Circuiti digitali in tecnologia CMOS

Invertitore NMOS

$$v_I = v_{GSI}$$

$$v_O = v_{DSI} = V_{DD} - v_{DS2}$$

Invertitore NMOS

Invertitore NMOS

Invertitore NMOS (margini di rumore)

Invertitore NMOS (margini di rumore)

Invertitore NMOS (margini di rumore)

$$K_R = K_1/K_2 = (W_1/L_2)/(W_2/L_2)$$

Invertitore NMOS (dissipazione di potenza)

$$P_{S}^{(\bullet)} = V_{DD} \cdot I_{D}^{(A)} = V_{DD} \cdot K_{2} \left(V_{GSZ}^{(I)} | V_{ED} | \right)^{2}$$

$$\bar{P}_{S} = \frac{1}{2} \left(P_{S}^{(1)} + P_{S}^{(\bullet)} \right) = \frac{1}{2} K_{2} | V_{ED} |^{2} V_{DD}$$

Invertitore CMOS

$$v_I = v_{GSN}$$

$$v_O = v_{DSN} = V_{DD} - v_{SDP}$$

$$v_{SGP} = V_{DD} - v_I$$

Processo tecnologico CMOS (1/2)

(a) **Define** *n***-well diffusion** (mask #1)

(c) LOCOS oxidation

(b) Define active regions (mask #2)

(d) Polysilicon gate (mask #3)

Processo tecnologico CMOS (2/2)

(e) *n*+ diffusion (mask #4)

(g) Contact holes (mask #6)

(f) *p*+ **diffusion** (mask #5)

(h) Metallization (mask #7)

Funzionamento dell'invertitore CMOS (1/2)

$$v_I = V_{DD}$$
 \rightarrow ingresso alto

$$v_{GSN} = V_{DD} \rightarrow Q_N \text{ conduce}$$

$$v_{SGP} = 0 \rightarrow Q_P \text{ interdetto}$$

$$i_{DP} = i_{DN} @ 0 \rightarrow \text{ corrente nulla}$$

$$V_{OL}$$
 @0 \rightarrow uscita bassa

Funzionamento dell'invertitore a CMOS (2/2)

$$\begin{split} v_I &= 0 & \rightarrow & ingresso \ basso \\ v_{GSN} &= 0 & \rightarrow & Q_N \ interdetto \\ v_{SGP} &= V_{DD} & \rightarrow & Q_P \ conduce \\ i_{DP} &= i_{DN} @ 0 & \rightarrow & corrente \ nulla \\ V_{OH} @ V_{DD} & \rightarrow & uscita \ alta \end{split}$$

Caratteristica di trasferimento di tensione dell'invertitore a CMOS (1/2)

Caratteristica di trasferimento di tensione dell'invertitore a CMOS (2/2)

Margine di rumore dell'invertitore a CMOS

. Quindi dobbiemo olefinire solo Vitt & Vit

CINDIZIONE =
$$\frac{dv_0}{dv_i} = -1$$
 SCRIVIANO VO IN

Margine di rumore dell'invertitore a CMOS

Margine di rumore dell'invertitore a CMOS

$$V_{iiH} = \frac{1}{2} \frac{$$

Scatica da Fad II

$$Q_{N} \text{ this.d.} \quad Q_{p} \text{ DFF}$$

$$i_{DN} = K_{n} \left[2 \left(\sqrt{1} - \sqrt{t_{N}} \right) \sqrt{t_{0}} - \sqrt{t_{0}^{2}} \right] \quad \sqrt{1} = V_{DD}$$

$$-\frac{K_{n}}{C} \text{ old} = \frac{1}{2 \left(V_{DD} - V_{C} \right)} \cdot \frac{d\sqrt{t_{0}}}{2 \left(V_{DD} - V_{C} \right)} \cdot \frac{d\sqrt{t_{0}}}{2 \left(V_{DD} - V_{C} \right)}$$

$$-\frac{K_{n}}{C} \text{ tpul}_{2} = \frac{1}{2 \left(V_{DD} - V_{C} \right)} \cdot \frac{d\sqrt{t_{0}}}{2 \left(V_{DD} - V_{C} \right$$

Corrente e potenza dissipata dell'invertitore a CMOS

corrente assorbita nella porta per cambiare stato in funzione della tensione applicata in ingresso

fornisce un contributo trascurabile nella dissipazione dinamica di potenza

la dissipazione dinamica di potenza è dovuta principalmente ai processi di carica e scarica della capacità di uscita

la tecnologia si valuta in base al prodotto ritardo - potenza

Diagramma a blocchi di una porta logica CMOS a tre ingressi

Funzione NOR con interruttori ideali

Esempi di reti pull-down

Esempi di reti pull-up

Porta NOR CMOS a due ingressi

				_
Y =	A +	B =	$A \times B$)

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

 Q_{PA} , Q_{PB} : PMOS

 Q_{NA} , Q_{NB} : NMOS

Porta NAND CMOS a due ingressi

$$Y = \overline{A \times B} = \overline{A} + \overline{B}$$

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

 Q_{PA} , Q_{PB} : PMOS

 Q_{NA} , Q_{NB} : NMOS

CASE DESIGN 1 solo ingresso alto: le cepa cità di usceta se scarce abrag Terso l'unico NTOS ON

Capacita els usets a Trients

un solo PMOS ON

$$K_{N,eq} = \frac{K_{N}}{N}$$

Realizzazione di una porta complessa CMOS

OR-esclusivo (XOR)

$$Y = A \mathring{A} B = A \overline{B} + \overline{A}B$$

OR-esclusivo (XOR)

Realizzazione della funzione OR-esclusiva (XOR)

Decodificatore

E ATTIVA UNA VSCITA (TRAZM)

CHE CORRISPONDE ALLA PAROLA IN INGRESSO

Decodificatore

Decodificatore di indirizzi di colonna a CMOS

Tecnologia MOS complementare (CMOS)

