(19)日本国特許 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号 特開2000-53898 (P2000-53898A)

(43)公開日 平成12年2月22日(2000.2.22)

(51) Int.CL⁷

™ , **y**' ' ' > ,

識別記号

FI

C09D 11/00

C 0 9 D 11/00

テーマコート*(参考) 4J039

審査請求 未請求 請求項の数4 OL (全 9 頁)

(21)出願番号

(22)出顧日

特顏平10-224912

平成10年8月7日(1998.8.7)

(71)出願人 000000918

花王株式会社

東京都中央区日本橋茅場町1丁目14番10号

(72)発明者 佐藤 伸一

栃木県芳賀郡市貝町赤羽2606 花王株式会

社研究所内

(72) 発明者 水戸部 裕之

栃木県芳賀郡市貝町赤羽2606 花王株式会

社研究所内

(74)代理人 100076532

弁理士 羽鳥 修 (外1名)

Fターム(参考) 4J039 AD10 AE06 AE11 BC10 BC20

BC33 BC34 BC37 BC54 BE33

CA06 EA21 EA41 EA46 GA24

(54) 【発明の名称】 インクジェット記録用水系インク

(57)【要約】

【課題】 インク吐出不良が防止され、インク液滴の着 弾位置の精度及び印字濃度が向上したインクジェット記 録用インクを提供すること。

【解決手段】 ポリマー微粒子に色材を含浸させてなる ポリマーエマルジョンからなり、尿素、アルキルグリシ ン及びグリシルベタインからなる群より選ばれる少なく とも一種の化合物と、ジアルキルスルホコハク酸エステ ル塩とを含有し、且つ上記ポリマーがビニル系ポリマー であることを特徴とするインクジェット記録用水系イン ク。

【特許請求の範囲】

1 4, 1

【請求項1】 ポリマー微粒子に色材を含浸させてなるポリマーエマルジョンからなり、尿素、アルキルグリシン及びグリシルベタインからなる群より選ばれる少なくとも一種の化合物と、ジアルキルスルホコハク酸エステル塩とを含有し、且つ上記ポリマーがビニル系ポリマーであることを特徴とするインクジェット記録用水系インク。

【請求項2】 上記化合物が1~50重量%含有され、ジアルキルスルホコハク酸エステル塩が0.001~1 重量%含有されることを特徴とする請求項1記載のインクジェット記録用水系インク。

【請求項3】 上記ポリマーが固形分として1~30重量%含有されることを特徴とする請求項1又は2記載のインクジェット記録用水系インク。

【請求項4】 上記ポリマーと上記化合物との重量比 (前者/後者)が1/5~5/1であり、該ポリマーと ジアルキルスルホコハク酸エステル塩との重量比 (前者/後者)が5/1~2000/1であることを特徴とする請求項1~3の何れかに記載のインクジェット記録用 水系インク。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、インク吐出不良が 防止され、インク液滴の着弾位置の精度及び印字濃度が 向上したインクジェット記録用インクに関する。

[0002]

【従来の技術及び発明が解決しようとする課題】耐水性が向上したインクジェット記録用インクには、ラテックスを配合したインク(特開昭55-18412号公報)や有色ポリマーラテックスを含有するインク(特開昭59-30873号公報)等のポリマーエマルジョンからなるインクがある。

【0003】しかしながら、ラテックスが配合されたインクは、ノズルの目詰まりを起こす。また、熱ジェット方式のプリンタで印字した場合には、吐出が安定せずにインク液滴の着弾位置の精度が低下する。更に、印字濃度が十分に高くならない。その上、色材の導入量が充分な場合でも、着弾位置精度の低下により、印字物にスジやカスレが発生し印字濃度が十分に高くならないという問題もある。

【0004】従って、本発明の目的は、インク吐出不良が防止され、インク液滴の着弾位置の精度及び印字濃度が向上したインクジェット記録用インクを提供することにある。

[0005]

【課題を解決するための手段】本発明は、特定のポリマーのエマルジョンからなる水系インクに、特定の化合物を組み合わせて含有させることにより上記目的を達成した。

【0006】即ち、本発明は、ポリマー微粒子に色材を 含浸させてなるポリマーエマルジョンからなり、尿素、 アルキルグリシン及びグリシルベタインからなる群より 選ばれる少なくとも一種の化合物と、ジアルキルスルホコハク酸エステル塩とを含有し、且つ上記ポリマーがビニル系ポリマーであることを特徴とするインクジェット 記録用水系インクを提供するものである。

[0007]

【発明の実施の形態】本発明のインクジェット記録用水系インク(以下、単に「水系インク」という)には、尿素、アルキルグリシン及びグリシルベタインからなる群より選ばれる少なくとも一種の化合物(以下、この化合物を化合物Aという)と、ジアルキルスルホコハク酸エステル塩(以下、化合物Bという)との組み合わせが用いられる。

【0008】化合物Aのうち、アルキルグリシンとしては、一般式が R_1R_2 NCH $_2$ COOMで表されるものが用いられ、この一般式中、 R_1 及び R_2 としては同一の又は異なる水素原子または炭素数 $1\sim 5$ のアルキル基が好ましく用いられる(但し、 R_1 及び R_2 は同時に水素原子とならない)。上記アルキル基の例としてはメチル基、エチル基、プロビル基およびイソプロピル基等が挙げられる。Mとしては水素原子、アルカリ金属原子またはアルカリ土類金属原子が用いられ、水素原子またはアルカリ金属原子が好ましく用いられる。アルキルグリシンの具体例としてはN-メチルグリシン、N, N-ジメチルグリシン及びN-エチルグリシン等が挙げられる。

【0009】化合物Aは、一種以上を用いることができる。特に好ましく用いられるものは、尿素、Nーメチルグリシン、N,N,Nートリメチルグリシン、グリシルベタインである。化合物Aは本発明の水系インク中に好ましくは1~50重量%、更に好ましくは2~35重量%、一層好ましくは5~25重量%含有される。化合物Aの含有量が1重量%に満たないとエマルジョンがヘッドに焦げつき易く、そのためにインク液滴の着弾位置精度が低下することがあり、50重量%を超えるとインク粘度が高くなってインクの吐出性が低下し易く、その為に記録紙への印字品質が悪化したり、印字部の乾燥性、耐擦過性が低下するおそれがある。

【0010】化合物Bにおける2つのアルキル基としては、同一の又は異なる炭素数5~16の直鎖、分岐鎖または環状のアルキル基が好ましく用いられ、具体的には同一の又は異なるnーヘキシル基、1ーメチルペンチル基、2ーエチルヘキシル基、nーオクチル基、nーアミル基、シクロヘキシル基、イソブチル基、イソトリデシル基、イソアミル基、nーブチル基、nーペプチル基、nーノニル基、nーデシル基、nードデシル基、nートリデシル基、1ーメチルブチル基、1・3ージメチルブチル基、1ーメチルブチル基、1・メチルブチル基、1ーメチルブチル基、1ーメチルブチル基、1ーメチルブチル基、1ーメチルブチル基、1ーメチルブチル基、1ーメチルブチル基、1ーメチルブチル基、1ーメチルブチル基、1ーメチル

ヘプチル基、1-プロピルブチル基、1-ブチルアミル基、1-メチルー4 エチルオクチル基等が用いられる。特に2つのアルキル基は同一の基であることが好ましい。化合物Bにおける塩としてはNa、K等のアルカリ金属塩、 NH_4 + やN(CH_2 C H_2 OH) $_4$ + 等の四級アンモニウム塩等が用いられる。化合物(B)として好ましいものの例としてはジ・2ーエチルヘキシルスルホコハク酸塩、ジ・n-オクチルスルホコハク酸塩、ジ・n-オクチルスルホコハク酸塩、ジ・n-アミルスルホコハク酸塩、ジ・シクロヘキシルスルホコハク酸塩、ジ・シクロヘキシルスルホコハク酸塩、ジ・n-7、シクロヘキシルスルホコハク酸塩、ジ・n-7、シクロヘキシルスルホコハク酸塩、ジ・n-7、カーアミルスルホコハク酸塩、ジ・n-7、カーアミルスルホコハク酸塩、ジ・n-7、カーアミルスルホコハク酸塩、ジ・n-7、カーアミルスルホコハク酸塩、ジ・n-7、カーアミルスルホコハク酸塩、ジ・n-7、カーアミルスルホコハク酸塩、ジ・n-7、カーアシルスルホコハク酸塩、ジ・n-7、カーアシルスルホコハク酸塩、ジ・n-7、カーアシルスルホコハク酸塩、ジ・n-7、カーアシルスルホコハク酸塩、ジ・n-7、カーアシルスルホコハク酸塩、ジ・n-7、カーアシルスルホコハク酸塩、ジ・n-7、カーアシルスルホコハク酸塩、ジ・n-7、カーアシルスルホコハク酸塩、ジ・n-7、カーアシルスルホコハク酸塩、ジ・n-7、カーアシルスルホコハク酸塩等が挙げられる。

【0011】化合物Bは一種または二種以上の組み合わせが用いられ、本発明の水系インク中に好ましくは0.005~1重量%、一層好ましくは0.005~1重量%、一層好ましくは0.01~0.5重量%含有される。化合物Bの含有量が0.001重量%に満たないとエマルジョンがヘッドへ焦げ付き易く、吐出が安定せずにインク液滴着弾位置の精度が低下することがあり、1重量%を超えるとインクの紙への浸透力が促進され、十分な印字濃度が得られない(特に普通紙で顕著である)ことがある。

【0012】本発明の水系インクは、上記の化合物A及 び化合物Bがポリマーエマルジョンに含有されてなる水 系分散液である。該ポリマーエマルジョンとしては、**色** 材により着色された有色ポリマー微粒子のエマルジョン が用いられ、特に、水不溶性または水難溶性色材を含浸 させたポリマー微粒子のエマルジョンが用いられること が好ましい。本明細書において、「色材を含浸させた」 とは、ポリマー微粒子中に色材を封入した状態およびポ リマー微粒子の表面に色材を吸着させた状態の何れか又 は双方を意味する。この場合、本発明の水系インクに配 合される色材はすべてポリマー微粒子に封入または吸着 されている必要はなく、本発明の効果が損なわれない範 囲において、該色材がエマルジョン中に分散していても よい。本発明の好ましい態様においては、上記水系イン クは、水不溶性または水難溶性色材が含浸されたポリマ 一微粒子のエマルジョンからなり、且つ上記の化合物A 及び化合物Bを含んでいる。

【0013】上記色材としては、水不溶性若しくは水難溶性であって、上記ポリマーによって吸着され得る色材であれば特に制限なく用いられる。本明細書において、水不溶性若しくは水難溶性とは、20℃で水100重量部に対して、色材が10重量部以上溶解しないことをいい、溶解するとは、目視で水溶液表層または下層に色材の分離や沈降が認められないことをいう。上記色材としては、例えば、油溶性染料、分散染料等の染料や、顔料等が挙げられる。特に、良好な吸着・封入性の観点から油溶性染料及び分散染料が好ましい。

【0014】本発明に用いられる上記の各染料は、ポリマー微粒子に効率的に含浸される観点から、有機溶剤、例えば、ケトン系溶剤に2g/リットル以上溶解することが好ましく、20~600g/リットル溶解することが更に好ましい。

【0015】上記色材は、本発明の水系インク中に1~30重量%配合されることが好ましく、1.5~25重量%配合されることが更に好ましい。上記色材の配合量が1重量%に満たないと印字濃度が十分でないことがあり、30重量%を超えて使用すると、ポリマー微粒子の経時安定性が低下し、その粒径が増大して、エマルジョン自身の分散安定性が低下する傾向がある。また、上記色材の配合量は、ポリマーの配合量との関係において、該ポリマーの重量に対して約10~200重量%、特に約25~150重量%であることが好ましい。

【0016】上記ボリマーエマルジョンを構成するポリマーとしては、各種ビニル系ポリマーが用いられる。特に、アクリルアミド系またはメタアクリルアミド系モノマー(a) (但し、塩生成基を有するものは除く)と、塩生成基を有する重合性モノマー(b)と、これらのモノマーと共重合可能なモノマー(c)とを共重合させて得られたものが用いられる。斯かるポリマーエマルジョンに、上記の化合物A及び化合物Bを組み合わせて含有させることにより、印字ヘッドのフェイス面の汚れが防止され、インク液滴の着弾位置の精度が向上し、普通紙での印字濃度が向上する。

【0017】上記アクリルアミド系またはメタアクリルアミド系モノマー(a) としては、例えば特開平9-286939号公報の第5欄40行~第7欄22行に記載のモノマーが挙げられる。

【0018】塩生成基を有する上記重合性モノマー(b) としては、例えば特開平9-286939号公報の第7 欄23行~第8欄29行に記載のモノマーが挙げられる。

【0019】上記のモノマー(a) 及び(b) と共重合可能なモノマー(c) としては、例えば特開平9-286939号公報の第8欄30行~第9欄1行に記載のモノマーが挙げられる。これらの中でも特に、アクリル酸メチル、アクリル酸tーブチル、アクリル酸2ーエチルへキシル、メタクリル酸メチル、メタクリル酸2ーエチルへキシル、2ーメチルスチレン、2ーヒドロキシエチルメタクリレートを用いることが好ましい。

【0020】上記モノマーと共重合可能なモノマー(c)は、上記のものに限定されず、市販のラジカル共重合性モノマーを用いることもできる。特に、下記式(1-1)~(1-4)で表されるモノマーを一種以上使用することが、エマルジョンの保存安定性の点から好ましい。

[0021]

【化1】

$$CH_{\bullet} = \stackrel{\mid}{C} - COO + CH_{\bullet} - CH + CH_{\bullet} - CH + CH_{\bullet} + CH$$

(式中、xおよびyは、x/y=6/4~10/0で、重量平均分子量が1,000~10,000となる数を示す。)

$$CH_{1}=C-COO - CH_{1}-C - H - (1-2)$$

$$CH_{2}=C-COO - CH_{2}-C - H - (1-2)$$

$$CH_{1}=C-COO \leftarrow CH_{2}CH_{2}O \rightarrow_{q} CH_{3}$$

$$(1-3)$$

$$CH_{2} = \stackrel{1}{C} - COOC_{2}H_{4}O \xrightarrow{\qquad \qquad } CC - C_{3}H_{10}O \xrightarrow{\qquad \qquad } CH_{3} (1-4)$$

(式中、p、q、rは、重量平均分子量が500~10,000となる数を示す。)

【0022】上記モノマー(c) の市販品としては、片末端にメタクリロイルオキシ基を有するスチレン及び/又はアクリロニトリル共重合体マクロマー〔東亜合成(株)製、AN-6、AS-6(商品名)〕、片末端にメタクリロイルオキシ基を有するメタクリル酸メチル重合体マクロマー〔東亜合成(株)製、AA-6(商品名)〕、片末端にメタクリロイルオキシ基を有するポリオキシエチレンマクロマー〔新中村化学(株)製、NKエステルM-90Gneω、同M-40Gnew、同M-20Gneω(商品名)〕、片末端にメ

w、同M-40Gnew、同M-20Gnew(商品名)〕、片末端にメタクリロイルオキシ基を有するポリエステルマクロマー〔ダイセル化学工業(株)製、FM4DX(商品名)〕等が挙げられる。

【0023】上記ビニル系ポリマーを合成する場合には、上記モノマー(a)をモノマー全量に対して1~40重量%、上記モノマー(b)をモノマー全量に対して1~25重量%、上記モノマー(c)をモノマー全量に対して35~96重量%の割合で用いて共重合させることが好ましい。

【0024】上記ビニル系ポリマーの合成に際し、更に下記式(2)で表されるシリコンマクロマーを共重合成分として用いることが好ましい。

【0025】 【化2】

· , · · · ·

X (Y) nS i (R1) 3~m (Z) n (2) (式中、

X:重合可能な不飽和益を示す。

Y:二価の結合基を示す。

RI:水素原子、低級アルキル基、アリール基又はアルコキン基を示し、複数個のRIは同一でも異なっていてもよい。

Z:少なくとも約5 0 0の数平均分子量を有する一価シロキサンポリマー部分を示す。

n:0又は1を示す。

m:1~3の整数を示す。)

【0026】上記式(2)で表されるシリコーンマクロマーにおいて、Xは重合可能な不飽和基を示し、具体的には $CH_2=CH-DCCH_2=C(CH_3)$ ー等の基が挙げられる。Yは二価の結合基を示し、具体的には $-COOC_bH_{2b}-(CCCDC_3H_4)$ 及びフェニレン基等が挙げられ、 $-COOC_3H_4$ の低級アルキル基:フェニル基等のアリール基:メトキシ基等のアルコキシ基を示し、メチル基であることが好ましい。Zは少なくとも約500の数平均分子量〔ゲルパーミエーションクロマトグラフィー(以下、GPCという)でポリスチレン換算する。以下同じ。〕を有する一価シロキサンポリマー部分を示し、好ましくは数平均分子量800~5000の一価のジメチルシロキサン

ボリマーである。nは0又は1であり、好ましくは1である。 $mは1\sim3$ の整数であり、好ましくは1である。 [0027] シリコーンマクロマーとしては、下記式 $(2-1)\sim(2-4)$ で表されるものが挙げられる。この中でも、式(2-1) で表されるものが好ましく、特に下記式(2-1)

-1-1) [チッソ(株) 製のFM-0711 (商品名)]で表されるものが好ましい。

[0028]

【化3】

$$CH_{2}=CR_{1}-COOC_{0}H_{0}-\left\{\begin{array}{c}R_{1}\\|\\S_{1}\\|\\R_{1}\end{array}\right\}_{0}^{R_{1}} \begin{array}{c}R_{1}\\|\\S_{1}-R_{1}\end{array} (2-1)$$

$$CH_{2}=CR_{1}-COO \xrightarrow{\begin{cases} R_{1} \\ | \\ | \\ R_{1} \end{cases}} S_{i} - O \xrightarrow{\begin{cases} R_{1} \\ | \\ | \\ | \\ R_{1} \end{cases}} S_{i} - R_{1} \qquad (2-2)$$

$$CH_1 = CR_1 - COO - C_1H_1 - Si (OE);$$
 (2-4)

(式中、R2は水素原子又はメチル基を示し、R1は前配の意味を示し、 複数個のR1は同一でも異なっていてもよい。Eは下記式で示さ れる基を示し、aは5~85の数を示す。)

$$\begin{array}{c|c}
R_1 \\
\vdots \\
S_i - O \\
R_i \\
\end{array}$$

$$\begin{array}{c|c}
R_1 \\
\vdots \\
S_i - R_1 \\
\vdots \\
R_1
\end{array}$$

[0029]....

· , · · · · .

$$CH_{3} = C - COOC_{3}H_{4} - \begin{cases} CH_{3} \\ Si - O \\ CH_{4} \end{cases} CH_{5}$$

$$(2-1-1)$$

(式中、a'は、重量平均分子量が1、000となる数である。)

【0030】上記ビニル系ポリマーは、特開平9-286939号公報の第9欄10~23行に記載の重合方法により得ることができ、特に溶液重合法により製造されることが好ましい。

【0031】共重合の際にはラジカル重合開始剤が用いられ、その例としては特開平9-286939号公報の第9欄24行~36行に記載のものが挙げられる。これらの中でも特に、アゾ化合物を用いることが好ましい。これらのラジカル重合開始剤を、モノマー全量に対して0.001~2.0 モル%、特に0.01~1.0 モル%用いることが好ましい。

【0032】共重合の際には、更に重合連鎖移動剤を添加しても良い。その具体例としては、特開平9-286

939号公報の第9欄37行〜第10欄10行に記載のものが挙げられる。これらの中でも、メルカプトエタノール、nードデシルメルカプタン、tードデシルメルカプタン、ジメチルキサントゲンジスルフィド、テトラメチルチウラムジスルフィド、四塩化炭素、ペンタフェニルエタン、アクロレイン、メタクロレイン、アリルアルコール、αーメチルスチレンダイマー(2,4ージフェニルー4ーメチルー1ーペンテンが50重量%以上のものが好ましい)、キサンテン、2.5ージヒドロフランを用いることが好ましい。

【0033】具体的な共重合の方法は、例えば特開平9-286939号公報の第10欄11~19行に記載されている。共重合により得られるビニル系ポリマーの重

量平均分子量(GPCでポリスチレン換算する。以下同 じ。)は、3,000~50,000であることが好ましい。

1 .

【0034】上記ビニル系ポリマーは、十分な印字濃度を確保し、またインク蒸発に伴うインクの増粘やポリマー微粒子の凝集に起因するプリンタヘッドの目詰まりを防止する点から、本発明の水系インク中に固形分として1~30重量%、特に2~20重量%配合されることが好ましい。

【0035】本発明の水系インクにおける上記ビニル系ポリマーの含有量は、上記の化合物A及び化合物Bの含有量との関係において、該ポリマーと化合物Aとの重量比(前者/後者)が1/5~5/1、特に1/3~3/1であることが好ましく、該ポリマーと化合物Bとの重量比(前者/後者)が2/1~500/1、特に4/1~100/1であることが好ましい。

【0036】上記ビニル系ポリマーは、ガラス転移点 (以下、Tgという)が20℃以上が好ましく、特に、 50~150℃が好ましい。また、圧電素子を用いたインクジェット方式では20℃以上、熱エネルギーを用いたインクジェット記録方式では30℃以上が好ましい。 これらの好ましい範囲を外れると、上記ビニル系ポリマーがプリンタのノズルで固化し易く、ノズルが詰まる場合がある。また、印字した紙を重ねるとインクの紙写りが起こる場合がある。なお、Tgは示差走査熱量計(以下、DSCという)で測定される。

【0037】本発明の水系インクは水(望ましくはイオン交換水)を媒体とする水系エマルジョンである。水の配合量は、好ましくは50~98重量%、更に好ましくは55~95重量%、一層好ましくは60~90重量%である。

【0038】本発明の水系インクには更に、多価アルコール類等の湿潤剤を、インクジェット記録用インクとしての好ましい粘度を超えない範囲で配合することもできる。その好ましい配合量は、本発明の水系インク中に0.1~50重量%、特に1~30重量%である。

【0039】本発明の水系インクには、上述の成分の他に、カチオン、アニオン又はノニオン系の各種界面活性 剤等の分散剤、シリコーン系等の消泡剤、前述の各種界面活性剤等の表面張力調整剤、ベンゾトリアゾール、ベンゾフェノン、サリチル酸エステル及びシアノアクリレート等の紫外線吸収剤、クロロメチルフェノール系等の 防徴剤、EDTA等のキレート剤、亜硫酸塩等の酸素吸収剤等の従来公知の各種添加剤を配合させてもよい。

【0040】ポリマー微粒子の小粒径化やエマルジョンの安定性等の点から、上記分散剤は、本発明の水系インク中に通常0.01~10重量%配合されることが望ましく、0.05~5重量%配合されることが更に望ましく、0.1~1重量%配合されることが更に一層望ましい。

【0041】上記消泡剤は、本発明の水系インク中に0

~2重量%、特に0.001~2重量%、とりわけ0.005~0.5重量%配合されることが好ましい。消泡剤の量が2重量%を超えると泡の発生は抑えられるものの、印字の際、インク内ではじきが発生し、印字品質の低下が起こる場合がある。

【0042】上記表面張力調整剤としては、上述のシリコーン系消泡剤や、カチオン、アニオン或いはノニオン系の各種界面活性剤を使用することができる。特に、シリコーン系消泡剤や、アルキルフェノールのエチレンオキサイド化合物、アセチレングリコールのエチレンオキサイド付加物を用いることが泡の発生の抑制、インクの表面張力の調整のしやすさ、及びインク吐出性、にじみが少ない、印字濃度ムラがない等の点で好ましい。

【0043】上記表面張力調整剤の使用に際しては、これらの化合物の一種以上を用いることができる。これら表面張力調整剤の配合量は、印字品質やインクの液安定性等の点から、本発明の水系インク中に0.005~15重量%であることが望ましい。

【0044】また、本発明の水系インクは、その20℃における表面張力が、被印字物への浸透性の点から、25~65mN/mであることが好ましく、更に好ましくは25~55mN/m、一層好ましくは28~50mN/mである。上記表面張力が25mN/mに満たないとインクの滲み及び印字品質の低下が発生し、またインクジェットプリンターのプリントへッドノズルからインク漏れが発生する場合がある。尚、上記表面張力は、協和界面科学(株)製の自動表面張力計(CBVP-Z型)により測定することができる。

【0045】本発明の水系インクは、吐出の安定性の点 から、その20℃における粘度が、0.5~8mPa· secであることが好ましく、更に好ましくは0.5~ 5mPa·sec、一層好ましくは1~5mPa·se c、更に一層好ましくは1~3mPa·secである。 上記粘度がO.5mPa·secに満たないとインクの にじみが顕著になり、またインクジェットプリンターの プリントヘッドノズルからインク漏れが発生したりする おそれがある。一方、8mPa·secを超えると、イ ンクジェット用インクとしての粘度が高くなりすぎ、プ リントヘッドへのインク供給が伴わず、吐出不良が発生 し、かすれや印字品質の低下の問題が発生するおそれが ある。尚、上記粘度は、(株)東京計器製のE型粘度計 (VISCONIC ELD)又は、(株)ニッカトー 東京支社製の回転振動式粘度計(ビスコメイト VM-100)により測定することができる。

【0046】本発明の水系インクの製造においては、先ず、上記ポリマーエマルジョンを調製する。即ち、有機溶媒中に上記ビニル系ポリマーと上記色材とを添加し、次いで、得られた溶液または分散液に、中和剤および必要に応じて界面活性剤を加え、上記ビニル系ポリマー中の塩生成基をイオン化する。次いで、得られた混合物に

水を加える際に、公知の乳化方法、例えば、転相乳化法、強制乳化法を用いて乳化する。エマルジョンの安定性の点から、強制乳化法が好ましい。その後、系を減圧下に加熱することにより該乳化物から上記有機溶媒を留去させる。これにより、上記色材を含浸させたポリマーの微粒子の水系エマルジョンが得られる。

• • •

【0047】上記エマルジョン調製の際に、色材と共に各種の疎水性の安定化剤を上記水不溶性有機溶媒に溶解させておくことで、上記ポリマー中に該安定化剤を封入させることも出来る。安定化剤としては、上述したベンゾトリアゾール、ベンゾフェノン、サリチル酸エステル及びシアノアクリレート等の紫外線吸収剤; ヒンダードフェノール系、アミン系等の1次酸化防止剤; リン系、硫黄系等の2次酸化防止剤; ヒンダードアミン系等の紫外線安定化剤等が好ましい。

【0048】このようにして色材を含浸させたポリマー 微粒子の水系エマルジョンを得た後、該エマルジョン に、上記の化合物A及び化合物Bと、必要に応じてその 他の成分とを添加することによって、本発明の水系イン クが得られる。

【0049】本発明の水系インクの調製に際しては、インク中の粗大粒子を除去することが好ましい。例えば、調製後のインクをフィルターにより加圧沪過したり或いは遠心分離器で処理して、好ましくは2000nm以上、更に好ましくは1000nm以上、一層好ましくは500nm以上の粒子を除去することにより、目詰まりのないインクが得られる。

【0050】このようにして得られたポリマーエマルジョン及び最終的な水系インクのpHは、エマルジョンの安定性を確保する為にpH=5~12、好ましくは5.5~10となるように調整することが好ましい。例えば、ポリマーエマルジョンの乳化工程又は最終的な水系インクに水酸化ナトリウムを加えて中和することでpH調整する。

【0051】本発明のインクジェット記録用インクは、 主にインクジェット記録用に使用されるが、その他、例 えば、一般の万年筆、ボールペン、サインペン等の筆記 具用のインクとしても使用可能である。

[0052]

【実施例】以下、実施例を説明する。尚、例中の「%」 及び「部」は特記しない限り重量基準である。

【0053】〔製造例1〕反応器に、重合溶媒としてメチルエチルケトン20部、重合性不飽和モノマーとして、表1の初期仕込みモノマーの欄に記載されているモノマー及び重合連鎖移動剤を仕込み、窒素ガス置換を充分行った。窒素雰囲気下、反応容器内の混合液を撹拌しながら65℃まで昇温させた。これとは別に、表1の滴下モノマーの欄に記載されているモノマー及び重合連鎖移動剤とメチルエチルケトン60部と、2,2'ーアゾビス(2,4ージメチルバレロニトリル)0.2部とを混合し、充分窒素置換して得られた混合液を3時間かけて反応容器内に徐々に滴下した。滴下が終了して2時間後、2,2'ーアゾビス(2,4ージメチルバレロニトリル)0.1部をメチルエチルケトン5部に溶解した溶液を加え、更に65℃で2時間、70℃で2時間熱成させることによりビニル系ポリマー溶液を得た。

【0054】得られたビニル系ポリマー溶液の一部を、 減圧下、105℃で2時間乾燥させ、完全に溶媒を除去 することによって単離した。溶媒としてテトラヒドロフ ランを用いたGPCによるこのビニル系ポリマーの重量 平均分子量は約10,000であり、DSCによるTg が180℃であった。

【0055】上記で得られたビニル系ポリマー溶液を減圧乾燥させて得られたビニル系ポリマー5gに、トルエン25gおよび疎水性染料である商品名 Vail Fast Blue 2606 〔オリエント化学(株)製〕5gを加えて完全に溶解させ、水酸化ナトリウム水溶液を2g加えてビニル系ポリマーの塩生成基を一部中和した。次いで、イオン交換水300gを加え、撹拌した後、乳化装置である商品名 マイクロフルイダイザー(マイクロフルイダイザー社製)を用いて、30分間乳化した。得られた乳化物を減圧下60℃でトルエンを完全に除去し、更に一部の水を除去することにより濃縮し、疎水性染料を含浸させたビニル系ポリマー微粒子のエマルジョン(平均粒径:98nm、固形分濃度;10%)を得た。

[0056]

【表1】

	製造例1	部
初期仕込みモノマー及び重合連續移動剤	メチルメタクリレート ヒドロキシエチルメタクリレート メタクリル酸 シリコーンマクロマーFM-0711 スチレンアクリロニトリルマクロマーAN-6 メルカプトエタノール	1 3 1 3 2 1 0.3
満下モノマー及び 重合連鎖移動剤	メチルメタクリレート ヒドロキシエチルメタクリレート メタクリル酸 シリコーンマクロマーFM-0711 スチレンアクリロニトリルマクロマーAN-6 メルカプトエタノール	5 2 4 1 2 8 4 1. 2

【0057】〔実施例1〕製造例1で得られたポリマー 微粒子のエマルジョンを下記配合で各成分を混合し、得られた分散液を0.2μmのフィルターによって沪過し、ゴミ及び粗大粒子を除去して水系インクを得た。このインクを用い、市販のキャノン製カラーバブルジェッ

トプリンター(型番BJC-420J)で印字し、印字 ヘッドのフェイス面の汚れ、インク液滴の着弾位置の正 確性、及び印字濃度を下記の方法で評価した。その結果 を表2に示す。

[0058]

・製造例1で得られたエマルジョン

· 尿素 (化合物A)

·ジ·2-エチルヘキシルスルホコハク酸Na塩(化合物B)0.1g

・エチレングリコール

5 g

60g

5 g

・グリセリン

5 g

イオン交換水

24.9g

【0059】 <印字ヘッドのフェイス面の汚れ及びインク液滴の着弾位置の正確性の評価>インクジェット用高画質専用紙(キャノン製HR101)にベタ印字を100枚、文字印字を3000枚したときのインク着弾位置の正確性および印字終了後の印字ヘッドのフェイス面の汚れを観察し、下記の基準で評価した。

<インク着弾位置> ……

- ◎:ベタ、文字印字とも正常。
- ○;文字印字での着弾位置は正常、ベタ印字では着弾位 置のずれによりスジが見られる。
- △;ベタ、文字印字とも着弾位置に乱れが見られる。
- ×;印字途中で印字カスレ発生。文字の判別不可能。

<フェイス面汚れ>

- ◎;ベタ、文字印字ともフェイス面に汚れなし。
- ○;文字印字ではフェイス面に汚れはないが、ベタ印字ではフェイス面に汚れが見られる。但しノズルは閉塞していない。
- △:ベタ、文字印字ともにフェイス面に汚れが見られ

る。但しノズルは閉塞していない。

×; 印字途中でノズル閉塞。

【0060】〈印字濃度〉PPC用再生紙〔日本加工製紙(株)社製〕にベタ印字を行い、室内にて24時間自然乾燥させた後、その光学濃度をマクベス濃度計RD918(マクベス社製)で測定した。尚、印字濃度はその値が1.40以上あれば品質上の問題はない。

【0061】〔実施例2~6〕実施例1で用いた化合物 A及び化合物Bに代えて、表2に示すものをそれぞれ用いる以外は実施例1と同様にして水系インクを製造した。得られた水系インクについて実施例1と同様の評価をした。その結果を表2に示す。

【0062】 [比較例1] 実施例1において、尿素を用いない以外は実施例1と同様にして水系インクを製造した。得られた水系インクについて実施例1と同様の評価をした。その以外の結果を表2に示す。

[0063]

【表2】

		化合物人	化合物B	フェイス面 汚 れ	インク液満着岸位置 の正確性	印字漢度
実施	1	尿素	ジ・2-エチルヘキシルスルホコハク 酸Na	©	0	1-41
	2	Nーメチルグリシン	ジ・ アオクチルスルホコハク酸塩	0	Θ	1.42
	3	N. N. N-トリメチルグリシン	ジ・n-ヘキシルスルホコハク酸ね	0	0	1.42
	4	尿素	ジ・ローアミルスルホコハク関値	©	•	1.40
例	5	N-メチルグリシン	ジンクロヘキシルスルホコハク酸化	0	0	1.43
	в	N. N. N-Fリメチルグリラン	シイソトリテシルスルホコハク 酸 ta	0	0	1.40
比較	別 1	なし	ジ・2-エチルヘキシルスルホコハク 酸Na	Δ	Δ	0.95

・実施例及び比較例においては、インクの表面限力は、82~48mN/m (20℃)であり、粘度は1.2~5.0 mPa·sec (20℃)であった。

【0064】表2に示す結果から明らかなように、色材を含浸させたポリマー微粒子のエマルジョンからなり且つ特定の化合物を含有する実施例の水系インクでは、印字ヘッドのフェイス面の汚れが防止され、インク液滴の着弾位置の精度が高く、且つ十分な印字濃度を有するものであることが判る。また、表には示していないが、実施例の水系インクは液安定性が高く、また耐水性および耐擦過性に優れるものであった。

[0065]

【発明の効果】本発明の水系インクによれば、印字へッドのフェイス面の汚れに起因するインク吐出不良が防止され、インク液滴の着弾位置の精度が向上し、且つ普通紙での印字濃度が向上する。また、本発明の水系インクは液安定性が高く、耐水性および耐擦過性に優れるものである。