Note of Probability Theory and Statistics

Linlin Ge

1 Distribution

Multivariate normal distribution

$$f_{\boldsymbol{x}}(x_1,\dots,x_k) = \frac{e^{-\frac{(\boldsymbol{x}-\boldsymbol{\mu})^T \boldsymbol{C}^{-1}(\boldsymbol{x}-\boldsymbol{\mu})}{2}}}{\sqrt{(2\pi)^k |\boldsymbol{C}|}}$$

Where,

 $oldsymbol{C}$ The symmetric covariance matrix.

 \boldsymbol{x} A real k-dimensional column vector.

2 Distance

2.1 Distance of Random Variables (Same Distribution, Covariance Matrix= \sum)

Mahalanobis Distance

Distance of vector \boldsymbol{x} and set:

$$D_M(\boldsymbol{x}) = \sqrt{(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{C}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}$$

Distance of two vectors \boldsymbol{x} and \boldsymbol{y} :

$$d(\boldsymbol{x},\boldsymbol{y}) = \sqrt{(\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{C}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}$$

References