ÁLGEBRA III (Doble grado Informática-Matemáticas)

4. Extensiones Ciclotómicas, Radicales y Cíclicas

4.1. Extensiones ciclotómicas.

Recordar que, si $a \in \mathbb{C}$ es cualquier complejo no nulo, para cualquier natural $n \geq 2$, las raíces complejas del polinomio $x^n - a$, esto es, los números complejos z tales que $z^n = a$, son llamadas las raíces n-ésimas del número a (cuadradas si n=2, cúbicas si n=3, etc.). Un caso particular de especial interés, son las raíces n-ésimas de la unidad, esto es las raíces del polinomio x^n-1 . Para cada entero $n\geq 1$, estas conforman un subgrupo de orden n del grupo multiplicativo de los complejos

$$\mathbb{C}_n = \{ z \in \mathbb{C}^\times \mid z^n = 1 \} \le \mathbb{C}^\times$$

En efecto, si $z, z' \in \mathbb{C}_n$, entonces $(zz')^n = z^n z'^n = 1 \cdot 1 = 1$. Además $(z^{-1})^n = (z^n)^{-1} =$ $1^{-1} = 1$. Así que \mathbb{C}_n es cerrado para productos, inversos, y contiene al 1. Es por tanto un grupo. Podemos ser más explícitos en la descripción de las raíces n-ésimas de la unidad: Con la representación geométrica de los números complejos como puntos del plano \mathbb{R}^2 en mente, si dividimos el círculo de radio 1 en n sectores circulares de igual amplitud, esto es, todos de amplitud $\frac{2\pi}{n}$, y ubicamos el primero de ellos sobre el eje positivo de abscisas se nos determinan los n vértices de un polígono regular de n lados inscrito en la circunferencia $S^1=\{z\in\mathbb{C}\mid |z|=1\},$

que corresponderían justo a los n números complejos $e^{\frac{2k\pi i}{n}}=\cos\frac{2k\pi}{n}+i\sin\frac{2k\pi}{n}$, para $k=1,\ldots,n$. Todos estos listan las n raíces n-ésimas de la unidad, pues $(e^{\frac{2k\pi i}{n}})^n=e^{2k\pi i}=1$ $\cos 2k\pi + i\sin 2k\pi = 1$, así que

$$\mathbb{C}_n = \{e^{\frac{2k\pi i}{n}}, \ 1 \le k \le n\}.$$

Entre esas n diferentes raíces complejas de la unidad hay una especial, que es llamada la raíz n-ésima primitiva de la unidad:

$$z_n = e^{\frac{2\pi i}{n}} = \cos\frac{2\pi}{n} + i \operatorname{sen}\frac{2\pi}{n},$$

que tiene la propiedad de ser un generador del grupo \mathbb{C}_n , ya que $z_n^k = e^{\frac{2k\pi i}{n}}$ y, por tanto, $\mathbb{C}_n = \{1, z_n, z_n^2, \dots, z_n^{n-1}\} = \langle z_n \mid z_n^n = 1 \rangle$ es un grupo cíclico de orden n generado por z_n .

Definición 1. Si $K \leq \mathbb{C}$ es cualquier cuerpo de números, para cada entero $n \geq 1$, el cuerpo extensión $K(z_n)$ es llamado el n-ésimo cuerpo ciclotómico sobre K, o la n-ésimo extension ciclotómica de K. Particularmente nos referimos a $\mathbb{Q}(z_n)$ como al n-ésimo cuerpo ciclotómico.

Los siguientes son los primeros ejemplos de extensiones ciclotómicas,

- $z_1 = 1$, así que $K(z_1) = K$.
- $z_2 = -1$, luego $K(z_2) = K$. $z_3 = \omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}$, por tanto $K(z_3) = K(\omega) = K(i\sqrt{3})$. $z_4 = i$, luego $K(z_4) = K(i)$.

Notemos que $K(z_n)=K(x^n-1)$, el cuerpo de descomposición del polinomio x^n-1 sobre K. Por tanto la extensión ciclotómica $K(z_n)/K$ es una extensión de normal, cuyo grado será el grado del polinomio $Irr(z_n,K)$ que, al ser un divisor de x^n-1 , siempre ser $\leq n$. Intentamos a continuación conocer más información sobre el polinomio $Irr(z_n,K)$ y el grupo de Galois $G(K(z_n)/K)=G(x^n-1/K)$.

Sabemos que, en el grupo \mathbb{C}_n , $or(z_n^k) = \frac{n}{(k,n)}$. En particular, $or(z_n^k) = n$, esto es, z_n^k es un generador de \mathbb{C}_n , si y solo si (k,n) = 1. Entonces,

$$Gen(\mathbb{C}_n) = \{ z \in \mathbb{C}_n \mid or(z) = n \} = \{ z_n^k \mid 1 \le k \le n, \, mcd(k, n) = 1 \}$$

y \mathbb{C}_n tiene exactamente $\varphi(n)$ generadores, donde φ es la función de Euler. Recordar que, si p_1, \ldots, p_r son los diferentes primos positivos que dividen al natural n, digamos que $n = p_1^{e_1} \cdots p_r^{e_r}$, entonces

$$\varphi(n) = p_1^{e_1 - 1}(p_1 - 1) \cdots p_r^{e_r - 1}(p_r - 1) = p_1^{e_1 - 1}p_1\left(1 - \frac{1}{p_1}\right) \cdots p_r^{e_r - 1}p_r\left(1 - \frac{1}{p_r}\right)$$

$$= p_1^{e_1}\left(1 - \frac{1}{p_1}\right) \cdots p_r^{e_1}\left(1 - \frac{1}{p_r}\right) = p_1^{e_1} \cdots p_r^{e_r}\left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right)$$

$$= n\left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_r}\right).$$

Definición 2. Se define el n-ésimo polinomio ciclotómico Φ_n por la fórmula

$$\Phi_n = \prod_{z \in Gen(\mathbb{C}_n)} (x - z) = \prod_{\substack{1 \le k \le n \\ (k, n) = 1}} (x - z_n^k).$$

Esto es, Φ_n es el polinomio mónico de grado $\varphi(n)$ cuya raíces son las raíces n-ésimas de la unidad de orden n. Los siguientes son unos primeros ejemplos

- $Gen(\mathbb{C}_1) = \{1\}, \text{ y } \Phi_1 = x 1.$
- $Gen(\mathbb{C}_2) = \{-1\}, y \Phi_2 = x + 1.$
- $Gen(\mathbb{C}_3) = \{\omega = -\frac{1}{2} + i\frac{\sqrt{3}}{2}, \omega^2 = \overline{\omega}\}, \text{ por tanto}$

$$\Phi_3 = (x - \omega)(x - \overline{\omega}) = x^2 - (\omega + \overline{\omega})x + \omega\overline{\omega} = x^2 + x + 1$$
.

•
$$Gen(\mathbb{C}_4) = \{i, i^3 = -i\}, \forall \Phi_4 = (x-i)(x+i) = x^2 + 1.$$

El siguiente hecho es muy útil para el cálculo recursivo de los polinomios ciclotómicos.

Proposición 3. Para todo natural $n \ge 1$ se verifica que

$$x^n - 1 = \prod_{d|n} \Phi_d.$$

Demostración. Trabajando en el grupo multiplicativo \mathbb{C}^{\times} , tenemos que

$$\mathbb{C}_n = \{ z \in \mathbb{C}^\times \mid z^n = 1 \} = \{ z \in \mathbb{C}^\times \mid or(z) | n \} = \bigcup_{d \mid n} \{ z \in \mathbb{C}^\times \mid or(z) = d \}$$
$$= \bigcup_{d \mid n} Gen(\mathbb{C}_d) ,$$

siendo esa unión disjunta. Entonces,

$$x^n - 1 = \prod_{z \in \mathbb{C}_n} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_d)}} (x - z) = \prod_{\substack{d \mid n \\ z \in \operatorname{Gen}(\mathbb{C}_$$

Los siguientes ejemplos ilustran el uso de la anterior relación para cálculos:

- $x-1=\Phi_1$.
- $x^2 1 = \Phi_1 \Phi_2$, de donde $\Phi_2 = x + 1$.
- $x^3 1 = \Phi_1 \Phi_3$, de donde $\Phi_3 = \frac{x^3 1}{x 1} = x^2 + x + 1$. Si p es un primo, $x^p 1 = \Phi_1 \Phi_p$, de donde

$$\Phi_p = \frac{x^p - 1}{x - 1} = x^{p-1} + x^{p-2} + \dots + x + 1.$$

• $x^6 - 1 = \Phi_1 \Phi_2 \Phi_3 \Phi_6 = (\Phi_1 \Phi_3) \Phi_2 \Phi_6 = (x^3 - 1)(x + 1)\Phi_6$, de donde

$$\Phi_6 = \frac{x^6 - 1}{(x^3 - 1)(x + 1)} = \frac{x^3 + 1}{x + 1} = x^2 - x + 1.$$

El siguiente teorema muestra que los polinomios ciclotómicos tienen sus coeficientes números enteros, y entonces $\Phi_n \in K[x]$ para todo cuerpo de números K, de manera que $Irr(z_n,K)|\Phi_n$ en K[x]. Para su demostración usaremos el siguiente lema:

Lema 4. 1) Sea $g \in \mathbb{Q}[x]$ mónico, entonces $g = \frac{1}{a}g_1$ donde $a \ge 1$ y $g_1 \in \mathbb{Z}[x]$ es primitivo. 2) Sea $f \in \mathbb{Z}[x]$ mónico. Si f = gh con $g, h \in \mathbb{Q}[x]$ mónicos, entonces $g, h \in \mathbb{Z}[x]$.

Demostración. 1) Supongamos $g = \frac{a_0}{b_0} + \dots + \frac{a_{n-1}}{b_{n-1}} x^{n-1} + x^n$. Sea $b = mcd(b_i)$. Claramente entonces $c_i = \frac{ba_i}{b_i} \in \mathbb{Z}$ para todo $i = 0, \dots, n-1$, y $bg = c_0 + \dots + c_{n-1}x^{n-1} + bx^n \in \mathbb{Z}[x]$. Siendo $c = mcd(c_0, \dots, c_{n-1}, b)$ su contenido, será $bg = cg_1$ con $g_1 \in \mathbb{Z}[x]$ primitivo. Puesto que c|b, será b=ac para un cierto $a \ge 1$. Pero entonces

$$g = \frac{1}{b}bg = \frac{1}{b}cg_1 = \frac{1}{ac}cg_1 = \frac{1}{a}g_1.$$

2) Pongamos $g = \frac{1}{a}g_1$ y $h = \frac{1}{b}h_1$, con $a, b \ge 1$ y $g_1, h_1 \in \mathbb{Z}[x]$ primitivos. Entonces $f = \frac{1}{ah}g_1h_1$ y $abf = g_1h_1$. Puesto que f es primitivo (es mónico) y g_1 y h_1 también, por el Lema de Gauss ("El contenido de un producto es el producto de los contenidos"), concluimos que ab = 1 y consecuentemente que a = b = 1.

Teorema 5. * Para todo $n \geq 1$, $\Phi_n \in \mathbb{Z}[x]$

Demostración. Probamos primero que $\Phi_n \in \mathbb{Q}[x]$. Notemos que $\mathbb{C}_n \subseteq \mathbb{Q}(z_n)$. Supongamos cualquier $\sigma \in G(\mathbb{Q}(z_n)/\mathbb{Q})$. Entonces para todo $z \in \mathbb{C}_n$ se verifica que $\sigma(z) \in \mathbb{C}_n$, pues $\sigma(z)^n = \sigma(z^n) = \sigma(1) = 1$. Se sigue que σ restringe definiendo un automorfismo del grupo \mathbb{C}_n , $\sigma : \mathbb{C}_n \cong \mathbb{C}_n$, y entonces también restringe a una permutación $\sigma : Gen(\mathbb{C}_n) \cong Gen(\mathbb{C}_n)$. Notemos que, por construcción, $\Phi_n \in \mathbb{Q}(z_n)[x]$. Si suponemos entonces que $\Phi_n = \sum a_i x^n$ con $a_i \in \mathbb{Q}(z_n)$, de la cadena de igualdades

$$\Phi_n^\sigma = \sum \sigma(a_i) x^i = \prod_{z \in Gen(\mathbb{C}_n)} (x-z)^\sigma = \prod_{z \in Gen(\mathbb{C}_n)} (x-\sigma(z)) = \prod_{z \in Gen(\mathbb{C}_n)} (x-z) = \Phi_n(x) \,,$$

deducimos que $\sigma(a_i)=a_i$ para todo i y todo $\sigma\in G(\mathbb{Q}(z_n)/\mathbb{Q})$. De donde todo coeficiente $a_i\in\mathbb{Q}(z_n)^{G(\mathbb{Q}(z_n)/\mathbb{Q})}=\mathbb{Q}$. Así que $\Phi_n\in\mathbb{Q}[x]$. Finalmente, puesto que $x^n-1=\Phi_n\prod_{d|n,d\neq n}\Phi_d$, el lema anterior nos permite concluir que,

efectivamente, $\Phi_n \in \mathbb{Z}[x]$.

Nuestro objetivo a continuación es probar que $\Phi_n = Irr(z_n, \mathbb{Q})$. Para ello, necesitamos unos resultados auxiliares. Entre ellos, el significado de los términos binomiales

$$\binom{n}{i} = \frac{n!}{i!(n-i)!} = \frac{n(n-1)\cdots(n-i+1)}{i(i-1)\cdots 2\cdot 1}.$$

y que, en cualquier anillo conmutativo, digamos A, se verifica la fórmula binomial

$$(a+b)^n = \sum_{i=0}^n \binom{n}{i} a^i b^{n-i},$$

donde el producto na de enteros $n\geq 0$ por elementos $a\in A$ es el usual: Si n=0, entonces 0a=0; si n>0, entonces $na=\sum_{i=1}^n a$ es la suma reiterada de ese elemento a consigo mismo n veces. En efecto, para n=1 es fácil

$$\binom{1}{0}a^0b^1 + \binom{1}{1}a^1b^0 = b + a = a + b = (a+b)^1.$$

Y, para n > 1, su demostración es inductiva apoyándose en la igualdad

$$\binom{n}{j} + \binom{n}{j-1} = \frac{n!}{j!(n-j)!} + \frac{n!}{(j-1)!(n-j+1)!} = \frac{n!(n-j)!(j-1)!(n-j+1+j)}{j!(n-j)!(j-1)!(n-j+1)!} = \frac{n!(n+1)}{j!(n-j+1)!} = \binom{n+1}{j}.$$

Supuesta la validez para un n, entonces

$$(a+b)^{n+1} = (a+b)(a+b)^n = (a+b)\sum_{i=0}^n \binom{n}{i} a^i b^{n-i} = \sum_{i=0}^n \binom{n}{i} a^{i+1} b^{n-i} + \sum_{i=0}^n \binom{n}{i} a^i b^{n+1-i}$$

$$= \sum_{i=1}^{n+1} \binom{n}{i-1} a^i b^{n+1-i} + \sum_{i=0}^n \binom{n}{i} a^i b^{n+1-i}$$

$$= \sum_{i=1}^{n+1} \binom{n+1}{i} a^i b^{n+1-i} + b^{n+1} = \sum_{i=0}^{n+1} \binom{n+1}{i} a^i b^{n+1-i}.$$

Necesitamos también recordar que, para cada entero $n \geq 2$, tenemos el anillo de clases de congruencia módulo n,

$$\mathbb{Z}_n = \{ [m] \mid m \in \mathbb{Z} \}$$

donde

$$[m] = [m'] \Leftrightarrow m \equiv m' \mod n$$

$$\Leftrightarrow n \mid m - m'$$

$$\Leftrightarrow m - m' \in n\mathbb{Z}$$

$$\Leftrightarrow m \neq m' \text{ dan el mismo resto al dividirlos por } n,$$

con las operaciones ordinarias de suma y producto de clases

$$[m] + [m'] = [m + m'], [m][m'] = [mm'].$$

Este sabemos que es efectivamente un anillo con exactamente n elementos distintos, que se listan como las clases módulo n de los n diferentes restos que se obtienen al dividir todos los enteros enteros entre n; esto es, las clases $[0], [1], \ldots, [n-1]$ que solemos denotar también simplemente por $0, 1, \ldots, n-1$. Así, es usual simplificar la notación y poner

$$\mathbb{Z}_n = \{0, 1, \dots, n-1\}.$$

con las operaciones

 $m + m' = \text{resto de dividir en } \mathbb{Z} \text{ el entero m+m' entre } p$,

mm' = resto de dividir en \mathbb{Z} el entero producto de mm' entre p,

para cuales quiera $0 \le m, m' \le n - 1$.

Haremos uso del epimorfismo de anillos reducción módulo n,

$$\mathbb{Z} \to \mathbb{Z}_n$$
, $m \mapsto \overline{m} = \text{resto de dividir } m \text{ entre } n$,

y del correspondiente inducido,

$$\mathbb{Z}[x] \to \mathbb{Z}_n[x], \quad f = \sum_i m_i x^i \mapsto \overline{f} = \sum_i \overline{m}_i x^i.$$

También haremos uso del grupo multiplicativo \mathbb{Z}_n^{\times} de las unidades (elementos inversibles) del anillo \mathbb{Z}_n . Explícitamente,

$$\mathbb{Z}_n^{\times} = \{k \in \mathbb{Z}_n, \ mcd(k, n) = 1\} = \{k \mid 1 \le k \le n, \ mcd(k, n) = 1\}.$$

En efecto, supongamos que $k \in \mathbb{Z}_n$ con mcd(k, n) = 1. por el Teorema de Bezout, existirán $u, v \in \mathbb{Z}$ tal que 1 = uk + vn. Pero entonces

$$1 = \overline{1} = \overline{uk} + \overline{vn} = \overline{uk} + 0 = \overline{u}\overline{k} = \overline{u}k$$

y concluimos que k es invertible en \mathbb{Z}_n , con $k^{-1} = \overline{u}$. Y recíprocamente, supongamos que $k \in \mathbb{Z}_n^{\times}$. Será ku = 1 (en \mathbb{Z}_n) para un cierto $u \in \mathbb{Z}_n$, lo que significa que 1 es el resto de dividir en \mathbb{Z} el producto de los enteros k y u; esto es, si q es el correspondiente cociente, será 1 = ku - qn. Y esta última igualdad implica que mcd(k, n) = 1 (pues si d > 1 fuese un divisor común, digamos que k = dk' y n = un', entonces 1 = d(k'u - qn') lo que en \mathbb{Z} es imposible).

Para el siguiente lema auxiliar, supondremos que p > 0 es cualquier primo positivo de \mathbb{Z} . Notemos que, en este caso, $\mathbb{Z}_p^{\times} = \{1, \dots, p-1\}$ y \mathbb{Z}_p es un cuerpo.

Lema 6. Sea $\mathbb{Z}[x] \to \mathbb{Z}_p[x]$, $f = \sum_i m_i x^i \mapsto \overline{f} = \sum_i \overline{m}_i x^i$, el epimorfismo de reducción módulo un primo p.

(i) Para cualesquiera $f, g \in \mathbb{Z}[x]$, se verifica que

$$(\overline{f} + \overline{g})^p = \overline{f}^p + \overline{g}^p.$$

- (ii) Para cualquier $m \in \mathbb{Z}$, $\overline{m}^p = \overline{m}$.
- (iii) Para cualesquiera $m_1, \ldots, m_r \in \mathbb{Z}$ y $f_1, \ldots, f_r \in \mathbb{Z}[x]$, se verifica que

$$(\overline{m}_1\overline{f}_1 + \dots + \overline{m}_r\overline{f}_r)^p = \overline{m}_1\overline{f}_1^p + \dots + \overline{m}_r\overline{f}_r^p$$

(iv) Para cualquier $g \in \mathbb{Z}[x]$, se verifica que

$$\overline{q}^p = \overline{q}(x^p),$$

donde $\overline{g}(x^p)$ es el polinomio resultante de sustituir x en \overline{g} por x^p .

Demostración. (i):

$$(\overline{f} + \overline{g})^p = \overline{(f+g)^p} = \sum_{i=0}^p \binom{p}{i} f^i g^{p-i} = \sum_{i=0}^p \overline{\binom{p}{i}} \overline{f}^i \overline{g}^{p-i} = \overline{f}^p + \overline{g}^p.$$

- (ii) Este es el PEQUEÑO TEOREMA DE FERMAT: El grupo \mathbb{Z}_p^{\times} es de orden p-1, por tanto, si $\overline{m} \neq 0$, se tendrá que $\overline{m}^{p-1} = 1$. Luego $\overline{m}^p = \overline{m}$ sea m cualquiera.
 - (iii) Es consecuencia de (i) y (ii), y se argumenta por una simple inducción en r.

(iv) Supongamos $g = \sum_{i=0}^{n} m_i x^i$. Entonces

$$\overline{g}^p = (\sum_i \overline{m}_i x^i)^p = (\sum_i \overline{m}_i \overline{x^i})^p = \sum_i \overline{m}_i \overline{x^{ip}} = \sum_i \overline{m}_i (x^p)^i = \overline{g}(x^p). \quad \Box$$

Con todo lo anterior, podemos ya abordar el siguiente

Teorema 7. Para todo natural $n \ge 1$ el polinomio Φ_n es irreducible en $\mathbb{Q}[x]$. Entonces,

$$\Phi_n = Irr(z_n, \mathbb{O}).$$

Demostración. Pongamos $f = Irr(z_n, \mathbb{Q})$. Probaremos a continuación que, para toda raíz z de f y cualquier primo p con $p \nmid n$ se tiene que z^p es también una raíz de f. Un uso reiterado de esta propiedad nos conduce a que $z_n^{p_1^{m_1} \dots p_r^{m_r}}$ es una raíz de f para todos los primos $p_1, \dots p_r$ que no dividan a n; esto es, a que z_n^k es una raíz de f siempre que (k, n) = 1. Pero esto implica que f tiene a todo elemento del conjunto $Gen(\mathbb{C}_n)$ como una de sus raíces, lo que implica que $gr(f) \geq \varphi(n)$; puesto que $f \mid \Phi_n$ y ambos son mónicos, concluimos que $f = \Phi_n$. Así que, $\Phi_n = Irr(z_n, \mathbb{Q})$.

Supongamos entonces que f(z) = 0 y que p es un primo con $p \nmid n$.

Notemos que ha de ser $x^n-1=fg$ para un cierto polinomio $g\in\mathbb{Q}[x]$, y el Lema 4 nos asegura que $f,g\in\mathbb{Z}[x]$. Como $z^p\in\mathbb{C}_n$, $0=(z^p)^n-1=f(z^p)g(z^p)$ y, por tanto, $f(z^p)=0$ o $g(z^p)=0$. La demostración se reduce a ver que no es posible que $g(z^p)=0$: Supongamos, por contrario, que $g(z^p)=0$. Consideremos el polinomio $g(x^p)$, que tiene entonces a z como raíz. Como $f=Irr(z,\mathbb{Q})$, ha de ser $f|g(x^p)$ (necesariamente en $\mathbb{Z}[x]$, de nuevo por el Lema 4). Considerando ahora el epimorfismo de reducción módulo $p, \mathbb{Z}[x] \to \mathbb{Z}_p[x],$ $h(x)\mapsto \overline{h}(x)$, tenemos que $\overline{f}|\overline{g}(x^p)$ en el anillo $\mathbb{Z}_p[x]$. Puesto que $\overline{g}(x^p)=\overline{g}^p$, concluimos que $\overline{f}|\overline{g}^p$ en el anillo $\mathbb{Z}_p[x]$, lo que particularmente implica que toda raíz del polinomio \overline{f} (en cualquier cuerpo extensión de \mathbb{Z}_p) es también una raíz del polinomio \overline{g} . Pero, dada la igualdad $x^n-1=\overline{f}(x)\overline{g}(x)$ en $\mathbb{Z}_p[x]$, esto nos lleva a que el polinomio $x^n-1\in\mathbb{Z}_p[x]$ tiene raíces múltiples. Pero esto es contradictorio (ver Proposición 1.1 en Tema 1), ya que el derivado de este polinomio es

$$nx^{n-1} = x^{n-1} + \cdots + x^{n-1} = (1 + \cdots + 1)x^{n-1} = \overline{n}x^{n-1},$$

que es asociado de x^{n-1} (recordemos que $p \nmid n$ y por tanto $\overline{n} \neq 0$), y claramente primo relativo con $x^n - 1$.

Nos centramos ahora en el grupo de Galois de una extensión ciclotómica.

Teorema 8. * Para cualquier cuerpo de números K, hay un monomorfismo de grupos

$$G(K(z_n)/K) \to \mathbb{Z}_n^{\times}, \quad \sigma \mapsto k \text{ si } \sigma(z_n) = z_n^k.$$

En particular, $G(\mathbb{Q}(z_n)/\mathbb{Q}) \cong \mathbb{Z}_n^{\times}$.

DEMOSTRACIÓN. Sea $\sigma \in G(K(z_n)/K)$. Puesto que z_n es raíz de Φ_n que es un polinomio de $\mathbb{Q}[x]$ (también entonces $\Phi \in K[x]$, pues $\mathbb{Q} \leq K$) y por tanto $\Phi_n^{\sigma} = \Phi_n$, necesariamente $\sigma(z_n)$ será otra raíz de Φ_n (ver Lema 3 en Tema 3), esto es $\sigma(z_n) = z_n^k$ para un cierto $k \in \mathbb{Z}_n^{\times}$. Podemos definir así la aplicación

$$f: G(K(z_n)/K) \to \mathbb{Z}_n^{\times}, \quad \sigma \mapsto f(\sigma) = k \text{ si } \sigma(z_n) = z_n^k.$$

Esta aplicación es inyectiva, pues cada σ está totalmente determinada por quien sea la imagen del generador $\sigma(z_n)$. Y es efectivamente un monomorfismo de grupos: Sean $\sigma, \tau \in$

 $G(K(z_n)/K)$ con $f(\sigma) = k$ y $f(\tau) = j$. Supongamos que j k = q n + r, con $0 \le r \le n - 1$. entonces $f(\sigma)f(\tau) = r$, y como

$$\sigma \tau(z_n) = \sigma(z_n^j) = \sigma(z_n^j)^j = (z_n^k)^j = z_n^{kj} = z_n^{qn+r} = (z_n^n)^q z_n^r = z_n^r$$

concluimos que $f(\sigma \tau) = r = f(\sigma)f(\tau)$ en el anillo \mathbb{Z}_n .

En el caso particular $K = \mathbb{Q}$, el resultado se sigue dado que ambos grupos $G(\mathbb{Q}(z_n)/K)$ y \mathbb{Z}_n^{\times} son del mismo orden, $\varphi(n)$.

Corolario 9. Toda extensión ciclotómica tiene grupo de Galois abeliano.

Ejemplo 10. Sea z₈ la raíz octava primitiva de la unidad.

- (1) Describir los complejos z_8^k , $1 \le k \le 8$, en la forma a+bi y representarlos geométricamente como puntos en el plano Euclídeo.
- (2) Calcular Φ_8 .
- (3) Describir el grupo $G(\mathbb{Q}(z_8)/\mathbb{Q})$ y probar que es isomorfo al grupo de Klein $K = \langle u, v \mid u^2 = 1, v^2 = 1, uv = vu \rangle \cong \mathbb{C}_2 \times \mathbb{C}_2$.
- (4) Describir su retículo de subgrupos de $G(\mathbb{Q}(z_8)/\mathbb{Q})$.
- (5) Describir el retículo de subcuerpos de $\mathbb{Q}(z_8)$.

Solución: (1) Puesto que $z_8 = cos(\pi/4) + i sen(\pi/4)$, tenemos que

$$\begin{cases} z_8 = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, & z_8^2 = i, \quad z_8^3 = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}, \quad z_8^4 = -1, \\ z_8^5 = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}, & z_8^6 = -i, \quad z_8^7 = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}, \quad z_8^8 = 1. \end{cases}$$

Su representación geométrica en el plano consiste de los 8 vértices del octógono inscrito en la circunferencia S^1

(2) Puesto que $x^8-1=\Phi_1\Phi_2\Phi_4\Phi_8$ y $\Phi_1\Phi_2\Phi_4=x^4-1$, concluimos que

$$\Phi_8 = \frac{x^8 - 1}{x^4 - 1} = x^4 + 1.$$

(3) Conocemos que que el grupo de Galois $G(\mathbb{Q}(z_8)/\mathbb{Q})$ es isomorfo al grupo de las unidades del anillo de restos módulo 8, $\mathbb{Z}_8^\times = \{1,3,5,7\}$. Analizando este grupo, donde $j \cdot k = \overline{j\,k}$ (= resto de dividir el producto de j y k en \mathbb{Z} entre 8), vemos que es un grupo de orden 4 tipo Klein, pues es abeliano y todos sus elementos no triviales son de orden 2: $3^2 = 1, 5^2 = 1, 7^2 = 1$. Entonces

$$G = \{ \sigma_j \mid : \ \sigma_j(z_8) = z_8^j, \ j = 1, 3, 5, 7 \},$$

con multiplicación $\sigma_j \sigma_k = \sigma_{\overline{j \cdot k}}$. Por el Teorema de Dyck (ya que $\sigma_3^2 = id = \sigma_5^2$ y $\sigma_3 \sigma_5 = \sigma_5 \sigma_3$) existe un homomorfismo $\phi : K \to G$ tal que $\phi(u) = \sigma_3$ y $\phi(v) = \sigma_5$. Su imagen también contiene a $\sigma_7 = \sigma_3 \sigma_5 = \phi(uv)$ y, obviamente, a $\sigma_1 = id$, y es por tanto un epimorfismo. Puesto que K y G tiene ambos cuatro elementos, $\phi : K \cong G$ es un isomorfismo.

(4) El grupo de Galois tiene entonces tres subgrupos propios, todos cíclicos de orden 2: $\langle \sigma_3 \rangle$, $\langle \sigma_5 \rangle$ y $\langle \sigma_7 \rangle$. Y el retículo de subgrupos será de la forma

(5) Por el Teorema Fundamental de la Teoría de Galois, existen exactamente tres cuerpos intermedios, que serán los subcuerpos fijos correspondientes a los tres subgrupos anteriores. Para determinar el subcuerpo fijo bajo σ_3 , discutamos la ecuación $\sigma_3(\alpha) = \alpha$, con $\alpha =$ $a_0 + a_1 z_8 + a_2 z_8^2 + a_3 z_8^3$, donde los $a_j \in \mathbb{Q}$. Como $\sigma_3(\alpha) = a_0 + a_1 z_8^3 + a_2 z_8^6 + a_3 z_8^9$, si tenemos en cuenta que $z_8^8 = 1$ y que $z_8^4 = -1$, resulta que $\sigma_3(\alpha) = \alpha$ si y solo si

$$a_0 + a_1 z_8^3 - a_2 z_8^2 + a_3 z_8 = a_0 + a_1 z_8 + a_2 z_8^2 + a_3 z_8^3.$$

Lo que se verifica si y solo si $a_1 = a_3$ y $a_2 = 0$. Por tanto

$$\mathbb{Q}(z_8)^{\sigma_3} = \{a + b(z + z^3), a, b \in \mathbb{Q}\}.$$

Ahora,como
$$z+z^3=(\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})+(-\frac{\sqrt{2}}{2}+i\frac{\sqrt{2}}{2})=i\sqrt{2},$$
 concluimos que
$$\mathbb{Q}(z_8)^{\sigma_3}=\mathbb{Q}(i\sqrt{2})\,.$$

Procediendo del mismo modo, calculamos los otros dos subcuerpos fijos y concluimos el retículo de subcuerpos es

4.2. Extensiones radicales y cíclicas.

Recordemos que, si $0 \neq a = re^{i\theta} = r(\cos\theta + i \sin\theta)$ es cualquier complejo no nulo expresado en su forma polar, entonces el complejo $\sqrt[n]{r} e^{i\frac{\theta}{n}}$ es una particular raíz n-ésima de a a la que denotaremos por $\sqrt[n]{a}$. Esto es,

$$\sqrt[n]{a} = \sqrt[n]{r} e^{i\frac{\theta}{n}} = \sqrt[n]{r} \left(\cos\frac{\theta}{n} + i \operatorname{sen}\frac{\theta}{n}\right).$$

Y también que el conjunto de las n diferentes n raíces n-ésimas de a (es decir, raíces complejas de $x^n - a$) es

$$\{\sqrt[n]{a}, \sqrt[n]{a} z_n, \sqrt[n]{a} z_n^2, \dots, \sqrt[n]{a} z_n^{n-1}\},$$

 $\{\sqrt[n]{a}, \sqrt[n]{a}\,z_n, \sqrt[n]{a}\,z_n^2, \ldots, \sqrt[n]{a}\,z_n^{n-1}\},$ donde $\sqrt[n]{a}\,z_n^k = \sqrt[n]{r}\,e^{i\frac{\theta+2k\pi}{n}}$ para cada $k=1,\ldots,n.$

Por una extensión radical de un cuerpo de números $K \leq \mathbb{C}$ se entiende una extensión simple de este cuerpo, que es generada por una raíz n-ésima, para algún $n \geq 1$, de algún número $a \in K$. Dicho de otra forma, una extensión radical de K es un cuerpo de la forma $K(\alpha)$, donde $\alpha^n = a \in K$ para algún $n \ge 1$. Alternativamente, también podemos decir que una extensión radical de un cuerpo de números K es un cuerpo de números de la forma $K(\sqrt[n]{a}z_n^k)$ para algún $a \in K$, algún $n \ge 1$ y algún k con $1 \le k \le n$. Por ejemplo, las extensiones ciclotómicas son extensiones radicales.

Las extensiones radicales están muy relacionadas con las llamadas **extensiones cíclicas**, esto es, extensiones normales E/K cuyo grupo de Galois G(E/K) es cíclico. Para establecer esta relación, haremos uso del siguiente resultado conocido como el Lema de independencia de Dedekind.

Lema 11 (Dedekind). Sean $\sigma_1, \ldots, \sigma_n : E \to \mathbb{C}$ son diferentes inmersiones de un cuerpo de números E. Si $a_1, \ldots, a_n \in \mathbb{C}$ son tales que $\sum_{i=1}^n a_i \sigma_i(\alpha) = 0$ para todo $\alpha \in E$, entonces $a_1 = \cdots = a_n = 0$.

DEMOSTRACIÓN. Procedemos por inducción en n. Si n=1, tenemos la igualdad $0=a_1\sigma_1(1)=a_1$ que prueba el lema. Supongamos entonces n>1 y que el lema es cierto para el caso de n-1 inmersiones complejas E. Si $a_1=0$, el resultado se deduce de la hipótesis de inducción. Veamos que la alternativa no se puede dar, así que supongamos que $a_1\neq 0$.

Poniendo $b_i = -a_i a_1^{-1}$, tendremos la igualdad

$$\sigma_1(\alpha) = \sum_{j=2}^n b_j \sigma_j(\alpha) = b_2 \sigma_2(\alpha) + \dots + b_n \sigma_n(\alpha), \quad \text{para todo } \alpha \in E.$$

Siendo $\alpha, \beta \in E$ cualesquiera dos elementos, puesto que $\sigma_j(\alpha\beta) = \sigma_j(\alpha)\sigma_j(\beta)$, tenemos por un lado la igualdad

$$\sigma_1(\alpha\beta) = \sum_{j=2}^n b_j \sigma_j(\alpha) \sigma_j(\beta) = b_2 \sigma_2(\alpha) \sigma_2(\beta) + \dots + b_n \sigma_n(\alpha) \sigma_n(\beta),$$

y por otro lado, puesto que $\sigma_1(\alpha\beta) = \sigma_1(\alpha)\sigma_1(\beta)$, tenemos la igualdad

$$\sigma_1(\alpha\beta) = \sum_{j=2}^n b_j \sigma_j(\alpha) \sigma_1(\beta) = b_2 \sigma_2(\alpha) \sigma_1(\beta) + \dots + b_n \sigma_n(\alpha) \sigma_1(\beta).$$

Restando ambas expresiones, obtenemos que para todo $\alpha,\beta\in E$ se da la igualdad

$$0 = \sum_{j=2}^{n} b_j (\sigma_j(\beta) - \sigma_1(\beta)) \sigma_j(\alpha) = b_2 (\sigma_2(\beta) - \sigma_1(\beta)) \sigma_2(\alpha) + \dots + b_n (\sigma_n(\beta) - \sigma_1(\beta)) \sigma_n(\alpha).$$

Como es para todo $\alpha \in E$, aplicando la hipótesis de inducción, concluimos que ha de ser $b_j(\sigma_j(\beta) - \sigma_1(\beta)) = 0$, y esto para cualquier $\beta \in E$. Pero, como las inmersiones son diferentes, para cada $j = 2, \dots, n$ es posible encontrar un $\beta \in E$ tal que $\sigma_j(\beta) \neq \sigma_1(\beta)$ y concluimos que ha de ser $b_j = 0$ para todo $j = 2, \dots, n$. Esto nos lleva a que $\sigma_1(\alpha) = 0$ para todo $\alpha \in E$, lo que imposible ya que $\sigma_1(1) = 1$.

El siguiente Teorema de Lagrange muestra que, en presencia de adecuadas raíces de la unidad en el cuerpo base, una extensión es radical si y solo si es cíclica.

Teorema 12. * Sea E/K una extensión finita de cuerpos de números, donde $\mathbb{C}_n \subseteq K$ ($\sim z_n \in K$). Son equivalentes:

- (1) E es una extensión radical de K generada por una raíz n-ésima de un elemento de K.
- (2) E/K es una extensión cíclica y de grado un divisor de n.

DEMOSTRACIÓN. (1) \Rightarrow (2): Por hipótesis $E = K(\sqrt[n]{a}z)$, para algún $a \in K$ y algún $z \in \mathbb{C}_n$. Como $z \in K$, resulta que $E = K(\sqrt[n]{a})$. Además, como el cuerpo de descomposición del polinomio $x^n - a$ sobre K es $K(\{\sqrt[n]{a}z, z \in \mathbb{C}_n\}) = K(\sqrt[n]{a}) = E$, ya que $\mathbb{C}_n \subseteq K$, la extensión E/K es normal.

Ahora, cada $\sigma \in G(E/K)$ está determinado por quien sea $\sigma(\sqrt[n]{a})$, que sabemos ha de ser otra raíz del polinomio $(x^n - a)^{\sigma} = x^n - a$. Así que que ha de ser $\sigma(\sqrt[n]{a}) = \sqrt[n]{a}z$ para algún $z \in \mathbb{C}_n$. Tenemos entonces una aplicación inyectiva

$$f: G(E/K) \to \mathbb{C}_n, \quad \sigma \mapsto f(\sigma) = z \text{ si } \sigma(\sqrt[n]{a}) = \sqrt[n]{a} z.$$

Esta aplicación es realmente un monomorfismo de grupos, pues si $\sigma' \in G(E/K)$ es tal que $\sigma'(\sqrt[n]{a}) = \sqrt[n]{a}z'$, entonces

$$\sigma\sigma'(\sqrt[n]{a}) = \sigma(\sqrt[n]{a}z') = \sigma(\sqrt[n]{a})\sigma'(z') = \sqrt[n]{a}\,zz'\,,$$

de manera que $f(\sigma\sigma') = zz' = f(\sigma)f\sigma'$). El grupo G(E/K) es entonces isomorfo a un subgrupo del grupo cíclico \mathbb{C}_n y por tanto también cíclico y de orden un divisor de $n = |\mathbb{C}_n|$.

 $(2)\Rightarrow (1)$: Supongamos que E/K es normal, con [E:K]=d, donde $d\mid n,$ y que G(E/K) es un grupo cíclico generado por σ . Notemos que la hipótesis de que $\mathbb{C}_n\subseteq K$ implica que $\mathbb{C}_d\subseteq K$. De hecho, si n=dd', entonces $z_n^{d'}=e^{i\frac{2\pi d'}{dd'}}=e^{i\frac{2\pi}{d}}=z_d$ y $z_d\in K$. Para cada $x\in E$, formemos el elemento de E, llamado su **resolvente de Lagrange**,

$$\alpha_x = x + \sigma(x)z_d^{d-1} + \sigma^2(x)z_d^{d-2} + \dots + \sigma^{d-1}(x)z_d$$
.

Por el Lema de independencia de Dedekind, ha de ser $\alpha_x \neq 0$ para algún $x \in E$. Fijemos un tal x y sea $\alpha = \alpha_x$. Observamos entonces que

$$\begin{split} \sigma(\alpha) &= \sigma(x) + \sigma^2(x) z_d^{d-1} + \sigma^3(x) z_d^{d-2} + \dots + \sigma^{d-1}(x) z_d^2 + \sigma^d(x) z_d \\ &= \sigma(x) z_d^d + \sigma^2(x) z_d^{d-1} + \sigma^3(x) z_d^{d-2} + \dots + \sigma^{d-1}(x) z_d^2 + x z_d \\ &= z_d \Big(x + \sigma(x) z_d^{d-1} + \sigma^2(x) z_d^{d-2} + \dots + \sigma^{d-1}(x) z_d \Big) \\ &= \alpha z_d. \end{split}$$

Así $0 \neq \alpha \in E$ y $\sigma(\alpha) = z_d \alpha$.

Vemos entonces, recursivamente, que $\sigma^k(\alpha) = z_d^k \alpha$, lo que nos lleva a que $\sigma^k(\alpha) \neq \alpha$, para $k = 1, \ldots, d-1$. Pero entonces $G(E/K(\alpha)) = \{id\} = G(E/E)$ y concluimos por el Teorema Fundamental de la Teoría de Galois, concluimos que $E = K(\alpha)$.

Vemos finalmente que $\sigma(\alpha^n) = \sigma(\alpha)^n = z_d^n \alpha^n = \alpha^n$, ya que $z_d^n = 1$ al ser d un divisor de n. De manera que $\alpha^n \in E^{G(E/K)} = K$, y concluimos que, efectivamente, la extensión E/K es radical y está generada por una raíz n-ésima de un elemento de K.