Heat Transfer: Conduction

Introduction to the topic of fins

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Video overview

Fundamentals about fins

- What are fins?
- Which heat transfer processes are of relevance?
- How does the temperature profile in a fin look like?

Balance set-up und derivation of the differential equation for fins

- Establish the energy balance for fins
- Derivation of the differential equation for fins

Fins application

Examples:

Finned tubes

Infineon's Hybrid PACK 2 power module

Thermal bridges

Fins: advantages and disadvantages

Advantages:

- Additional surface
- Due to increased surface area, heat is better transferred from the well-conducting solid to poorly conducting fluid

Disadvantages:

- ► Higher material consumption
- Additional weight and volume
- Increased pressure loss

Flat surface

Surface with fins

Example: Cooling fins for graphics cards cooling

Heat dissipation through fins

Principle of operation:

- Heat conduction from the base into the fins
- Convective heat dissipation via the side surfaces of the fin to the surrounding fluid

Which temperature profile is correct?:

Due to the increased temperature difference to the environment, more heat is dissipated at the beginning.

- ▶ At the foot: Large temperature difference compared to the environment
- ► At the head: Low temperature difference compared to the environment

Which temperature profile is correct?:

Due to the increased temperature difference to the environment, more heat is dissipated at the beginning.

- ▶ At the foot: Large temperature difference compared to the environment
- ▶ At the head: Low temperature difference compared to the environment

How is calculated the heat flow transferred to the environment?

How is calculated the heat flow transferred to the environment?

How is calculated the heat flow transferred to the environment?

Exp	lanati	on:

 \dot{Q}_{cond} Heat conduction in axial direction \dot{Q}_{conv} Convective heat transferred to fluid Δx Length of the finite element A_{c} Cross-sectional area of the fin A_{out} Outer surface area (shell area) of the finite element U Circumference (perimeter) of the fin

T_A Ambient temperature

How is calculated the heat flow transferred to the environment?

Infinitisimal energy balance:

$$\dot{Q}_{\rm cond}(x) - \dot{Q}_{\rm cond}(x + \Delta x) - \dot{Q}_{\rm conv}(x) = 0$$

$$\dot{Q}_{\rm cond}(x) = A_c \cdot \dot{q}_{\rm cond}^{"}(x)$$

$$\dot{Q}_{\rm cond}(x + \Delta x) = \dot{Q}_{\rm cond}(x) + \frac{\partial \dot{Q}(x)}{\partial x} \cdot \Delta x$$

$$\dot{Q}_{\text{conv}}(x) = A_{\text{out}} \cdot \dot{q}_{\text{conv}}^{"}(x)$$

How is calculated the heat flow transferred to the environment?

Infinitisimal energy balance:

Fourier Law:

$$\dot{q}_{\rm cond}^{\prime\prime}(x) = -\lambda \cdot \frac{\partial T}{\partial x}$$

Convective heat transfer:

$$\dot{q}_{\text{conv}}^{"}(x) = \alpha \cdot (T(x) - T_A)$$

How is calculated the heat flow transferred to the environment?

Insert $\dot{q}_{\rm cond}^{\prime\prime}(x)$ and $\dot{q}_{\rm conv}^{\prime\prime}$ in balance:

$$\lambda \cdot A_c \frac{\partial^2 T}{\partial x^2} = \alpha \cdot U (T(x) - T_A)$$

Inhomogeneous differential equation of 2nd order

Comprehension questions

What are fins and what are they used for?

Which heat flow are considered in the derivation of the fin differential equation?

What is the temperature profile in a fin (from physical consideration)?

Heat Transfer: Conduction

Introduction to the topic of fins

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

UNIVERSITY OF TWENTE.

