ECE253/CSE208 Introduction to Information Theory

Lecture 16: Summary

Dr. Yu Zhang

ECE Department
University of California, Santa Cruz

Chap 1-10 of Elements of Information Theory (2nd Edition) by Thomas Cover & Joy Thomas.

Key Concepts

- Entropy and differential entropy; KL divergence; mutual information.
- DPI; sufficient statistics; convex functions; Jensen's ineq; Fano's ineq.
- AEP; typical set; entropy rate; Markov chain; stationary stochastic process.
- Source coding theorem; Kraft-McMillan inequality; competitive optimality.
- Lossless source coding: Huffman, Shannon, SF, SFE, and arithmetic coding.
- Horse race; log wealth relative; double rate; financial value of side information.
- Channel coding theorem and its proof; channel capacity of "simple" channels.
- Channel capacity of AWGN/parallel AWGN/feedback; water-filling power allocation.
- Rate-distortion theory; Blahut–Arimoto algorithm.

For Discrete Distributions

$PMF\;p(x)$	Entropy
Definition	$H(X) = -\sum_{x} p(x) \log p(x)$
Bounds	$\left[0, \log \mathcal{X} \right]$
$H_{ m max}$ distribution	Uniform
Translation	H(X+c) = H(X)
Scaling	H(cX) = H(X)
Joint entropy	$H(X,Y) = -E_{(X,Y)} \log p(X,Y)$
Conditional entropy	$H(Y X) = -E_{(X,Y)} \log p(Y X)$
Relative entropy	$D(p q) = \sum p \log \frac{p}{q}$
Mutual information	I(X;Y) = D(p(X,Y) p(X)p(Y))
Chain rule	$H(X^n) = \sum_{i=1}^n H(X_i X^{i-1})$
AEP (i.i.d. X^n)	$-\frac{1}{n}\log p(X^n) \xrightarrow{\text{i.p.}} H(X)$
Typical set	$A_{\epsilon}^{(n)} = \left\{ x^n : \left -\frac{1}{n} \log p(x^n) - H(X) \right \le \epsilon \right\}$

For Continuous Distributions

PDF $p(x)$	Differential Entropy
Definition	$h(X) = -\int_{\mathcal{S}} f(x) \log f(x) dx$
Bounds	$(-\infty, \frac{1}{2}\log(2\pi e\sigma^2)]$
$H_{ m max}$ distribution	Gaussian
Translation	h(X+c) = h(X)
Scaling	$h(cX) = h(X) + \log c $
Joint entropy	$h(X,Y) = -\mathbf{E}_{(X,Y)} \log f(X,Y)$
Conditional entropy	$h(Y X) = -E_{(X,Y)} \log f(Y X)$
Relative entropy	$D(f g) = \int f \log(\frac{f}{g})$
Mutual information	I(X;Y) = D(f(x,y) f(x)f(y))
Chain rule	$h(X^n) = \sum_{i=1}^n h(X_i X^{i-1})$
AEP (i.i.d. X^n)	$-\frac{1}{n}\log f(X^n) \xrightarrow{\text{i.p.}} h(X)$
Typical set	$A_{\epsilon}^{(n)} = \left\{ x^n : \left -\frac{1}{n} \log f(x^n) - h(X) \right \le \epsilon \right\}$

Typical Sequences and Set

Figure: For n sufficiently large, all typical sequences have about the same probability $2^{nH(X)}$ (asymptotic equipartition). Everything outside the typical set has a negligible probability.

Figure: Encoding for the typical set: On average H(X) bits are needed to encode X^n per symbol.

Lossless Source Coding

Fig 1. Huffman tree (bottom-up)

Fig 2. SF tree (top-down)

Channel Coding Theorem

Figure: Channel capacity C is the sharp threshold between reliable and unreliable communication.

- Information channel capacity: $C = \max_{p(x)} I(X;Y)$
- Operational channel capacity: number of bits that are transmitted reliably (with an
 arbitrarily small probability of error) per channel usage.
- Information channel capacity = operational channel capacity.
- Achievability: All rates below capacity R < C are achievable.
- Converse: $(2^{nR}, n)$ code with probability of error $\lambda^{(n)} \xrightarrow{n \to \infty} 0$ must have $R \le C$.

Shannon Limit of Channel Capacity

$$C_{\rm AWGN} = W \log_2 \left(1 + \frac{P}{N_0 W}\right)$$

$$\max_{P_i \ge 0} \quad \sum_{i=1}^{N} \frac{1}{2} \log \left(1 + \frac{P_i}{N_i} \right) \tag{1a}$$

s.t.
$$\sum_{i=1}^{N} P_i = P$$
 (1b)

Figure: Water-filling optimal power allocation: allocate more power in less noisy channels.

The optimal solution is obtained as: $P_i^* = (\nu - N_i)^+, \ i = 1, 2, \dots k$, where the water level ν satisfies $\sum_i (\nu - N_i)^+ = P$.

Rate Distortion Coding Theorem

Figure: The rate-distortion function of a Bernoulli random variable with Hamming distortion.

Theorem (Rate Distortion Coding Theorem)

The rate distortion function for an i.i.d. source X with distribution p(x) and bounded distortion function $d(x,\hat{x})$ is equal to the associated information rate distortion function. That is, $R(D)=R^{(I)}(D)$.

Thank You!

Email: <zhangy@ucsc.edu>

Homepage: https://people.ucsc.edu/~yzhan419/