

Puissances active et réactive - Corrigé Exercice 1

Selon les indications de la donnée, on peut écrire les informations suivantes :

$$u(t) = 20 \cdot \sin\left(5000 \cdot t - \frac{\pi}{3}\right) = \hat{U} \cdot \sin(\omega t + \alpha) \qquad \mapsto \qquad \hat{U} = 20 \text{ V} \quad \text{et} \quad \alpha = -\frac{\pi}{3}$$

$$i(t) = 12 \cdot \sin\left(5000 \cdot t - \frac{\pi}{18}\right) = \hat{I} \cdot \sin(\omega t + \beta)$$
 \mapsto $\hat{I} = 12 \text{ A}$ et $\beta = -\frac{\pi}{18}$

• Puissance apparente :

On a: $S = U \cdot I$ ou: $S = \frac{\hat{U}}{\sqrt{2}} \cdot \frac{\hat{I}}{\sqrt{2}} = \frac{\hat{U} \cdot \hat{I}}{2}$

avec: $\hat{U} = 20 \text{ V}$ et: $\hat{I} = 12 \text{ A}$

• Puissance active :

On a : $P = U \cdot I \cdot \cos \varphi$ avec φ étant le déphasage entre la tension et le courant.

D'après les expressions de u(t) et i(t), le déphasage vaut :

$$\varphi = \alpha - \beta = -\frac{\pi}{3} - \left(-\frac{\pi}{18}\right)$$

d'où: $\varphi = -\frac{5\pi}{18} = -50^{\circ}$

L'angle φ est négatif, le courant est donc en avance sur la tension : la réactance est de nature capacitive.

$$P = S \cdot \cos \varphi = U \cdot I \cdot \cos \varphi = \frac{\hat{U} \cdot \hat{I}}{2} \cdot \cos \varphi = \frac{20 \cdot 12}{2} \cdot \cos \left(-\frac{5\pi}{18}\right)$$

• Puissance réactive :

On a: $Q = U \cdot I \cdot \sin \varphi \qquad \text{ou}: \qquad Q = \frac{\hat{U} \cdot \hat{I}}{2} \cdot \sin \varphi = \frac{20 \cdot 12}{2} \cdot \sin \left(-\frac{5\pi}{18}\right)$

Application numérique:

S = 120 VA P = 77.1 W Q = -91.9 var

• Détermination de R et X:

La résistance R est seule à l'origine de la puissance active :

$$P = R \cdot I^2$$

$$R = \frac{2 \cdot P}{\hat{I}^2}$$

La réactance X est seule à l'origine de la puissance réactive :

$$Q = X \cdot I^2$$

$$X = \frac{2 \cdot Q}{\hat{I}^2}$$

<u>Application numérique</u>:

$$R = 1.1 \Omega$$

$$X = -1.28 \Omega$$

Remarque:

Dans ce cas traité ici, la charge est capacitive car la réactance est <u>négative</u> (X < 0), le déphasage φ l'est également ainsi que le $\sin \varphi$, et la puissance réactive Q absorbée par la charge (càd fournie par la source S) est aussi négative : on dit qu'une charge capacitive <u>fournit</u> de la puissance réactive positive.