The emerging zoo of second-order set theories

Victoria Gitman

 $\label{localization} vgitman@nylogic.org\\ http://boolesrings.org/victoriagitman$

Young Researchers' Workshop: Forcing and Philosophy January 18, 2018

1 / 33

Classes in first-order set theory

A (proper) class is a collection of sets that is "too big" to be a set.

Suppose $\langle V, \in \rangle \models ZFC$ is a model of set theory.

Definition:

- A class is a first-order definable with parameters collection of sets.
- A proper class is a class that is not a set.

Proper classes:

- ORD the collection of all ordinals
- L Gödel's constructible universe
- HOD the hereditarily ordinal definable sets
- An elementary embedding $j: V \to M$ (assuming large cardinals)
- ullet The Easton partial order ${\mathbb P}$ forces GCH to fail at every regular cardinal

Natural questions:

- How to do we talk about non-definable collections of sets?
- How do we quantify over classes?

Why classes?

Inner models: transitive sub-models of ZF(C) containing all ordinals

• Inner model reflection principle (Barton, Caicedo, Fuchs, Hamkins, Reitz) Whenever a first-order formula $\varphi(a)$ holds in V, then it holds in some inner model $W \subsetneq V$.

• Inner model hypothesis (Friedman)

Whenever a first-order sentence φ holds in some inner model of a universe $V^* \supseteq V$, then it already holds in some inner model of V.

Why classes?

Elementary embeddings

Reinhardt's Axiom: There is an elementary embedding $j: V \rightarrow V$.

- Theorem: (Kunen) If $V \models \mathrm{ZFC}$, there is no elementary embedding $j: V \to V$. Thus, Reinhardt's Axiom is inconsistent.
- If $V \models \mathrm{ZF}$, then there is no definable elementary embedding $j: V \to V$.
- Open question: If $V \models ZF$, can there be an elementary $j: V \rightarrow V$?

Class partial orders

- Force global changes to the GCH pattern.
- Force V = HOD (code every set into the continuum pattern).
- Force to make the universe partially unchangeable by forcing.

Truth predicates (Coming up!)

Second-order set theory

There are two sorts of objects: sets and classes.

Syntax: Two-sorted logic

- Separate variables for sets and classes
- Separate quantifiers for sets and classes
- Convention: upper-case letters for classes, lower-case letters for sets
- Notation:
 - $\triangleright \Sigma_n^0$ first-order Σ_n -formula
 - $\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} \sum_{n$

Semantics: A model is a triple $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle$.

- V consists of the sets.
- C consists of the classes.
- Every set is a class: $V \subseteq \mathcal{C}$.
- $C \subseteq V$ for every $C \in \mathcal{C}$.

Alternatively, we can formalize second-order set theory in first-order logic:

- objects are classes,
- define that a set is a class that is an element of some class.

Gödel-Bernays set theory GBC

Axioms

- Sets: ZFC
- Classes:
 - Extensionality
 - ▶ Replacement: If F is a function and a is a set, then $F \upharpoonright a$ is a set.
 - Global well-order: There is a class well-order of sets.
 - ► Comprehension scheme for first-order formulas: If $\varphi(x, A)$ is a first-order formula, then $\{x \mid \varphi(x, A)\}$ is a class.

Models

- Gödel's constructible universe L together with its definable classes is a model of GBC.
- Suppose $\langle V, \in \rangle \models \operatorname{ZFC}$ and V has a definable global well-order. Then V together with its definable classes is a model of GBC.
- Theorem: (Solovay) Every countable model of ZFC can be extended to a model of GBC with the same sets. (Force to add a global well-order class.)

Strength

- GBC is equiconsistent with ZFC.
- GBC has the same first-order consequences as ZFC.

Truth Predicates

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{GBC}$.

Definition: A class $T \in \mathcal{C}$ is a truth predicate for $\langle V, \in \rangle$ if it satisfies Tarksi's truth conditions: For every $\lceil \varphi \rceil \in V$ (φ possibly nonstandard),

- if φ is atomic, $V \models \varphi(\overline{a})$ iff $\neg \varphi(\overline{a}) \neg \in T$,
- $\lceil \neg \varphi(\overline{a}) \rceil \in T \text{ iff } \lceil \varphi(\overline{a}) \rceil \notin T$,
- $\lceil \varphi(\overline{a}) \land \psi(\overline{a}) \rceil \in T$ iff $\lceil \varphi(\overline{a}) \rceil \in T$ and $\lceil \psi(\overline{a}) \rceil \in T$,
- $\lceil \exists x \varphi(x, \overline{a}) \rceil \in T$ iff $\exists b \lceil \varphi(b, \overline{a}) \rceil \in T$.

Observation: If T is a truth predicate, then $V \models \varphi(\overline{a})$ iff $\neg \varphi(\overline{a}) \in T$.

Theorem: (Tarski) A truth predicate is never definable over V.

Corollary: GBC cannot prove that there is a truth predicate.

Observation: If T is a truth predicate and $\lceil \varphi \rceil \in \mathrm{ZFC}^{\mathrm{V}}$ (φ possibly nonstandard), then $\varphi \in T$.

Theorem: If there is a truth predicate $T \in \mathcal{C}$, then V is the union of an elementary chain of its rank initial segments V_{α} :

$$V_{\alpha_0} \prec V_{\alpha_1} \prec \cdots \prec V_{\alpha_{\mathcal{E}}} \prec \cdots \prec V$$
,

such that V thinks that each $V_{\alpha_{\xi}} \models \text{ZFC}$.

Let $\langle V_{\alpha}, \in, T \cap V_{\alpha} \rangle \prec_{\Sigma_2} \langle V, \in, T \rangle$.

Iterated truth predicates

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models GBC$.

Definition: Suppose $A \in \mathcal{C}$ is a class. A sequence of classes $\langle C_a \mid a \in A \rangle$ is a single class C such that $C_a = \{x \mid \langle a, x \rangle \in C\}$.

Definition: A sequence of classes $\vec{T} = \langle T_{\beta} \mid \beta < \alpha \rangle$ is an iterated truth predicate of length α if for every $\beta < \alpha$, T_{β} is a truth predicate for $\langle V, \in, \vec{T} \upharpoonright \beta \rangle$.

Given a class well-order Γ , similarly define the iterated truth predicate of length Γ .

- $\Gamma = ORD$
- $\Gamma = ORD + ORD$
- $\Gamma = ORD \cdot \omega$

$GBC + \Sigma_1^1$ -Comprehension

Axioms

- GBC
- Comprehension for Σ_1^1 -formulas:

If
$$\varphi(x, A) := \exists X \psi(x, X, A)$$
 with ψ first-order, then $\{x \mid \varphi(x, A)\}$ is a class.

Note: Σ_1^1 -Comprehension is equivalent to Π_1^1 -Comprehension.

Strength

- **Theorem**: GBC + Σ_1^1 -Comprehension proves that there is a truth predicate.
 - ► Suppose $\mathcal{V} = \langle V, \in, \mathcal{C} \rangle \models \text{GBC} + \Sigma_1^1$ -Comprehension.
 - \mathcal{V} satisfies the second-order assertion: $\exists \hat{\Sigma_0^0}$ -truth predicate and $\forall n \in \omega \ (\exists \Sigma_n^0$ -truth predicate $\to \exists \Sigma_{n+1}^0$ -truth predicate).
 - ▶ (induction) \mathscr{V} satisfies: $\forall n \in \omega \exists \Sigma_n^0$ -truth predicate.
 - (comprehension) $\mathscr V$ satisfies: There is a sequence of classes $\langle T_n \mid n < \omega \rangle$ such that for all $n < \omega$, T_n is a Σ_n^0 -truth predicate.
- GBC + Σ_1^1 -Comprehension proves Con(ZFC), Con(Con(ZFC)), etc.
- $\mathrm{GBC} + \Sigma^1_1$ -Comprehension proves that for every class well-order Γ , there is an iterated truth predicate of length Γ .

The constructible universe

Theorem: (Definition by transfinite recursion.) Every recursive definition has a solution. Given a definable recursion rule $G: V \to V$, there is a definable solution $F: \mathrm{ORD} \to V$ such that $F(\alpha) = G(F \upharpoonright \alpha)$.

Definition: The von Neumann hierarchy.

- $V_0 = \emptyset$
- $V_{\alpha+1}$ consists of all subsets of V_{α} .
- $V_{\lambda} = \bigcup_{\alpha < \beta} V_{\alpha}$ for a limit λ .
- $V = \bigcup_{\alpha \in ORD} V_{\alpha}$.

Definition: (Gödel) The constructible universe *L*.

- \bullet $L_0 = \emptyset$
- $L_{\alpha+1}$ consists of all definable subsets of L_{α} .
- $L_{\lambda} = \bigcup_{\alpha < \lambda} L_{\alpha}$ for a limit λ .
- $L = \bigcup_{\alpha \in ORD} L_{\alpha}$.

Theorem: (Gödel) If $V \models ZF$, then $L \models ZFC$.

The second-order constructible universe

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \text{GBC} + \Sigma_1^1\text{-Comprehension}$.

Definition: A meta-ordinal is a well-order $\Gamma \in \mathcal{C}$.

• ORD + ORD, ORD $\cdot \omega$.

Theorem: GBC + Σ_1^1 -Comprehension proves that any two meta-ordinals are comparable.

Problem: Meta-ordinals don't need to have unique representations! Unless...

Given a meta-ordinal Γ , we can build the meta-constructible universe L_{Γ} up to Γ .

Definition: A meta-ordinal Γ is constructible if there is another meta-ordinal Δ such that L_{Δ} has a well-order of ORD isomorphic to Γ . (" $\Gamma \in L_{ORD^+}$ ")

Theorem: (Tharp) Constructible meta-ordinals have unique representations.

Definition:

- A class $A \in \mathcal{C}$ is constructible if there is a constructible meta-ordinal Γ such that $A \in \mathcal{L}_{\Gamma}$.
- The second-order constructible universe is $\mathscr{L} = \langle L, \in, \mathcal{L} \rangle$, where \mathcal{L} consists of the constructible classes.

Theorem: $\mathscr{L} \models \mathrm{GBC} + \Sigma^1_1$ -Comprehension. It also satisfies a version of the Axiom of Choice for classes. (Coming up!)

The Forcing Theorem

Suppose $\langle V, \in \rangle \models \mathrm{ZFC}$ and $\mathbb{P} \in V$ is a partial order.

The forcing construction: (Cohen) Build a model $W \models \text{ZFC}$ extending V.

- Define a collection $V^{\mathbb{P}}$ of names for elements of W.
 - ▶ Each element of W has a name $\tau \in V^{\mathbb{P}}$.
 - ▶ An element of W can have more than one name.
- $G \notin V$ is a generic filter on \mathbb{P} : G meets every dense set $D \in V$ of \mathbb{P} .
- The forcing extension is $W = V[G] = \{\tau_G \mid \tau \in V^{\mathbb{P}}\}.$

$$\triangleright$$
 $V[G] \models ZFC$

 $ightharpoonup ORD^V = ORD^{V[G]}$

The forcing relation $p \Vdash \varphi(\tau)$

- $p \in \mathbb{P}, \ \tau \in V^{\mathbb{P}}$
- $\bullet \varphi$ is a first-order formula

Whenever G is a generic filter and $p \in G$, then $V[G] \models \varphi(\tau_G)$.

The Forcing Theorem: (Cohen) For every first-order formula $\varphi(x)$, the relation $p \Vdash \varphi(\tau)$ is definable.

The Class Forcing Theorem

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{GBC}$ and $\mathbb{P} \in \mathcal{C}$ is a class partial order.

The forcing construction: Build a model $\mathcal{W} = \langle W, \in, \mathcal{C}^* \rangle$ extending \mathcal{V} .

- Define a collection $V^{\mathbb{P}}$ of names for elements of W.
- Define a collection $\mathcal{C}^{\mathbb{P}}$ of names for elements of \mathcal{C}^* .
- $G \notin \mathcal{C}$ is a generic filter on \mathbb{P} : G meets every dense class $D \in \mathcal{C}$ of \mathbb{P} .
- The forcing extension is $\mathcal{W} = \mathcal{V}[G] = \langle V[G], \in, \mathcal{C}[G] \rangle$:
 - $V[G] = \{ \tau_G \mid \tau \in V^{\mathbb{P}} \}$
 - $\mathcal{C}[G] = \{ \Gamma_G \mid \Gamma \in \mathcal{C}^{\mathbb{P}} \}$

Note: $\mathscr{V}[G]$ may not satisfy GBC.

The forcing relation $p \Vdash \varphi(\tau, \Gamma)$

Whenever G is a generic filter and $p \in G$, then $\mathscr{V}[G] \models \varphi(\tau_G, \Gamma_G)$.

Class Forcing Theorem: For every first-order formula $\varphi(x, X)$ and a name $\Gamma \in C^{\mathbb{P}}$, the relation $p \Vdash \varphi(\tau, \Gamma)$ is a class in C.

Theorem: (Krapf, Njegomir, Holy, Lüke, Schlicht) The Class Forcing Theorem can fail in a model of GBC.

There is a class partial order such that the truth predicate is definable from its forcing relation for $\varphi(x,y) := "x = y"$.

Theorem: GBC + Σ_1^1 -Comprehension proves the class forcing theorem.

Games and determinacy

Let ω^{ω} be the topological space of ω -length sequences of natural numbers with the product topology (ω is given the discrete topology).

Fix $A \subseteq \omega^{\omega}$.

The Game \mathcal{G}_A

• Player I (Alice) and Player II (Bob) alternately play numbers for ω -many steps.

- Alice wins if $\vec{a} = \langle a_0, b_0, a_1, b_1, \dots, a_n, b_n, \dots \rangle \in A$. Otherwise, Bob wins.
- The game is determined if one of the players has a winning strategy.

Theorem: (Gale, Stewart) If A is open, then the game \mathcal{G}_A is determined.

- Suppose Alice does not have a winning strategy. There is no move an that guarantees a win for Alice.
- There is a move b_0 for Bob such that Alice doesn't have a winning strategy in the game starting with $\langle a_0, b_0 \rangle$.
- There is no move a₁ that guarantees a win for Alice in the game starting with \(\lambda_0, b_0\rangle\).
- There is a move b_1 for Bob such that Alice doesn't have a winning strategy in the game starting with $\langle a_0, b_0, a_1, b_1 \rangle$.
- Bob wins because A open and Alice didn't win at any finite stage of the game.

Note: Everything here generalizes to spaces X^{ω} , where X is a set with the discrete topology.

Class games and determinacy

Let ORD^{ω} be the topological space of ω -length sequences of ordinals.

Fix a class $A \subseteq ORD^{\omega}$.

The Game \mathcal{G}_A

• Player I (Alice) and Player II (Bob) alternately play ordinals for ω -many steps.

- Alice wins if $\vec{\alpha} = \langle \alpha_0, \beta_0, \alpha_1, \beta_1, \dots, \alpha_n, \beta_n, \dots \rangle \in A$. Otherwise, Bob wins.
- The game is determined if one of the players has a winning strategy.

Note: A strategy for a player in the game \mathcal{G}_A is a class.

Open Class Determinacy: \mathcal{G}_A is determined for every open $A \subseteq ORD^{\omega}$.

Clopen Class Determinacy: \mathcal{G}_A is determined for every clopen $A \subseteq ORD^{\omega}$.

Theorem: (G., Hamkins) GBC+ Σ_1^1 -Comprehension implies Open Class Determinacy.

Elementary Transfinite Recursion ETR

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models GBC$.

Definition: Suppose $\Gamma \in \mathcal{C}$ is a meta-ordinal. A solution along Γ to a first-order recursion rule $\varphi(x, b, F)$ is a sequence of classes S such that for every $b \in \Gamma$, $S_b = \varphi(x, b, S \upharpoonright b)$.

Elementary Transfinite Recursion ETR: For every meta-ordinal Γ, every first-order recursion rule $\varphi(x, b, S)$ has a solution along Γ.

 ETR_{Γ} : Elementary transfinite recursion for a fixed Γ .

• ETR_{ORD}, ETR_{ORD}, ETR $_{\omega}$

Theorem: (Williams) If $\Gamma \ge \omega^{\omega}$ is a (meta)-ordinal, then $GBC + ETR_{\Gamma \cdot \omega}$ implies $Con(GBC + ETR_{\Gamma})$.

Theorem: GBC+ Σ_1^1 -Comprehension implies ETR.

Consequences of ETR

Theorem: $GBC + ETR_{\omega}$ proves that there exists a truth predicate.

Use Tarskian truth recursion on complexity of formulas.

Theorem: GBC + ETR proves that for every meta-ordinal Γ , there is a constructible meta-universe L_{Γ} .

Theorem: (Fujimoto)

- Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{GBC}$ and $\Gamma \geq \omega^{\omega}$ is a meta-ordinal. ETR_{Γ} is equivalent to the existence of an iterated truth predicate of length Γ .
- Over GBC, ETR is equivalent to the existence of an iterated truth predicate of length Γ for every meta-ordinal Γ .

Note: A single recursion, the iterated truth recursion, suffices to give all other recursions.

Theorem: (G., Hamkins, Holy, Schlicht, Williams) Over GBC , $\mathrm{ETR}_{\mathrm{ORD}}$ is equivalent to the Class Forcing Theorem.

Theorem: (G., Hamkins) Over GBC, ETR is equivalent to Clopen Class Determinacy.

Beyond ETR

Theorem: (Sato) Over GBC, Open Class Determinacy is stronger than ETR.

Question: Can forcing add meta-ordinals?

Theorem: (Hamkins, Woodin) Over GBC, Open Class Determinacy implies that forcing does not add meta-ordinals.

The petting zoo of second-order set theory

$$GBC + \Sigma_1^1\text{-Comprehension} \\ \downarrow \\ GBC + Open \ Determinacy \\ \downarrow \\ GBC + For \ every \ well-order \ \Gamma, \ there \ is \ an \ iterated \ truth \ predicate \ of \ length \ \Gamma \\ GBC + Clopen \ Class \ Determinacy \\ GBC + ETR \\ \downarrow \\ GBC + There \ is \ an \ iterated \ truth \ predicate \ of \ length \ ORD \\ GBC + Class \ Forcing \ Theorem \\ GBC + ETR_{ORD} \\ \downarrow \\ GBC + ETR_{\omega} \\ \downarrow \\ GBC + There \ exists \ a \ truth \ predicate \\ \downarrow \\ GBC$$

Kelley-Morse set theory KM

Axioms

- GBC
- Full comprehension: If $\varphi(x, A)$ is a second-order formula, then $\{x \mid \varphi(x, A)\}$ is a class.

Models

Suppose $\langle V, \in \rangle \models \mathrm{ZFC}$ and $\kappa \in V$ is an inaccessible cardinal. $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \mathrm{KM}$.

Theorem: Suppose $\mathscr{V}=\langle V,\in,\mathcal{C}\rangle \models \mathrm{KM}$. Then its constructible universe $\mathscr{L}=\langle L,\in,\mathcal{L}\rangle \models \mathrm{KM}$. It also satisfies a version of the Axiom of Choice for classes. (Coming up!)

The Łoś Theorem for ultrapowers

Suppose $\langle V, \in \rangle \models ZFC$.

- Suppose U is an ultrafilter on a cardinal κ .
- ullet Define that functions $f:\kappa o V$ and $g:\kappa o V$ are equivalent when

$$\{\xi < \kappa \mid f(\xi) = g(\xi)\} \in U.$$

- Let M be the collection of the equivalence classes $[f]_U$.
- Define that $[f]_U \to [g]_U$ when $\{\xi < \kappa \mid f(\xi) \in g(\xi)\} \in U$.
- $\langle M, \mathsf{E} \rangle$ is the ultrapower of $\langle V, \in \rangle$ by U.
- Define $j: V \to M$ by $j(a) = [c_a]_U$ $(c_a(\xi) = a \text{ for all } \xi < \kappa)$.

Łoś Theorem:

- $\langle M, \mathsf{E} \rangle \models \varphi([f]_U)$ if and only if $\{\xi < \kappa \mid \varphi(f(\xi))\} \in U$.
- The map j is an elementary embedding from $\langle V, \in \rangle$ to $\langle M, E \rangle$.
- True for atomic formulas by definition.
- True for Boolean combinations by properties of ultrafilter.
- Suppose true for $\varphi(x, y)$.
- Suppose $\{\xi < \kappa \mid \exists x \varphi(x, f(\xi))\} \in U$.
- Choose a witness x_{ξ} for $f(\xi)$ and define $g(\xi) = x_{\xi}$ (uses Axiom of Choice)).

The Łoś Theorem for second-order ultrapowers

Suppose
$$\mathscr{V} = (V, \in, \mathcal{C}) \models \mathrm{KM}$$
.

- Suppose U is an ultrafilter on a cardinal κ .
- Define that functions $f: \kappa \to V$ and $g: \kappa \to V$ are equivalent when $\{\xi < \kappa \mid f(\xi) = g(\xi)\} \in U$.
- Let M be the collection of the equivalence classes $[f]_U$.
- Define that $[f]_U \to [g]_U$ when $\{\xi < \kappa \mid f(\xi) \in g(\xi)\} \in U$.
- Define that class sequences F and G are equivalent when $\{\xi < \kappa \mid F_{\xi} = G_{\xi}\} \in U$.
- Let \mathcal{M} be the collection of the equivalence classes $[F]_U$.
- $[f]_U \to [F]_U$ when $\{\xi < \kappa \mid f(\xi) \in F(\xi)\} \in U$.
- $\langle M, E, \mathcal{M} \rangle$ is the ultrapower of $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle$ by U.
- Define $j: \langle V, \in, \mathcal{C} \rangle \to \langle M, \mathsf{E}, \mathcal{M} \rangle$ by $j(a) = [c_a]_U$ and $j(A) = [C_A]_U$.

The Łoś Theorem

Problem: For the class existential quantifier, we need

$$\mathscr{V} \models \forall \xi < \kappa \exists X \varphi(X, f(\xi)) \rightarrow \exists Y \forall \xi < \kappa \varphi(Y_{\xi}, f(\xi)).$$

Choice Scheme

The Choice Scheme is a version of the Axiom of Choice for classes.

Choice Scheme: Given a second-order formula $\varphi(x, X, A)$, if for every set x, there is a class X witnessing $\varphi(x, X, A)$, then there is a single class Y, collecting witnesses for every x:

$$\forall x \exists X \varphi(x, X, A) \rightarrow \exists Y \forall x \varphi(x, Y_x, A).$$

Choice Scheme over sets: Given a second-order formula $\varphi(x, X, A)$ and a set a:

$$\forall x \in a \exists X \varphi(x, X, A) \rightarrow \exists Y \forall x \in a \varphi(x, Y_x, A).$$

Theorem: (G., Johnstone, Hamkins) There is a model of KM in which the Choice Scheme fails for for ω -many choices for a first-order formula.

Theorem: (G., Johnstone, Hamkins) Over KM, the Łoś Theorem for second-order ultrapowers is equivalent to the Choice Scheme over sets.

The theory KM + AC

KM + AC: KM together with the Choice Scheme.

Models

- Suppose $\langle V, \in \rangle \models \operatorname{ZFC}$ and $\kappa \in V$ is an inaccessible cardinal. $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \operatorname{KM} + \operatorname{AC}$.
- Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{KM}$. Then $\mathscr{L} = \langle L, \in, \mathcal{L} \rangle \models \mathrm{KM} + \mathrm{AC}$.

Theorem: The theories KM and KM + AC are equiconsistent.

Moving back to first-order

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{KM} + \mathrm{AC}$.

- View each extensional well-founded class relation $R \in \mathcal{C}$ as coding a transitive set.
- Define a membership relation E on the collection of all such relations R (modulo isomorphism).
 - ▶ ORD + ORD, ORD $\cdot \omega$
 - $ightharpoonup V \cup \{V\}.$
- Let $\langle M_{\mathscr{V}}, \mathsf{E} \rangle$, the companion model of \mathscr{V} , be the resulting first-order structure.
- $M_{\mathscr{V}}$ has the largest cardinal $\kappa \cong \mathrm{ORD}^{\mathscr{V}}$.
- $V_{\kappa}^{M_{\gamma}} \cong V.$
- $\blacktriangleright \mathcal{P}(V_{\kappa})^{M}_{\mathscr{V}} \cong \mathcal{C}.$
- $\blacktriangleright \langle M_{\mathscr{V}}, \mathsf{E} \rangle \models \mathrm{ZFC}_{\mathsf{T}}^{-}.$ (Next slide!)

The theory $\mathrm{ZFC}_{\mathrm{I}}^{-}$

Axioms

- ZFC without powerset (Collection scheme instead of Replacement scheme).
- There is the largest cardinal κ .
- \bullet κ is inaccessible.
 - ightharpoonup κ is regular
 - for all $\alpha < \kappa$, 2^{α} exists and $2^{\alpha} < \kappa$.

Models

Suppose $\langle V, \in \rangle \models \text{ZFC}$ and a cardinal $\kappa \in V$ is inaccessible.

Let H_{κ^+} be the collection of all sets of hereditary size at most κ .

$$H_{\kappa^+} \models \mathrm{ZFC}_{\mathrm{I}}^-.$$

Moving to second-order

Suppose $M \models \mathrm{ZFC}_{\mathrm{I}}^-$ with the largest cardinal κ .

- $\bullet V = V_{\kappa}^{M}$
- $C = \{X \in M \mid X \subseteq V_{\kappa}^M\}$
- $\mathcal{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{KM} + \mathrm{AC}$
- $M_{\mathscr{V}} \cong M$ is the companion model of \mathscr{V}

Theorem: (Mostowski) The theory KM + AC is bi-interpretable with the theory ZFC_I^- .

Reflection principles

Reflection Principle: Every formula is reflected by a transitive set:

For every first-order formula $\varphi(x)$, there is a transitive set M such that for all $a \in M$, $\varphi(a)$ holds if and only if $M \models \varphi(a)$.

Theorem: (Lévy) ZFC proves the reflection principle.

Every first-order formula is reflected by some V_{Ω} .

Class Reflection Principle: Every formula is reflected by a sequence of classes:

For every second-order formula $\varphi(X)$, there is a sequence of classes $S = \langle S_{\xi} \mid \xi \in \text{ORD} \rangle$ such that for all $\xi \in \text{ORD}$, $\varphi(S_{\xi})$ if and only if $\langle V, \in, S \rangle \models \varphi(S_{\xi})$.

Theorem: Suppose $\mathscr{V} \models \mathrm{KM} + \mathrm{AC}$ and $M_{\mathscr{V}} \models \mathrm{ZFC}_{\mathrm{I}}^-$ is its companion model. Then \mathscr{V} satisfies the Class Reflection Principle if and only if $M_{\mathscr{V}}$ satisfies the Reflection Principle.

26 / 33

Dependent Choice Scheme

The Dependent Choice Scheme is a version of the Axiom of Dependent Choice for classes.

Dependent Choice Scheme: Given a second-order formula $\varphi(X,Y,A)$, if for every class X, there is another class Y such that $\varphi(X,Y,A)$ holds, then we can make ω -many dependent choices according to φ :

$$\forall X \exists Y \varphi(X, Y, A) \rightarrow \exists Y \forall n \varphi(Y_n, Y_{n+1}, A).$$

Theorem: Over $\mathrm{KM} + \mathrm{AC}$, the Dependent Choice Scheme is equivalent to the Class Reflection Principle.

Open question: Does KM + AC prove the Dependent Choice Scheme?

 $\textbf{Conjecture} \hbox{: (Friedman, G.)} \ \mathrm{KM} + \mathrm{AC} \ \text{does not prove the Dependent Choice Scheme}.$

The theory KM + AC + DC

KM + AC + DC: KM + AC together with the Dependent Choice Scheme.

Models

- Suppose $\langle V, \in \rangle \models \operatorname{ZFC}$ and $\kappa \in V$ is an inaccessible cardinal. $\langle V_{\kappa}, \in, V_{\kappa+1} \rangle \models \operatorname{KM} + \operatorname{AC} + \operatorname{DC}$.
- Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{KM}$. Then $\mathscr{L} = \langle L, \in, \mathcal{L} \rangle \models \mathrm{KM} + \mathrm{AC} + \mathrm{DC}$.

Theorem: The theories KM and KM + AC + DC are equiconsistent.

Naturalist approach to forcing

Question: How do we make sense of the generic filter G being outside V?

Theorem: Every partial order \mathbb{P} densely embeds into a complete Boolean algebra \mathbb{B} .

Elements of $\mathbb B$ are the regular cuts of $\mathbb P.$

Theorem: Densely embeddable partial orders produce the same forcing extensions. Suppose a partial order P densely embeds into another partial order Q.

- If G^* is a generic filter for \mathbb{Q} , then in a forcing extension $V[G^*]$, we can define a generic filter G for \mathbb{P} such that $V[G^*] = V[G]$.
- If G is a generic filter for \mathbb{P} , then in a forcing extension V[G], we can define a generic filter G^* for \mathbb{Q} such that $V[G^*] = V[G]$.

Suppose $\mathbb B$ is a complete Boolean algebra and U is an ultrafilter on $\mathbb B$.

- Build the definable Boolean valued model $V^{\mathbb{B}}$.
- Use U to turn $V^{\mathbb{B}}$ into a definable model $(W, \mathsf{E}) \models \mathrm{ZFC}$.
- ullet $W=ar{V}[G]$ is a forcing extension of a submodel $ar{V}$ by a complete Boolean algebra $ar{\mathbb{B}}$.
- There is an elementary embedding $j: V \to \bar{V}$ such that $j(\mathbb{B}) = \bar{\mathbb{B}}$.

Given a complete Boolean algebra \mathbb{B} , we can build inside V a definable model (\bar{V}, E) :

- There is an elementary embedding $j: V \to \overline{V}$.
- V has a generic filter G for $j(\mathbb{B}) = \overline{\mathbb{B}}$.
- V can build the model $\bar{V}[G]$.

Naturalist approach to class forcing

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models GBC$.

Definition: A class Boolean algebra $\mathbb B$ is class complete if every class antichain of $\mathbb B$ has a supremum.

Theorem: (Krapf, Njegomir, Holy, Lüke, Schlicht) A class Boolean algebra $\mathbb B$ with proper class antichains cannot be class complete.

Definition: A hyperclass is a (second-order) definable collection of classes.

Theorem: Every class partial order \mathbb{P} can be embedded into a hyperclass class complete Boolean algebra \mathbb{B} .

Problem: How do we do the Boolean valued model construction with a hyperclass Boolean algebra?

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{KM} + \mathrm{AC}$ and $M_{\mathscr{V}} \models \mathrm{ZFC}_{\mathrm{I}}^-$ is its companion model.

- The hyperclass Boolean algebra $\mathbb B$ is a class of $M_{\mathscr V}$.
- In $M_{\mathscr{V}}$, we can build the Boolean valued model $M_{\mathscr{V}}^{\mathbb{B}}$.
- **Problem**: $M_{\mathscr{V}}$ may not have any ultrafilters on \mathbb{B} .
- Solution: $M_{\mathscr{V}}$ needs to have a definable global well-order. Equivalently \mathscr{V} needs to have a hyperclass well-order of \mathscr{C} .

Forcing and Philosophy

The strongest hypothesis

Suppose $\mathscr{V} = \langle V, \in, \mathcal{C} \rangle \models \mathrm{KM} + \mathrm{AC} + \mathrm{DC}$ and $M_{\mathscr{V}} \models \mathrm{ZFC}_{\mathrm{L}}^-$ is its companion model.

- $M_{\mathscr{V}}$ has a class partial order \mathbb{P} such that:
 - ▶ $M_{\mathscr{V}}[G] \models \mathrm{ZFC}_{\mathsf{I}}^-$ has the form L[A] for some $A \subseteq \kappa$,
 - $V_{ij}^{M_{\gamma \gamma}[G]} = V_{ij}^{M_{\gamma \gamma}}$
- $M_{\Psi}[G]$ has a definable global well-order.
- Let $\bar{\mathscr{V}} = \langle \bar{V}, \in, \bar{\mathscr{C}} \rangle \models \mathrm{KM} + \mathrm{AC} + \mathrm{DC}$ such that $M_{\mathscr{V}}[G] = M_{\bar{\mathscr{V}}}$.

 - $ightharpoonup ar{V}$ has a canonical hyperclass well-order of classes.

The strongest hypothesis: KM + AC + DC and there exists a canonical hyperclass well-order of classes.

Zoo top tier

$KM \ + \text{There is a canonical hyperclass well-order of classes} \\ KM \ + \ AC \ + \ Class \ Reflection \ Principle \\ KM \ + \ AC \ + \ DC \\ \downarrow \\ KM \ + \ AC \\ \\ KM \ + \ Lo\acute{s} \ Theorem \ for \ second-order \ ultrapowers \\ KM \ + \ Choice \ Scheme \ over \ sets \\ \downarrow \\ KM$

32 / 33

Thank you!