AGA KHAN UNIVERSITY EXAMINATION BOARD SECONDARY SCHOOL CERTIFICATE

CLASS X

MODEL EXAMINATION PAPER 2023 AND ONWARDS

Mathematics Paper I

Time:

INSTRUCTIONS

- 1. Read each question carefully.
- rate? 2. Answer the questions on the separate answer sheet provided. DO NOT write your answers on the question paper.
- 3. There are 100 answer numbers on the answer sheet. Use answer numbers 1 to 45 only.
- 4. In each question, there are four choices A, B, C, D. Choose ONE. On the answer grid, black out the circle for your choice with a pencil as shown below.

Candidate's Signature

- 5. If you want to change your answer, ERASE the first answer completely with a rubber, before blacking out a new circle.
- 6. DO NOT write anything in the answer grid. The computer only records what is in the circles.
- 7. A formulae list is provided on page 2. You may refer to it during the paper, if you wish.
- 8. You may use a simple calculator if you wish.

Aga Khan University Examination Board

List of Formulae Mathematics X

Note:

- All symbols used in the formulae have their usual meaning.
- The same formulae will be provided in the annual and re-sit examinations.

Basic Statistics

$$\overline{X} = \frac{\sum x}{n}$$

$$\overline{X} = \frac{\sum fx}{n} \text{ or } \overline{X} = \frac{\sum fx}{\sum f}$$

$$Median = l + \frac{1}{f} \left(\frac{n}{2} - c\right) \times h$$

$$Mode = l + \left(\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right) \times h$$

$$\sigma^2 = \frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2$$

$$\sigma = \sqrt{\frac{\sum x^2}{n} - \left(\frac{\sum x}{n}\right)^2}$$

Algebraic Manipulation

$$HCF \times LCM = p(x) \times q(x)$$

Linear Graphs and their Applications

1 mile =
$$\frac{8}{5}$$
 km 1 Hectare = 2.471 Acres ${}^{\circ}F = \frac{9}{5} \times {}^{\circ}C + 32$

Quadratic Equations

$$ax^{2} + bx + c = 0, \ a \neq 0$$
 $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ Disc = $b^{2} - 4ac$

Introduction to Coordinate Geometry

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

Introduction to Trigonometry

$$1^{\circ} = \frac{\pi}{180} \text{ rad}, 1 \text{ rad} = \left(\frac{180}{\pi}\right)^{\circ} \qquad A = \frac{1}{2}r^{2}\theta \qquad \qquad \sin^{2}\theta + \cos^{2}\theta = 1$$

$$l = r\theta \qquad \qquad 1 + \tan^{2}\theta = \sec^{2}\theta \qquad \qquad 1 + \cot^{2}\theta = \csc^{2}\theta$$

Algebraic Formulae

$$(a-b)^{2} = a^{2} - 2ab + b^{2} \qquad (a+b)^{2} = a^{2} + 2ab + b^{2} \qquad a^{2} - b^{2} = (a+b)(a-b)$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3} \qquad (a+b)^{2} - (a-b)^{2} = 4ab \qquad a^{3} - b^{3} = (a-b)(a^{2} + ab + b^{2})$$

$$(a+b)^{2} + (a-b)^{2} = 2(a^{2} + b^{2}) \qquad (a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3} \qquad a^{3} + b^{3} = (a+b)(a^{2} - ab + b^{2})$$

$$(a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2bc + 2ca$$

Page 3 of 16

1. The cumulative frequency of the class preceding to the median class will be

50 - 59	7	
	-	
60 - 69	16	
70 - 79	24	
80 - 89	13	
90 - 99	10	H
Total	70	
16 23 24 47		EBEL JOSSIGNOS
e observations	s, if $\sum X = 9$ and	$\sum X^2 = 19$, then the variance will be
0.56 0.20 0.75 2.00	Modification	achilles
ven pie chart s hool.	hows the number	r of students together with names of their fa
	80 - 89 70tal 16 23 24 47 e observations 0.56 0.20 0.75 2.00 even pie chart s	80 - 89 13 90 - 99 10 Total 70 16 23 24 47 e observations, if $\sum X = 9$ and 0.56 0.20 0.75 2.00 ven pie chart shows the number

- 2.
- The given pie chart shows the number of students together with names of their favourite fruits 3.

What is the percentage of the students whose favourite fruit is orange?

- A. 11.1
- B. 18.2
- C. 22.2
- 40.0 D.

The given data, in ascending order, represents the ages of people who visited a shop in a day. 4.

9, 9, 10, 15, 17, 19, 23, 27, p, p, 32, 35, 35, 35, 37, 40, 40

The mode of the data

- Α. is 28
- is 35 В.
- C. is 40
- cannot be determined
- If $\frac{X}{Y} = \frac{a}{2}$ and $\overline{X} = \frac{a}{2}$, then the value of \overline{Y} is equal to
 - A.
 - B.
 - C.
 - D.
- deviation of v If $\frac{1}{a^2} \times (\text{variance of } x)$ is b, then the standard deviation of x will be

 A. $a\sqrt{b}$ B. \sqrt{ab} C. a^2b^2 D. a^4b^2
- $\sqrt{(x-4)(x+4)(x^2-16)}$ is equal to 7.
 - A. x-4
 - B. x + 4
 - $x^2 16$ C.
 - $x^2 + 16$ D.
- The least common multiple (LCM) of $x^4 a^4$, $x^2 a^2$ and $x^2 + a^2$ is equal to 8.
 - A.
 - B. $x^2 + a^2$
 - C. $x^2 a^2$
 - D. $x^4 a^4$

Page 5 of 16

- The highest common factor (HCF) of $(y-1)^2$, $(y+1)^2$ and y^2-1 is equal to 9.
 - A.
 - B. y-1

 - C. y+1D. $(y-1)^2(y+1)^2$
- 10. On simplification of $\left(1 \frac{1}{x}\right) \div \frac{1}{x}$, we get
 - A. 1
- 1. To convert $\frac{5x^2 + 6}{(x-1)^2(x+1)}$ into its partial fractions, the appropriate form will be

 A. $\frac{A}{(x-1)} + \frac{B}{x+1}$.

 B. $\frac{A}{(x-1)^2} + \frac{B}{x+1}$.

 C. $\frac{Ax^2 + B}{(x-1)^2} + \frac{C}{x+1}$.

 D. $\frac{A}{(x-1)} + \frac{B}{C} = C$
- On simplification, $\frac{1}{1-x} \div \frac{2}{x-1}$ is equal to

 - D. $\frac{1}{2}$

Page 6 of 16

- On simplification of $2 \frac{(a+b)^2}{(a-b)(a+b)}$, we get
 - A. 1
 - a+bB.
 - $\frac{a+3b}{a-b}$ C.
 - $\frac{a-3b}{a-b}$ D.
- oe
 -7 will be who de chinos
 'I be On solving the equation $3 = -\frac{3}{2}x$, the value of x will be
 - A.
 - B. 2
 - C. $\frac{9}{2}$
 - D. $-\frac{1}{2}$
- The solution of 7x 7 > -7 will be
 - A. *x* < 2
 - B. x > -2
 - C. x < 0
 - D. x > 0
- The solution set of |1-x| = 0 will be 16.
 - A. {1}.
 - B. $\{-1\}$.
 - C. $\{0,1\}.$
 - D. $\{-1,1\}$.
- The solution set of $\sqrt{x-\frac{1}{4}} = \frac{1}{2}$ will be
 - A. $\left\{\frac{1}{4}\right\}$.

 - C. $\left\{0, \frac{1}{4}\right\}$.
 - D. $\left\{0, \frac{1}{2}\right\}$.

Page 7 of 16

- Which of the following inequalities satisfies the solution set x < 1 or x > -1?
 - |8x| < 8A.
 - 8|x| > 8B.
 - C. |x| + 1 > 1
 - D. |x| + 1 < 1
- 19. If $\sqrt{x} 1 = 1$, then the value of x is equal to
 - A. 0
 - 2 B.
 - C. ± 2
 - D.
- For the given equations x-3y=9 and x+3y=15, the value of x will be 20.
- 21.

- (-3, 4).A.
- (4, -3).В.
- (3, -4).C.
- D. (-3, -4).

22. One of the points that lies on the given line is

- 23.

A.
$$x^2 + 4x + 3 = 0$$

B.
$$x^2 - 2x + 3 = 0$$

C.
$$2x^2 + 4x + 3 = 0$$

D.
$$2x^2 - 4x + 3 = 0$$

24. Four times of a number is squared. The result will be half of one less than that number. The given statement can be written mathematically as

(**Note:** Let *x* be the number.)

A.
$$4x^2 = \frac{1}{2}x - 1$$

B.
$$16x^2 = \frac{1}{2}x - 1$$

C.
$$4x^2 = \frac{1}{2}(x-1)$$

D.
$$16x^2 = \frac{1}{2}(x-1)$$

- The solution set of $a^2x^2 a^2 = 0$ is
 - $\{1\}$. A.
 - $\{\pm 1\}.$ B.
 - C. $\{a\}$.
 - D. $\{\pm a\}$.
- What should be added to $x^2 + 3x$ to make it a perfect square?
 - A.
 - B.
 - C.
 - D.
- at joining to The midpoint of the line segment joining the two points (2,-2) and (-2,-2) is (m,n). The value of n^2 is equal to
 - -2A.
 - B. -4
 - C. 4
 - 0 D.
- 28. The distance between (0, b) and (-b, 0) is
 - A. 0
 - 2*b* B.
 - $\sqrt{2}b$ C.
 - $2h^2$ D.

Page 10 of 16

- 29. In the given triangle ABC, $\tan \phi$ is
 - A.
 - B.

 - D.

- In the given diagram, the length of the minor arc AB is 30.
 - 0.025 m. A.
 - B. 4.5 m.
 - C. 18 m.
 - D. 20.25 m.

- On simplification of $(\sec^2 \theta 1)\cot \theta$, we get 31.
 - A. 1
 - $\tan \theta$ B.
 - $\cot^3 \theta$ C.
 - $\sin\theta\cos\theta$ D.
- The value of $\csc^2 45^\circ$ is 32.
 - A. 2
 - B.
 - $\frac{1}{2}$ $\frac{3}{4}$ C.
 - D.

33. In the given triangle ABC, the length of AC is

- A. 2 cm.
- B. 3.009 cm.
- C. 29.026 cm.
- D. 41 cm.
- 34. In a sector, if the ratio of arc length to the radius is 3:5, then its central angle
 - A. is 2 radians.
 - B. is 0.6 radians.
 - C. is 1.67 radians.
 - D. cannot be determined.
- 35. For $A = 45^{\circ}$, the value of $(\sin A + \cos A)^2$ is equal to
 - A.
 - B. 2
 - C. $\frac{1}{2}$
 - D. $\frac{1}{4}$
- 36. The tangent of an angle is negative in the
 - I. second quadrant
 - II. third quadrant
 - III. fourth quadrant
 - A. I only.
 - B. II only.
 - C. I and III.
 - D. II and III.

- On simplification, the expression $\sqrt{2\sec^2\theta 2\tan^2\theta}$ is equal to
 - $\sqrt{2} \left(\sec \theta \tan \theta \right)$
 - $2(\sec\theta \tan\theta)$ B.
 - C.
 - D.
- In the given right-angled triangle DEF, if DE = 2EF, then the length of DF can be expressed as 38.

- DF = 3EFA.
- $(DF)^2 = 3(DE)^2$ B.
- DF = 2DE + EFC.
- $(DF)^2 = 4(EF)^2 + (EF)^2$ D.
- the give Consider two chords KL and MN in the given circle having centre O. If KL and MN are at a 39. distance of 4 cm and 3 cm from the centre O respectively, then MN is

- A. less than 7 cm.
- B. greater than 7 cm.
- C. less than and equal to 7 cm.
- D. greater than and equal to 7 cm.

Page 13 of 16

Use the given information to answer Q.40 and Q.41.

In the given diagram, O is the centre of the circle.

- The value of $\angle RSP$ 40.
 - A. is 35°.
 - is 55°. B.
 - C. is 70°.
 - D. cannot be determined.
- 41. The value of $2 \angle SQP$ is equal to

- 110°. B.
- $2(70^{\circ}).$ C.
- 2(110°). D.

S

- A. 6 cm.
- 12 cm. B.
- 15 cm. C.
- D. 18 cm.

35°

Page 14 of 16

- 43. In the given diagram, AB and AD are tangents to the given circle at point B and point D respectively. If O is centre of the given circle, then which of the options is TRUE?
 - I. OB = OF
 - II. AO = AD
 - III. AD=AB
 - A. I only
 - B. II only
 - C. I and III
 - D. II and III

- Consider the given circle with centre O. Which of the following statements is/ are correct? 44.
 - I. $m \overline{OP} = m \overline{OR} \neq m \overline{OQ}$
 - II. $m \overline{OP} = m \overline{OQ}$
 - $m\overline{OP}$ = radius of the circle III.

- A. I only
- II only В.
- C. II and III only
- I and III only D.
- In the given figure, if O is the centre of the given circle and $\angle QOS = 70^{\circ}$, then the value of x 45. will be
 - 30°. A.
 - B. 40°.
 - C. 60°.
 - D. 70°.

Please use this page for rough work

Myselfales sesting only

Please use this page for rough work

Model Figure 1 Estring Only