Modular Arithmetic Examples

19CSE311 Computer Security

Jevitha KP

Department of CSE

GCD(12343642, 2343)

а	b	q	r
12343642	2343	5268	718
2343	718	3	189
718	189	3	151
189	151	1	38
151	38	3	37
38	37	1	1
37	1	37	0

Addition Modulo 11 Example

• $Z11 = \{0,1,2,3,4,5,6,7,8,9,10\}$

0	0	1	2	3	4	5	6	7	8	9	10
0	0	1	2	3	4	5	6	7	8	9	10
1	1	2	3	4	5	6	7	8	9	10	0
2	2	3	4	5	6	7	8	9	10	0	1
3	3	4	5	6	7	8	9	10	0	1	2
4	4	5	6	7	8	9	10	0	1	2	3
5	5	6	7	8	9	10	0	1	2	3	4
6	6	7	8	9	10	0	1	2	3	4	5
7	7	8	9	10	0	1	2	3	4	5	6
8	8	9	10	0	1	2	3	4	5	6	7
9	9	10	0	1	2	3	4	5	6	7	8
10	10	0	1	2	3	4	5	6	7	8	9

Multiplication Modulo 11 Example

• $Z11 = \{0,1,2,3,4,5,6,7,8,9,10\}$

0	0	1	2	3	4	5	6	7	8	9	10
0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10
2	0	2	4	6	8	10	1	3	5	7	9
3	0	3	6	9	1	4	7	10	2	5	8
4	0	4	8	1	5	9	2	6	10	3	7
5	0	5	10	4	9	3	8	2	7	1	6
6	0	6	1	7	2	8	3	9	4	10	5
7	0	7	3	10	6	2	9	5	1	8	4
8	0	8	5	2	10	7	4	1	9	6	3
9	0	9	7	5	3	1	10	8	6	4	2
10	0	10	9	8	7	6	5	4	3	2	1

Additive Inverse Z11

- $Z11 = \{0,1,2,3,4,5,6,7,8,9,10\}$
- Additive Inverse mod 11= {0,10,9,8,7,6,5,4,3,2,1}

Multiplicative Inverse Z11

- $Z11 = \{1,2,3,4,5,6,7,8,9,10\}$
- Multiplicative Inverse mod 11= {1,6,4,3,9,2,8,7,5,10}

- » Perform the following operations (the inputs come from Zn):
 - » a. Add 7 to 14 in Z15.
 - » b. Subtract 11 from 7 in Z13.
 - » c. Multiply 11 by 7 in Z20.
- » Perform the following operations (the inputs come from either Z or Zn):
 - » a. Add 17 to 27 in Z14.
 - » b. Subtract 43 from 12 in Z13.
 - » c. Multiply 123 by −10 in Z19.

- » a. Add 7 to 14 in Z15.
 - = 7 + 14
 - $= 21 \mod 15$
 - $= 6 \mod 15$

- » b. Subtract 11 from 7 in Z13.
 - $= 7-11 \mod 13$
 - $= -4 \mod 13$
 - $= (-4+13) \mod 13$
 - $= 9 \mod 13$

- » c. Multiply 11 by 7 in Z20.
 - $= 7 * 11 \mod 20$
 - $= 77 \mod 20$
 - $= 17 \mod 20$

- » Perform the following operations (the inputs come from either Z or Zn):
- » a. Add 17 to 27 in Z14.
 - 1st approach
 - $= 17 \mod 14 + 27 \mod 14$
 - $= 3 \mod 14 + 13 \mod 14$
 - $= 16 \mod 14 = 2 \mod 14.$
 - 2nd approach
 - $= 17+27 \mod 14$
 - $= 44 \mod 14 = 2 \mod 14$

- » b. Subtract 43 from 12 in Z13. 8
 - $= 12 43 \mod 13$
 - $= -31 \mod 13$
 - $= -31+13 \mod 13 = -18 \mod 13$
 - $= -18 + 13 \mod 13 = -5 \mod 13$
 - $= -5 + 13 \mod 13$
 - $= 8 \mod 13$

- » c. Multiply 123 by −10 in Z19.
 - = 123 * -10 mod 19
 - $= -1230 \mod 19$
 - $= -14 \mod 19$
 - $= -14 + 19 \mod 19$
 - $= 5 \mod 19$