工科数学分析期末试题(A卷)

班级	学号	姓名
クェクス	1 2	A-11

(本试卷共6页,十一个大题. 试卷后面空白纸撕下做草稿纸,试卷背面也可做草稿纸. 试卷不得拆散.)

题号	1	11]	四	五	六	七	八	九	+	+ 1	总分
得分											

- 一. 填空题 (每小题 2 分, 共 10 分)
- 1. $\lim_{x \to 0} \left(\frac{1}{x^2} \frac{\cos x}{x \sin x} \right) =$ ______.
- 2. 具有特解 $y_1 = e^{-x}$, $y_2 = xe^{-x}$, $y_2 = e^x$ 的三阶常系数线性齐次微分方程为
- ·_____-
- 3. 已知 f(2) = 0, f'(2) 存在, 则 $\lim_{x \to 0} \frac{f(2 + \arctan x^3)}{e^{2x^3} 1} = \underline{\qquad}$.
- 4. $\int_0^1 \frac{x^2}{\sqrt{1-x^2}} dx = \underline{\hspace{1cm}}$
- 二. (8分) 已知点(1,3) 是曲线 $y = ax^3 + bx^2$ 的拐点,求a,b 的值。
- 三. (8分) 已知 $\frac{\sin x}{x}$ 是函数 f(x) 的原函数,求不定积分 $\int xf'(x)dx$ 。
- 四. (8 分) 设方程 $x-y+\cos y=1$ 确定隐函数 y=y(x), 求 $\frac{dy}{dx}$, $\frac{d^2y}{dx^2}$ 。
- 五. (9 分) 求反常积分 $\int_1^{+\infty} \frac{1}{r^2} \arctan x dx$ 。
- 六. (11 分) 求微分方程 xdy (x+2y)dx = 0 的一个解 y = y(x),使得由曲线 y = y(x),直线 x = 0, x = 1 以及 x 轴所围成的平面图形绕 x 轴旋转一周所得旋转体体积最小。
- 七. (8分) 一椭圆(如图)垂直立于水中,水面与椭圆的最高点相齐,求椭圆所受到的水压力。(要画出坐标系)

八. (11 分) 求微分方程 $y'' + y' - 2y = (x-1)e^x$ 的通解。

九. $(8 \, \mathcal{G})$ 一单位质点(质量为 $1 \, \mathrm{kg}$)沿 x 轴运动。已知质点所受到的力为 $f(x) = -\sin x$ (单位: N,方向与 x 轴平行)。若质点的初始位置在原点,初速度 $v_0 = 2 \, \mathrm{m/sec}$,求质点的位置 x 与速度 v 所满足的微分方程,并求出此微分方程的解。

十. (9 分) 判断方程 $\ln x = \frac{x}{e} - \int_0^1 e^{x^2} dx$ 在区间 $(0,+\infty)$ 内有几个不同实根。

十一. (10 分) 设 f(x) 在 $(-\infty,+\infty)$ 内连续, 单调增加, 且是奇函数, 设

$$F(x) = \int_0^x (2t - x) f(x - t) dt$$

证明F(x)单调减少,且是奇函数。