Задание 5 (на 16.03).

СС 28. Приведите пример разрешимого языка из P/poly, который не лежит в P

 $\overline{\mathbf{CC}}$ Докажите, что $\mathbf{NTime}n \neq \mathbf{PSPACE}$.

 \mathbb{CC} 30. Докажите, что $\mathbb{D}\mathbf{Space}n \neq \mathbf{NP}$.

CC 31. Обозначим UCYCLE множество всех неориентрованных графов, в которых есть цикл. Докажите, что UCYCLE принадлежит классу ${\bf L}$.

СС 10. Докажите, что:

- (a) что число n простое тогда и только тогда, когда для каждого простого делителя q числа n-1 существует $a\in 2,3,\ldots,n-1$ при котором $a^{n-1}\equiv 1\pmod n$, а $a^{\frac{n-1}{q}}\not\equiv 1\pmod n$;
- (б) язык простых чисел лежит в NP.

 $\fbox{CC 21.}$ (подсказка: вспомните задачу $P = NP \Rightarrow EXP = NEXP$) Пусть $NP \subseteq DTime[n^{\log(n)}]$, докажите, что $PH \subseteq \bigcup_k DTime[n^{\log^k(n)}]$.

СС 23. Докажите, что:

(б) если $SAT \in L$, то $NP \subseteq L$.

CC 26. (подсказка: **NEXP**^{NEXP}vs.**NEXP**) Докажите, что если **P** = **NP**, то существует язык из **EXP**, схемная сложность которого не меньше $\frac{2^n}{10n}$.

СС 27. Докажите, что существует язык, для которого любой алгоритм, работающий время $O(n^2)$ решает его правильно на менее, чем на половине входов какой-то длины, но этот язык распознается алгоритмом, работающим время $O(n^3)$.