

Classifiez automatiquement des biens de consommation

Armand FAUGERE Linked in armand-faugere@live.fr

Sommaire

- I) Cadrage du projet et données d'entrée
- II) Faisabilité classification données textuelles
- III) Faisabilité classification données images
- IV) Classification supervisée
- V) Test API
- VI) Conclusion

I) Cadrage du projet et données d'entrée

☐ Contexte:

- Projet de lancement d'un site de E-commerce pour la société « Place de marché ».

Attribution de la catégorie des articles manuelle par les vendeurs

→ peu fiable, pas adapté à un volume d'articles important

□ But:

- Etudier la faisabilité d'un moteur de classification des articles par catégories, à partir du texte et de l'image

□ Objectifs:

- Etudier la faisabilité d'un moteur de classification avec le texte
- Etudier la faisabilité d'un moteur de classification avec les images
- Réaliser une classification supervisée à partir des images
- Tester la collecte de produits via une API

- ☐ Le jeu de données → 1050 produits
- flipkart_com-ecommerce_sample_1050.csv
- 1050 images au format jpg
- □ 7 catégories avec répartition homogène :
- Home Furnishing
- Baby Care
- Watches
- Home Decor & Festive Needs
- · Kitchen & Dining
- Beauty and Personal Care
- Computers
- □ Principes de protection des données (finalité, proportionnalité et pertinence, durée de conservation limitée, sécurité et confidentialité, droits des personnes) www.cnil.fr

Approche Bags of Words


```
yes best replacement in the stract specification hair specification hair set replacement massage cream box massage cream box matural skin key feature case color general trait vanity bodyalmond honey set set
```

bow_Home_Decor_Festive_Needs

specificationshowpiece best

Color wooden home
beautifulmulticolor type
giftShowplece
brass
design brass
model number material
best replacement

_Computers WordCloud par catégories (20 mots plus fréquents)

bow_Computers led light mouse pad high quality warranty summary general brand covered warranty bow_Computers keyboard high quality a war and the second second

```
soft package pack towel specification width inch package box number printed brown door curtain carpet content content
```

bow_Home_Furnishing

Approche Bags of Words

Approche word/sentence embedding

Conclusion Faisabilité

Classement	Méthode	SCORE ARI
1	TF-IDF	0,477
2	BERT	0,401
3	USE	0,383
4	Fréquence	0,366
5	Word2vec	0,338

Les scores ARI sont largement supérieurs à 0

→ La faisabilité de classification par les données textuelles est démontrée

Conclusion Faisabilité

	Classement	Méthode	SCORE ARI
1		CNN Transfert learning	0,449
2		SIFT	0,04

Le score ARI est largement supérieur à 0 pour le CNN Transfert learning

→ La faisabilité de classification par images avec une approche par réseau de neurones est démontrée

Classification

VGG16 (sans data augmentation)

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn, sklearn, os, imread, keras, tensorflow Entrainement Préparation des Création du Evaluation & modèle images **Test** ☐ Fonction de préparation ☐ Fonction de création de ☐ Entrainement du modèle Accuracy images modèle \rightarrow epoch = 5 ☐ Loss → Boucle pour chaque image → Récupération VGG16 → batch size = 64 ■ Confusion matrix → Chargement et → Adaptation (global → callbacks = callbacks list transformation pour entrer averagepooling2D, dense, supervisée dans VGG16 (array, dropout, dense (7)) reshape, preprocess) ☐ Création callback (save best model itération)

VGG16 sans data augmentation

- ☐ L'accuracy s'améliore au fur et à mesure des epochs et l'erreur diminue
- ☐ Score best epoch :

Accuracy train Accuracy validation

→ 0,94 **→** 0,83

Temps best epoch = 135 s

- ☐ La catégorie Kitchen & Dining est moins bien prédite
- ☐ La catégorie computers est très bien prédite

6 Classification

supervisée

VGG16 (avec data augmentation dans modèle)

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn, sklearn, os, imread, keras, tensorflow Entrainement Création du modèle + Préparation des Evaluation & data augmentation images **Test** ☐ Fonction de préparation ☐ Fonction de création de ☐ Entrainement du modèle Accuracy images modèle \rightarrow epoch = 5 ☐ Loss → Boucle pour chaque image → Récupération VGG16 → batch size = 64 ■ Confusion matrix → Chargement et → Adaptation (global → callbacks = callbacks list transformation pour entrer averagepooling2D, dense, dans VGG16 (array, dropout, dense (7)) reshape, preprocess) → Data augmentation model2 accuracy (randomflip, randomrotation, o.5 randomzoom, rescaling) ☐ Création callback (save best model itération)

VGG16 avec data augmentation dans modèle

- □ L'accuracy s'améliore au fur et à mesure des epochs et l'erreur diminue
- ☐ Score best epoch :

Accuracy train → 0,81 Accuracy validation → 0,78

Le modèle aurait pu encore largement s'améliorer avec un nb d'epoch plus important

- ☐ Temps total = 698 s
- ☐ Temps best epoch = 135 s

- ☐ La catégorie Kitchen & Dining est moins bien prédite
- □ La catégorie computers est très bien prédite

Préparation extraction à partir du dataframe

Création du modèle + data augmentation

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn, sklearn, os, imread, keras, tensorflow

Entrainement & Test

Evaluation

7 Classification supervisée

VGG16 (avec data augmentation Image Data Generator)

- ☐ rajout du path dans dataframe
- ☐ Fonction de préparation du flow from dataframe
- → X_col = « image_path »
- → Y_col = « category »
- → target_size
- ImageDataGenerator
- → Génération du set de train data augmenté
- → découpage train et validation

- → Récupération VGG16
- → Adaptation (global averagepooling2D, dense, dropout, dense (7))
- ☐ Création callback (save best model itération)

- → epoch = 5
- → batch_size = 64
- → callbacks = callbacks_list
- ☐ Accuracy
- ☐ Loss
- Confusion matrix

VGG16 avec data augmentation ImageDataGenerator

- ☐ L'accuracy s'améliore au fur et à mesure des epochs et l'erreur diminue
- ☐ Score best epoch :

Accuracy train → 0,94 Accuracy validation → 0,81

- ☐ Temps total = 686 s
- ☐ Temps best epoch = 136 s

- □ La catégorie Kitchen & Dining est moins bien prédite
- ☐ La catégorie computers est très bien prédite

Préparation extraction à partir du dataframe

Création du modèle + data augmentation

Jupiter Notebook, Python, Pandas, Numpy, Matplotlib, Seaborn, sklearn, os, imread, keras, tensorflow

Entrainement & Test

Evaluation

8 Classification supervisée

RESNET50 (avec data augmentation Image Data Generator)

- ☐ rajout du path dans dataframe
- ☐ Fonction de préparation du flow from dataframe
- → X_col = « image_path »
- → Y_col = « category »
- → target_size
- ImageDataGenerator
- → Génération du set de train data augmenté
- → découpage train et validation

- ☐ Fonction de création de modèle
- → Récupération ResNet50
- → Adaptation (global averagepooling2D, dense, dropout, dense (7))
- ☐ Création callback (save best model itération)

- → epoch = 5
- → batch size = 64
- → callbacks = callbacks_list
- □ Accuracy□ Loss
- □ Confusion matrix

RESNET50 avec data augmentation ImageDataGenrator

- ☐ L'accuracy s'améliore au fur et à mesure des epochs et l'erreur diminue
- ☐ Score best epoch :

Accuracy train → 0,94 Accuracy validation → 0,85

- □ La catégorie Beauty & personnal care est moins bien prédite
- La catégorie computers est très bien prédite

Conclusion classification supervisée

METHODE	BEST EPOCH SCORE ACCURACY TRAIN	BEST EPOCH SCORE ACCURACY VALIDATION	TEMPS BEST EPOCH	TEMPS TOTAL	COMMENTAIRES
VGG16 (sans data augmentation)	0,94	0,83	135 s	683 s	+ Modèle performant - Temps de traitement très long
VGG16 (avec data augmentation dans modèle)	0,81	0,78	135 s	695 s	- Modèle qui n'a pas convergé (nb epoch insuffisants)- Temps de traitement très long
VGG16 (avec data augmentation Image Data Generator)	0,94	0,81	138 s	686 s	+ Modèle performant - Temps de traitement très long
RESNET50 (avec data augmentation Image Data Generator)	0,94	0,85	55 s	271 s	+ Modèle performant +Temps de traitement correct

5) Test API

Création d'une fonction d'importation de produit

Test sur « vin » & « champagne »

Jupiter Notebook, Python, Pandas, Numpy, time, json

Sauvegarde des 10 premiers produits

9 Test API

```
def edamam_use(produit) :
# importation URL
url = "https://edamam-food-and-grocery-database.p.rapidapi.com/api/food-database/v2/parser"
# requête
    querystring = {"ingr":produit}
# idenfifiant + lien vers base
    headers = {"X-RapidAPI-Key": os.getenv("clé"),
    "X-RapidAPI-Host": "edamam-food-and-grocery-database.p.rapidapi.com"}
# réponse requête
    response = requests.get(url, headers=headers, params=querystring)
    json_doc = response.json()
# création dataframe produits
    df_data = pd.json_normalize(pd.DataFrame(json_doc['hints'])["food"].to_list())
    df_data = df_data[["foodId","label","category","foodContentsLabel","image"]]
    return df_data
```

5) Test API

Extraction dataframe

	foodId	label	category	foodContentsLabel	image
0	food_a656mk2a5dmqb2a diamu6beihduu	Champagne	Generic foods	NaN	https://www.edamam.co m/food- img/a71/a718cf3c52add5 22128929f1f324d2ab.jpg
1	food_b753ithamdb8psbt0 w2k9aquo06c	Champagne Vinaigrette, Champagne	Packaged foods	OLIVE OIL; BALSAMIC VINEGAR; CHAMPAGNE VINEGAR; GARLIC; DIJON MUSTARD; SEA SALT.	NaN
2	food_b3dyababjo54xobm 6r8jzbghjgqe	Champagne Vinaigrette, Champagne	Packaged foods	INGREDIENTS: WATER; CANOLA OIL; CHAMPAGNE VINEGAR; SUGAR; OLIVE OIL; SALT; DRIED GARLIC; DRED SHALLOTS; BLACK PEPPER; XANTHAN GUM; SPICE	https://www.edamam.co m/food- img/d88/d88b64d97349e d062368972113124e35.j pg

6) Conclusion

Etudier la faisabilité d'un moteur de classification des articles par catégories, à partir du texte et de l'image		
Etudier la faisabilité d'un moteur de classification avec le texte	 Démonstration réalisée avec étude de faisabilité : • avec approches fréquence, TF-IDF, Word2Vec, BERT, USE • réduction de dimensions PCA + TSNE • Comparaison vraies catégories et catégories Kmeans (ARI) → Approches concluantes 	0 0
Etudier la faisabilité d'un moteur de classification avec les images	 Démonstration réalisée avec étude de faisabilité : • avec approches SIFT, CNN • réduction de dimensions PCA + TSNE • Comparaison vraies catégories et catégories Kmeans (ARI) → CNN concluant 	0 0
Réaliser une classification supervisée à partir des images	 Classification supervisée : VGG16 : Sans data augmentation, data augmentation dans le modèle, data augmentation à partir du fichier image RESNET50 : data augmentation à partir du fichier image → Approches concluantes 	0 0
Tester la collecte de produits via une API	Elaboration d'une fonction de récupération de produits à partie de l'API <u>edamam-food-and-grocery-database.p.rapidapi.com</u>	0 0

Merci

- Armand FAUGERE
- armand-faugere@live.fr

