Python Cheat Sheet: Set Methods

"A puzzle a day to learn, code, and play" → Visit finxter.com

Method	Description	Example
set.add(x)	Add an element to this set	>>> s = {1, 2, 3} >>> s.add(4) # {1, 2, 3, 4}
set.clear()	Remove all elements from this set	>>> s = {1, 2, 3} >>> s.clear() # set()
set.copy()	Create and return a flat copy of this set	>>> s = {1, 2, 'Alice'} >>> s.copy() # Returns: {1, 2, 'Alice'}
set.difference(x)	Return a new set with elements of this set except the ones in the given set arguments.	>>> [1, 2, 3].difference([1, 2]) [3]
set.difference_upd ate(iter)	Remove all elements from this set that are members of any of the given set arguments.	>>> s = {1, 2, 3} >>> s.difference_update({1, 2}) # s == {3}
set.discard(x)	Remove an element from this set if it is a member, otherwise do nothing.	>>> s = {'Alice', 'Bob', 'Cloe'} >>> s.discard('Bob') # s == {'Alice', 'Cloe'}
set.intersection()	Return a new set of elements that are members of this and the set argument(s).	>>> {1, 2, 3, 4}.intersection({3, 4, 5}) {3, 4}
set.intersection_u pdate()	Removes all elements from this set that are not members in all other specified sets.	>>> s = {1, 2, 3, 4} >>> s.intersection_update({3, 4, 5}) # s == {3, 4}
set.isdisjoint(x)	Return True if their intersection is the empty set.	>>> {1, 2, 3, 4}.isdisjoint({'Alice', 'Bob'}) True
set.issubset()	Return True if all elements of this set are members of the specified set argument.	>>> t = {'Alice', 'Bob', 'Carl', 'Liz'} >>> {'Alice', 'Bob'}.issubset(t) True
set.issuperset()	Return True if all elements of the specified set argument are members of this set.	>>> {'Alice', 'Bob', 'Carl').issuperset({'Alice'}) True
set.pop()	Remove and return a random element from this set. KeyError if set is empty.	>>> s = {'Alice', 'Bob', 'Carl'} >>> s.pop() 'Alice'
set.remove()	Remove and return a specific element from this set as defined in the argument. If the set doesn't contain element, raise KeyError.	>>> s = {'Alice', 'Bob', 'Cloe'} >>> s.remove('Bob') # s == {'Alice', 'Cloe'}
<pre>set.symmetric_diff erence()</pre>	Return new set with elements in either this or the specified set argument, but not both.	>>> {1, 2, 3}.symmetric_difference({2, 3, 4}) {1, 4}
set.symmetric_diff erence_update()	Replace this set with the symmetric difference, i.e., elements in either this set or the specified set argument, but not both.	>>> s = {1, 2, 3} >>> s.symmetric_difference_update({2, 3, 4}) >>> s {1, 4}
set.union()	Create and return new set with all elements in this or any of the specified sets.	>>> {1, 2, 3, 4}.union({3, 4, 5}) {1, 2, 3, 4, 5}
set.update()	Update this set with all elements that are in this or any of the specified set arguments.	>>> s = {1, 2, 3, 4} >>> s.update({3, 4, 5}) # s == {1, 2, 3, 4, 5}

