Факультет вычислительной математики и кибернетики

Отчет по практическому заданию №1

Построение параметрического портрета системы. Нахождение областей множественности стационарных состояний и автоколебаний

> студента кафедры математической физики Ефимова Александра Алексеевича

Оглавление

1	Постановка задачи	3
2	Однопараметрический анализ по k2	4
3	Двухпараметрический анализ	8

Глава 1

Постановка задачи

Рассматривается автокаталитическая химическая реакция, в которой вещества X и Y адсорбируются на поверхность катализатора и десорбируюся с поверхности с буферной стадией в зависимости от наличия свободных мест. Матиматическая модель данной реакции имеет вид:

$$\frac{dx}{dt} = k_1 z - k_{-1} x - k_2 z^2 x$$
$$\frac{dy}{dt} = k_3 z^2 - k_{-3} y^2,$$

где
$$z = 1 - x - y$$
.

$$0 \le x \le 1, 0 \le x \le 1, 0 \le x + y \le 1$$

$$k_1 = 0, 12, k_{-1} = 0,005, k_3 = 0,0032, k_2 = 1.05, k_{-3} = 0,002$$

Глава 2

Однопараметрический анализ по k2

Стационарные состояние удовлетворяют системе уравнений:

$$k_1 z - k_{-1} x - k_2 z^2 x = 0$$
$$k_3 z^2 - k_{-3} y^2 = 0$$

Решаем систему относительно переменной x и параметра k_2 . Подставляя в полученные выражения заданные значения параметров, получим функции x(y) и $k_2(y)$. Зная область определения переменной y и пробегая по её значениям с малым шагом, найдем соответствующие значения x и k_2 . Затем находим собственные значения Якобиана для матрицы исходных функций. Выбирая те пары подряд идущих значений, которые имеют разный знак, найдем стационарные точки. Отмечаем полученные результаты на графиках.

Рис. 2.1: $k_{-1} = 0.001$

Рис. 2.2: $k_{-1} = 0.005$

Рис. 2.3: $k_{-1} = 0.01$

Рис. 2.5: $k_{-1} = 0.02$

Рис. 2.6: $k_{-3} = 0.0005$

Рис. 2.8: $k_{-3} = 0.002$

Рис. 2.9: $k_{-3} = 0.003$

Глава 3

Двухпараметрический анализ

Строим линии кратности и нейтральности относительно параметров k_1 и k_{-1} . Находя собственные Якобиана матрицы исходных функций, равные 0, получим соответствующие значения коэффициентов, дающие точку Богданова-Такенса. Внутри "петли"выбираем точку, при этом соответствующие параметры позволяют получить область автоколебаний. Отмечаем полученные результаты на графиках.

Рис. 3.1: Параметрический портрет с точками бифуркации ко-размерности-2

Рис. 3.2: График автоколебаний для x

Рис. 3.3: График автоколебаний для y

Рис. 3.4: Приближенный к предельному циклу фазовый портрет системы

Рис. 3.5: Фазовый портрет системы с дополнительными траекториями