4.1 UEFI Boot

Phase	Process	
	The following steps take place during the UEFI boot process:	
	1. Power is supplied to the processor. The processor is hard-coded to look at a special	
	memory address for code to execute.	
	2. This memory address contains a pointer or jump program that instructs the processor	
	where to find the UEFI program. (The mount point for the EFI system partition is usually	
	/boot/efi, where its content is accessible after Linux is booted.)	
	3. The processor loads the UEFI program.	
	4. UEFI runs the power-on self-test (POST). If the POST is successful, UEFI identifies other	
	system devices. It uses the CMOS system clock and information supplied by the devices	
	themselves to identify and configure hardware devices. Plug and Play devices are	
UEFI	allocated system resources. The system typically displays information about the keyboard,	
OLI I	mouse, and IDE drives in the system. Following this summary, information about devices	
	and system resources is displayed.	
	5. UEFI reads the GUID partition table, which is located in the blocks immediately after	
	block 0. The GUID partition table defines the layout of the partition table on the storage device.	
	6. Using this information, the UEFI boot loader locates the ESP, which contains the boot loader	
	files or kernel images for all operating systems that are installed on other partitions on the	
	device. ESP also contains device driver files for hardware devices on the computer that are used	
	by the firmware at boot, system utility programs to be run before the operating system is	
	booted, and data files, including error logs.	
	To boot Linux, you would use a UEFI-aware version of the GRUB bootloader and install its boot file	
	(grub.efi) in the EFI system partition.	
	During the boot loader stage, UEFI gives control to the boot loader program. The following	
	steps take place:	
	1. UEFI loads the boot loader code.	
	2. When the boot loader is in RAM and executing, a splash screen is commonly displayed, and	
	an optional initial RAM disk (e.g., initrd or initramfs image) is loaded into memory. The initramfs	
	image is used with new distributions. Initramfs:	
	• Is a custom version of the init program, containing all the drivers and tools needed at boot.	
Boot loader	Is created by mkinitrd. Mkinitrd uses dracut to reduce boot times by using special tools and	
	enabling udev to create device nodes for system hardware.	
	Has root permissions that can be used to access the actual /root file system regardless of	
	whether it exists on the local computer or an external device. Without the permissions, the	
	computer could not access the file systems and read information that exists only on those	
	file systems.	
	Is used to mount the file system and load the kernel into RAM. With the images ready, the heat loader involves the kernel image.	
	3. With the images ready, the boot loader invokes the kernel image.	
	During this stage, the Linux kernel takes over. The kernel: 1. Resides in the /EFI directory.	
	2. Initializes the hardware on the system.	
	,	
	3. Locates and loads the initrd script to access the linuxrc program, which configures the	
	operating system. 4. Dismounts and erases the RAM disk image. On older distributions, this is the initrd image. On	
	newer distributions, this is the initramfs image.	
OS Kernel	5. Looks for new hardware and loads the drivers.	
	6. Mounts the root partition.	
	7. Loads and executes either the init (Initial) process (for older distributions) or the systemd	
	process (for newer distributions). These processes then launch all other processes (either	
	directly or indirectly) to finish booting the system.	
	The init (Initial) or systemd processes are always assigned a process ID of 1 because they are always	
	the first processes to run on the system.	
	the mat processes to run on the system.	

4.1 BIOS Boot

Phase	Process
	In the BIOS stage, BIOS is loaded, and the system hardware is identified. The following
	steps take place:
	 Power is supplied to the processor. The processor is hard-coded to look at a special
	memory address for code to execute.
	2. This memory address contains a pointer or jump program that instructs the processor
	where to find the BIOS program.
DIOC.	3. The processor loads the BIOS program. The first BIOS process to run is the power-on
BIOS	self-test (POST).
	4. If the POST is successful, the BIOS identifies other system devices. It uses CMOS settings
	and information supplied by the devices themselves to identify and configure hardware
	devices. Plug and Play devices are allocated system resources. The system typically
	displays information about the keyboard, mouse, and IDE drives in the system. Following
	this summary, information about devices and system resources is displayed.
	5. The BIOS then searches for a boot sector, using the boot order specified in the CMOS.
	During the boot loader stage, BIOS gives control to the boot loader program. The following
	steps take place:
	1. BIOS searches the boot sector, which contains a Master Boot Record (MBR).
	2. BIOS loads the primary bootloader code from the MBR.
	3. The primary bootloader does one of the following:
	• It examines the partition table marked as bootable, and then loads the boot sector from that
	partition. This boot sector contains a secondary boot loader, which locates an OS kernel.
	 It locates an OS kernel directly without using a secondary boot loader.
Boot loader	4. When the secondary boot loader is in RAM and executing, a splash screen is commonly
	displayed, and an optional initial RAM disk (e.g., initrd image) is loaded into memory. The
	initrd image:
	 Has root permissions that can be used to access the actual /root file system regardless of
	whether it exists on the local computer or an external device. Without the permissions,
	the computer could not access the file systems and read information that only exists on
	those file systems.
	 Is used to mount the actual file system and load the kernel into RAM.
	5. With the images ready, the secondary boot loader invokes the kernel image.
	During this stage, the Linux kernel takes over. The kernel:
	1. Resides in the /boot directory.
	2. Initializes the hardware on the system.
	3. Locates and loads the initrd script to access the linuxrc program, which configures the
	operating system.
	4. Dismounts and erases the RAM disk image. On older distributions, this is the initrd image. On
OS Kernel	newer distributions, this is the initramfs image.
OS KEINEI	5. Looks for new hardware and loads the drivers.
	6. Mounts the root partition.
	7. Loads and executes either the init (Initial) process (for older distributions) or the systemd
	process (for newer distributions). These processes then launch all other processes (either
	directly or indirectly) to finish booting the system.
	The init (Initial) or systemd processes are always assigned a process ID of 1 because they are always
	the first processes to run on the system.

4.2 GRUB Menu

(Common script files in /etc/grub.d control the GRUB2 menu)

Script File	Description	
00 header	Sets initial appearance items, such as the graphics mode, default selection, timeout, etc. These	
oo_neader	settings are typically imported from the /etc/default/grub file.	
	Identifies all Linux kernels installed on the root device and creates corresponding GRUB2 menu	
10_linux	entries for each one. This allows you to select which Linux kernel you want to load when you	
	initially boot the system.	
30 os-prober	Executes os-prober to search for other operating systems (such as Microsoft Windows) and	
30_03-prober	automatically creates GRUB2 menu items for them.	
40 custom	Allows for custom menu entries, which are imported directly into /boot/grub/grub.cfg	
40_custom	without any changes.	

4.2 GRUB Configuration File

The **/etc/default/grub** file is the primary configuration file for changing menu display settings

Option	Description		
	ets the default menu entry. Typical entries include:		
GRUB_DEFAULT	• Numeric (such as 0, 1, 2)		
	 Complete menu entry quotation (such as "Ubuntu, Linux 20.4.2") 		
GRUB SAVEDEFAULT	ets the last selected OS from the menu as the default OS on the next boot.		
GROD_SAVEDELAGEL	GRUB_DEFAULT=saved is also required for this option to work correctly.		
	Determines how long a blank screen will be displayed. While the screen is blank, the user		
	can press the Shift key to display the GRUB2 menu. Options include, 0, X, and (null):		
GRUB_HIDDEN_TIMEOUT	0 disables this functionality.		
	X (an integer value) pauses and shows a blank screen for X seconds.		
	(null) uses the value specified in the GRUB_TIMEOUT entry.		
	Vorks in conjunction with the GRUB_HIDDEN_TIMEOUT parameter. It displays a counter		
GRUB HIDDEN TIMEOUT QUIET	countdown) while the screen is blank. Options include true and false:		
GROD_INDDEN_INVICOOT_QUIET	true does not display a counter.		
	false displays the counter for the duration specified in the GRUB_HIDDEN_TIMEOUT entry.		
	Determines how long to wait for user interaction before booting the default operating		
	system. Options include X and -1:		
GRUB_TIMEOUT	X (an integer value of 1 or higher) sets the display duration in seconds.		
	-1 causes the menu to display until the user makes a selection.		
	he GRUB2 menu is hidden by default unless another OS is detected by the system.		
	asses options to the kernel. With the GRUB Legacy bootloader, this was done by adding		
GRUB_CMDLINE_LINUX	ptions to the end of the kernel line. In GRUB2, this is done using the GRUB_CMDLINE_LINUX		
	parameter.		
GRUB GFXMODE	ets the resolution of the graphical GRUB2 menu. Multiple resolutions may be specified if		
GROD_GI XIVIODE	hey are separated by commas.		
GRUB BACKGROUND	ets the background image during the GRUB2 menu display. The full path should be used. It		
GROD_BACKGROOND	nust be in the PNG, TGA, or JPG/JPEG file formats.		
	nables and disables the os-prober check of other partitions for operating systems, including		
GRUB_DISABLE_OS_PROBER	Vindows and Linux, during the execution of the update-grub command. If the os-prober is		
	nabled, operating systems are placed in the GRUB2 menu.		

4.3 Boot Target

Target File	Description	
poweroff.target	Halts the system.	
	Configures the system to run in single-user mode with a text-based user interface.	
rescue.target	This target sets up a base system and opens a rescue shell for troubleshooting	
	system problems.	
multi-user.target	Configures the system to run in multi-user mode with a text-based user interface.	
muiti-user.target	This target is commonly used as the default mode for server systems.	
	Configures the system to run in multi-user mode with a graphical user interface.	
graphical target	This target provides all the services of the multi-user target with the addition of	
graphical.target	a graphical user interface. This target is commonly used as the default mode for	
	desktop systems.	
reboot.target	Reboots the system.	
emergency.target	Opens a minimal emergency shell for troubleshooting serious system problems.	

Equivalent Runlevel Names

Target File	Description
runlevel0.target	Equivalent of poweroff.target
runlevel1.target	Equivalent of rescue.target
runlevel2.target	
runlevel3.target	Equivalent of multi-user.target
runlevel4.target	
runlevel5.target	Equivalent of graphical.target
runlevel6.target	Equivalent of reboot.target

4.3 Unit Files

4.3 Unit Files Section	Description		
	The Unit directives provide	an overview of the unit.	
	Unit section directives inclu		
	Option	Description	
	Documentation=	Lists referencing documentation for this unit or its configuration.	
	DefaultDependencies=	Lists 'yes' or 'no.' These are similar to implicit dependencies but can	
		be turned on and off by setting this option to yes or no.	
		Lists negative requirement dependencies. If a unit has a	
		Conflicts= setting on another unit, starting the former will stop the	
Unit section	Conflicts=	latter and vice versa. Note that this setting is independent of the	
		After= and Before= ordering dependencies.	
		Lists the units that must be activated for a unit to function. By	
	Requires=	default, the other units listed by a directive are activated at the	
		same time as the unit.	
	After=	Lists the units to start before this unit is started.	
	Before=	Lists the units to start after this unit is started.	
		Lists the units recommended to be in effect or started for the unit	
	Wants=	to function.	
	Systemd categorizes units a	according to the type of resource they describe. The easiest way to	
	determine the type of a unit is by the suffix type appended to the end of the resource name.		
	For example, a unit file named my.service would be a service unit file that would describe		
	how to manage a service.		
	Therefore, unit files will typ	ically contain a unit-specific section. The following table shows a	
Unit anasifia	few examples of unit files t	hat have directives specific to their type:	
Unit-specific section	Туре	Description	
section	Service	Describes how to manage a service or application on the server.	
	Socket	Describes a network or IPC socket or a FIFO buffer that systemd	
	Socket	uses for socket-based activation.	
	Mount	Defines a mount point on the system to be managed by systemd.	
	Automount	Configures a mount point that will be automatically mounted.	
	When a unit does not include	de a directive type, it does have unit-specific sections.	
	The install section is typical	ly the last section in a unit file. Typically, a unit is installed or	
	enabled by another unit that is started at boot. Directives in the install section specify what		
	happens when a unit is enabled. Directives found in the install section include:		
Install section	Option	Descriptions	
	WantedBy=	Specifies the unit requesting this unit to be enabled.	
	RequiredBy=	Specifies that another unit requires this unit to be enabled.	
	Also=	Specifies units to be enabled or disabled as a set.	

4.4 systemctl Command (boot target)

Command	Description
	Changes the system state to the specified boot target. Changing boot targets
systemctl isolate boot_target	with the systemctl command changes only the current system state. If the
	system is restarted, it will revert back to the default boot target.
systemctl get-default	Displays the current boot target.
	Sets the default boot target, which is identified by the
	/etc/systemd/system/default.target file. This file is a symbolic link that points
systemctl set-default boot_target	to a target file in /usr/lib/systemd/system that should be used by default
	when the system starts. This command modifies the target file that is the
	default.target symbolic link points to.
	Prints a list of running units, listed in the order of time to initialize.
systemd-analyze blame	Consider that initialization time includes the time a unit must wait for another
systemu-analyze blame	unit to complete. Does not report results for services that start immediately,
	as indicated by type=simple.

4.4 systemctl Command

Command	Function
systemctl start service.service	Starts a daemon.
systemctl stop service.service	Stops a daemon.
systemctl restart service.service	Restarts a daemon.
systemctl reload service.service	Reloads a daemon's configuration without actually stopping the daemon itself.
systemctl status service.service	Displays a daemon's status.
systemctl enable service.service	Automatically starts a daemon when the system starts.
systemctl disable service.service	Prevents a daemon from automatically starting when the system starts.
systemctl is-enabled service.service	Looks to see if a daemon is configured to automatically start on system boot.
systemctl mask service.service	Prevents a daemon from starting at all, either automatically or manually, from the shell prompt.
systemctl unmask service.service	Unmasks a previously masked daemon. This allows the daemon to be started either manually
systemeti ummask service.service	or automatically.

4.5 Shutdown Commands

Command	Function
shutdown -h now	Shuts the system down immediately. Consider the following for the
halt	shutdown command:
init 0	-h specifies that the system halt or power off after shutdown.
systemctl isolate poweroff.target	 now forces the system to shut down without a delay.
systemctl isolate runlevel0.target	Any of these commands shut the system down immediately.
shutdown -r now	Shuts the system down immediately and then reboots.
reboot	Any of these commands reboot the system immediately.
init 6	
systemctl isolate reboot.target	
systemctl isolate runlevel6.target	
shutdown -h time message	Shuts the system down in the designated amount of time and
shutdown -r time message	sends a message.
shutdown -c	Cancels a pending shutdown.
Ctrl+c	
shutdown -rf time	-r parameter issues the reboot command.
Silutuowii -ii tiille	-f parameter stands for reboot fast and skips the fsck utility on reboot.
shutdown -k message	Sends a warning message but does not shut down the system.