Cyclotomic polynomials

Introduction

1. Polynomials A(x), B(x), C(x), D(x) satisfy the equation

$$A(x^5) + xB(x^5) + x^2C(x^5) = (1 + x + x^2 + x^3 + x^4)D(x)$$
 for all $x \in \mathbb{R}$.

Find all possible values of A(1).

2. A sequence a_1, a_2, \ldots, a_n is called k-balanced if

$$a_1 + a_{k+1} + \ldots = a_2 + a_{k+2} + \ldots = \ldots = a_k + a_{2k} + \ldots$$

Suppose the sequence a_1, a_2, \ldots, a_{50} is k-balanced for k = 3, 5, 7, 11, 13, 17. Prove that a_i are all zeros.

Definition 1. A complex number z is called a **primitive** nth root of unity if $z^n = 1$ and $z^k \neq 1$ for k = 1, 2, ..., n - 1.

In other words, z^n is the first power which is equal to 1.

Definition 2. The nth cyclotomic polynomial is the monic polynomial $\Phi_n(x)$ whose roots are exactly primitive nth roots of unity, that is

$$\Phi_n(x) = \prod_{\gcd(n,k)=1, 1 \leqslant k \leqslant n} (x - e^{\frac{2\pi k}{n}i})$$

Problems

- 1. Find all primitive roots of unity (see Definition 1) if a) n = 1, b) n = 2, c) n = 3, d) n = 4, e) n = 6.
- 2. Prove that the number of primitive nth roots of unity is $\varphi(n)$.
- 3. Find cyclotomic polynomials (see Definition 2) $\Phi_1(x)$, $\Phi_2(x)$, $\Phi_3(x)$, $\Phi_4(x)$, $\Phi_6(x)$.
- 4. Prove that the degree of $\Phi_n(x)$ is even for any n > 2.
- 5. Find the degree of $\Phi_n(x)$.
- 6. Find $\Phi_p(x)$ if p is a prime number.

7. Prove that for any positive integer n

$$\prod_{d|n} \Phi_d(x) = x^n - 1. \tag{1}$$

Remark. We have also proved that $\sum_{d|n} \varphi(d) = n$.

- 8. Prove that $\Phi_n(x)$ is a polynomial with integer coefficients.
- 9. Let $\Phi_n(x) = \sum_{i=0}^{\varphi(n)} a_i x^i$ for $n \geq 2$. Prove that $a_i = a_{\varphi(n)-i}$ for all $0 \leq i \leq \varphi(n)$.
- 10. Find $\Phi_{81}(x)$.
- 11. Let n > 1 be an odd integer. Prove that $\Phi_{2n}(x) = \Phi_n(-x)$.
- 12. Polynomial $\Phi_n(x)$ is irreducible over \mathbb{Q} . Prove that $\Phi_p(x)$ is irreducible over \mathbb{Z} if p is a prime number.

Remark. Note that $\Phi_n(x)$ can be reducible over \mathbb{Z}_p for some prime numbers p. Give an example.

- 13. Determine whether there exists a polynomial P(x) with integer coefficients such that P(x) is irreducible over \mathbb{Z} , but reducible over \mathbb{Z}_p for any prime p.
- 14. Prove that $\Phi_n(x) = \prod_{d|n} (x^d 1)^{\mu(n/d)}$, where μ is the Mobius function, that is

$$\mu(n) = \begin{cases} 1 & n = 1\\ (-1)^k & n = p_1 \dots p_k\\ 0 & n = p^2 m \end{cases}$$

15. For any positive integer n, the sum of all primitive nth roots of unity is $\mu(n)$.

Closer to number theory

Lemma 1 (**Key fact**). Let p be a prime, n a positive integer and a any integer. Suppose

$$\Phi_n(a) \equiv 0 \pmod{p}$$
.

Prove that either

- \bullet p divides n, or
- n divides p-1 (moreover, n is the order of a modulo p).
- 16. What does Lemma 1 say if n = 4?
- 17. Prove Lemma 1.

- 18. Let x be an integer and p > 3 a prime such that $p \mid x^2 x + 1$. Prove that $p = 1 \pmod{6}$.
- 19. Let a and b be integers such that $a^4 + b^4$ is divisible by 1001. Prove that both a and b are divisible by 1001.
- 20. Let m and n be distinct positive integers and p a prime such that $p \nmid mn$. Then $\Phi_m(a)$ and $\Phi_n(a)$ cannot both be divisible by p for $a \in \mathbb{Z}$.
- 21. Let m and n be two distinct positive integers and p a prime such that $p \nmid mn$. Then $gcd(\Phi_m(x), \Phi_n(x)) = 1$ over $\mathbb{Z}_p[x]$.
- 22. Prove that for any prime number p there always exists a primitive root, i.e. there exists a positive integer a such that a, a^2, \ldots, a^{p-1} are all different modulo p. *Hint*. You may use the following identity

$$x^{p-1} - 1 \equiv (x-1)(x-2)\dots(x-(p-1)) \pmod{p}$$

- 23. Prove that for any positive integer n there exist infinitely many primes congruent to 1 modulo n.
- 24. Let p be a prime number. Prove that there exists a prime number q such that for every integer n, the number $n^p p$ is not divisible by q.

Homework

1. For any positive integer n, let $\tau(n)$ be the number of positive factors of n (for example, $\tau(5) = 2$, $\tau(6) = 4$). Prove that

$$\sum_{d|n} \tau(n/d)\mu(d) = 1.$$