

POLITECHNIKA ŚLĄSKA W GLIWICACH

Algorytmy Kompresji Danych 19 stycznia 2017

Porównanie PNG, JPEG-LS i JPEG2000 w kompresji bezstratnej

AUTOR:
Bartłomiej Buchała

Informatyka SSM, semestr II Rok akademicki 2016/2017 Grupa OS1 SPIS TREŚCI SPIS TREŚCI

Spis treści

1	Wstęp	2
2	Użyte algorytmy 2.1 PNG 2.2 JPEG-LS 2.3 JPEG2000	2 2 2 3
3	Wykorzystane biblioteki	3
	3.1 PNG – pnmtopng	3
	3.1.1 Instalacja	3
	3.1.2 Uruchamianie	3
	3.2 JPEG-LS – SPMG/JPEG-LS	4
	3.2.1 Instalacja	4
	3.2.2 Uruchamianie	4
	3.3 JPEG2000 – JasPer	4
	3.3.1 Instalacja	4
	3.3.2 Uruchamianie	5
4	Porównanie wyników	5
	4.1 Platforma testowa	5
	4.2 Badane wartości	5
	4.3 Obrazy barwne	5
	4.4 Obrazy czarno-białe	8
5	Wnioski	11

1. Wstęp

Cel projektu: przeprowadzić porównanie algorymtów PNG, JPEG-LS i JPEG2000 w trybie kompresji bezstratnej. Porównywane implementacje ocenić pod względem:

- Uzyskiwanych współczynników,
- Prędkości kompresji.

Należy przeprowadzić badania dla barwnych i czarno-białych obrazów. W tym celu posłużono się obrazami z zestawu Waterloo (http://links.uwaterloo.ca/Repository.html):

- Waterloo Greyscale 2 (obrazy w odcieniach szarości)
- Waterloo Colour Set (obrazy barwne)

2. Użyte algorytmy

2.1 PNG

PNG (ang. *Portable Network Graphics*) – to rastrowy format plików graficznych oraz system bezstratnej kompresji obrazów barwnych oraz w odcieniach szarości. Został opracowany w 1995 roku jako następca formatu GIF. Cechy algorytmu PNG:

- Kompresor PNG jest schematem predykcyjnym.
- Kompresja polega na wykonaniu transformacji każdej linii obrazu, po czym skompresowaniu go za pomocą algorytmu deflate.
- Transformacja polega na obliczeniu różnicy pomiędzy wartością piksela, a wartością obliczoną na podstawie funkcji przewidującej.
- Funkcje przewidujące to funkcje wyliczające wartości na podstawie wartości sąsiadujących pikseli.
- Stosowane jest kodowanie LZ77, a do kodowania położenia i długości dopasowanej sekwencji używa sie kodów przedrostkowych zmiennej długości (predefiniowanych lub kodów Huffmana z ograniczeniem).

2.2 JPEG-LS

JPEG-LS jest nowym standardem komitetu JPEG dla kompresji bezstratnej obrazów wynalezionym w 1999 roku. Jest następcą Lossless JPG opartym o algorytm LOCO-I. Wykorzystywany jest ze względu na osiągane współczynniki kompresji (bliskie najlepszym) oraz dużą elastyczność umożliwiającą implementację rozszerzeń. Oprócz tego istnieje "prawie bezstratny" (ang. *nearly lossless*) wariant tego algorytmu.

Uogólniony schemat algorytmu JPEG-LS:

- 1. **Wykrywanie krawędzi pionowych i poziomych** stosowany w tym celu jest prosty predykat nieliniowy (wyznaczanie jedynie przy pomocy stałopozycyjnych operacji dodawania/odejmowania i porównań liczb stałopozycyjnych).
- 2. **Kodowanie** przy pomocy kodera entropijnego i zmodyfikowanej (uproszczonej) rodziny kodów Rice'a. Na tym etapie koduje się również błędy predykcji.
- 3. **Modelowanie kontekstu** wyznaczony na podstawie 3 gradientów model jest dedykowany dla kodów rodziny Rice'a.

2.3 JPEG2000

JPEG-2000 podobnie jak JPEG-LS jest następcą algorytmu JPEG wyłonionym w drodze konkursu. Opracowany w 2000 roku, stanowi standard komitetu JPEG zarówno dla stratnej, jak i bezstratnej kompresji obrazów. Jest algorytmem przeznaczonym dla obrazów barwnych i w odcieniach szarości opartym o transformatę falkową. Pozwala na kodowanie piramidowe i progresywne.

Uogólniony schemat algorytmu JPEG2000:

- 1. Sprowadzenie nominalnego zakresu jasności pikseli do przedziały symetrycznego względem 0 jest to krok tożsamy z tym wykonywanym w algorytmie JPEG.
- 2. **Transformacja przestrzeni barw** może być nieodwracalna lub odwracalna. Ta pierwsza możliwa jest tylko razem z nieodwracalną transformatą falkową.
- 3. **Podział składowej na kafelki** realizowany poprzez nałożenie siatki prostokątnej na obraz (najczęściej o wymiarach 256 na 256 pikseli). Krawędzie siatki nie muszą się pokrywać z krawędziami obrazu, a obraz może mieścić się w jednym kafelku.
- 4. **Wyznaczenie transformaty falkowej dla każdego kafelka** przed transformatą należy ekstrapolować wiersze. W przypadku kompresji bezstratnej, stosujemy transformatę odwracalną.
- 5. **Kwantyzacja współczynników transformaty** dla kompresji bezstratnej krok zawsze wynosi 1. W przypadku operacji kompresji stratnej koder dobiera krok, aby możliwe było osiągnięcie zadanego współczynnika.
- 6. Kodowanie skwantowanych współczynników przy pomocy kodera arytmetycznego.
- 7. Zapisanie zakodowanych danych w pliku o strukturze opisej przez standard.

3. Wykorzystane biblioteki

3.1 PNG – pnmtopng

3.1.1 Instalacja

pnmtopng jest elementem pakietu NetPBM. Aby umożliwić korzystanie z biblioteki na systemie Unixowym, należy:

- 1. Posiadać zainstalowane wymagane LibPNG, ZLIB, dowolny kompilator języka C oraz Perl w wersji 6.0 lub nowszy.
- 2. Pobrać pliki źródłowe spakowane do formatu .tar ze strony SourceForge (https://sourceforge.net/projects/netpbm/files/).
- 3. Wypakować pliki do wybranego przez siebie folderu.
- 4. Wykonać komendy

```
./configure
make package
./installnetpbm
```

W przypadku Windowsa, należy posłużyć środowiskami Cygwin lub Djgpp.

Prostszą alternatywą jest pobranie skompilowanych plików binarnych ze strony: http://gnuwin32.sourceforge.net/packages/netpbm.htm

3.1.2 Uruchamianie

Aby uruchomić kompresję plików, należy posłużyć się aplikacją **pnmtopng**. Do poprawnego działania, w folderze z aplikacją powinny znajdować się również biblioteki *libnetpbm10.dll*, *libpng13.dll* oraz *zlib1.dll*. Przykładowe wywołanie programu w celu kompresji pliku *clegg.ppm*:

```
pnmtopng clegg.ppm >clegg.png
```

3.2 JPEG-LS – SPMG/JPEG-LS

3.2.1 Instalacja

SPMG/JPEG-LS jest kodekiem implementującym algorytm kompresji i dekompresji do formatu JPEG-LS. Aby móc skorzystać z algorytmu, należy:

- 1. Pobrać pliki źródłowe ze strony domowej projektu (http://www.stat.columbia.edu/~jakulin/jpeg-ls/mirror.htm) i wypakować do wybranego przez siebie folderu.
- 2. W folderze z wypakowanymi plikami wykonać komendę:

```
make clean <nazwa>
```

Gdzie <nazwa> określa, który program chcmy skompilować.

- locoe kompresor
- \bullet locod dekompresor

Po tej czynności utworzą się odpowiednie pliki wykonywalne

3.2.2 Uruchamianie

Wywołanie kompresji obrazu można uzyskać za pomocą linii komend:

```
locoe [dodatkowe_flagi] clegg.ppm [-ooutfile]
```

Nazwa pliku wyjściowego jest opcjonalna, jest ona generowana na podstawie nazwy pliku wejściowego. Alternatywą jest wykorzystanie programu okienkowego **JLSEncoder** dostarczanego razem z plikami źródłowymi. Program ten posiada prosty interfejs pozwalający wybrać pliki z okien dialogowych oraz wyświetla statystyki po wykonaniu konwersji (czas wykonania, stopień konwersji itp.).

$3.3 ext{ JPEG2000} - JasPer$

3.3.1 Instalacja

JasPer jest otwarto źródłową biblioteką zawierającą implementację algorytmu JPEG2000. W celu instalacji na systemie Windows należy:

- 1. Pobrać i wypakować pliki źródłowe ze strony projektu (http://www.ece.uvic.ca/~frodo/jasper/) do wybranej przez siebie lokalizacji.
- 2. Utworzyć dodatkowe zmienne środowiskowe:
 - (a) %SOURCE_DIR% katalog nadrzędny, w którym wypakowane zostały pobrane pliki.
 - (b) %BUILD_DIR% ścieżka do katalogu używanego do zbudowania aplikacji.
 - (c) %INSTALL_DIR% ścieżka do katalogu używanego do zainstalowania aplikacji.

Zmienne te są zdefiniowane pliku w make i będą wykorzystywane w trakcie instalacji.

3. W wierszy poleceń wykonać polecenie:

```
cmake -help
```

Pozwala to podejrzeć nazwy wszystkich dostępnych generatorów (programów umożliwiających kompilację plików źródłowych).

4. Za pomocą wybranego przez siebie generatora (parametr -G) wykonać komendę tworzącą plik solucji .sln.

```
cmake -G "Visual_Studio_14_2015_Win64" -H%SOURCE_DIR% -B%BUILD_DIR% ^ -
DCMAKE_INSTALL_PREFIX=%INSTALL_DIR%
```

5. W wierszu poleceń programisty (ang. Developer Command Line) wykonać komendę:

```
msbuild %build_dir%\INSTALL.vcxproj
```

Spowoduje to utworzenie skompilowanego programu jasper.exe w ścieżce podanej w %INSTALL_DIR%.

3.3.2 Uruchamianie

Aby uruchomić program jasper.exe, należy w pierwszej kolejności skopiować do tego samego katalogu bibliotekę libjasper.dll, wygenerowaną wcześniej w folderze lib. Może również dojść do sytuacji, w jakiej nie zostanie wykryta biblioteka ucrtbased.dll. W takim przypadku należy pobrać ją z internetu i wypakować ją w C: Windows System 32. Przykładowa komenda uruchamiająca kompresję (plik clegg.ppm):

| jasper.exe --input clegg.ppm --output clegg.jp2 --output-format jp2

4. Porównanie wyników

4.1 Platforma testowa

Testy przeprowadzono na komputerze stancjonarnym o następującej specyfikacji:

- System operacyjny Windows 10 Home 64-bit.
- Procesor Intel Core i5 4590, taktowanie 3.30GHz.
- Pamięć RAM 8 GB 2-Kanałowy DDR3, taktowanie 1600 MHz.

4.2 Badane wartości

Jakość kompresji określono za pomocą współczynnika kompresji, którego można przedstawić przy pomocy wzoru:

$$CR = \frac{SkompresowanyRozmiar}{NieskompresowanyRozmiar}$$

W tym przypadku, im niższa wartość tym lepszy algorytm. Współczynnik można również zapisać procentowo.

Drugą mierzoną wartością był czas kompresji obliczany w milisekundach.

4.3 Obrazy barwne

Podstawą dla obrazów barwnych był format **PPM** – odmiana bitmapy, będącej formą zapisu grafiki rastrowej. PPM jest przeznaczony dla obrazów kolorowych i zawiera maksymalnie do 24 bitów na piksel w trybie binarnym (8 bitów na każdy kolor).

Dostęp do kolorowych obrazów w wersji oryginalnej i we wszystkich skompresowanych formatach można znaleźć pod adresem https://ldrv.ms/f/s!AgqzGFHuQrvMh6YsXffaWhGLWCa-qQ.

Tabela 1: Clegg

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	2099 KB	475 KB	22,62 %	216
JPEG-LS	2099 KD	638 KB	30,39 %	58
JPEG2000		1370 KB	65,25 %	273

Tabela 2: Frymire

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	3620 KB	380 KB	10,49 %	176
JPEG-LS	3020 KD	914 KB	25,25 %	59
JPEG2000		1561 KB	43,11 %	719

Tabela 3: Lena3

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	769 KB	466 KB	60,54 %	103
JPEG-LS	109 KD	436 KB	56,81 %	30
JPEG2000		435 KB	57,93 %	440

Tabela 4: Monarch

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	1153 KB	605 KB	52,44 %	230
JPEG-LS	1100 KD	543 KB	46,94 %	44
JPEG2000		432 KB	37,44 %	482

Tabela 5: Peppers3

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	•	418 KB	54,33 %	149
JPEG-LS	769 KB	377 KB	49,01 %	29
JPEG2000		328 KB	42,64 %	367

Tabela 6: Sail

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	1153 KB	792 KB	68,66 %	156
JPEG-LS	1100 KD	750 KB	64,93 %	45
JPEG2000		512 KB	44,37 %	542

Tabela 7: Serrano

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	1464 KB	155 KB	10,58 %	95
JPEG-LS	1404 KD	287 KB	19,60 %	23
JPEG2000		624 KB	42,61 %	740

Tabela 8: Tulips

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]	
PNG	1153 KB	667 KB	57,88 %	202	
JPEG-LS	1100 KD	603 KB	52,35 %	46	
JPEG2000		478 KB	41,46 %	547	

Rysunek 1: Wykres słupkowy dla obrazów kolorowych

4.4 Obrazy czarno-białe

Podstawą dla obrazów z zestawu Waterloo Greyset 2 był format \mathbf{PGM} – odmiana bitmapy, będącej formą zapisu grafiki rastrowej. PGM jest przeznaczony dla w obrazów odcieniach szarości i zawiera 8 bitów na piksel.

Dostęp do czarno-białych obrazów w wersji oryginalnej i we wszystkich skompresowanych formatach można znaleźć pod adresem https://ldrv.ms/f/s!AgqzGFHuQrvMh6Yrr6Nukb3bG8dq6A.

Tabela 9: Barb

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	257 KB	170 KB	66,28 %	58
JPEG-LS	201 KD	152 KB	59,17 %	10
JPEG2000		150 KB	58,24 %	155

Tabela 10: Boat

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	257 KB	149 KB	57,94 %	67
JPEG-LS	201 KD	136 KB	53,19 %	10
JPEG2000		141 KB	55,07 %	151

Tabela 11: France

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	326 KB	18 KB	5,27 %	40
JPEG-LS	320 KD	58 KB	17,63 %	5
JPEG2000		83 KB	25,25 %	142

Tabela 12: Frog

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	303 KB	227 KB	75,01 %	57
JPEG-LS	303 KD	229 KB	75,75 %	12
JPEG2000		237 KB	78,22 %	125

Tabela 13: Goldhill2

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	257 KB	157 KB	61,08 %	54
JPEG-LS	201 KD	151 KB	58,82 %	10
JPEG2000		155 KB	60,47 %	171

Tabela 14: Lena2

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	257 KB	148 KB	57,57 %	63
JPEG-LS	201 KD	136 KB	52,95 %	10
JPEG2000		139 KB	53,95 %	150

Tabela 15: Library

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]	
PNG	160 KB	103 KB	64,18 %	37	
JPEG-LS	100 KD	102 KB	63,69 %	6	
JPEG2000		114 KB	71,20 %	127	

Tabela 16: Mandrill

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	257 KB	200 KB	76,28 %	49
JPEG-LS	201 KD	194 KB	75,18 %	10
JPEG2000		196 KB	76,37 %	182

Tabela 17: Mountain

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	301 KB	248 KB	82,53 %	65
JPEG-LS	301 KD	240 KB	80,64 %	12
JPEG2000		252 KB	83,76 %	241

Tabela 18: Peppers2

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	257 KB	156 KB	60,56 %	56
JPEG-LS	201 KD	144 KB	56,17 %	11
JPEG2000		148 KB	57,73 %	150

Tabela 19: Washsat

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	257 KB	104 KB	40,35 %	88
JPEG-LS	207 KD	133 KB	51,54 %	9
JPEG2000		142 KB	55,39 %	169

Tabela 20: **Zelda**

	Rozmiar przed	Rozmiar po	Wspł. kompresji	Czas [ms]
PNG	057 L/D	137 KB	53,17 %	63
JPEG-LS	257 KB	129 KB	50,17 %	9
JPEG2000		128 KB	49,90 %	147

Rysunek 2: Wykres słupkowy dla obrazów w odcieniach szarości

5. Wnioski

Wszystkie z testowanych formatów generowane są w trakcie kompresji bezstratnej. Jest to bezpośredni powód, dla którego uzyskane współczynniki kompresji są gorsze niż w przypadku kompresji stratnej. Istnieją jednak zalety korzystania z kompresji bezstratnej – ponieważ nie tracimy danych, są to procesy w pełni odwracalne. W subiektywnym odczuciu różnice między skompresowanymi obrazami a oryginałem nie są widoczne gołym okiem.

Przy porównaniu wyników uzyskanych w trakcie kompresji obrazów barwnych, rzuca się w oczy przede wszystkim różnica w wartości współczynnika dla obrazów clegg, frymire oraz serrano. Powodem tej dysproporcji jest pochodzenie obrazów źródłowych – wszystkie 3 są obrazami stworzonymi cyfrowo. W takim przypadku górę bierze format PNG ze względu na swój algorytm predykcji. W przypadku rysowanych obrazów, częstym scenariuszem jest występowanie w sąsiedztwie pikseli o identycznej wartości, co pozwala PNG na łatwiejsze enkodowanie dużych porcji danych. W takich przypadkach osiągał 3-4 razy lepsze wyniki niż JPEG2000 i 1,5-2 razy lepsze wyniki niż JPEG-LS. W pozostałych przypadkach (lena3, monarch, peppers3, sail oraz tulips) mamy do czynienia ze zdjęciami – w takim scenariuszach wyniki są bardziej wyrównane, jednak najlepsze współczynniki uzyskiwał algorytm JPEG2000, a najgorzej wypadał PNG. Jedynym wyjątkiem jest obraz lena3, dla którego JPEG-LS uzyskał minimalnie lepszy wynik. Przeciętnie najlepiej wypadł format PNG, jednak zawdzięcza to przede wszytkim kompresji obrazów rysowanych.

Nieco inaczej wygląda sytuacja w przypadku obrazów w odcieniach szarości. Znaczące różnice (ponownie na korzyść PNG) można dostrzec głównie dla obrazów france i washsat. Pierwszy z nich jest slajdem prezentacji (utworzonym komputerowo), a nieznaczne zmiany w kolorystyce kolejnych pikseli ponownie faworyzują algorytm PNG. Ciekawszy jest drugi przypadek, przedstawiający krajobraz z lotu ptaka – jest to zdjęcie, jednak charakteryzujące się niewielkim kontrastem pomiędzy pikselami. W pozostałych przypadkach uzyskiwane wyniki były bardzo zbliżone, przeciętnie najlepszy okazywał się format JPEG-LS.

Różnice w szybkości są odczuwalne (zwłaszcza dla większych obrazów kolorowych) – o ile JPEG-LS był kilka razy szybszy niż PNG, znaczący przeskok zanotowano zwłaszcza pomiędzy tymi 2 algorytmami a JPEG2000 - ten ostatni był nawet 10 razy wolniejszy niż JPEG-LS. Dla obrazach w odcieniach szarości różnice te były mniejsze (co jednak jest też spowodowane mniejszym rozmiarem grafik), jednak proporcje pozostały te same – najszybciej wykonywała się kompresja do formatu JPEG-LS, wyprzedzając PNG i JPEG2000.

Literatura

[1] Roman Starosolski, *Agorytmy bezstratnej kompresji obrazów* [online]. Rok publikacji: 2002, dostępny w Internecie: http://sun.aei.polsl.pl/~akd/artykuly/zn-kobrazow.pdf