Άπληστοι Αλγόριθμοι

Δημήτρης Φωτάκης

Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών

Εθνικό Μετσόβιο Πολυτεχνείο

Άπληστοι Αλγόριθμοι

- ... για προβλήματα βελτιστοποίησης:
 - Λειτουργούν σε βήματα.
 - Κάθε βήμα κάνει μια αμετάκλητη επιλογή για λύση.
 - Άπληστη επιλογή: αυτό που φαίνεται καλύτερο με βάση τρέχουσα κατάσταση και κάποιο (απλό) κριτήριο.
 - Ίδια στρατηγική στο υποπρόβλημα που προκύπτει.
- Πλεονεκτήματα:
 - Γρήγοροι, απλοί, και «φυσιολογικοί» αλγόριθμοι.
 - Εφαρμόζεται (επιτυχώς) σε πολλά και σημαντικά προβλήματα.
- Μειονεκτήματα:
 - Βέλτιστη λύση μόνο υπό προϋποθέσεις!
- Βέλτιστη λύση: απόδειξη ορθότητας (συν. επαγωγή).

Άπληστη Στρατηγική

- Ταξινόμηση συνιστωσών με βάση κάποιο απλό κριτήριο.
- (Αμετάκλητη) επιλογή καθορίζει αν «καλύτερη» συνιστώσα θα συμπεριληφθεί στη λύση.
 - Επιλογή με κάποιον απλό κανόνα.
- Ίδια στρατηγική σε υποπρόβλημα που προκύπτει.
 - Μη-προσαρμοστικός: ίδια ταξινόμηση σε όλα τα βήματα.
 - **Προσαρμοστικός**: αλλάζει ταξινόμηση σε κάθε βήμα.
- Χρόνος εκτέλεσης συνήθως καθορίζεται από επιλογή «καλύτερης» συνιστώσας σε κάθε βήμα.

Επιλογή Δραστηριοτήτων

- \square *η* δραστηριότητες: αρχή και τέλος $[s_i, f_i): f_i > s_i \geq 0$ (π.χ. μαθήματα, υπολογιστικές διεργασίες).
- Επιλογή δραστηριοτήτων χωρίς χρονικές επικαλύψεις και δρομολόγηση σε κοινό πόρο (π.χ. αίθουσα διδασκαλίας, επεξεργαστής).
- Ζητούμενο: δρομολόγηση μέγιστου #δραστηριοτήτων.
- Πρόβλημα συνδυαστικής βελτιστοποίησης:
 - Κάθε δρομολόγηση χωρίς επικαλύψεις: εφικτή λύση.
 - Ζητούμενο: εφικτή δρομολόγηση με μέγιστο #δραστηριοτήτων.

Άπληστοι Αλγόριθμοι

Παράδειγμα

□ Βέλτιστη λύση: **4** δραστηριότητες. Π.χ. {1, 3, 6, 8}, {2, 4, 7, 10}, {1, 4, 7, 10}, ...

Άπληστος Αλγόριθμος

- Κριτήριο άπληστης επιλογής;
 - Ελάχιστος χρόνος ολοκλήρωσης.
- Ταξινόμηση σε αύξουσα σειρά χρόνου ολοκλήρωσης.Επόμενη δραστηριότητα:
 - Δρομολογείται αν είναι εφικτό (πόρος είναι ελεύθερος).
 - Αγνοείται αν δρομολόγηση δεν είναι εφικτή.

Υλοποίηση

```
 \begin{aligned} & \text{greedySelection}((s_1, f_1), \dots, (s_n, f_n)) \\ & /^* f_1 \leq f_2 \leq \dots \leq f_n \ ^* / \\ & C \leftarrow \{1\}; \ j \leftarrow 1; \\ & \text{for } i \leftarrow 2 \text{ to } n \text{ do} \\ & \text{if } s_i \geq f_j \text{ then} \\ & C \leftarrow C \cup \{i\}; \ j \leftarrow i; \\ & \text{return}(C); \end{aligned}
```

Χρόνος **O(n log n)** (ταξινόμηση ως προς χρόνο ολοκλήρωσης).

Υπολογισμός Βέλτιστης Λύσης

- Βέλτιστη λύση: απόδειξη ορθότητας (επαγωγή).
- Βασίζεται σε δύο ιδιότητες (απαραίτητες!):
 - **Αρχή βελτιστότητας** (βέλτιστες επιμέρους λύσεις):
 - Κάθε τμήμα βέλτιστης λύσης αποτελεί βέλτιστη λύση για αντίστοιχο υποπρόβλημα.
 - π.χ. κάθε τμήμα μιας συντομότερης διαδρομής είναι συντομότερη διαδρομή μεταξύ των άκρων του.
 - □ Χαρακτηριστικό και δυναμικού προγραμματισμού.
 - Ιδιότητα **ἀπληστης επιλογής**:
 - Υπάρχει βέλτιστη λύση που συμφωνεί με την άπληστη επιλογή που κάνει ο αλγόριθμος.
 - ... ή ισοδύναμα: η άπληστη επιλογή μπορεί να οδηγήσει σε βέλτιστη λύση.

Ορθότητα

- \square Επαγωγή στον #δραστηριοτήτων. Υποθέτουμε πάντα ότι $f_1 \leq f_2 \leq \cdots \leq f_n$
- □ Βάση: αν 1 δραστ., αυτή επιλέγεται πάντα.
- □ Έστω αλγ. υπολογίζει βέλτιστη λύση για ≤ n − 1 δραστ.Θδο. υπολογίζει βέλτιστη λύση για σύνολο Α με n δραστ.
 - lacksquare Αλγ. επιλέγει 1 ($f_{_1}$) και βέλτιστη λύση $A_1 = \{i: s_i \geq f_1\}$
 - lacksquare $C^*(A)$ βέλτιστη λύση και j δραστ. $C^*(A)$ ολοκληρώνεται πρώτη.
 - $|C^*(A)| \le 1 + |C^*(A_1)| = \#δ$ ραστηριοτήτων άπληστου αλγ.
 - \blacksquare Άπληστη επιλογή: $f_j \geq f_1 \Rightarrow (C^*(A) \setminus \{j\}) \cup \{1\}$ βέλτιστη.
- 'Απληστος αλγόριθμος υπολογίζει βέλτιστη λύση για Α.

Ορθότητα

- Αποδείξαμε ότι $|C^*(A)| = 1 + |C^*(A_1)|$
- Ιδιότητα άπληστης επιλογής:
 - (Άπληστη) επιλογή δραστηριότητας με ελάχιστο χρόνο ολοκλήρωσης οδηγεί σε συνολικά βέλτιστη λύση.
- Ιδιότητα βέλτιστων επιμέρους λύσεων:
 - Βέλτιστη λύση περιέχει βέλτιστη λύση για υποπρόβλημα Α1 (δραστ. που δεν επικαλύπτονται με πρώτη).

Χρωματισμός Διαστημάτων

- n διαστήματα: αρχή και τέλος $[s_i,f_i): f_i>s_i\geq 0$
- Χρωματισμός όλων ώστε επικαλυπτόμενα διαστήματα να έχουν διαφορετικό χρώμα.
- Ζητούμενο: χρωματισμός με ελάχιστο #χρωμάτων.
- Άπληστος αλγόριθμος:
 - Ταξινόμηση με χρόνο έναρξης.
 - Κάθε διάστημα που αρχίζει παίρνει πρώτο διαθέσιμο χρώμα.
 - Κάθε διάστημα που τελειώνει «απελευθερώνει» το χρώμα του.
- Χρήση χρώματος d ≥ 2 μόνο αν επικάλυψη d διαστημάτων.

Δρομολόγηση Εργασιών

- Ένας εξυπηρετητής (π.χ. επεξεργαστής, εκτυπωτής, ταμίας).
- Σύνολο N με n εργασίες: χρόνο εκτέλεσης $t_i > 0$ (π.χ. υπολογιστικές διεργασίες, εκτυπώσεις, συναλλαγές).
- Δρομολόγηση για ελαχιστοποίηση συνολικού (ισοδύναμα, μέσου) χρόνου εξυπηρέτησης.
 - $t_1 = 8$, $t_2 = 7$, $t_3 = 2$, $t_4 = 5$.
 - \square 1, 2, 3, 4: 8 + 15 + 17 + 22 = **62**.
 - \square 3, 4, 2, 1: 2 + 7 + 14 + 22 = **45**.
 - Δρομολόγηση: μετάθεση $\pi:\{1,\ldots,n\}\mapsto\{1,\ldots,n\}$
 - Χρόνος εξυπηρέτησης $i:c_i(\pi)=\sum_{j:\pi(j)\leq \pi(i)}t_j$
 - Συνολικός χρόνος εξυπηρέτησης: $T(\pi) = \sum_{i=1}^n c_i(\pi)$

Άπληστος Αλγόριθμος

Δρομολόγηση σε αύξουσα σειρά χρόνου εκτέλεσης:

$$t_1 \leq t_2 \leq \cdots \leq t_n$$

Συνολικός χρόνος εξυπηρέτησης:

$$T = t_1 + (t_1 + t_2) + (t_1 + t_2 + t_3) + \dots + (t_1 + \dots + t_n)$$

= $n t_1 + (n-1)t_2 + (n-2)t_3 + \dots + t_n$
= $\sum_{i=1}^{n} (n-i+1)t_i$

Βέλτιστος γιατί όσο μεγαλύτερος χρόνος εκτέλεσης, τόσο λιγότερες φορές συνεισφέρει στο συνολικό χρόνο εξυπηρέτησης.

Ορθότητα: Επιχείρημα Ανταλλαγής

- Έστω \mathbf{n}^* βέλτιστη δρομολόγηση, $T(\mathbf{n}^*)$ συνολικός χρόνος. $\mathbf{\lambda}^*(j)$: σειρά εργασίας j στη βέλτιστη δρομολόγηση.
- Έστω π* διαφορετική από άπληστη:
 - **ν** πρώτη που δρομολογείται αργότερα στην π^* : $\lambda^*(k) > k$
 - \blacksquare j αυτή που δρομολογείται k-οστή στην Π^* : $\lambda^*(j) = k$
 - \blacksquare ... συμφωνούν σε k-1 αρχικές: k < j και $t_k \le t_j$
 - $lacksquare t_{\mathsf{k}}$ και t_{j} στο $T(\mathsf{\Pi}^*)$: $(n-k+1)t_j+\cdots+(n-\lambda^*(k)+1)t_k$
 - Ανταλλαγή k και j: $(n-k+1)t_k+\cdots+(n-\lambda^*(k)+1)t_j$ (k πηγαίνει στη θέση που έχει στην άπληστη δρομολόγηση).
 - lacksquare Διαφορά: $(\lambda^*(k)-k)(t_k-t_j)\leq 0$
- 'Ετσι π* γίνεται ίδια με άπληστη χωρίς αύξηση χρόνου.
 - Άπληστη δρομολόγηση είναι βέλτιστη.

Ιδιότητες

- Ιδιότητα άπληστης επιλογής:
 - Για κάθε k, βέλτιστη δρομολόγηση π* συμφωνεί με άπληστη στη σειρά των κ πρώτων εργασιών.
 - (Άπληστη) επιλογή συντομότερης διαθέσιμης \rightarrow βέλτιστη.
- Ιδιότητα βέλτιστων επιμέρους λύσεων:
 - $T = n t_1 + (n-1)t_2 + (n-2)t_3 + \cdots + t_n$
 - Αν αγνοήσουμε t_1 , π^* παραμένει βέλτιστη για υπόλοιπες.
- Απόδειξη ορθότητας: (επαγωγική) εφαρμογή ιδιότητας άπληστης επιλογής.

Πρόβλημα του Περιπτερά

- Κέρματα αξίας 1, 5, και 20 λεπτών.
- Ρέστα ποσό *x* με **ελάχιστο** #κερμάτων.
- Αλγόριθμος:
 - Όσο περισσότερα 20λεπτα: $c_{20}(x) = |x/20|$
 - Όσο περισσότερα 5λεπτα: $c_5(x) = |(x-20\,c_{20}(x))/5|$
 - Υπόλοιπα 1λεπτα: $c_1(x) = x 20\,c_{20}(x) 5\,c_5(x)$
- Βέλτιστη λύση χρησιμοποιεί ίδιο #κερμάτων:
 - 20λεπτα: Δεν μπορεί περισσότερα. Βελτιώνεται αν λιγότερα.
 - Αν ίδιο #20λέπτων, τότε ίδιο #5λέπτων.
 - ... επαγωγή στα πλήθος διαφορετικών κερμάτων.
- Δουλεύει αλγόριθμος αν κέρματα 1, 12, και 20 λεπτών;
 - Π.χ. ρέστα 24 λεπτά.

Κλασματικό Πρόβλημα Σακιδίου

- \square Δίνονται n είδη και ένα **σακίδιο** μεγέθους B. Είδος i διαθέσιμο σε ποσότητα s_i με αξία p_i : (s_i, p_i)
- □ Είδος *i* μπορεί να συμπεριληφθεί στο σακίδιο σε οποιοδήποτε ποσοστό.
- Ζητείται συλλογή μέγιστης αξίας που χωράει στο σακίδιο.

$$\max \sum_{i=1}^n f_i p_i$$

ώστε $\sum_{i=1}^n f_i s_i \leq B$
 $f_i \in [0,1] \quad \forall i \in [n]$

- Είδη: { (3, 5), (2, 7), (4, 4), (6, 8), (5, 4) } Μέγεθος σακιδίου: **10**.
- **Β**έλτιστη λύση = $\{1 \times (3, 5), 1 \times (2, 7), (5/6) \times (6, 8)\}$ Βέλτιστη αξία = $5 + 7 + (5/6) \times 8 = 18.3333$

Άπληστος Αλγόριθμος

- Eiδη $N = \{1, ..., n\}$, σακίδιο μεγέθους B. Βέλτιστη λύση $F^*=(f_1^*,f_2^*,\ldots,f_n^*)$
- Βέλτιστες Επιμέρους Λύσεις. Αγνοούμε είδος ί:
 - $lacksquare F_{-i}^* = (f_1^*, \dots, f_{i-1}^*, f_{i+1}^*, \dots, f_n^*)$ βέλτιστη λύση για N \ $\{i\}$ με σακίδιο $B-f_i^*s_i$
- Είδος $i: r_i = p_i/s_i$ (αξία / μονάδα μεγέθους)
- Είδη σε φθίνουσα σειρά r_i : $r_1 \geq r_2 \geq \cdots \geq r_n$
 - Όσο περισσότερο από i χωράει στο (διαθέσιμο) σακίδιο. $f_i = \begin{cases} 1 & \text{αν } B_{i-1} \geq s_i \\ B_{i-1}/s_i & \text{αν } B_{i-1} < s_i \end{cases}$
 - Αναπροσαρμογή διαθέσιμου σακιδίου $B_{m{i}} = B_{m{i}-1} f_{m{i}} s_{m{i}}$ και επόμενο είδος.

Υλοποίηση

```
greedyKnapsack(B, (s_1, p_1), \ldots, (s_n, p_n))
      for i \leftarrow 1 to n do
             r_i \leftarrow p_i/s_i; f_i \leftarrow 0;
      Ταξινόμηση r_1 \geq r_2 \geq \cdots \geq r_n
      for i \leftarrow 1 to n do
             if B \leq 0 then f_i \leftarrow 0;
             else if B > s_i then
                           f_i \leftarrow 1; B \leftarrow B - s_i;
                     else
                           f_i \leftarrow B/s_i; B \leftarrow 0;
```

Χρόνος O(n log n) (ταξινόμηση ως προς λόγο αξίας / μέγεθος).

Άπληστη Επιλογή

- Έστω βέλτιστη λύση $F^*=(f_1^*,f_2^*,\ldots,f_n^*)$ Έστω ἀπληστη λύση $F=(f_1,f_2,\ldots,f_n)$
- Ιδιότητα άπληστης επιλογής:
 - Υπάρχει βέλτιστη λύση: $f_1^*=f_1$
 - Απληστία: καμία λύση με περισσότερο από είδος 1.
 - Αν βέλτιστη $f_1^* < f_1$, αντικαθιστούμε $(f_1 f_1^*)s_1$ μονάδες άλλου είδους (ή κενού) με είδος 1:
 - \square Αποδεκτή λύση γιατί $B \geq f_1 s_1$
 - Αξία δεν μειώνεται.
- Απόδειξη ορθότητας με επαγωγική εφαρμογή ιδιότητας άπληστης επιλογής.

Ορθότητα

- Επαγωγή στον #ειδών.
 - lacksquare Βάση: 1 είδος. Άπληστη επιλογή: $f_1^*=f_1$
 - Επαγωγική υπόθεση: ειδών $\leq n 1$, άπληστη = βέλτιστη.
 - Θεωρούμε *n* είδη.
 - lacksquare Άπληστη επιλογή: $f_1^*=f_1$
 - lacksquare Στιγμιότυπο με n 1 είδη και σακίδιο $B-f_1s_1$
 - lacksquare Επαγωγική υπόθεση: $F_{-1}=(f_2,\ldots,f_n)$ βέλτιστη λύση.
 - Συνολικά για n είδη:

$$f_1p_1 + \sum_{i=2}^n f_ip_i \ge f_1^*p_1 + \sum_{i=2}^n f_i^*p_i$$

Άπληστος αλγόριθμος υπολογίζει βέλτιστη λύση.

Άπληστη Στρατηγική

- Ταξινόμηση συνιστωσών με βάση κάποιο κριτήριο
 (π.χ. σακίδιο: είδη σε φθίνουσα σειρά αξία / μέγεθος).
- (Αμετάκλητη) επιλογή καθορίζει αν «καλύτερη»(βλ. «επόμενη») συνιστώσα θα συμπεριληφθεί στη λύση.
- Ίδια στρατηγική σε υπο-πρόβλημα που προκύπτει.
 - Μη-προσαρμοστικός: ίδια ταξινόμηση σε όλα τα βήματα.
 - **Προσαρμοστικός**: αλλάζει ταξινόμηση σε κάθε βήμα.
- Χρόνος εκτέλεσης καθορίζεται από χρόνο ταξινόμησης.
- Βέλτιστη λύση: απόδειξη ορθότητας (συνήθ. επαγωγή).
 - Ιδιότητα ἀπληστης επιλογής.
 - Αρχή βελτιστότητας (βέλτιστες επιμέρους λύσεις).