import pandas as pd df= pd.read_csv("https://raw.githubusercontent.com/syrusdhark/programming/main/housing.csv")

	longitude	latitude	housing_median_age	total_rooms	total_bedrooms	populati	
0	-122.23	37.88	41.0	880.0	129.0	32:	
1	-122.22	37.86	21.0	7099.0	1106.0	240	
2	-122.24	37.85	52.0	1467.0	190.0	49	
3	-122.25	37.85	52.0	1274.0	235.0	55	
4	-122.25	37.85	52.0	1627.0	280.0	56	
•••							
20635	-121.09	39.48	25.0	1665.0	374.0	84	
20636	-121.21	39.49	18.0	697.0	150.0	35	
20637	-121.22	39.43	17.0	2254.0	485.0	100	
20638	-121.32	39.43	18.0	1860.0	409.0	74	
20639	-121.24	39.37	16.0	2785.0	616.0	138	
20640 rows × 10 columns							
4						+	

df.dropna(inplace=True)

df.info()

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 20433 entries, 0 to 20639
Data columns (total 10 columns):
```

#	Column	Non-Null Count	Dtype			
0	longitude	20433 non-null	float64			
1	latitude	20433 non-null	float64			
2	housing_median_age	20433 non-null	float64			
3	total_rooms	20433 non-null	float64			
4	total_bedrooms	20433 non-null	float64			
5	population	20433 non-null	float64			
6	households	20433 non-null	float64			
7	median_income	20433 non-null	float64			
8	median_house_value	20433 non-null	float64			
9	ocean_proximity	20433 non-null	object			
dtypes: float64(9), object(1)						

dtypes: float64(9), object(1)
memory usage: 1.7+ MB

from sklearn.model_selection import train_test_split

x= df.drop(["median_house_value"],axis=1)

y= df['median_house_value']

x_train,x_test,y_train,y_test = train_test_split(x,y, test_size=0.2)

train_data = x_train.join(y_train)

train_data

```
longitude latitude housing_median_age total_rooms total_bedrooms populati
       9667
                 -119.54
                              38.51
                                                     14.0
                                                                  1250.0
                                                                                    272.0
                                                                                                  72
import seaborn as sns
      166/10
                 -120 66
                              25 20
                                                                  1022 በ
                                                                                     /127 ∩
import matplotlib.pyplot as plt
import numpy as np
train_data.hist(figsize=(15,8))
     array([[<Axes: title={'center': 'longitude'}>,
              <Axes: title={'center': 'latitude'}>,
<Axes: title={'center': 'housing_median_age'}>],
             <Axes: title={'center': 'median_house_value'}>]], dtype=object)
                   longitude
      5000
       4000
                                                                       2000
       3000
                                       4000
                                                                       1500
                                                                       1000
                                                                       500
                   -120 -118 -116
total_rooms
                                -114
                                                                                   20 30
population
               -122
                                                 36 38
total_bedrooms
                                      12500
      12500
                                                                      15000
                                      10000
      10000
                                       7500
      7500
                                       5000
       5000
                                       2500
      2500
                     20000
                                                                                median_house_value
                                                  median income
                   households
      12500
                                       6000
      10000
                                       4000
      7500
       5000
                                       2000
      2500
```

```
plt.figure(figsize=(15,8))
sns.heatmap(train_data.corr(), annot =True, cmap="YlGnBu")
```

<ipython-input-11-e12f1c5680f9>:2: FutureWarning: The default value of numeric_only i
 sns.heatmap(train_data.corr(), annot =True, cmap="YlGnBu")


```
train_data['total_rooms'] = np.log(train_data['total_rooms'] + 1)
train_data['total_bedrooms'] = np.log(train_data['total_bedrooms'] + 1)
train_data['population'] = np.log(train_data['population'] + 1)
train_data['households'] = np.log(train_data['households'] + 1)
```

train_data.hist(figsize=(15,8))

```
<Axes: title={'center': 'housing_median_age'}>],
         [<Axes: title={'center': 'total_rooms'}>,
         <Axes: title={'center': 'total_bedrooms'}>,
         <Axes: title={'center': 'population'}>],
        [<Axes: title={'center': 'households'}>,
         Axes: title={'center': 'median_income'}>,
<Axes: title={'center': 'median_house_value'}>]], dtype=object)
              longitude
                                                  latitude
                                                                      2500
4000
                                                                       2000
3000
                                                                      1500
2000
                                                                      1000
                                   2000
1000
              -120 -118
     -124
         -122
                        -116
                                                                                    20 30
population
                                               total_bedroor
             total rooms
                                                                       8000
                                   6000
4000
                                    4000
                                                                      4000
2000
             6
households
                                               median_income
                                                                                 median_house_value
                                                                       3000
6000
 4000
```

```
train_data['bedroom_ratio'] = train_data['total_bedrooms'] / train_data['total_rooms']
train_data['household_rooms'] = train_data['total_rooms'] / train_data['households']
from sklearn.linear_model import LinearRegression
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
x_train,y_train = train_data.drop(['median_house_value'] , axis=1 ) , train_data['median_house_value']
x_train_s = scaler.fit_transform(x_train)
reg = LinearRegression()
reg.fit(x_train_s,y_train)
      ▼ LinearRegression
      LinearRegression()
test_data = x_test.join(y_test)
test_data['total_rooms'] = np.log(test_data['total_rooms'] + 1)
test_data['total_bedrooms'] = np.log(test_data['total_bedrooms'] + 1)
test_data['population'] = np.log(test_data['population'] + 1)
test_data['households'] = np.log(test_data['households'] + 1)
\texttt{test\_data} = \texttt{test\_data.join} (\texttt{pd.get\_dummies}(\texttt{test\_data.ocean\_proximity})). \texttt{drop}([\texttt{'ocean\_proximity'}] \text{ , axis=1})
test_data['bedroom_ratio'] = test_data['total_bedrooms'] / test_data['total_rooms']
test_data['household_rooms'] = test_data['total_rooms'] / test_data['households']
x\_test, y\_test = test\_data.drop(['median\_house\_value'] \ , \ axis=1 \ ) \ , \ test\_data['median\_house\_value']
from sklearn.ensemble import RandomForestRegressor
forest = RandomForestRegressor()
forest.fit(x_train_s,y_train)
     ▼ RandomForestRegressor
     RandomForestRegressor()
forest.score(x_train_s,y_train)
     0.9737426557120061
```