1 - Distances et normes

Définite me sende. On apelle distance sur E Aonte aplication d: E2, 172 17; $(i) \forall n, y \in E, d(n, y) > 0$ (ii) $\forall n, y \in \mathbb{T}$, d(n, y) = 0 (iii) insplaise: $\forall n, y, g \in \mathbb{E}$: $d(n, y) \leq d(n, z) + d(y, y)$

(iv) horogéneité:
$$f \approx EE, \forall \lambda \in \mathbb{R}$$
;

 $N(\lambda n) = L \times L \cdot N(n)$.

Ex: $N(x) = ||(x)|| = \sqrt{a^2 + c^2}$.

 $N(x) = ||(x)|| = \sqrt{a^2 + c^2}$.

Soit $P \in \mathbb{N}^*$: S: $\binom{2n}{2n} \in E$:

 $\binom{2n}{2n} ||P = \binom{2}{2n} ||(x)||_2 = \sqrt{2n}$.

Si por démotre que 11. 11 p est 1 notre, unités la concaire de ln, me salvé de l+ il du, in éjabré de Minhoushy ng. il s'ajit d'une norme. (i) (k,)), o. Ender(- $\frac{\partial}{\partial x} = \frac{\partial}{\partial x} = \frac{\partial}$

la rein paper ent Einderte.

(iii)
$$\|(\frac{x_1+y_1}{x_1+y_2})\|_1 = \sum_{i=1}^{n} |x_i+y_i|$$
 $= \sum_{i=1}^{n} |x_i+y_i|$
 $= \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |y_i|$
 $= \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |x_i|$
 $= \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |x_i|$
 $= \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |x_i| + \sum_{i=1}^{n} |x_i|$

 N_{2} : S_{1} S_{2} : S_{3} : S_{4} S_{5} : S_{4} S_{5} : S_{4} $\frac{1}{1} \frac{1}{1} \frac{1}{1} = \frac{1}{1} \frac{$ On apeller due nome « la nome sinate! $\frac{1}{\sqrt{2}}$ Def: S: N'est me nome sur E, on appelle ophère unité l'ens Lz EE, N'ens = 1}

(iii) + tod ave l'ingathe de Carely-Schwaz 13: do 12: o p. c. usuel: (6), (d) = ac+d- $-nome associée: <math>\left| \left(\frac{a}{b} \right) \right| = \left| \left(\frac{a}{b} \right) \cdot \left(\frac{a}{b} \right) - \left| \frac{a^2 + b^2}{b^2} \right|$ c'est la norme en et diane usualle, distance a siscile: d((a, 6), (c, d)) = N((a), (d)) = \(\langle (\langle - \langle - \l Pai atoutes les distances ne Nort pas associées à a tontes les normes ne sont pas associées ai des p. S