

Protocol & MAC (Medium Access
Control)

Name: Chong-Kwon Kim

2

Protocol

- Communications involve with two or more devices
- Suppose A and B communicate each other
 - Should A and B use the same program?
 - If A and B use Windows and Linux OS, respectively, how they communicate?
- Note that communication is exchanges of messages (packets)
- Protocol
 - Rules that communicating entities should abide to understand and properly process messages received
 - Protocol specifies the meaning (semantics) and syntax of messages
 - And timing of messages

Korea Institute of Energy Technology

3

Protocol – Example 1

• Error detection

- Communication links are not 100 % reliable
- Errors may change, add, delete bits in the original message
- An Internet bank user C requests to transfer \$100 from account A1 to
- If the first bit is changed to 1, then you transfer \$228

- How do you detect errors?
 - There are many solutions
 - Parity bit
 - One's complement addition
 - CRC

Korea Institute of Energy Technology

Protocol – Example 2

• We need to agree

- Use the same method (Algorithm)
- How to apply the method
- How to represent additional data

Assume we agreed to

- 1. Even parity bit
- 2. Apply parity to every bytes
- 3. Attach parity bits to the end of the original message as a byte stream

Korea Institute of Energy Technology

5

Layered Architecture

• Layered architecture

- Keep the interaction simple

Korea Institute of Energy Technology

Taxonomy of Medium Access Methods

- Sharing of wired/wireless multi-point links
 - MAC protocols can be considered as distributed ATDM

7

Contention Based Method

- Every station is a peer
 - No master-slave relation
- Fully distributed, non-coordination method
 - Judge & behave based on locally available information
- Stations use care not to interfere others
 - But should be aggressive to earn the fair share
- o Collisions still can occur

Korea Institute of Energy Technology

ALOHA - 1

- Developed by Abramson in 1970
- Implemented and used at the Univ. of Hawaii

9

ALOHA - 2

- Transmit a frame and check if the frame is transmitted correctly
 - ACK
 - Retransmit in case of no ACK
- Examples of Success & Collision

Korea Institute of Energy Technology

ALOHA - Performance Analysis

Tfr = 1(unit time)

- Frame A during [t, t+1]is success if
 - No attempt in (t-1, t) &&(t, t+1)

- n stations each with p attempt rate
- Total attempt rate = $n \cdot p$
- → A frame sent at time t is successful if only one attempt in (t, t+1) and no attempt in (t-1, t)
- Binomial distribution, Bin(x; n, p) = ${}_{n}C_{x} \cdot p^{x} \cdot (1-p)^{n-x}$

P(success) = b(1; n, p)·b(0; n, p) =
$${}_{n}C_{1} p(1-p)^{n-1} \cdot {}_{n}C_{0} (1-p)^{n}$$

= $n \cdot p \cdot (1-p)^{2n-1}$

Korea Institute of Energy Technology

11

ALOHA – Performance Analysis

• Note b(x; n, p) \approx Po(x; G) where G = n·p if n is large and p is small

The throughput for pure ALOHA is $S = G \times e^{-2G}$. The maximum throughput $S_{max} = 0.184$ when G = (1/2)

What happens if G=n·p is too small OR too large?

Korea Institute of Energy Technology

12

ALOHA - 3

• Procedure

Korea Institute of Energy Technology

13

Slotted ALOHA

- Problem with Pure (Unslotted) Aloha
 - An attempt may be interfered by later attempts
 - Vulnerable time is long

Korea Institute of Energy Technology

14

Time Synchronization

Slots

• A station, that has a packet to send, waits until the next slot

- A slot is either Idle, Success or Collision
 - Idle: No arrival during the previous slot time
 - Success: Exactly one arrival
 - Collision: More than one arrival

Korea Institute of Energy Technology

Performance of Slotted Aloha

- A slot is successful if
 - There is exactly one attempt during the previous slot
- Pr(1 arrival in a unit time) = G×e-G

Korea Institute of Energy Technology

17

IEEE 802.11 WLAN Standard

• IEEE 802.11 a/b/g

20

Korea Institute of Energy Technology

802.11 PHY - 1

- o 802.11 1997
 - Three physical layer specifications operating at 1 and 2 Mbps
- Two additional parts in 1999 802.11a and 802.11b
- o IEEE 802.11b
 - 2.4-GHz band at 5.5 and 11 Mbps
 - Complementary code keying (CCK) modulation
 - Input data treated in blocks of 8 bits at 1.375 MHz
 - 8 bits/symbol × 1.375 MHz = 11 Mbps

Korea Institute of Energy Technology

21

802.11 PHY - 2

- **o** 802.11a
 - 5-GHz band up to 54 Mbps
 - Uses orthogonal frequency division multiplexing (OFDM)
 - Multiple carrier signals at different frequencies
 - Data rates 6, 9, 12, 18, 24, 36, 48, and 54 Mbps
- o IEEE 802.11g (2002)
 - Extends IEEE 802.11b to higher data rates
 - Combines 802.11a and b

- IEEE 802.11n (2006)
 - 100 Mbps

- > Gbps, mmWAVE

Korea Institute of Energy Technology

22

Transmission Rates

AMC: Adaptive Modulation & Coding

Learn: Performance Anomaly Problem

Table 4 Comparative Ranges in an Open Indoor Office Environment Through Cubicle Walls

Data Rate (Mbps)	802.11a (40 mW with 6 dBi gain diversity patch antenna) Range	802.11g (30 mW with 2.2 dBi gain diversity dipole antenna)	802.11b (100 mW with 2.2 dBi gain diversity dipole antenna)
54	45 ft (13 m)	90 ft (27 m)	
48	50 ft (15 m)	95 h (29 m)	E-1
36	65 ft (19 m)	100 ft (30 m)	
24	85 ft (26 m)	140 ft (42 m)	(8)
18	110 ft (33 m)	180 ft (54 m)	168
12	130 ft (39 m)	210 ft (64 m)	F
11	-	160 ft (48 m)	160 ft (48 m)
9	150 ft (45 m)	250 ft (76 m)	CES
6	165 ft (50 m)	300 ft (91 m)	153
5.5	ST.	220 ft (67 m)	220 ft (67 m)
2	2	270 ft (82m)	270 ft (82m)
1	E#	410 ft (124 m)	410 ft (124 m)

23

Topology

• Infrastructure Mode

- All packets pass through the Access Point (AP)
- No direct communications between Mobile Stations (MS, or client/host)

• Ad-hoc mode

- Peer-to-peer (station-to-station) direct communications

(a) Infrastructure Wirelese LAN

Korea Institute of Energy Technology

IEEE 802.11 - BSS / ESS

- Smallest building block is Basic Service Set (BSS)
 - One AP and multiple stations
 - Compete to access the same shared wireless medium
 - BSSID (= MAC addr. of the AP)
- ESS (Extended Service Set)
 - Two or more BSSes interconnected by DS
 - Appears as a single logical LAN to LLC
- O AP
 - Logic within station that provides access to DS
 - Provides DS services in addition to acting as station
- Portal
 - Integrate IEEE 802.11 architecture with wired LAN

Korea Institute of Energy Technology

25

Wireless Links

- Abrupt degradation of signal strength
 - → Large error rate
 - → Carrier sense?
 - → Collision detection

SNU SCONE lab.

Korea Institute of Energy Technology

Collision Detection

- In wired links, we can be almost sure that a frame is delivered successfully in case of no collision
 - → ACK is not necessary if CD is equipped
- Wireless CD is impossible. Why???

Korea Institute of Energy Technology

27

27

Reliability & ACK

- 1. How do you know a frame is successfully transmitted?
 - → Use ACK

2. No ACK → Retransmission

ACK should be transmitted before any other frames How??

How about SWS?

Korea Institute of Energy Technology

Carrier Sensing

• Wired links,

CS: Channel Status
Strength and quality of signal and noise

Transmitter's CS ≈ Receiver's CS ≈ Others' CS

• Wireless links,

Transmitter's CS >> Receiver's CS >> Others' CS

The other thinks the medium is clear and starts to transmit

• How do you know the receiver's channel status?

Korea Institute of Energy Technology

29

Hidden / Exposed Terminal

- o Hidden Terminal Problem
 - C cannot sense B→A transmission and attempts to send a frame

- Exposed Terminal Problem
 - C can send to D without disturbing A→B transmission
 - However, C thinks the medium is busy

Korea Institute of Energy Technology

RTS/CTS & Virtual CS

- Request To Send (RTS) & Clear To Send (CTS)
 - Short control frames that specifies the intention to transmit (RTS) and willingness to receive (CTS)
- Specifies the remaining time of the transaction in RTS/CTS frames
- Network Allocation Vector(NAV)

31

RTS/CTS & Hidden Terminal

• RTS/CTS can mitigate the hidden terminal problem

How long should you wait before sending your frame?

Korea Institute of Energy Technology

RTS/CTS & Exposed Terminal

RTS/CTS exchange cannot solve the exposed terminal problem

Korea Institute of Energy Technology

33

Atomicity

- DATA & Control frames
 - ACK, RTS, CTS
- Atomic transaction
 - Transmissions including both DATA and its ACK
 - RTS-CTS-DATA-ACK
- How to guarantee Atomicity?
 - Use different CS (Carrier Sense) time

Korea Institute of Energy Technology

Inter-Frame Space (IFS)

- Importance of ACK > Data
- How to prioritize ACK transmissions?
- IFS: Minimum time that the medium should be idle to trigger frame transmission
- o SIFS (short IFS):
 - For all immediate response actions (CTS, ACK, Poll response)
- DIFS (distributed coordination function IFS):
 - Used as minimum delay for DATA, RTS frames contending for access
- PIFS (point coordination function IFS):
 - Used by the centralized controller in PCF scheme when issuing polls
- If SIFS < DIFS, then data frames cannot intervene DATA-ACK transaction

Korea Institute of Energy Technology

35

DCF Design

- First Carrier Sensing
 - A new Data frame arrives and the first Carrier Sensing
- First CS = IDLE
 - Should wait at least DIFS to protect ACK, CTS and etc
- First CS = BUSY
 - Should wait extra in addition to DIFS
 - The extra waiting time should be randomized
- Transmission result
 - Success or Collision
- In the case of collision, should reduce attempt rate, repeatedly
 - → How??

Korea Institute of Energy Technology

36

BEB (Binary Exp. Backoff)

• Collision = Overloaded

- Contention Window (CW)
- Backoff delay = Random (0 .. CW)
- At the beginning, CW = CWmin
- For each unsuccessful transmission, double CW up to CW_{max}

Korea Institute of Energy Technology

Korea Institute of Energy Technology

39

Korea Institute of Energy Technology

AP Discovery

- To use AP
 - 1. Discovery
 - 2. Authentication
 - 3. Association
- Scan
 - Discover APs in transmission range
 - Active scan, Passive scan
- Passive scan
 - Clients listen for "Beacon" frames that AP transmits periodically
- Active scan
 - Clients probe APs by sending "Probe request" frames
 - AP replies with "Probe response" frame
 - "Probe response" frame is approximately same as a Beacon frame

Korea Institute of Energy Technology

41

Power Saving

- Energy is a scarce resource in battery powered devices
- Network interfaces consume sizable amount of energy

How to Conserve Energy?

- Turn off idle network interfaces
- PSM (Power Saving Mode)
 - Sleep state
 - Listen
- To sleep
 - Signals to the AP not to send frames
- How to resume communication (Wakeup)?
 - Transmission (Station → AP)
 - Reception (AP → Station)

Korea Institute of Energy Technology

42

AP transmits beacons every beacon interval (~100msec)

- Defer if channel is busy
- All PS nodes wake up for beacon reception

TIM(Traffic Indication Map)

- Indicate the existence of backlogged unicast traffic to PS nodes
- PS node may request packet transmission

Broadcast packets are announced by a Delivery TIM(DTIM) and are sent immediately afterwards

- DTIM interval is a multiple of TIM interval

Korea Institute of Energy Technology

43

Delivery in PS Mode

- If TIM indicates frames buffered
 - STA sends PS-Poll to AP and stays awake to receive data

Learn

- U-APSD (Unscheduled Automatic Power Saving Delivery)

Korea Institute of Energy Technology

802.11e QoS

• Priority and Parameterized QoS

- Priority scheme
 - EDCA (Enhanced DCF Channel Access)
 - Four access classes
 - Different CW and AIFS
- Parameterized QoS scheme
 - HCCA(Hybrid Coordination Function Channel Access)
 - PCF based resource allocation

Korea Institute of Energy Technology

45

Access Classes

AC	Description	CW Min.	AIFS
0	Background	15	7
1	Best Effort	15	3
2	Video	7	2
3	Voice	3	2

SNU SCONE lab.

Korea Institute of Energy Technology