Stochastic Signal Processing

Lesson 4: Sequences of Random Variables & Basic of Estimation

Weize Sun

Last week's review examples

1. Assume that X is a r.v follows exponential distribution with parameter $\lambda > 1$, find the expectation of $Y = e^X$ Note that for exponential distribution:

- Mean: $E(X) = \int_0^\infty x \lambda e^{-\lambda x} dx = 1/\lambda$
- Variance:D(X) = $1/\lambda^2$
- pdf: $f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0 \\ 0, & x < 0 \end{cases}$

Solution:

$$E(Y) = \int_0^\infty e^x \lambda e^{-\lambda x} dx = \int_0^\infty \lambda e^{-(\lambda - 1)x} dx = \frac{\lambda}{\lambda - 1}$$

Last week's review examples

2. Given Y = 0.5X + 1, Z = -0.5X + 1 and D(X) = 1, calculate the covariance matrix of the vector (X, Y, Z)

Note: $cov(X,Y) = E[(X - \overline{X})(Y - \overline{Y})] = E(XY) - E(X)E(Y)$ Solution:

$$k_{1,1} = D(X) = 1, k_{2,2} = D(Y) = 0.25, k_{3,3} = D(Z) = 0.25$$

 $k_{1,2} = cov(X, Y) = 0.5, k_{1,3} = cov(X, Z) = -0.5$

$$k_{2,3} = cov(Y, Z) = E(-0.25X^2 + 1) - (E(0.5X) + 1)(E(-0.5X) + 1)$$

= $-0.25(E(X^2) - E(X)^2) = -0.25D(X) = -0.25$

Therefore:

$$1 0.5 -0.5$$

$$K = (0.5 0.25 -0.25)$$

$$-0.5 -0.25 0.25$$

General concepts

A random vector is a vector

$$X = [x_1, \dots, x_n] \tag{4-1}$$

whose components x_i are random variables. In some books it is called **multi-dimensional r.vs**.

• The probability that \boldsymbol{X} is in a region D of the n-dimensional space equals the probability masses in D :

$$P\{X \in D\} = \int_{D} f(X)dX, X = [x_1, ..., x_n]$$
 (4-2)

Where
$$f(X) = f(x_1, ..., x_n) = \frac{\partial^n F(x_1, ..., x_n)}{\partial x_1, ..., \partial x_n}$$
 (4-3)

is the joint (or, multivariate) density (pdf) of the random variables $x_{
m i}$ and

$$F(X) = F(x_1, ..., x_n) = P\{x_1 \le x_1, ..., x_n \le x_n\}$$
 (4-4)

is their joint distribution (CDF).

General concepts

• If we substitute in $F(x_1, ..., x_n)$ certain variables by ∞ , we obtain the joint distribution of the remaining variables. If we integrate $f(x_1, ..., x_n)$ with respect to certain variables, we obtain the joint density of the remaining variables:

$$F(x_1, x_3) = F(x_1, \infty, x_3, \infty)$$

$$f(x_1, x_3) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x_1, x_2, x_3, x_4) dx_2 dx_4$$
(4-5)

- $f(x_1, x_3)$ is the joint density of the random variables x_1 and x_3 and it is in general different from the joint density $f(x_2, x_4)$ of the random variables x_2 and x_4 .
- Similarly, the density $f_i(x_1)$ of the random variable x_1 will often be denoted by $f(x_i)$.

Transformations

• Given k functions $g_1(X), \dots, g_k(X), \quad X = [x_1, \dots, x_n]$, we form the random variables

$$y_1 = g_1(X), ..., y_k = g_k(X)$$
 (4-6)

- The statistics of these random variables can be determined in terms of the statistics of X as in last lesson.
 - If k < n, then we could determine first the joint density of the n random variables $y_1, ..., y_k, x_{k+1}, ..., x_n$ and then use the generalization of (4-5) to eliminate the x's.
 - If k > n, then the random variables $y_{n+1}, ..., y_k$ can be expressed in terms of $y_1, ..., y_n$. In this case, the masses in the k space are singular and can be determined in terms of the joint density of $y_1, ..., y_n$. It suffices, therefore, to assume that k = n.

Transformations

• To find the density $f_y(y_1,...,y_n)$ of the random vector $\pmb{Y}=[\pmb{y_1},...,\pmb{y_n}]$ for a specific set of numbers $y_1,...,y_n$, we solve the system

$$g_1(X) = y_1, \dots, g_n(X) = y_n$$
 (4-7)

- If this system has no solutions, then $f_{y}(y_{1},...,y_{n})=0$.
- If it has a single solution $X = [x_1, ..., x_n]$, then

$$f_{y}(y_{1},...,y_{n}) = f_{x}(x_{1},...,x_{n})|J|$$
where $J = \begin{vmatrix} \frac{\partial x_{1}}{\partial y_{1}} & ... & \frac{\partial x_{1}}{\partial y_{n}} \\ ... & ... \\ \frac{\partial x_{n}}{\partial y_{1}} & ... & \frac{\partial x_{n}}{\partial y_{n}} \end{vmatrix}$ is the jacobian of the transformation (4-7).

注:对多元随机变量的变换(slides 5-7),这里仅要求了解。

Independence

• The random variables $x_1, ..., x_n$ are called (mutually) independent if the events $\{x_1 \le x_1\}, ..., \{x_n \le x_n\}$ are independent:

$$F(x_1, \dots, x_n) = F(x_1) \cdots F(x_n)$$

$$f(x_1, \dots, x_n) = f(x_1) \cdots f(x_n)$$
(4-9)

Conditional densities

- Now we define the conditional densities of multi-dimensional r.vs or random vector as follows:
- For 2 r.vs, we have $f(y \mid x) = f(x,y)/f(x)$. Similarly, we conclude that the conditional density of the random variables x_n, \dots, x_{k+1} assuming x_k, \dots, x_1 given by

$$f(x_n, ..., x_{k+1} \mid x_k, ..., x_1) = \frac{f(x_1, ..., x_k, ..., x_n)}{f(x_1, ..., x_k)}$$
 (4-10)

The conditional CDF is:

$$F(x_n, \dots, x_{k+1} \mid x_k, \dots, x_1)$$

$$= \int_{-\infty}^{x_n} \cdots \int_{-\infty}^{x_{k+1}} f(\alpha_n, ..., \alpha_{k+1} \mid x_k, ..., x_1) d\alpha_{k+1} ... d\alpha_n$$
 (4-11)

• Chain rule (链式法则):

$$f(x_1, ..., x_n) = f(x_n \mid x_{n-1}, ..., x_1) \cdots f(x_2 \mid x_1) f(x_1)$$
 (4-12)

Conditional expected values – Discrete type

- For discrete type r.vs, all densities are replaced by probabilities and all integrals by sums.
- For example, if the random variables x_1 , x_2 , x_3 take the values a_i , b_k , c_r , respectively, then

$$P\{x_1 = a_i, x_2 = b_k, x_3 = c_r\} = \sum_k \sum_r P\{x_1 = a_i \mid b_k, c_r\} P\{x_2 = b_k \mid c_r\} P\{x_3 = c_r\} \quad (4-13)$$

The conditional mean of the random variables:

$$E\{x_1 \mid x_2, ..., x_n\} = \int_{-\infty}^{\infty} x_1 f(x_1 \mid x_2, ..., x_n) dx_1$$
 (4-14)

This is a function of $x_2, ..., x_n$; it defines the random variable $E\{x_1 \mid x_2, ..., x_n\}$. Multiplying it by the pdf $f(x_2, ..., x_n)$ and integrating (which is, calculate the mean of $E\{x_1 \mid x_2, ..., x_n\}$) gives:

$$E\{E\{x_1 \mid x_2, \dots, x_n\}\} = E\{x_1\}$$
 (4-15)

which is, taking the expetation of ' x_1 under all conditions of x_2 , ..., x_n ', we can get the mean of x_1

Conditional expected values

• Another kind of 'chain rule':

$$E\{x_1 \mid x_3\} = \int_{-\infty}^{\infty} E\{x_1 \mid x_2, x_3\} f(x_2 \mid x_3) dx_2$$
 (4-16)

Proof:

$$\int_{-\infty}^{\infty} E\{x_{1} \mid x_{2}, x_{3}\} f(x_{2} \mid x_{3}) dx_{2} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} f(x_{1} \mid x_{2}, x_{3}) f(x_{2} \mid x_{3}) dx_{1} dx_{2}$$

$$= (1/f(x_{3})) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} f(x_{1} \mid x_{2}, x_{3}) f(x_{2} \mid x_{3}) f(x_{3}) dx_{1} dx_{2}$$

$$= (1/f(x_{3})) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} f(x_{1}, x_{2}, x_{3}) dx_{1} dx_{2} = (1/f(x_{3})) \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x_{1} f(x_{1}, x_{2}, x_{3}) dx_{2} dx_{1}$$

$$= (1/f(x_{3})) \int_{-\infty}^{\infty} x_{1} f(x_{1}, x_{3}) dx_{1} = E\{x_{1} \mid x_{3}\}$$

 For the discrete case, all densities are replaced by probabilities and all integrals by sums

$$E\{x_1 \mid c_r\} = \sum E\{x_1 \mid b_k, c_r\} P\{x_2 = b_k \mid c_r\}$$
 (4-17)

Mean square estimation

- The estimation problem is fundamental in the applications of probability. Here we introduce the main ideas using as illustration the estimation of a random variable \boldsymbol{y} in terms of another random variable \boldsymbol{x} . Throughout this analysis, the optimality criterion will be the minimization of the mean square value (abbreviation: MS) of the estimation error. (you might see the word 'MSE mean square error' in some articles or paper sometimes)
- We start with a brief explanation of the underlying concepts in the context of repeated trials, considering first the problem of estimating the random variable y by a constant.
- As we know, the distribution function F(y) of the random variable y determines completely its statistics.
 - This does not mean that if we know F(y) we can predict the value $y(\zeta)$ of y at some future trial.
 - However, we can estimate the unknown $y(\zeta)$ by some number c, and, the knowledge of F(y) can guide us in the selection of c.

Mean square estimation

• If y is estimated by a constant c, then our problem is to select c so as to minimize the error $y(\zeta) - c$ in some sense. A reasonable criterion for selecting c might be 'the average error is close to 0':

$$\frac{\mathbf{y}(\zeta_1) - c + \dots + \mathbf{y}(\zeta_n) - c}{n} \simeq 0$$

This would lead to the conclusion that c should equal the mean of y.

- Another criterion for selecting c might be the minimization of the average of $|y(\zeta) c|$. In this case, the optimum c is the median of y.
- In our analysis, we consider only MS estimates. This means that c should be such as to minimize the average of $|y(\zeta) c|^2$. This criterion is in general useful but it is selected mainly because it leads to simple results. In this case, the best c is again the mean of y.

Mean square estimation

• The MS estimation of the random variable y by a constant c can be phrased as follows: Find c such that the second moment (MS error)

$$e = E\{(y-c)^2\} = \int_{-\infty}^{\infty} (y-c)^2 f(y) dy$$
 (4-18)

of the difference (error) (y - c) is minimum.

• Clearly, e depends on c and it is minimum if

$$\frac{de}{dc} = \int_{-\infty}^{\infty} 2(y - c)f(y)dy = 0$$

- that is, when $c=\int_{-\infty}^{\infty}yf(y)dy$ (the mean), the minimum can be achieved.
- Thus

$$c = E\{\mathbf{y}\} = \int_{-\infty}^{\infty} y f(y) dy \tag{4-19}$$

Linear MS Estimation

• The linear estimation problem is the estimation of the random variable \boldsymbol{y} in terms of a linear function $a\boldsymbol{x} + b$ of \boldsymbol{x} . The problem now is to find the constants \boldsymbol{a} and \boldsymbol{b} so as to minimize the MS error

$$e = E\{[y - (ax + b)]^2\}$$
 (4-19)

- Indeed, the MS error e is a function of a and b and it is minimum if $\partial e/\partial a=0$ and $\partial e/\partial b=0$. The first equation yields $\frac{\partial e}{\partial a}=E\{2[\mathbf{y}-(a\mathbf{x}+b)](-\mathbf{x})\}=0$, which is:
- Orthogonality principle: when

$$E\{[y - (ax + b)]x\} = 0 (4-20)$$

That means, the optimum linear MS estimate ax + b of y is such that the estimation error $\{y - (ax + b)\}$ is orthogonal to the data x. It is fundamental in MS estimation and will be used extensively.

Linear MS Estimation

$$e = E\{[y - (ax + b)]^2\}$$
 (4-19)

- Note that $\partial e/\partial b = E\{2[y (ax + b)](-1)\} = 0$, which is $E\{[y (ax + b)](1)\} = 0$
- Orthogonality principle: when

$$E\{[\mathbf{y} - (a\mathbf{x} + b)]\mathbf{x}\} = 0 \tag{4-20}$$

$$E\{[y - (ax + b)](1)\} = 0$$
 (4-21)

(4-20) & (4-21) can be used to estimate a & b, we will introduce the matrix form solution here only.

• In deep learning, the a is referred to as 'weight parameter' and b is as 'bias'.

https://zhuanlan.zhihu.com/p/29815081

1 从感知机到神经网络

感知机的模型,它是一个有若不输入和一个输出的模型,如下图:

输出和输入之间学习到一个线性关系。得到中间输出结果:

$$z = \sum_{i=1}^m w_i x_i + b$$

Linear Estimation – the general case

• The linear MS estimate of $m{s}$ in terms of the random variables $m{x}_i$ is the sum

$$\hat{\mathbf{s}} = a_1 \mathbf{x}_1 + \dots + a_n \mathbf{x}_n + b \tag{4-22}$$

where a_1, \dots, a_n, b are n+1 constants such that the MS value

$$e = E\{(\mathbf{s} - \hat{\mathbf{s}})^2\} = E\{[\mathbf{s} - (a_1\mathbf{x}_1 + \dots + a_n\mathbf{x}_n + b)]^2\}$$
(4-23)

of the estimation error $\mathbf{s} - \hat{\mathbf{s}}$ is minimum.

• Orthogonality principle: P is minimum if the error $\mathbf{s} - \hat{\mathbf{s}}$ is orthogonal to the data \mathbf{x}_i :

$$E\{[\mathbf{s} - (a_1\mathbf{x}_1 + \dots + a_n\mathbf{x}_n + b)]\mathbf{x}_i\} = 0, \text{ for } i = 1, \dots, n$$
and $E\{[\mathbf{s} - (a_1\mathbf{x}_1 + \dots + a_n\mathbf{x}_n + b)](1)\} = 0 \text{ for estimating } b$

• Example 4-1: The data of watermelon sales in a certain market at time t are as follows (q_t represents the quantity of watermelon sold at time t, and p_t represents the sales price at time t)

p_{t}	$q_{\scriptscriptstyle t}$
2.5	1
2.0	3
1.5	5
1.0	7
0.5	9
0	11

Calculate the a&b from $q_t = ap_t + b$

• Example 4-1: The data of watermelon sales in a certain market at time t are as follows (q_t represents the quantity of watermelon sold at time t, and p_t represents the sales price at time t)

p_{t}	q_{t}
2.5	1
2.0	3
1.5	5
1.0	7
0.5	9
0	11

Calculate the a&b from $q_t = ap_t + b$

Solution:

$$q_t = 11 - 4p_t$$

• Example 4-1.2: if there some randomness of the relationship:

p_t	$q_{\scriptscriptstyle t}$	Probability	
	0	0.25	
2.5	1	0.50	
	2	0.25	
2.0	2	0.25	
	3	0.50	
	4	0.25	
•••	•••	•••	
0	10	0.25	
	11	0.50	
	12	0.25	

Calculate the a&b from $q_t \approx ap_t + b$?

• Example 4-1.2: if there some randomness of the relationship:

p_t	$q_{\scriptscriptstyle t}$	Probability		
	0	0.25		
2.5	1	0.50		
	2	0.25		
2.0	2	0.25		
	3	0.50		
	4	0.25		
•••	•••	•••		
0	10	0.25		
	11	0.50		
	12	0.25		

Calculate the a&b from $q_t \approx ap_t + b$?

Solution:

$$q_t = 11 - 4p_t + \varepsilon_t$$

The ε_t represents the error of the regression at time t

• How to calculate a&b by minimizing $e = E\{[y - (a + bx)]^2\}$ in matrix form?

$$y_1 = a + bx_1 + \varepsilon_1$$

$$y_2 = a + bx_2 + \varepsilon_2$$

$$y = A\mathbf{z} + \mathbf{e}$$

$$y_M = a + bx_M + \varepsilon_M$$

$$\text{target : find } \mathbf{z} = \begin{bmatrix} a \\ b \end{bmatrix} \text{ to min } \| \mathbf{e} \|_2^2 = \| \mathbf{y} - A\mathbf{z} \|_2^2.$$

$$\Rightarrow \mathbf{z} = A^+ \mathbf{y}$$

$$\mathbf{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_M \end{bmatrix} A = \begin{bmatrix} 1 & x_1 \\ 1 & x_2 \\ \vdots & \vdots \\ 1 & x_M \end{bmatrix} \mathbf{z} = \begin{bmatrix} a \\ b \end{bmatrix} \mathbf{e} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_M \end{bmatrix}$$

$$\Rightarrow \mathbf{z} = A^{+}\mathbf{y}$$

Where $A^+ = (A^T A)^{-1} A^T$ is the Pseudo inverse

• How to calculate a&b by minimizing $e = E\{[\mathbf{y} - (a + b\mathbf{x})]^2\}$ in matrix form?

• How to calculate a&b by minimizing $e = E\{[\mathbf{y} - (a + b\mathbf{x})]^2\}$ in matrix form?

Training data set, totally M data pieces

- The target of the linear regression is: given a series of $x_i \& y_j$ find $a_i \& b$, so that some law (规律) can be determined
- For example: if there are 60 persons in one village with income x & consumption y as the table below, find the relationship between x & y

YX	80	100	120	140	160	180	200	220	240	260
	55	65	79	80	102	110	120	135	137	150
	60	70	84	93	107	115	136	137	145	152
	65	74	90	95	110	120	140	140	155	175
	70	80	94	103	116	130	144	152	165	178
	75	85	98	108	118	135	145	157	175	180
	_	88	_	113	125	140	_	160	189	185
	-	_	_	115	_	_	_	162	_	191
户数	5	6	5	7	6	6	5	7	6	5
总支出	325	462	445	707	678	750	685	104 3	966	121 1

Solution: $y_i = 17.00 + 0.6x_i$

Then, what will be a person's consumption is his/her income is $x_i = 135$?

Can you use Matlab to do the calculation?

It might be somewhat related to experimental report 4, and will be discussed later