Location: 19.0.1C Date: 07-11-2025

Contract:

Engineer: Study Case: SM
Filename: grid5

Config.: Normal

Base

SN:

Revision:

Electrical Transient Analyzer Program

Short-Circuit Analysis

ANSI Standard

3-Phase, LG, LL, & LLG Fault Currents

1/2 Cycle Network

	Swing	V-Control	Load	Total			
Number of Buses:	1	2	6	9			
Number of Branches:	XFMR2 5	XFMR3	Reactor	Line/Cable/ Busway	Impedance 0	Tie PD	Total 8
Number of Machines:	Synchronous Generator 3	Power Grid 0	Synchronous Motor 0	Induction Machines 2	Lumped Load 6		

System Frequency: 60.00
Unit System: English

Project Filename: grid5

Output Filename: C:\Users\owner's\Desktop\PSA PBL\grid5\Untitled.SQ1S

2 Project: ETAP Page: 19.0.1C 07-11-2025 Location: Date: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Adjustments

Tolerance	Apply Adjustments	Individual /Global	Percent
Transformer Impedance:	Yes	Individual	
Reactor Impedance:	Yes	Individual	
Overload Heater Resistance:	No		
Transmission Line Length:	No		
Cable / Busway Length:	No		
Temperature Correction	Apply Adjustments	Individual /Global	Degree C
Transmission Line Resistance:	Yes	Individual	
Cable / Busway Resistance:	Yes	Individual	

3 Project: **ETAP** Page: 19.0.1C 07-11-2025 Date: Location: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Bus Input Data

		Initial Voltage				
ID	Type	Nom. kV	Base kV	Sub-sys	%Mag.	Ang.
Bus1	SWNG	11.000	11.000	1	100.00	0.00
Bus2	Load	129.400	132.000	1	100.00	30.00
Bus3	Load	129.500	132.000	1	100.00	30.00
Bus4	Load	129.400	132.000	1	100.00	30.00
Bus5	Load	10.760	11.000	1	100.00	0.00
Bus6	Gen.	10.760	11.000	1	102.23	0.00
Bus7	Load	129.400	132.000	1	100.00	30.00
Bus8	Gen.	10.800	11.000	1	101.85	0.00
Bus9	Load	0.414	0.415	1	100.00	-30.00

9 Buses Total

All voltages reported by ETAP are in % of bus Nominal kV. Base kV values of buses are calculated and used internally by ETAP .

Project: **ETAP** Page: 4 19.0.1C 07-11-2025 Date: Location: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Line/Cable/Busway Input Data

ohms or siemens per 1000 ft per Conductor (Cable) or per Phase (Line/Busway)

Line/Cable/Busway		Length										
ID	Library	Size	Adj. (ft)	% Tol.	#/Phase	T (°C)	R1	X1	Y1	R0	X0	Y0
Line1		477	5280.0	0.0	1	75	0.0446045	0.1577493	0.000001	0.0956523	0.4853866	0.0000005
Line3		477	5280.0	0.0	1	75	0.0446045	0.1577493	0.000001	0.0956523	0.4853866	0.0000005
Line7		477	5280.0	0.0	1	75	0.0446045	0.1577493	0.000001	0.0956523	0.4853866	0.0000005

Line / Cable / Busway resistances are listed at the specified temperatures.

Location: 19.0.1C Date: 07-11-2025

Contract: SN:

Engineer: Study Case: SM Revision: Base

Filename: grid5 Config.: Normal

2-Winding Transformer Input Data

	Transformer Rating						2	Z Variation	1	% Tap	Setting	Adjusted	Phase Shift	
	ID	MVA	Prim. kV	Sec. kV	% Z	X/R	+ 5%	- 5%	% Tol.	Prim.	Sec.	% Z	Type	Angle
T1		10.000	11.000	132.000	9.00	2.47	0	0	0	0	0	9.00	YNd	30.00
Т3		100.000	11.000	132.000	9.00	2.47	0	0	0	0	0	9.00	YNd	30.00
T7		15.000	11.000	132.000	9.00	2.47	0	0	0	0	0	9.00	YNd	30.00
T1	0	0.500	11.000	0.415	5.20	5.10	0	0	0	0	0	5.20	Dyn	30.00
T1	2	0.400	11.000	132.000	9.00	2.47	0	0	0	0	0	9.00	YNd	30.00

2-Winding Transformer Grounding Input Data

Grounding

Transformer		Rating		Conn.		Primary			Secondary					
ID	MVA	Prim. kV	Sec. kV	Туре	Туре	kV	Amp	ohm	Туре	kV	Amp	ohm		
T1	10.000	11.000	132.000	D/Y					Solid					
T3	100.000	11.000	132.000	D/Y					Solid					
T7	15.000	11.000	132.000	D/Y					Solid					
T10	0.500	11.000	0.415	D/Y					Solid					
T12	0.400	11.000	132.000	D/Y					Solid					

Location: 19.0.1C Date: 07-11-2025

Contract: SN:

Engineer: Study Case: SM Revision: Base

Filename: grid5 Config.: Normal

Branch Connections

CKT/Bra	nch	Con	nnected Bus ID	% Impedance, Pos. Seq., 100 MVAb					
ID	Туре	From Bus	To Bus	R	X	Z	Y		
T1	2W XFMR	Bus1	Bus2	33.77	83.42	90.00			
T3	2W XFMR	Bus5	Bus4	3.38	8.34	9.00			
T7	2W XFMR	Bus8	Bus3	22.52	55.61	60.00			
T10	2W XFMR	Bus8	Bus9	200.11	1020.57	1040.00			
T12	2W XFMR	Bus6	Bus7	844.36	2085.56	2250.00			
Line1	Line	Bus3	Bus2	0.14	0.48	0.50	0.0895860		
Line3	Line	Bus3	Bus4	0.14	0.48	0.50	0.0895860		
Line7	Line	Bus5	Bus6	19.46	68.84	71.53	0.0006221		

Location: 19.0.1C Date: 07-11-2025

Contract: SN:

Engineer: Study Case: SM Revision: Base

Filename: grid5 Config.: Normal

Synchronous Generator Input Data

Positive Seq. Impedance

	Synchronous Gener	Rating			% Xd"					Grounding		Zero Seq. Impedance				
	ID	Туре	MVA	kV	RPM	X"/R	% R	Adj.	Tol.	% Xd'	Conn.	Туре	Amp	X/R	% R0	% X0
Gen1		Steam Turbo	70.588	11.000	1800	19.00	1.000	19.00	0.0	28.00	Wye	Solid		7.00	1.000	7.00
Gen2		Steam Turbo	35.294	11.000	1800	19.00	1.000	19.00	0.0	28.00	Wye	Solid		7.00	1.000	7.00
Gen3		Steam Turbo	70.588	11.000	1800	19.00	1.000	19.00	0.0	28.00	Wye	Solid		7.00	1.000	7.00

Total Connected Synchronous Generators (= 3): 176.471 MVA

Location: 19.0.1C Date: 07-11-2025

Contract: SN:

Engineer: Study Case: SM Revision: Base

Filename: grid5 Config.: Normal

Induction Machine Input Data

Induction Mac		Rating (Base)				Positive !	Seq. Imp).		Grounding	3	Zero Seq. Imp.			
ID	Туре	Qty	kVA	kV	RPM	X"/R	% R	% X"	% X'	Conn.	Type	Amp	X/R	% R0	% X0
Mtr1	Motor	1	119.89	11.000	1800	8.56	2.158	18.46	46.15	Wye	Open		8.56	2.16	18.46
Mtr2	Motor	1	7.91	0.415	1800	2.02	13.802	27.83	9999.00	Wye	Open		2.02	13.80	27.83

Total Connected Induction Machines (= 2): 127.8 kVA

Location: 19.0.1C Date: 07-11-2025

Contract: SN:

Engineer: Study Case: SM Revision: Base

Filename: grid5 Config.: Normal

Lumped Load Input Data

Lumped Load Motor Loads

			Impedance										
Rating		% Load		Loading		X/R Ratio		(M	achine Bas	se)		Groundin	ıg
kVA	kV	MTR	STAT	kW	kvar	X"/R	X'/R	% R	% X"	% X'	Conn.	Type	Amp.
2000.0	11.000	80	20	1360.0	842.9	10.00	10.00	1.538	15.38	23.08	Delta		
100.0	11.000	80	20	68.0	42.1	6.67	6.67	2.307	15.38	23.08	Delta		
10.0	132.000	80	20	6.8	4.2	6.67	6.67	2.307	15.38	23.08	Delta		
700.0	11.000	80	20	476.0	295.0	6.67	6.67	2.307	15.38	23.08	Delta		
400.0	11.000	80	20	272.0	168.6	6.67	6.67	2.307	15.38	23.08	Delta		
50.0	0.415	80	20	34.0	21.1	2.38	2.38	8.403	20.00	50.00	Delta		
	2000.0 100.0 10.0 700.0 400.0	kVA kV 2000.0 11.000 100.0 11.000 10.0 132.000 700.0 11.000 400.0 11.000	kVA kV MTR 2000.0 11.000 80 100.0 11.000 80 10.0 132.000 80 700.0 11.000 80 400.0 11.000 80	kVA kV MTR STAT 2000.0 11.000 80 20 100.0 11.000 80 20 10.0 132.000 80 20 700.0 11.000 80 20 400.0 11.000 80 20	kVA kV MTR STAT kW 2000.0 11.000 80 20 1360.0 100.0 11.000 80 20 68.0 10.0 132.000 80 20 6.8 700.0 11.000 80 20 476.0 400.0 11.000 80 20 272.0	kVA kV MTR STAT kW kvar 2000.0 11.000 80 20 1360.0 842.9 100.0 11.000 80 20 68.0 42.1 10.0 132.000 80 20 6.8 4.2 700.0 11.000 80 20 476.0 295.0 400.0 11.000 80 20 272.0 168.6	kVA kV MTR STAT kW kvar X"/R 2000.0 11.000 80 20 1360.0 842.9 10.00 100.0 11.000 80 20 68.0 42.1 6.67 10.0 132.000 80 20 6.8 4.2 6.67 700.0 11.000 80 20 476.0 295.0 6.67 400.0 11.000 80 20 272.0 168.6 6.67	kVA kV MTR STAT kW kvar X"/R X'/R 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 100.0 11.000 80 20 68.0 42.1 6.67 6.67 10.0 132.000 80 20 6.8 4.2 6.67 6.67 700.0 11.000 80 20 476.0 295.0 6.67 6.67 400.0 11.000 80 20 272.0 168.6 6.67 6.67	Rating % Load Loading X/R Ratio (M) kVA kV MTR STAT kW kvar X"/R X'/R % R 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 1.538 100.0 11.000 80 20 68.0 42.1 6.67 6.67 2.307 10.0 132.000 80 20 6.8 4.2 6.67 6.67 2.307 700.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 400.0 11.000 80 20 272.0 168.6 6.67 6.67 2.307	Rating % Load Loading X/R Ratio (Machine Base) kVA kV MTR STAT kW kvar X"/R X'/R % R % X" 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 1.538 15.38 100.0 11.000 80 20 68.0 42.1 6.67 6.67 2.307 15.38 10.0 132.000 80 20 6.8 4.2 6.67 6.67 2.307 15.38 700.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 15.38 400.0 11.000 80 20 272.0 168.6 6.67 6.67 2.307 15.38	Rating % Load Loading X/R Ratio (Machine Base) kVA kV MTR STAT kW kvar X"/R X'/R % R % X" % X' 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 1.538 15.38 23.08 100.0 11.000 80 20 68.0 42.1 6.67 6.67 2.307 15.38 23.08 10.0 132.000 80 20 6.8 4.2 6.67 6.67 2.307 15.38 23.08 700.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 15.38 23.08 400.0 11.000 80 20 272.0 168.6 6.67 6.67 2.307 15.38 23.08	Rating % Load Loading X/R Ratio (Machine Base) € kVA kV MTR STAT kW kvar X"/R X'/R % R % X" % X' Conn. 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 1.538 15.38 23.08 Delta 100.0 11.000 80 20 68.0 42.1 6.67 6.67 2.307 15.38 23.08 Delta 10.0 132.000 80 20 6.8 4.2 6.67 6.67 2.307 15.38 23.08 Delta 700.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 15.38 23.08 Delta 400.0 11.000 80 20 272.0 168.6 6.67 6.67 2.307 15.38 23.08 Delta	Rating % Load Loading X/R Ratio (Machine Base) Grounding kVA kV MTR STAT kW kvar X"/R X'/R % R % X" % X' Conn. Type 2000.0 11.000 80 20 1360.0 842.9 10.00 10.00 1.538 15.38 23.08 Delta 100.0 11.000 80 20 68.0 42.1 6.67 6.67 2.307 15.38 23.08 Delta 700.0 11.000 80 20 476.0 295.0 6.67 6.67 2.307 15.38 23.08 Delta 400.0 11.000 80 20 272.0 168.6 6.67 6.67 2.307 15.38 23.08 Delta

Total Connected Lumped Loads (= 6): 3260.0 kVA

19.0.1C 07-11-2025 Location: Date:

Contract: SN:

Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

SHORT- CIRCUIT REPORT

Fault at bus: Bus3

Prefault voltage = 129.500 kV = 100.00 % of nominal bus kV (129.500 kV)

= 98.11 % of base kV (132.000 kV)

Con	ntribution	3-Phas		Line-T	o-Ground	Fault		Positive & Zero Sequence Impedances Looking into "From Bus"				
From Bus	To Bus	% V	kA	% Vo	ltage at From	Bus	kA Sym	m. rms	%	Impedance on	100 MVA bas	e
ID	ID	From Bus	Symm. rms	Va	Vb	Vc	Ia	310	R1	X1	R0	X0
Bus3	Total	0.00	1.228	0.00	86.48	88.72	1.658	1.658	9.09E+000	3.38E+001	2.89E+000	7.60E+000
Bus2	Bus3	0.43	0.369	0.56	86.54	88.80	0.381	0.147	3.53E+001	1.11E+002	3.41E+001	8.49E+001
Bus4	Bus3	0.42	0.359	1.87	86.17	88.71	0.752	1.287	2.23E+001	1.18E+002	3.67E+000	9.81E+000
Bus8	Bus3	70.01	0.501	83.58	77.89	99.44	0.526	0.225 *	2.39E+001	8.22E+001	2.25E+001	5.56E+001
Busl	Bus2	76.42	0.369	86.18	81.91	97.75	0.381	0.147 *	3.52E+001	1.10E+002	3.38E+001	8.34E+001
Bus5	Bus4	7.96	0.359	53.76	50.58	99.80	0.752	1.287 *	2.21E+001	1.17E+002	3.38E+000	8.34E+000
Bus9	Bus8	69.47	0.003	94.54	72.86	89.92	0.003	0.000	5.66E+004	7.40E+004		
Gen3	Bus8	98.11	5.943	98.11	98.11	98.11	4.634	0.000	1.42E+000	2.69E+001	1.42E+000	9.92E+000
Mtr1	Bus8	98.11	0.010	98.11	98.11	98.11	0.008	0.000	1.80E+003	1.54E+004		
Lump4	Bus8	98.11	0.058	98.11	98.11	98.11	0.045	0.000	4.12E+002	2.75E+003		
Genl	Bus1	98.11	4.408	98.11	98.11	98.11	3.437	0.000	1.42E+000	2.69E+001	1.42E+000	9.92E+000
Lump5	Bus1	98.11	0.024	98.11	98.11	98.11	0.019	0.000	7.21E+002	4.81E+003		
Bus6	Bus5	61.05	3.814	77.92	73.18	99.66	2.978	0.000	4.74E+001	1.18E+002		
Lumpl	Bus5	98.11	0.491	98.11	98.11	98.11	0.383	0.000	9.62E+001	9.62E+002		
Mtr2	Bus9	98.11	0.011	98.11	98.11	98.11	0.005	0.000	1.75E+005	3.52E+005		
Lump6	Bus9	98.11	0.077	98.11	98.11	98.11	0.035	0.000	2.10E+004	5.00E+004		

[#] Indicates fault current contribution is from three-winding transformers
* Indicates a zero sequence fault current contribution (310) from a grounded Delta-Y transformer

Project: **ETAP** Page: 11 19.0.1C 07-11-2025 Location: Date: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Short-Circuit Summary Report

1/2 Cycle - 3-Phase, LG, LL, & LLG Fault Currents

Prefault Voltage = 100 % of the Bus Nominal Voltage

Bus		3-Phase Fault			Line-to-Ground Fault			Line	-to-Line F	ault	*Line-to-Line-to-Ground		
ID	kV	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.	Real	Imag.	Mag.
Bus3	129.500	0.319	-1.185	1.228	0.462	-1.593	1.658	1.030	0.288	1.069	-1.389	0.923	1.668

All fault currents are symmetrical (1/2 Cycle network) values in rms kA. * LLG fault current is the larger of the two faulted line currents.

12 Project: ETAP Page: 19.0.1C 07-11-2025 Location: Date: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Sequence Impedance Summary Report

Bus		Positive Seq. Imp. (ohm)			Negative Seq. Imp. (ohm)			Zero Seq. Imp. (ohm)			Fault Zf (ohm)		
ID	kV	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance	Resistance	Reactance	Impedance
Bus3	129.500	15.84017	58.80910	60.90502	16.78235	57.85316	60.23815	5.03376	13.23538	14.16030	0.00000	0.00000	0.00000

Project: ETAP Page: 13 19.0.1C 07-11-2025 Date: Location: Contract: SN: Engineer: Revision: Base Study Case: SM Filename: grid5 Config.: Normal

Sequence-of-Operation Event Summary Report

Symmetrical 3-Phase Fault at Bus3.

Time (ms)	ID	If (kA)	T1 (ms)	T2 (ms)	Condition
2.1	Relayl	4.432	2.1		Phase - OC1 - 50
20.0	Relayl		20.0		Phase - 87
85.4	CB4		83.3		Tripped by Relay1 Phase - OC1 - 50
85.4	CB5		83.3		Tripped by Relay1 Phase - OC1 - 50
99.4	Relayl	4.432	99.4		Phase - OC1 - 51
103	CB4		83.3		Tripped by Relay1 Phase - 87
103	CB5		83.3		Tripped by Relay1 Phase - 87
183	CB4		83.3		Tripped by Relay1 Phase - OC1 - 51
183	CB5		83.3		Tripped by Relay1 Phase - OC1 - 51