Operacije sa grafovima (unarne operacije)

13. april, 2020

Napomena

Uradjene domaće zadatke je neophodno dostaviti u **rukopisu** na usmenom delu ispita.

Lekcija 6

Neka je dat graf
$$G = (V, E), V = \{v_1, v_2, \dots, v_n\}, E = \{e_1, e_2, \dots, e_m\}.$$

Definicija 1. Grana $e, e \in E$, se odstranjuje iz grafa G, što se označava sa G - e, tako što se ona ukloni iz grafa a incidentni čvorovi se ne diraju.

Definicija 2. Čvor $v, v \in V$, se odstranjuje iz grafa G, što se označava sa $G - \{v\}$, tako što se on ukloni iz grafa zajedno sa svim svojim incidentnim granama.

Definicija 3. Grana $e, e \notin E$, se dodeljuje grafu G, u oznaci G + e, tako što se dva nesusedba čvora u i v, ako postoje, spoje novom granom e.

Pitanje: Zbog čega se u ovoj definiciji kaže "ako postoje"?

Definicija 4. Čvor $v, v \notin V$, se dodeljuje grafu G, u oznaci $G + \{v\}$, tako što se spoji sa jednim (proizvoljnim) čvorom grafa G.

Pitanja:

- Da li je operacija $G + \{v\}$ jedinstvena? Ako nije, kada je jedinstvena?
- Da li operacija $G + \{v\}$ može da se tretira kao binarna operacija?

Definicija 5. Totalni graf grafa G, je graf $T = T(G) = (V_1, E_1)$ definisan skupom čvorova $V_1 = \{v_1, v_2, \ldots, v_n, e_1, e_2, \ldots, e_m\}$, pri čemu su dva čvora iz skupa V_1 susedna u grafu T(G) ako i samo ako su odgovarajuća dva čvora susedna u grafu G, dve grane susedne u grafu G, ili su čvor i grana incidentni u grafu G.

Definicija 6. $Graf \bar{G} = (V, \bar{E})$, je komplement grafa G pri čemu su dva čvora u i v, iz V, susedna u grafu \bar{G} , $\{u,v\} \in \bar{E}$, ako i samo ako nisu susedna u grafu G, $\{u,v\} \notin E$.

Definicija 7. Graf G je samokomplementirajući ako i samo ako je izomorfan svom komplementu \bar{G} .

Teorema 1. Ako je graf $G=(V,E), |V|=n\geq 1$, samokomplementirajući, tada je

$$n \equiv 0 \pmod{4}$$
 ili $n \equiv 1 \pmod{4}$.

Dokaz. Fizičkim preklapanjem grafova $G=(V,E),\,|V|=n,$ i njegovog komplementa $\bar{G}=(V,\bar{E}),$ po čvorovima koji su isto označeni, dobija se graf $\hat{G}=(V,\hat{G}).$ Ovaj graf ima $|\hat{E}|=\binom{n}{2}$ grana. Kako je graf G=(V,E) samokomplementirajući, važi jednakost $|E|=|\bar{E}|=\frac{1}{2}|\hat{E}|,$ tj. $|E|=\frac{n(n-1)}{4}.$ To znači da n mora biti oblika

$$n = 4k \quad \text{ili} \quad n = 4k + 1 \,,$$

za svako $k \in N$, što je i trebalo dokazati.

Teorema 2. Dokazati da za svaki prirodan broj sa osobinom $n \equiv 0 \pmod{4}$ ili $n \equiv 1 \pmod{4}$ postoji samokomplementirajući graf G = (V, E), pri čemu je |V| = n.

Domaći zadatak:

- Naći samokomplementirajući graf G=(V,E), |V|=n=4. Da li je on jedinstven?
- Naći dva samokomplementirajuća grafa G=(V,E) sa osobinom |V|=5.

Definicija 8. Neka je dat graf G = (V, E). Graf $L(G) = (V_1, E_1)$, $V_1 = E$, pri čemu su dva čvora susedna u L(G) ako i samo ako su odgovarajuće grane susedne u grafu G, naziva se graf grana ili line graf grafa G.

Postupak za formiranje grafa L(G) za dati graf G, može se opisati pomoću sledećih koraka:

Korak 1. U sredinu svake grane grafa G ucrta se čvor grafa L(G).

Korak 2. Dobijene čvorove spojimo (novim) granama ako leže na susednim granama u grafu G.

Domaći zadatak: Dokazati da su grafovi:

- a) $L(K_3)$ i $L(K_{1.3})$
- b) K_3 i $L(K_3)$
- c) C_n i $L(C_n)$,
- d) P_{n-1} i $L(P_n)$

izomorfni.

Teorema 3. Neka je dat graf G = (V, E), $V = \{v_1, v_2, \dots, v_n\}$, $|E| = m \neq 0$. Dokazati da za line graf L(G) = (V', E') važe jednakosti

$$|V'| = m$$
 i $|E'| = \frac{1}{2} \sum_{i=1}^{n} d(v_i)^2 - m$.

Dokaz. Po samoj definiciji line grafa važi jednakost |V'| = m. Neka je v_i , i = 1, 2, ..., n, proizvoljan čvor grafa G. On je incidentan sa $d(v_i)$ grana u ovom grafu. Na osnovu njih, kada se proglase čvorovima u grafu L(G) formira

se tačka $\binom{d(v_i)}{2}$ susednih grana u grafu L(G). Ukupan broj grana u grafu L(G) je

$$|E'| = \sum_{i=1}^{n} {d(v_i) \choose 2} = \sum_{i=1}^{n} \frac{d(v_i)(d(v_i) - 1)}{2} = \frac{1}{2} \sum_{i=1}^{n} d(v_i)^2 - \frac{1}{2} \sum_{i=1}^{n} d(v_i) = \frac{1}{2} \sum_{i=1}^{n} d(v_i)^2 - m,$$

što je i trebalo dokazati.

Zadatak. Dokazati da ne postoji graf G za koga bi graf L(G), prikazan na slici, bio line graf, L(G).

Kakav se zaključak može izvesti na osnovu ovoga?

Domaći zadatak: Neka je dat graf G=(V,E), |V|=n, |E|=m, koji je r-regularan. Dokazati:

- a) da je L(G) 2(r-1)-regularan, da ima $\frac{nr}{2}$ čvorova i $\frac{nr(r-1)}{2}$ grana;
- b) da je graf $L^2(G) = L(L(G))$ (2r 3)-regularan, da ima $\frac{nr(r-1)}{2}$ čvorova i $\frac{nr(r-1)(2r-3)}{2}$ grana;
- c) Analizirati slučaj r=2, i posebno slučaj r=2 i n=6.