What is claimed is:

- 1. A method of monitoring fluid condition in situ comprising:
 - (a) measuring and recording the temperature T_0 of the fluid;
 - (b) disposing electrodes in the fluid and exciting one electrode with an alternating current voltage and sweeping the frequency thereof over a certain range.
 - (c) measuring the current in a second electrode and computing the reactance
 (Z") and resistance (Z') at a plurality of predetermined intervals of frequency in the range;
 - (d) determining the frequency (F_{Z^*MIN}) in said range associated with the minimum value of reactance;
 - (e) repeating steps a d for a predetermined number of temperature intervals over a selected range of temperatures and compiling a database of values of $F_{Z^*MIN}^{T_0}$ for each temperature interval in the range;
 - (f) measuring the fluid temperature (T_i) and determining $F_{Z''MIN}^{T_i}$ by interpolation from the database;
 - (g) exciting one electrode with an alternating current voltage at a frequency less than $F_{Z''MIN}^{T_1}$ and measuring the current in a second electrode and computing the electrode interfacial impedance Z_s and computing the impedance difference ($\Delta Z = Z_S Z_{NM}$); and,
 - (h) determining the fluid condition by interpolation from a database of values of known fluid condition Ψ versus ΔZ .
- The method defined in claim 1, wherein said step of sweeping the frequency in a certain range includes sweeping the frequency over the range one milliHertz to 10 kHz.

- 3. The method defined in claim 1, wherein said step of exciting one electrode includes applying an alternating current voltage in the range of about 0.1 2.0 volts.
- 4. The method defined in claim 1, wherein said step of measuring the current includes measuring magnitude and phase angle.