ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

ТЕСТ ПО МАТЕМАТИКА – 07 юли 2014 г.

ВАРИАНТ ПЪРВИ

ПЪРВА ЧАСТ

Всяка от следващите 20 задачи има само един верен отговор. Преценете кой от предложените пет отговора на съответната задача е верен. Върху талона за отговори от теста (последната страница) заградете с овал и нанесете кръстче върху тази буква, която считате, че съответства на правилния отговор. Например

За всеки верен отговор получавате по 1 точка. За грешен или непопълнен отговор, както и за посочени повече от един отговори на една задача, точки не се дават и не се отнемат.

- 1. Изразът $2^{-3} \left(\sqrt{64} \frac{1}{\sqrt{8}} \right)$ е равен на:
- a) $8+\sqrt{2}$, 6) $\frac{8-\sqrt{2}}{8}$, B) $\frac{32-\sqrt{2}}{32}$, Γ) $\frac{\sqrt{2}}{8}$, Π) $1+\frac{\sqrt{2}}{32}$.
- 2. Квадратното уравнение, чиито корени са с различни знаци е:

- Γ) $x^2 4x + 3 = 0$, Λ) $4x^2 + 12x + 9 = 0$.
- 3. Положителното число a, за което $a^2 65 = 0$ принадлежи на интервала:

 - a) [5;5,5], 6) [6;6,5], B) [7;7,5], Γ) [8;8,3], Π) [8,5;9].

- 4. Ако $f(x) = \log_2 x$, то изразът f(1) + 3f(4) е равен на:

 - a) 5, б) 6, в) 7, г) 8,
- д) 9.

5. Ако (x; y) е решение на системата

$$\begin{vmatrix} x^2 + y^2 = 20 \\ xy = -6, \end{vmatrix}$$

то изразът $(x-y)^2$ е равен на:

- a) -1, 6) 13,
- в) 15, г) 16,
- д) 32.
- 6. Изразът $2\log_7 49 3\log_{16} 64 + 4^{\log_4 5} \left(\sqrt[3]{2}\right)^3$ е равен на:
- $_{\rm J})\frac{19}{2}$.

стойността н	на израза $\frac{1}{x_1} + \frac{1}{x_2}$	е равна на:						
	б) -2,		r) 2,	д) 3.				
8. Ако $\sin \alpha + \cos \alpha = \frac{1}{4}$, то изразът $12\sin \left(\alpha + \frac{\pi}{4}\right)$ е равен на:								
a) $\frac{3\sqrt{2}}{2}$,	б) 3√2,	в) 4,	Γ) $4\sqrt{2}$,	д) $\frac{5\sqrt{2}}{2}$.				
9. Ako $\cos(7\pi)$	$-\alpha$) = $\frac{1}{2}$ $_{\text{M}}$ π <	$\alpha < \frac{3\pi}{2}$, TO:						
a) $\alpha = \frac{8\pi}{7}$,	$6) \alpha = \frac{6\pi}{5},$	$_{\rm B)} \alpha = \frac{14\pi}{9},$	Γ) $\alpha = \frac{4\pi}{3}$,	μ д) $\alpha = \frac{5\pi}{4}$.				
	10. Най-малкото цяло положително число m , за което извадката $7,2,1,2,4,10,m,5,3,4$ има единствена мода, е равно на:							
a) 1,	б) 2,	в) 3,	r) 4,	д) 5.				
то сборът на	11. Ако за аритметична прогресия с общ член a_n е известно, че $a_3 + a_{14} = 90$, то сборът на a_7 и a_{10} е равен на:							
a) 50,	б) 60,	в) 70,	г) 80,	д) 90.				
		сия с общ член прогресията е р	a_n е известно, че вавно на:	e $a_1 + a_3 = 19$ _M				
a) $\frac{1}{2}$,	$\mathfrak{G})\ \frac{1}{3},$	в) 2,	г) 3,	д) 4.				
		метъра a , in $x+ax$ е нечет		функцията				
`	,	в) 2,		д) 8.				
14. Множеството от стойностите на функцията $f(x) = \frac{2x}{x^2 + 1}$ е:								
a) $\left(-\infty;-3\right]$,	б) [-3;-2],	B) $[-2;-1]$,	$_{\Gamma})$ $[1;\infty)$,	д) [-1;1].				
	та стойност на 3;3] е равна на:	функцията $f(x)$	(x) = (x-2)(x+4)) в затворения				
· •	- 1	в) 3,	г) 7,	д) 8.				
				2				

7. Ако x_1 и x_2 са корените на квадратното уравнение $2x^2 - 10x - 5 = 0$, то

16. В правоъгъл	пен триъгълник	ABC с катет A	$C = 6 \ cm$ танге	нсът на ∡АВС
е равен на $\frac{3}{4}$. Радиусът на в	вписаната в триъг	ълника окръжн	пост е:
a) 1 <i>cm</i> ,	б) 2 <i>cm</i> ,	B) $\frac{\sqrt{5}}{2}$ cm,	г) 3 <i>cm</i> ,	д) 4 ст.
17. Страната на равен на:	а ромб е равна	на негов диагон	нал. Острият ъ	гъл на ромба е
-	б) 15°,	в) 30°,	$\Gamma)~45^{\circ}$,	д) 60° .

18. Равнобедрен трапец със остър ъгъл 30° и лице 162 cm^2 е описан около окръжност. Бедрото на трапеца има дължина:

a) 18 cm,

б) 16 *cm*,

в) 15 *cm*,

г) 10 *cm*, д) 9 *cm*.

19. Ако телесният диагонал на куб има дължина $4\sqrt{3} \ cm$, то ръбът на куба има дължина:

a) 1 *cm*,

б) 2 cm, в) 3 cm, г) 4 cm, д) $5\sqrt{3}$ cm.

20. Радиусът на основата на прав кръгов цилиндър е 2 cm, а диагоналът на осното му сечение е $5 \ cm$. Височината на цилиндъра е равна на:

a) 3 *cm*,

б) 4 cm, в) 5 cm, Γ) $2\sqrt{2}$ cm, д) 6 cm.

ВТОРА ЧАСТ

Следващите 10 задачи са без избираем отговор. Върху талона за отговорите от теста (последната страница) в празното поле за отговор на съответната задача запишете само отговора, който сте получили. За всеки получен и обоснован верен отговор получавате по 2 точки. За грешен отговор или за непопълнен отговор точки не се дават и не се отнемат.

21. Да се реши уравнението:

$$\left(\frac{4}{9}\right)^{5-4x} = \left(\frac{27}{8}\right)^{-4}.$$

22. Да се намери сборът на целите числа, които са решение на неравенството:

$$\frac{\left(1+x^2\right)\left(x-2\right)}{x+3}<0.$$

23. Да се намери най-големият корен на уравнението:

$$(x^2+x)(x^2+x+2)=3$$
.

24. Да се реши уравнението:

$$\log_2 x = 2 + \log_x 8$$
.

- 25. Върху всяко от седем еднакви номерирани картончета е написана точно една буква от думата *КАРАМЕЛ*. Да се намери вероятността на случайно избрано от тях картонче да е написана буква от думата *РИМА*.
- 26. Да се намери най-голямата и най-малката стойност на функцията $f(x) = x^3 6x^2 + 9x + 2$ в затворения интервал [0;2].
- 27. В равнобедрен триъгълник с бедро 2 ст основата е равна на радиуса на описаната окръжност. Да се намери лицето на триъгълника.
- 28. В равнобедрен трапец ABCD диагоналът BD е перпендикулярен на бедрото AD, голямата основа AB има дължина a и CD = 2.BC. Да се намери дължината на основата CD.
- 29. Да се намерят стойностите на параметъра a, за които неравенството $ax^2-4x+3a+1>0$ е изпълнено за всяко реално число x.
- 30. Основата на пирамида е квадрат със страна a. Две околни стени на пирамидата са перпендикулярни на основата, а другите две околни стени сключват с основата равни ъгли с големина 30° . Да се намери радиусът на описаната около пирамидата сфера.

ВРЕМЕ ЗА РАБОТА 4 АСТРОНОМИЧЕСКИ ЧАСА

Драги кандидат-студенти, попълвайте внимателно отговорите на задачите от теста <u>само върху талона за отговор (последната страница)!</u>

НА ВСИЧКИ КАНДИДАТ-СТУДЕНТИ ПОЖЕЛАВАМЕ УСПЕХ!

ОТГОВОРИ НА ВАРИАНТ ПЪРВИ на ТЕСТ ПО МАТЕМАТИКА – 07 юли 2014 г. за КАНДИДАТ-СТУДЕНТИ от ТЕХНИЧЕСКИ УНИВЕРСИТЕТ – СОФИЯ

ПЪРВА ЧАСТ

1в	2 в	3 г	4 б	5 д	6 a	7б	8 a	9 г	10 б
11 д	12 г	13 в	14 д	15 г	16 б	17 д	18 a	19 г	20 a

ВТОРА ЧАСТ

21.
$$x = -\frac{1}{4}$$

23.
$$\frac{\sqrt{5}-1}{2}$$

24.
$$x = \frac{1}{2}$$
 и $x = 8$

25.
$$\frac{4}{7}$$

26.
$$H\Gamma C = 6$$
, $HMC = 2$

27.
$$1 cm^2$$

28.
$$(\sqrt{3}-1)a$$

29.
$$a \in (1, \infty)$$

30.
$$\frac{a\sqrt{21}}{6}$$