Projekt 2 na M'Al

Autorzy: Piotr Ginalski, Jakub Sęk, Łukasz Wodnicki

Naszym zadaniem jest napisanie funkcji znajdującej minimum funkcji. Jednocześnie poszukujemy metod, które nie zakładają różniczkowalności naszej funkcji oraz mogące mieć wiele minimum lokalnych. W szczególności jako test bierzemy funkcję

$$L^k(x) = x^2(\sin kx + 2).$$

Najpierw dokonamy wizualizacji naszej funkcji.

```
In [1]: import matplotlib.pyplot as plt #użyjemy tylko na potrzeby wizualizacji, podobnie pyplor
import random
import math

# Definicja funkcji celu
def L(k, x):
    return x * x * (math.sin(k * x) + 2)
```

```
In [2]: number_of_points = 1000
k = 50

x_list = [-10 + 20*k/number_of_points for k in range(0, number_of_points)]
y_list = [L(k, x) for x in x_list]

plt.plot(x_list, y_list)
plt.show()
```


Jak widzimy nasza funkcja ma wiele minimów lokalnych. Przejdźmy do opisu metody, której użyjemy do znalezienia minimum tej funkcji.

Simulated Annealing

TU BEDZIE OPIS METODY

Przejdźmy do samego kodu. Zamierzamy szukać minimum, póki nie znajdziemy czegoś bliżej niż 10^{-6} . Następnie zwrócimy liczbę kroków potrzebną do znalezienia tego minimum (jeśli zostało ono osiągnięte) oraz -1 jeśli nie udało nam się zbliżyć wystarczająco blisko.

```
In [3]: def sa_steps(k, init_temp=2.0, n = 50000, alpha=0.85, steps_per_temp=200, threshold=1e-
            x = random.uniform(-10, 10)
            best_val = L(k, x)
            T = init temp
            steps = 0
             while n > steps:
                 for _ in range(steps_per_temp):
                     dx = random.uniform(-1, 1) * T
                     x_{new} = min(max(x + dx, -10), 10)
                     v_{new} = L(k, x_{new})
                     steps += 1 # każdy krok = jedna ewaluacja nowego x
                     if v_new < best_val:</pre>
                         best_val = v_new
                     if v_new < threshold: # warunek stopu</pre>
                         return x, steps
                     v_{curr} = L(k, x)
                     if v_new < v_curr or random.random() < math.exp((v_curr - v_new) / T):</pre>
                         x = x_new
                 T *= alpha
             return x, steps
```

I ostatecznie, możemy zbadać zależność N vs K.

```
In [4]:
        random.seed(42)
        k_{vals} = [1, 2, 3, 4] + [5*k for k in range(1, 21)]
        trials = 20
        # Obliczanie średniej liczby kroków dla każdego k
        avg_steps = []
        for k in k_vals:
            steps_list = [sa_steps(k)[1] for _ in range(trials)]
            for value in steps_list:
                mean += value
            mean = mean / trials
            avg_steps.append(mean)
        # Rysowanie wykresu
        plt.figure(figsize=(8, 5))
        plt.plot(k_vals, avg_steps, marker='o', linestyle='-')
        plt.xlabel('k')
        plt.ylabel('Średnia liczba kroków (SA do L < 1e-6)')</pre>
        plt.title('Zależność liczby kroków Simulated Annealing od parametru k')
        plt.grid(True)
        plt.show()
```


Podsumowanie

TU BEDZIE PODSUMOWANIE