

COST FUNCTION

Training Linear Regression

Linear Regression W dan b

Cost Function

Merupakan Fungsi yang digunakan untuk menghitung tingkat error pada suatu algoritma machine learning linear

Gradient Descent

Merupakan algoritma yang digunakan untuk memperkecil nilai **Cost Function**

COST FUNCTION

Merupakan Fungsi yang digunakan untuk menghitung tingkat error pada suatu algoritma machine learning linear

NO	Luas Rumah (1000 m2)	Harga (Jt)
1	1	300
2	2	500
3	4	800

Persamaan Linear

Persamaan Linear

$$\vec{Y} = \vec{w} \cdot \vec{X} + b$$

Persamaan Linear

Halotech Academy

 $\vec{Y} = \vec{w} \cdot \vec{X} + b$

Sekarang Kita akan coba beberapa persamaan linear

•
$$y = 100x + 100$$

•
$$y = 200x + 100$$

•
$$y = 300x + 100$$

•
$$y = 190x + 100$$

Dari persamaan di atas kita anak mencari nilai yang memiliki **cost function terkecil**.

Our Prediction cost for point Actual Value 700 600 y = 100x + 100500 20000 Cost = 23.333400 300 200 cost = (1/m)*(5000 + 20000 + 45000) = 233331.0 2.0 4.0 1.5

$$y = 200x + 100$$

$$Cost = 5.733$$

$$y = 300x + 100$$

$$Cost = 50.000$$

$$y = 180x + 100$$
 Cost = 400

Cost Function

$$J(w,b) = \frac{1}{2m} \sum_{i=0}^{m-1} (f_{w,b}(x^{(i)}) - y^{(i)})^2 \qquad f_{w,b}(x^{(i)}) = wx^{(i)} + b$$

$$f_{w,b}(x^{(i)})$$
 = Persamaan Linear / Fungsi Prediksi $x^{(i)}$ = X_train , ke- i w = weight b = bias m = Jumlah Data $y^{(i)}$ = Aktual Data, ke - i

$$J(w,b) = \frac{1}{2m} \sum_{i=0}^{m-1} (f(x^{(i)}) - y^{(i)})^2$$

$$J(w,b) = \frac{1}{2m} \sum_{i=0}^{m-1} ((wx^{(i)} + b) - y^{(i)})^2$$

$$J(180,100) = \frac{1}{2m} \sum_{i=0}^{m-1} ((180x^{(i)} + 100) - y^{(i)})^2$$

$$J(180,100) = \frac{1}{2(3)} \left[((180(1) + 100) - 300)^2 + ((180(2) + 100) - 500)^2 + ((180(4) + 100) - 800)^2 \right]$$

$$J(180,100) = \frac{1}{2(3)} [(280 - 300)^2 + (460 - 500)^2 + (820 - 800)^2]$$

$$J(180,100) = \frac{1}{2(3)} [400 + 1600 + 300]$$

$$J(180,100) = \frac{1}{6} [2400]$$

$$J(180,100) = 400$$

0000

THANKS FOR WATCHING

Next Video: Gradient Descent

0000

