Stat 230: Probability

Lecture 25

Jeremy VanderDoes

University of Waterloo

Monday, July 4th

Review

Example

Suppose $X \sim N(6, 7^2)$, how can this be standardized? What is P(X > 6)?

Review

Last time we talked about:

- (1) Joint Probability Distribution
- For today:
 - (1) Review
 - (2) Independence
 - (3) Multinomial distribution

Review

Today: TA Tutorial

• Tomorrow: Test 2

Review

Independence

Definition

Suppose that X and Y are discrete random variables with joint probability function f(x,y) and marginal probability functions $f_X(x)$ and $f_Y(y)$. X and Y are said to be **independent random variables** if

$$f(x,y) = f_X(x)f_Y(y)$$
, for all $x \in X(S), y \in Y(S)$

This is the same as saying

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$
 for all x and y

More generally X and Y are independent if for all subsets $A_x,A_y\subset\mathbb{R}$:

$$P(X \in A_x \cap Y \in A_y) = P(X \in A_x)P(Y \in A_y)$$

Independence

Example

Suppose that X and Y have a joint probability function defined in the table below:

Are X and Y independent?

Independence

Independence of more than two random variables: If $X_1, ..., X_n$ have joint probability function $f(x_1, ..., x_n)$, and marginal probability functions $f_{X_1}(x_1), ..., f_{X_n}(x_n)$, then $X_1, ..., X_n$ are said to be **independent** if

$$f(x_1,...,x_n) = f_{X_1}(x_1)f_{X_2}(x_2)\cdots f_{X_n}(x_n)$$

Conditional Probability

Definition

The conditional probability function of X given Y = y is denoted $f_X(x|y)$, and is defined to be

$$f_X(x|y) = P(X = x|Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)} = \frac{f(x, y)}{f_Y(y)}$$

 $f_Y(y|x)$ is similarly defined.