3. Network Attacks and Their Detection (D)DoS, Scanning, Brute-Force

Simona Buchovecká, Tomáš Čejka

Faculty of Information Technology, CTU in Prague simona.buchovecka@fit.cvut.cz, tomas.cejka@fit.cvut.cz

October 18, 2020

Section 1

General Information

Terminology

```
 srcip Source IP
 dstip Destination IP
 srcport Source port of transport protocol
 dstport Destination port of transport protocol
 TCP Transmission Control Protocol
 UDP User Datagram Protocol
```

Section 2

Scanning

Network Scanning

- Host / Service discovery
- Information gathering
- UDP (connectionless) vs. TCP (connection-oriented)
- ICMP

Scanning Traffic: Packet view

Host discovery by ICMP

ICMP messages with type echo, usually one srcip, changing dstip

TCP SYN

TCP packets, SYN flag, usually one *srcip*, usually one *dstip*, usually many *dstport*, one or more *srcport*

Scanner analyzes response, SYN&ACK for open port.

UDP scan

UDP packets, usually one *srcip*, usually one *dstip*, usually many *dstport*, one or more *srcport*, some payload optional.

Scanner analyzes response, packets are being duplicated, longer timeouts.

Brainstorming: block scan? RST scan? X-mass scan?

Scanning Traffic: Flow view

Host discovery by ICMP

proto = 1, srcport= 0, dstport= type and code

TCP SYN

Increased number of TCP flow records, mostly with just SYN or SYN&RST flag, with one or more *srcport* and usually many *dstport*.

UDP scan

Increased number of UDP flow records, with one or more *srcport* and usually many *dstport*.

Brainstorming: block scan? RST scan? X-mass scan? Discussion in a particular tutorial.

Section 3

(D)DoS

(Distributed) Denial of Service (DoS)

About DoS

- Making system slow/unusable by overloading its resources (with a little computing work)
- Availability attack
- Generally: unsophisticated attack, attackers do not gain any information from the target system, BUT they can learn its defense
- There are (unfortunately) many vulnerabilities in current software/hardware
- Basically, any error that ends with crash can cause DoS
- Depletion of victim's resources can cause DoS
- Deadlocks can cause DoS
- Infinite loops can cause DoS
- Bad configuration of network infrastructure can cause DoS
- See database of Common Vulnerabilities and Exposures (CVE)
 https://cve.mitre.org/, https://www.exploit-db.com/

"Bombs"

- Well-known fork bombs (https://en.wikipedia.org/wiki/Fork_bomb), possible even in shell
- Attacks against parsers:
 - XDoS attack (XML) (consuming expansion: https://en.wikipedia.org/wiki/Billion_laughs_attack)
 - Multiple signatures (consuming verification)
 - Regular expression DoS (ReDoS) (consuming evaluation: https://en.wikipedia.org/wiki/ReDoS)
 - (zip) archive that is too large after extraction

Distributed DoS (DDoS)

Distributed DoS (DDoS)

- Huge (synchronized) traffic (/many requests) from many sources against a victim
- Usage of botnets, many existing, many available, famous one https://github.com/jgamblin/Mirai-Source-Code in 2016
- Responding honeypots

Multiple hosts affected — usually compromised

- primary victim service under attack
- secondary victims compromised systems launching the attack, zombies/bots (botnet)

SYN Flood Attack

SYN Flood Traffic

Packets

TCP packets with SYN flag, Usually one or more *srcip*, one *dstip*, usually many *srcport*, one *dstport*.

Flows

Increased number of TCP flow records with SYN flag, see the Packets description.

UDP Flood Attack

- Sending large number of UDP packets to random ports
- Victim will reply with ICMP Destination unreachable packet for every UDP request to the closed ports
- Processing and sending big amount of ICMP packets may make system unresponsive for legitimate requests

Ping of Death

- Typical size of IPv4 packet: 64 bytes
- Maximum size may be up to 65 535 bytes
- Many systems were not designed to properly process such big packets
- ICMP echo request (ping) with maximum packet size may cause buffer overflow, system instability... or other problems on the receiving/victim system

WiFi DoS Attacks

De-authentication attack

- IEEE 802.11 defines *deauthentication* frame (management frames are being sent unencrypted)
- AP can send the deauthentication frame to a station
- Attacker can send a deauthentication frame with a spoofed address to a victim

Signal interference

- Jamming
- WiFi jammer generates a noise on WiFi channels, making the frequencies unusable

Application Layer (L7) DDoS

Example: HTTP

- HTTP GET request flooding
- Volumetric attack, using a botnet to perform HTTP GET requests that pretend to be valid
- HTTP POST
- Valid POST request sent at very low rate preventing the connection to be properly completed
- HTTP slow read
- Read the HTTP response "slowly" = set up small window (maximum amount of received data) size
- HTTP Malformed attacks
- Trying malformed/intentionally invalid requests; goal: unstable system

Distributed Reflection DoS (DRDoS)

DRDoS

- Amplification often employed
 - small number of packets (bytes) from source
 - generating bigger number of packets (bytes) against destination (attack target)
- Asymmetric attack (low resources, large consequences)
- Primary victim service under attack
- Secondary victims compromised systems launching the attack, zombies/bots (botnet)
- Reflectors/amplifiers (e.g. open DNS resolvers)

Smurf Attack

- reflected attack
- ICMP packets, broadcast address
- ICMP with spoofed *srcip* (victim's)

DNS Amplification

- Amplification through DNS
- typically transmitted over UDP, i.e., srcip can be spoofed
- size(Response) > size(query)
- Problem: open DNS resolvers (respond to any query by any srcip)
 - srcip spoofed with victim's address
 - small query send by attacker
 - victim will receive much larger response

Booters Phenomenon

- Stress-test / DDoS-for-hire / DDoS-on-Demand
- Cheap attacks/stress-tests available for everyone! (It makes it more dangerous)

Additional Reading:

J. J. Santanna et al., "Booters — An analysis of DDoS-as-a-service attacks," 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM), Ottawa, ON, 2015, pp. 243-251, doi: 10.1109/INM.2015.7140298.

Slashdot / FlashCrowd effect

- It is not an intended attack (false positives?),
- but effects are the same as for real attacks.
- Popular news spread very quickly
- Social media help information spreading (twitter, facebook, ...)

Section 4

Brute-Force

Brute-Force Attacks / Scans

- Motivation: gain access
- Guessing username or password / scanning hosts
- Dictionary / Enumerated attempts
- Against any protocol or service
- The aim is to gain access (or) steal identity / gather information

Section 5

Defense

Scanning Defense

- Let open only necessary ports
- Drop instead of Reject (politeness vs scanner slowdown?)
- Decoy/Honeypot?

SYN Flood Defense

- SYN cookies
- allocate system resources only after TCP handshake is completed
- RST cookies
- after received SYN, server sends invalid SYN ACK
- RST should be received from client in this case the client is valid
- Micro blocks
- only small memory space allocated for incoming SYN requests (e.g. 16 bytes)
- Stack tweaking
- selectively dropping incoming connections
- reducing the timeout when the memory allocated for the connection is freed up

SYN cookies

- Transmission Control Block (TCB): data structure which holds the connection state information
- Cookie = calculated TCP sequence number

Smurf attack Defense

- Endpoints should not respond to broadcasted ICMP requests
- Routers should drop the broadcasted ICMP requests

(D(R))DoS Defense

- Difficult
- Most effective: ISP providing countermeasures
- SYN proxy (until ACK, connection request not forwarded)
- Connection limits (prioritize existing connection, limit per IP etc.)
- ullet Aging (how long can the connection be idle? o TCP RST), timeouts
- Anomaly recognition (malformed headers, protocol state etc.)
- Dark address prevention (address not assigned by IANA most probably spoofed)
- Bandwidth over-subscription
- Blackholing / RTBH
- Load-balancing
- System hardening, tuning (profiling)

DDoS Defense: Main Issues

- Victim can do completely nothing when the network is under attack.
 The only hope is contacting ISP (or peering network operator).
- Victim can easily see the attack X Source network can easily drop the traffic (http://www.bcp38.info)
- Lets drop evil packets... Well, which packets are evil? This kind of recognition is The Question that can make us rich!
- Dropping/blocking all means successful attack system/service is down or disconnected.
- World is bigger than we are.
 There are many devices out there that can be used by attackers, we always have significantly less resources.
- Spoofed addresses make harder to find origins of the traffic.

Brute-Force Attack Defense

- fail2ban
- limited number of login attempts
- good passwords
- key vs password
- unpredictable username (if possible)

Section 6

Closing Words

Questions?