Outline

More Naive Bayes

Data Mining Prof. Dawn Woodard School of ORIE Cornell University

- 1 Conceptual Exercises
- 2 Summary of Naive Bayes
- 3 Examples of Naive Bayes
- 4 Handling Missing Data
- 5 Naive Bayes on the Heart Disease Data

Estimating Conditional Probabilities

Say the joint counts table for the random variables Z and W in a data set is:

	W = a	W = b	W = c
Z = 1 $Z = 2$	25	13	31
<i>Z</i> = 2	73	41	102

Using these data, estimate the conditional distribution of W given that Z=2. Estimate the (marginal) probability distribution of W. Estimate the joint probability that Z=1 and W=c. Are Z and W approximately independent?

A. Yes

B. No

Classification

1

Exploration of some training data gives you the following information: The probability that Y = 0 is approximately 52%, and otherwise Y = 1. The distribution of X_1 conditional on Y is approximately:

	$X_1 = 1$	$X_1 = 2$
Y = 0	0.27	0.73
Y = 1	0.65	0.35

The distribution of X_2 conditional on Y is approximately:

Classification

Say that we want to create a "classification rule" that predicts Y accurately based only on a single predictor variable (either X_1 or X_2). Which predictor variable would you use, to get the best accuracy?

- $\mathbf{A}. X_1$
- B. X_2

What would be your classification rule? E.g., X_2 is the predictor variable, and the rule is to predict Y = 1 when $X_2 \le 500$ and Y = 0 when $X_2 > 500$.

Naive Bayes Training / Prediction

There are 2 steps to a supervised learning method:

- TRAINING: Learn a decision rule (rule for prediction) using a training data set, in which both the predictors and outcome are observed
- **PREDICTION:** For new observations, predict the value of the outcome variable given the predictors.

Example

Naive Bayes Training:

- For each predictor k estimate the conditional probability table $Pr(X_k|Y)$ to be equal to the conditional frequency table from the training data, called $Pr(X_k|Y)$
- Estimate Pr(Y) to be equal to the frequencies from the training data, called Pr(Y)

Example

6

Naive Bayes Prediction:

■ To predict the probability that Y = y, given that $X_1 = x_1, \dots, X_K = x_K$ we use the formula:

$$Pr(Y = y | X_1 = x_1, ..., X_K = x_K)$$

$$= \frac{\hat{P}r(Y = y) \left[\prod_{k=1}^K \hat{P}r(X_k = x_k | Y = y) \right]}{\sum_{y'} \hat{P}r(Y = y') \left[\prod_{k=1}^K \hat{P}r(X_k = x_k | Y = y') \right]}$$

Example

For the CAD example, say we calculate

$$Pr(CAD = Yes) \left[\prod_{k=1}^{K} Pr(X_k = x_k | CAD = Yes) \right] = 0.005$$

and

$$Pr(CAD = No) \left[\prod_{k=1}^{K} Pr(X_k = x_k | CAD = No) \right] = 0.01$$

What is the conditional probability that CAD = Yes, given the predictor values?

- **A.** In the interval [0, .25)
- **B.** In the interval [.25, .5)
- **C.** In the interval [.5, .75)
- **D.** In the interval [.75, 1]

Example

- Example: Y is CAD, predictors X_1 is Sex and X_2 is Exercise Induced Angina
- Estimate $Pr(X_1|Y)$ to be equal to the table from the data:

$$Sex = Fem$$
 $Sex = Mal$
 $CAD = N$ 0.45 0.55
 $CAD = Y$ 0.17 0.83

■ Estimate $Pr(X_2|Y)$ to be equal to the table from the data:

$$EIA = N$$
 $EIA = Y$
 $CAD = N$ 0.85 0.15
 $CAD = Y$ 0.45 0.55

13

Example

■ Estimate *Pr*(*Y*) to be equal to the frequencies from the data:

■ Pr(Y = Yes) = 0.56 and Pr(Y = No) = 0.44

Example

- What is the chance that a female with EIA has CAD?
 - A. In the interval [0, .25)
 - **B.** In the interval [.25, .5)
 - **C.** In the interval [.5, .75)
 - **D.** In the interval [.75, 1]

Example

- We need to predict CAD or no CAD for such a patient. What do we pick?
- Typically we predict CAD if $Pr(Y = \text{Yes}|X_1, ..., X_K) > 0.5$ and no CAD otherwise
- I.e. we use the threshold 0.5. This is the default choice.
- But we know that not sending a CAD patient to angiography is a more costly mistake than sending a non-CAD patient to angiography
- So maybe we want to use a different threshold (lower or higher?)
- We will discuss this next time

Summary

Naive Bayes is a model-based method. What is the statistical model (assumptions)? What are the parameters of the model? How many parameters are there for the simple CAD example on the previous slides?

- **1**-4
- **5-8**
- 9-12
- **13-16**

17

Summary

Naive Bayes

16

For a different problem our training data look like: What are the estimates of Pr(Y), $Pr(X_1|Y)$, and $Pr(X_2|Y)$ for naive Bayes using these data?

<i>X</i> ₁	X_2	Υ
a	0	1
а	0	0
b	0	1
b	0	1
а	1	1
b	0	0
а	1	1
а	0	0
b	1	0
b	1	0
b	0	1

Naive Bayes

Estimate the probability that Y = 0, given that $X_1 = b$ and $X_2 = 0$.

Predict Y, given that $X_1 = b$ and $X_2 = 0$.

Naive Bayes

- Give an example where the naive Bayes assumption is reasonable, i.e., a prediction problem where this assumption would approximately hold.
- Give an example where the naive Bayes assumption definitely would not hold.

Naive Bayes

This assumption does not hold when you are trying to predict the type of aircraft based on its location at a series of time points.

Naive Bayes

In naive Bayes the outcome Y does not have to be a binary variable, as in the CAD example. It can take any finite # of possible values. Examples:

Missing Data

Missing Data in Naive Bayes

■ How do we do prediction using naive Bayes if we are missing a value for one of the predictors?

25

Missing Data

Calculation:

For any possible y, x_2, \ldots, x_K ,

$$Pr(Y = y | X_2 = x_2, ..., X_K = x_K)$$

=

$$= \frac{Pr(Y = y) \prod_{k=2}^{K} Pr(X_k = x_k | Y = y)}{\sum_{y'} Pr(Y = y') \prod_{k=2}^{K} Pr(X_k = x_k | Y = y')}$$

Missing Data

- What do we do if one of the records (rows) in the **test** data is missing a value for one of the predictors?
- When doing classification for that record we simply do not condition on that predictor.
- If we are missing the first predictor X_1 , instead of calculating

$$Pr(Y|X_1,\ldots,X_K)$$

to do classification, we calculate

$$Pr(Y|X_2,\ldots,X_K)$$

How do we calculate this?

2

Missing Data

- How do we do prediction if there is more than one predictor missing?
- Same: Just leave those predictors out of the product term when calculating the conditional prob. that Y = y.

Missing Data

Missing Data

■ What do we do if one of the records in the **training** data has a missing value for one of the predictors (say, X_1)?

- When estimating $Pr(X_1|Y)$, we just calculate as if that data point was not in the data set
- How do we change our estimation of $Pr(X_k|Y)$ for $k \neq 1$?

29

30

Missing Data

- How do we change our estimation of $Pr(X_k|Y)$ for $k \neq 1$?
- It does not change. Use the whole data set as usual.

Missing Data

Say our training dataset looks like:

X_1	X_2	}
а	1	1
а	0	(
b	0	1
b	0 0 0 1	1
а	1	11 11 11 11 11 11 11 11 11 11 11 11 11
b	1	(
b ? ?	1	1
?	0	(
b	1	(
b	1	(
b	0	1

Missing Data

What are the (frequentist) estimates of Pr(Y), $Pr(X_1|Y)$, and $Pr(X_2|Y)$ for naive Bayes?

X_1	X_2	Υ
а	1	1
а	0	0
b	0	1
b	0	1
а	1	1
b	1	0
?	1	1
? ?	0	0
b	1	0
b	1	0
b	0	1

Missing Data

33

■ Estimate the probability that Y = 1, given that $X_1 = b$ and $X_2 = 0$.

■ Using threshold 0.5, predict the value of Y, knowing that $X_1 = b$ and $X_2 = 0$.

Missing Data

■ Estimate the probability that Y = 1, given that $X_2 = 0$ and X_1 is missing.

■ Using threshold 0.4, predict the value of Y, knowing that $X_2 = 0$ and X_1 is missing.

Naive Bayes on the Heart Disease Data

■ Recall that we constructed a classification tree for heart disease using exploratory data analysis:

Naive Bayes on the Heart Disease Data

Naive Bayes on the Heart Disease Data

- This tree had 80% accuracy on the training data
- I never told you the accuracy on the test data

The training data (from Cleveland):

38

Naive Bayes on the Heart Disease Data

Naive Bayes on the Heart Disease Data

The last column is heart disease status (0-3)

63.0,1.0,1.0,145.0,233.0,1.0,2.0,150.0,0.0,2.3,3.0,0.0,6.0,0
67.0,1.0,4.0,160.0,286.0,0.0,2.0,108.0,1.0,1.5,2.0,3.0,3.0,2
67.0,1.0,4.0,120.0,229.0,0.0,2.0,129.0,1.0,2.6,2.0,2.0,7.0,1
37.0,1.0,3.0,130.0,250.0,0.0,0.0,187.0,0.0,3.5,3.0,0.0,3.0,0
41.0,0.0,2.0,130.0,204.0,0.0,2.0,172.0,0.0,1.4,1.0,0.0,3.0,0
56.0,1.0,2.0,120.0,236.0,0.0,0.0,178.0,0.0,3.6,3.0,2.0,3.0,0
62.0,0.0,4.0,140.0,268.0,0.0,2.0,160.0,0.0,3.6,3.0,2.0,3.0,3
57.0,0.0,4.0,120.0,354.0,0.0,0.0,163.0,1.0,0.6,1.0,0.0,3.0,0
63.0,1.0,4.0,130.0,254.0,0.0,2.0,147.0,0.0,1.4,2.0,1.0,7.0,2
53.0,1.0,4.0,140.0,203.0,1.0,2.0,155.0,1.0,3.1,3.0,0.0,7.0,1
57.0,1.0,4.0,140.0,192.0,0.0,0.0,148.0,0.0,0.4,2.0,0.0,6.0,0
56.0,0.0,2.0,140.0,294.0,0.0,2.0,155.0,10.31,3.2.0,0.0,3.0,0
56.0,1.0,3.0,130.0,256.0,1.0,2.0,153.0,0.0,1.3,2.0,0.0,3.0,0

We just predicted heart disease present (1-3) or absent (0)

63.0,1.0,1.0,145.0,233.0,1.0,2.0,150.0,0.0,2.3,3.0,0.0,6.0,0
67.0,1.0,4.0,160.0,286.0,0.0,2.0,108.0,1.0,1.5,2.0,3.0,3.0,2
67.0,1.0,4.0,120.0,229.0,0.0,2.0,129.0,1.0,2.6,2.0,2.0,7.0,1
37.0,1.0,3.0,130.0,250.0,0.0,0.0,187.0,0.0,3.5,3.0,0.0,3.0,0
41.0,0.0,2.0,130.0,204.0,0.0,2.0,172.0,0.0,1.4,1.0,0.0,3.0,0
56.0,1.0,2.0,120.0,236.0,0.0,0.0,178.0,0.0,0.8,1.0,0.0,3.0,0
62.0,0.0,4.0,140.0,268.0,0.0,2.0,160.0,0.0,3.6,3.0,2.0,3.0,3
57.0,0.0,4.0,120.0,354.0,0.0,0.0,163.0,1.0,0.6,1.0,0.0,3.0,0
63.0,1.0,4.0,130.0,254.0,0.0,2.0,147.0,0.0,1.4,2.0,1.0,7.0,2
53.0,1.0,4.0,140.0,203.0,1.0,2.0,155.0,1.0,3.1,3.0,0.0,7.0,1
57.0,1.0,4.0,140.0,192.0,0.0,0.0,148.0,0.0,0.4,2.0,0.0,6.0,0
56.0,0.0,2.0,140.0,294.0,0.0,2.0,153.0,0.0,1.3,2.0,0.0,3.0,0
56.0,1.0,3.0,130.0,256.0,1.0,2.0,142.0,1.0,0.6,2.0,1.0,6.0,2
44.0,1.0,2.0,120.0,263.0,0.0,0.0,173.0,0.0,0.0,1.0,0.0,7.0,0

Naive Bayes on the Heart Disease Data

Naive Bayes on the Heart Disease Data

The other columns are age, gender (0/1), E.I.A. (0/1), etc.

The test data (from California):

```
63,1,4,140,260,0,1,112,1,3,2,?,?,2
44,1,4,130,209,0,1,127,0,0,?,?,?,0
60,1,4,132,218,0,1,140,1,1.5,3,?,?,2
55,1,4,142,228,0,1,149,1,2.5,1,?,?,1
66,1,3,110,213,1,2,99,1,1.3,2,?,?,0
65,1,4,150,236,1,1,105,1,0,?,?,?,3
60,1,3,180,0,0,1,140,1,1.5,2,?,?,0
60,1,3,120,0,?,0,141,1,2,1,?,?,3
60,1,2,160,267,1,1,157,0,0.5,2,?,?,1
56,1,2,126,166,0,1,140,0,0,?,?,?,0
59,1,4,140,0,0,1,117,1,1,2,?,?,1
62,1,4,110,0,0,0,120,1,0.5,2,?,3,1
63,1,3,?,0,0,2,?,?,?,?,?,1
```

42

Naive Bayes on the Heart Disease Data

The last column is the heart disease status (0-3)

```
63,1,4,140,260,0,1,112,1,3,2,?,?,2
44,1,4,130,209,0,1,127,0,0,?,?,?,0
60,1,4,132,218,0,1,140,1,1.5,3,?,?,2
55,1,4,142,228,0,1,149,1,2.5,1,?,?,1
66,1,3,110,213,1,2,99,1,1.3,2,?,?,0
66,1,3,120,0,0,1,120,0,-0.5,1,?,?,0
65,1,4,150,236,1,1,105,1,0,?,?,?,3
60,1,3,180,0,0,1,140,1,1.5,2,?,?,0
60,1,3,120,0,?,0,141,1,2,1,?,?,3
60,1,2,160,267,1,1,157,0,0.5,2,?,?,1
56,1,2,126,166,0,1,140,0,0,?,?,?,0
59,1,4,140,0,0,1,117,1,1,2,?,?,1
62,1,4,110,0,0,0,120,1,0.5,2,?,3,1
63,1,3,?,0,0,2,?,?,?,?,?,?,?,2
```

Naive Bayes on the Heart Disease Data

The test data has a lot of missing values for the predictors!

```
63,1,4,140,260,0,1,112,1,3,2,?,?,2
44,1,4,130,209,0,1,127,0,0,?,?,?,0
60,1,4,132,218,0,1,140,1,1.5,3,?,?,2
55,1,4,142,228,0,1,149,1,2.5,1,?,?,1
66,1,3,110,213,1,2,99,1,1.3,2,?,?,0
66,1,3,120,0,0,1,120,0,-0.5,1,?,?,0
65,1,4,150,236,1,1,105,1,0,?,?,?,3
60,1,3,180,0,0,1,140,1,1.5,2,?,?,0
60,1,3,120,0,?,0,141,1,2,1,?,?,3
60,1,2,160,267,1,1,157,0,0.5,2,?,?,1
56,1,2,126,166,0,1,140,0,0,?,?,?,0
59,1,4,140,0,0,1,117,1,1,2,?,?,1
62,1,4,110,0,0,120,1,0.5,2,?,3,1
```

14 4:

Naive Bayes on the Heart Disease Data

Naive Bayes on the Heart Disease Data

- We can't use our classification tree when we are missing the value of one of the predictors that is used in the tree.
- In fact, the original heart disease training data (303 patients) had missing data as well
- The missing data had been removed in the data set that we used in Lecture 3, leaving 270 patients.
- But now we can fit a naive Bayes classifier to the full training data, and predict on the test data, regardless of the missing values!

Applying naive Bayes to the heart disease data gives a 75% accuracy on the test data.

46

47

Naive Bayes on the Heart Disease Data

■ Recall the article on heart disease prediction:

Naive Bayes on the Heart Disease Data

- The authors report an accuracy of about 77% for their methods on the same test data.
- Our classifier, despite being "naive", does almost as well!