Esercizi di Informatica Teorica

Macchine di Turing

Macchina di Turing

richiami

macchina di Turing (MT):

 $M = \langle \Sigma, \underline{b}, K, q_0, F, \delta \rangle$ dove

- \sum è l'<u>alfabeto</u> (finito) <u>di simboli</u>
- $\underline{b} \notin \Sigma$ è il carattere speciale "spazio bianco" (blank)
- K è un insieme finito e non vuoto di stati interni
- $q_0 \in K$ è lo stato iniziale
- F ⊆ K è l'insieme degli <u>stati finali</u>
- δ : $K \times (\Sigma \cup \{\underline{b}\}) \to K \times (\Sigma \cup \{\underline{b}\}) \times \{s, d, i\}$ è la <u>funzione</u> (parziale) di transizione;

 $\delta(q,a) = \langle p, c, m \rangle$ vuol dire che quando M è nello stato 'q' e la testina è posizionata sul simbolo 'a', M passa allo stato 'p', scrive il simbolo 'c' al posto di 'a' sul nastro, ed esegue uno spostamento 'm' della testina, dove 'm' può equivalere a fare un passo a sinistra (s), fare un passo a destra (d), o restare fermo (i).

Configurazioni e transizioni

- <u>configurazione</u> di una MT: contenuto del nastro + posizione della testina + stato corrente
- rappresentazione di una configurazione: $\alpha q \beta$ dove $\alpha \in (\sum \cup \{\underline{b}\})^*$ è la porzione di nastro a sinistra della testina, q è lo stato corrente, $\beta = a\beta' \in (\sum \cup \{\underline{b}\})^+$, dove 'a' è il simbolo su cui si trova la testina e β' è la porzione di nastro a destra della testina
- configurazione iniziale: $q_0\beta$ (oppure $\underline{b}q_0\beta$)
- configurazione finale: $\alpha q\beta$ con $q \in F$
- <u>transizione (o passo o mossa)</u>: applicazione della funzione di transizione ad una configurazione ($c_i \mid c_{i+1}$)

Computazioni

- <u>computazione</u> di una MT: sequenza (finita o infinita) di transizioni $c_1 | c_2 | \dots | c_i | \dots$
- una <u>computazione finita</u> $c_1 | -c_2 | | -c_n$ si indica anche con $c_1 | -* c_n$, dove (| -* è la chiusura riflessiva e transitiva di | --)
- <u>convenzione</u>: <u>in ogni computazione può esistere al più una configurazione</u> <u>finale</u> (cioè se la macchina raggiunge uno stato finale la computazione termina)
- <u>computazione (finita) massimale</u> $c_1 \mid -- * c_n \Leftrightarrow$ non esiste una configurazione 'c' tale che $c_n \mid -- c$
- computazione (finita) accettante $c_0 \mid -- * c_n \Leftrightarrow c_0$ è iniziale e c_n è finale
- computazione (massimale) rifiutante $c_0 \mid -- * c_n \Leftrightarrow c_0$ è iniziale e c_n non è finale
- <u>computazione non terminante</u> \Leftrightarrow né accettante né rifiutante

Rappresentazione grafica di una MT

- Il <u>grafo di transizione</u> di una MT è una rappresentazione grafica della sua funzione di transizione, in cui:
 - ogni nodo corrisponde a uno stato
 - un nodo è etichettato come iniziale
 - alcuni nodi sono etichettati come finali
 - ogni arco orientato è etichettato con una tripla a|b|s in cui:
 - 'a' è il carattere letto
 - 'b' è il carattere scritto
 - 's' denota lo spostamento della testina
- nel seguito di questa dispensa si utilizzeranno i caratteri ' \leftarrow ', ' \rightarrow ', e ' \leftrightarrow ' in luogo di 's', 'd' e 'i' per denotare i possibili spostamenti della testina

Computazioni di MT

esercizio 1

sia M la seguente macchina di Turing:

$$\Sigma = \{0,1,2\} \quad K = \{q_0,q_1,q_2,q_F\} \quad F = \{q_F\}$$

$$\delta(q_0,0) = \langle q_0,0, \rightarrow \rangle \qquad \delta(q_0,2) = \langle q_1,2, \rightarrow \rangle \qquad \delta(q_0,\underline{b}) = \langle q_F,\underline{b}, \leftrightarrow \rangle$$

$$\delta(q_1,0) = \langle q_1,1, \rightarrow \rangle$$
 $\delta(q_1,1) = \langle q_1,0, \rightarrow \rangle$

$$\delta(q_1,2) = < q_2,2, \longleftrightarrow > \delta(q_1,\underline{b}) = < q_F,\underline{b}, \longleftrightarrow >$$

$$\delta(q_2,0) = \langle q_2,0,\leftarrow \rangle$$
 $\delta(q_2,1) = \langle q_2,1,\leftarrow \rangle$

$$\delta(q_2,2) = \langle q_1,2, \rightarrow \rangle$$
 $\delta(q_2,\underline{b}) = \langle q_F,\underline{b}, \leftrightarrow \rangle$

Computazioni di MT

mostrare le computazioni sugli input "002101", "012101" e "00210212", specificando per ciascuna di esse se si tratta di una computazione accettante, rifiutante o non terminante

Macchina di Turing e linguaggi

richiami

- una MT (con alfabeto Σ) decide un linguaggio $L\subseteq\Sigma^* \Leftrightarrow$
 - $\forall x \in L$ la computazione su x è accettante
- $\forall x \notin L$ la computazione su x è <u>rifiutante</u> osservazione: ciò vuol dire che $\forall x \in \Sigma^*$ la MT è in grado di decidere se $x \in L$ (x accettata) o se $x \notin L$ (x rifiutata)
- una MT (con alfabeto Σ) <u>riconosce</u> un linguaggio $L\subseteq\Sigma^*\Leftrightarrow$
 - $\forall x \in L$ la computazione su x è accettante
- $\forall x \notin L$ la computazione su $x \in o$ rifiutante o non terminante osservazione: ciò vuol dire che $\forall x \in \Sigma^*$ la MT è in grado di stabilire se $x \in L$ (x accettata), mentre non garantisce alcun comportamento nel caso in cui x∉ L

<u>nota bene</u>: la MT decide $L \Rightarrow$ la MT riconosce L (non viceversa) $_{8}$

Esercizi sulle MT

esercizio 2

definire una MT che decide il linguaggio $L = \{0^n 1^n 2^n : n > 0\}$

esercizio 3

definire una MT che decide il linguaggio delle stringhe su {0,1,2} tali che #0 = #1 = #2

Macchina di Turing multinastro

<u>richiami</u>

macchina di Turing multinastro (MTM):

sia n = numero di nastri

$$M = \langle \Sigma, \underline{b}, K, q_0, F, \delta \rangle$$
 dove

- Σ , \underline{b} , K, q_0 ed F sono definiti come per una MT
- $\delta : K \times (\Sigma \cup \{\underline{b}\})^n \to K \times (\Sigma \cup \{\underline{b}\})^n \times \{s, d, i\}^n$

 $\delta(q, a_1, a_2,...,a_n) = \langle p, c_1, c_2,..., c_n, m_1, m_2,..., m_n \rangle$ vuol dire che quando M è nello stato 'q', e le n testine sono posizionate sui simboli $a_1, a_2,...,a_n$, M passa allo stato 'p', scrive i simboli $c_1, c_2,...,c_n$ rispettivamente al posto di $a_1, a_2,...,a_n$, ed esegue gli spostamenti $m_1, m_2,...,m_n$ delle n testine sugli n nastri

Configurazioni e transizioni di una MTM

- <u>configurazione di una MTM</u>: $q\#\alpha_1^{\uparrow}\beta_1\#\alpha_2^{\uparrow}\beta_2\#...\#\alpha_n^{\uparrow}\beta_n$ dove q è lo stato corrente, il primo carattere di β_i è quello su cui si trova la testina dell'i-esimo nastro, ed α_i può anche essere vuota
- classe rappresentativa delle MTM con n nastri:
 - il primo nastro è di input (sola lettura)
 - gli altri n-1 nastri sono di lavoro (scrittura e lettura)
 - configurazione iniziale: $q_0\#^\uparrow\beta_1\#^\uparrow Z_0\#...\#^\uparrow Z_0$ dove β_1 è la stringa sul nastro di input, e Z_0 è l'unico simbolo che si trova inizialmente sugli altri nastri
 - configurazione finale: $q\#\alpha_1 \uparrow \beta_1 \#\alpha_2 \uparrow \beta_2 \#...\#\alpha_n \uparrow \beta_n \text{ con } q \in F$
- le <u>transizioni</u> e le <u>computazioni</u> sono analoghe al caso di MT

Esercizi sulle MTM

esercizio 4

definire una MTM che decide il linguaggio delle stringhe su {0,1,2} tali che #0 = #1 = #2

esercizio 5

definire una macchina di Turing che decide il linguaggio delle stringhe su {x, y} tali che il numero di 'x' è una potenza di due, più la stringa vuota.

Macchina di Turing trasduttrice

<u>richiami</u>

macchina di Turing trasduttrice:

- serve per calcolare una funzione (parziale) f
- la <u>configurazione iniziale</u> ha la forma: q₀x
- la configurazione finale ha la forma: $xq_Ff(x)$

osservazioni:

- si può pensare a <u>convenzioni diverse</u> per le configurazioni iniziali e finali
- i valori di x per cui la macchina di Turing <u>non termina o termina in una configurazione non finale</u> sono quelli per i quali <u>la funzione f non è</u> definita
- si può pensare ad <u>MTM trasduttrici</u> con un nastro di input (per memorizzare x), uno di output (per memorizzare f(x)) e *k* nastri di lavoro

Esercizi sulle MT trasduttrici

esercizio 6

definire una MTM trasduttrice che calcola la funzione prodotto di due interi positivi in notazione unaria, secondo le seguenti convenzioni:

- sul nastro di input è memorizzata la stringa: 1ⁿ b 1^m, dove le due sequenze (non vuote) di 1 rappresentano i numeri da moltiplicare in notazione unaria
- sul nastro di output verrà memorizzata la stringa: 1^{nm}

Macchina di Turing non deterministica

richiami

macchina di Turing non deterministica (MTND):

$$M = \langle \sum, \underline{b}, K, q_0, F, \delta_N \rangle$$
 dove

- Σ , \underline{b} , K, q_0 , F sono definiti come per le MT
- $\delta_N : K \times (\Sigma \cup \{\underline{b}\}) \to \mathbf{P}(K \times (\Sigma \cup \{\underline{b}\}) \times \{s, d, i\})$ è la <u>funzione</u> (parziale) di transizione;

considerazioni:

- per un dato input x, M esegue un albero di computazioni
- M accetta x ⇔ esiste una computazione dell'albero che è accettante
- M rifiuta x ⇔ ci sono nell'albero solo computazioni rifiutanti
- una MTND può solo essere utilizzata per decidere un linguaggio, non per calcolare una funzione (MT trasduttrice)

Esercizi sulle MTND

esercizio 7

si consideri una MTND M con due nastri di sola lettura, così configurati:

- primo nastro: ...<u>bb</u> α <u>bb</u>..., con $\alpha \in \{0,1\}^+$
- secondo nastro: ... $\underline{bb}\alpha_1\underline{b}\alpha_2...\underline{b}\alpha_n\underline{bb}...$ con $\alpha_i \in \{0,1\}^+$ nella configurazione iniziale, M ha le testine posizionate all'inizio rispettivamente di α ed α_1 ; dire cosa fa M, sapendo che la sua funzione di transizione è definita dal seguente diagramma

Esercizi sulle MTND

esercizio 8

definire una MTND che decide il linguaggio $L=\{ww: w \in \{0,1\}^+\}$ (*suggerimento*: utilizzare un nastro di input, su cui è scritta la stringa iniziale, ed un nastro di lavoro)

MT elementare

- <u>ipotesi non restrittiva</u>: MT con alfabeto $\Sigma = \{1\}$
- MT elementari:

$$\Box \quad \underbrace{\begin{array}{c} \underline{b} \mid \underline{b} \mid \leftrightarrow \\ 1 \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_0} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \leftrightarrow \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{b} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{q} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q} \mid \underline{q} \mid \to \\ \hline \end{array}}_{q_1} \quad \underbrace{\begin{array}{c} \underline{q}$$

$$\begin{array}{c|c}
\underline{b} \mid \underline{b} \mid \leftarrow \\
\hline
1 \mid 1 \mid \leftarrow \\
\hline
q_1
\end{array}$$

$$\mathbf{M}_{0} \underbrace{\begin{array}{c} \underline{\mathbf{b}} \mid \underline{\mathbf{b}} \mid \leftrightarrow \\ 1 \mid 1 \mid 1 \mid \leftrightarrow \\ \mathbf{q}_{1} \end{array}}_{\mathbf{q}_{1}} \mathbf{q}_{1}$$

$$| q_0 \xrightarrow{\underline{b} | 1 | \leftrightarrow} q_1$$

$$d \stackrel{\underline{b} | \underline{b} | \rightarrow}{\underbrace{1 | 1 | \rightarrow}} \boxed{q_1}$$

$$\Box$$
 = scrive un \underline{b}
| = scrive un 1

$$M_0 = ferma$$

Composizione di MT elementari

richiami

• ogni MT può essere definita per composizione di MT elementari, usando diramazioni condizionate

se la testina di M si ferma su un 1 allora parte M1, se si ferma su un <u>b</u> parte M2

Esercizi su composizione di MT

esercizio 9

definire una MT M per composizione di MT elementari tale che:

- M ha un solo nastro di input/output ed alfabeto {1}
- sul nastro è scritto un numero naturale *n* in notazione unaria (input)
- la testina di M si trova inizialmente sulla prima cifra di *n*
- M <u>calcola e scrive sul nastro il resto *r* (in notazione unaria) della divisione di *n* per 2</u>
- al termine della computazione, sul nastro deve esserci solo *r* e la testina di M deve essere sul resto (che ha ovviamente una sola cifra)

configurazione iniziale

configurazione finale

Esercizi su composizione di MT

esercizio 10

definire una MT M per composizione di MT elementari tale che:

- M ha un solo nastro di lettura/scrittura ed alfabeto {1}
- sul nastro è scritto un solo 1
- la testina di M si trova inizialmente in un punto qualunque del nastro
- M deve cercare l'uno sul nastro e terminare la computazione con la testina posizionata su tale simbolo

soluzione esercizio 1

• computazione su "002101": $q_0002101 \mid -0q_002101 \mid -00q_02101 \mid -002q_101 \mid -00201q_11 \mid -002010q_1\underline{b} \mid -002010q_5\underline{b}$

• computazione su "012101": $q_0012101 \vdash 0q_012101$

computazione rifiutante

• computazione su "00210212": $q_000210212 \models 0q_00210212 \models 00q_0210212 \models 0020q_110212 \models 0020q_10212 \models 00201q_1212 \models 0020q_21212 \models 002q_201212 \models 00q_2201212 \models 002q_101212 \models 0021q_11212 \models 00210q_1212 \models 0021q_20212 \models 002q_210212 \models 00q_2210212 \models 00q_2210212 \models 002q_210212 \models 00q_2210212 \models 002q_210212 \models 002q_212 \models 002q_210212 \models$

computazione non terminante

soluzione esercizio 2

MT per L = $\{0^n \ 1^n \ 2^n : n > 0\}$

- strategia di lavoro:
 - una stringa x di L è del tipo 00...011...122...2 e la configurazione iniziale della MT è $q_000...011...122...2$;
 - <u>al primo passaggio</u> effettuo nell'ordine le seguenti operazioni:
 - (a) cerco il primo 0 muovendomi a destra e lo rimpiazzo con una Z
 - (b) cerco il primo 1 muovendomi a destra e lo rimpiazzo con una U
 - (c) cerco il primo 2 muovendomi a destra e lo rimpiazzo con una D (se qualche ricerca tra le (a), (b) e (c) fallisce allora la computazione sarà <u>rifiutante</u>)
 - (d) mi riposiziono a destra della prima Z che trovo muovendomi a sinistra

- <u>al generico passo</u> cerco il primo 0 muovendomi a destra:
 - se trovo lo 0 allora lo rimpiazzo con una Z ed eseguo i passi (b), (c) e (d); se durante i passi (b) e (c) non trovo un 1 o un 2, allora la computazione sarà <u>rifiutante</u>;
 - se non trovo lo 0 allora verifico che non ci siano più 1 e 2 a destra; se la verifica va a buon fine allora la computazione sarà <u>accettante</u>, altrimenti sarà <u>rifiutante</u>
- <u>definizione dei simboli e degli stati</u>:

 Σ ={0,1,2,Z,U,D}, K = {q₀, q₁, q₂, q_R, q_V, q_F}, F = {q_F} {q₀, q₁, q₂} = ricerca di uno 0, di un 1 e di un 2 verso destra q_R = riposizionamento a destra della prima Z che incontro andando da destra verso sinistra; q_V = verifica che non ci siano più 1 e 2 a destra

• la funzione di transizione

$$\begin{split} &\delta(q_0,0) = < q_1,Z, \to > & \delta(q_0,U) = < q_v,U, \to > & \longleftarrow & \text{non ci sono più } 0 \\ &\delta(q_1,0) = < q_1,0, \to > & \delta(q_1,U) = < q_1,U, \to > \\ &\delta(q_1,1) = < q_2,U, \to > \\ &\delta(q_2,1) = < q_2,1, \to > & \delta(q_2,D) = < q_2,D, \to > \\ &\delta(q_2,2) = < q_R,D, \leftarrow > & \delta(q_R,1) = < q_R,1, \leftarrow > \\ &\delta(q_R,U) = < q_R,U, \leftarrow > & \delta(q_R,D) = < q_R,D, \leftarrow > \\ &\delta(q_R,Z) = < q_0,Z, \to > & & \text{ricomincia il conteggio} \\ &\delta(q_v,U) = < q_v,U, \to > & \delta(q_v,D) = < q_v,D, \to > \\ &\delta(q_v,b) = < q_r,b, \leftrightarrow > & & & \text{accettazione} \\ \end{split}$$

soluzione esercizio 3

MT per L = $\{x \in \{0,1,2\}^* \mid \#0 = \#1 = \#2\}$

- <u>strategia di lavoro</u>: la strategia è simile a quella dell'Esercizio 2, ma stavolta, poiché l'ordine dei simboli nella stringa può essere qualunque, occorre riposizionare la testina all'inizio della stringa prima di ogni ricerca di simbolo:
 - cerca uno 0, marcalo e torna all'inizio della stringa
 - cerca un 1, marcalo e torna all'inizio della stringa
 - cerca un 2, marcalo e torna all'inizio della stringa
 - cerca uno 0,
- <u>definizione dei simboli e degli stati</u>: come per l'Esercizio 2, ma bisogna aggiungere uno stato di riavvolgimento per ogni simbolo da ricercare

• la funzione di transizione

soluzione esercizio 4

MTM per L = $\{x \in \{0,1,2\}^* \mid \#0 = \#1 = \#2\}$

- <u>strategia di lavoro</u>: consideriamo una MTM con un nastro di input (sola lettura) monodirezionale (scorrimento sempre a destra dopo ogni transizione):
 - si scandisce la stringa sul nastro di input e si copiano gli 0 sul primo nastro di lavoro, gli 1 sul secondo ed i 2 sul terzo
 - si verifica che il numero di 0, 1 e 2 sui tre nastri lavoro sia lo stesso
- <u>definizione dei simboli e degli stati</u>:

$$\Sigma = \{0,1,2, Z_0\}, K = \{q_0, q_V, q_F\}, F = \{q_F\}$$

 q_0 = copia gli 0, 1 e 2 sui tre nastri

 q_V = verifica che i tre nastri abbiano lo stesso numero di simboli

• la funzione di transizione

$$\begin{split} &\delta(q_0,\!0,\,Z_0\,,Z_0\,,Z_0) = <\!q_0,\,0,\,0,\,\underline{b},\,\underline{b},\,\rightarrow,\,\rightarrow,\,\leftrightarrow,\,\leftrightarrow> \\ &\delta(q_0,\!1,\,Z_0\,,Z_0\,,Z_0) = <\!q_0,\,1,\,\underline{b},\,1,\,\underline{b},\,\rightarrow,\,\leftrightarrow,\,\rightarrow,\,\leftrightarrow> \\ &\delta(q_0,\!2,\,Z_0\,,Z_0\,,Z_0) = <\!q_0,\,2,\,\underline{b},\,\underline{b},\,2,\,\rightarrow,\,\leftrightarrow,\,\leftrightarrow,\,\rightarrow> \end{split}$$

copia al primo passo

$$\begin{split} &\delta(q_0,0,\,\underline{b}\,,\underline{b}\,) = < q_0,\,0,\,0,\,\underline{b}\,,\underline{b}\,,\rightarrow,\,\rightarrow,\,\leftrightarrow,\,\leftrightarrow> \\ &\delta(q_0,1,\,\underline{b}\,,\underline{b}\,,\underline{b}) = < q_0,\,1,\,\underline{b}\,,1,\,\underline{b}\,,\rightarrow,\,\leftrightarrow,\,\rightarrow,\,\leftrightarrow> \\ &\delta(q_0,2,\,\underline{b}\,,\underline{b}\,,\underline{b}) = < q_0,\,2,\,\underline{b}\,,\underline{b}\,,2,\,\rightarrow,\,\leftrightarrow,\,\leftrightarrow,\,\rightarrow> \\ &\delta(q_0,b,\,b\,,b\,,b) = < q_v,\,b,\,b,\,b,\,b,\,\rightarrow,\,\leftarrow,\,\leftarrow,\,\leftarrow,\,\leftarrow> \end{split}$$

copia a regime

$$\begin{split} &\delta(q_{V},\!\underline{b},\,0,\,1,\,2) = <\!\!q_{V},\,\underline{b},\,0,\,1,\,2,\,\rightarrow,\,\leftarrow,\,\leftarrow,\,\leftarrow,\,\leftarrow > \\ &\delta(q_{V},\!\underline{b},\,\underline{b},\,\underline{b},\,\underline{b},\,\underline{b}) = <\!\!q_{F},\,\underline{b},\,\underline{b},\,\underline{b},\,\underline{b},\,\underline{b},\,\rightarrow,\,\leftrightarrow,\,\leftrightarrow > \end{split}$$

verifica

soluzione esercizio 5

MT per L = $\varepsilon \cup \{z \in \{x,y\}^* \mid \#x = 2^h, h \in N\}$

- strategia di lavoro:
- uso una MTM con 2 nastri, uno di input ed uno di lavoro;
- scandisco tutta la stringa sul nastro di input, conto il numero di 'x' e memorizzo il risultato del conteggio sul nastro di lavoro (utilizzo il nastro di lavoro anche per memorizzare i conteggi parziali);
- -leggo la stringa (risultato del conteggio) sul nastro di lavoro e verifico che sia una potenza di due.

osservazione: conviene contare in notazione binaria, perché è facile poi verificare se il numero è una potenza di due

<u>algoritmo per contare in binario</u>: dal decimale n (in notazione binaria) al decimale n+1 (in notazione binaria)

- posizionarsi sulla cifra all'estrema destra del numero
- se la cifra su cui ci si trova è un 1, trasformarla in uno 0 e muoversi a sinistra di un passo
- iterare il processo di sostituzione di 1 in 0 con spostamento a sinistra fino a quando una tra le due condizioni seguenti è verificata:
 - si incontra uno $0 \Rightarrow$ trasformarlo in 1 e terminare
 - sono finite le cifre \Rightarrow aggiungere un 1 a sinistra (che diviene la prima cifra del numero incrementato)

esempi di conteggio con l'algoritmo proposto:

• dal numero 23 (10111) al numero 24 (?)

• dal numero 31 (11111) al numero 32 (?)

• definizione dei simboli e degli stati:

 q_F = accettazione (verifica andata a buon fine)

$$\begin{split} & \sum = \{0, 1, Z_0\}, \ K = \{q_0, q_1, q_R, q_V, q_{V1}, q_F\}, \ F = \{q_F\} \\ & q_0 = \text{scansione della stringa di input} \\ & q_1 = \text{incremento del numero di x sul nastro di lavoro} \\ & q_R = \text{riposizionamento alla fine del numero sul nastro lavoro} \\ & q_V = \text{verifica che il numero sul nastro lavoro sia una potenza di due} \\ & q_{V1} = \text{stato di supporto alla verifica (trovato un 1 verifica che non ci siano più cifre a sinistra)} \end{split}$$

osservazione: anche la computazione su una stringa di input senza x deve terminare nello stato di accettazione

• la macchina di Turing multinastro

soluzione esercizio 6

- strategia di calcolo
 - utilizzo un nastro di lavoro su cui copio la stringa 1ⁿ
 - per ogni 1 della stringa 1^m copio (accodandolo) tutto il contenuto del nastro lavoro sul nastro di output

• <u>definizione dei simboli e degli stati</u>:

```
\begin{split} & \sum = \{1, Z_0\}, \ K = \{q_0, q_1, q_R, q_V, q_{V1}, q_F\}, \ F = \{q_F\} \\ & q_0 = \text{copia della stringa } 1^n \text{ sul nastro di lavoro} \\ & q_1 = \text{scansione della stringa } 1^m \text{ dal nastro di input} \\ & q_C = \text{copia del nastro di lavoro sul nastro di output} \\ & q_R = \text{riposizionamento sul nastro di lavoro} \\ & q_F = \text{stato di fine computazione} \end{split}
```

• la funzione di transizione

soluzione esercizio 7

M effettua il confronto della stringa α con le stringhe α_1 , ..., α_n , e termina nello stato finale (cioè accetta l'input) se e solo se α coincide con almeno una delle stringhe α_1 , ..., α_n ; M effettua dunque la ricerca di una stringa in una lista di stringhe date

qualunque stringa del secondo nastro

struttura ad alto livello dell'albero delle computazioni

soluzione esercizio 8

MTND per L = {ww: $w \in \{0,1\}^+$ }

• strategia di lavoro:

all'i-esimo passo si effettuano non deterministicamente due possibili operazioni:

- si copia l'i-esimo carattere della stringa di input sul nastro di lavoro
- si confronta la stringa di input dall'i-esimo carattere in poi con la sottostringa già copiata sul nastro di lavoro

confronta il nastro lavoro con la sottostringa non ancora letta

soluzione esercizio 10

• il problema è.... <u>capire se l'uno si trova a destra o a sinistra</u>

- non si può procedere sempre in una direzione scelta a caso, perché si rischia di non terminare la computazione
- occorre procedere a zig-zag (faccio un passo a sinistra poi due a destra, poi tre a sinistra, poi quattro a destra....)

• non si può utilizzare un altro nastro lavoro per contare i passi fatti fino ad ora in una qualunque direzione, quindi occorre marcare l'ultima posizione raggiunta in ogni direzione

definiamo prima le due seguenti MT

s₁= MT che si sposta a sinistra di almeno un passo fino a quando non incontra un 1

d₁= MT che si sposta a destra di almeno un passo fino a quando non incontra un 1

