Άσκηση 1.4

Ερώτημα Α

Πίνακας Input – Output.

<i>x</i> 1	<i>x</i> 2	$y = x_1 + x_2 \bmod 3$	
0	0	0	
0	1	1	
0	2	2	
1	0	1	
1	1	2	
1	2	0	
2	0	2	
2	1	0	
2	2	1	

Ορίζουμε ως συνάρτηση ενεργοποίησης την ακόλουθη:

Άρα, έχουμε αναλυτικά:

•
$$w_{i,j} = 1 \ \forall i,j \ \kappa \alpha i \ b_{h_1} = -3.5, b_{h_2} = -2.5, b_{h_3} = -1.5, b_{h_4} = -0.5$$

•
$$a_1 = 2$$
, $a_2 = -1$, $a_3 = -1$, $a_4 = 2$

Ερώτημα Β

Ερώτημα Γ Κατασκευάζουμε τους ακόλουθους πίνακες για να ελέγξουμε όλες τις τιμές των x_1, x_2

<i>x</i> 1	<i>x</i> 2	h_1	$f(h_1)$	h_2	$f(h_2)$	h_3	$f(h_3)$	h_4	$f(h_4)$
0	0	-3.5	0	-2.5	0	-1.5	0	-0.5	0
0	1	-2.5	0	-1.5	0	-0.5	0	0.5	1
0	2	-1.5	0	-0.5	0	0.5	1	1.5	1
1	0	-2.5	0	-1.5	0	-0.5	0	0.5	1
1	1	-1.5	0	-0.5	0	0.5	1	1.5	1
1	2	-0.5	0	0.5	1	1.5	1	2.5	1
2	0	-1.5	0	-0.5	0	0.5	1	1.5	1
2	1	-0.5	0	0.5	1	1.5	1	2.5	1
2	2	0.5	1	1.5	1	2.5	1	3.5	1

$f(h_1)$	$f(h_2)$	$f(h_3)$	$f(h_4)$	$y_{out} = 2f(h_1) - f(h_2) - f(h_3) + 2f(h_4) - 1$	$f(y_{out})$
0	0	0	0	-1	0
0	0	0	1	1	1
0	0	1	1	0	2
0	0	0	1	1	1
0	0	1	1	0	2
0	1	1	1	-1	0
0	0	1	1	0	2
0	1	1	1	-1	0
1	1	1	1	1	1

Συγκρίνουμε και παρατηρούμε πως το δίκτυό μας υπολογίζει σωστά τις εξόδους για κάθε δυνατό συνδυασμό εισόδων.

$f(y_{out})$	$y = x_1 + x_2 \bmod 3$
0	0
1	1
2	2
1	1
2	2
0	0
2	2
0	0
1	1