What is the smallest thing a person can see?

Marya Lieberman, University of Notre Dame Department of Chemistry and Biochemistry

What is the smallest thing a person can see?

Nanotechnology is all about the very smallest structures that nature and people can make. This talk will explore one area of nanotechnology, DNA origami, that uses DNA to build two- and three-dimensional objects.

What are different ways to see things? What is the smallest thing you can see? Is building something out of DNA like building something out of blocks or clay? Where do they get the DNA? Why do they want to build things that small?

Who did the work?

Who did the work?

Lesli Mark (not shown)

Genetic Science Learning Center, University of Utah, http://learn.genetics.utah.edu.

scale

 http://learn.genetics.utah.edu/content/ begin/cells/scale/

How we see

source

target

detector

...and often you'll need a lens

The visible spectrum

 The light that reaches the eye must have a color between red (760nm) and blue (400nm)
or a mixture of these colors

in Joseph G. Gall (1996). A Pictorial History - Views of the Cell, published by The American Society for Cell Biology

Seeing with light

The invisible spectrum

What a bee sees

We see:

UV camera sees:

Bee's lenses see Image smoothed to remove facets

http://www.monash.edu.au/news/monashmemo/assets/images/20070523/what-a-bee-sees.jpg

Electron vision

Our eyes and traditional microscopes detect light that has bounced off an object

Let's bounce something else off the object...how about electrons?

Some are "reflected"

Some are absorbed

How a scanning electron microscope works

Beam created from heated filament

Beam travels through a vacuum

Electro-magnetic fields act as lenses

Electron beam hits the sample in a precise location

Scattered and "secondary" electrons are detected

Beam scans back and forth to make up an image of the whole object

Seeing with electrons

Seeing with electrons

Human chromosome 12

University of Waikato http://cnx.org/content/m15083/latest/

Scanning tunneling microscopy

Electrons tunnel!

 With a higher probability than cars STM measures the current created by tunneling electrons

STM imaging

C60 "Bucky Balls"

Each C60 diameter is ~ 10 Å 1 Å = 1×10^{-10} m

The smallest thing a person can see...single atoms

Xenon on Nickel

Individual atoms? That's small!

Iron on Copper

Images courtesy of http://www.almaden.ibm.com

There are other ways to see...

http://www.accesslinx.com/Braille.jpg

Topography is important!

http://www.virginialakesresort.com/images/vlrtopo6.jpg

Atomic force microscopy "sees" topography

AFM cantilever and tip

AFM image of a bacterial "chromosome" (plasmid DNA)

- Image taken by Mr. Rick Horvath, 2008
- Reilly High School biology teacher

DNA = deoxyribonucleic acid

 DNA structure movie

1953: Watson and Crick with early model of DNA structure

DNA major groove

DNA minor groove

simplified representation

backbone as ribbon

sequence color-coded

sequence color-coded

sequence color-coded

DNA base pairing first base pair forms

DNA base pairing pairing continues

base pairing

all bases paired

DNA base pairing

DNA origami

P. Rothemund "Templated DNA Nanostructures," Nature 440 297-302 (2006)

E. S. Andersen et al, "DNA origami design of dolphin-shaped structures with flexible tails." ACS Nano, 2(6), 1213-8 (2008)

How DNA origami are made

A long strand of DNA is woven back and forth...it is held in place by "staples" made from DNA.

http://kidoinfo.com/ri/wp-content/uploads/2009/

How DNA origami are made

Origami movie

Atomic force microscope image DNA

Template strand floating in solution

base pairing

DNA choo-choo train

A High School Research Project

Lesli Mark (St. Joseph High School)
wanted to see how the origami assemble.

 Here's how electrons flow through a wire (electrical current)

 Here's how electrons flow through a wire (electrical current)

Problem: heating

 Sending information does not require sending electrons. Here's how:

 Sending information does not require sending electrons. Here's how:

 Sending information does not require sending electrons. Here's how:

 Sending information does not require sending electrons. Here's how:

 Sending information does not require sending electrons. Here's how:

Magnets don't heat up

 We want to use DNA origami to hold very small nanomagnets in place to make circuits.

We still have not figured out how to do this properly. But we keep working on it...one day we will know how to do it!

What is the next vision for DNA origami?

E. S. Andersen et al., "Self-assembly of a nanoscale DNA box with a controllable lid," Nature 459, 73-76 (2009)

DNA origami into 3D

S. M. Douglas, A. H. Marblestone, S. Teerapittayanon, A. Vasquez, G. M. Church, and W. H. Shih, "Rapid Prototyping of DNA origami with caDNAno," Nucl. Acids Res.; 37, 5001-5006, (2009)

Questions?

The Lacemaker Jan Vermeer ~1670

