Лабораторная работа №17

Задания для самостоятельной работы

Алиева Милена Арифовна

Содержание

1	Цель работы	5
2	Задание	6
3	Выполнение лабораторной работы	7
4	Выводы	18
Сп	исок литературы	19

Список иллюстраций

3.1	Модель работы вычислительного центра	7
3.2	Отчёт по модели работы вычислительного центра	8
3.3	Отчёт по модели работы вычислительного центра	8
3.4	Модель работы аэропорта	10
3.5	Отчёт по модели работы аэропорта	11
3.6	Отчёт по модели работы аэропорта	11
3.7	Модель работы морского порта	12
3.8	Отчет по модели работы морского порта	13
3.9	Модель работы морского порта с оптимальным количеством при-	
	чалов	14
3.10	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	15
3.11	Модель работы морского порта	16
	Отчет по модели работы морского порта	16
3.13	Модель работы морского порта с оптимальным количеством при-	
	чалов	17
3.14	Отчет по модели работы морского порта с оптимальным количе-	
	ством причалов	17

Список таблиц

1 Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта. [1]

2 Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра
- модель работы аэропорта
- модель работы морского порта

3 Выполнение лабораторной работы

1) На вычислительном центре в обработку принимаются три класса заданий А, В и С. Исходя из наличия оперативной памяти ЭВМ задания классов А и В могут решаться одновременно, а задания класса С монополизируют ЭВМ. Задачи класса С загружаются в ЭВМ, если она полностью свободна. Задачи классов А и В могут дозагружаться к решающей задаче. Задается хранилище гат на две заявки. Затем записаны три блока: первые два обрабатывают задания класса А и В, используя один элемент гат, а третий обрабатывает задания класса С, используя два элемента гат.

Построим модель (рис. 3.1).

```
EMUNICATION OF THE PROPERTY OF
```

Рис. 3.1: Модель работы вычислительного центра

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку. После запуска симуляции получаем отчёт (рис. 3.2, 3.3).

Рис. 3.2: Отчёт по модели работы вычислительного центра

```
QUEUE MAX CONT. ENTRY ENTRY(0) AVE.CONT. AVE.TIME AVE.(-0) RETRY
CLASS A 7 4 240 3 3.288 65.765 66.597 0
CLASS_B 7 5 236 1 3.280 66.703 66.987 0
CLASS_C 172 172 172 0 85.786 2394.038 2394.038 0

STORAGE CAP. REM. MIN. MAX. ENTRIES AVL. AVE.C. UTIL. RETRY DELAY
RAM 2 0 0 2 467 1 1.988 0.994 0 181

FEC XN PRI BDT ASSEM CURRENT NEXT PARAMETER VALUE
650 0 4803.512 650 0 1
For Help, press FI Report is Complete.
```

Рис. 3.3: Отчёт по модели работы вычислительного центра

Видим, что загруженность системы равна 0.994.

2) Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетно-посадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые 5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром. В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт

прибывает для посадки, а другой - для взлёта, то полоса предоставляется взлетающей машине.

Требуется: - выполнить моделирование работы аэропорта в течение суток; - подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром; - определить коэффициент загрузки взлетно-посадочной полосы.

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1, далее происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась - переход в блок обработки, если нет - самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Построим модель (рис. 3.4).

```
Untitled Model 1
 GENERATE 10,5,,,1
ASSIGN 1,0
 QUEUE arrival
 landing GATE NU runway, wait
 SEIZE runway
 DEPART arrival
 ADVANCE 2
 RELEASE runway
TERMINATE 0
; ожидание
wait TEST L pl,5, goaway
ADVANCE 5
ASSIGN 1+,1
TRANSFER 0, landing
 goaway SEIZE reserve
DEPART arrival
RELEASE reserve
 TERMINATE 0
 ; взлет
 GENERATE 10,2,,,2
 QUEUE takeoff
 SEIZE runway
DEPART takeoff
ADVANCE 2
RELEASE runway
TERMINATE 0
; таймер
GENERATE 1440
TERMINATE 1
 START 1
```

Рис. 3.4: Модель работы аэропорта

Время моделирования задаем в минутах - 1440. После запуска симуляции получаем отчёт (рис. 3.5, 3.6).

	cnee	Worle	Simulation	Danar	t Hotin	led Medel	1 2 1	
	GFSS	WOITC	Simulation	kepoi	t - Untit	led Model	1.3.1	
		Frida	y, May 30, 2	2025 1	3:59:12			
	START T	TMF	FND	TIME	BLOCKS	FACILITIE	s sto	RAGES
		000			26	2		0
	NAME				VALUE			
	ARRIVAL				02.000			
	GOAWAY				14.000			
	LANDING RESERVE			100	4.000			
	RUNWAY				001.000			
	TAKEOFF				000.000			
	WAIT			100	10.000			
LABEL			BLOCK TYPE	E		T CURRENT		
		1	GENERATE		146		0	0
			ASSIGN		146		0	0
LANDING			QUEUE		146 146		0	0
LANDING		5	SEIZE		122		0	0
			DEPART		122		0	0
		7	ADVANCE		122		0	0
			RELEASE		122		0	0
			TERMINATE		122		0	0
WAIT		10	TEST		24		0	0
		11	ADVANCE		24		0	0
		12	ASSIGN		24		0	0
		13	TRANSFER		24		0	0
GOAWAY		14	SEIZE		24		0	0
		15	DEPART		24		0	0
		16	RELEASE		24		0	0
		17	TERMINATE		24		0	0
		18	GENERATE		142		0	0
			QUEUE		142		0	0
		20	SEIZE		142		0	0
		21	DEPART		142		0	0
		22	ADVANCE		142		0	0
			RELEASE		142		0	0
		24	TERMINATE		142		0	0
		25	GENERATE		1		0	0
		26	TERMINATE		1		0	0

Рис. 3.5: Отчёт по модели работы аэропорта

FACILITY	Ž.	ENTRIES	UT	IL. A	AVE. TIME	AVAIL.	OWNER	PEND	INTER	RETRY	DELAY
RUNWAY		288	0.	.400	2.000) 1	0	0	0	0	0
QUEUE		MAX C	ONT.	ENTRY	ENTRY(0)	AVE.CON	T. AV	E.TIME	E AV	E. (-0)	RETRY
TAKEOF	7	1	0	142	114	0.017		0.173	3	0.880	0
ARRIVA		2	0	146	114	0.132		1.30	1	5.937	0
FEC XN	PRI	BDT		ASSEM	CURRENT	NEXT	PARA	METER	VA	LUE	
290	2	1440.	749	290	0	18					
291	1	1445.	367	291	0	1					
292	0	2880.	000	292	0	25					

Рис. 3.6: Отчёт по модели работы аэропорта

Видим, что взлетело 142 самолета, село 146, а в запасной аэропорт отправилось

- 0. Коэффициент загрузки полосы равняется 0.4, получается, что полоса большую часть времени не используется.
 - 3) Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b \pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных: 1) a=20 ч, $\delta=5$ ч, b=10 ч, $\varepsilon=3$ ч, N=10, M=3; 2) a=30 ч, $\delta=10$ ч, b=8 ч, $\varepsilon=4$ ч, N=6, M=2.

Первый вариант модели:

Построим модель (рис. 3.7).

```
Dier STORAGE 10
GENERATE 20,5

QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0

; TAŬMEP
GENERATE 24
TERMINATE 1
START 183
```

Рис. 3.7: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. 3.8).

	GPSS	Worl	d Sim	lation	Report	- Untit	led Model	1.4.1			
		Frid	ay, Ma	ay 30,	2025 14	:12:49					
	START T	IME		END	TIME I	BLOCKS	FACILITIE:	s sto	RAGES		
	0.	000		439	2.000	9	0		1		
	NAME				V	ALUE					
	ARRIVE				1000	1.000					
	PIER				10000	0.000					
LABEL		LOC	BLO	CK TYPE	ENT	TRY COUN	T CURRENT	COUNT	RETRY		
								0	0		
		2	QUE	JE		219		0	0		
		3	ENT	ER		219		0	0		
		4	DEP	ART		219		0	0		
		5	ADV	ANCE		219		1	0		
		6	LEAV	/E		218		0	0		
		7	TER	MINATE		218		0	0		
		8	GENI	ERATE		183		0	0		
		9	TER	MINATE		183		0	0		
ARRIVE		1	0	219	219	0.00	0 0.	000	0.000	0	
STORAGE		CVD	DEM	MTN M	AV FNT	PDTES AV	L. AVE.C	HTTI	DETDV I	FIAV	
PIER							1.483				
LILIN		10			-	557 1	1,103	0.1			
FEC XN	PRI	BD	Т	ASSEM	CURRE	NT NEXT	PARAMET	ER	VALUE		
402	0	4402	.517	402	5	6					
	0										
					0						

Рис. 3.8: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Соответственно попробуем уменьшить число причалов. Постепенно понижая, видим, что полезность возрастает. Тогда установим наименьшее возможное число причалов - 3 (рис. 3.9), получаем оптимальный результат, что видно на отчете (рис. 3.10).

```
Dier STORAGE 3
GENERATE 20,5

QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0

; Taŭmep
GENERATE 24
TERMINATE 1
START 183
```

Рис. 3.9: Модель работы морского порта с оптимальным количеством причалов

	GPSS	World	Sim	lation	Report	- Unti	tled	Model	1.6.1			
		Fedds		ay 30, 2	102E 14	.15.01						
				-								
	START TI	ME 00		END	TIME E							
	0.0	00		1392		9		0		1		
	NAME				v	ALUE						
	ARRIVE				1000							
	PIER				10000	0.000						
LABEL		LOC	BLO	CK TYPE	ENT	TRY COU	NT C	URRENT	COUNT	RETRY		
		1	GEN	ERATE		219			0	0		
		2	QUE	JE		219			0	0		
			ENT			219		9	0	0		
		4	DEP	ART		219			0	0		
		5	ADV	ANCE		219			1	0		
		6	LEA	Æ		218			0	0		
		7	TER	MINATE		218		į.	0	0		
		8	GEN	ERATE		183		9	0	0		
		9	TER	MINATE		183			0	0		
DUEUE										AVE. (-0)		
ARRIVE		1	0	219	219	0.0	00	0.0	00	0.000	0	
TORAGE		CAP.	REM.	MIN. MA	X. EN	TRIES A	VL.	AVE.C.	UTIL	. RETRY	DELAY	
PIER		3	0	0	3	657	1	1.483	0.49	4 0	0	
FEC XN	PRI	BDT		ASSEM	CURREN	NT NEX	T P	ARAMETE	R	VALUE		
	0						-					
	0											
404	0	4416.	000	404	0	8						

Рис. 3.10: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель (рис. 3.11).

```
Untitled Model 1

pier STORAGE 6
GENERATE 30,10

QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

; TAŬMEP
GENERATE 24
TERMINATE 1
START 183
```

Рис. 3.11: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. 3.12).

Рис. 3.12: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Соответственно попро-

буем уменьшить число причалов. Постепенно понижая, видим, что полезность возрастает. Тогда установим наименьшее возможное число причалов - 2 (рис. 3.13), получаем оптимальный результат, что видно из отчета (рис. 3.14).

```
Dier STORAGE 2
GENERATE 30,10

QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

; raŭmep
GENERATE 24
TERMINATE 1
START 183
```

Рис. 3.13: Модель работы морского порта с оптимальным количеством причалов

	GPSS World	Simulation Re	port - Untitled	Model 1.9.1		
	Frida	y, May 30, 202	5 14:17:38			
	START TIME	END TI	ME BLOCKS FAC	ILITIES STO	RAGES	
			9			
	NAME		VALUE			
	ARRIVE		10001.000			
	PIER		10000.000			
LABEL	LOC	BLOCK TYPE	ENTRY COUNT C	URRENT COUNT	RETRY	
	1	GENERATE	145	0	0	
	2	QUEUE	145	0	0	
	3	ENTER	145	0	0	
	4	DEPART	145	0	0	
	5	ADVANCE	145	0	0	
	6	LEAVE	145	0	0	
	7	TERMINATE	145	0	0	
	8	GENERATE	183	0	0	
	9	TERMINATE	183	0	0	
QUEUE	Man C	ONT ENTRY PAR	PRV (O) AUE COM	NUE TIME	NUTE (C)	DETRY
ARRIVE			RY(0) AVE.CONT. 145 0.000			
AKKIVE	1	0 145	145 0.000	0.000	0.000	U
TORAGE	CAP.	REM. MIN. MAX.	ENTRIES AVL.	AVE.C. UTIL	. RETRY	DELAY
PIER	2	2 0 2	290 1	0.524 0.26	2 0	0

Рис. 3.14: Отчет по модели работы морского порта с оптимальным количеством причалов

4 Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss модель работы вычислительного центра, модель работы аэропорта, модель работы морского порта.

Список литературы

1. Королькова А.В., Кулябов Д.С. Лабораторная работа 17. Задания для самостоятельной работы [Электронный ресурс].