Verslag Project Optimalisatie

Naam en Studentnummer	Bryan Sok (4877144)
Periode	2
Versie	3.0
Inleverdatum	16-01-2024
Opmerking	Ik hoef alleen Concurrent
	Programmeren te herkansen.

Inleiding

Deze periode kregen we een programma dat heel slecht was geoptimaliseerd. Het programma was geschreven in C++. Het is een simulatie van 2 groepen tanks die elkaar aanvielen.

Helaas kon ik door persoonlijke omstandigheden de 2^{de} periode vorig jaar niet meer afronden. OOP in C++ en Algoritmiek is me nog wel gelukt, met respectievelijk een 7,2 en 7,0, maar aan Concurrent Programmeren ben ik helaas niet meer toegekomen. Bij deze doe ik dus alsnog een poging.

Ondanks dat ik Algoritmiek en OOP wel heb afgerond, heb ik nog wel de Big-O notaties en de algoritmen in dit verslag gelaten. Ze zijn dus exact hetzelfde als in de vorige versie, maar horen natuurlijk wel bij de speedup van de simulatie. Dan krijgt u misschien een iets beter idee hoe zinvol de concurrency in dit geval was.

Alvast bedankt voor het nakijken!

Inhoudsopgave

1.	Big O notaties	4
	1.1 Time Complexity	
	1.2 Space Complexity	8
2.	Algoritmiek	.11
	2.1 Gebruikt algoritme 1	.11
	2.2 Gebruikt algoritme 2	.12
	2.3 Gebruikt algoritme 3	.13
	3.4 Totaal	.13
3.	Concurrent	.14
	3.1 Onderzoek	.14
	3.2 Toepassing	.15
	3.3 Totaal	18
4.	Conclusie	.19
	4.1 Speedup	.19
5.	Bronnen en bijlagen	.20
	5.1 Bronnen	.20

1. Big O notaties

1.1 Time Complexity

Terrain.cpp

28 - 73	O(NM)	nested for-loop with different inputs
76 - 88	O(n^2)	nested for-loop
99 - 128	O(n^2)	nested for-loop
96 - 128	O(n^2)	Nested-for-loop
150 - 173	O(NM)	nested for-loop with different inputs
176 - 179	O(N)	Single for-loop, thus Linear
181 - 197	O(N)	Single for-loop, thus Linear
205 - 226	O(1)	Constant
231 - 241	O(1)	Constant

Particle_beam.cpp

13 -14	O(1)	Constant
22 - 25	O(1)	Constant
35	O(log n)	Division by 10

Explosion.cpp

6	O(1)	Constant
11	O(1)	Constant
16	O(log n)	Division by 2

Garriereb		
57-63	O(1)	Constant
66-70	O(n)	Single Loop
72-76	O(n)	Single Loop
98-109	O(n)	Single Loop
111	O(1)	Constant
117	O(1)	Constant
131- 137	O(n)	Single Loop
140- 160	O(n^2)	Nested Loop
163 - 180	O(n)	Single Loop
183 - 186	O(n)	Single Loop

193 - 200	O(n)	Single Loop
203 - 212	O(n)	Single Loop
215- 239	O(n^2)	Nested Loop

Rocket.cpp

16-20	O(1)	Constant
29-45	O(n^2)	Nested for lus

Tank.cpp

43-46	O(N)	Single for lus
48-50	O(1)	Constant
52-56	O(N)	Single for lus
60	O(1)	If zonder loop
62-71	O(N^2)	Nested lus
87-92	O(1)	Constant
94-97	O(1)	Constant
121-124	O(1)	Constant

246-262	O(N^2)	Nested lus
264-279	O(NM)	Nested lus met meerdere inputs
291-302	O(NM)	Nested lus met meerdere inputs
387-408	O(NM)	Nested lus met meerdere inputs
401-404	O(N)	Single for lus
418-425	O(N)	Single for lus
429-435	O(N)	Single for lus
437-438	O(N)	Single for lus
447-460	O(N^2)	Nested lus
462-470	O(N)	Single for lus
476-482	O(N)	Single for lus

1.2 Space Complexity

Terrain.cpp

10 - 26	O(1)	Images declarations
29- 71	O(1)	Switch cases, no vectors, and a few declarations
102 - 137	O(1)	Switch case statement, no vectors
143 - 147	O(1)	4 Constant declarations, Constant
150- 192	O(n)	Contains a vector, so space depends on vector_size
194 - 213	O(n)	Contains a vector, so space depends on vector_size
216 - 242	O(1)	Returns an int, constant
245 - 257	O(1)	Has 2 int declarations, thus constant

Particle_beam.cpp

13 -17	O(1)	Sum of min and max, thus constant
22 - 25	O(n)	Has a vector, space depends on array
28 - 37	O(1)	Has 2 int declarations, thus constant

Explosion.cpp

4 - 7	O(1)	Returns something, constant	
9 - 12	O(1)	Just an increment, thus constant	
14 - 18	O(1)	No need for new memory, so constant	

0 - 42	O(1)	Single declarations
51 - 63	O(n)	Tanks Vector is used, memory depends on tanks
66-80	O(nm)	2 Vectors (Blue and Red) Used
95-111	O(n)	Usage of the Tanks Vector
115-119	O(1)	Single Return-statement
131-137	O(n)	Usage of tanks vector, memory usage dependent on vector
140-160	O(n)	Usage of tanks vector, memory usage dependent on vector
163 - 180	O(n)	Usage of tanks vector, memory usage dependent on vector
183 - 186	O(n)	Usage of smokes vector, memory usage dependent on vector
193 - 200	O(n)	Usage of tanks vector, memory usage dependent on vector
203 - 212	O(n)	Usage of tanks vector, memory usage dependent on vector
215- 239	O(n)	Usage of tanks vector, memory usage dependent on vector

Rocket.cpp

5-10	O(1)	Vectors
12-14	O(1)	Rocket
22-27	O(1)	Rocket draw

Tank.cpp

	1	1
5-33	O(1)	Sprites
35-37	O(1)	Tank
58	O(1)	Vec2
73-85	O(N)	Route
99-111	O(1)	Removes health bar
113-119	O(N)	Draw the sprite with the facing based on this tanks movement direction
126-130	O(1)	Add some force in a given direction

241-244	O(1)	Update rockets
283-284	O(1)	Remove exploded rockets with remove erase idiom
285-289	O(N)	Update particle beams
304-308	O(N)	Update explosion sprites and remove when done with remove erase idiom
310	O(1)	Explosion
319-320	O(1)	Clear the graphics window
322-323	O(1)	Draw screen

325-352	O(N)	Draws each rocket, smoke, partivle_beam
		and explosion in their corresponding list
354-362	O(N)	Draw forcefield (mostly for debugging, its kinda ugly)
364-376	O(N)	Draw sorted health bars
381-385	O(1)	Insertion sort tanks health
413-416	O(1)	Draw health bars
493-495	O(1)	Print frame count

2. Algoritmiek

Toen ik het programma opstartte voor de 1^{ste} keer, duurde het 12 minuten en 36 seconden voor het programma volledig klaar was.

2.1 Gebruikt algoritme 1

Naam algoritme	Dijkstra	
Hoe gevonden?	Algoritmiek les 4	
Hoeveel sneller?	1 minuut en 28 seconden	
Screenshot code	continuents toroidentification gain productions took took, their words toops) - our distribution of toops the continuents are took position / sports along continuents are took position / sports along continuents along a resemposition / sports along continuents along a resemposition / sports along continuents along a resemposition of sports along continuents along a resemposition of sports along continuents along a resemplinate of sports along continuents along a resemplinate of sports along distribution and title distribution and title along distribution and title along and their uniques distribution and along continuents from a resemplinate; distribution and along a resemplinate continuents along a resemplinate continuents along a resemplinate distribution and along a resemplinate continuents along a resemplinate distribution and a resemplinate for such (resemplinate are along along a resemplinate along a some portion and a some portion and a some portion and a resemplinate content (resemplinate are along a resemplinate) for such (resemplina a resemplinate along a resemplination of a resemplination and a some area come if (such appellination a resemplination and a resemble and a some area come if (such appellination a resemplination and a resemble and a some area come if (such appellination area are along a resemble and a resemble and a resemble area are along a resemble and a resemble area are along a resemble and a resemble area and a resemble area are along a resemble area are a resemble area are along a resemble area are a	

2.2 Gebruikt algoritme 2

2.3 Gebruikt algoritme 3

3.4 Totaal

In totaal was de simulatie nu dus 4 minuten en 24 seconden sneller.

3. Concurrent

3.1 Onderzoek

Om uit te zoeken hoe ik multithreading toe kan passen in de code, heb ik eerst de lessen van 'Concurrent programmeren' gevolgd.

Voor wat extra informatie heb ik het boek c++ concurrency in action (Williams, A. (2019). C++ Concurrency in Action, 2E (2nd edition). New York, United States: Manning Publications).

3.2 Toepassing

Wat doet	Dit is het merge sort algoritme, maar dan gemultithread.		
dit?	Wanneer		
	(2 ^{depth} <= aantal beschikbare threads) geldt, wordt deze functie gemultithread. Anders wordt de functie sequentieel		
	uitgevoerd.		
Code	Social Taple::Game::Marge_Sort_Tanks(const std::vector <tanks< th=""></tanks<>		


```
Explosion handler. De remainder wordt
Wat doet dit?
                                                                                       verdeeld over de threads.
           Code
                                                                         void Tmpl8::Game::explosion_handler_multithreaded()
                                                                788
789
790
791
792
793
794
795
796
797
798
800
801
802
803
804
805
806
807
808
809
810
811
811
812
813
                                                                                 std::vector<std::thread> ExplosionThreads;
int incrementValue = explosions.size() / CountedThreads;
                                                                                 int startIndex = 0;
int endIndex = incrementValue;
                                                                                 int explosionRemainder = get_remainder(explosions.size());
for (int i = 0; i < CountedThreads; i++)</pre>
                                                                                       if (explosionRemainder > 0) //Distribute remainder across threads
                                                                                            endIndex++;
explosionRemainder--;
                                                                                       ExplosionThreads.push_back(
                                                                                            std::thread([&, startIndex, endIndex] {
    explosion_handler(startIndex, endIndex);
                                                                                       }));
startIndex = endIndex;
endIndex += incrementValue;
                                                                                      (std::thread& t : ExplosionThreads)
                                                                                 vector<std::thread> Temp;
ExplosionThreads.swap(Temp);
```

3.3 Totaal

Na het multithreaden van de opdracht is de opdracht een flink stuk sneller. Maar liefst 6 minuten en 8 seconden!

4. Conclusie

4.1 Speedup

Onderdeel	Tijd	Rekensymbool
Start	12 minuten en 36 seconden	
		-
Algoritmiek	4 minuten en 24 seconden	
Concurrent	6 minuten en 8 seconden	
		=
Eind	2 minuten en 4 seconden	

Het programma deed er eerst 12 minuten en 36 seconden over om op te starten. Na alle verbeteringen duurde het nog maar 2 minuten en 4 seconden voordat het programma volledig klaar is. Dat is dus een verbetering van maar liefst 10 minuten en 32 seconden!

5. Bronnen en bijlagen

5.1 Bronnen

In APA 6^e editie

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2022). Introduction to Algorithms, fourth edition (4de editie). The MIT Press.

Wikipedia-bijdragers. (2021, 16 juni). C++. Geraadpleegd op 8 januari 2024, van https://nl.wikipedia.org/wiki/C%2B%2B

Williams, A. (2019). C++ Concurrency in Action, 2E (2nd edition). New York, United States: Manning Publications.