optional

Sunday: Problem solving session
Reausion?
How to write a recursive code?
How to write a recursive coch? 7C/sc? [Wednesday]
d
Merge sort / Quick sort / heap sort
Tues
Dynamic Programming
Grophs.
Backtracking
δ

Recursion: Function calling itself

Solving a problem with the help of similar smaller problems subproblems

How to write recursive codes?

Assumption: Decide what your function need to do and assume it does it

Mainlogic: Solve problem with help of subproblems

Base condition:) Decide when to stop your code

2) Decide when main logic fails


```
Fibonacci number
   N =
Input: 0 1 2 3 4 5 6 7 8 9 10 ... N
fib(): 0 1 1 2 3 5 6 13 21
                          fib(1) = fib(6) + fib(5)
                          fib(8) = fib(7) + fib(6)
                    N<sup>th</sup> fib number
                          fib(N) =
                                               N = 1 return N
                   if (N <= 1) & return N3
                   1 return fib(N-1) + fib(N-2)
                                  (N=) N=0
                   N=2
               fib(N-1) + fib(N-2) fib(-1) + fib(-1) + fib(-2)
               fib(1) + fib(0)
                                  main logic faitij main logic faitij
                  valid
```


Breck	(10:30-	10:	40)
0 00	•		

Ψ5)	Given	a	Ju	bstr	ing	of	ر ۵	tring	che	ck	if	d	(1
					0	1		0			14	a	js palindrome?
					2	3	4 A	>					
			<u> </u>	P)	U	D	<u> </u>	- Ρ\					
			0	(2	3	4	5					
			6	D	O	D	0	G					
						•							
						Α,	s , e						
					bool		palin	(A,S,	, e)				
							•						
												~	

Assumption: palin (A,s,e) checks if string A [s:e] is palindrome or not?

bool palin (A, s, e) $\tilde{\xi}$ | if (s >= e) $\tilde{\xi}$ return true $\tilde{\xi}$ | if (A[s] == A[e] & & palin (A, s+1, e-1)) $\tilde{\xi}$ | return tene
| 3
| 4 return falue
| 3

