Московский Государственный Университет

им. М.В. Ломоносова

Факультет Вычислительной Математики и Кибернетики. Кафедра Суперкомпьютеров и Квантовой Информатики.

Практикум на ЭВМ.

Отчет №3: Параллельная программа на MPI, которая реализует однокубитное квантовое преобразование с шумами.

Постановка задачи

- 1. Реализовать параллельную программу на C++ с использованием MPI и OpenMP, которая выполняет квантовое преобразование n-Адамар с зашумленными вентилями над вектором состояний длины 2^n , где n количество кубитов.
- 2. Протестировать программу на системе Polus.
- 3. Построить график распределения потерь точности 1-F при фиксированной точности е = 0.01 для количества кубитов 24, 25, 26, 27, 28. Для построения каждого распределения использовать не менее 60 экспериментов. Входной вектор в экспериментах должен генерироваться случайным образом.
- 4. Построить график распределения потерь точности 1-F при фиксированном количестве кубитов n=26 и различных значениях точности: e=0.1, e=0.01, e=0.001. Для построения каждого распределения использовать не менее 60 экспериментов. Входной вектор в экспериментах должен генерироваться случайным образом.

Аргументы командной строки: <n><k><mode><numthreads><eps> Формат хранения данных: в бинарном файле (.bin) первое число (int) п — количество кубитов, следующие 2^n комплексных чисел — элементы вектора (комплексное число хранится в виде double Re, double Im).

Сборка: make

Результаты

Количество кубитов	Количество процессов	Количество потоков	Максимальное время работы процесса (сек)
28	1	1	79,42
		2	66,27
		4	60,10
		8	56,98
	2	1	82,65
		2	68,64
		4	56,99
		8	60,42
	4	1	42,52

	2	35,74
	4	32,87
	8	31,57

Количество кубитов	Среднее значение потерь точности
24	0,0023
25	0,0024
26	0,0024
27	0,0025
28	0,0025

e	Среднее значение потерь точности
0.1	0,2278
0.01	0,0024
0.001	2,6097e-05

Распределение 1 - F, 24 кубитов, 60 запусков, eps = 0.01

Распределение 1 - F, 25 кубитов, 60 запусков, eps = 0.01

Распределение 1 - F, 26 кубитов, 60 запусков, eps = 0.01

Распределение 1 - F, 27 кубитов, 60 запусков, eps = 0.01

Распределение 1 - F, 28 кубитов, 60 запусков, eps = 0.01

