Remove reverb from sound

Possible strategies

 Deconvolve signal with a linear combination of known IR responses (Reverb Classifier)

Predict IR with NN and deconvolve

Predict dereverberated signal directly with AE

Autoencoder (AE)

- WaveNet
- Spectrograms
- Autoregressive

Combinations

source: pyimagesearch.com/wp-content/uploads/2020/02/keras_denoising _autoencoder_header.png

Possible strategies

- Work with MEL spectrograms
 - AE and WaveGlow (to slow for RT execution)
 - AE and WaveGAN (rather slow but possible)
- Work with audio signal
 - LSTM (bad quality)
 - Use WaveNet AE (slow convergence, no results, bad for reverb)
 - Train WaveGAN to omit reverb in translation (transfer learning)
- Work with STFT and complex numbers
 - Unknown territory!

SOTA Methods (Text-to-Speech)

SOTA Methods Slow!

MelGAN - transfer learning

Unseen speaker

MelGAN trained on speech

MEL-to-STFT (AE)

Unseen speaker

Mel-to-STFT test

STFT (AE)

real data

test

add room reverb

or a big reverb