

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
14. September 2000 (14.09.2000)

PCT

(10) Internationale Veröffentlichungsnummer
WO 00/53734 A3

(51) Internationale Patentklassifikation⁷: C12N 15/12, C07K 14/435, C12N 15/63, 15/62, C07K 16/18, A61K 38/17, 48/00

(21) Internationales Aktenzeichen: PCT/EP00/02005

(22) Internationales Anmeldedatum:
8. März 2000 (08.03.2000)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
199 11 684.9 9. März 1999 (09.03.1999) DE
199 48 679.4 1. Oktober 1999 (01.10.1999) DE

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): SCHERING AKTIENGESELLSCHAFT [DE/DE]; Müllerstrasse 178, D-13342 Berlin (DE).

(72) Erfinder; und

(75) Erfinder/Anmelder (*nur für US*): THIERAUCH, Karl-Heinz [DE/DE]; Hochwildpfad 45, D-14169 Berlin (DE). GLIENKE, Jens [DE/DE]; Kantstrasse 110, D-10627 Berlin (DE). HINZMANN, Bernd [DE/DE]; Sauweg 10, D-13127 Berlin (DE). PILARSKY, Christian [DE/DE]; Rotkelchenweg 15, D-14532 Stahnsdorf (DE).

(81) Bestimmungsstaaten (*national*): AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI-Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:
— Mit internationalem Recherchenbericht.

(88) Veröffentlichungsdatum des internationalen Recherchenberichts: 26. April 2001

Zur Erklärung der Zweibuchstaben-Codes, und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

102
~
224

(54) Title: HUMAN ANGIOGENESIS RELEVANT NUCLEIC ACID AND PROTEIN SEQUENCES OBTAINED FROM ENDOTHELIAL CELLS

(54) Bezeichnung: MENSCHLICHE ANGIOGENESERELEVANTE NUKLEINSÄURE- UND PROTEIN-SEQUENZEN AUS ENDOTHELZELLEN

(57) Abstract: The invention relates to nucleic acid sequences - mRNA, cDNA, genome sequences - obtained from human endothelial cells and coding for gene products or parts thereof, as well as to their use. The invention also relates to the polypeptides obtained by means of said sequences and to their use.

WO 00/53734 A3
(57) Zusammenfassung: Es werden Nukleinsäure-Sequenzen - mRNA, cDNA, genomische Sequenzen - aus Gewebe menschlicher Endothelzellen, die für Genprodukte oder Teile davon kodieren und deren Verwendung, beschrieben. Es werden weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung beschrieben.

INTERNATIONAL SEARCH REPORT

Int'l Application No
PCT/EP 00/02005

A. CLASSIFICATION OF SUBJECT MATTER

IPC 7 C12N15/12 C07K14/435 C12N15/63 C12N15/62 C07K16/18
A61K38/17 A61K48/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C12N C07K A61K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	<p>WO 98 33916 A (GENETICS INSTITUTE, INC.) 6 August 1998 (1998-08-06)</p> <p>abstract page 23, line 17 -page 24, line 7 page 33, line 1 -page 36, line 17 page 49, line 6 - line 7 SEQ ID NO: 12 page 76 -page 78 page 104 -page 105; claims 25-27</p> <p>---</p> <p style="text-align: center;">-/-</p>	<p>1,5-7, 11-13, 17-20, 24,25,34</p>

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

° Special categories of cited documents :

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

"&" document member of the same patent family

Date of the actual completion of the international search

Date of mailing of the international search report

4 September 2000

23.11.00

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.
Fax: (+31-70) 340-3016

Authorized officer

Fuchs, U

INTERNATIONAL SEARCH REPORT

International Application No

PCT/EP 00/02005

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	WO 93 16178 A (THE USA, THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES) 19 August 1993 (1993-08-19) abstract page 58; table 6 SEQ ID NO: 1903 page 413 page 496 -page 497; claims 1-5,10,13,16,18-20 ---	1,5-13, 24,25,34
X	EMBL Datenbank, Heidelberg, FRG Emest_Huml Eintrag No. AA605117 30. September 1997 NCI-CGAP: "no71b07.s1 NCI CGAP AA1 Homo sapiens cDNA clone IMAGE:1112245 3', mRNA sequence" XP002146191 the whole document ---	1,5-11, 24,25,34
A	WO 96 40769 A (PROGENITOR INC.; VANDERBILT UNIVERSITY) 19 December 1996 (1996-12-19) the whole document ---	1-15, 17-25, 27-34,38
A	KENDALL, R.L. & THOMAS, K.A.: "Inhibition of vascular endothelial cell growth factor by an endogenously encoded soluble receptor" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 90, no. 22, 15 November 1993 (1993-11-15), pages 10705-10709, XP002146190 the whole document ---	1-15, 17-25, 27-34,38
A	PRÖLS, F. ET AL.: "Differential Expression of Osteopontin, PC4, and CEC5, a Novel mRNA Species, during in vitro Angiogenesis" EXPERIMENTAL CELL RESEARCH, vol. 239, no. 1, 25 February 1998 (1998-02-25), pages 1-10, XP000925893 the whole document ---	1-15, 17-25, 27-34,38
P,X	EMBL Datenbank, Heidelberg, FRG Emhum5 Eintrag No. AL050367 27. Mai 1999 WAMBUTT, R. ET AL.: "Homo sapiens mRNA; cDNA DKFZp564A026" XP002146192 the whole document -----	1,5-7, 11,24, 25,34

INTERNATIONAL SEARCH REPORT

International application No.

PCT/EP 00/02005

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.: 16, 35-37
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
see supplemental sheet ADDITIONAL MATTER PCT/ISA/210

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
1-15, 17-25, 27-34, and 38 in part

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

Claims Nos.1-15, 17-25, 27-34 and 38 in part

Invention 1

Nucleic acid sequence relating to SEQ 1D NO. 1, an allelic or complementary variant thereof ; BAC, PAC and cosmid clones, expression cassette and host cell containing said sequence ; uses of said nucleic acid sequence and method for the production of a polypeptide ; polypeptide sequence coded by nucleic acid sequence ID NO. 1 and uses thereof ; medicament containing said polypeptide sequence ; antibodies directed against a polypeptide or a fragment coded by nucleic acid sequence SEQ ID NO. 1.

2. Claims Nos.1-15, 17-25, 27-34 and 38 in part

Inventions 2-33

Nucleic acid sequence successively relating to individual SEQ ID NOS. 2-33, an allelic or complementary variant thereof ; BAC, PAC and cosmid clones, expression cassette and host cell containing said sequence ; uses of said nucleic acid sequence and method for the production of a polypeptide ; polypeptide sequence coded by nucleic acid sequence ID NOS. 2-33 and uses thereof ; medicament containing said polypeptide sequence ; antibodies directed against a polypeptide or a fragment coded by nucleic acid sequence SEQ ID NOS. 2-33.

Claims Nos.1-15, 17-25, 27-34 and 38 in part, in addition to 26, 39 and 40 in full

Invention 34

Nucleic acid sequence relating to individual SEQ ID NO. 34, an allelic or complementary variant thereof ; BAC, PAC and cosmid clones, expression cassette and host cell containing said sequence ; said nucleic acid sequence characterized in that it forms stable capillary structures ; uses of said nucleic acid sequence and method for the production of a polypeptide ; polypeptide sequence comprising nucleic acid sequence ID NO. 34 and uses thereof ; medicament containing said polypeptide sequence ; antibodies directed against a polypeptide or a fragment coded by nucleic acid sequence SEQ ID NO. 34.

Claims Nos.1-15, 17-25, 27-34 and 38 in part

Inventions 35-39

Nucleic acid sequence successively relating to individual SEQ ID NOS. 35-39, an allelic or complementary variant thereof ; BAC, PAC and cosmid clones, expression cassette and host cell containing said sequence ; uses of said nucleic acid sequence and method for the production of a polypeptide ; polypeptide sequence coded by nucleic acid sequence ID NOS. 35-39 and uses thereof ; medicament containing said polypeptide sequence ; antibodies directed against a polypeptide or a fragment coded by nucleic acid sequence SEQ ID NOS. 35-39.

Continuation of box I.2

Claims Nos. 16, 35-37

Claim No. 16 relates to a DNA fragment which can be obtained according to Claim No. 15 and which comprises a gene. Since the patent claim lacks the appropriate support and the patent application lacks the required disclosure no search was carried out for the DNA fragment to which claim is laid in Claim No. 16.

Claims Nos. 16, 35-37 relate to the use of a disproportionately large number of possible compounds and the uses thereof which are not supported by the description according to the terms of PCT Article 6 and cannot be considered disclosed under the terms of PCT Article 5. In the present case, the patent claims lack the appropriate support and the patent application lacks the required disclosure to such an extent that a meaningful search encompassing the entire scope of protection sought seems impossible. For this reason no search was carried out for the products and uses thereof to which claim is laid in Claims Nos. 35-37.

The applicant is reminded that claims or parts of claims relating to inventions in respect of which no search report has been established need not be the subject of an international preliminary examination (PCT Rule 66.1(e)). The EPO, in its capacity as the authority entrusted with the internal preliminary examination, does not as a general rule conduct a preliminary examination of subject matter for which no search report is available. This also applies to the case where the patent claims were amended after receipt of the international search report (PCT Article 19) or to the case where the applicant provides new patent claims pursuant to the procedure mentioned in PCT Chapter II.

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 00/02005

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
WO 9833916	A	06-08-1998		US 5965397 A AU 6050898 A EP 1012273 A		12-10-1999 25-08-1998 28-06-2000
WO 9316178	A	19-08-1993		AU 2240492 A AU 3665893 A EP 0593580 A WO 9300353 A		25-01-1993 03-09-1993 27-04-1994 07-01-1993
WO 9640769	A	19-12-1996		US 5874562 A CA 2224012 A EP 0854883 A JP 11507527 T US 5877281 A		23-02-1999 19-12-1996 29-07-1998 06-07-1999 02-03-1999

INTERNATIONALER RECHERCHENBERICHT

Deutsches Aktenzeichen
PCT/EP 00/02005

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
IPK 7 C12N15/12 C07K14/435 C12N15/63 C12N15/62 C07K16/18
A61K38/17 A61K48/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C12N C07K A61K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	<p>WO 98 33916 A (GENETICS INSTITUTE, INC.) 6. August 1998 (1998-08-06)</p> <p>Zusammenfassung Seite 23, Zeile 17 -Seite 24, Zeile 7 Seite 33, Zeile 1 -Seite 36, Zeile 17 Seite 49, Zeile 6 - Zeile 7 SEQ ID NO: 12 Seite 76 -Seite 78 Seite 104 -Seite 105; Ansprüche 25-27 --- -/-</p>	<p>1,5-7, 11-13, 17-20, 24,25,34</p>

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- "A" Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist
- "E" älteres Dokument, das jedoch erst am oder nach dem internationalen Anmeldedatum veröffentlicht worden ist
- "L" Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- "O" Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- "P" Veröffentlichung, die vor dem internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

- "T" Spätere Veröffentlichung, die nach dem internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- "X" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- "Y" Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist
- "&" Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Absendedatum des internationalen Recherchenberichts
4. September 2000	23.11.00

Name und Postanschrift der Internationalen Recherchenbehörde
Europäisches Patentamt, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Fuchs, U

INTERNATIONALER RECHERCHENBERICHT

nationales Aktenzeichen

PCT/EP 00/02005

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	WO 93 16178 A (THE USA, THE SECRETARY, DEPARTMENT OF HEALTH AND HUMAN SERVICES) 19. August 1993 (1993-08-19) Zusammenfassung Seite 58; Tabelle 6 SEQ ID NO: 1903 Seite 413 Seite 496 -Seite 497; Ansprüche 1-5,10,13,16,18-20 ---	1,5-13, 24,25,34
X	EMBL Datenbank, Heidelberg, FRG Emest_Huml Eintrag No. AA605117 30. September 1997 NCI-CGAP: "no71b07.s1 NCI CGAP AA1 Homo sapiens cDNA clone IMAGE:1112245 3', mRNA sequence" XP002146191 das ganze Dokument ---	1,5-11, 24,25,34
A	WO 96 40769 A (PROGENITOR INC.; VANDERBILT UNIVERSITY) 19. Dezember 1996 (1996-12-19) das ganze Dokument ---	1-15, 17-25, 27-34,38
A	KENDALL, R.L. & THOMAS, K.A.: "Inhibition of vascular endothelial cell growth factor by an endogenously encoded soluble receptor" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, Bd. 90, Nr. 22, 15. November 1993 (1993-11-15), Seiten 10705-10709, XP002146190 das ganze Dokument ---	1-15, 17-25, 27-34,38
A	PRÖLS, F. ET AL.: "Differential Expression of Osteopontin, PC4, and CEC5, a Novel mRNA Species, during in vitro Angiogenesis" EXPERIMENTAL CELL RESEARCH, Bd. 239, Nr. 1, 25. Februar 1998 (1998-02-25), Seiten 1-10, XP000925893 das ganze Dokument ---	1-15, 17-25, 27-34,38
P,X	EMBL Datenbank, Heidelberg, FRG Emhum5 Eintrag No. AL050367 27. Mai 1999 WAMBUUTT, R. ET AL.: "Homo sapiens mRNA; cDNA DKFZp564A026" XP002146192 das ganze Dokument -----	1,5-7, 11,24, 25,34

INTERNATIONALER RECHERCHENBERICHT

internationales Aktenzeichen
PCT/EP 00/02005

Feld I Bemerkungen zu den Ansprüchen, die sich als nicht recherchierbar erwiesen haben (Fortsetzung von Punkt 2 auf Blatt 1)

Gemäß Artikel 17(2)a wurde aus folgenden Gründen für bestimmte Ansprüche kein Recherchenbericht erstellt:

1. Ansprüche Nr. _____ weil sie sich auf Gegenstände beziehen, zu deren Recherche die Behörde nicht verpflichtet ist, nämlich

2. Ansprüche Nr. **16, 35-37** weil sie sich auf Teile der internationalen Anmeldung beziehen, die den vorgeschriebenen Anforderungen so wenig entsprechen, daß eine sinnvolle internationale Recherche nicht durchgeführt werden kann, nämlich
siehe Zusatzblatt WEITERE ANGABEN PCT/ISA/210

3. Ansprüche Nr. _____ weil es sich dabei um abhängige Ansprüche handelt, die nicht entsprechend Satz 2 und 3 der Regel 6.4 a) abgefaßt sind.

Feld II Bemerkungen bei mangelnder Einheitlichkeit der Erfindung (Fortsetzung von Punkt 3 auf Blatt 1)

Die internationale Recherchenbehörde hat festgestellt, daß diese internationale Anmeldung mehrere Erfindungen enthält:

1. Da der Anmelder alle erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht auf alle recherchierbaren Ansprüche.

2. Da für alle recherchierbaren Ansprüche die Recherche ohne einen Arbeitsaufwand durchgeführt werden konnte, der eine zusätzliche Recherchengebühr gerechtfertigt hätte, hat die Behörde nicht zur Zahlung einer solchen Gebühr aufgefordert.

3. Da der Anmelder nur einige der erforderlichen zusätzlichen Recherchengebühren rechtzeitig entrichtet hat, erstreckt sich dieser internationale Recherchenbericht nur auf die Ansprüche, für die Gebühren entrichtet worden sind, nämlich auf die Ansprüche Nr.

4. Der Anmelder hat die erforderlichen zusätzlichen Recherchengebühren nicht rechtzeitig entrichtet. Der internationale Recherchenbericht beschränkt sich daher auf die in den Ansprüchen zuerst erwähnte Erfindung; diese ist in folgenden Ansprüchen erfaßt:
1-15, 17-25, 27-34, und 38 teilweise

Bemerkungen hinsichtlich eines Widerspruchs

- Die zusätzlichen Gebühren wurden vom Anmelder unter Widerspruch gezahlt.
 Die Zahlung zusätzlicher Recherchengebühren erfolgte ohne Widerspruch.

WEITERE ANGABEN

PCT/ISA/ 210

1. Ansprüche: 1-15, 17-25, 27-34 und 38 teilweise

Erfindung 1

Nukleinsäuresequenz sich beziehend auf SEQ ID NO: 1, eine allelische oder komplementäre Variante davon; BAC, PAC und Cosmid-Klone, Expressionskassette, sowie Wirtszelle diese Sequenz enthaltend; Verwendungen besagter Nukleinsäuresequenz und Verfahren zur Herstellung eines Polypeptids; Polypeptidsequenz, welche von der Nukleinsäuresequenz SEQ ID NO: 1 kodiert wird und deren Verwendungen; Arzneimittel, besagte Polypeptidsequenz enthaltend; Antikörper, gerichtet gegen ein Polypeptid oder Fragment, welches von der Nukleinsäuresequenz SEQ ID NO: 1 kodiert wird.

2. Ansprüche: 1-15, 17-25, 27-34 und 38 teilweise

Erfindungen 2-33

Nukleinsäuresequenz sich sukzessiv beziehend auf die einzelnen SEQ ID NOS: 2-33, eine allelische oder komplementäre Variante davon; BAC, PAC und Cosmid-Klone, Expressionskassette, sowie Wirtszelle diese Sequenz enthaltend; Verwendungen besagter Nukleinsäuresequenz und Verfahren zur Herstellung eines Polypeptids; Polypeptidsequenz, welche von der Nukleinsäuresequenz SEQ ID NOS: 2-33 kodiert wird und deren Verwendungen; Arzneimittel, besagte Polypeptidsequenz enthaltend; Antikörper, gerichtet gegen ein Polypeptid oder Fragment, welches von der Nukleinsäuresequenz SEQ ID NOS: 2-33 kodiert wird.

Ansprüche: 1-15, 17-25, 27-34 und 38 teilweise sowie 26, 39 und 40 vollständig

Erfindung 34

Nukleinsäuresequenz sich beziehend auf SEQ ID NO: 34, eine allelische oder komplementäre Variante davon; BAC, PAC und Cosmid-Klone, Expressionskassette, sowie Wirtszelle diese Sequenz enthaltend; besagte Nukleinsäuresequenz, dadurch gekennzeichnet, dass sie stabile Kapillar-Strukturen bildet; Verwendungen besagter Nukleinsäuresequenz und Verfahren zur Herstellung eines Polypeptids; Polypeptidsequenz, SEQ ID NO: 34 umfassend und deren Verwendungen; Arzneimittel, besagte Polypeptidsequenz enthaltend; Antikörper, gerichtet gegen ein Polypeptid oder Fragment, welches von der Nukleinsäuresequenz SEQ ID NO: 34 kodiert wird.

Ansprüche: 1-15, 17-25, 27-34 und 38 teilweise

Erfindungen 35-59

WEITERE ANGABEN

PCT/ISA/ 210

Nukleinsäuresequenz sich sukzessiv beziehend auf die einzelnen SEQ ID NOS: 35-59, eine allelische oder komplementäre Variante davon; BAC, PAC und Cosmid-Klone, Expressionskassette, sowie Wirtszelle diese Sequenz enthaltend; Verwendungen besagter Nukleinsäuresequenz und Verfahren zur Herstellung eines Polypeptids; Polypeptidsequenz, welche von der Nukleinsäuresequenz SEQ ID NOS: 35-59 kodiert wird und deren Verwendungen; Arzneimittel, besagte Polypeptidsequenz enthaltend; Antikörper, gerichtet gegen ein Polypeptid oder Fragment, welches von der Nukleinsäuresequenz SEQ ID NOS: 35-59 kodiert wird.

WEITERE ANGABEN

PCT/ISA/ 210

Fortsetzung von Feld I.2

Ansprüche Nr.: 16, 35-37

Der geltende Patentanspruch 16 bezieht sich auf ein gemäss Anspruch 15 erhältliches DNA-Fragment, welches ein Gen umfasst. Da dem Patentanspruch die entsprechende Stütze und der Patentanmeldung die nötige Offenbarung fehlen, wurde keine Recherche für das in Anspruch 16 beanspruchte DNA-Fragment ausgeführt.

Die geltenden Patentansprüche 35-37 beziehen sich auf eine unverhältnismäßig große Zahl möglicher Produkte und deren Verwendungen, welche sich weder im Sinne von Art. 6 PCT auf die Beschreibung stützen, noch im Sinne von Art. 5 PCT als in der Patentanmeldung offenbart gelten können. Im vorliegenden Fall fehlt den Patentansprüchen die entsprechende Stütze und fehlt der Patentanmeldung die nötige Offenbarung in einem solchen Maße, daß eine sinnvolle Recherche über den erstrebten Schutzbereich unmöglich erscheint. Daher wurde keine Recherche für die in den Ansprüchen 35-37 beanspruchten Produkte und deren Verwendungen ausgeführt.

Der Anmelder wird darauf hingewiesen, daß Patentansprüche, oder Teile von Patentansprüchen, auf Erfindungen, für die kein internationaler Recherchenbericht erstellt wurde, normalerweise nicht Gegenstand einer internationalen vorläufigen Prüfung sein können (Regel 66.1(e) PCT). In seiner Eigenschaft als mit der internationalen vorläufigen Prüfung beauftragte Behörde wird das EPA also in der Regel keine vorläufige Prüfung für Gegenstände durchführen, zu denen keine Recherche vorliegt. Dies gilt auch für den Fall, daß die Patentansprüche nach Erhalt des internationalen Recherchenberichtes geändert wurden (Art. 19 PCT), oder für den Fall, daß der Anmelder im Zuge des Verfahrens gemäß Kapitel II PCT neue Patentanprüche vorlegt.

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die der beschriebenen Patentfamilie gehören

I-	des Aktenzeichen PCT/EP 00/02005
----	-------------------------------------

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9833916 A	06-08-1998	US	5965397 A	12-10-1999
		AU	6050898 A	25-08-1998
		EP	1012273 A	28-06-2000
-----	-----	-----	-----	-----
WO 9316178 A	19-08-1993	AU	2240492 A	25-01-1993
		AU	3665893 A	03-09-1993
		EP	0593580 A	27-04-1994
		WO	9300353 A	07-01-1993
-----	-----	-----	-----	-----
WO 9640769 A	19-12-1996	US	5874562 A	23-02-1999
		CA	2224012 A	19-12-1996
		EP	0854883 A	29-07-1998
		JP	11507527 T	06-07-1999
		US	5877281 A	02-03-1999
-----	-----	-----	-----	-----

Menschliche Nukleinsäure- und Protein-Sequenzen aus Endothelzellen

Die Erfindung betrifft Nukleinsäure-Sequenzen -mRNA, cDNA, genomische Sequenzen- aus Gewebe menschlicher Endothelzellen, die für Genprodukte oder Teile davon kodieren und deren Verwendung. Die Erfindung betrifft weiterhin die über die Sequenzen erhältlichen Polypeptide und deren Verwendung.

- Angiogenese ist ein Prozeß, der im adulten Lebewesen bei den zyklischen Prozessen der Reproduktion in der Frau, bei der Wundheilung und in verschiedenen pathologischen Situationen zu beobachten ist, wie z. B. Tumorwachstum, rheumatische Erkrankungen, Endometriose, bei der Kollateralenbildung im Herzen und in der Peripherie, etc.
- Persistente Angiogenese kann die Ursache für verschiedene Erkrankungen wie Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofibroma, Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome,
- Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose, mesangialzellproliferative Erkrankungen und Arteriosklerose sein oder zu einer Verschlimmerung dieser Erkrankungen führen.
- Gelänge es, Angiogenese zu induzieren oder zu hemmen, so würden sich mehrere Erkrankungen grundlegend therapieren lassen. Hierzu müßte man die Gene bzw. die für die Angiogenese relevanten Nukleinsäure-Sequenzen kennen.
- Bisher ist nicht bekannt, welche Gene bzw. Nukleinsäure-Sequenzen oder Teile davon angiogeneserelevant sind.

Es konnten nun Nukleinsäure-Sequenzen gefunden werden, die angiogeneserelevant sind.

-2-

Diese Sequenzen sind entweder bisher nicht beschrieben worden oder sie sind nur als Nukleinsäure-Sequenzen aus Nagern bekannt, jedoch ohne Hinweis auf Angiogenese. Weitere Sequenzen sind als humane Gene oder Teile davon beschrieben, jedoch nicht in bezug auf mögliche angiogeneserelevante

5 Eigenschaften.

Zur Suche nach angiogeneserelevanten Genen wurden Endothelzellen aus Vorhäuten adulter Personen gewonnen, die auf zweierlei Arten kultiviert wurden:

10

a) auf einer Rattenschwanzkollagenmatrix in subkonfluenter Dichte

und

15

b) auf einem Gel aus extrazellulärer Matrix (Matrigel).

Unter Kulturform a) bilden die Zellen die klassischen kopfsteinpflasterartigen Monolayer.

20

Unter Kulturform b) bilden die Zellen netzartige Strukturen mit röhrenförmigen Gebilden.

Die Zellkulturform a) stellt einen frühen Angiogenesezustand mit vornehmlich proliferativem Phänotyp dar.

25

Die Zellkulturform b) stellt ein Modell für eine spätere Phase der Angiogenese dar, bei der die Differenzierung der Endothelzellen zu einer Bildung von schlachtförmigen Strukturen führt. Diese Strukturen sind eine Voraussetzung für einen Blutfluß, der von der Gewebsfläche separiert ist.

30

Aus beiden Zellkulturformen wird mRNA isoliert, in cDNA transkribiert, und mit einer Restriktionsendonuklease in Fragmente der Größe von 200 bis 1500 bp

-3-

geschnitten. Mittels einer subtraktiven PCR-Technik wurden die differentiell vorkommenden Fragmente beider Zustände amplifiziert. Sie wurden in Vektoren eingebaut und kloniert. Die Klone wurden zunächst sequenziert und anschließend wurden ihre Sequenzen mit bioinformatischen Techniken
5 komplettiert.

Mit Hilfe einer quantitativen, in der Literatur beschriebenen PCR-Technik (Pilarsky et al., 1998, s. Versuchsbeschreibung) wurde zunächst untersucht, ob die Gene in den beiden Kulturzuständen differentiell exprimiert sind. Zur
10 Normierung wurde die Expression des 23 kDalton Proteins (s. Versuchsbeschreibung) als interner Marker verwendet. In der differentiellen Expression traten Verhältnisse von 2-7 fach auf.

Es konnten nun die Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59
15 gefunden werden, die als Kandidatengene bei der Angiogenese eine Rolle spielen.

Die Erfindung betrifft somit Nukleinsäure-Sequenzen, die ein Genprodukt oder ein Teil davon kodieren, umfassend

20 a) eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe der Nukleinsäure-Sequenzen Seq ID Nos. 1 bis Seq. ID No. 59

25 b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen

oder

30 c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.

-4-

Die Erfindung betrifft weiterhin Nukleinsäure-Sequenzen gemäß einer der Sequenzen Seq ID Nos. 1 bis Seq. ID No. 59 oder eine komplementäre oder allelische Variante davon und die Nukleinsäure-Sequenzen davon, die eine 90%ige bis 95%ige Homologie zu einer humanen Nukleinsäure-Sequenz 5 aufweisen.

Die Erfindung betrifft auch die Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59, die in Endothelzellgewebe erhöht exprimiert sind

10 Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, umfassend einen Teil der oben genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 hybridisieren.

15 Die erfindungsgemäßen Nukleinsäure-Sequenzen weisen im allgemeinen eine Länge von mindestens 50 bis 3000 bp, vorzugsweise eine Länge von mindestens 150 bis 2800 bp, besonders bevorzugt eine Länge von 150 bis 2600 bp auf.

Mit den erfindungsgemäßen Sequenzen Seq. ID No. 1 bis Seq. ID No. 59
20 können gemäß gängiger Verfahrenspraxis auch Expressionskassetten konstruiert werden, wobei auf der Kassette mindestens eine der erfindungsgemäßen Nukleinsäure-Sequenzen zusammen mit mindestens einer dem Fachmann allgemein bekannten Kontroll- oder regulatorischen Sequenz, wie z. B. einem geeigneten Promotor, kombiniert wird. Die erfindungsgemäßen Sequenzen können in sense oder antisense Orientierung eingefügt sein.
25

In der Literatur sind eine große Anzahl von Expressionskassetten bzw. Vektoren und Promotoren bekannt, die verwendet werden können.
30 Unter Expressionskassetten bzw. Vektoren sind zu verstehen: 1. bakterielle, wie z. B., phagescript, pBs, φX174, pBluescript SK, pBs KS, pNH8a, pNH16a,

-5-

pNH18a, pNH46a (Stratagene), pTrc99A, pKK223-3, pKK233-3, pDR540,
pRIT5 (Pharmacia),

2. eukaryontische, wie z. B. pWLneo, pSV2cat, pOG44, pXT1, pSG
(Stratagene), pSVK3, pBPV, pMSG, pSVL (Pharmacia).

5

Unter Kontroll- oder regulatorischer Sequenz sind geeignete Promotoren zu verstehen. Hierbei sind zwei bevorzugte Vektoren der pKK232-8 und der PCM7 Vektor. Im einzelnen sind folgende Promotoren gemeint: lacI, lacZ, T3, T7, gpt, lambda PR, trc, CMV, HSV Thymidin-Kinase, SV40, LTRs aus Retrovirus und
10 Maus Metallothionein-I.

Die auf der Expressionskassette befindlichen DNA-Sequenzen können ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.

15

Die Expressionskassetten sind ebenfalls Gegenstand der vorliegenden Erfindung.

20

Die erfindungsgemäßen Nukleinsäure-Sequenzen können auch zur Herstellung von Vollängen-Genen verwendet werden. Die erhältlichen Gene sind ebenfalls Gegenstand der vorliegenden Erfindung.

25

Die Erfindung betrifft auch die Verwendung der erfindungsgemäßen Nukleinsäure-Sequenzen, sowie die aus der Verwendung erhaltenen Gen-Fragmente.

30

Die erfindungsgemäßen Nukleinsäure-Sequenzen können mit geeigneten Vektoren in Wirtszellen gebracht werden, in denen als heterologer Teil die auf den Nukleinsäure-Sequenzen enthaltene genetischen Information befindet, die exprimiert wird.

-6-

Die die Nukleinsäure-Sequenzen enthaltenden Wirtszellen sind ebenfalls Gegenstand der vorliegenden Erfindung.

5 Geeignete Wirtszellen sind z. B. prokaryontische Zellsysteme wie *E. coli* oder eukaryontische Zellsysteme wie tierische oder humane Zellen oder Hefen.

Die erfindungsgemäßen Nukleinsäure-Sequenzen können in sense oder antisense Form verwendet werden.

10 Die Herstellung der Polypeptide oder deren Fragment erfolgt durch Kultivierung der Wirtszellen gemäß gängiger Kultivierungsmethoden und anschließender Isolierung und Aufreinigung der Peptide bzw. Fragmente, ebenfalls mittels gängiger Verfahren.

15 Die Erfindung betrifft ferner Nukleinsäure-Sequenzen, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodieren.

Ferner betrifft die vorliegende Erfindung Polypeptid-Teilsequenzen, sogenannte ORF (open-reading-frame)-Peptide, die von den erfinderischen Teilsequenzen exprimiert werden.

20 Die Erfindung betrifft ferner die Polypeptid-Sequenzen, die mindestens eine 80%ige Homologie, insbesondere eine 90%ige Homologie zu den Polypeptiden aufweisen.

25 Die Erfindung betrifft auch Antikörper, die gegen ein Polypeptid oder ein Fragment gerichtet sind, welche von den erfindungsgemäßen Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 kodiert werden.

Unter Antikörper sind insbesondere monoklonale Antikörper zu verstehen.

30 Die von den erfindungsgemäßen Nukleinsäure-Sequenzen kodierten Polypeptide können auch als Tool zum Auffinden von Wirkstoffen bei

angiogenen Erkrankungen verwendet werden, was ebenfalls Gegenstand der vorliegenden Erfindung ist.

Ebenfalls Gegenstand der vorliegenden Erfindung ist die Verwendung der

- 5 Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen angiogenetische Erkrankungen verwendet werden können.

Die Erfindung betrifft auch die Verwendung der von den erfindungsgemäßen

- 10 Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 exprimierten Polypeptide als Arzneimittel in der Gentherapie zur Behandlung angiogener Erkrankungen, bzw. zur Herstellung eines Arzneimittels zur Behandlung angiogener Erkrankungen.

- 15 Die erfindungsgemäßen Nukleinsäuren bzw. die über diese Nukleinsäuren exprimierten Proteine können somit entweder alleine oder in Formulierung als Arzneimittel zur Behandlung von Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofibroma, Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie

- 20 Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose, mesangialzellproliferative Erkrankungen, Artheriosklerose und Verletzungen des Nervengewebes zum Einsatz kommen.

25

Die Erfindung betrifft auch Arzneimittel, die mindestens eine Polypeptidsequenz enthalten, die von den erfindungsgemäßen Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 exprimiert werden.

Die gefundenen erfindungsgemäßen Nukleinsäure-Sequenzen können auch

- 30 genomische oder mRNA-Sequenzen sein.

Die Erfindung betrifft auch genomische Gene, ihre Promotoren, Enhancer, Silencer, Exonstruktur, Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 59, sowie deren Verwendung zusammen mit geeigneten regulativen Elementen, wie geeigneten

5 Promotoren und/ oder Enhancern.

Mit den erfindungsgemäßen Nukleinsäuren (cDNA-Sequenzen) werden genomische BAC-, PAC- und Cosmid-Bibliotheken gescreent und über komplementäre Basenpaarung (Hybridisierung) spezifisch humane Klone

10 isoliert. Die so isolierten BAC-, PAC- und Cosmid-Klone werden mit Hilfe der Fluoreszenz-in-situ-Hybridisation auf Metaphasenchromosomen hybridisiert und entsprechende Chromosomenabschnitte identifiziert, auf denen die entsprechenden genomischen Gene liegen. BAC-, PAC- und Cosmid-Klone werden sequenziert, um die entsprechenden genomischen Gene in ihrer

15 vollständigen Struktur (Promotoren, Enhancer, Silencer, Exons und Introns) aufzuklären. BAC-, PAC- und Cosmid-Klone können als eigenständige Moleküle für den Gentransfer eingesetzt werden.

Die Erfindung betrifft auch BAC-, PAC- und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den

20 Sequenzen Seq. ID. No. 1 bis Seq. ID No. 59, zur Verwendung als Vehikel zum Gentransfer.

-9-

Bedeutung von Fachbegriffen und Abkürzungen

- Nukleinsäuren= Unter Nukleinsäuren sind in der vorliegenden Erfindung zu verstehen: mRNA, partielle cDNA, vollängen cDNA und 5 genomische Gene (Chromosomen).
- ORF= Open Reading Frame, eine definierte Abfolge von Aminosäuren, die von der cDNA-Sequenz abgeleitet werden kann.

-10-

Die nachfolgenden Beispiele erläutern die Herstellung der erfindungsgemäßen Nukleinsäure-Sequenzen, ohne die Erfindung auf diese Beispiele und Nukleinsäure-Sequenzen zu beschränken.

5

Beispiel 1

1. Suche nach angiogeneserelevanten Kandidatengenen

10

1.1 Verwendete Zellen

Primäre, humane, mikrovaskuläre Endothelzellen (MVEC) wurden aus menschlichen Vorhäuten präpariert und mittels biotinyliertem anti CD31 (PECAM) Antikörper selektioniert (Referenz).

Kulturbedingungen: 37°C, 5%CO₂

Medium: M199, 10% FCS, 10% Humanserum, 6µg/ml ECGF, 1mM Natriumpyruvat, 3 U/ml Heparin, 100 U/mlPenicillin, 100µg/ml Streptomycin, 1x nicht essentielle Aminosäuren

20

1.2 Kultivierung und RNA-Präparation

Für die Kulturform a) werden die Zellen auf mit Collagen I beschichtetem Plastik kultiviert. Für die Kulturform b) werden die Zellen auf einem Gel aus extrazellulären Matrixproteinen ausgebracht. Das dazu verwendete Matrigel (Becton Dickinson) wurde 1 zu 1 mit M199 Medium verdünnt, in der Kälte in das verwendete Kulturgefäß gegossen (60µl/cm²) und bei 37°C für 30 min. geliert. Anschließend wurden die Zellen ausgebracht.

30 Für Kulturform a) und b) wurden MVEC in einer Dichte von 2x10⁴/cm² ausgebracht und für 7h bei 37°C, 5% CO₂ inkubiert.

-11-

- Die Gesamt-RNA-Präparation wurde nach der Guanidinium Thiocyanat Methode mit anschließender Zentrifugation durch ein Caesiumchlorid-Kissen durchgeführt (Sambrook J., Fritsch E. F., and Maniatis T.; 1989, Molecular Cloning: A Laboratory Manual, Cold Spring Harbour Laboratory Press).
- 5 Die polyA⁺ RNA-Selektion wurde über oligo(dT)-Zellulosesäulen (mRNA Purification Kit, Pharmacia Biotech) durchgeführt.

1.3 Erstellen von subtraktiven cDNA-Banken

10

Die Subtraktion wurde nach der Methode von Diatchenko et al. (Proc. Natl. Acad. Sci. U.S.A., 1996 Jun 11, 93:6025-30) mit Hilfe des PCR-Select cDNA Subtraction Kit durchgeführt.

15

Die polyA⁺ RNA, die die Zielsequenzen enthält, wird als Tester, die davon abzuziehende polyA⁺ RNA als Driver bezeichnet.

Es wurden 2 Subtraktionen durchgeführt, wobei einmal die polyA⁺ RNA der Kulturform a) und einmal die polyA⁺ RNA der Kulturform b) als Tester diente. Die folgende Versuchsbeschreibung stellt exemplarisch nur eine Subtraktion dar.

20

1.4 Synthese von doppelsträngiger cDNA (ds cDNA)

25

Sowohl für den Tester als auch für den Driver wird eine doppelsträngige cDNA-

Synthese durchgeführt.

1. Strang-Synthese

Die Strangsynthese wird mit folgendem Ansatz durchgeführt:

- 30 polyA⁺ RNA 2µg
cDNA-Synthese Primer(10µM) 1µl
Wasser add 5µl

Die Reaktionen werden für 2 min. bei 70°C und anschließend 2 min auf Eis inkubiert.

Zu jeder Reaktion wurde folgendes zugegeben:

5

5x First-strand buffer (250mM Tris-HCL, pH8, 330mM Mg-Chlorid, 375mM KCl)

2µl

10mM dNTP

1µl

10 Wasser

1µl

MMLV reverse transcriptase (200 U/µl)

1µl

15 Die Reaktionen wurden für 90 Minuten bei 42°C und anschließend für 2 Minuten auf Eis inkubiert.

2. Strang-Synthese

20 Die 2. Strang-Synthese wurde mit folgendem Ansatz durchgeführt:

1. Strang-Synthese 10µl

Wasser 48,4µl

5x Second-strand buffer(500mM KCL, 50mM Ammoniumsulfat,

25mM Mg-Chlorid, 0,75mM β-NAD, 100mM Tris-HCL, pH7,5,

25 0,25mg/ml BSA) 16µl

10mM dNTP 1,6µl

20x Second-strand enzyme cocktail (DNA Polymerase 1 6U/µl

Rnase H 0,2U/µl, *E. coli* DNA Ligase 1,2U/µl) 4µl

30 Die Reaktionen wurden für 2h bei 16°C inkubiert.

Zu jeder Reaktion wurde T4 DNA Polymerase wie folgt zugegeben:

-13-

T4 DNA Polymerase 3U/ μ l	2 μ l
-------------------------------	-----------

Die Reaktionen wurden für 30 min bei 16°C inkubiert.

Die Reaktionen wurden mit EDTA abgestoppt, wobei die Lösung folgende

5 Zusammensetzung aufweist:

20x EDTA/Glykogen Mix (200mM EDTA, 1mg/ml Glykogen)	4 μ l
---	-----------

Es wurde für jede Reaktion eine Phenol/Chloroform-Extraktion und eine

10 Ethanol-Präzipitation durchgeführt. Die Pellets wurden in je 50 μ l Wasser resuspendiert.

1.5 Rsa I-Verdau der ds cDNA

15 Sowohl für den Tester als auch für den Driver wurde ein Rsa I-Verdau durchgeführt. Hierzu wurden folgende Lösungen verwendet:

ds cDNA	43,5 μ l
---------	--------------

10x Rsa I Restriktionspuffer (100mM Bis Tris Propan-HCl, pH7,0,

20 100mM Mg-Clorid, 1mM DTT) 5 μ l

Rsa I (10U/ μ l) 1,5 μ l

Die Reaktionen wurden für 90 min bei 37°C inkubiert.

Die Reaktionen wurden anschließend mit EDTA abgestoppt, wobei die Lösung

25 folgende Zusammensetzung aufweist:

20x EDTA/Glykogen Mix (200mM EDTA 1mg/ml Glykogen)	2,5 μ l
--	-------------

Anschließend wurde für jede Reaktion eine Phenol/Chloroform-Extraktion und

30 eine Ethanol-Präzipitation durchgeführt. Die hierbei entstehenden Pellets wurden in je 5,5 μ l Wasser für die weitere Verarbeitung resuspendiert.

1.6 Adaptor-Ligation an Rsa I verdaute ds Tester cDNA

Die Tester-cDNA wurde in 2 Fraktionen aufgeteilt. An jede Tester-Fraktion

- 5 wurde ein Adapter ligiert. Die Konzentrationen der verwendeten Substanzen für die beiden Tester sind im einzelnen in der nachfolgenden Tabelle aufgeführt.

	<u>Tester-1</u>	<u>Tester-2</u>
Tester-cDNA	0,1µl	0,1µl
5x Ligationspuffer (250mM Tris-HCl, pH7,8 50mM MgCl ₂ 10mM DTT 0,25mg/ml BSA)	2µl	2µl
T4 DNA Ligase (400U/µl)	1µl	1µl
Adaptor 1 (10µM)	2µl	--
Adaptor 2 (10µM)	--	2µl
H ₂ O	4,9µl	4,9µl
Gesamtvolumen	10µl	10µl

- 10 Die Reaktionen wurden über Nacht bei 16°C inkubiert und anschließend mit EDTA abgestoppt (20x EDTA/Glykogen Mix, 1µl (200mM EDTA, 1mg/ml Glykogen)).

Die Reaktionen wurden für 5 min bei 72°C inkubiert.

1.7 Subtraktiv Hybridisierungen

-15-

Die Driver und Tester wurden anschließend miteinander in zwei Schritten hybridisiert.

5 Hybridisierung

Die erste Hybridisierung wurde für die beiden Reaktionen mit den in der folgenden Tabelle aufgeführten Lösungen und Verbindungen durchgeführt.

10

	Reaktion 1	Reaktion 2
Rsa I verdaute Driver cDNA	1,5µl	1,5µl
Adaptor 1 ligierter Tester 1	1,5µl	-
Adaptor 2 ligierter Tester 2	-	1,5µl
4x Hybridisierungspuffer	1µl	1µl
Gesamtvolumen	4µl	4µl

Die Reaktionen wurden für 90 sek bei 98°C und anschließend direkt für 8h bei 68°C inkubiert.

15

1. Hybridisierung:

Für die 2. Hybridisierung wurden Reaktion 1 und 2 gemischt und frisch denaturierter Driver wie folgt zugegeben:

20

Driver	1µl
4x Hybridisierungspuffer	1µl
Wasser	2µl

-16-

1µl dieser Mischung wurde für 90 sek bei 98°C inkubiert und anschließend möglichst schnell mit Reaktion 1 und Reaktion 2 fusioniert.

- Die 2. Hybridisierung wurde bei 68°C über Nacht inkubiert. Anschließend wurden zur 2. Hybridisierung 200µl Verdünnungspuffer (20mM HEPES-HCl (pH8,3), 50mM NaCl, 0,2mM EDTA (pH8,0)) zugegeben. Danach wurde die 2. Hybridisierung für 7 min bei 68°C inkubiert. Der so hergestellte Ansatz wurde dann für die PCR eingesetzt.
- 5

Differentiell exprimierte Fragmente in den subtrahierten cDNA Pools wurden über zwei aufeinanderfolgende PCRs selektiv amplifiziert.

- 10 Die 1. PCR wurde mit folgendem Ansatz durchgeführt:

	10x PCR-Puffer (400mM Tricine-KOH, pH9,2, 150mM KOAc, 35mM MG(OAc)2, 37,5µg/ml BSA)	2,5µl
	10mM dNTP	0,5µl
15	PCR Primer 1 (10µM)	1µl
	50x Advantage cDNA Polymerase	0,5µl
	verdünnte 2. Hybridisierung	1µl
	Wasser	19,5µl
20	Das PCR-Programm wurde wie folgt durchgeführt:	75°C, 5 min
	Schleife	94°C, 30 sek
		66°C, 30 sek
		72°C, 90 sek

Insgesamt wurden 27 Zyklen durchgeführt.

25

Die zweite PCR wurde mit folgendem Ansatz durchgeführt:

	10x PCR-Puffer	2,5µl
30	10mM dNTP	0,5µl
	nested PCR-Primer 1 (10µM)	1µl
	nested PCR Primer 2R (10µM)	1µl

-17-

50x Advantage cDNA Polymerase	0,5µl
PCR Produkt	0,1µl
H2O	19,4µl

- 5 Das PCR-Programm wurde wie folgt durchgeführt:
- | |
|--------------|
| 94°C, 30 sek |
| 68°C, 30 sek |
| 72°C, 90 sek |

Insgesamt wurden 12 Zyklen durchgeführt.

- 10 Die Subtraktionseffizienz wurde durch eine semi-quantitative PCR für ein bekanntes nicht reguliertes Gen (SH3P18) überprüft. Es zeigte sich eine Reduktion in dem subtrahierten cDNA Pool um einen Faktor von 150- 200.

15 2. Ligation der subtrahierten cDNA Pools in pUC 18

Die vorwärts und rückwärts subtrahierten cDNA Pools wurden in pUC 18 Sma I/BAP ligiert (SureClone Ligation Kit, Pharmacia Biotech) und anschließend in chemisch kompetente E. coli DH5 α kloniert.

- 20 Die Fragmente der subtrahierten cDNA Pools wurden dazu zu Blunt-Enden aufgefüllt und phosphoryliert. Folgende Zusammensetzungen wurden hierfür verwendet:

25 Subtrahierter cDNA Pool	1,5µg
Klenow Fragment	1µl
10x Blunting/Kinasing Buffer	2µl
Polynucleotide Kinase	1µl
Wasser	add 20µl

30

-18-

Die Reaktionen wurden für 30 min bei 37°C inkubiert, anschließend über PCR Purification Columns aufgereinigt und in 30µl Wasser eluiert. Anschließend wurde die DNA-Konzentration wurde mittels OD-Messung bestimmt.

5

2.1 Ligation in pUC 18

Die Ligation in pUC 18 wurde mit folgendem Ansatz durchgeführt:

10	Blunt-ended cDNA Pool	50ng
	pUC 18 Sma I/BAP (50ng/µl)	1µl
	2x Ligationspuffer	10µl
	DTT	1µl
	T4 DNA Ligase (6U/µl)	3µl
15	Wasser	add 20µl

Die Reaktionen wurden über Nacht bei Raumtemperatur inkubiert.

20 2.2 Transformation der Ligationen in E. coli DH5α

Die Ligationen wurden in chemisch kompetente E. coli DH5α transformiert.

Die transformierten Zellen wurden auf 2YT Agarose-Platten mit 100µg/ml Ampicillin, 625µM IPTG und 0,005% X-Gal ausgestrichen und über Nacht bei 25 37°C angezogen.

Auf 17 zufällig ausgewählten, weißen Klonen wurde eine Kolonie-PCR mit Vektor-Primern (M13 Standardprimer) durchgeführt. 15-16 Klone zeigten dabei Inserts mit einer Größenverteilung, die der des verwendeten cDNA Pools entsprach.

30 Für jede Subtraktion wurden 1536 Klone in 384-well Platten mit 50µl 2YT, 1xHMF, 100µg/ml Ampicillin pro well transferiert. Die gefüllten 384-well Platten

-19-

wurden über Nacht bei 37°C inkubiert und konnten dann bei -80°C gelagert werden.

5 3. **Herstellung von Kolonie-Filtern:**

Die 1536 Klone einer subtraktiven cDNA Bank wurden auf eine Hybond Nylon N+ Membran (Amersham) angeimpft. Die Membran wurde auf eine 2YT Agarose-Platte mit 100µg/ml Ampicillin gelegt und über Nacht bei 37°C inkubiert.

- 10 Die Membran wurde mit der Kolonie-Seite nach oben für 4 min auf in Denaturierungslösung (0,5M NaOH, 1,5M NaCl) getränktes Whatman 3MM Papier gelegt. Anschließend wurde die Membran für 4 min auf in Neutralisierungslösung (1M Tris-HCl (pH7,5), 1,5M NaCl) getränktes Whatman 3MM Papier inkubiert. Die Membran wurde dann für 1h bei 37°C mit Proteinase K behandelt. Die Membran wurde dazu in 300ml Proteinase K Puffer (50mM NaCl, 5mM EDTA, 10mM Tris-HCl (pH8), 50mg/ml Proteinase K) getaucht. Schließlich wurde die Membran bei 80°C für 3h getrocknet und wurde dann für die Hybridisierungen verwendet.

20

4. **Differentielle Hybridisierung:**

Um die differentielle Expression der klonierten Fragmente nachzuweisen wurde mit Hilfe eines PCR-Select Differential Screening Kits eine differentielle Hybridisierung auf Kolonie-Filtern der subtraktiven cDNA-Banken durchgeführt.

Für eine spezifische Hybridisierung der vorwärts und rückwärts subtrahierten cDNA Pools auf die subtraktiven cDNA-Bank Kolonie-Filter war es notwendig die Adapter-Sequenzen in der Hybridisierungsprobe zu entfernen.

30

-20-

Als Hybridisierungsproben für die Rsa I-Restriktion der subtrahierten cDNA Pools wurden eingesetzt:

cDNA Pool	$28\mu\text{l}$
10x Rsa I Restriktionspuffer (100mM Bis Tris Propan-HCl, pH7,0)	
5 100mM Mg-Chlorid, 1mM DTT)	$3\mu\text{l}$
Rsa I (10U/ μl)	$2\mu\text{l}$

- Die Reaktionen wurden bei 37°C für 5h inkubiert und anschließend über PCR-Reinigungssäulen aufgereinigt und in 30 μl Wasser eluiert. Die DNA-10 Konzentration wurde mittels OD-Messung bestimmt.

5. Radioaktive Markierung der subtrahierten cDNA Pools

- 15 Die radioaktive Markierung der subtrahierten cDNA Pools wurde mit folgendem Ansatz durchgeführt:

cDNA Pool	150ng in	$9\mu\text{l}$
Reaktionspuffer, - dCTP (333mM Tris-HCl, pH8,		
33,3 Mg-Chlorid, 10mM 2-Mercaptoethanol, 170 μM dATP,		
20 170 μM dGTP, 170 μM dTTP)	$3\mu\text{l}$	
Random Primer Mix (0,9mg/ml random nonamers, 50mM Tris-HCl, pH7,5, 10mM Mg-Chlorid, 1mM DTT, 50 $\mu\text{g}/\text{ml}$ BSA)		$2\mu\text{l}$
AP32 dCTP		$3\mu\text{l}$
Klenow Fragment (3U/ μl)		$1,5\mu\text{l}$

25

- Die Reaktionen wurden bei 37°C für 1h inkubiert, anschließend über PCR-Reinigungssäulen aufgereinigt und in 30 μl Wasser eluiert. Es wurde die spezifische Aktivität der Reaktionen bestimmt um sicherzugehen, daß in beiden Hybridisierungsreaktionen die gleiche Menge an markierter DNA eingesetzt 30 wurde.

-21-

**6. Prähybridisierung und Hybridisierung der Filter und
Hybridisierungsproben**

Für die Hybridisierungen wurde folgende Lösungen verwendet:

5

20x SSC 50µl

Blocking Lösung (10mg/ml sheared salmon sperm DNA,
0,3mg/ml komplementäre Oligos zu Adaptoren) 50µl

- 10 Die Lösung wurde für 5min bei 98°C inkubiert, dann für 5min auf Eis gestellt und mit 5 ml Express-Hybridisations-Lösung gemischt. Diese Lösung wurde dann in der Hybridisierungsflasche mit dem Filter bei 72°C für 1h prähybridisiert.

Die Hybridisierungsproben wurden ebenfalls mit folgender Lösung versetzt:

- 15 20x SSC 50µl
Blocking Lösung (10mg/ml sheared salmon sperm DNA,
0,3mg/ml komplementäre Oligos zu Adaptoren) 50µl

Der Ansatz wurde dann für 5min bei 98°C und für 2 min auf Eis inkubiert.

- 20 Anschließend wurden die Hybridisierungsproben zu dem Filter in die Hybridisierungsflaschen gegeben und über Nacht bei 72°C hybridisiert.

Anschließend wurde wie folgt verfahren:

- 25 a) 4x 20min bei 68°C mit vorgewärmtem 2xSSC, 0,5% SDS
b) 2x 20 min bei 68°C mit vorgewärmtem 0,2xSSC, 0,5% SDS
c) anschließend Exposition in Phosphor-Imager-Kassetten für 22h bei
30 Raumtemperatur

-22-

7. Auswertung der differentiellen Hybridisierungen

Die Auswertung der Hybridisierungen erfolgte an einem Phosphor-Imager.

- 5 Ein Klon wurde dann als differentiell exprimiert eingestuft, wenn er ausschließlich ein detektierbares Hybridisierungssignal mit dem vorwärts subtrahierten cDNA Pool zeigte oder wenn die Signalstärke mit dem vorwärts subtrahierten cDNA Pool um mindestens den Faktor 5 größer war als mit dem rückwärts subtrahierten cDNA Pool.

10

8. Bestätigung der differentiellen Expression mittels semi-quantitativer RT-PCR

- 15 Um die differentielle Expression der Klone mit differentiellem Hybridisierungsergebnis zu bestätigen, wurden Sequenzen zufällig ausgewählt und entsprechende Primer hergestellt.
Als Methode zum Nachweis der differentiellen Expression wurde die comparative multiplex RT-PCR nach Pilarsky et al. (The Prostate 36:85-91
20 (1998)) angewendet. Als interner Standard wurden Primer für das 23kD highly basic Protein verwendet. Die interessierende Sequenz und das Standardfragment wurden simultan in einer Reaktion für eine unterschiedliche Anzahl an Zyklen amplifiziert. Die PCR-Produkte wurden anschließend auf einem 6% Sequenzier-Gel aufgetrennt und mittels einer Software analysiert und
25 quantifiziert. Zuerst wurde die Anzahl an Zyklen ermittelt für die sowohl das Standardfragment , als auch die interessierende Sequenz linear amplifizierten und die dann für die quantifizierende PCR verwendet wurde. Zur quantifizierenden RT-PCR wurden unterschiedliche RNA-Präparationen herangezogen und jeweils 3 Reaktionen angesetzt.

-23-

Es konnte für 90% der untersuchten Sequenzen mit differentiellem Hybridisierungsergebnis ein Unterschied in der Expression festgestellt werden, der größer war als ein Faktor 2.

5

9. Automatische Verlängerung der gefundenen Nukleinsäure-Sequenzen

Um möglichst viel Sequenzinformation für jeden differentiell exprimierten Klon
10 zu erhalten, wurde eine automatische Verlängerung der Ausgangssequenz
anhand aller verfügbaren EST-Sequenzen durchgeführt.

Die automatische Verlängerung der Sequenz S vollzieht sich in drei Schritten:

- 15 1. Ermittlung aller zu S homologen Sequenzen aus der Gesamtmenge aller
verfügbarer EST's aus der LifeSeq-Datenbank (Stand Oktober 1997) mit
Hilfe des BLAST Algorithmus (Altschul S., Gish W., Miller W., Myers E.,
Lipman D. (1990) *J. Mol. Biol.*, 215, 403-410).
- 20 2. Assemblierung dieser Sequenzen mittels des Standardprogramms GAP4
(Bonfield J., Smith K., Staden R. (1995), *Nucleic Acids Research* 23, 4992-
4999).
3. Berechnung einer Konsensus-Sequenz aus den assemblierten Sequenzen.

25

Nun wird versucht die Konsensus-Sequenz in gleicher Weise zu verlängern.
Diese Iteration wird mit der jeweils erhaltenen Konsensus-Sequenz fortgesetzt,
bis keine weitere Verlängerung mehr möglich ist.

30

10. Gefundene Nukleinsäur -Sequenzen

Analog der unter 1 bis 9 beschriebenen Verfahrensweise wurden z. B. folgende Sequenzen gefunden, von denen einige mehrfach in Kulturform a) oder Kulturform b) der Endothelzellen überexprimiert werden.

5

Diese Nukleinsäure-Sequenzen sind ebenfalls Gegenstand der vorliegenden Erfindung.

Die mögliche Funktion dieser Genbereiche betrifft die Angiogenese.

10

Das Ergebnis ist in der folgenden Tabelle I dargestellt:

-25-

TABELLE I

Seq ID No	Expression	Funktion	Homologi
1	überexprimiert in a)	Assoziiert mit Proliferation	Keine
2	überexprimiert in a)	Assoziiert mit Proliferation	Keine
3	überexprimiert in b)	Assoziiert mit Differenzierung	Keine
4	3-fach überexprimiert in b)	gap junction, assoziiert mit Differenzierung	connexin37; 96% Identität über 933 bp.
5	überexprimiert in a)	Assoziiert mit Proliferation	Keine
6	2-fach überexprimiert in b)	Assoziiert mit Differenzierung	Keine
7	überexprimiert in a)	Assoziiert mit Proliferation	Keine
8	überexprimiert in b)	Assoziiert mit Differenzierung	Keine
9	überexprimiert in b)	Assoziiert mit Differenzierung	Keine
10	überexprimiert in b)	Assoziiert mit Differenzierung	SPRY2; 99% Identität über 1489 bp.
11	überexprimiert in b)	assoziiert mit Differenzierung	Keine
12	überexprimiert in b)	assoziiert mit Differenzierung	mouse Gas5; 78% Identität über 121 bp.
13	überexprimiert in b)	assoziiert mit Differenzierung	Keine
14	überexprimiert in b)	assoziiert mit Differenzierung	Keine
15	überexprimiert in b)	assoziiert mit Differenzierung	Keine
16	überexprimiert in b)	assoziiert mit Differenzierung	Keine
17	überexprimiert in b)	assoziiert mit Differenzierung	Keine
18	überexprimiert in b)	assoziiert mit Differenzierung	Keine
19	überexprimiert in b)	assoziiert mit Differenzierung	Keine
20	überexprimiert in b)	assoziiert mit Differenzierung	Keine
21	überexprimiert in b)	assoziiert mit Differenzierung	Keine

S q ID- No	Expression	Funktion	Homologie
22	überexprimiert in b)	assoziiert mit Differenzierung	Keine
23	5-fach überexprimiert in b)	assoziiert mit Differenzierung	mouse MMP; 83% Identität über 831 bp.
24	überexprimiert in b)	assoziiert mit Differenzierung	Keine
25	4-fach überexprimiert in b)	assoziiert mit Differenzierung	Keine
26	überexprimiert in b)	assoziiert mit Differenzierung	Keine
27	überexprimiert in b)	assoziiert mit Differenzierung	Keine
28	überexprimiert in b)	assoziiert mit Differenzierung	KIAA0255; 57% Identität über 326 bp.
29	überexprimiert in b)	assoziiert mit Differenzierung	thymic epithelial cell antigen; 68% Identität über 326 bp.
30	überexprimiert in b)	assoziiert mit Differenzierung	Keine
31	4-fach überexprimiert in b)	assoziiert mit Differenzierung	Keine
32	überexprimiert in b)	assoziiert mit Differenzierung	Keine
33	überexprimiert in b)	assoziiert mit Differenzierung	Keine
34	überexprimiert in b)	assoziiert mit Differenzierung	Keine
35	überexprimiert in b)	assoziiert mit Differenzierung	Keine
36	überexprimiert in a)	assoziiert mit Proliferation	Keine
37	überexprimiert in b)	assoziiert mit Differenzierung	CL-20; 87% Identität über 122 bp.
38	5-fach überexprimiert in b)	assoziiert mit Differenzierung	mouse Numb; 90% Identität über 310 bp.
39	überexprimiert in a)	assoziiert mit Proliferation	Keine
40	überexprimiert in b)	assoziiert mit Differenzierung	Keine
41	5-fach überexprimiert in a)	assoziiert mit Proliferation	Keine
42	6-fach überexprimiert in a)	Coreprozessor, assoziiert mit Proliferation	SMRT; 99% Identität über 785 bp.
43	überexprimiert in a)	assoziiert mit Proliferation	Keine
44	überexprimiert in a)	assoziiert mit Proliferation	Keine
45	überexprimiert in a)	assoziiert mit Proliferation	Keine
46	überexprimiert in a)	assoziiert mit Proliferation	Keine

Seq ID-No	Expression	Funktion	Homologi
47	5-fach überexprimiert in b)	assoziiert mit Differenzierung	Keine
48	überexprimiert in a)	assoziiert mit Proliferation	MUC18; 99% Identität über 780 bp.
49	überexprimiert in a)	assoziiert mit Proliferation	Keine
50	überexprimiert in a)	assoziiert mit Proliferation	Keine
51	3-fach überexprimiert in a)	assoziiert mit Proliferation	Keine
52	überexprimiert in a)	assoziiert mit Proliferation	Keine
53	überexprimiert in a)	assoziiert mit Proliferation	Keine
54	überexprimiert in a)	assoziiert mit Proliferation	Keine
55	7-fach überexprimiert in a)	assoziiert mit EC Proliferation und Migration	CYR61; 100% Identität über 2015 bp.
56	überexprimiert in a)	assoziiert mit Proliferation	Keine
57	überexprimiert in a)	assoziiert mit Proliferation	Keine
58	3-fach überexprimiert in a)	assoziiert mit Proliferation	Keine
59	überexprimiert in b)	Assoziiert mit Differenzierung	Keine

a), b) = Kulturformen

5 11. Expressionsanalyse

Um zu untersuchen, ob die regulierten Sequenzen auch *in vivo* bei der Bildung neuer Blutgefäße beteiligt sind, wurde ihre Expression in humanem Plazenta-Gewebe der 8.Woche mit einer hohen Angiogenese-Aktivität und in humanem Plazenta-Gewebe des 9.Monats mit wenig Angiogenese-Aktivität ermittelt. Eine stärkere Expression in der 8 wöchigen Plazenta wurde dabei als Hinweis auf eine Angiogenese-relevante Funktion der Sequenz gewertet. Eine stärkere Expression in der 9 Monate alten Plazenta wurde als Hinweis auf eine gefäßstabilisierende Funktion der Sequenz beurteilt. Dazu wurde eine semi-quantitative RT-PCR-Technik verwendet, die comparative multiplex RT-PCR. Bei dieser Methode wird die Expression der interessierenden Sequenz bezogen auf die Expression eines nicht differenziell regulierten sogenannten „Haushaltsgens“, hier das 23kD highly basic protein. Als positiv Kontrolle wurde die Expression des VEGF-Rezeptors KDR ermittelt. Von diesem Endothelzell-spezifischen Gen ist bekannt, daß es auf

-28-

angiogenetisch aktivem Endothel hochreguliert ist. Entsprechend wurde eine deutlich erhöhte KDR-Expression in der 8 wöchigen Plazenta im Vergleich zur 9 Monate alten Plazenta detektiert.

Die Ergebnisse sind in der Tabelle II zusammengefaßt.

5

Tabelle II

10

Sequenz	MVEC, proliferierend	Plazenta 8.Woche	Plazenta 9.Monat
1	***	***	-
2	n. d.		
3	****	***	*
4	**	**	**
5	***	***	*
6	***	**	**
7	*	****	**
8	n. d.		
9	**	*	***
10	***	****	*
11	**	-	**
12	n. d.		
13	-	**	-
14	****	***	*
15	***	**	-
16	-	-	-
17	***	**	-
18	****	***	-
19	n. d.		
20	***	****	**
21	n. d.		
22	**	**	**
23	*	****	**
24	***	**	-
25	**	*	*
26	n. d.		
27	**	*	*
28	**	*	-
29	*	*	*
30	****	***	-
31	**	***	***
32	****	***	*
33	***	**	**
34	**	**	****

35	*	-	-
36	****	***	-
37	n. d.		
38	***	**	-
39	***	****	**
40	**	-	-
41	***	***	*
42	**	*	*
43	n. d.		
44	***	***	***
45	n. d.		
46	***	*	*
47	n. d.		
48	***	**	-
49	**	-	-
50	n. d.		
51	**	**	**
52	***	****	**
53	****	****	**
54	n. d.		
55	**	**	****
56	***	***	*
57	****	***	-
58	****	**	-
KDR	**	****	**

In der Tabelle bedeuten:

- 5 **** = sehr starke Expression
- *** = starke Expression
- ** = mittlere Expression
- * = schwache Expression
- = Expression unterhalb der Detektionsgrenze
- 10 n. d. = nicht durchgeführt

- 15 Die erfindungsgemäßen Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 der ermittelten Kandidatengene werden in dem nachfolgenden Sequenzprotokoll beschrieben.

Aufgrund der deutlichen Überexpression der Sequenz 34 in den tubulären MVEC (>8x) und einer schwachen Homologie zu Thrombospondin-2, einem Gen, das bei der Reifung des Blutgefäßsystems eine wichtige Rolle spielt, wurde aus der Vielzahl von Sequenzen die Sequenz 34 zur weiteren Analyse ausgewählt.

- 5 Ausgehend von der identifizierten Teilsequenz wurde mittels 5'- und 3'-RACE-Experimenten die komplette mRNA Sequenz für Sequenz 34 ermittelt. Mit einer Länge von 6011bp stimmt die Größe für Sequenz 34 sehr gut mit der in einer Northern-Hybridisierung ermittelten Größe (~6kb) überein. Die komplette mRNA Sequenz enthält einen offenen Leserahmen, der für 1036 Aminosäuren kodiert.
- 10 10 Das abgeleitete Protein hat ein Molekulargewicht von ~114kD, ist Cystein-reich (12,5% Cysteingehalt) und weist eine bislang einzigartige Domänenstruktur auf. Das Protein besitzt ein N-Terminales Signalpeptid, einen Teil einer Thiolprotease-Domäne, ein RGD-Motiv, 6 Von-Willebrand-Faktor Typ C-Domänen, eine potentielle Transmembrandomäne und 5 mögliche N-Glykosylierungsstellen.
- 15 15 Weiter wurde die genomische Lokalisation der Sequenz 34 auf Chr. 2p21 und die komplette Intron/Exon-Struktur bestimmt.
- Aufgrund der Domänenstruktur des Proteins ist eine Typ I Transmembranorientierung anzunehmen, mit einem langen extrazellulären N-Terminus und einem kurzen intrazellulären C-Terminus. Um dies zu testen wurde 20 20 ein Kaninchen-Antiserum hergestellt, welches gegen ein Peptid aus dem extrazellulären Teil des Proteins gerichtet ist. Mit Hilfe dieses Antiserums konnte gezeigt werden, daß das Protein tatsächlich eine Typ I-Transmembranorientierung aufweist.
- Dieses Anti-Sequenz 34-Serum wurde zur immunhistologischen Untersuchungen 25 25 an Schnitten eines Ovarialkarzinoms, bzw eines Präputiums eingesetzt. Dabei zeigte sich, daß Sequenz 34 im Tumor von Endothelzellen exprimiert wird, nicht aber von Stromazellen. Dagegen konnte keine Sequenz 34-Expression im Präputium detektiert werden. Sequenz 34 ist also im angiogenetisch aktiven Tumorendothel des untersuchten Ovarialkarzinoms exprimiert, nicht aber im 30 30 ruhenden Endothel des Normalgewebes. Diese Ergebnisse wurden durch *in situ* Hybridisierungen auf mRNA-Ebene bestätigt.

Um das Expressionsprofil für Sequenz 34 zu ermitteln, wurde eine Northern-Hybridisierung auf verschiedenen humanen Geweben durchgeführt. Dabei zeigte sich ein Expressionsmuster für Sequenz 34, das für eine spezifische Funktion des Proteins in Endothelzellen spricht, mit der stärksten Expression in Plazenta,
5 gefolgt von der Niere, dem Herzen und der Lunge.

Um zu testen, ob Sequenz 34 in dem *in vitro* Modell auf Matrikel eine wichtige Funktion bei der Tubulus-Bildung hat, wurden Antisense-Oligonukleotide hergestellt. Es konnte ein Oligonukleotid ermittelt werden, welches die Sequenz 34-Expression inhibiert. Dieses Oligonukleotid war nicht toxisch für die Zellen und
10 führte nicht zu einem veränderten Proliferationsverhalten der behandelten Zellen. Endothelzellen, die mit diesem Oligonukleotid transfiziert wurden, zeigten dagegen eine dramatische Inhibition der Tubulus-Bildung auf Matrikel (> 20% des Kontrollwertes) im Vergleich zu untransfizierten und mit einem Kontroll-Oligonukleotid transfizierten Zellen. Die Sequenz 34 trägt also wesentlich zur
15 Bildung von Kapillar-ähnlichen Strukturen bei. Diese Ergebnisse stehen im Einklang zu den Daten aus der Expressionsanalyse in den beiden Plazentaproben für Sequenz 34. Die stärkere Expression von Sequenz 34 in der 9 Monate alten Plazenta wurde als Hinweis auf eine Gefäß stabilisierende Funktion der Sequenz gewertet. Die Antisense-Oligonukleotid Daten zeigen deutlich, daß Sequenz 34
20 keine Rolle während der Endothelzellproliferation spielt, aber wesentlich an der Bildung stabiler Kapillar-Strukturen beteiligt ist.

Die Erfindung betrifft somit insbesondere die Sequenz Seq ID No. 34 und deren Verwendung zur Bildung stabiler Kapillarstrukturen. Weiterhin betrifft diese
25 Sequenz und die daraus abgeleitete Proteinsequenz auch die Verwendung, entweder alleine oder in Formulierung als Arzneimittel zur Behandlung von Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofibroma, Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne
30 Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie

-32-

Leberzirrhose, mesangialzellproliferative Erkrankungen, Artheriosklerose und
Verletzungen des Nervengewebes.

5

Patentansprüche

1. Eine Nukleinsäure-Sequenz, die ein Genprodukt oder ein Teil davon kodiert, umfassend
 - 5 a) eine Nukleinsäure-Sequenz, ausgewählt aus der Gruppe Seq ID No. 1 bis Seq. ID No. 59
 - 10 b) eine allelische Variation der unter a) genannten Nukleinsäure-Sequenzen
- oder
- 15 c) eine Nukleinsäure-Sequenz, die komplementär zu den unter a) oder b) genannten Nukleinsäure-Sequenzen ist.
2. Eine Nukleinsäure-Sequenz gemäß einer der Sequenzen Seq ID No. 1 bis Seq. ID No. 59 oder eine komplementäre oder allelische Variante davon.
- 20
3. Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59, dadurch gekennzeichnet, daß sie in Endothelialzelltgewebe erhöht exprimiert sind.
- 25
4. BAC, PAC und Cosmid-Klone, enthaltend funktionelle Gene und ihre chromosomale Lokalisation, entsprechend den Nukleinsäure-Sequenzen Seq. ID. No. 1 bis Seq. ID No. 59, zur Verwendung als Vehikel zum Gentransfer.
- 30

5. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 90%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweist.

- 5 6. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß sie eine 95%ige Homologie zu einer humanen Nukleinsäure-Sequenz aufweist.

- 10 7. Eine Nukleinsäure-Sequenz, umfassend einen Teil der in den Ansprüchen 1 bis 6 genannten Nukleinsäure-Sequenzen, in solch einer ausreichenden Größe, daß sie mit den Sequenzen gemäß den Ansprüchen 1 bis 6 hybridisieren.

- 15 8. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 50 bis 3000 bp aufweist.

- 20 9. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 150 bis 2800 bp aufweist.

- 25 10. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß die Größe des Fragments eine Länge von mindestens 150 bis 2600 bp aufweist.

- 30 11. Eine Nukleinsäure-Sequenz gemäß einem der Ansprüche 1 bis 10, die mindestens eine Teilsequenz eines biologisch aktiven Polypeptids kodiert.

12. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß einem der Ansprüche 1 bis 10, zusammen mit mindestens einer Kontroll- oder regulatorischen Sequenz.

5

13. Eine Expressionskassette, umfassend ein Nukleinsäure-Fragment oder eine Sequenz gemäß Anspruch 12, worin die Kontroll- oder regulatorische Sequenz ein geeigneter Promotor ist.

10

14. Eine Expressionskassette gemäß einem der Ansprüche 12 und 13, dadurch gekennzeichnet, daß die auf der Kassette befindlichen DNA-Sequenzen ein Fusionsprotein kodieren, das ein bekanntes Protein und ein biologisch aktives Polypeptid-Fragment umfaßt.

15

15. Verwendung der Nukleinsäure-Sequenzen gemäß den Ansprüchen 1 bis 11 zur Herstellung von Vollängen-Genen.

20

16. Ein DNA-Fragment, umfassend ein Gen, das aus der Verwendung gemäß Anspruch 15 erhältlich ist.

25

17. Wirtszelle, enthaltend als heterologen Teil ihrer exprimierbaren genetischen Information ein Nukleinsäure-Fragment gemäß einem der Ansprüche 1 bis 11.

30

18. Wirtszelle gemäß Anspruch 17, dadurch gekennzeichnet, daß es ein prokaryontisches oder eukaryontische Zellsystem ist.

19. Wirtszelle gemäß einem der Ansprüche 17 oder 18, dadurch gekennzeichnet, daß das prokaryontische Zellsystem E. coli und das eukaryontische Zellsystem ein tierisches, humanes oder Hefe-Zellsystem ist.

5

20. Ein Verfahren zur Herstellung eines Polypeptids oder eines Fragments, dadurch gekennzeichnet, daß die Wirtszellen gemäß den Ansprüchen 17 bis 19 kultiviert werden.

10

21. Ein Antikörper, der gegen ein Polypeptid oder ein Fragment gerichtet ist, welches von den Nukleinsäuren der Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 kodiert wird, das gemäß Anspruch 20 erhältlich ist.

15

22. Ein Antikörper gemäß Anspruch 21, dadurch gekennzeichnet, daß er monoklonal ist.

20

23. Polypeptidsequenz, exprimiert von einer der Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59.

25

24. Polypeptidsequenzen gemäß Anspruch 23, mit mindestens 80%iger Homologie zu diesen Sequenzen.

30

25. Polypeptidsequenzen gemäß Anspruch 23, mit mindestens 90%iger Homologie zu diesen Sequenzen.

26. Polypeptidsequenz, dadurch gekennzeichnet, daß sie die Sequenz Seq ID No. 34 umfasst.
27. Verwendung der Polypeptidsequenzen gemäß den Ansprüchen 23 bis 26 als Tools zum Auffinden von Wirkstoffen gegen angiogenetische Erkrankungen.
5
28. Verwendung der Nukleinsäure-Sequenzen gemäß den Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 zur Expression von Polypeptiden, die als Tools zum Auffinden von Wirkstoffen gegen angiogenetische Erkrankungen verwendet werden können.
10
29. Verwendung der Nukleinsäure-Sequenzen Seq. ID No. 1 bis Seq. ID No. 59 in sense oder antisense Form.
15
30. Verwendung der Polypeptidsequenzen gemäß den Ansprüchen 23 bis 26 als Arzneimittel in der Gentherapie zur Behandlung angiogenetischer Erkrankungen.
20
31. Verwendung der Polypeptidsequenzen gemäß den Ansprüchen 23 bis 26 zur Herstellung eines Arzneimittels zur Behandlung angiogenetischer Erkrankungen.
25
32. Arzneimittel, enthaltend mindestens eine Polypeptidsequenz gemäß den Ansprüchen 23 bis 26.
30

33. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß es eine genomische Sequenz ist.
- 5 34. Eine Nukleinsäure-Sequenz gemäß den Ansprüchen 1 bis 11, dadurch gekennzeichnet, daß es eine mRNA-Sequenz ist.
- 10 35. Genomische Gene, ihre Promotoren, Enhancer, Silencer, Exonstruktur, Intronstruktur und deren Spleißvarianten, erhältlich aus den cDNAs der Sequenzen Seq. ID No. 1 bis Seq. ID No. 59.
- 15 36. Verwendung der genetischen Gene gemäß Anspruch 35, zusammen mit geeigneten regulativen Elementen.
37. Verwendung gemäß Anspruch 36, dadurch gekennzeichnet, daß das regulative Element ein geeigneter Promotor und/ oder Enhancer ist.
- 20 38. Verwendung der Nukleinsäure-Sequenzen gemäß den Ansprüchen 1 bis 11 und der Peptide gemäß den Ansprüchen 23 bis 26, entweder alleine oder in Formulierung als Arzneimittel zur Behandlung von Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofibroma, Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose, mesangialzellproliferative Erkrankungen, Artheriosklerose und Verletzungen des Nervengewebes.
- 25 39. Nukleinsäuresequenz Seq. ID No. 34, dadurch gekennzeichnet, daß sie stabile Kapillar-Strukturen bildet.

40. Verwendung der Nukleinsäure-Sequenzen Seq. ID No. 34 und der über diese Sequenz exprimierten Peptide, entweder alleine oder in Formulierung als Arzneimittel zur Behandlung von Psoriasis, Arthritis, wie rheumatoide Arthritis, Hämangioma, Angiofibroma, Augenerkrankungen, wie diabetische Retinopathie, Neovaskulares Glaukom, Nierenerkrankungen, wie Glomerulonephritis, diabetische Nephropatie, maligne Nephrosklerose, thrombische mikroangiopatische Syndrome, Transplantationsabstoßungen und Glomerulopathie, fibrotische Erkrankungen, wie Leberzirrhose, mesangialzellproliferative Erkrankungen, Artheriosklerose und
5 Verletzungen des Nervengewebes.
- 10

Squenzprotokoll

5 (1) ALLGEMEINE INFORMATION:

(i) ANMELDER:

- (A) NAME: Schering Aktiengesellschaft
 - (B) STRASSE: Müllerstraße 178
 - (C) STADT: Berlin
 - (E) LAND: Deutschland
 - (F) POST CODE (ZIP): D-13303
 - (G) TELEFON: (030)-4681 2085
 - (H) TELEFAX: (030)-4681 2058

15

(ii) TITEL DER ERFINDUNG: Menschliche Nukleinsäuresequenzen aus
humanen Endothelzellen

20

(iii) Anzahl der Sequenzen: 59

(iv) COMPUTER READABLE FORM:

- (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)

30 (2) INFORMATION ÜBER SEQ ID NO: 1:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1835 Basenpaare
(B) TYP: Nukleinsäure
(C) STRANG: einzel
(D) TOPOLOGIE: linear

5

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

10

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle

15

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

20

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 1:

ttttacagtt ttccttttct tcagagttta ttttgaattt tcattttgg ataaccaagc 60
agctcttaa gaagaatgca cagaagagtgc attctggcac ttttggatag tacataagat 120
tttctttttt ttttttaaat ttttttaaat agtcacattc agctcgcttg ctcaaaccag 180
actcccacat tgggtgagca agatgagccc ataggattcc agagttaaata cgtaaccgta 240
tatacaaaca gccaaaaaac cataatggtg ccacagggat ggagcaaggaa agggcatctc 300
taacgtgtcc tctagtctat ctgcgtctaa cagaacccac gttacacatg ataactagag 360
agcacactgt gttgaaacga ggatgctgac cccaaatggc acttggcagc atgcagttta 420
aagcaaaaaga gacatcctt aataactgta taaaatccag gcagttccat taaagggtt 480
aagaaaaacca acaacaacaa aaagcgaggg actgtctgtt gtcactgtca aaaaggcact 540
tggagttaat gggaccagga ttggaggact cttagctgtat acagattca gtacgatttc 600
attaaaaaggc ttggatgtta agagaggaca ctcagcgggtt cctgaaggaa gacgctgaga 660
tggaccgctg agaagcggaa cagatgaaca caaaggaatc aaatctttac aaccaaattg 720
35 catttaagcg acaacaaaaa aaggcaaaacc ccaaaacgca acctaaccac agcaaaaatct 780
aagcaaaaatc agacaacgaa gcagcgatgc atagcttcc tttgagagaa cgcatacctt 840
gagacgctac gtgccaaacct aagtctcaa cgacagcttc acagtaggat tattgtgata 900
aaaatgactc aagcgatgca aaaagttca tctgttccca gaatccgagg gagaactgag 960
gtgatcgatgta gacatcgatcg acatcacgtg cggtttctta atgtccctgg tggcggatac 1020
40 gccgagtcct cggaggaca tctggacacc actttcagcc acctccctgc agggggcagaca 1080

tccgccaaag tcatcctta ttccgagtaa taacttaat tccttcata catttacacg 1140
gcaaacagga atgcagtaaa cgtccacgtc cgtcccacgg ctgggctgcc gttccgttc 1200
ctccacgaac gggtacgcgc ttccatgaga aaggatattt ggcaatttta tattccacag 1260
5 tcaggtgggt ctgcgatagc tcatttaatg ttaaacgcca tcaggggcct ctcctcccg 1320
ttctgccagg ggctttctt gtcttctcct tggcgagctc gtgggcagat cttctctggt 1380
gggggctggc tgctggctcc gagggggcat ccgcagtccg tctggtcgtc tcctcctgca 1440
ggctggcag ctggccacca cttctccgac tcgaccctc caacaagcat cgcagggcac 1500
tgccctcggt ggtacagacc gtggccac attcgctacc actctgttcc acgtcatcca 1560
10 ggtacacgag ctgcgtgttag gccgtgctgt ctggggctcg aggctcttc tgctggtgct 1620
cttggacggg cggtagttc tgctgcagag acaaagcatc tccccttccc ttccgggctg 1680
attttggttc attcatatct acgcccaggt ccaaactggc atcattactt ccgttccttc 1740
cagctcttg gagaatcaat gtatgaatgt ctaacctgac cggtggaccc gccatccaag 1800
gagacgaacc acgcccgggg gtgcggaaagc ggcct

15

(2) INFORMATION ÜBER SEQ ID NO: 2:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 581 Basenpaare
- 20 (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

25 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

30

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

35 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 2:

5 gttctagatt gtttattca gtaattagct cttaagaccc ctggggcctg tgctacccag 60
acactaaca cagtcttat ccagttgctg gttctgggtg acgtgatctc cccatcatga 120
tcaacttact tcctgtggcc cattaggaa gtggtgacct cgggagctat ttgcctgttg 180
agtgcacacaca cctggaaaca tactgctctc atttttcat ccacatcagt gagaatgag 240
tggcccgta gcaagatata actatgcaat catgcaacaa agctgcctaa taacattca 300
tttattacag gactaaaagt tcattattgt ttgtaaagga tgaattcata acctctgcag 360
10 agttatagtt catabacagt tgatttccat ttataaaggc agaaagtccct tgccccctct 420
aaatgtcaag ctttgactga aaactcccgt tttccagtc actggagtgt gtgcgtatga 480
aagaaaatct ttagcaatta gatgggagag aaggaaata gtacttgaaa tgtaggccct 540
cacctccccca tgacatcctc catgagcctc ctgatgtagt g

15

(2) INFORMATION ÜBER SEQ ID NO: 3:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 516 Basenpaare
- 20 (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

25 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

30

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

35 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 3:

5 tagagatgtt gggtgatgac ccccggtc tggaggcagat gaatgaagag tctctggaa 60
tcagcccaga catgtgcac tacatcacag aggacatgct catgtcgccg aacctgaatg 120
gacactctgg gttgatttg aaagaaaattg ggtctccac ctcgagctct tcagaaaacag 180
ttgttaagct tcgtggccag agtactgatt ctcttccaca gactataatgt cgaaaaacc 240
agacctccac tgatcgacac agcttgagcc tcgatgacat cagactttac cagaaagact 300
10 ccctgcgcacat tgcaaggctg tgtcaggaca ctgctcagag ttacaccttt ggatgtggcc 360
atgaacttggaa tgaggaaggc ctctattgca acagttgctt ggcccagcag tgcataaca 420
tccaagatgc tttccagtc aaaagaacca gcaaatactt ttctctggat ctcactcatg 480
atgaagtcc agagtttgtt gtgtaaagtc cgtctg

15

(2) INFORMATION ÜBER SEQ ID NO: 4:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1099 Basenpaare
- 20 (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

25 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

30

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

35 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 4:

5

cccacaaacac aggggcccctg aaacacgcca gcctctcctc tgggtcagc ttggcccagt 60
cctgctcaact ggatcacagc ccattgttagg tggggcatgg tggggatcatg gccccctggc 120
ccacggggag gtagaagaag acctggtccg tgtaagggtc tgagaagggtg ccctgggtcg 180
gggggtgcgtc ttggccttgc cgtccctca tccccccgct gaggcagcga cacagcaggt 240
10 gcaccaactc cagcaggta agcaccagg agatgagtcc aaccaccaac atgaagatga 300
tgaagatgtt ctctccgtg gggcgagaga caaagcagtc cacgaggtag gggcagggtg 360
ctcgctggca cacaaacacg ggctccatgg tccagccgtc caggcgccac tggccataga 420
ggaaggctgc ctctagcaca ctcttgcaga gcacactggc gacataggtg cccatcagtg 480
15 ctccgcggat gcgaggcga ccattttctg ccaccgagat ctggccatc tgacgctcta 540
cgccgcggccag cgccgcgtcc acctgtgggt cttggcccg cagtgcggc agctccccct 600
ccttctgccc cagccgctct tctcgccgag acaggtaaat gacatggccc agtagacca 660
gggtgggtgt gctgacgaag aggaactgca gcacccagta gcggatgtgg gagatgggga 720
aggcctggtc atagcagacg ttggtgccgc ctggctggc cgtgttacac tcgaaatctg 780
actgctcgtc accccacact gactcgccgg ccaggcccag gatgaggatg cgaaagatga 840
20 agagcacccgt cagccagatc ttaccacca cggtcgagtg ctccctggacc tggccagca 900
acttctccac gaagcccccag tcaccatgg ctcccgcc tccgtcgca aggagacaga 960
gcacgtcagt gtgtcagcat ggcattccctc tcgttcgccc agcaacaacg ctgcaggag 1020
gtctgccacg cccgttctac cgcctgcctg ccgggcggcc caggtggagg tggggacgat 1080
ggccggagtg acgccccgcg

25

(2) INFORMATION ÜBER SEQ ID NO: 5:

(i) SEQUENZ CHARAKTERISTIK:

- 30 (A) LÄNGE: 1015 Basenpaare
(B) TYP: Nukleinsäure
(C) STRANG: einzel
(D) TOPOLOGIE: linear

35 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

40 (iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

5 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 5:

10

gaggataggg agcctgggt caggagtgtg ggagacacag cgagactctg tctccaaaaa 60
aaaaagtgtct tttgaaaat gttgaggttg aaatgatggg aaccaacatt ctttggattt 120
agtggggagc ataatacgaa acacccctt gtttcgcaca tgtacagggaa tgggaccagg 180
15 ttggggcaca gccatggact tccccgcctt ggaatgtgtg gtgcaaagtg gggccagggc 240
ccagacccaa gaggagaggg tggtccgcag acacccccc atgtcagcat ccccccacct 300
gccttctggc ggcacaccttccc ggggtctgtg tttagtgcagc aggcatgggg tgagagcctg 360
gtatatgtctt ggaacagggtt gcagggggcca agcgttcctc cttcagccctt gacttgggcc 420
20 atgcacccccc tctcccccaa acacaaacaa gcacttctcc agtatggtgc caggacaggt 480
gtcccttcag tcctctgggtt atgacctcaa gtcctacttg ggccctgcag cccagcctgt 540
gttgtaacct ctgcgttcctc aagaccacac ctggaagatt cttttccct ttgaaggaga 600
atcatcatttgc ttgttttatac acttctaaga cattttgtac ggcacggaca agttaaacag 660
aatgtgttcc cctccctggg gtctcacacg ctcccacgag aatgccacag gggccgtgca 720
25 ctgggcaggc ttctctgttag aaccccaggg gcttcggccc agaccacagc gtcttgccct 780
gagcctagag cagggagtcc cgaacttctg cattcacaga ccacctccac aattgttata 840
accaaaggcc tcctgttctg ttatttact taaatcaaca tgctattttg ttttactca 900
cttctgactt tagcctcggtg ctgagccgtg tatccatgca gtcatgttca cgtgctagtt 960
acgtttttct tcttacacat gaaaataaat gcataagtgt tagaagaaaa aaaaaa

30

(2) INFORMATION ÜBER SEQ ID NO: 6:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 2313 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

40 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

5 (iii) HYPOTHETISCH: NEIN

10 (iii) ANTI-SENSE: NEIN

15 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

20 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

25 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 6:

30 15

	ccagagcagg	cctgggtgg	agcagggacg	gtgcaccgga	cggcgggatc	gagcaaatgg	60
	gtctggccat	ggagcacgga	gggtcctacg	ctcgggcggg	gggcagctct	cggggctgtct	120
	ggtattacct	gcgctacttc	tcccttctcg	tctccctcat	ccaattcctc	atcatcctgg	180
20	ggctcgtgct	cttcatggtc	tatggcaacg	tgcacgtgag	cacagagtcc	aacctgcagg	240
	ccaccgagcg	ccgagccgag	ggcctataca	gtcagctcct	agggctcacg	gcctcccagt	300
	ccaacttgac	caaggagctc	aacttcacca	cccgcccaa	ggatgccatc	atgcagatgt	360
	ggctgaatgc	tgcggcgac	ctggaccgca	tcaatgccag	cttccgcccag	tgccagggtg	420
	accgggtcat	ctacacgaac	aatcagaggt	acatggctgc	catcatcttg	agtgagaagc	480
25	aatgcagaga	tcaattcaag	gacatgaaca	agagctgcga	tgccttgctc	ttcatgctga	540
	atcagaaggt	gaagacgctg	gaggtggaga	tagccaagga	gaagaccatt	tgcactaagg	600
	ataagggaaag	cgtgctgctg	aacaaacgcg	tggcggagga	acagctggtt	aatgcgtga	660
	aaacccggga	gctgcagcac	caagagcgc	actggccaag	gagcaactgc	aaaaggtgca	720
30	agccctctgc	ctgccccctgg	acaaggacaa	gtttgagatg	gaccttcgt	acctgtggag	780
	gacttccatt	atccccacgca	gcctggacaa	cctgggttac	aacctctacc	atccccctggg	840
	ctcggaaattg	gcctccatcc	gcagagcctg	cgaccacatg	cccagcctca	tgagctccaa	900
	gttggaggag	ctggccccgg	gcctccgggc	ggatatcgaa	cgcgtggccc	gcgagaactc	960
	agacctccaa	cggcagaagc	tggaaGCCCA	gcagggcctg	cggccagtc	aggaggcgaa	1020
	acagaaggtg	gagaaggagg	ctcaggcccc	ggaggccaag	ctccaagctg	aatgcctccg	1080
35	gcagaccagg	ctagcgctgg	aggagaaggc	ggtgctcgg	aaggaacgag	acaacctggc	1140
	caaggagctg	gaagagaaga	agagggaggc	ggagcagctc	aggatggagc	tggccatcag	1200
	aaactcagcc	ctggacaccc	gcatcaagac	caagtcgcag	ccgatgatgc	cagtgtcaag	1260
	gcccatgggc	cctgtccccca	acccccagcc	catcgaccca	gctagctgg	aggagttcaa	1320
	gaggaagatc	ctggagtccc	agagggcccc	tgcaggcatac	cctgttagccc	catccagtg	1380
40	ctgaggaggc	tccaggcctg	aggaccaagg	gatggcccga	ctcggcgggtt	tgcggaggat	1440
	gcagggatat	gctcacagcg	cccacacaa	ccccctcccg	ccgcccccaa	ccacccaggg	1500
	ccaccatcg	acaactccct	gcatgcaaac	cccttagtacc	ctctcacacc	cgcacccgcg	1560
	cctcacgatc	cctcacccag	agcacacggc	cgcggagatg	acgtcacgca	agcaacggcg	1620
	ctgacgtcac	atatcaccgt	ggtgatggcg	tcacgtggcc	atgtagacgt	cacgaagaga	1680
45	tatagcgatg	gcgtcggtc	gatgcagcac	gtcgacacaca	gacatgggga	acttggcatg	1740

acgtcacacc gagatgcagc aacgacgtca cggccatgt cgacgtcaca catattaatg 1800
tcacacagac gcggcgatgg catcacacag acggtgatga tgtcacacac agacacagtg 1860
acaacacaca ccatgacaaac gacacctata gatatggcac caacatcaca tgcacgcatg 1920
ccctttcaca cacacttct acccaattct cacctagtgt cacgtcccc cgaccctggc 1980
5 acacgggcca aggtacccac aggatcccatt cccctccgc acagccctgg gccccagcac 2040
ctccccctcct ccagcttcct ggcctcccag ccacttcctc acccccagtg cctggaccgg 2100
gaggtgagaa caggaagcca ttccacctccg ctccctgagc gtgagtgttt ccaggaccgg 2160
ctcggggccc tgagccgggg gtgagggtca cctgttgtcg ggaggggagc cactccttct 2220
cccccaactc ccagccctgc ctgtggcccg ttgaaatgtt ggtggactt aataaatatt 2280
10 agtaaatcct taaaaaaaaaaa aaaaaaaaaaaa aaa

(2) INFORMATION ÜBER SEQ ID NO: 7:

15 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 389 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

20 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

25 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

30 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

35

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 7:

5 gccaaaaaga tggcttcaaa agtaagaatg aaacatttga tccattcagc tttaggctat 60
gccactggat tcatgtctag aaaagatagg ataatttctg taaaagaatg aagaccttgc 120
tattctaaa tcagatcctt acagatccag atttcaggaa acaaatacat aggggactaa 180
cttccttgt tcagattagt ttttctcctt tgcacccagc tatataatat gaggaagtat 240
tgactttta aaagtgtttt agtttccat ttcttgata tgaaaagtaa tatttcggga 300
gaaccctgag ctattaataa tctatgtggc tagtgcgtat atattggctt gaatttgttc 360
tcctttgtg gtgtccagtg ggtaacatc

10

(2) INFORMATION ÜBER SEQ ID NO: 8:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 157 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

15 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

20 hergestellte partielle cDNAs

25 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

25 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

30 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

35 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 8:

tgctttaaac agctgtgtca aaaactgaca tcagagagta aattgaattt ggttttgtag 60
gaagcaggaa gcaagccac tcaaacctgtga aatttggcat gagggatcca gtaactttct 120
cctcaatctg tgaactatat gtgagtttga tattttg

5

(2) INFORMATION ÜBER SEQ ID NO: 9:

(i) SEQUENZ CHARAKTERISTIK:

- 10 (A) LÄNGE: 561 Basenpaare
(B) TYP: Nukleinsäure
(C) STRANG: einzel
(D) TOPOLOGIE: linear

15 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

20 (iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle

25

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 9:

aatagtcaaa acataaaacaa aagctaatta actggcactg ttgtcacctg agactaagtg 60
gatgttgttgcgtgacatac aggctcagcc agcagagaaa gaattctgaa ttccccttgc 120
35 tgaactgaac tattctgtta catatggttg acaaatctgt gtgttatttc ttttctaccc 180

accatattta aatttatgag tatcaaccga ggacatagtc aaaccttcga tcatgaacat 240
tcctgattt ttgcctgatt aatctctgtt gagctctact tgtggtcatt caagatttt 300
tgatgttcaa agaaaaagtg aatatgacct taaaaattt tattttgggt gatgatagtc 360
5 tcaccactat aaaactgtca attattgcct aatgttaaag atatccatca ttgtgattaa 420
ttaaacctat aatgagtatt ctaatggag aattcttaat ggatggatta tcccctgatc 480
ttttctttaa aatttctctg cacacacagg acttctcatt ttccaataaa tgggtgtact 540
ctgccccaaat ttcttaggaaa a

10 (2) INFORMATION ÜBER SEQ ID NO: 10:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1508 Basenpaare
- (B) TYP: Nukleinsäure
- 15 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

20

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

25 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

30 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 10:

35

cacaaaacacg agagactcca cggtctgcct gagcaccgcc agcctcctag gctccagcac 60

tcgcagggtcc attcttctgc acgagcctct ctgtccagat ccataagcac ggtcagctca 120
 gggtcgcgga gcagtacgag gacaagtacc agcagcagct cctctgaaca gagactgcta 180
 ggatcatcct ttcctccgg gcctgttgct gatggcataa tccgggtgca acccaaatct 240
 gagctcaagc cagggtgagct taagccactg agcaaggaag atttgggcct gcacgcctac 300
 5 aggtgtgagg actgtggcaa gtgc当地atgt aaggagtgc当地 cctacccaag gcctctgcca 360
 tcagactgga tctgc当地aca gcagtgc当地 tgctc当地ccc agaacgtgat tgactatggg 420
 acttgttat gctgtgtgaa aggtctt当地 tatcaactg当地 ctaatgatga tgaggacaac 480
 tgtgctgaca acccatgtt当地 ttgc当地ccag tctcaactg当地 gtacacgatg gtcagccatg 540
 10 ggtgtcatgt cc当地ctt当地 gc当地t当地t当地 tgg当地t当地t当地 ttccagccaa ggg当地t当地c当地t当地 600
 aaattgtgcc aggggtgtt当地 tgacc当地ggg当地t当地 aacaggcctg gttgccc当地t当地 taaaaactca 660
 aacacagttt gctg当地aaagt tcccaactglocal ccccc当地tagg local actttgaaaa accaacatag 720
 catcattaat caggaatatt acagtaatga ggat当地ttt当地 tttctt当地t当地 taatacacat 780
 atgcaaccaa ctaaaacagtt ataatctt当地 cactg当地taat agaaagttgg gatagtc当地t当地 840
 15 gctgtt当地cg gtaaaatgct tttgtccat gtgc当地gtt当地 aactgatatg cttgttagaa 900
 ctcagctaat ggagctcaa gtatgagata cagaactt当地 tgacccatgt attgc当地ataag 960
 ctaaaagcaac acagacactc ct当地ggc当地aa ag tttt当地gtt当地 tgaatagtagt当地 ttgcaaaaact 1020
 tgtaaattag cagatgactt tttccattt当地 tttctccag agagaatgtg ct当地at当地ttt当地 1080
 gtatatacaa taatattt当地 aactgtaaa aacaagtggt gccataactac atggcacaga 1140
 20 cacaaaatata tataactaata tggtaatcat tc当地g当地aa gt当地aaatcaat cagtagt当地t当地 1200
 ttagattgta tttgc当地t当地t当地 cagaaagcct tt当地ttgtaag actctgattt cc当地ttggac 1260
 ttc当地atg当地tata ttgtacagtt acagtaaaat tcaacctt当地 tttctt当地taatt tttcaacat 1320
 attgtt当地tagt gtaaaagaata tttat当地t当地 gttt当地t当地t当地 tttataaaaa agaaatattt当地 1380
 ttttaagagg catctt当地aca atttt当地gccc tttat当地gagg atgtgatagt tgctg当地aaat 1440
 25 gagggggtt当地ac agatgcatat gtccaaatata aaatagaaaa tatattaacg tttgaaat当地t当地 1500
 aaaaaaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 11:

30 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 389 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

40

(iv) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 11:

10 gggcaggtga tcagggcaca cattcccgta ccattgagac agtagcattc ccggcaccca 60
tcgtgccagc tctcctcatt tttatgtatgc tgaccatcca cggtgagaca agtgcggac 120
aggatgggtg gcccagctga agcacaggcc gctctgcact tgcagataag acagccgtga 180
ctgtcctgct gaaaacccaa ggggcagatc ttactgcatt agagctctgg acatttctta 240
15 cagcgcacaga tgtcacagcc gtgcatttattc ttcaagcaatc caagtggaca atacttgtca 300
cagattatgg gtctgcactt cttgggcattt gggcggcact cacagatctc acagtttgg 360
acctcgcccg cgaccacgct gggtaaccga

(2) INFORMATION ÜBER SEQ ID NO: 12:

20

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 981 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 25 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

30 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 35 (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 12:

tttttttttt ttggattgca aaaatttatt aaaattggag acactgttt aatcttcgg 60
10 tgccatgaga ctccatcagg cagtcataa agaccactgg gaggctgagg atcacttgag 120
cccagaagtt tgaggctgta gtaagctca aaggccactg cactctagct tgggtgaggg 180
aagacccctt caagcagtaa gctgcattgt tgcttgggt ggtcataaaa aacccttagtt 240
taggataaca acatattaat cagggcaaaa tacaaatgtg tgatgcttgt tagtagagta 300
15 acctcagaat caaaaatggaa cggttttaca gtgatatatcat tatatttcat ttggcagaat 360
cattacatca ttggtttacac tgaaaaatcat cacatgttacc aaaagctgac tcacctagtt 420
taggataaca ggtctgcctg tttgaagatg aaaaataata cccatttaaa atttgcccta 480
ctcaatttcc ttctcagtcata catttaact tttaaacagc taatcactcc catctacaga 540
ttaagggtgtatgcacca aaaccttttgc ccaccttaaa aatttccttc aaagtttaaa 600
20 ctaatgcctg catttcttca atcatgaatt ctgagtcctt tgcttcttta aaacttgctc 660
cacacagtgt agtcaagccg actctccata cccaaagcaag tcatccatgg ataaaaaacgt 720
taccaggagc agaaccatata agctggtcca ggcaagttgg actccaccat ttcaacttcc 780
agctttctgt ctaatgcctg tgtgccaatgt gcttggatgtt ggcttgctct tttaggacttc 840
agtagcttatt ctcatccttc cttggggaca caactgtcca taaggtgcta tccagagcca 900
25 cactgcacatgc acaccagca ccatacctca caggagtcga ctccccacgag ccgcctgtat 960
ataagagttc ttttggatgac g

(2) INFORMATION ÜBER SEQ ID NO: 13:

30 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 401 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

40

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 5 (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

10

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 13:

15 ataactacag cttagcaga caactaaaga gactgcatta aggtgatttc tctggctata 60
aagagagccc ggccgcagag catgtgactg ctgggacctc tgggataggc aacactgccc 120
tctctccccc agagcgaccc cccgggcagg tcggggccca aggaatgacc cagcaactgc 180
tcccttaccca gcacactctc ttactgcca cctgcaattt tgctgtgaag atgactgggt 240
gtggtcatca cgattcagag aaatcaagat ctatgaccat tttaggcaaa gagagaaaact 300
tggagaattt ctgaggacta ctgaaccttg ttttgcattt ttaaaaaata ctaaatcctc 360
20 acttcagcat atttagttgt cattaaaatt aagctgatat t

(2) INFORMATION ÜBER SEQ ID NO: 14:

25 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1002 Basenpaare
(B) TYP: Nukleinsäure
(C) STRANG: einzel
(D) TOPOLOGIE: linear

30

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

35

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

5 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

10

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 14:

	gacaatataa aaagtggaaa caagcataaa ttgcagacat aaaataatct tctggtagaa 60
15	acagttgtgg agaacagggtt gagtagagca acaacaacaa aagcttatgc agtcaccc 120
	tttggaaaatg ttaaataacaa gtcctattct ctttgtccag ctgggttag ctagaggttag 180
	ccaattactt ctcttaaggt ccatggcatt cgccaggatt ctataaaagc caagtttaact 240
	gaagtaataa tctggggccc atgcaccc cactaagtac tttgtcacca tggttatct 300
20	taaaagtcat ttttcactgt ttgactcaga atttgggact tcagagtcaa acttcattgc 360
	ttactccaaa cccagttaa ttccccactt ttttaagtag gcttagctt gagtgatttt 420
	tggctataac cgaaatgtaa atccaccc 540
	aaacaacaaa gtttgacaag actgaaatgt
25	tactgaaaac aatggtgcca tatgctccaa agacattcc ccaagataac tgccaaagag
	tttttgagga ggacaatgtat catttattat gttaggagcct tgatatctct gaaaaataga 600
	attaatacag ctcaa atggtacca agctttctg cccaggaagt aacaaacatc 660
30	actacgaaaca tgagagtaca agaggaaact ttcataatgc atttttcat tcatacattc 720
	attcaataaa cattagccaa gcta atgtcc caagccactg tgccaggtat taacaatata 780
	acaacaataa aagacacagt ctttcctctc aagggtttca gtctagtagg gaagatgatt 840
	attcattaaa atttttggtg catcagaatc atgaggagct tgtcaaaaat gtaaattcct 900
	gcctatgttc tcagatattc tggtaggtc aggagtggaa acccaaaatc aattctttta 960
	acaaacacta aaggtgattc taacacaggc ggtgtgagga cc

(2) INFORMATION ÜBER SEQ ID NO: 15:

35 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 280 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- 10 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 15:

20 cgaggtgggc cacccgtgtc tggctcgaga tttttaatg aggattacat ttccttattt 60
ataatattcc tattctaattc tattgtattc ttacaattaa atgtatcaaa taattcttaa 120
aaacattatt agaaacaaaac tgcttaataac cttataagac taaaaaaaaacc accaagatga 180
aactgtatta tgactctcaa tatttaaaca tttaaaaaaaaa tgtagtgtt tgtaaggcac 240
caatcttaac tatttcaccc gcccgggcgg ccgctcgagg

25

(2) INFORMATION ÜBER SEQ ID NO: 16:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 2041 Basenpaare
- 30 (B) TYP: Nukleinsäure
- (C) STRANG: einzeln
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

35

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

10 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

15 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 16:

ccccccgcag aactcccccc tggaaatagga ttttaaaac ccttgacaat tagaaatcct 60
atagaggta gcattttta ggtaaaaata tggttgcccc tacaggatc atgcaacttc 120
cttaaaacca attcagcaca tatgtataaaa gaacccttt taaaaacatt tgtacttgaa 180
20 atacagacac agtgatgctg aagacactaa acaaaaaactg aaaagtacta taccttgata 240
aattttgtta ttgccttctt tagagacttt ataatctcta gttgatttc aaggacttga 300
atthaataat gggtaattt cacaagacgt aaaggatttt taaaaaacaa gtatTTTTT 360
ttacctctag catcaattct tttataaaga atgctaaata aattacattt ttgttcaagt 420
aaaactgaag atagaccatt taaatgcttc taccaaattt aacgcagctt aattaggac 480
25 caggtacata ttttcttctg aacatTTTT gtcaagcatg tctaaccata aaagcaaatg 540
gaatttttaag aggttagattt ttttccatg atgcattttg ttaataaaatg tgtcaagaaa 600
ataaaaacaa gcactgagtg tgtctcttg aagtataagg gtctaattgaa aaataaaaga 660
tagatatttgc ttatagtctg acatTTTAAC agtcatagta ttagacgtt cgtgaccagt 720
30 gcattttgga ctctctcagg atcaaaatac gagtctgcc aactgtattaa atcctcc 780
accccctcca ccagttggc cacagcttcc tgggggtcg ttgtcatcaa atccattggg 840
ccgaaatgaa catgaaggcag atgcagctt gaggcccgg gctcgagcat tcaactctt 900
ttcctgtaaa tatagtttat tgtcttttg tatagcatcc ataagttctt tctgttagagg 960
tgggtctcca ttatccaga gtcactggg tgggttatta ccacttaaac cattagtact 1020
35 atgctgttt ttatacaaaa gcacataaagc tgtgtcctt ggaaacctgc tcgtatTTT 1080
ctggactgac tgaaatgaag taaatgtcac tctactgtca ttaaataaaa acccatttt 1140
ttgacatttc cttatTTTC aaatcctgtt caaaaactgc actgggacta tctctcccta 1200
gtaaatgact ctgggaggat gctaattgcc ggcctcaga ctgggtgtac atctgatatg 1260
aagagtctgt acttgtgata ttctggcat aagaatagta atgcccactt tcagaggata 1320
40 taccagagtgc aaccacaaacg gaacttaata gatagggcac caatTTGTG caggaagctt 1380
catcagtcac gtaaggctt aatttttag caagttctc actaagatca gtgaagtcaa 1440
catctacaga ccaactttt gacaatgaag agaaaagaagt aattcttcta actggcaact 1500
ccaaaaccag tggccagtga tacattgtct aaaatTTCC ttctcacatg atacttctga 1560
tcatatgaaa atctcaggag agtaagaata aggtattcag gttcctccgt gatttgcata 1620
45 gtttctcag cattttgcag agaggcacag ttttcacaat aatattggtt atcaccagta 1680
agaatctctg gagccaaaaa aataatttag taagtcaattt actgaaggtg tggtttacc 1740

tcccggttcc tgaggtacat ctttattaac aagaatcttg ttagattcgt tagggacaga 1800
agtgtttca gaacagtaaa actcattagg aggactgcct atggttttt cattcacaag 1860
tgagtcacag atgaaggcag ctgttggg attataaaact actggctctt ctgaaggacc 1920
gggtacagac gcttgcattt gaccaccatc ttgtatactg ggtgatgtatg ctggatctg 1980
5 gacagacatg tttccaaag aagaggaagc acaaaaacgca agcgaaaagat ctgtaaaggc 2040
t

(2) INFORMATION ÜBER SEQ ID NO: 17:

10

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 235 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 15 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

20

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 25 (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 17:

35 cgccccgggc aggtgtcagg ggttccaaac cagcctgggg aaacacagcg tagaccctc 60
acctctacaa ataaaaaatt aaaaaattag ccaggtgtgg cagcgaacaa ctgttagtctc 120

agataactcag gagactgagc tggaaaggat cacttgagcc caagaagtgc aaggtagac 180
tggccacga tcatgtcatt acactccagc ttgggtgaca aaatgagact gtcta

5 (2) INFORMATION ÜBER SEQ ID NO: 18:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 2732 Basenpaare
- (B) TYP: Nukleinsäure
- 10 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

15 (iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

20 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- 25 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 18:

30

gtgtggagtt tcagctgcta ttgactataa gagctatgga acagaaaaag cttgctggct 60
tcatgttgat aactactta tatggagctt cattggacct gttaccttca ttattctgtct 120
aaatattatc ttcttggta tcacattgtg caaaatggtg aagcattcaa acactttgaa 180
accagattct agcaggttgg aaaacattaa gtcttgggtg cttggcgctt tcgctcttct 240
35 gtgtcttctt ggcctcacct ggtccttgg gttgctttt attaatgagg agactattgt 300
gatggcatat ctcttcacta tatttaatgc tttccaggga gtgttcattt tcattttca 360

	ctgtgctctc caaaaagaaaag tacaaaaaga atatggcaag tgcttcagac actcataactg	420
	ctgtggaggc cttccaaactg agagtccccca cagttcagtg aaggcatcaa ccaccagaac	480
	cagtgcctcg tattcctctg gcacacagag tcgtataaga agaatgtgga atgatactgt	540
5	gagaaaaacaa tcagaatctt ctttatctc aggtgacatc aatagcactt caacacttaa	600
	tcaagggtggc ataaatctt atatattatt acaggactga catcacatgg tctgagagcc	660
	catcttcaag atttatatac ttttagaggac attcactgaa caatgccagg gatacaagtg	720
	ccatggatac tctaccgcta aatggtaatt ttaacaacag ctactcgctg cacaagggtg	780
10	actataatga cagcgtgcaa gttgtggact gtggactaag tctgaatgat actgctttg	840
	agaaaatgtat catttcagaa ttatgtgcaca acaacttacg gggcagcagc aagactcaca	900
	acctcgagct cacgctacca gtcaaaccctg tgattggagg tagcagcagt gaagatgtat	960
	ctattgtggc agatgcttca tctttaatgc acagcgacaa cccagggtcg gagctccatc	1020
	acaaaagaact cgaggccacca cttattcctc agcggactca ctcccttctg taccacccc	1080
	agaagaaaagt gaagtcccgag ggaactgaca gctatgtctc ccaactgaca gcagaggctg	1140
15	aagatcacct acagtccccca aacagagact ctcttatac aagcatgccc aatcttagag	1200
	actctcccta tccggagagc agccctgaca tggaagaaga cctctctccc tccaggagga	1260
	gtgagaatga ggacatttac tataaaagca tgccaaatct tggagctggc catcagcttc	1320
	agatgtgcta ccagatcagc aggggcaata gtgatggta tataatcccc attaacaag	1380
	aagggtgtat tccagaagga gatgttagag aaggacaaat gcagctggtt acaagtctt	1440
20	aatcatacag ctaaggaatt ccaagggcca catgcagta ttaataaata aagacaccat	1500
	tggcctgacg cagctccctc aaactctgtct tgaagagatg actcttgacc tgggttctc	1560
	tggtgtaaaa aagatgactg aaccttgca ttctgtaat ttttataaaa catacaaaaa	1620
	ctttgtatat acacagagta tactaaagtg aattatttg tacaagaaaa agagatgcca	1680
	gccaggtatt ttaagattct gctgctgtt agagaaattg taaaacaagc aaaacaaaaac	1740
25	tttccagcca ttttactgca gcagtctgtg aactaaattt gtaaatatgg ctgcaccatt	1800
	tttgtaggcc tgcattgtat tatatacaag acgtaggctt taaaatctcg tgggacaaat	1860
	ttactgttacc ttactattcc tgacaagact tggaaaagca ggagagatat tctgcattcag	1920
	tttgcagttc actgcaaattc ttttacatta aggcaaagat taaaacatg cttaaccact	1980
	agcaatcaag ccacaggcct tatttcatat gtttcctcaa ctgtacaatg aactattctc	2040
30	atgaaaaatg gctaaagaaa ttatattttt ttctattgtc agggtaaaat aaatacattt	2100
	gtgtccaact gaaatataat tgtcattaaa ataattttaa agagtgaaga aaatatttg	2160
	aaaagctttt ggttgcacat gttatgaaat gtttttctt acactttgtc atggttaagtt	2220
	ctactcattt tcacttctt tccactgtat acagtgttct gctttgacaa agtttagtctt	2280
	tattacttac atttaaattt cttattgcca aaagaacgtg tttttagggg agaaacaaaac	2340
35	tctttgaagc cagttatgtc atgccttgca caaaagtgt gaaatctaga aaagatttg	2400
	tgtcaccctt gtttattctt gaacagaggg caaagagggc actgggact ttcacaaac	2460
	tttctagtga acaaaaggtg cctattctt tttaaaaaaa taaaataaaa cataaaatatt	2520
	actcttccat attccttctg cctatatttta gtaattaatt tattttatga taaagttcta	2580
	atgaaaatgtat aattgtttca gcaaaaattct gctttttt catcccttg tggaaacctg	2640
40	ttaataatga gcccacatcaat atatccagt gtaaagtttta acacggttg acagtaaata	2700
	aatgtgaatt ttttcaagtt aaaaaaaaaaa aa	

(2) INFORMATION ÜBER SEQ ID NO: 19:

45 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 276 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

10 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 19:

20 ctccctaaat gattttaaaa taaattggat aaacatatga tataaagtgg gtactttaga 60
aaccgccttt gcatattttt tatgtacaaa tctttgtata caattccgat gttccttata 120
tattccctat atagcaaacc aaaaccaggaa cctcccaact gcatgcctca agtccctgtg 180
gagcactctg gcaactggat ggcctactt gcttctgac aaaatagctg gaaaggagga 240
gggaccaatt aaatacctcg gccgcgacca cgctgg

25

(2) INFORMATION ÜBER SEQ ID NO: 20:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 2361 Basenpaare

30 (B) TYP: Nukleinsäure

(C) STRANG: einzeln

(D) TOPOLOGIE: linear

35 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

10 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

15 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 20:

```

attgtaccag ccttgatgaa cgtggccct gttcgctt tgaggccat aagtcattg 60
cccactgtt tagaggctac ctatcattg tctccgtga ccgaaagggt tctcccaagt 120
cagagttac cagcaggat tcacagagct ccgacaagca gattctaaac atctatgacc 180
20 tgcacacaa gttcatagcc tatagcaccc tcttgagga ttagtgtt gtccttgctg 240
agtggggctc cctgtacgtg ctgacgcggg atggcggtt ccacgcactg caggagaagg 300
acacacagac caaactggag atgtgttta agaagaacct atttgagatg gcgattaacc 360
ttgccaagag ccagcatctg gacagtatg ggctggccca gattttcatg cagttatggag 420
accatctcta cagcaagggc aaccacatg gggctgtcca gcaatatac cgaaccattg 480
25 gaaagttgga gccatcctac gtatccgca agtttctgga tgcccagcgc attcacaacc 540
tgactgccta cctgcagacc ctgcaccgac aatccctggc caatgccgac cataccaccc 600
tgctcctcaa ctgctatacc aagctcaagg acagctcgaa gctggaggag ttcatcaaga 660
aaaagagtga gagtgaagtc cactttatg tggagacagc catcaaggc ctccggcagg 720
ctggctacta ctccccatgcc ctgtatctgg cggagaacca tgcacatcat gagttgttacc 780
30 tgaagatcca gctagaagac attaagaatt atcaggaagc cttcgatac atcggcaagc 840
tgccctttga gcaggcagag agcaacatga agcgtacgg caagatccatc atgcaccaca 900
taccagagca gacaactcag ttgctgaagg gactttgtac tgattatcgg cccagcctcg 960
aaggcccgag cgatagggag gccccaggct gcaggccaa ctctgaggag ttcatcccc 1020
tctttgccaa taacccgcga gagctgaaag ctttcctaga gcacatgagt gaagtgcagc 1080
35 cagactcacc ccaggggatc tacgacacac tccttgagct ggcactgcag aactgggccc 1140
acgagaagga tccacaggc aaagagaagc ttcacgcaga ggccatttcc ctgctgaaga 1200
gtggtcgctt ctgcgacgtc tttgacaagg ccctggctt gtgcagatg cacgacttcc 1260
aggatggtgt cctttacctt tatgagcagg ggaagctgtt ccagcagatc atgcactacc 1320
acatgcagca cgagcagtagc cggcaggatca tcagcgtgtg tgagcgcctt ggggagcagg 1380
40 accccctcctt gtgggagcag gcccctcagct acttcgtctg caaggaggag gactgcaagg 1440
agtatgtggc agctgtcctc aagcatatcg agaacaagaa cctcatgcca cctcttctag 1500
tggtgcagac cctggccac aactccacag ccacactctc cgtcatcagg gactacctgg 1560
tccaaaaact acagaaacag agccagcaga ttgcacagga tgagctgcgg gtgcggcggt 1620
accgagagga gaccaccgt atccgcccagg agatccaaga gctcaaggcc agtcctaaga 1680
45 ttttccaaaa gaccaagtgc agcatctgta acagtcctt ggagttgccc tcagtccact 1740

```


tcctgtgtgg ccactccttc caccacact gctttgagag ttactcgaa agtgatgctg 1800
actgccccac ctgcctccct gaaaacgggaa aggtcatgga tatgatccgg gcccaggaac 1860
agaaaacgaga tctccatgat caattccaggc atcagctcaa gtgctccaat gacagctttt 1920
5 ctgtgattgc tgactacttt ggcaagggtg tttcaacaa attgactctg ctgaccgacc 1980
ctcccacaggc cagactgacc tccagcctgg aggctgggct gcaacgcgcac ctactcatgc 2040
actccaggag gggcaactaa gcaggcctgaa ggaagatgtg ggcaacagtg gaggaccaag 2100
agaacagaca caatgggacc tggcgccggc ttacacagaa ggctggctga catgcccagg 2160
gctccactct catctaattgt cacagccctc acaagactaa agcggaaacctt ttctttcc 2220
ctggccttcc ttaattttaa gtcaagctt gcaatccctt ccttttaac taggcagggtg 2280
10 ttagaatcat ttccagatta atggggggga aggggaacctt caggcaaacc tcctgaagtt 2340
ttggaaaaaa aagctggttt c

(2) INFORMATION ÜBER SEQ ID NO: 21:

15

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 179 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 20 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

25

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 30 (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

35

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 21:

5 aggtgttaga tgctcttcaa aaagaaaactg catctaagct gtcagaaatg gattctttta 60
 acaatcaact aaaggaactg agagaaacct acaacacaca gcagttagcc cttagaacgc 120
 tttataagat caacgtgaca agttgaagga aattgaaagg aaaaaattag aactaatgc

(2) INFORMATION ÜBER SEQ ID NO: 22:

10 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 905 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

15 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

20 (iii) HYPOTHETISCH: NEIN

25 (iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

25 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

30 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 22:

tttttttttt ttctttaacc gtgtggtctt tatttcagtg ccagtgttac agataacaaca 60

caaatgttcc agttagaagg aattcaaacg gaatgccaaag gtccaagcca ggctcaagaa 120
 ataaaaaggg aggttggag taatagataa gatgactcca atactcactc ttcctaaggg 180
 caaaggtaact tttgatacac agtctgatct ttgaaactgg tgaactcctc ttccaccat 240
 taccatagtt caaacaggca agttatgggc ttaggagcac tttaaaaattt gtgggtggaa 300
 5 tagggtcatt aataactatg aatatatctt tttagaagggtg accattttgc actttaaagg 360
 gaatcaattt tgaaaatcat ggagactatt catgactaca gctaaagaat ggcgagaaag 420
 gggagctgga agagccttgg aagtttctat tacaaataga gcaccatata cttcatgcc 480
 aatctcaaca aaagctctt ttaactccat ctgtccagtg tttacaaata aactcgcaag 540
 10 gtctgaccag ttcttgtaa caaacataca tttgtgtgtc tttgtgtata cagcaatgca 600
 cagaaaaggc taccaggagc ctaatgcctc tttcaaacat tgggggaacc agtagaaaaa 660
 ggcagggctc cctaattgtcc attattacat ttccattccg aatgccagat gttaaaagtg 720
 cctgaagatg gtaacccagc tagtgaggaa taaatacccc accttgccca gtccacagag 780
 aaacaacagt agaaagaagg ggcaactctt tgctgcagag acaaagtgag tgtttttcg 840
 15 ccatggattt cagtcctctc ctccagacca gctgcttatt tcctcagggg cccagggaaat 900
 gttga

(2) INFORMATION ÜBER SEQ ID NO: 23:

20 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 213 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

25

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

30

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

35

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 23:

5 ggtctttct ttccttttt ttttccaaa agtggcttt tatttcttagt aacatataatt 60
 gtataaatac tctatTTTat atgcacttcc aaaaaagcga tataatttaa aagtTTTTT 120
 cattagaaat aaatgtataa aaataaaatat gttattatag gcatttatta ctaactatag 180
 tccttcttgg aaggaacacc caaaccataa cttataaagt acatgtaatt tatagtaaca 240
 tattttacta tatacatatg gaaaaaatca tatttcaca gaagagctga acagacattc 300
 10 accaggatac gactgttgga ccagctgctg gagatggacc tgctaccct cagcagcctc 360
 cccaccacaa gacaagtgtat ctcatgtcc ccaaaccctgt gggaccctgt tctacacacc 420
 tcattttgt tccggcgTTT catcctcTTT gtgtgattgt actgatttc atgagacaca 480
 agttacttct ttacatccat attccaaag cagggttaca tggtaggaaa gaaaggaagt 540
 tggaggtact aagctcattt gttctcctct agcttttacc agcatctaatt gcttcactgc 600
 15 ttttttcca ttgttagactt taatgcactt gaataaatac atggagttgt ttttcctca 660
 aaatgaatta cacaataaa gactgagatg gtccaaaaaa ggaaagagga agccatttgc 720
 gttatttcac gttgctgagc ctttctctca tggtaacaa tctgaagtt taattctcgg 780
 tagaaataat gtataaacat tctctgaaac catagcagcc ataaacagtg ctggtcaaag 840
 atcctattt tactccttcc tccccccattt gttagtgagg taaagtaaaa caggtcttag 900
 20 taaaatctca cttttctcctt acttttcat tcccaacccc catgatacta agtatttgat 960
 aagtaccagg aaacagggggt tgtaatagtt ctaactttt ttgacaatttgc ctttgcTTT 1020
 tctaaacttgc taatagatgt aacaaaagaa ataataataa taatgcccgg ggctttatta 1080
 tgctatatac ctgctcagag gttataataatc ctcactaact atcctatcaa atttgcaact 1140
 ggcagttac tctgatgatt caactcctt tctatctacc cccataatcc caccttactg 1200
 25 atacacctca ctggttactg gcaagatacg ctggatccct ccagccttct tgctttccct 1260
 gcaccagccc ttcctcaactt tgccTTGCC tcaaaagctaa caccacttaa accacttaac 1320
 tgcatttgc cattgtgcaa aagtctatga aatgtttagg tttctttaaa ggatcacagc 1380
 tctcatgaga taacaccctt ccatcatggg acagacactt caagcttctt ttttgtAAC 1440
 cttccacca ggtcttagaa catgatgacc actccccag ctggcactgg gggcaggat 1500
 30 ggtctgcaca aggtctgggt ctggctggct tcacttcctt tgccacactcg gaagcaggct 1560
 gtccattaaat gtctcggcat tctaccagtc ttctctgcca acccaattca catgacttag 1620
 aacattcgcc ccactcttca atgacccatg ctgaaaaagt gggatagca ttgaaagatt 1680
 ctttcttctt ctttacgaag taggtgtatt taattttagg tcgaagggca ttgcccacag 1740
 taagaacctg gatggtcaag ggctcttga gagggctaaa gctgcaattt ctttccaaatg 1800
 35 ccgcagagga gccgctgtac ctcaagacaaa caccttgcataatgtct tgctctaagg 1860
 tggacaaagt gtatgcacca ttaagaataat atgtgccatc agcagtttgc atggcaagaa 1920
 agctgccatt gttcctggat cccctctgggt tccgctgttt cacttcgatg ttggcggctc 1980
 cagttgaat tggatgata tcatgatatac caggtttgc actagtaact gatcctgata 2040
 ttttttaca agtagatcca tttccccccgc aaacaccaca tttatcaaac ttcttttgg 2100
 40 agtctatgtat gcgatcacaa ccagcttttca caca

(2) INFORMATION ÜBER SEQ ID NO: 24:

45 (i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 1626 Basenpaare

(B) TYP: Nukleinsäure

(C) STRANG: einzel

(D) TOPOLOGIE: linear

5 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

10 (iii) ANTI-SENSE: NEIN

10 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle

15 (vii) SONSTIGE HERKUNFT:

15 (A) BIBLIOTHEK: cDNA library

20 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 24:

ggacaatttc tagaatctat agtagtatca ggatatattt tgctttaaaa tatattttgg 60
ttattttgaa tacagacatt ggctccaaat tttcatctt gcacaatagt atgactttc 120
actagaacct ctcaacatctt gggactttg caaatatgag catcatatgt gttaaggctg 180
tatcatttaa tgctatgaga tacattgttt tctccctatg ccaaacaggt gaacaaacgt 240
25 agttgtttt tactgatact aaatgttggc tacctgtat tttatagttt gcacatgtca 300
gaaaaaggca agacaaaatgg cctcttgatc tgaatacttc ggcaaactta ttgggtcttc 360
attttctgac agacaggatt tgactcaata tttgttaggc ttgcgtagaa tggattacat 420
ggttagttagt cactggtaga aatggttttt agttattgac tcagaattca tctcaggatg 480
aatcttttat gtctttttat tgtaagcata tctgaattta ctttataaaag atggtttttag 540
30 aaagctttgt ctaaaaattt ggcttaggaa tggtaacttc atttcagtt gccaagggggt 600
agaaaaataa tatgtgtgtt gtatgttta tgtaacata ttatttaggtt ctatctatga 660
atgtatttaa atatttttca tattctgtga caagcattta taatttgcaa caagtggagt 720
ccathtagcc cagtggaaa gtcttggAAC tcaggttacc cttaaggat atgctggcag 780
ccatctctt gatctgtgct taaactgtaa tttatagacc agctaaatcc ctaacttgaa 840
35 tctggaatgc attagttatg ccttgtacca ttcccagaat ttcaaggggca tcgtgggtt 900
ggtctagtga ttgaaaacac aagaacagag agatccagct gaaaaagagt gatcctcaat 960
atcctaacta actggtcctc aactcaagca gagttcttc actctggcac tgtgatcatg 1020
aaacttagta gaggggattt tggatatttt atacaaattt aatacaatgt cttacattga 1080
taaaaattctt aaagagcaaa actgcatttt atttctgcat ccacattcca atcatattag 1140
40 aactaagata tttatctatg aagatataaa tggcagag agactttcat ctgtggattt 1200
cggtgtttct tagggttcct agcactgtt cctgcacaag catgtgatat gtgaaataaa 1260
atggatctt ctatagctaa atgagttccc tctgggaga gttctggatc tgcaatcaca 1320

atgccagatg gtgttatgg gctattgtg taagtaagt gtaagatgct atgaagtaag 1380
tgtgttggtt ttcatctt ggaaactctt gatgcattgtg cttttgtatg gaataaaattt 1440
tggtgcaata tgatgtcatt caacttgca ttgaattgaa ttttgggtgtt atttatatgt 1500
attatacctg tcacgcttct agttgcttca accattttt aaccattttt gtacatattt 1560
5 tacttgaaaa tattttaaat ggaaatttaa ataaacattt gatagttac ataataaaaa 1620
aaaaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 25:

10

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1420 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 15 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

20 (iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

(vi) HERKUNFT:

25 (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

30

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 25:

35 gttcagcatt gtttctgctt ctgaaatctg tatagtagcac tggtttgtaa tcattatgtc 60
ttcattgaaa tccttgctac ttctcttcct cctcaatgaa agacacgaga gacaagagcg 120

acacaagctt aagaaaaacg agcaaggaag agtatcttca ttattctcat tttctctgag 180
 ttggaaacaaa aaacatgaag gactccaact agaagacaga tatttacatt taaatagatt 240
 agtgggaaaaa ctttaagagt ttccacatat tagtttcat ttttgagtc aagagactgc 300
 tccttgtact gggagacact agtagtata 5 tattttataaa ggcccataaaa tactggtaa actctgttaa aagtggcct tctatcttgg 420
 atggtttcac tgccatcagc catgctgata tattagaaat ggcattcccta tctacttact 480
 ttaatgctta aaattataca taaaatgctt tatttagaaa acctacatga tacagtgg 540
 tcagccttgc catgtatcag tttcaacttga aatttgagac caattaaatt tcaactgttt 600
 agggtggaga aagaggtact ggaaaacatg cagatgagga tatctttat gtgcaacagt 660
 10 atccttgcg tggaggaga gttacttgc aaaggcaggc agcttaagtg gacaatgttt 720
 tgtatatagt tgagaatttt acgacacttt taaaaattgt gtaattgtt aatgtccagt 780
 tttgctctgt tttgcctgaa gtttttagtat ttgtttcta ggtggaccc taaaaaccaa 840
 accagtacct gggaggtta gatgtgttt tcaggcttgg agtgtatgag tggttttgc 900
 tgtatttcc tccagagatt ttgaacttta ataattgcgt gtgtgtttt tttttttaa 960
 15 gtggctttgt tttttttctt caagtaaaat tgtgaacata tttccttta aggggcaggg 1020
 catgagttag ggagactgaa gagtattgtt gactgtacat gtgccttctt aatgtgtttc 1080
 tcgacacatt tttttcagt aacttgaaaa ttcaaaaggg acatttggtt aggttactgt 1140
 acatcaatct atgcataaaat ggcagcttgtt tttcttgagc cactgtctaa attttgtttt 1200
 tataaaaaatt ttttatactg attggttcat agatggtcag ttttgacac agactgaaca 1260
 20 atacagcact ttgccaaaaa tgagtgttagc attgtttaaa cattgtgtgt taacacctgt 1320
 tctttgtaat tgggttgtgg tgcattttgc actacctgga gttacagttt tcaatctgtc 1380
 agtaaataaaa gtgtccttta acttcaaaaaa aaaaaaaaaaa

25 (2) INFORMATION ÜBER SEQ ID NO: 26:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 689 Basenpaare
- (B) TYP: Nukleinsäure
- 30 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

35

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

40 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 26:

aaacaaacaa aaaaaaaagtt agtactgtat atgtaaatac tagctttca atgtgctata 60
10 caaacatta tagcacatcc ttcctttac tctgtctcac ctcctttagg tgagtacttc 120
cttaaataag tgctaaacat acatatacgg aacttgaaag ctgggttag ccttgcctta 180
gtaatcagc ctatgttaca ctgttccag ggagtagttg aattactata aaccattagc 240
cacttgtctc tgaccattt atcacaccag gacagggctc ctcaacctgg gcgtactgt 300
15 catttggggc caggtgattc ttccctgcaa gggctgtcct gtacctgccc gggcggccgc 360
tcgaaggcgtg gtcgcggccg aggtactgaa aggaccaagg agctctggct gccctcagga 420
attccaaatg accgaaggaa caaagcttca gggctctggg tgggtgtctcc cactatttag 480
gaggtggtcg gaggttaacgc agttcattt cgtccagtcc ttccagttat taaaagttgt 540
tgtcaagatg ctgcattaaa tcagggcaggt ctacaaaggc atcccaagca tcaaacatgt 600
20 ctgtgatgaa gtaatcaatg aaacaccegga acctccgacc acctcctgaa tagtgggaga 660
cacacccaga gcctgaagtt tgtccttcg

(2) INFORMATION ÜBER SEQ ID NO: 27:

25 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 471 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

30

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

35 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

5 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 27:

10

tcccagcggc atgaagtggc agattggcca ggccctgtac ctgggcttca ttccttcgt 60
ccctctcgct cattgggtgc accctgcttt gcctgtcctg ccaggacgag gcaccctaca 120
agccctaacc caggccccgc ccagggccac cacgaccact gcaaacacccg cacctgccta 180
ccagccacca gctgcctaca aagacaatcg ggccccctca gtgacctcggt ccaccacagc 240
gggtacagggc tgaacgacta cgtgtgagtc cccacagcct gcttctcccc tgggctgctg 300
tgggctggtt cccggcgaaa ctgtcaatgg aggcaagggt tccagcacaa agtttacttc 360
tgggcaattt ttgtatccaa gaaaataatg tgaatgcgag gaaatgtctt tagagcacag 420
ggacagaggg gaaaataaga ggaggagaaa gctctctata ccaaagactg a

20

(2) INFORMATION ÜBER SEQ ID NO: 28:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 929 Basenpaare

25

(B) TYP: Nukleinsäure

(C) STRANG: einzel

(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

30

hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

35

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

5 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 28:

10

```

ggtaactca gtgcattggg ccaatggtc gacacaggct ctgccagcca caaccatcct 60
gctgttctg acggtttggc tgctgggtggg ctttccctc actgtcattt gaggcatctt 120
tggaaagaac aacgccagcc ccttgatgc accctgtcgc accaagaaca tcgcccggga 180
gattccaccc cagccctggt acaagtctac tgtcatccac atgactgtt gaggcttctt 240
gccttcagt gccatctctg tggagctgta ctacatctt gccacagtat ggggtcgaaa 300
gcagtagtact ttgtacggca tcctcttctt tgtcttcggcc atcctgctga gtgtggggc 360
ttgcatctcc attgcactca cctacttcca gttgtctggg gaggattacc gctgggtggg 420
gcgatctgtg ctgagttgtt gctccaccgg cctcttcattt ttcctctact cagttttcta 480
ttatgcccgg cgctccaaaca tgtctggggc agtacagaca gtagagtttct tcggctactc 540
cttactcaact ggttatgtct tcttcctcat gctgggcacc atctcccttt tttcttcctt 600
aaagttcatc cggatatatct atgttaacctt caagatggac tgagttctgt atggcagaac 660
tattgtcttt ctctccctt cttcatgccc tgttgaactc tcctaccaggc ttctcttctg 720
attgactgaa ttgtgtgttgc gcattgttgc ctcccttt tccctttggg cattccttcc 780
ccagagaggg cctggaaatt ataaatctt atcacataag gattatatat ttgaactttt 840
taagttgcct ttagtttgg tcctgatttt tcttttaca attaccaaaa taaaatttt 900
taagaaaaaa aaaaaaaaaa aaaaaaaaaa

```

(2) INFORMATION ÜBER SEQ ID NO: 29:

30

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1775 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 35 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

10 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 29:

15

```

gaacgtgatg ggaactttgg gaggatgtct gagaaaatgt ccgaagggat tttggccaaac 60
accagaaaac gccaatgtcc taggaattcc ctccccaaat gcttcccaa aaattactca 120
ttgacaattc aaattgcact tggctggcg cagcccgccc ggccttcagt ccgtgtgggg 180
cgcccgcgtg gccttctcct cgttaggactc cccaaactcg ttcaactctgc gtttatccac 240
20 aggataaaagc caccgctggt acaggttagac cagaaacacc acgtcgccc ggaagcaggc 300
cagccggta gacgtgggca tggtgatgat gaaggcaaag acgtcatcaa tgaaggtgtt 360
gaaaggccttgc taggtgaagg ccttccaggg cagatgtgcc actgacttca acttgttagtt 420
cacaaagagc tggggcagca tgaagaggaa accaaaggca tagaccggc tgacgaagct 480
gttgatttaac caggagtacc agctttata tttgatattc aggagtgaat agacagcacc 540
25 cccgacacag agagggtaca gcaggttatga caagtacttc atggcctgag tatcgtaactc 600
ctcggttttc ctctcagatt cgctgttaatg gccaaactga aattcgggca tcaggcctct 660
ccaaaaaaata gtcatcttca atgccttctt cactttccac agctcaatgg cggctccaaac 720
acccgccccgg accagcacca gcaggctcgt ctgctcgcc 780
cacggtgctg aagcagcgcc agagcactgc cttgggtggac atgcccgtca tgctcttttt 840
30 cttcttccag aaactgtatgt catttttaaa ggccaggaaa tcaaagagaa gatggAACGC 900
tgcgacaaag aaggctcaggcc ccaggaagta taagttgtt 960
ctcatcagca tctttctctg aaaacccgaa ctgctcgagg gactacacgg cgtcctgcat 1020
gtggatccag aagcgcagcc gccccagtga gaccttgcgt taggacacgg tgaggggcag 1080
ctcggtggtg gagcgggtta tgaccatcag gtccttcacg cggttgtga gctggtcgt 1140
35 gaacagggatg ggcaggtaat gcacggttt ccccaagctgg atcatttca tgtaccgtat 1200
cacatcgca ggcaggagg acccgtaaa gacaaagttt tccgcacatca cgttcagcgc 1260
cagccgcggc cgccagtggg acactggctc atccagggca ctcgtcggct tcttctccgc 1320
ctcgatctgc tgtgtatcag actccccggg gagcagggtt atttcttctg gtttggggac 1380
catgttaggtg gtcagaggac tgaccaggtt cacctgcattc cctgcgtgcc acggcaggac 1440
40 cccagcgtga tggaggaaga tgttaggcata cagcgccca ttgtttctcg ttttcttgg 1500
tacagaaaca ttaactgtcc tttcaattt ggactccaca tcaaagtctt ccacattcaa 1560
gaccaggctg atgttgttct cagcacccag gtgggacacctc gtcgtgggtgt acacgctcag 1620
ctgcagcttgc ggccgcgcg ccaggtaggg ctggatgcag ttggcgtcgc cggagcacgg 1680
gcgggtgttag acgatgccgt acatgaccca gcaggtgtgc accacgtaga ccacgaacac 1740
45 gcccaccacc aagctggtaa aggagctgcg gcccc

```


(2) INFORMATION ÜBER SEQ ID NO: 30:

(i) SEQUENZ CHARAKTERISTIK:

- 5 (A) LÄNGE: 4064 Basenpaare
 (B) TYP: Nukleinsäure
 (C) STRANG: einzel
 (D) TOPOLOGIE: linear

10 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

h hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

15 (iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 20 (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

25 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 30:

ATTTCCCTCCC GTTCTTTATC AGAGCCCCCA AAATAAGTAG GAATGGGCAG TGGCTATTCA 60
CATTCACTAC ACCTTTCCA TTTGCTAATA AGGCCCTGCC AGGCTGGGAG GGAATTGTCC 120
CTGCCTGCTT CTGGAGAAAG AAGATATTGA CACCATCTAC GGGCACCATG GAACTGCTTC 180
20 AAGTGACCAT TCTTTTCTT CTGCCAGTA TTTGCAGCAG TAACAGCACA GGTGTTTAG 240
AGGCAGCTAA TAATTCACTT GTTGTTACTA CAACAAAACC ATCTATAACA ACACCAAACA 300
CAGAACATT ACAGAAAAAT GTTGTACAC CAACAACCTGG AACAAACTCCT AAAGGAACAA 360
TCACCAATGA ATTACTTAAA ATGTCTCTGA TGTCAACAGC TACTTTTTA ACAAGTAAAG 420
35 ATGAAGGATT GAAAGCCACA ACCACTGATG TCAGGAAGAA TGACTCCATC ATTTCAAACG 480
TAACAGTAAC AAGTGTACCA CTCCCAAATG CTGTTTCAAC ATTACAAAGT TCCAAACCCA 540
AGACTGAAAC TCAGAGTTCA ATTAAAACAA CAGAAATACC AGGTAGTGTGTT CTACAACCGAG 600

	ATGCATCACC	TTCTAAAAC	GGTACATTAA	CCTCAATACC	AGTTACAATT	CCAGAAAACA	660
	CCTCACAGTC	TCAAGTAATA	GGCACTGAGG	GTGGAAAAAA	TGCAAGCACT	TCAGCAACCA	720
	GCCGGTCTTA	TTCCAGTATT	ATTTGCCGG	TGGTTATTGC	TTTGATTGTA	ATAACACTTT	780
5	CAGTATTGT	TCTGGTGGGT	TTGTACCGAA	TGTGCTGGAA	GGCAGATCCG	GGCACACCAG	840
	AAAATGGAAA	TGATCAACCT	CAGTCTGATA	AAGAGAGCGT	GAAGCTTCTT	ACCGTTAAGA	900
	CAATTTCTCA	TGAGTCTGGT	GAGCACTCTG	CACAAGGAAA	AACCAAGAAC	TGACAGCTTG	960
	AGGAATTCTC	TCCACACCTA	GGCAATAATT	ACGCTTAATC	TTCAGCTTCT	ATGCACCAAG	1020
	CGTGGAAAAG	GAGAAAGTCC	TGCAAGAATCA	ATCCCAGCTT	CCATACCTGC	TGCTGGACTG	1080
10	TACCAGACGT	CTGTCCCAGT	AAAGTGATGT	CCAGCTGACA	TGCAATAATT	TGATGGAATC	1140
	AAAAAGAAC	CCGGGGCTCT	CCTGTTCTCT	CACATTTAAA	AATTCCATTA	CTCCATTTAC	1200
	AGGAGCGTTC	CTAGGAAAAG	GAATTTAGG	AGGAGAATT	GTGAGCAGTG	AATCTGACAG	1260
	CCCAGGAGGT	GGGCTCGCTG	ATAGGCATGA	CTTCCCTTAA	TGTTTAAAGT	TTTCCGGGCC	1320
15	AAGAATTTTT	ATCCATGAAG	ACTTCCTAC	TTTCTCGGT	GTTCTTATAT	TACCTACTGT	1380
	TAGTATTAT	TGTTTACAC	TATGTTAATG	CAGGGAAAAG	TTGCACGTGT	ATTATTAAAT	1440
	ATTAGGTAGA	AATCATACCA	TGCTACTTTG	TACATATAAG	TATTTTATTC	CTGCTTTCGT	1500
	GTTACTTTA	ATAAATAACT	ACTGTACTCA	ATACTCTAA	AATACTATAA	CATGACTGTG	1560
	AAAATGGCAA	AAAATTGTC	TTCCCTATAAT	TATGAATATT	TTGGATGGA	TTATTAGAAT	1620
	ACATGAAC	ACTAATGAAA	GGCATTGTA	ATAAGTCAGA	AAGGGACATA	GGATTCACAT	1680
20	ATCAGACTGT	TAGGGGGAGA	GTAATTTATC	AGTTCTTGG	TCTTCTTATT	TGTCATTCCAT	1740
	ACTATGTGAT	GAAGATGTAA	GTGCAAGGGC	ATTTATAACA	CTATACTGCA	TTCATTAAGA	1800
	TAATAGGATC	ATGATTTTC	ATTAACTCAT	TTGATTGATA	TTATCTCCAT	GCATTTTTA	1860
	TTTCTTTAG	AAATGTAATT	ATTGTTCTA	GCAATCATTG	CTAACCTCTA	GTGGTAGAA	1920
	AATCAACACT	TTATAAATAC	ATAATTATGA	TATTATTTT	CATTGTATCA	CTGTTCTAAA	1980
	AATACCATAT	GATTATAGCT	GCCACTCCAT	CAGGAGCAAA	TTCTTCTGTT	AAAAGCTAAC	2040
25	TGATCAACCT	TGACCACTT	TTTGACATGT	GAGATCAAAG	TGTCAAGTTG	GCTGAGGTT	2100
	TTTGGAAAGC	TTTAGAACTA	ATAAGCTGCT	GGTGGCAGCT	TTGTAACGTA	TGATTATCTA	2160
	AGCTGATTTT	GATGCTAAAT	TATCTTAGTG	ATCTAAGGGG	CAGTTAGTG	AAGATGGAAT	2220
	CTTGTATT	AAATAGCCT	TTAAAATTG	TTTGTGGTG	ATGTATTTG	ACAACCTCCA	2280
	TCTTCTAGGAG	TTATATAATC	ACCTTGATT	TAGTTCCCTG	ATGTTGGAC	TATTATATAAT	2340
30	CAAGGACACC	AAGCAAGCAT	AAGCATATCT	ATATTCTGA	CTGGTGTCTC	TTTGAGAAGG	2400
	ATGGGAAGTA	AAAAAAA	AAAGAAAGAA	AGGAAAGGAA	GAGAGGAGAG	AAGAAGGCAG	2460
	GGATCTCCAC	TATGTATGTT	TTCACTTTAG	AACTGTTGAG	CCCATGCTTA	ATTTTAATCT	2520
	AGAAGTCTT	AAATGGTGAG	ACAGTGA	GAGCATGCCA	ATCAGAGAGC	ATTTGTCTC	2580
	AGAAAAAAA	AAAATCTGAG	TTTGAGACTA	GCCTGGCCAA	CATGTTGAAA	CCCCATATCT	2640
35	ACTAAAAATA	AAAAAATTAG	CCTGGTGTGG	TGGCGCACGC	CTGTAGTCCC	AGCTACTCTG	2700
	GAGCCTGAGG	AACGTGAATC	GCTGAACCC	AGAAGACAGA	GGTTGCAGTG	AGCTGAGATG	2760
	GCACTATTGC	ACTCCAGCCT	GGGTGACACA	GCAAGACTCT	GTCTAAAAAA	AAAAAAA	2820
	AAAAAAAGGAA	AAAAAAAGAAA	GAAAGAAAAA	AAAAAGAGAG	AGAGAGAGTC	CCAGCACACC	2880
	TAGATAATTT	ACCGAGCTCT	TCAGCAAAA	CCATGTTACA	TACAGCATAT	TCCAAAGAAA	2940
40	TGAACCTTC	TGCAATTAA	ATTATAAGTA	ATATGTTATT	TTGGATCCTA	GAGAAACCAT	3000
	TTTCTCTACA	TTTCATGAGC	ATTGTTAGAA	AAGAGTTTAC	AAGAATTAGG	AAGAGGGAAC	3060
	AATTTTAATG	GTCAGAAAAG	AATAAAATT	ATTCTAGTT	AAGAAGTGCA	CACAAAGAAT	3120
	ATGCATTAAT	CTAACAACTA	TGAGATTAAA	TCTTCAAAA	AGGTCAAAGG	AGGATTGAGA	3180
	AGTTTACAGA	GATGTCCACG	GCATTTATA	TCAATCTAA	AGGTAAGGTC	TGCATTTTA	3240
45	TAAACCAACT	TAAACTCTG	TTGAGATAGG	ATATTGTT	TTCAAGCCAA	AATTACCAT	3300
	AATCAAATAT	TTTTAATTA	TCTGATTAG	ATGATCTACT	TTTTATGCCT	GGCTTACTGT	3360
	AAGTTTTA	TTCTGATACA	CAGTTCAAC	ATCATTGCAA	CAAAGAAGTG	CCTGTATTTA	3420
	GATCAAAGGC	AAGACTTCT	ATGTGTTGT	TTTGCTATAAT	AATATGAATA	TAATTAAGT	3480
	CTATCAATAG	TCAAAACATA	AACAAAAGCT	AATTAACTGG	CACTGTTGTC	ACCTGAGACT	3540
50	AAGTGGATGT	TGTTGGCTGA	CATACAGGCT	CAGCCAGCAG	AGAAAGAATT	CTGAATTCCC	3600
	CTTGCTGAAC	TGAACATTTC	TGTACATAT	GGTTGACAAA	TCTGTGTGTT	ATTTCTTTC	3660
	TACCTACCAT	ATTAAATT	ATGAGTATCA	ACCGAGGACA	TAGTCAAACC	TTCGATGATG	3720
	AACATTCTG	ATTTTTGCC	TGATTAATCT	CTGTTGAGCT	CTACTTGTGG	TCATTCAAGA	3780
	TTTATGATG	TTGAAAGGAA	AAGTGAATAT	GACCTTAAA	AATTGTATTT	TGGGTGATGA	3840
55	TAGTCTCACC	ACTATAAAAC	TGTCAATTAT	TGCCTAATGT	TAAAGATATC	CATCATTGTG	3900
	ATTAATTAAA	CCTATAATGA	GTATTCTAA	TGGAGAATT	TTAATGGATG	GATTATCCCC	3960
	TGATCTTT	TTTAAATT	CTCTGCACAC	ACAGGACTTC	TCATTTCCA	ATAAATGGGT	4020
	GTACTCTGCC	CCAATTCTA	GGGAAAAAA	AAAAAAA	AAAA		

(2) INFORMATION ÜBER SEQ ID NO: 31:

(i) SEQUENZ CHARAKTERISTIK:

- 5 (A) LÄNGE: 750 Basenpaare
 (B) TYP: Nukleinsäure
 (C) STRANG: einzel
 (D) TOPOLOGIE: linear

10 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

15 (iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
 (C) ORGAN: Endothelzelle

20 (vii) SONSTIGE HERKUNFT:
 (A) BIBLIOTHEK: cDNA library

25 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 31:

cacttggca cccccatttt ctaaaaaaat ggaaatctgg agggcaaaaa aggtgtgctg 60
aagggaagtg cctctgatgg cccaaaaacc ttcttcctaa ctatgttagg aatggaatgg 120
30 atagcaaatg gatcctttt ggcctcctt ggagcatgcc ttcccttatct tattctggc 180
cccactaaag cagaacgtta cgatatttc tgttttgcc attggatgcc tatctggcca 240
aacagcctt ccctaattgg aaaatgcagt cctgtttaaa accttgatt tacgactact 300
tgtacatgct tgctcattac aattttgaca tttttacat agtgaagacc ccaaacatat 360
cagtgaaaca tgacaagatc ataaaagaaca gtatcatatt attatttagt cgctttaca 420
35 gtggcaagcc aattttgaaa tatctcattt aaaactcaga cccaaatcac tgagttatac 480
tttaatagc ttccctcagca cactatccc catgcattaa atatgataaa ataatctatc 540
actgcccatac ggtcttgtaa aaaggaagtc tgaatacaga gcccacaaca ctaaaattgt 600

ttttctagct acaaagtata gcatcatcaa cacagacacg atttggactc cctgacaggt 660
ggattggaaa acggtgttta aagagaagag aacattttaa cataaatgtc attaagaatc 720
ccaaaggcct tatttgtcac caccgtcccg

5

(2) INFORMATION ÜBER SEQ ID NO: 32:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1620 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

15 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

20

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

25 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 32:

gcaattcccc cctcccaacta aacgactccc agtaattatg tttacaaccc attggatgca 60
gtgcagccat tcataagaac cttggtgccc cagaaaaatc tgcctttt ggtaccaaac 120
ctgaggtctt ttggaagata atgtagaaaa ccactaccta ttgaaggcct gttttggcta 180
35 atctgtgcaa actctgtatga tacctgcctt atgtggattc tttccacac tgcttcatt 240
tttaagtata aagacttaga aaactagaat aatgctttt caaataatta aaagtatgtg 300

atgttctggg tttttcctt ctttttagaa ccccgctcc atttaaaaaa taaaaaaaaa 360
 aaaaaaaaaact tttaacattt aaaaaataaa aattaacaaa attcactta ttccaggaca 420
 cgctggcatt tggactcaat gaaaagggca cctaaagaaa ataaggctga ctgaatgtt 480
 5 tccataattt tcacacaata acagtccctt tctatccagc ttgccttcca tttatctcta 540
 gggtagctt ttcaggcaac atccttggtc attgcccaga aagtacctga gctatcagt 600
 attggaatgg cacaggaaac cgaatcacat gggccctc ccctgggtt tcaagtatct 660
 tggagttgtg cacaattt aggtcatgcc ttcatgtct tttctttaa acctaccctt 720
 tgacaatcag gtgctaata ttttataacta tttaaaccag cacataagta ttgtaaatgt 780
 gtgttccccc taggttggaa gaaatgtctt tccttctatc tgggtccctgt taaagcgggt 840
 10 gtcagttgtg tctttcacc tcgatttgta aattaataga attggggga gagggaaatga 900
 tgatgtcaat taagtttcag gtttggcatg atcatcattc tcgatgatat tctcaacttg 960
 tcgcaaatct gcccttatcg taagaacaag tttcagaatt tccctccac tatacgactc 1020
 cagtattatg ttacaatcc attggatgag tgcagcatta taagacctt gtgcccagaa 1080
 15 aaatctgtcc ttttggtaa caaacctgag gtcttttggaa agataatgt aaaaaccact 1140
 acctatttggaa ggcctgttt ggctaatctg tgcaaactct gatgataacct gcttatgtgg 1200
 attctttcc acactgctt catttttaag tataaagact tagaaaacta gaataatgct 1260
 tttacaataa attaaaagta tgtatgttc tgggtttt ctttctttt agaaccctgt 1320
 atttaaacaa gccttctttt taagtcttgt ttgaaattt agtctcaat cttctggata 1380
 ccaaataacaa aacccaacgc gtaaaacagg gcagtattt tttccctaaat tttaaaaagc 1440
 20 ttatgtata ctctataat atagatgcat aaacaacact tccccttgag tagcacatca 1500
 acatacagca ttgtacatta caatgaaaat gtgtactta agggtattat atatataat 1560
 acatataatac ctttgttaacc tttatactgt aaataaaaaa gttgcttttag tcaaaaaaaaa 1620

25 (2) INFORMATION ÜBER SEQ ID NO: 33:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 2968 Basenpaare
- (B) TYP: Nukleinsäure
- 30 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

h rgestellte partielle cDNAs

35

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

40 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

5

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 33:

10	aaaaaaagtag aaggaaaacac agttcatata gaagtaaaag aaaaccctga agaggaggag 60
	gaggaggaag aagaggaaga agaagatgaa gaaagtgaag aggaggagga agaggaggga 120
	gaaagtgaag gcagtgaagg tcatgaggaa gatgaaaagg tgtcagatga gaaggattca 180
	gggaagacat tagataaaaaa gccaagtaaa gaaatgagct cagattctga atatgactct 240
	gatgtatgtc ggactaaaga agaaaggcgt tatgacaaag caaaacggag gattgagaaa 300
15	cggcgacttg aacatagtaa aaatgtaaac accgaaaagc taagagcccc tattatctgc 360
	gtacttggc atgtggcac acggaaagaca aaaattctag ataagctccg tcacacacat 420
	gtacaagatg gtgaagcagg tggtatcaca caacaaattt gggccaccaa tgccctctt 480
	gaagctatta atgaacagac taagatgatt aaaaattttt atagagagaa tgtacggatt 540
	ccaggaatgc taattattga tactcctgg catgaatctt tcagtaatct gagaatata 600
20	ggaagctctc tttgtgacat tgccattttt gttgttata ttatgcattgg tttggagccc 660
	cagacaattt agtctatcaa ccttctcaaa tctaaaaaat gtccttcattt tggtgcactc 720
	aataagattt ataggttata tgattggaaa aagagtctt actctgtatgt ggctgctact 780
	ttaaagaagc agaaaaaagaa tacaaaagat gaatttgagg agcgagcaaa ggctattatt 840
	gtagaattt cacagcaggg tttgaatgct gctttttt atgagaataa agatccccgc 900
25	acttttgtt ctgttgcatt tacctctgca catactggg atggcatggg aagtctgatc 960
	taccttctt tagagttaa tcagaccatg ttgagcaaga gacttgcaca ctgtgaagag 1020
	ctgagagcac aggtgtatgga ggttaaagct ctcccccggg tggccaccac tatagatgtc 1080
	atcttgcattca atggcggtt gaaggaagga gatacaatca ttgttcttgg agtagaaggg 1140
	cccatgttta ctcagattcg aggccctctg ttaccccttc ctatgaagga attacgagtg 1200
	aagaaccagt atgaaaagca taaaagaagta gaagcagctc agggggtaaa gattcttgg 1260
30	aaagacctgg agaaaaacatt ggctggttt cccctcctt tggcttataa agaagatgaa 1320
	atccctgttc ttaaagatga attgatccat gagttaaagc agacactaaa tgctatcaaa 1380
	ttagaagaaa aaggagtcta tgcaggca tctacactgg gttctttgg agctctactg 1440
	gaatttctga aaacatcaga agtccctat gcaggaattt acattggccc agtgcataaa 1500
	aaagatgtt tgaaggcttc agtgcatttgc agacatgacc ctcagtatgc agtaattttt 1560
35	gccttcgtatg tgagaatttgc acgagatgca caagaaaatgg ctgatagttt aggagttgg 1620
	atttttgtt cagaaattttt ttatcatttt tttgtatgcct ttacaaaata tagacaagac 1680
	tacaagaaac agaaacaaga agaattttaag cacatagcag tatttccctg caagataaaa 1740
	atccctccctc agtacatttt taattctcgat gatccgatag tggatgggtt gacggtgaa 1800
40	gcaggcagg tggaaacaggg gacacccatg tggatcccac gcaaaaattt tggtgacatc 1860
	ggaatagtaa caagtatttgc aataaaccat aaacaagtgg atgtgcataaa aaaaggacaa 1920
	gaagtttgtt taaaaataga acctatccctt ggtgagtccac ccaaaaatgtt tggaaagacat 1980
	tttgaagctt cagatattttt tggatgttgc atcagccggc agtccattga tgcactcaaa 2040
	gactggttca gagatgaaat gcaaaagagt gactggcagc ttattgtgg gctgaagaaa 2100
	gtattttgaaa tcatcttatttttccatg gacccatggc tggagtaat gcaataactgt 2160
45	gttgtatatat cccaaacaaaa atcagacaaa aaatggaaaca gacgtatttgc gacactgtatg 2220
	gacttaagta tggaaaggaa aaaaataggt gtataaaaatg tttccatga gaaacccaaga 2280
	aacttacact ggtttgcac agtccatttttgc atcagccggc cagttccat gtgcctgttc 2340
	actcacttccctt cccttccccca acccttcttccactt gatccatggc tggatggatgg 2400
	cccaaattt gatttttattt acagatctaa agcttttcg attttataact gattaaatca 2460
50	gtactgcattt atttgcatttttgc gcaatggggc tttatgcata ttcttccccca agtgcattttt ccagcattctt 2520
	acgtaaagaaa tacttcttgc tttatgcata ttcttccccca agtgcattttt ccagcattctt 2580
	tctgcattat gcctttaggg cttttataaa atagaaaattt aggcattcttgc atatttctt 2640

5 agctgcttg tgtgaaacca tgggtaaaa gcacagctgg ctgctttta ctgcttgcgt 2700
agtcacgagt ccattgtaat catcacaatt ctaaaccaaaa ctaccaataa agaaaaacaga 2760
catccaccag taagcaagct ctgttaggct tccatggta gtggtagctt ctctcccaca 2820
agttgtcctc ctaggacaag gaattatctt aacaaactaa actatccatc acactacctt 2880
ggtatgccag cacctggta acagtaggag attttataca ttaatctgat ctgtttaatc 2940
tgatcggtt agtagagatt ttatacat

(2) INFORMATION ÜBER SEQ ID NO: 34:

10

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 6011 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 15 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

20

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

(vi) HERKUNFT:

25

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 34:

35

	ACGGGGCGCC	GGACGACCCG	CACATCTTAT	CCTCCACGCC	CCACTCGCAC	TCGGAGCGGG	60
	ACCGCCCCGG	ACTCCCCCTC	GGGCCGGCCA	CTCGAGGAGT	GAGGAGAGAG	GCCGCCGGCC	120
	CGGCTTGAGC	CGAGCGCAGC	ACCCCCCGCG	CCCCCGGCCA	GAAGTTTGGT	TGAACCGGGC	180
5	TGCCGGGAGA	AACTTTTTC	TTTTTCCCC	CTCTCCCGG	AGAGTCTCTG	GAGGAGGAGG	240
	GGAACCTCCC	CGGCCCAAGG	CTCGTGGGCT	CGGGGTCGCG	CGGCCGCAGA	AGGGGCGGGG	300
	TCCGCCCGCG	AGGGGAGGCG	CCCCCGGGGA	CCCGAGAGGG	GGGTGAGGAC	CGCgggCTGC	360
	TGGTGCGGCG	GCGGCAGCGT	GTGCCCCGCG	CAGGGGAGGC	GCCGCCCGC	TCCC GGCCCG	420
	GCTGCGAGGA	GGAGGCAGCG	GCGGCAGCAGG	AGGATGTACT	TGGTGGCGGG	GGACAGGGGG	480
10	TTGGCCGGCT	GCGGGCACCT	CCTGGTCTCG	CTGCTGGGC	TGCTGCTGCT	GCCGGCGCGC	540
	TCCGGCACCC	GGGCGCTGGT	CTGCCTGCC	TGTGACGAGT	CCAAGTGCAG	GGAGCC CAGG	600
	AACCGCCCGG	GGAGCATCGT	GCAGGGCGTC	TGCGGCTGCT	GCTACACCGT	CGCCAGCCAG	660
	GGGAACGAGA	GCTGCGCGG	CACCTTCGGG	ATT TACGGAA	CCTGCAGACCG	GGGGCTGCGT	720
	TGTGTATCC	GCCCCCCGCT	CAATGGCAGC	TCCCTCACCG	AGTACGAAGC	GGGC GTTTGC	780
15	GAAGATGAGA	ACTGGACTGA	TGACCAACTG	CTTGGTTTA	AACCATGCAA	TGAAAACCTT	840
	ATTGCTGGCT	GCAATATAAT	CAATGGGAA	TGTGAATGTA	ACACCATTG	AACCTGCAGC	900
	AATCCCTTG	AGTTTCCAAG	TCAGGATATG	TGCCTTCAG	CTTTAAAGAG	AATTGAAGAA	960
	GAGAACCGAG	ATTGCTCCAA	GGCCCGCTGT	GAAGTCCAGT	TCTCTCCACG	TTGTCTGAA	1020
	GATTCTGTT	TGATCGAGGG	TTATGCTCCT	CCTGGGAGT	GCTGTCCCTT	ACCCAGCCGC	1080
20	TGCGTGTGCA	ACCCCGCAGG	CTGCTCTGCC	AAAGTCTGCC	AGCCGGGAAA	CCTGAACATA	1140
	CTAGTGTCAA	AAGCCTCAGG	GAAGCCGGGA	GAGTGTGTG	ACCTCTATGA	GTGCAAACCCA	1200
	GT TTT CGGCG	TGGACTGCAG	GA C TGT GGA A	TGCCCTACTG	TTCAGCAGAC	CGCGTGTCCC	1260
	CCGGACAGCT	ATGAAA CTCA	AGTCAGACTA	ACTGCAGATG	GTTGCTGTAC	TTTGCCAAACA	1320
	AGATGCGAGT	GTCTCTCTGG	CTTATGTGGT	TTCCCCGTGT	GTGAGGTGGG	ATCCACTCCC	1380
25	CGC ATAGTCT	CTCGTGGCGA	TGGGACACCT	GGAAAGTGT	GTGATGTCTT	TGAATGTGTT	1440
	AATGATACAA	AGCCAGCCTG	CGTATTTAAC	AATGTGGAAT	ATTATGATGG	AGACATGTTT	1500
	CGAATGGACA	ACTGTCGGTT	CTGTCGATGC	CAAGGGGGCG	TTGCCATCTG	CTTCACCGCC	1560
	CAGTGTGGTG	AGATAAACTG	CGAGAGGTAC	TACGTGCCG	AAGGAGAGTG	CTGCCAGTG	1620
	TGTGAAGATC	CAGTGTATCC	TTTTAATAAT	CCC GCTGGCT	GCTATGCCA	TGGCCTGATC	1680
	CTTGGCCCACG	GAGACCGGTG	GC GGG AAGAC	GACTGCACAT	TCTGCCAGTG	CGTCAACGGT	1740
30	GAACGCCACT	GGGTTGCGAC	CGTCTGCCGA	CAGACCTGCA	CAAACCCGTG	GAAAGTGCCT	1800
	GGGGAGTGT	GCCCTGTGTG	CGAAGAACCA	ACCATCATCA	CAGTTGATCC	ACCTGCATGT	1860
	GGGGAGTTAT	CAAAC TGCA C	TCTGACACGG	AAGGACTGCA	TTAATGGTT	CAAACGCGAT	1920
	CACAATGGTT	GTCGGACCTG	TCAGTGCATA	AACACCCAGG	AACTATGTT	AGAACGTAAA	1980
	CAAGGCTGCA	CCTTGAACTG	TCCCTTCGGT	TTCCTTACTG	ATGCCAAAAA	CTGTGAGATC	2040
35	TGTGAGTGCC	GCCCAGGGC	CAAGAAGTGC	AGACCCATAA	TCTGTGACAA	GTATTGTCCA	2100
	CTTGGATTGC	TGAAGAATAA	GCACGGCTGT	GACATCTGTC	GCTGTAAGAA	ATGTCCAGAG	2160
	CTCTCATGCA	GTAAGATCTG	CCCCTTGGGT	TTCCAGCAGG	ACAGTCACGG	CTGTCTTATC	2220
	TGCAAGTGCA	GAGAGGCCTC	TGCTTCAGCT	GGGCCACCCA	TCCTGTGCGG	CACTTGCTC	2280
	ACCGTGGATG	GTCATCATCA	TAAAAATGAG	GAGAGCTGGC	ACGATGGGTG	CCGGGAATGC	2340
40	TACTGCTCA	ATGGACGGGA	AATGTGTGCC	CTGATCACCT	GCCC GG TGCC	TGCCCTGTGGC	2400
	AACCCCACCA	TTCACCCCTGG	ACAGTGTGTC	CCATCATGTG	CAGATGACTT	TGTGGTGCAG	2460
	AAGCCAGAGC	TCAGTACTCC	CTCCATTGTC	CACGCCCTG	GAGGAGAATA	CTTTGTGGAA	2520
	GGAGAAAACGT	GGAACATTGA	CTCCTGTACT	CAGTGCACCT	GCCACAGCGG	ACGGGTGCTG	2580
	TGTGAGACAG	AGGTGTGCC	ACCGCTGCTC	TGCCAGAAC	CCTCACGCAC	CCAGGATTCC	2640
45	TGCTGCCAC	AGTGTACAGA	TCAACCTTT	CGGCCTTCCT	TGTCCCGCAA	TAACAGCGTA	2700
	CCTAATTACT	GCAAAATGAA	TGAAGGGGAT	ATATTCTGG	CAGCTGAGTC	CTGGAAAGCCT	2760
	GACGTTTGTA	CCAGCTGCAT	CTGCATTGAT	AGCGTAATT	GCTGTTCTC	TGAGTCCTGC	2820
	CCTTCTGTAT	CCTGTGAAAG	ACCTGTCTG	AGAAAAGGCC	AGTGTGTCC	CTACTGCATA	2880
	AAAGACACAA	TTCCAAAGAA	GGTGGTGTGC	CACTTCAGTG	GGAAGGCC	TGCCGACGAG	2940
50	GAGCGGTGGG	ACCTTGACAG	CTGCACCCAC	TGCTACTGCC	TGCAGGGCCA	GACCCTCTGC	3000
	TCGACCGTCA	GCTGCCCTCC	TCTGCCCTGT	GTTGAGGCCA	TCAACGTGGA	AGGAAGTTGC	3060
	TGCCCAATGT	GTCCAGAAAT	GTATGTCCCA	GAACCAACCA	ATATACCCAT	TGAGAAGACA	3120
	AACCATCGAG	GAGAGGTTGA	CCTGGAGGTT	CCCCTGTGGC	CCACGCCCTAG	TGAAAATGAT	3180
	ATCGTCCATC	TCCCTAGAGA	TATGGGTAC	CTCCAGGTAG	ATTACAGAGA	TAACAGGCTG	3240
55	CACCCAAGTG	AAGATTCTC	ACTGGACTCC	ATTGCCTCAG	TTGTGGTTCC	CATAATTATA	3300
	TGCCTCTCTA	TTATAATAGC	ATT CCTATT	ATCAATCAGA	AGAAACAGTG	GATACC ACTG	3360
	CTTGCTGGT	ATCGAACACC	AACTAAGCCT	TCTTCCTTAA	ATAATCAGCT	AGTATCTGTG	3420
	GACTGCAAGA	AAGGAACCAG	AGTCCAGGTG	GACAGTCCC	AGAGAATGCT	AAGAATTGCA	3480

	GAACCAGATG	CAAGATTCA	TGGCTTCTAC	AGCATGC	AAA	AACAGAACCA	TCTACAGGCA	3540
	GACAATTCT	ACCAAACAGT	GTGAAGAAAG	GCAACTAGGA	TGAGGTTCA	AAAGACGGAA	3600	
	GACGACTAA	TCTGCTCTAA	AAAGTAAACT	AGAATTGTG	CACTTGCTTA	GTGGATTGTA	3660	
5	TTGGATTGTG	ACTTGATGTA	CAGCGCTAAG	ACCTTACTGG	GATGGGCTCT	GTCTACAGCA	3720	
	ATGTGCAGAA	CAAGCATTCC	CACTTTCT	CAAGATAACT	GACCAAGTGT	TTTCTTAGAA	3780	
	CCAAAGTTT	TAAAGTTGCT	AAGATATATT	TGCCTGTAAG	ATAGCTGTAG	AGATATTG	3840	
	GGTGGGGACA	GTGAGTTGG	ATGGGGAAAG	GGGTGGGAGG	GTGGTGTGG	GAAGAAAAAT	3900	
	TGGTCAGCTT	GGCTCGGGGA	GAAACCTGGT	AACATAAAAG	CAGTTCAGTG	GCCCAGAGGT	3960	
10	TATTTTTTC	CTATTGCTCT	GAAGACTGCA	CTGGTTGCTG	CAAAGCTCAG	GCCTGAATGA	4020	
	GCAGGAAACA	AAAAAGGCCT	TGCGACCCAG	CTGCCATAAC	CACCTTAGAA	CTACCAGACG	4080	
	AGCACATCAG	AACCCTTGA	CAGCCATCCC	AGGTCTAAAG	CCACAAGTT	CTTTCTATA	4140	
	CAGTCACAAC	TGCAGTAGGC	AGTGAGGAAG	CCAGAGAAAT	GCGATAGCGG	CATTCTCTA	4200	
	AAGCGGGTTA	TTAAGGATAT	ATACAGTTAC	ACTTTTGCT	GCTTTATTT	TCTTCCAAGC	4260	
	CAATCAATCA	GCCAGTTCC	AGCAGAGTC	GCACATGAAC	AAGATCTAAG	TCATTTCTT	4320	
15	ATGTGAGCAC	TGGAGCTTT	TTTTTTTACA	ACGTGACAGG	AAGAGGAGGG	AGAGGGTGAC	4380	
	GAACACCAGG	CATTTCCAGG	GGCTATATTT	CACTGTTGT	TGTTGTTTG	TTCTGTTATA	4440	
	TTGTTGGTTG	TTCATAGTTT	TTGTTGAAGC	TCTAGCTTAA	GAAGAAACTT	TTTTAAAAAA	4500	
	GACTGTTGG	GGATTCTTT	TCCTTATTAT	ATACTGATT	TACAAAATAG	AAACTACTTC	4560	
20	ATTTTAATTG	TATATTATT	AAGCACCTT	GTTGAAGCTC	AAAAAAAATG	ATGCCTCTT	4620	
	AAACCTT	AAATTATAGGA	GTATTATGT	AACTATCTT	TGCTTCAAAA	AACAAAAGTA	4680	
	TTTGTGTGCA	TGTGTATATA	ATATATATAT	ATACATATAT	ATTTATACAC	ATACAATT	4740	
	TGTTTCTG	TTGAATGTAT	TTTTATGAGA	TTTTAAC	AACAAAGGCA	GATAAACAGG	4800	
	CATTCCATAG	CAGTGCTTT	GATCACTTAC	AAATTTTTG	AATAACACAA	AATCTCATTC	4860	
	TACCTGCA	TTAATTGGAA	AGATGTGTGT	GTGAGAGTAT	GTATGTGT	GTGTGTGTGT	4920	
25	GTGTGTGCGC	GCGCACGCAC	GCCTTGAGCA	GTCAGCATTG	CACCTGCTAT	GGAGAAGGGT	4980	
	ATTCC	AAAATCTTC	CTCATTTGGA	TTTGCTTCA	GTTGGTTTC	AATTGCTCA	5040	
	CTGGCCAGAG	ACATTGATGG	CAGTTCTTAT	CTGCATCACT	AATCAGCTCC	TGGATTTTT	5100	
	TTTTTTTT	TCAAACAAATG	GTTTGAAACA	ACTACTGGAA	TATTGTCAC	AATAAGCTGG	5160	
	AAGTTTGTG	TAGTATGCC	CAAATATAAC	TGACTGTATA	CTATAGTGGT	AACTTTCAA	5220	
30	ACAGCCCTTA	GCAC	TTTACTAATTAAAC	CCATTGTC	ATTGAGTTT	CTTTAAAAAA	5280	
	TGCTTGTGT	GAAAGACACA	GATACCCAGT	ATGCTTAACG	TGAAAAGAAA	ATGTGTTCTG	5340	
	TTTGTTAAAG	GAAC	TTCAA	AAATACTTGG	ACAGAGGTTG	CTGAAC	5400	
	AAAAAAATTA	ATTATTATT	ATAATGACCT	AATT	TCTGAAGATT	AACCATT	5460	
	TTGTCTT	AGA	TTAA	AAAGGTGTTCT	AGCTGTTGC	ATCAAAGGAA	5520	
35	AAAAAGATT	ATTATCAAGG	GGCAATATT	TTATCTT	CAA	AAATAAT	TTGTTAATGA	5580
	TACATTACAA	AAATAGATTG	ACATCAGCCT	GATTAGTATA	AATT	TTGTT	GTAATTAA	5640
	CATTCTGGC	ATAAAAAGTC	TTTATCAA	AAAATGTAG	ATGCTGCTT	TTGTT	5700	
	CAATCATGGC	CATATTATGA	AAATAC	AGGATATAGG	ACAAGGTGTA	AATT	TTA	5760
	TTATTATTT	AAAGATATGA	TTTATCCTGA	GTGCTGTATC	TATT	ACTCTT	TTACTTTGGT	5820
40	TCCTGTTGTG	CTCTTGTA	AGAAAAATAT	AATT	CCTGA	AGAATAAAAT	AGATATATGG	5880
	CACTTGGAGT	GCATCATAGT	TCTACAGTT	GT	TGTTGT	TCTTCA	AAAAAGCTGTAA	5940
	GAATTATCTG	CAACTTGATT	CTTGGCAGGA	AATAAACATT	TTGAGTGAA	ATCA	AAAAAAA	6000
	AAAAAA	A						

(2) INFORMATION ÜBER SEQ ID NO: 34a:

50 (i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 1036 Aminosäuren

(B) TYP: Nukleinsäure

(C) STRANG: einzel

(D) TOPOLOGIE: linear

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

5 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 34a:

Von Seq. ID No. 34 abgeleitete Protein-Sequenz, Start: 454bp, Stop: 3559bp

10	MYLVAGDRGL AGCGHLLVSL LGLLLLPARS GTRALVCLPC DESKCEEPRN RPGSIVQGVC 60 GCCYTCASQG NESCGGTFGI YGTCDRGLRC VIRPPLNGDS LTEYEAGVCE DENWTDDQLL 120 GFKPCNENLI AGCNIINGKC ECNTIRTCVN PFEFPSSQDMC LSALKRIEEE KPDCSKARCE 180 VQFSPRCPED SVLIEGYAPP GECCPLPSRC VCNPAGCLRK VCQPGNLNIL VSKASGKPGE 240 CCDLYECKPV FGVDCRTVEC PTVQQTACPP DSYETQVRLT ADGCCTL PTR CECLSGLCGF 300
15	PVCEVGSTPR IVSRGDGTPG KCCDVFECVN DTKPACVFNN VEYYDGDMFR MDNCRFCRCQ 360 GGVAICFTAQ CGEINCERYY VPEGECCPVC EDPVYPFNNP AGCYANGLIL AHGDRWREDD 420 CTFCQCVNGE RHCVATVCGQ TCTNPVKVPG ECCPVCEPT IITVDPPACG ELSNCTLTRK 480 DCINGFKRDH NGCRTQCIN TQEELCSERKQ GCTLNCPFGF LTDAQNCEIC ECRPRPKKCR 540 PIICDKYCPPII GLLKNKHGCD ICRCKKCPEL SCSKICPLGF QQDSHGCLIC KCREASASAG 600
20	PPILSGTCLT VDGHHHKNEE SWHDGCRCY CLNGREMCAL ITCPVPACGN PTIHPGQCCP 660 SCADDFFVVQK PELSTPSICH APGGEYFVEG ETWNIDSCTQ CTCHSGRVLC ETEVCPPPLC 720 QNPSRTQDSC CPQCTDQPFM PSLSRNNNSVP NYCKNDEGDI FLAAESWKPD VCTSCICIDS 780 VISCFSESCP SVSCERPVLR KGQCCPYCIK DTIPKKVVCH FSGKAYADEE RWLDLDSCTHC 840 YCLQGQTLCS TVSCPPLPCV EPINVEGSCC PMCPEMYVPE PTNIPIEKTN HRGEVDLEV 900
25	LWPTPSENDI VHLPRDMGHL QVDYRDNRLH PSEDSSLDSI ASVVVPIIIC LSIIIAFLFI 960 NQKKQWIPLL CWYRTPTKPS SLNNQLVSVD CKKGTRVQVD SSQRMLRIA PDARFSGFYS 1020 MQKQNHLQAD NFYQTV

30

(2) INFORMATION ÜBER SEQ ID NO: 35:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 716 Basenpaare

35 (B) TYP: Nukleinsäure

(C) STRANG: einzel

(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

40 hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

10 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 35:

15

gcagtacctg gagtgtcctg cagggggaaa gcgaaccggg ccctgaagtc cggggcagtc 60
acccggggct cctgggccgc tctgccggc tggggcttag cagcgatcct gctttgtccc 120
agaagtccag agggatcagc cccagaacac accctctcc cccggacgcc gcaagcttct 180
ggaggcttag gaaggcatga agagtggct ccacctgctg gccgacttag aaaagaattt 240
20 ccagaactcg gtcctatattt acagatttag aaactatggt tcaagaagag aggacggggc 300
ttgagggaat ctccctgattc tccttatatg acctcaaact gaccatacta aacagtgttag 360
aaggctttt taaggctcta aatgtcaggg tctcccatcc cctgatgcct gacttgtaca 420
gtcagtgtgg agtagacggt ttccctccacc cagggttgac tcagggggat gatctgggtc 480
25 ccattctgtt cttaagaccc caaaacaaggg ttttttcagc tccaggatct ggagcctcta 540
tctggtagt gtcgttaacct ctgtgtgcct cccgttaccc catctgtcca gtgagctcag 600
cccccatcca cctaacagagg tggccacagg gattacttag ggttaagacc ttagaactgg 660
gtcttagcacc cgataagagc tcaataaaatg ttgttcctt ccacatcaaa aaaaaa

30 (2) INFORMATION ÜBER SEQ ID NO: 36:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 395 Basenpaare
- (B) TYP: Nukleinsäure
- 35 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
herg stellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

10 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 36:

20 ccaataacttc attttcatt ggtggagaag attgttagact tctaaggcatt ttccaaataaa 60
aaaagctatg atttgatttc caactttaa acattgcatt tccttgcctt tttactacat 120
tctccaaaaa aacccttgaaa tgaagaaggc cacccttaaa atacttcaga ggctgaaaat 180
atgattatta catttggaaatc cttagccta tgtgatattt cttaacttt gcactttcac 240
gcccgataaa accaaagtca gggtaaccaa tgtcatttta caaatgtta aaaccctaat 300
tgcagttcct tttttaattt attttaaga ttacttaaca acattagaca gtgcaaaaaaa 360
25 agaagcaagg aaagcattct taattctacc atcct

(2) INFORMATION ÜBER SEQ ID NO: 37:

30 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 134 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzeln
- (D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

10 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 37:

20 ccctcgagcg gccgcccggg caggtacttt taccaccgaa ttgttcactt gactttaaga 60
aaccctataaa gctgcctggc tttcagcaac aggcctatca acaccatggt gagtctccat 120
aaggcacacc gtgt

(2) INFORMATION ÜBER SEQ ID NO: 38:

25

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 644 Basenpaare

(B) TYP: Nukleinsäure

(C) STRANG: einzeln

30 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

10 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 38:

15

aagcctgttg tcatggggga ggtggtggcg cttggtggcc actggcggcc gaggttagagg 60
cagtggcgct ttagtgtggc gggggcagcg gcagatttga ggcttaagca acttcttcg 120
ggaaagagtg ccagtgcagc cactgttaca attcaagatc ttgatctata tccatagatt 180
ggaatattgg tggccagaca atcctcagac gcctcactta ggacaaatga ggaaactgag 240
gcttggtgaa gttacgaaaac ttgtccaaaa tcacacaact tgtaaaggc acagccaaga 300
ttcagagcca ggctgtaaaa attaaaatga acaaattacg gcaaagttt aggagaaaaga 360
aggatgttta tggccagag gccagtcgtc cacatcagtgc gagacacagat gaagaaggcg 420
ttcgcacccgg aaaatgttagc ttcccggta agtaccttgg ccatgttagaa gttgatgaat 480
caagaggaat gcacatctgt gaagatgctg taaaaagatt gaaagctgaa aggaagtct 540
25 tcaaaggctt ctggaaaaa actggaaaga aagcagttaa agcagttct gtgggtctaa 600
gcagatggac tcagaggttg tggatgaaaa actaaggacc tcat

(2) INFORMATION ÜBER SEQ ID NO: 39:

30

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 657 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

10 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 39:

20 ctttttgtt gggtttcca atgttagatgt ctcagtgaaa tgtgcagata tactttgttc 60
cttatatggc caccagtgtt aattatggac aaatacatta aaacaagggt tcctggccca 120
gcctcccatc taatctctt gatactctt gatatctaact ctgaggagcg atttctgaat 180
tagccagtgt tgcaccaact ttctgttagg aattgttata gaataacctt tctttttcag 240
acctgctcag tgagacatct tggaaatga agtagaaaaa tagacatttg gtggaaaaaac 300
agcaaaatga gaacattaaa aagactcatt caagtatgag tataaagggc atggaaattc 360
25 tggtcctttg agcaaaatga gaagaaaaaaa ttctgctcag cagttttcac tgcgttaaga 420
ttttttgtt ttacacgaa tggaaaaatg atgtgttaagt ggtatagatt ttaatcagct 480
aacagtctact ccagagattt tgatcagcac caattcctat agtagtaagt atttaaaagt 540
taagaaatac tactacattt aacattataa agtagagttc tggacataac tgaaaattag 600
30 atgtttgctt caatagaaat ttgttcccac ttgtatttc aacaaaatta tcggAAC

(2) INFORMATION ÜBER SEQ ID NO: 40:

(i) SEQUENZ CHARAKTERISTIK:

35 (A) LÄNGE: 1328 Basenpaare
(B) TYP: Nukleinsäure
(C) STRANG: einzeln

(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

5

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

10 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

15 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 40:

20

acaattttaa aataaactagc aattaatcac agcatatcac gaaaaagtac acagtggatt 60
ctggtagtt ttgttaggtt cattatggtt agggtcgtt agatgtatat aagaacctac 120
ctatcatgct gtatgtatca ctcatccat tttcatgttc catgcatact cgggcattcat 180
gctaataatgt atccctttaa gcactctcaa ggaaacaaaa gggccttttta ttttataaaa 240
ggtaaaaaaaaa attccccaaa tatttgac tgaatgtacc aaaggtaag ggacattaca 300
atatgactaa cagcaactcc atcacttgag aagtataata gaaaatagct tctaaatcaa 360
acttccttca cagtgccgtg tctaccacta caaggactgt gcatctaagt aataatttt 420
taagatttac tatatgttat agtatgtat gcatttattt aaaatgcatt agactcttt 480
ccatccatca aatactttac aggatggcat ttaatacaga tatttcgtat ttccccact 540
30 gcttttatt tgtacagcat cattaaacac taagctcagt taaggagcca tcagcaacac 600
tgaagagatc agtagtaaga attccatttt ccctcatcag tgaagacacc acaaattgaa 660
actcagaact atatttctaa gcctgcattt tcactgatgc ataattttct tagtaatatt 720
aagagacagt ttttctatgg catctccaaa actgcacatc atcactagtc ttacttctgc 780
ttaattttat gagaaggat tcttcatttt aattgcttt gggattactc cacatcttg 840
35 tttattttctt gactaatcac attttcaata gagtgaagtt aaattgggggg tcataaaagc 900
attggattga catatggtt gccagcctat gggtttacag gcattgccc aacatttctt 960
tgagatctat atttataagc agccatggaa ttccatttt gggatgttgg caatcttaca 1020
ttttatagag gtcataatgca tagtttcat aggtgtttt gtaagaactga ttgctctcct 1080
40 gtgagttaaag ctatgtttac tactgggacc ctcaagagga ataccactt tggtacactc 1140
ctgcactaaa ggcacgtact gcagtgtgaa gaaatgttct gaaaaagggt tatagaaatc 1200
tggaaataag aaaggaagag ctctctgtat tctataattt gaaagagaaaa aaagaaaaac 1260
tttaactgg aaatgttagt ttgtacttat tgatcatgaa tacaagtata tatttaattt 1320

tgaaaaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 41:

5

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 987 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 10 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

15 (iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 20 (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

25

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 41:

30 aacagagact ggcacaggac ctcttcattg caggaagatg gtagtgttagg caggtaacat 60
tgagctttt tcaaaaaaagg agagctttc ttcaagataa ggaagtggta gttatgggtgg 120
taaccccccgg ctatcagtcc ggatgggtgc cacccttcct gctgttaggat ggaagcagcc 180
atggagttggg agggaggcgcc aataagacac ccctccacag agcttggcat catggaaagc 240
tggttctacc tcttcctggc tcctttgttt aaaggcctgg ctgggagcct tcctttggg 300
35 tgtctttctc ttctccaacc aacagaaaag actgctttc aaagggtggag ggtcttcatg 360
aaacacagct gccaggagcc cagcacagg gctgggggcc tggaaaaagg agggcacaca 420

ggaggagggga ggagctggta gggagatgct ggcttacct aaggctcga aacaaggagg 480
gcagaatagg cagaggcctc tccgtcccag gcccattttt gacagatggc gggacggaaa 540
tgcaatagac cagcctgcaa gaaagacatg tgtttgatg acaggcagtg tggccgggtg 600
5 gaacaagcac aggcccttgg aatccaatggc ctgaatcaga acccttaggcc tgccatctgt 660
cagccgggtg acctgggtca attttacgcct ctaaaaagcct cagtctccct atctgcaaaa 720
tgaggcttgt gatacctgtt ttgaagggtt gctgagaaaa ttaaagataa ggttatccaa 780
aatagtctac ggccataccca ccctgaacgt gcctaatttc gtaagctaag cagggtcagg 840
cctggtagt acctggatgg ggagagtatg gaaaacatac ctgcccgcag ttggagttgg 900
actctgtctt aacagtagcg tggcacacag aaggcactca gtaaataactt gttgaataaa 960
10 tgaagtagcg atttgggtgtt aaaaaaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 42:

15 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 956 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

20 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

25 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

30 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

35 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 42:

cggacgggtgg ggcggacgcg tgggtgcagg agcagggcgg ctgccgactg ccccaaccaa 60
ggaaggagcc cctgagtccg cctgcgcctc catccatctg tccggccaga gccggcatcc 120
ttgcctgtct aaagccttaa ctaagactcc cgccccggc tggccctgtg cagaccttac 180
5 tcagggatg ttacacctgt gctcgggaag ggaggggaag gggccgggaa gggggcacgg 240
caggcgtgtg gcagccacac gcaggcggcc agggcggcca gggacccaaa gcaggatgac 300
cacgcacctc cacgccactg cctcccccga atgcatttg aaccaaagtc taaactgagc 360
tcgcagcccc cgccgcctcc ctccgcctcc catccgcctt agcgtctgg acagatggac 420
gcagggccctg tccagccccc agtgcgtcg ttccgtccc cacagactgc cccagccaa 480
10 gagattgtcg gaaaccaagt caggccaggt gggcggacaa aaggccagg tgcggcctgg 540
ggggAACGGA tgctccgagg actggactgt tttttcaca catcggtgcc gcagcgggtgg 600
gaaggaaagg cagatgtaaa tgatgtgtg gtttacagg tatattttt ataccttcaa 660
tgaattaatt cagatgttt acgcaaggaa ggacttaccc agtattactg ctgctgtgct 720
15 tttgatctct gcttaccgtt caagaggcgt gtgcaggccg acagtcggtg accccatcac 780
tcgcaggacc aagggggccc ggactgctgg ctcacgcccc gctgtgtcct ccctccccctc 840
ccttccttgg gcagaatgaa ttcgatgcgt attctgtggc cgccatctgc gcaggggtgg 900
gttattctgt catttacaca cgtcggtcta attaaaaagc gaattatact ccaaaa

20 (2) INFORMATION ÜBER SEQ ID NO: 43:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 536 Basenpaare
- (B) TYP: Nukleinsäure
- 25 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

30

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

35 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 43:

5

aaataaacac ttccataaca ttttgtttc gaagtctatt aatgcaatcc cacttttc 60
cccctagttt ctaaatgtta aagagagggg aaaaaaggct caggatagtt ttcacctcac 120
agtgttagct gtctttatt ttactcttgg aaatagagac tccattaggg ttttgacatt 180
10 ttgggaaccc agttttacca ttgtgtcagt aaaacaataa gatagttga gagcatatga 240
tctaaataaa gacatttcaa gggtagttt gaattctaaa agtaggtaat accaaatag 300
cattctcatc ccttaacaga caaaaactta tttgtcaaaa gaatttagaaa aggtgaaaat 360
atttttcca gatgaaactt gtgcacttc caattgacta atgaaataca aggagacaga 420
15 ctggaaaaag tgggttatgc cacctttaaa acccttctg gtaaatatta tgtagctaa 480
agggtggttt cccggcacc tggacctgga caggtagggt tccgtggta accagt

(2) INFORMATION ÜBER SEQ ID NO: 44:

20 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1630 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

25

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

30

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

35

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

5 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 44:

	ggggagggac	gagtatggaa	ccctgaaggt	agcaagtcca	ggcactggcc	tgaccatccg	60
10	gctccctggg	caccaagtcc	caggcaggag	cagctttt	ccatcccttc	ccagacaagc	120
	tctattttta	tcacaatgac	cttagagag	gtctcccagg	ccagctcaag	gtgtcccact	180
	atccccctcg	gagggaagag	gcagaaaaat	tctccccggg	tccctgtcat	gctactttct	240
15	ccatcccagt	tcaagactgtc	caggacatct	tatctgcagc	cataagagaa	ttataaggca	300
	gtgatttccc	ttaggcccag	gacttgggcc	tccagctcat	ctgttccttc	tggccatt	360
	catggcaggt	tctgggctca	aagctgaact	ggggagagaa	gagatacaga	gctaccatgt	420
20	gactttacct	gattgccctc	agttggggt	tgcttattgg	gaaagagaga	gacaaagagt	480
	tacttgttac	ggaaaatatg	aaaagcatgg	ccaggatgca	tagaggagat	tctagcaggg	540
	gacaggattg	gctcagatga	cccctgaggg	ctcttcagt	cttggaaatgc	attccatgtat	600
	attaggaagt	cgggggtggg	tgggtgttgt	gggctagttg	ggtttgaatt	tagggggcga	660
25	tgagcttggg	tacgtgagca	gggtgttaag	ttagggtctg	cctgtatttc	tggtcccctt	720
	gaaaatgtcc	ccttcttcag	tgtcagacct	cagtcccagt	gtccatatcg	tgcccagaaa	780
	agttagacatt	atccctgcccc	atcccttccc	cagtgcactc	tgacctagct	agtgcctggt	840
	gcccaagtgac	ctgggggagc	ctggctgcag	gccctcactg	gttccctaaa	ccttgggtggc	900
30	tgtgattcag	gtcccccaggg	gggactcagg	gaggaatatg	gctgagttct	gtagtttcca	960
	gagttggctg	gtagagcctt	ctagaggttc	agaatattag	cttcaggatc	agctgggggt	1020
35	atggaaatgg	ctgaggatca	aacgtatgta	ggtgaaagga	taccaggatg	ttgctaaagg	1080
	tgagggacacag	tttgggtttg	ggacttacca	gggtgatgtt	agatctggaa	cccccaagtg	1140
	aggctggagg	gagttaaggt	cagtatggaa	gatagggttg	ggacagggtg	cttggaaatg	1200
	aaagagtgcac	cttagagggc	tccttgggcc	tcaggaatgc	tcctgctgct	gtgaagatga	1260
	gaaggtgctc	ttactcagtt	aatgatgagt	gactatattt	accaaagccc	ctacctgctg	1320
	ctgggtccct	tgtacacag	gagactgggg	ctaaggccc	ctcccaggga	agggacacca	1380
	tcagggctct	ggctgagga	gtagcataga	ggatccattt	ctacctgcat	ttcccagagg	1440
	actagcagga	ggcagcctt	agaaaccggc	agttcccaag	ccagcgccctg	gctgttctct	1500
	cattgtca	gccctctccc	caacctctcc	tctaaccac	tagagattgc	ctgtgtcctg	1560
	cctcttgct	cttgtagaat	gcagctctgg	ccctaataa	atgcttctg	cattcatctg	1620
	aaaaaaaaaa						

(2) INFORMATION ÜBER SEQ ID NO: 45:

40 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 169 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

10 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 45:

20 tcttttgctt ttagcttttt atttttgtat taacaggagt cttattacac ataggtctga 60
taaaaactggc ttatgatctt cagtcgtatt ccagtgcataaacttagat aacgtatgaa 120
gaaaaaacga cgacgaacaa aaaagtaagt gcttggaga ctttgttga

(2) INFORMATION ÜBER SEQ ID NO: 46:

25

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 769 Basenpaare

(B) TYP: Nukleinsäure

(C) STRANG: einzeln

30 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

5 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

10 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 46:

15

tgcaggcat atttactatc ggcaataaaa ggaagcaaag cagtattaag cagcggtgga 60
atttgcgt ttcactttt ataaagtgt acataaaaatg tcataattcc aaatttaaaa 120
acataaactcc agttcttacc atgagaacag catggtgatc acgaaggatc ttcttgaaaa 180
aaacaaaaac aaaaacaaaa aacaatgtc tcttctgggt atcacatcaa atgagataca 240
20 aaggtgtact aggcaatctt agagatctgg caacttattt tatataataag gcatctgtga 300
ccaagagacg ttatgaatata aatgtacaaa tgtattatgt ataaatgtat taaatgcaag 360
cttcatataa tgacaccaat gtctctaagt tgctcagaga tcttgactgg ctgtggccct 420
ggccagctcc tttcctgata gtctgattct gccttcataat ataggcagct cctgatcatc 480
25 catgccatgt aatgagaaaa caagcatgga atatataaac tttaacattt aaaaatgttt 540
tattttgtaa taaaatcaaa tttcccattt aaaccccaa aaactttgca gaatgagggtt 600
ttgatatatg tgtacaagta gtaccttctt agtgcagaa aacatcattt tttctgtctg 660
cctgcctttt tgttttaaa aatgaagact atcattgaaa caagttgtc ttcagtatca 720
ggacatgtt acggagagga aagtaggaa agggttaggg atagaagcc

30

(2) INFORMATION ÜBER SEQ ID NO: 47:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 2529 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

h) gestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

10 (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 47:

20	ttagttcat agtaatgtaa aaccatttgt ttaattctaa atcaaatcac tttcacaaca 60 gtaaaaatta gtactgggt aagggtgcc actgtacata tcatttcattt ctgactgggg 120 tcaggacctg gtcctagtcc acaagggtgg caggaggagg gtggaggcta agaacacaga 180 aaacacacaa aagaaaggaa agctgccttg gcagaaggat gaggtggtga gcttgccgag 240 ggatggtggg aagggggctc cctgttgggg ccgagccagg agtcccaagt cagctctcct 300 gccttactta gctcctggca gagggtgagt gggacctac gaggttcaaa atcaaatggc 360
25	atttggccag cctggcttta ctaacagggtt cccagagtgc ctctgttggc tgagctctcc 420 tgggctcact ccatttcattt gaagagtcca aatgattcat ttccctaccc acaactttc 480 attattttc tgaaaaccca tttctgttga gtccatctga cttaagtcct ctctccctcc 540 actagttggg gccactgcac tgaggggggtt cccaccaatt ctctctagag aagagacact 600 ccagaggccc ctgcaacttt gcggatttcc agaaggtgat aaaaagagca ctcttgagtg 660
30	ggtccccagg aatgtttaaa atctatcagg cacactataa agtgggtgt ttcttcctac 720 caagtggatt cgccatataa accacctact caatactta tattttgtct gtttaaacac 780 tgaactctgg tggacagg tacaaaggag aagagatggg gactgtgaag aggggagggc 840 ttccctcatac ttccctcaaga tctttgttcc cataaaactat gcagtcatataa ttgagaaaaa 900
35	gcaatagatg gggcttcata ccatttgggtt gttattgctg gggtagcca ggagcagtgt 960 ggatggcaaa gtaggagaga ggcccagagg aaagccatc tccctccagc tttgggtct 1020 ccagaaaagag gctggatttc tggatgaag cctagaaggc agagcaagaa ctgttccacc 1080 aggtgaacag tcctacctgc ttgttaccat agtccctcaa taagattcag aggaagaagc 1140 ttatgaaact gaaaatcaa tcaaggtatt gggagaata atttccctc gattccacag 1200
40	gagggaagac cacacaatat cattgtgctg gggctccccca aggccctgcc acctggctt 1260 acaaatcatc aggggttgc tgcttggcag tcacatgctt ccctgggtt agcacacata 1320 caaggagttt tcagggaact ctatcaagcc ataccaaaat cagggtcaca tgtgggttc 1380 cccttcctt gcctcttcat aaaagacaac ttggcttctg agatggtgg tctttgtcat 1440 gcagttgggc tgacctgaca aagccccca gttcctgtgg caggttctgg gagaggatgc 1500 attcaagctt ctgcagccta gggacaggg ctgcttgc agttattact gcctcgagc 1560

tccaaatccc accaaagtcc tgactccagg tcttcctaa tgcacagtag tcagtctcag 1620
cttcggcagt attctcggt gtatgttctc tggcagagag aggcagatga acatagttt 1680
agggagaaa ctgatggaa acctgtgagt taagccacat gtctcaccag gaataattta 1740
tgccaggaaa ccaggaagtc attcaagttt ttctctgagg ccaaagacac tgagcacagc 1800
5 ccagagccaa taaaagatct ttgagtctct ggtgaattca cgaagtgacc ccagctttag 1860
ctactgcaat tatgatttt atggacagc aatttcttgc atctctacag aggaagaaga 1920
gggggagttt gaggggagg aaagagaaca gagcggcact gggatttcaa agggaaacct 1980
ctctatctga ggagccccca ctggcttcag aagcaactta ccaagggtt ttaaaagaca 2040
10 taaaaatttc cagaaatacc atttggtgca tccctttgtt tctgtatat taaactcagg 2100
tgaattata ctctgacagt ttctctctt ctgcctctt cctctgcaga gtcaggac 2160
gcagaactgg ctgaaacaag attcatggt gtcacccatg agagatgact caatgccaag 2220
gcctgaagtt atagagtgtt tacagcggtg gcgatattca ggggtcatcg ccaactggc 2280
tcgagttcca aagctctgat gaagaaacaa gactccttga tgtttactg atcccactga 2340
15 ttccaggagt caagattagc caggaagcca aacaccagga gttgggtgg cacgtcacca 2400
gtccagagcc ctgccacgga tgtacgcagg agcccagcat taggcaatca ggagccagaa 2460
catgatcacc agggccacaa ataggaagag gcgtgacagg aactgctcgt ccacatacct 2520
ggggtgtcc

20 (2) INFORMATION ÜBER SEQ ID NO: 48:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1553 Basenpaare
- (B) TYP: Nukleinsäure
- 25 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

30

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

35

(vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 48:

5 ttttttttt ttttgattt ctgggacaat taagcttat ttttcatata tatatatatt 60
 ttcatatata tatatacata catatataaa ggaaacaatt tgcaaattta cacacgtac 120
 aaaaccatat atacacacat atgtatgcat acacacagac agacacacac acccgaagct 180
 10 ctagccaggc ccgtttcca tccctaagta ccattctctc atttgggccc ttctagggtt 240
 ggggcctga gcttggttt tagaagttt gtgctaata aaccatagct ttaatccccca 300
 tgaaggacag tgttagacctc atcttgtct gctcccgct gccttcagt tttacgtgat 360
 ccatcaagag ggctatggga gccaaatgaa cacggggat tgaggcta tcacctgaac 420
 15 tcgaaaacag cgcccagctt cctcaccgca ggcacgcgtc ttttctttt tttcctcga 480
 gacggagttt cgctgtttt cccaggctgg agtgcagtgg cacggtctcg gctcactgca 540
 agctccacct cttggattca taccattctc ctgcttcagc cttccgagta gctgggacta 600
 taggtgccaa ccactacgcc tagctaattt tttttgtat ttttagtaga gacagggttt 660
 caccgtgtta gccaggatgg ttcgtcctg actttgtat ccgcggccct cggcctccca 720
 aagtgtctggg attacaggcg tgagccacca cacctggccc cggcacgtat cttttaagga 780
 atgacaccag ttcttggtt ctgaccaaag aaaaaatgtc acaggagact ttgaagagggc 840
 20 agacaggagg gtggtggcag caacactgca gctgctctg gatgctgtc ggggtgtctc 900
 cggagcgggt gtgaacacgcg cacttcaaca tgacggcgc cctggctccg gtgtgtcctc 960
 acttcagtgg tgacacctga tggtggaagc cagccttgg ggcaggaaac cagctcagag 1020
 aggctaccga gctcagctgc tggcaggagc caggtattta cagccataat gtgtgtaaag 1080
 aaaaaacacg ttctgcaaga aactctcta cccgctcggg agactggggc tccttgctt 1140
 ggatgagctt cactcaacgt ggagatgggt gtggactgtt ccctgaaaag cgggccttc 1200
 25 agggccaagt gaggtcctca ggtcctaac ccagtggccc tctgaaaaggg ggtgtgcagg 1260
 cgagggggagc aggaggctt tctctagttt ctttggggc tttggctgag agaagagtga 1320
 gcagggagct gggaatggtc caggcaggga agggagctga agtgattcgg ggtaatgcc 1380
 tcagatcgat gtatttctct ccctggtctc ccggagccct cttgtcacccg ctgctgcct 1440
 gcaggaggcc catctcttctt gggagcttat ctgacttaac ttcaactaca agttcgctct 1500
 30 tacgagacccg gggtagcgt gatctcctgc ttccctgagc gcctgcacgg cag

(2) INFORMATION ÜBER SEQ ID NO: 49:

35 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 921 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

40

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 5 (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

10

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 49:

15 ctgtggtccc agctactcag gaggctgagg cgggaggatt gcttgagccc aggagttgga 60
tgttcagtg agccaagatc gcaccattgc cctccactct gggccacgga gcaataccct 120
gtctcagaaa acaaacaaca aaaagcagaa acgctgaagg gtcgggtta cggaaaaacc 180
gcctgtcaga acacttggct actcctaccc cagatcagtg gacctggaa tgagggttgg 240
tcccgggagg ctttctcca agctgttgc accagacccg ccatggaaac cctggccaca 300
20 gaagcctccc ggggagttag ccagagcctg gaccgctgtg ctgatgtgtc tgggttgag 360
ggaggggtggg gagtgtgcaa gggtgtgtgt gtgcggggg ggtgttcatg ggcaagcatg 420
tgcgtgcctg tgtgtgtcg tgccctccct ctgcagccgt cggtggatc tccctccagc 480
cccttcgcca ccttctgagc attgtctgtc cacgtgagac tgcccaagaga cagcagagct 540
ccacgtggtt ttaaggggag accttccct ggacctgggg gtctcgccgt attcatgac 600
25 caggtgctaa atgacccgac atgcatcacc tgccttcga tgaccaacct ccctgtcccc 660
gtcccgctga cctgcccccg tggcgctcta cggtgatgcc tgctcctgac attgggtttc 720
actgttagcaa actacattct ggatggaaat tttcatgtac atgtgtggca tgtggaaaat 780
ttcaaataaa atggacttga tttagaaagc caaaaagctg tgtggtcctt ccagcacgga 840
30 tactttgacc tcttgcctac aacccttcc ttgggtccga ggctggtagc tttgttcaact 900
tcagatggtt gggggcggggt g

(2) INFORMATION ÜBER SEQ ID NO: 50:

35 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 338 Basenpaare
(B) TYP: Nukleinsäure
(C) STRANG: einzel
(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

5 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 10 (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 50:

20 atgatctatac tagatgcctt accgtaaaaat caaaacacaa aaccctactg actcattccc 60
tcccttcag atattacccc atttctctac ttcccattgt agccaaactt tccaaaaatt 120
catgttctgt cttcatttcc tcatgttcaa cccaccctgt cttagctacc accccctcagt 180
aacgacctag cctgggtaga aacaatgtc agcatgatac catactcaat gatccttcgt 240
cactgttgta attgtcatca ttccatggcc ttactttccc tctcagcgcc atttgctaca 300
25 gtaagaaaact ttctttcttg aattcttggt tctcttg

(2) INFORMATION ÜBER SEQ ID NO: 51:

30 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1191 Basenpaare
(B) TYP: Nukleinsäure
(C) STRANG: einzeln
(D) TOPOLOGIE: linear

35

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

5

(iii) ANTI-SENSE: NEIN

10

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

15

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 51:

20 ctagcaagca ggttaaacgag ctttgtacaa acacacacag accaacacat ccggggatgg 60
ctgtgtgtg ctagagcaga ggctgattaa acactcagtg tggctct ctgtgccact 120
cctggaaaat aatgaattgg gtaaggaaaca gttaaaaaga aaatgtgcct tgctaactgt 180
gcacattaca acaaagagct ggcagtcct gaaggaaaag gcggctgtgcc gctgccgttc 240
aaacttgtca gtcaactcat gccagcagcc tcagcgtctg cctccccagc acaccctcat 300
tacatgtgtc tgtctggcct gatctgtgca tctgctcgga gacgctcctg acaagtcggg 360
25 aatttctcta ttctccact ggtgcaaaga gcggatttct ccctgcttct cttctgtcac 420
ccccgctcct ctccccccagg aggctccttg atttatggta gctttggact tgcttccccg 480
tctgactgtc cttgacttct agaatggaa aagctgagct ggtgaaggaa agactccagg 540
ccatcacaga taaaagaaaa atacaggaag aaatctcaca gaagcgtctg aaaatagagg 600
aagacaaaact aaagcaccag catttgaaga aaaaggcctt gagggagaaa tggcttctag 660
30 atggaatcag cagcggaaaa gaacaggaag agatgaagaa gcaaaatcaa caagaccagc 720
accagatcca gttctagaa caaagtatcc tcaggcttga gaaagagatc caagatctt 780
aaaaagctga actgcaaattc tcaacgaagg aagaggccat tttaaaagaaaa ctaaaagtcaa 840
ttgagcggac aacagaagac attataagat ctgtgaaagt gggaaagagaa gaaagagcag 900
35 aagagtcaat tgaggacatc tatgctaata tccctgaccc tccaaagtcc tacatacctt 960
ctaggttaag gaaggagata aatgaagaaa aagaagatga tgaacaaaaat agggaaagctt 1020
tatatgccat gggaaattaaa gttaaaaag acttgaagac tggagaaagt acagttctgt 1080
cttccaatac ctctggccat cagatgactt taaaaggtac aggagtaaaa gtttaagatg 1140
atgggcaaaa gtccagtgtt ttcagtaaaag tgctaatcac aagttggagg t

40

(2) INFORMATION ÜBER SEQ ID NO: 52:

5 (i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1200 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzeln
- (D) TOPOLOGIE: linear

10 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

15 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

20 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

25 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 52:

30 aacagggact ctcactctat caaccccagg ctggagtccg gtgcgccac cctggctccc 60
tgcaacctcc gcctcccagg ctcaagcaac tctcctgcct cagtcgtct agtagctgg 120
actacaggca cacaccacca tgcccagcca attttgcatt tttttgtaga gacagggtt 180
cgcccttcgtt ccaggccggc atcatatact ttaaatcatg cccagatgac ttaataact 240
aataacaatat atcaggttgg tttaaaaaata attgctttt tattattttt gcattttgc 300
accaaccta atgctatgtt aatagttgtt atactgttgc ttaacaacag tatgacaatt 360
ttggcttttt ctttgttata ttttgttattt tttttttta ttgtgtggtc tttttttttt 420
ttctcagtgt tttcaattcc tccttgggtt aatccatgga tgcaaaaccc acagatatga 480
agggctggct atatatgtat tgatgattgt cctatttat tagttataaa gtgtcattta 540
35 atatgtatgtt aaagttatgg tacagtggaa agagtagttg aaaacataaaa catttggacc 600
tttcaagaaa ggtagcttgg tgaagttttt caccttcaaa ctatgtccca gtcagggctc 660
tgctactaat tagctataat ctttgcacaa attacatcac ctttgagtct cagttgcctc 720
acctgtaaaa taaaagaact ggatactctc taaggtcact tccagccctg tcattctata 780

5 actctgttat gctgaggaag aaattcacat tgtgttaact gtatgagtca aactaaaaat 840
gattataaaa gtggaaaaaa gccaaattgct tctcttagaa agctcaacta aatttgagaa 900
gaataatctt ttcaattttt taagaattta aatatttttta agggtttgac ctatttattt 960
agagatgggg tctcactctg tcaccagac tggagtacag tggcacaatc atagctcact 1020
gctgcctcaa attcatgggc tcaagtgatc ctcctgcctc tgcctccaga gtagctgcga 1080
ctatggcat gtgccaccac gcctggctaa catttgtattt gacctattta tttattgtga 1140
tttatatatctt tttttttttt tcttttttacaa aatcagaaat acttattttg 1200

10 (2) INFORMATION ÜBER SEQ ID NO: 53:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 989 Basenpaare
- (B) TYP: Nukleinsäure
- 15 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

20 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

25 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

25 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

30 (vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

35 (xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 53:

aagccaccac tcaaaaacttc ctatacattt tcacagcaga gacaagtcaa catttatttt 60

5 tatgccttc ttcctatgtg tattcaagt cttttcaaa acaaggcccc aggactctcc 120
gattcaatta gtccttgggc tggtcgactg tgcaggagtc cagggagcct ctacaaatgc 180
agagtgactc ttaccaca taaaacctag atacatgcaa aaagcaggac ctttcctcca 240
ggaatgtgcc attcagatg cacagcaccc atgcagaaaa gctggaattt tccttggAAC 300
cgactgtgat agaggtgctt acatgaacat tgctactgtc tttcttttt tttgagacag 360
gttgcgttg tgcccaggct gagtgcata cgtagatctca ctcactgcaa ttccacctcc 420
aggttcaagc attctcctgc tcagccctc agtagctggg ttacaggcac tgccaccatg 480
ccggctaatt ttgtatTTTt gtagagatgg atttctccat ttggtcaggc ggtctcgaac 540
10 cccaacctca gtgatctgcc acctcagcct cctaagtgtt ggattacagg atgagccacc 600
cgaccggcca ctactgtctt tctttgaccc ttccagtttca gaagataaaag agaaaataat 660
ttctctgaag tacttgataa aatttccaaa caaaacacat gtccacttca ctgataaaaaa 720
atttaccgca gtttggcacc taagagtatg acaacagcaa taaaaagtaa tttcaaagag 780
ttaagattt ttcagcaaaa tagatgattt acatcttcaa gtccttttggaaatcagtta 840
25 ttaatattat tcttcctca ttccatctg aatgactgca gcaatagttt tttttttttt 900
ttttttttt ttgcgagatg gaatctcgct ctgtcgccca gcgggagtg actggcgcaa 960
ccccggctca ccgcaatctc tgccaccccg

(2) INFORMATION ÜBER SEQ ID NO: 54:

20

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 250 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 25 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

hergestellte partielle cDNAs

30

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 35 (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 54:

5

catttccccca ttggtcctga tggttaagat ttagttaaag aggctgtaag tcagggtcga 60
gcagaggcta ctacaagaag taggaaatca agtccctcac atgggctatt aaaactagt 120
agtggtgagg tagtaaaaaa gaaatctgag caacttcata acgtaactgc ctttcaggga 180
aaaggcatt ctttaggaac tgcatacttgtt aaccacacc ttgatccaag agcttagggaa 240
10 acttcagttg

10

(2) INFORMATION ÜBER SEQ ID NO: 55:

15

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 2270 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- (D) TOPOLOGIE: linear

20

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

(iii) HYPOTHETISCH: NEIN

25

(iv) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

30

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

(A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 55:

5 gcgcccccga gcagcgcccg cgccctccgc gccttctccg ccgggacctc gagcgaaaga 60
 gccccgcgcg ccccccagcc ctgcctccc tgcccaccgg gcacaccgcg cccgcacccc 120
 gaccccgctg cgcacggcct gtccgctgca caccagctt ttggcgcttt cgtcgcccgcg 180
 ctcgccccgg gctactcctg cgccaccaa tgagctcccg catgcgccagg ggcgtcgcc 240
 tagtcgtcac ccttctccac ttgaccaggg tggcgcttc cacctgcccc gctgcctgcc 300
 actgccccct ggaggcgccc aagtgcgcgc cgggagtcgg gctggccgg gacggctgcg 360
 10 gctgctgtaa ggtctgcgcc aagcagctca acgaggactg cagcaaaacg cagccctgcg 420
 accacaccaa ggggctggaa tgcaacttcg gcgccaagtc caccgctctg aaggggatct 480
 gcagagctca gtcagagggc agaccctgtg aatataactc cagaatctac caaaacgggg 540
 aaagtttcca gcccaactgt aaacatcagt gcacatgtat tgatggcgcc gtgggctgca 600
 ttcctctgtg tccccaagaa ctatctctcc ccaacttggg ctgtcccaac cctcggctgg 660
 15 tcaaagttaac cgggcagtg c tgcgaggagt gggctgtga cgaggatagt atcaaggacc 720
 ccatggagga ccaggacggc ctccctggca aggagctggg attcgatgcc tccgagggtgg 780
 agttgacgag aaacaatgaa ttgattgcag ttggaaaagg cagctcaactg aagcggctcc 840
 ctgttttgg aatggagcct cgcattctat acaacccttt acaaggccag aaatgtattg 900
 ttcaaacaac ttcatggtcc cagtgctcaa agacctgtgg aactggtatac tccacacgag 960
 20 ttaccaatga caacccttag tgccgcctt t gaaaagaaac ccggatttgt gaggtgcggc 1020
 cttgtggaca gccagtgtac agcagcctga aaaagggcaa gaaatgcagc aagaccaaga 1080
 aatccccca accagtcaagg ttacttacg ctggatgttt gagtgtgaag aaataccggc 1140
 ccaagtactg cggttcctgc gtggacggcc gatgtgcac gccccagctg accaggactg 1200
 tgaagatgcg gttccgctgc gaagatgggg agacatttc caagaacgtc atgatgatcc 1260
 25 agtcctgcaa atgcaactac aactgcccgc atgccaatga agcagcgtt cccttctaca 1320
 ggctgttcaa tgacattcac aaatttaggg actaaatgct acctgggtt ccagggcaca 1380
 cctagacaaa caagggagaa gagtgtcaga atcagaatca tggagaaaaat gggcggggg 1440
 ggtgtgggtg atgggactca ttgtagaaag gaaggcttgc tcatttttga ggagcattaa 1500
 ggtatttcga aactgccaag ggtgctggtg cggatggaca ctaatgcagc cacgatttga 1560
 30 gaataactttg cttcatagta ttggagcaca tgttactgct tcatttttga gcttgtggag 1620
 ttgatgactt tctgttttct gttgtaaat tatttctaa gcatattttc tctaggctt 1680
 tttccttttg gggttctaca gtcgtaaaag agataataag attagtttga cagttaaag 1740
 cttttattcga tcctttgaca aaagttaaat ggagggcatt ccatcccttc ctgaaggggg 1800
 acactccatg agtgtctgtg agaggcagct atctgcactc taaactgcaa acagaaatca 1860
 35 ggtgtttaa gactgaatgt tttattttatc aaaatgttagc ttttggggag ggagggggaaa 1920
 t gtaataactg gaataattt g taaatgattt taattttata ttcagtgaaa agattttatt 1980
 tatggatttta accatttaaat aaagaaatat ttacctaata tctgagtgta tgccattcgg 2040
 tatttttaga ggtgctccaa agtcattagg aacaacctag ctcacgtact caatttatca 2100
 aacaggactt attgggatatac agcagtgaat taagctttaa aaataagata atgattgctt 2160
 40 ttatacccttc agtagagaaaa agtctttgca tataaagttaa tgttaaaaaa acatgtattt 2220
 aacacgacat tgtatgaagc acaataaaaga ttctgaagct aaaaaaaaaaa

(2) INFORMATION ÜBER SEQ ID NO: 56:

45

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 1636 Basenpaare

(B) TYP: Nukleinsäure

(C) STRANG: einzel

(D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

5

(iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

10 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

15 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 56:

20

cttgaatgaa gctgacacca agaaccgcgg gaagagcttg ggcccaaagc aggaaaggaa 60
agcgctcgag ttggaaagga accgctgctg ctggccgaac tcaagcccg ggcgcac 120
cagtttgatt ggaagtccag ctgtgaaacc tggagcgtcg ctttctcccc agatggctcc 180
tggtttgctt ggtctcaagg acactgcatt gtcaactga tcccctggcc gttggaggag 240
cagttcatcc ctaaagggtt tgaagccaaa agccgaagta gcaaaaatga gacgaaagg 300
cggggcagcc caaaagagaa gacgctggac tgggttcaga ttgtctgggg gctggccttc 360
agccccgtggc cttccccacc cagcaggaag ctctggcac gccaccaccc ccaagtgc 420
gatgtctctt gcctggttct tgctacggga ctcaacgatg ggcagatcaa gatctggag 480
gtgcagacag ggctcctgct tttgaatctt tccggccacc aagatgtcgt gagagatctg 540
30 agcttcacac ccagtggcag tttgattttg gtctccgcgt cacggataa gactcttcgc 600
atctgggacc tgaataaaaca cggttaaacag attcaagtgt tatcgggcca cctgcagtgg 660
25 gtttactgct gttccatctc cccagactgc agcatgctgt gctctgcagc tggagagaag 720
tcggctttc tatggagcat gaggtcctac acgttaattc ggaagctaga gggccatcaa 780
agcagtgttgc tctcttgta cttctcccc gactctgcac tgcttgtcact ggcttcttac 840
35 gataccaatg tgattatgtg ggaccctac accggcgaaa ggctgaggc actccaccac 900
acccagggtt accccgcctt ggtacactgat gacgtccaca ttagctcact gagatctgtg 960
tgcttctctc cagaaggctt gtacattgcc acgggtggcag atgacagact cctcaggatc 1020
40 tggccctgg aactgaaaac tcccattgca tttgcttcata tgaccaatgg gctttgctgc 1080
acatttttc cacatggtgg agtcattgcc acaggacaa gagatggcca cgtccagtc 1140
tggacagctc cttaggtcct gtcctcactg aagcacttat gccggaaagc ctttcgaagt 1200
ttcctaacaa cttagcaagt cctagcactg ccaatccccaa agaaaatgaa agagttcctc 1260
acatacagga ctttttaagc aacaccacat cttgtgcttc tttgttagcag ggtttatcgt 1320

5 cctgtcaaag ggagttgctg gaataatggg ccaaacatct ggtcttgcatt gaaaatagca 1380
tttcttggg atttgtaata gaatgttagca aaaccagatt ccagtgtaca taaaagaatt 1440
ttttgtctt taaatagata caaatgtcta tcaacttaa tcaagttgtacttatattg 1500
aagacaattt gatacataat aaaaaattat gacaatgtcc tggaaaaaaa aaaatgtaga 1560
aagatggta agggtggtt ggtgaggag cgtggtgacg gggcctgca gcgggttggg 1620
gaccctgtgc tgcgtt

(2) INFORMATION ÜBER SEQ ID NO: 57:

10

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 460 Basenpaare
- (B) TYP: Nukleinsäure
- (C) STRANG: einzel
- 15 (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung

h rgestellte partielle cDNAs

20

(iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

(vi) HERKUNFT:

- 25
- (A) ORGANISMUS: MENSCH
 - (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

- (A) BIBLIOTHEK: cDNA library

30

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 57:

35 ccatgtgtgt atgagagaga gagagattgg gagggagagg gagctcacta ggcgcataatgt 60

5 gcctccaggg ggctgcagat gtgtctgagg gtgagcctgg taaaagagaa gacaaaagaa 120
tggaatgagc taaagcagcc gcctggggtg ggaggcccag cccatttta tcagcaggg 180
ggcaggagcc cagcaaggga gcctccattc ccaggactct ggagggagct gagaccatcc 240
atgcccgcag agccctccct cacactccat cctgtccagc cctaatttgt caggtgggaa 300
aactgaggt ggaagtca atagcaagt actggcagag ctggactgg aacccaacca 360
gcctcctaga ccacggttct tcccatcaat ggaatgttag agactccagc caggtgggta 420
ccgagctcga attcgtaatc atggtcata tagctgttcctg

10 (2) INFORMATION ÜBER SEQ ID NO: 58:

(i) SEQUENZ CHARAKTERISTIK:

- (A) LÄNGE: 1049 Basenpaare
- (B) TYP: Nukleinsäure
- 15 (C) STRANG: einzel
- (D) TOPOLOGIE: linear

(ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

20 (iii) HYPOTHETISCH: NEIN

(iv) ANTI-SENSE: NEIN

25 (vi) HERKUNFT:

- (A) ORGANISMUS: MENSCH
- (C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

30 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 58:

35

atctgatcaa gaatacctgc cctggtcact ctgcggatgt ttctgtccac ttgttcacat 60

tgaggaccaa gatataccttt tttacagagg cacttgcgtg gtctaaca gacacccca 120
tgacgacatg ctggctcaca ttttcgcgtt ctgcagaagt cccccctccca gcctggacta 180
cagcagca tttccgtggg ggtgcagtag ccgttcgac agagcctgga gcaactctgaa 240
5 gtcagtgtct gtgcaggtt taccgtggct ctgcatttcct caggcataa aggtctttg 300
ggatctacaa ttttgcgtt tgatcttgc tcataacttt actgcttgc 360
aaaatgtaaa cttcacccat ttcatcttct ccaaatacca agatgtgacc ggaaaagttag 420
cctctacagg acccactgt gccgacacag agtgggtttt cttgccactg ctttgtcaca 480
ggactttgtct ggagagttt gaaatttcca ttacgatctc caaacacgta gttccatatac 540
10 aatctttctg actggcagcc ccggtatatac aatccaccaa ccaaaggacc attactgaat 600
ggcttgaatt ctaaaaagtga tggctcaatt tcataatctt tcccctttat tatctgtaga 660
attctggctg atgatctgtt ttttccattt gagtctgaac acagtatctgt taaattgtatg 720
tttatatcg tggatgtct atccacagca catctgcctg gatctgtggag cccatgagca 780
aacacttcgg ggggctgggt ggtgcgtttt aagtgtgggt tgctccttgg tatggaataa 840
ggcacgttgc acatgtctgt gtccacatcc agccgttagca ctgagccctgt gaaatcactt 900
15 aacccatcca tttcttccat atcatccagt gtaatcatcc catcaccaag aatgatgtac 960
aaaaaccctg cagggccaaa gagcagttgc cttccatgat gctttctgtg gagttctgca 1020
acttcaagaa agactctggc tgttctcaa

20 (2) INFORMATION ÜBER SEQ ID NO: 59:

(i) SEQUENZ CHARAKTERISTIK:

(A) LÄNGE: 747 Basenpaare

(B) TYP: Nukleinsäure

25 (C) STRANG: einzel

(D) TOPOLOGIE: linear

30 (ii) MOLEKÜLTYP: Aus einzelnen ESTs durch Assemblierung und Editierung
hergestellte partielle cDNAs

35 (iii) HYPOTHETISCH: NEIN

(iii) ANTI-SENSE: NEIN

(vi) HERKUNFT:

(A) ORGANISMUS: MENSCH

(C) ORGAN: Endothelzelle

(vii) SONSTIGE HERKUNFT:

40 (A) BIBLIOTHEK: cDNA library

(xi) SEQUENZ-BESCHREIBUNG: SEQ ID NO: 59:

5 tttttcaaata cacatataggc ttctttgacc ccatcaaata actttattca cacaaacgtc 60
 ccttaattta caaaggccta gtcattcata cacattaggg gatccacagt gttcaaggaa 120
 cttaaatata atgttatcata ccaacccaag taaaccaagt aaaaaaaaaata ttcatataaa 180
 gttgttcaca cgttaggtcct agattaccag cttcttgca aaaaaaggaa atgaagaaaa 240
10 atagatttat taacttagtat tggaaaactaa ctttggcct ggcttaaaac ctccctcacg 300
 ctcgctgtc ccacacaaaat gtttagaag tcactgcaat gtactccccg gctctgtatga 360
 aaagaagccc ctggcacaaa agattccagt gccccctgaag aggctccctt cctcctgtgg 420
 gctctcctag aaaaccagcg ggacggcctc cctgctgata cctgtctataa ctttaggggg 480
 ccctcgggca ggcaacggca gtggactcat ctcggtgatg gctgttagatg ctaacactgg 540
15 ccaattcaat gccacaccta ctggttaccc tttgagggca tttctccaga cagaagcccc 600
 ttgaaggcta ggttagggcag gatcagagat acacccgtgt ttgtctcgaa gggctccaca 660
 gcccaagtacg acatgcttgc agaagtagta tctctggact tctgcctcca gtcgaccggc 720
 cgcgaaattta gtagtaatacg cgcccg

20

