DEMORGAN'S LAWS AND HEXAGONAL SYMMETRY

JASON MEDCOFF

1. Demorgan's Laws

Claim 1. For any two sets A and B, $(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$.

Proof. Let $x \in (A \cup B)^{\complement}$. Then $x \notin A \cup B$. It must be the case that $x \notin A$ and $x \notin B$. Thus, $x \in A^{\complement}$ and $x \in B^{\complement}$, so $x \in A^{\complement} \cap B^{\complement}$. This means that $\forall x \in (A \cup B)^{\complement}$, $x \in A^{\complement} \cap B^{\complement}$. By the definition of set inclusion, $(A \cup B)^{\complement} \subset A^{\complement} \cap B^{\complement}$.

Let $y \in A^{\complement} \cap B^{\complement}$. Then $y \in A^{\complement}$ and $y \in B^{\complement}$. So $y \notin A$ and $y \notin B$. Therefore, $y \notin A \cup B$, so it must be that $y \in (A \cup B)^{\complement}$. Similar to above, it follows that $A^{\complement} \cap B^{\complement} \subset (A \cup B)^{\complement}$.

By definition of set equality, $(A \cup B)^{\complement} = A^{\complement} \cap B^{\complement}$.

Claim 2. For any two sets A and B, $(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$.

Proof. Let $x \in (A \cap B)^{\complement}$. Then $x \notin A \cap B$. So $x \notin A$ or $x \notin B$. Therefore $x \in A^{\complement}$ or $x \in B^{\complement}$. Thus, $x \in A^{\complement} \cup B^{\complement}$. By the definition of set inclusion, $(A \cap B)^{\complement} \subset A^{\complement} \cup B^{\complement}$.

Let $y \in A^{\complement} \cup B^{\complement}$. It follows that $y \in A^{\complement}$ or $y \in B^{\complement}$. Then $y \notin A$ or $y \notin B$. So $y \notin A \cap B$, therefore $y \in (A \cap B)^{\complement}$. Similar to above, we find that $A^{\complement} \cup B^{\complement} \subset (A \cap B)^{\complement}$.

By definition of set equality, $(A \cap B)^{\complement} = A^{\complement} \cup B^{\complement}$.

2. The Regular Hexagon

A regular hexagon is a six sided convex polygon such that all interior angles are equal in measure and all sides have the same length. Consider a regular hexagon inscribed in a circle with center O and radius r. Label the vertices of the hexagon 1, 2, 3, 4, 5, and 6.

Claim 3. The hexagon has side length r.

<u>Proof.</u> Consider the triangle O12. We know this is an isosceles triangle because $\overline{O1}$ and $\overline{O2}$ are both radii of the circle. Since each interior angle of the regular hexagon is 120 degrees, we know $\angle O12 = \angle O21 = 60^{\circ}$. Therefore, because the sum of the interior angles of a triangle is 180 degrees, $\angle 102 = 180 - 2(60) = 60$. Thus, O12 is an equilateral triangle, and $\overline{O1} = \overline{O2} = \overline{12}$. But $\overline{12}$ is the side of the hexagon, and $\overline{O1}$ is a radius r. So, the hexagon has side length r.

The regular hexagon has twelve symmetries. Six are rotational, and the remaining six are reflectional. Let the pre-image be defined as the polygon before it is transformed, and the image is the polygon after it is transformed. With each transformation, a vertex will be mapped to the position of another. Using this notation we can write the reflectional symmetries.

pre-image	image	pre-image	image	pre-image	image
1	2	1	3	1	4
2	3	2	4	2	5
3	4	3	5	3	6
4	5	4	6	4	1
5	6	5	1	5	2
6	1	6	2	6	3

pre-image	image	pre-image	image	pre-image	image
1	5	1	6	1	1
2	6	2	1	2	2
3	1	3	2	3	3
4	2	4	3	4	4
5	3	5	4	5	5
6	4	6	5	6	6

An observation here is that every rotation shown is a multiple of 60 degrees, with the 360 degree rotation being the identity of the transformation.

In a similar way, the reflectional symmetries can be shown.

pre-image	image	pre-image	image	pre-image	image
1	6	1	5	1	4
2	5	2	4	2	3
3	4	3	3	3	2
4	3	4	2	4	1
5	2	5	1	5	6
6	1	6	6	6	5

pre-image	image	pre-image	image	pre-image	image
1	3	1	2	1	1
2	2	2	1	2	6
3	1	3	6	3	5
4	6	4	5	4	4
5	5	5	4	5	3
6	4	6	3	6	2

These symmetries are obtained by first reflecting the hexagon, then rotating it as above.