THE BOOMERANG ATTACK

Halil İbrahim Kaplan

2021

Overview

The Boomerang Attack: A Generic View

Structure of COCONUT98

Boomerang Attack on COCONUT98

Meet-in-the-Middle Attack on COCONUT98

The boomerang attack is a differential attack that attempts to generate a quartet structure at an intermediate value halfway through the cipher.

Plaintexts: P, P', Q, Q' (quartet)

Respective ciphertexts: C, C', D, D'

Encryption : $E(\)$ can be decomposed as $E=E_0$ o E_1

Differential characteristic for $E_0: \Delta \to \Delta^*$

Differential characteristic for E_1^{-1} : $\nabla \to \nabla^*$

Generate

$$P' = P \oplus \Delta$$

$$C = E(P)$$
, $C' = E(P')$

$$D=C \bigoplus \nabla$$
, $D'=C' \bigoplus \nabla$

$$Q = E^{-1}(D)$$
, $Q' = E^{-1}(D')$

We will

Cover the pair P, P' with the characteristic for E_0 ($\Delta \rightarrow \Delta^*$)

Cover the pairs P, Q and P', Q' with the characteristic for E_1^{-1} ($\nabla \to \nabla^*$)

Then the pair Q, Q' is perfectly set up to use the characteristic $\Delta^* \to \Delta$ for E_0^{-1} .

$$E_{0}(Q) \oplus E_{0}(Q') = E_{0}(P) \oplus E_{0}(P') \oplus E_{0}(P) \oplus E_{0}(Q) \oplus E_{0}(P') \oplus E_{0}(Q')$$

$$= E_{0}(P) \oplus E_{0}(P') \oplus E_{1}^{-1}(C) \oplus E_{1}^{-1}(D) \oplus E_{1}^{-1}(C') \oplus E_{1}^{-1}(D')$$

$$= \Delta^{*} \oplus \nabla^{*} \oplus \nabla^{*} = \Delta^{*},$$

If the following conditions are fulfilled, (P, P', Q, Q') is called a **right quartet**

$$P \bigoplus P' = Q \bigoplus Q' = \Delta$$

$$X \bigoplus X' = Y \bigoplus Y' = \Delta^*$$

$$X \bigoplus Y = X' \bigoplus Y' = \nabla^*$$

$$C \bigoplus D = C' \bigoplus D' = \nabla.$$

COCONUT98 is defined as : $\psi_1 \circ M \circ \psi_0$ where

$$\phi(x) = x + 256 \cdot S(x \mod 256) \mod 2^{32}$$

$$F_i((x,y)) = (y, x \oplus \phi(ROL_{11}(\phi(y \oplus k_i)) + c \mod 2^{32}))$$

$$\Psi_i = F_{4i+4} \circ F_{4i+3} \circ F_{4i+2} \circ F_{4i+1}$$

$$M(xy) = (xy \oplus K_5K_6) \times K_7K_8 \mod GF(2^{64})$$

c: Public 32-bit constant

 $S: \mathbb{Z}_2^8 \to \mathbb{Z}_2^{24}$ is a fixed S-box

COCONUT98 is defined as: $\psi_1 \circ M \circ \psi_0$ where

$$\phi(x) = x + 256 \cdot S(x \mod 256) \mod 2^{32}$$

$$F_i((x,y)) = (y, x \oplus \phi(ROL_{11}(\phi(y \oplus k_i)) + c \mod 2^{32}))$$

$$\Psi_i = F_{4i+4} \circ F_{4i+3} \circ F_{4i+2} \circ F_{4i+1}$$

$$M(xy) = (xy \oplus K_5K_6) \times K_7K_8 \mod GF(2^{64})$$

 $ROL_{11}()$: Left rotation by 11 bits

c: Public 32-bit constant

 $S: \mathbb{Z}_2^8 \to \mathbb{Z}_2^{24}$ is a fixed S-box

COCONUT98 is defined as : $\psi_1 \circ M \circ \psi_0$ where

$$\phi(x) = x + 256 \cdot S(x \mod 256) \mod 2^{32}$$

$$F_i((x,y)) = (y, x \oplus \phi(ROL_{11}(\phi(y \oplus k_i)) + c \mod 2^{32}))$$

$$\Psi_i = F_{4i+4} \circ F_{4i+3} \circ F_{4i+2} \circ F_{4i+1}$$

$$M(xy) = (xy \oplus K_5K_6) \times K_7K_8 \mod GF(2^{64})$$

 $ROL_{11}()$: Left rotation by 11 bits

c: Public 32-bit constant

 $S: \mathbb{Z}_2^8 \to \mathbb{Z}_2^{24}$ is a fixed S-box

where
$$g(y) = \phi(ROL_{11}(\phi(y \oplus ki)) + c \mod 2^{32})$$

Feistel Rounds of COCONUT98

The Phi Function

$$\phi(x) = x + 256 \cdot S(x \mod 256) \mod 2^{32}$$

$$F_i((x,y)) = (y, x \oplus \phi(ROL_{11}(\phi(y \oplus k_i)) + c \mod 2^{32}))$$

$$\Psi_i = F_{4i+4} \circ F_{4i+3} \circ F_{4i+2} \circ F_{4i+1}$$

THE M LAYER

$$M(xy) = (xy \oplus K_5K_6) \times K_7K_8 \mod GF(2^{64})$$

- Uses irreducible polynomial $p(x) = x^{64} + x^{11} + x^2 + x + 1$
- Design is based on decorrelation theory.
- If K_7K_8 are unknown then the probability of a non-zero input differential to produce an output differential is $\frac{1}{2^{64}-1}$
- Decorrelation module prevents us from pushing a differential characteristic past M

THE M LAYER

$$M(xy) = (xy \oplus K_5K_6) \times K_7K_8 \mod GF(2^{64})$$

2⁶⁴ possible differential outcome

The COCONUT98 Algorithm:

COCONUT98 uses a 256-bit key K = (K1, ..., K8). The key schedule generates eight round subkeys k1, ..., k8 as

Differential Characteristics for COCONUT98:

Let $e_j = 2^j$ be the 32-bit xor difference with just the j-th bit flipped.

 $e_j \rightarrow e_{j+11}$ by the Feistel function with probability 1/2 when $j \in J = \{8, 9, \dots, 19, 20, 29, 30, 31\}$

Differential Characteristics for COCONUT98:

Similarly, $e_j \oplus e_k \to e_{j+11} \oplus e_{k+11}$ with probability 1/4 when j, $k \in J$ (j $\models k$).

Using this idea,

we can build many good characteristics for four rounds of COCONUT98.

For example, the characteristic

$$(e_{19}, e_{18} \oplus e_{8}) \rightarrow (e_{18} \oplus e_{8}, e_{29}) \rightarrow (e_{29}, e_{18}) \rightarrow (e_{18}, 0) \rightarrow (0, e_{18})$$

for ψ has probability $\approx \frac{1}{2} * \frac{1}{2} * \frac{1}{2} * \frac{1}{2} = 2^{-4}$

Differential Characteristics for COCONUT98:

M is affine \Rightarrow For fixed key, $\nabla^* \rightarrow M^{-1}(\nabla^*)$ holds with probability 1

Differential Characteristics for COCONUT98:

M is affine \Rightarrow For fixed key, $\nabla^* \rightarrow M^{-1}(\nabla^*)$ holds with probability 1

Simple Ex:

$$M(x) = 3x + 2$$

$$M(1) = 5$$

$$M(3) = 11$$

$$M(5) = 17$$

$$M(7) = 23$$

Differential Characteristics for COCONUT98:

M is affine \implies For fixed key, $\nabla^* \rightarrow M^{-1}(\nabla^*)$ holds with probability 1

Take $E_0 = \psi_0$ and $E_1 = \psi_1$ o M

 $\nabla \to \nabla^*$ is a good characteristic for ψ_1^{-1}

we will obtain a good characteristic $\nabla^* \to M^{-1}(\nabla^*)$ for E_1^{-1}

Probability:

$$p \approx \sum_{\Delta^*} \Pr[\Delta \to \Delta^* \text{ by } \Psi_0]^2 \cdot \sum_{\nabla^*} \Pr[\nabla \to \nabla^* \text{ by } \Psi_1^{-1}]^2.$$

For COCONUT98, this can be used to significantly increase the probability of attack. Empirically, we find that $\Delta = \nabla = (e_{10}, e_{31})$ provides $p \approx 0.023 \cdot 0.023 \approx 1/1900$.

Probability
$$\approx \frac{1}{2} * 1 * \frac{1}{2} * \frac{1}{2} = 2^{-3}$$

$$p\approx 2^{-3*2}=2^{-6}=0.016$$

DISTINGUISHED ATTACK:

Let
$$Q \oplus Q' = (?, e_{31})$$
 where ? represents an arbitrary word

$$probability = \frac{1}{1900} * 2 = \frac{1}{950}$$

• With 950 * 4 = 3800 adaptive chosen plaintext-ciphertext queries, we can get 1 right quartet.

COCONUT98 can be easily distinguished from an ideal cipher with using right quartet.

KEY RECOVERY ATTACK:

Let $Q \oplus Q' = (?, e_{31})$ where ? represents an arbitrary word

$$probability = \frac{1}{1900} * 2 = \frac{1}{950}$$

- From 16 * 950 * 4 adaptive choosen plaintext-ciphertext queries, we generate 16 right quartet.
- Guess K_1 and peel off the first round.
- Xor difference after one round must be $(e_{31},0)$ for both P , P' and Q,Q'
- This condition holds for 1/2 of the wrong key values. Therefore each quartet gives one bit of information on K_1 from the P, P' pair and another bit of information from the Q, Q' pair.

For each K_1 candidate (2³²)

For each Right quartets (16)

Encrypt P, P', Q, Q' 1 round

Xor difference after one round must be $(e_{31},0)$ for both P, P' and Q, Q'

If all Right quartets gives correct xor difference

Key candidate is correct

If not

Key candidate is wrong

- Next, we recover $K_2 \oplus K_4$ by decrypting up one round and examining the xor difference in the C, D pair and in the C', D' pair.
- Then we repeat the attack on the reduced cipher. For instance, we can use about 8*144*4 more adaptive chosen plaintext/ciphertext queries to generate about 8 useful quartets for the reduced cipher if we use the same settings for Δ , ∇ , since then the success probability p increases to about $\frac{1}{144}$.
- Using these 8 useful quartets for the reduced cipher we learn K_3
- We repeat the attack iteratively until the entire key is known.

In all, the complexity of the attack is about $16*950*4+8*144*4+\ldots \approx 2^{16}$

The attack requires $8 * 2 * 32 * 2^{32} = 2^{41}$ offline computations of the F function

time =
$$2^{32}(16 * 4 * 2) + 2^{32}(8 * 4 * 2) + 2^{32}(4 * 4 * 2) + 2^{32}(2 * 4 * 2) + 2^{32}(1 * 4 * 2)$$

= $2^{32}(16 * 4 * 2 + 8 * 4 * 2 + 4 * 4 * 2 + 2 * 4 * 2 + 1 * 4 * 2)$
= $2^{32} * 8 * (16 + 8 + 4 + 2 + 1)$
 $\approx 2^{32} * 8 * 32$

Meet-in-the-Middle Attack on COCONUT98

• The very simple key schedule used in COCONUT98 exposes it to meet-in-the-middle attacks.

• The problem is that there are only 96 bits of entropy in the first four round subkeys, and a similar property holds for the last four round subkeys.

Meet-in-the-Middle Attack on COCONUT98

ATTACK FOR ONE PAIR:

- 1. Obtain known text pairs P, C
- 2. Guess K_2 and K_3
- 3. For each possibility for K_1 , store $\psi_0(P)$ in the look-up table
- 4. For each possibility for K_4 , compute $\psi_1^{-1}(C)$
- 5. Look mach in the lookup table.

Meet-in-the-Middle Attack on COCONUT98

ATTACK:

- 1. Obtain four known text pairs P_j , C_j for j = 0,1,2,3.
- 2. Guess K_2 and K_3
- 3. For each possibility for K_1 , store $(\psi_0(P_0) \psi_0(P_1)) / (\psi_0(P_2) \psi_0(P_3))$ in the look-up table.
- 4. For each possibility for K_2 , compute $(\psi_1^{-1}(C_0) \psi_1^{-1}(C_0)) / (\psi_1^{-1}(C_0) \psi_1^{-1}(C_0))$
- 5. Look mach in the lookup table.

Therefore, with just four known texts and about **2**⁹⁶ offline work, one can break COCONUT98 using standard meet-in-the-middle techniques

References

1) S. Vaudenay, "Provable Security for Block Ciphers"

2) D. Wagner, "The Boomerang Attack", FSE 99