Correlation

Miaoyan Wang

Department of Statistics UW Madison

Recall: brainstorm

Why do we use vertical distance to define the fitted line?

Other choices?

- The sum of the squares of perpendicular distance
- The sum of absolute value of the distance

Correlation Model

- In linear regression, we model and predict Y given X = x.
- If interested in how two variables are related to each other, X and Y
 are to be treated symmetrically.
- Let X and Y both be random and have a bivariate distribution.
- A useful distribution is a bivariate normal distribution with a probability density that is parameterized by
 - μ_Y and σ_Y : the mean and the SD of the marginal distribution of Y
 - μ_X and σ_X : the mean and the SD of the marginal distribution of X
 - ho_{YX} (or ρ): the **coefficient of correlation** between Y and X

Correlation Model

The probability density surface can be plotted using a 3D or contour plot.

Properties for bivariate normal (homework):

- Marginal distribution: $X \sim N(\mu_X, \sigma_X^2)$ and $Y \sim N(\mu_Y, \sigma_Y^2)$.
- Conditional distribution: $Y|X = x \sim N(\alpha + \beta x, \sigma_{Y|x}^2)$ where

$$\alpha = \mu_Y - \mu_X \rho \frac{\sigma_Y}{\sigma_X}, \beta = \rho \frac{\sigma_Y}{\sigma_X}, \sigma_{Y|X}^2 = \sigma_Y^2 (1 - \rho^2).$$

Population Correlation Coefficient

 The population correlation coefficient (also called Pearson correlation coefficient) between X and Y is

$$\rho = Cor(X, Y) = \frac{Cov(X, Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}.$$

- ullet ρ is a measure of linear relationship between X and Y.
- $-1 \le \rho \le 1$.
- $\rho = 1$ indicates perfect positive correlation.
- $0 < \rho < 1$ indicates modest positive correlation.
- $\rho = 0$ indicates no linear relationship.
- ullet -1 <
 ho < 0 indicates modest negative correlation.
- $\rho = -1$ indicates perfect negative correlation.

Example 1

Example 2

Example 3

Pearson's Sample Correlation Coefficient

• Based on the data $(X_1, Y_1), (X_2, Y_2), \dots, (X_n, Y_n)$, the sample correlation coefficient

$$\hat{\rho} = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

estimates ρ .

- Note the symmetry between X and Y in $\hat{\rho}$.
- Sample covariance

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

- $\hat{\rho} = \frac{s_{xy}}{\sqrt{s_x s_y}}$ estimates the Pearson correlation coefficient, where s_x, s_y denote the sample covariance for X, Y, respectively.
- Connection to slope in simple linear regression? Recall $\hat{\beta}_1 = \frac{s_{xy}}{s_x}$.

Independence

Let (X, Y) be a bivariate random variable in \mathbb{R}^2 .

• Independence:

$$\mathbb{P}(X \le x, Y \le y) = \mathbb{P}(X \le x)\mathbb{P}(Y \le y), \text{ for all } x, y \in \mathbb{R}.$$

• Uncorrelated:

$$Cov(X, Y) = 0.$$

- Independence → uncorrelated, but not vice versa.
- Pearson correlation coefficient is a measure of the strength of linear dependence between two random variables.
- If Y = aX + b, then $\rho(X, Y) = 1$ when a > 0, and $\rho(X, Y) = -1$ when a < 0.

Linear independence

Statistical Inference on ρ

- Assume X and Y are from a bivariate normal distribution.
- Define Fisher's transformation

$$\lambda(
ho) = rac{1}{2} ln \left(rac{1+
ho}{1-
ho}
ight) = \operatorname{arctanh}(
ho),$$

• Fisher R.A. (1915) shows that

$$\lambda(\hat{\rho}) = \frac{1}{2} \ln \left(\frac{1+\hat{\rho}}{1-\hat{\rho}} \right) \approx N \left(\lambda(\rho), \frac{1}{n-3} \right).$$

• An approximate $(1-\alpha)$ CI for $\lambda(\rho)$ is

$$\lambda(\hat{\rho}) \pm z_{\alpha/2} \sqrt{\frac{1}{n-3}} = \left[\hat{\lambda}_1, \hat{\lambda}_2\right].$$

• An approximate $(1-\alpha)$ CI for ρ is

$$\left(\frac{e^{2\hat{\lambda}_1}-1}{e^{2\hat{\lambda}_1}+1}\equiv\right) tanh(\hat{\lambda}_1)\leq \rho \leq tanh(\hat{\lambda}_2)\left(\equiv \frac{e^{2\hat{\lambda}_2}-1}{e^{2\hat{\lambda}_2}+1}\right).$$

Example: Wetland Species Richness

• From the summary statistics, we have

$$\hat{\rho} = \frac{-10.775}{\sqrt{2.3316}\sqrt{528.84}} = -0.307.$$

Find the Fisher's transformation

$$\lambda(\hat{\rho}) = \frac{1}{2} \log \left\{ \frac{1 + (-0.307)}{1 - (-0.307)} \right\} = -0.3172$$

• An approximate 95% CI for $\lambda(\rho)$ is

$$(-0.3172) \pm 1.96 \times \sqrt{\frac{1}{55}} = [-0.582, -0.0529]$$

• An approximate 95% CI for ρ is

$$\frac{e^{2(-0.582)} - 1}{e^{2(-0.582)} + 1} \le \rho \le \frac{e^{2(-0.0529)} - 1}{e^{2(-0.0529)} + 1}$$

which is [-0.524, -0.0528].

Remarks on $\hat{\rho}$

Correlation \neq Causation

