#flo #hw #inclass

1 | 3 and 4 sprint!

1.1 | 3.E products and quotients of vec spaces

title: \$v+U\$

addition of vec and subspace is just the subset of elements in the parent vecspace where the elements a

affine subsets can be imagined as parallel, where a subset is shifted over by a vector v.

the quotient space is the set of all affine subsets! it's denoted as V|U which is ofc also a vec space the quotient map, the map from $V \to V|U$ is denoted as π

 \tilde{T} allows for dealing with one dimensionality higher. it let's you propagate the null space across higher dimensions when trying to generalize a linear map.

1.2 | duality!

dual space and dual map

linear functional is a map which goes to the scalar field F. it's a set in L(V, F)

dual space, aka V', is the vec space of all linear functionals!

dual basis is the dual of v_1, \ldots, v_n which goes to ϕ_1, \ldots, ϕ_n is where each ϕ_j is the linear functional which takes v_k to 1 if k=j and 0 else

we also get dual maps, T', which is just the composition of the linear functional and the normal map ending on, pg 104.

annihilator, denoted as U^0 set of all linear functionals which take all elements to 0 ofc, the annihilator is a subspace