

Programação Estruturada

- Encontro 15 -

Engenharia da Computação Prof.º Philippe Leal philippeleal@yahoo.com.br

Agenda

Quicksort

- Também chamado de **Ordenação Rápida**;
- É outro algoritmo recursivo que utiliza a ideia de *dividir para conquistar* para ordenar os dados;
- Baseia-se no Problema da Separação (Partition Subproblem):
 - ✓ Consiste em rearranjar o vetor usando um valor como pivô;
 - ✓ Valores menores ou iguais ao **pivô** ficam à esquerda dele;
 - ✓ Valores maiores do que o pivô ficam à direita dele.

Funcionamento:

- Um elemento é escolhido como pivô;
- ✓ Valores menores ou iguais ao pivô são colocados antes dele e os maiores depois dele;
- ✓ Supondo o pivô na posição **X**, esse processo cria duas partições: [0, ..., **X-1**] e [**X+1**, ..., *n*-1];
- ✓ Aplicar recursivamente a cada partição
 - Até que cada partição contenha um único elemento.

- O algoritmo utiliza duas funções:
 - quickSort: divide os dados em vetores cada vez menores;

✓ particiona: calcula o pivô e rearranja os dados.

Desejamos ordenar o seguinte vetor:

0	1	2	3	4	5	6
23	4	67	-8	90	54	21

Para isto, é realizada a primeira chamada: quickSort(vet, 0, 6);

particiona(vet,0,6)

ini = 0 fim = 6 pivô = vet[ini] = 23

0	1	2	3	4	5	6			
23	4	67	-8	90	54	21			
i	j								
23	4	67	-8	90	54	21			
	i j								
23	4	67	-8	90	54	21			
	i	j							
23	4	67	-8	90	54	21			
	i		j						
23	4	67	-8	90	54	21			
i j									
23	4	-8	67	90	54	21			
		i		j					
23	4	-8	67	90	54	21			
		i			j				
23	4	-8	67	90	54	21			
		i				j			
23	4	-8	67	90	54	21			
i j									
23	4	-8	21	90	54	67			
ini			i						
21	4	-8	23	90	54	67			
0	1	2	3	4	5	6			
21	4	-8	23	90	54	67			

Referências

• T. H. Cormen, C. E. Leiserson, R. L. Rivest e C. Stein. **Algoritmos: Teoria e Prática**. 3a edição, Rio de Janeiro, Campus, 2012.

• BACKES, A. R. **Estrutura de Dados Descomplicada: em Linguagem C**. 1a Ed. Rio de Janeiro: Elsevier, 2016.

Material do Professor André Backes (FACOM – UFU).