Tem years of parallel theorem proving: a perspective

Maria Paola Bonacina Dept. of Computer Science The University of Jowa

Motivation

Ten years of parallel theorem proving: 1989 - 1999

Strategies in theorem
Automated proving
Deduction

Control of deduction

A taxonomy of parallel strategies based on Row they search

Referant to:

Analysis of strategies

Engineering of theorem provers

Outline

- · A taxonomy of sequential kReprem proving strategies
- · Principles of parallelization
- . How they affect the control of search and vice versa: a taxonomy of parableb theorem proving strategies
 - · Parallel search plans
 - . Discussion: trends and open problems

A taxonomy

of

sequential strategies

Theorem proving as search problem Inference system I Suliplif Suliplif Suliplif Suliplif

Vertex: state

arc: inference

pater: derivation

Search plan Z: determines unique derivation

Refutationally complete I

Fair E

theorem-proving
strategy $\ell=\langle I, \Sigma \rangle$ complete

General scheme of search plan

$$\mathcal{E} = \langle \zeta, \xi, \omega \rangle$$

(at Peast)

- · rule-selecting function

 5: States* -> I
- premise-selecting function $\xi: States^* \longrightarrow \mathcal{P}(\mathcal{L}_{\Theta})$
- termination-detecting function
 ω: States → Bool

Two main classes of strategies

Ordering-based strategies Subgoal-reduction strategies

work on a set of objects (state)

build many proof attempts implicitly

no back tracking

Contraction

work on one goal-object at a time (state)

build one proof attempt at a time

backtracking

no contraction

Ordering - based strategies

Resolution + paramodulation

Term rewriting

Knuth-Bendix

ordering based strategies

E.g.,
Otter, RRL, Reveal, SNARK,
EQP, Barcelona, CLINB-S, SPASS,
Gandalf, OSHL, daTac...

Ordering based strategies

>: well-founded ordering on data

resolution, hyperresolution, paramodulation, superposition

Contraction:
$$f: \frac{S}{S'} S \neq S' S > S'$$

e.g., Simplification, subsumption, taut. deletion, purity deletion, clausal simplification

Redundancy

Ordered inference rules
Critical pair criteria
"Basic" inference rules

Ordering based strategies

$$\xi = \langle \xi, \xi_1, \xi_2, \omega_7 \rangle$$

· \(\xi \): States* ---> LA

$$\xi_1(S_0...S_i) = Y_1 \in S_i$$

· J: States* x La --> I

• ξ_2 : States* $\times \mathcal{L}_{\Theta} \times I \longrightarrow \mathcal{O}(\mathcal{L}_{\Theta})$

$$\begin{cases} S_2 : Skanes \\ S_2 : Skanes \\ S_3 : Skanes \\ S_4 : Skanes \\ S_4 : Skanes \\ S_4 : Skanes \\ S_4 : Skanes \\ S_6 : Skanes \\ S_$$

of Otter and EQP search plans

indexing

contraction forward / backward

So + S1 + ... Si + Si+1 + ...

Expansion - oziented

(So; No) + (S1; N1) + ... (S0; N0) + ...

S = S, = ... S; = S; +1 =

forward contraction

Contraction - based

S. + S. + S. + S. + 4 +

 $R(S_0) \subseteq R(S_1) \subseteq \dots R(S_i) \subseteq R(S_{i+1}) \subseteq \dots$

eager forward and backward contractio

Target-oriented

(So; 90) + (Sa; 90) + ... (Si; 90) +...

Semantie | Supported

(To; SOSO) + (Ti; SOS1) +... (Ti; SOSi) +...

<u>Subgoal-reduction</u> strategies

E.g.:

Setheo, METEOR, Protein, TAP,

Tatzelwuzm, Mission, Komet...

Subgoal reduction strategies

$$\xi = \langle \xi, \xi_1, \xi_2, \omega \rangle$$

· \xi : States * --> La

$$\xi((T_0; \chi_0)...(T_i; \chi_i)) = L \in open(\chi_i)$$

- · }: States* x 2 -> I u { backtrack}
- ξ_2 : States* $\times \mathcal{L}_{\mathcal{B}} \times \mathbb{I} \longrightarrow \mathcal{L}_{\mathcal{B}}$ $\xi_2((T_0; X_0) ... (T_i; X_i), L, \mathcal{L}) = \mathcal{L}_{\mathcal{B}}$

$$(T_o; X_o) \leftarrow (T_i; X_i) \leftarrow \dots (T_c; X_c) \leftarrow \dots$$

Analytic - tableaux Xo + X1 + ... Xi + ...

Linear clausal

(To; qo; Ao) + ... (Ti; qi; Ai) + ...

Linear-input clausal

 $(T_0, \varphi_0) + \dots (T_i, \varphi_i) + \dots$

ME - tableaux

 $(T_o, X_o) + \dots (T_i, X_i) + \dots$

Term rewriting

(To; φ.) + (Ti; φi) + ...

expansion A taxonomy oforiented tiast order, ordening based contraction theorem proving-strategies tanget general purpose, Jully automated based strategies supported semantic instance based (clausal) Cimean subgoal reduction imput linear Kableau based

Principles

of Paralle lization

AT THE SEARCH LEVEL	AT THE CLAUSE	AT THE TERM LEVEL	PARALLELISM
sets of formulae	formulae	Subexpressions of formulae	DATA ACCESSED IN PARALLEL
derivations	imferences	subtasks of inferences	PARALLEL OPERATIONS

Principles of parallelization

Parallel inner algorithms
below the inference level
speed-up frequent operations

Parallelism at the clause level: parallel inferences speed-up the given search

Parallelism at the search level:

generate many different searches

in parallel => parallel

derivations

Parallel search

How differentiate / combine the parallel search processes?

Distributed search: subdivide the search space decompose the problem motivation: divide work

Multi-search:

whole problem to each process different search plans motivation: different orders

Heterogeneous systems: different inference systems motivation: combine backward and forward reasoning, e.g., lemmas

A taxonomy of parallel parallel theorem proving strategies

Sequential $E = \langle I, \xi \rangle$ Parallel $E' = \langle I, \xi' \rangle$

What is E'?

The search plan and parallelism at the term level

- · Concurrent rewriting
 - [Kizchner-Vizy 1990, Alouini 1995, Alouini-Kizchner 1996]
 - · Concurrent completion [Kirchner-Lynch-Scharff 1996]
 - · "Concurrent theorem proving"
 [Fisher 1997]
 - · Pa Re Du X
 - [Bündgen Göbel Küchlim 1994 - 1995 - 1996]

Example concurrent rewriting

$$\xi = \langle \xi, \omega \rangle$$

Terms as trees: disjoint redexes

Terms as dags: non-overlapping zedexes

(maximal) concurrent rewriting

Data structure dictates what is done in parallel:

S' superfluous

Data-driven concurrency

Also:

conditional zewriting

ground completion

unit resolution for Horm propositional clauses

Non-ground inferences?

"Strategy-compliant"
parallelization: guarantees
same order of steps

The search plan and parallelism at the term level

Parallelism is introduced below the level where the search plan makes decisions

Possibilities:

- 1) Concurrency replaces the search plan (e.g., concurrent rewriting)
- 2) "Strategy-compliant"

 parallelization (e.g., PaReDuX):

 \(\sigma' = \Sigma' = \Sigm

The search plan and parallelism at the clause tevel

ORDERING - BASED

- Expansion oriented

 PARROT [Jindal Overbeek Kabat 1992]
- Instance-based Parallel hyper-linking [Lee-Wu 1997]
- · Contraction-based ROO [Lusk-McCune 1990] Transition-based parallel completion [YoPick-Garland 1992]

SUBGOAL - REDUCTION

- PTTP (clausal linear-input)

 PARTHENON [Bose-Clarke-Long-Mychailor 1989]

 METEOR [Astracham-Loveland 1991]
- ME-tableaux (Pinear-input)
 PARTHEO [Schumann Letz 1990]
- · Analytic tableaux HOT [Konrad 1998]
- · Gentzen-style subproofs in NUPRL
 [Hickey 1999]

Example: ROO parallelization of Otter €=< ∫, ξ, ξ, ω>: given-clause algorithm USABLE Sos > given-clauseexp. zule 4' Expansion Ψ. 4,142 contr. rule Forward contraction contr. zule Backward contraction Z=< ζ, ξ, ξ, ω>: shared Sos and USABLE Each process does a given-clause (Task A) Problems: concurrent append / redundant insertions/ concurrent deletion Add Pists K-LIST and TO-BE-DELETED: Task B At most one process does Task (Problem: backward contraction bottle neck) D Parallel plan as task scheduler

Parallel plan as task scheduler

Also:

PTTP with OR-parallelism (e.g., PARTHENON, METEOR)

ME-tableaux with OR-parallelism (R.g., PARTHEO)

Analytic tableaux (e.g., HOT)

Gentzen-style proofs (e.g., in NUPRL)

Common traits:

Shared data structure: stack of goals, black board...

Tasks: subgoats, open leaves..

Control: task scheduling (e.g., task stealing)

The search plan and parallelism at the clause level

Parallelism is introduced at the level where the search plan makes decisions.

<u>Sequential</u> <u>search plan</u>: order the inferences within one derivation.

Parallelism at the clause level:

parallelize the inferences within derivation.

Parallel search plan: scheduler assigning inferences to processes.

The search plan and parallelism at the search level

Each process generates a derivation

Each process needs to execute a search plan

Such search plan needs to control:

- · inferences (like sequential)
- · subdivision of work (distributed search)
- · Communication
 (both distributed and mufti-search)

 For: completeness

 Cooperation

Poad - balance

Two approaches:

- · hierarchy of processes (e.g., master-staves)
- · peer processes

The search plan and parallelism at the search level Parallel search with master-slaves:

- Multi-search: Team-Work (contraction-based) [Avenhaus-Denzinger-Fuchs-Kronenburg-Schulz 1993, 1994, 1995, 1996]
- Distributed search:
 PSATO (satisfiability)

 [Zhang Bonacina Hsiang 1994, 1996]
- Heterogeneous systems:

 HPDS (subgoal reduction + expansion oriented)

 [Sutcliffe 1992]

 Distributed Larch Prover (contraction-based)

 [Vandevoorde Kapur 1996]
- Multi-search + "AND-parallelism":
 "Nagging" (subgoal-reduction: PTTP)
 [Sturgill Segre 1994, 1997]

The search plan and parallelism at the search level

Parallel search with master slaves:

- · separate the control of parallelism and the control of deduction;
- · each <u>slave</u> executes a <u>sequential</u> <u>search plan</u> to generate its <u>derivation</u>;
- all other control issues (subdivision, communication, selection of data for cooperation, user interface) are dealt with by the master which does not do deductions,

$$\leq' = \langle \xi_1, \xi_2, \dots \xi_m \rangle$$

The search plan and parallelism at the search level

Parallel search with peer processes:

· Distributed search:

DARES (expansion - oriented)

[Conzy - Mac Intosh - Meyer 1990]

Clause - Diffusion (contraction - based)

[Bonacina, Bonacina - Hsiang 1992, 1993, 1995]

[Bonacina - Mc Cune 1994]

Modified Clause - Diffusion

[Bonacina 1994, 1996, 1997]

· <u>Heterogeneous</u> systems (combinations of provers):

SPASS | DISCOUNT (contraction - based)

[Fuchs 1998]

CPTHEO = SETHEO | DELTA (subgoal - reduction +

[Fuchs - Wolf - Letz 1998] expansion - oniented)

The search plan and parallelism at the search level

Parallel search with peer processes:

- · mo central control;
- the <u>search plan</u> executed by

 <u>each peer process</u> needs to take care

 of the <u>control</u> of <u>paraffelism</u>

 [e.g., communication, subdivision)

 <u>together with the control</u> of <u>deduction</u>

pazallel-starch plans

Search plan with communication

A set I of inference rules

$$f: \mathcal{O}(\mathcal{L}_{\Theta}) \longrightarrow \mathcal{O}(\mathcal{L}_{\Theta}) \times \mathcal{O}(\mathcal{L}_{\Theta})$$

send:
$$\mathcal{O}(\mathcal{L}_{\Theta}) \longrightarrow \mathcal{O}(\mathcal{L}_{\Theta}) \times \mathcal{O}(\mathcal{L}_{\Theta})$$

s.t. $\forall X$ send(X) = (ϕ, ϕ)

receive:
$$\mathcal{O}(\mathcal{L}_{\Theta}) \longrightarrow \mathcal{O}(\mathcal{L}_{\Theta}) \times \mathcal{O}(\mathcal{L}_{\Theta})$$

s.t. $\forall X$ receive $(X) = (X, \emptyset)$

- · S: States* x N x N -> IUM select rule/operator
- ξ : States* x N x N x (IUM) \longrightarrow $\mathcal{O}(\mathcal{L}_{\Theta})$ select premises e.g., ξ (So...Si, m, n, f) \subseteq Si
- · w: States --> Bool detect success

Subdivision function &

Subdivide inferences among p...p.

Search space <u>infinite</u> <u>unknown</u> =>

<u>dynamic subdivision</u>: at each stage Si

of derivation subdivide inferences in Si

 $\alpha(S_0...S_i, m, \kappa, f, X) = true/false$ means p_{κ} is <u>allowed/forbidden</u> to apply f to X

Two requirements:

d is total on generated clauses (partial function in general)

d monotonic: (w.z.t. i)

L L L true true true ...

L L L L L L L L ...

Parallel-search plans

Search plan for multi-search:

multi-plan

a collection of search plans with communication one per process

ξ = < ξ₁... ξ_m>

Search plan for distributed search:

distributed - search plan

Search plan with communication +

subdivision function

ξ = < >, ξ, α, ω>

Parallelizations

Search plan with communication $\Xi' = \langle \xi', \xi', \omega \rangle$ corresponds to sequential search plan $\Xi = \langle \xi, \xi, \omega \rangle$ if ξ' and ξ' select inferences like ξ and ξ' (difference is communication).

A multi-plane $\Xi' = \langle \Xi'_0 ... \Xi'_n \rangle$ is a parallelization by combination of sequential search plans $\Xi_0 ... \Xi_n$ if Ξ'_i corresponds to Ξ_i , $0 \leqslant i \leqslant m$.

A distributed-search plane $\Xi' = \langle \zeta', \xi', \alpha, \omega \rangle$ is a parallelization by subdivision of sequential search plan $\Xi = \langle \zeta, \xi, \omega \rangle$ if $\langle \zeta', \xi', \omega \rangle$ corresponds to Ξ (difference is also made by Ξ).

Parallel strategies

im the sense of parallel search

Homogeneous parallel strategy « I, M, E>

multi-search strategy if E is multi-plan distributed

strategy

if & is distributed
search plan

Notions of parallelization by combination/subdivision extend to strategies assuming same I.

Heterogeneous parallel strategy $< I_0...I_{n-1}$, \leq , M> with same options for \leq .

General notion of <u>parallel derivation</u>
which can be specialized to the

First amalysis

Size of data base

Dynamics of data base

Pre-processing

Read-only data

Special data structures

Confficts: backward contraction "backward-contraction bottle neck"

Parallelism at the search level most suitable for theorem proving especially contraction - based

Bonacina & Hsiang; "Parallelization of deduction strategies: an analytical study"

Journal of Automated Reasoning Vol. 13 1994]

Amalysis of control of search

<u>Parallelism</u> at the term level:

- · Concurrency replaces search plan: Poss of control?
- "Strategy comptiant":
 excess of control?

Parallelism at the clause level:

· Search plan as scheduler:

tasks too small! [e.g., given-clause, subgoal)

Evolution 1992 - 1999

Fine - grain Coarse - grain
Medium - grain

Examples:

Pare Dux - Pare Dux + Team Work

PARTHEO - CPTHEO

HPDS

APso:

Clause - Diffusion - Modified Clause - Diffusion

Team Work with _____ Team Work with peers

Parallel search

- · Cost of communication?
 - + ignore "redundant" data
 - de Pay => do redundant steps
- · Overlapping searches?

Distributed search: dynamic heuristic subdivision

Multi-search: too similar plans all fair, all exhaustive scarcity of search plans

- + Early difference may suffice
- · Scalability ?

Distributed search: subdivision depends on at of processes also qualitatively

Multi-search/Heterogeneous: extra plan or rules may not help

Directions for further research

Design

Parallel semantic strategies?

Distributed search for subgoal-reduction strategies?

Amalysis

Subdivision vs. overlap
Eager contraction vs. communication
im
Distributed - search contraction - based
strategies
by applying
Bounded search spaces methodology

[Bonacina; Strategies '98, JELIA '98]

More formal analyses?