

DAGS

Notes: DAGs, Topological Sort, and Shortest Paths

Directed Acyclic Graphs (DAGs)

- A **DAG** is a directed graph with **no directed cycles**lecture08_dags_toposort.
- Generalization of a tree:
 - Trees = special case (1 root, 1 parent per node).
 - DAGs allow multiple roots, multiple parents, and more edges.
- Useful for modeling **dependencies** (e.g., build systems, course prerequisites).
- · Key concepts:
 - Sources: nodes with no incoming edges.
 - Sinks: nodes with no outgoing edges.

Topological Sort

Definition: An ordering of vertices where if $(u,v) \in E(u,v) \setminus in E(u,v) \in E$, then uuu appears before vvv lecture 08_dags_toposort.

- Represents a valid order to process tasks with dependencies.
- A DAG can have many valid topo orders.

Algorithms

1. Kahn's Algorithmlecture08_dags_toposort:

DAGS 1

- Count indegrees.
- Put all indegree=0 nodes into a queue.
- Repeatedly pop, add to order, and decrease indegrees of children.
- Complexity: O(V+E).
- DFS-based Toposortlecture08_dags_toposort:
 - Run DFS, record vertices in postorder (finish times).
 - Reverse the postorder → topological order.
 - Complexity: O(V+E).

Shortest Path in a DAG

Key insight: Toposort gives the perfect order to relax edges.

- In Dijkstra/Bellman-Ford, the challenge is deciding order.
- In DAGs, toposort ensures parents are processed before childrenlecture08_dags_toposort.

Algorithm (gist)

- 1. Compute topological order of DAG.
- 2. Initialize distances:
 - d(s)=0d(s)=0d(s)=0 for source sss.
 - $d(v) = \infty d(v) = \inf (v) = \infty$ (or None) for others.
- 3. Process vertices in topo order:
 - For each edge (u,v)(u, v)(u,v):d(v)=min(d(v),d(u)+w(u,v))
 d(v)=min(d(v), d(u)+w(u,v))d(v) = \min(d(v), \; d(u) + w(u, v))
 - Since uuu comes before vvv, all shortest paths into uuu are already known.

Complexity

• Toposort = **O(V+E)**.

- Relax edges once each = O(V+E).
- ✓ Total = **O(V+E)** (faster than Dijkstra or Bellman-Ford on general graphs).lecture08_dags_toposort

Implementation gist

Summary (for test)

- **DAGs**: directed graphs without cycles, generalize trees.
- **Toposort**: ordering where parents come before children.
 - Kahn's (indegree queue) or DFS (finish times).
- Shortest Path in DAGs:
 - Use topological order to relax edges in one pass.
 - Complexity = O(V+E).
 - Works because every prefix of a shortest path is itself shortest, and topo order guarantees prerequisites are ready.

Would you like me to also add a **worked example DAG** (with edge weights, topo order, and step-by-step distance table) so you can quickly reference the shortest

DAGS 3

path process in your test?

DAGS 4