

Sepsis Prediction in ICU

Vyshak Sugunan

Agenda

- 1. Project Goal
- 2. Exploratory Analysis
- 3. Predictive Models
- 4. Model Selection
- 5. Findings and Conclusions
- 6. Next Step

Project Goal

To predict sepsis development during a patient's ICU stay

- Sepsis is a life-threatening condition that arises when the body's response to infection causes injury to its own tissues and organs
- #1 cause of death in hospitals, worldwide
- Chances of survival reduces considerably after going into sepsis. So early detection, monitoring and treatment is crucial

Data Overview

Limited occurrence of Sepsis in available data

Large number of NA data

Three Distinct Types of Patients

- 1. Came into ICU with Sepsis
- 2. Developed Sepsis during ICU stay
- 3. Never had Sepsis

Older adults have more ICU Cases and Sepsis cases

Similar Age distribution for Males and Females

Males represent more ICU patients and higher Sepsis %

ICU Length of Stay distribution

ICU Length of Stay

ICU LOS w/ Sepsis

MICU vs SICU patient split is almost equal, but MICU had higher Sepsis %

Older patients and Sepsis patients have longer Hospital Admission Time

ICULOS and Sepsis Hour strongly correlated

Patients who developed Sepsis likely left ICU (no more records) within 8 hours after Sepsis diagnosis

Methodology

Selected features list

- 1. HR
- 2. O2 Saturation
- 3. Spontaneous bacterial peritonitis (SBP)
- 4. Mean arterial pressure (MAP)
- 5. Diastolic Blood Pressure (DBP)
- 6. Respirations
- 7. Age
- 8. Gender
- 9. Hospital Admission Time
- 10. ICULOS Intensive Care Unit Length of Stay

#1 Non-temporal Approach Unaggregated Data

Ignore the time component and treat record as independently and identically distributed.

This approach would help in predicting Sepsis at each hour for any patient (with or without patient past data).

Unaggregated Data - Models used

Unaggregated Data - Model Performance

Logistic Regression

- Accuracy: 0.982 Precision: 0.362
- Recall: 0.002

Accuracy: 0.976

- Precision: 0.362
- Recall: 0.4114

Gradient Boost

- Accuracy: 0.912 Precision: 0.093
- Recall: 0.445

ROC: 85%

XGBoost

- Accuracy: 0.982
- Precision: 0.812
- Recall: 0.026

Unaggregated Data - Model Selection

ROC: 70%

Logistic Regression

- Accuracy: 0.982Precision: 0.362
- Recall: 0.002

ROC: 70%

Decision Tree

- Accuracy: 0.976Precision: 0.362
- Recall: 0.4114

ROC: 80%

Gradient Boost

- Accuracy: 0.912Precision: 0.093
- Recall: 0.445

ROC: 85%

XGBoost

- Accuracy: 0.982
- Precision: 0.812
- Recall: 0.026

Gradient Boost Feature Importance

#2 Non-temporal Approach Aggregated Data

Aggregate data by patient and feature engineer maximum, minimum and variance of the vitals variables

This approach would help capture the fluctuation in the patients' condition for predicting Sepsis.

Aggregated Data - Models used

Aggregated Data - Model Performance

Logistic Regression

- Accuracy: 0.931Precision: 0.764
- Recall: 0.095

ROC: 73%

Decision Tree

- Accuracy: 0.921Precision: 0.466
- Recall: 0.504

ROC: 90%

Gradient Boost

- Accuracy: 0.943
- Precision: 0.605
- Recall: 0.657

ROC: 89%

XGBoost

- Accuracy: 0.956
- Precision: 0.830
- Recall: 0.501

Aggregated Data - Model Selection

ROC: 69%

Logistic Regression

- Accuracy: 0.931
- Precision: 0.764
- Recall: 0.095

ROC: 73%

Decision Tree

- Accuracy: 0.921Precision: 0.466
- Recall: 0.504

ROC: 90%

Gradient Boost

- Accuracy: 0.943
- Precision: 0.605
- Recall: 0.657

ROC: 89%

XGBoost

- Accuracy: 0.956
- Precision: 0.830
- Recall: 0.501

Gradient Boost Feature Importance

Conclusion

 When data is limited, we recommend unaggregated data model with gradient boosting / decision tree to predict sepsis

 When data is more complete, we recommend aggregating the data and then use gradient boosting to predict sepsis

• ICU length of stay and hospital admission time is the most important feature predicting a patient's sepsis development

Next Steps

 Get a more complete recording of the vital data to assess its importance in sepsis prediction

 Consult with healthcare professionals to consider other factors that can be easily retrieved and included into the model

 Suspect two-way causal effects between ICU length of stay/hospital admission time and Sepsis development

Thank You!