Software Quality Engineering

Testing, Quality Assurance, and Quantiable Improvement

Tian Siyuan tiansiyuan@gmail.com

Chapter 2: What Is Quality?

- · Perspectives and Expectations
- Quality Frameworks and ISO-9126
- Correctness, Defect, and Quality
- A Historical Perspective

Perspectives and Expectations

· General:

"good" software quality

· Perspectives:

people/subject's view, software as object

· Expectations:

quality characteristics & level

- In Kitchenham & Pfleeger (1996):
 - . Transcendental view: seen/not-defined. . User view: fitness for purpose. . Manufacturing view: conform to specs. . Product view: inherent characteristics. . Value-based view: willing to pay.

Quality Perspectives

- Perspectives: subject and object
- Subject: people's perspectives
 - . external/consumer: customers and users . internal/producer: developers, testers, and managers . other: 3rd party, indirect users, etc. . users generalized: other systems etc. . focus on external/consumer side
- · Objects of our study:
 - . software products, systems, and services . stand-alone, embedded, etc. . affect quality definitions/expectations

Quality Expectations

- Expectations from different people
- External/consumer expectations:
 - . "good enough" for the price
 - fit-for-use, doing the "right things"
 - conformance, doing \things right"
 - -> validation and verification (V&V)
 - . customer vs user (price?) . internal vs external user . generalized user: other hw/sw/system/etc.
- Expectations for different software:
 - . general: functionality & reliability, . usability: GUI/end-user/web/etc., . interoperability: embedded systems, . safety: safety-critical systems, etc.
- Internal/producer:
 - . "good enough" for the cost

- mirror consumer side
- functionality & correctness via V&V
- . cost: developers vs managers . service related: maintainability . interfacing units: interoperability . 3rd party: modularity
- Different expectations for different types of products and market segments too.
- Different QA/SQE activities needed.

ISO-9126 Quality Framework

- ISO 9126 quality characteristics:
 - . Functionality: what is needed? . Reliability: function correctly. . Usability: effort to use. . Efficiency: resource needed. . Maintainability: correct/improve/adapt. . Portability: one environment to another.
- · Impact and limitations:
 - . Characteristics into sub-characteristics . Comprehensive framework . Strict hierarchy -> other alternatives

Other Quality Frameworks

- Adaptation of ISO-9126:
 - . customized for companies
 - e.g., IBM's CUPRIMDSO.
 - . adapted to application domains
 - reliability, usability, security for Web
- Other quality frameworks/mega-models
 - . McCall: factors, criteria, and metrics . Basili: GQM (goal-question-metric) . SEI/CMM: process focus/levels . Dromey: component reflects Q-attributes . Defect-based view: common in industry cost of defect: by Boehm, NIST, etc.

Correctness, Defect and Quality

- High quality ~ low defect
 - . intuitive notion related to correctness . quality problem ~ defect impact . widely accepted, but need better definitions
- · Defect/bug definition
 - . failure: external behavior deviation from expected behavior
 - . fault: internal characteristics cause for failures
 - . error: incorrect/missing human action error source: conceptual mistakes etc.
 - . defect: error, fault, failure collectively
 - . bug/debug: problematic terms, avoid

Correctness, Defect and Quality

- Relations: errors -> faults -> failures not necessarily 1-1, Fig 2.1 (p.21) above
- Other issues:
 - . QA as dealing with defect: Chapter 3 . defect handling/resolution: Chapter 4

Defining Quality in SQE

Quality: views and attributes

View	Attribute	
	Correctness	Other
Customer	Failures:	Maintainability
(external)	reliability	Readability
	safety	Portability
	etc.	Performance
		Installability
		Usability, etc.
Developer	Faults:	Design
(internal)	count	Size
	distr	Change
	class	Complexity
	etc.	presentation
		control
		data, etc.

• SQE focus: correctness-related.

Quality: Historical Perspective

- Software vs other products/systems:
 - . pre-software/IT: manufacturing process -> physical-object attributes (defects)
 - . service: manage expectations:

```
- 0 defect -> 0 defection
```

- . IT and software: below
- The new meaning of quality in the information age (Prahalad & Krishnan 1999):
 - . Conformance/adaptability/innovation . Traditional: conformance only . Domain specific (for info. age): specificity, stability, evolvability
- A historical perspective of SE, in 4 stages (Musa & Everett, 1990):
 - . functional: focus on automation . schedule: timely/orderly product intro . cost: competitive marketplace . reliability: meet user expectations
- Historical perspectives based on:
 - . measurement/feedback (Part IV), . process maturity, etc.
- So, what is software quality?

many aspects/perspective, but correctness-centered in SQE