Linear Algebra and Applications

Sartaj UI Hasan

Department of Mathematics Indian Institute of Technology Jammu Jammu, India - 181221

Email: sartaj.hasan@iitjammu.ac.in

Lecture 06

(Aug 02, 2019) Make-up lecture

Time: 11:00-11:55 am

Invertible Matrices-Quick Revision

Definition

An $m \times m$ (square) matrix A is said to be **invertible** if there exists another square matrix B such that $BA = AB = I_m$ ($m \times m$ identity matrix). B is said to be an **inverse** of A.

- Another terminology: Invertible matrices are also called nonsingular.
 Matrices which are not invertible are said to be singular.
- **Observation 1:** The inverse of A if it exists is **unique**, notation A^{-1} .
- **Observation 2:** If A is invertible, then so is A^{-1} and $(A^{-1})^{-1} = A$.
- **Observation 3:** If A and B are invertible, so is AB, and $(AB)^{-1} = B^{-1}A^{-1}$.
- Observation 4 (Generalization of 3): The product of invertible matrices is invertible, and the inverse is the product of the inverses taken in reverse order. In other words, if A_1, A_2, \ldots, A_n are invertible matrices, then $C = A_1 A_2 \ldots A_n$ is an invertible matrix, and $C^{-1} = A_n^{-1} \ldots A_n^{-1} A_1^{-1}$.

Elementary Matrices

Definition

An $m \times m$ (square) matrix is said to be an **elementary matrix** if it is obtained from the $m \times m$ identity matrix I_m by <u>a single</u> elementary row operation.

- **Proposition 5:** If e is an elementary row operation and E is the $m \times m$ elementary matrix $e(I_m)$, then for every $m \times n$ matrix A, e(A) = EA.
 - **Proof:** Left as an exercise. (Hint: Try to prove it w.r.t. each row operation!)
- In other words, applying an elementary row operation is the same as left multiplication by the corresponding elementary matrix.

Elementary Matrices (Conti ...)

Operation	Inverse Operation
I. Interchange row p and q	Interchange row p and q
II. Multiply row p by $k \neq 0$	Multiply row p by $1/k$
III. Add k times row p to row $q \neq p$	Subtract k times row p from row q

• Example: Find the inverse of each of the elementary matrices

$$E_1 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 9 \end{bmatrix}, \quad E_3 = \begin{bmatrix} 1 & 0 & 5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• E_1, E_2 and E_3 are of type I, II and III resp. so the table gives:

$$E_1^{-1} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E_1, \quad E_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1/9 \end{bmatrix}, \quad E_3^{-1} = \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Elementary Matrices (Conti . . .)

Proposition 6: Every elementary matrix E is invertible, and E^{-1} is also an elementary matrix (of the same type).

Elementary Matrices (Conti . . .)

Proposition 6: Every elementary matrix E is invertible, and E^{-1} is also an elementary matrix (of the same type).

Proof: Let E be any elementary matrix, and let e be its corresponding elementary row operation. We know that there is another row operation f of the same type that reverses the action of e. Let F be the elementary matrix corresponding to f. Then:

$$FE = (FE)I = F(EI) = f(e(I)) = I$$

Similarly, EF = I, so F is E^{-1} . Actually, we have seen that the inverse of an elementary matrix is also an elementary matrix (of the same type).

Very Important Theorem (VIT)-Version 1.0 The Invertible Matrix Theorem (TIMT)

(This is an important theorem and try to memorise it!)

Theorem 1

The following are equivalent for an $m \times m$ square matrix A:

- A is invertible.
- A is row equivalent to the identity matrix.
- **(a)** The homogenous system AX = 0 has only trivial solution.
- ① The system of equations AX = b has a solution for every b in \mathbb{R}^m .

Note: We will further extend this theorem as we go deep into the theory of vector spaces and related concepts.