

Two Key Ideas

- Scale
 - □Map distance < ground distance
- Projection
 - □Going from round earth to flat map

Scale

- Map scale: relationship between map units and real units
 - ☐ Ratio scale: representative fraction (RF) = map:ground distance

 - □ Verbal scale (e.g., 'One inch represents 800 feet')

What is a key advantage of a bar scale?

A 3 cm street on a map with an RF of 1:100,000 is how long in reality?

3 cm × 100,000 = 300,000 cm = 3,000 m = 3 km

Projection Properties Map Called Property Interesting Fact Meridians and parallels intersect at right angles Shape / Angle Conformal Navigation Orthomorphic Topographic Area Equal-area Thematic Can be true for whole map Equivalent Distance is true along lines of 'true scale' Equidistant Distance Atlas

Conclusion

- Map elements: scale, projection, symbolization
- Scale
 - □ Scale measures
 - \square Scale matters
- Projections
 - □ Projection mechanics
 - □ Coordinate systems
 - □ Projection surfaces
 - $\hfill\square$ Projection properties

