Klausur in Experimentalphysik 3

Prof. Dr. L. Fabbietti Wintersemester 2018/19 18. Februar 2019

Zugelassene Hilfsmittel:

- 1 Doppelseitig handbeschriebenes DIN A4 Blatt
- 1 nichtprogrammierbarer Taschenrechner

Die Bearbeitungszeit beträgt 90 Minuten. Es müssen nicht alle Aufgaben vollständig gelöst sein, um die Note 1,0 zu erhalten.

Aufgabe A (10 Punkte)

- (a) Was beschreibt der Poynting Vektor?
- (b) Welche qualitative Bedeutung hat der Imaginärteil n_i und der Realteil n_r der Brechungszahl n für eine elektromagnetische Welle?
- (c) Warum erscheint die Sonne kurz vor Sonnenuntergang ellipsenförmig und nicht kreisförmig?
- (d) Was macht ein $\lambda/2$ -Plättchen und was ein $\lambda/4$ -Plättchen mit links-zirkular-polarisiertem Licht?
- (e) Wie ändert sich das Huygen'sche Prinzip, wenn man ein Medium mit anisotropem Brechungsindex betrachtet?
- (f) Betrachte ein Beugungsgitter. Wie hängt die Wellenlänge des Lichts mit dem Abstand der Intensitätsmaxima zueinander zusammen?
- (g) Unter welchen Umständen erzeugt eine Sammellinse ein virtuelles Bild?
- (h) Was versteht man unter Dichroismus?
- (i) Bei der Absorption von Licht durch freie Elektronen ändert jedes absorbierte Photon den Drehimpuls des Atoms um den Betrag \hbar . Was kann man daraus schließen?
- (j) Nennen Sie zwei Beispiele für reale Körper, die idealisiert als plancksche Strahler bzw. schwarze Strahler betrachtet werden können.

Aufgabe 1 (18 Punkte)

Ein Linsensystem bestehe aus drei Linsen. Eine mit der Brennweite $f_1 = -2$ cm, eine mit $f_3 = 1$ cm sowie einer Linse der unbekannten Brennweite f_2 . Das System habe insgesamt den Abbildungsmaßtab $V_T = \frac{|B_3|}{|G|} = \frac{1}{7}$. Vor dem Linsensystem befinde sich im Abstand $g_1 = 5$ cm ein Gegenstand der Größe G = 4 cm (siehe Abbildung). Der Abstand d_{12} zwischen den Linsen 1 und 2 betrage 2 cm, zwischen den Linsen 2 und 3 sei $d_{23} = 3$ cm.

- (a) Berechnen Sie die Bildweite b_1 und die Größe B_1 des ersten Zwischenbildes des Gegenstands. Ist das Bild reell oder virtuell?
- (b) Die Bildweite b_3 betrage $\frac{9}{14}$ cm. Berechnen Sie die Gegenstandsweite g_3 sowie die Beträge der Bilder B_3 und B_2 .
- (c) Berechnen Sie die Bildweite b_2 und Brennweite f_2 der zweiten Linse (Hinweis: B_2 ist ein reelles Bild). Handelt es sich dabei um eine Sammel- oder eine Zerstreuungslinse?
- (d) Konstruieren Sie den Strahlengang (groß genug, mit lesbarer Beschriftung) für das erste und zweite Zwischenbild. Es müssen alle Zwischenbilder aus dem Zentralstrahl, dem Brennstrahl und dem Parallelstrahl konstruiert werden.

Aufgabe 2 (6 Punkte)

Ein Argonionenlaser (514 nm) hat die optische Ausgangsleistung von 10 W. Dieser Laserstrahl treffe senkrecht auf eine spiegelnde, 10 g schwere Metallplatte. Wie lange dauert es, bis die Platte um 1 cm durch den Laserstrahl verschoben wurde?

Aufgabe 3 (11 Punkte)

Betrachten Sie einen Lichtstrahl mit homogener Intensität und kreisförmigem Querschnitt, welcher auf ein Prisma mit Brechungsindex n=1,5 (Luft: n=1) fällt und dieses senkrecht zur Schnittkante verlässt (siehe Zeichnung.)

- (a) Unter der Annahme paralleler Polarisation (zur Einfallsebene), wie groß muss der Prismawinkel γ sein, damit an der Eintrittsfläche kein Licht reflektiert wird?
- (b) Berechnen Sie das Verhältnis der Durchmesser d_2/d_1 von einfallendem und ausfallendem Strahl?
- (c) Wie ist das Verhältnis der Querschnitte A_2/A_1 und Intensitäten I_2/I_1 der Lichtstrahlen rechts und links vom Prisma?

Aufgabe 4 (13 Punkte)

Licht einer Natrium-Spektral-Lampe mit der Wellenlänge $\lambda=589$ nm fällt senkrecht auf einen Doppelspalt, dessen Spaltmitten den Abstand g haben und deren Spaltbreiten jeweils b=0,05 mm betragen. Die Beugungsfigur wird auf einem dazu parallelen Schirm aufgefangen, der sich im Abstand L=2,25 m vom Doppelspalt entfernt befindet.

Vom Hauptmaximum (y = 0 mm) aus gemessen stellt man auf dem Schirm an den folgenden Stellen äquidistante helle Streifen fest:

$$\pm 5$$
 mm, ± 10 mm, ± 15 mm, ± 20 mm

- (a) Berechnen Sie mit diesen Informationen den Abstand q der beiden Spaltmitten.
- (b) Berechnen Sie die Lage der Minima bis zur 3. Ordnung, wenn nur einer der beiden Spalte geöffnet ist.
- (c) Werden Maxima ausgelöscht? Wenn ja warum und welche? Wenn nein, warum nicht?

Bring man vor einen der beiden Spalte ein planparalleles Glasplättchen der Dicke d = 0,05 mm und der Brechzahl $n_{\text{Glas}} = 1,47$, so verschiebt sich auf dem Schirm das Hauptmaximum aus der Mitte.

(d) Wo findet man das neue Hauptmaximum?

Aufgabe 5 (11 Punkte)

- (a) Ein Lichtstrahl trete von links in ein Kalkspatprisma ein. Drei mögliche Orientierungen der optischen Achse sind von besonderem Interesse, entlang x-,y- und z-Achse. Stellen Sie sich drei solche Prismen vor. Skizzieren Sie jeweils einfallende und austretende Strahlen und kennzeichnen Sie den Polarisationszustand.
- (b) Wie kann man mit Hilfe dieses Prismenaufbaus den Wert von n_o und n_{ao} bestimmen?

Aufgabe 6 (11 Punkte)

Das Compton-Teleskop dient zur Beobachtung von astronomischen Objekten, die Gammastrahlung mit Quantenenergien in de Größenordnung einiger MeV aussenden.

Untenstehend ist das Prinzip eines Compton-Teleskops skizziert. Ein einfallendes γ -Quant der Energie E_{γ} wird in Detektor 1 durch Compton-Streuung an einem Elektron um den Winkel ϑ abgelenkt. Dabei wird die kinetische Energie $E_{e'}$ des Compton-Elektrons gemessen. Das gestreute γ -Quant wird in Detektor 2 schließlich vollständig absorbiert, wobei seine Energie $E_{\gamma'}$ gemessen wird. Damit erhält man E_{γ} aus $E_{\gamma} = E_{e'} + E_{\gamma'}$. Beide Detektoren sind ortsauflösend, d.h. die Wechselwirkungsorte A und B sind bekannt.

- (a) Zeigen Sie rechnerisch, warum der Comptoneffekt bei sichtbarem Licht nicht beobachtet werden kann.
- (b) Leiten Sie aus der Formel $\Delta \lambda = \lambda_C \cdot (1 \cos \theta)$ für die Wellenlängenänderung beim Comptoneffekt her, das der Streuwinkel ϑ aus den Messgrößen $E_{e'}$ und $E_{\gamma'}$ sowie aus der Ruhemasse m_0 des Elektrons nach folgender Formel Berechnet werden kann:

$$\cos\vartheta = 1 - \frac{m_0 \cdot c^2}{E_{\gamma'}} + \frac{m_0 \cdot c^2}{E_{e'} + E_{\gamma'}}$$

- (c) Ein γ -Quant löst in Detektor A ein Compton-Elektron der kinetischen Energie $E_{e'}$ 0,70 MeV aus; in Detektor B wird die Energie $E_{\gamma'}=1,3$ MeV des gestreuten γ -Quants gemessen. Berechnen Sie daraus den Streuwinkel ϑ des Photons sowie die Geschwindigkeit des Compton-Elektrons.
- (d) Erläutern Sie, warum man bei Detektion eines einzelnen γ -Quants mit anschließender Bestimmung von ϑ noch nicht die Richtung der γ -Quelle kennt. Erklären Sie, warum man durch Detektion mehrerer aufeinander folgender γ -Quanten die Position der γ -Quelle dennoch mit einem einzelnen Compton-Teleskop bestimmen kann.

Aufgabe 7 (7 Punkte)

 $\psi(x) = Nx \exp(-x^2/2\sigma^2)$ sei die Wellenfunktion eines Teilchens.

(a) Normieren Sie diese Wellenfunktion mithilfe

$$\int_{-\infty}^{\infty} x^2 e^{-ax^2} \, \mathrm{d}x = \frac{\sqrt{\pi}}{2a^{3/2}}, a > 0 \tag{1}$$

(b) An welchen Ort befindet sich das Teilchen am wahrscheinlichsten? Wo liegt der Erwartungswert des Teilchenorts?

Konstanten

Elektrische Feldkonstante:

 $\begin{array}{l} \epsilon_0 = 8.85 \cdot 10^{-12} \mathrm{CV}^{-1} \mathrm{m}^{-1} \\ e = 1.60 \cdot 10^{-19} \mathrm{C} \end{array}$ Elementarladung: $h = 6.63 \cdot 10^{-34} \text{Js}$ Planck'sche Konstante:

 $c=3\cdot 10^8 \mathrm{ms^{-1}}$ Lichtgeschwindigkeit: Elektronenruhemasse:

 $m_e = 9.1 \cdot 10^{-31} \text{kg}$ $\sigma = 5.67 \cdot 10^{-8} \frac{\text{W}}{\text{m}^2 \text{K}^4}$ $b = 2.9 \cdot 10^{-3} \text{mK}$ Stefan Boltzmann Konstante: Wiensche Verschiebungskonstante: