LABORATORIO

OP-AMP:

2

- AMPLIFICADOR INVERSOR
- SEGUIDOR DE VOLTAJE
- SUMADOR

OBJETIVOS:

Estudio de circuitos con amplificadores operacionales (Op-Amp). Específicamente, la configuración del amplificador no-inversor y aplicaciones como el seguidor de voltaje y el circuito sumador.

En esta experiencia, el estudiante desarrollará las siguientes destrezas:

- Análisis y diseño del circuito de un amplificador no-inversor.
- Análisis y diseño del seguidor de voltaje y el circuito sumador.
- Implementación experimental de los circuitos arriba mencionados y la comparación de los resultados teóricos y experimentales.
- Simulación de circuitos y su comparación con los resultados teóricos y experimentales.

MATERIALES:

- Op-Amp 741 y su hoja de especificaciones (data-sheet)
- Placa de pruebas (Protoboard or Breadboard)
- Resistores: 1 resistor de $20 \, k\Omega$ y 2 resistores de $100 \, k\Omega$
- Multímetro
- Alambres para conexiones
- 1 generador de funciones (function generator)
- 1 osciloscopio (oscilloscope)
- 2 fuentes de voltaje DC (también puede usar fuentes duales)

PARTE I: AMPLIFICADOR NO INVERSOR

1.1 Diseño y análisis: Calcule la ganancia del amplificador no-inversor de la figure L2-1. Las resistencias R_1 y R_2 son de $20\,\mathrm{k}\Omega$ y $100\,\mathrm{k}\Omega$, respectivamente.

$$A_{v(\text{calculada})} = \underline{\hspace{1cm}}$$

1.2 Arme el circuito y ajuste las fuentes de polarización DC a $+10\,\mathrm{V}$ y $-10\,\mathrm{V}$.

Figura L2.1: Circuito de un amplificador no-inversor con un Op-Amp 741

1.3 Aplique un voltaje de entrada $v_{in} = 1 \text{ Vrms}$ con frecuencia de 1 kHz . Mida:

$$v_o \operatorname{rms} =$$
 $A_{v(\text{medida})} = v_o / v_{in} =$

1.4 Compare la ganancia medida con la calculada en el paso 1.1. Deduzca el porcentaje de error:

$$\% e = \frac{A_{\nu(\text{calculada})} - A_{\nu(\text{medida})}}{A_{\nu(\text{calculada})}} \times 100\% = \underline{\qquad}$$

- 1.5 Grabe la imagen de v_{in} y v_o mostrada en el osciloscopio e inclúyala en el informe.
- 1.6 Cambie el valor de la resistencia R_1 a $100\,\mathrm{k}\Omega$. Calcule la ganancia de voltaje del circuito.

$$A_{\nu(\text{calculada})} =$$

1.7 Aplique el mismo voltaje de entrada $v_{in} = 1 \text{ Vrm s}$ con frecuencia de 1 kHz . Mida:

$$v_o \, \text{rms} = \underline{\qquad} \qquad A_{v(\text{medida})} = v_o / v_{in} = \underline{\qquad}$$

1.8 Compare la ganancia medida con la calculada. Deduzca el porcentaje de error:

%
$$e = \frac{A_{\nu(\text{calculada})} - A_{\nu(\text{medida})}}{A_{\nu(\text{calculada})}} \times 100\% =$$

1.9 Grabe las imágenes de v_{in} y v_o mostradas en el osciloscopio e inclúyala en el informe.

PARTE 2: SEGUIDOR DE VOLTAJE (VOLTAGE FOLLOWER)

2.1 Construya el circuito seguidor de voltaje presentado en la figura L2.1. Aplique una señal de entrada $v_{in}=2~\mathrm{Vrm}\,\mathrm{s}~\mathrm{con}$ frecuencia de $10~\mathrm{kHz}$. Calcule los siguientes parámetros:

$$A_{\nu(\text{calculada})} = \underline{\hspace{1cm}} V/V$$

$$v_{in(medido)} =$$
_____Vrms

$$v_{o(\text{medido})} =$$
_____Vrms

$$A_{\nu(\text{medida})} = \underline{\hspace{1cm}} V/V$$

$$\% \ e_{(A_{\nu})} = _{___}\%$$

Figura L2.2: Circuito del seguidor de voltaje.

2.2 Grabe las imágenes de v_{in} y v_o mostradas en el osciloscopio e inclúyala en el informe.

PARTE 3: SUMADOR

3.1 Calcule el voltaje de salida del circuito sumador en la figura L2.3. Los valores de las resistencias R_1 , R_2 y R_f son $100\,\mathrm{k}\Omega$, $20\,\mathrm{k}\Omega$ y $100\,\mathrm{k}\Omega$, respectivamente; mientras que las fuentes de entrada están dadas por $v_1=v_2=1\,\mathrm{V_{peak}}$ y v_2 son

$$v_{o(\text{calculado})} = \underline{\hspace{1cm}} V_{\text{peak}}$$

Figura L2.3: Circuito de un sumador de voltaje.

3.2 Construya el circuito sumador. Aplique las señales de entrada $v_1 = v_2 = 1$ V_{peak} con una frecuencia de $10 \, kHz$. Mida la amplitud del voltaje de salida.

$$v_{\text{o(medido)}} = \underline{\hspace{1cm}} V_{\text{pk}}$$

3.3 Compare el voltaje de salida medido con el calculado. Deduzca el porcentaje de error:

%
$$e = \frac{v_{o(\text{calculado})} - v_{o(\text{medido})}}{v_{o(\text{calculado})}} \times 100\% =$$

3.4 Grabe la imagen de v_o mostrada en el osciloscopio e inclúyala en el informe.

PARTE 4: SIMULACIÓN (PARA INCLUIR EN EL INFORME)

4.1 Simule el amplificador no-inversor y todos los experimentos prácticos de la Parte I, pero en vez de utilizar el op-amp 741 utilice el LM324. Compare los resultados simulados con los teóricos y los experimentales.