

planetmath.org

Math for the people, by the people.

Friedrichs' theorem

Canonical name FriedrichsTheorem
Date of creation 2013-03-22 16:51:16
Last modified on 2013-03-22 16:51:16
Owner Algeboy (12884)
Last modified by Algeboy (12884)

Numerical id 6

Author Algeboy (12884)

Entry type Theorem Classification msc 16S30 Classification msc 17B35 Fix a commutative unital ring K of characteristic 0. Let X be a finite set and $K\langle X\rangle$ the free associative algebra on X. Then define the map $\delta: K\langle X\rangle \to K\langle X\rangle \otimes K\langle X\rangle$ by $x\mapsto x\otimes 1+1\otimes x$.

Theorem 1 (Friedrichs). [?, Thm V.9] An element $a \in K\langle X \rangle$ is a Lie element if and only if $a\delta = a \otimes 1 + 1 \otimes a$.

The term Lie element applies only when an element is taken from the universal enveloping algebra of a Lie algebra. Here the Lie algebra in question is the free Lie algebra on X, $FL\langle X\rangle$ whose universal enveloping algebra is $K\langle X\rangle$ by a theorem of Witt.

This characterization of Lie elements is a primary means in modern proofs of the Baker-Campbell-Hausdorff formula.

References

[1] Nathan Jacobson *Lie Algebras*, Interscience Publishers, New York, 1962.