MODBUS_RTU 通讯协议

- 1、数据传输格式: 1位起始位、8位数据位、1位停止位、无奇偶校验位。
- 2、 仪表数据格式: 2字节寄存器值=寄存器数高8位二进制数+寄存器低8位二进制数
- 3、仪表通讯帧格式: 读寄存器命令格式:

1	2	3	4	5	6	7~8
DE	3	起始寄存器高位	起始寄存器低位	寄存器数高位	寄存器数低位	CRC

应答:

Ī	1	2	3	4~5	6~7	•••	M*2+2~M*2+3	M*2+4~M*2+5
	DE	3	字节计数 M*2	寄存器数据 1	寄存器数据 2	•••	寄存器数据 M	CRC

写寄存器命令格式:

1	2	3	4	5	6	7~8
DE	6	起始寄存器高位	起始寄存器低位	数据高位	数据低位	CRC

DE: 设备地址 (1~200) 单字节

CRC: 校验字节 采用 CRC-16 循环冗余错误校验

举例说明:

MODBUS_RTU 通讯协议(十六进制格式)

发送: 01,03,00,00,00,10,44,06

00, 0E, 8A, 00, 00, 8A, 0E, 77, 00, 00, 60, 9C

(以上举例仅作参考,以实际通讯数据内容为准。)

仪表动态数据格式

编号	参数名称	地址	备注
1	保留	0000	只读状态
2	内部修改标志	0001	只读状态
3	仪表类型	0002	只读状态
4	第一通道实时值	0003	只读状态
5	第二通道实时值	0005	只读状态
6	第一报警(AL1)	0007	只读状态
7	第二报警(AL2)	0008	只读状态
8	第三报警(AL3)	0009	只读状态
9	第四报警(AL4)	000A	只读状态
	通道1第一报警值(1AL1)	000B	读写状态
	通道1第二报警值(1AL2)	000C	读写状态
	通道1第一报警回差值(1AH1)	000D	读写状态
	通道1第二报警回差值(1AH2)	000E	读写状态
	通道2第一报警值(2AL1)	000F	读写状态
	通道2第二报警值(2AL2)	0010	读写状态
	通道2第一报警回差值(2AH1)	0011	读写状态
	通道 2 第二报警回差值(2AH2)	0012	读写状态

该表的负数使用的是补码方式解析

举例: -117 的解析表示如下

+117 可表示为 0000 0000 0111 0101

按位求反后为 1111 1111 1000 1010

末位加 1 后为 1111 1111 1000 1011

用十六进制数表示为 F F 8 B

即 [-117]_补=FF8BH