Name_____

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

- 1. The area in the first quadrant bounded by the curve $y = x^2$ and the line y x 2 = 0 is equal to
 - (A) 3/2
 - (B) 2/3
 - (C)7/6
 - (D) 10/3
 - (E) 9/2
- 2. Evaluate the limit: $\lim_{x\to 5} \frac{\sqrt{x+4}-3}{x-5}$.
 - (A)-1/6
 - (B) 0
 - (C) 1/6
 - (D) 1
 - (E)6
- 3. Evaluate the limit: $\lim_{h\to 0} \frac{\sin(\frac{\pi}{2}+h) \sin(\frac{\pi}{2})}{h}$.
 - (A) -1
 - (B) 0
 - (C) 1
 - $(D) \pi/2$
 - (E) None of the above
- 4. If $f(x) = e^{1/x}$, then f'(1) equals:
 - (A) -e
 - (B) -1
 - (C) 0
 - (D) 1
 - (E) *e*

- 5. The position of a particle P on a line is given by the equation $s(t) = t^3 + t^2 t 3$. On which interval is the particle moving to the right?
 - (A) t > -1
 - (B) t < -1/3 or t > 1
 - (C) t < -1 or t > 1/3
 - (D)-1 < t < 1/3
 - (E) t < 1/3
- 6. Define $F(x) = \int_{x}^{1} \ln t dt$. Find F'(2).
 - (A) ln(2)
 - (B) e^{2}
 - (C) ln(2)
 - (D) *e*
 - (E) 1
- 7. Evaluate $\int \frac{x}{\sqrt{9-x^2}} dx$.
 - $(A)(-1/2) \cdot \ln \sqrt{9-x^2} + C$
 - (B) $\sin^{-1}(x/3) + C$
 - $(C) \sqrt{9 x^2} + C$
 - (D) $(-1/4) \cdot \sqrt{9-x^2} + C$
 - (E) $2\sqrt{9-x^2} + C$
- 8. If $f(x) = \log_2 3x$, then f'(x) equals
 - (A) 1/(3x)
 - (B) ln(3x)
 - (C) $1/(x \ln 2)$
 - (D) e^{3x}
 - (E) $2e^{3x}$

- 9. Let $f(t) = (1/t^2) 4$ and $g(t) = \cos t$. Find the derivative of the composition $(f \circ g)(t)$.
 - (A) $2 \sec^2 t \tan t$
 - (B) $\tan t$
 - (C) $2 \sec t \tan t$
 - (D) $\frac{2}{t^3 \sin t}$
 - $(E) \frac{2}{\cos^3 t}$
- 10. Given the initial value problem $\frac{dy}{dx} = ky$, with conditions y(0) = 10 and y(2) = 18. The constant of proportionality k equals:
 - (A).153
 - (B).212
 - (C).293
 - (D).314
 - (E).400
- 11. Let f be a twice-differentiable function (a function whose first and second derivatives both exist). f''(c) = 0 could mean that
 - (A) f has a local maximum at x = c
 - (B) f has a local minimum at x = c
 - (C) f has a point of inflection at x = c
 - (D) None of the above
 - (E) Any of the above
- 12. Find the slope of the tangent to the curve $x^2y + 3x^2y^3 = 4$ at the point (1,-1).
 - (A) 0.4
 - (B) 0.8
 - (C) 1.0
 - (D) 1.6
 - (E) 2.0

Name_____

- 13. Evaluate the limit $\lim_{x \to -\infty} \frac{4x^2 8x}{8x^2 + 6x + 5}$.
 - (A) -∞
 - (B) .5
 - (C) 1.5
 - (D) 8
 - **(E)** ∞

Use the chart below to answer questions 14 and 15 about the graph of a continuous function f whose first and second derivatives are also continuous. The only critical points of f are located at x = 0 and x = 2.

х	-1	0	1	2	3	4
f^{\prime}	+	0	+	0	_	_
$f^{\prime\prime}$	+	0	_	_	_	_

- 14. The function f has a local Maximum at:
 - (A) 0
 - (B) 2
 - (C) 3
 - (D) 4
 - (E) Both 2 and 4
- 15. The function f is decreasing on which intervals?
 - (A)(-1,1]
 - (B) [1,4]
 - (C) (0,3]
 - (D)(2,4)
 - (E) None of these intervals

Use the graph below to answer questions 16 and 17.

This graph represents $\underline{\text{the derivative}}$ of some continuous function, f

16. Which of the following graphs could represent the graph of f?

(B)

17. Which of the following graphs could represent the graph of f''?

18. Evaluate $\int x^3 e^x dx$.

(A)
$$e^{x}(3x^{2}+x^{3})+C$$

(B)
$$3x^2e^x + C$$

(C)
$$e^x(x^3+3x^2+6x+6)+C$$

(A)
$$e^{x}(3x^{2} + x^{3}) + C$$

(B) $3x^{2}e^{x} + C$
(C) $e^{x}(x^{3} + 3x^{2} + 6x + 6) + C$
(D) $e^{x}(x^{3} - 3x^{2} + 6x - 6) + C$

(E)
$$x^3 e^x + C$$

19. A rectangle is to be inscribed under one arch of the sine curve as shown below. What is the area of the largest rectangle that can be formed?

- (A) 3.14
- (B) 2.21
- (C) 1.12
- (D) 0.94
- (E) .021

- 20. Let L(x) be the linearization of the function $f(x) = \sqrt{1+x}$ at x = 0. The difference between L and f at x = 0.2 would be:
 - (A) 0.250
 - (B) 1.095
 - (C) 1.000
 - (D) 0.005
 - (E) 0.002

ANSWER KEY

01 D

02 C

03 B

04 A

05 C

06 A

07 C

08 C

09 A

10 C

11 E

12 B

13 B

14 B

15 D

16 C

17 C

18 D

19 C

20 D