Ecualización de histograma

Desarrollo numérico

Procesamiento Digital de Imágenes - FICH, UNL

1. Introducción y definiciones

Este documento ejemplifica la operatoria numérica del método de especificación de histograma, y su caso particular: la ecualización.

Para el resto del documento se consideran las siguientes definiciones y notación:

- \blacksquare n: cantidad de pixeles de una imagen
- p: número de bits de resolución de una imagen.
- L: máximo nivel de gris, dado por el valor de p. Ej: L=256 para p=8.
- k: nivel de gris (número entero), con valores $k = 0, 1, \dots, L 1$.
- \bullet r_k : nivel de gris normalizado a 1 (número flotante), con valores

$$r_k = 0, \frac{1}{2^p - 1}, \frac{2}{2^p - 1}, \dots, 1.$$

 $pr(r_k)$: probabilidad de un nivel de gris en la imagen, calculado según la expresión

$$pr(r_k) = \frac{n_k}{n}$$
.

2. Método

La idea central del proceso es la siguiente:

- 1. Calcular los valores de la transformación s_k sobre los k niveles de la imagen.
- 2. Asignar los valores reales calculados (redondeo) al nivel de gris discreto más cercano.

3. Obtener los valores de los nuevos pixeles mediante la reasignación.

Veamos a continuación el desarrollo del ejemplo.

Consideremos una imagen de tamaño $n=64\times 64=4096$, con p=3 (L=8 niveles de gris).

El primer paso es calcular el histograma, resultando la distribución mostrada a continuación¹:

k	r_k	$pr(r_k)$	n_k
0	0	0,19	790
1	1/7 = 0.14	$0,\!25$	1023
2	2/7 = 0.28	$0,\!21$	850
3	3/7 = 0.42	$0,\!16$	656
4	4/7 = 0.57	0,08	329
5	5/7 = 0.71	0,06	245
6	6/7 = 0.85	0,03	122
7	1	0,02	81

A continuación se ejecuta el paso 1) del algoritmo, aplicando la transformación, para obtener los siguientes valores:

$$s_{0} = T(r_{0}) = \sum_{j=0}^{0} pr(r_{j}) = pr(r_{0}) = 0.19$$

$$s_{1} = T(r_{1}) = \sum_{j=0}^{1} pr(r_{j}) = pr(r_{0}) + pr(r_{1}) = 0.44$$

$$s_{2} = T(r_{2}) = \sum_{j=0}^{2} pr(r_{j}) = pr(r_{0}) + pr(r_{1}) + pr(r_{2}) = 0.65$$

$$s_{3} = T(r_{3}) = \sum_{j=0}^{3} pr(r_{j}) = 0.81$$

$$s_{4} = T(r_{4}) = \sum_{j=0}^{4} pr(r_{j}) = 0.89$$

$$s_{5} = T(r_{5}) = \sum_{j=0}^{5} pr(r_{j}) = 0.95$$

$$s_{6} = T(r_{6}) = \sum_{j=0}^{6} pr(r_{j}) = 0.98$$

$$s_{7} = T(r_{7}) = \sum_{j=0}^{7} pr(r_{j}) = 1$$

 $^{^1\}mathrm{Se}$ trata de una simulación, por lo que damos por válido el histograma, sin tener una imagen real

El paso 2) consiste en asignar los valores anteriores de s_k a los valores más cercanos de grises que conforman la imagen, obteniendo los valores s_{aprox} , a los cuales se asigna la misma cantidad de pixeles iniciales. Este paso permite expresar la idea de que se utiliza a la función s como un paso intermedio en la transformación de la imagen original en la ecualizada. La asignación obtenida es la siguiente:

k	s_k	\rightarrow	s_{aprox}
0	0,19	\rightarrow	0,14 (1/7)
1	0,44	\rightarrow	0,42 (3/7)
2	0,65	\rightarrow	0.71 (5/7)
3	0,81	\rightarrow	0.85 (6/7)
4	0,89	\rightarrow	0.85 (6/7)
5	0,95	\rightarrow	1 (7/7)
6	0,98	\rightarrow	1 (7/7)
7	1	\rightarrow	1 (7/7)

Un punto importante de la ecualización es que en la aproximación se obtienen los nuevos niveles de gris de la imagen de salida, indicados entre paréntesis en la columna s_{aprox} de la tabla anterior. La cantidad de pixeles con los nuevos valores se obtiene simplemente asignando la cantidad original para cada k al nuevo valor obtenido, con los siguientes resultados:

r_k	n	\rightarrow	s_k			
$0\\1/7$	790 1023	\rightarrow \rightarrow	$\frac{1/7}{3/7}$		s_k	n_{nuevo}
$\frac{2}{7}$ $\frac{2}{7}$ $\frac{3}{7}$	850	$\begin{array}{cccc} 850 & \rightarrow & 5/7 \\ 656 & \rightarrow & 6/7 \\ 329 & \rightarrow & 6/7 \end{array}$	$\begin{array}{c} 5/7 \\ 6/7 \end{array} \rightarrow$	\rightarrow	$\frac{1}{7}$ $\frac{3}{7}$	790 1023
4/7	329			$\frac{5}{7}$ $\frac{5}{7}$	850 $656+329=985$	
$\frac{5}{7}$ $\frac{6}{7}$	245 122	$\overset{\rightarrow}{\rightarrow}$	1 1	1 1 .	1	245+122+81=448
1	81	\rightarrow	1			

Finalmente, como paso 3) del algoritmo, procedemos a la reasignación de gris para crear la nueva imagen: recorremos la imagen original y a cada gris lo cambiamos por el valor obtenido de s_{aprox} . Ej: los 790 pixeles anteriormente negros ahora serán de gris 1/7, mientras que los 656 pixeles de gris 3/7 y los 329 de gris 4/7 ahora serán de gris 6/7. De esta manera, creamos la imagen ecualizada respecto a la original.

El histograma resultante es el siguiente:

Como vemos, el histograma obtenido es *aproximado*, pero no exactamente igual al equiprobable buscado, ya que el caso discreto la sumatoria aproxima a la integral continua, introduciendo errores intrínsecos.