TD n°1

Langages et expressions rationnelles

Exercice 1 Soient A, B et C les langages dénotés respectivement par les expressions rationnelles $(bb \mid aba)^*$, $(b \mid aba)^*$ et $(ab \mid abb)^*$. Donner les trois plus courts mots de $A \cup B$, de $A \cup C$, $de\ A\cap B,\ de\ A\cap C,\ et\ finalement\ de\ B\cap C.$

Exercice 2 Pour chacune des expressions rationnelles suivantes, donner une description en français du langage dénoté :

1.
$$0(11)*0$$
; 2. $(1 \mid 01 \mid 001)*(\varepsilon \mid 0 \mid 00)$; 3. $0*(10*10*10*)*$.

Exercice 3 Pour chacun des langages sur l'alphabet $\{0,1\}$ suivants, écrire une expression rationnelle le dénotant et construire un automate déterministe le reconnaissant :

- 1. tous les mots de longueur paire;
- 2. tous les mots contenant 0;
- 3. tous les mots avec un nombre impair de 1;
- 4. tous les mots qui n'ont pas plus de deux 0 consécutifs;
- 5. tous les mots ne contenant pas 010;
- 6. tous les mots dont l'avant-dernière lettre est un 1;
- 7. tous les mots qui représentent un entier (non-signé) pair (resp. multiple de 4, resp. de 3).

déterminiser et éliminer les ϵ -transitions

Soit $\mathcal{A} = (\Sigma, Q, \delta, I, F)$ un automate non-déterministe avec ϵ -transitions. Pour $P \subseteq Q$, on définit :

$$\epsilon$$
-clôture $(P) = \{ q \in Q \mid \exists p \in P, q \in \delta^*(p, \epsilon) \}.$

On construit l'automate déterministe $\mathcal{A}' = (\Sigma, 2^Q, \delta', I', F')$ avec

$$-I' = \varepsilon$$
-clôture (I) ,

—
$$\delta'(P, a) = \bigcup_{p \in P} \epsilon$$
-clôture $(\delta(p, a))$,

$$--F' = \{ P \subseteq Q \mid P \cap F \neq \emptyset \}.$$

Il convient de construire les états de \mathcal{A}' au fur et à mesure.

Exercice 4 On considère l'expression rationnelle $\mathcal{E}_1 = (a \mid \varepsilon)(b \mid \varepsilon)ab(a \mid \varepsilon)(b \mid \varepsilon)$.

- 1. Construire un automate A_1 qui reconnaît le langage dénoté par \mathcal{E}_1 .
- 2. Déterminiser et éliminer les ϵ -transitions de l'automate A_1 selon la méthode ci-dessus.
- 3. Faire de même avec l'expression rationnelle $\mathcal{E}_2 = (a \mid ba)^*(b \mid ba)$.

Exercice 5 Pour chacun des langages suivants, démontrer qu'il est rationnel ou montrer qu'il ne l'est pas.

1.
$$\{a^m b^n \mid m, n \in \mathbb{N}\}$$
 3. $\{a^m b^n \mid m \neq n\}$ 5. $\{a^{2n} \mid n \in \mathbb{N}\}$ 7. $\{a^p \mid p \text{ premier}\}$

1.
$$\{a^mb^n \mid m, n \in \mathbb{N}\}$$
 3. $\{a^mb^n \mid m \neq n\}$ 5. $\{a^{2n} \mid n \in \mathbb{N}\}$ 7. $\{a^p \mid p \text{ premier}\}$ 2. $\{a^mb^n \mid m < n\}$ 4. $\{u^2 \mid u \in \{a,b\}^*\}$ 6. $\{a^{n^2} \mid n \in \mathbb{N}\}$ 8. $\{u \in \{a,b\}^* \mid u \text{ palindrome}\}$