

Please type a plus sign (+) inside this box →

Under the Paperwork Reduction Act of 1995, no persons are required to respond to a collection of information unless it displays a valid OMB control number.

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 C.F.R. § 1.53(b))

Attorney Docket No. 500.28503CC5

First Inventor or Application Identifier Hiroyuki MANO

Title MULTI-TONE DISPLAY DEVICE

Express Mail Label No. 62552

APPLICATION ELEMENTS

See MPEP chapter 600 concerning utility patent application contents.

1. * Fee Transmittal Form (e.g., PTO/SB/17)
(Submit an original and a duplicate for fee processing)
2. Specification [Total Pages 20]
(preferred arrangement set forth below)
 - Descriptive title of the Invention
 - Cross References to Related Applications
 - Statement Regarding Fed sponsored R & D
 - Reference to Microfiche Appendix
 - Background of the Invention
 - Brief Summary of the Invention
 - Brief Description of the Drawings (if filed)
 - Detailed Description
 - Claim(s)
 - Abstract of the Disclosure
3. Drawing(s) (35 U.S.C. 113) [Total Sheets 9]
4. Oath or Declaration [Total Pages 2]
 - a. Newly executed (original or copy)
 - b. Copy from a prior application (37 C.F.R. § 1.63(d))
(for continuation/divisional with Box 16 completed)
 - i. DELETION OF INVENTOR(S)
Signed statement attached deleting inventor(s) named in the prior application, see 37 C.F.R. §§ 1.63(d)(2) and 1.33(b).

* NOTE FOR ITEMS 1 & 13 IN ORDER TO BE ENTITLED TO PAY SMALL ENTITY FEES, A SMALL ENTITY STATEMENT IS REQUIRED (37 C.F.R. § 1.27), EXCEPT IF ONE FILED IN A PRIOR APPLICATION IS RELIED UPON (37 C.F.R. § 1.28).

ADDRESS TO: Assistant Commissioner for Patents
Box Patent Application
Washington, DC 20231

5. Microfiche Computer Program (Appendix)
6. Nucleotide and/or Amino Acid Sequence Submission
(if applicable, all necessary)
 - a. Computer Readable Copy
 - b. Paper Copy (identical to computer copy)
 - c. Statement verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

7. Assignment Papers (cover sheet & document(s))
8. 37 C.F.R. § 3.73(b) Statement Power of (when there is an assignee) Attorney
9. English Translation Document (if applicable)
10. Information Disclosure Statement (IDS)/PTO-1449 Copies of IDS Citations
11. Preliminary Amendment
12. Return Receipt Postcard (MPEP 503)
(Should be specifically itemized)
 - * Small Entity Statement(s) Statement filed in prior application (PTO/SB/09-12)
 - Status still proper and desired
 - Certified Copy of Priority Document(s)
(if foreign priority is claimed)
13. Other:
.....
.....

16. If a CONTINUING APPLICATION, check appropriate box, and supply the requisite information below and in a preliminary amendment:

Continuation Divisional Continuation-in-part (CIP)

of prior application No. 09/188,901

Group / Art Unit: 2774

Prior application information: Examiner A. Mengistu
For CONTINUATION or DIVISIONAL APPS only: The entire disclosure of the prior application, from which an oath or declaration is supplied under Box 4b, is considered a part of the disclosure of the accompanying continuation or divisional application and is hereby incorporated by reference. The incorporation can only be relied upon when a portion has been inadvertently omitted from the submitted application parts.

17. CORRESPONDENCE ADDRESS

Customer Number or Bar Code Label 020457 or Correspondence address below
(Insert Customer No. or Attach bar code label here)

Name			
Address			
City	State	Zip Code	
Country	Telephone		Fax

Name (Print/Type)	Carl H. Brundidge	Registration No. (Attorney/Agent)	29,621
Signature			
Date	July 25, 2000		

Burden Hour Statement: This form is estimated to take 0.2 hours to complete. Time will vary depending upon the needs of the individual case. Any comments on the amount of time you are required to complete this form should be sent to the Chief Information Officer, Patent and Trademark Office, Washington, DC 20231. DO NOT SEND FEES OR COMPLETED FORMS TO THIS ADDRESS. SEND TO: Assistant Commissioner for Patents, Box Patent Application, Washington, DC 20231.

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

Applicants: MANO, et al
Serial No.: Not yet assigned
Filed: July 25, 2000
For: MULTI-TONE DISPLAY DEVICE
Group: 2774
Examiner: A. Mengistu

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents
Washington, D.C. 20231

July 25, 2000

Sir:

The following amendments and remarks are respectfully submitted prior to the Rule 53(b) Continuation Application filed on even date.

IN THE SPECIFICATION

Please insert before the first line of the specification the following:

-- This is a continuation of application Serial No. 09/188,901, filed November 10, 1998; which is a continuation of application Serial No. 08/466,188, filed June 6, 1995; which is a continuation of application Serial No. 08/164,563, filed December 10, 1993, now abandoned; which is a continuation of application Serial No. 07/844,965, filed February 28, 1992, now U.S. Patent No. 5,298,912; which is a continuation of application Serial No. 07/475,849, filed February 6, 1990, now abandoned. --

Please amend the specification as follows:

Page 1, line 17, after "are" insert --supplied with--;
line 19, after "of" insert --the--.

Page 2, line 3, after "of" insert --the--;
line 8, delete "varies" and insert --vary--;
line 10, delete "exhibimt" and insert --exhibit--.

Page 3, line 17, delete "taken-in" and insert
--display--; same line, after "data" insert --taken in--.

Page 6, line 11, delete ",".

Page 8, line 11, after "LCM" insert --is illustrated--;
line 22, delete "covnerter" and insert
--converter--.

Page 9, line 1, after "generating" insert --constant--;
line 8, after "12" insert --respectively--;
line 9, delete "by one line" and insert --at a
time--;

line 17, delete ";" and insert --and--;
line 18, delete "horizontal" insert --latch--;
line 26, after "circuit" insert --which--.

Page 10, line 16, delete "in" and insert --to--.

Page 11, line 1, delete "are" and insert --is--.

Page 12, line 19, after "section" insert --,--;
line 22, after "data" insert --,--.

Page 13, line 17, delete "input port of the".

Page 14, line 9, delete "from that of";
line 12, after "5" insert --to lag--.

IN THE CLAIMS

Please cancel claims 1-6 without prejudice or disclaimer of the subject matter thereof.

Please add new claims 7-15 as follows:

-- 7. A liquid crystal display device comprising:

a matrix liquid crystal display panel having a plurality of dots, each of the dots is formed with a Red (R) pixel, a Green (G) pixel and a Blue (B) pixel; and

a X direction driver having a plurality of X signal lines corresponding to each of the pixels of the matrix liquid crystal display panel, said X direction driver outputs driving voltages making the matrix liquid crystal display panel display multi-color of R, G and B,

wherein the X direction driver includes a clock terminal which receives a clock signal provided from an external device and M ports which receive M dots multi-tone digital data, each of the M dots multi-tone digital data represents driving voltages of the R, G and B, each of the R, G and B being 2^N tones, where M and N are each integers of 2 or more, and

wherein the M ports receive n dots multi-tone digital data with n/M clock pulses of the clock signal provided via the clock terminal, where n is integer of 2 or more.

8. A liquid crystal display device according to claim 7, wherein the X direction driver has output terminals, each

of the output terminals is coupled to the one of the plurality of X signal lines, and

wherein the X direction driver outputs driving voltages in accordance with the M dots multi-tone digital data.

9. A liquid crystal display device according to claim 7, wherein each of the M ports receives multi-tone digital data by one dot.

10. A liquid crystal display device comprising:

a matrix liquid crystal display panel having a plurality of dots, each of the dots is formed with a Red (R) pixel, a Green (G) pixel and a Blue (B) pixel; and

a X direction driver having a plurality of X signal lines corresponding to each of the pixels of the matrix liquid crystal display panel, said X direction driver outputs driving voltages making the matrix liquid crystal display panel display multi-color of the R, G and B,

wherein the X direction driver includes a clock terminal which receives a clock signal provided from an external device and M ports which receive M dots multi-tone digital data synchronized with the clock signal, each of the M dots multi-tone digital data being N-bit data for each of the R, G and B, each of the M multi-tone digital data represents driving voltages of the R, G and B, each of the R, G and B

displaying 2^N tones, where M and N each are an integer of 2 or more, and

wherein the M ports receive n dots multi-tone digital data with n/M clock pulses of the clock signal provided via the clock terminal, where n is integer of 2 or more.

11. A liquid crystal display device according to claim 10, wherein the X direction driver has output terminals, each of the output terminals is coupled to one of the plurality of X signal lines,

wherein the X direction driver outputs driving voltages in accordance with the M dots multi-tone digital data.

12. A liquid crystal display device according to claim 10, wherein each of the M ports receives multi-tone digital data by one dot.

13. A liquid crystal display device comprising:

a matrix liquid crystal display panel having a plurality of dots, each of the dots is formed with a Red (R) pixel, a Green (G) pixel and a Blue (B) pixel; and

a X direction driver having a plurality of X signal lines corresponding to each of the pixels of the matrix liquid crystal display panel, said X direction driver outputs driving

voltages making the matrix liquid crystal display panel display multi-color of R, G and B,

wherein the X direction driver includes a clock terminal which receives a clock signal provided from an external device and M ports which receive M dots multi-tone digital data synchronized with the clock signal, each of the M dots multi-tone digital data being N-bit data for each of the R, G and B display as 2^N tones, where M and N each are an integer of 2 or more, and

wherein the M ports receive n dots multi-tone digital data with n/M clock pulses of the clock signal provided via the clock terminal, wherein n is integer of 2 or more.

14. A liquid crystal display device according to claim 13, wherein the X direction driver has output terminals, each of the output terminals is coupled to one of the plurality of X signal lines, and

wherein the X direction driver outputs driving voltages in accordance with the M dots multi-tone digital data.

15. A liquid crystal display device according to claim 14, wherein each of the M ports receives multi-tone digital data by one dot.--

REMARKS

Entry of the above amendments prior to examination is respectfully requested.

Please charge any shortage in fees due in connection with the filing of this paper, or credit any overpayment of fees, to the deposit account of Antonelli, Terry, Stout & Kraus, LLP, Deposit Account No. 01-2135 (500.28503CC5).

Respectfully submitted,

ANTONELLI, TERRY, STOUT & KRAUS, LLP

Carl I. Brundidge
Registration No. 29,621

CIB/jdc
(703) 312-6600

MULTI-TONE DISPLAY DEVICE

1 BACKGROUND OF THE INVENTION

The present invention relates to a matrix display device, and more particularly to a device for displaying an image in plural tones in response to an analog image signal.

In recent years, matrix display devices including a liquid crystal display, a plasma display, an EL (electroluminescence), etc. have been developed as display devices in place of CRT display devices.

10 The display screen of the matrix display device has plural X signal lines arranged in a horizontal (X) direction of the screen, and plural Y signal lines in a vertical (Y) direction thereof; each of picture cells (pixels) is displayed at each of 15 intersecting points of the X and Y signal lines. The X signal lines are supplied with image signals (luminance or color signals), whereas the Y signal lines are selective signals for scanning lines.

Several techniques of display for the matrix display device, which can make the display with multi-color and multi-tone as in the CRT display device, have been developed. For example, in the liquid crystal matrix display device, different tones can be exhibited in terms of different integration values of transmission 25 light beams for liquid crystal cells. The different

1 integration values of transmission light beams can be
exhibited by thinning out image signals for each frame
of image display, or pulse-width modulating the image
signals supplied to the X signals. In these techniques,
5 the difference in time-integration values of image
signals are converted into different tones. On the
other hand, if the liquid crystal devices which
continuously varies in their transmissivity in
accordance with varying applied voltages is used, it is
10 possible to exhibimt the tone by controlling the applied
voltage.

JP-A-62-195628 filed on January 13, 1986 by
HITACHI, LTD. in Japan discloses a liquid crystal
display device which provides monochrome or 8 (eight)-
15 color display in accordance with input signals which are
binary digital signals. JP-A-61-75322 filed on
September 20, 1984 by FUJITSU GENERAL Co. Ltd. discloses
a system which provides tone display by changing signal
levels between adjacent fields. JP-A-59-78395 filed
20 October 27, 1982 by SUWA SEIKOSHA Co. Ltd. discloses a
multi-tone display system using pulse-width modulation.

Now referring to Figs. 1 and 2, the operation
of a liquid crystal matrix display device which does not
have the function of tone display will be explained. An
25 input signal for this matrix display device is a binary
digital signal represented by the value of "0" or "1".

In Fig. 1, 1 is a liquid crystal display
device (or liquid crystal display module, hereinafter

1 referred to as LCM) provided with a matrix shape liquid
2 crystal panel 17 the pixels of which are selected by X
3 signal lines and Y signal lines. 18 is display data in
4 which display ON (white) is represented by "1" and
5 display OFF (black) is represented by "0". 3 is a latch
6 clock in synchronism with the display data 18. 4 is a
7 horizontal clock indicative of the period during which
8 the amount of display data corresponding to one
9 horizontal display is sent. 5 is a head line signal.
10 19 is a voltage generating section. 20 is a display ON
11 voltage. 21 is a display OFF voltage. 13 is a selected
12 voltage. 14 is a non-selected voltage. These voltages
13 are generated by the voltage generating section. 22 is
14 an X driving section for driving X-signal lines which is
15 reset by the trailing edge of the horizontal clock,
16 takes in the display data 18 corresponding to one
17 horizontal display, converts the taken-in data into a
18 display ON voltage for the data "1" and into a display
19 OFF voltage for the data "0", and finally outputs the
20 converted voltage in accordance with the next trailing
21 edge of the horizontal clock 4. X1 - X640 are panel
22 data which are output voltages from the X driving
23 section. 16 is a Y driving section for driving Y signal
24 lines. Y1 - Y200 are scanning signals. The Y driving
25 section 16 takes in the head line signal in accordance
with the trailing edge of the horizontal clock 4,
initially takes the scanning signal Y1 as the selected
voltage 13, and shifts the selected voltage 13 in the

1 order of scanning signals Y₂, Y₃, ... Y₂₀₀ (each of the
scanning signals other than the scanning signal which is
a selected voltage 13 is a non-selected voltage 14).
The liquid crystal panel 17 displays data on the line
5 corresponding to the scanning signal Y₁ which is at the
level of the selected voltage in accordance with the
panel data X₁ - X₆₄₀ which are X-signal-line driving
voltages X₁ - X₆₄₀ generated from the X driving
section 22.

10 Fig. 2 is a timing chart for explaining the
operation of the LCM 1.

In Fig. 1, the X driving section 22 successively takes in the display data for each one line in synchronism with the latch clock 3 and in accordance
15 with the subsequent horizontal clock 4, outputs as panel data X₁ - X₆₄₀, the display ON voltage 20 or the display OFF voltage selected by "1" or "0" of each data. As shown in Fig. 2, therefore, the X driving section 22 outputs the voltage selected by the data for a 200-th
20 line which is a last line while taking in a first line data, and outputs the voltage selected by the first line data while taking in a second line data. Namely, the output of display data lags by one line from the take-in thereof. Then, in order that the scanning signal on the
25 line to be output by the X driving section 22 is the selected voltage, the Y driving section 16 takes in the head line signal 5 at the timing of the horizontal clock 4, takes the scanning signal Y₁ as the selected voltage

- 1 13 and thereafter shifts the selected voltage 13 in
accordance with the horizontal clock 4. In accordance
with the voltage of each of the panel data X1 - X640,
the display panel 17 displays "white", on the line
5 corresponding to the scanning line which is the selected
voltage, when it is the display ON voltage and displays
"black" when it is the display OFF data.

Color display (8 color display) can be made by
arranging color filters of red, green and blue in the
10 direction of lines (Y direction) or the direction of
dots (X direction), and additively mixing three dots (3
bit data) constituting one dot (pixel) of visible
information through display ON or OFF thereof.

Meanwhile, development of multi-color and
15 multi-tone display in accordance with the demand for
multi-color display and multi-tone display gave rise to
a problem of interface between information processing
devices such as between a liquid crystal panel and a
personal computer. More specifically, if 4096 colors
20 are to be displayed, signal lines corresponding to 4
bits are required for each of R (red), G (green) and B
(blue) so that a total of 12 signal lines are required.
Further, if 32768 colors are to be displayed, signal
lines corresponding to 5 bits (total of 15 signal lines)
25 are required for each of R, G and B. Increase in the
number of signal lines will complicate the interface
between e.g. the display panel and the personal computer
and give rise to unnecessary radiation. This can be

1 prevented by using analog input signal lines.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a new matrix display device in a multi-tone display system which is different from the conventional matrix display systems.

In the display device according to an embodiment of the present invention, an analog signal is used as an input signal. The analog signal is A-D converted into a digital signal. A voltage generating device is provided to generate, plural voltages in accordance with tones to be displayed. An output voltage from the voltage generating device is selected in accordance with the value represented by the digital signal. The selected voltage is applied to a display element to display a desired tone.

A matrix display device according to an embodiment of the present invention comprises a matrix display panel having a matrix composed of plural X direction signal lines and plural Y direction signal lines lying at right angles thereto, intersecting points on the matrix being pixels of an image to be displayed, an X direction driving section for sequentially scanning the X direction signal lines to provide image signals, a Y direction driving section for the Y direction signal lines in synchronism with the scanning of the X direction signal lines to sequentially provide select

1 signals to the Y direction signal lines, an A-D
5 converter section for receiving an analog signal and
converting it into a digital signal, a voltage generating
section for generating signals at plural voltage
levels, and a selector section for selecting an output
signal from the voltage generating section in accordance
with the output from A-D converter section and providing
it to the X direction driving section as an image
signal.

10 10 BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of a liquid crystal matrix display device for displaying an image in response to a digital signal input;

15 Fig. 2 is a waveform chart for explaining the operation of the display device of Fig. 1;

Fig. 3 is a block diagram of a liquid crystal matrix display device according to a first embodiment of the present invention;

20 Fig. 4 is a block diagram of an example of the X driving section of Fig. 3;

Fig. 5 is a block diagram of an embodiment of a liquid crystal matrix display device (LCM) for color display according to the present invention;

25 Fig. 6 is a block diagram of the main part of LCM according to the second embodiment of the present invention;

Fig. 7 is a timing chart for explaining the

1 operation of the serial-parallel converter means of
Fig. 6;

Fig. 8 is a block diagram of an input part of
the parallel X driving section of Fig. 6; and

5 Fig. 9 is a block diagram of the main part of
another embodiment of a liquid crystal matrix display
device for color display according to the present
invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

10 Now referring to Figs. 3 and 4, an embodiment
of a multi-tone display LCM according to the present
invention. In this embodiment, it should be noted that
an analog display data or signal (stepwise analog
signal) 2 having different voltage levels corresponding
15 to the number N of tones to be displayed is input to the
display device. For simplicity of explanation, it is
assumed that N = 4, the analog input signal is repre-
sented by the voltage levels corresponding to 4 (four)
tones. The analog signal is sent from an image display
20 output of e.g. a personal computer. In Fig. 3, 6 is an
A-D converter section; 7 is a digital display data. The
A-D converter section 6 converts the analog display data
2 as an input into the digital display data which is
represented by 2 bits; more specifically, four value
25 voltage levels of the analog display data are converted
into (0, 0), (0, 1), (1, 0), and (1, 1) from the lower
levels. 8 is a multi-voltage-level output generating

1 circuit for generating voltages at plural levels in
accordance with tones to be displayed, e.g. voltages at
four different levels since this embodiment is directed
to 4 tone display. The signal at the voltage level
5 corresponding to tone 0 is output to a signal line 9.
The signals at voltage levels corresponding to tone 1,
tone 2 and tone 3 are output to signal lines 10, 11, and
12. 15 is an X driving section which takes in 2 bit
digital data 7 sequentially one line by one line in
10 synchronism with the latch clock 3, selects one of the
four tone voltages output to the signal lines 9, 10, 11
and 12 in accordance with the decoded value of data for
each dot and outputs it as panel data X1 - X640. The
remaining reference numbers denote like parts in Fig. 1.

15 Fig. 4 shows an example of the X driving
section shown in Fig. 3. In Fig. 4, 23 is a latch
selector; S1 - S640 are select signals. The latch
selector 23 is cleared by horizontal clock 3 and
sequentially boosts the select signals S1, S2, ... S640
20 "high" in synchronism with the succeeding clocks 3. 24
is a latch circuit which serves to latch the digital
display data 7 in blocks (latch 1 - latch 640) in which
the select signal is "high". 25 to 28 are outputs from
the respective blocks of the latch circuit 24, i.e. 2
25 bit latch data 1 to 640. 29 is a horizontal latch
circuit latches the latched data 1 to 640 in horizontal
latches 1 to 640 in synchronism with the horizontal
clock 4. 30 to 33 are outputs from the respective

1 blocks of the horizontal latch circuit 29, i.e. 2 bit
horizontal data 1 to 640. 34 is a decoder which serves
to decode the horizontal data 1 to 640 by the corre-
sponding decoder blocks (decoders 1 to 640). Numerals
5 35 to 38 are outputs from the decoder blocks, i.e.
decoded values 1 to 640. Numeral 39 indicates a voltage
selector which serves to select one of the tone voltages
in accordance with the decoded values 1 - 640.

Now referring to Figs. 3 and 4, the operation
10 of the multi-tone display LCM 1 shown in Fig. 3 will be
explained. In Fig. 3, the analog display data 2 is
converted into the 2 bit digital data 7 by the A-D
converter section 6; the 2 bit digital display data 7 is
input to the X driving section 15. The X driving
15 section 15 takes the display digital data 7, in
synchronism with the latch clock 3 (Fig. 2), in one
latch block of the latch circuit 24 to which a "high"
select signal is being input. The latch selector 23
shifts the "high" state of the select signal each time
20 the latch clock 3 is input. The latch circuit 24 takes
in the sequentially sent digital display data 7 in the
latch blocks 1, 2, 640. When the latch circuit
24 has taken in the digital display data 7 corresponding
to one line, i.e. up to latch block 640, the horizontal
25 clock (Fig. 2) is applied to the X driving section 15
to clear the latch selector 23; then the X driving
section stands by for next take-in of the digital
display data 7. The data latched by the latch circuit

1 24 are sent to the horizontal latch circuit 29 which
latches the data from the latch circuit 24 in
synchronism with the horizontal clock 4 (Fig. 2). The
horizontal data 30 to 33 which are outputs from the
5 horizontal latch circuit 29 are sent to the decoder 34
and decoded by the decoder blocks 1 to 640 thereof; the
decoded values 35 to 38 are output from the decoder 34.
In the voltage selector 39, the selector blocks 1 to
6 640, in accordance with the decoded values, selects tone
10 0 voltage 9 if the decoded value is "0", tone 1 voltage
10 if it is "1", tone 2 voltage 11 if it is "2", and
tone 3 voltage 12 if it is "3". The tone voltages
output from the voltage selector blocks are sent to the
liquid crystal panel 17 as panel data X1 to X640. Thus,
15 the four value voltages output from the X driving
section 15 are applied to the liquid crystal elements
corresponding to the line selected by the Y driving
section 16 in response to the select voltage 13 sent
from the voltage generating circuit 8. In this way, the
20 LCM 1 shown in Fig. 3 can realize four tone display.

Although the four tone display has been
adopted in this embodiment, 2^N tone display can be
realized. More specifically, if the input analog
display data is represented by 2^N (N is an integer of 1
25 or more) levels, it is converted into N bit digital data
by the A-D converter section 6, the data width in the
internal circuits in the X driving circuit 15 is set at
 N bits, and 2^N kinds of tone voltage are supplied to the

1 X driving section 15 to display 2^N tones.

Now referring to Fig. 5, one embodiment of the LCM for multi-color display will be explained. The multi-color display can be realized by arranging color
5 filters of R (red), G (green) and B (blue) in the direction of dots on the liquid crystal panel 17, providing A-D converter sections 43, 44 and 45 for R40, G41 and B42 as input analog display data, and applying the outputs from the R, G and B A-D converter sections
10 43, 44 and 45 to a color X driving section 46. In this case, the color X driving section 46 has three columns of the arrangement shown in Fig. 4 and thus the corresponding panel data are RX1 - RX640, GX1 - GX640 and BX1 - BX640.

15 With reference to Figs. 6 to 8, another embodiment of the multi-tone LCM will be explained. In this embodiment, it should be noted that a parallel input of M (M is a positive integer) dots are applied to the X driving section and it is assumed that M = 2.

20 In Fig. 6, like reference numerals denote like elements in Fig. 3. 47 is a serial-parallel converter section. 48 is a first dot digital data and 49 is a second dot digital data. The serial-parallel converter section 47 converts 2 bit serial digital data 7 from the
25 A-D converter section 6 into a parallel data consisting of the first dot digital data 48 and the second dot digital data 49, each data consisting of 2 bits. 50 is a timing correction section. 51 is a parallel clock.

1 52 is a correction horizontal clock. 53 is a correction
head line signal. In response to the latch clock 3, the
timing correction section 50 generates a parallel clock
51 in synchronism with the parallel data consisting of
5 the first dot digital data 48 and the second dot digital
data 49. Further, in order to correct the phase devia-
tion of data due to the serial-parallel conversion of
the display data, the timing correction section 50
corrects the horizontal clock 4 and the head line signal
10 5 using the latch clock 3 to provide a corrected
horizontal clock 52 and a corrected head line signal 53.
54 is a parallel X driving section which serves to
sequentially take in the 2 bit parallel display data in
synchronism with the parallel clock 51.

15 Fig. 7 is a timing chart showing the operation
of the serial-parallel conversion section 47. Fig. 8 is
a block diagram of the input port of the parallel X
driving section 54. In Fig. 8, 55 is parallel latch
select which is cleared by the corrected horizontal
20 clock 52 and thereafter sequentially boosts select
signals S1, S2, S320 to "high". 56 is a
parallel latch circuit; the latch block thereof for
which the select signal is "high" latches simultaneously
the first dot digital data 48 and second dot digital
25 data 49 at the timing of the parallel clock 51. The
other reference numerals in Fig. 8 denote like elements
in Fig. 4.

The operation of the multi-tone LCM shown in

1 Fig. 6 will be explained. The analog display data 2
2 having four value voltage levels is the 2 bit digital
3 display data 7 by the analog-digital converter section
4 6. This digital display data 7 is converted into 2 bit
5 parallel data, as shown in Fig. 7, to provide the first
dot digital data 48 and second dot digital data 49 which
are in synchronism with the parallel clock 51. Then, as
shown in Fig. 7, owing to the serial-parallel conver-
sion, the phase of the output data lags from that of the
10 input data by 2 (two) latch clocks 3. In order to
correct this lag, the timing correction section 50 also
causes the horizontal clock 4 and the head line signal 5
by 2 latch clocks 3. The resulting corrected horizontal
clock 52 and corrected head timing signal 53 are applied
15 to the X driving section 54 and the Y driving section
16. As seen from Fig. 8, the X driving section 54 takes
the first dot digital data 48 and the second dot digital
data 49, in synchronism with the parallel clock 51, into
its one block to which the "high" select signal is
20 applied from the parallel latch select 55. The parallel
latch select 55 is cleared by the corrected horizontal
clock 52 and thereafter sequentially boosts the select
signals S1 to S320 to "high". Thus, the parallel latch
circuit 52 also latches the data in the order of latch
25 blocks 1, 2, 320 to finally latch the data
corresponding to one line. The outputs from the blocks
of the parallel latch circuit 56 are latched in the
horizontal latch circuit 52 at the timings of the

1 corrected horizontal clock 52. The following operation
is the same as that in Fig. 4. Thus, parallel data X1
to X640 are provided as panel data.

As understood from the above explanation, two
5 dots can be used as an input to the X driving section 46
by providing the serial-parallel conversion section 47,
causing the internal port of the X driving section 46 to
simultaneously latch two dots and providing the timing
correction section for correcting the phase lag due to
10 the serial-parallel conversion. This can enhance the
operation speed of the circuits successive to the A-D
converter section 6. In another embodiment of the
invention, the timing correction section 50 is not
required when the input timing is determined in con-
15 sideration of the phase delay in the serial-parallel
conversion section 47 (two latch clocks 3) so that the
horizontal clock 4 and the head line signal 5 can be
directly used without correction. Incidentally,
although in this embodiment, the input to the X driving
20 was 2 bits for each of 2 dots, the input of N bit(s) (N
is an integer of 1 or more) for each of M dots (M is an
integer of 2 or more) can be realized in the same way.

A second embodiment of the LCM for color
display as shown in Fig. 9 can be realized by providing
25 R, G and B serial-parallel converter sections 57, 58 and
59, and providing a color parallel X driving section 60
with three columns of the arrangement of Fig. 8.

Further, although the explanation hitherto

1 made was directed to a liquid crystal display device,
the same idea can be also applied to the other display
devices such as a plasma display, EL display, etc.

In accordance with the present invention, an
5 LCM for multi-tone display or multi-color can be
realized thereby to decrease the number of input lines
to LCM. Moreover, by using an analog input to decrease
the number of data bits, noise to be generated can be
reduced. Further, by carrying the parallel operation of
10 the X driving section, the operation speed can be
enhanced. Furthermore, since the voltages in accordance
with N bit decoded values can be selected as outputs
from the X driving section, tone voltage with less
fluctuation can be provided.

CLAIMS:

1. An image display device comprising:
a matrix display panel having plural X direction signal lines and plural Y direction signal lines intersecting lying at right angles thereto, the intersecting points of said matrix being pixels of a display image;
X direction driving means for sequentially scanning said plural X direction signal lines to provide image signals;
Y direction driving means for driving said plural Y signal lines in synchronism with the scanning of said plural X direction signal lines to sequentially provide, select signals to said plural Y direction signal lines;
A-D converter means for receiving an analog image signal and converting it into a digital image signal;
voltage generating means for generating signals at plural different voltage levels; and
selector means for selecting one of the output signals from said voltage generating means in accordance with an output from said A-D converter means to provide it to said X direction driving means as said image signal.
2. An image display device according to claim 1, wherein said matrix display panel comprises a liquid crystal display panel.

3. An image display device according to claim 1, wherein said matrix display panel comprises a plasma display panel.

4. An image display device according to claim 2, wherein said liquid crystal panel comprises liquid crystal cells capable of distinguishably displaying information of N (N : positive integer) for one pixel, and said voltage generating means generates signals at different 2^N kinds of voltage levels.

5. An image display device according to claim 2, wherein said liquid crystal panel comprises display elements radiating N (N : positive integer) kinds of colors for one pixel, said X direction signal lines comprises 2^N signal lines corresponding to said N kinds of different colors, and said A-D converter means comprises means for receiving N kinds of different color image analog signals and converting them into N kinds of different color image digital signals.

6. An image display device according to claim 1, wherein said A-D converter means converts said analog input signal into an M (M : positive integer) bit parallel digital signal to be supplied to said selector means.

ABSTRACT OF THE DISCLOSURE

This specification discloses a novel multi-tone display matrix display device. The matrix display device according to an embodiment of the present invention comprises a matrix display panel having a matrix composed of plural X direction signal lines and plural Y direction signal lines lying at right angles thereto, intersecting points on the matrix being pixels of an image to be displayed, an X direction driving section for sequentially scanning the X direction signal lines to provide image signals, a Y direction driving section for driving the Y direction signal lines in synchronism with the scanning of the X direction signal lines to sequentially provide select signals to the Y direction signal lines, an A-D converter section for receiving an analog signal and converting it into a digital signal, a voltage generating section for generating signals at plural voltage levels, and a selector section for selecting an output signal from the voltage generating section in accordance with the output from A-D converter section and providing it to the X direction driving section as an image signal.

FIG. I

FIG. 2

FIG. 3

FIG. 4

23

FIG. 5

FIG. 6

FIG. 7

FIG. 8

FIG. 9

210700105
B5108-01

COMBINED DECLARATION AND POWER OF ATTORNEY
(宣誓書及び委任状)

Copy

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name, I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first and joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a patent is sought on the invention entitled:

"MULTI-TONE DISPLAY DEVICE"

the specification of which: (check one) is attached hereto.

was filed on _____
as Application Serial No. _____
and was amended on _____ (if applicable)

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the examination of this application in accordance with Title 37, Code of Federal Regulations, §1.56(a).

I hereby claim foreign priority benefits under Title 35, United States Code, §119 of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

Prior Foreign Application(s)			Priority	Claimed
<u>01-066102</u> (Number)	<u>Japan</u> (Country)	<u>20 March, 1989</u> (Day/Month/Year Filed)	<input checked="" type="checkbox"/> Yes	<input type="checkbox"/> No
 (Number)	 (Country)	 (Day/Month/Year Filed)	<input type="checkbox"/>	<input type="checkbox"/> No
 (Number)	 (Country)	 (Day/Month/Year Filed)	<input type="checkbox"/>	<input type="checkbox"/> No

I hereby claim the benefit under Title 35, United States Code, §120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, §112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, §1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.) (Filing Date) (Status)
(patented, pending, abandoned)

(Application Serial No.) _____ (Filing Date) _____ (Status)
(patented, pending, abandoned)

I hereby appoint as principal attorneys: Donald R. Antonelli, Reg. No. 20,296; David T. Terry, Reg. No. 20,178; Charles E. Wands, Reg. No. 25,649; Melvin Kraus, Reg. No. 22,466; James F. McKeown, Reg. No. 25,406; Stanley A. Wal, Reg. No. 26,432, David S. Safran, Reg. No. 27,997, William I. Solomon, Reg. No. 28,565; Gregory E. Montone, Reg. No. 28,141; and Ronald J. Shore, Reg. No. 28,577 to prosecute and transact all business connected with this application and any related United States' application and international applications. Please direct all communications to the following address:

Antonelli, Terry & Wands
Suite 600
1919 Pennsylvania Avenue, N.W.
Washington, D.C. 20006
Telephone: (202) 828-0300

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further, that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

宣誓日

発明者フルネームサイン

氏名タイプ欄

Date Jan. 19, 1990 Inventor Hiroyuki Mano Hiroyuki MANO

Residence Yokohama-shi, Japan Citizenship Japan

Post Office Address 17, Okamura-4-chome, Isogo-ku, Yokohama-shi, Japan.

Date Jan. 19, 1990 Inventor Kiyokazu Nishioka Kiyokazu NISHIOKA

Residence Yokohama-shi, Japan Citizenship Japan

Post Office Address 1545, Yoshidacho, Totsuka-ku, Yokohama-shi, Japan.

Date Jan. 19, 1990 Inventor Toshio Futami Toshio FUTAMI

Residence Mobara-shi, Japan Citizenship Japan

Post Office Address 97, Hagiwaracho-2-chome, Mobara-shi, Japan.

Date Jan. 19, 1990 Inventor Kiyoshige Kinugawa Kiyoshige KINUGAWA

Residence Chosei-gun, Chiba-ken, Japan Citizenship Japan

Post Office Address 256-11, Kamiichiba, Mutsuzawamachi, Chosei-gun, Chiba-ken, Japan.

Date _____ Inventor _____

Residence _____ Citizenship _____

Post Office Address _____

Date _____ Inventor _____

Residence _____ Citizenship _____

Post Office Address _____