CALCULUS I LECTURE 5: DIFFERENTIATION, INVERSE FUNCTIONS AND IMPLICIT FUNCTIONS

1. DIFFERENTIATION OF INVERSE FUNCTIONS

Last time we obtained the derivative of $\log(x)$. We obtained this formula basing on facts that $\log(x)$ is the inverse function of e^x , and the chain rule. By the same token, we can derive the general formula for the derivatives of inverse functions.

Definition 1.1. Let $f: X \to Y$ and $g: Y \to X$. We call g inverse function of f if and only if $f \circ g(y) = y$ for all $y \in Y$ and $g \circ f(x) = x$ for all $x \in X$.

Let g be the inverse of f. We have

(1.1)
$$1 = \frac{d(f \circ g)}{dy} = \frac{df}{dx}(g(y))\frac{dg}{dy}.$$

Therefore, we obtain the formula

(1.2)
$$\frac{dg}{dy} = \frac{1}{\frac{df}{dx}(g(y))}.$$

Example 1.2. By (1.2), we have

(1.3)
$$\frac{d\sin^{-1}}{dx} = \frac{1}{\cos(\sin^{-1}(x))} = \frac{1}{\sqrt{1 - \sin^2(\sin^{-1}(x))}} = \frac{1}{\sqrt{1 - x^2}}.$$

Similarly,

$$\frac{d\cos^{-1}}{dx} = \frac{1}{-\sin(\cos^{-1}(x))} = \frac{1}{-\sqrt{1-x^2}}.$$

One can use formula (1.2) to obtain the derivatives of inverse functions once we have the formula for the derivatives of the original functions.

Exercise 1.3. Find the derivative of \tan^{-1} .

2. Implicit functions

It is not always the case that we can write y as a function of x. For example, when we consider the graph of an ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1 = 0$$

with a,b>0, we cannot write y as a function of x. However, one can expect that, for some portion of this graph, we can write down the function y=f(x). For (2.1), one can use $y=b\sqrt{1-\frac{x^2}{a^2}}$ to describe the part of this ellipse on $\{y>0\}$.

In general, this can be described as a problem of implicit functions. An **implicit** function is defined by a relationship F(x, y) = 0, without asking y to be a function

of x. Any function y = f(x) is an implicit function (by taking F(x, y) = y - f(x)).

Suppose that y can be written as a function of x for a portion of the graph determined by F(x,y) = 0. Let us denote this function by y(x). Then we have

$$F(x, y(x)) = 0.$$

We can differentiate this equation on both side (with respect to x)

$$(2.2) 0 = \frac{dF(x, y(x))}{dx}.$$

Then if one can solve (2.2), one can obtain $\frac{dy}{dx}$.

Let us use (2.1) as our first example. We have

$$\frac{x^2}{a^2} + \frac{y^2(x)}{b^2} - 1 = F(x, y).$$

So

$$0 = \frac{2x}{a^2} + \frac{2y(x)}{b^2} \frac{dy}{dx}.$$

This implies

$$\frac{dy}{dx} = -\frac{b^2}{a^2} \frac{x}{y(x)}.$$

Example 2.1. Let $F(x,y) = \frac{x^2}{4} + y^2 - 1$. F(x,y) = 0 is an ellipse with $(1, \frac{\sqrt{3}}{2})$ on it. By (2.3), we have

$$\frac{dy}{dx} = -\frac{1}{4}\frac{x}{y}.$$

When we plug in $(x,y)=(1,\frac{\sqrt{3}}{2})$, we will obtain the slope of the tangent line (the red line in the picture below) for this ellipse at $(1,\frac{\sqrt{3}}{2})$. The value will be $-\frac{1}{2\sqrt{3}}$.

Pic.1

So the equation for the tangent line will be

$$y = -\frac{1}{2\sqrt{3}}(x-1) + \frac{\sqrt{3}}{2}.$$

It is not always a good idea to write an implicit function as several branch of functions. For example, when we have an ellipse, we can actually describe the graph by one variable t where

$$(2.4) x = a\cos(t),$$

$$(2.5) y = b\sin(t),$$

 $t \in (0, 2\pi)$. In general, we write both x, y as functions of t. This variable t is called a **parameter** of the curve. In some easier case, we can differentiate

(2.6)
$$F(x(t), y(t)) = 0$$

with respect to t. This gives us a relationship between $\frac{dy}{dt}$ and $\frac{dx}{dt}$ (with also x(t), y(t) involve).

Example 2.2. We consider the ellipse defined by (2.1) with x = x(t), y = y(t). Then we have

$$\frac{1}{a^2}\frac{dx}{dt}x + \frac{1}{b^2}\frac{dy}{dt}y = 0.$$

When $x=a\cos(t),y=b\sin(t)$, (2.7) holds because $\sin^2+\cos^2=1$. In general cases, (2.7) determines the ratio of $\frac{dy}{dt}$ and $\frac{dx}{dt}$ when x,y are given.