We consider a PTMC & Endness governed by P and a Poisson process & Nedtero with rate X. We then construct the process {Xtdt20 as Xt = Ent.

Since { X+} has the same state space as {En}, the state space is $E = {0, 1}$.

Now we check the postulates in sec. 6.3.1. Postulates 4 and 5 are trivially satisfied. Next, we turn our attention to the case when $X_t = 0$. The process will jump to state one when there is an arrival in $\{N_t\}$, which happens at rate λ . (as Poo = 0 and Poi = 1). Therefore $\lambda_0 = \lambda$.

When $X_t = 1$, the case is not as simple. Here, we need to carry out the actual calculations.

M, = lim P(X++ = 0 | X+= 1)/h.

In the limit, the probability that $X_{t+N} = 0$ given X_{t-1} is the probability that $\xi N_{t} = 0$ has exactly one arrival and $\xi \in \mathbb{R}^3$ transitions from I to 0. We know this as the probability of multiple arrivals in $\xi N_{t} = 0$

in a time interval of length h will tend to zero as h tends to zero. Hence

Given $E_{N_{\pm}}=1$ and we know that a transition will happen in $E_{N_{\pm}}$ in the interval (E,E+h], the probability that $E_{N_{\pm}+h}=0$ must be $P_{10}=1-\alpha$. Furthermore, the probability of an amual in $E_{N_{\pm}}$ in a interval of length h, is independent of the state of $E_{N_{\pm}}$. Hence

In conclusion,

=
$$(1-\alpha)\lambda$$
.