Uniqueness of the determinant.
Review properties of the determinant:
-> Row interchange: If we swap two rows of a matrix
the determinant gets multiplied by (-1).
Row scalar: If we multiply a row of a matrix
by c, the determinant gets multiplied by c.
-> Row additivity: let (X+Y) = det (A) + det (A)
-> Row operations: If B is obtained from A by
Row operations: If B is obtained from A by a row operation (Ri +Ri -> Ri (where i + i))
then $de+(B) = de+(A)$.
Ly This follows from the first 3 properties,
Uniqueness theorem Let D'M(n,n) -> R be a function
Such that.
D(I) = 1, D(I) = 1, D(I) = 1, D(I) = 1, Then: D(A) = det(A) for all $A \in M(n, n)$.
and row additivity properties.
Then: $D(A) = det(A)$ for all $A \in M(n, n)$
D(T)=1
(Fancy words: det is the unique (normalized afternating)
Multilinear form on n-tuples of 1×n row vectors.)
refers to row additivity & scalar properties
Proof. It D satisfies the properties in @ we know
what now operations do to it.
I Swap two rows = change the sign of D
I. Add a multiple of a row to another row => D doesn't change
II. Scale a row by c => D gets multiplied by c.

```
Given A, put A in PREF.
           If A is invertible: RREF(A) = I. -> D(RREF(A))=det (RREF(A))
           If A isn't invertible: RREF(A) has a zero row.
                                                           D(RREF(A)) = det(RREF(A)) = 0.
 There's some sequence of row ops which turns RREF(A)
  back into A.
These row operations change D in the same way as they do det. So let(4) = D(A).
  Consequences of uniqueness
   Product theorem If A and B are 1x1 matrices,
            det(AB) = det(A) det(B).
   Proof Case 1: def (B) =0 Then rank (B) < n.
                          So rank (AB) <n So det (AB) = 0.
                    Case 2: det (B) 70
                   Define D(A) = def(AB) Want to show
                                                       det(B), D = det.
 Check uniqueness thm:
               → D(I) = det (IB) /det(B) = det(B) /det(B) = 1.
               >> Row interchange property:
                                 \begin{bmatrix} -A_1 & -A_2 & -A_2 & -A_2 & B & -A_2 & B
              The rows of AB are AB, --, AB.
So interchanging two rows of A => interchanges the
               some two rows of AB => changes the sign of
                def(AB) while leaving def(B) unchanged.
                   => charges the sign of D(A) = det (AB)/de+CB)
```

Row scalar property: if we scale
$$A$$
; by C ,

we also scale (AB) , ZA ; B by C .

So we scale $det(AB)$ by C , so we scale

 $P(AB)$ by C .

Promodificity property:

 $A: \begin{bmatrix} -A & -1 \\ -X & +Y \end{bmatrix}$

Then $AB = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$

Then $AB = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$

Then $AB = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -A & B \end{bmatrix}$
 $A = \begin{bmatrix} -A & B \\ -$

Conclusion: Let (A) can be defined by cofactor expansion along columns.

Also: det(A) = det(A^t)

det behaves well with respect to column aperations.

It satisfies column interchange, column scalar,

and column additivity properties.