

L3

```
Acode.
  Queu < Node> 9;
  q.enquem (root);
  while (q.is Comptyl) == false) {
        int sz = g:size();
       for (i=1; i ≤ SZ; i++) {
              Node = q. dequeue();
               print (x. val);
               if (z.18+ != No2) { q. enqueue (z.18+); }
              if (a. right!= Nou) \ q. enqueu (a. right); }
        print ("\n");
```

find right view of binary tree. Øt 2/p. → 1,3,13,4,11 Colution - Print the last element of every level. Queue < Node> 9; q.enquem (root); while (q.is Emptyl) == false) { int sz = 9; size(); for (i= 1; i \le SZ; i++) \{ Node 2 = 9, dequeue(); ig(i== S2) { print(x.val); } if (z. 1eft != NUL) { q. enqueue (z. 1eft); } if (a. right != Nou) & q. enqueu (a. right); } 3 print ("\n");

a left View of Binary 0/0. -1, 2, 5, 6, 12. Solution - print first element of every level. Queu < Node> 9; q.enquem (root); while (q.is Comptyl) == false) { int sz = 9: size(); for (i=1; i ≤ SZ; i++) { Node = q. dequeue(); g(i==1) { print(x.val); } if (z. 14t != NUZ) { q. enqueue (z. 14t); } if (a. right != Nou) \ q. enqueu (a. right); } 3 print ("\n");

Microsita


```
# code .-
 Pair root pair = new Pair ( root, 0);
Quine < Pair> 9; q. enquem (root pair);
Hashmap < int, list cint>> map; minvl=0, maxvl=0
while (q. is Empty() = = false){
       Pair rp = 9, dequeue ();
       minvl: Min(minvl, &p.vl), maxVl= Max(monvl, rp.vl);
       Insert op. node. val in the hashmap against rp. rl
       y( rp. node. 1ft != NOZZ) {
                   q. enque ue ( new Pair ( rp. node·14t, rp. rl -1));
      y ( rp. node. right != NULL) {
                   q. enque ue ( new Pair ( rp. node right, up. rl +1 ));
  for ( i = minrd; i \le maxxl; i++){
             point (map (i));
            print ( */n");
```


Solution - print first node of every vertical level.
Bottom View of a Binary tree

solution - print last node if every vertical level.

Types of Binary Tree (structure)

1 Proper/ Full Binary Tree

For every node, either 0 or 2 children.

Cy-

(2) Complete Binary Tree (C.B.T)

Every level must be completely filled except maybe the last level. In the last level, all nodes are filled from left to right.

3. Perfect Binary Tree

All levels must be completely filled.

1) Are all complete binary trees, also proper tree? No

3 Are all perfect binary treu, also complete tree? Yes.

3 Are all perfect binary trees, also proper tree?

<u>Y</u>ω.

On Cliven a perfect binary tree with N nodes. find neight of the tree.

$$ht = c$$

$$\rightarrow$$
 H $\left(2^{H}\right)$

$$2^{0} + 2^{1} + 2^{2} + 2^{3} + - - 2^{H} = N$$

$$\frac{1}{2}\left(2^{H+1}-1\right)=1$$

m. of Jerms = A+1

$$5^{H+1} = N+1$$

$$H+1 = \log_2(N+1) = D H = \log_2(N+1) - 1$$

$$H = \log_2(N+1) -1$$

log on & Ht. of tree < N

Balanced Binary Tree

+ nodes

Of Given a binary tree, chick if it is balanced or not.

Not balanced

boolean isbalanced - true

int height (Node root) {

if (root == NOLL) { return -1 }

tht = height (root left);

rht = height (root right);

if (Abs(lnt-rnt) > 1) { isbalanced=false }

return Mar(lnt, rnt) +1;
}

- utilise this function to check whether the tree is balanced or not.

(T.C → O(N) S.C → O(M. of hac)

#dry-run

(1),0 (2), (3), (5)2 (5)2 (7)2

level order with revenusion?

$$0 \rightarrow 1$$
 $1 \rightarrow 2,3$
 $2 \rightarrow 4,5,6,7$

Momis braversal.