Intro to Data Visualization and Statistics in R $$\mathsf{Session}\ \#6$$

Genome Institute of Singapore

6th Nov 2019

Learning objectives for Session 6

Objectives:

A very gentle introduction to statistical modelling and testing.

Learn the following concepts

- 1. Univariate statistics: *t*-test, correlation, ANOVA.
- 2. Linear models

Some popular univariate statistics

Outcome	Independent variable	Example	Parametric test	Non-parametric test
Continuous	2 groups (paired)	Gene expression changes after intervention (same subjects)	one sample or paired t-test	Wilcoxon Signed-rank sum test
	2 groups (independent)	Gene expression [∼] Gender	two sample t-test	Wilcoxon rank sum test / Mann Whitney U test
	> 2 groups	Gene expression [∼] Blood group	ANOVA	Kruskal Wallis
	Continuous	Gene expression [~] Protein marker	Peason correlation	Spearman rho correlation

All of the above can be tested via linear regression model

Outcome	Independent variable	Example	Parametric test
Discrete	2 groups (paired)	Gestational diabetes in pregnancy 1 vs pregnancy 2 (same subjectes)	McNemar's test
	2 groups (independent)	Genotype ~ case/control status	Fisher's Exact test
	> 2 groups	Genotype ~ Blood group	Chi-squared test
	Continuous	Diabetes status ~ BMI	Logistic regression model
			All of the above can be tested via

logistic regression model

We will look at two sample *t*-tests, ANOVA, pearson correlation and linear models today.

Other outcomes: proportions, survival data, ordinal variables etc.

Plenty of resources on how to choose statistical tests

For example:

- https://onishlab.colostate.edu/wpcontent/uploads/2019/07/hypothesis_testing.png
- https://statranalysis.net/2015/07/27/choosing-the-correctstatistical-test/
- https://data-flair.training/blogs/hypothesis-testing-in-r/
- Plus most of the drop down commercial softwares (Stata, Prism, etc)

Flow chart: which test statistic should you use?

Source: https://onishlab.colostate.edu/wp-content/uploads/2019/07/which_test_flowchart.png

Dance of the p-values

P-value definition

P-value is the probability of obtaining a **test statistics** \geq observed statistics assuming the null hypothesis is true.

- 1. The test statistics and distribution depends on the test.
- Significance depends on one-tail (testing superiority only) or two-tail test (testing differences; depicted in picture above).

Test statistics for t-test

For Normal distributed outcome with the following assumptions:

- ► Equal sample sizes (*n* subjects in each group)
- Equal variance in both groups

the *t*-test statistics reduces to:

$$t_{obs} = \frac{m_1 - m_2}{\sqrt{v_1 + v_2}} \times \sqrt{n}$$

where m_i and v_i are the mean and variance of the i^{th} group.

Test statistics for t-test

For Normal distributed outcome with the following assumptions:

- ► Equal sample sizes (*n* subjects in each group)
- ► Equal variance in both groups

the t-test statistics reduces to:

$$t_{obs} = \frac{m_1 - m_2}{\sqrt{v_1 + v_2}} \times \sqrt{n}$$

where m_i and v_i are the mean and variance of the i^{th} group.

Or in English:

$$t_{obs} = rac{ ext{Difference in group means}}{\sqrt{ ext{total variation}}} imes \sqrt{ ext{sample size per group}}$$

Larger fold change, larger sample size and smaller variation corresponds to larger t-statistics (i.e. more significant p-value).

Aside: Power calculation for *t*-test

Re-arrange the equation in previous slide gives us

sample size per group
$$= \frac{\text{total variation}}{(\text{Difference in group means})^2} imes t_{obs}^2$$

Therefore, you will need larger sample size if

Aside: Power calculation for t-test

Re-arrange the equation in previous slide gives us

sample size per group
$$= \frac{\text{total variation}}{(\text{Difference in group means})^2} imes t_{obs}^2$$

Therefore, you will need larger sample size if

- your data is likely to be noisy (↑ total variation)
- ▶ the biological difference is harder to detect (↓ difference)
- ▶ the statistical significance you wish to report is smaller ($\uparrow t_{obs}$ which means $\downarrow p$)

Aside: Power calculation for t-test

Re-arrange the equation in previous slide gives us

sample size per group
$$= \frac{\text{total variation}}{(\text{Difference in group means})^2} imes t_{obs}^2$$

Therefore, you will need larger sample size if

- your data is likely to be noisy (↑ total variation)
- ▶ the biological difference is harder to detect (↓ difference)
- ▶ the statistical significance you wish to report is smaller ($\uparrow t_{obs}$ which means $\downarrow p$)
- 1. Many softwares available to calculate sample size requirements. E.g. G*Power, online calculators.
- 2. Avoid retrospective power calculations.

Height Weight dataset

Height weight | Preparation

- 1. https://github.com/adairama/R_workshop_GIS/
- 2. Click on Session 6
- 3. Download or copy height_weight_Session6_partial.R
- 4. Change path in setwd() and read_excel() lines.
- 5. Run until the skim() command

We will use the weight as the outcome here. Your weight should range between 29.3 - 122.5kg.

Your task 1: Visualize the weight distribution by gender Write your codes below the **"YOUR TASK 1"** section in the script.

Height weight | Summary of weight

Here is one way to calculate the mean and standard deviation (sd) for all 10,000 participants.

count	mean_weight	sd_weight
10000	73.2	14.6

Your task 2: Calculate the mean and sd for males and females separately.

Height weight | Summary of weight by gender

You can use filter(Gender=="Male") to get the summaries and then repeat with filter(Gender=="Female"). However, group_by is much more concise:

Gender	count	mean_weight	sd_weight
Female	5000	61.6	8.6
Male	5000	84.8	9.0

```
61.6 - 84.8 ## Weight difference between female and male ## [1] -23.2
```

Height weight | t-test statistics calculation by hand

Gender	count	mean_weight	sd_weight
Female	5000	61.6	8.6
Male	5000	84.8	9.0

Using the equation earlier:

$$t_{obs} = \frac{m_1 - m_2}{\sqrt{v_1 + v_2}} \times \sqrt{n}$$

we get t_{obs} and the p-value as:

```
stat \leftarrow ((61.6 - 84.8)/sqrt(8.63^2 + 8.97^2)) * sqrt(5000)
stat
## [1] -131.7936
```

2*pnorm(-abs(stat)) # p-value < 1e-325 (gets rounded to 0)

[1] 0

Height weight | *t*-test function (base R approach)

```
t.test(Weight ~ Gender, data=hw)
# Welch Two Sample t-test
#
# data: Weight by Gender
# t = -131.82, df = 9982.8, p-value < 2.2e-16
# alternative hypothesis:
# true difference in means is not equal to 0
#
# 95 percent confidence interval:
# -23.54708 -22.85704
#
# sample estimates:
# mean in group Female mean in group Male
#
              61.61434
                                   84.81640
```

It is a little hard to extract the test statistics, p-values etc from the model above. Plus the weight difference is not available.

Height weight | *t*-test function (tidyverse approach)

We can use tidy() from the broom package:

- 1. If data is not the first argument in a function, you need to include "data=" into the command.
- tidy() works on a whole host of statistical outputs to get structured outputs. See help(tidy).

Height weight | Generalize to linear models

You can generalize the t-test statistics to a linear model.

The estimate for Gender uses females as reference. Thus the estimate (23.2kg), statistics (132) and p-value (0) are the same.

```
Expected( Weight \mid Female ) = 61.6kg
Expected( Weight \mid Male ) = 61.6 + 23.2 = 84.8kg
```

Height weight | Can you publish it?

Can you simply report that the weight differences between a man and woman is 23.2kg?

Height weight | Can you publish it?

Can you simply report that the weight differences between a man and woman is 23.2kg?

No, because height also have a strong contribution to weight.

Other unaccounted factors (e.g. age, ethnicity, bone density) may have further influence on weight.

Height weight | Scatterplot

Your task 3: Plot weight vs height and color code by gender.

Height weight | Scatterplot

Your task 3: Plot weight vs height and color code by gender.

```
ggplot(hw, aes(x=Height, y=Weight, col=Gender)) +
  geom_point(alpha=0.3) +
  geom_smooth(method="lm") +
  labs(x="Height (cm)", y="Weight (kg)") +
  theme_bw()
```


Height weight | Correlation

Code using base R grammar:

```
cor( hw$Height, hw$Weight )
## [1] 0.9247714
```

Code for using tidyverse grammar which is more flexible:

Your task 4: Calculate correlation by gender.

Height weight | Correlation by Gender

Your task 4: Calculate correlation by gender.

Again, group_by() is more concise that filter() here:

Height weight | Weight diff by Gender within a height bin

Your task 5: Calculate the number of males and females who are 167cm to 171cm tall and their respective group average weights.

Height weight | Weight diff by Gender within a height bin

Your task 5: Calculate the number of males and females who are 167cm to 171cm tall and their respective group average weights.

Gender	count	mean_weight
Female	693	69.1
Male	724	78.4

```
78.4 - 69.1 ## Weight diff in this bin
## [1] 9.3
```

Height weight | Weight diff within height quintiles (part 1)

```
q5 <- quantile(hw$Height, seq(0, 1, by=0.2))
q5
## 0% 20% 40% 60% 80% 100%
## 137.922 159.766 165.608 171.196 177.292 200.660
hw <- hw %>%
 mutate(Height_bin = cut(Height, q5, include.lowest=T))
hw %>% tabyl(Height_bin) # roughly equal sized bins
## Height_bin n percent
## [138,160] 2057 0.2057
## (160,166] 2006 0.2006
## (166,171] 1953 0.1953
## (171,177] 2007 0.2007
## (177,201] 1977 0.1977
```

Height weight | Weight diff within height quintiles (part 2)

Let's check the distribution of the gender by height quintiles.

```
hw %>%
  tabyl(Height_bin, Gender) %>%
  adorn_percentages("row") %>%
  adorn_pct_formatting(digits=1) %>%
  adorn_ns("front") %>%
  kable()
```

Height_bin	Female	Male
[138,160]	1958 (95.2%)	99 (4.8%)
(160, 166]	1626 (81.1%)	380 (18.9%)
(166,171]	1010 (51.7%)	943 (48.3%)
(171,177]	353 (17.6%)	1654 (82.4%)
(177,201]	53 (2.7%)	1924 (97.3%)

Height weight | Weight diff within height quintiles (part 3) Calculate the weight difference and run *t*-test in each quintile.

Height_bin	mean_F	mean_M	weight_diff	statistic	p.value
[138,160]	54.4	65.4	-11.0	-20.5	0
(160,166]	62.7	72.4	-9.7	-35.6	0
(166,171]	68.3	78.1	-9.8	-43.5	0
(171,177]	74.4	83.8	-9.3	-33.8	0
(177,201]	80.8	92.5	-11.6	-15.7	0

The do() function is required to fit models per group.

kable(digits=1)

Height weight | Linear model

Your task 6: Add Gender into the linear model and summarize it.

Height weight | Linear model

Your task 6: Add Gender into the linear model and summarize it.

```
lm( Weight ~ Height + Gender, data=hw ) %>%
tidy() %>%
kable(digits=2)
```

term	estimate	std.error	statistic	p.value
(Intercept)	-111.06	1.04	-106.55	0
Height	1.07	0.01	165.98	0
GenderMale	8.79	0.13	69.92	0

We expect males to be 8.79kg heavier than females of same height.

Height weight | Linear model

Your task 6: Add Gender into the linear model and summarize it.

```
lm( Weight ~ Height + Gender, data=hw ) %>%
  tidy() %>%
  kable(digits=2)
```

term	estimate	std.error	statistic	p.value
(Intercept)	-111.06	1.04	-106.55	0
Height	1.07	0.01	165.98	0
${\sf GenderMale}$	8.79	0.13	69.92	0

We expect males to be 8.79kg heavier than females of same height.

```
Expected( Weight | Female ) = -111 + 1.07 \times \text{Height\_cm}

Expected( Weight | Male ) = -111 + 1.07 \times \text{Height\_cm} + 8.79
```

Note: Height is between 137 - 200cm in this population.

Your task 7: What is the expected weight for a 150cm tall man?

Your task 7: What is the expected weight for a 150cm tall man?

We can do this manually:

```
-111 + 1.07*150 + 8.79
## [1] 58.29
```

or using the predict() method in R

```
fit <- lm( Weight ~ Height + Gender, data=hw )
testdf <- data.frame(Gender="Male", Height=150)
testdf
## Gender Height
## 1 Male 150

predict(fit, testdf) ## not exact due to rounding above
## 1
## 57.78882</pre>
```

You can also make predictions on multiple subjects in parallel:

```
x \leftarrow seq(130, 200, by=10)
X
## [1] 130 140 150 160 170 180 190 200
testM <- data.frame(Gender="Male", Height=x)</pre>
testM$exp weight male <- predict(fit, testM)</pre>
testM <- testM %>% select(-Gender)
testF <- data.frame(Gender="Female", Height=x)</pre>
testF$exp_weight_female <- predict(fit, testF)</pre>
testF <- testF %>% select(-Gender)
```

Combining the outputs helps generate the following reference table:

```
full_join(testM, testF) %>%
  kable(digits=1)
```

Height	exp_weight_male	exp_weight_female
130	36.4	27.7
140	47.1	38.3
150	57.8	49.0
160	68.5	59.7
170	79.1	70.3
180	89.8	81.0
190	100.5	91.7
200	111.1	102.4

rm(x, testM, testF, fit, testdf, q5)

Iris | Preparation & correlation

Load the built-in dataset with data(iris)

Your task 8: Calculate the correlation between Sepal Length and Sepal width for the whole dataset (i.e. ignoring Species info) and within each Species. Can you explain what you are finding?

Iris | Preparation & correlation

Load the built-in dataset with data(iris)

Your task 8: Calculate the correlation between Sepal Length and Sepal width for the whole dataset (i.e. ignoring Species info) and within each Species. Can you explain what you are finding?

```
iris %>%
  summarise(cor(Sepal.Length, Sepal.Width))
    cor(Sepal.Length, Sepal.Width)
# 1
                        -0.1175698
iris %>%
  group_by(Species) %>%
  summarise(cor(Sepal.Length, Sepal.Width))
   Species `cor(Sepal.Length, Sepal.Width)`
#
# 1 setosa
                                           0.743
# 2 versicolor
                                           0.526
                                           0.457
# 3 virginica
```

Iris | Scatterplot (part 1)

Your task 9: Plot the Sepal Length vs Sepal Width with and without color for species. In each plot, add geom_smooth(method="lm") in.

Iris | Scatterplot (part 1)

Your task 9: Plot the Sepal Length vs Sepal Width with and without color for species. In each plot, add geom_smooth(method="lm") in.

```
g1 <- ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width)) +
  geom point() +
  geom smooth(method="lm") +
  ggtitle("Correlation of -0.1175698\n\n") +
  theme bw(base size=20)
g2 <- ggplot(iris, aes(x=Sepal.Length, y=Sepal.Width,
                       col=Species)) +
  geom point() +
  geom smooth(method="lm") +
  ggtitle("Correlation by species") +
  theme bw(base size=20) + theme(legend.position="top")
```

Iris | Scatterplot (part 2)

gridExtra::grid.arrange(g1, g2, nrow=1)

Iris | Linear model and ANOVA

Linear model and ANOVA are related. Linear models gives you the estimate of each level of the dependant variable. For example:

ANOVA gives you the contribution of each dependent variable to the model. If a dependent variables is significant, you follow up with a post-hoc t-test to identify which levels are different.

Thank you