From the beginning of last week:

Remember from calculus the addition and scalar multiplication of polynomials:

e.g
$$(2t^2 + 1) + (-t^2 + 3t + 2) = t^2 + 3t + 3$$
.

e.g
$$(-3)(-t^2+3t+2)=3t^2-9t-6$$
.

We want to represent abstract vectors as column vectors so we can do calculations (e.g. row-reduction) to study linear systems (e.g. week 6 p20) and linear transformations (e.g. week 6 p43).

Is this really different from \mathbb{R}^3 ?

$$\begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 \\ 3 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \end{bmatrix}.$$

$$(-3)\begin{bmatrix} 2\\3\\-1\end{bmatrix} = \begin{bmatrix} -6\\-9\\3\end{bmatrix} \quad \leftarrow \text{ coefficient of } t$$

$$\leftarrow \text{ coefficient of } t$$

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 7, Page 1 of 22

We want to represent abstract vectors as column vectors so we can do calculations (e.g. row-reduction) to study linear systems and linear transformations.

$$\ln \mathbb{R}^n, \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = x_1 \mathbf{e}_1 + \dots + x_n \mathbf{e}_n. \tag{b_1,\dots,b_n}$$
 must span V

We call copy this luca. In v , provide special section, c , We can copy this idea: in V, pick a special set of vectors $\{\mathbf{b}_1,\dots,\mathbf{b}_n\}$, write each

$$igwedge \{ \mathbf{b}_1, \dots, \mathbf{b}_n \}$$
 must be linearly independent

Example: In
$$\mathbb{P}_2$$
, let $\mathbf{b}_1=1, \mathbf{b}_2=t, \mathbf{b}_3=t^2$

Example: In
$$\mathbb{P}_2$$
, let $\mathbf{b}_1=1, \mathbf{b}_2=t, \mathbf{b}_3=t^2$. Then we represent $a_0+a_1t+a_2t^2$ by $\begin{bmatrix} a_0\\a_1\\a_2\end{bmatrix}$ (see previous page). BU Math 2207 Linear Algebra

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 7, Page 2 of 22

Definition: Let ${\cal W}$ be a subspace of a vector space ${\cal V}$. An indexed set of vectors

 $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for W if i ${\cal B}$ is a linearly independent set, and

ii Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}=W$.

§4.3: Bases

Definition: Let W be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for W if

i ${\cal B}$ is a linearly independent set, and ii Span $\{\mathbf{b}_1,\dots,\mathbf{b}_p\}=W$

The order matters: $\{\mathbf{b}_1,\mathbf{b}_2\}$ and $\{\mathbf{b}_2,\mathbf{b}_1\}$ are different bases.

ii means: W is the set of vectors of the form $c_1\mathbf{b}_1+\dots+c_p\mathbf{b}_p$ where c_1,\dots,c_p means: The only solution to $x_1\mathbf{b}_1+\cdots+x_p\mathbf{b}_p=\mathbf{0}$ is $x_1=\cdots=x_p=0$. can take any value.

Example: The standard basis for \mathbb{R}^3 is $\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$, where $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

To check that this is a basis: $\begin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 \end{bmatrix}$ is in reduced echelon form. The matrix has a pivot in every column, so its columns are linearly independent. The matrix has a pivot in every row, so its columns span \mathbb{R}^3 .

Condition ii implies that $\mathbf{b}_1,\dots,\mathbf{b}_p$ must be in W, because Span $\{\mathbf{b}_1,\dots,\mathbf{b}_p\}$ contains each of $\mathbf{b}_1,\dots,\mathbf{b}_p.$

Every vector space V is a subspace of itself, so we can take W=V in the definition and talk about bases for ${\cal V}.$ Semester 2 2017, Week 7, Page 3 of 22

HKBU Math 2207 Linear Algebra

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 7, Page 4 of 22

 $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for W if i \mathcal{B} is a linearly independent set, and ii Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}=W$.

A basis for W is not unique: (different bases are useful in different situations, see next week).

Let's look for a different basis for \mathbb{R}^3

Example: Let
$${f v}_1=egin{bmatrix}1\\2\\0\end{bmatrix}$$
 , ${f v}_2=egin{bmatrix}0\\1\end{bmatrix}$. Is $\{{f v}_1,{f v}_2\}$ a basis for \mathbb{R}^3 ?

Answer: No, because two vectors cannot span
$$\mathbb{R}^3$$
: $\begin{bmatrix} | & | & | \\ \mathbf{v}_1 & \mathbf{v}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \\ 0 & 1 \end{bmatrix}$ cannot

have a pivot in every row

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 7, Page 5 of 22

Definition: Let W be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for W if i ${\cal B}$ is a linearly independent set, and

ii Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}=W$.

A basis for
$$W$$
 is not unique: (different bases are useful in different situations, see next week). Let's look for a different basis for \mathbb{R}^3 . Example: Let $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{v}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{v}_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$. Is $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ a basis for \mathbb{R}^3 ?

Answer: Form the matrix
$$A=\begin{bmatrix} |&|&|\\ \mathbf{v}_1&\mathbf{v}_2&\mathbf{v}_3\\ |&|&|\end{bmatrix}=\begin{bmatrix} 1&0&-1\\ 2&1&0\\ 0&1&3\end{bmatrix}$$
 . Because $\det A=1\neq 0$, the matrix A is invertible, so (by Invertible Matrix Theorem) its

columns are linearly independent and its columns span \mathbb{R}^3 .

Semester 2 2017, Week 7, Page 6 of 22

By the same logic as in the above examples: **Definition**: Let W be a subspace of a vector space V. An indexed set of vectors $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_p\}$ in V is a basis for W if i \mathcal{B} is a linearly independent set, and

Fact: $\{\mathbf{v}_1,\dots\mathbf{v}_p\}$ is a basis for \mathbb{R}^n if and only if. \bullet p=n (i.e. the set has exactly n vectors), and

•
$$\det \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_n \\ \mathbf{v}_1 & \cdots & \mathbf{v}_n \end{bmatrix} \neq 0.$$

• $\det \begin{bmatrix} \mathbf{v}_1 & \cdots & \mathbf{v}_n \\ | & | & | \end{bmatrix} \neq 0.$

More than \boldsymbol{n} vectors: too many vectors, linearly dependent. Fewer than n vectors: not enough vectors, can't span $\mathbb R$

A basis for W is not unique: (different bases are useful in different situations, see

ii Span $\{\mathbf{b}_1,\ldots,\mathbf{b}_p\}=W$.

Answer: No, because four vectors in
$$\mathbb{R}^3$$
 must be linearly dependent:
$$\begin{bmatrix} | & | & | & | \\ | & | & | & | \\ \hline \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 & \mathbf{v}_4 \\ | & | & | & | \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 2 & 1 & 1 & 0 \\ \hline 0 & 1 & 0 & 1 \end{bmatrix}$$
 cannot have a pivot in every column.

Semester 2 2017, Week 7, Page 7 of 22

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 7, Page 8 of 22

Example: The standard basis for \mathbb{P}_n is $\mathcal{B} = \{1, t, t^2, \dots, t^n\}$.

To check that this is a basis:

- ii By definition of \mathbb{P}_n , every element of \mathbb{P}_n has the form $a_0 + a_1 t + a_2 t^2 + \cdots + a_n t^n$, so $\mathcal B$ spans $\mathbb P_n$.
- i To see that \mathcal{B} is linearly independent, we show that $c_0=c_1=\cdots=c_n=0$ is the only solution to

$$c_0+c_1t+c_2t^2+\cdots+c_nt^n=0.$$
 (the zero function)

Substitute t=0: we find $c_0=0$.

Differentiate, then substitute t=0: we find $c_1=0$.

Differentiate again, then substitute t=0: we find $c_2=0$.

Repeating many times, we find $c_0 = c_1 = \cdots = c_n = 0$.

Once we have the standard basis of \mathbb{P}_n , it will be easier to check if other sets are bases of \mathbb{P}_n , using coordinates (later, p14).

Advanced exercise: what do you think is the standard basis for $M_{m \times n}$?

Semester 2 2017, Week 7, Page 9 of 22

One way to make a basis for V is to start with a set that spans V_{\cdot}

Theorem 5: Spanning Set Theorem: If $V=\mathsf{Span}\left\{\mathbf{v}_1,\dots,\mathbf{v}_p
ight\}$, then some subset of $\{\mathbf{v}_1,\dots,\mathbf{v}_p\}$ is a basis for V .

Proof: basically, the idea of the casting-out algorithm (week 6 p28-34) works in abstract vector spaces too.

- If $\{{\bf v}_1,\dots,{\bf v}_p\}$ is linearly independent, it is a basis for V.
 If $\{{\bf v}_1,\dots,{\bf v}_p\}$ is linearly dependent, then one of the ${\bf v}_i$ s is a linear combination Continue removing vectors in this way until the remaining vectors are linearly of the others. Removing this \mathbf{v}_i from the set still gives a set that spans V. independent.

independent because $4+2t-4t^2$ is a linear combination of the other polynomials: **Example**: $\mathbb{P}_2 = \mathsf{Span} \{5, 3+t, 1+2t^2, 4+2t-4t^2\}$, but this set is not linearly $\{5,3+t,1+2t^2\}$, which is in fact a basis (we can show this with coordinates, $4+2t-4t^2=2(3+t)-2(1+2t^2)$. So remove $4+2t-4t^2$ to get the set

p14-15). HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 7, Page 10 of 22

PP 234, 238-240 (§4.4), 307-308 (§5.4): Coordinates

vector ${f x}$ as $c_1{f b}_1+\dots+c_p{f b}_p$ in a unique way. Let's show that this is indeed possible Recall (p2) that our motivation for finding a basis is because we want to write each

Theorem 7: Unique Representation Theorem: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for a vector space V. Then for each ${\bf x}$ in V, there exists a unique set of scalars c_1, \ldots, c_n such that

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

Since $\mathcal B$ spans V, there exists scalars c_1,\ldots,c_n such that the above equation holds. Suppose x has another representation

 $\mathbf{x} = d_1 \mathbf{b}_1 + \dots + d_n \mathbf{b}_n.$

for some scalars d_1,\ldots,d_n . Then $\mathbf{0}=\mathbf{x}-\mathbf{x}=(c_1-d_1)\mathbf{b}_1+\cdots+(c_n-d_n)\mathbf{b}_n$.

Because ${\cal B}$ is linearly independent, all the weights in this equation must be zero, i.e. $(c_1-d_1)=\cdots=(c_n-d_n)=0.$ So $c_1=d_1,\ldots,c_n=d_n.$

HKBU Math 2201 Linear Algebra

Semester 2 2017, Week 7, Page 11 of 22

Because of the Unique Representation Theorem, we can make the following definition

coordinates of x relative to \mathcal{B} , or the \mathcal{B} -coordinates of x, are the unique weights **Definition**: Let $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ be a basis for V. Then, for any \mathbf{x} in V, the

$$\mathbf{x} = c_1 \mathbf{b}_1 + \dots + c_n \mathbf{b}_n.$$

The vector in \mathbb{R}^n

$$\begin{bmatrix} \mathbf{x} \end{bmatrix}_{\mathcal{B}} = \begin{bmatrix} c_1 \\ \vdots \\ \vdots \\ c_n \end{bmatrix}$$

is the coordinate vector of x relative to \mathcal{B} , or the \mathcal{B} -coordinate vector of x.

Example: Let $\mathcal{B}=\{1,t,t^2,t^3\}$ be the standard basis for \mathbb{P}_3 . Then the coordinate

vector of an arbitrary polynomial is $[a_0 + a_1t + a_2t^2 + a_3t^3]_{\mathcal{B}} =$

HKBU Math 2207 Linear Algebra

Semester 2 21 $\lfloor a_3 \rfloor$ $\,$ < 7, Page 12 of 22

Why are coordinate vectors useful?

Because of the Unique Representation Theorem, the function V to \mathbb{R}^n given by

$$\mathbf{x} \mapsto [\mathbf{x}]_{\mathcal{B}}$$
 (e.g. $a_0 + a_1t + a_2t^2 + a_3t^3 \mapsto \begin{bmatrix} a_1 \\ a_2 \\ a_3 \end{bmatrix}$) is linear, one-to-one and onto.

Example: Is the set of polynomials $\{1,2-t,(2-t)^2,(2-t)^3\}$ linearly independent? **Answer**: The coordinates of these polynomials relative to the standard basis of \mathbb{P}_3 are

If V has a basis of n vectors, then V and \mathbb{R}^n are isomorphic, so we can solve problems about V (e.g. span, linear independence) by working in \mathbb{R}^n .

 $[(2-t)^2]_{\mathcal{B}} = [4-4t+t^2]_{\mathcal{B}} = \begin{bmatrix} 4\\1\\0\\8 \end{bmatrix},$

 $[1]_{\mathcal{B}} = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \qquad [($

 $[2-t]_{\mathcal{B}} = \begin{bmatrix} -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \quad [(2-t)^3]_{\mathcal{B}} = [(8-12t+6t^2-t^3]_{\mathcal{B}} = \begin{bmatrix} -12 \\ 6 \\ -11 \end{bmatrix}$

Definition: A linear transformation $T:V \to W$ that is both one-to-one and onto is called an isomorphism. We say ${\cal V}$ and ${\cal W}$ are isomorphic.

different, the two spaces behave the same as vector spaces. Every vector space This means that, although the notation and terminology for ${\cal V}$ and ${\cal W}$ are calculation in ${\cal V}$ is accurately reproduced in ${\cal W}$, and vice versa.

isomorphic, so we can solve problems about $V\ ({
m e.g.}$ span, linear independence) mportant consequence: if V has a basis of n vectors, then V and \mathbb{R}^n are

HKBU Math 2207 Linear Algebra by working in \mathbb{R}^n .

The set of polynomials is linearly independent if and only if their coordinate vect<mark>ors are</mark> linearly independent (continued on next page).

Semester 2 2017, Week 7, Page 14 of 22

Semester 2 2017, Week 7, Page 13 of 22

HKBU Math 2207 Linear Algebra

Harder example: (in preparation for week 9, change of coordinates) Let $\mathcal{F}=\left\{1,2-t,(2-t)^2,(2-t)^3\right\}$. We just showed that \mathcal{F} is a basis. So if the

Example: Is the set of polynomials $\left\{1,2-t,(2-t)^2,(2-t)^3
ight\}$ linearly independent?

Answer: (continued). The matrix

$${\cal F}$$
-coordinates of a polynomial ${f p}$ is $[{f p}]_{{\cal F}}=egin{bmatrix} 4 \ 0 \ -1 \end{bmatrix}$, then what is ${f p}$?

diagonal entries), so it is invertible, and by the Invertible Matrix Theorem, its columns are linearly independent in \mathbb{R}^4 . So the polynomials are linearly independent. (In fact they form a basis, because IMT says they also span \mathbb{R}^4 .)

has determinant $1 \neq 0$ (it is upper triangular so its determinant is the product of the

Advanced exericse: if \mathbf{p}_i has degree exactly i, then $\{\mathbf{p}_0,\mathbf{p}_1,\dots,\mathbf{p}_n\}$ is a basis for \mathbb{P}_n . (This idea is how I usually prove that a set is a basis in my research work.) HKBU Math 2207 Linear Algebra Semester 2 2017, Week 7, Page 15 of 22

Semester 2 2017, Week 7, Page 16 of 22

If V has a basis of n vectors, then V and \mathbb{R}^n are isomorphic, so we can solve problems about V (e.g. span, linear independence) by working in \mathbb{R}^n .

What about problems concerning linear transformations $T: V \to W$?

Remember from week $3\ \S1.9$: Every linear transformation $T:\mathbb{R}^n o \mathbb{R}^m$ is a matrix transformation $T(\mathbf{x}) = A\mathbf{x}$, where

The standard matrix is useful because we can solve $T(\mathbf{x}) = \mathbf{y}$ by row-reducing $[A|\mathbf{y}]$

Definition: If V is a vector space with basis $\mathcal{B} = \{\mathbf{b}_1, \dots, \mathbf{b}_n\}$ and $T: V \to V$ is a linear transformation, then the matrix for T relative to \mathcal{B} is

$$[T]_{\mathcal{B}} = \begin{bmatrix} T(\mathbf{b}_1)]_{\mathcal{B}} & \cdots & [T(\mathbf{b}_n)]_{\mathcal{B}} \\ & & \\ \end{bmatrix} \quad \text{(so the standard matrix of T is the matrix for T relative to the standard basis of \mathbb{R}^n.)}$$

L HKBU Math 2207 Linear Algebra

DEFINITION:If V is a vector space with basis $\mathcal{B}=\{b_1,\ldots,b_n\}$ and $T:V\to V$ is a linear transformation, then the matrix for T relative to \mathcal{B} is

$$[T]_{\mathcal{B}} = \begin{bmatrix} | & | & | & | \\ [T(\mathbf{b}_1)]_{\mathcal{B}} & \dots & [T(\mathbf{b}_n)]_{\mathcal{B}} \\ | & | & | & | \end{bmatrix}.$$

EXAMPLE:(p308 of textbook) Let $T:\mathbb{P}_2 \to \mathbb{P}_2$ be the differentiation

$$T(a_0 + a_1t + a_2t^2) = \frac{d}{dt}(a_0 + a_1t + a_2t^2) = a_1 + 2a_2t.$$

Work in the standard basis of \mathbb{P}_2 : $\mathbf{b}_1=1, \mathbf{b}_2=t, \mathbf{b}_3=t^2$.

$$T(\mathbf{b_1}) = T(\mathbf{b_2}) = T(\mathbf{b_3}) =$$

$$[T(\mathbf{b_1})]_{\mathcal{B}} = \begin{bmatrix} T(\mathbf{b_2})]_{\mathcal{B}} = \begin{bmatrix} T(\mathbf{b_3})]_{\mathcal{B}} = \end{bmatrix}$$

$$[T]_{\mathcal{B}} =$$

The matrix $[T]_{\mathcal{B}}$ is useful because

$$[T(\mathbf{x})]_{\mathcal{B}} = [T]_{\mathcal{B}}[\mathbf{x}]_{\mathcal{B}}, \tag{*}$$

so we can solve $T(\mathbf{x}) = \mathbf{y}$ by row-reducing $\left| [T]_{\mathcal{B}} \right| [\mathbf{x}]_{\mathcal{B}} \left|$

Example: Let $T: \mathbb{P}_2 \to \mathbb{P}_2$ be the differentiation function $T(\mathbf{p}) = \frac{d}{dt}\mathbf{p}$ as on the previous page. Here is an example of equation (*) for $\mathbf{x} = 2 + 3t - t^2$.

$$T(2+3t-t^2)=\frac{d}{dt}(2+3t-t^2) = 3-2t$$

$$[T]_{\mathcal{B}}\begin{bmatrix}2\\3\\-1\end{bmatrix}=\begin{bmatrix}0&1&0\\0&0&2\\0&0\end{bmatrix}\begin{bmatrix}2\\3\\-1\end{bmatrix}=\begin{bmatrix}3\\0\\0\end{bmatrix}.$$
 Some other things about T that we can learn from the matrix $[T]_{\mathcal{B}}$:

- Some other things about T that we can learn from the matrix $[T]_{\mathcal{B}}$:

 We can solve the differential equation $\frac{d}{dt}\mathbf{p} = 1 3t$ by row-reducing $\begin{bmatrix} 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} = 3$.

 $[T]_{\mathcal{B}}$ is in echelon form, and it does not have a pivot in every column, so T is not one-to-one (which you know from calculus this is why indefinite integrals have +C) and the page 19 of 22?

Coordinates for subspaces (e.g. planes in $\mathbb{R}^3)$ are useful as they allow us to represent points in the subspace with fewer numbers (e.g. with 2 numbers instead of 3 numbers)

In this picture (p239 of textbook example 7 in $\S4.4$), $\mathcal{B} = \{\mathbf{v}_1, \mathbf{v}_2\}$ is a basis for a plane. The basis allows us to draw a coordinate

The \mathcal{B} -coordinate vector of \mathbf{x} is grid on the plane.

vector describes the location of \boldsymbol{x} relative to this coordinate grid. $[\mathbf{x}]_{\mathcal{B}} = egin{bmatrix} 2 \\ 3 \end{bmatrix}$. This coordinate

HKBU Math 2207 Linear Algebra

Semester 2 2017, Week 7, Page 21 of 22

Basis and coordinates for subspaces:

Example: Let W be the set of vectors of the form $\begin{vmatrix} a \\ b \end{vmatrix}$, where a,b can take any value.

We showed (week 7 p14) that W is a subspace of \mathbb{R}^3 because $W=\mathsf{Span}\left\{egin{array}{c|c} 1&0\\0&1\end{array}\right\}$

Since $\left\{ \begin{bmatrix} 1\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ is furthermore linearly independent, it is a basis for W.

Because
$$\begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix} = a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$$
, the coordinate vector of
$$\begin{bmatrix} a \\ 0 \\ 0 \end{bmatrix}$$
, relative to the basis
$$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$
, is
$$\begin{bmatrix} a \\ b \end{bmatrix}$$
. So
$$\begin{bmatrix} a \\ 0 \\ b \end{bmatrix} \mapsto \begin{bmatrix} a \\ b \end{bmatrix}$$
 is an ismorphism from W to \mathbb{R}^2 .

Semester 2 2017, Week 7, Page 20 of 22

An "abstract" example of coordinates: ${\bf EXAMPLE} : {\rm Let} \ \mathcal{B} = \{{\bf b_1},{\bf b_2},{\bf b_3}\} \ {\rm be \ a \ basis \ for} \ V.$

1. What is the $\ensuremath{\mathcal{B}}\xspace\text{-coordinate}$ vector of b_1+b_2 ?

Suppose $T:V \to V$ is a linear transformation satisfying

$$T(\mathbf{b_1}) = \mathbf{b_1} + \mathbf{b_2}, \quad T(\mathbf{b_2}) = \mathbf{b_1} - 2\mathbf{b_3}, \quad T(\mathbf{b_3}) = \mathbf{b_3}.$$

2. Find the matrix $[T]_{\mathcal{B}}$ for T relative to $\mathcal{B}.$

3. Find $T(\mathbf{b_1} + \mathbf{b_2})$.