Práctico Números Complejos Matemática Discreta I - Año 2019/2 **FAMAF**

(1) Simplificar las siguientes expresiones:

a)
$$\left(\frac{-3}{\frac{4}{5}+1}\right)^{-1} \cdot \left(\frac{4}{5}-1\right) + \frac{1}{3}$$
, b) $\frac{a}{2\pi-6}(\pi-3)^2 - \frac{2a(\pi^2-9)}{\pi-3}$.

(2) Demostrar que dados z, z_1 , z_2 en \mathbb{C} se cumple:

$$|\bar{z}| = |z|, \qquad |z_1 z_2| = |z_1| |z_2|.$$

- (3) Sean $z = 1 + i y w = \sqrt{2} i$. Calcular:
 - a) z^{-1} ; 1/w; z/w; w/z.
 - b) $1 + z + z^2 + z^3 + \cdots + z^{2019}$.
 - c) $(z(z + w)^2 iz)/w$.
- (4) Sumar y multiplicar los siquientes pares de números complejos
 - a) 2 + 3i + 4.
 - b) 2 + 3i + 4i.
 - c) 1 + i + i + 1 i.
 - d) 3 2i u 1 + i.
- (5) Expresar los siguientes números complejos en la forma a+ib. Hallar el módulo, argumento y conjugado de cada uno de ellos y graficarlos.

a)
$$2e^{i\pi} - i$$

b)
$$i^3 - 2i^{-7} - 1$$
,

a)
$$2e^{i\pi} - i$$
, b) $i^3 - 2i^{-7} - 1$, c) $(-2 + i)(1 + 2i)$.

- (6) Sean $a, b \in \mathbb{C}$. Decidir si existe $z \in \mathbb{C}$ tal que:
 - a) $z^2 = b$. ¿Es único? ¿Para qué valores de b resulta z ser un número real?

1

- b) z es imaginario puro y $z^2 = 4$.
- c) z es imaginario puro y $z^2 = -4$.