Chapter 3: Decomposition of graphs

3.1 Introduction to graph

3.1.1 Basic concepts

Graphs

- A graph G(V, E) consists a set vertices V and a set of edges E.
- For instance, the graph below represents direct flight routes between some airports.

Some terminologies

- Adjacent vertices: U and V are adjacent
- Edge incident(s) on a vertex: a, d, and b are incidents on V
- Degree of a vertex: V's degree is 3
- Parallel edges: h and i are parallel edges
- Self-loop: j is a self-loop
- Path: V-U-W-Y is a path between V and Y
- Cycle: a path its starting and ending vertices are the same U-V-W-U
- **Connected**: if between any two vertices there is a path

Weighted and unweighted graphs

• A graph is weighted if each of its edge is associated with a numeric weight. Otherwise, it is unweighted.

Directed and undirected graphs

- A graph can be directed or undirected.
- For example: the flight AA 1206 is from ORD to PVD, and the distance between ORD and PVD is 849 miles.

Broad applications of graph

- A wide range of problems can be expressed as graphs with clarity and precision. For instances,
 - > Transportation networks, computer and communication networks, and social network
 - Databases entity-relationship diagram
 - Printed circuit board
 - Artificial neural network (ANN)
 - > Knowledge graph
 - > Probabilistic graphic model
 - > etc.

Markov chain and probabilistic graphic model

3.1.2 Graph representations

Graph adjacency matrix representation

- A graph is a relation on the set of vertices.
- An n-vertex graph can be represented as an n x n adjacency matrix.

Pros and cons of matrix representation

- Pros: Easy to understand; O(1) to locate an edge
- Cons: Spatial complexity O(n²); Waste memory spaces for graphs sparsely connected.

	1	2	3	4	5	6	7	8
1	0	1	1	0	0	0	0	0
2	1	0	1	1	1	0	0	0
3	1	1	0	0	1	0	1	1
4	0	1	0	0	1	0	0	0
5	0	1	1	1	0	1	0	0
6	0	0	0	0	1	0	0	0
7		0	1	0	0	0	0	1
8	0	0	1	0	0	0	1	0

Adjacency list representation

- For each vertex, we associate it with its adjacency list.
- Pros. Reduced spatial complexity for an m-edge n-vertex graph from O(n²) to O(m + n)
- Cons. Checking if (u, v) is an edge takes O(deg(u)) rather than O(1) time.

Example: representations of digraph

• Adjacency list representation:

• Matrix representation:

$$Graph = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Python built-in datatype dict

- Python built-in datatype dictionary dict is ready for graph.
- A dictionary in Python contains a collection of key-value pairs placed inside curled braces { }, separated by a comma.
- Each key-value pair in a Python dictionary specifies a relation, and is separated by a colon as key: value
- A dictionary looks like the follow:

```
d = {key1 : value1, key2 : value2 , key3 : value3 }
```

 Let us implement a sample bipartite graph as an object of Python dictionary.

A sample bipartite graph as a Python dictionary

```
>>> g = {'A':3, 'B':{1, 4}, 'D':{3,4}}
>>> type(g)
<class 'dict'>
>>> len(g)
3
>>> g
{'A': 3, 'B': {1, 4}, 'D': {3, 4}}
>>> g.keys()
dict_keys(['A', 'B', 'D'])
>>> g.values()
dict_values([3, {1, 4}, {3, 4}])
```


Using key to retrieve a value from a dictionary

One <u>cannot</u> use an index to retrieve a value of a dictionary.
 Instead, one should use key to retrieve a value as the follow:

```
dictionary name[key]
```

• Example:

```
>>> for key in g:
    print(key, g[key])

A 3
B {1, 4}
D {3, 4}
```

Adding a key-value pair a dictionary

• Dictionaries are mutable objects. You can add a new key-value pair to a dictionary with an assignment statement as:

```
dictionary name[key] = value
```

• Example: adding the edge (C, 1) in the graph

```
>>> g['C'] = 1
>>> g
{'A': 3, 'B': {1, 4}, 'D': {3, 4}, 'C': 1}
>>>
```


Graph as an ADT (abstract data type)

- For a simple graph, one may hand code it easily as we just did.
- However, in general, we need an abstract data type (ADT).
- The script graph (adj) dict.py is an example.

```
class Vertex:
    def __init__(self, name):
        self.name = name
        self.neighbors = set()

    def add_neighbor(self, v):
        if v_name not in self.neighbors:
            self.neighbors = self.neighbors | {v}
```

Python implementation (cont.)

```
class Graph: Add Works
graph = {}

def add_vertex(self, vertex):
   if isinstance(vertex, Vertex) and \
      vertex.name not in self.graph:
      self.vertices[vertex.name] = vertex

# continued in the next page
```

Adjacency list: Python implementation

```
#continued from previous page
   def add edge(self, u, v):
        if u in self.graph and v in self.graph:
            for key, value in self.graph.items():
                if key == u:
                    value.add neighbor(v)
                if key == v:
                    value.add neighbor(u)
    def print graph(self):
        for key in sorted(list(self.vertices.keys())):
            print(key + str(self.vertices[key].neighbors))
```

Test it with the sample graph

```
def main():
    q = Graph()
    for i in range(1, 9):
        g.add vertex(Vertex(str(i)))
    edges = ['12', '13', '23', '24', '25', '35', \
             '37', '38', '45', '56', '78']
    for edge in edges:
        g.add edge(edge[:1], edge[1:])
    g.print graph()
main()
```

Hands on

- Run the test program graph adj dict.py;
- Visualize the execution, if you have question, through https://goo.gl/sQtVyl, and
- Compare the output with the graph in adjacency list

3.2 Depth-First Search (DFS) and applications

Graph traversal and reachability

- Graph traversal: a *systematic procedure* that *exploring a graph* by examining all of its vertices and edges.
- Graph traversal algorithms are key to answering many fundamental questions about graphs involving the notion of *reachability*, that is, in determining how to travel from one vertex to another while following paths of a graph.

Exploring a graph is like navigating a maze

3.2.1 Depth First Search (DFS) algorithm

Depth first search

- Depth-first search (DFS) is a graph traversal algorithm.
- The algorithm starts at some arbitrarily selected node as the root node first
- Then it explores the graph as far as possible along each branch before backtracking.

DFS from v to all nodes reachable in G

DFS in O(|V| + |E|)

- Setting/getting a vertex/edge label takes **O**(1) time
- Each vertex is labeled twice
 - once as UNEXPLORED
 - once as VISITED
- Each edge is labeled twice
 - once as UNEXPLORED
 - once as TREE or BACK
- DFS runs in O(|V| + |E|) time provided the graph is represented by the adjacency list structure

DFS exercises: page.101: 3.1 and 3.2(a)

3.2.2 DFS in Python

```
Script: dfs_recursive.py

def dfs(graph, start, visited=None):
    global t
    t += 1
    print('DSF called ', t, 'times.')
    if visited is None:
        visited = set()
    visited.add(start)
    for key in graph[start] - visited:
        dfs(graph, key, visited)
    return visited
```

Apply it

You may visualize step-by-step execution via https://goo.gl/XZ25DT

An iterative implementation

- With Python ADT set, we can implement the DFS algorithm iteratively in only few lines too.
- See dfs iterative.py next page

Code: dfs_iterative.py # http://eddmann.com/posts/depth-first-search... def _dfs(graph, start): visited, stack = set(), [start] while stack: vertex = stack.pop() #print('The stack is:', stack) if vertex not in visited: visited.add(vertex)

stack.extend(graph[vertex] - visited)
#print('The visited is: ', visited)

To visualize the execution visit https://goo.gl/3P6F6x

return visited
V = dfs(graph, 'A')

3.2.3 DFS applications

Solve graph problems with DFS

- Depth-first search (DFS) is a general technique for traversing a graph. Applying it, you solve some interesting problems.
- For example:
 - Find a spanning tree of connected vertices in a graph: the tree edges
 - Find connectivity of a graph: checking if |V| = |visited| or not
 - Find a path between two given vertices: DFS from the start node and stop when reached the end node
 - Find a cycle in the graph: accepting a back edge.

Spanning tree and forest

- A spanning tree of a connected component of graph G(v, e) contains all vertices of that component without a cycle.
- DFS on a connected graph results in a spanning tree.
- Spanning trees for multiple connected components of a graph form a spanning forest of a graph.

Finding number of connected components

- Question: How do you apply DFS to find the number of connected components of a graph? spanning frest
- Hints:
 - 1. A set of all vertices in a graph: V
 - 2. Component = { }
 - 3. While V is not empty:
 - for a v in V, perform dfs with v as starting vertex, to obtain the visited vertex set V'
 - ii. Component += V'
 - iii. V = V V'
 - 4. Number of components = len(Component)

```
Code: dfs iterative.py
graph = {'A': set(['B', 'C', 'D', 'E']),
         'B': set(['A', 'C']),
                      , 'B','E']),
         'C': set(['A',
         'D': set(['A']),
         'E': set(['A', 'C']),
         'H': set(['I',
                        'J']),
         'I': set(['H', 'J']),
         'J': set(['H', 'I'])
v = dfs(graph, 'A')
```

Let us run dfs iterative.py with sample graph2 to start with A, and then pick a vertex not visited.

in order

Path finding

- We can specialize the DFS algorithm to find a path between two given vertices u and z using the template method pattern
- We call **DFS**(**G**, **u**) with **u** as the start vertex
- We use a stack S to keep track of the path between the start vertex and the current vertex
- As soon as destination vertex z is encountered, we return the path as the contents of the stack

Test it

• Here is a simple test graph

• Visualize the execution through: https://goo.gl/ICSDWi

Comments

- The dfs path function finds a path for a connected graph.
- If there is no path between two vertices, then the graph is not completely connected.
- Can we find <u>all</u> paths between two vertices in a connected graph?
- Yes, here is another implementation with Python.
- However, we need to know more about Python to apply yield and yield from. It is beyond the scope of this course. You may want to learn it through online search.

Code: dfs_paths.py def dfs_paths(graph, start, goal): stack = [(start, [start])] while stack: (vertex, path) = stack.pop() for next in graph[vertex] - set(path): if next == goal: yield path + [next] else: stack.append((next, path + [next]))

Test it

• Here is the simple test graph

• Test it and visualize it: https://goo.gl/93TRg9

Cycle finding

- A cycle starts and ends at the same vertex.
- Applying the DFS algorithm to find a simple cycle, you keep track of the path between the start vertex and the current vertex.
- As soon as a back edge (v, w) is encountered, we return the cycle as the portion of the stack from the top to vertex w
- However, a simple implementation may result in infinite loop. We study cycle in digraphs in the next section.

3.3 Digraphs

3.3.1 DFS in digraphs

DFS in digraphs

 The DFS algorithm can be applied to digraphs by following only the direction of each edge.

30

Tree, forward, back, and cross edges

- Tree edges: part of the DFS forest.
- Forward edges: lead from a node to a non-child descendant
- Back edges: lead to an ancestor in the DFS tree.
- Cross edges: lead to neither descendant nor ancestor; they lead to a node that has already been completely explored

3.3.2 DAG: directed acyclic graph

DAG: directed acyclic graph

- A directed acyclic graph (DAG) is a digraph without a cycle.
- The vertex in a dag without an incoming edge is called a source.
- The vertex in a dag without an outgoing edge is called a sink.
- A dag may have multiple sources and sinks.
- Quiz: Which graph below is a dag? If it is, determine its source(s) and sink(s).

Topological order of a DAG

- A topological ordering of a dag is a numbering v_1 , ..., v_n of the vertices such that for every edge (v_i, v_j) , we have i < j. Finding a topological order of a dag is called topological sorting.
- Theorem: A digraph has a topological ordering if and only if it is a DAG.

Topological sorting with DFS

- By applying depth first search, we can sort a DAG topologically:
 - Starting from a source (a vertex without incoming edge)
 - DFS to nowhere to go, then label the last node and cast all edges adjacent to that vertex
 - Back up
- We may identify a source node in a dag through observation.
- Or, reversing all edges first, then starting from any node for DFS to find a sink. A sink in a reversal digraph is a source in the original graph.
- See an example next page

Example: Start here H G H


```
Code: dfs_tpl_order.py

def dfs_tpl_order(graph, start, path):
    global n
    path = path + [start]
    for edge in graph[start]:
        if edge not in path:
            path = dfs_tpl_order(graph, edge, path)
    print (n, start)
    n -= 1
    return path

https://goo.gl/13cFu2
```


In class exercise: linearize the DAG below

Scheduling: an application of DAG

- The digraph illustrate the prerequisites of the ICS courses.
- Hands on: Linearizing it for establishing a plan of study.

3.4 Strongly connected components

Connectivity

- A graph is connected if there is a path between every pair of vertices
- A connected component of a graph G is a maximal connected subgraph of G

Strong connectivity for directed graph

- A digraph G is strongly connected if there is a path from u to v and a path from v to u for any two nodes u and v in G.
- The digraph below is **NOT** strongly connected! In fact, all DAGs are not strongly connected.

Strongly connected components of a digraph

Digraph decomposition

- Every digraph is a dag of its strongly connected components.
- Decomposing a digraph into strongly connected components is very informative and useful.
- An algorithmic approach is to
 - Find a strongly connected component containing a sink in the meta-graph
 - Remove it and repeat

D (G,H,I J,K,L)

Hands on:

- Run the scripts scc.py
- Linearize the sample graph as a dag of connected components of the graph.

Exercises: strongly connected component

Summary

- Graph representation
- DFS
- Applications of DFS: spanning tree/forest, path, paths, cycle
- DFS on digraphs: DAG, topological sorting, strong connectivity
- Decompose a digraph as its strongly connected components.

Free graph packages in Python

- NetworkX https://networkx.github.io/
- SNAP.py https://snap.stanford.edu/snappy/
- Python-graph: https://pypi.python.org/pypi/python-graph