

Figure 1

Top
Figure 2 Aiming Wang et al. 2002

Figure 3 Aiming Wang et al. 2002


```
MARFLVALLATTLVAVOAGGQLGHAAPATAEVFWRAVLPHSPLPDAVLRLLKQPAAGVELLTEATSFVRDAEDRÄÄPFD 78
taRAFTIN1a 1
taRAFTIN1b 1
                   osraftini 1
taraftinia 79 yrdysrsppddepskstgaaääsgardfdyddysääääggdklrgaasgarääääädfdyddysgadklrgatdäääää 141
osraftini 75 -t--rg-dsptta-gldl-gdfgepap-g--A--aqge--gggaa--a-eqvlavdag-n--k-v--r-l--gsstagge 153
taraftinia 142 äääääääeykapssslagngasmargägkaetttvefheeavrygkrlpfrfppatpaalgflprgv<u>adsvpfttaal</u>) 212
taraftinia 213 <u>Gylatfgya</u>sdsatyasmeatlracesptiageskfcatslealveramevlgtrdirpytstlpragaplqtytyrsyr292
taraftinla 293 pveggpvfvachdeaypytvyrchttgpsraymvdmedääarggdavtiatvchtdtslwnpehvsfkllgtkpggtpv 369
taraftinia 370 Chlmpyghiiwaknvnrspa 389
taraffinib 343 ------------------------ 362
taraftinia 169 ffheeavrygkrlpfrfppatemaaalgflprqvadsypfttaalpgvlatfgvasdsatvasmeatlracesptiages 246
PG-bet
        415 --R-KMLKS-TIMPMÄÄ-DIKDKMPKRS----VI-SKL--S-SKIAELKAIFHAGDE-QVEKMIGDA-SE--RAPS---T 492
RD22
        176 --L-KDLVR--EMNV--NAEDGYGGKTA----GE-ET---GSEKFSET-KR-S-EAG-EEAEM-KK-IEE--ARKVSG-E 255
        87 --N-HD-LE--TF-MY---SVTAR-K----Q-R-VQEI---S-R-ADI--L-HIPPG-SEAADVAT--GL-DAAAHGDVV 164
ASG-1
        124 --L-KDMHP-ATMSLH-TEN-BÄÄKSA---Y-T-QKI--SSDK--EIFNK-S-KPG-LK-EM-KN-IKE--Q-A-E--E 200
CFC1
         92 --L--DL-A--IFNMK-VNN-MA-TVPL----ISKQI--SEDKKKQ---ML--EAN-SNAKIIAE--GL-QE-ATEG-R 169
taraftinla 247 kfcatslealveramevigtrdirevtstleragaplotytvärsvreveggevfvachdeaypytvyrchttgesray 324
        493 -R-VN-A-DMIDFATS----RNVAA-RT-EDTKGSNGNIMIGSVKGINGGKVTKA-S--QTL---LL-Y--SVPKV-V- 569
        256 -Y-----SM-DFSVSK--KYHV-A-STEVAKKN--M-K-KIAAAG-KKLSDDKS-V--KQK--FA-FY--KAMMTTV- 334
RD22
        165 RA-V--PDDM-G--AA----SNMQVLAPS--TG-MS--P---AA-A-K--D-SDA--G--9-L---S-----SVQTGT- 241
ASG-1
CFC1
        201 -Y----SMIDYSISK--KV-AQA-STEVEKQATEM-K--IAAAG-QKMTDDKAA-V--KQN-A-A-FY--KSETT--- 276
SCB1
        170 -H-----SM-DFVVSA--KÄNVGAFSTEKERETESÄGKFV-VKNG--KLGDDHVÄIA--PMS---V-FG--LVPR-SG- 246
taraftinia 325 mvdmegargāgdavtiatvchtdīslwnpehvsfkllgtkpegtpvchlmpyghiiw 380
PG-bet
        570 EA-ILDPNSKVKINHGVAI--V---S-G-S-GA-VA--SG--KIE---WIFENDMTW 626
RD22
        335 A-PL--ÄÄEN-MRAKAVA---KN--A---N-LA--V-KV---TV----FL-ET-VV- 389
ASG-1
        242 VME-QSSY-N-G-LKLVA---RN-TS-D-----V-AS----L-I--FV----V-F 298
CFC1
        277 --PL--ÄÄAD-TKAKAVA------A:--K-LA-QV-KVE--TI--:--FL-RD--V- 331
SCB1
        247 L-RLK-KAED-VR-KAVVA--R---K-DHN-GA--V-NL---NGT---VFTE-NLL- 301
```


Figure 4 Aiming Wang et al. 2002

igure.

SUBSTITUTE SHEET (RULE 26)

Figure 6

Figure 7 Aiming Wang et al. 2002

Figure 8ABCD Aiming Wang et al. 2002

PCT/CA2003/001169

Figure 8EFGH Aiming Wang et al. 2002

Figure 8I Aiming Wang et al. 2002

Top

Figure 10

WO 2004/013168

10/5228%

13/24

Fig. 11. taRAFTIN1a cDNA sequence (1338 nt excluding the polyA tail, ORF from nt 29 to nt 1198). Start codon and stop codon are underlined.

CCTGGTCGCGGTTCAGGCTGGAGGGCAGCTGGGCCACGCGGCGGCGGCGAGGGGGTGTT CTGGCGCGCGTGCTGCCACACTCGCCATTGCCCGACGCCGTTCTCCGCCTTCTCAAACAACC CGCAGCAGGTGTTGAACTGCTCACAGAAGCCACCAGCTTCGTGAGGGATGCCGAGGACAGGCC CCCCTTCGACTACCGTGATTACAGCCGCTCGCCGCCCGATGATGAACCGAGCAAGAGCACCGG CGCCGCCTCCGGGGCGCGGGACTTCGACTACGACGACTACAGCGGGGGCGACAAGCTCCGTGG CGCCGCCTCCGGGGCGCGGACTTCGACTACGACGACTACAGCGGGGCCGACAAGCTCCGTGG CGCCACCGATGAATACAAGGCGCCGAGCAGCCTCGCTGGAAACGGGGCGTCCATGGCTAG GGGCGGCAAGGCGAGACGACGTGTTCTTTCACGAGGAGGCGGTGCGCGTCGGCAAGAG GCTCCCATTCCGCCTCCCGCCGGCGACTCCCGCCGCGCTCGGTTTCCTGCCGCGCCAGGTCGC CGACTCCGTCCCGTTCACGACGGCCGCGCTGCCTGGCGTCCTCGCGACGTTCGGCGTCGCGTC CGACTCCGCCACGGTGGCCAGCATGGAGGCGACGCTGCGCGCCTGCGAGTCGCCGACCATCGC CGGGGAGTCCAAGTTCTGCGCGACCTCGCTGGAGGCCCTGGTGGAGCGCGCCATGGAAGTGCT GTACACCGTCCGCTCCGTGCGGCCGGTGGAGGGGGGCCTGTCTTCGTGGCGTGCCACGACGA GGCCTACCCGTACACCGTGTACCGGTGCCACACCACTGGCCCGTCCAGGGCGTACATGGTGGA CATGGAGGGCGCGCGGCGACGCGGTGACCATCGCCACCGTGTGCCACACCGACACGTC CCTGTGGAACCCGGAGCACGTCTCCTTCAAGCTCCTGGGGCACCAAGCCTGGCGGCACGCCGGT AGCGGCCCGGGCAGCTCTGTGGTCTCGCCGGAACTAAGATCGATGTACTACTACTATCTG TTTCCACCTACGTCTTCTGTTGTTCAGACCACCAGATGGTCACCAGAGCAGCGCTTGTAATAA AAGAACAGCTTCTGCAAAAAAAAAAAAAAAAAA

PCT/CA2003/001169

14/24

Fig. 12. taRAFTIN1a genomic sequence (1560 bps including two introns). Introns are shown in lower case letters. Start codon and stop codon are underlined.

CTCTGGACCTCTCACCTAGCGCACATCCATGGCGCGCTTCCTCGTCGCCCTCCTCGCCACCAC CCTGGTCGCGgtaatggccgaagaagccactgagcaacgcctgcatcttcttcatttcqqcaa actgcacctagtgcatttcgcatgagattgatcgatcacaaactggtgctaacggcctgtttc gtcacagGTTCAGGCTGGAGGGCAGCTGGGCCACGCGGCGCCGGCGACGGCGAGGTGTTCTG GCGCGCCGTGCTGCCACACTCGCCATTGCCCGACGCCGTTCTCCGCCTTCTCAAACAACCCGC AGCAGgtctgtctttcatgttcctttcctcgtcgccctccgttaactgtcttcttctctcqaq tttgattgaccgccaaacacaaaaatgcatgcacgcacagGTGTTGAACTGCTCACAGAAGC CACCAGCTTCGTGAGGGATGCCGAGGACAGGCCCCCCTTCGACTACCGTGATTACAGCCGCTC GCCGCCCGATGATGAACCGAGCAAGAGCACCGGCGCCCCCCCGGGGCGCGGGACTTCGACTA CGACGACTACAGCGGGCCGACAAGCTCCGTGGCGCCCCCGATGAATACAAGGCGCCGAGCAG CAGCCTCGCTGGAAACGGGGCGTCCATGGCTAGGGGGGCGAAGGCGGAGACGACGACGTGTT CTTTCACGAGGGGGGGGGGGCGCGAAGAGGCTCCCATTCCGCTTCCCGCCGGCGACTCC GCCTGGCGTCCTCGCGACGTTCGGCGTCGCGTCCGACTCCGCCACGGTGGCCAGCATGGAGGC GACGCTGCGCGCCTGCGAGTCGCCGACCATCGCCGGGGAGTCCAAGTTCTGCGCGACCTCGCT GGAGGCCCTGGTGGAGCGCCCATGGAAGTGCTGGGGACCCGCGACATCAGGCCGGTGACGTC GACGCTGCCCCGCGCGCCCCCGCTGCAGACGTACACCGTCCGCTCCGTGCGGCCGGTGGA GGGGGGCCTGTCTTCGTGGCGTGCCACGACGAGGCCTACCCGTACACCGTGTACCGGTGCCA GACCATCGCCACCGTGTGCCACACCGACACGTCCCTGTGGAACCCGGAGCACGTCTCCTTCAA GCTCCTGGGCACCAAGCCTGGCGGCACGCCGGTCTGCCACCTCATGCCGTACGGGCACATAAT CTGGGCCAAGAACGTGAATCGCTCGCCGGCCGTGAGCCCCGGGCAGCTCTGTGGTCTCGCCG GAACTAAGATCGATGTACTACTACTATCTGTTTCCACCTACGTCTTCTGTTGTTCAGACC ACCAGATGGTCACCAGAGCAGCGCTTGTAATAAAAGAACAGCTTCTGC

Fig.13. taRAFTIN1a promoter sequence (1719 bps).

CTGTCGATGCCGTCTTGTCTTGTGATTCTTTCTTAGGGAACTCGTCTCTGGGGCCTCCGAGG CCTGCAACCCTGTATCAGGACAATTCTGACTGGCCTCCAGGAGTCCTAACAGCCACCGACCTG GTCCACTGGGCCCATCTAGAGTATCTTGAAGTGTCGTTTGCACAAATCCCGCTAATTAAGGGA TGTGATGATGATGTTTCTGAATCCGCGCGCCTTACCTCGCAAAACGGGGAATTGCAAAGGAT AAACGAAGGGTTTTTTCTCCCTCTGTCTTCATCCATTTTCGTCTCCCAGCCCTCAGCTCCCAA GCCACCAAGATGGCCCGAACCAAGAGCGAGAAGGTTCCTAAGGTTCCCAGCTAGGATCTGCCC GCCGCTGGAACGGGCTGAAGCGGAAGAGGGTCGCCTCCAAGGGTGGTATGAAACAACAGCCG GAAGCCCCCAAGACTACAGGAAAGTGGTTCCCTTCCTCGGCCACCGACAAAAAACTTCAGGGT CTCGTGGAGATAGGGCTGATGCCAGCGGATTTGGAGTGCCGCCTCCCGGGGGACGAGGCTCCG CCAACTCCTCGCGACGGTGAGCACATCCTCTGCCTGGAGTATATATTTCGGGAGGGGCTCGGG CCGTCAAACGGGGTTCTTTACATTGCAAACTTCATCACATTTTTGCGAGTGCTTTCTCGGGACT GCCGCTCACTTTAAGTTGTTCCAATACTTCAATCAGGACTGCGTTCAGACCAACGGGGACATC GTCTACGACCCGCAACACCAAATTCCTCGCCACATACCTCCGGAAAATAATCCTATACAACC TGGTCTCACGCTTCATCTCGTAAGATTTGCCATGTGTACTTCACCAATCTTGATGCATCCCTT TTTCCCCAAGATTTATATGCCTGATCTGTATTTTGTCTCCGCTGTTTCGAGATTTGATGTTTA ATTGATGAAGCCCAAGCAATCCGGCATGCCCGTCGGTGCACTAGATGGCTAGCTTTTCTACGG TGCTGGGCCTGCCGGCGAGGGCCGAGGCCACGTAGGAGACTGTTAGGATTCATGGGGCTGG GAACACGTGGCATCCTCTAGAGTAGGTCTTACGAGATGAAGCCTGAGACCAGGTCGTATGGGA TTATTTTCCCGGACCTCCCGAAGCCCCGCAAAGTTAACTGCAGCTGCGTGGACGGCGAGCACC CGTCGGATGTCACGCCCAGGATTATATTCTCCGGTGCCGCACGTACCATGCGATCGCACAGCT CACGTCGAGAGCTTTTCTGTTTGGCGTCGCCGTCAATGAAACACCTTCCCGTCGAGCCGACGA CGCCTATAAGTACCTCGTCTGATCGCATCATCACTCCCAAGTACTACAACCTCTGGACCTCTC ACCTAGCGCACATCCATG

Fig.14. taRAFTIN1b cDNA sequence (1275 bps excluding the polyA tail, ORF from nt 25 to nt 1113). Start codon and stop codon are underlined.

CGACCTCTCACCTAGCGCACATCCATGGCGCGCTTCCTCGTCGCCCCTCCTCGCTGCCACCCTG CGCGCCGTGCTGCCGCCATTGCCTGACGCCGTTCTCCGCCTCCTCAAACAACCTGCA GCAGAATCCACCAGCTTCGTGAGAGACCCCGAGGACAGGCCCCCCTTCGACTACCGTGATTAC AGCCGCTCGTCGTCCGATGATGAACCGAGCAAGAGCACCGTCGCCGCCTCCGGAGCGGGGGGC TTCGACTACGACAACTACAGCGGGGCCGACGAACGTCGTGGTGCCACCGATGAATACAAGGCG CCGAGCAGCCTCGCTGGAAGCGGGGCGTACATGGCTAGGGGGGGCAAGGCGGAGACGACG GCGACTCCCGCCCCTCTCGGTTTCCTGCCGCCCAGGTCGCCGACTCCCGTCCCGTTCACGACG GCCGCGCTGCCCGCATCCTCGCGACGTTTGGCATCGCGTCCGACTCCACCACGGTGCCCAGC ATGGAGGCGACGCTGCGCGCGGGGGGTCCCACCATCGCCGGGGAGTCCAAGTTCTGCGCG ACTTCGCTGGAGGCCCTGGTGGAGCGCGCCATGGGAGTGCTGGGGGACCCGGGACATCAGGCCG GTGACGTCGACGCTGCCCCGCCGGCGCCCCCCTGCAGACGTACACCGTCGTCGCCGTGCAG CCGGTGGAGGGGGCCTGTCTTCGTGGCGTGCCACGACGACGCCTACCCGTACACCGTGTAC GACGCGGTGACCATCGCCGCCGTGTGCCACACCGACACGTCCCTGTGGAACCCGGAGCACGTC TCCTTCAAGCTCCTCGGCACCAAGCCCGGCGGCACGCCGGTCTGCCACCTCATGCCGTACGGG ATACCACCAGATGGTCACCCAAGAGCAAGCGTTCGTAATAAAAAGAACAGCTTTTTGCAGAAG CTGGTGTTTTATTTTAAAAAAAAAA

WO 2004/013168 PCT/CA2003/001169

17/24

Fig.15. taRAFTIN1b genomic sequence (1503 bps including two introns). Introns are shown in lower case letters. Start codon and stop codon are underlined.

CGACCTCTCACCTAGCGCACATCCATGGCGCGCTTCCTCGTCGCCCTCCTCGCTGCCACCCTG GTCGCGgtaatggccgaagaagagcaacgcctgcatcttcttcattttggcaaattgcaccta gtacattttgcatgagattaatcaatcacaaactggtgctaacggcctgtttcgtcccag GTTCAGGCTGGAGGGCAGCTGGGCCACGCGGCGCCGGCTACGGGGAGGTGTTCTGGCGCGCC GTGCTGCCGCACTCGCCATTGCCTGACGCCGTTCTCCGCCTCCAAACAACCTGCAGCAGgt ccaaacacaaaaatgcatgcacgcgtgggtgttgaactgcgcacaqAATCCACCAGCTTCGTG AGAGACCCCGAGGACAGGCCCCCTTCGACTACCGTGATTACAGCCGCTCGTCGTCCGATGAT GAACCGAGCAAGAGCACCGTCGCCGCCTCCGGAGCGGGGGGCTTCGACTACGACAACTACAGC GGGGCCGACGAACGTCGTGGTGCCACCGATGAATACAAGGCGCCCGAGCAGCAGCCTCGCTGGA AGCGGGGCGTACATGGCTAGGGGCGGCAAGGCGGAGACGACGGTGTTCTTTCACGAGGAG GCGGTGCGCGTCGGCAGGAGGCTCCCATTCCACTTCCCGCCGGCGACTCCCGCCGCTCTCGGT TTCCTGCCGCGCCAGGTCGCCGACTCCCGTCCCGTTCACGACGGCCGCGCTGCCCGGCATCCTC GCGACGTTTGGCATCGCGTCCGACTCCACCACGGTGCCCAGCATGGAGGCGACGCTGCGCGCC TGCGAGTCGCCCACCATCGCCGGGGAGTCCAAGTTCTGCGCGACTTCGCTGGAGGCCCTGGTG GAGCGCGCCATGGGAGTGCTGGGGACCCGGGACATCAGGCCGGTGACGTCGACGCTGCCCCGC GCCGGCGCCCGCTGCAGACGTACACCGTCGTCGCCGTGCAGCCGGTGGAGGGGGGCCTGTC TTCGTGGCGTGCCACGACGAGGCCTACCCGTACACCGTGTACCGGTGCCACACCACCGGCCCG TCCAGGGCGTACACGGTGGACATGGAGGGCGCGCGGCGCGCCGACGCGGTGACCATCGCCGCC GTGTGCCACACCGACACGTCCCTGTGGAACCCGGAGCACGTCTCCTTCAAGCTCCTCGGCACC AAGCCCGGCGGCACGCCGGTCTGCCACCTCATGCCGTACGGGCACATAATCTGGGCCAAGAAC $\tt GTGAAGCGCTCGCCGGCG\underline{TGA}GCGGCCTTGCAGCTCTGTGGTGTCGCCGGAACTAAGATCGAT$ GTACTACTATCTGTTCCTACCTACGTCTTCTTGTTGTTCATACCACCAGATGGTCACCCA AGAGCAAGCGTTCGTAATAAAAAGAACAGCTTTTTTGCAGAAGCTGGTGTTTTATTTT

Fig. 16. taRAFTIN1b promoter sequence (2095 bps).

TTGTTGAGTGCCACACTATATTCACTACACCATATGCACATTATGCTTGGATTGTCTTGTACT TGACTCATGTGTTTAGACACTTCATTTTATTTGGTGTTGTGAATGACTCCTATGCTTACCATA CAAATATATAGCATCTCTACCTCCCATTTGCATGCTTGTTTCCATGATGTCCTTGATTGTGCT CAATTCATATGCTTCTGTGACATGCCACAATCCTTTGTCACACCATATGCTAGGCTTGATGAT GACACTTGTTGGGTGACTCACCTTTTGAATGATTGGTTTTGCATTAACGCTAACCACATTTAT TTTTCCAAGTGTTTGTTCCTTGCTCCTTTTGAAGGAACCACATGACGGTGCGACATTGGAG AGTGCCTATTTCGAGCTTCAAGATGATGAGTGCTTGGTGATCGTCCACTTCTACATGGTGACG CCGTCTCTTTCCCATGGTGATTTGGTTTTTGATCCGAGGTCGGATCTTTCCCAAGTGGGAGGG CACATCTACTTCACATACATAAAGGTGAATCATCTCCTTTACACGTGCTCACTTGATCCCTTC AACGATGAGGAGGAGTGCGAGCACAAGTGTACAACTACACCATCCGCGAGGGAAGCATGGAAG AGAAGGAAGAAGCATGGACAAGCTTCTGGAAAGCCCGGAACTTCTGGCCTCCTGCCCGGA ACTTCCGGTCATCCGAAACTTCCTGCCCCGACACCCGAAGCCGTCTGAGAGCGTGCCAAATC TCTGGATAGCCCGGACCTTCGACCGGAACCTCCGGCGCCTGGACCTTCCGGCCATCCCTGGAA CTCCCGGCCTGCCTGCACGCAGAGACTCGGGCCGAAGCGCATGTACCCTTTCGCCCCTCACTT ATCCCTTCGTGGCTATCACTATATACTCATCCTCCTCCTCCATTCTAGGGTTAGCATTTTG ATAGCTCATTTGCATGTGAGATTTGCTCCTTACCCCCATCTCCTCTTGAGAGAGTGAGATTGA TGCACTCCATTGGAGTCCAAGGTCTCCTTTGGAGAAGATCCCATAGGGGAATCAAGACCCCAT CATGGGAAGATCCTTCTAGGATTCAAGACCTCAACTCCTTTAAGGATTGGGATGAACTAGTTA CCTCTTGTATCTTCTTGTGTTGGATTTAAACCTTTGTATCCCTCTATGTGTATGTGGATTTAG CATATGTGTGATTGGATCTTGTCTATTGGAGTGTTTCCTCTCTTTTTGTTTTCCTTGTGTTCAT CGTTTTCTTCGGGGAGATCCCCTCCATTTCGTGAAAGATCGGTCCCTAGGGTTCTACCCTACAT TAGCTCAGGTTTCCCCTACACATCTTCGTTTGTGAGCTGTTGCGCTTCTACGGCTGGGAGCTA CAGCACATCTCATTCCCACCAAACGGGGTTCTTCACATTGTAAACTTCATCGTATTTTGCGAA TGCTTTCTGGGGACAGCCACTCACTTTGAGTTGTTCCGATACTTCTTCCGGGTCTGCGTTCAG ACCAACGGGGACACCGTCTGCAACCTTGGAGGAGCCATTCCTGCGACACACCAAAATTTTCGC CACGGACCCCCGAAGATCCGCAAGAAAAAAAAGCTGCAACGGCGTGGACGGCGAGCACCGC TCGGATGTCACGCCCACGATAATATTCTCCGGTGCCGCACGTACCATGCGATCGCACAGCTCA CATCGAGAGCTTTTCTGTTTGGTGTCGCCGTCAATGAAACACCTTCCCGTCAAGCCGACGACG CCTATAAGTACCTCGCCTGATCGCATTATCACTCCCAAGTACTACAACCTCTCGACCTCTCAC CTAGCGCACATCCATG

Fig. 17. taRAFTIN1d predicted cDNA sequence (246 bps).

WO 2004/013168

PCT/CA2003/001169

20/24

Fig. 18. taRAFTIN1d partial genomic sequence (441 bps). Introns are shown in lower case letters.

PCT/CA2003/001169

21/24

Fig. 19. osRAFTIN1 cDNA (1301 bps, ORF from nt 63 to nt1301). Start and stop codons are underlined.

ACGCGGCGCCGTCGACGCCGAGGTGTTCTGGCGCGCCGTGCTGCCGGAATCCCCGTTGCCGG ACGCCTTCCTCCGCCCTGACACCAGCTTCGTCGTCGGCAAAGCGGAGGCGGCCG GTGGCGCGCGCGCGCATTCCCCTTCGATTACACTGACTACAGGGGGATCTGATTCTCCGA CGACGGCGAGTGGTTTGGACCTCGCCGGTGACTTCGGCGAGCCGGCGCCTTTCGGCTACGACT ACAGTGCACAGGGCGAAGGCGGCGGCGGCGCCGCCGCCGCGGGAGAGCAGGTTCTTG CCGTCGACGCGGGCTTCAACTACGACAAATACGTCGGCGCGGGGAGGAAGCTCCGCGGCGGCAGCA GCACCGCCGGCGAGAGAATGATGACGAGCCTTTCGGGTACGACTACAAGGCGCCGAGCAGCG TCTTCCACGAGGAGGCGGTGCGCGTCGGCGAGAGGCTCCCGTTCTACTTCCCGGCGGCGACGA CGTCGGCGCTGGGCTTCCTGCCGCGCGCGTCGCGGACTCCATCCCGTTCACGGCGGCCGCGC AGACGCTGCGCACGTGCGAGTGGCCGACCCTCGCCGGCGAGTCCAAGTTCTGCGCCACGTCGC ${\tt TGGAGGCCCTGGTGGAGGGCGCCATGGCGGCGCTCGGGGACACGCGACATCGCCGCGCTGGCGT}$ AGGGCGCCGGCTTCGTGGCGTGCCACGACCAGGCGTACCCGTTACACCGCTGCCACA CCACCGGCCCGGCCAGAGCTTACATGGTGGAGATGGAAGGCGACGGCGGCGGCGATGGCGGCG AGGCGGTGACCGTGGCCACCCACCACCACCGTCGCGGTGGAACCCGGAGCACGTCT CGTTCAAGCTCCTCGGCACCAAGCCCGGCGGCGCCCGGTGTGCCCACCTCATGCCGTACGGGC ACATCGTCTGGGCCAAGAACGTGAAGAGCTCGACGGCG<u>TAG</u>

Fig. 20. OsRAFTINI genomic sequence (1479 bps, two introns included). Introns are shown in lower case letters.

catgatgccgctactcagctgagccatgcaccgttgcacccqtatactaacqatcqctcqatc gaccgacgatgtgttcttcaqcaqCTGGGCGACGCGCGCCGTCGACGGCCGAGGTGTTCT GGCGCGCGTGCTGCAATCCCCGTTGCCGGACGCCTTCCTCCGCCTCCTCCGCCTCGTtc ggtgtccttccttcctccttccgccgcgcgcgccattactctcctcgaggtttgatttg tttgtggacgttgcagACACCAGCTTCGTCGTCGGCAAAGCGGAGGCGGCCGGTGGCGCGCG CGGACCGGATTCCCCTTCGATTACACTGACTACAGGGGGATCTGATTCTCCGACGACGGCGAGT GGTTTGGACCTCGCCGGTGACTTCGGCGAGCCGGCCCTTTCGGCTACGACTACAGTGCACAG GGCGAAGGCGGCGCGCGCCGCCGCCGCGGGAGAGCAGGTTCTTGCCGTCGACGCG GGCTTCAACTACGACAAATACGTCGGCGCGAGGAAGCTCCGCGGCGGCAGCAGCACCGCCGGC GGAGAGAATGATGACGAGCCTTTCGGGTACGACTACAAGGCGCCGAGCAGCGGCAGCGCACC GCGGCGTCGACGACGCGCGCGCGCGCGCCCACGACGACGGTGTTCTTCCACGAG GAGGCGGTGCGCGTCGGCGAGAGGCTCCCGTTCTACTTCCCGGCGGCGACGACGTCGGCGCTG ACGTGCGAGTGGCCGACCCTCGCCGGCGAGTCCAAGTTCTGCGCCACGTCGCTGGAGGCCCTG GTGGAGGCCCCATGGCGCGCTCGGGACACGCGACATCGCCGCGCTGGCGTCGACGCTGCCC CGCGGCGCGCCGCTGCAGGCGTACGCCGTCCGCGCGCTCCCCGTCGAGGGCGCCGGC TTCGTGGCGTGCCACGACCAGGCGTACCCGTTACACCGCTGCCACACCACCACCGGCCCG GCCAGAGCTTACATGGTGGAGATGGAAGGCGACGGCGGCGGCGATGGCGGCGAGGCGGTGACC GTGGCCACCGTGTGCCACACCAACACGTCGCGGTGGAACCCGGAGCACGTCTCGTTCAAGCTC CTCGGCACCAAGCCCGGCGGCTCGCCGGTGTGCCACCTCATGCCGTACGGGCACATCGTCTGG GCCAAGAACGTGAAGAGCTCGACGGCGTAG

Fig. 21. osRAFTIN1 promoter sequence (1461 bps).

CGAAGGCAAACTCTGGTAAGGATTCCCATTACACGAATCAATTTAATAAGTCTAAAACGAACA CTATGTTATGAGAAACACCTCACATCCGTCCATAACCGTGGGCATGACTATTTAAAAAGTTTA ACTAAACTCTACAAAAGTTGCACGCTTTACCCACACGTCATGAACGTTTCACATTACCGAATA CATGTGGATCGGACATGGCCGACAAAGGAGAGTTCAATACAAGGCTTTTCCATAACCAATCCA TAAATATCCTATGTCCCACGGTTGGGTGGAATCTCTCCACCAAACATCAAGCCAGGATCAGGT CCTCATCTACCCATGCCCCACTCCATGGACTCCGACACATCCCCACTGCAGGAGATTGCCATA ${ t TACGCCACCATACCAGTGCTCCTCAACCGCTAACATGTTGGACACCAAATTCTATATACTTAT$ ATAGTTCATCTCCACTAAGTGTAGTTAATTACATTTCTCTCTTCTCTCATTAAGCCACATCAC ${ t CTTAAAAACATGCAATCTTAAATACTTTTAGGCTCAAAATTGTATCAAATTGTTTTAGTTTTG}$ ${ t TACATATTATGCAACTTAATTTTTCGCCGCAACGCGGAGGGGTATTTCATCTAGTATTATTTA$ AGAGCTATACACACTGCTATAGGGGAAAAAAAAGATAGGTTTGGCCCCCTGGTCAGTCCTGTT ${ t GCTAAAAAGTTGTGGCATGTTTTTTAGGTAAAAGCCTTTAAATATAAGTTACATTGTAACTAC$ ${f A}{f G}{f T}{f A}{f A}{f T}{f C}{f T}{f A}{f T}{f C}{f T}{f A}{f T}{f C}{f T}{f C}{f T}{f A}{f A}{f T}{f A}{f A}{f A}{f T}{f A}{f A}{f$ ${ t ATTATTTAATACTTATTTATAAGTTAGTATATTATAGTTATAATGGAATTAATTATAATTAT$ ${f AGTATAGTTAGATTTGAAAGTTTTTCCTTTAAGAAATTTCGCAACAGTTTATTAGATATAGTC}$ CCTAAACGAAAATGTCAGGTGGATGCATGATTCAGTGTGACGCTCGGGCGGATCACGGCTGCG TCACGAAAATTCCCCCCATGCAACCCGCGTCCGGCCGTCCTTCGTGCCAACAGGCAACAGCGC TCGTCGGAGCCAACATTATTTTTCTGTTTCCTGTCACCGTCGCCGTTGATCTCAAGCGAGATT TGAGGTTTGGCCACGACGACGCCTGCCTATAAATACCAGGTGGTGGTCACCGCCCGGCGGCGT AACGCTTCCATG

WO 2004/013168

PCT/CA2003/001169

24/24

Fig. 22. Predicted protein sequences

taRAFTIN1a (389 residues)

MARFLVALLATTLVAVQAGGQLGHAAPATAEVFWRAVLPHSPLPDAVLRLLKQPAAGVELLTEATSFVR DAEDRPPFDYRDYSRSPPDDEPSKSTGAASGARDFDYDDYSGGDKLRGAASGARDFDYDDYSGADKLRG ATDEYKAPSSSLAGNGASMARGGKAETTTVFFHEEAVRVGKRLPFRFPPATPAALGFLPRQVADSVPFT TAALPGVLATFGVASDSATVASMEATLRACESPTIAGESKFCATSLEALVERAMEVLGTRDIRPVTSTL PRAGAPLQTYTVRSVRPVEGGPVFVACHDEAYPYTVYRCHTTGPSRAYMVDMEGARGGDAVTIATVCHT DTSLWNPEHVSFKLLGTKPGGTPVCHLMPYGHIIWAKNVNRSPA

taRAFTIN1b (362 residues)

MARFLVALLAATLVAVQAGGQLGHAAPATGEVFWRAVLPHSPLPDAVLRLLKQPAAESTSFVRDPEDRP PFDYRDYSRSSSDDEPSKSTVAASGAGGFDYDNYSGADERRGATDEYKAPSSSLAGSGAYMARGGKAET TTVFFHEEAVRVGRRLPFHFPPATPAALGFLPRQVADSVPFTTAALPGILATFGIASDSTTVPSMEATL RACESPTIAGESKFCATSLEALVERAMGVLGTRDIRPVTSTLPRAGAPLQTYTVVAVQPVEGGPVFVAC HDEAYPYTVYRCHTTGPSRAYTVDMEGARGADAVTIAAVCHTDTSLWNPEHVSFKLLGTKPGGTPVCHL MPYGHIIWAKNVKRSPA

taRAFTIN1d (partial sequence, 82 residues)
MARFLVALLAATLVAVQAGGQLGHAAPATAEVFWRAVLPHSPLPDAVLRLLKQPAAGVELHTEATSFVR
DPEDRPPFDYRDY

osRAFTIN1 (412 residues)

MARFLLLLVAVAAAAAVLSLGDAAPSTAEVFWRAVLPESPLPDAFLRLLRPDTSFVVGKAEAAGGAART GFPFDYTDYRGSDSPTTASGLDLAGDFGEPAPFGYDYSAQGEGGGGGAAAAAGEQVLAVDAGFNYDKYV GARKLRGGSSTAGGENDDEPFGYDYKAPSSGSGTAASTTARGVGTGATTTVFFHEEAVRVGERLPFYFP AATTSALGFLPRRVADSIPFTAAALPAVLALFGVAPDTAEAAGMRETLRTCEWPTLAGESKFCATSLEA LVEGAMAALGTRDIAALASTLPRGGAPLQAYAVRAVLPVEGAGFVACHDQAYPYTVYRCHTTGPARAYM VEMEGDGGGDGGEAVTVATVCHTNTSRWNPEHVSFKLLGTKPGGSPVCHLMPYGHIVWAKNVKSSTA

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: ____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.