目 录

第一章	Riemann 曲面的概念 ······	1
§ 1	曲面的概念	1
§ 2	Riemans 曲面的定义 ······	2
§ 3	Riemann 曲面的简单例子	5
§ 4	带边界的 Riemann 曲面 ·······	7
第二章	Weierstrass 意义下的解析函数与 Riemann 曲面	10
§ 1	完全解析函数	10
§ 2	解析图象	13
§ 3	代数函数	17
第三章	蹇羞曲面····································	31
§ 1	光滑覆蓋曲面	31
§ 2	弧的提升与正则覆盖曲面	32
§ 3	曲线的同伦与基本群	35
'§ 4	单值性定理及其应用	37
§ 5	单连通 Riemann 曲面解析开拓的连贯性定理 ······	40
§ 6	基本群的子群与覆盖曲面	42
§ 7	覆盖变换群	44
第四章	微分形式与积分······	48
§ 1	微分形式	48
§ 2	微分 形式的积分 ····································	53
§ 3	Stokes 公式及其应用	55
§ 4	调和微分与全纯微分	57
第五章	单值化定理及其应用······	63
§ 1	次调和函数与 Dirichlet 问题的 Perron 解法	63
§ 2	Riemann 曲面的可数性······	72
§ 3	开 Riemann 曲面的 Green 函数、调和测度与最大值原理···	77
§ 4	Riemann 曲面的分类 ····································	80

§ 5	Green 函数的一些性质	83
§ 6	抛物型 Riemann 曲面的一类具有奇点的调和函数 ·········	87
§ 7	单值化定理及其证明	93
§8	用万有覆盖曲面及万有覆盖变换群构造 Riemann 曲面	99
§ 9	线分式变换的类型与不动点	103
§ 10	单位圆内的线分式变换与非欧几何 ······	109
§ 11	Klein 群与 Riemann 曲面	114
§ 12	七种特殊类型的 Riemann 曲面	120
§ 13	Fuchs 群与双曲型 Riemann 曲面	122
第六章	微分形式空间·····	131
§ 1	可测微分空间及其几个重要的子空间	131
§ 2	逐段解析的简单闭曲线对应的微分	134
§ 3	光滑算子的一个引理	136
§ 4	Weyl 引理与调和微分子空间	142
§ 5	具有极点的调和微分和解析微分的存在性	148
第七章	紧 Riemann 曲面	154
§ 1	紧 Riemann 曲面上的调和微分与解析微分空间 ········	154
§ 2	亚纯微分及其双线性关系式	159
§ 3	除子与亚纯函数空间	163
§ 4	Ricmann-Roch 定理	166
§ 5	9次全纯微分空间	172
§ 6	Weierstrass 间隙数与 Weierstrass 点	175
第八章	非紧 Riemann 曲面······	186
§ L	紧 Riemann 曲面上的初等微分与 Cauchy 积分公式	186
§ 2	非紧 Riemann 曲面上的域的初等微分与 Cauchy 积分公式。	••••
	***************************************	191
§ 3	Runge 逼近定理	192
§ 4	Mittag-Leffler 定理与非紧 Riemann 曲面上亚纯函数的构造。	
	***************************************	196
§ 5	Weieratrass 定理与非紧 Riemann 曲面的全纯函数的构造…	200
金老女皇	**************************************	204

第一章 Riemann 曲面的概念

§1 曲面的概念

曲面是指一个连通的 Hausdorff 空间 W,附加上一族 $\{(U_a, z_a)\}$,其中 U_a 是 W 的开集, z_a 是 U_a 到平面 C 内的开集上的拓扑映照, U_a 组成W的开覆盖,即 $W=\bigcup_{a}U_a$.

一个曲面 W,局部地在每一个 U_a 上考虑时,通过拓扑映 照 z_a , U_a 与平面 C 的开集 z_a (U_a) ——对应, W 局部地看就是平面 开集,简单地说,曲面是局部平面化的 Hausdorff 空间。

对任意 $p \in U_a$, $z_a(p)$ 称为局部参数,局部坐标或局部变数, U_a 称为局部参数邻域, z_a 称为局部参数映照。 如果 $p_a \in U_a$,圆 $D = \{|z - z_a(p_a)| < r\} \subseteq z_a(U_a)$,则 $\Delta = z_a^{-1}(D)$ 称为以 p_a 为心的局部参数圆。W上每一点 p_a 都存在以 p_a 为心的局部参数圆。

曲面W上的弧(或称曲线,路径),按定义是指一个连续映照 $\gamma:[a,b]\to W$, $t\in[a,b]$, $t\longmapsto \gamma(t)$. 我们将用 v 表示弧的连续 映照,或弧上的点组成的集合 $\gamma=\{\gamma(t):a\leqslant t\leqslant b\}$. $\nu(a)$ 称为起点, $\gamma(b)$ 称为终点. 如果 $\gamma(a)=\gamma(b)$,则 γ 称为闭曲线,我们还要约定,如果作参数变换 $\tau:[a,b]\to\{c,d\}$,使

$$r(t) = c + \frac{d-c}{b-a}(t-a),$$

则认为弧 $r: [c, d] \to W$, $\tau \mapsto r(\tau)$ 和 $r_i: [a, b] \to W$, $t \mapsto r_i(t) = r(\tau(t))$ 是相同的。 因此,弧总可以定义为 $r: [0, 1] \to W$, $t \mapsto r(t)$, $0 \le t \le 1$.

回顾空间的连通性。拓扑空间称为**连通的**,如果它不能分解 为两个非空的互不相交的开集的和集。 拓扑空间称为**孤连通的**, 如果它的任何两点可用一弧来连接,即存在一条弧,起点和终点分 别是这两点。

弧连通空间一定是连通空间,对曲面来说,反过来结论也成立。

定理1.1. 曲面是弧连通的.

证明。设W为曲面,首先注意到,对W的三点 p_1 , p_2 和 p_3 ,如果 p_1 和 p_2 可用弧连接, p_2 和 p_3 可用弧连接,则 p_1 和 p_3 也可用弧连接。于是我们只要证明,对固定点 p_0 ,W上任一点 p_1 与 p_2 可用弧连接,为此,设

$$A = \{p \in W : p \leq p_0 \text{ 可用弧连接}\},$$

我们要证明 A = W. 根据W的连通性,如果我们证明了, A是开集,W = A也是开集,而 $p_0 \in A$, $A = \emptyset$,因此 $W = A = \emptyset$,便有 A = W。

设 $p \in A$,存在以 p 为心的局部参数圆 Δ , Δ 内任一点 q 与 p 可用弧连接,又 p_0 与 p 可用弧连接,因此 q 与 p_0 可用弧连接。于是 $\Delta \subset A$,A 是开集,如果 $p \in W - A$,则 p_0 与 p 不能用弧连接,由此推出, $\forall q \in \Delta$,q 与 p_0 也不能用弧连接, $\Delta \subset W - A$,W - A 是开集,定理证完。

曲面称为**紧的**或闭的,如果它的任何开覆盖,总存在有限的子覆盖,非紧的曲面称为**开曲面**。

§ 2 Riemann 曲面的定义

Riemann 曲面是指一个连通的 Hausdorff 空间 W, 加上一族 $\{(U_a, z_a)\}$, 满足下列条件:

R1. 每一个 U_a 是W上开集,对应的 z_a 是 U_a 到复平面 C 的开集 $z_a(U_a)$ 的拓扑映照;

- R2. 所有的 U_a 组成W的开覆盖,即 $W=\bigcup U_a$;
- R3. 如果 $U_{\alpha} \cap U_{\alpha} \neq \emptyset$, 则映照

$$z_{\theta} \circ z_{\theta}^{-1} \colon z_{\theta}(U_{\theta} \cap U_{\theta}) \to z_{\theta}(U_{\theta} \cap U_{\theta})$$

是一一解析的映照,即共形映照。

定义中的条件 R1 和 R2 说明 Riemann 曲面是一个曲面,但此曲面又附加了条件 R3. 我们称族 $\{(U_a, z_a)\}$ 为 Riemann 曲面的复结构。

 U_a 也称为局部参数邻域, z_a 称为局部参数映 照, $\forall p \in U_a$,对应的 $z_a(p)$,称为 p 的局部参数,或称为局部坐标和局部单值化参数,当 $p \in U_a \cap U_B$ 时, $z_B \circ z_a^{-1}$ 称为局部参数变换,它把 p 的局部参数 $z_a(p)$ 变为局部参数 $z_B(p)$,即

$$z_{\beta}(p) = z_{\beta} \circ z_{\alpha}^{-1}(z_{\alpha}(p)).$$

Riemann 曲面W上的点 p, 有时就用局部参数 $z = z_o(p)$ 表示,或简单地用 z 表示。

根据 Riemann 曲面的定义,在每个局部参数邻域 U_a 内考虑时, U_a 中的点与 C 内开集 $z_a(U_a)$ 的点(局部参数)——对应,而不同的局部参数通过局部参数变换联系,局部参数变换是共形映照。因此,单复变函数论中的一些共形不变的概念,例如解析函数,调和函数,次调和函数及它们的极值原理,共形映照及拟共形映照,解析曲线与逐段解析曲线等,都可以通过局部参数邻域搬到Riemann 曲面上。我们将逐步给予介绍。

现在,我们定义解析函数和共形映照。

Riemann 曲面W上的域 G,也是一个 Riemann 曲面,它的复结构由W诱导出,定义为 $\{(U_a \cap G, z_a | U_a \cap G)\}$ 。 通常为了方便, $U_a \cap G$ 和 $z_a | U_a \cap G$ 也用 U_a 和 z_a 表示。 这里,符号 $z_a | U_a \cap G$ 表示映照 z_a 在 $U_a \cap G$ 上的限制。

定义. 设 $G \subset W$ 为一个域,函数 $f:G \to C, p \mapsto f(p)$ 称为在 G内解析或全纯的,如果在任何局部参数邻域 U_a 内,在局部参数 $z = z_a(p)$ 下,函数

$$f(p) = f(z_a^{-1}(z)) = f_a(z)$$

对 z 在 $z_a(U_a)$ 内是解析的.

如果 $p \in U_u \cap U_\theta$, p 又有局部参数 $w - z_\theta(p)$, 则 $f(p) = f(z_\theta^{-1}(w)) - f_\theta(w)$.

但 $w = z_{\beta} \circ z_{\beta}^{-1}(z)$, $f_{\beta}(w) = f_{\alpha}(z_{\alpha} \circ z_{\beta}^{-1}(w))$. 因此,如果 f_{α} 对 z_{α} 是解析的. $z_{\alpha} \circ z_{\beta}^{-1}$ 是共形映照, $f_{\beta}(w)$ 对 w 也是解析的,这就证明,在 Riemann 曲面上定义解析函数是合理的。对其它共形不变的概念也同样是合理的。

Riemann 曲面上解析函数的存在性是一个重要问题。

命題. 设W为 Riemann 曲面, $\{(U_a, z_a)\}$ 是它的复结构,则每一个局部参数映照 z_a : $U_a \rightarrow z_a(U_a) \subset \mathbb{C}$ 就是定义于 U_a 内的一一解析函数(或称解析映照)。

这命题是显然的,它说明,Riemann 曲面上局部解析函数总是存在的。反过来,如果 U 是W 的开集,中是 U 到 C 的开集的一一解析映照,则称 U 为W 的可容许的局部参数邻域, φ 为可容许的局部参数映照。 把所有可容许的 (U,φ) 并到W 的原定义的复结构中去,得到W 的扩充复结构,不难看出,它仍满足条件 R1, R2 和 R3。以后,对于 R Riemann 曲面 W,局部参数邻域和局部参数映照,将取之于W 的扩充复结构,这样将是很方便的。例如,对 $V_{P0} \in W$,我们可以取局部参数邻域 U,参数映照 $z = \varphi(p)$,使 $p_0 \in U$, $\varphi(p_0) = 0$ 。 而且还可使 $\varphi(U)$ 包含圆 D: |z| < 1,在W 上存在 p_0 为心的局部参数圆 $\Delta = \varphi^{-1}(D)$ 。

定义. 设W和 W' 为 Riemann 曲面,映照 $f:W\to W'$ 称为解析映照,如果 f 是连续的,且对于 $\forall p_0 \in W$, $q_0 = f(p_0)$,对 p_0 和 q_0 的任何局部参数邻域 U 和 U',局部参数映照 $z=\varphi(p)$ 和 $w=\varphi'(q)$, $z_0=\varphi(p_0)$, $w_0=\varphi(q_0)$, 在局部参数下

$$w = \varphi' \circ f \circ \varphi^{-1}(z)$$

在点 zo 的邻域内是解析的。

如果 $f: W \to W'$ 是一一解析且在上的(即 f(W) = W'),则 f 称为W到 W' 上的**共形映照**。这时,我们称W和 W' **共形等价**。

解析映照 $f:W\to \mathbb{C}$ 就是**全纯函数**,而 $f:W\to \mathbb{C}-\mathbb{C}\cup\{\infty\}$ 则称为**亚纯函数**.

§ 3 Riemann 曲面的简单例子

- 1) 复平面 C 在通常意义下是 Riemann 曲面,局部参数邻域是 C 的开集,局部参数映照是恒等映照。
- 2) 扩充复平面 $\bar{C} = C \cup \{\infty\}$ 也是 Riemann 曲面,局部参数 邻域及局部参数映照取为

$$U_0 = \overline{\mathbb{C}} - \{\infty\}, \ z_0 = z,$$

$$U_1 = \overline{\mathbb{C}} - \{0\}, \ z_1 = \begin{cases} 1/z, \ z \neq \infty, \\ 0, \ z = \infty. \end{cases}$$

这里 $U_0 \cap U_1 = \mathbb{C} - \{0\}$, 映照 $z_1 \circ z_0^{-1} \colon \mathbb{C} - \{0\} \to \mathbb{C} - \{0\}$ 为 $z \mapsto \frac{1}{z}$ 是一一解析的。

3) Riemann 球面 S. S是 R^3 中的单位球面: $x_1^2 + x_2^2 + x_3^2 = 1$. 设平面 $x_3 = 0$ 是复平面 C, 取 S到 C 的球极投影。在 S 上定义复结构,使 S 成为 Riemann 曲面,局部参数邻域和局部参数映照取为

$$U_0 = S - \{(0, 0, 1)\}, \quad z_0 = \frac{x_1 + ix_2}{1 - x_3},$$

$$U_1 = S - \{(0, 0, -1)\}, \quad z_1 = \frac{x_1 - ix_2}{1 + x_3}.$$

显然,在 $U_0 \cap U_1$ 内, $z_0 \circ z_1 = 1$, $z_1 \circ z_0^{-1}$; $C - \{0\} \to C - \{0\}$ 为 $z \mapsto \frac{1}{z}$. 这就说明,局部参数变换是一一解析的。 s 是 Riemann 曲面。 同时,球极投影是 s 到 \bar{C} 的共形映照,s 共形等价于 \bar{C} .

· Ł.,

4) 环面。在拓扑上,把一个平行四边形对边上的点恒等(粘合)起来就成为环面。现在,我们要在恒等对边的过程中,给出复结构,使环面成为 Riemann 曲面。

设 $w_1, w_2 \in \mathbb{C}, w_1/w_2$ 不是实数,这时点 $O, w_1, w_1 + w_2, w_2$ 组成平行四边形 R的顶点。现在,要恒等 R 对边的等价点,使之

成为一个 Riemann 曲面,考虑 C 到 C 的线性变换 $S(z) = z + n_1 w_1 + n_2 w_2, n_1, n_2 \in \mathbb{Z}$ (整数集),所有的 S 组成一个群 Γ . 对 C 的点定义一个等价关系"~": $z_1 \sim z_2 \iff \exists S \in \Gamma$,使 $z_2 = S(z_1)$,即存在 $n_1, n_2 \in \mathbb{Z}$,使 $z_2 = z_1 + n_1 w_1 + n_2 w_2$, 把 C 的点按等价关系分类, $z_0 \in \mathbb{C}$,则 z_0 所在的等价类用 $[z_0]$ 表示之,即

$$[z_0] = \{z \in \mathbb{C}; z = S(z_0), S \in T\}$$

= \{z_0 + n_1 \omega_1 + n_2 \omega_2; n_1, n_2 \in \mathbf{Z}\}.

通常称之为一个轨道。

令

$$T = \{[z]; z \in \mathbb{C}\}.$$

定义自然投影映照 $\pi: \mathbb{C} \to T$,使 $\pi(z) = [z]$ 。 现在定义 T 的邻域系使 T 成为拓扑空间, π 是局部拓扑映照。

对任意 $[z_0] \in T$,在 C 内一定存在以 z_0 为心,以充分小的,为半径的圆 Δ ,使 Δ 内任两点不等价。因此, $\pi | \Delta : \Delta \rightarrow \pi(\Delta)$ 是一一映照,定义 $[z_0]$ 的邻域为

$$V_{[x_0]} = \pi(\Delta).$$

应该注意到,对 $\forall S \in \Gamma$,所有的 $S(\Delta)$ 是互不相交的圆,且 $\pi(S(\Delta)) = V_{[*a]}$,在这样定义的邻域系 $V_{[*a]}$ 下, T 成为拓扑空间,由于 π 把 C 的充分小的圆邻域——的映为 T 的邻域, π 是局部拓扑映照。不难验证, T 是连通的 Hausdorff 空间。

T是一个 Riemann 曲面。 局部参数邻域取为 $V_{[z_0]}$ 设 $\pi(\Delta) = V_{[z_0]}$,因此,对 $\forall s \in \Gamma$, $\pi(S(\Delta)) = V_{[z_0]}$;局部参数映照取为

$$(\pi | \Delta)^{-1} : V_{[z_0]} \to \Delta,$$

$$(\pi | S(\Delta))^{-1} : V_{[z_0]} \to S(\Delta).$$

考虑平行四边形 R, C 内每一点在 R 有一等价点,R 内部任两点不等价,R 的边上的点,有且仅有一等价点在对边上,因此 T 是 R 恒等对边的等价点而成的环面。

T是一紧 Riemann 曲面,因为 $T = \pi(R)$, π 是局部拓扑映照,因此T是紧的,这里,我们用了连续映照的一个性质:连续映

照把紧集映为紧集。

应该注意,这里我们用C的双周期群了构造 Riemann 曲面 T (环面),以后我们将看到,这一方法是具有一般性的。

证明的细节留作习题。

§ 4 带边界的 Riemann 曲面

类似于闭上半平面或闭单位圆,可以定义带边界的 Riemann 曲面。

带边界的 Riemann 曲面是一个连通的 Hausdorff 空间 W,加上一族 $\{(U_a, z_a)\}$ 满足下列条件:

R1. 族中每一个 U_a 是W的开集,对应的 z_a 是 U_a 到闭上半平面 $Imz \ge 0$ 的相对开集的拓扑映照;

R2. 所有的 U_a 组成W的开覆盖,即 $W=\bigcup U_a$;

 \bar{R} 3. 如果 $U_{\alpha} \cap U_{\beta} \rightleftharpoons \emptyset$,则映照

$$z_{\beta} \diamond z_{\alpha}^{-1} \colon z_{\alpha}(U_{\alpha} \cap U_{\beta}) \to z_{\beta}(U_{\alpha} \cap U_{\beta})$$

是闭上半平面的相对开集到另一相对开集的一一解析映照,其中如果 $z_a(U_a \cap U_b)$ 与实轴相交,则 $z_b \circ z_a^{-1}$ 可以越过实轴对称开拓为实轴对称域的一一解析映照。

我们称 U_a 为局部参数邻域,对应的 z_a 为局部参数映照。

仿照一般 Riemann 曲面,我们对带边 Riemann 曲面也可定义解析性的概念,根据条件 \bar{R} 3,局部参数映照 z_a 是 U_a 到闭上半平面相对开集的一一解析映照。

现在对带边界 Riemann 曲面W的点分类,对 $p_0 \in w$, $p_0 \in U_a$, 如果在局部参数映照 $z = z_a(p)$ 下, $Im z_a(p_0) > 0$,则 p_0 称为W的内点;如果 $Im z_a(p_0) = 0$,则 p_0 称为W的**边界点**,容易验证,这样的分类是合理的。

W的所有内点的集记为 W^0 , W^0 是一个 Riemann 曲面。 W的所有边界点的集记为 ∂W , 对任意 $\rho_0 \in \partial W$, 按定义 $\rho_0 \in W$

 U_a ,存在 p_0 的邻域 $U \subset U_a$ 及参数映照 $\varphi = z_a | U$,使得 $\varphi(p_0)$ 在实轴上, $\varphi \in U$ 到某一个闭半圆 $\{|z - \varphi(p_0)| < \delta, |mz| \ge 0\}$ 的一一解析映照。同时,闭半圆的实直径在 φ^{-1} 下的象是包含在 ∂W 内的一段解析弧, p_0 在这段解析弧上。这也就说明, ∂W 的分支由一些解析曲线组成。

现在定义带边 Riemann 曲面的共轭 Riemann 曲面。

对于上面定义的带边 Riemann 曲面 W,复结构为 $\{(U_a, z_a)\}$,则W作为连通的 Hausdorff 空间,加上族 $\{(U^*_a = U_a, z^*_a = -\bar{z}_a)\}$ 也成为一个带边 Riemann 曲面,记为 W^* ,称为原 Riemann 曲面W的共轭曲面。 这里只需验证一下条件 \bar{R} 3: 设 $U^*_a \cap U^*_b \neq \emptyset$,令 $\varphi_{\beta a} = z_{\beta} \circ z^{-1}_a$,则 $z^*_{\beta} \circ z^{*-1}_a$ 为 $-\overline{\psi_{\beta a}(-\bar{z}_a)}$ 也是一一解析的映照。

带边界的 Riemann 曲面W与共轭曲面 W^* 恒同边界的点,可作一个倍曲面如下:

令 $\hat{W} = W \cup W^*$,其中边界上的点看作是相同的。 定义 \hat{W} 的局部参数邻域与参数映照如下。

对于W的局部参数邻域 U_a , 如果 U_a 不包含W的边界点,则 U_a 取为 \hat{W} 的局部参数邻域,局部参数映照取为 $\varphi_a = z_a$.

对于 W^* 的局部参数邻域 U_a^* , 如果 U_a^* 不包含 W^* 的边界点,则 U_a^* 取为 \hat{V} 的局部参数邻域,局部参数映照 取为 $\varphi_a = -z_a^* = \bar{z}_a$,

如果W中的 U_a 包含W的边界点,则 W^* 中对应的 U_a^* 包含相应边界点,这时,W的局部参数邻域取为 $U_a \cup U_a^*$,局部参数映照取为

$$\varphi_a = \begin{cases} z_a & \text{在 } U_a \text{ 内}, \\ -z_a^* = \bar{z}_a, & \text{在 } U_a^* \text{ 内}. \end{cases}$$

 φ_a 把 $U_a \cup U_a^*$ 拓扑地映为 $z_a(U_a)$ 与它关于实轴对称的域之和。 在这样定义下, \hat{W} 成为一个 Riemann 曲面,称为W的倍 Riemann 曲面。

带边 Riemann 曲面W称为紧的,如果W作为拓扑空间是紧

的,对于一个紧带边 Riemann 曲面W,它的倍曲面 P 是一个紧 Riemann 曲面。

最后,我们举一些带边 Riemann 曲面的例子。

最简单的例子是闭单位圆与闭上半平面。

- 一个 Riemann 曲面挖去一些局部参数圆后,便成为带边界的 Riemann 曲面。
- 一般 Riemann 曲面的相对紧域 G, 即 G 是紧集者,如果 G的 边界 ∂G 由有限条解析曲线组成,则 $G \cup \partial G$ 是一个紧带边 Riemann 曲面。对于这样的域 G, 如果 G的余集没有紧的分支集,则 G称为正则域。

第二章 Weierstrass 意义下的解析函数 与 Riemann 曲面

§1 完全解析函数

Weierstrass 意义下的解析函数,是用函数元素及其解析开拓 定义的。

函数元素或称正则函数元素是指一个序对 (p(z), a), 其中 $a \in \mathbb{C}$, p(z) 具有幂级数展开式

 $p(z) = A_0 + A_1(z - a) + \cdots + A_n(z - a)^n + \cdots$, 它有收敛半径 $R_a > 0$, p(z) 即为收敛圆 $\{|z - a| < R_a\}$ 内的全纯函数。 a 称为 (p(z), a) 的中心,收敛圆记为 $K(a, R_a)$.

函数元素 (p(z), a) - (q(z), b), 当且仅当 a = b, 且在点 a = b 的邻域内 p(z) - q(z).

函数元素 (q(z), b) 称为 (p(z), a) 的**直接开拓**, 如果 $b \in K(a, R_a)$,且在 b 的邻域内 q(z) = p(z)。 显然,对每一点 $b \in K(a, R_a)$, (p(z), a) 有唯一的直接开拓 (q(z), b), 我们用 (q(z), b) = (p(z), b) 表示之.

函数元素沿路径的解析开拓定义如下,

设给定函数元素 (p(z), a), 路径 $r:[0,1] \to C$, $t \to r(t)$, r(0) = a, r(1) = b, 对 $t \in [0,1]$, 对应有一函数元素 $(p_t(z), r(t))$. 对每一点 $t_0 \in [0,1]$, 对应有 $(p_{t_0}(z), r(t_0))$, 任给充分小的 $\epsilon > 0$, 存在 $\delta > 0$, 使得当 $|t - t_0| < \delta$ 时, $|r(t) - r(t_0)| < \epsilon(r(t))$ 的连续性),如果这时总有 $(p_t(z), r(t))$ 是 $(p_{t_0}(z), r(t_0))$ 的直接开拓,则称终点元素 $(p_t(z), b)$ 是 $(p_0(z), a)$ 沿路径 r 的解析开拓或解析开拓得到的函数元素.

定理1.1. 函数元素沿同一路径解析开拓, 得到的函数元素

是唯一的。

证明. 设函数元素 (p_0, a) 沿路径 $\gamma:[0, 1] \to C$ 有两个解析 开拓, $\iota \mapsto (p_\iota, \gamma(\iota)), \iota \mapsto (q_\iota, \gamma(\iota)), (p_0, \gamma(0)) = (q_0, \gamma(0)),$ $\gamma(0) = a$. 我们要证,对于 $\forall \iota \in [0,1], (p_\iota, \gamma(\iota)) = (q_\iota, \gamma(\iota)),$ 特别有 $(p_\iota, \gamma(1)) = (q_\iota, \gamma(1)).$

设 $\tau^* = \sup\{\tau \in [0,1]: \, \exists \, 0 \leq t \leq \tau \, \forall \, (p_i, \tau(t)) = (q_i, \tau(t))\}$. 我们只要证明, $(p_{\tau^*}, \tau(\tau^*)) = (q_{\tau^*}, \tau(\tau^*))$,且 $\tau^* = 1$.

因为对于充分小的 $\varepsilon > 0$,存在 $\delta > 0$,使当 $|\tau - \tau^*| < \delta$ 时, $|\gamma(t) - \gamma(t^*)| < \varepsilon$,(p_r , $\gamma(\tau)$) 是 (p_r^* , $\gamma(\tau^*)$) 的直接开拓,(q_r , $\gamma(\tau)$) 是 (q_r^* , $\gamma(\tau^*)$) 的直接开拓,当 $\tau^* - \delta < \tau < \tau^*$ 时,(p_r , $\gamma(\tau)$) = (q_r , $\gamma(\tau)$)。由此推出 (p_r^* , $\gamma(\tau^*)$) = (q_r^* , $\gamma(\tau^*)$)。又如果 $\tau^* < 1$,则当 $\tau^* < \tau < \tau^* + \delta$ 时,(p_r , $\gamma(\tau)$) = (p_r^* , $\gamma(\tau)$) = (p_r^* , $\gamma(\tau)$) , (p_r^* , $\gamma(\tau)$) = (p_r^* , $\gamma(\tau)$),(p_r^* , $\gamma(\tau)$) , (p_r^* , $\gamma(\tau)$) = (p_r^* , $\gamma(\tau)$), $\gamma(\tau)$ 。 这与 $\gamma(\tau)$ 。 为定义矛盾,故 $\gamma(\tau)$ 。 证完。

设所有正则函数元素组成的集为 A。

函数元素沿路径的解析开拓在A中定义一个等价关系~: $(p_0, a) \sim (p_1, b)$ 当且仅当 (p_1, b) 是 (p_0, a) 沿某一路径的解析开拓。用这等价关系~把A的元素进行分类,每一个类记之为F,称为 Weierstrass 类,或称为完全解析函数。注意,任取一个函数元素 $(p_0, a_0) \in F$,则F的函数元素是由 (p_0, a_0) 沿所有可能的路径的解析开拓。

我们把F的函数元素看成一个点 $\hat{p} = (p(z), a)$,把这个点集记之为 \hat{F} ,而用F表示函数, $F: \hat{F} \to \mathbb{C}$, $\hat{p} = (p(z), a) \mapsto$ $F(\hat{p}) = p(a)$ (中心值)。 这样F是一个函数,对于每一个函数元素即取中心值。

现在我们要把F的定义域 \tilde{F} 作成 Riemann 曲面,使F成为 Riemann 曲面 \tilde{F} 上的解析函数。

设 $\tilde{p} \in \tilde{F}$, $\tilde{p} = (p(x), a)$, 对于充分小的r, 定义 \tilde{p} 的邻域为

 $V_p = \{\hat{q} = (q(z), b); b \in K(a, r), (q(z), b) 是(p(z), a)$ 的直接开拓,即 $(q(z), b) = (p(z), b)\}.$

在这样定义的邻域下,产是一个拓扑空间,且是一个 Hausdorff 空间。这要证明,对 $\tilde{\rho}_1 = \tilde{\rho}_2$,存在 $V_{\tilde{\nu}_1}$ 和 $V_{\tilde{\nu}_1}$,使 $V_{\tilde{\nu}_1} \cap V_{\tilde{\nu}_2} = \emptyset$. 这是容易得到的。 设 $\tilde{\rho}_1 = (p_1(z), a)$, $\tilde{\rho}_1 = (p_2(z), b)$, $\tilde{\rho}_1 = \tilde{\rho}_2$,如果 a = b,则取 $K(a, r) \cap K(b, r) = \emptyset$,对应定义的邻域 $V_{\tilde{\nu}_1}$ 和 $V_{\tilde{\nu}_2}$,便有 $V_{\tilde{\nu}_1} \cap V_{\tilde{\nu}_1} = \emptyset$ 。 如果 a = b,则 K(a, r) = K(b, r),在其内部 $p_1(z) \cong p_2(z)$,因此对应的邻域 $V_{\tilde{\nu}_1}$, $V_{\tilde{\nu}_2}$,也有 $V_{\tilde{\nu}_1} \cap V_{\tilde{\nu}_2} = \emptyset$.

 \tilde{F} 是路径连通的。 事实上,对 \tilde{F} 上两点, $\tilde{p}_0 = (p_0(z), a)$, $\tilde{p}_1 = (p_1(z), b)$,一定存在一路径 $\gamma:[0,1] \to \mathbb{C}$,使得 $\gamma(0) = a$, $\gamma(1) = b$, $(p_1(z), b)$ 是 $(p_0(z), a)$ 沿路径 γ 的解析开拓。 设解析开拓为 $\iota \mapsto \tilde{p}_i = (p_i(z), \gamma(\iota))$,则映照 $\tilde{\gamma}:[0,1] \to \tilde{F}$, $\iota \mapsto \tilde{p}_i$ 定义一条连续路径。 我们只要证明 $\tilde{\gamma}(\iota)$ 的连续性。 对 $\iota_0 \in [0,1]$,由解析开拓定义,对充分小的 r > 0,存在 $\delta > 0$,使当 $|\iota - \iota_0| < \delta$ 时, $(p_i(z), \gamma(\iota))$ 是 $(p_{i_0}(z), \gamma(\iota_0))$ 的直接开拓,即 \tilde{p}_i 在 \tilde{p}_i 的邻域 V_{p_i} 内此即 $\tilde{\gamma}$ 的连续性。

现在定义 \tilde{F} 的复结构,使 \tilde{F} 成为 Riemann 曲面。

首先定义投影映照 $\pi:\tilde{F}\to C$,使 $\tilde{\rho}=(p(z),a),\pi(\tilde{\rho})-a$, π 也称为中心映照。我们要注意到,如果 $V_{\tilde{\rho}}$ 为对应于 K(a,r) 定义的邻域,则 $\pi|V_{\tilde{\rho}}:V_{\tilde{\rho}}\to K(a,r)$ 是一一的映照,由此推出是拓扑映照。

取 $V_{\tilde{r}}$ 作为局部参数邻域, $\pi | V_{\tilde{r}}$ 作为局部参数映照, \tilde{r} 就成为 Riemann 曲面。因为如果 $V_{\tilde{r}_1} \cap V_{\tilde{r}_2} \neq \emptyset$,设 $\pi(V_{\tilde{r}_2}) = K(a_1, r_1)$, $\pi(V_{\tilde{r}_2}) = K(a_2, r_2)$,则

$$\pi(V_{\tilde{p}_1}\cap V_{\tilde{p}_2})=K(a_1,r_1)\cap K(a_2,r_2),$$

局部参数变换

$$(\pi|V_{\delta_i})\circ(\pi|V_{\delta_i})^{-1}$$
 一 恒等映照。

因而是——解析映照。

直接看出, $\pi: \tilde{F} \to \mathbb{C}$ 是全纯映照,又 $F: \tilde{F} \to \mathbb{C}$ 是全纯函数。因为在 $\tilde{\rho} \to (p(z), a)$ 的局部参数邻域 $V_{\tilde{\rho}}$ 内,在局部参数下, $F|V_{\tilde{\rho}} = p(z)$ 是解析函数。

习题 1. 讨论 $z^{\frac{1}{s}}$ 的 Riemann 曲面,并证明它共形等价于 $C-\{0\}$.

习题 2. 讨论 $\log z$ 的 Riemann 曲面, 并证明它共形等价于 C.

§2解析图象

现在我们要扩充F使之成为解析图象。

引**理 2.1.** 设 G 为 C 的单连 通 域, $a_0 \in G$, 给 定 函 数 元 素 $(p_0(z), a_0)$,如果 $(p_0(z), a_0)$ 在 G 内沿任何路径可以解析开拓,则在 G 内存在唯一的解析函数 f(z),使得在 a_0 的邻域内 f(z) $\Rightarrow p_0(z)$.

注意,这时 $(p_0(t), a_0)$ 沿任何路径解析开拓得到的函数元素 为 (q(z), b) = (f(z), b).

这一引理在研究解析函数的 Riemann 曲面时是很有 用的。 我们将在以后证明(参看第三章定理 5.2)。

现扩充 F 的函数元素,对于 $a_0 \in \mathbb{C}$ (或 $a_0 = \infty$):

假设 1、对于充分小的 r > 0,在 $D_0 = \{0 < |z - a| < r\}$ 内 F 有一个正则函数元素 $\tilde{p}_1 = (p_1(z), a_1), a_1 \in D_0$,使得 $(p_1(z), a_1)$ 在 D_0 内沿任何路径可以解析开拓。当然,开拓后的正则函数元素一定属于 F。

假设 2、作圆周 $C: |z-a_0| - |a_1-a_0|$, $(p_1(z), a_1)$ 沿路 径 C 按反时针方向最少开拓 λ 次后,依次得到函数元素

$$\tilde{p}_1 = (p_1(z), a_1), \ \tilde{p}_2 = (p_2(s), a_1), \cdots, \ \tilde{p}_k = (p_k(s), a_1), \\ \tilde{p}_{k+1} = (p_{k+1}(z), a_1) = (p_1(z), a_1) = \tilde{p}_{k+1}$$

沿实轴方向的半径 l, 割开 D_0 成为单连通域 D_0^i . 不妨设 $a_0 \in D_0^i$, 根据引理 2.1, 对于 $1 \le i \le \lambda$, $(p_i(s), a_i)$ 在 D_0^i 内沿

任何路径解析开拓后,得到 D_0 内的解析函数 $f_1(z)$, 使得 $(p_i(z), a_1) = (f_i(z), a_1)$, $f_{k+1}(z) = f_k(z)$. 因此, $f_k(z)$ 依次越过边界解析开拓,我们有序列

$$f_1(z), f_2(z), \dots, f_1(z), f_1(z)$$

由此得到一个定义在 D_0 的 λ 叶覆盖圆上的解析函数 q(z). 作变 数变换 $z-a_0=t^{\lambda}$, D_0 变为 $\{0<|z|< r^{\frac{1}{\lambda}}\}$, 我们便得到定义于 $\{0<|z|< r^{\frac{1}{\lambda}}\}$ 内的解析函数 f(z), 使得对于 $z-a_0=z^{\lambda}$, f(z)=q(z).

假设 3. $\iota = 0$ 是 $f(\iota)$ 的可去奇点或极点,因此我们有展开式:

$$f(t) = \sum_{n=\mu}^{\infty} A_n t^n, \ \mu \, \text{为整数},$$

代人 $z - a_0 = t^2$ 后,得到

$$q(z) = \sum_{n=\mu}^{\infty} A_n(z-a_0)^{\frac{n}{1}}, |z-a_0| < r.$$

定义函数元素 $(q(z), a_0)$, 当 $\lambda = 1$, 且有 $\mu < 0$ 时, $(q(z), a_0)$ 称为极元素; $\lambda > 1$, $\mu \ge 0$ 时称为**正则代数函数元素**; $\lambda > 1$, $\mu < 0$ 时则称为**极代数函数元素**. $\lambda > 1$ 时则通称为**代数函数元素**. $\lambda > 1$

假如 $a_0-\infty$,则取 $D_0=\left\{\frac{1}{r}<|z|<\infty\right\}$,在同样假设下,我们将得到函数元素 $(q(z),\infty)$,其中

$$q(z) = \sum_{n=\mu}^{\infty} A_n z^{-\frac{n}{1}}, |z| > \frac{1}{r}.$$

当 $\lambda = 1$, $\mu \ge 0$ 时,则是正则函数元素, $\lambda > 1$ 时,是代数函数元素,这时 $\mu \ge 0$ 时称为正则代数函数元素, $\mu < 0$ 时称为极代数函数元素。

 何路径解析开拓得到的正则函数元素为 (q(z), b), 在以 b 为心的充分小的圆内, q(z) 将有 λ 个单值分支 $q_1(z)$, …, $q_2(z)$, 以 b 为中心有 λ 个正则函数元素 $(q_1(z), b)$, …, $(q_2(z), b)$ 。 (q(z), b) 将表示这 λ 个正则函数元素之一。

假设 3 成立当且仅当,存在整数 $K \ge 0$,使得对于充分小的 $\delta > 0$, $(z - a_0)^k q(z)$ 在 $\{0 < |z - a_0| < \delta\}$ 内有界,这点,我们将于本章后面用到。

对 $a_0 \in \mathbb{C}$ 或 $a_0 = \infty$, 在假设 1—3 成立下,我们定义一个函数元素 $(q(x), a_0)$, 称为 F 的奇异元素,其中包括极函数元素及代数函数元素。当 $a_0 = \infty$ 时还有正则函数元素。

奇异函数元素 $(q(z), a_0) = (p(z), a_0)$,当且仅当存在充分小的 $\delta > 0$,对 $\{0 < |z - a_0| < \delta\}$ 内的点 a 和 b,正则函数元素 (q(z), a) 总可以沿 $\{0 < |z - a_0| < \delta\}$ 内的路径解析开拓到 (p(z), b). 当然,中心 a_0 不同的元素总认为不相等。

正则函数元素 (p(s), b) 称为奇异函数元 素 $(q(z), a_0)$ 的直接解析开拓,如果 $0 < [b-a_0] < r$,且在 b 的邻域内有 p(z) = q(s)。精确地说,p(z) 与 q(s) 的 λ 个单值分支之一恒等。 这里要注意,对于 $0 < |b-a_0| < r$,在 b 上有且仅有 λ 个正则函数元素 $(q_1(z), b), \dots, (q_k(z), b)$ 是 (q(z), b) 的直接开拓。

对于奇异函数元素 $(q(z), a_0)$, a_0 称为中心, $q(a_0)$ 称为中心值.

把完全解析函数 F 的所有奇异函数元素并入 F 得到的函数元素集,记为 F ,称为**解析图象**. F 的函数元素作为点 $\tilde{p} = (p(x), a)$ 组成的点集记之为 F ,其中奇异函数元素对应之点叫**奇点**. F 作函数考虑时, $\hat{F}: F \to \bar{\mathbb{C}}$, $\hat{F}(\tilde{p}) = p(a)$ 即是取中心值的函数.

现在我们要定义 \hat{F} 为 Riemann 曲面,使 \hat{F} 是亚纯函数。 同样,我们也定义中心投影映照 $\pi: \hat{F} \to \bar{\mathbb{C}}$ 使 $\pi(\tilde{p}) = a$.

首先,我们知道, \hat{F} 是由 \hat{F} 加上对应奇异元素的点组成。 因此,我们只要对这种点定义局部参数邻域与局部参数映照。 奇异函数元素 $\hat{q} = (q(x), a)$ 的邻域 $V_{\bar{s}}$ 定义为,对于充分小的, >

0, $V_i = \{\tilde{p} = (p(z), b); 0 < |b-a| < r, (p(z), b) \neq (q(z), b) \}$

b) 是 (q(z), a) 的直接开拓} $\bigcup \tilde{q}$, 其中 $q(z) = \sum_{n=r}^{\infty} A_n z^{-\frac{n}{1}}, \frac{1}{r} < |z| < \infty$.

在这样定义的邻域下, \tilde{F} 是拓扑空间。

 \tilde{F} 是 Hausdorff 空间。 事实上,若对于两个奇异函数元素 $\tilde{q} = (q(z), a) \succeq \tilde{p} = (p(z), a)$, 当 r 充 分 小 时, 在 $\{0 < |z-a| < r\}$ 内不可能有相同的直接开拓,因此对应定义的邻域 V_a 和 $V_{\tilde{p}}$ 有 $V_a \cap V_{\tilde{p}} = \emptyset$.

F 是黎曼曲面,我们只要对奇异元素定义局部参数邻域和局部参数映照。

设
$$\tilde{q} = (q(z), a)$$
, 其中 $a \neq \infty$, 且
$$q(x) = \sum_{n=0}^{\infty} A_n(z-a)^{\frac{n}{2}}, \quad |z-a| < r.$$

取 V_a 为局部参数邻域。 我们知道, $\pi | V_a - \{\tilde{q}\}: V_a - \{\tilde{q}\} \rightarrow \{0 < |z-a| < r\}$ 是 λ 对 1 的映照,作变换 $z-a=\iota^{\lambda}$, $|z| < r^{\frac{1}{4}}$,取 V_a 的局部参数映照为 $(\pi | V_a - a)^{\frac{1}{4}} = \iota$. 显然,

$$t: V_{\bar{s}} \to \{t: |t| < r^{\frac{1}{\lambda}}\},$$

这映照是一一的,且是拓扑映照。

对于 $\tilde{q} = (q(z), \infty)$, $q(z) = \sum_{k=r}^{\infty} A_k z^{-\frac{1}{4}}$, $\frac{1}{r} < |z|$,类似地取局部参数邻域为 V_s ,局部参数映照则取为

$$(\pi | V_{\bar{s}})^{\frac{1}{\lambda}} = \frac{1}{\epsilon} : V_{\bar{s}} \to \{i : |i| < r^{\frac{1}{\lambda}}\},$$

现在验证局部参数变换是一一解析的。 设 $V_i \cap V_i \neq \emptyset$, $\tilde{q} = (q(x), a)$ 为奇异元素, $\tilde{p} = (p(x), b)$ 为正则函数元素,注

意到 $\tilde{q} \in V_a \cap V_a$, 设 V_a 的局部参数映照为 $i = (\pi | V_a - a)^{\frac{1}{2}}$, V_b 的局部参数映照 为 $\pi | V_b$. 设 $\pi | V_a : V_a \to \{ | z - a | < r_i \}$, $\pi | V_b : V_b \to \{ | z - b | < r_2 \}$. 因此 $(\pi | V_a) \circ (\pi | V_b)^{-1}$ 是 $K = \{ | z - a | < r_i \} \cap \{ | z - b | < r_2 \}$ 上的恒等映照,局部参数变换

 $t = (\pi | V_{\bar{p}} - a)^{\frac{1}{4}} o(\pi | V_{\bar{p}})^{-1}(z) = (z - a)^{\frac{1}{4}}$

是定义于K内的——解析映照。因为 $a \in K$,K 是单连通域, $(z-a)^{\frac{1}{4}}$ 在K 有单值解析分支。

因此, \tilde{F} 是 Riemann 曲面。同时直接看出, $\pi: \tilde{F} \to \mathbb{C}$ 和 $F: \tilde{F} \to \mathbb{C}$ 都是亚纯函数。

对应于代数函数元素的点 $\tilde{q} = (q(s), a)$ 称为 \tilde{P} 的代数分支点,相应的正整数 1 > 1,称为分支点的级。最后应指出, \tilde{P} 的连通性没被证明。

习题。证明 \tilde{F} 是路径连通的空间。

§ 3 代数函数

设 F(z,w) 为 z,w 的多项式,对 w 是 m 次的,可表为:

 $F(z, w) = a_0(z)w^* + a_1(z)w^{m-1} + \cdots + a_m(z),$

其中 $a_s(z)$,…, $a_m(z)$ 是 z 的多项式。 假设 F(z,w) 是不可约的,即不能有分解式 $F(z,w) = F_1(z,w)$ · $F_2(z,w)$ 使 F_1 , F_2 都是非零次多项式。

考虑方程 F(z, w) = 0,对于每一个 z,它具有 m 个根 $w_1(z)$,…, $w_n(z)$ 。 我们要把它考虑为解析图象,并且用 F(z, w) = 0 定义代数函数、为此,我们要讨论正则函数元素。

正则函数元素 (w(z), a) 称为 F(z, w) = 0 的函数元素, 如果在 w(z) 的定义域 K(a, r) 内 F(z, w(z)) = 0.

对于给定的 $a \in \mathbb{C}$, F(a, w) = 0 可能有重根,我们要证明有重根的 a 点只有有限多个,为此我们要用下面的定理。

定理 3.1. 如果 P(z, w) 和 Q(z, w) 是互素的多项式,则

仅存在有限个 z_0 , 使得 $P(z_0, \omega) = 0$ 与 $Q(z_0, \omega) = 0$ 具有公共根.

P(z, w) 和 Q(z, w) 称为**互素的**,如果它们没有非常数的公因子。

证明. 设 P(z, w), Q(z, w) 对w的次数分别为n和m, 假 定 $n \ge m$,

$$P(z, w) = a_0(z)w^n + \cdots + a_n(z),$$

$$Q(z, w) = b_0(z)w^n + \cdots + b_n(z).$$

应用辗转相除法,首先得 $P(z,w) \rightarrow q(z,w)Q(z,w) + r(z,w)$ 其中 q(z,w) 是w的多项式,其系数为 z 的有理函数,上式两边乘上 z 的最少次数的多项式 C_0 , 使得 $C_0P = q_0Q + R_1(q_0 和 R_1 + 2 m)$ 是 z 和w的多项式)。如此辗转相除得到

其中 q_k 和 R_k 是 z 和 w 的多项式, C_k 是 z 的多项式,但 R_s 是 z 的多项式。 $R_s = R_s(z)$ 称为 P = Q 的结式。

设 z_0 使得存在 w_0 , 满足 $P(z_0, w_0) = 0$ 和 $Q(z_0, w_0) = 0$ 则代入上面辗转式后,得到 $R_*(z_0) = 0$. 即 z_0 必是多项式 $R_*(z)$ 的零点,从而只有有限多个、证完。

设点集

 $T_1 = \{a \in \mathbb{C}; F(a, w) = 0 \text{ 和 } F_W(a, w) = 0 \text{ 具有公共根} \}$ 根据定理 3.1, T_1 是有限集。又设

$$T_0 \leftarrow \{z \in C; a_0(z) = 0\},$$

$$T \leftarrow T_1 \cup T_0 \cup \{\infty\}.$$

这些集都是有限集,7的点称为临界点。令

$$T_{\tau} = \tilde{\mathbb{C}} - T$$

则对于任一点 $a \in T_*$, F(a, w) = 0 有 m 个 互 不相同的根 $w_*(a)$, ..., $w_*(a)$.

定理 3.2. 设 $a \in T_s$, $b \to F(a, w) = 0$ 之一根,则存在唯一的正则函数元素 (w(z), a), w(a) = b, 在 w(z) 的定义域 K(a, r) 内, F(z, w(z)) = 0.

此定理称为 F(z, w) = 0 的函数元素存在性定理。

证明。由假设,
$$F(a,b)=0$$
, $\frac{\partial F}{\partial w}(a,b) \approx 0$ 。

$$F(z, w)$$
 按 $w - b$ 的展式为
$$F(z, w) = H_0(z, b) + H_1(z, b)(w - b) + \cdots + H_m(z, b)(u - b)^m,$$

其中

$$H_0(z, w) = F(z, w), H_0(a, b) = 0;$$

$$H_1(z, w) = \frac{\partial F(z, w)}{\partial w}, H_1(a, b) \approx 0;$$

$$H_2(z, w) = \frac{1}{2!} \frac{\partial^2 F(z, w)}{\partial w^2};$$

$$H_m(z,w) = \frac{1}{m!} \frac{\partial^n F(z,w)}{\partial w^m};$$

对某一正数M,取充分小的 r > 0,R > 0,2R < 1,使得 $z \in K(a,r)$, $w \in K(b,R)$ 时,总有

$$\begin{aligned} |H_0(z, w)| &\leq \frac{M}{4}, \\ |H_1(z, w)| &\geq M > 0, \\ R(|H_1(z, w)| + \cdots + |H_m(z, w)|) &\leq \frac{M}{4}, \\ \left|\frac{H_0(z, b)}{D}\right| &\leq \frac{M}{4}. \end{aligned}$$

我们断言,对于任一固定的 $z \in K(a, r)$, 在 K(b, R) 内存在唯一的 w, 使 F(z, w) = 0, 即 F(z, w) 作为 w 的多项式,只有唯一的零点。

由
$$F(z, w)$$
 对 $w-b$ 的展开式,得到

$$F(z, w) = (w - b)H_1(z, b) \left\{ 1 + \frac{1}{H_1(z, b)} \left[H_1(z, b)(w - b) + \dots + H_m(z, b)(w - b)^{m-1} + \frac{H_0(z, b)}{m} \right] \right\}.$$

$$\left| \frac{1}{H_{1}(z,b)} \left[H_{2}(z,b)(w-b) + \cdots + H_{m}(z,b)(w-b)^{m-1} + \frac{H_{0}(z,b)}{w-b} \right] \right|$$

$$\leq \frac{1}{|H_{1}(z,b)|} \left[R(|H_{2}(z,b)| + \cdots + |H_{m}(z,b)|) + \frac{|H_{0}(z,b)|}{R} \right] \leq \left(\frac{M}{4} + \frac{M}{4} \right) / M = \frac{1}{2}.$$

利用幅角原理,对固定的 $z \in K(a,r)$, F(z,w) 在 $\{|w-b| < R\}$ 内的零点个数,等于 F(z,w) 的幅角在圆周 $\Gamma:|w-b|=R$ 上增量的 $\frac{1}{2\pi}$ 倍,即

$$\frac{1}{2\pi} \Delta_{\Gamma} \arg F(z, w)$$

$$= \frac{1}{2\pi} \Delta_{\Gamma} \arg(w - b) + \frac{1}{2\pi} \Delta_{\Gamma} \arg H_{1}(z, b)$$

$$+ \frac{1}{2\pi} \Delta_{\Gamma} \arg \left\{ 1 + \frac{[\cdots]}{H_{1}(z, b)} \right\} = 1,$$

其中[…]为 $\left\{H_z(z,b)(w-b)+\cdots+H_m(z,b)(w-b)^{m-1}+H_0(z,b)(w-b)^{-1}\right\}$.在上面的估计式中,第三项等于零,第二项是非零模,当然也等于零。只有第一项等于 1。这就证明了断言正确,

由断言,我们得到定义于K(s,r)内的唯一函数w(z),使得F(z,w(z))=0,且 $w(z)\in K(b,R)$ 。

w(z) 在 K(a,r) 内是连续的, 其理由如下。

对任何 $z_0 \in K(a,r)$, $w(z_0) \in K(b,R)$, 按 $w(z) - w(z_0)$ 展开 F(z,w)得到

$$F(z, w(z)) = H_0(z, w(z_0)) + H_1(z_1, w(z_0))(w(z) - w(z_0)) + \cdots + H_m(z, w(z_0))(w(z) - w(z_0))^m$$

$$= 0.$$

因此有

$$w(z)-w(z_0)$$

$$= \frac{-H_0(z, w(z_0))}{H_1(z, w(z_0)) + \cdots + H_m(z, w(z_0))(w(z) - w(z_0))^{m^{-1}}}$$

由假设,注意「 $w(z) - w(z_0)$ | $\leq 2R < 1$, 上式分母按模大于等于

$$|H_1(z, w(z_0))| - 2R[|H_2(z, w(z_0))| + \cdots + |H_m(z, w(z_0))|] \ge M - \frac{M}{2} > 0,$$

当 $z \to z_0$ 时, $H_0(z, w(z_0)) \to H_0(z_0, w(z_0)) = 0$ 。 因此 $|w(z) - w(z_0)| \to 0$,即 w(z) 在 $z_0 \in K(a, r)$ 连续。

最后,证明w(z)在K(a,r)內解析。 对任何 $z \in K(a,r)$,我们要证明,w(z)在 z_0 的导数存在。

我们有

. 5

$$\frac{w(z)-w(z_0)}{z-z_0}$$

$$= \frac{H_0(z, w(z_0))/(z-z_0)}{H_1(z, w(z_0)+\cdots+H_n(z, w(z_0)(w(z)-w(z_0))^{n-1}}.$$

当 $z \to z_0$ 时, $w(z) - w(z_0) \to 0$, 上式分母的极限是 $H_1(z_0, w(z_0)) = F_w(z_0, w(z_0)) \neq 0$, 分子

$$\frac{H_0(z, w(z_0))}{z - z_0} = \frac{H_0(z, w(z_0)) - H_0(z_0, w(z_0))}{z - z_0}$$

$$= \frac{F(z, w(z_0)) - F(z_0, w(z_0))}{z - z_0} \to F_z(z_0, w(z_0)).$$

因此, 当 $z \rightarrow z_0$ 时,

$$\frac{w(z)-w(z_0)}{z-z_0} \to -\frac{F_s(z_0, w(z_0))}{F_w(z_0, w(z_0))},$$

即 w(z) 在 z, 的导数存在, w(z) 在 K(a,r) 内解析。证完。

由存在性定理,直接可得到一个重要的推论如下,

推论. 对每点 $a \in T_i$, F(a, w) = 0 恰好有m个不同的根 $w_1(a), \dots, w_m(a)$, F(z, w) = 0 恰好有m个不同的正则函数元 $\mathbf{x}(w_1(z), a), \dots, (w_m(z), a)$, 使得对于 $1 \le i \le m$, $w_i(z)$ 在 K(a, r) 内定义,且 $F(z, w_i(z)) = 0$.

对于 $z_0 \in \mathbb{C} - T_z$, 存在性定理不一定成立。但这样的 z_0 仅有有限个。此时,总存在 r > 0,使得对于 $0 < |z - z_0| < r$,当 $z_0 = \infty$ 时,对 $\frac{1}{r} < |z| < \infty$, F(z, w) = 0 对于固定的 z,总有 m 个不同的根,都用 w(z) 表示之。 我们有下面的重要引理。

引理 3.3. 对于 $z_0 \in \overline{C} - T_z$. 总存在 r > 0, 整数 $k \ge 0$, 常数 M > 0, 使得当 $z_0 = \infty$ 时, F(z, w) = 0 在 $\{0 < |z - z_0| < r\}$ 内的根 w(z), 都有 $\{(z - z_0)^k w(z)\} \le M$.

当 $z_0 = \infty$ 时,F(z, w) = 0 在 $\left\{\frac{1}{r} < |z| < \infty\right\}$ 内的根 w(z),都有 $|w(z)/z^t| \leq M$ 。

证明。当 z₀ ≠ ∞ 时,考虑

 $F(z,w) = a_0(z)w^n + a_1(z)w^{n-1} + \cdots + a_n(z) = 0$ 。 对 $a_0(z)$,总存在整数 $k \ge 0$,使得 $a_0(z)/(z-z_0)^k$ 在 $z=z_0$ 不等于零,因而存在 0 < r < 1,使得当 $0 < |z-z_0| < r$ 时,有

$$|a_0(z)/(z-z_0)^{\frac{1}{2}}| \ge M_0 > 0,$$

 $|a_1(z)| + \cdots + |a_m(z)| \le M_1,$

其中 Mo和 Mo为常数。

对 F(z,w) = 0 在 $\{0 < |z - z_0| < r\}$ 内的根 w(z), 当 $|w(z)| \ge 1$ 时,我们有。

$$a_0(z)w(z)+a_1(z)+\cdots+\frac{a_m(z)}{w(z)^{m-1}}=0$$
,

$$\left|\frac{a_0(z)}{(z-z_0)^{\frac{1}{4}}}\right||(z-z_0)^{\frac{1}{4}}w(z)| \leq |a_1(z)| + \cdots + |a_m(z)|.$$

由此,我们得到

$$|(z-z_0)^{\frac{1}{2}}w(z)| \leq \frac{M_1}{M_0}.$$

当 |w(z)| < 1 时, $|(z-z_0)^t w(z)| \le r^t < 1$. 总之,令 $M = \frac{M_1}{M_0} + 1$,则有

$$|(z-z_0)^{\frac{1}{2}}w(z)| \leqslant M.$$

对于 $z_0 = \infty$ 的情况,设多项式 $a_0(z)$,…, $a_n(z)$ 的次数依次为 k_0 ,…, k_n , 令 $l = \max\{k_0, \dots, k_n\}$. 这时总存在 0 < r < 1, 使得当 $\frac{1}{r} < |z| < \infty$ 时,

$$\left|\frac{a_0(z)}{z^{i_0}}\right| \geq M_0 > 0,$$

$$\left|\frac{a_1(z)}{z^l}\right| + \cdots + \left|\frac{a_m(z)}{z^l}\right| \leq M_1,$$

对于 $\frac{1}{r} < |z| < \infty$, F(z,w) = 0 的根 w(z), 当 $|w(z)| \ge 1$ 时,我们有

$$\frac{a_0(z)}{z^l} w(z) + \frac{a_1(z)}{z^l} + \frac{a_2(z)}{z^l} \cdot \frac{1}{w(z)} + \cdots + \frac{a_n(z)}{z^l} \cdot \frac{1}{w(z)^{n-1}} = 0,$$

令 とー ! 一 40, 则有

$$\left|\frac{a_0(z)}{z^{i_0}}\right|\left|\frac{w(z)}{z^{i}}\right| \leqslant \left|\frac{a_1(z)}{z^{i}}\right| + \cdots + \left|\frac{a_n(z)}{z^{i}}\right|.$$

因此得到

$$|w(z)/z^k| \leq M_1/M_{0\bullet}$$

当 |w(z)| < 1 时, $|w(z)/z^k| \le r^k < 1$. 总之,我们有

$$|w(z)/z^k| \leq \frac{M_1}{M_0} + 1 = M_0$$

至此引理证完。

下面研究 F(z, w) = 0 的正则函数元素的解析开拓。

根据存在唯一性定理,对任意 $a \in T_s$, F(a, w) = 0 总有相 互不同的m个根 $w_1(a), \dots, w_m(a)$, 使对于 $1 \le j \le m$, $F(a, w_j(a)) = 0$, 对应有m个函数元素 $(w_1(z), a), \dots, (w_m(z), a)$, 在 K(a, r) 内 $F(z, w_j(z)) = 0$ 。 把所有这样的元素组成的集记为 \tilde{T}_s ,即

 $\tilde{T}_z = \{(w_1(z), a), \dots, (w_m(z), a); a \in T_z\}$ 。 我们要证明 \tilde{T}_z 中任何两个函数元素,总可以沿 T_z 内的路径解析 开拓。

定理 3.4. 对 \tilde{T} , 的任一函数元素 $(w_0(z), a)$, 及 T_* 中路径 Υ , Υ 的起点为 a, $(w_0(z), a)$ 沿 Υ 可解析开拓,且开拓后得到的正则函数元素也属于 \tilde{T}_* .

证明。设 $\gamma:[0, 1] \to T_s$, $\gamma(0) = a$, $\gamma(1) = b$, $t \to \gamma(t)$. 对于 $0 < \tau < 1$, 令路径 $\gamma_r:[0, \tau] \to T_s$, $\gamma_\tau(t) = \gamma(t)$, 设 $\tau^* = \sup\{\tau: 0 < \tau < 1, (w_0(z), a) \ \text{沿 } \gamma_r \text{ 可解析开拓得}$ 到 $(w_\tau(z), \gamma(\tau)), F(z, w_\tau(z)) = 0\}$.

我们只要证明: $(w_0(z), a)$ 沿 γ_{t^*} 可解析开拓,得到的 $(w_{t^*}(z), \gamma(\tau^*))$ 满足 $F(z, w_{t^*}(z)) = 0$,并且 $\tau^* = 1$. 事实上,对于 τ^* ,在点 $\gamma(\tau^*)$ 上,F(z, w) = 0 恰好有那个函数元素 $(w_1(z), \gamma(\tau^*))$, …, $(w_m(z), \gamma(\tau^*))$, 其中 $w_1(z)$, …, $w_n(z)$ 在 $K(\gamma(\tau^*), \tau)$ 内有定义。由 $\gamma(t)$ 的连续性,存在 $\delta > 0$,使得当 $|\tau - \tau^*| < \delta$ 时, $|\gamma(\tau) - \gamma(\tau^*)| < \tau$. 取其中一个 $\tau < \tau^*$,使 $(w_0(z), a)$ 沿 γ_t 可解析开拓得到 F(z, w) = 0 的正则函数元素 $(w_{\tau}(z), \gamma(\tau))$ 。 这时, $(w_1(z), \gamma(\tau^*))$,…, $(w_m(z), \gamma(\tau^*))$ 在点 $\gamma(\tau)$ 分别直接开拓,得到那个函数元素,则其中必有一个,记之为 $\gamma(\tau)$ 分别直接开拓,得到那个函数元素,则其中必有一个,记之为 $\gamma(\tau)$ 分别直接开拓,得到那个函数元素,则其中必有一个,记之为 $\gamma(\tau)$ 分别直接开拓。 它的直接开拓是 $\gamma(\tau)$ 个 $\gamma(\tau)$,它的直接开拓是 $\gamma(\tau)$,可能析开拓到 $\gamma(\tau)$,它的直接开拓是 $\gamma(\tau)$,可能析开拓到 $\gamma(\tau)$,可能析开拓到 $\gamma(\tau)$,现在证明 $\gamma(\tau)$,现在证明 $\gamma(\tau)$,则存在 $\gamma(\tau)$,则存在 $\gamma(\tau)$,可能析开拓到 $\gamma(\tau)$,现在证明 $\gamma(\tau)$,可能析开拓到 $\gamma(\tau)$,现在证明 $\gamma(\tau)$,可能析开拓到 $\gamma(\tau)$,可能析开拓到 $\gamma(\tau)$,可能证明 $\gamma(\tau)$,可能不可解析开拓到 $\gamma(\tau)$, $\gamma(\tau)$,现在证明 $\gamma(\tau)$,

r, 这时通过 $(w_{t^*}(z), \gamma(\tau^*))$, $(w_0(z), a)$ 可沿 γ_t 解析开拓到 $(w_{\tau_1}(z), \gamma(\tau_1))$, 其中 $(w_{\tau_1}(z), \gamma(\tau_1)) = (w_{t^*}(z), \gamma(\tau_1))$ 是直接开拓。这样便与 τ^* 是极大值矛盾,因此 $\tau^* = 1$ 。 定理得证。

定理 3.5. \tilde{T}_a 中的任两个函数元素,在 T_a 内可以沿某一路 径解析开拓。

证明。固定一点 $a \in T_*$,我们只要证明点 a 上的 m 个函数元素 $(w_1(x), a), \cdots, (w_n(x), a)$ 在 T_* 内沿路径可以相互解析开拓就足够了。因为由此便可推出,对任何 $b \in T_*$,及 T_* 内连接 a 和 b 的路径 γ ,根据上面的定理及解析开拓唯一性,点 a 上的 m 个函数元素,分别沿 γ 开拓,便得到点 b 上的 m 个函数元素,这样, T_* 中的任何两个函数元素就可以通过点 a 上的 m 个函数元素,相互沿路径解析开拓。

Ü

对于点 a 上的 m 个函数元素 $(w_1(z),a),\cdots,(w_m(z),a)$,总存在一个最大的 $n \le m$,使得其中 n 个元素 (设为 $(w_1(z),a),\cdots$, $(w_n(z),a)$)在 T,内沿路径可以相互解析开拓,如果我们证明了n-m,则定理得证。

对于点 $(w_1(z), a), \dots, (w_n(z), a)$, 设 $w_1(z), \dots, w_n(z)$ 定义在 $\{z: | z-a| < r\}$ 内,作业的 n 次多项式

$$(w - w_1(z))(w - w_2(z)) \cdots (w - w_n(z))$$

= $w^n + B_1(z)w^{n-1} + \cdots + B_n(z),$

其中 $B_1(z), \dots, B_n(z)$ 是定义在 $\{z: | z - a| < r\}$ 内的全纯函数,由下列基本对称多项式定义。

$$B_1(z) = -[w_1(z) + \cdots + w_n(z)],$$

$$B_2(z) = (-1)^{i} \sum_{1 \le i \le i} w_i(z) w_i(z),$$

 $B_n(z) = (-1)^n w_1(z) w_2(z) \cdots w_n(z)$

现在,我们要把 $B_1(z)$,···, $B_s(z)$ 开拓为 T,内的全纯函数,然后开拓为有理函数。

对于任何 $b \in T_*$, $(w_1(z), a)$, \cdots , $(w_n(z), a)$ 沿 T_* 内连

接 a 到 b 的路径分别解析开拓,得到点 b 上的 n 个函数元素,依次排为 $(w_1(z),b),\cdots,(w_n(z),b)$ 。 沿不同的路径解析开拓,依次得到的 n 个函数元素,是这些函数元素的重排列。 因此,在 $\{|z-b|< r_1\}$ 内用 b 上这些函数元素定义全纯函数 $B_1(z),\cdots,B_n(z)$.这样,我们便把原来定义于 $\{|z-a|< r\}$ 内的 $B_1(z),\cdots,B_n(z)$ 沿任何连接 a 到 b 的路径解析开拓到 $\{|z-b|< r_1\}$ 。因此, $B_1(z),\cdots,B_n(z)$ 被解析开拓为定义于 T 内的全纯函数。

对于 $z_0 \in \mathbb{C} - T_s$, $z_0 \in B_1(z)$, \cdots , $B_s(z)$ 的孤立奇点。现在我们证明, z_0 最多是极点,由此推出 $B_1(z)$, \cdots , $B_s(z)$ 是定义于 \mathbb{C} 上的有理函数。我们知道,由上面引理,总存在整数 $k \geq 0$ 及M > 0, 当 $z_0 \Rightarrow \infty$ 时,在 $\{0 < |z - z_0| < r\}$ 内,P(z,w) = 0 的根 $w_1(z)$, \cdots , $w_m(z)$ 满足

٠,

$$|(z-z_0)^k w_i(z)| \leq M, \ 1 \leq i \leq m.$$

当 $z_0 = \infty$ 时,在 $\left\{\frac{1}{r} < |z| < \infty\right\}$ 内,F(z,w) = 0的根 $w_1(z)$, ..., $w_n(z)$ 满足

$$|w_i(z)/z^k| \leq M, \ 1 \leq i \leq m.$$

由于 $B_1(z)$,…, $B_n(z)$ 是 F(z,w) = 0 的根的对称多项式,不难看出, $B_1(z)$,…, $B_n(z)$ 最多以 z。为极点,因此是有理函数.对于 $1 \le i \le n$,设 $B_i(z) = b_i(z)/b_0(z)$,其中 $b_i(z)$, $b_0(s)$ 是 z 的多项式,作 z 和w 的多项式

$$F_1(z, w) = b_0(z)w^n + b_1(z)w^{n-1} + \cdots + b_n(z)$$

= $b_0(z)[w^n + B_1(z)w^{n-1} + \cdots + B_n(z)].$

注意对于给定的 $(w_1(z),a),\cdots,(w_n(z),a)$ 在 $\{|z-a| < r\}$ 内总有,对 $1 \le i \le n$,

$$F(z, w_i(z)) = 0,$$

 $F_1(z, w_i(z)) = 0.$

故 $z \in \{|z-a| < r\}$ 时,F(z,w) = 0, $F_1(z,w) = 0$ 具有公共根.根据本节开头定理, $F 和 F_1$ 不是互素的,因为否则只有有限多个 z,使 F(z,w) = 0 和 $F_1(z,w) = 0$ 具有公共根. 这时

F和 F_1 必有非常数公因子,由于 F 是不可约的,公因子对 w 的次数不小于 m_* 另一方面,公因子对 w 的次数小于等于 F_1 的次数 n_* 因此 n_* 一 m_* 这就是我们所要证的。定理证完。

定理 3.6. 设 $(w_0(z), a)$ 为 F(z, w) = 0 的正则函数元素, $\gamma:[0,1] \to C$ 为一路径, $\gamma(0) = a$, $\gamma(1) = b$. 如果 $(w_0(z), a)$ 沿 γ 可解析开拓得到 $(w_1(z), b)$, 则 $(w_1(z), b)$ 也是 F(z, w) = 0 的正则函数元素.

该定理有时称为代数方程的函数元素解析开拓的 永恒性定理。

证明。由假设 $\gamma:[0,1] \to \mathbb{C}$, $\iota \mapsto \gamma(\iota)$, 存在解析开拓 $\iota \to (w_{\iota}(z), \gamma(\iota))$. 我们要证明,对 $\forall \iota \in [0,1]$, $(w_{\iota}(z), \gamma(\iota))$ 是 F(z, w) = 0 的函数元素,为此设:

我们要证明, $(w_{t}*(z), \gamma(\tau^{*}))$ 也是 F(z, w) = 0 的函数元素且 $\tau^{*} = 1$ 。事实上,对于 $(w_{t}*(z), \gamma(\tau^{*}))$,按解析开拓定义,如果 $w_{t}*(z)$ 在 $\{|z-\gamma(\tau^{*})| < r\}$ 内定义,则存在 $\delta > 0$,使 当 $|\tau-\tau^{*}| < \delta$ 时, $|\gamma(\tau)-\gamma(\tau^{*})| < r$, $(w_{t}(z), \gamma(\tau)) = (w_{t}*(z), \gamma(\tau))$ 。 考虑解析函数 $F(z, w_{t}*(z))$,取 τ 使 $F(z, w_{t}*(z)) = 0$,即在 $\gamma(\tau)$ 的邻域内, $\gamma(\tau) = 0$ 0,即在 $\gamma(\tau) = 0$ 0,即不 $\gamma(\tau^{*})$ 1 ($\gamma(\tau) = 0$ 0,下($\gamma(\tau) = 0$ 0,下($\gamma(\tau) = 0$ 0,下($\gamma(\tau) = 0$ 0,下($\gamma(\tau) = 0$ 0),可以是说, $\gamma(\tau^{*})$ 2 是 $\gamma(\tau) = 0$ 3 的函数元素,当 $\gamma(\tau) = 0$ 4 时,取任何 $\gamma(\tau) = 0$ 5 的函数元素,当 $\gamma(\tau) = 0$ 6 的函数元素,当 $\gamma(\tau) = 0$ 7 以 这就与 $\gamma(\tau) = 0$ 7 的邻域内, $\gamma(\tau) = 0$ 8 以 $\gamma(\tau) = 0$ 9 的 $\gamma(\tau) = 0$ 9 以 $\gamma($

考虑

 $\tilde{T}_z = \{(w_1(z), a), \dots, (w_m(z), a); a \in T_z, i = 1, 2, \dots, m, (w_i(z), a) \in F(z, w) = 0 \text{ 的正则函数元素}\}.$

由上面已证的关于正则函数元素的解析开拓的定理,我们有下列结论:

- 1° \hat{T}_{z} 的正则函数元素,沿 T_{z} 内的任何路径可解析开拓,得到的正则函数元素是 P(z,w)=0 的正则函数元素,且属于 \hat{T}_{z} ;
- 2° \tilde{T} 的两个正则函数元素在 T 内可相互沿路径解析开拓。
- \tilde{T} 。的正则函数元素在 C 内经所有可能的路径解析开拓后,得到一个完全解析函数 F,当然包含 \tilde{T} ",它由 F(z,w)=0 的所有正则函数元素组成。特别,其中包含以 $z_0 \in C-T$ 。为中心的正则函数元素。

现在扩充F成解析图象。

对于 $z_0 \in \hat{\mathbb{C}} - T_s$, 即 $z_0 \in T_0 \cup T_1 \cup \{\infty\}$, 一定存在 r > 0, 使得在 $\{0 < |z - z_0| < r\}$ 内,当 $z_0 = \infty$ 时,在 $\{\frac{1}{r} < |z| < \infty\}$ 内,下面 1)至 3)成立.

- 1) F的任何正则函数元素,即 F(z, w) = 0 的正则函数元素 $(w_1(z), a)$ 可以任意解析开拓。
- 2) $(w_1(z), a)$ 沿路径 $C_1|z-z_0| = |a-z_0|$ 解析开拓 λ $(\lambda \leq m)$ 次后一定解析开拓到原来的 $(w_1(z), a)$, 当 $z_0 = \infty$ 时, C 应换为 $C_1|z| = |a|$.
- 3) 根据引理 3.3,在 $\{0 < |z z_0| < r\}$ 内,解析开拓后得到的 F(z, w) = 0 的正则函数元素 (w(z), a) 总有

$$|(z-z_0)^{\ell}w(z)| \leqslant M;$$

当 $z_0 = \infty$ 时,在 $\left\{ \frac{1}{r} < |z| < \infty \right\}$ 内,解析开拓得到的函数元素 (w(z), a) 总有

$$|w(z)/z^k| \leq M$$

其中 k 为正整数, M 为正常数。

因此,解析图象的关于代数元素的假设 1-3 成立,以 z_a 为中心我们得到代数函数元素 (w(z), z_0),而

$$w(z) = \sum_{n=0}^{\infty} A_n(z-z_0)^{\frac{n}{2}}, |z-z_0| < r,$$

其中1 < i < m、且有

$$F(z_0, w(z_0)) = 0;$$

当 z_a \Rightarrow ∞ 时,我们有 $(w(x), \infty)$, 而

$$w(z) = \sum_{n=0}^{\infty} A_n z^{-\frac{n}{2}}, |z| > \frac{1}{r},$$

其中 $1 \leq \lambda \leq m$, 且有

$$F(\infty, w(\infty)) = 0.$$

因此对 $z_0 \in \bar{\mathbb{C}} - T_z$, 一定存在正整数序列 $1 \leq \lambda_1, \lambda_2, \dots, \lambda_k \leq m$, $\lambda_1 + \lambda_2 + \dots + \lambda_k = m$,

使得以 z_0 为心,F(z,w)=0有K个代数函数元素($w_1(z)$, z_0),…,($w_k(z)$, z_0),使得对 $1 \leq i \leq K$ 有

$$F(z_0, w_i(z_0)) = 0,$$

$$w_i(z) = \sum_{n=\mu_i}^{\infty} A_n^i(z-z_0)^{\frac{n}{\lambda_i}}, |z-z_0| < r_*$$

这样,把F扩充为解析图象 F, 称为 F(z,w)=0 的解析图象。

现在讨论 P(z,w) = 0 的解析图象的黎曼曲面 \hat{F} 。 对 $\forall \hat{p} \in \hat{F}$,设 $\hat{p} = (w(z), z_0)$,则我们有:

中心值函数 $\dot{F}: \dot{F} \to \bar{\mathbb{C}}, \dot{F}(\tilde{p}) = (w(z_0):$

中心投影函数 $\pi: \tilde{F} \to \bar{\mathbb{C}}, \pi(\tilde{p}) = z_0$.

对于 $z_0 \in T_r$,则 \dot{r} 有 m 个点 $\tilde{\rho}_1 = (w_1(z), z_0), \cdots, \tilde{\rho}_m = (w_m(z), z_0)$,对于充分小的 r > 0,有 m 个局部 参数 邻域 $V_{\tilde{\rho}_i}$ ($1 \le i \le m$),局部 参数映照 $\pi | V_{\tilde{\nu}_i} : V_{\tilde{\rho}_i} \to \{ |z - z_0| < r \}$ 是一对一的,且是拓扑映照。对于 $z_0 \in T_r$,则 z_0 是所谓临界点,这时 \dot{r} 有 $1 \le k \le m$ 个代数函数元素 $\tilde{\rho}_1 = (w_1(z), z_0), \cdots$, $\tilde{\rho}_i(w_k(z), z_0)$ 。对 $1 \le i \le k$,

$$w_i(z) = \sum_{z=\mu}^{\infty} A_z^i(z-z_0)^{\frac{1}{\lambda_i}}, |z-z_0| < r,$$

其中 $1 \le i \le m$. 当 $\lambda_i > 1$ 时, $\tilde{\rho}_i$ 称为分支点, λ_i 称为分支的级。 这时,存在 k 个局部参数邻域 $V_{\tilde{\nu}_i}$,而

$$||V_{\tilde{p}_i};V_{\tilde{p}_i} \to \{z: |z-z_0| < r\}||$$

是 1. 对 1 的映照;局部参数映照取为

$$t = (\pi | V_{\tilde{p}_i} - z_0)^{\frac{1}{\tilde{k}_i}} : V_{\tilde{p}_i} \to \{t : |t| < \frac{1}{\tilde{k}_i}\},$$

它是一对一的拓扑映照。

当 z_0 = ∞ 时同样定义之。

现在证明产是 Riemann 曲面。

我们已经知道,对 $z_0 \in \mathbb{C}$,对于充分小的 $K(z_0, r)$,在产上最多对应 m 个局部参数 邻域 $V_{\tilde{e}_1}, \dots, V_{\tilde{e}_m}$,使得 $\pi | V_{\tilde{e}_1} : V_{\tilde{e}_i} \rightarrow K(z_0, r)$ 。由于 \mathbb{C} 是紧的,因此存在有限个这样的开覆盖,由有限个 $K(z_0, r)$ 作成。 这时对应每一个 $K(z_0, r)$ 的 m 个局部参数 邻域,作成产的开覆盖,产是紧曲面。

中心值函数 \hat{F} 和中心投影函数 π 是定义于紧 Riemann 曲面 \hat{F} 上的亚纯函数,我们有:

$$F(\pi(\tilde{p}), \dot{F}(\tilde{p})) = 0.$$

按定义,我们把 F(z,w)=0 的解析图象上定义的函数称为 F(z,w)=0 定义的代数函数, 即 $F(\hat{\rho})$. 一般记 $\pi(\hat{\rho})=z$, $F(\hat{\rho})=w(z)$. 代数函数是定义于紧 Riemann 曲面的亚纯函数.

第三章 覆盖曲面

§1 光滑覆盖曲面

设W和 \widetilde{W} 为两个曲面,映照 $\pi:\widetilde{W}\to W$ 称为局部拓扑映照,如果对 $\forall \widetilde{\rho}\in\widetilde{W}$,存在 $\widetilde{\rho}$ 的局部参数邻域 $V_{\widetilde{\rho}}$,使得 $\pi|V_{\widetilde{\rho}}$ 把 $V_{\widetilde{\rho}}$ 拓扑地映为 $\pi(\widetilde{\rho})=\rho$ 的局部参数邻域 $V_{\widetilde{\rho}}$.

定义。 曲面W和 \widetilde{W} 附加上局部拓扑映照 $\pi:\widetilde{W} \to W$ 称为W 的光滑覆盖曲面,用记号 (\widetilde{W},π,W) 或者简单地用 (\widetilde{W},π) 记之。 π 称为投影映照, $p = \pi(\widetilde{p})$ 。 对于 $p \in W$,点 $\widetilde{p} \in \pi^{-1}(p)$ 称为在 $p = \pi$

对于投影映照 π , $p = \pi(\tilde{p})$, 我们总可以选取 \tilde{p} 和 p 的局部 参数邻域 $V_{\tilde{p}}$ 和 $V_{\tilde{p}}$, 使得 $\pi|V_{\tilde{p}};V_{\tilde{p}}\to V_{\tilde{p}}$ 是拓扑映照, 即是同 胚。

当 \widetilde{W} 和W是 Riemenn 曲面时,则在光滑覆盖曲面(\widetilde{W} , π ,W)的定义中,我们要附加要求 π 是解析映照。

定理 1.1. 设 (\widetilde{W}, π) 是W的光滑覆盖曲面,W是 Riemann 曲面,则映照 π 在 \widetilde{W} 上诱导唯一的复结构,使得 \widetilde{W} 成为 Riemann 曲面, $\pi: \widetilde{W} \to W$ 是解析映照.

证明、 $\forall \tilde{p} \in \widetilde{W}$, $p = \pi(\tilde{p})$, 我们选取 \tilde{p} 和 p 的局部参数邻域 $V_{\tilde{p}}$ 和 $V_{\tilde{p}}$,使得 $\pi \mid V_{\tilde{p}} : V_{\tilde{p}} \to V_{\tilde{p}}$ 是拓扑映照,由于W是 Riemann 曲面,对于局部参数邻域 $V_{\tilde{p}}$, 设局部参数映照为 $\varphi_{\tilde{p}}$, 当 $V_{\tilde{p}}$ 门 $V_{\tilde{p}}$ 、 φ 时, $\varphi_{\tilde{p}} \circ \varphi_{\tilde{p}}$ 是——解析映照。这时,对局部参数邻域 $V_{\tilde{p}}$,定义局部参数映照为 $\varphi_{\tilde{p}} \circ \pi \mid V_{\tilde{p}}$,则

$$(\varphi_{\tilde{p}_i} \circ_{\pi} | V_{\tilde{p}_i}) \circ (\varphi_{\tilde{p}_i} \circ_{\pi} | V_{\tilde{p}_i})^{-1} = \varphi_{p_i} \circ \varphi_{p_i}^{-1}$$

是一一解析映照。 因此, \widehat{V} 在所取的局部参数邻域及局部参数映照下成为 Riemann 曲面, $\pi:\widehat{V}\to W$ 是解析映照。 这是因为

 π 在 V_{δ} 内,用局部参数表示时为 $\pi \circ (\varphi_{\delta} \circ \pi | V_{\delta})^{-1} = \varphi_{\delta}^{-1}$ 是解析函数。由于 π 是局部拓扑的解析映照, \widehat{V} 上的复结构由它唯一确定,由此便得到 \widehat{V} 上的复结构是唯一的。

我们这里只讨论光滑覆盖曲面,以后称为覆盖曲面。但应提到,如果 \widetilde{W} 和 W 是 Riemann 曲面, $\pi:\widetilde{W}\to W$ 是解析映照,则称(\widetilde{W} , π ,W)为分支覆盖曲面。

§ 2 弧的提升与正则覆盖曲面

设 (\widetilde{W},π) 为W的覆盖曲面, \widetilde{r} 为 \widetilde{W} 的弧,曲线 \widetilde{r} : [0,1] \longrightarrow \widetilde{W} ,由 $\iota \to \widetilde{r}(\iota)$ 定义,则W上的弧 r 定义为 r: $[0,1] \to W$, $\iota \to \pi(\widetilde{r}(\iota))$,称为 \widetilde{r} 的投影,用记号 $r = \pi(\widetilde{r})$ 表示。 反之,对W上的弧 r,其起点 $r(0) = p_0$,如果 \widetilde{W} 上有一弧 \widetilde{r} ,起点 $\widetilde{r}(0) = \widetilde{p}_0$,使得 $\pi(\widetilde{r}) = r$,则称 \widetilde{r} 是 r 的以 \widetilde{p}_0 为起点的开拓或提升。

定义。W的(光滑)覆盖曲面 (\widehat{W} , π) 称为**正则的**,如果对于W上的任何弧 r, 起点 $r(0) = p_0$,以及任何在 p_0 上的点 \widetilde{p}_0 ,总存在 r 以 \widetilde{p}_0 为起点的提升。

定理 2.1. 设 (\widetilde{W},π) 为W的光滑覆盖曲面, τ 为W上的弧,起点为 p_0 , \widetilde{p}_0 为在 p_0 上的点,如果 τ 以 \widetilde{p}_0 为起点的提升 $\widetilde{\tau}$ 存在,则 $\widetilde{\tau}$ 是唯一的。

证明。设 $r:[0,1] \to W$, $t \to r(t)$, $r(0) = p_0$,又设 r 的提升 $\tilde{r}:[0,1] \to \widetilde{W}$, $t \to \tilde{r}(t)$, $\tilde{r}(0) = \tilde{p}_0$, $\pi(\tilde{r}(t)) = r(t)$. 要证明 \tilde{r} 是唯一的提升,即,如果存在另一提升 $\tilde{r}_1:[0,1] \to \widetilde{W}$, $t \to \tilde{r}_1(t)$, $\tilde{r}_1(0) = \tilde{p}_0$, $\pi(\tilde{r}_1(t)) = r(t)$,则必有 $\tilde{r}(t) = \tilde{r}_1(t)$, $t \in [0,1]$ 为此设

$$E = \{t \in [0, 1] : \tilde{r}(t) = \tilde{r}_i(t)\},\$$

只要证明 E = [0,1]。 根据[0,1]的连通性,如果证明了 E 是开集,同时[0,1]-E 也是开集,则这两个集必有一是空集,但由假设 $0 \in E$,因此 E 非空, E = [0,1]。 定理即可得证。

首先证 E 是开集,对于任意的 $t_0 \in E$, 有 $\tilde{r}(t_0) = \tilde{r}_1(t_0)$, 选取

 $\tilde{r}(t_0)$ 和 $r(t_0)$ 的局部参数圆 \tilde{V} 和 V,使得 $\pi|\tilde{V}:\tilde{V}\to V$ 是拓扑映照,根据弧的连续性,存在 $\delta>0$,使得当 $|t-t_0|<\delta$ 时, $\tilde{r}(t)$, $\tilde{r}_1(t)\in \tilde{V}$, $r(t)\in V$ 。但这时 $\pi(\tilde{r}(t))=\pi(\tilde{r}_1(t))=r(t)$. 因此,当 $|t-t_0|<\delta$ 时, $\tilde{r}(t)=\tilde{r}_1(t)=\pi^{-1}(r(t))$,即 E 是开集。

同理,对任意的 $t_0 \in [0,1] - B$,有 $\tilde{r}(t_0) = \tilde{r}_1(t_0)$,分别取 $\tilde{r}(t_0)$, $\tilde{r}_1(t_0)$ 和 $r(t_0)$ 的局部参数圆 \tilde{V} , \tilde{V} , 和 V,使得 $\tilde{V} \cap \tilde{V}_1 = \emptyset$, $\pi(\tilde{V}) = V$, $\pi(\tilde{V}_1) = V$ 。根据弧的连续性,存在 $\delta > 0$,使得当 $|t-t_0| < \delta$ 时, $\tilde{r}(t) \in \tilde{V}$, $\tilde{r}_1(t) \in \tilde{V}_1$, $r(t) \in V$ 。 这时 $\tilde{r}(t) = \tilde{r}_1(t)$,即 $t \in [0,1] - E$,因此[0,1] - E 是开集,定理证完。

定理 2.2 光滑正则覆盖曲面覆盖每一点的次数相同。

证明、设(\widetilde{W} , π)是W的光滑正则曲面,要证明对 $\forall p \in W$, $\pi^{-1}(p)$ 由相同个数的点组成。

对正整数 #,设

 $E_n = \{ p \in W, \pi^{-1}(p) \text{ 的点数} \geq n \},$

则 E_n 是开集。事实上,对任意 $\rho_0 \in E_n$, $\pi^{-1}(\rho_0)$ 至少有 n 个点 $\tilde{\rho}_i$, $1 \le i \le n$. 对每一个 $\tilde{\rho}_i$,选取局部参数圆 \tilde{V}_i ,使得 \tilde{V}_i ($1 \le i \le n$) 两两不相交,再选取 ρ_0 的局部参数圆 V_0 ,使得 $\pi(\tilde{V}_i) = V_0$ ($1 \le i \le n$),且 $\pi[\tilde{V}_i; \tilde{V}_i \to V_0]$ 是拓扑映照.于是,对于 $\forall \rho \in V_0$, $\pi^{-1}(\rho)$ 至少有 n 个点,因此 E_n 是开集。

现在证明 $W-E_n$ 也是开集,对于 $\forall p_0 \in W-E_n$, $\pi^{-1}(p_0)$ 最多有n-1 个点 \tilde{p}_i , $1 \leq i \leq n-1$. 选取 \tilde{p}_i 和 p_0 的局部参数圆 \tilde{V}_i 和 V_0 ,使得 $\pi(\tilde{V}_i) = V_0$,且 $\pi|\tilde{V}_i:\tilde{V}_i \to V_0$ ($1 \leq i \leq n-1$) 是拓扑映照.这时,对 $\forall p \in V_0$, $\pi^{-1}(p)$ 的点必定在某个 \tilde{V}_i 内。事实上,对 $\forall \tilde{p} \in \pi^{-1}(p)$,设 r 是以 p 为起点、 p_0 为终点的弧,由覆盖的正则性,存在以 \tilde{p} 为起点的提升 \tilde{r} , \tilde{r} 的终点必定是 $\pi^{-1}(p_0)$ 的某个点 \tilde{p}_i ,因此 $(\pi|\tilde{V}_i)(\tilde{r}) = r$, \tilde{r} 在 \tilde{V}_i 内,由此推出 $\pi^{-1}(p)$ 最多有n-1 个点。即 $W-E_n$ 是开集。

根据W的连通性, E_* 和 $W-E_*$ 之中必有一个是空集。 假如存在 n,使得 $E_*\neq\emptyset$, $E_{*+1}=\emptyset$,则 $W-E_*$,这时覆盖次数等于 n。 否则,我们认为覆盖次数是无穷。(注意,现在还不知

道覆盖次数是可数的)定理证完。

下面的定理是光滑覆盖曲面的一个特征性定理。

定理 2.3. W的光滑覆盖曲面 (\widetilde{V}, π) 是正则的,当且仅当对 $\forall p_1 \in W$,存在 p_2 的局部参数邻域 V,使得映照 π 把 $\pi^{-1}(V)$ 的每一个分支 \widetilde{V} 拓扑映照到 V 上。

附注. 这样的V称为 p_0 的特征邻域, \tilde{V} 为 $\pi^{-1}(p_0)$ 上点的局部参数邻域。

证明。这里我们先证明充分性,必要性在证明了单值性定理以后再证。

设 $r:[0,1] \to W$ 为任一弧 $, r(0) = p_0$,要证明对任意 $\tilde{\rho}_0 \in \pi^{-1}(p_0)$,存在r 的提升 \tilde{r} ,使得 $\tilde{r}(0) = \tilde{\rho}_0$.

由定理假设,对 $\forall i \in [0,1]$,存在 r(i) 的局部参数邻域 V_i ,映照 π 把 $\pi^{-1}(V_i)$ 的每一个分支 \tilde{V}_i 拓扑映照到 V_i 上.根据 r(i) 的 连续性,存在包含 i 的区间 Δi 使得 $r(\Delta_i) \subset V_i$,这样的 Δ_i 的全体作成 [0,1] 的开覆盖,因此存在有限多个区间 Δ_i , $0 \leq i \leq n$ 覆盖 [0,1]. 设对应的局部参数邻域 V_i ,使得 $r(\Delta_i) \subset V_i$. 进一步,我们可以假设 $\Delta_i = [\iota_i, \iota_{i+1}]$, $0 = \iota_0 < \iota_1 < \cdots < \iota_i < \iota_{i+1} < \cdots < \iota_{i+1} = 1$,设 $r_{i:} \{\iota_i, \iota_{i+1}] \to W$, $r_i(t) = r(t)$,则 r_i 在 V_i 内.对于 $r_i \subset V_i$, $r_i(0) = r(0) = p_0$,取 \tilde{V}_0 为 $\pi^{-1}(V_0)$ 的包含 \tilde{p}_0 的分支,将 π 限制在 \tilde{V}_i 上,定义 \tilde{r}_0 : $[\iota_0, \iota_1] \to \tilde{V}_0$, $\tilde{r}_0(t) = \pi^{-1}(r_0(t))$,则 $\pi(\tilde{r}_0) = r_0$ 对于 $r_i \subset V_i$,同样取 \tilde{V}_i 为 $\pi^{-1}(V_i)$ 包含 $\tilde{r}_0(\iota_i)$ 的分支,将 π 限制在 \tilde{V}_i 上,定义 \tilde{r}_i : $[\iota_1, \iota_2] \to \tilde{V}_i$, $\tilde{r}_i(t) = \pi^{-1}(r_1(t))$,则 $\pi(\tilde{r}_i) = r_i$ 如此继续 n 次后,我们便得到 \tilde{r}_0, \tilde{r}_i , \cdots , \tilde{r}_n ,使得 $\pi(\tilde{r}_i) = r_i$ 如此继续 n 次后,我们便得到 \tilde{r}_0, \tilde{r}_i , \cdots , \tilde{r}_n ,使得 $\pi(\tilde{r}_i) = r_i$ 如此继续 n ,并且 \tilde{r}_i 的终点应与 \tilde{r}_{i+1} 起点相同。因 此,令

$$\tilde{r}(t) = \begin{cases} \tilde{r}_0(t), & t \in [t_0, t_1], \\ \tilde{r}_1(t), & t \in [t_1, t_2], \\ \vdots \\ \tilde{r}_n(t), & t \in [t_n, t_{n+1}], \end{cases}$$

则 $\pi(\tilde{r}) = r$, 且 \tilde{r} 的起点 $\tilde{r}(0) = \tilde{\rho}_0$. 这就是所求的 r 的提升.

§ 3 曲线的同伦与基本群

我们要对曲面W上具有公共端点的曲线族定义同伦关系。

给定W上的两条弧 $r_1:[0,1] \to W$, $r_2:[0,1] \to W$, $r_1(0) = r_2(0)$, $r_1(1) = r_2(1)$. 连续映照 $r_2:[0,1] \times [0,1] \to W$, $(t,u) \to r(t,u)$ 称为 r_1 到 r_2 的形变, 如果

$$r(0, u) = r_1(0) = r_2(0), \ 0 \le u \le 1,$$

$$r(1, u) = r_1(1) = r_2(1), \ 0 \le u \le 1,$$

$$r(t, 0) = r_1(t), \ r(t, 1) = r_2(t), \ 0 \le t \le 1.$$

定义。如果存在 r_1 到 r_2 的一个形变,则称 r_1 同伦于 r_2 ,记为 $r_1 \approx r_2$.

作为特例,如果W是平面凸域,则W上任何两条具有公共端点的弧 r_1 和 r_2 总是同伦的。因为这时可定义形变为 $r(\iota, u) = (1 - u)r_1(\iota) + ur_2(\iota)$ 。

定理 3.1. 对于弧 $r:[0,1] \to W$,如果 $\tau:[0,1] \to [0,1]$, $\tau = \tau(t)$ 是单调增的连续函数,且 $\tau(0) = 0$, $\tau(1) = 1$,则经过参数变换后,r(t) 和 $r(\tau(t))$ 定义的弧同伦。

证明。因为存在形变 r(t,u) = r((1-u)t + ut(t)). 证完。

同伦关系是一个等价关系。事实上, $r \approx r$,如果 $r_1 \approx r_2$,则 $r_2 \approx r_1$,这两个性质是明显的。我们证明,如果 $r_1 \approx r_2$, $r_2 \approx r_3$,则 $r_1 \approx r_3$ 。为此,设 r_1 到 r_2 的形变为 r_{12} , r_2 到 r_3 的形变可定义为

$$r_{13}(t, u) = \begin{cases} r_{12}(t, 2u), & 0 \leq u \leq \frac{1}{2}, \\ r_{23}(t, 2u - 1), & \frac{1}{2} \leq u \leq 1. \end{cases}$$

将起点和终点固定的弧按同伦关系进行分类。弧,所属的同

伦类记为[r], 定理 3.1 指出,孤 r 经单调增的、在上的、连续的参数变换后属于同一同伦类。

弧的积:如果 r_1 的终点等于 r_2 的起点,则定义 r_1 和 r_2 的积 $r_1 \cdot r_2$ 为

$$r(t) = \begin{cases} r_1(2t), & 0 \leq t \leq \frac{1}{2}, \\ r_2(2t-1), & \frac{1}{2} \leq t \leq 1. \end{cases}$$

弧的积具有性质:如果 $r_1 \approx r_1$, $r_2 \approx r_2$,则 $r_1 \cdot r_2 \approx r_1$ · r_2 .这是因为如果设 r_1 到 r_1 的形变为 r_2 (r_1 , r_2),则存在 $r_1 \cdot r_2$ 到 $r_1' \cdot r_2'$ 的形变

$$r(t) = \begin{cases} r_1(2t, u), & 0 \leq t \leq \frac{1}{2}, \\ r_2(2t - 1, u), & \frac{1}{2} \leq t \leq 1. \end{cases}$$

根据这一性质,我们定义 $[r_1][r_2] = [r_1 \cdot r_2]$.

弧的逆 r^{-1} 定义为 $r^{-1}(t) = r(1-t), t \in [0, 1]$.

孤的逆具有性质: 如果 $r_1 \approx r_2$, 则 $r_1^{-1} \approx r_2^{-1}$. 因为如果 r_1 到 r_2 的形变为 r(t,u),则存在 r_1^{-1} 到 r_2^{-1} 的形变 $r_2^{-1}(t,u) = r(1-t,u)$.

根据逆的性质,我们定义 $[r]^{-1} = \{r^{-1}\}.$

同伦关系在连续映照下不变. 设W和 W_1 为两个曲面, $f:W\to W_1$ 为连续映照, 对于W上的弧 $r:[0,1]\to W_1,\iota\to r(\iota)$, 在 W_1 上 对应有一弧 $f(r):[0,1]\mapsto W_1$, 定义为 $\iota\mapsto f(r(\iota))$. 如果 $r_1\approx r_2$, 则 $f(r_1)\approx f(r_1)$. 这是因为,如果设 r_1 到 r_1 的形变为 $r(\iota,u)$,则 $f(r_1)$ 到 $f(r_1)$ 的形变可定义为 $f(r(\iota,u))$.

明显地,关系式

$$f(r_1 \cdot r_2) = f(r_1) \cdot f(r_2), (f(r))^{-1} = f(r^{-1})$$

成立.

现在我们定义曲面基本群。

在曲面W上取定点 p_0 ,考虑所有起点和终点在 p_0 的闭曲线的同伦类的集,按上面定义的乘法和逆,这个集成为群,记之为 $\pi_1(W,p_0)$,称为**曲面 W 对 p_0 的基本群。\pi_1(W,p_0)** 的元素是起点和终点在 p_0 的闭曲线 r 的同伦类 [r],单位元素是同伦于点 p_0 (一点 p_0 作成的曲线)的曲线的同伦类。

对于曲面W上任意两点 p_0 和 p_1 ,有 $\pi_1(W, p_0) \cong \pi_1(W, p_1)$ 即曲面W对 p_0 和 p_1 的基本群同构。

事实上,根据W的弧连通性,在W内存在连接 p_0 到 p_1 的弧 σ ,对任一过 p_0 的闭曲线 r,对应有一过 p_1 的闭曲线 $r' = \sigma^{-1} \cdot r \cdot \sigma$,当 $r \approx r_1$ 时有 $r' \approx r_1$,因此,我们可定义 $\pi_1(W, p_0)$ 到 $\pi_1(W, p_1)$ 的一个对应 $[r] \rightarrow [\sigma^{-1} \cdot r\sigma]$ 。 这个对应保持乘积和逆运算,且是一一在上的,所以是 $\pi_1(W, p_0)$ 到 $\pi_1(W, p_1)$ 的同构。对于取定的 σ ,我们有表示式

$$\pi_1(W, p_1) = \sigma^{-1}\pi_1(W, p_0)\sigma_{\bullet}$$

由于对任意 $p_0 \in W$,群 $\pi_1(W, p_0)$ 相互同构,因此,在同构的观点下,把所有 $\pi_1(W, p_0)$ 看作同一个群,记为 $\pi_1(W)$,称之为**曲面 W 的基本**群。 $\pi_1(W)$ 对于每点 p_0 就是 $\pi_1(W, p_0)$.

特别地,如果基本群 $n_1(W) = 1$ (单位元素),则称曲面W为 **单连通的**。这就是说,W是单连通的当且仅当过 p_0 点的所有闭曲 线同伦于点 p_0 .

最后,我们再说明一点,基本群在拓扑映照下不变。

设W和 W_1 是两个曲面, $f: W_1 \to W_1$ 是从W到 W_1 的一个连续映照,则对任意 $p \in W$, $f(p) \in W_1$ 。 f 诱导一个同态 $f_p:\pi_1(W,p) \to \pi_1(W_1,f(p))$,使得对于 $\forall [r] \in \pi_1(W,p)$ 对应 $[f(r)] \in \pi_1(W_1,f(p))$ 。进一步,如果 $f:W \to W_1$ 是拓扑映照,则 $f_p:\pi_1(W_1,f(p))$ 是同构。 这就是说,基本群在拓扑映照下不变,即同胚曲面的基本群同构。

§ 4 单值性定理及其应用

定理 4.1. 设 (\widetilde{W}, π) 是W的正则覆盖曲面,如果W上的弧

 $r_0 \approx r_1$, r_0 和 r_1 的公共起点为 a, 终点为 b, $\tilde{a} \in \pi^{-1}(a)$, \tilde{r}_0 和 \tilde{r}_1 分别是 r_0 和 r_1 以 \tilde{a} 为起点的提升,则 \tilde{r}_0 和 \tilde{r}_1 具有公共终点 $\tilde{b} \in \pi^{-1}(b)$,并且 $\tilde{r}_0 \approx \tilde{r}_1$.

证明。设 r_0 到 r_1 的形变为 $\varphi(t,u):[0,1] \times [0,1] \to W$, $\varphi(t,0)=r_0(t)$, $\varphi(t,1)=r_1(t)$, $\varphi(0,u)=a$, $\varphi(1,u)=b$. 对任意 $u \in [0,1]$, 定义弧 r_u , 使得 $r_u(t)=\varphi(t,u)$ 。 根据覆盖 正则性,存在 r_u 的以 \tilde{a} 为起点的提升 \tilde{r}_u , 使得 $t \to \tilde{r}_u(t)$ 。 定义 $\tilde{\varphi}(t,u):[0,1] \times [0,1] \to \widetilde{W}$, 使得 $\tilde{\varphi}(t,u)=\tilde{r}_u(t)$ 。 明显地 $\pi(\tilde{\varphi}(t,u))=\varphi(t,u)$, 我们还要证明 $\tilde{\varphi}(t,u)$ 是连连映照。

我们断言,对任何固定的 $u_0 \in [0, 1]$,存在 $\delta > 0$,使得 $\tilde{\varphi}(t, u)$ 在矩形 $[0,1] \times [u_0 - \delta, u_0 + \delta]$ 内连续。事实上,对给定的 u_0 ,对应弧 $r_{u_0}: r_{u_0}(t) = \varphi(t, u_0)$,及 $\tilde{r}_{u_0}: \tilde{r}_{u_0}(t) = \tilde{\varphi}(t, u_0)$,使 得 $\pi(\tilde{\varphi}(t, u_0)) = \varphi(t, u_0)$ 。这时,对 $\forall t \in [0, 1]$,取 $\tilde{\varphi}(t, u_0)$ 和 $\varphi(t, u_0)$ 的局部参数邻域 \tilde{V}_t 和 V_t ,使得 $\pi|\tilde{V}_t: \tilde{V}_t \to V_t$ 是 拓扑的。再根据 $\varphi(t, u)$ 的连续性,对于点 (t, u_0) ,存在一个矩形域 $\Delta_t = (t - \delta_1, t + \delta_1) \times (u_0 - \delta_2, u_0 + \delta_2)$ 使得 $\varphi(\tilde{\Delta}_t) \subset V_t$,其中 δ_1 和 δ_2 依赖于 (t, u_0) 。所有这样的 Δ_t 组成 $[0, 1] \times \{u_0\}$ 的开覆盖,由有限覆盖定理,存在有限多个矩形 Δ_0 , Δ_1 , …, Δ_n 覆盖 $[0, 1] \times \{u_0\}$ 。 相应的局部参数邻域 V_0 , V_1 , …, V_n 覆盖 r_{u_0} ,及局部参数邻域 \tilde{V}_0 , \tilde{V}_1 , …, \tilde{V}_n 覆盖 \tilde{r}_{u_0} ,使得 $\varphi(\tilde{\Delta}_t) \subset V_t$, $\pi|\tilde{V}_t:\tilde{V}_t \to V_t(0 \leqslant i \leqslant n)$ 是拓扑映照。进一步,我们可以假定 $\Delta_i = [t_i, t_{i+1}] \times [u_0 - \delta, u_0 + \delta]$ (δ 是有限个正数的最 小者), $t_0 = 0$, $t_i < t_{i+1}$, $t_{n+1} = 1$ 。因此, $\int_{i=0}^n \Delta_i$ 组成一个矩形 $\Delta = \{0, 1\} \times [u_0 - \delta, u_0 + \delta]$ 。现在,我们证明 $\tilde{\varphi}(t, u)$ 在 Δ_1

首先在 Δ_0 上,对于任何固定的 u, $u_0 - \delta \le u \le u_0 + \delta$ 使得,当 $\iota_0 \le \iota \le \iota_1$ 时,由 $\varphi(0,u) = a$ 及 $\tilde{\varphi}(0,u) = \tilde{a}$,根据过 \tilde{a} 点的提升的唯一性, $\tilde{\varphi}(\iota,u) = (\pi | \tilde{V}_0)^{-1} \circ \varphi(\iota,u)$,因此 $\tilde{\varphi}(\iota,u)$ 在 Δ_0 内连续,其次考虑在 Δ_1 上,令 $\tilde{\varphi}_1(\iota,u) = (\pi | \tilde{V}_1)^{-1} \circ \varphi(\iota,u)$,可以证明 $\tilde{\varphi}_1(\iota,u) = \tilde{\varphi}(\iota,u)$ 。 这是因为在 $\Delta_0 \cap \Delta_1 = u$

 $\{t_1\}$ × $[u_0 - \delta, u_0 + \delta]$ 上, $\tilde{\varphi}_1(t_1, u_0) = \tilde{\varphi}(t_1, u_0)$, $\varphi(t_1, u)$ 作为以 u 为参数的曲线,由提升的唯一性, $\varphi(t_1, u)$ 过 $\tilde{\varphi}(\tilde{t}_1, u_0)$ 的提升 $\tilde{\varphi}(t_1, u) = \tilde{\varphi}_1(t_1, u)$ 。 在 Δ_1 上, $\varphi(t, u)$ 作为参数 t 的曲线,由提升的唯一性, $\varphi(t, u)$ 过 $\tilde{\varphi}(t_1, u) = \tilde{\varphi}_1(t_1, u)$ 的提升 $\tilde{\varphi}(t, u) = \tilde{\varphi}_1(t, u)$ 。 因此 $\tilde{\varphi}(t, u)$ 在 Δ_1 上连续,且在 Δ_0 U Δ_1 上连续。 如此继续,我们便可证明 $\tilde{\varphi}(t, u)$ 在 Δ_0 U Δ_1 U Δ_1 一个上连续,这就证明了断言的正确性。

根据所证断言, $\tilde{\varphi}(t,u)$ 在[0,1]×[0,1]上连续。 特别地 $\tilde{\varphi}(1,u)$ 是在 [0,1]上的连续函数,但是 $\tilde{\varphi}(1,u) \in \pi^{-1}(b)$,而 $\pi^{-1}(b)$ 由孤立点组成,因此 $\tilde{\varphi}(1,u)$ 一定 恒 等于 某个点 $\tilde{b} \in \pi^{-1}(b)$,同时 $\tilde{\varphi}(t,u)$ 是从 \tilde{r}_0 到 \tilde{r}_1 的形变。定理证完。

作为单值性定理的应用,我们证明下面定理。

定理 4.2. 设 (\widetilde{W}, π) 是W的正则覆盖曲面。 如果W是单连通的,则 $\pi:\widetilde{W}\to W$ 是拓扑映照。因此 \widetilde{W} 也是单连通的。

证明. 由于 $\pi: \widetilde{W} \to W$ 是局部拓扑的,要证明 π 是拓扑的, 只要证明 π 是一一的。

对任意 $p_0 \in W$,我们要证 $\pi^{-1}(p_0)$ 仅由一点组成。反证之,如果存在两点 $\tilde{p}_1, \tilde{p}_2 \in \pi^{-1}(p_0)$, $\tilde{p}_1 \neq \tilde{p}_2$,取连接 \tilde{p}_1 和 \tilde{p}_2 的 曲 线 \tilde{r} ,r 为 \tilde{r} 的投影,r 是 W 上的以 p_0 为起点和终点的闭曲线。 由于 W 是单连通的,因此 $r \approx p_0$ (即点 p_0 所作成的曲线),根据单值性 定理, $\tilde{r} \approx \tilde{p}_1$, $\tilde{p}_2 \approx \tilde{p}_1$ 。这一矛盾说明 $\pi^{-1}(p_0)$ 仅由一点组成,定理证毕。

现在证明正则性的必要条件(即完成定理 2.3 的证明)。

证明,设(\widetilde{W} , π)是W的正则覆盖曲面,对于任意 $p_0 \in W$,取 Δ 为以 p_0 为心的局部参数圆, $\widetilde{\Delta}$ 是 $\pi^{-1}(\Delta)$ 的任一分支,我们要证明 $\pi \mid \widetilde{\Delta} : \widetilde{\Delta} \to \Delta$ 是拓扑映照。事实上,这时($\widetilde{\Delta}$, $\pi \mid \widetilde{\Delta}$)是 Δ 的正则覆盖曲面,但 Δ 是单连通的,因而由定埋 4.2, $\pi \mid \widetilde{\Delta}$ 是拓扑映照。

§ 5 单连通 Riemann 曲面解析开拓的 连贯性定理

定理 5.1. 设W为单连通 Riemann 曲面, $\{U_a\}$ 为W的一个开覆盖,其中 U_a 是W上的域。并且对任意 U_a ,对应一族解析函数 $\Phi_a = \{\varphi_a\}$,满足条件: 对任意 U_a 及 $\varphi_a \in \Phi_a$,如果 $U_a \cap U_a \neq \emptyset$,则对 $\forall p \in U_a \cap U_a$,存在 $\varphi_a \in \Phi_a$,使得在 p 的邻域内 $\varphi_a = \varphi_a$.

在上述条件下,W上存在(单值)解析函数 φ ,使得对任意 U_a , $\varphi|U_a \in \Phi_a$ 。此外,如果给定一个 U_a 及 $\varphi_a \in \Phi_a$,则 φ 由 $\varphi|U_a = \varphi_a$ 唯一确定。

证明。首先构造W的一个覆盖曲面。

考虑所有序对 (φ_a, p) , 其中 $p \in U_a$, $\varphi_a \in \Phi_a$. 定义等价关系 \sim $, (\varphi_a, p_1) \sim (\varphi_{\beta}, p_2)$ 当且仅当 $p_1 = p_2$,且在 $p_1 = p_2$ 的邻域内 $\varphi_a = \varphi_{\beta}$. 将所有序对 (φ_a, p) 进行等价分类, (φ_a, p) 所在的等价类记为 $[\varphi_a, p]$,所有等价类的集记为 \widehat{V} . 定义投影映照 $\pi: \widehat{V} \to V$,使得 $\pi([\varphi_a, p]) = p$. 现在我们要定义 \widehat{V} 的拓扑使得 π 成为局部拓扑映照。

对任意 $[\varphi_a, p_a] \in \widetilde{W}$, 定义邻域

 $\widetilde{V} = \{ [\varphi_a, p]; p \in V, p_0 \in V, V \subset U_a$ 是开集}

这样, \widetilde{V} 成为拓扑空间,并且 \widetilde{V} 是 Hausdorff 空间。事实上,对于 \widetilde{V} 上任意两点 $[\varphi_a, p_1] \neq [\varphi_{\theta}, p_2]$,当 $p_1 \neq p_2$ 时,存在 p_1 的邻域 $V_1 \subset U_a$, p_2 的邻域 $V_2 \subset U_{\theta}$,使得 $V_1 \cap V_2 = \emptyset$,因此 $[\varphi_a, p_1]$ 和 $[\varphi_{\theta}, p_2]$ 存在不相交的邻域 $\widetilde{V}_1 = \{[\varphi_a, p]: p \in V_1\}$ 和 $\widetilde{V}_2 = \{[\varphi_{\theta}, p]: p \in V_2\}$,当 $p_1 - p_2$ 时,存在 $p_1 = p_2$ 的一个邻域 V,使得在 V 内 $\varphi_a \neq \varphi_{\theta}$ 。因此 $[\varphi_a, p_1]$ 和 $[\varphi_{\theta}, p_2]$ 存在不相 交的邻域 $\widetilde{V}_1 = \{[\varphi_a, p]: p \in V\}$, $\widetilde{V}_2 = \{[\varphi_{\theta}, p], p \in V\}$ 。即 \widetilde{V} 是 Hausdorff 空间。

 π 是局部拓扑映照。 这是因为在点 $[\varphi_a, p_a]$ 的 邻域 \widetilde{V} 一

 $\{[\varphi_a,p]:p\in V,p_o\in V,V\subset U_a\}$ 内, π 是一一的,即 π 把邻域一一地映为邻域,于是 $\pi|\widetilde{V}:\widetilde{V}\to V$ 是拓扑映照, $\pi:\widetilde{W}\to W$ 是局部拓扑映照。但应注意, \widetilde{W} 不一定是连通的。 设 \widetilde{W} 的任一连通分支为 \widetilde{W}_o ,则 (\widetilde{W}_o,π) 是W的光滑覆盖曲面。

 (\widetilde{W}_0, π) 是W的正则覆盖曲面。 我们要证明,对W上的任何 弧 $r:[0,1] \to W$, $t \longmapsto r(t)$, $p_0 = r(0)$, 及 $\pi^{-1}(p_0)$ 上的点 $[\varphi_0, p_0]$,总存在 r 的以 $[\varphi_0, p_0]$ 为起点的提升 $\widetilde{r}:[0,1] \to \widetilde{W}_0$, $\widetilde{r}(0) = [\varphi_0, p_0]$.

对任意 $t \in [0,1]$, $r(t) \in U_a \in \{U_a\}$, 由有限覆盖定理,存在有限多个域 U_0 , U_1 , ..., U_a 覆盖 r, 对应地存在区间 Δ_0 , Δ_1 , ..., Δ_n 覆盖[0,1], 使得 $r(\Delta_i) \subset U_i (0 \leqslant i \leqslant n)$. 进一步,我们假定 $\Delta_i = [t_i, t_{i+1}], t_0 = 0$, $t_i \leqslant t_{i+1}, t_{n+1} = 1$. 现在,对每个 Δ_i , 令 $r_i : \Delta_i \to W$, $r_i(t) = r(t)$, 逐段提升 r_i . 由于 $p_0 \in U_0$, $\varphi_0 \in \Phi_0$, 作 $[\varphi_0, p_0]$ 的邻域 $\widetilde{U}_0 = \{[\varphi_0, p]: p \in U_0\}$, 则 $\pi \mid \widetilde{U}_0: \widetilde{U}_0 \to U_0$ 是拓扑映照,因此定义 $\widehat{r}_0: [t_0, t_1] \to \widetilde{W}_0$, $\widehat{r}_0(t) = (\pi \mid U_0)^{-1} \circ r_0(t)$, 显然 $\widehat{r}_0(0) = [\varphi_0, p_0]$. 其次对于 $\Delta_1 = [t_1, t_2]$, 由 $r(\Delta_1) \subset U_1$, $r(t_1) \in U_0 \cap U_1$, 根据定理假设,存在 $\varphi_1 \in \Phi_1$, 使得在 $r(t_1)$ 的邻域 $\widetilde{U}_1 = \{[\varphi_1, p]: p \in U_1\}$, 定义 $\widehat{r}_1: [t_1, t_2] \to \widetilde{W}_0$, $\widehat{r}_1(t) = (\pi \mid U_1)^{-1} \circ r_1(t)$, 则有 $\widehat{r}_0(t_1) = \widehat{r}_1(t_1)$. 对 Δ_2, \dots , Δ_n 继续作下去,我们便得到 $\widehat{r}_0, \widehat{r}_1, \dots$, \widehat{r}_n , 使得 $\widehat{r}_i: [t_i, t_{i+1}] \to \widetilde{W}_0$, $\widehat{r}_i(t_{i+1}) = \widehat{r}_{i+1}(t_{i+1})(0 \leqslant i \leqslant n)$. 定义 $\widehat{r} = \widehat{r}_0 \cdot \widehat{r}_1 \cdot \dots \cdot \widehat{r}_n$, 则有 $\pi(\widehat{r}(t)) = r(t)$, $\widehat{r}(t)$ 即是 r(t) 的以 $[\varphi_0, p_0]$ 为起点的提升。

 (\widetilde{W}_0, π) 是 W 的光滑正则覆盖曲面。由定理 1.1, π 诱导一个复结构使 \widetilde{W}_0 成为 Riemann 曲面。又由定理 4.2, \widetilde{W}_0 也是单连通 Riemann 曲面, $\pi:\widetilde{W}_0 \to W$ 是解析映照且是拓扑映照。定义函数 $\varphi:W\to C$,对 $p\in W$,对应唯一的 $\pi^{-1}(p)=[\varphi_a,p]$,令 $\varphi(p)=\varphi_a(p)$ 。则在 U_a 内 φ 由 $\varphi|U_a=\varphi_a$ 唯一确定。定理证完。

由这定理可直接得到单连通域解析开拓的一个定理。

定理 5.2. 设 G 为 C 的单连通域, $a \in G$. 给定正则函数元素 (p(z), a),如果 (p(z), a) 在 G 内沿任何路径可以解析开拓,则解析开拓后,得到唯一定义于 G 内的解析函数 f,使得 (f, a) = (p, a),即在 a 的邻域内 f(z) = p(z).

§6 基本群的子群与覆盖曲面

本节我们只讨论光滑正则覆盖曲面,研究基本群的子群与**覆** 盖曲面的关系。

设 (\widetilde{W}_1, π_1) 和 (\widetilde{W}_2, π_2) 为W的覆盖曲面,如果存在映照 π_{21} : $\widetilde{W}_2 \to \widetilde{W}_1$ 使得 $(\widetilde{W}_2, \pi_{21})$ 成为 \widetilde{W}_1 的覆盖曲面,且 $\pi_1 = \pi_1 \circ \pi_{21}$, 则称 (\widetilde{W}_2, π_2) **强于** (\widetilde{W}_1, π_1) . 如果 (\widetilde{W}_2, π_2) 强于 (\widetilde{W}_1, π_1) ,并且 (\widetilde{W}_1, π_1) 强于 (\widetilde{W}_2, π_2) ,则称 (\widetilde{W}_2, π_2) 等价于 (\widetilde{W}_1, π_1) ,等价的覆盖曲面我们将看作是相同的。

设 (\widetilde{W}, π) 是W的覆盖曲面,取定 $p_0 \in W$ 及 $\widehat{p}_0 \in \pi^{-1}(p_0)$,设 r 是以 p_0 为端点的闭曲线, \widetilde{r} 为过 \widetilde{p}_0 的提升,根据单值性定理,如果 $r_1 \approx r_2$,则有 $\widetilde{r}_1 \approx \widetilde{r}_2$,这就指出 \widetilde{r}_1 和 \widetilde{r}_2 同时是闭的或非闭的曲线,r 的同伦类提升为 \widetilde{r} 的同伦类。

设

设 $\tilde{p}_i \in \pi^{-1}(p_0)$,同样定义子群 D_i ,讨论 D 和 D_i 的关系。在 \tilde{W} 上取连接 \tilde{p}_0 到 \tilde{p}_i 的弧 $\tilde{\sigma}$, $\tilde{\sigma}$ 的投影 $\pi(\tilde{\sigma}) = \sigma$ 是以 p_0 为端点的闭曲线。对于 $[r] \in D$,按定义不难验证 $[\sigma^{-1}r\sigma] = [\sigma]^{-1}[r] \times [\sigma] \in D_i$,反之,对于 $[r_i] \in D_i$,则存在 $[r] = [\sigma][r_i][\sigma]^{-1} \in D$,使得 $[r_i] = [\sigma]^{-1}[r][\sigma]$ 。因此 D_i 是与D 共轭的子群。写成 $D_i = [\sigma]^{-1}D[\sigma]$ 。

反之,对于每一个与D共轭的子群 $D_1 = [\sigma]^{-1}D[\sigma]$,设 \tilde{p}_1 是 σ 的以 \tilde{p}_2 为起点的提升的终点,则 D_1 是对于 \tilde{p}_1 所定义的子群。

定理 6.1. $\pi_1(\widetilde{W}, \widetilde{\rho}_0) \cong D$, 因而 $\pi_1(\widetilde{W}) \cong D$.

证明. 投影映照 π 诱导 $\pi_1(\widetilde{V}, \widetilde{\rho}_0)$ 到 D 上的一个同态,使得 $\pi(\widetilde{r}) = r$,且 $r \approx 1$,则 r 的提升 $\widetilde{r} \approx 1$ 。 即此同态的核是 1,因此 $\pi_1(\widetilde{V}, \widetilde{\rho}_0) \cong D$ 。

定理 6.2. 设W为曲面,D为基本群 $\pi_1(W, p_0)$ 的一个子群,则可构造W的一个正则覆盖曲面 (\widetilde{W}, π) ,使得 $\pi_1(\widetilde{W}) \cong D_\bullet$

证明. 考虑W上所有的以 p_0 为起点, p_1 为终点的弧 $\sigma_{p_0p_1}$ 组成的集 Q. 在 Q 上定义等价关系 \sim ,使得 $\sigma_{p_0p_1} \sim \sigma_{p_0p_2} \iff p_1 = p_2$,且 $\sigma_{p_0p_1} \cdot \sigma_{p_0p_2}^{-1} \in D$ (这里 $[r] \in D$,简单地用 r 表示 [r]),应用这一等价关系 \sim ,对 Q 中的 $\sigma_{p_0p_1}$ 进行分类, $\sigma_{p_0p_1}$ 所在的等价类用 $[\sigma_{p_0p_1}]$ 表示,令

$$\widetilde{W} - \{\widetilde{p} = [\sigma_{p_0p}] : \sigma_{p_0p} \in \Omega\}$$

定义自然投影映照 $\pi: \widetilde{W} \to W$, $\pi([\sigma_{tot}]) = p$, 我们首先要在 \widetilde{W} 上引人邻域系使得 \widetilde{W} 成为曲面.

对任何 $\tilde{\rho} = [\sigma_{\rho,\rho}] \in \widetilde{W}$ 及任何以 ρ 为心的局部参数 圆 Δ_{ρ} ,定义

 $\tilde{\Delta}_{\tilde{p}} = \{ [\sigma_{pqp} \cdot \sigma_{pq}] : q \in \Delta_p, \sigma_{pq} \in \Delta_p, \text{内连接 p 到 q 的弧} 为 <math>\tilde{p}$ 的邻域。由于 Δ_p 是参数圆,连接 p 到 q 的弧相互同伦, $[\sigma_{pqp}\sigma_{pq}]$ 由点 $q \in \Delta_p$ 唯一确定,与所取 q_{pq} 无关,因此 $\pi | \tilde{\Delta}_{\tilde{p}} : \tilde{\Delta}_{\tilde{p}} \to \Delta_p$ 是 一一映照。

以所有的邻域 $\tilde{\Delta}_i$ 组成 \widetilde{W} 的邻域系,定义 \widetilde{W} 的拓扑,使 \widetilde{W} 成为拓扑空间。由于 π 把邻域——地映为W的局部参数圆邻域,因此 π 是局部拓扑映照,即 $\pi \mid \tilde{\Delta}_i : \tilde{\Delta}_i \to \Delta_i$ 是拓扑映照。 设对于 W , Δ , 的局部参数映照 为 z_i , 则对于 \widetilde{W} ,定义 $\tilde{\Delta}_i$ 的局部参数映照 为 z_i , 则对于 \widetilde{W} ,定义 $\tilde{\Delta}_i$ 的局部参数映照 为 z_i 。 这样 \widetilde{W} 成为一个曲面,且 (\widetilde{W},π) 是W的光滑覆盖曲面,但这里还要验证 \widetilde{W} 的 Hausdorff 性及连通性。

 \widetilde{W} 是 Hausdorff 的。 这是因为如果 $\widetilde{p}_1 \neq \widetilde{p}_2$, $\widetilde{p}_1 = [\sigma_{p_0p_1}]$, $\widetilde{p}_2 = [\sigma_{p_0p_2}]$, 当 $p_1 \neq p_2$ 时,存在 Δ_{p_1} 和 Δ_{p_2} 使得 $\Delta_{p_1} \cap \Delta_{p_2} = \emptyset$, 因此对应的 $\widetilde{\Delta}_{\tilde{p}_1} \cap \widetilde{\Delta}_{\tilde{p}_2} = \emptyset$. 如果 $p_1 = p_2 = p$, 则取 $\Delta_p = \Delta_{p_1} = \Delta_{p_2}$, 这时不难验证对应的 $\widetilde{\Delta}_{\tilde{p}_1} \cap \widetilde{\Delta}_{\tilde{p}_2} = \emptyset$. 因此分离性公理成立。

W 是弧连通的。 设 $\tilde{p}_0 = [\sigma_{p_0p_0}]$, $\sigma_{p_0p_0}$ 是由点 p_0 组成的弧,对 $\forall \tilde{p}_1 = [\sigma_{p_0p_1}] \in \widetilde{W}$,设 $\sigma_{p_0p_1}$: $[0,1] \to W$, $t \longmapsto \sigma(t)$,对 $\forall \tau \in [0,1]$,令 σ_{r} : $[0,\tau] \to W$, $\sigma_{r}(t) = \sigma(t)$, $\tilde{p}_r = [\sigma_r]$,则 $\tau \to [\sigma_r]$ 定义 \widetilde{W} 上连接 \tilde{p}_0 到 \tilde{p}_1 的弧。 这说明 \widetilde{W} 的弧连通性。

 (\widetilde{W},π) 是W的正则覆盖。 因为对任意 $p \in W$,取以 p 为心的局部参数圆 Δ_p ,根据 \widetilde{W} 的邻域系的定义知道,对任意 $\widetilde{p} \in W$, $\widetilde{p} = [\sigma_{pnp}]$,都存在邻域 $\widetilde{\Delta}_{\widetilde{p}}$,使得 $\pi \mid \widetilde{\Delta}_{\widetilde{p}} : \widetilde{\Delta}_{\widetilde{p}} \to \Delta_p$ 是拓扑的。因此由正则性的充分条件(定理 2.3),(\widetilde{W},π)是正则覆盖曲面。

最后证明 $\pi_1(\widetilde{W}, \widetilde{\rho}_0) \cong D$. 我们要证明, $[\sigma] \in D$ 当且仅当 σ 的以 $\widetilde{\rho}_0 = [\sigma_{\rho_0\rho_0}]$ 为起点的提升是闭曲线。设 $\sigma:[0,1] \to W$ 是闭曲线, $\iota \to \sigma(\iota)$, $\sigma(0) = \rho_0$. 上面我们已经知道 σ 过 $\widetilde{\rho}_0 = [\sigma_{\rho_0\rho_0}]$ 的提升 $\widetilde{\sigma}:[0,1] \to \widetilde{W}$ 定义为 $\widetilde{\sigma}(\tau) = [\sigma_{\tau}]$,起点为 $\widetilde{\rho}_0 = [\sigma_{\rho_0\rho_0}]$,终点为 $\widetilde{\rho}_1 = [\sigma]$. $\widetilde{\sigma}$ 是闭的当且仅当 $\widetilde{\rho}_0 = [\sigma]$,即 $[\rho_0\sigma^{-1}] \in D$, $[\sigma] \in D$ 。最后由同构定理 6.1, $\pi_1(\widetilde{W}, \widetilde{\rho}_0) \cong D$ 。定理证完。

存在两个特殊的覆盖曲面,当 $D = \pi_1(W, p_0)$ 时,对应的覆盖曲面(\widetilde{W} , π)与W同胚,因为仅当 $p_1 = p_2$ 时 $\sigma_{p_0p_1} \sim \sigma_{p_0p_2}$, 因而 $\pi:\widetilde{W} \to W$ 是一一的,是一个同胚。

当D=1时,这时对应的覆盖曲面称为W的**万有覆盖曲面**,记为 (\hat{W} , π) 或 \hat{W} , 这时 $\pi_1(\hat{W})=D=1$. 这定理说明万有覆盖曲面一定存在,且是单连通的.

W的万有覆盖曲面一定存在,且是最强的覆盖曲面。

§7 覆盖变换群

定义. 设 (\widetilde{W},π) 为W的正则覆盖曲面, \widetilde{W} 到自身的同胚 φ ,如果满足

 $\pi \circ \varphi = \pi$

则称 φ 为 \widetilde{W} 覆盖W的覆盖变换。简称为**覆盖变换**。依定义,覆盖变换把 $\pi^{-1}(p)$ 的点变为 $\pi^{-1}(p)$ 的点、

特别地,当 \widetilde{W} 和W是黎曼曲面时, φ 一定是 \widetilde{W} 的共形自映照,因为这时 π 是局部一一的解析映照,对任意 $p \in W$, $\widetilde{p}_1 \in \pi^{-1}(p)$, $\widetilde{p}_2 = \varphi(\widetilde{p}_1) \in \pi^{-1}(p)$,存在 p, \widetilde{p}_1 和 \widetilde{p}_2 的局部参数邻域 V_p , $V_{\widetilde{p}_1}$ 和 $V_{\widetilde{p}_2}$,使得 $\pi \mid V_{\widetilde{p}_1} : V_{\widetilde{p}_1} \to V_p$, $\pi \mid V_{\widetilde{p}_1} : V_{\widetilde{p}_2} \to V_p$ 是拓扑映照。 设 V_p 的局部参数映照为 Z_p ,则 $V_{\widetilde{p}_1}$ 和 $V_{\widetilde{p}_2}$ 的局部参数映照为 Z_p 。 $(\pi \mid V_{\widetilde{p}_2})$ 和 Z_p 。 $(\pi \mid V_{\widetilde{p}_2})$,因此 φ 在局部参数下有

 $[Z_{p}\circ(\pi|V_{\tilde{p}_{1}})]\circ\varphi\circ[Z_{p}\circ(\pi|V_{\tilde{p}_{1}})]^{-1}=Z_{p}\circ\pi\circ\varphi\circ\pi^{-1}\circ Z_{p}^{-1}=I_{d}.$ 这就表示 φ 是解析的.

定理 7.1. 覆盖变换如果不是恒等变换,则没有不动点。

证明,设 φ 是 覆 盖 变 换,对 任 意 $p_0 \in W$, \tilde{p}_1 , $\tilde{p}_2 \in \pi^{-1}(p_0)$, $\tilde{p}_2 = \varphi(\tilde{p}_1)$,则存在局部参数 邻域 V_{p_0} , $V_{\tilde{p}_1}$ 和 $V_{\tilde{p}_2}$,使得 $\pi | V_{\tilde{p}_1}$: $V_{\tilde{p}_1} \to V_{p_0}$ 和 $\varphi | V_{\tilde{p}_1} \colon V_{\tilde{p}_1} \to V_{\tilde{p}_2}$ 是 拓扑映照,由于 $\pi \circ \varphi = \pi$ 知 道 $\pi | V_{\tilde{p}_2} \colon V_{\tilde{p}_2} \to V_{p_0}$ 也是 拓扑映照。 因此当 $\tilde{p}_1 = \tilde{p}_2$ 时 $V_{\tilde{p}_2} = V_{\tilde{p}_1}$,且 在 $V_{\tilde{p}_1}$ 内 $\varphi(\tilde{p}) = \tilde{p}$;当 $\tilde{p}_1 \neq \tilde{p}_2$ 时,我们可取 $V_{\tilde{p}_2}$,少 身,使得 $V_{\tilde{p}_1} \cap V_{\tilde{p}_2} = \emptyset$,因此在 $V_{\tilde{p}_1}$ 内 $\varphi(\tilde{p}) \neq \tilde{p}$ 。据此设

 $\widetilde{W}_0 = \{\widetilde{p} \in \widetilde{W} : \varphi(\widetilde{p}) = \widetilde{p}\}.$

则 \widetilde{W}_0 和 $\widetilde{W} - \widetilde{W}_0$ 都是开集。根据 \widetilde{W} 的连通性,如果存在 $\widetilde{\rho}_0 \in \widetilde{W}_0$,使得 $\varphi(\widetilde{\rho}_0) = \widetilde{\rho}_0$,则 $\widetilde{W}_0 = \emptyset$,于是 $\widetilde{W}_0 = \widetilde{W}$,即 φ 是恒等变换。 否则对任意 $\widetilde{\rho} \in \widetilde{W}$, $\varphi(\widetilde{\rho}) = \widetilde{\rho}$,即 φ 没有不动点。 定理证完。

推论. 设 $\tilde{p}_1, \tilde{p}_2 \in \pi^{-1}(p)$,则满足 $\varphi(\tilde{p}_1) = \tilde{p}_1$ 的覆盖变换是 唯一的.

附注. 设 (\widetilde{V} , π) 是W的正则覆盖曲面,则对任意 $p_0 \in W$ 及任意的 $\widetilde{p} \in \pi^{-1}(p_0)$,一定存在 p_0 和 \widetilde{p} 的局部参数圆 Δ_{p_0} 和 $\Delta_{\tilde{p}}$,使得 $\pi \mid \Delta_{\tilde{p}} : \Delta_{\tilde{p}} \rightarrow \Delta_{p_0}$ 是拓扑的。我们还可假定,对固定的 $\widetilde{p}_0 \in \pi^{-1}(p_0)$,设覆盖变换 φ 满足 $\widetilde{p} = \varphi(\widetilde{p}_0)$,则 $\varphi \mid \Delta_{\tilde{p}_0} : \Delta_{\tilde{p}_0} \rightarrow \Delta_{\tilde{p}_0}$ 是拓扑映照。

现在讨论覆盖变换群.

定义、 (\widetilde{W},π) 覆盖W的所有覆盖变换 Ψ 组成的乘法群称为**覆盖变换群**,我们用 Γ 表示:

$\Gamma = \{\varphi : \varphi \in \widetilde{W} \text{ 的自同胚, } \pi \circ \varphi = \pi \}.$

这里,乘法由复合映照定义: $\varphi_1 \cdot \varphi_2 = \varphi_1 \circ \varphi_2$; 逆由逆映照定义, 即 φ^{-1} ; 单位元素是恒等映照。

前面,我们定义了 $\pi_i(W, p_0)$ 的子群 D, 并证明 $D \cong \pi_i(\widetilde{W}, p_0)$. 下面讨论 D 和 Γ 的关系。

定理 7.2. $\Gamma \cong N(D)/D$, 其中 N(D) 是 D 的正规化群。证明。按定义

$$N(D) = \{g \in \pi_1(W, p_0) : D = gDg^{-1}\}.$$

N(D) 是 $\pi_i(W, p_i)$ 的子群, D 是 N(D) 的正规子群, 因为对 $\forall g \in N(D)$ 总有 $gDg^{-1} = D$.

定义商群 N(D)/D。 对 N(D) 的元素定义等价关系: $g_1 \sim g_2 \Longleftrightarrow g_1 \cdot g_2^{-1} \in D$. 将 N(D) 的元素分为等价类, g 所在的等价类记为 [g],定义商群

$$N(D)/D = \{[g]; g \in N(D)\},\$$

其中乘法定义为 $[g_1][g_2] = [g_1 \cdot g_2]$,逆定义为 $[g_1^{-1} = [g_1^{-1}]$ 、定义是合理的,这是因为如果 $g_1 \sim g_1'$, $g_2 \sim g_2'$,则有 $g_1 \cdot g_2 \sim g_2'$,则有 $g_1 \cdot g_2 \sim g_1' \sim g_1' \sim g_1'$ 。这里还须注意的是单位元素[1] = D.

现在证明 $N(D)/D \cong \Gamma$. 考虑以 ρ_0 为端点的闭曲线 r,使得 $[r] \in N(D)$. 固定点 $\tilde{\rho}_0 \in \pi^{-1}(p_0)$,对于 r 作覆盖变换 φ_r 如下: 对任意 $\tilde{\rho} \in \widetilde{W}$,用弧 $\tilde{\sigma}_{\tilde{\rho}_0\tilde{\rho}}$ 连接 $\tilde{\rho}_0$ 到 $\tilde{\rho}$,令 $\sigma_{\rho_0\rho} = \pi(\tilde{\sigma}_{\tilde{\rho}_0\tilde{\rho}})$; 然后以 $\tilde{\rho}_0$ 为起点提升 $r\sigma_{\rho_0\rho}$ 为 $\tilde{r}\tilde{\sigma}$,令 $\tilde{r}\tilde{\sigma}$ 的终点为 $\varphi_r(\tilde{\rho})$ 。则 φ_r 是覆 盖变换。

首先, $\varphi_r(\tilde{\rho})$ 与连接 $\tilde{\rho}_0$ 到 $\tilde{\rho}$ 的弧 $\tilde{\sigma}_{\tilde{\nu},\tilde{\nu}}$ 无关。 事实上,如果 $\tilde{\sigma}_{\tilde{\nu},\tilde{\nu}}$ 为连接 $\tilde{\rho}_0$ 到 $\tilde{\rho}$ 的另一弧,回忆 D 的定义知 道,设 $\sigma'_{ro,r} = \pi(\tilde{\sigma}'_{\tilde{\nu}_0\tilde{\nu}_0})$,应有 $[\sigma_{pop} \cdot \sigma'_{ro,r}] \in D$,因而 $[r\sigma_{pop} \cdot \sigma'_{ro,r}r^{-1}] \in D$, $r\sigma_{pop} \cdot \sigma'_{ro,r}r^{-1}$ 以 $\tilde{\rho}_0$ 为起点的提升是闭曲线,根据提升的唯一性, $r\sigma_{pop}$ 和 $r\sigma'_{ro,r}$ 以 $\tilde{\rho}_0$ 为起点的提升具有相同的终点,因此对任意 $\tilde{\rho} \in \widetilde{W}$,对 应唯一确定的 $\varphi_r(\tilde{\rho})$ 。同时还知道, φ_r 是一一在上的局部拓扑变 换。因此是 \widetilde{W} 的自同胚、并且 $\pi \circ \varphi_r = \pi$,即 φ_r 是覆盖变换。

特别地,在覆盖变换下,点产对应于,的以产为起点的提升

 \tilde{r} 的终点 $\tilde{r}(1)$. 根据定理 7.1 的推论, φ , 由 φ , $(p_0) = \tilde{r}(1)$ 唯一确定,因而,我们不难得到 φ_{r_1} , $r_1 = \varphi_{r_1} \circ \varphi_{r_2}$, $\varphi_{r_2} \circ \varphi_{r_3}$, $\varphi_{r_3} \circ \varphi_{r_4}$. 这样我们得到 N(D) 到 Γ 的一个对应; $[r] \to \varphi$, 它是一个同态,同态的核是 D, 因为当且仅当 $[r] \in D$ 时,r 以 \tilde{r}_0 为起点的提升 \tilde{r} 的终点 $\tilde{r}(1) = \tilde{p}_0$, 即 φ , 是恒等映照。同态的象是 Γ . 这是因为对 $\forall \varphi \in \Gamma$. 设 $\varphi(\tilde{p}_0) = \tilde{p}_1$, r 是连接 \tilde{p}_0 到 \tilde{p}_1 的曲线的投影,则 $r \in N(D)$. 实际上对 $\sigma \in D$, $r\sigma r^{-1} \in D$. 我们证明 $\varphi_r = \varphi_0$. 事实上 $\varphi_r(p_0)$ 等于 $r \cdot \sigma_{p_0p_1}$ 以 \tilde{p}_0 为起点的提升 $\tilde{r}\tilde{\sigma}_{\tilde{p}_0\tilde{p}_1}$ 的终点 \tilde{p}_1 ,因此由唯一性, $\varphi_r = \varphi_0$. 这样一来,我们便有 $\Gamma \cong N(D)/D$. 定理证

附注. $\pi^{-1}(p)$ 上的点和 Γ 及 N(D)/D 的元素是一一对应的。 但现在还不知道是否由可数多个点组成。

特别,当(\widetilde{W} , π)是W的万有覆盖曲面时,对应的 Γ 称为万有覆盖变换群,根据这一定理,注意到这时 $D = \{I\}$,即仅由单位元素组成,我们有 $N(D) = \pi_1(P_0, W)$ 与 $\Gamma \cong \pi_1(P_0, W)$ 。这就是说曲面W的万有覆盖变换群与基本群同构。

第四章 微分形式与积分

§1 微分形式

设W为 Riemann 曲面,W上的 0-形式 f 是指定义于W上的 一个连续函数 f(p)。

W上的 **1-微分形式**,或称 **1-形式**,是指定义在W上的某种形式的量 ω , ω 在局部参数邻域内,在局部参数 $z \rightarrow x + iy$ 下,可表示为

$$\omega = p(z)dx + q(z)dy,$$

其中p(x) 和q(x) 为局部参数z的(复值)连续函数。并且这形式的表示在局部参数变换下不变,即在另一局部参数 $\hat{x} = \hat{x} + i\hat{y}$ 下,

$$\omega = \tilde{p}(\tilde{z})d\tilde{x} + \tilde{q}(\tilde{z})d\tilde{y}.$$

设局部参数变换为 z = z(x),则有

$$\tilde{p}(\tilde{z}) = p(z(\tilde{z})) \frac{\partial x}{\partial \tilde{x}} + q(z(\tilde{z})) \frac{\partial y}{\partial \tilde{x}},$$

$$\tilde{q}(\tilde{z}) = p(z(\tilde{z})) \frac{\partial x}{\partial \tilde{y}} + q(z(\tilde{z})) \frac{\partial y}{\partial \tilde{y}}.$$

1-形式称为 C^1 形式,如果在局部参数z下,p(z)和q(z)是 C^1 函数。显然 C^1 性质在局部参数变换下不变。类似地可定义 C^2 形式等。

W上的 2-微分形式,或称 2-形式,是指定义在W上的某种形式的量 Q, Q 在点 P 的局部参数邻域内,在参数 z=x+iy 下,可表示为

$$Q = f(z) dx dy,$$

其中 f(z) 为局部参数 z 的连续函数。 并且这种表示形式在局部 参数变换下不变,即在局部参数 $\tilde{z} = \tilde{z} + i\tilde{y}$ 下

$$Q = \tilde{I}(\tilde{z}) d\tilde{x} d\tilde{y}.$$

如果局部参数变换为 $z = z(\tilde{z})$,则

$$\hat{f}(\hat{z}) = f(z(\hat{z})) \frac{\partial(x,y)}{\partial(\hat{x},\tilde{y})},$$

其中 $\frac{\partial(z,y)}{\partial(\tilde{x},\tilde{y})}$ 是变换的 Jacobi 行列式。 由于 $z=z(\tilde{x})$ 为一一解析的,我们有

$$\frac{\partial(x,y)}{\partial(\tilde{x},\tilde{y})} = \left|\frac{dz}{d\tilde{z}}\right|^{1}.$$

2-形式称为 C^1 形式,如果 f(z) 是对局部参数 z = x + iy 的 C^1 函数。

微分形式的外积。 现在引入外乘 \wedge 。记 2-形式定义中的 $dxdy = dx \wedge dy$, $dzd\bar{z} = dz \wedge d\bar{z}$ 。 这里 z = x + iy 为局部参数, dz = dx + idy, $d\bar{z} = dx - idy$.

- 一个k-形式和n-形式的外积,当 $k+n \le 2$ 时是 (k+n)-形式,当k+n > 2时恒等于零。具体规定如下。
- 0-形式 f 和 g 的外积 $f \wedge g = f \cdot g$, 即 $\forall p \in W$, $(f \wedge g)(p) = f(p) \cdot g(p)$.
 - 0-形式 j 和 1-形式 $\omega = pdx + qdy$ 的外积定义为:

$$f \wedge \omega = f\omega = f(pdx + qdy) = fpdx + fqdy$$

0-形式 f 和 2-形式 $Q = g(z)dx \wedge dy$ 的外积定义为:

$$f \wedge Q = fQ = fgdx \wedge dy.$$

1-形式和1-形式的外积定义如下。首先定义

$$dx \wedge dy = -dy \wedge dx$$
, $dx \wedge dx = dy \wedge dy = 0$.

规定外乘对加法分配律成立。 设 $\omega_1 = p_1 dx + q_1 dy$, $\omega_2 = p_2 dx + q_2 dy$, 按定义

$$\omega_1 \wedge \omega_2 = (p_1 dx + q_1 dy) \wedge (p_2 dx + q_2 dy)$$

$$= p_1 p_2 dx \wedge dx + p_1 q_2 dx \wedge dy + q_1 p_2 dy \wedge dx$$

$$+ q_1 q_2 dy \wedge dy$$

$$= (p_1 q_2 - p_2 q_1) dx \wedge dy.$$

容易验证, $(p_1q_1-p_2q_1)dx \wedge dy$ 是W上的 2-形式。

微分形式的复形表示

1-形式可表示为

$$\omega = p(z)dx + q(z)dy = u(z)dz + v(z)d\bar{z},$$

其中

$$u = \frac{1}{2}(p - iq), \quad v = \frac{1}{2}(p + iq),$$

2-形式 Q = f(z)dxdy 可表示为

$$Q = g(z) dz d\bar{z},$$

其中

$$dz \cdot d\bar{z} = -2idx \cdot dy$$
, $g(z) = (-2i)^{-1}f(z) = \frac{i}{2}f(z)$.

微分算子 d

d在局部参数 z = x + iy 下,形式地可表示为

$$d = \frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy,$$

0-形式 / 的微分定义为

$$df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy,$$

df 是 1-微分形式。

1-形式ω的微分定义为

$$d\omega = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right) \wedge (pdx + qdy)$$
$$= \left(\frac{\partial q}{\partial x} - \frac{\partial p}{\partial y}\right) dx \wedge dy$$

dω 是W上的 2-形式。

2-形式Q的微分定义为 dQ = 0.

容易验证 $d^2 = d \circ d = 0$,及外积的微分公式:

$$d(f\omega) = (df) \wedge \omega + fd\omega,$$

其中 / 是 0-形式, ω是 1-形式。根据定义及这公式我们有

$$d\omega = d(pdx + qdy) = d(pdx) + d(qdy)$$
$$= dp \wedge dx + dq \wedge dy.$$

d的复形表示

对于局部参数 z = x + iy,形式地引入算子:

$$\partial = \frac{\partial}{\partial z} dz$$
, $\bar{\partial} = \frac{\partial}{\partial \bar{z}} d\bar{z}$,

则 $d = \partial + \partial$ 。 其中

$$\frac{\partial}{\partial z} = \frac{1}{2} \left(\frac{\partial}{\partial x} - i \frac{\partial}{\partial y} \right), \quad \frac{\partial}{\partial \bar{z}} = \frac{1}{2} \left(\frac{\partial}{\partial x} + i \frac{\partial}{\partial y} \right).$$

在 d 的复表示 $d = \partial + \partial$ 下,对于 0-形式 f,

$$dj = (\partial + \bar{\partial})j = \partial j + \bar{\partial}j = \frac{\partial f}{\partial z} dz + \frac{\partial f}{\partial \bar{z}} d\bar{z}.$$

对于 1-形式 $\omega = udz + vd\bar{z}$,

$$d\omega = (\partial + \bar{\partial})(udz + vd\bar{z})$$

$$= \partial u \wedge dz + \partial v \wedge d\bar{z} + \bar{\partial}u \wedge dz + \bar{\partial}v \wedge d\bar{z}$$

$$= \left(\frac{\partial v}{\partial z} - \frac{\partial u}{\partial \bar{z}}\right) dz \wedge d\bar{z},$$

特别,f 是解析函数,当且仅当 $\frac{\partial f}{\partial \bar{s}} = 0$ 或写成 $\bar{\partial} f = 0$.

共轭算子*

我们限于 1-形式 ω 。设在局部参数 z^2x+iy 下, $\omega-pdx+qdy$,定义

$$*\omega = -qdx + pdy.$$

* ω 是 1-微分形式。因为如果 $\tilde{z} = \tilde{x} + i\tilde{y}$ 为另一局部参数,局部参数变换为 $z = z(\tilde{z})$,则 $\omega = \tilde{p}d\tilde{x} + \tilde{q}d\tilde{y}$,这时

$$*\omega = -\tilde{q}d\tilde{x} + \tilde{p}d\tilde{y}.$$

ω是1-形式,按定义我们有

$$\tilde{p} = p \frac{\partial x}{\partial \tilde{x}} + q \frac{\partial y}{\partial \tilde{x}}, \quad \tilde{q} = p \frac{\partial x}{\partial \tilde{y}} + q \frac{\partial y}{\partial \tilde{y}}.$$

特别注意到 $z - z(\tilde{z})$ 是解析的,我们有

$$\frac{\partial x}{\partial \tilde{x}} = \frac{\partial y}{\partial \tilde{y}}, \quad \frac{\partial x}{\partial \tilde{y}} = -\frac{\partial y}{\partial \tilde{x}},$$

代人上式后,得到

$$-\tilde{q} = (-q)\frac{\partial x}{\partial \tilde{x}} + p\frac{\partial y}{\partial \tilde{x}}, \ \tilde{p} = (-q)\frac{\partial x}{\partial \tilde{y}} + p\frac{\partial y}{\partial \tilde{y}}.$$

按定义, *ω是1-微分形式。*ω称为ω的共轭微分形式。

在复表示下, $\omega = udz + vd\bar{z}$, 由定义推出

$$*\omega = -i(udz - vd\bar{z}).$$

*是线性的,即

*
$$(\omega_1 + \omega_2) = *\omega_1 + *\omega_2$$

* $(t\omega) = f*\omega$. $f \neq 0$ -形式。

算子*d

在局部参数 z = x + iy 下,*d 的形式为

$$*d = -\frac{\partial}{\partial y} dx + \frac{\partial}{\partial x} dy.$$

对 C¹的 0-形式 f, 定义

$$(*d)f = -\frac{\partial f}{\partial y} dx + \frac{\partial f}{\partial x} dy = *(df).$$

也可以写成 (*d)f = *(df) = *df 而与括号无关。

对 C^1 的 1-形式 ω = pdx + qdy, 定义

$$*d\omega = \left(-\frac{\partial}{\partial y} dx + \frac{\partial}{\partial x} dy\right) (pdx + qdy)$$

$$= -\left(\frac{\partial p}{\partial x} + \frac{\partial q}{\partial y}\right) dx \wedge dy,$$

* dω 是 2-形式, 但是

$$d * \omega = \left(\frac{\partial}{\partial x} dx + \frac{\partial}{\partial y} dy\right) (-q dx + p dy)$$
$$= \left(\frac{\partial p}{\partial x} + \frac{\partial q}{\partial y}\right) dx \wedge dy.$$

因此,对1-形式 ω, * dω - - d * ω.

定义 $\Delta = d*d$, 对 C^2 的函数 f,

$$\Delta f = d * df = \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}\right) dx \wedge dy_*$$

△称为 Laplace 算子。

函数 $f \in C^1$, $\Delta f = 0$.

△可以写成形式

$$\Delta = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) dx \wedge dy.$$

在复形式下,

$$d = \frac{\partial}{\partial z} dz + \frac{\partial}{\partial \bar{z}} d\bar{z}, *d = -i \left(\frac{\partial}{\partial z} dz - \frac{\partial}{\partial \bar{z}} d\bar{z} \right).$$

△在复形式下为 $\Delta = 2i \frac{\partial^2}{\partial z \cdot \partial \bar{z}} dz \wedge d\bar{z}$.

§ 2 微分形式的积分

1-微分形式 co 沿逐段光滑曲线 γ 的积分

设 $\gamma:[0,1] \to W$, $\iota \in [0,1]$, $\iota \mapsto \gamma(\iota)$. 首先设 γ 整个在 W上的一个参数圆内,设 z=x+iy 为局部参数, $\gamma(\iota)=z(\iota)=x(\iota)+iy(\iota)$, $\omega=p(z)dx+q(z)dy$. 定义

$$\int_{v} \omega = \int_{(0,1)} \left(p \, \frac{dx}{dt} + q \, \frac{dy}{dt} \right) dt.$$

由于 $1-形式 \omega$ 经局部参数变换后形式不变,因此当 z 变为另一局部参数时积分值不变,定义是合理的。

一般情况下,由 ν 是W上的紧集,分割[0,1],对应地把 ν 分割为弧段,使 $\nu = \nu_1 \cdot \nu_2 \cdot \nu_3 \cdot \cdot \cdot \nu_n$,且其中每一段 $\nu_i (1 \le i \le n)$ 整个地落在某一参数圆内,定义

$$\int_{\bullet} \omega = \sum_{i} \int_{\bullet_{i}} \omega_{\bullet}$$

容易证明,积分值与分割无关,定义是合理的。

单位分解与 2-形式的积分

单位分解。设 V_a 为W上的一个参数圆, $p_0 \in V_a$, $z = z_a(p)$ 为局部参数, $z_a(V_a) = \{|z| < r\}, r > 1$, $z_a(p_0) = 0$ 。设 $V_a \subset V_a$, $z_a(V_a) = \{|z| < 1\}$ 。定义函数

$$g_{\alpha}(z_{\alpha}(p)) = \begin{cases} e^{-\frac{1}{1-|z|^2}}, & p \in V_{\alpha}, \\ 0, & p \in V_{\alpha}. \end{cases}$$

 $g_a \circ z_a$ 是W上的 C^{∞} 函数。

设G为W上相对紧域,即G为域且 \overline{G} 在W上是紧的。 对于 \overline{G} ,由有限覆盖定理,存在有限个参数圆 V_1,V_2,\cdots,V_n ,使 \overline{G} C $\bigcup V_i$ 。 对于 V_i 作函数 $g_i(z_i(\rho))$, $1 \leq i \leq n$,再作函数

$$e_i(p) = \frac{g_i(z_i(p))}{\sum_i g_i(z_i(p))}.$$

则函数 $\{c_i(p)\}$ 具有下列性质:

- 1) $e_i(p) > 0$, $p \in V_i$;
- 2) $e_i(p) = 0$, $p \notin V_i$;

3)
$$\sum_{i=1}^{n} e_i(p) = 1, \ \forall p \in \widetilde{G};$$

4) ϵ_i 在包含 \overline{G} 的域内是 C^{∞} 的函数。

函数组 $\{e_i(p)\}$ 称为 \overline{G} 对于 $\{V_i\}$ 的单位分解。

现在定义 2-微分形式的积分。

设Q为2-形式,G为W上的相对紧域,假设G整个在一个参数圆内,局部参数为z, $Q \mapsto f(x)dx \wedge dy$ 。定义

$$\iint_{G} \Omega - \iint_{G} f(z) dx dy.$$

根据 2-形式的定义,这积分与局部参数 z 无关,定义是合理的。

一般情况下,取 \bar{G} 的单位分解 $\{a_i\}$,定义

$$\iint_{\mathcal{C}} \mathcal{Q} = \sum_{i} \iint_{\mathcal{C}} \mathcal{Q} \cdot e_{i},$$

因为 $Q \cdot e_i$ 在对应参数圆 V_i 外等于零、

$$\iint_{\sigma} Q \cdot e_i = \iint_{\sigma \cap V_i} Q \cdot e_i$$

已有定义。但这里必须证明定义的合理性,即积分与所作单位分解无关。这是显然的。事实上,设 $\{c\}$ 为 \overline{c} 的另一单位分解,则有

$$\sum_{i} \iint_{\mathcal{C}} \mathcal{Q} \cdot e_{i} = \sum_{i} \sum_{i} \iint_{\mathcal{C}} \mathcal{Q} \cdot e_{i} \cdot e_{i}' = \sum_{i} \sum_{i} \iint_{\mathcal{C}} \mathcal{Q} \cdot e_{i} \cdot e_{i}'$$

$$= \sum_{i} \iint_{\mathcal{C}} \mathcal{Q} e_{i}.$$

§ 3 Stokes 公式及其应用

Stokes 公式。设 G 为 W 上相对紧域,G 的边界 ∂G 由有限多条逐段解析曲线组成, α 是 G' 的 1-微分形式,则有

$$\iint\limits_{G}d\omega=\int_{\partial G}\omega,$$

其中 ∂G 的方向为使点沿这方向移动时 G 在 ∂G 的左边。

证明。我们只要证明 ∂G 是解析曲线的情况。 作 \overline{G} 的参数圆覆盖。当 $p \in G$ 时取以 p 为心的参数圆 $V \subset G$ 。当 $p \in \partial G$ 时,取以 p 为心的参数圆 V, 这时设局部参数映 M 为 z, $z(V) = \{|z| < 1\}$ 使 $\partial G \cap V$ 映为[-1,1]。由于 ∂G 是解析曲线,这是容易做到的。现在,选取有限多个这样的参数圆 $\{V_i\}$,使 $\overline{G} \subset \bigcup_i V_i$,并作对应的单位分解 $\{c_i\}$ 。由于在 \overline{G} 上, $\sum_i c_i(p) = 1$,我们有

$$\iint_{G} d\omega = \iint_{G} d\left[\left(\sum_{i} e_{i}\right)\omega\right] = \sum_{i} \iint_{G} de_{i}\omega$$
$$= \sum_{i} \int_{\partial G \cap V_{i}} e_{i}\omega = \sum_{i} \int_{\partial G} e_{i}\omega$$

$$-\int_{\partial G}\sum_{i}e_{i}\omega-\int_{\partial G}\omega.$$

其中,由于 $e_{i\omega}$ 只在圆或半圆内积分, 我们可以应用平面域 的 Stokes 公式即格林公式。

分部积分公式

$$\iint_{C} f d\omega = \int_{\partial \omega} f \omega - \iint_{C} df \wedge \omega_{\bullet}$$

其中f是C'的函数。

证明. 根据 $d(f\omega) = df \wedge \omega + fd\omega$ 以 $f\omega$ 代 Stokes 公式中的 ω ,即可得此公式。

设u,v为 C^2 函数。以 $\omega=*du,f=v$ 代人上面公式。注意到 $\Delta=d*d$,得到

$$\iint_{G} v \Delta u = \int_{\partial G} v * du - \iint_{G} dv \wedge * du.$$

变换 4, 0 得到

$$\iint_{C} u \Delta v = \int_{\partial G} u * dv - \iint_{C} du \wedge * dv.$$

这两式相减,注意这两式右边第二积分相等,我们得到公式

$$\iint_{G} (v \triangle u - u \triangle v) = \int_{\partial G} (v * du - u * dv).$$

当 u 是调和函数时, $\Delta u = 0$, 取 v = 1, 便有公式

$$\int_{\partial G} * du = 0.$$

"是调和函数,整体上"的调和共轭是不一定存在的。但在局部参数圆内,"的调和共轭总是存在的,我们记之为 u^* ,我们有 $*du = du^*$ 。因此

$$\int_{\partial G} du^* = 0.$$

设 V 为局部参数圆,z-x+iy 为局部参数,则在局部参数 z-x+iy 下, ∂G 在 V 内部分的弧 Υ ,由 $\Upsilon(t)=x(t)+iy(t)$ 定义, $t \in [0,1]$ 。 在 V 内设 $dS-\sqrt{(dx)^2+(dy)^2+|dz|}$,因此

用局部参数表示 ∂G 时我们有

$$\int_{\partial G} du = \int_{\partial G} \left(\frac{\partial u}{\partial x} \, dx + \frac{\partial u}{\partial y} \, dy \right) = \int_{\partial G} \frac{du}{dS} \, dS;$$

$$\int_{\partial G} * du = \int_{\partial G} \left(-\frac{\partial u}{\partial y} \, dx + \frac{\partial u}{\partial x} \, dy \right) = -\int_{\partial G} \frac{du}{dn} \, dS;$$

其中 $\frac{d}{dn}$ 为 ∂G 的内法向导数,法向 n 指向 ∂G 的左边。这时上面的公式可写成

$$\iint_{G} (v\Delta u - u\Delta v) = -\int_{\partial G} \left(v \frac{du}{dn} - v \frac{dv}{dn}\right) dS.$$

当 " 是调和函数时

$$\int_{\partial G} \frac{du}{dn} dS = 0.$$

§ 4 调和微分与全纯微分

我们主要讨论的是1-微分形式,通常称之为微分。

微分 ω 称为闭的,如果 ω 是 C'的,且 $d\omega$ — 0, 微分 ω 称为是上闭的,如果 ω 是 C'的且 $*d\omega$ — 0.

因为 $*d\omega = -d*\omega = 0$, ω 是上闭的当且仅当 $*\omega$ 是闭的.

微分 ω 称为**正合的**,如果W上存在 C^2 的函数 f, 使得 $\omega = df$; 微分 ω 称为**上正合的**,如果存在W上的 C^2 函数 f, 使得 $\omega = *df$, ω 是上正合的,当且仅当 $*\omega$ 是正合的。

注意,每一个正合(上正合)微分一定是闭的(上闭的)。 反之不一定成立,但对于每一闭(上闭)的微分,局部地在参数圆内,总存在 C^i 的函数 f,使得 $\omega = df(\omega - *df)$ 。 因而闭(上闭)的微分是局部正合(上正合)的。

我们已定义过, W上的函数 f 是调和的, 如果 f 是 C^2 的且 $\Delta f = d*df = 0$.

微分 ω 称为**调和的**,如果局部地在参数邻域内有 $\omega = df$, f

是参数邻域内的调和函数。

命題。微分 ω 是调和的,当且仅当 $d\omega = 0$ 和 * $d\omega = 0$,即 ω 是闭的又是上闭的。

证明。如果 ω 是调和的,则局部地 $\omega - df$,f 是调和函数。因此, $d\omega - ddf = 0$, $*d\omega = -d*\omega = -d(*df) = 0$. 反之,如果 $d\omega = 0$,则局部地 $\omega - df$,又 $0 = *d\omega - -d*df = \Delta f$,f 是调和的, ω 是调和微分。证完。

微分 ω 称为**全纯的**,如果局部地 $\omega = df$,f 是全纯函数。即在局部参数邻域内,在局部参数z下

$$\omega = h(z)dz,$$

h(z) 是全纯函数。

全纯微分一定是调和微分,

调和微分和与全纯微分的相互表示。

设调和微分 $\omega = udz + vd\bar{z}$, 则我们得到微分 $\omega_1 = udz$, $\omega_2 = \bar{v}dz$, 由 $(d = \partial + \bar{\partial})$,

$$d\omega = \left(\frac{\partial u}{\partial \bar{z}} - \frac{\partial v}{\partial z}\right) d\bar{z} \wedge dz = 0,$$

$$* d\omega = i \left(\frac{\partial u}{\partial \bar{z}} + \frac{\partial v}{\partial z} \right) d\bar{z} \wedge dz = 0,$$

得到 $\frac{\partial u}{\partial \bar{z}} = 0$, $\frac{\partial v}{\partial z} = 0$, $u \neq \bar{v}$ 是全纯函数, $\omega_1 = u dz$, $\omega_2 = \bar{v} dz$ 是全纯微分。因此我们得到唯一的表示

$$\omega = \omega_1 + \bar{\omega}_{2\bullet}$$

定理 4.1。微分 φ 是全纯的,当且仅当存在—调和微分 ω ,使 $\varphi - \omega + i * \omega$.

证明。如果ω调和,则

$$\omega = \omega_1 + \omega_2,$$

其中ω,,ω,为全纯微分。于是

$$*\omega = -i\omega_1 + i\overline{\omega}_2,$$

$$\omega + i * \omega = 2\omega_1$$

是全纯微分。反之,如果 φ 是全纯微分,则 φ 和 φ 是调和微分,因

$$\omega = \frac{\varphi - \bar{\varphi}}{2}, \quad *\omega = \frac{-i\varphi - i\bar{\varphi}}{2}$$

是调和的,且有

$$\varphi = \omega + i * \omega$$

定理得证。

推论。微分 φ 是全纯的,当且仅当 φ 是闭的,且* $\varphi = -i\varphi$ 。 证明。由 $d\varphi = 0$ 及 * $\varphi = -i\varphi$ 得 * $d\varphi = 0$, φ 是调和的, 又 $\varphi = \frac{\varphi + i(*\varphi)}{2}$, 所以 φ 是全纯的。

现在定义亚纯微分.

1-微分形式ω 称为**亚纯微分**,如果在局部参数邻域内,在局部 参数z 下,ω = h(z)dz, h(z) 是z 的亚纯函数.

对于W上的亚纯函数 f, 取 $p_0 \in W$ 为心的局部参数圆 V_{p_0} ,局部参数为 z = z(p); $V_{p_0} \rightarrow \{|z| < 1\}$, $z(p_0) = 0$, 则在 V_{p_0} 内,

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \ a_{\mu} \neq 0.$$

当 $\mu > 0$ 时,称 f 在 p_0 具有零点, μ 称为零点的阶。 当 $\mu < 0$ 时,称 f 在 p_0 具有极点, $-\mu$ 称为极点的阶。 零点与极点的阶与局部 参数 z 的选取无关。

对于W上的亚纯微分 ω ,取 $p_0 \in W$ 为心的局部参数 圆 V_{p_0} ,局部参数为 z = z(p); $V_p \rightarrow \{|z| < 1\}$, $z(p_0) = 0$, 则在 V_{p_0} 内:

$$\omega = \left(\sum_{n=\mu}^{\infty} a_n z^n\right) dz, \ a_{\mu} \approx 0.$$

当 $\mu > 0$ 时,称 ω 在 p_0 具有零点, μ 称为零点的阶。 当 $\mu < 0$ 时,称 ω 在 p_0 具有极点 $-\mu$ 称为极点的阶,这时系数 α_{-1} 称为微分 ω 在 p_0 点的智数,记为 Ω Res (ω, p_0) .

习题, 零点的阶,极点的阶及留数,对局部参数变换不变,

下面我们推广 Cauchy 定理及留数定理。设G为W上的相对紧域, ∂G 由有限条逐段解析曲线组成。 全纯函数及微分我们将定义于包含 \overline{G} 在内部的一个域内。

定理 4.2 (Cauchy 定理). 对于全纯微分 ω , 总有

$$\int_{\partial G} \omega = 0.$$

证明。由 Stokes 公式,有

$$\int_{\partial G} \omega = \iint_{G} d\omega = 0,$$

因为 $d\omega = 0$, 证完,

定理 4.3 (留数定理)。 设 ω 为亚纯微分,在 G 的 边 界 ∂G 上, ω 没有极点。设 ω 在 G 内的极点为 P_k ,k=1, 2, \cdots m,则

$$\int_{\partial G} \omega = 2\pi i \sum_{i=1}^{n} \operatorname{Res}(\omega, P_{k}).$$

证明。对于 $1 \le k \le m$,作以 P_k 为中心的参数圆 V_k ,设 $z=z(P): V_k \to D_k = \{|z| < 1\}$ 为局部参数, $z(P_k) = 0$,则在 V_k 内

$$\omega = \left(\sum_{n=u_k}^{\infty} a_n^k z^n\right) dz_*$$

取 ∂V_k 的定向,使 V_k 在 ∂V_k 走向的左边,则我们有

$$\int_{\partial V_k} \omega = 2\pi i a_{-i}^k = 2\pi i \operatorname{Res}(\omega, P_k).$$

我们可以假定 ∂V_1 , ∂V_2 , \cdots , ∂V_m 和 ∂G 两两不相交。由上面 定理 4.2 (Chauchy 定理), 便得到

$$\int_{\partial G} \omega - \sum_{k=1}^{n} \int_{\partial V_{k}} \omega = 0.$$

因此

$$\int_{\partial G} \omega = \sum_{k=1}^{m} \int_{\partial V_k} \omega = 2\pi i \sum_{k=1}^{m} \operatorname{Res}(\omega, P_k).$$

定理证完.

定理 4.4. 如果 ω 是紧 Riemann 曲面 W 上的亚纯微分,则所有极点的留数之和为零。

注意到这时 G - W, $\partial G - \phi$, 又 ω 在W上只有有限个极点,这定理便由留数定理直接得到。

关于亚纯函数和亚纯微分的关系,应该注意到,如果 f 是亚纯函数,则 $\omega = df$ 是亚纯微分。反之如果 ω_1 和 ω_2 是亚纯微分,则 ω_2/ω_1 是亚纯函数。这是因为,对于 $p \in W$,在局部参数 z = z(p) 下, $\omega_1 = h_1(z)dz$, $\omega_2 = h_2(z)dz$,在局部参数变为 w = w(p) 时, $\omega_1 = \tilde{h}_1(w)dw$, $\omega_2 = \tilde{h}_2(w)dw$ 。设局部参数变换为 z = z(w),这时

$$\tilde{h}_1(w) = h_1(z) \frac{dz}{dw}, \quad \tilde{h}_2(w) = h_2(z) \frac{dz}{dw}.$$

因此,
$$\frac{\omega_2}{\omega_1} = \frac{h_2(z)}{h_1(z)} = \frac{\tilde{h}_2(w)}{\tilde{h}_1(w)}.$$

这就是说,对任意 $p \in W$, 对应唯一确定的值 ω_1/ω_1 . 我们得到了定义于W上的函数 ω_1/ω_1 ,在局部参数 邻 域 内 等 于 $h_2(z)/h_1(z)$ 是亚纯的,因此 ω_2/ω_1 是亚纯函数。另外,如果 f 是亚纯函数, ω_2/ω_1 是亚纯函数。另外,如果 f 是亚纯函数, ω_2/ω_1 是亚纯函数。特别,当 f 是亚纯函数时,则亚纯数分 $\frac{df}{d}$ 称为对数微分。

定理 4.5 (对数留数定理),设 f 为亚纯函数,在域 G 的边界 ∂G 上 f 没有零点和极点,则

$$\int_{\partial G} \frac{df}{f} = 2\pi i (N - P),$$

其中N为f在G内的所有零点的阶之和,P为f在G内所有极点的阶之和。

证明。对数微分 $\frac{df}{f}$ 的极点,是且仅是 f 的零点和极点。设 q 为 f 的级为 μ 的零点,以 q 为心的局部参数圆为 V_q , z 为局部参数, z(q)=0,则在 V_q 内,在局部参数 z 下

$$f=a_{\mu}z^{\mu}+a_{\mu+1}z^{\mu+1}+\cdots\cdots$$

这时

$$\frac{df}{f} = \left(\frac{\mu}{z} + b_0 + b_1 z + b_2 z^2 + \cdots\right) dz,$$

 $\frac{df}{f}$ 在 q 的留数为零点的阶 μ 。 当 p 是 f 的阶为 μ 的极点时,在参数圆 V,内,z 为局部参数, z(p)=0。

$$f = \frac{a_{\mu}}{z^{\mu}} + \frac{a_{\mu-1}}{z^{\mu-1}} + \cdots + \frac{a_{-1}}{z} + a_{0} + a_{1}z + \cdots$$

这时

$$\frac{df}{f} = \left(\frac{-\mu}{z} + b_0 + b_1 z + \cdots\right) dz_{\bullet}$$

因此, $\frac{df}{f}$ 在点 p 的留数等于一 μ .

由留数定理,积分 $\int_{\partial C} \frac{df}{f}$ 等于留数之和乘上 $2\pi i$,因此等于以 f 的零点为极点的留数和 N,加上以 f 的极点的留数和 -P 再乘上 $2\pi i$ 。定理得证.

定理的一个重要推论如下。

定理 4.6。如果 f 是紧 Riemann 曲面上的亚纯函数,则 f 的零点的个数等于极点的个数。

注意,这里零点的个数是把零点的阶计在内的,即一个 # 阶零点认为是 # 个零点。同样地,极点的个数也把极点的阶计在内,即把一个 # 阶极点看作是 # 个极点,

对于 $a \in \overline{\mathbb{C}}$, 当 $a \neq \infty$ 时, f(x) - a 的零点我们称为 $a - \mathbf{C}$ 点,当 $a = \infty$ 时的值点当然是极点。

定理 4.7. 如果 f 是紧 Riemann 曲面上的亚纯函数,则 f 取任何 $a \in \overline{\mathbb{C}}$ 的次数相同,即 a-值点的个数相同。

这是因为任何 a-值点的个数,按上面的定理,都等于极点的个数.

第五章 单值化定理及其应用

§1 次调和函数与 Dirichlet 问题的 Perron 解法

定义. 设 Q 为平面 C 的域,v(s) 为 Q 内的连续函数,v(s) 称为 Q 内的**次调和函数**,如果对于任何域 $Q' \subset Q$,及 Q' 内的任何 调和函数 u(s),对于 v-u,在 Q' 内极大值原理成立.

这里,极大值原理成立意指,v(z) - u(z) 在 Q' 内不能达到最大值,否则是一个常数。特别取 u = 0,则 v 在 Q' 内不能达到最大值。

设点 $z_0 \in Q$, 我们称 v 在 z_0 是**次调和的**,如果存在 z_0 的一个邻域,v 限制在该邻域内是次调和的。

下面定理说明,次调和函数具有局部特征。

定理 1.1. v 在域 Q内是次调和的,当且仅当 v 在 Q 内的每一点是次调和的。

特别,调和函数一定是次调和函数。

根据定理 1.1,及次调和函数的共形不变性,此即,如果 f 把 Q 共形映照到 Q_1 ,则 $v \circ f$ 也是次调和函数。 我们把次调和函数 推广定义于 Riemann 曲面上。

定义. 设 Q 为 Rieman 曲面上的域,v 为 Q 内的连续函数,v 称为 Q 内的**次调和函数**,如果对 $\forall p_0 \in Q$,存在 p_0 的局部参数 邻域,在局部参数 z 下,v(z) 是次调和函数。

次调和函数的充分和必要条件。

设Q为平面域,v在Q内具有连续的二阶偏导数,且有

$$\Delta \nu = \frac{\partial^2 \nu}{\partial x^2} - \frac{\partial^2 \nu}{\partial y^2} > 0,$$

则 ν 是次调和函数。事实上,如果存在域 $Q' \subset Q$,及 Q' 内的调和

函数 u, 使得 v-u 在 Q' 内达到极大值,则由微积分学中的极值原理, $\frac{\partial^2(v-u)}{\partial x^2} \le 0$, $\frac{\partial^2(v-u)}{\partial y^2} \le 0$ 。 又由于 u 是调和函数, $\Delta u = 0$,因此 $\Delta v \le 0$,与假设矛盾,故 v 是次调和函数。

定理 1.2. 设 ν 为平面 $\mathbb C$ 的域 $\mathcal Q$ 内的连续函数,则 ν 是次调和函数的充分必要条件是,对任意 $z_0 \in \mathcal Q$,及 $\mathcal Q$ 内的任何圆

$$|z-z_0| < r,$$

总有

$$v(z_0) \leqslant \frac{1}{2\pi} \int_0^{2\pi} v(z_0 + re^{i\theta}) d\theta_{\bullet}$$

证明。充分性,对于调和函数 u,由调和函数的中值公式,有 $(v-u)(z_0) \leqslant \frac{1}{2\pi} \int_0^{2\pi} (v-u)(z_0+re^{i\theta})d\theta$.

因此,类似于调和函数极大值原理的证明,可以证明 ~ ~ ** 的极大值原理成立, ~ 是次调和函数。

必要性,由 Poisson 积分公式,设

 $p_{\bullet}(z) = \frac{1}{2\pi} \int_{0}^{2\pi} \nu(z_{0} + re^{i\theta}) \frac{r^{2} - \rho^{2}}{|re^{i\theta} - \rho e^{i\theta}|^{2}} d\theta, z = z_{\bullet} + \rho e^{i\theta},$ 则 $P_{\bullet}(z)$ 在圆 $|z - z_{0}| < r$ 内调和,在圆周 $|z - z_{0}| = r$ 上 $p_{\bullet}(z) = \nu(z)$ 。由于 ν 是次调和函数,因此在圆 $|z - z_{0}| < r$ 内 $\nu(z) \le p_{\bullet}(z)$. 特别地, $\nu(z_{\bullet}) \le p_{\bullet}(z_{0})$,这就是所要求的不等式、证完。

次调和函数的一些性质:

- 1. 如果 ν 是次调和函数,K>0 是常数,则 $K\nu$ 也是次调和函数.
 - 2. 如果 v1, v2 是次调和函数,则 v1 + v2 也是次调和函数。
- 3. 如果 v_1, v_2 是次调和函数,则 $v = \max(v_1, v_2)$ 也是次调和函数,这里 $v(z) = \max(v_1(z), v_2(z))$.

这三条性质可由定理 1.2 立刻推出。

设 $\Delta \subset \Omega$ 为一圆,当 Ω 是 Riemann 曲面上的域时, Δ 是一局 部参数圆。 P 是用 Poisson 积分定义的 Δ 内的调和函数, 在 $\partial \Delta$

上 p, == v. 对于 Q内的次调和函数 v, 定义

$$\bar{\nu}_{\Delta} = \begin{cases} p_{\nu}, & \Phi \Delta h, \\ \nu, & \Phi \Delta h. \end{cases}$$

则 $\bar{\nu}_{\Delta}$ 在 Q内连续,且有 $\nu \leq \bar{\nu}_{\Delta}$, $\bar{\nu}_{\Delta}$ 在 A内是调和函数。

4. 如果 ν 是 Q 内的次调和函数,则对于任何圆 Δ , $\Delta \subset Q$, $\bar{\nu}_{\Delta}$ 也是次调和函数。

证明。 根据定理 1.1,及 \bar{v}_{Δ} 的定义,我们只须证明, \bar{v}_{Δ} 在 $\forall z_0 \in \partial \Delta$ 上是次调和的。 设 Q' 是包含 z_0 的域, $Q' \subset Q$, $u \in Q'$ 内的调和函数,如果 $\bar{v}_{\Delta} - u$ 在 Q' 内的点 z_1 达到极 大 值,则 $z_1 \in \partial \Delta$ 。 因为 $v - u \leq \bar{v}_{\Delta} - u$, v - u 也在 z_1 达到极大值,v - u 是一个常数。又由于

 $v-u\leqslant \overline{v}_\Delta-u\leqslant \overline{v}_\Delta(z_1)-u(z_1)-v(z_1)-u(z_1),$ 因此 $\overline{v}_\Delta-u$ 也是常数 $v(z_1)-u(z_1)$,这就证明了 \overline{v}_Δ 是次调和函数。

设W是 Riemann 曲面,W上一些次调和函数组成的族 $V = \{v\}$ 称为 Perron 族,如果V具有下列性质:

 1° 对任意 $\nu_1, \nu_2 \in V$, 存在一个 $\nu \in V$, 使得

$$v \geqslant \max(v_1, v_2)$$

 2° 对任意 $u \in V$, 及任何局部参数圆 Δ ,存在一个 $v \in V$, 使得 $v \mid \Delta$ 是调和的,并且 $v \geq u$.

在大量应用中,满足 1°, 2° 的 V 分别是 $\max\{\nu_1,\nu_2\}$ 和 $\bar{\nu}_{\Delta}$.

Perron 族基本定理: 如果 $V = \{v\}$ 是W上的一个 Perron 族,则或者

$$u = \sup_{v \in V} \{v\}$$

在W内调和,或者 $u = +\infty$.

定理的证明主要应用下面引理。

引理 (Harnack 原理)。设W为 Riemann 曲面,U是W上的 调和函数族,满足条件:

(A) 对任意 $u_1, u_2 \in U$, 存在一个调和函数 $u \in U$, 使得

 $u \geqslant \max\{u_1, u_2\},\,$

则

$$U(p) = \sup_{u \in U} \{u(p)\}$$

或者是W上的调和函数,或者 $=+\infty$.

注意,Harnack 原理的原形式是:如果 u_a 是W上单调增加的调和函数序列,则 $u(z) = \lim_{z \to \infty} u_r(z)$ 或者是调和函数,或者三十 ∞ ,且收敛是内闭一致的,即在W的任何紧集上一致收敛。

引理的证明。对任意 $z_0 \in W$, 存在 $w_n \in U$, 使得

$$\lim_{n\to\infty}u_n(z_0)=U(z_0)_{\bullet}$$

用归纳法作序列 \tilde{u}_n ,取 $\tilde{u}_1 = u_1$, $\tilde{u}_n \ge \max(\tilde{u}_{n-1}, u_n)$ 。 我们也有

$$\lim_{s\to\infty} \tilde{u}_s(z_0) = U(z_0)_{\bullet}$$

这时 ~ 是单调增的调和函数序列,根据 Harnack 原理,

$$U_0(z) = \lim_{s \to z} \tilde{u}_s(z)$$

或者在W内调和,或者 $=+\infty$,且有 $U_0(z_0)=U(z_0)$.

对另一点 $z_0' \in W$, 存在序列 $u_n' \in U$, 使得

$$\lim_{n\to\infty} u_n'(z_0') = U(z_0').$$

用归纳法作序列 $\tilde{u}_{s} \in U$,取 $\tilde{u}_{i} = \tilde{u}_{i}$, $\tilde{u}_{s} \ge \max(\tilde{u}_{s-1}', u_{s}', \tilde{u}_{s}')$,则

$$U_0'(z) = \lim_{z \to \infty} \tilde{u}_z'$$

或者在W内调和,或者 $=+\infty$,且有 $U_0(z_0)=U(z_0)$, $U_0(z_0)=U_0(z_0)$

因此,如果 $U_{\mathfrak{o}}(z)$ 是调和函数,则 $U_{\mathfrak{o}}(z)$ 也是调和函数,由于 $U_{\mathfrak{o}}-U_{\mathfrak{o}}$ 在 $z_{\mathfrak{o}}$ 达到极大值零,因此 $U_{\mathfrak{o}}-U_{\mathfrak{o}}$ 。在点 $z_{\mathfrak{o}}$,有

$$U(z'_0) - U'_0(z'_0) - U_0(z'_0),$$

 z_0' 是任意的,因此在 $W \perp U = U_0$,U 是调和函数。另一方面,如果 $U_0 = +\infty$,则由 $\forall z_0' \in W$ 有 $U(z_0') = U_0'(z_0') \geq U_0(z_0') = +\infty$,因此 $U = +\infty$,引理证完。

Perron 族基本定理的证明。 对任意 $z_0 \in W$,取局部参数圆 Δ ,使得 $z_0 \in \Delta$,对任意 $v \in V$,由 $\bar{v}_{\Delta} \geqslant v$ 得到

$$u = \sup_{v \in V} \{ \bar{v}_{\Delta} \}_{\bullet}$$

注意到 ラム 在Δ内调和,对任意 ν1,ν26 ν, 存在

 $v \in V$, $v \ge \max\{\bar{v}_{1\Delta}, \bar{v}_{2\Delta}\}$, $\bar{v}_{\Delta} \ge v \ge \max\{\bar{v}_{1\Delta}, \bar{v}_{2\Delta}\}$.

这就说明族 $\bar{V}_{\Delta} = \{v_{\Delta} | v \in V\}$ 在 Δ 内满足引理条件 (A)。 因此,

$$u = \sup_{v \in V} \bar{v}_{\Delta}$$

或者在 Δ 内调和,或者 $=+\infty$.

$$B = \{z \in W : u(z) = \infty\}.$$

则由上面所证,A和 B 都是开集。根据W的连通性,或者 A = W, U 是调和函数;或者 $A = \emptyset$, $U = +\infty$ 。定理证完。

Dirichlet 问题的 Perron 解法.

设W为 Riemann 曲面,G为W的相对紧域,G的边界 $\partial G = \Gamma$ 是非空的.

Dirichlet 问题,在 Γ 上给定连续函数 f,要找一个函数 u,使得 u 在 $\overline{G} = G \cup \Gamma$ 上连续,在 G 内调和,在 Γ 上 u = f. Dirichlet 问题的 Perron 解法如下.

设 P(f) 是 G内一些次调和函数的族,满足条件:

$$\forall v \in P(f), \overline{\lim}_{z \to \zeta} v(z) \leq f(\zeta), \forall \forall \zeta \in \Gamma.$$

这里我们先假定 f 是 Γ 上的有界函数。 $\lim_{x\to \zeta} v(x) \leq f(\zeta)$ 意指,对任意 $\epsilon > 0$,存在 ζ 的一个邻域 Δ ,使得当 $z \in \Delta \cap G$ 时,有 $v(x) < f(\zeta) + \epsilon$.

定理 1.3. 函数

$$u(z) = \sup_{z \in P(f)} \{v(z)\}$$

或者在G内调和,或者 $=+\infty$.

证明。我们要验证 P(f) 是 Perron 族。 对任意 $\nu \in P(f)$,显然有 $\bar{\nu}_4 \in P(f)$,

如果 $v_1, v_2 \in P(f)$, 则由于

$$\overline{\lim}_{z \to \zeta} \nu_1(z) \leqslant f(\zeta), \overline{\lim}_{z \to \zeta} \nu_2(z) \leqslant f(\zeta),$$

对任意 s>0,存在s的邻域 Δ ,使得当 $s\in\Delta\cap G$ 时,有

$$v_1(z) < f(\zeta) + \varepsilon$$
, $v_2(z) < f(\zeta) + \varepsilon$.

因此

$$v(z) = \max\{v_1(z), v_2(z)\} < f(\zeta) + \varepsilon$$
.

即 $\overline{\lim}_{v \to \zeta} v(z) \leq f(\zeta)$. 这就证明了 P(f) 是 Perron 族,根据基本定理, "在 G 内或者调和,或者 $= +\infty$. 证完.

现在讨论 u 的边界性质,假定 f 有界, $|f| \leq M$.

定义。域G内的函数 β 称为点 $\zeta_i \in \Gamma$ 的闸函数,如果 β 满足下列条件.

- $1.\beta$ 是 G内的次调和函数,
- $2. \lim_{z \to C_0} \beta(z) = 0,$
- 3. $\forall \zeta = \zeta_0, \ \zeta \in \Gamma, \ \overline{\lim}_{x \to c} \beta(x) < 0.$

对于边界点 $\zeta_0 \in \Gamma$,如果 ζ_0 的闸函数存在,则称 ζ_0 是**正则 边 界** 点。

由条件 1,根据极值原理,在G内 β < 0。 取点 G 的一个局部参数圆 V,则由条件 3 及极值原理, β 在 G-V 内具有负的上界 -m。令

$$\beta_{V} = \max\left\{\frac{\beta}{m}, -1\right\},$$

则 β . 仍是 $\zeta_i \in \Gamma$ 的阃函数,在 G - V 内 $\beta_* = -1$.

 β , 称为V的**规范化闸函数**。显然,如果 G' 为另一个域,

$$G' \cap V = G \cap V$$
,

则 β , 也是 G' 对 V 的闸函数,只要在 G' - V 内令 β , $\gamma = -1$. 因此,闸函数是局部性质,仅与 ζ 。附近的性状有关。 于是我们可以在 ζ 。的局部参数邻域内讨论闸函数的存在性。

定理1.4. 如果 f 有界,则定理1.3 定义的函数 "在正则点

ζ, εΓ, 有

$$\lim_{\zeta \to \zeta_0} f(\zeta) \leqslant \lim_{z \to \zeta_0} u(z) \leqslant \lim_{z \to \zeta_0} u(z) \leqslant \lim_{\zeta \to \zeta_0} f(\zeta)_{\bullet}$$

另外,如果f在 ζ 。连续,则

$$\lim_{z\to\zeta_0}u(z)=f(\zeta_0),$$

即 *(z) 在 5。 取边界值 f(5。)。

证明。设 $A = \overline{\lim_{\zeta \to \zeta_0}} f(\zeta)$,对任意 $\varepsilon > 0$,选取 ζ_0 的局 部 参数圆 V,使得当 $\zeta \in V \cap \Gamma$ 时,

$$f(\zeta) < A + \varepsilon$$
.

我们要证 $\overline{\lim}_{z \to c_0} u(z) \leq A + s$. 对任意 $v \in P(f)$,函数

$$\varphi = (\nu - A) + (M - A)\beta_{\nu}$$

在 G 内次调和,且对任意 $\zeta \in \Gamma$ 有 $\overline{\lim}_{z \to \zeta} \varphi(z) < \varepsilon$. 这是因为对任意 $\zeta \in V \cap \Gamma$,有 $\overline{\lim}_{z \to \zeta} \varphi(z) \leq f(\zeta) < A + \varepsilon$,又 $\lim_{z \to \zeta} \beta_{\sigma}(z) \leq 0$. 当 $\zeta \in V$ 外时 $\overline{\lim}_{z \to \zeta} \varphi(z) \leq M$,又 $\overline{\lim}_{z \to \zeta} \beta_{\sigma}(z) = -1$. 总之,

$$\overline{\lim}_{z \to \zeta} \varphi(z) < \varepsilon_*$$

故在G内 $\varphi(z) < \varepsilon$ 。 因此,对任意 $v \in P(f)$,有 $v \le A - (M - A)\beta_V + \varepsilon$ 。

由此得到

$$u \leqslant A - (M - A)\beta_V + \varepsilon,$$

$$\overline{\lim}_{x\to\zeta_0}u(x)\leqslant A+\varepsilon=\overline{\lim}_{\zeta\to\zeta_0}f(\zeta)+\varepsilon.$$

8 是任意的,我们便得到 $\lim_{z\to\zeta_0} u(z) \leq \lim_{\zeta\to\zeta_0} f(\zeta)$.

同样,设 $B = \lim_{\zeta \to \zeta_0} f(\zeta)$,对任意 $\varepsilon > 0$,存在 ζ_0 的局部参数

圆 V, 使得当 $\zeta \in V \cap \Gamma$ 时 $f(\zeta) > B - \epsilon$. 令

$$\phi = (B + M)\beta_V + B - \varepsilon,$$

则 ϕ 是G内的次调和函数,当 $\zeta \in V \cap \Gamma$ 时,

$$\overline{\lim}_{z \to \zeta} \phi(z) \leqslant B - \varepsilon < f(\zeta);$$

当く在V外时,

$$\overline{\lim}_{z \to \zeta} \phi(z) = -M - \varepsilon < f(\zeta),$$

这就证明了 $\phi \in P(f)$,因此 $\phi(z) \leq u(z)$.

$$\lim_{z\to\zeta}u(z)\geqslant B-\varepsilon=\lim_{\zeta\to\zeta_0}f(\zeta)-\varepsilon,$$

s 是任意的, $\lim_{\zeta \to \zeta_0} (\zeta) \leq \lim_{s \to \zeta_0} (s)$. 于是证明了定理的不等式成立.

其它结论由不等式成立得之, 定理证完,

定理 1.3 和定理 1.4 说明,如果 G 域的边界点都是正则 边 界点,则对于连续有界的边界值函数 f, Dirichlet 问题具有唯一解。 反之,如果域 G 的 Dirichlet 问题对任何连续函数有解,则域 G 的 边界点都是正则边界点。 因为这时对任何边界点 $\zeta_0 \in \Gamma$,我们可找一个连续函数 f,使得 $f(\zeta_0) = 0$,当 $\zeta = \zeta_0$ 时 $f(\zeta) < 0$ 。则 Dirichlet 问题的解 u 就是 ζ_0 的闸函数。

定理 1.5. 设 $\zeta_i \in \Gamma$,如果 G的余集包含 ζ_i 的分支不是由一点组成,则 ζ_i 是域 G的正则边界点。

证明。 我们要证明点 ζ_0 的闸函数存在。 由于闸函数的局部 性质,可限制在 ζ_0 的局部参数邻域内考虑,不妨假定 G 是平面 C 上的域。

由定理假设,G的余集包含 G 的分支 E 多于一点,取 G \in E , G \subseteq G 经线分式变换后可假定 G \subseteq G

$$s = \log z = \sigma + i\tau,$$

把 G 共形映照为域 G'. 任何直线 $\sigma = \sigma_0$ 与 G' 之交由一些线段组成,且这些线段的总长 $\leq 2\pi$. 对于固定的 σ_0 ,设线段为 $\{(s'_i, s''_i)\}$, $Ims''_i > Ims'_i$. 当 $\sigma \geq \sigma_0$ 时,定义

$$\omega_i(s) = \arg \frac{s_i' - s}{s_i'' - s}, \ 0 \le \omega_i \le \pi$$

则 $a(s) = -\frac{1}{\pi} \sum_{i} \omega_{i}(s)$ 是调和函数,且满足

$$-\frac{2}{\pi}\arctan\frac{\pi}{\sigma-\sigma_0}\leqslant \alpha(s)\leqslant 0,$$

在线段 (s_i, s_i'') 上 $\alpha(s) = -1$. 因此当 $\sigma < \sigma_0$ 时定义 $\alpha(s) = -1$,

使 a(s) 成为 G' 内的次调和函数。

函数 $\alpha(\log z)$ 在 G内是次调和的并且小于零,在 $G = \infty$ 具有极限零,但它不一定是 $G = \infty$ 的闸函数,因为当 z 趋于 G 的有穷边界点时, $\alpha(\log z)$ 可能趋于零。

在实轴上,取点列 $\sigma_a \to +\infty$,以 σ_a 代替上述 σ_0 ,构造对应 的函数 σ_a , 定义

$$\beta(z) = \sum_{n=0}^{\infty} \frac{\alpha_n(\log z)}{2^n},$$

由于上式右边的级数在G内一致收敛,因此 $\beta(z)$ 是 G内的次调和函数。当 $z \to \zeta_0 = \infty$ 时 $\beta(z) \to 0$,当 $z \to \zeta \to \infty$ 时,由于对充分大的 π , $\alpha_{\pi}(\log z) = -1$,因此有 $\lim_{z \to \zeta} \beta(z) < 0$,于是 $\beta(z)$ 是 ζ_0 的闸函数。

最后,举一个特殊的 Dirichlet 问题。

设 G 为 Riemann 曲面W上的相对紧域, ∂G 由有限条逐段解析曲线组成, Δ 为 G 内的局部参数圆, Δ \subset G ,则域 G — Δ 的 Dirichlet 问题可解。因此存在一个调和函数 u ,在 G — Δ 内调和,在边界 ∂G 上 u — 0 ,在 $\partial \Delta$ 上 u — 1 。这样的函数 u 称为 G — Δ 对 $\partial \Delta$ 的**调和测度**

一个特殊而重要的 Dirichlet 问题是: 设W为非紧 Riemann 曲面, Δ 是一个局部参数圆, 在 $\partial \Delta$ 上给定连续函数 f, 我们要找 $W - \Delta$ 内的调和函数 u, 连续到边界 $\partial \Delta$, 在 $\partial \Delta$ 上 u = f.

由于W是非紧的,首先我们作W的 Alexandroff 紧化: W 作为拓扑空间附加上一个"无穷远点",记之为点 β 或点 ∞ 。定义点 β 的邻域为W的任一紧集 K 的余集 W-K。这样, $W \cup \{\infty\}$ 成为一个紧的 Hausdorff 空间,称为W的 Alexandroff 紧化.

附加点 β 也称为 Riemann 曲面的理想边界。 W 的点序列 z_*

当 $n \rightarrow \infty$ 时趋于 ∞ ,或称**趋于理想边界**,如果任意给定 ∞ 的邻域 W - K,总存在 N > 0,使得当 $n \ge N$ 时 $z_n \in W - K$.

现在解 $W-\Delta$ 的 Dirichlet 问题。设在 $\partial \Delta$ 上 $|f| \leq M$. 设 P(f) 是满足下列条件的 $W-\Delta$ 上的次调和函数族: 对任意 $v(z) \in P(f)$, $\zeta \in \partial \Delta$, 有 $\overline{\lim} v(z) \leq f(\zeta)$, $\overline{\lim} v(z) \leq 0$, 则

$$u(z) = \sup_{v \in P(I)} \{v(z)\}$$

就是这一特殊 Dirichlet 问题的解。而且 u 是有界调和函数,且 $|u| \leq M$ 。 因为对任意 $v \in P(f)$,由最大值原理 $v \leq M$,因此 $u \leq M$,另外 $v = -M \in P(f)$, $u \geq -M$.

§2 Riemann 曲面的可数性

这一节我们要证明 Riemann 曲面具有可数基,即 Riemann 曲面总存在可数个参数圆组成的开覆盖。 证明的 根据是 假设 Riemann 曲面存在非常数的调和函数。 上一节末尾,我们已经证明 Riemann 曲面挖去一个参数圆后,总存在非常数的调和函数。如果挖去一个参数圆后具有可数基,显然整个 Riemann 曲面具有可数基。另外,紧 Riemann 曲面具有可数基是明显的。

设W为非紧 Riemann 曲面, u 为W上非常数的调和函数。作 u 的调和共轭 u^* , 令 $f = u + iu^*$, 则 f 是多值解析函数,但确 定一个全纯微分 $df = du + idu^*$.

我们首先利用这一微分式定义W的距离函数,使之成为度量 空间。

对任意 z1, z2 ∈ W, 距离函数定义为

$$d(z_1,z_2)=\inf\int_{\tau}|df|,$$

其中 γ 为连接 z_1 到 z_2 的逐段可微分弧。容易验证,距离的三个条件成立,这样W 成为一个度量空间,而且在局部参数圆内考虑时,不难验证,用距离定义的拓扑与 Riemann 曲面原来的拓扑等价。

现在,我们利用距离函数定义W的紧集序列 $\{G_n\}$,使得 $G_n\subset (G_{n+1})^n(n=1,2,\cdots)$,

$$\underline{\mathbb{H}} \ \dot{W} = \bigcup_{-\infty}^{\infty} G_{**}.$$

对任意 $z_0 \in W$, 令

$$D(z_0, \rho) = \{z \in W : d(z, z_0) < \rho\}.$$

这是一个开集。定义

 $\rho(z_0) = \sup\{\rho: D(z_0, \rho) \in W$ 的相对紧集}。

显然 $\rho(z_0) > 0$. 如果存在一点 $z_0 \in W$,使得 $\rho(z_0) = \infty$,则 可令

$$G_n = \overline{D(z_0, n)}, n = 1, 2, \cdots$$

 $\{G_{\bullet}\}$ 便是合乎我们要求的紧集序列。

如果对任意 $z \in W$ 有 $0 < \rho(z) < \infty$, 则 $\rho(z)$ 是定义于 W上的连续函数,连续性可由明显的不等式

$$|\rho(z_1)-\rho(z_2)|\leqslant d(z_1,z_2)$$

看出。我们依次定义 G. 如下: 固定一点 20, 令

$$G_1 = \left\{z: d(z, z_0) \leqslant \frac{1}{2} \rho(z_0)\right\},\,$$

$$G_1 = \left\{z: \exists z_1 \in G_1, \ d(z, z_1) \leqslant \frac{1}{2} \rho(z_1)\right\},$$

.

$$G_{*} = \left\{z \colon \exists z_{s-1} \in G_{s-1}, d(z, z_{s-1}) \leqslant \frac{1}{2} \rho(z_{s-1})\right\},$$

容易看出 G_{\bullet} 是闭案,且 G_{\bullet} \subset $(G_{\bullet+1})^{\circ}$.

G, 是紧集,这可用归纳法证明。事实上,

$$G_{i} = \overline{D\left(z_{0}, \frac{\rho(z_{0})}{2}\right)}$$

是紧集。如果 G_{*-1} 是紧集,则 G_{*} 也是紧集。因为这时 G_{*-1} 的 开覆盖 $\left\{D\left(z,\frac{1}{4}\rho(z)\right):z\in G_{*-1}\right\}$ 中存在有限于覆盖

$$\left\{D(z_i, \frac{1}{4}\rho(z_i)): i=1, 2, \dots, m\right\}.$$

我们断言 $G_n \subset \bigcup_{i=1}^n D\left(z_i, \frac{7}{8} \rho(z_i)\right)$. 事实上,对任意 $\zeta \in G_n$, 武 $s_{n-1} \in G_{n-1}$,使得 $d(\zeta_1, \zeta_{n-1}) \leq \frac{1}{2} \rho(\zeta_{n-1})$. 对 $\zeta_{n-1} \in G_{n-1}$,根据于覆盖,存在 $z_i \in G_{n-1}$ 使得 $d(\zeta_{n-1}, z_i) < \frac{1}{4} \rho(z_i)$. 再根据不等式 $\rho(\zeta_{n-1}) \leq d(\zeta_{n-1}, z_i) + \rho(z_i)$,得到 $\rho(\zeta_{n-1}) < \frac{5}{4} \rho(z_i)$. 于是

$$d(\zeta, z_i) \leq d(\zeta, \zeta_{n-1}) + d(\zeta_{n-1}, z_i) < \frac{1}{2} \rho(\zeta_{n-1}) + \frac{1}{4} \rho(z_i) < \frac{7}{8} \rho(z_i),$$

这就是说, $\zeta \in D\left(z_i, \frac{7}{8}\rho(z_i)\right)$, 断言正确。由于每一个

$$D\left(z_i, \frac{7}{8}\rho(z_i)\right)$$

是相对紧集,因此 G_* 是紧集。

 $W=\bigcup_{n=1}^\infty G_n$ 、由于 $\bigcup_{n=1}^\infty G_n=\bigcup_{n=1}^\infty (G_n)^n$ 是开集,我们只需证明余集 $W=\bigcup_{n=1}^\infty G_n$ 是开集,根据W的连通性而得到

$$W=\bigcup_{n=1}^{\infty}G_{n}.$$

因此,我们只要证明,对任意 $\zeta \in W - \bigcup_{n=1}^{\infty} G_n$, ζ 的邻域

$$D\left(\zeta,\frac{1}{3}\rho(\zeta)\right)\subset W-\bigcup_{n=1}^{\infty}G_{n}.$$

这点是容易用反证法证明的。 如果存在

$$z_n \in D\left(\zeta, \frac{1}{3} \rho(\zeta)\right) \cap G_n,$$

则
$$d(z_*,\zeta) < \frac{1}{3} \rho(\zeta)$$
,因此

$$\rho(z_n) > \rho(\zeta) - d(z_n, \zeta) > \frac{2}{3} \rho(\zeta),$$

于是 $d(\zeta, z_*) < \frac{1}{2} \rho(z_*)$,但 $z_* \in G_*$,这就说明 $\zeta \in G_{*+1}$,从而得到矛盾。

综合上面论述,对任意非紧 Riemann 曲面 W,如果存在非常数的调和函数,则一定存在一个紧集序列 $\{G_*\}$,满足

$$G_n \subset (G_{n+1})^0 (n-1,2,\cdots)$$

$$\mathbb{H} W = \bigcup_{i=1}^{n} G_{i}.$$

根据这一结论,我们立刻得到下面的定理。

定理 2.1. 任何 Riemann 曲面总具有可数基。

这一定理是 T. Radó 首先利用万有覆盖曲面的方法证明的, 人们称为 Radó 定理。

对于非紧 Riemann 曲面 W,与可数性等价的概念是 Riemann 曲面的可穷尽性.

W的正则域序列 $\{Q_a\}$, 称为W的一个**穷尽域序列**,如果

$$\bar{\mathcal{Q}}_{n} \subset \mathcal{Q}_{n+1}(n-1,2\cdots)$$

$$\coprod W = \bigcup_{n=1}^{\infty} \mathcal{Q}_{n}.$$

我们回忆一下,W的域Q称为正则域,如果Q是相对紧域,Q的边界 ∂Q 由有限条解析曲线组成,另外,Q的余集不包含紧的分支。

引**理 2.2.** 对于 Riemann 曲面的紧集 K, 一定存在一个正则域 Q, 使得 $K \subset Q$.

证明。不妨设K的内部包含一个参数圆 Δ 。 由于K是紧集,我们可以用有限个参数圆覆盖 K。 用这有限个参数 圆 组 成一个域 G,使得G的边界 ∂G 由有限条逐段解析曲线组成,W-G没有紧的分支。由解 $G-\Delta$ 的 Dirichlet 问题,存在 $G-\Delta$ 对

于边界 $\partial \Delta$ 的调和测度 u, 在 $G - \Delta$ 内 0 < u < 1, 而在 $\partial \Delta$ 上 u = 1, 在 ∂G 上 u = 0. 设 u^* 为 u^* 的调和共轭,则

$$f = u + iu^*$$

是一个多值解析函数,确定一个全纯微分

$$df = \left(\frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y}\right) dz.$$

设

$$M = \sup_{K} u$$
,

则 0 < M < 1。 由于使 df = 0 的点是孤立点,存在8,0 < 8 < M,使得等位线 u = 8 上没有 df = 0 的点。则这等位线围成的域

$$Q = \bar{\Delta} \cup \{z : u(z) > \delta\}$$

就是所求的正则域。我们只需证明,Q的边界,即等位线 $\partial Q = \{z: u(z) = \delta\}$ 由解析曲线组成。事实上,对任意 $z \in \partial Q$,存在一个邻域。选取一单值分支 $f = u + iu^*$ 把这邻域——解析的映为平面的一个圆,而 ∂Q 在这邻域内的部分是圆在直线 $u = \delta$ 上的直径的原像,因而是一段解析弧。 这就证明了 ∂Q 是由解析曲线组成。引理得证。

定理 2.3. 非紧 Riemann 曲面总存在正则域的穷尽序列。

证明。设W为非紧 Riemann 曲面,根据已证可数性定理,存在可数多个参数圆 $\{\Delta_n\}$,使得 $W=\bigcup_{n=1}^\infty \Delta_n$ 。

依次选取子序列 $n_1 < n_2 < \cdots < n_k < \cdots$, 使得 $n_1 = 1$, n_k 是满足条件

 $\Delta_1 \cup \Delta_2 \cup \cdots \cup \Delta_{n_{k-1}} \subset \Delta_1 \cup \Delta_2 \cup \cdots \cup \Delta_{n_{k-1}} \cup \Delta_{n_{k-1}+1} \cup \cdots \cup \Delta_{n_k}$ 的最小整数。由于左边是紧集,这样的 n_k 是存在的。对于k=1, 2, ..., 令

$$G_k = \Delta_1 \cup \Delta_2 \cup \cdots \cup \Delta_{n_k}$$

则 \overline{G}_{k} 是紧集, $\overline{G}_{k} \subset G_{k+1}$, $W = \bigcup_{k=1}^{\infty} G_{k}$.

现在,我们可以依次定义正则域穷尽序列。应用引理 2.2,对 • 76 •

緊集 \overline{G}_1 , 存在正则域 Q_1 , 使得 $\overline{G}_1 \subset Q_1$. 对于 $\overline{Q}_1 \cup \overline{G}_2$, 存在正则域 Q_2 , 使得 $\overline{G}_2 \cup \overline{Q}_1 \subset Q_2$. 对于 $\overline{Q}_2 \cup \overline{G}_3$ 存在正则域 Q_3 , 使得 $\overline{Q}_2 \cup \overline{G}_3 \subset Q_3$. 如此继续下去,便得到正则域序列 Q_4 , k=1, 2, \cdots , 使得 $\overline{Q}_4 \subset Q_{4+1}$, $\overline{G}_4 \subset Q_4$, $W=\bigcup_{s=1}^n Q_{4s}$ 即为W的正则域穷尽序列。

§ 3 开 Riemann 曲面的 Green 函数、调和测度 与最大值原理

设W为开 Riemann 曲面,取定点 $p_0 \in W$,设 p_0 的局部参数 邻域内的局部参数为 z(p), $z(p_0) = 0$. V_{p_0} 为 $W - \{p_0\}$ 内的一些次调和函数组成的族,满足

- a) ∀v ∈ V_{po}, v 在一紧集外恒为 0;
- b) $\forall v \in V_{p_0}$, $\overline{\lim_{p \to p_0}} [v(p) + \log |z(p)|] < \infty$.

注意,族 V_{p_0} 依赖于定点 p_0 ,而与局部参数 z(p) 无关。

Ve. 是一个 Perron 族,根据 Perron 族基本定理,函数

$$u = \sup_{v \in V_{F_0}} v$$

在 $W - \{p_0\}$ 内或者调和,或者 $= +\infty$ 。在前一情况下,定义 $g(p, p_0) = \sup_{v \in V_{p_0}} v$,

称为 W 的极点在 p_0 的 Green 函数。 这时,称W 的极点在 p_0 的 Green 函数存在。在后一情况下, $\sup_{v \in V_{0v}} = +\infty$,我们称W 没

有 Green 函数。

我们将于后面证明,W上的 Green 函数存在与否,与点 ρ_0 无关。其存在性是开 Riemann 曲面的内在性质。

我们首先要指出, $g(p, p_0)$ 不是常数,且当 $p \rightarrow p_0$ 时,

$$g(p, p_0) \rightarrow +\infty$$
.

事实上,取参数圆 $\Delta = z^{-1}(\{|z(p)| \leq r_0\})$, 定义

$$v_0(p) = \begin{cases} \log \frac{r_0}{|z(p)|}, & p \in \Delta, \\ 0, & p \in \Delta. \end{cases}$$

則 $\nu_0(p) \in V_{p_0}$ 因此 $g(p, p_0) \ge \nu_0(p)$ 。由于 $p \to p_0$ 时

$$v_0(p) \rightarrow +\infty$$
,

所以 $g(p, p_0) \rightarrow +\infty (p \rightarrow p_0)$. 另外, $g(p, p_0)$ 不是常数。

Green 函数的重要性质如下:

- G1. $g(p, p_0) > 0$;
- G2. inf $g(p, p_0) = 0$;
- G3. $g(p, p_0) + \log |z(p)|$ 在 p_0 的局部参数邻域内 调 和.

这里我们证明 G1,由于 $0 \in V_{p_0}$,因此 $g(p,p_0) \ge 0$,再由 调和函数的极小值原理,便得到 $g(p,p_0) > 0$ 。 G2 和 G3 于后面 证之。

根据性质 G1, G2 和 G3 我们知道,紧 Riemann 曲面一定不存在 Green 函数。否则,如果 $g(p,p_0)$ 存在,将要取到极小值 0, 因而是一个常数,这就得到矛盾。

下面我们定义调和测度的概念。

按定义,开 Riemann 曲面W是非紧曲面。 首先我们把W拓扑地紧化,附加唯一的理想点,称之为W上的"无穷远点∞",点∞的邻域定义为W的任何紧集的余集。 这样 $W \cup \{\infty\}$ 成为一个拓扑空间,但应注意 $W \cup \{\infty\}$ 不是 Riemann 曲面。 我们称附加的点∞为 Riemann 曲面W的理想边界。

我们说W上的点序列 $p_n \to \infty$,或称趋于理想边界,如果任给 ∞ 的邻域,当 n 充分大时, p_n 在这邻域内,即对任何给定的紧集,当 n 充分大时, p_n 在这紧集之外。

设K为W的紧集,使得W-K是连通的。定义 V_K 为满足下列条件的函数族。

- 1) $\forall v \in V_K, v$ 是 W K 内的次调和函数;
- 2) $\forall v \in V_K$, 在 W K 内 $v \leq 1$;

3) $\forall v \in V_K$, $\overline{\lim}_{v \to p} v(p) \leqslant 0$.

条件 3) 意指,对任意 $\varepsilon > 0$,存在紧集 A,使得 当 $z \in W - A$ 时, $V(p) < \varepsilon$.

 $V_{\mathbf{x}}$ 是一个 Perron 族,它是非空的有上界族,因为 $0 \in V_{\mathbf{x}}$. 根据 Perron 族基本定理,在 W-K 内定义

$$u_K = \sup_{v \in V_k} v,$$

则 u_K 是调和函数, 满足条件 $0 \le u_K \le 1$ 。 但可能有 u = 0, 或 $u_K = 1$ 。

命題. 如果 $\mathring{K} \neq \emptyset$,则 $u_{K} > 0$.

证明。设 ρ 为内集 \mathring{K} 的边界点,取 ρ 的局部参数圆

$$|z(p)| < 1, z = z(p)$$

为局部参数, $z(p_0)=0$,则在 $z(p_0)=0$ 的充分小的邻域内存在点 z_0 ,使得圆 $|z-z_0|<\delta$ 和 $|z-z_0|< m\delta$ 在圆

$$|z(p)| < 1$$

内,且有小圆 $\{|z-z_0| < \delta \subset z(K)\}$,大圆 $\{|z-z_0| < m\delta\}$ 有不属于 z(K) 的点。 其中 $\delta > 0$ 是充分小的数, m > 1 是整数。定义函数

$$\nu(p) = \begin{cases} \log \frac{m\delta}{|z(p) - z_0|} / \log m, \ \delta < |z(p) - z_0| < m\delta; \\ 0, \ p \ \text{if } \{\delta < |z(p) - z_0| < m\delta\} \ \text{ft.} \end{cases}$$

则 v(p) 限制在 W-K 内是 V_K 的次调和函数, $v \ge 0$,且在 K 外,即在 W-K 上有一点使 v > 0。由此推出 $u_K > 0$ 。

由命题,当 $\mathring{K} \neq \emptyset$ 时, $0 < u_K \le 1$. 因此 $0 < u_K < 1$ 或 $u_K = 1$. 当 $0 < u_K < 1$ 时; 我们称 u_K 为 K 的**调和测度**. 当 $u_K = 1$ 时,则称 K 的调和测度不存在。以后讨论调和测度时总假定 $\mathring{K} \neq \emptyset$.

我们将于后面证明,调和测度的存在与否不依赖于K,它是W的理想边界的内在性质。

理想边界的另一重要性质是最大值原理的成立与否.

最大值原理。设K为W的紧集,我们称最大值原理在W-K内成立,如果对于 W-K 内任何有上界的调和函数 u,满足条件

$$\overline{\lim_{p\to K}}u(p)\leqslant 0,$$

则在 W - K 内 $u \le 0$, 否则我们称最大值原理在 W - K 内 不成立。

我们也将于后面证明,最大值原理成立与否不依赖于 K,它是 W 的理想边界的一个性质。 注意这里的 K 不用假定 $\mathring{K} \neq \varnothing$.

§ 4 Riemann 曲面的分类

我们将证明下面的定理,然后根据这定理把黎曼曲面分类。 定理 4.1. 对于开 Riemann 曲面 W,下列三条件等价。

- 1° Green 函数存在(对任何点 м∈ W 存在);
- 2° 调和测度存在(对W的任何具有内点的紧集K存在);
- 3°最大值原理不成立(对任何紧集 K 不成立)。

在定理的证明中,我们约定,条件 1° 对于定点 ρ_0 记为(1°) ρ_0 ,对于固定的紧集 K,条件 2° 记为(2°) ρ_0 ,条件 3° 则记为(3°) ρ_0 .

为了得到定理的证明,我们只要证明:

- (1) 如果 $p_0 \in K$, 则 $(1^\circ)_{p_0} \Rightarrow (3^\circ)_K$;
- (II) 如果 po ∈ k, 则 (2°)x ⇒ (1°)eo;
- (III) 对任何给定的紧集 K 和 K', $(3^{\circ})_{K} \Rightarrow (2^{\circ})_{K'}$.

因为,如果(1),(II)和(III)成立,则立刻可推出1°,2°和3°成立。这时,由(I),(III)和(II)我们得到,对任意 p_0 , $p_1 \in W$,(1°) p_1 。即如果 Green 函数 $g(p_1,p_0)$ 对 p_0 存在,则对任何 $p_1 \in W$, $g(p_1,p_1)$ 也存在。由(II),(I)和(III)推出,对任何紧集 K_1 , K_2 ,(2°) K_1 ,中(2°) K_1 。即如果调和测度对于 K_1 存在,则对任何 K_2 调和测度也存在。最后,由(III),(II)和(III)和(II)得出,对任何紧集 K_1 和 K_2 ,(3°) K_1 中(3°) K_1 中间如果

对于 K_1 最大值原理不成立,则对任何 K_2 最大值原理不成立。

证明。(I) 假设对于 p_0 Green 函数 $g(p, p_0)$ 存在, $p_0 \in K$. 要证对 W - K 最大值原理不成立。反证之,假设对 W - K 最大值原理成立,考虑调和函数 $u = -g(p, p_0)$,则在 W - K 内 $u \le 0$. 设 u 在紧集 K 上达到最大值 m,因此有

$$\lim_{t\to\kappa}u\leqslant m.$$

但由假设 $w \to W \to K$ 最大值原理成立,因此在 $W \to K$ 内 $w \le m$ 。 即 $w \to K$ 上一点达到最大值 m,由调和函数极大值原理 $w \to m$,这就得到矛盾。因此 (1) 成立。

(11) 对
$$p_0 \in \mathring{K}$$
, $(2^\circ)_K \Rightarrow (1^\circ)_{p_0}$

由假设调和测度 u_{K} 存在, $p_{0} \in \mathring{K}$,要证 $g(p, p_{0})$ 存在。在 \mathring{K} 内取以 p_{0} 为心的局部参数圆 K_{0} ,设 z=z(p) 为局部参数, $z(p_{0})=0$, $K_{0}=z^{-1}(\{|z(p)|<1\})$ 。 对 $0 < r_{1} < r_{2} < 1$,局部参数圆 $K_{1}=z^{-1}(\{|z(p)|< r_{1}\})$, $K_{2}=z^{-1}(\{|z(p)|< r_{2}\})$, K_{1} 和 K_{2} 的边界分别为 ∂K_{1} 和 ∂K_{2} 容易看出, u_{K} 存在,则 u_{K} 也存在。

考虑定义 Green 函数的 Perron 族 V_{p_0} , 对任意 $v \in V_{p_0}$, $0 \in V_{p_0}$, 则 $v^+ = \max(v, 0) \in V_{p_0}$. 假定 $\max_{\delta K} v^+ \neq 0$,则次调和函数 $v^+/\max_{\delta K_1} v^+$ 在一紧集外为 0,在 ∂K_1 上 \leq 1,因而属于 V_{K_1} ,由此推出

$$v^+(p) \leq (\max_{\partial K_1} v^+) u_{K_1}(p), p \in W - K_1,$$

特别有

$$\max_{\partial K_1} v^+ \leqslant (\max_{\partial K_1} v^+)(\max_{\partial K_2} u_{K_1})_{\bullet}$$

任给 $\epsilon > 0$, 作函数

$$v^+(p) + (1+\varepsilon)\log|x(p)|, p \in K_2,$$

当 $\rho \rightarrow \rho_0$ 时,这函数趋于 $-\infty$,因此在 ∂K ,上达到最大值,我们有

$$\max_{\partial R_1} v^+ + (1+\varepsilon) \log r_1 \leqslant \max_{\partial R_2} v^+ + (1+\varepsilon) \log r_2,$$

令ε→0得到

$$\max_{\partial K_1} v^+ + \log r_1 \leqslant \max_{\partial K_2} v^+ + \log r_{2\bullet} \tag{4.1}$$

把前面的不等式代人(4.1)式后,得到

$$\max_{\partial K_1} v^+ \leq \frac{1}{1 - \max_{\partial K_1} u_{K_1}} \log \frac{r_2}{r_1}.$$

因为 $0 < \max_{\partial K_1} u_{K_1} < 1$,由此得出 v^+ 在 ∂K_1 上一致有界, $g(p, p_0) = \sup_{\sigma} \Phi(\partial K_1)$ 上有界,即 $g(p, p_0)$ 存在。

(III) $(3^\circ)_K \Rightarrow (2^\circ)_{K'}$ 。 我们证明,如果 $u_{K'}$ 不存在,即 $u_{K'} = 1$,则对 W - K 最大值原理成立。

首先假定 $K' \subset K$, 设 $u \in W - K$ 内的调和函数, $u \leq 1$, 且

$$\overline{\lim_{p\to K}}u(p)\leqslant 0.$$

考虑 $V_{K'}$, 对任意 $v \in V_{K'}$, 我们有

$$v(p) + u(p) \leq 1, p \in W - K$$

这是因为 $\lim_{p\to\infty} \nu(p) = 0$ 及 $\lim_{p\to K} \mu(p) \leq 0$, 因此当 $p\to\infty$ 或 $p\to K$ 时总有

$$\overline{\lim} [v(p) + u(p)] \leq 1.$$

应用极大值原理便得到上面的不等式。

现在,由假设 $u_{K'} \equiv 1$,对任意 $p \in W - K$,总 存 在 序 列 $v_* \in V_{K'}$,使得 $v_*(p) \to 1(n \to \infty)$,由上面已证不等 式,得 到 $u(p) \leq 0$ 。 这就是说," 在 W - K 内最大值原理成立。

当 K 和 K' 是任意紧集时, 选取相对紧域 K'', 使得

$$K \cup K' \subset K''$$
.

设 u 为上面给定的函数,根据上面已证结论,最大值原理在 W-K'' 内成立,由此推出在 W-K'' 内 $u \leq \max_{KK''} u$. 如果

$$\max_{\partial K''} u > 0,$$

则由于 $\lim_{x\to x} < 0$,根据极大值原理,在 K''-K 内也有

于是"在 ∂K "上一点达到极大值,"是正常数。因此在 ∂K "上 "《 0. 在 K"一 K 上及 W-K"上应用极大值原理,则可推出,在W-K上 "《 0. 这就是说在W-K上最大值原理成立。定理至此全部证完。

定义。开 Riemann 曲面 W,如果满足定理 4.1 三条件之一,则称为双曲型的,否则称为抛物形的。紧 Riemann 曲面则称为椭圆型的。

注意,对于抛物型 Riemann 曲面, Green 函数和调和测度均不存在,但是最大值原理成立。 平面上的单位圆是典型的 双 曲 Riemann 曲面,平面 C 则是抛物 Riemann 曲面.

定理 4.2. 拋物型 Riemann 曲面W上不存在非常数的正调和函数。

证明。设 u 是正的调和函数,我们证明对任意 p, $q \in W$,有 u(p) = u(q)。为此考虑 -u。由假定 $-u \leq 0$,因此在 $W - \{p\}$ 和 $W - \{q\}$ 上应用最大值原理,得到

$$-u(q) \leqslant -u(p), \quad -u(p) \leqslant -u(q).$$

于是 u(p) = u(q), u 是常数。

§ 5 Green 函数的一些性质

前面我们已列出 Green 函数的重要性质:

- G1. $g(p, p_0) > 0$;
- G2. inf $g(p, p_0) = 0$;
- G3. $g(p, p_0) + \log |z(p)|$ 在 p_0 的局部参数邻域内 调 和, 其中 z = z(p) 是 p_0 的局部参数邻域内的局部参数, $z(p_0) = 0$.
 - G1 已证明过,现在证明 G3, 然后再证明 G2,
 - G3 的证明。在 |z(p)| = r 上,设

$$m(r) = \max_{(a(p))=} g(p, p_0).$$

由估计式 (4.1), 有

$$m(r_1) + \log r_1 \le m(r_2) + \log r_2, \ 0 < r_1 < r_2$$

这就是说, $m(r) + \log r$ 是 r 的单调增函数,因此,

$$g(p, p_0) + \log |z(p)|$$

在局部参数圆 $|z(p)| \leq r_0$ 内有上界。 考虑定义 $g(p, p_0)$ 的 Perron 族 V_{p_0} , 作函数

$$\nu(p) = \begin{cases} \log r_0 - \log |z(p)|, & |z(p)| < r_0, \\ 0, & \text{ 其它点 } p, \end{cases}$$

则 $v(p) \in V_{p_0}$ 因此 $g(p, p_0) \ge \log r_0 - \log |z(p)|$,即在局部 参数圆 $|z(p)| \le r_0$ 内有 $g(p, p_0) + \log |z(p)| \ge \log r_0$. 于是 函数 $g(p, p_0) + \log |z(p)|$ 在 $0 < |z(p)| < r_0$ 内调和且有界, p_0 是可去奇点,将 $g(p, p_0) + \log |z(p)|$ 调和开拓到 p_0 后即得 G3 的证明。

G2 的证明。设 inf $g(p, p_0) = c$, 由 G3 知,当 $p \rightarrow p_0$ 时, $g(p, p_0) + \log|z(p)|$ 有有穷极限。对任意 $\nu \in V_{p_0}$, 由于

$$\overline{\lim}_{p\to p} [v(p) + \log |z(p)|] < \infty,$$

应用极大值原理,得到

$$(1-\varepsilon)v(p)\leqslant g(p,\,p_0)-c,$$

进而有

$$(1-\varepsilon)g(p, p_0) \leqslant g(p, p_0) - c_*$$

令 $\varepsilon \to 0$, 即得 $c \le 0$ 。由 G1 有 $c \ge 0$,因此 c = 0,G2 得证。

Green 函数的极小性质:

定理 5.1 (极小性质)。 如果 $U(p, p_0)$ 是W上的正函数,在 $W - \{p_0\}$ 内调和,在 p_0 的局部参数邻域内,设 z - z(p) 为局部 参数, $z(p_0) = 0$, 有

$$U(p, p_0) = \log \frac{1}{|z(p)|} + U_0,$$

其中 U。是 pa 的局部参数邻域内的调和函数。 对于这样的 函 数

U(p, p₀), 总有

$$g(p, p_0) \leq U(p, p_0)$$
.

证明。对任意 v ∈ V_{po}, v 在一紧集外为 0, 且有

$$\overline{\lim_{p\to p_0}}[v(p)+\log|z(p)|]<+\infty.$$

作函数 $\nu(p) - (1+\epsilon)U(p, p_0)$, 它在一紧集处小于 0, 并且有 $\overline{\lim} \{\nu(p) - (1+\epsilon)U(p, p_0)\} = -\infty.$

注意到这是一个次调和函数,应用极大值原理,得到

$$\nu(p)-(1+\varepsilon)U(p,p_0)\leqslant 0.$$

令 $\epsilon \rightarrow 0$, 则有 $\nu(p) \leq U(p, p_0)$. 取上确界后便得到

$$g(p, p_0) \leqslant U(p, p_0).$$

定理证完,

极小性质的推广:设 $U(p, p_0)$ 除上面假定的极点 p_0 外,另外还有极点集 $\{p^*\}$,使得对任意 p^* ,当 $p \rightarrow p^*$ 时

$$U(p, p_0) \rightarrow +\infty$$
,

则仍有 $g(p, p_0) \leq U(p, p_0)$.

根据极小性质知道,如果 Riemann 曲面W存在 $U(p, p_0)$,则 $g(p, p_0)$ 一定存在,因而W是双曲型。 特别当W上存在非常数的有界全纯函数时,W一定是双曲型的,因为这时若设 f 为非常数的全纯函数, $|f| \leq M$,再设 f 在 p_0 具有 $n(n \geq 1)$ 级零点,则可定义

$$U(p, p_0) = \frac{1}{n} \log \frac{2M}{|f(p) - f(p_0)|}.$$

于是我们知道,平面的有界域是双曲型的,平面上边界多于两点的单连通域也是双曲型的。

Green 函数的共形不变性:

定理 5.2. 设W和 \widetilde{W} 为共形等价的 Riemann 曲面,

$$f:W\to \widetilde{W}$$

为共形映照, $\tilde{p} - f(p)$, $\tilde{p}_0 - f(p_0)$ 。 如果 $\tilde{g}(\tilde{p}, \tilde{p}_0)$ 是 \widetilde{W} 的 Green 函数,则 $g(p, p_0) - \tilde{g}(f(p), f(p_0))$ 是W的 Green 函数.

证明, 设 po 的局部参数邻域内的局部参数

$$z = z(p), \ z(p_0) = 0, \ \tilde{p}_0 = f(p_0)$$

的局部参数邻域内的局部参数为 $\tilde{z} = \tilde{z}(\tilde{p}), \tilde{z}(\tilde{p}_0) = 0$ 。 设在 p_0 的局部参数邻域内, $\tilde{p} = f(p)$ 具有展开式

$$\tilde{z} = f(z) = a_1 z + a_2 z^2 + \cdots, \ a_1 \neq 0$$

 $\tilde{g}(f(p),f(p_0))$ 在 $W-\{p_0\}$ 上是正调和的,在 p_0 的局部参数邻域内

$$\tilde{g}(f(p), f(p_0)) = \log \frac{1}{|z(p)|} +$$
 调和函数。

因此根据极小性质, g(p, po) 存在,且有

$$g(p, p_0) \leq \tilde{g}(f(p), f(p_0)).$$

同样从逆映照 $f^{-1}: \widetilde{W} \to W$ 出发,得到

$$\tilde{g}(\tilde{p}, \tilde{p}_0) \leqslant g(f^{-1}(\tilde{p}), f^{-1}(\tilde{p}_0)).$$

此即

$$\tilde{g}(f(p), f(p_0)) \leqslant g(p, p_0)$$

总之有 $g(p, p_0) = \tilde{g}(\tilde{p}, \tilde{p}_0)$ 。定理证完。

最后讨论 Green 函数在理想边界的性质如下。

当点 p 趋于理想边界 ∞ 时,格林函数 $g(p,p_0)$ 不一定有极限值 0,但在特殊情况下,我们有下述有用的定理。

定理 5.3. 如果W是平面上的有界单连通域,则格林函数在边界上的值为 0.

证明。我们要证明,对任一边界点 a, 当 $z \rightarrow a$ 时

$$g(z, z_0) \rightarrow 0$$
.

经过分式线性变换,不妨设 a = 0, W 在单位圆内。由W 的单连通性,在W 内存在单值的对数分支 $w = \log z = u + iv$,把W 共形映照为半平面 u < 0 的域 W',使得当 $z \to 0$ 时,对应的 $u \to -\infty$ 。 设 z_0 变为 w_0 , $g(z_1, z_0)$ 变为 W' 的极点在 w_0 的Green 函数。 进一步设 $g(w_1, w_1)$ 为半平面 u < 0 的 Green 函数,根据极小性质,当 $z \to 0$ 时,对应的 $w \to -\infty$,有

$$0 < g(z, z_0) \leqslant g(w, w_0) = -\log\left|\frac{w - w_0}{w + \overline{w}_0}\right| \to 0.$$

此即 $g(z, z_0) \rightarrow 0$ 。 定理得证。

推论. 设 W_0 , W是平面域, $W_0 \subset W$, 如果 W_0 是W的单连通真子域,则对应的 Green 函数 $g_0(z,z_0) < g(z,z_0)$.

证明、若不然,则有 $g_0(z, z_0) = g(z, z_0)$. 由假设 W_0 有一边界点 $a \in W$, $g_0(a, z_0) = 0$. 因此 $g(a, z_0) = 0$, 由极值原理 $g(z, z_0) = 0$. 这就得到矛盾.

§ 6 抛物型 Riemann 曲面的一类具有 奇点的调和函数

设W为一个抛物型 Riemann 曲面。 首先我们应该注意到,对于抛物型 Riemann 曲面,最大值原理成立。 如果设 Δ_1 为一个局部参数圆,则W对于 Δ_1 的调和测度 $u_{\Delta_1} = 1$. 设 $\{G_n\}$ 为W的正则域穷尽序列, $\Delta_1 \subset G_n$, n=1, 2, \cdots . 设 ω_n 为 $G_n - \Delta_1$ 对于边界 $\partial \Delta_1$ 的调和测度。即 ω_n 在 $G_n - \Delta_1$ 内调和,连续到边界,在 $\partial \Delta_1$ 上 $\omega_n = 1$, 而在 ∂G_n 上 $\omega_n = 0$. 根据最大值原理,对任意 n, 在 $\overline{G_n}$ 上有 $\omega_n \leq \omega_{n+1}$. $\{\omega_n\}$ 是一个单调增的正调和函数序列,而根据 Harnack 引理,在 $W - \Delta_1$ 内,当 $n \to \infty$ 时, ω_n 内闭一致收敛于一个调和函数 ω_n 注意到每一个 ω_n 可通过 $\partial \Delta_1$ 对称开拓为定义于 $\partial \Delta_1$ 的邻域内的调和函数,且开拓后的 ω_n 在 $\partial \Delta_1$ 的一个邻域内一致收敛。 因此 ω 连续到 $\partial \Delta_1$,且在 $\partial \Delta_1$ 上 $\omega = 1$ 。由于W是抛物型的,调和测度

uā, ஊ 1.

于是,在 $W-\Delta_i$ 上也有 $\omega=1$,因为否则 $0<\omega<1$,在 $W-\Delta_i$ 上应用最大值原理,根据调和测度的定义, $u_{\Delta_i}\leq\omega<1$,将不会有 $u_{\Delta_i}=1$. 于是 调和 测度 序列 ω_* ,当 $n\to\infty$ 时 在 $W-\Delta_i$ 的任何紧集上一致收敛到 $\omega=1$.

另外,由解特殊的 Dirichlet 问题, $W-\Delta_1$ 内存在有界调和函数 u,连续到边界 $\partial \Delta_1$,在 $\partial \Delta_1$,上 u-t,t是预先给定的连续函数。W是抛物型的,这样的调和函数是由边界值 t 唯一确

定的.

下面的关于参数圆外的有界调和函数的引理,对于 拋 物 型 Riemann 曲面成立,当然对于紧 Riemann 曲面显然成立.

引**理 6.1.** 设 W 为 抛物型 Riemann 曲面。固定一点 $p_0 \in W$, Δ_1 为以 p_0 为心的参数圆。设 z=z(p) 为局部参数, $z(p_0)=0$, $\Delta_1=\{p\colon |z(p)|<1\}$,对于 0< r<1, $\Delta_1=\{p\colon |z(p)|<r\}$. 固定 $\Delta_n=\{p\colon |z(p)|<p<1\}$. 设 z=z(p) 为 z=z(p) 为 z=z(p) 为 z=z(p) 为 z=z(p) 和 函数,则对于 z=z(p) 之 z=z(p) 为 z=z(p) 为 z=z(p) 为 z=z(p) 为 z=z(p) 为 z=z(p) 和 函数,则对于 z=z(p) 为 z=z(p) 为

$$\int_{\partial \Delta_{a}} * du = 0.$$

注意。回顾一下(第四章第 3 节末尾),在局部参数 z=z(p)下,

$$\int_{\partial \Delta_r} * du = -\int_{\partial \Delta_r} \frac{\partial u}{\partial \pi} d\zeta = \int_0^{2\pi} \frac{\partial (u(re^{i\theta}))}{\partial r} r d\theta.$$

证明. 设在 $W-\Delta$ 。内 $|u| \leq M$. 对上面讨论过的 $G_*-\Delta$,对于 $\partial \Delta$,的调和测度序列 ω 。与 u,在 $G_*-\Delta$,上应用 Stokes 公式(参看第四章第 3 节末尾公式),得到

$$\int_{\partial \Delta_{n}} \left(\omega_{n} \frac{\partial u}{\partial n} - u \frac{\partial \omega_{n}}{\partial n} \right) ds = \int_{\partial G_{n}} \left(\omega_{n} \frac{\partial u}{\partial n} - u \frac{\partial \omega_{n}}{\partial n} \right) ds,$$
另外有

$$\int_{\partial a_n} \frac{\partial \omega_n}{\partial n} ds = \int_{\partial G_n} \frac{\partial \omega_n}{\partial n} ds,$$

其中 $\frac{\partial}{\partial x}$ 为指向 $G_s - \Delta_s$ 内的法向导数。

我们知道,在 $\partial \Delta$, 上 ω , -1, 在 ∂G , 上 ω , -0 且 $\frac{\partial \omega}{\partial n} \ge 0$.

因此我们有

$$\left| \int_{\partial \Delta_{\tau}} \frac{\partial u}{\partial n} ds \right| \leq M \left| \int_{\partial \Delta_{\tau}} \frac{\partial \omega_{n}}{\partial n} ds \right| + M \left| \int_{\partial G_{n}} \frac{\partial \omega_{n}}{\partial n} ds \right|$$

$$\leq 2M \left| \int_{\partial \Delta_{\tau}} \frac{\partial \omega_{n}}{\partial n} ds \right|.$$

但是, 当 $n \to \infty$ 时 ω_n 在 $\partial \Delta_n$ 的邻域内一致收敛于 1, 因而 $\frac{\partial \omega_n}{\partial n}$ 一致收敛于 0, 上式取极限后, 便得到

$$\int_{\partial \Delta_r} * du = - \int_{\partial \Delta_r} \frac{\partial u}{\partial n} ds = 0.$$

引**强 6.2.** 设 u(z) 在圆环 $\rho \leq |z| \leq 1$ 内调和,且在圆周 $|z| - \rho$ 上 u 等于常数。对于 $\rho \leq r < 1$,设

$$s_r(u) = \max_{|z|=r} u(z) - \min_{|z|=r} u(z)$$

是 u 在圆周 |z| = r 上的振幅,则

$$s_r(u) \leqslant q(r)s_1(u),$$

其中 q(r) 仅依赖于 r, 且当 $r \to 0$ 时 $q(r) \to 0$.

证明。经变数 z 的旋转变换后,我们假定 u 在 |z| = r 上的最大值与最小值分别在 z_0 和 \bar{z}_0 达到。作函数

$$v(z) = u(z) - u(\vec{z})_{\bullet}$$

则 $\nu(z)$ 在上半圆环 $\{\rho \leq |z| \leq 1, \text{ Im } z \geq 0\}$ 内调和,在实轴及内半圆周上 $\nu=0$,在外半圆周上 $\nu(z) \leq s_1(u)$,在点 z_0 上 $\nu(z_0)=s_r(u)$.

设 $\omega(z)$ 为上半圆 $\{|z| < 1, \text{ Im } z \ge 0\}$ 对上半圆周 |z| = 1 的调和测度,即 $\omega(z)$ 在上半圆内调和,在上半圆周上 $\omega = 1$,在直径上 $\omega = 0$ 。我们知道

$$\omega(z) = \frac{2}{\pi}(\pi - \alpha),$$

其中 α 是点 z 看 -1, 1 的夹角,如图 5.1. 由极大值原理,比较 $v/s_1(u)$ 与 ω , 得到

$$s_r(u) \leqslant \frac{2}{\pi} (\pi - \alpha) s_1(u),$$

 α 是与 z_0 对应的角。 但对于 $|z_0| = r$, α 在 ir 点达到极小值 $\alpha = \pi - 2$ arctg r。 因此

$$s_r(u) \leqslant \left(\frac{4}{\pi} \operatorname{arctg} r\right) s_1(u)$$

图 5.1

设 $q(r) = \frac{4}{\pi} \arcsin r$, 则得到引理所求的结论。

现在讨论本节的中心问题。

定理 6.3. 设 W 为 h 物型 R ie m ann m m m $p_0 \in W$,取 $p_0 \in P_0$ 的局部参数邻域内的局部参数 $p_0 = p_0$, $p_0 = p_0$,则在 $p_0 \in P_0$,内存在调和函数 $p_0 \in P_0$,使得 $p_0 \in P_0$,在 $p_0 \in P_0$ 的任何局部参数邻域之外有界,在 $p_0 \in P_0$ 的局部参数邻域内

$$u(p, p_0) = \text{Re} \frac{1}{x(p)} + u_0(p, p_0),$$

其中 $u_0(p, p_0)$ 是调和函数,且当 $p \rightarrow p_0$ 时 $u_0(p, p_0) \rightarrow 0$.

注意, $u(p, p_0)$ 与取定的局部参数 z(p) 有关。另外,在证明中我们将会知道,定理对于紧 Riemann 曲面W也成立。

证明。取局部参数圆 $\Delta_1 = \{p: |z(p)| < 1\}$,设

$$\Delta_r = \{p : |z(p)| < r\}, \ 0 < r < 1,$$

对任意 ρ , $0 < \rho < 1$, 由解 $W - \Delta_{\rho}$ 的 Dirichlet 问题, 在 $W - \Delta_{\rho}$ 上存在唯一的有界调和函数 u_{ρ} , 使得在 $\partial \Delta_{\rho}$ 上

$$u_{\rho} = \operatorname{Re} \frac{1}{z(p)}.$$

在 $\Delta_1 - \Delta_p$ 内考虑调和函数 $u_p - \text{Re } \frac{1}{z(p)}$, 估计它在 $\partial \Delta_p$ 上的最大值。应用引理 6.2 得到,对 $\rho < r < 1$,

$$s_r \left(u_\rho - \operatorname{Re} \frac{1}{z} \right) \leqslant q(r) s_1 \left(u_\rho - \operatorname{Re} \frac{1}{z} \right)_{\bullet}$$
 (6.1)

回忆 $s_r\left(u_r - \operatorname{Re}\frac{1}{z}\right) = \max_{\delta a_r} \left(u_\rho - \operatorname{Re}\frac{1}{z}\right) - \min_{\delta a_r} \left(u_\rho - \operatorname{Re}\frac{1}{z}\right)$, 我们得到

$$s_r(u_o) - \frac{2}{r} \le q(r)[s_1(u_o) + 2].$$
 (6.2)

由于W是抛物型的,在 $W - \Delta$ 。内最大值原理成立。应用这一原理得到

$$s_1(u_\rho) \leqslant s_r(u_\rho)$$
.

结合这两个不等式,得到

$$s_1(u_\rho) \leqslant \frac{2q(r) + \frac{2}{r}}{1 - q(r)}.$$

注意到 $q(r) = \frac{4}{\pi} \operatorname{arctg} r$, 当 $r \to 0$ 时 $q(r) \to 0$ 。取定 $r_0 < 1$,则有

$$s_1(u_\rho) \leqslant c = \frac{2q(r_0) + \frac{2}{r_0}}{1 - q(r_0)}.$$

将此式代入(6.1)式后得到

$$s_r \left[u_\rho - \operatorname{Re} \frac{1}{z} \right] \leqslant (c+2)q(r),$$
 (6.3)

其中 c 是与 c 无关的常数。

再根据引理 6.1, 我们有

$$\frac{\partial}{\partial r} \int_{0}^{2\pi} u_{\rho}(re^{i\theta})d\theta = \int_{0}^{2\pi} \frac{\partial u_{\rho}(re^{i\theta})}{\partial r} d\theta = 0,$$

因此,对于 p < r < 1, 积分平均值

$$\int_0^{2\pi} u_o(re^{i\theta})d\theta = \sharp \mathfrak{B}.$$

当 $r \to \rho$ 时, 注意到 $u_{\rho}(\rho e^{i\theta})$ — Re $\frac{1}{\rho e^{i\theta}}$, 我们有

$$\int_0^{2\pi} u_\rho(re^{i\theta})d\theta = \int_0^{2\pi} \operatorname{Re} \frac{1}{\rho e^{i\theta}} d\theta = 0.$$

于是,对于 $\rho < r < 1$,有

$$\int_0^{2\pi} \left[u_{\rho}(re^{i\theta}) - \operatorname{Re} \frac{1}{re^{i\theta}} \right] d\theta = 0.$$

由此推出: $u_p - \text{Re} \frac{1}{z(p)}$ 在 |z(p)| = r 上的最大值大于 0,最小值小于 0。由 (6.3) 式得到

$$\max_{|z|=r} \left| u_{\rho} - \operatorname{Re} \frac{1}{z(\rho)} \right| \leq (c+2)q(r). \tag{6.4}$$

现取序列 ρ_n , $\rho_n < 1$, $\rho_n > \rho_{n+1}$, $\rho_n \to 0$, 作对应的 μ_{ρ_n} , 由 (6.4) 式, 当 ρ_n , $\rho_n < r$ 时, 总有

$$\max_{|z|=r} |u_{\rho_n}| \le (c+2)q(r) + \frac{1}{r}, \qquad (6.5)$$

$$\max_{|z|=r} |u_{\rho_m} - \mu_{\rho_n}| \le 2(c+2)q(r).$$

在 $W - \Delta$, 内应用极大值原理,则在 $W - \Delta$, 上一致地有

$$|u_{\rho_n}| \leqslant (c+2)q(r) + \frac{1}{r},$$

$$|u_{\rho_m}-\mu_{\rho_n}|\leqslant 2(c+2)q(r).$$

由于当 $r \to 0$ 时 $q(r) \to 0$,因此调和函数序列 $\{u_{\rho_n}\}$ 在 $W - \Delta_r$ 上是 Cauchy 序列。 于是在 $W - \{p_0\}$ 上存在一个 调 和 函 数 $\mu(p_1, p_0)$,使得在任何 $W - \bar{\Delta}_r(0 < r < 1)$ 内一致地有

$$\lim_{n\to\infty}u_{\rho_n}=u_{\bullet}$$

并且由(6.4)式得到

$$\max_{|x|=r} \left| u - \operatorname{Re} \frac{1}{z(p)} \right| \leq (c+2)q(r).$$

这就说明 $u - \operatorname{Re} \frac{1}{z(p)}$ 可以调和开拓到 p_0 点,成为 Δ_1 内的调和函数,且当 $p \to p_0$ 时 $u - \operatorname{Re} \frac{1}{z(p)} \to 0$ 。 另外,由 (6.5) 式得到,对任意 Δ_r ,在 $W - \overline{\Delta}$,内

$$|u| \leqslant (c+2)q(r) + \frac{1}{r}.$$

即"是有界的调和函数、定理全部证完。

§7 单值化定理及其证明

定理(单值化定理), 任何单连通 Riemann 曲面, 共形等价于单位圆,或复平面,或 Riemann 球面。

首先,设 Δ , C和 \bar{C} 分别表示单位圆、复平面和 Riemann 球面,则这三个典型域之间不能互相共形等价。 这是因为 \bar{C} 是紧的, \bar{C} 不共形等价于 C 和 Δ . 由 Liouville 定理,C 不共形等价于 Δ , 否则映照函数将是常数。

定理将分三种类型证之.

单连通的双曲型 Riemann 曲面共形等价于 A.

证明. 设W为单连通双曲型 Riemann 曲面,取定 $p_0 \in W$,及 p_0 的局部参数邻域内的局部参数 z = z(p), $z(p_0) = 0$. 由假设存在 Green 函数 $g(p, p_0)$. 首先我们用第三章 § 5 中的关于单连通 Riemann 曲面的连贯性定理,构造W上的全纯函数 $f(p, p_0)$,使得 $|f(p, p_0)| = e^{-g(p_0)}$.

对任意 $p \in W$, $p \neq p_0$, 取以 p 为心的局部参数圆 U_a , $g(p,p_0)$ 在 U_a 内具有调和共轭 h_a , h_a 确定到相差一个常数,作 U_a 内的全纯函数

$$f_{\alpha} = e^{-(g+ih_{\alpha})}.$$

对于 $p_0 \in W$,存在以 p_0 为心的局部参数 圆 U_{a_0} ,在局部参数 z=z(p) 下

$$g(p, p_0) + \log |z(p)|$$

在 U_{an} 内调和,设其调和共轭为 h_{an} , 作 U_{an} 内的全纯函数 $f_{an}(p) = e^{-[g(p,p_0)+\log\log(p)]+ih_{an}(p)]+\log s(p)}.$

这样一来,对任意 $p \in W$,存在一族 $\{(U_a, f_a)\}$, $\{U_a\}$ 是W的开覆盖,当 $U_a \cap U_\beta \neq \emptyset$ 时,对任意 f_a , f_a 有 $\{f_a/f_\beta\} \equiv 1$. 因此在 $U_a \cap U_\beta$ 内, f_a 与 f_a 或者恒等, 或者相差一个模为 1 的常数 因子 $e^{i\theta}$. 于是,如果 $U_a \cap U_\beta \neq \emptyset$,则在 $U_a \cap U_\beta$ 的分支内,对于给定的 f_a ,一定存在 f_a ,使得在 $U_a \cap U_B$ 内有 $f_a = f_B$,由单连

通 Riemann 曲面的连贯性定理,W上存在(单值)全纯函数 $f(p, p_0)$,使得 $f(p, p_0)|U_a = f_a$,并且

$$|f(p, p_0)| = e^{-g(p,p_0)} < 1.$$

在 p_0 的局部参数邻域内,在局部参数 z = z(p) 下,

$$f(p, p_0) = z(p)e^{-\lceil g(p,p_0) + \log |x(p)| + ih_{\alpha_0} \rfloor},$$

f(p, p₀) 在 p₀ 具有唯一的单阶零点。

现在证明, $f(p_1, p_0)$ 是一一映照。即要证明, 对任意 $p_1 \neq p_0$, 当 $p \neq p_1$ 时 $f(p_1, p_0) \neq f(p_1, p_0)$.

注意到 $|f(p, p_0)| < 1$, 因此

$$F(p, p_1) = \frac{f(p, p_0) - f(p_1, p_0)}{1 - f(p_1, p_0)} f(p, p_0)$$

是W上的全纯函数, $F(p_1, p_1) = 0$, $F(p_0, p_1) = -f(p_1, p_0)$ 。我们要证明,当且仅当 $p = p_1$ 时 $F(p_1, p_1) = 0$ 。为此,对于 Green 函数 $g(p_1, p_1)$,设对应构造的全纯函数为 $f(p_1, p_1)$,则

$$|f(p, p_1)| = e^{-g(p_1p_1)}.$$

先证明 $|F(p_0, p_1)| = |f(p_0, p_1)|$. 令

$$U(p, p_1) = \log \frac{1}{|F(p, p_1)|},$$

则由 Green 函数的极小性质(定理 4.1),得到

$$g(p, p_1) \leqslant \log \frac{1}{|F(p, p_0)|}.$$

由这不等式便得到

$$|F(p, p_1)| \leq |f(p, p_1)|.$$

以 $p = p_0$ 代人后, 并注意到 $F(p_0, p_1) = -f(p_1, p_0)$, 我们得到

$$|f(p_1, p_0)| \leq |f(p_0, p_1)|$$
.

交换 內 和 內 的位置,类似地有

$$|f(p_0, p_1)| \leq |f(p_1, p_0)|$$

总之便有

$$|f(p_1, p_0)| - |f(p_0, p_1)|$$

这就得到

$$|F(p_0, p_1)| - |f(p_0, p_1)|$$

这一等式说明: Green 函数具有对称性,即

$$g(p_1, p_0) = g(p_0, p_1).$$

考虑全纯函数 $F(p_1, p_1)/f(p_1, p_1)$, 根据以上讨论,有

$$\left|\frac{F(p, p_1)}{f(p, p_1)}\right| \leq 1, \left|\frac{F(p_0, p_1)}{f(p_0, p_1)}\right| = 1.$$

因此,根据全纯函数的极大模定理, $|F(p, p_1)| = |f(p, p_1)|$ 。当 且仅当 $p = p_1$ 时 $F(p, p_1) = 0$ 。因此当且仅当 $p = p_1$ 时

$$f(p, p_0) - f(p_1, p_0) = 0$$

这就证明了映照 $f(p, p_0)$ 是一一的。

最后证明,映照 $w = f(p_1, p_2)$ 把W映照到单位圆

$$\Delta = \{\omega : |\omega| < 1\}.$$

我们知道,映照 $w = f(p, p_0)$ 把W映照为 Δ 内的单连通域 W_1 . 由 Green 函数 $g(p, p_0)$ 的共形不变性,在映照 $w = f(p, p_0)$ 下, W_1 以 0 为极点的 Green 函数为 $g_1(w, 0) = \log \frac{1}{|w|}$. 与 Δ 的极点在 0 的 Green 函数相同,因此由定理 5.3 的推论, $W_1 = \Delta$ 。即 $w = f(p, p_0)$ 把W——解析的映照到 Δ 上,W共形同胚于 Δ 。

单连通抛物型 Riemann 曲面共形等价于 C.

证明. 设 W 为单连通抛物型 Riemann 曲面,由定理 6.3,对 固定的 $p_0 \in W$,取以 p_0 为心的局部参数圆 U_{a_0} ,及局部参数 z=z(p), $z(p_0)=0$,则在 $W=\{p_0\}$ 上存在调和函数 $U(p,p_0)$, $U(p,p_0)$ 在 p_0 的局部参数圆外有界,在 U_{a_0} 内 $U(p,p_0)=Re\frac{1}{z(p)}$ 调和,且当 $p\to p_0$ 时 $U(p,p_0)=Re\frac{1}{z(p)}\to 0$.

在 U_{a_0} 内,设 $U(p, p_0)$ 一 Re $\frac{1}{z(p)}$ 的调和共轭 为 h_{a_0} ,作 U_{a_0} — $\{p_0\}$ 内的全纯函数

$$f_{a_0} = \left[U(p, p_0) - \text{Re} \, \frac{1}{z(p)} + i h_{a_0}(p) \, \right] + \frac{1}{z}.$$

 f_{a_0} 在 p_0 具有一阶极点,其中 $h_{a_0}(p_0) = 0$.

类似于双曲型的证明,利用连贯性定理,在 $W - \{p_0\}$ 上存在唯一的全纯函数 $f(p, p_0)$,使 得 $Ref = U(p, p_0)$ 在 p_0 具 有唯一单阶极点,在局部参数圆 U_{x_0} 内,在局部参数 z = z(p) 下,

$$f(p, p_0) = \frac{1}{z} + az + \cdots,$$

 $Ref - U(p, p_0)$ 在 p_0 的参数圆外有界.

现在我们要证明,f 在 p_0 的参数圆外有界。把 p_0 的局部参数圆内的局部参数 z(p) 换为 -iz(p),则在 p_0 的局部参数圆 U_{a_0} 内, $U(p,p_0)$ 一 Re $\frac{i}{z(p)}$ 是调和函数,且当 $p \to p_0$ 时,

$$U(p, p_0) - \operatorname{Re} \frac{i}{z(p)} \rightarrow 0$$

作它的调和共轭 $\tilde{\lambda}_{\alpha_0}$, 使得 $\tilde{\lambda}_{\alpha_0}(\rho_0)=0$. 定义

$$\tilde{f}_a(p) = \left[U(p, p_0) - \operatorname{Re}\frac{i}{z(p)} + i\tilde{h}_{a_0}(p)\right] + \frac{i}{z(p)},$$

同样我们可得到全纯 函 数 $f(p, p_0)$, 使得 $Re \hat{f} = U(p, p_0)$, 在 p_0 具有唯一极点,且有展开式

$$\tilde{f}(p, p_0) = \frac{i}{z} + pz + \cdots,$$

7 是唯一的, $Ref = U(p_1, p_0)$ 在 p_0 的参数圆外有界。

我们首先证明 $\hat{f} = if$ 。 因此, Re f 及 $Im J = -Re \hat{f}$ 和 f 在 p_0 的参数邻域外有界。

由于 $U(p, p_0)$ 在局部参数圆 $\Delta_p = \{p : |z(p)| < \rho\}$ 外有界,设在 Δ_p 外有 Ref < M, Ref < M. 这时在 Δ_p 内一定存在一点 $p_1 \neq p_0$, 使得 Ref $(p_1, p_0) > M$, Ref $(p_1, p_0) > M$. p_1 可取在 $\arg z = \frac{\pi}{4}$ 上且充分接近于 0 点. 这样,对 Δ_p 外任何点 p_1 都有 $f(p_1, p_0) \neq f(p_1, p_0)$. 在 $\partial \Delta_p$ 上

$$Re[f(p_1, p_0) - f(p_1, p_0)] < 0$$

根据幅角原理,在 Δ_p 内 $f(p_1, p_0)$ 一 $f(p_1, p_0)$ 的零点个数等于极点数 1, $f(p_1, p_0)$ 一 $f(p_1, p_0)$ 仅以 p_1 为单阶零点。 同 理, $f(p_1, p_0)$ 也仅以 p_1 为单阶零点。 在局 部 参 数 z = z(p) 下,设 $z_1 = z(p_1)$,作函数

$$F(p, p_1) = \frac{f(p, p_0)}{f(p, p_0) - f(p_1, p_0)}$$

$$= \frac{A}{z - z_1} + B + C(z - z_1) + \cdots,$$

$$\tilde{F}(p, p_1) = \frac{\tilde{f}(p, p_0)}{\tilde{f}(p, p_0) - \tilde{f}(p_1, p_0)}$$

$$= \frac{\tilde{A}}{z - z_1} + \tilde{B} + \tilde{C}(z - z_1) + \cdots.$$

 $F(p, p_1)$ 和 $\tilde{F}(p, p_1)$ 仅以 p_1 为单阶极点,在 Δ_p 外,由于 $|f(p, p_0) - f(p_1, p_0)| > \text{Re } f(p_1, p_0) - \text{Re } f(p_1, p_0)$ $> \text{Re } f(p_1, p_0) - M > 0$,

因此 F 是有界的。同理,F 也是有界的。这时 $\tilde{A}F - A\tilde{F}$ 一定是 W 上的有界全纯函数,因而是一个常数。 代入 F 与 \tilde{F} 的表示式后,一定存在一个线分式变换 s,使得 $\tilde{f} = s(t)$,即

$$\tilde{f} = \frac{\alpha \dot{f} + \beta}{\gamma \dot{f} + \delta}.$$

由于当 $p - p_0$ 时, $f = \tilde{f} = \infty$,因此 $\tilde{f} = \alpha_1 f + \beta_1$ 。 再用 f, \tilde{f} 在 p_0 点的展开式代入,便得到 $\tilde{f} = if$.

总之,对任何给定的 p_0 ,一定存在亚纯函数 $f(p_1, p_0)$,仅以 p_0 为单阶极点,留数为 1,并且 $f(p_1, p_0)$ 在 p_0 的局部参数邻域外 有界。 W是抛物型的,这样的函数 $f(p_1, p_0)$ 唯一确定到附加一个常数。

现在证明,对给定的 $f(p, p_0)$, 存在以 p_0 为心的参数圆 Δ_0 , 使得对于任意 $p_1 \in \Delta_0$ 及对应的 $f(p, p_1)$, 总存在线分式变换 s, 使得 $f(p, p_1) = s(f(p, p_0))$.

事实上,取以 p_0 为心的局部参数圆 Δ ,使得在 Δ 外有 $|t(p_1,p_0)| \leq M$.

$$f(p, p_0) - f(p_1, p_0)$$

的零点个数等于极点个数 1, 即以 p₁ 为单阶零点, 因此函数

$$F(p, p_1) = \frac{f(p, p_0)}{f(p, p_0) - f(p_1, p_0)}$$

在W上亚纯,仅以 p_1 为单阶极点,且在 p_1 的局部参数邻域外有界。设 P 在 p_1 的留数为 A,则 $\frac{F(p_1,p_1)}{A}$ — $f(p_1,p_1)$ 是W上的有界全纯函数,因而是常数、于是,我们有线性表示式

$$f(p, p_1) = \frac{F(p, p_1)}{A} + B$$

代人F的表示式后,则得到线分式变换s,使得

$$f(p, p_1) = s(f(p, p_0)).$$

我们还可证明,给定 $f(p, p_0)$,对任意 $p_1 \in W$ 及对应的 $f(p, p_1)$,存在线分式变换 s,使得 $f(p, p_1) - s(f(p, p_0))$.

因为对任意 $p_i \in W$,存在连接 p_o 到 p_1 的路径 r,在 r 上取一串点 $p_0 = q_0$, q_1 ,… $q_n = p_1$,使得对于 $i = 1, 2, …, n, q_i$ 在 q_{i-1} 的局部参数圆内,且存在线分式变换 s_i ,使得

$$f(p, q_i) = s_i(f(p, q_{i-1})),$$

取ょーょ。・・・・・。」,则有

$$f(p, p_1) - s(f(p, p_0)).$$

现在我们能够证明, $w = f(p, p_0)$ 是一一映照。 对任意 $p_1 \in W$,我们要证明, $f(p, p_0) = f(p_1, p_0)$ 当且仅当 $p = p_1$ 。如果 $f(p_1, p_0) = f(p_1, p_0)$,则存在线分式变换 $f(p_1, p_0)$

 $f(p, p_1) = s(f(p, p_0)) = s(f(p_1, p_0)) - f(p_1, p_1) - \infty$, 而 p_1 是 $f(p_1, p_1)$ 的唯一的单阶 极点,所以 $p - p_1$. 又如果 $p - p_1$,则有 $f(p_1, p_0) - f(p_1, p_0)$.

总之, $w = f(p, p_0)$ 把W 共形映照到 $\overline{\mathbb{C}}$ 内的单连 通 域 G. G 的边界不能多于两点,否则G 和W 是双曲型的、因此

$$G = \bar{\mathbf{C}} - \{\boldsymbol{w}_0\},\,$$

经一共形映照后,G 共形等价于 C。因而,单连通抛物型 Riemann 曲面W 共形等价于 C,这就是所要证的结论。

单连通紧 Riemann 曲面共形等价于 C.

对单连通紧 Riemann 曲面 W,完全同于 抛 物 型 Riemann 曲面的情况,构造 $f(p, p_0)$, $w = f(p, p_0)$ 把W 共形映照为 $\bar{\mathbb{C}}$ 内的单连通域 G. 但这时 G 是紧的,因此只有 $G = \bar{\mathbb{C}}$. 即W 共形等价于 $\bar{\mathbb{C}}$.

至此定理证完。 这定理称为 Klein, Poincaré 和 Koebe 的一般单值化定理。

对任何 Riemann 曲面 W,它的万有覆盖曲面 (\hat{W}, π) , \hat{W} 总是单连通的,因此存在共形映照 $f: \hat{W} \to G$,G 是三种典型域 \bar{C} ,C 和 Δ 之一。 如果 $\pi \circ f^{-1}: G \to W$ 作为投影映照,则 $(G, \pi \circ f^{-1})$ 是W的万有覆盖曲面。 因此我们总可以假定W的万有覆盖曲面是 G(G) 为 \bar{C} ,C 或 Δ),投影映照为 π ,即 (G, π) 是W的万有覆盖曲面, π 是G到W上的局部一一的解析映照。

现设 $g \in W$ 上的多值解析函数,则 $g \circ \pi$ 是 G上的多值解析函数,由于 G是单连通域,则由单连通域解析开拓定理, $g \circ \pi$ 在 G上总是一些单值分支组成。选取分支后, $g \circ \pi$ 就是单值解析函数。这过程说明,W上的多值解析函数,总可以通过万有覆盖曲面,变为平面域 G内的单值解析函数。

§ 8 用万有覆盖曲面及万有覆盖变换群 构造 Riemann 曲面

任何 Riemann 曲面W的万有覆盖曲面 (\hat{W}, π) 是 单 连 通 Riemann 曲面,其中投影映照 $\pi: \hat{W} \to W$ 是局部拓扑的解析映照.

根据单值化定理, \vec{v} 共形等价于三种典型 域 \vec{C} 、 \vec{C} 和 $\vec{\Delta}$ 之 一。因此以后我们总假定 $\vec{v} = \vec{C}$, \vec{C} 或单位圆 $\vec{\Delta}$.

设W的万有覆盖变换群为了,

 $\Gamma = \{A : A \in \mathcal{P} \text{ 的共形自映照, } \pi \circ A = \pi\}.$

万有覆盖变换A都是线分式变换, Γ 是线分式变换组成的群。

根据第三章定理 7.2, 对任意 $p_0 \in W$,

$$\Gamma \cong \pi_1(W, p_0).$$

即W的基本群与万有覆盖变换 群 同 构。 $\pi_1(W, p_0)$ 的 元 素 与 $\pi^{-1}(p_0)$ 上的点——对应。 $\pi^{-1}(p_0)$ 是 $W - \overline{C}$, C 或 Δ 内的孤立点集,因此 $\pi^{-1}(p_0)$ 最多由可数多个点组成, Γ 和 $\pi_1(W, p_0)$ 是 可数群。设

$$\Gamma = \{A_0, A_1, A_2, \cdots, A_i, \cdots\},\$$

其中 $A_0 = I$, I 表示恒等变换。

万有覆盖变换群 Γ 有下列两个重要性质:

 $\Gamma 1$. 对任意 $A \in \Gamma$,如果 $A \neq I$,则A在 \hat{V} 内没有 不 动 点。

根据这一性质,对任意 $p_0 \in W$,由于 $\pi^{-1}(p_0)$ 上任意 两 个 点,唯一存在一个 $A \in \Gamma$ 把其中一点变为另一点,因此对 任 意 $z_0 \in \pi^{-1}(p_0)$,有

$$\pi^{-1}(p_0) = \{z_0, z_1 = A_1(z_0), \cdots, z_i = A_i(z_0), \cdots\}.$$

在 \hat{W} 上对于任意 z_0 , 令 $\Gamma_{z_0} = \{A_i(z_0): i = 0, 1, 2, \cdots\}$ 并称 之为一个轨道。在这种表示下,对任意 $z_0 \in \pi^{-1}(p_0)$ 有

$$\pi^{-1}(p_0) = \Gamma_{x_0}$$

根据覆盖的正则性,回忆到对任意 $A_i \in \Gamma$,有 $\pi \circ A_i = \pi$,我们有关于 Γ 在 \hat{V} 的间断性的性质:

 $\Gamma 2.$ 设 $z_0 \in \hat{W}$, $\Gamma_{z_0} = \{z_i = A_i(z_0): i = 0, 1, 2, \cdots\}$, 如果 $z_0 \in \pi^{-1}(p_0)$,则W上存在以 p_0 为心的充分小的局部参数圆 V_{p_0} , \hat{W} 上存在以 z_i 为心的圆 V_{z_i} ,使得 $\pi | V_{z_i}: V_{z_i} \to V_{p_0}$ 是一一 解析映照,并且当 $i \neq j$ 时 $V_{z_i} \cap V_{z_i} = \emptyset$,对 $i = 0, 1, 2, \cdots$ 有 $A_i(V_{z_0}) = V_{z_{i0}}$

现在我们定义轨道空间 \hat{W}/Γ , 建 立 复 结 构 使 \hat{W}/Γ 成 为 Riemann 曲面,证明 \hat{W}/Γ 共形等价于 W,即

$$\hat{W}/\Gamma = W$$
.

设 $z \in \hat{\mathbf{V}}$, 執道 Γ_z 是一点集,利用轨道定义一个等价关系:对任意 $z_1, z_2 \in \hat{\mathbf{V}}$, z_1 等价于 z_2 , 记为 $z_1 \sim z_2$, 当且仅当 z_1 和 z_2 在同一轨道 Γ_z . 利用这一等价关系,把 $\hat{\mathbf{V}}$ 的点分为等价类,对任意 $z \in \hat{\mathbf{V}}$, z 所在的等价类就是 Γ_z . 记之为 $[z] = \Gamma_z$. 定义 $\hat{\mathbf{V}}/\Gamma = \{[z] = \Gamma_z: z \in \hat{\mathbf{V}}\}$,

及自然投影映照

$$\pi^*: \hat{W} \to \hat{W}/\Gamma, \ \pi^*(z) = [z] = \Gamma_{z}$$

对任意

 $[z_0] \in \hat{W}/\Gamma$, $[z_0] = \Gamma_{s_0} = \{z_i = A_i(z_0) : i = 0, 1, 2, \cdots\}$, 设 $z_0 \in \pi^{-1}(p_0)$ 。 根据性质 Γ^2 , 对任何满足 Γ^2 条件的以 z_i 为心的圆 V_{s_0} 及以 p_0 为心的局部参数圆 V_{p_0} ,定义 $[z_0]$ 的局部参数邻域

$$V_{(z_0)} = \{ \{z\} : z \in V_{z_i} \},$$

则 \mathcal{P}/Γ 成为拓扑空间,而且是 Hausdorff 空间。

 $\pi^*: V_{*,} \to V_{(*,)}$ 是一一对应,且 π^* 把邻域——地映为邻域,因此 π^* 是局部拓扑映照。 $\hat{W}/\Gamma = \pi^*(\hat{W})$ 是连通的。

定义 \hat{V}/Γ 的复结构,局部参数邻域取为 $V_{[*_0]}$,局部参数映照取为 $(\pi^*|V_{*_i})^{-1}:V_{[*_0]}\to V_{*_i}$ 这样 \hat{V}/Γ 成为 Riemann曲面,自然投影映照是局部一一的解析映照。

现在,根据投影映照 $\pi: \hat{V} \to W$, $\pi^*: \hat{V} \to \hat{W}/\Gamma$, 定义映照 $\pi \circ \pi^{*^{-1}}: \hat{V}/\Gamma \to W$, $[z_0] = \Gamma_{*_0} \longmapsto \pi([z_0]) = \rho_0$,

其中 $p_0 = \pi(z_0)$ 。 这是一一映照,而且是解析映照,因为在局部 参数邻域 $V_{(z_0)}$ 内及局部参数映照 $\pi^{*^{-1}}$ 下,及在对应的局部参数 邻域 V_{z_0} 内及局部参数映照 π^{-1} 下,

$$\pi^{-1}\circ(\pi\circ\pi^{*-1})\circ\pi^{*}:V_{\pi_{0}}\to V_{\pi_{0}}$$

是恒等映照,因而是解析的。 这就说明, $\pi \circ \pi *^{-1}$: $\hat{W}/\Gamma \to W$ 是共形映照, \hat{W}/Γ 共形等价于 W,记为 $\hat{W}/\Gamma = W$.

Riemann 曲面按万有覆盖曲面分类如下:

Riemann 曲面称为双曲型的,如果它的万有覆盖曲面是 Δ ,Riemann 曲面称为抛物型的,如果它的万有覆盖曲面是 C。如果万有覆盖曲面是 \overline{C} ,我们则称之为椭圆型的。

我们后面将按 Riemann 曲面的类型及覆盖变换群, 分别讨论其具体构造。

根据 $W = \hat{W}/\Gamma$ 可直接推出,Riemann 曲面具有 可数 基,即W具有可数多个参数圆组成的开覆盖,由此可以构造W的一个三角剖分,即 Riemann 曲面的可三角剖分性,这就是 Radó 定理.

映照在万有覆盖曲面的提升,作法如下:

我们只讨论双曲型 Riemann 曲面的情况,设 W 和 W,为 Riemann 曲面,万有覆盖曲面分别为 (Δ,π) 和 (Δ,π_l) ,覆盖变换群分别为 Γ 和 Γ 。设 $f:W\to W$ 。为解析映照,我们要提升 f 为解析映照 $f:\Delta\to\Delta$ 。

取定 p_0 和 $q_0 = f(p_0)$, $z_0 \in \pi^{-1}(p_0)$ 和 $u_0 = \pi^{-1}(q_0)$, \tilde{f} 定义 如下: 对任意 $z \in \Delta$, 设 \tilde{f} 为连接 z_0 到 z 的路径, 经映照 π 后, 对应的 $\tau = \pi(\tilde{f})$ 为连接 p_0 到 p 的路径, 再经映照 f 后, 对应的 $\sigma = f(\tau)$ 为连接 q_0 到 q 的路径, 最后以 z_1 为起点提升 σ 为 $\tilde{\sigma}$, $\tilde{\sigma}$ 为 连接 u_0 到 u 的路径. 这样, $z \mapsto u$ 定义一个映照 $\tilde{f}: \Delta \to \Delta$. 不难验证 \tilde{f} 的定义是合理的, 且 \tilde{f} 也是解析函数, $\tilde{f}(z_0) = u_0$.

f 称为 f 的提升。它具有性质 $f:\pi^{-1}(p) \to \pi^{-1}(q), q = f(p)$ 。

如果 $f: W \to W_1$ 是共形映照,则 f 的提 升 $\hat{f}: \Delta \to \Delta$ 也是共形映照,即线分式变换。 这时对任意 $A \in \Gamma$, $\hat{f} \circ A \circ \hat{f}^{-1} \in \Gamma_1$, 且有 $\Gamma_1 = \hat{f} \Gamma \hat{f}^{-1}$,即 Γ_1 和 Γ 是共轭的。

共形等价的 Riemann 曲面,其万有覆盖变换群是共轭的. 反之,如果万有覆盖变换群共轭,则 Riemann 曲面共形等价.

对于双曲型 Riemann 曲面 W,其万有覆盖 $\pi: \Delta \to W$,有时也用上半平面 U 代替 Δ 。 作共形映照 $g: U \to \Delta$,

رمعة وكان

$$g(z) = \frac{z-i}{z+i},$$

则 $\pi \circ g: U \to W$ 也是W的万有覆盖。这两个万有覆盖曲面是等价的。如果 $\pi: \Delta \to W$ 的万有覆盖变换群是 Γ ,则 $\pi \circ g: U \to W$ 的万有覆盖变换群为共轭群

$$g^{-1}\Gamma g = \{g^{-1}Ag : A \in \Gamma\}_{\bullet}$$

§ 9 线分式变换的类型与不动点

万有覆盖变换是 \bar{C} , C 或单位圆 Δ 的共形自映照,都是线分式变换,覆盖变换群则是线分式变换群的子群。

线分式变换 $A: \overline{\mathbb{C}} \to \overline{\mathbb{C}}$ 的一般形式为

$$A(z) = \frac{az+b}{cz+d}, \ ad-bc \neq 0,$$

其中 $a, b, c, d \in \mathbb{C}$. 我们通常总规范化 A, 使得 ad - bc = 1. 矩阵

$$A = \begin{bmatrix} a, & b \\ c & d \end{bmatrix}$$

称为线分式变换 Λ 的矩阵表示,这时 $\Lambda \in SL(2, \mathbb{C})$,我们将用同一个 Λ 表示线分式变换及其矩阵表示。

所有线分式变换组成一个群,用 $\mu(\overline{\mathbb{C}})$ 表示之,其中乘法定义为 $AB = A \circ B$,逆元素 A^{-1} 即为 A 的逆变换, I 表示恒等变换。

线分式变换 A 与 B 称为**共轭的**,如果存在线分式变换 M,使得 $B = MAM^{-1}$ 。 这样的共轭定义一个等价关系,利用共轭关系,我们可以把线分式变换分成共轭类。

 $A = B = MAM^{-1}$ 具有一个重要性质: 设 集 E, $F \subset \overline{\mathbb{C}}$, A(E) = F, 则 BM(E) = BM(F)。 这常用于简化线分式变换的几何性质的研究。

线分式变换的类型

一般的线分式变换 $A \in \mu(\overline{\mathbb{C}})$ 最多有两个不动点。不动点是方程

$$A(z) = \frac{az+b}{cz+d} = z \quad (ad-bc-1)$$

的根, 为解这方程,把它化为二次方程

$$cz^2-(a-d)z-b=0.$$

这方程的判别式(也称为A的判别式)是

$$D = (a-d)^2 + 4bc = (a+d)^2 - 4(ad-bc)$$
$$= (a+d)^2 - 4.$$

当且仅当D=0时A仅有一个不动点,其中 $c \approx 0$ 时,不动点 $z=\frac{a-d}{2c}$; 当c=0时,不动点 $z=\infty$.

当且仅当D = 0时A有两个不动点,其中c = 0时不动点为

$$z_1, z_2 = \frac{a - d \pm \sqrt{D}}{2c}.$$

当 c = 0 时,两个不动点分别是 $z_1 = -\frac{b}{a-d}$ 和 $z_2 = \infty$.

线分式变换A称为**抛物型的**,如果A只有一个不动点。

她物型变换的典型式: _作抛物型变换 A 的共轭, 当不动点 $z_1 \neq \infty$ 时,取线分式变换 M_0 ,

$$M_0(z)=\frac{1}{z-z_1},$$

当 $z_1 \rightarrow \infty$ 时取 $M_0 \rightarrow I$,则A共轭于 $T \rightarrow M_0 A M_0^{-1}$,T 仅以 无穷为不动点,T必具有形式

$$T(z) = z + b', b' \neq 0$$

再取

$$M_1(z)=\frac{z}{b'},$$

则T共轭于 $T_1 = M_1 T M_1^{-1}$,于是A共轭于 $T_1 = M_2 A M_1^{-1}$, $M = M_1 M_0$, T_1 具有典型式

$$T_1(z) = z + 1.$$

典型的抛物型变换 $T_1(x) = x + 1$ 是一个平行移动。 T_1 把平行于 x 轴的直线(应看作通过不动点 ∞ 的圆周) 变为自身,这种直线是 T_1 的不动直线。 所有不动直线组成不动直线族。 与所有不动直线正交的直线组成不动直线族的正交族, T_1 把正交族中的直线变为族中的另一直线。 参看图 5.2,其中实直线是不动直线。

对于一般抛物型变换 A, 不动圆周族是相互切于不动点的圆周族。相互切于不动点,且与不动圆周族正交的圆周,组成不动圆周族的正交族。A把正交族中的圆周变为族中另一圆周。不动圆周围成的圆称为抛物型变换的不动圆。参看图 5.3,其中实圆周是不动圆周。

如果线分式变换 A具有两个不动点,则 A是非抛物型的。这时判别式 $D=(a+d)^2-4 \approx 0$. 设 A的不动点为 z_1,z_2 ,作变换 M,

$$M(z) = \frac{z-z_1}{z-z_1}, z_2 \neq \infty, M(z) = z-z_1, z_2 = \infty;$$

则 A 共轭于 $T_K = MAM^{-1}$, T_K 以 0 和 ∞ 为不动点。因此 T_K 有表示式

$$T_K(z) = Kz, K = \lambda e^{i\theta}, K \neq 0, 1,$$

A称为**椭圆型的,**如果 $K = e^{i\theta}$ 。 A 共轭于典型变换 T_{θ} ,

$$T_{\theta}(z) = e^{i\theta}z, \ e^{i\theta} \neq 1.$$

对于 T_{θ} , 以不动点 0 为心的圆周为不动圆周,组成不动圆周族。通过不动点 0 和 ∞ 的直线组成不动圆周族的正交族, T_{θ} 把正交族的圆周变为族中另一圆周。参看图 5.4,其中实圆周是不动圆周。

对一般的椭圆变换 A, 不动圆周包含一不动点在内部,另一不动点在外部,两不动点关于不动圆周对称(反演)。所有不动圆周组成不动圆周族。通过两不动点的圆周组成不动圆周族的正交族。A把正交族中的圆周变为族中另一圆周。不动圆周围成的圆称为椭圆变换的不动圆。参看图 5.5, 其中实圆周是不动圆周。

A称为**双曲型的**,如果 $K=\lambda$, $0<\lambda<\infty$, $\lambda = 1$. A 共轭于典型变换 T_{1} ,

$$T_1(z) = \lambda z$$

再作变换 $M(z) = \frac{1}{z}$, 则 T_1 共轭于 $T_{1/2} = MT_2M^{-1}$. 因此,可在典型变换 T_1 中假定 $0 < \lambda < 1$ 或 $1 < \lambda < \infty$.

对于 T_1 ,通过不动点 0 和 ∞ 的直线是不动直线,组成不动直线族。以不动点 0 为心的圆周组成不动直线族的正交族, T_1 把这族中的圆周变为族中另一圆周。 参看图 5.4,其中虚直线是不动直线。

对一般的双曲型变换 4,通过两不动点的圆周是不动圆周,组

成不动圆周族。与不动圆周族正交的圆周族组成正交族,这族中的圆周包含一个不动点在其内部,另一不动点在其外部,且两不动点关于圆周对称(反演)。 A 把正交族中的圆周变为族中另一圆周。不动圆周围成的圆称为双曲变换的不动圆。参看图 5.5,其中虚圆周是不动圆周。

 Λ 称为**斜映型的**,如果 $T_K = \lambda e^{i\theta} z$, $\lambda \succeq 0$,1, $e^{i\theta} \succeq 1$ 斜映型变换 Λ 没有不动圆。

线分式变换的类型可用变换的迹来判别。

对线分式变换 A,

$$A(z) = \frac{az+b}{cz+d}, \ ad-bc=1,$$

我们定义变换A的w为其矩阵的迹 tr(A):

$$[tr(A)]^2 - (a+d)^2$$

这时,A的判别式 $D = tr^2(A) - 4$.

容易验证,迹是共轭不变量,即

$$[tr(MAM^{-1})]^2 = [tr(A)]^2$$
,

其中M不一定是规范化表示的矩阵。

定理 9.1. 设 A, B 为两个非恒等的线分式变换,则 A 与 B 共 轭,当且仅当

$$\operatorname{tr}^2(A) = \operatorname{tr}^2(B)_*$$

证明,由于迹共轭不变,我们只需证明,如果

$$\operatorname{tr}^2(A) = \operatorname{tr}^2(B),$$

则A共轭于B。我们已经知道,线分式变换共轭于典型变换 T_{K} ,

$$T_1(z) = z + 1, K - 1$$
 (抛物型);

$$T_K(z) = Kz, K \neq 1$$
 (非抛物型).

Tx 的矩阵表示为

$$T_{K} = \begin{bmatrix} \sqrt{K} & 0 \\ 0 & \frac{1}{\sqrt{K}} \end{bmatrix}.$$

因此

$$\operatorname{tr}^{2}(T_{K}) = K + \frac{1}{K} + 2,$$

如果A共轭于 T_K , B 共 轭 于 T_{K_1} , 由于 $\operatorname{tr}^2(A) = \operatorname{tr}^2(B)$, 我们有

$$K + \frac{1}{K} + 2 = K_1 + \frac{1}{K_1} + 2$$

由此推出 $K_1 = K$ 或 $K_1 = \frac{1}{K}$. 我们已经知道,如果取

$$M(z)=\frac{1}{z},$$

则 $T_{VK} = MT_KM^{-1}$,即 T_K 与 T_{VK} 共轭,因而 A 与 B 共轭.定理证完.

根据这一定理我们知道,所有抛物型变换是共轭的,因为由判别式 $D = tr^2(A) - 4 = 0$, $tr^2(A) = 4$.

定理 9.2. 设线分式变换 $A \neq I$, 则

- 1° A 是抛物型的,当且仅当 tr²(A) == 4;
- 2° A 是椭圆型的,当且仅当 0 ≤ tr²(A) < 4;
- 3° A 是双曲型的,当且仅当 $4 < tr^2(A) < \infty$;
- 4° A 是斜驶型的,当且仅当 tr²(A) & [0,∞)。

证明。如果1°--3°成立,则4°是自然成立的。

1°是显然的,我们已经知道, A是抛物型的,当且仅当

$$D = tr^2(A) - 4 = 0$$
.

在定理 9.1 的证明中指出,对非抛物型变换 A 共轭于 $T_K(K + 1)$,并且

$$tr^2(A) = K + \frac{1}{K} + 2,$$

 T_K 与 $T_{\nu K}$ 共轭.

 2° 如果 A 是椭圆型的,则 $K=e^{i\theta}, e^{i\theta} \succeq 1$,因而 $\cos\theta \succeq 1$ 。 这时

$$0 \leqslant \operatorname{tr}^2(A) = 2 + 2\cos\theta < 4,$$

反之,如果 $0 \le \operatorname{tr}^2(A) < 4$,则方程 $\operatorname{tr}^2(T_K) = 2 + 2\cos\theta$ 有解 $K = e^{i\theta}$, $e^{-i\theta}$,根据定理 9.1,A 共轭于 T_K 或 T_{UK} , $K = e^{i\theta}$.因此 A 是椭圆型的。

3° 如果 A是双曲型的,则 $K=\lambda$, $0<\lambda<\infty$, $\lambda \leq 1$.

$$4 < \operatorname{tr}^2(T_K) = \lambda + \frac{1}{\lambda} + 2 < \infty_{\bullet}$$

反之,如果给定 $4 < tr^{2}(T_{K}) < \infty$,则方程

$$\lambda + \frac{1}{2} + 2 = \operatorname{tr}^2(T_K)$$

有解 $\lambda = \frac{1}{\lambda}$, $0 < \lambda < \infty$, $\lambda = 1$. 根据定理 9.1, A 共轭于 T_K 或 $T_{\nu K}$, A 是双曲型的。证完。

§ 10 单位圆内的线分式变换与非欧几何

双曲型 Riemann 曲面的万有覆盖变换群是单位圆内的线分式变换群的子群。

单位圆△到自身的线分式变换,一般形式为

$$w = A(z) = e^{i\alpha} \frac{z - a}{1 - \bar{a}z}, \ a \in \Delta, \ 0 \le \alpha < 2\pi.$$

所有这样的线分式变换组成的群,记之为 $H(\Delta)$,其中乘法定义为: 对任意 A, $B \in H(\Delta)$, $AB = A \circ B$,A 的逆 A^{-1} 即为 A 的逆变换、与 $H(\Delta)$ 共轭同构的有上半平面 U 的线分式变换群

$$H(U) = \left\{ A(z) - \frac{az+b}{cz+d} : a, b, c, d \in \mathbb{R}, ad-bc > 0 \right\}.$$

通过变换 $M:U \to \Delta$

$$M(z)=\frac{z-i}{z+i},$$

H(U) 与 $H(\Delta)$ 共轭, $H(U) = MH(\Delta)M^{-1}$.

 $H(\Delta)$ 和 H(U) 称为**非欧运动群**, Δ 和U 称为**非欧平面**。 我们主要讨论 $H(\Delta)$,通过变换 $M:U \to \Delta$,一切概念都可 搬到 H(U) 和U上。

注意到 Δ 是不动圆, $H(\Delta)$ 具有下列性质:

- 1) H(Δ) 中不包含斜驶型变换;
- 2) $H(\Delta)$ 中的椭圆变换,一个不动点在 Δ 内,一个在 Δ 外;两不动点关于 $\partial \Delta$ 对称(反演);
- 3) $H(\Delta)$ 中的抛物变换,不动点在 $\partial \Delta$ 上,不动圆周在 Δ 内,在不动点内切于 $\partial \Delta$;
- 4) $H(\Delta)$ 中的双曲变换,两不动点在 $\partial \Delta$ 上,不动圆周为通过两不动点的圆周。

现在,引入 Δ 的非欧度量。对任意 $A \in H(\Delta)$, w = A(z), 对任意 $z_0 \in \Delta$ 和 $w_0 = A(z_0)$, 由 A(z) 的一般表示式,我们有

$$\frac{w-w_0}{1-\overline{w}_0w}=e^{ia}\frac{z-z_0}{1-\overline{z}_0z}.$$

等式两边取绝对值后得到

$$\left|\frac{w-w_0}{1-\overline{w}_0w}\right|=\left|\frac{z-z_0}{1-\overline{z}_0z}\right|,$$

令 $z \rightarrow z_0$ 时 $w \rightarrow w_0$, 则得到对 w = A(z) 不变的微分式

$$\frac{|dz|}{1-|z|^2} = \frac{|dA(z)|}{1-|A(z)|^2}.$$

我们引入度量

$$ds = \frac{2|dz|}{1 - |z|^2},$$

并称之为 Δ 的非欧度量或双曲度量,简称 H-度量。 它是对任何变换 $A \in H(\Delta)$ 不变的,即对 $H(\Delta)$ 不变的度量。

通过变换 $M:U\to\Delta$, $\zeta=M(z)$, Δ 的 H-度量变为U 的 H-度量

$$ds = \frac{2|dz|}{1 - |z|^2} = \frac{|d\zeta|}{\operatorname{Im} \zeta}, \ \zeta = M(z) \in U_{\bullet}$$

在 H-度量下,两点间的距离可如下求得:

设 $a, b \in \Delta, \gamma : [0, 1] \rightarrow \Delta 是 \Delta 内以 4 为起点, b 为终点的 110 t$

可微分曲线, $i \rightarrow r(i)$. 则 γ 的 H-长度定义为

$$l(\tau) = \int_0^1 \frac{2|\gamma'(t)|}{1 - |\gamma(t)|^2} dt.$$

a, b 的 H-距离, 记为 [a, b], 定义为

 $[a,b] = \inf\{l(r): r 为 \Delta$ 内连接 a 到 b 的逐段可微的曲线 \}. 由于 l(r) 经 $H(\Delta)$ 中的变换不变,取定 $A \in H(\Delta)$,使得 A(a) = 0, A(b) = r, 0 < r < 1, A(z) 有表示式

$$A(z)=e^{ia}\frac{z-a}{1-\bar{a}z},$$

则经 A变换后,[a, b] = [0, r]。 现在,设 γ 为连接 0 到 γ 的逐 段可微曲线,我们有

$$l(\gamma) = \int_0^1 \frac{2|\gamma'(t)|}{1 - |\gamma(t)|^2} dt \ge \left| \int_0^1 \frac{2\gamma'(t)}{1 - \gamma^2(t)} dt \right|$$

$$= \left| \int_0^1 \frac{2d\gamma(t)}{1 - \gamma^2(t)} \right| = \left| \log \frac{1 + r}{1 - r} \right| \ge \log \frac{1 + r}{1 - r}.$$

如果取 $\gamma(t) = tr, t \in [0, 1]$,即 γ 是连接 0 到 r 的直线段,则上面的等式成立。因此

$$[0, r] = \log \frac{1+r}{1-r}.$$

经 A 变回到 a, b 后,得到

$$[a, b] - \log \frac{1 + |b - a|/|1 - \bar{a}b|}{1 - |b - a|/|1 - \bar{a}b|}.$$

在这一过程中可以看到,连接 a 到 b 的短程线,即测地线,是通过 a, b 而正交于 $\partial \Delta$ 的圆弧在 a 与 b 中间部分,它的 H-长度等于 [a,b].

 \triangle 内正交于 ∂ \triangle 的圆弧称为非**欧直线**,简称 H-**直线**。过两点 $a,b\in \triangle$ 存在唯一的 H-直线。 H-直线在 a 与 b 中间部分称为 H-线段,简记为 H-ab,H-ab 的 H- 长度就等于 $\{a,b\}$.

H-距离具有欧氏距离的性质,同样有三角不等式

$$[z_0, z_1] \leqslant [z_0, z_1] + [z_1, z_2],$$

且等号成立,当且仅当 zo, z,和 z,在同一H-直线上,且 z,在 zo 与

z2 中间。

事实上, 经 $H(\Delta)$ 的变换后, 不妨假定

$$z_0 = 0$$
, $z_1 = r_1(r_1 > 0)$, $z_2 = r_2 e^{i\theta}$.

要证的三角不等式化为

$$\frac{1+|t|}{1-|t|} \leq \frac{1+r_1}{1-r_1} \cdot \frac{1+r_2}{1-r_2},$$

其中

$$t = \frac{r_1 e^{i\theta} - r_1}{1 - r_1 r_2 e^{i\theta}}.$$

我们要求出 当 r_1 和 r_2 固 定 $(0 \le \theta < 2\pi)$ 时 |r| 的 最 大 值. 由于不等式左边是 |r| 的单调增函数,因此,只要对 |r| 的最 大值证明不等式即可。

变换

$$t = t(z) = \frac{z - r_1}{1 - r_1 z}$$

把实轴变为实数,把圆周 $|z| = r_2$ 变为圆心在实轴上的圆周, $-r_2$ 变为一 $\frac{r_2 + r_3}{1 + r_1 r_2}$,它的模是圆周 $|z| = r_2$ 的象的模的最大值。因此当 $|z| = r_2$ 时 |z| 达到最大值

$$|t| = \frac{r_2 + r_1}{1 + r_2 r_1},$$

这时

$$\frac{1+|t|}{1-|t|} = \frac{1+r_1}{1-r_1} \cdot \frac{1+r_2}{1-r_2}.$$

由此即得到三角不等式,而且说明等式成立,当且仅当三点在H-直线上,且 z,在 z,与 z,中间。

有了非欧平面 $\Delta(U)$ 及非欧运动群 $H(\Delta)(H(U))$,我们便可以讨论非欧几何。在非欧几何中,几乎所有欧氏平面几何的概念及结论,除与平行公理有关者外,都可搬到非欧几何中。

在 Δ 平面的非欧几何中,两条H-直线,如果相交,则交于一点。但是过H-直线外一点,则有多于一条的H-直线与原来的H-

直线不相交。

以点 a, b 和 c 为顶点的 H-三角形, 它的三个边为 H- \overline{ab} , H- \overline{bc} 和 H- \overline{ca} , 以 z_0 ($\in \Delta$) 为心, 半径为r的 H-圆周与 H-圆,则 分别是 $\{z: [z, z_0] = r\}$ 与 $\{z: [z, z_0] < r\}$,

H-三角形的面积公式,可求之如下。

设 $E \subset \Delta$ 为可测集,则 $E \in H$ -度量下的H-面积为

H-Area(E) =
$$\iint_{E} \left[\frac{2}{1 - |z|^{2}} \right]^{2} dxdy, \ z = x + iy.$$

如果 $E \subset U$ 或通过变换 $M: U \to \Delta$ 变为U的集,则在U的H-度量下,

$$H-Area(E) = \iint_E \frac{dxdy}{[\operatorname{lm} z]^2}, \ z = x + iy.$$

$$H-Area(abc) = \pi - (\alpha + \beta + \gamma).$$

因此,H-三角形的内角和小于 π 。

证明这一公式时,我们可以假定H-三角形 abc 在U内.

考虑特殊三角形 abc, 其中 $c=\infty$, $\gamma=0$. 经 H(U) 中的变换后,可以假定 a, b 在半圆周 |z|=1 上。参看图 5.6。

ter

图 5.6

图 5.7

我们有面积公式

$$H-\operatorname{Area}(abc) = \int_{cos(\kappa-\mu)}^{cos\theta} \left[\int_{\sqrt{1-x^2}}^{\infty} \frac{dy}{y^2} \right] dx = \pi - (\alpha + \beta),$$

对于一般的 H-三角形 abc, 如果 $c \neq \infty$, 则延 长 边 H-线 段 $ac \otimes \partial U$ 于 d, 经 H-变换把 d 变为 ∞ , 再经 H-变换把 a, b 变到半圆周 |z|-1 上,则 H-三角形 abc 的面积等于两特殊 H-三角形 abd 与 bcd 面积之差(参看图 5.7)。由此便得到 H-三角形的面积公式。

§11 Klein 群与 Riemann 曲面

在这一节中,我们引入 Klein 群的概念,指出如何用 Klein 群构造 Riemann 曲面。

设 Γ 为线分式变换群 $\mu(\bar{C})$ 的子群,对任意 $A \in \Gamma$,我们总假定具有规范化表示式

$$A(z) = \frac{az + b}{cz + d}, \ ad - bc = 1.$$

A的矩阵表示构成 SL(2, C) 的子群,

定义、称 Γ 在 $z_0 \in \overline{\mathbb{C}}$ 是间断的(或不连续的),如果 z_0 的稳定化子群

$$\Gamma_{x_0} = \{A \in \Gamma : A(z_0) = z_0\}$$

是有限的,且存在 zo 的邻域 V 使得

$$A(V) = V$$
, 对任意 $A \in \Gamma_{s_0}$; $A(V) \cap V = \emptyset$, 对任意 $A \in \Gamma - \Gamma_{s_{00}}$

同时称 z。为 Γ 的**间断点**、 Γ 的所有间断点组成的集,记之为 $Q(\Gamma)$ 或 Q。 Q 是开集,且对任意 $A \in \Gamma$,有 A(Q) = Q,即 Q 是 Γ 不变的开集。

令 $A = A(\Gamma) = \overline{C} - Q(\Gamma)$, 并称为 Γ 的极限集。 A 是闭集,且对任意 $A \in \Gamma$,有 $A(\Lambda) = \Lambda$,即 Λ 是 Γ 不变的闭集。

定义. 如果 $Q(\Gamma) \neq \emptyset$, 则 Γ 称为 Klein 群。

附注. Γ 在 z_0 间断,根据定义 Γ_{z_0} 是有限群,且在 V 内间断, V 为 z_0 的邻域, V 是双曲型的。 设 π_0 : $\Delta \to V$ 为万有覆 盖 曲面, $\pi_0(0) = z_0$,对任意 $A \in \Gamma_{z_0}$, A(V) = V,提升 A 为

$$T: \Delta \rightarrow \Delta$$

使 T(0) - 0,

$$T = \pi_0^{-1} \circ A \circ \pi_0$$

所有的提升 T组成一个有限群 Γ_0 。由于 T以 0 为不动点,有表示式 $T(\zeta) = e^{2\pi a i} \zeta$ 。 根据群 Γ_0 的有限性, α 一定是有理数. 设最小的有理数为 $\frac{1}{m}$,则 Γ_0 是由 $T(\zeta) = e^{\frac{2\pi i}{m}} \zeta$ 生成的循环 群. 对于充分小的 r > 0,设 D为 $|\zeta| < r$ 在 π_0 下的拓扑象,则在 D内 $\forall A \in \Gamma_0$ 共轭于有理旋转

$$\pi_0^{-1} \circ A \circ \pi_0 : \zeta \to e^{\frac{2\pi k}{m}}; \zeta, \ k = 0, 1, 2, \cdots, m-1.$$

总之,对于 Γ 在 z_0 的间断性的定义中, V 可换为充分小的共形圆 D, Γ_{z_0} 在 D 内共形共轭于 Δ 的有理旋转生成的循环群。

如果 $\Gamma_{s,o} = \{I\}$,则 z_o 是 Γ 中有理椭圆变换的不 动 点, $\Gamma_{s,o}$ 是有理椭圆变换生成的有限循环群。

周斯性的等价定义. 群 Γ 在 z₀ 是间断的,如果 z₀ 的稳定化子群是有限的,而且存在 z₀ 的一个邻域 V 共形等价于圆

$$D_r(0) = \{|\zeta| < r\},$$

使得对任意 $A \in \Gamma_{so}$, $A \in V$ 内共形共轭于有理旋转

$$\zeta \mapsto e^{\frac{2\pi k}{m}i}\zeta \quad (k=0,1,\cdots,m-1),$$

即对任意 $A \in \Gamma_{so}$, 有交换图表:

$$\begin{array}{c|c}
V & \xrightarrow{A} & V \\
\pi_0 & \downarrow & \downarrow & \downarrow \\
D_r(0) & D_r(0)
\end{array}$$

其中 $\pi_0: V \to D_r(0)$ 是共形映照, $\pi(0) = z_0$,另外 A(V) = V, $\forall A \in \Gamma_{x_0}$;

$$A(V) \cap V = \emptyset, \ \forall A \in \Gamma - \Gamma_{\sigma_0};$$

$$A_1(V) \cap A_2(V) = \emptyset, \ \forall A_1, A_2 \in \Gamma, \ A_2A_1^{-1} \in \Gamma_{\sigma_0};$$

注意。定义中的V可以取充分小的邻域,且当 $\Gamma_{\bullet,\bullet} = \{I\}$ 时 V 可取为 $D_{\bullet}(0)$ 。

由这一定义,我们立刻可得出,Klein 群由有限个或可数多个元素组成。

我们现在讨论,如何用 Klein 群构造 Riemann 曲面,

设 Γ 为 Klein 群,间断集 $Q = Q(\Gamma)$ 是开集。 设 Q 由可数 多个分支 $Q(\overline{C})$ 的域)组成,

$$Q = \bigcup Q_i$$
.

由于Q是 Γ 不变集。因此对任意 $A \in \Gamma$,有 $A(Q_i) = Q_i$ 。 定义 Q_i 的稳定化子群为

$$\Gamma_i = \{ A \in \Gamma : A(\mathcal{Q}_i) = \mathcal{Q}_i \},$$

 Γ_i 是在 Ω_i 间断的子群,而且 z_0 的稳定化子群 Γ_{z_0} 是某一个 Γ 的子群。

对任意 $z_0 \in Q$, 定义 z_0 的轨道为

$$\Gamma z_0 = \{A(z_0) : A \in \Gamma\}.$$

定义

$$Q/\Gamma = \{\Gamma z ; z \in Q\},$$

及自然投影映照 $\pi: Q \to Q/\Gamma$, $z \mapsto \Gamma z$. 现在定义复结 构 使 Q/Γ 是(不连通的) Riemann 曲面, π 是解析映照.

根据间断点的等价定义,对任意 $z_0 \in \Omega$,对任何充分小的以 z_0 为心的共形圆 V,定义 Γz_0 的局部参数邻域为

$$U - \{ \Gamma z : z \in V \},\$$

当 Г≈。≒ {1} 时,取局部参数映照

$$(\pi_0^{-1} \circ \pi^{-1})^m \colon U \to \{ |\zeta| < r^m \};$$

当 Γz。--{I} 时,取局部参数映照

$$\pi^{-1}\colon U\to V_{\bullet}$$

解析映照 $\pi: \Omega \to \Omega/\Gamma$ 不是局部拓扑的,根据定义,这是一 \bullet 116 •

个分支覆盖曲面,分支点是使 $\Gamma z_0 = \{I\}$ 的点,分支的级是 Γz_0 的阶数减 1, 即 m-1.

同样,对 Q_i 与群 Γ_i ,定义 Riemann 曲面及自然投影映照

$$Q_i/\Gamma_i = \{\Gamma_i z : z \in Q_i\}, \ \pi_i : z \longmapsto \Gamma_i z.$$

注意到 $\pi_i = \pi | Q_i$, Q_i / Γ_i 是 Q / Γ 的一个(连通)分支。

现在进行共形等价分类:

Q的分支 Q_i 与 Q_i 称为等价的,如果存在 $A \in \Gamma$, 使得

$$A(\mathcal{Q}_i) = \mathcal{Q}_{i\bullet}$$

我们把Q的分支分成等价类,每一类中仅取出一个域,记之为 Q_* . 这样, Q/Γ 可以表为最多可数多个互不相交的分支之和

$$Q/\Gamma = \bigcup_{n} Q_{n}/\Gamma_{n}.$$

定义. 如果 Q 是连通的,则 Γ 称为函数群. 如果 $\Lambda(\Gamma)$ 最多由两个点组成,则 Γ 称为初等 Klein 群.

现在讨论 Klein 群的离散性。

对于一般的线分式变换子群 Γ , 它的元素 Λ 的矩 阵 表 示 是 $SL(2, \mathbb{C})$ 的子群。 通常认为 $SL(2, \mathbb{C}) \subset \mathbb{C}$ 。 对 \mathbb{C}^{1} 在 $SL(2, \mathbb{C})$ 的诱导拓扑,如果 Γ 是由孤立点组成,则 Γ 称为**离散的**。

这就是说, Γ 是离散的,如果对任何序列 $\{X_n\} \subset \Gamma, X_n \to X$, $X \in SL(2, \mathbb{C})$ (可能 $\& \Gamma$),则当 n 充分大时 $X_n = X_n$ 这又等价于说,如果 $\{X_n\} \subset \Gamma$, $X_n \to I$,则当 n 充分大时 $X_n = I$ 。这里收敛的意义是指,如果

$$X^{(z)}_{s} = \frac{a_{n}z + b_{n}}{c_{n}z + d_{n}}, \ a_{n}d_{n} - b_{n}c_{n} = 1,$$

$$X(z) = \frac{az + b}{cz + d}, \ ad - bc = 1,$$

则 $X_n \to X$, 当且仅当 $n \to \infty$ 时, 在 C 中有 $a_n \to a, b_n \to b, c_n \to c$ 及 $d_n \to d$.

显然,离散群最多由可数多个元素组成。

根据 Klein 群的间断性定义, Klein 群一定是离散群。

到现在为止,我们就可以看到, Riemann 曲面的万有覆盖变换群是 Klein 群。椭圆型 Riemann 曲面与抛物型 Riemann 曲面的万有覆盖变换群是初等 Klein 群,间断域 2 分别是 C 和 C。但是双曲型 Riemann 曲面则对应另一类重要的 Klein 群,即所谓 Fuchs 群。

定义。Klein 群 Γ 称为 Fuchs 群,如果 Γ 有一个不变圆或不变半平面。

对于 Fuchs 群 Γ , 经共轭后, 我们总可假定不变圆是单位圆 Δ (或上半平面 U). 因此 Fuchs 群 Γ 是 Δ (或 U) 内线分式变换 群 $H(\Delta)$ (或 H(U)) 的子群. 且 Γ 在 Δ (或 U) 是间断的.

定理 11.1. $\Gamma \subset H(\Delta)$, Γ 是 Fuchs 群当且仅当 Γ 是离散的。

证明。由于 Klein 群是离散的,因而 Fuchs 群是离散的。 于是,我们只须证明,如果 I 是离散的,则 I 是 Fuchs 群。

反证之,假设 Γ 在一点 $z_0 \in \Delta$ 不是间断的,则由间断点的定义,一定存在互不相同的序列 $X_n \in \Gamma$,及点 $z_n \in \Delta$,使得 $z_n \to z_0$ 目 $W_n = X_n(z_n) \to z_0(n \to \infty)$.

作 A_n , $B_n \in H(\Delta)$,

$$A_n(z) = \frac{z - z_n}{1 - \overline{z}_n z}, \quad B_n(z) = \frac{z - W_n}{1 - \overline{W}_n z}.$$

再作 $C_* \in H(\Delta)$,

$$C_n = B_n X_n A_n^{-1},$$

则 $C_n(0) = 0$,因此 $C_n(z) = \lambda_n z$, $|\lambda_n| = 1$. 经选取子序列后,不妨假定当 $n \to \infty$ 时 $C_n \to C_0$, $C_0(z) = \lambda_0 z$, $|\lambda_0| = 1$. 由于 $A_n \to A_0$ 和 $B_n \to B_0$,因此当 $n \to \infty$ 时 $X_n \to B_0^{-1}C_0A_0$. X_n 互不相同,这就与 Γ 的离散性矛盾,证完。

关于积可交换的线分式变换,有下面的一个重要引理。

对于线分式变换 A, B, 如果 AB = BA, 则称 A 和 B 可交换. 这时交换子

$$[A, B] = ABA^{-1}B^{-1} = I.$$

同时也有 $A - BAB^{-1}$ 和 $B - ABA^{-1}$.

引理 11.2. 设 A, B 为线分式变换,都不等于 I, AB = B A, 则有以下二种情况:

- 1) A, B 都是抛物型变换,且有公共不动点;
- 2) A, B 都不是抛物型变换,或者 A, B 两个不动点相同;或者 A, B 两个不动点都不相同, A, B 是椭圆型变换,且

$$A^2 = B^2 = (AB)^2 - I$$
,

证明。 首先注意到 $A = BAB^{-1}$, B 把 A 的不动点仍变为 A 的不动点。

1) 如果 A 是 拋物变换,作共轭后可以假定 A(z) = z + 1.由于 A 的唯一不动点是 ∞ ,故 $B(\infty) = \infty$, $B(z) = \mu z + \beta$. 现在只要证明 $\mu = 1$,由假设 AB = BA 得到

$$\mu z + \beta + 1 = \mu z + \mu + \beta.$$

因此 $\mu=1$. 即 A, B 经同一变换共轭于 z+1 与 $z+\beta$. 1) 的结论成立。

2) 如果 1) 不成立,则 A, B 都是非抛物变换,经同一共轭变换后,不妨假定 $A(x) = \lambda z$, $\lambda \in \mathbb{C}$, $\lambda \rightleftharpoons 1$, B 把 A 的不动点集 $\{0,\infty\}$ 变为 $\{0,\infty\}$,则或者 B(0) = 0 和

$$B(\infty) = \infty$$
, $B(z) = \mu z$, $\mu \in \mathbb{C}$

且 $\mu = 1$,即 A = B有共同的不动点。 或者 $B(0) = \infty$ 和 $B(\infty) = 0$,这时 $B(z) = \frac{\mu}{z}$, $\mu \in \mathbb{C}$ 。再由假设 $A \circ B = B \circ A$ 得到

$$\frac{\lambda\mu}{z}=\frac{\mu}{\lambda z},$$

因此 $\lambda = \frac{1}{\lambda}$, $\lambda = -1$, A(z) = -z 是椭圆型变换。 $B(z) = \frac{\mu}{z}$ 也是椭圆变换,不动点是 $\pm \sqrt{\mu}$,因为 $\mathrm{tr}^2(B) = 0$. A, B 的不动点不相同。 另外可直接验证得到 $A^2 = B^2 = (AB)^2 = I$. 2) 完全证明。

§12 七种特殊类型的 Riemann 曲面

在§8中我们已经知道,任何 Riemann 曲面 W,万有覆盖曲面 $\pi: \vec{W} \to W$, \vec{W} 是三种典型域 \bar{C} ,C 或 $\Delta(U)$ 之一,W 共 形等价于 \vec{W}/Γ ,我们写为

$$W = \hat{W}/\Gamma$$
.

根据覆盖变换群 Γ 的间断性, Γ 是 Klein 群,另外, Γ 中的变换没有不动点, Γ 仅由抛物变换与双曲变换组成。

a. 椭圆形 Riemann 曲面。W的万有覆盖曲面 $\ddot{V} = \vec{C}$ 。由于 Γ 的变换在 \vec{C} 没有不动点,因此 $\Gamma = \{I\}$,

$$W = \bar{C}$$
.

定理 12.1. 椭圆型 Riemann 曲面共形等价于 C.

b. 她物型 Riemann 曲面。 W的万有覆盖曲面 $\hat{\mathbf{v}} - \mathbf{C}$ 。 Γ 中的变换仅以 ∞ 为唯一的不动点。 Γ 由抛物变换组成,

$$\Gamma = \{A(z) = z + b\},\$$

Γ 必为下列三种群之一。

b1.
$$\Gamma = \{I\}$$
,

$$W = C/I = C_{\bullet}$$

W共形等价于 C.

b2. Γ 是一个抛物变换 $A_1(z) = z + \omega$ 生成的无限循环群。 经共轭变换后,不妨假定 $A_1(z) = z + 1$,

$$\Gamma = \{A_z(z) = z + n \colon z \in \mathbb{Z}\}.$$

T 有一个基本带形域

$$B = \{z : 0 < \text{Re } z < 1\}.$$

B内的点对于 Γ 相互不等价,边界 $\{\text{Re } z = 0\}$ 的点在另一边界 $\{\text{Re } z = 1\}$ 有唯一的等价点。 C 的每一点都等价于 B 或其边界的一点。粘合对边的等价点后,可以看到 $W = C/\Gamma$ 是一个无限长的圆柱面。如果作映照 $w = e^{2\pi i z}$,则可看到

$$W = C/\Gamma = C - \{0\} = C^*,$$

W 共形等价于 $C^* = C - \{0\}$.

b3. Γ 是两个抛物型变换 $A_1(z) = z + \omega_1$ 与 $A_2(z) = z + \omega_2$

生成的群。 $\omega_1, \omega_2 \in \mathbb{C}$ 且 $\omega_2/\omega_1 \in R$ 。 Γ 具有形式 $\Gamma \Rightarrow \{A(z) = z + n_1\omega_1 + n_2\omega_2; n_1, n_2 \in \mathbb{Z}\}.$

我们于第一章中已经讨论过, Γ 有一个基本四边形,顶点为 0 , ω_1 , $\omega_1 + \omega_2$ 与 ω_2 , $W = C/\Gamma$ 是恒等一对等价边而成的环面,这样的环面的亏格 g = 1 . $W = C/\Gamma$ 共形等价于一个环面。

定理 12.2. 抛物型 Riemann 曲面 W 共形等价于 C, C* 或环面。

c. 双曲型 Riemann 曲面。对于双曲型 Riemann 曲面 W,它的基本群即万有覆盖变换群 Г,是由抛物型变换或双曲型变换组成的 Fuchs 群。因此,一般的双曲型 Riemann 曲面的结构比较复杂。 我们这里只讨论一类简单的所谓初等双曲型 Riemann 曲面。

双曲型 Riemann 曲面称为初等的,如果它的万有覆盖变换群是交换群。

定理 12.3. 初等双曲型 Riemann 曲面W共形等价于 Δ,

$$\Delta^* = \Delta - \{0\}$$

或圆环 $\Delta_r - \{z \in \Delta: 0 < r < |z| < 1\}$.

证明。假设 Γ 是交换群, Γ 必为下列三情况之一。

 c_i . $\Gamma = \{I\}$, W 共形等价于 Δ .

 c_2 . Γ 有一个抛物型变换。 假定万有覆盖曲面为上半平面 U. 根据引理 11.2,由于 Γ 的交换性, Γ 由具有公共不动点的抛物变换组成。 经共轭变换后,不妨假定公共不动点为 ∞ , Γ 中的 抛物变换都具有形式 A(z)=z+b, $b\in R$ 。 再根据群 Γ 的离散性,一定存在 $\omega>0$,

$$\omega = \min\{b > 0 : A(z) = z + b \in \Gamma\}.$$

 $A_1(z) = z + \omega \in \Gamma$. 于是不难证明 Γ 是 $A(z) = z + \omega$ 生成的无限循环群。再作共轭变换后,假定 $A_1(z) = z + 1$,则 Γ 变

$$\Gamma = \{A_n(z) = z + n : n \in \mathbb{Z}\}.$$

经映照 $U \to \Delta^* = \Delta - \{0\}$, $z \mapsto e^{2\pi i z}$ 后,则 $W = U/\Gamma$ 共形 等价于 Δ^* .

 c_3 . Γ 中有一个双曲型变换。 根据引理 11.2, 注意到 Γ 中没有椭圆变换, Γ 由具有公共不动点的双曲变换组成。 经共轭变换后,不妨假定 Γ 中的变换 $A: U \to U$ 都具 有 形 式 $A(z) = \lambda z$, $\lambda \in \mathbb{R}$ (实数集), $\lambda > 0$. 根据群 Γ 的离散性,一定存在 $\lambda_1 > 1$,

$$\lambda_1 = \min\{\lambda > 1 : A(x) = \lambda x \in \Gamma\},$$

使得 $A_1(z) = \lambda_1 z \in \Gamma$. 这时 Γ 是由 $A_1(z) = \lambda_1 z$ 生成的无限循环群,

$$\Gamma = \{A_m(z) = \lambda^m z, m \in \mathbb{Z}\}.$$

经映照 $U \rightarrow \Delta_{r}$,

$$z \longmapsto e^{2\pi i (\log x/\log \lambda_1)}$$

后, $W = U/\Gamma$ 共形等价于 $\Delta_r = \{z; r < |z| < 1\}$, 其中 $r = e^{-2\pi^2/\log k_1}$.

定理证完。

注意,在 c,和 c,的情况下, $\Gamma = 2$.

§ 13 Fuchs 群与双曲型 Riemann 曲面

一般的双曲型 Riemann 曲面 W,其万有覆盖变换群 Γ 是作用于单位圆 Δ 的 Fuchs 群, Γ 没有椭圆元素,W 共形等价于 Δ/Γ .

这一节,假设 Γ 是一般的没有椭圆元素的 Fuchs 群, Γ 作用于 Δ 。 我们将构造 Γ 的正规多边形,然后构造双曲型 Riemann 曲面。

设 $\Gamma = \{A_0 = I, A_1, \dots, A_i \dots\}$ 。 取定一点 $z_0 \in \Delta$ (当 Γ 有椭圆元素时, z_0 应不是 Γ 中椭圆元素的不动点)。 设 z_0 的轨道 为 $\Gamma z_0 = \{z_0 = A_0(z_0), z_1 = A_1(z_0), \dots, z_i = A_i(z_0), \dots\}$ 。 对任意 $z_i \in \Gamma z_0$,设 z_0 与 z_i 的 H-垂直平分线为

 $L_i = L(z_0, z_i) = \{z \in \Delta: [z, z_0] = [z, z_i]\}.$ $L(z_0, z_i)$ 把 H-平面 Δ 分为两个H-半平面,其中包含 z_0 的 H-半平面设为

$$H_i = H(z_0, z_i) = \{z \in \Delta; [z, z_0] < [z, z_i]\}.$$

引理 13.1. A的任何相对紧集最多与有限多条 Li 相交.

证明。 任何紧集总包含于 H-圆 $[z, z_0] < R(0 < R < \infty)$ 内。如果 $L_i = L(z_0, z_i)$ 与这圆相交,则一定有 $[z_i, z_0] < 2R$ 。根据 Γ 的离散性, z_i 是孤立点,因此 H-圆 $[z, z_0] < 2R$ 只能包含有限多个 z_i ,此即 H-圆 $[z, z_0] < R$ 最多只能与有限条 L_i 相交。引理结论成立。

定义.

$$N_0 = N(z_0) = \bigcap_{i=1}^n H(z_0, z_i)$$

= $\{z \in \Delta : \forall i = 0, [z, z_0] < [z, z_i]\}$

称为群 Γ 的中心在 ϵ_0 的正規基本多边形。

 $N(z_0)$ 是 Δ 内 H-凸的域.

事实上, $z_0 \in N(z_0)$, 如果 $a \in N(z_0)$, 则由引理 13.1, H-圆 [z,a] < r 仅与有限条 L_i 相交。因此,对充分小的 r, H-圆 [z,a] < r 与任何 L_i 不相交,即 [z,a] < r 在 $N(z_0)$ 内。 这就是说, $N(z_0)$ 是开集。此外,由于每一个 H_i 是 H-凸域,它们的交 $N(z_0)$ 也是 H-凸的。

正规基本多边形有下列性质:

 $1^{\circ} N(z_{\bullet})$ 的内点不相互等价。

事实上,如果 $N(z_0)$ 存在相互等价的内点 z' 和 z'',即存在 $A_i \in \Gamma$,使得 $z'' = A_i(z')$ 。由 $N(z_0)$ 的定义, $z' \in N(z_0)$ 。于是

$$[z', z_0] < [z', A_i^{-1}(z_0)] = [A_i(z'), z_0] = [z'', z_0].$$

同时 $z'' \in N(z_0)$, 则有

 $[z'', z_0] < [z'', A_i(z_0)] - [A_i^{-1}(z''), z_0] - [z', z_0]$ 。这两个矛盾的不等式说明 z' 与 z'' 不能相互等价。

 $N(z_0)$ 在 Δ 内的边界点集,记之为 $\partial N(z_0)$ 。 根据引理 13.1,

可以知道

 $\partial N(z_0) = \{z \in \Delta: \forall i \geq 1, [z, z_0] \leq [z, z_i],$ 等号仅 对 有限多个 i 成立 \}.

当等号仅对一个i成立时,如果 $z \in \partial N(z_0)$,则对于任意 $i \rightleftharpoons i$,有 $[z, z_0] < [z, z_i]$,但 $[z, z_0] = [z, z_i]$,即 z 仅 在 一条 $L(z_0, z_i)$ 上 $L(z_0, z_i)$ 上一定存在包含 z 的 H-直线 段 z (可能线段的一端点或两端点在 $\partial \Delta$ 上),包含于 $\partial N(z_0)$. 这样的 H-直线段称为 N_0 的内边。

 N_0 的两个内边 s 与 s 称为等价的,如果存在 $A_i \in \Gamma$,使 得 $A_i(s) = s'$ 。 内边的点不能与 $N(z_0)$ 的内点等价,同一内边的点也相互不等价。

 2° 对 N_{\circ} 的任何内边 s ,存在唯一的等价内边 s' , N_{\circ} 的内 边可以分成等价对。

因为如果内边

 $z = \{z \in \Delta : \forall i \neq i, [z, z_0] < [z, z_i], [z, z_0] = [z, z_i]\},$ 其中 $z_i = A_i(z_0)$ 。 设 $z_k = A_i^{-1}(z_0)$,则

 $s' = \{z \in \Delta: \forall i = k, [z, z_0] < [z, z_i], [z, z_0] = [z, z_k]\}$ 也是内边。而 $A_i^{-1}(s) = s'$,即 s' 是 s 的等价内边。

现在如果 $A \in \Gamma$, 使得 A(s) = s'. 则由 s = s' 的表示式,对于 $z \in s$ 有 $[z, z_0] = [z, z_i]$, 对于 $A(z) \in s'$ 有

$$[A(z), z_0] = [A(z), z_1]$$

由此得到 $[z, A^{-1}(z_0)] = [z, A^{-1}(z_0)]$. 于是 $A^{-1}(z_0) = z_0$, $A = A_0$. 这就说明 A是唯一确定的.

对于点 $v \in \partial N(z_0)$,如果 $\partial N(z_0)$ 的表示式中等号对 n(>1) 个 i 成立,这时 v 在 n 条 $L(z_0,z_i)$ 的公共交点上。 根据 引 理 13.1,存在 H-圆 [z,v] < r,使得这圆仅与这 n 条 $L(z_0,z_i)$ 相 交。这 n 条 $L(z_0,z_i)$ 把圆分成 n 个扇形角域。又根据 $N(z_0)$ 的 H-凸性,只有其中一个角域包含于 $N(z_0)$ 内。 我们把这样的边界点 v 称为 $N(z_0)$ 的(内)顶点。顶点 v 是两个内边的共公端点。这两边的夹角称为顶点 v 的内顶角。

 $\partial N(z_0)$ 的无穷边界。 $N(z_0)$ 作为平面 C 的域,其边界在圆周 $\partial \Delta$ 上部份称为**无穷边界**,记之为 $\partial_{\infty}N(z_0)$ 。它的点称为**无穷边界**,**边界点**。

 $\partial_{\infty}N(z_0)$ 是 $\partial\Delta$ 上的闭子集,它有可能由不可数多个连通分支组成。每一连通分支是一点或一段闭圆弧,后者称为 $N(z_0)$ 的自由边。

自由边的内点不相互等价,而且任两个自由边也不相互等价. 这是由 N(z_a) 的内点不相互等价所确定的性质。

点 $v \in \partial_{\infty} N(z_0)$,如果 v 是两个内边的交点,则 v 称为 $N(z_0)$ 的真的无穷顶点。如果 v 是内边与自由边的交点,则 v 称为非真的无穷顶点。注意,自由边的端点不一定是非真的无穷顶点。

对于任意 $z_i \in \Gamma z_0$,我们可类似于 $N(z_0)$,定义以 z_i 为中心的 Γ 的正规基本多边形

$$N_i = N(z_i) = \{z \in \Delta \colon \forall z_i \neq z_i, [z, z_i] < [z, z_i]\}.$$

按定义,经变换 A_i , $z_i = A_i(z_0)$,有 $A_i(N(z_0)) = N(z_i)$. 同时 A_i 把 $N(z_0)$ 的内边、顶点、自由边等,映照为 $N(z_i)$ 的内边、顶点、自由边等等。

我们称 $\{N_i = N(z_i); z_i \in \Gamma z_0\}$ 为 Δ 的一个正规基本多边分割。它具有下述性质。

 3° 如果 $i \leftrightarrow k$, 则 $N(z_i) \cap N(z_k) = \emptyset$.

这是因为,如果存在一点 $z \in N(z_i) \cap N(z_k)$,则按 定 义 有 $[z, z_i] < [z, z_i]$ 。 得到两个矛盾的不等 式.

$$4^{\circ} \Delta - \bigcup \overline{N}(z_i).$$

我们只须说明 $\Delta \subset \bigcup \overline{N}(z_i)$.

对任意 $z \in \Delta$,根据 Γ 的离散性, Γz 。由孤立点组成,最小值

$$\delta = \min_{z_j \in \Gamma z_0} [z, z_j]$$

一定仅在有限的 n(≥ 1) 个点 z_i 达到。

当 n=1 时,这时设最小值 δ 仅在一个 z_i 达到,对于 任 意 i = j 有 $[z, z_i] < [z, z_i]$,此即 $z \in N(z_i)$,

当 n=2 时,设最小值 δ 在 z_i 与 z_k 达到,对任意 $z_i \neq z_i$, z_k , 我们有 $[z,z_i] < [z,z_i]$, $[z,z_k] < [z,z_i]$, 但 $[z,z_i] = [z,z_k]$. 即 z 在 $N(z_i)$ 与 $N(z_k)$ 的公共内边上.

当 $n \ge 3$ 时,设最小值 8 在 $n(\ge 3)$ 个点 $z_{i_1}, z_{i_2}, \cdots z_{i_n}$ 上达到。我们有 $[z, z_{i_1}] = \cdots = [z, z_{i_n}]$ 当 $i \succeq i_1, i_2, \cdots i_n$ 时, $[z, z_{i_k}] < [z, z_i](k=1, 2, \cdots, n)$ 。这时 $z \mapsto N(z_{i_1}), \cdots, N(z_{i_n})$ 的公共顶点。我们可以重新排列,使得

$$N(z_{i_1}), N(z_{i_2}), \dots, N(z_{i_n}), N(z_{i_1})$$

相邻,有一个公共内边,并称为以 z 为顶点的**正规基本多边形循环**。

从上面证明可以看出,任何两个正规基本多 边 形 $\bar{N}(z_i)$ 与 $\bar{N}(z_i)$,或者不相交,或者有一公共内边,或者有一个公共内顶点。而且对于公共内顶点,有一个正规基本多边形循环。

等价边对变换是群 [的生成元素。

根据性质 2° , 正规基本多边形 $N(z_0)(N(z_i))$ 的内边可分成最多可数多对等价边,设为 $\{(s_k,i_k)\}$ 。 对于每个等价边对 (s_k,i_k) ,存在唯一的 $\widetilde{A}_k \in \Gamma$,使得 $\widetilde{A}_k(s_k) = s_k$ 。 我们称对应的 \widetilde{A}_k 为**等价边对变换**。等价边对变换组成的集记为 $\Theta = \{\widetilde{A}_k\}$ 。

注意, $\Theta = \{\tilde{A}_k\}$ 是 $N(z_0)$ 的等价边对变换集。 如果对于 $N(z_i) = A_i(N(z_0))$,则 $N(z_i)$ 的等价边对变换可以唯一地表示 为 $A_i\tilde{A}_kA_i^{-1}$, $\tilde{A}_k\in\Theta$.

5° θ生成 Γ.

我们要证明, Γ 的元素可用 Θ 的元素的有限积表示。

对任意 $A_i \in \Gamma$, $z_i - A_i(z_0)$, $N(z_i) - A_i(N(z_0))$. 在 Δ 内用折线 γ 连接 z_0 到 z_i , 使得 γ 不通过任何 $N(z_i)$ 的公 共 顶 点. 我们可以选取有限多个正规基本多边形覆盖 γ , 设为

$$N(z_i), N(z_i), \cdots, N(z_s) = N(z_i),$$

使得其中相邻两个多边形 $N(z_i)$ 与 $N(z_{i+1})(i=0, 1, \dots, n-1)$ 有一个公共边.

取 $A_{i,i+1} \in \Gamma$, 使得 $z_{i+1} = A_{i,i+1}(z_i)$, 则 $A_{i,i+1}$ 一定把 $N(z_i)$ 的一个内边变为等价内边。因而存在 $\widetilde{A}_i \in \Theta$,使得

$$A_{i,i+1} = A_i \circ \widetilde{A}_i \circ A_i^{-1},$$

另外,可以看出 $A_{i+1} = A_{i,i+1} \circ A_i$,而且 $A_1 = A_{0,1} = \tilde{A}_0 \in \Theta$. 于是,我们有下面的递推表示式:

$$A_1 = A_{0,1} = \widetilde{A}_0,$$

$$A_2 = A_{1,2} \circ A_1 = A_1 \circ \widetilde{A}_1 = \widetilde{A}_0 \circ \widetilde{A}_1,$$

 $A_n = A_{n-1,n} \circ A_{n-1} = A_{n-1} \circ \widetilde{A}_{n-1} = \widetilde{A}_0 \circ \widetilde{A}_1 \cdots \circ \widetilde{A}_{n-1}$ 这就证明了 $A_i = A_n$ 可用 Θ 的元素的积表示, Θ 生成 Γ .

现在,我们用正规基本多边形 $N(z_0)$ (或 $N(z_i)$) 构造 Riemann 曲面 $W - \Delta/\Gamma_0$

首先,我们给定正规基本多边形 $N(z_0)(N(z_i))$ 的边界 $\partial N(z_0)(\partial N(z_i))$ 以正定向,使得在这定向下, $N(z_0)(N(z_i))$ 在 $\partial N(z_0)(\partial N(z_i))$ 的左边。 于是 $N(z_0)$ 的等价对边(s_1 , s_2) 都 有定向,设 $\tilde{A}_k \in \Gamma$, $\tilde{A}_k(s_1) = s_2$, 则 \tilde{A}_k 保持反向。

恒等 $N(z_0)$ 的每对等价边的等价点, 就构成 Riemann 曲面 $W = \Delta/\Gamma$.

具体地,把每对等价边 (x_1, x_1) 的等价点,通过等价边对变换 \tilde{A}_k ,反向(恒等)粘合在一起,即成为 Riemann 曲面 $W = \Delta / \Gamma_k$

这里,我们说明如何选取局部参数邻域。

设 $D(a_0, r)$ 是以 a_0 为心,充分小的r 为半径的 H-圆, $\overline{N}(z_i) = N(z_i) \cup \partial N(z_i)$.

当 $a_n \in N(z_n)$ 时,局部参数邻域取为 $D(a_n, r)$.

当 a_0 是 $N(z_0)$ 的内边 s_k 的内点时, 存在等价边对(s_k , s_k)及变换 $\widetilde{A}_k \in \Theta$,使得 $\widetilde{A}_k(s_k)$ 一 s_k ,并且 a_0 有一等价点

$$a_1 - \widetilde{A}_k(a_0)$$
.

对任意 $D(a_0, r)$,及它在 \widetilde{A}_k 的像 $D(a'_0, r)$,局部参数邻域为恒等 $D(a_0, r) \cap \overline{N}(z_0)$ 与 $D(a'_0, r) \cap \overline{N}(z_0)$ 的等价边的 等价点组成,这种局部参数邻域共形等价于 $D(a_0, r)$ 与 $D(a'_0, r)$.

当 a_0 是 $N(z_0)$ 的(内)顶点时,从 4° 的证明中看出,这时以 a_0 为顶点有一个正规基本多边形循环,不妨设为

$$N(z_0), N(z_1), \dots, N(z_n), N(z_0),$$

相邻有一个公共边,并且 $N(z_i) = A_i(N(z_0))(i = 0, 1, \dots, n, n \ge 3)$.

对于 40, 对应有一等价顶点组

$$a_0, a_1 - A_1^{-1}(a_0), \cdots, a_n = A_n^{-1}(a_0)$$

于是对任意 $D(a_0, r)$ 均被分成 $n \cap H$ -扇形 $D(a_0, r) \cap \overline{N}(z_i)$, $0 \le i \le n$. 在 A_i^{-1} 下, $D(a_0, r) \cap \overline{N}(z_0)$ 的像则是以 a_i 为顶点的 H- 扇形 $D(a_i, r) \cap N(z_0)$.

这里指出了, $N(z_0)$ 的等价内顶点组,对应的内角之和等于 2π .

等价顶点 $\{a_0, a_1, \dots, a_n\}$ 的局部参数邻域,由 n 个扇形 $D(a_0, r) \cap \overline{N}(z_0), D(a_1 r) \cap \overline{N}(z_0), \dots, D(a_n r) \cap \overline{N}(z_0)$ 恒等等价边的等价点构成。 这样的局部参数邻域 共形等 价于 $D(a_i, r)$ $(0 \le i \le n)$.

以上,我们指出了,如何用正规基本多边形构造 Riemann 曲面。应该指出,这是正规基本多边形的重要作用之一。

正规基本多边形 $N(z_0)(N(z_i))$ 是紧的,如果

$$\overline{N}(z_0) - N(z_0) \cup \partial N(z_0)$$

是 4 的紧集。

6° 正规基本多边形 $N(z_0)$ 是紧的,当且仅当 $W \to \Delta/\Gamma$ 是紧 Riemann 曲面.

事实上,设 $\pi: \Delta \to \Delta/\Gamma$ 为自然投影映照,则应有 $\pi(\overline{N}(z_0)) = W$.

如果 $N(z_0)$ 是紧的,由于 π 保持紧性,W也是紧的。反之,设W是 紧 Riemann 曲面, $\{V_i\}$ 为 $N(z_0)$ 的开覆盖,不妨设 V_i 为 Δ 内

的圆,则 $\{\pi(V_i)\}$ 也是W的开覆盖,因此存在有限子覆盖 $\{\pi(V_i)\}$ 覆盖 W,对应的子覆盖 $\{V_i\}$ 覆盖 $\bar{N}(z_0)$,即 $\bar{N}(z_0)$ 是紧的.

根据 6°,我们知道,对于紧 Riemann 曲面 $W = \Delta/\Gamma, N(z_0)$ 是具有有限多个内边的紧正规基本多边形。 W由 $N(z_0)$ 恒等这有限多对等价内边构成。

7° 紧双曲 Riemann 曲面的标准基本多边型表示:

设 $W = \Delta/\Gamma$. 取正规基本多边形 $N_0 = N(z_0)$, 给 $\partial N(z_0)$ 以正定向. 对于 N_0 的等价边对 (s,s'), 设 $A \in \Gamma$ 为等价边对变换,则 A 把 s 变为 s',但保持反向。在 N_0 内用解析弧 γ 连接 N_0 的两个(内)顶点,把 N_0 分成两部份 N_0' 与 N_0' ,使得 $s \subset N_1'$, $s'' \subset N_0'$ 。通过变换 A, 恒等 a 与 a',则得到基本多边形 $A(N_0') \cup s' \cup N_1'$,这样 γ 变为一对等价边 γ 与 γ' . 这一新的基本多边形具有解析弧的一对等价内边。除此外保持 N_0 原来的性质。这一过程称为初等变换。

现在,我们利用初等变换,作标准基本多边形。

把 N_0 的内边按 ∂N_0 的正方向顺序排列,其中必有两对等价边 (a,a') 与 (b,b') 有下面排列顺序

$$ab\cdots a'\cdots b'\cdots$$
,

使得 a 与 a' 间的边数最小 (对于所有这种形式的排列最小)。 这时,我们称 a, b, a', b' 具有最好位置。于是,我们可以把 N_0 的内边排列成形式

abXa'Yb'Z,

其中X,Y和Z表示一组顺序排列的内边。

对于等价边对 (b, b'),用解析弧 d 连接 a 的终点到 a' 的起点,作初等变换,得到新的基本多边形(参看图 5.8),它的内边具有顺序表示式

ada'YXd'Z.

对这一基本多边形,再用解析弧。连接 d 的起 点 到 d' 的 起点,恒等 a' 与 a',作初等变换,得到另一基本多边形(参看图 5.7),它的内边具有顺序表示式。

ede'd' ZYX.

这时的基本多边形已有标准组 ede'd'.

5.8 图

对这一基本多边形的内边组 ZYX 再作如上变换,并注意到, 已得到的标准组 ede'd' 保持不变,因此经有限次变换后,最后得 到标准基本多边形 Ⅱ, 其内边具有标准的顺序表示

$$\Pi: a_1b_1a_1^{-1}b_1^{-1}\cdots a_gb_ga_g^{-1}b_g^{-1}$$

 Π 是 4 g 边形, g > 1 是整数, 称为 Riemann 曲面的**亏格。**

 Π 有2g对等价边对(a_i , a_i^{-1})与(b_i , b_i^{-1}),都是解析弧构 成的,以后,我们常用 (a_i, a_i^{-1}) 与 (b_i, b_i^{-1}) 表示等价边对。 \square 称为紧 Riemann 曲面 $W = \Delta/\Gamma$ 的标准基本多边形。我们用图 5.9 表示 D. 恒等标准基本多边形的每对等价边,即成为 Riemann 曲面 W. 注意, Π 的顶点相互等价,被恒等为一点。 B 是紧黎曼 曲面的亏格.

附注, 当8=1时,这时W是抛物型的紧黎曼曲面,标准基本。 多边形表示仍是形式 Ⅱ: a₁b₁a₁⁻¹b₁⁻¹。 参考 § 12 中 b₃。

第六章 微分形式空间

§ 1 可测微分空间及其几个重要的子空间

考虑可测微分形式 ω ,微分我们这里将指 1-形式。微分 ω 称 **为可测的**,如果在局部参数邻域内,在局部参数 z 下,

$$\omega = udz + vd\bar{z}$$
,

其中 u(z) 和 v(z) 是 z 的 (Lebesgue) 可测函数。注意,当涉及到可测的概念时,微分相等是指几乎处处相等。

对 Riemann 曲面W上可测微分 ω , 定义

$$\|\omega\|^2 = (\omega, \ \omega) = \iint_{\mathbb{R}} \omega \wedge \overline{*\omega},$$

注意到其中 $\overline{*\omega} = *\overline{\omega}$ 及 $*\omega = -iudz + ivd\overline{z}$,

$$\omega \wedge i\omega = (udz + vd\bar{z}) \wedge * \overline{(udz + vd\bar{z})}$$

$$= (udz + vd\bar{z}) \wedge \overline{(-iudz + ivd\bar{z})}$$

$$= i(u\bar{u} + v\bar{v})dz \wedge d\bar{z}$$

$$= 2(|u|^2 + |v|^2)dx \wedge dy.$$

定义W上的可测微分空间

 $L^2(W) = \{\omega : \omega \in \mathbb{R} \}$ 是W上的可测微分, $\|\omega\|^2 < \infty \}$.

接照通常的加法和数乘运算, $L^2(W)$ 是一个线性空间。 对于 $\omega \in L^2(W)$,定义 ω 的范数或模为

$$\|\omega\| = \sqrt{(\omega, \omega)}$$
.

对任意 ω_1 , $\omega_2 \in L^2(W)$, $\omega_1 = u_1 dz + v_1 d\overline{z}$, $\omega_2 = u_2 dz + v_2 d\overline{z}$, 定义内积

$$(\omega_1, \ \omega_1) = \iint_{W} \omega_1 \wedge \overline{*\omega_2} = i \iint (u_1 \bar{u}_2 + v_1 \bar{v}_2) dz \wedge d\bar{s}_{\bullet}$$

这样 L2(W) 是一个 Hilbert 空间。

对于内积当然有下式成立:

$$(\omega_1, \ \omega_2) = \iint \omega_1 \wedge \overline{*\omega_2} = i \iint (u_1 \overline{u}_2 + v_1 \overline{v}_2) dz \wedge d\overline{z}$$
$$- \iint \omega_2 \wedge \overline{*\omega_1} = \overline{(\omega_2, \ \omega_1)}.$$

另外,注意到 $*\omega_1 - *\omega_2$, 则有

$$(* \omega_1, * \omega_2) = \overline{\iint * \omega \wedge - \overline{\omega_2}} = \overline{\iint \overline{\omega_2 \wedge \overline{* \omega_1}}} = \overline{(\omega_2, \omega_1)} = (\omega_1, \omega_2).$$

现在定义两个子空间 B 和 E*:

 $E 为 \{df: f \in C_0^*(W)\}$ 在 $L^2(W)$ 上的闭包。

 E^* 为 $\{*d: f \in C_0^*(W)\}$ 在 $L^2(W)$ 上的闭包。

按照这一定义, $\omega \in E$ 当且仅当存在 $f_{\bullet} \in C^{\infty}_{0}(W)$, **使得在** $L^{2}(W)$ 上

$$\lim_{n\to\infty} df_n = \omega, \quad ||\mathbf{m}|| ||\omega - df_n|| = 0.$$

 $\omega \in E^{\infty}$ 当且仅当存在 $f_{\alpha} \in C^{\infty}_{0}(W)$,使得在 $L^{2}(W)$ 上 $\lim_{n \to \infty} ||\omega - *df_{\alpha}|| = 0$.

由于 $\|\omega - df_*\| = \|*\omega - *df\|$, 容易推出: 如果 $\omega \in E$ 则 $*\omega \in E^*$, 反之,如果 $\omega \in E^*$ 则 $*\omega \in E$.

设 E^{\perp} 和 E^{*} 分别为 E 和 E^{*} 的正交补子空间。按定义 $E^{\perp} = \{\omega \in L^{2}(W): (\omega, \varphi) = 0, \forall \varphi \in E\},$

$$E^{\perp} = \{ \omega \in L^{2}(W) : (\omega, \varphi) = 0, \forall \varphi \in E^{*} \}.$$

另外,由E和 E* 的定义及内积作为线性泛函的连续性,我们得到

$$E^{\perp} = \{ \omega \in L^{2}(W); (\omega, df) = 0, \forall f \in C^{\infty}_{0}(W) \},$$

$$E^{\stackrel{\perp}{*}} = \{ \omega \in L^2(W) : (\omega, *df) = 0, \forall f \in C^{\infty}(W) \}.$$

定义 L²(W) 的另一个重要子空间

$$H=E^{\perp}\cap E^{\frac{1}{*}},$$

显然有

$$H = \{\omega \in L^2(W): (w, df) = 0, (\omega, *df) = 0,$$

 $\forall i \in C^{\infty}_{0}(W)$.

关于这三个基本子空间,我们有下面的分解定理。

定理 1.1。E, E^* 和H两两正交,且有分解式

$$L^2(W) = E \oplus E^* \oplus H$$
.

证明, 首先证明 $E \perp E^*$. 设 $\gamma \in E$, $\pi \in E^*$, 由定义, 存在 序列 f_n , $g_n \in C^{\infty}_{0}(W)$, 使得在 $L^{2}(W)$ 上

$$\lim df_n = \gamma, \quad \lim * dg_n = \pi.$$

根据内积的连续性

$$(\gamma, \pi) = \lim_{n \to \infty} (df_n, *dg_n) = -\lim_{n \to \infty} \iint_{G_n} df_n \wedge dg_n$$
$$= -\lim_{n \to \infty} \left(\int_{\partial G_n} f_n dg_n - \iint_{G_n} f_n ddg_n \right) = 0.$$

这里应用了 Stokes 公式, $G_* \subset W$ 是相对紧域,在 G_* 外及 ∂G_* 上 $f_* = 0$, $g_* = 0$. 因此 $E \perp E^*$.

因为 $E \oplus E^*$ 是 $L^2(W)$ 的子空间,我们有分解式 $L^2(W) = E \oplus E^* \oplus (E \oplus E^*)^{\perp}$.

余下只要证明

$$H = E^{\perp} \cap E^{\stackrel{\perp}{*}} = (E \oplus E^{*})^{\perp}.$$

如果 $\omega \in H = E^{\perp} \cap E^{\stackrel{1}{*}}$,则对任意 $\gamma \in E$, $\pi \in E^{*}$ 总有 $(\omega, \gamma + \pi) = (\omega, \gamma) + (\omega, \pi) = 0$,

因此, $\omega \in (E \oplus E^*)^{\perp}$ 。 反之,如果 $\omega \in (E \oplus E^*)^{\perp}$,则对任意 $\gamma \in E$ 和任意 $\pi \in E^*$ 总有 $(\omega, \gamma + \pi) = 0$,特别地

$$(\omega, \gamma) = 0, (\omega, \pi) = 0,$$

即 $\omega \in B^{\perp}$ 且 $\omega \in E^{\frac{1}{4}}$. 因此 $\omega \in E^{\perp} \cap E^{\frac{1}{4}}$, $H = (E \oplus E^*)^{\perp}$. 定理证完.

引理 1.2、设 $\omega \in C^1(W)$,则

- a) $\omega \in E^{\frac{1}{*}} \iff d\omega = 0$, 即 ω 是闭的。
- b) ω ∈ E¹ ⇐⇒ * dω = 0, 即 ω 是上闭的。

证明. 只证明 a), b) 可类似证明. $\omega \in E^* \iff 对任意 f \in C^{\infty}(W)$ 有 $(\omega, *df) = 0$, 即

$$(\omega, *df) = -\iint_{W} \omega \wedge d\tilde{f} = -\iint_{W} \tilde{f} d\omega = 0.$$

由于 $f \in C_0^*(W)$ 是任意的,因此必有 $d\omega = 0$.

由引理 1.2, $H = E^{\perp} \cap E^{\frac{1}{2}}$ 及第四章§ 4 的命题,立刻得到下面定理。

定理 1.3. 设
$$\omega \in C^1(W)$$
, 则 $\omega \in H \iff d\omega = 0$, * $d\omega = 0$.

即 @ 是调和微分。

§ 2 逐段解析的简单闭曲线对应的微分

设 L 为 Riemann 曲面W 上逐段解析的简单闭曲线,用有限个局部参数圆 V_i 覆盖 L, 设对应的局部参数映 照 为 $z=\varphi_i$: $V_i \rightarrow \{|z| < 1\}$,并且使得 $L \cap V_i$ 把 V_i 分成两个单连 通 域。 再设

$$g(z) = \begin{cases} e^{-\frac{1}{1-|z|^2}}, & |z| < 1, \\ 0, & |z| \ge 1. \end{cases}$$

定义W上的函数

$$g_i(p) = \begin{cases} g \circ \varphi_i(p), & p \in V_i, \\ 0, & p \in V_i, \end{cases}$$

明显地 $g_i \in C_0^{\bullet}(W)$.

�

$$G = \bigcup_{i} V_{i}$$

则 G是W的相对紧域, ∂G 由逐設解析曲线组成, L分 G为两个域,其在左边部份记为 G^- ,右边部份记为 G^+ .

对 ∂G 再用有限多个局部参数圆 V_i 覆盖之,使得对任意 V_i

有 $V_i \cap L = \emptyset$. 设 V_i 的局部参数映照为 $z = \varphi_i \colon V_i \to \{|z| < 1\}$, 作相应的 $C_i^*(W)$ 函数

$$g_i'(p) = \begin{cases} g \circ \varphi_i'(p), & p \in V_i', \\ 0, & p \in V_{i*}' \end{cases}$$

对任意 V, 定义函数

$$e_i = \frac{g_i}{\sum_i g_i + \sum_i g_i'},$$

则 $e_i \in C_0^n(W)$, 在 V_i 外 $e_i = 0$, 且在 L 上任何点的某个 邻域内

$$\sum_i e_i = 1.$$

这样的 {e;} 称为L的一个单位分解。作函数

$$f_L = \begin{cases} \sum_{i} e_{i}, \ p \in G^- \ \text{内}, \\ 1, \ p \in L \perp, \\ 0, \ p \in G^+ \ \text{威} W - G \ \text{内}. \end{cases}$$

 f_L 在 L 上不连续,当点从 L 的左边(G^-)穿过 L 到右边(G^+)时, f_L 的值从 1 变为 0.

定义微分

$$\eta_L = \begin{cases} df_L, & p \in G, \\ 0, & p \in W - G. \end{cases}$$

则 η_L 是W上的 C_0^* 微分, η_L 在 G^- 外为 0,并且 $d\eta_L = 0$,即 η_L 是闭微分。 η_L 称为与 L 对应的微分。

引理 2.1. 设 η_L 为与 L 对应的微分,则对任何 C^1 的闭微分 ω ,有

$$\int_L \omega = (\omega, *\eta_L).$$

证明。 由 Stokes 公式及 $d\omega = 0$, 并注意到 $\eta_L = \eta_L$, 便 得到

$$(\omega, *\eta_L) - \iint_{\sigma^-} \omega \wedge * *\eta_L = -\iint_{\sigma^-} \omega \wedge dt_L$$
$$- \int_{\partial \sigma^-} t_L \omega = \int_L \omega.$$

现在讨论关于 $C' \cap E$ 及 $C' \cap E^*$ 中的微分的性质。

引理 2.2. a) 如果 $\gamma \in C^1 \cap E$,则 γ 是正合微分。

b) 如果 $\pi \in C^1 \cap E^*$ 则 π 是上正合微分。

证明。a),我们知道 7 是正合微分,当且仅当对任何逐段解析的简单闭曲线 L 有

$$\int_{L} r - 0.$$

设 η_L 是与 L 对应的微分,我们有 $*d*\eta_L = -d\eta_L = 0$,因此由引理 1.2, $*\eta_L \in E^L$, $(\Upsilon, *\eta_L) = 0$,再由引理 2.1,

$$\int_{\mathbb{R}} \gamma = (\gamma, *\eta_{\gamma}) = 0,$$

即 γ 是正合的。b) 的证明,通过 * $\pi \in E$ 由 a) 推出之。

§ 3 光滑算子的一个引理

设函数

$$\chi(z) = \chi(|z|) = \begin{cases} \frac{1}{k} e^{-\frac{1}{1-|z|^2}}, |z| < 1, \\ 0, |z| \ge 1. \end{cases}$$

 $\chi(z) \in C^{\infty}_{0}(\mathbb{C})$, 在 $D = \{|z| < 1\}$ 内 $\chi(z) > 0$, 其中 π 取得使

$$\iint_{\mathbf{C}} \chi(z) d\sigma_z = 1, \ d\sigma_z = dx dy.$$

· 对任意 6 > 0, 令

$$\chi_s(z) = \frac{1}{\varepsilon^2} \chi\left(\frac{z}{s}\right),$$

則 $\mathcal{X}_{\epsilon}(z) \in C_{\epsilon}^{n}(\mathbb{C})$, 在 $D_{\epsilon} = \{|z| < \epsilon\}$ 外为 0, 且

$$\iint_{\mathbf{C}} \chi(\pi) d\sigma_s = 1,$$

对于 $f \in L^2(D)$, 在D外令 f = 0, 定义

$$(M_{\epsilon}f)(z) = \iint_{\mathbf{C}} f(\zeta) \chi_{\epsilon}(\zeta - z) d\sigma_{\zeta *}$$
 (3.1)

经变数变换后

$$(M_{\varepsilon}f)(z) = \iint_{C} f(z+\zeta)\chi(\zeta)d\sigma_{\zeta}, \qquad (3.2)$$

明显地, M_{sf} 在 $D_{s+s} - \{|z| < 1 + \epsilon\}$ 外为 0.

在上述假定之下,我们有下面引理。

引理 3.1. (a) M.f ∈ C".

- (b) 如果 $j \in C^{1}(D)$, 则在 $D_{1-z} = \{|z| < 1-s\}$ 内有 $\frac{\partial M_{s}f}{\partial x} = M_{s}\left(\frac{\partial f}{\partial x}\right), \ \frac{\partial M_{s}f}{\partial y} = M_{s}\left(\frac{\partial f}{\partial y}\right).$
- (c) 当 $s \to 0$ 时, $||M_s f f||_{L^2(D)} \to 0$ 。
- (d) 如果 *t* 在 *D* 内调和, 则在 *D*₁₋₁ 内

$$M_e f - f$$

(e) 对任意 φ ∈ L¹(D), φ 在 D₁₋₁ 外为 0,则

$$\iint_{D} (M_{s}f)\varphi d\sigma_{s} - \iint_{D} f(M_{s}\varphi) d\sigma_{s}.$$

(f) $M_sM_sf - M_sM_sf$, $z \in D$.

证明。(a) 我们要证明 M.f 的逐次偏导数存在, 只需证明 $\frac{\partial M.f}{\partial x}$ 存在,其它导数类似便可证出。设 x=x+iy, $\zeta=\xi+in$,则由(3.1)式,我们有

$$\underline{M_sf(x+h,y)-M_sf(x,y)}_{L}$$

$$=\iint f(\xi,\eta) \frac{\chi_{\epsilon}(\xi-(x+h),\eta-y)-\chi_{\epsilon}(\xi-x,\eta-y)}{h} d\xi d\eta.$$

由于

$$\lim_{h\to 0} \frac{\chi_{\epsilon}(\xi-(x+h), \eta-y)-\chi_{\epsilon}(\xi-x, \eta-y)}{h}$$

$$= \frac{\partial \chi_{\epsilon}(\xi-x, \eta-y)}{\partial x},$$

且 $\frac{\partial \chi_{a}(\xi-x,\eta-y)}{\partial x}$ 一致有界,由 Lebesgue 积分号下取极限的定理,当 $h \to 0$ 时有

$$\frac{\partial M_{\epsilon}f(x, y)}{\partial x} = \iint_{C} f(\xi, \eta) \frac{\partial \chi_{\epsilon}(\xi - x, \eta - y)}{\partial x} d\xi d\eta.$$

(b) 由假设 $f \in C^1(D)$, 对于 $z = x + iy \in D_{1-s}$, 在积分号下求导数得到

$$\frac{\partial M_s f(x, y)}{\partial x} = \frac{\partial}{\partial x} \iint f(x + \xi, y + \eta) \chi_s(\xi, \eta) d\xi d\eta$$
$$= \iint \frac{\partial f(x + \xi, y + \eta)}{\partial x} \chi_s(\xi, \eta) d\xi d\eta$$
$$= M_s \left(\frac{\partial f}{\partial x}\right).$$

同理可证

$$\frac{\partial M_{*}f}{\partial y} = M_{*}\left(\frac{\partial f}{\partial y}\right).$$

(c) 我们要证明,对于任意 8 > 0,存在 $s_0 > 0$,使得当 $0 < s < s_0$ 时总有

$$\|M_s f - f\|_{L^2(D)} < \delta_s$$

首先由于 $f \in L^2(D)$, 在 $D \land f = 0$. 任意给定 $s_1 > 0$, 对任意 $\delta > 0$, 存在 D_{1+s_1} 上的连续函数 g, 使得

$$||f-g||_{L^2(D_1+\epsilon_1)} < \frac{\delta}{3}.$$

其次,对于这样的 g, 存在 $s_0 < \frac{s_1}{2}$, 使得当 $s < s_0$ 时

$$\|M_*g-g\|_{L^2(D)}<\frac{\delta}{3}.$$

事实上,当 $z \in \overline{D}$ 时,对于给定的 δ ,由于 $z \in \overline{D}_{1+s,n}$ 上的一致连续性,存在

$$\epsilon_0 < \frac{\epsilon_1}{2}$$
,

使得当 | 5| < 8。时总有

$$|g(z+\zeta)-g(z)|<\frac{\delta}{3\sqrt{2\pi}}.$$

因此

$$|M_{\alpha}g(z) - g(z)| = \left| \iint \left[g(z+\zeta) - g(z) \right] \chi_{\alpha}(\zeta) d\sigma_{\xi} \right|$$

$$\leq \iint |g(z+\zeta) - g(z)| \chi_{\alpha}(\zeta) d\sigma_{\xi}$$

$$< \frac{\delta}{3\sqrt{2\pi}} \iint \chi_{\alpha}(\zeta) d\sigma_{\xi}$$

$$= \frac{\delta}{3\sqrt{2\pi}}.$$

将这不等式两边平方后,在D上积分得到

$$||M \cdot g - g||^2 L^2(D) \le \left(\frac{8}{3}\right)^2$$
,

即

$$\|M_{\epsilon}g-g\|_{L^{1}(D)}<\frac{\delta}{3}.$$

最后我们证明当 8 < 80 时,有

$$\|M_s(f-g)\|_{L^2(D)}<\frac{\delta}{3}.$$

由 Schwarz 不等式,当z ∈ D有

$$|M_{s}(f-g)|^{2} = \left| \iint_{D_{s}} (f(z+\zeta) - g(z+\zeta)) \chi_{s}(\zeta) d\sigma_{\xi} \right|^{2}$$

$$\leq \iint_{D_{s}} |f(z+\zeta) - g(z+\zeta)|^{2} \chi_{s}(\zeta) d\sigma_{\xi} \iint_{D_{s}} \chi_{s}(\zeta) d\sigma_{\xi}$$

$$= \iint |f(z+\zeta) - g(z+\zeta)|^{2} \chi_{s}(\zeta) d\sigma_{\xi}.$$

因此

$$\iint_{D} |M_{z}(j-g)|^{2} d\sigma_{z}$$

$$\leq \iint_{D} d\sigma_{z} \iint |f(z+\zeta) - g(\zeta+z)|^{2} \chi_{z}(\zeta) d\sigma_{\zeta}.$$

应用 Fubini 定理交换积分次序,得到

$$\iint_{D} |M_{s}(f-g)|^{2} d\sigma_{s}$$

$$\leq \iint_{D} \chi_{s}(\zeta) d\sigma_{t} \iint_{D} |f(z+\zeta) - g(z+\zeta)|^{2} d\sigma_{s}$$

$$\leq ||f-g||_{L^{2}(D_{1}+\sigma_{1})}^{2} < \left(\frac{\delta}{3}\right)^{2}$$

这就是说

$$||M.(f-g)||_{L^{2}(D)} < \frac{\delta}{3}.$$

总之,当

$$8<\epsilon_0<\frac{s_1}{2}$$

时,我们有

$$||M_{\bullet}f - f||_{L^{2}(D)} \leq ||M_{\bullet}(f - g)|| + ||M_{\bullet}g - g|| + ||f - g||$$

$$< \frac{\delta}{3} + \frac{\delta}{3} + \frac{\delta}{3} - \delta.$$

(d) 由假设 f 在 D 内调 和,则对 $z \in D_{1-\epsilon}$,设 $\zeta = re^{i\theta}$, $|\zeta| < \epsilon$,由中值公式,得到

$$M_{\bullet}f(z) = \iint f(z+\zeta)\chi_{\bullet}(\zeta)d\sigma_{\zeta}$$

$$= \int_{0}^{z} \int_{0}^{2\pi} f(z+re^{i\theta})\chi_{\bullet}(r)rdrd\theta$$

$$= \int_{0}^{z} \chi_{\bullet}(r)rdr \int_{0}^{2\pi} f(z+re^{i\theta})d\theta.$$

$$= f(z)2\pi \int_{0}^{z} \chi_{\bullet}(r)rdr = f(z)_{\bullet}$$

(e) 由于
$$\varphi \in L^{2}(D)$$
, 在 D_{1-s} 外 $\varphi = 0$, 我们有
$$\iint_{D} (M_{s}f)\varphi d\sigma_{s} = \iint_{D} \varphi d\sigma_{s} \iint_{D_{1+s}} f(\zeta)\chi_{s}(\zeta - z) d\sigma_{\zeta}$$

$$= \iint_{D_{1+s}} f(\zeta) d\sigma_{\zeta} \iint_{D} \varphi(z)\chi_{s}(\zeta - z) d\sigma_{s}$$

$$= \iint_{D_{1+s}} f(\zeta)M_{s}\varphi(\zeta) d\sigma_{\zeta}$$

$$= \iint_{D} f(M_{s}\varphi) d\sigma_{s}.$$

(f) 由 Fubini 定理,对于 z∈D

$$M_{\delta}M_{\delta}f = \iint (M_{\delta}f)(z+\zeta)\chi_{\delta}(\zeta)d\sigma_{\zeta}$$

$$= \iint \left[\iint f(z+\zeta+\eta)\chi_{\delta}(\eta)d\sigma_{\eta}\right]\chi_{\delta}(\zeta)d\sigma_{\zeta}$$

$$= \iint \left[\iint f(z+\zeta+\eta)\chi_{\delta}(\zeta)d\sigma_{\zeta}\right]\chi_{\delta}(\eta)d\sigma_{\eta}$$

$$= M_{\delta}M_{\delta}f_{\delta}$$

引理全部证完。

对定义于 D内的微分 $ω \in L^1(D)$. 设 ω = p(z)dx + q(z)dy,

则 p, q ∈ L¹(D). 定义

$$M_*\omega = (M_*P)dx + (M_*q)dy.$$

注意。 这里函数 p(x), $q(x) \in L^2(D)$, $L^2(D)$ 表示通常意义下的平方可积函数空间。 而微分 $\omega \in L^2(D)$, $L^2(D)$ 则表示按照 § 1 中定义的微分空间。为了简化符号,我们在这里采用了同一记号。

由引理 3.1,我们可以得到下面关于微分的引理。

引理 3.2. (a') M_•ω 是 C[∞]。微分,在 D_{i+ε} 外为 0.

- (b') 如果 ω 是 C^1 微分,则 $dM_*\omega = M_*d\omega_*$
- (c') 当 $\varepsilon \to 0$ 时, $\|M_{\varepsilon}\omega \omega\|_{L^2(D)} \to 0$.
- (d') 当 ω 是调和微分时, $M_*\omega = \omega$.
- (e') 如果微分 r ∈ L2(D), 且在 D.-. 外为 0,则

$$(M_{\mathfrak{s}}\omega, \gamma)_{L^{2}(D)}^{=}(\omega, M_{\mathfrak{s}}\gamma)_{L^{2}(D)}$$

(f') 在D内 $M_sM_s\omega = M_sM_s\omega$.

证明。(a')由(a)直接推出。

(b') 由(b) 有

$$dM_{\varepsilon}\omega - \left(\frac{\partial M_{\varepsilon}q}{\partial x} - \frac{\partial M_{\varepsilon}P}{\partial y}\right)dx \wedge dy$$
$$-M_{\varepsilon}\left(\frac{\partial q}{\partial x} - \frac{\partial P}{\partial y}\right)dx \wedge dy$$
$$-M_{\varepsilon}d\omega,$$

•

其中按定义

$$M_{z}d\omega - M_{z}\left(\frac{\partial q}{\partial x} - \frac{\partial P}{\partial y}\right)dx \wedge dy.$$

(c') 由(c)当 6 → 0 时,我们有

$$||M_{s}\omega - \omega||_{L^{2}(D)}^{2} - \iint_{D} (|M_{s}P - P|^{2} + |M_{s}q - q|^{2}) dxdy$$

$$= ||M_{s}P - P||_{L^{2}(D)}^{2} + ||M_{s}q - q||_{L^{2}(D)}^{2} \rightarrow 0,$$

(d') 由(d),对定义于D的调和微分 ω ,按定义存在调和函数,使 $\omega = df$,因此有

$$M_{\varepsilon}\omega - M_{\varepsilon}df = dM_{\varepsilon}f = df = \omega_{\bullet}$$

(e') 由(e),设 $\gamma = \varphi dx + \psi dy$,

$$(M_*\omega, \gamma)_{L^2(D)} = \iint_D (M_*P)\bar{\varphi} + (M_*q)\psi)dxdy$$

$$= \iint_D (PM_*\bar{\varphi} + qM_*\psi)dxdy$$

$$= \iint_D (P\overline{M_*\varphi} + q\overline{M_*\psi})dxdy$$

$$= (\omega, M_*\gamma)_{L^2(D)}.$$

(f') 由(f)直接推出,引理全部证明。

§ 4 Weyl 引理与调和微分子空间

我们将要证明,

$$H = E^{\perp} \cap E^{\stackrel{1}{*}} = (E \oplus E^{*})^{\perp}$$

是调和微分构成的子空间。根据定理 1.3, 我们知道,如果 ω 是 C^1 微分,则 $\omega \in H$ 当且仅当 ω 是调和微分。由这一结论,只要我们能够证明,如果 $\omega \in H$,则 ω 是 C^1 微分,我们就知道 H 是调和微分子空间。为此,要用到 Weyl 引理。

引理 4.1。(Weyl 引理) 设 $\omega \in L^2(D), D = \{|z| < 1\}, 且$ 对任意 $f \in C^{\infty}_{\circ}(D)$ 有

$$(\omega, df)_{L^2(D)} = (\omega, *df)_{L^2(D)} = 0,$$

则 $ω \in C^1(D)$, 因而 ω 是调和微分.

证明。考虑 M.ω,由引理 3.2,我们有

$$(M_*\omega, df)_{L^2(D)} = (\omega, M_*df)_{L^2(D)} - (\omega, dM_*f)_{L^2(D)} = 0,$$

$$(M_{\varepsilon}\omega, *df)_{L^{2}(D)} = (\omega, M_{\varepsilon}(*df))_{L^{2}(D)}$$

= $(\omega, *dM_{\varepsilon}f)_{L^{2}(D)} = 0$.

因此,由定理 1.3, $M_{\epsilon}\omega \in E^{\perp} \cap E^{\frac{1}{\epsilon}}$, $M_{\epsilon}\omega$ 是调和微分。再由引理 3.2 (d'),在 D内有 $M_{\epsilon}M_{\epsilon}\omega - M_{\epsilon}\omega$, $M_{\epsilon}M_{\epsilon}\omega - M_{\epsilon}\omega$, 进一步根据引理 3.2(f'), $M_{\epsilon}M_{\epsilon}\omega - M_{\epsilon}M_{\epsilon}\omega$, 所以 $M_{\epsilon}\omega - M_{\epsilon}\omega$. 最后,由引理(3.2)(e'),当 $\epsilon < \delta$, $\epsilon \to 0$ 时

$$\|\boldsymbol{M}_{s}\omega - \omega\|_{L^{2}(D)} = \|\boldsymbol{M}_{s}\omega - \omega\|_{L^{2}(D)} \rightarrow 0,$$

这就得到 $\|\mathbf{M}_{\delta\omega} - \omega\|_{L^2(D)} = 0$,于是在D内几乎处处有 $\omega = \mathbf{M}_{\delta\omega}$,因此 $\omega \in C^1(D)$ 微分。引理证完

定理 4.2. H是调和微分子空间。

证明。设 $\omega \in H = E^{\perp} \cap E^{\frac{1}{z}}$,在任何局部参数圆V内,取局部参数映照, $z = \varphi(P)$ 把V 拓扑地映照为圆 $D = \{|z| < 1\}$,对任意 $f \in C_0^{\infty}(V)$,在 $L^2(D)$ 中有

$$(\omega, df) = (\omega, *df) = 0,$$

于是根据 Weyl 引理, ω 在V 内调和, 因此, ω 在整个W 上调和, 定理证完。

引理 4.3. 设 $D = \{|z| < 1\}$ 为平面 C 上的圆, $\varphi \in C_0^2(D)$,

则微分方程

$$\triangle \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = \varphi(x, y)$$

在 L¹(D) 内有解。

证明. 我们证明,对 $z \in D$, $D_1 = \{ |\zeta| < 2 \}$,

$$\psi = \psi(z) = \frac{1}{2\pi} \iint_{D_1} \log \frac{1}{|\zeta|} \varphi(\zeta + z) d\xi d\eta$$

就是所求的解,其中 z = z + iy, $\zeta = \xi + i\eta$ 。事实上,在积分号下求导数,得到

$$\Delta \psi(z) = \frac{1}{2\pi} \iint_{D_z} \log \frac{1}{|\zeta|} \Delta \varphi(\zeta + z) d\xi d\eta.$$

由于当 5 ≒ 0 时

$$\Delta \log \frac{1}{|\zeta|} = 0,$$

设 $D_{\epsilon} = \{|\zeta| < \epsilon\}$, 对任意 $z \in D$, 应用 Stokes 公式,得到

$$\Delta \phi(z) = \lim_{z \to 0} \frac{1}{2\pi} \iint_{D_1 \to D_2} \left[\log \frac{1}{|\zeta|} \Delta \varphi(z + \zeta) - \varphi(z + \zeta) \Delta \log \frac{1}{|\zeta|} \right] d\xi d\eta$$

$$= \lim_{z \to 0} \left(-\frac{1}{2\pi} \right) \left\{ \int_{\partial (D_1 \to D_2)} \left[\log \frac{1}{|\zeta|} \frac{\partial \varphi}{\partial n} - \varphi \frac{\partial \log \frac{1}{|\zeta|}}{\partial n} \right] d\zeta \right\}$$

$$= \lim_{z \to 0} \frac{1}{2\pi} \int_{\partial D_2} \varphi(z + \zeta) \frac{2 \log \frac{1}{|\zeta|}}{\partial n} d\zeta$$

$$= \lim_{z \to 0} \frac{1}{2\pi} \int_{0}^{2\pi} \varphi(z + re^{i\theta}) d\theta$$

$$= \varphi(z).$$

引理 4.4. 如果 $\omega \in C^3(D) \cap L^2(D), D = \{|z| < 1\}, 则存在 f, g \in C^2(D), 使得在 D, = \{|z| < r\}(D < r < 1) 有 <math>\omega = df + *dg$.

证明。作 Cl(D) 函数

$$e(z) = \begin{cases} \frac{1}{e^{(r_1-r)^{1-\frac{1}{(r_1-r)^{-1}}}}} & |z| \leq r, \\ e^{(r_1-r)^{1-\frac{1}{(r_1-r)^{-1}}}} & r < |z| < r_1, \\ 0 & |z| \geq r_{10} \end{cases}$$

令 $\omega_0 = e(z)\omega$, 则在 D, 内 $\omega_0 = \omega$. 设 $\omega_0 = p(z)dx + q(z)dy$,

这时 p(z), $q(z) \in C_0^2(D)$. 由引理 4.3, 存在 $g \in C^2(D)$, 使得

$$\frac{\partial^2 g}{\partial x^2} + \frac{\partial^2 g}{\partial y^2} = \frac{\partial q}{\partial x} - \frac{\partial P}{\partial y},$$

因此有 $d*dg=d\omega_0$, $d(\omega_0-*dg)=0$, 即 ω_0-*dg 是闭微分,于是存在 $f \in C^2(D)$, 使得 $\omega_0-*dg=df$. 即 $\omega_0=df+*dg$. 因此在 D_r 内 $\omega=df+*dg$. 引理证完.

定理 4.5. 对任何 $ω \in C^3(W) \cap L^2(W)$, ω 具有唯一的分解式

$$\omega = \omega_s + df + *dg,$$

其中f, $g \in C^2(W)$, $\omega_1 \in H$, $df \in E$, $*dg \in E^*$.

证明。由分解定理 $L^2(W) = H \oplus E \oplus E^*$,则 α 具有唯一的分解式

$$\omega = \omega_s + \omega_c + \omega_{c^*},$$

其中 $\omega_* \in H$, $\omega_* \in E$, $\omega_* \in E^*$. 由引理 4.4, 对任何局部参数 圆 V, 设 z = z(p) 为局部参数映照,

$$V = z^{-1}(D), D = \{|z| < 1\},$$

存在 f_0 , $g_0 \in C^2(D)$, 使得在 D, 内

$$\omega = df_0 + *dg,$$

不妨设此式在D内成立, 因此在D内有

$$\omega_* + \omega_* + \omega_{*} = df_{\bullet} + * dg_{\bullet \bullet}$$

$$\theta = \omega_k + \omega_c - df_0 = *dg_0 - \omega_c *.$$

现在我们证明 θ 是 D 内的调和微分,为此要用 Weyl 引理。 对任意 $\varphi \in C_0^{\sigma}(D)$, 当然 $\varphi \in C_0^{\sigma}(W)$, 只要令 φ 在 V 外为 0, 我们有

$$(\theta, d\varphi)_{L^{2}(D)} = (*dg, d\varphi)_{L^{2}(D)} - (\omega_{g} *, d\varphi)_{L^{2}(D)} = 0,$$
这是因为 $(\omega_{e} *, d\varphi)_{L^{2}(D)} = (\omega_{e} *, d\varphi) = 0,$ 及
$$(*dg_{0}, d\varphi)_{L^{2}(D)} = \iint_{D} *dg_{0} \wedge *\overline{d}\varphi = -\iint_{D} dg_{0} \wedge d\overline{\varphi}$$

$$= - \iint_{D} \varphi ddg_{0} = 0.$$

其次我们有

$$(\theta, *d\varphi)_{L^{2}(D)} = (\omega_{h}, *d\varphi) + (\omega_{c}, *d\varphi) - (df_{0}, *d\varphi) = 0,$$

这是因为 $*d\varphi \in E^*$, $(\omega_A, *d\varphi) = 0$, $(\omega_C, *d\varphi) = 0$. 并且 $(df_0, *d\varphi) = -(*df_0, d\varphi) = 0$.

总之,对任意 $\varphi \in C_0^*(D)$, $(\theta, d\varphi) = (\theta, *d\varphi) = 0$. 由 Weyl 引理 θ 是调和微分,因此

$$\omega_c = \theta - \omega_A + df_0, \ \omega_{c^*} = *dg_0 - \theta$$

是 c^1 的微分。 由引理 2.2, ω_c 是正合微分, ω_c 是上正合微分,即存在 $f,g \in C^2(W)$,使得 $df = \omega_c$,* $dg = \omega_c$ 。于是

$$\omega = \omega_* + df + * dg.$$

定理证完。

引理 4.6. 如果 $\omega \in C^1(W) \cap L^2(W)$,且 $d\omega = 0$,则 $\omega = \omega$,+ df,

其中 $\omega_* \in H$, $f \in C^2(W)$, $df \in E$.

证明。由假设,根据引理 1.2, $\omega \in E^{\frac{1}{4}}$ 。由分解定理,我们有 $\omega = \omega_s + \omega_s + \omega_{s*}$,

其中 $\omega_{\bullet} \in H$, $\omega_{e} \in E$, $\omega_{e^{*}} \in E^{*}$. 因此

$$0 = (\omega, \omega_{\epsilon^*}) = (\omega_{\epsilon}, \omega_{\epsilon^*}) + (\omega_{\epsilon}, \omega_{\epsilon^*})$$

$$+(\omega_{\epsilon^*}, \omega_{\epsilon^*}) = (\omega_{\epsilon^*}, \omega_{\epsilon^*}).$$

于是 $\omega_* = 0$, $\omega = \omega_* + \omega_*$. ω_* . 是 c^1 的,由引理 2.2, ω_* . 是 正合微分,即存在 $f \in C^2(W)$, 使得 $\omega_* = df$. $\omega = \omega_* + df$. 证 完.

Riemann 曲面W上是否存在调和微分是一个重要问题,引理 4.6 表明,如果W上存在 c^{\dagger} 的闭微分 ω , ω 不是正合的,则W上一定存在非零的调和微分, ω 。 ϵ H。 这是因为由引理 4.6,

$$\omega = \omega_k + df,$$

 ω 不是正合的,必定存在一逐段解析的简单闭曲线 c,使得 ω 在 c 的周期

$$\int_{\epsilon}\omega\neq0,$$

旫

$$\int_{s} \omega_{*} = \int_{s} \omega \neq 0,$$

ω, 不可能是常数。

另一方面,如果W上存在一逐段解析的简单闭曲线 c,不分割 W,即W -c 是连通的。则W上一定存在 c^{t} 的闭锁分 η ,使得 η 在 c 的周期

$$\int_{\mathcal{L}} \eta = 1.$$

事实上,由于 ϵ 不分割W,则存在逐段解析的简单闭曲线L,使得L与 ϵ 仅交于一点,设L的定向使 ϵ 从L的左边穿过L, η_L 为L对应的微分,则 η_L 就是所求的 ϵ^L 的闭微分。

我们也应该知道,正合的调和微分不一定存在。

引達 4.7. 如果W是紧 Riemann 曲面,则W上一定不存在非零的正合调和微分。

§ 5 具有极点的调和微分和解析微分的存在性

我们已知道,Riemann 曲面上不一定存在正合的调和微分和解析微分。 所以我们这里要构造具有极点的微分。 设 p_0 为W上一点,在 p_0 的局部参数邻域内设 z=z(p) 为局部参数映照, $z(p_0)=0$,设局部参数圆 $D=\{p|z(p)|<1\}$, $D_1=\{|z(p)|< r_1\}(r_1>1)$,下面我们将用 z 表示点 p_0 设 q_0 , $q_1\in D$, $a=z(q_0)$, $b=z(q_1)$ 。在这样取定的局部参数 z=z(p) 下,我们要构造W上的调和微分或解析微分 ω , ω 在 p_0 具有极点,在 D 内

$$\omega - d\left(\frac{1}{z^a}\right) - \omega + \frac{ndz}{z^{a+1}}$$

是调和的,或者 α 在 q_0 , q_1 具有极点,在D内

$$\omega - d \log \frac{z-a}{z-b} = \omega - \left(\frac{1}{z-a} - \frac{1}{z-b}\right) dz$$

是调和的。

定理 5.1. W上存在微分 ω,满足

(a) ω 在 $W - \{P_0\}$ 上是正合的调和微分。

(b)
$$\omega - d\left(\frac{1}{z^n}\right) - \omega + \frac{ndz}{z^{n+1}} \ (n \ge 1)$$
 在D内调和。

(c)
$$\|\omega\|_{L^2(W-D)}^2 = \iint_{W-D} \omega \wedge \overline{*\omega} < \infty$$
.

(d) 对任意 $h \in C_0^*(W)$, $h \in P_0$ 的邻域内为 0, 有 $(\omega, dh) = (\omega, *dh) = 0$.

证明。作 $e(z) \in C_0^1(\mathbb{C})$,使得在 |z| < 1 内 e(z) = 1,在 $|z| \ge r$,内 e(z) = 0,通过局部参数 z = z(p) 把 e(z) 开拓 为W上的函数

$$e(p) = \begin{cases} e(z), & p \in D_1, z = z(p) \\ 0, & p \in D_1, \end{cases}$$

作W上的微分

$$\phi = \begin{cases} d(e(z)|z^*), & p \in D_1 \\ 0, & p \in D_{1*} \end{cases}$$

则 ϕ 在 $W - \{p_0\}$ 是 C_0^2 的,且在D内

$$\phi = d\left(\frac{1}{z^*}\right),\,$$

 ψ 在 $D-\{p_0\}$ 内解析,因此有 $*\phi=-i\phi$,即 $i*\phi=\phi$ 。在 D内 $\phi-i*\phi=0$,于是 $\phi-i*\phi$ 是W上的微分,并且 $\phi-i*\phi\in C^2_0(W)\cap L^2(W)$.根据定理 4.5, $\phi-i*\phi=\omega_1+df+*dg$,其中 $\omega_1\in H$,f, $g\in C^2(W)$, $df\in E$, $*dg\in E^*$ 。定义 $\omega=\phi-df=i*\phi+\omega_1+*dg$,

则ω满足条件 (a)-(d), 证之如下

(a) 由 $\omega \in C^1(W - \{P_0\})$ 及 ω 在 $W - \{P_0\}$ 上正合,知道 ω 在 $W - \{P_0\}$ 内正合,又由 $d\omega = 0$ 及

 $*d\omega = *d(i*\phi) + *d\omega_h + *d*dg = 0,$

所以 ω 在 $W - \{P_0\}$ 内还是调和的。

(b) 由于在D内

$$\psi = i * \psi = d\left(\frac{1}{z^n}\right),$$

所以

$$\omega - d\left(\frac{1}{z^n}\right) = -df = \omega_b + *dg,$$

$$d\left(\omega - d\left(\frac{1}{z^n}\right)\right) = -ddf = 0,$$

$$*d\left(\omega - d\left(\frac{1}{z^n}\right)\right) = *d\omega_b + *d*dg = 0,$$

即

$$\omega = d\left(\frac{1}{z^n}\right)$$

在D内调和。

(c) 由 $\omega = \phi - M$, $df \in E$, 我们有

 $\|\omega\|_{L^2(W-D)}^2 \leq \|\phi\|_{L^2(W-D)}^2 + \|df\|_{L^2(W-D)}^2 < \infty.$

(d) 设 $h \in C^{\infty}(W)$, 在 P_0 的邻域内为 0,则有

$$(\omega, dh) = i(*\phi, dh) + (\omega_h, dh) + (*dg, dh) = 0.$$

这是因为 $dh \in E$, $(\omega_k, dh) = 0$, (*dg, dh) = 0 并注意到 h 在 ρ_0 的邻域内及一个紧集外为 0, 应用 Stokes 公式,

$$(*\phi, dh) = -\iint \phi \wedge d\bar{h} = \iint \bar{h} d\phi = 0.$$

同样可以得到

$$(\omega, *dh) = (\psi, *dh) + (df, *dh) = 0.$$

定理完全得证。

设 ω 为定理 5.1 中构造的微分, ω 在 P_0 具有极点,在 P_0 的局部参数 z=z(p) 下, $z(p_0)=0$,

$$\omega = d\left(\frac{1}{z^n}\right)$$

是调和的,我们称 α 在 P_0 有奇异部分

$$d\left(\frac{1}{z^n}\right) = -\frac{n}{z^{n+1}} dz_{\bullet}$$

根据定理 5.1 可以得到下述推论。

推论. 对于任意的 Riemann 曲面 W,设 $n \ge 1$ 则

- (1) 存在正合的调和微分, 在 P_0 具有奇异部分 $d\left(\frac{1}{x^*}\right)$.
- (2) 存在正合的实调和微分,在 P_0 具有奇异部分 $\operatorname{Red}\left(\frac{1}{z^n}\right)$ (或 $\operatorname{Imd}\left(\frac{1}{z^n}\right)$).
 - (3) 存在调和函数,在 P_0 具有奇异部分 $\frac{1}{2}$.
- (4) 存在解析微分,在 P_{\bullet} 具有奇异部分 $d\left(\frac{1}{z^{\bullet}}\right)$,且具有正合的实部。

证明。定理 5.1 中构造的微分 ω 满足 (1)。 $\gamma = \frac{\omega + \alpha}{2}$ (或

 $\frac{\omega - \omega}{2i}$) 满足 (2). $\gamma + i * \gamma$ 是解析微分。这是因为

$$*(\tau + i * \tau) = -i(\tau + i * \tau),$$

且 d(r+i*r)=0,即 r+i*r 还是闭的。 由第四章定理 4.1 的推论,r+i*r 是解析微分。 于是 r+i*r 满足 (4)。 对 ω 积分即可得到满足(3)的调和函数。

定理 5.2. Riemann 曲面W上存在微分 ω,满足

- (a) ω 在 $W \{q_0, q_1\}$ 内调和,
- (b) 在局部参数圆D内, 并在局部参数 z = z(p) 下, $\omega = d \log \frac{z-a}{z-b}$ 是调和微分,
 - (c) $\|\omega\|_{L^2(W-D)} < \infty$,
 - (d) 对任意 $h \in C^{\infty}_{0}(W)$, 在 D内 h = 0, 则有 $(\omega, dh) = (\omega, *dh) = 0$,
- (e) ω 在 W-D 内是正合调和微分,而在 D 内 ω $d \log \left(\frac{z-a}{z-b} \right)$ 是正合调和微分。

证明。如同定理 5.1 的证明一样,作微分

$$\phi(p) = \begin{cases} d\left(e(z)\log\frac{z-a}{z-b}\right), & p \in D_1, z = z(p), \\ 0, & p \in D_1, \end{cases}$$

 $\phi = i*\phi$ 在D内为 0, $\phi = i*\phi \in C_0^2(W) \cap L^2(W)$,由定理 4.5 有分解式

$$\phi - i * \phi - \omega_{\bullet} + df + * dg,$$

其中 $W_k \in H$, f, $g \in C^2(W)$, $df \in E$, $*dg \in E^*$. 令 $\omega = \phi - df = i * \phi + \omega_k + *dg$.

如同定理 5.1 的证明一样得到 ω 满足(a),(b),(c),和(d)。由于 ϕ 是正合的, $\omega = \phi - df$ 在W - D内是正合调和的。在 D内

$$\omega - d \log \frac{z - a}{z - b} = -df$$

是正合调和的, 定理证完,

推论. 设W为任意 Riemann 曲面,点 q_0 , q_1 在局部参数图 D内, z=z(p) 为局部参数映照, $D=\{p\colon |z(p)|<1\}$ a = $z(q_0)$, $b=z(q_1)$, 则

- (1) 存在调和微分 ω ,具有奇异部分 $d \log \frac{z-a}{z-b}$,
- (2) 存在正合的实调和微分 r, 具有奇异部分 $d \log \frac{|z-a|}{|z-b|}$.
- (3) 存在实的调和函数,具有奇异部分 $\log \frac{|z-a|}{|z-b|}$.
- (4) 存在解析微分 ω , 具有奇异部分 $d \log \frac{z-b}{z-a}$, 且有正合的实部。

证明. 定理 5.2 中构造的微分 ω 满足(1), $\gamma = \frac{\omega + \varpi}{2}$ 满足(2), $\gamma + i * \gamma = \omega$ 满足(4), 对 γ 积分得到满足(3)的实的调和函数。

定理 5.2 及其推论表明,当 q_0 , q_1 在同一局部参数圆内时,存在一个调和微分 ω ,在 q_0 和 q_1 具有极点。在 q_0 的局部参数邻域内,取局部参数z,使得 $z(q_0)$ — 0,则 ω 在 q_0 具有奇异部份 $\frac{dz}{z}$. 在 q_1 的局部参数邻域内,取局部参数 z,使得 $z(q_1)$ — 0,则 ω 在 q_1 的奇异部份为 — $\frac{dz}{z}$. ω 在 q_0 的留数为 1,在 q_1 的留数为 — 1,留数和为 0。

对于W上的任意两点 q_0 和 q_1 ,上面的结论仍然成立。 事实上,作弧 $\sigma:[0, 1] \to W$, $t \to \sigma(t)$ 连接 q_0 和 q_1 ,即 $\sigma(0) = q_0$, $\sigma(1) = q_1$,分割

$$[0,1] = \bigcup_{i=0}^{n} [t_i, t_{i+1}],$$

 $t_0 = 0$, $t_i < t_{i+1}$, $t_{n+1} - 1$ 把弧 σ 分 σ_i , σ_i : $[t_i t_{i+1}] \rightarrow W$, $\sigma_i(t) = \sigma(t)$, 使得 $\sigma([t_i, t_{i+1}])$ 位于某一局部参数圆 D_i 内,对 $0 \le i \le n$, 取 $\sigma(t_i)$ 的局部参数邻域内的局部参数为 z,

则对每一个 $i(0 \le i \le n)$,W上存在解析(调和)微分 ω_i ,在 $\sigma(t_i)$ 和 $\sigma(t_{i+1})$ 具有极点,在 $\sigma(t_i)$ 的奇异部分为 $\frac{dz}{z}$,在 $\sigma(t_{i+1})$ 的奇异部分为 $-\frac{dz}{z}$ 。令 $\omega = \omega_0 + \omega_1 + \cdots + \omega_n$,则 ω 即为 所求的微分。我们有下列定理。

定理 5.3. 设 q₀, q₁ 为 Riemann 曲面W上的任意两点,则

- (1) 存在一个解析(调和)微分,以 q_0 , q_1 为极点,在 q_0 的奇异部分为 $\frac{dz}{z}$,在 q_1 具有奇异部分为一 $\frac{dz}{z}$.
- (2) 存在一个实调和函数,以 q_0 , q_1 为奇点, 在 q_0 的奇异部分为一 $\log |z|$, 在 q_1 的奇异部分为 $\log |z|$.

定理 5.4. 在 Riemann 曲面W上,给定点 q_1, q_2, \dots, q_n 及复数 c_1, c_2, \dots, c_n 使得 $c_1 + c_2 + \dots + c_n = 0$. 在 q_i 的局部参数邻域内,设 z = z(p) 为局部参数 $z(q_i) = 0$, $1 \le i \le n$. 则 W上存在一个解析(或调和)微分 ω ,以 q_i 为一阶极点,在 q_i 的奇异部分为 c_i dz, 即在极点 q_i 的留数为 c_i .

证明. 取定一点 $q_0 \neq q_i (i=1,2,\cdots,n)$,在 q_0 的局部参数 邻域内取局部参数为 z=z(p), $z(q_0)=0$, 则由定理 5.3, 对 q_0 和 $q_i (1 \leq i \leq n)$ 存在解析(或调和) 微分 ω_i , 在 q_i 具有极点, 奇异部分为 $\frac{dz}{z}$, 在 q_0 具有极点, 奇异部分为 $-\frac{dz}{z}$. 令

 $\omega = c_1\omega_1 + c_2\omega_2 + \cdots + c_*\omega_*,$

则 ω 即为所求微分。

第七章 紧 Riemann 曲 面

§1 紧 Riemann 曲面上的调和微分与解析微分空间

在这一章中,我们总设 W 为紧 Riemann 曲面,亏格为g. 首先,我们讨论调和微分的存在性。从上一章中知道,当g=0 时,所有调和微分是正合的,因此为零. 当 $g\geq 1$ 时,非零的调和微分总是存在的. 因为这时总存在一条不分割W 的逐段解析的简单闭曲线 L_1 ,对应存在另一条 L_2 ,使 L_2 与 L_1 仅交于一点。设 η_{L_1} 为与 L_1 对应的闭微分, η_{L_1} 是 C_0^{∞} 的闭微分, $d\eta_{L_1}=0$, η_{L_1} 在 L_2 上的周期

$$\int_{L_1} \eta_{L_1} = 1.$$

规定 L_1 从 L_1 的左边穿过 L_1 ,由第六章引理 4.6,对于 η_{L_1} ,存在 $\omega_{L_1} \in H$ 及 $df \in E$,使得 $\eta_{L_1} = \omega_{L_1} + df$,则 ω_{L_1} 即为非常数的调和微分。

由第六章引理 2.1,对任何闭微分 11,有

$$\int_{L_1} \eta = (\eta, *\eta_{L_1}) = (\eta, *\omega_{L_1}) + (\eta, *df) = (\eta, *\omega_{L_1})$$
这里因为 $\eta \in E^{*\perp}, *df \in E^*, (\eta, *df) = 0.$

定义 L_1 与 L_1 的**相交数** $L_1 \times L_1$ 为 L_2 穿过 L_1 的 次 数 总和,当 L_1 从 L_1 左边穿过 L_1 时是十 1 次, L_2 从 L_1 右边穿过 L_1 时是一 1 次,于是如果设 ω_{L_1} 与 ω_{L_2} 是对应的调和微分,则

$$L_i \times L_i = \int_{L_i} \omega_{L_i} - (\omega_{L_i}, * \omega_{L_i}) = \iint \omega_{L_i} \wedge \omega_{L_i}.$$

考虑W上的所有调和微分组成的空间 H. 我们假定 $\ell \geq 1$. H 是复数域上的线性空间、现在,我们要找出H的基。

设业的标准正规基本多边形表示为

$$\Pi: a_1b_1a_1^{-1}b_1^{-1}\cdots a_kb_ka_k^{-1}b_k^{-1}$$

则 $(a_1, b_1, \dots, a_s, b_s)$ 组成W的同调群的基。 Π 的 边 $a_1, b_1, \dots, a_s, b_s$ 是解析的简单闭曲线, 这些闭曲线之间的相交数,只有

$$a_k \times b_k = 1$$
, $b_k \times a_k = -1$ $(1 \le k \le g)$.

当 $i \neq j$ 时, $a_i \times b_i = 0$,

$$a_i \times a_j = 0, \ b_i \times b_j = 0,$$

 $(1 \leq i, \ j \leq g)$

设 α_k 为与 b_k 对应的调和微分,一 β_k 为与 α_k 对应的 调 和 微分,则

$$a_{k} \times b_{k} - \int_{a_{k}} \alpha_{k} = \iint \alpha_{k} \wedge \beta_{k}$$

$$= 1,$$

$$b_{k} \times a_{k} = - \int_{b_{k}} \beta_{k} = - \iint \alpha_{k} \wedge \beta_{k}$$

$$= -1.$$

图 7.1

因此,仅当i=i=k时

$$\int_{\mathcal{A}_k} \alpha_k = \iint \alpha_k \wedge \beta_k = 1, \quad \int_{\mathcal{A}_k} \beta_k = \iint \alpha_k \wedge \beta_k = 1.$$

在其它情况下积分都为零,即 α_k 只在 α_k 的周期为 1, β_k 只在 δ_k 的周期为 1。按通常定义,微分 ω 在闭曲线 γ 的积分,称为 ω 在 γ 的周期。

现在,我们证明, $(\alpha_1,\dots,\alpha_s,\beta_1,\dots,\beta_s)$ 是H的一组基. 它是线性无关的,因为如果有复数 λ_i 和 μ_i 使

$$\sum_{i=1}^g \lambda_i \alpha_i + \sum_{i=1}^g \mu_i \beta_i = 0,$$

则分别在 a_i 和 b_i 上取积分后,便得到 $\lambda_i = 0$, $\mu_i = 0$, 这就是 线性无关性。

另外,对任意 $\omega \in H$, 总存在 A_i , $B_i \in \mathbb{C}$, 使得

$$\omega = \sum_{i=1}^g A_i \alpha_i + \sum_{i=1}^g B_i \beta_{i*}$$

事实上,只要取

$$A_i = \int_{a_i} \omega, \quad B_i = \int_{b_i} \omega$$

即可。我们称 A_i 为 A-周期, B_i 为 B-周期。因此,(α_1 , ···, α_2 , β_1 , ···, β_2) 是 H 的一组基。同时我们知道, ω 由它的 A-周期和 B-周期唯一确定。(α_1 , ···, α_2 , β_1 , ···, β_2) 称为同调基(α_1 , ···, α_2 , δ_1 , ···, δ_2) 的对偶基。

定理 1.1、紧 Riemann 曲面的调和微分空间H的维数 -2g. 另一线性空间是W上所有全纯微分组成的空间 A, A 是H的子空间。

设
$$A = \{\varphi: \varphi \in W \perp \leq \psi \otimes \varphi\},$$
 $\overline{A} = \{\overline{\varphi}: \varphi \in A\}.$

则A与 \overline{A} 同构。

定理 1.2. $H = A \oplus \overline{A}$, A 的维数 = g.

证明。因为对任意 $\varphi \in A$, $\varphi_1 \in \overline{A}$,注意到* $\varphi = -i\varphi$, 则有 $(\varphi, \overline{\varphi_1}) = (*\varphi, *\overline{\varphi_1}) = (-i\varphi, (\overline{-i\varphi_1})) = (-i\varphi, i\overline{\varphi_1})$ $= (-i)(-i)(\varphi, \overline{\varphi_1}) = -(\varphi, \overline{\varphi_1})$

所以 $(\varphi, \bar{\varphi}_i) = 0$,即 $A \perp \bar{A}$.

根据第四章定理 4.1,对任意 $\omega \in H$, 有 $\omega \in H$,

$$\varphi = \omega + i * \omega \in A$$
, $\varphi_i = \omega + i * \omega \in A$,

因此, $\hat{\mathbf{g}}_1 \in \widehat{A}$,但

$$\omega = \frac{\varphi + \bar{\varphi_i}}{2},$$

故 $H = A \oplus \overline{A}$, A 的维数 = g. 定理证毕.

引理 1.3. 如果 θ 和 $\tilde{\theta}$ 为W上的闭微分,则

$$\iint\limits_{\mathbb{R}^d}\theta \wedge \tilde{\theta} = \sum_{i=1}^s \Big[\int_{\bullet_i}\theta \int_{\bullet_i}\tilde{\theta} - \int_{\bullet_i}\tilde{\theta} \int_{\bullet_i}\theta \Big].$$

证明。由假设 θ 与 $\tilde{\theta}$ 是闭微分,根据第六章引理4.6,存在 \bullet 156 \bullet

 θ_{\bullet} , $\tilde{\theta}_{\bullet} \in H$ 和 f, $\tilde{f} \in C^{2}(W)$ 以及 df, $d\tilde{f} \in E$, 使得 $\theta = \theta_{\bullet} + df$, $\tilde{\theta} = \tilde{\theta}_{\bullet} + d\tilde{f}$, 注意到W是紧曲面,* $d\tilde{f} \in E^{*}$, 我们有

$$\iint_{W} \theta \wedge \tilde{\theta} = -(\theta_{k} * \tilde{\theta}_{k}) = -(\theta_{k} + df_{k} * \tilde{\theta}_{k} + * d\tilde{f}_{k})$$
$$= -(\theta_{k} * \tilde{\theta}_{k}) = \iint_{W} \theta_{k} \wedge \tilde{\theta}_{k}.$$

这样,我们不妨假定 θ , $\tilde{\theta} \in H$.

设 θ 的 A-周期为 (A_1, \dots, A_s) , B-周期为 (B_1, \dots, B_s) , $\tilde{\theta}$ 的为 $(\tilde{A}_1, \dots, \tilde{A}_s)$ 与 $(\tilde{B}_1, \dots, \tilde{B}_s)$, 则有表示式

$$\theta = \sum_{i=1}^{s} A_i \alpha_i + \sum_{i=1}^{s} B_i \beta_i, \quad \tilde{\theta} = \sum_{i=1}^{s} \tilde{A}_i \alpha_i + \sum_{i=1}^{s} \tilde{B}_i \beta_i.$$

注意到只有

$$\iint\limits_{W} \alpha_i \wedge \beta_i = 1,$$

其它积分为0,直接计算得到

$$\iint\limits_{\widetilde{W}} \theta \wedge \widetilde{\theta} = \sum_{i=1}^{g} (A_i \widetilde{B}_i - \widetilde{A}_i B_i).$$

此即

$$\iint\limits_{W}\theta\wedge\tilde{\theta}=\sum_{i=1}^{\ell}\left[\int_{\bullet_{i}}\theta\int_{\bullet_{i}}\tilde{\theta}-\int_{\bullet_{i}}\tilde{\theta}\int_{\bullet_{i}}\theta\right].$$

引理证完。

如果 θ 是调和微分,则 $\theta \in H$, * $\theta \in H$, 由引理 1.3 我们有

$$\|\theta\|^2 = \sum_{i=1}^{s} \left[\int_{a_i} \theta \int_{b_i} *\bar{\theta} - \int_{a_i} *\bar{\theta} \int_{b_i} \theta \right]. \tag{1.1}$$

定理 1.4. 设 φ , φ' 为全纯微分,A-周期和 B-周期分别为 A_i 和 B_i , A_i' 和 B_i' ($1 \le i \le g$). 则有关系式

$$i(\varphi, \bar{\varphi}') = \sum_{i=1}^{d} (A_i B_i' - B_i A_i') = 0,$$
 (1.2)

证明 由引理 1.3 及

$$i(\varphi, \bar{\varphi}') = \iint \varphi \wedge \varphi' = 0,$$

立刻得出这个关系式,

定理 1.5. 设 φ 为全纯微分, A-周期和 B-周期分别为 A_i 和 B_i (1 $\leq i \leq g$),则有关系式

$$\|\varphi\|^2 = i \sum_{i=1}^{g} (A_i \overline{B}_i - B_i \overline{A}_i) \geqslant 0.$$
 (1.3)

证明 因为

$$\|\varphi\|^2 - (\varphi, \varphi) = i \iint \varphi \wedge \overline{\varphi},$$

由引理 1.3 并注意到 φ 的 A-周期和 B-周期分别为 \overline{A}_i , \overline{B}_i ,便可得到证明。

关系式(1.2)和(1.3) 称为全纯微分的 Riemann 双线性关系式.

推论 对于全纯微分 φ , 如果 A-周期或 B-周期都等于零,或者 A-周期和 B-周期皆为实数,则 $\varphi = 0$.

现在构造全纯微分空间 A 的典型基。

A是 8 维线性空间, ψ_1 , ψ_2 , …, ψ_2 为一组基。 ψ_i 在 a_i 的 A-周期为 A_{ii} ,则行列式 $|(A_{ii})| = 0$ 。因为如果 $|(A_{ii})| = 0$,则存在一组非全为零的 $(\lambda_1, \lambda_2, \dots, \lambda_n)$,使

$$\sum_{i=1}^{g} \lambda_{i} A_{ij} = 0, \ j=1, \ 2, \ \cdot \cdot \cdot g.$$

这时 $\lambda_1\phi_1 + \cdots + \lambda_s\phi_s = 0$,因为它具有零的 A-周期,这便与 ϕ_1, \dots, ϕ_s 是线性无关的矛盾。

Ŷ

$$\varphi_k = \sum_{i=1}^g \lambda_{ik} \phi_i, \quad k = 1, 2, \cdots g,$$

其中 礼, 是方程组

$$\int_{g_i} \varphi_k = \sum_{i=1}^g \lambda_{ik} A_{ij} = \delta_{ik}, \quad j, k = 1, 2, \dots g$$

的唯一解。这里,当i = k时, $\delta_{ik} = 1$; 当 $i \neq k$ 时, $\delta_{ik} = 0$. 则 $(\varphi_1, \varphi_2, \dots, \varphi_k)$ 构成 A的另一组基,其 A-周期和 B-周期 如下表所示:

 $(\varphi_1, \varphi_2, \cdots, \varphi_s)$ 称为 A的典型基。

考虑 B-周期矩阵

$$(B_{ii}) = \begin{bmatrix} B_{11} & B_{12} \cdots B_{1t} \\ B_{21} & B_{22} \cdots B_{2t} \\ \cdots & \cdots \\ B_{e1} & B_{e2} \cdots B_{ee} \end{bmatrix}$$

 (B_{ii}) 是对称矩阵: 因为由定理 1.4, 令 $\varphi - \varphi_i$ 和 $\varphi' - \varphi_i$, 设 φ_i 在 a_k 的 A-周期为 A_{ik} , 则 $A_{ik} - \delta_{ik}$, 所以

$$\sum_{k=1}^{g} \left(A_{ik} B_{jk} - B_{ik} A_{jk} \right) = 0,$$

即 $B_{ii} - B_{ij} = 0$,这就说明 (B_{ii}) 是对称的。

矩阵 $(Im B_{ij})$ 是正定的。为证明这点,应用定理 1.5 于 $\varphi = x_1\varphi_1 + \cdots + x_{\ell}\varphi_{\ell}$,(其中 x_i 为不全为零的实数)得到 $\|\varphi\|^2 > 0$ 。由于 φ 在 α_k 的 A-周期为 $A_k = x_k$,在 b_k 的 B-周期为

$$B_k = x_1 B_{1k} + x_2 B_{2k} + \cdots + x_k B_{kk},$$

我们有

$$0 < i \sum_{j=1}^{z} (x_{j} \bar{B}_{j} - \bar{x}_{j} B_{j}) = \sum_{j=1}^{z} \cdot \sum_{k=1}^{z} x_{j} x_{k} \text{Im} B_{ik}$$

即(ImBil)是正定的。

§ 2 亚纯微分及其双线性关系式

设ω为紧 Riemann 曲面上的亚纯微分,我们知道,ω只有有

限多个极点。 在极点 p_0 的参数邻域内,我们取定局部参数 $z = \varphi(p)$, 使 $\varphi(p_0) = 0$, 在这参数邻域内

$$\omega = \left(\frac{a_n}{z^n} + \cdots + \frac{a_2}{z^2} + \frac{a_1}{z}\right) dz + f(z) dz,$$

其中 ƒ(x) 是全纯函数。

$$\frac{a_n}{z^n}+\cdots+\frac{a_2}{z^2}+\frac{a_1}{z}$$

称为 ω 在极点 p_0 的主要奇异部分。 a_1 称为 ω 在 p_0 的留数。 注意留数与局部参数无关,且 ω 在所有极点上的留数和为零。

传统上,亚纯微分称为 Abel 微分。 全纯微分称为第一类 Abel 微分;在每一极点处的留数为零的亚纯微分称为 第二类 Abel 微分;留数不等于零的亚纯微分称为第三类 Abel 微分。

A~周期为零的亚纯微分称为规范化的亚纯微分。

对于亚纯微分 ω , 设其 A-周期为 A_1, \dots, A_s , 若 φ_1, \dots , φ_s 为全纯微分空间的典型基,则

$$\omega_0 = \omega - (A_1\varphi_1 + A_2\varphi_2 + \cdots + A_s\varphi_s)$$

将有为零的 A-周期, ω_0 称为 ω 的规范化。

由上一章的存在定理,我们知道,W上存在规范化的第二类微 分 ω_2 ,在极点上,具有形为

$$\left(\frac{a_n}{z^n}+\cdots+\frac{a_2}{z^2}\right)dz \quad (n\geqslant 2)$$

的主部。

W上存在规范化的第三类微分 ω_i , 在 p_i 和 p_i 具有极 点,在 p_i 的主部为 $\frac{dz}{z}$ 。在 p_i 点的主部为 $-\frac{dz}{z}$ 。我们又知道,如果给定留数 c_i 及点 p_i ($1 \le i \le n$),则在W上存在规范化的第三类微分 ω_i ,以 p_i 为一阶极点,且在 p_i 的主部为 $\frac{c_i}{z}$ dz,即在 p_i 的留数为 c_i . 当然,要求留数和为零。

一般的规范化亚纯微分,可以表为上述规范化的第二类,第三, · 160 ·

类微分之和。

现在讨论第一类微分与第三类微分的双线性关系式。

设 ω , 为第三类微分,具有单阶极点 p_1 , ···, p_m , 对应的留数分别为 c_1 , ···, c_n , 即在 p_k $(1 \le k \le m)$ 点具有主部 $\frac{c_k}{n}$ dz.

取W的正规多边形 $\Pi: a_1b_1a_1^{-1}b_1^{-1}\cdots a_gb_ia_g^{-1}b_g^{-1}$,使 $\partial\Pi$ 不包含任何点 $p_i(1 \le k \le m)$ 。设 ω_i 为W上全纯微分, ω_i 的 A-周期为 A_1 , \cdots , A_g , B-周期为 B_1 , \cdots , B_g ; ω_i 的 A-周期为 A_1 , \cdots , A_g , B-周期为 B_1 , \cdots , B_g ; α_i 的 α_i 0, α_i 1, α_i 2, α_i 3, α_i 4, α_i 5, α_i 6, α_i 7, α_i 8, α_i 8, α_i 8, α_i 8, α_i 9, α_i 9,

定理 2.1. 在上面假设下,有双线性关系式

$$\sum_{j=1}^{g} (A_{j}B'_{j} - A'_{j}B_{j}) = 2\pi i \sum_{k=1}^{m} c_{k} \int_{I_{k}} \omega_{i}$$

证明 Ⅱ是单连通域,在Ⅱ内定义全纯函数

$$f(p) = \int_{p_0}^p \omega_{1*}$$

其中积分路径为17内连接 2。到 2 的解析曲线。

注意,等价边 a_i 与 a_i^{-1} , b_i 与 b_i^{-1} 在W上表示同一闭曲线。点 $p \in a_i$ 对应有等价点 $p' \in a_i^{-1}$ 。我们有

$$f(p') = \int_{p_0}^{p'} \omega_1 = \int_{p_0}^{p} \omega_1 + \int_{p'p} \omega_1$$
$$+ \int_{b_j} \omega_1 + \int_{pp'} \omega_1$$
$$= f(p) + B_{j_0}$$

参看图 7.2.

同样,对 $p \in b_i$,对应 $p' \in b_i^{-1}$, p等价于 p',我们有

$$f(p') = f(p) - A_i;$$

对 a;b;a; 1b; 1,则有

图 7.2

$$\int_{a_{i}b_{j}a_{i}^{-1}b_{i}^{-1}}f\omega_{3} = \int_{a_{i}}f\omega_{3} + \int_{b_{i}}f\omega_{3} + \int_{a_{i}^{-1}}f\omega_{3} + \int_{b_{i}^{-1}}f\omega_{3}$$

$$-A_i \int_{b_i} \omega_3 - B_i \int_{a_i} \omega_3$$
$$-A_i B'_i - A'_i B_i.$$

由留数定理

$$\int_{\partial B} f \omega_3 = \sum_{j=1}^{g} \int_{a_j b_j a_j^{-1} b_j^{-1}} f \omega_3 = 2\pi i \sum_{k=1}^{g} \text{Res}(f \omega_3, p_k).$$

把上式代入得到

$$\sum_{i=1}^{q} (A_i B_i' - B_i A_i') = 2 \pi i \sum_{k=1}^{m} f(p_k) c_k,$$

此即为所求关系式, 定理证完。

推论1 如果 ω, 是规范化第三类微分,φ, ···,φ, 是全纯 微分典型基,则

$$B'_{k} = \int_{b_{k}} \omega_{i} = 2\pi i \sum_{j=1}^{n} c_{j} \int_{l_{j}} \varphi_{k}$$

其中 c_i — Res(ω_i , p_i), l_i 为 Π 内点 p_i 到 p_i 的路径.

推论 2 如果 ω , 是规范化第三类微分, 仅以 ρ_1 、 ρ_2 为一阶 极点, 留数分别为 1 和一 1, 则

$$B_k' = \int_{b_k} \omega_k = -2\pi i \int_{p_k}^{p_k} \varphi_{k\bullet}$$

其中积分路径取于17内,

下面讨论第一类微分与第二类微分的双线性关系式。

设 ω_1 为第一类像分即全纯微分, ω_2 为仅具有极点 p_0 的第二类微分,在 p_0 的局部参数邻域内,设 $z=\varphi(p)$ 为局部参数, $\varphi(p_0)=0$,则在 p_0 的局部参数邻域内, ω_2 的主要部分为

$$\frac{dz}{z^*} \quad (n \geqslant 2).$$

又设 $\omega_1 = (c_0 + c_1 z + \cdots + c_n z' + \cdots) dz$, 且 ω_1 的 A-周期、B-周期分别为 A_i , B_i ; ω_2 的 A-周期、B-周期分别为 A_i' 、 B_i' , i-1, i-1,

定理 2.2. 在上面假设下,有关系式

$$\sum_{i=1}^{8} (A_i B_i' - A_i' B_i) = 2\pi i \frac{c_{z-2}}{n-1},$$

证明 同定理 2.1 的证明一样, 我们得到

$$\sum_{j=1}^{g} (A_j B_j' - A_j' B_j) = 2\pi i \operatorname{Res}(f \omega_2, p_0),$$

其中

$$f(p) = \int_{p_0}^{p} \omega_1,$$

在 / 的邻域内,有展开式

$$f(z) = c_0 z + \frac{c_1}{2} z^2 + \cdots + \frac{c_{n-2}}{n-1} z^{n-1} + \cdots,$$

因此

$$2\pi i \text{Res}(f\omega_2, p_0) = 2\pi i \frac{c_{n-2}}{n-1}$$

代人上面即得所求关系式。证完。

推论 ω_1 在上面假设下,再规范化地设 ω_2 的 A-周期为零 $(A_1' = 0)$ 。 又设 $(\varphi_1, \dots, \varphi_s)$ 为 A 的典型基,在点 p_s 的局部 参数邻域内,在局部参数 z 下

$$\varphi_{k} = (a_{k,0} + a_{k,1}z + \cdots + a_{k,n-2}z^{n-2} + \cdots)dz,$$

$$k = 1, 2, \cdots, g.$$

则有

$$B_{k}' = \int_{b_{k}} \omega_{k} = 2\pi i \, \frac{a_{k,n-2}}{n-1}.$$

§ 3 除子与亚纯函数空间

Riemann 曲面W上的除子D定义为

$$D = n_1 p_1 + n_2 p_2 + \cdots + n_m p_m$$

其中 $p_1, \dots, p_n \in W$, $n_1, \dots, n_n \in \mathbb{Z}$ (整数集).

所有除子的集在加法下成为一个群,称为除子群,用 罗 表示

$$D_1 = \sum_{k=1}^{n} n'_k p_k, \ D_2 = \sum_{k=1}^{m} n''_k p_k,$$

只要令其中一些 n'_i 或 n''_i 为零,则不妨认为 n=m,其和可定义为

$$D_1 + D_2 = \sum_{k=1}^{n} (n'_k + n''_k) p_{k'}$$

D 的逆定义为

$$-D = \sum_{k=1}^{n} (-n_k) p_k.$$

对W上的任何亚纯函数f,对应有一除子,用(f)表示,称为**主除子,**定义为

$$(f) = \sum_{k=1}^n n_k p_k,$$

其中 $\{p_k\}$, k=1, 2, $\cdots m$, 为 f 的所有零点与极点。当 p_k 为 零点时, n_k 为零点的阶;当 p_k 为极点时, n_k 为极点的阶。

所有的主除子组成 \mathcal{O} 的一个子群,称为主除子群,用 \mathcal{O} 。表示之。

定义商群 $\mathcal{D}/\mathcal{D}_0$, 它的元素称为**除子类**。两除子 D_1 , D_2 属于同一除子类,当且仅当 $D_1-D_2\in\mathcal{D}_0$, 即存在亚纯函数 f, 使 $D_1-D_2=(f)$ 。 \mathcal{D}_0 的除子组成一类,称为主除子类。

定义除子D的度为

$$\deg D = \sum_{k=1}^{m} n_{k}.$$

我们知道,对于主除子(f), $\deg(f) = 0$. 因此,如果 D_1 , D_2 属于同一除子类,则 $\deg D_1 = \deg D_2$.

对W上的亚纯微分 ω ,对应有一除子,用(ω)表示之,定义为

$$(\omega) = \sum_{k=1}^{n} n_k \rho_{k*}$$

其中 $\{p_k\}$, $k=1,2,\cdots m$, 是 ω 的所有零点与极点。当 p_k 是 零点时, n_k 是零点的阶; p_k 是极点时, $-n_k$ 是极点的阶。 对任何两个亚纯微分 ω_1 , ω_2 , 由于 $f=\omega_1/\omega_2$ 是亚纯函数,且易知 $(\omega_1)-(\omega_2)-(f)$ 。 因此所有亚纯微分属于同一除子类。 特别,对任意 ω , $\omega \succeq 0$, $\deg(\omega)$ 一常数。 我们将要证明 $\deg(\omega)$ — 2g-2. (g 是W的亏格)。

除子D称为**整除子**,如果

$$D = \sum_{k=1}^{n} n_k p_k, \quad n_k \geqslant 0.$$

这时用 $D \ge 0$ 表示之。 如果 $D_1 - D_2 \ge 0$, 则称 D_1 为 D_2 的 **倍除子**,用 $D_1 \ge D_2$ 表示之。

我们主要的兴趣在于下面定义的亚纯函数空间与亚纯微分空间。

W上所有亚纯函数的集用M表示,给定一个除子D,定义 $L(D) = \{f: f \in M, (f) \ge D\},$

则 L(D) 在通常的加法与乘法下是复数域上的线性空间。

习题 证明: 岩 f_1 , $f_2 \in L(D)$, 则 $f_1 + f_1 \in L(D)$.

L(D) 的维数用 dim L(D) 表示之。 dim L(D) 总是有限的。事实上,分解 $D=D^++D^-$,其中

$$D = \sum_{k=1}^{m} n_k p_k,$$

$$D^+ = \sum_{k=1}^{m} \operatorname{Max}(n_k, 0) p_k,$$

$$D^- = \sum_{k=1}^{m} \operatorname{Min}(n_k, 0) p_k.$$

我们有 $\deg D = \deg D^+ - \deg D^-$,注意到如果 $D_1 \leq D_2$,则 $\dim L(D_1) \leq \dim L(D_1)$ 。

现在 $D \ge D^-$,所以 $\dim L(D) \le \dim L(D^-)$ 。 根据下面的习题,它是有限的。

习题 证明: dim L(D) ≤ - deg D + 1.

注意,这习题说明 $\dim L(D)$ 与 $\mathrm{dég}\,D$ 有关。特别地,对于零除子 D=0,总有 $\dim L(0)=1$,因为 $L(0)=\mathbb{C}$.

L(D) 只与D所在的除子类有关。设 D_1 , D_2 属于同一除子类,则存在亚纯函数 f_0 , 使 $D_1 - D_2 = (f_0)$. $L(D_1)$ 与 $L(D_2)$ 是同构的,同构对应关系定义如下:

$$f \in L(D_1), f \mapsto f/f_0 \in L(D_2)$$

因此, $\dim L(D_1) = \dim L(D_2)$.

W上所有亚纯微分组成的线性空间用Q表示之。对给定的除子D,定义Q的子空间

$$Q(D) = \{\omega : \omega \in \mathcal{Q}, (\omega) \geqslant D\}.$$

Q(D) 也只与D的除子类有关,即对于同一除 子 类 的 D,Q(D) 是同构的, $\dim Q(D)$ 相同。

当D=0时,Q(D) 是全纯微分空间,即 Q(0)=A。 我们已经证明了 $\dim Q(0)=g$ 。

定理 3.1. 如果 ω_0 是亚纯微分, $\omega_0 \ge 0$,则对任何除子D dim Q(D) = dim $L(D-(\omega_0))$.

证明 对任意 $\omega \in \mathcal{Q}(D)$, 有 $\omega/\omega_0 \in L(D-(\omega_0))$, 这是因为 $(\omega) \geq D$, 从而

$$\left(\frac{\omega}{\omega_0}\right) = (\omega) - (\omega_0) \geqslant D - (\omega_0),$$

因此定义对应 $\omega \mapsto \frac{\omega}{\omega_0}$,则不难验证,这是 $\Omega(D)$ 到 $L(D-(\omega_0))$ 的同构。

§ 4 Riemann-Roch 定理

定理 (Riemann-Roch) 设W为亏格 8 的紧 Riemann 曲面, 给定除子 D,则有

$$\dim L(-D) = \dim \mathcal{Q}(D) + \deg D - g + 1.$$

D是整除子时 Riemann-Roch 定理的证明如下。

D=0 时定理是显然的,因为这时

$$\dim L(0) = 1$$
, $\dim Q(0) = g$, $\deg D = 0$.

由于D是整除子, $D \ge 0$,因此我们以下假定 D > 0,其中

$$D = \sum_{k=1}^{m} n_k p_k, \ n_k > 0.$$

根据 L(-D) 的定义, $f \in L(-D)$ 当且仅当 f 以 p_k 为至 g_k 阶的极点。取 p_k 为心的局部参数圆 V_k ,局部参数为 $g_k = g(p)$, $g(p_k) = 0$.

并且取定W的一典型同调基 $(a_1, \dots, a_s, b_1, \dots, b_s)$,使 p_k 不在其上。

对任意 $\forall f \in L(-D)$,对应有 df,在任意 p_k 的局部参数圆 V_k 内

$$df = \left(\sum_{j=2}^{n_k+1} \frac{c_j(p_k)}{z^j} + \sum_{j=0}^{n} A_j(p_k)z^j\right) dz, \tag{4.1}$$

设

$$D_1 = \sum_{k=1}^{m} (n_k + 1) p_k,$$

则 $df \in \Omega(-D_1)$.

对微分算子 d,定义同态 $d_i: L(-D) \to Q(-D_i)$,使 $f \mapsto df$,设 L(-D) 的像为 dL(-D),它是 Q 的线性子**空**间。

考虑子空间 dL(-D). 对任意 p_k , $1 \le k \le m$, $2 \le n \le n_k + 1$, 设 ω_k^n 为第二类规范化微分, 具有为零的 A-周期, 仅以 p_k 为 n 阶极点, 在 p_k 的局部参数圆 V_k 内, 具有主要部分 $\frac{dz}{z^n}$. 由(4.1), 对 $\forall f \in L(-D)$, 得到

$$df = \sum_{k=1}^{m} \sum_{j=2}^{n_k+1} c_j(p_k) \omega_k^j + \varphi, \qquad (4.2)$$

其中 φ 是全纯微分,由于 ω , 的 A-周期为零,所以 φ 的 A-周期为零,由定理 1.5 的推论, $\varphi \equiv 0$ 。 另外, $\{\omega\}$ 显然是线性无关

的,其元素共有 deg(D) 个。它是 dL(-D) 的基。

设 C^{degD} 为复 deg D 维的线性空间,则由 (4.2) 定义同态 $d: L(-D) \rightarrow C^{degD}$, $f \longmapsto df - (c_i(p_k): 1 \leq k \leq m, 2 \leq j \leq n_k + 1)$

对 $(c_i(p_i)) \in \mathbb{C}^{degD}$, 当且仅当

$$\sum_{k=1}^{m}\sum_{j=2}^{n_k+1}c_j(p_k)\omega_k^j$$

正合时,存在 $f \in L(-D)$ 使得

$$df = \sum_{k=1}^{m} \sum_{i=2}^{n_{k+1}} c_{i}(p_{k}) \omega_{k}^{i}$$

因此,当且仅当对任意 b_i , $1 \le l \le g$,右边微分的 B-周期为零,即

$$\sum_{k=1}^{m} \sum_{i=2}^{n_k+1} c_i(p_k) \int_{b_l} \omega_k^i = 0, \quad l = 1.2. \dots g_*$$

故 dL(-D) 的维数等于这线性方程组的解空间的维数。 设系数矩阵:

$$\left(\int_{\delta_1} \omega_k^{\sigma}\right)_{s \times der(D)} \tag{4.3}$$

的秩为 4,则

$$\dim (dL(-D)) = \deg D - r_* \tag{4.4}$$

另一方面,算子 a 的核

$$d^{-1}(0) = \{f \in L(-D): df = 0\} = C,$$

因此 $\dim(d^{-1}(0)) = 1$. 由商空间 $L(-D)/d^{-1}(0) \cong dL(D)$, 我们得到

$$\dim L(-D) = \dim (dL(-D)) + 1 = \deg D - r + 1.$$
(4.5)

现在讨论空间 O(0) = A 的典型基 $(\varphi_1, \dots, \varphi_s)$. 注意 对 $1 \le l \le g, \varphi_l$ 只在 α_l 有 A-周期 1,其它 A-周期为零。设对任 意 ρ_s , $1 \le k \le m$, 在局部参数圆 V_s 内

$$\varphi_{l} = a_{l,0}(p_{k}) + a_{l,1}(p_{k})z + \cdots + a_{l,n_{k}-1}(p_{k})z^{n_{k}-1} + \cdots$$

对任意 $\omega \in Q(D)$, 由于 D > 0, ω 是全纯微分,即 $\omega \in A$,则对 应唯一不全为零的一组数 $(\lambda_1, \dots, \lambda_\ell)$,使得

$$\omega = \lambda_i \varphi_1 + \cdots + \lambda_\ell \varphi_\ell = \sum_{l=1}^g \lambda_l \left\{ \sum_{i=0}^{n_k-1} a_{l,i}(p_k) z^i + \sum_{i=0}^n a_{l,i}(p_k) z^i \right\}.$$

对任意 p_k , $1 \le k \le m$, ω 在 p_k 具有至少 n_k 阶的零点,因此 满足

$$\sum_{l=1}^{g} a_{l,i}(p_k) \lambda_l = 0, k = 1, 2, \dots, j = 0, 1, \dots, n_{k-1}$$
 (4.6)

反之,如果 $(\lambda_1, \dots, \lambda_s)$ 是此线性方程组的解,则 $\omega \in \Omega(D)$.

定义线性算子 $T:Q(D) \mapsto \mathbb{C}^s$, 使 $\omega \mapsto (\lambda_1, \dots, \lambda_s)$. 则 Q(D) 与(4.6)的解空间同构,而(4.6)的系数矩阵为

$$(a_{l,i}(p_k))_{\deg D \times g_k} \tag{4.7}$$

设它的秩为 ρ ,则解空间的维数为 $g-\rho$,因此,

$$\dim \mathcal{Q}(D) = g - l \tag{4.8}$$

最后证明,两个矩阵的秩相等,即 $\gamma = \rho$.

一 由第二类微分与第一类微分的双线性关系式 (定理 2.2 的推 论)

$$\left(\int_{b_{i}}\omega_{k}^{i}\right)=\left(\frac{2\pi ia_{i,i-1}(p_{k})}{i-1}\right).$$

 $1-1, 2, \dots, g, k-1, 2, \dots, m, j-2, \dots, n_k+1$,因此矩阵 $\left(\int_{b_l} \omega_k^i\right)$ 与矩阵(4.3)等秩,即 $\gamma = \rho$.

把 $\gamma = \rho$ 代入(4.5)和(4.8)后,便得到

$$\dim L(-D) = \dim \mathcal{Q}(D) + \deg - g + 1.$$

故 $D \ge 0$ 时,定理证完.

附注。由(4.5),注意到 7 ≤ 8,有

$$\dim L(-D) \geqslant \deg D - g + 1,$$

这个不等式称为 Riemann 不等式。

定理 4.1. 对任何亚纯微分 ω , $\omega = 0$

$$\deg(\omega) = 2g - 2. \tag{4.9}$$

证明 当 B = 0 时,(4.9) 成立,因为这时W为球面,如果取 W = dz,则在 ∞ 的邻域内,取参数

$$z=\frac{1}{\zeta}, \quad \omega=-\frac{d\zeta}{\zeta^2},$$

∞便是二阶极点, $deg(\omega) = -2$.

现设 g>0。 取全纯微分空间 A 的基 $(\varphi_1, \dots, \varphi_\ell)$ 。 由已证 $D\geqslant 0$ 时的 R-R 定理,对 $(\varphi_1)>0$,有

$$\dim L(-(\varphi_1)) = \dim \Omega((\varphi_1)) + \deg (\varphi_1) - g + 1.$$
(4.10)

设 $\omega \in \mathcal{Q}((\varphi_1))$,则 ω/φ_1 为全纯函数,因为

$$\left(\frac{\omega}{\varphi_1}\right) = (\omega) - (\varphi_1) \geqslant 0,$$

因此 $\omega/\varphi_l \equiv c$ (常数), $\omega = c\varphi_l$, 于是 $\dim Q((\varphi_l)) = 1$. 另外, $\dim L(-(\varphi_1)) = g$, 因为 $L(-(\varphi_1))$ 有一组基 $\varphi_1/\varphi_1, \varphi_2/\varphi_1, \cdots, \varphi_\ell/\varphi_\ell$.

这是因为,当 k=1, 2, \cdots 8 时, $\varphi_k/\varphi_1 \in L(-(\varphi_1))$, $\{\varphi_k/\varphi_i\}$ 是 $L(-(\varphi_1))$ 中一组线性无关的元。 又由于对任意 $f \in L(-(\varphi_1))$, 则 $(f\varphi_1)=(f)+(\varphi_1) \geq 0$, $f\varphi_1$ 是全纯微分,因此存在 $\lambda_1, \lambda_2, \cdots, \lambda_k$, 使 $f\varphi_1=\lambda_1\varphi_1+\cdots+\lambda_k\varphi_k$, 于是

$$f = \lambda_1 \frac{\varphi_1}{\varphi_1} + \lambda_2 \frac{\varphi_2}{\varphi_1} + \cdots + \lambda_s \frac{\varphi_s}{\varphi_1}.$$

最后,把 $\dim L(-(\varphi_i)) = g$, $\dim \Omega((\varphi_i)) = 1$ 代人(4.10) 便得到

$$\deg(\omega) = 2g - 2$$

定理得证。

现在我们证明,一般除子D的 Riemann-Roch 定理。

由定理 3.1,对除子D及亚纯微分 ω , $\omega \leq 0$,

$$\dim \mathcal{Q}(D) = \dim L(D - (\omega)).$$

根据定义,

deg(-D) = -degD, $deg(D - (\omega)) = degD - deg(\omega)$. 因此 R-R 定理可写成

$$\dim L(-D) + \frac{1}{2} \deg (-D) = \dim L(D - (\omega))$$

$$+ \frac{1}{2} \deg (D - (\omega)). \tag{4.11}$$

应该注意到,把D换为(ω)-D 时(4.11)的形式不变。因此,当D或(ω)-D 是整除子时,(4.11)已被证明成立。 另外, R-R 定理中的度仅与D所对应的除子类有关。

我们断言。当D和 (ω)-D 都不等价于整除子时有

$$1^{\circ} \dim L(-D) = 0;$$

$$2^{\circ} \dim L(D-(\omega)) = \dim \Omega(D) = 0;$$

$$3^{\circ}$$
 $\deg D = g - 1$.

因为,如果 $\dim L(-D) \ge 0$,则存在 $f \in L(-D)$,使 $(f) + D \ge 0$. 令 $D_1 = (f) + D$,则 D_1 是整除子,另外 $D_1 - D = (f)$,故 $D \sim D_1$,D等价于整除子 D_1 ,从而 $\dim L(-D) = 0$. 同理, $\dim L(D - (\omega)) = 0$.

现在证明 3°. 分解 $D = D_1 - D_2$, 使 $D_1 > 0$, $D_2 > 0$, 则 $\deg D = \deg D_1 - \deg D_2$, 由 Riemann 不等式,我们有

$$\dim L(-D_i) \geqslant \deg D_i - g + 1 - \deg D_i + \deg D - g + 1.$$

由此可以判定 $\deg D \leq g-1$. 因为否则的话,若 $\deg D \geq g$,则 $\dim L(-D_1) \geq \deg D_2+1$, $L(-D_1)$ 中至少存在 $\deg D_2+1$ 个亚纯函数组成的线性无关组

$$f_1, f_2, \dots, f_n, n = \deg D_1 + 1$$
.

设

$$D_2 = \sum_{k=1}^{n} n_k p_k, \ n_k > 0,$$

找一组 (A,, ···, A,) ** 0, 使

$$f = \lambda_1 f_1 + \lambda_2 f_2 + \cdots + \lambda_n f_n,$$

 $f \in L(-D) = L(-D_1 + D_2)$ 。 为此只要使 f 在 $p_k(1 \le k \le m)$ 上具有至少 n_k 阶的零点,即 $(f) + D_1 - D_2 \ge (f) - D_1 \ge 0$,于是同前面得到 (4.6) 式的方法一样知, λ_1 , … , λ_n 满足 deg D_2 个线性方程。 由于 $n = \deg D_2 + 1$,未知数个数大于方程个数,线性方程组有非零解 λ_1 , … , λ_n ,故 $f \ge 0$, $f \in L(-D)$ 。 这便与 dim L(-D) = 0 矛盾。 因此我们总有

$$\deg D \leqslant g-1$$
,

同理可证

$$\deg((\omega)-D) \leqslant g-1$$
,

结合这两不等式,注意到

 $\deg((\omega) - D) = \deg(\omega) - \deg D = 2g - 2 - \deg D,$ 便得到 $\deg D \geqslant g - 1$, 因此 $\deg D = g - 1$.

根据已证的断言,可直接验证,R-R 定理对于一般的除子D成立。

§ 5 q次全纯微分空间

W上的 q 次全纯微分 φ ,是定义在W上的某种形式的量,在每一个局部参数邻域内, 在局部参数 $z \rightarrow z(p)$ 下, φ 具有表示式: 存在全纯函数 a(z),使

$$\varphi = a(z)(dz)^q$$

当局部参数变换为 第时,形式不变,即

$$\varphi = \tilde{a}(\tilde{z})(d\tilde{z})^q, \ \tilde{a}(\tilde{z}) = a(z(\tilde{z}))\left(\frac{dz}{d\tilde{z}}\right)^q.$$

我们同样可以定义 9 次亚纯微分。

引**速 5.1.** 对任何亚纯微分 ω , ω 是 g 次亚纯微分,且 L $(-(\omega)^g)$ 与 A^g 同构。这里 $\omega \succeq 0$.

证明 ω^q 是 q 次亚纯微分是显然的。 ω^q 对应的除子 (ω^q) 如 (ω) 一样定义,对任意 $f \in L(-(\omega^q))$,对应 $f\omega^q \in A^q$,因为 $(f\omega^q) = (f) + (\omega^q) \ge 0$ 。 反之,对任意 $\varphi \in A^q$,有

$$f = \varphi/(\omega^q) \in L(-(\omega^q))$$
.

因此, $f \mapsto f \cdot \omega^q$ 定义了 $L(-(\omega^q))$ 到 A^q 的同构。

定理 5.2. 设W为亏格 g 的紧 Riemann 曲面,q 为整数,则对 q 次全纯微分空间 A^q ,

当 $\mathcal{E} = 0$ 时,

$$\dim A^q = \begin{cases} 0, & q \geqslant 1. \\ 1 - 2q, & q \leqslant 0. \end{cases}$$

当 g = 1 时,dim $A^q = 1$, $\forall q \in \mathbb{Z}$ 。 当 g > 1 时,

$$\dim A^{q} = \begin{cases} 0, & q < 0, \\ 1, & q = 0, \\ g, & q = 1, \\ (2q - 1)(g - 1), & q > 1, \end{cases}$$

特别,当q=2时,二次全纯微分空间的维数等于 3g-3. 证明。我们要应用 R-R 定理

 $\dim L(-D) = \dim L(D-(\omega)) + \deg D - g + 1, (5.1)$ 其中 $\omega \ge 0$ 为全纯微分。

首先计算一下几个特殊空间的维数。

当 $\deg D > 0$ 时, $\dim L(D) = 0$. 因为否则,若 $f \approx 0$, $f \in L(D)$,则 $(f) - D \geq 0$, $\deg (f) - \deg D = -\deg D \geq 0$, $\deg D \leq 0$,便得到矛盾.

当 $\deg D > 2g-2$ 时, $\dim \Omega(D) = 0$. 因为否则, 若 $\omega \cong 0$, $\omega \in \Omega(D)$, 则 $\deg (\omega) - \deg D = 2g-2 - \deg D \geqslant 0$, 即 $\deg D \leqslant 2g-2$,

此与条件 deg D > 2g - 2 矛盾。

当 $\deg D = 0$ 时, $\dim L(D) \leq 1$,当且仅当 D 是主除于时, $\dim L(D) = 1$ 。 因为,当 $\dim L(D) = 1$ 时,如果 $f \leq 0, f \in L(D)$,则(f) $-D \geq 0$ 。若(f) > D,则 $\deg(f) > \deg D$,即有 0 > 0,矛盾。反之,D 是主除子时, $D \sim 0$ (零除子),从而

$$\dim L(D) = \dim L(0) = 1.$$

由引理 5.1, $\dim A^q = \dim L(-(\omega^q))$, 则由(5.1)得到。

$$\dim A^q = \dim L(-(\omega^q))$$

$$= \dim L((\omega^{q-1})) + q(2g-2) - (g-1)$$

$$= \dim L((\omega^{q-1})) + (2q-1)(g-1). \tag{5.2}$$

这里, (ω^q) ~ $(\omega) = (\omega^{q-1})$,

$$\deg(\omega^q) = q \deg \omega = q(2g - 2).$$

当 g=0 时,由(5.2)得到

 $\dim A^q = \dim L(-(\omega^q)) = \dim L((\omega^{q-1})) + 1 - 2q_*$

若 q≤0,则

$$\deg(\omega^{q-1}) = (q-1)\deg(\omega) = -2(q-1) > 0,$$

因此 dim $L((\omega^{q-1}))=0$,从而 dim $A^q=1-2q$ 。 若 $q\geqslant 1$,

由于
$$-(\omega^q) = (\omega^{-q}), \deg(-(\omega^q)) - 2q > 0,$$
 因此

$$\dim L(-(\omega^q))=0,$$

当 g = 1 时,对任意 $q \in \mathbb{Z}$,由(5.2)得到

$$\dim L(-(\omega^q)) = \dim L((\omega^{q-1})). \tag{5.3}$$

对任意 $\varphi \in A^q$,由于 φ/ω^q 是亚纯函数,因此 $\deg(\varphi) = 0$, φ 没有零点,因为否则有极点。所以 $1/\varphi \in A^{-q}$, 由此得到

$$\dim A^q = \dim A^{-q}.$$

再由(5.3)得到

$$\dim A^{q} = \dim L(-(\omega^{q})) = \dim L((\omega^{q-1}))$$

$$= \dim L(-(\omega^{1-q})) = \dim A^{1-q} = \dim A^{q-1}.$$

由此递推得到,对任意 $q \in \mathbf{Z}$,

$$\dim A^q = \dim A = 1$$

当 $\ell > 1$ 时,若 q < 0,则因

$$\deg(-(\omega^q)) = -q(2g-2) > 0,$$

所以 $\dim A^q = \dim L(-(\omega^q)) = 0$. 若 q = 1, 则直接得到 $\dim A^1 = g$.

若 q>1,由于 $\deg(\omega^{q-1})=(q-1)(2g-2)>0$,因此 $\dim L((\omega^{q-1}))=0$,代人(5.2)就有

$$\dim A^q = (2q-1)(q-1).$$

若 q=0, 按定义, 0 次全纯微分是W上全纯函数,即 $A^0=L(0)=C$.

因此对任意 $g \ge 0$, 总有 dim $A^0 = 1$ 。定理证毕。

§6 Weierstrass 间隙数与 Weierstrass 点

设W为亏格 $g \ge 1$ 的紧 Riemann 曲面。给定点 $p \in W$,作除子序列 $\{D_i\}$, $i=1, 2, \dots, D_i=ip$,提出下面的命题:

命题 j 在W上存在亚纯函数 f,使 $f \in L(-D_i)$,但 $f \in L(-D_{i-1})$ 。即在W上存在亚纯函数 f,仅以f 为f 阶极点。

对任意 $i \ge 1$,如果命题 i 不正确,则 i 称为 i 的 Weierstrass 间隙数;如果命题 i 正确,则 i 称为非间隙数. 显然,有下列引理。

引现 6.1. 命题 i 正确,即 i 为非间隙数,当且仅当 $\dim L(-D_i) - \dim L(-D_{i-1}) - 1$.

命题 i 不正确,即 i 为间隙数,当且仅当 $\dim L(-D_i) - \dim (-D_{i-1}) = 0$.

定理 6.2. 设W为亏格 $g \ge 1$ 的紧 Riemann 曲面,则对任意 $p \in W$,恰好有 g 个间隙数

$$1 - n_1 < n_2 < \cdots < n_s < 2g$$
.

此定理称为 Weierstrass 间隙定理。 当g=0时,定理显然成立。

证明 由 R-R 定理,注意到 $\deg D_i = i$, 可得 $\dim L(-D_i) - \dim L(-D_{i-1}) = \dim \Omega(D_i)$

$$-\dim \mathcal{Q}(D_{i-1})+1, \tag{6.1}$$

对任意 人≥1,在(6.1)两边求和得到

$$\dim L(-D_{\bar{k}}) - \dim L(-D_0) = \sum_{j=1}^k \left[\dim L(-D_j)\right]$$

$$-\dim L(-D_{j-1})$$

$$= \sum_{j=1}^k \left[\dim \mathcal{Q}(D_j) - \dim \mathcal{Q}(D_{j-1})\right] + \bar{k}$$

$$= \dim \mathcal{Q}(D_{\bar{k}}) - \dim \mathcal{Q}(D_0) + \bar{k}.$$

注意到 $\dim L(-D_0) = \dim L(0) = 1$, $\dim \mathcal{Q}(D_0) = \dim \mathcal{Q}(0) = g$,

因此

$$\dim L(-D_k) - 1 = \dim \mathcal{Q}(D_k) - g + k.$$

由引理 6.1 知道,(6.1) 式左边当 i 是间隙数时等于零,否则等于 1. 所以对(6.1) 式两边求和的结果是使 (6.1) 式左边等于 1 的正整数,即非间隙数的个数,故 $\dim Q(D_k) - g + k$ 是小于或等于 k 的非间隙数个数,即

(小于或等于 & 的间隙个数)

$$= k - (\dim \mathcal{Q}(D_k) - g + k) = g - \dim \mathcal{Q}(D_k).$$

但当 $k \ge 2g - 1$ 时, $\deg D_k = k > 2g - 2$,这时
$$\dim \mathcal{Q}(D_k) = 0.$$

因此推出间隙数共有 g 个,且当 g > 2g — 1 时,g 不是间隙数。 另外,1 显然是间隙数。证完。

现在讨论非间隙数。由定理 6.2 知,大于 1 小于等于 2g 的非间隙数恰好也是 g 个,设为

$$1 < \alpha_1 < \alpha_2 < \cdots < \alpha_l \leq 2g_{\bullet}$$

引理 6.3. 对任意 0 < i < g, 有 $\alpha_i + \alpha_{g-i} \ge 2g$.

证明 反证之,如果存在 i, 0 < i < g, 使 $\alpha_i + \alpha_{l-i} < 2g$, 则对任意 k, $0 < k \le i$, $\alpha_{l-i} < \alpha_k + \alpha_{l-i} < 2g$. 由非间隙数的 定义易知,两个非间隙数之和仍是非间隙数。事实上,若 α , β 为 两非间隙数,则存在亚纯函数 f 和 f' 使 $f \in L(-D_a)$,但 $f \in L$

 $(-D_{\alpha-1})$; $f' \in L(-D_{\beta})$. 但 $f' \in L(-D_{\beta-1})$. 因此 $f \cdot f' \in L(-D_{\alpha+\beta})$, 而 $f \cdot f' \in L(-D_{\alpha+\beta-1})$. 这就说明 $\alpha + \beta$ 仍是非间隙数。因此,最少有 i 个非间隙数严格地在 $\alpha_{\ell-i}$ 与 α_{ℓ} 之间,于是最少有 (g-i) 十 i 十 1 = g+1 个非间隙数在 1 与 2g 之间,这是矛盾的。证完。

引題 6.4. 如果 $\alpha_1 = 2$,则 $\alpha_j = 2j$, $j = 1, 2, \dots$, g, 且 对 0 < j < g有

$$\alpha_i + \alpha_{\ell-i} = 2g_*$$

证明 因为 α_1 是非间隙数,所以 α_1 , $2\alpha_1$, \cdots , $g\alpha_1$ 皆是非间隙数,且它们构成小于或等于 2g 的全部 g 个非间隙数。故

$$\alpha_j = j\alpha_1 = 2j \quad (j = 1, 2, \dots g),$$

引**是 6.5.** 如果 $\alpha_1 > 2$, 则存在 i(0 < i < g),使 $\alpha_i + \alpha_{r-i} > 2g$.

证明 反证之。设对任意,0 < i < g,都有 $\alpha_i + \alpha_{g-i} = 2g$. 这时 α_1 , $2\alpha_1$, \cdots , $\left[\frac{2g}{\alpha_1}\right]$ α_1 为小于或等于 2g 的 $\left[\frac{2g}{\alpha_1}\right]$ 个非 间隙数。这里 $\left[\frac{2g}{\alpha_1}\right]$ 为小于或等于 $2g/\alpha_1$ 的最大整数。由于 $\alpha_1 > 2$, $\left[2g\right] < 2$

$$\left[\frac{2g}{a_1}\right] \leqslant \frac{2}{3} g < g,$$

因此,除上列的 $\left[\frac{2g}{a_1}\right]$ 个非间隙数外,还有小于或等于 2g 的非间隙数。设最小的一个为 a,则存在 l, $1 \leq l \leq \left[\frac{2g}{a_1}\right]$,使得

$$l\alpha_1 < \alpha < (l+1)\alpha_{l*}$$

于是,我们有小于或等于 α 的所有非间隙数序列 $\alpha_1, \alpha_2 = 2\alpha_1, \cdots$, $\alpha_l = l\alpha_1, \alpha_{l+1} = \alpha_n$ 由假设 $\alpha_{g-1} = 2g - \alpha_1, \cdots$, $\alpha_{g-1} = 2g - \alpha_1$, $\alpha_{g-1} = 2g - \alpha_1$, $\alpha_{g-1} = 2g - \alpha_2$ l α_1 , $\alpha_{g-1} = 2g - \alpha_3$ 是大于或等于 $\alpha_{g-1} = 2g - \alpha_4$ 的所有非间隙数。

另一方面,我们有

$$a_1 + a_{g-(l+1)} = a_1 + 2g - a = 2g - (a - a_1) > 2g - la_1$$

= a_{g-l} ,

从而 $\alpha_1 + \alpha_{g-(l+1)}$ 是大于 α_{g-1} 但小于 2g,即小于或等于 α_{g-1} 的 非间隙数,且不在 $\alpha_{r-(l+1)}$, ···, α_{r-1} 之列,这显然是一个矛盾。 证完、

Ç.

定理 6.6. 对于非间隙数,我们有

$$\sum_{i=1}^{g-1} a_i \geqslant g(g-1).$$

等式成立,当且仅当 $\alpha_i = 2$,

证明 由引理 6.3

证明 田与理 6.3
$$\sum_{j=1}^{g-1} \alpha_{j} = \begin{cases}
(\alpha_{1} + \alpha_{g-1}) + (\alpha_{1} + \alpha_{g-2}) + \cdots + (\alpha_{\left[\frac{g}{2}\right]} + \alpha_{\left[\frac{g}{2}\right]+1}), \\
g 为奇数; \\
(\alpha_{1} + \alpha_{g-1}) + (\alpha_{2} + \alpha_{g-2}) + \cdots + (\alpha_{\frac{g}{2}-1} + \alpha_{\frac{g}{2}+1}) \\
+ \alpha_{g}, g 为偶数;
\end{cases}$$

$$\geqslant \begin{cases}
\left[\frac{g}{2}\right] \cdot 2g = g(g-1), g \, \text{为奇数}; \\
2g\left(\frac{g}{2} - 1\right) + g = g(g-1), g \, \text{为偶数}.
\end{cases}$$

又由引理 6.4 及引理 6.5 知,等号成立,当且仅当 a, - 2. 定 理证完.

现在讨论全纯微分,即第一类 Abel 微分的存在性。

对任意 $i \ge 1$,命题 i 不正确,当且仅当 i 是间隙数,即当且 仅当

$$\dim L(-D_i) - L(-D_{i-1}) = 0,$$

由 R-R 定理推出,当且仅当

$$\dim \mathcal{Q}(D_i) - \dim \mathcal{Q}(D_{i-1}) = 1$$
,

注意 $D_i = i \cdot p$, 因此当且仅当W上存在非零的全纯微分 ω , 使 ω 在 ρ 点具有 i-1 阶的零点。因此,对 $\rho \in W$,恰好存在 g 个数

$$0 = n_1 - 1 < n_2 - 1 < \cdots < n_q - 1 \leq 2g - 2,$$

其中 $\{n_k\}$ 为间隙数,使得W上存在全纯微分,以P为 n_k-1 阶

零点。

定义。设 $p \in W$,对除子 $D_s \rightarrow gp$,如果 $\dim Q(D_s) > 0$,即W上存在非零全纯微分 ω ,以 p 为至少 g 阶的零点,则 p 称为 Weierstrass 点,简称为 W-点。

根据 R-R 定理, p 是 W-点, 当且仅当 dim $L(-gp) \ge 2$, 即W上存在非常数的亚纯函数,仅以p 点为至多g 阶的极点。

我们的目的是要讨论 W-点的个数问题,为此要讨论一些与此相关的问题。

设D为平面 C 内的域,A为D 内全纯函数 φ 组成的有限维线性空间, $\dim A = n \ (n = g \ge 1)$ 。对任意 $z \in D$,令 ord, φ 表示 φ 在点 z 的零点的阶。

定义. A的一组基(φ_1 , φ_2 , …, φ_n) 称为在点 * 是适合的,如果 ord, φ_1 < ord, φ_2 < … < ord, φ_n .

对于给定的 z,适合的基是存在的。构造如下:

设 $\mu_1 = \min_{\varphi \in A} \{ \text{ord}_{\varphi} \varphi \}$,注意 ord. φ 是非负整数,所以存在 $\varphi_1 \in A$,使 ord. $\varphi_1 = \mu_1$,且规范化使 φ_1 在点 z 的幂级数展开式的首项系数等于 1.

考虑A的子空间

$$A_1 = \{ \varphi \colon \varphi \in A, \text{ ord}_x \varphi > \mu_1 \},$$

则 A_1 为 n-1 维子空间,设 $\mu_2 = \min_{\varphi \in A_1} \{ \text{ord}, \varphi \}$, 并取 $\varphi_2 \in A_1$ 使 ord, $\varphi_2 = \mu_2$, 且规范化使 φ_1 在 z 的展开式的首项系数等于 1.

如此继续,经 n 次后,我们便得到一组数

$$\mu_1 < \mu_2 < \cdots < \mu_n$$

对应的 $(\varphi_1, \varphi_2, \dots, \varphi_n)$ 为在 z 适合的基,且是规范化基,同时 $\{\mu_i\}$ $(j=1, 2, \dots, n)$ 是唯一的

定义。称

$$\tau(z) = \sum_{i=1}^{n} (\mu_i - i + 1)$$

为 A 在 z 的权。其中 μ_i — ord φ_i ,且由 φ_i 的取法知

$$\mu_i \geqslant i-1 \ (i=1, 2, \dots, n)$$

如果取A为 Riemann 曲面W的全纯微分空间, $A = \{\omega\}$,则 dim A = g. 对任意 $p \in W$ 和任意 $\omega \in A$,在局部参数 z = z(p)下,在局部参数邻域内, $\omega = \varphi(z)dz$,于是 $\{\varphi\}$ 便构成 $D(D \subset C, z(p) \in D)$ 内的 n = g 维全纯函数空间。因此,我们可定义 A 在点 P 的权为 $\{\varphi\}$ 在点 z = z(p) 的权,即

$$\tau(p) = \tau(z) = \sum_{i=1}^{n} (\mu_i - i + 1).$$

注意,这里基 (φ_1 , ···, φ_4) 与局部参数有关,但由于

$$\operatorname{ord}_{\mathbf{z}} \varphi_{k} \ (1 \leqslant k \leqslant n)$$

与局部参数无关,因此 r(p) 与点 p 的局部参数无关。

引**理 6.7.** 设A为域 $D \subset \mathbb{C}$ 内的全纯函数空间,(φ_1 , ···, φ_*) 为A的基,则它的 Wronski 行列式

$$\Phi(z) = \det[\varphi_1(z), \varphi_2(z), \cdots, \varphi_n(z)]$$

是一个全纯函数,且

$$\tau(z) = \operatorname{ord}_z \Phi(z)$$
.

附注。基 $(\varphi_1, \dots, \varphi_s)$ 的 Wronski 行列式定义如下

$$\det \left[\varphi_1, \ \varphi_2, \ \cdots, \ \varphi_n \right] = \begin{bmatrix} \varphi_1(z) & \varphi_2(z) & \cdots \varphi_n(z) \\ \varphi_1^1(z) & \varphi_2^1(z) & \cdots \varphi_n^1(z) \\ \vdots & \vdots & \vdots \\ \varphi_1^{(n-1)}(z) \ \varphi_2^{(n-1)}(z) \cdots \varphi_n^{(n-1)}(z) \end{bmatrix}.$$

我们将要用到它的一个性质:对全纯函数 f,

$$\det [f\varphi_1, f\varphi_2, \cdots, f\varphi_n] = f^* \det [\varphi_1, \varphi_2, \cdots, \varphi_n]_*$$

证明 不难验证,A的基变换时,对应行列式仅相差一非零的因子。因此,我们可以假定(φ_1 , ···, φ_s)在点 z 是适合的。设 $\mu_k = \operatorname{ord}_s \varphi_k$, $1 \leq k \leq \pi$ 则

$$\mu_1 < \mu_2 < \cdots < \mu_*.$$

要证

ord_x
$$\Phi(x) = \text{ord}_x \det [\varphi_1, \dots, \varphi_n] = \sum_{i=1}^n (\mu_i - i + 1).$$
(6.3)

我们对 n 用归纳法证明之。 n=1 时,(6.3) 显然成立。

$$\det \left[\varphi_1, \, \varphi_2, \, \cdots, \, \varphi_{k+1} \right] = \varphi_1^{k+1} \det \left[1, \, \frac{\varphi_2}{\varphi_1}, \, \cdots, \, \frac{\varphi_{k+1}}{\varphi_1} \right]$$
$$= \varphi_1^{k+1} \det \left[\left(\frac{\varphi_2}{\varphi_1} \right)', \, \cdots, \left(\frac{\varphi_{k+1}}{\varphi_1} \right)' \right].$$

这里,应注意到

$$\det\left[1, \frac{\varphi_1}{\varphi_1}, \cdots, \frac{\varphi_{k+1}}{\varphi_1}\right]$$

的第一列元素中,只有第一行的元素为 1,其余全部是零。 由归纳假设

ord, det
$$\left[\left(\frac{\varphi_2}{\varphi_1}\right)', \dots, \left(\frac{\varphi_{k+1}}{\varphi_1}\right)'\right]$$

$$= \sum_{j=2}^{k+1} \left[\left(\mu_j - \mu_1 - 1\right) - \left(j-2\right)\right],$$

另外

ord,
$$\varphi_1^{k+1} = (k+1)\mu_{10}$$

因此

$$\operatorname{ord}_{x} \det \left[\varphi_{1}, \cdots, \varphi_{k+1} \right]$$

$$= \operatorname{ord}_{x} \varphi_{1}^{k+1} + \operatorname{ord}_{x} \det \left[\left(\frac{\varphi_{2}}{\varphi_{1}} \right)', \cdots, \left(\frac{\varphi_{k+1}}{\varphi_{1}} \right)' \right]$$

$$= \mu_{1} + \sum_{j=2}^{k+1} (\mu_{j} - j + 1)$$

$$= \sum_{j=1}^{k+1} (\mu_{j} - j + 1).$$

这就证明了引理。

附注 由这引理推出,全纯函数组(φ_1 , ···, φ_*)线性相关, 当且仅当

$$\det \left[\varphi_1, \ \varphi_2, \ \cdots, \ \varphi_* \right] = 0.$$

推论 1. 集 $\{z: z \in D, r(z) > 0\}$ 是离散的。

证明 按定义,要证明对于此集合内任意的点列 $\{z_n\}$, 若 $z_n \to z_0 \ (n \to \infty)$,

则当 n 充分大时,必有 $z_* = z_0$ 。如若不然,则存在此集合内各项 互不相同的无穷点列 $\{z_*\}$ 和 $z_0 \in D$,使

$$\tau(z_n) > 0 \ (n = 1, 2, \cdots)$$

且 $z_* \rightarrow z_*$ $(n \rightarrow \infty)$. 因此在 z_* 的任意小邻域内皆有使

ord,
$$\Phi(x) = \tau(x) > 0$$

的点,即 $\Phi(z)$ 的零点,故 z, 是 $\Phi(z)$ 的零点之极限点,

$$\Phi(z)\equiv 0,$$

因此 $(\varphi_1, \varphi_2, \dots, \varphi_n)$ 线性相关,这是矛盾的.

推论 2. 集 $\{z: z \in D, \tau(z) = 0\}$ 是 D 的 稠密 开子集。 对这个集合内的 z,设 A 的基 $(\varphi_1, \dots, \varphi_n)$ 在 z 是适合的,则对任意 i, $1 \le i \le n$,

ord,
$$\varphi_i = i - 1$$
.

证明 因为这时

$$\sum_{i=1}^{n} (\mu_i - j + 1) = 0,$$

又 $\mu_i \ge i-1$, 因此 $\mu_i = i-1$, 即 ord, $\varphi_i = i-1$.

现在回到紧 Riemann 曲面W上的全纯微分空间A的情况。

定理 6.8. 设 $g \ge 2$,则 $p \in W$ 是 W-点,当且仅当

$$\tau(p) > 0$$
.

附注。当W的亏格 B=1时,W-点不存在。

证明 设 p 是 W-点,在局部参数 z = z(p) 下, A 存在基 $(\varphi_1(z)dz, \varphi_2(z)dz, \cdots, \varphi_p(z)dz)$.

设 $(\varphi_1(z), \dots, \varphi_s(z))$ 在 z 是适合的,如果 z(p) = 0,则由上面的推论 2 得到

ord,
$$\varphi_i = i - 1 \leq g - 1$$
.

由此推出,A中任何微分在点P有至多B-1阶的零点,P不是W-点,矛盾。

反之,如果 $\tau(p) > 0$,由于

$$\tau(p) = \sum_{j=1}^{\ell} (\mu_j - j + 1),$$

如果p不是 W-点,则 ord, $\varphi_z = \mu_z \leq g-1$. 但已知 $\mu_z \geq g-1$,因此有 $\mu_z = g-1$,又

$$(g-1)-1 \leq \mu_{g-1} < \mu_g = g-1$$

则 $\mu_{g-1} = (g-1)-1$. 继续推下去,我们得到 $\mu_i = j-1$, j=1, j

定理 6.9. 设 $g \ge 2$, 对全纯微分空间 A 在点 $p \in W$ 的权有

$$\sum_{p \in \mathcal{P}} \tau(p) = (g-1)g(g+1).$$

证明 由 dim A=g, 设 A的基是 $(\omega_1, \omega_2, \dots, \omega_s)$,对任意 $p \in W$, 在局部参数 z=z(p) 下,

 $(\omega_1, \omega_1, \cdots, \omega_z) = (\varphi_l(z)dz, \varphi_l(z)dz, \cdots, \varphi_l(z)dz),$ 由引理 6.7, $\tau(p) = \tau(z) = \operatorname{ord}_z \Phi(z),$

$$\Phi(z) = \det \left[\varphi_1(z), \cdots, \varphi_t(z) \right].$$

现在我们证明,令

$$m=\frac{g(g+1)}{2},$$

则 $\phi(z)(dz)^n$ 是W上 m 次全纯微分。这是因为,若 $\hat{z}=\hat{z}(\rho)$ 为 ρ 的另一局部参数, $\hat{z}=\hat{z}(z)$ 为局部参数变换,则由微分定义

$$(\omega_1, \omega_1, \cdots, \omega_{\epsilon}) \rightarrow (\tilde{\varphi}_1 d\hat{z}, \tilde{\varphi}_2 d\hat{z}, \cdots, \tilde{\varphi}_{\epsilon} d\hat{z}).$$

其中

$$\varphi_{\mathfrak{l}}(z) = \tilde{\varphi}_{\mathfrak{l}}(\tilde{z}(z)) \frac{d\tilde{z}}{dz}, \dots, \varphi_{\mathfrak{l}}(z) = \tilde{\varphi}_{\mathfrak{l}}(\tilde{z}(z)) \frac{d\tilde{z}}{dz},$$

这时由行列式计算,就有

$$\det \left[\varphi_{1}(z), \cdots \varphi_{\ell}(z)\right]$$

$$= \det \left[\tilde{\varphi}_{1} \frac{d\hat{z}}{dz}, \cdots, \tilde{\varphi}_{\ell} \frac{d\tilde{z}}{dz}\right]$$

$$- \left(\frac{d\tilde{z}}{dz}\right)^{1+2+\cdots+2} \det \left[\tilde{\varphi}_{1}, \cdots, \tilde{\varphi}_{\ell}\right]$$

$$-\left(\frac{d\tilde{z}}{dz}\right)^n \det \left[\tilde{\varphi}_1, \cdots, \tilde{\varphi}_{\ell}\right]_{\bullet}$$

此即

$$\Phi(z) = \tilde{\Phi}(\tilde{z}(z)) \left(\frac{d\tilde{z}}{dz}\right)^{n}, \ \Phi(z)(dz)^{n} = \tilde{\Phi}(\tilde{z})(d\tilde{z})^{n},$$

 $\Phi(z)(dt)$ " 是W上m次微分。

因此我们可推出,

$$\sum_{p \in W} r(p) = \sum_{p \in W} \operatorname{ord}_{s(p)} \Phi(z) = \operatorname{deg} \left[\Phi(z) (dz)^m \right]$$
$$= m(2g - 2) = (g - 1)g(g + 1).$$

定理证完.

推论. 当 g ≥ 2 时, W-点一定存在.

定理 6.10. 设 $g \ge 2$, 则全纯微分空间 A 对任意 $p \in W$ 的 权 $\tau(p)$ 有

$$\tau(p) \leqslant \frac{g(g-1)}{2}.$$

等号成立,当且仅当 ? 点的最小非间隙数是 2.

证明 我们知道,对 p∈W,有间隙数序列

$$1 = n_1 < n_2 < \cdots < n_s < 2g_s$$

并有非间隙数序列

$$1 < \alpha_1 < \alpha_2 < \cdots < \alpha_s = 2g,$$

且已证明,恰好存在 8 个数

$$0 = n_1 - 1 < n_2 - 1 < \dots < n_4 - 1 \le 2g - 2,$$

使W上存在全纯微分 φ_i ,以 ρ 为 $n_i - 1$ 阶零点, $i = 1, 2, \cdots$, g_i , 而 (φ_1 , φ_2 , \cdots , φ_s) 构成 A 的适合的基, 按定义,并注意到

$$\sum_{i=1}^g n_i = \sum_{i=1}^{2g} j - \sum_{i=1}^g \alpha_i,$$

则有

$$\tau(p) = \sum_{i=1}^{g} (n_i - 1 - j + 1) = \sum_{j=1}^{2g} i - \sum_{j=1}^{g} \alpha_j - \sum_{j=1}^{g} j$$

$$= \sum_{j=g+1}^{2g-1} j - \sum_{j=1}^{g-1} \alpha_j \leq \frac{3g(g-1)}{2} - g(g-1)$$

$$= \frac{g(g-1)}{2}.$$

这里用到了定理 6.6 的结果:

$$\sum_{i=1}^{g-1} \alpha_i \geqslant g(g-1).$$

又由于当且仅当p的最小非间隙数 $\alpha_1 = 2$ 时,

$$\sum_{j=1}^{g-1} \alpha_j = g(g-1),$$

所以上式等号成立,当且仅当 a1 - 2. 定理证完。

定理 6.11. 设 $g \ge 2$, 则W上的 W-点的总数M满足 $2g + 2 \le M \le g^3 - g$.

证明 由定理 6.8, p是 W-点,则 $\tau(p) > 0$,即 $\tau(p) \ge 1$,因此,由定理 6.9 得到

$$M \leqslant \sum_{p \in W} \tau(p) - g^3 - g.$$

另一方面,由定理 6.10

$$\tau(p)\leqslant \frac{g(g-1)}{2},$$

因此,

$$\sum_{p \in W} \tau(p) \leqslant M \cdot \frac{g(g-1)}{2},$$

再利用定理 6.9 得到

$$g^3-g\leqslant M\,\frac{g(g-1)}{2},$$

从而 $M \ge 2g + 2$ 。定理得证。

第八章 非紧 Riemann 曲面

٤.

在这一章中,相应于紧 Riemann 曲面的 Riemann-Roch 定理, 我们证明非紧 Riemann 曲面的 Mittag-Leffer 定理, 这一定理说明如何在非紧 Riemann 曲面上构造亚纯函数。

§1 緊 Riemann 曲面上的初等微分与 Cauchy 积分公式

我们首先讨论紧 Riemann 曲面上第三类规范化微分的积分表示的函数。

设W为紧 Riemann 曲面,亏格为 g。 我们用 $\omega(p;q,q_0)$ 表示W上的规范化的第三类微分,它以 q 为留数为 1 的一阶极点,以 q_0 为留数为一 1 的一阶极点。 $\omega(p;q,q_0)$ 的 A-周期为 0。 考虑积分

$$w(p, p_0; q, q_0) = \int_{p_0}^{p} \omega(p; q, q_0).$$

 $w(p, p_0; q, q_0)$ 是一个多值解析函数,以点 q 为留数为 1 的对数极点,即在 q 的局部参数邻域内,在局部参数 z=z(p) 下,

$$w(p, p_0; q, q_0) = \log(z(p) - z(q)) + \phi(z(p) - z(q)),$$
其中 ϕ 是 q 的局部参数邻域内的全纯函数;以点 q_0 为留数为 q_0 的局部参数邻域内,在局部参数 q_0 之 q_0 的局部参数邻域内,在局部参数 q_0 之 q_0 下

$$w(p, p_0; q, q_0) = -\log(z(p) - z(q_0)) + \phi_0(z(p) - z(q_0)),$$

其中 φ₀ 是 و₀ 的局部参数邻域内的全纯函数。

我们要讨论选取 $w(p, p_0; q, q_0)$ 的单值分支。

设 a_1 , b_1 , \cdots , a_t , b_t 为W的同调基, $\{\varphi_1, \varphi_2, \cdots, \varphi_t\}$ 为全纯微分空间的典型基。沿 a_1 , b_1 , \cdots , a_t , b_t 割开W成为 单连通的多边形 Π . 我们假定 q, q, 在 Π 内,用简单弧 L连接 q 到 q_0 ,再沿L割开 Π 成双连通域 $\Pi - L$. 在域 $\Pi - L$ 内我们总可以选取 $\omega(p, p_0; q, q_0)$ 的单值分支。为此,我们只需指出,对于 Π 内包围L的闭曲线 Γ , 积分

$$\int_{\Gamma} \omega(p; q, q_0) = 2\pi i [\operatorname{Res}(\omega, q) + \operatorname{Res}(\omega, q_0)]$$

$$= 2\pi i [1-1] = 0.$$

现在取定一个单值分支,记之为 $w_0(p, p_0; q, q_0)$, 我们讨论 $w(p, p_0; q, q_0)$ 的多值性。

根据规范化条件, $\omega(p; q, q_0)$ 的 A-周期 $A_i = 0$ (f = 1, 2, ..., g). 根据第七章定理 2.1 的推论, $\omega(p; q, q_0)$ 的 B-周期

$$B_i = \int_{B_i} \omega(p; q, q_0) = 2\pi i \int_{q_0}^{q} \varphi_i, j = 1, 2, \dots, g_s$$

如果 Γ 是只包围q的闭曲线,则

$$\int_{\Gamma} \omega(p; q, q_0) = 2\pi i.$$

如果 Γ_0 是只包围 q_0 的闭曲线,则

$$\int_{\Gamma_{\bullet}} \omega(p; q, q_0) = -2\pi i_{\bullet}$$

由这两个积分值,及 B-周期值,则可立刻得到表示式

$$w(p, p_0; q, q_0) = w_0(p, p_0; q, q_0) + \sum_{i=1}^{g} n_i B_i + m 2\pi i,$$

其中 n; 和n是整数。

 $w(p, p_0; q, q_0)$ 是 v 的解析函数,它也是参变数 q 的解析函数。为说明这一性质、我们要证明下面关于第三类规范化微分的积分的对称关系式。

设

$$w(q, q_0; p, p_0) = \int_{q_0}^{q} \omega(q; p, p_0),$$

则有对称关系式

$$w(q, q_0; p, p_0) = w(p, p_0; q, q_0).$$

为证明这对称关系式,我们应用上面已作的单连通多边形 Π . 设 q, q_0 和 p, p_0 在 Π 内。用路径 L 连接 P 到 p_0 , L_1 连接 P 到 p_0 , p_0 是 p_0

在 $\Pi - L_1$ 内取单值分支 $w(s, p_0; q, q_0)$, 应用留数定 理(第四章定理 4.3), 我们有积分等式

$$\sum_{i=1}^{g} \int_{x_{i}b_{i}a_{i}^{-1}b_{i}^{-1}} w(s, p_{0}; q, q_{0})$$

$$\times \omega(s; p, p_{0})$$

$$+ \int_{L_{1}^{+}} w(s, p_{0}; q, q_{0})$$

$$\times \omega(s; p, p_{0})$$

$$+ \int_{L^{-}} w(s, p_{0}; q, q_{0})$$

$$\times \omega(s; p, p_{0})$$

$$\times \omega(s; p, p_{0})$$

= $2\pi i [\text{Res}(w(s, p_0; q, q_0)\omega(s; p, p_0), p)$ + $\text{Res}(w(s, p_0; q, q_0)\omega(s; p, p_0), p_0)].$

计算这积分等式各项之值。设 $\omega(s; q, q_0)$ 与 $\omega(s; p, p_0)$ 的 A-周期分别为 A_i 与 A'_i , B-周期分别为 B_i 与 B'_i 。 完全按照第七章定理 2.1 中的证法,可以证明

$$\sum_{j=1}^{g} \int_{a_{j}b_{j}a_{j}^{-1}b_{j}^{-1}} w(s, p; q, q_{0}) \omega(s; p, p_{0})$$

$$= \sum_{j=1}^{g} (A_{j}B_{j}' - A_{j}'B_{j}) = 0,$$

这里我们用到了规范化假设, $A_i = 0$ 与 $A'_i = 0$, $i = 1, 2, \dots$

另外,对于 $w(s, p_0; q, q_0)$,点 q 是留数为 1 的对数极点。设 $s \in L_1^*$,同一点在 L_1^* 上用 S' 表示的话,则

$$w(s', p_0; q, q_0) = w(s, p_0; q, q_0) + 2\pi i$$

因此,

$$\int_{L_1^+} w(s, p_0; q, q_0) \omega(s; p, p_0) + \int_{L_1^-} w(s, p_0; q, q_0) \omega(s; p, p_0)$$

$$= -2\pi i \int_{L_1^+} \omega(s; p, p_0) = -2\pi i \int_q^{q_0} \omega(s; p, p_0)$$

$$= 2\pi i \omega(q, q_0; p, p_0).$$

现在计算留数。由于 $w(p_0, p_0; q, q_0) = 0$,因此 $2\pi i \text{Res}(w(s, p_0; q, q_0)\omega(s; p, p_0), p_0)$ $= -2\pi i w(p_0, p_0; q, q_0) = 0$, $2\pi i \text{Res}(w(s, p_0; q, q_0)\omega(s; p, p_0), p)$

 $= 2\pi i w(p, p_0; q, q_0).$

把以上计算各值代人原积分等式中,即得到对称关系式 $w(q, q_0; p, p_0) = w(p, p_0; q, q_0)$.

 $w(p, p_0; q, q_0)$ 对于 p, q 都是多值解析函数。 我们要附加上一个变数 p 的函数,使之对于 q 是单值解析函数。

在W上取定一个非 Weierstrass 点 q_0 ,对于这种点,W上不存在仅以 q_0 为阶小于或等于 g 的极点的亚纯函数.

我们用 $\omega_1(p,q_0)$ 表示W上的第二类规范化微分。 $\omega_2(p,q_0)$ 仅以 q_0 为极点,而在 q_0 的局部参数邻域内,在给定的局部参数 z=z(p) $(z(q_0)=0)$ 下,

$$\omega_{z}^{k}(p, q_{0}) = -\frac{kdz}{z^{k+1}} + \phi_{k}(z)dz, k = 1, 2, \cdots$$

其中 ϕ_i 是 g_0 的局部参数邻域内的全纯函数。

取定 g 个微分 $\{\omega\}(p; q_0)\}$, $k=1,2,\cdots,g$. 由于是规范化的微分。这 g 个微分的 A-周期为 0. B-周期作成的矩阵

$$\left[\int_{b_i}\omega_1^k(p,q_0)\right]_{x\times x}$$

是非异矩阵。 因为如果矩阵的行列式等于 0,则存在一组不全为 0 的数 2, $k = 1, 2, \cdots$, g, 使得

$$\sum_{k=1}^{3} \lambda_{k} \int_{k_{j}} \omega_{2}^{k}(p, q_{0}) = 0, j = 1, 2, \dots, g_{n}$$

于是微分

$$\sum_{k=1}^{q} \lambda_k \omega_i^k(p, q_0)$$

的 A-周期为 0, B-周期也为 0, 我们可定义一个亚纯函数

$$\int_{p_0}^{p} \sum_{k=1}^{g} \lambda_k \omega_1^{k}(p, q_0),$$

仅以 qo 为阶小于或等于 g 的极点。 这便与 qo 是非 Weierstrass 点矛盾。

根据对称关系式,作为 q 的函数,

$$w(p, p_0; q, q_0) = \int_{q_0}^{q} \omega(q; p, p_0),$$

ω(q; p, p₀) 的 A-周期为 0, B-周期

$$B_i = \int_{B_i} \omega(q; p, p_0) = 2\pi i \int_{P_0}^{p} \varphi_i, \ i = 1, 2, \dots, g_s$$

这里 {φ_i} 是全纯微分空间的典型基。

设 $\{\phi_k(p)\}$ $(k=1, 2, \dots, g)$ 为线性方程组

$$\sum_{k=1}^{g} \left(\int_{p_{j}} \omega_{i}^{k} \right) \phi_{k}(p) = 2\pi i \int_{p_{0}}^{p} \phi_{i}, j = 1, 2, \dots, g,$$

的唯一的一组解。由于系数矩阵非异,这样的解是唯一存在的 定义函数,取定点 $q_1 \approx q_0$,

$$w(p, q) = w(p, p_0; q, q_0) - \sum_{k=1}^{g} \psi_k(p) \int_{q_1}^{q} \omega_2^k(s, q_0)$$

$$= \int_{q_0}^{q} \omega(s; p, p_0) - \sum_{k=1}^{g} \psi_k(p) \int_{q_1}^{q} \omega_2^k(s, q_0)$$

$$= \int_{q_0}^{q_1} \omega(s; p, p_0) + \int_{q_1}^{q} \omega(s; p, p_0)$$

$$-\sum_{k=1}^{g} \phi_{k}(p) \int_{q_{1}}^{q} \omega_{k}^{1}(s, q_{0}),$$

则 w(p, q) 当 p 固定时,作为 q 的函数是单值的。因为在 w(p, q) 的定义式中,左边被积的微分的 A-周期为 0, B-周期也为 0.

定义。w(p,q) 对于 p 的微分

$$dw(p, q) = \omega(p; q, q_0) - \sum_{k=1}^{\ell} \left(\int_{q_1}^{q} \omega_i^{\ell}(s, q_0) \right) d\psi_{\ell}(p),$$

称为紧 Riemann 曲面的初等微分。 这里 q_0 是取定的非 Weierstrass 点,全纯微分组 $\{d\phi_k(p)\}$ 满足

$$\sum_{k=1}^{g} \left(\int_{b_{i}} \omega_{2}^{k} \right) d\phi_{k}(p) = 2\pi i \varphi(p), \ i=1, 2, \cdots, g.$$

在 q 的局部参数邻域内,在局部参数 z = z(p) 下,

$$dw(p, q) = \frac{dz}{z(p) - z(q)} + \phi(z)dz,$$

 $\phi(x)$ 是 q 的局部参数邻域内的全纯函数。

现在,我们可以把 dw(p, q) 作为 Cauchy 核,得到下面的 Cauchy 积分定理。

定理 1.1. 如果 G 为 $W - \{q_0\}$ 的相对紧域,边界 ∂G 由有限条可求长的可微分曲线组成, f 在 \overline{G} 上解析。(在包含 \overline{G} 的域内解析)。则对于 $q \in G$ 有 Cauchy 积分表示式

$$f(q) = \frac{1}{2\pi i} \int_{\partial G} f(p) dw(p, q).$$

定理的证明可由留数定理推出。 须注意,表示式左边的 Cauchy 积分是 q 的(单值)解析函数。

§ 2 非紧 Riemann 曲面上的域的初等微分。 与 Cauchy 积分公式

现设W为非紧 Riemann 曲面,G,为W的相对紧域。根据第

五章引理 2.2,对于 G_0 总存在一个正则域 Q,使得 $G \subset Q$. Q 是一个紧的带边界的 Riemann 曲面、设 Q^* 为Q 的共轭 Riemann 曲面, $Q = Q \cup Q^*$ 为倍 Riemann 曲面(参看第一章§4). Q 是一个紧 Riemann 曲面。取定一个非 Weierstrass 点 $q_0 \in Q^*$ 。定义 Q 的初等微分 Q 的初等微分 Q 的初等微分。 再限制在 Q 人,则称 Q 人 Q 人 Q 的初等微分。 而且也有 Cauchy 定理。

定理 2.1. 如果 $G \subset G_0$, 边界 ∂G 由有限条可求长的可微分曲线组成,f 为 G_0 内的全纯函数,则对于 $g \in G$,

$$f(q) = \frac{1}{2\pi i} \int_{\partial G} f(p) dw(p, q).$$

§3 Runge 逼近定理

定理 3.1. 设 W 为非紧 Riemann 曲面, Q_1 和 Q_2 为 W 的相对紧域, $\bar{Q}_1 \subset Q_2$,边界 ∂Q_1 和 ∂Q_2 由有限条可求长的可微分曲线组成。假设对任意 $p_1 \in \partial Q_1$ 对应有一点 $p_2 \in \partial Q_2$,且存在路径 $l_{p_1p_2}$ 连接 p_1 到 p_2 ,除端点外 $l_{p_1p_2}$ 整个位在 $Q_2 - \bar{Q}_1$ 内。

在这些假设下,如果 f(q) 为 Q_1 内的全纯函数,则对 Q_1 内任何紧集 Q_0 , $\bar{Q}_0 \subset Q_1$, 给定 $\epsilon > 0$, 总存在 Q_2 内的全纯 R(q), 使得

$$\max_{\bullet \in g_0} |f(q) - R(q)| < \varepsilon_{\bullet}$$

这一定理的证明方法,是通过 Cauchy 积分,用 Q_2 的亚纯函数来逼近。然后用极点推移法,把极点从 ∂Q_1 推移到 ∂Q_2 上。我们要用到下面的引理。

引**理 3.2.** 设 Q_0 和 Q_1 为 Riemann 曲面W的域, Q_0 是相对紧域且 $Q_0 \subset Q_1$ 。设 $h_1(q)$ 为 Q_1 内的亚纯函数,仅以点 p_1 为 Q_2 人。 设 h(q) 为 Q_1 内亚纯函数,但在点 p_1 全纯,并且

$$|h(p_1)| > \max_{q \in Q_0} |h(q)|,$$

则对任意给定的 $\epsilon > 0$, Q_1 内总存在亚纯函数 R(q), 与 h(q) 具有相同的极点,使得

$$\max_{q \in \Omega_0} |h_1(q) - R(q)| < \varepsilon.$$

证明 把 h(q) 表示为

$$h_1(q) = h_1(q) \frac{[h(p_1) - h(q)]^m}{[h(p_1) - h(q)]^m} = \frac{H_1(q)}{[h(p_1) - h(q)]^m},$$

其中m为正整数,使得 $H_1(q) = h_1(q)[h(p_1) - h(q)]^m$ 在点 p_1 全纯。根据假设

$$\max_{q \in \mathcal{Q}_0} |h(q)|/|h(p_1)| < 1,$$

则有展开式

$$\frac{1}{[h(p_1)-h(q)]^m} = \frac{1}{[h(p_1)]^m \left[1-\frac{h(q)}{h(p_1)}\right]^m} = \sum_{n=0}^n a_n [h(q)]^n,$$

其中的级数在 Q_0 一致收敛。由于

$$h_1(q) = H_1(q) \sum_{n=0}^{\infty} a_n [h(q)]^n,$$

因此对于给定 s>0, 总存在 N, 令

$$R(q) = H_1(q) \sum_{n=0}^{N} a_n [h(q)]^n$$

总有

$$\max_{q \in Q_0} |h_t(q) - R(q)| < \varepsilon_*$$

R(q) 合乎引理的要求,引理得证。

定理 3.1 的证明。作一个正则域 Q_3 , 使得 $\bar{Q}_2\subset Q_3$, Q_3 具有初等微分 dw(p,q)。 根据定理 2.1,我们有 Cauchy 积分表示式,对于 $q\in Q_0$

$$f(q) = \frac{1}{2\pi i} \int_{\partial \Omega_1} f(q) dw(p, q).$$

用有限多个局部参数圆 $\{\Delta_{k}\}$ 覆盖 ∂Q_{k} , 注意到 $Q_{0} \subset Q_{k}$, 我们可以假定这些 Δ_{k} 与 Q_{0} 不相交。因此在 Δ_{k} 的局部参数

下,在 Δ_k 内函数 $f(p) \frac{dw(p,q)}{dz(p)}$ 对 $p \in \Delta_k$ 和 $q \in Q_0$ 全纯,因而在 $\Delta_k \times Q_0$ 内一致连续。 由一致连续性,我们可以充分分割 ∂Q_1 , ∂Q_1 上存在分割点 p_1 , p_2 , $\cdots p_n$, $p_{n+1} = p_1$,相邻两点在同一局部参数圆 Δ_k 内可用同一参数表示,使得对任意 $q \in Q_0$ 有

$$\left|f(q)-\frac{1}{2\pi i}\sum_{j=1}^{n}f(p_{i})\frac{dw(p_{i},q)}{dz(p_{i})}(z(p_{i+1})-z(p_{i}))\right|<\varepsilon/2.$$

$$R(p_i, q) = \frac{f(p_i)}{2\pi i} \frac{dw(p_i, q)}{dz(p_i)} (z(p_{i+1}) - z(p_i)).$$

根据初等微分 dw(p,q) 的性质, $R(p_i,q)$ 是定义于 Q_i 的亚纯函数,仅与 p_i 为一阶极点。而且我们有

$$\max_{q \in \Omega_0} \left| f(q) - \sum_{i=1}^n R(p_i, q) \right| < \varepsilon/2.$$

现在要应用引理 3.2, 把 $R(p_i, q)$ 的极点 $q_i \in \partial Q_i$ 推移到 ∂Q_i 上.

由定理假设,对任意 $p_i \in \partial Q_1$,存在 $p_i' \in \partial Q_2$,及连接 p_i 到 p_i' 的路径 l_i , l_i 除端点外在 $Q_1 - \bar{Q}_1$ 内。用有限个局部参数圆 $\{\Delta_{i,k}\}$ 覆盖 l_i ,设 $\Delta_{i,k}$ 的局部参数为 z = z(p)。在 l_i 上取分割点 $p_i = p_{i,0}$, $p_{i,1}$, … $p_{i,m} = p_i'$,使得相邻两点充分近,且在同一 Δ_{ik} 内,在对应局部参数下,我们有

$$\left|\frac{dw(p_{i,k+1},p_{i,k})}{dz(p_{i,k+1})}\right| > \max_{q \in \mathcal{Q}_0} \left|\frac{dw(p_{i,k+1},q)}{dz(p_{i,k+1})}\right|.$$

应用引理 3.2,依次取引理中

$$h(q) = \frac{dw(p_{i,k+1,q})}{dz(p_{i,k+1})}, k = 0, 1, \dots, m-1$$

则仅以 $p_i = p_{i,0}$ 为极点的亚纯函数 $R(p_i, q)$, 可用仅以 $p_{i,1}$ 为极点的亚纯函数 $R(p_{i,1}, q)$ 来逼近。 $R(p_{i,1}, q)$ 可用仅以 $p_{i,2}$ 为极点的亚纯函数来逼近。 经加次逼近后,我们便得到仅以

$$p_{i,m} = p_i' \in \partial \mathcal{Q}_2$$

的亚纯函数 $R(p_i, q)$ 来逼近 $R(p_i, q)$, 使得

$$\max_{q \in \mathcal{Q}_0} |R(p_i, q) - R(p_i', q)| < \frac{\varepsilon}{2n}, \ j = 1, 2, \dots, n_s$$

\$

$$R(q) = \sum_{j=1}^{n} R(p'_{j}, q),$$

R(q) 是 Q_3 内的亚纯函数。而且有

$$\max_{q \in Q_0} |f(q) - R(q)| \leq \max_{q \in Q_0} |f(q) - \sum_{i=1}^n R(p_i, q)|$$

$$+ \sum_{i=1}^n \max_{q \in Q_0} |R(p_i, q) - R(p_i', q)|$$

$$\leq \frac{\varepsilon}{2} + \frac{M\varepsilon}{2\pi} = \varepsilon.$$

R(q) 即为定理所求的逼近函数,定理得证。

下面的定理是一种类型的 Runge 定理。

定理 3.3. 设 W 为非紧 Riemann 曲面; Q 为 W 的域, 余集 W - Q 没有紧分支。 则对于 Q 的全纯函数 f, 给定 紧 集 $K \subset Q$ 及 s > 0,总存在定义于 W 的全纯函数 F,使得

$$\max_{q \in K} |f(q) - F(q)| < \varepsilon.$$

证明 根据对于Q的假设,存在正则域 Q_1 , 使得 $K \subset Q_1 \subset Q_2$ 作W的正则域穷尽序列 $\{Q_n\}_n$ 则 $K \subset Q_1$, $\bar{Q}_n \subset Q_{n+1}$,边界 ∂Q_n 与 ∂Q_{n+1} 满足定理 3.1 的条件,逐步应用定理 3.1。 对于 Q_1 内全纯函数 f_1 ,存在定义于 Q_2 的全纯函数 f_1 ,使得

$$\max_{q \in R} |f(q) - f_1(q)| < \frac{\varepsilon}{2}.$$

对于 f_1 存在定义于 Q_2 的全纯函数 f_2 , 使得

$$\max_{q \in \overline{\Omega}_1} |f_1(q) - f_2(q)| < \frac{\varepsilon}{2^{t^*}}$$

如此继续,我们有一序列定义于 Q_{n+1} 的全纯函数 f_n ,使得

$$\max_{q \in \bar{\Omega}_n} |f_n(q) - f_{n+1}(q)| < \frac{\varepsilon}{2^{n+1}}, n = 1, 2, \dots$$

现在考虑定义于 22 的级数

$$F(q) = f_1(q) + \sum_{n=1}^{\infty} [f_{n+1}(q) - f_n(q)].$$

在 Q_1 上这级数以 $\sum_{n=1}^{\infty} 8/2^{n+1}$ 为优级数, 故在 Q_1 上一致收敛, F(q) 是定义于 Q_1 的全纯函数。 F(q) 可以全纯开拓为定义任一 Q_N 的全纯函数,只要在 Q_N 内令

$$F(q) = f_{N+1}(q) + \sum_{n=N+1}^{\infty} [f_{n+1}(q) - f_n(q)].$$

经这样的全纯开拓后,F(q) 为定义于整个W的全纯函数。 在K上

$$\max_{q \in K} |f(q) - F(q)| \leq \max_{q \in K} |f(q) - f_1(q)|$$

$$+ \sum_{n=1}^{\infty} \max_{q \in K} |f_{n+1}(q) - f_n(q)|$$

$$\leq \frac{\varepsilon}{2} + \sum_{n=1}^{\infty} \frac{\varepsilon}{2^{n+1}} = \varepsilon.$$

定理得证.

§ 4 Mittag-Leffler 定理与非紧 Riemann 曲面上亚纯函数的构造

设W为非紧 Riemann 曲面,我们先要构造具有单极点的简单 亚纯函数

我们为此要先讨论紧 Riemann 曲面的情况。

 q 为极点,在 q 的局部参数邻域内,在指定的局部参数 z = z(p) (z(q) = 0) 下,

$$\omega_i^k(p,q) = -\frac{kdz}{z^{k+1}} + \phi_k(z)dz,$$

其中 φ, 是全纯函数。

由规范化假设 $\omega_i^1(p, q)$ 的 A-周期 $A_i = 0$ ($i = 1, 2, \cdots$, g)、我们要附加上一些同类型的第二类微分,使得 B-周期 $B_i = 0$.

仿照§ 1. 取定一个非 Weierstrass 点 $q_i \in W$. 取定一组微分 $\{\omega_i^2(p_i,q_0): k=1,2,\cdots,g\}$. 我们已知 B-周期矩阵

$$\left[\int_{b_j} \omega_2^{\frac{1}{2}}(p, q_0)\right]_{\ell^{\times}\ell}$$

是非异矩阵。因此对于 $\omega_s^2(p,q)$ $(q \neq q_0)$, 线性方程组

$$\sum_{k=1}^{g} c_{k} \int_{b_{j}} \omega_{2}^{k}(p, q_{0}) = \int_{b_{j}} \omega_{2}^{n}(p, q)$$

有一组唯一的不全为 0 的解 c1, c2, · · · , c, 于是第二类微分

$$\omega_2^*(p, q) - \sum_{k=1}^g c_k \omega_2^k(p, q_0)$$

的 A-周期全为 0, B-周期也全为 0,

积分定义的函数

$$w^{*}(p, q) = \int_{p_{0}}^{p} \left[\omega_{2}^{*}(p, q) - \sum_{k=1}^{g} c_{k} \omega_{1}^{i}(p, q_{0}) \right], \ p_{0} \approx q, \ q_{0},$$

为W上的亚纯函数,仅以q和 q_0 为极点,在q的局部参数邻域内,在指定的局部参数 z=z(p) (z(q)=0) 下

$$w^*(p, q) = \frac{1}{z^*} + \phi_*(z),$$

其中 φ,(ε) 是全纯函数。

现在讨论非紧 Riemann 曲面W的情况。

设见为W的正则域、Q是紧带边界的 Riemann 曲面。设见* 为Q的共轭 Riemann 曲面, W为Q的倍 Riemann 曲面。 W是一 个紧 Biemann 曲面. 给定 $q \in Q$, $q_0 \in Q^*$ (q_0 是非 Weierstrass 点),对应有 $w^*(p,q)$. 把 $W^*(p,q)$ 限制在 Q_0 则 $w^*(p,q)$ 是 Q_0 内仅以 Q_0 为极点的简单亚纯函数,在 Q_0 的局部参数邻域内,在 指定的局部参数 z=z(p) (z(q)=0) 下,

$$w^{n}(p, q) = \frac{1}{z^{n}} + \phi_{n}(z),$$

其中 Φ, 是全纯函数。

我们的目的是要在非紧 Riemann 曲面W上, 构造具有单极 点的简单亚纯函数。

给定一点 $q \in W$,在 q 的局部参数邻域内,取定局部参数 z = z(p) (z(q) = 0)。 作W的正则域穷尽序列 $\{Q_k\}$ (k = 0, $1, 2, \cdots$),使得 $q \in Q_0$.

对任何正则域 Q_t , 构造简单亚纯函数 $\omega_t^*(p,q)$, 仅以 q 为极点。在 q 的已给定的局部参数邻域内,在已给定的局部参数 z=z(p) (z(q)=0) 下,

$$w_k^n(p, q) = \frac{1}{z^n} + \phi_k^k(z), (n \ge 1)$$

其中 φ 是全纯函数。

考虑到 $w_{k+1}^*(p, q) - w_k^*(p, q)$ 在 Q_k 内全纯,我们可以应用 Runge 定理 3.3. 因此,存在定义于W的全纯函数 f_k , 使得

$$\max_{p \in \Omega_{k-1}} |w_{k+1}^n(p,q) - w_k^n(p,q) - f_k(p)| < \frac{\varepsilon}{2^k}, \ (k=1,2,\cdots).$$

*

$$w^*(p, q) = w_1^*(p, q) + \sum_{k=1}^{n} [w_{k+1}^*(p, q) - w_k^*(p, q) - f_k(p)].$$

则由于其中级数在 Q_0 有定义且绝对一致收敛,因此, 在 Q_0 内 $w^*(p,q)$ 是亚纯函数,仅以 q 为极点。 $w^*(p,q)$ 可以解析开拓 定义到任何 Q_N 内,我们只要把它写成形式

$$w^{n}(p, q) = W_{N+1}^{n}(p, q) - \sum_{k=1}^{N} f_{k}(p)$$

$$+\sum_{k=N+1}^{\infty} [w_{k+1}^*(p, q) - w_k^*(p, q) - f_k(p)],$$

其中级数在 Q_N 上一致收敛, $w^*(p,q)$ 是定义于 Q_N 的亚纯函数.

这样, $w^*(p,q)$ 是定义于W的亚纯函数,仅以q 为极点。在q 的给定的局部参数邻域内,在给定的局部参数

$$z = z(p) \ (z(q) = 0)$$

下,

$$w^{n}(p, q) = \frac{1}{z^{n}} + \phi_{n}(z) \ (n \ge 1),$$

其中 $\phi_*(z)$ 是全纯函数。

我们称这样的 w''(p,q) 为单 (n) 极点的简单亚纯函数。现在构造亚纯函数极点的主要奇异部分的整体表示式。

设 f 为非紧 Riemann 曲面W上的亚纯函数。 如果 g 为 f 的极点,则在 g 的局部参数邻域内, 在给定的局部参数映照 z = z(p) (z(q) = 0) 下,

$$f(p) = \frac{a_n}{z^n} + \cdots + \frac{a_1}{z^1} + \phi(z), \ a_n \neq 0,$$

其中 $\phi(z)$ 是全纯的。一般地设

$$S(p, q) = \frac{a_n}{z^n} + \cdots + \frac{a_1}{z}, (a_n \neq 0, n \geq 1)$$

并称之为 f 在极点 q 的**主要奇异部分**。注意,S(p, q) 的表示与给定的局部参数 z = z(p) (z(q) = 0) 有关,S(p, q) 是局部定义的。

对于给定的 S(p, q), 在W上存在仅以 q 为极点的亚纯函数 $R(p, q) = a_n w^n(p, q) + \cdots + a_1 w^1(p, q)$,

R(p, q) 在极点 q 的主要奇异部分恰好为 S(p, q). R(p, q) 是整体定义的主要奇异部分。

现在我们要用主要奇异部分来构造一般的亚纯函数,这就是下面 Mittag-Leffler 定理的内容.

定理 4.1. 设W为非紧的 Riemann 曲面。 给定W的点序列

 $\{q_n\}$, 当 $n \to \infty$ 时 q_n 趋于W的理想边界。则存在定义于W的亚纯函数 f, 仅以序列 $\{q_n\}$ 中的点为极点,f 在每一个极点 q_n 具有预先给定的主要奇异部分。

证明 我们先回忆一下,点列 q。趋于W的理想边界,是指对于给定的紧集 $K \subset W$,总存在 N > 0,使得当 $n \ge N$ 时

$$q_* \in W - K_*$$

作W的正则域穷尽序列 $\{Q_n\}$, n=1, 2, ···。 重新排列 $\{q_n\}$, 假定每一个域 Q_n-Q_{n-1} 只包含一个 q_n (事实是有限多个 q_n), n=1, 2, ···。

我们在 q_n 局部地,因而整体地给定主要奇异部分 $R(p, q_n)$. $R(p, q_n)$ 在 Q_{n-1} 全纯,应用 Runge 定理 3.3,存在定义于W的 全纯函数 f_n ,使得

$$\max_{q \in \mathcal{Q}_{n-1}} |R(p, q_n) - f_n(p)| \leq \frac{\varepsilon}{2^n}, n = 1, 2, \dots,$$
 定义函数

$$f(p) = \sum_{n=1}^{\infty} [R(p, q_n) - f_n(p)]$$

$$= \sum_{n=1}^{N} R(p, q_n) - \sum_{n=1}^{N} f_n(p)$$

$$+ \sum_{n=N+1}^{\infty} [R(p, q_n) - f_n(p)],$$

由于其中后一级数在 Q_N ($N \ge 1$) 一致收敛,在 Q_N 内收敛于全纯函数,容易看出 f(p) 在W亚纯,仅以每一个 q_n 为极点,而在 q_n 的主要奇异部分为 $R(p_1, q_n)$. f 符合定理要求。 定理得证。

§ 5 Weierstrass 定理与非紧 Riemann 曲面的 全纯函数的构造

在这里,我们要在非紧 Riemann 曲面W上,推广关于无穷乘 • 200 •

积的 Weierstrass 定理,构造W上具有指定零点及其阶数的全纯函数。

我们先要构造具有一个一阶零点的简单全纯函数。

设W为非紧 Riemann 曲面,Q为W的正则域。我们先讨论 Q的简单全纯函数的构造。 Q是一个紧带边 Riemann 曲面。设 Q^* 为 Q的共轭曲面, $Q = Q \cup Q^*$ 为倍 Riemann 曲面。 Q 是紧 Riemann 曲面。 仿照§ 1 中作初等微分的方法,作 Q 的简单全纯函数。取定 $q \in Q$,再取定非 Weierstrass 点 $q_0 \in Q^*$ 。 设 $\omega(P;q_0)$ 为第三类规范化微分, $\omega_2^*(P,q_0)$ ($k=1,2,\cdots,g$)为第二类规范化微分, $\omega_2^*(P,q_0)$ ($k=1,2,\cdots,g$)为第二类规范化微分, $\{\varphi_i\}$ ($i=1,2,\cdots,g$)为 $\{\varphi_i\}$ 的全纯微分空间的典型基。我们已经知道, $\{\varphi_i\}$ ($\{\varphi_i\}$ $\{\varphi_i$

$$B_i = \int_{b_i} \omega(p; q, q_0) = 2\pi i \int_{q_0}^{q} \varphi_i, j = 1, 2, \dots, g.$$
 另外, B -周期矩阵

$$\left[\int_{b_1}\omega_1^k(p,q_0)\right]_{t^{\times}t}$$

是非异矩阵,存在不全为零的数组 (c1, c2, ···, c4), 使得

$$\omega(p; q, q_0) = \sum_{i=1}^{R} c_i \omega_i^i(p, q_0)$$

的 A-周期和 B-周期都恒为零。 定义函数

$$w_0(p, q) = \int_{p_1}^{p} \left[\omega(p; q, q_0) - \sum_{k=1}^{g} c_k \omega_2^k(p, q_0) \right], \ (p_1 \neq q, q_0)$$

 $w_0(p,q)$ 作为 t 的函数,除附加上一个常数 $2m\pi i$ (m 整数)外是确定的。 $w_0(p,q)$ 以 g 为留数 1 的对数极点,即在 g 的局部参数 邻域内,在局部参数 z=z(p) 下,

$$w_0(p, q) = \log [z(p) - z(q)] + \phi(z(p)),$$

其中 ϕ 是全纯函数。 另外还要注意, $q_0 \in Q^*$ 是一个极点。 把

w₀(p, q) 限制在 Q, 则

$$P(p, q) = e^{w_0(p,q)}$$

为定义于2的全纯函数,仅以 9 为一阶零点。

应先指出,w(p,q) 在 q 有对数极点,它的值确定到附加一个常数 $2m\pi i$.

现在,我们在整个非紧 Riemann 曲面上构造简单全纯函数。

作W的正则穷尽域序列 $\{Q_s\}$ $(n=0,1,2,\cdots)$. 设给定的点 $q_0 \in Q_0$, 对每一个 Q_s , 设 $w_n(p,q)$ 为前面定义的简单全纯函数. $w_s(p,q)$ 具有公共的留数为 1 的对数极点. 因此,对任意 $n \ge 1$, $w_{n+1}(p,q) - w_n(p,q)$ 的单值分支在 Q_s 全纯. 应用 Runge 定理 3.3,存在定义于W的全纯函数 f_s , 使得

$$\max_{q \in D_{n-1}} |w_{n+1}(p,q) - w_n(p,q) - f_n(p)| < \varepsilon/2^n, \quad (n \ge 1,)$$

$$P(p, q) = e^{w(p,q)} = e^{w_1(p,q)} + \sum_{n=1}^{\infty} e^{w_{n+1}(p,q) - w_n(p,q) - f_n(p)}$$

$$= e^{w_N(p,q) - \sum_{n=1}^{N} f_n(p) + \sum_{n=N+1}^{\infty} e^{w_{n+1}(p,q) - w_n(p,q) - f_n(p)},$$

由于上式最后级数(对 $N \ge 1$)在 Q_{N-1} 一致收敛于全纯函数,P(p,q) 为定义于W的全纯函数。并且直接看出,P(p,q) 仅以 q 为一阶零点。

我们称 $P(p,q) = e^{\omega(p,q)}$ 为W的简单全纯函数。其中 $\omega(p,q)$ 仅以 q 为对数极点,在 q 的局部参数邻域内,在局部参数 z=z(p) 下,

$$w(p, q) = \log [z(p) - z(q)] + \phi[z(p)],$$

 ϕ 为全纯函数。同时我们要指出,对任何域 $Q \subset W$, Q 不包含对数
极点 q 。如果 $w(p, q)$ 在 Q 内存在单值分支。 则确定到相差一

极点 q, 如果 w(p, q) 在 Q 内存在单值分支, 则确定到相差一个常数 $2m\pi i$ (m 是整数).

下面我们建立关于无穷乘积的 Weierstrass 定理。

定理 5.1. 设 W 为非紧 Riemann 曲面。给定 W 的点序列 $\{q_n\}$ $\{n-1, 2, \cdots\}$,当 $n \to \infty$ 时 q_n 趋于 W 的理想边界。则在 W

上存在全纯函数 f,仅以序列 $\{q_n\}$ 中的点 q_n 为零点,且在 q_n 上具有预先给定的零点的阶 λ_n (λ_n 为正整数).

证明 对于序列 $\{q_*\}$ 中的点 q_* , 总存在仅以 q_* 为一阶零点的简单全纯函数,设为

$$P(p, q_n) = e^{w(p,q_n)}.$$

把序列 $\{q_n\}$ 中每一点 q_n 看作 1_n 个点,作一新序列,使得同一点 q_n 在新序列中顺序出现 1_n 次。 所作新序列仍用 $\{q_n\}$ 表示之。作业的正则域穷尽序列 $\{Q_k\}$ $\{k=0,1,2,\cdots\}$,再重新排列 $\{q_n\}$,假定对于 $\{q_n\}$ 中任何点 q_n ,如果 $q_n \in Q_k$,则当 $n \ge N$ 时 $q_n \in Q_n$ 。再设 Q_n 不包含 $\{q_n\}$ 中的点。

现在,我们要在W上定义一个全纯函数,仅以序列 $\{q_n\}$ 中的点 q_n 为一阶零点。

对于任意 q_n , n-1, 2, …, 一定存在 Q_k , 使得 $q_n \in Q_{k+1}$ $-Q_k$, 因而 q_n , $q_{n+1} \in Q_k$. 这时 $w(p, q_{n+1}) - w(p, q_n)$ 在 Q_k 内存在单值分支。根据 Runge 定理 3.3。 对于单值全纯分支 $w(p; q_{n+1}) - w(p, q_n)$, 存在定义于W上的全纯函数 $h_n(p)$, 使得

$$\max_{p \in \tilde{B}_{k-1}} |w(p, q_{n+1}) - w(p, q_n) - h_n(p)| < \frac{\varepsilon}{2^n}.$$

因此,所求的全纯函数定义为

$$f(p) = e^{w(p,q_1)} \prod_{n=1}^{\infty} e^{w(p,q_{n+1})-w(p,q_n)-h_n(p)}$$

$$= e^{w(p,q_1)+\sum_{n=1}^{\infty} Lw(p,q_{n+1})-w(p,q_n)-h_n(p)}$$

$$= e^{w(p,q_N)-\sum_{n=1}^{N} h_n(p)+\sum_{n=N+1}^{\infty} (w(p,q_{n+1})-w(p,q_n)-h_n(p))}.$$

这一表示式中,无穷级数在相应的 Q_{t} 上一致收敛,因而 f(p) 是全纯函数,且仅以每一 q_{n} 为一阶零点。 由于同一点 q_{n} 出现 λ_{n} 次, f(p) 仅以 q_{n} 为点 λ_{n} 阶零点,定理得证。

参考 文献

伍鸿熙,吕以辇,陈志华,紧黎曼曲面引论,科学出版社,北京,1983.

- Ahlfors, L. V., Comformal Invariants, Topics in Geometric Function Theory, McGraw-Hill, 1973.
- Ahlfors, L. V. & Sario, L., Riemann Surfaces, Princeton University Press, 1960.
- Behnke, H. & Sommer, F., Theorie der Analytischen Funktionen einer Komplexen Veranderlichen, Springer-Verlag, Berlin, 1955,
- Farkas, H. M. & Kra, I., Riemann Surfaces, Springer, New York, 1980.
- Springer, G., Introduction to Riemann Surfaces, Addison-Wesley, Reading, Mass., 1957.
- Weyl, H., Die Idee der Riemannschen Fläche, Teubner: Berlin, 1923,