

Optimization

1 Why

Given a correspondence between objects in a set with objects in an totally ordered set, we are interested in the objects which correspond to minimal or maximal elements of the ordered set.

2 Definition

Let A be a non-empty set and let (C, \leq) be chain. Let $f: A \to C$.

The minimization problem over A associated with f is to find an element $a \in A$ so that f(a) is minimal in f(A). The maximization problem over A associated with f is to find an element $a \in A$ so f(a) is maximal in f(A). We call either of these an optimization problem.

We call f the ordering function. We call A the feasible set and we call $a \in A$ a feasible element. An element $a \in A$ is a minimizer of f if f(a) is minimal in f(A). An element $a \in A$ is a maximizer of f if f(a) is maximal in f(A).

3 Notation

Let (C, \prec) be a chain. We denote the minimization problem to find an element $a \in A$ to minimize $f: A \to C$ by

find $a \in A$ to minimize f(a)

We denote the minimizers by

 $\mathbf{minimizers}(f).$