Introduction à l'Optimisation : notions fondamentales

24 septembre 2013

Plan

Notions fondamentales

Loi de composition interne

On appelle **loi de composition interne** sur un ensemble E toute application de $E \times E$ dans E.

L'ensemble structuré défini par E muni de sa loi de composition interne < . > se note (E,.). Pour une notation additive, la loi de composition se note généralement <+> et on écrit alors

$$a+b=c$$
.

L'ensemble structuré défini par E muni de la loi <+> se note (E,+).

Associativité, commutativité et élément neutre

Soit un ensemble structuré (E, .).

(i) la loi < . > est dîte **associative** si

$$\forall a, b, c \in E, (ab)c = a(bc).$$

(ii) la loi < . > est dîte **commutative** si

$$\forall a, b \in E, ab = ba.$$

(E, .) est dit ensemble commutatif,

(iii) l'élément $e \in E$ est dit élément neutre pour la loi < . > si

$$\forall x \in E, ex = xe = x.$$

Si il existe, il est unique.

Groupe

Un ensemble E muni d'une loi de composition interne notée < . > est un **groupe** si

la loi < . > est associative :

$$\forall a, b, c \in E, (ab)c = a(bc)$$

elle admet un unique élément neutre e :

$$\forall a \in E, ae = ea = a$$

$$aa^{-1} = a^{-1}a = e$$

Si de plus la loi est commutative, le groupe est dit commutatif (parfois dénommé groupe *abélien*).

Dans la suite, on considérera des groupes commutatifs. On notera sa loi composition interne de manière additive. Dans ce contexte, l'élément neutre est noté $0_{\rm E}$ (ou encore 0 si il n'y a pas d'ambiguité), appelé élément nul. L'inverse d'un élément a de $\rm E$ est noté -a et est appelé opposé de a.

Anneau

Soit E un ensemble muni de deux lois de composition interne notées <+> et <.>. On dit que l'ensemble structuré défini par (E,+,.) est un **anneau** si :

- (E, +) est un groupe commutatif,
- la loi < . > est associative,
- la loi <. > est distributive par rapport à la loi <+ >, ie.

$$\forall a, b, c \in E,$$
 $\begin{cases} a(b+c) = (ab) + (bc) & \text{Distributivit\'e à gauche} \\ (b+c)*a = (ba) + (ca) & \text{Distributivit\'e à droite} \end{cases}$

l'ensemble E admet un élément neutre pour la loi < . >. Si la loi < . > est commutative alors l'anneau (E, +, .) est dit commutatif.

Corps

Soit E un ensemble muni de deux lois de composition interne notées <+> et <.>. On dit que l'ensemble structuré défini par (E,+,.) est un **corps** si :

- \bullet (E, +, .) est un anneau,
- ② tout élément de E\{0_E} admet un inverse dans E pour la loi < . >. De plus, si la loi < . > est commutative alors le corps (E, +, .) est dit commutatif.

Notions d'espace vectoriel

Espace vectoriel

Un ensemble E est un **espace vectoriel** sur un corps commutatif $\mathbb K$ si

- (E,+) est un groupe commutatif de loi de composition interne notée < + >.

$$<.>: (\mathbb{K}, \mathbf{E}) \longrightarrow \mathbf{E}$$

 $(\lambda, \mathbf{X}) \longmapsto \lambda.\mathbf{X}$

et possédant les propriétés suivantes

- (i) $\forall \lambda \in \mathbb{K}, \forall x, y \in E, \ \lambda.(x + y) = \lambda.x + \lambda.y$
- (ii) $\forall \lambda, \mu \in \mathbb{K}, \forall x \in \mathcal{E}, (\lambda + \mu).x = \lambda.x + \mu.$)
- (iii) $\forall \lambda, \mu \in \mathbb{K}, \forall x \in \mathcal{E}, (\lambda \mu).x = \lambda.(\mu.x)$
- (iv) $\forall x \in E, \mathbf{1}_{\mathbb{K}}.x = x$

Notions d'espace vectoriel

On dit alors que E est un \mathbb{K} -espace vectoriel dont les éléments sont appelés *vecteurs*. Les éléments de \mathbb{K} sont nommés *scalaires*.

Propriétés

- $\forall \lambda \in \mathbb{K}, \forall x \in \mathcal{E}, (-\lambda).x = -(\lambda.x) = \lambda.(-x)$

Notions d'espace vectoriel normé

Norme

Soit E un espace vectoriel. Une norme est une application de E dans $\mathbb R$ notée

$$\|.\|_{\mathsf{E}} \colon \to \mathbb{R}$$
$$\mathbf{x} \longmapsto \|\mathbf{x}\|_{\mathsf{E}}$$

qui à tout élément $x \in E$ associe le réel $\|x\|_E$ et qui vérifie les propriétés suivantes

Positivité :

$$\forall x \in E, \ \|x\|_E \geq 0$$

Inégalité triangulaire :

$$\forall x \in E, \forall y \in E, \|x + y\|_{E} \le \|x\|_{E} + \|y\|_{E}$$

Notions d'espace vectoriel normé

Espace vectoriel normé

Un ensemble E est un **espace vectoriel normé** sur \mathbb{K} si E est un \mathbb{K} -espace vectoriel muni d'une norme notée $\|.\|_E$

Produit d'evn

Soit une famille de n \mathbb{K} -espaces vectoriels E_1, E_2, \cdots, E_n . L'ensemble produit $E_1 \times E_2 \times \cdots \times E_n$ est l'ensemble des n-uplets de vecteurs $(x_1, ..., x_n)$ avec $x_i \in E_i, \forall i = 1 \cdots n$. Si on munit $E_1 \times E_2 \times \cdots \times E_n$ des deux lois

$$(x_1, \dots, x_n) + (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$
$$\lambda.(x_1, \dots, x_n) = (\lambda.x_1, \dots, \lambda.x_n), \ \lambda \in \mathbb{K}$$

alors c'est un \mathbb{K} -espace vectoriel. Si de plus, les \mathbb{K} -espaces E_i sont de dimension finie alors

$$dim(E_1 \times E_2 \times \cdots \times E_n) = dim(E_1) + \cdots + dim(E_n)$$

Espace vectoriel normé en dimension finie

Soient E est une espace vectoriel et $\|.\|_{E,1}$ et $\|.\|_{E,2}$ deux normes sur E. On dit que ces deux normes sont équivalentes si il existent des constantes C_1 et C_2 positives telles que

$$\forall x \in E, C_1 \|x\|_{E,1} \leq \|x\|_{E,2} \leq C_2 \|x\|_{E,1}.$$

Equivalence des normes en dimension finie

Sur les espaces vectoriels de dimension finie, toutes les normes sont équivalentes et seuls les e.v.n.de dimensions finis ont cette propriété.

Espace vectoriel normé en dimension finie

• L'ensemble produit $E = \mathbb{K}^n$ est un \mathbb{K} -espace vectoriel de dimension fini défini par

$$\mathbb{K}^n \triangleq \{(x_1,...,x_n)|x_1 \in \mathbb{K},\cdots,x_n \in \mathbb{K}\}.$$

Muni des deux lois < + > et $< \Delta >$ définies pour tous vecteurs (x_1, \dots, x_n) et (y_1, \dots, y_n) appartenant à \mathbb{K}^n et pour tout $\lambda \in \mathbb{K}$ par:

$$(x_1,\cdots,x_n)+(y_1,\cdots,y_n)\triangleq(x_1+_{\mathbb{K}}y_1,...,x_n+_{\mathcal{K}}y_n)$$

$$\lambda.(\mathbf{x}_1,\cdots,\mathbf{x}_n)\triangleq(\lambda\times_K\mathbf{x}_1,\cdots,\lambda\times_K\mathbf{x}_n)$$

- Un *vecteur* de \mathbb{K}^n est un n-uplet noté $x = (x_1, x_2, \dots, x_n)$.
- L'élément neutre pour l'addition est $0_{K^n} \triangleq (0, 0, \dots, 0)$.
- Base canonique : $\mathcal{B} = \{e_1, \dots, e_n\}$ où e_i est un vecteur dont les composantes sont toutes nulles sauf à la i-ème composante où elle vaut 1. Sur cette base tout vecteur $x \in \mathbb{K}^n$ peut être décomposé de manière unique et alors

$$X = X_1 e_1 + X_2 e_2 + \cdots + X_n e_n.$$

• $x_i \in \mathbb{K}$ sont les coordonnées du vecteur x dans $\mathcal{B}_{\mathbb{P}}$

Elements de topologie

E et F désignent des e.v.n.et $\epsilon \in \mathbb{R}$.

(i) $x \in E$ et $\epsilon > 0$, la **boule ouverte** de centre x et de rayon ϵ :

$$\mathcal{B}(\mathbf{X}, \epsilon) = \{ \mathbf{y} \in \mathbf{E} / \|\mathbf{y} - \mathbf{x}\|_{\mathbf{E}} < \epsilon \}$$

(ii) $x \in E$ et $\epsilon \in \mathbb{R}^+$, la **boule fermée** de centre x et de rayon ϵ :

$$\mathcal{B}'(x,\epsilon) = \{ y \in E / \| y - x \|_E \le \epsilon \}$$

(iii) $\Omega \subset E$ est un **ouvert** de E si

$$\forall x \in \Omega, \exists \epsilon > 0, \mathcal{B}(x, \epsilon) \subset \Omega$$

(*iv*) $\Omega \subset E$ est une **partie bornée** dans E si

$$\exists \epsilon \in \mathbb{R}^+, \Omega \subset \mathcal{B}(\mathbf{0}, \epsilon)$$

(ν) On dit qu'un sous-ensemble $\mathcal V$ de E est un **voisinage** de $a\in E$ s'il existe un ouvert Ω de E tel que $a\in \Omega$ et $\Omega\subset E$.

Notion de continuité

Continuité, cas générale

Une application f de E dans F est continue en un point $a \in E$ si, pour tout voisinage \mathcal{V}_F de f(a) dans F, il existe un voisinage \mathcal{V}_F de a dans E tel que $f(\mathcal{V}_E) \subset \mathcal{V}_F$.

• Pour qu'une application f de E dans F soit continue en $a \in E$, il faut et il suffit, que pour tout $\epsilon > 0$, il existe $\alpha > 0$ tel que

$$\|\mathbf{x} - \mathbf{a}\|_{\mathrm{E}} < \alpha \Longrightarrow \|f(\mathbf{x}) - f(\mathbf{a})\|_{\mathrm{F}} < \epsilon$$

• Ceci est équivalent à une caractérisation par la limite : soit $f: \Omega \in E \longrightarrow F$, on dit que f est continue au point $a \in \Omega$ si $\lim_{x \to a, x \in \Omega} f(x) = f(a)$.

Notion de continuité

La continuité est aussi préservée par différentes opérations sur des applications continues :

- soient f et g deux applications de $\Omega \subset E$ dans F. Si f et g sont continues en $a \in \Omega$ alors f + g l'est aussi.
- ② soient f une application de $\Omega \subset E$ dans F continue en $a \in \Omega$, alors $\forall \lambda \in \mathbb{K}$, λf l'est aussi.
- **③** Composée d'applications continues : soient $f : Ω \subset E \longrightarrow F$ une application continue en a ∈ Ω et $g : Ω' \subset F \longrightarrow G$ une application continue en f(a) ∈ Ω'. Alors g ∘ f est continue en a.

Si une application f est continue en tout point de E, on dit qu'elle est continue dans E.

Notion de continuité, dimension finie

Soit $f: \Omega \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$, f est continue au point $a \in \Omega$, si $\forall \epsilon > 0$ réel, $\exists \eta > 0$ tel que

$$\|x - a\|_{\mathbb{E}} < \eta \text{ et } x \in \Omega \Longrightarrow \|f(x) - f(a)\|_{\mathbb{F}} < \epsilon.$$

Proposition

soit $f: \Omega \subset \mathbb{R}^n \longrightarrow \mathbb{R}^m$, avec par définition $f = (f_1, \dots, f_m)$, alors on a alors

f est continue au point
$$a \iff \lim_{x \to a, x \in \Omega} f(x) = f(a)$$

Dans ce cas, la continuité de f au point a équivaut à avoir la continuité de chacune des fonctions f_i , $i = 1 \cdots m$, vues comme fonctions de \mathbb{R}^n dans \mathbb{R} .

NB : Les propriétés précédentes sur les fonctions continues s'appliquent également.

Applications linéaires

Application lineaire

On appelle application linéaire de E vers F toute application $f \colon E \longrightarrow F$ vérifiant $\forall x, y \in E$ et $\forall \lambda \in \mathbb{K}$

Proposition

soit $f: E \longrightarrow F$, f est dite linéaire si et seulement si

$$\forall x, y \in E, \forall \lambda, \mu \in \mathbb{R}, f(\lambda x + \mu y) = \lambda f(x) + \mu f(y)$$

Applications linéaires et continuité

soit E et F deux e.v.n., soit $f: E \longrightarrow F$ une application linéaire alors les assertions suivantes sont équivalentes

- f est continue sur E,
- f est continue en 0_E,
- ③ il existe une constante k positive telle que $\forall x \in E$, $||f(x)||_F \le k||x||_E$,

On peut également montrer que l'ensemble des applications linéaires continues est un e.v.n.noté $\mathcal{L}(E;F)$. Il peut être muni de la norme muni de $\|f\|_{\mathcal{L}(E,F)} = \|f\|_{\infty}$ comme donnée ci-dessus . En particulier, on peut démontrer que $\|f\|_{\infty}$ est la plus petite constante k telle que $\|f(x)\|_F \leq k\|x\|_E$. Si $F = \mathbb{K}$, alors les éléments de $\mathcal{L}(E,\mathbb{K})$ sont appelées formes linéaires continues.

Applications linéaires en dimensions finies

Caractérisation de la continuité en dimension finie

soit E et F deux e.v.n.de dimensions finies, alors toutes les applications linéaires de E dans F sont continues.

Soient $E=\mathbb{K}^n$ et $F=\mathbb{K}^m$. Les vecteurs de K^n dans la base canonique sont représentées par une matrice colonne de taille $n\times 1$. De manière identique, une application linéaire f de $\mathcal{L}(\mathbb{K}^n;\mathbb{K}^m)$ peut être représentée dans la base canonique de \mathbb{K}^n et \mathbb{K}^m par une matrice de taille $m\times n$. De la même manière, les formes linéaires de $\mathcal{L}(\mathbb{K}^n;\mathbb{K})$ s'identifient à des matrices lignes de taille $1\times n$.