Control y Sistemas

Trabajo práctico: Estimación de estados

Resuelva los siguientes ejercicios en MATLAB o SIMULINK.

1) Cálculo de la ganancia del observador

El siguiente sistema mecánico está descripto por el sistema de ecuaciones.

$$egin{bmatrix} \dot{x}_1 \ \dot{x}_2 \end{bmatrix} = egin{bmatrix} 0 & 1 \ 0 & -c/m \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} + egin{bmatrix} 0 \ 1/m \end{bmatrix} u \ y = egin{bmatrix} 1 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$

Donde m=1 , c=1 , x_1 es la posición de la masa, x_2 es la velocidad de la masa, u es la fuerza e y es la posición.

- 1. Determine si el sistema es observable.
- 2. Verifique si el sistema es observable para $C=[0\ 1]$. ¿Qué conclusión puede sacar?.
- 3. Si es sistema es observable con alguno de los sensores analizados, determine la ganancia del observador $L=[11\ 12]^{\Lambda}T$ para el polinomio característico deseado,

$$pdes(s)=(s+p)^2$$

El principio de diseño (*rule of thumb*) indica que los polos del observador a lazo cerrado deben ser entre 4 y 5 veces más rápidos que los polos del sistema a observar. ¿Dónde ubicaría los polos del observador según esta regla?.

2) Matriz de observabilidad

Considere el siguiente sistema de transmisión de un automovil:

El sistema está descripto por las siguientes ecuaciones en espacio de estados:

$$egin{bmatrix} \dot{x}_1 \ \dot{x}_2 \ \dot{x}_3 \end{bmatrix} = egin{bmatrix} -rac{d_s}{J_f i^2} & rac{d_s}{J_f i} & -rac{c_s}{J_f i} \ rac{d_s}{J_c i} & -rac{d_s}{J_c} & rac{c_s}{J_c} \ rac{1}{i} & -1 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} + egin{bmatrix} rac{1}{J_f} \ 0 \ 0 \end{bmatrix} u + egin{bmatrix} 0 \ -rac{1}{J_c} \ 0 \end{bmatrix} d \ y = egin{bmatrix} 0 & 1 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix} + egin{bmatrix} 0 \ 0 \end{bmatrix} u \ \end{bmatrix} u + egin{bmatrix} 0 \ -rac{1}{J_c} \ 0 \end{bmatrix} d \ \end{bmatrix}$$

donde x_1 es la velocidad del motor, x_2 es la velocidad en las ruedas, x_3 es el torque en árbol de transmisión (driveshafts), Δu es la señal de entrada, el torque del motor, y Δd_1 es la perturbación, las variaciones en la superficie de la calzada.

Los parámetros del modelo son:

Description	Parameter	Value [unit]
Chassis inertia	J_c	6250 [kgm ²]
Engine flywheel inertia	J_f	0.625 [kgm ²]
Driveshaft damping coefficient	d_s	1000 [Nms/rad]
Driveshaft spring coefficient	c_s	75000 [Nm/rad]
Gear ratio	i	57 [-]

- 1. Encuentre la matriz de observabilidad. ¿Es el sistema observable?
- 2. Verifique si el sistema es observable para $C=[1\ 0\ 0]$, $C=[0\ 1\ 0]$ y $C=[0\ 0\ 1]$.
- 3. Luego de analizar los 3 escenarios posibles de observabilidad, ¿qué sensor o sensores de salida elegiría para este sistema?

3) Matriz de observabilidad

Un sistema de suspensión activa se puede modelar como,

$$egin{aligned} egin{aligned} \dot{x}_1 \ \dot{x}_2 \ \dot{x}_3 \ \dot{x}_4 \ \dot{x}_5 \end{aligned} = egin{bmatrix} 0 & 1 & 0 & 0 & 0 \ -rac{c_w+c_s}{m_w} & -rac{d_s}{m_w} & rac{c_s}{m_w} & rac{d_s}{m_w} & -rac{1}{m_w} \ 0 & 0 & 0 & 1 & 0 \ rac{c_s}{m_c} & rac{d_s}{m_c} & -rac{d_s}{m_c} & rac{1}{m_c} \ 0 & 0 & 0 & 0 & -rac{1}{ au} \end{aligned} egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ \dot{x}_5 \end{bmatrix} + egin{bmatrix} 0 \ 0 \ 0 \ 0 \ rac{1}{ au} \end{aligned} but + egin{bmatrix} 0 \ rac{c_w}{m_w} & rac{d_s}{m_w} & rac{1}{m_c} \ 0 \ 0 \ 0 \end{bmatrix} d \ \end{bmatrix} \ y = egin{bmatrix} -1 & 0 & 1 & 0 & 0 \ rac{c_s}{m_c} & rac{d_s}{m_c} & -rac{d_s}{m_c} & rac{1}{m_c} \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \ x_5 \end{bmatrix} + egin{bmatrix} 0 \ 0 \end{bmatrix} u \ \end{bmatrix} u \ \end{bmatrix}$$

donde x_1 es la posición de la rueda, x_2 es la velocidad de la rueda, x_3 es la posición del chasis, x_4 es la velocidad del chasis y x_5 es la fuerza del actuador. d es la perturbación del sistema, la posición de la superficie del terreno.

Description	Parameter	Value [unit]
Quarter car chassis mass	m_c	401 [kg]
Wheel mass	m_w	48 [kg]
Suspension damping coefficient	d_s	2200 [N/m]
Suspension spring coefficient	c_s	23000 [N/m]
Wheel spring coefficient	c_w	250000 [N/m]
Actuator time constant	τ	0.001 [s]

- 1. Encuentre la matriz de observabilidad. ¿Es el sistema observable?
- 2. Verifique si el sistema es observable si solamente se mide la compresión del amortiguador,

$$y = [-1 \ 0 \ 1 \ 0 \ 0] \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$
?

3. Verifique si el sistema es observable si solamente se mide la posición de la rueda,

$$y = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix}$$
?

4. Luego de analizar los 2 escenarios posibles de observabilidad, ¿qué sensor o sensores de salida elegiría para este sistema?

4) Control usando estimación de estados

Agregue un controlador en espacio de estados al sistema del ejercicio 2, como se indica en la figura.

- 1. Determine el polinomio deseado para un overshoot del 2% y un settling time de 1 s para la variable de salida del sistema
- 2. Cierre el bucle de control a través del observador. Encuentre el valor de la matriz K.
- 3. Determine el valor de kr.
- 4. Grafique las variables de interés del sistema

5) Control usando estimación de estados

Agregue un controlador en espacio de estados al sistema del ejercicio 3.

- 1. Varíe en un 10% al menos 3 parámetros del modelo y en 5% los restantes 3 parámetros.
- 2. Determine el polinomio deseado para un overshoot del 2% y un settling time de 0.5 s para la variable de salida del sistema.
- 3. Agrege acción integral al controlador.
- 4. Cierre el bucle de control a través del observador. Encuentre el valor de la matriz K.
- 5. Determine el valor de kr.
- 6. Grafique las variables de interés del sistema.

6) Control usando estimación de estados

En el sistema físico de la figura, la corriente a través de las bobinas induce una fuerza magnética que puede equilibrar la fuerza de la gravedad y hacer que la pelota (que está hecha de un material magnético) quede suspendida en el aire.

Las ecuaciones del sistema están dadas por:

$$m\frac{d^2h}{dt^2}=mg-\frac{Ki^2}{h}$$

$$V = L\frac{di}{dt} + iR$$

donde h es la posición vertical de la pelota, i es la corriente a través del electroimán, V es el voltaje aplicado, m es la masa de la pelota, g es la aceleración de la gravedad, L es la inductancia, R es la resistencia y K es un coeficiente que determina la fuerza magnética ejercida sobre la pelota. Para simplificar, elegiremos valores m = 0.05 kg, K = 0.0001, L = 0.01 H, R = 1 Ohm, g = 9.81 m/s^2. El sistema está en equilibrio (la pelota está suspendida en el aire) siempre que $h = K i^2/mg$ (en cuyo punto dh/dt = 0). Linealizamos las ecuaciones sobre el punto h = 0.01 m (donde la corriente nominal es de unos 7 amperios) y obtenemos las ecuaciones lineales de espacio de estado:

$$\frac{d\mathbf{x}}{dt} = A\mathbf{x} + Bu$$

$$y = C\mathbf{x} + Du$$

$$x = \begin{bmatrix} \Delta h \\ \Delta \dot{h} \\ \Delta i \end{bmatrix}$$

donde u es la desviación del voltaje de entrada de su valor de equilibrio (ΔV), e y (la salida) es la desviación del voltaje altura de la pelota desde su posición de equilibrio (Δh).

El sistema está parcialmente definido por las matrices:

$$A = [0 \ 1 \ 0; \ 980 \ 0 \ -2.8,0 \ 0 \ -100];$$

$$B = [0 \ 0 \ 100];$$

- 1. Defina la matriz C.
- 2. Se determina que los polos dominantes a lazo cerrado del sistema deben ser

$$p1 = -20 + 20i$$

 $p2 = -20 - 20i$

Determine el valor de K y kr. Utilice el método de Ackerman.

3. Mida el valor del sobrepico y el tiempo de establecimiento de y.

- 4. Desarrolle un observador para este sistema. Cierre el bucle de realimentación a través del observador.
- 5. Grafique las variables de interés del sistema.

7) Filtro de Kalman

Considere que el sistema mecánico del ejercicio 1 está afectado por ruido según el modelo,

$$egin{aligned} egin{bmatrix} \dot{x}_1 \ \dot{x}_2 \end{bmatrix} &= egin{bmatrix} 0 & 1 \ 0 & -1 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} + egin{bmatrix} 0 \ 1 \end{bmatrix} u + egin{bmatrix} 0 \ 1 \end{bmatrix} v \ y &= egin{bmatrix} 1 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \end{bmatrix} + w \end{aligned}$$

Los ruidos de proceso v y de medición w son gaussianos de media cero y varianzas Rv=0.1 y Rw=0.01. El ruido de proceso solo afecta a uno de los 2 estados, x2, esto debe ser incorporado en la solución de la ecuación de Riccati.

- 1. Encuentre el valor de la matriz de covarianza *P* al resolver la ecuación de Ricatti correspondiente.
- 2. Encuentre el valor de la matriz de ganancia de observación *L*.
- 3. Si se aumenta el ruido de proceso *Rv*, qué pasa con polos del estimador a lazo cerrado (*sl-A+LC*), ¿Se vuelven más rápidos, más lentos o no varían?.