Transistores bipolares:

Construção, caraterísticas e aplicações

Fernando Pujaico Rivera¹

¹Universidade Federal de Lavras

Aula-1 2016

Descrição simples do transistor - Bipolar junction transistor [BOYLESTAD]

Figure: Descrição do BJT em saturação

Semicondutor

$$R = \frac{\rho \ l}{A}$$

 ρ : ohmios-metro

QUADRO 1.1 Valores de Resistividade Típicos		
Condutor	Semicondutor	Isolante
$\rho \approx 10^{-6} \Omega$ -cm (cobre)	$\rho \equiv 50 \ \Omega$ -cm (germânio) $\rho \cong 50 \times 10^3 \ \Omega$ -cm (silício)	$\rho \equiv 10^{12} \Omega$ -cm (mica)

Conductor < semicondutor < Isolante

Figure : Resistência ao fluxo de carga

Materiais condutores

Figure : Elétrons nas camadas e camadas de valência

Materiais semicondutores

Figure : Elétrons nas camadas e camadas de valência

Semicondutor intrínseco

Figure: Semicondutor intrínseco (Semicondutor Puro)

Dopagem: Semicondutor extrínseco tipo P

Figure: Semicondutor extrínseco tipo P

Dopagem: Semicondutor extrínseco tipo N

Figure: Semicondutor extrínseco tipo N

União PN

Figure: União PN

União PN - Polarização direta

Figure: Polarização direta

União PN - Polarização inversa

Figure: Polarização inversa

União NPN e PNP

Figure: Transistor BJT - Sem polarização

Transistor NPN polarizado

Figure: Transistor BJT

Ganho de corrente num BJT em DC

Figure : NPN - Ganho de corrente

Ganho de corrente num BJT em DC

100<hfe<300 sinal

Figure : PNP - Ganho de corrente

Curva do transistor

Figure: Curva característica do transistor

Corte e saturação

Figure : Descrição do BJT em saturação e corte

Levar um transistor na região de corte

Figure: Transistor em corte

Levar um transistor na região de ativa

Figure: Transistor na região ativa

Levar um transistor na região de saturação

Figure: Transistor na região de saturação

Exemplo de cálculo de valores de resistência

Figure : Levar o transistor na região de corte

Circuitos uteis

Figure : Espelho de corrente

References I

[BOYLESTAD] BOYLESTAD, R. DISPOSITIVOS ELETRONICOS E TEORIA DE CIRCUITOS. LTC.