

LM2931A

Low Dropout Voltage Regulator

Features

- · Limited input voltage and high efficiency.
- Internal thermal over load protection.
- 60V load dump protection.
- Output current up to 0.1A.

Description

LM2931A is a fixed 3-terminal low dropout voltage regulator designed to need very low quiescent current. Internally, implemented circuits include 60V load dump protection, -50V reverse transient short circuit and thermal over load protection.

Internal Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage	Vi	33	V
Over Protection Voltage	V(OP)	60	V
Operating Temperature Range	TOPR	-40~+125	°C
Maximum Junction Temperature	TJ	150	°C
Storage Temperature Range	TSTG	-65~+150	°C

Electrical Characteristics

 $(V_I = 14V, I_O = 10mA, C_O = 100\mu F, T_A = 25 \, ^{o}C)$

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Output Voltage (I)	Vo (I)	V _I = 14V, I _O = 10mA	4.81	5.0	5.19	V
Output Voltage (II)	Vo (II)	V _I = 6 ~ 26V, I _O = 100mA T _J = -40 ~ +125 °C	4.75	5.0	5.25	V
Line Regulation (I)	ΔVO (I)	VI = 9 ~ 16V, IO = 10mA	-	2.0	10	mV
Line Regulation (II)	ΔVO (II)	V _I = 6 ~ 26V, I _O = 10mA	-	4.0	30	mV
Load Regulation	ΔVO (III)	VI = 14V, IO = 5 ~ 100mA	ı	10	50	mV
Output Impedance	ZO	V _I = 14V, I _O = 100mA	-	100	600	mΩ
Quiescent Current (I)	IQ (I)	VI = 6 ~ 26V, I _O ≤10mA	-	0.1	1.0	mA
Quiescent Current (II)	IQ (II)	V _I = 14V, I _O ≤ 100mA	-	5.0	30	mA
Output Noise Voltage	VN	V _I = 14V, I _O = 10mA, f = 10Hz ~ 100KHz	-	150	1000	μVrms
Ripple Rejection	RR	V _I = 14V, I _O = 10mA, f = 120Hz	55	80	-	dB
Dropout Voltage (I)	V _D (I)	I _O = 10mA, V _D = V _I - V _O	-	0.03	0.2	V
Dropout Voltage (II)	V _D (II)	I _O = 100mA, V _D = V _I - V _O	-	0.1	0.6	V
Max Operational Input Voltage	VIN	IO = 10mA	26	33	-	V
Max Line Transient	VLT(MAX)	V _I = 14V, I _O =10mA, Time =100ms	60	70	-	V
Reverse Polarity Input Voltage DC	VI(DC)	V _I = 14V, I _O = 10mA, V _O ≥ -0.3V	- 15	- 30	-	V
Reverse Polarity Input Voltage Transient	VI(TR)	V _I = 14V, I _O = 10mA, Time ≤ 10ms	- 50	- 80	-	V
Peak Output Current	lpk	V _I = 14V	200	400	600	mA

Typical Perfomance Characteristics

Figure 1. Output Voltage vs. Input Voltage

Figure 3. Ripple Rejection vs. Output Voltage

Figure 5. Output Voltage vs. Temperature(Tj)

Figure 2. Quiescent Current vs. Input Voltage

Figure 4. Drop Voltage vs. Output Current

Figure 6. Quiescent Current vs. Temperature(Tj)

Typical Application

Figure 1. Application Circuit

- Ci is required if regulator is located an appreciable distance from power supply filter.
- Co improves stability .

Mechanical Dimensions

Package

Dimensions in millimeters

TO-92

Ordering Information

Product Number	Package	Operating Temperature
LM2931AZ5	TO-92	-40°C to + 125°C

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com