Pre-Calculus 11

Prerequisite Skills Review - Lesson 1.2

Created by Yi-Chen Lin

June 10, 2025

Combining Like-Terms

Definition

- You can only add or subtract two terms if they are like-terms.
- Like-terms: Two algebraic terms that have the same variables and the exponents of the corresponding variables are the same.
- If they are not like-terms, then you cannot add or subtract them.

Combining Like-Terms - Practice

Practice Problems

Indicate which of the following terms are like-terms. If they are like-terms, combine them:

- \bigcirc 3x and x^3
- ② x^2y^2 and $-5x^2y^3$

Combining Like-Terms - Solutions Part 1

Detailed Solutions

- **3** 3x and x^3 **Solution:** Not Like-terms because the exponents for "x" are different.
- ② x^2y^2 and $-5x^2y^3$ Solution: Not Like-terms because they don't have the same variables (exponents for y are different).
- **3** $10a^2 4a$ **Solution:** Not Like-terms (cannot be combined).

Combining Like-Terms - Solutions Part 2

Detailed Solutions

- **3** $5y + 12y^2 + 10y 3y^2$ **Solution:**
 - Identify like-terms: 5y and 10y are like-terms, $12y^2$ and $-3y^2$ are also like-terms.
 - Combine: $(5y + 10y) + (12y^2 3y^2) = 15y + 9y^2$
- **5** $4a^2 3ab + 6b^2 8a^2 + 15ab + 2b^2$ **Solution:**
 - Identify like-terms: $4a^2$ and $-8a^2$; -3ab and 15ab; $6b^2$ and $2b^2$.
 - Combine: $(4a^2 8a^2) + (-3ab + 15ab) + (6b^2 + 2b^2) = -4a^2 + 12ab + 8b^2$

FOIL/Expansion - Multiplying Binomials

Multiplying Binomials

- When multiplying two binomials, you can visualize it as finding the area of a rectangle.
- **Example:** (x + 4)(x + 5)

	X	5
X	x^2	5 <i>x</i>
4	4 <i>x</i>	20
~L		

• The area is $x^2 + 5x + 4x + 20 = x^2 + 9x + 20$.

FOIL/Expansion - Another Method: FOIL

Another Method: FOIL

- First: Multiply the first terms of each binomial.
- Outside: Multiply the outer terms.
- Inside: Multiply the inner terms.
- Last: Multiply the last terms of each binomial.

• Example:
$$(x + 4)(x + 5) = \underbrace{x \cdot x}_{E} + \underbrace{x \cdot 5}_{Q} + \underbrace{4 \cdot x}_{Q} + \underbrace{4 \cdot 5}_{Q} = x^{2} + 5x + 4x + 20 = x^{2} + 9x + 20.$$

Expand Binomials - Practice

Practice Problems

Expand the Binomials:

$$(x-5)(x-2)$$

$$(2x-3)(5x-8)$$

$$(5x+4)(7x-6)-(8x-2)(x+3)$$

Expand Binomials - Solutions Part 1

Detailed Solutions

1 (x-5)(x-2) **Solution**:

$$(x-5)(x-2) = x(x) + x(-2) + (-5)(x) + (-5)(-2)$$
$$= x^2 - 2x - 5x + 10$$
$$= x^2 - 7x + 10$$

2 (2x-3)(5x-8) **Solution**:

$$(2x-3)(5x-8) = 2x(5x) + 2x(-8) + (-3)(5x) + (-3)(-8)$$
$$= 10x^{2} - 16x - 15x + 24$$
$$= 10x^{2} - 31x + 24$$

Expand Binomials - Solutions Part 2

Detailed Solutions

(5x+4)(7x-6) - (8x - 2)(x + 3) Solution:

$$(5x+4)(7x-6) - (8x - 2)(x + 3)$$

$$= (35x^2 - 30x + 28x - 24) - (8x^2 + 24x - 2x - 6)$$

$$= (35x^2 - 2x - 24) - (8x^2 + 22x - 6)$$

$$= 35x^2 - 2x - 24 - 8x^2 - 22x + 6$$

$$= (35x^2 - 8x^2) + (-2x - 22x) + (-24 + 6)$$

$$= 27x^2 - 24x - 18$$

Area and Perimeter - Practice

Practice Problem

Given the dimensions of the solid, find an algebraic expression for the area and PERIMETER!!:

$$x-5$$

$$2x+3y$$

- Area = ?
- Perimeter = ?

Area and Perimeter - Solutions

Detailed Solutions

Area:

Area =
$$(x - 5)(2x + 3y)$$

= $x(2x) + x(3y) + (-5)(2x) + (-5)(3y)$
= $2x^2 + 3xy - 10x - 15y$

Perimeter:

Perimeter =
$$2(x - 5) + 2(2x + 3y)$$

= $2x - 10 + 4x + 6y$
= $(2x + 4x) + 6y - 10$
= $6x + 6y - 10$

Basic Factoring: GCF

Introduction

- Factoring is the opposite of expanding.
- When factoring, you are dividing out the greatest common factor (GCF) between several terms.

Basic Factoring: GCF - Practice 1

Practice Problems

First indicate the GCF and then Factor out the GCF for each of the following:

- $0 20x^3 + 8xy$
- $21x^3y^2 + 35xy + 42y^4$

Basic Factoring: GCF - Solutions 1

Detailed Solutions

- **1** $20x^3 + 8xy$ **Solution**:
 - Both terms are multiples of 4.
 - Both terms have one x variable.
 - GCF = 4x
 - Factored: $4x(5x^2 + 2y)$
- **2** $21x^3y^2 + 35xy + 42y^4$ **Solution:**
 - All three terms are multiples of 7.
 - All three terms have a "y" variable.
 - GCF = 7y
 - Factored: $7y(3x^3y + 5x + 6y^3)$

Basic Factoring: GCF - Practice 2

Practice Problems

Find the Greatest common factor and then factor out the GCF for each of the following:

$$90a^4b^7 + 25ab^6 + 65a^2b^5$$

$$30(y-x)+40x(y-x)$$

Basic Factoring: GCF - Solutions 2 Part 1

Detailed Solutions

- **1** $50x^4y^3 + 30x^6y^4$ **Solution:**
 - $GCF = 10x^4y^3$
 - Factored: $10x^4y^3(5+3x^2y)$
- 2 $90a^4b^7 + 25ab^6 + 65a^2b^5$ Solution:
 - $GCF = 5ab^5$
 - Factored: $5ab^5(18a^3b^2 + 5b + 13a)$

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 17 / 27

Basic Factoring: GCF - Solutions 2 Part 2

Detailed Solutions

3
$$30(y-x) + 40x(y-x)$$
 Solution:

•
$$GCF = (y - x)$$

• Factored:
$$(y-x)(30+40x) = 10(y-x)(3+4x)$$

3
$$28(x+y)^4 - 63(x+y)^3$$
 Solution:

• GCF =
$$7(x + v)^3$$

• Factored:
$$7(x+y)^3(4(x+y)-9) = 7(x+y)^3(4x+4y-9)$$

Factoring Difference of Squares: Conjugates

Conjugates

Two binomials are conjugates if they have the same terms but a different sign in between them:

• Example: $x + 5 \rightarrow x - 5$

• Example: $7x - 10 \rightarrow 7x + 10$

• Example: $9a - 20 \rightarrow 9a + 20$

Difference of Squares: Multiplication Property

What happens when you multiply a binomial with its conjugate?

1 (x+5)(x-5) **Solution:**

$$(x+5)(x-5) = x^2 - 5x + 5x - 25$$

= $x^2 - 25$

2 (7x - 10)(7x + 10) **Solution:**

$$(7x - 10)(7x + 10) = 49x^2 + 70x - 70x - 100$$

= $49x^2 - 100$

- The middle two terms will always cancel each other out.
- The first and last terms are always perfect squares.
- The middle sign is always a subtraction.

◆□▶ ◆□▶ ◆重▶ ◆重▶ ■ のQ@

Difference of Squares: Missing Terms

Indicate the Missing Terms

$$(x-7)(x+7) = x^2 - \underline{\hspace{1cm}}$$

$$(15a-9b)(15a+9b)=225a^2-$$

$$9y^4 - 100 = (\underline{} - \underline{})(\underline{} + \underline{})$$

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 21 /

Difference of Squares: Missing Terms - Solutions

Detailed Solutions

$$(x-7)(x+7) = x^2 - 49$$

$$(15a - 9b)(15a + 9b) = 225a^2 - 81b^2$$

3
$$144x^2y^2 - 169 = (12xy - 13)(12xy + 13)$$

$$49p^2q^2 - 25q^2 = (7pq - 5q)(7pq + 5q)$$

$$9y^4 - 100 = (3y^2 - \underline{10})(3y^2 + \underline{10})$$

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 22 / 27

Factoring Difference of Squares: Rule

Rule

- When you have two perfect squares subtracting each other, you can factor it to a product of two conjugate binomials: $a^2 b^2 = (a b)(a + b)$
- If the two perfect squares have a common factor, you can factor out the common factor first and then separate it as a product of conjugate binomials.

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 23 / 27

Factor Completely - Practice

Practice Problems

FACTOR COMPLETELY:

- $144x^2y^2-49$
- 27 a^2b^2-75
- $3 49p^2q^5 81q$
- $16z^4 1$

Factor Completely - Solutions Part 1

Detailed Solutions

144 $x^2y^2 - 49$ **Solution**:

$$144x^{2}y^{2} - 49 = (12xy)^{2} - (7)^{2}$$
$$= (12xy - 7)(12xy + 7)$$

2 $27a^2b^2 - 75$ **Solution**:

$$27a^{2}b^{2} - 75 = 3(9a^{2}b^{2} - 25)$$
$$= 3((3ab)^{2} - (5)^{2})$$
$$= 3(3ab - 5)(3ab + 5)$$

Factor Completely - Solutions Part 2

Detailed Solutions

3 $49p^2q^5 - 81q$ **Solution**:

$$49p^{2}q^{5} - 81q = q(49p^{2}q^{4} - 81)$$

$$= q((7pq^{2})^{2} - (9)^{2})$$

$$= q(7pq^{2} - 9)(7pq^{2} + 9)$$

1 $6z^4 - 1$ **Solution**:

$$16z^{4} - 1 = (4z^{2})^{2} - (1)^{2}$$

$$= (4z^{2} - 1)(4z^{2} + 1)$$

$$= ((2z)^{2} - (1)^{2})(4z^{2} + 1)$$

$$= (2z - 1)(2z + 1)(4z^{2} + 1)$$

Summary

Key Concepts

- Combining Like-Terms
- Expanding Polynomials (FOIL/Box Method)
- Basic Factoring (Greatest Common Factor GCF)
- Factoring Difference of Squares

 Created by Yi-Chen Lin
 Pre-Calculus 11
 June 10, 2025
 27 / 27