RISC-V MCU development boards

Table of contents

ntroduction	1
_icense	
Vanufacturer selection	
3ouffaloLab	
Advice to beginners	
Energy efficiency	
Compute power & embedded Al	6
Documentation, SDK and tools	
BL602	6
Third-party development board: PineCone	6
Third-party development board: Ai-WB2 series	
Third-party development board: DT-BL10 or XT-BL12	
BL702	
Third-party development board: M0 Sense	
Third-party development board: XT-ZB1	
BL616	
Third-party development board: MOS Dock	
Third-party development board: Ai-M62-12F	
BL618	
Third-party development board: MOP Dock	
Third-party development board: Ai-M61-32S	
BL808	
Third-party development board: Ox64	
Third-party development board: M1S Dock	
Espressif	
ESP8684 (ESP32-C2)Official development board: ESP8684-DevKitM-1	
Official development board: ESP8684-DevKitV-1	
Third-party development board: ESPC2-12	
Documentation	
ESP32-C3 and ESP8685	
Official development board: ESP32-C3-DevKitM-1	
Official development board: ESP32-C3-DevKitC-02	
Third-party development board: ESP32-C3FH4	
Third-party development board: nanoESP32-C3	
Third-party development board: YD-ESP32-C3	
Third-party development board: XIAO ESP32C3	.11
Third-party development board: ESP32C3-MINI-DK	
Third-party development board: ESP32-C3 Mini	
Documentation	
ESP32-C6	
Official development board: ESP32-C6-DevKitM-1	.12
Official development board: ESP32-C6-DevKitC-1	.12
Third-party development board: WeAct ESP32-C6-A	.12
Third-party development board: nanoESP32-C6	.13
Documentation	
ESP32-H2	
Official development board: ESP32-H2-DevKitM-1	
Documentation	.13

GigaDevice	
Official development board: GD32VF103C-START	14
Third-party development board: Longan Nano	
Documentation, SDK and tools	
WCH	
Programmer / debugger	
Flashing tool	
Notes to Linux users	16
MounRiver IDE	
Stand alone tool chain	
Alternatives to WCH tools	17
CH32V003	17
Official development board	17
Third-party development board: nanoCH32V003	17
Third-party development board: QSZNTEC CH32V003	17
Third-party development board: Twen CH32V003	17
Documentation and SDK	18
CH32V103	18
Official development board	18
Third-party development board: CH32V103R8T6_MINI	18
Documentation and SDK	18
CH32V203	
Official development board	
Third-party development board: BluePill+ CH32V203	18
Third-party development board: nanoCH32V203	
Documentation and SDK	
CH32V208	19
Official development board	19
Documentation and SDK	
CH32V303	19
Official development board	19
Documentation and SDK	
CH32V305	
Third-party development board: nanoCH32V305	19
Documentation and SDK	20
CH32V307	20
Official development board	20
Third-party development board: YD-CH32V307VC	20
Third-party development board: CH32V307RC-MINI	
Documentation and SDK	
CH32X035	
Official development board	
Documentation and SDK	
CH565	
Official development board	
Documentation and SDK	
CH569	
Official development board	
Documentation and SDK	21
CH582 / CH583	
Official development board	
Third-party development board: YD-CH58x	21
Third-party development board: 303CH582M01	
Documentation and SDK	
BLUETRUM	
Third-party development board: AB32VG1	

Third party dayslapment heard: Mills V Dua	24
militu-party development board. Wilk-v Duo24	D24

Introduction

"How do I get my feet wet with RISC-V?" is a very common question, which is often answered "Buy a RISC-V development board, and practice bare metal development."

This document provides guidance on part selection, as well as pointers to useful resources. It is not a comprehensive guide of RISC-V MCU, but rather a short list of easily approachable parts. To be listed in this guide, parts **must** meet several criteria:

- · have decent English documentation,
- have open-source or freely downloadable supporting software,
- be easily available from anywhere in the world, e.g. through AliExpress or LCSC,
- · have cheap development boards as easily available as the chips,
- not require a Chinese mobile phone number to download software or documentation.

License

This document is (c) 2023 Vincent DEFERT and is licensed under the Creative Commons Attribution 4.0 International License.

Information about the license can be found at: http://creativecommons.org/licenses/by/4.0/

Manufacturer selection

MCU manufacturers have different product strategies, leading to different product ranges. An easy and efficient method is to select a manufacturer whose strategy matches your needs, and then see which of their parts best suits your project.

Manufacturer	Wide supply voltage range	Wide package choice	Lots of I/O pins	WiFi	BLE	802.15.4
BouffaloLab				Х	Х	х
Espressif				Х	Х	х
GigaDevice			Х			
WCH	Х	Х	Х		Х	

Note: manufacturers are sorted in alphabetical order.

BouffaloLab

Chinese name: 博流智能 (or just 博流) - pinyin: bó liú zhìnéng

BouffaloLab only manufactures RISC-V chips, so they're undoubtedly committed to this platform. They have a wide range of IoT-oriented MCU, some with SiFive IP, others with T-Head IP. The documentation is good, but their SDK and code examples are a bit chaotic.

2023-06-27: note that this situation is improving as BouffaloLab is working on a unified SDK (bouffalo_sdk) to replace the old bl_mcu_sdk and bl_iot_sdk.

The following table presents the main differences between BouffaloLab's RISC-V SoC (not the modules):

Part	MHz	RAM	CPU	Core IP	WiFi	ВТ	BLE	802.15.4	USB	Ethernet	Camera	AI NPU
BL602/ BL604	192	276K	RV32IMAFC	SiFive <u>E24</u>	b/g/n	-	yes	-	-	-	-	-
BL702	144	132K	RV32IMAFC	SiFive <u>E24</u>	-	-	yes	yes	yes	-	-	-
BL704	144	132K	RV32IMAFC	SiFive <u>E24</u>	-	-	yes	yes	yes	yes	-	-
BL706	144	132K	RV32IMAFC	SiFive <u>E24</u>	-	-	yes	yes	yes	yes	yes	-
BL616/ BL618 *	320	480K	RV32IMAFCP	T-Head <u>E907</u>	b/g/n/ax	yes	yes	yes	yes	yes	yes	-
BL808	480	64M	RV32IMAFCP+ RV64GCV+ RV32EMC	T-Head <u>E907</u> + <u>C906</u> + <u>E902</u>	b/g/n	yes	yes	yes	yes	yes	yes	yes

^{*:} the BL616 and BL618 are ultra-low-power wireless MCU.

I chose to include the BL808 because it is exceedingly powerful for an MCU, but very limited for a Linux-capable SoC, so it makes sense to include it in both documents.

I didn't include the BL606P because as of 2023-06-27, BouffaloLab provides no technical documentation about it, and neither chips, nor development boards are available for purchase.

Finally, the BL604, is a higher pin count version of the BL602, and the BL618, a higher pin count version of the BL616.

Advice to beginners

Pine64 has released a well-documented development board (PineCone) and a module (PineNut), both based on the BL602 MCU, and <u>Lee Lup Yuen</u> has produced <u>excellent training</u> <u>material</u> for this board, so this is what you want to use for your first steps.

Energy efficiency

Since the early days of the BL602, BouffaloLab has always paid attention to energy efficiency. This commitment is confirmed today by the priority they give to the BL616/618, their ultralow-power MCU. If they meet your needs, these are the MCU you want to focus on.

Compute power & embedded Al

The BL808 is a great choice for applications that need significant compute power while staying energy efficient, and for applications incorporating AI-based features.

Documentation, SDK and tools

Data sheets & reference manuals: https://github.com/bouffalolab/bl_docs

SDK:

https://github.com/bouffalolab/bouffalo_sdk (newer SDK)

https://github.com/bouffalolab/bl_iot_sdk (older SDK)

Note: the older SDK may still be needed until the newer has full peripheral coverage (e.g. to use WiFi on the BL808).

https://dev.bouffalolab.com/download

Flashing tool (BlDevCube): https://github.com/bouffalolab/flash_tools

GitHub: https://github.com/bouffalolab

Developer forum: https://bbs.bouffalolab.com/t/english-forum

Interesting information not found in BouffaloLab documents: https://github.com/pine64/

BL602

Third-party development board: PineCone

Purchase link: https://pine64.com/product/pinecone-bl602-evaluation-board/

Documentation: https://wiki.pine64.org/wiki/PineCone

Review: https://lupyuen.github.io/articles/pinecone

Tutorials: https://lupyuen.github.io/articles/book

Third-party development board: Ai-WB2 series

Purchase links (Ai-WB2-12F-Kit: 11 I/O):

https://www.aliexpress.com/item/1005004911487557.html

https://www.aliexpress.com/item/1005005287884896.html

https://www.aliexpress.com/item/1005005742607807.html

https://www.aliexpress.com/item/1005005256873547.html

Purchase links (Ai-WB2-13-Kit: 11 I/O):

https://www.aliexpress.com/item/1005004911837141.html

https://www.aliexpress.com/item/1005005287884896.html

https://www.aliexpress.com/item/1005005256844150.html

https://www.aliexpress.com/item/1005005699841474.html

Purchase links (Ai-WB2-32S-Kit: 15 I/O):

https://www.aliexpress.com/item/1005004911645385.html https://www.aliexpress.com/item/1005005287884896.html https://www.aliexpress.com/item/1005005256875832.html https://www.aliexpress.com/item/1005005697279606.html

Documentation: https://docs.ai-thinker.com/en/wb2

GitHub: https://github.com/Ai-Thinker-Open/Ai-Thinker-WB2

Third-party development board: DT-BL10 or XT-BL12

Purchase links:

https://www.aliexpress.com/item/1005005083839351.html https://www.aliexpress.com/item/1005001762587381.html https://www.aliexpress.com/item/1005003695650307.html https://www.aliexpress.com/item/1005004477041228.html

Documentation: https://xzrnllk27j.k.topthink.com/@xgr3x6lrjy/BL602.html

BL702

Third-party development board: M0 Sense

Purchase links:

https://www.aliexpress.com/item/1005005373072135.html https://www.aliexpress.com/item/1005005686395980.html https://www.aliexpress.com/item/1005005363184503.html https://www.aliexpress.com/item/1005005372923816.html https://www.aliexpress.com/item/1005005012406688.html

Documentation: https://dl.sipeed.com/shareURL/Maix-Zero/M0sense

GitHub: https://github.com/sipeed/M0sense_BL702_example

Third-party development board: XT-ZB1

Purchase links:

https://www.aliexpress.com/item/1005004477055377.html https://www.aliexpress.com/item/1005003695882418.html https://www.aliexpress.com/item/1005003747200098.html https://www.aliexpress.com/item/1005004134568356.html https://www.aliexpress.com/item/1005004705201239.html

Documentation: https://xzrnllk27j.k.topthink.com/@xgr3x6lrjy/BL702.html

BL616

Third-party development board: M0S Dock

Purchase links:

https://www.aliexpress.com/item/1005005373075939.html https://www.aliexpress.com/item/1005005286453236.html https://www.aliexpress.com/item/1005005261055758.html https://www.aliexpress.com/item/1005005743601410.html https://www.aliexpress.com/item/1005005142466936.html

Documentation: https://dl.sipeed.com/shareURL/Maix-Zero/M0S

GitHub: https://github.com/sipeed/M0S_BL616_example

Third-party development board: Ai-M62-12F

Purchase links:

https://www.aliexpress.com/item/1005005553858124.html https://www.aliexpress.com/item/1005005742683460.html https://www.aliexpress.com/item/1005005407942430.html https://www.aliexpress.com/item/1005005438854506.html

Documentation: https://docs.ai-thinker.com/en/ai_m62

GitHub: https://github.com/Ai-Thinker-Open/aithinker_Ai-M6X_SDK

BL618

Third-party development board: M0P Dock

Purchase links:

https://www.aliexpress.com/item/1005005505353135.html https://www.aliexpress.com/item/1005005505242737.html https://www.aliexpress.com/item/1005005434411547.html https://www.aliexpress.com/item/1005005461103465.html

Documentation: https://dl.sipeed.com/shareURL/Maix-Zero/MOP

GitHub: https://github.com/sipeed/MOP_BL618_examples

Third-party development board: Ai-M61-32S

Purchase links:

https://www.aliexpress.com/item/1005004486335583.html https://www.aliexpress.com/item/1005005525538426.html https://www.aliexpress.com/item/1005005407539968.html https://www.aliexpress.com/item/1005005407935386.html Documentation: https://docs.ai-thinker.com/en/ai_m61

GitHub: https://github.com/Ai-Thinker-Open/aithinker Ai-M6X SDK

BL808

Third-party development board: Ox64

Purchase link: https://pine64.com/product-category/ox64/

Documentation: https://wiki.pine64.org/wiki/Ox64

Third-party development board: M1S Dock

Purchase links:

https://www.aliexpress.com/item/1005004996572935.html https://www.aliexpress.com/item/1005004996668405.html https://www.aliexpress.com/item/1005004996731092.html https://www.aliexpress.com/item/1005004970779483.html

Documentation: https://dl.sipeed.com/shareURL/MAIX/M1s

GitHub:

https://github.com/sipeed/M1s_BL808_example https://github.com/sipeed/M1s_BL808_SDK https://github.com/sipeed/M1s_BL808_Linux_SDK

Espressif

Chinese name: 乐鑫科技 - Pinyin: lè xīn kējì

Espressif is famous for their Xtensa-based ESP32 and ESP32-S3 modules, but they also announced their new developments would be made on RISC-V, so interesting things are to be expected from them. Like BouffaloLab, they focus on IoT-oriented MCU.

Their current RISC-V product range includes the ESP32-C2/ESP8684, ESP32-C3/ESP8685, ESP32-C6, and ESP32-H2.

The following table presents the main differences between Espressif's RISC-V SoC (not the modules):

Part	Pins	CPU	MHz	RAM	Max. flash	WiFi	BLE	802.15.4	Notes
ESP8684	24	RV32IMC	120	272K	4M	b/g/n	yes	-	Aka. ESP32-C2
ESP32-C3	32	RV32IMC	160	400K	4M	b/g/n	yes	-	
ESP8685	28	RV32IMC	160	400K	4M	b/g/n	yes	-	
ESP32-C6	40	RV32IMAC	160	512K	4M	b/g/n/ax	yes	yes	Has 2 CPU (one low power)
ESP32-H2	32	RV32IMAC	96	320K	4M	-	yes	yes	Low-power applications

GitHub: https://github.com/espressif

The SDK for all Espressif products is called **ESP-IDF**. It is available from GitHub, or can be downloaded from there: https://www.espressif.com/en/support/download/all? https://www

ESP8684 (ESP32-C2)

Official development board: ESP8684-DevKitM-1

Purchase link: https://www.aliexpress.com/item/1005004436990376.html

Documentation: https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp8684-devkitm-1/index.html

Official development board: ESP8684-DevKitC-02

Purchase link: https://www.aliexpress.com/item/1005004693162839.html

Documentation: https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp8684-devkitc-02/index.html

Third-party development board: ESPC2-12

Purchase links:

https://www.aliexpress.com/item/1005004861021167.html https://www.aliexpress.com/item/1005004708803007.html

Documentation: http://bbs.doit.am/forum.php?mod=viewthread&tid=489&extra=page%3D1

Documentation

https://www.espressif.com/en/support/documents/technical-documents? keys=&field type tid%5B%5D=956

Relevant documents are ESP8684 Datasheet, ESP8684 Technical Reference Manual, and ESP32-C2 Series SoC Errata.

ESP32-C3 and ESP8685

Official development board: ESP32-C3-DevKitM-1

Purchase link: https://www.aliexpress.com/item/1005003989099547.html

Documentation: https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-quide-devkitm-1.html

Official development board: ESP32-C3-DevKitC-02

Purchase link: https://www.aliexpress.com/item/1005004443594655.html

Documentation: https://docs.espressif.com/projects/esp-idf/en/latest/esp32c3/hw-reference/esp32c3/user-guide-devkitc-02.html

Third-party development board: ESP32-C3FH4

Purchase link: https://www.aliexpress.com/item/1005004960064227.html

Documentation: https://github.com/WeActStudio/WeActStudio.ESP32C3CoreBoard

Third-party development board: nanoESP32-C3

Purchase link: https://www.aliexpress.com/item/1005003081928629.html

Documentation: https://github.com/wuxx/nanoESP32-C3

Third-party development board: YD-ESP32-C3

Purchase links:

https://www.aliexpress.com/item/1005004639250865.html https://www.aliexpress.com/item/1005003613170790.html

Documentation: http://www.vcc-gnd.com/

Breaks the ESP32-C3's USB interface out and provides a separate USB-to-serial interface.

Third-party development board: XIAO ESP32C3

Purchase link: https://www.aliexpress.com/item/33011482127.html

Documentation: https://wiki.seeedstudio.com/XIAO_ESP32C3_Getting_Started/

Third-party development board: ESP32C3-MINI-DK

Purchase links:

https://www.aliexpress.com/item/1005004994621831.html https://www.aliexpress.com/i/1005004945580114.html https://www.aliexpress.com/item/1005004945500567.html

Has similar features as the <u>ESP32-C3-DevKitC-02</u> except uses ESP32-C3-MINI-1 instead of ESP32-C3-WROOM-02 and CH340 instead of CP2102, and costs half the price.

Third-party development board: ESP32-C3 Mini

Purchase links:

https://www.aliexpress.com/item/1005005780121305.html https://www.aliexpress.com/item/1005005757810089.html https://www.aliexpress.com/item/1005005692188666.html

Ultra-miniature development board with 16 pins and a ceramic antenna.

Documentation

https://www.espressif.com/en/support/documents/technical-documents? keys=&field_type_tid%5B%5D=785

Relevant documents are ESP32-C3 Datasheet, ESP32-C3 Technical Reference Manual, and ESP32-C3 Series SoC Errata.

ESP32-C6

Official development board: ESP32-C6-DevKitM-1

Purchase link: https://www.aliexpress.com/item/1005005087127863.html

Documentation: https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c6/esp32-c6-devkitm-1/index.html

Official development board: ESP32-C6-DevKitC-1

Purchase link: https://www.aliexpress.com/item/1005005087160183.html

Documentation: https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32c6/esp32-c6-devkitc-1/index.html

Third-party development board: WeAct ESP32-C6-A

Purchase link: https://www.aliexpress.com/item/1005005569520224.html

Compatible with ESP32-C6-DevKitC-1.

GitHub: https://github.com/WeActStudio/WeActStudio.ESP32-C6-A

Third-party development board: nanoESP32-C6

Purchase link: https://www.aliexpress.com/item/1005005508686571.html

GitHub: https://github.com/wuxx/nanoESP32-C6

Documentation

Data sheets & reference manuals:

https://www.espressif.com/en/support/documents/technical-documents? keys=&field_type_tid%5B%5D=1177

Relevant documents are ESP32-C6 Datasheet, ESP32-C6 Technical Reference Manual.

ESP32-H2

Official development board: ESP32-H2-DevKitM-1

Purchase link: https://www.aliexpress.com/item/1005005252175587.html

Documentation: https://docs.espressif.com/projects/espressif-esp-dev-kits/en/latest/esp32h2/esp32-h2-devkitm-1/index.html

Documentation

https://www.espressif.com/en/support/documents/technical-documents? keys=&field_type_tid%5B%5D=1211

Relevant documents are ESP32-H2 Datasheet, and ESP32-H3 Technical Reference Manual.

GigaDevice

Chinese name: 兆易创新 - Pinyin: zhào yì chuàngxīn

While GigaDevice have largely developed their ARM MCU portfolio in the past years, the GD32VF103 is still their only one RISC-V MCU. It's a very interesting part, but unfortunately out-of-stock to date (June 2023), and GigaDevice not being committed to RISC-V doesn't bode well of its future. Anyway, there are still development boards available for the GD32VF103 and plenty of articles and tutorials can be found on the web, so you might want to give it a try.

The GD32VF103 is based on the Nuclei N200 "Bumblebee" core.

Official development board: GD32VF103C-START

Purchase link: https://www.lcsc.com/product-detail/C432220.html

Note: this evaluation board includes GigaDevice's GDLink programmer.

Third-party development board: Longan Nano

Purchase links:

https://www.aliexpress.com/item/1005002542610332.html https://www.aliexpress.com/item/1005003467064600.html

Documentation: https://github.com/sipeed/Longan-DOC

Downloads: https://dl.sipeed.com/shareURL/LONGAN/Nano

Note: an additional JTAG adapter is needed to program the chip. If you don't already have one (e.g. JLink), you can buy Sipeed's USB-JTAG/TTL.

Purchase link: https://www.aliexpress.com/item/1005002714665888.html

Documentation, SDK and tools

Download URL: https://www.gd32mcu.com/en/download?kw=GD32VF1

Data sheets & reference manuals: relevant documents are *GD32VF103xx Datasheet* and *GD32VF103 User Manual*.

SDK: relevant archive is *GD32VF103 Firmware Library*.

WCH

Chinese name: 南京沁恒 (or just 沁恒) - Pinyin: nánjīng qìn héng

WCH provides a much wider range of RISC-V MCU than any other manufacturer. For this reason, each chip has its own section below.

WCH's offer is divided in 2 families, the general purpose CH32Vxxx series, which are the RISC-V equivalents of their ARM CH32Fxxx series, and the more specialised CHxxx series, which use a slightly different peripheral set.

An interesting thing to note is the CH32V003 doesn't have an ARM equivalent, which could be a hint that, like Espressif, WCH will continue to concentrate their efforts on their RISC-V products.

The following table presents the main differences between WCH's RISC-V MCU:

Part+GitHub	CPU	Core	MHz	Flash	RAM	Voltage	Notes
CH32V003	RV32EC	<u>V2A</u>	48	16K	2K	2.7-5.5V	Low pin count (8, 16, 20)
CH32X035	RV32IMAC	<u>V4C</u>	48	62K	20K	2.0-5.5V	USB PD, PIOC, OpAmp / PGA / comp.
CH32V103	RV32IMAC	<u>V3A</u>	80	64K	20K	2.7-5.5V	
CH32L103	RV32IMAC	<u>V4C</u>	96	64K	20K	2.4-3.6V	USB PD, OpAmp / PGA / comp.
CH32V203	RV32IMAC	<u>V4B</u>	144	128K	64K	2.4-3.6V	LQFP-64 has Ethernet
CH32V208	RV32IMAC	<u>V4C</u>	144	128K	64K	2.4-3.6V	BLE + Ethernet
CH32V303	RV32IMAFC	<u>V4F</u>	144	256K	64K	2.4-3.6V	
CH32V305	RV32IMAFC	<u>V4F</u>	144	128K	32K	2.4-3.6V	
CH32V307	RV32IMAFC	<u>V4F</u>	144	256K	64K	2.4-3.6V	Has Ethernet. LQFP-100 has DVP & FSMC
CH565	RV32IMAC	<u>V3A</u>	120	448K	96K	2.3-3.6V	USB 3.0, Gb Ethernet, EMMC, DVP
CH569	RV32IMAC	<u>V3A</u>	120	448K	96K	2.3-3.6V	USB 3.0, Gb Ethernet, EMMC, HSPI
CH573/571	RV32IMAC	<u>V3A</u>	60	448K	16K	2.3-3.6V	Superseded by the CH582
CH583/582	RV32IMAC	<u>V4A</u>	80	448K	30K	2.3-3.6V	BLE, ultra low power
CH592/591	RV32IMAC	<u>V4C</u>	80	448K	24K	2.3-3.6V	BLE, ultra low power, LCD controller
CH643	RV32IMAC	<u>V4C</u>	48	62K	20K	2.0-5.5V	USB PD, PIOC, RGB LED PWM

PIOC: programmable I/O protocol controller / PGA: programmable gain amplifier

Note: Development boards for the CH592 and CH643 are not available yet as of 2023-06-27. Development boards for the CH573 have intentionally been omitted.

For further details, here is a selection table covering the whole WCH offer: https://special.wch.cn/en/mcu/

Note: all WCH MCU SDK include the schematics of the official evaluation boards as reference design.

GitHub: https://github.com/openwch

Programmer / debugger

A proprietary programmer / debugger is needed to flash WCH chips, the WCH-LinkE.

Purchase links:

https://www.aliexpress.com/item/1005004881582037.html https://www.aliexpress.com/item/1005004964197577.html https://www.aliexpress.com/item/1005005244468643.html

One is already included with the CH32V003 evaluation kit, and the CH32V003 + CH32V203 evaluation kit combo from WCH.

Note: you may also come across the WCH-Link (without final E) on AliExpress. It is the predecessor of the WCH-LinkE and does not support the CH32V003.

Flashing tool

WCH provides 2 flashing tools, WCHISPTool (Windows application) and WCHISPTool_CMD (multi-platform command-line tool).

Download links:

https://www.wch.cn/downloads/WCHISPTool_Setup_exe.html https://www.wch.cn/downloads/WCHISPTool_CMD_ZIP.html

Notes to Linux users

WCHISPTool's main executable is unusable under Wine, but independent executables for each MCU series are provided under its installation directory and those work quite well.

To run it, let's say you installed WCHISPTool in ~/.wine/drive_c/WCHISPTool and you want to flash a CH582M, open a terminal window and type:

```
cd ~/.wine/drive_c/WCHISPTool wine WCHISPTool_CH57x-59x/WCHISPTool_CH57x-59x.exe
```

Alternatively, you can add ~/.wine/drive_c/WCHISPTool to the Windows PATH and directly run the appropriate executable with Wine.

WCHISPTool_CMD, the multi-platform command-line tool, uses configuration files generated by WCHISPTool. To create one, start the WCHISPTool variant matching your MCU series, select the chip series (1), the chip model (2), click the "Save UI config" button (3) and save it in your project's source folder.

You can also flash your MCU with OpenOCD, but you must first unlock the flash write protection using the WCHISPTool matching its series.

MounRiver IDE

MounRiver Community Edition is an Eclipse-based IDE supporting all RISC-V and ARM WCH MCU, available for Windows, Linux and Mac.

Download link: http://www.mounriver.com/download

Stand alone tool chain

WCH provides modified versions of OpenOCD and GCC to support their MCU's specific features. These are included with MounRiver, but can also be downloaded separately from MounRiver's download page, e.g. for installation on a continuous integration server.

Alternatives to WCH tools

If you would like to use mainstream GCC instead of WCH's, or to try an open-source flashing tool, the following Reddit threads will be of interest to you:

https://www.reddit.com/r/RISCV/comments/115u6i9/comment/j94xvpq/https://www.reddit.com/r/RISCV/comments/126262j/

CH32V003

Official development board

Purchase link: https://www.aliexpress.com/item/1005004895791296.html

Third-party development board: nanoCH32V003

Purchase links:

https://www.aliexpress.com/item/1005005221751705.html https://www.aliexpress.com/item/1005005222228477.html

Documentation: https://github.com/wuxx/nanoCH32V003

Third-party development board: QSZNTEC CH32V003

Purchase links:

https://www.aliexpress.com/item/1005004964355080.html https://www.aliexpress.com/item/1005005137124754.html

Third-party development board: Twen CH32V003

Purchase link: https://www.aliexpress.com/item/1005005343785386.html

Note: doesn't have a crystal, so all GPIO pins are available.

Documentation and SDK

Data sheet: http://wch-ic.com/downloads/CH32V003DS0_PDF.html

Reference manual: http://wch-ic.com/downloads/CH32V003RM PDF.html

Processor manual: http://wch-ic.com/downloads/QingKeV2 Processor Manual PDF.html

SDK: https://www.wch.cn/downloads/CH32V003EVT_ZIP.html

CH32V103

Official development board

Purchase links:

https://www.lcsc.com/product-detail/C2943983.html

https://www.lcsc.com/product-detail/C2943982.html

https://www.aliexpress.com/item/1005004607642695.html

Third-party development board: CH32V103R8T6_MINI

Purchase links:

https://www.aliexpress.com/item/1005005768751075.html

https://www.aliexpress.com/item/1005005804959082.html

https://www.aliexpress.com/item/1005004569522706.html

https://www.aliexpress.com/item/1005005786168550.html

Documentation and SDK

Data sheet: http://wch-ic.com/downloads/CH32V103DS0_PDF.html

Reference manual: http://wch-ic.com/downloads/CH32xRM_PDF.html

Processor manual: http://wch-ic.com/downloads/QingKeV3 Processor Manual PDF.html

SDK: https://www.wch.cn/downloads/CH32V103EVT_ZIP.html

CH32V203

Official development board

Purchase link: https://www.aliexpress.com/item/1005004493040662.html

Third-party development board: BluePill+ CH32V203

Purchase link: https://www.aliexpress.com/item/1005001474741936.html

Documentation: https://github.com/WeActStudio/WeActStudio.BluePill-Plus-CH32

Note: this board initially shipped with a CH32V103C8T6, but now uses a CH32V203C8T6.

Third-party development board: nanoCH32V203

Purchase link: https://www.aliexpress.com/item/1005004908206775.html

Documentation: https://github.com/wuxx/nanoCH32V203

Documentation and SDK

Data sheet: http://wch-ic.com/downloads/CH32V203DS0_PDF.html

Reference manual: http://wch-ic.com/downloads/CH32FV2x_V3xRM_PDF.html

Processor manual: http://wch-ic.com/downloads/QingKeV4 Processor Manual PDF.html

SDK: https://www.wch.cn/downloads/CH32V20XEVT_ZIP.html

CH32V208

Official development board

Purchase link: https://www.aliexpress.com/item/1005004924242063.html

Documentation and SDK

Data sheet: http://wch-ic.com/downloads/CH32V208DS0_PDF.html

Reference manual: http://wch-ic.com/downloads/CH32FV2x_V3xRM_PDF.html

Processor manual: http://wch-ic.com/downloads/QingKeV4_Processor_Manual_PDF.html

SDK: https://www.wch.cn/downloads/CH32V20XEVT_ZIP.html

CH32V303

Official development board

Purchase link: https://www.aliexpress.com/item/1005005444077007.html

Documentation and SDK

Data sheet: http://wch-ic.com/downloads/CH32V307DS0 PDF.html

Reference manual: http://wch-ic.com/downloads/CH32FV2x_V3xRM_PDF.html

Processor manual: http://wch-ic.com/downloads/QingKeV4 Processor Manual PDF.html

SDK: https://www.wch.cn/downloads/CH32V307EVT_ZIP.html

CH32V305

Third-party development board: nanoCH32V305

Purchase link: https://www.aliexpress.com/item/1005005033298927.html

Documentation: https://github.com/wuxx/nanoCH32V305

Documentation and SDK

Data sheet: http://wch-ic.com/downloads/CH32V307DS0_PDF.html

Reference manual: http://wch-ic.com/downloads/CH32FV2x V3xRM PDF.html

Processor manual: http://wch-ic.com/downloads/QingKeV4_Processor_Manual_PDF.html

SDK: https://www.wch.cn/downloads/CH32V307EVT_ZIP.html

CH32V307

Official development board

Purchase link: https://www.lcsc.com/product-detail/C2943980.html

Third-party development board: YD-CH32V307VC

Purchase links:

https://www.aliexpress.com/item/1005004367173443.html https://www.aliexpress.com/item/1005005131511036.html

Documentation: http://www.vcc-gnd.com/

Third-party development board: CH32V307RC-MINI

Purchase link: https://www.aliexpress.com/item/1005005175678285.html

Documentation and SDK

Data sheet: http://wch-ic.com/downloads/CH32V307DS0 PDF.html

Reference manual: http://wch-ic.com/downloads/CH32FV2x V3xRM PDF.html

Processor manual: http://wch-ic.com/downloads/QingKeV4 Processor Manual PDF.html

SDK: https://www.wch.cn/downloads/CH32V307EVT_ZIP.html

CH32X035

Official development board

Purchase link: https://www.aliexpress.com/item/1005005718558442.html

Documentation and SDK

Data sheet: http://wch-ic.com/downloads/CH32X035DS0 PDF.html

Reference manual: http://wch-ic.com/downloads/CH32X035RM PDF.html

Processor manual: http://wch-ic.com/downloads/QingKeV4 Processor Manual PDF.html

SDK: https://www.wch.cn/downloads/CH32X035EVT_ZIP.html

CH565

Official development board

Purchase link: https://www.aliexpress.com/item/1005004346104186.html

Documentation and SDK

Same as CH569.

CH569

Official development board

Purchase links:

https://www.lcsc.com/product-detail/C3001176.html https://www.aliexpress.com/item/1005004328816871.html

Documentation and SDK

Data sheet: http://wch-ic.com/downloads/CH569DS1_PDF.html

Processor manual: http://wch-ic.com/downloads/QingKeV3 Processor Manual PDF.html

SDK: https://www.wch.cn/downloads/CH569EVT_ZIP.html

CH582 / CH583

Official development board

Purchase links:

https://www.lcsc.com/product-detail/C2943981.html (CH582M)

https://www.aliexpress.com/item/1005005060737000.html (CH582M and CH583M)

https://www.aliexpress.com/item/1005005493310632.html (CH583M)

https://www.aliexpress.com/item/1005004346585597.html (CH582F)

Third-party development board: YD-CH58x

Purchase links:

https://www.aliexpress.com/item/1005005305938011.html

https://www.aliexpress.com/item/1005004787513484.html

https://www.aliexpress.com/item/1005004794466027.html

Documentation: http://www.vcc-gnd.com/

Can be programmed and debugged using OpenOCD and a WCH-Link or WCH-LinkE programmer, so is suitable for use with Linux.

Third-party development board: 303CH582M01

Purchase links:

https://www.aliexpress.com/item/1005005458836770.html https://www.aliexpress.com/item/1005005467071580.html https://www.aliexpress.com/item/1005005456987838.html

Similar to YD-CH58x. After ordering, ask the seller for schematic diagram. Uses the USB C connector for programming, which at the moment only works under Windows.

Documentation and SDK

Data sheet: http://wch-ic.com/downloads/CH583DS1_PDF.html

Processor manual: http://wch-ic.com/downloads/QingKeV4_Processor_Manual_PDF.html

SDK: https://www.wch.cn/downloads/CH583EVT_ZIP.html

BLUETRUM

Chinese name: 中科蓝讯 – Pinyin: zhōng kē lán xùn

Third-party development board: AB32VG1

The AB32VG1 is based on the <u>AB5301A</u> MCU, a chip designed for Bluetooth audio applications. This board is easily available, its documentation is partially available in English, and it is supported by the <u>RT-Thread</u> RTOS.

This means that this board is not for beginners, and you must be willing to <u>Google Translate</u> some Chinese documents and/or blog posts, but provided you have a first experience with another Bluetooth MCU, you should not hit major roadblocks.

Purchase links:

https://www.aliexpress.com/item/1005003547381454.html

https://www.aliexpress.com/item/1005003700027776.html

https://www.aliexpress.com/item/1005003547529433.html

https://www.aliexpress.com/item/1005003594401351.html

Documentation & SDK:

https://github.com/BLUETRUM

https://www.cnx-software.com/2021/09/12/getting-started-with-bluetrum-ab32vg1-

<u>risc-v-bluetooth-audio-board-using-rt-thread/</u>

https://ab32vg1-example.readthedocs.io/zh/latest/

https://docs.gg.com/doc/DTVVWWXpLRVI6cER2

CVITEK

Chinese name: 晶视智能 - Pinyin: jīng shì zhìnéng

CVITEK seems to exclusively target the Chinese domestic market – their <u>web site</u> is unresponsive when accessed from outside China, and their documentation is available in Chinese only. Also, they don't seem to target the MCU market.

For these reasons, they shouldn't be included in this document. However, you might come across a development board using one of their CPU, the Milk-V Duo, which has been advertised in English-speaking channels and can be bought from AliExpress.

In case you're the adventurous type and don't mind being left on your own, here are a few details about this board.

Third-party development board: Milk-V Duo

Being Linux-capable, the Milk-V Duo's CPU (the CV1800B), is comparable to some extent to the BL808, including price-wise. The CV1800B includes two C906 cores, one fully-fledged, the other stripped down (no V extension, 700MHz instead of 1GHz), meaning no SMP (Symmetric Multi-Processing).

This design decision both greatly limits its interest as a Linux platform, and prevents its use in low-power applications (which the BL808 is suitable for). However, it might still be useful in applications where the compute power of two 64-bit cores is required but can accommodate limited memory (64MB).

Purchase links:

https://www.aliexpress.com/item/1005005699215618.html https://www.aliexpress.com/item/1005005699176591.html https://www.aliexpress.com/item/1005005699023966.html

Documentation & SDK:

https://milkv.io/duo (schematic & pinout, see bottom of page)

https://milkv.io/docs/duo (work in progress)

https://github.com/milkv-duo (SDK, examples, preliminary data sheet)