which yields

$$b = \frac{r_{32} - r_{23}}{4a}, \quad c = \frac{r_{13} - r_{31}}{4a}, \quad d = \frac{r_{21} - r_{12}}{4a}.$$

Case 2. $\operatorname{tr}(R) = -1$, or equivalently $\theta = \pi$. In this case a = 0. By equating $R + R^{\top}$ and $R_q + R_q^{\top}$, we get

$$4bc = r_{21} + r_{12}$$
$$4bd = r_{13} + r_{31}$$

 $4cd = r_{32} + r_{23}.$

By equating the diagonal terms of R and R_q , we also get

$$b^{2} = \frac{1 + r_{11}}{2}$$

$$c^{2} = \frac{1 + r_{22}}{2}$$

$$d^{2} = \frac{1 + r_{33}}{2}.$$

Since $q \neq 0$ and a = 0, at least one of b, c, d is nonzero.

If $b \neq 0$, let

$$b = \frac{\sqrt{1 + r_{11}}}{\sqrt{2}},$$

and determine c, d using

$$4bc = r_{21} + r_{12}$$
$$4bd = r_{13} + r_{31}.$$

If $c \neq 0$, let

$$c = \frac{\sqrt{1 + r_{22}}}{\sqrt{2}},$$

and determine b, d using

$$4bc = r_{21} + r_{12}$$
$$4cd = r_{32} + r_{23}.$$

If $d \neq 0$, let

$$d = \frac{\sqrt{1 + r_{33}}}{\sqrt{2}},$$

and determine b, c using

$$4bd = r_{13} + r_{31}$$
$$4cd = r_{32} + r_{23}.$$