Module 7.1: Audio-to-Audio & Audio-to-Score Alignment

alexander lerch

introduction

overview

corresponding textbook section

Chapter 7: Alignment (pp. 146–150)

- lecture content
 - Audio-to-Audio alignment
 - use cases
 - features
 - distance measures
 - typical accuracy
 - Audio-to-Score alignment
- learning objectives
 - elaborate on possible use cases for audio-to-audio alignment
 - give examples for features and distance measures for alignment
 - discuss differences between audio-to-audio and audio-to-score alignment

introduction

overview

Georgia Center for Music Tech College of Design

corresponding textbook section

Chapter 7: Alignment (pp. 146-150)

lecture content

- Audio-to-Audio alignment
 - use cases
 - features
 - distance measures
 - typical accuracy
- Audio-to-Score alignment

learning objectives

- elaborate on possible use cases for audio-to-audio alignment
- give examples for features and distance measures for alignment
- discuss differences between audio-to-audio and audio-to-score alignment

audio-to-audio alignment introduction

objective

align two sequences of audio

a lise cases

- quick browsing for certain parts in recordings
- timing adjustment (backing vocals, loops, . . .)
- automated dubbing
- musicological analysis (timing of several performances)

processing steps

- a extract suitable features
- compute distance matrix
- compute alignment path

audio-to-audio alignment introduction

objective

align two sequences of audio

use cases

- quick browsing for certain parts in recordings
- timing adjustment (backing vocals, loops, . . .)
- automated dubbing
- musicological analysis (timing of several performances)

processing steps

- extract suitable features
- compute distance matrix
- compute alignment path

audio-to-audio alignment introduction

objective

align two sequences of audio

use cases

- quick browsing for certain parts in recordings
- timing adjustment (backing vocals, loops, . . .)
- automated dubbing
- musicological analysis (timing of several performances)

processing steps

- extract suitable features
- compute distance matrix
- compute alignment path

audio-to-audio alignment alignment path computation

Georgia Center for M Tech Technology **Center for Music** College of Design

→ prerequisite: Module 7.0—Dynamic Time Warping

- use case examples
 - quick browsing find the same part across files
 - ⇒ use *pitch based* features
 - timing adjustment backing vocals to lead vocals
 - ⇒ use *intensity based* features
 - automated dubbing same speaker several recordings
 - ⇒ use *intensity based* and *timbre based* features
- feature categories
 - intensity: energy, onset probability, . . .
 - tonal: pitch chroma, . . .
 - timbral: MFCCs, spectral shape, . . .

plot from¹

¹H. Kirchhoff and A. Lerch, "Evaluation of Features for Audio-to-Audio Alignment," Journal of new music research, vol. 40, no. 1, pp. 27–41,

overview

use case examples

- quick browsing find the same part across files
 - ⇒ use pitch based features
- **timing adjustment** backing vocals to lead vocals
 - ⇒ use *intensity based* features
- automated dubbing same speaker several recordings
 - ⇒ use *intensity based* and *timbre based* features

feature categories

- **intensity**: energy, onset probability, ...
- tonal: pitch chroma, ...
- timbral: MFCCs, spectral shape, ...

plot from¹

H. Kirchhoff and A. Lerch. "Evaluation of Features for Audio-to-Audio Alignment," Journal of new music research, vol. 40, no. 1, pp. 27–41,

compute distance matrix — distance measures

- typical distance measures
 - ullet Euclidean distance: $d_{
 m E}(s) = \sqrt{\sum\limits_{j=0}^{11} ig(
 u_{
 m e}(j)
 u_{
 m t,s}(j)ig)^2}$
 - Manhattan distance: $d_{
 m M}(s) = \sum\limits_{j=0}^{11} \left|
 u_{
 m e}(j)
 u_{
 m t,s}(j)
 ight|$
 - Cosine distance: $d_{\mathrm{C}}(s) = 1 \left(\frac{\sum\limits_{j=0}^{11} \nu_{\mathrm{e}}(j) \cdot \nu_{\mathrm{t,s}}(j)}{\sqrt{\sum\limits_{j=0}^{11} \nu_{\mathrm{e}}(j)^2 \sqrt{\cdot \sum\limits_{j=0}^{11} \nu_{\mathrm{t,s}}(j)^2}} \right)$
 - Kullback-Leibler divergence: $d_{\mathrm{KL}}(s) = \sum\limits_{i=0}^{11}
 u_{\mathrm{e}}(j) \cdot \log\left(rac{
 u_{\mathrm{e}}(j)}{
 u_{\mathrm{t,s}}(j)}
 ight)$
- data-driven approach: train classifier with 2-class problem

¹H. Kirchhoff and A. Lerch, "Evaluation of Features for Audio-to-Audio Alignment," Journal of new music research, vol. 40, no. 1, pp. 27–41,

typical distance measures

compute distance matrix — distance measures

- ullet Euclidean distance: $d_{
 m E}(s) = \sqrt{\sum\limits_{j=0}^{11} \left(
 u_{
 m e}(j)
 u_{
 m t,s}(j)
 ight)^2}$
- ullet Manhattan distance: $d_{
 m M}(s) = \sum\limits_{j=0}^{11} \left|
 u_{
 m e}(j)
 u_{
 m t,s}(j)
 ight|$
- Cosine distance: $d_{\mathrm{C}}(s) = 1 \left(rac{\sum\limits_{j=0}^{11}
 u_{\mathrm{e}}(j) \cdot
 u_{\mathrm{t,s}}(j)}{\sqrt{\sum\limits_{j=0}^{11}
 u_{\mathrm{e}}(j)^2} \sqrt{\cdot \sum\limits_{j=0}^{11}
 u_{\mathrm{t,s}}(j)^2}} \right)$
- Kullback-Leibler divergence: $d_{\mathrm{KL}}(s) = \sum\limits_{i=0}^{11}
 u_{\mathrm{e}}(j) \cdot \log \left(rac{
 u_{\mathrm{e}}(j)}{
 u_{\mathrm{t,s}}(j)}
 ight)$
- data-driven approach: train classifier with 2-class problem

¹H. Kirchhoff and A. Lerch, "Evaluation of Features for Audio-to-Audio Alignment," Journal of new music research, vol. 40, no. 1, pp. 27–41,

- compute distance matrix distance measures
 - typical distance measures

$$ullet$$
 Euclidean distance: $d_{
m E}(s) = \sqrt{\sum\limits_{j=0}^{11} ig(
u_{
m e}(j) -
u_{
m t,s}(j)ig)^2}$

$$ullet$$
 Manhattan distance: $d_{
m M}(s) = \sum\limits_{j=0}^{11} ig|
u_{
m e}(j) -
u_{
m t,s}(j) ig|$

$$\text{Manhattan distance:} \ d_{\mathrm{M}}(s) = \sum_{j=0}^{11} \left| \nu_{\mathrm{e}}(j) - \nu_{\mathrm{t,s}}(j) \right|$$

$$\text{Cosine distance:} \ d_{\mathrm{C}}(s) = 1 - \left(\frac{\sum\limits_{j=0}^{11} \nu_{\mathrm{e}}(j) \cdot \nu_{\mathrm{t,s}}(j)}{\sqrt{\sum\limits_{j=0}^{11} \nu_{\mathrm{e}}(j)^2} \sqrt{\cdot \sum\limits_{j=0}^{11} \nu_{\mathrm{t,s}}(j)^2}} \right)$$

• Kullback-Leibler divergence:
$$d_{\mathrm{KL}}(s) = \sum_{j=0}^{11} \nu_{\mathrm{e}}(j) \cdot \log \left(\frac{\nu_{\mathrm{e}}(j)}{\nu_{\mathrm{t,s}}(j)} \right)$$

- compute distance matrix distance measures
 - typical distance measures

$$ullet$$
 Euclidean distance: $d_{
m E}(s) = \sqrt{\sum\limits_{j=0}^{11} ig(
u_{
m e}(j) -
u_{
m t,s}(j)ig)^2}$

$$ullet$$
 Manhattan distance: $d_{
m M}(s) = \sum\limits_{j=0}^{11} ig|
u_{
m e}(j) -
u_{
m t,s}(j) ig|$

$$\text{Manhattan distance:} \ d_{\mathrm{M}}(s) = \sum_{j=0}^{11} \left| \nu_{\mathrm{e}}(j) - \nu_{\mathrm{t,s}}(j) \right|$$

$$\text{Cosine distance:} \ d_{\mathrm{C}}(s) = 1 - \left(\frac{\sum\limits_{j=0}^{11} \nu_{\mathrm{e}}(j) \cdot \nu_{\mathrm{t,s}}(j)}{\sqrt{\sum\limits_{j=0}^{11} \nu_{\mathrm{e}}(j)^2} \sqrt{\cdot \sum\limits_{j=0}^{11} \nu_{\mathrm{t,s}}(j)^2}} \right)$$

• Kullback-Leibler divergence:
$$d_{\mathrm{KL}}(s) = \sum\limits_{j=0}^{11}
u_{\mathrm{e}}(j) \cdot \log\left(rac{
u_{\mathrm{e}}(j)}{
u_{\mathrm{t,s}}(j)}
ight)$$

audio-to-audio alignment

Georgia Center for Music Technology

- compute distance matrix distance measures
 - typical distance measures
 - data-driven approach: train classifier with 2-class problem¹

¹H. Kirchhoff and A. Lerch, "Evaluation of Features for Audio-to-Audio Alignment," *Journal of new music research*, vol. 40, no. 1, pp. 27–41,

- typical distance measures
- data-driven approach: train classifier with 2-class problem¹

¹H. Kirchhoff and A. Lerch, "Evaluation of Features for Audio-to-Audio Alignment," *Journal of new music research*, vol. 40, no. 1, pp. 27–41,

audio-to-audio alignment typical results

originals synced
left: instrumental
right: a capella

²H. Kirchhoff and A. Lerch, "Evaluation of Features for Audio-to-Audio Alignment," *Journal of new music research*, vol. 40, no. 1, pp. 27–41,

audio-to-score alignment

objective

align an audio sequence with a score sequence

use cases

- score viewer
- music education
- identify matching score/audio via cost function
- musicological analysis

processing steps

see audio-to-audio alignment

audio-to-score alignment

objective

align an audio sequence with a score sequence

use cases

- score viewer
- music education
- identify matching score/audio via cost function
- musicological analysis

processing steps

see audio-to-audio alignment

audio-to-score alignment

objective

• align an audio sequence with a score sequence

use cases

- score viewer
- music education
- identify matching score/audio via cost function
- musicological analysis

processing steps

• see audio-to-audio alignment

audio-to-score alignment challenges

- features from **different domains** (no timbre and proper loudness information in the score)
 - approach 1: convert score into audio-like representation
 - MIDI-to-audio
 - use model for harmonics and ADSR
 - approach 2: convert audio into score-like representation
 - audio-to-MIDI
 - pitch chroma
 - event-based segmentation
- pauses and rests
 - DTW algorithm has no graceful way of dealing with pauses

audio-to-score alignment challenges

- features from **different domains** (no timbre and proper loudness information in the score)
 - approach 1: convert score into audio-like representation
 - MIDI-to-audio
 - use model for harmonics and ADSR
 - approach 2: convert audio into score-like representation
 - audio-to-MIDI
 - pitch chroma
 - event-based segmentation
- pauses and rests
 - DTW algorithm has no graceful way of dealing with pauses

A2A 00000 A2S

audio-to-audio alignment

- extract features
- create distance matrix with suitable distance measure
- use DTW to find alignment path
- (use time-stretching to actually align the sequences)

audio-to-score alignment

- extract usually pitch-based features
- distance measure
- use DTW, HMM, etc to extract alignment path

