STATS 310A: Theory of Probability I

Autumn 2016/17

Lecture 9: October 24

Lecturer: Persi Diaconis Scribes: Kenneth Tay

9.1 Maximum of Normal Random Variables

This is a typical problem we encounter in probability: Let X_1, \ldots, X_n be iid, $X_i \sim \mathcal{N}(0,1)$ for all i. Let $M_n = \max_{1 \leq i \leq n} X_i$. Find the limiting behavior of M_n .

$$P\{M_n \le x\} = P\{X_1 \le x\}^n$$

= \exp[n \log P\{X_1 \le x\}]
= \exp[n \log (1 - (1 - \Phi(x)))],

where $\Phi(x) = P\{X_1 \leq x\}$. Since $\log(1-x) \sim -x$ for small x, we have the estimate

$$P\{M_n \le x\} \sim \exp[-n(1 - \Phi(x))]$$

for large x.

For $0 < x < \infty$, we can bound the tail of the Gaussian distribution as follows:

$$\frac{x}{1+x^2}e^{-x^2/2} \le \int_x^\infty e^{-t^2/2}dt \le \frac{1}{x}e^{-x^2/2}.$$

For large x, the above implies that $1 - \Phi(x) \sim \frac{e^{-x^2/2}}{\sqrt{2\pi}x}$, so

$$P\{M_n \le x\} \sim \exp[-n(1 - \Phi(x))]$$
$$\sim \exp\left[-\frac{n}{\sqrt{2\pi}x}e^{-x^2/2}\right].$$

Let $x = \sqrt{2 \log n - \log \log n + y}$. Then $x \sim \sqrt{2 \log n}$, and so:

$$\frac{e^{-x^2/2}}{x} = \frac{\exp\left[-\log n + \frac{1}{2}\log\log n - y/2\right]}{x},$$

$$P\{M_n \le x\} \sim \exp\left[-\frac{n}{\sqrt{2\pi}\sqrt{2\log n}}\exp\left[-\log n + \frac{1}{2}\log\log n - y/2\right]\right]$$

$$= \exp\left[-\frac{e^{-y/2}}{2\sqrt{\pi}}\right].$$

This is a Gumbel distribution.

9-2 Lecture 9: October 24

9.2 Building the Integral

Let (Ω, \mathcal{F}) be a measurable space, μ a measure on this space. Let $f: \Omega \to \mathbb{R} \cup \pm \infty$ be a function. We want to define

 $\int f d\mu = \int_{\Omega} f(\omega) \mu(d\omega)$

when we can.

Conventions:

- $0 \cdot \infty = \infty \cdot 0 = 0$.
- If $A = \emptyset$, $\inf\{\omega \in A\} = \infty$.

Definition 9.1 A simple function is a function which takes on finitely many values, i.e. there exist $x_i \in \mathbb{R} \cup \pm \infty$ and a partition of Ω , $A_i \in \mathcal{F}$, such that

$$f(\omega) = \sum_{i=1}^{n} x_i \delta_{A_i}(\omega).$$

The following proposition links a general function to a sequence of simple functions. This will prove very useful in proving facts about the integral.

Proposition 9.2 Let $f: \Omega \to \mathbb{R} \cup \infty$ be a non-negative measurable function. Then there exists a sequence of simple functions f_n such that $f_n(\omega) \nearrow f(\omega)$ for all ω .

Proof: We construct the sequence of f_n explicitly:

$$f_n(\omega) = \begin{cases} \frac{k-1}{2^n} & \text{if } \frac{k-1}{2^n} \le f(\omega) < \frac{k}{2^n}, 1 \le k \le n2^n, \\ n & \text{if } f(\omega) \ge n. \end{cases}$$

We can now construct the integral:

Definition 9.3 • For $f \ge 0$, define

$$\int f d\mu := \sup \sum_{i=1}^{n} \nu_i \mu(A_i),$$

where the sup is taken over all finite measurable partitions $\{A_i\}_{i=1}^n$ of Ω , and $\nu_i = \inf_{\omega \in A_i} f(\omega)$.

• For general f, define auxiliary functions

$$f_{+}(\omega) := \max(f(\omega), 0), \qquad f_{-}(\omega) := \max(-f(\omega), 0).$$

(Note that $f = f_+ - f_-$, $|f| = f_+ + f_-$.) If $\int f_+ d\mu$ and $\int f_- d\mu$ are not both ∞ , we say that f is integrable (w.r.t. μ), and

$$\int f d\mu := \int f_+ d\mu - \int f_- d\mu.$$

This is the Lebesgue integral for general measure μ .

Lecture 9: October 24 9-3

9.2.1 Properties of the integral

Proposition 9.4 If f is simple, i.e. $f = \sum_{i=1}^{n} x_i \delta_{A_i}$, then $\int f d\mu = \sum_{i=1}^{n} x_i \mu(A_i)$.

Proof: Let $f = \sum_{i=1}^{n} x_i \delta_{A_i}$. Let $\{B_i\}_{i=1}^{m}$ be a measurable partition of Ω , and let $\beta_i = \inf_{\omega \in B_i} f(\omega)$. Note that if $A_i \cap B_j \neq \emptyset$, then $\beta_j \leq x_i$. Thus,

$$\sum_{j=1}^{m} \beta_j \mu(B_j) = \sum_{i,j} \beta_j \mu(B_j \cap A_i)$$

$$\leq \sum_{i,j} x_i \mu(B_j \cap A_i)$$

$$= \sum_{i=1}^{n} x_i \mu(A_i).$$

Taking sups on both sides, we get

$$\int f d\mu \le \sum_{i=1}^{n} x_i \mu(A_i).$$

The other direction is obvious since $\{A_i\}$ is an admissible partition.

Proposition 9.5 (Monotonicity) If $f \leq g$, then $\int f d\mu \leq \int g d\mu$.

Proposition 9.6 (Monotone Convergence Theorem) If $f_n(\omega) \nearrow f(\omega)$ for all ω , then

$$\lim_{n \to \infty} \int f_n d\mu = \int f d\mu = \int \lim_{n \to \infty} f_n d\mu.$$

Proof: Since $f_n \nearrow f$, we have $\int f_n d\mu \leq \int f d\mu$ for all n. Taking $n \to \infty$, we have

$$\lim_{n \to \infty} \int f_n d\mu \le \int f d\mu.$$

For the other direction, we need to show that

$$\int f d\mu \le \lim \int f_n d\mu,$$

or equivalently, that

$$\sum_{i=1}^{m} v_i \mu(A_i) \le \lim_{n \to \infty} \int f_n d\mu$$

for all partitions $\{A_i\}_{i=1}^m$, where $\nu_i = \inf_{\omega \in A_i} f(\omega)$. Call the LHS of the inequality above S.

Case 1: Suppose $S < \infty$ and $0 < \nu_i < \infty$, $0 < \mu(A_i) < \infty$ for all i.

9-4 Lecture 9: October 24

Choose $\varepsilon > 0$ such that $\varepsilon < \nu_i$ for all i. Let $A_{n_i} := \{\omega : \omega \in A_i \text{ and } f_n(\omega) \ge \nu_i - \varepsilon\}$. Since $f_n \nearrow f$, we have $A_{n_i} \nearrow A_i$, which implies $\mu(A_{n_i}) \nearrow \mu(A_i)$. Since

$$\int f_n d\mu \ge \sum_{i=1}^m (\nu_i - \varepsilon) \mu(A_{n_i})$$

for any n, let $n \to \infty$:

$$\lim_{n \to \infty} \int f_n d\mu \ge \sum_{i=1}^m (\nu_i - \varepsilon) \mu(A_i)$$
$$= \sum_{i=1}^m \nu_i \mu(A_i) - \varepsilon \sum_{i=1}^m \mu(A_i).$$

As $\varepsilon \to 0$, the second term goes to 0, and what remains is the inequality we wanted to prove.

Case 2: $S < \infty$, some ν_i or $\mu(A_i)$ is 0 or ∞ .

Assume that $0 < \nu_i < \infty$ and $0 < \mu(A_i) < \infty$ for $1 \le i \le n_0$, then the rest have to be of the form $0 \cdot \infty$ of $0 \cdot 0$. Use the same argument as in Case 1 with the partition $\bigcup_{i=1}^{n_0} A_i$ and its complement.

Case 3: $S = \infty$.

We must have some i_0 with $\nu_{i_0} \cdot \mu(A_{i_0}) = \infty$, so either $\nu_{i_0} = \infty$ and $\mu(A_{i_0}) > 0$, or vice versa.

We can choose x, y > 0 so that $0 < x < \nu_{i_0}$, $0 < y < \mu(A_{i_0})$. Let $A_n = \{\omega : f_n(\omega) > x\}$. Note that $A_n \nearrow A = \{\omega : f(\omega) > x\}$, so $\mu(A_n) \nearrow \mu(A)$. Considering the partition $\{A_n, A_n^c\}$, we have

$$\int f_n d\mu \ge x\mu(A_n), \quad \Rightarrow \quad \lim_{n \to \infty} \int f_n d\mu \ge xy.$$

Since either $\mu(A_{i_0}) = \infty$ or $\nu_{i_0} = \infty$, we can let one of x, y go to infinity. So $\lim_{n \to \infty} \int f_n d\mu = \infty$, as required.

Proposition 9.7 (Linearity) For real numbers α and β ,

$$\int (\alpha f + \beta g) d\mu = \alpha \int f d\mu + \beta + \int g d\mu.$$

Proof: Assume first that f and g are simple functions, i.e.

$$f = \sum_{i=1}^{n} x_i \delta_{A_i}, \qquad g = \sum_{j=1}^{m} y_j \delta_{B_j}.$$

Then,

$$\int (\alpha f + \beta g) d\mu = \sum_{i,j} (\alpha x_i + \beta y_j) \mu(A_i \cap B_j)$$

$$= \sum_{i,j} \alpha x_i \mu(A_i \cap B_j) + \sum_{i,j} \beta y_j \mu(A_i \cap B_j)$$

$$= \sum_{i=1}^n \alpha x_i \mu(A_i) + \sum_{j=1}^m \beta y_j \mu(B_j)$$

$$= \alpha \int f d\mu + \beta \int g d\mu.$$

Lecture 9: October 24 9-5

For general f and g, let f_n be simple and increasing to f, and let g_n be simple and increasing to g. Then we can use the Monotone Convergence Theorem repeatedly to obtain

$$\int (\alpha f + \beta g) d\mu = \int \lim_{n \to \infty} (\alpha f_n + \beta g_n) d\mu$$

$$= \lim_{n \to \infty} \int (\alpha f_n + \beta g_n) d\mu$$

$$= \lim_{n \to \infty} \alpha \int f_n d\mu + \lim_{n \to \infty} \beta \int g_n d\mu$$

$$= \alpha \int \lim_{n \to \infty} f_n d\mu + \beta \int \lim_{n \to \infty} g_n d\mu$$

$$= \alpha \int f d\mu + \beta \int g d\mu.$$

Some remarks:

• The Lebesgue integral generalizes the Riemann integral.

• If $(\Omega, \mathcal{F}) = ([0, 1], \text{Borel sets})$, the function f(x) = 1 if x rational, f(x) = 0 if x irrational is not Riemann integrable but is Lebesgue integrable, with $\int f d\lambda = 0$.

- $L^2(\mu)$ is complete for this integral.
- However, the Riemann integral is still useful, e.g.
 - stochastic calculus,
 - $f: \Omega \to V$ a vector space,
 - indefinite integrals (e.g. $\int_0^\infty \frac{\sin x}{x} dx$ does not exist as a Lebesgue integral but does exist as a Riemann integral),
 - Cauchy principle values and "renormalization".

9.3 Class Problem

(a)

$$\frac{x}{1+x^2}e^{-x^2/2} \le \int_x^\infty e^{-t^2/2}dt \le \frac{1}{x}e^{-x^2/2}$$

for $0 < x < \infty$.

(b) Let X_1, X_2, \ldots iid, $X_i \sim \mathcal{N}(0, 1)$. Let $Y_n = \text{closest integer to } X_n$, and let $M_n = \max_{1 \leq i \leq n} Y_i$. Find explicit $a_n, p_n, a_n \in \{1, 2, 3, \ldots, \}, p_n \in (0, 1)$ such that

$$P\{M_n = a_n\} \sim p_n, \qquad P\{M_n = a_n + 1\} \sim 1 - p_n.$$

(c) Show that $\limsup p_n \neq \liminf p_n$.