

Sistemas Digitais e Microprocessadores

Introdução à álgebra booleana

Prof. Eduardo Furlan 2023

E (*AND*)

AND

A	В	Output
0	0	0
0	1	0
1	0	0
1	1	1

$$C = A \cdot B$$

https://instrumentationtools.com/logic-gates/

OU (OR)

OR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

$$C = A + B$$

https://instrumentationtools.com/logic-gates/

Ou exclusivo (XOR)

Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

$$A \longrightarrow S$$

$$S = A \oplus B$$

https://byjus.com/neet/ exclusive-or-gate/

NÃO (NOT)

Α	S
0	1 0
1	0

$$B = \overline{A}$$

eXclusive

OR

Tablea verdade

AND

A	В	Output	
0	0	0	
0	1	0	
1	0	0	
1	1	1	

NAND

A	В	Output
0	0	1
0	1	1
1	0	1
1	1	0

OR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	1

NOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	0

XOR

A	В	Output
0	0	0
0	1	1
1	0	1
1	1	0

XNOR

A	В	Output
0	0	1
0	1	0
1	0	0
1	1	1

Equivalência

Leis básicas da álgebra booleana

Comutativa

$$A + B = B + A$$
 e $A \cdot B = B \cdot A$

Associativa

$$A + (B + C) = (A + B) + C$$
 e $A \cdot (B \cdot C) = (A \cdot B) \cdot C$

Distributiva

$$A \cdot (B + C) = A \cdot B + A \cdot C$$

Operações aritméticas booleanas

Adição Booleana

Multip. Booleana

$$0 + 0 = 0$$

$$0.0 = 0$$

$$0 + 1 = 1$$

$$0.1 = 0$$

$$1 + 0 = 1$$

$$1.0 = 0$$

$$1 + 1 = 1$$

$$1.1 = 1$$

Complemento

$$\frac{\overline{0}}{1} = 1$$

Regras da álgebra booleana

$$A + 0 = A$$

$$A + A = A$$

$$\overline{\overline{A}} = A$$

$$A + 1 = 1$$

$$A + A = 1$$

$$A + A \cdot B = A$$

$$A \cdot 0 = 0$$

$$A \cdot A = A$$

$$A + A \cdot B = A + B$$

$$A \cdot 1 = A$$

$$A \cdot A = 0$$

$$(A + B) \cdot (A + C) = A + B \cdot C$$

Método dos mintermos

somas de produtos

Método dos mintermos

Obtenção de um circuito a partir da Tabela Verdade (TV)

Saída 0 é desconsiderada

Cada saída 1 corresponde a 1 mintermo

Cada mintermo é um AND das entradas

A saída final é um OR dos mintermos

"1 \rightarrow AND \rightarrow OR"

Método dos maxtermos

" $0 \rightarrow OR \rightarrow AND$ "

Saída 1 é desconsiderada

Cada saída 0 corresponde a 1 maxtermo

Cada maxtermo corresponde a OR das entradas

A saída final é um AND dos maxtermos

OR

Simplificação booleana

Α	В	С	S
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	1

Mapa de Karnaugh

Método para simplificação de expressões booleanas

Simplifica de forma indireta, por meio de arranjos e regras

Encontra a expressão mais simplificada possível

"expressão mínima"

Passos

Tabela com variáveis de entrada em 2 grupos

Linhas da tabela

Colunas

Mapear as combinações possíveis, seguindo a ordem do "Código de Gray"

A tabela é preenchida de acordo com os valores da saída da tabela-verdade

Criar em grupos de 2, 4, e 8

Importante usar estas quantidades

Passos

Grupos podem ser retangulares ou quadrados

O grupo deve ser o maior possível

Pode haver intersecção de grupos

Todas as saídas unitárias devem ser agrupadas

Se sobrar um "1", deve ser criado um grupo com ele

Pega as linhas com S=1 e transfere para a outra tabela

Tabela Verdade

Tabela do slide anterior

$$A = 0$$
, $B = 1$, $C = 0$ ou 1

$$A = 1$$
, $B = 0$ ou 1, $C = 1$
 $A \cdot C$

$$S = \overline{A} \cdot B + A \cdot C$$

Outro método

Tabela da Verdade

Α	В	С	F
0	0	0	S ₀ =0
0	0	1	S ₁ =1
0	1	0	S ₂ =0
0	1	1	$S_3 = 1$
1	0	0	S ₄ =1
1	0	1	S ₅ =1
1	1	0	S ₅ =1 S ₆ =1
1	1	1	S ₇ =0

http://eletronicadigital2015.blogspot.com/ 2016/02/mapa-dekarnaugh-diagrama-dekarnaugh.html

$$F = \overline{A} * C + A * \overline{C} + \overline{B} * C$$

https://eletronica-digital2015.blogspot.com/2016/02/mapa-de-karnaugh-diagrama-de-karnaugh.html

4 variáveis

https://eletronica-digital2015.blogspot.com/2016/02/mapa-de-karnaugh-diagrama-de-karnaugh.html

5 variáveis

http://endigital.orgfree.com/combinacional/MvKARNAUGH.htm

6 variáveis

http://endigital.orgfree.com/combinacional/MvKARNAUGH.htm

Link de interesse

Prof. Nivaldo Junior

Mapa de Karnaugh

https://youtu.be/xB99jX9QMOE (Duração: 30 min)

https://github.com/efurlanm/teaching/

Prof. Eduardo Furlan 2023

