Tutorial 1
Part A: Binary
and Decimal
Conversion

Common Number Systems

System	Base	Symbols	Used by humans?	Used in computers?
Decimal	10	0, 1, 9	Yes	No
Binary	2	0, 1	No	Yes

Decimal	Binary
0	0
1	1
2	10
3	11
4	100
5	101
6	110
7	111

Decimal	Binary	
8	1000	
9	1001	
10	1010	
11	1011	
12	1100	
13	1101	
14	1110	
15	1111	

Conversion Among Bases: Example

Binary to Decimal

- How?
 - Multiply each bit by 2ⁿ, where n is the "position" of the bit starting from 0 on the right
 - Add the results

$$\begin{array}{rcl}
1 & x & 2^{0} & = & 1 \\
1 & x & 2^{1} & = & 2 \\
0 & x & 2^{2} & = & 0 \\
1 & x & 2^{3} & = & 8 \\
0 & x & 2^{4} & = & 0 \\
1 & x & 2^{5} & = & 32 \\
\hline
& & & & & & & & \\
43_{10}
\end{array}$$

Binary to Decimal (Example 2)

- How?
 - Multiply each bit by 2ⁿ, where n is the "position" of the bit starting from o on the right

$$1 \times 2^{0} = 1$$

$$0 \times 2^{1} = 0$$

$$0 \times 2^{2} = 0$$

$$1 \times 2^{3} = 8$$

$$1 \times 2^{4} = 16$$

$$25_{10}$$

Add the results

Decimal to Binary

Technique

- Divide the decimal number by two, keep track of the remainder
- First remainder is bit o (LSB, least-significant bit)
- Second remainder is bit 1 and so on
- Repeat until the quotient is zero which completes the conversion.
- The last remainder is most-significant bit: MSB

Decimal to Binary Conversion

Example:

Convert the decimal number 6₁₀ into its binary equivalent.

$$2) \frac{3}{6} \quad r = 0 \leftarrow \text{Least Significant Bit}$$

$$2) \frac{1}{3} \quad r = 1$$

$$2) \frac{0}{1} \quad r = 1 \leftarrow \text{Most Significant Bit}$$

$$6_{10} = 110_2$$

Dec → Binary: Example

Example:

Convert the decimal number 26₁₀ into its binary equivalent.

Solution:

$$2)$$
 26 $r=0 \leftarrow LSB$

$$\frac{6}{2)13}$$
 $r=1$

$$2) 6 r = 0$$

$$2)\frac{1}{3}$$
 r=1

$$2 \frac{0}{1}$$
 $r = 1 \leftarrow MSB$

Part 6: Modular Arithmetic

- The modulus
 - If a is an integer and n is a positive integer, we define a mod n to be the remainder when a is divided by n; the integer n is called the modulus
 - thus, for any integer a:

$$a = qn + r$$
 $0 \le r < n; q = [a/n]$
 $a = [a/n] * n + (a mod n)$

 $11 \mod 7 = 4$; $15 \mod 7 = 1$

- Congruent modulo n
 - Two integers a and b are said to be congruent modulo n if (a mod n) = (b mod n)
 - This is written as $a = b \pmod{n}$

Example

• a = 17, b = 24 and n = 7

Put values in formula

 $(17 \mod 7) = 3 \mod (24 \mod 7) = 3$

Both 17 and 24 have the same remainder (3) when divided by 7, so 17=24(mod 7)

- Modular arithmetic exhibits the following properties:
 - 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$
 - 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$
 - 3. $[(a \mod n) * (b \mod n)] \mod n = (a * b) \mod n$

- Examples:
 - 1. $[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$

$$[(11 \mod 8) + (15 \mod 8)] \mod 8 = 10 \mod 8 = 2$$

$$(11 + 15) \mod 8 = 26 \mod 8 = 2$$

- Examples:
 - 2. $[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$

$$[(11 \mod 8) - (15 \mod 8)] \mod 8 = -4 \mod 8 = 4$$

$$(11 - 15) \mod 8 = -4 \mod 8 = 4$$

- Examples:
 - 3. $[(a \mod n) * (b \mod n)] \mod n = (a * b) \mod n$

```
a=11, b= 15, and n=8

[(11 mod 8) * (15 mod 8)] mod 8 = 21 mod 8 = 5

(11 * 15) mod 8 = 165 mod 8 = 5
```


Thanks!