Teorema 5.6.2

Sea A la matriz de transición de B_1 a B_2 . Entonces A^{-1} es la matriz de transición de B_2 a B_1 .

Demostración

Sea C la matriz de transición de B_2 a B_1 . Entonces de (5.6.10) se tiene

$$(\mathbf{x})_{B_1} = C(\mathbf{x})_{B_2}$$
 (5.6.13)

Pero $(\mathbf{x})_{B_2} = A(\mathbf{x})_{B_1}$, y sustituyendo esto en (5.6.13) se obtiene

$$(\mathbf{x})_{B_1} = CA(\mathbf{x})_{B_1}$$
 (5.6.14)

Se deja como ejercicio (vea el problema 50 de la presente sección) demostrar que (5.6.14) se cumple para todo \mathbf{x} en V sólo si CA = I. Por lo tanto, del teorema 2.4.8, $C = A^{-1}$, y el teorema queda demostrado.

Observación. Este teorema hace especialmente sencillo encontrar la matriz de transición a partir de una base canónica $B_1 = \{\mathbf{e}_1, \mathbf{e}_2, \dots \mathbf{e}_n\}$ en \mathbb{R}^n a cualquier otra base en \mathbb{R}^n . Sea $B_2 \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ cualquier otra base. Sea C la matriz cuyas columnas son los vectores $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$. Entonces C es la matriz de transición de B_2 a B_1 , ya que cada vector \mathbf{v}_i está expresado ya en términos de la base canónica. Por ejemplo,

$$\begin{pmatrix} 1 \\ 3 \\ -2 \\ 4 \end{pmatrix}_{B_1} = \begin{pmatrix} 1 \\ 3 \\ -2 \\ 4 \end{pmatrix} = 1 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + 3 \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} - 2 \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} + 4 \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

Así, la matriz de transición de B_1 a B_2 es C^{-1} .

Nota

Como en la página 355, la matriz de transición es única respecto al orden en que se escriben los vectores de la base B_2 .

Procedimiento para encontrar la matriz de transición de la base canónica a la base $B_2 = \{v_1, v_2, \dots, v_n\}$

- i) Se escribe la matriz C cuyas columnas son $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_m$
- ii) Se calcula C^{-1} . Ésta es la matriz de transición que se busca.

EXPRISION 1 Expresión de vectores en \mathbb{R}^3 en términos de una nueva base

En \mathbb{R}^3 , sea $B_1 = [\mathbf{i}, \mathbf{j}, \mathbf{k}]$ y $B_2 = \left\{ \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix} \right\}$. Si $\mathbf{x} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \mathbb{R}^3$, escriba \mathbf{x} en términos de los vectores en B_2 .

SOLUCIÓN > Primero se verifica que B_2 es una base. Esto es evidente ya que $\begin{bmatrix} 1 & 3 & 0 \\ 0 & -1 & 1 \\ 2 & 0 & -2 \end{bmatrix} = 8 \neq 0$. Como $\mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$, $\mathbf{u}_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ y $\mathbf{u}_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$, de inmediato se ve que la matriz de transición C de B_2 a B_1 está dada por