Lukion matematiikkakilpailu 2008

Loppukilpailutehtävien ratkaisuja

1. Suureen jänisjahtiin osallistui kettuja, susia ja karhuja. Metsästäjiä oli 45, ja saalis oli yhteensä 2008 jänistä. Jokainen kettu pyydysti 59 jänistä, jokainen susi 41 jänistä ja jokainen karhu 40 jänistä. Montako kettua, sutta ja karhua seurueessa oli?

Ratkaisu. Jos kettujen määrä on x, susien y ja karhujen z, niin ei-negatiiviset kokonaisluvut x, y ja z toteuttavat yhtälöparin

$$\begin{cases} 59x + 41y + 40z = 2008 \\ x + y + z = 45. \end{cases}$$

Kun ryhmästä eliminoidaan z, tullaan välttämättömään ehtoon 19x+y=208. Koska $0 \le y \le 45$, on $163 \le 19x \le 208$. Koska $8 \cdot 19 = 152$ ja $11 \cdot 19 = 209$, ainoat mahdolliset x:n arvot ovat x=9 ja x=10. Jos x=9, on y=37 ja z=45-9-37=-1. Siis x=10, y=18, z=17 on ainoa mahdollisuus. Helposti nähdään, että tämä kolmikko toteuttaa tehtävän ehdot.

2. Kolmion ABC sisään piirretyn ympyrän keskipiste on I. Suorat AI, BI ja CI leikkaavat kolmion ABC ympäri piirretyn ympyrän myös pisteissä D, E ja F (tässä järjestyksessä). Osoita, että AD ja EF ovat kohtisuorassa toisiaan vastaan.

Ratkaisu. Olkoon $\angle CAB = \alpha$, $\angle ABC = \beta$ ja $\angle BCA = \gamma$. Käytetään toistuvasti lausetta, jonka mukaan kolmion kulman vieruskulma on kolmion kahden muun kulman summa. Siis $\angle GIE = \angle AIE = \frac{1}{2}\alpha + \frac{1}{2}\beta$. Toisaalta $\angle IEG = \angle BEF = \angle BCF = \frac{1}{2}\gamma$. Siis $\angle AGE = \angle GIE + \angle IEG = \frac{1}{2}(\alpha + \beta + \gamma) = 90^{\circ}$.

3. Ratkaise Diofantoksen yhtälö

$$x^{2008} - y^{2008} = 2^{2009}.$$

Ratkaisu. Yhtälö voidaan kirjoittaa muotoon

$$(x^{1004} + y^{1004})(x^{1004} - y^{1004}) = 2^{2009}.$$

Yhtälön vasemman puolen molemmat tulontekijät ovat luvun 2 potensseja:

$$\begin{cases} x^{1004} + y^{1004} = 2^p \\ x^{1004} - y^{1004} = 2^{2009-p}, \end{cases}$$

missä $0 \le p \le 2009$. Siis

$$2 \cdot x^{1004} = 2^p + 2^{2009 - p}$$

ja

$$x^{1004} = 2^{p-1} + 2^{2008 - p}.$$

Luvuista p-1 ja 2008 – p pienempi on enintään 1003. Olkoon tämä luku q. Siis $x^{1004}=2^q(1+2^{2007-q})$. Jos q>0, x on parillinen, ja x^{1004} on jaollinen 2^{1004} :llä. Tämä ei ole mahdollista, koska $q\leq 1003$ ja 2007 – $q\geq 1$. Siis q=0 on ainoa mahdollisuus. Yhtälön $x^{1004}=1+2^{2007}$ ratkaisuiksi eivät käy parilliset luvut eivätkä parittomat luvut, jotka ovat ≥ 5 . Myöskään x=3 ei käy, esimerkiksi koska $3^{1004}=81^{251}<128^{251}=2^{1757}<2^{2007}+1$. Yhtälöllä ei siis ole ratkaisua.

4. Kahdeksan jalkapallojoukkuetta pelaa otteluita niin, ettei mikään pari pelaa kahta ottelua eikä mikään joukkuekolmikko kaikkia kolmea mahdollista ottelua. Mikä on suurin mahdollinen määrä otteluita?

Ratkaisu. Olkoot joukkueet J_1, J_2, \ldots, J_8 . Olkoon J_1 (jokin) joukkue, joka on pelannut eniten otteluita. Jos J_1 on pelannut 7 ottelua, eivät mitkään kaksi joukkuetta J_i ja J_k , i, k > 1, ole pelanneet keskenään. Otteluita on siis 7. Jos J_1 on pelannut 6 ottelua, sanokaamme joukkueita J_k , $2 \le k \le 7$, vastaan, eivät mitkään joukkueista J_i , J_k , $2 \le i, k \le 7$, ole pelanneet keskenään. Joukkue J_8 on pelannut enintään 6 ottelua. Otteluita on enintään 6 + 6 = 12. Jos J_1 on pelannut 5 ottelua, joukkueita J_k , $1 \le i, k \le 6$, vastaan, nämä joukkueet eivät ole pelanneet yhtään ottelua keskenään. Joukkueet J_7 ja J_8 ovat pelanneet enintään 5 ottelua kumpikin, joten otteluiden määrä ei ylitä 15:ttä. Jos J_1 on pelannut 4 ottelua, mikään joukkue ei ole pelannut enempää kuin neljä ottelua. Joukkuetta kohden laskettuja otteluita on siis enintään $1 \le i, k \le 7$, mutta kun joka ottelu tulee lasketuksi kahdesti, otteluita on enintään $1 \le i, k \le 7$, otteluita on yhteensä enintään $1 \le i, k \le 7$, otteluita on yhteensä enintään $1 \le 7$ 0 otteluita on yhteensä enintään $1 \le 7$ 1. Suurin mahdollinen ottelumäärä on siis $1 \le 7$ 2. Suurin mahdollinen ottelumäärä on siis $1 \le 7$ 3.

5. Jana I on kokonaan peitetty äärellisellä määrällä janoja. Osoita, että näistä janoista voidaan valita osajoukko S, jolla on seuraavat ominaisuudet: (1) millään kahdella S:ään kuuluvalla janalla ei ole yhteisiä pisteitä, (2) S:ään kuuluvien janojen yhteinen pituus on enemmän kuin puolet I:n pituudesta. Osoita, että väite ei pidä paikkaansa, jos jana I korvataan ympyrällä ja muut sanan "jana" esiintymät sanalla "ympyränkaari".

Ratkaisu. Tehtävän muotoilu oli epäonnistunut. Jos janat ovat suljettuja, siis päätepisteet mukana, väite ei esitetyssä muodossaan ole tosi; ainoastaan vähän heikompi väite "... yhteinen pituus on vähintään puolet I:n pituudesta..." on todistettavissa. Vastaesimerkiksi kelpaa janan peittäminen kahdella janan puolikkaalla. Jos janat ovat avoimia, väite on tosi.

Todistetaan (avoimia janoja koskeva) väite induktiolla janojen lukumäärän n suhteen. Jos n = 1, asia on selvä. Oletetaan, että väite pätee, kun janoja on n kappaletta. Olkoot $i_1, i_2, \ldots, i_{n+1}$ n+1 janaa, joiden yhdiste kokonaan peittää I:n. Jos nyt tässä joukossa on jokin jana i_p , jonka muut joukon janat kokonaan peittävät, niin joukko, josta i_n on poistettu, on n:n janan joukko, joka edelleen peittää koko I:n. Induktio-oletusta voidaan käyttää. Jos tässä joukossa on kaksi janaa k_p ja k_q , joilla on yhteinen päätepiste muttei yhteisiä sisäpisteitä, niin joukko, jossa k_p ja k_q on korvattu niiden yhdisteellä $k_p \cup k_q$, on joukko, joka toteuttaa induktio-oletuksen. Sillä on tehtävän mukainen osajoukko S'. Jos $k_i \cup k_j$ kuuluu tähän osajoukkoon, se voidaan purkaa takaisin osikseen k_i ja k_i , ja saadaan haluttu joukko S. Jos kumpikaan edellä mainituista tilanteista ei toteudu, janat voidaan numeroida niin, että i_1 peittää osaksi i_2 :ta, i_2 peittää osaksi i_1 :tä ja i_3 :a, mutta i_1 ja i_3 eivät kosketa toisiaan (jos ne koskettaisivat, i_2 olisi kokonaan i_1 :n ja i_3 :n peittämä, ja oltaisiin ensin käsitellyssä tapauksessa) jne. Nyt i_1, i_3, i_5, \ldots ja i_2, i_4, i_6, \ldots ovat toisiaan peittämättömistä janoista koostuvia joukkoja. Koska joukkojen yhdisteen janat peittävät koko I:n, on ainakin toisen joukon janojen yhteispituuden oltava ainakin puolet I:n pituudesta. – Jos I:n sijalla on ympyrän kehä ja osajanojen tilalla kaaret, väite ei toteudu. Tämä nähdään esimerkiksi tapauksessa n=3; kaaret, joita vastaavien keskuskulmien välit ovat esimerkiksi [0°, 130°], [120°, 250°] ja [240°, 370°], peittävät koko ympyrän kehän, mutta mikään niistä ei yksinään peitä koko kehää ja jokaisella kahdella on yhteisiä pisteitä.