

Chap. 6 – REACTIONS DE COMPLEXATION EN SOLUTIONS AQUEUSES

<u> 1. Définitions</u>

a. Complexes

Un **complexe** est un édifice polyatomique constitué d'un ou plusieurs centre **atomes/cations métalliques** (ayant des orbitales vides) entourés de n molécules appelées **ligands** (ayant une ou plusieurs paires électroniques vides).

1. Définitions

b. Acides/bases de Lewis

de Lewis est Un acide espèce susceptible d'accepter une un doublet d'électrons et qui possède une lacune électronique sur sa couche de valence. H

de Lewis est une espèce susceptible Une base de donner un doublet d'électrons et qui possède donc un doublet non liant.

Exemples:
$$F = H_2O$$
, OH^- , NH_3 , etc.

2. Le centre métallique

L'atome ou ion central est un acide de Lewis chargé positivement.

Il s'agit souvent d'un élément de transition (bloc d) mais pas que...

Exemples: Mn²⁺, Fe²⁺, Fe³⁺, Cu²⁺, Mg²⁺, Pb²⁺, etc.

3. Les ligands

a. Nature des ligands

- Les ligands peuvent être chargés négativement ou neutres. Ce sont des bases de Lewis (possèdent au moins un doublet électronique non liant). Le méthane (CH₄) ne peut pas être un ligand car il ne possède pas de doublet électronique non liant.
- Les ligands entourant l'atome central peuvent être tous identiques ou différents.
 Dans ce cas, le complexe est dit mixte.

<u>Exemples</u> :

- Ligands anioniques : les ions halogénures $|\overline{X}|^{-}$, thiocyanate SCN-, thiosulfate $S_2O_3^{2-}$, hydroxyde OH-, etc.
- Ligands neutres : eau H₂O, ammoniac NH₃, etc.-
- Complexe mixte : [Co(Cl₅)(NH₃)]²⁻

3. Les ligands

b. Classification des ligands

 Un ligand qui se fixe sur l'atome ou l'ion central à l'aide d'un seul doublet est monodentate.

Ex: NH_3 , H_2O , CN^- , etc.

 Un ligand qui se fixe sur l'atome ou l'ion central à l'aide de deux doublets est bidentate.

Ex : ion oxalate $C_2O_4^{2-}$, orthophénanthroline (o-phén), etc.

 Un ligand qui se fixe sur l'atome ou l'ion central à l'aide de plusieurs doublets est polydentate.

Ex: l'EDTA qui est hexadentate:

$$\begin{array}{c} \bigcirc \overline{\text{OOC}} - \text{CH}_2 \\ \bigcirc \overline{\text{OOC}} - \text{CH}_2 \\ \end{array} \\ \begin{array}{c} \overline{\text{N}} - \text{CH}_2 - \text{CH}_2 - \overline{\text{N}} \\ \end{array} \\ \begin{array}{c} \text{CH}_2 - \text{COO} \\ \text{CH}_2 - \text{COO} \\ \end{array} \\ \end{array}$$

Les ligands polydentates sont susceptibles de former des chélates

4. Charge du complexe et indice de coordination

a. Charge du complexe

Le complexe peut être chargé (positivement ou négativement) ou neutre.

$$M^{m+}$$
 (aq) + nL^{x-} (aq) \Longrightarrow [ML_n]^p (aq)
Avec p = m-xn

Exemple: - Positif: $Cu(NH_3)_6^{2+}$,

Neutre : Fe(CO)₅,
 Négatif : Fe(CN)₆³⁻

En solution aqueuse, le cation est complexé par des molécules d'eau.

Exemple : $Cu(H_2O)^{2+}$, $Ni(H_2O)^{2+}$, etc.

4. Charge du complexe et indice de coordination

b. Indice de coordination - Géométrie

Le nombre de ligands liés à l'atome ou l'ion central est appelé indice de coordination ou **coordinance**.

L'indice de coordination ne dépend que du métal central.

```
Exemples: -Fe(CN)_6^{4-}; coordinance: 6
- Cu(NH_3)_4^{2+}; coordinance: 4
- Cu(H_2O)_6^{2+}; coordinance: 6
```


4. Charge du complexe et indice de coordination

b. Indice de coordination - Géométrie

Le nombre de ligands liés à l'atome ou l'ion central est appelé indice de coordination ou **coordinance**.

L'indice de coordination ne dépend que du métal central.

Exemples: $-Fe(CN)_6^{4-}$; coordinance: 6 - $Cu(NH_3)_4^{2+}$; coordinance: 4

- $Cu(H_2O)_6^{2+}$; coordinance : 6

La **géométrie** du complexe dépend du nombre de ligands entourant l'atome ou l'ion métallique.

Coordinance	2	4		5	6
Géométrie	Linéaire	Carré plan	Tétraédrique	Bipyramide à base triangulaire	Octaédrique

4. Charge du complexe et indice de coordination

b. Indice de coordination - Géométrie

Coordinence	Géométrie	Exemples		
2	linéaire L-M-L	$Ag(NH_3)_2^+$		
3	triangulaire L – M L	Cu(CN) ₃ ²⁻		
4 • soit structure plane	plan carré L_L M L L	Cu (NH ₃) ₄ ²⁺ Ni (CN) ₄ ²⁻		
soit tridimensionnelle	tétraédrique L I M L L	ZnCl ₄ ²⁻ Ni(CO) ₄		
5	bipyramide triangulaire	Fe(CO) ₅		
6	octaédrique	Fe (CN) ₆ ³⁻ Al (H ₂ O) ₆ ³⁺ Cr(CO) ₆ CuY ²⁻		

5. Nomenclature des complexes

a. Règles

- On nomme les ligands puis le métal central ;
- Le nom d'un ligand neutre est conservé (sauf « aqua » pour H₂O, « ammine » pour NH₃ et carbonyle pour CO);
- Le nom d'un ligand négatif se termine par la lettre « o » (ex : chloro ou cyano) ;

H ₂ O	NH ₃	. Cl.	HO-	O ₂ -	CO	CN-	$C_2O_4^{2-}$	NH ₂ CH ₂ CH ₂ NH ₂
aqua	ammine	chloro	hydroxo	oxo	carbonyl	cyano	oxalato	éthylènediamine

- Le nombre de ligands est précisé par un préfixe : di, tri, tétra, penta, hexa, etc.
- S'il y a plusieurs ligands différents, on utilise l'ordre alphabétique.
- Si le complexe a une charge nulle ou positive, l'ion ou l'atome central a le nom de l'élément correspondant.
- Si le complexe est chargé négativement, on ajoute la terminaison « ate » au nom de l'élément central correspondant.
- Le nom du complexe se termine par le nombre de charges portées par le métal.

5. Nomenclature des complexes

b. Exemples

- Complexe positif ou neutre :
 - Fe(CO)₅: pentacarbonylefer (0)
 - Cu(NH₃)₄²⁺: tétraamminecuivre (II)
- Complexe négatif :
 - Fe(CN)₆³⁻: hexacyanoferrate (III)

5. Nomenclature des complexes

b. Exemples

- Complexe positif ou neutre :
 - Fe(CO)₅: pentacarbonylefer (0)
 - Cu(NH₃)₄²⁺: tétraamminecuivre (II)
- Complexe négatif :
 - Fe(CN)₆³⁻: hexacyanoferrate (III)

Exercice:

Nommer les complexes suivants :

- $AI(H_2O)_6^{3+}$
- $Ag(CI)_2$
- $Cu(H_2O)_6^{2+}$
- Ni(CN)₄²⁻
- Cu(OH)₄²⁻
- CoCl₂(NH₃)₄+

1. Réaction de formation d'un complexe ML

Constante de formation K_f du complexe (en omettant C°) :

$$K_f = \frac{[ML]}{[M][L]}$$
; avec p $K_f = -\log K_f$

1. Réaction de formation d'un complexe ML

Constante de formation K_f du complexe (en omettant C°) :

$$K_f = \frac{[ML]}{[M][L]}$$
; avec p $K_f = -\log K_f$

• Constante de dissociation K_d du complexe (en omettant C°) lié à la réaction :

$$ML \rightleftharpoons M+L$$

$$K_d = \frac{[M][L]}{[ML]} = \frac{1}{K_f}$$
; avec $pK_d = -log K_d$

1. Réaction de formation d'un complexe ML

Exemples :

$$Fe^{3+} + SCN^{-} \longrightarrow Fe(SCN)^{2+}$$

$$K_f = \frac{[Fe(SCN)2+]}{[Fe^{3+}][SCN^-]} = 125$$
 $K_d = \frac{1}{K_f} = 8.10^{-3} \text{ et pK}_d = -\log K_d = 2,1$

$$Fe^{3+} + Y^{4-} \rightleftharpoons FeY^{-}$$

$$K_f = \frac{[FeY^-]}{[Fe^{3+}][Y^-]} = 1,26.10^{25}$$
 $K_d = \frac{1}{K_f} = 7,9.10^{-26} \text{ et pK}_d = -log K_d = 25,1}$

2. Formation de complexes ML_n successifs

$$M + L \implies ML$$

$$\zeta_{\mathsf{f1}} = \frac{[ML]}{[M][L]}$$

2. Formation de complexes ML_n successifs

$$M + L \implies ML$$

$$\zeta_{\mathsf{f1}} = \frac{[ML]}{[M][L]}$$

$$ML + L \rightleftharpoons ML_2$$

$$\mathsf{K}_{\mathsf{f2}} = \frac{[ML_2]}{[ML][L]}$$

Formation de complexes ML_n successifs

$$M + L \rightleftharpoons ML$$

$$K_{f1} = \frac{[ML]}{[M][L]}$$
 $K_{f2} = \frac{[ML_2]}{[ML][L]}$

$$ML + L \rightleftharpoons ML_2$$

$$\zeta_{f2} = \frac{[ML_2]}{[ML][L]}$$

$$ML_{n-2} + L \rightleftharpoons ML_{n-1}$$

$$ML_{n-1} + L \rightleftharpoons ML_n$$

$$K_{\text{fn-1}} = \frac{[ML_{n-1}]}{[ML_{n-2}][L]}$$
 $K_{\text{fn}} = \frac{[ML_n]}{[ML_{n-1}][L]}$

2. Formation de complexes ML_n successifs

On nomme β la constante globale de formation.

(1)
$$n = 1$$

$$M + L \iff ML$$

$$\mathsf{K}_{\mathsf{f}\mathsf{1}} = \frac{[ML]}{[M][L]} = \boldsymbol{\beta}_{\mathsf{1}}$$

(2)
$$n = 2$$

$$ML + L \rightleftharpoons ML_2$$

$$\mathsf{K}_{\mathsf{f2}} = \frac{[ML_2]}{[ML][L]}$$

$$(1)+(2)$$

$$M + 2L \rightleftharpoons$$

$$\rightleftharpoons$$

$$ML_2$$

$$\beta_2 = K_{f1}.K_{f2}$$

Formation de complexes ML_n successifs

$$(1) n = 1$$

$$M + L \iff ML$$

$$\mathsf{K}_{\mathsf{f}\mathsf{1}} = \frac{[ML]}{[M][L]}$$

$$ML + L \implies ML_2$$

$$\mathsf{K}_{\mathsf{f2}} = \frac{[\mathit{ML}_2]}{[\mathit{ML}][\mathit{L}]}$$

$$ML_{n-2} + L \rightleftharpoons ML_{n-1}$$

$$K_{\text{fn-1}} = \frac{[ML_{n-1}]}{[ML_{n-2}][L]}$$

$$ML_{n-1} + L \rightleftharpoons ML_n$$

$$\mathsf{K}_{\mathsf{fn}} = \frac{[ML_n]}{[ML_{n-1}][L]}$$

$$(1)+(2)+...+(n)$$

$$M + nL \rightleftharpoons$$

$$\beta_n = K_{f1}.K_{f2}...K_{fn}$$

Formation de complexes ML_n successifs

$$(1) n = 1$$

$$M + L \iff ML$$

$$K_{f1} = \frac{[ML]}{[M][L]}$$
 $K_{f2} = \frac{[ML_2]}{[ML][L]}$

$$ML + L \rightleftharpoons ML_2$$

$$\zeta_{f2} = \frac{[ML_2]}{[ML][L]}$$

$$(n-1)$$

$$ML_{n-2} + L \rightleftharpoons ML_{n-1}$$

$$\zeta_{\text{fn-1}} = \frac{[ML_{n-1}]}{[ML_{n-2}][L]}$$

$$ML_{n-1} + L \rightleftharpoons ML_n$$

$$K_{\text{fn-1}} = \frac{[ML_{n-1}]}{[ML_{n-2}][L]}$$
 $K_{\text{fn}} = \frac{[ML_n]}{[ML_{n-1}][L]}$

$$M + nL$$

$$\rightleftharpoons$$
 ML_{n}

$$\beta_n = K_{f1}.K_{f2}...K_{fn}$$

$$\beta = \prod_{i=1}^n K_{fi}$$

$$\log \beta_n = \sum_{i=1}^n pK_{di}$$

2. Formation de complexes ML_n successifs

Exemple 1 : complexes de cuivre(II)

-
$$Cu^{2+} + NH_3$$
 \rightleftharpoons $Cu(NH_3)^{2+}$

$$K_{f1} = \frac{[Cu(NH_3)^{2+}]}{[Cu^{2+}][NH_3]} = 10^{4,2}$$

-
$$Cu(NH_3)^{2+} + NH_3 \rightleftharpoons Cu(NH_3)_2^{2+}$$

$$K_{f2} = \frac{[Cu(NH_3)_2^{2+}]}{[Cu(NH_3)^{2+}][NH_3]} = 10^{3.4}$$

-
$$Cu(NH_3)_2^{2+} + NH_3 \rightleftharpoons Cu(NH_3)_3^{2+}$$

$$K_{f3} = \frac{[Cu(NH_3)_3^{2+}]}{[Cu(NH_3)_2^{2+}][NH_3]} = 10^{3.0}$$

-
$$Cu(NH_3)_3^{2+} + NH_3 \rightleftharpoons Cu(NH_3)_4^{2+}$$

$$K_{f4} = \frac{[Cu(NH_3)_4^{2+}]}{[Cu(NH_3)_3^{2+}][NH_3]} = 10^{2.0}$$

Déterminer les constantes globales de formations β_1 , β_2 , β_3 et β_4 correspondantes.

2. Formation de complexes ML_n successifs

Exemple 2:

$ML_{n-1} + L = ML_n$;			$\mathbf{K}_{fn} = \frac{[ML_n]}{[ML_{n-1}][L]}$			
	Cation (L = NH ₃)					
	Ag ⁺	Cu ²⁺	Zn ²⁺	Co ²⁺	Ni ²⁺	
Log Kf ₁	3,20	4,20	2,27	2,05	2,75	
Log Kf ₂	3,83	3,40	2,34	1,57	2,20	
Log Kf ₃		3,00	2,40	0,99	1,69	
Log Kf ₄		2,00	2,05	0,70	1,15	
Log Kf ₅				0,12	0,71	
Log Kf ₆				-0,68	-0,01	

1. Cas d'un couple M/ML

Couple M/ML:

M + L
$$\Longrightarrow$$
 ML $K_f = \frac{[ML]}{[M][L]}$ et $K_d = \frac{[M][L]}{[ML]}$

$$pL = -log [L] = pK_d + log \frac{[M]}{[ML]}$$

2. Cas de complexes successifs

Couples : - M/ML ; K_{f1} - ML/ML₂ ; K_{f2} -... - ML_{n-1}/ML_n ; K_{fn} $K_f = \frac{[ML]}{[M][L]} \text{ et } K_d = \frac{[M][L]}{[ML]}$

Dans la mesure ou $pK_{d,n} < pK_{d,n-1}$

2. Cas de complexes successifs

Exemple :complexes de cuivre (II)

- Couples: $-Cu^{2+}/Cu(NH_3)^{2+}$; $K_{f1} = 10^{4,2}$
 - $Cu(NH_3)^{2+}/Cu(NH_3)_2^{2+}$; $K_{f2} = 10^{3,4}$
 - $Cu(NH_3)_2^{2+}/Cu(NH_3)_3^{2+}$; $K_{f3} = 10^{3,0}$
 - $Cu(NH_3)_3^{2+}/Cu(NH_3)_4^{2+}$; $K_{f2} = 10^{2,0}$

2. Cas de complexes successifs

Exemple :complexes de cuivre (II)

- Couples: $-Cu^{2+}/Cu(NH_3)^{2+}$; $K_{f1} = 10^{4,2}$
 - $Cu(NH_3)^{2+}/Cu(NH_3)_2^{2+}$; $K_{f2} = 10^{3,4}$
 - $Cu(NH_3)_2^{2+}/Cu(NH_3)_3^{2+}$; $K_{f3} = 10^{3,0}$
 - $Cu(NH_3)_3^{2+}/Cu(NH_3)_4^{2+}$; $K_{f2} = 10^{2,0}$

3. Réactions d'échange de ligands

a. Mise en évidence

Dans un bécher contenant une solution d'ions fer III, on ajoute quelques gouttes de thiocyanate de potassium, il y a formation d'un complexe fortement coloré en rouge Fe(SCN)²⁺ :

$$Fe^{3+} + SCN^{-} \rightleftharpoons Fe(SCN)^{2+} K_f$$

On ajoute alors goutte à goutte une solution de fluorure de sodium : on observe la décoloration de la solution.

Que s'est-il passé ?

3. Réactions d'échange de ligands

a. Mise en évidence

Dans un bécher contenant une solution d'ions fer III, on ajoute quelques gouttes de thiocyanate de potassium, il y a formation d'une complexe fortement coloré en rouge Fe(SCN)²⁺:

$$Fe^{3+} + SCN^{-} \rightleftharpoons Fe(SCN)^{2+} K_f$$

On ajoute alors goutte à goutte une solution de fluorure de sodium : on observe la décoloration de la solution.

Les ions fluorures interagissent fortement avec les ions Fe³⁺ et forment un complexe incolore.

$$Fe^{3+} + F^{-} \longrightarrow FeF^{2+} K_{f}'$$

Il y a ainsi eu échange des ligands SCN⁻ par les ligands F⁻.

$$Fe(SCN)^{2+} + F^{-} \longrightarrow FeF^{2+} + SCN^{-} K_{f}'/K_{f} >> 1$$

3. Réactions d'échange de ligands

b. Prévision des réactions

- Application de la règle du gamma entre deux couples :
 - $M_1/M_1L (pK_{d1}) et$
 - M_2/M_2L (pK_{d2}), avec pK_{d2} > pK_{d1}

3. Réactions d'échange de ligands

b. Prévision des réactions

- Application de la règle du gamma entre deux couples :
 - $M_1/M_1L (pK_{d1}) et$
 - M_2/M_2L (pK_{d2}), avec pK_{d2} > pK_{d1}

$$M_2 + M_1 L \longrightarrow M_1 + M_2 L \qquad K_R = 10^{pKd2-pKd1} >> 1$$

 M_2 est meilleur accepteur du ligand L que M_1 ; le complexe M_2L est plus stable que le complexe M_1L .

3. Réactions d'échange de ligands

b. Prévision des réactions

- Application de la règle du gamma entre deux couples :
 - $M_1/M_1L (pK_{d1}) et$
 - M_2/M_2L (pK_{d2}), avec pK_{d2} > pK_{d1}

$$M_2 + M_1 L \longrightarrow M_1 + M_2 L \qquad K_R = 10^{pKd2-pKd1} >> 1$$

 M_2 est meilleur accepteur du ligand L que M_1 ; le complexe M_2L est plus stable que le complexe M_1L .

En revanche le mélange M_1 + M2L évolue peu car la constante K_R ' est petite.

$$M_1 + M_2 L \rightleftharpoons M_2 + M_1 L$$
 $K_R' = 10^{pKd1-pKd2} << 1$

3. Réactions d'échange de ligands

b. Prévision des réactions

- Utilisation des domaines de prédominance :
 - M_1/M_1L (pK_{d1}) et
 - M_2/M_2L (pK_{d2}), avec pK_{d2} > pK_{d1}

M₂ et M₁L ont des domaines de prédominance disjoints : la réaction est totale.

$$M_2 + M_1 L \longrightarrow M_1 + M_2 L \qquad K_R = 10^{pKd2-pKd1} >> 1$$

➤ M₁ et M₂L ont des domaines de prédominance communs : la réaction est partielle.

$$M_1 + M_2 L \rightleftharpoons M_2 + M_1 L$$
 $K_R' = 1/K_R << 1$

3. Réactions d'échange de ligands

b. Prévision des réactions

Utilisation des domaines de prédominance :
 Lorsqu'il s'agit du même cation métallique capable de donner des complexes successifs :

On a alors les réactions :

$$M + ML_2 \longrightarrow 2 ML$$

$$K_R = 10^{pKd2-pKd1} >> 1$$

$$2 ML \rightleftharpoons M + ML_2$$

$$K_{R}' = 1/K_{R} << 1$$

3. Réactions d'échange de ligands

c. Applications

1. Complexes du 1,2-diamminoéthane (L)

Ce ligand forme avec les ions Ni²⁺ et Hg²⁺ des complexes très stables.

Pour le nickel (II) et ses complexes successifs, on donne :

$$Log K_{f1} = 7.6$$
; $Log K_{f2} = 6.4$; $Log K_{f3} = 4.5$

Pour Hg²⁺ et ses complexes successifs, on donne :

$$Log K'_{f1} = 14,3 ; Log K'_{f2} = 9,0$$

- a. Exprimer les constantes successives pour ces différents complexes ainsi que les constantes de formation globales successives.
- b. Situer sur un axe gradué en PL les domaines de prédominance des ions Ni²⁺ et Hg²⁺ et de leurs complexes.

2. Réactions d'échange de ligands

On réalise une solution en mélangeant dans 1L d'eau, 0,07 mole d'ions Hg²⁺ et 0,1 mole de complexe NiL₃²⁺. Déterminer les concentrations des différentes espèces à l'équilibre.

1. Agents complexants utilisés

Acide nitrilotriacétique NTA tétradenté

Acide diamonicyclohexantétracétique DCTA hexadenté

Acide éthylène diaminotétraacétique EDTA hexadenté

$$\begin{array}{c} \bigcirc \overline{\text{OOC}} - \text{CH}_2 \\ \bigcirc \overline{\text{N}} - \text{CH}_2 - \text{CH}_2 - \overline{\text{N}} \end{array} \begin{array}{c} \text{CH}_2 - \text{COO} \\ \bigcirc \text{CH}_2 - \text{COO} \\ \bigcirc \text{CH}_2 - \text{COO} \end{array}$$

1. Agents complexants utilisés

Valeurs de pK_d (ou pK_a) pour des complexes obtenus avec certains cations métalliques

Cation	NTA	EDTA	DCTA
Ag ⁺	5,4	7,3	-
Mg^{2+}	5,4	8,7	11,0
Ca ²⁺	6,4	10,7	13,2
Mn ²⁺	7,4	13,8	17,4
Cu ²⁺	13,0	18,8	22,0
Zn ²⁺	10,7	16,5	19,3
Pb ²⁺	11,7	18,0	20,3
Al ³⁺	-	16,1	18,3
Fe ²⁺	8,8	14,3	-
Fe ³⁺	15,9	25,1	29,3
Co ²⁺	10,4	16,3	19,6

1. Agents complexants utilisés

 Ces agents complexants sont des acides de Brönsted qui présentent différentes formes en fonction du pH (déprotonation quand le pH augmente)

Exemple: EDTA

$$\begin{array}{c|c}
\hline
\ominus \overline{O}OC - CH_2 & CH_2 - CO\overline{O}\ominus \\
\hline
\ominus OCC - CH_2 & \overline{N} - CH_2 - CH_2 - \overline{N} & CH_2 - CO\underline{O}\ominus \\
\hline
Y4-
\end{array}$$

```
HO_2CCH_2 CH_2CO_2H

HNCH_2CH_2NH

HO_2CCH_2 CH_2CO_2H

H_6Y^{2+} CH_2CO_2H

PK_1 = 0.0 (CO_2H) PK_4 = 2.69 (CO_2H)

PK_2 = 1.5 (CO_2H) PK_5 = 6.13 (NH^+)

PK_3 = 2.00 (CO_2H) PK_6 = 10.37 (NH^+)
```


1. Agents complexants utilisés

 Ces agents complexants sont des acides de Brönsted qui présentent différentes formes en fonction du pH (déprotonation quand le pH augmente)

Exemple: EDTA

$$H_{6}Y^{2+} \xrightarrow{-H^{+}} H_{5}Y^{+} \xrightarrow{-H^{+}} H_{4}Y \xrightarrow{-H^{+}} H_{3}Y^{-} \xrightarrow{-H^{+}} H_{2}Y^{2-} \xrightarrow{-H^{+}} HY^{3-} \xrightarrow{-H^{+}} Y^{4-}$$

1. Agents complexants utilisés

 Ces agents complexants sont des acides de Brönsted qui présentent différentes formes en fonction du pH (déprotonation quand le pH augmente)

Exemple: EDTA

Diagramme (échelle) pH pour toutes les espèces

Diagramme de prédominance des espèces

ResearchgateMecherri2014

2. Principe de dosage

 En fonction du pH, la réaction de titrage fait intervenir des espèces de l'agent complexant plus ou moins protonées :

$$PPP = 4-5$$

$$M^{n+} + H_2Y^{2-} \rightleftharpoons MY^{(4-n)-} + 2H^+$$

$$\rightarrow$$
 pH = 7-9

$$M^{n+} + HY^{3-} \iff MY^{(4-n)-} + H^+$$

$$M^{n+} + Y^{4-} \rightleftharpoons MY^{(4-n)-}$$

42

2. Principe de dosage

Considérons la réactions:

2. Principe de dosage

Considérons la réactions:

2. Principe de dosage

- Le principe du titrage est analogue à celui des titrages acidobasiques :
 - il faut que la réaction soit quasi-totale donc doit correspondre à la formation d'un complexe parfait ($\beta_n > 10^3$);
 - il faut détecter le point équivalent, c'est-à-dire, le volume de ligand introduit pour avoir complexé tous les ions métalliques.

On utilise essentiellement 4 méthodes :

- potentiométrie

On mesure la différence de potentiel entre une électrode de référence de potentiel constant (électrode au calomel ou Ag/AgCl) et une électrode de mesure métallique (indicatrice de la concentration en ion métallique).

Le saut de potentiel correspond au brusque saut de pM, ce qui définit le point équivalent.

2. Principe de dosage

- Le principe du titrage est analogue à celui des titrages acidobasiques :
 - il faut que la réaction soit quasi-totale donc doit correspondre à la formation d'un complexe parfait ($\beta_n > 10^3$);
 - il faut détecter le point équivalent, c'est-à-dire, le volume de ligand introduit pour avoir complexé tous les ions métalliques.

- potentiométrie
- conductimétrie (cf chapitre 5)

2. Principe de dosage

- Le principe du titrage est analogue à celui des titrages acidobasiques :
 - il faut que la réaction soit quasi-totale donc doit correspondre à la formation d'un complexe parfait ($\beta_n > 10^3$);
 - il faut détecter le point équivalent, c'est-à-dire, le volume de ligand introduit pour avoir complexé tous les ions métalliques.

On utilise essentiellement 4 méthodes :

- potentiométrie
- conductimétrie (cf chapitre 5)
- colorimétrie : en présence d'un indicateur coloré

On utilise des indicateurs colorés (In) qui sont des ligands plus faibles ($K_{f,M/MIn} << K_{f,M/MY}$) et qui forment avant le point d'équivalence un complexe coloré avec l'ion métallique en excès. Le ligand complexant Y plus fort que l'indicateur coloré In complexe l'ion métallique et remplace au niveau de l'équivalence le ligand coloré, ce qui se traduit par un changement de couleur.

2. Principe de dosage

- Le principe du titrage est analogue à celui des titrages acidobasiques :
 - il faut que la réaction soit quasi-totale donc doit correspondre à la formation d'un complexe parfait ($\beta_n > 10^3$);
 - il faut détecter le point équivalent, c'est-à-dire, le volume de ligand introduit pour avoir complexé tous les ions métalliques.

- potentiométrie
- conductimétrie (cf chapitre 5)
- colorimétrie : en présence d'un indicateur coloré

2. Principe de dosage

- Le principe du titrage est analogue à celui des titrages acidobasiques :
 - il faut que la réaction soit quasi-totale donc doit correspondre à la formation d'un complexe parfait ($\beta_n > 10^3$);
 - il faut détecter le point équivalent, c'est-à-dire, le volume de ligand introduit pour avoir complexé tous les ions métalliques.

- potentiométrie
- conductimétrie (cf chapitre 5)
- colorimétrie : en présence d'un indicateur coloré

2. Principe de dosage

- Le principe du titrage est analogue à celui des titrages acidobasiques :
 - il faut que la réaction soit quasi-totale donc doit correspondre à la formation d'un complexe parfait ($\beta_n > 10^3$);
 - il faut détecter le point équivalent, c'est-à-dire, le volume de ligand introduit pour avoir complexé tous les ions métalliques.

On utilise essentiellement 4 méthodes :

- potentiométrie
- conductimétrie (cf chapitre 5)
- colorimétrie : en présence d'un indicateur coloré

Exemples d'indicateurs utilisés avec l'EDTA

Murexide :

 Co^{2+} : jaune \rightarrow violet

 Cu^{2+} : jaune \rightarrow violet

 Ni^{2+} : jaune \rightarrow pourpre

$$\begin{array}{c|c} O & H & O & H & O \\ \hline HN & N & NH & O \\ \hline O & O^- NH_4^+ \end{array}$$

Noir ériochrome T :

MIn : rouges ou violets \rightarrow In : bleu

2. Principe de dosage

- Le principe du titrage est analogue à celui des titrages acidobasiques :
 - il faut que la réaction soit quasi-totale donc doit correspondre à la formation d'un complexe parfait ($\beta_n > 10^3$);
 - il faut détecter le point équivalent, c'est-à-dire, le volume de ligand introduit pour avoir complexé tous les ions métalliques.

- potentiométrie
- conductimétrie (cf chapitre 5)
- colorimétrie : en présence d'un indicateur coloré
- spectrométrie
- ➤ La formation d'un complexe coloré (absorption dans le visible) permet de suivre l'évolution de sa concentration par mesure d'absorbance.
 - \triangleright Loi de Beer-Lambert : A = $\epsilon I[ML_n]$

