Задание по практикуму

по курсу «Динамическое программирование и процессы управления» 7 семестр 2014 г.

Задание состоит из двух частей. По итогам выполнения заданий готовится общий отчёт.

Часть 1.

Дана колебательная система с двумя степенями свободы (описания колебательных систем приведены в конце данного задания, выбрать систему в соответствии с вашим вариантом, параметры подобрать самостоятельно).

Исследовать движение системы без управления (найти собственные значения, построить фазовые траектории).

При помощи Ellipsoidal Toolbox выяснить, за какое минимальное время можно успокоить систему (привести в положение равновесия с нулевой скоростью для механических систем, либо привести в состояние, когда падения напряжения на конденсаторах равны нулю, и токи через катушки индуктивности равны нулю, для электрических систем).

Требования к программе

Для выполнения задания разрешается использовать функции Ellipsoidal Toolbox для задания эллипсоидов, поиска пересечения эллипсоида и гиперплоскости (и множества $\mathcal{Y}(t)$). Не разрешается использовать функции Ellipsoidal Toolbox для построения проекции эллипсоида на плоскость, построения внутренней или внешней оценки геометрической суммы и разности эллипсоидов, для пересечения и объединения эллипсоидов.

Требования к отчету

Часть 1.

Вывести уравнение движения системы. Описать характер движения системы без управления.

Дать определение всем понятиям, относящимся к теории управления, используемым в отчете.

Обосновать решение задачи, проиллюстрировать картинками, построенными с помощью Ellipsoidal Toolbox, оценить погрешность результатов, полученных численно.

Двойной математический маятник состоит из двух невесомых стержней длины ℓ_1 и ℓ_2 и двух грузов массой m. Маятник совершает малые колебания в вертикальной плоскости. К нижнему шарику приложено управляющее ускорение u. Задано начальное смещение грузов относительно положения равновесия (x_1^0, x_2^0) и начальные скорости (v_1^0, v_2^0) . Даны следующие параметры: m, ℓ_1 , ℓ_2 , $|u| \leqslant U$, x_1^0 , x_2^0 , v_1^0 , v_2^0 .

Система состоит из двух невесомых стержней длины ℓ , двух грузов массой m и пружины жесткости k, их соединяющей. Система совершает малые колебания в вертикальной плоскости. К правому шарику приложено управляющее ускорение u. Задано начальное смещение грузов относительно положения равновесия (x_1^0, x_2^0) и начальные скорости (v_1^0, v_2^0) . В положении равновесия пружина не растянута, маятники вертикальны.

Даны следующие параметры: $m,\,\ell,\,k,\,|u|\leqslant U,\,x_1^0,\,x_2^0,\,v_1^0,\,v_2^0.$

Три частицы, каждая массой m, связанные пружинками жесткости k, могут двигаться по кольцу. К одной из частиц приложено управляющее ускорение u. Задано начальные отклонения частиц от положений равновесия (x_1^0, x_2^0, x_3^0) и начальные скорости (v_1^0, v_2^0, v_3^0) . Считать, что движение по кольцу происходит без трения, кольцо расположено в горизонтальной плоскости, а в положении равновесия пружины не растянуты. Даны следующие значения параметров: m, k, $|u| \leq U$, x_1^0 , x_2^0 , x_3^0 , v_1^0 , v_2^0 , v_3^0 .

Электрический контур состоит из трех конденсаторов емкости C_1 , C_2 , C и двух катушек индуктивности L_1 , L_2 . Управлением U можно подавать дополнительное напряжение к участку цепи между второй катушкой индуктивности и вторым конденсатором. В начальный момент на конденсаторах с емкостями C_1 и C_2 были падения напряжения U_1 и U_2 , а токи через катушки были равны I_1 , I_2 .

Даны следующие параметры: $C,\ C_1,\ C_2,\ L_1,\ L_2,\ U_1,\ U_2,\ I_1,\ I_2,\ |U|\leqslant \widetilde{U}.$

Электрический контур состоит из двух конденсаторов емкости C_1 , C_2 и трех катушек индуктивности L_1 , L_2 , L. Управлением U можно подавать дополнительное напряжение к участку цепи между второй катушкой индуктивности и вторым конденсатором. В начальный момент на конденсаторах с емкостями C_1 и C_2 были падения напряжения U_1 и U_2 , а токи через катушки были равны I_1 , I_2 .

Даны следующие параметры: $C_1, C_2, L, L_1, L_2, U_1, U_2, I_1, I_2, |U| \leqslant \widetilde{U}$.

