

MAT1161 – Cálculo de Uma Variável P2 Maple – 30 de outubro de 2018

Nome Legível	:					
Assinatura	:					
Matrícula				r		
wiatricura	•]	
		O 1~	77.1	D · ~	1	

Questão	Valor	Grau	Revisão
1^a	1,0		
2^a	1,0		
3^a	1,0		
Total	3,0		

Instruções Gerais:

- A duração da prova é de 1h50min.
- A tolerância de entrada é de 30min após o início da prova. Se um aluno terminar a prova em menos de 30min, deverá aguardar em sala antes de entregar a prova e sair de sala.
- A prova deve ser resolvida apenas nas folhas recebidas e nos espaços reservados para soluções.
 Não é permitido destacar folhas da prova.
- A prova é <u>sem consulta</u> a professores, fiscais ou a qualquer tipo de material. A interpretação dos enunciados faz parte da prova.
- O aluno só poderá realizar a prova e assinar a lista de presença na sua turma/sala.
- O aluno só poderá manter junto a si: lápis, borracha e caneta. Caso necessário, o fiscal poderá solicitar ajuda a outro aluno e apenas o fiscal repassará o material emprestado.
- O celular deverá ser desligado e guardado.
- O aluno não poderá sair de sala enquanto estiver fazendo a prova.

Instruções Específicas:

- Todas as questões devem ser justificadas de forma clara e rigorosa. Respostas sem justificativas não serão consideradas.
- Quando usar o Maple na resolução de qualquer questão, deixe isto claro fornecendo os comandos de entrada no programa.
- Respostas aproximadas devem ser dadas com 5 casas decimais.
- Você <u>pode</u> consultar o *Help* do Maple durante a prova, mas <u>não pode</u> consultar quaisquer outros materiais. Você <u>não pode</u> utilizar comandos do pacote *student* para resolver ou justificar as questões da prova.
- A prova pode ser resolvida a lápis ou a caneta de tinta azul ou preta. Não é permitido o uso de caneta de tinta vermelha ou verde.
- Esta prova possui 3 questões. Confira.

Atenção:

Antes de se desesperar, verifique se o seu erro não é de um destes tipos comuns:

- Falta de ; no final da linha
- Parênteses que abre mas não fecha ou fecha mas não abre
- Falta do = ou do : na atribuição de valor (f:=...)
- Falta de -> na atribuição de função (f:=x->...)
- X maiúsculo onde deveria ser minúsculo
- Deixar de usar parênteses para algum comando
- Deixar de especificar domínio para o plot (x=...) ou o implicitplot (x=...,y=...)
- Falta do sinal de multiplicação (é 2*x e não 2x)
- O comando para a função seno é sin e não sen
- Ordem certa dos parênteses na derivada é D(f)(x)
- Os comandos Int e Sum são diferentes dos int e sum
- π se escreve Pi (e não PI ou pi)
- e^x se escreve $\exp(x)$
- O separador de decimal é o ponto e não a vírgula (por exemplo, $\frac{1}{10} = 0.1$ e não 0, 1)
- Espaço indevido entre o nome do comando e o argumento (por exemplo, sin (x) se escreve $\sin(x)$; plot (f(x),...) se escreve $\operatorname{plot}(f(x),...)$)

Lembre também que frequentemente uma linha que foi apagada (porque você mudou de ideia) continua tendo efeitos sobre o que você fizer depois. Use o comando restart; e abaixo dele copie só aquelas linhas que forem relevantes para o problema, apertando enter em todas.

Embora seu arquivo não seja utilizado para correção, recomendamos que você o salve com frequência para evitar perda de trabalho em caso de travamento do programa durante a prova.

Questão 1

Considere dois polinômios, p(x) e q(x), satisfazendo as seguintes condições:

- Os gráficos de p(x) e q(x) não são retas.
- p(x) é o polinômio de menor grau possível que melhor aproxima a função $f(x) = \cos(x)$ em torno de x = 0.
- q(x) é o polinômio de <u>menor</u> grau possível que <u>melhor</u> aproxima a função $g(x) = \sin(x)$ em torno de x = 0.
- (a) Determine p(x).

(b) Determine q(x).

(c) Determine os valores de x para os quais p(x) = q(x) e compare-os com as soluções da equação f(x) = g(x). Seus resultados são o que você esperava? Comente.

Questão 2

Considere o triângulo abaixo, com vértices $A=(0,0),\,B=(2,0)$ e C=(-1,y).

(a) Determine o comprimento dos lados AC e BC em termos de y.

(b) Determine o ângulo α em termos de y.

Dica: A lei do cossenos diz que se um triângulo possui lados a, b e c, então

$$a^2 = b^2 + c^2 - 2bc\cos(\theta),$$

onde θ é o ângulo oposto ao lado a.

Questão 3

Considere a função

$$f(x) = x^3 - 100\ln(x^2 + 1) + 100$$

Utilize a condição inicial $x_0 = 3$ e escreva as 5 primeiras aproximações fornecidas pelo Método de Newton para encontrar uma das raízes de f. Copie para o papel todos os comandos utilizados. As aproximações pedidas devem ser dadas com pelo menos 5 casas decimais corretas.