Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

\sim			, • 1	
Cognome,	nome	ρ	matricol	ล:
Cognonic,	1101110	\mathbf{c}	manico	u.

Esercizio 1

Rispondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte corrette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).

(a) Sia P la proposizione $A \wedge B \rightarrow C$. Allora

2 punti

- \Box Se *i* è un'interpretazone tale che i(C) = 0 allora necessariamente i(A) = i(B) = 0.
- \blacksquare P è conseguenza logica di A \to C.
- □ P è una tautologia.
- \square P è una contraddizione.
- (b) Siano $B \in C$ insiemi tali che $C \subseteq B$. Allora possiamo concludere con certezza che 2 punti \Box $B \in C$ non possono essere disgiunti.
 - $\blacksquare (B \cup C) \setminus (B \setminus C) = C.$
 - \blacksquare se |B| < |C| allora |B| = |C|.
 - \square se |B| = |C| allora $B \setminus C = \emptyset$.
- (c) Sia R una relazione binaria su un insieme non vuoto A.

2 punti

- \blacksquare Se R è riflessiva, allora non può essere anche irriflessiva.
- \blacksquare Se R è una relazione di equivalenza, allora è anche un preordine.
- \blacksquare Se R è un ordine e S è un'altra relazione binaria su A tale che $R\subseteq S,$ allora S è riflessiva.
- \square Se R è antisimmetrica, allora non può essere anche simmetrica.
- (d) Consideriamo le funzioni $f: \mathbb{R}^2 \to \mathbb{R}$, $(x,y) \mapsto 2x^2 + y$ e $g: \mathbb{R} \to \mathbb{R}^2$, $x \mapsto (x,2x)$. Allora

2 punti

- \square la funzione f è iniettiva.
- $\blacksquare f \circ q(x) = 2x(x+1)$ per ogni $x \in \mathbb{R}$.
- \square g è iniettiva e f è l'inversa di g.
- \blacksquare Esiste $x \in \mathbb{R}$ tale che g(x) = (5, 10).

- (e) Quali delle seguenti sono formule che formalizzano correttamente 2 punti "x è un numero primo" utilizzando il linguaggio $\cdot,1$ e relativamente alla struttura $\langle \mathbb{N},\cdot,1\rangle$

 - $\exists x \neg (x = 1) \lor \forall y \forall z (y \cdot z = x \to y = 1 \lor z = 1)$
- (f) Siano $\varphi(x)$ e $\psi(x,y)$ formule del prim'ordine e σ un enunciato.

- 2 punti
- Se \mathcal{A} è una struttura tale che $\mathcal{A} \models \neg \exists x \varphi(x)$, allora $\mathcal{A} \models \forall x (\varphi(x) \to \sigma)$.
- $\Box \ \forall x \exists y \, \psi(x,y) \models \exists y \forall x \, \psi(x,y)$
- $\blacksquare \neg \exists x \neg \varphi(x) \models \forall x \varphi(x)$
- Se \mathcal{B} è una struttura tale che $\mathcal{B} \models \exists y \, \varphi(y)$, allora $\mathcal{B} \models \exists y \, (\neg \sigma \lor \varphi(y))$.
- (g) Sia $L = \{P, f, g, a\}$ un linguaggio del prim'ordine con P simbolo di relazione 2 punti binario, f simbolo di funzione unario, g simbolo di funzione binario e a simbolo di costante. Quali dei seguenti sono L-termini?
 - $\Box \ g(f(f(g(a,a),a)),a)$
 - $\blacksquare f(g(g(a, f(a)), g(f(a), a)))$
 - \square P(a, f(a))
 - \blacksquare g(g(f(a), f(a)), g(f(a), f(a)))

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L = \{P, R, a\}$ con P ed R simboli di relazione binaria e a simbolo di costante. Consideriamo la L-struttura $\mathcal{A} = \langle \mathbb{Z}, \geq, |, 3 \rangle$, dove | è l'usuale relazione di divisibilità.

Sia φ la formula

$$(P(x,y) \wedge R(a,y))$$

 $e \psi$ la formula

$$(P(x,y) \to R(a,y))$$

- 1. Determinare se:
 - $A \models \varphi[x/-1000, y/-2000],$
 - $\mathcal{A} \models \varphi[x/-1000, y/-3000],$
 - $A \models \exists y \ \varphi[x/-1000, y/-999].$
- 2. Determinare se $\mathcal{A} \models \forall x \exists y \varphi[x/0, y/0]$.
- 3. Determinare se:
 - $\mathcal{A} \models \psi[x/-1000, y/-2000],$
 - $\mathcal{A} \models \psi[x/-1000, y/-3000],$
 - $A \models \forall y \psi[x/-1000, y/-998].$
- 4. Determinare se $\mathcal{A} \models \exists x \forall y \psi[x/-1, y/3]$.
- 5. Determinare se $\forall x \exists y \varphi \models \exists x \forall y \psi$.

Giustificare le proprie risposte.

Soluzione:

- 1. La formula φ è verificata in \mathcal{A} con l'assegnamento x/n e y/m se e solo se $n \geq m$ e m è multiplo di 3. Quindi
 - $\mathcal{A} \not\models \varphi[x/-1000, y/-2000]$ perché -2000 non è multiplo di 3
 - $A \models \varphi[x/-1000, y/-3000]$ perché -3000 è multiplo di 3 e -1000 > -3000
 - $\mathcal{A} \models \exists y \, \varphi[x/-1000, y/-999]$, come mostrato dall'assegnazione di y a -3000 nel punto precedente.
- 2. L'enunciato $\forall x \exists y \varphi$ interpretato in \mathcal{A} afferma che

Per ogni numero intero x esiste un numero intero y minore o uguale ad x che è divisibile per 3,

ovvero

Vi sono numeri interi arbitrariamente piccoli che sono multipli di 3.

Quindi si ha che $\mathcal{A} \models \forall x \exists y \varphi$.

3. La formula ψ è verificata in $\mathcal A$ con l'assegnamento x/n e y/m se e solo se si verifica che

Se $n \geq m$, allora m è multiplo di 3.

Quindi

- $\mathcal{A} \not\models \psi[x/-1000, y/-2000]$ perché $-1000 \ge -2000$ ma -2000 non è multiplo di 3, e quindi l'antecedente dell'implicazione in ψ è vero mentre il conseguente è falso;
- $\mathcal{A} \models \psi[x/-1000, y/-3000]$ perché -3000 è multiplo di 3 e quindi con questi assegnamenti il conseguente dell'implicazione in ψ è verificato, rendendo quindi vera ψ stessa. (Si può notare che anche l'antecedente dell'implicazione in ψ è vero con tale assegnamento, anche se questo è di fatto irrilevante nel determinare se $\psi[x/-1000, y/-3000]$ sia vera in \mathcal{A} .)
- $\mathcal{A} \not\models \forall y \psi[x/-1000, y/-998]$, come mostrato dall'assegnazione di y a -2000 nel punto precedente.
- 4. L'enunciato $\exists x \forall y \psi$ interpretato in \mathcal{A} afferma che

Esiste un numero intero x tale che tutti i numeri interi minori o uguali ad esso sono divisibili per 3,

ovvero

Tutti i numeri interi sufficientemente piccoli sono multipli di 3.

Quindi si ha che $\mathcal{A} \not\models \exists x \forall y \psi$.

5. Poiché $\mathcal{A} \models \forall x \exists y \varphi \text{ ma } \mathcal{A} \not\models \exists x \forall y \psi$, per definizione di conseguenza logica si ha che $\forall x \exists y \varphi \not\models \exists x \forall y \psi$.

Esercizio 3 9 punti

Sia A un insieme non vuoto e $f \colon A \to A$ una funzione. Formalizzare relativamente alla struttura $\langle A, f \rangle$ mediante il linguaggio $L = \{f\}$ con un simbolo di funzione unario le seguenti affermazioni:

- 1. f è suriettiva
- 2. se f è suriettiva, allora f è iniettiva
- 3. $f \circ f$ è biettiva
- 4. ogni elemento ha almeno due preimmagini distinte.

Soluzione:

- 1. f è suriettiva: $\forall y \exists x (f(x) = y)$.
- 2. se f è suriettiva, allora f è iniettiva:

$$\forall y \exists x (f(x) = y) \to \forall x \forall y (f(x) = f(y) \to x = y).$$

- 3. $f \circ f$ è biettiva: $\forall y \exists x (f(f(x)) = y) \land \forall x \forall y (f(f(x)) = f(f(y)) \rightarrow x = y)$.
- 4. ogni elemento ha almeno due preimmagini distinte:

$$\forall y \exists x_1 \exists x_2 (\neg(x_1 = x_2) \land f(x_1) = y \land f(x_2) = y).$$