Математическая логика (Лекции)

Игорь Энгель

10 июня 2020 г.

Содержание

0. Конкспект по лекциям	1
1. Лекция 1	2
2. Лекция 2	5
2.1 Операции над мощностями	
3. Лекция 3	7

0. Конкспект по лекциям

Это конспект сгруппированный по лекциям, потому-что так его удобнее писать. Ошибки в этой версии конспекта не исправляются. Этот конспект может обновляться чуть раньше основного.

 Глава #0
 1 из 9
 Автор: Игорь Энгель

1. Лекция 1

Определение 1.1.

Множества A и B называются равномощными, если \exists биекция $f:A \to B$.

Замечание.

Равномощность - отношение эквивалентности:

1.
$$A \sim A \iff f = id$$

2.
$$(A \sim B \implies B \sim A) \iff g = f^{-1}$$
.

3.
$$(A \sim B \land B \sim C \implies A \sim C) \iff h = q \circ f$$
.

Определение 1.2.

Множество называется счётным, если оно равномощно №.

Пример.

Примеры счётных множеств: $\mathbb{N}, \mathbb{Z}, \{x \in \mathbb{N} \mid x \geqslant 2\}.$

Лемма.

Если A и B счётны, то $A \cup B$ счётно.

Доказательство.

Пусть
$$A = \{a_1, a_2, \ldots\}, B = \{b_1, b_2, \ldots\}.$$

Тогда, представим $A \cup B = \{a_1, b_1, a_2, b_2, \ldots\}.$

Тогда

$$f(x) = \begin{cases} a_i & x = 2i + 1 \\ b_i & x = 2i \end{cases}.$$

Если $A \cap B$ не пустое, то некоторые элементы функции надо выкинуть.

Лемма.

Если A счётно, то $\forall B \subset A \quad , B$ либо конечно либо счётно.

Доказательство.

Так-как A счётно, возьмём биекцию $f: \mathbb{N} \mapsto A$.

Тогда,
$$g(i) = f(\min\{j \geqslant i \mid f(j) \in B\}).$$

Лемма.

Любое бесконечное множество содержит счётное подмножество.

Доказательство.

Так-как A бесконечно, в нём существует хотя-бы один элемент $a_1, A \setminus \{a_1\}$ тоже бесконечно, и можно взять a_1, a_2, a_3, \dots

Лемма.

Доказательство.

Докажем сначала для \mathbb{Q}_+ .

Выпишем их следующим образом: ТООО:

$$\begin{bmatrix} \frac{0}{1} & \frac{1}{1} & \frac{2}{1} & \cdots \\ \frac{0}{2} & \frac{1}{2} & \frac{2}{2} & \cdots \\ \frac{0}{3} & \frac{1}{3} & \frac{3}{3} & \cdots \\ \vdots & \vdots & \vdots & \vdots \end{bmatrix}$$

Будем обходить эту таблицу диагоналями: $\frac{0}{1}, \frac{1}{1}, \frac{0}{2}, \frac{3}{3}, \frac{1}{2}, \frac{2}{1}, \frac{3}{1}, \frac{2}{2}, \dots$

Будем пропускать повторяющиеся числа.

Каждое число будет выписано, потому-что за $(n+m)^2$ шагов мы точно дойдём до строки m столбца n и получим число $\frac{n}{m}$.

Аналогичное доказательство подходит для \mathbb{Q}_{-} . $\mathbb{Q} = \mathbb{Q}_{+} \cup \mathbb{Q}_{-}$, значит, тоже счётно. \square

Лемма.

Объединение конечного или счётного числа счётных или конечных множеств счётно или конечно.

Доказательство.

Выпишем на i строке в j столбце j-й элемент i-го множества. Построив такую-же последовательность как для рациональных чисел, получим биекцию, либо кончатся элементы.

Теорема 1.1.

Если A, B - счётные, то $A \times B$ счётно.

Доказательство.

Рассмотрим семество множеств $A_a = \{(a,b) \mid b \in B\}$. $\forall a \in A \ A_a$ равномощно B, значит, A_a счётно. При этом, различных A_a - счётно, столько-же сколкьо элементов A.

Тогда

$$A \times B = \bigcup_{a \in A} A_a.$$

счётно по предыдущей лемме.

Утверждение 1.2.

Множества (0,1] и $[1,+\infty)$ равномощны с биекцией $\frac{1}{x}$.

Множества [0,1] и [0,1) равномощны

Доказательство.

Пусть $B = [0,1] \setminus \left\{ \frac{1}{i} \mid i \geqslant 1 \right\}$

$$[0,1] = \left\{ \frac{1}{i} \mid i \geqslant 1 \right\} \cup B.$$

$$[0,1) = \left\{ \frac{1}{i} \mid i > 1 \right\} \cup B.$$

Возьмём биекцию:

$$f(x) = \begin{cases} \frac{1}{i+1} & x = \frac{1}{i} \\ x & \end{cases}$$

Теорема 1.3.

Если A бесконечно, B конечно или счётно, то $A \cup B$ равномощно A.

Доказательство.

Рассмотрим случай $A \cap B = \emptyset$.

Возьмём счётное $A_0 \subset A$.

Начнём строить биекцию: $\forall x \in A \setminus A_0 \quad f(x) = x$.

Так-как $A_0 \cup B$ счётно, то между A_0 и $A_0 \cup B$ существует биекция, воспользуемся ей чтобы достроить f.

Теорема 1.4.

Отрезок [0,1] равномощен множеству бесконечных последовательностей из $\{0,1\}$.

Доказательство.

Можно доказывать для [0,1), так-как они равномощны.

Каждому $x \in [0,1)$ соответствует представление в двоичной системе счисления. (например, $\frac{1}{4} = 0.010000000$.

Заметим, что разные числа переходят в разные последовательности, но разные последовательности могут перейти в одно число. Для чисел вида $\frac{n}{2^k}$ $n,k\in\mathbb{N}$ существует две последовательности.

Тогда, множество последовательностей $\sim [0,1)\sqcup \{\frac{n}{2^k}\mid n,k\in\mathbb{N}\}$. Заметим, что второе множество счётно, значит множество последовательностей равномощну интервалу, который равномощен отрезку.

Теорема 1.5.

Множества [0,1] равномощно множеству $[0,1] \times [0,1]$.

Доказательство.

Возьмём по предыдущей теореме последовательности a_i и b_i для $(a,b) \in [0,1] \times [0,1]$.

Сделаем из них последовательность $a_1, b_1, a_2, b_2, \dots$ Между такими последовательностями есть биекция, при этом, между второй последовательностью и отрезком есть биекция.

Теорема 1.6 (Теорема Кантора).

Множество бесконечных последовательностей из $\{0,1\}$ несчётно.

Доказательство.

Предположим существование биекции f.

Построим последовательность b:

Пусть $b_1 = 1 - a_{11}$, тогда $b \neq f(1)$

Аналогично, $b_i \neq a_{ii}$. Тогда $\forall i \quad b \neq f(i)$. Противоречие.

2. Лекция 2

Теорема 2.1 (Теорема Кантора 2).

[0, 1] несчётно.

Доказательство.

Предположим что [0,1] счётно. Тогда существует последовательность $a_1,a_2,\ldots, a_i \in [0,1],$ $\forall x \in [0,1] \ \exists i \ a_i = x.$

Разбьём отрезок на три части, первая точка попала не более чем в два подотрезка, выберем один из тех, в который не попало. Повторя, получим последовательность отрезков $I_1, I_2, \ldots, a_i \notin I_i, I_{i+1} \subset I_i$. По теореме о вложенных отрезках, $\bigcap_{i=1}^n I_i \neq \emptyset$, значит, есть число, которого нет в последовательности. Противоречие.

Теорема 2.2 (Теорема Кантора-Бернштейна).

Если $f_A:A\to B,\,f_B:B\to A$ - инъекции, то A равномощно B.

Доказательство.

Рассмотрим случай $A \cap B = \emptyset$.

Тогда, если построить двудольный граф где рёбра соответствуют отношениям, то $\forall x \in A \sqcup B$ есть ровно одно исходящее ребро и не более одного входящего ребра. Значит, максимальная степень графа - 2.

Графы с максимальной степени 2 являются объеденением графов следующих видов: конечный путь, бесконечный в одну сторону путь, бесконечный в обе стороны путь, цикл. Так-как граф двудольный, то цикл может быть только чётный, а конечных путей быть не может, так-как из каждой вершины есть изходящее ребро.

Рассмотрим цикл: выберем вершину x_1 , назовём получаемую из неё по ребру вершниу y_1 , биекция будет $x_i \to y_i$, тоесть, если вершина лежит на цикле, то для неё как биекция подходит f_A .

Рассмотрим бесконечный в одну сторону. Их два вида - начинающиеся в A и начинающиеся в B. Если вершина на пути начинающимся в A, то ей подойдёт f_A как биекция. Если путь начинается в y, то подойдёт f_B^{-1} .

Рассмотрим бесконечный в обе стороны путь: Назовём множество точек на нём $X = A_x \sqcup$, нужна функция отображающая $A_x \mapsto B_x$, f_A подойдёт.

Теорема 2.3 (Теорема Кантора (обобщённая)).

Никакое множество X не равномощно 2^X (множество всех подмножеств X).

Доказательство.

Пусть существует $f: X \mapsto 2^X$ - биекция.

Рассмотрим $Y = \{x \in X \mid x \notin f(x)\}. Y \in 2^X \implies \exists y \in X \quad f(y) = Y.$

Тогда $y \in Y \iff y \in f(y) \iff y \notin Y$ - противоречие.

2.1. Операции над мощностями

Если мощность конечна, то можем скалдывать, умножать, возводить в степень, и тд. Обощим для бесконечных -

Определение 2.1.

Пусть A,B - множества. Тогда сумма мощностей $|A|+|B|=|A\sqcup B|,$ где $A\sqcup B=(\{1\}\times A)\cup(\{2\}\times B).$

Определение 2.2.

Пусть A, B - множества. Тогда произведение мощностей $|A| \cdot |B| = |A \times B|$

Определение 2.3.

Пусть A, B - множества. Тогда, возведение мощностей в степень $|A|^{|B|}$ - мощность множества всех функций $f: B \mapsto A$.

Замечание.

Симметричные операции можно задать на самих множествах.

Свойства.

1. $|A|^{|B|+|C|} = |A|^{|B|} \times |A|^{|C|}$

Доказательство.

 $|A|^{|B|+|C|}$ - мощность множества функций $f:B\sqcup C\mapsto A$. Каждую функцию можно рассмотреть как пару фукнций $g:B\mapsto A$ и $h:C\mapsto A$.

2.
$$(|A||B|)^{|C|} = |A|^{|C|} \cdot |B|^{|C|}$$

Доказательство.

Функцию $f:C\mapsto A\times B$ можно представить как пару фукнций $g:C\mapsto A$ и $h:C\mapsto B$. \qed

3.
$$|A|^{|B|\cdot|C|} = (|A|^{|B|})^{|C|}$$

Доказательство.

Пусть $f: B \times C \mapsto A$. Можно представить это как отображение элементов C в функции $f_c: B \mapsto A$. Получили функцию $g: C \mapsto (B \mapsto A)$.

Определение 2.4.

Обозначим:

$$\aleph_0 = |\mathbb{N}|$$
 $\mathfrak{c} = |\mathbb{R}|$

Свойства.

$$\begin{split} \aleph_0 + n &= \aleph_0. \\ \aleph_0 + \aleph_0 &= \aleph_0. \\ \aleph_0 \times \aleph_0 &= \aleph_0. \\ \mathfrak{c} \times \mathfrak{c} &= 2^{\aleph_0} \times 2^{\aleph_0} = 2^{\aleph_0 + \aleph_0} = 2^{\aleph_0} = \mathfrak{c}. \\ \mathfrak{c}^{\aleph_0} &= (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \times \aleph_0} = 2^{\aleph_0} = \mathfrak{c}. \\ \mathfrak{c} &= 2^{\aleph_0} \leqslant \aleph_0^{\aleph_0} \leqslant \mathfrak{c}^{\aleph_0} = \mathfrak{c}. \end{split}$$

Автор: Игорь Энгель

Утверждение 2.4.

Утверждение $\exists A \ \aleph_0 < |A| < \mathfrak{c}$ нельзя ни доказать ни опровергнуть в ZFC.

3. Лекция 3

Определение 3.1.

≤ называется отношением частичного порядка если

1. $\forall a \quad a \leqslant a$

$$2. \ \forall a, b \quad \begin{cases} a \leqslant b \\ b \leqslant a \end{cases} \implies a = b$$

3.
$$\forall a, b, c \quad \begin{cases} a \leqslant b \\ b \leqslant c \end{cases} \implies a \leqslant c$$

Если $\forall a,b \quad a\leqslant b\lor b\leqslant a,$ то \leqslant также называется отношение линейного порядка.

Определение 3.2.

Пара $\langle X, \leqslant \rangle$ из множества и отношения частичного порядка называется частично упорядоченным множеством.

Определение 3.3.

< называется отношением строгого частичного порядка если

1. $\nexists a \quad a < a$

2.
$$\forall a, b, c \quad \begin{cases} a < b \\ b < c \end{cases} \implies a < c$$

Лемма.

Если \leqslant - отношение частичного гопорядка, то $(\leqslant \land x \neq y)$ - отношение строгого частичного порядка.

Если < - отношение строгого порядка, то ($< \lor x = y$) - отношение частичного порядка.

Лемма.

Если X - ЧУМ, то $Y \subset X$ - ЧУМ, с отношением порядка полученным ограничением отношения из X на Y.

Если X, Y - ЧУМ, то $X \sqcup Y$ - ЧУМ.

Если X,Y - ЧУМ, то X+Y - ЧУМ, такой, что $\forall x\in X,y\in Y\quad x\leqslant y.$

Если X, Y - ЧУМ, то $X \times Y$ - ЧУМ.

Покоординатный порядок: $(x_1, y_1) \leqslant (x_2, y_2) \iff x_1 \leqslant x_2 \land y_1 \leqslant y_2$.

Лексикографический порядок: $(x_1, y_1) \leqslant (x_2, y_2) \iff x_1 \leqslant x_2 \lor (x_1 = x_2 \land y_1 \leqslant y_2).$

Определение 3.4.

Элемент $x \in X$ называется наибольшим, если $\forall y \in X \quad y \leqslant x$.

Аналогично наименьший.

Определение 3.5.

Элемент $x \in X$ называется максимальным, если $\forall y \in X \quad x \leqslant y \implies x = y$.

Аналогично минимальный.

Утверждение 3.1.

Наибольший элемент максимален.

Утверждение 3.2.

Обратное в общем случае неверно.

Доказательство.

$$X = \{(1,0), (0,1)\}.$$

В покоординатном порядке эти пары не сравнимы, значит, они обе максимальны, но среди нех нет наибольшей. \Box

Определение 3.6.

Пусть
$$\langle X, \leqslant_X \rangle$$
, $\langle Y, \leqslant_Y \rangle$ - ЧУМ.

X и Y называются изоформными, если $\exists f: X\mapsto Y,\ f$ - биекция, $\forall a,b\in X$ $a\leqslant_X b\iff f(a)\leqslant_Y f(b).$

Теорема 3.3.

Конечные линейно-упорядоченные множества равной мощности изоморфны.

Доказательство.

Индукция по мощности. Для Ø тривиально.

Возьмём $x_1 \in X$. Либо x_1 наименьший, либо можем взять элемент меньше него.

Будем выбирать $x_{i+1} < x_i$.

Так-как порядок линейный, а множество конечно, то когда-нибудь придём к наименьшему элементу.

Пусть x_i - наименьший элемент X, y_i - наименьший элемент Y.

Тогда, переводим $x_i \to y_i$, дальше по индукции.

Утверждение 3.4.

Отрезок [0,1] и \mathbb{R} не изоформны.

Доказательство.

1 - наибольший элемент [0,1], а в $\mathbb R$ нет. Но если изоморфны, то должно быть $\forall x \in \mathbb R$ $x \leqslant f(1)$.

Утверждение 3.5.

 \mathbb{Q} и \mathbb{Z} не изоморфны.

Доказательство.

Рассмотрим $f^{-1}(1)$ и $f^{-1}(2)$. В $\mathbb Q$ между ними есть некое z. Но тогда 1 < f(z) < 2. А такого в $\mathbb Z$ нет.

Определение 3.7.

x и y называются соседними элементами, если $\nexists z$ x < z < y.

Определение 3.8.

Порядок называется плотным, если не существует соседних элементов.

Теорема 3.6.

Любые равномощные множетсва с линейным плотным порядком, наибольшим и наименьшим элементом изоморфны.

Доказательство.

TODO:

Определение 3.9.

Антицепь - подмножество ЧУМ элементов, где каждая пара различных элементов несравнима.

Определение 3.10.

Цепь - подмножество ЧУМ элементов, где каждая пара элементов сравнима.

Теорема 3.7 (Теорема Дилуорса).

Если $\langle X, \leqslant \rangle$ - конечное ЧУМ, то размер наибольшей антицепи равен наименьшему количеству цепей, покрывающих X.

Доказательство.

Кол-во цепей ≥ макс антицепь - любые элементы в антицепи нсравнимы, значит не могут лежать в одной цепи.

Индукция по |X|: для |X| = 0 и |X| = 1 очевидно.

Выберем m - минимальный элемент в X.

Рассмотрим $X \setminus \{m\}$. Пусть в X есть антицепь размера S. Если мы можем покрыть $X \setminus m$ S-1 цепью, то утверждение доказано.

Мы знаем, что $X \setminus m$ покрывается S цепями, по предположению индукции.

Рассмотрим множество антицепей размера S. Каждая антицепь имеет по одному элементу с каждой цепи.

Выберем x_i - наименьший элемент с i-й цепи, который входит в хотя-бы одну антицепь размера S.

Тогда $\{x_i\}$ образует антицепь. Если $x_1 < x_2$, рассмотрим антицепь A, в которую входит x_1 . В A существует y, находящийся в то-же цепи что x_2 . Тогда $y > x_2 > x_1 \implies y > x_1$, что невозможно в A.

Добавим m. У нас всё ещё нет антицепей размера S+1. Значит, m сравним с одним из x_i . Так-как m - минимальный элемент X, то $m < x_1$. Построим цепь, состоящую из куска цепи где был x_1 , и m. Остался «хвост» цепи, на котором нет ни одного элемента входящего в антицепь размера S. Тогда, у множества без новой цепи нет цепей размера S, можем покрыть его S-1 цепью, значит можем покрыть X S цепями.

 Глава #3
 9 из 9
 Автор: Игорь Энгель