Syntax and Semantics of V^-

Roger Burtonpatel

October 22, 2023

1 Syntax

We present a grammar of V^- :

Programs	P	::=	$\{d\}$	definition
Definitions	d	::=	$\operatorname{val} x = e$	bind name to expression
Expressions	e	::=	x, y, z	names
			if $g_{lpha}\left\{ \left[\left] g_{lpha} ight\}$ fi	if-fi
			$K\{e\}$	value constructor application
		ĺ	$e_1 e_2$	function application
Guarded Expressions	g_{lpha}	::=	$\rightarrow \alpha$	terminating α
			$e; g_{\alpha}$ $\mathbb{E}\{x\}.g_{\alpha}$ $e_{1} = e_{2}; g_{\alpha}$	intermediate expression
			$\mathtt{E}\{x\}$. g_{lpha}	existential
			$e_1 = e_2; g_\alpha$	equation
Value Constructors	K	::=	::	cons
			[]	empty list
		j	# x	name beginning with #
		į	$\mathtt{A-Z}x$	name beggining with capital letter
		j	[- +](0-9)+	signed integer literal

A *name* is any token that is not an integer literal, does not contain whitespace, a bracket, or parenthesis, and is not a value constructor name or a reserved word.

2 Refinement ordering on environments

$$\rho \subseteq \rho'$$
 when $dom \rho \subseteq dom \rho'$
and $\forall x \in dom \rho : \rho(x) \subseteq \rho'(x)$

3 Forms of Judgement for V^- :

Metavariables				
θ	a value produced from evaluating α .			
eq	equation			
${f reject}$	equation rejection			
r	$\vartheta \mid \mathbf{reject}$: a result of ϑ or rejection			
ho	environment: $name \rightarrow \mathcal{V}_{\perp}$			
$\rho\{x\mapsto y\}$	environment extended with name x mapping to y			
${\mathcal T}$	Context of all temporarily stuck equations (a sequence)			
e	An expression			
g	A guarded expression			
E	Inability to compile to a decision tree; a compile time error			

Sequences				
$ \begin{array}{c} \varepsilon \\ S_1 \cdot S_2 \\ x \cdot S_2 \end{array} $	the empty sequence Concatenate sequence S_1 and sequence S_2 Cons x onto sequence S_2			

Expressions

An expression in core Verse evaluates to produce possibly-empty sequence of values. In V^- , values depend on α . If α is a Verse-like expression, ϑ will be a value sequence. If it is an ML-like expression, it will be a single value.

A guarded expression evaluates to produce a **result**. A result is either a possibly-empty sequence of values or reject.

$$r ::= \vartheta \mid \mathbf{reject}$$

$$\rho; \ \mathcal{T} \vdash \alpha \Downarrow \vartheta \ \ (\text{EVAL-EXPR})$$

$$\rho; \ \mathcal{T} \vdash g \Downarrow r \ \ (\text{EVAL-GUARDED-EXPR})$$

If a guarded expression cannot be evaluated without producing logical variables at runtime, it cannot be expressed as a decision tree. This notation indicates this failure (think of \in as a fallen tree), which results in a compile-time error.

$$\rho; \mathcal{T} \vdash g \leadsto \in (\text{NoTree})$$

4 Sequences

The trivial sequence is ε . Sequences can be concatenated with infix \cdot . In an appropriate context, a value like x stands for the singleton sequence containing x.

$$\varepsilon \cdot ys \equiv ys$$
$$ys \cdot \varepsilon \equiv ys$$
$$(xs \cdot ys) \cdot zs \equiv xs \cdot (ys \cdot zs)$$

5 Rules (Big-step Operational Semantics) for V^- :

Evaluating Guarded Expressions

Evaluating simple parts of guarded expressions

(EVAL-ARROWEXPR)
$$\frac{\rho; \ \varepsilon \vdash e \Downarrow \vartheta}{\rho; \ \varepsilon \vdash \to e \Downarrow \vartheta}$$
(EVAL-EXISTS)
$$\frac{\rho\{x \mapsto \bot\}; \ \mathcal{T} \vdash g \Downarrow r}{\rho; \ \mathcal{T} \vdash \exists x. \ g \Downarrow r}$$
(EVAL-EXPSEQ)
$$\frac{\rho; \ \mathcal{T} \vdash e \Downarrow \vartheta \quad \rho; \ \mathcal{T} \vdash g \Downarrow r}{\rho; \ \mathcal{T} \vdash e : g \Downarrow r}$$

Shifting an equation to the context

(G-MOVE-TO-CTX)
$$\frac{\rho; \ eq \cdot \mathcal{T} \vdash g \Downarrow r}{\rho; \ \mathcal{T} \vdash eq; \ g \Downarrow r}$$

Evaluating with different types of equations

$$(G-EQEXPS) \quad \frac{p\{x \mapsto \bot, \ y \mapsto \bot\}; \ x = e_1 \cdot y = e_2 \cdot x = y \cdot \mathcal{T} \cdot \mathcal{T}' \vdash g \Downarrow r}{\rho; \ \mathcal{T} \cdot e_1 = e_2 \cdot \mathcal{T}' \vdash g \Downarrow r}$$

$$(G-EQNAMEEXP) \quad \frac{\rho; \ \mathcal{T} \vdash e \Downarrow \vartheta \qquad \rho\{x \mapsto \vartheta\}; \ \mathcal{T} \cdot \mathcal{T}' \vdash g \Downarrow r'}{\rho; \ \mathcal{T} \cdot x = e \cdot \mathcal{T}' \vdash g \Downarrow r'}$$

$$(G-EqNames-Vals-Succ) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \vartheta, \ \rho(y) = \vartheta \\ \rho; \ \mathcal{T} \cdot \mathcal{T}' \vdash g \Downarrow r \\ \hline \rho; \ \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g \Downarrow r \end{array}$$

$$(G\text{-EqNames-Vals-Fail}) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \vartheta, \ \rho(y) = \vartheta' \\ \vartheta \neq \vartheta' \\ \hline \rho; \ \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g \Downarrow \mathbf{reject} \end{array}$$

$$(G\text{-EqNames-Bots-Fail}) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \bot, \ \rho(y) = \bot \\ \frac{x, \ y \ \operatorname{do \ not \ appear \ in} \ \mathcal{T}, \ \mathcal{T}'}{\rho; \ \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g \rightsquigarrow \boldsymbol{\Leftarrow}} \end{array}$$

$$(G-EQNAMES-BOTVAL-SUCC) \begin{array}{c} x, \ y \in \operatorname{dom} \rho \\ \rho(x) = \bot, \ \rho(y) = \vartheta \\ \frac{\rho\{x \mapsto \vartheta\}; \ \mathcal{T} \cdot \mathcal{T}' \vdash g \Downarrow r'}{\rho; \ \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g \Downarrow r'} \end{array}$$

$$(\text{G-Vcon-Single-Fail}) \quad \frac{K \neq K'}{\rho; \ \mathcal{T} \cdot K = K' \cdot \mathcal{T}' \vdash g \Downarrow \mathbf{reject}}$$

(G-VCON-SINGLE-SUCC)
$$\frac{\rho; \ \mathcal{T} \cdot \mathcal{T}' \vdash g \Downarrow r}{\rho; \ \mathcal{T} \cdot K = K \cdot \mathcal{T}' \vdash g \Downarrow r}$$

(G-VCON-MULTI-FAIL)
$$\frac{K \neq K'}{\rho; \ \mathcal{T} \cdot K(e_1, \dots e_n) = K'(e_1', \dots e_n') \cdot \mathcal{T}' \vdash g \Downarrow \mathbf{reject}}$$

(G-VCON-MULTI-ARITY-FAIL)
$$\frac{n \neq m}{\rho; \ \mathcal{T} \cdot K(e_1, \dots e_n) = K(e'_1, \dots e'_m) \cdot \mathcal{T}' \vdash g \Downarrow \mathbf{reject}}$$

(G-VCON-MULTI-SUCC)
$$\frac{\rho; \ [e_i = e_i' \mid 1 \le i \le n] \cdot \mathcal{T} \cdot \mathcal{T}' \vdash g \Downarrow r}{\rho; \ \mathcal{T} \cdot K(e_1, \dots e_n) = K(e_1', \dots e_n') \cdot \mathcal{T}' \vdash g \Downarrow r}$$

Evaluating General Expressions

(IF-FI-SUCCESS)
$$\frac{\rho; \ \mathcal{T} \vdash g \Downarrow \vartheta}{\rho; \ \mathcal{T} \vdash \text{IF } g \square \dots \text{FI} \Downarrow \vartheta}$$

(IF-FI-REJECT)
$$\frac{\rho;\; \mathcal{T} \vdash g \Downarrow \mathbf{reject} \qquad \rho;\; \mathcal{T} \vdash \mathrm{IF}\; \dots \; \mathrm{FI} \Downarrow \vartheta}{\rho;\; \mathcal{T} \vdash \mathrm{IF}\; g \; \square \; \dots \; \mathrm{FI} \Downarrow \vartheta}$$

(VCON-EMPTY)
$$\overline{\rho; \ \mathcal{T} \vdash K \Downarrow K}$$

(VCON-MULTI)
$$\frac{\rho; \ \mathcal{T} \vdash e_i \Downarrow \vartheta_i \quad 1 \leq i \leq n}{\rho; \ \mathcal{T} \vdash K(e_1, \dots e_n) \Downarrow K(\vartheta_1, \dots \vartheta_i)}$$

6 The very suspect rule from question 5

$$(Eqnames-Bots-Succ) x, y \in dom \rho$$

$$\rho(x) = \bot, \rho(y) = \bot$$

$$Either x or y appears in $\mathcal{T}, \mathcal{T}'$

$$\rho; \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash g \Downarrow r$$

$$\rho; \mathcal{T} \cdot x = y \cdot \mathcal{T}' \vdash q \Downarrow r$$$$