500 + 3.07077I	-11.10306 - 5.53745I
b = 0.406554 - 1.044110I		
u = -1.006880 - 0.379394I		
a = 0.71131 - 2.12605I	-5.60500 - 3.07077I	-11.10306 + 5.53745I
b = 0.406554 + 1.044110I		
u = -0.307724 + 0.858449I		
a = 0.579281 + 0.822097I	3.58542	-5.93598 + 0.I
b = -0.301268 - 1.054370I		
u = -0.307724 - 0.858449I		
a = 0.579281 - 0.822097I	3.58542	-5.93598 + 0.I
b = -0.301268 + 1.054370I		
u = -1.005260 + 0.622930I		
a = -0.917585 - 0.950908I	2.31904 + 5.08447I	-9.51292 - 2.92589I
b = -0.723749 + 0.881883I		
u = -1.005260 - 0.622930I		
a = -0.917585 + 0.950908I	2.31904 - 5.08447I	-9.51292 + 2.92589I
b = -0.723749 - 0.881883I		
u = -0.543411 + 0.587321I		
a = 0.318117 + 0.503113I	3.51176	-5.53076 + 0.I
b = -0.424021 - 1.175640I		
u = -0.543411 - 0.587321I		
a = 0.318117 - 0.503113I	3.51176	-5.53076 + 0.I
b = -0.424021 + 1.175640I		
u = 0.641197 + 0.460705I		
a = 1.60910 - 2.98924I	-1.76138 - 5.90098I	-8.4456 + 11.9708I
b = 0.265764 + 0.633820I		
u = 0.641197 - 0.460705I		
a = 1.60910 + 2.98924I	-1.76138 + 5.90098I	-8.4456 - 11.9708I
b = 0.265764 - 0.633820I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.22178		
a = -0.206592	-6.32941	-27.2570
b = -1.34573		
u = -0.721984		
a = 2.63740	-6.32941	-27.2570
b = 0.842412		
u = 1.322280 + 0.225447I		
a = -0.769082 + 0.973657I	-1.76138 - 5.90098I	-8.4456 + 11.9708I
b = -0.528515 - 1.268130I		
u = 1.322280 - 0.225447I		
a = -0.769082 - 0.973657I	-1.76138 + 5.90098I	-8.4456 - 11.9708I
b = -0.528515 + 1.268130I		
u = -1.361800 + 0.242619I		
a = -0.490712 + 0.349688I	-7.12244	-10.15337 + 0.I
b = 0.255308 + 0.676358I		
u = -1.361800 - 0.242619I		
a = -0.490712 - 0.349688I	-7.12244	-10.15337 + 0.I
b = 0.255308 - 0.676358I		
u = 0.502690 + 0.120984I		
a = 0.432595 + 0.041333I	2.31904 - 5.08447I	-9.51292 + 2.92589I
b = -0.14840 - 1.42580I		
u = 0.502690 - 0.120984I		
a = 0.432595 - 0.041333I	2.31904 + 5.08447I	-9.51292 - 2.92589I
b = -0.14840 + 1.42580I		
u = 1.50902 + 0.12166I		
a = -0.688432 - 0.075728I	-5.60500 + 3.07077I	-11.10306 - 5.53745I
b = -0.050017 - 0.545597I		
u = 1.50902 - 0.12166I		
a = -0.688432 + 0.075728I	-5.60500 - 3.07077I	-11.10306 + 5.53745I
b = -0.050017 + 0.545597I		

IV.
$$I_4^u = \langle u^3 + b + 1, \ u^2 + a + u, \ u^4 + u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} - u \\ -u^{3} - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u \\ -u^{3} - u^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{3} \\ u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} \\ -1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{3} + 1 \\ u^{2} + u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{3} - u^{2} - u - 1 \\ -u^{3} - 1 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $4u^3 2u^2 + 3u 6$

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^4 + u - 1$
c_2	$u^4 - 2u^2 + u + 1$
c_3, c_{10}	$u^4 + u^3 - 1$
<i>C</i> 5	u^4
c_6, c_9	$u^4 - u - 1$
c_7, c_{11}	$u^4 - u^3 - 1$
c_8	$u^4 - 2u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_9	$y^4 - 2y^2 - y + 1$
c_2, c_8	$y^4 - 4y^3 + 6y^2 - 5y + 1$
c_3, c_7, c_{10} c_{11}	$y^4 - y^3 - 2y^2 + 1$
c_5	y^4

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.248126 + 1.033980I		
a = 0.75943 - 1.54710I	3.04135 + 1.96274I	-6.36273 - 1.58218I
b = -0.219447 + 0.914474I		
u = 0.248126 - 1.033980I		
a = 0.75943 + 1.54710I	3.04135 - 1.96274I	-6.36273 + 1.58218I
b = -0.219447 - 0.914474I		
u = -1.22074		
a = -0.269472	-8.36260	-19.9190
b = 0.819173		
u = 0.724492		
a = -1.24938	-4.29983	-3.35520
b = -1.38028		

V.
$$I_5^u = \langle 638u^{11} - 606u^{10} + \dots + 697b - 1440, \ 936u^{11} + 352u^{10} + \dots + 697a - 1503, \ u^{12} - 2u^{10} + \dots - 2u - 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.34290u^{11} - 0.505022u^{10} + \dots - 9.29412u + 2.15638 \\ -0.915352u^{11} + 0.869440u^{10} + \dots + 0.352941u + 2.06600 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{11} - 2u^{9} + u^{8} - 5u^{6} + 6u^{5} + u^{4} - 9u^{3} + 5u^{2} + 6u - 2 \\ 0.348637u^{11} + 0.208034u^{10} + \dots + 1.47059u - 1.05022 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} - 2u^{9} + u^{8} - 5u^{6} + 6u^{5} + u^{4} - 9u^{3} + 5u^{2} + 6u - 2 \\ 0.348637u^{11} + 0.208034u^{10} + \dots + 2.47059u - 1.05022 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0 \\ -u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 0.984218u^{11} + 0.566714u^{10} + \dots + 7.76471u - 1.79197 \\ 0.286944u^{11} + 0.150646u^{10} + \dots + 1.82353u - 0.691535 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.25825u^{11} + 0.364419u^{10} + \dots - 8.94118u + 4.22238 \\ -0.915352u^{11} + 0.869440u^{10} + \dots + 0.352941u + 2.06600 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.984218u^{11} - 0.566714u^{10} + \dots - 7.76471u + 1.79197 \\ -0.364419u^{11} + 0.358680u^{10} + \dots + 0.294118u + 1.25825 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.984218u^{11} - 0.566714u^{10} + \dots - 7.76471u + 1.79197 \\ -0.364419u^{11} + 0.358680u^{10} + \dots + 0.294118u + 1.25825 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -14

Crossings	u-Polynomials at each crossing
c_1, c_4, c_6 c_9	$u^{12} - 2u^{10} + u^9 - 5u^7 + 6u^6 + u^5 - 9u^4 + 5u^3 + 6u^2 - 2u - 1$
c_2, c_8	$(u-1)^{12}$
c_3, c_7, c_{10} c_{11}	$u^{12} + 2u^{10} + u^9 + 5u^7 - 4u^6 + u^5 - u^4 - 3u^3 - 4u + 1$
c_5	$(u^6 + 2u^3 - 5u^2 + 1)^2$

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_9	$y^{12} - 4y^{11} + \dots - 16y + 1$
c_2, c_8	$(y-1)^{12}$
c_3, c_7, c_{10} c_{11}	$y^{12} + 4y^{11} + \dots - 16y + 1$
c_5	$(y^6 - 10y^4 - 2y^3 + 25y^2 - 10y + 1)^2$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.721680 + 0.842764I		
a = -0.291320 + 0.594026I	2.30291	-14.0000
b = 0.653624 - 1.017120I		
u = 0.721680 - 0.842764I		
a = -0.291320 - 0.594026I	2.30291	-14.0000
b = 0.653624 + 1.017120I		
u = 1.13635		
a = -0.0899500	-5.59278	-14.0000
b = -1.33394		
u = -0.849985 + 0.107756I		
a = -0.39789 + 1.38066I	2.30291	-14.0000
b = -0.31772 - 1.47138I		
u = -0.849985 - 0.107756I		
a = -0.39789 - 1.38066I	2.30291	-14.0000
b = -0.31772 + 1.47138I		
u = 1.32540		
a = -0.253927	-5.59278	-14.0000
b = -0.966860		
u = 0.128305 + 1.331900I		
a = 0.380195 - 1.282920I	2.30291	-14.0000
b = -0.335906 + 0.823161I		
u = 0.128305 - 1.331900I		
a = 0.380195 + 1.282920I	2.30291	-14.0000
b = -0.335906 - 0.823161I		
u = 0.580134		
a = -3.02808	-5.59278	-14.0000
b = 0.239009		
u = -1.36109 + 0.59989I		
a = 0.47553 + 1.40936I	-5.59278	-14.0000
b = 0.519889 - 0.970639I		

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.36109 - 0.59989I		
a = 0.47553 - 1.40936I	-5.59278	-14.0000
b = 0.519889 + 0.970639I		
u = -0.319710		
a = 4.03893	-5.59278	-14.0000
b = 1.02201		

VI.
$$I_6^u=\langle b+1,\; a+1,\; u-1 \rangle$$

(i) Arc colorings

$$a_4 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2\\-1 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -18

Crossings	u-Polynomials at each crossing
c_1, c_4, c_5 c_6, c_9	u-1
c_2, c_8	u
c_3, c_7, c_{10} c_{11}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_3, c_4 c_5, c_6, c_7 c_9, c_{10}, c_{11}	y-1
c_2, c_8	y

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = -1.00000	-4.93480	-18.0000
b = -1.00000		

VII. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$(u-1)(u^{4}+u-1)$ $\cdot (u^{12}-2u^{10}+u^{9}-5u^{7}+6u^{6}+u^{5}-9u^{4}+5u^{3}+6u^{2}-2u-1)$ $\cdot (u^{18}+u^{17}+\cdots+u^{2}-1)(u^{20}-8u^{18}+\cdots+u-1)$ $\cdot (u^{60}-u^{59}+\cdots-109u+17)$
c_2	$u(u-1)^{12}(u^4 - 2u^2 + u + 1)$ $\cdot (u^{10} - 5u^8 + 8u^6 + 4u^5 - 6u^4 - 3u^3 + 3u^2 - 1)^2$ $\cdot (u^{18} + u^{17} + \dots + 50u + 4)(u^{30} + 6u^{29} + \dots + 170u + 36)^2$
c_3, c_{10}	$(u+1)(u^{4}+u^{3}-1)(u^{12}+2u^{10}+\cdots-4u+1)$ $\cdot (u^{18}-2u^{17}+\cdots+3u+1)(u^{20}+3u^{19}+\cdots-8u^{2}-1)$ $\cdot (u^{60}-2u^{59}+\cdots+2u-1)$
c_5	$u^{4}(u-1)(u^{6} + 2u^{3} - 5u^{2} + 1)^{2}(u^{18} + 6u^{17} + \dots - 416u - 64)$ $\cdot (u^{20} + 8u^{14} - 52u^{12} - 138u^{10} + 104u^{8} + 527u^{6} + 296u^{4} - 356u^{2} - 3$ $\cdot (u^{30} - 2u^{29} + \dots + 2u - 1)^{2}$
c_6, c_9	$(u-1)(u^{4}-u-1)$ $\cdot (u^{12}-2u^{10}+u^{9}-5u^{7}+6u^{6}+u^{5}-9u^{4}+5u^{3}+6u^{2}-2u-1)$ $\cdot (u^{18}+u^{17}+\cdots+u^{2}-1)(u^{20}-8u^{18}+\cdots-u-1)$ $\cdot (u^{60}-u^{59}+\cdots-109u+17)$
c_7, c_{11}	$(u+1)(u^{4}-u^{3}-1)(u^{12}+2u^{10}+\cdots-4u+1)$ $\cdot (u^{18}-2u^{17}+\cdots+3u+1)(u^{20}-3u^{19}+\cdots-8u^{2}-1)$ $\cdot (u^{60}-2u^{59}+\cdots+2u-1)$
c_8	$u(u-1)^{12}(u^4 - 2u^2 - u + 1)$ $\cdot (u^{10} - 5u^8 + 8u^6 - 4u^5 - 6u^4 + 3u^3 + 3u^2 - 1)^2$ $\cdot (u^{18} + u^{17} + \dots + 50u + 4)(u^{30} + 6u^{29} + \dots + 170u + 36)^2$

VIII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4, c_6 c_9	$(y-1)(y^4 - 2y^2 - y + 1)(y^{12} - 4y^{11} + \dots - 16y + 1)$ $\cdot (y^{18} - 11y^{17} + \dots - 2y + 1)(y^{20} - 16y^{19} + \dots - 13y + 1)$ $\cdot (y^{60} - 41y^{59} + \dots - 18409y + 289)$
c_2, c_8	$y(y-1)^{12}(y^4 - 4y^3 + \dots - 5y + 1)(y^{10} - 10y^9 + \dots - 6y + 1)^2$ $\cdot (y^{18} - 13y^{17} + \dots - 1100y + 16)(y^{30} - 22y^{29} + \dots - 460y + 1296)^2$
c_3, c_7, c_{10} c_{11}	$(y-1)(y^4 - y^3 - 2y^2 + 1)(y^{12} + 4y^{11} + \dots - 16y + 1)$ $\cdot (y^{18} + 8y^{17} + \dots - 9y + 1)(y^{20} + 13y^{19} + \dots + 16y + 1)$ $\cdot (y^{60} + 32y^{59} + \dots + 20y + 1)$
c_5	$y^{4}(y-1)(y^{6}-10y^{4}-2y^{3}+25y^{2}-10y+1)^{2}$ $\cdot (y^{10}+8y^{7}-52y^{6}-138y^{5}+104y^{4}+527y^{3}+296y^{2}-356y-319)^{2}$ $\cdot (y^{18}+56y^{16}+\cdots-37888y+4096)(y^{30}-2y^{29}+\cdots-84y+1)^{2}$