

VFS Transformative Vertical Flight

January 25, 2022

Advanced Air Mobility (AAM) Mission

Safe, sustainable, affordable, and accessible aviation for transformational local and intraregional missions

Urban Air Mobility (UAM) Ecosystem Goals¹

¹ Based on a range of publicly available industry projections; not a consensus view; aggressive

CNSi: Communication, Navigation, Surveillance, Information

UML: UAM Maturity Level

NASA Role to Address AAM Challenges

Vehicle Development and Operations

Airspace Design and Operations

Community Integration

NASA and key partners are collectively taking on the most difficult mission challenges to enable industry to flourish by 2030

- **Research and Development Portfolio**
- **AAM National Campaign Series**
- **Robust Ecosystem Partnerships**

NASA to deliver long term technical solutions and architecture requirements for the industry and regulatory communities

NASA AAM Mission Priorities

National Campaign Series Support of the Industry Timeline

NC Developmental Test - Flight Interfaces Diagram

NC-DT Noise Data Collection

Example Ground
Noise Contour
from previous
helicopter test

Image credit: Joby Aviation

Mobile Acoustics Facility along with an array of 60 microphones helped the NC team measure the acoustic profile of Joby's aircraft

National Aeronautics and
Space Administration

NASA NC-2 Complex Operations OV-1

IAS-1 Functional Interfaces - Draft

NASA AAM MBSE Framework & Critical Commitment

NASA is using a Model-based System Engineering approach to capture and organize the elements of a medium density/complexity “Book of Requirements and Guidelines (BoRG)”

AAM Mission Critical Commitment:

Based on NASA research and activities, the AAM Mission will deliver validated system architectures and recommended requirements for aircraft, airspace, and infrastructure systems to enable sustainable and scalable medium density advanced air mobility operations

AAM Ecosystem Working Groups

Align on a common vision
for AAM

Learn about NASA's research and
planned transition paths

Adopt a strategy for engaging the
public on AAM

Form a connected stakeholder community

Collectively identify and
investigate key hurdles and
associated needs

Develop AAM system and
architecture requirements

Support regulatory and
standards development

See <https://nari.arc.nasa.gov/aam-portal/> for more information

Accelerate the development of safe and scalable AAM flight operations
by bringing together the broad and diverse ecosystem

Questions?

BACK-UP

Strong Domestic (e)VTOL Industry Base

Autonomous Systems discipline

Integrated System-Wide Safety tools & methods

Integrated system-wide safety tools & methods

Develop assurance arguments that could be used as a basis for certification for In-Time Aviation Safety Management Systems.

Community state of the art

Community challenges

NASA Role