Wirtschaftsmathematik: Funktionen einer Variablen

Thilo Klein thilo@klein.uk

4.1 Grundbegriffe

Gliederung

Funktionen einer Variablen

Grundbegriffe

Eigenschaften von Funktionen Wichtige Funktionstypen

Differentialrechnung

Differentialquotient und Ableitung Kurvendiskussion

Funktionen mehrerer Variablen

Grundlegende Darstellungsformen Differentialrechnung

Integralrechnung

Definition

- ▶ Eine Funktion ist eine eindeutige Zuordnung. Jedem Element einer Menge (der Definitionsmenge *D*) wird eindeutig ein Element einer anderen Menge (der Zielmenge *Z*) zugeordnet.
- ▶ Die zweite Variable $y \in Z$ hängt dabei von der ersten Variablen $x \in D$ ab. Man kann daher auch sagen, y ist eine Funktion von x.
- ► Hier werden nur reellwertige Funktionen betrachtet. Sowohl Definitionsbereich D als auch Zielbereich Z sind reelle Zahlen.
- ▶ Dann gilt mit D ⊂ R (Symbol ⊂ für Teilmenge): Eine reellwertige Funktion ist eine Abbildung, die jedem Element von D (Definitionsbereich) genau ein Element aus R (Zielbereich) zuordnet. Schreibweise:

$$f: D \to R;$$
 $y = f(x)$ als Zuordnungsvorschrift

Anwendungen

- Zahlreiche ökonomische Sachverhalte lassen sich als Funktionen darstellen:
 - Einkommensteuertarif: Durch den Einkommensteuertarif wird jedem (zu versteuernden) Einkommen eindeutig ein Steuerbetrag zugeordnet.
 - Nachfragefunktion: Die Nachfragefunktion nach z.B. Kaffee ordnet jedem Kaffeepreis p eine (eindeutige) Nachfragemenge N(p) zu.
 - Kostenfunktion: Die Kostenfunktion K(x) ordnet jeder Produktionsmenge x die minimalen Kosten zu.
 - ► Erlösfunktion: Die Erlös- oder Umsatzfunktion E(x) ordnet jeder Absatzmenge x den Erlös zu.
 - ▶ Gewinnfunktion: G(x) = E(x) K(x).

--> Mikroökonomik, Kostenrechnung, Marketing

Beispiele

Lineare Funktion:

$$f(x) = x + 1$$
 : $D = R$ (oder: $y = x + 1$)

Hyperbel-Funktion:

$$f(x) = \frac{1}{x} \qquad : D = R \setminus \{0\}$$

▶ Die angegebenen Definitionsbereiche sind die maximal möglichen. In ökonomischen Anwendungen wird der Definitionsbereich häufig weiter eingeschränkt. Beispiel: Wenn f(x) = x + 1 eine Kostenfunktion in Abhängigkeit von der Menge x darstellt, muss $x \ge 0$ gelten: $D = R_+$, wobei $R_+ = \{x \in R \mid x \ge 0\}$ (in Worten: R_+ ist die Menge aller Zahlen x aus R, für die gilt $x \ge 0$).

Beispiele

$$D = R$$

$$\textit{D} = \textit{R} \setminus \{0\}$$

Wertetabelle

Einen ersten Eindruck über den Verlauf von Funktionen kann man anhand von Wertetabellen erhalten.

Beispiel: $y = x^2$

Fragen: Wie lautet der Definitionsbereich von $y = x^2$! Erstellen Sie anhand von Wertetabellen auch Skizzen von y = 2x, y = -2x, $y = 2x^2$, $y = -2x^2$, $y = 2x^3$ und $y = -2x^3$ und geben Sie jeweils D an!

Ökonomische Bedeutung

- ► Funktionen stellen Beziehungen zwischen einer unabhängigen Variablen (hier: x) und einer abhängigen Variablen (hier: y) her.
- Die Analyse solcher Beziehungen gehört zu den Hauptaufgaben der Wirtschaftswissenschaften. Beispiele: Wie beeinflusst der Preis (unabhängige Variable) den Absatz (abhängige Variable) eines Produktes? Wie beeinflusst das Volkseinkommen den gesamtwirtschaftlichen Konsum?
- Als sinnvoll erweist sich eine abgeänderte Symbolik. Statt y = f(x) kann es z.B. zweckmäßig sein, Ausdrücke zu verwenden wie

$$x = x(p)$$
 (Nachfragemenge x als Funktion des Preises p)

oder

C = C(Y) (Konsum C als Funktion des Volkseinkommens Y).

Ökonomische Bedeutung

- ► Es ist naheliegend, dass die Nachfrage x nach einem Gut, zum Beispiel einem bestimmten Automobil, nicht nur vom Preis p dieses Gutes, sondern auch vom Preis anderer Güter (Kraftstoff) und vom Einkommen der einzelnen Konsumenten abhängt.
- ▶ In den Wirtschaftswissenschaften spielen daher auch Funktionen eine wichtige Rolle, die nicht nur von einer, sondern von mehreren Variablen abhängen.
- Beispiel: Die Nachfragefunktion nach einem Gut 1 kann vom Preis p₁ dieses Gutes, vom Preis p₂ eines anderen Gutes und vom Einkommen y abhängen:

$$x_1 = x_1(p_1, p_2, y)$$

► Funktionen mehrerer Variablen werden später betrachtet.

Gliederung

Funktionen einer Variablen

Grundbegriffe

Eigenschaften von Funktionen

Wichtige Funktionstypen

Differentialrechnung

Differentialquotient und Ableitung

Kurvendiskussion

Gewinnmaximierung

Funktionen mehrerer Variablen

Grundlegende Darstellungsformen

Differentialrechnung

Optimierungsprobleme

Integralrechnung

Stetigkeit

Eine Funktion $f:D\to R$ ist anschaulich gesprochen stetig an der Stelle $x_0\in D$, wenn ihre graphische Darstellung dort keine Lücke aufweist. (Genauer, wenn für $\Delta x>0$ gilt $\lim_{\Delta x\to 0}f(x_0-\Delta x)=\lim_{\Delta x\to 0}f(x_0+\Delta x)=f(x_0)$.)

Übung: Ordnen Sie die folgenden Funktionen den Abbildungen zu:

$$y = 1/x$$
, $y = x^2$, $y = \begin{cases} -x + 2 & : x < 0.5 \\ x + 1 & : 0.5 \le x \end{cases}$, $y = \begin{cases} -x + 2 & : x < 1 \\ x + 1.5 & : 1 \le x \end{cases}$

Nullstellensatz: Eine stetige Funktion, die zwischen zwei Stellen *a* und *b* das Vorzeichen wechselt, hat zwischen *a* und *b* mindestens eine Nullstelle.

Monotonie und Beschränktheit

- ▶ Eine Funktion f verläuft monoton steigend (streng monoton steigend) auf einem Intervall $I \subset D$, wenn für alle $x_1, x_2 \in I$ gilt: Aus $x_1 > x_2$ folgt $f(x_1) \ge f(x_2)$ (aus $x_1 > x_2$ folgt $f(x_1) > f(x_2)$).
- ▶ Anschaulich: Eine Funktion ist monoton steigend, wenn ihre Funktionswerte mit steigenden *x*-Werten nicht kleiner werden, und streng monoton steigend, wenn die Funktionswerte größer werden.
- ▶ Eine Funktion f verläuft monoton fallend (streng monoton fallend) auf einem Intervall $I \subset D$, wenn für alle $x_1, x_2 \in I$ gilt: Aus $x_1 > x_2$ folgt $f(x_1) \le f(x_2)$ (aus $x_1 > x_2$ folgt $f(x_1) < f(x_2)$).
- ▶ Anschaulich: Eine Funktion ist monoton fallend, wenn ihre Funktionswerte mit steigenden *x*-Werten nicht größer werden, und streng monoton fallend, wenn die Funktionswerte kleiner werden.
- ► Eine Funktion f ist nach oben (unten) beschränkt, wenn es eine Zahl c gibt mit $f(x) \le (\ge)c$ für alle $x \in D$.

Extrem- und Wendestellen, Krümmung

Eine reelle Funktion $f: D \rightarrow R$ hat

- eine Nullstelle x_0 , wenn $f(x_0) = 0$,
- ▶ ein globales Maximum x_{max} , wenn $f(x_{max}) \ge f(x)$ für alle $x \in D$,
- ▶ eine globales Minimum x_{\min} , wenn $f(x_{\min}) \leq f(x)$ für alle $x \in D$,
- ▶ ein lokales Maximum x_{max} , wenn $f(x_{max}) \ge f(x)$ für alle x in einer Umgebung um x_{max} ,
- ▶ ein lokales Minimum x_{min} , wenn $f(x_{min}) \le f(x)$ für alle x einer Umgebung um x_{min} .

Oberbegriffe für Maxima und Minima: Extremstellen oder Optimalstellen; die Punkte heißen auch Hoch- und Tiefpunkte.

Die Funktion heißt

- ▶ streng konvex oder linksgekrümmt, wenn ihre Steigung zunimmt,
- streng konkav oder rechtsgekrümmt, wenn ihre Steigung abnimmt.

Sie hat eine Wendestelle, wenn sich ihre Krümmung von konkav in konvex oder umgekehrt ändert.

Extrem- und Wendestellen, Krümmung

Gliederung

Funktionen einer Variablen

Grundbegriffe

Eigenschaften von Funktionen

Wichtige Funktionstypen

Differentialrechnung

Differentialquotient und Ableitung

Kurvendiskussion

Gewinnmaximierung

Funktionen mehrerer Variablen

Grundlegende Darstellungsformen

Differentialrechnung

Optimierungsprobleme

Integralrechnung

Lineare Funktionen

▶ Die Funktion $f: R \rightarrow R$ mit

$$f(x) = mx + b$$

heißt lineare Funktion oder genauer linear-affine Funktion.

- ▶ Lineare Funktionen sind stetig auf R. Ihr Bild ist eine Gerade.
- ▶ *m* ist die Steigung der Funktion und *b* der *y*-Achsenabschnitt.

Die Steigung der linearen Funktion

Die Steigung ist

$$m = \frac{\Delta y}{\Delta x} = \frac{2.5 - 1}{1 - 0} = 1.5$$

Allgemeiner gilt:

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

Eine lineare Funktion kann daher stets aufgrund zweier Punkte ermittelt werden.

Die Steigung der linearen Funktion

- ▶ Beispiel: Gegeben sind die Punkte $P_1(-1,1)$ und $P_2(3,2)$. Gesucht ist die lineare Funktion durch diese Punkte.
- Lösung:

$$m = \frac{y_2 - y_1}{x_2 - x_1} = \frac{2 - 1}{3 - (-1)} = \frac{1}{4}.$$

ightharpoonup Einsetzen in y = mx + b liefert

$$y=\frac{1}{4}x+b.$$

► Einsetzen des Punktes P₂ liefert

$$2 = \frac{1}{4} \cdot 3 + b \qquad \Rightarrow \qquad b = \frac{5}{4}.$$

Also lautet die gesuchte Geradengleichung:

$$y = \frac{1}{4}x + \frac{5}{4}$$

Änderung des Funktionswertes

- ▶ Gegeben ist die Gerade y = 1.5x + 1. Frage: Wie ändert sich der Funktionswert, wenn x um eine Einheit steigt?
- ▶ Beispiel: $x_0 = 2$ steigt um $\Delta x = 1$ auf 3. Dann ändert sich der Funktionswert um

$$\Delta y = f(3) - f(2) = 5.5 - 4 = 1.5,$$

also um die Steigung m = 1,5.

- ▶ Die Steigung der linearen Funktion gibt also an, um wieviel sich der y-Wert ändert, wenn der x-Wert um $\Delta x = 1$ erhöht wird.
- ► Für Änderungen $\Delta x \neq 1$ gilt allgemein (folgt direkt aus $m = \Delta y/\Delta x$):

$$\Delta y = m\Delta x$$

▶ Die Funktion $f: R \rightarrow R$ mit

$$f(x) = ab^x, \qquad a \in R, \ b \in R_{++}$$

heißt Exponentialfunktion.

- Wegen $f(0) = ab^0 = a$ gilt $f(x) = f(0)b^x$.
- ▶ Da mit Exponentialfunktionen häufig Wachstums- oder Zerfallsvorgänge in der Zeit modelliert werden, wird meist die Variable *t* (time) statt *x* verwendet:

$$f(t) = f(0)b^t$$

▶ Beispiel: Ersetzt man in der Leibnizschen Zinseszinsformel $K_n = K_0 \cdot (1+i)^n$ die Variablenbezeichnungen gemäß $K_n = y$, $K_0 = a$, 1+i=b und n=x, so erkennt man, dass es sich um eine Exponentialfunktion $y=ab^x$ handelt.

- ▶ Die wichtigste Basis ist die Eulersche Zahl e = 2,71828182845
- Die Funktion

$$f(x) = e^x$$

wird auch als natürliche Exponentialfunktion bezeichnet.

- Man kann jede Exponentialfunktion in eine Exponentialfunktion mit der Basis e umformen.
- ▶ Beispiel: Gegeben ist $y = 1.5 \cdot 2^x$. Setzt man

$$2^{x} = e^{\rho x}$$
.

so muss lediglich $\rho=\ln 2\approx 0.693$ gewählt werden, um zu erreichen, dass $y=1.5\cdot 2^x$ und $y=1.5\cdot e^{0.693x}$ dieselbe Funktion angeben.

Polynome

▶ Die Funktion $f: R \rightarrow R$ mit

$$f(x) = x^3 - 9x^2 - 16x + 60$$

ist ein Beispiel für ein Polynom oder eine ganzrationale Funktion dritten Grades.

- ► Polynome sind stetig auf *R*. Summen, Differenzen und Produkte von Polynomen sind wieder Polynome.
- ▶ Ist x_1 eine Nullstelle eines Polynoms n-ten Grades (also $f(x_1) = 0$), so ist $f(x)/(x x_1)$ ein Polynom (n 1)-ten Grades.
- ▶ Ein Polynom vom Grade *n* hat höchstens *n* reelle Nullstellen.

Nullstellen und Polynomdivision

- ▶ Beispiel: Gesucht sind die Nullstellen von $f(x) = x^3 9x^2 16x + 60$.
- Da hier nicht auf numerische Verfahren eingegangen wird, muss für n = 3 in der Regel eine Nullstelle durch Ausprobieren gefunden werden.
- ► Eine ganzzahlige Nullstelle muss Teiler des absoluten Gliedes a₀ sein.
- ▶ Hier: f(2) = 0, also $x_1 = 2$ als erste Nullstelle.
- Nun wird eine Polynomdivision durchgeführt (Hinweis: in der Polynomdivision werden die Ergebnisse jeweils schon mit −1 multipliziert):

$$\frac{x^3 - 9x^2 - 16x + 60}{-x^3 + 2x^2} = \frac{-7x^2 - 16x}{-7x^2 - 16x} \\
\frac{-7x^2 - 14x}{-30x + 60} \\
\frac{30x - 60}{0}$$

Nullstellen und Polynomdivision

Multiplikation von

$$(x^3 - 9x^2 - 16x + 60) : (x - 2) = x^2 - 7x - 30$$

mit (x - 2) liefert:

$$f(x) = x^3 - 9x^2 - 16x + 60 = (x - 2) \cdot (x^2 - 7x - 30)$$

- ► f(x) = 0, wenn entweder x-2 = 0 (also x = 2) oder $x^2 7x 30 = 0$.
- ▶ Die weiteren Nullstellen können also durch Lösung der quadratischen Gleichung $x^2 7x 30 = 0$ gefunden werden.
- Mit der p-q-Formel erhält man:

$$x_{1,2} = \frac{7}{2} \pm \sqrt{\left(\frac{7}{2}\right)^2 + 30} = 3.5 \pm \sqrt{12,25 + 30},$$

also $x_2 = 10$ und $x_3 = -3$.

Wiederholung: Quadratische Gleichungen

► Eine quadratische Gleichung kann stets in diese Form gebracht werden (bei $ax^2 + bx + c = 0$ zuerst durch a dividieren):

$$\left(x^2+px+q=0\right)$$

Lösung (p-q-Formel):

$$x_{1,2} = -\frac{p}{2} \pm \sqrt{\left(\frac{p}{2}\right)^2 - q}$$

Zerlegung in Linearfaktoren

► Ebenso wie *f*(*x*) gemäß

$$f(x) = x^3 - 9x^2 - 16x + 60 = (x - 2) \cdot (x^2 - 7x - 30)$$

in zwei Faktoren zerlegt werden konnte, kann mit den gefunden Nullstellen das quadratische Restpolynom zerlegt werden:

$$x^2 - 7x - 30 = (x - 10)(x + 3)$$

Damit folgt für das gesamte Polynom die Zerlegung in Linearfaktoren:

$$f(x) = x^3 - 9x^2 - 16x + 60 = (x - 2) \cdot (x - 10) \cdot (x + 3)$$

Anhand dieser Darstellung sind die Nullstellen direkt ablesbar.

Graphische Darstellung

Die betrachtete Funktion dritten Grades wird hier in verzerrter Form dargestellt.

