Práctica 1: Control de multirotores

Ejercicio1: Controlador de pitch básico.

Valores controlador PID

P = 0.047

I = 0.0028

D = 0.018

N = 1143

En rojo la respuesta con ly 0.018

En azul la salida con el error del 20% 0.0216

En rojo la respuesta sin saturación

En azul la respuesta con saturación +- 0.75

En rojo la salida sin error en la medida

En azul con un error en la medida de 0.5 grados

Ejercicio 2: Controlador anidado de pitch + pitch rate

En azul la respuesta con ly 0.018

En rojo la salida con el error del 20% 0.0216

En azul la referencia sin saturación a la entrada

En azul la referencia sin error en la medida

En rojo la referencia con un error en la medida de desviación tipica 0.5 grados

Ejercicio 4: Control de altitud.

• Error 10% en la masa.

En azul con la masa normal, en rojo con una masa superior. Tarda más tiempo en llegar a la referencia.

Ejercicio 5: Modelo completo del quadrotor.

Control de pitch:

Queremos que se mantenga a unos 60º

Control Jaw:

Control de Altitud:

En este caso hemos tenido problemas ya que no llegaba al punto de referencia.

Sale un pico de unos 5*10 elevado a 36, y no sabemos porque no sale bien, después de hacer muchos cambios.