

Small Satellite Research Laboratory

Franklin College of Arts and Sciences

UNIVERSITY OF GEORGIA

Mechano-Optical Design of a CubeSat Ready Hyperspectral Camera System

> Matthew Hevert 2017 Space Science and Innovation Symposium

SPectral Ocean Color imager Overview:

- Partnered with the University of Georgia's Center for Geospatial Research
- Cloudland Instruments provided guidance in the optical setup and camera electronics
- Clyde Space Frame and Electronics Stack
- SPOC Subsystems
 - SpocEye Camera
 - Finderscope
 - Electronics Stack
 - Frame

SPOC - Mission Objectives:

Objectives:

- 1) SPOC shall acquire moderate resolution imagery of coastal ecosystems and ocean color
- 2) SPOC shall acquire image data between 400 and 850 nm
- 3) SPOC shall use multispectral imaging products to monitor coastal wetlands status, estuarine water quality, and near-coastal ocean productivity
- 4) SPOC shall be entirely built by undergraduates in STEM fields

Mission Success:

Minimum Mission Success:

- 1) Image coastal target once in a month.

 Images shall be a minimum of 250 m spatial resolution
- 2) Acquire images between 400 and 850 nm with spectral resolution of 50 nm
- 3) Acquire analyzable hyperspectral images
- 4) 30 students involved for at least 2 semesters over the lifetime of the project
- 5) Minimum community outreach requirements

Full Mission Success:

- 1) Image the same coastal target 5 times in a month. Images shall be a minimum of 150 m spatial resolution
- 2) Acquire images between 400 and 850 nm with spectral resolution of 10 nm
- 3) Acquire analyzable hyperspectral images
- 4) 75 students involved for at least 2 semesters over the lifetime of the project
- 5) Satisfy community outreach goals

Optical Design:

- Partnered with Cloudland Instruments
- Camera lens system contains:
 - Six lenses
 - Two mirrors
 - One diffraction grating
 - One slit plane lens
- Two section system
 - Telescope
 - Camera
- Push Broom style camera

Mechanical Design:

- Design requirements:
 - Fit within 1U platform
 - Meet mission goals
 - Mass < 1 kg
 - Must survive launch and vacuum environment
 - Self cooling
- Material Selection:
 - O Aluminium 6061-T6
 - O Ultem 8095
- Needed to incorporate ground calibration for three lenses and the diffraction grating

Simulation Results:

- Thermal:
 - Thermal expansion model
- Structural:
 - Inertial
 - Modal
 - Response Spectrum
 - Random Vibration

Small Satellite Research Laboratory

Franklin College of Arts and Sciences

Satisfaction of Mission Requirements

Still in the building and testing phases but have thus far been successful in:

- Optics Design
 - 131 meter ground resolution
 - Images acquired will be between 400 and 850nm
- Mechanical Design
 - Approx. mass (+10% contingency): 0.713 kg
 - 105mm x 96 mm x 97 mm
 - Three adjustable lenses and diffraction grating for ground calibration

Questions?

Franklin College of Arts and Sciences

UNIVERSITY OF GEORGIA