First steps towards a formalization of Forcing

Emmanuel Gunther *Miguel Pagano* Pedro Sánchez Terraf LSFA - Fortaleza, 26 September 2018

Zermelo-Fraenkel Set Theory

Set theory arose at the early twentieth century as one possible foundation for mathematics.

More formally, set theory is a first order theory (ZFC) with no constants and one relational symbol \in .

To say that ZFC is a possible foundation for mathematics means that any mathematical theorem, say T, can be deduced from ZFC:

$$ZFC \vdash T$$

Cantor's Question and Gödel's and Cohen's answers

Cantor posed the Continuum Hypothesis (CH): Every uncountable subset of \mathbb{R} is equipotent with \mathbb{R} .

Gödel showed that CH is relatively consistent with ZFC.

Later, Cohen showed that also the negation of CH is relatively consistent with ZFC. For this he invented the technique of *forcing*.

Some preliminaries

To say that T is relatively consistent with ZFC can be understood in two ways:

- 1. Construct a model M' of ZFC + T from a model M for ZFC.
- 2. Alternatively, deduce a contradiction in ZFC from a contradiction in ZFC + T.

Cohen's proofs construct a model $ZFC + \neg CH$ assuming a countable and transitive model (ctm).

- M is a transitive model of ZFC if $x \in M$ implies $x \subset M$.
- M is *countable* if it is equipotent with \mathbb{N} .

Forcing

- Given a ctm M and a generic set G for M, one constructs a new ctm M[G].
- One defines a poset (P, \leq) , where $P \in M$. The existence of a generic filter G follows from Rasiowa-Sikorski.
- $M[G] = \{ val(G, x) | x \in M \}$
- Depending on the definition of P, M[G] will satisfy CH or $\neg CH$.

Our goal: formalize forcing

Questions?

- Why forcing? Has not been formalized yet.
- Related work. Paulson formalized Gödel's proof.
- Which proof assistant? Because of the previous answer: Isabe-Ile/ZF.

Isabelle/ZF

Axiomatization of ZF in Isabelle/FOL

- Sets are terms of type i and formulas have type o.
- Axioms of ZFC are postulated as axioms of Isabelle: extension: $A = B \longleftrightarrow A \subseteq B \land B \subseteq A$
- A theorem of ZFC is a lemma of Isabelle/ZF: lemma equalityI: "[| A ⊆ B; B ⊆ A |] ==> A = B" by (rule extension [THEN iffD2], rule conjI)
- In order to speak of formulas and satisfaction (models), Paulson coded formulas (and much more) as sets.
- He also defined relativized (to a class) versions of the axioms $upair_ax(M) == \forall x[M]. \forall y[M].\exists z[M]. upair(M,x,y,z)$

First steps towards Forcings

Our strategy

- 1. Be as modular as possible, using *locales*.
- 2. Define interfaces to deal with models of ZFC.
- 3. Exploit the modularity of forcing to divide the work.

What have we done?

Existence of a generic filter

- Proved a principle of dependent choice.
- Using that principle, proved Rasiowa-Sikorski.
- If M is a ctm and $P \in M$ is a poset, then there exists a generic filter for M.

Definition of M[G]

- Defined *names* for $x \in M$ and val.
- Defined M[G], assuming M ctm and G generic for M.
- Proved $M \subseteq M[G]$.

$M[G] \models ZFC$

Axiom by axiom

- One of the hardest part is transfering truth on M to truth on M[G].
- We proved upair_ax(##M) implies upair_ax(##M[G])
- $M[G] \models separation$ (almost).

Future work: The next steps

Soon

- $x \in M$ implies $\check{x} \in M$.
- Define the poset we are interested in $(Add(\omega, \kappa))$.
- Prove that M[G] satisfies union, foundation, infinity.

Not so soon

- Define the forcing relation (⊩).
- Prove the fundamental theorem of forcing.
- \blacksquare $M[G] \models ZFC$.
- If P is ccc, then cardinals are preserved in M[G].
- Prove that for any generic G for $Add(\omega, \aleph_2)$, then $M[G] \models ZFC + \neg CH$.

Questions?

Thank you!