_				
1	ЛОСКОВСКИЙ	ФИЗИКО-ТЕХНИЧ	ІЕСКИЙ ИНСТИ	ITYT

Лабораторная работа 3.2.2

Резонанс напряжений в последовательном контуре

выполнили студент группы Б03-302 Танов Константин, Глеб Ларькин

1 Цель работы:

Исследование резонанса напряжений в последовательном колебательном контуре с изменяемой ёмкостью, включающее получение амплитудно-частотных и фазово-частотных характеристик, а также определение основных параметров контура.

2 Оборудование:

Генератор сигналов, источник напряжения, нагруженный на последовательный колебательный контур с переменной ёмкостью, двулучевой осциллограф, цифровые вольтметры.

3 Экспериментальная установка

Схема экспериментального стенда для изучения резонанса напряжений в последовательном колебательном контуре показана на рис. 1а. Синусоидальный сигнал от генератора GFG8255A поступает через согласующую RC-цепочку на вход источника напряжения, собранного на операционном усилителе ОУ. Питание операционного усилителя осуществляется встроенным блоком-выпрямителем от сети переменного тока 220 Вольт (цепь питания на схеме не показана). Источник напряжения, обладающий по определению нулевым внутренним сопротивлением, фактически обеспечивает с высокой точностью постоянство амплитуды сигнала на меняющейся по величине нагрузке – последовательном колебательном контуре, изображенном на рис. 1а в виде эквивалентной схемы. На рис. 16 контур представлен почти в натуральную величину. Источник напряжения с согласующей цепочкой, колебательный контур и блок питания заключены в отдельный корпус с названием «Резонанс напряжений», отмеченный на рисунке штриховой линией.

На корпусе имеются коаксиальные разъёмы «Вход», «U1» и «U2», а также переключатель магазина ёмкостей с указателем номера n = 1, 2, ... 7. Величины ёмкостей указаны в табличке на крышке корпуса. Напряжение на контуре через разъём «U1» попадает одновременно на канал 1 осциллографа GOS-620 и вход 1-го цифрового вольтметра GDM-8245. Напряжение на конденсаторе UC подаётся через разъём «U2» одновременно на канал 2 осциллографа и вход 2-го цифрового вольтметра GDM-8245.

Рис. 1: Схема установки

4 Теоретические сведения:

Общее уранвение колебательного контура:

$$E_0 cos(\omega_0 t + \phi_0) = RI + U_c + L \frac{dI}{dt}$$
(1)

где U_c - напряжения на конденсаторе; R - сопротивление на резисторе; I - ток в цепи; L - индуктивность катушки.

Суммарное активное сопротивление контура принимается равным

$$R_{\sum} = R + R_L + R_S \tag{2}$$

где R_L - внутреннее сопротивление в катушке; R_S - внутреннее соротивление на конденсаторе

Импедансы соответствующих величин

$$Z_L = R_L + i\omega L; \ Z_C = R_S - i\frac{1}{\omega C}; \ Z_{R_{\Sigma}} = R_{\Sigma} + i(\omega L - \frac{1}{\omega C})$$
 (3)

Собственная чатота колебательного контура, определяемая из условия действеительности импеданса контура:

$$\omega_0 = \frac{1}{\sqrt{LC}} = 2\pi f_0 \tag{4}$$

Отсюда можно вырвзить значение индуктивности для катушки.

Реактивное или волновое соротивление:

$$\rho = \sqrt{\frac{L}{C}} \tag{5}$$

При резонансе, когда, $\omega = \omega_0$, выражения для модулей комплексных амплитуд тока и напряжения на ёмкости, их фаз и производных фаз по частоте ω принимают вид:

$$I(\omega_0) = \frac{E}{R_{\Sigma}}, \ \phi_I(0) = 0 \tag{6}$$

$$U_L(\omega_0) = QE, \ \phi_L(0) = \frac{\pi}{2} - \frac{R_L}{\rho}$$
 (7)

$$U_C(\omega_0) = QE, \ \phi_C(0) = -\frac{\pi}{2} + \delta \tag{8}$$

Из формул 5 - 7 следует, что на частоте ω_0 , где импеданс контура Z становится чисто активным и равным R_{\sum} , амплитуда тока достигает максимального значения $I_{max} = \frac{E}{R_{\sum}}$. Напряжения на индуктивности и ёмкости на частоте ω_0 находятся почти в противофазе и в Q раз превышают по амплитуде напряжение внешней ЭДС. Последнее обстоятельство послужило поводом назвать резонанс в такой цепи «резонансом напряжений».

Тогда из формулы 7 можно выразить добротность:

$$Q = \frac{U_c(\omega_0)}{E} \tag{9}$$

Формула добротности связана также с параметрами колебательного контура следующим соотношением:

$$Q = \frac{\rho}{R_{\sum}} \tag{10}$$

5 Обработка данных

n	C_n , н Φ	f_{0n} ,	U_C , B	<i>E</i> , B	L,	Q	ρ ,	R_{Σ} ,	$R_{S_{\max}}$,	R_L , Om	<i>I</i> , мА
		кГц			мкГн		Ом	Ом	Ом		, , , , , ,
1	24,8	32,10	6,98	0,2796	991,23	24,97	199,92	8,25	0,20	4,60	24,22
2	33,2	27,73	6,22	0,2796	992,21	22,24	172,87	7,94	0,17	4,31	25,17
3	47,6	23,17	5,38	0,2796	991,24	19,25	144,30	7,58	0,14	3,98	26,36
4	57,5	21,07	4,91	0,2797	992,20	17,57	131,36	7,45	0,13	3,86	26,81
5	68,0	19,37	4,56	0,2796	992,11	16,33	120,78	7,63	0,12	4,06	26,11
7	102,80	15,75	3,84	0,2796	992,43	13,72	98,25	7,08	0,10	3,53	28,12

Таблица 1: Измерение резонансных частот и характеристик контура

	L, мкГн	R_L , Om
Среднее значение	991,91	4,04
Среднеквадратичная погрешность среднего значения	0,21	0,12
Доверительный интервал $t_{n\alpha}=2{,}57$ для ${\rm n}{=}7,~\alpha=0{,}95$	(991,70; 992,10)	(3,91; 4,17)
Случайная погрешность	0,090	0,003

Таблица 2: Измерение погрешностей для L и R_L

Оценим вклад активных потерь в кондесаторе
$$\frac{R_{S_{max}}}{R_{\Sigma}} = \frac{\rho}{R_{\Sigma}} < 2.5\%$$

Оценим влияние погрешности приборов на ход эксперимента. При построении графика зависимости $R_l(f_{0n})$ были взяты погрешности, указанные в методичке - 3 % для U и 1 % для f. Судя по значению хи-квадрат 0.05 данные погрешности сильно завышены. Действительно, в документации к вольтметрам указаны значения относ погрешности 0.03 %. Документацию к генератору мы не нашли, поэтому про нее сказать ничего не можем.

Для 3-его и 5-ого конденсаторов построим на одном графике амплитудночастотные характеристики в координатах f, $U_c(f)$ (рис. 2)

Далее построим на одном графике амплитудно-чатсотные характеристики в безразмерных координатах для этих же конденсаторов $x = f/f_0, y = U_c(f)/U_c(0)$. По ширине резонансных кривых на уровне 0,707 определим добротности Q соответствующих контуров (рис. 3)

После этого построим на одном графике фазово-частотные характеристики в координатах $x=f/f_0, y=\varphi_c/\pi$, для выбранных контуров. Определим добротности контуров по формуле $Q=0,5d\varphi_c(x)/dx$ при x=1 (рис. 4)

Рис. 2: АЧХ

Рис. 3: АЧХ в относительных единицах

Рис. 4: ФЧХ в относительных единицах

Проанализировав оба графика, получились следующие значения для добротности и погрешностей.

	С3		C5		
	Q	σ_Q	Q	σ_Q	
АЧХ	19,424	0,002	16,300	0,001	
ФЧХ	17,743	0,249	15,843	0,213	
Расчитанные	19,256		16,336		

Таблица 3: Значение добротностей полученных из графиков АЧХ и ФЧХ

Рис. 5: Зависимость напряжения на катушке от резонансной частоты

омического сопротивления на катушке вызывается возможно скин-эффектом. С ростом частоты сопротивление провода обмотки возрастает из-за вытеснения тока в поверхностные слои провода. Как следствие, уменьшается полезное сечение проводника и растёт сопротивление.

Построим векторную диаграмму тока и напряжений для тока с наименьшей добротностью в резонансном состоянии.

6 Вывод

Был изучен резонанс напряжений в последовательном rlc контуре. Активные потери в конденсаторе, а также погрешность измерительных приборов мало влияют на результаты эксперимента. Были построены амплитудно-частотные и фазовочастотные характеристики для двух конденсаторов. Была измерена различными способами добротность контура - результаты измерений при разных способах совпадают в пределах погрешности. Также была получена зависимость сопротивления катушки от частоты при резонансе в контуре с наименьшей добротностью: зависимость получилась линейной, со значением хи-квадрат 0.05, что говорит о сильной завышенности погрешности. О причинах такой зависимости авторы не

догадываются. Была построенная векторная диаграмма, на которой графически показано, что при резонансе векторы Uc, Ul и Ur в сумме дают вектор E.

Рис. 6: Зависимость напряжения на катушке от резонансной частоты