REDES NEURAIS

Preparação dos dados para treinamento

TÓPICOS

1. Divisão do conjunto de dados

2. Validação Cruzada

3. Pré-processamento dos dados

Transformação de dados categóricos em numéricos

II. Normalização

Cc

Conjunto de Desenvolvimento

Conjunto de Teste

CONJUNTO DE TESTE

- <u>Utilizado para avaliar a resposta do modelo final</u> já treinado
- Não pode ser usado durante o desenvolvimento

CONJUNTO DE DESENVOLVIMENTO

Usado para configu parâmetros e hiperparâmetros do

Conjunto de Desenvolvimento

Conjunto de Treino

Conjunto de Validação

- validação devem vir da mesma distribuição Os exemplos dos conjuntos de treino e
- Treino → ajuste dos parâmetros
- Validação → ajuste dos hiperparâmetros

Conjunto de Treino

Conjunto de Validação

- hiperparâmetros, i.e. número de camadas/neurônios) 1. Um modelo é configurado (seleção dos
- 2. O modelo é treinado com o conjunto de treino (parâmetros)
- O modelo é avaliado com o conjunto de validação က်
- 4. Se a validação é ruim, os hiperparâmetros devem ser ajustados e o treino reiniciado (passo 1)

EXEMPLO

Conjunto de Treino

Conjunto de Validação

Conjunto de Treino

Conjunto de Validação

1. Qual deve ser o tamanho de cada conjunto?

R: Depende

Regra 80 / 20 – bases pequenas Para bases maiores, uma fração pequena pode ser considerada

Conjunto de Treino

Conjunto de Validação

2. Como deve ser feita a divisão?

R: Seleção aleatória dos dados

subconjuntos sejam representativos Devemos garantir que ambos os

Conjunto de Treino

Conjunto de Validação

3. O conjunto de teste é necessário?

R: Resposta curta: sim

validação como uma estimativa do erro Na prática: podemos reportar o erro de de teste

Conjunto de Treino

Conjunto de Validação 4. Existem problemas com a abordagem baseada na divisão treino/validação?

amostras do conjunto de validação não R: A divisão do conjunto pode não ser adequada. Por exemplo, podemos ter representadas no conjunto de treino

VALIDAÇÃO CRUZADA

1. O modelo é treinado com 4 folds (azul) e validado com o	fold extra (amarelo)	2. O processo é executado para todas as combinações	3. O erro de validação é o erro médio das execucões	4. k-fold cross-validation
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

Conjunto de Desenvolvimento

VALIDAÇÃO CRUZADA

OUTRAS ABORDAGENS	1. Validação Cruzada Estratificada	2. Leave-One-Out	3. Estratificação por agrupamento (clustering)	4. Bootstrapping
Fold 1	Fold 2	Fold 3	Fold 4	Fold 5

Conjunto de Desenvolvimento

O CONJUNTO DE DADOS

- O conjunto de dados é a base para desenvolvimento dos modelos
- Dados reais podem conter problemas:
- 1. Atributos faltantes
- 2. Dados duplicados
- 3. Ruídos
- 4. Escalas incompatíveis, etc.

PRÉ-PROCESSAMENTO DOS DADOS

- O PRÉ-PROCESSAMENTO TEM POR OBJETIVO:
- ➤ Melhorar a qualidade dos dados
- Facilitar a aplicação de uma data técnica de aprendizado de máquina
- > Acelerar o processo de treinamento

PRE-PROCESSAMENTO DOS DADOS

- 1. Seleção e eliminação de atributos
- Conhecimento do especialista
- Atributos com variância próxima de zero
- 2. Redução de dimensionalidade
- 3. Amostragem dos dados
- Redução do conjunto
- Redução da redundância (duplicações)
- 4. Balanceamento de dados
- 5. Limpeza dos dados
- Dados incompletos, inconsistentes, redundantes

PRÉ-PROCESSAMENTO DOS DADOS

- 6. Transformação dos dados
- Conversão categórico-numérico
- Normalização (reescala)

CONVERSÃO CATEGÓRICO-NUMÉRIC

- > CATEGÓRICOS COM DOIS VALORES
- Nominal: 0 não presente / 1 presente
- ➤ Exemplo: Febre? (0 ou 1)
- Ordinal: 0 menor valor / 1 o segundo valor

> CATEGÓRICOS COM MAIS VALORES

Nominal	Codigo 1-de-c	
Professor	0 0 0 1	Rui
Médico	0010	Re
Engenheiro	0100	Bor
Músico	1000	Ótin

Ordial	Escalar
Ruim	0
Regular	1
Bom	2
Ótimo	3

TRANSFORMAÇÃO DOS ATRIBUTOS

➤ Atributos podem assumir valores com escalas incompatíveis:

Atributo 01	Atributo 02	Classe
-0,01	-1238940	0
0,02	87232667	_
0,03	9229893	_
-0,01	2187287722	0

TRANSFORMAÇÃO DOS ATRIBUTOS

- A normalização deve ser aplicada por atributo
- Tem por objetivo equilibrar a amplitude de valores (escala) de atributos distintos
- DUAS FORMAS PRINCIPAIS:
- ➤ POR AMPLITUDE: transforma os dados em um intervalo fixo (min-max)
- tal forma que a média seja zero e o desvio um ➤ POR DISTRIBUIÇÃO: transforma os dados de

EXEMPLO NORMALIZAÇÃO

Por Amplitude

$$v_{novo} = min + \frac{v_{atual} - menor}{maior - menor} (max - min)$$

Assumindo max = 1 e min = 0, temos:

	-1
∝ ⊂	
^	2,5
۲	2
_	1
C	

EXEMPLO NORMALIZAÇÃO

· Por Distribuição

$$v_{novo} = rac{v_{atual} - \mu}{2}$$

2
8
7
-2
-4
-5

Média zero e desvio 1

1,27	
0,78	
0,53	
-0,5	
-0,941	
-1,187	

VANTAGENS E DESVANTAGENS

- A normalização deve ser usado com cuidado, pois pode reduzir (ou eliminar) a importância de um dado atributo
- A normalização por amplitude restringe os valores em um intervalo fixo, adequada quando precisamos estabelecer esses limites
- A normalização por distribuição tem tolerância maior a outliers

O QUE VIMOS?

ajuste dos parâmetros, hiperparâmetros e Aprendemos a separar os dados para teste dos modelos

transformação categórico-numérico e a Conhecemos algumas técnicas de préprocessamento de dados, como a normalização

PRÓXIMA VIDEOAULA

Revisitar o neurônio MCP

Introduzir o Perceptron e o Adaline