Wireless Communication Project 1

410786004 通訊四 蘇家駒

1. Abstract

使用 matlab 模擬 Doppler fading。

2. Introduction

透過 matlab 產生頻域訊號並在頻域去操作,模擬在 Doppler 之下的 Rayleigh fading channel 是如何表現的。

3. Methodology

首先產生兩組 complex Gaussian 並將其反轉共阨並連接在一起,成為一個對秤的頻譜。再來根據 Doppler effect 的公式產生出S(f),開根號後與先前產生的 complex Gaussian 相乘,之後個別進行 ifft 並將其結果平方後相加再開根號,該結果即為所求的 Doppler fading channel 的頻率響應。

其中由於 Rayleigh distribution 可表示為兩個 Gaussian 的平方相加開根號,因此才會產生 complex Gaussian 並將其實部虛部平方相加開根號。

4. Conclusion

- 實驗結果
 - 第一組

N: 256, uncorrelated Rayleigh

第二組

N: 256, correlated Rayleigh

■ 第三組

N: 1024, uncorrelated Rayleigh

■ 第四組

N: 1024, correlated Rayleigh

本次實驗可以分為兩個面向作觀察:

1. fm

從觀察 fm 可以發現,當 fm 越大則圖形會越向理論值靠近,在 fm=0.001 的時候最為靠近。

2. N

從觀察模擬的點數可以發現,當N越大時,模擬出的pdf圖形會 越好,越趨近真實的情況

5. Code

i. Given correlation matrix

```
R = [1 0; 0 1];
                       R = [1 \ 0.75; \ 0.75 \ 1];
L = chol(R);
                      L = chol(R);
M1 = randn(N/2,2);
                      M1 = randn(N/2,2);
M1 = M1*L;
                      M1 = M1*L;
M1 = M1.';
                       M1 = M1.';
M2 = randn(N/2,2);
                     M2 = randn(N/2,2);
M2 = M2*L;
                      M2 = M2*L;
M2 = M2.';
                       M2 = M2.';
```

其中一個有 correlation (0.75),一個沒有,接著產生一連串的隨機取樣。

ii. 產牛隨機且對稱的頻譜取樣

```
X1(:,1:N/2) = M1(1,:)+j*M1(2,:);
X1(:,N/2+1:N) = fliplr(conj(M1(1,:)+j*M1(2,:)));
X2(:,1:N/2) = M2(1,:)+j*M2(2,:);
X2(:,N/2+1:N) = fliplr(conj(M2(1,:)+j*M2(2,:)));
|
```

iii. 產生S(f)

```
S=zeros(1,N);
i = 1;
for fd=-fm:2*fm/(N-1):fm
    S(i)=C/(2*pi*fm*sqrt(1-(fd/fm)^2));
    if S(i) > 1000
        S(i) = 1000;
    end
    i=i+1;
end
S = sqrt(S);
```

IV. 將 blockgram 的數學式串起來

```
f1=X1.*S;
f2=X2.*S;

fft1=abs(ifft(f1));
fft2=abs(ifft(f2));

fr1=fft1.^2;
fr2=fft2.^2;
r = sqrt(fr1+fr2);
```

v. 書圖

繪出逼近的 Rayleigh PDF

```
edge=[-80:1:20];
data = mag2db(abs(r));
h=histogram(data, edge, 'Normalization','pdf');
value = h.Values*7;
bin = h.BinEdges;
bin=bin(1:length(bin)-1);
plot(bin, value);
```

繪出 amplitude response

```
% plot amp response
figure(2);
plot(x, data);
title('Correlated Rayleigh magnitude response');
xlabel('sample');
ylabel('db');
```

繪出 phase response

```
%plot phase response
figure(3);
plot(angle(fft(r)));
title('Correlated Rayleigh phase response');
xlabel('db');
ylabel('degree');
```