TD 4 : Langages Réguliers (Partie 2), Grammaires Non-Contextuelles

9 décembre 2024

Exercice 1

Déterminer pour chacun des langages ci-dessous s'il s'agit d'un langage local :

- 1. $(ab|ac|ad)^*$
- 2. $(ab|da)^*$
- 3. $(ab|da|aa|ca)^*ec$

Exercice 2

Appliquer l'algorithme de Berry-Sethi sur les langages suivants :

- 1. $(a|ba)^*(c(acb|a)^*)$
- $2. (ab|cab|cba)^*$

Exercice 3

Montrer que si L est un langage local alors le langage L' des facteurs des mots de L est local.

Exercice 4

Montrer que les grammaires G_1 et G_2 dans les exemples du cours engendrent bien les langages décrits dans le cours.

Exercice 5

Trouver des grammaires reconnaissant les langages ci-dessous :

- $\{w \in \Sigma^* \mid w \text{ est un palindrome}\}$
- $-\{w \in \Sigma^* \mid w \equiv 1 \ [2]\}$
- $\{a^n b^m \mid n, m \in \mathbb{N}, n \le m\}$
- $-- \{a^i b^j c^k \mid i = j \lor j = k\}$

Exercice 6

On rappelle que le langage de Dyck D des mots bien parenthésés sur l'alphabet $\{(,)\}$ est le langage défini de la façon suivante :

- Le mot vide est bien parenthésé;
- La concaténation de deux mots biens parenthésés est bien parenthésée;

- Si un mot w est bien parenthésé alors (w) est bien parenthésé.
- 1) Montrer, à l'aide du lemme de l'étoile, que le langage des mots bien parenthésés n'est pas régulier.
- 2) Montrer que D est un langage algébrique à l'aide d'une grammaire engendrant le langage.
- 3) Donner deux exemples de mots de D obtenus par dérivation de longueur 4 à partir de Sdans la grammaire G.
- 4) Donner une dérivation permettant d'aboutir au mot (()(())).

Exercice 7

Montrer que la classe des langages algébriques est stable par union, concaténation et étoile.

Exercice 9

On considère la version suivante du Lemme de l'étoile pour les langages algébriques :

Soit L un langage algébrique. Il existe $N \in \mathbb{N}$ tel que, pour tout $t \in L$ avec $|t| \geq N$, il existe $u, v, w, x, y \in \Sigma^*$ tels que :

- $\begin{aligned} &-&|vwx| \leq n \\ &-&vw \neq \varepsilon \end{aligned}$
- Pour tout $i \in \mathbb{N}$, $uv^i w x^i y \in L$
- 1. Soit $L_1 = \{a^n b^n c^n \mid n \in \mathbb{N}\}$. Montrer que L_1 n'est pas un langage algébrique.
- 2. Montrer que la classe des langages algébriques n'est pas stable par intersection ni par passage au complémentaire.

Exercice 10

On considère la grammaire G sur $\Sigma = \{a, b\}$ définie par les règles de production suivantes : $S \to aS \mid Sb \mid a \mid b \mid \varepsilon$

- 1. Montrer que ba n'est sous-mot d'aucun mot de L(G) par induction.
- 2. Donner l'ensemble des mots de L(G).
- 3. Donner une grammaire non-ambiguë G' pour L(G).

Exercice 11

On considère la grammaire G sur $\Sigma = \{a, b\}$ définie par les règles de production suivantes : $S \to aS \mid aSbS \mid \varepsilon$

- 1. Montrer que G est ambiguë.
- 2. Montrer que $L(G) = \{v \in \Sigma^* \mid \text{Pour tout préfixe } u \text{ de } v, |u|_a \ge |u|_b\}.$
- 3. Donner une grammaire non-ambiguë G' reconnaissant L(G).

Exercice 12

(CCINP 2023)

On considère la grammaire algébrique G sur $\Sigma = \{a, b\}$ avec les règles de production $S \to S$ $SaS \mid b$.

- 1. La grammaire est-elle ambiguë? Justifier.
- 2. Déterminer (sans justifier) le langage L engendré par G. Quelle est la plus petite classe de langages à laquelle appartient L?
- 3. Montrer que L = L(G).
- 4. Décrire une grammaire G' qui engendre L de façon non-ambiguë, en justifiant la non-ambiguïté de G'.
- 5. Montrer que tout langage de la même classe que L peut être engendré par une grammaire algébrique non-ambiguë.

Exercice 13

On dit qu'une grammaire $G = (\Sigma, V, R, S)$ est sous forme normale de Chomsky si toute ses règles sont de la forme $S \to \epsilon$, $X \to a$ ou $X \to YZ$ (avec $X, Y, Z \in V$).

Soit G une grammaire n'engendrant pas ϵ . Montrer qu'il existe une grammaire G' sous forme normale de CHomsky telle que L(G) = L(G').