TCPW BR: A Wireless Congestion Control Scheme Base on RTT

Saem Hasan - 1705027

TCP Westwood scheme

TCPW adopts the idea of bandwidth estimation.

- After three duplicate ACKs ⇒
 - Ssthresh=(BWE*RTT min)/seg_size
 - if Cwnd>Ssthresh then Cwnd=Ssthresh
- ☐ After RTO times out ⇒
 - Ssthresh=(BWE*RTT min)/seg_size
 - Cwnd = 1

Problem With TCPW

TCP Westwood cannot distinguish between congestion and wireless packet loss

Problem With TCPW

TCP Westwood cannot distinguish between congestion and wireless packet loss

Bit error rate	Queue algorithm				
	Drop-Tail	RED	REM	PI	
0%	95.22%	90.94%	94.44%	95.32%	
1%	70.44%	70.42%	72.72%	67.90%	
2%	47.16%	44.10%	43.20%	42.04%	
3%	34.24%	35.23%	32.08%	32.06%	

TCPW-BR scheme

1. Congestion level division

- ⇒The first step is to determine an accurate RTT estimation scheme.
- ⇒This paper uses the method of timeout retransmission timer to predict the RTT.

* $R \in [0,1]$ indicates the extent to which the currently confirmed data segment is used in the network transmission process

Table 2: Congestion level classification						
R	[0,0.25]	(0.25, 0.5]	(0.5, 0.75]	(0.75,1]		
L	1	2	3	4		

2. TCPW BR algorithm

i. Congestion level = $1 \Rightarrow$ congestion probability is small

ii. Congestion level = $2 \Rightarrow$ there is slight congestion \Rightarrow reduce the value of the growth factor P

iii. Congestion level $>=3 \Rightarrow$ congestion is proved to be serious.

Table 3: Growth factors corresponding to congestion levels						
L	1	2	3	4		
P	maintain	0.867	0.5	0.4		

2. TCPW BR algorithm

```
(1) Each time an ACK of a new data segment is received,
   If (congestion level=1||congestion level=2)//Think it is wireless packet loss, mild
congestion
      Cwnd=Cwnd+1;
   If (Cwnd>Ssthresh)
      Cwnd=Cwnd+(1/Cwnd)*p;
(2) After receiving a duplicate ACK before timing out
   If (duplicate ACK=3&& congestion level=1)
      Fast retransmission;
      Quick recovery
   If (duplicate ACK=2&& (congestion level=3||congestion level=4))//Think it is a
congestion packet
   Slow start or congestion avoidance;
     Cwnd=Cwnd*p;
     Ssthresh = (BWE*RTTmin)/seg size;
   If (Cwnd>Ssthresh) then Cwnd=Ssthresh;
   If (duplicate ACK=3&& congestion level>2)
   Slow start or congestion avoidance;
     Cwnd=Cwnd*p;
     Ssthresh=(BWE*RTTmin)/seg size;
   If (Cwnd>Ssthresh) then Cwnd=Ssthresh;
```

Benefits of TCPW - BR

Figure 3: Comparison average throughput when the link error rate is 3%

Benefits of TCPW - BR

Figure 5: Bandwidth utilization of TCPW BR and Newreno at different bit error rates

Reference

TCPW BR: A Wireless Congestion Control Scheme Base on RTT.

Tian, Liwei & Li, Jinfeng & Zhang, Longqing & Sun, Yu & Yang, Lei. (2019). Computers, Materials & Continua. 61. 233-244. 10.32604/cmc.2020.06135.

https://www.researchgate.net/publication/338163187_TCPW_BR_A_Wireless_Congestion_C ontrol_Scheme_Base_on_RTT