Determinant

Len Fu

11.20.2024

Abstract

This is the note maded by Len Fu while his learning progress. The main content is from $Linear\ Algebra\ Done\ Right$ and $Linear\ Algebra\ Allenby$.

Contents

1	Per	mutation	2
	1.1	N Permutation	2
	1.2	Inversion and Inversion Number	2
	1.3	Transposition	2
		1.3.1 Theorem	2
		1.3.2 Theorem	3
2	2 N-Order Determinant		3
	2.1	Definition	3
	2.2	Properties	4

1 Permutation

1.1 N Permutation

An n-permutation is an arrangement of all the numbers 1, 2, ..., n. The total number of n-permutations is n!.

1.2 Inversion and Inversion Number

Formally, for a sequence a_n with elements a_i and a_j with i < j, an inversion is present if $a_i > a_j$.

The inversion number of a permutation is the number of inversions in it.

A permutation with an odd inversion number is called an odd permutation. And a permutation with an even inversion number is called an even permutation.

1.3 Transposition

Formally, a transposition is a permutation that exchanges two elements and leaves all others unchanged. For example, in permutation $\tau = (1, 2, 3, 4, 5)$ the transposition (1, 2) exchanges 1 and 2. Then the resulting permutation is $\tau = (2, 1, 3, 4, 5)$.

1.3.1 Theorem

A transposition changes the parity of a permutation. **Proof:**

Let $\tau = (i_1 i_2 ... i_j i_{j+1} ... i_n)$, and we exchange i_j and i_{j+1} , then the remain permutation $(i_1 i_2 ... i_j ... i_n)$ and $(i_1 i_2 ... i_{j+1} ... i_n)$ keep the same parity. But the paritr of $(i_j i_{j+1})$ changes, so the total parity of τ changes.

Now consider that if the transposition is between $(i_j i_k)$ like $(...j i_1 i_2...i_s k...)$, then we first transpose s times to set j into i_s like $(...i_1 i_2...i_s jk...)$. And we transpose j and k $(...i_1 i_2...i_s kj...)$, then we transpose s times to set k into i_1 like $(...k i_1 i_2...i_s j...)$. The total transposition is 2s + 1. So the parity of the permutation changes.

Corollary 1 In all n permutation, the number of even permutation is equal to the number of odd permutation, which is $\frac{n!}{2}$.

Proof:

Suppose there are s odd permutation, then there are t even permutation. Now transpose the first two elements of all even permutation, then we get s odd permutation. Then $s \leq t$, conversly, transpose the first two elements of all odd permutation, then we get t even permutation, and $t \leq s$. So $s = t = \frac{n!}{2}$.

1.3.2 Theorem

Any n-permutation can be transposed from (123...n) and the times of transposition equals to the inversion number of the permutation.

2 N-Order Determinant

2.1 Definition

The n-order determinant is a scalar value that can be computed from the elements of a square matrix of size $n \times n$.

Actually, it can be written abstract

$$\det |A| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= \sum_{j_1 j_2 \cdots j_n} (-1)^{\tau(j_1 j_2 \cdots j_n)} a_{1j_1} a_{2j_2} \cdots a_{nj_n}$$

$$= \sum_{i_1 i_2 \cdots i_n} (-1)^{\tau(i_1 i_2 \cdots i_n)} a_{i_1 1} a_{i_2 2} \cdots a_{i_n n}$$

$$= a_{i1} A_{i1} + a_{i2} A_{i2} + \cdots + a_{in} A_{in}$$

2.2 Properties

1. Transcope the matrix, the determinant does not change.

2.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & & & & & \\ ka_{i1} & ka_{i2} & \cdots & ka_{in} \\ \cdots & & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = k \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & & & & \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

3.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & & & & & \\ b_1 + c_1 & b_2 + c_2 & \cdots & b_n + c_n \\ \cdots & & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & & & & \\ b_1 & b_2 & \cdots & b_n \\ \cdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} + \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & & & & \\ c_1 & c_2 & \cdots & c_n \\ \cdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

- 4. If there are two rows or columns that are the same, the determinant is 0. is 0.
- 5. If there are two rows or columns are proportionable, the determinant is 0.
- 6. Add a row's or a column's k-times into another one, the determinant keeps the same.
- 7. Exchange two rows or columns, the determinant changes its sign.

Proof.

1. If we transcope the determinant,

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & & & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \rightarrow \begin{vmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{12} & a_{22} & \cdots & a_{n2} \\ \cdots & & & \cdots \\ a_{1n} & a_{2n} & \cdots & a_{nn} \end{vmatrix}$$

like this, then we expand the right one with respect to the rows like this

$$\sum_{i_1 i_2 \cdots i_n} (-1)^{\tau(i_1 i_2 \cdots i_n)} a_{i_1 1} a_{i_2 2} \cdots a_{i_n n}$$

Actually it keeps from the left one.

2.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & & & \ddots \\ ka_{i1} & ka_{i2} & \cdots & ka_{in} \\ \cdots & & & \ddots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = k \left(a_{i1}A_{i1} + a_{i2}A_{i2} + \cdots + a_{in}A_{in} \right)$$

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & & & \ddots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \cdots & & & \ddots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

3.

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & & & & \\ b_1 + c_1 & b_2 + c_2 & \cdots & b_n + c_n \\ \cdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} = (b_1 + c_1)A_{i1} + (b_2 + c_2)A_{i2} + \cdots + (b_n + c_n)A_{in}$$

$$= (b_1A_{i1} + b_2A_{i2} + \cdots + b_nA_{in}) + (c_1A_{i1} + c_2A_{i2} + \cdots + c_nA_{in})$$

$$= \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & & & \\ b_1 & b_2 & \cdots & b_n \\ \cdots & & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \cdots & & & \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

4.
$$det = \sum_{j_1 j_2 \cdots j_n} (-1)^{\tau()} \ \mathbf{5.}$$