ESCOLA SUPERIOR NÁUTICA INFANTE D. HENRIQUE

Exercícios 2011/2012

Resolução de equações 1

Localização de raízes

Mostre que as seguintes equações têm soluções nos intervalos indicados.

(a)
$$x^3 + 4x^2 - 10$$
 em [1, 2]

(c)
$$e^x + 2^{-x} + 2\cos(x) - 6$$
 em [1, 2]

(b)
$$x^2 - 2^{-x}$$
 em $[0, 1]$

(d)
$$e^x - x^2 + 3x - 2$$
 em $[0, 1]$

2. Encontre intervalos contendo cada uma das soluções das seguintes equações.

(a)
$$\sin(x) = \log(x)$$
 (uma solução)

(e)
$$x^3 - x - 1 = 0$$

(b)
$$e^x = 2 - x$$
 (uma solução)

(f)
$$x^3 + x - 4 = 0$$

(c)
$$x^2 - 2x = \sin(x)$$
 (duas soluções)

(g)
$$3x^2 - e^x = 0$$

- (d) $2x^3 + 3 = 2x^2 + 5x$ (três soluções) (g) $3x^2 e^x = 0$
- 3. Escreva cada uma das seguintes constantes como solução duma equação da forma f(x) = 0.

(a)
$$\arcsin\left(\frac{1}{3}\right)$$

(b)
$$\sqrt{3} + 1$$

(c)
$$\log(2)$$

(d)
$$\frac{\pi}{2}$$

- 4. Escreva as constantes do exercício anterior como solução duma equação da forma f(x) = x.
- 5. Localize todas as raízes da função $x^2 + 10\cos(x)$.

Método da bissecção

- 6. Determine o número de iterações necessárias para encontrar a solução de $x^3-x-1=0$ em [1,2] com um erro inferior a 10^{-4} recorrendo ao método da bissecção.
- 7. Repita o exercício anterior para o problema de encontrar a solução de $x^3+x-4=0$ em [1,4] com um erro inferior a 10^{-3} .
- 8. Recorra ao método da bissecção para encontrar raízes das funções do Exercício 1 nos intervalos indicados com um erro inferior a 10^{-5} .
- 9. Aplique o método da bissecção para encontrar todas as soluções das equações do Exercício 2 com um erro absoluto inferior a 10^{-5} .
- 10. Recorra ao método da bissecção para determinar valores aproximados de cada uma das constantes do Exercício 3 com um erro absoluto inferior a 10^{-7} .

- 11. Usando o método da bissecção, encontre valores aproximados de $\sqrt{3}$ e $\sqrt[3]{25}$ com precisão de duas casas decimais.
- 12. Recorrendo ao método da bissecção, encontre todos os zeros da função com expressão $x^2 + 10\cos(x)$ com quatro algarismos de precisão.
- 13. Implemente o método da bissecção em MatLab.

Métodos de falsa posição

- 14. Recorra ao método da falsa posição para encontrar raízes das funções do Exercício 1 nos intervalos indicados com um erro inferior a 10^{-5} .
- 15. Aplique o método da falsa posição para encontrar todas as soluções das equações do Exercício 2 com um erro absoluto inferior a 10^{-5} .
- 16. Recorra ao método da falsa posição para determinar valores aproximados de cada uma das constantes do Exercício 3 com um erro absoluto inferior a 10^{-7} .
- 17. Usando o método da falsa posição, encontre valores aproximados de $\sqrt{3}$ e $\sqrt[3]{25}$ com precisão de duas casas decimais.
- 18. Recorrendo ao método da falsa posição, encontre todos os zeros da função com expressão $x^2 + 10\cos(x)$ com quatro algarismos de precisão.
- 19. Resolva os Exercícios 14 a 18 recorrendo ao método da falsa posição modificado. Compare o número de iterações requeridas em cada caso.
- 20. Implemente os métodos da falsa posição e da falsa posição modificado em MatLab.

Método do ponto fixo

- 21. Mostre que o método do ponto fixo converge quando aplicado à função g definida por $g(x)=\frac{x^2-1}{3}$ no intervalo [0,1].
- 22. Considere o problema de resolver a equação $x^3+4x^2-10=0$ no intervalo [1,2].
 - (a) Mostre que esta equação pode ser reescrita das cinco formas seguintes.

i.
$$x=x-x^3-4x^2+10$$
 iv. $x=\sqrt{\frac{10}{4+x}}$ iii. $x=\frac{1}{2}\sqrt{10-x^3}$ iv. $x=\sqrt{\frac{10}{4+x}}$ v. $x=x-\frac{x^3+4x^2-10}{3x^2+8x}$

- (b) Para quais destas versões é que pode garantir que o método do ponto fixo converge? Calcule o número de iterações necessário para obter uma solução com erro inferior a 10^{-5} .
- (c) Aplique o método do ponto fixo a cada uma das equações acima até (i) poder garantir que o erro é inferior a 10^{-5} , (ii) não ser possível prosseguir ou (iii) poder concluir que o método diverge. Compare estes resultados com os obtidos na alínea anterior.

2

- 23. Considere a equação $z \sin(Az) \sin(B) = 0$, onde A e B são constantes arbitrárias.
 - (a) Mostre que a equação tem uma única raiz se $A \in]-1,1[$, para qualquer valor de B.
 - (b) Nas condições da alínea anterior, mostre que o método do ponto fixo converge para $z_0 = 0.1.$
 - (c) Verifique experimentalmente que o método diverge para A=2.5 e B=0.
- 24. Recorrendo ao método do ponto fixo, resolva cada uma das seguintes equações com o erro indicado. Compare o número de iterações efectuado com o valor teórico previsto.
 - (a) $x=2^{-x}$ em $\left[\frac{1}{3},1\right]$ com erro inferior a 10^{-4}
 - (b) $x=\pi+\frac{\sin(x)}{2}$ em $[0,2\pi]$ com erro inferior a 10^{-2}
 - (c) $x^3 x 1 = 0$ em [1, 2] com erro inferior a 10^{-5}
- 25. Usando o método do ponto fixo, encontre valores aproximados de $\sqrt{3}$ e $\sqrt[3]{25}$ com precisão de duas casas decimais.
- 26. Para cada uma das seguintes funções, determine um intervalo para o qual possa garantir que o método do ponto fixo converge.
 - (a) $f(x) = \frac{2 e^x + x^2}{3}$ (c) $f(x) = 5^{-x}$ (b) $f(x) = 4^{-x}$ (d) $f(x) = 6^{-x}$
- (e) $f(x) = 1.75 + \frac{4x 7}{x 2}$

- 27. Recorrendo ao método do ponto fixo, encontre todos os zeros da função com expressão $x^2 + 10\cos(x)$ com quatro algarismos de precisão.
- 28. Implemente o método do ponto fixo em MatLab.

Métodos de Newton-Raphson e da secante

- 29. Recorra ao método de Newton-Raphson para encontrar raízes das funções do Exercício 1 nos intervalos indicados com um erro inferior a 10^{-5} .
- 30. Aplique o método de Newton–Raphson para encontrar todas as soluções das equações do Exercício 2 com um erro absoluto inferior a 10^{-5} .
- 31. Recorra ao método de Newton-Raphson para determinar valores aproximados de cada uma das constantes do Exercício 3 com um erro absoluto inferior a 10^{-7} .
- 32. Usando o método de Newton–Raphson, encontre valores aproximados de $\sqrt{3}$ e $\sqrt[3]{25}$ com precisão de duas casas decimais.
- 33. Recorrendo ao método de Newton–Raphson, encontre todos os zeros da função com expressão $x^2 + 10\cos(x)$ com quatro algarismos de precisão.
- 34. Resolva os Exercícios 29 a 34 recorrendo ao método da secante. Compare o número de iterações requeridas e os resultados obtidos em cada caso.
- 35. Resolva a equação $4\cos(x) = e^x$ com erro inferior a 10^{-4} das seguintes formas:

- (a) aplicando o método de Newton-Raphson a partir do valor inicial $x_0 = 1$;
- (b) aplicando o método da secante a partir dos valores iniciais $x_{-1}=\frac{\pi}{4}$ e $x_0=\frac{\pi}{2}$.
- 36. Aplique o método de Newton para resolver a equação

$$\left(\sin(x) - \frac{x}{2}\right)^2 = 0$$

com erro inferior a 10^{-5} a partir do ponto inicial $x_0 = \frac{\pi}{2}$. Comente os resultados obtidos.

37. Calcule dez iterações da aplicação do método de Newton à resolução da equação

$$\frac{4x-7}{x-2} = 0$$

a partir dos pontos iniciais seguintes.

- (a) 1.625
- (b) 1.5
- (c) 1.875
- (d) 1.95

Interprete graficamente os resultados obtidos.

38. Implemente os métodos de Newton-Raphson e da secante em MatLab.

Aceleração de Aitken e método de Steffenson

- 39. Melhore os resultados obtidos nos Exercícios 8, 14 e 29 recorrendo à fórmula de aceleração de Aitken.
- 40. Resolva novamente os Exercícios 24, 25 e 27 recorrendo ao método de Steffenson. Compare os resultados com os obtidos anteriormente.
- 41. Implemente em MatLab o método de Steffenson.

2 Teoria da Aproximação

Método dos Mínimos Quadrados

1. Encontre a melhor solução aproximada dos seguintes sistemas de equações lineares.

(a)
$$\begin{cases} x + 2y &= 0 \\ x - y &= 1 \\ x &= 1 \\ y - x &= 0 \end{cases}$$
 (b)
$$\begin{cases} x + 2y &= 1 \\ 2x - 3z &= 0 \\ x + y - 2z &= 1 \\ z + y - x &= 0 \end{cases}$$
 (c)
$$\begin{cases} x + 2y &= 1 \\ z - y &= -1 \\ x + z - w &= 2 \\ z + w &= 0 \\ x + y + z + w &= 1 \end{cases}$$

2. Considere o seguinte conjunto de valores.

- (a) Supondo que a dependência de **y** em função de **x** é linear, aplique o método de regressão linear para calcular a expressão aproximada que relaciona as duas variáveis.
- (b) Supondo agora que **y** e **x** estão relacionados por uma dependência quadrática, encontre a expressão aproximada dessa relação recorrendo ao método dos mínimos quadrados.
- (c) Supondo que a relação entre \mathbf{y} e \mathbf{x} é do tipo $\mathbf{y} = A\sin(\mathbf{x}) + B$, aplique o método dos mínimos quadrados para determinar os valores de A e B.
- 3. A tabela seguinte apresenta os resultados de dez alunos nos dois testes duma disciplina. Sabendo que existe uma correlação linear, determine a expressão que melhor representa de forma aproximada a nota do segundo teste em função da nota do primeiro teste.

4. A tabela seguinte indica o peso e altura de um conjunto de indivíduos.

Altura (cm)	179	165	172	185	176	170	165	168	172	180
Peso (kg)	58	62	68	90	75	84	74	65	60	76
				,	'			'		
Altura (cm)	171	165	180	181	173					
Peso (kg)	71	72	80	75	73					

- (a) Calcule a recta de regressão associada a este conjunto de dados.
- (b) Suponha agora que a relação entre o peso e a altura é quadrática. Calcule a expressão aproximada do peso em função da altura.
- 5. Sabe-se que duas variáveis \mathbf{x} e \mathbf{y} estão relacionadas por uma dependência do tipo $\mathbf{y} = Ae^{\mathbf{x}}$. Transforme esta equação numa relação linear e recorra ao método de regressão linear para determinar os valores de A e B.

6. Determine a recta que minimiza a distância aos pontos (2,2), (5,4), (6,6), (9,9) e (11,10).

5

7. Os seguintes valores têm uma dependência quadrática entre eles. Determine aproximadamente os parâmetros dessa dependência.

8. Numa determinada cidade, registou-se a hora do pôr-do-Sol, aproximada ao minuto, entre os dias 1 e 28 de Dezembro. A tabela seguinte apresenta essas horas.

		2						
Hora	15h38	15h37	15h36	15h35	15h34	15h33	15h32	15h33
		24						
Hora	15h34	15h35	15h36	15h37	15h38			

Sabendo que a relação entre o dia e a hora do pôr-do-Sol é quadrática, determine a expressão da melhor aproximação de mínimos quadrados entre estas variáveis. Use esta aproximação para determinar qual o dia em que o Sol se pôs mais cedo e qual a hora (em minutos e segundos) a que tal sucedeu.

9. A relação entre a radiação emitida por uma substância radioactiva em função do tempo é da forma $I(t)=I_0e^{-At}$. Com base nos dados seguintes, estime os valores de I_0 e A recorrendo ao método dos mínimos quadrados logarítmico.

Interpolação polinomial

10. Para cada um dos seguintes conjuntos de três pontos, aplique a fórmula de Lagrange para calcular o único polinómio de grau 2 que passa por eles.

(a)
$$(-3,-1)$$
, $(0,-1)$ e $(1,-5)$

(f)
$$(-1,-1)$$
, $(1,3)$ e $(2,-7)$

(b)
$$(2,-5)$$
, $(-2,3)$ e $(-3,5)$

(g)
$$(1,5)$$
, $(-2,5)$ e $(0,-1)$

(c)
$$(-2,2)$$
, $(-1,3)$ e $(1,-1)$

(h)
$$(-1,8)$$
, $(1,6)$ e $(0,4)$

(d)
$$(0,3)$$
, $(-1,6)$ e $(3,6)$

(i)
$$(-1, -6)$$
, $(0, 1)$ e $(1, -2)$

(e)
$$(0,4), (-1,6) \in (1,-2)$$

(j)
$$(1,9)$$
, $(0,1)$ e $(-1,1)$

11. Para cada um dos seguintes conjuntos de quatro pontos, aplique a fórmula de Lagrange para calcular o único polinómio de grau 3 que passa por eles.

(a)
$$(-2, -3)$$
, $(-1, -2)$, $(0, -5)$ e $(1, -6)$ (f) $(1, -1)$, $(0, -1)$, $(2, -1)$ e $(-2, -1)$

(f)
$$(1,-1)$$
, $(0,-1)$, $(2,-1)$ e $(-2,-1)$

(b)
$$(2,-5)$$
, $(-1,1)$, $(0,-5)$ e $(1,-5)$

(b)
$$(2,-5)$$
, $(-1,1)$, $(0,-5)$ e $(1,-5)$ (g) $(-3,-3)$, $(2,2)$, $(-2,6)$ e $(1,-3)$

(c)
$$(0,-4)$$
, $(1,-2)$, $(2,-8)$ e $(-1,-8)$ (h) $(0,0)$, $(-1,3)$, $(1,1)$ e $(2,-6)$

(h)
$$(0,0)$$
 $(-1,3)$ $(1,1)$ e $(2,-6)$

(d)
$$(-1, -4)$$
 $(0, -2)$ $(2, 8)$ e $(3, 4)$

(i)
$$(2 - 6) (-1 - 3) (1 3) e (-3 - 1)$$

(d)
$$(-1,-4)$$
, $(0,-2)$, $(2,8)$ e $(3,4)$
(i) $(2,-6)$, $(-1,-3)$, $(1,3)$ e $(-3,-1)$
(e) $(1,2)$, $(2,-8)$, $(-1,-2)$ e $(0,-2)$
(j) $(1,2)$, $(-1,-2)$, $(0,3)$ e $(-2,-7)$

(i)
$$(1\ 2)\ (-1\ -2)\ (0\ 3)\ e\ (-2\ -7)$$

12. Resolva novamente os Exercícios 10 e 11 recorrendo ao método de Newton. Compare os resultados obtidos.

6

13. Seja f uma função tomando os seguintes valores.

Use um polinómio interpolador de f para calcular um valor aproximado de f(9.5).

14. Seja f uma função satisfazendo as condições da tabela seguinte.

X	f(x)	f'(x)
0.4	1.554284	0.243031
0.5	1.561136	-0.089618

Determine aproximadamente a abcissa do ponto máximo de f no intervalo [0.4, 0.5].

15. Para cada uma das alíneas seguintes, determine o único polinómio p de grau 3 que satisfaz as condições pretendidas usando a interpolação de Hermite.

(a)
$$p(-2) = -1$$
, $p'(-2) = 12$, $p(1) = -1$ e $p'(1) = 3$

(b)
$$p(2) = -5$$
, $p'(2) = -4$, $p(1) = -5$ e $p'(1) = 1$

(c)
$$p(0) = -4$$
, $p'(0) = 0$, $p(-1) = -8$ e $p'(-1) = -5$

(d)
$$p(-1) = -4$$
, $p'(-1) = -9$, $p(3) = -8$ e $p'(3) = -9$

(e)
$$p(1) = 2$$
, $p'(1) = 0$, $p(0) = -2$ e $p'(0) = 0$

(f)
$$p(1) = 0$$
, $p'(1) = 2$, $p(-2) = 3$ e $p'(-2) = -4$

(g)
$$p(-3) = 9$$
, $p'(-3) = 18$, $p(1) = 1$ e $p'(1) = 6$

(h)
$$p(0) = 0$$
, $p'(0) = 0$, $p(2) = 2$ e $p'(2) = -6$

(i)
$$p(1) = 5$$
, $p'(1) = -4$, $p(-1) = 1$ e $p'(-1) = -2$

(j)
$$p(1) = 2$$
, $p'(1) = -6$, $p(-2) = -7$ e $p'(-2) = -6$

16. Seja f a função com expressão $f(x) = \frac{1}{1+x^2}$.

- (a) Recorra à interpolação de Lagrange para determinar o polinómio de grau 3 que coincide com f nos pontos 0, 1, 3 e 5.
- (b) A partir do polinómio determinado na alínea anterior, obtenha um valor aproximado de f(4). Compare este valor com o valor exacto.
- (c) Recorrendo à interpolação de Hermite, determine o polinómio de grau 3 que coincide com f nos pontos 0 e 5 e cuja derivada coincide com f' nos mesmos pontos.
- (d) Calcule um valor aproximado de f(4) a partir do polinómio determinado na alínea anterior. Compare o resultado com os obtidos na alínea (b).

17.

- (a) Implemente em MatLab a fórmula de interpolação de Newton.
- (b) Use esta implementação para calcular os polinómios de graus 5, 10 e 20 que interpolam e^{-x^2} em pontos igualmente espaçados do intervalo [-5,5]. Compare os gráficos destes polinómios com o da função original.
- (c) Repita a alínea anterior para a função $\frac{1}{1+x^2}$.
- (d) Repita a alínea anterior usando como pontos de interpolação os nós de Chebyshev do intervalo [-5,5].

Integração numérica

- 18. Considere novamente os polinómios do Exercício 10. Para cada um deles, calcule o valor do seu integral no intervalo contendo os três pontos indicados de cada uma das seguintes formas:
 - (a) usando a regra dos trapézios composta, considerando dois subintervalos;
 - (b) usando a regra de Simpson com os três pontos fornecidos;
 - (c) por integração directa do polinómio interpolador calculado anteriormente.

Comente os resultados obtidos.

- 19. Considere agora os polinómios do Exercício 11. Para cada um deles, calcule o valor do seu integral no intervalo contendo os quatro pontos indicados de cada uma das seguintes formas:
 - (a) usando a regra dos trapézios composta, considerando três subintervalos;
 - (b) usando a regra dos três oitavos com os quatro pontos fornecidos;
 - (c) por integração directa do polinómio interpolador calculado anteriormente.

Comente os resultados obtidos.

- 20. Calcule duas aproximações do integral da função do Exercício 13. Comente os resultados obtidos.
- 21. Calcule o valor exacto de $\int_0^5 p(x) dx$, sendo p:
 - (a) o único polinómio de grau 2 tal que p(0) = 0, p(2) = 2 e p(5) = -1;
 - (b) o único polinómio de grau 3 tal que p(0)=1, p(2)=-1, p(3)=2 e p(5)=0
 - (c) o único polinómio de grau 4 tal que p(0) = 1, p(1) = 1, p(2) = 1, p(3) = 1 e p(5) = 0