EM Algorithm

■ Mixture Models

When data in a distribution is drawn from one of multiple distributions, and you don't know which distribution each datapoint is.

A common type of mixture model is two Gaussian mixed with a Bernoulli

- ullet p to draw from $f_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$
- ullet 1-p to draw from $f_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$

This model has 5 parameters $(\mu_1,\mu_2,\sigma_1^2,\sigma_2^2,p)$

- ullet For now, we will assume that we know $\sigma_1=1,\sigma_2=1,p=1/2$
- Then, the log likelihood is:

$$\ell_n(\mu_0,\mu_1) = \sum_{i=1}^n \log \left(rac{1}{2} rac{1}{\sqrt{2\pi}} e^{-rac{(Y_i - \mu_0)^2}{2}} + rac{1}{2} rac{1}{\sqrt{2\pi}} e^{-rac{(Y_i - \mu_1)^2}{2}}
ight)$$

- This is hard to optimize
- ullet Suppose we know the labels $Z_i \in \{0,1\}$ for each Y_i
 - Then optimizing is just:

$$egin{aligned} &\sum_{i=1}^n \log \left(f_0(Y_i)^{1-Z_i} f_1(Y_i)^{Z_i}
ight) \ &= \sum_{i=1}^n (1-Z_i) \log f_0(Y_i) + Z_i \log f_1(Y_i) \ &= -rac{1}{2} \sum_{i:Z_i=0} (Y_i - \mu_0)^2 - rac{1}{2} \sum_{i:Z_i=1} (Y_i - \mu_1)^2 + ext{const} \end{aligned}$$

• This is more easily optimizable, and can be solved with:

$$egin{aligned} \mu_0 &= rac{\sum_{i:Z_i=0} Y_i}{\#\{i:Z_i=0\}} \ \mu_1 &= rac{\sum_{i:Z_i=1} Y_i}{\#\{i:Z_i=1\}} \end{aligned}$$

- In reality, we don't have these labels to separate the data
 - $\circ~$ To estimate these Z_i , we need to see how close we are to μ_0,μ_1
 - So we use an estimate of μ_0, μ_1 to estimate Z_i , and then use this to improve μ_0, μ_1
- E Step: Estimating Z_i with μ_0, μ_1

$$\hat{Z}_i = \mathbb{E}\left[Z_i \mid Y_i
ight] = rac{e^{-(Y_i - \mu_1)^2/2}}{e^{-(Y_i - \mu_1)^2} + e^{-(Y_i - \mu_0)^2}}$$

- M Step: Estimating μ_0, μ_1 with Z_i
 - We use the previously derived equations:

$$egin{aligned} \mu_0 &= rac{\sum_{i:Z_i=0} Y_i}{\#\{i:Z_i=0\}} \ \mu_1 &= rac{\sum_{i:Z_i=1} Y_i}{\#\{i:Z_i=1\}} \end{aligned}$$

Let's consider a more general case, where the mixture is given by:

$$f(y)=(1-p)f_{\theta_0}(y)+pg_{\theta_1}(y)$$

• θ_0 and θ_1 can be multidimensional and we don't know p

