第30讲 平面向量的概念及线性运算

	ᅲᅅᇭᅮ	叫叫里叫咧	,心及线性色异	
学校:	姓名:		考号:	
		【基础巩固】		
1.给出下列说法:				
①两个有共同起身	点的相等向量,其终点	点必相同;		
②两个有共同终身	点的向量,一定是共约	栈向量;		
③非零向量 AB 与	非零向量 CD 是共线	向量,则点 <i>A,B,C</i> ,	D 必在同一条直线上;	
<i>④</i> 有向线段就是阿	句量,向量就是有向约			
其中错误说法的	个数是 ()			
A.1	B.2	C.3	D.4	
2.下列各式不能化	之简为 \overrightarrow{PQ} 的是 $(\)$			
$A.\overrightarrow{AB} + (\overrightarrow{PA} + \overrightarrow{BQ})$				
$B.(\overrightarrow{AB}+\overrightarrow{PC})+(\overrightarrow{BA}-\overrightarrow{AB})$	\overline{QC})			
$C.\overrightarrow{QC}-\overrightarrow{QP}+\overrightarrow{CQ}$				
$D.\overrightarrow{PA} + \overrightarrow{AB} - \overrightarrow{BQ}$				
3.在△ <i>ABC</i> 中, <i>D</i> 是	是 AB 边上的中点,则	$ \overrightarrow{CB} = ($		
$A.2\overrightarrow{CD} + \overrightarrow{CA}$	$B.\overrightarrow{CD}-2\overrightarrow{CA}$			
$C.2\overrightarrow{CD}-\overrightarrow{CA}$	$D.\overrightarrow{CD} + 2\overrightarrow{CA}$			
4.在四边形 ABCL	$\Rightarrow \overrightarrow{AB} = a + 2b, \overrightarrow{BC} = a$	$4a-3b,\overrightarrow{CD}=-5a-5l$	6 ,则四边形 <i>ABCD</i> 的形	状是 ()
A.矩形	B.平行四边	形		
C.梯形	D.以上都不	对		
5.已知向量 a,b 不	其线,且 $\overrightarrow{AB} = a + 2b, \overline{B}$	$\overrightarrow{CC} = -5a + 6b, \overrightarrow{CD} = 7$	a-2b,则一定共线的三点	点是()
A. <i>A</i> , <i>B</i> , <i>D</i>	B.A,B,C	C. <i>B</i> , <i>C</i> , <i>D</i>	D.A,C,D	
6. 在△ <i>ABC</i> 中,Ā <i>B</i>	$\overrightarrow{E} = \frac{3}{10} \cdot (\overrightarrow{AB} + \overrightarrow{AC}), D \nearrow$	BC 边的中点,则	()	
$A.3\overrightarrow{AE} = 7\overrightarrow{ED}$	B. $7\overrightarrow{AE} = 3\overrightarrow{ED}$	$C.2\overrightarrow{AE} = 3\overrightarrow{AE}$	\overrightarrow{ED} D.3 $\overrightarrow{AE} = 2\overrightarrow{ED}$	
7.2020年10月2	7日,在距离长江口	南支航道 0.7 海里	里的风机塔上,东海航海	保障中心上海療
特別應到今中於	生海 上豆 由 42 A 10/	机的台票印刷系。	/太\甘头b的蛇井工/佐 /太	事計中目47回

7.2020 年 10 月 27 日,在距离长江口南支航道 0.7 海里的风机塔上,东海航海保障中心上海航标处顺利完成临港海上风电场 AIS(船舶自动识别系统)基站的新建工作,该基站也是我国首个海上风机塔 AIS 基站.已知风机的每个转子叶片的长度为 20 米,每两个叶片之间的夹角相同,风机塔(杆)的长度为 60 米,叶片随风转动,假设叶片与风机塔在同一平面内,如图所示,则 $|\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OM}|$ 的最小值为 ()

A.40

 $B.20\sqrt{7}$

 $C.20\sqrt{10}$

D.80

8.如图,在 $\triangle ABC$ 中, $\overrightarrow{AD} = 3\overrightarrow{DB}$,P 为 CD 上一点,且 $\overrightarrow{AP} = m\overrightarrow{AC} + \frac{1}{2}\overrightarrow{AB}$,则 m 的值为 ()

 $A.\frac{1}{2}$

 $B_{\frac{1}{2}}$

 $C.\frac{1}{4}$

 $D.\frac{1}{5}$

9.(多选)如图,在四边形 ABCD 中,AB//CD, $AB\perp AD$,AB=2AD=2DC,E 为 BC 边上一点,且 $\overrightarrow{BC}=3\overrightarrow{EC}$,F 为线段 AE 的中点,则下列结论正确的是()

 $A.\overrightarrow{BC} = -\frac{1}{2}\overrightarrow{AB} + \overrightarrow{AD}$

 $B.\overrightarrow{AF} = \frac{1}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD}$

 $C.\overrightarrow{BF} = -\frac{2}{3}\overrightarrow{AB} + \frac{1}{3}\overrightarrow{AD}$

 $D.\overrightarrow{CF} = \frac{1}{6}\overrightarrow{AB} - \frac{2}{3}\overrightarrow{AD}$

10.(多选)设点 M 是 $\triangle ABC$ 所在平面内一点,则下列说法正确的是 ()

A.若 $\overrightarrow{AM} = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{AC}$,则点 M 是边 BC 的中点

B.若 $\overrightarrow{AM} = 2\overrightarrow{AB} - \overrightarrow{AC}$,则点 M 在边 BC 的延长线上

C.若 $\overrightarrow{AM} = -\overrightarrow{BM} - \overrightarrow{CM}$,则点 M 是 $\triangle ABC$ 的重心

D.若 $2\overrightarrow{CM} = \overrightarrow{CA} + \overrightarrow{CB}$,则 $\triangle MBC$ 的面积是 $\triangle ABC$ 面积的 $\frac{1}{2}$

11.已知向量 a 与 b 的方向相反,|a|=1,|b|=2,则|a-2b|=_____

12.已知 $\triangle ABC$ 所在的平面上有一点 D 满足 $\overrightarrow{AD} = \frac{3\overrightarrow{AB} + \overrightarrow{AC}}{4}$,且 $\overrightarrow{BD} = \lambda \overrightarrow{CD} (\lambda \in \mathbb{R})$,则 $\lambda = \underline{\hspace{1cm}}$.

13.点 M 在 $\triangle ABC$ 的内部,且满足 $2\overrightarrow{MA}+3\overrightarrow{MB}+4\overrightarrow{MC}=0$,则 $S_{\triangle MAC}$: $S_{\triangle MAB}=$ ______.

14.已知两个非零向量 a 和 b 不共线, $\overrightarrow{OA} = 2a-3b$, $\overrightarrow{OB} = a+2b$, $\overrightarrow{OC} = ka+12b$.

(1)若 $2\overrightarrow{OA}$ - $3\overrightarrow{OB}$ + \overrightarrow{OC} =**0**,求 k 的值;

(2)若 A,B,C 三点共线,求 k 的值.

15.已知点 G 是 $\triangle ABO$ 的重心,M 是 AB 边的中点.

- (1)求 $\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GO}$;
- (2)若 PQ 过 $\triangle ABO$ 的重心 G,且 $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$, $\overrightarrow{OP} = ma$, $\overrightarrow{OQ} = nb$,求证: $\frac{1}{m} + \frac{1}{n} = 3$.

【素养提升】

1.已知 P 为 $\triangle ABC$ 所在平面内一点, $\overrightarrow{AB}+\overrightarrow{PB}+\overrightarrow{PC}=0$, $|\overrightarrow{AB}|=|\overrightarrow{PB}|=|\overrightarrow{PC}|=2$,则 $\triangle ABC$ 的面积为 () A. $\sqrt{3}$ B. $2\sqrt{3}$ C. $3\sqrt{3}$ D. $4\sqrt{3}$

2.在矩形 ABCD 中,AB=3,AD=4,P 为矩形 ABCD 所在平面上一点,且 $PB\perp PD$,则 $|\overrightarrow{PA}|$ 的最大值是______.

第 31 讲 平面向量基本定理及坐标表示

1. 已知向量
$$a = (2,1), b = (-2,4)$$
,则 $\begin{vmatrix} a - b \end{vmatrix}$ ()

- A. 2

- B. 3 C. 4 D. 5

2. 若
$$\vec{a} = (2,1)$$
, $\vec{b} = (-1,1)$, $(2\vec{a} + \vec{b}) / / (\vec{a} + \vec{m}\vec{b})$, 则 \vec{m} 的值为 (

- A. $\frac{1}{2}$

- B. 2 C. -2 D. $-\frac{1}{2}$
- 3. 如图,在平行四边形 ABCD 中,对角线 AC 与 BD 交于点 O,且 EO = 2AE ,则 EB = 2AE()

- A. $\frac{1}{6}AB \frac{5}{6}AD$ B. $\frac{1}{6}AB + \frac{5}{6}AD$ C. $\frac{5}{6}AB \frac{1}{6}AD$ D. $\frac{5}{6}AB + \frac{1}{6}AD$
- 4. 在平行四边形 ABCD中,设 CB=a , CD=b , E 为 AD 的中点, CE 与 BD 交于 F ,则
- A. $-\frac{a+2b}{3}$ B. $-\frac{2a+b}{3}$ C. $-\frac{a-2b}{3}$ D. $-\frac{2a-b}{3}$

- 5. 已知O为坐标原点, $P_1P=-2PP_2$,若 $P_1(1,2)$ 、 $P_2(2,-1)$,则与OP 共线的单位向量为
- A. (3,-4)

B. (3,-4) 或(-3,4)

- C. $\left(\frac{3}{5}, -\frac{4}{5}\right) \implies \left(-\frac{3}{5}, \frac{4}{5}\right)$
- D. $\left(\frac{3}{5}, -\frac{4}{5}\right)$
- 6. 如图,边长为 2 的等边三角形的外接圆为圆 O, P 为圆 O上任一点,若 AP = xAB + yAC,则 2x + 2y 的最大值为(

- B. 2

7. 已知在VABC中, AD=-3BD, $CD=\lambda CE$, $AE=\mu AB+\frac{2}{3}AC$,则 $\mu=(AB+\frac{2}{3}AC)$

- A. $\frac{1}{4}$
- B. $\frac{1}{2}$ C. $\frac{3}{4}$

8. 在平行四边形 ABCD 中,点 E 、 F 分别满足 $DE = \frac{1}{2}EC$, $BF = \frac{1}{3}FD$,若 AB = a ,

AD = b, MEF = 0

- A. $\frac{5}{12} \frac{r}{a} \frac{3}{4} \frac{r}{b}$ B. $\frac{11}{12} \frac{r}{a} \frac{5}{4} \frac{r}{b}$ C. $\frac{13}{12} \frac{r}{a} \frac{3}{4} \frac{r}{b}$ D. $\frac{19}{12} \frac{r}{a} \frac{5}{4} \frac{r}{b}$

9. (多选) 已知向量 $m = (\cos \alpha, \sin \alpha), n = (\cos \beta, \sin \beta)(\alpha, \beta \in [0, 2\pi), \alpha > \beta)$, 且

m+n=(0,1) , 则下列说法正确的是(

- A. $\frac{\mathbf{u}_2}{m+n^2=1}$ B. $\cos(\alpha-\beta)=-\frac{1}{2}$ C. $|\frac{\mathbf{u}}{m-n}|$ 的值为 2 D. $\sin(\alpha+\beta)=0$

10. (多选)已知向量a = (-1,2), b = (m, m-2), 其中 $m \in \mathbb{R}$, 下列说法正确的是

- A. 若 $\frac{1}{a}/b$, 则 $m = \frac{2}{3}$
- B. 若 $\begin{pmatrix} 1 & 1 \\ a + b \end{pmatrix} \perp \begin{pmatrix} 1 & 1 \\ a b \end{pmatrix}$,则 $\begin{vmatrix} 1 \\ b \end{vmatrix} = \sqrt{5}$
- C. \ddot{a} 与 \ddot{b} 的夹角为钝角,则 m < 4 D. \ddot{a} m = 2 ,向量 \ddot{a} 在 \ddot{b} 方向上的投影为 -1
- 12. 设向量a = (x, 2-x), b = (-1,2), 若a //b, 则 $x = _____$.

14. 在边长为4的等边VABC中,已知 $AD = \frac{2}{3}AB$,点P在线段CD上,且

 $AP = mAC + \frac{1}{2}AB$, $AP = \frac{1}{2}AB = \frac{1}{2}AB$.

15. 己知正三角形 ABC 的边长为 2,D 是边 BC 的中点,动点 P满足 $|PD| \leq 1$,且 AP = xAB + yAC,其中 $x + y \ge 1$,则 2x + y 的最大值为_

16. 平面内给定两个向量 $\overset{1}{a}$ = (3,1), $\overset{1}{b}$ = (-1,2).

$$(1)$$
求 $\left| 3\overset{1}{a} + 2\overset{1}{b} \right|$;

$$(2)$$
若 $\begin{pmatrix} a+kb \end{pmatrix}$ // $\begin{pmatrix} 2a-b \end{pmatrix}$, 求实数 k 的值.

17. 己知A(1,3), B(2,-2), C(4,1).

(1)若 AB = CD,求 D 点的坐标;

(2)设向量 $\stackrel{!}{a}=AB$, $\stackrel{!}{b}=BC$,若 $\stackrel{!}{ka-b}$ 与 $\stackrel{!}{a}+3\stackrel{!}{b}$ 平行,求实数 k 的值.

18. 如图所示,已知矩形 ABCD 中, AB=2, AD=1, $DM=\frac{1}{3}$ DC, $BN=\frac{2}{3}$ BC , AC 与 MN 相 交于点 E.

(1)若 $\frac{\partial \mathcal{L}}{\partial N} = \lambda AB + \mu AD$,求 λ 和 μ 的值;

(2)用向量 *AM* , *AN* 表示 *AE* .

【素养提升】

- 1. 在VABC中,AB=1,AC=2, $\angle BAC=60^\circ$,P是VABC的外接圆上的一点,若AP=mAB+nAC,则m+n的最小值是(
- A. -1 B. $-\frac{1}{2}$ C. $-\frac{1}{3}$ D. $-\frac{1}{6}$

第 32 讲 平面向量的数量积及应用举例

于仅:	学校:	姓名:	班级:	考号:	
-----	-----	-----	-----	-----	--

	【基础	出巩固】	
1. 己知向量 $a = (2,1)$	$b,b=(-2,4)$, $\mathbb{N}\begin{vmatrix} 1 & 1 \\ a-b \end{vmatrix}$ ()	
A. 2	В. 3	C. 4	D. 5
2. 已知单位向量 $\frac{1}{a}$,	$\left b \right $ 满足 $\left a - b \right = \sqrt{3} \left a + b \right $,则 $a=b$ 的夹角为()
A. 30°	B. 60°		D. 150°
3. 已知向量 <i>a</i> , <i>b</i> 满足	$a = 1, a = 1, a = \sqrt{3}, a = 2b = 1$	3,则 $a \cdot b = ($)	
A. –2	B1	C. 1	D. 2
4. 定义: $ \vec{a} \times \vec{b} = \vec{a} $	$\left. \stackrel{ }{b} \right \sin heta$,其中 $ heta$ 为向量 $ \stackrel{ }{a} $	a=b的夹角. 若 $ a =2$	$, \left \stackrel{\mathbf{I}}{b} \right = 5 \; , \stackrel{\mathbf{r}}{a} \cdot \stackrel{\mathbf{I}}{b} = -6 \; ,$
则 $\left \stackrel{r}{a} \times \stackrel{l}{b} \right $ 等于()		
A. 6	В6	С8	D. 8
5. 已知平面向量 $\frac{1}{a}$,	$\begin{vmatrix} b \\ b \end{vmatrix} = 2, \begin{vmatrix} b \\ b \end{vmatrix} = 1,$	且 $\frac{1}{a}$ 与 $\frac{\pi}{b}$ 的夹角为 $\frac{\pi}{3}$,	则 $\left a + b \right = ($)
A. $\sqrt{3}$	B. $\sqrt{5}$	C. $\sqrt{7}$	D. 3
6. 己知△ <i>ABC</i> 中,∠	$\angle A = 60^{\circ}$, $AB=4$, $AC=6$	$, \coprod CM = 2MB , AN = 2MB $	$= NB$,则 $AC \cdot NM =$
()			
A. 12	B. 14	C. 16	D. 18
7. 在VABC中, AC	$=3, BC = 4, \angle C = 90^{\circ}$. If	P为VABC所在平面内的	的动点,且 $PC=1$,则
PA·PB 的取值范围是	<u>1</u> ()		
A. [-5,3]	B. [-3,5]	C. [-6,4]	D. [-4,6]
9. (多选)已知向量	$a = (-2,1), b = (-1,t), \ \ \Box$	川下列说法正确的是()
A. 若 $a_{\perp}b$, 则 t 的值	直为-2		
B. 若 $a//b$ 则 t 的值为	$J\frac{1}{2}$		
C. 若 $0 < t < 2$,则 a	与 6 的夹角为锐角		
D. 若 $\left(a+b\right)\perp\left(a-b\right)$	$), \boxed{0} \frac{\begin{vmatrix} a & b \\ a + b \end{vmatrix}}{\begin{vmatrix} a - b \end{vmatrix}} = 1$		

10. (多选) 在平面四边形 ABCD 中, $\begin{vmatrix} \mathbf{u} \mathbf{u} \\ AB \end{vmatrix} = \begin{vmatrix} \mathbf{u} \mathbf{u} \\ BC \end{vmatrix} = \begin{vmatrix} \mathbf{u} \mathbf{u} \\ CD \end{vmatrix} = DA \cdot DC = 1$, $BA \cdot BC = \frac{1}{2}$,则

()

A.
$$\begin{vmatrix} AC \\ AC \end{vmatrix} = 1$$

B.
$$\left| \frac{\partial CA}{\partial CA} + \frac{\partial CA}{\partial CD} \right| = \left| \frac{\partial CA}{\partial CD} \right|$$

C.
$$AD = \sqrt{2}BC$$

D.
$$BD \cdot CD = \frac{2 + \sqrt{3}}{2}$$

- 11. 已知向量 $\overset{\vee}{a} = (m,3), \overset{\vee}{b} = (1,m+1)$. 若 $\overset{\downarrow}{a} \perp \overset{\downarrow}{b}$, 则m =_______
- 12. 设向量a, b的夹角的余弦值为 $\frac{1}{3}$, 且|a|=1, |b|=3, 则 $(2a+b)\cdot b=$ _____.
- 13. 如图所示,一个物体被两根轻质细绳拉住,且处于平衡状态.已知两条绳上的拉力分别是 F_1, F_2 ,且 F_1, F_2 与水平夹角均为 45°, $\left|F_1\right| = \left|F_2\right| = 10\sqrt{2}\mathrm{N}$,则物体的重力大小为

- 14. 若VABC是边长为 2 的等边三角形,AD为 BC边上的中线,M为 AD 的中点,则 $MA \cdot \binom{MB+MC}{MB+MC}$ 的值为______.
- 15. 已知 $|\vec{a} 2\vec{e}| = |\vec{b} \vec{e}| = 1, |\vec{e}| = 1$,则向量 $\vec{a} \cdot \vec{b}$ 的范围是______.
- 16. 菱形 ABCD 中, $AB = 1, A \in \left[\frac{\pi}{3}, \frac{\pi}{2}\right]$, 点 E , F 分别是线段 AD ,CD 上的动点(包括端点), AE = CF ,则 $(AE + CF) \cdot AC = ______$, $ED \cdot EB$ 的最小值为______.

【素养提升】

- 2. 设直角VABC, P_0 是斜边AB上一定点. 满足 $P_0B = \frac{1}{6}AB = 1$,则对于边AB上任一点
- P,恒有 $PB \cdot PC \ge P_0B \cdot P_0C$,则斜边 AB 上的高是______.
- 3. 已知平面向量 $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ 满足 $|\vec{a}| = |\vec{b}| = 2, \vec{a} \perp \vec{b}, |\vec{b}| + 2\vec{c}| = 2, \ \vec{a} \mid (\vec{d} \vec{a}) \cdot (\vec{d} + 2\vec{b}) \le 4$,则 $|\vec{c} + \vec{d}|$ 的最大值是

5. 如图,已知 B , D 是直角 C 两边上的动点, $AD \perp BD$, $\left| \stackrel{\square}{AD} \right| = \sqrt{3}$, $\angle BAD = \frac{\pi}{6}$,

 $CM = \frac{1}{2} \begin{pmatrix} \mathbf{u} \mathbf{n} & \mathbf{u} \mathbf{n} \\ CA + CB \end{pmatrix}$, $\frac{\mathbf{u} \mathbf{n}}{CN} = \frac{1}{2} \begin{pmatrix} \mathbf{u} \mathbf{n} & \mathbf{u} \mathbf{n} \\ CD + CA \end{pmatrix}$,则 $\frac{\mathbf{u} \mathbf{n}}{CN} \cdot CN$ 的最大值为______.

6. (已知a, b, c是非零平面向量, |a|=2, |a-b|=1, $(\sqrt{2}c-b)\cdot b=0$, |b|=|c|, 则 $\frac{a\cdot c}{|a|}$

的最大值是

7. 定义两个向量组 $X = \begin{pmatrix} \mathbf{u} & \mathbf{u} & \mathbf{u} \\ x_1, x_2, x_3 \end{pmatrix}, Y = \begin{pmatrix} \mathbf{u} & \mathbf{u} & \mathbf{u} \\ y_1, y_2, y_3 \end{pmatrix}$ 的运算 $X \cdot Y = x_1 \cdot y_1 + x_2 \cdot y_2 + x_3 \cdot y_3$,设 e_1, e_2, e_3 为单位向量,向量组 $X = \begin{pmatrix} \mathbf{u} & \mathbf{u} & \mathbf{u} \\ x_1, x_2, x_3 \end{pmatrix}, Y = \begin{pmatrix} \mathbf{u} & \mathbf{u} & \mathbf{u} \\ y_1, y_2, y_3 \end{pmatrix}$ 分别为 e_1, e_2, e_3 的一个排列,则 $X \cdot Y$ 的最小值为______.

第 33 讲 数系的扩充与复数的引入

【基础巩固】

1. ((2+2i)(1-	-2i) =	()

A. -2+4i B. -2-4i C. 6+2i D. 6-2i

2. **(2022·浙江·高考真题)** 已知 $a,b \in \mathbb{R}, a+3i=(b+i)i$ (i为虚数单位),则(

A. a = 1, b = -3 B. a = -1, b = 3 C. a = -1, b = -3 D. a = 1, b = 3

3. 若复数z满足 $i \cdot z = 3 - 4i$,则|z| = (

A. 1

B. 5

C. 7

D. 25

4. 复数 $\frac{2i}{1-i}$ (i 是虚数单位)的虚部是 ()

В. -і

C. 2

D. -2i

5. $25 \pm \frac{2-i}{1-3i}$ 在复平面内对应的点所在的象限为(

A. 第一象限

B. 第二象限 C. 第三象限

D. 第四象限

6. 已知 $(1-i)^2z = 3+2i$,则z = (

A. $-1 - \frac{3}{2}i$ B. $-1 + \frac{3}{2}i$ C. $-\frac{3}{2} + i$ D. $-\frac{3}{2} - i$

7. 已知复数 z 在复平面内对应的点为(l_1l_1), \overline{z} 是 z 的共轭复数,则 $\frac{1}{\overline{z}}$ = ()

A. $-\frac{1}{2} + \frac{1}{2}i$ B. $\frac{1}{2} + \frac{1}{2}i$ C. $\frac{1}{2} - \frac{1}{2}i$ D. $-\frac{1}{2} - \frac{1}{2}i$

8. 已知 z=1-2i,且 $z+a\overline{z}+b=0$,其中 a,b 为实数,则(

A. a = 1, b = -2 B. a = -1, b = 2 C. a = 1, b = 2 D. a = -1, b = -2

A. 1-2i B. 1+2i C. 1+i

10. 设复数 z 的模长为 1,在复平面对应的点位于第一象限,且满足 $|z+\overline{z}|=1$,则 $\overline{z}=$

A. $\frac{1}{2} + \frac{\sqrt{3}}{2}i$ B. $\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$ C. $\frac{1}{2} - \frac{\sqrt{3}}{2}i$ D. $\frac{\sqrt{2}}{2} - \frac{\sqrt{2}}{2}i$

12. (多选)已知复数z满足方程 $(z^2+9)(z^2-2z+4)=0$,则(

A . <i>z</i> 可能为纯虚数		B. 该方程共有两	个虚根
C. z 可能为 $1-\sqrt{3}i$		D. 该方程的各根	之和为2
13. (多选)设复数	$z = \frac{1}{a+2i} (a \in \mathbf{R}) , \stackrel{\text{def}}{=} a$	变化时,下列结论正	确的是()
A. $ z = \overline{z} $ 恒成立		B. z 可能是纯虚数	汝
C. $z + \frac{1}{z}$ 可能是实数	女	D. $ z $ 的最大值为	$\frac{1}{2}$
14. (多选)已知复	数 z_1 对应的向量为 OZ_1	,复数 z_2 对应的向量	为 <i>OZ</i> ₂ ,则()
A. 若 $ z_1 + z_2 = z_1 - z_2 $	$ z_2 $,则 $ OZ_1 \perp OZ_2 $		
B. 若 $\left(OZ_1 + OZ_2\right)$ 」	$-\left(\overrightarrow{OZ_1} - \overrightarrow{OZ_2}\right), \text{if } z_1 = z_2 $. 2	
C. 若 z ₁ 与 z ₂ 在复平	产面上对应的点关于实轴	的对称,则 $z_1 z_2 = z_1 z_2 $	
D. 若 $ z_1 = z_2 $,则 z_2	$z_1^2 = z_2^2$		
15. 己知i 是虚数单	.位,化简 $\frac{11-3i}{1+2i}$ 的结果	为	
16. 己知复数 z 满足	(4+3i)(z-3i) = 25,	z =	
17. 已知复数 <i>z</i> = —	$\frac{\mathrm{i}}{-\sqrt{3}\mathrm{i}}$, $\mathbb{M}_{z}.\overline{z} = \underline{}$		
18. 若复数 z 满足((1-i)z = 1-i ,则 z 的模	其为,虚	部为
19. 中国古代数学者	š作《九章算术》中记 载	戦了平方差公式,平 7	方差公式是指两个数的和与
		若复数 $a=5+3i,b=4$	+3i (i 为虚数单位),则
$a^2 - b^2 = \underline{\hspace{1cm}}$			
	寸满足① $ z-2i = z-2 $;		
		i(这里 i 为虚数单位	(z_1) ,若 $z_1 \cdot z_2$ 为纯虚数,则
$ z_1+z_2 $ 的值为			
22. 如果复数 z 满足	z z+1-i =2, 那么 $ z-1 z+1-i =2$	2+i 的最大值是	·
	7 ⇒	- -	
		《养提升 】	
	的点在第二象限, $\frac{1}{z}$ 为 $\frac{1}{z}$		_
$\mathbb{P}: \ z+\overline{z}=-2;$	\mathbb{Z} : $z-\overline{z}=2i$;	丙: $z \cdot \overline{z} = 4$;	$T: z \div \overline{z} = -\frac{1}{2} - \frac{\sqrt{3}}{2}i.$
如果只有一个假命是	题,则该命题是()	
A. 甲	В. Z	C. 丙	D. 丁

- 2. 若i为虚数单位,复数z满足 $1 \le |z+1+i| \le \sqrt{2}$,则|z-1-i|的最大值为_____.
- 3. 已知|z|=1, $k \in \mathbb{R}$ 且z是复数,当 $|z^2+kz+1|$ 的最大值为3,则k=_____.
- 4. 若非零复数 x, y 满足 $x^2 + xy + y^2 = 0$,则 $\left(\frac{x}{x+y}\right)^{2020} + \left(\frac{y}{x+y}\right)^{2020}$ 的值是______.
- 5. 任何一个复数 z = a + bi (其中 a、 $b \in \mathbb{R}$, i 为虚数单位)都可以表示成: $z = r(\cos\theta + i\sin\theta)$ 的形式,通常称之为复数 z 的三角形式.法国数学家棣莫弗发现:

 $z^n = \left[r(\cos\theta + i\sin\theta) \right]^n = r^n(\cos n\theta + i\sin n\theta)(n \in N^*)$,我们称这个结论为棣莫弗定理. 根

$$\sum_{k=0}^{n} \left[\cos \frac{(k-1)\pi}{n} + \sin \frac{(k-1)\pi}{n}\right] = \underline{\hspace{1cm}}.$$