

Data de Emissão: 17/08/2018

Instituto de Informática

Departamento de Informática Aplicada

Dados de identificação

Disciplina: TÓPICOS ESPECIAIS EM COMPUTAÇÃO I

Período Letivo: 2018/2 Período de Início de Validade: 2018/2 Professor Responsável pelo Plano de Ensino: MANUEL MENEZES DE OLIVEIRA NETO

Sigla: INF01179 Créditos: 2 Carga Horária: 30

Súmula

Inovações tecnológicas decorrentes de pesquisas recentes. Aplicações específicas, interessando a um grupo restrito ou tendo caráter de temporariedade. Aspectos específicos, de áreas do conhecimento já abordadas anteriormente, mas cobertos superficialmente, interessando a um grupo restrito de alunos e sendo objeto de pesquisa recente.

Currículos

Curriculos		
Currículos	Etapa Aconselhada	Natureza
BACHARELADO EM CIÊNCIA DA COMPUTAÇÃO		Eletiva

Objetivos

Capacitar os alunos a criar e implementar novas solu ções no campo da Fotografia Computacional. Fotografia Computacional é um campo relativamente novo que tenta expandir o conceito tradicional de fotografia utilizando processamento digital de imagens, novos sensores, sistemas óticos e de ilumina ção. O curso apresentar á as principais t écnicas utilizadas na atualidade neste campo, partindo dos conceitos b ásicos. Tamb ém ser a apresentado o ferramental matem ático necess ário para permitir aos alunos desenvolver projetos avan cados em Fotografia Computacional.

Conteúdo Programático

Semana: 1

Título: Light Fields e Forma ção de Imagem

Conteúdo: Apresentação da disciplina.

Apresentação dos conceitos de Light Fields (Campos de Luz) e de captura e formação de imagens por meio de dispositivos ópticos.

Semana: 2a4

Título: Câmeras Não Convencionais **Conteúdo:** Câmeras Plenópticas (partes I e II)

Arrays de Câmeras

Semana: 5

Título: Técnicas de Imageamento **Conteúdo:** Tomografia, Radar, Sonar

Semana: 6

Título: Imagens Catadiótricas e Imageamento Programável

Conteúdo: Formação de Imagens Catadiótricas e Imageamento Programável

Semana: 7

Título: 1a Avaliação **Conteúdo:** 1a Avaliação

Semana: 8

Título: Câmeras Program áveis: a Frankencamera

Conteúdo: Discussão sobre design de um projeto de câmera programável, a Frankencamera.

Semana: 9 a 10

Título: Codificação de Iluminação

Conteúdo: Apresentação de Técnicas de Codificação de Iluminação.

Semana: 11

Data de Emissão: 17/08/2018

Título: Imagens Re-ilumin áveis

Conteúdo: Apresentação de técnicas para criação de imagens re-ilumináveis.

Semana: 12

Título: Seam Carving

Conteúdo: Apresentação das técnicas de seam carving para imagens e vídeos.

Semana: 13

Título: Exame Final **Conteúdo:** Exame Final

Semana: 14 a 15

Título: Apresentação de Projetos Finais

Conteúdo: Apresentação dos projetos finais da disciplina.

Metodologia

Aulas expositivas acompanhadas de trabalhos pr áticos relacionados aos conte údos apresentados em sala.

Carga Horária

Teórica: 26 Prática: 4

Experiências de Aprendizagem

Os alunos deverão realizar individualmente dois trabalhos práticos sobre assuntos apresentados na disciplina. Além disso, realizarão um projeto final, podendo este ser realizado individualmente ou em duplas.

Critérios de avaliação

Os alunos serão avaliados com base no desempenho nas provas, trabalhos de implementação, atividades de laboratório e no projeto final, bem como por sua participação em aula. As provas, trabalhos e projeto final serão avaliados com nota entre 0.0 e 10.0. Conforme regulamento da Universidade, a freqüência às aulas é obrigatória.

Ao longo do semestre, serão realizados:

- i. Duas provas, P1, na metade do semestre, e P2, ao final do semestre. P1 corresponderá a 20% da nota final; P2, a 30% da nota final;
- ii. Dois trabalhos (TIs). A soma de todos os TIs corresponderá a 20% da nota final. Cada trabalho correspondendo a 10%;
- iii. Um projeto final (PF) da disciplina, a ser realizado em grupos de até dois estudantes, representando 20% da nota final. O tema do projeto final será acertado entre o professor e cada grupo individualmente;

Além disso, será atribuída nota pela participação (NP) em sala de aula, o que representerá 10% da nota final. A realização dos trabalhos é obrigatória, mesmo que o aluno obtenha bons resultados nas provas.

A média geral (MG) será obtida por meio da seguinte fórmula:

MG = 0.2 * P1 + 0.3 * P2 + 0.2 * TI + 0.2 * PF + 0.1 * NP

A conversão da MG para conceitos é feita por meio da seguinte tabela:

Data de Emissão: 17/08/2018

- 9,0 MG = 10,0 : conceito A (aprovado).
- 7,5 MG < 9,0 : conceito B (aprovado).
- 6,0 MG < 7,5 : conceito C (aprovado).
- 4,0 MG < 6,0 : sem conceito (recuperação).
- 0,0 MG < 4,0 : conceito D (reprovado).

Observações

- 1 Somente serão calculadas as médias gerais daqueles alunos que tiverem, ao longo do semestre, obtido um índice de freqüência às aulas igual ou superior a 75 % das aulas previstas. Aos que não satisfizerem este requisito, será atribuido o conceito FF (Falta de Freqüência).
- 2 Para poder realizar a prova de recuperação, o aluno deve ter realizado as duas provas (P1 e P2), ter entregue pelo menos dois dos três trabalhos práticos (TPs) e o projeto final (PF). Além disso, o(a) aluno(a) deverá ter nota igual ou superior a 6,0 em pelo menos uma das duas provas. Os que não se enquadrarem nesta situação receberão conceito D.

Atividades de Recuperação Previstas

Os alunos cujas médias gerais forem inferiores a 6,0 (seis) e maiores ou iguais a 4,0 (quatro) e que satisfizerem as condições 1 e 2 acima, poderão prestar prova de recuperação, a qual versará sobre toda a matéria da disciplina. Serão considerados aprovados na recuperação os alunos que obtiverem um aproveitamento de no mínimo 60% da prova. A estes será atribuido o conceito C. Aos demais, o conceito D.

Não há recuperação das provas P1 e P2 por não comparecimento, exceto nos casos previstos na legislação (saúde, parto, serviço militar, convocação judicial, luto etc, devidamente comprovados).

Bibliografia

Básica Essencial

Sem bibliografias acrescentadas.

Básica

Sem bibliografias acrescentadas

Complementar

Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, 2010. ISBN 978-1848829343. Disponível em: http://szeliskiorg/Book/

Outras Referências	
Título	Texto
Bibliografia	Não existe ainda um livro específico de Fotografia Computacional, O curso utilizará como referência o livro: Computer Vision: Algorithms and Applications, Richard Szeliski disponível on line no site: http://szeliski.org/Book/ e publicações recentes.
	Outros livros de referência:
	High Dynamic Range Imaging: Acquisition, Display and Image-Based Lighting, Erik Reinhard and Greg Ward and Sumanta Pattanaik and Paul Debevec.

Data de Emissão: 17/08/2018

Morgan Kaufmann Publishers Digital Image Processing, 2nd edition, Gonzalez and Woods

Publicações:

- [1] H. E. Fortunato and M. M. Oliveira, A Gentle Introduction to Coded Computational Photography. To be published in IEEE Xplore Digital Library.
- [2] G. Wetzstein, I. Ihrke, D. Lanman, and W. Heidrich, State of the Art in Computational Plenoptic Imaging, in Proc. Eurographics (STAR), 2011.
- [3] S. Nayar, Computational cameras: Approaches, benefits and limits, Tech. Rep., Jan 2011
- [4] M. Levoy, Experimental Platforms for Computational Photography, Computer Graphics and Applications, IEEE, vol. 30, pages 81-87, 2010.
- [5] R. Raskar. Computational photography: Epsilon to coded photography. ETVC, pages 238-253, 2009.
- [6] P. Debevec, R. Raskar, and J. Tumblin. Computational photography: advanced topics. In SIGGRAPH '08: ACM SIGGRAPH 2008 classes, pages 1198, New York, NY, USA, 2008. ACM.
- [7] B. Hayes, Computational photography, American Scientist, vol. 96, no. 2, March-April 2008
- [8] E. H. Adelson, J. R. Bergen, The Plenoptic Function and the Elements of Early Vision, Computational Models of Visual Processing, pages 3-20, 1991.
- [9] R. Raskar, J. Tumblin, A. Mohan, A. Agrawal, and Y. Li. Eurographics 2006 star state of the art report computational photography, 2006.
- [10] M. Levoy and P. Hanrahan, Light field rendering, in Proc. SIGGRAPH '96, 1996, pp. 31–42.
- [11] R. Ng, Fourier slice photography, ACM Trans. Graph., vol. 24, pp. 735–744, July 2005.

Data de Emissão: 17/08/2018

- [12] R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. Hanrahan. Stanford tech report ctsr 2005-02 light field photography with a hand-held plenoptic camera, 2005.
- [13] T. Georgeiv and C. Intwala. Light field camera design for integral view photography, 2008.
- [14] T. Georgiev and A. Lumsdaine, Focused plenoptic camera and render- ing, Journal of Electronic Imaging, vol. 19, 2010
- [15] B. Wilburn, N. Joshi, V. Vaish, E.-V. Talvala, E. Antunez, A. Barth, A. Adams, M. Horowitz, and M. Levoy, High performance imaging using large camera arrays, ACM Trans. Graph., vol. 24, pp. 765–776, July 2005
- [16] E.H. Adelson and J.Y.A. Wang. Single lens stereo with a plenoptic camera. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14:99106, 1992.
- [17] A. Veeraraghavan, R. Raskar, A. Agrawal, A. Mohan, and J. Tumblin. Dappled photography: mask enhanced cameras for heterodyned light fields and coded aperture refocusing. In SIGGRAPH '07: ACM SIGGRAPH 2007 papers, page 69, New York, NY, USA, 2007.ACM.
- [18] S. Kuthirummal and S. K. Nayar, Multiview Radial Catadioptric Imaging for Scene Capture, ACM Trans. Graph., pp. 916–923, Jul 2006
- [19] S. Kuthirummal, S. K. Nayar, Flexible Mirror Imaging, ICCV Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras (OMNIVIS), 2007.
- [20] R. Fergus, A. Torralba, and W.T. Freeman. Random lens imaging. Technical Report MIT CSAIL TR 2006-058, Massachusetts Institute of Technology, 2006.
- [21] C. Liang, T. Lin, B. Wong, C. Liu, and H.H. Chen. Programmable aperture photography: multiplexed light field acquisition. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, pages 110, New York, NY, USA, 2008. ACM.

Data de Emissão: 17/08/2018

- [22] A. Zomet and S. K. Nayar. Lensless imaging with a controllable aperture. Computer
- [23] A. Adams, E. Talvala, S. H. Park, E. David, B. Ajdin, N. Gelfand, J. Dolson, D. Vaquero, J. Baek, M. Tico, H. Lensch, W. Matusik, K. Pulli, M. Horowitz, M. Levoy. The Frankencamera: an experimental platform for computational photography, ACM Trans. Graph. vol 29, pages 1-12, 2010.
- [24] S. Baker, S.K. Nayar. A Theory of Catadioptric Image Formation, IEEE International Conference on Computer Vision (ICCV), pages 35-42, 1998.
- [25] S. Baker, S.K. Nayar, A Theory of Single-Viewpoint Catadioptric Image Formation, Int. J. Comput. Vision, vol. 35, pages 175-196, 1999.
- [26] P. Debevec, T. Hawkins, C. Tchou, H. P. Duiker, W. Sarokin, M. Sagar. Acquiring the reflectance field of a human face. Proceedings of the 27th annual conference on Computer graphics and interactive techniques. pages 145-156,2000.
- [27] P. Debevec, A. Wenger, C. Tchou, A. Gardner, J. Waese, T. Hawkins. A lighting reproduction approach to live-action compositing, ACM Trans. Graph. vol 21, pages 547-556, 2002
- [28] P. Debevec, C. J. Taylor, J. Malik. Modeling and rendering architecture from photographs: a hybrid geometry- and image-based approach, in Proc. SIGGRAPH '96, pages 11-20, 1996.
- [29] R. Raskar, A. Agrawal, and J. Tumblin. Coded exposure photography: motion deblurring using flutered shutter. ACM Trans. Graph., 25(3):795804, 2006.
- [30] R. Raskar, R. Feris, J. Yu, and M. Turk. Non-photorealistic camera: depth edge detection and stylized rendering using multi-ash imaging. In SIGGRAPH '06: ACM SIGGRAPH 2006 Courses, page 2, New York, NY, USA, 2006. ACM.
- [31] A. Levin, R. Fergus, F. Durand, and W.T. Freeman.

Data de Emissão: 17/08/2018

Image and depth from a conventional camera with a coded aperture. In SIGGRAPH '07: ACM SIGGRAPH 2007 papers, page 70, New York, NY, USA, 2007. ACM.

[32] Michael F. Cohen and Richard Szeliski. The moment camera. Computer, 39(8):4045, 2006.

[33] Aseem Agarwala, Ke Colin Zheng, Chris Pal, Maneesh Agrawala, Michael Cohen, Brian Curless, David Salesin, and Richard Szeliski. Panoramic video textures. In SIGGRAPH '05: ACM SIGGRAPH 2005 Papers, pages 821827, New York, NY, USA, 2005. ACM.

[34] C. Liu, A.B. Torralba, W.T. Freeman, F. Durand, and E.H. Adelson. Motion magnification. ACM Trans. Graph., 24(3):519526, 2005.

[35] R. Fergus, B. Singh, A. Hertzmann, S.T. Roweis, and W.T. Freeman. Removing camera shake from a single photograph. In SIGGRAPH '06: ACM SIGGRAPH 2006 Papers, pages 787794, New York, NY, USA, 2006. ACM.

[36] J. Tumblin, Agrawal A.K., and R. Raskar. Why i want a gradient camera. In CVPR (1), pages 103110, 2005.

[37] A. Fitzgibbon, Y. Wexler, and A. Zisserman. Image-based rendering using image-based priors. In ICCV '03: Proceedings of the Ninth IEEE International Conference on Computer Vision, page 1176, Washington, DC, USA, 2003. IEEE Computer Society.

[38] A. Levin, Y. Weiss, F. Durand, and Freeman W.T. Understanding and evaluating blind deconvolution algorithms. Computer Vision and Pattern Recognition, IEEE Computer Society Conference on, 0:19641971, 2009.

[39] A. Levin. Blind motion deblurring using image statistics. In In Advances in Neural Information Processing Systems (NIPS, 2006.

[40] L. B. Lucy. An iterative technique for the rectification of observed distributions. The Astronomical Journal, 79:745+, June 1974.

Data de Emissão: 17/08/2018

[41] Paul Rademacher and Gary Bishop.Multiple-center-of-projection images. In SIGGRAPH'98: Proceedings of the 25th annual conference on Computer

[42] Ramesh Raskar, Adrian Ilie, and Jingyi Yu. Image fusion for context enhancement and video surrealism. In SIGGRAPH '05: ACM SIGGRAPH 2005 Courses, page 4, New York, NY, USA, 2005. ACM.

[43] W.H. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am.,62(1):5559, 1972.

[44] Q. Shan, J. Jia, and A. Agarwala. High-quality motion deblurring from a single image. In SIGGRAPH '08: ACM SIGGRAPH 2008 papers, pages 110, New York, NY, USA, 2008. ACM.

[45] Y. Tai, N. Kong, S. Lin, and S.Y. Shin. Coded exposure imaging for projective motion deblurring. In CVPR, 2010.

[46] S. Nayar and S. Narasimhan, Assorted Pixels: Multi-Sampled Imaging With Structural Models, in ECCV, vol. IV, 2002, pp. 636–652.

[47] S. Nayar and T. Mitsunaga, High Dynamic Range Imaging: Spatially Varying Pixel Exposures, in IEEE CVPR, vol. 1, 2000, pp. 472–479.

Observações

Nenhuma observação incluída.