VERİ MADENCİLİĞİ

(Sınıflandırma Yöntemleri)

Yrd.Doç.Dr. Kadriye ERGÜN kergun@balikesir.edu.tr

Genel İçerik

- Veri Madenciliğine Giriş
- Veri Madenciliğinin Adımları
- Veri Madenciliği Yöntemleri
 - Sınıflandırma
 - Kümeleme
 - İlişkilendirme/birliktelik kuralları
- Metin madenciliği
- WEB madenciliği
- Veri Madenciliği Uygulamaları

İçerik

- Sınıflandırma işlemi
 - Sınıflandırma tanımı
 - Sınıflandırma uygulamaları
- Sınıflandırma yöntemleri
 - Karar ağaçları
 - Yapay sinir ağları
 - Bayes sınıflandırıcılar
 - Bayes ağları

Sınıflandırma (Classification)

- Sınıflandırma (classification) problemi:
 - nesnelerden oluşan veri kümesi (öğrenme kümesi): D={t₁,t₂,...,t_n}
 - her nesne niteliklerden oluşuyor, niteliklerden biri sınıf bilgisi
- Sınıf niteliğini belirlemek için diğer nitelikleri kullanarak bir model bulma
- Öğrenme kümesinde yer almayan nesneleri (test kümesi) mümkün olan en iyi şekilde doğru sınıflara atamak
- sınıflandırma=ayrık değişkenler için öngörüde (prediction) bulunmak.

Sınıflandırma (Classification)

- Amaç: Yeni bir kayıt geldiğinde, bu kaydı geliştirilen modeli kullanılarak mümkün olduğunca doğru bir sınıfa atamak.
 - verinin dağılımına göre bir model bulunur
 - bulunan model, başarımı belirlendikten sonra niteliğin gelecekteki
 - ya da bilinmeyen değerini tahmin etmek için kullanılır
 - model başarımı: doğru sınıflandırılmış sınama kümesi örneklerinin oranı
- Veri madenciliği uygulamasında:
 - ayrık nitelik değerlerini tahmin

- etmek: sınıflandırma
- sürekli nitelik değerlerini tahmin etmek: öngörü

- Sınıflandırma: hangi topun hangi sepete koyulabileceği
- Öngörü: Topun ağırlığı

Danışmanlı & Danışmansız Öğrenme

- Danışmanlı (Gözetimli, Supervised) öğrenme= sınıflandırma
 - Sınıfların sayısı ve hangi nesnenin hangi sınıfta olduğu biliniyor.

- Danışmansız (Gözetimsiz, Unsupervised) öğrenme= kümeleme (clustering)
 - Hangi nesnenin hangi sınıfta olduğu bilinmiyor. Genelde sınıf sayısı bilinmiyor.

Sınıflandırma Uygulamaları

- Kredi başvurusu değerlendirme
- Kredi kartı harcamasının sahtekarlık olup olmadığına karar verme
- Hastalık teşhisi
- Ses tanıma
- Karakter tanıma
- Gazete haberlerini konularına göre ayırma
- Kullanıcı davranışları belirleme

Sınıflandırma için Veri Hazırlama

- Veri dönüşümü:
 - Sürekli nitelik değeri ayrık hale getirilir
 - Normalizasyon ([-1,...,1], [0,...,1])
- Veri temizleme:
 - gürültüyü azaltma
 - gereksiz nitelikleri silme

Sınıflandırma İşlemi

- Sınıflandırma işlemi üç aşamadan oluşur:
 - 1. Model oluşturma
 - 2. Model değerlendirme
 - 3. Modeli kullanma

Sınıflandırma İşlemi: Model Oluşturma

- 1. Model Oluşturma:
 - Her nesnenin sınıf etiketi olarak tanımlanan niteliğinin belirlediği bir sınıfta olduğu varsayılır
 - Model oluşturmak için kullanılan nesnelerin oluşturduğu veri kümesi öğrenme kümesi olarak tanımlanır
 - Model farklı biçimlerde ifade edilebilir
 - IF THEN ELSE kuralları ile
 - Karar ağaçları ile
 - Matematiksel formüller ile

Sınıflandırma İşlemi: Model Değerlendirme

- 2. Model Değerlendirme:
- Modelin başarımı (doğruluğu) sınama kümesi örnekleri kullanılarak belirlenir.
- Sınıf etiketi bilinen bir sınama kümesi örneği model kullanılarak belirlenen sınıf etiketiyle karşılaştırılır.
- Modelin doğruluğu, doğru sınıflandırılmış sınama kümesi örneklerinin toplam sınama kümesi örneklerine oranı olarak belirlenir.
- Sınama kümesi model öğrenirken kullanılmaz.

Sınıflandırma İşlemi: Modeli Kullanma

- 3. Modeli kullanma:
 - Model daha önce görülmemiş örnekleri sınıflandırmak için kullanılır
 - Örneklerin sınıf etiketlerini tahmin etme
 - Bir niteliğin değerini tahmin etme

Örnek

Sınıflandırıcı Başarımını Değerlendirme

Doğru sınıflandırma başarısı

- HIZ
 - modeli oluşturmak için gerekli süre
 - sınıflandırma yapmak için gerekli süre
- Kararlı olması
 - veri kümesinde gürültülü ve eksik nitelik değerleri olduğu durumlarda da iyi sonuç vermesi
- Ölçeklenebilirlik
 - büyük miktarda veri kümesi ile çalışabilmesi
- Anlaşılabilir olması
 - kullanıcı tarafından yorumlanabilir olması
- Kuralların yapısı
 - birbiriyle örtüşmeyen kurallar

Sınıflandırma Yöntemleri

- Karar ağaçları (decision trees)
- Yapay sinir ağları (artificial neural networks)
- Bayes sınıflandırıcılar (Bayes classifier)
- Ilişki tabanlı sınıflandırıcılar (association-based classifier)
- k-en yakın komşu yöntemi (k- nearest neighbor method)
- Destek vektör makineleri (support vector machines)
- Genetik algoritmalar (genetic algorithms)
- **-** ...

Karar Ağaçları

- Karar Ağacı
 - Yaygın kullanılan öngörü yöntemlerinden bir tanesidir.
 - Ağaçtaki her düğüm bir özellikteki testi gösterir.
 - Düğüm dalları testin sonucunu belirtir.
 - Ağaç yaprakları sınıf etiketlerini içerir.
- Karar ağacı çıkarımı iki aşamadan oluşur
 - Ağaç inşası
 - Başlangıçta bütün öğrenme örnekleri kök düğümdedir.
 - Örnekler seçilmiş özelliklere tekrarlamalı olarak göre bölünür.
 - Ağaç Temizleme (Budama) (Tree pruning)
 - Gürültü ve istisna kararları içeren dallar belirlenir ve kaldırılır.
- Karar ağacı kullanımı: Yeni bilinmeyen örneğin sınıflandırılması
 - Bilinmeyen örneğin özellikleri karar ağacında test edilerek sınıfı bulunur.

Bir Kredi Kartı Kampanyasında Yeni Bir Örneğin Sınıflandırılması

Karar Ağacı Yöntemleri

- Karar ağacı oluşturma yöntemleri genel olarak iki aşamadan oluşur:
 - 1. ağaç oluşturma
 - en başta bütün öğrenme kümesi örnekleri kökte
 - seçilen niteliklere bağlı olarak örnek yinelemeli olarak bölünüyor.
 - 2. ağaç budama
 - öğrenme kümesindeki gürültülü verilerden oluşan ve sınama kümesinde hataya neden olan dalları silme (sınıflandırma başarımını artırır)

Karar Ağacı Oluşturma

- Yinelemeli işlem
 - ağaç bütün verinin oluşturduğu tek bir düğümle başlıyor
 - eğer örnekleri hepsi aynı sınıfa aitse düğüm yaprak olarak sonlanıyor ve sınıf etiketini alıyor
 - eğer değilse örnekleri sınıflara en iyi bölecek olan nitelik seçiliyor
 - işlem sona eriyor
 - örneklerin hepsi (çoğunluğu) aynı sınıfa ait
 - örnekleri bölecek nitelik kalmamış
 - kalan niteliklerin değerini taşıyan örnek yok

Örnekleri En İyi Bölen Nitelik Hangisi?

- Bölmeden önce:
 - 10 örnek C0 sınıfında
 - 10 örnek C1 sınıfında

En iyi Bölme Nasıl Belirlenir?

- "Greedy" (aç gözlü)yaklaşım
 - çoğunlukla aynı sınıfa ait örneklerin bulunduğu düğümler tercih edilir
- Düğümün kalitesini ölçmek için bir yöntem

```
C0: 5
C1: 5

Kalitesi düşük

C0: 9
C1: 1

kalitesi yüksek
```

En İyi Bölen Nitelik Nasıl Belirlenir?

- İyilik Fonksiyonu (Goodness Function)
- Farklı algoritmalar farklı iyilik fonksiyonları kullanabilir:
 - bilgi kazancı (information gain): ID3, C4.5
 - bütün niteliklerin ayrık değerler aldığı varsayılıyor
 - sürekli değişkenlere uygulamak için değişiklik yapılabilir
 - gini index (IBM IntelligentMiner)
 - her nitelik ikiye bölünüyor
 - her nitelik için olası bütün ikiyi bölünmeler sınanıyor

Bilgi / Entropi

p₁, p₂,..., p_s toplamları 1 olan olasılıklar. Entropi (Entropy)

$$H(p_1, p_2,..., p_s) = -\sum_{i=1}^{s} p_i \log(p_i)$$

- Entropi rastgeleliği, belirsizliği ve beklenmeyen durumun ortaya çıkma olasılığını gösterir.
- Sınıflandırmada
 - olayın olması beklenen bir durum
 - entropi=0

Entropi

- örnekler aynı sınıfa aitse entropi=0
- örnekler sınıflar arasında eşit dağılmışsa entropi=1
- örnekler sınıflar arasında rastgele dağılmışsa 0<entropi<1

Örnek

- S veri kümesinde 14 örnek: C0 sınıfına ait 9, C1 sınıfına ait 5 örnek.
- Entropi

$$H(p_1, p_2,..., p_s) = -\sum_{i=1}^{s} p_i \log(p_i)$$

•
$$H(p_1,p_2) = -(9/14) Log_2 (9/14) - (5/14) Log_2 (5/14)$$

= 0.940

Bilgi Kazancı (ID3 / C4.5)

- Bilgi kuramı kavramlarını kullanarak karar ağacı oluşturulur. Sınıflandırma sonucu için en az sayıda karşılaştırma yapmayı hedefler.
- Ağaç bir niteliğe göre dallandığında entropi ne kadar düşer?
- A niteliğinin S veri kümesindeki bilgi kazancı

$$Gain(S, A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|Sv|}{|S|} Entropy(S_v)$$

Values(A), A niteliğinin alabileceği değerler, S_v , A=v olduğu durumda S'nin altkümesi.