Оглавление

1		2							
	1.1	Кинем	иатика	2					
	1.2		ижение и термодинамическая корректность	динамическая корректность					
	1.3	Архит	ектура CLaNN и её производные						
	1.4	Вирту	альный эксперимент	8					
		1.4.1	Интерполяция и экстраполяция кривых нагружения	13					
		1.4.2	Раздутие мембраны	14					
		1.4.3	Сравнение вычислительной эффективности CLaNN	16					
	1.5	Заклю	очение	17					
\mathbf{A}	Эквивалентность QR-факторизации F и разложения Холецкого								
	C =	$oldsymbol{F}^{ op}oldsymbol{F}$,	для вычисления логарифмических координат ξ	18					
	A.1	Поста	новка и обозначения	18					
	A.2	Teoper	ма (эквивалентность U и R)	18					
	A.3	Коорд	инаты $oldsymbol{\mathcal{E}}$ через $oldsymbol{U}$	19					

Глава 1

CLANN

Область применимости и ограничения квазистатика, мембранная постановка...

Организация статьи

1.1 Кинематика

Основные соотношения

Мы рассматриваем равновесие тонкой несжимаемой гиперупругой мембраны под определенными нагрузками. Деформация мембраны характеризуется деформацией её поверхности. Обозначим через ${\bf X}$ и ${\bf x}$ положения точек, в соответствующих базисах ${\bf E}_{\alpha}$ и ${\bf e}_{\alpha}$, в исходной (недеформированной) $\Omega_0 \subset \mathbb{R}^2$ и текущей (деформированной) $\Omega_t \subset \mathbb{R}^2$ конфигурациях поверхности мембраны соответственно. Деформация определяется отображением ${\bf x}={\bf x}({\bf X})$, поверхностный градиент деформации ${\bf F}={\bf e}_{\alpha}\otimes {\bf E}^{\alpha}$, а правый тензор Коши—Грина ${\bf C}=C_{\alpha\beta}\ {\bf e}_{\alpha}\otimes {\bf e}_{\beta}={\bf F}^{\top}{\bf F}$. Для определения меры деформации мы используем меру Лапласа ${\bf \xi}=(\xi_1,\xi_2,\xi_3)^T$ [1], которая может быть вычислен двумя эквивалентными способами: либо через QR-разложение градиента деформации ${\bf F}={\bf Q}{\bf R}$ с ${\bf U}={\bf R}$, либо через разложение Холецкого правого тензора Коши-Грина ${\bf C}={\bf U}^{\top}{\bf U}$ (Приложение A). В этом случае гиперупругий потенциал является функцией от деформации Лапласа $\psi=\psi({\bf \xi})$.

Мера деформации Лапласа В двумерном случае вводятся характеристики

$$\xi_1 = \ln(u_{11}), \quad \xi_2 = \ln(u_{22}), \quad \xi_3 = \frac{u_{12}}{u_{11}}, \quad \mathbf{U} = u_{\alpha\beta} \ \mathbf{e}_{\alpha} \otimes \mathbf{e}_{\beta}.$$
 (1.1)

1.2 Напряжение и термодинамическая корректность

Второй тензор напряжений Пиолы-Кирхгофа вычисляется по цепному правилу дифференцированием энергии ψ по правому тензору деформации Коши-Грина ${\pmb C}$:

$$\mathbf{S} = 2\frac{\partial \psi}{\partial \mathbf{C}} = 2\frac{\partial \psi}{\partial \boldsymbol{\xi}} \cdot \frac{\partial \boldsymbol{\xi}}{\partial \mathbf{C}} = 2\mathbf{r}(\boldsymbol{\xi}) \cdot \frac{\partial \boldsymbol{\xi}}{\partial \mathbf{C}}, \qquad \mathbf{r} := \frac{\partial \psi}{\partial \boldsymbol{\xi}}. \tag{1.2}$$

Такое построение имеет ключевые следствия:

- Объективность: $\psi(\mathbf{C}) = \psi(\mathbf{Q}^{\top}\mathbf{C}\mathbf{Q})$ для любой ортогональной \mathbf{Q} , а значит и \mathbf{S} инвариантен к поворотам.
- Симметрия напряжений: $S = S^{\top}$ вследствие симметрии C и корректного применения цепного правила.
- Термодинамическая корректность: равенство (1.2) является следствием неравенства Клаузиуса-Дюгема $\mathcal{D} = \mathbf{S} : \dot{\mathbf{C}} \dot{\psi}(\mathbf{C}) \geq 0$, выражающее второе начало термодинамики для механических процессов [2, 3].

Связь тензора Лапласа и второго тензора напряжений Пиолы-Кирхгофа

Применяя цепное правило дифференцирования к выражению (1.2) и используя меру деформации Лапласа, получаем аналитические выражения для компонент второго тензора напряжений Пиолы-Кирхгофа в двумерном случае:

$$S_{11} = e^{-2\xi_1} (r_1 - 2\xi_3 r_3) + e^{-2\xi_2} r_2 \xi_3^2,$$

$$S_{22} = e^{-2\xi_2} r_2,$$

$$S_{12} = -e^{-2\xi_2} r_2 \xi_3 + e^{-2\xi_1} r_3,$$

$$(1.3)$$

 r_1, r_2, r_3 — компоненты функции отклика $\mathbf{r} = \frac{\partial \psi}{\partial \mathbf{\epsilon}}$.

Эти соотношения демонстрируют связь между логарифмическими мерами деформации и компонентами напряжений, характерную для гиперупругих материалов. Экспоненциальные множители $e^{-2\xi_i}$ отражают логарифмическую природу выбранной параметризации, а члены, содержащие ξ_3 , описывают сдвиговые эффекты.

Фундаментальные ограничения

В соответствии с принципами термодинамики и механики сплошных сред, гиперупругая модель должна удовлетворять ряду фундаментальных ограничений, обеспечивающих физическую корректность и материальную устойчивость.

1. Неотрицательность.

$$\psi(\boldsymbol{\xi}) \ge 0 \quad \forall \, \boldsymbol{\xi} \in \mathbb{R}^3. \tag{1.4}$$

Это исключает отрицательную внутреннюю энергию и согласуется с трактовкой потенциальной энергии как накопленной работы упругих сил.

2. Нулевые значения для ψ и S в естественном состоянии.

$$\psi(\mathbf{0}) = 0, \qquad \mathbf{S}(\mathbf{I}) = \mathbf{0}, \tag{1.5}$$

Естественная (недеформированная) конфигурация является энергетическим минимумом и не порождает остаточных напряжений.

3. Бесконечный рост (коэрцитивность).

$$\psi(\boldsymbol{\xi}) \to \infty$$
 при $\|\boldsymbol{\xi}\| \to \infty$, $\boldsymbol{S} \to \infty$ при $J \to \infty$ или $J \to 0^+$, $J = \det \boldsymbol{F}$, (1.6)

Это обеспечивает коэрцивность: крайние объёмные деформации $(J \to \infty, J \to 0^+)$ и неограниченный рост меры деформации физически недостижимы при конечной работе.

Эти свойства принято записывать через градиент деформации F и правый тензор деформации Коши-Грина C [4–6], но они эквивалентны и для меры деформации Лапласа ξ .

1.3 Архитектура CLaNN и её производные

В рамках предложенного под хода CLaNN (Convex Laplace Neural Network) энергия деформации $\psi(\boldsymbol{\xi})$ с мерой деформации Лапласа аппроксимириуется посредством выпуклой по входу нейронной сетью (Input Convex Neural Network, ICNN) [7] и вычисления 2 тензора напряжения Пиолы-Кирхгофа \boldsymbol{S} .

Обобщенная архитектура ICNN

ICNN представляет собой класс нейронных сетей, гарантирующих выпуклость выходной функции относительно входных переменных. В нашем случае, функция энергии деформации $\psi: \mathbb{R}^3 \to \mathbb{R}$ называется выпуклой, если $\forall \boldsymbol{\xi}_1, \boldsymbol{\xi}_2 \in \mathbb{R}^3$ и $\lambda \in [0,1]$ выполняется неравенство Йенсена:

$$\psi(\lambda \boldsymbol{\xi}_1 + (1 - \lambda)\boldsymbol{\xi}_2) \le \lambda \psi(\boldsymbol{\xi}_1) + (1 - \lambda)\psi(\boldsymbol{\xi}_2). \tag{1.7}$$

Ключевые условия ICNN [7]: (i) поэлементно выпуклая, монотонно неубывающая активация φ ; (ii) $\mathbf{W}_z^{(\ell)} \ge 0$ для всех слоёв (только на связях $z \to z$; $\mathbf{W}_x^{(\ell)}$, $\mathbf{b}^{(\ell)}$ без ограничений по знаку); (iii) каждый слой имеет прямую аффинную связь с входом $\boldsymbol{\xi}$: $z^{(\ell+1)} = \varphi(\mathbf{W}_z^{(\ell)} z^{(\ell)} + \mathbf{W}_x^{(\ell)} \boldsymbol{\xi} + \mathbf{b}^{(\ell)})$; (iv) скалярный выход как $a^{\top} z^{(L)} + c$ с $a \ge 0$ (или ещё один слой φ).

Шаг 1. Однослойный ICNN и выбор активации. Рассмотрим однослойный вариант ICNN (с одним скрытым слоем) для аппроксимации $\psi(\boldsymbol{\xi})$:

$$s = \mathbf{W}_1 \boldsymbol{\xi} + \mathbf{b}_1, \qquad z = \varphi_{\beta}(s), \qquad \tilde{\psi} = \mathbf{W}_2^{\mathsf{T}} z + b_2, \qquad \mathbf{W}_2 \ge 0.$$
 (1.8)

$$\varphi_{\beta}(x) = \frac{\text{softplus}(\beta x)}{\beta},$$
(1.9)

Здесь φ_{β} — выпуклая неубывающая функция активации [8], которая гладко аппроксимирует ReLU и при конечных β является строго выпуклой; $\varphi_{\infty}(x) = \max(0,x)$. Условие $\mathbf{W}_2 \geq 0$ сохраняет выпуклость линейной комбинации. Размерности: $\mathbf{W}_1 \in \mathbb{R}^{h \times 3}$, $\mathbf{b}_1 \in \mathbb{R}^h$, $\mathbf{W}_2 \in \mathbb{R}^h_{>0}$, h — размерность скрытого слоя.

Шаг 2. Центрирование энергии ψ в естественном состоянии. Для выполнения условия $\psi(\mathbf{0})=0$ центрируем энергию, вычитая значение нелинейной части при $\boldsymbol{\xi}=\mathbf{0}$:

$$z_0 = \varphi_{\beta}(\mathbf{b}_1), \qquad \psi(\boldsymbol{\xi}) = \mathbf{W}_2^{\top}(z - z_0), \qquad (b_2 \equiv 0).$$
 (1.10)

Тогда $\psi(\mathbf{0}) = 0$. Поскольку z_0 не зависит от $\boldsymbol{\xi}$, градиент $\partial \psi/\partial \boldsymbol{\xi}$ и гессиан $\partial^2 \psi/\partial \boldsymbol{\xi}^2$ совпадают с таковыми для $\tilde{\psi}$, сохраняя выпуклость и гладкость.

Шаг 3. Центрирование отклика г в естественной конфигурации. Для выполнения условия S(I)=0 обнулим линейный отклик в точке $\pmb{\xi}=0$:

$$\mathbf{r}_0 := \frac{\partial \psi}{\partial \boldsymbol{\xi}} \Big|_{\boldsymbol{\xi} = \mathbf{0}}, \qquad \psi_{\text{phys}}(\boldsymbol{\xi}) = \psi(\boldsymbol{\xi}) - \mathbf{r}_0^{\top} \boldsymbol{\xi}.$$
 (1.11)

Тогда $\psi_{\rm phys}(\mathbf{0}) = 0$ и $\mathbf{r}(\mathbf{0}) = \mathbf{0}$, а по цепному правилу (1.2) получаем $\mathbf{S}(\mathbf{I}) = \mathbf{0}$. Вычитание линейного члена не меняет гессиан и сохраняет выпуклость. Так как $\mathbf{r}(\mathbf{0}) = \mathbf{0}$, точка $\boldsymbol{\xi} = \mathbf{0}$ является минимумом $\psi_{\rm phys}$, и значит $\psi_{\rm phys} \geq 0$.

После получения ψ_{phys} автоматически вычисляются $\partial \psi/\partial \boldsymbol{\xi}$ средствами autodiff, реализованными в современных библиотеках для машинного обучения [9], [10], [11], после чего тензор напряжений **S** находится по формуле (1.3) с использованием связи $\psi(\boldsymbol{C}) = \psi(\boldsymbol{\xi}(\boldsymbol{C}))$.

Центрирование $\psi_{\rm phys}$ и ${\bf r}$ в естественном состоянии дает возможность гарантирования выполнения (1.5) и позволяет избежать дополнительных ограничений на параметры сети

Аналитические выражения для производных энергии

Градиент энергии деформации

Аналитическое дифференцирование функции энергии по переменным ξ даёт выражение для градиента:

$$r = \nabla_{\boldsymbol{\xi}} \psi_{\text{phys}} = \boldsymbol{W}_{1}^{T} \left(\boldsymbol{W}_{2} \odot \sigma(\beta(\boldsymbol{W}_{1}\boldsymbol{\xi} + \boldsymbol{b}_{1})) \right) - \boldsymbol{r}_{0},$$
 (1.12)

где $\sigma(x) = \frac{1}{1+e^{-x}}$ - сигмоида, а операция \odot обозначает поэлементное произведение (Hadamard product). Данное выражение демонстрирует, что градиент энергии является линейной комбинацией строк матрицы \boldsymbol{W}_1^T с весами, определяемыми произведением выходных весов \boldsymbol{W}_2 и значений функции активации $\sigma(\beta(\boldsymbol{W}_1\boldsymbol{\xi}+\boldsymbol{b}_1))$.

Гессиан энергии деформации

Вторые производные энергии по переменным ξ определяют гессиан, который имеет следующую аналитическую форму:

Рис. 1.1. Схема вычислительного процесса CLANN: от входного тензора до функции потерь. Показаны этапы обработки входных данных, вычисления нейросетью, дифференцирования и формирования функции потерь.

$$H_{ij} = \sum_{h} \sigma'_{h} W_{2,h} W_{h,i} W_{h,j}, \qquad (1.13)$$

где $\sigma' = \beta \, \sigma(1 - \sigma)$ - производная сигмоиды, $\sigma = \operatorname{sigmoid}(\beta s)$, а $s = \boldsymbol{W}_1 \xi + \boldsymbol{b}_1$. Материальная устойчивость и положительная определённость Из строгой выпуклости $\psi(\xi)$ следует положительная определённость гессиана:

$$\boldsymbol{H} = \frac{\partial^2 \psi}{\partial \xi^2} > 0, \tag{1.14}$$

что обеспечивает положительную определённость касательных модулей упругости $\mathbb{C} = \partial^2 \psi / \partial \mathbf{C}^2$ через цепное правило дифференцирования. Это свойство важно для численной стабильности конечно-элементных расчётов, поскольку на практике обеспечивает сходимость метода Ньютонаи отсутствие сингулярностей в матрице жёсткости.

В рамках предложенного подхода обучение модели осуществляется путём минимизации функции потерь, которая количественно характеризует невязку между предсказанными и экспериментальными значениями напряжений:

$$L = \frac{1}{N} \sum_{i=1}^{N} ||\mathbf{S}_{\text{pred}}^{(i)} - \mathbf{S}_{\text{exp}}^{(i)}||^{2}.$$
 (1.15)

Для минимизации функции потерь (1.15) используется оптимизатор Adam [12], который широко используется в задачах машинного обучения. Процесс оптимизации включает вычисление градиентов по всем параметрам сети и обновление весов с использованием адаптивных моментов первого и второго порядка.

Такое построение архитектуры CLaNN обеспечивает выполнение всех необходимых физических свойств гиперупругой модели: термодинамическая корректность достигается через строгое соблюдение соотношения (1.2), что гарантирует консервативность напряжений $\oint S$: dC = 0 и согласованность с законами термодинамики; материальная устойчивость обеспечивается и существенно улучшается за счёт строгой выпуклости функции энергии $\psi(\xi)$, гарантируемой архитектурой ICNN ($W_2 \ge 0$, выпуклая неубывающая активация); объективность автоматически выполняется благодаря параметризации через тензор Коши-Грина $C = F^T F$, обеспечивая инвариантность относительно поворотов и симметрию напряжений; строгая неотрицательность и коэрцитивность энергии обеспечиваются архитектурной калибровкой $\psi_{\text{phys}}(\xi) = \mathbf{W}_2^T(z-z_0) - \mathbf{r}_0^T \xi$, что даёт $\psi_{\text{phys}}(\mathbf{0}) = 0$, $\psi_{\text{phys}}(\xi) > 0$ при $\xi \ne 0$ и $\psi_{\text{phys}}(\xi) \to \infty$ при $\|\xi\| \to \infty$; наконец, физические ограничения (1.6) обеспечиваются архитектурой сети CLaNN: монотонные, выпуклые функции активации, неотрицательные весовые коэффициенты, центрирование энергии деформации ψ и отклика r.

1.4 Виртуальный эксперимент

Мы используем синтетические экспериментальные данные для тестирования CLaNN на изотропном надуваним однородной и неоднородной по толщине мембраны. А именно, мы генерируем данные с помощью виртуальных экспериментов на плоских растяжениях образца и используем их в качестве входных данных для обучения CLaNN, без какого-либо дополнительного знания об изотропности/анизотропии образца и форме потенциала.

Обучение модели проводилось на численных экспериментальных данных, полученных при двухосном растяжении образца с геометрией мальтийского креста (Рисунок 1.2). С неогуковской гиперупругой моделью для двумерной мембраны [13]

Причем данные для обучения собирались из одного центрального элемента сетки, что соответствует ограничениям эквивалетного натурного эксперимента, в котором невозможно установить без предположения модели материала полное поле напряжения в образце.

Для решения задачи равновесия гиперупругой мембраны используется метод описанный в [14].

Рис. 1.2. Размеры образца биоматериала в форме мальтийского креста. Радиус вырезов одинаков для всех вырезов

Схематическое представление протоколов показано на рисунке 1.3, где $w_i \in [0,1], i \in \{1,4\}$ представляет собой долю от заданного максимального смещения u_{\max} для i-го плеча: $w_i = 0$ соответствует неподвижному плечу, а $w_i = 1$ — соответствует плечу, чьё положение было сдвинуто и фиксировано на расстояние u_{\max} . Изменяя w_i , можно получить различные типы экспериментов. В наших виртуальных экспериментах мы постепенно прикладываем смещение c определенным шагом c0 достижения максимального смещения. Смещение c1 прикладывается к c2 прикладывается к c3 плечу на

n-м шаге, где $n=1,\ldots,N,\,N=u_{\rm max}/\Delta s$ — количество шагов. Треугольная сетка для образца является квазиравномерной с размером ячейки $h_{\rm fit}=0.25$ мм, максимальное смещение $u_{\rm max}=2$ мм и $\Delta s=0.2$ мм. На каждом шаге мы собираем данные $({m C},{m S})$ для всех треугольников, принадлежащих выбранной области наблюдения. Поскольку мы используем линейные (P_1) конечные элементы, значения $({m C},{m S})$ постоянны на каждом треугольнике.

Рис. 1.3. Схематическое представление протоколов. Радиус вырезов одинаков для всех вырезов

Наш предлагаемый тестовый протокол предполагает девять экспериментов:

Таблица 1.1. Протоколы тестовых экспериментов

Nº	w_1	w_2	w_3	w_4
1	1	1	1	1
2	1	0.75	1	0.75
3	0.75	1	0.75	1
4	1	0.5	1	0.5
5	0.5	1	0.5	1
6	1	1/3	1	1/3
7	1/3	1	1/3	1
8	1	0	1	0
9	0	1	0	1

Правила отбора данных

Центральное окно w. Окно задаётся в исходной конфигурации Ω_0 как центральная область вокруг геометрического центра образца, согласованная с осями расчётной сетки. Для w=1-элемент берётся единственный центральный треугольник

(ячейка, чей барицентр ближайший к центру Ω_0). Для $w=5\times 5$ мм и $w=10\times 10$ мм берётся квадрат со сторонами 5 и 10 мм соответственно, центрированный в центре образца; для w= всё поле — вся область Ω_0 . Наблюдения включают все треугольники, барицентры которых \mathbf{X}_T лежат внутри выбранного окна $\mathcal{W}_w \subset \Omega_0$.

Состав наблюдений (данные). На каждом шаге нагружения $n=1,\ldots,N$ и для каждого треугольника $T\in\mathcal{T}_w$ (ячейки, попавшие в окно) фиксируется пара $(\boldsymbol{C}_T^{(n)},\boldsymbol{S}_T^{(n)})$, где \boldsymbol{C} — правый тензор Коши–Грина, \boldsymbol{S} — второй тензор Пиолы–Кирхгофа. Единицы: размеры окна — мм; \boldsymbol{C} — безразмерен; \boldsymbol{S} — МПа. При этом количество элементов сетки в окне наблюдения $|\mathcal{T}_w|$ для различных окон различно: 1 для w=1-элемент, 252 для $w=5\times 5$ мм, 954 для $w=10\times 10$ мм и 5404 для w=8сё поле.

Формирование выборок. Для фиксированных (p,w) совокупность всех пар $(C_T^{(n)}, S_T^{(n)})$ образует базовый набор D(p,w), из которого формируются разбиения $D_{\mathrm{tr}}(p,w)$ и $D_{\mathrm{val}}(p,w)$. Для заданных протокола p (см. табл. 1.1) и окна центральной области образца $w \in \{1$ -элемент, 5×5 мм, 10×10 мм, всё поле $\}$ обозначим

$$D_{\rm tr} \equiv D_{\rm tr}(p, w), \qquad D_{\rm val} \equiv D_{\rm val}(p, w),$$

где D_{tr} — обучающая, D_{val} — валидационная выборки.

Например, $|D(\{1..10\}, 1-элемент)|=90$ точек данных правого тензора деформаций Коши-Грина \boldsymbol{C} и второго тензора напряжений Пиолы-Кирхгофа \boldsymbol{S} (Рисунок 1.4).

Рис. 1.4. Обучающий набор данных

Так как мы собираем данные из одного центрального элемента сетки, то растягивающие компоненты xx, yy тензоров деформации C и напряжения S имеют значения на 2-3 порядка большие чем сдвиговые компоненты xy.

Метрики и критерии качества

Для количественной оценки качества предсказаний используем интегральные и точечные метрики, согласующиеся с энергетической нормой из вариационной постановки задач упругости (см., например, [13, 15, 16]).

Коэффициент детерминации R^2 .

$$R^{2} = 1 - \frac{\sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{n} (y_{i} - \bar{y})^{2}},$$
(1.16)

где y_i — экспериментальные значения, \hat{y}_i — предсказания модели, \bar{y} — среднее экспериментальных значений, n — число точек. Назначение: удобно сравнивать кривые нагружения; даёт нормированную меру согласия по траекториям.

Точечная относительная ошибка.

$$\epsilon = \frac{\|\boldsymbol{S} - \boldsymbol{S}_{\text{ref}}\|}{\|\boldsymbol{S}_{\text{ref}}\|}.$$
 (1.17)

Назначение: отрисовка поля ошибки и его локальной структуры; наглядна на картах.

Р1-ошибка [17] — комбинация абсолютной и относительной ошибок, чувствительная к малым значениям:

$$\epsilon_{\text{P1}} = \frac{\|\boldsymbol{S} - \boldsymbol{S}_{\text{ref}}\|}{s_0 + \|\boldsymbol{S}_{\text{ref}}\|}, \qquad s_0 = \max(\boldsymbol{S}_{\text{pred}}). \tag{1.18}$$

Назначение: подчёркивает малые (близкие к нулю) значения компонент.

Абсолютная интегральная ошибка (L2 по сетке) для напряжений (Фробениус-норма).

$$||e||_{L^2} = \left(\sum_K \overline{||\mathbf{S}_{ref} - \mathbf{S}_{pred}||_F^2}^K |K|\right)^{\frac{1}{2}},$$
 (1.19)

где |K| — мера ячейки (объём/площадь/длина). Для ячеечных данных усреднение по ячейке не требуется:

$$||e||_{L^2} = \left(\sum_K ||\mathbf{S}_{ref,K} - \mathbf{S}_{pred,K}||_F^2 |K|\right)^{\frac{1}{2}}.$$
 (1.20)

Назначение: сворачивает поле ошибки в скаляр для сравнения сценариев и параметров; согласуется с энергетической нормой и инвариантна к измельчению сетки (при фиксированном поле) [18–20].

Относительная интегральная ошибка.

$$||e||_{L^{2}, \text{rel}} = \frac{\left(\sum_{K} ||\mathbf{S}_{\text{ref},K} - \mathbf{S}_{\text{pred},K}||_{F}^{2} |K|\right)^{\frac{1}{2}}}{\left(\sum_{K} ||\mathbf{S}_{\text{ref},K}||_{F}^{2} |K|\right)^{\frac{1}{2}}}.$$
 (1.21)

Назначение: корректное сопоставление сценариев с разными уровнями напряжений; нормировка на «энергетическую мощность» эталонного поля.

Гиперпараметры оптимизации:

- Скорость обучения (learning rate): 0.001
- Размер батча (batch size): 4 при обучении на 90 точек данных и 128 для остальных обучающих наборов данных.
- Архитектура: 16 нейронов на скрытом слое
- Сглаживающий параметр β : 10

Результаты обучения: Процесс оптимизации показал высокую эффективность: ошибка аппроксимации снизилась на 5 порядков за менее чем 5000 эпох (рисунок 1.5), что демонстрирует как качество предложенной архитектуры, так и корректность выбора гиперпараметров. Столь быстрая сходимость обусловлена строгой выпуклостью функции энергии, что обеспечивает единственность минимума и отсутствие локальных минимумов в пространстве параметров.

Рис. 1.5. Кривая функции потерь при обучении на 90 точках данных

1.4.1 Интерполяция и экстраполяция кривых нагружения

Сначала мы проверили, как модель CLaNN интерполирует и экстраполирует кривые нагружения, используя выборки $D_{\rm tr}(p,w)$ и $D_{\rm val}(p,w)$ для заданного окна наблюдения w. Для оценки качества использовали коэффициент детерминации R^2 (см. раздел 1.4, формулу (1.16)). Метрику качества фиксируем как:

$$R_{\alpha}^{2}(D_{\text{val}}), \qquad \alpha \in \{xx, yy, xy\}.$$

Интерполяция.

Для тестирования спосбности архитектуры CLaNN к интерполяции кривых нагружения мы использовали данные из 10 точек кривой нагружения равнодвухосного растяжения мембраны p=1, окно наблюдения w=1-элемент:

$$D_{in} = D(p=1, w=1$$
-элемент), $n = 1..10$, $D_{tr} = \{ \forall (\boldsymbol{C}^{n_{tr}}, \boldsymbol{S}^{n_{tr}}) \in D_{in} | n_{tr} = \{1, 5, 10\} \},$ $D_{val} = \{ \forall (\boldsymbol{C}^{n_{val}}, \boldsymbol{S}^{n_{val}}) \in D_{in} | n_{val} = n \setminus n_{tr} \}.$

СLaNN показал высокую точность интерполяции кривой нагружения равнодвухосного растяжения мембраны для растягивающих компонент $R_{xx}^2=0.999$, $R_{yy}^2=0.999$, и отсуствие достоверного предсказания сдвиговых компонент $R_{xy}^2=0$ (рисунок 1.6).

Рис. 1.6. Кривая нагружения для равнодвухосного растяжения

Экстраполяция.

Для проверки способности CLaNN к экстраполяции кривых нагружения использовали обучение на равнодвухосном растяжении (p=1) и валидацию на неравнодвухосном (p=9), окно наблюдения w=1-элемент:

$$D_{\text{tr}} = D(p=1, w=1$$
-элемент), $n = 1..10$, $D_{\text{val}} = D(p=9, w=1$ -элемент), $n = 1..10$,

СLaNN показал высокую точность экстраполяции для растягивающих компонент $R_{xx}^2=0.993,\ R_{yy}^2=1.0,$ и отсутствие достоверного предсказания сдвиговой компоненты $R_{xy}^2=0$ (рисунок 1.7).

Рис. 1.7. Кривая нагружения для неравнодвухосного растяжения

Таким образом, CLaNN способен интерполировать и экстраполировать кривые нагружения с высокой точностью, что свидетельствует о его способности к обобщению на новые данные. Однако, не справляется с предсказанием сдвиговых компонент S_{xy} , что может быть связано с тем, что данные для сдвиговых компонент не достаточно большие.

1.4.2 Раздутие мембраны

Для проверки способности CLaNN, мы поставили численный эксперимент по раздутию круглой мембраны радиусом 25 мм. Мембрана закреплена по внешнему контуру и подвергается равномерному растяжению по всей поверхности при заданном давлении 5 МПа. Как референс мы использовали результаты численного эксперимента с использованием гиперупругой модели Нео-Гука с тем же параметром сдвига, что и при генерации данных для обучения CLaNN.

Мы использовали два поля толщин элементов T: 1) с гомогенным полем толищны 0.54 мм. 2) с гетерогенным полем толищны, где в в окружности высекается два пораболических сектора с толщиной 2 мм и остальной части мембраны 0.54 мм (Рисунок 1.8).

В качестве точечной метрики используем относительную ошибку (см. раздел 1.4, формулу (1.17)); для сравнения сдвиговых компонент — P1-ошибку [17] (см. формулу (1.18)).

Рис. 1.8. Гетерогенное поле толщин элементов T круглой мембраны.

Рис. 1.9. Поле напряжений S круглой мембраны (пример результата численного эксперимента).

В результате численного эксперимента на раздутие мембраны с гиперупругим определяющим соотношением CLaNN, используя набор данных $D(\{1..10\}, w =$ 1-элемент) для обучения, мы получили поле напряжений 2 тензора Пиолы-Кирхгофа S для гомогенной и гетерогенной мембраны по толщине и сравнили его с референсными значениями (Рисунок 1.9) и построили поле ошибок ϵ и ϵ_{P1} (Рисунок 1.10). Сдвиговая компонента напряжений S_{xy} показывает наибольшую ошибку для гетерогенной мембраны, что может быть связано с тем, что данные для сдвиговых компонент не достаточно большие. Поэтому мы последовательно расширяли набор данных для обучения до $D(\{1..10\}, w = 5x5), D(\{1..10\}, w = 10x10), D(\{1..10\}, w = все поле),$ и построили зависимость интегральной ошибки $||e||_{L^2}$ (Формула (1.20)) и $||e||_{L^2, \text{rel}}$ $(\Phi$ ормула (1.21)) поля напряжения S от размера окна наблюдения w (Рисунок ??). В итоге абсолютная интегральная ошибка $||e||_{L^2}$ для гетерогенной мембраны уменьшается с увеличением размера окна наблюдения w, это может быть связано с тем, что при увеличении размера окна наблюдения мы учитываем больше данных для обучения, в том числе данных для сдвиговых компонент напряжений, например, при отборе ячеек из области ближе к краю мембраны, сдвиговые компоненты напряжений в этой области вырастают на 1-2 порядка.

Метрики, используемые далее, см. раздел 1.4, формулы (1.19)–(1.21). Кратко: абсолютная интегральная ошибка согласуется с энергетической нормой и инвариантна к измельчению сетки (при фиксированном поле) [18–20]; относительная версия нормирует на энергетическую норму эталонного поля.

Рис. 1.10. Поле ошибок между предсказанными и эталонными значениями напряжений.

1.4.3 Сравнение вычислительной эффективности CLaNN

Благодаря выпуклости потенциальной энергии деформации $\psi(\xi)$ в CLaNN задача стационарного равновесия формулируется как гладкая выпуклая минимизация. Это позволяет использовать градиентные и второпорядковые методы со строгими гарантиями сходимости (градиентный спуск/ускоренный градиент, квазиньютон, Ньютона с line search или trust region) и предсказуемой сложностью до заданной точности [21–24]. В окрестности минимума сильная выпуклость и липшицевость гессиана обеспечивают локально квадратичную сходимость Ньютона, а квазиньютоновские схемы (L–BFGS) дают сверхлинейные скорости [23].

Data-drevin модели без выпуклости. В таблично-заданных/локально-интерполяционных DD-моделях (в т.ч. k-NN, IDW) выпуклость энергии, как правило, не гарантируется, а функция отклика может быть негладкой. Это приводит к невыпуклой постановке с множеством стационарных точек и отсутствием глобальных гарантий у классических квазиньютоновских методов. На практике применяются квазистатические/релаксационные стратегии: (добавить описание) [25, 26]. Такие методы устойчивы, но, как правило, требуют существенно большего числа шагов нагружения и внутренних итераций (а также повторяющихся k-NN/IDW-запросов), что приводит к росту времени расчёта.

Мы сравнили время решения для CLaNN, классической гиперупругой модели Нео-Гука и DD-модели мембраны, описанной в [1]. Задача: раздувание закреплённой круглой мембраны, R=25 мм, равномерное давление, две конфигурации по толщине T (гомогенная и гетерогенная; см. рис. 1.8). Для CLaNN обучаем энергию на $D(\{1..10\}, w=1$ -элемент); для сравнения DD-модели используем $D(\{1..10\}, w=10 \times 10)$ [1]. Численное решение выполняем в одной и той же КЭ-постановке для мембранной задачи. Все варианты останавливаем по одинаковым допускам по невязке равновесия

Таблица 1.2. Время расчёта (сек) на задаче раздувания: гомогенная vs гетерогенная толщина

Метод	Гомогенная	Гетерогенная
CLaNN	512.031	329.816
Neo-Hooke	не замерил	не замерил
kNN	993.739	_

На одинаковой сетке и допусках CLaNN достигает решения сравнимым числом глобальных итераций с Нео-Гуком (за счёт выпуклости и корректной кривизны энергии в ICNN), существенно опережая DD-модель по врмени расчета за счёт отсутствия внешних проекций на данные и дорогих k-NN/IDW-запросов на каждой итерации. Также стоит отметить невозможность расчета DD-модели на гетерогенной толщине без линейной интерполяции данных в близи нуля, что может происходить из-за нехватки данных для в этой области деформаций.

1.5 Заключение

Приложение А

Эквивалентность QR-факторизации ${\pmb F}$ и разложения Холецкого ${\pmb C} = {\pmb F}^{\top} {\pmb F}$ для вычисления логарифмических координат ${\pmb \xi}$

А.1 Постановка и обозначения

Рассматривается двумерная гиперупругая кинематика. Пусть:

- $\boldsymbol{F} \in \mathbb{R}^{2 \times 2}$ градиент деформации, $\det \boldsymbol{F} > 0$,
- $C = F^{\top}F$ правый тензор Коши-Грина (симметричный положительно определённый, SPD),
- ullet Холецкий: $oldsymbol{C} = oldsymbol{U}^{ op} oldsymbol{U}$, где $oldsymbol{U}$ верхнетреугольная и $\mathrm{diag}(oldsymbol{U}) > 0$,
- Логарифмические координаты: $\boldsymbol{\xi} = (\xi_1, \xi_2, \xi_3) = (\ln u_{11}, \ln u_{22}, u_{12}/u_{11}).$

Цель: показать, что при наличии ${m F}$ можно заменить вычисление ${m U}=\operatorname{chol}({m C})$ на ${m U}={m R}$ из тонкого $\operatorname{QR}({m F})={m Q}{m R}$ (c $\operatorname{diag}({m R})>0$), и получить те же ${m \xi}$.

А.2 Теорема (эквивалентность U и R)

Пусть ${m F} \in \mathbb{R}^{2 imes 2}$ невырождённая ($\det {m F} > 0$). Рассмотрим тонкую QR-факторизацию

$$F = QR, \tag{A.1}$$

где $Q \in \mathbb{R}^{2 \times 2}$ — ортогональная ($Q^{\top}Q = I$), $R \in \mathbb{R}^{2 \times 2}$ — верхнетреугольная. Выберем стандартную нормализацию $\operatorname{diag}(R) > 0$. Тогда R совпадает с фактором Холецкого для C:

$$\mathbf{R} = \operatorname{chol}(\mathbf{C}), \quad \mathbf{c} \quad \mathbf{C} = \mathbf{F}^{\mathsf{T}} \mathbf{F}.$$
 (A.2)

Доказательство.

$$C = F^{\mathsf{T}} F = (QR)^{\mathsf{T}} (QR) = R^{\mathsf{T}} Q^{\mathsf{T}} QR = R^{\mathsf{T}} R. \tag{A.3}$$

Так как C — SPD и R — верхнетреугольная с положительной диагональю, то представление $C = R^{\top}R$ единственно. По единственности фактора Холецкого (с diag > 0) следует $R = \operatorname{chol}(C)$. \square

Следствие. Логарифмические координаты $\boldsymbol{\xi}$, определённые через $\boldsymbol{U}=\operatorname{chol}(\boldsymbol{C})$, можно эквивалентно вычислять из $\boldsymbol{U}=\boldsymbol{R}$ в $\operatorname{QR}(\boldsymbol{F})$, при условии $\operatorname{diag}(\boldsymbol{R})>0$.

${ m A.3}$ Координаты $oldsymbol{\xi}$ через $oldsymbol{U}$

Для
$$\boldsymbol{U} = \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}$$
, $\operatorname{diag}(\boldsymbol{U}) > 0$,
$$\boldsymbol{\xi} = (\xi_1, \xi_2, \xi_3) = (\ln u_{11}, \ln u_{22}, u_{12}/u_{11}). \tag{A.4}$$

Тем самым, $\boldsymbol{\xi}(\boldsymbol{F}) := \boldsymbol{\xi}(\boldsymbol{R}(\boldsymbol{F})) = \boldsymbol{\xi}(\boldsymbol{U}(\boldsymbol{C})).$

Список литературы

- [1] Victoria Salamatova and Alexey Liogky. Interpretable data-driven modeling of hyperelastic membranes. *International Journal for Numerical Methods in Biomedical Engineering*, 39(11):e3757, 2023.
- [2] Clifford Truesdell. Historical introit the origins of rational thermodynamics. In Rational thermodynamics, pages 1–48. Springer, 1984.
- [3] Clifford Truesdell and Walter Noll. The non-linear field theories of mechanics. Springer Science & Business Media, 2004.
- [4] Stuart S Antman. Nonlinear problems of elasticity. Springer, 2005.
- [5] George Green. On the laws of the reflection and refraction of light at the common surface of two non-crystallized media. *Transactions of the Cambridge Philosophical Society*, 7:1–24, 1839.
- [6] Gustav Kirchhoff. Ueber das gleichgewicht und die bewegung einer elastischen scheibe. Journal für die reine und angewandte Mathematik, 40:51–88, 1850.
- [7] Brandon Amos, Lei Xu, and J Zico Kolter. Input convex neural networks. In *International conference on machine learning*, pages 146–155. PMLR, 2017.
- [8] Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating second-order functional knowledge for better option pricing. Advances in neural information processing systems, 13, 2001.
- [9] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep learning library. In Advances in Neural Information Processing Systems 32, 2019.
- [10] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G Murray, Benoit Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and

- Xiaoqiang Zheng. Tensorflow: A system for large-scale machine learning. In 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI 16), pages 265–283. USENIX Association, 2016.
- [11] James Bradbury, Roy Frostig, Chris Hawkins, Matthew James Johnson, Chris Leary, Dougal Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao Zhang. Jax: composable transformations of python+numpy programs. https://github.com/google/jax, 2018.
- [12] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- [13] R.W. Ogden. Non-Linear Elastic Deformations. Dover Publications, 1997. ISBN 978-0486696481.
- [14] Alexey Liogky and Victoria Salamatova. Data-driven anisotropic biomembrane simulation based on the laplace stretch. *Computation*, 12(3):39, 2024. doi: 10.3390/computation12030039.
- [15] Philippe G Ciarlet. Mathematical elasticity: Three-dimensional elasticity, volume 1. Elsevier, 1988.
- [16] Gerhard A Holzapfel. Nonlinear solid mechanics: a continuum approach for engineering. John Wiley & Sons, 2000.
- [17] Peichen Xie. P1 error: A combination of absolute and relative errors. CoRR, 2024.
- [18] Susanne C. Brenner and L. Ridgway Scott. The Mathematical Theory of Finite Element Methods, volume 15 of Texts in Applied Mathematics. Springer, 3 edition, 2008. ISBN 978-0-387-75933-3.
- [19] Mark Ainsworth and J. Tinsley Oden. A Posteriori Error Estimation in Finite Element Analysis. Wiley, 2000. ISBN 978-0-471-29413-0.
- [20] Rüdiger Verfürth. A Posteriori Error Estimation Techniques for Finite Element Methods, volume 37 of Springer Series in Computational Mathematics. Springer, 2 edition, 2013. ISBN 978-3-642-33133-5.
- [21] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004. ISBN 978-0521833783.
- [22] Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, volume 87 of Applied Optimization. Springer, 2004. ISBN 978-1402075537.
- [23] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, 2 edition, 2006. ISBN 978-0387303031.

- [24] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. SIAM, 2000. ISBN 978-0-89871-460-9.
- [25] T. Kirchdoerfer and M. Ortiz. Data-driven computational mechanics. *Proceedings* of the National Academy of Sciences, 113(32):8386–8391, 2016. doi: 10.1073/pnas. 1609450113.
- [26] T. Kirchdoerfer and M. Ortiz. Data-driven computing in dynamics. *International Journal for Numerical Methods in Engineering*, 113(11):1697–1710, 2017. doi: 10. 1002/nme.5716.