Wydział	Imię i nazwisko	Rok	Grupa
WIMilP	Mateusz Witkowski	II	4
Temat:			Prowadzący
Całkowanie metodą Simpsona i Monte Carlo			dr hab. inż. Hojny Marcin, prof. AGH
Data	Data oddania	Data	OCENA
ćwiczenia	08.04.2020	zaliczenia	
02.04.20			

1. Cel ćwiczenia.

Celem ćwiczenia było napisanie implementacji całkowania przy pomocy metody Monte Carlo i Simpsona.

2. Wprowadzenie teoretyczne

Całkowanie numeryczne – jest to metoda numeryczna polegająca na obliczaniu całek oznaczonych z pewnym przybliżeniem. Całka oznaczona to pole powierzchni pod wykresem funkcji w zadanym przedziale. Proste metody całkowania numerycznego polegają na przybliżeniu całki za pomocą odpowiedniej sumy ważonej wartości całkowanej funkcji w kilku punktach. Aby uzyskać dokładniejsze przybliżenie dzieli się przedział całkowania na niewielkie fragmenty. Ostateczny wynik jest sumą oszacowań całek w poszczególnych podprzedziałach. Najczęściej przedział dzieli się na równe podprzedziały.

Mając funkcje f(x) całkę oznaczoną zapisujemy w następujący sposób:

$$\int_{x_p}^{x_k} f(x) dx$$

Gdzie:

 \mathbf{x}_p — dolna granica całkowania

x_k – górna granica całkowania

f(x) – funkcja z której wyliczana jest całka

Metoda Simpsona jest jedna z najdokładniejszych metod całkowania przybliżonego. Funkcja podcałkowa w tym przypadku jest parabolą rozpiętą na krańcach przedziału oraz na jego środku. Metoda ta wykorzystuje interpolacje wielomianem drugiego stopnia.

Rysunek 1. Metoda Simpsona -uproszczona

Szerokość pojedynczego podprzedziału wilcza się na podstawie ogólnej liczby podprzedziałów, dolnej (x_p) i górnej (x_k) granicy całki ze wzoru:

$$dx = \frac{x_k - x_p}{n} \tag{1}$$

Gdzie:

dx – szerokość podprzedziału

x_p – dolna granica całkowania

x_k – górna granica całkowania

n – liczba podprzedziałów

Znając szerokość możemy wyliczyć kolejne x:

$$x_i = x_p + i * dx, \ gdzie \ i = 1, 2, ..., n$$
 (2)

W przypadku gdy nasz obszar całkowania jest podzielony tylko na dwie części możemy skorzystać ze wzoru:

$$\int_{x_p}^{x_k} f(x) dx \approx I = \left[f(x_p) + 4 \cdot f\left(\frac{x_p + x_k}{2}\right) + f(x_k) \right] \cdot \frac{dx}{3}$$
 (3)

Często jednak w celu uzyskania dokładniejszych wyników dzielimy przedziały całkowania na większą ilość części, mamy do czynienia wtedy ze złożoną metodą Simpsona.

Rysunek 2. Złożona metoda Simpsona

W tym wariancie obliczanie przybliżenia całki polega na obliczeniu wartości funkcji dla punktów pośrednich (punkty leżące dokładnie pomiędzy dwoma sąsiadującymi punktami), które można wyliczyć w następujący sposób:

$$t_i = \frac{x_{i-1} + x_i}{2} dla i = 1, 2, ..., n$$
 (4)

Lub:

$$t_i = x_p + i * dx - \frac{dx}{2}, \ gdzie \ i = 1, 2, ..., n$$
 (5)

Wzór możemy zapisać jako iloczyn szerokości podprzedziału podzielonej przez 6 i sumy wartości punktów granicznych całki, czterokrotną wartość sumy punktów pośrednich oraz dwukrotną wartość sumy punktów równo oddalonych o dx.

$$\int_{x_p}^{x_k} f(x) dx \approx \frac{dx}{6} \left(f(x_p) + 4 \cdot \sum_{i=0}^{n-1} f(x_p + i \cdot dx + \frac{dx}{2}) + 2 \cdot \sum_{i=1}^{n-1} f(x_p + i \cdot dx) + f(x_k) \right)$$

Metoda Monte Carlo – specyficzna metoda mająca zastosowania głównie w modelowaniu matematycznym tak bardzo złożonych procesów, że wykluczone jest podejście analityczne. Polega na losowaniu określonej liczby punktów z zakresu całkowania, a następnie obliczeniu średniej z wartości funkcji we wcześniej wylosowanych punktach.

Rysunek 3. Metoda Monte Carlo

Obliczenie średniej wygląda następująco:

$$f_{\text{\'s}rednie} = \frac{f(x_1)}{n} + \frac{f(x_2)}{n} + \dots + \frac{f(x_n)}{n}$$
 (7)

Wartość całki natomiast liczy się ze wzoru:

$$\int_{x_p}^{x_k} f(x) dx \approx I = f_{\text{\'e}rednie} \cdot |x_k - x_p|$$
 (8)

Gdzie:

x_p – dolna granica całkowania

x_k – górna granica całkowania

n – liczba podprzedziałów

 $x_1,x_2,...,x_n$ – wylosowane punkty z przedziału.

3. Kod programu

Na samym początku zdefiniowano funkcję pomocniczą służącą do obliczania wartości danej funkcji w przekazanym punkcie. Jej głównym zadaniem było zwiększenie przejrzystości kodu.

```
double funkcja(double x) {
    double fx = x * x * x + 2;
    return fx;
}
```

Rysunek 4. Definicja funkcji pomocniczej

Kolejnym krokiem była definicja funkcji obliczającej całkę metodą Simpsona. Przyjmuje ona trzy parametry: dolną i górną granice oraz liczbę podprzedziałów. Wylicza szerokość i kolejne x_i oraz t_i przy pomocy wzorów (1) i (5), po czym korzystając ze wzoru (6) oblicza wynik.

Rysunek 5. Funkcja metody Simpsona

Następną zdefiniowaną funkcją jest ta odpowiedzialna za metodę Monte Carlo.

Przyjmuje dokładnie te same parametry. Punkty dobierane są w tym przypadku losowo dzięki uniform_real_distribution < double > dist, w ten sposób tworzony jest obiekt, do którego przekazujemy zakres w którym będą losowane liczby: dist(dolna_granica, gorna_granica), następnie wywołujemy losowanie dist(rnd). Dzięki mt19937 rnd(std::time(NULL)) za każdym razem otrzymujemy inne liczby. Obliczamy średnią wzorem (7) oraz ostateczny wynik przy pomocy (8).

Rysunek 6. Funkcja metody Monte Carlo

Na koniec został funkcja main w której zostały zdeklarowane zmienne, pobrano dane od użytkownika, wywołano odpowiednie funkcje oraz wyświetlono wyniki.

```
int main() {
    double xp, xk;
    int n;

    cout << "Podaj dolna granice ";
    cin >> xp;
    cout << endl;
    cout << "Podaj gorna granice ";
    cin >> xk;
    cout << endl;
    cout << "Podaj ilosc czesci ";
    cin >> n;
    cout << "Podaj ilosc czesci ";
    cin >> n;
    cout << endl;

cout << "Wynik dla metody prostokatow " << calkowanieMetodaProstokatow(xp, xk, n) << endl;
    cout << "Wynik dla metody trapezow " << calkowanieMetodaTrapezow(xp, xk, n) << endl;
    cout << "Wynik dla metody Simpsona " << calkowanieMetodaSimpsona(xp, xk, n) << endl;
    cout << "Wynik dla metody Monte Carlo " << calkowanieMonteCarlo(xp, xk, n) << endl;
    return 0;
}</pre>
```

Rysunek 7. Funkcja main

Cały kod:

```
∃#include <iostream>
 #include <cstdlib>
 #include <ctime>
 #include <random>
 using namespace std;
 mt19937 rnd(std::time(NULL));
∃double funkcja(double x) {
     double fx = x * x * x + 2;
     return fx;
idouble calkowanieMetodaProstokatow(double dolna_granica, double gorna_granica, int licznosc) { ...
∍double calkowanieMetodaTrapezow(double dolna_granica, double gorna_granica, int licznosc) [{
⊒double calkowanieMetodaSimpsona(double dolna granica, double gorna granica, int licznosc) {
     double dx = (gorna granica - dolna granica) / licznosc; //Obliczenie wyskosci trapezu
     double wynik = 0;
     double x = dolna_granica;
     double sumaH = 0;
     double sumaH2 = 0;
     for (size_t i = 1; i <= licznosc; i++)</pre>
        x += dx;
         sumaH2 += funkcja(x - dx / 2); //Wylicznie wartosci dla f(xp + i*dx - dx/2)
         if (i < licznosc) {</pre>
                                        //if zapobiaga dodaniu wartosci granicznych
            sumaH += funkcja(x);
                                        //Wylicznie wartosci dla f(xp + i*dx)
     wynik = (dx / 6) * (funkcja(dolna_granica) + 2 * sumaH + 4 * sumaH2 + funkcja(gorna_granica));
     return wynik;
int licznosc) {
     double wynik = 0;
     double sredniaF = 0;
     double losowyX;
     cout << "Wylosowane punkty: " << endl;</pre>
     for (size_t i = 1; i <= licznosc; i++)</pre>
         //utworzenie i przekazanie odpowiedniego przedziału do obiektu dist
         uniform_real_distribution < double > dist(dolna_granica, gorna_granica);
         losowyX = dist(rnd);
                              //zapisanie wylosowanego punktu
         cout << losowyX << endl;</pre>
         sredniaF += funkcja(losowyX)/ licznosc;
                                                  //Wylicznie średniej
     wynik = sredniaF*fabs(gorna_granica- dolna_granica); //Oblicznie wartosci całki
     return wynik;
```

Rysunek 8. Cały kod cz.1

```
int main() {
    double xp, xk;
    int n;
    cout << "Podaj dolna granice ";</pre>
    cin >> xp;
    cout << endl;</pre>
    cout << "Podaj gorna granice ";</pre>
    cin >> xk;
    cout << endl;</pre>
    cout << "Podaj ilosc czesci ";</pre>
    cin >> n;
    cout << endl;</pre>
    cout << "Wynik dla metody prostokatow " << calkowanieMetodaProstokatow(xp, xk, n) << endl;</pre>
    cout << "Wynik dla metody trapezow " << calkowanieMetodaTrapezow(xp, xk, n) << endl;</pre>
    cout << "Wynik dla metody Simpsona " << calkowanieMetodaSimpsona(xp, xk, n) << endl;</pre>
    cout << "Wynik dla metody Monte Carlo " << calkowanieMonteCarlo(xp, xk, n) << endl;</pre>
    return 0;
```

Rysunek 9. Cały kod cz.2

4. Testy

W celu sprawdzenia poprawności działania programu zostały wykonane trzy testy przy pomocy programu WolframAlpha. Każdej funkcja została policzona obydwiema metodami oraz kalkulatorem z wyżej wymienionego programu. Na koniec by sprawdzić która z metod jest dokładniejsza, policzono i porównano błędy względne przy użyciu wzoru:

$$\delta = \left| \frac{x - x_0}{x} \right| * 100\%$$

Gdzie:

x — wartość dokładna — wynik z Wolframa x_0 — zmierzona wartość — wyliczona przez program program

Test 1:

Funkcja	Dolna granica	Górna granica	Liczba fragmentów
$x^3 + 2$	1	4	3

Wyniki programu:

Rysunek 10. Wyniki całkowania $f(x) = x^3 + 2$ dla n = 3

Wynik WolframAlpha:

$$\int_{1}^{4} (x^{3} + 2) dx = \frac{279}{4} = 69.75$$

Błędy względne:

• Dla metody Simpsona:
$$\delta = |\frac{69.75 - 69.75}{69.75}| * 100\% = 0\%$$

• Dla metody Monte Carlo:
$$\delta = |\frac{69.75 - 37.2187}{69.75}| * 100\% = 46.63986\%$$

Test 2:

Funkcja	Dolna granica	Górna granica	Liczba fragmentów
$-4x^3+7x+1$	4	16	20

Wyniki programu:

```
Konsola debugowania programu Microsoft Visual Studio
Podaj gorna granice 16
Podaj ilosc czesci 20:
Wynik dla metody Simpsona -64428
Wylosowane punkty:
8.01968
14.7474
8.94288
14.0138
10.2554
7.21454
7.66615
6.78295
10.4334
10.4498
8.32745
11.6449
6.97527
6.18468
5.29591
7.38872
7.48001
9.40907
Wynik dla metody Monte Carlo -42296.3
```

Rysunek 11. Wyniki całkowania $f(x) = -4x^3 + 7x + 1$ dla n = 20

Wynik WolframAlpha:

$$\int_{4}^{16} \left(-4x^3 + 7x + 1\right) dx = -64428$$

Błędy względne:

• Dla metody Simpsona:
$$\delta = |\frac{-64428 + 64428}{-64428}| * 100\% = 0\%$$

• Dla metody Monte Carlo:
$$\delta = |\frac{-64428 + 42296.3}{-64428}| * 100\% = 34.3511\%$$

Test 3:

Funkcja	Dolna granica	Górna granica	Liczba fragmentów
$3x^5 - 5x^3 + 13$	-1	3	100

Wyniki programu:

Rysunek 12. Wyniki całkowania $f(x) = 3x^5 - 5x^3 + 13$ dla n = 100

Wynik WolframAlpha:

$$\int_{-1}^{3} (3x^5 - 5x^3 + 13) dx = 316$$

Błędy względne:

• Dla metody Simpsona:
$$\delta = \lfloor \frac{316 - 316}{316} \rfloor * 100\% = 0\%$$

• Dla metody Monte Carlo:
$$\delta = |\frac{316 - 250.418}{316}| * 100\% = 20.7538\%$$

Test 4:

Funkcja	Dolna granica	Górna granica	Liczba fragmentów
$4x^4 - 3x^3 + 2x^2$	1	10	2

Wyniki programu:

```
Konsola debugowania programu Microsoft Visual Studio
Podaj dolna granice 1

Podaj gorna granice 10

Podaj ilosc czesci 2

Wynik dla metody Simpsona 73289
Wynik dla metody Monte Carlo 7769.93
```

Rysunek 13. Wyniki całkowania $f(x) = 4x^4 - 3x^3 + 2x^2$ dla n = 2

Wynik WolframAlpha:

$$\int_{1}^{10} \left(4 x^4 - 3 x^3 + 2 x^2 \right) dx = \frac{1463319}{20} \approx 73166.$$

Błędy względne:

• Dla metody Simpsona:
$$\delta = |\frac{73\ 166 - 73289}{73\ 166}| * 100\% = 0.16811\%$$

• Dla metody Monte Carlo:
$$\delta = |\frac{73\,166 - 7769.93}{73\,166}| * 100\% = 89.38041\%$$

5. Wnioski

Wykonane testy potwierdziły, że metoda Simpsona jest niezwykle dokładna nawet dla niewielkiej ilości punktów, błąd względny tylko raz był różny od zera i to przy podziale dla n = 2. Świadczy to o tym, że metoda ta jest bardzo wydajna, gdyż przy małym nakładzie pracy programu(mały podział) jest wstanie podać dokładne wyniki. Metoda Monte Carlo, która opiera się o liczby losowe, jak wynika z powyższych testów nie daje zadowalających rezultatów. Właściwy wynik jest niemal niemożliwy do uzyskania tym sposobem. Metoda Simpsona jest najprecyzyjniejszą i najwydajniejszą metodą jaką poznaliśmy jak dotąd na zajęciach.