2. Sei $\langle K, +, \cdot, P \rangle$ ein angeordneter Körper. Ist $M \subseteq K$ nach oben beschränkt und bezeichnet O die Menge aller oberen Schranken von M, so zeige man, dass $O \cap M = \emptyset$ oder $O \cap M = \{z\}$ und dass die zweite Möglichkeit genau dann eintritt, wenn M ein Maximum hat.

Mist norch oben beschränkt (=> 30 EK: VmEM:0>m O= {xEK: YmEM: x>m} OnM= {x∈K: ∀ m∈M: x≥m ∧ x∈M} = {x∈M: ∀m∈M: x≥m} Indireleter Bew: Angenormen x, x2 ∈On M mit x, #x2 => x1, x2 ∈M => ∀m∈M: x,≥m, der x2 ∈M => x1≥ x2 => ∀m∈M: x2≥m, der x1 ∈M => x2≥x1} => x1 = x2 € => On M = Ø . Lu on M = {x} zz: OnM={z} €> ∃leM: YmeM: l≥m 3! ZEM: Ym EM: Z >m => 3LEM: Ym EM: L > m Indichter Ben: angenomen ∃l, le M: Vm € M: l, 7, m ~ l2 3 m milla #l2 mekter on: ~ ,, => VmeM: l₁?m, de l₂∈M folyt l₁?l₂} => l₁=l₂ ≤
=> VmeM: l₂?m, der l₁∈M folyt l₂?l₁} => l₁=l₂ ≤
0