Математика Топология

Определение 1

Топологическое пространство — это пара (X,Ω) , где $\Omega\subset 2^X$ и выполнено 3 свойства:

- 1) $\varnothing, X \in \Omega$,
- (2) $A, B \in X \Rightarrow A \cap B \in X$,
- 3) $A_i \in X, i \in I \Rightarrow \bigcup_{i \in I} A_i \in X$.

Элементы множества Ω называются *открытыми* множествами.

Если $A-\mathit{открыто}$, то $X\setminus A-\mathit{замкнуто}$.

Задача 1

Переформулируйте аксиомы для замкнутых множеств.

 $\Pi puмер 1.$ Топология называется mpuвиальной, если $\Omega = \varnothing, X.$

Задача 2

Докажите, что тривиальная топология — топология.

Пример 2. Топология называется дискретной, если $\Omega = 2^X$.

Задача 3

Докажите, что $\partial ucкретная$ топология — топология.

Определение 2

Метрическое пространство — это пара (X,d), где $d: X \times X \to R_+$ и выполнено 3 свойства:

- 1) $d(x,y) = 0 \Leftrightarrow x = y$,
- 2) $d(x,y) = d(y,x), \forall x, y \in X$,
- 3) Неравенство треугольника $\forall x, y, z$

$$d(x,y) + d(y,z) \geqslant d(x,z).$$

d называется $\emph{mempukoŭ}$ или $\emph{paccmoshuem}$

Пример 3.
$$\left(\mathbb{R}^n, \sqrt[p]{\sum\limits_{i=1}^n (x_i-y_i)}\right)$$
 — Евклидово расстояние

Математика Топология

Задача 4

Докажите, что Евклидово расстояние — метрика

Пример 4. $(X,d), d = \begin{cases} 1, x \neq y \\ 0, x = y \end{cases}$ — метрика лентяя, дискретная метрика

Задача 5

Докажите, что дискретная метрика — метрика

Определение 3

 $\|x\|_p = p^{-\nu_p(x)} - p$ -адическая норма

Пример 5. $(\mathbb{Q},d),d(r,s)=\|r-s\|_p-p$ -адическая метрика

Задача 6

Докажите, что p-адическая метрика — метрика

Определение 4

(X, d) — метрическое пространство.

 $m{Omкрытый \ map} - \underline{B_r(x_0)} = \{y \in X \mid d(y,x_0) < x\}.$ $m{3aмкнутый \ map} - \overline{B_r(x_0)} = \{y \in X \mid d(y,x_0) \leqslant x\}.$

Задача 7

Как устроены шары в метрике лентяя?

Задача 8

Как устроены шары в *p-адической метрике*?

Определение 5

(X,d) — метрическое пространство.

Топология Ω_d **индуцированная** метрикой определяется так:

 $A \in \Omega_d$, если A представляется как объединение открытых шаров в X.

Математика Топология

Задача 9

Проверьте корректность определения индуцированной топологии.

 $\Pi puмер 6. \mathbb{R}$ со стандартной метрикой.

Открытые шары = открытые интервалы.

Примеры замкнутых множеств: $[0, 1], \{2, 3, 9\};$

Задача 10

Докажите, что $A=\left\{\frac{1}{n}\right\}_{n\in\mathbb{Z}_{>0}}$ замкнутым не является, а $A\cup\{0\}$ — замкнуто

Задача 11

(X,d) — метрическое пространство.

 $U \subset X - om\kappa pumo \Leftrightarrow \forall x \in U \exists \varepsilon : B_{\varepsilon}(x) \subset U$