第十一周作业

董仕强

Tuesday $6^{\rm th}$ May, 2025

0 说明

可以将作业中遇到的问题标注在此. 如有, 请补充.

目录

0	说明 ····································	0
1	exercise 0	1
2	exercise 1	1
3	Exercise 2	1
4	Exercise 3	1
5	Exercise 4	1
6	Exercise 5	2
7	Exercise 6	2

1 EXERCISE 0

1 exercise 0

Show that φ^* is injective when φ is surjective.

解答 $\forall l_1, l_2 \in V^*$ 且 $\varphi^*(l_1) = \varphi^*(l_2)$,那么即 $\forall u \in U$, $\varphi^*(l_1)(u) = \varphi^*(l_2)(u)$,即 $l_1(\varphi(u)) = l_2(\varphi(u))$,由于 φ 满射, $\forall v \in V$, $\exists u \in U$ such that $\varphi(u) = v$,所以 $\forall v \in V$, $l_1(v) = l_2(v)$,即 $l_1 = l_2$.

2 exercise 1

Show that ann(im φ) and ker(φ^*) are the same subspaces of V^* .

解答
$$\operatorname{ann}(\operatorname{im}\varphi) = \{f \mid f(\operatorname{im}\varphi) = 0\}$$

$$\ker(\varphi^*) = \{l \mid \varphi^*(l) = 0\} = \{l \mid \forall u \in U, \varphi^*(l)(u) = 0\} = \{l \mid l(\varphi(u)) = 0, \forall u \in U\}.$$

3 Exercise 2

When φ is surjective, show that $\operatorname{im}(\varphi^*)$ and $\operatorname{ann}(\ker \varphi)$ are the same subspaces of U^*

解答
$$\operatorname{ann}(\ker(\varphi)) = \{ f \mid f(\ker \varphi) = 0 \}$$

$$\operatorname{im}(\varphi^*) = \{ l \circ \varphi \mid l \in V^* \}$$

Obviously, $\operatorname{im}(\varphi^*) \subset \operatorname{ann}(\ker(\varphi))$

 $\forall f \in \operatorname{ann}(\ker \varphi)$, Let $g(v) = g(\varphi(u)) = f(u)$, 这是良定义的, 因为 $\varphi(u) = \varphi(u') = v$, $u - u' \in \ker \varphi$. so $f = g \circ \varphi \in \operatorname{im}(\varphi^*)$

4 Exercise 3

When $\varphi: S \hookrightarrow V$ is injective, show that both $(V/S)^*$ and ann(S) are isomorphic to $\ker(\varphi^*)$.

解答 有 1, $\ker(\varphi^*) = \operatorname{ann}(\operatorname{im} \varphi)$, 由于 φ 单射, $\operatorname{im} \varphi \cong S$

因此 $\ker(\varphi^*) \cong \operatorname{ann}(S)$

而令 $l:(V/S)^* \to \operatorname{ann}(S)$, $f \mapsto l(f)$, f(v+S) = g(v), 这是良定义的. 那么 $\ker l = 0$, 并且 l 显然满.

5 Exercise 4

For any V, we define the evaluation as before:

$$\Phi_V: V \to V^{**}, \quad v \mapsto \begin{bmatrix} V^* & \to & \mathbb{F} \\ \ell & \mapsto & \ell(v) \end{bmatrix}.$$

We define $\varphi^{**} := (\varphi^*)^*$, that is, the pre-composition of $\ell: U^* \to \mathbb{F}$ by $\varphi^*: V^* \to U^*$. Show the equality of the compositions

$$\left[U \xrightarrow{f} V \xrightarrow{\Phi_{V}} V^{**} \right] = \left[U \xrightarrow{\Phi_{U}} U^{**} \xrightarrow{f^{**}} V^{**} \right].$$

In other words, $\Phi_V(f(u)) = f^{**}(\Phi_U(u))$ for any $u \in U$. This is why we say Φ is natural.

解答 等式左边为 $u \mapsto [l \mapsto l(f(u))]$

等式右边为
$$[u \mapsto k(u)] \mapsto [l \mapsto l(v)] = u \mapsto [l \circ f \mapsto l \circ f(u)]$$

6 EXERCISE 5

6 Exercise 5

Show that

$$a: \mathbb{F}^{m \times n} \to (\mathbb{F}^{n \times m})^*, \quad M \mapsto \begin{bmatrix} \mathbb{F}^{n \times m} & \to & \mathbb{F} \\ X & \mapsto & \operatorname{trace}(M \cdot X) \end{bmatrix}$$

is a linear map. And show that a is surjective.

解答
$$a(M+N) = [X \mapsto tr((M+N) \cdot X)] = [X \mapsto M \cdot X] + [X \mapsto N \cdot X] = a(M) + a(N)$$

 $a(\lambda M) = [X \mapsto tr((\lambda M) \cdot X)] = \lambda [X \mapsto tr(M \cdot X)] = \lambda a(M)$
取 $(\mathbb{F}^{n \times m})^*$ 的基 $f(E_i j) = tr(M \cdot E_{ij})$. 显然对于每个映射 f 都存在 M 使得 $a(M) = f$.

7 Exercise 6

解答 Z1:ann(col(A)) =
$$\{y \mid y^T A x = 0, \forall x\} = \{y \mid A^T y = 0\} = \ker A^T$$
 Z3:ann(ker A) = $\{y \mid y^T x = 0 \forall A x = 0\} = \operatorname{col}(A^T)$ Z4:ker(ker(A^T)) = $\{z \mid y^T z = 0, \forall A^T y = 0\} = \operatorname{col}(A)$ Z5:A 行满秩, 则 A^T 列满秩 Z6:A 列满秩, 则 A^T 行满秩