CHEM 554 Organic Spectroscopy Unknown G554 JV21.04

By: Alexie Clover

MW: 156

Formula: C₁₀H₂₀O

Degree of Unsaturation: 1º

cm ⁻¹	Functional group and type of vibration	
3227	O-H stretching	
2926 and 2917	sp ³ C-H stretching	
1455	Methylene bending absorbance	
1365	Methyl bending absorbance	
1042 and 1024	C-O stretches of alcohols	

As you can see there are no absorbances from $\sim 2700 - 1455$ cm⁻¹

- This tells me I must have a ring to account for the 1 degree of unsaturation

We know:

- Carbons a, b, e, and f are CH's
- Carbons c, d, and g are CH₂'s
- Protons 3, 4, and 5
 are CH₂'s
- Carbons h, I, and j are CH₃'s

FIGURE 7.9 Vicinal couplings in cyclohexane derivatives.

3.7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0 0.9 0.8 0.7 0.6 f1_(ppm)

Peaks

ppm Hz Intensity 2.01 1004.3 408.7 2.01 1002.2 357.8 2.00 1000.4 621.4 2.00 998.2 698.1 1.99 996.3 286.1

1.99 994.3 411.4 1.99 992.2 388.2

1.98 990.1 349.8

1.98 988.4 688.8

1.97 986.2 658.4

1.97 984.3 320.4

1.97 982.3 390.5

2.00

1.95

2.05

1.80

1.75

1.70

1.65

1.60

1.55

1.80

1.75

1.70

1.65

1.60

1.55

I'm going to skip signals 6 & 7 to the proton signal of 8.

Peaks

ppm Hz Intensity

1.16 580.5 415.4

1.16 577.4 690.7

1.15 574.3 356.9

1.14 570.4 412.9

1.14 567.9 874.0

1.13 565.1 1122.3

1.12 562.0 463.0

1.12 558.2 538.6

1.11 555.1 972.2

1.10 552.0 509.1

8

Signal	δ (ppm)	Multiplicity	Integration	Coupling constant (Hz)	Conclusion	H ₃ C ^h CH _o
2	2.20	Heptet of doublets	1	J = 7 and 2.9	CH-CH-isopropyl	CH_3
11	0.95	d	3	J = 7	CH ₃ -CH	CH ₃ , 14
12	0.93	d	3	J = 6.5	CH ₃ -CH	$ \mathbf{U} \mathbf{\Pi}_{3}$
14	0.83	d	3	J = 7	CH ₃ -CH	i ¹ 11
—1.04 —1.03	101 71	960		10.90 88 0 \ 88 0 \ 88 0 \ 88 0 \ 88 0 \ 88 0 \	Peaks ppm Hz Intensity 0.84 421.0 12980.4 0.83 414.0 12247.2	11 12 14
		Peaks ppm Hz Intensity 0.96 479.5 13215.0 0.95 472.5 13103.4	0.9	Peaks m Hz Intensity 4 471.3 11409.2 3 464.8 11797.1	14	j —
	-28		#	131-	-5.89	i h

1.04 1.02 1.00 0.98 0.96 0.94 0.92 0.90 0.88 0.86 0.84 0.82 0.80 0.78 0.76 0.74

f2 (ppm)

1.05 1.04 1.03 1.02 1.01 1.00 0.99 0.98 0.97 0.96 0.95 0.94 0.93 0.92 0.91 0.90 0.89 0.88 0.87 0.86 0.85 0.84 0.83 0.82 0.81

 $f1_{(ppm)}$

81.200 95.75%

82.200 41.63%

m/z (Da)

83.200 14.48% 94.200 84.200 7.74%

55.200 51.37%

67.200 42.14%

68.200 14.93%

70.200 15.27%

95.200 84.82%

123.200 40.23%

124.200 4.03%

130

120

109.200

15.07%

107.200 0.50% 111.200 1.90%

110

138.200 21.40%

137.300 1.04% 1.04% 1.04%

140

Thank you for listening!
Any questions?

References

Pavia, D.; Lampman, G.; Kriz, G.; Vyvyan, J. Introduction to Spectroscopy, Fifth Edition.; Cengage learning, 2015. http://dl.iranchembook.ir/ebook/organic-chemistry-2753.pdf