Practice questions for Midterm 1

Paul Hacking

10/2/09

1. Find all solutions of the following systems of linear equations. Explain your results geometrically.

(a)

$$x + 2y + 3z = 5$$

$$2x + y + 2z = 1$$

$$x - y + 3z = 2$$

(b)

$$x + y + z + t = 2$$

$$x + 2y + 3z + 2t = 4$$

$$2x + 4y + 4z - t = 5$$

2. Find all solutions of the vector equation

$$x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$$

where

$$\mathbf{v}_1 = \begin{pmatrix} 2 \\ 6 \\ 2 \end{pmatrix}, \mathbf{v}_2 = \begin{pmatrix} 1 \\ -1 \\ 7 \end{pmatrix}, \mathbf{v}_3 = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}.$$

Explain your result geometrically.

3. Find all solutions of the equation $A\mathbf{x} = \mathbf{b}$ where

$$A = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 2 & 4 & -1 & 0 \\ 1 & 2 & 1 & 3 \end{pmatrix}, \mathbf{b} = \begin{pmatrix} 1 \\ -1 \\ 4 \end{pmatrix}.$$

Does the equation $A\mathbf{x} = \mathbf{c}$ have a solution for every vector \mathbf{c} in \mathbb{R}^3 ? Explain your answer.

- **4.** Let S, T, U, V be the linear maps from \mathbb{R}^2 to \mathbb{R}^2 given by the matrices $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}, \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 2 & 1 \end{pmatrix}$.
 - (a) Describe the maps geometrically. (It may help to draw the image of the unit square.)
 - (b) Compute the matrices of the compositions $S \circ U$, $T \circ T$, and $T^{-1} \circ U \circ T$. Interpret your results geometrically.
- 5. Find the matrix of the following linear maps.
 - (a) $T: \mathbb{R}^2 \to \mathbb{R}^2$ rotation about the origin through an angle of $\pi/3$ radians anticlockwise.
 - (b) $U: \mathbb{R}^2 \to \mathbb{R}^2$ reflection in the line through the origin in direction $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.
 - (c) $V: \mathbb{R}^3 \to \mathbb{R}^3$ projection onto the plane x + 2y + 3z = 0.
 - (d) $W: \mathbb{R}^3 \to \mathbb{R}^3$ rotation about the y-axis through an angle of $\pi/3$ radians anticlockwise.

6.

- (a) The linear map $S: \mathbb{R}^2 \to \mathbb{R}^2$ given by the matrix $A = \frac{1}{13} \begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix}$ is a projection onto a line. Find the line.
- (b) The linear map $T: \mathbb{R}^3 \to \mathbb{R}^3$ given by the matrix $B = \frac{1}{3} \begin{pmatrix} 1 & 2 & -2 \\ 2 & 1 & 2 \\ -2 & 2 & 1 \end{pmatrix}$ is a reflection in a plane. Find the plane.
- (c) The linear map $U: \mathbb{R}^3 \to \mathbb{R}^3$ given by the matrix $C = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & 1 \\ -1 & 0 & 0 \end{pmatrix}$ is a rotation. Find the axis of rotation.
- **7**. Let

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ -1 & -1 & 2 \end{pmatrix}.$$

- (a) Compute A^{-1} .
- (b) Using your result from (a), solve the linear system

$$x_1 + 2x_2 + x_3 = 1$$

$$2x_1 + 4x_2 + 3x_3 = 0$$

$$-x_1 - x_2 + 2x_3 = 0$$

8. The unit cube in \mathbb{R}^3 has vertices (0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0), (1,0,1), (0,1,1), (1,1,1). Suppose $T \colon \mathbb{R}^3 \to \mathbb{R}^2$ is a linear map such that T(1,0,0) = (2,1), T(0,1,0) = (1,2), and T(0,0,1) = (1,1). Write down the matrix of T. Draw the image of the unit cube in \mathbb{R}^2 under the map T (draw the image of each edge of the cube).