Yule-Simon Processes

Asher A. Hensley, Ph.D.

Outline

- Background
- Application
- Experiments

Background

Some History...

George Udny Yule

Herbert Simon

- Developed one of the first models to explain power-law occurrence.
- Concept: Success leads to future success!

Power Laws:

$$p(x|\alpha) = Cx^{-\alpha}$$

		minimum	exponent
	quantity	x_{min}	α
(a)	frequency of use of words	1	2.20(1)
(b)	number of citations to papers	100	3.04(2)
(c)	number of hits on web sites	1	2.40(1)
(d)	copies of books sold in the US	2 000 000	3.51(16)
(e)	telephone calls received	10	2.22(1)
(f)	magnitude of earthquakes	3.8	3.04(4)
(g)	diameter of moon craters	0.01	3.14(5)
(h)	intensity of solar flares	200	1.83(2)
(i)	intensity of wars	3	1.80(9)

Source:

Newman, Mark EJ. "Power laws, Pareto distributions and Zipf's law." *Contemporary physics* 46.5 (2005): 323-351.

The Yule-Simon Process:

Example:

$$p(k = n | \alpha) = \frac{\alpha}{n + \alpha} \prod_{i=1}^{n-1} \frac{i}{i + \alpha}$$

$$= \frac{\alpha(n-1)!}{(n+\alpha)(n-1+\alpha)\cdots(1+\alpha)}$$

$$= \frac{\alpha\Gamma(n)\Gamma(\alpha+1)}{\Gamma(n+\alpha+1)} = \alpha B(n,\alpha+1)$$

Yule-Simon Distribution: $p(k|\alpha) = \alpha B(k, \alpha + 1)$

Yule-Simon Counting Process:

$$s_t \mid \alpha, \mathbf{x}_{1:t-1} \sim \text{Bernoulli}\left(\alpha(n_j + \alpha)^{-1}\right)$$

$$x_t = x_{t-1} + s_t$$

where,
$$\mathbf{x}_{1:t-1} = [x_1, ..., x_{t-1}]$$

$$n_i = \#(\mathbf{x}_{1:t-1} = = x_{t-1})$$

Example:

Basic Idea(s):

- Power-law distributed waiting times
- Event clustering
- Long (or infinite) run-lengths

Application

Concept:

• Use Yule-Simon process as a prior for volatility cluster* formation

Concept:

• Use Yule-Simon process as a prior for volatility cluster* formation

*volatility cluster: segment of log return time series with constant volatility.

Log Returns: $r_t = \log P_t - \log P_{t-1}$

Generative Model:

$$s_t \mid \alpha, \mathbf{x}_{1:t-1} \sim \operatorname{Bernoulli}\left(\alpha(n_j + \alpha)^{-1}\right)$$
 $x_t = x_{t-1} + s_t$
 $w_t \mid x_t, \lambda_{1:\infty} \sim \operatorname{Normal}(0, \lambda_{x_t}^{-1})$
 $\lambda_j \mid c, d \sim \operatorname{Gamma}(c, d)$
 $r_t = \mu_t + w_t$ (Observed log return sequence)
 $\mu_t = \mu_{t-1} + v_t$
 $v_t \mid \phi \sim \operatorname{Normal}(0, \phi)$

Hyper-Priors:

$$\alpha | a, b \sim \text{Gamma}(a, b)$$

 $c, d | p, q, t, s \sim \pi(p, q, t, s)$

where,

$$\pi(p,q,t,s) \propto \frac{p^{c-1}e^{-aq}}{\Gamma(c)^t d^{-cs}}$$

Example:

Problem:

Given:
$$\mathbf{r}_{1:T} = [r_1, ..., r_{T-1}, r_T]$$
 (i.e. the "Data")

Find:
$$p(\mathbf{x}_{1:T}, \lambda_{1:L}, \mu_{1:T}, \alpha, c, d | a, b, p, q, t, s, \phi, \mathbf{r}_{1:T})$$

Model Posterior | "Data"

Approach:

Markov Chain Monte Carlo (MCMC)

- Create Markov chain with same target distribution as the posterior
- Simulate Markov chain to draw samples

Expectation Maximization

- **E-Step:** Kalman Smoother to estimate $\mu_{1:T}$
- M-Step: Maximum Likelihood to estimate ϕ

Experiments

E1: Simulation

Strategy:

- Run Generative Model with **Known** Parameters
- Run Inference Algorithm
- Evaluate Performance

Simulated Log-Returns:

Simulated Log-Returns:

Simulated Log-Returns: $SNR \cong -67dB$

Why the Mean Matters:

Evaluation:

- MCMC Sampler Convergence
- Model Adequacy Checking
- Mean Estimation Accuracy

Gibbs Sampler 1: # Volatility Clusters

Gibbs Sampler 2: Yule-Simon Parameter

Metropolis-Hastings: Volatility Parameters

Model Adequacy Checking:

- For Each Iteration:
 - Standardize Log-Returns:

$$z_t = \frac{r_t - \mu_t}{\sigma_t} = (r_t - \mu_t) \lambda_{x_t}^{1/2}$$

- Test for Normality: χ^2 -Test
- \bullet Evaluate Iteration w/ Largest $p ext{-}$ value

Model Adequacy Checking: p-values

Model Adequacy Checking:

Mean Estimation:

E2: Dow Jones 30

Data Set: Dow Jones 30

• Daily Closing Prices: 11/13/2012 – 11/13/2017

AAPL	Apple	MCD	McDonalds
AXP	American Express	MMM	3M
ВА	Boeing	MRK	Merck
CAT	Caterpillar	MSFT	Microsoft
CSCO	Cisco	NKE	Nike
CVX	Chevron	PFE	Pfizer
DIS	Disney	PG	Procter & Gamble
DWDP	DowDuPont Inc	TRV	Travelers Companies Inc.
GS	Goldman Sachs	UNH	United Health
HD	Home Depot	UTX	United Technologies
IBM	IBM	V	Visa
INTC	Intel	VZ	Verizon
JNJ	Johnson & Johnson	WBA	Walgreen
JPM	JPMorgan Chase	WMT	Wal-Mart
КО	Coca Cola	XOM	Exxon Mobil

Analysis

- Case Study: AAPL
- Ensemble Results

Case Study: AAPL

Model Adequacy Checking: p-values

Best Fit: 2σ Bounds

p-value: 0.9558

Mean Removal:

Ensemble Results

Thank You!