Code No: **R164205B**

Set No. 1

IV B.Tech II Semester Regular/Supplementary Examinations, June - 2022 ARTIFICIAL NEURAL NETWORKS

(Common to Computer Science and Engineering and Information Technology) Max. Marks: 70 Time: 3 hours

> Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B ****

PART-A (14 Marks) a) Explain the role of activation function in artificial neuron. 1. [2] b) Discuss about competitive learning algorithm. [3] What kind of operations can be implemented with perceptron? c) [2] d) What are feed forward artificial neural networks? [2] What is universal approximation theorem? e) [2] f) Write a short note on inner product kernels. [3] PART-B (4x14 = 56 Marks)Compare and contrast Biological neuron with artificial neuron. 2. [7] Describe various functional aspects of artificial neuron model with respect to [7] b) activation functions 3. a) How state space model of artificial neural networks can be used for optimization [7] of various applications? Explain. Illustrate the working principles of supervised learning with an example b) [7] 4. Explain about linear adaptive filtering [7] Discuss the Signal Flow graph representations with respect to Perceptron [7] algorithm Describe the training steps for back propagations networks [7] Explain the importance of hidden and output layers in Multi-layer feed forward [7] networks 6. a) Write a short note on Radial Basis Function networks [7] b) Explain about interpolation [7] 7. Give the classification of hyperplanes. How SVM overcomes the drawbacks of [7] other classification approaches? Illustrate the idea of an optimal hyperplane for linearly separable patterns [7]

Code No: **R164205B**

Set No. 2

IV B.Tech II Semester Regular/Supplementary Examinations, June - 2022 ARTIFICIAL NEURAL NETWORKS

(Common to Computer Science and Engineering and Information Technology)
Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

		TAKI-A (14 Marks)	
1.	a)	What are the applications of artificial neural networks?	[2]
	b)	Explain the working principles of unsupervised learning	[2]
	c)	Give the role of mean square error in delta learning rule	[2]
	d)	Discuss the use of Back Propagation networks	[3]
	e)	What are the approximation properties of Radial Basis Function networks?	[2]
	f)	Write a short note on linear seperability	[3]
		$\underline{\mathbf{PART-B}} \ (4x14 = 56 \ Marks)$	
2.	a)	Explain the architecture of artificial neural network	[7]
	b)	Write a short note on recurrent neural networks	[7]
3.	a)	How to find multiplication by inverse in vector algebra? Explain with example.	[7]
	b)	Explain the concept of optimization with suitable example. Give its application	[7]
		in the design of learning systems.	
4.	a)	Explain the Convergence Considerations with respect to Perceptron algorithm?	[7]
	b)	Elaborate on the two-class pattern classification problem	[7]
5.	a)	Explain the training algorithm in back propagation networks	[7]
	b)	Write a short note on forward propagation of function signals	[7]
6.	a)	Write about the RBF networks design with respect to Radial Basis Function network	[7]
	b)	How interpolation problem is solved with Radial Basis Function networks? Illustrate.	[7]
7.	a)	Explain inner product kernels for various types of Support Vector Machines	[7]
	b)	Design the Support Vector Machine for Classification Problems	[7]

Code No: **R164205B**

Set No. 3

IV B.Tech II Semester Regular/Supplementary Examinations, June - 2022 ARTIFICIAL NEURAL NETWORKS

(Common to Computer Science and Engineering and Information Technology)
Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

1.	a)b)c)d)	Why activation function is used in Artificial neuron? What is state space model of artificial neural networks? Define perceptron. Write a short note on Multi-layer feed forward networks	[3] [2] [2]
	e) f)	What is interpolation problem? How to build a Support Vector Machine for pattern recognition problem?	[3] [2]
		$\underline{\mathbf{PART-B}} \ (4x14 = 56 \ Marks)$	
2.	a)	Give the role of activation function in Artificial neural networks. Explain different activation functions.	[7]
	b)	How single layer perceptron is different from multi-layer perceptron? Explain the concept of multi-layer neuron model.	[7]
3.	a)	Describe about systems of linear equations and substitutions. Give its applications	[7]
	b)	Explain various operations that can be performed on vectors	[7]
4.	a)	What is the need of convergence of perceptron? Explain the perceptron convergence theorem.	[7]
	b)	Write a short note on linear adaptive filtering	[7]
5.	a) b)	Describe the design issues of back propagation learning Explain various steps involved in solving function approximation with back propagation networks	[7] [7]
6.		Write about the RBF networks training with respect to Radial Basis Function(RBF) networks with a suitable example	[14]
7.	a) b)	Explain the architecture of Support Vector Machine How to find maximal hyper planes to solve two class classification problem with Support Vector Machine, when data is Linearly Inseparable?	[7] [7]

Code No: **R164205B**

Set No.4

IV B.Tech II Semester Regular/Supplementary Examinations, June - 2022 ARTIFICIAL NEURAL NETWORKS

(Common to Computer Science and Engineering and Information Technology)
Time: 3 hours

Max. Marks: 70

Question paper consists of Part-A and Part-B Answer ALL sub questions from Part-A Answer any FOUR questions from Part-B *****

PART-A (14 Marks)

1.	a)	Write a short note on activation function	[2]
	b)	What is unsupervised learning?	[3]
	c)	What is Jacobian matrix?	[2]
	d)	Give the structure of multi layer feed forward network.	[3]
	e)	What is radial basis function network?	[2]
	f)	Write a short note on Support Vector Machine	[2]
		$\underline{\mathbf{PART-B}}\ (4x14 = 56\ Marks)$	
2.	a)	Explain the working principles of neurons with "R" number of inputs	[7]
	b)	Explain the role of synapse in biological neuron with a neat diagram.	[7]
3.	a)	Give the role of optimization in the design of neural networks? Illustrate.	[7]
	b)	Differentiate memory based learning with competitive learning.	[7]
4.	a)	Explain the working principle of perceptron with a pair of non-linearly separable patterns	[7]
	b)	Describe the Virtues and limitations with respect to Perceptron algorithm	[7]
5.	a)	Describe about various notations used in back propagation algorithm?	[7]
٥.	b)	The back propagation law is also known as generalized delta rule. Is it true? Justify.	[7]
6.	a)	Describe the training algorithm used for RBFN with fixed centers	[7]
	b)	Briefly explain about regularization networks	[7]
7.	a)	Explain how Support Vector Machine separates non-separable patterns	[7]
	b)	Explain various constraints involved in quadratic optimization for finding the optimal hyperplanes	[7]