DEPARTMENT OF PHYSICS IIT KHARAGPUR

MINI PROJECT FOR CDSR TOPIC-"DOUBLE PENDULUM"

TEAM MEMBERS FOR THE PROJECT

- >KESHAV KAUSHAL(21PH10020)
- >SURYANSH SHARMA(21PH10040)

UNDER THE GUIDANCE OF PROFESSOR> "DR.KRISHNA KUMAR"

Positions

$$x_1 = l_1 \sin \theta_1$$

 $y_1 = -l_1 \cos \theta_1$
 $x_2 = x_1 + l_2 \sin \theta_2 = l_1 \sin \theta_1 + l_2 \sin \theta_2$
 $y_2 = y_1 - l_2 \cos \theta_2 = -l_1 \cos \theta_1 - l_2 \cos \theta_2$

Velocities

$$\dot{x}_{1} = l_{1}\dot{\theta}_{1}\cos\theta_{1}
\dot{y}_{1} = l_{1}\dot{\theta}_{1}\sin\theta_{1}
\dot{x}_{2} = \dot{x}_{1} + l_{2}\dot{\theta}_{2}\cos\theta_{2} = l_{1}\dot{\theta}_{1}\cos\theta_{1} + l_{2}\dot{\theta}_{2}\cos\theta_{2}
\dot{y}_{2} = \dot{y}_{1} + l_{2}\dot{\theta}_{2}\sin\theta_{2} = l_{1}\dot{\theta}_{1}\sin\theta_{1} + l_{2}\dot{\theta}_{2}\sin\theta_{2}$$

Total Kinetic Energy of Double Pendulum

$$T = \frac{1}{2}m_1(\dot{x}_1^2 + \dot{y}_1^2) + \frac{1}{2}m_2(\dot{x}_2^2 + \dot{y}_2^2).$$

$$T = \frac{1}{2}(m_1 + m_2)l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2l_2^2\dot{\theta}_2^2 + m_2l_1l_2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2).$$

Total Potential Energy of Double Pendulum

$$U = -g((m_1 + m_2)l_1\cos\theta_1 + m_2l_2\cos\theta_2).$$

Lagrangian L = T - U

$$L = \frac{1}{2}(m_1 + m_2)l_1^2\dot{\theta}_1^2 + \frac{1}{2}m_2l_2^2\dot{\theta}_2^2 + m_2l_1l_2\dot{\theta}_1\dot{\theta}_2\cos(\theta_1 - \theta_2) + g(m_1 + m_2)l_1\cos\theta_1 + gm_2l_2\cos\theta_2.$$

Euler Langrange Equation

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_i} \right) - \frac{\partial L}{\partial q_i} = 0,$$

For m1

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_1} \right) - \frac{\partial L}{\partial \theta_1} = 0.$$

We can determine each parts separately, giving

$$\frac{\partial L}{\partial \theta_1} = -m_2 l_1 l_2 \dot{\theta}_1 \dot{\theta}_2 \sin(\theta_1 - \theta_2) - l_1 g(m_1 + m_2) \sin \theta_1,$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_1} \right) = \frac{d}{dt} \left((m_1 + m_2) l_1^2 \dot{\theta}_1 + m_2 l_1 l_2 \dot{\theta}_2 \cos(\theta_1 - \theta_2) \right)
= (m_1 + m_2) l_1^2 \ddot{\theta}_1 + m_2 l_1 l_2 (\ddot{\theta}_2 \cos(\theta_1 - \theta_2) - \dot{\theta}_2 (\dot{\theta}_1 - \dot{\theta}_2) \sin(\theta_1 - \theta_2)).$$

For m2

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{\theta}_2} \right) - \frac{\partial L}{\partial \theta_2} = 0,$$

$$m_2 l_2 \ddot{\theta}_2 + m_2 l_1 \ddot{\theta}_1 \cos(\theta_1 - \theta_2) - m_2 l_1 \dot{\theta}_1^2 \sin(\theta_1 - \theta_2) + m_2 g \sin \theta_2 = 0$$

The two coupled differential equations are

$$(m_1 + m_2)l_1\ddot{\theta}_1 + m_2l_2\ddot{\theta}_2\cos(\theta_1 - \theta_2) + m_2l_2\dot{\theta}_2^2\sin(\theta_1 - \theta_2) + (m_1 + m_2)g\sin\theta_1 = 0$$

$$m_2l_2\ddot{\theta}_2 + m_2l_1\ddot{\theta}_1\cos(\theta_1 - \theta_2) - m_2l_1\dot{\theta}_1^2\sin(\theta_1 - \theta_2) + m_2g\sin\theta_2 = 0$$

Now Solving these differential equations by help of calculator we obtain theta1 and theta 2

$$\ddot{\theta}_1 = -\frac{m_2 l_1 w_1^2 \mathrm{sin}(2\Delta\theta) + 2m_2 l_2 w_2^2 sin(\Delta\theta) + 2m_2 g \mathrm{cos}\Big(\theta_2\Big) \mathrm{sin}(\Delta\theta) + 2m_1 g sin\Big(\theta_1\Big)}{2l_1 (m_1 + m_2 sin^2 \Delta\theta)}$$

$$\ddot{\theta}_2 = \frac{m_2 l_2 w_2^2 sin(2\Delta\theta) + 2\Big(m_1 + m_2\Big) l_1 w_1^2 sin(\Delta\theta) + 2\Big(m_1 + m_2\Big) g\cos\Big(\theta_1\Big) sin(\Delta\theta)}{2l_2\Big(m_1 + m_2 sin^2 \Delta\theta\Big)}$$

We have also written Matlab code for plot of theta 1, theta 2, w1,w2

Trajectory of Pendulum

we will show it in Matlab Simulation

The minimum condition for inner pendulum to flip

when
$$\theta_1 = \pi$$
 and $\theta_2 = 0$.

The minimum potential energy required is

$$U_{min1} = g(l_1(m_1 + m_2) - l_2m_2).$$

Potential energy U must be greater than or equal to its Umin

$$U \geq U_{min1}$$
.

$$l_1(m_1+m_2)(\cos\theta_1+1)+l_2m_2(\cos\theta_2-1)\leq 0$$
,

Until and unless above is satisfied the inner pendulum cannot flip.

The minimum condition for outer pendulum to flip

$$\theta_1 = 0 \text{ and } \theta_2 = \pi.$$

Potential energy U must be greater than or equal to its Umin

$$U \geq U_{min}$$

$$l_1(m_1+m_2)(\cos\theta_1-1)+l_2m_2(\cos\theta_2+1)\leq 0.$$

Until and unless above is satisfied the outer pendulum cannot flip.

The Damping force is μ

$$\mu = k\theta$$

the periodic external force F applied is F(t)

$$F(t) = F \cos \varphi t$$

The equations of motion for damping are

For m1

$$(m_1 + m_2)l_1\ddot{\theta}_1 + m_2l_2\ddot{\theta}_2\cos(\theta_1 - \theta_2) + m_2l_2\dot{\theta}_2^2\sin(\theta_1 - \theta_2) + (m_1 + m_2)g\sin\theta_1 + k_1\dot{\theta}_1 = F_1\cos\varphi_1$$

For m2

 $m_2 l_2 \ddot{\theta}_2 + m_2 l_1 \ddot{\theta}_1 \cos(\theta_1 - \theta_2) - m_2 l_1 \dot{\theta}_1^2 \sin(\theta_1 - \theta_2) + m_2 g \sin\theta_2 + k_2 \dot{\theta}_2 = F_2 \cos\varphi_2 t.$

Now we assume

$$\alpha = k_1 \dot{\theta}_1 - F_1 \cos \varphi_1 t,$$

$$\beta = k_2 \dot{\theta}_2 - F_2 \cos \varphi_2 t,$$

After substituting and solving the differential equations using calculator we get,

$$\dot{\omega}_1 = \frac{m_2 l_1 \omega_1^2 \sin(2\Delta\theta) + 2m_2 l_2 \omega_2^2 \sin \Delta\theta + 2g m_2 \cos \theta_2 \sin \Delta\theta + 2g m_1 \sin \theta_1 + \gamma_1}{-2l_1 (m_1 + m_2 \sin^2 \Delta\theta)},$$

$$\dot{\omega}_2 = \frac{m_2 l_2 \omega_2^2 \sin(2\Delta\theta) + 2(m_1 + m_2) l_1 \omega_1^2 \sin \Delta\theta + 2g(m_1 + m_2) \cos \theta_1 \sin \Delta\theta + \gamma_2}{2l_2(m_1 + m_2 \sin^2 \Delta\theta)}$$

where y1 and y2 represent

$$\gamma_1 = 2\alpha - 2\beta \cos \Delta \theta,$$

$$\gamma_2 = 2\alpha \cos \Delta \theta - \frac{2(m_1 + m_2)}{m_2} \beta.$$