STAT 500

ANOVA - Contrasts

ANOVA: Contrasts

- Donut example
 - We rejected the null hypothesis of an equal mean amount of oil absorbed for the four cooking oils.
 - Conclusion: At least some of the means for the four cooking oils are different.
 - Question: Which ones and by how much?

ANOVA: Comparisons and Contrasts

- Additional Analyses
 - Inference for a single population mean
 - Linear combinations of means contrasts as special case
 - Pairwise comparisons

ANOVA: Single Population Mean

ullet 100(1-lpha)% confidence interval for a single group mean

$$ar{Y}_{i.} \pm t_{N-r,1-lpha/2} \sqrt{rac{MS_{error}}{n_i}}$$

- ullet Note: MS_{error} is the estimate of the population variance $\sigma^2.$
- ullet Note: df for t distribution is N-r.
- Valid for a single population mean not used for comparison between means.

ANOVA: Contrasts

Contrast:

Linear combination of the population means

$$\gamma = \sum\limits_{i} c_{i} \mu_{i}$$

where

$$\sum\limits_{i=1}^{r}c_{i}=0$$

Contrast Examples

• Ex. Difference between group 1 mean and mean of groups 2 and 3.

$$\gamma=\mu_1-rac{\mu_2+\mu_3}{2}$$
 $(c_1=1,\ c_2=-0.5,\ c_3=-0.5,\ ext{and}\ c_4=0)$

• Ex. Difference between two group means

$$\gamma = \mu_i - \mu_k$$
 $(c_i = 1, c_k = -1, ext{ all other } c$'s $= 0)$

Estimation: Contrasts

- ullet Point estimate: $\hat{\gamma} = \Sigma_i \, c_i ar{Y}_i$.
- ullet Standard error assuming σ^2 is known:

$$\sigma_{\hat{\gamma}} = \sqrt{\sigma^2 \sum\limits_i (c_i^2/n_i)}$$

ullet Standard error when σ^2 is NOT known:

$$S_{\hat{\gamma}} = \sqrt{M S_{error} \sum\limits_{i} (c_i^2/n_i)}$$

• $100(1-\alpha)\%$ confidence intervals:

$$\hat{\gamma} \pm t_{N-r,1-lpha/2} S_{\hat{\gamma}}$$

Hypothesis Test: Contrasts

- ullet Test $H_o: \gamma = \Sigma_i \, c_i \mu_i = 0$
 - Using t distribution

$$t=rac{\hat{\gamma}-0}{S_{\hat{\gamma}}}$$
 has $N-r$ d.f.

- Using $oldsymbol{F}$ distribution

$$F=rac{SS_{\gamma}}{MS_{error}}$$
 has $(1,N-r)$ d.f.

where
$$SS_{\gamma} = rac{\hat{\gamma}^2}{(\Sigma_i\,c_i^2/n_i)}$$

ullet Two contrasts $\gamma_1=oldsymbol{arphi}_i\,c_i\mu_i$ and $\gamma_2=oldsymbol{arphi}_i\,b_i\mu_i$ are $\mathit{orthogonal}$ if

$$\sum\limits_{i}b_{i}c_{i}/n_{i}=0$$

ullet Example: $\gamma_1=\mu_1-rac{\mu_2+\mu_3}{2}$ and $\gamma_2=\mu_2-\mu_3$ $-c_1=1, c_2=-0.5, c_3=-0.5$ and $b_1=0, b_2=1, b_3=-1$

$$-\sum_{i} b_{i} c_{i}/n_{i} = 0(1)/n_{1} + 1(-0.5)/n_{2} + -1(-0.5)/n_{3} = 0$$

If γ_1 and γ_2 are orthogonal contrasts, then

- they represent statistically unrelated pieces of information.
 In another word, one contrast conveys no information about the other.
 - Estimates $\hat{\gamma}_1$ and $\hat{\gamma}_2$ are uncorrelated.
 - Hypothesis tests for γ_1 and γ_2 are independent results of one test do not affect results of other.
 - Confidence intervals for γ_1 and γ_2 are independent results of one do not affect results of other.

- A set of contrasts are orthogonal if all pairs are orthogonal.
- ullet For r means, there are at most r-1 mutually orthogonal contrasts in a set.
- ullet For r means, there are many possible sets of r-1 mutually orthogonal contrasts.
- ullet $SS_{\mbox{model}}$ can be decomposed by r-1 mutually orthogonal contrasts.
- ullet Example: Let r=4 as in the donut example, and let $\gamma_1,\gamma_2,\gamma_3$ be mutually orthogonal contrasts. Then

$$SS_{\mathsf{model}} = SS_{\gamma_1} + SS_{\gamma_2} + SS_{\gamma_3}$$

Orthogonal Polynomial Contrasts

Analyze trends for quantitative factors or ordered treatments Assume equal spacing of levels and equal sample sizes

For a factor with three equally spaced levels:

Trend	μ_1	μ_2	μ_3
Linear	-1	0	1
Quadratic	-1	2	-1

$$SS_{\mathsf{model}} = SS_{\mathsf{linear}} + SS_{\mathsf{quad}}$$

Orthogonal Polynomial Contrasts (cont.)

For a factor with five equally spaced levels:

Trend	μ_1	μ_2	μ_3	μ_4	μ_5
Linear	-2	-1	0	1	2
Quadratic	-2	1	2	1	-2
Cubic	-1	2	0	-2	1
Quartic	1	-4	6	-4	1

$$SS_{\mathsf{model}} = SS_{\mathsf{linear}} + SS_{\mathsf{quad}} + SS_{\mathsf{cubic}} + SS_{\mathsf{quartic}}$$

Why are orthogonal contrasts useful?

- F test from the ANOVA table
 - Tests whether all groups have the same mean
 - We don't always care about the F-test.
 Contrasts focus attention on specific questions.
 - Researcher must specify the questions
- Independence of test results means we can interpret tests for contrasts individually.
- Motivate partitioning of SS into "interesting" and "everything else" parts

Why are orthogonal contrasts useful?

- Researchers specify one question "Did type1 oil has a difference mean from the other three types?", answered by contrast with c=(-1,1/3, 1/3, 1/3).
- ullet Does this contrast explain all differences among means? $SS_{model} = SS_1 + SS_2 + SS_3 = SS_1 + ext{rest}$

Source	SS	d.f.
Model	$\overline{SS_{model}}$	3
Type1vsOthers		1
rest	$SS_{model} - SS_c$	3-1
Error	SS_{error}	$d\!f_{error}$