Cluster-Robust Variance Estimators for Instrumental Variables

Theory and Application in Assessing the Impact of Gender Representation on Carbon Emissions

Sam Lee

04/15/2024

Background

- Bertrand et. al (2004) → cluster standard errors in DiD
 - Standard errors otherwise inflated
- MacKinnon et. al (2023)
 - Guide for cluster-robust variance estimators
 - Three "feasible" CRVEs
 - Derived from OLS Asymptotic Variance
 - "For such models [with clustered data estimated by instrumental variables (IV)], neither the current state of econometric theory nor the available simulation evidence allows us to make recommendations with any confidence"

Three Feasible CRVEs

Assuming data are generated at $\beta = \beta_0$,

$$\sqrt{n}(\hat{b} - \beta_0) \underset{d}{\rightarrow} N\left(0, \mathbb{E}[X_i X_i']^{-1} \mathbb{E}[x_i x_i' u_i^2] \mathbb{E}[X_i X_i']^{-1}\right)$$

Assuming data can be divided into G disjoint groups, it follows that a reasonable way to "cluster" standard errors by group (g) will depend on the residual errors from that group:

$$\mathbb{E}\left[x_i x_i' u_i^2\right] \approx \frac{1}{n} \sum_{i=1}^n x_i x_i' \hat{u}_i^2 \to \frac{1}{n} \sum_{g=1}^G X_g' \hat{u}_g \hat{u}_g' X_g$$

Thus, the first CRVE follows as (and with a degree of freedom correction applied),

$$CV_1: n\frac{G(N-1)}{(G-1)(N-k)}(X'X)^{-1}\sum_{g=1}^{G}\hat{s}_g\hat{s}_{g'}(X'X)^{-1}; \hat{s}_g = X_g'\hat{u}_g$$

Three Feasible CRVEs

However, sometimes $X_g'\hat{u}_g$ are not the best estimators for \hat{s}_g (Bell & McCaffery, 2002).

Two Alternative CRVEs:

$$CV_2: n(X'X)^{-1} \sum_{g=1}^{G} \dot{s}_g \dot{s}_{g'} (X'X)^{-1}; \ \dot{s}_g = X_g' M_{gg}^{-\frac{1}{2}} \hat{u}_g; M_{gg} = I_{Ng} - X_g(X'X)^{-1} X_{g'}$$

$$CV_3: n \frac{G-1}{G} (X'X)^{-1} \sum_{g=1}^{G} \dot{s}_g \dot{s}_{g'} (X'X)^{-1}; \dot{s}_g = X_g' M_{gg}^{-1} \hat{u}_g$$

A GMM Framework for Just-Identified IV

Assumptions for Identification in GMM:

$$\mathbb{E}[m_{i}(\beta) = Z_{i}(Y_{i} - X_{i}'\beta)] = 0; \quad G(\beta) \coloneqq \left[\frac{\partial m_{i}(\beta)}{\partial \beta'}\right] = -\mathbb{E}[Z_{i}X_{i}'] \quad (\text{has rank k})$$

$$\sqrt{n}(\hat{b} - \beta_{0}) \xrightarrow{d} N\left(0, \left[G(\beta)\mathbb{E}[m_{i}(\beta)m_{i}(\beta)']^{-1}G(\beta)'\right]^{-1}\right)$$

$$\rightarrow \sqrt{n}(\hat{b} - \beta_{0}) \xrightarrow{d} N\left(\left[\mathbb{E}[Z_{i}X_{i}']\mathbb{E}[Z_{i}Z_{i}'u_{i}^{2}]\mathbb{E}[Z_{i}X_{i}']'\right]^{-1}\right)$$

2SLS Variance Estimator with Homoskedasticity:

$$\widehat{V} = \left[\left(\frac{1}{n} X' Z \right) \left(\frac{1}{n} Z' Z \widehat{u}_2 \right)^{-1} \left(\frac{1}{n} X' Z \right)' \right]^{-1}$$

Proposed CRVEs for GMM

For G disjoint clusters,

$$\widehat{V}_g = \left[\left(\frac{1}{n} X' Z \right) \left(\frac{1}{n} \sum_{g=1}^G Z_g' \widehat{u}_g \, \widehat{u}_g' Z_g \right)^{-1} \left(\frac{1}{n} X' Z \right)' \right]^{-1}$$

Thus, following MacKinnon et. al, all three CRVEs can be rewritten as follows:

$$\frac{iv}{CV_1} : n \frac{G(N-1)}{(G-1)(N-k)} \left[(X'Z) \left(\sum_{g=1}^{G} \hat{\zeta}_g \hat{\zeta}_{g'} \right)^{-1} (X'Z)' \right]^{-1}; \quad \hat{\zeta}_g = Z'_g \widehat{u}_g$$

Proposed CRVEs for GMM

$$\frac{iv}{CV_2}: n \left[(X'Z) \left(\sum_{g=1}^{G} \zeta_g^{\dagger} \zeta_g^{\dagger} \right)^{-1} (X'Z)' \right]^{-1}; \quad \zeta_g^{\dagger} = Z_g' M_{gg}^{-\frac{1}{2}} \hat{u}_g; M_{gg} = I_{Ng} - Z_g(Z'Z)^{-1} Z_g'$$

$$\frac{iv}{CV_3}: n\frac{G-1}{G} \left| (X'Z) \left(\sum_{g=1}^{G} \zeta_g \zeta_{g'} \right)^{-1} (X'Z)' \right| \quad ; \quad \zeta_g = Z'_g M_{gg}^{-1} \hat{u}_g$$

An Applied Example

What is the effect that electing higher proportions of women into national legislatures in African and Arab nations has on yearly per capita \mathcal{CO}_2 emissions?

- Women are disproportionately affected by negative externalities of climate change
- One recent paper suggests a causal link between higher proportions of women in parliament and stricter climate policies (Mavisakalyan & Tarverdi, 2019)
 - Uses cross-sectional data-set
- Intertemporal link?

Two-stage difference-in-differences:

(1)
$$W_{ct-1} = \pi_0 + \lambda Z_{ct-1} + \sum_{p=2}^{p} X'_{ct-p} \Psi_p +$$

$$\sum_{k=\text{Angola }k\neq \text{Qatar, Iraq}}^{Zimbabwe} \mu_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \eta_j \mathbb{1}(\text{Year}_t = j) + v_{ct}$$

(2)
$$Y_{ct} = \beta_0 + \delta W_{ct-1} + \sum_{p=2}^{P} X'_{ct-p} \Omega_p +$$

$$\sum_{k=\text{Angola; }k\neq \text{Qatar, Iraq}}^{Zimbabwe} \beta_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \gamma_j \mathbb{1}(\text{Year}_t = j) + \epsilon_{ct}$$

Two-stage difference-in-differences:

$$(1) \quad W_{ct-1} = \pi_0 + \lambda Z_{ct-1} + \sum_{p=2}^{P} X'_{ct-p} \Psi_p + \sum_{k=\text{Angola } k \neq \text{Qatar, Iraq}}^{Zimbabwe} \mu_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \eta_j \mathbb{1}(\text{Year}_t = j) + v_{ct}$$

(2)
$$Y_{ct} = \beta_0 + \frac{\delta W_{ct-1}}{\delta W_{ct-1}} + \sum_{p=2}^{P} X'_{ct-p} \Omega_p +$$

Endogenous Treatment

$$\sum_{k=\text{Angola; }k\neq \text{Qatar, Iraq}}^{Zimbabwe} \beta_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \gamma_j \mathbb{1}(\text{Year}_t = j) + \epsilon_{ct}$$

Two-stage difference-in-differences:

Instrumental Variable
- Years Since Country
was Granted Suffrage

(1)
$$W_{ct-1} = \pi_0 + \lambda Z_{ct-1} + \sum_{p=2}^{p} X'_{ct-p} \Psi_p +$$

$$\sum_{k=\text{Angola }k\neq \text{Qatar, Iraq}}^{Zimbabwe} \mu_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \eta_j \mathbb{1}(\text{Year}_t = j) + v_{ct}$$

(2)
$$Y_{ct} = \beta_0 + \delta W_{ct-1} + \sum_{p=2}^{P} X'_{ct-p} \Omega_p +$$

$$\sum_{k=\text{Angola; }k\neq \text{Qatar, Iraq}}^{Zimbabwe} \beta_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \gamma_j \mathbb{1}(\text{Year}_t = j) + \epsilon_{ct}$$

Two-stage difference-in-differences:

(1)
$$W_{ct-1} = \pi_0 + \lambda Z_{ct-1} + \sum_{p=2}^{p} X'_{ct-p} \Psi_p +$$

$$\sum_{k=\text{Angola }k\neq \text{Qatar, Iraq}}^{Zimbabwe} \mu_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \eta_j \mathbb{1}(\text{Year}_t = j) + v_{ct}$$

Response Variable -Per Capita Carbon Emissions for a country c in year t

$$\frac{(2)}{Y_{ct}} = \beta_0 + \delta W_{ct-1} + \sum_{p=2} X'_{ct-p} \Omega_p +$$

$$\sum_{k=\text{Angola; }k\neq \text{Qatar, Iraq}}^{Zimbabwe} \beta_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \gamma_j \mathbb{1}(\text{Year}_t = j) + \epsilon_{ct}$$

Two-stage difference-in-differences:

$$(1) \quad W_{ct-1} = \pi_0 + \lambda Z_{ct-1} + \sum_{p=2}^{1} \frac{X'_{ct-p}}{Y_p} + \sum_{k=\text{Angola } k \neq \text{Qatar, Iraq}} \mu_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \eta_j \mathbb{1}(\text{Year}_t = j) + v_{ct}$$

A sequence of autoregressive lags on economic covariates

(2)
$$Y_{ct} = \beta_0 + \delta W_{ct-1} + \sum_{p=2}^{P} X'_{ct-p} \Omega_p +$$

$$\sum_{k=\text{Angola; }k\neq \text{Qatar, Iraq}} \beta_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \gamma_j \mathbb{1}(\text{Year}_t = j) + \epsilon_{ct}$$

Two-stage difference-in-differences:

(1)
$$W_{ct-1} = \pi_0 + \lambda Z_{ct-1} + \sum_{p=2}^{P} X'_{ct-p} \Psi_p +$$

$$\sum_{k=\text{Angola }k\neq \text{Qatar, Iraq}} \frac{\mu_k \mathbb{1}(\text{Country}_c = k)}{\mu_k \mathbb{1}(\text{Country}_c = k)} + \sum_{j=1999}^{2022} \frac{\eta_j \mathbb{1}(\text{Year}_t = j)}{\eta_j \mathbb{1}(\text{Year}_t = j)} + v_{ct}$$

(2)
$$Y_{ct} = \beta_0 + \delta W_{ct-1} + \sum_{p=2}^{P} X'_{ct-p} \Omega_p +$$

Country and year fixed effects (difference-indifferences)

$$\sum_{k=\text{Angola; }k\neq \text{Qatar, Iraq}} \frac{\beta_k \mathbb{1}(\text{Country}_c = k) + \sum_{j=1999}^{2022} \gamma_j \mathbb{1}(\text{Year}_t = j) + \epsilon_{ct}}{\gamma_j \mathbb{1}(\text{Year}_t = j) + \epsilon_{ct}}$$

Regression Results

Do we trust these results?

How do we know which CRVE to use?

Variance Estimator $(\widehat{oldsymbol{\delta}} = -107.8425)$	2.5% Lower C.I.	97.5% Upper C.I.
2SLS (Homoskedastic)	-133.37	-82.32
iv CV_1	-164.88	-50.81
iv CV ₂	-165.66	-50.02
iv CV ₃	-166.86	-48.83

Monte Carlo Analysis

- Assess empirical performance of CRVEs via simulation.
- Randomly generate a new (placebo) vector for Y_{ct} . (Leave X_{ct} matrix the same)
- Calculate regression coefficients and respective 95% confidence intervals for each generation.
- Calculate empirical coverage for each estimator
- Evaluate whether inference using each of the CRVEs (if any) are reliable

Monte Carlo Analysis - DGP

The data-generating process for Y_{ct} will follow a bootstrap sampling process.

- Replace the empirical sample Y_{ct} with a new bootstrap sample of Y_{ct} each generation, defined as \dot{Y}_{ct} .

Let \dot{Y}_{ct} be defined as

$$\dot{Y}_{ct} = \{\dot{y}_{ct}\}_{c=\text{Angola}, t=1999}^{c=\text{Zimbabwe}, t=2022} = \{\dot{y}_{Angola,1999}, \dot{y}_{Angola,2000}, ..., \dot{y}_{Zimbabwe,2022}\}$$

$$\Pr(\dot{y}_{ct} = y_{ct}) = \frac{1}{n}, \forall c, t$$

Monte Carlo Analysis - DGP

Monte Carlo Analysis – Simulation (n=10000)

	iv		iv		iv		0010	
	CV_1		_		CV_3		2SLS	
	(2.5%,	97.%)	(2.5%, 97.%)		(2.5%, 97.%)		(2.5%, 97.%)	
1	-20.24	13.52	-25.83	19.12	-41.9	35.18	-24.45	17.73
2	-20.5	25.35	-22.09	26.94	-24.25	29.1	-16.1	20.95
3	-23.2	9.02	-24.25	10.07	-25.28	11.1	-26.95	12.77
4	-11.07	20.3	-14.11	23.33	-22.51	31.74	-15.92	25.14
5	-10.46	18.29	-12.15	19.97	-19.37	27.19	-12.61	20.43
6	-16.58	31.21	-15.08	29.71	-12.2	26.82	-11.04	25.67
7	-17.97	8.7	-18.8	9.53	-21.25	11.98	-24.55	15.28
8	-16.23	19.49	-20	23.26	-31.98	35.24	-22.71	25.96
9	-20.32	13.15	-20.91	13.74	-23.88	16.71	-21.51	14.35
10	-19.66	12.13	-27.07	19.54	-46.94	39.4	-27.31	19.78
•••	•••	•••	•••	•••	•••	•••	•••	
9996	-10.38	22.17	-10.49	22.28	-11.08	22.87	-14.57	26.36
9997	-33.48	15.01	-33.73	15.26	-34.04	15.57	-33.51	15
9998	-13.5	14.85	-15.36	16.71	-19.84	21.19	-18.88	20.23
9999	-43.52	5.72	-47.46	9.66	-57.51	19.71	-39.13	1.33
10000	-13.76	11.52	-13.63	11.39	-14.23	11.99	-20.46	18.22
Empirical Rejection	0.0553		0.0297		0.0118		0.0465	

Conclusions

- $\frac{iv}{cV_2}$ and $\frac{iv}{cV_3}$ tend to routinely under reject
- $\frac{iv}{cV_3}$ may be the best the CRVE for IV right now
 - Stata's CRVE for IV seems to over reject without DF correction
- If clustering is unnecessary or unfeasible, inference using the GMM asymptotic variance seems to perform just as well
- The test for $\boldsymbol{\delta}$ seems appropriately sized
- Hence the interpretation on p-values remains as if higher proportions of women in legislature truly had no effect on yearly carbon emissions within a country (given H_0), the standard errors from $\frac{iv}{C1}$ imply that there would have been about a 0.021% (p-value < 0.001) chance we observed the same effect or larger by random.
- With high confidence, it seems that when more women enter national legislatures, correspondingly, yearly carbon emissions decrease

