Bioinformatics for Post-translational modification ID

DAVID L. TABB, PH.D.

Overview

- Adapting DB search with "dynamic mods"
- Understanding common modifications
- Opening DB search to ignore precursor mass
- Controlling FDR in PTM-containing PSMs
- Localizing post-translational modifications

Database search overview

Eng et al (1994) *J. Amer. Soc. Mass Spectrom*. 5: 976-989.

Eng et al (1995) Anal. Chem. 67: 1426-36.

Each dynamic PTM branches search space

Because multiple PTMs may be in each peptide, adding PTMs to a search creates an exponential cost.

Three sites in two states give eight decorations $2^3 = 8$

IGSESTEK

I G S*E S T E K

PTM Catalog: unimod.org

UNIMOD protein modifications for mass spectrometry Help Unimod Logged as Guest Log out Advanced search Change password Records Per Details Any field Search for: Contains Page:: found: 6 acetylation Show all Search Page 1 of 1 20 🔻 \mathbb{Z}_2 Accession Composition PSI-MS Interim name Description Monoisotopic Average Name mass mass View 766 Met-loss+Acetvl Removal of initiator -89.029920 -89.1594 H(-7) C(-3) methionine from N(-1) S(-1) protein N-terminus, then acetylation of the new N-terminus Acetylation H(2) C(2) O View 1 Acetyl Acetyl 42.010565 42.0367 View 37 Trimethyl tri-Methylation tri-Methylation 42.046950 42.0797 H(6) C(3) View 1372 heavy acetylation H(2) 13C(2) O Acetyl:13C(2) 44.017274 44.0220 Acetyldeoxyhypusine Acetyldeoxyhypusine View 1042 97.089149 97.1582 H(11) C(6) N View 1043 Acetylhypusine Acetylhypusine H(11) C(6) N O 113.084064 113.1576

DM Creasy and JS Cottrell. Proteomics (2004) 4: 1534-1536

Chemical modifications: the usual suspects

Sometimes on N-termini, too

Site	Cause	Chemical identity	Shift in Da
Cys	Iodoacetamide	Carbamidomethylation	57.021464
Cys	MMTS	Beta-methythiolation	45.987721
Met	Exposure to air	Oxidation	15.994915
N-term Gln	Side chain attack	Pyro-Glutamate	-17.026549
N-term and Lys	iTRAQ-4	Isobaric label	144.102063
N-term and Lys	TMT-6	Isobaric label	229.162932
Lys	Old urea solution	Carbamylation	43.005814
Asn	Deamidation of NG	Aspartate	0.984016

See also **PNGase** F

In vivo modifications: the usual suspects

Site	Cause	Chemical identity	Shift in Da
N-term and Lys	Acetyltransferases	Acetylation	42.010565
Ser, Thr, Tyr	Kinases	Phosphorylation	79.966331
Pro in tissues	Prolyl hydroxylase	Hydroxyproline	15.994915
Arg, Lys	Methyltransferases	Methylation	14.015650
C-term	PA monooxygenases	Alpha amidation	-58.005479
Lys	E3 ubiquitin ligases	Ubiquitination	114.042927
		FFPE	

PTMs on common AAs are costly

Adding a mass shift for a common amino acid slows performance far more than for a rare amino acid.

How does search time scale?

Trypsin Specificity

PTMs, fully tryptic

Area of circle represents the number of comparisons between a decorated peptide and an MS/MS.

Sequence tagging route to PTMs hindered by inference and reconciliation

Which gaps are best to chain together? Given a good "tag" for three AAs, how do we interpret that against DB sequences?

Open search matches scans to DB peptides with very different masses

The promise of Open Search

- •Wide precursor tolerance allows matching despite large precursor mass difference.
- Open Search claims many more spectra identified and far more PTMs recognized.
- Making DB search fast enough required fragment index-based matching:
 - MSFragger: Kong et al. Nat. Methods (2017) 14: 513.
 - Open pFind: Chi et al. *Nat. Biotech.* (2018) 36: 1059.

The cautions for Open Search

- 1. Enlarged search space requires greater conservatism in PSM filtering.
- 2. The Open Search is hypothesis-forming; don't use it as your final search!
- 3. Distilling a PTM configuration for DB search from open search takes thought.

Global PSM FDR control may not control PTM FDR!

25.00%

- ■TiO₂ peptide enrichment
- **24** RAWs PXD006230
- ■2% PSM FDR control
 - ■160 3Phos peptides
 - ■1237 2Phos peptides
 - ■7549 1Phos peptides
 - ■3259 OPhos peptides

"Warp, spindle, fold, and mutilate"

- •Allowing your algorithm to alter peptide structures significantly will produce false matches by distorting sequences with PTMs.
- •The more degrees of freedom given a PSM, the greater the proportion of false discoveries at a given score.
- ■The PSMs with the most PTMs are the class with the highest false discovery rate.

Blind search: one "delta" of any mass in any one location

Sequence tagging often specifies amino acid bearing the PTM; open search may specify a mass shift for the PSM without location.

At right, PSM mass deltas from MSFragger on "Nair" HCD FFPE glioblastoma set

DeltaMass	Α	С	D	E	F	G	Н	I	K	L	М	N	P
6	1			1		8			2	1	2		
7				1	1	1							
8	1		5	1				13		2			
9			9			1		6		1			1
10			5										
11	13	2	2	9	4		2	3	5				5
12	30	23	22	44	19	20	133	36	56	30	41	21	8
13	26		7	11	7	14	33	10	65	12	2	16	9
14	55		18	38	7	127	147	73	866	21	2	24	45
15	16	12	15	33	16	70	61	17	267	20	4	28	114
16	64	1	23	25	41	237	8	17	65	16	3339	31	1289
17	16		5	14	13	81	1	8	16	3	69	7	265
18	5		4	2	1	27	2	6	1	6	13		48
19			1			4		2		1	4		13

Savitski, Mol. Cell. Proteomics (2006) 5:935-948.

Dasari, Chem. Res. Tox. (2011) 24: 204-216.

Gaining expertise in blind interpretation

- Boring is more often correct than brilliant.
 - +22 Da is Sodium, not Asp \rightarrow His
- Blind PTMs are useful for finding *patterns* of mass shifts; do *not* put faith in individual peptide-spectrum matches.
- Unusual cleavages can appear as peptideterminal mass shifts in blind searches.
- 1 H
 Hydrogen
 1.00794

 3 4
 Li Be
 Lithium
 6.941 9.012182

 11 12
 Na Mg
 Sodium
 22.989770 24.3050

 19 20
 K
 Potassium Calcium

40.078

39.0983

Site localization of PTMs

- •Multiple PTM-decorations of a sequence may tie in score for a spectrum, or nearly tie.
- One can say this peptide and PTM explain the spectrum, but is position of the PTM correct?
- •Ascore defines a new score to estimate probability from differentiating fragments.
- Delta score techniques compare original DB search scores of variants to assess site error.

Beausoleil. *Nature Biotechnology* (2006) 24: 1285-1292. Bailey. *J. Proteome Res.* (2009) 8: 1965-1971.

Takeaway messages

- •Many techniques support the identification and verification of PTMs.
- Stepping beyond database search is useful when multiple PTMs can be found.
- Resisting false discoveries is essential because PTM search spaces are much larger.
- •Biological databases contribute perspective to evaluate the reasonableness of PTMs.