习题 5.4

(一) 基本习题

1. 填空题:

- (1) 当k ______时,反常积分 $\int_0^{+\infty} e^{-kx} dx$ 收敛;当k ______时,反常积分 $\int_{-\infty}^0 e^{-kx} dx$ 收敛.
- (2) $\exists \exists \prod_{k=0}^{+\infty} e^{k|x|} dx = 1, \exists k = \underline{\qquad}$

2. 选择题:

- (1) 下列结论正确的是().
 - A. 若 $\int_{0}^{+\infty} f(x)dx$ 和 $\int_{0}^{0} f(x)dx$ 中有一个发散,则 $\int_{0}^{+\infty} f(x)dx$ 一定发散
 - B. 若 $\int_0^{+\infty} f(x)dx$ 发散, $\int_0^{+\infty} g(x)dx$ 发散, 则 $\int_0^{+\infty} [f(x) + g(x)]dx$ 一定发散
 - C. 若 $\int_0^{+\infty} f(x)dx$ 发散, $\int_0^{+\infty} g(x)dx$ 发散, 则 $\int_0^{+\infty} f(x)g(x)dx$ 一定发散
 - D. 若 $\int_0^{+\infty} f(x)dx$ 收敛, $\int_0^{+\infty} g(x)dx$ 发散, 则 $\int_0^{+\infty} f(x)g(x)dx$ 一定发散
- (2) 下列反常积分中收敛的是 (

 - A. $\int_{e}^{+\infty} \frac{\ln x}{x} dx$ B. $\int_{e}^{+\infty} \frac{dx}{x \ln x}$ C. $\int_{e}^{+\infty} \frac{dx}{x (\ln x)^{2}}$ D. $\int_{e}^{+\infty} \frac{dx}{x \sqrt{\ln x}}$
- (3) 反常积分 $\int_{-1}^{1} \frac{1}{r^2} dx = ($)
 - A. 收敛 B. 发散 C. 既不收敛、也不发散 D. 无法判断.
- (4) 反常积分 $\int_{0}^{+\infty} \frac{1}{r^{p}} dx (p > 1)$ (
- A. 收敛 B. 发散 C. 既不收敛、也不发散 D. 无法判断.
- (5) 已知反常积分 $\int_3^{+\infty} \frac{1}{x(\ln x)^k} dx$ 收敛,则 k 的取值范围为(
- A. $(1, +\infty)$
- B. $[1, +\infty)$ C. $(-\infty, 1)$
- D. $(-\infty,1]$

- (6) 下列反常积分中收敛的是()
 - A. $\int_{0}^{\frac{\pi}{2}} \tan x dx$

B. $\int_0^{\frac{\pi}{2}} \frac{\tan x}{\sqrt{\cos x}} dx$

C. $\int_{a}^{\frac{\pi}{2}} \sqrt{\tan x \sin x} dx$

D. $\int_0^{\frac{\pi}{2}} \frac{\tan x}{\cos x} dx$

3. 计算题:

 $(1) \int_{\frac{2}{\pi}}^{+\infty} \frac{1}{x^2} \sin \frac{1}{x} dx;$

 $(2) \int_0^{+\infty} x e^{-x} dx;$

$$(4) \int_{-\infty}^{+\infty} \frac{dx}{x^2 - 2x + 2} dx;$$

$$(5) \int_0^1 \frac{\arcsin x}{\sqrt{1-x^2}} dx;$$

(6)
$$\int_0^1 \frac{x \arcsin x}{\sqrt{1-x^2}} dx$$

4. 求
$$c$$
 值使得 $\lim_{x \to +\infty} \left(\frac{x + 2c}{x - 3c} \right)^{-2x} = \int_{c}^{+\infty} t e^{-10t} dt$.

