Fundamentos de redes de computadores

Conceitos básicos de redes

 "Uma rede é um conjunto de terminais, equipamentos, meios de transmissão e comutação que interligados possibilitam a prestação de serviços".

- 1. Quanto à dimensão, tamanho ou área geográfica
- 2. Quanto à arquitetura ou forma de interação
- 3. Quanto à Topologia (Layout)

1. Quanto à dimensão, tamanho ou área geográfica

2. Quanto à arquitetura ou forma de interação

2. 1. Rede Par-a-Par (Ponto-a-Ponto)

- Todas as máquinas podem compartilhar dados e peritericos umas com as outras.
- Compartilhando recursos e sem hierarquia
- Todas as máquinas oferecem e consomem recursos uma das outras, logo todas são eventualmente clientes, eventualmente servidoras.

2. Quanto à arquitetura ou forma de interação

2. 2. Rede Cliente e Servidor

- Existe uma máquina especializada, dedicada e geralmente remota.
- As máquinas estão todas ligadas a uma única máquina, hierarquicamente diferente.

3. Quanto à Topologia (Layout)

- Trata da forma como os computadores estão conectados.
- A Topologia Lógica: exibe o fluxo de dados na rede, isto é, como as informações percorrem os links e e transitam entre dispositivos.
- A Topologia Física: exibe o layout dos links e nós de rede.

3. Quanto à Topologia (Layout)

3. 1. Barramento (Bus)

- Todas as estações ficam ligadas ao mesmo meio de transmissão
- Um único cabo (chamado backbone) em que os nós se ligam através de conectores.
- Vantagem: é a facilidade de instalação e economia de cabeamento.
- Desvantagem: é o isolamento de falhas, tendo em vista que uma ruptura no cabo implica a interrupção da comunicação.

3. Quanto à Topologia (Layout)

3. 2. Anel (Ring)

- Cada dispositivo possui uma conexão ponto-a-ponto com outros dois dispositivos conectados lado a lado.
- Faz uso de uma comunicação com transmissão unidirecional (chamada simplex).

3. Quanto à Topologia (Layout)

3. 4. Malha (Mesh)

- Todos os computadores estão interligados entre si, de modo que caso haja uma ruptura em algum cabo, não cai a rede inteira, somente o nó conectado a esse cabo.
- Cada estação possui um link ponto a ponto dedicado com transmissão bidirecional (duplex) entre cada uma das demais estações.

Direção de Comunicação

 <u>1. Simplex:</u> O enlace é utilizado apenas em um dos dois possíveis sentidos de transmissão. Ex: TV Aberta e Rádio AM/FM.

• <u>2. Half-duplex:</u> O enlace é utilizado nos dois possíveis sentidos de transmissão, porém apenas um por vez. Ex: Walk&Talk

Sending Information

Sending and Receiving Information

• <u>3. Full-Duplex:</u> O enlace é utilizado nos dois sentidos de transmissão simultaneamente. Ex: Celular, VoIP.

Forma de Envio de Mensagem em um Rede

1. Unicast [uni = um e cast = transmitir]: uma mensagem só pode ser enviada para um destino.

 2. Multcast [mult = vários e cast = transmitir]: uma mensagem é enviada para um grupo de destino.

 3. Broadcast [broad = todos e cast = transmitir]: uma mensagem é enviada para todos os destinos.

Os Meios de Transmissão são os meios pelos quais percorre o fluxo de dados, na forma de bits e bytes, através de uma LAN/WAN. Eles são classificados em:

- 1. Meios Guiados: É a transmissão por cabos ou fios de cobre, onde os dados transmitidos são convertidos em sinais elétricos que propagam pelo material condutor. <u>Exemplo:</u> cabos coaxiais, cabos de par traçado, fibra óptica, etc.
- **2. Meios Não-Guiados**: É a transmissão por irradiação eletromagnética, onde os dados transmitidos são irradiados através de antenas para o ambiente. **Exemplo**: as transmissões via satélite, infravermelho, bluetooth e wireless.

1. Meios Guiados

1. 1. Cabo Coaxial

- Consiste em um fio central de cobre, envolvido por uma blindagem metálica.
- Barato, relativamente flexível e muito resistente à interferência eletromagnéticas graças à malha de proteção que possui.
- Cobre distâncias maiores que o cabo de par trançado e utiliza um conector chamado BNC.
- É capaz de cobrir longas distâncias, apesar de possuir uma taxa de transmissão menor que a de um cabo de par trançado.

1. Meios Guiados

1. 2. Cabo de Par Traçado

- Consiste de quatro pares de fios trançados blindados ou não, e envolto de um revestimento externo flexível.
- São trançados para diminuir a interferência eletromagnética externa e interna quanto mais giros, maior a atenuação.
- Mais utilizado atualmente por ser o mais barato de todos e ser bastante flexível.
- Cobre distâncias menores que o cabo coaxial e utiliza um conector chamado
 RJ-45

1. Meios Guiados

1. 2. Cabo de Par Traçado

 Quando é blindado, ele é chamado de Cabo STP (Shielded Twisted Pair) e quando não é blindado, ele é chamado de Cabo UTP (Unshielded Twisted Pair).

CATEGORIA	VELOCIDADE	TAXA	NOTAS
CATEGORIA 3 (CAT3)	ATÉ 16 MBPS	16 MHz	Cabo de telefonia ⁴ .
CATEGORIA 4 (CAT4)	ATÉ 20 MBPS	20 MHz	Totalmente obsoleto.
CATEGORIA 5 (CAT5)	ATÉ 1000 MBPS	100 MHz	Substituído pelo CAT 5e.
CATEGORIA 5 ENHANCED (CAT5e)	ATÉ 1000 MBPS	100 MHz	Mais utilizado em LANs atualmente.
CATEGORIA 6 (CAT6)	ATÉ 10000 MBPS (10G)	250 MHz	Largura de banda um pouco maior.
CATEGORIA 6 (CAT6A)	ATÉ 10000 MBPS (10G)	500 MHz	Adiciona blindagem.

1. 3. Cabo de Fibra Óptica

- Possui capacidade de transmissão virtualmente infinita, é imune a interferências eletromagnéticas e consegue ligar distâncias maiores sem a necessidade de repetidores.
- <u>Desvantagens:</u> incapaz de fazer curvas acentuadas, além de ter um custo de instalação e manutenção muito alto em relação ao par trançado.

1. Meios Guiados

1. 3. Cabo de Fibra Óptica

1.3.1. *Fibra Multimodo:* leva o feixe de luz por vários modos ou caminhos, por uma distância menor, com menores taxas de transmissão, mais imprecisa, diâmetro maior e alto índice de refração e atenuação, mas possui construção mais simples, é mais barata e utilizada em LANs.

1. Meios Guiados

1. 3. Cabo de Fibra Óptica

1.3.2. Fibra Monomodo: leva o feixe de luz por um único modo ou caminho, por uma distância maior, com maiores taxas de transmissão, mais precisa, diâmetro menor e baixo índice de refração e atenuação, mas possui construção mais complexa, é mais cara e utilizada em WANs.

1. Network Interface Card (NIC ou Placa de Rede)

- Ela é o recurso de hardware mínimo que deverá estar instalado no computador para permitir uma comunicação bidirecional – transmissão e recebimento de dados – com os demais elementos da rede.
- Possuem um identificador único chamado Endereço MAC (Medium Access Control) – é como se fosse o número de série do dispositivo. Esse endereço físico é representado por 48 bits, representados em hexadecimal e separados por dois-pontos (Ex: 00:1C:B3:09:85:15).

2. Hub (Concentrador)

- Trata-se de um dispositivo para interligação de computadores que tem o objetivo de aumentar o alcance de uma rede local por meio da regeneração de sinais, porém recebe em uma única porta e retransmite para todas as outras.
- Hub possua uma topologia física de Estrela e uma topologia lógica de Barramento.

3. Bridge (Ponte)

- Permitem separar redes de computadores em segmentos menores.
- Permite uma redução no tráfego de dados da rede em comparação com o Hub.
- As informações manipuladas por uma Ponte são chamadas de quadros ou frames – assim como no Switch.
- Desvantagem: só possuem duas portas, logo só conseguem separar a rede em dois segmentos.

4. Switch (Comutador)

- Eles são inteligentes, permitindo fechar canais exclusivos de comunicação entre a máquina que está enviando e a que está recebendo – em unicast ou multicast.
- A transmissão para canais específicos faz com que uma rede com Switch possua topologia física e lógica em Estrela.

5. Router (Roteador)

- Equipamentos que permitem interligar várias redes e escolher a melhor rota para que a informação chegue ao destino. Esse dispositivo encaminha ou directiona pacotes de dados entre redes de computadores, geralmente funcionando como uma ponte entre redes diferentes.
- É o principal responsável por controlar o tráfego da Internet.
- Roteadores conectam redes diferentes; switches segmentam uma mesma rede.

6. Access Point (Ponto de Acesso)

- Ele é um dispositivo de rede utilizado para estender a cobertura de redes de internet sem fio.
- Um roteador wireless pode trabalhar no modo Access Point, mas um Access
 Point não pode trabalhar no modo roteador.

7. Modem

• Esse dispositivo converterá os dígitos binários do computador em sinais analógicos que podem ser transmitidos em linhas telefônicas; e também converterá os sinais analógicos das linhas telefônicas em dígitos binários.

7. Modem

O Modem é um dispositivo eletrônico de entrada/saída de dados que modula um sinal digital em um sinal analógico a ser transmitida por meio de uma linha telefônica e que demodula o sinal analógico e o converte para o sinal digital original. Hoje em dia, existem basicamente três tipos: Acesso Discado, Modem ADSL e Cable Modem. Modelo de referência OSI e arquitetura TCP/IP

— Divisão da estrutura das redes em camadas

Modelo em camadas

Divisão da estrutura das redes em camadas

Elementos da camada

Serviço

É o conjunto de funcionalidades que uma determinada camada oferece.

Protocolo

Responsável por como a camada faz.

Interface

Para que uma camada possa utilizar a camada imediatamente inferior, é necessário que haja um ponto de comunicação entre ambas, chamado interface.

Protocolos de Comunicação

"Um protocolo é um acordo entre as partes que se comunicam, estabelecendo como se dará a comunicação".

"Protocolo é um conjunto de regras que controlam a comunicação de dados".

- Modelo conceitual para auxiliar a compreender e projetar uma arquitetura de redes de computadores chamado Modelo OSI (ou Modelo OSI/ISO).
- O Modelo OSI é uma arquitetura em camadas para rede de computadores.
- O Modelo OSI é um modelo que regulamenta a conexão de redes.
- Abstração teórica, uma referência conceitual para entender como se dá o fluxo de dados entre computadores em uma rede.

Camadas mais altas

Estão relacionadas a funções que dão suporte para que os usuários possam acessar os diversos serviços de redes.

Camadas mais inferiores

Estão relacionadas às operações ligadas aos aspectos da movimentação dos dados de um dispositivo para o outro.

Camadas de transporte

Faz a interligação entre o suporte ao usuário e o suporte de rede.

1. Camada Física

- Define as especificações elétricas e físicas da conexão de dados.
- Totalmente orientada a hardware.
- Exemplos de Protocolos: Wi-Fi, BlueTooth, USB, Modem, etc.
- Exemplos de Equipamentos de Rede: placa de rede e hub.

2. Camada de Enlace

- É responsável por organizar os dados em frames (ou quadros) e por estabelecer uma conexão nó a nó entre dois dispositivos físicos que compartilham o mesmo meio físico.
- É capaz de detectar e corrigir erros que, porventura, venham a ocorrer no meio físico, garantindo assim que os dados sejam recebidos corretamente.
- Estabelece uma conexão nó a nó.
- Exemplos de Protocolos: Ethernet, Token Ring, etc.
- Exemplos de Equipamentos de Rede: switch e bridge.

3. Camada de Rede

- É responsável por endereçar os pacotes para o computador de destino.
- Determina qual é a melhor rota para realizar a entrega (roteamento entre fonte e destino) baseado nas condições atuais da rede, na prioridade dos serviços, etc.
- Exemplos de Protocolos: IP, ICMP, ARP, NAT, etc.
- Exemplos de Equipamentos de Rede: Roteador.

4. Camada de Transporte

- É responsável por organizar os dados em segmentos e que eles cheguem ao destino livre de erros (sem perdas, sem duplicações e na ordem certinha), independentemente do tipo, topologia ou configuração de rede.
- Para tal, ela fornece uma comunicação fim-a-fim confiável que se dá por meio de sinais de reconhecimento enviado entre as partes.
- Exemplos de Protocolos: TCP, UDP, NetBEUI, etc.

5. Camada de Sessão

- É responsável por permitir que duas ou mais aplicações em computadores diferentes possam abrir, usar e fechar uma conexão, chamada sessão.
- Cabe a essa camada gerenciar a comunicação para que, caso haja alguma interrupção, ela possa ser reiniciada do ponto da última marcação recebida – essa camada guarda relatórios de tudo.
- Exemplos de Protocolos: NetBIOS.

6. Camada de Apresentação

- É responsável por definir o formato para troca de dados entre computadores, como se fosse um tradutor.
- É responsável pela formatação e tradução de protocolos, pela criptografia, pela compressão de dados, pela conversão de caracteres e códigos, entre diversas tantas funcionalidades.
- Exemplos de Protocolos: TLS, XDR, etc.

7. Camada de Aplicação

- É responsável por estabelecer a comunicação entre aplicações.
- Funciona como um portal ou uma janela em que os processos de aplicações podem acessar os serviços de rede.
- Exemplos de Protocolos: HTTP, SMTP, FTP, SSH, TELNET, IRC, SNMP, POP3, IMAP, DNS, etc.

Processo de Comunicação

Processo de Comunicação

Processo de Comunicação

