Week 2 Frequency Domain Representation of Signals

Applications of Fourier Transform: An Example

大学生据拨号音破译周鸿祎手机号 李开复求贤

2012年09月01日06:31

南方都市报[微博]

刘洁康

我要评论(0)

字号: T | T

[导读] 听手机拨号音能破解电话号码?这个在许多影视剧和动漫中出现的"传说"被一位南京大学学生证实,他竟从采访视频中破解出奇虎360董事长周鸿祎的手机号。有网友为此感慨"技术宅要逆天了!"

神不神奇?

What is frequency?

How to characterize frequency?

Frequency

Phase

What is Music?

☐ For musician, music is ☐ For engineer, music is

Signals in Time Domain

Signals in Time Domain

Signals in Frequency Domain

Time domain 1000 **ECG Signal** Noise 1000 **ECG Signal + Noise** 500

☐ Frequency domain

Question:

How to analyze frequency in a signal?

Answer:Fourier Transform

Signal

Spectrum

/ˈfʊəriˌeɪ, -iər/
1768-1830
French Mathematician,
Physicist, Historian

Optical Fourier Transform

- □ A pair of prisms (棱镜) can split light up into its component frequencies (colors)
 - ➤ This is called Fourier Analysis
- ☐ A second pair can re-combine the frequencies.
 - This is called Fourier Synthesis

Optical Fourier Transform

■ We want to do the same thing with other signals instead of light

Types of Fourier

- ☐ Fourier series
- ☐ Fourier transform
 - ➤ Continuous Fourier transform
 - ➤ Discrete-time Fourier transform
 - ➤ Discrete Fourier transform
 - Fast Fourier transform

Fourier Series

☐ To represent a periodic signal as the (possibly infinite) sum of sine and cosine functions

https://bl.ocks.org/jinroh/7524988

Fourier Series

☐ To represent a periodic signal as the (possibly infinite) sum of sine and cosine functions

$$u(t) =$$

 $\sin 2\pi f t$

 $-0.4\sin 2\pi 2ft$

 $+0.4\sin 2\pi 3ft$

 $-0.2\cos 2\pi 4ft$

The Fourier series for u(t) is

$$u(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos 2\pi n f t + b_n \sin 2\pi n f t \right)$$

Why Sine and Cosine Waves?

- ☐ A sine wave remains a sine wave of the same frequency when you
 - ➤ Multiply by a constant
 - ➤ Add onto to another sine wave of the same frequency
 - ➤ Differentiate or integrate or shift in time
- ☐ Almost any function can be expressed as a sum of sine waves
 - ➤ Periodic → Fourier Series
 - ➤ Aperiodic → Fourier Transform
- ☐ Many physical and electronic systems are
 - ➤ Composed entirely of constant-multiply/add/differentiate
 - ► Linear: $u(t) \rightarrow x(t)$ and $v(t) \rightarrow y(t)$ means $u(t)+v(t) \rightarrow x(t)+y(t)$

Fourier Series

☐ Another representation — continuous case

$$x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t} = \sum_{k=-\infty}^{\infty} a_k e^{jk(\frac{2\pi}{T})t}$$

Fourier Series

☐ Discrete case

$$x[n] = \sum_{k \in \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k \in \langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n}$$

$$a_k = \sum_{n \in \langle N \rangle} x[n] e^{-jk\omega_0 n} = \sum_{k \in \langle N \rangle} x[n] e^{-jk(\frac{2\pi}{N})n}$$

Where are the sign and cosine functions?

Euler's Formula

$$e^{j\varphi} = \cos\varphi + j\sin(\varphi)$$

$$\cos \varphi = \frac{1}{2} (e^{j\varphi} + e^{-j\varphi})$$

$$\sin \varphi = \frac{1}{2j} (e^{j\varphi} - e^{-j\varphi})$$

Tools to Play With

- ☐ A lot of on-line tools and resources
 - https://en.wikipedia.org/wiki/Fourier_series
 - https://bl.ocks.org/jinroh/7524988

- ☐ Use Matlab or other programming languages, e.g, Python
 - ► An example

How about Non-periodic Signals?

□ Non-periodic signals can be treated as a periodic signal with infinite period

Fourier series

Fourier transform

$$x[n] = \sum_{k \in \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k \in \langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n}$$

Fourier Transform Continuous-time

☐ Fourier transform (continuous-time)

$$X(j\Omega) = \int_{-\infty}^{\infty} x(t)e^{-j\Omega t}dt \qquad \Omega = 2\pi f$$

Signal analysis: to analyze the frequency components

☐ Inverse Fourier transform (continuous-time)

$$x(t) = \int_{-\infty}^{\infty} X(j\Omega)e^{j\Omega t}d\Omega \qquad \Omega = 2\pi f$$

Signal synthesis: to recover the time-domain signal

Fourier Transform Discrete-time

☐ Fourier Transform (discrete-time)

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n]e^{-j\omega n} \quad \omega = 2\pi f/f_s$$

 ω is a continuous variable in the range of $-\infty < \omega < \infty$

☐ Inverse Fourier transform (discrete-time)

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \quad \omega = 2\pi f/f_s$$

Why one is sum and the other integral?

Why Fourier Works?

☐ Fourier series as an example

$$x[n] = \sum_{k \in \langle N \rangle} a_k e^{jk\omega_0 n} = \sum_{k \in \langle N \rangle} a_k e^{jk(\frac{2\pi}{N})n} \qquad a_k = \sum_{n \in \langle N \rangle} x[n] e^{-jk\omega_0 t} = \sum_{k \in \langle N \rangle} x[n] e^{-jk(\frac{2\pi}{N})n}$$

$$\sum_{n \in \langle N \rangle} e^{jk_1 \omega_0 n} e^{-jk_2 \omega_0 n} = \sum_{k \in \langle N \rangle} e^{j(k_1 - k_2) \omega_0 n}$$

$$= \begin{cases} N & \text{for } k_1 = k_2 \\ 0 & \text{for } k_1 \neq k_2 \end{cases}$$

Orthogonality of complex exponentials

□ Example 1: Fourier Transform of the C4 tone

$$x(t) = \begin{cases} \sin(2\pi \cdot f_0 \ t), & t \in [0,1] \\ 0, & o.w. \end{cases}$$
 $f_0 = 261.626$ Hz

□ Example 1: Fourier Transform of the C4 tone

$$x(t) = \begin{cases} \sin(2\pi \cdot f_0 \ t), & t \in [0,1] \\ 0, & o.w. \end{cases}$$
 $f_0 = 261.626$ Hz

■ Example 2: Fourier Transform of the rectangular pulse

$$x(t) = \begin{cases} 1, & t \in \left[-\frac{\tau}{2}, \frac{\tau}{2} \right] \\ 0, & o.w. \end{cases}$$

□ Example 2: Fourier Transform of the rectangular pulse

Back to Where We Begin

☐ Time domain

Back to Where We Begin

☐ Frequency domain

Applications of Fourier Transform: An Example

大学生据拨号音破译周鸿祎手机号 李开复求贤

2012年09月01日06:31

南方都市报[微博]

刘靖康 我要评论(0)

字号: T | T

[导读] 听手机拨号音能破解电话号码?这个在许多影视剧和动漫中出现的"传说"被一位南京大学学生证实,他竟从采访视频中破解出奇虎360董事长周鸿祎的手机号。有网友为此感慨"技术宅要逆天了!"

神不神奇?

Applications of Fourier Transform: An Example

□ Dual-tone multi-frequency (DTMF) signaling

Frequency (Hz)	1209	1336	1477
697	1	2	3
770	2	5	6
852	7	8	9
941	*	0	#

一点都不神奇?

Applications of Fourier Transform

- ☐ Methods based on Fourier are used in almost all areas of engineering and science
 - > Electrical and electronic engineering
 - ➤ Computer science
 - ➤ Communication engineering

□ Oscilloscope

Oscilloscope

☐ Frequency analysis

□ Digital image processing

Digital Image Processing

□ Communication

□ Communication

- □ Geology—seismic research (地震研究)
- ☐ Original uses of FFT (fast Fourier transform)
 - ➤ Distinguish between natural seismic events and nuclear test explosions

Seismic Research

Seismic Research

Seismic Research

☐ Interested?

