

PREMIER UNIVERSITY CHATTOGRAM

DEPARTMENTOF COMPUTER SCIENCE AND ENGINEERING

PROJECT PROPOSAL

PROJECT PROPOSAL			
COURSE NAME	Artificial Intelligence Laboratory		
COURSE CODE	CSE 3318		
PROJECT NAME	AI-Based Real-Time Weapon and Gesture Detection System for Emergency Alerts		
DATE OF SUBMISSION	03-12-2024		
SUBMITTED TO			
Avisheak Das			
Lecturer			
DEPARTMENT OF Computer Science and Engineering			
SUBMITTED BY			
NAME	Shadman Al Muksit, Rehenuma Tarin Tuhi, Priyam Sharma, Samira Sultana Mysha, Sariful Islam		
ID	0222220005101003, 0222220005101005, 0222220005101018, 02222210005101022, 0222220005101023		
SEMESTER	5th		

BATCH

SESSION

SECTION

42

Α

Fall 2024

Introduction:

In recent years, the need for enhanced security measures in public spaces has become increasingly apparent. The integration of artificial intelligence (AI) in security systems offers promising solutions for real-time threat detection and emergency response. This project proposes the development of an AI-based real-time weapon and gesture detection system designed to improve safety in public areas by providing immediate alerts during potential threats.

Objectives:

The main objectives of this project are:

- To develop a real-time detection system capable of identifying weapons using computer vision techniques.
- To implement gesture recognition for identifying distress signals or emergency gestures. To create a user-friendly interface for security personnel to receive alerts and monitor detected threats.
- To evaluate the system's effectiveness in real-world scenarios through testing and validation.

Background and Motivation:

The rise in gun violence and public safety threats necessitates innovative approaches to enhance security. Traditional surveillance systems often lack real-time analysis capabilities, leading to delayed responses. This project aims to address these gaps by utilizing AI technologies, including deep learning and computer vision, to facilitate timely interventions in emergency situations.

Methodology:

System Design:

- 1. Data Collection:
- Gather a diverse dataset of images and videos for weapon detection and gesture recognition.
- Utilize publicly available datasets and generate synthetic data if necessary.

2. Model Development:

- Implement convolutional neural networks (CNNs) for weapon detection.
- Use recurrent neural networks (RNNs) or similar architectures for gesture recognition.
- Train models using transfer learning techniques to improve accuracy.

3. Real-Time Processing:

- Integrate the trained models into a real-time processing pipeline using OpenCV and TensorFlow or PyTorch.
- Optimize models for efficient inference on edge devices or cloud services.

System Implementation:

- Develop a user interface for security personnel to receive alerts and view detected threats.
- Implement alert mechanisms, such as SMS or app notifications, for emergency responses.
- Conduct extensive testing in various environments to assess system performance.

Development Tools:

- Programming Languages: Python (for AI model development).
- Libraries/Frameworks: OpenCV, TensorFlow, PyTorch, YOLOv5 for real-time detection. Hardware:

For training: Google Colab / Kaggle Notebooks. For deployment: USB camera, old PC/laptop

Workflow:

Data Collection:

- Curate datasets of weapon images and human gestures from public repositories and real-world recordings.

Model Training:

- Train detection models using transfer learning with existing architectures like YOLO or SSD.

Integration:

- Integrate models with real-time video processing pipelines.

Alert System:

- Implement a notification system using APIs (Twilio, Firebase, etc.).

Testing:

- Validate system performance in simulated and real-world scenarios.

Expected Outcomes:

- A fully functional AI-based weapon and gesture detection system that provides real-time alerts.
- Documentation of system performance, including accuracy, speed, and reliability.
- Recommendations for future improvements and potential applications in different security contexts.

Challenges and Risks:

<u>Data Availability:</u> Limited datasets for specific gestures and weapons may affect model performance.

<u>False Positives/Negatives:</u> Ensuring reliability in diverse lighting and environmental conditions.

<u>Ethical Concerns:</u> Privacy issues related to real-time surveillance and video processing.

Problem Statement:

Despite advancements in surveillance systems, traditional approaches lack realtime detection capabilities and proactive measures. Key limitations include:

Delayed Response:

Security personnel may fail to detect threats immediately.

Human Error:

Manual monitoring is prone to fatigue and oversight.

<u>Inefficiency in Gesture Detection:</u>

Existing systems often fail to detect non-verbal cues like aggressive gestures.

Timeline:

Phase	Duration
Data Collection	Flexible, depending on data availability
	and team effort
Model Development	Flexible, contingent on training progress
	and iteration
System Implementation	Flexible, based on ation challen ges
	integ r and team
	collaboration
Testing and Evaluation	Flexible, depending thoroughness of
	on testing and
	adjustments
Final Report Preparation	Flexible, based on the needed for
	time documentation and
	review

Budget:

Item	Estimated
Data Acquisition	Flexible, based on data sources and
	collection methods
Hardware (Cameras, etc.)	Variable, depending on and
	specifications quantities needed
Software Licenses	Adjustable, based on required and
	tools licenses
Miscellaneous	Uncertain, depending on
	unforeseen expenses
Total	Flexible, subject to adjustments based
	on project requirements

Conclusion:

The proposed Al-based real-time weapon and gesture detection system represents a significant advancement in public safety technology. By harnessing the power of Al, this project aims to provide timely alerts during emergencies, thereby enhancing the effectiveness of security measures. With proper execution, this system holds the potential to save lives and improve response times in critical situations.

References:

- [1] Zhang, X., et al. (2020). "Real-Time Object Detection for Public Safety Surveillance."
- [2] LeCun, Y., et al. (2015). "Deep Learning." Nature.
- [3] OpenCV Documentation: https://docs.opencv.org/
- [4] TensorFlow Documentation: https://www.tensorflow.org/