

Cod (Gadus morhua) in subdivisions 22–24, western Baltic stock (western Baltic Sea)

ICES advice on fishing opportunities

Please note: This advice was updated in September 2019 (ICES, 2019)

ICES advises that when the EU multiannual plan (MAP) is applied, total catches in 2020 that correspond to the F ranges in the plan are between 5205 tonnes and 11006 tonnes. According to the MAP, catches higher than those corresponding to FMSY (7245 tonnes) can only be taken under conditions specified in the MAP, whilst the entire range is considered precautionary when applying the ICES advice rule. Assuming recreational catches at recent this implies commercial catches between 3065 tonnes and 5105 tonnes.

Stock development over time

The spawning-stock biomass (SSB) has been fluctuating around the limit reference oint (B_{Lin.} ace 2), but has increased in the last two years and is presently above B_{lim} and close to MSY B_{trigger} a fishin morta. As above F_{MSY}, although a large decrease in F has occured in later years. Recruitment (R) has low for a 1999; requitment in 2017 (the 2016 year class) is estimated to be above average in this period. The recruit. A 2018 ar a 2019 (age 1) are the lowest in the time series.

Figur d in subdictions 22–24, western Baltic stock. Summary of the stock assessment. Recruitment, F, and SSB have intervals (95%) in the plot. The EU landing obligation entered into force in 2015; therefore, BMS landings (fish becaute the minimum conservation reference size [MCRS]) have been included since 2017.

Stock and e 'tation status

ICES assesses that fishing pressure on the stock is above F_{MSY} and below F_{pa} and F_{lim} ; while spawning stock size is below MSY $B_{trigger}$ and between B_{pa} and B_{lim} .

Table 1 Cod in subdivisions 22–24, western Baltic stock. State of the stock and fishery relative to reference points.

		Fishing pressure					Stock size				
		2016	2017		2018	_		2017	2018		2019
Maximum sustainable yield	F _{MSY}	8	8	8	Above		MSY B _{trigger}	8	8	8	Below trigger
Precautionary approach	$\mathbf{F}_{pa}, \mathbf{F}_{lim}$	•	•	•	Harvested sustainably		B _{pa} ,B _{lim}	8	0	0	Increased risk
Management plan	F ranges	8	•	•	Within range		MSY B _{trigger}	8	8	8	Below trigger

Catch scenarios

Table 2 Cod in subdivisions 22–24, western Baltic stock. Assumptions made for the interim year of in the constraints. Weights are in tonnes. Recruitment is in thousands.

Variable	Value	Notes
Fages 3-5 (2019)	0.33	Base catch co int in
SSB (2020)	29613	P on catch const J19
R _{age 1} (2019)	222F	m the ssment
R _{age 1} (2020)	11659	om the ! ten years*
R _{age 1} (2021)	11602	Sal from the st ten years*
Total catch (2019)	. 8	Comn. reational catches.
Commercial catches (2019)	5848	Calculatene 2019 TAC (9515 tonnes) p n assumed discard ratio as in 2018 (4), and accounting for the proportion c estern Baltic cod in commercialches in subdivisions 22–24 in 2018 (59%).
Recreational catches (2019)	2140	Average over 3 years (2016–2018)

^{*} Recruitment is randomly resampled from the last ten years' as. m estimates and the median of these random draws is used. This will vary slightly every time this is done.

Table 3 Cod in subdivisions 22–24, w n Baltic stock. Ann catch scenarios. All weights are in tonnes.

rable 3	Coa in Subai	visions 22–24, v	w n Baitic s	Stock. Ann	atch scenarios.	All weights are	in tonnes.	
Basis	Total catch * (2020)	Recreational cate'	Co. cial	F _{te'} ,20)	F _{commercial} (2020)	SSB (2021)	% SSB change ***	% Advice change ^
ICES advice ba	isis							
EU MAP**: F _{MSY}	7245	2140	5105	0.26	0.18	32310	10	-52
F = Proposed F _{MSY lower} ^^	5		3065	0.18	0.11	34657	18	-43
F = Proposed F _{MSY upper} ^^^	1006	2140	8866	0.43	0.35	27251	-7	-54
Other scenario	os							
F _{MSY}	72	_140	5105	0.26	0.18	32310	10	-52
Zero cor rcial catu	2140	2140	0	0.07	0	38560	32	-86
$F = F_{pa}$	19551	2140	17411	0.99	0.88	16350	-44	30
F = F _{lim}	23904	2140	21764	1.45	1.32	11054	-62	59
SSB (2021) = B _{lim}	20972	2140	18832	1.11	1.00	14500	-51	40
SSB (2021) = B _{pa}	15148	2140	13008	0.66	0.57	21876	-25	0.85
SSB (2021) = MSY B _{trigger}	15148	2140	13008	0.66	0.57	21876	-25	0.85
F = F ₂₀₁₉	9089	2140	6949	0.34	0.26	29818	2	-39

- * Includes commercial and recreational catch.
- ** EU Multi-Annual Plan for the Baltic Sea (EU, 2016a).
- *** SSB 2021 relative to SSB 2020.
- ^ Total catch in 2020 relative to total catch corresponding to the advice for 2019 (15 021 t, MAP F_{MSY}), including commercial and recreational catch.
- $^{\Lambda}$ Total catch in 2020 relative to total catch corresponding to the advice for 2019 for $F_{MSY\ lower}$ (9094 t, MAP $F_{MSY\ lower}$), including commercial and recreational catch.
- ^^^ Total catch in 2020 relative to total catch corresponding to the advice for 2019 for F_{MSY upper} (23 992 t, MAP F_{MSY upper}), including commercial and recreational catch.

Last year's estimation of the large 2016 year class has been revised down by 54%. This year class is the most important year class contributing to the catch and the revised estimate is largely responsible for the 52% decrete advice.

Basis of the advice

Table 4 Cod in subdivisions 22–24, western Baltic stock. The basis of the advice.

Advice basis	EU Baltic multiannual plan.		
Management plan	The EU multiannual plan (MAP) in place for stocks in the Ba!	a incl	cod (EU, 2c_oa). The advice,
Management plan	based on the F _{MSY} ranges, is considered precautionary.		

Quality of the assessment

The estimate of the abundance of the 2016 year class has bee evised sign antly downwards in the updated assessment. The SSB development is very dependent on this year classin 2 der than expected, which explains the downward revision in SSB.

In 2018 the recreational catches included in the stock asset there are used 30% of the total catches. The uncertainty around recreational catches is considered higher than in containing and catches. In addition, the catches in the recreational fishery are difficult to quantify in the intermediate year. It is a difficult to partition catches between commercial and recreational in the forecast.

In Subdivision 24 catches of cod ar ture conterm a western Baltic cod stocks, which is variable temporally and spatially and over size groups. Yethor split cones into the two stocks is applied each year which is based on data most years but which is one plated for years with no observations. This introduces uncertainty in the allocation of catches to the stock.

Issues relevant for the advice

The reference points were re-estimated and changed at the stock benchmark in 2019 (ICES, 2019a). B_{lim} was revised downwards from 27 400 t to 14 500 t (47%), based on new information on the productivity of the stock at low biomasses.

 F_{MSY} and the lower and upper range were also re-estimated and the ranges narrowed. In this case there was no change to F_{MSY} (0.26), but the $F_{MSY | lower}$ is changed from 0.15 to 0.18, and $F_{MSY | upper}$ is changed from 0.45 to 0.43.

The increase of SSB in the forecast is mainly due to one strong year class (the 2016 year class). Fishing mortality in 2018 was still above F_{MSY} . The 2016 year class will account for the majority of the predicted catches in 2020 (72%) and SSB in 2021 (71%) (Figure 3). Additionally, the 2017 and 2018 year classes are historically low. If no stronger year classes occur in the coming years this will lead to a rapid decline of the stock. ICES therefore suggests to use the $F_{MSY\ lower}$ value in the MAP when setting the TAC.

The SSB in 2020 is predicted to be above MSY B_{trigger}. In this situation, catch scenarios applicable under the MAP correspond to fishing mortalities between F_{lower} and F_{upper}. However, according to the MAP, catc¹ asponding to F higher than F_{MSY} can only be taken under conditions specified in the MAP.

Figure 3 Cod in subdivisions 22–24, western Baltic storing predicted abundance of year classes in the yield 2020 and spawning-stock biomass 2021.

Landings of fish below the minimum conservation reference (24 t below minimum size [BMS] reported in 2018). Discardin, Il takes place despite the fact that the landing obligation has been in place since 2015. The estimation amount of discalling is 157 tonnes in 2018 (approximately 4.2%), based on observer data. ICES understands that this is in accordance with the current regulations.

A spawning closure was introducing to covered the peak spawning to; betw 2016 a. 2018 both a very large and a historically low recruitment were produced with a similar spawn. Stor 2e (Eero et al., 2019). The span of years implemented for the closure was too short to evaluate its important to a spawning closure was implemented.

A mixture of ear in (EB) a western Baltic (WB) cod stocks is caught in the western Baltic management area (subdivisions 22–2 the dessment and this advice is for the western Baltic cod stock.

Recreation hes on the western Baltic management area are considered to consist exclusively of WB cod. A bag-line was in placed to the first time in 2017 (EU, 2016b) due to the poor stock status and this has lead (*inter alia*) to the poor in the recreational catches in 2017 and 2018 (1315 tonnes and 1600 tonnes, respectively). For 2019 the bag limit in the recreational catches in 2019 is unknown and the catch value used for the intermediate year (2140 t) is based on a 3-year mean. The recreational catch in 202 and depend on a management decision on the regulations for the recreational fishery. In the absence of other information the recreational catch assumed in the forecast has been kept constant.

To derive a management area-based total for commercial cod catch for the western and eastern Baltic areas (subdivisions 22–24 and 25–32) in line with ICES advice for the two cod stocks, ICES considers that the following issues should be taken into account:

1. The distribution area of the WB cod stock is subdivisions 22–24. The proportions of the WB cod stock commercial catch taken in subdivisions 22–23 and Subdivision 24 have been quite stable since 1994, amounting to 76% and 24%, respectively, on average in the most recent three years (Table 6).

- 2. The distribution area of the EB cod stock is subdivisions 24 and 25–32.
- 3. Commercial fishing in subdivisions 22–23 will provide a catch of the WB cod stock only.
- 4. Commercial fishing in subdivisions 25–32 will provide a catch of the EB cod stock only.
- 5. Commercial fishing in Subdivision 24 will provide a mixed catch of the EB and WB cod stocks. In the most recent three years, the ratio EB cod / WB cod commercial catch in Subdivision 24 has been 2.90 (Table 6).
- 6. In an area that includes two stocks of a species, the species TAC should be set such that the risk of overexploitation of the weakest stock is minimized.

The European Commission has requested ICES to provide information on catch opportunities by management area consistent with the stock advice, assuming a *status quo* distribution of the fisheries on subareas and stocks (option A in Table 5). There could be other allocation schemes, but such schemes are not known to ICES.

One example (Option A in Table 5) assumes that the geographical distribution of the commi al catch in . n remains as outlined in point 1 above and with average recreational catch in 2020, in which case the a ution of a nmercial catch of 5105 t of WB cod will be 3880 t in subdivisions 22-23 and 1225 t in Su ısion 🗸 oweve atches in Subdivision 24 should be zero in order to comply with the zero catch advised for so cod. With a uo effort in subdivisions 22–23, this would result in a TAC of 3880 t for the western manare entire which call life befished in ntirely subdivisions 22–23. subdivisions 22–23. Alternatively, the implied commercial catch (5105 t) could catch (5105 t) could catch (5105 t) could catch (5105 t) could catch (5105 t) catch (5105 This would represent an increase of effort in this area which is considered the main. wning r ands for WB cod. This may negatively affect the spawning success of WB cod due to disturbate ر Jugh the recruitment cannot be quanitifed). Given this circumstance the reintroduction of a temporal fishery closure a ... g spawning time could be considered.

Option B (Table 5) assumes that the geographical distribution of the percise atch in 2020 remains as outlined in point 1 above and with average recreational catch in 2011 however means the production of a commercial catch of 5105 to f WB cod will be 3880 t in subdivisions 22–23 and 122. In page 24. Under these circumstances the additional amount of EB cod fished in Subdivision 24 is estimated to cod as observed on average during 2016–2018 in the communications atches (i.e. 2.90, see point 5 above). This would result in a TAC of 8660 t for the western management area which contains a taken across the entire western Baltic management area. This option is not in line with the catches discovered in 2020 remains as outlined i

Figure 4 provides a graphic present fhow rrive rea-based TACs from the ICES stock advice.

Figure 4 Cod in subdivisions 22–24, western Baltic cod. Illustration of calculations to obtain area TACs for western and eastern Baltic cod from ICES stock-based catch advice, taking into account stock mixing in Subdivision 24 and recreational catches for the western stock.

Table 5 Cod in subdivisions 22–24, western Baltic stock. The scenarios illustrate the implications of zero catch advice for eastern Baltic cod on the commercial catch by management area, assuming a recreational catch of 2140 tonnes in 2020. Weights are in tonnes.

	Comme	ercial catch W	B cod stock	Comme	ercial catch EB co	d stock	Commercial catch of cod by management area (TAC)				
_	Α	В	С	D	E	F		G		Н	
Area	Advice Total	SDs 22–23	SD 24	Total	SD 24	SDs 25– 32	SDs22-24	% TAC change (SDs 22–24)*	SDs 25– 32	% TAC change (SDs 25–32)**	
a. Status quo	distributio	n, with no cat	ch of EB cod in	the Western	Baltic managem	ent area					
Calculation		= A × 0.76^	= A × 0.24^		= C × 2.90^^	= D – E	= B + C + E		= F		
EU MAP: F _{MSY}	5105	3880	0	0	0	0	3880	-59	0	-100	
F=MAP F _{MSY} lower	3065	2329	0	0	0	0	2329			-100	
b. Status quo	distributio	n, with catch	of EB cod in the	e Western Ba	ltic managemen	t area					
Calculation		= A × 0.76^	= A × 0.24^		= C × 2.90^^	= D – E	= B + C + E		= F		
EU MAP: F _{MSY}	5105	3880	1225	-	3555	-	866r	-5			
F=MAP F _{MSY} lower	3065	2329	736	-	2134	-	,9	-45	-	-	

^{*} Compared to the 2019 TAC for subdivisions 22–24 (9515 tonnes).

^{**} Compared to the 2019 TAC for subdivisions 25–32 (29 912 tonnes).

[^] Average proportions of the WB cod stock commercial catch that has been subdivision 24 in the most recent three years (2016–2018; Table 6).

^{^^} The EB cod catch / WB cod commercial catch ratio observed in Subdivisio I in the most Int three years (2016–2018; Table 6).

Table 6 Cod in subdivisions 22–24, western Baltic stock. Catches (tonnes) used in the stock assessments of the western (WB) and costern (EB) Baltic cod stocks in the western Baltic management area.

	Dartie	manageme	WB cod stoc	k			EB cod stock		,	agment	a. Ds 22–24	7s 22–24	
Year	Landings	Discards	Recreational catch	Proportion* of discards	Proportion* of comm. catch in SD 24	Landings in SD 24	Discards in SD24	% of catch in SD 24	⊤ ' ⊿ings	Dı. 's	Re tional	total catch	EBC/ WBC stock commercial catch in SD 24
1985	33188		2075		0.29	6971		2.11	<u> </u>		2075	42234	0.71
1986	20088		2078		0.36	6604		2.51	692		2078	28770	0.93
1987	21692		2081		0.37	6874		J8	-6		2081	30647	0.86
1988	20672		2082		0.47	8487		4.03	25		2082	31241	0.87
1989	12795		2083		0.49	5721		3.04	1851 ₀		2083	20599	0.92
1990	12237		2085		0.49	5543		3.39	17780		2085	19865	0.92
1991	12931		2087		0.32	3762		2.92	16693		2087	18780	0.92
1992	15672		2420		0.19	232/			17996		2420	20416	0.76
1993	11815		2752		0.27	38٤		6.92	15700		2752	18452	1.20
1994	16642	1614	3088	0.09	0.41	6551		6.52	23193	2235	3088	28516	0.97
1995	28310	3016	3417	0.10	0.29	5585	٠	5.40	33895	3684	3417	40996	0.68
1996	38505	6868	3419	0.15	0.32	10040	.116	8.16	48545	7984	3419	59948	0.77
1997	37077	3981	3420	0.10	0.33	6547	641	7.24	43624	4623	3420	51666	0.53
1998	29634	5575	3410	0.16	7	4582	531	6.96	34216	6206	3410	43833	0.40
1999	35934	4378	3416	0.11	0.	6221	599	8.35	42155	4978	3416	50549	0.52
2000	31132	3738	3432	0.11	0.32	631′	1209	7.32	37448	4947	3432	45827	0.68
2001	27781	2449	3427	0.0	36	∇	389	7.99	35574	2838	3427	41840	0.75
2002	20410	1395	3437		31	ر60	562	7.51	25470	1957	3437	30864	0.84
2003	17205	3473	3448	L	ა.34	5729	862	8.44	22934	4336	3448	30718	0.95
2004	17686	2189	3445	0.11	0.27	5309	188	7.30	22995	2377	3445	28817	1.04
2005	18493	3265	3771	0.15	0.42	6064	1729	12.08	24557	4994	3771	33322	0.86
2006	18503	1686	29-	.8	.27	6767	144	8.97	25270	1831	2923	30024	1.28
2007	17384	1325	2.	J.07	0.35	8792	875	14.95	26176	2200	2782	31158	1.46
2008	11302	336	3035	0.03	0.31	8811	787	17.27	20112	1123	3039	24274	2.66
2009	7313	351	548	0.0	0.42	8284	464	14.46	15597	815	2648	19060	2.75
2010	8007	838	57		0.36	6049	533	10.90	14055	1371	3367	18793	2.08
2011	9107	291	95	ر.03	0.24	7545	482	12.90	16652	781	2595	20029	3.59
2012	8622	37.		0.04	0.31	8469	536	13.43	17091	905	3661	21657	3.28
2013	7697	1007	3106	0.12	0.29	5359	1243	15.36	13056	2250	3106	18413	2.62

^{*} Version 2: header corrected.

			WB cod stoo	:k			EB cod stock		Managmont area SDs 22–24					
Year	Landings	Discards	Recreational catch	Proportion* of discards	Proportion* of comm. catch in SD 24	Landings in SD 24	Discards in SD24	% of catch in SD 24	Total landings	`iscards	h	ational	total catch	EBC/ WBC stock commercial catch in SD 24
2014	8083	837	4044	0.09	0.33	5455	1298	14.91	13538	2.		4044	19716	2.30
2015	8390	432	4568	0.05	0.29	5029	930	11.9	134	1361		4568	19348	2.35
2016	6122	143	3505	0.02	0.31	4541	306	ر 12.9	1 3	149		3505	14617	2.53
2017	3861	180	1315	0.04	0.20	1994	238	7.21	√855	17ء		1315	7587	2.79
2018	3555	157	1600	0.04	0.21	2284	311	J1	9'	469		1600	7907	3.39

Reference points

Table 7 Cod in subdivisions 22–24, western Baltic stock. Reference points, values, and their technical basis. Weights in tonnes.

Framework	Reference point	Value	Technical basis	Source
	MSY B _{trigger}	21 876	B _{pa}	ICES (2019a)
MSY approach	F _{MSY}	0.26	Stochastic simulations with segmented regression stock–recruitment relationship.	ICES (2019a)
	B _{lim}	14 500	Average of lowest SSB in years with above average recruitment (1991, 1993, 2003, 2016).	ICES (2019a)
Precautionary	B_pa	21 876	1.4 × B _{lim}	ICES (2019a)
approach	F _{lim}	1.45	Equilibrium scenarios with stochastic recruitment: F value corresponding to 50% probability of (SSB < B _{lim}).	'2019a)
	F _{pa}	0.99	$F_{\text{lim}} \times e^{-1.645\sigma}; \sigma = 0.25$	ICES 19a)
	MSY B _{trigger}	21 876	MSY B _{trigger}	ICEs J19a)
	B _{lim}	14 500	B _{lim}	(2019a)
	MAP F _{MSY}	0.26	F _{MSY}	دS (2019a)
Management plan	Target range F _{MSY upper} to F _{MSY}	0.26-0.43	Consistent with the ranges in ing it more than 5% reduction in long-term umpared with MSY.	ICES (2019a)
	Target range F _{MSY} to F _{MSY lower}	0.18-0.26	Consistent with anges resulting in the than 5% reduct in long-term viold coil, ared with MSY.	ICES (2019a)

Basis of the assessment

Table 8 Cod in subdivisions 22–24, western Baltic stock in issue in a system and advice.

Table 6 Cou III 300	divisions 22 24, western battle stock sis e sinch and davice.
ICES stock data category	1 (ICES, 2018).
Assessment type	Age-based analytical assessment SAN 2019b) that uses catches (landings, discards, and
Assessment type	recreational catch) in the model and in forecast.
	Commercial cate (landings, age distresions from catch sampling) and recreational catch (Germany,
	Sweden, and Den. Annual stock reparation key (from commercial catches) to split catches in
	Subdivision and we are Baltic cod, derived from otolith shape analyses combined with
Input data	genetic 's avail for of the 34 years in the present time-series). The allocation of
	cate to stoc the ren g years was performed by interpolation. Three survey indices (FEJUCS
	(a _e BITS-C nd BITS-Q4), annual maturity data from BITS-Q1 surveys. Natural mortalities for age
	1 der
Discards and bycatch	Included assessment since 1994, data series from the main fleets.
Indicators	Nor 9.
Other information	nmarked019 (ICES, 2019a). The basis for the assessment changed in 2015 to being for the
Other information.	estern Paric cod stock, whereas assessments in earlier years were for the area of subdivisions 22–24.
Working grown	Baltic F' ries Assessment Working Group (<u>WGBFAS</u>)

Infor on fre stakeho

There altions. alable information.

History of the advice, catch, and management

 Table 9
 Cod in subdivisions 22–24, western Baltic stock. ICES advice and official landings. All weights are in tonnes.

Table 9	Cod in subdivisions 22–24, v	western Baltic stock. IC	ES advice and official la	andings. All weights ar	e in tonnes.
Year	ICES advice	Total catch from the stock corresponding to the advice	Commercial catch corresponding to advice*	Agreed TAC**	ICES estimated total commercial landings subdivisions 22–24 (eastern and western Baltic cod stocks)
1987	TAC		9000		28566
1988	TAC		16000		29159
1989	TAC		14000	,100	18516
1990	TAC		8000	<u>2.</u>)	17780
1991	TAC		11000	1716	16693
1992	Substantial reduction in F		-	.00000	17996
1993	F at lowest possible level			40000	21228
1994	TAC		22000	6000	30695
1995	30% reduction in fishing effort from 1994 level			1 10	33895
1996	30% reduction in fishing effort from 1994 level		-	165000	50845
1997	Fishing effort should not be allowed to increase above the level of recent years			180000	43624
1998	20% reduction in F from 1996	\ \ \	35000	160000	34216
1999	At or below F _{sq} with 50% probability		٥٥٥٥ عام	126000	42155
2000	Reduce F by 20%		44600	105000	38347
2001	Reduce F by 20%		48600	105000	34244
2002	Reduce F to below 1.0		36300	76000	24158
2003	Reduce F to below 1.0		**22600 or 28800	75000	24624
2004	Reduce F to below 1.0		< 29600	29600	20854
2005	Reduce F to below 0.92		< 23400	24700	22045
2006	Management plan		< 28400	28400	22751
2007	Keep SSB at B _{pa}		< 20500	26700	23736
2008	Rebuild SSB tr		< 13500	19200	20082
2009	Rebuild SS Bpa		< 13700	16300	15549
2010	Manag + plan		< 17700	17700	14120
2011	See scenar.		-	18800	16332
2012	ment,		21300	21300	17072
2013	ana ent pla.		20800	20000	12968
20	Mana ^r lent plan		17037	17000	13538
<u>2</u> u	Ms.		8793	15900	13418
2016	approach (r = 0.23)	≤ 7797		12720	10629
2017	oproach (F = 0.15)	≤ 3475	≤ 917	5597	5865^
2018	MA. nges: F_{lower} to F_{MSY} adjusted by SSB_{2018}/MSY $B_{trigger}$ $(F = 0.11-0.188)$	3130–5295	1376–3541	5597	5850^
2019	MAP range: F_{MSY} F_{lower} to F_{upper} (F = 0.15–0.45)	9094–23992	5867–22238	9515	
2020	MAP range: F _{MSY} F _{lower} to F _{upper} (F = 0.18–0.43)	5205–11006	and in parties years the		

^{*} Values since 2016 are for the western Baltic cod stock only, whereas in earlier years they are for the area of subdivisions 22–24 and include a fraction of the eastern Baltic cod stock.

^{**} Included in TAC for total Baltic, until and including 2003.

 $[\]ensuremath{^{***}}$ Two options based on implementation of the adopted mesh regulation.

^ Including BMS.

History of the catch and landings

Table 10 Cod in subdivisions 22–24, western Baltic stock. Catch distribution in 2018 as estimated by ICES.

Catch (2018)	Commercia	l landings	Commercial discards	Recreational catch
F242+	active gears 56%	passive gears 44%	157+	1600 t
5312 t	355	5 t	15/ ι	1600 ί

Table 11 Cod in subdivisions 22–24, western Baltic management area. History of commercial catch; both the official and ICES estimated values are presented by area. The table includes landings of the western Baltic cod stock as well as of the eastern Baltic cod stock in Subdivision 24. All weights are in tonnes.

				Total for mai				
Year		Human c	onsumption	landings (HC)			U. a.	-1+-!
	22	23	24	HC (SDs 22-24)	BMS	Discards	Чос.	al catch
1992	9887	2739	5370	17996				17996
1993	7296	1275	7129	15700				21228
1994	8229	1628	13336	23193		.235	75u	32930
1995	16936	3158	13801	33895		-84		37579
1996	21417	4031	23097	48545			ى00	58829
1997	21966	2663	18995	43624		462		48247
1998	15093	3074	16049	34216		6207		40423
1999	20409	3521	18225	42155		1 78		47133
2000	18934	3149	16264	38347		7		43294
2001	14976	2817	16451	34244		9,		37083
2002	11968	2409	9781	74158		.958		26116
2003	9573	1925	13127			4336		28960
2004	9091	2320	9430	084.		2377	13	23231
2005	8729	2621	10686	03F		4994	9	27039
2006	9979	1914	10858	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1831		24582
2007	7840	2713	13183	2 5		2199		25935
2008	5687	2139	1225€	20		1123		21205
2009	3451	839	11259	75.79		815		16364
2010	3925	1179	3	.4120		1371		15491
2011	5493	1198	3 0	16332		780		17112
2012	4896	112	1105	17072		905		17977
2013	4675	96	72	12968		2250		15218
2014	4316	`361	ر 2	13538		2135		15673
2015	499/	1232		13419		1361		14780
2016	3	117	6.	10629	34	449		11112
2017		1	269,	5833	32	421		6286
2018	2u	ა 7 0	942	5826	24	476		6326

Cod in subdivisions 22–24, western Baltic management area. History of commercial landings for human consumption presented by area for each country participating in the fishery. The table includes landings of the western Baltic cod stock as well as of the east cod stock in Subdivision 24. All weights are in tonnes.

weights are in tonnes.																				
Year	Denmark			Finland	Germany			Estonia Lithuania			Latvia	Poland	ue'			Total				
	22	23	22+24	24	Dem.Rep.* 22+24	22	FRG 22+24	22	24	24	24	24	22		∠+24		23	24	Unalloc.	Grand total
1965			19457		9705		13350						7		7182	./867		17007		44874
1966			20500		8393		11448				7				, i	27864		14587		42451
1967			19181		10007		12884								1.16	28875		15193		44068
1968			22593		12360		14815								2113	32911		18970		51881
1969			20602		7519		12717								1413	29082		13169		42251
1970			20085		7996		14589								1289	31363		12596		43959
1971			23715		8007		13482								1419	32119		14504		46623
1972			25645		9665		12313								1277	32808		16092		48900
1973			30595		8374		13733								1655	38237		16120		54357
1974			25782		8459		10393			$_{ m L}$					1937	31326		15245		46571
1975			23481		6042		12912								1932	31867		12500		44367
1976		712	29446		4582		۹93								1800	33368	712	15353		49433
1977		1166	27939		3448									550	1516	29510	1716	15079		46305
1978		1177	19168		7085		10ა							600	1730	24232	1777	14603		40612
1979		2029	23325		7594		9598							700	1800	26027	2729	16290		45046
1980		2425	23400		5580		657							1300	2610	22881	3725	15366		41972
1981		1473	22654		116		1260							900	5700	26340	2373	24933		53646
1982		1638	19138		10615		8060							140	7933	20971	1778	24775		47524
1983		1257	21961		9097		9260							120	6910	24478	1377	22750		48605
1984		1703	21909		8092		11548							228	6014	27058	1931	20506		49495
1985		1076	23024		.57		5523							263	4895	22063	1339	16757		40159
1986		748	16195		86		2902							227	3622	11975	975	13742		26692
1987		1503	13460		4896		4256							137	4314	12105	1640	14821		28566
1988		1121			532		4217							155	5849	9680	1276	18203		29159
1989		63F	8055				2498							192	4987	5738	828	11950		18516
1990		7	858/		1t_9		3054							120	3671	5361	842	11577		17780
1991		14.	9-				2879							232	2768	7184	1663	7846		16693
1992		2449	46				3656							290	1655	9887	2739	5370		17996
1993		1001	-				4084							274	1675	7296	1275	7129	5528	21228
1994		1073	13ა				4023							555	3711	8229	1628	13336	7502	30695
1995		2547	18762	132			9196				15			611	2632	16936	3158	13801		33895
1996		2999	27946	50			12018		50		32			1032	4418	21417	4031	23097	2300	50845

Year	Denmark			Finland		Germany			Estonia Lithuania Latvia			Poland	Sweden				Total			
	22	23	22+24	24	Dem.Rep.*	I	FRG	22	2.4	24	24	24	22	-	22.24		-	24	Unallas	C
	22	23	22+24	24	22+24	22	22+24	22	24	24	24	24	22		22+24			24	Unalloc.	Grand total
1997		1886	28887	11			9269		6			263		177	7	21966	-663	18995		43624
1998		2467	19192	13			9722		8		13	623		77	71د	15^93	3074	16049		34216
1999		2839	23074	116			13224		10		25	660			1525	9ل	3521	18225		42155
2000		2451	19876	171			11572		5		84			65	`56′	∠ 8934	3149	16264		38347
2001		2124	17446	191			10579		40		4 F	646		693	N Z	14976	2817	16451		34244
2002		2055	11657	191			7322				7	782		4	1,27	11968	2409	9781		24158
2003		1373	13275	59			6775				12	568		1	1899	9573	1925	13127		24624
2004		1927	11386				4651				221	.38		3	1727	9091	2320	9430	13	20854
2005		1902	9867	2			7002	72	67		476			/20	835	8729	2621	10686	9	22045
2006		1899	9761	242			7516				586	801			1855	9979	1914	10858		22751
2007		2169	8975	220			6802		6.			า371		534	2322	7840	2713	13183		23736
2008		1612	8582	159			5489		134			1		525	2189	5687	2139	12256		20082
2009		567	7871	259			4020		194	L	23	529		269	1817	3451	839	11259		15549
2010		689	6849	203			4250				159	319		490	1151	3925	1179	9016		14120
2011		783	7799	149			⁻ 21				24	487		414	2153	5493	1198	9641		16332
2012		733	8381	260					3		11	818		390	1955	4896	1123	11053		17072
2013		580	6566	50			32.	_			128	708		380	1317	4675	960	7333		12968
2014	2206	795	6804	7			3243				39	854	1	565	1231	4316	1361	7862		13538
2015	2781	738	6623	28		.213	915				7	755		493	1858	4994	1232	7193		13418
2016	1576	675	4881	29		1617	2390					657	1	448	1550	3193	1123	6313		10629
2017 **	1167	506	2352			<u> </u>	1281					926		435	352	2196	941	2714		5852
2018 **	1010	475	2238	0.5		1	1386					888		395	467	2018	870	2962		5850

^{*} Includes landings from October to Der er 1990 of Fede oublic of Germany.

^{**} Including landings of Below Minim conser in Referenciaze (BMS) from logbooks

Summary of the assessment

Table 13 Cod in subdivisions 22–24, western Baltic stock. Assessment summary. Weights are in tonnes. Recruitment in thousands. High and Low refer to 95% confidence intervals.

thousands. High and Low refer to 95% confidence intervals.													
Year	Recruitment	Recruitment	Recruitment	Stock size:	SSB	SSB	Landings	Discards	Recreational	F (ages	F	F	
	(Age 1)	High	Low	SSB	High	Low				3–5)	High	Low	
1985	28685	51446	15994	30167	37625	24187	33188		2075	1.33	1.62	1.10	
1986	79493	140449	44993	18852	22728	15637	20088		2078	1.25	1.50	1.04	
1987	25929	45037	14928	17492	21054	14533	21692		2081	1.14	1.38	0.95	
1988	11334	19924	6447	21628	27473	17027	20672		2082	1.12	1.35	0.93	
1989	13917	24189	8007	15794	19521	12778	12795		200	1 01	1.23	0.83	
1990	21545	37430	12402	12279	14823	10171	12237		-0-		1.38	0.96	
1991	32863	57065	18925	9710	11511	8190	12931		∠087	1	1.55	1.09	
1992	64599	112999	36929	9547	11573	7876	15672		າ420	1.34	60	1.13	
1993	26179	45686	15001	13817	17329	11017	11815		.5	1.18	41	0.98	
1994	59916	104602	34320	24937	32116	19363	16642	1F	3	1.0	1.29	0.89	
1995	93089	163896	52872	29086	35817	23619	28310	ة.	341.	7 /	1.55	1.06	
1996	25133	44868	14078	35958	44366	29144	38505	5868	3419	.14	1.37	0.95	
1997	80526	135323	47918	40762	52501	31648	37077	9,1	3427	1.15	1.38	0.96	
1998	125200	208514	75175	27947	34119	22892	29634			1.12	1.35	0.94	
1999	43392	70377	26754	33310	40304	27530		43,	416	1.33	1.58	1.12	
2000	44495	71021	27876	33990	42214	27368	ر 31132	3738	3432	1.28	1.52	1.08	
2001	27508	44421	17035	28683	34315	23976	27781	2 19	3427	1.38	1.63	1.17	
2002	48892	79090	30224	25137	30341	20826	20410	5	3437	1.33	1.58	1.13	
2003	15230	24734	9377	20519	24356	17287	7205	3	3448	1.16	1.39	0.98	
2004	66051	106615	40920	23390	28904	18927		189	3445	1.15	1.37	0.96	
2005	22142	35566	13785	26537	31	779	184.	3265	3771	1.08	1.31	0.90	
2006	24905	40422	15345	27471	340	2.	18503	1686	2923	0.83	1.03	0.67	
2007	7986	12866	4956	28691	351	234 ^F		1325	2782	0.89	1.08	0.73	
2008	4090	7206	2322	21230	25250	77	11302	336	3039	0.97	1.17	0.80	
2009	28372	46557	17291	15546	18367	∡ 57	7313	351	2648	1.05	1.25	0.87	
2010	10620	17061	661	14459	17318	73	8007	838	3367	1.09	1.31	0.90	
2011	15517	25133	95	13529	16869	1د ا	9107	299	2595	0.97	1.18	0.80	
2012	12418	19867	7762	711	2035°	13717	8622	370	3661	0.87	1.07	0.71	
2013	29082	47030	۶4	7	16"	11853	7697	1007	3106	1.13	1.38	0.92	
2014	17003	27514	1.	157.	18	13224	8083	837	4044	0.94	1.15	0.77	
2015	10697	173 ^r	F	17368	_1114	14286	8390	432	4568	0.88	1.11	0.70	
2016	2996	510ء	ور	13679	17060	10967	6122	143	3505	0.80	1.07	0.60	
2017	39319	594	1007	11374	15296	8458	3861**	180	1315	0.56	0.85	0.37	
2018	2946	6266	385	14509	22544	9338	3555**	157	1600	0.37	0.69	0.20	
2019	2226*	707°	*	21297	38450	11129							

^{*}Output from SAN vsis h on survey outa.

Source ia rences

Eero, Hir 'jelm, J., Huwer, B., Hüssy, K., Köster, F. W., Margonski, P., Plikshs, M., Storr-Paulsen, M., and Zimme, , C. 2019. Designing spawning closures can be complicated: Experience from cod in the Baltic Sea. Ocean and Coast. nagement, 169: 129–136. https://doi.org/10.1016/j.ocecoaman.2018.12.018.

EU. 2015. COC. CIL REGULATION (EU) 2015/2072 of 17 November 2015 fixing for 2016 the fishing opportunities for certain fish stocks and groups of fish stocks applicable in the Baltic Sea and amending Regulations (EU) No 1221/2014 and (EU) 2015/104. Official Journal of the European Union, L 302. 10 pp. http://data.europa.eu/eli/reg/2015/2072/oj.

^{**}Includes BMS

EU. 2016a. Regulation (EU) 2016/1139 of the European Parliament and of the Council of 6 July 2016 establishing a multiannual plan for the stocks of cod, herring and sprat in the Baltic Sea and the fisheries exploiting those stocks, amending Council Regulation (EC) No 2187/2005 and repealing Council Regulation (EC) No 1098/2007. Official Journal of the European Union, L 191. 15 pp. http://data.europa.eu/eli/reg/2016/1139/oj.

EU. 2016b. COUNCIL REGULATION (EU) 2016/1903 of 28 October 2016 fixing for 2017 the fishing opportunities for certain fish stocks and groups of fish stocks applicable in the Baltic Sea and amending Regulation (EU) 2016/72. Official Journal of the European Union, L 295. 10 pp. http://data.europa.eu/eli/reg/2016/1903/oj.

EU. 2017. COUNCIL REGULATION (EU) 2017/1970 of 27 October 2017 fixing for 2018 the fishing opportunities for certain fish stocks and groups of fish stocks applicable in the Baltic Sea and amending Regulation (EU) 2017/127. Official Journal of the European Union, L 281. 10 pp. http://data.europa.eu/eli/reg/2017/1970/oj.

ICES. 2018. Advice basis. *In* Report of the ICES Advisory Committee, 2018. ICES Advice 3, Book totion 1.2. https://doi.org/10.17895/ices.pub.4503.

ICES. 2019a. Benchmark Workshop on Baltic Cod Stocks (WKBALTCOD2), 4–8 Fe ary 20 'CES H' quarters, Copenhagen, Denmark. ICES Scientific Reports, 1:9. 310 pp. https://doi.org/10.1780 es.pub.4984.

ICES. 2019b. Report of the Baltic Fisheries Assessment Working Group (WGBF. 8–15 II 2019, ICL5 Headquarters, Copenhagen, Denmark. ICES Scientific Reports, 1:20. 651 pp. https://doi.org/10.17 s.pub.5?

ICES. 2019c. Cod (*Gadus morhua*) in subdivisions 22–24, western Balti (western a). In Report of the ICES Advisory Committee, 2019. ICES Advice 2019,cod.27.22-24, https://doi.org/10.17895/jces.ce.5587

Recommended citation: ICES. 2019. Cod (Gadus morhua) in subdivisions 22-24, western Baltic stock (western Baltic Sea). In Report of the ICES Advisory Committee, 2019, cod.27.22-24, https://doi.org/10.17895/ices.advice.4746