

光的全反射和光路可逆现象

$$n_1 \sin I_1 = n_2 \sin I_2$$

在一定条件下,入射到两种介质界面上的光会全部反射回原来的介质,而没有折射光产生,这种现象称为光的全反射现象。

发生全反射的条件

必要条件: $n_1 > n_2$, 由光密介质进入光疏介质。

充分条件: $I_1>I_0$, 入射角大于全反射角。

$$\sin I_0 = \frac{n_2}{n_1}$$

1870年,英国科学家丁达尔全反射实验

1870年,英国科学家丁达尔全反射实验

$$\sin I_0 = \frac{n_2}{n_1}$$

当光线从玻璃射向与空气接触的表面时,玻璃的折射率不同

、对应的临界角不同。

n	1.5	1.52	1.54	1.56	1.58	1.60	1.62	1.64	1.66
I_0	41° 8'	41° 1'	40° 5'	39° 9'	39° 3'	38° 7'	38° 1'	37° 6'	37°

利用棱镜产生全反 射需要注意的问题

全反射的应用

◆ 用棱镜代替反射镜:减少光能损失

全反射光纤

◆ 测量玻璃的折射率

光路可逆

光路可逆:

求焦点

光学设计中,逆向计算:目镜,显微物镜等

求焦点

光路可逆应用

费马原理

光从一点传播到另一点,期间无论经过多少次折射和反射,其 光程为极值。光是沿着光程为极值(极大、极小或常量)的路径传 播的。

光程

光线在介质中所走过的几何路程和折射率的乘积称为光程。 $L = n \cdot s$ 光程等于在相同的时间内,光在真空中传播的几何路程。

两个波面之间的所有光线的光程都相等。

马吕斯定律

光线束在各向同性的均匀介质中传播时,始终保持着与波面的正交性,并且入射波面与出射波面对应点之间的光程均为定值。