Système bielle manivelle ★★

C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R\overrightarrow{i_1}$, $\overrightarrow{CB} = L\overrightarrow{i_2}$ et $\overrightarrow{AC} = \lambda(t)\overrightarrow{j_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\lambda(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est $\dot{\theta}(t) = 100 \, \mathrm{rad \, s^{-1}}$, on prendra $R = 10 \, \mathrm{mm}$ et $L = 20 \, \mathrm{mm}$ puis $L = 30 \, \mathrm{mm}$.

Question 5 En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes valeurs que dans la question précédente. On utilisera une dérivation numérique.

Indications:

1. .

2.
$$\lambda(t) = \pm \sqrt{L^2 - R^2 \cos^2 \theta(t)} + R \sin \theta(t)$$
.

3. $\dot{\lambda}(t) = \pm \left(\frac{R^2 \dot{\theta}(t) \cos \theta(t) \sin \theta(t)}{\sqrt{L^2 - R^2 \cos^2 \theta(t)}}\right) + \dot{\theta}(t)R \cos \theta(t)$.

4. .

5. .

Corrigé voir .

