The international Terrestrial Reference System: ITRS

- Definition adopted by the IUGG and IAG: see http://tai.bipm.org/iers/conv2003/conv2003.html
- Tri-dimensional orthogonal (X,Y,Z), equatorial (Z-axis coincides with Earth's rotation axis)
- Non-rotating (actually, rotates with the Earth)
- Geocentric: origin = Earth's center of mass, including oceans and atmosphere.
- Units = meter and second S.I.
- Orientation given by BIH at 1984.0.
- Time evolution of the orientation ensured by imposing a no-netrotation condition for horizontal motions.

The no-net-rotation (NNR) condition

• Objective:

- Representing velocities without referring to a particular plate.
- Solve a datum defect problem: ex. of 2 plates
 ⇒ 1 relative velocity to solve for 2 "absolute" velocities... (what about 3 plates?)
- The no-net-rotation condition states that the total angular momentum of all tectonic plates should be zero.
- See figure for the simple (and theoretical) case of 2 plates on a circle.
- The NNR condition has no impact on relative plate velocities.
- It is an additional condition used to define a reference for plate motions that is not attached to any particular plate.

$$\begin{aligned} \mathbf{M}_{\mathbf{A}} &= \mathbf{R} \times \mathbf{V}_{\mathbf{B/NNR}} \\ \mathbf{M}_{\mathbf{B}} &= \mathbf{R} \times \mathbf{V}_{\mathbf{A/NNR}} \\ \mathbf{\Sigma} \mathbf{M} &= \mathbf{0} \\ \Rightarrow \mathbf{V}_{\mathbf{B/NNR}} &= -\mathbf{V}_{\mathbf{A/NNR}} &= \mathbf{V}_{\mathbf{B/A}} / \ \mathbf{2} \end{aligned}$$

The Tisserand reference system

- "Mean" coordinate system in which deformations of the Earth do not contribute to the global kinetic moment (important in Earth rotation theory)
- Let us assume two systems R (inertial) and Ro (translates and rotates w.r.t. R). Body E is attached to Ro. At point M, one can write:

$$\begin{cases} \vec{R} = \vec{R}_o + \vec{r} \\ \vec{V} = \vec{V}_o + \vec{v} + \vec{\omega} \times \vec{r} \end{cases}$$

 One can show that the Tisserand condition is equivalent to:

$$\begin{cases} \int_{E} \vec{v} dm = \vec{0} & \text{No translation condition} \\ \int_{E} \vec{v} \times \vec{r} dm = \vec{0} & \text{No rotation condition} \end{cases}$$

The Tisserand reference system

$$\begin{cases} \int_{E} \vec{v} dm = \vec{0} & \text{No translation condition} \\ \int_{E} \vec{v} \times \vec{r} dm = \vec{0} & \text{No rotation condition} \end{cases}$$

- The system of axis defined by the above conditions is called "Tisserand system".
- Integration domain:
 - Should be entire Earth volume
 - But velocities at surface only => integration over surface only
- With hypothesis of spherical Earth + uniform density, volume integral becomes a surface integral

- The Tisserand no-rotation conditions is also called "no-net-rotation" condition (NNR)
- For a spherical Earth of unit radius and uniform density, the NNR conditions writes:

$$\int \vec{r} \times \vec{v} \ dA = \vec{0}$$

• The integral can be broken into a sum to account for discrete plates:

• With, for a given place:
$$\vec{r} \times \vec{v} dA = \sum_{P} \int_{P} \vec{r} \times \vec{v} dA$$

$$L_P = \int_P \vec{r} \times \vec{v} \ dA$$

 Assuming rigid plates, velocity at point M (position vector r in NNR) on plate P is given by:

$$\vec{v}(\vec{r}) = \vec{\omega}_P \times \vec{r}$$
 $\Rightarrow L_P = \int \vec{r} \times (\vec{\omega}_P \times \vec{r}) dA$

Developing the vector product with the Ptriple product expansion gives:

$$L_P = \int ((\vec{r}\,\vec{x})\vec{\omega}_P - (\vec{r}\,\vec{\omega}_P)\vec{r}) \ dA = \int (\vec{r}\,\vec{x})\vec{\omega}_P \ dA - \int (\vec{r}\,\vec{\omega}_P)\vec{r} \ dA$$

• Assuming a spherical Earth of unit radius (r = 1), the first term introduces the plate area A_P :

$$\int (\vec{r}\,\vec{x})\vec{\omega}_P \,dA = r^2\vec{\omega}_P \int dA = \vec{\omega}_P A_P$$

• Dealing with the second term is a bit more involved, see next.

$$(\vec{r}\,\vec{\omega}_P)\vec{r} = (x_1\omega_1 + x_2\omega_2 + x_3\omega_3)\vec{r}$$

$$= \begin{bmatrix} x_1^2 \omega_1 + x_1 x_2 \omega_2 + x_1 x_3 \omega_3 \\ x_1 x_2 \omega_1 + x_2^2 \omega_2 + x_2 x_3 \omega_3 \\ x_1 x_3 \omega_1 + x_2 x_3 \omega_2 + x_3^2 \omega_3 \end{bmatrix}$$

$$= \begin{bmatrix} x_1^2 & x_1 x_2 & x_1 x_3 \\ x_1 x_2 & x_2^2 & x_2 x_3 \\ x_1 x_3 & x_2 x_3 & x_3^2 \end{bmatrix} \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}$$

Therefore:
$$\int_{P} (\vec{r} \, \vec{\omega}_{P}) \vec{r} \, dA =$$

$$\begin{bmatrix} \int x_{1}^{2} & \int x_{1}x_{2} & \int x_{1}x_{3} \\ \int x_{1}x_{2} & \int x_{2}^{2} & \int x_{2}x_{3} \\ \int x_{1}x_{3} & \int x_{2}x_{3} & \int x_{3}^{2} \end{bmatrix} \vec{\omega}_{P} \, dA$$

We introduce a 3x3 symmetric matrix S_p with elements defined by: $S_{Pij} = \int (x_i x_j) dA$

Therefore the integral becomes: $\int (\vec{r} \, \vec{\omega}_P) \vec{r} \, dA = S_P \, \vec{\omega}_P$

• Finally:
$$L_P = \int\limits_P (\vec{r}\,\vec{x})\vec{\omega}_P \ dA - \int\limits_P (\vec{r}\,\vec{\omega}_P)\vec{r} \ dA$$

• Reduces to:
$$L_P = \vec{\omega}_P A_P - S_P \vec{\omega}_P$$

$$= \left(A_p I - S_p \right) \vec{\omega}_P$$

$$= Q_P \vec{\omega}_P$$

- With: $Q_P = A_P I S_P$
- Q_p is a 3x3 matrix that only depends on the plate geometry, with its components defined by:

$$Q_{Pij} = \int_{P} \left(\delta_{ij} - x_i x_j\right) dA$$
Kronecker delta: $\delta_{ij} = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$

- The non-rotation condition: $\int_{S} \vec{r} \times \vec{v} \ dA = \sum_{P} \int_{P} \vec{r} \times \vec{v} \ dA = \vec{0}$
- Becomes: $\sum_{P} Q_{P} \vec{\omega}_{P} = \vec{0}$
- Now, observations are relative plate motions, for instance plate P w.r.t.
 Pacific plate. Angular velocities are additive, one can then write:

$$\vec{\omega}_{P/NNR} = \vec{\omega}_{P/Pacific} + \vec{\omega}_{Pacific/NNR}$$

• Therefore:
$$\sum_{P} Q_{P} \left(\vec{\omega}_{P/Pacific} + \vec{\omega}_{Pacific/NNR} \right) = \vec{0}$$

$$\Rightarrow \sum_{P} Q_{P} \ \vec{\omega}_{P/Pacific} + \sum_{P} Q_{P} \ \vec{\omega}_{Pacific/NNR} = \vec{0}$$

$$\Rightarrow \sum_{P} Q_{P} \ \vec{\omega}_{P/Pacific} + \frac{8\pi}{3} I \ \vec{\omega}_{Pacific/NNR} = \vec{0}$$

(because on a unit radius sphere:
$$\sum_{P} Q_{P} = \frac{8\pi}{3}I$$
)

 Finally, the angular velocity of the Pacific plate w.r.t. NNR can be calculated using:

$$\vec{\omega}_{Pacific/NNR} = -\frac{3}{8\pi} \sum_{P} Q_{P} \ \vec{\omega}_{P/Pacific}$$

 $(\omega_{p/\text{Pacific}})$ are known from a relative plate model, Q_p are computed for each plate from its geometry)

 Once the angular velocity of the Pacific plate in NNR is found, the angular velocity of any plate P can be computed using:

$$\vec{\omega}_{P/NNR} = \vec{\omega}_{P/Pacific} + \vec{\omega}_{Pacific/NNR}$$

 This method is the one used to compute the NNR-NUVEL1A model (Argus and Gordon, 1991).

Summary

- Geodetic observations face datum defect problem => need for a reference frame.
- Reference frame in modern space geodesy best implemented using minimal constraints after combination with global solutions (unless regional solution sought).
- Once global position/velocity solution is obtained, question remains of how to express it in a frame independent from any plate = no-net-rotation frame, derived from Tisserand reference system.

The no-net-rotation (NNR) condition

- The NNR condition actually has a "dynamic" origin.
- First proposed by Lliboutry (1977) as an approximation of a reference frame where moment of forces acting on lower mantle is zero.
- In its original definition, this implies:
 - Rigid lower mantle
 - Uniform thickness lithosphere
 - No lateral viscosity variations in upper mantle
 - ⇒ NNR is a frame in which the internal dynamics of the mantle is null.
- These conditions are not realistic geophysically, in particular because of slabs in upper and lower mantle, that contribute greatly to driving plate motions (Lithgow-Bertelloni and Richards, 1995)
- But that's ok, as long as NNR is simply used as a <u>conventional</u> reference.

The international Terrestrial Reference Frame: ITRF

- Positions (at a given epoch) and velocities of a set of geodetic sites (+ associated covariance information) = dynamic datum
- Positions and velocities estimated by combining independent geodetic solutions and techniques.
- Combination:
 - "Randomizes" systematic errors associated with each individual solutions
 - Provides a way of detecting blunders in individual solutions
 - Accuracy is equally important as precision

- 1984: VLBI, SLR, LLR, Transit
- 1988: TRF activity becomes part of the IERS => first ITRF = ITRF88
- Since then: ITRF89, ITRF90, ITRF92, ITRF93, ITRF94, ITRF96, ITRF97, ITRF2000
- Current = ITRF2005:
 - Up to 25 years of data
 - GPS sites defining the ITRF are all IGS sites
 - Wrms on velocities in the combination: 1 mm/yr VLBI, 1-3 mm/yr SLR and GPS
 - Solutions used: 3 VLBI, 1 LLR, 7 SLR, 6 GPS, 2 DORIS
- ITRF improves as:
 - Number of sites with long time series increases
 - New techniques appear
 - Estimation procedures are improved

The international Terrestrial Reference Frame: ITRF

- Apply minimum constraints equally to all loosely constrained solutions: this is the case of SLR and DORIS solutions
- Apply No-Net-Translation and No-Net-Rotation condition to IVS solutions provided under the form of Normal Equation
- Use as they are minimally constrained solutions: this is the case of IGS weekly solutions
- Form per-technique combinations (TRF + EOP), by rigorously staking the time series, solving for station positions, velocities, EOPs and 7 transformation parameters for each weekly (daily in case of VLBI) solution w.r.t the per-technique cumulative solution.
- Identify and reject/de-weight outliers and properly handle discontinuities using piecewise approach.
- Combine if necessary cumulative solutions of a given technique into a unique solution: this is the case of the two DORIS solutions.
- Combine the per-technique combinations adding local ties in co-location sites.

The international Terrestrial Reference Frame: ITRF

- Origin: The ITRF2005 origin is defined in such a way that there are null translation parameters at epoch 2000.0 and null translation rates between the ITRF2005 and the ILRS SLR time series.
- <u>Scale</u>: The ITRF2005 scale is defined in such a way that there are null scale factor at epoch 2000.0 and null scale rate between the ITRF2005 and IVS VLBI time series.
- Orientation: The ITRF2005 orientation is defined in such a way that there are null rotation parameters at epoch 2000.0 and null rotation rates between the ITRF2005 and ITRF2000. These two conditions are applied over a core network

ITRF in practice

- Multi-technique combination.
- Origin = SLR, scale = VLBI, orientation = all.
- Position/velocity solution.
- Velocities expressed in no-net-rotation frame:
 - ITRF2000: minimize global rotation w.r.t. NNR-NUVEL1A using 50 high-quality sites far from plate boundaries
 - Subtlety: ITRF does not exactly fulfill a NNR condition because Nuvel1A is biased...
- Provided as tables (position, velocities, uncertainties)
- Full description provided as SINEX file (Solution Indepent Exchange format): ancillary information + vector of unknowns + full variance-covariance matrix (i.e. with correlations).

ITRF in practice

ITRF2005 STATION POSITIONS AT EPOCH 2000.0 AND VELOCITIES GPS STATIONS

DOMES NB.	SITE NAME	TECH. ID.	X/Vx	Y/Vy	Z/Vz m/m/y					DATA	_START	DATA_E	ND
100018006	PARIS	GPS OPMT	4202777.434	171367.913	4778660.147	0.005	0.002	0.006					
10001S006			0118	0.0170	0.0111	.0011	.0004	.0012					
10002M006	GRASSE	GPS GRAS	4581690.969	556114.738	4389360.731	0.001	0.000	0.001	1	00:000	:00000	03:113:0	0000
10002M006			0139	0.0186	0.0116	.0001	.0001	.0001					
10002M006	GRASSE	GPS GRAS	4581690.975	556114.741	4389360.734	0.001	0.000	0.001	2	03:113	:00000	04:295:43	3200
10002M006			0139	0.0186	0.0116	.0001	.0001	.0001					
10002M006	GRASSE	GPS GRAS	4581690.974	556114.744	4389360.739	0.001	0.001	0.001	3	04:295	:43200	00:000:0	0000
10002M006			0139	0.0186	0.0116	.0001	.0001	.0001					
10003M004	TOULOUSE	GPS TOUL	4627846.086	119629.236	4372999.754	0.001	0.000	0.001					
10003M004			0111	0.0191	0.0117	.0003	.0001	.0003					
10003M009	TOULOUSE	GPS TLSE	4627851.889	119639.921	4372993.492	0.001	0.001	0.001					
10003M009			0111	0.0191	0.0117	.0003	.0001	.0003					
10004M004	BREST	GPS BRST	4231162.638	-332746.764	4745130.859	0.004	0.001	0.004					
10004M004			0111	0.0162	0.0134	.0009	.0003	.0009					
10023M001	La Rochelle	GPS LROC	4424632.623	-94175.321	4577544.022	0.003	0.001	0.003					
10023M001			0106		0.0123								
	SAINT JEAN DES	GPS SJDV			4556211.652				_	00:000	:00000	99:071:5	7600
10090M001			0118		0.0121								
	SAINT JEAN DES	GPS SJDV							_	99:071	:57600	00:000:00	0000
10090M001			0118	0.0186	0.0121								
	REYKJAVIK	GPS REYK		-1043033.508						00:000	:00000	00:169:5	6460
10202M001			0216	0028	0.0059								
	REYKJAVIK	GPS REYK		-1043033.501	5716563.980				_	00:169	:56460	00:173:0	3120
10202M001			0216	0028	0.0059								
	REYKJAVIK	GPS REYK		-1043033.509						00:173	:03120	00:000:00	0000
10202M001			0216	0028	0.0059								
	REYKJAVIK	GPS REYZ		-1043032.722									
10202M003			0216	0028	0.0059	.0001	.0001	.0002					

ITRF in practice

