

CS 211 - Digital Logic Design الرقمي 211 عال ـ تصميم المنطق الرقمي

First Term - 1439/1440 Lecture #4

Dr. Hazem Ibrahim Shehata

Assistant Professor

College of Computing and Information Technology

Administrivia

- >Assignment #1:
 - To be released on Sunday.
 - Work in groups of two.

Website: http://hshehata.github.io/courses/su/cs211

Floating-Point Numbers

- Usage: To represent very large/small integers and positive/negative real numbers with small number of bits!
- ➤ Idea: Use scientific notation → number consists of three components: sign, mantissa (1+fraction), exponent.
- **Example:**

 - - 0.000000000001101₂ 1.101 * 2⁻¹¹⁰⁰
 sign mantissa exponent

Single-Precision Floating-Point Numbers

In IEEE standard 754, single-precision floating-point numbers are represented by 32 bits:

- Sign (S): 0 → positive, 1 → negative
- Biased Exponent (E): Actual exponent plus 127₁₀ (or 01111111₂).
- Fraction (F): Fractional part of mantissa.

Conversion: Decimal -> Single-Precision

- ➤ Method: Convert from decimal to binary, then rewrite binary number in the form: ±1.xxx...xxx * 2^{±xxx...xxx}
- Example: Represent -100.25₁₀ as a single-precision floating-point number.
- > Solution:

DR. HAZEM SHEHATA

- \circ -100.25₁₀ \rightarrow -1100100.01₂
- → -1.10010001 * 2¹¹⁰
- S=1, E = 110 + 01111111 = 10000101, F=10010001000...000
- Number = 1 10000101 1001000100000000000000

Conversion: Single-Precision Decimal

- Method: Convert to binary using: $(-1)^{s}(1+F)(2^{E-127})$, then convert to decimal.
- > Solution:
 - Number = $(-1)^{1}(1 + 0.010...000)(2^{126-127})$
 - $= -1.01 * 2^{-1} = -0.101_2$
 - \circ = -(0.5 + 0.125) = -0.625

Digital Codes

- Many specialized codes are used in digital systems:
 - Strictly numeric: represent numbers only.
 - Weighted Arithmetic → Example: Binary-Coded Decimal (BCD).
 - Unweighted Non-arithmetic → Example: Gray Code.
 - 0
 - Alpha-numeric: represent numbers, symbols, letters, ... etc.
 - Example: ASCII Code.
 - 0

Binary-Coded Decimal (BCD)

- >A way of representing decimal numbers using bits!!
- Each decimal digit is encoded using 4-bits:

Decimal Digit	0	1	2	3	4	5	6	7	8	9
BCD	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

➤ Note: the codes 1010 through 1111 are not used in BCD!!

Conversion: Decimal - BCD

- ➤ Method: Replace each decimal digit with the appropriate 4-bit code.
- \triangleright Example: Convert 4905₁₀ to BCD.
- > Solution:

Conversion: BCD Decimal

- ➤ Method: Group each 4 bits and replace with equivalent decimal digit.
- Example: Convert 10000001011101101001_{BCD} to Decimal.

➤ Solution: 1000 0001 0111 0110 1001

↓ ↓ ↓ ↓ ↓

8 1 7 6 9

BCD Addition

- >Step 1: Add using rules for binary addition
- >Step 2: If 4-bit sum <= 9, it is a valid BCD number.
- Step 3: If a 4-bit sum > 9, or if a carry out of 4-bit group generated, Add 6 (0110) to it \rightarrow correction.
- > Example:

BCD Subtraction

- >Step 1: Subtract using rules for binary addition
- >Step 2: If 4-bit difference <= 9, it is a valid BCD number.
- Step 3: If a 4-bit sum > 9, or if a carry out of 4-bit group generated, Add 6 (0110) to it \rightarrow correction.
- > Example:

DR. HAZEM SHEHATA

Gray Code

- ➤ Unweighted & Non-arithmetic code
 - No specific weights assigned to the bit positions!
- ➤ Most important feature:
 - Only 1-bit change from one code word to next in sequence!
- > Has many applications:
 - Whenever error susceptibility increases with number of bit changes between adjacent numbers in a sequence!

Four-bit Gray Code

Decimal Number	Bir	nary I	Numb	oer	Gray Code				
00	0	0	0	0	0	0	0	0	
01	0	0	0	1	0	0	0	1	
02	0	0	1	0	0	0	1	1	
03	0	0	1	1	0	0	1	0	
04	0	1	0	0	0	1	1	0	
05	0	1	0	1	0	1	1	1	
06	0	1	1	0	0	1	0	1	
07	0	1	1	1	0	1	0	0	
08	1	0	0	0	1	1	0	0	
09	1	0	0	1	1	1	0	1	
10	1	0	1	0	1	1	1	1	
11	1	0	1	1	1	1	1	0	
12	1	1	0	0	1	0	1	0	
13	1	1	0	1	1	0	1	1	
14	1	1	1	0	1	0	0	1	
15	1	1	1	1	1	0	0	0	

Conversion: Binary - Gray Code

➤ Method:

- 1. Most significant bit (MSB) in Gray code is same as corresponding MSB in binary.
- 2. Going from left to right, add each adjacent pair of binary code bits to get next Gray code bit. Discard carries.
- Example: Convert 10110₂ to Gray code.
- > Solution:

Conversion: Gray Code Binary

➤ Method:

- 1. Most significant bit in binary code is the same as corresponding bit in the Gray code.
- 2. Add each binary code bit generated to Gray code bit in next adjacent position. Discard carries.
- Example: Convert Gray code 11011 to binary.
- > Solution:

ASCII Code

- >Stands for:
 - American Standard Code for Information Interchange
- Alphanumeric code used in most computers.
- When you enter a letter, a number, or control command on keyboard, corresponding ASCII code goes into computer.
- ➤ ASCII code consists of 7 bits → Represents 128 characters.

Control Characters				Graphic Symbols											
Name	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex	Symbol	Dec	Binary	Hex
NUL	0	0000000	00	space	32	0100000	20	@	64	1000000	40	,	96	1100000	60
SOH	1	0000001	01	!	33	0100001	21	A	65	1000001	41	a	97	1100001	61
STX	2	0000010	02	,,	34	0100010	22	В	66	1000010	42	b	98	1100010	62
ETX	3	0000011	03	#	35	0100011	23	С	67	1000011	43	С	99	1100011	63
EOT	4	0000100	04	\$	36	0100100	24	D	68	1000100	44	d	100	1100100	64
ENQ	5	0000101	05	%	37	0100101	25	Е	69	1000101	45	e	101	1100101	65
ACK	6	0000110	06	&	38	0100110	26	F	70	1000110	46	f	102	1100110	66
BEL	7	0000111	07	,	39	0100111	27	G	71	1000111	47	g	103	1100111	67
BS	8	0001000	08	(40	0101000	28	Н	72	1001000	48	h	104	1101000	68
HT	9	0001001	09)	41	0101001	29	I	73	1001001	49	i	105	1101001	69
LF	10	0001010	0A	*	42	0101010	2A	J	74	1001010	4A	j	106	1101010	6A
VT	11	0001011	0B	+	43	0101011	2B	K	75	1001011	4B	k	107	1101011	6B
FF	12	0001100	0C	,	44	0101100	2C	L	76	1001100	4C	1	108	1101100	6C
CR	13	0001101	0D	_	45	0101101	2D	M	77	1001101	4D	m	109	1101101	6D
SO	14	0001110	0E		46	0101110	2E	N	78	1001110	4E	n	110	1101110	6E
SI	15	0001111	0F	/	47	0101111	2F	О	79	1001111	4F	0	111	1101111	6F
DLE	16	0010000	10	0	48	0110000	30	P	80	1010000	50	р	112	1110000	70
DC1	17	0010001	11	1	49	0110001	31	Q	81	1010001	51	q	113	1110001	71
DC2	18	0010010	12	2	50	0110010	32	R	82	1010010	52	r	114	1110010	72
DC3	19	0010011	13	3	51	0110011	33	S	83	1010011	53	S	115	1110011	73
DC4	20	0010100	14	4	52	0110100	34	T	84	1010100	54	t	116	1110100	74
NAK	21	0010101	15	5	53	0110101	35	U	85	1010101	55	u	117	1110101	75
SYN	22	0010110	16	6	54	0110110	36	V	86	1010110	56	V	118	1110110	76
ETB	23	0010111	17	7	55	0110111	37	W	87	1010111	57	W	119	1110111	77
CAN	24	0011000	18	8	56	0111000	38	X	88	1011000	58	X	120	1111000	78
\mathbf{EM}	25	0011001	19	9	57	0111001	39	Y	89	1011001	59	y	121	1111001	79
SUB	26	0011010	1A	:	58	0111010	3A	Z	90	1011010	5A	Z	122	1111010	7A
ESC	27	0011011	1B	;	59	0111011	3B	[91	1011011	5B	{	123	1111011	7B
FS	28	0011100	1C	<	60	0111100	3C	\	92	1011100	5C	1	124	1111100	7C
GS	29	0011101	1D	=	61	0111101	3D]	93	1011101	5D	}	125	1111101	7D
RS	30	0011110	1E	>	62	0111110	3E	^	94	1011110	5E	~	126	1111110	7E
US	31	0011111	1F	?	63	0111111	3F	_	95	1011111	5F	Del	127	1111111	7F

18

Error Codes

- ➤ Simplest bit-error detection → Parity method.
- Parity method can detect simple transmission errors involving one bit (or an odd number of bits).
- A parity bit is an "extra" bit attached to a group of bits to force the number of 1's to be either even (even parity) or odd (odd parity).

Error Codes

Example: Add an even parity bit to the 7-bit ASCII code for the letter "K". Then illustrate how single-bit transmission errors can be detected.

> Solution:

- ASCII code for "K" = 1001011
- Number of 1's is even \rightarrow parity bit = 0
- Transmitter sends 8-bit: 01001011 (parity & ASCII code f "K")
- Suppose a single-bit error happens to 3rd bit → 01001<u>1</u>11
- Receiver will find an odd number of 1's \rightarrow error detected!!!

Reading Material

- Floyd, Chapter 2:
 - Pages 63 65
 - Pages 82 90
 - Pages 92 93

