F - S = 1 Editorial by en_translator

An important fact is that the area of a triangle whose vertices are (0,0),(X,Y) and (A,B) is $\frac{|AY-BX|}{2}$. Thus we can consider that, given integers X and Y, this problem asks to find an integer pair (A,B) such that

$$|AY - BX| = 2$$
.

We explain how to solve this problem. Here, we let $g = \gcd(X, Y)$. (Note: $\gcd(a, b)$ is defined as the greatest common divisor of |a| and |b|.) If g is 3 or greater, then the answer does not exist because AY - BX is always a multiple of g.

If g=1,2, then one can always obtain a solution using an algorithm called extended Euclidean algorithm. The extended Euclidean algorithm is an algorithm that, given an integer pair (a,b) as input, finds an integer pair (x,y) such that $ax+by=\pm\gcd(a,b)$ in $O(\log\min(|a|,|b|))$ time. (Here, the integer pair x,y is guaranteed to be integers satisfying $\max(|x|,|y|) \le \max(|a|,|b|)$.)

```
// Sample implementation of extended Euclidean algorithm
pair<long long, long long> extgcd(long long a, long long b) {
   if (b == 0) return make_pair(1, 0);
   long long x, y;
   tie(y, x) = extgcd(b, a % b);
   y -= a / b * x;
   return make_pair(x, y);
}
```

By feeding (Y, -X) as the input of extended Euclidean algorithm, one can obtain a pair (c, d) such that

$$cY - dX = \pm g$$

and |c|, $|d| \le 10^{17}$ as the return value. What we originally wanted is a pair (A, B) such that $AY - BX = \pm 2$, which can be obtained by multiplying c and d by $\frac{2}{g}$. This (A, B) safely satisfies |A|, $|B| \le 10^{18}$.

Hence, the problem has been solved. The computational complexity is about $O(\log \min(X, Y))$, which is fast enough.