# QFin Corporate Finance - Case Study I The Boeing Co.

Julian Amon, Ekaterina Cherkasova, Nikolaus Dörfler, Aliaksandr Panko December 4, 2018

# 1 Exercise 1

Computing the book leverage:

$$Bookleverage = \frac{longtermdebt + currentliabilites}{bookequity}$$

```
fin_output <- Data_ex1_corporatefinanceproject[,1]

tot_debt <- c(0)
book_eq <- c(0)
mv_eq <- c(0)
for (i in 1:nrow(Data_ex1_corporatefinanceproject)) {
   tot_debt[i] <- as.numeric(Data_ex1_corporatefinanceproject[i,5])
   book_eq[i] <- as.numeric(Data_ex1_corporatefinanceproject[i,6])
   mv_eq[i] <- as.numeric(Data_ex1_corporatefinanceproject[i,7])
}

fin_output$Book_leverage <- tot_debt/book_eq</pre>
```

Computing the market leverage:

$$Market leverage = \frac{total debt}{MV of equity}$$

Table 1: Multiples

|    | Date       | Book_leverage | Market_leverage |
|----|------------|---------------|-----------------|
| 1  | 1Q 2012    | 14.67         | 1.59            |
| 2  | $2Q\ 2012$ | 12.85         | 1.67            |
| 3  | $3Q\ 2012$ | 9.89          | 1.59            |
| 4  | $4Q\ 2012$ | 13.90         | 1.69            |
| 5  | 1Q 2013    | 10.96         | 1.43            |
| 6  | $2Q\ 2013$ | 11.07         | 1.23            |
| 7  | $3Q\ 2013$ | 9.44          | 1.14            |
| 8  | $4Q\ 2013$ | 5.00          | 0.82            |
| 9  | $1Q\ 2014$ | 5.26          | 0.92            |
| 10 | $2Q\ 2014$ | 5.54          | 0.86            |
| 11 | $3Q\ 2014$ | 5.33          | 0.95            |
| 12 | $4Q\ 2014$ | 9.57          | 1.00            |
| 13 | $1Q\ 2015$ | 11.18         | 0.90            |
| 14 | $2Q\ 2015$ | 14.55         | 1.02            |
| 15 | $3Q\ 2015$ | 13.59         | 1.08            |
| 16 | $4Q\ 2015$ | 13.76         | 1.10            |
| 17 | $1Q\ 2016$ | 21.30         | 1.05            |
| 18 | $2Q\ 2016$ | 137.50        | 1.17            |
| 19 | $3Q\ 2016$ | 101.62        | 1.17            |
| 20 | $4Q\ 2016$ | 101.62        | 0.93            |
| 21 | $1Q\ 2017$ | 577.54        | 0.84            |
| 22 | $2Q\ 2017$ | -46.52        | 0.82            |
| 23 | $3Q\ 2017$ | 78.48         | 0.63            |
| 24 | $4Q\ 2017$ | 21.41         | 0.50            |
| 25 | $1Q\ 2018$ | 86.48         | 0.54            |
| 26 | $2Q\ 2018$ | -83.38        | 0.53            |
| 27 | $3Q\ 2018$ | -95.84        | 0.57            |

Calculating the Price-Earnings Ratio (P/E), the Market-to-Book Ratio (P/B), the Return on Equity (ROE), the Return on Assets (ROA), the Cash from operating activities (COA), the Cash from investing activities (CIA) and the Cash from financing activities (CFA) on a yearly and quarterly basis for the last 6 years.

Table 2: Calculations on yearly basis

| X1                  | FY 2012 | FY 2013 | FY 2014 | FY 2015 | FY 2016 | FY 2017   |
|---------------------|---------|---------|---------|---------|---------|-----------|
| P/E                 | 14.601  | 22.249  | 16.868  | 18.622  | 19.628  | 21.264    |
| P/B                 | 9.543   | 6.802   | 10.451  | 15.068  | 109.553 | 423.066   |
| ROE, %              | 66.473  | 30.824  | 62.851  | 81.705  | 599.143 | 2,309.014 |
| ROA, %              | 4.387   | 4.948   | 5.861   | 5.483   | 5.439   | 8.878     |
| COA, in \$ millions | 7,508   | 8,179   | 8,858   | 9,363   | 10,499  | 13,344    |
| CIA, in \$ millions | -3,757  | -5,154  | 2,467   | -1,846  | -3,380  | -2,062    |
| CFI, In \$ millions | -3, 477 | -4,249  | -8, 593 | -7,920  | -9, 587 | -11,350   |

Calculating the Price-Earnings Ratio (P/E), the Market-to-Book Ratio (P/B), the Return on Equity (ROE), the Return on Assets (ROA), the Cash from operating activities (COA), the Cash from investing activities (CIA) and the Cash from financing activities (CFA) on a yearly and quarterly basis for the last 6

years. In order to obtain these ratios, we first need to recall the formulas.

The Price-Earnings Ratio (P/E) is calculated in the following way:

$$P/E = \frac{Share price}{EPS},$$

where EPS is earnings per share and calculated as

$$EPS = \frac{Net\ Income}{Shares\ outstanding}$$

The Market-to-Book Ratio(also called price-to-book ratio, P/B) is

$$P/B = \frac{Market\ Value\ of\ Equity}{Book\ Value\ of\ Equity},$$

where

Market Value of Equity = Shares outstanding  $\times$  Share price

The return on equity (ROE) and the return on assets (ROA) have the following formulas:

$$ROE = \frac{Net\ Income}{Book\ Value\ of\ Equity}$$









Now, we consider the results on a quarterly basis:

Table 3: Calculations on quaterly basis

| Quarter Year | P/E    | P/B      | ROE,%     | ROA,%  | COA*  | CIA*   | CFA*   |
|--------------|--------|----------|-----------|--------|-------|--------|--------|
|              | 1/15   |          |           |        |       |        |        |
| Q1 2012      |        | 10.876   | 18.361    | 1.151  | 837   | -3,003 | -1,187 |
| $Q2\ 2012$   |        | 9.475    | 16.661    | 1.185  | 908   | -585   | -710   |
| Q3 2012      |        | 6.829    | 13.600    | 1.234  | 1,596 | -1,005 | -337   |
| Q4 2012      | 14.601 | 9.543    | 16.670    | 1.100  | 4,167 | 836    | -1,243 |
| Q1 2013      | 15.945 | 8.611    | 14.822    | 1.223  | 524   | -814   | -1,705 |
| $Q2\ 2013$   | 18.378 | 10.121   | 14.443    | 1.180  | 3,467 | -2,557 | -525   |
| $Q3\ 2013$   | 20.418 | 9.744    | 12.915    | 1.222  | 2,808 | -711   | -763   |
| Q4 2013      | 22.263 | 6.802    | 8.289     | 1.331  | 1,380 | -1,072 | -1,256 |
| Q1 2014      | 20.649 | 6.267    | 6.646     | 1.054  | 1,112 | 406    | -3,668 |
| $Q2\ 2014$   | 18.334 | 6.471    | 11.749    | 1.781  | 1,809 | 875    | -2,096 |
| Q3 2014      | 17.446 | 6.212    | 9.386     | 1.470  | 939   | -247   | -1,530 |
| Q4 2014      | 16.871 | 10.451   | 16.919    | 1.578  | 4,998 | 1,433  | -1,299 |
| $Q1\ 2015$   | 17.915 | 12.971   | 16.873    | 1.364  | 88    | -214   | -2,935 |
| $Q2\ 2015$   | 17.921 | 14.980   | 17.720    | 1.131  | 3,297 | -198   | -2,605 |
| $Q3\ 2015$   | 15.659 | 12.948   | 25.237    | 1.718  | 2,859 | -553   | -2,069 |
| $Q4\ 2015$   | 18.640 | 15.068   | 16.196    | 1.087  | 3,119 | -881   | -311   |
| Q1 2016      | 16.064 | 19.780   | 30.151    | 1.332  | 1,275 | -438   | -4,265 |
| Q2 2016      | 21.897 | 125.626  | -40       | -0.261 | 3,190 | -912   | -1,544 |
| Q3 2016      | 19.021 | 37.926   | 108.952   | 2.559  | 3,202 | -614   | -2,204 |
| Q4 2016      | 19.640 | 109.553  | 199.633   | 1.812  | 2,876 | -1,416 | -1,618 |
| $Q1\ 2017$   | 20.400 | 691.229  | 1,662.105 | 1.761  | 2,098 | -260   | -2,463 |
| $Q2\ 2017$   | 16.214 | -59.305  | -85.862   | 1.943  | 4,949 | -1,123 | -3,311 |
| Q3 2017      | 22.434 | 132.622  | 166.667   | 1.989  | 3,396 | -218   | -3,335 |
| Q4 2017      | 21.077 | 423.066  | 882.254   | 3.392  | 2,904 | -426   | -2,241 |
| Q1 2018      | 20.894 | 147.577  | 202.700   | 2.181  | 3,136 | 119    | -2,845 |
| Q2 2018      | 21.293 | -149.005 | -152.394  | 1.940  | 4,680 | -1,414 | -4,332 |
| Q3 2018      | 20.811 | -175.030 | -183.320  | 2.061  | 4,559 | -902   | -3,689 |

<sup>\*</sup>Cashflows are in millions of US dollars.

In this section we first consider the information on the announcement/ declaration date of dividends, dividend, ex-dividend date within the last 6 years.

Table 4: Dividend dates

| Ex/Eff Date    | Amount, \$ | Type    | Decl.Date      |
|----------------|------------|---------|----------------|
| 2018-11-08     | 1.710      | Quarter | 2018-10-22     |
| 2018-08-09     | 1.710      | Quarter | 2018-06-25     |
| 2018-05-10     | 1.710      | Quarter | 2018-04-30     |
| 2018-02-08     | 1.710      | Quarter | 2017-12-11     |
| 2017-11-09     | 1.420      | Quarter | 2017-10-30     |
| 2017-08-09     | 1.420      | Quarter | 2017-06-26     |
| 2017-05-10     | 1.420      | Quarter | 2017-05-01     |
| 2017-02-08     | 1.420      | Quarter | 2016-12-12     |
| 2016-11-08     | 1.090      | Quarter | 2016-10-31     |
| 2016-08-10     | 1.090      | Quarter | 2016-06-27     |
| 2016-05-11     | 1.090      | Quarter | 2016 - 05 - 02 |
| 2016-02-10     | 1.090      | Quarter | 2015-12-14     |
| 2015 - 11 - 04 | 0.910      | Quarter | 2015-10-26     |
| 2015-08-05     | 0.910      | Quarter | 2015 - 06 - 22 |
| 2015-05-06     | 0.910      | Quarter | 2015 - 04 - 27 |
| 2015-02-11     | 0.910      | Quarter | 2014-12-15     |
| 2014-11-05     | 0.730      | Quarter | 2014-10-27     |
| 2014-08-06     | 0.730      | Quarter | 2014-06-23     |
| 2014-05-07     | 0.730      | Quarter | 2014-04-28     |
| 2014-02-12     | 0.730      | Quarter | 2013-12-16     |
| 2013-11-06     | 0.485      | Quarter | 2013-10-28     |
| 2013-08-07     | 0.485      | Quarter | 2013-06-24     |
| 2013-05-08     | 0.485      | Quarter | 2013-04-29     |
| 2013-02-13     | 0.485      | Quarter | 2012 - 12 - 17 |
| 2012 - 11 - 07 | 0.440      | Quarter | 2012-10-29     |
| 2012 - 08 - 15 | 0.440      | Quarter | 2012 - 06 - 25 |
| 2012-05-09     | 0.440      | Quarter | 2012-04-30     |
| 2012-02-08     | 0.440      | Quarter | 2011-12-12     |
|                |            |         |                |

The dates of announcement of a new repurchase plan for the next year are:

| Table 5:   |
|------------|
| Dates      |
| 2017-12-11 |
| 2016-12-12 |
| 2015-12-14 |
| 2014-12-15 |
| 2013-12-16 |
| 2012-12-11 |
|            |

As a proxy for the market portfolio, we choose the S&P 500 Total Return Index. This index is big enough for us to be able to consider it to be sufficiently diversified, i.e. so as not to contain any unsystematic risk and it is a performance index, meaning that dividend payments are included in its performance.

## 5 Exercise 5

We compute the arithmetic average annual return and the compound annual return with daily, weekly and monthly returns for the estimating window 1/1/2014 to 12/31/2018 for Boeing and the S&P 500 TR index.

```
#########I.OG RETURNS#############
#Annual mean returns
yearlymean_BA<-mean(yearlyReturn(market_xts$BA,type="log"))</pre>
yearlymean_market<-mean(yearlyReturn(market_xts$SPXT,type="log"))</pre>
#Daily mean returns
dailymean_BA<-mean(dailyReturn(market_xts$BA,type="log"))</pre>
dailymean_market<-mean(dailyReturn(market_xts$SPXT,type="log"))</pre>
#Weekly mean returns
weeklymean_BA<-mean(weeklyReturn(market_xts$BA,type="log"))</pre>
weeklymean_market<-mean(weeklyReturn(market_xts$SPXT,type="log"))</pre>
#Monthly mean returns
monthlymean_BA<-mean(monthlyReturn(market_xts$BA,type="log"))</pre>
monthlymean_market<-mean(monthlyReturn(market_xts$SPXT,type="log"))</pre>
#Compounding to annual returns
results_log<-matrix(0,4,2)
colnames(results_log)<-c("BA", "SPXT")</pre>
rownames(results_log)<-c("Daily", "Weekly", "Monthly", "Yearly")</pre>
results_log[1,1] <-exp(252*dailymean_BA)-1
results_log[1,2] <-exp(252*dailymean_market)-1
results_log[2,1] <-exp(52*weeklymean_BA)-1
results_log[2,2] <-exp(52*weeklymean_market)-1
results_log[3,1] <-exp(12*monthlymean_BA)-1
results_log[3,2] <-exp(12*monthlymean_market)-1
results_log[4,1] <- yearlymean_BA
results_log[4,2] <- yearlymean_market
stargazer(results_log, title="Annualised log returns")
```

Table 6: Annualised log returns

|         | BA    | SPXT  |
|---------|-------|-------|
| Daily   | 0.208 | 0.110 |
| Weekly  | 0.207 | 0.109 |
| Monthly | 0.208 | 0.110 |
| Yearly  | 0.186 | 0.102 |

```
dailymean_market<-mean(dailyReturn(market_xts$SPXT,type="arithmetic"))</pre>
#Weekly mean returns
weeklymean_BA<-mean(weeklyReturn(market_xts$BA,type="arithmetic"))</pre>
weeklymean_market<-mean(weeklyReturn(market_xts$SPXT,type="arithmetic"))</pre>
#Monthly mean returns
monthlymean_BA<-mean(monthlyReturn(market_xts$BA,type="arithmetic"))</pre>
monthlymean_market<-mean(monthlyReturn(market_xts$SPXT,type="arithmetic"))</pre>
#Compounding to annual returns
results_arithmetic <- matrix (0,4,2)
colnames(results_arithmetic)<-c("BA", "SPXT")</pre>
rownames(results_arithmetic)<-c("Daily","Weekly","Monthly","Yearly")</pre>
results_arithmetic[1,1]<-(1+dailymean_BA)^252-1
results_arithmetic[1,2] <- (1+dailymean_market)^252-1
results_arithmetic[2,1]<-(1+weeklymean_BA)^52-1
results_arithmetic[2,2] <- (1+weeklymean_market)^52-1
results_arithmetic[3,1] <- (1+monthlymean_BA)^12-1
results_arithmetic[3,2]<-(1+monthlymean_market)^12-1
results_arithmetic[4,1] <- yearlymean_BA
results_arithmetic[4,2] <- yearlymean_market
stargazer(results_arithmetic, title="Annualised discrete returns")
```

Table 7: Annualised discrete returns

|         | BA    | SPXT  |
|---------|-------|-------|
| Daily   | 0.241 | 0.119 |
| Weekly  | 0.240 | 0.117 |
| Monthly | 0.240 | 0.115 |
| Yearly  | 0.242 | 0.110 |

```
vola_daily_BA<-sd(dailyReturn(market_xts$BA,type="log"))*sqrt(252)
vola_dailymarket<-sd(dailyReturn(market_xts$SPXT,type="log"))*sqrt(252)</pre>
vola_weekly_BA<-sd(weeklyReturn(market_xts$BA,type="log"))*sqrt(52)</pre>
vola_weeklymarket<-sd(weeklyReturn(market_xts$SPXT,type="log"))*sqrt(52)</pre>
vola_monthly_BA<-sd(monthlyReturn(market_xts$BA,type="log"))*sqrt(12)
vola_monthlymarket<-sd(monthlyReturn(market_xts$SPXT,type="log"))*sqrt(12)
results_vola<-matrix(0,3,2)
colnames(results_vola)<-c("BA","SPXT")</pre>
rownames(results_vola) <-c("Daily", "Weekly", "Monthly")</pre>
results_vola[1,1] <-vola_daily_BA
results_vola[1,2] <-vola_dailymarket
results_vola[2,1] <-vola_weekly_BA
results_vola[2,2] <-vola_weeklymarket
results_vola[3,1] <-vola_monthly_BA
results_vola[3,2] <- vola_monthlymarket
stargazer(results_vola, title="Annualised volatilities")
```

Table 8: Annualised volatilities

|         | BA    | SPXT  |
|---------|-------|-------|
| Daily   | 0.229 | 0.128 |
| Weekly  | 0.232 | 0.123 |
| Monthly | 0.229 | 0.100 |

Return volatilities (104 week rolling window) 2007–12–28 / 2018–11–30



Dez 28 2007 Okt 02 2009 Jun 03 2011 Feb 01 2013 Okt 03 2014 Jun 03 2016 Feb 02 2018

invisible(plot(weekly\_BA^2))
lines(weeklymarket^2,col=3)



Jan 06 2006 Jan 04 2008 Jan 08 2010 Jan 06 2012 Jan 03 2014 Jan 08 2016 Jan 05 2018