Yi-Hsuan Lin, PhD

HIGHLIGHTS

- 10+ years of research experience in theoretical biophysics, computational biology, and bioinformatics
- 16 scientific papers in peer-reviewed journals of, cumulatively cited over 900 times
- 11 invited seminars and colloquia in world-leading academic institutes and conferences, including the Machine Learning in Biophysics lecture at the 2021 Canadian Association for Physicists Congress.

EDUCATION

Ph.D., Physics, The Ohio State University, Ohio, USA
B.Sc., Physics, University of Illinois at Urbana-Champaign, Illinois, USA (GPA 3.74, High Distinction)
2009

EXPERIENCE

Molecular Modelling Lead

Jan 2021 - present

HTuO Biosciences, Vancouver, BC, Canada

- Developing proprietary molecular dynamics force fields with new features for pharmaceutical applications
- Incorporating machine learning to optimizing molecular dynamics simulation performance
- Implementing mathematical physics methods to validate the simulation methods
- Attended due diligence meetings with potential investors to provide scientific consultation.

Data Scientist

Jun 2020 – Oct 2020

Sustainability. Exchange, Toronto, ON, Canada

• Applied supervised machine learning algorithms and Bayesian statistics to build models for time series forecasting of environmental, social and corporate governance (ESG) financial data.

Postdoctoral Fellow Jul 2015 – Jul 2021

University of Toronto & Hospital for Sick Children, Toronto, ON, Canada

- Developing statistical physics theories for the "sequence specificity" in biological liquid-liquid phase separation
- · Collaborating with experimentalists and computational biologists to test the above-mentioned physics theory
- Develop Monte Carlo simulation programs from scratch for modelling protein assemblies
- Published 13 peer-reviewed papers in theoretical/computational physics, chemistry, and biology
- Supervised and mentored over 3 junior scientists (students and trainees)
- Project: Theories for sequence-dependent phase behaviors of biomolecular condensates

SKILLS_

- Math/Stat: Numerical Analysis, Bayesian Statistics, Multivariate Linear/Nonlinear Optimization, Linear Algebra, Multivariable Calculus, Stochastic Calculus, Partial Differential Equation, Complex Analysis
- Modelings: Theoretical Physics, Molecular Biophysics, Bioinformatics, Monte Carlo Simulation, Molecular Dynamics Simulation, Data-Driven Statistical Modeling, Machine Learning, Deep Learning, Data Visualization, Principal Component Analysis, Time Series Forecasting
- Programming: Python, Matlab/Octave, C/C++, Mathematica, Julia, SQL
- Tools: Numpy, Scipy, Pandas, Matplotlib, Scikit-Learn, PyMC, SQLite, MPI, PyCharm, Git

PUBLICATIONS

- 16. **Lin Y-H**, Wu H, Jia B, Zhang M, and Chan HS (2022) Assembly of model postsynaptic densities involves interactions auxiliary to stoichiometric binding *Biophys J* **121** 151–171
- 15. Wessén J, Pal T, Das S, **Lin Y-H**, and Chan HS (2021) A simple explicit-solvent model of polyampholyte phase behaviors and its ramifications for dielectric effects in biomolecular condensates. *J Phys Chem B* **125** 4337–4358
- 14. Das S, **Lin Y-H**, Vernon RM, Forman-Kay JD, and Chan HS (2020) Comparative roles of charge, π , and hydrophobic interactions in sequence-dependent phase separation of intrinsically disordered proteins. *Proc Natl Acad Sci USA* **117** 28795–28805
- 13. Amin AN*, **Lin Y-H***, Das S, and Chan HS (2020) Analytical theory for sequence-specific binary fuzzy complexes of charged intrinsically disordered proteins. *J Phys Chem B* **124** 6709–6720 (*equal contribution)
- 12. **Lin Y-H**, Brady JP, Chan HS, and Ghosh K (2020) A unified analytical theory of heteropolymers for sequence-specific phase behaviors of polyelectrolytes and polyampholytes. *J Chem Phys* **152** 045102
- 11. Cinar H, Oliva R, **Lin Y-H**, Chen X, Zhang M, Chan HS, and Winter RHA (2020) Pressure sensitivity of SynGAP/PSD-95 condensates as a model for postsynaptic densities and its biophysical and neurological ramifications. *Chem Eur J* **26** 11024–11031
- 10. Das S, Amin AN, Lin Y-H, and Chan HS (2018) Coarse-grained residue-based models of disordered protein condensates: utility and limitations of simple charge pattern parameters. *Phys Chem Chem Phys* **20** 28558–28574
- 9. **Lin Y-H**, Forman-Kay JD, and Chan HS (2018) Theories for sequence-dependent phase behaviors of biomolecular condensates. *Biochemistry* **57** 2499–2508
- 8. Das S, Eisen A, **Lin Y-H**, and Chan HS (2018) A lattice model of charge-pattern-dependent polyampholyte phase separation. *J Phys Chem B* **122** 5418–5431
- 7. **Lin Y-H**, Brady JP, Forman-Kay JD, and Chan HS (2017) Charge pattern matching as a "fuzzy" mode of molecular recognition for the functional phase separations of intrinsically disordered proteins. *New J Phys* **19** 115003
- 6. Brady JP, Farber PJ, Sekhar A, **Lin Y-H**, Huang R, Bah A, Nott TJ, Chan HS, Baldwin AJ, Forman-Kay JD, and Kay LE (2017) Structural and hydrodynamic properties of an intrinsically disordered region of a germ-cell specific protein upon phase separation. *Proc Natl Acad Sci USA* **114** E8194–E8203
- 5. **Lin Y-H** and Chan HS (2017) Phase separation and single-chain compactness of charged disordered proteins are strongly correlated. *Biophys J* **112** 2043–2046
- Lin Y-H, Song J,Forman-Kay JD, and Chan HS (2017) Random-phase-approximation theory for sequence-dependent, biologically functional liquid-liquid phase separation of intrinsically disordered proteins. J Mol Liq 228 176–193
- 3. **Lin Y-H**, Forman-Kay JD, and Chan HS (2016) Sequence-specific polyampholyte phase separation in membraneless organelles. *Phys Rev Lett* **117** 178101
- 2. **Lin Y-H** and Bundschuh R (2015) RNA structure generates natural cooperativity between single-stranded RNA binding proteins targeting 5' and 3'UTRs. *Nucleic Acids Res* **43** 1160–1169
- 1. **Lin Y-H** and Bundschuh R (2013) Interplay between single-stranded binding proteins on RNA secondary structure. *Phys Rev E* **88** 052707

HONORS AND AWARDS.

Postdoctoral Award, Intrinsically Disordered Protein Subgroup, Biophysical Society (USA)	2019
Connell Award for Postdoctoral Fellow, Department of Biochemistry, University of Toronto	2018
Scholarship for Study Abroad, Taiwan Ministry of Education	2007-2013
Gold Medal, The 36 th International Physics Olympiad	2005

CERTIFICATES

Financial Engineering and Risk Management I & II (Coursera.org/Columbia Univ) Introduction to Deep Learning with Honors (Coursera.org/HSE Univ) Bayesian Methods for Machine Learning with Honors (Coursera.org/HSE Univ) Practical Reinforcement Learning with Honors (Coursera.org/HSE Univ)