Data Science Survival Skills

Exercise 0 (soft exercise)

Agenda

- Anaconda
- Virtual Environments
- Jupyter Notebooks
- Google Colab
- NumPy
- Pandas
- Matplotlib

Anaconda

- Open-source Python (and R) distribution platform for scientific computing, data science and machine learning
- Features: Package management, Cross-platform, Extensive library ecosystem,
 Virtual Environments, Data science tools (e.g. Jupyter Notebook, Spyder)

Anaconda installation

Official website: <u>Link to Anaconda</u>

Windows =	MacOS 🕳	Linux 🐧
Python 3.9	Python 3.9	Python 3.9
64-Bit Graphical Installer (594 MB)	64-Bit Graphical Installer (591 MB)	64-Bit (x86) Installer (659 MB)
32-Bit Graphical Installer (488 MB)	64-Bit (M1) Graphical Installer (316 MB)	64-Bit (Power8 and Power9) Installer (367 MB)
	64-Bit (M1) Command Line Installer (305 MB)	64-Bit (AWS Graviton2 / ARM64) Installer (568 MB)
		64-bit (Linux on IBM Z & LinuxONE) Installer (280 MB)

- Test installation with "conda –version"
- Updating Anaconda: "conda update anaconda"

Miniconda

- Minimalistic distribution of Anaconda that includes only Conda package manager and its dependencies
- Lightweight version of Anaconda
- Scriptable installation (suitable for automated or scripted installations)

1. Virtual Environments

Virtualenv

- Isolated, self-contained spaces
- Manage and control the packages and dependencies for specific projects

Conda for virtualenvs

- Create: "conda create –name my_virtual_env python=3.8"
- Activate: "conda activate my_virtual_env"
- Deactivate: "conda deactivate"
- List all envs: "conda env list"
- Delete env: "conda env remove –name my_virtual_env –all"

```
(base) du92wufe@anki-spock:~$ conda env list
# conda environments:
                         /data/du92wufe/.conda/envs/airway
airwav
                         /data/du92wufe/.conda/envs/airway gan
airway gan
annote
                         /data/du92wufe/.conda/envs/annote
dsss exercise
                         /data/du92wufe/.conda/envs/dsss exercise
                         /data/du92wufe/.conda/envs/evonas
evonas
1ndw
                         /data/du92wufe/.conda/envs/lndw
                         /data/du92wufe/.conda/envs/tf 2.13
tf 2.13
tf 2.8
                         /data/du92wufe/.conda/envs/tf 2.8
tflm test
                         /data/du92wufe/.conda/envs/tflm test
traco seminar
                         /data/du92wufe/.conda/envs/traco seminar
                         /opt/anaconda3
base
```

Conda for virtualenvs

- Exporting environment information → environment.yml
- YAML (Yet Another Markup Language) → human-readable data serialization format
- Command: "conda env export > environment.yml"

Use virtual environments!

→ Documentation here

2. Jupyter Notebooks

Jupyter Notebooks

- Open-source project
- Interactive computing environment
- Not only for Python (supports over 40 programming languages)
- Real-time code execution
- Supports markdown (a lightweight markup language)
- Integration of data visualization libraries
- Data science: often used for data exploration, model development and visualization

3. Google Colab

Google Colaboratory

- Cloud-based free-to-use and collaborative Jupyter Notebook environment
- Runs in the cloud on Google's servers → accessible from any device with a web browser and an internet connection (no local installations needed)
- Fully integrates with Jupyter Notebook
- Comes with a variety of pre-installed Python libraries, e.g. NumPy, Pandas,
 Matplotlib or scikit-learn
- Access to Graphis Processing Units (GPUs) and Tensor Processing Units (TPUs),
 allowing to accelerate computationally intensive tasks (→ more details in lecture 1)
- Free of cost
- Supports data import/export from Google Drive and Google Sheets

4. NumPy

NumPy

- Short for "Numerical Python"
- Fundamental package for scientific computing
- Support for large, multi-dimensional arrays and matrices
- Essential tool for tasks such as data analysis, machine learning and scientific research
- Written in C programming language and highly optimized

NumPy features

- N-dimensional arrays: central feature is the "ndarray"
 - Multi-dimensional array object
 - Arrays can be of any shape and size
 - Enabling efficient storage and manipulation of large datasets
- Element-wise operations: mathematical and logical operations on entire arrays without the need of explicit loops
- Mathematical functions: statistical, linear algebra, etc.

Documentation <u>here</u>

5. Pandas

Pandas

- Open-source data manipulation and analysis library
- Provides data structures and functions for efficiently working with structured data (e.g. spreadsheets, databases → more details in lecture 3)
- Two primary data structures: Series (one-dimensional array-like) and DataFrame (two-dimensional table-like)
- Can handle a wide range of data types (numerical, textual, etc.)
- Data import and export: CSV, Excel, JSON

Documentation <u>here</u>

6. Matplotlib

Matplotlib

- Open-source data visualization library
- Creation of static, animated and interactive plots and graphs for data analysis
- Ability to produce publication-quality plots (→ more details in lecture 4)
- Supports various types of plots, e.g. line plots, scatter plots, histograms, heatmaps
- Can be used interactively in a Jupyter Notebook to explore and visualize data dynamically
- Exporting plots in various formats, e.g. PNG, PDF, SVG

Documentation <u>here</u>

Last slide

Next week

No in-person exercise!

We will upload a video showing how to build a computer/workstation