Problem-1 use truth table

- a) Show that $(p \land \neg q) \land (\neg p \lor q)$ is a contradiction
- b) Show that $(p \rightarrow q) \leftrightarrow (\neg q \rightarrow \neg p)$ is tautology
- c) Verify the Absorption and Distributive law

Problem-2 Use De Morgan's laws to find the negation of each of the following statements.

- a) Jan is rich and happy.
- b) Carlos will bicycle or run tomorrow.
- c) The fan is slow or it is very hot.

Problem-3 Prove the following equivalences by using laws of logic:

a)
$$(p \land (\neg (\neg p \lor q))) \lor (p \land q) \equiv p$$

b)
$$\neg$$
 (p \leftrightarrow q) \equiv (p \leftrightarrow \neg q)

c)
$$\neg p \leftrightarrow q \equiv p \leftrightarrow \neg q$$

d)
$$(p \land q) \rightarrow (p \rightarrow q) \equiv T$$

e)
$$\neg$$
 (p \lor \neg (p \land q)) \equiv F

Problem-4 write inverse, converse and contrapositive of the following

If my car is in repair shop, then I can't get to class

Problem-5 Use symbols to write logical form of argument and use truth table to test the argument for validity

If Maxwell is not on team A , then David is on team B

IF David is not on team B , then Maxwell is on team A

Therefore Maxwell is not on team A or David is not on team B

Problem-6 show that the following argument is valid

$$p \lor (q \lor r)$$

 $\neg r$

$$\therefore p \lor q$$

Assistant Prof: Jamilusmani