ay.	14	being disposed over a portion of said substrate and being separated therefrom by said second
	15	insulating layer;
	16	an erase gate [generally placed on a second side] formed over a second one of said side
	17	walls and over at least a portion of said top surface of said floating gate and being separated
	18	[therefrom] from said second one of said side walls by said second insulation layer;
	19	a drain region formed in a portion of said substrate proximate said control gate [generally
	20	disposed on a first side of said floating gate]; and
	21	a source region [generally disposed on a second side of said floating gate] formed in a
	22	portion of said substrate proximate said erase gate.
Mca	1	8. (Once Amended) A memory array disposed on a substrate comprising a plurality of memory
	./2	cells each having a floating gate separated from said substrate by a first insulating layer, an erase
	. 3	gate, a control gate separated from said floating gate by a second insulating layer, a source
•	4	region, and a drain region, comprising:
J.B	5	a plurality of rows and columns of interconnected memory cells wherein the control gates
	6	of memory cells in the same row are connected by a common word-line, the erase gates of the
	7	memory cells in the same rows are connected by a common erase line, [and] the source regions
	8	of the memory cells in the same rows are connected by a common source line, and the drain
	9	regions of memory cells in the same columns are commonly connected via a common drain line,
	10	wherein at least a portion of each said control gate is disposed over a portion of said substrate
	11	and separated therefrom by said second insulating laver; and
	i 2	control circuit connecting to said word-lines, erase lines, source lines and drain lines for
	13	operating one or more memory cells of said memory array.
	\	16. (New) A semiconductor device having at least one transistor, the device comprising:

floating gate [therefrom] by [a] said second insulation layer, at least a portion of said control gate

 $\int_{0}^{\infty} \int_{0}^{2}$

5

6

13

16. (New) A semiconductor device having at least one transistor, the device comprising: a substrate having a channel region;

a first insulating layer disposed over said channel region and over at least a portion of said substrate;

a floating gate generally disposed over said channel region and separated therefrom by said first insulating layer, said floating gate having at least two side walls and a top surface;