Math 741 Assignment 21 (Hand-In)

Arnold Jiadong Yu

May 16, 2019

10.3.8(H) solution: From the information given, a test can be formulated

 H_0 : These data are compatible with the model that

each World Series game is an independent Bernoulli trial with

$$p = P(AL \text{ wins}) = P(NL \text{ wins}) = \frac{1}{2}$$

 H_1 : These data are not compatible with the model that each World Series game is an independent Bernoulli trial with

$$p = P(AL \text{ wins}) = P(NL \text{ wins}) = \frac{1}{2}$$

with $\alpha = 0.10, t = 4, n = 50$. A table also can be formulated,

i	Number of Games	Number of Years (k_i)	p_{i}	np_i
1	4	9	1/8	152.7
2	5	11	1/4	152.7
3	6	8	5/16	152.7
4	7	22	5/16	152.7

where

$$p_1 = P(X = 4) = (1/2)^4 + (1/2)^4 = 1/8$$

$$p_2 = P(X = 5) = {4 \choose 1} (1/2)^5 + {4 \choose 1} (1/2)^5 = 1/4$$

$$p_3 = P(X = 6) = {5 \choose 2} (1/2)^6 + {4 \choose 1} (1/2)^6 = 5/16$$

$$p_4 = P(X = 7) = {6 \choose 3} (1/2)^7 + {4 \choose 1} (1/2)^7 = 5/16$$

Therefore,

$$\chi_0^2 = \sum_{i=1}^4 \frac{[k_i - np_i]^2}{np_i} = 7.712$$

$$p - value = 1 - P(0 \le \chi_{t-1}^2 \le 7.712) = 0.05235$$

since $p-value = 0.05235 < \alpha = 0.10 \implies \text{Reject } H_0$. Hence, there is enough evidence to say that these data are not compatible with the model that each World Series game is an independent Bernoulli trial with $p = P(\text{AL wins}) = P(\text{NL wins}) = \frac{1}{2}$.

10.3.11(H) solution: Given,

$$f_Y(y) = \begin{cases} \frac{1}{9}y^2 & 0 < y \le 3\\ 0 & o.w. \end{cases}$$

Then

$$F_Y(y) = \begin{cases} \frac{1}{27}y^3 & 0 < y \le 3\\ 0 & o.w. \end{cases}$$

A table can be formulated,

where k_i is the observed frequency, p_i is the probability with $P(y_1 < Y \le y_2) = F(y_2) - F(y_1)$, and np_i is expected frequency. And t = 3 Since $np_1 \le 5$, we need to pool the table. A new table need to be formulated,

A test can be formulated,

 H_0 : The data is consistent with $f_Y(y)$

 H_1 : The data is not consistent with $f_Y(y)$

with $\alpha = 0.05$ and t = 2. Then

$$\chi_0^2 = \sum_{i=1}^2 \frac{[k_i - np_i]^2}{np_i} = 8.09263$$

$$p - value = 1 - P(0 \le \chi_{t-1}^2 \le 8.09263) = 0.0044446$$

since $p - value = 0.0044446 < \alpha = 0.05 \implies \text{Reject } H_0$. Hence, there is enough evidence to say that the data is not consistent with $f_Y(y)$.