Лабораторная работа №5

Модель хищник-жертва

Кузнецов Юрий Владимирович

Содержание

Цель работы	1
Задачи	
Среда	
Теоретическое введение	
Ход работы	
Вывод	
Ресурсы	

Цель работы

Рассмотреть модель хищник-жертва. Построить модель средствами OpenModellica и Julia.

Задачи

Для модели «хищник-жертва»:

$$\begin{cases} \frac{dx}{dt} = -0.81x(t) + 0.048x(t)y(t) \\ \frac{dy}{dt} = 0.76y(t) - 0.038x(t)y(t) \end{cases}$$

- 1. Построить график зависимости численности хищников от численности жертв, а также графики изменения численности хищников и численности жертв при следующих начальных условиях: $x_0 = 7$, $y_0 = 29$.
- 2. Найти стационарное состояние системы.

Среда

• Julia – это открытый свободный высокопроизводительный динамический язык высокого уровня, созданный специально для технических

(математических) вычислений. Его синтаксис близок к синтаксису других сред технических вычислений, таких как Matlab и Octave. [@unn-julia]

• OpenModelica — свободное открытое программное обеспечение для моделирования, симуляции, оптимизации и анализа сложных динамических систем. Основано на языке Modelica. [@wiki-om]

Теоретическое введение

Простейшая модель взаимодействия двух видов типа «хищник — жертва» - модель Лотки-Вольтерры. Данная двувидовая модель основывается на следующих предположениях [@rudn-task]:

- 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории);
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает;
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными;
- 4. Эффект насыщения численности обеих популяций не учитывается;
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников;

$$\begin{cases} \frac{dx}{dt} = ax(t) - bx(t)y(t) \\ \frac{dy}{dt} = -cy(t) + dx(t)y(t) \end{cases}$$

В этой модели x – число жертв, y - число хищников. Коэффициент a описывает скорость естественного прироста числа жертв в отсутствие хищников, c - естественное вымирание хищников, лишенных пищи в виде жертв. Вероятность взаимодействия жертвы и хищника считается пропорциональной как количеству жертв, так и числу самих хищников (xy). Каждый акт взаимодействия уменьшает популяцию жертв, но способствует увеличению популяции хищников (члены -bxy и dxy в правой части уравнения).

Стационарное состояние данной системы (положение равновесия, не зависящее от времени решение) будет в точке:

$$x_0 = \frac{c}{d}, \ y_0 = \frac{a}{b}$$

Если начальные значения задать в стационарном состоянии

$$x(0) = x_0, y(0) = y_0$$

то в любой момент времени численность популяций изменяться не будет. При малом отклонении от положения равновесия численности как хищника, так и жертвы с течением времени не возвращаются к равновесным значениям, а совершают периодические колебания вокруг стационарной точки. Амплитуда колебаний и их период определяется начальными значениями численностей x(0), y(0). Колебания совершаются в противофазе.

Ход работы

Начнем выполнения поставленных задач в Julia. Для этого запустим Pluto.

Julia. 3anyck Pluto

Первым делом подкючим пакеты Plots и DifferentialEquations. Далее объявим начальные данные при помощи констант. Также объявим начальное условие для системы ДУ и промежуток времени, на котором будет проходить моделирование. После этого объявим функцию, представляющую систему. (рис. @fig:002)

```
using Plots
using DifferentialEquations

const a = 0.810
const b = 0.048
const c = 0.760
const d = 0.038
```

```
const x0 = 7
const y0 = 29

const t = (0, 50)

function HunterPray!(du, u, p, t)
    du[1] = -a * u[1] + b * u[1] * u[2]
    du[2] = c * u[2] - d * u[1] * u[2]
end
```


Julia. Скрипт (1). Модель "Хищник-жертва" (при начальных условиях x = 7, y = 29)

В следующей ячейке Pluto построим график зависимости x от y и графики функций x(t), y(t). При помощи DifferentialEquations зададим и решим систему ДУ, после чего построим графики функций x(t), y(t). Так же создадим два списка, в которых будут храниться точки уравнений. Запустим итоговый код.

```
begin
    u0 = [x0, y0]
    prob = ODEProblem(HunterPray!, u0, t)
    sol = solve(prob, dtmax = 0.05)
    X = [u[1] for u in sol.u]
Y = [u[2] for u in sol.u]
    plt01 = plot(sol,
         dpi = 500,
          plot_title = "Хищник-жертва",
          xlabel = "Bpema",
ylabel = "x, y",
          label = ["х - хищник" "у - жертва"])
   savefig(plt01, "labart/result.png")
    plt02 = plot(X, Y,
          dpi=500,
          plot_title = "Хищник-жертва",
          xlabel="x",
          ylabel="y",
          label="Зависимость х (хищник) от у (жертва)")
    savefig(plt02, "labart/result2.png")
    println("Complete!")
Complete!
                                                                                    ?
```

Julia. Скрипт (2). Модель "Хищник-жертва" (при начальных условиях х = 7, у = 29)

Julia. Модель. Графики функций изменения численности хищников и изменения численности жертв (при начальных условиях x = 7, y = 29)

Julia. Модель. График зависимости изменения численности хищников от изменения численности жертв (при начальных условиях x = 7, y = 29)

Изменим начальные значения в коде, при которых будет достигаться положение равновесия (не зависящее от времени решение).

```
u0 = [c/d, a/b]
prob = ODEProblem(HunterPray!, u0, t)
sol = solve(prob, dtmax=0.05)
X = [u[1] \text{ for } u \text{ in sol.} u]
Y = [u[2] \text{ for } u \text{ in sol.} u]
plt01 = plot(sol,
      dpi = 500,
      plot title = "Хищник-жертва",
      xlabel = "Время",
      ylabel = "x, y",
      label = ["x - хищники" "y - жертва"])
savefig(plt01, "labart/result_1_1.png")
plt02 = scatter(X, Y,
      dpi=500,
      plot_title = "Хищник-жертва",
      xlabel="x",
      ylabel="y",
      label="Зависимость х (хищники) от у (жертва)")
savefig(plt02, "labart/result_1_2.png")
println("Success!")
```

```
begin
   u0 = [c/d, a/b]
    prob = ODEProblem(HunterPray!, u0, t)
    sol = solve(prob, dtmax = 0.05)
    X = [u[1] \text{ for } u \text{ in sol.} u]
    Y = [u[2] \text{ for } u \text{ in sol.} u]
    plt01 = plot(sol,
           dpi=500,
           plot_title = "Хищник-жертва",
           xlabel="Время",
           ylabel="x, y",
label=["x - хищники" "y - жертва"])
    savefig(plt01, "labart/result_1.png")
    plt02 = scatter(X, Y,
           dpi=500,
           plot_title = "Хищник-жертва",
          xlabel="x",
ylabel="y",
           label="Зависимость х (хищники) от у (жертва)")
    savefig(plt02, "labart/result_2.png")
    println("Success!")
                                                                                       ?
```

Julia. Скрипт. Модель "Хищник-жертва" (стационарное состояние)

Julia. Модель. Графики функций изменения численности хищников и изменения численности жертв (стационарное состояние)

Julia. Модель. График зависимости изменения численности хищников от изменения численности жертв (стационарное состояние)

Построим график зависимости численности на Modelica.

```
model Var1
 constant Real a = 0.810;
 constant Real b = 0.048;
 constant Real c = 0.760;
 constant Real d = 0.038;
 Real t = time;
 Real x(t);
 Real y(t);
initial equation
 x = 7;
 y = 29;
equation
 der(x) = -a * x + b * x * y;
 der(y) = c * y - d * x * y;
 annotation(experiment(StartTime = 0, StopTime = 50, Interval = 0.05));
end Var1;
                             Var2*
                                                               ×
1 model Var1
     constant Real a = 0.810;
     constant Real b = 0.048;
```


Modelica. Скрипт. Модель "Хищник-жертва" (при начальных условиях x = 7, y = 29)

Modelica. Модель. Графики функций изменения численности хищников и изменения численности жертв (при начальных условиях x = 7, y = 29)

Modelica. Модель. График зависимости изменения численности хищников от изменения численности жертв (при начальных условиях x = 7, y = 29)

Построим график зависимости в стационарном состоянии на Modelica.

```
model Var2
  constant Real a = 0.810;
  constant Real b = 0.048;
  constant Real c = 0.760;
  constant Real d = 0.038;
  Real t = time;
  Real x(t);
  Real y(t);
initial equation
  x = c / d;
  y = a / b;
equation
  der(x) = -a * x + b * x * y;
  der(y) = c * y - d * x * y;
  annotation(experiment(StartTime = 0, StopTime = 50, Interval = 0.05));
end Var2;
```


Modelica. Скрипт. Модель "Хищник-жертва" (стационарное состояние)

Modelica. Модель. Графики функций изменения численности хищников и изменения численности жертв (стационарное состояние)

Modelica. Модель. График зависимости изменения численности хищников от изменения численности жертв (стационарное состояние)

Вывод

Повысили навыки моделирования на Julia, также навыки моделирования на OpenModelica. Изучили модель взаимодействия двух видов типа «хищник — жертва», а именно модель Лотки-Вольтерры. Подробнее ознакомились с Pluto.

Ресурсы

- Julia. URL: http://www.unn.ru/books/met_files/JULIA_tutorial.pdf.
- OpenModelica. URL: https://ru.wikipedia.org/wiki/OpenModelica.
- Модель хищник-жертва. RUDN. URL: https://esystem.rudn.ru/mod/resource/view.php?id=967245.
- Pluto. URL: https://plutojl.org/.
- Plots in Julia. URL: https://docs.juliaplots.org/latest/tutorial/.
- Differential Equations in Julia. URL: https://docs.sciml.ai/DiffEqDocs/stable/getting_started/.