CPU Scheduling

Alternating Sequence of CPU and I/O Bursts

CPU Scheduler

- Selects from among the processes in ready queue, and allocates the CPU to one of them
 - Queue may be ordered in various ways
- CPU scheduling decisions may take place when a process:
 - 1. Switches from running to waiting state
 - 2. Switches from running to ready state
 - 3. Switches from waiting to ready
 - 4. Terminates
- Scheduling under 1 and 4 is nonpreemptive
- All other scheduling is preemptive
 - Consider access to shared data
 - Consider preemption while in kernel mode
 - Consider interrupts occurring during crucial OS activities

Dispatcher

- Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves:
 - switching context
 - switching to user mode
 - jumping to the proper location in the user program to restart that program
- Dispatch latency time it takes for the dispatcher to stop one process and start another running

Scheduling Criteria

- **CPU utilization** keep the CPU as busy as possible
- Throughput # of processes that complete their execution per time unit
- Turnaround time amount of time to execute a particular process
- Waiting time amount of time a process has been waiting in the ready queue
- Response time amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment)

Scheduling Algorithm Optimization Criteria

- Max CPU utilization
- Max throughput
- Min turnaround time
- Min waiting time
- Min response time

First-Come, First-Served (FCFS) Scheduling

<u>Process</u>	Burst Time
\overline{P}_1	24
P_{2}^{-}	3
P_3	3

• Suppose that the processes arrive in the order: P_1 , P_2 , P_3 The Gantt Chart for the schedule is:

- Waiting time for $P_1 = 0$; $P_2 = 24$; $P_3 = 27$
- Average waiting time: (0 + 24 + 27)/3 = 17

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:

$$P_2$$
, P_3 , P_1

The Gantt chart for the schedule is:

- Waiting time for $P_1 = 6$; $P_2 = 0$; $P_3 = 3$
- Average waiting time: (6 + 0 + 3)/3 = 3
- Much better than previous case
- Convoy effect short process behind long process
 - Consider one CPU-bound and many I/O-bound processes

Shortest-Job-First (SJF) Scheduling

- Associate with each process the length of its next CPU burst
 - Use these lengths to schedule the process with the shortest time

- SJF is optimal gives minimum average waiting time for a given set of processes
 - The difficulty is knowing the length of the next CPU request
 - Could ask the user

Example of SJF

Process	Burst Time	
P_{1}	6	
P_2	8	
P_3	7	
P_4	3	

SJF scheduling chart

• Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

Example of Shortest-remaining-time-first

Now we add the concepts of varying arrival times and preemption to the analysis

<u>Process</u>	<u>Arrival</u> Time	Burst Time
P_{1}	0	8
P_2	1	4
P_3	2	9
$P_{_{\mathcal{A}}}$	3	5

• Preemptive SJF Gantt Chart

• Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 = 26/4 = 6.5 msec

Priority Scheduling

- A priority number (integer) is associated with each process
- The CPU is allocated to the process with the highest priority (smallest integer ≡ highest priority)
 - Preemptive
 - Nonpreemptive
- SJF is priority scheduling where priority is the inverse of predicted next CPU burst time
- Problem \equiv **Starvation** low priority processes may never execute
- Solution ≡ Aging as time progresses increase the priority of the process

Example of Priority Scheduling

<u>Process</u>	Burst Time	Priority
P_{1}	10	3
P_2	1	1
P_3	2	4
P_4	1	5
P_5	5	2

Priority scheduling Gantt Chart

Average waiting time = 8.2 msec

Round Robin (RR)

- Each process gets a small unit of CPU time (time quantum q), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue.
- If there are *n* processes in the ready queue and the time quantum is *q*, then each process gets 1/*n* of the CPU time in chunks of at most *q* time units at once. No process waits more than (*n*-1)*q* time units.
- Timer interrupts at every quantum to schedule next process
- Performance??
 - *q* large \Rightarrow FIFO
 - q small $\Rightarrow q$ must be large with respect to context switch, otherwise overhead is too high

Example of RR with Time Quantum = 4

<u>Process</u>	<u>Burst Time</u>
P_{1}	24
$\bar{P_2}$	3
P_3^-	3

The Gantt chart is:

- Typically, higher average turnaround than SJF, but better response
- q should be large compared to context switch time
- q usually 10ms to 100ms, context switch < 10 usec

Time Quantum and Context Switch Time

Multilevel Queue

- Ready queue is partitioned into separate queues, eg:
 - foreground (interactive)
 - background (batch)
- Process permanently in a given queue
- Each queue has its own scheduling algorithm:
 - foreground RR
 - background FCFS
- Scheduling must be done between the queues:
 - Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation.
 - Time slice each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR
 - 20% to background in FCFS

Multilevel Queue Scheduling

highest priority

lowest priority

Multilevel Feedback Queue

- A process can move between the various queues; aging can be implemented this way
- Multilevel-feedback-queue scheduler defined by the following parameters:
 - number of queues
 - scheduling algorithms for each queue
 - method used to determine when to upgrade a process
 - method used to determine when to demote a process
 - method used to determine which queue a process will enter when that process needs service

Example of Multilevel Feedback Queue

Three queues:

- $-Q_0$ RR with time quantum 8 milliseconds
- $-Q_1$ RR time quantum 16 milliseconds
- $-Q_2 FCFS$

Scheduling

- A new job enters queue Q_0 which is served FCFS
 - When it gains CPU, job receives 8 milliseconds
 - If it does not finish in 8 milliseconds, job is moved to queue Q_1
- At Q_1 job is again served FCFS and receives 16 additional milliseconds
 - If it still does not complete, it is preempted and moved to queue Q_2

Multilevel Feedback Queues

Thread Scheduling

- Distinction between user-level and kernel-level threads
- When threads supported, threads scheduled, not processes
- Many-to-one and many-to-many models, thread library schedules user-level threads to run on LWP
 - Known as process-contention scope (PCS) since scheduling competition is within the process
 - Typically done via priority set by programmer
- Kernel thread scheduled onto available CPU is systemcontention scope (SCS) – competition among all threads in system

Multiple-Processor Scheduling

- CPU scheduling more complex when multiple CPUs are available
- Homogeneous processors within a multiprocessor
- Asymmetric multiprocessing only one processor accesses the system data structures, alleviating the need for data sharing
- Symmetric multiprocessing (SMP) each processor is selfscheduling, all processes in common ready queue, or each has its own private queue of ready processes
 - Currently, most common
- Processor affinity process has affinity for processor on which it is currently running
 - soft affinity
 - hard affinity
 - Variations including processor sets

NUMA and CPU Scheduling

Note that memory-placement algorithms can also consider affinity

Multicore Processors

 Recent trend to place multiple processor cores on same physical chip

Faster and consumes less power

- Multiple threads per core also growing
 - Takes advantage of memory stall to make progress on another thread while memory retrieve happens

Multithreaded Multicore System

