第四节

第二章

函数的单调性与极值

一、函数单调性的判定法

- 二、函数的极值及其求法
- 三、最大值与最小值问题

一、函数单调性的判定法

I的内部,记为 I^0

<u>定理</u> 1. 设函数 f(x) 在区间 I 上连续,在区间 I 内可导,则

- (1) 若 $f'(x) \ge 0$ (>0), $x \in I^0$, 则 f(x) 在 I 上 (严格) 递增;
- (2) 若 $f'(x) \leq 0$ (<0), $x \in I^0$, 则 f(x) 在 I 上 (严格) 递减;
- (3) 若 f'(x)=0 , $x\in I^0$, 则 f(x)=c (常数) on I

证: 任取 $x_1, x_2 \in I$ $(x_1 < x_2)$ 由拉格朗日中值定理得

$$f(x_2) - f(x_1) = f'(\xi)(x_2 - x_1)$$

 $\xi \in (x_1, x_2) \subset I$

代入(1)(2)(3)的条件,可得相应的结论。

证毕

如果函数在某驻点两边导数同号, 则不改变函数的单调性.

例如,
$$y = x^3$$
, $x \in (-\infty, +\infty)$

$$y' = 3x^2$$

$$y'|_{x=0} = 0$$

定理2: 若f(x)在区间 I 上连续,在区间 I 内部可导,则 当 $x \in I^0$, $f'(x) \ge 0$ (≤ 0),且 f(x) 在 I 的任何子区间上, $f'(x) \ne 0$, \iff f(x) 在区间 I 上 严格单调增加(减少).

证:

定理3 (Darboux 达布)

- (1) 设 f(x) 在 [a,b] 上可导,且 $f'_{+}(a)f'_{-}(b) < 0$ 则存在 $\xi \in (a,b)$, 使得 $f'(\xi) = 0$.
- (2) 设 f(x) 在 [a,b] 上可导,且 f'(a) < c < f'(b) 则存在 $\xi \in (a,b)$, 使得 $f'(\xi) = c$.

证:

推论:设

$$f(x) \in C[a,b], f(x) \in D(a,b), \ \exists \ f'(x) \neq 0 \ in \ (a,b),$$

则 f(x) 在 [a,b] 上严格单调

例1. 确定函数 $f(x) = 2x^3 - 9x^2 + 12x - 3$ 的单调区间.

Ex.
$$f'(x) = 6x^2 - 18x + 12 = 6(x-1)(x-2)$$

\mathcal{X}	$(-\infty,1)$	1	(1, 2)	2	$(2,+\infty)$
f'(x)	+	0	-	0	+
f(x)		2		1	

故 f(x) 的 单调增区间为 $(-\infty,1)$, $(2,+\infty)$; f(x) 的 单调减区间为(1,2).

说明:

单调区间的分界点除驻点外,也可是导数不存在的点.

例如,
$$y = \sqrt[3]{x^2}$$
, $x \in (-\infty, +\infty)$

$$y' = \frac{2}{3\sqrt[3]{x}}$$

$$y' = \infty$$

例2. 确定函数 $f(x) = (x-1)\sqrt[3]{x^2}$ 的单调区间.

解: $f'(x) = x^{\frac{2}{3}} + \frac{2}{3}x^{-\frac{1}{3}}(x-1) = \frac{5x-2}{3\sqrt[3]{3}}$ 易见不可导的点为 x = 0,驻点为 $x = \frac{2}{5}$. 函数的定义域为 $(-\infty, +\infty)$, 列表讨论如下:

χ	$(-\infty,0)$	0	(0, 2/5)	2/5	$(2/5, +\infty)$
f'(x)	+	不存在	-	0	+
f(x)	1				

所以 f(x) 的单调增区间为 $(-\infty,0)$, $(2/5,+\infty)$

单调减区间为 (0,2/5)

例3. 证明 $0 < x \le \frac{\pi}{2}$ 时, 成立不等式 $\frac{\sin x}{x} \ge \frac{2}{\pi}$.

ii:
$$\Leftrightarrow f(x) = \frac{\sin x}{x} - \frac{2}{\pi}$$
,

则f(x)在 $(0,\frac{\pi}{2}]$ 上连续,在 $(0,\frac{\pi}{2})$ 上可导,且

$$f'(x) = \frac{x \cdot \cos x - \sin x}{x^2} = \frac{\cos x}{x^2} (x - \tan x) < 0$$

因此f(x)在 $(0,\frac{\pi}{2})$ 内单调递减,

又
$$f(x)$$
在 $\frac{\pi}{2}$ 处左连续,因此 $f(x) \ge f(\frac{\pi}{2}) = 0$

从而
$$\frac{\sin x}{x} \ge \frac{2}{\pi}, \quad x \in (0, \frac{\pi}{2}]$$

 $\tan x$

例4: 证明: 当 b > a > e 时, $a^b > b^a$

二、函数的极值及其求法

定义: 设函数 y = f(x) 在 x_0 点某邻域内有定义, 若 f(x) 在该邻域内有

$$f(x) < f(x_0)$$
 (或 $f(x) > f(x_0)$) $(x \neq x_0)$

则称 $f(x_0)$ 为 f(x) 的一个极大值(或极小值). 并称 x_0 为 f(x) 的极大值点(或极小值点).

函数的极大值与极小值统称为极值, 使函数取得极值的点称为极值点.

例如

$$f(x) = 2x^3 - 9x^2 + 12x - 3$$

$$x=1$$
 为极大点, $f(1)=2$ 是极大值

$$x=2$$
 为极小点, $f(2)=1$ 是极小值

注意:

- 1) 函数的极值是函数的局部性质.
- 2) 对常见函数, 极值可能出现在导数为 0 或不存在的点.

 x_1, x_4 为极大点

 x_2, x_5 为极小点

x3 不是极值点

费马(fermat)引理

$$y = f(x)$$
 在 $\bigcup (x_0)$ 有定义,
目 $f(x) \le f(x_0)$, $f'(x_0)$ 存在 $\Longrightarrow f'(x_0) = 0$
(或 \ge)

定理 (极值的必要条件)

设f(x)在点 x_0 处取得极值,且 $f'(x_0)$ 存在,则 $f'(x_0) = 0$

定理 1 (极值第一判别法)

设函数 f(x) 在 x_0 的某邻域内连续, **且在空心邻域 内有导数**, 当x由小到大通过 x_0 时,

- (1) f'(x) "**左正右负"** ,则f(x)在 x_0 取极大值.
- (2) f'(x) "**左负右正"**,则f(x)在 x_0 取极小值;
- (3) f'(x) 不变号,则 $f(x_0)$ 不是极值;

点击图中任意处动画播放\暂停

(是极值点情形)

(不是极值点情形)

例5. 求函数 $f(x) = (x-1)\sqrt[3]{x^2}$ 的极值.

解: $f'(x) = x^{\frac{2}{3}} + \frac{2}{3}x^{-\frac{1}{3}}(x-1) = \frac{5x-2}{3\sqrt[3]{3}}$ 易见不可导的点为 x = 0,驻点为 $x = \frac{2}{5}$. 函数的定义域为 $(-\infty, +\infty)$,列表讨论如下:

x	$(-\infty,0)$	0	(0,2/5)	2/5	$(2/5, +\infty)$
f'(x)	+	不存在	-	0	+
f(x)	1	极大值		极小值	1

所以 f(x)的极大值为 f(0) = 0, 极小值 $f\left(\frac{2}{5}\right) = -\frac{3}{5}\sqrt[3]{\frac{4}{25}}$

定理2 (极值第二判别法) 设函数 f(x) 在点 x_0 处具有

二阶导数,且 $f'(x_0)=0,f''(x_0)\neq 0$

(1) 若 $f''(x_0) < 0$, 则 f(x) 在点 x_0 取极大值;

(2)若 $f''(x_0) > 0$,则f(x)在点 x_0 取极小值. \\\^+/

$$\text{iii:} (1) \quad f''(x_0) = \lim_{x \to x_0} \frac{f'(x) - f'(x_0)}{x - x_0} = \lim_{x \to x_0} \frac{f'(x)}{x - x_0}$$

曲 $f''(x_0) < 0$ 知,存在 $\delta > 0$,当 $0 < |x - x_0| < \delta$ 时, $\frac{f'(x)}{s} < 0$

故当
$$x_0 - \delta < x < x_0$$
时, $f'(x) > 0$;

由第一判别法知 f(x) 在 x_0 取极大值.

(2) 类似可证.

例6. 求函数 $f(x) = (x^2 - 1)^3 + 1$ 的极值.

解: 1) 求导数

$$f'(x) = 6x(x^2 - 1)^2$$
, $f''(x) = 6(x^2 - 1)(5x^2 - 1)$

2) 求驻点

令
$$f'(x) = 0$$
,得驻点 $x_1 = -1$, $x_2 = 0$, $x_3 = 1$

3) 判别

因
$$f''(0) = 6 > 0$$
,故 $f(0) = 0$ 为极小值;

又
$$f''(-1) = f''(1) = 0$$
,故需用第一判别法判别.

由于f'(x)在 $x = \pm 1$ 左右邻域内不变号,

$$\therefore f(x)$$
在 $x = \pm 1$ 没有极值.

定理3 (判别法的推广) 若函数 f(x) 在 x_0 点有直到n 阶导

数,且
$$f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$$
, $f^{(n)}(x_0) \neq 0$,

则: 1) 当n 为偶数时, x_0 为极值点,且

2) 当n 为奇数时, x_0 不是极值点.

证: 利用f(x) 在 x_0 点的泰勒公式,可得

$$f(x) - f(x_0) = \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + o((x - x_0)^n)$$

当x 充分接近 x₀ 时, 上式左端正负号由右端第一项确定, 故结论正确.

例如,例2中
$$f(x) = (x^2 - 1)^3 + 1$$

 $f'''(x) = 24x(5x^2 - 3), \quad f'''(\pm 1) \neq 0$
所以 $x = \pm 1$ 不是极值点.

说明: 极值的判别法(定理1~定理3)都是充分的.

当这些充分条件不满足时,不等于极值不存在.

例如:

$$f(x) = \begin{cases} 2 - x^2 (2 + \sin \frac{1}{x}), & x \neq 0 \\ 2, & x = 0 \end{cases}$$

f(0) = 2 为极大值,但不满足定理1

三、最大值与最小值问题

若函数 f(x) 在闭区间[a,b]上连续,则其最值只能在极值点或端点处达到.

求函数最值的方法:

- (1) 求 f(x) 在(a,b)内的极值可疑点 x_1, x_2, \dots, x_m
- (2) 最大值

$$M = \max\{f(x_1), f(x_2), \dots, f(x_m), f(a), f(b)\}$$
 最小值

$$m = \min\{f(x_1), f(x_2), \dots, f(x_m), f(a), f(b)\}$$

特别:

- 当*f*(*x*) 在[*a*,*b*]内只有一个极值可疑点时,若在此点取极大(小)值,则也是最大(小)值.
- 当f(x) 在[a,b] 上单调时,最值必在端点处达到.
- 对应用问题,有时可根据实际意义判别求出的可疑点是否为最大值点或最小值点.

例7. 求函数 $f(x) = 2x^3 - 9x^2 + 12x$

上的最大值和最小值.

解: 显然 $f(x) \in C[-\frac{1}{4}, \frac{5}{2}],$ 且

$$f(x) = \begin{cases} -(2x^3 - 9x^2 + 12x), & -\frac{1}{4} \le \\ 2x^3 - 9x^2 + 12x, & 0 < \end{cases}$$

$$\frac{1}{-1}$$

$$1$$

$$2$$

$$\frac{5}{2}$$

$$f'(x) = \begin{cases} -6x^2 + 18x - 12 = -6(x-1)(x-2), & -\frac{1}{4} \le x < 0 \\ 6x^2 - 18x + 12 = 6(x-1)(x-2), & 0 < x \le \frac{5}{2} \end{cases}$$

$$f(x)$$
在[$-\frac{1}{4}$, $\frac{5}{2}$]内有极值可疑点 $x_1 = 0, x_2 = 1, x_3 = 2$

$$f(\frac{-1}{4}) = 3\frac{19}{32}$$
, $f(0) = 0$, $f(1) = 5$, $f(2) = 4$, $f(\frac{5}{2}) = 5$

故函数在x=0 取最小值0; 在x=1及 $\frac{5}{2}$ 取最大值5.

例7. 求函数 $f(x) = |2x^3 - 9x^2 + 12x|$ 在闭区间[$-\frac{1}{4}, \frac{5}{2}$] 上的最大值和最小值.

说明:

由于 $\varphi(x)$ 与f(x)最值点相同,因此也可通过 $\varphi(x)$

求最值点.(自己练习)

例8. 铁路上 AB 段的距离为100 km,工厂C 距 A 处20 Km, $AC \perp AB$,要在 AB 线上选定一点 D 向工厂修一条公路,已知铁路与公路每公里货运价之比为 3:5,为使物从B 运到工厂C 的运费最省,问 $A \times D$ 货 B D 点应如何选取?

解: 设
$$AD = x$$
 (km), 则 $CD = \sqrt{20^2 + x^2}$, 总运费

$$y = 5k\sqrt{20^2 + x^2 + 3k(100 - x)} \qquad (0 \le x \le 100)$$

$$y' = k\left(\frac{5x}{\sqrt{400 + x^2}} - 3\right), \qquad y'' = 5k\frac{400}{\left(400 + x^2\right)^{3/2}}$$

令y'=0,得x=15,又 $y''|_{x=15}>0$,所以x=15为唯一的极小点,从而为最小点,故AD=15 km 时运费最省.

例9. 把一根直径为 d 的圆木锯成矩形梁,问矩形截面的高 h 和 b 应如何选择才能使梁的抗弯截面模量最大?

解: 由力学分析知矩形梁的抗弯截面模量为

$$w = \frac{1}{6}bh^2 = \frac{1}{6}b(d^2 - b^2), \qquad b \in (0, d)$$

$$\Leftrightarrow w' = \frac{1}{6}(d^2 - 3b^2) = 0$$

得
$$b = \sqrt{\frac{1}{3}} d$$

从而有
$$h = \sqrt{d^2 - b^2} = \sqrt{\frac{2}{3}} d$$

即
$$d:h:b=\sqrt{3}:\sqrt{2}:1$$

由实际意义可知,所求最值存在,驻点只一个,故所求结果就是最好的选择.

例10. 设有质量为 5 kg 的物体置于水平面上, 受力 \vec{F} 作用开始移动, 设摩擦系数 $\mu = 0.25$, 问力 \vec{F} 与水平面夹角 α 为多少时才可使力 \vec{F} 的大小最小?

解: 克服摩擦的水平分力 $F_x = F \cos \alpha$

正压力
$$P-F_v = 5g-F\sin\alpha$$

$$\therefore F \cos \alpha = \mu (5g - F \sin \alpha)$$

即
$$F = \frac{5\mu \, \mathrm{g}}{\cos \alpha + \mu \sin \alpha}, \quad \alpha \in [0, \frac{\pi}{2}]$$

$$\Leftrightarrow \qquad \varphi(\alpha) = \cos \alpha + \mu \sin \alpha$$

则问题转化为求 $\varphi(\alpha)$ 的最大值问题.

解: ……

即
$$F = \frac{5\mu g}{\cos \alpha + \mu \sin \alpha}$$
, $\alpha \in [0, \frac{\pi}{2}]$ 令 $\varphi(\alpha) = \cos \alpha + \mu \sin \alpha$ 见问题转化为求 $\varphi(\alpha)$ 的最大值问题.

$$\varphi'(\alpha) = -\sin \alpha + \mu \cos \alpha$$
$$\varphi''(\alpha) = -\cos \alpha - \mu \sin \alpha$$

$$\Rightarrow \varphi'(\alpha) = 0$$
,解得 $\alpha = \arctan \mu = \arctan 0.25 = 14^{\circ}2'$

而
$$\varphi''(\alpha) < 0$$
, $\therefore \alpha = 14^{\circ}2'$ 时 $\varphi(\alpha)$ 取最大值,

因而 F 取最小值.

例11. 一张 1.4 m 高的图片挂在墙上,它的底边高于观察者的眼睛1.8 m,问观察者在距墙多远处看图才最清楚(视角 θ 最大)?

解: 设观察者与墙的距离为x m,则

$$\theta = \arctan \frac{1.4+1.8}{x} - \arctan \frac{1.8}{x}, \quad x \in (0, +\infty)$$

$$\theta' = \frac{-3.2}{x^2 + 3.2^2} + \frac{1.8}{x^2 + 1.8^2} = \frac{-1.4(x^2 - 5.76)}{(x^2 + 3.2^2)(x^2 + 1.8^2)}$$

$$令\theta'=0$$
,得驻点 $x=2.4∈(0,+∞)$

根据问题的实际意义, 观察者最佳站位存在, 驻点又唯一, 因此观察者站在距离墙 2.4 m 处看图最清楚.

内容小结

1. 可导函数单调性判别

$$f'(x) > 0, x \in I \Longrightarrow f(x)$$
 在 I 上严格单调递增 $f'(x) < 0, x \in I \Longrightarrow f(x)$ 在 I 上严格单调递减

- 2. 连续函数的极值
- (1) 极值可疑点: 使导数为0 或不存在的点
- (2) 第一充分条件

$$f'(x)$$
 过 x_0 由正变负 $f(x_0)$ 为极大值 $f'(x)$ 过 x_0 由负变正 $f(x_0)$ 为极小值

(3) 第二充分条件

$$f'(x_0) = 0, f''(x_0) < 0 \Longrightarrow f(x_0)$$
 为极大值/\(f'(x_0) = 0, f''(x_0) > 0 \Longrightarrow f(x_0) 为极小值\+/

(4) 判别法的推广

3. 连续函数的最值 最值点应在极值点和边界点上找; 应用题可根据问题的实际意义判别.

思考与练习

1. 设在[0,1] 上 f''(x) > 0, 则 f'(0), f'(1), f(1) - f(0)

或 f(0) - f(1) 的大小顺序是(B)

(A)
$$f'(1) > f'(0) > f(1) - f(0)$$

(B)
$$f'(1) > f(1) - f(0) > f'(0)$$

(C)
$$f(1) - f(0) > f'(1) > f'(0)$$

(D)
$$f'(1) > f(0) - f(1) > f'(0)$$

提示: 利用f'(x) 单调增加,及

$$f(1) - f(0) = f'(\xi) \ (0 < \xi < 1)$$

2. 设
$$\lim_{x\to a} \frac{f(x)-f(a)}{(x-a)^2} = -1$$
, 则在点 a 处(B).

- $\overline{(A)} f(x)$ 的导数存在, $\underline{\mathbb{H}} f'(a) \neq 0$;
- (B) f(x) 取得极大值; (C) f(x) 取得极小值;
- (D) f(x) 的导数不存在. (L. P500 题4)

提示: 利用极限的保号性.

3. 设 f(x) 在 x = 0 的某邻域内连续, 且 f(0) = 0,

$$\lim_{x\to 0} \frac{f(x)}{1-\cos x} = 2, 则在点 x = 0 处 f(x) (D).$$

- (A) 不可导;
- (B) 可导, 且 $f'(0) \neq 0$;
- (C) 取得极大值;
- (D) 取得极小值.

提示: 利用极限的保号性.

4. 设y = f(x) 是方程y'' - 2y' + 4y = 0 的一个解,

若 $f(x_0) > 0$, 且 $f'(x_0) = 0$, 则f(x) 在 x_0 (A)

- (A) 取得极大值;
- (B) 取得极小值;
- (C) 在某邻域内单调增加;
- (D) 在某邻域内单调减少

提示: 将 f(x)代入方程, 令 $x = x_0$, 得

$$f''(x_0) = -4f(x_0) < 0$$

作业

P131 11,12(1)(4),13(3)(6), 16(2)(4)

P163 1(1)(4), 3

备用题 1. 证明: 当 $0 < x < \frac{\pi}{2}$ 时, 有 $\sin x > \frac{2}{\pi}x$.

$$F'(x) = \cos x - \frac{2}{\pi}$$
$$F''(x) = -\sin x < 0$$

$$\therefore F(x) \ge \min\left\{F(0), F(\frac{\pi}{2})\right\} = 0 \quad (\boxminus \overline{u})$$

即
$$\sin x > \frac{2}{\pi}x \qquad (0 < x < \frac{\pi}{2})$$

