How do we build a C.I. for M_M2 from paired data?

IQ before IQ after I.e. 1 Sample C.I. χ | χ | C.I. for M.-Mz for paire & data: $\rightarrow d \pm 2^{+} \frac{51}{\sqrt{2}}$ Depends on 1-sided The Math is Trivial Determining paired vs. not is NOT. [Paired Vs. Not should be The first question you ask yourself.

QI: I we want to see if $\mu_1 \in \mu_2$. Then The appropriate quantity to compute is
quantity to compute is
a) upper conf. bound for $\mu_1 - \mu_2$, only if data are prived
b) upper " " Mi-Mz.
() lower " " " " " " " " " " " " " " " " " " "
1 1
We want to know if $\mu_1^2 \mu_2$, i.e. $\mu_1 - \mu_2^2 co$
So, we have to see how large it can get
12. upper conf. bound for Mi-Mz.
But Mi-Mz Ko is equivalent to Mz-Miso
ie. lower conf. bound for 1/2-1/1
The notion of pairedness is completely unrelated to The
question you are trying to answer. The notion of paindness
effects how The CI is computed.
Because of The multiple answers to This of
it will not be graded. Only participation)
point will be given.

Consider The 1-sample, 25 ided C.I. for Mz: X + 2* 0x we derived it from $Z = \frac{x - \mu_x}{\sigma_x \sqrt{n}} \sim N(0,1)$. In practice, however, The CI is computed as $\times \pm z \times \frac{s_x}{s_x}$ So, it's natural to ask what is The dist. of x-1/2. Infact, upon a little Thinking you can see That it cannot have a normal dist. To see that x-mx is not normal, ask yourself which of the following has the "wider" sampling distr ? This one is "Vider" because it

has 2 sources of variability: x, Sx

An English statistician working for an Irish Beev company
figured it out: $z \sim Normal(0,1)$ param. of t-distr. $t \sim t - distribution$ with df'' degrees of freedom (see below). $f(t) = \frac{\Gamma(\frac{1}{2}(df+1))}{\int_{\pi(df)} \Gamma(\frac{1}{2}df)} \int_{\pi(df)} \frac{As \text{ fav as you and}}{(1+\frac{1}{2})df+1} \int_{\pi(df)} \frac{Concerned}{\int_{\pi(df)} \Gamma(\frac{1}{2}df)} \int_{\pi(df)} \frac{As \text{ fav as you and}}{\int_{\pi(df)} \frac{As \text{ fav as you and}}{\int_{\pi(df)} \Gamma(\frac{1}{2}df)} \int_{\pi(df)} \frac{As \text{ fav as you and}}{\int_{\pi(df)} \frac{As \text{ fav as you and}}{\int_{\pi(df$

Example: Sample of 16, from a Normal pop, yields = 10, 5=2We are 95% confident that yer is in 10 ± 2.13 (= 2)

I.e. [8.9, 11.1]

Vote that this is wider than The z-interval: Table IV. $= 10 \pm 1.96$ (= 2) = [9.02, 10.98]

Remember that the C.I is made so that some percentage of Them would cover the psp. parans. In This case 95% of the intervals with $t^* = 2.13$ would do the job. Sometimes called t-intervals.

The one with 2 = 196 is navioured => covers Mx less than 95% if the time.

Sometimes called Z-interval.

Hote that The basic difference between the z-interval and the t-interval is in whether or not we know of or not, vespectively. So, The z-interval often appears under the header "Known of, and The t-interval is under the header "Unknown of," But These 2 intervals are also called "large-sample CI" and "Small-sample CI", respectively, because if The sample is large, Then Sy is going to be a very good approximation of of, So, we use \$\tilde{x} \tilde{x} \t

(hw-(ct 22-1)

Consider the following data on x1 and x2 which was collected in a paired design: x1 = c(-0.27, -0.14, 1.61, 0.09, 0.00, 2.07, 0.56, -1.67, -0.51, -0.54) x2 = c(-0.32, 0.20, 1.93, 0.54, 0.75, 1.77, 0.84, -0.29, -0.33, 0.17)

- a) Compute a 2-sided, 95% LARGE-sample CI for the difference between the two true means. Provide one interpretation of the observed CI. You may use R to do simple claculations, but use the CI formulas derived in class.
- b) Consider the following data, which is the same as above, except the cases in x2 have been randomly shuffled. Compute an appropriate 95% 2-sided LARGE-sample CI, and interpret it.
- c) Which one is narrower?

In The above example, we have n=16, and so df=n-1=15.

One way to get to for The C.I. is from Table IV (4).

under The 2-sided 95% interval, for df=15,

you will find 2.131.

a) Now, use table VI (6); what value of to do you get?

b) Now, suppose we are interested in building a 1-sided C.I.

for μ . According to Table IV (4), with df=15, and

95% confidence level, the value of to 1.753. Again,

what value of to do you got from Table VI (6)?

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.