Math 321 Lecture 19

Yuchong Pan

February 15, 2019

Linear Functionals on Normed Vector Spaces 1

Definition and Examples

Let V be a vector space on \mathbb{R} , equipped with a norm $\|\cdot\|_V$. $\|\cdot\|_V$ generates a metric on V via $d(\mathbf{v}, \mathbf{w}) = \|\mathbf{v} - \mathbf{w}\|_V$. This allows to define *continuous functions* on X.

Recall: A function $f: V \to \mathbb{R}$ is continuous (by definition) if f^{-1} (open set in \mathbb{R}) is open in V.

Definition 1. Say $T:V\to\mathbb{R}$ is a **continuous linear functional** on V if

- 1. T is linear: $T(\alpha \mathbf{v} + \beta \mathbf{w}) = \alpha T(\mathbf{v}) + \beta T(\mathbf{w})$ for all $\mathbf{v}, \mathbf{w} \in V, \alpha, \beta \in \mathbb{R}$;
- 2. T is continuous.

Examples:

1. $V = \mathbb{R}^n$; what is a continuous linear functional on V?

$$T: \mathbb{R}^n \xrightarrow{\text{linear}} \mathbb{R} \Leftrightarrow \exists \mathbf{a} \in \mathbb{R}^n \text{ s.t. } T(\mathbf{x}) = \sum_{j=1}^n a_j x_j \ \forall \mathbf{x} = (x_1, \dots, x_n).$$
 These are continuous.

Exercise: Check that if V is finite-dimensional, then any linear functional on V is continuous.

2. Is this fact necessarily true if V is infinite-dimensional?

(a)

$$V = \{\text{all infinite sequences with all but finitely many entries } 0\}$$

= $\{\mathbf{x} = (x_1, x_2, x_3, \dots) : \exists N \geq 1 \text{ s.t. } x_j = 0 \ \forall j \geq N\}.$

$$V$$
 is infinite-dimensional because $\left\{\mathbf{e}_j=(0,0,\ldots,\underbrace{j}_{j^{\text{th}}\text{ entry}},0,\ldots):j\geq 1\right\}$ is an infinite

linearly independent set in V.

Define $T(\mathbf{x}) = \sum_{j=1}^{\infty} x_j$. Recall that $\|\mathbf{x}\|_1 = \sum_{j=1}^{\infty} |x_j|$. Note that T is linear and $|T(\mathbf{x})| \leq \sum_{j=1}^{\infty} |x_j| = \|\mathbf{x}\|_1$.

Claim 1. T is continuous and linear with respect to $\|\cdot\|_1$.

Define $\|\mathbf{x}\|^* = \sum_{j=1}^{\infty} 2^{-j} |x_j|$. Note that $T(\mathbf{e}_j) = 1$ for every $j \ge 1$ and $\|\mathbf{e}_j\|^* = 2^{-j}$. This implies that

$$\frac{|T(\mathbf{e}_j)|}{\|\mathbf{e}_j\|^*} = \frac{1}{2^{-j}} = 2^j \xrightarrow{j \to \infty} \infty.$$

Math 321 Lecture 19 Yuchong Pan

(b) $\mathcal{P} = \{\text{all polynomials on } [0,1]\}$, equipped with the sup norm.

 \mathcal{P} is infinite-dimensional because $\left\{\underbrace{x_n}_{=P_n}: n \geq 0\right\}$ form a linearly independent set.

Let $T: \mathcal{P} \to \mathbb{R}$ be defined by $f \mapsto f'(1)$.

Claim 2. T is linear but discontinuous.

Note that $T(P_n) = nx^{n-1}|_{x=1} = n$ and that $||P_n||_{\infty} = 1$. This implies that

$$\frac{|T(P_n)|}{\|P_n\|} \xrightarrow{n \to \infty} \infty.$$

Theorem 1. Let V be a normed vector space. A linear map $T:V\to\mathbb{R}$ is continuous if and only if T obeys

$$\sup \left\{ \frac{|T(\mathbf{x})|}{\|\mathbf{x}\|} : \mathbf{x} \in V \right\} = K < \infty \Leftrightarrow |T(\mathbf{x})| \le K \|\mathbf{x}\|.$$
 (*)

Proof. " \Leftarrow ": Exercise: If T obeys (*), show that T is Lipschitz and hence continuous.

" \Rightarrow ": Assume T is linear and continuous on V, hence at **0**; i.e., given any $\epsilon > 0$ (choose $\epsilon = 1$), there exists $\delta > 0$ such that

$$\|\mathbf{x}\| = \|\mathbf{x} - \mathbf{0}\| < \delta \Rightarrow \left| T(\mathbf{x}) - \underbrace{T(\mathbf{0})}_{=0} \right| < \epsilon = 1.$$

Shown:

$$\|\mathbf{x}\| < \delta \Rightarrow |T(\mathbf{x})| < 1.$$
 (**)

Choose any $\mathbf{y} \in V, \mathbf{y} \neq \mathbf{0}$. Set $\mathbf{v} = \frac{\delta}{2} \frac{\mathbf{y}}{\|\mathbf{y}\|}$. Then, $\|\mathbf{v}\| = 1 \cdot \frac{\delta}{2} = \frac{\delta}{2} < \delta$. Note that

$$(**) \Rightarrow |T(\mathbf{v})| < 1$$

$$\Rightarrow \left| T\left(\frac{\delta}{2} \frac{\mathbf{y}}{\|\mathbf{y}\|}\right) \right| < 1$$

$$\Rightarrow \frac{\delta}{2} \frac{1}{\|\mathbf{y}\|} |T(\mathbf{y})| < 1$$

$$\Rightarrow |T(\mathbf{y})| < \underbrace{\frac{2}{\delta}}_{=K} \|\mathbf{y}\|.$$

This is (*) with $K = \frac{2}{\delta}$.

1.2 Riesz Representation Theorem

Definition 2. Let V be a normed vector space. Then $V^* = \left\{ T : V \xrightarrow{\text{continuous}} \mathbb{R} \right\}$ is called the **dual** of V.

Question: What is $C[a, b]^*$? i.e., what does a continuous linear functional on C[a, b] look like?

Math 321 Lecture 19 Yuchong Pan

Theorem 2 (Riesz representation theorem). $C[a,b]^* \cong BV[a,b]$.

In other words, $L:C[a,b]\to\mathbb{R}$ is a continuous linear functional if and only if there exists $\alpha\in BV[a,b]$ such that

$$L(f) = \int_{a}^{b} f d\alpha \ \forall f \in C[a, b].$$

Remark.

1. Is α unique?

Answer: No. If α works, α + constant will absolutely work.

In fact, there exists a choice of $\alpha \in BV[a,b]$ such that α is right continuous on [a,b] and $\alpha(a) = 0$. Such a choice is unique.

2. α is, in the language of measure, the distribution function of a random variable; i.e., if X is a random variable, $\alpha(x) = \mathbb{P}(X \leq x)$.