Digital System Design

Karnaugh Maps

Objectives

- 1. Given a function (completely or in completely specified) of three to five variable, plot it on a Karnaugh map.

 The function may be given in minterm, maxterm, or algebraic form.
- 2. Determine the essential prime implicants of a function from a map.
- 3. Obtain the minimum sum-of-products or minimum product-of-sums form of a function from the map.
- 4. Determine all of the prime implicants of a function from a map.
- 5. Understand the relation between operations performed using the map and the corresponding algebraic operation.

Circuit Synthesis

Circuit Synthesis

- there are 5 ways to describe a Logic Expression
 - 1) Truth Table
 - 2) Minterm List
 - 3) Canonical Sum
 - 4) Maxterm List
 - 5) Canonical Product
- we can directly synthesis circuits from SOP and POS expressions

SOP = AND-OR structure

POS = OR-AND structure

Circuit Synthesis

Circuit Synthesis

- For the given Truth Table, synthesize the SOP and POS Logic Diagrams

Row	<u> </u>	<u>Minterm</u>	<u>Maxterm</u>	<u>F</u>
0	0 0	A'⋅B'	A+B	1
1	0 1	A'⋅B	A+B'	1
2	1 0	A⋅B'	A'+B	0
3	1 1	A·B	A'+B'	0

Minterm List & SOP

$$F = \Sigma_{A,B} (0,1) = A' \cdot B' + A' \cdot B$$

Maxterm List & POS

$$F = \Pi_{A,B} (2,3) = (A'+B) \cdot (A'+B')$$

Logic Minimization

Logic Minimization

- We've seen that we can directly translate a Truth Table into a SOP/POS and in turn a Logic
- However, this type of expression is NOT minimized

ex)	Row	<u> </u>	<u>Minterm</u>	<u>Maxterm</u>	F
	0	0 0	A'⋅B'	A+B	1
	1	0 1	A'⋅B	A+B'	1
	2	1 0	A⋅B'	A'+B	0
	3	1 1	A·B	A'+B'	0

Minterm List & SOP

$$F = \Sigma_{A,B} (0,1) = A' \cdot B' + A' \cdot B$$

Maxterm List & POS

$$F = \Pi_{A,B} (2,3) = (A'+B) \cdot (A'+B')$$

Logic Minimization

Logic Minimization

- using our Axioms and Theorems, we can manually minimize the expressions...

Minterm List & SOP

$$F = A' \cdot B' + A' \cdot B$$

$$F = (A'+B) \cdot (A'+B')$$

$$F = A' \cdot (B' + B) = A'$$

$$F = A' + (B' \cdot B) = A'$$

- doing this by hand can be difficult and requires that we recognize patterns associated with our 5 Axioms and our 15+ Theorems

Karnaugh Maps

- a graphical technique to minimize a logic expression

5.1 Minimum Forms of Switching Functions

1. Combine terms by using XY'+XY=X

Do this repeatedly to eliminates as many literals as possible.

A given term may be used more than once because

$$X + X = X$$

2. Eliminate redundant terms by using the consensus theorems.

5.1 Minimum Forms of Switching Functions

Example: Find a minimum sum-of-products

$$F(a,b,c) = \sum m(0,1,2,5,6,7)$$

$$F = a'b'c' + a'b'c + a'bc' + abc' + abc' + abc'$$

$$= a'b' + b'c + bc' + ab$$

$$F = a'b'c' + a'b'c + a'bc' + abc' + abc' + abc$$

$$= a'b' + bc' + ac$$

5.1 Minimum Forms of Switching Functions

Example: Find a minimum product-of-sums

$$(A+B'+C+D')(A+B'+C'+D')(A+B'+C'+D)(A'+B'+C'+D)(A+B+C'+D)(A'+B+C'+D)$$

$$= (A+B'+D') \quad (A+B'+C') \quad (B'+C'+D)$$

$$= (A+B'+D') \quad (A+B'+C') \quad (C'+D)$$

$$= (A+B'+D')(C'+D)$$
Eliminate by consensus

Problems in Algebraic Simplification

- 1) The procedures are difficult to apply in a systematic way.
- 2) It is difficult to tell when you have arrived at a minimum solution. (minimum SOP, POS) => Karnaugh map (K-map) is the solution.

A 2-variable Karnaugh Map

Truth Table for a function F

Truth Table and Karnaugh Map for Three-Variable Function

АВС	F	$\setminus A$			
0 0 0	0	BC	0	1	
0 0 1 0 1 0 0 1 1	1 0 1	00	0	1	
1 0 0 1 0 1 1 1 0	0 1 0	ABC = 001, F = 0	0	0	
1 1 1	1	11	1	0	
,		10	1	1	ABC = 110, F = 1
				\overline{F}	
(8	a)			b)	13

Location of Minterms on a Three-Variable Karnaugh Map

(b) Decimal notation

Karnaugh Map of $F(a, b, c) = \sum m(1, 3, 5) = \prod (0, 2, 4, 6, 7)$

Karnaugh Maps for Product Terms

Given Function

$$f(a,b,c) = abc' + b'c + a'$$

- 1. The term abc' is 1 when a = 1 and bc = 10, so we place a 1 in the square which corresponds to the a = 1 column and the bc = 10 row of the map.
- 2. The term b'c is 1 when bc = 01, so we place 1's in both squares of the bc = 01 row of the map.
- 3. The term a' is 1 when a = 0, so we place 1's in all the squares of the a = 0 column of the map. (Note: Since there already is a 1 in the abc = 001 square, we do not have to place a second 1 there because x + x = x.)

Simplification of a Three-Variable Function

$$F = T_1 + T_2 = a'c + b'c$$

Complement of Map in Figure 5-6(a)

$$F = T_1 + T_2 = c' + ab$$

Karnaugh Maps Which Illustrate the Consensus Theorem

Function with Two Minimal Forms

$$F = \sum m(0,1,2,5,6,7)$$

$$F = a'b' + bc' + ac$$

$$F = a'c' + b'c + ab$$

Location of Minterms on Four-Variable Karnaugh Map

CD AB	00	01	11	10
00	0	4	12	8
01	1	5	13	9
11	3	7	15	11
10	2	6	14	10

Plot of acd + ab + d

$$f(a,b,c,d) = acd + a'b + d'$$

Simplification of Four-Variable Functions

Simplification of an Incompletely Specified Function

$$f = \sum m(1, 3, 5, 7, 9) + \sum d(6, 12, 13)$$

= $a'd + c'd$

Figure 5-14

1's of
$$f$$

 $f = x'z' + wyz + w'y'z' + x'y$

0's of
$$f$$

$$f' = y'z + wxz' + w'xy$$

$$f = (y+z')(w'+x'z)(w+x'+y')$$

minimum product of sum for f

Figure 5-14

- *Implicants of F*: Any single '1' or any group of "1's which can be combined together on a Map
- $prime\ Implicants\ of\ F$: A product term if it can not be combined with other terms to eliminate variable

Determination of All Prime Implicants

Because all of the prime implicants of a function are generally not needed in forming the minimum sum of products, selecting prime implicants is needed.

- CD is not needed to cover for minimum expression
- -B'C, AC, BD are "essential" prime implicants
- CD is not an "essential " prime implicants

- 1. First, find essential prime implicants
- 2. If minterms are not covered by essential prime implicants only, more prime implicants must be added to form minimum expression.

- 1) A'B covers I_6 and its adjacent \rightarrow essential PI
- 2) AB'D' covers I_{10} and its adjacent \rightarrow essential PI
- 3) AC'D is chosen for minimal cover $\rightarrow AC'D$ is not an essential PI

Shaded 1's are covered by only one prime implicant.

5.5 Five-Variable Karnaugh Maps

Five-Variable Karnaugh Map

These two terms in the top layer combine to give AB'DE'.

5.5 Five-Variable Karnaugh Maps

Figure 5-22

5.5 Five-Variable Karnaugh Maps

Figure 5-23

$F(A, B, C, D, E) = \sum m(0,1,4,5,13,15,20,21,22,23,24,26,28,30,31)$

36

AB'C

or

5.5 Five-Variable Karnaugh Maps

5.6 Other Uses of Karnaugh Maps

minturm expansion of
$$f$$
 is $f = \sum m(0,2,3,4,8,10,11,15)$
maxterm expansion of f is $f = \prod M(1,5,6,7,9,12,16,14)$ same

Figure 5-25

5.6 Other Uses of Karnaugh Maps

Figure 5-26

$$F = ABCD + B'CDE + A'B' + BCE'$$

Using the consensus theorem:

$$F = ABCD + B'CDE + A'B' + BCE' + ACDE$$

minimum solution:

$$F = A'B' + BCE' + ACDE$$

Then these two terms can be eliminated.

5.7 Other Forms of Karnaugh Maps

Figure 5-27. Veitch Diagrams

5.7 Other Forms of Karnaugh Maps

Figure 5-28. Other Forms of Five-Variable Karnaugh Maps

Digital System Design

Quine-McKlusky Method

Objectives

- 1. Find the prime implicants of a function by using the Quine-McCluskey method.
- 2. Define prime implicants and essential prime implicants
- 3. Given the prime implicants, find the essential prime implicants and a minimum sum-of-products expression for a function, using a prime implicant chart and using Petrick method
- 4. Minimize an incompletely specified function, using the Quine-McCluskey method
- 5. Find a minimum sum-of-products expression for a function, using the method of map-entered variables

 The minterms are represented in binary notation and combined using

$$XY + XY' = X$$

The binary notation and its algebraic equivalent

$$AB'CD' + AB'CD = AB'C$$

1 0 1 0 + 1 0 1 1 = 1 0 1 -- (the dash indicates a missing variable)

 $X \quad Y \quad X \quad Y' \quad X$
 $AB'CD' + AB'CD$ (will not combine)

1 0 1 0 + 1 0 1 1 (will not combine)

the binary minterms are sorted into groups

$$f(a,b,c,d) = \sum m(0,1,2,5,6,7,8,9,10,14)$$

Is repersented by the following list of minterms:

• Determination of Prime Implicants (Table 6-1)

	<u>Co</u>	lumn l	Co	lumn II	Column III		
group 0	0	0000 ✓	0,1	000 - ✓	0,1,8,9	- 00 -	
ſ	1				0, 2, 8, 10		
group 1	2	0010 🗸	0,8	-000 🗸	0,8,1,9	-00-	
	8	<u>1000</u> √	1,5	0-01	0, 2, 8, 10	-0-0	
	5	0101 🗸	1,9	-001 🗸	2, 6, 10, 14	10	
group 2	6	0110 🗸	2,6	0-10 🗸	2,10,6,14	10	
	9	1001 🗸	2,10	-010 ✓	2,10,6,14		
\ <u>1</u>	0	<u>1010</u> ✓	8,9	10-0			
group 3	7	0111 🗸	8,10	10-0			
group $3 \left\{ \underline{1} \right\}$	4	<u>1110</u> ✓	5, 7	01-1			
			6, 7	011-			
			6,14	-110 🗸			
			10,14	<u>1-10</u> ✓			

The function is equal to the sum of its prime implicants

$$f = a'c'd + a'bd + a'bc + b'c' + b'd' + cd'$$
(1,5) (5,7) (6,7) (0,1,8,9) (0,2,8,10) (2,7,10,14)

Using the consensus theorem to eliminate redundant terms yields

$$f = a'bd + b'c' + cd'$$

Definition: Given a function F of n variables, a product term P is an implicants of F iff for every combination of values of the n variables for which P=1, F is also equal to 1.

Definition: A Prime implicants of a function F is a product term implicant which is no longer an implicant if any literal is deleted from it.

Prime Implicant Chart (Table 6-2)

Eșsential Prime Implicant :⊗ 0 1 2 5 6 10 (0,1,8,9) b'c' \otimes $\mathbf{X} \quad \mathbf{X}$ X (0, 2, 8, 10) b'd' \mathbf{X} X X (2,6,10,14) cd' \otimes X X X (1,5) acdX X **Remaining cover** (5,7) abd X \mathbf{X} (6,7) a'bcX X

The resulting minimum sum of products is

$$-f = b'c' + cd' + a'bd$$

The resulting chart (Table 6-3)

The resulting minimum sum of products is

$$-f = b'c' + cd' + a'bd$$

Example: cyclic prime implicants(two more X's in every column in chart)

$$F = \sum m(0, 1, 2, 5, 6, 7)$$

Derivation of prime implicants

The resulting prime implicant chart (Table 6-4)

One solution:

$$F = a'b' + bc' + ac$$

Again starting with the other prime implicant that covers column 0. The resulting table (Table6-5)

			0	1	2	5	6	7
\mathbf{P}_{1}	(0,1)	a'b'	x	X				
P_2	(0,2)	ac'	<u> </u>		X			
P_3	(1,5)	b'c		X		X		
P_4	(2,6)	$bc^{'}$			X		X	
P_5	(5,7)	ac				X		X
P_6	(6,7)	ad					X	X

$$F = a'c' + b'c + ab.$$

6.3 Petrick's Method

A technique for determining all minimum SOP solution from a PI chart

Because we must cover all of the minterms,

the following function must be true:

$$P = (P_1 + P_2)(P_1 + P_3)(P_2 + P_4)(P_3 + P_5)(P_4 + P_6)(P_5 + P_6) = 1$$
minterm0 minterm1

6.3 Petrick's Method

- Reduce P to a minimum SOP

First, we multiply out, using (X+Y)(X+Z) = X+YZ and the ordinary Distributive law

$$P = (P_1 + P_1 P_1)(P_1 + P_1 P_1)(P_1 + P_1 P_1)$$

$$= (P_1 P_4 + P_1 P_2 P_6 + P_2 P_3 P_4 + P_2 P_3 P_6)(P_5 + P_3 P_6)$$

$$= P_1 P_4 P_5 + P_1 P_2 P_5 P_6 + P_2 P_3 P_4 P_5 + P_2 P_3 P_5 P_6 + P_1 P_3 P_4 P_6$$

$$+ P_1 P_2 P_3 P_6 + P_2 P_3 P_4 P_6 + P_2 P_3 P_6$$

Use X+XY=X to eliminate redundant terms from P

$$P = P_1 P_4 P_5 + P_1 P_2 P_5 P_6 + P_2 P_3 P_4 P_5 + P_1 P_3 P_4 P_6 + P_2 P_3 P_6$$

- Choose *P1,P4,P5* or *P2,P3,P6* for minimum solution

$$F = a'b' + bc' + ac$$
 or $F = a'c' + b'c + ab$.

54

6.4 Simplification of Incompletely Specified Functions

Example:

$$F(A,B,C,D) = \sum m(2,3,7,9,11,13) + \sum d(1,10,15)$$

Don't care terms are treated like required minterms...

(13,15) 11-1 \checkmark

55

6.4 Simplification of Incompletely Specified Functions

Don't care columns are omitted when forming the PI chart...

$$F = B'C + CD + AD$$

Replace each term in the final expression for F

$$F = (m_2 + m_3 + m_{10} + m_{11}) + (m_3 + m_7 + m_1 + m_{15}) + (m_9 + m_{11} + m_{13} + m_{15})$$

The don't care terms in the original truth table for F

for
$$ABCD = 0001$$
, $F = 0$; for 1010 , $F = 1$; for 1111 , $F = 1$

6.5 Simplification Using Map-Entered Variables

Using of Map-Entered Variables (Figure 6-1)

The map represents the 6-variable function

$$G(A, B, C, D, E, F) = m_0 + m_2 + m_3 + Em_5 + Em_7 + Fm_9 + m_{11} + m_{15}$$

(+don't care terms)

6.5 Simplification Using Map-Entered Variables

Use a 3-variable map to simplify the function:

$$F(A, B, C, D) = A'B'C + A'BC + A'BC'D + ABCD + (AB'C)$$

Simplification Using a Map-Entered Variable (Figure 6-2)

6.5 Simplification Using Map-Entered Variables

From Figure 6-2(b),

$$F = A'C + D(C + A'B) = A'C + CD + A'BD$$

Find a sum-of-products expression for F of the form

$$F = MS_0 + +P_1MS_1 + P_2MS_2 + \dots$$

 MS_0 : minimum sum obtained by $P_1=P_2=...=0$

 MS_1 : minimum sum obtained by $P_1=1$, $P_j=0$ (j=/1) and replacing all '1"s on the map with 'don't cares(X)'

 $MS_2 : \dots$

The resulting expression is a minimum sum of products for G(Fig. 6-1):

$$G = A'B' + ACD + EA'D + FAD$$

Design Flow

Combinational Logic Design Flow

- We now have all the pieces for a complete design process

1) Design Specifications : description of what we want to do

2) Truth Table : listing the logical operation of the system

3) Describe using : creating the logic expression

SOP/POS/Minterm/Maxterm

4) Logic Minimization : K-maps

5) Logic Manipulation : Convert to desired technology (NAND/NAND, ...)

6) Hazard Prevention