MARINE PHYS/CA/

Hilbert Transforms

Hilbert Transform Relations for Complex Sequences

- consider complex sequences when the real and imaginary part can be related through a Hilbert transform

"Comality" with mean the periodic frequency doman will be seend hat of each period

- use ful in the representation of bandpass -TI 0 TI
signils as complex signels
correspond to analytic signel "in analog signel theory

Complex sequence: SIM = SIM + j'SzIM -D S(eta)

J. Sz(n) -> J. Si (egin) = Z [S(egin) - S(egin)]

conjugate odes

conjugate odes

compley quantities

Hilbert Transforms

Assume:
$$S(e^{i\omega}) = 0$$
 - $\pi \leq \omega < 0$ (causally)

Thun: $S(e^{i\omega}) = \begin{cases} 2 S_r(e^{i\omega}) & 0 \leq \omega \neq \pi \\ 0 & -\pi \leq \omega < 0 \end{cases}$

and $S(e^{i\omega}) = \begin{cases} 2 J_r S_r(e^{i\omega}) & 0 \leq \omega \neq \pi \\ 0 & -\pi \leq \omega < 0 \end{cases}$

Also $S_r(e^{i\omega}) = \begin{cases} -J_r S_r(e^{i\omega}) & 0 \leq \omega \neq \pi \\ 0 & -\pi \leq \omega < 0 \end{cases}$
 $S_r(e^{i\omega}) = \begin{cases} -J_r S_r(e^{i\omega}) & -\pi \leq \omega \leq 0 \\ 0 & -\pi \leq \omega \leq 0 \end{cases}$
 $S_r(e^{i\omega}) = \begin{cases} -J_r S_r(e^{i\omega}) & S_r(e^{i\omega}) \\ 0 & -\pi \leq \omega \leq 0 \end{cases}$

where: $H(e^{i\omega}) = \begin{cases} -J_r S_r(e^{i\omega}) & S_r(e^{i\omega}) \\ 0 & -\pi \leq \omega \leq \pi \end{cases}$

where: $H(e^{i\omega}) = \begin{cases} -J_r S_r(e^{i\omega}) & S_r(e^{i\omega}) \\ 0 & -\pi \leq \omega \leq \pi \end{cases}$

MARINE PHYSICAL

Hilbert Transforms

$$h(u) = \begin{cases} \frac{2}{\pi} & \sin^2\left(\frac{\pi n}{2}\right) \\ \sin^2\left(\frac{\pi n}{2}\right) & \sin^2\left(\frac{\pi n}{2}\right) \end{cases}$$

For practical use, dassi a finite length Nibert transformer using a FIR filter design routine ers. "Grpm"

Hilbert Transforms

Representation of Bandpass Signals in terms of Complex Lopass Signals

Complex lowpers signal

$$S(n) = X(n) C$$

 $S(n) = \times (n) \in \frac{\partial \omega_{e} n}{\partial \omega_{e} n} = S_{r}(n) + \int_{0}^{\infty} S_{e}^{2}(n) \left\{ \begin{array}{c} \omega_{e} n + \beta(n) \\ \omega_{e} n + \beta(n) \end{array} \right\} = \sum_{i=1}^{n} \frac{\partial \omega_{e} n}{\partial \omega_{e} n} = \sum_{i=1}^{n} \frac{\partial \omega_{e}$

= A (n) e ((Uen + Ø(m))

Thus
$$S(e^{i\omega}) = X(e^{i(\omega-\omega_c)})$$
 rotation of 2-plan counter clockwise

X(e') XINS is compley

S(4) 11 compley

MARINE PHYSICAL

Hilbert Transforms

Hilbert Transforms

HW 2- Single Sideband Generation

