Design and Analysis of Algorithms

L36: Bellman-Ford algorithm Dynamic Programming

Dr. Ram P Rustagi
Sem IV (2019-H1)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

Resources

- Text book 2: Horowitz
 - -Sec 5.1, 5.2, 5.4, 5.8, 5.9
- Text book 1: Levitin
 - Sec 8.2-8.4
- RI: Introduction to Algorithms
 - Cormen et al.

Single Source Shorest Paths

- Issues with Dijkstra's algo
 - Does not work with negative edge weights
 - Consider a graph below
 - Shortest distance d(F,B) = -4, but algo gives 0.

Graph with Negative edges

- Key requirement:
 - the shortest path must consist of finite number of edges.
 - Essentially, there should be no negative cycles.
 - Consider the graph below.
 - Length of shortest path from A to C is $-\infty$
 - Length of path is A, B, A, B, ..., A, B, C

Single Source Shortest Path

- Consider a graph G with n nodes.
 - If a path has more than n-1 edges,
 - it must contain a cycle (at least 1 vertex is repeated)
 - Elimination of path results in a shorter path
 - With same source and destination
 - When there are no negative cycles
 - Then there can be at most n-1 edges in the shortest path from the source to the farthest node
 - this path will include all the nodes of the graph
 - Minimum path length will correspond to 1 edge
 - Use the path length as the dynamic programming approach

Single Source Shortest Path

- Consider source vertex as s.
- Let distk(v) denote the length of shortest path from vertex v from s containing at most k edges.
- Thus, distk(v) = cost[s][v], $1 \le v \le n$.
- When there are no negative cycles, then
 - restrict the search for shortest paths to length n-1
 - Such a length would be distn-1 (v).

Dynamic Programming Approach

- If the shortest path from s to u with at most k edges, has no more than k-1 edges, then
 - $dist^{k}(u) = dist^{k-1}(u)$
- If the shortest path from s to u with at most k edges, has exactly k edges, then
 - it must have shortest path from s to some vertex j followed by edge (j, u).
 - The shortest path from s to j will have k-1 edges
 - with its length as distk-1(j)
 - All vertices i such that edge (i, v) is in the graph will be candidate for vertex j.
 - Vertex i that minimizes ($dist^{k-1}(i) + cost[i][u]$) is the right vertex for shortest path from s to u

Dynamic Programming Approach

The recurrence equation for shortest path

```
dist^{k}(u) = min\{dist^{k-1}(u), min_{i}\{dist^{k-1}(i)+cost[i][u]\}\}
```

- Use the recurrence equation to compute shortest path $dist^k(u)$ for k=2,3,...,n-1
- Approach involves
 - use adjacent matrix for cost
 - First compute all shortest paths of lenth k=2
 - Then compute shortest paths of length k=3

•

- Finally, compute shortest paths of length k=n-1

Example: DP Approach

 $dist^{k}[1...7]$

k↓	1	2	3	4	5	6	7
1	0	6	5	5	∞	∞	8
2	0	თ	3	5	5	4	8
3	0	1	3	5	2	4	7
4	0	1	თ	5	0	4	5
5	0	1	3	4	0	4	3
6	0	1	3	4	0	4	3

Algo: Bellman Ford

```
Algo BellmanFord(v, n, cost[][], dist[])
//computes single source all dstn shortest with -ve edge costs
// i/p: source v, number of nodes: n
for i=1 to n
   dist[i]=cost[v][i] //default to ∞ when no edge
for k=2 to n-1
  for (each u such that u\neq v, and u has incoming edge)
    for each edge \langle i, u \rangle in the graph
       if dist[u] > dist[i]+cost[i][u] then
          dist[u]=dist[i]+cost[i][u]
       fi //end if
    // end for each edge
 // end for each u≠v
// end for k
```

Time Complexity: Bellman Ford

- Using adjancency matrix
 - 3 nested for loops
 - first n-1 times (k=2 to n-1)
 - other could potentially run n times.
 - Time complexity: (n³)
- Using adjancy matrix
 - outer most nest loop: n times (k=2 to n-1)
 - Innermost two for loop together at most e times
 - Time complexity: (ne)
- Note: if for one iteration of k. none of dist[] changes
 - Then it won't change for next iteration as well
 - Loop can be terminated with iterating till n-1

Summary

- Graph with negative edges
 - Dijkstra's algo does not work.
- Graph with negative cycles.
- Dynamic programming approach to graphs with negative cycles
 - Bellman Ford algorithm.