Aalto University Problem set 4

Department of Mathematics and Systems Analysis

MS-C1541 — Metric spaces, 2023-2024/III

K Kytölä & D Adame-Carrillo

Exercise sessions: 1.-2.2.2024 Hand-in due: Tue 6.2.2024 at 23:59

Topic: Continuous functions, homeomorphisms, sequences in metric spaces

Written solutions to the exercises marked with symbol \triangle are to be returned in My-Courses. Each exercise is graded on a scale 0-3. The deadline for returning solutions to problem set 4 is Tue 6.2.2024 at 23:59.

Exercise 1 (Verifying openness and closedness of subsets).

(a) Show that the set $U = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 < y^2 + z^2 - xyz + 3\} \subset \mathbb{R}^3$ is open and that the set $F = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 2 \text{ and } x \le \frac{1}{3}\sin(\pi y)\} \subset$ \mathbb{R}^2 is closed.

Hint: Express the sets U and F appropriately using preimages; for the latter it is best to use two different functions and an intersection of preimages.

The continuity of the functions involved can be considered known.

(b) Consider the space $\mathcal{C}([-1,1])$ of all continuous functions $f:[-1,1]\to\mathbb{R}$, equipped with the metric induced by the sup-norm $\|\cdot\|_{\infty}$. Consider the

$$D = \left\{ p \in \mathcal{C}([-1,1]) \mid p(x) \ge 0 \ \forall x \in [-1,1], \ \int_{-1}^{1} p(x) \, \mathrm{d}x = 1 \right\}.$$

Show that $D \subset \mathcal{C}([-1,1])$ is a closed set.

<u>Hint</u>: You may use the facts that evaluation functions $f \mapsto f(x)$ (for an arbitrary $x \in [-1,1]$), and the integration function $f \mapsto \int_{-1}^{1} f(x) dx$ are continuous functions $\mathcal{C}([-1,1]) \to \mathbb{R}$ with the chosen metric. Otherwise the ideas are similar to part (a).

Exercise 2 (The closure of a set).

Let (X, d) be a metric space and $A \subset X$ a subset. The closure of A is by definition the set

$$\overline{A} = X \setminus \text{ext}(A), \quad \text{where}$$

$$\text{ext}(A) = \left\{ x \in X \mid \exists r > 0 : \ \mathcal{B}_r(x) \subset X \setminus A \right\}.$$

- (a) Prove that the set \overline{A} is closed.
- (b) Prove that for $x \in X$, the following two conditions are equivalent:
 - (i) $x \in A$;
 - (ii) there exists a sequence $(a_n)_{n\in\mathbb{N}}$ such that $a_n\in A$ for all $n\in\mathbb{N}$ and $\lim_{n\to\infty} a_n = x.$

¹This subset D could be interpreted as the set of all continuous probability density functions supported on the interval [-1, +1].

Exercise 3.

(a) Let X be a set, $J \neq \emptyset$ a nonempty index set, and $A_j \subset X$ subsets for each $j \in J$. Prove De Morgan's laws for arbitrary unions and intersections:

$$X \setminus \bigcup_{j \in J} A_j = \bigcap_{j \in J} (X \setminus A_j)$$
 and $X \setminus \bigcap_{j \in J} A_j = \bigcup_{j \in J} (X \setminus A_j)$.

- (b) Using part (a) and known properties of open sets, prove the following (stated as Theorem VII.16 in the lecture notes):
 - Arbitrary intersections of closed sets are closed.
 - Finite unions of closed sets are closed.

Livercise 4 (Some homeomorphisms).

(a) Let $a, b \in \mathbb{R}$ with a < b. Prove that the open interval $(a, b) \subset \mathbb{R}$ and the real line \mathbb{R} are homeomorphic, $(a, b) \approx \mathbb{R}$.

Remark: The continuity of the functions involved can be considered known (you can for example use judiciously chosen rational functions).

(b) Consider the cylinder surface $C \subset \mathbb{R}^3$ and the annulus $A \subset \mathbb{R}^2$ given by

$$C = \left\{ (x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1 \right\}$$
$$A = \left\{ (\xi, \eta) \in \mathbb{R}^2 \mid 1 < \xi^2 + \eta^2 < 2 \right\}$$

(we named the coordinates in \mathbb{R}^3 and \mathbb{R}^2 differently here to avoid confusion). Prove that the cylinder C and the annulus A are homeomorphic, $C \approx A$.

<u>Hint</u>: To construct a homomorphism between C and A, you can use a homeomorphism $(1,2) \approx \mathbb{R}$ from part (a) to make the radial direction of the annulus correspond to the z-coordinate of the cylider, while doing something simpler with the angular parts.

 \triangle Exercise 5 (Coordinatewise convergence is not sufficient for convergence in ℓ^1). Consider the space

$$\ell^1 = \left\{ x = (x_j)_{j \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid \sum_{j=1}^{\infty} |x_j| < \infty \right\}$$

of absolutely summable real sequences. We consider it known that the formula $||x||_1 = \sum_{j=1}^{\infty} |x_j|$ for $x = (x_j)_{j \in \mathbb{N}} \in \ell^1$ defines a norm on ℓ^1 . We equip ℓ^1 with the metric induced by the norm $||\cdot||_1$.

(a) Show that if a sequence $(x^{(n)})_{n\in\mathbb{N}}$ of elements $x^{(n)} = (x_j^{(n)})_{j\in\mathbb{N}} \in \ell^1$ converges in ℓ^1 to $x = (x_j)_{j\in\mathbb{N}}$, then for every $k \in \mathbb{N}$, the sequence $(x_k^{(n)})_{n\in\mathbb{N}}$ of the k:th coordinates of $x^{(n)}$'s converges to $\lim_{n\to\infty} x_k^{(n)} = x_k$ (limit in \mathbb{R}).

<u>Hint</u>: You can start by showing that the k:th coordinate projection function $(x_j)_{j\in\mathbb{N}} \mapsto x_k$ is a 1-Lipschitz function $\ell^1 \to \mathbb{R}$.

(b) For $n \in \mathbb{N}$ let $x^{(n)} = (x_j^{(n)})_{j \in \mathbb{N}} \in \ell^1$ be the element given by

$$x_j^{(n)} = \begin{cases} 1 & \text{if } j = n \\ 0 & \text{if } j \neq n. \end{cases}$$

Show that for any $k \in \mathbb{N}$ we have $\lim_{n\to\infty} x_k^{(n)} = 0$ but in the space $(\ell^1, \|\cdot\|_1)$ the sequence $(x^{(n)})_{n\in\mathbb{N}}$ does not converge.

<u>Hint</u>: If the sequence would converge in ℓ^1 , then part (a) together with the first calculation of (b) identifies the only possibility for a limit $x \in \ell^1$. Now show directly from the definition of limits that we do not have convergence to that candidate limit.