More review problems for Math 151 You should be able to do all of these

Factor the following polynomials as much as you can, using integer coefficients.

1.
$$x^2 - 1$$
.

2.
$$x^3 - 1$$
.

3.
$$x^2 - a^2$$
.

4.
$$x^3 - a^3$$
.

5.
$$x^4 - a^4$$
.

6.
$$x^5 - a^5$$
.

7.
$$x^6 - a^6$$
.

8.
$$x^7 - a^7$$
.

9.
$$x^8 - a^8$$
.

10. Find a formula for

$$\sum_{i=1}^{n} (2i-1) = 1+3+5+\dots+(2n-1).$$

11. Use induction to show that

$$1 + r + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}.$$

- 12. What is the simplest function? Why?
- 13. What is the second-simplest type of function? Explain.
- 14. If f and g are functions, what is f + g?
- 15. If f and g are functions, what is $f \cdot g$?
- 16. What is a polynomial function?
- 17. What is the domain of a polynomial function?
- 18. What is a rational function?
- 19. What is the domian of a rational function?
- 20. Does there exist a rational function with non-constant denominator and domain all of \mathbb{R} ?
- 21. What is π ?
- 22. What is π ? (This is not a typo. There are two answers.)
- 23. Define $\sin x$ in terms of the unit circle.
- 24. Define $\cos x$ in terms of the unit circle.

- 25. What is $\tan x$?
- 26. What is $\sec x$?
- 27. What is $\cot x$?
- 28. What is $\csc x$?
- 29. Show that $\sin(-x) = -\sin x$.
- 30. Show that $\cos(-x) = \cos x$.
- 31. Show that $\sin(y+z) = \sin y \cos z + \cos y \sin z$.
- 32. Derive a formula for $tan(2\omega)$.
- 33. Show that $\sin(\frac{\pi}{2} \alpha) = \cos \alpha$.
- 34. Give the numerical values of $\sin \frac{\pi}{3}$, $\cos \frac{\pi}{3}$, $\tan \frac{\pi}{3}$, $\sec \frac{\pi}{3}$, $\cot \frac{\pi}{3}$, and $\csc \frac{\pi}{3}$ as radicals.
- 35. Give the numerical values of $\sin 0$, $\cos 0$, $\tan 0$, $\sec 0$, $\cot 0$, and $\csc 0$ as radicals.
- 36. Give the numerical values of $\sin \frac{\pi}{2}$, $\cos \frac{\pi}{2}$, $\tan \frac{\pi}{2}$, $\sec \frac{\pi}{2}$, $\cot \frac{\pi}{2}$, and $\csc \frac{\pi}{2}$ as radicals.
- 37. Give the numerical values of $\sin(-\frac{\pi}{6})$, $\cos(-\frac{\pi}{6})$, $\tan(-\frac{\pi}{6})$, $\sec(-\frac{\pi}{6})$, $\cot(-\frac{\pi}{6})$, and $\csc(-\frac{\pi}{6})$ as radicals.
- 38. Show that $\frac{\sec a 1}{\sec a + 1} + \frac{\cos a 1}{\cos a + 1} = 0$.
- 39. Show that $1 + \cot^2(\pi/2 x) = \frac{1}{\sin^2(\pi/2 x)}$.
- 40. Show that $\frac{\sin \beta}{\csc \beta} + \frac{\cos \beta}{\sec \beta} = 1$.
- 41. Show that $\sec^4 \theta \sec^2 \theta = \frac{1}{\cot^4 \theta} + \frac{1}{\cot^2 \theta}$.
- 42. Show that $\tan 3\beta = \frac{3\tan \beta \tan^3 \beta}{1 3\tan^2 \beta}$.
- 43. Show that $\sin(x+y)\sin(x-y) = \sin^2 x \sin^2 y$.
- 44. Show that $\cot(x/2) = \frac{1 + \cos x}{\sin x}$.
- 45. Show that $\csc y \sec y = 2 \csc 2y$.