中国科学技术大学期中试卷 2022-2023 学年第二学期

课程名称:代数拓扑	课程编号: _	MATH5004P
考试时间:	考试形式: _	闭卷
学生姓名:	学 号: _	
1. (30 分) 填空:		
(a) 求同调群 $H_1(M_2, \mathbb{Z}) = $		
(b) C 为交换群, 求同调群 Ĥ _n (S ⁿ , G) ==		
(c) 求局调群 H ₃ (RP ⁷ ∨ S ³ , Z) =		
(d) 求周调群 H ₁ (N ₃ , Z) ≈		
(e) 求同调群 $H_k(RP^n, \mathbb{Z}_2) =$		
(f) 求同调群 H _k (CP ⁿ , Z) ==		
(g) M 为 7 维流型, x ∈ M H _k (M, M\{x}) = _		and ones in
(h) 求 S ⁿ × S ^m 的欧拉示性数		
(i) 找两个拓扑空间,其同调群相同,但不同伦邻	等价:	
$(j) \not R H_{k-1}(RP^k \setminus \{x\}) \underline{\hspace{1cm}}$		
2. (10 分) 证明: f: RP ²ⁿ → RP ²ⁿ 有不动点。		

3. (10 分) 设 $X=RP^2\times S^1$, 构造一个 X 的 CW 复型结构并利用这个 CW 复型结构求 X 的 同调群。

4. (10 分) 证明: S∞ 是可缩的。

5. (10 分) 证明: $\tilde{H}_n(X) \cong \tilde{H}_{n+1}(SX)$.

6. (10 分) G 为交换群, 若 $A \not\in X$ 的收缩 (retract), 证明: $H_n(X;G) \cong H_n(A;G) \oplus H_n(X,A;G)$.

7. (10 分) 若 F 是域,证明: $H^k(X,F) = Hom_F(H_k(X,F),F)$.

8. (10 分) 设 $f: S^2 \to S^2$, $\deg f = k$, $T_f = S^2 \times I / \sim$, 这里 $(x,0) \sim (f(x),1)$, 求 $H_n(T_f)$.