Introduction à l'algorithmique - première partie -

Marian SCUTURICI

Analyse d'un algorithme

• Exemple : calculer la somme de n premiers entiers positifs $\sum_{i=1}^{n} i$

Coût: 1+1+(n-1)*3+1=3*n

Analyse d'un algorithme

Calculer la somme de n premiers entiers positifs

```
1 Procédure somme(n, sum)
Entrée : entier n
Sortie : entier sum
2 début
3 sum \leftarrow n*(n+1);
4 sum \leftarrow sum/2;
```

Coût:? Coût:2 2 << 3*n!

Analyse d'un algorithme

- Paramètres de qualité
 - Algorithme correct !!! éventuellement :
 - Pseudo-correct
 - Approximatif
 - Analyse du coût temporel (complexité)
 - Analyse du coût mémoire

Analyse du temps de calcul

- Basée sur le nombre d'instructions exécutées par un algorithme par rapport aux paramètres en entrée
 - Fonction f(entrée)
 - Exemples :
 - 3*n+1
 - 24
 - 2*n+m+p
- Problème : comment comparer ces fonctions ?

Notation ⊕

 Donne un ordre de grandeur pour le temps d'exécution d'un algorithme

Notation Θ

D'une manière formelle :

$$\Theta(g(n)) = \{ f(n) | \exists c_1, c_2 > 0, n_0 \in \mathbb{N} \text{ telles que}$$

$$0 \le c_1 * g(n) \le f(n) \le c_2 * g(n), \forall n \ge n_0 \}$$

Convention

si
$$f(n) \in \Theta(g(n))$$
 alors $f(n) = \Theta(g(n))$

Exemple

$$\frac{1}{2} * n^2 - 3 * n = \Theta(n^2)$$

Il faut trouver c₁, c₂, n₀ telles que :

$$c_1 * n^2 \le \frac{1}{2} * n^2 - 3 * n \le c_2 * n^2, \forall n \ge n_0$$

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

$$c_1 = \frac{1}{14}$$
, $c_2 = \frac{1}{2}$ et $n_0 = 7$

Exemple

$$6*n^3 \neq \Theta(n^2)$$

• Si c₂, n₀ existent tel que :

$$6*n^3 \le c_2*n^2$$

• alors:

$$n \leq \frac{c_2}{6}$$

Impossible ! (c₂ constante)

Notation Θ

• Propriétés :

```
\begin{aligned} &\textit{transitivit\'e}: f(n) = \Theta(g(n)) \land g(n) = \Theta(h(n)) \Rightarrow f(n) = \Theta(h(n)) \\ &\textit{r\'eflexivit\'e}: f(n) = \Theta(f(n)) \\ &\textit{sym\'etrie}: f(n) = \Theta(g(n)) \Leftrightarrow g(n) = \Theta(f(n)) \end{aligned}
```

Exemples

$$2 + 15 = \Theta(1)$$

$$2n + 1 = \Theta(n)$$

$$n^{2} - 2n + 1 = \Theta(n^{2})$$

$$\sum_{i=0}^{k} c_{i} * n^{i} = \Theta(n^{k})$$

$$2^{n} + n^{2} = \Theta(2^{n})$$

Exercices

Quelle complexité (Θ) pour :

$$n^{3} + 8 * n^{5} - 2n + 1$$

$$n^{3} + n! + 12$$

$$n^{2} + m^{3} + p$$

$$\log(n) * n^{2} + n^{3}$$

$$\log(n) + \log(n^{2})$$

$$\log(n) * \log(n) * n^{2} + 2^{n}$$

$$2^{n} + 2^{4*n} + n^{2}$$

 $n! \sim \sqrt{2\pi n} \Big(rac{n}{c}\Big)^n$

Conception d'un algorithme

• Objectif: trouver des algorithmes avec un Θ le plus petit ...

$$\Theta(1) < \Theta(\log(n)) < \Theta(n) < \Theta(n * \log(n)) < \dots$$

$$< \Theta(n^2) < \dots < \Theta(n^k) < \dots < \Theta(2^n) < \dots$$

• Problème : souvent très difficile de trouver Θ !

Notation O

• Version moins stricte que la notation Θ

Notation O

• D'une manière formelle :

$$\mathcal{O}(g(n)) = \{ f(n) | \exists c > 0, n_0 \in \mathbb{N} \text{ telles que}$$
$$0 \le f(n) \le c * g(n), \forall n \ge n_0 \}$$

Convention

$$\mathsf{si}\ f(n) \in \mathcal{O}(g(n))$$
 alors $f(n) = \mathcal{O}(g(n))$

Exemples

$$n^3 - 2n + 1 = \mathcal{O}(n^3)$$

Mais aussi:

$$n^3 - 2n + 1 = \mathcal{O}(2^n)$$

Propriétés

si un algorithme à une complexité $\Theta(f(n))$, alors il est aussi de complexité $\mathcal{O}(f(n))$, mais la réciproque n'est pas valable.

Exercices

Vrai ou faux ?

A
$$n^3 + 8 * n^2 - 2n + 1 = \mathcal{O}(n^4)$$

B $n^3 + 8 * n^2 - 2n + 1 = \mathcal{O}(n^3)$
C $n^3 + 8 * n^2 - 2n + 1 = \mathcal{O}(n^2)$
D $n^3 + 8 * n^2 - 2n + 1 = \mathcal{O}(2^n)$

Exercices

Vrai ou faux ?

A
$$n^2 + m^3 + p = \mathcal{O}(2^n)$$

B $n^2 + m^3 + p = \mathcal{O}(n^2 + m^4 + p * \log(p))$
C $n^2 + m^3 + p = \mathcal{O}(2^n + 2^m + 2^p)$
D $n^2 + m^3 + p = \mathcal{O}(n^2 * m^3 * p)$

Notation Ω

• Version moins stricte que la notation Θ

Notation Ω

• D'une manière formelle :

$$\Omega(g(n)) = \{ f(n) | \exists c > 0, n_0 \in \mathbb{N} \text{ telles que} \}$$
$$0 \le c * g(n) \le f(n), \forall n \ge n_0 \}$$

Exemples

$$n^3 + 8 * n^2 - 2n + 1 = \Omega(n^3)$$

Mais aussi:

$$n^3 + 8 * n^2 - 2n + 1 = \Omega(n^2)$$

Exercices

Vrai ou faux ?

$$\begin{array}{lll} \mathsf{A} & n^3 + 8 * n^2 - 2n + 1 = \Omega(n^4) \\ \mathsf{B} & n^3 + 8 * n^2 - 2n + 1 = \Omega(n^3) \\ \mathsf{C} & n^3 + 8 * n^2 - 2n + 1 = \Omega(n^2) \\ \mathsf{D} & n^3 + 8 * n^2 - 2n + 1 = \Omega(2^n) \end{array}$$

Exercices

Vrai ou faux ?

$$\begin{array}{ll} \mathsf{A} & n^2+m^3+p=\Omega(2^n) \\ \mathsf{B} & n^2+m^3+p=\Omega(n^2+m^4+p*\log(p)) \\ \mathsf{C} & n^2+m^3+p=\Omega(2^n+2^m+2^p) \\ \mathsf{D} & n^2+m^3+p=\Omega(n+m+p) \end{array}$$

Différents ordres de complexité ...

			Input size n					
Function $f(n)$			$5^2 = 25$	$5^3 = 125$	$5^4 = 625$			
Constant	1	1	1	1	1			
Logarithmic	$\log_5 n$	1	2	3	4			
Linear	n	1	5	25	125			
Linearithmic	$n\log_5 n$	1	10	75	500			
Quadratic	n^2	1	$5^2 = 25$	$5^4 = 625$	$5^6 = 15,625$			
Cubic	n^3	1	$5^3 = 125$	$5^6 = 15,625$	$5^9 = 1,953,125$			
Exponential	2^n	1	$2^{20}pprox 10^6$	$2^{120}pprox 10^{36}$	$2^{620}pprox 10^{187}$			

Différents ordres de complexité ...

n f(n)	$\lg n$	n	$n \lg n$	n^2	2^n	n!
10	$0.003~\mu s$	$0.01~\mu s$	$0.033~\mu s$	$0.1~\mu s$	$1 \mu s$	3.63 ms
20	$0.004~\mu s$	$0.02~\mu s$	$0.086 \mu s$	$0.4~\mu s$	1 ms	77.1 years
30	$0.005~\mu s$	$0.03~\mu s$	$0.147 \mu s$	$0.9 \mu s$	1 sec	$8.4 \times 10^{15} \mathrm{yrs}$
40	$0.005 \ \mu s$	$0.04~\mu s$	$0.213 \ \mu s$	$1.6 \mu s$	18.3 min	
50	$0.006~\mu s$	$0.05~\mu s$	$0.282~\mu s$	$2.5 \mu s$	13 days	
100	$0.007 \ \mu s$	$0.1~\mu s$	$0.644 \mu s$	10 μs	$4 \times 10^{13} \text{ yrs}$	
1,000	$0.010 \ \mu s$	$1.00~\mu s$	9.966 μs	1 ms	15/8	
10,000	$0.013 \ \mu s$	$10 \mu s$	$130 \mu s$	100 ms		
100,000	$0.017 \ \mu s$	0.10 ms	1.67 ms	10 sec		
1,000,000	$0.020 \ \mu s$	1 ms	19.93 ms	16.7 min		
10,000,000	$0.023~\mu s$	0.01 sec	0.23 sec	1.16 days		
100,000,000	$0.027 \ \mu s$	0.10 sec	2.66 sec	115.7 days		
1,000,000,000	$0.030 \ \mu s$	1 sec	29.90 sec	31.7 years		

Dominance asymptotique

$$f(n) \gg g(n) \operatorname{si}: \lim_{n\to\infty} g(n)/f(n) = 0$$

$$n! \gg 2^n \gg n^3 \gg n^2 \gg n \log n \gg n \gg \log n \gg 1$$

Un détail concernant la complexité ...

• Les différents mesures (Θ , Ω , O) sont utiles pour des valeurs (très) importantes de différents paramètres d'entrée !

- Il est possible que le choix du n_0 soit critique ...

Rappel

- Un algorithme a une bonne qualité si :
 - Il est correct
 - Il a une « bonne » complexité temporelle
 - Mesurée avec les notations O ou Θ
 - Il a un coût mémoire « raisonnable »

?

Tableaux

• Déclaration :

type-elem nom-tableau[d..f]

• Exemple :

Déclaration: entier tab1[1..10]

réel tab2[12..44]

• Accès à un élément :

vec[1]

Chaîne de caractères

Déclaration: car chaine[0..1024]

Exemple – min(tableau)

```
Procédure min(vec, result)

Entrée : entier[1..taille] vec

Sortie : entier result, correspondant à min(vec[1], vec[2], ..., vec[taille])

Précondition : taille \geq 1

Postcondition : result \in vec

début

result \leftarrow vec[1];

pour i \leftarrow 2; i \leq taille; i \leftarrow i+1 faire

si \ vec[i] < result \ alors

result \leftarrow vec[i];
```

Coût:? Complexité:?

Problème - Fibonacci

Complétez l'algorithme ...

Fibonacci

```
1 Procédure fibonacci(n, fibo)
       Entrée
                         : entier n
                   : entier fibo[0..n]
       Sortie
       Précondition : n \ge 1
       Postcondition : fibo[0] = 1
                           fibo[1] = 1
                           fibo[n] = fibo[n-1] + fibo[n-2], \forall n \geq 2
       Déclaration
                         : entier i
       début
2
            fibo[0] \leftarrow 1
3
            fibo[1] \leftarrow 1
4
           i \leftarrow 1
5
            tant que i < n faire
6
            // invariant : \forall j \in [2..i], \ fibo[j] = fibo[j-1] + fibo[j-2] i \leftarrow i+1 fibo[i] \leftarrow fibo[i-1] + fibo[i-2]
7
8
```

Coût:?

Complexité:?

Problème - Crible d'Eratosthène

- 2345678910111213141516171819
 2021222324252627282930
- 2 3 4-5 6-7 8-9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
- 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
- 2 3 4-5 6-7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
- 2 3 5 7 11 13 17 19 23 29

Crible d'Eratosthène

```
Procédure crible(n, crible)
```

Entrée : entier n

Sortie : logique crible[1..n]

Précondition : $n \ge 2$

Postcondition: pour tout $i \in [1..n]$, crible[i] = vrai ssi i est un nombre premier

Déclaration : entier i, j

Crible d'Eratosthène

```
1 Procédure crible(n, crible)
      Entrée
                     : entier n
                     : logique crible[1..n]
      Sortie
      Précondition : n \geq 2
      Postcondition: pour tout i \in [1..n], crible[i] = vrai ssi i est un nombre premier
      Déclaration : entier i, j
      début
2
          pour (i \leftarrow 1; i \leq n; i \leftarrow i + 1 faire
3
           crible[i] \leftarrow vrai
4
          pour (i \leftarrow 2; i < n; i \leftarrow i+1) faire
5
              \operatorname{si} \operatorname{crible}[i] alors
```

Coût:?

Complexité:?

Crible d'Eratosthène

Complexité :

$$n * (1 + 1/2 + 1/3 + 1/5 + \ldots + 1/n)$$

• mais:

$$\lim_{n \to +\infty} \left(\sum_{p \le n} \left(\frac{1}{p}\right) - \log\log(n)\right) = M$$

$$M = 0.26147\dots$$

• donc:

$$\mathcal{O}(n * \log \log(n))$$

?

Problème

- Proposez un algorithme pour calculer l'aire de l'intersection de deux intervalles [a1; b1] et [a2; b2].
 - a1; b1; a2; b2 sont des nombres réels, et le résultat est un réel.

- Le même problème pour l'aire de l'intersection des deux ensembles d'intervalles (n et m).
 - complexité ?