

Image Compression

Sung Soo Hwang

- Data compression
 - Process of reducing the amount of data required to represent a given quantity of information
- During image compression, there may exist information loss
 - MSE

•
$$e_{mse} = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} [\hat{f}(x,y) - f(x,y)]^2$$

PSNR

•
$$10 \cdot log_{10} \left(\frac{MAX^2_I}{MSE} \right) = 20 \cdot log_{10} \left(\frac{MAX_I}{\sqrt{MSE}} \right)$$

= $20 \cdot log_{10} (MAX_I) - 10 \cdot log_{10} (MSE)$

Introduction

• PSNR

- Video codec
 - Codec is a portmanteau of coder/decoder
 - Compression codecs are classified primarily into lossy codecs and lossless codecs

종류	압축 기술				
Lossless	run length codin	g(반복 길이 코딩)			
compression	Huffman codin	g(허프만 코딩)			
	Lempel-Ziv coding(렘펠-지프 코딩)				
	transform coding(변환 코딩)	DCT, FFT			
	predictive coding(예측 코딩)	PCM, ADPCM, DM, ADM			
Lossy	quantization	on(양자화)			
compression	wavelet-based cod	ing(웨이블릿 코딩)			
	interpolation	on(보간법)			
	fractal compression(프렉탈 압축)				
Hybrid	JPEG, GIF, M	PEG, H.26x			

Run-length coding

Golomb coding

n	$G_1(n)$	$G_2(n)$	$G_4(n)$	$G_{\exp}^0(n)$
0	0	00	000	0
1	10	01	001	100
2	110	100	010	101
3	1110	101	011	11000
4	11110	1100	1000	11001
5	111110	1101	1001	11010
6	1111110	11100	1010	11011
7	11111110	11101	1011	1110000
8	111111110	111100	11000	1110001
9	1111111110	111101	11001	1110010

There should be lots of zeros

Transform coding

- DCT(Discrete Cosine Transformation)
 - DCT represents an image as a sum of sinusoids of varying magnitudes and frequencies.
 - DCT helps separate the image into parts of differing importance (with respect to the image's visual quality).

• For example, the DCT is used in JPEG

Spatial Domain DCT Frequency Domain

• Distribution of coefficients in DCT

DC AC

DC coefficient

Low-frequency

Mid-frequency

High-frequency

AC AC

- Quantization is the process of reducing the number of bits needed to store an integer value by reducing the precision of the integer.
 - Given a matrix of DCT coefficients, we can generally reduce the precision of the coefficients more and more as we move away from the DC coefficient.

$$Q_{50} = \begin{bmatrix} 16 & 11 & 10 & 16 & 24 & 40 & 51 & 61 \\ 12 & 12 & 14 & 19 & 26 & 58 & 60 & 55 \\ 14 & 13 & 16 & 24 & 40 & 57 & 69 & 56 \\ 14 & 17 & 22 & 29 & 51 & 87 & 80 & 62 \\ 18 & 22 & 37 & 56 & 68 & 109 & 103 & 77 \\ 24 & 35 & 55 & 64 & 81 & 104 & 113 & 92 \\ 49 & 64 & 78 & 87 & 103 & 121 & 120 & 101 \\ 72 & 92 & 95 & 98 & 112 & 100 & 103 & 99 \end{bmatrix}$$

• Quantized value (i, j) $\frac{DCT(i,j)}{Quantum(i,j)}$ rounded to nearest the integer.

3	5	7	9	11	13	15	17
5	7	9	11	13	15	17	19
7	9	11	13	15	17	19	21
9	11	13	15	17	19	21	23
11	13	15	17	19	21	23	25
13	15	17	19	21	23	25	27
15	17	19	21	23	25	27	29
17	19	21	23	25	27	29	31

A Sample Quantization Matrix

92	3	-9	-7	3	-1	0	2
-39	-58	12	17	-2	2	4	2
-84	62	1	-18	3	4	-5	5
-52	-36	-10	14	-10	4	-2	0
-86	-40	49	-7	17	-6	-2	5
-62	65	-12	-2	3	-8	-2	0
-17	14	-36	17	-11	3	3	-1
-54	32	-9	-9	22	0	1	3

DCT Matrix (Before Quantization)

• Quantized value (i, j) $\frac{DCT(i,j)}{Quantum(i,j)}$ rounded to nearest the integer.

3	b	7	9	11	13	15	17
5	7	9	11	13	15	17	19
7	9	11	13	15	17	19	21
9	11	13	15	17	19	21	23
11	13	15	17	19	21	23	25
13	15	17	19	21	23	25	27
15	17	19	21	23	25	27	29
17	19	21	23	25	27	29	31

A Sample Quantization Matrix

92	3	-9	-7	3	-1	0	2
-39	-58	12	17	-2	2	4	2
-84	62	1	-18	3	4	-5	5
-52	-36	-10	14	-10	4	-2	0
-86	-40	49	-7	17	-6	-2	5
-62	65	-12	-2	3	-8	-2	0
-17	14	-36	17	-11	3	3	-1
-54	32	-9	-9	22	0	1	3

DCT Matrix (Before Quantization)

• Quantized value (i, j) $\frac{DCT(i,j)}{Quantum(i,j)}$ rounded to nearest the integer.

3	b	7	9	11	13	15	17
5	7	9	11	13	15	17	19
7	9	11	13	15	17	19	21
9	11	13	15	17	19	21	23
11	13	15	17	19	21	23	25
13	15	17	19	21	23	25	27
15	17	19	21	23	25	27	29
17	19	21	23	25	27	29	31

A Sample Quantization Matrix

30	3	-9	-7	3	-1	0	2
-39	-58	12	17	-2	2	4	2
-84	62	1	-18	ന	4	-5	5
-52	-36	-10	14	-10	4	-2	0
-86	-40	49	-7	17	-6	-2	5
-62	65	-12	-2	3	-8	-2	0
-17	14	-36	17	-11	3	3	-1
-54	32	-9	-9	22	0	1	3

DCT Matrix (Before Quantization)

- Quantization Process
 - Quantized value (i, j) $\frac{DCT(i,j)}{Quantum(i,j)}$ rounded to nearest the integer.

3	5	7	9	11	13	15	17
5	7	9	11	13	15	17	19
7	9	11	13	15	17	19	21
9	11	13	15	17	19	21	23
11	13	15	17	19	21	23	25
13	15	17	19	21	23	25	27
15	17	19	21	23	25	27	29
17	19	21	23	25	27	29	31

A Sample Quantization Matrix

30	0	7-	0	0	0	0	0
-7	8	~	1	0	0	0	0
-12	6	0	-1	0	0	0	0
-5	3	0	0	0	0	0	0
-7	က္	3	0	0	0	0	0
-4	4	0	0	0	0	0	0
-1	0	1	0	0	0	0	0
-3	1	0	0	0	0	0	0

DCT Matrix (After Quantization)

- The low-frequency elements near the DC coefficient have been modified, but only by small amounts.
- The high-frequency areas of the matrix have, for the most part, been reduced to zero.
- In this sense, insignificant data has been discarded and the image information has been compressed.

30	0	1	0	0	0	0	0
-7	8	~	1	0	0	0	0
-12	6	0	-1	0	0	0	0
-5	က္	0	0	0	0	0	0
-7	က္	3	0	0	0	0	0
-4	4	0	0	0	0	0	0
-1	0	1	0	0	0	0	0
-3	1	0	0	0	0	0	0

DCT Matrix (After Quantization)

Intra prediction

AVC/H.264 intra prediction modes

Inter prediction(motion compensation)

- Currently, Block Matching Algorithm is used for motion estimation
- It is not exactly the motion!
- Forward/Backward prediction

