1	展開せよ	

[1] 展開せよ。
$$(1) (x-3)(x+1)$$

(2)
$$(x^2 + 2x + 4)(x^2 - 2x + 4)$$

(1)
$$x^2 + 5x + 4$$

(2)
$$3x^2 - x - 4$$

(3)
$$x^4 - 1$$

$$(1) \frac{1}{\sqrt{3}}$$

(2)
$$\frac{2}{\sqrt{3}-1}$$

(3)
$$\frac{\sqrt{2}+1}{\sqrt{2}-1} + \frac{\sqrt{2}-1}{\sqrt{2}+1}$$

4 次の方程式, 不等式を解け.

(1)
$$|x-1|=2$$

(2)
$$|2x-3| < 4$$

1年_______番

1 次の2次関数の頂点と軸を求めよ.

$$(1) \ y = x^2 + 4x + 1$$

$$(2) \ y = x^2 - 3x + 4$$

(3)
$$y = -x^2 + 2x - 1$$

$$(4) \ y = -x^2 - 5x - \frac{1}{4}$$

(5)
$$y = 2x^2 + 4x + 3$$

② 次の 2 次関数と
$$x$$
 軸との共有点を求めよ. (1) $y = (x-1)(x+3)$

(2)
$$y = x^2 + 3x + 4$$

(3)
$$y = -x^2 - 4x - 4$$

次の2次関数の最大値と最小値を求めよ.

(1)
$$y = x^2 + 2x + 2 \ (-1 \le x \le 1)$$

(2)
$$y = -x^2 + 4x + 1 \ (1 \le x \le 3)$$

1年_____組____番

长名

1	a = 4, b = 5, c = 6 rbs	\triangle ABC について,	以下の問いに答
	えよ.		

(1) cosA の値を求めよ.

 $oxed{\mathbf{2}}$ $0^\circ \leqq \theta \leqq 180^\circ$ とする. $\sin \theta = \frac{1}{3}$ のとき, $\cos \theta, \tan \theta$ の値を求めよ.

 $oxed{3}$ $0^\circ \le heta \le 180^\circ$ とする. $\cos heta = -\frac{1}{4}$ のとき, $\sin heta, an heta$ の値を求めよ.

(2) sinA の値を求めよ.

 $\boxed{m{4}}$ $0^{\circ} \le \theta \le 180^{\circ}$ とする. $\tan \theta = 2$ のとき, $\sin \theta, \cos \theta$ の値を 求めよ.

(3) △ABC の面積を求めよ.

 $oxed{5}$ y=x と $y=\sqrt{3}x$ のなす角 θ を求めよ. ただし, $0^{\circ} \leqq \theta \leqq$ 90° とする.

1年_______番

R4. 12

$\overline{}$		
1 1	次の会頭の直偽を述べ	偽の場合には反例をあげよ.
		一句リカロにはメメガルをひける。

(1) 福井県勝山市にある高校は1校のみである.

(2) 実数 x について、「 $x > 0 \Longrightarrow x > 1$ 」

(3) 実数 x について、「 $(x-1)(x-2) < 0 \Longrightarrow x > 0$ 」

- x は実数とする.次の()の中に最も適切なものを「必要条件」「十分条件」「必要十分条件」「必要条件でも十分条件でもない」の中から選べ.
 - (1) $x = 2 \operatorname{lt} (x 2)(x + 2) = 0 \operatorname{cos} 2 \operatorname{cs} 0$ ().

(2) x > 4 は x > 2 であるための().

(3) x < 0 は -2 < x < 2 であるための().

3 次の表は、8人の休日の携帯の使用時間と勉強時間を調査した結果である。

	A	В	С	D	Е	F	G	Н	分散	標準偏差
携帯 (時間)	3	7	0	5	6	7	2	10	9	3
勉強 (時間)	6	3	8	5	5	4	9	8		

以下の問いに答えよ. (12点)

(1) 勉強時間について, 分散を求めよ.

(2) 勉強時間について, 標準偏差を求めよ.

(3) どちらの方が分散が大きいと考えられるか. 得られた標準偏差をもとに, 比較せよ.

4 下の図 A は、31 人の生徒の数学のテストの得点をヒストグラムにしたものである.ただし、各階級は 0 点以上 10 点未満のように区切っている.このデータを箱ひげ図にまとめたとき、最も当てはまるものを、図 B の a から c のうち 1 つ選べ.

1年______番

氏名__

(1)
$$(x^2 - 3x)^2 + 5(x^2 - 3x) - 36$$

R4. 12

(2)
$$(x^2 - 2x - 16)(x^2 - 2x - 14) + 1$$

(3) $x^2 + 3xy + 2y^2 + 2x + 3y + 1$

(3)
$$x^2 + y^2$$
 の値を求めよ.

1年_____組____番

	R4. 12
1 関数 $y = x^2 - 4x + c$ $(0 \le x \le 1)$ の最大値が 4 である. (1) 定数 c の値を求めよ.	3 $y = 2x^2 - 4ax + 3 \ (-1 \le x \le 1)$ について、以下の問いに答えよ.
	(1) 最大値を求めよ.
(2) 最小値を求めよ.	
	(a) 目 4 はとせなる
	(2) 最小値を求めよ.
2 周の長さが 20 である長方形において, 対角線の長さの最小値	
を求めよ.	
	1年番

第1字年 数	子 復智課題 8
1 サイコロを 3 個同時に投げる. (1) 出る目の和が 5 になる確率を求めよ.	R4. 12 3
(2) 出る目の積が奇数になる確率を求めよ.	(2) P が 3 回目に原点に戻り, 5 回目に +4 の位置にある確率 を求めよ.
2 20 本のうち 3 本が当たりのくじについて, A, B, C がこの順にひく. ただし, 引いたくじはもとに戻さないとする. C が当たる確率を求めよ.	
	1年組番 氏名

第1学年 数等	学復習課題 9	
1 頂点 A が 36° である二等辺三角形 ABC について, 角 C の二		R5. 1
(1) III A か 30° である 二 寺辺三月形 ABC について、	(3) 辺 AC の中点を E とする. AE の長さを求めよ.	
	(4) これまでの結果を用いて $\cos 36^\circ$ の値を求めよ.	
(2) 線分 AC の長さを求めよ.		
	1年	

氏名_

R5. 1

- 1 以下は全て実数の部分集合とする. 以下の問いに答えよ.
 - (1) $A = \{1, a-2, 17-a\}, B = \{a-6, a+3, 13\}$ とする. $A \cap B = \{1, 10\}$ となるように, a の値を定めよ.

(2) $A = \{x||x| < 3\}, B = \{x||x-a| < 4\}$ とする. $A \cap B = A$ となるような, a の値の条件を求めよ.

(3) $A=\{x||x|<4\}, B=\{x||x-1|\leq b\}$ とする. $\overline{A}\cap B$ を満たす整数の個数がちょうど 4 個になるように, b の値の範囲を求めよ.

2 以下の表は、10人の生徒の通学時間と勉強時間についてまとめたものである.

	A	В	С	D	Е	F	G	Н	I	J
通学 (分)	40	30	5	15	60	25	20	10	5	35
勉強 (分)	120	130	145	100	80	100	180	210	90	100

- (1) この 2 つのデータについての相関係数として相応しいものはどれか.
 - i. 1
 - ii. 0.81
 - iii. 0.43
 - iv. 0
 - v. -0.43
 - vi. -0.81
 - vii. -1
- (2) 通学時間と勉強時間について, 以下のうちから適切なものを全て選べ.
 - i. 通学時間と勉強時間の間には正の相関がある.
 - ii. 通学時間と勉強時間の間には負の相関がある.
 - iii. 通学時間が少ない人ほど勉強時間が多い傾向にある.
 - iv. 通学時間が少ない人ほど勉強時間が少ない傾向にある.
 - v. 勉強時間を増やすためには, 通学時間を減らせばいい
 - vi. 通学時間が短い人ほど学力が高い.

1年	組	番	

1	因数分解せよ	

(1)
$$a^6 - b^6$$

(2)
$$x^4 - 13x^2 + 36$$

(3)
$$3x^4 - 48$$

(4)
$$(x^2 + 3x + 5)(x + 1)(x + 2) + 2$$

$$\mathbf{2}$$
 $2+\sqrt{2}$ の整数部分を a , 小数部分を b とする. 以下の問いに答えよ.

(1)
$$a,b$$
 の値をそれぞれ求めよ.

(2)
$$\frac{1}{b}$$
 の値を求めよ.

(3)
$$\frac{1}{b} + b$$
 の値を求めよ.

(4)
$$\frac{1}{b^2} + b^2$$
 の値を求めよ.

1年_____組____番

3

第 1 学年 数学 復習課題 12							
1 2 次関数 $y = ax^2 - 2ax + b$ $(0 \le x \le 3)$ について、以下の問いに答えよ. (1) 最大値と最小値を a,b を用いて表せ.	R5. 1 2 BC= 48, CA= 6 である直角三角形 ABC の斜辺 AB 上に点 D をとり, D から辺 BC と CA にそれぞれ垂線 DE と DF を 引く. △ADF と △DBE の面積の合計が最小となるときの線 分 DE の長さとそのときの面積を求めよ.						
	3 周の長さが 40 である長方形において, 対角線の長さの最小値を求めよ. また, そのとき長方形はどのような形か.						
(2) 最大値が 5, 最小値が 1 のとき, a,b の値を求めよ.							
	1年組番						

氏名_

_			R5.
1	10 本のくじの中に 2 本の当たりがある. 当たりくじを 3 回引くまで繰り返しくじを引くものとする. ただし, 一度引いたくじは毎回もとに戻す. n 回目 $(n \ge 3)$ に終わる確率を P_n とする. 以下の問いに答えよ.	(4) P_n を求めよ.	
	(1) 3 回目に終わる確率 P_3 を求めよ.		
		(5) $P_{n+1}-P_n$ を求めよ.	
	(2) 4 回目に終わる確率 P_4 を求めよ.		
		(6) $P_{n+1}-P_n>0$ を満たす自然数 n の範囲を求めよ.	
	(3) 5 回目に終わる確率 P_5 を求めよ.	(7) P_n が最大となるような n の値を求めよ.	
		1年組番	
		1 牛	

第 1 学年 数学 復習課題 14	
R5.1	
(2) $\sin^2 \theta + \cos^2 \theta = 1$ であることを用いて $\sin \theta$ の値を求めよ.	
$(3)\cos heta$ の値を求めよ.	
(4) tan θ の値を求めよ.	

氏名__

1年_____組____番

- 1 A の箱の重さは 95g, B の箱の重さは 100g である. 1 個 12g の球が 20 個であり, これらを A と B に分けて入れたところ, A の箱の方が重かった. そこで A の箱から B の箱に球を 1 個移したところ, 今度は B の箱の方が重くなった. 最初, A の箱には何個の球を入れたか.
- 3 ある物質を水で溶かした 1%, 5%, 10% の水溶液がある. これら 2 種または 3 種の水溶液を混ぜ合わせて, 7.3% の水溶液を 100g 作る場合, 1% 水溶液は何 g まで使用することが可能か. また, 10% 水溶液の使用にはどのような制限があるか.

2 兄弟が合わせて 52 本の鉛筆を持っている. いま, 兄が弟に自分が持っている鉛筆のちょうど $\frac{1}{3}$ をあげてもまだ兄の方が多く,更に 3 本あげると弟の方が多くなる. 兄が初めに持っていた鉛筆の本数を求めよ.

1年_______番

氏名

R5. 1

1	$x \le 0, y \ge 0, y - 2x = 3$ のとき, 以下の問いに答えよ.
	(1) <i>y</i> を <i>x</i> を用いて表せ.

2 $x \le 3, y \le 0, y + 3x = 3$ とする. $y^2 - 6x^2$ の最大値と最小値を求めよ. また, そのときの x, y の値を求めよ.

(2) x の範囲を求めよ.

(3) $T = x^2 + y^2$ とする. T を x を用いて表せ.

(4) T の最大値と最小値を求めよ. また、そのときの x,y の値を求めよ.

1年_____組____番

	R5. 1
1 a を定数とする. 放物線 $y=x^2-5x+3$ と直線 $y=x+a$ がある. 以下の問いに答えよ.	2 a を定数とする. 2 つの放物線 $y=x^2+3x+5, y=-x^2-x+a$ について, 共有点の個数を求めよ.
(1) $a = -6$ のとき, 2 つのグラフの共有点の座標を求めよ.	
$(2)\ 2$ つのグラフの共有点が 2 つであるように定数 a の値の	
範囲を定めよ.	
(3) 2 つのグラフが共有点をもたないように定数 a の値の範囲を定めよ.	
	1年

1 1 辺の長さが 1 の正三角形 ABC の辺 AB, BC, CD 上にそれぞれ頂点と異なる点 D, E, F をとり, AD= $3x$, BE= $2x$, CF= x とする. (1) \triangle DEF の面積 S を x を用いて表せ.	R5. 1 2 △ABC において AB= 2, AC= 1 とする. ∠BAC の二等分線と辺 BC の交点を D とする. AD=BD となるとき, 以下の問いに答えよ. (1) CD の長さを x とおく. BD の長さを x を用いて表せ.
	(2) $\angle {\sf BAD}$ の値を x を用いて 2 通りの方法で表せ.
	(3) BD の長さを求めよ.
$(2)\;(1)\; o \; S\;$ を最小にする $x\; o$ 値と最小値を求めよ.	(4)∠BAD の値を求めよ.
	(5)△ABC の面積を求めよ.
	1年組番

1 大中小 3 個のサイコロを同時に振り、出た目の数をそれぞれ 1 2 n 枚のコインを投げる. 以下の問いに答えよ.

a,b,c とする. このとき, 次の問いに答えよ. (1) $\frac{1}{a}+\frac{1}{b}\geqq 1$ となる確率を求めよ.

(1) n=2 のとき, 少なくとも 1 枚は表である確率を求めよ.

(2) n=3 のとき、少なくとも 1 枚は表である確率を求めよ.

(3) 少なくとも 1 枚は表である確率が 0.9 以上にするために 必要なコインは、最低で何枚か.

(2) $\frac{1}{a} + \frac{1}{b} \ge \frac{1}{c}$ となる確率を求めよ.

1年_______番

N1 1 1 4 X 1	及日际运 20	
$oxed{1}$ サイコロを繰り返し n 回投げて、出た目の数を掛け合わせた 積を X とする。	(4) X が 3 の倍数になる確率を n を用いて表せ.	R5. 1
(2) $n=3$ のとき, X が 3 の倍数にならない確率を求めよ.		
(3) $n=3$ のとき, X が 3 の倍数になる確率を求めよ.		
	1年組番	

第 I 子中 9	奴子 復首誅越 ZI	
1 4 個のサイコロの出た目の積を X とする. 以下の問いに えよ.(1) X が 25 の倍数になる確率を求めよ.	答 (3) X が 100 の倍数になる確率を求めよ.	R5. 1
(2) X が 4 の倍数になる確率を求めよ.		
	1年	

氏名___

713 = 3 7113	
1 白玉 3 個, 赤玉 2 個の合計 5 個の玉が入った箱と硬貨がある。 箱から無作為に玉を 1 個取り出し, 硬貨を投げて表が出たら 箱に戻す試行を行う。箱の中の玉がなかったら試行は停止す る。また, 最初手元に玉は無いものとする。 (1) 1 回の試行の結果, 手元に白玉が 1 個残る確率を求めよ。	R5. 1 (4) 2 回の試行の結果, 手元に白玉が 2 個ある確率を求めよ.
(2)1 回の試行の結果, 手元に赤玉が 1 個残る確率を求めよ.	(5) 3 回の試行の結果, 手元の玉が白 1 個, 赤 1 個の計 2 個になる確率を求めよ.
(3) 1 回の試行の結果, 手元に玉が 1 個も残らない確率を求めよ.	
	1年組番

及日环烃 20
R5.
(3) 3 個の頂点を選んでできる三角形のうち, 直角三角形も 二等辺三角形でもないものの個数を求めよ.
1年組番

(1) 三角形 APR, BPQ, CRQ の面積を, S, a, b を用いて表せ.

(3) $\frac{T}{S}$ を a, b で表せ.

 $(4) \ a,b \ \emph{ii}, \ 0 < a < \frac{1}{2}, 0 < b < \frac{1}{2} \ の範囲を動くとき, \ \frac{T}{S} \ の とりうる値の範囲を求めよ.$

(2) T の値を S, a, b を用いて表せ.

1年_______番

氏名

 $\boxed{\mathbf{1}}$ $-1 \leq x \leq 2$ の範囲において, x の 2 次関数

$$f(x) = ax^2 - 2ax + a + b$$

の最大値が3で、最小値が-5であるとき、a,bの値を求めよ.

$$y = x^2 + ax + b$$

が, $0 \le x \le 3$ の範囲で最大値 1 をとり, $0 \le x \le 6$ の範囲で最大値 9 をとるとき, 定数 a,b の値を求めよ.

1年_______番

R5. 1

1	$y = -2x^4 + 4x^2 + 3$ について, 以下の問いに答えよ.
	(1) $t = x^2$ とする. t の値の範囲を求めよ.

2 $y = (x^2 - 3x + 3)(x^2 - 3x - 2) + 1$ に最大値, 最小値があれば, それを求めよ.

(2) yをtを用いて表せ.

(3) y に最大値、最小値があれば、それを求めよ.

1年_____組____番

1 正方形があり、その縦の長さを 1cm 長く、横の長さを 2cm 短 2 次方程式 $x^2 + (m-8)x + m = 0$ について、重解をもつと くした長方形の面積が、元の正方形の面積の半分になった.元 の正方形の面積を求めよ.

きのmの値と、そのときの重解を求めよ.

1年_____組____番

氏名___

210 - 1 - 271 - 271	
1 放物線 $y = x^2 + 4x + 1$ と直線 $y = 2x + a$ がある. (1) $a = 4$ のとき, 2 つのグラフの共有点の座標を求めよ.	R5. 1 $y = ax^2 + bx + c$ のグラフが 2 点 $(-1,0),(3,8)$ を通り $y = 2x + 6$ に接するとき、定数 a,b,c の値を求めよ.
(2) 2 つのグラフの共有点がただ 1 つであるように, 定数 a の値を求めよ.	
(3) 2 つのグラフが共有点をもたないように, 定数 <i>a</i> の値の 範囲を求めよ.	
	1年

- 1 以下の関数の表すグラフを描け.
 - (1) y = |x|

(2) y = |-x+3|

(3) $y = |x^2 - 4|$

 $(4) \ y = x^2 - 4|x| + 2$

 $y = x^2 - 4|x| + 2$ と y = k の共有点の個数を求めよ. ただし、 k は定数とする.

3 不等式 $|x^2 - 2x| > 2 - x$ を解け.

1年_____組____番