Exercise 11.3

Question 1:

Find the circumference of the circles with the following radius: $\left(\text{Take } \pi = \frac{22}{7}\right)$

(a) 14 cm

(b) 28 mm

(c) 21 cm

Answer 1:

- (a) Circumference of the circle = $2\pi r = 2 \times \frac{22}{7} \times 14 = 88$ cm
- (b) Circumference of the circle = $2\pi r = 2 \times \frac{22}{7} \times 28 = 176$ mm
- (c) Circumference of the circle = $2\pi r = 2 \times \frac{22}{7} \times 21 = 132$ cm

Question 2:

Find the area of the following circles, given that: $\left(\text{Take } \pi = \frac{22}{7}\right)$

- (a) radius = 14 mm
- (b) diameter = 49 m

(c) radius 5 cm

Answer 2:

(a) Area of circle =
$$\pi r^2 = \frac{22}{7} \times 14 \times 14$$

= 22 x 2 x 14
= 616 mm²

(b) Diameter = 49 m

:. radius =
$$\frac{49}{2}$$
 = 24.5 m

:. Area of circle =
$$\pi r^2 = \frac{22}{7} \times 24.5 \times 24.5$$

= 22 x 3.5 x 24.5
= 1886.5 m²

(c) Area of circle =
$$\pi r^2 = \frac{22}{7} \times 5 \times 5$$

= $\frac{550}{7}$ cm²

Question 3:

If the circumference of a circular sheet is 154 m, find its radius. Also find the area of the

sheet.
$$\left(\text{Take } \pi = \frac{22}{7}\right)$$

Answer 3:

Circumference of the circular sheet = 154 m

$$\Rightarrow$$
 $2\pi r = 154 \text{ m}$

$$\Rightarrow r = \frac{154}{2\pi}$$

$$\Rightarrow r = \frac{154 \times 7}{2 \times 22} = 24.5 \text{ m}$$

Now Area of circular sheet =
$$\pi r^2 = \frac{22}{7} \times 24.5 \times 24.5$$

= 22 x 3.5 x 24.5 = 1886.5 m²

Thus, the radius and area of circular sheet are 24.5 m and 1886.5 m² respectively.

Question 4:

A gardener wants to fence a circular garden of diameter 21 m. Find the length of the rope he needs to purchase, if he makes 2 rounds of fence. Also, find the costs of the rope, if it

cost ₹4 per meter.
$$\left(\text{Take } \pi = \frac{22}{7}\right)$$

Answer 4:

Diameter of the circular garden = 21 m

$$\therefore$$
 Radius of the circular garden = $\frac{21}{2}$ m

Now Circumference of circular garden =
$$2\pi r = 2 \times \frac{22}{7} \times \frac{21}{2}$$

= $22 \times 3 = 66 \text{ m}$

The gardener makes 2 rounds of fence so the total length of the rope of fencing

$$= 2 \times 2\pi r$$

= $2 \times 66 = 132 \text{ m}$

Since, the cost of 1 meter rope = ₹ 4

Therefore, cost of 132 meter rope = 4 x 132 = ₹ 528

Question 5:

From a circular sheet of radius 4 cm, a circle of radius 3 cm is removed. Find the area of the remaining sheet. (Take $\pi = 3.14$)

Answer 5:

Radius of circular sheet (R) = 4 cm and radius of removed circle (r) = 3 cm

Area of remaining sheet

= Area of circular sheet – Area of removed circle
=
$$\pi R^2 - \pi r^2 = \pi (R^2 - r^2)$$

= $\pi (4^2 - 3^2) = \pi (16 - 9)$
= 3.14 x 7 = 21.98 cm²

Thus, the area of remaining sheet is 21.98 cm².

Question 6:

Saima wants to put a lace on the edge of a circular table cover of diameter 1.5 m. Find the length of the lace required and also find its cost if one meter of the lace costs ≥ 15 . (Take $\pi = 3.14$)

Answer 6:

Diameter of the circular table cover = 1.5 m

$$\therefore$$
 Radius of the circular table cover = $\frac{1.5}{2}$ m

Circumference of circular table cover = $2\pi r$

$$= 2 \times 3.14 \times \frac{1.5}{2}$$
$$= 4.71 \text{ m}$$

- 471 ...

Therefore the length of required lace is 4.71 m.

Now the cost of 1 m lace = ₹ 15

Then the cost of 4.71 m lace =
$$15 \times 4.71$$

= ₹ 70.65

Hence, the cost of 4.71 m lace is ₹ 70.65.

Question 7:

Find the perimeter of the adjoining figure, which is a semicircle including its diameter.

Answer 7:

Diameter = 10 cm

$$\therefore$$
 Radius = $\frac{10}{2}$ = 5 cm

According to question,

Perimeter of figure = Circumference of semi-circle + diameter

=
$$\pi r + D$$

= $\frac{22}{7} \times 5 + 10 = \frac{110}{7} + 10$
= $\frac{110 + 70}{7} = \frac{180}{7} = 25.71 \text{ cm}$

Thus, the perimeter of the given figure is 25.71 cm.

Question 8:

Find the cost of polishing a circular table-top of diameter 1.6 m, if the rate of polishing is $\gtrsim 15/\text{m}^2$. (Take $\pi = 3.14$)

Answer 8:

Diameter of the circular table top = 1.6 m

$$\therefore$$
 Radius of the circular table top = $\frac{1.6}{2}$ = 0.8 m

Area of circular table top
$$= \pi r^2$$
$$= 3.14 \times 0.8 \times 0.8$$
$$= 2.0096 \text{ m}^2$$

Now cost of 1 m² polishing = ₹15

Then cost of 2.0096 m² polishing = 15 x 2.0096 = ₹ 30.14 (approx.)

Thus, the cost of polishing a circular table top is ₹ 30.14 (approx.)

Question 9:

Shazli took a wire of length 44 cm and bent it into the shape of a circle. Find the radius of that circle. Also find its area. If the same wire is bent into the shape of a square, what will be the length of each of its sides? Which figure encloses more area, the circle or the

square?
$$\left(\text{Take } \pi = \frac{22}{7}\right)$$

Answer 9:

Total length of the wire = 44 cm

 \therefore the circumference of the circle = $2\pi r$ = 44 cm

$$\Rightarrow 2 \times \frac{22}{7} \times r = 44$$

$$\Rightarrow r = \frac{44 \times 7}{2 \times 22} = 7 \text{ cm}$$

Now Area of the circle = πr^2 = $\frac{22}{7} \times 7 \times 7 = 154 \text{ cm}^2$

Now the wire is converted into square.

Then perimeter of square = 44 cm

$$\Rightarrow$$
 4 x side = 44

$$\Rightarrow$$
 side = $\frac{44}{4}$ = 11 cm

Now area of square = side x side = $11 \times 11 = 121 \text{ cm}^2$

Therefore, on comparing, the area of circle is greater than that of square, so the circle enclosed more area.

Question 10:

From a circular card sheet of radius 14 cm, two circles of radius 3.5 cm and a rectangle of length 3 cm and breadth 1 cm are removed (as shown in the adjoining figure). Find the area of the remaining sheet. $\left(\text{Take }\pi=\frac{22}{7}\right)$

Answer 10:

Radius of circular sheet (R) = 14 cm and Radius of smaller circle (r) = 3.5 cm

Length of rectangle (l) = 3 cm and breadth of rectangle (b) = 1 cm

According to question,

Area of remaining sheet=Area of circular sheet- (Area of two smaller circle + Area of rectangle)

$$= \pi R^{2} - \left[2(\pi r^{2}) + (l \times b)\right]$$

$$= \frac{22}{7} \times 14 \times 14 - \left[\left(2 \times \frac{22}{7} \times 3.5 \times 3.5\right) - (3 \times 1)\right]$$

$$= 22 \times 14 \times 2 - \left[44 \times 0.5 \times 3.5 + 3\right]$$

$$= 616 - 80$$

$$= 536 \text{ cm}^{2}$$

Therefore the area of remaining sheet is 536 cm².

Question 11:

A circle of radius 2 cm is cut out from a square piece of an aluminium sheet of side 6 cm. What is the area of the left over aluminium sheet? (Take $\pi = 3.14$)

Answer 11:

Radius of circle = 2 cm and side of aluminium square sheet = 6 cm

According to question,

Area of aluminium sheet left = Total area of aluminium sheet – Area of circle = side x side - πr^2

$$= 6 \times 6 - \frac{22}{7} \times 2 \times 2$$
$$= 36 - 12.56$$

= 30 - 12.30= 23.44 cm²

Therefore, the area of aluminium sheet left is 23.44 cm².

Question 12:

The circumference of a circle is 31.4 cm. Find the radius and the area of the circle. (Take $\pi = 3.14$)

Answer 12:

The circumference of the circle = 31.4 cm

$$\Rightarrow$$
 $2\pi r = 31.4$

$$\Rightarrow$$
 2 x 3.14 x $r = 31.4$

$$\Rightarrow r = \frac{31.4}{2 \times 3.14} = 5 \text{ cm}$$

Then area of the circle =
$$\pi r^2$$
 = 3.14 x 5 x 5
= 78.5 cm²

Therefore, the radius and the area of the circle are 5 cm and 78.5 cm² respectively.

Question 13:

A circular flower bed is surrounded by a path 4 m wide. The diameter of the flower bed is 66 m. What is the area of this path? (Take $\pi = 3.14$)

Answer 13:

Diameter of the circular flower bed = 66 m

$$\therefore \qquad \text{Radius of circular flower bed } (r) = \frac{66}{2} = 33 \text{ m}$$

$$\therefore$$
 Radius of circular flower bed with 4 m wide path (R) = 33 + 4 = 37 m

According to the question,

Area of path = Area of bigger circle - Area of smaller circle

$$= \pi R^{2} - \pi r^{2} = \pi (R^{2} - r^{2})$$
$$= \pi [(37)^{2} - (33)^{2}]$$

$$=\pi \left\lfloor \left(37\right)^2 - \left(33\right)^2 \right\rfloor$$

= 3.14 [(37 + 33) (37 - 33)]
$$\left[\because a^2 - b^2 = (a+b)(a-b) \right]$$

$$= 879.20 \text{ m}^2$$

Therefore, the area of the path is 879.20 m².

Question 14:

A circular flower garden has an area of 314 m². A sprinkler at the centre of the garden can cover an area that has a radius of 12 m. Will the sprinkler water the entire garden? (Take $\pi = 3.14$)

Answer 14:

Circular area by the sprinkler = πr^2

$$= 3.14 \times 12 \times 12$$

= 3.14 x 144

$$= 452.16 \text{ m}^2$$

Area of the circular flower garden = 314 m^2

Since Area of circular flower garden is smaller than area by sprinkler.

Therefore, the sprinkler will water the entire garden.

Question 15:

Find the circumference of the inner and the outer circles, shown in the adjoining figure.

(Take $\pi = 3.14$)

Answer 15:

Radius of outer circle (r) = 19 m

∴ Circumference of outer circle =
$$2\pi r = 2 \times 3.14 \times 19$$

= 119.32 m

Now radius of inner circle
$$(r')$$
 = 19 – 10 = 9 m

∴ Circumference of inner circle =
$$2\pi r' = 2 \times 3.14 \times 9$$

= 56.52 m

Therefore, the circumferences of inner and outer circles are 56.52 m and 119.32 m respectively.

Question 16:

How many times a wheel of radius 28 cm must rotate to go 352 m? $\left(\text{Take } \pi = \frac{22}{7}\right)$

Answer 16:

Let wheel must be rotate n times of its circumference.

Radius of wheel = 28 cm and Total distance = 352 m = 35200 cm

 \therefore Distance covered by wheel = $n \times circumference$ of wheel

$$\Rightarrow$$
 35200 = $n \times 2\pi r$

$$\Rightarrow 35200 = n \times 2 \times \frac{22}{7} \times 28$$

$$\Rightarrow n = \frac{35200 \times 7}{2 \times 22 \times 28}$$

$$\Rightarrow$$
 $n = 200$ revolutions

Thus, wheel must rotate 200 times to go 352 m.

Question 17:

The minute hand of a circular clock is 15 cm long. How far does the tip of the minute hand move in 1 hour? (Take $\pi = 3.14$)

Answer 17:

In 1 hour, minute hand completes one round means makes a circle.

Radius of the circle (r) = 15 cm

Circumference of circular clock =
$$2\pi r$$

= $2 \times 3.14 \times 15$

= 94.2 cm

Therefore, the tip of the minute hand moves 94.2 cm in 1 hour.