Codec Classifier

November 17, 2023

This paper describes a classifier architecture consisting of an encoder and a decoder. The word "codec" in the name Codec Classifier follows from merging the words encoder and decoder.

The architecture of the codec classifier is shown in Fig. 1. An input feature vector x is input to the encoder, which outputs a codeword c, which is decoded to a predicted class label \hat{y} . This classifier architecture is reminscent of a communication system. In communication systems,

- the codeword is a perfect representation of the message x with redundancy added to detect and correct errors,
- a channel (not shown in Fig. 1) corrupts the bits of the codeword, and
- the decoder attempts to recover the message x.

The decoder's ability to determine x without errors depends on the extent of the channel distortion.

In the classification problem,

- it is hoped that the codeword c is a perfect representation of the feature vector x, but the encoder may be lossy in the sense that x may not be recoverable from c,
- \bullet there is no channel, or the channel may be considered to be perfect, i.e. does not induce errors on c, and
- the decoder may be lossy in the sense that even if x is recoverable from c, the decoder may not be able to perform that recovery due to the complexity of the recovery problem.

Figure 1: Structure of the codec classifier.

In the inferrence step of the classification problem, the goal is to identify the class y associated with an observed x.

In communication systems, mutual information is used as a metric to design schemes that make the best use of the channel. For classification, we adopt the mutual information as a metric to design the encoder and decoder. We also use the Bayes error as a metric to evaluate different designs.

Consider an encoder consisting of d classification trees having binary codes in the leaves. A tree with r layers of decision nodes has 2^r leaf nodes. The tree input x selects a leaf node and the leaf's r-bit code is output. Concatenating the results of d trees together yields a dr-bit codeword c. A tree with r=1 is called a stump. A stump outputs one bit. The parameters of a tree are the feature indexes f_i , thresholds t_i , and r-bit codes assigned to the leaves. The tree output results from a sequence of decisions $x_{f_i} \leq t_i$ that are controlled by the elements of the input feature vector x. When $x_{f_i} \leq t_i$ is true, the decision tree is descended to the left child node and descends to the right child node otherwise. The classifier design problem chooses the parameters to maximize mutual information or minimize Bayes error. Under certain conditions, the AdaBoost algorithm is known to minimize the Bayes error. Therefore, this work builds the encoder with d trees using AdaBoost.

In a multi-class classification problem the AdaBoost classifier may be designed in multiple ways. Here we offer two possibilities. First, the standard multi-class AdaBoost approach may be used. Another possibility is to randomly divide the classes into two sets and train a binary classifier on the sets using the weights from the boosting process.

Suppose the encoder is constructed from d stumps. Each stump splits feature space into two halfspaces in which the separating hyperplane is aligned with one of the axes. A stump outputs a 0 for all inputs x in one halfspace and a 1 for all points in the other halfspace. Put another way, the inverse images of 0 and 1 are axis-aligned halfspaces.

The inverse image of a codeword c is a hyperrectangular set constructed by intersecting one halfspace region from each tree depending on whether the codeword bit is a 0 or a 1. Codewords and hyperrectangles are in one-to-one correspondence so that we may think of the list of hyperrectangles being indexed by binary codewords. The hyperrectangles partition feature space into disjoint sets that cover the space. There are 2^d hyperrectangles. Some of these rectangles may be empty sets. In that case, the corresponding codewords would never be observed at the output of the encoder.

An example classification problem may help to set ideas about the magnitudes of the values involved. The MNIST dataset consists of 28×28 8-bit grayscale images of handwritten digits. Each image consists of $28^2 = 784$ pixels. Each pixel may take on $2^8 = 256$ values. Thus there are $(2^8)^{784} = 2^{6272} \approx 10^{1888}$ different images possible. Suppose we use AdaBoost to build an encoder of d = 1000 stumps. There are $2^{1000} \approx 10^{301}$ possible codewords. Thus, in this case there are not enough codewords to assign a unique codeword to each image. However, we suppose that feature space may be partitioned into 2^{1000} hyperrectangular regions such that a unique codeword can be assigned to each region.

If the regions are pure in the sense that they contain data points from only one class, then the codeword c uniquely represents the class and the decoder design problem is to perform that decoding error free.

An optimal decoder would be an array of 2^d elements, i.e. a look-up-table, one element for every hyperrectangle, addressable by the d-bit codeword c, and storing the class lable \hat{y} for points falling into the corresponding hyperrectangle. Unfortunately, storing this array exceeds the memory capacity of any conceivable computer for the MNIST dataset and for most other interesting classification problems. Therefore, we are forced to consider suboptimal approximations of the big look-up-table.

Consider a computer with memory capacity that can store a 2^m -element array addressed by an m-bit word. This array approximates the 2^d -element array by sampling m bits out of the d bit codeword c. The particular m bits used may be found by searching over the $\binom{d}{m}$ combinations of m bits. However, in interesting classification problems $\binom{d}{m}$ is so large a number that this search is computationally infeasible. What is needed is a decoder that approximates the optimal decoder using limited memory and limited computational resources. We note that heuristic searches such as simulated anealing may find good m-bit subcodewords, but we do not pursue this approach further here.

Let a_m be an array with 2^m elements. If w is a m-bit word, $a_m[w]$ is the corresponding element from array a_m . Let σ_m be a selection operator such that $w = \sigma_m(c)$ is an m-bit word whos values are selected from codeword c. Composing σ_m and a_m gives a definition for a selective array $a_m[\sigma_m(c)]$, which accesses elements in a small array a_m using select bits $\sigma_m(c)$ from the big codeword c.

A tractable, storable approximation to the big look-up-table consists of multiple layers of selective arrays. Each layer consists of a parallel collection of d^l distinct selective arrays arrays in which each array is addressed by an m^l -bit word. Each array outputs one bit. These bits are collected into a d^l -bit codeword, which is taken as the input to the selective arrays in the next layer for $l=1,2,\cdots,L$. The array in the last layer stores class labels. The complexity of each layer is determined by the pair (d^l, m^l) . An example network of selective arrays is (100,5), (50,5), (20,5), (1,20). In this case the last layer has one large array. The memory requirement is $100 \times 2^5 + 50 \times 2^5 + 20 \times 2^5 + 2^{20} = 5440 + 2^{20} = 1,054,016$ elements. Most of the memory is for the final array.

The parameters in the proposed decoder are the indexes in the selection operators and the 0/1 bit values stored in the arrays. We propose a strategy like bagging for finding the selection indexes in σ_m . A set of 10 indexes from the input codeword are chosen at random. Then a $\binom{10}{5}$ -way brute force sesarch is performed to select the best 5 from the 10 randomly chosen. For each five indexes tested, the binary values stored in the array elements are searched at random. For five bits, there are 32 array elements and 2^{32} different combinations possible. That is too many to exhaustively search. If instead of 5 bits selected, there were 4, then there would be 16 elements in the array and $2^{16} = 65,536$ possible bit configurations. That might be a small enough number to try all

possibilities. The objective to be maximized during the search is mutual information until the last stage when class labels are output and Bayes error can be minimized, maximizing mutual information between the codeword at the layer output and the input x can be used for optimization.

We note that not all bit patterns need to be tested in the arrays. For example, an all-zero or all-one array does not help with classification. Similarly, an array in which the output bit is controlled by one or a few bits in the input word could produce the same output using fewer input bits. Taking this into consideration only reduces the total number of possiblities by about half, which is not a significant savings.

We propose a greedy approach to optimizing the selective arrays following concepts from building classification trees. Randomly select a set of bits from the word at the layer input. Due to the binary nature of the bits, only one splitting point need be considered, t=0.5. Evaluating whether this is a good variable for splitting, calculate the mutual information instead of entropy or Gini index as are commonly used in classification trees. The mutual information may be evaluated between the class labels y or the data vectors x themselves and the output bits from the split in question. After selecting a variable for "splitting", the dataset is divided and more splits are considered on the next level. These trees may be grown either sequentially or in parallel. Note that this architecture leads to a deep network of trees which we call a deep tree network (DTN).

1 Metrics: Bayes Error

This section explores Bayes error as a metric for designing coders or decoders for classification. The Bayes error is the lowest error that can be achieved by any classifier for a classification problem. Let $f_i = f(x|i)$ be the conditional probability of observing x given that the class is i, and let p_i be the priori probability of class i. Then $p_i f_i$ is proportional to the posterior probability of i given x. An optimal classifier uses the rule $\hat{i} = \arg\max_i p_i f_i$. The error associated with this classifier (i.e. the Bayes error) may be computed as

$$\mathcal{E} = \int_{p_1 f_1 \le p_2 f_2} p_1 f_1 dx + \int_{p_1 f_1 \ge p_2 f_2} p_2 f_2 dx.$$

To simplify the notation, let's define the following shorthand

$$\int_{\leq} = \int_{p_1 f_1 \leq p_2 f_2} dx, \qquad \int_{\geq} = \int_{p_1 f_1 \geq p_2 f_2} dx$$

so that the Bayes error may be written as

$$\mathcal{E} = \int_{<} p_1 f_1 + \int_{>} p_2 f_2.$$

Then

$$\begin{split} \mathcal{E} &= \int_{\leq} p_1 f_1 + \int_{\geq} p_2 f_2 \\ &= \frac{1}{2} \left(\int_{\leq} p_1 f_1 + \int_{\geq} p_2 f_2 + \int_{\leq} p_1 f_1 + \int_{\geq} p_2 f_2 \right) \\ &= \frac{1}{2} \left(\int_{\leq} p_1 f_1 + \int_{\geq} p_1 f_1 + \int_{\geq} p_2 f_2 + \int_{\leq} p_2 f_2 + \int_{\leq} (p_1 f_1 - p_2 f_2) + \int_{\geq} (-p_1 f_1 + p_2 f_2) \right) \\ &= \frac{1}{2} \left(\int_{\leq} (p_1 f_1 + p_2 f_2) + \int_{\leq} (p_1 f_1 - p_2 f_2) + \int_{\leq} (-p_1 f_1 + p_2 f_2) \right) \\ &= \frac{1}{2} \left(\int_{\leq} (p_1 f_1 + p_2 f_2) - |p_1 f_1 - p_2 f_2| \right) \\ &= \int_{\leq} p_2 f_2 - \int_{\leq} p_2 f_2 + \frac{1}{2} \left(\int_{\leq} (p_1 f_1 + p_2 f_2) - |p_1 f_1 - p_2 f_2| \right) \\ &= p_2 + \frac{1}{2} \left(\int_{\leq} (p_1 f_1 - p_2 f_2) - |p_1 f_1 - p_2 f_2| \right) \\ &= \min(p_1, p_2) + \max(p_2 - p_1, 0) - \frac{1}{2} \left(\int_{\leq} f_2 \left[\left(p_2 - p_1 \frac{f_1}{f_2} \right) + \left| p_2 - p_1 \frac{f_1}{f_2} \right| \right] \right) \\ &= \min(p_1, p_2) - \int_{\leq} f_2 t \left(\frac{f_1(X)}{f_2(X)} \right) \\ t(x) &= \frac{1}{2} \left[(p_2 - p_1 x) + |p_2 - p_1 x| \right] - \max(p_2 - p_1, 0) \\ &= \max(p_2 - p_1 x, 0) - \max(p_2 - p_1, 0). \end{split}$$

A f-divergence between two density functions f_1 and f_2 is defined as

$$D_g(f_1||f_2) = \int f_2(x)g\left(\frac{f_1(x)}{f_2(x)}\right)dx = E_{f_2}\left[g\left(\frac{f_1(X)}{f_2(X)}\right)\right],$$

where g is a smooth and convex function such that g(1) = 0. The KL-divergence, Hellinger distance, and total variation distance are special cases when $g(x) = x \log(x), (1-\sqrt{x})^2, \frac{1}{2}|x-1|$, respectively. Observe that t satisfies the properties required in the definition of f-divergence: t(1) = 0 and t(x) is a convex function. Thus, the expression for the Bayes error above shows it able to be written as an f-divergence between conditional densities f_1 and f_2 .

1.1 Using Bayes Error with Data

When observations of x are available under f_1 and f_2 , the ensemble average is replaced by a sample average

$$\hat{\mathcal{E}}(X_1, X_2) = \min(\hat{p}_1, \hat{p}_2) - \frac{1}{N_2} \sum_{i=1}^{N_2} \tilde{t}\left(\hat{U}_i\right),$$

where $\tilde{t}(t)(x) = \max(t(x), t(C_L/C_U))$, $0 < C_L \le f_1(x), f_2(x) \le C_U$, and \hat{p}_1, \hat{p}_2 are emperical estimates (relative frequencies) of the class labels in the training set. \hat{U}_i is an estimate of the density ratio at point x_i with class label 2, which is computed based on the data points falling into an ϵ -ball about x_i , and N_2 is the number of class 2 points.

A symmetric version of Bayes error is

$$\mathcal{E}_{\epsilon} = \frac{N_2}{N} \hat{\mathcal{E}}(X_1, X_2) + \frac{N_1}{N} \hat{\mathcal{E}}(X_2, X_1) = \min(\hat{p}_1, \hat{p}_2) - \frac{1}{N} \sum_{i=1}^{N} \tilde{t}\left(\hat{U}_i^{\epsilon}\right),$$

where \hat{U}_i^{ϵ} is the density ratio estimate using a ϵ -ball about the point x_i (see Noshad's thesis for the definition). Estimates for various values of ϵ may be combined to improve convergence behavior. See Noshad's thesis for more information. Noshad's thesis also presents a multi-class version of the Bayes error estimator.

2 Mutual Information

2.1 Nearest Neighbor Ratio (NNR)

The NNR provides estimates of divergence (either Renyi divergence or f-divergence). The NNR estimate of mutual information is obtained by constructing a second dataset in which the class labels are randomly permuted leading to independence between the features and the labels. These two datasets are passed into a divergence measure

$$\hat{I}(X,Y) = \hat{D}((X,PY)||(X,Y)).$$

See chapter 2 in Noshad's thesis for more information on this approach. A randomized and ensemble version of NNR are also presented with improved performance. I tend to think that the basic NNR would be sufficient for training/learning the selective arrays by greedy tree building methods. In this case, we are trying to maximize the mutual information between the input features or their class labels and the binary codes produced in the layers of the trees being built to approximate the selective arrays. In building a tree that approximates a selective array, splits on various input variables (bits from the codeword produced in the previous layer) are considered. To evaluate the fitness of any split, pass the training data through the classifier up to the previous layer. Pass the

codeword for each input through the split in question. This gives a base dataset. Construct a second dataset in which the class lables are randomly permuted. Use these two datasets to evaluate a the NNR estimate of mutual information. One question is whether to use a different random permutation every time or to reuse the same random permutation multiple times when comparing splits on different input variables. I tend to think that the same permutation should be used when comparing the splits on different input variables because we don't want the randomness in the permutation to bias the variable selection process. Perhaps several permutations should be used and the results averaged together to reduce bias.

Maybe this fancy mutual information estimation is unnecessary because our data are discrete and we can simply use histogram estiamtes. The class labels are few in number and the bits in the binary codes are binary valued. With a large dataset, the histogram estimates might work very well.