【書類名】 明細書

【発明の名称】 半導体装置及びその作製方法

【特許請求の範囲】

【請求項1】

絶縁表面上にゲート配線と、前記ゲート配線上に絶縁膜と、前記絶縁膜上に第 1の非晶質半導体膜と、前記第1の非晶質半導体膜上に一導電型の不純物元素を 含有する第2の非晶質半導体膜からなるソース領域及びドレイン領域と、

前記ソース領域または前記ドレイン領域上にソース配線または電極と、前記電極と一部接して重なる画素電極とを有し、

前記第1の非晶質半導体膜の端部はテーパー形状であることを特徴とする半導体装置。

【請求項2】

絶縁表面上にゲート配線と、前記ゲート配線上に絶縁膜と、前記絶縁膜上に第 1の非晶質半導体膜と、前記第1の非晶質半導体膜上に一導電型の不純物元素を 含有する第2の非晶質半導体膜からなるソース領域及びドレイン領域と、

前記ソース領域または前記ドレイン領域上にソース配線または電極と、前記電極と一部接して重なる画素電極とを有し、

前記第1の非晶質半導体膜の端部、または前記第2の非晶質半導体膜の端部は テーパー形状であることを特徴とする半導体装置。

【請求項3】

請求項1または請求項2において、テーパー形状を有する前記第1の非晶質半導体膜の端部は、5° ~ 4 5°の範囲の角度を有することを特徴とする半導体装置。

【請求項4】

絶縁表面上にゲート配線と、前記ゲート配線上にゲート絶縁膜と、前記ゲート 絶縁膜上に非晶質半導体膜と、前記非晶質半導体膜上にソース領域及びドレイン 領域と、前記ソース領域または前記ドレイン領域上にソース配線または電極と、 前記電極と一部接して重なる画素電極を有し、

前記非晶質半導体膜のうち、前記ゲート絶縁膜を間に挟んで前記ゲート配線と

重なり、且つ、前記ソース領域または前記ドレイン領域と重ならない領域は他の 領域よりも膜厚が薄い領域であり、該領域の中央に向かって膜厚が薄くなるテー パー形状を有していることを特徴とする半導体装置。

【請求項5】

請求項4において、前記テーパー形状を有する領域は、5°~45°の範囲の 角度を有することを特徴とする半導体装置。

【請求項6】

請求項4または請求項5において、前記第1の非晶質半導体膜の端部は、テーパー形状を有し、5°~45°の範囲の角度であることを特徴とする半導体装置

【請求項7】

請求項1乃至6のいずれか一において、前記ソース領域または前記ドレイン領域は、前記ソース配線または前記電極と端面が一致していることを特徴とする半導体装置。

【請求項8】

絶縁表面上にゲート配線を形成する第1の工程と、

前記絶縁表面と前記ゲート配線を覆う絶縁膜を形成する第2の工程と、

前記絶縁膜上に第1の非晶質半導体膜を形成する第3の工程と、

前記第1の非晶質半導体膜上に一導電型の不純物元素を含有する第2の非晶質 半導体膜を形成する第4の工程と、

前記第2の非晶質半導体膜上に金属材料からなる導電膜を形成する第5の工程 と、

前記第1の非晶質半導体膜、前記第2の非晶質半導体膜、および前記導電膜を エッチングして、前記第1の非晶質半導体膜の端部をテーパー形状に形成する第 6の工程と、

前記導電膜上に透明導電膜を形成する第7の工程と、

前記透明導電膜、前記導電膜、前記第2の非晶質半導体膜、および前記第1の 非晶質半導体膜の一部をエッチングして前記第1の非晶質半導体膜の一部を露呈 させ、前記透明導電膜からなる画素電極と、前記導電膜からなるソース配線と、 前記第2の非晶質半導体膜からなるソース領域およびドレイン領域とを形成する 第8の工程とを有することを特徴とする半導体装置の作製方法。

【請求項9】

絶縁表面上にゲート配線を形成する第1の工程と、

前記絶縁表面と前記ゲート配線を覆う絶縁膜を形成する第2の工程と、

前記絶縁膜上に第1の非晶質半導体膜を形成する第3の工程と、

前記第1の非晶質半導体膜上に一導電型の不純物元素を含有する第2の非晶質 半導体膜を形成する第4の工程と、

前記第2の非晶質半導体膜上に金属材料からなる導電膜を形成する第5の工程と、

前記絶縁膜、前記第1の非晶質半導体膜、前記第2の非晶質半導体膜、および 前記導電膜をエッチングして、前記第1の非晶質半導体膜の端部をテーパー形状 に形成する第6の工程と、

前記導電膜上に透明導電膜を形成する第7の工程と、

前記透明導電膜、前記導電膜、前記第2の非晶質半導体膜、および前記第1の 非晶質半導体膜の一部をエッチングして前記第1の非晶質半導体膜の一部を露呈 させ、前記透明導電膜からなる画素電極と、前記導電膜からなるソース配線と、 前記第2の非晶質半導体膜からなるソース領域およびドレイン領域とを形成する 第8の工程とを有することを特徴とする半導体装置の作製方法。

【請求項10】

請求項8または請求項9に記載の前記第6の工程において、前記導電膜、前記第2の非晶質半導体膜、および前記第1の非晶質半導体膜は、塩素系ガスでエッチングすることを特徴とする半導体装置の作製方法。

【請求項11】

請求項8乃至10のいずれか一に記載の前記第8の工程において、前記導電膜、前記第2の非晶質半導体膜、および前記第1の非晶質半導体膜の一部は、塩素系ガスでエッチングすることを特徴とする半導体装置の作製方法。

【請求項12】

請求項8乃至11のいずれか一において、前記塩素系ガスは、Cl2、BCl3

頁: 4/ 39

、HC1、 $SiC1_4$ から選ばれたガス、またはこれら複数のガスを含むガスであることを特徴とする半導体装置の作製方法。

【請求項13】

絶縁表面上にゲート配線を形成する工程と、

前記絶縁表面上と前記ゲート配線上に絶縁膜を形成する工程と、

前記絶縁膜上に第1の非晶質半導体膜を形成する工程と、

前記第1の非晶質半導体膜上に一導電型の不純物元素を含有する第2の非晶質半 導体膜を形成する工程と、

前記第2の非晶質半導体膜上に導電膜を形成する工程と、

前記第1の非晶質半導体膜と前記第2の非晶質半導体膜と前記導電膜とをエッチングして、前記第1の非晶質半導体膜の端部をテーパー状に形成する工程と、

前記第2の非晶質半導体膜上に透明導電膜を形成する工程と、

前記透明導電膜と前記導電膜と前記第2の非晶質半導体膜とをエッチングして ソース配線とソース領域とドレイン領域とを形成する工程を有し、

前記導電膜は、アルミニウムまたはチタンを含み、

前記第1の非晶質半導体膜は、Cl₂とBCl₂の混合ガスにより、テーパー状にエッチングされることを特徴とする半導体装置の作製方法。

【請求項14】

絶縁表面上にゲート配線を形成する工程と、

前記絶縁表面上と前記ゲート配線上に絶縁膜を形成する工程と、

前記絶縁膜上に第1の非晶質半導体膜を形成する工程と、

前記第1の非晶質半導体膜上に一導電型の不純物元素を含有する第2の非晶質半 導体膜を形成する工程と、

前記第2の非晶質半導体膜上に導電膜を形成する工程と、

前記第1の非晶質半導体膜と前記第2の非晶質半導体膜と前記導電膜をエッチングして、前記第1の非晶質半導体膜の端部をテーパー状に形成する工程と、

前記第2の非晶質半導体膜上に透明導電膜を形成する工程と、

前記透明導電膜と前記導電膜と前記第2の非晶質半導体膜とをエッチングして ソース配線とソース領域とドレイン領域とを形成する工程を有し、 前記導電膜は、少なくともタンタルを含み、

前記第1の非晶質半導体膜は、Cl₂とCF₄の混合ガスにより、テーパー状にエッチングされることを特徴とする半導体装置の作製方法。

【請求項15】

絶縁表面上にゲート配線を形成する工程と、

前記絶縁表面上と前記ゲート配線上に絶縁膜を形成する工程と、

前記絶縁膜上に第1の非晶質半導体膜を形成する工程と、

前記第1の非晶質半導体膜上に一導電型の不純物元素を含有する第2の非晶質半 導体膜を形成する工程と、

前記第2の非晶質半導体膜上に導電膜を形成する工程と、

前記第1の非晶質半導体膜と前記第2の非晶質半導体膜と前記導電膜とをエッチングして、前記第1の非晶質半導体膜の端部をテーパー状に形成する工程と、

前記第2の非晶質半導体膜上に透明導電膜を形成する工程と、

前記透明導電膜と前記導電膜と前記第2の非晶質半導体膜とをエッチングして ソース配線とソース領域とドレイン領域を形成する工程を有し、

前記導電膜は、少なくともタングステンを含み、

前記第1の非晶質半導体膜は、 $Cl_2 \& CF_4 \& O_2$ の混合ガス、または $Cl_2 \& SF_6 \& O_2$ の混合ガスにより、テーパー状にエッチングされることを特徴とする半導体装置の作製方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は薄膜トランジスタ(以下、TFTと記す)で構成された半導体回路を有する半導体装置及びその作製方法に係わり、特に液晶表示パネルに代表される電気光学装置及び前記電気光学装置を部品として搭載した電子機器に関する技術である。

[0002]

なお、本明細書中において半導体装置とは半導体特性を利用することで機能し うる装置全般を指し、電気光学装置(以下、表示装置と記す)、半導体回路及び 電子機器は全て半導体装置である。

[0003]

【従来の技術】

近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数百~数千nm程度)を用いてTFTを作製する技術が開発されている。TFTは集積回路(Integrated Circuit;IC)や電気光学装置のような半導体装置に広く応用され、特に表示装置などのスイッチング素子として開発が急がれている。

[0004]

半導体装置は、パッシブ型の液晶表示装置と比較して高精細な画像が得られることから、アクティブマトリックス型の液晶表示装置が多く用いられている。そして、アクティブマトリックス型液晶表示装置はゲート配線と、ソース配線と、前記ゲート配線と前記ソース配線の交差に設けた画素部のTFTと、前記画素部のTFTに接続する画素電極とを有している。

[0005]

従来のTFTは300℃以下の低温で大面積の基板上に形成可能であることから、非晶質半導体膜として非晶質シリコン膜が用いられている。また、非晶質半導体膜で形成されたチャネル形成領域を有する逆スタガ型のTFTが広く用いられている。

[0006]

【発明が解決しようとする課題】

従来、アクティブマトリックス型の電気装置はフォトリソグラフィー技術により、5枚以上のフォトマスクを使用してTFTを基板上に作製していた。そこで、生産性と歩留まりを向上させるために、工程数を削減することが有効な手段として考えられる。

[0007]

工程数を削減するために、TFTの製造におけるフォトマスクの使用回数を減らすことが必要となる。このフォトマスクを1枚使用することによって、レジスト塗布、プレベーク、露光、現像、ポストベークなどの工程と、その前後の工程

において、被膜の成膜及びエッチングなどの工程、さらにレジスト剥離、洗浄や 乾燥工程などが付加され、煩雑なものとなっていた。

[0008]

本発明はこのような問題に答えるものであり、アクティブマトリックス型の液晶表示装置におけるTFTを作製するためのフォトマスクを削減して生産性の向上及び歩留まりの向上の実現を提案することを課題としている。

[0009]

また、マスク数を削減することに伴う、画素TFTの端部における画素電極のカバレージ不良を解決し、非晶質半導体膜のエッチングの際に絶縁膜のエッチングを防ぐ構造及びその作製方法を提供することを課題としている。

[0010]

【課題を解決するための手段】

本発明は、ゲート配線や容量配線や端子電極を形成するための導電膜の形成工程から画素電極の形成工程までを3枚のフォトマスクで行い、非晶質半導体膜の端部をテーパー形状とすることで画素電極のカバレージ不良を解決し、さらに非晶質半導体膜のエッチングの際に絶縁膜のエッチングを防ぐことを特徴とする。

[0011]

3枚のフォトマスクの特徴は、

第1のフォトマスクは導電膜を形成するためのフォトマスク、

第2のフォトマスクは第1の非晶質半導体膜と、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜を形成するためのフォトマスク、

第3のフォトマスクは画素電極、ソース領域、ドレイン領域、ソース電極、ドレイン電極を形成、及びチャネルエッチングするためのフォトマスクである。

[0012]

本明細書で開示する作製方法に関する構成は、

絶縁表面上にゲート配線を形成する第1の工程と、

前記絶縁表面と前記ゲート配線を覆う絶縁膜を形成する第2の工程と、

前記絶縁膜上に第1の非晶質半導体膜を形成する第3の工程と、

前記第1の非晶質半導体膜上に一導電型の不純物元素を含有する第2の非晶質

半導体膜を形成する第4の工程と、

前記第2の非晶質半導体膜上に金属材料からなる導電膜を形成する第5の工程 と、

前記第1の非晶質半導体膜、前記第2の非晶質半導体膜、および前記導電膜を エッチングして、前記第1の非晶質半導体膜の端部をテーパー形状に形成する第 6の工程と、

前記導電膜上に透明導電膜を形成する第7の工程と、

前記透明導電膜、前記導電膜、前記第2の非晶質半導体膜、および前記第1の 非晶質半導体膜の一部をエッチングして前記第1の非晶質半導体膜の一部を露呈 させ、前記透明導電膜からなる画素電極と、前記導電膜からなるソース配線と、 前記第2の非晶質半導体膜からなるソース領域およびドレイン領域とを形成する 第8の工程とを有することを特徴とする半導体装置の作製方法である。

[0013]

上記構成の前記第6の工程において、前記導電膜、前記第2の非晶質半導体膜、 および前記第1の非晶質半導体膜は、塩素系ガスでエッチングすることを特徴と している。

[0014]

本発明のTFT断面図を図15に示す。本発明はカバレージ不良を改善するために第1の非晶質半導体膜1001の端部をテーパー形状にすることを特徴としている。第1の非晶質半導体膜1001の端部をテーパー形状にするために、塩素系のエッチングガスを使用して、ソース電極またはドレイン電極を形成する金属層1002a(およびソース領域またはドレイン領域を形成する第2の非晶質半導体膜1002b)と同時にエッチングを行うことによって、第1の非晶質半導体膜1001の端部のみをテーパー形状に作製することができる。そして最終的には、画素電極1003のカバレージ不良が解決された逆スタガ型のTFT(チャネルエッチ型TFT)をトータルで3枚のフォトマスクで作製することができる。また、非晶質半導体膜のエッチングの際に、第1の非晶質半導体膜1001の端部近傍の絶縁膜1004のエッチングを防ぐことが可能となる。

[0015]

このように、本発明は、複数の相異なる材料からなる多層膜(金属膜、第2の 非晶質半導体膜、第1の非晶質半導体膜)を同じエッチングガス(塩素系)を用 い、第2のフォトマスクで一括してエッチングし、スループットを向上させるも のである。

[0016]

ここで、第1の非晶質半導体膜のテーパー形状の角度(テーパー角)は、基板表面と第1の非晶質半導体膜の端部の傾斜部とのなす角度として定義する(図21(B))。図21(A)に示すように、第1の非晶質半導体膜の端部のテーパー角はエッチング条件を適宜選択することによって、5°~45°の範囲とすることができる。

[0017]

また、本発明を実施するためのエッチングガスは、塩素系のガスをエッチングガスとした。例えば、 Cl_2 、 BCl_3 、HCl、 $SiCl_4$ から選ばれたガス、または、前記ガスから複数選択した混合ガスをエッチングガスとすることができる。

[0018]

塩素系ガスは、金属層1002aに対するエッチングレートと第2の非晶質半導体膜1002bに対するエッチングレートはあまり差がないので端面がほぼ一致するが、第1の非晶質半導体膜1001のエッチングレートと、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1002bのエッチングレートに大きな差を持っており、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜のエッチングレートが、第1の非晶質半導体膜のエッチングレートより早いために、第1の非晶質半導体膜の端部のみをテーパー形状にできる。

[0019]

図15に示した構成も本発明の一つであり、

絶縁表面上にゲート配線と、前記ゲート配線上に絶縁膜と、前記絶縁膜上に第1 の非晶質半導体膜と、前記第1の非晶質半導体膜上に一導電型の不純物元素を含 有する第2の非晶質半導体膜からなるソース領域及びドレイン領域と、 前記ソース領域または前記ドレイン領域上にソース配線または電極と、前記電極と一部接して重なる画素電極とを有し、

前記第1の非晶質半導体膜の端部はテーパー形状であることを特徴とする半導体装置である。

[0020]

また、図15では一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1002b(ソース領域またはドレイン領域)の端部を基板に対してほぼ垂直、即ち金属層1002a(ソース電極または電極)の端面と一致するように形成しているが、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1002bの端部または金属層1002aの端部をテーパー形状とするエッチングを行っても良く、

本発明の他の構成は、絶縁表面上にゲート配線と、前記ゲート配線上に絶縁膜と、前記絶縁膜上に第1の非晶質半導体膜と、前記第1の非晶質半導体膜上に一導電型の不純物元素を含有する第2の非晶質半導体膜からなるソース領域及びドレイン領域と、

前記ソース領域または前記ドレイン領域上にソース配線または電極と、前記電極と一部接して重なる画素電極とを有し、

前記第1の非晶質半導体膜の端部、または前記第2の非晶質半導体膜の端部は テーパー形状であることを特徴とする半導体装置である。

[0021]

なお、第2の非晶質半導体膜1002bの端部または金属層1002aの端部を テーパー形状とする場合、第1の非晶質半導体膜のテーパー形状の角度に比べて 大きくなる。

[0022]

また、本発明で使用するドライエッチング装置は、RIE方式のエッチング装置であってもよいし、ICP方式のエッチング装置であってもよい。なお、ICP方式のエッチング装置は、電力の調節によってテーパー角度を適宜調節することが可能であるので好ましい。

[0023]

ここでエッチング実験を行った。基板上に、絶縁膜(酸化シリコン膜)、第1の非晶質半導体膜(アモルファスシリコン膜)、第2の非晶質半導体膜(リンドープシリコン膜)、A1-Si膜(Siを2wt%含むアルミニウム膜)とを順次積層した後、選択的にレジストで覆い、 $C1_2$ と、 $BC1_3$ の混合ガスを使用してエッチングを実際に行い、その後の断面図を観察した図が図19である。図19はSEM(Scanning Electron Microscope)写真であり、倍率は5万倍である。 $C1_2$ と、 $BC1_3$ の混合ガスでエッチングすることで、A1-Si膜と、第2の非晶質半導体膜と、第1の非晶質半導体膜とを同時にエッチングすることができ、さらに第1の非晶質半導体膜の端部のみをテーパー形状にすることができる。

[0024]

また、A1-Si膜に代えて他の金属材料を使用することが可能であり、その場合には適宜エッチング条件、代表的にはエッチングガスを選択する必要がある。例えば、金属層1002aとしてTa(9)2月の非品質半導体膜(ス(ガス流量80sccm)をエッチングガスとして、第1の非晶質半導体膜(アモルファスシリコン膜)、第2の非晶質半導体膜(リンドープシリコン膜)、Ta膜とをエッチングすれば、同様に、第1の非晶質半導体膜のみをテーパー形状とすることができる。

[0025]

また、金属層1002aとしてTaNとTaの積層膜を用いる場合には、 $C1_2$ (ガス流量40sccm)と、 CF_4 (ガス流量40sccm)との混合ガスをエッチングガスとして、第1の非晶質半導体膜(アモルファスシリコン膜)、第2の非晶質半導体膜(リンドープシリコン膜)、TaNとTaの積層膜とをエッチングすれば、同様に、第1の非晶質半導体膜のみをテーパー形状とすることができる。

[0026]

また、金属層 $1\ 0\ 0\ 2\ a$ としてW(タングステン)膜を用いる場合には、 $C\ 1$ 2(ガス流量 $2\ 5\ s\ c\ c\ m$)と、 $C\ F_4$ (ガス流量 $2\ 5\ s\ c\ c\ m$)と O_2 (ガス流量 $1\ 0\ s\ c\ c\ m$)との混合ガス、或いは $C\ 1_2$ (ガス流量 $1\ 2\ s\ c\ c\ m$)と、S

頁: 12/ 39

F₆(ガス流量6sccm)とO₂(ガス流量12sccm)との混合ガスをエッチングガスとして、第1の非晶質半導体膜(アモルファスシリコン膜)、第2の・非晶質半導体膜(リンドープシリコン膜)、W膜とをエッチングすれば、同様に、第1の非晶質半導体膜のみをテーパー形状とすることができる。

[0027]

また、金属層1002aとしてTi(チタン)膜を用いる場合には、 $C1_2$ と、 $BC1_3$ の混合ガスをエッチングガスとして、第1の非晶質半導体膜(アモルファスシリコン膜)、第2の非晶質半導体膜(リンドープシリコン膜)、Ti 膜とをエッチングすれば、同様に、第1の非晶質半導体膜のみをテーパー形状とすることができる。

[0028]

また、金属層1002aとしてTi膜とA1-Si膜とTi膜の積層を用いる場合には、 $C1_2$ と、 $BC1_3$ の混合ガスをエッチングガスとして、第1の非晶質半導体膜(アモルファスシリコン膜)、第2の非晶質半導体膜(リンドープシリコン膜)、Ti膜とAl-Si膜とTi膜の積層膜とをエッチングすれば、同様に、第1の非晶質半導体膜のみをテーパー形状とすることができる。

[0029]

また、上記図15では、第2のフォトマスクを用いたエッチングによってアイランド形状とする際に第1の非晶質半導体膜の端部をテーパー形状とする例を示したが、図23に示すようにチャネルエッチ型のTFTにおいて、ゲート電極2000と絶縁膜を介して重なる第1の非晶質半導体膜2001の一部を除去する工程(チャネルエッチング)にも本発明を適用することができる。第3のフォトマスクを用い、同様に塩素系のエッチングガスで金属層2002a、第2の非晶質半導体膜2002b、第1の非晶質半導体膜2001のエッチングを行えば、第1の非晶質半導体膜2001のみをテーパー形状とすることができ、後の工程で保護膜(パッシベーション膜)を形成する場合にカバレッジが良好となる。なお、2003は画素電極であり、2004はゲート絶縁膜である。

[0030]

また、上記作製方法に関する構成において、前記第8の工程において、前記導

電膜、前記第2の非晶質半導体膜、および前記第1の非晶質半導体膜の一部は、 塩素系ガスでエッチングすることを特徴としている。

[0031]

また、図23に示す構成も本発明の一つであり、

絶縁表面上にゲート配線と、前記ゲート配線上にゲート絶縁膜と、前記ゲート 絶縁膜上に非晶質半導体膜と、前記非晶質半導体膜上にソース領域及びドレイン 領域と、前記ソース領域または前記ドレイン領域上にソース配線または電極と、 前記電極と一部接して重なる画素電極を有し、

前記非晶質半導体膜のうち、前記ゲート絶縁膜を間に挟んで前記ゲート配線と重なり、且つ、前記ソース領域または前記ドレイン領域と重ならない領域は他の領域よりも膜厚が薄い領域であり、該領域の中央に向かって膜厚が薄くなるテーパー形状を有していることを特徴とする半導体装置である。

[0032]

また、上記構成において、前記テーパー形状を有する領域は、5°~45°の 範囲の角度を有することを特徴としている。

[0033]

さらに、上記構成において、前記第1の非晶質半導体膜の端部をテーパー形状 としてもよくその角度は、5°~45°の範囲であることを特徴としている。

[0034]

一方、比較例として第1の非晶質半導体膜及び第2の非晶質半導体膜の端部を基板に対して垂直にエッチングしたTFTを図16に示す。金属層1006aのエッチングと非晶質半導体膜1005、1006bのエッチングとを別々とし、金属層1006aを選択的にウエットエッチングした後、金属層をマスクとして第1の非晶質半導体膜1005、及び一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1006bを、CF4とO2の混合ガスによってドライエッチングしており、第1の非晶質半導体膜1005、及び一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1006bを同時にエッチングした。この際、第1の非晶質半導体膜1005の端部の形状、及び一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜10

0.6 bの端部の形状は、ほぼ一致し、 CF_4 と O_2 の混合ガスによって図1.6のように基板に対して垂直に形成される。そして、これらの膜の上に画素電極1.0.07を形成したTFTとなる。比較例での各エッチングにおいては、サイドエッチング(アンダーカット)などが生じ、その後、成膜した場合、段切れが生じる恐れがあった。

[0035]

上記図16の構造では、第1の非晶質半導体膜1005の端部、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1006b、および金属層1006aの端部で、これら3層の段差形状またはエッチング不良により画素電極1007が正常に成膜できないようなカバレージ不良が発生した。

[0036]

また、上記図16の形状を作製するエッチングでは、第1の非晶質半導体膜の端部近傍の絶縁膜1008もエッチングされてしまい絶縁膜の膜厚が変化する問題が生じた。

[0037]

また、上記構成とは異なる本発明の他の構成について以下に述べる。本発明は、導電膜の形成工程から画素電極の形成工程を3枚のフォトマスクで行い、画素電極のカバレージ不良を解決することを特徴とする。

[0038]

3枚のフォトマスクの特徴は、

第1のフォトマスクは導電膜を形成するためのフォトマスク、

第2のフォトマスクは絶縁膜と、第1の非晶質半導体膜と、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜を形成するためのフォトマスク、

第3のフォトマスクは画素電極、ソース領域、ドレイン領域、ソース電極、ドレイン電極を形成、及びチャネルエッチングするためのフォトマスクである。

[0039]

本明細書で開示する作製方法に関する他の構成は、

絶縁表面上にゲート配線を形成する第1の工程と、

前記絶縁表面と前記ゲート配線を覆う絶縁膜を形成する第2の工程と、

前記絶縁膜上に第1の非晶質半導体膜を形成する第3の工程と、

前記第1の非晶質半導体膜上に一導電型の不純物元素を含有する第2の非晶質 半導体膜を形成する第4の工程と、

前記第2の非晶質半導体膜上に金属材料からなる導電膜を形成する第5の工程 と、

前記絶縁膜、前記第1の非晶質半導体膜、前記第2の非晶質半導体膜、および 前記導電膜をエッチングして、前記第1の非晶質半導体膜の端部をテーパー形状 に形成する第6の工程と、

前記導電膜上に透明導電膜を形成する第7の工程と、

前記透明導電膜、前記導電膜、前記第2の非晶質半導体膜、および前記第1の 非晶質半導体膜の一部をエッチングして前記第1の非晶質半導体膜の一部を露呈 させ、前記透明導電膜からなる画素電極と、前記導電膜からなるソース配線と、 前記第2の非晶質半導体膜からなるソース領域およびドレイン領域とを形成する 第8の工程とを有することを特徴とする半導体装置の作製方法である。

[0040]

本発明を用いたTFTを図17に示す。本発明はカバレージ不良を改善するために第1の非晶質半導体膜1801の端部をテーパー形状にした。第1の非晶質半導体膜1801の端部をテーパー形状にするために、塩素系のエッチングガスを使用して、トータルで3枚のフォトマスクで逆スタガ型のTFTを作製した。この際、第1の非晶質半導体膜1801の端部をテーパー形状に作製でき、画素電極1803のカバレージ不良を解決することが可能となる。

[0041]

ここで、第1の非晶質半導体膜のテーパー形状の角度(テーパー角)は、基板表面と第1の非晶質半導体膜の端部の傾斜部とのなす角度として定義する(図22(B))。図22(A)に示すように、第1の非晶質半導体膜の端部のテーパー角はエッチング条件を適宜選択することによって、 $5^\circ \sim 45^\circ$ の範囲とすることができる。

[0042]

頁: 16/ 39

また、本発明を実施するためのエッチングガスは、塩素系のガスをエッチング ガスとした。例えば、Cl₂、BCl₃、HCl、SiCl₄から選ばれたガス、 または前記ガスから複数選択した混合ガスをエッチングガスとすることができる

[0043]

塩素系ガスは、金属層1802aに対するエッチングレートと第2の非晶質半導 体膜1802bに対するエッチングレートはあまり差がないので端面がほぼ一致 するが、第1の非晶質半導体膜1001のエッチングレートと、一導電型(n型 または p型)の不純物元素を含有する第2の非晶質半導体膜1802bのエッチ ングレートに大きな差を持っており、一導電型(n型またはp型)の不純物元素 を含有する第2の非晶質半導体膜のエッチングレートが、第1の非晶質半導体膜 のエッチングレートより早いために、第1の非晶質半導体膜の端部のみをテーパ 一形状にできる。

[0044]

図17に示した構成も本発明の一つであり、

絶縁表面上にゲート配線と、前記ゲート配線上に絶縁膜と、前記絶縁膜上に第1 の非晶質半導体膜と、前記第1の非晶質半導体膜上に一導電型の不純物元素を含 有する第2の非晶質半導体膜からなるソース領域及びドレイン領域と、

前記ソース領域または前記ドレイン領域上にソース配線または電極と、前記電 極と一部接して重なる画素電極とを有し、

前記第1の非晶質半導体膜の端部のみがテーパー形状であり、且つ、絶縁膜の 端部と一致しており、前記絶縁膜の端部は、ソース配線または電極と一致してい ないことを特徴とする半導体装置である。

[0045]

尚、図17では一導電型(n型またはp型)の不純物元素を含有する第2の非 晶質半導体膜1802bの端部と、金属層1802aの端部とを基板に対して垂 直に形成したが、一導電型(n型またはp型)の不純物元素を含有する第2の非 晶質半導体膜1802bの端部または金属層1802aの端部はテーパー形状で も良い。

[0046]

ここでエッチング実験を行った。基板上に、絶縁膜、第1の非晶質半導体膜、第2の非晶質半導体膜、A1-Si膜(Siを2wt%含むアルミニウム膜)とを順次積層した後、選択的にレジストで覆い、 $C1_2$ と、 $BC1_3$ の混合ガスを使用してエッチングを実際に行い、その後の断面図を観察した図が図20である。図20はSEM(Scanning Electron Microscope)写真であり、倍率は5万倍である。 $C1_2$ と、 $BC1_3$ の混合ガスでエッチングすることで、A1-Si膜と、第2の非晶質半導体膜と、第1の非晶質半導体膜とを同時にエッチングすることができ、さらに第1の非晶質半導体膜の端部のみをテーパー形状にすることができる。また、図20においては、第1の非晶質半導体膜をマスクとして絶縁膜も除去した。

[0047]

また、上記図17では、第2のフォトマスクを用いたエッチングによってアイランド形状とする際に第1の非晶質半導体膜の端部をテーパー形状とする例を示したが、チャネルエッチ型のTFTにおいて、ゲート電極と絶縁膜を介して重なる第1の非晶質半導体膜の一部を除去する工程(チャネルエッチング)にも本発明を適用することができる。第3のフォトマスクを用い、同様に塩素系のエッチングガスで金属層、第2の非晶質半導体膜、第1の非晶質半導体膜、絶縁膜のエッチングを行えば、第1の非晶質半導体膜のみをテーパー形状とすることができ、後の工程で保護膜(パッシベーション膜)を形成する場合にカバレッジが良好となる。

[0048]

一方、比較例として第1の非晶質半導体膜及び第2の非晶質半導体膜の端部を基板に対して垂直にエッチングしたTFTを図18に示す。金属層1902aのエッチングと非晶質半導体膜1901、1902bのエッチングとを別々とし、金属層1902aを選択的にエッチングした後、第1の非晶質半導体膜1901、及び一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1902bをCF₄とO₂の混合ガスによってエッチングしており、第1の非晶質半導体膜1901及び一導電型(n型またはp型)の不純物元素を含有する第

2の非晶質半導体膜1902bを同時にエッチングした。この際、第1の非晶質半導体膜1901の端部の形状、及び一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1902bの端部の形状は、図18のように基板に対して垂直に形成されていた。そして、これらの膜の上に画素電極を形成した。

[0049]

上記の構造では、第1の非晶質半導体膜1901の端部、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1902bの端部、金属層1902aの端部、絶縁膜1904の端部で、これら4層の膜厚により画素電極1903が正常に成膜できないようなカバレージ不良が発生した。

[0050]

【発明の実施の形態】

本発明を実施した半導体装置およびその作製方法を以下に説明する。

[0051]

(実施の形態1)

まず、基板上に導電膜を全面に成膜し、第1のフォトリソグラフィー工程により所望の形状に導電膜を形成する。この導電膜の材料としては、W、 WSi_x 、Al、Ti、Mo、Cu、Ta、Cr、Ni、またはMoから選ばれた元素、または前記元素を主成分とする合金材料もしくは化合物材料を主成分とする膜またはそれらの積層膜が挙げられる。この導電膜は後にエッチングしてゲート電極またはゲート配線または保持容量配線となる。

[0052]

次に、全面に絶縁膜を成膜する。この絶縁膜は後にゲート絶縁膜として機能する。次いで、絶縁膜上に第1の非晶質半導体膜(代表的にはアモルファスシリコン膜)と、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜と、金属材料(Al、Ti、Mo、Cu、Ta、Cr、Ni、またはMoを主成分とする金属材料)からなる導電膜とを積層する。ここでは、Alを主成分とする導電膜を形成する。

[0053]

次に、第2のフォトリソグラフィー工程により前記第1の非晶質半導体膜と、前記一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜と、金属材料からなる導電膜との積層膜の不要な部分をエッチングで除去する。ここではエッチングガスを変えることなく、第1の非晶質半導体膜、第2の非晶質半導体膜、および導電膜をエッチングする。この際、塩素系のガス、例えばC1₂と、BC1₃の混合ガスをエッチングガスとしてエッチングを行うことにより、金属材料(A1)からなる導電膜の端部と、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜の端部とが基板に対して垂直にエッチングされ、第1の非晶質半導体膜の端部はテーパー形状になる。尚、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜の端部はテーパー形状になる。尚、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜の端部はテーパー形状に

[0054]

[0055]

次に、第2のレジストマスクを除去した後、シャドーマスクを用いてレジストマスクを形成し、端子部のパット部分を覆っている絶縁膜を選択的に除去する。

[0056]

次に、全面に透明導電膜からなる導電膜を成膜する。この透明導電膜としては、ITO(酸化インジウム酸化スズ合金)、酸化インジウム酸化亜鉛合金(In $_2O_3-ZnO$)、酸化亜鉛(ZnO)等が挙げられる。

[0057]

本実施例では画素電極として透明導電膜を用いた透過型の表示装置の例を示したが、反射性の高い金属材料、例えばAlまたはAgを主成分とする材料を用いれば、反射型の表示装置を完成させることもできる。

[0058]

次に、第3のフォトリソグラフィー工程により、前記透明導電膜と、金属材料からなる導電膜と、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜と、第1の非晶質半導体膜の一部を除去して、第2の非晶質半導体膜からなるソース領域とドレイン領域を形成し、同時に金属材料からなる導電膜でソース配線と、透明導電膜からなる画素電極も形成する。

[0059]

また、第3のフォトリソグラフィー工程で、塩素系のガス、例えば $C1_2$ と、 B $C1_3$ の混合ガスをエッチングガスとしてエッチングを行えば、図23に示すようにチャネル形成領域となる部分をテーパー形状とすることができる。

[0060]

以上のように3回のフォトリソグラフィー工程により、図15に示すような第 1の非晶質半導体膜の端部がテーパー形状になっている画素TFTと、金属材料 からなるソース配線と、保持容量と、端子部を有する半導体装置を作製すること ができる。

[0061]

(実施の形態2)

まず、基板上に導電膜を全面に成膜して、第1のフォトリソグラフィー工程により所望の形状に導電膜を形成する。この導電膜は後にエッチングしてゲート電極またはゲート配線または保持容量配線となる。

[0062]

次に、全面に絶縁膜を成膜する。この絶縁膜は後にゲート絶縁膜として機能する。次いで、前記絶縁膜上に第1の非晶質半導体膜(代表的にはアモルファスシリコン膜)と、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜と、金属材料(A1、Ti、Mo、Cu、Ta、Cr、Ni、または

頁: 21/ 39

Moを主成分とする金属材料)からなる導電膜とを積層する。

[0063]

次に、第2のフォトリソグラフィー工程により前記第1の非晶質半導体膜と、前記一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜と、金属材料からなる導電膜との積層膜の不要な部分をエッチングで除去する。ここではエッチングガスを変えることなく、第1の非晶質半導体膜、第2の非晶質半導体膜、および導電膜をエッチングする。この際、塩素系のガス、例えばC1₂と、BC1₃の混合ガスをエッチングガスとしてエッチングを行うことにより、金属材料からなる導電膜の端部と、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜の端部とが基板に対して垂直にエッチングされ、第1の非晶質半導体膜の端部はテーパー形状になる。尚、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜の端部はテーパー形状になる。尚、一導電型(n型またしても良い。

[0064]

次に、前記第1の非晶質半導体膜や前記一導電型(n型またはp型)の不純物 元素を含有する第2の非晶質半導体膜のエッチングで使用した第2のフォトマス クをそのまま使用して前記絶縁膜の不要な部分をエッチングして除去する。

[0065]

次に、全面に透明導電膜からなる導電膜を成膜する。この透明導電膜としては、ITO(酸化インジウム酸化スズ合金)、酸化インジウム酸化亜鉛合金(In $_2O_3$ —ZnO)、酸化亜鉛(ZnO)等が挙げられる。

[0066]

次に、第3のフォトリソグラフィー工程により、前記透明導電膜と、金属材料からなる導電膜と、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜と、第1の非晶質半導体膜の一部を除去して、ゲート電極のソース領域とドレイン領域を形成し、同時に金属材料からなる導電膜でソース配線と、透明導電膜からなる画素電極も形成する。

[0067]

以上のように3回のフォトリソグラフィー工程により、図17に示すような第

The state of the s

1の非晶質半導体膜の端部がテーパー形状になっている画素TFTと、ソース配線と、保持容量と、端子部を有する半導体装置を作製することができる。

[0068]

以上の構成からなる本発明について、以下に示す実施例でさらに詳細な説明を 行うこととする。

[0069]

【実施例】

[実施例1]

本発明の実施例を図1~図4に基づいて説明する。本実施例では液晶表示装置の作製方法を示し、基板上に画素部のTFTを逆スタガ型で作製し、前記TFTに接続する保持容量を作製する方法について、工程に従って詳細に説明する。また、図2~図4には、他の基板に設けた回路の配線と電気的に接続するために前記基板の端部に設けられた端子部(端子電極)をTFT作製工程に同時に示した。尚、図2~図4の断面図は図1の鎖線A~A'の断面である。

[0070]

最初に、透光性を有する基板200を用いて表示装置を作製する。用いることのできる基板として、コーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板を用いることができる。さらに他の基板として、石英基板、プラスチック基板などの透光性基板を用いることもできる。

[0071]

上記基板200上に導電層を基板全面に形成した後、第1のフォトリソグラフィー工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去してゲート電極202,203、保持容量配線204、端子部201を形成する。(図2(A))

[0072]

上記の電極の材料としては、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、ネオジム(Nd)から選ばれた元素、前記元素を成分とする合金、または前記元素を成分とする窒化物で形成

する。さらに、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、ネオジム(Nd)から選ばれた元素、前記元素を成分とする合金、または前記元素を成分とする窒化物から複数選択して、それを積層することもできる。

[0073]

さらに、大画面に適用するには、ゲート電極を含むゲート配線 202, 203 と容量配線 204、端子部の端子 201 は低抵抗導電性材料で形成することが望ましいので、アルミニウム(A1)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)等や、前記元素を成分とする合金を用いることができる。しかし、アルミニウム(A1)、銅(Cu)、銀(Ag)では耐熱性や、腐蝕しやすい等問題があるので耐熱性導電性材料と組み合わせて形成することもできる。

[0074]

次に、絶縁膜207を全面に成膜する。絶縁膜は窒化シリコン膜を用い、膜厚を $50\sim200$ nmとし、好ましくは150nmの厚さで形成する。尚、ゲート絶縁膜は窒化シリコン膜に限定されるものではなく酸化シリコン膜、酸化窒化シリコン膜、酸化タンタル膜などの絶縁膜を用いることもできる。(図2(B))

[0075]

次に、絶縁膜207上に、50~200nm好ましくは100~150nmの膜厚で第1の非晶質半導体膜206を、プラズマCVD法やスパッタ法などの公知の方法で全面に成膜する。代表的には非晶質シリコン(a-Si)膜を100nmの膜厚で成膜する。また、この第1の非晶質半導体膜206には、微結晶半導体膜、非晶質シリコンゲルマニウム、非晶質シリコンカーバイトなどの非晶質構造を有する化合物半導体膜を使用することもできる。(図2(B))

[0076]

次に、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜205aを50~200nmの厚さで形成する。一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜205aは、プラズマCVD法やスパッタ法などの公知の方法で全面に成膜する。本実施例では、リン(P)が添加されたシリコンターゲットを用いてn型の不純物元素を含有する第2の非晶

質半導体膜 205a を成膜した。あるいは、シリコンターゲットを用い、リンを含む雰囲気中でスパッタリングを行い成膜しても良い。あるいは、n型を付与する不純物元素を含む第 2 の非晶質半導体膜を水素化微結晶シリコン膜で形成しても良い。さらに、スパッタ法などを用いて金属材料からなる導電膜 205 bを 5 $0 \sim 200$ n mの厚さで形成する。(図 2 (B))

[0077]

次に、第2のフォトリソグラフィー工程を行い、レジストマスク208を形成し、エッチングによって導電膜、第1の非晶質半導体膜、および第2の非晶質半導体膜を選択的に除去し、第1の非晶質半導体膜209、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜210a、および導電膜210bを所望の形状に形成する。本実施例では、C12=40sccmとBCl3=40sccmの混合ガスをエッチングガスとしたドライエッチングにより、第1の非晶質半導体膜209、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜210bを形成した。この際、膜の端部の形状は、導電膜210bの端部、および一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜210aの端部が基板に対して垂直で、第1の非晶質半導体膜209の端部がテーパー形状になり、この時のテーパー角は5°~45°の範囲となっている。(図2(C))

[0078]

尚、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜210aの端部はテーパー形状にしても良い。そして、本実施例のエッチングガスは、 $Cl_2=40$ sccmと、 $BCl_3=40$ sccmの混合ガスをエッチングガスとしたが、図2(C)の形状を有したTFTが作製できるなら、例えば、 Cl_2 、 BCl_3 、HCl、 $SiCl_4$ から選ばれたガス、または前記ガスから複数選択した混合ガスをエッチングガスとすることができ、エッチングガスは前記混合ガスの組成には限らない。

[0079]

次に、レジストマスク208を除去した後、シャドーマスクを用いてレジストマスクを形成し、端子部のパット部分を覆っている絶縁膜207を選択的に除去

して絶縁膜301を形成した後、レジストマスクを除去する。(図3(A))また、シャドーマスクに代えてスクリーン印刷法によりレジストマスクを形成してエッチングマスクとすることもできる。

[0080]

次に、全面に透明導電膜からなる導電膜302を成膜する。(図3(B)) この導電膜302の材料は、酸化インジウム(In_2O_3)や酸化インジウム酸化スズ合金(In_2O_3 — SnO_2 、ITOと略記する)などスパッタ法や真空蒸着法などを用いて形成する。

[0081]

次に、第3のフォトリソグラフィー工程を行い、レジストマスク403を形成し、エッチングにより不要な部分を除去して、透明導電膜からなる画素電極405を形成し、ソース配線402とドレイン電極404とを形成し、さらに第1の非晶質半導体膜の一部を露呈させる。(図4(A))透明導電膜からなる導電膜のエッチング処理は塩酸系の溶液により行い、画素電極405を形成した後、エッチングガスを適宜変更して金属層、第2の非晶質半導体膜をそれぞれエッチングする。なお、上記第3のフォトリソグラフィー工程ではソース領域とドレイン領域とを完全に分離するためにオーバーエッチングを行い、第1の非晶質半導体膜の一部も除去する。第1の非晶質半導体膜のうち、除去された領域は、チャネルが形成される。

[0082]

また、第2のフォトリソグラフィー工程と同様に、この第3のフォトリソグラフィー工程において、塩素系のガスを用いて一度に金属層、第2の非晶質半導体膜、および第1の非晶質半導体膜の一部をエッチングしてもよい。その場合、第1の非晶質半導体膜のうち、エッチングされた領域は、ゲート絶縁膜を間に挟んで前記ゲート配線と重なり、且つ、前記ソース領域または前記ドレイン領域と重ならない領域である。第1の非晶質半導体膜のうち、ゲート絶縁膜を間に挟んで前記ゲート配線と重なる領域をチャネル形成領域(バックチャネル部)と呼ぶ。また、第1の非晶質半導体膜のうち、エッチングされた領域は、該領域の中央に向かって膜厚が薄くなるテーパー形状を有する形状となる。従って、チャネル形

成領域において段差のないチャネルエッチ型のTFTを作製することができる。

[0083]

次に、レジストマスク401を除去した。この状態の断面図を図4(B)に示した。

[0084]

以上のように3回のフォトリソグラフィー工程により、ソース配線402と、 逆スタガ型の画素TFT407と、保持容量408と、端子部409で構成され たアクティブマトリクス基板を得ることができ、以降の工程は公知の技術を用い て、配向膜の形成、ラビング処理、対向基板を貼り付け、液晶の注入、封止、F PCの貼り付け、偏光板やカラーフィルターの貼りつけ、バックライトの組み込 みなどを行い、透過型の液晶表示装置を完成させることができる。

[0085]

また、必要があれば、窒化シリコン膜または酸化窒化シリコン膜などからなる 保護膜を形成してもよい。ただし、FPCなどと接続させる端子電極上には設け ないようにする。

[0086]

尚、本実施例により得られる非晶質半導体膜で活性層を形成したTFTは、電界効果移動度が小さく $1\ c\ m^2/V\ s\ e\ c$ 程度しか得られていない。そのために、画像表示を行うための駆動回路は $I\ C$ チップで形成され、 $TAB\ (Tape\ Automated\ Bonding)$ 方式や $COG\ (Chip\ on\ glass)$ 方式で実装されている。

[0087]

また、本実施例ではチャネル形成領域が複数存在するマルチゲート構造のTFT、ここではダブルゲート構造のTFTを示したが、特に限定されず、シングルゲート構造でよい。

[0088]

[実施例2]

実施例1は画素部のTFTがチャネルエッチ型のTFTであったが、本実施例では、画素部のTFTがチャネルストップ型のTFTを有する半導体装置の実施

頁: 27/ 39

例を図5~図7に基づいて説明する。

[0089]

最初に、透光性を有する基板 5 0 0 を用いて半導体表示装置を作製する。用いることのできる基板として、コーニング社の# 7 0 5 9 ガラスや# 1 7 3 7 ガラスなどに代表されるバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板を用いることができる。さらに他の基板として、石英基板、プラスチック基板などの透光性基板を用いることもできる。

[0090]

上記基板 500 上に導電層を基板全面に形成した後、第1 のフォトリソグラフィー工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して、ゲート電極 502, 503、保持容量配線 504、端子部 501 を形成する。(図 5(A))

[0091]

上記の電極の材料としては、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、ネオジム(Nd)から選ばれた元素、前記元素を成分とする合金、または前記元素を成分とする窒化物で形成する。さらに、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、ネオジム(Nd)から選ばれた元素、前記元素を成分とする合金、または前記元素を成分とする窒化物から複数選択して、それを積層することもできる。

[0092]

さらに、大画面に適用するには、ゲート電極を含むゲート配線 502, 503 と容量配線 504、端子部の端子 501 は低抵抗導電性材料で形成することが望ましいので、アルミニウム(A1)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)等や、前記元素を成分とする合金を用いることができる。しかしアルミニウム(A1)、銅(Cu)、銀(Ag)では耐熱性や、腐蝕しやすい等問題があるので耐熱性導電性材料と組み合わせて形成することもできる。

[0093]

次に、絶縁膜506を全面に成膜する。絶縁膜は窒化シリコン膜を用い、膜厚

を $50\sim200$ nmとし、好ましくは150nmの厚さで形成する。尚、ゲート 絶縁膜は窒化シリコン膜に限定されるものではなく酸化シリコン膜、酸化窒化シ リコン膜、酸化タンタル膜などの絶縁膜を用いることもできる。(図5(B))

[0094]

次に、絶縁膜 506上に、 $50\sim200$ n m 好ましくは $100\sim150$ n m の 膜厚で非晶質半導体膜 505 を、プラズマCVD法やスパッタ法などの公知の方法で全面に成膜する。代表的には非晶質シリコン(a-Si)膜を 100 n m の 膜厚で成膜する。(図 5 (図 5 ()

[0095]

第2のフォトリソグラフィー工程によりレジストマスク507を形成し、エッチングにより不要な部分を除去して非晶質半導体膜508を形成する。本実施例では、 $C1_2=40$ s c c mとB $C1_3=40$ s c c mの混合ガスをエッチングガスとしたドライエッチングにより、非晶質半導体膜508を形成した。この際、非晶質半導体膜508の端部の形状は、テーパー形状になっており、この時のテーパー角は5°~45°の範囲となっている。そして、本実施例のエッチングガスは、 $C1_2=40$ s c c mと、B $C1_3=40$ s c c mの混合ガスをエッチングガスとしたが、図5(C)の形状を有したTFTが作製できるなら、例えば、 $C1_2$ 、B $C1_3$ 、H C1、S i $C1_4$ から選ばれたガス、または前記ガスから複数選択した混合ガスをエッチングガスとすることができ、エッチングガスは前記混合ガスの組成には限らない。

[0096]

次に、レジストマスク507を除去した後、シャドーマスクを用いてレジストマスクを形成し、端子部のパット部分を覆っている絶縁膜506を選択的に除去して絶縁膜601を形成した後、レジストマスクを除去する。(図6(A))また、シャドーマスクに代えてスクリーン印刷法によりレジストマスクを形成してエッチングマスクとすることもできる。

[0097]

次に、n チャネル型TFTのLDD (Lightly Doped Drain) 領域を形成するためのドーピング工程を行う。ドーピングの方法はイオンド

ープ方式もしくはイオン注入法で行う。 n型の不純物としてリンを添加し、第 2 の絶縁層 6 0 2、 6 0 3 をマスクとして形成される不純物領域 6 0 4 \sim 6 0 6 を形成する。この領域のドナー濃度は $1 \times 10^{16} \sim 1 \times 10^{17} / c \, \text{m}^3$ の濃度とする。(図 6 (B))

[0098]

次に、全面に透明導電膜からなる導電膜 608 を成膜する。(図 6 (C)) この導電膜 608 の材料は、酸化インジウム(In_2O_3)や酸化インジウム酸化スズ合金(In_2O_3 — SnO_2 、ITOと略記する)などスパッタ法や真空蒸着法などを用いて形成する。このような材料のエッチング処理は塩酸系の溶液により行う。

[0099]

次に、第3のフォトリソグラフィー工程を行い、レジストマスク701を形成し、エッチングにより不要な部分を除去して、ソース配線706、ソース領域702、ドレイン領域704、画素電極705を形成する。(図7(B))

[0100]

次に、レジストマスク701を除去した。この状態の断面図を図7(C)に示した。

[0101]

以上のように3回のフォトリソグラフィー工程により、ソース配線706と、 逆スタガ型の画素TFT707と、保持容量708と、端子部709で構成させ た透過型の半導体表示装置を作製することができる。

[0102]

尚、本実施例も実施例 1 と同様に画像表示を行うために I Cチップで形成された駆動回路を実装している。

[0103]

[実施例3]

本発明の実施例を図8~図10に基づいて説明する。本実施例では液晶表示装置の作製方法を示し、基板上に画素部のTFTを逆スタガ型で作製し、前記TFTに接続する保持容量を作製する方法について、工程に従って詳細に説明する。

また、図9、図10には、他の基板に設けた回路の配線と電気的に接続するために前記基板の端部に設けられた端子部(端子電極)をTFT作製工程に同時に示した。尚、図9、図10の断面図は図8のA~A'の断面である。

[0104]

最初に、透光性を有する基板1200を用いて半導体装置を作製する。用いることのできる基板として、コーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板を用いることができる。さらに他の基板として、石英基板、プラスチック基板などの透光性基板を用いることもできる。

[0105]

上記基板 $1\ 2\ 0\ 0$ 上に導電層を基板全面に形成した後、第 $1\ 0$ のフォトリソグラフィー工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去してゲート電極 $1\ 2\ 0\ 2$ 、 $1\ 2\ 0\ 3$ 、保持容量配線 $1\ 2\ 0\ 4$ 、端子部 $1\ 2\ 0\ 1$ を形成する。(図 $9\ (A)$))

[0106]

上記の電極の材料としては、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、ネオジム(Nd)から選ばれた元素、前記元素を成分とする合金、または前記元素を成分とする窒化物で形成する。さらに、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、ネオジム(Nd)から選ばれた元素、前記元素を成分とする合金、または前記元素を成分とする窒化物から複数選択して、それを積層することもできる。

[0107]

さらに、大画面を有する表示装置に適用するには、ゲート電極を含むゲート配線 1202, 1203 と容量配線 1204、端子部の端子 1201 は低抵抗導電性材料で形成することが望ましいので、アルミニウム(A1)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)等や、前記元素を成分とする合金を用いることができる。しかし、アルミニウム(A1)、銅(Cu)、銀(Ag)、では耐熱性や腐蝕しやすい等問題があるので耐熱性導電性材料と組み合わせて形成す

頁: 31/__39_

ることもできる。

[0108]

次に、絶縁膜1207を全面に成膜する。絶縁膜は窒化シリコン膜を用い、膜厚を50~200nmとし、好ましくは150nmの厚さで形成する。尚、ゲート絶縁膜は窒化シリコン膜に限定されるものではなく酸化シリコン膜、酸化窒化シリコン膜、酸化タンタル膜などの絶縁膜を用いることもできる。(図9(B))

[0109]

[0110]

次に、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1205aを50~200nmの厚さで形成する。一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1205aは、プラズマCVD法やスパッタ法などの公知の方法で全面に成膜する。本実施例では、リン(P)が添加されたシリコンターゲットを用いてn型の不純物元素を含有する第2の非晶質半導体膜1205aを成膜した。あるいは、シリコンターゲットを用い、リンを含む雰囲気中でスパッタリングを行い成膜しても良い。あるいは、n型を付与する不純物元素を含む第2の非晶質半導体膜を水素化微結晶シリコン膜で形成しても良い。さらに、スパッタ法などを用いて金属材料からなる導電膜1205bを50~200nmの厚さで形成する。(図9(B))

[0111]

次に、第2のフォトリソグラフィー工程を行い、レジストマスク1208を形成し、エッチングによって導電膜、第1の非晶質半導体膜1209、及び一導電型 (n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1210a

を所望の形状に形成する。本実施例では、 $C1_2=40$ s c c mとB $C1_3=40$ s c c mの混合ガスをエッチングガスとしたドライエッチングにより、第1の非晶質半導体膜1209及び一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1210a、導電膜1210bを形成した。この際、膜の端部の形状は、導電膜1210bの端部、および一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1210aの端部が基板に対して垂直で、第1の非晶質半導体膜1209の端部がテーパー形状になっており、この時のテーパー角は5°~45°の範囲になっている。(図9(C))

[0112]

尚、一導電型(n型またはp型)の不純物元素を含有する第2の非晶質半導体膜1210aの端部はテーパー形状にしても良い。そして、本実施例のエッチングガスは、 $C1_2$ =40sccmと、 $BC1_3$ =40sccmの混合ガスをエッチングガスとしたが、図9(C)の形状を有したTFTが作製できるなら、例えば、 $C1_2$ 、 $BC1_3$ 、HC1、 $SiC1_4$ から選ばれたガス、または前記ガスから複数選択した混合ガスをエッチングガスとすることができ、エッチングガスは前記混合ガスの組成には限らない。

[0113]

次に、レジストマスク1208をそのまま使用して、エッチングによって絶縁膜1211を所望の形状に形成する。本実施例では、 $CHF_3=35sccm$ のガスをエッチングガスとしたドライエッチングにより、絶縁膜1211を形成した。(図9(C))なお、本実施例のエッチングガスは、 $CHF_3=35sccm$ のガスをエッチングガスとしたが、図9(C)の形状を有したTFTが作製できるなら、エッチングガスは前記ガスの組成には限らない。

[0114]

次に、全面に透明導電膜からなる導電膜1301を成膜する。(図10(A))この導電膜1301の材料は、酸化インジウム(In_2O_3)や酸化インジウム酸化スズ合金(In_2O_3 — SnO_2 、ITOと略記する)などスパッタ法や真空蒸着法などを用いて形成する。

[0115]

次に、第3のフォトリソグラフィー工程を行い、レジストマスク1302を形成し、エッチングにより不要な部分を除去して、ソース配線1303、ソース領域、ドレイン領域、ドレイン電極1305、画素電極1306を形成する。(図10(B))なお、透明導電膜からなる導電膜のエッチング処理は塩酸系の溶液により行った後、ガスを用いて金属層、第2の非晶質半導体膜をエッチングする。また、上記第3のフォトリソグラフィー工程ではソース領域とドレイン領域とを完全に分離するためにオーバーエッチングを行い、第1の非晶質半導体膜の一部を除去する。

[0116]

次に、レジストマスク1302を除去した。この状態の断面図を図10(C)に示した。

[0117]

以上のように3回のフォトリソグラフィー工程により、ソース配線1303と、逆スタガ型の画素TFT1308と、保持容量1309と、端子部1310で構成されたアクティブマトリクス基板を得ることができ、以降の工程は公知の技術を用いて、配向膜の形成、ラビング処理、対向基板を貼り付け、液晶の注入、封止、FPCの貼り付けなどを行い、透過型の液晶表示装置を完成させることができる。

[0118]

また、必要があれば、窒化シリコン膜または酸化窒化シリコン膜などからなる 保護膜を形成してもよい。ただし、FPCなどと接続させる端子電極上には設け ないようにする。

[0119]

尚、本実施例により得られる非晶質半導体膜で活性層を形成したTFTは、電界効果移動度が小さく $1\ cm^2/V\ se\ c$ 程度しか得られていない。そのために、画像表示を行うための駆動回路は $I\ C$ チップで形成され、 $TAB\ (Tape\ Automated\ Bonding)$ 方式や $COG\ (Chip\ on\ glass)$ 方式で実装されている。

[0120]

また、本実施例ではチャネル形成領域が複数存在するマルチゲート構造のTFT、ここではダブルゲート構造のTFTを示したが、特に限定されず、シングルゲート構造でよい。

[0121]

[実施例4]

実施例3は画素部のTFTがチャネルエッチ型の半導体表示装置であったが、 本実施例では、画素部のTFTがチャネルストップ型の半導体表示装置の実施例 を図11~図13に基づいて説明する。

[0122]

最初に、透光性を有する基板1400を用いて半導体表示装置を作製する。用いることのできる基板として、コーニング社の#7059ガラスや#1737ガラスなどに代表されるバリウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板を用いることができる。さらに他の基板として、石英基板、プラスチック基板などの透光性基板を用いることもできる。

[0123]

上記基板1400上に導電層を基板全面に形成した後、第1のフォトリソグラフィー工程を行い、レジストマスクを形成し、エッチングにより不要な部分を除去して、ゲート電極1402,1403、保持容量配線1404、端子部1401を形成する。(図11(A))

[0124]

上記の電極の材料としては、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、ネオジム(Nd)から選ばれた元素、前記元素を成分とする合金、または前記元素を成分とする窒化物で形成する。さらに、チタン(Ti)、タンタル(Ta)、タングステン(W)、モリブデン(Mo)、クロム(Cr)、ネオジム(Nd)から選ばれた元素、前記元素を成分とする合金、または前記元素を成分とする窒化物から複数選択して、それを積層することもできる。

[0125]

さらに、大画面に適用するには、ゲート電極を含むゲート配線1402、14

03と容量配線 1404、端子部の端子 1401 は低抵抗導電性材料で形成することが望ましいので、アルミニウム(A1)、銅(Cu)、銀(Ag)、金(Au)、白金(Pt)等や、前記元素を成分とする合金を用いることができる。しかしアルミニウム(A1)、銅(Cu)、銀(Ag)では耐熱性や、腐蝕しやすい等問題があるので耐熱性導電性材料と組み合わせて形成することもできる。

[0126]

次に、絶縁膜 1406 を全面に成膜する。絶縁膜は窒化シリコン膜を用い、膜厚を $50\sim200$ n mとし、好ましくは 150 n mの厚さで形成する。尚、ゲート絶縁膜は窒化シリコン膜に限定されるものではなく酸化シリコン膜、酸化窒化シリコン膜、酸化タンタル膜などの絶縁膜を用いることもできる。(図 11 (B))

[0127]

次に、絶縁膜 1406 上に、50~200 n m好ましくは 100~150 n m の膜厚で非晶質半導体膜 1405 を、プラズマ C V D 法やスパッタ法などの公知の方法で全面に成膜する。代表的には非晶質シリコン(a-Si)膜を 100 n m の膜厚で成膜する。(図 11 (B))

[0128]

第2のフォトリソグラフィー工程によりレジストマスク1407を形成し、エッチングにより不要な部分を除去して非晶質半導体膜1408を形成する。本実施例では、 $C1_2$ =40sccmとBCl3=40sccmの混合ガスをエッチングガスとしたドライエッチングにより、非晶質半導体膜1408を形成した。この際、非晶質半導体膜1408の端部の形状は、テーパー形状になっており、この時のテーパー角は5°~45°の範囲となっている。そして、本実施例のエッチングガスは、 $C1_2$ =40sccmと、BCl3=40sccmの混合ガスをエッチングガスとしたが、図11(C)の形状を有したTFTが作製できるなら、例えば、 $C1_2$ 、BCl3、HCl、SiCl4から選ばれたガス、または前記ガスから複数選択した混合ガスをエッチングガスとすることができ、エッチングガスは前記混合ガスの組成には限らない。

[0129]

次に、レジストマスク1407をそのまま使用して、エッチングによって絶縁 膜409を所望の形状に形成する。本実施例では、 $CHF_3=35sccm$ のガスをエッチングガスとしたドライエッチングにより、絶縁膜1409を形成した。(図11(C))そして、本実施例のエッチングガスは、 $CHF_3=35sccm$ のガスをエッチングガスとしたが、図11(C)の形状を有したTFTが作製できるなら、エッチングガスは前記ガスの組成には限らない。

[0130]

次に、n チャネル型TFTのLDD(Lightly Doped Drain)領域を形成するためのドーピング工程を行う。ドーピングの方法はイオンドープ方式もしくはイオン注入法で行う。 n 型の不純物としてリンを添加し、第2の絶縁層1501、1502をマスクとして形成される不純物領域 $1503\sim1505$ を形成する。この領域のドナー濃度は $1\times10^{16}\sim1\times10^{17}/c$ m³の濃度とする。(図12(A))

[0131]

次に、全面に透明導電膜からなる導電膜 1506 を成膜する。(図 12(B)) この導電膜 1506 の材料は、酸化インジウム(In_2O_3)や酸化インジウム酸化スズ合金(In_2O_3 — SnO_2 、ITOと略記する)などスパッタ法や真空蒸着法などを用いて形成する。このような材料のエッチング処理は塩酸系の溶液により行う。

[0132]

次に、第3のフォトリソグラフィー工程を行い、レジストマスク1601を形成し、エッチングにより不要な部分を除去して、ソース配線1605、ソース領域1602、ドレイン領域1604、画素電極1605を形成する。(図13(A))

[0133]

次に、レジストマスク1601を除去した。この状態の断面図を図13 (B) に示した。

[0134]

以上のように3回のフォトリソグラフィー工程により、ソース配線1606と

頁: 37/ 39

THE RESERVE OF THE PARTY STATE OF THE STATE

、逆スタガ型の画素TFT1607と、保持容量1608と、端子部1609で構成させた透過型の半導体表示装置を作製することができる。

[0135]

尚、本実施例も実施例3と同様に画像表示を行うためにICチップで形成された駆動回路を実装している。

[0136]

[実施例5]

本発明を実施して作製されたアクティブマトリクス基板および液晶表示装置は 様々な電気光学装置に用いることができる。即ち、それら電気光学装置を表示部 として組み込んだ電子機器全てに本発明を実施して完成させることができる。

[0137]

上記の様な電子機器としては、ビデオカメラ、カーナビゲーション、パーソナルコンピュータ、携帯情報端末(モバイルコンピュータ、携帯電話または電子書籍等)などが挙げられる。それらの一例を図14に示す。

[0138]

図14(A)はパーソナルコンピュータであり、本体801、画像入力部80 2、表示部803、キーボード804で構成される。

[0139]

図14(B)はビデオカメラであり、本体805、表示部806、音声入力部807、操作スイッチ808、バッテリー809、受像部810で構成される。

[0140]

図14 (C) はデジタルカメラであり、本体811、カメラ部812、受像部813、操作スイッチ814、表示部815で構成される。

[0141]

図14(D)はプログラムを記録した記録媒体(以下、記録媒体と呼ぶ)を用いるプレーヤーであり、本体816、表示部817、スピーカ部818、記録媒体819、操作スイッチ820で構成される。なお、この装置は記録媒体としてDVD(Digital Versatile Disc)、CD等を用い、音楽鑑賞や映画鑑賞やゲームやインターネットを行うことができる。

[0142]

以上の様に、本発明の適用範囲は極めて広く、あらゆる分野の電子機器を完成させることが可能である。また、本実施例の電子機器は実施の形態 1、実施の形態 2、実施例 1 乃至 4 のどのような組み合わせからなる構成を用いても実現することができる。

[0143]

【発明の効果】

本発明により、導電膜と、第2の非晶質半導体膜と、第1の非晶質半導体膜を同一のエッチングガスで除去することを可能とし、さらに3枚のフォトマスクでTFTを作製でき、表示装置の生産性の向上及び歩留まりの向上を実現することができる。

[0144]

また、本発明により、第1の非晶質半導体膜の端部をテーパー形状にすることで、画素電極のカバレージ不良を解決できる。

【図面の簡単な説明】

- 【図1】 画素の上面図を示す図である。
- 【図2】 半導体装置の作製工程の図である。
- 【図3】 半導体装置の作製工程の図である。
- 【図4】 半導体装置の作製工程の図である。
- 【図5】 半導体装置の作製工程の図である。
- 【図6】 半導体装置の作製工程の図である。
- 【図7】 半導体装置の作製工程の図である。
- 【図8】 画素の上面図を示す図(実施例3)である。
- 【図9】 半導体装置の作製工程の図である。
- 【図10】 半導体装置の作製工程の図である。
- 【図11】 半導体装置の作製工程の図である。
- 【図12】 半導体装置の作製工程の図である。
- 【図13】 半導体装置の作製工程の図である。
- 【図14】 半導体装置を利用した装置の一例を説明する図である。

- 【図15】 本発明の薄膜トランジスタの断面図である。
- 【図16】 薄膜トランジスタの断面図(比較例)である。
- 【図17】 本発明の薄膜トランジスタの断面図である。
- 【図18】 薄膜トランジスタの断面図(比較例)である。
- 【図19】 本発明の薄膜トランジスタの断面SEMの図である。
- 【図20】 本発明の薄膜トランジスタの断面SEMの図である。
- 【図21】 テーパー角の定義図である。
- 【図22】 テーパー角の定義図である。
- 【図23】 本発明の薄膜トランジスタの断面図である。

頁: 1/ 1

【書類名】 要約書

【要約】

【課題】 生産性の向上及び歩留まりの向上が可能なアクティブマトリックス方式の液晶表示装置を提供する。

【解決手段】 本発明は、同じエッチングガスを用いて、金属材料からなる導電膜、一導電型を付与する不純物元素を含む第2の非晶質半導体膜、非晶質半導体膜からなる積層膜を選択的にエッチングして第1の非晶質半導体膜1001の端部をテーパー形状にすることで、画素電極1003のカバレッジの問題を解決し、さらに3枚のフォトマスクで逆スタガ型のTFTを完成することが可能となる

【選択図】 図15