

#### MITSUBISHI RF POWER MOS FET

## RD06HVF1

RoHS Compliance, Silicon MOSFET Power Transistor 175MHz,6W

#### DESCRIPTION

RD06HVF1 is a MOS FET type transistor specifically designed for VHF RF power amplifiers applications.

#### **FEATURES**

High power gain:

Pout>6W, Gp>13dB @Vdd=12.5V,f=175MHz

#### **APPLICATION**

For output stage of high power amplifiers in VHF band mobile radio sets.

#### **RoHS COMPLIANT**

RD06HVF1-101 is a RoHS compliant products. RoHS compliance is indicate by the letter "G" after the lot marking.

This product include the lead in high melting temperature type solders.

How ever, it applicable to the following exceptions of RoHS Directions.

1.Lead in high melting temperature type solders(i.e.tin-lead solder alloys containing more than 85% lead.)





MITSUBISHI RF POWER MOS FET

# RD06HVF1

RoHS Compliance, Silicon MOSFET Power Transistor 175MHz,6W

#### **ABSOLUTE MAXIMUM RATINGS**

(Tc=25°C UNLESS OTHERWISE NOTED)

| <u> </u> |                         |                  |             |      |
|----------|-------------------------|------------------|-------------|------|
| SYMBOL   | PARAMETER               | CONDITIONS       | RATINGS     | UNIT |
| VDSS     | Drain to source voltage | Vgs=0V           | 50          | V    |
| Vgss     | Gate to source voltage  | Vds=0V           | +/- 20      | V    |
| Pch      | Channel dissipation     | Tc=25°C          | 27.8        | W    |
| Pin      | Input power             | Zg=Zl=50Ω        | 0.6         | W    |
| ID       | Drain current           | -                | 3           | Α    |
| Tch      | Channel temperature     | -                | 150         | °C   |
| Tstg     | Storage temperature     | -                | -40 to +150 | °C   |
| Rth j-c  | Thermal resistance      | junction to case | 4.5         | °C/W |

Note 1: Above parameters are guaranteed independently.

#### **ELECTRICAL CHARACTERISTICS**

(Tc=25°C, UNLESS OTHERWISE NOTED)

| SYMBOL  | PARAMETER                       | CONDITIONS                                 | LIMITS |          |      | UNIT |
|---------|---------------------------------|--------------------------------------------|--------|----------|------|------|
| STWIDGE | TANAMETER                       | CONDITIONS                                 | MIN    | TYP      | MAX. |      |
| IDSS    | Zero gate voltage drain current | V <sub>DS</sub> =17V, V <sub>GS</sub> =0V  | ı      | -        | 10   | uA   |
| Igss    | Gate to source leak current     | Vgs=10V, Vps=0V                            | -      | -        | 1    | uA   |
| VTH     | Gate threshold Voltage          | V <sub>DS</sub> =12V, I <sub>DS</sub> =1mA | 1.9    | -        | 4.9  | V    |
| Pout    | Output power                    | VDD=12.5V, Pin=0.3W,                       | 6      | 10       | -    | W    |
| ηD      | Drain efficiency                | f=175MHz, Idq=0.3A                         | 60     | 65       | -    | %    |
|         | Load VSWR tolerance             | VDD=15.2V,Po=6W(Pin Control)               | N      | o destro | ру   | -    |
|         |                                 | f=175MHz,ldq=0.3A,Zg=50Ω                   |        |          |      |      |
|         |                                 | Load VSWR=20:1(All Phase)                  |        |          |      |      |

Note: Above parameters, ratings, limits and conditions are subject to change.

## RD06HVF1

RoHS Compliance, Silicon MOSFET Power Transistor 175MHz,6W

#### **TYPICAL CHARACTERISTICS**













#### MITSUBISHI RF POWER MOS FET

## RD06HVF1

RoHS Compliance, Silicon MOSFET Power Transistor 175MHz,6W

#### **TYPICAL CHARACTERISTICS**













#### MITSUBISHI RF POWER MOS FET

## RD06HVF1

RoHS Compliance, Silicon MOSFET Power Transistor 175MHz,6W

### **TEST CIRCUIT(f=175MHz)**



C1:2200pF 10uF in parallel C2:2200pF\*2 in parallel C3:2200pF,330uF in parallel Note:Board material-Teflon substrate micro strip line width=4.2mm/50OHM,er:2.7,t=1.6mm Dimensions:mm

L1-L3:6Turns,I.D1.6mm,D0.4mm enameled copper wire
L4:1Turns,I.D6mm,D1.6mm silver plateted copper wire
L5:4Turns,I.D6mm,D1.6mm P=1 silver plateted copper wire
L6:4Turns,I.D6mm,D1.6mm P=1 silver plateted copper wire

# RD06HVF1

RoHS Compliance, Silicon MOSFET Power Transistor 175MHz,6W

#### INPUT/OUTPUT IMPEDANCE VS.FREQUENCY CHARACTERISTICS



Zin, Zout

| f     | Zin        | Zout       |                            |
|-------|------------|------------|----------------------------|
| (MHz) | (ohm)      | (ohm)      | Conditions                 |
| 175   | 4.25-j25.6 | 5.64-j1.05 | Po=10W, Vdd=12.5V,Pin=0.3W |



### MITSUBISHI RF POWER MOS FET

# RD06HVF1

RoHS Compliance, Silicon MOSFET Power Transistor 175MHz,6W

### RD06HVF1 S-PARAMETER DATA (@Vdd=12.5V, Id=500mA)

| Freq. | S     | 11     | S      | 21    | S     | 12    | S     | 22     |
|-------|-------|--------|--------|-------|-------|-------|-------|--------|
| [MHz] | (mag) | (ang)  | (mag)  | (ang) | (mag) | (ang) | (mag) | (ang)  |
| 10    | 0.985 | -18.8  | 34.407 | 165.9 | 0.008 | 76.2  | 0.826 | -17.3  |
| 30    | 0.900 | -50.4  | 30.427 | 143.3 | 0.021 | 59.4  | 0.767 | -43.6  |
| 50    | 0.799 | -74.4  | 24.979 | 126.1 | 0.029 | 43.2  | 0.677 | -65.0  |
| 100   | 0.667 | -109.6 | 15.565 | 100.7 | 0.032 | 27.3  | 0.547 | -96.8  |
| 150   | 0.636 | -129.0 | 10.953 | 85.1  | 0.032 | 23.1  | 0.523 | -113.4 |
| 200   | 0.630 | -140.1 | 8.194  | 73.7  | 0.029 | 25.3  | 0.528 | -124.7 |
| 250   | 0.645 | -148.2 | 6.528  | 63.9  | 0.027 | 34.5  | 0.561 | -132.7 |
| 300   | 0.663 | -155.0 | 5.315  | 55.2  | 0.027 | 49.1  | 0.588 | -139.6 |
| 350   | 0.685 | -160.7 | 4.437  | 47.4  | 0.031 | 61.8  | 0.622 | -145.9 |
| 400   | 0.708 | -165.9 | 3.771  | 39.9  | 0.039 | 71.0  | 0.657 | -151.7 |
| 450   | 0.729 | -170.8 | 3.233  | 33.2  | 0.048 | 75.8  | 0.686 | -157.0 |
| 500   | 0.752 | -175.4 | 2.826  | 26.8  | 0.059 | 77.9  | 0.715 | -162.3 |
| 550   | 0.771 | 179.9  | 2.475  | 20.7  | 0.070 | 76.9  | 0.743 | -167.6 |
| 600   | 0.789 | 175.4  | 2.186  | 15.2  | 0.083 | 76.1  | 0.763 | -172.3 |
| 650   | 0.804 | 171.2  | 1.943  | 9.7   | 0.095 | 73.7  | 0.789 | -177.3 |
| 700   | 0.819 | 166.9  | 1.738  | 4.6   | 0.108 | 71.0  | 0.804 | 178.1  |
| 750   | 0.834 | 162.6  | 1.560  | 0.0   | 0.120 | 68.1  | 0.820 | 173.5  |
| 800   | 0.842 | 158.5  | 1.410  | -4.5  | 0.133 | 65.0  | 0.837 | 169.0  |
| 850   | 0.851 | 154.3  | 1.275  | -8.7  | 0.145 | 61.6  | 0.847 | 164.8  |
| 900   | 0.859 | 150.3  | 1.160  | -12.6 | 0.157 | 58.2  | 0.858 | 160.2  |
| 950   | 0.866 | 146.2  | 1.058  | -16.9 | 0.167 | 54.5  | 0.869 | 155.7  |
| 1000  | 0.870 | 142.3  | 0.963  | -20.0 | 0.179 | 51.0  | 0.876 | 151.8  |



### MITSUBISHI RF POWER MOS FET

# RD06HVF1

RoHS Compliance, Silicon MOSFET Power Transistor 175MHz,6W

| Keep safety first in your circuit designs!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap. |
| warning !                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Do not use the device at the exceeded the maximum rating condition. In case of plastic molded devices, the exceeded maximum rating condition may cause blowout, smoldering or catch fire of the molding resin due to extreme short current flow between the drain and the source of the device. These results causes in fire or injury.                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |