NATIONAL INSTITUTE OF TECHNOLOGY, TIRUCHIRAPPALLI TAMILNADU 620015

Department of Computer Applications
Project Work-2020

Final Review

Title: Machine Learning Algorithms for Defect Analysis

in Thermographic Images

Guide/Mentor

Dr. U. Srinivasulu Reddy

Submitted by

Surendra Lodhi

205117066

Content

- Introduction
- Motivation
- Problem Statement
- Platform
- Literature Survey
- Methodologies
- Design and Development
- Results and Discussions
- Conclusion and Future Work
- References

Introduction

Thermal Imaging:

- Remote sensing technique
- Capable in daytime and night-time

Machine Learning:

- Predictive Analysis
- Classification Analysis
- Clustering Analysis

Motivation

- Potholes on road pose a great danger to lives.
- The root cause of potholes formation is water logging and due to presence of water in cracks and crevices.
- The temperature of potholes is normally expected to be less than the surrounding road.
- Thus it is easy to differentiate between potholes and non potholes using thermal imaging technique.

Problem Statement

Finding the defects in thermographic images and identifying the defect type and predicting the depth of defects using Machine Learning Algorithm.

Platform

Hardware:

- FLIR Camera
- Processor I3 or higher
- 64 bit machine with min 4GB RAM

Software:

- Matlab
- Python(2.7 or 3.7)
- Anaconda(Jupyter Notebook, Tensorflow)

Literature Survey

 Artificial neural networks based quantitative evaluation of subsurface anomalies in quadratic frequency modulated thermal wave imaging
 <u>Link</u>

 Artificial Neural Network Application for Damages Classification in Fibre glass Pre-impregnated Laminated Composites (FGLC) from Ultrasonic Signal Link

Methodologies

- Convolution Neural Network(CNN)
 To classifying the images as defected and non defected
- Artificial Neural Network(ANN)
 To predict the depth of defects.

Multinomial Logistic Regression
 To predict the depth of defects.

Design and Development

Results and Discussions

Features analysis of thermographic images

Results and Discussions

Training CNN Model

```
batch size = 32,
   class mode = 'binary')
   classifier.fit generator(training set,
   steps per epoch = 1000,
   epochs = 5,
   validation data = test set,
   validation steps = 2000)
   Using TensorFlow backend.
   Found 2480 images belonging to 2 classes.
   Found 16 images belonging to 2 classes.
   Epoch 1/5
   uracy: 1.0000
   Epoch 2/5
   uracy: 1.0000
   Epoch 3/5
   uracy: 1.0000
   Epoch 4/5
   uracy: 1.0000
   Epoch 5/5
   uracy: 1.0000
Out[1]: <keras.callbacks.callbacks.History at 0x18f2d9b4648>
```

Prediction of defect using CNN

In []:

```
Out[1]: <keras.callbacks.History at 0x18f2d9b4648>
In [8]: # Part 3 - Making new predictions
        # Prediction of image type
        import numpy as np
        from keras.preprocessing import image
        test image = image.load img('thermal-images-dataset/testing/long pulse -5s01 export186.JPG', target size = (64, 64))
        test image = image.img to array(test image)
        test image = np.expand dims(test image, axis = 0)
        result = classifier.predict(test image)
        training set.class indices
        if result[0][0] == 1:
            prediction = 'no defect'
        else:
            prediction = 'defect'
        print(prediction)
        no defect
```

Prediction of defect using CNN

```
Out[1]: <keras.callbacks.callbacks.History at 0x18f2d9b4648>
In [9]: # Part 3 - Making new predictions
        # Prediction of image type
        import numpy as np
        from keras.preprocessing import image
        test image = image.load img('thermal-images-dataset/testing/long pulse -5s01 export1118.JPG', target size = (64, 64))
        test image = image.img to array(test image)
        test image = np.expand dims(test image, axis = 0)
        result = classifier.predict(test image)
        training set.class indices
        if result[0][0] == 1:
            prediction = 'no defect'
        else:
            prediction = 'defect'
        print(prediction)
        defect
```

```
In [ ]:
```

Training ANN model

```
np.savetxt('plotoutputAllR01.csv', outputArray, delimiter=',', fmt='%f')
from sklearn.metrics import mean squared error
print("\n Mean Squared Error:", mean squared error(y test, pred))
18000/18000 [================== ] - 1s 39us/step - loss: 0.1115 - accuracy: 0.4423
Epoch 93/100
Epoch 94/100
Epoch 95/100
Epoch 96/100
Epoch 97/100
Epoch 98/100
Epoch 99/100
Epoch 100/100
18000/18000 [================= ] - 1s 37us/step - loss: 0.1110 - accuracy: 0.4432
Mean Squared Error: 0.12177201237579988
```

In []:

Predicted depth of defects using ANN

	Α	В	С	D	E	F	G	Н	I	J	K	L	M	N	0
1	Id	Actual	Predicted												
2	1	3	2.8995												
3	2	3	2.875047												
4	3	0.75	0.759383												
5	4	2	2.027622												
6	5	3	2.675244												
7	6	0.75	0.759383												
8	7	3	2.689086												
9	8	3	2.923539												
10	9	2	1.946706												
11	10	2.25	2.095467												
12	11	2	1.992447												
13	12	2	2.066727												
14	13	2.25	2.581211												
15	14	2	1.915715												
16	15	2.25	1.452072												
17	16	3	2.605556												
18	17	2.25	2.383366												
19	18	0.75	0.759383												
20	19	2	2.295075												
21	20	2	1.956765												
22	21	2	2.154702												
23	22	2	1.928988												
24	23	2	1.834614												
25	24	0.75	0.759383												
26	25	0.75	0.759383												
27	26	2	2.06635												
28	27	0.75	0.759383												
29	28	3	2.455251												

Comparison graph of actual and predicted depth using(ANN)

Training Multinomial Regression Model

```
outputArray[i][2]="Predicted"
   outputArray[i][0]=i+1;
   outputArray[i][1]=actual[i][0]
   outputArray[i][2]=pred[i]
   #outputArray[i][2]=actual[i][0]-pred[i][0]
np.savetxt('plotoutputlogis.csv', outputArray, delimiter=',', fmt='%f')
Red Green Blue Gray Index Intensity Temperature
11456 255
              1
                 243
                              12
                                      105
                                              11.7390
16528 255
                 250
                              20
                                              18.9650
                                      105
                              7
3253
      254
                 187
                                               7.2226
18614 254
                 73
                              2
                                       87
                                               2.7065
1544
      255
                 249
                              20
                                      105
                                              18.9650
. . .
                             . . .
9468
      251
             1
                 248
                        1
                             12
                                      104
                                              11.7390
3897
      255
                 233
                             16
                                      103
                                              15.3520
14402 250
                 255
                             23
                                      107
                                              21.6740
5201
                 227
      250
                             17
                                      103
                                              16.2550
                 254
                             23
14610 248
                                      105
                                              21.6740
[8000 rows x 7 columns]
[3 3 2 ... 2 2 3]
Logistic Regression model accuracy(in %): 75.1875
```

In []:

Predicted depth of defects using Multinomial Logistic Regression

	А	В	С	D	Е	F	G	Н	1	J	К	L	M
1	Id	Actual	Predicted										
2	1	3	3										
3	2	3	3										
4	3												
5	4	1	. 1										
6	5												
7	6												
8	7	2	2										
9	8		0										
10	9												
11	10												
12	11												
13	12												
14	13												
15	14												
16	15												
17	16												
18	17												
19	18												
20	19												
21	20												
22	21												
23	22												
24	23												
25	24												
26	25												
27	26												
28	27												
29	28												
30	29	0	0										

Comparison graph of actual and predicted depth(Multinomial Logistic Regression)

Table 1 Classification results of thermographic images

Epoch	Loss	Accuracy	Val_loss	Val_accuray
1/1000	0.0386	0.9836	6.1519e-14	1.0000
2/1000	0.0203	0.9929	3.4599e-17	1.0000
3/1000	0.0120	0.9951	1.0020e-14	1.0000
4/1000	0.0095	0.9963	2.0286e-14	1.0000
5/1000	0.0105	0.9958	4.8909e-30	1.0000

Table 2 Comparison of results of different ML Algorithms

Defects	a	b	c	d
Actual size(cm)	0.75	2.0	2.25	3.0
ANN Regression	0.753164	2.08	2.240417	3.003
Logistic Regression	0.75	2.01	2.30	3.0

Conclusion and Future Work

Conclusion:

- Thermal imaging and Machine Learning is used for defect analysis in thermographic images.
- We used CNN for image classification as defected and non defected image.
- ANN and Multinomial Logistic Regression are used for predicting the depth of defects.
- Accuracy of Multinomial Logistic Regression is better than Artificial Neural Network.

Conclusion and Future Work continue...

Future Work:

- We can combine above mentioned ML algorithms in a single program so that it can be used for real life problem.
- This project is general demonstration of how Thermal Imaging and Machine Learning are used for defect analysis.
- Project can be extended and might be used in various fields like Healthcare, Aerospace, Machine Health Monitoring etc.

References

- https://www.sciencedirect.com/science/article
- https://www.researchgate.net/publication
- http://qirt.org/archives/qirt2016/papers/057.pdf
- https://www.ndt.net/article/qirt2014/papers
- https://towardsdatascience.com/
- https://medium.com/

Thank you