PLP - 26 TOPIC 26—RELATIONS

Demirbaş & Rechnitzer

RELATIONS

RELATIONSHIPS

- Many expressions in mathematics describe *relationships* between objects
 - $\circ a = b$ the objects a and b are equal.
 - $\circ \ a < b$ the number a is strictly less than the number b .
 - $\circ \ a \in B$ the object a is a member of the set B .
 - $\circ A \subseteq B$ the set A is a subset of the set B.
 - $\circ a \mid b$ the number a is a divisor of the number b.
- Focus on (say) divisibility we can think of the symbol "|" as an operator on *pairs* of integers.
 - \circ we write $a\mid b$ when a divides b
 - \circ and write $a \nmid b$ when a does not divide b
- Divisibility naturally defines a subset of $\mathbb{N} \times \mathbb{N}$:

$$R = \{(a,b) \in \mathbb{N} imes \mathbb{N} \ : \ a \ \mathsf{divides} \ b\}$$

RELATION AS SUBSET OF CARTESIAN PRODUCT

Consider divisibility on the set $A=\{1,2,4,8\}$

Can *define* the relation as subset of $A \times A$:

$$R = \{(1,1), (1,2), (1,4), (1,8), (2,2), (2,4), (2,8), (4,4), (4,8), (8,8)\}$$

And we can write $x \; R \; y$ when $(x,y) \in R$

RELATIONS

DEFINITION:

Let A be a set.

- ullet A **relation**, R, on A is a subset $R\subseteq A imes A$.
- If $(x,y) \in R$ we write $x \mathrel{R} y$, and otherwise write $x \mathrel{R} y$

Examples

- ullet $R=\{(x,x):x\in\mathbb{R}\}$ is "=" on the reals
- ullet $S=ig\{(x,y)\in \mathbb{Z}^2 \ : \ x-y\in \mathbb{N}ig\}$ is ">" on integers.
- ullet Let B be a set, then
 - $\circ \ R = arnothing$ is the trivial relation on B
 - $oldsymbol{\circ} S = B imes B$ is the universal relation on B

DRAW THE RELATION

- ullet Consider the set $A=\{1,2,4,8\}$ and divisibility.
- Draw node for each $a \in A$.
- ullet If $a\mathrel{R} b$ then draw arrow a o b

