5-3 Theorems Involving Parallel Lines

In this section we will prove four useful theorems about parallel lines. The first theorem uses the definition of the distance from a point to a line. (See page 154.)

Theorem 5-8

If two lines are parallel, then all points on one line are equidistant from the other line.

Given: $l \parallel m$; A and B are any points on l;

 $\overline{AC} \perp m; \overline{BD} \perp m$

Prove: AC = BD

Proof:

Since \overline{AB} and \overline{CD} are contained in parallel lines, $\overline{AB} \parallel \overline{CD}$. Since \overline{AC} and \overline{BD} are coplanar and are both perpendicular to m, they are parallel. Thus ABDC is a parallelogram, by the definition of a parallelogram. Since opposite sides \overline{AC} and \overline{BD} are congruent, AC = BD.

Theorem 5-9

If three parallel lines cut off congruent segments on one transversal, then they cut off congruent segments on every transversal.

Given: $\overrightarrow{AX} \parallel \overrightarrow{BY} \parallel \overrightarrow{CZ}$;

 $\overline{AB} \cong \overline{BC}$

Prove: $\overline{XY} \cong \overline{YZ}$

Proof:

Through X and Y draw lines parallel to \overrightarrow{AC} , intersecting \overrightarrow{BY} at R and \overrightarrow{CZ} at S, as shown. Then AXRB and BYSC are parallelograms, by the definition of a parallelogram. Since the opposite sides of a parallelogram are congruent, $\overline{XR} \cong \overline{AB}$ and $\overline{BC} \cong \overline{YS}$. It is given that $\overline{AB} \cong \overline{BC}$, so using the Transitive Property twice gives $\overline{XR} \cong \overline{YS}$. Parallel lines are cut by transversals to form the following pairs of congruent corresponding angles:

$$\angle 1 \cong \angle 3$$

$$\angle 4 \cong \angle 2$$

Then $\angle 1 \cong \angle 2$ (Transitive Property), and $\triangle XYR \cong \triangle YZS$ by AAS. Since \overline{XY} and \overline{YZ} are corresponding parts of these triangles, $\overline{XY} \cong \overline{YZ}$.