22. Linear least squares problems

Last time

- Orthogonality
- Gram-Schmidt algorithm
- QR factorization

Goals for today

- Formulating data fitting problems
- Optimization
- Linear least squares problems
- Solution using linear algebra

- \blacksquare Given data points (t_i,y_i)
- Suppose have presumed (statistical) model for data

- $\blacksquare \ \ \text{Given data points} \ (t_i,y_i)$
- Suppose have presumed (statistical) model for data
- I.e. suspect related as $y = f_p(x)$, with noise:

$$y_i = f_{\mathbf{p}}(t_i) + \epsilon_i$$

where ϵ_i represents the noise on observation i

- $\blacksquare \ \ \text{Given data points} \ (t_i,y_i)$
- Suppose have presumed (statistical) model for data
- I.e. suspect related as $y = f_{\mathbf{p}}(x)$, with noise:

$$y_i = f_{\mathbf{p}}(t_i) + \epsilon_i$$

where $\boldsymbol{\epsilon}_i$ represents the noise on observation i

lacksquare $f_{lacksquare}$ is **parametric function** with parameter vector lacksquare

- $\blacksquare \ \ \text{Given data points} \ (t_i,y_i)$
- Suppose have presumed (statistical) model for data
- I.e. suspect related as $y = f_{\mathbf{p}}(x)$, with noise:

$$y_i = f_{\mathbf{p}}(t_i) + \epsilon_i$$

where $\boldsymbol{\epsilon}_i$ represents the noise on observation i

- lacksquare $f_{lacksquare}$ is **parametric function** with parameter vector lacksquare
- \blacksquare Most common example: straight line $f_{\alpha,\beta}(x)=\alpha+\beta x$

Best fit

- Want to find **best fit** to the data
- How can we formalize this?

Best fit

- Want to find **best fit** to the data
- How can we formalize this?

- \blacksquare Find values of α,β that $\mbox{minimize}$ distance of data from function
- Parameter estimation in statistics

Loss function

- Distance: **loss function** or **cost function** (optimization)
- E.g.

Loss function

- Distance: loss function or cost function (optimization)
- E.g.

$$\mathcal{L}(\alpha,\beta) := \sum_i \ell(y_i, f_{\alpha,\beta}(x_i))$$

where ℓ is a measure of distance

Loss function

- Distance: **loss function** or **cost function** (optimization)
- E.g.

$$\mathcal{L}(\alpha,\beta) := \sum_i \ell(y_i, f_{\alpha,\beta}(x_i))$$

where ℓ is a measure of distance

Most common choice

$$\ell(x,y) = \|x - y\|_2^2$$

Least squares

$$\mathcal{L}(\mathbf{p}) = \sum_{i} \left[y_i - f_{\mathbf{p}}(t_i) \right]^2$$

$$\mathcal{L}(\mathbf{p}) = \sum_{i} \left[y_i - f_{\mathbf{p}}(t_i) \right]^2$$

- \blacksquare Of form $\sum r_i^2$, where $r_i := y_i f_{\mathbf{p}}(t_i)$ is ith residual
- lacksquare Sum of squares, so minimum is when all $r_i=0$

$$\mathcal{L}(\mathbf{p}) = \sum_{i} \left[y_i - f_{\mathbf{p}}(t_i) \right]^2$$

- \blacksquare Of form $\sum r_i^2$, where $r_i := y_i f_{\mathbf{p}}(t_i)$ is ith residual
- \blacksquare Sum of squares, so minimum is when all $r_i=0$
- lacksquare But data do not lie exactly on any $y=f_{lpha,eta}(x)$
- Choose curve that minimizes square sum of residuals

$$\mathcal{L}(\mathbf{p}) = \sum_{i} \left[y_i - f_{\mathbf{p}}(t_i) \right]^2$$

- \blacksquare Of form $\sum r_i^2$, where $r_i := y_i f_{\mathbf{p}}(t_i)$ is ith residual
- lacksquare Sum of squares, so minimum is when all $r_i=0$
- \blacksquare But data do not lie exactly on any $y=f_{\alpha,\beta}(x)$
- Choose curve that minimizes square sum of residuals
- least squares minimization
- Statistics: linear regression

Optimization

- Example of an optimization problem
- Optimization problems are usually very hard; huge field

Optimization

- Example of an optimization problem
- Optimization problems are usually very hard; huge field
- Special methods for problems with certain structure

Optimization

- Example of an optimization problem
- Optimization problems are usually very hard; huge field
- Special methods for problems with certain structure

- There are many numerical methods for optimization
- Sometimes analytical solutions are possible e.g. linear least squares

Matrix formulation of linear least squares

Look for a matrix formulation: $\mathcal{L} = \sum_i r_i^2 = r^T r$

Matrix formulation of linear least squares

• Look for a matrix formulation: $\mathcal{L} = \sum_i r_i^2 = r^T r$

$$\mathbf{r} = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_m \end{bmatrix} = \begin{bmatrix} 1 & t_1 \\ 1 & t_2 \\ \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} \alpha \\ \beta \end{bmatrix} - \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_m \end{bmatrix} =: \mathbf{A}\mathbf{x} - \mathbf{b}$$

where
$$\mathbf{x} = \begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
 are the unknowns

Matrix formulation II

lacktriangle Ideally would like to solve Ax=b

Matrix formulation II

- \blacksquare Ideally would like to solve Ax = b
- But have overdetermined system:
- \blacksquare Too many equations (n) for number of unknowns (2)

Matrix formulation II

- lacktriangle Ideally would like to solve Ax = b
- But have overdetermined system:
- Too many equations (n) for number of unknowns (2)

 \blacksquare Best we can do is minimize r^Tr

• General case: want to "solve" $A\mathbf{x} = \mathbf{b}$ for **tall and narrow** matrix A

- General case: want to "solve" $A\mathbf{x} = \mathbf{b}$ for **tall and narrow** matrix A
- lacksquare i.e. $(m \times n)$ matrix with m > n
- Again overdetermined system

- General case: want to "solve" A**x** = **b** for **tall and narrow** matrix A
- lacksquare i.e. $(m \times n)$ matrix with m > n
- Again overdetermined system

Best we can do is minimize

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

- General case: want to "solve" $A\mathbf{x} = \mathbf{b}$ for **tall and narrow** matrix A
- lacksquare i.e. $(m \times n)$ matrix with m > n
- Again overdetermined system

■ Best we can do is minimize

$$\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

■ E.g. fit a polynomial of degree < n to (n+1) points

- lacksquare Suppose **x** ranges over all of \mathbb{R}^n
- Then Ax ranges over column space / range of A

- Suppose **x** ranges over all of \mathbb{R}^n
- Then Ax ranges over column space / range of A
- lacktriangle Column space of A: vec. space spanned by columns of A

- Suppose **x** ranges over all of \mathbb{R}^n
- Then Ax ranges over column space / range of A
- lacksquare Column space of A: vec. space spanned by columns of A

Column space is a hyperplane

- Suppose **x** ranges over all of \mathbb{R}^n
- Then Ax ranges over column space / range of A
- lacksquare Column space of A: vec. space spanned by columns of A

- Column space is a hyperplane
- lacktriangle Looking for point $oldsymbol{x}$ whose image $Aoldsymbol{x}$ is **closest** to b

- lacksquare Suppose **x** ranges over all of \mathbb{R}^n
- Then Ax ranges over column space / range of A
- lacksquare Column space of A: vec. space spanned by columns of A

- Column space is a hyperplane
- \blacksquare Looking for point **x** whose image A**x** is **closest** to b
- Intuitively: when $r:= A\mathbf{x} \mathbf{b}$ perpendicular to column space

Solving linear least squares

■ Want to find \mathbf{x} minimizing $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|$

Solving linear least squares

- Want to find \mathbf{x} minimizing $\|\mathbf{A}\mathbf{x} \mathbf{b}\|$
- \blacksquare Recall: $\|\mathbf{x}\|^2 = \mathbf{x}^{\top}\mathbf{x}$

Solving linear least squares

- Want to find **x** minimizing $\|A\mathbf{x} \mathbf{b}\|$
- Recall: $\|\mathbf{x}\|^2 = \mathbf{x}^\top \mathbf{x}$
- Take any vector \mathbf{y} and look at $\|\mathbf{A}(\mathbf{x} + \mathbf{y}) \mathbf{b}\|$:

- Want to find x minimizing ||Ax b||
- Recall: $\|\mathbf{x}\|^2 = \mathbf{x}^\top \mathbf{x}$
- Take any vector \mathbf{y} and look at $\|\mathbf{A}(\mathbf{x} + \mathbf{y}) \mathbf{b}\|$:

$$\|(\mathbf{A}\mathbf{x} - \mathbf{b}) + \mathbf{A}\mathbf{y}\|^2 = [(\mathbf{A}\mathbf{x} - \mathbf{b}) + \mathbf{A}\mathbf{y}]^\top [(\mathbf{A}\mathbf{x} - \mathbf{b}) + \mathbf{A}\mathbf{y}]$$

- Want to find **x** minimizing $\|A\mathbf{x} \mathbf{b}\|$
- Recall: $\|\mathbf{x}\|^2 = \mathbf{x}^{\top}\mathbf{x}$
- Take any vector \mathbf{y} and look at $\|\mathbf{A}(\mathbf{x} + \mathbf{y}) \mathbf{b}\|$:

$$\|(\mathbf{A}\mathbf{x} - \mathbf{b}) + \mathbf{A}\mathbf{y}\|^2 = [(\mathbf{A}\mathbf{x} - \mathbf{b}) + \mathbf{A}\mathbf{y}]^\top [(\mathbf{A}\mathbf{x} - \mathbf{b}) + \mathbf{A}\mathbf{y}]$$

$$\mathbf{a} = (\mathbf{A}\mathbf{x} - \mathbf{b})^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b}) + 2\mathbf{y}^{\top}\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b}) + (\mathbf{A}\mathbf{y})^{\top}(\mathbf{A}\mathbf{y})$$

- Want to find **x** minimizing $||A\mathbf{x} \mathbf{b}||$
- Recall: $\|\mathbf{x}\|^2 = \mathbf{x}^{\top}\mathbf{x}$
- Take any vector \mathbf{y} and look at $\|\mathbf{A}(\mathbf{x} + \mathbf{y}) \mathbf{b}\|$:

$$\|(\mathbf{A}\mathbf{x} - \mathbf{b}) + \mathbf{A}\mathbf{y}\|^2 = [(\mathbf{A}\mathbf{x} - \mathbf{b}) + \mathbf{A}\mathbf{y}]^\top [(\mathbf{A}\mathbf{x} - \mathbf{b}) + \mathbf{A}\mathbf{y}]$$

$$= (\mathbf{A}\mathbf{x} - \mathbf{b})^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) + 2\mathbf{y}^{\top} \mathbf{A}^{\top} (\mathbf{A}\mathbf{x} - \mathbf{b}) + (\mathbf{A}\mathbf{y})^{\top} (\mathbf{A}\mathbf{y})$$

 \blacksquare Here used $\mathbf{y}^{\mathsf{T}}\mathbf{z} = \mathbf{z}^{\mathsf{T}}\mathbf{y}$, so $\mathbf{y}^{\mathsf{T}}\mathbf{z} + \mathbf{z}^{\mathsf{T}}\mathbf{y} = 2\mathbf{y}^{\mathsf{T}}\mathbf{z}$

$$= \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \|\mathbf{A}\mathbf{y}\|^2 + 2\mathbf{y}^{\top}\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} - \mathbf{b})$$

lacksquare Arrived at $\|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2 + \|\mathbf{A}\mathbf{y}\|^2 + 2\mathbf{y}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b})$

- lacksquare Arrived at $\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2 + \|\mathbf{A}\mathbf{y}\|^2 + 2\mathbf{y}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x} \mathbf{b})$
- Take **x** such that $A^{\top}(A\mathbf{x} \mathbf{b}) = 0$

- Arrived at $\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2 + \|\mathbf{A}\mathbf{y}\|^2 + 2\mathbf{y}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x} \mathbf{b})$
- Take **x** such that $A^{\top}(A\mathbf{x} \mathbf{b}) = 0$
- Then for any **y** we have

$$\|\mathbf{A}(\mathbf{x} + \mathbf{y}) - \mathbf{b}\|^2 \ge \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

- \blacksquare Arrived at $\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2 + \|\mathbf{A}\mathbf{y}\|^2 + 2\mathbf{y}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x} \mathbf{b})$
- Take **x** such that $\mathbf{A}^{\top}(\mathbf{A}\mathbf{x} \mathbf{b}) = 0$
- Then for any **y** we have

$$\|\mathbf{A}(\mathbf{x}+\mathbf{y}) - \mathbf{b}\|^2 \ge \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

So x is minimizer

- Arrived at $\|\mathbf{A}\mathbf{x} \mathbf{b}\|^2 + \|\mathbf{A}\mathbf{y}\|^2 + 2\mathbf{y}^{\mathsf{T}}\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x} \mathbf{b})$
- Take **x** such that $A^{\top}(A\mathbf{x} \mathbf{b}) = 0$
- Then for any **y** we have

$$\|\mathbf{A}(\mathbf{x} + \mathbf{y}) - \mathbf{b}\|^2 \ge \|\mathbf{A}\mathbf{x} - \mathbf{b}\|^2$$

- So x is minimizer
- Unique solution of least squares problem given by

$$A^{T}A\mathbf{x} = A^{T}\mathbf{b}$$

Reduced linear least squares problem to linear equation:

$$\mathbf{A}^{\top}\mathbf{A}x = \mathbf{A}^{\top}\mathbf{b}$$

- called normal equations
- Square matrix $A^{\top}A$

Reduced linear least squares problem to *linear* equation:

$$\mathbf{A}^{\top}\mathbf{A}x = \mathbf{A}^{\top}\mathbf{b}$$

- called **normal equations**
- Square matrix $A^{\top}A$
- Solvable if A is **full rank**, i.e. columns span the space

Pseudoinverse

lacktriangle Mathematically get $\mathbf{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$

Pseudoinverse

- lacksquare Mathematically get $\mathbf{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$
- Notation: $\mathbf{x} = A^+ \mathbf{b}$
- \blacksquare Where $\mathbf{A}^+ := (\mathbf{A}^\top \mathbf{A})^{-1} \mathbf{A}^\top$ is pseudo-inverse

Pseudoinverse

- \blacksquare Mathematically get $\mathbf{x} = (\mathbf{A}^{\top}\mathbf{A})^{-1}\mathbf{A}^{\top}\mathbf{b}$
- Notation: $\mathbf{x} = A^+ \mathbf{b}$
- Where $A^+ := (A^T A)^{-1} A^T$ is pseudo-inverse
- \blacksquare $A^{\top}A$ is invertible iff A has full rank

■ Possible to solve normal equations using elimination, but to do so need to construct A^TA

- Possible to solve normal equations using elimination, but to do so need to construct A^TA
- Slightly more efficient version of elimination for symmetric matrices: Cholesky factorization

- Possible to solve normal equations using elimination, but to do so need to construct A^TA
- Slightly more efficient version of elimination for symmetric matrices: Cholesky factorization

Alternative: factorize A = QR

- Possible to solve normal equations using elimination, but to do so need to construct A^TA
- Slightly more efficient version of elimination for symmetric matrices: Cholesky factorization

- Alternative: factorize A = QR
- $lue{}$ Need generalization of QR when A tall and narrow, m imes n

- Possible to solve normal equations using elimination, but to do so need to construct A^TA
- Slightly more efficient version of elimination for symmetric matrices: Cholesky factorization

- Alternative: factorize A = QR
- \blacksquare Need generalization of QR when A tall and narrow, $m\times n$
- Thin QR factorization: A = QR where
 - lacksquare Q is $(m \times n)$ with orthonormal columns
 - \blacksquare R is $(n \times n)$ upper triangular

- Possible to solve normal equations using elimination, but to do so need to construct A^TA
- Slightly more efficient version of elimination for symmetric matrices: Cholesky factorization

- Alternative: factorize A = QR
- \blacksquare Need generalization of QR when A tall and narrow, $m\times n$
- Thin QR factorization: A = QR where
 - lacksquare Q is $(m \times n)$ with orthonormal columns
 - $\blacksquare R$ is $(n \times n)$ upper triangular
- If A is of full rank then R is non-singular

- Want to solve $A^TA = A^T\mathbf{b}$
- Substitute A = QR

- Want to solve $A^TA = A^T\mathbf{b}$
- Substitute A = QR
- So $R^TQ^TQR \mathbf{x} = R^TQ^T\mathbf{b}$

- Want to solve $A^TA = A^T\mathbf{b}$
- Substitute A = QR
- $\blacksquare \text{ So } \mathbf{R}^{\top} \mathbf{Q}^{\top} \mathbf{Q} \mathbf{R} \, \mathbf{x} = \mathbf{R}^{\top} \mathbf{Q}^{\top} \mathbf{b}$
- $\blacksquare R^{\top}R \mathbf{x} = R^{\top}Q^{\top}\mathbf{b}$

- Want to solve $A^TA = A^T\mathbf{b}$
- Substitute A = QR
- $\blacksquare \text{ So } R^{\top}Q^{\top}QR \mathbf{x} = R^{\top}Q^{\top}\mathbf{b}$
- $\mathbf{R}^{\mathsf{T}} \mathbf{R} \mathbf{x} = \mathbf{R}^{\mathsf{T}} \mathbf{Q}^{\mathsf{T}} \mathbf{b}$
- lacksquare R $\mathbf{x} = \mathbf{Q}^{ op} \mathbf{b}$

- Want to solve $A^TA = A^T\mathbf{b}$
- Substitute A = QR
- So $R^TQ^TQR \mathbf{x} = R^TQ^T\mathbf{b}$
- $\mathbf{R}^{\mathsf{T}} \mathbf{R} \mathbf{x} = \mathbf{R}^{\mathsf{T}} \mathbf{Q}^{\mathsf{T}} \mathbf{b}$
- lacksquare R $\mathbf{x} = \mathbf{Q}^{\top}\mathbf{b}$
- $\blacksquare \text{ So } \mathbf{x} = \mathbf{R}^{-1} \mathbf{Q}^{\top} b$

- Want to solve $A^TA = A^T\mathbf{b}$
- Substitute A = QR
- So $R^TQ^TQR \mathbf{x} = R^TQ^T\mathbf{b}$
- $\mathbf{R}^{\mathsf{T}} \mathbf{R} \mathbf{x} = \mathbf{R}^{\mathsf{T}} \mathbf{Q}^{\mathsf{T}} \mathbf{b}$
- \blacksquare R $\mathbf{x} = Q^{\top}\mathbf{b}$
- Solve $R\mathbf{x} = Q^{\mathsf{T}}\mathbf{b}$ by backsubstitution

Backslash

- \blacksquare Backslash in Julia is overloaded to give this least-squares solution when A is an $(m\times n)$ matrix
- It is not necessarily clear that this is a good idea!

Backslash

- \blacksquare Backslash in Julia is overloaded to give this least-squares solution when A is an $(m\times n)$ matrix
- It is not necessarily clear that this is a good idea!

■ E.g. simple linear fit: use \ with above matrix

Summary

- Linear least squares for overdetermined systems
- Solvable using linear algebra
- Solution given by normal equations linear system
- Solve using QR decomposition