Sequence Listing

<110> ASHKENAZI, AVI J
 BOTSTEIN, DAVID
 DODGE, KELLY H.
 GURNEY, AUSTIN L.
 KIM, KYUNG JIN
 LAWRENCE, DAVID A.
 PITTI, ROBERT
 ROY, MARGARET A
 TUMAS, DANIEL B
 WOOD, WILLIAM I.

<120> DcR3 Polypeptide, A TNFR Homolog

<130> P1134R2 REVISED

<140> US 09/157,289 <141> 1998-09-18

<150> US 60/059,288 <151> 1997-09-18

<150> US 60/094,640 <151> 1998-07-30

<160> 18

<210> 1

<211> 300

<212> PRT

<213> Homo sapiens

<400> 1

Met Arg Ala Leu Glu Gly Pro Gly Leu Ser Leu Leu Cys Leu Val 1 5 10 15

Leu Ala Leu Pro Ala Leu Leu Pro Val Pro Ala Val Arg Gly Val 20 25 30

Ala Glu Thr Pro Thr Tyr Pro Trp Arg Asp Ala Glu Thr Gly Glu
35 40 45

Arg Leu Val Cys Ala Gln Cys Pro Pro Gly Thr Phe Val Gln Arg
50 55 60

Pro Cys Arg Arg Asp Ser Pro Thr Thr Cys Gly Pro Cys Pro Pro 65 70 75

Arg His Tyr Thr Gln Phe Trp Asn Tyr Leu Glu Arg Cys Arg Tyr 80 85 90

Cys 7	Asn	Val	Leu	Cys 95	Gly	Glu	Arg	Glu	Glu 100	Glu	Ala	Arg	Ala	Cys 105
His A	Ala	Thr	His	Asn 110	Arg	Ala	Cys	Arg	Cys 115	Arg	Thr	Gly	Phe	Phe 120
Ala	His	Ala	Gly	Phe 125	Cys	Leu	Glu	His	Ala 130	Ser	Cys	Pro	Pro	Gly 135
Ala	Gly	Val	Ile	Ala 140	Pro	Gly	Thr	Pro	Ser 145	Gln	Asn	Thr	Gln	Cys 150
Gln	Pro	Cys	Pro	Pro 155	Gly	Thr	Phe	Ser	Ala 160	Ser	Ser	Ser	Ser	Ser 165
Glu	Gln	Cys	Gln	Pro 170	His	Arg	Asn	Cys	Thr 175	Ala	Leu	Gly	Leu	Ala 180
Leu	Asn	Val	Pro	Gly 185	Ser	Ser	Ser	His	Asp 190	Thr	Leu	Cys	Thr	Ser 195
Cys	Thr	Gly	Phe	Pro 200	Leu	Ser	Thr	Arg	Val 205	Pro	Gly	Ala	Glu	Glu 210
Cys	Glu	Arg	Ala	Val 215	Ile	Asp	Phe	Val	Ala 220	Phe	Gln	Asp	Ile	Ser 225
Ile	Lys	Arg	Leu	Gln 230	Arg	Leu	Leu	Gln	Ala 235	Leu	Glu	Ala	Pro	Glu 240
Gly	Trp	Gly	Pro	Thr 245	Pro	Arg	Ala	Gly	Arg 250	Ala	Ala	Leu	Gln	Leu 255
Lys	Leu	Arg	Arg	Arg 260	Leu	Thr	Glu	Leu	Leu 265	Gly	Ala	Gln	Asp	Gly 270
Ala	Leu	Leu	Val	Arg 275	Leu	Leu	Gln	Ala	Leu 280	Arg	Val	Ala	Arg	Met 285
Pro	Gly	Leu	Glu	Arg 290	Ser	Val	Arg	Glu	Arg 295	Phe	Leu	Pro	Val	His 300

<210> 2

<211> 1114

<212> DNA

<213> Homo sapiens

<220>

<221> Unsure

<222> 1090

<223> Unknown base

<400> 2 teegeaggeg gaceggggge aaaggaggtg geatgteggt eaggeacage 50 agggtcctgt gtccgcgctg agccgcgctc tccctgctcc agcaaggacc 100 atgagggege tggagggee aggeetgteg etgetgtgee tggtgttgge 150 gctgcctgcc ctgctgccgg tgccggctgt acgcggagtg gcagaaacac 200 ccacctaccc ctggcgggac gcagagacag gggagcggct ggtgtgcgcc 250 cagtgccccc caggcacctt tgtgcagcgg ccgtgccgcc gagacagccc 300 cacgacgtgt ggcccgtgtc caccgcgcca ctacacgcag ttctggaact 350 acctggagcg ctgccgctac tgcaacgtcc tctgcgggga gcgtgaggag 400 gaggcacggg cttgccacgc cacccacaac cgtgcctgcc gctgccgcac 450 eggettette gegeaegetg gtttetgett ggageaegea tegtgteeae 500 ctggtgccgg cgtgattgcc ccgggcaccc ccagccagaa cacgcagtgc 550 cagccgtgcc ccccaggcac cttctcagcc agcagctcca gctcagagca 600 gtgccagccc caccgcaact gcacggccct gggcctggcc ctcaatgtgc 650 caggetette eteccatgae accetgtgea ecagetgeae tggetteece 700 ctcagcacca gggtaccagg agctgaggag tgtgagcgtg ccgtcatcga 750 ctttgtggct ttccaggaca tctccatcaa gaggctgcag cggctgctgc 800 aggeeetega ggeeeeggag ggetggggte egacaceaag ggegggeege 850 geggeettge agetgaaget gegteggegg etcaeggage teetggggge 900 gcaggacggg gcgctgctgg tgcggctgct gcaggcgctg cgcgtggcca 950 ggatgcccgg gctggagcgg agcgtccgtg agcgcttcct ccctgtgcac 1000 tgatcctggc cccctcttat ttattctaca tccttggcac cccacttgca 1050 ctgaaagagg ctttttttta aatagaagaa atgaggtttn ttaaaaaaaa 1100 aaaaaaaaa aaaa 1114

<210> 3 <211> 491

<220>

```
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<220>
<221> unsure
<222> 62, 73, 86, 98
<223> unknown base
<400> 3
geogagacag ceceaegacg tgtggeeegt gtecaeegeg ceaetacaeg 50
 cagttctgga antaactgga genetgeege tactgnaacg teetetgngg 100
 ggagcgtgag gaggaggcac gggcttgcca cgccacccac aaccgtgcct 150
 geogetgeeg caeeggette ttegegeacg etggtttetg ettggageac 200
 gcatcgtgtc cacctggtgc cggcgtgatt gccccgggca cccccagcca 250
 gaacacgcag tgcctagccg tgccccccag gcaccttctc agccagcagc 300
 tccagctcag agcagtgcca gccccaccgc aactgcacgg ccctgggcct 350
 ggccctcaat gtgccaggct cttcctccca tgacaccctg tgcaccagct 400
 gcactggctt ccccctcagc accagggtac caggagctga ggagtgtgag 450
 cgtgccgtca tcgactttgt ggctttccag gacatctcca t 491
<210> 4
<211> 73
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 4
 geogagacag ecceacgacg tgtggeeegt gtecacegeg ecaetacaeg 50
 cattctggaa ctacctggag cgc 73
<210> 5
<211> 271
<212> DNA
<213> Unknown
```

```
<223> Unknown organism
     <220>
     <221> unsure
     <222> 42, 62, 73, 86, 98, 106, 120, 122, 153, 167, 184, 220, 233
     <223> unknown base
     <400> 5
      geogagacag ceccaegacg tgtggeeegt gtecaeegeg enactaeaeg 50
      cagttctgga antaactgga genetgeege tactgnaacg teetetgngg 100
      ggagcntgag gaggaggcan gngcttgcca cgccacccac aaccgcgcct 150
      gengetgeag caceggntte ttegegeacg etgntttetg ettggageae 200
      gcatcgtgtc cacctggtgn cggcgtgatt gcnccgggca cccccagcca 250
      gaacacgcat gcaaagccgt g 271
     <210> 6
     <211> 201
<212> DNA
     <213> Unknown
     <220>
     <223> Unknown organism
Ę
     <220>
<221> unsure
m
     <222> 182
     <223> unknown base
Ш
Ð
     <400> 6
13
      gcagttctgg aactacctgg agcgctgccg ctactgcaac gtcctctgcg 50
      gggagcgtga ggaggaggca cgggcttgcc acgccaccca caaccgtgcc 100
      tgccgctgcc gcaccggctt cttcgcgcac gctggtttct gcttggagca 150
      cgcatcgtgt ccacctggtg ccggcgtgat tnccccgggc acccccagcc 200
      a 201
     <210> 7
     <211> 277
     <212> DNA
     <213> Unknown
     <220>
```

<223> Unknown organism

```
<220>
<221> unsure
<222> 142
<223> unknown base
<400> 7
gaggggcccc caggagtggt ggccggaggt gtggcagggg tcaggttgct 50
ggtcccagcc ttgcaccctg agctaggaca ccagttcccc tgaccctgtt 100
 cttccctcct ggctgcaggc acccccagcc agaacacgca gnccagccgt 150
gcccccagg caccttctca gccagcagct ccagctcaga gcagtgccag 200
 ccccaccgca actgcacggc cctgggcctg gccctcaatg tgccaggctc 250
 ttcctcccat gacaccctgt gcaccag 277
<210> 8
<211> 199
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 8
gcatcgtgtc cacctggtgc cggcgtgatt gccccgggca cccccagcca 50
gaacacgcag gcctagccgt gcccccagg cacettetca gccagcagct 100
ccagctcaga gcagtgccag cccaccgca actgcacggc cctgggcctg 150
gccctcaatg tgccaggctc ttcctcccat gacaccctgt gcaccagct 199
<210> 9
<211> 226
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<220>
<221> unsure
<222> 4, 9, 12, 165
<223> unknown base
<400> 9
 agengtgene encaggeace tteteageea geagtteeag eteagageag 50
```

tgccagcccc accgcaactg cacggccctg ggcctggccc tcaatgtgcc 100 aggetettee teccatgaca egetgtgeac eagetgeact ggetteeccc 150 tcagcaccag ggtancagga gctgaggagt gtgagcgtgc cgtcatcgac 200 tttgtggctt tccaggacat ctccat 226 <210> 10

- <211> 283
- <212> DNA
- <213> Homo sapiens
- <220>
- <221> Unsure
- <222> 1-283
- <223> Unknown organism
- <220>
- <221> unsure
- <222> 27, 64, 140
- <223> unknown base
- <400> 10
- cttgtccacc tggtgccggc gtgattnccc gggcaccccc agccagaaca 50 cgcagtgcca gccntccccc caggcacctt ctcagccagc agctccagct 100
- cagagcagtg ccagccccac cgcaactgca acgccctggn ctggccctca 150
- atgtgccagg ctcttcctcc catgacaccc tgtgcaccag ctgcactggc 200
- ttccccctca gcaccagggt accaggagct gaggagtgtg agcgtgccgt 250
- catcgacttt gtggctttcc aggacatctc cat 283
- <210> 11
- <211> 21
- <212> DNA
- <213> Unknown
- <220>
- <223> Unknown organism
- <400> 11
- cacgctggtt tctgcttgga g 21
- <210> 12
- <211> 22
- <212> DNA

```
D
Ð
Ħ
IŲ
M
IŲ
Ø
```

```
<213> Unknown
<220>
<223> Unknown organism
<400> 12
 agctggtgca cagggtgtca tg 22
<210> 13
<211> 53
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 13
 cccaggcacc ttctcagcca gccagcagct ccagctcaga gcagtgccag 50
 ccc 53
<210> 14
<211> 24
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 14
acacgatgcg tgctccaagc agaa 24
<210> 15
<211> 17
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
<400> 15
 cttcttcgcg cacgctg 17
<210> 16
<211> 16
<212> DNA
<213> Unknown
<220>
<223> Unknown organism
```

<400> 16 atcacgccgg caccag 16

<210> 17 <211> 461

<212> PRT

<213> Homo sapiens

<400> 17

Met Ala Pro Val Ala Val Trp Ala Ala Leu Ala Val Gly Leu Glu
1 5 10 15

Leu Trp Ala Ala Ala His Ala Leu Pro Ala Gln Val Ala Phe Thr
20 25 30

Pro Tyr Ala Pro Glu Pro Gly Ser Thr Cys Arg Leu Arg Glu Tyr
35 40 45

Tyr Asp Gln Thr Ala Gln Met Cys Cys Ser Lys Cys Ser Pro Gly
50 55 60

Gln His Ala Lys Val Phe Cys Thr Lys Thr Ser Asp Thr Val Cys
65 70 75

Asp Ser Cys Glu Asp Ser Thr Tyr Thr Gln Leu Trp Asn Trp Val 80 85 90

Pro Glu Cys Leu Ser Cys Gly Ser Arg Cys Ser Ser Asp Gln Val 95 100 105

Glu Thr Gln Ala Cys Thr Arg Glu Gln Asn Arg Ile Cys Thr Cys
110 115 120

Arg Pro Gly Trp Tyr Cys Ala Leu Ser Lys Gln Glu Gly Cys Arg 125 130 135

Leu Cys Ala Pro Leu Arg Lys Cys Arg Pro Gly Phe Gly Val Ala 140 145 150

Arg Pro Gly Thr Glu Thr Ser Asp Val Val Cys Lys Pro Cys Ala 155 160 165

Pro Gly Thr Phe Ser Asn Thr Thr Ser Ser Thr Asp Ile Cys Arg

Pro His Gln Ile Cys Asn Val Val Ala Ile Pro Gly Asn Ala Ser 185 190 195

Arg Asp Ala Val Cys Thr Ser Thr Ser Pro Thr Arg Ser Met Ala
200 205 210

Pro	Gly	Ala	Val	His 215	Leu	Pro	Gln	Pro	Val 220	Ser	Thr	Arg	Ser	Gln 225
His	Thr	Gln	Pro	Thr 230	Pro	Glu	Pro	Ser	Thr 235	Ala	Pro	Ser	Thr	Ser 240
Phe	Leu	Leu	Pro	Met 245	Gly	Pro	Ser	Pro	Pro 250	Ala	Glu	Gly	Ser	Thr 255
Gly	Asp	Phe	Ala	Leu 260	Pro	Val	Gly	Leu	Ile 265	Val	Gly	Val	Thr	Ala 270
Leu	Gly	Leu	Leu	Ile 275	Ile	Gly	Val	Val	Asn 280	Cys	Val	Ile	Met	Thr 285
Gln	Val	Lys	Lys	Lys 290	Pro	Leu	Cys	Leu	Gln 295	Arg	Glu	Ala	Lys	Val 300
Pro	His	Leu	Pro	Ala 305	Asp	Lys	Ala	Arg	Gly 310	Thr	Gln	Gly	Pro	Glu 315
Gln	Gln	His	Leu	Leu 320	Ile	Thr	Ala	Pro	Ser 325	Ser	Ser	Ser	Ser	Ser 330
Leu	Glu	Ser	Ser	Ala 335	Ser	Ala	Leu	Asp	Arg 340	Arg	Ala	Pro	Thr	Arg 345
Asn	Gln	Pro	Gln	Ala 350	Pro	Gly	Val	Glu	Ala 355	Ser	Gly	Ala	Gly	Glu 360
Ala	Arg	Ala	Ser	Thr 365	Gly	Ser	Ser	Asp	Ser 370	Ser	Pro	Gly	Gly	His 375
Gly	Thr	Gln	Val	Asn 380	Val	Thr	Cys	Ile	Val 385	Asn	Val	Суѕ	Ser	Ser 390
Ser	Asp	His	Ser	Ser 395	Gln	Cys	Ser	Ser	Gln 400	Ala	Ser	Ser	Thr	Met 405
Gly	Asp	Thr	Asp	Ser 410	Ser	Pro	Ser	Glu	Ser 415	Pro	Lys	Asp	Glu	Gln 420
Val	Pro	Phe	Ser	Lys 425	Glu	Glu	Cys	Ala	Phe 430	Arg	Ser	Gln	Leu	Glu 435
Thr	Pro	Glu	Thr	Leu 440	Leu	Gly	Ser	Thr	Glu 445	Glu	Lys	Pro	Leu	Pro 450
Leu	Gly	Val	Pro	Asp 455	Ala	Gly	Met	Lys	Pro 460	Ser				

<210> 18 <211> 293 <212> PRT <213> Homo sapiens <400> 18 Met Asn Lys Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His 20 25 Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr 50 Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His 65 70 Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys 100 Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 110 120 His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe 140 145 Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn 155 160 165 Cys Ser Val Phe Gly Leu Leu Thr Gln Lys Gly Asn Ala Thr 170 175 His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys 190 Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala 200 205 210 Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp 215 220 225

/

Asn	Leu	Pro	Gly	Thr 230	Lys	Val	Asn	Ala	Glu 235	Ser	Val	Glu	Arg	Ile 240
Lys	Arg	Gln	His	Ser 245	Ser	Gln	Glu	Gln	Thr 250	Phe	Gln	Leu	Leu	Lys 255
Leu	Trp	Lys	His	Gln 260	Asn	Lys	Ala	Gln	Asp 265	Ile	Val	Lys	Lys	Ile 270
Ile	Gln	Asp	Ile	Asp 275	Leu	Cys	Glu	Asn	Ser 280	Val	Gln	Arg	His	Ile 285
Gly	His	Ala	Asn	Leu 290	Thr	Phe	Glu							