

Centrá a mediány

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

10. mája 2011

Strediská obsluhy v dopravných sieťach

Problém určenia niektorých vrcholov v cestnej resp.dopravnej sieti, ktoré budú slúžiť ako strediská obsluhy.

Dve základné funkcie obslužných centier

- Zásobovacia tu voláme centrá depá
- Záchranná tu voláme centrá havarijné strediská

Pri zásobovacích centrách ide o minimalizáciu dopravných nákladov na obsluhu príslušného územia.

Pri havarijných strediskách ide o minimalizáciu vzdialenosti najhoršie položeného vrchola k svojmu stredisku.

Model dopravnej siete je hranovo i vrcholovo ohodnotený graf

G = (V, H, c, w), kde

 $c: H \to \mathbb{R}$ je ohodnotenie hrán vyjadrujúce dĺžku hrany,

 $w:V \to \mathbb{R}$ je ohodnotenie vrcholov vyjadrujúce náročnosť vrchola na obsluhu

Vážený p-medián

Označme $D \subseteq V$ množinu diep (napr. uhoľných skladov, skladov štrkopieskov, centrálnych skladov nábytku atď.)

Nech w(v) je počet jázd potrebných na obsluhu vrchola v za plánované obdobie.

Vrchol v budeme obsluhovať z najbližšieho depa – náklady na jeho obsluhu budú úmerné w(v).d(v,D).

Náklady na obsluhu všetkých vrcholov budú úmerné

$$f(D) = \sum_{v \in V} w(v).d(v,D) .$$

Veličina f(D) určuje kvalitu množiny havarijných stredísk D z hľadiska dopravných nákladov.

Definícia

Nech G = (V, H, c, w) je súvislý hranovo a vrcholovo ohodnotený graf, $D \subset V$.

Súhrnná vážená vzdialenosť f(D) všetkých vrcholov grafu G od množiny D je definovaná nasledovne:

$$f(D) = \sum w(v).d(v,D).$$
 (2)

Stanislav Palúch, Fakulta riadenia a informatiky, Žilinská univerzita Centrá a mediány

Definícia

Nech $1 \le p < |V|$, D_p p-prvková podmnožina množiny V. Hovoríme, že D_p je **vážený** p-**medián** grafu G, ak pre ľubovoľnú p-prvkovú podmnožinu D_p' množiny V platí

$$f(D_p) \leq f(D'_p),$$

t.j. ak súhrnná vážená vzdialenosť všetkých vrcholov grafu G od D_p je najmenšia medzi všetkými p-prvkovými podmnožinami množiny V. Špeciálne ak w(v)=1 pre všetky $v\in V$, hovoríme, že D_p je p-medián.

Vážená excentricita množiny

Definícia

Nech G = (V, H, c, w) je súvislý hranovo a vrcholovo ohodnotený graf, $D \subseteq V$.

Vážená excentricita ecc(D) množiny D je definovaná nasledovne:

$$ecc(D) = \max\{w(v).d(v,D) \mid v \in V\}.$$

Vážená excentricita množiny D je vážená vzdialenosť najhoršie položeného vrchola od množiny D.

Vyjadruje kvalitu množiny havarijných stredísk *D* z hľadiska kvality obsluhy najhoršie položeného vrchola vzhľadom na *D*.

Definícia

Nech $1 \le p < |V|$, D_p p-prvková podmnožina množiny V.

Hovoríme, že D_p je **vážené** p-**centrum** grafu G, ak pre ľubovoľnú p-prvkovú podmnožinu D_p' množiny V platí

$$ecc(D_p) \leq ecc(D'_p),$$

t. j. ak množina D_p má najmenšiu váženú excentricitu zo všetkých p-prvkových podmnožín množiny V.

Špeciálne ak w(v) = 1 pre všetky $v \in V$, hovoríme, že D_p je p-centrum.

Heuristický algoritmus na hľadanie váženého p-mediánu

Algoritmus

Heuristický algoritmus na hľadanie váženého p-mediánu v súvislom hranovo a vrcholovo ohodnotenom grafe G=(V,H,c,w) .

- Krok 1. Náhodne vyber p-prvkovú podmnožinu množiny V. Nech $D_p = \{v_1, v_2, \dots, v_p\}$, $V D_p = \{u_1, u_2, \dots, u_q\}$, kde q = |V| p.
- Krok 2. Hľadaj také $i, j, 1 \le i \le p, 1 \le j \le q,$ že pre $D'_p(i,j) = (D_p \cup \{u_j\}) - \{v_i\}$ je $f(D'_p) < f(D_p)$.
- **Krok 3.** Ak taká dvojica indexov i, j neexistuje, STOP. Inak polož $D_p := D'_p(i,j)$ a GOTO Krok 2.

Poznámka

Zámenou podmienky $f(D'_p) < f(D_p)$ za $ecc(D'_p) < ecc(D_p)$ dostaneme suboptimálny algoritmus pre hľadanie váženého p-centra grafu G.

Definícia

Nech je daný súvislý hranovo a vrcholovo ohodnotený graf G = (V, H, c, w)a p-prvková množina diep D_p.

Atrakčný obvod A(v) depa $v \in D_p$ je množina všetkých takých vrcholov grafu G, ktorých vzdialenosť od depa v je menšia alebo rovná ako vzdialenosť od iných diep, t.j.

$$A(v) = \{x | x \in V, \forall u \in D_p \ d(v, x) \leq d(u, x)\}$$

Prvotný atrakčný obvod A'(v) depa $v \in D_p$ je množina všetkých takých vrcholov grafu G, ktorých vzdialenosť od depa v je menšia ako vzdialenosť od iných diep, t.j.

$$A'(v) = \{x \mid x \in V, \ \forall u \in D_p, \ \underline{u} \neq v \ d(v, x) < d(u, x)\}$$

Systém pridelených atrakčných obvodov je systém podmnožín $A^{v}(v), v \in D_{n}$ vrcholovej množiny V takých že

1.
$$A'(v) \subseteq A^{v}(v) \quad \forall v \in D_{p}$$

2.
$$A^{v}(v) \subseteq A(v) \quad \forall v \in D_{p}$$

3.
$$A^{v}(u) \cap A^{v}(v) = \emptyset \quad \forall u, v \in D_{p}, \ u \neq v$$

4.
$$\int A^{\nu}(\nu) = V$$