IT-314 LAB 8

Functional Testing - Black-Box

Harsh Popatiya 202201463 Consider a program for determining the previous date. Its input is triple of day, month and year with the following ranges: 1 <= month <= 12, 1 <= day <= 31, 1900 <= year <= 2015

Equivalence Classes:

- 1. **Valid Month (1 ≤ month ≤ 12)**:
 - Valid equivalence class: EC1 = [1, 12]
 - Invalid equivalence class: EC2 = [< 1, > 12]
- 2. Valid Day (1 \leq day \leq 31):
 - Valid equivalence class (varies based on month):
 - EC3 = [1, 31] (for months with 31 days)
 - \blacksquare EC4 = [1, 30] (for months with 30 days)
 - EC5 = [1, 29] (for February in leap years)
 - EC6 = [1, 28] (for February in non-leap years)
 - Invalid equivalence class: EC7 = [< 1, > 31]
- 3. **Valid Year (1900 ≤ year ≤ 2015)**:
 - Valid equivalence class: EC8 = [1900, 2015]
 - \circ Invalid equivalence class: EC9 = [< 1900, > 2015]

Test	Input (Day,	ECs Covered	Expected Output
Case #	Month, Year)		
1	(15, 8, 2010)	EC1, EC3, EC8	Previous Date: (14, 8, 2010)
2	(30, 2, 2010)	EC2, EC4, EC6	Error: Invalid day for
			February
3	(31, 4, 2000)	EC1, EC4, EC8	Error: Invalid day for April
4	(1, 1, 1900)	EC1, EC3, EC8	Previous Date: (31, 12, 1899)
5	(31, 12, 2015)	EC1, EC3, EC8	Previous Date: (30, 12, 2015)
6	(0, 5, 2000)	EC1, EC7, EC8	Error: Invalid day
7	(32, 7, 2015)	EC1, EC7, EC8	Error: Invalid day
8	(5, 13, 2010)	EC2, EC3, EC8	Error: Invalid month
9	(15, 6, 2020)	EC1, EC3, EC9	Error: Invalid year
10	(28, 2, 2001)	EC1, EC6, EC8	Previous Date: (27, 2, 2001)
11	(29, 2, 2000)	EC1, EC5, EC8	Previous Date: (28, 2, 2000)
			(Leap Year)
12	(1, 3, 2001)	EC1, EC6, EC8	Previous Date: (28, 2, 2001)
13	(1, 3, 2012)	EC1, EC5, EC8	Previous Date: (29, 2, 2012)
			(Leap Year)
14	(31, 1, 2015)	EC1, EC3, EC8	Previous Date: (30, 1, 2015)
15	(30, 6, 2015)	EC1, EC4, EC8	Previous Date: (29, 6, 2015)
16	(28, 2, 2012)	EC1, EC6, EC8	Previous Date: (27, 2, 2012)
17	(1, 12, 2015)	EC1, EC3, EC8	Previous Date: (30, 11, 2015)
18	(1, 6, 1900)	EC1, EC4, EC8	Previous Date: (31, 5, 1900)
19	(31, 7, 2015)	EC1, EC3, EC8	Previous Date: (30, 7, 2015)
20	(30, 9, 1995)	EC1, EC4, EC8	Previous Date: (29, 9, 1995)
21	(1, 3, 2000)	EC1, EC5, EC8	Previous Date: (29, 2, 2000)
22	(1, 10, 2010)	EC1, EC4, EC8	Previous Date: (30, 9, 2010)
23	(1, 5, 2011)	EC1, EC4, EC8	Previous Date: (30, 4, 2011)
24	(31, 5, 2012)	EC1, EC3, EC8	Previous Date: (30, 5, 2012)
25	(31, 12, 2000)	EC1, EC3, EC8	Previous Date: (30, 12, 2000)

Write a set of test cases (i.e., test suite) – specific set of data – to properly test the programs. Your test suite should include both correct and incorrect inputs.

- 1. Enlist which set of test cases have been identified using Equivalence Partitioning and Boundary Value Analysis separately.
- Modify your programs such that it runs, and then execute your test suites on the program.
 While executing your input data in a program, check whether the identified expected outcome (mentioned by you) is correct or not.

The solution of each problem must be given in the format as follows:

Tester Action and Input Data	Expected Outcome
Equivalence Partitioning	
a, b, c	An Error message
a-1, b, c	Yes
Boundary Value Analysis	
a, b, c-1	Yes

Q.2. Programs:

P1. The function linearSearch searches for a value v in an array of integers a. If v appears in the array a, then the function returns the first index i, such that a[i] == v; otherwise, -1 is returned.

Test Case ID	Method	Tester Action and Input Data	Expected Outcome
E1	Equivalence Partitioning	linearSearch(3, [1, 2, 3, 4])	2
E2	Equivalence Partitioning	linearSearch(5, [1, 2, 3, 4])	-1
E3	Equivalence Partitioning	linearSearch(3, [])	Error: Input array is empty.
E4	Equivalence Partitioning	linearSearch(-1, [-2, -1, 0, 1])	1
E5	Equivalence Partitioning	linearSearch("abc", [1, 2, 3, 4])	Error: Invalid input type.
E6	Equivalence Partitioning	linearSearch(3.14, [1, 2, 3, 4])	Error: Invalid input type.
E7	Equivalence Partitioning	linearSearch(NULL, [1, 2, 3, 4])	Error: Invalid input type.
E8	Equivalence Partitioning	linearSearch(-1, NULL)	Error: Input array is null.
B1	Boundary Value Analysis	linearSearch(1, [1, 2, 3, 4])	0
B2	Boundary Value Analysis	linearSearch(4, [1, 2, 3, 4])	3
В3	Boundary Value Analysis	linearSearch(0, [1, 2, 3, 4])	-1
B4	Boundary Value Analysis	linearSearch(3, [3])	0
B5	Boundary Value Analysis	linearSearch(2, [3])	-1

```
#include <iostream>
#include <vector>
#include <limits>
    if (a.empty()) {
        std::cout << "Error: Input array is empty." << std::endl;</pre>
    return -1;
int main() {
    std::vector<int> array1 = {1, 2, 3, 4};
   std::vector<int> array2 = {};
    std::vector<int> array3 = \{-2, -1, 0, 1\};
    int value;
    while (true) {
       std::cout << "Enter a value to search (or -999 to exit): ";</pre>
       std::cin >> value;
```

```
std::cout << "Error: Invalid input type." << std::endl;</pre>
             std::cin.clear();
        if (value == -999) break;
        std::cout << "Test Case: " << linearSearch(value, array1) <<</pre>
std::endl;
        std::cout << "Test Case: " << linearSearch(value, array2) <<</pre>
std::endl;
        std::cout << "Test Case: " << linearSearch(value, array3) <<</pre>
std::endl;
    return 0;
```

P2. The function countItem returns the number of times a value v appears in an array of integers a.

Test Case ID	Method	Tester Action and Input Data	Expected Outcome
E1	Equivalence Partitioning	countItem(3, [1, 2, 3, 4, 3, 3])	3
E2	Equivalence Partitioning	countItem(5, [1, 2, 3, 4, 3, 3])	0
E3	Equivalence Partitioning	countitem(1, [])	0
E4	Equivalence Partitioning	countItem(-1, [-2, -1, 0, 1])	1
E5	Equivalence Partitioning	countItem("abc", [1, 2, 3, 4, 3, 3])	Error: Invalid input type.
E6	Equivalence Partitioning	countItem(3.14, [1, 2, 3, 4, 3, 3])	Error: Invalid input type.
E7	Equivalence Partitioning	countitem(NULL, [1, 2, 3, 4, 3, 3])	Error: Invalid input type.
E8	Equivalence Partitioning	countitem(-1, NULL)	Error: Input array is null.
B1	Boundary Value Analysis	countItem(1, [1, 2, 3, 4, 3, 3])	1

B2	Boundary Value Analysis	countitem(4, [1, 2, 3, 4, 3, 3])	1
B3	Boundary Value Analysis	countitem(0, [1, 2, 3, 4, 3, 3])	0
B4	Boundary Value Analysis	countitem(3, [3])	1
B5	Boundary Value Analysis	countitem(2, [3])	0

```
std::vector<int> array1 = {1, 2, 3, 4, 3, 3};
    std::vector<int> array2 = {};
    std::vector < int > array3 = {-2, -1, 0, 1};
    int value;
    while (true) {
        std::cout << "Enter a value to count (or -999 to exit): ";</pre>
        std::cin >> value;
            std::cout << "Error: Invalid input type." << std::endl;</pre>
            std::cin.clear();
            std::cin.ignore(std::numeric limits<std::streamsize>::max(),
'\n');
            continue;
        if (value == -999) break;
        std::cout << "Count in array1: " << countItem(value, array1) <<</pre>
std::endl;
        std::cout << "Count in array2: " << countItem(value, array2) <<</pre>
std::endl;
        std::cout << "Count in array3: " << countItem(value, array3) <<</pre>
std::endl;
    return 0;
```

P3. The function binarySearch searches for a value v in an ordered array of integers a. If v appears in the array a, then the function returns an index a, such that a[a] == v; otherwise, -1 is returned.

Assumption: the elements in the array a are sorted in non-decreasing order.

Test Case ID	Method	Tester Action and Input Data	Expected Outcome
E1	Equivalence Partitioning	binarySearch(3, [1, 2, 3, 4, 5])	2
E2	Equivalence Partitioning	binarySearch(6, [1, 2, 3, 4, 5])	-1

E3	Equivalence Partitioning	binarySearch(1, [])	Error: Input array is empty.
E4	Equivalence Partitioning	binarySearch(-1, [-3, -2, -1, 0, 1])	2
E5	Equivalence Partitioning	binarySearch("abc", [1, 2, 3, 4, 5])	Error: Invalid input type.
E6	Equivalence Partitioning	binarySearch(3.14, [1, 2, 3, 4, 5])	Error: Invalid input type.
E7	Equivalence Partitioning	binarySearch(NULL, [1, 2, 3, 4, 5])	Error: Invalid input type.
E8	Equivalence Partitioning	binarySearch(-1, NULL)	Error: Input array is null.
B1	Boundary Value Analysis	binarySearch(1, [1, 2, 3, 4, 5])	0
B2	Boundary Value Analysis	binarySearch(5, [1, 2, 3, 4, 5])	4
В3	Boundary Value Analysis	binarySearch(0, [1, 2, 3, 4, 5])	-1
B4	Boundary Value Analysis	binarySearch(3, [3])	0

B5 Boundary Value Analysis	binarySearch(2, [3])	-1	
-------------------------------	----------------------	----	--

```
#include <iostream>
#include <vector>
#include <limits>
#include <type_traits>
int binarySearch(int v, const std::vector<int>& a) {
   while (lo <= hi) {</pre>
       if (v == a[mid])
           return mid;
       else if (v < a[mid])</pre>
       else
int main() {
   std::vector<int> array1 = {1, 2, 3, 4, 5};
```

```
std::vector<int> array2 = {};
    std::vector<int> array3 = \{-3, -2, -1, 0, 1\};
    int value;
    while (true) {
        std::cout << "Enter a value to search (or -999 to exit): ";</pre>
        std::cin >> value;
        if (std::cin.fail() || std::cin.peek() != '\n') {
            std::cout << "Error: Invalid input type." << std::endl;</pre>
            std::cin.clear();
            std::cin.ignore(std::numeric limits<std::streamsize>::max(),
           continue;
        if (value == -999) break;
        std::cout << "Index in array1: " << binarySearch(value, array1) <<</pre>
std::endl;
        std::cout << "Index in array2: " << binarySearch(value, array2) <<</pre>
std::endl;
        std::cout << "Index in array3: " << binarySearch(value, array3) <<</pre>
std::endl;
    return 0;
```

P4. The following problem has been adapted from The Art of Software Testing, by G. Myers (1979). The function triangle takes three integer parameters that are interpreted as the lengths of the sides of a triangle. It returns whether the triangle is equilateral (three lengths equal), isosceles (two lengths equal), scalene (no lengths equal), or invalid (impossible lengths).

Test Case	Method	Tester Action and Input Data	Expected Outcome
E1	Equivalence Partitioning	triangle(3, 3, 3)	0 (EQUILATERAL)
E2	Equivalence Partitioning	triangle(2, 2, 3)	1 (ISOSCELES)
E3	Equivalence Partitioning	triangle(3, 4, 5)	2 (SCALENE)

E4	Equivalence Partitioning	triangle(1, 1, 2)	3 (INVALID)
E5	Equivalence Partitioning	triangle(0, 1, 1)	3 (INVALID)
E6	Equivalence Partitioning	triangle(-1, 2, 2)	3 (INVALID)
E7	Equivalence Partitioning	triangle(1.5, 2, 2)	Error: Invalid input type.
E8	Equivalence Partitioning	triangle("abc", 2, 2)	Error: Invalid input type.
E9	Equivalence Partitioning	triangle(3, 4, -5)	3 (INVALID)
E10	Equivalence Partitioning	triangle(NULL, 2, 2)	Error: Invalid input type.
B1	Boundary Value Analysis	triangle(1, 1, 1)	0 (EQUILATERAL)
B2	Boundary Value Analysis	triangle(2, 2, 1)	1 (ISOSCELES)

B3	Boundary Value Analysis	triangle(2, 2, 2)	0 (EQUILATERAL)
B4	Boundary Value Analysis	triangle(3, 3, 4)	1 (ISOSCELES)
B5	Boundary Value Analysis	triangle(3, 4, 3)	1 (ISOSCELES)
B6	Boundary Value Analysis	triangle(1, 2, 3)	3 (INVALID)

```
#include <iostream>
#include <limits>
#include <type_traits>
final int EQUILATERAL = 0;
final int ISOSCELES = 1;
final int SCALENE = 2;
final int INVALID = 3;

int triangle(int a, int b, int c) {
    if (a >= b + c || b >= a + c || c >= a + b)
```

```
return INVALID;
       return EQUILATERAL;
       return ISOSCELES;
   return SCALENE;
int main() {
    while (true) {
        std::cout << "Enter three sides of a triangle (or -999 to exit):</pre>
        if (std::cin.fail() || std::cin.peek() != '\n') {
            std::cout << "Error: Invalid input type." << std::endl;</pre>
            std::cin.clear();
```

```
std::cout << "Triangle is invalid." << std::endl;</pre>
    else if (result == EQUILATERAL)
        std::cout << "Triangle is equilateral." << std::endl;</pre>
    else if (result == ISOSCELES)
        std::cout << "Triangle is isosceles." << std::endl;</pre>
    else
        std::cout << "Triangle is scalene." << std::endl;</pre>
return 0;
```

P5. The function prefix (String s1, String s2) returns whether or not the string s1 is a prefix of string s2 (you may assume that neither s1 nor s2 is null).

```
public static boolean prefix(String s1, String s2)
{
    if (s1.length() > s2.length())
```

```
{
          return false;
}
for (int i = 0; i < s1.length(); i++)
{
          if (s1.charAt(i) != s2.charAt(i))
          {
                return false;
          }
}
return true;
}</pre>
```

Test Case	Method	Tester Action and Input Data	Expected Outcome
E1	Equivalence Partitioning	prefix("pre", "prefix")	true
E2	Equivalence Partitioning	prefix("pre", "test")	false
E3	Equivalence Partitioning	prefix("long", "longer")	true
E4	Equivalence Partitioning	prefix("", "anystring")	true
E5	Equivalence Partitioning	prefix("string", "")	false
E6	Equivalence Partitioning	prefix("abc", "abcd")	true
E7	Equivalence Partitioning	prefix("abcd", "abc")	false
E8	Equivalence Partitioning	prefix("123", "12345")	true
E9	Equivalence Partitioning	prefix("abc", "1ab")	false

E10	Equivalence Partitioning	prefix("prefix", "pre")	false
E11	Equivalence Partitioning	prefix("abc", null)	Error: Invalid input type.
E12	Equivalence Partitioning	prefix(null, "abc")	Error: Invalid input type.
E13	Equivalence Partitioning	prefix("", null)	Error: Invalid input type.
E14	Equivalence Partitioning	prefix(null, null)	Error: Invalid input type.
B1	Boundary Value Analysis	prefix("abc", "abc")	true
B2	Boundary Value Analysis	prefix("abc", "abcabc")	true
B3	Boundary Value Analysis	prefix("abc", "ab")	false
B4	Boundary Value Analysis	prefix("", "")	true
B5	Boundary Value Analysis	prefix("longprefix", "prefix")	false

```
import java.util.Scanner;
public class PrefixChecker {
   public static boolean prefix(String s1, String s2) {
       for (int i = 0; i < s1.length(); i++) {</pre>
           if (s1.charAt(i) != s2.charAt(i)) return false;
       return true;
   public static void main(String[] args) {
       Scanner scanner = new Scanner(System.in);
       while (true) {
            System.out.print("Enter two strings (or 'exit' to quit): ");
           String s1 = scanner.nextLine();
            if (s1.equalsIgnoreCase("exit")) break;
            String s2 = scanner.nextLine();
            if (s2.equalsIgnoreCase("exit")) break;
            if (s1 == null || s2 == null) {
                System.out.println("Error: Invalid input type.");
               continue;
            if (s1.length() == 0 || s2.length() == 0) {}
```

P6: Consider again the triangle classification program (P4) with a slightly different specification: The program reads floating values from the standard input. The three values A, B, and C are interpreted as representing the lengths of the sides of a triangle. The program then prints a message to the standard output that states whether the triangle, if it can be formed, is scalene, isosceles, equilateral, or right angled. Determine the following for the above program:

- a) Identify the equivalence classes for the system
- b) Identify test cases to cover the identified equivalence classes. Also, explicitly mention which test case would cover which equivalence class. (Hint: you must need to be ensure that the identified set of test cases cover all identified equivalence classes)
- c) For the boundary condition A + B > C case (scalene triangle), identify test cases to verify the boundary.
- d) For the boundary condition A = C case (isosceles triangle), identify test cases to verify the boundary.
- e) For the boundary condition A = B = C case (equilateral triangle), identify test cases to verify the boundary.
- f) For the boundary condition $A_2 + B_2 = C_2$ case (right-angle triangle), identify test cases to verify the boundary.
- g) For the non-triangle case, identify test cases to explore the boundary.
- h) For non-positive input, identify test points.

a) Identify the Equivalence Classes

1. Valid Inputs:

- Class 1: Equilateral Triangle (A = B = C)
- Class 2: Isosceles Triangle (A = B or A = C or B = C, but not all equal)
- Class 3: **Scalene Triangle** (A \neq B \neq C)
- Class 4: **Right-Angled Triangle** ($A^2 + B^2 = C^2$ or any permutation)

2. Abstract Inputs:

- Class 5: **Non-Triangle** (A + B \leq C or any permutation)
- Class 6: invalid input types (A < 0, B < 0, or C < 0, strings, characters etc)

b) Identify Test Cases for Equivalence Classes

Test Case ID	Tester Action and Input Data	Expected Outcome	Equivalence Class
E1	triangle(3.0, 3.0, 3.0)	Equilateral	Class 1
E2	triangle(2.0, 2.0, 3.0)	Isosceles	Class 2
E3	triangle(3.0, 4.0, 5.0)	Scalene	Class 3
E4	triangle(3.0, 4.0, 6.0)	Non-Triangle	Class 5
E5	triangle(1.0, 1.0, 2.0)	Non-Triangle	Class 5
E6	triangle(0.0, 2.0, 2.0)	Non-Triangle	Class 5
E7	triangle(-1.0, 2.0, 2.0)	Error: Invalid input type.	Class 6
E8	triangle("abc", 2.0, 2.0)	Error: Invalid input type.	Class 6
E9	triangle(3.0, 4.0, 5.0)	Right-Angled	Class 4

c) Boundary Condition A + B > C (Scalene Triangle)

Test Case ID	Tester Action and Input Data	Expected Outcome
B1	triangle(2.0, 3.0, 4.0)	Scalene
B2	triangle(2.0, 3.0, 5.0)	Non-Triangle
B3	triangle(3.0, 3.0, 5.0)	Non-Triangle

d) Boundary Condition A = C (Isosceles Triangle)

Test Case ID	Tester Action and Input Data	Expected Outcome
B4	triangle(3.0, 4.0, 3.0)	Isosceles
B5	triangle(3.0, 2.0, 3.0)	Isosceles

e) Boundary Condition A = B = C (Equilateral Triangle)

Test Case ID	Tester Action and Input Data	Expected Outcome
B6	triangle(3.0, 3.0, 3.0)	Equilateral
B7	triangle(0.0, 0.0, 0.0)	Non-Triangle

f) Boundary Condition $A^2 + B^2 = C^2$ (Right-Angle Triangle)

Test Case ID	Tester Action and Input Data	Expected Outcome
B8	triangle(3.0, 4.0, 5.0)	Right-Angled
B9	triangle(5.0, 12.0, 13.0)	Right-Angled
B10	triangle(1.0, 1.0, 1.414)	Right-Angled
B11	triangle(1.0, 2.0, 2.236)	Non-Triangle

g) Non-Triangle Case Test Cases

Test Case ID	Tester Action and Input Data	Expected Outcome
N1	triangle(1.0, 1.0, 3.0)	Non-Triangle
N2	triangle(5.0, 10.0, 4.0)	Non-Triangle

h) Non-Positive Input Test Cases

Test Case ID	Tester Action and Input Data	Expected Outcome
P1	triangle(-1.0, 2.0, 2.0)	Error: Invalid input type.
P2	triangle(0.0, 0.0, 2.0)	Non-Triangle

P3 triangle(1.0, -2.0, 2.0)	Error: Invalid input type.
-----------------------------	-------------------------------