

Ecuaciones Diferenciales y Cálculo Numérico

Grado en Ingeniería de Tegnologías de Telecomunicación

Convocatoria Extraordinaria de Septiembre

20 de septiembre de 2013

Apellidos:		Firma:
		'
Nombre:	D.N.I. (o Pasaporte):	
]] [

ACLARACIONES SOBRE EL EXAMEN

- La duración del examen es de 3 horas.
- No se permite el uso de calculadora programable.
- El examen corresponde a la parte de teoría y problemas, constando de 8 preguntas tipo test y 4 ejercicios. Será valorado sobre 9 puntos (1 el test y 8 los ejercicios).
- Dos ejercicios no se desarrollarán en una misma cara de una hoja de examen.

$Preguntas \ tipo \ TEST \ (Respuestas \ correctas ightarrow Puntuación:$

$$0 \to 0, 1 \to 0.1, 2 \to 0.2, 3 \to 0.4, 4 \to 0.5, 5 \to 0.6, 6 \to 0.8, 7 \to 0.9, 8 \to 1$$

- 1. Sea la ecuación diferencial $(\ln(t^2+1)) x'(t) + 3x(t) = 3$.
 - \square La función $x(t) = 1, \ \forall t \in \mathbb{R}$, es la solución que satisface la condición x(1) = 1.
 - \square La función x(t) = 1, $\forall t > 0$, es la solución que satisface la condición x(1) = 1.
 - \square La función x(t) = 1, $\forall t < 4$, es la solución que satisface la condición x(1) = 1.
 - $\square\,$ Ninguna de las opciones anteriores es correcta.
- 2. Sea la ecuación diferencial $x''(t) + x'(t) + 2x(t) = \frac{(x'(t))^2}{2x(t)}$. El cambio de variable $x = y^2$ da lugar a la ecuación . . .
 - $\square \ y(t)(1+y(t)) = 0.$
 - y''(t) + y'(t) + y(t) = 0.
 - $\Box y''(t) + y'(t) + y^2(t) = \left(\frac{y'(t)}{y(t)}\right)^2.$
 - \Box Ninguna de las opciones anteriores es correcta.
- 3. Un sistema fundamental de soluciones de la ecuación diferencial

$$3t^2 x''(t) + 8t x'(t) - 2x(t) = 0$$

en el intervalo $(0, +\infty)$ es...

- $\square \{t^{1/3}, t^{-2}\}$
- $\Box \{t^{1/3}, t^{-3}\}$
- $\Box \ \{t^{-2}, t^{-3}\}$
- \Box Ninguna de las opciones anteriores es correcta.

4.	4. Una solución de la ecuación en derivadas parciales				
	$xu_{xx} - yu_{xy} + u_x = \frac{12y}{(3x+2y)^2}$				
	es				
	$\square \ u(x,y) = \ln(3x + 2y) + e^{xy}.$				
	$\square \ u(x,y) = \cos(3x + 2y) + x e^{xy}.$				
	$\Box \ u(x,y) = \cos(3x + 2y) + y e^{-2x}.$				
	□ Ninguna de las opciones anteriores es correcta.				
5.	Sea $f: \mathbb{R} \to \mathbb{R}$ una función estrictamente creciente. Entonces la ecuación $f'(x) = 0$				
	\Box tiene una única solución.				
	$\hfill\Box$ nunca tiene solución.				
	\square puede tener varias soluciones.				
	□ Ninguna de las opciones anteriores es correcta.				
6. Se pretende utilizar el polinomio de interpolación para los datos					
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $				
	para estimar el valor de la función $f(x)$ en $x=1/2$. Podemos asegurar que el error absoluto cometido es				
	$\Box \ \frac{9}{1920} f^{(v)}(\xi) $ para un punto $\xi \in [-1,2]$				
	$\square \frac{9}{384} f^{(iv)}(\xi) $ para un punto $\xi \in [-1, 2]$				
	$\square \frac{1}{5!} f^{(v)}(\xi) $ para un punto $\xi \in [-1, 2]$				
	□ Ninguna de las opciones anteriores es correcta.				

7.	Si en una fórmula de derivación numérica de tipo interpolatorio se aumenta el número de nodos
	\Box siempre disminuye el error.
	\square se simplifican los cálculos.

□ en muchos casos no sirve para nada.□ Ninguna de las opciones anteriores es correcta.

8. La función

$$s(x) = \begin{cases} x^3 + 3x^2 + 4x + 3, & \text{si } x \in [-1, 0[, \\ x^3 - 3x^2 + 4x + 3, & \text{si } x \in [0, 1], \end{cases}$$

	(x - 3x)	+4x+3,	$\operatorname{sr} x \in [0, 1]$
\square es un spline cúbico na	atural.		
\Box es un spline cúbico de	e clase 2.		
\Box es un spline cúbico de	e clase 1.		
□ Ninguna de las opcion	nes anteriore	es es correct	a.

EJERCICIOS (2 puntos cada uno)

Observación: Todos los cálculos realizados en los cuatro ejercicios han de aparecer explícitamente en las respuestas.

1. Se considera la ecuación diferencial

$$(t\ln(t))^2 x''(t) - 2(t\ln(t))x'(t) + (2+\ln(t))x(t) = 0.$$
(1)

- a) Comprueba que $x(t) = \ln(t)$, $\forall t > 1$, es una solución de (1).
- b) Empleando el método de reducción de orden, calcula un sistema fundamental de soluciones de (1), indicando explícitamente el dominio maximal de definición de las funciones que lo compongan.
- 2. Se considera el sistema de ecuaciones diferenciales lineales

$$\begin{cases} x_1'(t) = 4x_1(t) + 2x_2(t) + 3e^{2t}, \\ x_2'(t) = x_1(t) + 3x_2(t) - 3e^{2t}. \end{cases}$$
 (2)

- a) Sin hacer uso de la transformada de Laplace y sin pasar a una ecuación diferencial lineal equivalente, resuelve (2).
- b) Calcula la solución de (2) que satisface la condición inicial $(x_1, x_2)(0) = (3, 0)$.
- 3. Se considera la ecuación

$$e^{2x} + 5x^3 + 1 = 0. (3)$$

- a) Demuestra que (3) tiene una única solución real.
- b) Determina un intervalo de longitud 0.25 que contenga a la solución de (3).
- c) Para el intervalo hallado en el apartado anterior, determina justificadamente un punto que asegure la convergencia del método de Newton-Raphson.
- d) Partiendo del punto hallado en el apartado c), calcula dos iteraciones con el método de Newton-Raphson (operando con cinco cifras decimales).
- e) A la vista de los resultados obtenidos en el apartado anterior, ¿cuál es la mejor aproximación que puedes dar de la solución de (3)?

Observación: Los apartados a), b) y c) se deben realizar sin el uso de calculadora.

4. De una cierta función $f(x): [-1,1] \to \mathbb{R}$ se conoce la tabla de datos

- a) Calcula el polinomio de interpolación para estos datos.
- b) A partir de lo hecho en el apartado a), halla una aproximación de f(0.5).
- c) A partir de lo hecho en el apartado a), halla una aproximación de f'(0).
- d) A partir de lo hecho en el apartado a), halla una aproximación de $\int_{-1}^{1} f(x) dx$.