MODEL DAN SIMULASI SISTEM ANTRIAN

Sistem Antrian

- Antrian ialah suatu garis tunggu pelanggan yang memerlukan layanan dari satu/lebih pelayan (fasilitas layanan).
- Antrian timbul disebabkan karena kebutuhan akan layanan melebihi kapasitas pelayanan, sehingga pengguna fasilitas (pelanggan) yang tiba tidak bisa segera mendapat layanan.
- ► Tambahan fasilitas pelayanan dapat diberikan untuk mengurangi antrian atau untuk mencegah timbulnya antrian. Akan tetapi biaya karena memberikan pelayanan tambahan, akan menimbulkan pengurangan keuntungan.

Sistem Antrian

Klasifikasi menurut Hillier & Lieberman:

- 1. Sistem pelayanan komersial; seperti model antrian di restoran, kafetaria, toko-toko, salon, butik, supermarket, dll.
- 2. Sistem pelayanan bisnis-industri; mencakup lini produksi, sistem material-handling, sistem pergudangan, dll.
- 3. Sistem pelayanan transportasi
- 4. Sistem pelayanan sosial; seperti kantor registrasi SIM & STNK, kantor pos, rumah sakit, puskesmas, dll

Contoh Sistem Antrian

Sistem	Antrian/Garis Tunggu	Fasilitas Pelayanan
Lapangan terbang	Pesawat menunggu di landasan	Landasan pacu
Bank	Nasabah (orang)	Kasis/teller
Pencucian mobil	Mobil	Tempat pencucian mobil
Bongkar muat barang	Kapal dan truk	Fasilitas bongkar muat
Sistem komputer	Program komputer	CPU, printer, dll
Bantuan pengobatan darurat	Orang	Ambulance
Perpustakaan	Member	Pegawai perpustakaan
Registrasi mahasiswa	Mahasiswa	Pusat registrasi
Skedul sidang pengadilan	Kasus yang disidangkan	Pengadilan

Komponen Dasar Proses Antrian

- ► **Kedatangan** → proses input, yang meliputi sumber kedatangan. Terjadinya kedatangan umumnya merupakan variabel acak. Misal : orang, mobil, panggilan telepon untuk dilayani, dll
- ► Pelayanan (fasilitas pelayanan/server) → mekanisme pelayanan dapat terdiri dari satu/lebih pelayan. Setiap fasilitas pelayanan kadang-kadang disebut sebagai saluran (channel).
- ► Antrian → dipengaruhi oleh sifat kedatangan dan proses pelayanan. Jika tidak ada antrian berarti terdapat pelayan yang menganggur atau kelebihan fasilitas pelayanan.

Struktur Dasar Sistem Antrian

Pelanggan masuk ke dalam sistem antrian

Sistem antrian

Pelanggan yang sudah dilayani

Mekanisme Pelayanan

Disiplin Antrian

- ▶ Disiplin antrian adalah aturan keputusan yang menjelaskan cara melayani pengantri.
- ▶ Beberapa bentuk disiplin antrian yang biasa digunakan :
 - a. First-Come First-Served (FCFS) atau First-In First-Out (FIFO).
 - b. Last-Come First-Served (LCFS) atau Last-In First-Out (LIFO).
 - c. Service In Random Order (SIRO).
 - d. Priority Service (PS).
 - e. Shortest Operating Time (SOT) atau Shortest Processing Time (SPT)

Notasi Model Antrian

TingkatTingkatJumlahBesarPanjangKedatanganPelayananServerPopulasiAntrian

Contoh M / M / 1 / I / I

Ket:

► Tingkat Kedatangan : M untuk random berdistribusi Poisson,

D untuk konstan

E untuk random berdistribusi Erlang

G untuk normal dengan rata-rata μ dan varians σ^2

Notasi Model Antrian

Tingkat Pelayanan: M untuk random berdistribusi Eksponensial,

D untuk konstan

E untuk random berdistribusi Erlang

G untuk normal dengan rata-rata μ dan varians σ^2

▶ Jumlah server : S, jumlah fasilitas pelayanan adalah lebih dari satu

1, jumlah fasilitas pelayanan adalah satu/tunggal

▶ Besar Populasi : I, untuk infinite

F, untuk Finite

► Panjang Antrian: I untuk infinite

F untuk finite

Notasi Variabel Kinerja Sistem Antrian

Notasi	Keterangan	Ukuran
λ	Tingkat kedatangan rata-rata	Unit/jam
1/λ	Waktu antar kedatangan rata-rata	Jam/unit
μ	Tingkat pelayanan rata-rata	Unit/jam
1/μ	Waktu antar pelayanan rata-rata	Jam/unit
N	Jumlah individu dalam sistem dalam waktu tertentu	unit
$\mathbf{L}_{\mathbf{q}}$	Jumlah individu rata-rata dalam antrian	unit
$L_{\mathbf{S}}$	Jumlah individu dalam sistem total	unit
$\mathbf{W}_{\mathbf{q}}$	Waktu rata-rata dalam antrian	Jam
W_{S}	Waktu rata-rata dalam sistem total	Jam
S	Jumlah fasilitas pelayanan (server)	Unit
Р	Tingkat kegunaan fasilitas pelayanan	persen
M	Panjang maksimum kapasitas sistem	Unit
P_n	Probabilitas jumlah n individu dalam sistem	frek.rel
P_{o}	Probablitas tidak ada individu dalam sistem	frek.rel
P_{w}	Probablitas menunggu dalam antrian	frek.rel

Model Antrian (M/M/1)

Karakteristik yang dianalisis:

1. Tingkat Intensitas Fasilitas Pelayanan

$$P = \frac{\lambda}{\mu}$$

2. Probabilitas Kepastian n Pelanggan dalam Sistem

$$P_0 = 1 - P, \ n = 0$$

 $P_n = P^n P_0, \ n \neq 0$ $P_n = P^n (1 - P) = \left(\frac{\lambda}{\mu}\right)^n \left(1 - \frac{\lambda}{\mu}\right)$

3. Jumlah Rata-rata Pelanggan dalam Sistem

$$L_S = \frac{\lambda}{\mu - \lambda} = \frac{P}{1 - P}$$

Model Antrian (M/M/1)

4. Jumlah Rata-Rata Pelanggan dalam Antrian

$$L_q = \frac{\lambda^2}{\mu(\mu - \lambda)} = \frac{P^2}{1 - P}$$

5. Waktu Rata-rata dalam Sistem

$$W_S = \frac{1}{\mu - \lambda}$$

6. Waktu Rata-Rata dalam Antrian

$$W_q = \frac{\lambda}{\mu(\mu - \lambda)}$$

Model Antrian (M/M/s)

Karakteristik yang dianalisis:

1. Tingkat Intensitas Fasilitas Pelayanan

$$P = \frac{\lambda}{s \; \mu}$$

2. Probabilitas Kepastian n Pelanggan dalam Sistem

$$P_{0} = \frac{1}{\left[\sum_{n=0}^{S-1} \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{n!} + \frac{\left(\frac{\lambda}{\mu}\right)^{S}}{S!\left(1 - \frac{\lambda}{S\mu}\right)}\right]} \qquad P_{n} = \begin{cases} \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{n!} P_{O}, & jika \ 0 \leq n < S \\ \frac{\left(\frac{\lambda}{\mu}\right)^{n}}{S! \ S^{n-S}} P_{O}, & jika \ 0 \geq S \end{cases}$$

Model Antrian (M/M/s)

3. Jumlah Rata-rata Pelanggan dalam Sistem

$$L_S = \frac{P_0 \left(\frac{\lambda}{\mu}\right)^S \frac{\lambda}{s \, \mu}}{s! \left(1 - \frac{\lambda}{s \, \mu}\right)^2} + \frac{\lambda}{\mu} = \frac{P_0 \left(\frac{\lambda}{\mu}\right)^S P}{s! \left(1 - P\right)^2} + \frac{\lambda}{\mu}$$

$$L_S = \lambda W = L_q + \frac{\lambda}{\mu}$$

Model Antrian (M/M/s)

4. Jumlah Rata-rata Pelanggan dalam Antrian

$$L_{q} = \frac{P_{0} \left(\frac{\lambda}{\mu}\right)^{S} \frac{\lambda}{s \mu}}{s! \left(1 - \frac{\lambda}{s \mu}\right)^{2}} = \frac{P_{0} \left(\frac{\lambda}{\mu}\right)^{S} P}{s! (1 - P)^{2}}$$

5. Waktu Rata-rata Dalam Sistem

$$W_S = W_q + \frac{1}{\mu}$$

6. Waktu Rata-rata Dalam Antrian

$$W_q = \frac{L_q}{\lambda}$$

SIMULASI SISTEM ANTRIAN

 e_i = waktu peristiwa/kejadian (waktu simulasi); kecuali e_0 = 0

t_i = waktu kedatangan pelanggan

 $A_i = t_i - t_{i-1} = waktu antar kedatangan pelanggan ke-i dari pelanggan ke-(i - 1)$

S_i = waktu pelayanan server terhadap pelanggan ke-i

 $D_i = c_{i-1} - t_i = waktu menunggu pelanggan ke-i$

 $c_i = t_i + D_i + S_i = waktu selesai dilayani & keluar sistem$

- ► Waktu kedatangan pelanggan (arrival) A₁, A₂,, A_i merupakan variabel acak yang berdistribusi tertentu.
- ▶ Jika pelanggan yang datang dan mendapati server/pelayan dalam keadaan idle, maka pelanggan tersebut akan langsung dilayani oleh server dengan waktu pelayanan S₁, S₂,, S_i yang merupakan variabel acak berdistribusi tertentu dan bebas terjadap waktu kedatangan.
- ▶ Jika konsumen yang datang dan mendapati server sibuk, maka pelanggan akan masuk dalam garis antrian.
- ► Server yang telah selesai melayani seorang pelanggan, akan segera melayani pelanggan berikutnya yang berada dalam garis antrian (sesuai disiplin antriannya, misal FIFO)
- ► Kejadian/peristiwa di atas berlangsung secara berulang

- Simulasi dimulai saat $e_0 = t_0 = 0$ detik, dimana status sistem antrian kosong dan server idle \rightarrow saat pelanggan ke-1 belum datang.
- ▶ Saat t = 0 detik, penantian pelanggan ke-1 datang untuk pertama kali dilakukan oleh server dan akan berakhir setelah A_1 detik kemudian \rightarrow saat pelanggan ke-1 datang.
- Saat $e_1 = t_1$, pelanggan ke-1 datang dengan waktu antar kedatangan A_1 detik (sejak simulasi sistem antrian dimulai) yang besarnya diperoleh dari generate A_1 . Karena status server = kosong, maka konsumen-1 dapat langsung dilayani sehingga $D_1 = 0$ & status server berubah menjadi "sibuk".
- Nonsumen ke-1 dilayani selama S_1 yang besarnya dari generate S_1 , sehingga ia akan selesai dilayani saat $e_3 = c_1$, yaitu saat $c_1 = t_1 + S_1$

- ▶ Waktu kedatangan pelanggan ke 2 (t_2) diperoleh dari $t_2 = t_1 + A_2$, dimana besar A_2 diperoleh dari generate A_2 .
- Saat $e_2 = t_2$, karena $t_2 < c_1$ maka status server = sibuk sehingga dapat dikatakan jumlah pelanggan dalam sistem antrian minimal 1 orang pelanggan. Pelanggan ke-2 tidak dapat langsung dilayani oleh server, tapi harus menunggu selama $D_2 = c_1 t_2$.
- ▶ Jika kondisi diatas $c_1 < t_2$, maka $D_2 = 0$
- ► Saat $e_4 = t_3 \rightarrow t_3 = t_2 + A_3$
- ► Saat $e_5 = c_2 \rightarrow c_3 = c_1 + S_2$

Contoh Single Server

Sebuah restoran melayani pelanggannya langsung di dalam mobil mereka, restoran ini telah lama dan terkenal, tetapi manajer pemasaran prihatin dengan panjangnya antrian pada jam-jam sibuk, yaitu saat makan siang dan malam, beberapa pelanggan sering mengadu tentang waktu menunggu yang berlebihan, dengan kondisi ini, manajer merasa akan kehilangan pelanggan, tingkat kedatangan rata-rata pelanggan selama periode puncak mencapai 50 mobil/jam . Tingkat kedatangan diasumsikan random berdistribusi Poisson, waktu pelayanan rata-rata 1 menit/mobil sedangkan tingkat pelayanan random berdistribusi eksponensial, lakukan analisis ini dengan menghitung ukuran kinerja (performance measure) dari restoran ini

- a. tingkat kegunaan pelayanan restoran
- b. jumlah rata-rata pelanggan dlm antrian
- c. jumlah rata-rata pelanggan dlm sistem
- d. wktu menunggu rata-rata dlm antrian
- e. waktu menunggu rata-rata dlm sistem
- f. prob lebih dari 1 mobil dalam sistem

Contoh Single Server

Diketahui:

- Tingkat kedatangan : λ = 50 mobil/jam Waktu pelayanan : $1/\mu$ = 1 menit/mobil, sehingga tingkat pelayanan μ = 60 mobil/jam
- Single server : M/M/1

Ukuran Kinerja:

- a. Tingkat kegunaan pelayanan : $P = \frac{\lambda}{\mu} = \frac{50}{60} = 0.8333$
- b. Jumlah rata-rata pelanggan dalam antrian : $L_q=\frac{\lambda^2}{\mu(\mu-\lambda)}$ = $\frac{50^2}{60(60-50)}=4$,1667 mobil

Contoh Single Server

- c. Jumlah rata-rata pelanggan dalam sistem : $L_s = \frac{\lambda}{\mu \lambda} = \frac{50}{60 50} = 5$ mobil
- d. Waktu rata-rata dalam antrian : $W_q = \frac{\lambda}{\mu(\mu \lambda)} = \frac{50}{60(60-50)} = 0.0833$ jam atau 5 menit
- e. waktu menunggu dalam sistem : $W_S = \frac{1}{\mu \lambda} = \frac{1}{(60 50)} = 0.1$ jam atau 6 menit
- f. Probabilitas terdapat lebih dari 1 mobil dalam sistem:

$$P_{n>1} = 1 - (P_0 + P_1 + ... + P_n) = 0.6652$$

Perhitungan ini menunjukkan bahwa tingkat probabilitas 5 mobil berada di sistem pelayanan adalah sebesar 66,52%

n	Pn = (0.8333) ⁿ (1 – 0.8333)
0	$(1-0.8333)(0.8333)^0 = 0.1667$
1	$(1-0.8333)(0.8333)^1 = 0.1389$
2	$(1-0.8333)(0.8333)^2=0.1158$
3	$(1-0.8333)(0.8333)^3 = 0.0965$
4	$(1-0.8333)(0.8333)^4 = 0.0804$
5	$(1-0.8333)(0.8333)^5 = 0.0670$
Jumlah	= 0.6652