Compiladores

Análise Sintática (Parte 4)

Introdução

A proposta destas notas de aula é fornecer um tutorial para a geração de uma *máquina de* estados finitos¹, em formas textual e gráfica, para um *parser* analisar a linguagem cujas regras da gramática estão expressas em um arquivo fornecido, utilizando a ferramenta bison.

Espera-se que o leitor tenha conhecimentos sobre análise sintática e a ferramenta bison. Para ler os textos anteriores sobre análise sintática e exemplos de uso do bison, basta clicar clicar nos links abaixo:

- Análise Sintática (Parte 1)
- Análise Sintática (Parte 2)
- Análise Sintática (Parte 3)

Tutorial de Geração de Máquinas de Estados

Esta seção descreve a sequência de passos do tutorial.

- 1) Obtenha o arquivo gramatica.y.
- 2) No diretório em que o arquivo se encontra, gere o arquivo gramatica.output, que conterá a descrição textual da máquina de estados finitos que o bison utilizaria para analisar a linguagem do arquivo gramatica.y. Para isso, abra o terminal e digite:

¹ Máquinas de estados finitos são utilizadas para modelar problemas, projetar circuitos, protocolos e analisar sintaticamente linguagens de programação (adaptado de Pilla, s.d.).

```
bison -r state gramatica.y
```

- 3) Leia o arquivo gramatica.output.
- 4) Gere uma representação gráfica da máquina de estados através dos seguintes comandos²:

```
bison -g gramatica.y
dot -Tpdf gramatica.dot > gramatica.pdf
evince gramatica.pdf
```

5) Leia o arquivo gerado gramatica.pdf. Note que os losangos fornecem os números das regras que você deve reduzir.

Exercícios

Referindo-se ao arquivo gramatica. y, faça o que se pede.

- 1) Converta as regras da gramática para o formato utilizado em aula $(A \rightarrow B)$.
- 2) Crie a tabela de ação/transição com base no conteúdo dos arquivos gramatica.output e gramatica.pdf.
- 3) Descreva a sequência de dados da pilha produzida durante a análise empilhar/reduzir da entrada abaixo:

```
VAR OR NOT VAR AND VAR STOP
```

Lembre-se: A pilha de um analisador SLR (e LALR, que o bison usa) deve conter números de estado e símbolos.

Respostas

- 1) As regras da gramática ficariam da seguinte maneira:
- 1. $S \rightarrow D STOP$
- 2. $D \rightarrow D OR C$
- 3. $D \rightarrow C$
- 4. $C \rightarrow C \text{ AND } L$

² Caso o comando dot não funcione, instale o pacote graphviz (sudo apt install graphviz).

- $5. \quad C \to L$
- $6. \ L \to VAR$
- 7. $L \rightarrow NOT VAR$
- 8. $L \rightarrow LP D RP$

2) A tabela SLR ficaria da seguinte maneira:

STA- TES	OR	AND	NOT	LP	RP	VAR	STOP	\$	S	D	С	L
0			E1	E2		E3		AC	4	5	6	7
1						E8		AC				
2			E1	E2		E3				9	6	5
3						R6						
4								E10				
5	E11						E12					
6	R3	E13									3	
7	R5	R5	R5	R5	R5	R5	R5	R5				5
8	R7	R7	R7	R7	R7	R7	R7	R7				
9	E11				E14							
10								AC				
11			E1	E2		E3					15	7
12	R1	R1	R1	R1	R1	R1	R1	R1		1		
13			E1	E2		E3						16
14										8		
15	R2	E13	R2	R2	R2	R2	R2	R2				
16	R4	R4	R4	R4	R4	R4	R4	R4			4	

3) A sequência ficaria como segue:

Pilha	Entrada	Ação
0	VAR OR NOT VAR AND VAR STOP\$	E3
0 VAR 3	OR NOT VAR AND VAR STOP\$	R6
0 L 7	OR NOT VAR AND VAR STOP\$	R5

0 C 6	OR NOT VAR AND VAR STOP\$	R3
0 D 5	OR NOT VAR AND VAR STOP\$	E11
0 D 5 OR 11	NOT VAR AND VAR STOP\$	E1
0 D 5 OR 11 NOT 1	VAR AND VAR STOP\$	E8
0 D 5 OR 11 NOT 1 VAR 8	AND VAR STOP\$	R7
0 D 5 OR 11 L 7	AND VAR STOP\$	R5
0 D 5 OR 11 C 15	AND VAR STOP\$	E13
0 D 5 OR 11 C 15 AND 13	VAR STOP\$	E3
0 D 5 OR 11 C 15 AND 13 VAR 3	STOP\$	R6
0 D 5 OR 11 C 15 AND 13 L 16	STOP\$	R4
0 D 5 OR 11 C 15	STOP\$	R2
0 D 5	STOP\$	E12
0 D 5 STOP 12	\$	R1
0 S 1	\$	Aceita

Referências

BROWN, Christopher W. /SI413/lec/I12/SLR Parsing [HW]. Disponível em:

https://www.usna.edu/Users/cs/wcbrown/courses/F19SI413/lec/I12/hw.html. Acesso em 01 jun. 2024.

PILLA, Laércio Lima. Modelos abstratos e computabilidade. Aula 2: Máquinas de estados. [s.d.]. Disponível em:

http://www.inf.ufsc.br/~alexandre.goncalves.silva/courses/16s1/ine5602/slides/computabilidade2 .pdf. Acesso em: 01 jun. 2024.