4. Base e Dimensão

A seguir, o conceito de dependência linear é associado a um subconjunto qualquer de um espaço vetorial, não necessariamente finito.

■ DEFINIÇÃO 2.7: Seja V um espaço vetorial sobre o corpo \mathbb{F} . Um subconjunto S de V é dito linearmente dependente se existem vetores $\vartheta_1, \ldots, \vartheta_n$ em S e escalares $\alpha_1, \ldots, \alpha_n$ em \mathbb{F} , não todos nulos, tais que

$$\alpha_1 \vartheta_1 + \dots + \alpha_n \vartheta_n = 0.$$

Um conjunto que não é linearmente dependente é dito linearmente independente.

Esta definição fornece as seguintes consequências imediatas.

COROLÁRIO 2.10: (1) Todo conjunto que contém um subconjunto linearmente dependente é linearmente dependente. (2) Todo subconjunto de um conjunto linearmente independente é linearmente independente. (3) Todo conjunto de vetores de um espaço vetorial V que contém o vetor nulo de V é linearmente dependente. (4) Um subconjunto S de vetores de um espaço vetorial é linearmente independente se, e somente se, $\alpha_1\vartheta_1+\cdots+\alpha_n\vartheta_n=0$ (para quaisquer vetores distintos $\vartheta_1,\ldots,\vartheta_n$ em S) implica em $\alpha_1=\cdots=\alpha_n=0$.

- DEFINIÇÃO 2.8: Um subconjunto $B \subset V$ é dito uma base do espaço vetorial V se, simultaneamente, ocorrem:
- (i) *B* é linearmente independente,
- (ii) [B] = V, ou seja, B gera V.

O espaço vetorial *V* é de dimensão finita se possui uma base *B* constituída de um número finito de vetores. Caso contrário, *V* é de dimensão infinita

EXEMPLO 15: Dado um corpo arbitrário \mathbb{F} , seja $B = \{e_1, e_2, ..., e_n\}$ o subconjunto do espaço vetorial F^n constituído pelos vetores

Tomando n escalares $\alpha_1, ..., \alpha_n$ quaisquer em \mathbb{F} , seja o vetor ϑ definido pela combinação linear

$$\vartheta = \alpha_1 e_1 + \dots + \alpha_n e_n.$$

Então $\vartheta = (\alpha_1, \alpha_2, ..., \alpha_n)$. Isto prova que $[B] = \mathbb{F}^n$, ou seja, B gera F^n . Como $\vartheta = 0$ se, e somente se, $\alpha_1 = \alpha_2 = \cdots = \alpha_n = 0$, então os vetores $e_1, e_2, ..., e_n$ são linearmente

independentes. Portanto, o subconjunto $B = \{e_1, e_2, ..., e_n\}$ é uma base de \mathbb{F}^n . Esta base é comumente denominada de *base canônica* (ou padrão) do espaço vetorial \mathbb{F}^n .

Espaço Coluna

■ DEFINIÇÃO 2.9: Seja $A = [a_{ij}]$ uma matriz $m \times n$ sobre um corpo \mathbb{F} . Os vetorescolunas de A são os n vetores em $\mathbb{F}^{m\times 1}$ dados por $\mathbf{a}_{:j} = [a_{1j}, ..., a_{mj}]^T$, i = 1, ..., n. O espaço-coluna de $A = [a_{ij}]$, denotado por $[\mathbf{a}_{:1}, ..., \mathbf{a}_{:n}]$, é o subespaço de $\mathbb{F}^{m\times 1}$ gerado pelos vetores-colunas de A.

EXEMPLO 16: Seja $A = [a_{ij}]$ uma matriz quadrada $n \times n$ sobre um corpo \mathbb{F} . Se A é inversível, então os vetores-colunas $a_{:1}, a_{:2}, ..., a_{:n}$ de A formam uma base do espaço vetorial $\mathbb{F}^{n\times 1}$. Primeiro, verificaremos se o subconjunto $B = \{a_{:1}, a_{:2}, ..., a_{:n}\}$ de $\mathbb{F}^{n\times 1}$ é linearmente independente. Para isto, considere a combinação linear

$$\alpha_1 \mathbf{a}_{:1} + \alpha_2 \mathbf{a}_{:2} + \dots + \alpha_n \mathbf{a}_{:n} = 0,$$

sendo $0 = [0, ..., 0]^T$ o vetor nulo de $\mathbb{F}^{n \times 1}$ e $\alpha_1, \alpha_2, ..., \alpha_n$ são n escalares em \mathbb{F} . É fácil ver que esta equação pode ser reescrita na seguinte forma matricial equivalente:

$$A\alpha = 0$$
,

com $\alpha = [\alpha_1, \alpha_2, ..., \alpha_n]^T \in \mathbb{F}^{n \times 1}$. Como a matriz A é inversível, este sistema linear homogêneo possui somente a solução trivial $\alpha = [0, ..., 0]^T$. Portanto, o conjunto $B = \{a_{:1}, a_{:2}, ..., a_{:n}\}$ é linearmente independente. Em seguida, mostraremos que $[a_{:1}, ..., a_{:n}] = \mathbb{F}^{n \times 1}$. Seja $b \in \mathbb{F}^{n \times 1}$ uma matriz-coluna qualquer em $\mathbb{F}^{n \times 1}$. Como A é inversível, podemos tomar a matriz $\alpha = [\alpha_1, \alpha_2, ..., \alpha_n]^T \in \mathbb{F}^{n \times 1}$ definida por $\alpha = A^{-1}b$. Então $A\alpha = b$, isto é,

$$b = \alpha_1 \boldsymbol{a}_{:1} + \alpha_2 \boldsymbol{a}_{:2} + \dots + \alpha_n \boldsymbol{a}_{:n}.$$

Logo, $B = \{a_{:1}, a_{:2}, ..., a_{:n}\}$ gera o espaço $\mathbb{F}^{n \times 1}$ das matrizes-colunas $n \times 1$ sobre \mathbb{F} .

Portanto, se a matriz A $n \times n$ sobre o corpo \mathbb{F} é inversível, concluímos que os vetores-colunas de A formam uma base do espaco vetorial $\mathbb{F}^{n \times 1}$.

EXEMPLO 17: Agora, será dado um exemplo de uma base infinita. Para isto, seja $\mathcal{P}(\mathbb{R})$ o espaço vetorial de todas as funções $f: \mathbb{R} \to \mathbb{R}$ polinomiais sobre \mathbb{R} , do tipo

$$f(x) = \alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n; \ n = 0,1,2,\dots$$

sendo cada α_i um número real. Seja o conjunto infinito $B=\{f_0,f_1,f_2,...\}$ das funções polinomiais de $\mathbb R$ em $\mathbb R$ da forma

$$f_k(x) = x^k, k = 0.1.2...$$

Como notamos no exemplo 14, $[B] = \mathcal{P}(\mathbb{R})$. Para verificar se o conjunto infinito B é linearmente independente, basta mostra que qualquer um de seus subconjuntos finitos é linearmente independente (item (2) do corolário 2.10). Isto pode ser feito provando que para cada n o conjunto $\{f_0, f_1, \dots, f_n\}$ é linearmente independente. Assim, suponha que

$$\alpha_0 f_0 + \alpha_1 f_1, ... + \alpha_n f_n = 0,$$

ou seja,

$$\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n = 0$$
, para todo $x \in \mathbb{R}$.

A última equação expressa o fato de que todo número real é uma raiz do polinômio $\alpha_0 + \alpha_1 x + \alpha_2 x^2 + \dots + \alpha_n x^n = 0$. Em vista de um dos resultados fundamentais da álgebra, o qual garante que um polinômio real de grau n possui no máximo n raízes reais, segue que $\alpha_0 = \alpha_1 = \dots = \alpha_n$.

Espaço de Dimensão Finita

TEOREMA 2.11: Seja $V = [\vartheta_1, \vartheta_2, ..., \vartheta_m]$ um espaço vetorial sobre o corpo \mathbb{F} gerado por um número finito de m vetores. Então todo conjunto linearmente independente de vetores de V é finito e contém no máximo m elementos.

Prova: Basta mostrar que qualquer subconjunto S do espaço V que contém mais de m vetores é linearmente dependente. Se S é um tal conjunto, então em S existem n vetores distintos w_1, w_2, \ldots, w_n com n > m. Como $\vartheta_1, \vartheta_2, \ldots, \vartheta_m$ geram V e $S \subset V$, então existem escalares $a_{ij} \in \mathbb{F}$ tais que

$$w_j = \sum_{i=1}^m \alpha_{ij} \vartheta_i, \ j = 1, ..., n.$$

Se $\alpha_1, \alpha_2, ..., \alpha_n \in \mathbb{F}$ são n escalares arbitrários, considere a combinação linear:

$$\alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_n w_n = \sum_{j=1}^n \alpha_j w_j.$$

Esta equação pode ser escrita como

$$\sum_{i=1}^{n} \alpha_i w_i = \sum_{i=1}^{n} \alpha_i \sum_{i=1}^{m} \alpha_{ii} \vartheta_i = \sum_{i=1}^{n} \sum_{i=1}^{m} (\alpha_{ii} \alpha_i) \vartheta_i = \sum_{i=1}^{m} (\sum_{i=1}^{n} \alpha_{ii} \alpha_i) \vartheta_i.$$

Agora, observe que a última equação pode ser posta na forma vetorial:

$$w^T \alpha = \vartheta^T (A\alpha),$$

sendo:
$$\alpha = \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$
, $w = \begin{bmatrix} w_1 \\ \vdots \\ w_n \end{bmatrix}$, $\vartheta = \begin{bmatrix} \vartheta_1 \\ \vdots \\ \vartheta_n \end{bmatrix}$, $A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$.

Como m < n, pelo teorema 1.18, sabemos que o sistema linear homogêneo $A\alpha = 0$ possui uma solução não-trivial. Portanto, existe $\alpha = [\alpha_1, ..., \alpha_n]^T \neq 0 \in \mathbb{F}^{n \times 1}$ tal que

$$\alpha_1 w_1 + \alpha_2 w_2 + \dots + \alpha_n w_n = 0.$$

Isto mostra que *S* é um conjunto linearmente dependente.

COROLÁRIO 2.12: Se *V* é um espaço vetorial de dimensão finita, então duas bases quaisquer de *V* têm o mesmo número de elementos.

Prova: Como V é um espaço vetorial de dimensão finita, sejam $B_1 = \{\vartheta_1, \vartheta_2, ..., \vartheta_m\}$ e $B_2 = \{w_1, w_2, ..., w_n\}$ duas bases de V, cada uma com um número finito de elementos. Pelo teorema 2.11 tem-se que $m \le n$ e $n \le m$. Portanto, m = n.

■ DEFINIÇÃO 2.10: A dimensão de um espaço vetorial de dimensão finita V, denotada por dim V, é o número de elementos em uma base qualquer de V.

EXEMPLO 18: Seja \mathbb{F} um corpo. Como vimos no exemplo 15, a base canônica (ou padrão) do espaço vetorial \mathbb{F}^n possui n vetores. Logo dim $\mathbb{F}^n = n$. Assim, por exemplo, podemos afirmar que dim $\mathbb{R}^2 = 2$, dim $\mathbb{R}^3 = 3$, dim $\mathbb{R}^4 = 4$ etc. Por analogia, pode-se ver que as mn matrizes do espaço vetorial $\mathbb{F}^{m \times n}$ que têm 1 na posição i,j e zero nas demais formam uma base de $\mathbb{F}^{m \times n}$. Logo, dim $\mathbb{F}^{m \times n} = mn$. Em particular, o conjunto

$$\left\{\begin{bmatrix}1&0\\0&0\end{bmatrix},\begin{bmatrix}0&1\\0&0\end{bmatrix},\begin{bmatrix}0&0\\1&0\end{bmatrix},\begin{bmatrix}0&0\\0&1\end{bmatrix}\right\}$$

é uma base do espaço vetorial $\mathbb{F}^{2\times 2}$ das matrizes 2×2 sobre o corpo \mathbb{F} e dim $\mathbb{F}^{2\times 2}=4$.

Se V é um espaço vetorial arbitrário, o subespaço vetorial nulo de V, denotado por $\{0\}$, é gerado pelo vetor nulo. Mas $\{0\}$ é um conjunto linearmente dependente. Assim, por convenção, considera-se que dim $\{0\} = 0$.

COROLÁRIO 2.13: Se V é um espaço vetorial de dimensão finita com dim V = n, então:

- (a) todo subconjunto de *V* que contém mais de *n* vetores é linearmente dependente;
- (b) nenhum subconjunto de *V* com menos de *n* vetores pode gerar *V*.

Prova: Como dim V=n, então existe um subconjunto de V linearmente independente $B=\{\vartheta_1,\vartheta_2,...,\vartheta_n\}$, com n vetores, tal que [B]=V. (a) Pelo teorema 2.11, qualquer subconjunto de V com mais de n vetores é linearmente dependente. (b) Suponha que exista um subconjunto de V possuindo m vetores $B_1=\{w_1,w_2,...,w_m\}$, com m< n, tal que $[B_1]=V$. Se B_1 é linearmente independente, então B_1 é uma base de V e pelo corolário 2.12 segue que m=n, o que é uma contradição. Logo B_1 é linearmente dependente. Mas, como B_1 gera V, retirando-se os vetores linearmente dependentes de B_1 , é possível selecionar um subconjunto $B_2 \subset B_1$ possuindo, digamos, k elementos, com k < m < n, tal que B_2 é uma base de V. Novamente, pelo corolário 2.12 temos o seguinte absurdo k=n. Portanto, concluímos que um conjunto com menos de n vetores não pode gerar V.

TEOREMA 2.14: Seja S um subconjunto linearmente independente de um espaço vetorial V. Suponha que w seja um vetor em V tal que $w \notin [S]$. Então o subconjunto de V dado por $S \cup \{w\}$ é linearmente independente.

Prova: Sejam $\vartheta_1, \vartheta_2, ..., \vartheta_m$ vetores distintos e arbitrários em S e suponha que

$$\alpha_1 \vartheta_1 + \alpha_2 \vartheta_2 + \dots + \alpha_m \vartheta_m + \beta w = 0.$$

Então $\beta = 0$, caso contrário

$$w = \frac{\alpha_1}{\beta}\vartheta_1 + \frac{\alpha_2}{\beta}\vartheta_2 + \dots + \frac{\alpha_m}{\beta}\vartheta_m$$

e w estaria no subespaço gerado por S. Assim, $\alpha_1\vartheta_1 + \alpha_2\vartheta_2 + \cdots + \alpha_m\vartheta_m = 0$, e como S é um conjunto linearmente independente, tem-se que cada α_i é zero. Portanto, concluise que $\alpha_1 = \alpha_2 = \cdots = \alpha_m = \beta = 0$, logo $S \cup \{w\}$ é linearmente independente.

Teorema 2.15: Seja V um espaço vetorial de dimensão finita e $W \subset V$ um subespaço de V. Então qualquer subconjunto $S \subset W$ do subespaço W que é linearmente independente é finito e, além disto, é parte de uma base (finita) de W.

Prova: Sejam V um espaço de dimensão finita e $n=\dim V$. Então, como já vimos, todo subconjunto de V que contém mais de n vetores é linearmente dependente. Portanto, se W é um subespaço de V e S é um subconjunto de W, que é linearmente independente (Fig. 2.2.), então S é finito e possui no máximo n elementos. Podemos estender S até obtermos uma base de W. Se [S] = W, então é claro que S é uma base de W. Caso contrário, se S não gera W, então existe $w_1 \in W$ tal que $w_1 \notin [S]$. Neste caso, podemos usar o resultado do teorema 2.14 para afirmar que o subconjunto $S_1 = S \cup \{w_1\}$ é linearmente independente. Se $[S_1] = W$ a prova está terminada. Se não, aplicando novamente o teorema 2.14, obtemos um vetor $w_2 \in W$ tal que $w_2 \notin [S]$, de modo que o conjunto $S_2 = S_1 \cup \{w_2\} = S \cup \{w_1, w_2\}$ é linearmente independente. Se $[S_2] = W$, ótimo. Assim, S_2 é uma base de W. Caso contrário, podemos continuar dessa maneira até obter um conjunto linearmente independente $S_m = S \cup \{w_1, w_2, ..., w_m\}$ que é uma base de W.

Fig. 2.2.

COROLÁRIO 2.16: Em um espaço vetorial *V* de dimensão finita todo conjunto nãovazio de vetores linearmente independentes é uma base ou é parte de uma base de *V*.

Prova: Sejam V um espaço de dimensão finita e $n = \dim V$. Suponha que $\emptyset \neq S \subset V$ é um subconjunto linearmente independente de V. Se [S] = V, então S é uma base de V. Caso contrário, pela prova do teorema 2.15, pode-se selecionar um número finito de vetores $w_1, ..., w_m$ em V tal que $S \cup \{w_1, w_2, ..., w_m\}$ é uma base de V.

COROLÁRIO 2.17: Se V é um espaço vetorial de dimensão finita com dimV = n, então todo subconjunto de V linearmente independente contendo exatamente n vetores é uma base de V.

Prova: Seja B um subconjunto de V que é linearmente independente e contém $n = \dim V$ vetores. Afirmamos que B é uma base de V. De fato, caso contrário, pelo corolário 2.16 e pela prova desse corolário, o conjunto B seria parte de uma base de V possuindo, digamos, m + n vetores. Isto implicaria em dim V = m + n > n, o que é uma contradição. Logo, B é uma base de V.

EXEMPLO 19: O conjunto $B = \{ (1, 2, 3, 4), (0, 2, 3, 4), (0, 0, 3, 4), (0, 0, 0, 4) \}$ é uma base de \mathbb{R}^4 ?

» SOLUÇÃO: Observamos no exemplo 18 que dim $\mathbb{R}^4 = 4$. Por outro lado, vimos no exemplo 13 que esse subconjunto B com quatro vetores de \mathbb{R}^4 é linearmente independente. Logo, segue do corolário 2.17 que B é uma base de \mathbb{R}^4 .

TEOREMA 2.18: Se W_1 e W_2 são subespaços de dimensão finita de um espaço vetorial V, então W_1+W_2 é de dimensão finita e

$$\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

Prova: Como $W_1 \cap W_2$ e $W_1 + W_2$ são subespaços do espaço de dimensão finita V, então estes subespaços são ambos de dimensão finita. Assim, considere uma base (finita) de $W_1 \cap W_2$ denotada por $B = \{\vartheta_1, \vartheta_2, ..., \vartheta_k\}$. Como $W_1 \cap W_2 \subset W_1$ e $W_1 \cap W_2 \subset W_2$ então esta base é parte de uma base de W_1 dada por

$$B_1 = \{\vartheta_1, \dots, \vartheta_k, w_1, \dots, w_m\}$$

e é parte de uma base de W2 dada por

$$B_2 = \{\vartheta_1, \dots, \vartheta_k, v_1, \dots, v_n\}.$$

Assim, o subespaço W_1+W_2 é gerado pelos vetores $\vartheta_1,\dots,\vartheta_k,w_1,\dots,w_m,v_1,\dots,v_n,$ ou seja

$$W_1 + W_2 = [\vartheta_1, ..., \vartheta_k, w_1, ..., w_m, v_1, ..., v_n]$$

Pode-se ver que estes vetores são linearmente independentes. De fato, suponha que

$$\sum_{i=1}^k \alpha_i \vartheta_i + \sum_{j=1}^m \beta_j w_j + \sum_{r=1}^n \gamma_r v_r = 0.$$

Então

$$-\sum_{r=1}^n \gamma_r v_r = \sum_{i=1}^k \alpha_i \vartheta_i + \sum_{j=1}^m \beta_j w_j.$$

Esta equação mostra que o vetor $\sum_{r=1}^n \gamma_r v_r$ pertence a W_1 , pois é uma combinação linear dos vetores da base B_1 . Como $\sum_{r=1}^n \gamma_r v_r = \sum_{i=1}^k (0.\vartheta_i) + \sum_{r=1}^n \gamma_r v_r$ então é claro que $\sum_{r=1}^n \gamma_r v_r$ é também uma combinação linear dos vetores da base B_2 , logo $\sum_{r=1}^n \gamma_r v_r$ pertence também a W_2 . Então $\sum_{r=1}^n \gamma_r v_r \in W_1 \cap W_2$. Assim, $\sum_{r=1}^n \gamma_r v_r$ pode ser escrito como uma combinação linear dos vetores da base $B = \{\vartheta_1, \vartheta_2, \dots, \vartheta_k\}$ de $W_1 \cap W_2$:

$$\sum_{r=1}^n \gamma_r v_r = \sum_{i=1}^k \rho_i \vartheta_i,$$

ou seja,

$$\sum_{i=1}^{k} (-\rho_i) \vartheta_i + \sum_{r=1}^{n} \gamma_r v_r = 0.$$

Como os vetores $\vartheta_1, \dots, \vartheta_k, v_1, \dots, v_n$ são linearmente independentes, então

$$\gamma_1 = \cdots = \gamma_n = \rho_1 = \cdots = \rho_r = 0.$$

Consequentemente, da equação $-\sum_{r=1}^{n} \gamma_r v_r = \sum_{i=1}^{k} \alpha_i \vartheta_i + \sum_{j=1}^{m} \beta_j w_j$, segue que

$$\sum_{i=1}^k \alpha_i \vartheta_i + \sum_{j=1}^m \beta_j w_j = 0.$$

Como os vetores $\vartheta_1, \dots, \vartheta_k, w_1, \dots, w_m$ são linearmente independentes, então

$$\alpha_1 = \cdots = \alpha_k = \beta_1 = \cdots = \beta_m = 0.$$

Desse modo, só ocorre $\sum_{i=1}^k \alpha_i \vartheta_i + \sum_{j=1}^m \beta_j w_j + \sum_{r=1}^n \gamma_r v_r = 0$ se

$$\alpha_1 = \cdots = \alpha_k = \beta_1 = \cdots = \beta_m = \gamma_1 = \cdots = \gamma_n = 0.$$

Portanto, o conjunto $\{\vartheta_1, \dots, \vartheta_k, w_1, \dots, w_m, v_1, \dots, v_n\}$ é linearmente independente, sendo dessa forma uma base de $W_1 + W_2$. Finalmente, nota-se que

$$\dim W_1 + \dim W_2 = (k+m) + (k+n) = k + (k+m+n) = \dim(W_1 \cap W_2) + \dim(W_1 + W_2).$$

EXEMPLO 20: Sejam o espaço vetorial $V = \mathbb{F}^{2\times 2}$ das matrizes 2×2 sobre o corpo \mathbb{F} e os seguintes subespaços W_1 e W_2 de V:

$$W_1 = \left\{ \begin{bmatrix} \alpha & \beta \\ 0 & 0 \end{bmatrix}; \alpha, \beta \in \mathbb{F} \right\} \text{ e } W_2 = \left\{ \begin{bmatrix} 0 & 0 \\ \gamma & \lambda \end{bmatrix}; \lambda, \gamma \in \mathbb{F} \right\}.$$

Determinar dim $(W_1 + W_2)$: (a) usando a fórmula mostrada no teorema 2.18, (b) a partir da identificação de que $W_1 + W_2 = V$.

» SOLUÇÃO: (a) O conjunto

$$B_1 = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$$

é uma base de W_1 . Logo, dim $W_1 = 2$. Por outro lado, observa-se que o conjunto

$$B_2 = \left\{ \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$$

é uma base de W_2 . Assim, dim $W_2 = 2$. Como

$$W_1 \cap W_2 = \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\},\,$$

então $\dim(W_1 \cap W_2) = 0$. Portanto

$$\dim(W_1 + W_2) = \dim W_1 + \dim W_2 - \dim(W_1 \cap W_2) = 2 + 2 - 0 = 4.$$

(b) Neste exemplo, o subespaço soma $W_1 + W_2$ é o próprio espaço vetorial $\mathbb{F}^{2\times 2}$:

$$W_1+W_2=\left\{\begin{bmatrix}\alpha&\beta\\\lambda&\gamma\end{bmatrix};\alpha,\beta,\gamma,\lambda\in\mathbb{F}\right\}=\mathbb{F}^{2\times 2}.$$

Logo, $\dim(W_1 + W_2) = \dim \mathbb{F}^{2 \times 2} = 2.2 = 4$.

Exercícios

- 1. Mostrar que os vetores (1, 0, -1), (1, 2, 1) e (0, -3, 2) formam uma base de \mathbb{R}^3 . Escrever o vetor (1,0,0) como combinação linear dos vetores desta
- 2. Dado um corpo \mathbb{F} , sejam os seguintes subconjuntos de $\mathbb{F}^{2\times 2}$:

$$W_1 = \left\{ \begin{bmatrix} x & -x \\ y & z \end{bmatrix}; x, y, z \in \mathbb{F} \right\} \in W_2 = \left\{ \begin{bmatrix} \alpha & \beta \\ -\alpha & \lambda \end{bmatrix}; \alpha, \beta, \lambda, \in \mathbb{F} \right\}.$$

- (a) Demostrar que W_1 e W_2 são subespaços de $\mathbb{F}^{2\times 2}$.
- (b) Determinar as dimensões de W_1 , W_2 , $W_1 + W_2$ e $W_1 \cap W_2$.
- Obter uma base {A₁, A₂, A₃, A₄} para F²×² tal que A₂² = A₂ para cada A₂.
 Seja W = { [z₁ z₂] ; z₁, z₂ ∈ ℂ }. Demostrar que W é um subespaço do espaço vetorial ℂ²×². Determinar uma base de W.
- 5. Encontrar duas bases diferentes de \mathbb{R}^4 que têm em comum os vetores (1, 1, 0, 0) e (0, 0, 1, 1).
- 6. Estender o seguinte conjunto de vetores de modo a se obter uma base de \mathbb{R}^6 : (0,0,0,0,1,1), (0,0,0,-3,0,1), (0,0,2,0,0,1), (0,-1,0,0,0,1),

Equivalência por Linhas e Cálculos Relativos a Subespaços

TEOREMA 2.19: Matrizes equivalentes por linhas possuem o mesmo espaço-linha.

Prova: Seja $A = [a_{ij}]$ uma matriz $m \times n$. Suponha que a matriz $B = [b_{ij}]$ $m \times n$ é equivalente por linha a A. Então existe uma sequência finita de matrizes elementares E_1, \dots, E_k tal que

$$B=E_k\dots E_1A,$$

sendo cada E_i uma matriz $m \times m$ inversível. Fazendo $P = E_k \dots E_1$, podemos escrever

sendo $P = [p_{ij}]$ a matriz $m \times m$ inversível tal $P^{-1} = E_1^{-1} \dots E_k^{-1}$. Denotando o i-ésimo vetor-linha de *A* por

$$a_{i} = (a_{i1}, ..., a_{in})$$

e o *i*-ésimo vetor-linha de *B* por

$$\boldsymbol{b_{i:}} = (b_{i1}, \dots, b_{in}),$$

a chave desta prova é observar que a equação B = PA pode ser reescrita na forma equivalente:

$$\boldsymbol{b_{i:}} = p_{i1}\boldsymbol{a_{1:}} + p_{i2}\boldsymbol{a_{2:}} + \dots + p_{im}\boldsymbol{a_{m:}}$$
, para todo $i = 1, \dots, m$.

Esta equação mostra que cada vetor-linha de *B* é uma combinação linear dos vetoreslinhas de A. Logo, o espaço-linha de B é um subespaço do espaço-linha de A. Como P é inversível, da equação B = PA segue que $A = P^{-1}B$. Fazendo $P^{-1} = [q_{ij}]$, uma análise semelhante mostra que

$$\boldsymbol{a_{i:}} = q_{i1}\boldsymbol{b_{1:}} + q_{i2}\boldsymbol{b_{2:}} + \dots + q_{im}\boldsymbol{b_{m:}}$$
, para todo $i = 1, \dots, m$.

Assim, o espaço-linha de A é um subespaço do espaço-linha de B. Resumindo: o espaçolinha de B está contido no espaço-linha de A e o espaço-linha de A está contido no espaço-linha *B*. Portanto, o espaço-linha de *A* é igual ao espaço-linha de *B*.

O resultado do próximo teorema constitui uma importante ferramenta para se obter uma base de um espaco vetorial de dimensão finita a partir de um subconjunto finito de vetores. Tal ferramenta usa o processo de escalonamento por linhas.

TEOREMA 2.20: Seja A uma matriz não-nula $m \times n$ sobre um corpo \mathbb{F} . Se U é uma matriz escalonada reduzida por linhas equivalente por linhas a A, então os vetoreslinhas não-nulos de *U* formam uma base do espaço-linha de *A*.

Prova: Seja *U* uma matriz escalonada reduzida por linhas equivalente por linhas a *A*. Então, pelo teorema 2.19, U e A possuem o mesmo espaço-linha. Portanto, basta mostrar que os vetores-linhas não-nulos de U formam uma base do espaço-linha de U. Para isto, suponha que *U* possui *r* vetores-linhas não nulos, dados por:

$$\mathbf{u}_{i:} = (u_{i1}, \dots, u_{in}), i = 1, \dots, r,$$

Como vetores nulos não contribuem para gerar um subespaço, então é claro que estes rvetores-linhas não-nulos geram o espaço-linha de U. Assim, só falta mostrar que tais vetores-linhas não-nulos são linearmente independentes. Como $U = [u_{ij}]$ está na forma escalonada reduzida por linhas, então, de acordo com a definição 1.10, toda linha nula de U ocorre abaixo de todas as linhas não-nulas e existem inteiros $k_1 < \cdots < k_r$ (k_i é a coluna onde se encontra o primeiro elemento não-nulo da linha i=1,...,r) tais que:

$$u_{ik_j} = \delta_{ij} = \begin{cases} 1, \text{se } i = j \\ 0, \text{se } i \neq 0 \end{cases}, \text{ para todo } i, j = 1, \dots, r.$$

Estas condições garantem que o primeiro elemento não nulo em cada linha não-nula é igual a 1 e cada coluna que contém o primeiro elemento não-nulo de alguma linha tem todos os seus outros elementos nulos. Assim, suponha que $\vartheta = (\vartheta_1, ..., \vartheta_n) \in \mathbb{F}^n$ é um vetor arbitrário do espaço-linha de U. Então, ϑ é uma combinação linear dos r vetoreslinhas não-nulos de *U*:

$$\vartheta = (\vartheta_1, \dots, \vartheta_n) = \alpha_1 \boldsymbol{u_1} + \dots + \alpha_r \boldsymbol{u_r}$$

 $\vartheta=(\vartheta_1,...,\vartheta_n)=\alpha_1\pmb{u}_{1:}+\cdots+\alpha_r\pmb{u}_{r:},$ sendo cada α_i um escalar em $\mathbb F$. A partir desta equação, afirmamos que $\vartheta_{k_j}=\alpha_j$. De fato, primeiro note que, da equação vetorial $(\vartheta_1, ..., \vartheta_n) = \alpha_1 u_1 + \cdots + \alpha_r u_r$ e considerando os elementos destes vetores que ocupam a coluna k_i , podemos escrever:

$$\theta_{k_j} = \sum_{i=1}^r \alpha_i u_{ik_j}$$
, para todo $j = 1, ..., r$.

Em seguida, usando a relação $u_{ik_i} = \delta_{ij}$, para todo i = 1, ..., r, obtemos o resultado procurado:

$$\vartheta_{k_j=} \sum_{i=1}^r \alpha_i \, u_{ik_j} = \sum_{i=1}^r \alpha_i \, \delta_{ij} = \alpha_j$$
, para todo $j=1,\dots,r$.

Assim, em particular, escolhendo $\vartheta=(\vartheta_1,\ldots,\vartheta_n)=(0,\ldots,0)\in\mathbb{F}^n$, ou seja, fazendo $\alpha_1 \boldsymbol{u_{1:}} + \cdots + \alpha_r \boldsymbol{u_{r:}} = 0,$

segue que
$$\alpha_j = 0$$
, para todo $j = 1, ..., r$. Portanto, os vetores-linhas $u_1, ..., u_r$. são linearmente independentes.

OBSERVAÇÃO: Como o espaço-linha de uma matriz $A m \times n$ sobre um corpo \mathbb{F} é um subespaço do espaço vetorial \mathbb{F}^n e posto que dim $\mathbb{F}^n = n$, então toda base do espaço linha de A é uma base ou parte de uma base de \mathbb{F}^n e, portanto, a dimensão do espaçolinha de A é menor ou no máximo igual a n. Assim, se U é uma matriz escalonada reduzida por linhas que é equivalente por linhas a A, então, de acordo com o teorema 2.20, o número de linhas não-nulas de *U* é menor ou igual a *n*. Em outras palavras, o número de linhas não-nulas da matriz escalonada U não pode superar o número de colunas de A.

EXEMPLO 21: Determinar uma base e a dimensão do subespaço de R⁵ gerado pelos vetores: (1, 2, 0, 3, 0), (1, 2, -1, -1, 0), (0, 0, 1, 4, 0), (2, 4, 1, 10, 1), (0, 0, 0, 0, 1).

» SOLUÇÃO: Usando a ferramenta desenvolvida no teorema 2.20, procuraremos uma base para o espaço-linha da matriz $A \in \mathbb{R}^{5\times 5}$ definida por:

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 & 0 \\ 1 & 2 & -1 & -1 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 2 & 4 & 1 & 10 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Isto será feito transformando A em uma matriz U com a forma escalonada reduzida por linhas, como mostrado a seguir:

Notamos que a matriz U escalonada reduzida por linhas possui 3 vetores-linhas nãonulos. Então, pelo teorema 2.20, estes três vetores formam uma base do espaço linha de A. Logo, podemos afirmar que o conjunto

$$B = \{ (1, 2, 0, 3, 0), (0, 0, 1, 4, 0), (0, 0, 0, 0, 1) \}$$

é uma base do subespaço de \mathbb{R}^5 gerado pelos 5 vetores dados: (1,2,0,3,0), (1,2,-1,-1,0), (0,0,1,4,0), (2,4,1,10,1), (0,0,0,0,1). Concluindo, notamos que o subespaço gerado por estes 5 vetores tem dimensão 3, pois a sua base B é constituída de 3 vetores.

É importante observar alguns aspectos instrutivos do exemplo 21. Primeiro, note que o fato do subespaço de \mathbb{R}^5 gerado pelos 5 vetores dados possuir apenas dimensão 3 significa que estes 5 vetores não são linearmente independentes. Mais ainda, 2 quaisquer deles podem ser escritos como combinações lineares dos outros 3. Observe também que, efetivamente, o processo de escalonamento usado tem como objetivo desfazer a combinação linear existente entre eles, exibindo vetores não-nulos linearmente independentes que geram o referido subespaço. Este último ponto pode ser melhor entendido efetuando-se sobre U uma sequência finita de operações elementares inversas (que desfazem as anteriormente feitas), chegando-se novamente à matriz A. Assim, pode-se ver que os vetores-linhas de A (os quais são linearmente dependentes) são combinações lineares de 5 vetores: os 3 vetores linearmente independentes que aparecem nas três primeiras linhas de U mais os 2 vetores nulos (logo linearmente dependentes) que se encontram nas duas últimas linhas de U.

EXEMPLO 22: Sejam os dois subconjuntos de \mathbb{R}^4 dados a seguir:

$$S = \{ (1,2,-1,3), (2,4,1,-2), (3,6,3,-7) \};$$

 $Q = \{ (1,2,-4,11), (2,4,-5,14) \}.$

Usando o teorema 2.20, mostrar que [S] = [Q].

» SOLUÇÃO: Formaremos as matrizes *M* e *N*, com os vetores de *S* sendo os vetores-linhas de *M* e os vetores de *Q* sendo os vetores-linhas de *N*:

linhas de
$$M$$
 e os vetores de Q sendo os vetores-linhas de N :
$$M = \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{bmatrix}; \quad N = \begin{bmatrix} 1 & 2 & -4 & 11 \\ 2 & 4 & -5 & 14 \end{bmatrix}.$$

Ambas as matrizes são reduzidas à forma escalonada, como mostrado a seguir:

$$\begin{split} M &= \begin{bmatrix} 1 & 2 & -1 & 3 \\ 2 & 4 & 1 & -2 \\ 3 & 6 & 3 & -7 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & 3 & -8 \\ 0 & 0 & 6 & -16 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 0 & 1 & -\frac{8}{3} \\ 0 & 0 & 6 & -16 \end{bmatrix} \rightarrow \\ \begin{bmatrix} 1 & 2 & 0 & \frac{1}{3} \\ 0 & 0 & 1 & -\frac{8}{3} \\ 0 & 0 & 0 & 0 \end{bmatrix} = U_1; \\ N &= \begin{bmatrix} 1 & 2 & -4 & 11 \\ 2 & 4 & -5 & 14 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -4 & 11 \\ 0 & 0 & 3 & -8 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -4 & 11 \\ 0 & 0 & 1 & -8/3 \end{bmatrix} \rightarrow \\ \begin{bmatrix} 1 & 2 & 0 & 1/3 \\ 0 & 0 & 1 & -8/3 \end{bmatrix} = U_2. \end{split}$$

[0 0 1 -8/3] Portanto, temos que [S] = [(1, 2, 0, 1/3), (0, 0, 1, -8/3)] = [0]

Exercício

- 1. Determinar a dimensão e encontrar uma base para o subespaço de \mathbb{R}^4 gerado pelos seguintes vetores: (1, 2, 2, -1), (2, 3, 2, 5) e (-1, 4, 3, -1).
- 2. Determinar a dimensão e encontrar uma base para o espaço de \mathbb{R}^5 gerado pelos seguintes vetores: (-3,1,5,3,2), (2,3,0,1,0), (1,2,3,2,1), (3,-5,-1,-3,-1) e (3,0,1,0,0).
- 3. Encontrar uma base do subespaço de \mathbb{R}^3 gerado pelos vetores (1,5,3), (2,7,3) e (-8,-16,0). O vetor (1,2,3) pertence a este subespaço?
- 4. Seja W_1 o subespaço de \mathbb{R}^4 gerado pelos vetores (1,2,1,1), (2,3,1,0) e (3,1,1,-2), e seja W_2 o subespaço gerado pelos vetores (0,4,1,3), (1,0,-2,-6) e (1,0,3,5).
 - (a) Determinar a dimensão de W_1 ;
 - (b) Determinar a dimensão de W_2 ;
 - (c) Determinar uma base do subespaço $W_1 + W_2$;
 - (d) Determinar a dimensão do subespaço $W_1 \cap W_2$;
 - (e) Determinar uma base do subespaço $W_1 \cap W_2$.

TEOREMA 2.21: Sejam A e B matrizes $m \times n$ sobre um corpo \mathbb{F} . Se B é equivalente por linhas a A, então os sistemas homogêneos AX = 0 e BX = 0 possuem o mesmo espaço-solução.

Prova: Dada uma matriz $A m \times n$ sobre o corpo \mathbb{F} , vimos no exemplo 8 que o conjunto de todas as matrizes-colunas $X n \times 1$ sobre \mathbb{F} tais que AX = 0 é um subespaço de $\mathbb{F}^{n \times 1}$, chamado de espaço-solução do sistema linear homogêneo AX = 0. Se B é uma matriz $m \times n$ sobre o corpo \mathbb{F} que é equivalente por linhas a A, a partir do teorema 1.15 podemos afirmar que os sistemas homogêneos AX = 0 e BX = 0 possuem exatamente as mesmas soluções. Portanto, tais sistemas têm o mesmo espaço-solução.

TEOREMA 2.22 : Sejam A uma matriz não-nula $m \times n$ sobre um corpo \mathbb{F} e S o espaço solução do sistema linear homogêneo AX = 0. Suponha que U é uma matriz escalonada reduzida por linhas equivalente por linhas a A tal que:

- (a) *U* possui *r* linhas não nulas;
- (b) k_i é a coluna onde se encontra o primeiro elemento não-nulo da linha $i=1,\ldots,r$, tal que $k_1<\cdots< k_r$.

Seja $J = \{1, ..., n\} - \{k_1, ..., k_r\}$ o conjunto dos índices distintos de $k_1, ..., k_r$. Então, existem n - r matrizes-colunas $X_i \in \mathbb{F}^{n \times 1}$ do tipo

$$X_j = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix},$$

onde $x_j = 1$ e $x_i = 0$ para todos os demais i em J, tais que $AX_j = 0$, para todo $j \in J$. Além disto, estes n - r vetores X_j , com $j \in J$, formam uma base do espaço-solução S do sistema linear homogêneo AX = 0, de modo que dim S = n - r.

Prova: Visto que A é uma matriz não-nula, então é claro que r > 0. Como observado antes, o número de linhas não-nulas de U não pode superar o número de colunas de A. Logo $r \le n$ e, portanto, $n - r \ge 0$. Porque $U = [u_{ij}]$ é uma matriz escalonada reduzida por linhas, o sistema linear homogêneo equivalente UX = 0 tem a forma

$$x_{k_1} + \sum_{j} u_{1j} x_j = 0$$

$$\vdots$$

$$\vdots$$

$$x_{k_r} + \sum_{j} u_{rj} x_j = 0$$

Todas as soluções do sistema UX = 0 são obtidas atribuindo valores arbitrários aos x_j com j em J e calculando os valores correspondentes de $x_{k_1}, ..., x_{k_r}$. Assim, podemos construir as seguinte soluções particulares: para cada j em J seja a matriz-coluna $X_j = 0$

 $\begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{F}^{n \times 1} \text{ obtida colocando } x_j = 1 \text{ e } x_i = 0 \text{ para todos os demais } i \text{ em } J. \text{ Como os }$

sistemas AX = 0 e UX = 0 possuem as mesmas soluções, então cada um destes X_j é também uma solução do sistema original AX = 0. Em seguida, afirmamos que os n - r vetores X_j de $\mathbb{F}^{n \times 1}$, com j em J, assim construídos, constituem uma base do espaço solução do sistema AX = 0. Como a matriz-coluna X_j possui 1 na linha j e zeros nas linhas indexadas por outros índices de J, então uma análise inteiramente semelhante àquela feita no exemplo 15 mostra que o conjunto destes vetores é linearmente independente. Resta-nos mostrar que este conjunto gera o espaço solução. Para isto,

considere uma matriz-coluna $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix} \in \mathbb{F}^{n \times 1}$ arbitrária tal que AY = 0, ou seja,

considere Y no espaço-solução, e seja Z = $\begin{bmatrix} z_1 \\ \vdots \\ z_n \end{bmatrix} \in \mathbb{F}^{n \times 1}$ a matriz coluna definida por

$$Z = \sum_{i} y_{j} X_{j}$$

Assim, notamos que

$$AZ = A\left(\sum_{j} y_{j}X_{j}\right) = \sum_{j} y_{j}\underbrace{\left(AX_{j}\right)}_{0} = 0$$

Logo, a matriz-coluna Z também está no espaço-solução e, da sua definição, segue que $z_j = y_j$ para todo j em J. Pelo processo de construção tem-se que a solução com essa propriedade é única. Então Z = Y, ou seja,

$$Y = \sum_{i} y_{j} X_{j}$$

Assim, qualquer solução arbitrária do sistema homogêneo AX = 0 é uma combinação linear dos vetores X_i . Portanto, tais vetores geram o espaço solução de AX = 0.

EXEMPLO 23: Determinar uma base e a dimensão do espaço-solução do seguinte sistema linear homogêneo:

$$x_{1} + 2x_{2} + 3x_{4} = 0$$

$$x_{1} + 2x_{2} - x_{3} - x_{4} = 0$$

$$x_{3} + 4x_{4} = 0$$

$$2x_{1} + 4x_{2} + x_{3} + 10x_{4} + x_{5} = 0$$

$$x_{5} = 0$$

» SOLUÇÃO: Este sistema homogêneo pode ser escrito na forma AX = 0, sendo a matriz dos coeficientes dada por

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 & 0 \\ 1 & 2 & -1 & -1 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 2 & 4 & 1 & 10 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Como mostrado em detalhes no exemplo 21, a matriz escalonada reduzida por linhas

é equivalente por linhas a A. Considerando que n é o número de colunas e r é o número de linhas não-nulas de U, temos: n=5 e r=3. Então, de acordo com o teorema 2.22, a dimensão do espaço-solução do sistema AX=0 é n-r=5-3=2. Assim, em qualquer base desse espaço-solução há somente 2 vetores. Para construir esta base, note que o sistema equivalente UX=0 pode ser escrito na seguinte forma:

$$x_1 = -2x_2 - 3x_4$$
$$x_3 = -4x_4$$
$$x_5 = 0$$

Assim, seguindo o que foi estabelecido no teorema 2.22 e na prova desse teorema, fazendo $x_2 = 1$ e $x_4 = 0$ obtemos a solução particular

$$X_1 = \begin{bmatrix} -2\\1\\0\\0\\0 \end{bmatrix}.$$

Por outro lado, tomando $x_2 = 0$ e $x_4 = 1$ obtemos outra solução particular

$$X_2 = \begin{bmatrix} -3\\0\\-4\\1\\0 \end{bmatrix}$$

Portanto, o conjunto formado por estas duas matrizes-colunas $\{X_1, X_2\}$ constitui uma base do espaço-solução do dado sistema linear homogêneo.

Exercício

1. Determinar uma base e a dimensão do espaço-solução dos seguintes sistemas homogêneos:

(a)
$$9x_1 + 21x_2 - 15x_3 + 5x_4 = 0$$

 $12x_1 + 28x_2 - 20x_3 + 7x_4 = 0$

(b)
$$14x_1 + 35x_2 - 7x_3 - 63x_4 = 0$$

 $-10x_1 - 25x_2 + 5x_3 + 45x_4 = 0$
 $26x_1 + 65x_2 - 13x_3 - 117x_4 = 0$

(c)
$$2x_1 - 5x_2 + 4x_3 + 3x_4 = 0$$
$$3x_1 - 4x_2 + 7x_3 + 5x_4 = 0$$
$$4x_1 - 9x_2 + 8x_3 + 5x_4 = 0$$
$$-3x_1 + 2x_2 - 5x_3 + 3x_4 = 0$$

(d)
$$2x_1 + 4x_2 + 6x_3 + 5x_4 + 3x_5 = 0$$

 $5x_1 + 6x_2 + 7x_3 + 9x_4 + 6x_5 = 0$
 $4x_1 + 6x_2 + 8x_3 + 7x_4 + 5x_5 = 0$
 $5x_1 + 5x_2 + 5x_3 + 8x_4 + 6x_5 = 0$
 $3x_1 + 4x_2 + 5x_3 + 6x_4 + 4x_5 = 0$

Posto e Nulidade

■ DEFINIÇÃO 2.11: Seja $A = [a_{ij}]$ uma matriz $m \times n$ sobre um corpo \mathbb{F} . O posto de A, denotado por Posto(A), é a dimensão do espaço-linha da matriz A.

COROLÁRIO 2.23: Matrizes equivalentes por linhas possuem o mesmo posto.

Prova: Dada a matriz A, seja B uma matriz equivalente por linhas a A. Então, pelo teorema 2.19, sabemos que A e B possuem o mesmo espaço-linha. Consequentemente, Posto(A) = Posto(B).

CROLÁRIO 2.24: Seja $A = [a_{ij}]$ uma matriz $m \times n$ sobre um corpo \mathbb{F} . Se U é uma matriz escalonada reduzida por linhas equivalente por linhas a matriz A, então o posto de A é igual ao número de vetores-linhas não-nulos de U.

Prova: Seja U uma matriz escalonada reduzida por linhas equivalente por linhas a matriz A. Então, pelo teorema 2.20, os vetores-linhas não-nulos de U formam uma base do espaço-linha de A. Logo, Posto(A) = r, sendo r é número de vetores-linhas não-nulos de U.

EXEMPLO 24: Calcule o posto da matriz $A \in \mathbb{R}^{5 \times 5}$:

$$A = \begin{bmatrix} 1 & 2 & 0 & 3 & 0 \\ 1 & 2 & -1 & -1 & 0 \\ 0 & 0 & 1 & 4 & 0 \\ 2 & 4 & 1 & 10 & 1 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

» SOLUÇÃO: Vimos no exemplo 21 que esta matriz *A* é equivalente por linhas a seguinte matriz escalonada reduzida por linhas:

Como o número de vetores-linhas não-nulos de U é igual a 3, então, pelo corolário 2.23, Posto(A) = Posto(U) = 3.

■ DEFINIÇÃO 2.12: Seja $A = [a_{ij}]$ uma matriz $m \times n$ sobre um corpo \mathbb{F} . A nulidade de A, denotada por Nulidade(A), é a dimensão do espaço-solução do sistema linear homogêneo AX = 0.

COROLÁRIO 2.25: Matrizes equivalentes por linhas possuem a mesma nulidade.

Prova: Sejam A e B matrizes $m \times n$ sobre um corpo \mathbb{F} . Se B é equivalente por linhas a A, então pelo teorema 2.21 os sistemas homogêneos AX = 0 e BX = 0 possuem o mesmo espaço-solução. Portanto, Nulidade(A) = Nulidade(B).

EXEMPLO 25: Calcular a nulidade da matriz $A \in \mathbb{R}^{5 \times 5}$ mostrada no exemplo 23. » SOLUÇÃO: Seja AX = 0 o sistema linear homogêneo associado a essa matriz. No exemplo 23 foi mostrado, em detalhes, que a dimensão do espaço-solução desse sistema AX = 0 é 2. Assim, Nulidade(A) = 2.

TEOREMA 2.26: Se A é uma matriz $m \times n$ sobre um corpo \mathbb{F} , então Posto(A) + Nulidade(A) = n.

Prova: Inicialmente, suponha que A é a matriz nula. Então AX = 0 para todo $X \in \mathbb{F}^{n \times 1}$ e, desse modo, o espaço-solução do sistema AX = 0 é o próprio espaço $\mathbb{F}^{n \times 1}$. Assim, temos que Nulidade $(A) = \dim \mathbb{F}^{n \times 1} = n$. Além disto, uma vez que todos os vetores-linhas de A são nulos, notamos que o espaço-linhas de A é gerado pelo vetor nulo de \mathbb{F}^n . Então, Posto(A) = 0. Logo, se A = 0, temos que Posto(A) + Nulidade(A) = n + 0 = n. Em seguida, suponha que $A \neq 0$. Neste caso, seja U uma matriz $m \times n$ escalonada reduzida por linhas com r ($r \neq 0$) linhas não-nulas, que é equivalente por linhas a A Então, do teorema 2.20, temos que Posto(A) = r e, pelo teorema 2.22, sabemos que Nulidade(A) = n - r. Logo, notamos que Posto(A) + Nulidade(A) = r + (n - r) = n.

COROLÁRIO 2.27: Seja A uma matriz quadrada $n \times n$ sobre um corpo \mathbb{F} . Então A é inversível se, e somente se, Posto(A) = n.

Prova: Sejam A uma matriz quadrada de dimensão n e S o espaço-solução do sistema homogêneo AX = 0. Então, a partir do teorema 1.19, sabemos que A é inversível se, e somente se, $S = \{0\}$, sendo $0 \in \mathbb{F}^{n \times 1}$ a solução trivial de AX = 0. Como $S = \{0\}$ se, e somente se, Nulidade(A) = 0 e como (pelo teorema 2.26) Nulidade(A) = 0 se, e somente se, Posto(A) = n, então A é inversível se, e somente se, Posto(A) = n.

■ DEFINIÇÃO 2.13: Seja A uma matriz $m \times n$ sobre um corpo \mathbb{F} . O posto-coluna de A, denotado por Posto-coluna(A), é a dimensão do espaço-coluna de A, ou seja, é a dimensão do subespaço de $\mathbb{F}^{m \times 1}$ gerado pelos vetores-colunas de A.

O próximo teorema destaca uma importante propriedade da teoria das matrizes: a dimensão do espaço-linha de uma matriz é igual à dimensão do seu espaço-coluna.

TEOREMA 2.28: Se A é uma matriz $m \times n$ sobre um corpo F, então

$$Posto(A) = Posto-coluna(A)$$
.

Prova: Se A é a matriz nula, este resultado é óbvio. Assim, suporemos que a matriz A $m \times n$ é não-nula. Feito isto, seja $U = [u_{ij}]$ uma matriz escalonada reduzida por linhas, que é equivalente por linhas a A. Então, U possui, digamos, r linhas não-nulas. Seja k_i a coluna onde se encontra o primeiro elemento não-nulo da linha i = 1, ..., r, tal que $k_1 < \cdots < k_r$. O fato de U estar na forma escalonada reduzida por linhas implica que o primeiro elemento não nulo em cada linha não-nula de U é igual a 1, e cada coluna que contém o primeiro elemento não-nulo de alguma linha tem todos os seus outros elementos nulos. Então, os vetores-colunas de U referentes as colunas k_i , denotados por

$$\boldsymbol{u}_{:k_j} = \begin{bmatrix} u_{1k_j} \\ \vdots \\ u_{mk_j} \end{bmatrix} \in \mathbb{F}^{m \times 1},$$

são tais que seus elementos estão definidos por

$$u_{ikj} = \delta_{ij} = \begin{cases} 1, \text{ se } i = j \\ 0, \text{ se } i \neq j \end{cases}$$

Logo, usando um argumento semelhante àquele empregado no exemplo 15, podemos ver que os r vetores-colunas $u_{:k_1}, ..., u_{:k_r}$ são linearmente independentes. Em seguida, considerando o conjunto dos índices distintos de $k_1, ..., k_r$,

$$J = \{1, \dots, n\} - \{k_1, \dots, k_r\},\$$

construa a matriz $U_D \in \mathbb{F}^{m \times r}$ obtida a partir de U, retirando de U as colunas $j \in J$. De maneira semelhante, construa a matriz $A_D \in \mathbb{F}^{m \times r}$ obtida a partir de A, retirando de A as colunas $j \in J$. É claro que U_D e A_D são equivalentes por linhas e, portanto, possuem o

mesmo espaço-solução. Seja a matriz-coluna $Y = \begin{bmatrix} y_1 \\ \vdots \\ y_r \end{bmatrix} \in \mathbb{F}^{r \times 1}$ tal que

$$y_1 \mathbf{a}_{:k_1} + \dots + y_r \mathbf{a}_{:k_r} = A_D Y = 0.$$

Como U_D e A_D possuem o mesmo espaço-solução, então

$$y_1 \mathbf{u}_{:k_1} + \dots + y_r \mathbf{u}_{:k_r} = U_D Y = 0.$$

Mas, como os vetores-colunas $u_{:k_1}, ..., u_{:k_r}$ são linearmente independentes, então

$$y_1 = \cdots = y_r = 0.$$

Isto mostra que os r vetores-colunas de A, dados por $a_{:k_1},...,a_{:k_r}$, são linearmente independentes. Assim,

Posto-coluna(
$$A$$
) $\geq r$.

Como r é o número de linhas não-nulas de U e A é equivalente por linhas a U, então

$$r = Posto(A)$$
.

Assim, mostramos que

$$Posto-coluna(A) \ge Posto(A)$$
.

Finalmente, aplicando este resultado para a matriz transposta A^T , obtemos:

$$Posto(A) = Posto-coluna(A^T) \ge Posto(A^T) = Posto-coluna(A)$$
.

Logo, provamos que Posto-coluna $(A) \ge \operatorname{Posto}(A)$ e Posto $(A) \ge \operatorname{Posto-coluna}(A)$. Portanto, podemos concluir que Posto $(A) = \operatorname{Posto-coluna}(A)$.

Exercícios

1. Determinar o Posto e a Nulidade das seguintes matrizes complexas:

(a)
$$\begin{bmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i & 1 \\ 1 & -1 & 1 & -1 & 1 \\ 1 & -i & -1 & i & 1 \end{bmatrix}$$
 (b)
$$\begin{bmatrix} 1+i & 1-i & 2+3i \\ 0+i & 1+0i & 2+0i \\ 1-i & -1-i & 3-2i \\ 4+0i & -4i+0 & 10+2i \end{bmatrix}$$

5. Coordenadas

Dada uma base qualquer de um espaço vetorial de dimensão finita, até aqui não houve a necessidade de se impor uma ordem aos vetores da base. Agora, para equipar um espaço de dimensão finita com coordenadas, é preciso se introduzir uma ordem, de modo que se tenha uma regra para determinar qual é o primeiro vetor da base, qual é o segundo e assim por diante. Deste modo, como veremos, coordenadas são introduzidas relativamente a sequências de vetores e não em relação a conjuntos de vetores.

■ DEFINIÇÃO 2.14 : Se *V* é um espaço vetorial de dimensão finita, uma base ordenada de *V* é uma sequência finita de vetores linearmente independentes que gera *V*.

Assim, se a sequência de vetores $\vartheta_1, \dots, \vartheta_n$ é uma base ordenada de V, sendo ϑ_i o i-ésimo vetor desta base ordenada, é claro que o conjunto $\{\vartheta_1, \dots, \vartheta_n\}$ é uma base de V. Portanto, a base ordenada é o conjunto juntamente com uma ordem especificada que mostra qual é o primeiro vetor da base, qual é o segundo e assim por diante. Por simplicidade, descreveremos tudo isto dizendo que

$$\mathfrak{B} = {\{\vartheta_1, \dots, \vartheta_n\}}$$

é uma base ordenada de V.

Suponha que V seja um espaço vetorial de dimensão finita sobre um corpo \mathbb{F} e que $\mathfrak{B} = \{\vartheta_1, \dots, \vartheta_n\}$ é uma base ordenada de V. Dado um vetor ϑ em V, existe uma n-lista de escalares (x_1, \dots, x_n) , com $x_i \in \mathbb{F}$, tal que

$$\vartheta = x_1 \vartheta_1 + \dots + x_n \vartheta_n.$$

Esta *n*-lista de escalares é única. De fato, se tivéssemos

$$\vartheta = \omega_1 \vartheta_1 + \dots + \omega_n \vartheta_n,$$

então é fácil ver que

$$(x_1 + \omega_1)\vartheta_1 + \dots + (x_n + \omega_n)\vartheta_n = 0.$$

Assim, a independência linear dos vetores θ_i nos daria $x_i = \omega_i$ para todo i = 1, ..., n.

O escalar x_i é chamado a *i*-ésima coordenada do vetor ϑ em relação à base ordenada $\mathfrak{B} = \{\vartheta_1, ..., \vartheta_n\}$.

Se o vetor *w* em *V* é tal que

$$w = y_1 \vartheta_1 + \dots + y_n \vartheta_n,$$

então o vetor soma $\vartheta + w$ tem a representação

$$\vartheta + w = (x_1 + y_1)\vartheta_1 + \dots + (x_n + y_n)\vartheta_n$$

de modo que a *i*-ésima coordenada do vetor soma $\vartheta + w$ em relação a esta base ordenada é a soma $x_i + y_i$ das respectivas *i*-ésimas coordenadas dos vetores ϑ e w.

De maneira análoga, se $\alpha \in \mathbb{F}$, a *i*-ésima coordenada do vetor produto por escalar

$$\alpha\vartheta = \alpha x_1 \vartheta_1 + \dots + \alpha x_n \vartheta_n$$

é dada por αx_i .

Por outro lado, deve-se observar que uma n-lista arbitrária $(x_1, ..., x_n) \in \mathbb{F}^n$ é a n-lista das coordenadas de algum vetor de V, a saber, o vetor

$$x_1\vartheta_1 + \dots + x_n\vartheta_n$$
.

Portanto, cada base ordenada $\mathfrak{B}=\{\vartheta_1,\dots,\vartheta_n\}$ de um espaço de dimensão finita V sobre um corpo $\mathbb F$ determina uma função bijetora

$$g:V \to \mathbb{F}^n$$
,

que associa a cada vetor θ em V uma única n-lista $(x_1, ..., x_n)$ em \mathbb{F}^n e vice-versa:

$$\vartheta \rightleftarrows (x_1, ..., x_n)$$

Resumindo: a menos da sua natureza, um vetor ϑ arbitrário de um espaço vetorial V qualquer de dimensão finita (dim V=n) sobre um corpo \mathbb{F} pode ser tratado como um vetor em \mathbb{F}^n .

EXEMPLO 26: Considere $V = \mathcal{P}_n(\mathbb{F})$ o espaço vetorial de todos os polinômios sobre \mathbb{F} de grau $\leq n$. Um elemento de $\mathcal{P}_n(\mathbb{F})$ é um vetor da forma

$$p(t) = \alpha_0 + \alpha_1 t + \dots + \alpha_n t^n; \alpha_i \in \mathbb{F}.$$

Sejam os vetores de $\mathcal{P}_n(\mathbb{F})$ definidos por

$$p_k(t) = t^k; k = 0,1,...,n,$$

ou seja,

$$p_0(t) = 1, p_1(t) = t, p_2(t) = t^2, ..., p_n(t) = t^n.$$

Assim, não é difícil ver que

$$\mathfrak{B} = \{1, t, t^2, \dots, t^n\}$$

é uma base (ordenada) de $\mathcal{P}_n(\mathbb{F})$. As coordenadas de um vetor arbitrário $p(t) = \alpha_0 + \alpha_1 t + \dots + \alpha_n t^n$ em $\mathcal{P}_n(\mathbb{F})$ em relação a esta base \mathfrak{B} é o vetor em \mathbb{F}^{n+1} dado por

$$\alpha = (\alpha_0, \alpha_1, ..., \alpha_n)$$

Assim, vê-se que existe uma bijeção $g: \mathcal{P}_n(\mathbb{F}) \to \mathbb{F}^{n+1}$ tal que

$$p(t) \rightleftarrows (\alpha_0, \alpha_1 ..., \alpha_n)$$

e, portanto, dim $\mathcal{P}_n(\mathbb{F}) = n + 1$.

EXEMPLO 27: Determinar uma base e a dimensão do subespaço $\mathcal{P}_2(\mathbb{R})$ gerado pelos vetores h(t) = 2 + t, $p(t) = 1 + t + t^2$ e $q(t) = -1 + t^2$.

» SOLUÇÃO: Devido a bijeção $\mathcal{P}_2(\mathbb{R}) \rightleftarrows \mathbb{R}^3$ existente entre $\mathcal{P}_2(\mathbb{R})$ e \mathbb{R}^3 , consideraremos a base canônica ordenada de $\mathcal{P}_2(\mathbb{R})$ sendo

$$\mathfrak{B} = \{ 1, t, t^2 \}.$$

Feito isto, trataremos h(t), p(t) e q(t) como sendo os seguintes vetores em \mathbb{R}^3 : h = (2, 1, 0), p = (1, 1, 1) e q = (-1, 0, 1), correspondentes as suas coordenadas na base \mathfrak{B} .

Para obter uma base do espaço [h, p, g], ou seja, do subespaço de \mathbb{R}^3 gerado pelos vetores h, p e g, usaremos aqui a metodologia resumida no teorema 2.20. Para isto, seja $A \in \mathbb{R}^{3\times 3}$ a matriz real cujos vetores-linhas são os vetores h, p e g:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix}.$$

As etapas do processo de redução a uma matriz escalonada reduzida por linhas são descritas a seguir:

$$A = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1/2 & 0 \\ 1 & 1 & 1 \\ -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1/2 & 0 \\ 0 & 1/2 & 1 \\ 0 & 1/2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1/2 & 0 \\ 0 & 1 & 2 \\ 0 & 1/2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0/2 & 0 \\ 0 & 1/2 & 1 \\ 0 & 1/2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0/2 & 0 \\ 0 & 1/2 & 1 \\ 0 & 1/2 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0/2 & 0 \\ 0 & 1/2 & 1 \\ 0 & 0/2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0/2 & 0 \\ 0 & 1/2 & 1 \\ 0 & 0/2 & 0 \end{bmatrix} = U.$$

De acordo com o teorema 2.20, uma base do espaço gerado [h, p, g] é constituída pelos vetores-linhas não nulos da matriz escalonada U:

$$\{(1,0,-1),(0,1,2)\}.$$

Consequentemente, retornando à forma original, uma base do subespaço de $\mathcal{P}_2(\mathbb{R})$ gerado pelos polinômios $h(t)=2+t, p(t)=1+t+t^2$ e $q(t)=-1+t^2$ é

$$\{1-t^2, t+2t^2\}.$$

Para concluir, observamos que o subespaço de $\mathcal{P}_2(\mathbb{R})$ gerado pelos polinômios h(t), p(t) e q(t) tem dimensão 2.

A Relação entre \mathbb{V}^3 e \mathbb{R}^3

Agora estamos em condições de mostrar a relação existente entre \mathbb{V}^3 , o conjunto das flechas no espaço euclidiano tridimensional \mathbb{E} , e o espaço vetorial \mathbb{R}^3 .

Como o espaço euclidiano \mathbb{E} é essencialmente um espaço de pontos, selecionaremos em \mathbb{E} um ponto arbitrário O que chamaremos de origem. Feito isto, dado qualquer ponto M em \mathbb{E} , podemos construir o segmento orientado \overrightarrow{OM} , cuja origem é o ponto O e a extremidade é M (Fig. 2.3).

Fig. 2.3.

O vetor \overrightarrow{OM} é denominado de raio vetor (ou vetor-posição) do ponto M em relação à origem O e representa uma classe de segmentos orientados, onde cada elemento dessa classe possui a mesma direção, mesmo sentido e mesmo comprimento de \overrightarrow{OM} .

Qualquer vetor m em \mathbb{V}^3 pode ser escrito como uma combinação linear m=xa+yb+zc de três outros vetores a, b e c não-coplanares em \mathbb{V}^3 . De fato, dados três vetores arbitrários em \mathbb{V}^3 não-coplanares, então dois quaisquer destes vetores são não-colineares. No entanto, como tais vetores estão no espaço euclidiano tridimensional, quaisquer dois deles são coplanares entre si. Assim, dado m e três vetores a, b e c não-coplanares, existem duas possibilidades: (i) m é colinear a um deles, digamos a a, então m=xa+0. b+0. c. Isto demonstra que m é uma combinação dos três vetores não-coplanares. Logo, três vetores não-coplanares geram o espaço \mathbb{V}^3 . Estes três vetores não-coplanares são também linearmente independentes. Com efeito, suponha que eles fossem linearmente dependentes. Então um deles poderia ser escrito como a combinação linear dos outros dois. Deste modo, pela proposição 2.2, estes três vetores seriam coplanares, o que é uma contradição. Logo, três vetores não-coplanares constituem uma base do espaço \mathbb{V}^3 e, portanto, dim $\mathbb{V}^3=3$.

Dados três vetores a, b e c não-coplanares em \mathbb{V}^3 , seja $\mathfrak{B} = \{a, b, c\}$ uma base ordenada de \mathbb{V}^3 . Retornando ao vetor \overrightarrow{OM} descrito na Fig. 2.3, agora sabemos que existem três números reais x, y e z tais que

$$\overrightarrow{OM} = x\boldsymbol{a} + y\boldsymbol{b} + z\boldsymbol{c}.$$

Assim, em relação a base ordenada, as coordenadas do vetor-posição de qualquer ponto M em \mathbb{E} é uma lista ordenada com três números reais (x,y,z). Portanto, existe uma relação bijetora que a cada vetor-posição \overrightarrow{OM} associa um vetor em \mathbb{R}^3 e vice-versa, ou seja, $\overrightarrow{OM} \rightleftharpoons (x,y,z)$. Como cada vetor em \mathbb{V}^3 admite uma representação na forma de um vetor posição com origem no ponto O, então fica claro que existe uma relação bijetora natural entre \mathbb{V}^3 (equipado com uma origem e uma base ordenada) e o espaço \mathbb{R}^3 .

O conjunto constituído por uma origem 0 e uma base ordenada $\mathfrak{B} = \{a, b, c\}$ em \mathbb{V}^3 é denominado de um sistema de coordenadas cartesianas em \mathbb{V}^3 . Este sistema de coordenadas cartesianas é chamado ortogonal, se os segmentos a, b e c são mutualmente ortogonais. Aqui, entende-se por segmentos ortogonais aqueles cujas retas suportes são ortogonais. Se, além disto, ocorrer ||a|| = ||b|| = ||c|| = 1, o sistema de coordenadas cartesianas é dito ortonormal (Fig. 2.4).

A introdução de um sistema de coordenadas cartesianas (ortornormal) em \mathbb{V}^3 permite tratar um vetor (x, y, z) em \mathbb{R}^3 como uma flecha \overrightarrow{OM} , que possui sua origem em O e extremidade no ponto M, cujas coordenadas são (x, y, z), e vice-versa. Neste contexto, as coordenadas do ponto O (e da flecha \overrightarrow{OO}) são (0,0,0). Em outras palavras, o espaço \mathbb{V}^3 equipado com um sistema de coordenadas cartesianas (o qual inclui uma origem) é, essencialmente, o \mathbb{R}^3 .

Esta imagem é comum na chamada geometria analítica, pois é o que permite o tratamento analítico da geometria de Euclides. Desse modo, usando formulações analíticas, podem-se definir equações que descrevem retas, planos e outros objetos geométricos que, originalmente, residem em \mathbb{E} .

Fig. 2.4.

EXEMPLO 28: A Fig. 2.5 esboça um plano P em \mathbb{R}^3 gerado por dois vetores v e u, ou seja, P = [v, u]. Como é enfatizado nesta ilustração, o plano P não passa pela origem O. Posto que o conjunto de todos os segmentos orientados representados em um plano em \mathbb{V}^3 é um subespaço de \mathbb{V}^3 , perguntamos: o plano P da Fig. 2.5 é um subespaço de \mathbb{R}^3 ?

» SOLUÇÃO: Como O = (0,0,0), então a origem é o vetor nulo de \mathbb{R}^3 . Portanto, P não é um subespaço de \mathbb{R}^3 , porque, como descrito no axioma (iii)-c da definição 2.1, todo espaço vetorial (e, por conseguinte, qualquer subespaço) deve conter o vetor nulo. Este fato, no mínimo inusitado, é o custo de se introduzir uma origem em \mathbb{V}^3 .

Fig. 2.5.

EXEMPLO 29: Mostrar que qualquer plano em \mathbb{R}^3 que passa pela origem 0 é um subespaço de \mathbb{R}^3 .

» SOLUÇÃO: Um plano de \mathbb{R}^3 que passa pela origem é descrito por uma equação da forma ax + by + cz = 0, sendo a, b e c números reais não simultaneamente nulos. Suponha, sem perdas de generalidade, que $c \neq 0$. Assim, um tal plano é representado pelo seguinte subconjunto de \mathbb{R}^3 :

$$Q = \left\{ \left(x, \ y, \ -\frac{a}{c}x - \frac{b}{c}y \right) \in \mathbb{R}^3; \ x, y \in \mathbb{R} \right\}.$$

Dados v e u em Q e λ em \mathbb{R} , necessitamos mostrar que: (i) $(v+u) \in Q$ e (ii) $\lambda v \in Q$. Para isto, sejam $v = \left(\alpha, \ \beta, \ -\frac{a}{c}\alpha - \frac{b}{c}\beta\right)$ e $u = \left(\gamma, \ \mu, \ -\frac{a}{c}\gamma - \frac{b}{c}\mu\right)$, com $\alpha, \beta, \gamma, \mu \in \mathbb{R}$. Então, podemos notar que $(v+u) = \left((\alpha+\gamma), \ (\beta+\mu), \ -\frac{a}{c}(\alpha+\gamma) - \frac{b}{c}(\beta+\mu)\right)$ e $\lambda v = \left((\lambda\alpha), \ (\lambda\beta), \ -\frac{a}{c}(\lambda\alpha) - \frac{b}{c}(\lambda\beta)\right)$. Portanto, pelas formas de (v+u) e λv ,

observamos que os vetores (v + u) e λv estão no plano Q. Logo o plano Q que passa pela origem é um subespaco de \mathbb{R}^3 .

Introduzindo um sistema de coordenadas em \mathbb{V}^3 , vimos que $\mathbb{V}^3 \rightleftarrows \mathbb{R}^3$ e, assim, foi possível tratar uma lista $(x,y,z) \in \mathbb{R}^n$ como um vetor posição \overrightarrow{OM} e vice-versa (vide Fig. 2.4). De forma inteiramente análoga, podemos associar o espaço vetorial \mathbb{R}^2 a um conjunto de segmentos orientados coplanares no espaço euclidiano. De fato, sejam dois segmentos orientados coplanares, mas não-colineares, dados por a e b. Então, o subespaço gerado por estes vetores, denotado por [a,b], é o plano que contém os dois segmentos orientados a e b. Logo, ao se introduzir neste plano [a,b] uma origem 0, qualquer segmento orientado $\overrightarrow{OM} \in [a,b]$ pode ser escrito de forma única como uma combinação linear de a e b, isto é, $\overrightarrow{OM} = xa + yb$, sendo x e y números reais. Assim, $\overrightarrow{OM} \rightleftarrows (x,y)$, ou seja, existe uma relação bijetora entre o plano [a,b] equipado com um sistema de coordenadas cartesianas e o espaço vetorial \mathbb{R}^2 , sendo a origem 0 juntamente com a base ordenada {a,b} o referido sistema de coordenadas cartesianas para o plano. Esta base é ortogonal, se os segmentos a e a0 são ortogonais (Fig.2.6). Em geral, emprega-se um sistema de coordenadas cartesianas ortonormais, onde, além de ortogonais, os segmentos a0 e a1 são unitários, ou seja, a2 | a3 | a4 | a5 | a6 e a6 são unitários, ou seja, a6 | a7 | a8 | a9 | a

Fig. 2.6.

Mudança de Base

Seja a n-lista $(x_1, ..., x_n) \in \mathbb{F}^n$ o vetor das coordenadas de $\vartheta \in V$ em relação à base ordenada $\mathfrak{B} = \{\vartheta_1, ..., \vartheta_n\}$. A seguir, para adequar questões de natureza notacional, este vetor das coordenadas será tratado como uma matriz-coluna das coordenadas de ϑ em relação à base \mathfrak{B} :

$$X = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{F}^{n \times 1}.$$

Do ponto de vista conceitual não há problema com isto, pois (como observamos antes) a introdução de uma base ordenada define uma relação bijetora entre \mathbb{F}^n e $\mathbb{F}^{n\times 1}$, ou seja, existe uma relação da forma $\mathbb{F}^n \rightleftarrows \mathbb{F}^{n\times 1}$ que nos permite esta identificação. Além disso, para enfatizar que as coordenadas de $\vartheta \in V$ utilizadas são àquelas relacionadas à base ordenada \mathfrak{B} , empregaremos também a notação

$$X = [\vartheta]_{\mathfrak{B}}$$

para descrever $X \in \mathbb{F}^{n \times 1}$, a matriz-coluna das coordenadas de ϑ em relação a \mathfrak{B} .

Supondo que o espaço vetorial V é de dimensão finita sobre o corpo \mathbb{F} , considere duas bases ordenadas de V, dada por:

$$\mathfrak{B} = {\vartheta_1, \dots, \vartheta_n}$$
 e $\mathfrak{B}' = {\vartheta'_1, \dots, \vartheta'_n}$.

Qualquer vetor de \mathfrak{B}' pode ser escrito como uma combinação linear dos vetores da base \mathfrak{B} , ou seja, existem escalares $a_{ij} \in \mathbb{F}$ tais que

$$\vartheta_j' = \sum_{i=1}^n a_{ij}\vartheta_i$$
, $\forall j = 1, ..., n$.

Se $x_1, ..., x_n$ são as coordenadas de um vetor arbitrário ϑ em V em relação à base ordenada \mathfrak{B} , então:

$$\vartheta = x_1 \vartheta_1 + \dots + x_n \vartheta_n.$$

Por outro lado, se $x'_1, ..., x'_n$ são as coordenadas do mesmo vetor ϑ em relação à base ordenada \mathfrak{B}' , então,

$$\vartheta = \sum_{j=1}^n x_j' \vartheta_j' = \sum_{j=1}^n x_j' \left(\sum_{i=1}^n a_{ij} \vartheta_i \right) = \sum_{j=1}^n \sum_{i=1}^n (a_{ij} x_j') \vartheta_i = \sum_{i=1}^n \left(\sum_{j=1}^n a_{ij} x_j' \right) \vartheta_i.$$

A última equação mostra que as coordenadas de ϑ em relação a base ordenada $\mathfrak B$ são da forma ($\sum_{j=1}^n a_{ij} x_j'$), i=1,...,n. Como as coordenadas $x_1,...,x_n$ de ϑ em relação a base ordenada $\mathfrak B$ são determinadas de forma única, então é claro que

$$x_i = \sum_{j=1}^n a_{ij} x'_j, \forall i = 1, ..., n.$$

Seja $A=[a_{ij}]$ a matriz quadrada $n\times n$ cuja entrada i,j é o escalar $a_{ij}\in\mathbb{F}$, que aparece na última equação, e sejam X e $X'\in\mathbb{F}^{n\times 1}$ as matrizes-colunas das coordenadas do vetor ϑ em relação, respectivamente, às bases ordenadas $\mathfrak B$ e $\mathfrak B'$. Assim, a última equação pode ser reescrita na forma matricial equivalente:

$$X = AX'$$

Como \mathfrak{B} e \mathfrak{B}' são conjuntos linearmente independentes, então X=0 se, e somente se, X'=0. Isto implica que o espaço-solução da matriz A é constituído apenas pela matriz nula de $\mathbb{F}^{n\times 1}$. Logo, Nulidade(A) = 0 e, pelo teorema 2.26, ocorre Posto(A) = n. Consequentemente, a partir do corolário 2.27, segue que a matriz A é inversível. Logo,

$$X' = A^{-1}X$$
.

Usando a outra notação para $\it X$ introduzida anteriormente, acabamos de deduzir o seguinte teorema.

TEOREMA 2.29: Seja V um espaço n-dimensional sobre o corpo \mathbb{F} e sejam \mathfrak{B} e \mathfrak{B}' duas bases ordenadas de V. Então existe uma única matriz A inversível $n \times n$ sobre \mathbb{F} tal que para todo vetor $\vartheta \in V$:

- (i) $[\theta]_{\mathfrak{B}} = A [\theta]_{\mathfrak{B}'}$;
- (ii) $[\vartheta]_{\mathfrak{B}'} = A^{-1} [\vartheta]_{\mathfrak{B}}$

OBSERVAÇÃO: A matriz A é chamada de matriz de mudança da base \mathfrak{B}' para a base \mathfrak{B} . Para futuras construções da matriz de mudança de base, é importante lembrar que a equação

$$\vartheta_j' = \sum_{i=1}^n a_{ij}\vartheta_i$$
, $\forall j = 1, ..., n$

informa que o j-ésimo vetor-coluna de A é constituído pelas coordenadas do j-ésimo vetor da base \mathfrak{B}' , em relação à base \mathfrak{B} , ou seja,

$$\boldsymbol{a}_{:j} = \begin{bmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{nj} \end{bmatrix} = \left[\vartheta_j' \right]_{\mathfrak{B}}$$

Aqui, a matriz A de mudança da base \mathfrak{B}' para a base \mathfrak{B} será denotada por $[M]_{\mathfrak{B}}^{\mathfrak{B}'}$, isto é,

$$A=[M]_{\mathfrak{B}}^{\mathfrak{B}'}.$$

Como os vetores $\left[\vartheta_j'\right]_{\mathfrak{B}}$ são as colunas de $[M]_{\mathfrak{B}}^{\mathfrak{B}'}$, podemos escrever:

$$[M]_{\mathfrak{B}}^{\mathfrak{B}'} = [\ [\vartheta_1']_{\mathfrak{B}} \quad [\vartheta_2']_{\mathfrak{B}} \quad \cdots \quad [\vartheta_n']_{\mathfrak{B}}\].$$

A inversa de $[M]_{\mathfrak{B}}^{\mathfrak{B}'}$, ou seja, a matriz A^{-1} de mudança da base \mathfrak{B} para a base \mathfrak{B}' será denotada por $[M]_{\mathfrak{B}'}^{\mathfrak{B}}$, ou seja,

$$A^{-1} = [M]_{\mathfrak{B}'}^{\mathfrak{B}}.$$

Assim, com estas notações mais sugestivas, escreveremos:

$$[\vartheta]_{\mathfrak{B}} = [M]_{\mathfrak{B}}^{\mathfrak{B}'} [\vartheta]_{\mathfrak{B}'}$$

$$[\vartheta]_{\mathfrak{B}'}=[M]^{\mathfrak{B}}_{\mathfrak{B}'}[\vartheta]_{\mathfrak{B}}.$$

EXEMPLO 30: Mostrar que os vetores (1,-1) e (-2, 3) formam uma base de \mathbb{R}^2 . Encontrar a matriz de mudança da base ordenada (canônica) $\mathfrak{B} = \{ (1, 0), (0, 1) \}$ para a base ordenada $\mathfrak{B}' = \{ (1,-1), (-2, 3) \}$.

» SOLUÇÃO: Inicialmente, vamos verificar a dependência ou independência linear dos vetores (1,-1) e (-2,3). Para isto, considerando a matriz N cujas linhas são estes vetores e, em seguida, reduzindo N a uma matriz escalonada por linha, obtemos:

$$N = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 \\ 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = I.$$

Como N é equivalente por linhas a matriz identidade, então N é inversível e, pelo teorema 2.8, os vetores (1,-1) e (-2,3) são linearmente independentes. Logo, pelo corolário 2.17, estes dois vetores geram \mathbb{R}^2 . Assim, $\mathfrak{B}' = \{(1,-1),(-2,3)\}$ é, de fato, uma base ordenada de \mathbb{R}^2 . Como $\mathfrak{B} = \{(1,0),(0,1)\}$ é a base canônica, então é imediato encontrar a matriz-coluna das coordenadas na base \mathfrak{B} de cada um dos vetores da base \mathfrak{B}' :

$$[(1,-1)]_{\mathfrak{B}} = \begin{bmatrix} 1\\-1 \end{bmatrix}$$
e
$$[(-2,3)]_{\mathfrak{B}} = \begin{bmatrix} -2\\3 \end{bmatrix}.$$

Logo,

$$[M]_{\mathfrak{B}}^{\mathfrak{B}'} = \begin{bmatrix} 1 & -2 \\ -1 & 3 \end{bmatrix}.$$

Feito isto, para obter $[M]_{\mathfrak{B}'}^{\mathfrak{B}}$, basta encontrar a inversa de $[M]_{\mathfrak{B}}^{\mathfrak{B}'}$. Este último cálculo é mostrado a seguir:

$$\begin{pmatrix} 1 & -2 & 1 & 0 \\ -1 & 3 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -2 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 1 & 1 \end{pmatrix}.$$

Portanto,

$$[M]_{\mathfrak{B}'}^{\mathfrak{B}} = \begin{bmatrix} 3 & 2 \\ 1 & 1 \end{bmatrix}.$$

PROPOSIÇÃO 2.30: Se B, C e B' são três bases ordenadas de um espaço vetorial de dimensão finita *V*, então.

$$[M]_{\mathfrak{B}'}^{\mathfrak{B}} = \left([M]_{\mathfrak{C}}^{\mathfrak{B}'} \right)^{-1} [M]_{\mathfrak{C}}^{\mathfrak{B}}$$

Prova: Seja ϑ um vetor em V. Então

$$[\vartheta]_{\mathfrak{C}} = [M]_{\mathfrak{C}}^{\mathfrak{B}'} [\vartheta]_{\mathfrak{B}'};$$

$$[\vartheta]_{\mathfrak{B}'}=[M]^{\mathfrak{B}}_{\mathfrak{B}'}[\vartheta]_{\mathfrak{B}}.$$

Combinando estas equações, se chega à relação

$$[\vartheta]_{\mathfrak{C}} = [M]_{\mathfrak{C}}^{\mathfrak{B}'}[M]_{\mathfrak{B}'}^{\mathfrak{B}}[\vartheta]_{\mathfrak{B}}.$$

Mas, por outro lado:

$$[\vartheta]_{\mathfrak{C}} = [M]_{\mathfrak{C}}^{\mathfrak{B}} [\vartheta]_{\mathfrak{B}}.$$

Como a matriz de mudança da base $\mathfrak B$ para a base $\mathfrak C$ é única, então as duas últimas equações garantem que

$$[M]_{\mathfrak{C}}^{\mathfrak{B}} = [M]_{\mathfrak{C}}^{\mathfrak{B}'} [M]_{\mathfrak{B}'}^{\mathfrak{B}}.$$

Multiplicando esta equação por $([M]_{\mathfrak{C}}^{\mathfrak{B}'})^{-1}$, se obtém $[M]_{\mathfrak{B}'}^{\mathfrak{B}} = ([M]_{\mathfrak{C}}^{\mathfrak{B}'})^{-1}[M]_{\mathfrak{C}}^{\mathfrak{B}}$.

EXEMPLO 31: Encontrar a matriz de mudança da base ordenada $\mathfrak{B} = \{ (5, 2), (7, 3) \}$ para a base ordenada $\mathfrak{B}' = \{ (2, 3), (1, 1) \}$, ambas de \mathbb{R}^2 .

» SOLUÇÃO: Denote por $\mathfrak{C} = \{(1,0),(0,1)\}$ a base ordenada canônica de \mathbb{R}^2 . Então,

 $[M]_{\mathfrak{C}}^{\mathfrak{B}} = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}$ e $[M]_{\mathfrak{C}}^{\mathfrak{B}'} = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$. Após cálculos, obtemos $([M]_{\mathfrak{C}}^{\mathfrak{B}'})^{-1} = \begin{bmatrix} -1 & 1 \\ 3 & -2 \end{bmatrix}$. Portanto a matriz de mudança da base \mathfrak{B} para a base \mathfrak{B}' é dada por

$$[M]_{\mathfrak{B}'}^{\mathfrak{B}} = \left([M]_{\mathfrak{C}}^{\mathfrak{B}'} \right)^{-1} [M]_{\mathfrak{C}}^{\mathfrak{B}} = \begin{bmatrix} -1 & 1 \\ 3 & -2 \end{bmatrix} \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix} = \begin{bmatrix} -3 & -4 \\ 11 & 15 \end{bmatrix}.$$

EXEMPLO 32: A Fig. 2.7 mostra um plano no espaço euclidiano, com uma origem O, que é gerado pelos segmentos ortogonais \boldsymbol{a} e \boldsymbol{b} , os quais, por hipótese, são unitários. Assim, o referido plano encontra-se equipado com um sistema de coordenadas cartesianas, constituído pela origem O e pela base ordenada ortonormal $\mathfrak{B} = \{\boldsymbol{a}, \boldsymbol{b}\}$ e, portanto, pode ser tratado como o espaço vetorial \mathbb{R}^2 .

Fixado θ em \mathbb{R} , suponha que esses segmentos orientados foram submetidos a uma rotação, no sentido anti-horário, de um ângulo θ em relação à direção definida por a. Tal rotação dá origem a uma nova base ordenada $\mathfrak{B}' = \{a', b'\}$, onde a' e b' são, respectivamente, os vetores resultantes da rotação dos segmentos orientados a e b. Dado $v = \overrightarrow{OM}$, o vetor posição de um ponto arbitrário M, expressar $[v]_{\mathfrak{B}}$ em função de $[v]_{\mathfrak{B}'}$ e do ângulo de rotação θ .

Fig. 2.7

» SOLUÇÃO: Como a e b são unitários, a partir da Fig. 2.7 podemos ver que

$$a' = \cos \theta \, a + \sin \theta \, b$$

$$\mathbf{b}' = \cos\left(\theta + \frac{\pi}{2}\right)\mathbf{a} + \sin\left(\theta + \frac{\pi}{2}\right)\mathbf{b} = -\sin\theta \,\mathbf{a} + \cos\theta \,\mathbf{b}.$$

Em outras palavras:

$$[\mathbf{a}']_{\mathfrak{B}} = \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix},$$

$$[\boldsymbol{b}']_{\mathfrak{B}} = \begin{bmatrix} -\operatorname{sen}\theta\\ \cos\theta \end{bmatrix}.$$

Portanto, a matriz de mudança da base \mathfrak{B}' para a base \mathfrak{B} é dada por

$$[M]_{\mathfrak{B}}^{\mathfrak{B}'} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

Logo, para qualquer segmento orientado $v = \overrightarrow{OM}$ temos que

$$[v]_{\mathfrak{B}} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} [v]_{\mathfrak{B}'}.$$

Usando a notação que aparece na Fig. 2.27, esta equação pode ser escrita como

$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x' \\ y' \end{bmatrix}.$$

Exercícios

- 1. Mostrar que os vetores $\vartheta_1 = (1, 1, 0, 0)$, $\vartheta_2 = (0, 0, 1, 1)$, $\vartheta_3 = (1, 0, 0, 4)$, $\vartheta_4 = (0, 0, 0, 2)$ formam uma base de \mathbb{R}^4 . Determinar as coordenadas de cada um dos vetores da base canônica em relação à base ordenada $\{\vartheta_1, \vartheta_2, \vartheta_3, \vartheta_4\}$.
- 2. Determinar as coordenadas do vetor (1,0,1) em relação à base ordenada de \mathbb{C}^3 dada por $\mathfrak{B} = \{(2i,1,0),(2,-1,1),(0,1+i,-i)\}.$
- 3. Seja a base ordenada de \mathbb{R}^3 dada por $\mathfrak{B} = \{ (1,0,-1), (1,1,1), (1,0,0) \}$. Quais são as coordenadas do vetor v = (a, b, c) em relação a esta base \mathfrak{B} .
- 4. Seja $W = [w_1, w_2]$ o subespaço de \mathbb{C}^3 gerado pelos vetores $w_1 = (1, 0, i)$ e $w_2 = (1 + i, 1, -1)$.
 - (a) Mostrar que w_1 e w_2 formam uma base de W.
 - (b) Mostrar que os vetores $u_1 = (1, 1, 0)$ e $u_2 = (1, i, 1 + i)$ estão em W e formam uma base de W.
 - (c) Determinar as coordenadas dos vetores w_1 e w_2 em relação à base ordenada $\mathfrak{B} = \{ u_1, u_2 \}$.
- 5. Sejam $v_1 = (x_1, y_1)$ e $v_2 = (x_2, y_2)$ dois vetores em \mathbb{R}^2 tais que $x_1x_2 + y_1y_2 = 0$ e $x_1^2 + y_1^2 = x_2^2 + y_2^2 = 1$. Demostrar que $\mathfrak{B} = \{v_1, v_2\}$ é uma base de \mathbb{R}^2 . Determinar as coordenadas do vetor $\vartheta = (a, b)$ em relação à base ordenada $\mathfrak{B} = \{v_1, v_2\}$.
- 6. Verificar se o conjunto de polinômios $\{t^5 + t^4, t^5 3t^3, t^5 + 2t^2, t^5 t\}$ em $\mathcal{P}_5(\mathbb{R})$ é linearmente independente. Estender este conjunto a fim de se obter uma base de $\mathcal{P}_5(\mathbb{R})$.
- 7. Mostrar que o conjunto { 1, 2t, $4t^2 2$ } é uma base de $\mathcal{P}_2(\mathbb{R})$. Encontrar a matriz de mudança de base da base ordenada $\mathfrak{B} = \{1, t, t^2\}$ para a base ordenada $\mathfrak{B}' = \{1, 2t, 4t^2 2\}$. Determinar as coordenadas do vetor $p(t) = a + bt + ct^2$ em $\mathcal{P}_2(\mathbb{R})$ em relação à base ordenada $\mathfrak{B}' = \{1, 2t, 4t^2 2\}$.
- 8. Mostrar que as matrizes $A = \begin{bmatrix} 1 & 2 \\ -1 & -2 \end{bmatrix}$, $B = \begin{bmatrix} 2 & 3 \\ 0 & -1 \end{bmatrix}$, $C = \begin{bmatrix} 1 & 2 \\ 1 & 4 \end{bmatrix}$, $D = \begin{bmatrix} 1 & 3 \\ -1 & 0 \end{bmatrix}$ constituem uma base de $\mathbb{R}^{2\times 2}$. Encontrar a matriz de mudança de base da base ordenada $\mathfrak{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} \right\}$ para a base ordenada $\mathfrak{B}' = \{A, B, C, D\}$. Determinar as coordenadas do vetor $M = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ em relação à base ordenada $\mathfrak{B}' = \{A, B, C, D\}$.