7

Ciencia y analítica de datos

Double-click (or enter) to edit

Entrega: 1 Limpieza, análisis, visualización y kmeans

Nombre: Fernando Anaya Delgado

Matricula: A01793832

Nombre: Christian Emilio Saldana Lopez

Matricula: A00506509

Equipo: 95 Profesora: María de la Paz Rico Fernández Fecha:

16/11/2022

This is formatted as code

Conclusión del análisis.

Después de realizar el estudio eliminando las columnas innecesarios e información irrelevante, como los valores nulos y flotantes se procede a dividir cuales son las variables categóricas y numéricas para poder comenzar nuestro análisis.

Se puede observar que las diferentes graficas que llegan a tener sentido pero sin correlación o cruce de información adecuado como la latitud y longitud es imposible realizar el estudio correcto.

Una vez correlacionadas estas y ubicadas en el mapa nos auxiliamos con Kmeans para realizar un análisis a profundidad que nos permita identificar si existe una correlación entra la calidad del agua y su ubicación geográfica teniendo como conclusión que:

La calidad del agua y su geografía no están relacionadas y que la mala calidad de la misma puede deberse a otros factores.

Limpieza, análisis, visualización y agrupamiento. En esta base de datos encontraras:

Aguas subterraneas. Aguas superficiales. Elige una base de datos, ya sea la de aguas superficiales o la de aguas subterraneas.

Limpieza de base de datos. Explorar cada datos (auxiliate de describe(), mean(), plot, boxplot de pandas): Identificando tendencias centrales promedio, media y mediana de los datos. Identificar medidas de dispersión, máximo, mínimo . Identificar medidas de posición no centrales , los cuartiles , outliers.

Identificar correlaciones. Preparar los datos Realizar análisis para encontrar si existe una relación entre la calidad del agua y su ubicación geográfica a través de K- means. Mostrar resultados de agrupamiento de latitudes y longitudes con K means en el mapa de México.

```
import pandas as pd
import numpy as np
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

```
import os
import math #Esta libreria la usamos lara el ramsey y el Mape
import matplotlib.pyplot as plt
import requests, zipfile #Librerira para zip de nuestros origen de datos
from io import BytesIO
from imblearn.metrics import geometric mean score, classification report imbalanced
from google.colab import drive
from sklearn.model_selection import learning_curve, validation_curve
from sklearn.preprocessing import QuantileTransformer #Esta libreria la usamos al graf
from sklearn.preprocessing import power transform #esta igual
from sklearn.datasets import make classification
from sklearn.model selection import train test split #Para hacer las particiones
from sklearn.metrics import confusion matrix
from sklearn.metrics import recall score
from sklearn.metrics import classification report, make scorer
from sklearn.model selection import cross validate, RepeatedStratifiedKFold
from sklearn.pipeline import Pipeline
from sklearn.preprocessing import MinMaxScaler, OneHotEncoder, StandardScaler
from sklearn.preprocessing import FunctionTransformer
from sklearn.impute import SimpleImputer
from sklearn.preprocessing import OneHotEncoder
from sklearn.compose import ColumnTransformer
from sklearn.linear model import LogisticRegression
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier #Esta tambien la usamoie en el eje
from sklearn import svm, datasets
from sklearn.model selection import GridSearchCV
from sklearn import tree
from sklearn.dummy import DummyRegressor
from sklearn.linear model import LinearRegression
from sklearn.compose import TransformedTargetRegressor
from sklearn.neural network import MLPRegressor
from sklearn.datasets import make regression
from sklearn.model selection import train test split
from sklearn.ensemble import RandomForestRegressor
from sklearn.model selection import RepeatedKFold
```

#Instalamos libreria para trabajar con mapas
! pip install geds fiona geopandas xgboost gensim folium pyLDAvis descartes

Requirement already satisfied: attrs>=17 in /usr/local/lib/python3.7/dist-package Collecting munch

Downloading munch-2.5.0-py2.py3-none-any.whl (10 kB)

Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-package Requirement already satisfied: six>=1.7 in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: certifi in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: shapely>=1.6 in /usr/local/lib/python3.7/dist-packages

Collecting pyproj>=2.2.0 Downloading pyproj-3.2.1-cp37-cp37m-manylinux2010 x86 64.whl (6.3 MB) 6.3 MB 46.3 MB/s Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-pacl Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3. Requirement already satisfied: smart-open>=1.2.1 in /usr/local/lib/python3.7/dis-Requirement already satisfied: jinja2>=2.9 in /usr/local/lib/python3.7/dist-packa Requirement already satisfied: branca>=0.3.0 in /usr/local/lib/python3.7/dist-pac Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.7/dist-Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages Collecting funcy Downloading funcy-1.17-py2.py3-none-any.whl (33 kB) Requirement already satisfied: future in /usr/local/lib/python3.7/dist-packages Collecting sklearn Downloading sklearn-0.0.post1.tar.gz (3.6 kB) Requirement already satisfied: numexpr in /usr/local/lib/python3.7/dist-packages Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/ Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/dis-Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-pacl Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/dis-Requirement already satisfied: et-xmlfile in /usr/local/lib/python3.7/dist-packac Requirement already satisfied: lxml in /usr/local/lib/python3.7/dist-packages (f: Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/lc

Downloading inflection-0.5.1-py2.py3-none-any.whl (9.5 kB)

Requirement already satisfied: sympy in /usr/local/lib/python3.7/dist-packages (: Requirement already satisfied: numba in /usr/local/lib/python3.7/dist-packages (: Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /usr/local/lib/python3.7/dist-packages (: Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/dist-package Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: patsy>=0.5 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.7/dist-package Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.7/dist-package Requirement satisfied: mpmat

Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/disr-Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-pacl Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.7/dist-pacl Requirement already satisfied: more-itertools in /usr/local/lib/python3.7/dist-pacl Requirement already satisfied: mo

Building wheel for geds (setup.py) ... done

Created wheel for qeds: filename=qeds-0.7.0-py3-none-any.whl size=27812 sha256: Stored in directory: /root/.cache/pip/wheels/fc/8c/52/0cc036b9730b75850b984577: Building wheel for pyLDAvis (PEP 517) ... done

Created wheel for pyLDAvis: filename=pyLDAvis-3.3.1-py2.py3-none-any.whl size= Stored in directory: /root/.cache/pip/wheels/c9/21/f6/17bcf2667e8a68532ba2fbf6 Building wheel for sklearn (setup.py) ... done

Created wheel for sklearn: filename=sklearn-0.0.post1-py3-none-any.whl size=23. Stored in directory: /root/.cache/pip/wheels/42/56/cc/4a8bf86613aafd5b7f1b3104. Successfully built qeds pyLDAvis sklearn

Installing collected packages: munch, inflection, cligj, click-plugins, sklearn, Successfully installed click-plugins-1.1.1 cligj-0.7.2 fiona-1.8.22 funcy-1.17 ge

import geopandas as gpd
from shapely.geometry import Point

Collecting inflection>=0.3.1

#Datos_de_calidad_del_agua_2020/Datos_de_calidad_del_agua_de_sitios_de_monitoreo_de_agurl = 'http://201.116.60.46/Datos_de_calidad_del_agua_de_5000_sitios_de_monitoreo.zip'
req = requests.get(url)
zipfile.ZipFile(BytesIO(req.content)).extractall('unzipped_zip/')
df_sub=pd.read_csv('unzipped_zip/Datos_de_calidad_del_agua_2020/Datos_de_calidad_del_g
df_sub.head()

	MUNICIPIO	ESTADO	ORGANISMO_DE_CUENCA	SITIO	CLAVE	
	ASIENTOS	AGUASCALIENTES	LERMA SANTIAGO PACIFICO	POZO SAN GIL	DLAGU6	0
	AGUASCALIENTES	AGUASCALIENTES	LERMA SANTIAGO PACIFICO	POZO R013 CAÑADA HONDA	DLAGU6516	1
,	COSIO	AGUASCALIENTES	LERMA SANTIAGO PACIFICO	POZO COSIO	DLAGU7	2
,	RINCON DE ROMOS	AGUASCALIENTES	LERMA SANTIAGO PACIFICO	POZO EL SALITRILLO	DLAGU9	3
	LA PAZ	BAJA CALIFORNIA SUR	PENINSULA DE BAJA CALIFORNIA	RANCHO EL TECOLOTE	DLBAJ107	4

5 rows × 57 columns

#Limpieza de datos
df_aguas = df_sub.copy()
df_aguas.describe()

	LONGITUD	LATITUD	PERIODO	ALC_mg/L	CONDUCT_ms/cm	SDT_mg/L
count	1068.000000	1068.000000	1068.0	1064.000000	1062.000000	0.0
mean	-101.891007	23.163618	2020.0	235.633759	1138.953013	NaN
std	6.703263	3.887670	0.0	116.874291	1245.563674	NaN
min	-116.664250	14.561150	2020.0	26.640000	50.400000	NaN
25%	-105.388865	20.212055	2020.0	164.000000	501.750000	NaN
50%	-102.174180	22.617190	2020.0	215.527500	815.000000	NaN
75%	-98.974716	25.510285	2020.0	292.710000	1322.750000	NaN
max	-86.864120	32.677713	2020.0	1650.000000	18577.000000	NaN

df_aguas.info()

^{#&#}x27;0' solo significa "objeto"

1111	Equip	0005_7101	793032627100300309_	_/ rguasprorundas
т	DIIIO		11011-11411	ODJecr
2	ORGANISMO_DE_CUENCA	1068	non-null	object
3	ESTADO		non-null	object
4	MUNICIPIO	1068	non-null	object
5	ACUIFERO	1068	non-null	object
6	SUBTIPO	1068	non-null	object
7	LONGITUD	1068	non-null	float64
8	LATITUD	1068	non-null	float64
9	PERIODO	1068	non-null	int64
10	ALC_mg/L	1064	non-null	float64
11	CALIDAD_ALC	1064	non-null	object
12	CONDUCT_mS/cm	1062	non-null	float64
13	CALIDAD_CONDUC	1062	non-null	object
14	SDT mg/L	0 no	n-null	float64
15	SDT M mg/L	1066	non-null	object
16	CALIDAD SDT ra	1066	non-null	object
17	CALIDAD SDT salin	1066	non-null	object
18	FLUORUROS_mg/L	1068	non-null	object
19	CALIDAD FLUO	1068	non-null	object
20	DUR mg/L	1067	non-null	object
21	CALIDAD DUR		non-null	object
22	COLI FEC NMP/100 mL		non-null	object
23	CALIDAD COLI FEC		non-null	object
24	N NO3 mg/L		non-null	object
25	CALIDAD N NO3	1067		object
26	AS TOT mg/L	1068		object
27	CALIDAD AS		non-null	object
28	CD_TOT_mg/L		non-null	object
29	CALIDAD_CD		non-null	object
30	CR TOT mg/L		non-null	object
31	CALIDAD_CR		non-null	object
32	HG_TOT_mg/L		non-null	object
33	CALIDAD HG		non-null	object
34	PB TOT mg/L		non-null	object
35	CALIDAD_PB		non-null	object
36	MN TOT mg/L		non-null	object
37	CALIDAD MN		non-null	object
38	FE_TOT_mg/L		non-null	object
39	CALIDAD FE		non-null	object
40	SEMAFORO		non-null	object
41				object
41	CONTAMINANTES	1068	non-null non-null	-
43	CUMPLE_CON_ALC CUMPLE CON COND	1068		object object
	CUMPLE CON SDT ra			_
44		1068		object
45	CUMPLE_CON_SDT_salin		non-null	object
46	CUMPLE_CON_FLUO	1068		object
47	CUMPLE_CON_DUR	1068		object
48	CUMPLE_CON_CF	1068		object
49	CUMPLE_CON_NO3	1068	non-null	object
50	CUMPLE CON AS	1068	non-null	object
51	CUMPLE CON CD	1068		object
52	CUMPLE CON CR	1068		object
53	CUMPLE CON HG	1068		object
54	CUMPLE CON PB	1068		object
55	CUMPLE CON MN		non-null	object
56	CUMPLE CON FE	1068		object
	_ * * - * - * - * -			5

```
dtypes: float64(5), int64(1), object(51)
memory usage: 475.7+ KB
```

df aguas.columns

df_aguas.isnull().sum()

```
CLAVE
                             U
SITIO
                              0
ORGANISMO DE CUENCA
                             0
ESTADO
MUNICIPIO
                             0
ACUIFERO
                             0
SUBTIPO
                             0
LONGITUD
                             0
                             0
LATITUD
PERIODO
                              0
ALC mq/L
                             4
CALIDAD ALC
                             4
CONDUCT mS/cm
                             6
CALIDAD CONDUC
                             6
SDT mg/L
                          1068
SDT M mg/L
                             2
CALIDAD SDT ra
                             2
CALIDAD SDT salin
                             2
FLUORUROS mg/L
                             0
CALIDAD FLUO
                             0
DUR mg/L
                             1
CALIDAD DUR
                             1
COLI FEC NMP/100 mL
                             0
CALIDAD COLI FEC
                             0
N NO3 mg/L
                             1
CALIDAD N NO3
                             1
AS TOT mg/L
                             0
CALIDAD AS
                             0
CD TOT mg/L
                             0
CALIDAD CD
                             0
CR TOT mg/L
                             0
CALIDAD CR
```

	1 1 -
HG_TOT_mg/L	0
CALIDAD_HG	0
PB_TOT_mg/L	0
CALIDAD_PB	0
MN_TOT_mg/L	0
CALIDAD_MN	0
FE_TOT_mg/L	0
CALIDAD_FE	0
SEMAFORO	0
CONTAMINANTES	434
CUMPLE_CON_ALC	0
CUMPLE_CON_COND	0
CUMPLE_CON_SDT_ra	0
CUMPLE_CON_SDT_salin	0
CUMPLE_CON_FLUO	0
CUMPLE_CON_DUR	0
CUMPLE_CON_CF	0
CUMPLE_CON_NO3	0
CUMPLE_CON_AS	0
CUMPLE_CON_CD	0
CUMPLE_CON_CR	0
CUMPLE_CON_HG	0
CUMPLE_CON_PB	0
CUMPLE_CON_MN	0
CUMPLE_CON_FE	0
dtype: int64	

df_aguas.isna().sum().sort_values(ascending=False) #Se ordenan los campos nulos de for

SDT_mg/L	1068
CONTAMINANTES	434
CALIDAD_CONDUC	6
CONDUCT_ms/cm	6
ALC_mg/L	4
CALIDAD_ALC	4
CALIDAD_SDT_ra	2
SDT_M_mg/L	2
CALIDAD_SDT_salin	2
CALIDAD_N_NO3	1
CALIDAD_DUR	1
N_NO3_mg/L	1
DUR_mg/L	1
CUMPLE_CON_COND	0
CUMPLE_CON_ALC	0
SEMAFORO	0
CALIDAD_FE	0
FE_TOT_mg/L	0
CALIDAD_MN	0
CUMPLE_CON_SDT_ra	0
CUMPLE_CON_SDT_salin	0
CLAVE	0
CUMPLE_CON_FLUO	0
CUMPLE_CON_DUR	0
CALIDAD_PB	0

```
CUMPLE CON CF
                             0
CUMPLE CON NO3
CUMPLE CON AS
                             0
CUMPLE CON CD
                             0
CUMPLE CON CR
                             0
CUMPLE CON HG
                             0
                             0
CUMPLE CON PB
CUMPLE CON MN
                             0
MN TOT mg/L
                             0
                             0
CD_TOT_mg/L
PB_TOT_mg/L
                             0
CALIDAD HG
                             0
ORGANISMO DE CUENCA
                             0
ESTADO
                             0
MUNICIPIO
                              0
ACUIFERO
                              0
SUBTIPO
                              0
LONGITUD
                              0
                             0
LATITUD
                             0
PERIODO
FLUORUROS mg/L
                             0
CALIDAD FLUO
                              0
COLI FEC NMP/100 mL
                             0
                             0
CALIDAD COLI FEC
AS TOT mg/L
                             0
CALIDAD AS
                             0
SITIO
                             0
                             0
CALIDAD CD
CR TOT mg/L
                             0
CALIDAD CR
                             0
HG TOT mg/L
                             0
CUMPLE CON FE
                             0
dtvpe: int64
```

Limpiamos los datos y dividiremos la informacion usando variablescategoricas y numer

#Ahora que gano la imputacion pues vamos a analizar como se va a hacer ahorita en un df limpio

	ALC_mg/L	CONDUCT_ms/cm	SDT_mg/L	SDT_M_mg/L	FLUORUROS_mg/L	DUR_mg/L	COI
0	229.990	940.0	NaN	603.6	0.9766	213.732	
1	231.990	608.0	NaN	445.4	0.9298	185.0514	
2	204.920	532.0	NaN	342	1.8045	120.719	
3	327.000	686.0	NaN	478.6	1.1229	199.879	
4	309.885	1841.0	NaN	1179	0.2343	476.9872	
1063	231.045	2350.0	NaN	1545.8	<0.2	752.096	
1064	256.000	529.0	NaN	297	<0.2	273	

```
nombre de la columna -----ALC mg/L
 sumatoria por valores uncos-----
157.620
193.815
         4
195.360
204.765
         4
257.850
341.000
        1
151.000
        1
106.000
        1
99.000
        1
256.000
         1
Name: ALC_mg/L, Length: 816, dtype: int64
nombre de la columna -----CONDUCT mS/cm
sumatoria por valores uncos-----
777.0
300.0
       4
412.0
       4
454.0
308.0
       4
826.0
       1
876.0
       1
373.0
       1
733.0
       1
817.0
Name: CONDUCT mS/cm, Length: 801, dtype: int64
nombre de la columna -----SDT mg/L
 sumatoria por valores uncos-----
Series([], Name: SDT mg/L, dtype: int64)
nombre de la columna -----SDT M mg/L
sumatoria por valores uncos-----
496
320
          4
292
          4
317
          4
380
148
          1
224
          1
392
          1
1736
          1
690.6667
Name: SDT M mg/L, Length: 925, dtype: int64
nombre de la columna ------FLUORUROS mg/L
sumatoria por valores uncos-----
<0.2
      162
0.466
          3
0.5202
          3
0.4993
          2
0.482
          2
       . . .
1.6185
         1
0.6045
          1
0.7042
```

11/16/22, 8:09 AM

0.4343 1

```
y= pd.DataFrame(df_aguas['SEMAFORO'])
y
print(type(y))
#Dataframe visto en lista y la generacion de un semaforo para realizar graficas
y['SEMAFORO'].hist(bins = 60, figsize=(5,5))
```

```
<class 'pandas.core.frame.DataFrame'>
     <matplotlib.axes. subplots.AxesSubplot at 0x7fbd38da9510>
columnas numericas = ['ALC mg/L','CONDUCT mS/cm','SDT mg/L','SDT M mg/L','FLUORUROS mg
                       'N_NO3_mg/L', 'AS_TOT_mg/L', 'CD_TOT_mg/L', 'CR_TOT_mg/L', 'HG_TOT_r
for name in columnas numericas:
  df limpio[name] = df limpio[name].astype('str')
  df limpio[name] = df limpio[name].str.replace('<25','25')</pre>
  df_limpio[name] = df_limpio[name].str.replace('<0.2','0.2')</pre>
  df limpio[name] = df limpio[name].str.replace('<20','20')</pre>
  df limpio[name] = df limpio[name].str.replace('<1.1','1.1')</pre>
  df limpio[name] = df limpio[name].str.replace('<0.02','0.02')</pre>
  df_limpio[name] = df_limpio[name].str.replace('<0.01','0.01')</pre>
  df limpio[name] = df limpio[name].str.replace('<0.003','0.003')</pre>
  df limpio[name] = df limpio[name].str.replace('<0.005','0.004')</pre>
  df limpio[name] = df limpio[name].str.replace('<0.0005','0.0004')</pre>
  df limpio[name] = df limpio[name].str.replace('<0.0015','0.0015')</pre>
  df limpio[name] = df limpio[name].str.replace('<0.025','0.025')</pre>
  df_limpio[name] = df_limpio[name].astype('float')
df limpio.info()
      # This is added back by interactiveSnellApp.init path()
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: FutureWarning: 1
      if sys.path[0] == '':
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:12: SettingWithCopyV
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row indexer,col indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
      if sys.path[0] == '':
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:13: FutureWarning: 1
      del sys.path[0]
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:13: SettingWithCopyV
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row indexer,col indexer] = value instead
    See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
      del sys.path[0]
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:14: FutureWarning: 1
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:14: SettingWithCopyV
    A value is trying to be set on a copy of a slice from a DataFrame.
    Try using .loc[row indexer,col indexer] = value instead
    See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stabl">https://pandas.pydata.org/pandas-docs/stabl</a>
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:15: FutureWarning: 1
      from ipykernel import kernelapp as app
    /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:15: SettingWithCopyV
    A value is trying to be set on a copy of a slice from a DataFrame.
```

```
Try using .loc[row_indexer,col_indexer] = value instead
```

```
See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stabl">https://pandas.pydata.org/pandas-docs/stabl</a>
       from ipykernel import kernelapp as app
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:16: FutureWarning: 1
       app.launch new instance()
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:16: SettingWithCopyV
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stabl">https://pandas.pydata.org/pandas-docs/stabl</a>
       app.launch new instance()
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:17: FutureWarning: 1
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:17: SettingWithCopyV
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row_indexer,col_indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:18: FutureWarning: 1
     /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:18: SettingWithCopyV
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stabl
     /usr/local/lib/python3.7/dist-packages/ipykernel launcher.py:19: SettingWithCopyV
     A value is trying to be set on a copy of a slice from a DataFrame.
     Try using .loc[row indexer,col indexer] = value instead
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stab">https://pandas.pydata.org/pandas-docs/stab</a>]
# la columna SDT mg/L
                                      0 non-null
                                                      esta vacia, asi que se elimina
df limpio.drop('SDT mg/L', axis=1, inplace=True)
     /usr/local/lib/python3.7/dist-packages/pandas/core/frame.py:4913: SettingWithCopy
     A value is trying to be set on a copy of a slice from a DataFrame
     See the caveats in the documentation: <a href="https://pandas.pydata.org/pandas-docs/stab">https://pandas.pydata.org/pandas-docs/stab</a>
       errors=errors,
print(df limpio.columns)
print(df limpio.info())
print(df limpio.isnull().sum())
     Index(['ALC mg/L', 'CONDUCT mS/cm', 'SDT M mg/L', 'FLUORUROS mg/L', 'DUR mg/L',
             'COLI FEC NMP/100 mL', 'N NO3 mg/L', 'AS TOT mg/L', 'CD TOT mg/L',
             'CR_TOT_mg/L', 'HG_TOT_mg/L', 'PB_TOT_mg/L', 'MN_TOT_mg/L',
             'FE TOT mg/L'],
           dtype='object')
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 1068 entries, 0 to 1067
     Data columns (total 14 columns):
                                 Non-Null Count Dtype
```

1 1 1

```
0
                        ALC mg/L
                                                                              1064 non-null
                                                                                                                       float64
              1
                        CONDUCT_mS/cm
                                                                              1062 non-null
                                                                                                                       float64
              2
                        SDT M mg/L
                                                                              1066 non-null
                                                                                                                       float64
              3
                        FLUORUROS mg/L
                                                                              1068 non-null
                                                                                                                       float64
              4
                                                                              1067 non-null
                                                                                                                       float64
                        DUR mg/L
              5
                        COLI FEC NMP/100 mL
                                                                           1068 non-null
                                                                                                                       float64
                        N NO3 mg/L
              6
                                                                              1067 non-null
                                                                                                                       float64
              7
                        AS TOT mg/L
                                                                              1068 non-null
                                                                                                                       float64
              8
                        CD_TOT_mg/L
                                                                              1068 non-null
                                                                                                                       float64
              9
                        CR_TOT_mg/L
                                                                              1068 non-null
                                                                                                                       float64
              10 HG TOT mg/L
                                                                              1068 non-null
                                                                                                                       float64
              11 PB_TOT_mg/L
                                                                              1068 non-null
                                                                                                                       float64
              12 MN TOT mg/L
                                                                              1068 non-null
                                                                                                                       float64
              13 FE TOT mg/L
                                                                              1068 non-null
                                                                                                                       float64
            dtypes: float64(14)
            memory usage: 116.9 KB
            None
            ALC mg/L
                                                                       4
                                                                       6
            CONDUCT mS/cm
                                                                       2
            SDT M mg/L
            FLUORUROS mg/L
            DUR mg/L
            COLI_FEC_NMP/100_mL
           N NO3 mg/L
                                                                       1
                                                                       0
           AS TOT mg/L
            CD TOT mg/L
                                                                       0
            CR TOT mg/L
                                                                      0
           HG TOT mg/L
                                                                      0
           PB_TOT_mg/L
                                                                      0
           MN TOT mq/L
                                                                      0
            FE TOT mg/L
            dtype: int64
#Usamos moda y mediana
df limpio
columnas numericas new= ['ALC mg/L','CONDUCT mS/cm','SDT M mg/L','FLUORUROS mg/L','DUI
                                                         'N NO3 mg/L', 'AS TOT mg/L', 'CD TOT mg/L', 'CR TOT mg/L', 'HG TOT
for name in columnas numericas new:
     mean = df limpio[name].mean()
     df limpio[name] = df limpio[name].replace(np.nan, mean)'''
for name in columnas numericas new:
     moda telas = df limpio[name].mode()
     df limpio[name] = df limpio[name].replace(np.nan, moda telas)
for name in columnas numericas new:
     mediana = df limpio[name].median()
     df limpio[name] = df limpio[name].replace(np.nan, mediana)
```

```
df_limpio.info()
```

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:25: SettingWithCopyl A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:25: SettingWithCopyl A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:25: SettingWithCopyl A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:25: SettingWithCopyl A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:25: SettingWithCopyl A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:25: SettingWithCopyl A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:25: SettingWithCopyl A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:25: SettingWithCopyl A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:25: SettingWithCopyl A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:25: SettingWithCopyl A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab
/usr/local/lib/pvthon3.7/dist-packages/ipvkernel launcher.pv:25: SettingWithCopvl

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab

print(df_limpio.describe())
df_limpio.describe().T

	ALC_mg/L	CONDUCT_mS/cm	$\mathtt{SDT}_{\mathtt{M}}\mathtt{mg/L}$	FLUORUROS_mg/L	DUR_mg/L	\
count	1068.000000	1068.000000	1068.000000	1068.000000	1068.000000	
mean	235.558455	1137.133052	895.454185	1.075600	347.842003	
std	116.661485	1242.292889	2748.991295	1.924278	359.514579	
min	26.640000	50.400000	25.000000	0.200000	20.000000	
25%	164.048750	505.500000	337.700000	0.267175	121.274100	
50%	215.527500	815.000000	550.400000	0.503500	245.335800	
75%	292.423750	1321.250000	915.900000	1.139850	453.930000	
max	1650.000000	18577.000000	82170.000000	34.803300	3810.692200	

Identificar medidas de posición no centrales , los cuartiles , outliers. Identificar correlaciones. Preparar los datos

min 1.100000 0.020000 0.010000 0.003000

#Matriz de Correlación
df_limpio.corr()

	ALC_mg/L	CONDUCT_ms/cm	SDT_M_mg/L	FLUORUROS_mg/L	DUR_mg
ALC_mg/L	1.000000	0.217212	0.079572	0.068860	0.2434
CONDUCT_mS/cm	0.217212	1.000000	0.286244	-0.025071	0.6926
SDT_M_mg/L	0.079572	0.286244	1.000000	-0.013709	0.3472
FLUORUROS_mg/L	0.068860	-0.025071	-0.013709	1.000000	-0.1495
DUR_mg/L	0.243404	0.692656	0.347211	-0.149549	1.0000
COLI_FEC_NMP/100_mL	-0.016338	0.018021	-0.001102	0.003564	0.0317
N_NO3_mg/L	-0.000346	0.219881	0.101522	-0.019672	0.3015
AS_TOT_mg/L	0.073458	-0.005047	-0.010092	0.444079	-0.1064
CD_TOT_mg/L	0.032706	0.029083	0.010807	-0.015123	0.0250
CR_TOT_mg/L	-0.014234	0.004436	-0.000494	-0.005205	0.0073
HG_TOT_mg/L	0.069779	0.057007	0.020332	-0.028597	0.0649
PB_TOT_mg/L	0.016989	0.024816	0.002517	-0.034191	-0.0173
MN_TOT_mg/L	0.129942	0.095940	0.018963	-0.049742	0.0838
FE_TOT_mg/L	0.043454	0.083172	0.020103	-0.009994	0.0597
CK_IUI_mg/L	บ.ชฮบา	U.U12470 U.15	04435 U.UU4U	U.UU4UUU U.	UU4UUU

#Vemos los outliers en la gráfica, pero necesitamos acercarnos

df_limpio.plot.box()

<matplotlib.axes._subplots.AxesSubplot at 0x7fbd3866f850>


```
outliers = df_limpio.boxplot(figsize = (15,10),showmeans = True)
outliers.plot()
plt.xticks(rotation=90)
plt.show()
```


#Ahora vemos la grafica de correlación a color

```
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(5, 5))
mi_correlacion = df_limpio.corr()
sns.heatmap(
   mi_correlacion,
    annot
              = True,
    cbar
              = False,
    annot_kws = {"size": 8},
    vmin
              = -1,
    vmax
              = 1,
              = 0,
    center
              = sns.diverging_palette(20, 220, n=200),
    cmap
    square
              = True,
    ax
              = ax
)
ax.set_xticklabels(
    ax.get xticklabels(),
    rotation = 45,
    horizontalalignment = 'right',
)
ax.tick params(labelsize = 10)
```

```
ALC mg/L - 1 0.22 0.080.0690.240.006000350730.0330.0140.070.0170.130.043
```

```
correlacion = df_limpio.corr().abs()

f, ax = plt.subplots(figsize = (20,15))

sns.heatmap(correlacion, vmax = 1, vmin = -1, square = True, annot = True)
```

```
<matplotlib.axes. subplots.AxesSubplot at 0x7fbd35829110>
```

Realizar análisis para encontrar si existe una relación entre la calidad del agua y su ubicación geográfica a través de K- means. Mostrar resultados de agrupamiento de latitudes y longitudes con K means en el mapa de México.

```
#Se verifican las variables relacionadas a la calidad del agua y su ubicacion geografi

df_ubicacion = df_aguas[['LONGITUD','LATITUD']]

df_ubicacion

#Se verifican las variables de calidad del agua basadas en nuestro semaforo

y
```

	SEMAFORO
0	Verde
1	Verde
2	Rojo
3	Verde
4	Rojo
1063	Rojo
1064	Rojo
1065	Rojo
1066	Verde
1067	Verde
1068 rov	vs × 1 columns

```
df_ubicacion.plot.scatter('LONGITUD','LATITUD')
```

<matplotlib.axes._subplots.AxesSubplot at 0x7fbd33d8c450>

#Se crea la columna de coordenadas
df_ubicacion
df_ubicacion["COORDENADAS"] = list(zip(df_ubicacion.LONGITUD, df_ubicacion.LATITUD))
df_ubicacion["COORDENADAS"] = df_ubicacion["COORDENADAS"].apply(Point)
df_ubicacion.head()

/usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: SettingWithCopyWa A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab
This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: SettingWithCopyWa value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row indexer,col indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stab after removing the cwd from sys.path.

	LONGITUD	LATITUD	COORDENADAS
0	-102.02210	22.20887	POINT (-102.0221 22.20887)
1	-102.20075	21.99958	POINT (-102.20075 21.99958)
2	-102.28801	22.36685	POINT (-102.28801 22.36685)
3	-102.29449	22.18435	POINT (-102.29449 22.18435)
4	-110.24480	23.45138	POINT (-110.2448 23.45138)

```
puntos_en_mapa = gpd.GeoDataFrame(df_ubicacion, geometry="COORDENADAS")

world = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres"))

world = world.set_index("iso_a3")

world.name.unique()

fig, gax = plt.subplots(figsize=(10,10))

world.query("name == 'Mexico'").plot(ax=gax, edgecolor='black',color='white')

gax.set_xlabel('LATITUD')

gax.set_ylabel('LONGITUD')
```

```
gax.spines['top'].set_visible(False)
gax.spines['right'].set_visible(False)
puntos_en_mapa.plot(ax=gax, color='red', alpha = 0.5)
puntos_en_mapa
```

	LONGITUD	LATITUD	COORDENADAS
0	-102.02210	22.20887	POINT (-102.02210 22.20887)
1	-102.20075	21.99958	POINT (-102.20075 21.99958)
2	-102.28801	22.36685	POINT (-102.28801 22.36685)
3	-102.29449	22.18435	POINT (-102.29449 22.18435)
4	-110.24480	23.45138	POINT (-110.24480 23.45138)
1063	-99.54191	24.76036	POINT (-99.54191 24.76036)
1064	-99.70099	24.78280	POINT (-99.70099 24.78280)
1065	-99.82249	25.55197	POINT (-99.82249 25.55197)
1066	-100.32683	24.80118	POINT (-100.32683 24.80118)
1067	-100.73302	25.09380	POINT (-100.73302 25.09380)

1068 rows × 3 columns

Se agrupa la información por color o por ubicación

```
from sklearn.cluster import KMeans
```

```
#Se realiza el analisis usando 3 clusters

numero_de_closters = range(10,100)
mi_kmeans = [KMeans(n_clusters=i) for i in numero_de_closters]
Y_axis = df_ubicacion[['LATITUD']]
X_axis = df_ubicacion[['LONGITUD']]
calulo_kmeans = [mi_kmeans[i].fit(Y_axis).score(Y_axis) for i in range(len(mi_kmeans))
plt.figure(figsize=(10,6))
plt.plot(numero_de_closters, calulo_kmeans)
plt.xlabel('Number of Clusters')
plt.ylabel('Score')
plt.title('Elbow Curve')
plt.show()
```



```
kmeans = KMeans(n_clusters=20).fit(X)
centroids = kmeans.cluster_centers_ #Sacamos los centroides
labels = kmeans.predict(X)
C = kmeans.cluster_centers_
```

X = df sub[['LONGITUD', 'LATITUD']]

```
C_DF = pd.DataFrame(C) #Se convierte en DataFrame
C_DF["Coordinates"] = list(zip(C_DF[0], C_DF[1]))
C_DF["Coordinates"] = C_DF["Coordinates"].apply(Point) #Puntos para gráficar
puntos_centroides = gpd.GeoDataFrame(C_DF, geometry="Coordinates")
puntos_centroides
```

	0	1	Coordinates
0	-100.079438	24.779429	POINT (-100.07944 24.77943)
1	-112.903746	31.309819	POINT (-112.90375 31.30982)
2	-89.627607	20.535159	POINT (-89.62761 20.53516)
3	-103.764117	19.947591	POINT (-103.76412 19.94759)
4	-104.772299	24.824705	POINT (-104.77230 24.82470)
5	-97.649457	18.478355	POINT (-97.64946 18.47835)
6	-92.761627	17.004097	POINT (-92.76163 17.00410)
7	-110.195427	23.861448	POINT (-110.19543 23.86145)
8	-110.957923	27.322830	POINT (-110.95792 27.32283)
9	-102.470490	22.665601	POINT (-102.47049 22.66560)
10	-99.255412	19.807499	POINT (-99.25541 19.80750)
11	-103.108104	25.542966	POINT (-103.10810 25.54297)
12	-115.780432	31.622931	POINT (-115.78043 31.62293)
13	-107.281006	30.941352	POINT (-107.28101 30.94135)
14	-107.534814	24.697606	POINT (-107.53481 24.69761)
15	-87.659191	20.587765	POINT (-87.65919 20.58776)
16	-105.773238	28.333006	POINT (-105.77324 28.33301)
17	-101.285214	20.229017	POINT (-101.28521 20.22902)
18	-110.668940	29.844702	POINT (-110.66894 29.84470)
19	-100.408034	22.323348	POINT (-100.40803 22.32335)

len(labels)

1068

#Obtenermos el número de elementos por cluster
df_sub['SEMAFORO'].value_counts()

```
Verde
                434
    Rojo
                387
    Amarillo
                247
    Name: SEMAFORO, dtype: int64
print(y.head())
print(df_ubicacion.head())
      SEMAFORO
    0
         Verde
    1
         Verde
    2
          Rojo
    3
         Verde
          Rojo
        LONGITUD
                                             COORDENADAS
                  LATITUD
    0 -102.02210 22.20887 POINT (-102.02210 22.20887)
    1 -102.20075
                  21.99958 POINT (-102.20075 21.99958)
    2 -102.28801 22.36685
                            POINT (-102.28801 22.36685)
    3 -102.29449 22.18435 POINT (-102.29449 22.18435)
    4 -110.24480 23.45138
                            POINT (-110.24480 23.45138)
```

y[SEMAPHORE] - y[SEMAPORO]: replace(to_replace - verde , value - green)
<pre>y['SEMAPHORE'].replace(to_replace = "Rojo", value = "red", inplace=True)</pre>
<pre>y['SEMAPHORE'].replace(to_replace = "Amarillo", value = "yellow", inplace=True)</pre>
У

	SEMAFORO	SEMAPHORE
0	Verde	green
1	Verde	green
2	Rojo	red
3	Verde	green
4	Rojo	red
1063	Rojo	red
1064	Rojo	red
1065	Rojo	red
1066	Verde	green
1067	Verde	green

1068 rows × 2 columns

puntos_en_mapa['LATITUDYLONGITUD'] = puntos_en_mapa['LATITUD'] + puntos_en_mapa['LONG] diccionario semaforo = dict(zip(puntos en mapa.LATITUDYLONGITUD, y.SEMAPHORE))

diccionario_semaforo

```
import folium
lat = puntos en mapa.iloc[0]['LATITUD']
lng = puntos_en_mapa.iloc[0]['LONGITUD']
map = folium.Map(location=[lng, lat], zoom_start=1)
for _, row in puntos_en_mapa.iterrows():
    folium.CircleMarker(
        location=[row["LATITUD"], row["LONGITUD"]],
        radius=12,
        weight=2,
        fill=True,
        fill_color=diccionario_semaforo[row["LATITUDYLONGITUD"]],
        color=diccionario semaforo[row["LATITUDYLONGITUD"]]
    ).add_to(map)
color='black'
for _, row in puntos_en_mapa.iterrows():
    folium.CircleMarker(
        location=[row[1], row[0]],
        radius=12,
        weight=2,
        fill=True,
        fill_color=color,
        color=color
    ).add_to(map)
map
```



```
1 1 1
for i in y:
  y.codigo_color[i] = y[i].str.replace('Verde','1')
 y[i] = y[i].str.replace('Amarillo','2')
  y[i] = y[i].str.replace('Rojo','3') '''
    NameError
                                               Traceback (most recent call last)
    <ipython-input-37-df7d50dcf274> in <module>
           2 #y= df aguas['SEMAFORO']
          3 #DataFrame Final = pd.concat([df ubicacion, y], ignore index=True)
    ---> 4 DataFrame Final['COLOR'] = y['SEMAFORO']
          5 DataFrame Final.head()
          6
    NameError: name 'DataFrame Final' is not defined
     SEARCH STACK OVERFLOW
df aguas['CALIDAD COLI FEC'].value counts()
    Potable - Excelente
                                739
    Buena calidad
                                208
                                 60
    Aceptable
    Contaminada
                                 49
    Fuertemente contaminada
                                 12
    Name: CALIDAD COLI FEC, dtype: int64
#Ploteamos los centroids
fig, gax = plt.subplots(figsize=(15,10))
colores = ['red','yellow','green','red','yellow','green','red','yellow','green','red',
color asig = []
for row in labels:
  color asig.append(colores[row])
```

```
world.query("name == 'Mexico'").plot(ax = gax, edgecolor='black', color='white') #Sel@
puntos_en_mapa.plot(ax=gax, color=color_asig, alpha = 0.5)
puntos_centroides.plot(ax=gax, color='black', alpha = 1, markersize = 300)

gax.set_xlabel('longitude')
gax.set_ylabel('latitude')
gax.set_title('Acuiferos en Mexico')

gax.spines['top'].set_visible(False)
gax.spines['right'].set_visible(False)
plt.show()
```


from sklearn.preprocessing import LabelEncoder

```
lbe = LabelEncoder()
```

df_limpio_ASubterraneas["SEMAFORO_Type"] = lbe.fit_transform(df_limpio_ASubterraneas["SEMAFORO_Type"].unique()

	LONGITUD	LATITUD	COORDENADAS	LATITUDYLONGITUD	COLOR	CLUSTER
0	-102.02210	22.20887	POINT (-102.02210 22.20887)	-79.81323	Verde	9
1	-102.20075	21.99958	POINT (-102.20075 21.99958)	-80.20117	Verde	9
2	-102.28801	22.36685	POINT (-102.28801 22.36685)	-79.92116	Rojo	9
3	-102.29449	22.18435	POINT (-102.29449 22.18435)	-80.11014	Verde	9
4	-110.24480	23.45138	POINT (-110.24480 23.45138)	-86.79342	Rojo	7
1063	-99.54191	24.76036	POINT (-99.54191 24.76036)	-74.78155	Rojo	0
1064	-99.70099	24.78280	POINT (-99.70099 24.78280)	-74.91819	Rojo	0
			DON'T / 22 222 /2			

nuevo_dataset = puntos_en_mapa[puntos_en_mapa.CLUSTER == 0].copy()
nuevo_dataset.shape

(55, 6)

puntos en mapa

#Se obtiene la media a cada Cluster

```
lista_de_modas=[]

for i in range(0,20): # Ciclo de 20 veces
  nuevo_dataset = pd.DataFrame() #Creamos un dataframe hueco
  nuevo_dataset = puntos_en_mapa[puntos_en_mapa.CLUSTER == i].copy()
  moda = nuevo_dataset['COLOR'].mode()[0] #Se va creando la moda de cada color
  lista_de_modas.append(moda)

len(lista_de_modas)

20

#Sumamos la columna de la moda por Cluster al data ser de Cluster
puntos_centroides['MODA'] = lista_de_modas
puntos centroides
```

```
0 1 Coordinates MODA
```

```
lista gringa = []
for i in range(0,20):
  if lista_de_modas[i] == 'Verde':
    lista gringa.append('green')
  if lista de modas[i] == 'Rojo':
    lista_gringa.append('red')
  if lista de modas[i] == 'Amarillo':
    lista_gringa.append('yellow')
len(lista gringa)
    20
         -102.470430 ZZ.003001 FOINT (-10Z.47043 ZZ.00300)
                                                          nuju
lista_gringa_individual = []
for i in range(0,1068):
  if puntos en mapa.COLOR[i] == 'Verde':
    lista gringa individual.append('green')
  if puntos en mapa.COLOR[i] == 'Rojo':
    lista gringa individual.append('red')
  if puntos en mapa.COLOR[i] == 'Amarillo':
    lista gringa individual.append('yellow')
len(lista gringa individual)
    1068
     18 -110.668940 29.844/02 POINT (-110.66894 29.844/0)
                                                         verde
print(puntos centroides)
print(puntos en mapa)
                  0
                             1
                                                Coordinates
                                                                  MODA
      -100.079438
                     24.779429
                                POINT (-100.07944 24.77943)
                                                              Amarillo
    1
      -112.903746
                     31.309819
                                POINT (-112.90375 31.30982)
                                                                  Rojo
        -89.627607
                                 POINT (-89.62761 20.53516)
                                                              Amarillo
    2
                     20.535159
    3 -103.764117
                     19.947591
                                POINT (-103.76412 19.94759)
                                                                  Rojo
    4 -104.772299
                     24.824705
                                POINT (-104.77230 24.82470)
                                                                  Rojo
    5
        -97.649457
                     18.478355
                                 POINT (-97.64946 18.47835)
                                                                 Verde
    6
        -92.761627
                     17.004097
                                 POINT (-92.76163 17.00410)
                                                                 Verde
    7 -110.195427
                     23.861448
                                POINT (-110.19543 23.86145)
                                                                  Rojo
    8 -110.957923
                     27.322830
                                POINT (-110.95792 27.32283)
                                                                 Verde
    9 -102.470490
                     22.665601
                                POINT (-102.47049 22.66560)
                                                                  Rojo
    10 -99.255412 19.807499
                                 POINT (-99.25541 19.80750)
                                                                 Verde
    11 -103.108104
                                POINT (-103.10810 25.54297)
                     25.542966
                                                                  Rojo
    12 -115.780432
                     31.622931
                                POINT (-115.78043 31.62293)
                                                              Amarillo
    13 -107.281006
                     30.941352
                                POINT (-107.28101 30.94135)
                                                                  Rojo
    14 -107.534814
                     24.697606
                                POINT (-107.53481 24.69761)
                                                              Amarillo
```

```
20.587765
                                 POINT (-87.65919 20.58776)
                                                              Amarillo
    15
        -87.659191
    16 -105.773238
                     28.333006
                                POINT (-105.77324 28.33301)
                                                                   Rojo
    17 -101.285214
                     20.229017
                                POINT (-101.28521 20.22902)
                                                                  Verde
    18 -110.668940
                     29.844702
                                POINT (-110.66894 29.84470)
                                                                  Verde
    19 -100.408034
                     22.323348
                                POINT (-100.40803 22.32335)
                                                                   Rojo
            LONGITUD
                       LATITUD
                                                 COORDENADAS
                                                              LATITUDYLONGITUD
    0
          -102.02210 22.20887
                                POINT (-102.02210 22.20887)
                                                                      -79.81323
    1
          -102.20075
                      21.99958
                                POINT (-102.20075 21.99958)
                                                                      -80.20117
    2
                                POINT (-102.28801 22.36685)
          -102.28801
                      22.36685
                                                                      -79.92116
    3
          -102.29449
                      22.18435
                                POINT (-102.29449 22.18435)
                                                                      -80.11014
    4
          -110.24480
                      23.45138
                                POINT (-110.24480 23.45138)
                                                                      -86.79342
     . . .
                 . . .
                           . . .
    1063 -99.54191
                      24.76036
                                 POINT (-99.54191 24.76036)
                                                                      -74.78155
    1064 -99.70099
                      24.78280
                                 POINT (-99.70099 24.78280)
                                                                      -74.91819
    1065
          -99.82249
                      25.55197
                                 POINT (-99.82249 25.55197)
                                                                      -74.27052
    1066 -100.32683
                      24.80118
                                POINT (-100.32683 24.80118)
                                                                      -75.52565
    1067 -100.73302
                      25.09380
                                POINT (-100.73302 25.09380)
                                                                      -75.63922
          COLOR CLUSTER
    0
                        9
          Verde
                        9
    1
          Verde
    2
                        9
           Rojo
    3
                        9
          Verde
    4
                        7
           Rojo
     . . .
             . . .
                      . . .
    1063
           Rojo
                        0
    1064
                        0
           Rojo
                        0
    1065
           Rojo
    1066
          Verde
                        0
    1067
          Verde
    [1068 rows x 6 columns]
Se plotean los centroides
ig, gax = plt.subplots(figsize=(15,10))
olor asig = []
olor_individual = puntos_en mapa['COLOR']
or row in range(0,len(lista gringa)):
 color asig.append(lista gringa[row])
orld.query("name == 'Mexico'").plot(ax = gax, edgecolor='black', color='white') #filt1
untos en mapa.plot(ax=gax, color=lista gringa individual, alpha = 0.5)
untos centroides.plot(ax=gax, color=color asig, alpha = 1, markersize = 300)
ax.set xlabel('longitude')
ax.set ylabel('latitude')
ax.set title('Acuiferos en Mexico')
ax.spines['top'].set visible(False)
ax.spines['right'].set visible(False)
```

lt.show()

len(color_asig)

20

Double-click (or enter) to edit

```
# send back into dataframe and display it
df_sub_copy = df_sub.copy(deep=True)
df_sub_copy['CLUSTER'] = labels
# display the number of mamber each clustering
_clusters = df_sub_copy.groupby('CLUSTER')['CLUSTER'].count()
print(_clusters)
```