SGM2007/A

Low Power, Low Dropout, 300mA, RF-Linear Regulators

GENERAL DESCRIPTION

The SGM2007/A series low-power, low-noise, low-dropout, CMOS linear voltage regulators operate from a 2.5V to 5.5V input and deliver up to 300mA. They are the perfect choice for low voltage, low power applications. An ultra low ground current (200 μ A at 300mA output) makes these part attractive for battery operated power systems. The SGM2007/A series also offer ultra low dropout voltage (300mV at 300mA output) to prolong battery life in portable electronics. Systems requiring a quiet voltage source, such as RF applications, will benefit from the SGM2007/A series' ultra low output noise (30 μ VRMS) and high PSRR. An external noise bypass capacitor connected to the device's BP pin can further reduce the noise level.

The output voltage is preset to voltages in the range of 1.5V to 5.0V. Other features include a 10nA logic-controlled shutdown mode, foldback current limit and thermal shutdown protection.

Devices come in 5-pin SOT23 package.

FEATURES

- Low Output Noise: 30µVRMS typ(10Hz to 100KHz)
- Ultra-Low Dropout Voltage: 300mV at 300mA output
- Low 77µA No-Load Supply Current
- Low 200μA Operating Supply Current at 300mA Output
- High PSRR (73dB at 1KHz)
- Thermal-Overload Protection
- Output Current Limit
- 10nA Logic-Controlled Shutdown
- Available in Multiple Output Voltage Versions Fixed Outputs of 1.8V, 2.5V, 2.7V, 2.8V, 2.85V, 2.9V, 3.0V, 3.3V and 3.6V Adjustable Output from 1.5V to 5.0V

PIN CONFIGURATIONS (TOP VIEW)

APPLICATIONS

Cellular Telephones
Cordless Telephones
PHS Telephones
PCMCIA Cards
Modems
MP3 Player
Hand-Held Instruments
Palmtop Computers
Electronic Planners
Portable/Battery-Powered Equipment

ORDERING INFORMATION

MODEL	Vout(V)	PIN- PACKAGE	SPECIFIED TEMPERATURE RANGE	ORDERING NUMBER	PACKAGE MARKING	PACKAGE OPTION
SGM2007-1.8	1.8V	SOT23-5	- 40°C to +125°C	SGM2007-1.8XN5/TR	X718	Tape and Reel, 3000
SGM2007-2.5	2.5V	SOT23-5	- 40°C to +125°C	SGM2007-2.5XN5/TR	X725	Tape and Reel, 3000
SGM2007-2.7	2. 7V	SOT23-5	- 40°C to +125°C	SGM2007-2. 7XN5/TR	X727	Tape and Reel, 3000
SGM2007-2.8	2.8V	SOT23-5	- 40°C to +125°C	SGM2007-2.8XN5/TR	X728	Tape and Reel, 3000
SGM2007-2.85	2.85V	SOT23-5	- 40°C to +125°C	SGM2007-2.85XN5/TR	X72J	Tape and Reel, 3000
SGM2007-2.9	2.9V	SOT23-5	- 40°C to +125°C	SGM2007-2.9XN5/TR	X729	Tape and Reel, 3000
SGM2007-3.0	3.0V	SOT23-5	- 40°C to +125°C	SGM2007-3.0XN5/TR	X730	Tape and Reel, 3000
SGM2007-3.3	3.3V	SOT23-5	- 40°C to +125°C	SGM2007-3.3XN5/TR	X733	Tape and Reel, 3000
SGM2007-3.6	3.6V	SOT23-5	- 40°C to +125°C	SGM2007-3.6XN5/TR	X736	Tape and Reel, 3000
SGM2007A	adjustable	SOT23-5	- 40°C to +125°C	SGM2007-XN5/TR	X7AA	Tape and Reel, 3000

ABSOLUTE MAXIMUM RATINGS

40°C to +125°C	Operating Temperature Range	0.3V to +6V	IN to GND
+150°C	Junction Temperature	Infinite	Output Short-Circuit Duration
65°C to +150°C	Storage Temperature	0.3V to +6V	EN to GND
260°C	Lead Temperature (soldering, 10s)	0.3V to (V _{IN} + 0.3V)	OUT, BP/FB to GND
	ESD Susceptibility		Power Dissipation, $P_D @ T_A = 25 ^{\circ}C$
4000V	HBM	0.4W	SOT23-5
400V	MM		Package Thermal Resistance
		250℃/W	SOT23-5 Θ_{IA}

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN DESCRIPTION

PIN	NAME	FUNCTION
1	IN	Regulator Input. Supply voltage can range from 2.5V to 5.5V. Bypass with a 1µF capacitor to GND.
2	GND	Ground.
3	EN	Shutdown Input. A logic low reduces the supply current to 10nA. Connect to IN for normal operation.
4	BP	Reference-Noise Bypass(fixed voltage version only). Bypass with a low-leakage $0.01\mu F$ ceramic capacitor for reduced noise at the output.
4	FB	Adjustable voltage version only—this is used to set the output voltage of the device.
5	OUT	Regulator Output.

ELECTRICAL CHARACTERISTICS

 $(V_{IN} = V_{OUT,(NOMINAL)} + 0.5V^{(1)}, T_A = -40$ °C to +125°C, unless otherwise noted. Typical values are at $T_A = +25$ °C.)

PARAMETER	SYMBOL	CONDITIONS	5	MIN	TYP	MAX	UNITS	
Input Voltage	V_{IN}			2.5		5.5	V	
Output Voltage Accuracy ⁽¹⁾		IOUT = 1mA to 300mA, $T_A = +25^{\circ}C$ $V_{OUT} + 0.5V \le V_{IN} \le 5.5V$		-3		+3	%	
Maximum Output Current				300			mA	
Current Limit	ILIM			310	750		mA	
Ground Pin Current	Io	No load, EN = 2V			77	145	Δ	
Glouria i ili Current	IQ	I _{OUT} = 300mA, EN = 2V			200		μΑ	
Dranout Voltage (2)		Iout = 1mA			0.8		mV	
Dropout Voltage (2)		Iout = 300mA			300	380		
Line Regulation ⁽¹⁾	ΔV_{LNR}	$V_{\rm IN}$ = 2.5V or (Vout + 0.5V) to 5.5V, Iout = 1mA			0.03	0.15	%/V	
Load Regulation	ΔV_{LDR}	Ιουτ = 0.1mA to 300mA, Couτ = 1μF			0.0008	0.002	%/mA	
Output Voltage Noise	e n	$f = 10$ Hz to 100 KHz, $C_{BP} = 0.01 \mu$ F, $C_{OUT} = 10 \mu$ F			30		μVRMS	
D 0 1 D 1 1 D 1	PSRR	$C_{BP} = 0.1 \mu F$, Iload = 50mA,	f = 100Hz,		78		dB	
Power Supply Rejection Rate		Cout = 1µF	f = 1KHz,		73		dB	
SHUTDOWN								
DALL (TILL 1.11	V_{IH}	V _{IN} = 2.5V to 5.5V		2.0			3.7	
EN Input Threshold	V_{IL}					0.4	V	
ENIL Discount	Ib(shdn)	EN = 0V and EN = 5.5V	T _A = +25°C		0.01	1	4	
EN Input Bias Current			$T_A = +125^{\circ}C$		0.01		μΑ	
	IQ(SHDN)	EN = 0.4V	$T_A = +25^{\circ}C$		0.01	1		
Shutdown Supply Current			$T_A = +125^{\circ}C$		0.01		μΑ	
Shutdown Exit Delay(3)		$C_{BP} = 0.01 \mu F$	T _A = +25°C		30		μs	
THERMAL PROTECTION		Cout = 1μF, No load						
THERMAL PROTECTION					160		°C	
Thermal Shutdown Temperature					160		°C	
Thermal Shutdown Hysteresis	ΔT shdn				15		$^{\circ}$	

Specifications subject to change without notice.

Note 1: $V_{IN} = V_{OUT(NOMINAL)} + 0.5V$ or 2.5V, whichever is greater.

Note 2: The dropout voltage is defined as V_{IN} - V_{OUT} , when V_{OUT} is 100mV below the value of V_{OUT} for V_{IN} = V_{OUT} + 0.5V. (Only applicable for V_{OUT} = +2.5V to +5.0V.)

Note 3: Time needed for VOUT to reach 95% of final value.

TYPICAL OPERATION CIRCUIT

Adjustable Voltage Version

Fixed Voltage Version

Standard 1% Resistor Values for Common Output Voltages of Adjustable Voltage Version

V _{OUT} (V)	$R_1(k\Omega)$	$R_2(k\Omega)$
1.5	13	61.9
1.8	28	61.9
2.5	63.4	61.9
2.7	56	47
2.8	78.7	61.9
2.85	80.6	61.9
2.9	75	56
3.0	88.7	61.9
3.3	95.3	57.6
3.6	130	68

Note: Vout = $(R_1 + R_2)/R_2 \times 1.233$

 $V_{IN} = V_{OUT(NOMINAL)} + 0.5V \text{ or } 2.5V \text{ (whichever is greater)}, C_{IN} = 1 \mu F, C_{OUT} = 1 \mu F, C_{BP} = 0.01 \mu F, T_A = +25 ^{\circ}C, \text{ unless otherwise noted}.$

 $V_{IN} = V_{OUT(NOMINAL)} + 0.5V$ or 2.5V (whichever is greater), $C_{IN} = 1\mu F$, $C_{OUT} = 1\mu F$, $C_{BP} = 0.01\mu F$, $T_A = +25^{\circ}C$, unless otherwise noted.

 $V_{IN} = V_{OUT(NOMINAL)} + 0.5V \text{ or } 2.5V \text{ (whichever is greater)}, C_{IN} = 1 \mu F, C_{OUT} = 1 \mu F, C_{BP} = 0.01 \mu F, T_A = +25 ^{\circ}C, \text{ unless otherwise noted}.$

 $V_{IN} = V_{OUT(NOMINAL)} + 0.5V$ or 2.5V (whichever is greater), $C_{IN} = 1\mu F$, $C_{OUT} = 1\mu F$, $C_{BP} = 0.01\mu F$, $T_A = +25^{\circ}C$, unless otherwise noted.

Application Notes

When LDO is used in handheld products, Attention must be paid to voltage spike which would damage SGM2007. In such applications, voltage spike will be generated at changer interface and V_{BUS} pin of USB interface when changer adapters and USB equipments are hot-inserted. Besides this, handheld products will be tested on the production line on the condition of no battery. Test Engineer will apply power from the connector pin which connects with positive pole of the battery. When external power supply is turned on suddenly, the voltage spike will be generated at the battery connector. The voltage spike will be very high, it always exceeds the absolute maximum input voltage (6.0V) of LDO. In order to get robust design. Design Engineer needs to clear up this voltage spike. Zener diode is a cheap and effective solution to eliminate such voltage spike. For example, BZM55B5V6 is a 5.6V small package Zener diode which can be used to remove voltage spike in cell phone design. The schematic is shown in below:

PACKAGE OUTLINE DIMENSIONS

SOT23-5

REVISION HISTORY

Location	Page
12/06—Data Sheet changed from preliminary to REV. A	
Changed to ABSOLUTE MAXIMUM RATINGS	
03/07— Data Sheet changed from REV. A to REV. B	
Changed to TYPICAL OPERATING CHARACTERISTICS	7

Shengbang Microelectronics Co, Ltd

Unit 3, ChuangYe Plaza No.5, TaiHu Northern Street, YingBin Road Centralized Industrial Park Harbin Development Zone Harbin, HeiLongJiang 150078 P.R. China

Tel.: 86-451-84348461 Fax: 86-451-84308461 www.sg-micro.com