# Partial Differerential Equations Thành Nam Phan Winter Semester 2021/2022

Lecture notes TEXed by Thomas Eingartner

Tuesday  $7^{\text{th}}$  December, 2021, 12:42

# Contents

| 1        | Introduction                                     | 3  |
|----------|--------------------------------------------------|----|
| <b>2</b> | Laplace / Poisson Equation                       | 5  |
|          | Laplace / Poisson Equation 2.1 Laplace Equation  | Ę  |
|          | 2.2 Poisson-Equation                             | 6  |
|          | 2.3 Equations in general domains                 |    |
| 3        | Convolution, Fourier Transform and Distributions | 16 |
|          | 3.1 Convolutions                                 | 16 |
|          | 3.2 Fourier Transformation                       | 24 |
|          | 3.3 Theory of Distribution                       | 27 |
|          | 3.4 Distribution vs. measures                    |    |
| 4        | Weak Solutions and Regularity                    | 45 |
| 5        | Existence for Poisson's Equation on Domains      | 65 |
|          | 5.1 Green's function on the upper half plane     | 68 |

Please note that I write this lecture notes for my personal use. I may write things differently than presented in the lecture. This script also contains solutions for exercises (which may be wrong). Of course, I don't push them to GitHub while the exercises can be handed in.

## Chapter 1

## Introduction

A differential equation is an equation of a function and its derivatives.

**Example 1.1** (Linear ODE) Let  $f: \mathbb{R} \to \mathbb{R}$ ,

$$\begin{cases} f(t) = af(t) \text{ for all } t \geqslant 0, a \in \mathbb{R} \\ f(0) = a_0 \end{cases}$$

is a linear ODE (Ordinary differential equation). The solution is:  $f(t) = a_0 e^{at}$  for all  $t \ge 0$ .

**Example 1.2** (Non-Linear ODE)  $f : \mathbb{R} \to \mathbb{R}$ 

$$\begin{cases} f'(t) = 1 + f^2(t) \\ f(0) = 1 \end{cases}$$

Lets consider  $f(t) = \tan(t) = \frac{\sin(t)}{\cos(t)}$ . Then we have

$$f'(t) = \frac{1}{\cos(t)} = 1 + \tan^2(t) = 1 + f^2(t),$$

but this solution only is good in  $(-\pi, \pi)$ . It's a problem to extend this to  $\mathbb{R} \to \mathbb{R}$ .

A PDE (Partial Differential Equation) is an equation of a function of 2 or more variables and its derivatives.

**Remark 1.3** Recall for  $\Omega \subseteq \mathbb{R}^d$  open and  $f: \Omega \to \{\mathbb{R}, \mathbb{C}\}$  the notation of partial derivatives:

- $\partial_{x_i} f(x) = \lim_{h \to 0} \frac{f(x+he_i) f(x)}{h}$ , where  $e_i = (0, 0, \dots, 1, \dots, 0, 0) \in \mathbb{R}^d$
- $D^{\alpha}f(x) = \partial_{x_1}^{\alpha_1} \cdots \partial_{x_d}^{\alpha_d} f(x)$ , where  $\alpha \in \mathbb{N}^d$
- $Df = \nabla f = (\partial x_1, \dots, \partial_{x_d})$
- $\bullet \ \Delta f = \partial_{x_1}^2 + \dots + \partial_{x_d}^2 f$
- $D^k f = (D^{\alpha} f)_{|\alpha|=k}$ , where  $|\alpha| = \sum_{i=1}^d |\alpha_i|$
- $D^2 f = (\partial_{x_i} \partial_{x_j} f)_{1 \leq i, j \leq d}$

**Definition 1.4** Given a function F. Then the equation of the form

$$F(D^k u(x), D^{k-1} u(x), \dots, Du(x), u(x), x) = 0$$

with the unknown function  $u: \Omega \subseteq \mathbb{R}^d \longrightarrow \mathbb{R}$  is called a *PDE of order k*.

- Equations  $\sum_{d} a_{\alpha}(x) D^{\alpha} u(x) = 0$ , where  $a_{\alpha}$  and u are unknown functions are called *Linear PDEs*.
- Equations  $\sum_{|\alpha|=k} a_{\alpha}(x) D^{\alpha} u(x) + F(D^{k-1}u, D^{k-2}u, \dots, Du, u, x) = 0$  are called semi-linear PDEs.

Goals: For solving a PDE we want to

- Find an explizit solution! This is in many cases impossible.
- Prove a well-posted theory (existence of solutions, uniqueness of solutions, continuous dependence of solutions on the data)

We have two notations of solutions:

- 1. Classical solution: The solution is continuous differentiable (e.g.  $\Delta u = f \leadsto u \in C^2$ )
- 2. Weak Solutions: The solution is not smooth/continuous

**Definition 1.5** (Spaces of continous and differentiable functions) Let  $\Omega \subseteq \mathbb{R}^d$  be open

$$\begin{split} C(\Omega) &= \{f: \ \Omega \to \mathbb{R} \mid f \text{ continuous} \} \\ C^k(\Omega) &= \{f: \ \Omega \to \mathbb{R} \mid D^\alpha f \text{ is continuous for all } |\alpha| \ \leqslant k \} \end{split}$$

Classical solution of a PDE of order  $k \rightsquigarrow C^k$  solutions!

$$L^p(\Omega) = \left\{ f: \ \Omega \to \mathbb{R} \text{ lebesgue measurable } | \int_{\Omega} |f|^p d\lambda < \infty, 1 \leqslant p < \infty \right\}$$

Sobolev Space:

$$W^{k,p}(\Omega) = \{ f \in L^p(\Omega) \mid \forall \alpha \in \mathbb{N}^n \text{ with } |\alpha| \leq k : D^{\alpha} f \in L^p(\Omega) \text{ exists} \}$$

In this course we will investigate

- Laplace / Poisson Equation:  $-\Delta u = f$
- Heat Equation:  $\partial_t u \Delta u = f$
- Wave Equation:  $\partial_t^2 \Delta u = f$
- Schrödinger Equation:  $i\partial_t u \Delta u = f$

## Chapter 2

# Laplace / Poisson Equation

## 2.1 Laplace Equation

 $-\Delta u = 0$  (Laplace) or  $-\Delta u = f(x)$  (Poisson).

**Definition 2.1** (Harmonic Function) Let  $\Omega$  be an open set in  $\mathbb{R}^d$ . If  $u \in C^2(\Omega)$  and  $\Delta u = 0$  in  $\Omega$ , then u is a harmonic function in  $\Omega$ .

**Theorem 2.2** (Gauss-Green Theorem) Let  $A \subseteq \mathbb{R}^d$  open,  $\vec{F} \in C^1(A, \mathbb{R}^d)$  and  $K \subseteq A$  compact with  $C^1$  boundary. Then

$$\int_{\partial K} \vec{F} \cdot \vec{\nu} \ dS(x) = \int_K \operatorname{div}(\vec{F}) \ dx$$

where  $\nu$  is the outward unit normal vector field on  $\partial K$ . Thus

$$\int_{\partial V} \nabla u \cdot \vec{\nu} \ dS(x) = \int_{V} \operatorname{div}(\nabla u) \ dx = \int_{V} \Delta u(x) \ dx$$

for any  $V \subseteq \Omega$  open.

**Theorem 2.3** (Green's Identities) Let  $A \subseteq \mathbb{R}^d$  open,  $K \subseteq A$  d-dim. compactum with  $C^1$  boundary and  $f, g \in C^2(A)$ 

1. Green's first identity (Partial Integration):

$$\int_{K} \nabla f \cdot \nabla g \, dx = \int_{\partial K} f \frac{\partial g}{\partial \nu} \, dS - \int_{K} f \Delta g \, dx$$

where  $\frac{\partial g}{\partial \nu} = \partial_{\nu} g = \nu \cdot \nabla g$ 

2. Green's second identity:

$$\int_{K} f \Delta g - (\Delta f) g \, dx = \int_{\partial K} \left( f \frac{\partial g}{\partial \nu} - g \frac{\partial f}{\partial \nu} \right) \, dS$$

**Exercise 2.4** Let  $\Omega \subseteq \mathbb{R}^d$  open, let  $f:\Omega \to \mathbb{R}$  be continuous. Prove that if  $\int_B f(x) \ dx = 0$ , then  $u \equiv 0$  in  $\Omega$ .

**Theorem 2.5** (Fundamential Lemma of Calculus of Variations) Let  $\Omega \subseteq \mathbb{R}^d$  open, let  $f \in L^1(\Omega)$ . If  $\int_B f(x) \ dx = 0$  for all  $x \in B_r(x) \subseteq \Omega$ , then f(x) = 0 a.e. (almost everywhere)  $x \in \Omega$ .

**Remark 2.6** (Solving Laplace Equation)  $-\Delta u = 0$  in  $\mathbb{R}^d$ . Consider the case when u is radial, i.e.  $u(x) = v(|x|), v : \mathbb{R} \to \mathbb{R}$ . Denote r = |x|, then

$$\frac{\partial r}{\partial x} = \frac{\partial}{\partial x_i} \left( \sqrt{x_1^2 + \dots + x_d^2} \right) = \frac{2x_i}{2\sqrt{x_1^2 + \dots + x_d^2}} = \frac{x_i}{r}$$

Then

$$\begin{split} \partial_{x_i} u &= \partial_{x_i} v = (\partial_r v) \frac{\partial r}{\partial x_i} = v'(r) \frac{x_i}{r} \\ \partial_{x_i}^2 u &= \partial_{x_i} \left( v(r)' \frac{x_i}{r} \right) = (\partial_{x_i} v(r)') \frac{x_i}{r} + v'(r) \partial_{x_i} \left( \frac{x_i}{r} \right) \\ &= (\partial_r v'(r)) \left( \frac{dr}{\partial_{x_i}} \right) \frac{x_i}{r} + v'(r) \left( \frac{1}{r} - \frac{x_i}{r^2} (\partial_{x_i} r) \right) = v'(r) \frac{x_i^2}{r^2} + v'r(r) \left( \frac{1}{r} - \frac{x_i^2}{r^3} \right) \end{split}$$

So we have  $\Delta u = \left(\sum_{i=1}^d d_{x_i}^2\right) u = v''(r) + v'(r)(\frac{d}{r} - \frac{1}{r})$ Thus  $\Delta u = v'(r) + v(r)\frac{d-1}{r}$ . We consider  $d \ge 2$ . Laplace operator  $\Delta u = 0$  now becomes  $v''(r) + v'(r)\frac{d-1}{r} = 0$ 

$$\Rightarrow \log(v(r))' = \frac{v'(r)}{v(r)} = -\frac{d-1}{r} = -(d-1)(\log r)' \text{ (recall } \log(f)' = \frac{f'}{f})$$

$$\Rightarrow v'(r) = \frac{1}{v^{d-2} + \text{const.}}$$

$$\begin{cases} \frac{const}{r^{d-2}} + constxx + const & , d \geqslant 3 \\ const \log(r) + constxxr + const & , d = 2 \end{cases}$$

**Definition 2.7** (Fundamential Solution of Laplace Equation)

$$\Phi(x) = \begin{cases} -\frac{1}{2\pi} \log(|x|), & d = 2\\ \frac{1}{(d-2)d|B_1|} \frac{1}{|x|^{d-2}}, & d \geqslant 3 \end{cases}$$

Where  $|B_1|$  is the Volume of the ball  $B_1(0) = B(0,1) \subseteq \mathbb{R}^d$ .

**Remark 2.8**  $\Delta\Phi(x) = 0$  for all  $x \in \mathbb{R}^d$  and  $x \neq 0$ .

#### 2.2Poisson-Equation

The Poisson-Equation is  $-\Delta u(x) = f(x)$  in  $\mathbb{R}^d$ . The explicit solution is given by

$$u(x) = (\Phi \star f)(x) = \int_{\mathbb{R}^d} \Phi(x - y) f(y) \ dy = \int_{\mathbb{R}^d} \Phi(y) f(x - y) \ dy$$

This can be heuristically justifyfied with

$$-\Delta(\Phi \star f) = (-\Delta\Phi) \star f = \delta_0 \star f = f$$

**Theorem 2.9** Assume  $f \in C_c^2(\mathbb{R}^d)$ . Then  $u = \Phi \star f$  satisfies that  $u \in C^2(\mathbb{R}^d)$  and  $-\Delta u(x) = f(x)$  for all  $x \in \mathbb{R}^d$ 

*Proof.* By definition we have

$$u(x) = \int_{\mathbb{R}^d} \Phi(y) f(x - y) \, dy.$$

First we check that u is continuous: Take  $x_k \to x_0$  in  $\mathbb{R}^d$ . We prove that  $u(x_n) \xrightarrow{n} u_0$ , i.e.

$$\lim_{n \to \infty} \int_{\mathbb{R}^d} \Phi(y) f(x_n - y) \ dy = \int_{\mathbb{R}^d} \Phi(y) f(x_0 - y) \ dy$$

This follows from the Dominated Convergence Theorem. More precisely:

$$\lim_{n \to \infty} \Phi(y) f(x_n - y) = \Phi(y) f(x_0 - y) \quad \text{for all } y \in \mathbb{R}^d \setminus \{0\}$$

and

$$|\Phi(y)f(x-y)| \leq ||f||_{L^{\infty}} \cdot \mathbb{1}(|y| \leq R) \cdot |\Phi(y)| \in L^1(\mathbb{R}^d, dy)$$

where R > 0 depends on  $\{x_n\}$  and supp(f) but independent of y. Now we compute the derivatives:

$$\begin{split} \partial_{x_i} u(x) &= \partial_{x_i} \int_{\mathbb{R}^d} \Phi(y) f(x-y) \ dy = \lim_{h \to 0} \int_{\mathbb{R}^d} \Phi(y) \frac{f(x+he_i-y) - f(x-y)}{h} \ dy \\ (\text{dom. conv.}) &= \int \Phi(y) \partial_{x_i} f(x-y) \ dy \\ \Rightarrow & D^{\alpha} u(x) = \int_{\mathbb{R}^d} \Phi(y) D_x^{\alpha} f(x-y) \ dy \quad \text{for all } |\alpha| \leqslant 2 \end{split}$$

 $D^{\alpha}u(x)$  is continuous, thus  $u\in C^2(\mathbb{R}^d)$ . Now we check if this solves the Poisson-Equation:

$$-\Delta u(x) = \int_{\mathbb{R}^d} \Phi(y)(-\Delta_x) f(x-y) \, dy = \int_{\mathbb{R}^d} \Phi(y)(-\Delta_y) f(x-y) \, dy$$
$$= \int_{\mathbb{R}^d \setminus B(0,\epsilon)} \Phi(y)(-\Delta_x) f(x-y) \, dy + \int_{B(0,\epsilon)} \Phi(y)(-\Delta_x) f(x-y) \, dy \quad (\epsilon > 0 \text{ small})$$

Now we come to the main part. We apply integration by parts (2.3):

$$\int_{\mathbb{R}^{d} \backslash B(0,\epsilon)} \Phi(y)(-\Delta_{y}) f(x-y) \, dy$$

$$= \int_{\mathbb{R}^{d} \backslash B(0,\epsilon)} (\nabla_{y} \Phi(y)) \cdot \nabla_{y} f(x-y) \, dy - \int_{\partial B(0,\epsilon)} \Phi(y) \cdot \frac{\partial f}{\partial \vec{n}} (x-y) \, dS(y)$$

$$= \int_{\mathbb{R}^{d} \backslash B(0,\epsilon)} (-\Delta_{y} \Phi(y)) f(x-y) \, dy$$

$$+ \int_{\partial B(0,\epsilon)} \frac{\partial \Phi}{\partial \vec{n}} (y) f(x-y) \, dS(y) - \int_{\partial B(0,\epsilon)} \Phi(y) \frac{\partial f}{\partial \vec{n}} (x-y) \, dS(y)$$

We have that  $\nabla_y \Phi(y) = -\frac{1}{d|B_1|} \frac{y}{|y|^d}$  and  $\vec{n} = \frac{y}{|y|}$  in  $\partial B(0, \epsilon)$ . This leads to

$$\frac{\partial \Phi}{\partial \vec{n}} = \frac{1}{d|B_1|} \frac{1}{|y|^{d-1}} = \frac{1}{d|B_1|\epsilon^{d-1}} \quad \text{for } y \in \partial B(0, \epsilon)$$

Hence:

$$\int_{\partial B(0,\epsilon)} \frac{\partial \Phi}{\partial \vec{n}}(y) f(x-y) \ dS(y) = \frac{1}{d|B_1|\epsilon^{d-1}} \int_{\partial B(0,\epsilon)} f(x-y) \ dS(y)$$
$$= \int_{\partial B(0,\epsilon)} f(x-y) \ dS(y) = \int_{\partial B(x,\epsilon)} f(y) \ dS(y) \xrightarrow{\epsilon \to 0} f(x)$$

We have to regard the following error terms:

$$\left| \int_{B(0,\epsilon)} \Phi(y) (-\Delta_y) f(x-y) \, dy \right| \leq \int_{B(0,\epsilon)} |\Phi(y)| \underbrace{\left| -\Delta_y f(x-y) \right|}_{\leq \|\Delta f\|_{L^{\infty}} \mathbb{1}(|y| \leq R)} \, dy$$

$$\leq \|\Delta f\|_{L^{\infty}} \int_{\mathbb{R}^d} \underbrace{\left| \Phi(y) |\mathbb{1}(|y| \leq R) \right|}_{L^1(\mathbb{R}^d)} \mathbb{1}(|y| \leq \epsilon) \xrightarrow{\epsilon \to 0} 0$$

Where R > 0 depends on x and the support of f but is independent of y.

$$\bullet \left| \int_{\partial B(0,\epsilon)} \Phi(y) \frac{\partial f}{\partial \vec{n}}(x-y) \ dS(y) \right| \leq \|\nabla f\|_{L^{\infty}} \int_{\partial B(0,\epsilon)} |\Phi(y)| \ dy$$

$$\leq \begin{cases} const \cdot \epsilon |\log \epsilon| \to 0, & d = 2\\ const \cdot \epsilon \to 0, & d \geqslant 3 \end{cases}$$

Conclusion:  $-\Delta u(x) = f(x)$  for all  $x \in \mathbb{R}^d$  proved that  $u = \Phi \star f$  and  $f \in C^2_c(\mathbb{R}^d)$ .

Thus, if  $f \in C_c^2(\mathbb{R})$ , then  $u = \Phi \star f$  satisfies  $u \in C^2(\mathbb{R}^2)$  and  $-\Delta u(x) = f(x)$  for all  $x \in \mathbb{R}^d$ .

**Remark 2.10** The result holds for a much bigger class of functions f. For example if  $f \in C_c^1(\mathbb{R})$  we can easily extend the previous proof:

$$\partial_{x_i} u = \int_{\mathbb{R}^d} \Phi(y) \partial_{x_i} f(x - y) \, dy \in C(\mathbb{R}^d) \Rightarrow u \in C^1(\mathbb{R}^d)$$

Consequently:

$$\partial_{x_i}\partial_{x_j}u = \partial_{x_i}\int_{\mathbb{R}^d} \Phi(y)\partial_{x_j}f(x-y)\,dy = \int_{\mathbb{R}^d} \partial_{x_i}\Phi(y)\partial_{x_j}f(x-y)\,dy \in C(\mathbb{R}^d)$$

So we have  $u \in C^2(\mathbb{R}^d)$ . Now we can compute

$$\Delta u = \sum_{i=1}^{d} \int_{\mathbb{R}^d} \partial_{x_i} \Phi(y) \partial_{x_i} f(x-y) \, dy \stackrel{(IBP)}{=} f(x).$$

Exercise 2.11 Extend this to more general functions!

## 2.3 Equations in general domains

**Theorem 2.12** (Mean Value Theorem for Harmonic Functions) Let  $\Omega \subseteq \mathbb{R}$  be open, let  $u \in C^2(\Omega)$  and  $\Delta u = 0$  in  $\Omega$ . Then

$$u(x) = \int_{B(x,r)} u = \int_{\partial B(x,r)} u$$
 for all  $x \in \Omega, B(x,r) \subseteq \Omega$ 

*Proof.* Consider all r > 0 s.t.  $B(x, r) \subseteq \Omega$ ,

$$f(r) = \int_{\partial B(x,r)} u$$

We need to prove that f(r) is independent of r. When it is done, then we immediately obtain

$$f(r) = \lim_{t \to 0} f(t) = u(x)$$

as u is continuous. To prove that, consider

$$f'(r) = \frac{d}{dr} \left( \int_{\partial B(0,r)} u(x+y) \, dS(y) \right)$$

$$= \frac{d}{dr} \left( \int_{\partial B(0,1)} u(x+rz) \, dS(z) \right)$$

$$(\text{dom. convergence}) = \int_{\partial B(0,1)} \frac{d}{dr} [u(x+rz)] \, dS(z)$$

$$= \int_{\partial B(0,1)} \nabla u(x+rz) z \, dS(z)$$

$$= \int_{\partial B(x,r)} \nabla u(y) \frac{y-x}{r} \, dS(y)$$

$$= \frac{1}{|B(x,r)|_{\mathbb{R}^d}} \int_{\partial B(x,r)} \nabla \cdot u(y) \cdot \vec{n_y} \, dS(y)$$

$$(\text{Gauss-Green 2.2}) = \frac{1}{|B(x,r)|_{\mathbb{R}^d}} \int_{B(x,r)} \underbrace{(\Delta u)(y)}_{=0} \, dy = 0$$

**Exercise 2.13** In 1D:  $\Delta u = 0 \Leftrightarrow u'' = 0 \Leftrightarrow u(x) = ax + b$  (Linear Equation)

**Remark 2.14** Recall the polar decomposition. Let  $x \in \mathbb{R}^d$ , x = (r, w), r = |x| > 0,  $\omega \in S^{d-1}$ , then

$$\int_{B(0,r)} g(y) \, dy = \int_0^r \left( \int_{B(0,r)} g(y) \, dS(y) \right) dr$$

**Remark 2.15** We already proved that for u harmonic we have  $u(x) = f_{\partial B(x,r)} u \, dy$ . Now we have

$$\int_{B(x,r)} u(y) \, dy = \int_{B(0,r)} u(x+y) \, dy$$
(Pol. decomposition) 
$$= \int_0^r \left( \int_{\partial B(0,s)} u(x+y) \, dS(y) \right) ds$$

$$= \int_0^r \left( \int_{\partial B(x,s)} u(y) \, dS(y) \right) ds$$
(Mean value property) 
$$= \int_0^r \left( |\partial B(x,s)| \, u(x) \right) ds = |B(x,r)| \, u(x)$$

This implies

$$\oint_{B(x,r)} u(y) \, dy = u(x) \quad \text{for any } B(x,r) \subseteq \Omega.$$

**Remark 2.16** The reverse direction is also correct, namely if  $u \in C^2(\Omega)$  and

$$u(x) = \int_{B(x,r)} u(y) \, dy = \int_{\partial B(x,r)} u(y) \, dy \quad \text{for all } B(x,r) \subseteq \Omega,$$

then u is harmonic, i.e.  $\Delta u = 0$  in  $\Omega$ . (The proof is exactly like before)

**Theorem 2.17** (Maximum Principle) Let  $\Omega \subseteq \mathbb{R}^d$  be open, let  $u \in C^2(\Omega) \cap C(\bar{\Omega})$ ,  $\Delta u = 0$  in  $\Omega$ . Then

- a)  $\sup_{x \in \bar{\Omega}} u(x) = \sup_{x \in \partial \Omega} u(x)$
- b) Assume that  $\Omega$  is connected. Then if there is a  $x_0 \in \Omega$  s.t.  $u(x_0) = \sup_{x \in \overline{\Omega}} u(x)$ , then  $u \equiv const.$  in  $\Omega$ .

*Proof.* Given  $U \subseteq \mathbb{R}^d$  open, we can write  $U = \bigcup_i U_i$ , where  $U_i$  is open and connected.

- b) Assume that  $\Omega$  is connected and there is a  $x_0 \in \Omega$  s.t.  $u(x_0) = \sup_{y \in \Omega} u(x)$ . Define  $U = \{x \in \Omega \mid u(x) = u(x_0)\} = u^{-1}(u(x_0))$ . U is closed since u is continuous. Moreover, U is open by the mean-value theorem. I.e. for all  $x \in U$  there is a r > 0 s.t.  $B(x,r) \subseteq U \subseteq \Omega$ . Since U is connected we get  $U = \Omega$ , so u is constant in  $\Omega$ . On the other hand, if there is no  $x_0 \in \Omega$  s.t.  $u(x_0) = \sup_{x \in \Omega} w$  we have  $\forall x_0 \in \Omega : u(x) < \sup_{x \in \overline{\Omega}} u(x) = \sup_{x \in \partial \Omega} u(x)$
- a) Given  $\Omega \subseteq \mathbb{R}^d$  open, we can write  $\Omega = \bigcup_i \Omega_i$ , where  $\Omega_i$  is open and connected. By b) we have

$$\sup_{x \in \bar{\Omega}_i} u(x) = \sup_{x \in \partial \Omega_i} u(x), \quad \forall i$$

So we can conclude

$$\sup_{x \in \bar{\Omega}} u(x) = \sup_{x \in \partial\Omega} u(x).$$

**Definition 2.18** • If  $\Omega \subseteq \mathbb{R}^d$  is open,  $u \in C^2(\Omega)$ , then u is called *sub-harmonic* if  $\Delta u \ge 0$  in  $\Omega$ .

• If  $\Delta u \leq 0$ , then u is called *super-harmonic*.

**Exercise 2.19** (E 1.4) Let  $\Omega \subseteq \mathbb{R}^d$  be open and  $u \in C^2(\Omega)$  be subharmonic.

a) Prove that u satisfies the Mean Value Inequality

$$\int_{\partial B(x,r)} u(y) \, dS(y) \geqslant \int_{B(x,r)} u(y) \, dy \geqslant u(x)$$

for all  $B(x,r) \subseteq \mathbb{R}^d$ .

- b) Assume further that  $\Omega$  is connected and  $u \in C(\bar{\Omega})$ . Prove that u satisfies the strong maximum principle, namely either
  - u is constant in  $\Omega$ , or
  - $\sup_{y \in \partial \Omega} u(y) > u(x)$  for all  $x \in \Omega$ .

My Solution. a) Let  $f(r) = \int_{\partial B(x,r)} u(y) dS(y)$ , then we have

$$\partial_{r} f(r) = \partial_{r} \oint_{\partial B(x,r)} u(y) \, dS(y)$$
(Dom. Convergence) 
$$= \oint_{\partial B(x,r)} \partial_{r} u(y) \, dS(y)$$

$$= \oint_{\partial B(0,1)} \partial_{r} u(x+yr) \, dS(y)$$

$$= \oint_{\partial B(0,1)} \nabla u(x+yr) \cdot y \, dS(y)$$

$$= \oint_{\partial B(x,r)} \nabla u(y) \cdot \frac{y-x}{r} \, dS(y)$$

$$= \oint_{\partial B(x,r)} \nabla u(y) \cdot \vec{n}_{y} \, dS(y)$$
(Gauss-Green) 
$$= \oint_{B(x,r)} \operatorname{div}(\nabla u(y)) \, dS(y)$$

$$= \oint_{B(x,r)} \underbrace{\Delta u(y)}_{\geqslant 0} \, dS(y) \geqslant 0$$

So we can conclude that

$$\oint_{\partial B(x,r)} u(y) \, dS(y) = f(r) \geqslant \lim_{r \to 0} f(r) = u(x).$$

Now regard

$$\int_{B(x,r)} u(y) \, dy = \int_0^r \left( \int_{\partial B(x,r)} u(y) \, dS(y) \right) ds$$

$$= \int_0^r \left( |\partial B(x,r)| \int_{\partial B(x,r)} u(y) \, dS(y) \right) ds$$

$$\geqslant \int_0^r |\partial B(x,r)| \cdot u(x) \, dS(y)$$

$$= u(x) \int_0^r |\partial B(x,r)| \, dS(y) = u(x) |B(x,r)|.$$

Thus we have

$$u(x) \leqslant \int_{B(x,r)} u(y)dy.$$

Finally, lets regard

$$\int_{B(x,r)} u(y) \, dy = \int_0^r \left( |\partial B(x,s)| \oint_{\partial B(x,s)} u(y) \, dS(y) \right) \, ds$$

$$(\partial_r f(r) \geqslant 0) \qquad \leqslant \int_0^r \left( |\partial B(x,s)| \oint_{\partial B(x,r)} u(y) \, dS(y) \right) \, ds$$

$$= \oint_{\partial B(x,r)} u(y) \, dS(y) \int_0^r |\partial B(x,s)| \, ds$$

$$= \oint_{\partial B(x,r)} u(y) \, dS(y) \cdot |B(x,s)|$$

and we conclude

$$\int_{B(x,r)} u(y) \, dy \leqslant \int_{\partial B(x,r)} u(y) \, dS(y).$$

b) Let  $x_0 \in \Omega$  s.t.  $u(x_0) = \sup_{x \in \Omega} u(x)$ . Now,

$$\sup_{x \in \Omega} u(x) = u(x_0) \leqslant \int_{\partial B(x_0, r)} u(y) \, dy$$
$$\leqslant \int_{\partial B(x_0, r)} \sup_{x \in \Omega} u(x) \, dy = \sup_{x \in \Omega} u(x)$$

Since u is continuous we get  $u(y) = u(x_0)$  for all  $y \in B(x_0, r)$ , so u is constant.

**Definition 2.20** The *Poisson Equation* for given f, g on a bounded set is:

$$\begin{cases}
-\Delta u = f, & \text{in } \Omega \\
u = g, & \text{on } \partial\Omega
\end{cases}$$

**Theorem 2.21** (Uniqueness) Let  $\Omega \subseteq \mathbb{R}^d$  be bounded, open and connected. Let  $f \in C(\Omega), g \in C(\partial\Omega)$ . Then there exists at most one solution  $u \in C^2(\Omega) \cap C(\bar{\Omega})$ , s.t.

$$\begin{cases} -\Delta u = f, & \text{in } \Omega \\ u = g, & \text{on } \partial \Omega \end{cases}$$

*Proof.* Assume that we have two solutions  $u_1$  and  $u_2$ . Then  $u := u_1 - u_2$  is a solution to

$$\begin{cases} -\Delta u = 0, & \text{in } \Omega \\ u = 0 & \text{on } \partial \Omega \end{cases}$$

By the maximum principle, we know that u=0 in  $\Omega$ . More precisely, by the maximum principle we have  $\forall x\in\Omega$ 

$$\sup_{x \in \Omega} u(x) \leqslant \sup_{x \in \partial \Omega} u(x) = 0 \quad \Rightarrow \quad u(x) \leqslant 0$$

Since -u satisfies the same property we have  $\forall x \in \Omega$ :

$$\sup_{x \in \Omega} (-u(x)) \leqslant \sup_{x \in \partial \Omega} (-u(x)) = 0 \quad \Rightarrow \quad -u(x) \leqslant 0 \quad \Rightarrow \quad u(x) \geqslant 0$$

So we geht u(x) = 0 in  $\Omega$ .

**Exercise 2.22** (Bonus 1) Let  $\Omega$  be open, connected and bounded in  $\mathbb{R}^d$ . Let  $u \in C^2(\Omega) \cap C(\bar{\Omega})$  s.t.

$$\begin{cases} \Delta u = 0, & \text{in } \Omega \\ u = g, & \text{on } \partial \Omega \end{cases}$$

Prove that

a) If  $g \ge 0$  on  $\partial \Omega$ , then  $u \ge 0$  in  $\Omega$ .

b) If  $g \ge 0$  on  $\partial \Omega$  and  $g \ne 0$ , then u > 0 in  $\Omega$ .

My Solution. a) We have that  $\Delta(-u) = 0$ , so -u is harmonic in  $\Omega$ . Since  $\Omega$  is open and bounded we can apply the Maximum Principle (2.17) and get that

$$\sup_{x\in\bar{\Omega}}-u(x)\leqslant \sup_{x\in\partial\Omega}-g(x)\leqslant 0.$$

This implies  $\inf_{x \in \Omega} u(x) \ge 0$ , so  $u \ge 0$  in  $\Omega$ .

b) We prove this by contraposition. Assume there is a  $x_0 \in \Omega$  s.t.  $u(x_0) = 0$ . Since we have  $u \ge 0$  on  $\Omega$  by a), it follows that

$$0 = -u(x_0) = \sup_{x \in \Omega} -u(x) \leqslant \sup_{x \in \partial\Omega} -g(x) \leqslant 0,$$

so -u attains its maximum on  $\Omega$ . Hence -u=0=u is constant by the strong maximum principle because  $\Omega$  is connected, in fact  $0=u|_{\partial\Omega}=g$ .

**Lemma 2.23** (Estimates for derivatives) If u is harmonic in  $\Omega \subseteq \mathbb{R}^d$ ,  $\alpha \in \mathbb{N}_0^d$ ,  $|\alpha| = N$  and  $B(x_0, r) \subseteq \Omega$ , then

$$|D^{\alpha}u(x)| \leqslant \frac{(c_d N)^N}{r^{d+N}} \int_{B(x,r)} |u| \, dy$$

*Proof.* Induction: Assume  $|\alpha| = N - 1$ , Take  $|\alpha| = N$ 

$$|D^{\alpha}u(x_0)| \le \frac{|S_1|}{|B_1|\frac{r}{N}} \|D^{\beta}u\|_{L^{\infty}(B(x_0,\frac{r}{n}))}, \quad D^{\alpha}u = \partial_{x_i}(D^{\beta}u)_{|\beta|=N-1}$$

Note:  $x \in B(x_0, \frac{r}{N})$ , so  $B(x, \frac{r(N-1)}{N}) \subseteq B(x_0, r)$ . By the induction hypothesis:

$$||D^{\beta}u||_{L^{\infty}(B(x_{0},\frac{r}{N}))} \leq \frac{[c_{d}(N-1)]^{N-1}}{[r^{\frac{(N-1)}{N}}]^{d+N-1}} \int_{B(x_{0},r)} |u| \, dy$$

The conclusion is:

$$\begin{split} |D^{\alpha}u(x_{0})| &\leqslant \frac{|S_{1}|}{|B_{1}|\frac{r}{N}} \frac{[c_{d}(N-1)]^{N-1}}{(r\frac{N-1}{N^{d}})^{d+N-1}} \int_{B(x_{0},r)} |u| \, dy \\ &= \frac{|S_{1}|}{|\beta_{1}|} \frac{c_{d}^{N-1}}{\left(\frac{r}{N}\right)^{d+N}} \frac{1}{(N-1)^{d}} \int_{B(x_{0},r)} |u| \, dy \\ &= \frac{|S_{1}|}{|\beta_{1}|} \frac{c_{d}^{N-1}}{\left(\frac{r}{N}\right)^{d+N}} \frac{1}{N^{d}} \left(\frac{N}{N-1}\right)^{d} \int_{B(x_{0},r)} |u| \, dy \\ &\leqslant \frac{2^{d}|S_{1}|}{|B_{1}|} \frac{c_{d}^{N-1}N^{N}}{r^{d+N}} \int_{B(x_{0},r)} |u| \, dy \quad \text{if } c_{d} \geqslant \frac{2^{d}|S_{1}|}{|B_{1}|} \end{split}$$

**Theorem 2.24** (Regularity) Let  $\Omega$  be open in  $\mathbb{R}^d$ . Let  $u \in C(\Omega)$  satisfy  $u(x) = \int_{\partial B} u \, dy$  for any  $x \in B(x, r) \subseteq \Omega$ . Then u is a harmonic function in  $\Omega$ . Moreover,  $u \in C^{\infty}(\Omega)$  and u is analytic in  $\Omega$ .

**Exercise 2.25** (E 1.1: Proof the Gauss–Green formula) Let  $f := (f_i)_1^d \in C^1(\mathbb{R}^d, \mathbb{R}^d)$ . Prove that for every open ball  $B(y, r) \subseteq \mathbb{R}^d$  we have

$$\int_{\partial B(y,r)} f(y) \cdot \nu_y \, dS(y) = \int_{B(y,r)} \operatorname{div} f \, dx.$$

Here  $\nu_y$  is the outward unit normal vector and dS is the surface measure on the sphere.

Solution. We proof this in d=3. Let  $f \in C^1(\mathbb{R}^3)$ 

$$\int_{B(0,1)} \partial_{x_3} f \, dx = \int_{\partial B(0,1)} f x_3 \, dS(x), \quad x = (x_1, x_2, x_3) \in \mathbb{R}^3, \vec{n} = \frac{x}{|x|} \text{ on } \partial B(0,1)$$

$$B(0,1) = \{x_1^2 + x_2^2 + x_3^2 \leqslant 1\}$$

$$= \{x_1^2 + x_2^2 \leqslant 1 - \sqrt{1 - x_1^2 - x_2^2} \leqslant x_3 \leqslant \sqrt{1 - x_1^2 - x_2^2}\}$$

Then:

$$\begin{split} \int_{B(0,1)} \partial_{x_3} f \, dx &= \int_{x_1^2 + x_2^2 \leqslant 1} \left( \int_{-\sqrt{1 - x_1^2 - x_2^2} \leqslant x_3 \leqslant \sqrt{1 - x_1^2 - x_2^2}} \partial_{x_3} f \, dx_3 \right) \, dx_1 \, dx_2 \\ &= \int_{x_1^2 + x_2^2 \leqslant 1} \left[ f(x_1, x_2, \sqrt{1 - x_1^2 - x_2^2}) \right. \\ &\left. - f(x_1, x_2, -\sqrt{1 - x_1^2 - x_2^2}) \right] \, dx_1 \, dx_2 \end{split}$$

Lets take polar coordinates in 2D:

$$x_1 = r \cos \phi$$
  $r > 0, \phi \in [0, 2\pi)$   
 $x_2 = r \sin \phi$   $\det \frac{\partial(x_1, x_2)}{\partial(r, \phi)} = r$ 

$$(\star) = \int_0^1 \int_0^{2\pi} [f(r\cos\phi, r\sin\phi, r) - f(r\cos\theta, r\sin\phi, -r)] r \, dr \, d\phi$$

On the other hand:

$$\int_{\partial B(0,1)} fx_3 \, dS$$

The polar coordinates in 3D are:

$$x_1 = r \cos \phi \sin \theta$$
  $r > 0, \phi \in (0, 2\pi), \theta \in (0, \pi)$   
 $x_2 = r \sin \phi \sin \theta$  
$$\det \frac{\partial x_1, x_2, x_3}{\partial (r, \phi, t)} = r^2 \sin \theta$$

$$x_3 = \cos \theta$$

Then:

$$(\star\star) = \int_0^{2\pi} \int_0^{\pi} f(\cos\phi\sin\theta, \sin\phi\sin\theta, \cos\theta) \sin\theta\cos\theta \, d\theta \, d\phi$$

$$= \int_0^{2\pi} \left( \int_0^{\frac{\pi}{2}} + \int_{\frac{\pi}{2}}^{\pi} d\theta \right) \, d\phi$$

$$(r = \sin\theta) = \int_0^{2\pi} \int_0^1 f(r\cos\phi, r\sin\phi, \sqrt{1 - r^2}) r \, dr \, d\phi$$

$$- f(r\cos\phi, r\sin\phi, -\sqrt{1 - r^2}) r \, dr \, d\phi$$

**Exercise 2.26** (E 1.2) Let  $u \in C(\mathbb{R}^d)$  and  $\int_{B(x,r)} u \, dy = 0$  for every open ball  $B(x,r) \subseteq \mathbb{R}^d$ . Show that u(x) = 0 for all  $x \in \mathbb{R}^d$ .

My Solution. Assume there is a  $x_0 \in \mathbb{R}^d$  s.t. w.l.o.g.  $u(x_0) > 0$ . Since u is continous there is a ball  $B(x_0, r)$  s.t.  $u(y) > \frac{u(x_0)}{2}$  for all  $y \in B(x_0, r)$ . But then we get

$$\int_{B(x_0,r)} u(y) \, dy \geqslant \int_{B(x_0,r)} \frac{u(x_0)}{2} \, dy = \frac{u(x_0)}{2} \, |B(x_0,r)| > 0.$$

**Exercise 2.27** (E 1.3) Let  $f \in C_c^1(\mathbb{R}^d)$  with  $d \ge 2$  and  $u(x) := (\Phi \star f)(x)$ . Prove that  $u \in C^2(\mathbb{R}^2)$  and  $-\Delta u(x) = f(x)$  for all  $x \in \mathbb{R}^d$  (2.9 was the same for  $f \in C_1(\mathbb{R})$ )

**Theorem 2.28** (Liouville's Theorem) If  $u \in C^2(\mathbb{R}^d)$  is harmonic and bounded, then u = const.

*Proof.* By the bound of the derivative 2.23 we have

$$\begin{aligned} |\partial_{x_i} u(x_0)| &\leq \frac{c_d}{r^{d+1}} \int_{B(x_0, r)} |u| \, dy \quad \forall x_0 \in \mathbb{R}^d \, \forall r > 0 \\ &\leq \|u\|_{L^{\infty}} \frac{c_d}{r^{d+1}} |B(x_0, r)| \\ &\leq \|u\|_{L^{\infty}} \frac{c_d}{r} \xrightarrow{r \to \infty} 0 \end{aligned}$$

Thus  $\partial_{x_i} u = 0$  for all  $i = 1, 2, \dots d$  and u = const. in  $\mathbb{R}^d$ 

**Theorem 2.29** (Uniqueness of solutions to Poisson Equation in  $\mathbb{R}^d$ ) If  $u \in C^2(\mathbb{R}^d)$  is a bounded function and satisfies  $-\Delta u = f$  in  $\mathbb{R}^d$  where  $f \in C_c^2(\mathbb{R}^d)$ , then we have

$$u(x) = \Phi \star f(x) + C = \int_{\mathbb{R}^d} \Phi(x - y) f(y) \, dy + C \quad \forall x \in \mathbb{R}^d$$

where C is a constant and  $\Phi$  is the fundamental solution of the Laplace equation in  $\mathbb{R}^d$ .

*Proof.* If we can prove that v is bounded, then v = const.. We first need to show that  $\Phi \star f$  is bounded.

$$\Phi = \Phi_1 + \Phi_2 = \Phi\mathbb{1}(|x| \leqslant 1) + \Phi(|x| \geqslant 1)$$
$$\Phi \star f = \Phi_1 \star f + \Phi_2 \star f$$

We have  $\Phi_1 \star f \in L^1(\mathbb{R}^d)$  and  $\Phi_2 \star f$  is bounded since  $\Phi \to 0$  as  $|x| \to \infty$  in  $d \ge 3$ .

**Exercise 2.30** (Hanack's inequality) Let  $u \in C^2(\mathbb{R}^d)$  be harmonic and non-negative. Prove that for all open, bounded and connected  $\Omega \subseteq \mathbb{R}^d$ , we have

$$\sup_{x \in \Omega} u(x) \leqslant C_{\Omega} \inf_{x \in \Omega} u(x),$$

where  $C_{\infty}$  is a finite constant depending only on  $\Omega$ .

*Proof.* (Exercise) Hint:  $\Omega = B(x, r)$ . General case cover  $\Omega$  by finitely many balls, one ball is inside  $\Omega$ .

## Chapter 3

# Convolution, Fourier Transform and Distributions

### 3.1 Convolutions

**Definition 3.1** (Convolution) Let  $f, g : \mathbb{R}^d \to \mathbb{R}$  or  $\mathbb{C}$ .

$$(f \star g)(x) = \int_{\mathbb{R}^d} f(x - y)g(y) \, dy = \int_{\mathbb{R}^d} f(y)g(x - y) \, dy = (g \star f)(x)$$

**Remark 3.2** (Properties of the Convolution) •  $(f \star g)(x) = f \star (g \star h)$ 

• 
$$\hat{f} \star g = \hat{f} \star \hat{g}$$

**Theorem 3.3** (Young Inequality) If  $f \in L^1(\mathbb{R}^d)$  and  $g \in L^p(\mathbb{R}^d)$ , where  $1 \leq p \leq \infty$ , then  $f \star g \in L^p(\mathbb{R}^d)$  and  $\|f \star g\|_{L^p} \leq \|f\|_{L^1} \|g\|_{L^p}$ . More generally, if  $f \in L^p(\mathbb{R}^d)$ ,  $g \in L^q(\mathbb{R}^d)$ , then  $f \star g \in L^1(\mathbb{R}^d)$ ,  $\|f \star g\|_{L^1} \leq \|f\|_{L^p} \|g\|_{L^q}$ , where  $1 \leq p, q, r, \leq \infty$ ,  $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$ 

*Proof.* Let  $f \in L^1, g \in L^p$ . With the Hölder Inequality ??, we have:

$$||f \star g||_{L^{p}}^{p} = \int_{\mathbb{R}^{d}} |f \star g(x)|^{p} dx$$

$$\leq ||f||_{L^{1}}^{\frac{p}{q}} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} |f(x - y)||g(y)|^{p} dy dx$$

$$= ||f||_{L^{1}}^{\frac{p}{q} + 1} ||g||_{L^{p}}^{p}$$

So we have  $||f \star g||_{L^p} \leq ||f||_{L^1} ||g||_{L^p}$ 

**Theorem 3.4** (Smoothness of the Convolution) If  $f \in C_c^{\infty}(\mathbb{R}^d)$ ,  $g \in L^p(\mathbb{R}^d)$ ,  $1 \le p \le \infty$ . Then  $f \star g \in C^{\infty}(\mathbb{R})$  and

$$D^{\alpha}(f \star g) = (D^{\alpha}f) \star g$$

for all  $\alpha = (\alpha_1, \ldots, \alpha_d), \alpha_i \in \{0, 1, 2, \ldots\}$ 

*Proof.* First we note that  $x \mapsto (f \star g)$  is continous as  $x_n \to x$  in  $\mathbb{R}^d$  since

$$(f \star g)(x_n) = \int_{\mathbb{R}^d} f(x_n - y)g(y) \, dy \xrightarrow{\text{dom. conv.}} \int_{\mathbb{R}^d} f(x - y)g(y) \, dy = (f \star g)(x)$$

We can apply Dominated convergence because

$$f(x_n - y)g(y) \to f(x - y)g(y) \quad \forall y \text{ as } f \text{ is continuous and } x_n \to x$$

and

$$|f(x_n - y) \ g(y)| \le ||f||_{L^{\infty}} |g(y)| \ \mathbb{1}(|y| \le R) \in L^1(\mathbb{R}^d).$$

Where R > 0 satisfies  $B(0,R) \supseteq \operatorname{supp} f + \operatorname{sup}_n |x_n|$ . Now we can compute the derivatives:

$$\partial_{x_i}(f \star g)(x) = \lim_{h \to 0} \frac{(f \star g)(x + he_i) - (f \star g)(x)}{h}$$

$$= \lim_{h \to 0} \int_{\mathbb{R}^d} \frac{f(x + he_i - y) - f(x - y)}{h} g(y) \, dy$$
(Dominated Convergence) 
$$= \int_{\mathbb{R}^d} \lim_{h \to 0} \frac{f(x + he_i - y) - f(x - y)}{h} g(y) \, dy$$

$$= \int_{\mathbb{R}^d} (\partial_{x_i} f)(x - y) g(y) \, dy$$

We could apply Dominated Convergence since

$$\frac{f(x+he_i-y)-f(x-y)}{h}g(y) \xrightarrow{h\to 0} (\partial_{x_i}f)(x-y)g(y) \quad \text{as } f\in C^1$$

$$\left|\frac{f(x+he_i-y)-f(x-y)}{h}g(y)\right| \leqslant \|\partial_{x_i}f\|_{L^\infty}|g(y)| \ \mathbb{1}(|y|\leqslant R) \in L^1(\mathbb{R}^d)$$

where  $B(0,R) \supseteq \operatorname{supp}(f) + B(0,|x|+1)$  and  $\partial_{x_i}(f \star g) = (\partial_{x_i}f) \star g \in C(\mathbb{R}^d)$  since  $\partial_{x_i}f \in C_c^{\infty}(\mathbb{R}^d)$ . By induction we get  $D^{\alpha}(f \star g) = (D^{\alpha}f \star g) \in C(\mathbb{R}^d)$ .

**Remark 3.5** Question: Is there a f s.t.  $f \star g = g$  for all g. In fact there is no regular function f that solves this formally:

$$f \star g = g \Rightarrow \widehat{f \star g} = \widehat{g} \Rightarrow \widehat{f}\widehat{g} = \widehat{g} \Rightarrow \widehat{f} = 1 \Rightarrow f \text{ is not a regular function!}$$

However, if f is the Dirac-Delta Distribution,  $f = \delta_0$  then  $\delta_0 \star g = g$  for all g. Formally:

$$\delta_0(x) = \begin{cases} 0 & x \neq 0 \\ \infty & x = 0 \\ \int \delta_0 = 1 \end{cases}$$

In fact, if  $f \in L^1(\mathbb{R}^d)$ ,  $\int f = 1$ ,  $f_{\epsilon}(x) = \epsilon^{-d} f(\epsilon^{-1} x)$ , then  $f_{\epsilon} \to \delta_0$  in an appropriate sense and  $f_{\epsilon} \star g \to g$  for all g nice enough.

**Theorem 3.6** (Approximation by convolution) Let  $f \in L^1(\mathbb{R}^d)$ ,  $\int f = 1$ ,  $f_{\epsilon}(x) = \epsilon^{-d} f(\frac{x}{\epsilon})$ . Then for all  $g \in L^p(\mathbb{R}^d)$ , where  $1 \leq p < \infty$ , then

$$f_{\epsilon} \star g \to g \quad \text{in } L^p(\mathbb{R}^d)$$

Proof.

Step 1: Let  $f, g \in C_c(\mathbb{R}^d)$ . Then

$$(f_{\epsilon} \star g)(x) - g(x) = \int_{\mathbb{R}^{d}} f_{\epsilon}(y)g(x - y) \, dy - \int_{\mathbb{R}^{d}} f_{\epsilon}(y)g(x) \, dy$$

$$= \int_{\mathbb{R}^{d}} f_{\epsilon}(y)(g(x - y) - g(x)) \, dy$$

$$|(f_{\epsilon} \star g)(x) - g(x)| = \left| \int_{\mathbb{R}^{d}} f_{\epsilon}(y)(g(x - y) - g(x)) \, dy \right|$$

$$\leqslant \int_{\mathbb{R}^{d}} |f_{\epsilon}(y)||g(x - y) - g(x)| \, dy$$

$$\leqslant \int_{|y| \leqslant R_{\epsilon}} |f_{\epsilon}(y)||g(x - y) - g(x)| \, dy$$

$$\leqslant \underbrace{\int_{|y| \leqslant R_{\epsilon}} |f_{\epsilon}(y)| \, dy}_{|z| \leqslant R} \left[ \sup_{|z| \leqslant R} |g(x - z) - g(x)| \right] \xrightarrow{\epsilon \to 0} 0$$

We have Dominated Convergence since:

$$(f_{\epsilon} \star g)(x) - g(x) \to 0 \text{ as } \epsilon \to 0$$

and

$$|f_{\epsilon} \star g(x) - g(x)| \leqslant \|f\|_{L^{1}} \sup_{|z| \leqslant R_{\epsilon}} |g(x - z) - g(x)| \leqslant 2\|f\|_{1} \|g\|_{L^{\infty}} \mathbb{1}(|x| \leqslant R_{1}).$$

Where  $B(0, R_1) \supseteq \operatorname{supp}(g) + B(0, R_{\epsilon})$ , thus  $f_{\epsilon} \star g \to g$  in  $L^p(\mathbb{R}^d)$ . To remove the technical assumptions  $f, g \in C_c(\mathbb{R}^d)$ , then we use a density argument. We use the fact that  $C_c(\mathbb{R}^d)$  is dense in  $L^p(\mathbb{R}^d)$ ,  $1 \le p < \infty$ .

Step 2: Let  $g \in C_c(\mathbb{R}^d)$ ,  $g \in L^p(\mathbb{R}^d)$ . Then there is  $\{g_m\} \subseteq L^p(\mathbb{R}^d)$ ,  $g_m \to g$  in  $L^p(\mathbb{R}^d)$ .

$$\begin{split} \|f_{\epsilon} \star g - g\|_{L^{p}} &\leq \|f_{\epsilon} \star (g - g_{m})\|_{L^{p}} + \|f_{\epsilon} \star g_{m} - g_{m}\|_{L^{p}} + \|g_{m} - g\|_{L^{p}} \\ & (\text{Young}) &\leq \|f_{\epsilon}\|_{L^{1}} \|g - g_{m}\|_{L^{p}} + \|f_{\epsilon} \star g_{m} - g_{m}\|_{L^{p}} + \|g_{m} - g\|_{L^{p}} \\ &\leq \|f\|_{L^{1}} \|g - g_{m}\|_{L^{p}} + \|f_{\epsilon} \star g_{m} - g_{m}\|_{L^{p}} + \|g_{m} - g\|_{L^{p}} \\ &\leq (\|f\|_{L^{1}} + 1)\|g - g_{m}\|_{L^{p}} + \|f \star g_{m} - g_{m}\|_{L^{p}} \end{split}$$

So we get:

$$\limsup_{\epsilon \to 0} \|f_{\epsilon} \star g - g\|_{L^{p}} \leqslant (\|f\|_{L^{p}} + 1)\|g - g_{m}\|_{L^{p}} + \limsup_{\epsilon \to 0} \|f_{\epsilon} \star g_{m} - g_{m}\|_{L^{p}}$$

$$\underbrace{\lim\sup_{\epsilon \to 0} \|f_{\epsilon} \star g - g\|_{L^{p}}}_{\text{Oby step 1.}}$$

$$\xrightarrow{m\to\infty} 0$$

Step 3: Let  $f \in L^1(\mathbb{R}^d)$  and  $g \in L^p(\mathbb{R}^d)$ . Take  $\{f_m\} \subseteq C_c(\mathbb{R}^d)$ , s.t.

$$\begin{cases} F_m \to ginL^1(\mathbb{R}) \text{ as } m \to \infty \\ \int_{\mathbb{R}^d} F_m = 1 \text{(it is possible since } \int_{\mathbb{R}^d} f = 1 \text{)} \end{cases}$$

Define 
$$F_{m,\epsilon}(x) = \epsilon^{-d} F_m(\epsilon^{-1} x)$$
 (recall  $f_{\epsilon}(x) = \epsilon^{-d} f(\epsilon^{-1} x)$ ). Then:

$$f_{\epsilon} \star g - g = (f_{\epsilon} - F_{m,\epsilon}) \star g + F_{m,\epsilon} \star g - g$$

$$\Rightarrow \|f_{\epsilon} - g\|_{L^{p}} \leq \underbrace{\|f_{\epsilon} - F_{m,\epsilon} \star g\|_{L^{p}}}_{+} + \|F_{m,\epsilon} \star g - g\|_{L^{p}}$$

$$\underbrace{\text{Young}}_{\leqslant} \|f_{\epsilon} - F_{m,\epsilon}\|_{L^{1}} \|g\|_{L^{p}} = \|f - F_{m}\|_{L^{1}} \|g\|_{L^{p}}$$

$$\Rightarrow \limsup_{\epsilon \to 0} \|f_{\epsilon} \star g - g\|_{L^{p}} \leq \|f - F_{m}\|_{L^{1}} \|g\|_{L^{p}} = \|f - F_{m}\|_{L^{1}} \|g\|_{L^{p}}$$

**Lemma 3.7**  $C_c(\mathbb{R}^d)$  is dense in  $L^p(\mathbb{R}^d)$ ,  $1 \leq p < \infty$ 

*Proof.* For all  $g \in L^p(\mathbb{R}^d)$  there are  $g_m$  step functions and  $g_m \to m$  in  $L^p(\mathbb{R}^d)$ , We can assume that  $\Omega$  is open and bounded and we want to approximate  $\chi_{\Omega}$  by  $C_c(\mathbb{R}^d)$ .

Lemma 3.8 (Urnson) Define

$$\Omega_{\epsilon} = \{ x \in \Omega \mid \operatorname{dist}(x, \partial \Omega) > \epsilon \}$$

Then there is a  $\eta_{\epsilon} \in C_c(\mathbb{R}^d)$  s.t.

$$\begin{cases} 0 \leqslant \eta(x) \leqslant 1 & \forall x \in \mathbb{R}^d \\ \eta_{\epsilon}(x) = 1 & \text{if } x \in \Omega_{\epsilon} \\ \eta_{\epsilon}(x) = 0 & \text{if } x \notin \Omega \end{cases}$$

**Lemma 3.9** (Gernal Version of Urnson) If  $A, B \subseteq \mathbb{R}^d$ , A closed, B closed,  $A \cap B = \emptyset$ . Then

$$\eta(x) = \frac{\operatorname{dist}(x, A)}{\operatorname{dist}(x, A) + \operatorname{dist}(x, B)}$$

Then  $\eta \in C(\mathbb{R}^d)$ ,  $0 \leq \eta \leq 1$  and  $\eta = 0$  if  $x \in B$ ,  $\eta = 1$  if  $x \in A$ . App to  $A = \overline{\Omega_{\epsilon}} \subset\subset \Omega$  and  $B = \mathbb{R}^d \setminus \Omega$ .

**Theorem 3.10** (Appendix C4 in Evans) Let  $\Omega$  be open in  $\mathbb{R}^d$  and for  $\epsilon > 0$  define

$$\Omega_{\epsilon} = \{ x \in \Omega \mid \operatorname{dist}(x, \mathbb{R}^d \setminus \Omega) > \epsilon \}$$

Let  $f \in C_c^{\infty}(\mathbb{R}^d)$ ,  $\int_{\mathbb{R}^d} f = 1$ , supp  $f \subseteq B(0,1)$ ,  $f_{\epsilon}(x) = \epsilon^{-d} f(\epsilon^{-1} x)$  supp is  $B(0,\epsilon)$ . Then for all  $g \in L^p_{loc}(\Omega)$  (i.e.  $\mathbb{1}_K g \in L^p(\Omega) \forall K$  compakt set in  $\Omega$ ), then:

- a)  $g_{\epsilon}(x) = (f_{\epsilon} \star g)(x) = \int_{\mathbb{R}^d} f_{\epsilon}(x y)g(y) dy \int_{\Omega} f_{\epsilon}(x y)g(y) dy$  is well-defined in  $\Omega_{\epsilon}$  and  $g_{\epsilon} \in C^{\infty}(\Omega_{\epsilon})$ .
- b)  $g_{\epsilon} \to g$  in  $L^p_{loc}(\Omega)$  if  $1 \leqslant p < \infty$  and  $g_{\epsilon}(x) \to g(x)$  almost everywhere  $x \in \Omega$ .
- c) If  $g \in C(\Omega)$ , then  $g_{\epsilon}(x) \to g(x)$  uniformly in any compact subset of  $\Omega$ .

Proof. a)  $D^{\alpha}(g_{\epsilon}) = (D^{\alpha}f_{\epsilon}) \star g \in C(\Omega_{\epsilon})$ 

b) Already proved in  $\mathbb{R}^d$  space.

Corrolary 3.11 (Lebesgue differentiation theorem) If  $f \in L_{loc}^P(\mathbb{R}^d)$ , then

$$\oint_{B(x,\epsilon)} |f(y) - f(x)|^p dy \to 0 \quad \text{as } \epsilon \to 0$$

**Exercise 3.12** (E 2.1) Let  $u \in C^2(\mathbb{R}^2)$  be convex. I.e.

$$tu(x) + u(y)(1-t) \ge u(tx + (1-t)y) \forall x, y \in \mathbb{R}^d \forall t \in [0,1]$$

a) Prove for all  $x \in \mathbb{R}^d$  that H(x) = ...

Solution.

a In 1D: If u is convex  $\Leftrightarrow u''(x) \ge 0$  for all  $x \in \mathbb{R}$ . In general: Taylor expansion for all  $x, z \in \mathbb{R}^d$ :

$$u(x) = u(z) + \nabla u(z)(x - y) + \int_0^1 \sum_{|\alpha| = 2} D^{\alpha} u(z + s(x - z)) \frac{(x - z)^{\alpha}}{\alpha!} ds$$

$$x = z + s(x - z), s = 1$$
 Use  $z = tx + (t - 1)y \Rightarrow x - z = (1 - t)(x - y)$ 

$$tu(x) = tu(z) + t\nabla u(z)(1-t)(x-y) + t\int_0^1 \sum_{|\alpha|=2} D^{\alpha}u(z+s(x-z)) \frac{[(1-t)(x-y)]^{\alpha}}{\alpha!} ds$$

$$(1-t)u(y) = (1-t)u(z) + (1-t)\nabla u(z)t(y-x) + (1-t)\int_0^r \sum_{|\alpha|=2} D^{\alpha}u(z+s(y-z))\frac{[t(y-x)]^{\alpha}}{\alpha!} ds$$

$$\Rightarrow tu(x) + (1-t)u(y) = u(z) + t \int_0^1 \dots + (1-t) \int_0^1 \dots$$
$$\Rightarrow t \int_0^1 \dots + (1-t) \int_0^1 \dots \geqslant 0 \forall x, y, t, z = tx + (1-t)y$$

$$t(1-t)^2 \int_0^1 \sum_{|\alpha|=2} D^{\alpha} u(z+s(x-z)) \frac{(x-y)}{\alpha!} \, ds + (1-t)t^2 \int_0^1 \sum_{|\alpha|=2} D^{\alpha} u(z+s(y-z)) \frac{(y-z)^{\alpha}}{\alpha!} \, ds \geqslant 0$$

for all  $x, y \in \mathbb{R}^d$ ,  $t \in [0, 1]$ , z = tx + (1 - t)y. Divides for t(1 - t)

$$(1-t)\int_0^1\cdots+\int_0^1\cdots\geqslant 0$$

Take  $t \to 0$ 

$$\int_0^1 \sum_{|\alpha|=2} D^{\alpha} u(y + s(x - y)) \frac{(x - y)^{\alpha}}{\alpha!} ds \geqslant 0 \forall x, y \in \mathbb{R}^d$$

Take  $y = x + a, a \in \mathbb{R}^d$ 

$$\int_0^1 \sum_{|\alpha|=2} D^{\alpha} u(x+a+sa) \frac{a^{\alpha}}{\alpha!} ds \geqslant 0 \forall \epsilon > 0, \forall x, a \in \mathbb{R}^d$$

Take  $\epsilon \to 0$ 

$$\int_0^1 \sum_{|\alpha|=2} D^\alpha u(x) \frac{a^\alpha}{\alpha!} \geqslant 0 \Rightarrow \sum_{i,j=1,i\neq j} \partial_{x_i} \partial_{x_j} u(x) a_i a_j + \sum_{i=j=1}^d \partial_{x_i}^2 u(x) \frac{a_i^2}{2}$$

We get

$$\frac{1}{2}a^T H a \geqslant 0 \forall a (a_i)_{i=1}^d \in \mathbb{R}^d$$

b 
$$H(x) \geqslant 0 \Rightarrow (\partial_i \partial_j u) \geqslant 0 \Rightarrow TrH(x) \geqslant 0 \Rightarrow \sum_{i=1}^d \partial_{x_i}^2 u(x) \geqslant 0 \Rightarrow \Delta u(x) \geqslant 0 \forall x \in \mathbb{R}^d$$

#### **Exercise 3.13** (E 2.2)

Solution. Regard d=3. De function  $\frac{1}{|x|}$  is harmonic in  $\mathbb{R}^3\setminus\{0\}$ . We prove

$$\oint_{\partial B(x,r)} \frac{dS(y)}{|y|} = \frac{1}{\max(|x|,r)}$$

If |x| > r, then  $0 \notin B(x, r + \epsilon)$ . Then

$$y \mapsto \frac{1}{|y|}$$

is harmonic in  $B(x, r + \epsilon)$ . Then by the Mean Value Property:

$$\oint_{\partial B(x,r)} \frac{dS(y)}{|y|} = \frac{1}{|x|}$$

If |x| < r: Then  $\frac{1}{|y|}$  is not harmonic in B(x,r) since  $0 \in B(x,r)$ . Note

$$\oint_{\partial B(x,r)} \frac{dS(y)}{|y|} = \oint_{\partial B(0,r)} \frac{dS(y)}{|x-y|}$$

This function depends on x only via |x|.

$$\dots = \oint_{\partial B(0,r)} \frac{dS(y)}{|Rx - Ry|}$$

for all R rotation SO(3),  $dS(R_y) = dS(y)$ 

$$= \int_{\partial B(0,r)} \frac{dS(y)}{|Rx - y|}$$

$$= \int_{\partial B(0,r)} \frac{dS(y)}{|z - y|}$$
(Radial in z) 
$$= \int_{\partial B(0,|x|)} \left( \int_{\partial B(0,|x|)} \frac{dS(y)}{|z - y|} \right) dS(z)$$
(Fubini) 
$$= \int_{\partial B(0,r)} \left( \int_{\partial B(0,|x|)} \frac{dS(z)}{|z - y|} \right) dS(y)$$
(case 1 since  $|y| = r > |x|$ ) 
$$= \int_{\partial B(0,r)} \frac{1}{|y|} dS(y) = \frac{1}{r}$$

If |x| = r: Continuity:  $x \mapsto f_{\partial B(0,r)} \frac{dS(y)}{|x-y|}$ 

**Remark 3.14** For  $f \in C^{|\alpha|}, g \in C^{|\beta|}$ :

$$D^{\alpha+\beta}(f\star g)=(D^{\alpha}f)\star(D^{\beta}g)$$

**Lemma 3.15** If  $d \ge 3$  and  $f : \mathbb{R}^d \to \mathbb{R}$  radial. Then:

$$\left(\frac{1}{|x|^{d-2}} \star f\right)(x) = \int_{\mathbb{R}^d} \frac{f(y)}{|x-y|^{d-2}} \, dy$$
$$= \int_{\mathbb{R}^d} \frac{f(y)}{\max(|x|^{d-2}, |y|^{d-2})} \, dy$$

*Proof.* (d=3) Polar coordinates:

$$\int_{\mathbb{R}^3} \frac{f(y)}{|x-y|} \, dy = \int_0^\infty \left[ \int_{\partial B(0,1)} \frac{1}{|x-rw|} \, d\omega \right] f(r) \, dr$$

$$(a) = \int_0^\infty \left[ \int_{\partial B(0,1)} \frac{d\omega}{\max(|x|,r)} \right] f(r) \, dr$$

$$= \int_{\mathbb{R}^3} \frac{f(y)}{\max(|x|,|y|)} \, dy$$

(b) (d=3) If f radial and non-negative

$$\int_{\mathbb{R}^3} \frac{f(y))}{|x - y|} = \int_{\mathbb{R}^3} \frac{f(y)}{|x|} \, dy = \frac{(Sf?)}{|x|}$$

Then

$$\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{f_{1}(x - z_{1}) f_{2}(y - z_{2})}{|x - y|} dx dy = \int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{f_{1}(x) f_{2}(y)}{|x + z_{1} - y - z_{2}|} dx dy$$

$$= \int_{\mathbb{R}^{3}} \left( \int_{\mathbb{R}^{3}} f_{1}(x) dx \right) f_{2}(y) dy \leqslant \int_{\mathbb{R}^{3}} \frac{\left( \int_{\mathbb{R}^{3}} f_{1} \right)}{|y + z_{2} - z_{1}|} f_{2}(y) dy$$

$$\leqslant \frac{\left( \int_{\mathbb{R}^{3}} f_{1} \right) \left( \int_{\mathbb{R}^{3}} f_{2} \right)}{|z_{1} - z_{2}|}$$

**Exercise 3.16** (Bonus 2) a) Prove that  $u(x) = \frac{1}{|x|}$  is sub-harmonic in  $\mathbb{R}^2 \setminus \{0\}$ .

b) Prove that if  $f: \mathbb{R}^2 \to \mathbb{R}$  radial, non-negative, measurable:

$$\int_{\mathbb{R}^2} \frac{f(y)}{|x - y|} \, dy \geqslant \int_{\mathbb{R}^2} \frac{f(y)}{\max(|x|, |y|)} \, dy$$

My Solution. a) Let  $x \in \mathbb{R} \setminus \{0\}$ .

$$\begin{split} \partial_{x_i} u &= \partial_{x_i} |x|^{-1} = -|x|^{-2} \frac{x_i}{|x|} = -x_i |x|^{-3} \\ &\Rightarrow \ \partial_{x_i}^2 u = \partial_{x_i} (-x_i |x|^{-3}) = -|x|^{-3} + 3x_i^2 |x|^{-5} \\ &\Rightarrow \ \Delta u = -|x|^{-3} + 3x_1^2 |x|^{-5} - |x|^{-3} + 3x_2^2 |x|^{-5} \\ &= -2|x|^{-3} + 3\underbrace{\left(x_2^2 + x_2^2\right)}_{=|x|^2} |x|^{-5} = \frac{1}{|x|^3} > 0 \end{split}$$

So u is sub-harmonic in  $\mathbb{R}^2 \setminus \{0\}$ .

b) Let  $r > 0, x \in \mathbb{R}^2$  and |x| < r. First we show that

$$\label{eq:final_bound} \int_{\partial B(x,r)} \frac{1}{|y|} \, dS(y) \geqslant \frac{1}{r} \qquad (\star)$$

Now,

$$\int_{\partial B(0,r)} \frac{1}{|y|} dS(y) = \int_{\partial B(0,r)} \frac{1}{|x-y|} dS(y) =: \tilde{u}(x)$$

Take  $z \in \mathbb{R}^2 \setminus \{0\}$  such that z = |x|, then  $\tilde{u}(x) = \tilde{u}(z)$ . Let  $0 < \epsilon < r$  be small. Then we get

$$\begin{split} \tilde{u}(z) &= \int_{\partial B(0,r)} \frac{dS(y)}{|z-y|} \\ \begin{pmatrix} |y| = r > |x| = |z| \\ \tilde{u} \text{ radial function} \end{pmatrix} &= \int_{\partial B(0,|x|-\epsilon)} \left( \int_{\partial B(0,r)} \frac{dS(y)}{|z-y|} \right) dS(z) \\ (\text{Fubini}) &= \int_{\partial B(0,r)} \left( \int_{\partial B(0,|x|-\epsilon)} \frac{dS(z)}{|z-y|} \right) dS(y) \\ &= \int_{\partial B(0,r)} \left( \int_{\partial B(y,|x|-\epsilon)} \frac{dS(z)}{|z-y|} \right) dS(y) \\ \left( \frac{1}{|y|} \text{ sub-harmonic in } \mathbb{R}^2 \backslash \{0\} \right) &\geq \int_{\partial B(0,r)} \frac{1}{|y|} dS(y) \\ &= \int_{\partial B(0,r)} \frac{1}{r} dS(y) \\ &= \frac{1}{r} \end{split}$$

Now,

$$\int_{\mathbb{R}^2} \frac{f(y)}{|x-y|} \, dy = \int_{|x| \geqslant |y|} \frac{f(y)}{|x-y|} \, dy + \int_{|x| < |y|} \frac{f(y)}{|x-y|} \, dy,$$

where

$$\int_{|x| \leqslant |y|} \frac{f(y)}{|x-y|} \, dy = \int_0^\infty \int_{\partial B(0,r)} \frac{f(y)}{|x-y|} \mathbb{1}(|x| \leqslant |y|) \, dS(y) \, dr$$

$$(f \text{ radial}) = \int_0^\infty f(r) \int_{\partial B(0,r)} \frac{\mathbb{1}(|x| \leqslant r)}{|x-y|} \, dS(y) \, dr$$

$$= \int_0^\infty f(r) \int_{\partial B(x,r)} \frac{\mathbb{1}(|x| \leqslant r)}{|y|} \, dS(y) \, dr$$

$$(\star) \geqslant \int_0^\infty \frac{f(r)}{r} |\partial B(x,r)| \mathbb{1}(|x| \leqslant r) \, dr$$

$$= \int_0^\infty \int_{\partial B(x,r)} \frac{f(r)}{r} \mathbb{1}(|x| \leqslant r) \, dS(y) \, dr$$

$$= \int_{\mathbb{R}^2} \frac{f(y)}{|y|} \mathbb{1}(|x| \leqslant |y|) \, dy$$

$$= \int_{|x| \leqslant |y|} \frac{f(y)}{|y|} \, dy$$

and

$$\int_{|x|>|y|} \frac{f(y)}{|x-y|} \, dy = \int_0^\infty \left( \int_{\partial B(0,r)} \frac{f(r)}{|x-y|} \mathbb{1}(|x|>|y|) \, dS(y) \right) \, dr$$

$$(f \text{ radial}) = \int_0^\infty f(r) \mathbb{1}(|x|>r) \left( \int_{\partial B(x,r)} \frac{1}{|y|} \, dS(y) \right) \, dr$$

$$\left( \frac{1}{|y|} \text{ sub-harmonic in } \mathbb{R}^2, \right) \ge \int_0^\infty f(r) \mathbb{1}(|x|>r) |\partial B(x,r)| \frac{1}{|x|} \, dr$$

$$= \int_0^\infty \int_{\partial B(x,r)} f(r) \mathbb{1}(|x|>r) \frac{1}{|x|} \, dS(y) \, dr$$

$$= \int_{\mathbb{R}^2} f(y) \mathbb{1}(|x|>|y|) \frac{1}{|x|} \, dy$$

$$= \int_{|x|>|y|} f(y) \frac{1}{|x|} \, dy.$$

So we can conclude,

$$\int_{\mathbb{R}^2} \frac{f(y)}{|x - y|} \, dy = \int_{|x| > |y|} \frac{f(y)}{|x - y|} \, dy + \int_{|x| \le |y|} \frac{f(y)}{|x - y|} \, dy$$

$$\geqslant \int_{|x| > |y|} \frac{f(y)}{|x|} \, dy + \int_{|x| \le |y|} \frac{f(y)}{|y|} \, dy$$

$$= \int_{\mathbb{R}^2} \frac{f(y)}{\max(|x|, |y|)} \, dy$$

#### 3.2 Fourier Transformation

**Definition 3.17** (Fourier Transform) For  $f \in L^1(\mathbb{R}^d)$  define

$$\mathcal{F}f(k) = \hat{f}(k) = \int_{\mathbb{R}^d} f(x)e^{-2\pi i k \cdot x} dx, \quad k \cdot x = \sum_{i=1}^d k_i x_i$$

**Theorem 3.18** (Basic Properties) 1. If  $f \in L^1(\mathbb{R}^d)$ , then  $\hat{f} \in L^{\infty}(\mathbb{R}^d)$  and  $\|\hat{f}\|_{L^{\infty}} \leq \|f\|_{L^1}$ 

2. For all  $f \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ ,  $\|\hat{f}\|_{L^2} = \|f\|_{L^2}$ . Moreover,  $\mathcal{F}$  can be extended to be a unitary transforamtion  $L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$  s.t.

$$\|\mathcal{F}g\|_{L^2} = \|f\|_{L^2} \quad \forall f \in L^2(\mathbb{R}^d)$$

- 3. The inverse of F can be defined as
- 4.

$$(F^{-1}f)(x) = \check{f}(x) = \int_{\mathbb{R}^d} f(x)e^{2\pi ikx} dk$$

for all  $f \in L^1(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ 

5. 
$$\widehat{D^{\alpha}f}(k)=(2\pi ik)^{\alpha}\widehat{f}(k)$$
 as  $(2\pi ik)^{\alpha}f(k)\in L^{2}(\mathbb{R}^{d})$   $(k^{\alpha}=k_{1}^{\alpha_{1}}\cdots k_{\alpha}^{\alpha_{k}})$ 

6. 
$$\widehat{f \star g}(k) = \widehat{f}(k)\widehat{g}(k)$$
 if  $f, g$  are nice enough.

**Theorem 3.19** (Hausdorff-Young-Inequality) If  $1 \le p \le 2$ ,  $\frac{1}{p} + \frac{1}{p'} = 1$  and  $f \in L^p(\mathbb{R}^d) \cap L^1(\mathbb{R}^n)$  then

$$\|\hat{f}\|_{L^{p'}} \leqslant \|f\|_{L^p}$$

and

$$\|\hat{f}\|_{L^p} \leqslant \|f\|_{L^p} \quad \forall f \in L^p(\mathbb{R}^d)$$

**Remark 3.20** We want to apply the Fourier transform to find the solution of a PDE, e.g. the Poisson-Equation:

$$-\Delta u = f \text{ in } \mathbb{R}^d \Rightarrow |2\pi k|^2 \hat{u}(k) = \hat{f}(k) \Rightarrow \hat{u}(k) = \frac{1}{|2\pi k|^2} \hat{f}(k)$$

If we can find G s.t.  $\hat{G}(k) = \frac{1}{|2\pi k|^2}$ , then

$$\hat{u}(k) = \hat{G}(k)\hat{f}(k) = \widehat{G \star f}$$

$$\Rightarrow u(x) = (G \star f)(x) = \int_{\mathbb{R}^d} G(x - y)f(y) \, dy$$

In fact G is the fundamential solution of laplace quation.

**Theorem 3.21** (Fourier Transform of  $\frac{1}{|x|^{\alpha}}$  for  $0 < \alpha < d$ ) We have formally

$$\widehat{\frac{c_{\alpha}}{|x|^{\alpha}}} = \frac{c_{d-\alpha}}{|k|^{d-\alpha}} \quad \forall \ 0 < \alpha < d$$

Here

$$c_{\alpha} = \pi^{-\frac{d}{2}} \Gamma\left(\frac{\alpha}{2}\right) = \pi^{-\frac{\alpha}{2}} \int_{0}^{\infty} e^{-\lambda} \lambda^{\frac{\alpha}{2} - 1} d\lambda$$

More precisely, for all  $f \in C_c^{\infty}(\mathbb{R}^d)$ ,

$$\frac{c_{\alpha}}{|x|^{\alpha}} \star f = \left(\frac{c_{d-\alpha}}{|k|^{d-\alpha}} \hat{f}(k)\right)^{\vee}$$

Moreover if  $\alpha > \frac{d}{2}$ , then we also have

$$\left(\frac{c_{\alpha}}{|x|^{\alpha}} \star f\right)^{\wedge} = \frac{c_{d-\alpha}}{|f|^{d-\alpha}} \hat{f}(k)$$

**Lemma 3.22** (Fourier Transform of Gaussians) In  $\mathbb{R}^d$ ,

$$\widehat{e^{-\pi|x|^2}} = e^{-\pi|k|^2}$$

More generally for all  $\lambda > 0$ :

$$\widehat{e^{-\pi\lambda^2|x|^2}} = \lambda^{-d} e^{-\pi\frac{|k|^2}{\lambda^2}}$$

(exercise)

Proof of Theorem. Formally:

$$\frac{c_{\alpha}}{|x|^{\alpha}} = \frac{1}{|x|^{\alpha}} \pi^{-\frac{\alpha}{2}} \int_{0}^{\infty} e^{-\lambda} \lambda^{\frac{\alpha}{2} - 1} d\lambda = \int_{0}^{\infty} e^{-\pi \lambda |x|^{2}} \lambda^{\frac{\alpha}{2} - 1} d\lambda$$

$$\Rightarrow \frac{\hat{c}_{\alpha}}{|x|^{\alpha}}(k) = \int_{0}^{\infty} e^{-\pi \lambda |x|^{2}} (k) \lambda^{\frac{\alpha}{2} - 1} d\lambda = \int_{0}^{\infty} \lambda^{-\frac{d}{2}} e^{-\pi \frac{|k|^{2}}{\lambda}} \lambda^{\frac{\alpha}{2} - 1} d\lambda$$

$$(\lambda \to \frac{1}{\lambda}) = \int_{0}^{\infty} \lambda^{\frac{d}{2} e^{-\pi |k|^{2} \lambda}} \lambda^{-\frac{\alpha}{2} + 1} \lambda^{-2} d\lambda$$

$$= \frac{c_{d-\alpha}}{|k|^{d-\alpha}}$$

Let  $f \in C_c(\mathbb{R}^d)$ . Then  $\left(\frac{1}{|x|^{\alpha}} \star f\right)(x) = \int_{\mathbb{R}^d} \frac{1}{|x-y|^{\alpha}} f(y) \, dy$  is well defined as  $\frac{1}{|x-y|} \in L^1_{loc}(\mathbb{R}^d, dy)$ . It is bounded

$$\frac{1}{|x|^{\alpha}} \star f = \frac{1}{|x|^{\alpha}} \underbrace{\mathbb{1}(|x| \leqslant 1)}_{\in L^{\infty}(\mathbb{R}^{d})} \star \underbrace{f}_{L^{\infty}} + \underbrace{\frac{1}{|x|}\mathbb{1}(|x| > 1)}_{\in L^{\infty}} \star \underbrace{f}_{\in L^{1}} \in L^{\infty}(\mathbb{R}^{d})$$

When  $|x| \to \infty$ :

$$\left(\frac{1}{|x|^{\alpha}}\star f\right)(x)=\int_{\mathbb{R}^d}\frac{f(y)}{|x-y|^{\alpha}}\,dy=\int_{|y|\leqslant R}\frac{f(y)}{|x-y|^{\alpha}}\,dy\sim\frac{\int_{\mathbb{R}^d}f(y)\,dy}{|x|^{\alpha}}$$

Note that  $\frac{c_{d-\alpha}}{|k|^{d-\alpha}} \underbrace{\hat{f}(k)}_{\text{bounded}} \in L^1(\mathbb{R}^d)$ .

$$(...)\mathbb{1}(|k| \leq 1) + (...)\mathbb{1}(|k| > 1) \frac{1}{|k|^{d-\alpha}} |\hat{f}(k)| \, \mathbb{1}(|k| \leq 1) \leq ||f||_{L^{1}} \frac{\mathbb{1}(|k| \leq 1)}{|k|^{d-\alpha}} \in L^{1}(\mathbb{R}^{d}, dk)$$
$$\frac{1}{|k|^{d-\alpha}} |\hat{f}(k)|\mathbb{1}(k > 1) \leq |\hat{f}(k)| \in L^{2}(\mathbb{R}^{d}, dK) \text{ as } f \in L^{2}(\mathbb{R}^{d})$$

**Lemma 3.23** If  $f \in C_c^{\infty}(\mathbb{R}^d)$ , then  $\hat{f} \in L^1(\mathbb{R}^d)$ 

*Proof.* (Exercise) Hint:  $|\widehat{D^{\alpha}f}| = |2\pi k|^{|\alpha|} |\widehat{f}(k)| \rightsquigarrow |\widehat{f}(k)| \leqslant \frac{1}{|k|^{|k|}}$  as  $|k| \to \infty$ . Compute:

$$\begin{split} \left(\frac{c_{d-\alpha}}{|k|^{d-\alpha}}\hat{f}(k)\right)^{\vee}(x) &= \int_{\mathbb{R}^d} \frac{c_{d-\alpha}}{|k|^{d-\alpha}}\hat{f}(k)e^{2\pi ikx}\,dk \\ &= \int_{\mathbb{R}^d} \left(\int_0^{\infty} e^{-\pi |k|^2 \lambda} \lambda^{\frac{d-\alpha}{2}-1}\,d\lambda\right) \hat{f}(k)e^{2\pi ikx}\,dk \\ &= \int_0^{\infty} \left(\int_{\mathbb{R}^d} e^{-\pi |k|^2 \lambda} \hat{f}(k)e^{2\pi ikx}\,dk\right) \lambda^{\frac{d-\alpha}{2}-1}\,d\lambda \\ &= \int_0^{\infty} \left(e^{-\pi k^2 \lambda} \hat{f}(x)\right)^{\vee} \lambda^{\frac{d-\alpha}{2}-1}\,d\lambda \\ &= \int_0^{\infty} \left(\lambda^{-\frac{d}{2}}e^{-\pi \frac{x^2}{\lambda}}(k)\hat{f}(k)\right)^{\vee} \lambda^{\frac{d-\alpha}{2}-1}\,d\lambda \\ &= \int_0^{\infty} \left(\lambda^{-\frac{d}{2}}e^{-\pi \frac{x^2}{\lambda}} \lambda^{\frac{d-\alpha}{2}-1}\,d\lambda\right) \star f \end{split}$$

Assume  $d > \alpha > \frac{d}{2}$ . Then  $\frac{c_{\alpha}}{|x|^{\alpha}} \star f \in L^{\infty}$  and behaves  $\frac{c_{\alpha}(\int f)}{|x|^{\alpha}}$  as  $|x| \to \infty$ . This implies:

$$\int_{\mathbb{R}^d} \left| \ \frac{c_\alpha}{|x|^\alpha} \star f \right|^2 \leqslant c + \int_{|x| \geqslant R} \frac{c}{|x|^{2d}} \, dx < \infty$$

Thus the Fourier Transform  $\frac{\widehat{c_{\alpha}}}{|x|^{\alpha}} \star f$  exists. Combining with

$$\frac{c_{\alpha}}{|x|^{\alpha}} \star f = \left(\frac{c_{d-\alpha}}{|f|^{d-\alpha}} \hat{f}(k)\right)^{\vee}$$

$$\Rightarrow \widehat{\frac{c_{\alpha}}{|x|^{\alpha}}} \star f = \frac{c_{d-\alpha}}{|k|^{d-\alpha}} \hat{f}(k)$$

Remark 3.24 If  $d \geqslant 3$ 

$$\begin{split} \hat{G}(k) &= \frac{1}{|2\pi k|^2} \\ \Rightarrow G(x) &= \left(\frac{1}{|2\pi k|^2}\right)^{\vee} = \frac{1}{d(d-2(k)|x|^{d-2})} = \Phi(x) \end{split}$$

## 3.3 Theory of Distribution

Let  $\Omega \subseteq \mathbb{R}^d$  be open.

- $D(\Omega) = C_c^{\infty}(\Omega)$  the space of test functions.
- $\phi_n \to \phi$  in  $D(\Omega)$  if  $\exists K \subseteq \Omega$ ,  $\operatorname{supp}(\phi_n)$ ,  $\operatorname{supp}(\phi) \subseteq K$  and  $||D^{\alpha}(\phi_n \phi)||_{L^{\infty}} \to 0$  for all  $\alpha = (\alpha_1, \dots, \alpha_d), d_i \in \{0, 1, 2, \dots\}$ .

$$D'(\Omega) = \{T : D(\Omega) \to \mathbb{R} \text{ on } \mathbb{C} \text{ linear and continuous} \}$$

the space of distributions.

Motivation: 
$$L^2(\Omega)' = L^2(\Omega), (L^p(\Omega))' = (L^q(\Omega)), \frac{1}{p} + \frac{1}{q} = 1.$$

**Example 3.25** ("normal functions" are distributions) If  $f \in L^1_{loc}(\Omega)$ , then  $T = T_f$  defined by:

$$T(\phi) = \int_{\Omega} f(x)\phi(x) \, dx$$

is a distribution for all  $\phi \in D(\Omega)$ , i.e.  $T \in D'(\Omega)$ . Indeed, it is clear that  $T(\phi)$  is well-defined for all  $\phi \in D(\Omega)$  and  $\phi \mapsto T(\phi)$  is linear. Let us check that  $\phi \mapsto T(\phi)$  is continuous. Take  $\phi_n \to \phi$  in  $D(\Omega)$  and prove that  $T(\phi_n) \to T(\phi)$ . Since  $\phi_n \to \phi$  in  $D(\Omega)$ , there is a compact K s.t.  $\text{supp}(\phi_n)$ ,  $\text{supp}(\phi) \subseteq K \subseteq \Omega$ .

Question: Why is  $f \mapsto T_f$  injective?

**Lemma 3.26** (Fundamental lemma of calculus of variants) Let  $\Omega \subseteq \mathbb{R}^d$  be open. If  $f, g \in L^1_{loc}(\Omega)$  and  $\int_{\Omega} f \phi \, dy = \int_{\Omega} g \phi \, dy$  for all  $\phi \in D(\Omega)$ , then f = g in  $L^1_{loc}(\Omega)$ 

**Example 3.27** (Dirac delta function) Let  $\Omega \subseteq \mathbb{R}^d$  open. Define  $T: D(\Omega) \to \mathbb{R}$  or  $\mathbb{C}$  by  $T(\phi) = \phi(x_0)$ . Let  $x_0 \in \Omega$ . Then  $T \in D'(\Omega)$  and we denote it by  $\delta_{x_0}$ . It is clear that  $\phi \mapsto T(\phi) = \phi(x_0)$  is well-defined and linear for all  $\phi \in D(\Omega)$ . Take  $\phi_n \to \phi$  in  $D(\Omega)$  and prove  $T(\phi_n) \to T(\phi)$ , i.e.  $\phi_n(x_0) \to \phi(x_0)$  (obvious.)

**Example 3.28** (Principle Value) The function  $f(x) = \frac{1}{x}$  is not in  $L^1_{loc}(\mathbb{R})$ , but we can still define

$$\int_{\mathbb{R}} f(x)\phi(x) dx = \int_{\mathbb{R}} \frac{\phi(x)}{x} dx$$

for all  $\phi \in D(\mathbb{R})$  s.t.  $\phi(0) = 0$ . In fact,

$$\phi(x) = |\phi(x) - \phi(0)| \le (\sup |\phi'|)(x),$$

so  $\frac{|\phi(x)|}{|x|} \in L^{\infty}(\mathbb{R})$  and compactly supported. So  $\frac{\phi(x)}{x} \in L^{1}(\mathbb{R})$ . Define  $T : D(\mathbb{R}) \to \mathbb{R}$  or  $\mathbb{C}$  by

$$T(\phi) = \lim_{\epsilon \to 0} \int_{|x| > \epsilon} \frac{\phi(x)}{x} dx \quad \forall \phi \in D(\mathbb{R}) \text{ s.t. } \phi(0) = 0$$

We denote  $T = p.v.(\frac{1}{x})$ . We check that  $T \in D'(\mathbb{R})$ : For all  $\epsilon > 0$  we have

$$\left|\frac{\phi(x)}{x}\right| \leqslant \frac{\|\phi\|_{L^{\infty}}}{\epsilon}$$

for all  $|x| \ge \epsilon$  and  $\phi$  is compactly supported. So we get for all  $\epsilon > 0$ :

$$\mathbb{1}(|x| \ge \epsilon) \frac{\phi(x)}{x} \in L^1(\mathbb{R}) \leadsto \int_{|x| \ge \epsilon} \frac{\phi(x)}{x} \, dx < \infty$$

We can write:

$$\int_{|x| \ge \epsilon} \frac{\phi(x)}{x} \, dx = \int_{|x| \ge 1} \frac{\phi(x)}{x} \, dx + \int_{\epsilon \le |x| \le 1} \frac{\phi(x)}{x} \, dx$$

The second part can be written as:

$$\int_{\epsilon \leqslant |x| \leqslant 1} \frac{\phi(x)}{x} \, dx = \int_{\epsilon}^{1} \frac{\phi(x)}{x} \, dx + \int_{-1}^{-\epsilon} \frac{\phi(x)}{x} \, dx = \int_{\epsilon}^{1} \frac{\phi(x) - \phi(-x)}{x} \, dx$$

Since  $\phi \in C_c^{\infty}(\mathbb{R})$  it holds that  $|\phi(x) - \phi(-x)| \leq 2\|\phi'\|_{L^{\infty}}(x)$ .

$$\Rightarrow \frac{\phi(x) - \phi(-x)}{x} \in L^{\infty}(\mathbb{R}) \Rightarrow \frac{\phi(x) - \phi(-x)}{x} \in L^{1}(0, 1)$$
$$\Rightarrow \int_{0}^{1} \frac{\phi(x) - \phi(-x)}{x} dx = \lim_{\epsilon \to 0} \int_{\epsilon}^{1} \frac{\phi(x) - \phi(-x)}{x} dx$$

**Remark 3.29** The function  $\frac{1}{|x|^d}$  is not in  $L^1_{loc}(\mathbb{R}^d)$  but  $\exists T \in D'(\mathbb{R}^d)$  s.t.  $T(\phi) = \int_{\mathbb{R}^d} \frac{\phi(x)}{|x|^d} dx$  for all  $\phi \in C^\infty_c(\mathbb{R}^d)$  s.t.  $\phi(0) = 0$ 

Let in the following  $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}.$ 

**Definition 3.30** (Derivatives of distributions) Let  $\Omega \subseteq \mathbb{R}^d$  and  $T \in D'(\Omega)$ . Define for  $\alpha \in \mathbb{N}^d$ :

$$D^{\alpha}T:\ D(\Omega)\longrightarrow \mathbb{K}$$
 
$$\phi\longmapsto (-1)^{|\alpha|}T(D^{\alpha}\phi)$$

Motivation:  $f \in C_c^{\infty}(\Omega)$ 

$$\int_{\Omega} (D^{\alpha} f) \phi = (-1)^{|\alpha|} \int_{\Omega} f(D^{\alpha} \phi)$$

"If the classical derivative exists, then it is the same as the distributional derivative." We write

$$(D^{\alpha}T)(\phi) = T_{D^{\alpha}f}(\phi) = (-1)^{|\alpha|}T_f(D^{\alpha}\phi).$$

**Remark 3.31** For all  $T \in D'(\Omega)$  it holds  $D^{\alpha}T \in D'(\Omega)$  for all  $\alpha \in \mathbb{N}^d$ . Clearly

$$\phi \longmapsto (D^{\alpha}T)(\phi) = (-1)^{|\alpha|}T(D^{\alpha}\phi)$$

is linear. Moreover, if  $\phi_n \to \phi$  in  $D(\Omega)$ , then  $D^{\alpha}\phi_n \to D^{\alpha}\phi$  in  $D(\Omega)$ , so

$$(D^{\alpha}T)(\phi_n) = (-1)^{|\alpha|}T(D^{\alpha}\phi_n) \xrightarrow{n \to \infty} (-1)^{|\alpha|}T(D^{\alpha}\phi) = (D^{\alpha}T)(\phi)$$

**Example 3.32** Consider  $f: x \mapsto |x|$ , then  $f \in C(\mathbb{R})$  but  $f \notin C^1(\mathbb{R})$ . However,

$$f'(x) = g(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0 \end{cases} \in L^1_{loc}$$

Lets check f'=g, i.e.  $-f(\phi')=f'(\phi)=g(\phi)$  for all  $\phi\in D(\mathbb{R})$ . Thus we need to prove:

$$-\int_{\mathbb{R}} f(x)\phi'(x) dx = \int_{\mathbb{R}} g(x)\phi(x) dx \quad \forall \phi \in D(\mathbb{R})$$

namely:

$$\underbrace{-\int_{\mathbb{R}} |x| \phi'(x) \, dx}_{:=(\star)} = \int_{0}^{\infty} \phi(x) \, dx - \int_{-\infty}^{0} \phi(x) \, dx$$

Now we have

$$(\star) = -\int_0^\infty x \phi'(x) \, dx + \int_{-\infty}^0 x \phi'(x) \, dx.$$

By integration by parts:

$$\int_0^\infty x \phi'(x) \, dx = \underbrace{[x \phi(x)]_0^\infty}_{-0} - \int_0^\infty \phi(x) \, dx = -\int_0^\infty \phi(x) \, dx$$

and similary:

$$\int_{-\infty}^{0} x \phi'(x) dx = -\int_{-\infty}^{0} \phi(x) dx$$

Thus f' = g in  $D'(\Omega)$ . We claim that  $g' = 2\delta_0$  in  $D'(\mathbb{R})$ . In fact, for all  $\phi \in D(\mathbb{R})$ , then:

$$g'(\phi) = -g(\phi') = -\int_{\mathbb{R}} g\phi' \, dx = -\int_{-\infty}^{0} (-1)\phi' \, dx - \int_{0}^{\infty} (1)\phi' \, dx$$
$$= -\int_{0}^{\infty} \phi' \, dx + \int_{-\infty}^{0} \phi' \, dx = \left[\phi(0) - \underbrace{\phi(\infty)}_{=0}\right] + \left[\phi(0) - \underbrace{\phi(-\infty)}_{=0}\right] = 2\phi(0) = 2\delta_{0}(\phi)$$

So  $g' = 2\delta_0$  in  $D'(\mathbb{R})$ .

**Exercise 3.33** Prove that  $(D^{\alpha}\delta_x)(\phi) = (-1)^{|\alpha|}(D^{\alpha}\phi)(x)$  for all  $\phi \in D(\mathbb{R})$  for all  $x \in \mathbb{R}$ .

**Definition 3.34** (Convergence of distributions) Let  $\Omega \subseteq \mathbb{R}^d$  be open, then

$$T_n \xrightarrow{n \to \infty} T$$

in  $D'(\Omega)$  if  $T_n(\phi) \xrightarrow{n \to \infty} T(\phi)$  for all  $\phi \in D(\Omega)$ .

**Exercise 3.35** Let  $f \in L^1(\mathbb{R}^d)$ ,  $\int f = 1$  For  $\epsilon > 0$ , define  $f_{\epsilon}(x) = \epsilon^{-d} f(\epsilon^{-1} x)$ . Then:  $f_{\epsilon} \to \delta_0$  in  $D'(\Omega)$ .

**Exercise 3.36** Let  $\Omega \subseteq \mathbb{R}^d$  be open and  $T_n \to T$  in  $D'(\Omega)$ . Then:  $D^{\alpha}T_n \to D^{\alpha}T$  in  $D'(\Omega)$  for all  $\alpha = (\alpha_1, \dots, \alpha_d)$ 

**Definition 3.37** (Convolution of distributions) Let  $T \in D'(\mathbb{R})$  and  $f \in L_c^{\infty}(\mathbb{R}^d)$ . Define

$$(T \star f)(y) = T(f_y)$$

We write  $f_y(x) = f(x - y)$  and  $\tilde{f}(x) = f(-x)$ .

**Theorem 3.38** Let  $T \in D'(\mathbb{R})$ . Then for all  $f \in D(\mathbb{R})$ :

1.  $y \mapsto T(f_y)$  is  $C^{\infty}(\mathbb{R}^d)$  and

$$D_{y}^{\alpha}(T(f_{y})) = (D^{\alpha}T)(f_{y}) = (-1)^{|\alpha|}T(D^{\alpha}f_{y})$$

2. For all  $g \in L^1(\mathbb{R}^d)$  and compactly supported, then

$$\int_{\mathbb{R}^d} g(y)T(f_y) \, dy = T(\underbrace{f \star g}_{\in C_c^{\infty}(\mathbb{R})})$$

*Proof.* 1. We prove that  $y \mapsto T(f_y)$  is continuous. Take  $y_n \to y$  in  $\mathbb{R}^d$ , then:

$$T(f_{y_n}) \to T(f_y)$$

since  $f_{y_n} \to f_y$  in  $D(\mathbb{R}^d)$ . We check this: Since  $f \subseteq C_c^{\infty}(\mathbb{R}^d)$ , it holds that  $\operatorname{supp} f \subseteq B(0,R) \subseteq \mathbb{R}^d$ . Since  $y_n \to y$  in  $\mathbb{R}^d$ . We have  $\sup_n |y_n| < \infty$ . Thus  $f_{y_n}, f_y$  are supported in  $\overline{B(0,R+\sup_n |y_n|)} = K$  compact. Moreover

$$|f_{y_n}(x) - f_y(x)| = |f(x - y_n) - f(x - y)| \le ||\nabla f||_{L^{\infty}} ||y_n - y|| \to 0$$

So we get  $||f_{y_n} - f_y||_{L^{\infty}} \to 0$  Similary:

$$||D^{\alpha}f_{u_{\infty}}-D^{\alpha}f_{n}||_{L^{\infty}}\to 0$$

**Exercise 3.39** (E 3.1 Lebesgue Differentiation Theorem) Let  $f \in L^1_{loc}(\mathbb{R}^d)$ . Prove that that for almost every  $x \in \mathbb{R}^d$ :

$$\oint_{B(x,r)} |f(y)| \, dy \xrightarrow{r \to 0} 0$$

*Proof.* Clearly the same result holds with  $\mathbb{R}^d \leadsto \Omega \subseteq \mathbb{R}^d$  open. Also it suffices to consider  $f \in L^1(\mathbb{R}^d)$ . From the last time discussion, by a density argument there exists  $r_n \to 0$  s.t.

$$\oint_{B(x,r_n)} |f(y) - f(x)| \, dy = 0$$

for a.e.  $x \in \mathbb{R}^d$ . We prove that for all  $\epsilon > 0$ , te set  $A_{\epsilon} = \{x \in \mathbb{R}^d \mid \limsup_{r \to 0} f_{B(x,r)} \mid f(y) - f(x) \mid dy > \epsilon\}$  has measure 0. This will imply that

$$\bigcup_{n=1}^{\infty} A_{\frac{1}{n}} = \left\{ x \in \mathbb{R}^d \mid \limsup_{r \to 0} \int_{B(x,r)} |f(y) - f(x)| \, dy > 0 \right\}$$

has measure 0, which is what wie want to show. First, we show that  $|A_{\epsilon}| = 0$ : Take  $\{f_n\} \subseteq C_c^{\infty}, f_n \to f \text{ in } L^1(\mathbb{R}^d)$ . By the triangle inequality:

$$|f(y) - f(x)| \le |f(y) - f_n(y)| + |f_n(y) - f_n(x)| + |f_n(x) - f(x)|$$

So we get

$$\oint_{B(x,r)} |f(y) - f(x)| dy$$

$$\leqslant \oint_{B(x,r)} |f(y) - f_n(y)| dy + \oint_{B(x,r)} |f_n(y) - f_n(x)| + |f_n(x) - f(x)|$$

$$\Rightarrow \lim_{r \to 0} \sup \dots \leqslant \limsup_{r \to 0} (\dots) + 0 + |f_n(x) - f(x)|$$

Thus, for all  $x \in A_{\epsilon}$ , then:

$$\limsup_{r \to 0} \int_{B(x,r)} |f_n(y) - f(y)| \, dy + |f_n(x) - f(x)| > 2\epsilon$$

Observation: If  $a, b \ge 0$ ,  $a + b > 2\epsilon$  then either  $a > \epsilon$  or  $b > \epsilon$ . Therefore  $A_{\epsilon} \subseteq \left(S_{n,\epsilon} \bigcup \tilde{S}_{n,\epsilon}\right)$ , where

$$\begin{split} S_{n,\epsilon} &= \{x \mid |f_n(x) - f(x)| > \epsilon\} \\ \tilde{S}_{n,\epsilon} &= \{x \mid \limsup_{r \to 0} \int_{B(x,r)} |f_n(y) - f(y)| \, dy > \epsilon\} \end{split}$$

Consequently:  $|A_{\epsilon}| \leq |S_{n,\epsilon}| + |\tilde{S}_{n,\epsilon}|$  for all  $n \geq 1$ . By the Markov / Chebyshev inequality:

$$|S_{n,\epsilon}| \leqslant \int_{S_{n,\epsilon}} \frac{|f_n(x) - f(x)|}{\epsilon} \, dx = \int_{\mathbb{R}^d} \frac{|f_n(x) - f(x)|}{\epsilon} \, dx = \frac{\|f_n - f\|_{L^1}}{\epsilon}$$

We want to prove a simpler bound for  $\tilde{S}_{n\epsilon}$ . For all  $x \in \tilde{S}_{n\epsilon}$ :

$$\limsup_{r \to 0} \int_{B(x,r)} |f_n(x) - f(y)| \, dy > \epsilon$$

So there is a  $r_x \in (0,1)$  s.t.

$$\int_{B(x,r_x)=B_x} |f_n(y) - f(y)| \, dy > \epsilon$$

Thus  $\tilde{S}_{n\epsilon} \subseteq \left(\bigcup_{x \in \tilde{S}_{n,\epsilon}} B_x\right)$ .

**Lemma 3.40** (Vitali Covering) If F is a collection of balls in  $\mathbb{R}^d$  with bounded radius, then there exists a sub-collection  $G \subseteq F$  s.t.

• G has disjoint balls

•  $\bigcup_{B \in F} B \subseteq \bigcup_{B \in G} 5B, 5B(x,r) = B(x,5r)$ 

**Remark 3.41** The condition of the boundedness of the radius is necessary. Otherwise, consider  $\{B(0,n)\}_{n=1}^{\infty}$ 

Here consider  $F=\{B_x\}_{x\in \tilde{S}_{n\epsilon}}$ . With the vitali covering leamm there is a  $G\subseteq F$  s.t. G contains disjoint balls and:

$$\tilde{S}_{n,\epsilon} \subseteq \bigcup_{B \in F} B \subseteq \bigcup_{B \in G} 5B$$

So we get

$$|\tilde{S}_{n,\epsilon}| \ \leqslant | \bigcup_{B \in G} 5B| \leqslant \sum_{B \in G} |5B| = \sum_{B \in G} 5^d |B|$$

On the other hand, for all  $B \in G \subseteq F$ :

$$\oint_{B} |f_n(y) - f(y)| \ dy > \epsilon \Rightarrow \int_{B} |f_n - f| > \epsilon |B|$$

This implies:

$$\sup_{B \in G} \int_{B} |f_n - f| > \epsilon \sum_{B \in G} |B|$$

Since balls in G are disjoint:

$$\int_{\mathbb{R}^d} \geqslant \int_{\bigcup_{B \in G}} |f_n - f| \, dy > \epsilon \sum_{B \in G} |B| \geqslant \frac{\epsilon}{5^d} |\tilde{S}_{n,\epsilon}|$$

So

$$|\tilde{S}_{n\epsilon}| \leqslant \frac{5^d}{\epsilon} ||f_n - f||_{L^1}$$

In summary:

$$|A_{\epsilon}| \le |S_{n,\epsilon}| + |\tilde{S}_{n,\epsilon}| \le \frac{5^d + 1}{\epsilon} ||f_n - f||_{L^1} \to 0$$

as  $n \to \infty$ . So  $|A_{\epsilon}| = 0$  for all  $\epsilon > 0$ 

- **Remark 3.42** 1. The proof can be done by using the Besicovitch covering lemma: For all  $E \subseteq \mathbb{R}^d$  s.t. E is bounded. Let F = collection of balls s.t. for all  $x \in E$  there is a  $B_x \in F$  s.t. x is the center of  $B_x$ . There is a sub-collection  $G \subseteq F$  s.t.
  - $E \subseteq \bigcup_{B \in G} B$
  - Any point in E belongs to at most  $C_d$  balls in  $C_T$  ( $C_d$  depends only on  $\mathbb{R}^d$ ), i.e.

$$\mathbb{1}_{E}(x) \leqslant \sum_{B \in G} \mathbb{1}_{B}(x) \leqslant C_{d} \mathbb{1}_{E}(x) \forall x$$

2. By a simpler argument we can prove the weak  $L^1$ -estimate:

$$\{x \mid f^{\star}(x) > \epsilon\} \leqslant \frac{c_d}{\epsilon} ||f||_{L^1(\mathbb{R}^d)}$$

(Hardy-Littlewood maximal function)

**Exercise 3.43** (E 3.2) Let  $1 \leq p, q, r \leq 2$ ,  $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}$ . Recall that if  $f \in L^p(\mathbb{R}^d)$ ,  $g \in L^q(\mathbb{R}^d)$ , then  $f \star g \in L^r(\mathbb{R}^d)$  by Young's Inequality, and its Fourier transform is well-defined by the Hausdorff-Young inequality. Prove that

$$\widehat{f \star g}(k) = \widehat{f}(k)\widehat{g}(k) \quad \forall k \in \mathbb{R}^d$$

Hint: In the lecture we already discussed the case  $f, g \in C_c(\mathbb{R}^d)$ .

Solution.

Step 1)  $f, g \in C_c^{\infty}(\mathbb{R}^d)$  (Fubini)

Step 2)  $f \in L^p, g \in L^q$ , find  $f_n, g_n \in C_c^{\infty}$  s.t.  $f_n \to f$  in  $L^p, g_n \to g$  in  $L^q$ .  $\widehat{f_n \star g_n} = \widehat{f_n \hat{q}_n}$  pointwise a.e. we have

(Hausdorff-Young) 
$$\begin{split} \|\widehat{f\star g} - \widehat{f_n\star g_n}\|_{L^{r'}} \\ &\leqslant \|\widehat{f\star g} - \widehat{f_n\star g_n}\|_{L^r} \\ &= \|(f-f_n)\star g_n + f_n\star (g_n-g)\|_{L^r} \\ &\leqslant \|(f-f_n)\star g_n\|_{L^r} + \|f_n\star (g_n-g)\|_{L^r} \\ &(\text{Young}) \leqslant \|f-f_n\|_{L^p}\|g_n\| + \|f_n\|_{L^p}\|g_n-g\|_{L^p} \xrightarrow{n\to\infty} 0 \end{split}$$

Moreover:

$$\|\hat{f}_{n}\hat{g}_{n} - \hat{f}\hat{g}\|_{L^{r'}} = \|(\hat{f}_{n}\hat{f})\hat{g}_{n} + \hat{f}(\hat{g}_{n} - \hat{g})\|_{L^{r'}}$$

$$(\text{H\"older}) \leq \|\hat{f}_{n} - \hat{f}\|_{L^{p'}} \|\hat{g}_{n}\|_{L^{q'}} + \|\hat{f}\|_{L^{q'}}$$

$$(\text{Hausdorff-Young (3.19)}) \leq \|f_{n} - f\|_{L^{p}} \|g_{n}\|_{L^{q}} + \|f\|_{L^{p}} \|g_{n} - g\|_{L^{p}} \xrightarrow{n \to \infty} 0$$
So  $\hat{f}_{n}\hat{g}_{n} \to \hat{f}\hat{g}$  in  $L^{r'}$   $\widehat{f \star g} = \hat{f}\hat{g}$  in  $L^{r'}$   $\frac{1}{r'} = \frac{1}{n'} + \frac{1}{a'}$ 

Exercise 3.44 (E 3.3)  $f \in C_c^{\infty}(\mathbb{R}^d)$ . Prove  $|\hat{f}(k)| \leq \frac{C_N}{(1+|k|)^N}$ 

Solution. Since  $f \in C_c^{\infty}$  we have that  $D^{\alpha} f \in C_c^{\infty}$ . Recall

$$\widehat{D^{\alpha}f}(k) = (-2\pi i k)^{\alpha} \widehat{f}(k)$$

For example

$$\widehat{-\Delta f}(k) = |2\pi i k|^2 \widehat{f}(k)$$
(Induction)  $\leadsto \widehat{(-\Delta)^N} f(k) = |2\pi k|^{2N} \widehat{f}(k)$ 

So we can conclude

$$\hat{f}(k) = \frac{\widehat{(-\Delta)^N} f(k)}{|2\pi k|^{2N}} \forall k \in \mathbb{R}^d$$

1. 
$$f \in C_c^{\infty} \subseteq L^1(\mathbb{R}^d) \Rightarrow \hat{f} \in L^{\infty}$$

2. 
$$(-\Delta)^N f \in C_c^{\infty} \subseteq L^1(\mathbb{R}^d) \Rightarrow \widehat{(-\Delta)^N} f \in L^{\infty}$$

Conclusion: 
$$\hat{f}(k) \leq \begin{cases} C & \forall k \\ \frac{C_N}{|k|^{2N}} & \forall k \end{cases}$$
 So  $\hat{f}(k) \leq \frac{C_N}{(1+|k|)^N}$ 

Exercise 3.45 (E 3.4)

Proof. Siehe Goodnotes

**Exercise 3.46** (Bonus 3) Let  $f \in L^1(\mathbb{R}^d)$  such that

$$|\hat{f}(k)| \leqslant \frac{C_N}{(1+|k|)^N}$$

for all  $k \in \mathbb{R}^d$ , for all  $N \ge 1$ .  $(C_N \text{ is independent of } k)$ . Prove that  $f \in C^{\infty}(\mathbb{R}^d)$ 

$$(f \in C^{\infty})$$
 i.e.  $\exists \tilde{f} \in C^{\infty}$  s.t.  $f = \tilde{f}$  a.e.

My Solution. First we regard for  $N \in \mathbb{N}$  and  $|k| \geqslant 1$ :

$$\int_{\mathbb{R}^d} \frac{1}{(1+|k|)^N} dk = \int_0^\infty \left( \int_{\partial B(0,r)} \frac{1}{(1+r)^N} dS(y) \right) dr$$

$$= \int_0^\infty \frac{1}{(1+r)^N} |\partial B(0,r)| dr$$

$$\leqslant \int_1^\infty \frac{1}{r^N} |\partial B(0,r)| dr \quad \text{for a } c \in \mathbb{R}$$

$$= c \int_1^\infty \frac{1}{r^{N-d+1}} dr$$

From Ana I we know that  $\int_1^\infty \frac{1}{r^{N-d+1}} dr < \infty$  is equivalent to  $N-d+1>1 \Leftrightarrow N>d$ , so for N>d we have

$$\frac{1}{(1+|k|)^N} \in L^1(\mathbb{R}^d).$$

Now let  $\alpha \in \mathbb{N}^d$ , then we have

$$k^{\alpha} = k_1^{\alpha_1} \cdots k_d^{\alpha_d} = |k|^{\alpha_1} \cdots |k|^{\alpha_d} = |k|^{\alpha_1 + \cdots + \alpha_d} = |k|^{|\alpha|} = (1 + |k|)^{|\alpha|}.$$

By assumption we have for all  $N \ge 1$ :

$$k^{\alpha} \hat{f}(k) \le k^{\alpha} \frac{C_n}{(1+|k|)^N} \le (1+|k|)^{|\alpha|} \frac{C_n}{(1+|k|)^N} = \frac{C_n}{(1+|k|)^{N-|\alpha|}}$$

If we set N such that  $N-|\alpha|>d$ , for example  $N=d+|\alpha|+1$ , then we can conclude that  $k^{\alpha}\hat{f}\in L^{1}(\mathbb{R}^{d})$ . This implies  $\widehat{k^{\alpha}\hat{f}}\in L^{\infty}(\mathbb{R}^{d})$ , so

$$\widehat{k^{\alpha}\widehat{f}}(k) = \widehat{\partial}^{\alpha}\widehat{\widehat{f}}(k) = \widehat{\partial}^{\alpha}(\widehat{f})^{\vee}(-k) = \widehat{\partial}^{\alpha}f(-k) \in L^{\infty}(\mathbb{R}^{d}).$$

This implies  $f \in C^{\infty}(\mathbb{R}^d)$ .

**Theorem 3.47** Take  $T \in D'(\mathbb{R}), f \in C_c^{\infty}(\mathbb{R}^d) = D(\mathbb{R}^d), f_y(x) = f(x-y)$ 

a) 
$$y\mapsto T(f_y)\in C^\infty(\mathbb{R}^d)$$
 and  $D^\alpha_y(T(f_y))=(D^\alpha T)(f_y)=(-1)^{|\alpha|}T(D^\alpha_x f_y)$ 

b)  $\forall g \in L^1(\mathbb{R}^d)$  and compactly supported

$$\int_{\mathbb{R}^d} g(y) T(f_y) \, dy = T(\underbrace{f \star g}_{\in C_{\infty}^{\infty}})$$

*Proof.* a)  $y \mapsto T(f_y)$  is continuous since  $y_n \to y$  in  $\mathbb{R}^d$ , then  $f_{y_n} \to f_y$  implies  $T(f_{y_n}) \to T(f_y)$ . Let's check that  $y \mapsto T(f_y) \in C^1$ :

$$\lim_{h \to 0} \frac{T(f_{y-he_i}) - T(f_y)}{h} = \lim_{h \to 0} T\left(\frac{f_{y-he_i} - f_y}{h}\right)$$

We have  $\frac{f_{y-he_i}-f_y}{h} \xrightarrow{h \to 0} (\partial_i f)_y$  in  $D(\mathbb{R}^d)$ 

•  $\exists K$  compact set such that  $\operatorname{supp}(f_{y-e_i}-f_y)$ ,  $\operatorname{supp} \partial_i f \subseteq K$  as |h| small.

• 
$$\frac{f_{y-he_i}(x) - f_y(x)}{h} - (\partial_i f)_y(x)$$

$$= \frac{f(x - y + he_i) - f(x - y)}{h} - (\partial_i f)(x - y)$$

$$\left| \int_0^1 \partial_i f(x - y + the_i) dt - \partial_i f(x - y) \right| \xrightarrow{h \to 0} 0 \text{ uniformly in } x$$
Similary:

$$\left| D_x^{\alpha} \left( \frac{f(x-y+he_i) - f(x-y)}{h} - (\partial_i f)(x-y) \right) \right|$$

$$= \left| \frac{D^{\alpha} f(x-y+he_i) - D^{\alpha} f(x-y)}{h} - \partial_i (D^{\alpha} f)(x-y) \right| \xrightarrow{h \to 0} 0$$

uniformly in x. Conclude:

$$\lim_{h \to 0} \frac{T(f_{y-he_i}) - T(f_y)}{h} \xrightarrow{h \to 0} T((\hat{c}_i f)_y) \in C(\mathbb{R}^d)$$

So we geht that  $y \mapsto T(f_y) \in C^1$  and  $-\partial_{y_i} T(f_y) = T((\partial_i f)_y)$ 

By induction:

$$D_y^{\alpha} T(f_y) = (-1)^{|\alpha|} T((D^{\alpha} f)_y) = (D^{\alpha} T)(f_y) \quad \forall \alpha \in \mathbb{N}^d$$

b) Heuristic: T = T(x)

$$\int_{\mathbb{R}^d} g(y)T(f_y) \, dy = \int_{\mathbb{R}^d} g(y) \left( \int_{\mathbb{R}^d} T(x)f(x-y) \, dx \right) \, dy$$
$$= \int_{\mathbb{R}^d} T(x) \left( \int_{\mathbb{R}^d} g(y)f(x-y) \, dy \right) \, dx$$
$$= \int_{\mathbb{R}^d} T(x)(f \star g)(x) \, dx = T(f \star g)$$

Step 1:  $g \in C_c^{\infty}(\mathbb{R}^d)$ 

(Rieman Sum) 
$$\int_{\mathbb{R}^d} g(y)T(f_y) \, dy = \lim_{\Delta_N \to 0} \Delta_N \sum_{j=1}^N g(y_j)T(f_{y_j})$$
$$= \lim_{\Delta_N \to 0} T\left(\Delta_N \sum_{j=1}^N g(y_j)f_{y_j}\right)$$
$$= T(f \star g)$$

because

$$\lim_{\Delta_N \to 0} \Delta_N \sum_{j=1}^N g(y_j) f_{y_j}(x) \to (f \star g)(x) \text{ in } D(\mathbb{R}^d)$$

$$\lim_{\Delta_N \to 0} \Delta_N \sum_{j=1}^N g(y_j) f(x - y_j) \xrightarrow{\text{Riemann}} \int_{\mathbb{R}^d} g(y) f(x - y) \ dy = (f \star g)(x)$$

Proof of:

$$\lim_{\Delta_N \to 0} \Delta_N \sum_{j=1}^N g(y_j) f(x - y_j) \to (f \star g)(x) \text{ in } D(\mathbb{R}^d)$$

1) Since  $f, g \in C_c^{\infty}$  we have  $f \star g \in C_c^{\infty}$ . And we have

$$x \mapsto \Delta_N \sum_{j=1}^N g(y_j) f(x - y_j) \in C^{\infty}$$

since  $f \in C^{\infty}$  supported in  $(\operatorname{supp} g + \operatorname{supp} f)$ . So all functions are  $C_c^{\infty}$  and supported in  $(\operatorname{supp} g + \operatorname{supp} f)$ .

2)

$$\left| \lim_{\Delta_N \to 0} \Delta_N \sum_{j=1}^N g(y_j) f(x - y_j) - \int_{\mathbb{R}^d} g(y) f(x - y) \, dy \right| \xrightarrow{\Delta_N \to 0} 0$$

uniformly in x. (Result from the Riemann-Sum)

3)

$$\left| D_x^{\alpha} (\Delta_N \sum_{j=1}^N g(y_j) f(x-y) - (f \star g)(x)) \right|$$

$$= \left| \Delta_N \sum_{j=1}^N g(y_j) D^{\alpha} f(x-y) - (D^{\alpha} f) \star g(x) \right| \xrightarrow{\Delta_N \to 0} 0$$

uniformly in x for all  $\alpha$ .

Step 2: Take  $g \in L^1(\mathbb{R}^d)$  and compactly supported. Then  $\exists \{g_n\} \subseteq C_c^{\infty}(\mathbb{R}^d)$ , supp  $g_n \subseteq \text{supp } g + B(0,1)$  such that  $g_n \to g$  in  $L^1(\mathbb{R}^d)$ . By Step 1:

$$\int_{\mathbb{R}^d} g_n(y) T(f_y) \, dy = T(g_n \star f)$$

Take  $n \to \infty$ :

$$\int_{\mathbb{R}^d} g_n(y) T(f_y) \, dy \to \int_{\mathbb{R}^d} g(y) T(f_y) \, dy$$

since  $g_n \to g$  in  $L^1$  compactly supported and  $y \mapsto T(f_y) \in C^{\infty} \subseteq L^{\infty}(K)$ . Moreover (exercise):

$$\underbrace{g_n \star f}_{\in C^{\infty}} \to g \star f \quad \text{in } D(\mathbb{R}^d)$$

So  $T(g_n \star f) \xrightarrow{n \to \infty} T(g \star f)$ . Finally we optain:

$$\int g(y)T(f_n)\,dy = T(g\star f)$$

**Theorem 3.48** Let  $\Omega \subseteq \mathbb{R}^d$  be open. Let  $T \in D'(\Omega)$  and  $f \in C_c^{\infty}(\Omega)$ . Denote

$$\Omega_f = \{ y \in \mathbb{R}^d \mid \operatorname{supp} f_y = y + \operatorname{supp} f \subseteq \Omega \}$$

a) 
$$y \mapsto T(f_y) \in C^{\infty}(\Omega_f)$$
 and  $D_y^{\alpha}(T(f_y)) = (D^{\alpha}T)(f_y) = (-1)^{|\alpha|}T((D^{\alpha}f)_y)$ 

b) For all  $g \in L^1(\Omega_q)$  compactly supported in  $\Omega_f$  and it holds:

$$\int_{\Omega} g(y)T(f_y) \, dy = T(f \star g).$$

**Theorem 3.49** Let  $T \in D'(\Omega)$  s.t.  $\nabla T = 0$  in  $D'(\Omega)$ . Then: T = const. in  $\Omega$ .

*Proof.*  $(\Omega = \mathbb{R}^d)$  for all  $f \in C_c^{\infty}$ ,  $y \mapsto T(f_y) \in C^{\infty}(\mathbb{R}^d)$  and  $\partial_{y_i} T(f_y) = (\partial_j T)(f_y) = 0$  for all  $i = 1, \ldots, d$ . Then by the result of the theorem for  $C^{\infty}$  functions,  $y \mapsto T(f_y) = const$  independent of y. Consequently:

$$T(f_y) = T(f_0) = T(f) \quad \forall y \in \mathbb{R}^d \ \forall f \in C_c^{\infty}(\mathbb{R}^d)$$

For any  $g \in C^{\infty}(\mathbb{R}^d)$ :

$$\left(\int_{\mathbb{R}^d} g \, dy\right) T(f) = \int_{\mathbb{R}^d} g(y) T(f_y) \, dy = T(f \star g) = T(g \star f) = \left(\int_{\mathbb{R}^d} f \, dy\right) T(g)$$

So  $\frac{T(f)}{\int_{\mathbb{R}^d} f}$  is independent of f (as soon as  $\int f \neq 0$ ). So we get that  $T(f) = const \int_{\mathbb{R}^d} f$ , where const is independent of f.

**Remark 3.50** If  $u \in C^1(\mathbb{R}^d)$ , then:

$$u(x+y) - u(x) = \int_0^1 \sum_{j=1}^d y_j (\partial_j u)(x+ty_j) dt = \int_0^1 y \nabla u(x+ty) dt$$

So we get that if  $\nabla u = 0$ , then u(x+y) - u(x) = 0 for all x, y, so u = const.

**Theorem 3.51** (Taylor expansion for distributions) Let  $T \in D'(\mathbb{R}^d)$  and  $f \in C_c^{\infty}(\mathbb{R}^d)$ . Then  $y \mapsto T(f_y) \in C^{\infty}$  and

$$T(f_y) - T(f) = \int_0^1 \sum_{j=1}^d y_j(\partial_j T)(f_{ty}) dt.$$

In particular, if  $g \in L^1_{loc}$  and  $\nabla g \in L^1_{loc}$ , then  $\forall y \in \mathbb{R}^d$ :

$$g(x+y) - g(x) = \int_0^1 g(x+ty)y \, dt$$

for a.e.  $x \in \mathbb{R}^d$ .

*Proof.*  $y \mapsto T(f_y)$  is  $C^{\infty}$  and  $\frac{d}{dt}[T(f_{ty})] = (\nabla T)(f_{ty})y$  So we get

$$T(f_y) - T(f) = \int_0^1 \frac{d}{dt} (T(f_{ty})) dt$$
$$= \int_0^1 (\nabla T)(f_{ty}) y dt$$
$$= \int_0^1 \sum_{j=1}^d (\partial_j T)(f_{ty}) y_j dt$$

**Corrolary 3.52** Let  $g \in L^1_{loc}(\mathbb{R}^d)$  s.t.  $\hat{\sigma}_j g \in L^1_{loc}(\mathbb{R}^d)$  for all  $j = 1, 2, \dots, d$  (i.e.  $g \in W^{1,1}_{loc}(\mathbb{R}^d)$ ). Then for all  $y \in \mathbb{R}^d$ :

$$g(x+y) - g(x) = \int_0^1 y \cdot \nabla g(x+ty) dt$$
$$= \int_0^1 \sum_{j=1}^d y_j \partial g(x+ty) dt$$

for a.e. x.

*Proof.* For all  $f \in C_c^{\infty}$  we have

$$\int_{\mathbb{R}^d} f(x)[g(x+y) - g(x)] dx = \int_{\mathbb{R}^d} g(x)[f(x-y) - f(x)] dx$$

$$= g(f_y) - g(f)$$

$$= \int_0^1 \sum_{j=1}^d y_j (\partial_j g)(f_{ty}) dt$$

$$= \int_0^1 \sum_{j=1}^d y_j \int_{\mathbb{R}^d} \sum_{j=1}^d y_j \left[ \int_{\mathbb{R}^d} (\partial_j g)(x) f_{ty}(x) dx \right]$$

$$= \int_0^1 \sum_{j=1}^d y_i \left[ \int_{\mathbb{R}^d} (\partial_j g)(x+ty) f(x) dx \right] dt$$

$$= \int_{\mathbb{R}^d} f(x) \left[ \int_0^1 \sum_{j=1}^d y_j \partial_j g(x+ty) dt \right] dx$$

For all  $\phi \in C_c^{\infty}$ : = g(x+y) - g(x) a.e.  $x \in \mathbb{R}^d$ .

**Remark 3.53** If  $T \in D'(\Omega)$ ,  $\Omega \subseteq \mathbb{R}^d$  open, if  $y \nabla T = 0$ , then T = const.

**Theorem 3.54** (Equivalence of the classical and distributional derivatives) Let  $\Omega \subseteq \mathbb{R}^d$ . Then the following are equivalent:

1. 
$$T \in D'(\Omega)$$
 s.t.  $\partial_{x_i} T = g_i \in C(\Omega)$  for all  $i = 1, \dots, d$ .

2. 
$$T = f \in C^1(\Omega)$$
 and  $g_i = \partial_{x_i} f$ 

Proof.

 $(2) \Rightarrow (1)$ : If  $T = f \in C^1(\Omega)$ , then:  $\partial_{x_i} f \in C(\Omega)$ .

$$\partial_{x_i} T(\phi) = -T(\partial_{x_i} \phi) = -\int_{\Omega} f(\partial_{x_i} \phi) = \int_{\Omega} (\partial_{x_i} f) \phi$$

for all  $\phi \in D(\Omega)$ , so  $\partial_{x_i} T = \partial_{x_i} f$ .

(1)  $\Rightarrow$  (2): Why is  $T = f \in C^1(\Omega)$ ? As  $\partial_{x_i} f = g_i$ :

$$f(x+y) - f(x) = \int_0^1 \nabla f(x+ty)y \, dt = \int_0^1 \sum_{i=1}^d g_i(x+ty)y_i \, dt$$

So we get

$$f(y) = f(0) + \int_0^1 \sum_{i=1}^d g_i(ty)g_i dt.$$

We expect that  $f \in C^1$  and  $\partial_{x_i} f = g_i$ . But this is not trivial to prove.

$$\frac{f(y+he_i)-f(y)}{h} = \int_0^1 \sum_{i=1}^d \left[g_i(ty+the_i)(y_i+h\delta_{ij})\right] dt$$

$$= \int_0^1 g_i(ty+the_i) dt + \int_0^1 \sum_{j\neq i} \frac{\left[g_i(ty+the_i)-g_i(ty)\right]}{h} y_i dt$$

$$\xrightarrow{h\to 0} \int_0^1 g_i(ty) dt + \text{is difficult ...}$$

Lets take  $\phi \in C_c^{\infty}$ , then:

$$T(\phi_y) - T(\phi) = \int_0^1 \underbrace{\nabla T}_{(g_i)_{i=1}^d} (\phi_{ty}) y \, dt$$

$$= \int_0^1 \sum_{i=1}^d \left( \int_{\Omega} g_i(x) \underbrace{\phi_{ty}}_{=\phi(x-ty)} dx \right) \, dt$$

$$= \int_{\mathbb{R}^d} \left( \sum_{i=1}^d \int_0^1 g_i(x) \phi(x-ty) y_i \, dt \right) \, dx$$

$$= \int_{\mathbb{R}^d} \left( \sum_{i=1}^d \int_0^1 g_i(x+ty) \phi(x) y_i \, dt \right) \, dx$$

$$= \int_{\mathbb{R}^d} \left( \sum_i \int_0^1 g_i(x+ty) y_i \, dt \right) \phi(x) \, dx$$

Integrating against  $\psi(y)$  with  $\psi \in C_c^{\infty}$ :

$$\int_{\mathbb{R}^d} T(\phi_y)\psi(y) \, dy - T(\phi) \int_{\mathbb{R}^d} \psi(y) \, dy$$

$$= \int_{\mathbb{R}^d} \left( \int_{\mathbb{R}^d} \sum_i \int_0^1 g_i(x + ty) y_i \psi(y) \, dt \, dy \right) \psi(x) \, dx$$

$$\Rightarrow T(\phi \star \psi) - T(\phi) \int \psi = \dots$$

$$\Rightarrow \int_{\mathbb{R}^d} T(\psi_y)\phi(y) \, dy - T(\phi) \int \psi = \dots$$

Take  $\psi \in C_c^{\infty}(\mathbb{R}^d)$  such that  $\int \psi = 1$ . Then:

$$T(\phi) = \int_{\mathbb{R}^d} \underbrace{T(\psi_x) - \left(\int_{\mathbb{R}^d} \sum_{i=1}^d \int_0^1 g_i(x+ty)y_i\psi(y) dt dy\right)}_{f(x)} \phi(x) dx$$

for all  $\phi \in C_c^{\infty}$ , so  $T = f \in C(\Omega)$ . Thus  $T = f \in C(\Omega)$  and  $\partial_{x_i} T = g_i \in C(\Omega)$ . Then we need to prove that  $f \in C^1(\Omega)$  and  $\partial_{x_i} f = g_i$  (classical derivative). Since

 $f \in W_{loc}^{1,1}$ :

$$f(x+y) - f(x) = \int_0^1 \sum_{i=1}^d g_i(x+ty)y_i dt \quad \forall x, y$$

In particular:

$$\frac{f(x+he_i) - f(x)}{h} = \int_0^1 \frac{1}{h} \sum_{i=1}^d g_i(x+the_i) h \delta_{ij} dt$$
$$= \int_0^1 g_i(x+the_i) dt \xrightarrow{h \to 0} g_i(x)$$

So we get  $\partial_{x_i} f(x) = g_i(x) \in C(\Omega)$  in the classical sense. So  $f \in C^1(\Omega)$ .

**Definition 3.55** (Sobolev Spaces) Let  $\Omega \subseteq \mathbb{R}^d$  be open. We define for  $1 \leq p \leq \infty$ :

$$W^{1,p}(\Omega) = \{ f \in L^p(\Omega) \mid \partial_{x_i} f \in L^p(\Omega) \ \forall i = 1, \dots, d \}$$

$$W^{k,p}(\Omega) = \{ f \in L^p(\Omega) \mid D^{\alpha} f \in L^p(\Omega) \ \forall |\alpha| \le k \}$$

$$W^{k,p}_{loc}(\Omega) = \{ f \in L^p_{loc}(\Omega) \mid D^{\alpha} f \in L^p_{loc}(\Omega) \ \forall |\alpha| \le k \}$$

**Theorem 3.56** (Approximation of  $W_{loc}^{1,p}(\Omega)$  by  $C^{\infty}(\Omega)$ ) Let  $\Omega \subseteq \mathbb{R}^d$  be open, let  $f \in W_{loc}^{1,p}(\Omega)$ . Then there exists  $\{f_n\} \subseteq C^{\infty}(\Omega)$  such that  $f_n \to f$  in  $W_{loc}^{1,p}(\Omega)$ , i.e. for all  $K \subseteq \Omega$  compact:  $\|f_n - f\|_{L^p(K)} + \sum_{i=1}^d \|\partial_{x_i}(f_n - f)\|_{L^p(K)} \to 0$ .

Proof. Case  $\Omega = \mathbb{R}^d$ : Take  $g \in C_c^{\infty}$ ,  $\int g = 1$ ,  $g_{\epsilon}(x) = \epsilon^{-d}g(\epsilon^{-1}x)$ . Then  $g_{\epsilon} \star f \in C_c^{\infty}$ . Since  $f \in L_{loc}^p(\Omega)$  we have  $g_{\epsilon} \star f \to f$  in  $L_{loc}^p$  as  $\epsilon \to 0$ . Moreover  $\partial_{x_i}(g_{\epsilon} \star f) = (g_{\epsilon} \star \partial_{x_i} f) \xrightarrow{\epsilon \to 0} \partial_{x_i} f$  in  $L_{loc}^p$ . Then we can take  $f_n = g_{\frac{1}{n} \star f}$ .

**Remark 3.57** In general, if we want to compute the distributional derivative  $D^{\alpha}f$ , then we can find  $f_n \to f$  in  $D'(\Omega)$  and compute  $D^{\alpha}f_n$ . Then  $D^{\alpha}f_n \to D^{\alpha}f$  in  $D^{\alpha}(\Omega)$ . As an example we can compute  $\nabla |f|$  with  $f \in W^{1,p}_{loc}(\Omega)$ .

$$(\nabla |f|)(x) = \begin{cases} \nabla f(x) & f(x) > 0\\ -\nabla f(x) & f(x) < 0\\ 0 & f(x) = 0 \end{cases}$$

**Theorem 3.58** (Chain Rule) Let  $G \in C^1(\mathbb{R}^d)$  with  $|\nabla G|$  is bounded. Let  $f = (f_i)_{i=1}^d \subseteq W^{1,p}_{loc}(\Omega)$ . Then  $x \mapsto G(f(x)) \in W^{1,p}_{loc}(\Omega)$  and

$$\partial_{x_i} G(f) = \sum_{k=1}^d (\partial_k G)(f) \cdot \partial_{x_i} f_k \quad \text{in } D'(\Omega)$$

Moreover, if  $G(0) \in L^p(\Omega)$  (i.e. either  $|\Omega| < \infty$  or G(0) = 0), then if  $f = (f_i)_{i=1}^d \subseteq W^{1,p}(\Omega)$ , then  $G(f) \in W^{1,p}(\Omega)$ .

*Proof.* Since  $G \in C^1$  we have that G is bounded in any compact set. Moreover  $\|\nabla G\|_{L^{\infty}} < \infty$  implies:

$$|G(f) - G(0)| \leq \|\nabla G\|_{L^{\infty}} |f| \in L^p_{loc}$$

So  $G(f) \in L^p_{loc}$ . Let us compute  $\partial_{x_i} G(f)$ . Let  $\{f^{(n)}\}_{n=1}^{\infty} \subseteq C^{\infty}$  such that  $f^{(n)} \to f$  in  $W^{1,p}_{loc}$ , then:

$$|G(f^{(n)}) - G(f)| \le ||\nabla G||_{L^{\infty}} |f^{(n)} - f| \to 0 \text{ in } L^p_{loc}$$

So  $G(f^{(n)}) \to G(f)$  in  $L^p_{loc}$ , thus  $\partial_{x_i} G(f^{(n)}) \to \partial_{x_i} G(f)$  in  $D'(\Omega)$ . On the other hand, by the standard Chain-Rule for  $C^1$ -functions:

$$\partial_{x_i} G(f^{(k)}) = \sum_{k=1}^d \underbrace{\partial_k G(f^{(k)})}_{\text{(b.d.} \to \partial_k G(f))} \underbrace{\partial_i f_k^{(n)}}_{\text{($\to \partial_i f_k \text{ in } L^p(\Omega))}} \to \sum_{k=1}^d \partial_k G(f) \partial_i f_k \text{ in } L^p_{loc}(\Omega)$$

Thus

$$\partial_{x_i} G(f) = \sum_{k=1}^d \underbrace{\partial_k G(f)}_{\in L^{\infty}} \underbrace{\partial_i f_k}_{\in L^p_{loc}} \in L^p_{loc} \text{ in } D'(\Omega)$$

So  $G(f) \in W^{1,p}_{loc}(\Omega)$ . Aussume that  $G(0) \in L^p(\Omega)$  (i.e.  $|\Omega| < \infty$  or G(0) = 0). If  $f \in W^{1,p}(\Omega)$ , then  $G(f) \in W^{1,p}(\Omega)$  since

$$|G(f) - G(0)| \leq \|\nabla G\|_{L^{\infty}} |f| \in L^p \Rightarrow G(f) \in L^p$$

and

$$\partial_{x_i} G(f) = \sum_k \underbrace{\partial_k G}_{\in L^{\infty}} \underbrace{\partial_i f_k}_{\in L^p} \in L^p \Rightarrow G(f) \in W^{1,p}(\Omega)$$

**Theorem 3.59** (Derivative of absolute value) Let  $\Omega \subseteq \mathbb{R}^d$  be open. Let  $f \in W^{1,p}(\Omega)$ . Then  $|f| \in W^{1,p}(\Omega)$  and if f is real-valued:

$$(\nabla |f|)(x) = \begin{cases} \nabla f(x) & f(x) > 0\\ -\nabla f(x) & f(x) < 0\\ 0 & f(x) = 0 \end{cases}$$

*Proof.* Exercise. Hint: Use the Chain-Rule for  $G_{\epsilon}(x)=\sqrt{\epsilon^2+x^2}-\epsilon \to |x|$  as  $\epsilon \to 0$ 

#### 3.4 Distribution vs. measures

Let  $\mu$  be a Borel measure in  $\mathbb{R}^d$  s.t.  $\mu(K) < \infty$  for all compact  $K \subseteq \mathbb{R}^d$ . Then define

$$T: \ D(\mathbb{R}^d) \longrightarrow \mathbb{C}$$
 
$$\phi \longmapsto \int_{\mathbb{R}^d} \phi(x) \, d\mu(x) \quad \forall \phi \in C_c^{\infty}$$

 $\rightarrow$  T is a distribution since if  $\phi_n \rightarrow \phi$  in  $D(\Omega)$ , then

$$|T(\phi_n) - T(\phi)| \leqslant \int_{\mathbb{R}^d} |\phi_n - \phi| \, d\mu(x) \leqslant \|\phi_n - \phi\|_{L^{\infty}} \left( \int_K d\mu \right) \xrightarrow{n \to \infty} 0$$

**Example 3.60**  $\partial_0$  in  $D'(\mathbb{R}^d)$  is a Borel probability measure.

**Theorem 3.61** (Positive distributions are measures) Let  $\Omega \subseteq \mathbb{R}^d$  be open, let  $T \in D'(\Omega)$ . Assume  $T \geq 0$ , i.e.  $T(\phi) \geq 0$  for all  $\phi \in D(\Omega)$  satisfying  $\phi(x) \geq 0$  for all x. Then there is a Borel positive measure  $\mu$  on  $\Omega$  such that  $\mu(K) < \infty$  for all  $K \subseteq \Omega$  compact and:

$$T(\phi) = \int_{\Omega} \phi(x) d\mu(x) \quad \forall \phi \in D^{(\Omega)}$$

*Proof.* See Lieb-Loss Analysis. Sketch: If  $O \subseteq \mathbb{R}^d$  is open, then

$$\mu(O) = \sup\{T(\phi) \mid \phi \in D(\Omega), 0 \leqslant \phi \leqslant 1, \operatorname{supp} \phi \subseteq O\}$$

For all  $A \subseteq \Omega$  (not necessarily open),

$$\mu(A) = \inf{\{\mu(O) \mid O \text{ open}, A \subseteq O\}}$$

The mapping  $\mu: 2^{\Omega} \to [0, \infty]$  is an outer measure, i.e.

- 1.  $\mu(\emptyset) = 0$
- 2.  $\mu(A) \leq \mu(B)$  if  $A \subseteq B$
- 3.  $\mu\left(\bigcup_{i=1}^{\infty} A_i\right) \leqslant \sum_{i=1}^{\infty} \mu(A_i)$

From the outer measure we can find a  $\sigma$ -algebra  $\Sigma$  and  $\mu$  is a measure on  $\Omega$  s.t. E is measurable iff

$$\mu(E) = \mu(E \cap A) + \mu(E \cap A^{\complement}).$$

So all open sets are measurable, thus outer regularity (by def  $\mu(A) = \inf\{\mu(O) \mid O \text{ open } \supseteq A\}$ , so inner regularity  $\mu(A) = \sup\{\mu(K) \mid K \text{ compact } \subseteq A\}$ .

**Exercise 3.62** (E 4.1) Prove that if  $T_n \to T$  in  $D'(\mathbb{R}^d)$ , then  $D^{\alpha}T_n \to D^{\alpha}T$  in  $D^{\alpha}(\mathbb{R}^d)$  for all  $\alpha \in \mathbb{N}^d$ .

My Solution. See Goodnotes.

**Exercise 3.63** (E 4.2)

My Solution. See Goodnotes.

**Exercise 3.64** (E 4.3)  $f \in L^1(\mathbb{R}^d)$ ,  $\int f = 1$   $f_{\epsilon}(x) = \epsilon^{-d} f(\epsilon^{-1} x)$ . Then  $f_{\epsilon} \to \delta_0$  in  $D'(\mathbb{R}^d)$ .

My Solution. See Goodnotes.

**Exercise 3.65** (E 4.4) Let  $\{f_n\} \subseteq L^1$ , supp  $f \subseteq B(0,1), f_n \to f$  in  $L^1$ . Prove for all  $g \in C_c^{\infty}$  that  $f_n \star g \to f \star g$  in  $D(\mathbb{R}^d)$ .

Solution. Since  $f_n \in L^1$ , supp  $f \subseteq B(0,1)$  and  $g \in C_c^{\infty}$  we have  $f_n \star g \in C_c^{\infty}$  and

$$\operatorname{supp}(f_n \star g) \subseteq (\operatorname{supp} g) + \overline{B(0,1)} = K.$$

Since  $f_n \to f$  in  $L^1$  there is a subsequence  $f_{n_k} \to f$  almost everywhere, so f supp in  $\overline{B(0,1)}$ , so  $f \star g \in C_c^{\infty}$ , supp $(f \star g) \subseteq K$ . We have:

$$|f_n \star g(x) - f \star g(x)| = \left| \int_{\mathbb{R}^d} (f_n(y) - f(y))g(x - y) \, dy \right|$$

$$\leq \int_{\mathbb{R}^d} |f_n(y) - f(y)||g(x - y)| \, dy$$

$$\leq ||g||_{L^{\infty}} ||f_n - f||_{L^1} \xrightarrow{n \to \infty} 0$$

thus  $||f_n \star g - f \star g||_{L^{\infty}} \to 0$ . Similary:

$$||D^{\alpha}(f_n \star g) - D^{\alpha}(f \star g)||_{L^{\infty}} = ||f_n \star \underbrace{(D^{\alpha}g)}_{\in C^{\infty}_{c}} - f \star (D^{\alpha}g)||_{L^{\infty}} \xrightarrow{n \to \infty} 0$$

for all  $\alpha \in \mathbb{N}^d$ , so  $f_n \star g \to f \star g$  in  $D(\mathbb{R}^d)$ .

**Exercise 3.66** (E 4.5) Compute distributional derivatives f', f'' of f(x) = x|x-1|.

Solution. We prove 
$$f'(x) = g(x) := \begin{cases} 2x - 1 & x > 1 \\ 1 - 2x & x < 1 \end{cases}$$
. Take  $\phi \in C_c^{\infty}(\mathbb{R}^d)$ .

$$-f'(\phi) = -\int_{\mathbb{R}^d} f \phi' \, dy$$

$$= -\int_{-\infty}^1 f \phi' \, dy - \int_1^{\infty} f \phi' \, dy$$

$$= [f\phi]_{-\infty}^1 - \int_{-\infty}^1 f' \phi \, dy + [f\phi]_1^{\infty} - \int_1^{\infty} f' \phi \, dy$$

$$= [f\phi]_{-\infty}^1 - \int_{-\infty}^1 g \phi \, dy + [f\phi]_1^{\infty} - \int_1^{\infty} g \phi \, dy$$

$$= f(1-)\phi(1) - f(1+)\phi(1) - \int_{\mathbb{R}^d} g \phi \, dy$$

$$= 0 - \int_{\mathbb{R}^d} g \phi \, dy$$

Now we compute f'' = g'. Take  $\phi \in C_c^{\infty}(\mathbb{R}^d)$ :

$$-(g')(\phi) = \int_{\mathbb{R}^d} g\phi' \, dy$$

$$= \int_{-\infty}^1 g\phi' \, dy + \int_1^{\infty} g\phi' \, dy$$

$$= [g(1-) - g(1+)]\phi(1) - \int_{-\infty}^1 g'\phi \, dy - \int_1^{\infty} g'\phi \, dy$$

$$= [g(1-) - g(1+)]\phi(1) - \int_{-\infty}^1 (-2)\phi \, dy - \int_1^{\infty} 2\phi \, dy$$

$$= -2\phi(1) + \int_{-\infty}^{\infty} [2\mathbb{1}_{(-\infty,1)}(x) - 2\mathbb{1}_{(1,\infty)}(x)]\phi(x) \, dx$$

$$= -2\delta_1(\phi) + \int_{-\infty}^{\infty} [2\mathbb{1}_{(-\infty,1)}(x) - 2\mathbb{1}_{(1,\infty)}(x)]\phi(x) \, dx$$

$$\Rightarrow g' = \underbrace{2\delta_1}_{\notin L^1_{loc}} - \underbrace{2\mathbb{1}_{(-\infty,1)} + 2\mathbb{1}_{(1,\infty)}}_{\int L^1_{loc}}$$

## Chapter 4

## Weak Solutions and Regularity

**Definition 4.1** Consider the linear PDE:

$$\sum_{\alpha} c_{\alpha} D^{\alpha} u(x) = F(x), \quad c_{\alpha} \text{ constant}, F \text{ given}$$

A function u is called a weak solution (a distributional solution) if

$$\sum_{\alpha} c_{\alpha} D^{\alpha} u = F \quad \text{in } D'(\Omega).$$

Namely,

$$\sum_{\alpha} (-1)^{|\alpha|} c_{\alpha} \int_{\Omega} u D^{\alpha} \phi = \int_{\Omega} F \phi, \quad \forall \phi \in D(\Omega)$$

Regularity: Given some condition on the data F, what can we say about the smoothness of u? Can we say that the equation holds in the classical sense? We derived G (the solution of the Laplace Equation) before in two ways:

- 1.  $\Delta G(x) = 0$  for all  $x \neq 0$ , assuming G(x) = G(|x|) and  $d \geq 2$
- 2.  $\hat{G}(k) = \frac{1}{|2\pi k|^2}$  for  $d \ge 3$

**Theorem 4.2** For all  $d \ge 1$  we have  $G \in L^1_{loc}(\mathbb{R}^d)$  and  $-\Delta G = \delta_0$  in  $D'(\mathbb{R}^d)$ .

*Proof.* Take  $\phi \in D(\mathbb{R}^d)$ . Then:

$$(-\Delta G_y)(\phi) = G_y(-\Delta \phi) = \int_{\mathbb{R}^d} G_y(x)(-\Delta \phi)(x) dx$$
$$= \int_{\mathbb{R}^d} G(y - x)(-\Delta \phi)(x) dx$$
$$= [G \star (-\Delta \phi)](y) = (-\Delta)(G \star \phi)(y)$$

Recall for all  $f \in C^2$ ,  $-\Delta(G \star f) = f$  pointwise. So we can conclude  $-\Delta G_y = \delta_y$  in  $D'(\mathbb{R}^d)$ .

**Remark 4.3** In 
$$d = 1$$
,  $G(x) = -\frac{1}{2}|x|$ , so  $-G'(x) = \text{sgn}(x)/2$ , so  $-G''(x) = \delta_0$ .

Remark 4.4 Formally:

$$-\Delta(G_y \star \phi) = (-\Delta G_y) \star \phi(x) = (\delta_0 \star \phi)(x) = \int \delta_0(y)\phi(x-y) \, dy = \delta_0(\phi(x-\bullet))$$

**Theorem 4.5** (Poisson's equation with  $L^1_{loc}$  data) Let  $f \in L^1_{loc}(\mathbb{R}^d)$  s.t.  $\omega_d f \in L^1(\mathbb{R}^d)$  where

$$\omega_d(x) = \begin{cases} 1 + |x| & d = 1\\ \log(1 + |x|) & d = 2\\ \frac{1}{1 + |x|^{d-2}} & d \geqslant 3, \end{cases}$$

then  $u(x)=(G\star f)(x)\in L^1_{loc}(\mathbb{R}^d).$  Moreover  $-\Delta u=f$  in  $D'(\mathbb{R}^d).$  In fact,  $u\in W^{1,1}_{loc}(\mathbb{R}^d)$  and:

$$\partial_{x_i} u(x) = (\partial_{x_i} G) \star f(x) = \int_{\mathbb{R}^d} (\partial_{x_i} G)(x - y) f(y) dy$$

**Remark 4.6** We can also replace  $\mathbb{R}^d$  by  $\Omega$  and get  $-\Delta u = f$  in  $D'(\Omega)$ .

Proof of Theorem 4.5. First we check that  $u \in L^1_{loc}$ . Take any Ball  $B(0,R) \subseteq \mathbb{R}^d$ , prove  $\int_{\mathbb{R}} |u| dy < \infty$ . We have

$$\begin{split} \int_{B} |u| \, dy &= \int_{B} \left| \int_{\mathbb{R}^{d}} G(x - y) f(y) \, dy \right| \, dx \\ &\leq \int_{B} \int_{\mathbb{R}^{d}} |G(x - y)| |f(y)| \, dy \, dx \\ &= \int_{\mathbb{R}^{d}} \left( \int_{B} |G(x - y)| \, dx \right) |f(y)| \, dy \end{split}$$

If  $y \notin B = B(0, R)$ , then by Newtons's theorem (Mean-value theorem):

$$\int_{B(0,R)} |G(x-y)| \, dx = |B(0,r)| |G(y)| \le C|B|\omega_d(y)$$

If  $y \in B$ , then  $|y| \le R$ , so  $|x - y| \le 2R$  if  $x \in B$ .

$$\int_{B(0,R)} |G(x-y)| \, dx \le \int_{|x-y| \le 2R} |G(x-y)| \, dx = \int_{|z| \le 2R} |G(z)| \, dz \le c_R$$

as  $G \in L^1_{loc}$ . Thus

$$\int_{B} |u| \, dy \leqslant c_{B} \int_{|y| \geqslant R} \omega_{d}(y) |f(y)| \, dy + c_{B} \int_{|y| \leqslant R} |f(y)| \, dy < \infty$$

Let us prove  $-\Delta u = f$  in  $D'(\mathbb{R}^d)$ . Take  $\phi \in D(\mathbb{R}^d)$ . Then:

$$(-\Delta u)(\phi) = u(-\Delta \phi)$$

$$= \int_{\mathbb{R}^d} u(x)(-\Delta \phi)(x) dx$$

$$= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} G(x-y)f(y)(-\Delta \phi)(x) dx dy$$

$$= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} G(y-x)f(y)(-\Delta \phi)(x) dx dy$$

$$= \int_{\mathbb{R}^d} [G \star (-\Delta \phi)](y)f(y) dy$$

$$= \int_{\mathbb{R}^d} -\Delta (G \star \phi)(y)f(y) dy$$

$$= \int_{\mathbb{R}^d} \phi(y)f(y) dy$$

So  $-\Delta u = f$  in  $D'(\mathbb{R}^d)$ . We check that  $\partial_i G \star f \in L^1_{loc}(\mathbb{R}^d)$ . Note that

$$|\hat{\sigma}_i G(x)| \le c \frac{1}{|x|^{d-1}} \in L^1_{loc}(\mathbb{R}^d)$$

and

$$\int_{B(0,R)} |\partial_i G(x-y)| dx \leq \begin{cases} C_r \omega_d(y) & |y| \geq R \\ C_r & |y| \leq R \end{cases}$$

So  $\int_{B(0,R)} |(\partial_i G \star f)|(y) < \infty$  for all R > 0. For all  $\phi \in D(\mathbb{R}^d)$ :

$$-(\partial_{i}u)(\phi) = u(\partial_{i}\phi) = \int_{\mathbb{R}^{d}} u(x)\partial_{i}\phi(x) dx$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} G(x-y)f(y)\partial_{i}\phi(x) dx dy$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} G(y-x)f(y)\partial_{i}\phi(x) dx dy$$

$$= \int_{\mathbb{R}^{d}} (G \star \partial_{i}^{y}\phi)(y)f(y) dy$$

$$= \int_{\mathbb{R}^{d}} (\partial_{i}^{y}G \star \phi)(y)f(y) dy$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \partial_{i}^{y}G(y-x)f(y)\phi(x) dx dy$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} -(\partial_{i}G)(x-y)f(y)\phi(x) dx dy$$

$$= -\int_{\mathbb{R}^{d}} (\partial_{i}G \star f)(x)\phi(x) dx$$

So  $\partial_i u = \partial_i G \star f \in L^1_{loc}(\mathbb{R}^d)$ . Thus  $u \in L^1_{loc}$ ,  $\partial_i u \in L^1_{loc}$  for all i. So  $u \in W^{1,1}_{loc}(\mathbb{R}^d)$ .  $\blacksquare$  Regularity: We consider the Laplace Equation  $\Delta u = 0$  in  $\mathbb{R}^d$ .

**Lemma 4.7** (Weyl) If  $\Omega \subseteq \mathbb{R}^d$  open and  $T \in D'(\Omega)$  s.t.  $\Delta T = 0$  in  $D'(\Omega)$ , then:  $T = f \in C^{\infty}(\Omega)$  and f is a harmonic function.

Proof.  $(\Omega = \mathbb{R}^d)$ . Take  $\phi \in C_c^{\infty}$ , then  $y \mapsto T(\phi_y) = T(\phi(-y))$  is  $C^{\infty}$  and  $\Delta_y T(\phi_y) = T((\Delta\phi)_y) = (\Delta T)(\phi_y) = 0$ . Take  $g \in C_c^{\infty}$ , g is radial. Then:

$$\int_{\mathbb{R}^d} T(\phi_y) g(y) \, dy \stackrel{\text{(exercise)}}{=} \int_{\mathbb{R}^d} T(\phi) g(y) \, dy = T(\phi) \left( \int_{\mathbb{R}^d} g \, dy \right)$$

**Exercise 4.8** Let  $f \in C^{\infty}(\mathbb{R}^d)$  be a harmonic function and  $g \in C_c^{\infty}$ , g is radial. Then:

$$\int_{\mathbb{R}^d} f(x)g(x) \, dx = f(0) \left( \int_{\mathbb{R}^d} g(x) \, dx \right)$$

On the other hand:

$$\int_{\mathbb{R}^d} T(\phi_y) g(y) \, dy = T(\phi \star g) = T(g \star \phi) = \int_{\mathbb{R}^d} T(g_y) \phi(y) \, dy$$

Take  $\int_{\mathbb{R}^d} g \, dy = 1$ , then:

$$T(\phi) = \int_{\mathbb{R}^d} T(g_y)\phi(y) \ dy$$

For all  $\phi \in C_c^{\infty}$ . Then  $T = T(g_y) \in C^{\infty}$ 

Now lets regard the Poisson Equation  $-\Delta u = f$  in  $D'(\mathbb{R}^d)$ .

**Remark 4.9** Any solution has the form  $u = G \star g + h$  where  $\Delta h = 0$  in  $D'(\mathbb{R}^d)$ . By Weyls Lemma (4.7),  $h \in C^{\infty}$ , then we only need to consider the regularity of  $G \star f$ .

Remark 4.10 The regularity is a local question, namely if we write

$$f = f_1 + f_2 = f\phi + f(1 - \phi),$$

where  $\phi = 1$  in a ball B and  $\phi \in C_c^{\infty}$ .

Then  $G \star f = G \star f_1 + G \star f_2$ . Here  $f_2 = f(1 - \phi) = 0$  in B. With Weyls Lemma (4.7),  $G \star f_2 \in C^{\infty}$ .

**Theorem 4.11** (Low Regularity of Poisson Equation) Lef  $f \in L^p(\mathbb{R}^d)$  and compactly supported. Then

- a) If  $p \ge 1$ , then
  - $G \star f \in C^1(\mathbb{R}^d)$  if d = 1.
  - $G \star f \in L^q_{loc}(\mathbb{R}^d)$  for any  $q < \infty$  if d = 2.
  - $G \star f \in L^q_{loc}(\mathbb{R}^d)$  for  $q < \frac{d}{d-2}$  if  $d \ge 3$ .
- b) If  $\frac{d}{2} , then <math>G \star f \in C^{0,\alpha}_{loc}(\mathbb{R}^d)$  for all  $0 < \alpha < 2 \frac{d}{p}$ , i.e.

$$|(G \star f)(x) - (G \star f)(y)| \le C_k |x - y|^{\alpha} \quad \forall x, y \in K$$

with K compact in  $\mathbb{R}^d$ .

c) If p > d, then  $G \star f \in C^{1,\alpha}_{loc}(\mathbb{R}^d)$  for all  $0 < \alpha < 1 - \frac{d}{p}$ .

where G is den fundamental solution of the laplace equation.

**Example 4.12** Let r = |x|

$$u(x) = \omega(r) = \log(|\log(r)|)$$

if  $0 < r < \frac{1}{2}$ , so u is well-defined in  $B = B(0, \frac{1}{2})$ . We conclude:

$$-\Delta_{\mathbb{R}^3} u(x) = -\omega''(r) - \frac{2\omega'(r)}{r} = f(x) \in L^{\frac{3}{2}(B)}$$

But the Theorem (b) tells us that if  $f \in L^{\frac{3}{2}}$  then u is continuous but  $u \notin C(B)$ .

Proof of theorem 4.11. a) (p=1) Why is  $G\star f\in L^q_{loc}$ ? Recall from the proof of Youngs inequality:

$$\begin{split} |(G\star f)(x)| &= \bigg|\int_{\mathbb{R}^d} G(x-y)f(y)\,dy\bigg| \\ \text{(H\"{o}lder)} &= \left(\int_{\mathbb{R}^d} |G(x-y)|^q |f(y)|\,yd\right)^{\frac{1}{q}} \left(\int_{\mathbb{R}^d} |f(y)|\,dy\right)^{\frac{1}{q'}} \end{split}$$

Where  $\frac{1}{q} + \frac{1}{q'} = 1$ . Then:

$$|(G \star f)(x)|^q \leqslant C \int_{\mathbb{R}^d} |G(x-y)|^q |f(y)| \, dy$$

For any Ball  $B = B(0, R) \subseteq \mathbb{R}^d$ :

$$\int_{B} |G \star f(x)|^{q} dx \leq C \int_{B} \left( \int_{\mathbb{R}^{d}} |G(x-y)|^{q} |f(y)| dy \right) dx$$
$$= C \int_{\mathbb{R}^{d}} \left( \int_{B} |G(x-y)|^{q} dx \right) |f(y)| dy$$

 $G(x) \sim \frac{1}{|x|^{d-2}} \rightsquigarrow |G|^q = \frac{1}{|x|^{(d-2)q}} \in L^1_{loc}(\mathbb{R}^d)$  if  $(d-2)q < 2 \Leftrightarrow q < \frac{d}{d-2}$ . Here,  $y \in \operatorname{supp} f$ , so  $|y| \leqslant R_1$ , then  $|x-y| \leqslant R + R$  if  $|x| \leqslant R$ . With  $y \in \operatorname{supp} f$ , this implies:

$$\int_{B(0,R)} |G(x-y)|^q \, dx \le \int_{|z| \le R+R_1} |G(z)|^q \, dz < \infty$$

b)

$$(G \star f)(x) - (G \star f)(y) = \int_{\mathbb{R}^d} (G(x-z) - G(y-z))f(z) dz$$

So

$$|G\star f(x)-(G\star f)(y)|\leqslant C\int_{\mathbb{R}^d}\left|\frac{1}{|x-z|^{d-2}}-\frac{1}{|y-z|^{d-2}}\right||f(z)|\,dz$$

for all  $x, y \in \mathbb{R}^d$ :

$$\begin{split} \left| \frac{1}{|x|^{d-2}} - \frac{1}{|y|^{d-2}} \right| &= \left| \left( \frac{1}{|x|} - \frac{1}{|y|} \right) \left( \frac{1}{|x|^{d-3}} + \dots + \frac{1}{|y|^{d-3}} \right) \right| \\ &\leqslant C \frac{||x| - |y||}{|x||y|} \max \left( \frac{1}{|x|^{d-3}}, \frac{1}{|y|^{d-3}} \right) \\ &= C \frac{|x - y|}{|x||y|} \max \left( \frac{1}{|x|^{d-3}}, \frac{1}{|y|^{d-3}} \right) \\ &\leqslant C \max(|x|, |y|)^{1-\alpha} \frac{|x - y|^{\alpha}}{|x||y|} \max \left( \frac{1}{|x|^{d-3}}, \frac{1}{|y|^{d-3}} \right) \end{split}$$

as

$$||x| - |y|| \le \min(|x - y|, \max(|x|, |y|)) \le |x - y|^{\alpha} \max(|x|, |y|)^{1 - \alpha}$$

Thus, for all  $x, y \in \mathbb{R}^d$ :

$$\left| \frac{1}{|x|^{d-2}} - \frac{1}{|y|^{d-2}} \right| \leqslant C|x - y|^{\alpha} \frac{\max(|x|, |y|)^{1-\alpha}}{|x||y|} \max\left(\frac{1}{|x|^{d-3}}, \frac{1}{|y|^{d-3}}\right)$$
$$\leqslant C|x - y|^{\alpha} \max\left(\frac{1}{|x|^{d-2+\alpha}}, \frac{1}{|y|^{d-2+\alpha}}\right)$$

So we get

$$\left| \frac{1}{|x-y|^{d-2}} - \frac{1}{|y-z|^{d-2}} \right| \le C|x-y|^{\alpha} \max\left( \frac{1}{|x-z|^{d-2+\alpha}}, \frac{1}{|y-z|^{d-2+\alpha}} \right)$$

Therefore:

$$\begin{split} |G \star f(x) - G \star f(y)| \\ &\leqslant C \int_{\mathbb{R}^d} |x - y|^{\alpha} \max \left( \frac{1}{|x - z|^{d - 2 + \alpha}}, \frac{1}{|y - z|^{d - 2 + \alpha}} \right) |f(z)| \, dz \\ &\leqslant C |x - y|^{\alpha} \left( \sup_{\xi \in \mathbb{R}^d} \int_{\mathbb{R}^d} \frac{1}{|\xi - z|^{d - 2 + \alpha}} |f(z)| \, dz \right) \end{split}$$

Claim: If  $f \in L^p(\mathbb{R}^d)$  is compactly supported,  $d \ge p > \frac{d}{2}$ , then:

$$\sup_{\xi \in \mathbb{R}^d} \int_{\mathbb{R}^d} \frac{1}{|\xi - z|^{d-2+d}} |f(z)| \ dz < \infty$$

for all  $0 < \alpha < 2 - \frac{d}{p}$ . Assume supp  $f \subseteq \overline{B(0, R_1)}$ . Consider 2 cases:

• If  $|\xi| > 2R_1$ , then:  $|\xi - z| \ge R_1$  for all  $z \in B(0, R_1)$ . Hence:

$$\int_{\mathbb{R}^d} \frac{1}{|\xi - z|^{d-2+\alpha}} |f(z)| \, dz \leqslant \frac{1}{R_1^{d-2+\alpha}} ||f||_{L^1} < \infty$$

• If  $|\xi| \leq 2R_1$ , then:  $|\xi - z| \leq 3R_1$  for all  $z \in B(0, R_1)$ :

$$\begin{split} \int_{\mathbb{R}^{d}} \frac{1}{|\xi - z|^{d - 2 + \alpha}} |f(z)| \, dz & \leq \int_{|\xi - z|} \frac{1}{|\xi - z|^{d - 2 + \alpha}} |f(z)| \, dz \\ \text{(H\"{o}lder)}, \left(\frac{1}{p} + \frac{1}{q} = 1\right) & \leq \left(\int_{\mathbb{R}^{d}} |f(z)|^{p} \, dz\right)^{\frac{1}{p}} \\ & \cdot \left(\int_{|\xi - z|} \frac{1}{|\xi - z|^{(d - 2 + \alpha)q}}\right)^{\frac{1}{q}} \\ & = \|f\|_{L^{p}} \left(\int_{|z| \leqslant 3R_{1}} \frac{1}{|z|^{(d - 2 + \alpha)q}} \, dz\right)^{\frac{1}{q}} < \infty \end{split}$$

c)  $(d \ge 3)$  We already know:

$$\partial_i(G \star f) = (\partial_i G \star f) \in L^1_{loc}(\mathbb{R}^d)$$

as  $\omega_d f \in L^1(\mathbb{R}^d)$ . We claim that  $\partial_i G \star f \in C^{0,\alpha}(\mathbb{R}^d)$ . So  $G \star f \in C^{1,\alpha}(\mathbb{R}^d)$  by the equivalence between the classical and the distributional derivatives. Exercise. Hint:

$$|\partial_i G \star f(x) - \partial_i G \star f(y)| \le \int_{\mathbb{R}^d} |\partial_i G(x - z) - \partial_i G(y - z)||f(z)| dz,$$

$$\partial_i G(x) = \frac{-x_i}{d|B_1||x|^d}$$
.  $\rightsquigarrow$  Need to estimate  $|\partial_i G(x) - \partial_i G(y)| \leq C|x - y|^{\alpha}$ .

**Theorem 4.13** (High regularity for Poisson's equation) Let  $f \in C^{0,\alpha}(\mathbb{R}^d)$ ,  $0 < \alpha < 1$  be compactly supported. Then  $G \star f \in C^{2,\alpha}(\mathbb{R}^d)$ .

**Remark 4.14**  $(-\Delta u = f)$  and  $f \in C(\mathbb{R}^d)$  does not imply that  $u \in C^2(\mathbb{R}^d)$ . (exercise)

**Remark 4.15** If  $f \in C^{k,\alpha}(\mathbb{R}^d)$ ,  $k \in \{0,1,\dots\}$ ,  $0 < \alpha < 1$  is compactly supported, then  $G \star f \in C^{k+2,\alpha}(\mathbb{R}^d)$ . This more general statement is a consequence of the theorem since

$$D^{\beta}(G \star f) = G \star \underbrace{(D^{\beta}f)}_{\in C^{0,\alpha}}$$

for all  $\beta = (\beta_1, \dots, \beta_d), |\beta| \leq k$ .

Proof of theorem 4.13. Since  $f \in L^p$  for all  $p \leq \infty$  by the low regularity (4.11) we have  $G \star f \in C^{1,\alpha}$  and  $\partial_i(G \star f) = \partial_i G \star f$  in the classical sense. We will compute the distributional derivatives  $\partial_i \partial_j (G \star f)$  and prove that they are Hölder continuous. Compute  $\partial_j \partial_i (G \star f)$ : For all  $\phi \in C_c^{\infty}(\mathbb{R}^d)$  we have

$$-(\partial_{j}\partial_{i}G \star f)(\phi) = \underbrace{(\partial_{i}(G \star f))}_{\in C}(\partial_{j}\phi)$$

$$= \int_{\mathbb{R}^{d}} ((\partial_{i}G) \star f)(x)\partial_{j}\phi(x) dx$$

$$= \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \partial_{i}G(x - y)f(y)\partial_{j}\phi(x) dx dy$$

$$= \int_{\mathbb{R}^{d}} f(y) \left[ \int_{\mathbb{R}^{d}} \partial_{i}G(x - y)\partial\phi(x) x \right] dy$$

$$\stackrel{?}{=} \int_{\mathbb{R}^{d}} \Box \phi(y) dy$$

Recall:  $\partial_i G(x) = \frac{-x_i}{d|B_1||x|^d}$ ,  $\partial_i \partial_j G(x) = \frac{1}{|B_1|} \left[ \frac{x_i x_j}{|x|^2} - \frac{\delta_{ij}}{d} \right] \frac{1}{|x|^d}$ . We have:

$$\int_{\mathbb{R}^d} \partial_i G(x - y) \partial_j \phi(x) \, dx = \lim_{\epsilon \to 0^+} \int_{|x - y| \ge \epsilon} \partial_i G(x - y) \partial_j \phi(x) \, dx$$

By dominated convergence we have  $|\partial_i G(x-y)\partial_j \phi(x)| \in L^1(dx)$ . By the Gauss-Green-Theorem (2.2) for all  $\epsilon > 0$ :

$$\int_{|x-y| \ge \epsilon} \partial_i G(x-y) \partial_j \phi(x) dx$$

$$= \int_{\partial B(y,\epsilon)} \partial_i G(x-y) \phi(x) \omega_j dS(x) - \int_{|x-y| \ge \epsilon} \partial_j \partial_i G(x-y) \phi(x) dx$$

Where  $\omega = \frac{x-y}{|x-y|}$ . For the boundary term:

$$\begin{split} -\int_{\partial B(y,\epsilon)} \partial_i G(x-y) \phi(x) \omega_j \, dS(x) &= -\epsilon^{d-1} \int_{\partial B(0,1)} \partial_i G(\epsilon \omega) \phi(y+\epsilon \omega) \omega_j \, d\omega \\ (\star) &= \int_{\partial B(0,1)} \frac{1}{d|B_1|} \omega_i \omega_j \phi(y+\epsilon \omega) \, d\omega \\ &\xrightarrow{\epsilon \to 0} \int_{\partial B(0,1)} \frac{1}{d|B_1|} \; \omega_i \omega_j \phi(y) \, d\omega \\ &= \frac{1}{d} \delta_{i,j} \phi(y) \end{split}$$

$$(\star) \ \ \partial_i G(x) = \tfrac{-x_i}{d|B_1||x|^d} \ , \ \text{so} \ \partial_i G(\epsilon \omega) = -\tfrac{-\omega_i}{d|B_1|} \tfrac{1}{\epsilon^{d-1}}. \ \text{for all} \ |\omega| \ = 1.$$

Now we split:

$$\begin{split} &-\int_{|x-y|} \underset{\geqslant \epsilon}{\partial_i \partial_j G(x-y) \phi(x)} \, dx \\ &= -\int_{|x-y|} \underset{\geqslant 1}{\partial_i \partial_j G(x-y) \phi(x)} \, dx - \int_{1 \geqslant |x-y| \geqslant \epsilon} \partial_i \partial_j G(x-y) \phi(x) \, dx \end{split}$$

The key observation is:  $\int_{\partial B(0,r)} \partial_i \partial_j G(x) dx = 0$  since

$$\partial_i \partial_j G(x) = \frac{1}{|B_1|} \left( \omega_i \omega_j - \frac{\partial_{ij}}{d} \right) \frac{1}{|x|^d},$$

 $\omega = \frac{x}{|x|}$ . For example if i = 1, j = 2, r = 1:

$$\int_{\partial B(0,1)} \partial_1 \partial_2 G(x) \, dS(x) = \frac{1}{|B_1|} \int_{\partial B(0,1)} \omega_1 \omega_2 \, d\omega,$$

 $\partial B(0,1) = \{\omega \mid |\omega| = 1\}$ . Consider:  $\omega \mapsto R\omega, (\omega_1, \dots, \omega_d) \mapsto (-\omega_1, \omega_2, \dots, \omega_d)$ . Then

$$-\int_{1\geqslant |x-y|\geqslant \epsilon} \partial_i \partial_j G(x-y)\phi(y) \, dx = 0.$$

So

$$-\int_{1\geqslant |x-y|\geqslant \epsilon} \partial_i \partial_j G(x-y)\phi(x) \, dx = -\int_{1\geqslant |x-y|\geqslant \epsilon} \partial_i \partial_j G(x-y)(\phi(x)-\phi(y)) \, dx$$

In summary:

$$\begin{split} \partial_i \partial_j (G \star f)(\phi) &= \int_{\mathbb{R}^d} f(y) \left( \int_{\mathbb{R}^d} \partial_i G(x-y) \partial_j \phi(x) \, dx \right) \, dy \\ &= \int_{\mathbb{R}^d} f(y) \frac{1}{d} \partial_{ij} \phi(y) \, dy \\ &- \int_{\mathbb{R}^d} f(y) \left( \int_{|x-y|>1} \partial_i \partial_j G(x-y) \phi(x) \, dx \right) \\ &- \int_{\mathbb{R}^d} \left[ \lim_{\epsilon \to 0} \int_{1 \geqslant |x-y| \geqslant \epsilon} \underbrace{\frac{\partial_i \partial_j G(x-y) (\phi(x)-\phi(y)) \, dx}{\sum_{|x-y|^d} |x-y| \|\nabla \phi\|_L x \leqslant \frac{C}{|x-y|^{d-1}} \epsilon L^1_{loc}(dx) \forall y} \right] \, dy \\ &= \int_{\mathbb{R}^d} \frac{\delta_{ij}}{d} f(x) \phi(x) \, dx - \int_{\mathbb{R}^d} \phi(x) \left( \int_{|x-y|>1} \partial_i \partial_j G(x-y) f(y) \, dy \right) \, dx \\ &- \int_{\mathbb{R}^d} \phi(x) \left[ \int_{|x-y|\leqslant 1} \partial_i \partial_j G(x-y) (f(y)-f(x)) \, dy \right] \, dx \end{split}$$

Conclusion:

$$\partial_i \partial_j (G \star f)(x) = -\frac{\delta_{ij}}{d} f(x) + \int_{|x-y|>1} \partial_i \partial_j G(x-y) f(y) \, dy$$
$$+ \int_{|x-y| \le 1} \partial_i \partial_j G(x-y) \left( f(y) - f(x) \right) \, dy$$

The first term  $f \in C^{0,\alpha}$ . The second term is also at least  $C^{0,\alpha}$  since  $\partial_i \partial_j G(x)$  is smooth as |x| > 1. We need to prove that the thirt term

$$W_{ij}(x) = \int_{|x-y| \le 1} \partial_i \partial_j G(x-y) (f(y) - f(x)) \, dy$$

is Hölder-continuous,  $|W_{ij}(x) - W_{ij(y)}| \leq C|x - y|^{\alpha}$ . Recall:

$$|\partial_i \partial_j G(x-y)(f(y)-f(x))| \leqslant C \frac{1}{|x-y|^d} |x-y|^\alpha = \frac{C}{|x-y|^{d-\alpha}} \in L^1_{loc}(dy)$$

We write

$$W_{ij}(x) = \int_{|x-y| \le 1} \partial_i \partial_j G(x-y) (f(y) - f(x)) \, dy$$
$$= \int_{|z| \le 1} \partial_i \partial_j G(z) (f(x+z) - f(x)) \, dz$$

So we get:

$$W_{ij} - W_{ij}(y) = \int_{|z| \le 1} \partial_i \partial_j G(z) (f(x+z) - f(y+z) - f(x) + f(y)) dz$$

Easy thought: Use  $\partial_i \partial_j G(z) | \leq \frac{C}{|z|^d}$  and

$$|f(x+z) - f(y+z) - f(x) + f(y)|$$

$$\leq \begin{cases} |f(x+z) - f(x)| + |f(y+z) - f(y)| \leq C|z|^{\alpha} \\ |f(x+z) - f(y+z)| + |f(x) - f(y)| \leq C|x-y|^{\alpha} \end{cases}$$

Thus:

$$|W_{ij}(x) - W_{ij}(y)| \le C \int_{|z| \le 1} \frac{1}{|z|^d} \min(|z|^\alpha, |x - y|^\alpha) \, dz$$

$$\le C \int_{|z| \le 1} \frac{1}{|z|^d} (|z|^\alpha)^\epsilon (|x - y|^\alpha)^{1 - \epsilon}, \quad 0 < \epsilon < 1$$

$$\le C \left( \int_{|z| \le 1} \frac{1}{|z|^{d - \alpha \epsilon}} \right) |x - y|^{\alpha (1 - \epsilon)}$$

$$\le C_\epsilon |x - y|^{\alpha (1 - \epsilon)}$$

thus it is easy to prove  $|W_{ij}(x) - W_{ij}(y)| \leq C_{\alpha}|x - y|^{\alpha}$  for all  $\alpha' \leq \alpha$ . However, to get  $\alpha' = \alpha$  we need a more precise estimate. We split:

$$W_{ij}(x) - W_{ij}(y) = \int_{|z| \le 1} \dots = \int_{|z| \le \min(4|x-y|,1)} + \int_{4|x-y| < |z| \le 1}$$

For the first domain:

$$\int_{|z| \leq 4|x-y|} |\partial_{ij} G(z)| |f(x+z) - f(y+z) - f(y) + f(x)| dz$$

$$\leq C \int_{|z| \leq 4|x-y|} \frac{1}{|z|^d} |z|^{\alpha} dz = const \cdot |x-y|^{\alpha}$$

For the second domain:

$$\int_{4|x-y|<|z|\leq 1} \partial_{ij} G(z) (f(x+z) - f(y+z) + f(y)f(x)) dz$$

$$= \int_{4|x-y|<|z|\leq 1} \partial_{ij} G(z) (f(x+z) - f(y+z)) dz = (\ldots)$$

since  $\int_{4|x-y|<|z|\leq 1} \partial_{ij} G(z) dz = 0$ . Then

$$(\ldots) = \int_{4|x-y| < |z-x|} \partial_{ij} G(z-x) f(z) \, dz - \int_{4|x-y| < |z-y|} \partial_{ij} G(z-y) f(z) \, dz.$$

Denote  $A = \{z \mid 4|x-y| < |z-x| \leqslant 1\}, B = \{z \mid 4|x-y| < |z-y| \leqslant 1\}.$  Consider

$$\int_{A} \partial_{ij} G(z-x) f(z) dz - \int_{B} \partial_{ij} G(z-y) f(z) dz$$

$$= \int_{A \setminus B} + \int_{B \setminus A} + \int_{A \cap B} (\partial_{ij} G(z-x) - \partial_{ij} G(z-y)) f(z) dz$$

Lets regard the intersection. We have

$$\partial_{ij}G(x) = \frac{1}{|B_1|} \frac{1}{|x|^d} (\omega_i \omega_j - \frac{1}{d} \delta_{ij})$$
$$|\partial_{ij}G(x) - \partial_{ij}G(y)| \le C|x - y| \left(\frac{1}{|x|^{d+1}} + \frac{1}{|y|^{d+1}}\right)$$

Now,

$$|\partial_{ij}G(z-x) - \partial_{ij}G(z-y)| \le C|x-y|\left(\frac{1}{|z-x|^{d+1}} + \frac{1}{|z-y|^{d+1}}\right)$$

So we have

$$\left| \int_{A \cap B} (\partial_{ij} G(z - x) - \partial_{ij} G(z - y)) f(z) dz \right|$$

$$\leq C \int_{A \cap B} |x - y| \left( \frac{1}{|z - x|^{d+1}} + \frac{1}{|z - y|^{d+1}} \right) |f(z)| dz = (\dots)$$

Now we replace f(z) by f(z) - f(x), then:

$$\left| \int_{A \cap B} (\partial_{ij} G(z - x) - \partial_{ij} G(z - y))(f(z) - f(x)) dz \right|$$

$$\leqslant C \int_{A \cap B} |x - y| \left( \frac{1}{|z - x|^{d+1}} + \frac{1}{|z - y|^{d+1}} \right) |z - x|^{\alpha} dz$$

$$= C \underbrace{\int_{A \cap B} |x - y| \frac{1}{|z - x|^{d+1-\alpha}} dz}_{(I)} + \underbrace{C \int_{A \cap B} |x - y| \frac{1}{|z - y|^{d+1}} |z - x|^{\alpha} dz}_{(II)}$$

Now,

$$\begin{split} (I) &\leqslant C|x-y| \int_{4|x-y|<|z-x|\leqslant 1} \frac{1}{|z-x|^{d+1-\alpha}} \, dz \\ &= C|x-y| \int_{4x-y<|z|\leqslant 1} \frac{1}{|z|^{d+1-\alpha}} \, dz \\ &\leqslant C|x-y| \int_{4|x-y|}^{1} \frac{1}{r^{d+1-\alpha}} r^{d-1} \, dr \\ &= C|x-y| \int_{4|x-y|}^{1} \frac{1}{r^{2-\alpha}} \, dr \\ &\leqslant C|x-y| \left[ -1 + \frac{1}{(4|x-y|)^{1-\alpha}} \right] \\ &\leqslant C|x-y|^{\alpha} \end{split}$$

$$\begin{split} (II) \leqslant C|x-y| \int_{A \cap B} \frac{1}{|z-y|^{d+1}} |z-x|^{\alpha} \, dz \\ \leqslant C|x-y| \int_{A \cap B} \frac{1}{|z-y|^{d+1}} \left(|z-y|^{\alpha} + |x-y|^{\alpha}\right) \, dz \\ \leqslant \underbrace{C|x-y| \int_{B} \frac{1}{|z-y|^{d+1-\alpha}} \, dz}_{\text{similar to (I)}} \, dz + C|x-y|^{1+\alpha} \int_{B} \frac{1}{|z-y|^{d+1}} \, dz \end{split}$$

and

$$C|x-y|^{1+\alpha} \int_{B} \frac{1}{|z-y|^{d+1}} \, dz \leqslant \int_{4|x-y|} \frac{1}{r^{d+1}} r^{d-1} \, dr \leqslant \frac{C}{|x-y|}$$

Consider  $A \backslash B$ :

$$\left| \int_{A \backslash B} \right| \leqslant C \|f\|_{L^{\infty}} \int_{A \backslash B} \frac{1}{|z - x|^d} \, dz$$

where

$$A = \{z \mid 4|x - y| < |z - x| \le 1\}$$

$$B = \{z \mid 4|x - y| < |z - y| \le 1\}$$

$$A \setminus B = \{z \in A \mid |z - y| \le 4|x - y|\} \cup \{z \in A \mid |z - y| > 1\} = E_1 \cup E_2$$

for

$$E_1 = \{ z \mid |z - y| \le 4|x - y| < |z - x| \le 1 \}$$
  
$$\subseteq \{ z \mid 4|x - y| \le |x - z| \le 5|x - y| \}.$$

$$|x - z| \le |x - y| + |y - z| \le 5|x - y|$$
 in  $E_1$ . We have

$$\int_{E_1} \frac{1}{|z - x|^d} dz \le \int_{4|x - y|} \frac{1}{|z - x|^{d - \alpha}} dz$$

$$= \int_{4|x - y|} \frac{1}{|z|^{d - \alpha}} dz$$

$$= \int_{4|x - y|} \frac{1}{r^d} r^{d - 1} dr$$

$$= \int_{4|x - y|} \frac{1}{r^{1 - \alpha}} dr$$

$$\le C|x - y|^{\alpha}$$

Now in  $E_2$ :  $|z - x| \ge |z - y| - |y - x| \ge 1 - |y - x|$ .

$$\int_{E_2} \frac{1}{|z - x|^{d - \alpha}} dz \le \int \frac{1}{|z - x|^{d - \alpha}} dz = \int_{1 - |x - y|}^{1} \frac{1}{r^{d - \alpha}} r^{d - 1} dr$$

$$\le const. \left| 1 - \frac{1}{(1 - |x - y|)^{\alpha}} \right| \le C|x - y|^{\alpha}$$

**Exercise 4.16** (E 5.1) Prove that if f is a harmonic function in  $\mathbb{R}^d$  and  $g \in C_c(\mathbb{R}^d)$  is radial, then

$$\int_{\mathbb{R}^d} f(x)g(x) dx = f(0) \int_{\mathbb{R}^d} g(x) dx$$

Solution.  $x = r\omega, r > 0, |\omega| = 1$ 

$$\int_{\mathbb{R}^d} f(x)g(x) dx \stackrel{\text{(Polar)}}{=} \int_0^\infty \left( \int_{\partial B(0,1)} f(r\omega)g(r\omega) d\omega \right) dr$$

$$= \int_0^\infty \left( g_0(r) \int_{\partial B(0,1)} f(r\omega) d\omega \right) dr$$
(Mean value theorem (2.12))
$$= \int_0^\infty \left( g_0(r)f(0) \int_{\partial B(0,1)} d\omega \right) dr$$

$$= f(0) \int_0^\infty \left( \int_{\partial B(0,1)} g(r\omega) d\omega \right) dr$$

$$= f(0) \int_{\mathbb{R}^d} g(x) dx$$

**Remark 4.17** Let  $g \in C_c(\mathbb{R}^d)$  be radial. Why is  $\int_{\mathbb{R}^3} \frac{g(x)}{|x|} dx \neq \infty$ ? Because  $f(x) = \frac{1}{|x|}$  is harmonic in  $\mathbb{R}^d \setminus \{0\}$  and sub-harmonic in  $\mathbb{R}^d$ ,  $-\Delta f = c\delta_0$ .

**Exercise 4.18** (E 5.2) Let  $1 \leq p < \infty$ . Let  $\Omega \subseteq \mathbb{R}^d$  be open. Consider the Sobolev Space

$$W^{1,p}(\Omega) = \{ f \in L^p(\Omega) \mid \partial_{x_i} f \in L^p(\Omega), \ \forall i = 1, 2, \dots, d \}$$

with the norm

$$||f||_{W^{1,p}} = ||f|| + \sum_{i=1}^{d} ||\partial_{x_i} f||_{L^p(\Omega)}.$$

Prove that  $W^{1,p}(\Omega)$  is a Banach space. Here  $x = (x_i)_{i=1}^d \in \mathbb{R}^d$ . Hint: You can use the fact that  $L^p(\Omega)$  is a Banach Space.

Solution.  $W^{1,p}(\Omega) \subseteq L^p(\Omega) \times L^p(\Omega) \cdots \times L^p(\Omega) = (L^p(\Omega))^{d+1}$ . For an element  $f \in W^{1,p}(\Omega)$  we can think of it as  $f \mapsto (f, \partial_1 f, \partial_2 f, \dots, \partial_d f)$ , so  $W^{1,p}(\Omega)$  is a subspace of  $(L^p(\Omega))^{d+1}$ , which is a norm-space. Why is  $W^{1,p}(\Omega)$  closed in  $(L^p(\Omega))^{d+1}$ ? Take  $\{f_n\}_{n=1}^{\infty} \subseteq W^{1,p}(\Omega)$  such that  $f_n \to f$  in  $L^p$  an  $\partial_i f_n \to g_i$  in  $L^p$  for all  $i=1,\dots,d$ . We prove that  $(f,g_1,\dots,g_d) \in W^{1,p}(\Omega)$ , i.e.  $f \in W^{1,p}$  and  $g_i = \partial_i f$  for all  $i=1,\dots,d$ . We know that  $f_n \to f$  in  $L^p(\Omega)$ , so  $f_n \to f$  in  $D'(\Omega)$  and  $\partial_i f_n \to \partial_i f$  in  $D'(\Omega)$ . On the other hand we have  $partial_i f_n \to g_i$  in  $L^p(\Omega)$ , so  $\partial_i f_n \to g_i$  in  $D'(\Omega)$ . So we get  $\partial_i f = g_i \in L^p(\Omega)$  for all  $i=1,\dots,d$  in  $D'(\Omega)$ . So we can conclude  $f \in W^{1,p}(\Omega)$  and  $\partial_i f = g_i$  for all  $i=1,\dots,d$ .

**Exercise 4.19** (E 5.3) Let f be a real-valued function in  $W^{1,p}(\mathbb{R}^d)$  for some  $1 \le p < \infty$ . Prove that  $|f| \in W^{1,p}(\mathbb{R}^d)$  and

$$(\nabla |f|)(x) = \begin{cases} \nabla f(x) & f(x) > 0 \\ -\nabla f(x) & f(x) < 0 \\ 0 & f(x) = 0 \end{cases}$$

Solution. Consider  $G_{\epsilon}(t) = \sqrt{\epsilon^2 + t^2} - \epsilon$  for  $\epsilon > 0$ ,  $t \in \mathbb{R}$ . Clearly we have  $G_{\epsilon}(t) \to |t|$  as  $\epsilon \to 0$  and

$$G'_{\epsilon}(t) = \frac{2t}{2\sqrt{\epsilon^2 + t^2}} = \frac{t}{\sqrt{\epsilon^2 + t^2}}$$

so  $|G'_{\epsilon}(t)| \leq 1$ ,  $G_{\epsilon}(0) = 0$ . By the chain rule,  $G_{\epsilon}(f) \in W^{1,p}(\mathbb{R}^d)$  and

$$(\partial_i G_{\epsilon}(f))(x) = G'_{\epsilon}(f)\partial_i f(x) = \frac{f(x)}{\sqrt{\epsilon^2 + f^2(x)}}\partial_i f(x) \in L^p(\mathbb{R}^d)$$

for all  $i=1,\ldots,d$ . Note then when  $\epsilon\to 0$  that  $G_\epsilon(f)(x)\to |f(x)|$  pointwise, so  $G_\epsilon(f)\to |f|$  in  $L^p(\mathbb{R}^d)$ .  $|G_\epsilon(f)(x)-G_\epsilon(0)|\leqslant |f(x)|\in L^p(\mathbb{R}^d)$  by dominated convergence.

$$\partial_{i}G_{\epsilon}(f)(x) = \frac{f(x)}{\sqrt{\epsilon^{2} + f^{2}(x)}} \partial_{i}f(x) \xrightarrow{\epsilon \to 0} g_{i}(x) := \begin{cases} \partial f_{i}(x) & f(x) > 0 \\ -\partial_{i}f(x) & f(x) < 0 \\ 0 & f(x) = 0 \end{cases}$$
$$|\partial_{i}G_{\epsilon}(f)(x)| \leq \left| \frac{f(x)}{\sqrt{\epsilon^{2} + f^{2}(x)}} \right| |\partial_{i}f(x)| \leq |\partial_{i}f(x)| \leq L^{p}(\mathbb{R}^{d})$$

So we get  $\partial_i G_{\epsilon}(f) \xrightarrow{\epsilon \to 0} g_i$  in  $L^p(\mathbb{R}^d)$  by Dominated Convergence. So we conclude:  $\partial_i(|f|) = g_i \in L^p(\mathbb{R}^d)$  for all  $i = 1, \ldots, d$ , so  $|f| \in W^{1,p}(\mathbb{R}^d)$ ,  $|f| \in L^p$ .

**Exercise 4.20** (E 5.4) Let  $\Omega \subseteq \mathbb{R}^d$  be open and bounded,  $f \in L^1(\Omega)$ ,

$$u(x) = \int_{\Omega} G(x - y) f(y) \, dy$$

Let  $-\Delta u = f$  in  $D'(\Omega)$ ,  $u \in L^1_{loc}(\Omega)$ ,  $f \in L^1_{loc}(\mathbb{R}^d)$  and  $\omega_d f \in L^1(\mathbb{R}^d)$ , where

$$\omega_d(x) = \begin{cases} 1 + |x| & d = 1\\ \log(1 + |x|) & d = 1\\ \frac{1}{(1+|x|)^{d-2}} & d \geqslant 3 \end{cases}$$

Prove that

$$G \star f = \int_{\mathbb{R}^d} G(x - y) f(y) \, dy \in L^1_{loc}(\mathbb{R}^d)$$

and  $-\Delta(G \star f) = f$  in  $D'(\mathbb{R}^d)$ .

Solution. Define  $\tilde{f} = \mathbb{1}_{\Omega}(x)f(x) = \begin{cases} f(x) & x \in \Omega \\ 0 & x \notin \Omega \end{cases}$ . Then

$$u(x) = \int_{\Omega} G(x - y) f(y) dy = \int_{\mathbb{R}^d} G(x - y) \tilde{f}(y) dy = (G \star \tilde{f})(x)$$

We have  $u \in L^1_{loc}(\mathbb{R}^d)$ , so  $u \in L^1(\Omega)$ . Then  $-\Delta u = \tilde{f}$  in  $D'(\mathbb{R}^d)$ , so  $-\Delta u = f$  in  $D'(\Omega)$ . Claim:  $-\Delta u = f$  in  $D'(\mathbb{R}^d)$ , so  $-\Delta u = f$  in  $D'(\Omega)$  if  $\Omega \subseteq \mathbb{R}^d$ ,  $\tilde{f}|_{\Omega} = f$ . Take  $\phi \in C^\infty_c(\Omega)$ . We need:  $(-\Delta u)(\phi) \stackrel{?}{=} \int_{\Omega} f \phi$ . We have  $\phi \in C^\infty_c(\Omega)$ , so  $\phi C^\infty_c(\mathbb{R}^d)$ . This implies:

$$(-\Delta u)(\phi) = \int_{\mathbb{R}^d} \tilde{f}\phi = \int_{\substack{\Omega, \\ \text{supp } \phi \subseteq \Omega}} \tilde{f}\phi = \int_{\Omega} f\phi$$

**Exercise 4.21** (E 5.5) Let  $B = B\left(0, \frac{1}{2}\right) \subseteq \mathbb{R}^3$ . Consider  $u: B \to \mathbb{R}$ , defined by  $u(x) = \log |\log |x||$ .

Prove that the distributional derivative  $f = -\Delta u$  is a function in  $L^{\frac{3}{2}}(B)$ .

Solution.

$$\omega(r) = \log(-\log(r)), \quad \text{for } r \in \left(0, \frac{1}{2}\right)$$

$$\omega'(r) = \frac{1}{-\log(r)} \left(-\frac{1}{r}\right) = \frac{1}{r \log r}$$

$$\omega''(r) = -\frac{1}{(r \log(r))^2} (r \log(r))' = -\frac{\log(r) + 1}{(r \log r)^2}$$

So we have

$$-\Delta u = w''(r) = \frac{1}{(r \log r)^2} - \frac{1}{r^2 \log(r)} = f(r)$$

We show that  $f \in L^{\frac{3}{2}}$ :

$$\int_{B} |f(x)|^{\frac{3}{2}} dx = const \int_{0}^{\frac{1}{2}} \left| \frac{1}{r^{2}(\log r)^{2}} - \frac{1}{r^{2}\log r} \right|^{\frac{3}{2}} r^{2} dr$$

$$\tilde{\leq} \int_{0}^{\frac{1}{2}} \frac{1}{r} \left| \frac{1}{(\log(r))^{2}} - \frac{1}{(\log(r))} \right|^{\frac{3}{2}} dr$$

$$\begin{pmatrix} r = e^{-x}, \\ x \in (\log(2), \infty), \\ dr = -e^{-x} dx \end{pmatrix} \quad \tilde{\leq} \int_{\log(2)}^{\infty} e^{x} \left( \frac{1}{x^{2}} + \frac{1}{x} \right)^{\frac{3}{2}} e^{-x} dx$$

$$\tilde{\leq} \int_{\log(2)}^{\infty} \frac{1}{x^{\frac{3}{2}}} dx < \infty$$

Where  $\tilde{\leq}$  means up to a constant. Now,  $u(x) = \omega(r) = \log(-\log(r))$ .

$$-\Delta u(x) = f(r) = \frac{1}{r^2(\log(r))^2} - \frac{1}{r^2\log(r)}$$

for all  $x \neq 0, |x| = r < \frac{1}{2}$ . Why is  $-\Delta u(x) = f$  in D'(B)? Take  $\phi \in C_c^{\infty}(B)$ , check:  $\int_B u(-\Delta \phi) = \int_B f \phi$ .

$$\int_{|x|<\frac{1}{2}} u(-\Delta\phi) dx = \lim_{\epsilon \to 0^+} \int_{\epsilon < |x|<\frac{1}{2}} u(x)(-\Delta\phi)(x) dx$$

by Dominated convergence.  $u \in L^1(B)$ . For all  $\epsilon > 0$ :

$$\begin{split} \int_{\epsilon < |x| < \frac{1}{2}} u(x)(-\Delta \phi)(x) \, dx &= \int_{|x| > \epsilon} u(x)(-\Delta \phi)(x) \, dx \\ &= \int_{\partial B(0,\epsilon)} u(x) \nabla \phi(x) \frac{x}{|x|} \, dS(x) + \int_{|x| > \epsilon} \nabla u(x) \nabla \phi(x) \, dx \end{split}$$

The boundary term vanishes as  $\epsilon \to 0$  since

$$\left| u(x)\nabla\phi(x)\frac{x}{|x|} \right| \le \|\nabla\phi\|_{L^{\infty}}|u(x)| = C\log|\log(r)|$$

$$\left| \int_{\partial B(0,\epsilon)} u(x) \nabla \phi(x) \frac{x}{|x|} dS(x) \right| \leq C \int_{\partial B(0,\epsilon)} \log |\log(\epsilon)| dS(x)$$

$$= C \log |\log \epsilon| \underbrace{|\partial B(0,\epsilon)|}_{\sim \epsilon^2} \xrightarrow{\epsilon \to 0} 0$$

$$\int_{|x|>\epsilon} \nabla u(x) \nabla \phi(x) \, dx = \sum_{i=1}^d \int_{|x|>\epsilon} \partial_i u(x) \partial_i \phi(x) \, dx$$

$$= \sum_{i=1}^d \left( -\int_{\partial B(0,\epsilon)} \partial_i u(x) \phi(x) \frac{x_i}{|x|} \, dS(x) - \int_{|x|>\epsilon} \underbrace{\partial_i \partial_i u(x)}_{f(x)} \phi(x) \, dx \right)$$

The boundary term vanishes as  $\epsilon \to 0$  as

$$\left| \int_{\partial B(0,\epsilon)} \partial u(x) \phi(x) \frac{x_i}{|x|} dS(x) \right| \leq \|\phi\|_{L^{\infty}} \int_{\partial B(0,\epsilon)} |\partial_i u(x)| dS(x)$$

$$(\star) \leq C \frac{1}{|\epsilon \log(r)|} |\partial B(0,\epsilon)| \to 0$$

as  $\epsilon \to 0$ .  $(\star)u = u(r), u(x) = \omega(|x|), \partial_i u(x) = \omega(|x|) \frac{x_i}{|x|}, |\partial_i u(x)| \leq |\omega(|x|)| = \left|\frac{1}{r \log(r)}\right|$ . Finally:

$$\int_{|x|>\epsilon} f(x)\phi(x) dx \xrightarrow{\epsilon \to 0} \int_{\mathbb{R}^d} f(x)\phi(x) dx$$

Since  $f\phi \in L^1$  and Dominated Convergence.

**Exercise 4.22** (Bonus 5) Construct  $u \in L^1(\mathbb{R}^3)$  compactly supported s.t.  $-\Delta u \in L^{\frac{3}{2}}(\mathbb{R}^3)$  and u is not continuous at 0.

Hint: Related to E 5.5.  $u_0(x) = \omega(r) = \log(|\log(r)|)$  if  $0 < r = |x| < \frac{1}{2}$ . Consider  $\chi u_0$  where  $\chi \in C_c^{\infty}$ ,  $\chi = 0$  if  $|x| > \frac{1}{2}$ ,  $\chi = 1$  if  $|x| < \frac{1}{4}$ . You can prove that  $\Delta(\chi u_0) = (\Delta \chi) u_0 + 2\nabla \chi \nabla u_0 + \chi(\underbrace{\Delta u_0}_{c,L^{\frac{3}{2}}})$  in  $D'(\mathbb{R}^3)$ . (almost everywhere, in distributional

sense, integration by parts)

**Theorem 4.23** (Regularity on Domains) Let  $\Omega \subseteq \mathbb{R}^d$  be open. Assume  $u, f \in D'(\Omega)$  such that  $-\Delta u = f$  in  $D'(\Omega)$ .

- a) If  $f \in L^1_{loc}(\Omega)$ , then
  - $u \in C^1(\Omega)$  if d = 1
  - $u \in L^q_{loc}(\Omega)$  for all  $q < \infty$  if d = 2
  - $u \in L^q_{loc}(\Omega)$  for all  $q < \frac{d}{d-2}$  if  $d \geqslant 3$
- b) If  $f \in L^q_{loc}(\Omega)$ ,  $d \geqslant p < \frac{d}{2}$ , then  $u \in C^{0,\alpha}_{loc}(\Omega)$ , where  $0 < \alpha < 2 \frac{d}{p}$
- c) If  $f \in L^p_{loc}(\Omega)$ ,  $p > d\mathbf{f}$ , then  $u \in C^{1,\alpha}_{loc}(\Omega)$ , where  $0 \le \alpha < 1 \frac{d}{p}$
- d) If  $f \in C^{0,\alpha}_{loc}(\Omega)$  for some  $0 < \alpha < 1$ , then  $u \in C^{2,\alpha}_{loc}(\Omega)$
- e) If  $f \in C^{m,\alpha}_{loc}(\Omega)$ , then  $u \in C^{m+2,\alpha}_{loc}(\Omega)$

*Proof.* Let  $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$ . Take a ball  $\overline{B} \subseteq \Omega$ . Define  $f_B : \mathbb{R}^d \to \mathbb{K}$ ,

$$f_B(x) = (\mathbb{1}_B f)(x) = \begin{cases} f(x) & x \in B \\ 0 & x \notin B \end{cases}$$

Then if  $f \in L^1_{loc}(\Omega)$ ,  $f_B$  is compactly supported. From the previous theorems:  $G \star f_B \in L^1_{loc}(\mathbb{R}^d)$  and  $-\Delta(G \star f_B) = f_B$  in  $D'(\mathbb{R}^d)$ . On the other hand,  $-\Delta u = f$  in  $D'(\Omega)$ , so  $-\Delta(u - G \star f_B) = 0$  in D'(B). Indeed, for all  $\phi \in C_c^{\infty}(B)$ , then:

$$(-\Delta u)(\phi) = \int_{\Omega} f\phi = \int_{B} f_{B}\phi = -\int_{\mathbb{R}^{d}} f_{B}\phi = (-\Delta)(G \star f_{B})(\phi)$$

Then  $-\Delta u = -\Delta(G \star f_B)$  in D'(B). Then  $u - G \star f_B$  is harmonic in B and by Weyls lemma we have  $u - G \star f_B \in C^{\infty}(B)$ . So the smoothness of u in B is the same to that of  $G \star f$ .

**Exercise 4.24** (E 6.1) Show that If  $\chi \in C^{\infty}(\mathbb{R}^d)$ , then  $f \in W^{1,p}(\mathbb{R}^d)$ ,  $1 \leq p < \infty$ , then  $\chi f \in W^{1,p}_{loc}(\mathbb{R}^d)$  and

$$\partial_i(\chi f) = (\partial_i \chi) f + \chi(\partial_i f)$$
 in  $D'(\mathbb{R}^d)$ 

Solution.  $\chi f \in L^p_{loc}(\mathbb{R}^d)$  obvious.  $\partial(\chi f) \in L^p_{loc}(\mathbb{R}^d)$  is nontrivial but follows from  $\partial_i(\chi f) = \underbrace{(\partial_i \chi) f + \chi(\partial f)}_{L^p}$  in  $D'(\mathbb{R}^d)$ . To compute the distributional derivative

 $\partial_i(\chi f)$ , then: Take  $\phi \in C_c^{\infty}(\mathbb{R}^d)$ :

$$-\int_{\mathbb{R}^d} \chi f(\partial \phi) = \int_{\mathbb{R}^d} (?) \phi$$

We have

$$-\int_{\mathbb{R}^d} \chi f(\partial_i \phi) = -\int_{\mathbb{R}^d} f(\chi \partial_i \phi)$$

$$(\chi \partial_i \phi = (\partial_i \chi) \phi + \chi(\partial_i \phi)) = -\int_{\mathbb{R}^d} f(\partial_i (\chi \phi) - (\partial_i \chi) \phi)$$

$$= -\int_{\mathbb{R}^d} f \partial_i (\underbrace{\chi \phi}_{\in C_c^{\infty}}) + \int_{\mathbb{R}^d} f(\partial_i \chi) \phi$$

$$= \int_{\mathbb{R}^d} (\partial_i f) \chi \phi + \int f(\partial_i \chi) \phi$$

$$= \int_{\mathbb{R}^d} ((\partial_i f) \chi + f(\partial_i \chi)) \phi$$

So 
$$\partial_i(\chi f) = (\partial_i f)\chi + f(\partial_i \chi)$$
 in  $D'(\mathbb{R}^d)$ .

**Remark 4.25** Question: If  $\chi \in C^1(\mathbb{R}^d)$ ,  $f \in W^{1,p}(\mathbb{R}^d)$ . Is this it still correct that  $\partial_i(\chi f) = (\partial_i \chi)f + \chi(\partial_i f)$  in  $D'(\mathbb{R}^d)$ ?

*Proof.* It suffices to show that we still can apply intergration by parts.

$$(\star) \quad -\int f\partial_i g \stackrel{?}{=} \int (\partial_i f)g$$

Approximation: (\*) is correct if  $g \in C_c^{\infty}$ 

• If  $g \in C_c^1$ , there is  $\{g_n\} \subseteq C_c^{\infty}$  s.t.  $g_n \to g$  in  $W_{loc}^{1,p}$ ,  $\frac{1}{p} + \frac{1}{q} = 1$ .

$$\int (\partial_i g) f \overset{n \to \infty}{\longleftarrow} - \int \underbrace{\int}_{L^p} \underbrace{\partial g_n}_{\rightarrow \partial_i g \text{ in } L^q} = \int \underbrace{(\partial_i f)}_{\in L^p} \underbrace{g_n}_{\rightarrow g \text{ in } L^q} \overset{n \to \infty}{\longrightarrow} \int (\partial_i f) g$$

**Exercise 4.26** (E 6.2)  $\mathbb{R}^2$ ,  $G(x) = -\frac{1}{2\pi} \log |x|$ . Let  $f \in L^p(\mathbb{R}^d)$ , compactly supported. Define  $u(x) = (G \star f)(x) = \int_{\mathbb{R}^2} G(x-y) f(y) \, dy$ 

- 1. If p = 1, then  $u \in L_{loc}^q(\mathbb{R}^2)$  for all  $q < \infty$ .
- 2. If p > 2, then  $u \in C^{1,\alpha}$  with  $0 < \alpha < 1 \frac{2}{p}$ .

Solution. 1. Take any ball B = B(0, R) and:

$$\int_{B} |u(x)|^{q} dx = \int_{B} \left( \int_{\mathbb{R}^{d}} |G(x-y)| |f(y)| dy \right)^{q} dx$$

$$\leqslant C \int_{B} \left( \int_{\mathbb{R}^{2}} |G(x-y)|^{q} |f(y)| dy \right) dx$$

$$= C \int_{\mathbb{R}^{2}} \left( \int_{B} |G(x-y)|^{q} dx \right) |f(y)| dy$$

Recall from the proof of Youngs inequality:

$$\begin{split} |u(x)| &= \left| \int_{\mathbb{R}^2} G(x-y) f(y) \, dy \right| \\ &\leqslant \int_{\mathbb{R}^2} |G(x-y)| |f(y)| \ dy \\ &\leqslant \left( \int_{\mathbb{R}^2} |G(x-y)|^q |f(y)| \, dy \right)^{\frac{1}{q}} \left( \int_{\mathbb{R}^2} |f(y)| \, dy \right)^{\frac{1}{q}}, \quad \frac{1}{q} + \frac{1}{q'} = 1 \end{split}$$

Assume supp  $f \subseteq \overline{B(0,R)}$ . Then if  $y \in \text{supp } f$  and  $x \in B(0,R)$ , then  $|x-y| \le |x| + |y| \le R + R_1$ . For all  $y \in \text{supp } f$ :

$$\int_{B(0,R)} |G(x-y)|^q dx \le \int_{|x-y| \le R+R_1} |G(x-y)|^q dx$$

$$= \int_{|z| \le R+R_1} |G(z)|^q dz < \infty$$

as  $G \in L^q_{loc}(|G(z)| = \frac{1}{2\pi}|\log(z)| \leqslant \frac{C_{R+R_1,\epsilon}}{|z|^{\epsilon}}$  for all  $|z| \leqslant R + R_1$ ), so

$$\int_{|z| \leqslant R + R_1} |G(z)|^q \leqslant C_{R + R_1, \epsilon} \int_{|z| \leqslant R + R_1} \frac{1}{|z|^{\epsilon q}} dz < \infty$$

if  $\epsilon q < 2$ .

2. Recall  $\partial_i u \in L^1_{loc}(\mathbb{R}^2)$  and:

$$\partial_i u(x) = (\partial_i G \star f)(x) = c \int_{\mathbb{R}^2} \frac{x_i - y_i}{|x - y|^2} f(y) \, dy$$

First we show  $\partial_i u \in C^{0,\alpha}$ :

$$|\partial_i u(x) - \partial_i u(z)| = \left| C \int_{\mathbb{R}^2} \left( \frac{x_i - y_i}{|x - y|^2} - \frac{z_i - y_i}{|z - y|^2} \right) f(y) dy \right|$$

$$\leqslant C \int_{\mathbb{R}^2} \left| \frac{x_i y_i}{|x - y|^2} - \frac{z_i - y_i}{|z - y|^2} \right| |f(y)| dy$$

$$\stackrel{?}{\leqslant} C|x - y|^{\alpha}$$

Note that

$$\left| \frac{x_i - y_i}{|x - y|^2} - \frac{z_i - y_i}{|z - y|^2} \right| = \left| (x_i - y_i) \left( \frac{1}{|x - y|^2} - \frac{1}{|z - y|^2} \right) + \frac{x_i - z_i}{|z - y|^2} \right|$$

$$\leq |x_i - y_i| \left| \frac{1}{|x - y|^2} - \frac{1}{|z - y|^2} \right| + \frac{|x_i - z_i|}{|z - y|^2}$$

$$\leq C|z - x|^{\alpha} \left( \frac{1}{|x - y|^{1+\alpha}} + \frac{1}{|z - y|^{1+\alpha}} + \frac{|x - z|}{|z - y|^2} \right)$$

Here  $|x_i - z_i| \le |x - z|$  and  $|x_i - y_i| \le |x - y|$  and:

$$\begin{split} \underbrace{\left|\frac{1}{|x-y|^2} - \frac{1}{|z-y|^2}\right|}_{\text{sym } x \leftrightarrow z} &= \left|\frac{1}{|x-y|} - \frac{1}{|z-y|}\right| \, \left|\frac{1}{|x-y|} + \frac{1}{|z-y|}\right| \\ &= \frac{||z-y| - |x-y|}{|x-y||z-y|} \left|\frac{1}{|x-y|} + \frac{1}{|z-y|}\right| \\ &\leqslant |z-x|^{\alpha} \frac{\max(|z-y|, |x-y|)^{1-\alpha}}{|x-y||z-y|} \left(\frac{1}{|x-y|} + \frac{1}{|z-y|}\right) \\ &\leqslant C|z-x|^{\alpha} \left(\frac{1}{|x-y|^{2+\alpha}} + \frac{1}{|z-y|^{2+\alpha}}\right) \end{split}$$

By the symmetrie  $x \leftrightarrow z$ :

$$LHS \leqslant C|z - x|^{\alpha} \left( \frac{1}{|x - y|^{1 + \alpha}} + \frac{1}{|z - y|^{1 + \alpha}} \right) + \frac{|x - y|}{|x - y|^2}$$

$$\Rightarrow LHS \leqslant C \dots + |x - z| \min \left( \frac{1}{|z - y|^2}, \frac{1}{|x - y|^2} \right)$$

$$\leqslant (|x - y| + |z - y|)^{1 - \alpha}$$

$$C|z - x|^{\alpha} \left( \frac{1}{|x - y|^{1 + \alpha}} + \frac{1}{|z - y|^{1 + \alpha}} \right)$$

In summary:

$$|\partial_i u(x) - \partial_i u(z)| \le C \int_{\mathbb{R}^2} \left| \frac{x_i - y_i}{|x - y|^2} - \frac{z_i - y_i}{|z - y|^2} \right| |f(y)| \, dy$$
$$= C|x - y|^{\alpha} \int_{\mathbb{R}^2} \left( \frac{1}{|x - y|^{1 + \alpha}} + \frac{1}{|z - y|^{1 + \alpha}} \right) |f(y)| \, dy$$

Consider if  $|x| > 2R_1$ :

$$\int_{\mathbb{R}^2} \frac{1}{|x-y|^{1+\alpha}} |f(y)| \, dy \leqslant \int_{\mathbb{R}^2} \frac{1}{R_1^{1+\alpha}} \, \left| f(y) \right| dy \leqslant C$$

supp  $f \subseteq B(0,R_1)$ . If  $|x| < 2R_1$ , then  $|x-y| \leq 3R$  if  $y \in B(0,R_1)$ . Hence:

$$\begin{split} & \int_{|x-y| \leqslant 3R_1} \frac{1}{|x-y|^{1+\alpha}} |f(y)| \, dy \\ & \leqslant \left( \int_{|x-y| \leqslant 3R_1} \frac{1}{|x-y|^{(1+\alpha)p'}} \right)^{\frac{1}{p'}} \left( \int |f(y)|^p \, dy \right)^{\frac{1}{p}} \\ & = \int_{|z| \leqslant 3R_1} \frac{1}{|z|^{(1+\alpha)p'}} \, dz < \infty \end{split}$$

So  $\alpha < 1 - \frac{2}{p}$ .

Exercise 4.27 (E 6.3) Let  $f \in C^{0,\alpha}_{loc}$  and  $-\Delta u = f$  in  $D'(\Omega)$ . Prove  $u \in C^{2,\alpha}_{loc}(\Omega)$ .

Solution. Take an open ball  $B \subseteq \bar{B} \subseteq \Omega$ . We prove  $u \in C^{2,\alpha}(B)$ . There is an open  $\Omega_B$  s.t.  $\bar{B} \subseteq \bar{\Omega}_B \subseteq \Omega$ . Then there is a  $\chi_B \in C_c^{\infty}(\mathbb{R}^d)$  s.t.  $\chi_B(x) = 1$  if  $x \in B$  and  $\chi_B(x) = 0$  if  $x \notin \Omega_B$ . Define

$$f_B(x) = \chi_B(x)f(x) : \mathbb{R}^d \to \mathbb{R}$$

We prove that  $f_B \in C^{0,\alpha}(\mathbb{R}^d)$ . Since  $f \in C^{0,\alpha}_{loc}(\Omega)$  we have  $f \in C^{0,\alpha}(\Omega)$ , so  $|f(x) - f(y)| \leq C|x - y|^{\alpha}$  for all  $x, y \in \Omega_B$ . Then:

$$|f_B(x) - f_B(y)| = |\chi_B(x)f(x) - \chi_B(y)f(y)|$$

$$\leq |(\chi_B(x) - \chi_B(y))f(x) + \chi_B(y)(f(x) - f(y))|$$

$$\leq C|x - y|^{\alpha}||f||_{L^{\infty}} + C||\chi||_{L^{\infty}(\Omega_B)}||x - y|^{\alpha} \leq C_{\Omega_B}||x - y|^{\alpha}$$

What about other cases? If x,y are bot not in  $\Omega_B$ , then  $|f_B(x)-f_B(y)|=0$ , then if  $x\in\Omega_B$  and  $y\notin\Omega_B$ :  $|f_B(x)-f_B(y)|=|f_B(x)|=|\chi_B(x)||f(x)|=|\chi_B(x)-\chi_B(y)||f(x)|\leqslant C|x-y|^\alpha$ . Conclusion:  $|f_B(x)-f_B(y)|\leqslant C|x-y|^\alpha$  for all  $x,y\in\mathbb{R}^d$ , i.e.  $f_B\in C^{0,\alpha}(\mathbb{R}^d)$ . Also  $f_B$  is compactly supported. By a theorem in the lecture:  $G\star f_B\in C^{2,\alpha}(\mathbb{R}^d)$ . Finally:  $-\Delta u=f$  in  $D'(\Omega), -\Delta(G\star f_B)=f_B$  in  $D'(\mathbb{R}^d)$ . So we conclude  $-\Delta u=f=f_B=-\Delta(G\star f_B)$  in  $D'(B), -\Delta(u-G\star f_B)=0$  in D'(B), so  $u-G\star f_B\in C^{\infty}(B)$ , so  $u\in C^{2,\alpha}(B)$ .

**Exercise 4.28** (6.4)  $u, f \in L^2(\mathbb{R}^d), -\Delta u = f \text{ in } D'(\mathbb{R}^d).$  Prove  $u \in W^{2,2}(\mathbb{R}^d), \|u\|_{W^{2,2}(\mathbb{R}^d)} \leq C (\|u\|_{L^2} + \|f\|_{L^2}).$ 

$$\begin{split} W^{2,2}(\mathbb{R}^d) &= \{g \in L^2(\mathbb{R}^d) \mid D^{\alpha}g \in L^2 \text{ for all } |\alpha| \leqslant 2 \} \\ &= \{g \in L^2(\mathbb{R}^d) \mid \widehat{D^{\alpha}g}(k) = (-2\phi i k)^{\alpha} \widehat{g}(k) \in L^2(\mathbb{R}^d) \text{ for all } |\alpha| \leqslant 2 \} \\ &= \{g \in L^2(\mathbb{R}^d) \mid (1 + |k|^2) \widehat{g}(k) \in L^2(\mathbb{R}^d) \} \end{split}$$

 $||u||_{W^{2,2}(\mathbb{R}^d)}$  is comparable  $\int_{\mathbb{R}^d} (1+|k|^2)^2 |\hat{g}(k)|^2 dk$ . If  $D^{\alpha}g \in L^2$ , then  $\widehat{D^{\alpha}g}(k) = (-2\pi i k)^{\alpha} \hat{g}(k)$ . For any  $\phi \in C_c^{\infty}(\mathbb{R}^d)$ :

$$\begin{split} \widehat{D^{\alpha}g}(k)\widehat{\phi}(k), dk &= \int (D^{\alpha}g)\phi = (-1)^{|\alpha|} \int g(D^{\alpha}\phi) \\ &= (-1)^{|\alpha|} \int \overline{\widehat{g}}(k)\widehat{D^{\alpha}} \ \phi(k) \\ &= (-1)^{|\alpha|} \int \overline{\widehat{g}}(k)(-2\pi i k)^{\alpha} \widehat{\phi}(k) \ dk \end{split}$$

so  $\hat{D}^{\alpha}g(k)=(-1)^{|k|}\hat{g}(k)\overline{(-2\pi ikx)^{\alpha}}=\hat{g}(k)(-2\pi ik)^{\alpha}$ . This implies:

$$||u||_{W^{2,2}(\mathbb{R}^d)} \leq C \int_{\mathbb{R}^d} (1+|k|^2)^2 |\hat{u}(k)|^2 dk$$

$$= C \left( ||u||_{L^2}^2 + \int_{\mathbb{R}^d} |k|^4 |\hat{u}(k)|^2 dk \right)$$

$$\leq C \left( ||u||_{L^2}^2 + ||f||_{L^2}^2 \right)$$

$$\leq C (||u||_{L^2}^2 + ||f||_{L^2}^2)^2$$

**Remark 4.29** (Bonus 6) Let  $f, g \in W^{1,2}(\mathbb{R}^d)$ . Prove that  $fg \in W^{1,1}(\mathbb{R}^d)$  and

$$\partial_i(fg) = (\partial_i f)g + f(\partial_i g)$$
 in  $D'(\mathbb{R}^d)$ 

### Chapter 5

# Existence for Poisson's Equation on Domains

Let  $\Omega \subseteq \mathbb{R}^d$  be open. Consider Poisson's equation.

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

for given data (f,g) and u the unknown function.

- Classical solutions:  $f \in C^2(\bar{\Omega}) \leadsto$  explicit representation formula.
- Weak solution:  $f \in L^p(\Omega)$ ,  $g \in L^p(\partial\Omega) \rightsquigarrow u \in W^{2,p}(\Omega)$ . We are going to establish the existence by *Energy Methods*. (Calculus of variations)

**Definition 5.1** ( $C^1$ -Domains) Let  $\Omega \subseteq \mathbb{R}^d$  be open. We say that  $\Omega$  is of class  $C^1$  (i.e.  $\partial \Omega \in C^1$ ) if for all  $x_0 \in \partial \Omega$  there is a bijective function  $h: U \to Q$ , where

- $x_0 \in U$  open in  $\mathbb{R}^d$
- $Q = \{x = (x_1, \dots, x_d) = (x', x_d)\} \in \mathbb{R}^{d-1} \times \mathbb{R} \mid |x'| < 1, |x_d| < 1\}$
- $h \in C^1(\bar{U})$  and  $h^{-1} \in C^1(\bar{Q})$  ( $C^1$ -diffeomorphism)
- h(U) = Q

$$h(U \cap \Omega) = Q_{+} = Q \cap \mathbb{R}^{d}_{+} = \{x = (x', x_{d}) \in Q \mid x_{d} > 0\}$$

$$h(U \cap \partial\Omega) = Q_{0} = Q \cap \partial\mathbb{R}^{d}_{+} = \{x = (x', x_{d}) \in Q \mid x_{d} = 0\}$$

$$h(U \setminus \bar{\Omega}) = Q_{-} = Q \cap \mathbb{R}^{d}_{-} = \{x = (x', x_{d}) \in Q \mid x_{d} < 1\}$$

(From Brezis' book)

**Remark 5.2** The set Q can be replaced by a ball, i.e.  $\Omega$  is of  $C^1$  if for all  $x_0 \in \partial \Omega$  there is a function  $U \to B(0,1) \subseteq \mathbb{R}^d$ .

- $x_0 \in U$  with  $U \subseteq \mathbb{R}^d$  open.
- $h \in C^1(\bar{U}), h^{-1} \in C^1(\overline{B(0,1)})$
- $h(U \cap \Omega) = B(0,1) \cap \mathbb{R}^d_+, h(U \cap \partial\Omega) = B(0,1) \cap \mathbb{R}^d$ .

**Remark 5.3** (An equivalent definition form Evan's book App. C) Let  $\Omega \subseteq \mathbb{R}^d$  be open. Then  $\Omega$  is  $C^1$  if for all  $x_0 \in \partial \Omega$  there is a r > 0 and a  $C^1$ -function  $\gamma : \mathbb{R}^{d-1} \to \mathbb{R}$  s.t. (upon relabeling and reorienting the axes if necessary) such that:

$$\Omega \cap B(x_0, r) = \{x = (x', x_d) \in B(x_0, r) \mid x_d < \gamma(x_0)\}\$$

Proof of the equivalence of the two definitions.

Def. 2  $\Rightarrow$  Def. 1: In fact, given  $x_0 \in \partial \Omega$  and  $\gamma$  we can define

$$h(x', x_d) = (x', x_d - \gamma(x')) \in C^1(\mathbb{R}^d, \mathbb{R}^d)$$
$$h^{-1}(x', x_d) = (x', x_d + \gamma(x')) \in C^1(\mathbb{R}^d, \mathbb{R}^d)$$

Def. 1  $\Rightarrow$  Def. 2: We need the inverse function theorem and the implicit function theorem. Let  $x_0 \in \partial \Omega$ , let  $h: U \to B(0,1)$  as in Def. 1. Denote  $h = (h_1,h_2,\ldots,h_d)$ . Since h is invertible near  $x_0$ , by the inverse function theorem we have for the Jacobi matrix  $Jh(x_0) = (\partial_j h_i(x_0))_{1 \leqslant i,j \leqslant d}$  is invertible. So we have  $\nabla h_d(x_0) = (\partial_j h_d(x_0))_{1 \leqslant j \leqslant d} \neq \vec{0}^{\mathbb{R}^d}$ , so there is a  $j \in \{1,2,\ldots,d\}$  s.t.  $\partial_j h_d(x_0) \neq 0$ . By relabeling and reorienting the axes, we can assume that  $\partial_d h_d(x_0) > 0$ . By continuity there is a r > 0 such that  $\partial_d h_d(x) > 0$  for all  $x \in B(x_0,r)$ . Define  $\gamma: \mathbb{R}^{d-1} \to \mathbb{R}$  s.t. in  $B(x_0,r)$ :

$$x = (x', x_d) \in \partial\Omega \iff h_d(x', x_d) = 0 \iff x_d = \gamma(x'),$$

 $h_d: \mathbb{R}^d \to \mathbb{R}$ . This gives a solution  $\gamma$  if  $\partial_d h_d > 0$  in  $B(x_0, r)$ . (For implicit function theorem,  $\partial_d h_d(x_0) \neq 0$ ) Question: Why in  $B(x_0, r)$ ?

$$x = (x', x_d) \in \Omega \iff x_d > \gamma(x')$$

Since  $\partial_d h_d(x) > 0$  for all  $x \in B(x_0, r)$  we have that  $x_d \mapsto h_d(x', x_d)$  is strictly increasing, hence

$$x = (x', x_d) \in \Omega$$

$$\iff h(x', x_d) \in \mathbb{R}^d_+$$

$$\iff h_d(x', x_d) > 0 = h_d(x', \gamma(x'))$$

$$\iff x_d > \gamma(x')$$

**Theorem 5.4** (Gauss-Green formula / Integration by parts) Let  $\Omega \subseteq \mathbb{R}^d$  be open and bounded. Then

1. For all  $u, v \in C^1(\bar{\Omega})$ :

$$\int_{\Omega} (\partial_i u)v = -\int_{\Omega} u(\partial_i v) + \int_{\partial\Omega} uvn_i dS,$$

where  $\vec{n} = (n_i)_{i=1}^d$  is the outwarded unit normal vector.

2. For all  $u, v \in C^2(\bar{\Omega})$ :

$$\int_{\Omega} u(-\Delta v) = \int_{\Omega} \nabla u \nabla v - \int_{\partial \Omega} u \frac{\partial v}{\partial \vec{n}} dS$$

where  $\frac{\partial v}{\partial \vec{n}} = \nabla v \vec{n} = \sum_{i=1}^{d} \partial_i v n_i$ .

Classical solutions via Green's function:

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases}$$

Let  $\Omega \subseteq \mathbb{R}^d$  be open, bounded,  $\partial \Omega \in C^1$ . Assume there exists a  $u \in C^2(\bar{\Omega})$ ,  $f \in C(\bar{\Omega})$ ,  $g \in C(\partial \Omega)$ . Let G be the fundamential solution of the Laplace Equation in  $\mathbb{R}^d$ . We use integration by parts in  $\Omega \setminus B(x, \epsilon)$ :

$$\begin{split} & \int_{\Omega \backslash B(x,\epsilon)} u(y)(-\Delta G)(y-x) \, dy \\ & = \int_{\Omega \backslash B(x,\epsilon)} \nabla u(y) \nabla G(y-x) \, dy - \int_{\partial \Omega \cup \partial B(x,\epsilon)} u(y) \frac{\partial G}{\partial \vec{n}}(y-x) \, dS(y) \\ & \int_{\Omega \backslash B(x,\epsilon)} G(y-x)(-\Delta u)(y) \, dy \\ & = \int_{\Omega \backslash B(x,\epsilon)} \nabla G(y-x) \nabla u(y) \, dy - \int_{\partial \Omega \cup \partial B(x,\epsilon)} G(y-x) \frac{\partial u}{\partial \vec{n}}(y) \, dS(y) \end{split}$$

This implies:

$$\begin{split} &\int_{\Omega \backslash B(x,\epsilon)} \left[ u(y) (-\Delta G(y-x)) - G(y-x) (-\Delta u)(y) \right] \, dy \\ &= -\int_{\partial \Omega \cup \partial B(x,\epsilon)} \left[ u(y) \frac{\partial G}{\partial \vec{n}} (y-x) - G(y,x) \frac{\partial u}{\partial \vec{n}} (y) \right] \, dS(y) \end{split}$$

for all  $x \in \Omega, x \in B(x, \epsilon) \subseteq \Omega$ . When  $\epsilon \to 0$ , then the left hand side converges to  $-\int_{\Omega} G(y-x)f(y)\,dy$  and the right hand side (for  $d \geqslant 2$ ) we have  $\partial_j G(y) = \frac{-y_j}{d|B_1||y|^d}$ , so

$$\frac{\partial G}{\partial \vec{n}} = \nabla G \vec{n} = \nabla G(y) \left( \frac{-y}{|y|} \right) = \sum_{i=1}^{d} \frac{-y_i}{d|B_1||y|^d} \frac{-y_j}{|y|} = \frac{1}{d|B_1||y|^{d-1}} \operatorname{on} \partial B(0, \epsilon)$$

so we have

$$\frac{\partial G}{\partial \vec{n}}(y-x) = \frac{1}{d|B_1|\epsilon^{d-1}}$$

on  $\partial B(x,\epsilon)$ . Hence

$$\int_{\partial B(x,\epsilon)} u(y) \frac{\partial G}{\partial \vec{n}}(y-x) dS(y) = \frac{1}{d|B_1|\epsilon^{d-1}} \int_{\partial B(x,\epsilon)} u(y) dS(y)$$
$$= \int_{\partial B(x,\epsilon)} u(y) dS(y) \xrightarrow{\epsilon \to 0} u(x)$$

On the other hand:

$$\left| \int_{\partial B(x,\epsilon)} G(y-x) \frac{\partial u(y)}{\partial \vec{n}} \, dS(y) \right| \leq C \epsilon^{d-1} \sup_{|z|=\epsilon} |G(z)| \xrightarrow{\epsilon \to 0} 0$$

since  $|G(z)| \le \frac{C}{|z|^{d-2}}$  if  $d \ge 3$ ,  $|G(z)| \le C|\log(z)|$  if d=2 and  $|G(z)| \le C|z|$  if d=1. In summary:

$$-\int_{\Omega} G(y-x)f(y) dy = -\int_{\partial\Omega} \left[ u(y) \frac{\partial G}{\partial \vec{n}}(y-x) - G(y-x) \frac{\partial u}{\partial \vec{n}}(y) \right] dS(y) - u(x)$$

$$\Leftrightarrow u(x) = \int_{\Omega} G(y-x)f(y) dy + \int_{\partial\Omega} \left[ G(y-x) \frac{\partial u}{\partial \vec{n}}(y) - g(y) \frac{\partial G}{\partial \vec{n}}(y-x) \right] dS(y)$$

Problem: We don't know anything about  $\frac{\partial u}{\partial \vec{n}}$  on  $\partial \Omega$ . Trick: We can resolve that by using the *corrector* function:  $\Phi_x = \Phi_x(y)$  which solves:

$$\begin{cases} -\Delta \Phi_x = 0 & \text{in } \Omega \\ \Phi_x(y) = G(y - x) & \text{on } \partial \Omega \end{cases}$$

We assume that  $\Phi_x$  exists.

**Definition 5.5** (Green's function)  $\tilde{G}(x-y) = G(y-x) - \Phi_x(y)$  for all  $x, y \in \Omega$ ,  $x \neq y$ .

**Exercise 5.6** Prove that (under the assumtion that the corrector exists) that  $\tilde{G}(x,y) = \tilde{G}(y,x)$  for all  $x,y \in \Omega, x \neq y$ .

**Theorem 5.7** Let  $\Omega \subseteq \mathbb{R}^d$  be open, bounded and  $C^1$ . If  $u \in C^2(\Omega)$  solves

$$\begin{cases} -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial \Omega \end{cases},$$

then

$$u(x) = -\int_{\partial\Omega} g(y) \frac{\partial \tilde{G}}{\partial \vec{u_y}}(x, y) \, dS(y) + \int_{\Omega} \tilde{G}(x, y) \, dy$$

*Proof.* We need to prove:

$$\int_{\Omega} \Phi_x(y) f(y) \, dy + \int_{\partial \Omega} \left( -g(y) \frac{\partial \phi_x(y)}{\partial \vec{n}_y} + G(y-x) \frac{\partial u}{\partial \vec{n}}(y) \right) = 0$$

By integration by parts:

$$\int_{\Omega} \Phi_{x}(y)f(y) \, dy = \int_{\Omega} \Phi_{x}(y)(-\Delta u(y)) \, dy$$

$$= \int_{\Omega} \left[ \Phi_{x}(y)(-\Delta u(y)) + (\Delta \Phi_{x}(y))u(y) \right] \, dy$$

$$(\Delta \Phi_{x}(y) = 0) = \int_{\partial \Omega} \left( -\Phi_{x}(y) \frac{\partial u}{\partial \vec{n}} + \frac{\partial \Phi_{x}(y)}{\partial \vec{n}} \underbrace{u(y)}_{g(y)} \right) dS(y)$$

How can we compute  $\Phi_x(y)$ ? It is not easy for general domains. But let us prove on two cases:

- $\Omega = \mathbb{R}^d_+$  (half-space)
- $\Omega = B(0, r)$  (a ball)

#### 5.1 Green's function on the upper half plane

We use the following notation:

$$\mathbb{R}_{+}^{d} = \{ x = (x_1, x_2, \dots, x_d) = (x', x_d) \in \mathbb{R}^{d-1} \times \mathbb{R} \mid x_d > 0 \}$$
$$\partial \mathbb{R}_{+}^{d} = \{ x = (x', x_d) \mid x_d = 0 \} = \mathbb{R}^{d-1} \times \{0\}$$

For all  $x \in \mathbb{R}^d$  we want to find the correction function  $\Phi_x(y)$  with  $y \in \overline{\mathbb{R}^d_+}$  s.t.

$$\begin{cases} +\Delta_y \Phi_x(y) = 0 & \text{in } \mathbb{R}^d_+ \\ \Phi_x(y) = G(y - x) & \text{in } \partial \mathbb{R}^d_+ \end{cases}$$

**Definition 5.8** (Reflection for  $\mathbb{R}^d_+$ ) For all  $x=(x',x_d)\in\mathbb{R}^d,\ \tilde{x}=(x',-x_d)\in\mathbb{R}^d,$  (if  $x\in\mathbb{R}^d_+\Rightarrow \tilde{x}\mathbb{R}^d_-$ )

Claim:  $\Delta_y \Phi_x(y) = G(y - \tilde{x})$  is a corrector function.

- $\Delta_y \Phi_x(y) = \Delta_y G(y \tilde{x}) = 0$  for all  $y \in \mathbb{R}^d_+$  for all  $x \in \mathbb{R}^d_+$  (as  $\tilde{x} \in \mathbb{R}^d_- = \mathbb{R}^d \setminus \overline{\mathbb{R}^d_+}$ )
- $\Phi_x(y) = G(y \tilde{x}) = G(y x)$  on  $y \in \partial \mathbb{R}^d_+$ . In fact,  $y \in \partial \mathbb{R}^d_+$ , so  $y_d = 0$ , so

$$G(y - \tilde{x}) = G_0(|y - \tilde{x}|) = G_0\left(\sqrt{\sum_{i=1}^{d-1} |x_i - y_i|^2 + |x_d|^2}\right) = G_0(|y - x|)$$

Consider f = 0 and

$$\begin{cases} -\Delta = 0 & \text{in } \mathbb{R}^d_+ \\ u = g & \text{on } \partial \mathbb{R}^d_+ \end{cases}$$

Then we expect

$$u(x) = -\int_{\partial \Omega} g(y) \frac{\partial \tilde{G}}{\partial \vec{n_y}}(x, y) dS(y)$$

We compute

$$\frac{\partial \tilde{G}}{\partial \vec{n_y}}(x-y) = \sum_{i=1}^d \frac{\partial \tilde{G}}{\partial y_j}(x,y)\vec{n_j} = -\frac{\partial \tilde{G}}{\partial y_d}(x,y) = \frac{\partial}{\partial y_d}(G(y-\tilde{x}) - G(y-x)) = \dots$$

because  $\tilde{G}(x,y) = G(y-x) - \Phi_x(y) = G(y-x) - G(y-\tilde{x})$ .

$$\dots = \frac{1}{d|B_1|} \left[ \frac{-(y_d - \tilde{x}_d)}{|y - \tilde{x}|^d} - \frac{-(y_d - x_d)}{|y - x|^d} \right]$$
$$(y \in \partial \mathbb{R}^d_+) = \frac{1}{d|B_1|} \left[ \frac{\tilde{x}_d}{|y - x|} - \frac{x_d}{|y - x|^d} \right] = \frac{-2x_d}{d|B_1||y - x|^d}$$

We expect

$$u(x) = -\int_{\partial \mathbb{R}^d_+} g(y) \frac{\partial \tilde{G}}{\partial \vec{n_y}}(x, y) \, dS(y) = \int_{\partial \mathbb{R}^d_+} g(y) \frac{2x_d}{d|B_1||y - x|^d} \, dS(y)$$

**Theorem 5.9** Assume  $g \in C(\mathbb{R}^{d-1}) \cap L^{\infty}(\mathbb{R}^{d-1})$  Then

$$u(x) = \int_{\partial \mathbb{R}^d_+} g(y) K(x, y) \, dS(y)$$

and

$$K(x,y) = \frac{2x_d}{d|B_1||y-x|^d} \quad \text{for all } x \in \mathbb{R}^d_+.$$

satisfies that  $u \in C^{\infty}(\mathbb{R}^d_+) \cap L^{\infty}(\mathbb{R}^d_+)$  and

$$\begin{cases} \Delta u = 0 & \text{in } \mathbb{R}^d_+ \\ \lim_{\substack{x \to 0 \\ x \in \mathbb{R}^d_+}} u(x) = g(x_0) & \forall x_0 \in \partial \mathbb{R}^d_+ \end{cases}$$

*Proof.* Claim: For all  $y \in \partial \mathbb{R}^d_+$ ,  $x \mapsto K(x,y)$  is harmonic in  $\mathbb{R}^d_+$  (i.e.  $\Delta_x K(x,y) = 0$  in  $\mathbb{R}^d_+$ )

• Argument from Evans:

$$K(x,y) = -\frac{\partial}{\partial y_d}, \ \tilde{G}(y-x) = -\frac{\partial}{\partial y_d}(G(y-x) - G(y-\tilde{x}))$$

We know that for all  $x \in \mathbb{R}^d_+$ ,  $y \mapsto \tilde{G}(y,x)$  is haromnic in  $\mathbb{R}^d_+ \setminus \{x\}$ . By symmetry we have  $\tilde{G}(y,x) = \tilde{G}(x,y)$  for all  $x,y \in \mathbb{R}^d_+$ . So for all  $y \in \mathbb{R}^d_+$ ,  $x \mapsto \tilde{G}(y,x)$  is harmonic in  $\mathbb{R}^d_+ \setminus \{y\}$ . Then for all  $y \in \mathbb{R}^d_+$ :  $-\frac{\partial}{\partial y_d} \tilde{G}(y,x) = K(x,y)$  is harmonic  $x \in \mathbb{R}^d_+ \setminus \{y\}$ . By a limit argument, for all  $y \in \partial \mathbb{R}^d_+$ ,  $x \mapsto K(x,y)$  is harmonic for all  $x \in \mathbb{R}^d_+$ .

• A direct proof:

$$K(x,y) = \frac{2x_d}{d|B_1|} \frac{1}{|x-y|^d}$$

for all  $x \in \mathbb{R}^d_+$ ,  $y \in \partial \mathbb{R}^d_+$ . For  $i \neq d$ ,  $x = (x_1, \dots, x_d)$ ,

$$\begin{split} \partial_{x_i} K(x,y) &= \frac{2x_d}{d|B_1|} \frac{(-d)}{|x-y|^{d+1}} \frac{x_i - y_i}{|x-y|} = \frac{-2x_d}{|B_1|} \frac{x_i - y_i}{|x-y|^{d+2}} \\ \partial_{x_i}^2 K(x,y) &= -\frac{2x_d}{|B_1|} \left[ \frac{1}{|x-y|^{d+1}} - \frac{(d+2)}{|x-y|^{d+3}} (x_i - y_i) \frac{(x_i - y_i)}{|x-y|} \right] \\ &= -\frac{2x_d}{|B_1|} \left[ \frac{1}{|x-y|^{d+1}} - \frac{(d+2)}{|x-y|^{d+4}} (x_i - y_i)^2 \right] \end{split}$$

Moreover:

$$\begin{split} \partial_{x_d} K(x,y) &= \frac{2}{d|B_1|} \frac{1}{|x-y|^d} + \frac{2x_d}{d|B_1|} (-d) \frac{(x_d - y_d)}{|x-y|^{d+2}} \\ (y_d = 0) &= \frac{2}{d|B_1|} \frac{1}{|x-y|^d} + \frac{2x_d^2}{|B_1||x-y|^{d+2}} \\ \partial_{x_d}^2 K(x,y) &= \frac{-2}{|B_1|} \frac{(x_d - y_d)}{|x-y|^{d+2}} + \frac{4x_d}{|B_1||x-y|^{d+2}} - \frac{2(d+2)|B_1|}{x} \frac{(x_d - y_d)}{|x-y|^{d+4}} \end{split}$$

Then:

$$\begin{split} \Delta_x K(x,y) &= \sum_{i=1}^{d-1} \ \partial_{x_i}^2 K(x,y) + \partial_{x_i}^2 K(x,y) \\ &= -\frac{2x_d}{|B_1|} \left[ \frac{d-1}{|x-y|^{d+2}} - (d+2) \sum_{i=1}^{d-1} \frac{(x_i - y_i)^2}{|x-y|^{d+4}} \right. \\ &+ \left. \frac{1+2}{|x-y|^{d+2}} - \frac{(d+2)x_d(x_d - y_d)}{|x-y|^{d+4}} \right] \\ &= -\frac{2x_d}{|B_1|} \left[ \frac{d+2}{|x-y|^{d+2}} - (d+2) \frac{1}{|x-y|^{d+4}} \left( \sum_{i=1}^{d} |x_i - y_i|^2 \right) \right] = 0 \end{split}$$

for all  $x \in \mathbb{R}^d_+$ ,  $y \in \partial \mathbb{R}^d_+$ . Claim (exercise) for all  $x \in \mathbb{R}^d_+$ ,

$$\int_{\partial \mathbb{R}^d_+} K(x, y) \, dy = 1$$

Consider

$$u(x) = \int_{\partial \mathbb{R}^d_+} K(x, y) g(y) \, dy, \quad x \in \mathbb{R}^d_+$$

Since  $g \in L^{\infty}(\mathbb{R}^{d-1}) = L^{\infty}(\partial \mathbb{R}^d_+)$  and  $K(x,y) \geqslant 0$ , hence

$$|u(x)| \le \left(\int_{\partial \mathbb{R}^d_+} K(x,y) \, dy\right) \|g\|_{L^{\infty}}$$

Thus  $||u||_{L^{\infty}} \leq ||g||_{L^{\infty}}$ . Moreover

$$D_x^{\alpha} u(x) = \int_{\partial \mathbb{R}_+^d} D_x^{\alpha} K(x, y) g(y) \, dy$$

bounded, so  $u \in C^{\infty}(\mathbb{R}^d_+)$ ,  $x \mapsto K(x, y)$  is smooth as  $x \neq y$ .

$$\Delta_x u(x) = \int_{\partial \mathbb{R}^d_+} \underbrace{\Delta_x K(x, y)}_{=0} g(y) \, dy = 0$$

So u is harmonic in  $\mathbb{R}^d_+$ .  $(\Rightarrow u \in C^{\infty}$  by Weyl's lemma). Take  $x_0 \in \partial \mathbb{R}^d_+$  and  $x \in \mathbb{R}^d_+$ . Then:

$$|u(x) - g(x_0)| = \left| \int_{\partial \mathbb{R}^d_+} K(x, y) (g(y) - g(x_0)) \, dy \right|$$

$$\leq \int_{\partial \mathbb{R}^d_+} K(x, y) |g(y) - g(x_0)| \, dy$$

$$= \underbrace{\int_{|y - x_0| \leq L|x - x_0|}}_{(I)} + \underbrace{\int_{|y - x_0| > L|x - x_0|}}_{(II)}$$

$$\begin{split} (I) &= \int_{|y-x_0| \leqslant L|x-x_0|} K(x,y) |g(y) - g(x_0)| \, dy \\ &= \sup_{|y-x_0| \leqslant L|x-x_0|} |g(y) - g(x_0)| \xrightarrow{x \to x_0} 0 \quad \forall L > 0 \end{split}$$

(II): If  $|y - x_0| > L|x - x_0|$ , then  $|y - x| > \frac{1}{2}|y - x_0| > \frac{L}{2}|x - x_0|$  if  $L \ge 2$ .

$$\int_{|y-x_0|>|L|x-x_0|} K(x,y)|g(y)-g(x_0)|\,dy\leqslant C\int_{y\in\partial\mathbb{R}^d_+} \frac{x_d}{|x_0-y|}\,dy$$

$$Cx_d\int_{\substack{z\in\mathbb{R}^{d-1}\\|z|>L|x-x_0|}} \frac{1}{|z|^d}\,dz=const.\frac{x_d}{L|x-x_0|}\leqslant \frac{const.}{L}\xrightarrow{L\to\infty} 0$$

$$x_d = |x_d - (x_0)_d| \le |x - x_0|$$