

Bayesian Statistics and Hierarchical Bayesian Modeling for Psychological Science

Lecture | |

Lei Zhang

Social, Cognitive and Affective Neuroscience Unit (SCAN-Unit)

Department of Cognition, Emotion, and Methods in Psychology

Bayesian warm-up?

HIERARCHICAL MODELING

cognitive model
statistics
computing

Why Hierarchical Bayesian Cognitive Modeling?

cognitive model

statistics

computing

Simulation study

Hierarchical Bayesian

Maximum likelihood A

Actual values O

Why Hierarchical Bayesian Cognitive Modeling?

cognitive model

statistics

computing

Fixed effects

- all subjects are fitted with the same set of parameters
- worse model fit than "random effects"

Random effects

- each subject is fitted independently of the others
- best model fit for each subject
- parameter estimates can be noisy

Adapted from Jan Gläscher's workshop

statistics

computing

Fitting Multiple Participants

Fitting Multiple Participants

cognitive model

statistics

Fitting Multiple Participants

cognitive model

statistics

statistics

computing

Hierarchical Structure

statistics

computing

Hierarchical Structure

statistics

Hierarchical Structure

statistics computing

$$P(\Theta, \Phi \mid D) = \frac{P(D \mid \Theta, \Phi)P(\Theta, \Phi)}{P(D)} \propto P(D \mid \Theta)P(\Theta \mid \Phi)P(\Phi)$$

statistics

computing

Hierarchical RL Model

HOW DID WE GET HERE?

statistics

The cognitive model per se is the same!

statistics

computing

Implementing Hierarchical RL Model


```
\mu_{\alpha} \sim Uniform(0,1)
\sigma_{\alpha} \sim halfCauchy(0,1)
\mu_{\tau} \sim Uniform(0,3)
\sigma_{\tau} \sim halfCauchy(0,3)
\alpha_i \sim Normal(\mu_a, \sigma_a)_{\mathcal{T}(0,1)}
\tau_i \sim Normal(\mu_{\tau}, \sigma_{\tau})_{\mathcal{T}(0,3)}
p_{i,t}(C=A) = \frac{1}{1 + e^{\tau_i(V_{i,t}(B) - V_{i,t}(A))}}
V_{i,t+1}^c = V_{i,t}^c + \alpha_i (R_{i,t} - V_{i,t}^c)
```

```
parameters {
 real<lower=0,upper=1> lr mu;
 real<lower=0.upper=3> tau mu:
 real<lower=0> lr sd;
 real<lower=0> tau sd;
 real<lower=0,upper=1> lr[nSubjects];
 real<lower=0,upper=3> tau[nSubjects];
model {
 lr sd \sim cauchy(0,1);
 tau sd \sim cauchy(0,3);
        ~ normal(lr mu, lr sd);
        ~ normal(tau mu, tau sd);
 tau
 for (s in 1:nSubjects) {
   vector[2] v;
   real pe;
   v = initV;
   for (t in 1:nTrials) {
     choice[s,t] ~ categorical_logit( tau[s] * v );
     pe = reward[s,t] - v[choice[s,t]];
     v[choice[s,t]] = v[choice[s,t]] + lr[s] * pe;
```

Exercise XI

statistics

```
.../06.reinforcement_learning/_scripts/reinforcement_learning_multi_parm_main.R
```

TASK: (I) complete the model (TIP: individual ~ group) (2) fit the hierarchical RL model

```
> source('_scripts/reinforcement_learning_multi_parm_main.R')
> fit_rl3 <- run_rl_mp( modelType ='hrch' )</pre>
```

In addition: Warning messages:

1: There were 97 divergent transitions after warmup. Increasing adapt_delta above 0.8 may help. See http://mc-stan.org/misc/warnings.html#divergent-transitions-after-warmup
2: Examine the pairs() plot to diagnose sampling problems

Hierarchical Fitting*

cognitive model

statistics

^{*:} adapt_delta=0.999, max_treedepth=100

Comparing with True Parameters

statistics

computing

Posterior Means (indv)

Posterior Means (hrch)*

True Parameters

^{*:} adapt_delta=0.999, max_treedepth=100

statistics

computing

Group-level Parameters

True group parameters

```
lr = rnorm(10, mean=0.6, sd=0.12)
tau = rnorm(10, mean=1.5, sd=0.2)
```

Estimated group parameters

```
      mean
      2.5%
      25%
      50%
      75%
      97.5%

      lr_mu
      0.58
      0.47
      0.54
      0.57
      0.61
      0.69

      lr_sd
      0.09
      0.01
      0.04
      0.08
      0.12
      0.23

      tau_mu
      1.54
      1.26
      1.43
      1.53
      1.63
      1.85

      tau_sd
      0.25
      0.01
      0.13
      0.23
      0.34
      0.65
```


OPTIMIZING STAN CODES

cognitive model
statistics
computing

statistics computing

Optimizing Stan Code

Preprocess data

run as many calculations as you can outside Stan

Specify a proper model

follow literature, supervision, experience, etc.

Vectorizing

vectorize Stan code whenever you can

Reparameterizing

reparameterize target parameter to simple distributions

cognitive model statistics

computing

Preprocess Data

 $\overline{\text{height}} = \alpha + \beta 1 * \text{weight} + \beta 2 * \text{weight}^2$

```
d$weight_sq <- d$weight^2</pre>
```

```
data {
   int<lower=0> N;
   vector<lower=0>[N] height;
   vector<lower=0>[N] weight;
   vector<lower=0>[N] weight_sq;
}
```

Specify a Proper Model

- Visualize your data
- Follow Literatures
- Start from simple and then build complexities
- Simulate data and run model recovery

```
A New Model

data{...}

parameters{...}

model{
 prior, likelihood, etc.
}
```

Vectorization

```
statistics
computing
```

```
model {
  for (n in 1:N) {
    flip[n] ~ bernoulli(theta);
  }
}
model {
  flip ~ bernoulli(theta);
}
```

```
model {
 vector[N] mu;
 for (i in 1:N) {
   mu[i] = alpha + beta * weight[i];
   height[i] ~ normal(mu[i], sigma)
model {
 vector[N] mu;
 mu = alpha + beta * weight;
 height ~ normal(mu, sigma);
model {
 height ~ normal(alpha + beta * weight, sigma);
```

statistics

computing

Reparameterization

Neal's Funnel

```
p(y,x) = \text{Normal}(y|0,3) \times \prod_{n=1}^{9} \text{Normal}(x_n|0, \exp(y/2))
```

```
parameters {
   real y;
   vector[9] x;
}
model {
   y ~ normal(0,3);
   x ~ normal(0,exp(y/2));
}
```


Non-centered Reparameterization*

cognitive model

statistics

statistics

computing

Reparameterization

Neal's Funnel

```
p(y,x) = \text{Normal}(y|0,3) \times \prod_{n=1}^{9} \text{Normal}(x_n|0, \exp(y/2))
```

```
parameters {
  real y;
  vector[9] x;
}
model {
  y ~ normal(0,3);
  x ~ normal(0,exp(y/2));
}
```



```
parameters {
 real y raw;
 vector[9] x raw;
transformed parameters {
 real y;
 vector[9] x;
 y = 3.0 * y raw;
 x = \exp(y/2) * x_{raw};
model
 y_raw ~ normal(0,1);
  x raw \sim normal(0,1);
```

Stan Sampling Parameters

c	റ	m	D	ut	in	σ
L	v		ץ	ut		δ

parameter	description	constraint	default
iterations	number of MCMC samples (per chain)	int, > 0	2000
delta: δ	target Metropolis acceptance rate	<i>δ</i> ∈ [0,1]	0.80
stepsize: \mathcal{E}	initial HMC step size	real, ε > 0	2.0
${\sf max_treedepth:} L$	maximum HMC steps per iteration	int, $L > 0$	10

Typical adjustments

- Increase iterations
- Increase delta
- Decrease stepsize
- Might have to increase max_treedepth

Neal's Funnel: Comparing Performance

cognitive model

statistics

	direct model	adjusted direct model	reparameterized mode
Rhat (y)	1.22	1.1	1.0
n_eff (y)	18	42	3886
runtime*	48.50 sec	50.76 sec	50.12 sec
n_eff (y) / runtime	0.37 / sec	0.82 / sec	77.53 / sec
n_divergent	53	0	0
traceplot (y)	0 - 1000 1250 1500 1750 2000	5-1000 1250 1500 1750 2000	10 - 5

^{*: 2} cores in parallel, including compiling time

How about Bounded Parameters?

cognitive model

statistics

$$\begin{split} \tilde{\theta} \sim Normal(0,1) \\ \theta = \mu_{\theta} + \sigma_{\theta} \tilde{\theta} \\ \theta \in (-\infty, +\infty) \end{split} \qquad \begin{aligned} \tilde{\theta} \sim Normal(0,1) \\ \theta = Probit^{-1}(\mu_{\theta} + \sigma_{\theta} \tilde{\theta}) \\ \theta \in [0,1] \end{aligned}$$

constraint	reparameterization
$\theta \in (-\infty, +\infty)$	$\theta = \mu_{\theta} + \sigma_{\theta} \tilde{\theta}$
$\theta \in [0, N]$	$\theta = Probit^{-1}(\mu_{\theta} + \sigma_{\theta}\tilde{\theta}) \times N$
$\theta \in [M,N]$	$\theta = Probit^{-1}(\mu_{\theta} + \sigma_{\theta}\tilde{\theta}) \times (N-M) + M$
$\theta \in (0, +\infty)$	$\theta = exp(\mu_{\theta} + \sigma_{\theta}\tilde{\theta})$

statistics

```
Apply to Our Hierarchical RL Model
```

```
parameters {
   real<lower=0,upper=1> lr_mu;
   real<lower=0,upper=3> tau_mu;

   real<lower=0> lr_sd;
   real<lower=0> tau_sd;

   real<lower=0,upper=1> lr[nSubjects];
   real<lower=0,upper=3> tau[nSubjects];
}
```

```
parameters {
 real lr mu raw;
 real tau mu raw;
 real<lower=0> lr sd raw;
 real<lower=0> tau sd raw;
 vector[nSubjects] lr raw;
 vector[nSubjects] tau raw;
transformed parameters {
 vector<lower=0,upper=1>[nSubjects] lr;
 vector<lower=0,upper=3>[nSubjects] tau;
 for (s in 1:nSubjects) {
   lr[s] = Phi_approx( lr_mu_raw + lr_sd_raw * lr_raw[s] );
   tau[s] = Phi approx( tau mu raw + tau sd raw * tau raw[s] ) * 3;
```

Apply to Our Hierarchical RL Model

```
model
 lr sd \sim cauchy(0,1);
 tau sd \sim cauchy(0,3);
        ~ normal(lr_mu, lr_sd);
        ~ normal(tau mu, tau sd) ;
 tau
 for (s in 1:nSubjects) {
   vector[2] v;
   real pe;
   v = initV;
   for (t in 1:nTrials) {
      choice[s,t] ~ categorical logit( tau[s] * v );
      pe = reward[s,t] - v[choice[s,t]];
      v[choice[s,t]] = v[choice[s,t]] + lr[s] * pe;
```

```
model {
    Ir_mu_raw ~ normal(0,1);
    tau_mu_raw ~ normal(0,1);
    Ir_sd_raw ~ cauchy(0,3);
    tau_sd_raw ~ cauchy(0,3);

    Ir_raw ~ normal(0,1);
    tau_raw ~ normal(0,1);

    for (s in 1:nSubjects) {
        ...
```

```
generated quantities {
  real<lower=0,upper=1> lr_mu;
  real<lower=0,upper=3> tau_mu;

lr_mu = Phi_approx(lr_mu_raw);
  tau_mu = Phi_approx(tau_mu_raw) * 3;
}
```

Exercise XII

statistics

```
.../07.optm_rl/_scripts/reinforcement_learning_hrch_main.R
```

- TASK: (I) Complete the Matt Trick
- (2) fit the optimized hierarchical RL model

```
> source('_scripts/reinforcement_learning_hrch_main.R')
> fit_rl4 <- run_rl_mp2(optimized = TRUE)</pre>
```

Hierarchical Fitting – Optimized

statistics

Posterior Means (hrch)

Posterior Means (hrch + optm)

statistics

computing

Comparing with True Parameters

Posterior Means (indv)

Posterior Means (hrch) Posterior Means (hrch+optm)

True Parameters

statistics

computing

Posterior Predictive Check

AN JEST 101

Happy Computing!