Московский физико-технический институт Физтех-школа прикладной математики и информатики

ФУНКЦИОНАЛЬНЫЙ АНАЛИЗ

V-VI CEMECTP

Лектор: Коновалов Сергей Петрович

КОНСПЕКТ НЕ ЗАКОНЧЕН ОБ ОШИБКАХ СООБЩАТЬ СЮДА

Автор: Хаймоненко Виктор Проект на Github

Содержание

1	Линейные ограниченные (непрерывные) операторы	2
2	Сопряженное пространство. Теорема Рисса-Фреше. Теорема Хана- Банаха	5
3	Слабая сходимость	9
4	Сопряженные операторы	11

1 Линейные ограниченные (непрерывные) операторы

Пусть E_1 , E_2 – линейные нормированные пространства над полем \mathbb{K} (\mathbb{R} или \mathbb{C}).

Определение 1.1. Отображение $A: E_1 \to E_2$ называется *оператором*.

Определение 1.2. Отображение $A: E_1 \to \mathbb{K}$ называется функционалом.

Определение 1.3. Оператор A называется *ограниченным*, если для любого ограниченного множества $M \subset E_1$ множество $A(M) = \{y \in E_2 : \exists x \in M \hookrightarrow A(x) = y\}$ является ограниченным.

Замечание. Функция $I: E \to E$, такая что $I(x) = x \ \forall x \in E$ является ограниченной по определению выше, но не является ограниченной с точки зрения определения из математического анализа.

Определение 1.4. $ImA = \{y \in E_2 : \exists x \in E_1 \hookrightarrow A(x) = y\}$ — образ оператора A, $KerA = \{x \in E_1 : A(x) = \theta\}$, где θ — нулевой элемент пространства E_2 , называется ядром отображения A.

Определение 1.5. Оператор $A: E_1 \to E_2$ называется *линейным*, если

- 1. $A(x+y) = Ax + Ay \ \forall x,y \in E_1$
- 2. $A(\lambda x) = \lambda Ax \ \forall x \in E_1, \ \forall \lambda \in \mathbb{K}$

Утверждение 1.1. Пусть A – линейный оператор. Тогда следующие утверждения эквивалентны

- 1. A ограниченный
- 2. $\exists K : ||Ax|| \leq K||x|| \ \forall x \in E_1$
- 3. $A(B_1(\theta))$, где $B_1(\theta)$ шар единичного радиуса с центром в нуле, является ограниченным множеством

Доказательство. Пусть выполняется неравенство в пункте 2. Пусть $x \in B_1(\theta)$. Если $x = \theta$, то неравенство выполнено автоматически для любого неотрицательного K. Так как $\|x\| \leqslant 1$, то $\|Ax\| \leqslant K\|x\| \leqslant K$. Обратно, пусть выполнено условие пункта 3. Рассмотрим $x \in E_1 \backslash \{\theta\}$. Тогда $\|Ax\| = \left\|A\frac{x}{\|x\|}\|x\|\right\| \leqslant K\|x\|$ в силу ограниченности образа единичного шара. Если $x = \theta$, то неравенство выполнено автоматически для любого неотрицательного K.

Пусть выполнено условие пункта 3. Тогда, если $M \subset E_1$ – ограниченное множество, то $\exists n \in \mathbb{N}: M \subset B_n(\theta)$. Тогда $\forall x \in B_n(\theta) \hookrightarrow \frac{x}{n} \in B_1(\theta)$, то есть $\|Ax\| = \left\|A\frac{x}{n} \cdot n\right\| \leqslant Cn$. Следовательно, A(M) – ограниченное множество. Обратно, так как единичный шар – ограниченное множество, то и его образ ограниченное множество.

Определение 1.6. Назовем число ||A|| нормой оператора A, если $||A|| = \inf_{K: \ ||Ax|| \leqslant K||X||} K$.

Утверждение 1.2. ||A|| удовлетворяет неравенству $||Ax|| \le ||A|| \cdot ||x||$.

Доказательство. Следует из определения точной нижней грани.

Утверждение 1.3. Пусть A – линейный ограниченный оператор. Тогда

$$||A|| = \sup_{\|x\| \le 1} ||Ax|| = \sup_{\|x\| = 1} ||Ax|| = \sup_{x \ne 0} \frac{||Ax||}{||x||}.$$

Доказательство. $\|A\| \geqslant \|A\| \cdot \|x\| \geqslant \|Ax\|, \|x\| \leqslant 1$. Следовательно, $\|A\| \geqslant \sup_{\|x\| \leqslant 1} \|Ax\| \geqslant 1$

$$\sup_{\|x\|=1}\|Ax\|. \text{ Так как } \forall x \neq 0 \hookrightarrow \frac{\|Ax\|}{\|x\|} = \left\|A\frac{x}{\|x\|}\right\|, \text{ где } \left\|\frac{x}{\|x\|}\right\| = 1, \text{ то } \sup_{\|x\|=1}\|Ax\| \geqslant \sup_{x \neq 0} \frac{\|Ax\|}{\|x\|}.$$

Покажем, что $\sup_{x\neq 0} \frac{\|Ax\|}{\|x\|} \geqslant \|A\|$. Из определения точной нижней грани

$$\forall \varepsilon > 0 \ \exists x_{\varepsilon} \in E_1: \ (\|A\| - \varepsilon)\|x_{\varepsilon}\| < \|Ax_{\varepsilon}\| \leqslant \|A\| \cdot \|x_{\varepsilon}\| \Leftrightarrow (\|A\| - \varepsilon) < \frac{\|Ax_{\varepsilon}\|}{\|x_{\varepsilon}\|} \leqslant \|A\|.$$

Следовательно,
$$\sup_{x\neq 0} \frac{\|Ax\|}{\|x\|} = \|A\|.$$

Замечание. 1) Если $\dim E_1 < \infty$, то все линейные операторы ограничены

2) Если $\dim E_1 = \infty$, то существуют такие E_1 , E_2 , что $A: E_1 \to E_2$, и A не является ограниченным.

Пример. Пусть $E_1=C^1[0,1]$ с нормой из C[0,1], $E_2=C[0,1]$. Рассмотрим оператор D: $E_1\to E_2,\ D(f)=\frac{df}{dx}.$ Тогда $f_n=\frac{\sin nx}{n} \Rightarrow 0$ при $n\to\infty$ по признаку Вейерштрасса, но $D(f_n)=\cos nx$ не имеет даже поточечного предела при $n\to\infty$ (И ЧТО ИЗ ЭТОГО? ДОДЕЛАТЬ!).

Замечание. Для нахождения нормы оператора ||A|| рекомендуется изначально сделать оценку сверху, а потом показать, что эта оценка достигается.

Пример. Пусть $E_1 = E_2 = C[0,1]$. Рассмотрим оператор Вольтерра:

$$(Af)(x) = \int_0^x f(t)dt.$$

Тогда $Im A = \{g \in C[0,1], g(0) = 0\}, Ker A = \{0\}.$

Теорема 1.1. Пусть E_1, E_2 – линейные нормированные пространства, $A: E_1 \to E_2$ – линейный оператор. Тогда A – ограничен тогда и только тогда, когда A – непрерывен.

Доказательство. Пусть A ограничен, $\{x_n\} \subset E_1: x_n \xrightarrow[n \to \infty]{} x \in E_1$. Тогда $\|x_n - x\| \xrightarrow[n \to \infty]{} 0$ и $\|Ax_1 - Ax\| = \|A(x_1 - x)\| \leqslant \|A\| \cdot \|x_1 - x\| \xrightarrow[n \to \infty]{} 0$.

Обратно, пусть A непрерывен. Предположим, что A неограничен. Тогда $\forall n \in \mathbb{N} \ \exists x_n \in E_1: \|Ax_n\| > n\|x_n\|$. Рассмотрим $y_n:=\frac{x_n}{\|x_n\|n} \xrightarrow[n \to \infty]{} 0$. Тогда $\|Ay_n\| = \left\|A\frac{x_n}{\|x_n\|n}\right\| > \frac{n\|x_n\|}{n\|x_n\|} = 1$. Но так как образ нулевого элемента линейного оператора равняется нулю, то приходим к противоречию.

Определение 1.7. Обозначим $\mathcal{L}(E_1, E_2)$ пространство линейных ограниченных операторов.

Определение 1.8. Пусть E – линейное нормированное пространство. Тогда пространство $E^* = \mathcal{L}(E, \mathbb{K})$ называется *сопряженным* пространством.

Теорема 1.2. Пусть E_1 , E_2 – линейные нормированные пространства. Тогда

- 1. $\mathcal{L}(E_1, E_2)$ линейное нормированное пространство с нормой $||A|| = \sup_{||x||=1} ||Ax||$,
- 2. Если E_2 банахово, то $\mathcal{L}(E_1, E_2)$ банахово.

Доказательство.

1. Операции сложения двух линейных операторов и умножение на константу не выводят из пространства линейных операторов. Докажем, что $||A|| = \sup_{\|x\|=1} \|Ax\|$ является нормой. $||A|| = 0 \Leftrightarrow \forall x \in E_1, ||x|| = 1 \hookrightarrow ||Ax|| = 0 \Leftrightarrow Ax = 0 \ \forall x \in E_1$. В силу линейности $\forall \lambda \in \mathbb{K}$ выполнено

$$\|\lambda A\| = \sup_{\|x\|=1} \|\lambda Ax\| = \sup_{\|x\|=1} |\lambda| \cdot \|Ax\| = \sup_{\|x\|=1} |\lambda| \cdot \|Ax\| = |\lambda| \sup_{\|x\|=1} \|Ax\| = |\lambda| \cdot \|A\|.$$

Пусть $A_1, A_2 \in \mathcal{L}(E_1, E_2)$. Тогда

$$||A_1 + A_2|| = \sup_{\|x\|=1} ||(A_1 + A_2)x|| = \sup_{\|x\|=1} ||A_1x + A_2x|| \leqslant \sup_{\|x\|=1} (||A_1x|| + ||A_2x||) \leqslant \sup_{\|x\|=1} ||A_1x|| + \sup_{\|x\|=1} ||A_2x|| = ||A_1|| + ||A_2||.$$

2. Пусть $\{A_n\}\subset \mathcal{L}(E_1,\,E_2)$. Тогда $\forall \varepsilon>0\ \exists N:\ \forall n,m\geqslant N\hookrightarrow \|A_n-A_m\|<\varepsilon$. Пусть $x\in E_1,\,\|x\|=1$. Тогда $\varepsilon>\|A_n-A_m\|\geqslant\|(A_n-A_m)x\|=\|A_nx-A_mx\|$. Следовательно, $\forall x\in E_1,\,\|x\|=1$ последовательность $\{A_nx\}$ является фундаментальной в E_2 . Так как E_2 банахово, то $\exists y\in E_2$, такой что $A_nx\to y=:Ax\ \forall x\in E_1,\,\|x\|=1$. Докажем, что оператор A, определяемый таким способом, является линейным. Покажем, что A ограниченный оператор. Так как последовательность $\{A_n\}$ фундаментальна, то она ограничена. Следовательно, $\exists K:\,\|A_n\|\leqslant K\ \forall n\in\mathbb{N}$. Так как норма в линейном нормированном пространстве является непрерывной функцией, и $\forall x\in E_1\hookrightarrow A_nx\xrightarrow[n\to\infty]{n\to\infty}Ax$, то $\|A_nx\|\xrightarrow[n\to\infty]{n\to\infty}\|Ax\|$. Из того, что $\|A_nx\|\leqslant \|A\|\cdot\|x\|\leqslant K\|x\|\Rightarrow \|Ax\|\leqslant K\|x\|$. Поэтому, A – ограниченный.

Покажем, что $\|A_n - A\| \xrightarrow[n \to \infty]{} 0$. Так как последовательность $\{A_n\}$ фундаментальна, то $\forall x \in E_1, \ \|x\| = 1, \ \forall \varepsilon > 0 \ \exists N \in \mathbb{N}: \ \forall n,m \geqslant N \hookrightarrow \|A_n x - A_m x\| < \varepsilon$. Устремляя m к бесконечности, получаем $\|A_n x - Ax\| \leqslant \varepsilon$. Следовательно, $\sup_{\|x\| = 1} \|A_n x - Ax\| = \|A_n - A\| < \varepsilon$.

Упражнение. Пусть $A_n \in \mathcal{L}(E_1, E_2) \ \forall n \in \mathbb{N}, \ u \ \forall x \in E_1 \hookrightarrow A_n x \to Ax$. Следует ли из этого ограниченность оператора A?

ФПМИ МФТИ, осень-весна 2021-22

Пример. Пусть $H = l_2$, (e^n) – ОНБ, где e^n – последовательности, в которых на n-м месте стоит единица, а на других позициях – нули. Сопоставим элементу $x \in H$ его ряд Фурье по системе (e^n) :

$$x = \sum_{n=1}^{\infty} (x, e^n) e^n.$$

Обозначим $S_n(x) = \sum_{k=1}^n (x, e^k) e^k$. Тогда $\forall x \hookrightarrow S_n(x) \to x$, то есть S_n сходится поточечно к тождественному оператору. С другой стороны, для любого $n \in \mathbb{N}$ выполняется $\|S_n(e^{n+1}) - I(e^{n+1})\| = 1$, то есть $\|S_n - I\| \to 0$ при $n \to \infty$.

2 Сопряженное пространство. Теорема Рисса-Фреше. Теорема Хана-Банаха

Теорема 2.1. (Банах, $6/\partial$) Пусть E_1 , E_2 – банаховы пространства, и отображение $A \in \mathcal{L}(E_1, E_2)$ является биекцией. Тогда $A^{-1} \in \mathcal{L}(E_2, E_1)$.

Определение 2.1. Пространство $E^* := \mathcal{L}(E, \mathbb{H})$, где E – линейное нормированное пространство над \mathbb{H} (\mathbb{R} или \mathbb{C}), называется сопряженным пространством.

Упражнение. Пусть H – гильбертово пространство над \mathbb{C} , $A \in \mathcal{L}(H)$, $u \ \forall x \in H \hookrightarrow (Ax,x) = 0$. Следует ли из этого, что A = 0? Верно ли это, если H – гильбертово над \mathbb{R} ?

Определение 2.2. Пусть E – линейное нормированное пространство. Тогда $\{x_n\}$ сходится слабо к x в E, если $\forall f \in E^* \hookrightarrow f(x_n) \xrightarrow[n \to \infty]{} f(x)$.

Теорема 2.2. (Рисса-Фреше) Пусть H – гильбертово пространство. Тогда для любого линейного непрерывного функционала $f \in H^*$ существует и единственный $y_0 \in H$: $f(x) = (x, y_0) \ \forall x \in H$. При этом $||f|| = ||y_0||$.

Доказательство. Приведем два варианта доказательства. Во втором, в отличии от первого, требуется сепарабельность пространства H.

1. Докажем сначала существование такого y_0 .

Если f = 0, то $y_0 = 0$, и $f(x) = (x, y_0) \ \forall x \in H$.

Если $f \neq 0$, то $M := Kerf \neq H$. По теореме Рисса о проекции $H = M \oplus M^{\perp}$. Значит, $\forall x \in H \hookrightarrow x = z + \alpha x_0$, где $z \in Kerf$, $x_0 \in [Kerf]^{\perp}$. Значит, $x - \alpha x_0 \in Kerf$. Тогда $f(x - \alpha x_0) = f(x) - \alpha f(x_0) = 0 \Rightarrow \alpha = \frac{f(x)}{f(x_0)}$. Следовательно,

$$\forall x \in H \hookrightarrow x = z + \frac{f(x)}{f(x_0)} x_0 \Rightarrow (x, x_0) = \frac{f(x)}{f(x_0)} ||x_0||^2 \Rightarrow \left(x, \frac{f(x_0)}{||x_0||^2} x_0\right) = f(x).$$

Обозначив $y_0 := \frac{f(x_0)}{\|x_0\|^2} x_0$, получим требуемое.

Докажем единственность y_0 . Пусть $\exists y_1, y_2 \in H : \forall x \hookrightarrow (x, y_1) = (x, y_2) = f(x)$. Тогда $(x, y_1 - y_2) = 0$. Взяв $x = y_1 - y_2$, получим $(y_1 - y_2, y_1 - y_2) = 0 \Rightarrow y_1 - y_2 = 0$.

2. В предположении сепарабельности пространства H существует ортонормированный базис $\{e_n\}$, что $\forall x \in H \hookrightarrow x = \sum_{n=1}^{\infty} (x, e_n)e_n$. Пусть $f \in H^*$. Тогда так как f — непрерывный оператор, то $f(S_n) \xrightarrow[n \to \infty]{} f(x)$, где $S_n = \sum_{k=1}^n (x, e_k)e_k$. С другой стороны, $f(S_n) = f\left(\sum_{k=1}^n (x, e_k)e_k\right) = \sum_{k=1}^n (x, e_k)f(e_k) = \sum_{k=1}^n \left(x, \overline{f(e_k)}e_k\right) = \left(x, \sum_{k=1}^n \overline{f(e_k)}e_k\right)$. Докажем, что $y_0 := \sum_{k=1}^{\infty} \overline{f(e_k)}e_k \in H$. Вспомним, что, если $\{e_n\}$ — ортонормированная система векторов, то ряд $\sum_{n=1}^{\infty} \alpha_n e_n$ сходится тогда и только тогда, когда сходится ряд $\sum_{n=1}^{\infty} |\alpha_n|^2$. Покажем, что ряд $\sum_{n=1}^{\infty} \left|\overline{f(e_n)}\right|^2$ сходится. С одной стороны, $\sum_{n=1}^{N} \left|\overline{f(e_n)}\right|^2 = \left\|\sum_{n=1}^{N} \overline{f(e_n)}e_n\right\|^2$. С другой стороны,

$$\sum_{n=1}^{N} \left| \overline{f(e_n)} \right|^2 = \sum_{n=1}^{N} \overline{f(e_n)} f(e_n) = f\left(\sum_{n=1}^{N} \overline{f(e_n)} e_n\right) \leqslant \|f\| \left\| \sum_{n=1}^{N} \overline{f(e_n)} e_n \right\| \Rightarrow$$

$$\Rightarrow \left\| \sum_{n=1}^{N} \overline{f(e_n)} e_n \right\|^2 \leqslant \|f\| \left\| \sum_{n=1}^{N} \overline{f(e_n)} e_n \right\| \Rightarrow \left\| \sum_{n=1}^{N} \overline{f(e_n)} e_n \right\| \leqslant \|f\| \Rightarrow$$

$$\Rightarrow \|f\|^2 \geqslant \sum_{n=1}^{N} \left| \overline{f(e_n)} \right|^2 \Rightarrow \text{ряд } \sum_{n=1}^{N} \left| \overline{f(e_n)} \right|^2 \text{ сходится.}$$

Из этого получаем, что ряд $y_0 := \sum_{k=1}^{\infty} \overline{f(e_k)} e_k$ сходится к элементу из H. Единственность доказывается аналогично.

Теорема 2.3. (Хан-Банах) Пусть E – линейное нормированное пространство, $M \subset E$ – линейное многообразие, f – линейный ограниченный функционал на M. Тогда $\exists \tilde{f} \in E^*$:

1.
$$\tilde{f}\Big|_{M} = f$$
.

$$2. \ \left\| \tilde{f} \right\| = \|f\|.$$

Доказательство. Если M=E, то, взяв $\tilde{f}=f$, получим требуемое. Пусть теперь $M\neq E$. Предположим, что E – вещественное, сепарабельное пространство. Рассмотрим многообразие $M_1=M\oplus [x_0]$, где $x_0\notin M$. Тогда $\forall y\in M_1\hookrightarrow y=x+\alpha x_0$, где $x\in M$, $\alpha\in \mathbb{K}$. Определим функционал f_1 на M_1 как $f_1(y)=f(x)+\alpha f(x_0)$. Тогда $\|f_1\|\geqslant \|f\|$, т.к. $f_1|_M=f$. Покажем, что $\|f_1\|\leqslant \|f\|$. Если $\alpha=0$, то выполняется неравенство $|f_1(y)|=|f(x)|\leqslant \|f\|\cdot \|x\|$. Пусть $\alpha\neq 0$. Достаточно доказать верность неравенства

$$\forall y \in M_1 \hookrightarrow |f_1(y)| = |f(x) + \alpha f(x_0)| \le ||f|| \cdot ||x + \alpha x_0||.$$

Обозначим $z:=\frac{x}{\alpha}.$ Если неравенство верно, то

$$\forall z \hookrightarrow -\|f\| \cdot \|z + x_0\| \leqslant f(z) + f(x_0) \leqslant \|f\| \cdot \|z + x_0\| \Leftrightarrow -\|f\| \cdot \|z + x_0\| - f(z) \leqslant f(x_0) \leqslant \|f\| \cdot \|z + x_0\| - f(z).$$

Существование такого $f(x_0)$ равносильно

$$\sup_{z} -\|f\| \cdot \|z + x_{0}\| - f(z) \leqslant \inf_{z} \|f\| \cdot \|z + x_{0}\| - f(z) \Leftrightarrow$$

$$\Leftrightarrow \forall z_{1}, z_{2} \in M \hookrightarrow -\|f\| \cdot \|z_{1} + x_{0}\| - f(z_{1}) \leqslant \|f\| \cdot \|z_{2} + x_{0}\| - f(z_{2}) \Leftrightarrow$$

$$f(z_{2}) - f(z_{1}) \leqslant \|f\| (\|z_{1} + x_{0}\| + \|z_{2} + x_{0}\|).$$

Последнее неравенство следует из неравенства

$$|f(z_2) - f(z_1)| = f(z_2 - z_1) \le ||f|| \cdot ||z_2 - z_1|| \le ||f|| (||z_1 + z_0|| + ||z_2 + z_0||),$$

которое выполнено. Таким образом, существует такое число $f(x_0)$, что выполняется неравенство $|f(x) + \alpha f(x_0)| \leq ||f|| \cdot ||x + \alpha x_0||$, и, следовательно, $||f_1|| \leq ||f||$.

Продолжим этот процесс, определив $M_2 = M_1 \oplus [x_1]$, где $x_1 \notin M_1$, если $M_1 \neq E$, и т.д. Если за конечное количество шагов k получилось, что $M_k = E$, то функционал $f_k|_M = f$, и $||f_k|| = ||f||$.

Иначе, получим последовательность линейных многообразий $\{M_n\}_{n=1}^{\infty}$, что $\forall n \in \mathbb{N} \hookrightarrow M_n \neq E$. Из сепарабельности пространства E следует, что $\exists X = \{x_n\}_{n=0}^{\infty}$, что X – всюду плотно. Тогда построим последовательность $\{M_n\}_{n=1}^{\infty}$ следующим образом: по очереди перебирая $x_i \in X$, проверяем, лежит ли x_i в M_j . Если да, то переходим к x_{i+1} . Иначе,

строим
$$M_{j+1}=M_j\oplus [x_i]$$
. Обозначим $M_\infty:=\bigcup_{n=0}^\infty M_n$, где $M_0=M$. Так как $X\subset M_\infty$, то

 M_{∞} всюду плотно в E. Определим на M_{∞} функционал $f_{\infty}: f_{\infty}|_{M_n} = f_n \ \forall n \in \mathbb{N}$. Тогда $\|f_{\infty}\| = \|f\|$.

Вспомним Теорему 5.3, в которой утверждается, что, если E_1 – линейное нормированное пространство, E_2 – банахово пространство, $D(A) \subset E_1$ – линейное многообразие, являющееся всюду плотным в $E_1, A: D(A) \to E_2$ – линейный ограниченный функционал, то $\exists ! \tilde{A} \in \mathcal{L}(E_1, E_2),$ что $\tilde{A}|_{D(A)} = A, \ \left\| \tilde{A} \right\| = \|A\|.$

Таким образом, f_{∞} удовлетворяет условиям теоремы, следовательно, $\exists ! \tilde{f}$, являющееся продолжением f_{∞} на все E_1 .

Замечание. Вообще говоря, продолжение на все пространство не единственно.

Упражнение. Доказать теорему Хана-Банаха для случая, когда E не является сепарабельным.

Следствие. Пусть E – линейное нормированное пространство.

- 1. Пусть $M \subset E$ линейное многообразие, $M \neq E, x_0 \notin \overline{M}$. Тогда $\exists f \in E^*,$ что $f|_M = 0, f(x_0) = 1, ||f|| = \frac{1}{\rho(x_0, M)}$.
- 2. $\forall x \in E, x \neq 0 \ \exists f \in E^*, \text{ что } ||f|| = 1, \ f(x) = ||x||.$

- 3. Если $f(x) = 0 \ \forall f \in E^*$, то x = 0. Другими словами, если $f(x) = f(y) \ \forall f \in E^*$, то x = y.
- 4. $\forall x \in E \hookrightarrow ||x|| = \sup_{\|f\|=1} |f(x)|.$

Доказательство.

1. Пусть $M_1 = M \oplus [x_0]$. Тогда $\forall y \in M_1 \hookrightarrow y = x + \alpha x_0$, где $x \in M$, $\alpha \in \mathbb{K}$. Определим $f(y) = f(x) + \alpha f(x_0) = 0 + \alpha \cdot 1$. Тогда по теореме Хана-Банаха существует и единственно продолжение $\tilde{f} \in E^*$: $\tilde{f}|_{M_1} = f$, $\left\|\tilde{f}\right\| = \|f\|$.

Докажем, что $||f|| = \frac{1}{\rho(x_0, M)}$. Сперва, найдем верхнюю грань ||f||:

$$\frac{\|f(y)\|}{\|y\|} = \frac{|\alpha|}{\|y\|} = \begin{cases} \leqslant \frac{1}{\rho(x_0, M)} &, \alpha = 0\\ \frac{1}{\|\frac{y}{\alpha}\|} &, \alpha \neq 0 \end{cases}.$$

Далее,
$$\left\| \frac{y}{\alpha} \right\| = \left\| \frac{x}{\alpha} + x_0 \right\| \geqslant \rho(x_0, M) \Rightarrow \frac{1}{\left\| \frac{y}{\alpha} \right\|} \leqslant \frac{1}{\rho(x_0, M)}$$
.

Так как $\rho(x_0, M) = \inf_{x \in M} \rho(x_0, x)$, то $\exists \{z_n\} \subset M : \rho(x_0, z_n) \xrightarrow[n \to \infty]{} \rho(x_0, M)$.

$$\frac{|f(y)|}{\|y\|} = \frac{|\alpha|}{\|y\|} = \frac{1}{\left\|\frac{x}{\alpha} + x_0\right\|}, \ \alpha \neq 0.$$

Так как $\frac{x}{\alpha}$ принимает всевозможные значения из M, то

$$\sup_{x \in M} \frac{1}{\left\| \frac{x}{\alpha} + x_0 \right\|} = \lim_{n \to \infty} \frac{1}{\left\| z_n + x_0 \right\|} = \frac{1}{\rho(x_0, M)}.$$

2. Пусть $M = \{0\}$, $x_0 = \frac{1}{\|x\|} x$, где $x \neq 0$. Тогда из предыдущего пункта существует функционал f, что $f(x_0) = f\left(\frac{x}{\|x\|}\right) = 1 \Rightarrow f(x) = \|x\|$, а $\|f\| = \frac{1}{\rho(x_0, M)} = 1$.

Пример.

- 1. Пусть $E \neq \{0\}$ нормированное пространство. Докажем, что $E^* \neq \{0\}$. Так как $E \neq \{0\}$, то $\exists x \in E : x \neq 0$. Тогда по второму пункту следствия $\exists f : f(x) = ||x|| \neq 0$. Следовательно, $E^* \neq \{0\}$.
- 2. Пусть E линейное нормированное пространство. Докажем, что $\forall x_0 \in S(\theta, 1) \exists f \in E^*$, что шар $\overline{B}(\theta, 1)$ лежит по одну сторону от гиперплоскости $f(x) = f(x_0)$. Так как $x_0 \in S(\theta, 1)$, то $||x_0|| = 1 \Rightarrow x_0 \neq 0$. Тогда по второму пункту следствия $\exists f \in E^*$, что $|f(x)| \leq ||f|| \cdot ||x|| = 1 = f(x_0)$.

3. Введем определение, которое появится в следующем параграфе, но понадобится сейчас для примера.

Определение 2.3. Последовательность $\{x_n\} \subset E$ называется слабо сходящейся к элементу $x \in E$ (обозначение $x_n \xrightarrow[]{E} x$), если $\forall f \in E^* \hookrightarrow f(x_n) \xrightarrow[]{n \to \infty} f(x)$.

Докажем корректность данного определения, т.е., если $x_n \xrightarrow[c]{E} x', x_n \xrightarrow[c]{E} x''$, то x' = x''. Действительно, из определения $f(x_n) \xrightarrow[n \to \infty]{} f(x'), f(x_n) \xrightarrow[n \to \infty]{} f(x'')$. Так как последовательность $\{f(x_n)\}$ числовая, то $f(x') = f(x'') \ \forall f \in E^*$. Тогда из пункта 3 следствия получаем, что x' = x''.

4. Определим функционал $F_x: E^* \to \mathbb{K}$ следующим образом: $\forall x \in E \hookrightarrow F_x(f) = f(x), f \in E^*$. Также определим $\pi: E \to E^{**}$ как $\pi(x) = F_x, x \in E$.

Определение 2.4. Если $\pi E = E^{**}$, то пространство E называется peфлексивным.

Докажем, что π – изометрия, то есть $\forall x \in E \hookrightarrow ||x|| = ||F_x||$. Из пункта 4 следствия имеем $||x|| = \sup_{\|f\|=1} |f(x)| = \sup_{\|f\|=1} |F_x(f)| = ||F_x||$.

5. Пусть H — гильбертово пространство, $x_n \xrightarrow[]{H} x$, $||x_n|| \leqslant 1 \ \forall n \in \mathbb{N}$. Докажем, что $||x|| \leqslant 1$. По неравенству Коши-Буняковского $|(x_n, x)| \leqslant ||x_n|| \cdot ||x|| \leqslant ||x||$. Так как $f: H \to \mathbb{K}$, что f(y) = (y, x) — линейный ограниченный оператор, то он непрерывен, и, переходя к пределу, получаем $||x||^2 \leqslant ||x|| \Rightarrow ||x|| \leqslant 1$.

Теперь пусть E – линейное нормированное пространство, $\{x_n\} \subset E, x_n \xrightarrow[c, x]{E} x, ||x_n|| \le 1 \ \forall n \in \mathbb{N}$. Докажем, что $||x|| \le 1$. Из пункта 2 следствия $\exists f \in E^* : f(x) = ||x||, ||f|| = 1$. Тогда $|f(x_n)| \le ||f|| \cdot ||x_n|| \le 1$. Следовательно, т.к. $f(x_n) \xrightarrow[n \to \infty]{} f(x)$, то $|f(x_n)| \xrightarrow[n \to \infty]{} |f(x)|$. Значит, $|f(x)| \le 1$.

3 Слабая сходимость

Определение 3.1. Пусть E – линейное нормированное пространство. Тогда $x_n \xrightarrow[]{E} x$, если $\forall f \in E^* \hookrightarrow f(x_n) \xrightarrow[]{n \to \infty} f(x)$. Обратное, вообще говоря, неверно.

Утверждение 3.1. Если $||x_n - x|| \xrightarrow[n \to \infty]{} 0$, то $x_n \stackrel{E}{\underset{ca}{\longleftrightarrow}} x$.

Доказательство. Пусть $f \in E^*$. Тогда $|f(x_n) - f(x)| = |f(x_n - x)| \leqslant ||f|| \cdot ||x_n - x|| \xrightarrow[n \to \infty]{n \to \infty} 0$. Докажем, что из $x_n \xrightarrow[cn]{} x$ в общем случае не следует сходимость по норме. Пусть $E = l_2$. Рассмотрим последовательность $\{e^n\}$, где $e^n - n$ -ый вектор стандартного базиса в l_2 . Тогда $\forall y \in l_2 \hookrightarrow (e^n, y) = y_n \xrightarrow[n \to \infty]{} 0$, то есть $(e^n, y) \xrightarrow[n \to \infty]{} (0, y)$. Но $||e^n|| = 1 \ \forall n \in \mathbb{N}$.

Замечание. Если $\dim E < \infty$, то сходимость по норме эквивалентна слабой сходимости.

Теорема 3.1. (т-ма 9.2) Пусть E_1 , E_2 – линейные нормированные пространства, $A \in \mathcal{L}(E_1,E_2)$, $x_n \stackrel{E_1}{\underset{ca}{\longleftarrow}} x$. Тогда $Ax_n \stackrel{E_2}{\underset{ca}{\longleftarrow}} Ax$.

Доказательство. Пусть $g \in E_2^*$ – произвольный функционал, $f = g \circ A$ – линейный непрерывный функционал, т.е. $f \in E_1^*$. Тогда $f(x_n) = g(Ax_n) \xrightarrow[n \to \infty]{} g(Ax) = f(x) \ \forall g \in E_2^*$.

Теорема 3.2. Пусть E – линейное нормированное пространство, $\{x_n\} \subset E$. Тогда

$$x_n \xrightarrow{E} x \Leftrightarrow \{\|x_n\|\}$$
 – ограничена, $\forall f \in S \subset E^* : \overline{[S]} = E^* \hookrightarrow f(x_n) \xrightarrow[n \to \infty]{} f(x).$

Доказательство. Уже известно, что $x_n \xrightarrow{E} x \Leftrightarrow F_{x_n} \xrightarrow[n \to \infty]{} F_x$ поточечно, где $F_x : E^* \to \mathbb{K}$, $F_x(f) = f(x)$. Следствие из теоремы Банаха-Штейнгауза утверждает, что, если E_1 – банахово пространство, E_2 – линейное нормированное пространство, $\{A_n\} \subset \mathcal{L}(E_1, E_2)$, $A \in \mathcal{L}(E_1, E_2)$, то $A_n \xrightarrow[n \to \infty]{} A$ поточечно тогда и только тогда, когда $\{\|A_n\|\}$ – ограниченная последовательность, $A_n s \to As \ \forall s \in S : \overline{[S]} = E_1$. Теперь возьмем в качестве E_1 пространство E^* , а в качестве E_2 – \mathbb{K} . Тогда $\{F_{x_n}\} \subset \mathcal{L}(E^*, \mathbb{K})$, $F_x \in \mathcal{L}(E^*, \mathbb{K})$, и $F_{x_n} \xrightarrow[n \to \infty]{} F_x$ поточечно тогда и только тогда, когда $\{\|F_{x_n}\|\}$ – ограниченная последовательность, и $F_{x_n}(f) \xrightarrow[n \to \infty]{} F_x(f) \ \forall f \in S : \overline{[S]} = E^*$. Тогда $\|F_{x_n}\| = \sup_{\|f\|=1} |F_{x_n}(f)| = \sup_{\|f\|=1} |f(x_n)| = \|x_n\|$ по следствию из теоремы Хана-Банаха, $F_{x_n} \xrightarrow[n \to \infty]{} F_x \ \forall f \in S \Leftrightarrow f(x_n) \xrightarrow[n \to \infty]{} f(x) \ \forall f \in S$. \square

Пример. Пусть $E = l_p(\mathbb{R})$, где p > 1. Тогда $(l_p)^* \cong l_q$, где $\frac{1}{p} + \frac{1}{q} = 1$. То есть $\forall f \in l_p^* \ f(x) = \sum x_n y_n$ для $y \in l_q$. Пусть $\{e_n\}$ – стандартный базис в l_q . Тогда по теореме получаем, что

$$x_n \xrightarrow[C]{l_p} x \Leftrightarrow \{\|x_n\|\}$$
 – ограничена, $\forall f \in S : \overline{[S]} = l_p^* \hookrightarrow f(x_n) \xrightarrow[n \to \infty]{} f(x).$

Взяв в качестве S – множество функционалов, порожденных $\{e_n\}$ получаем, что $\forall f \in S \ \exists e_k: \ f(x_n) = \langle x_n, e_k \rangle = x_n^k \xrightarrow[n \to \infty]{} f(x) = \langle x, e_k \rangle = x^k$. То есть, слабая сходимость в l_p эквивалентна ограниченности норм элементов и их покоординатной сходимости.

 \widetilde{BV} — множество функций ограниченной вариации, определенных в точках разрыва полусуммой односторонних пределов в этих точках.

Упражнение. Как связана сепарабельность E с сепарабельностью E^* и наоборот?

Определение 3.2. Множество $M \subset E$ называется секвенциально слабо замнкутым, если из $\{x_n\} \subset M, \ x_n \xrightarrow{E} x$ следует, что $x \in M$.

Определение 3.3. Последовательность $\{x_n\} \subset E$ называется слабо фундаментальной, если $\forall f \in E^* \hookrightarrow \{f(x_n)\}$ – фундаментальная последовательность.

Определение 3.4. Пространство E называется секвенциально слабо полным, если любая слабо фундаментальная последовательность является слабо сходящейся.

Определение 3.5. $E \supset S$ — секвенциально слабо компактно, если из любой последовательности $\{s_n\} \subset S$ можно выделить слабо сходящуюся подпоследовательность.

Упражнение. Является ли $\overline{B}(0, 1)$ в l_2 секвенциально слабо компактным? Использовать теорему Банаха-Алаоглу.

	E	$E\cong \dots$	f(x)	критерий слабой сходимости (в дополнение к ограниченности норм)
1	$l_p, p > 1$	l_q	$\sum_{n=1}^{\infty} x_n y_n$	координатная сходимость
2	l_1	l_{∞}	$\sum_{n=1}^{\infty} x_n y_n$	координатная сходимость
3	$L_p[a, b]$	$L_q[a, b]$	$\int_{a}^{b} f(x)g(x)dx$	$\forall t \in [a, b] \int_{a}^{t} f_n(x) dx \xrightarrow[n \to \infty]{} \int_{a}^{t} f(x) dx$
4	C[a, b]	$\widetilde{BV}[a,b]$	$\int_{a}^{b} f(x)dg(x)$	$f_n o f$ поточечно

4 Сопряженные операторы

Пусть E_1, E_2 – линейные нормированные пространства, $A \in \mathcal{L}(E_1, E_2), g \in E_2^*$.

Определение 4.1. Оператор $A^*: E_2^* \to E_1^*, (A^*g)(x) = g(Ax)$ называется *сопряженным* оператором к A.