Intro to Optimization + LP Basics

Intro: Slides

a program

maximize is the same

Mathematical Optimization: "

minimize $f_0(x)$ for $R^n o R$ "objective subject to $f_1(x) o R^n o R$ "

constraints"

- -> Goal: find a / the solution (aka, optimal point) x* EIR" that has the smallest to satisfying the constraints.

Exampl	e;
\sim h	

	\sim	^*	^3	
	(
Food	Carrot,	White	Cucumber,	Required
	Raw	Cabbage, Raw	Pickled	per dish
Vitamin A [mg/kg]	35	0.5	0.5	$0.5\mathrm{mg}$
Vitamin C [mg/kg]	60	300	10	$15\mathrm{mg}$
Dietary Fiber [g/kg]	30	20	10	4 g
price [€/kg]	0.75	0.5	0.15^{*}	

*Residual accounting price of the inventory, most likely unsaleable.

+o(K)		
Minimize	0.75 K1 + 0.5 K3 + 0.15 K3	
Subj to:	x,, x, x, > 0	
(Vit A)	35x1 + 0.5 x2 + 0.5 x3 > 0.5	
(vit c)	60x +300x2 + 10 x3 > 15	
(Diet Fiber)	SOX FAX LINE >1	

Linear Programming: > Objective & constraint functions are linear

Minimize $C^T x$ subj. to $A x \leq b$ Hence:

- Simple example & geometric view

 Maximize $x_1 + x_2$ Subj to $x_2 x_1 \le 1$ $x_1 + 6x_2 \le 15$ $4x_1 x_2 \le 10$ Maximize $\begin{bmatrix} 1 \\ 1 \end{bmatrix} \times \begin{bmatrix} 1 \\ 1 \end{bmatrix} \times$

Geometrically: -> a polytope in 1R"

- → Each inequality constraint is a half-space > feasible set = () that spaces
- -> Optimal sol² is at a corner (vertex)
- -> # corners can be exponential in n

-> Suppose we multiply the constraints by y, , y, resp. Then:

$$4.y_1 + 2.y_2 + 3.y_3 > 2$$

y 20 (ou. the signs will flop)

$$8 y_1 + y_4 + a \cdot y_3 \ge 3$$

D(val)

Minimize 12.4 + 34 + 4.43

The trick:

(P) Maximize
$$C^T \times$$

Subj to $A \times \leq b \times > 0$

(D) Minimite
$$y^Tb$$

Subj to $A^Ty \ge c$

Observations & Properties

- · Example: max. flow = min cut
- · Dualization recipe no need to memorize. look it up. (Only for ret.)

Dualization Recipe

	Primal linear program	Dual linear program		
Variables	x_1, x_2, \ldots, x_n	y_1,y_2,\ldots,y_m		
Matrix	A	A^T		
Right-hand side	b	\mathbf{c}		
Objective function	$\max \mathbf{c}^T \mathbf{x}$	$\min \mathbf{b}^T \mathbf{y}$		
Constraints	i th constraint has \leq \geq $=$	$egin{aligned} y_i &\geq 0 \ y_i &\leq 0 \ y_i &\in \mathbb{R} \end{aligned}$		
	$x_j \ge 0$ $x_j \le 0$ $x_j \in \mathbb{R}$	j th constraint has \geq \leq $=$		