

FINAL PROJECT (SOLIDWORKS)

FULL NAME - Chehal Lalindra Jayasuriya

COURSE TITLE - Solidworks

BATCH CODE - OLB11SW22

ASSIGNMENT

Course Title	SOLIDWORKS		
Project Title	Final Project		
Student Name	Chehal Lalindra Jayasuriya		
Assessor Name	Ms:Kalani Dayawansha		
Batch Code	OLB11SW22	Student ID	
Issue Date	31 / 07 / 2022	Submit Date	15 / 09 / 2022
Student's declaration prior to handing-in of assignment:			

					, ,	
Student's declaration prior to handing-in of assignment: I certify that the work submitted for this assignment is my own and not a Plagiarism.						
o j	Inclusive Education Unit.					
♣ I declare that I refused the special support offered by the Institute.						
Student Sign	natur	e:	B		Date:	15 / 09 / 2022

Assessment Criteria	Maximum Mark	Mark Achieved
Criteria 1: Planning of Project Project Title, Ability to design an appropriate design or project, evidence of research or data	20	
Criteria 2: Skills Used Skills preparation & finalizing of materials, use of tools & materials, accuracy of data, design & technical contribution, Management of resources, Experiments used	50	
Criteria 3: Presentation of Project Preparation of presentation Communication and presenting skills, Satisfactory knowledge of construction industry/ field	30	
Total Mark	100	

Assessor's feedback to student		

Final Grade	Assessor Signature	Date
Learner's signature upon collection of corrected assignment.		

CONTENTS

- 1. Project Proposal
- 2. Part 01 Base
- 3. Part 02 Sliding Jaw
- 4. Part 03 Vice Screw
- 5. Part 04 Handle Rod
- 6. Part 05 Pin
- 7. Part 06 Knob
- 8. Part 07 Jaw Plate
- 9. Part 08 Slide Key
- 10. Part 09 Key
- 11. Part 10 Collar
- 12. Part 11 Set Screw
- 13. Assembly exploded view
- 14. Final Drawing
- 15. Simulation drawing
- 16. Simulation report
- 17. Curriculum Vitae
- 18. Course completion and Feedback form

Project Proposal

- This project is focused on the design of a bench vise model.
- It consists of eleven components of which the first two are major components and the remaining nine are minor components.
- The screws fixing the Jaw plate to the base and the sliding jaw were derived from the inbuilt toolbox.
- Finally, all the part drawings were assembled to form the bench vise model.

Part 01 - Base

Page **5** of **31**

Part 02 - Sliding Jaw

Page **6** of **31**

Part 03 – Vice Screw

Part 04 – Handle Rod

Part 05 - Pin

Page **9** of **31**

Part 06 - Knob

Page **10** of **31**

Part 07 – Jaw Plate

Page **11** of **31**

Part 08 – Slide Key

Page **12** of **31**

Part 09 – Key

Page **13** of **31**

Part 10 – Collar

Page **14** of **31**

Part 11 – Set Screw

Page **15** of **31**

Assembly view

Final Drawing

Page **17** of **31**

Simulation drawing

The following simulation was done to the model shown below and the material assigned to it was Steel.

Simulation Report

11/2A, Suramya Place, Panadura. Phone: 0769038557

Description

This is a study of the action of force and pressure on a steel body.

Simulation of metal model

Date: Monday, 18 July 2022 Designer: JAYASURIYA C. L. Study name: Steel model study

Analysis type: Static

Table of Contents

Description 1
Model Information2
Study Properties
Units 3
Material Properties 4
Loads and Fixtures5
Mesh information7
Resultant Forces
Study Results9
Conclusion 11

Model name: simulation 1 Current Configuration: Default

id Bodies

Document Name and Reference	Treated As	Volumetric Properties	Document Path/Date Modified
Boss-Extrude9	Solid Body	Mass:0.595185 kg Volume:7.72969e-05 m^3 Density:7,699.98 kg/m^3 Weight:5.83281 N	F:\Workshops and Courses\Solidworkds SFS course\Day 14\simulation 1.SLDPRT Jul 18 07:37:22 2022

Study Properties

Study name	Steel model study
Analysis type	Static
Mesh type	Solid Mesh
Thermal Effect:	On
Thermal option	Include temperature loads
Zero strain temperature	298 Kelvin
Include fluid pressure effects from SOLIDWORKS Flow Simulation	Off
Solver type	FFEPlus
Inplane Effect:	Off
Soft Spring:	Off
Inertial Relief:	Off
Incompatible bonding options	Automatic
Large displacement	Off
Compute free body forces	On
Friction	Off
Use Adaptive Method:	Off
Result folder	SOLIDWORKS document (F:\Workshops and Courses\Solidworkds SFS course\Day 14)

Units

Unit system:	SI (MKS)
Length/Displacement	mm
Temperature	Kelvin
Angular velocity	Rad/sec
Pressure/Stress	N/m^2

Material Properties

Model Reference	Properties		Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength: Elastic modulus: Poisson's ratio: Mass density: Shear modulus: Thermal expansion coefficient:	Alloy Steel Linear Elastic Isotropic Unknown 6.20422e+08 N/m^2 7.23826e+08 N/m^2 2.1e+11 N/m^2 0.28 7,700 kg/m^3 7.9e+10 N/m^2 1.3e-05 /Kelvin	SolidBody 1(Boss- Extrude9)(simulation 1)
Curve Data:N/A			

Loads and Fixtures

Fixture name	Fixture Image	Fixture Details
Fixed-1		Entities: 1 face(s) Type: Fixed Geometry

Resultant

554.54

0

Z -238.311

0

Resultant Forces

- Coultaine i oi ces	V	
Components	Y	T
Components	^	-499.947
Reaction force(N)	27.8368	-477.747
Reaction force(iv)	27.0300	0
Reaction Moment(N.m)	0	
Reaction Monient(N.III)	0	

Load name	Load Image	Load De	tails
Force-1		itities: Type: Value:	1 face(s) Apply normal force 500 N
Pressure-1		tities: Type: /alue: Units: Phase Angle: Units:	1 face(s) Normal to selected face 1 N/mm^2 (MPa) 0 deg
Force-2		itities: Type: Value:	1 face(s) Apply normal force 250 N
Force-3		Entities: 1 f	

Mesh information

Mesh type	Solid Mesh
Mesher Used:	Standard mesh
Automatic Transition:	Off
Include Mesh Auto Loops:	Off
Jacobian points for High quality mesh	16 Points
Element Size	4.10133 mm
Tolerance	0.205067 mm
Mesh Quality	High

Mesh information - Details

Total Nodes	15114
Total Elements	9201
Maximum Aspect Ratio	12.183
% of elements with Aspect Ratio < 3	99.1
Percentage of elements with Aspect Ratio > 10	0.174
Percentage of distorted elements	0
Time to complete mesh(hh;mm;ss):	00:00:02
Computer name:	
	-

Resultant Forces

Reaction forces

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N	27.8368	-499.947	-238.311	554.54

action Moments

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N.m	0	0	0	0

e body forces

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N	-0.0236015	-0.93762	-0.538866	1.0817

e body moments

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	N.m	0	0	0	1e-33

Study Results

Name	Туре	Min	Max
Displacement1	URES: Resultant	0.000e+00mm	1.154e+00mm
	Displacement	Node: 39	Node: 15059

Name	Туре	Min	Max
Strain1	ESTRN: Equivalent Strain	1.624e-06 Element: 5852	1.784e-03 Element: 4571
Model name: simulation 1 Study name: Steel model study(-Default-) Plot type: Static strain Strain1 Deformation scale: 17.8574		ESTRN	04a no

Conclusion

The study shows that the body can withstand the applied external loads.

Curriculum Vitae

CHEHAL LALINDRA JAYASURIYA

+94 769038557 <u>chehal2001lj@gmail.com</u> <u>linkedin.com/jayasuriya.c.l</u>

Statement

I am energetic, hardworking yet a humble character; a great team worker with amazing leadership skills, yearning to achieve his dreams.

Education

President's Scout Award

University of Moratuwa

2021 - Present

Semester 01 GPA 3.74 (out of 4.00)

Lyceum International School Panadura.

GCE A/L National 2019 - 3As Physical Science stream (z-score of 2.4058)

Cambridge O/L 2017 - 6A*s Physical Science stream

GCE O/L National 2016 - 7As

Achievements

Best Advanced Level student of the Year (National), - 2020

Lyceum International School Panadura.

2020

Skills

Technical skills

- CAD Diploma in AutoCAD 2018 (Certified by Autodesk®)
- Python Elementary proficiency

Language skills

English - Bilingual proficiencySinhala - Native proficiency

Leadership and Team skills

- Experience in leading junior scouts as a scout leader.
- Senior prefect (2017/2018)
- Member of school choir (won a silver medal at Asia Pacific Choir games 2017)
- Member of school chess club

References

1. Mrs. M. S. Meegahapola

B.Sc. (USJP)

Senior teacher - National Advanced Level Lyceum International School, Panadura.

Telephone : 0772058668

E-mail : sonali.cbm.upp_lp@lyceum.lk.

2. Dr. Ranga Rodrigo

B.Sc. Eng. Hons. (Moratuwa), M.E.Sc. (Western), Ph.D. (Western), MIET, MIEEE Senior Lecturer, Department of Electronics and Telecommunication Engineering, University of Moratuwa, 10400, Moratuwa, Sri Lanka.

Telephone : +94 71 804 5768

E-mail : ranga@uom.lk

Course completion and Feedback form

COURSE COMPLETION FORM

Student Name in Block Letters CHEHAL LALINDRA JAYASURIYA Student NIC Number

200130605360 **Phone Number** : 0382299098 Mobile Number 0769038557

E-Mail ID : chehal2001lj@gmail.com

11/2A, Suramya Place, Gorakapola, Panadura. **Home Address**

Course Title SOLIDWORKS **Date of Course Commencement** : 20/03/2022 Date of Course Completion : 31/07/2022

If Registered

Center Location Batch Code Student ID

FEEDBACK FORM

√ Please	Agree	Need improvement
The Instructor was well prepared for the class.	✓	
The Instructor explained the matter in an effective manner.	✓	
Instructor has thorough knowledge and is specialized in the field.	✓	
The instructor has clarified all your robust.	✓	

The overall rating of your course with us,

Excellent Good Needs Improvement

Any comments / suggestions / Feedbacks,

The course was very informative and well paced. It was not very difficult to learn the content.

Student Signature

Student Signature