O Teorema da Função Inversa e da Função Implícita

Prof. Doherty Andrade Universidade Estadual de Maringá Departamento de Matemática - 87020-900 Maringá-PR, Brazil

Sumário

1. Teorema da Função Inversa

1

2. Teorema da Função Implícita

11

1. Teorema da Função Inversa

O Teorema da função Inversa é um importante resultado que trata da possibilidade de inverter uma função, mesmo que localmente. O teorema também fala das propriedades de diferenciabilidade da inversa. O Teorema da Função Inversa diz basicamente que se $f'(x_0)$ é invertível, então f é invertível numa vizinhança de x_0 . Este critério usa o determinante da matriz Jacobiana da função, como veremos mais adiante.

Antes de enunciarmos este importante teorema vamos precisar de alguns conceitos.

Definição 1 Seja $U \subset \mathbb{R}^m$ um aberto. Dizemos que $f: U \subset \mathbb{R}^m \to \mathbb{R}^n$ é de classe C^1 em U se as derivadas parciais $\frac{\partial f_i}{\partial x_j}$, $i=1,2,\ldots,n$ e $j=1,2,\ldots,m$ existem e são contínuas em U.

Definição 2 Sejam U e V abertos do \mathbb{R}^n e $f: U \to V$ uma bijeção. Dizemos que f é um difeomorfismo se f e f^{-1} são diferenciáveis. Dizemos que f é um difeomorfismo de classe C^1 se f e f^{-1} são de classe C^1 .

Dois fatos óbvios:

- A composta de difeormorfismos é um difeomorfismo.
- A inversa de um difeomorfismo é um difeomorfismo.

Notemos que se $f: U \to V$ é um difeomorfismo, então $f'(x): \mathbb{R}^n \to \mathbb{R}^n$, é um isomorfismo, para todo $x \in U$ e

$$[f'(x)]^{-1} = (f^{-1})'(f(x)).$$

De fato, $Id_U(x) = f^{-1} \circ f(x)$ segue que

$$h = (f^{-1})'(f(x)).f'(x)h,$$

isto é,

$$[f'(x)]^{-1} = (f^{-1})'(f(x)).$$

Definição 3 Seja $U \subset \mathbb{R}^n$ um aberto $e f : U \to \mathbb{R}^n$ uma aplicação. Dizemos que f é um difeomorfismo local se para cada $x \in U$, existe um aberto $V_x \ni x$ e um aberto $W_{f(x)}$ tal que $f : V_x \to W_{f(x)}$ seja um difeomorfismo. Um difeomorfismo local é de classe C^1 quando $f : V_x \to W_{f(x)}$ for de classe c^1 para cada $x \in U$.

Para a demonstração do Teorema da função inversa vamos precisar do seguinte teorema sobre ponto fixo. É o teorema do ponto fixo de Banach ou o princípio da contração. Sejam (M,d) e (N,d_1) dois espaços métricos. Uma aplicação $f:M\to N$ é dita uma contração se existe $0\leq k<1$ tal que

$$d_1(f(x), f(y)) \le kd(x, y), \ \forall x, y \in M.$$

É fácil ver que toda contração é uniformemente contínua.

Teorema 4 Sejam (M, d) um espaço métrico completo e $f: M \to M$ uma contração. Então, f possui um único ponto fixo em M. Além disso, dado $x_0 \in M$ a sequência definida por

$$x_1 = f(x_0), \ x_{n+1} = f(x_n), \ n = 1, 2, \dots$$

é uma sequência convergente e $\lim_{n\to\infty} x_n = a$ é ponto fixo de f.

Demonstração: se a sequência (x_n) definida acima converge para $a \in M$, então como f é contínua temos

$$f(a) = f(\lim x_n) = \lim f(x_n) = \lim x_{n+1} = a.$$

Provando que a é ponto fixo de f.

Se f tem dois pontos fixos a e b, então temos

$$d(a,b) = d(f(a), f(b)) \le kd(a,b),$$

o que é absurdo a menos que a = b. Logo, a = b.

Resta provar que a sequência (x_n) converge. Notemos que $d(x_1, x_2) \le kd(x_0, x_1)$ e que em geral $d(x_{n+1}, x_n) \le k^n d(x_1, x_0), \forall n \in$

 \mathbb{N} . Segue que para $n, p \in \mathbb{N}$ temos

$$d(x_n, x_{n+p}) \leq d(x_n, x_{n+1}) + \dots + d(x_{n+p-1}, x_{n+p})$$

$$\leq [k^n + k^{n+1} + \dots + k^{n+p-1}] d(x_0, x_1)$$

$$\leq \frac{k^n}{1 - k} d(x_0, x_1).$$

Como $\lim k^n = 0$ segue que a sequência é de Cauchy e portanto convergente, o que completa a prova do teorema. \square

• Exemplo 5

Seja $f:[a,b]\to[a,b]$ uma aplicação contínua com derivada tal que $\sup_{x\in[a,b]}|f'(x)|<1$. Então, f é uma contração.

Este resultado decorre da seguinte desiguadade

$$|f(y) - f(x)| \le |y - x| \sup_{c \in (a,b)} |f'(c)| \le k|y - x|.$$

Vamos precisar também dos seguinte fatos:

Fato 1: Desigualdade do valor médio: Seja U aberto conexo do \mathbb{R}^n e $f: U \to \mathbb{R}^n$ diferenciável tal que $||f'(x)|| \leq M, \forall x \in M$, então

$$||f(b) - f(a)|| \le M||b - a||, \ \forall a, b \in U.$$

Fato 2: Continuidade da Aplicação matriz Inversa: Se A é invertível e $B \in L(\mathbb{R}^n; \mathbb{R}^n)$ tal que $||B - A|| ||A^{-1}|| < 1$, então B é invertível. A aplicação $A \mapsto A^{-1}$ é contínua para todo A.

Teorema 6 (Função Inversa) Seja $W \subset \mathbb{R}^n$ um aberto, $f: W \to \mathbb{R}^n$ uma aplicação de classe C^1 e $a \in W$. Se f'(a) é bijetora

 $e \ b = f(a), \ ent \tilde{a}o$

- a) existem abertos $U\ni a$ e $V\ni b$ do \mathbb{R}^n tal que $f:U\to V$ é bijetora.
- b) $g: V \to U$ é de classe C^1 , $g = f^{-1}$.

Em outras palavras, f é um difeomorfismo local de classe C^1 .

Demonstração: Seja $f'(a) = A e \lambda$ tal que

$$2\lambda ||A^{-1}|| = 1. (1.1)$$

Como f' é contínua em a, existe uma bola aberta U de centro em a tal que

$$||f'(x) - A|| < \lambda, \, \forall x \in U. \tag{1.2}$$

Seja $y \in \mathbb{R}^n$ e

$$\phi(x) = x + A^{-1}(y - f(x)), \, \forall x \in U.$$
 (1.3)

Note que

$$f(x) = y \Leftrightarrow \phi(x) = x.$$

Além disso,

$$\phi'(x) = I - A^{-1}f'(x) = A^{-1}[A - f'(x)].$$

Logo,

$$\|\phi'(x)\| = \|A^{-1}\| \cdot \|A - f'(x)\| < \frac{1}{2\lambda} \cdot \lambda = \frac{1}{2},$$

isto é,

$$\|\phi'(x)\| < \frac{1}{2}.\tag{1.4}$$

Tomemos x_1 e x_2 na bola U e $h(t) = \phi((1-t)x_1 + tx_2)$. Então,

$$h'(t) = \phi'((1-t)x_1 + tx_2).(x_2 - x_1).$$

Logo, por (1.4) temos

$$||h'(t)|| = ||\phi'((1-t)x_1 + tx_2)||.||x_2 - x_1|| < \frac{1}{2}||x_2 - x_1||.$$

Agora usando a desigualdade do valor médio, concluímos que

$$\|\phi(x_2) - \phi(x_1)\| < \frac{1}{2} \|x_2 - x_1\|.$$
 (1.5)

Assim, ϕ é uma contração sobre a bola U.

Como $\phi(U)\subset U$ e $\phi:U\to U$ é uma contração, então ϕ tem um único ponto fixo $x\in U$. Segue que y=f(x) para no máximo um $x\in U$. Assim, $f:U\to f(U)$ é bijetora. Seja $g=f^{-1}$.

Agora mostraremos que V = f(U) é aberto. Seja $y_0 = f(x_0) \in U$. Seja B_1 a bola aberta de centro x_0 e raio r > 0 tal que $\overline{B_1} \subset U$.

Tomemos y tal que

$$||y-y_0||<\lambda r,$$

provaremos que y pertence a V. Assim, da definição de ϕ , veja (1.3), temos

$$\|\phi(x_0) - x_0\| = \|A^{-1}(y - y_0)\| < \|A^{-1}\|\lambda r = \frac{r}{2}.$$

Se $x \in \overline{B_1}$, segue de (1.5) que

$$\|\phi(x) - x_0\| \le \|\phi(x) - \phi(x_0)\| + \|\phi(x_0) - x_0\|$$

$$\le \frac{1}{2} \|x - x_0\| + \frac{r}{2}$$

$$< \frac{r}{2} + \frac{r}{2} = r.$$

Segue que $\phi(x) \in B_1 \subset \overline{B_1}$.

Assim, $\phi: \overline{B_1} \to \overline{B_1}$ é uma contração e como $\overline{B_1}$ é um espaço métrico completo, temos que ϕ tem um único ponto fixo $x \in \overline{B_1}$. Para este x, f(x) = y e assim $y \in f(\overline{B_1}) \subset f(U) = V$. Logo, V é aberto, pois y é ponto interior de V. Isto prova a parte a) do teorema.

Para a parte b) do teorema, que g é de classe C^1 , tomemos U=B e V=f(B). Seja $y\in V$ e $y+k\in V$. Então, existe $x\in B$ e $x+h\in B$ tal que

$$f(x) = y$$
 e $f(x+h) = y+k$.

Da definição (1.3) de ϕ , temos

$$\phi(x+h) - \phi(x) = h + A^{-1} [f(x) - f(x+h)] = h - A^{-1}k.$$

Por (1.5) temos

$$||h - A^{-1}k|| \le \frac{1}{2}||h||.$$

Logo,

$$||h|| - ||A^{-1}k|| \le \frac{1}{2}||h||,$$

isto é,

$$-\|A^{-1}k\| \le -\frac{1}{2}\|h\|.$$

Ou seja,

$$||A^{-1}k|| \ge \frac{1}{2}||h||.$$

Logo,

$$||h|| \le 2||A^{-1}||.||k|| = \frac{||k||}{\lambda}.$$
 (1.6)

Agora vamos usar o seguinte que a se A é invertível e $B \in L(\mathbb{R}^n; \mathbb{R}^n)$ tal que $\|B - A\| \|A^{-1}\| < 1$, então B é invertível. A aplicação $A \mapsto A^{-1}$ é contínua para todo A.

Em (1.1) e (1.2) temos que

$$||f'(x) - A|| ||A^{-1}|| < \frac{1}{2} < 1,$$

e assim f'(x) tem uma inversa T.

Como

$$g(y+k) - g(y) - Tk = h - Tk = -T[f(x+h) - f(x) - f'(x)h]$$

De (1.6) temos que

$$\frac{1}{\|k\|} \le \frac{1}{\lambda \|h\|}.$$

$$\frac{\|g(y+k) - g(y) - Tk\|}{\|k\|} \le \frac{\|T\|}{\lambda} \cdot \frac{\|f(x+h) - f(x) - f'(x)h\|}{\|h\|} (1.7)$$

De (1.6) temos que quando $k \to 0, h \to 0$ também.

Logo, o lado direito de (1.7) vai para zero e portanto o lado esquerdo de (1.7) vai para zero. Segue da definição de derivada que

$$g'(y) = T = [f'(x)]^{-1}$$
.

Temos que g é contínua em V, pois g é diferenciável.

Como $g'(y) = T = [f'(g(y))]^{-1}$ temos que g' é contínua, pois $f', g \in A \mapsto A^{-1}$ são contínuas. \square

• Exemplo 7 A hipótese f é C^1 não pode ser retirada. Considere a seguinte função

$$f(x) = \begin{cases} \frac{x}{2} + x^2 \sin(\frac{1}{x}), & \text{se } x \neq 0, \\ 0, & \text{se } x = 0. \end{cases}$$

Temos que f é diferenciável e sua derivada é dada por

$$f'(x) = \begin{cases} \frac{1}{2} + 2x\sin(\frac{1}{x}) - \cos(\frac{1}{x}), & \text{se } x \neq 0, \\ \frac{1}{2}, & \text{se } x = 0. \end{cases}$$

Se f fosse invertível numa vizinhança de $x_0 = 0$, então f seria injetora nessa vizinhança. Como $f'(0) = \frac{1}{2} > 0$, f seria crescente. Mas isto é impossível, pois em todo vizinhança de x_0 , f muda de sinal.

Corolário 8 Seja $U \subset \mathbb{R}^n$ um aberto $e \ f : U \to \mathbb{R}^n$ aplicação de classe C^1 . Se $f'(x) : \mathbb{R}^n \to \mathbb{R}^n$ é invertível para todo $x \in U$, então f é um difeomorfismo de classe C^1 .

Observação 9 Escrevendo y = f(x) em coordenadas

$$y_i = f_i(x_1, x_2, \dots, x_n), i = 1, 2, \dots, n$$

o sistema pode ser resolvido para $x = x_1, \ldots, x_n$ em termos de y_1, y_2, \ldots, y_n se x e y estiverem restritos a abertos adequados a e b. As soluções são únicas e continuamente diferenciáveis.

• Exemplo 10

a: Seja $F(x,y) = (\exp(x)\cos(y), \exp(x)\sin(y))$ de classe C^1 . Temos que

$$F'(x,y) = \begin{bmatrix} \exp(x)\cos(y) & -\exp(x)\sin(y) \\ \exp(x)\sin(y) & \exp(x)\cos(y) \end{bmatrix}$$

O determinante de F'(x,y) é igual a $\exp(2x) \neq 0$ para todo $(x,y) \in \mathbb{R}^2$.

Pelo Teorema da Função Inversa, dado (x_0, y_0) existe um aberto $U \ni (x_0, y_0)$ e um aberto $V \ni F(x_0, y_0)$ tal que $F: U \to V$ é um difeomorfismo.

Note que F não é bijetora, pois $F(0,0) = F(0,2\pi)$.

b: Seja

$$U = \{(r, \theta); r > 0 \in 0 < \theta < 2\pi\}$$

aberto do \mathbb{R}^2 . Seja $F(r,\theta) = (r\cos(\theta), r\sin(\theta))$, com $(r,\theta) \in U$. Como F é de classe C^1 e $|F'(r,\theta)| \neq 0$ segue que F é localmente um difeo de classe C^1 .

c: Seja $U \subset \mathbb{R}^2$ aberto e $f: U \to \mathbb{R}$ tal que $\frac{\partial f}{\partial y}(a, b) \neq 0$. Então, $F: U \to \mathbb{R}^2$ dada por (x, y) = (x, f(x, y)) é de classe C^1 e é um difeo local em (a, b).

Basta calcular a derivada de F, temos que

$$|F'(x,y)| = \det \begin{bmatrix} 1 & 0 \\ \frac{\partial f}{\partial x}(a,b) & \frac{\partial f}{\partial y}(a,b) \end{bmatrix} = \frac{\partial f}{\partial y}(a,b) \neq 0.$$

Pelo Teorema da função inversa, existem abertos U_0 e U_1 tal que $F:U_0\to U_1$ é um difeomorfismo de classe C^1 .

d:
$$F(x,y) = (\exp(x) + \exp(y), \exp(x) + \exp(-y)).$$

e: Perto de quais pontos (x, y) podemos resolver x e y em função de u e v, onde

$$\frac{x^4 + y^4}{x} = u,$$
$$\cos(x) + \sin(y) = v(x, y)?$$

f: Sejam $x, y \in z$ dados em coordenadas esféricas,

$$x(\rho, \phi, \theta) = \rho \sin(\phi) \cos(\theta)$$

$$y(\rho, \phi, \theta) = \rho \sin(\phi) \sin(\theta)$$

$$z(\rho, \phi, \theta) = \rho \cos(\phi),$$

perto de que quais pontos podemos resolver o sistema acima para ρ , θ e ϕ em função de x, y e z?

2. Teorema da Função Implícita

É uma consequência do Teorema da Função Inversa.

Suponha que seja dado a relação F(x,y)=0. Então, para cada valor de x pode existir um ou mais valores de y que satisfaz a equação (ou pode não existir). Se $I=(x_0-h,x_0+h)$ é um intervalo tal que para cada $x \in I$ existe extamente um y satisfazendo a equação, então dizemos que F(x,y)=0 define y como uma função de x implicitamente sobre I.

Um teorema de função implícita é um teorema que determina condições sob as quais uma relação como F(x,y) = 0 define y como função de x ou x como função de y. A solução é local no sentido que o tamanho do intervalo I pode ser menor do que o domínio da relação F.

O Exemplo mais simples de um teorema de função implícita afirma que se F é diferenciável e se P é um ponto em que F_y não se anula, então é possível expressar y como função de x em uma região contendo este ponto.

Teorema 11 Seuponha que F, F_x e F_y são contínuas soobre um subconjunto aberto A do R^2 contendo o ponto $P = (x_0, y_0)$. Suponha que

$$F(x_0, y_0) = 0, \quad F_y(x_0, y_0) \neq 0.$$

Então, existem números h e k que determinam um retângulo R contido em A tal que para cada x em $I = \{x; |x - x_0| < h\}$ existe um único número y em $J = \{y; |y - y_0| < k\}$ que satisfaz a equação F(x,y) = 0. A totalidade dos pontos (x,y) formam uma função f cujo domínio contém I e cujo imagem está em J.

b) A função f e suas derivadas são contínuas em I.

Demonstração: Para x fixo no retângulo R considere a aplicação

$$T_x y = y - \frac{F(x,y)}{F_y(x_0, y_0)}$$

que leva um ponto y de J em \mathbb{R}^1 . Vamos mostrar que para h e k suficientemente pequenos a aplicação leva J em J e tem um ponto fixo. Isto é, existe um y tal que $T_xy=y$ ou em outras palavras, existe um y tal que F(x,y)=0.

Para fazer isto, primeiro reescrevemos a aplicação T_x :

$$T_x y = y_0 - c(x - x_0) - \psi(x, y),$$

onde

$$c = \frac{F_x(x_0, y_0)}{F_y(x_0, y_0)}$$

$$\psi(x,y) = \frac{1}{F_y(x_0,y_0)} \left[F(x,y) - F_x(x_0,y_0)(x-x_0) - F_y(x_0,y_0)(y-y_0) \right].$$

Como $F(x_0, y_0) = 0$ vemos que

$$\psi(x_0, y_0)$$
. $\psi_x(x_0, y_0) = 0$, $\psi_y(x_0, y_0) = 0$.

Como ψ_x e ψ_y são contínuas podemos tomar k tão pequeno tal que

$$|\psi_x(x,y)| < \frac{1}{2}, \ |\psi_y(x,y)| < \frac{1}{2}$$

para todo (x, y) no quadrado

$$S = \{(x, y); |x - x_0| \le k \text{ e } |y - y_0| \le k\}.$$

Agora espandimos $\psi(x,y)$ em série de Taylor em S em torno do ponto (x_0,y_0) :

$$\psi(x, y) = \psi_x(\zeta, \eta)(x - x_0) + \psi_y(\zeta, \eta)(y - y_0),$$

$$(\zeta,\eta)\in S.$$

Portanto, para $h \leq k$ temos a estimativa no retângulo R

$$|\psi(x,y)| \le \frac{h}{2} + \frac{k}{2}.$$

A seguir vamos mostrar que se reduzirmos h e k suficientemente a aplicação T_x aplica o intervalo J em J. Temos

$$|T_x y - y_0| \le |c(x - x_0)| + |\psi(x, y)| \le c|h| + \frac{h}{2} + \frac{k}{2} = (\frac{1}{2} + c)|h| + \frac{h}{2}.$$

Escolhendo h suficientemente pequeno, então T_xy aplica J em J para cada x em I. A aplicação T_x é uma contração, de fato, pelo Teorema do valor médio

$$|T_x y_1 - T_x y_2| = |\psi(x, y_1) - \psi(x, y_2)| \le \frac{1}{2} |y_1 - y_2|.$$

Aplicando o teorema da contração e para cada $x \in I$ fixo, existe um único y em J tal que F(x,y)=0. Isto é, y é uma função de x para $(x,y) \in R$. \square

Teorema 12 (Teorema da Função Implícita- caso especial)

Seja $F: \mathbb{R}^{n+1} \to \mathbb{R}$ função de classe C^1 . Um ponto do \mathbb{R}^{n+1} será denotado por (x, z), onde $x \in \mathbb{R}^n$ e $z \in \mathbb{R}$. Suponha que

$$F(x_0, z_0) = 0 \ e \ \frac{\partial F}{\partial z}(x_0, y_0) \neq 0.$$

Então, existe uma bola aberta $B \subset \mathbb{R}^n$ contendo x_0 e uma vizinhança V de z_0 tal que z = g(x), para uma única função g de classe C^1 em B e que satisfaz F(x, g(x)) = 0. Além disso,

$$\frac{\partial g}{\partial x_i} = -\frac{\frac{\partial F}{\partial x_i}}{\frac{\partial F}{\partial z}}, \ i = 1, 2, \dots, n.$$

• Exemplo 13

a) Perto de quais pontos a superfície $x^3 + 2y^2 + 8xz^2 - 3z^3y = 1$ pode ser representada como gráfico de uma função diferenciável z = k(x, y)?

Defina $F(x,y,z)=x^3+2y^2+8xz^2-3z^3y-1$. Vamos determinar pontos (x_0,y_0,z_0) tais que $\frac{\partial F(x_0,y_0,z_0)}{\partial z}\neq 0$. Como

$$\frac{\partial F}{\partial z}(x_0, y_0, z_0) = z_0(16x_0 - 9y_0z_0) = 0,$$

se $z_0 = 0$ ou $16x_0 - 9y_0z_0 = 0$, segue que fora destes pontos z = k(x, y) é diferenciável e

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{3x^2 + 8z^2}{16xz - 9yz}$$

e

$$\frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{6y - 3z^3}{16xz - 9yz}.$$

Teorema 14 (Função Implícita) Seja $F: \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^m$ uma função de classe C^1 . Suponha que $F(x_0, y_0) = 0$ e

$$\det \left[\frac{\partial F}{\partial y}(x_0, y_0) \right] \neq 0.$$

Então, existe um aberto $W\subset \mathbb{R}^k$ e $\phi:W\to \mathbb{R}^k$ função de classe C^1 tais que

a)
$$x_0 \in W \ e \ \phi(x_0) = y_0$$
.

b)
$$F(x, \phi(x)) = 0, \forall x \in W$$
.

Demonstração: Seja $g: \mathbb{R}^k \times \mathbb{R}^m \to \mathbb{R}^k \times R^m$ definida por

$$g(x,y) = (x, f(x,y)).$$

Então g é de classe C^1 e a matriz jacobiana tem determinante em (x_0, y_0) não nulo,

$$g'(z_0) = \begin{bmatrix} I_k & 0 \\ \frac{\partial F}{\partial x}(x_0, y_0) & \frac{\partial F}{\partial y}(x_0, y_0) \end{bmatrix},$$

e

$$\det g'(x_0, y_0) = \det \frac{\partial F}{\partial y}(x_0, y_0) \neq 0.$$

Segue do Teorema da Função Inversa que existe $U \subset \mathbb{R}^k \times \mathbb{R}^m$ vizinhança aberta de (x_0, y_0) tal que V = g(U) é aberto e $g: U \to V$ é difeomorfismo de classe C^1 . Se denotarmos por $(\overline{x}, \overline{y}) = g(x, y)$ para $(x, y) \in U$, então

$$(x,y) = g^{-1}(\overline{x},\overline{y}).$$

Como $\overline{x}=x$ temos que $\overline{y}=F(x,y)$ se, e somente se, $y=g^{-1}(x,\overline{y}).$ Em particular,

$$F(x,y) = 0 \Leftrightarrow y = g^{-1}(x,0)$$

e concluímos a prova denotando $\phi(x)=g^{-1}(x,0)$ para todo $x\in W=U\cap \mathbb{R}^k.$

Referências

[1] W. Rudin, Principles of Mathemacal Analysis. MacGraw-Hill, 1989.