IN THE CLAIMS:

A13

2

4

5

1

(currently amended) A device for attaching to a living subject having a joint, comprising a first sensor, a second sensor, a processor, and a non-volatile storage device, said a first sensor for attaching to a first body segment above a hip the joint, said second sensor for attaching to a second body segment below the hip joint, wherein said first sensor and said second sensor each comprise an a solid state inclination measuring device for determining inclination with respect to the gravity vector, wherein said inclination with respect to the gravity vector determined data from said first sensor and from said second sensor is processed in said processor and stored in said non-volatile storage device for distinguishing lying, sitting, and standing positions, wherein said processor and said non-volatile

) 8

9

10

11

__

1

2. (Canceled)

- 1 3. (original) A device as recited in claim 2, wherein said inclination measuring device comprises a dc accelerometer.

storage device are part of the device for attaching to the living subject.

- 4. (original) A device as recited in claim 1, wherein said inclination measuring device comprises three accelerometers orthogonally mounted.
- 5. (original) A device as recited in claim 1, wherein said inclination measuring device further comprises a magnetometer.
- 6. (currently amended) A device as recited in claim 5 1, wherein said inclination measuring device comprises a plurality of magnetometers.

	1		(autrontly amonded) A device as regited in claim 1, wherein data from said
Ma	1	1	(currently amended) A device as recited in claim 1, wherein <u>data from</u> said
71.7 C.1	2		magnetometer data magnetometers is for providing direction with respect to the
W ^{III}	3	•	earth's magnetic field.
	1	8.	(original) A device as recited in claim 1, wherein data from said first sensor is
١,	2		subtracted from data from said second sensor.
4.4			
Edy	1	9.	(original) A device as recited in claim 8, wherein said subtraction is to determine
XIO	2		a difference in orientation.
	1	10.	(original) A device as recited in claim 8, wherein said first sensor and said second
	2		sensor are for measuring range of motion of said second body segment with
	3		respect to said first body segment.
	J		respect to said that dody segment.
	1	11.	(autrently amended) A device as regited in alaim 10, wherein data from said range
		11.	(currently amended) A device as recited in claim 10, wherein data from said range
	2		of motion measurement data is analyzed for change of range of motion over time.
	1	12.	(original) A device as recited in claim 1,1, wherein initial values of said time
	2		dependent data are tared out to provide change from said initial values.
	1	13.	(currently amended) A device as recited in claim 1, wherein said non-volatile
	2		storage device comprises a solid state device.
	1	14.	(currently amended) A device as recited in claim 13, wherein said non-volatile
	2		storage device comprises a non-volatile memory device chip.
	1	15.	(original) A device as recited in claim 1, further comprising a feedback
	2	15.	mechanism
	4		meenamom

10/082,562

		•	
	1	18	(currently amended) A device as recited in claim 16 15, further comprising a
KY5	2		housing, wherein said first sensor, said storage device, said processor, and said
Ç.M	3		feedback mechanism are all within said housing.
۸	1	17.	(original) A device as recited in claim 15, further comprising a housing separate
7 1 %	2		from said first sensor and said second sensor, wherein said feedback mechanism is
X 62.	3		within said housing.
/ ,,			
	1	18.	(original) A device as recited in claim 17, wherein said first sensor and said
	2		second sensor are wirelessly connected to said housing containing said feedback
	3		mechanism.
	1	19.	(original) A device as recited in claim 18, wherein said wireless connection is an
	2		RF connection.
	1	20.	(currently amended) A device as recited in claim 15, wherein said feedback
	2		mechanism is activated if a preset range of motion threshold has been exceeded
	3		too many more than a specified number of times.
	1	21.	(original) A device as recited in claim 15, wherein said feedback mechanism
	2		provides vibratory or auditory feedback.
	1	22.	(original) A device as recited in claim 15, wherein said feedback mechanism
	2		comprises a piezo-electric buzzer or an electromagnetic shaker.
	1	23.	(original) A device as recited in claim 15, wherein said feedback mechanism
	2		provides feedback to warn of a problem, discourage a movement, support a
	3		desired result, or encourage a movement.

	1	24.	(original) A device as recited in claim 23, wherein said problem comprises
459	2	1	repeatedly exceeding a pre-programmed inclination angle.
	1	25.	(original) A device as recited in claim 1, wherein said processor comprises a
	2		microprocessor, a signal processor, or a personal computer.
1	J		
10	1	26.	(currently amended) A device as recited in claim 1, wherein data from said
X 6	\mathbf{J}_2		inclination determination data comprises body segment orientation inclination
1	3		data as a function of time.
	1	27.	(currently amended) A device as recited in claim 1, wherein data from said
	2		inclination determination data comprises posture data as a function of time.
	1	28.	(currently amended) A device as recited in claim 1, wherein data from said
	2		inclination determination data is used to adjust physical therapy.
	1	29.	(original) A device as recited in claim 1, wherein said device further comprises a
	2		data entry system.
•	1	30.	(original) A device as recited in claim 29, wherein said data entry system
	2		comprises a button.
	1	31.	(original) A device as recited in claim 29, wherein said data entry system is for
	2		recording the presence of pain.

32.

1

2

(original) A device as recited in claim 29, wherein time, date or other data are

recorded when said data entry system is used.

	1,	83.	(currently amended) A device as recited in claim 1, wherein further comprising a		
ANA	2		program for displaying data from said inclination determination data is displayed		
	3		as a histogram showing number of inclinations at each angle range during a time		
<i>'</i>	4		period.		
1	4				
AØ.	3 1	34.	(currently amended) A device as recited in claim 1, wherein further comprising a		
	2		program for displaying data from said inclination determination data is displayed		
	3		as inclination v. time.		
	1	35.	(original) A device as recited in claim 1, further comprising a digital filter.		
	1	36.	(currently amended) A device as recited in claim 35, wherein said device may be		
	2		subject to linear accelerations, wherein said digital filter is for reducing effect of		
	3		said linear accelerations on the data.		
	1	37.	(original) A device as recited in claim 35, wherein said digital filter comprises a		
	2		low pass filter or a high pass filter.		
			The first of a mgn pass mon.		
	1	38.	(currently amended) A device as recited in claim 1, wherein said inclination		
	2	50.			
			measuring device comprises dc accelerometers, wherein said device further		
	3		comprising comprises a high pass filter, wherein output of said accelerometers		
	4		that passes through said high pass filter is subsequently integrated and used to		
	5		compute a resultant velocity which is used to calculate energy used.		
	1	39.	(original) A device as recited in claim 1, wherein said device is further for		

determining body posture in said sitting position.

2

A13 W	
36	

(currently amended) A device comprising a solid state sensor, a processor, a non-volatile storage device, and a feedback mechanism wherein data from said sensor is processed in said processor to provide an output, wherein said output is stored in said non-volatile storage device as a function of time, and wherein multiple points of said time dependent output stored in said non-volatile storage device are processed in said processor, wherein said processor is programmed to direct directs said feedback mechanism to provide information or instruction in response to said multiple points of time dependent output indicating too little inactivity, or activity of a joint during an interval of time that is less than a preset level of activity, or too small—a range of motion of a joint during an interval of time that is less than a preset range of motion, or repetitive activity that can cause repetitive stress injury or too many motions beyond a specified range of motion during an interval of time that is greater than a preset amount of vibration for too long a time.

- 1 41. (currently amended) A device as recited in claim ± 40, wherein said sensor comprises an inclination measuring device
- 1 42. (Canceled)

40.

4

5

6

7

10

11

12

13

14

15

16

- 1 43. (currently amended) A device as recited in claim 42 40, wherein said inclination
 2 measuring device comprises a dc accelerometer.
- 44. (original) A device as recited in claim 43, wherein said inclination measuring
 device comprises three accelerometers orthogonally mounted.
- 1 45. (original) A device as recited in claim 43, wherein said inclination measuring device further comprises a magnetometer.

115-002

	1	46.	(original) A device as recited in claim 45, wherein said inclination measuring
4 2	2		device comprises a plurality of magnetometers.
	1	47.	(original) A device as recited in claim 45, wherein said magnetometer is for
	2		providing direction with respect to the earth's magnetic field.
. \	, 1	48.	(currently amended) A device as recited in claim 40, further comprising a network
YI	2		of said solid state sensors.
N 6	9		
X	1	49.	(currently amended) A device as recited in claim 48, wherein a first solid state
•	2		sensor of said network of solid state sensors is for placing on a first body segment
	3		and a second solid state sensor of said network of solid state sensors is for placing
	4		on a second body segment connected to said first body segment.
	1	50.	(currently amended) A device as recited in claim 49, wherein output data from
	2		said first sensor is subtracted from data from said second sensor to provide angle
	3		of a joint there between.
	1	51.	(original) A device as recited in claim 49, wherein said first sensor and said
	2		second sensor are for measuring range of motion of said second body segment
	3		with respect to said first body segment.
	1	52.	(currently amended) A device as recited in claim 51, wherein data from said range
	2		of motion measurement data is analyzed for change of range of motion over time.
	1	53.	(original) A device as recited in claim 51, wherein an initial values of said time
	2		dependent data is tared out for said first sensor and said second sensor to provide

change from said initial value.

3

1 2	54.	(original) A device as recited in claim 40, wherein said storage device comprises a solid state device.
	M.	k
1	55.	(original) A device as recited in claim 54, wherein said storage device comprises a
2		non-volatile memory device.
1	56.	(currently amended) A device as recited in claim 1, wherein said storage device
2		and said processor are within a housing, wherein said storage device and said
X 3		processor are within the same housing.
1	57.	(original) A device as recited in claim 40, further comprising a housing, wherein
2		said sensor, said storage device, said processor, and said feedback mechanism are
3		all within said housing
1	58.	(original) A device as recited in claim 40, further comprising a housing separate
2		from said sensor, wherein said feedback mechanism is within said separate
3		housing.
1	59.	(original) A device as recited in claim 58, wherein said sensor is wirelessly
2		connected to said housing containing said feedback mechanism.
1	60.	(original) A device as recited in claim 59, wherein said wireless connection is an
2		RF connection.
1	61.	(original) A device as recited in claim 40, wherein said feedback mechanism is
2		activated if a preset range of motion threshold has been exceeded more than a
3		specified number of times.

1	62.	(original) A device as recited in claim 40, wherein said feedback mechanism
2		provides vibratory or auditory feedback.
	\	
1	63.	(original) A device as recited in claim 40, wherein said feedback mechanism
2		comprises a piezo-electric buzzer or an electromagnetic shaker.
1	64.	(original) A device as recited in claim 40, wherein said feedback mechanism
2		provides feedback to warn of a problem, discourage a movement, support a
3		desired result, or encourage a movement.
1	65.	(original) A device as recited in claim 64, wherein said problem comprises
2		repeatedly exceeding a pre-programmed inclination angle.
1	66.	(original) A device as recited in claim 40, wherein said processor comprises a
2		microprocessor, a signal processor, or a personal computer.
1	67.	(original) A device as recited in claim 40, wherein said output comprises body
2		segment orientation data as a function of time.
1	68.	(original) A device as recited in claim 40, wherein said output comprises posture
2		data as a function of time.
		,
1	69.	(original) A device as recited in claim 40, wherein said output is used to adjust
2		physical therapy.
1	70.	(original) A device as recited in claim 40, wherein said device further comprises a
2		data entry system.

f13_	2	71.	(original) A device comprises a button.	as recited in claim 70, wherein said	l data entry system
1	1 2	72.	(original) A device recording the preser	as recited in claim 70, wherein said nce of pain.	data entry system is for
ÉŚ	1 2	73.	1	as recited in claim 70, wherein time data entry system is used.	, date or other data are
	1 2 3	74.	1	as recited in claim 40, wherein said number of inclinations at each angle	
	1 2	75.	(original) A device a inclination v. time.	as recited in claim 40, wherein said	output is displayed as
	1	76.	(original) A device a	as recited in claim 40, further compr	rising a digital filter.
	1 2	77.	(original) A device a effect of linear accel	as recited in claim 76, wherein said of erations on the data.	digital filter is for reducing
	1 2	78.	(original) A device a low pass filter.	s recited in claim 76, wherein said o	digital filter comprises a
	1 2	79.		A device as recited in claim 40, wh	
	3			hat passes through said high pass fi	_
	4			o compute a resultant velocity whic	
	5		energy used.		
			115-002	Page 16 of 26	10/082,562

	Cal	80.	(currently amended) A device as recited in claim 40, wherein said device is further
Λ	2	00.	
#13	2		for determining body posture in said a sitting position.
(green)			
	1	81.	(original) A device as recited in claim 40, wherein said device is wearable.
•			
V	1	82.	(original) A device as recited in claim 40, wherein said device records output over
110	5 2		a series of intervals of time.
1 6	9		
1	1	83.	(New) A device for attaching to a living subject, comprising a first sensor, a
		05.	
	2		processor, and a storage device, wherein said first sensor comprises a device for
	3		determining a curvature of the spine, wherein data from said first sensor is
	4		processed in said processor and stored in said storage device, wherein said first
	5		sensor, said processor and said storage device are part of the device for attaching
	6		to the living subject.
	1	84.	(New) A device as recited in claim 83, wherein said device is capable of detecting
	2		various postures based on curvature of the spine.
	2		various postures based on curvature of the spine.
	1	85.	(New) A device as recited in claim 84, wherein said device is capable of detecting
	2		a kyphotic curvature of the spine or a lordotic curvature of the spine.
	1	86.	(New) A device as recited in claim 85, wherein said processor is programmed to
	2		measure the time the subject has said kyphotic curvature of the spine and
	3		determines whether said time exceeds a preset value, and wherein said processor
	~		accommos whomer said time exceeds a preser value, and wherein said processor

preset value.

4

5

is further programmed to prompt the subject to move if said time exceeds said

Mz	2
Great	3
	4
· Y · ·	5
X6.8	6
110	7

87. (New) A device as recited in claim 86, further comprising a first inclination measuring device for determining inclination with respect to the gravity vector and a second inclination measuring device for determining inclination with respect to the gravity vector, said first inclination measuring device for attaching to a first body segment above a joint, said second inclination measuring device for attaching to a second body segment below said joint for distinguishing lying, sitting, and standing positions.

- 1 88. (New) A device as recited in claim 83, further comprising at least one additional
 2 sensor for attaching to the subject for distinguishing lying, sitting, and standing
 3 positions.
- 1 89. (New) A device as recited in claim 88, wherein said at least one additional sensor
 2 includes a solid state inclination measuring device for determining inclination
 3 with respect to the gravity vector.
- 1 90. (New) A device as recited in claim 89, wherein said at least one additional sensor includes a first inclination measuring device and a second inclination measuring device, said first inclination measuring device for attaching to a first body segment above a joint, said second inclination measuring device for attaching to a second body segment below said joint.
- 1 91. (New) A device as recited in claim 90, wherein said joint is a hip joint.
- 1 92. (New) A device as recited in claim 1, wherein said joint is a hip joint.
- 1 93. (New) A device as recited in claim 1, further comprising a sensor for further detecting posture based on curvature of the spine.

3

1913 Cm3	
L'és	

1

2

3

4

5

1 94. (New) A device as recited in claim 93, wherein said sensor is capable of detecting a kyphotic curvature of the spine.

- 95. (New) A device as recited in claim 94, wherein said processor is programmed to measure the time the subject has said kyphotic curvature of the spine and determines whether said time exceeds a preset value, and wherein said processor is further programmed to prompt the subject to move if said time exceeds said preset value.
- 1 96. (New) A device as recited in claim 40, further comprising a sensor for detecting a posture based on curvature of the spine.
- 1 97. (New) A device as recited in claim 96, wherein said sensor is capable of detecting a kyphotic curvature of the spine.
- 1 98. (New) A device as recited in claim 97, wherein said processor is programmed to
 2 measure the time the subject has said kyphotic curvature of the spine and
 3 determines whether said time exceeds a preset value, and wherein said processor
 4 is further programmed to prompt the subject to move if said time exceeds said
 5 preset value.

(New) A device comprising a first sensor for placing on a first body segment, a second sensor for placing on a second body segment, a processor, a storage device, and a feedback mechanism wherein data from said first and said second sensors is processed in said processor to provide an output, wherein said output is stored in said storage device as a function of time, and wherein multiple points of said time dependent output stored in said storage device are processed in said processor, wherein said processor is programmed to direct said feedback mechanism to provide information or instruction in response to said multiple points of time dependent output for measuring range of motion of said second body segment with respect to said first body segment.