Cross-domain Correspondence Learning for Exemplar-based Image Translation (CVPR 2020)

Microsoft Research Asia

Background

Motivation

- Lack of controllability
- Compromised image quality for complex scenes

A more user-friendly approach

translation

General solution

- Our method transfers the fine structures from the exemplar
- Applicable to various tasks

Challenge: weakly supervised learning

How to establish correspondence for heterogeneous images?

What is the desired translation output given an exemplar?

Facilitate each other

Method

basic idea

• find an intermediate domain which is suitable for dense correspondence

Framework

Framework

Framework

Domain adversarial

$$x_S = \mathcal{F}_{A \to S}(x_A; \theta_{\mathcal{F}, A \to S}),$$

 $y_S = \mathcal{F}_{B \to S}(y_B; \theta_{\mathcal{F}, B \to S}).$

Domain alignment loss: the feature embedding should lie in the same domain

$$\mathcal{L}_{domain}^{\ell_1} = \|\mathcal{F}_{A \to S}(x_A) - \mathcal{F}_{B \to S}(x_B)\|_1$$

 $\hat{x}_{\alpha}(u)T\hat{x}$

Within domain correspondence:

$$\mathcal{M}(u,v) = \frac{\hat{x}_S(u)^T \hat{y}_S(v)}{\|\hat{x}_S(u)\| \|\hat{y}_S(v)\|},$$

Soft exemplar warping:

$$r_{y\to x}(u) = \sum_{v} \operatorname{softmax}_{v}(\alpha \mathcal{M}(u,v)) \cdot y_{B}(v).$$

Cyclic exemplar warping

$$r_{y\to x\to y}(v) = \sum_{u} \operatorname{softmax}_{u}(\alpha \mathcal{M}(u,v)) \cdot r_{y\to x}(u)$$

Channel wise centralized feature

$$X^s(u) = Xs(u) - mean(Xs(u))$$

$$Y^s(v) = Ys(v) - mean(Ys(v))$$

Soft exemplar warping:

$$r_{y\to x}(u) = \sum_{v} \operatorname{softmax}(\alpha \mathcal{M}(u,v)) \cdot y_B(v).$$

Cyclic exemplar warping

$$r_{y\to x\to y}(v) = \sum_{u} \operatorname{softmax}_{u}(\alpha \mathcal{M}(u,v)) \cdot r_{y\to x}(u)$$

Correspondence regularization:

$$\mathcal{L}_{reg} = \left\| r_{y \to x \to y} - y_B \right\|_1,$$

 $_{
m W}/\,\mathcal{L}_{reg}$

Positional Normalization

Translation network

Spatial variant style injection:

Translation network

$$\alpha_{h,w}^{i}(r_{y\to x}) \times \frac{F_{c,h,w}^{i} - \mu_{h,w}^{i}}{\sigma_{h,w}^{i}} + \beta_{h,w}^{i}(r_{y\to x}),$$

Positional normalization

Style encoder:

$$\alpha^i, \beta^i = \mathcal{T}_i(r_{y \to x}; \theta_{\mathcal{T}}).$$

Image Translation Output:

$$\hat{x}_B = \mathcal{G}(z, \mathcal{T}_i(r_{y \to x}; \theta_{\mathcal{T}}); \theta_{\mathcal{G}}).$$

Translation network

Pseudo exemplar loss:

$$\mathcal{L}_{feat} = \sum_{l} \lambda_{l} \|\phi_{l}(\mathcal{G}(x_{A}, x_{B}')) - \phi_{l}(x_{B})\|_{1},$$

Pseudo exemplar pairs

Translation network

Translation network

Contextual loss: let the output to mimic the appearance of the semantically corresponding patches from the exemplar.

$$\mathcal{L}_{context} = \sum_{l} \omega_{l} \left[-\log \left(\frac{1}{n_{l}} \sum_{i} \max_{j} A^{l}(\phi_{i}^{l}(\hat{x}_{B}), \phi_{j}^{l}(y_{B})) \right) \right],$$

pairwise affinities between the features of output and their closest features of the exemplar

Translation network

Translation network

Perceptual loss: the output should maintain the semantics as the input

$$\mathcal{L}_{perc} = \|\phi_l(\hat{x}_B) - \phi_l(x_B)\|_1.$$

Adversarial loss: make the output as realistic as possible

$$\mathcal{L}_{adv}^{\mathcal{D}} = -\mathbb{E}[h(\mathcal{D}(y_B))] - \mathbb{E}[h(-\mathcal{D}(\mathcal{G}(x_A, y_B)))]$$

$$\mathcal{L}_{adv}^{\mathcal{G}} = -\mathbb{E}[\mathcal{D}(\mathcal{G}(x_A, y_B))],$$

Total loss

$$\mathcal{L}_{\theta} = \min_{\mathcal{F}, \mathcal{T}, \mathcal{G}} \max_{\mathcal{D}} \psi_1 \mathcal{L}_{feat} + \psi_2 \mathcal{L}_{perc} + \psi_3 \mathcal{L}_{context} + \psi_4 \mathcal{L}_{adv}^{\mathcal{G}} + \psi_5 \mathcal{L}_{domain}^{\ell_1} + \psi_6 \mathcal{L}_{reg},$$

- Pseudo exemplar pairs:
 - VGG feature matching
- Real exemplar pairs:
 - Perceptual loss
 - Contextual loss
- Domain alignment loss
 - Domain I1
- Correspondence regularization
 - Cyclic warping loss
- Adversarial loss:
 - hinge loss
 - Discriminator feature matching

Experiments

Quantitative Comparison

Table 1: **Image quality comparison.** Lower FID or SWD score indicates better image quality. The best scores are highlighted.

	ADE20k		ADE20k-outdoor		CelebA-HQ		DeepFashion	
	FID	SWD	FID	SWD	FID	SWD	FID	SWD
Pix2pixHD	81.8	35.7	97.8	34.5	62.7	43.3	25.2	16.4
SPADE	33.9	19.7	63.3	21.9	31.5	26.9	36.2	27.8
MUNIT	129.3	97.8	168.2	126.3	56.8	40.8	74.0	46.2
SIMS	N/A	N/A	67.7	27.2	N/A	N/A	N/A	N/A
EGSC-IT	168.3	94.4	210.0	104.9	29.5	23.8	29.0	39.1
Ours	26.4	10.5	42.4	11.5	14.3	15.2	14.4	17.2

Quantitative Comparison

Table 2: Comparison of semantic consistency. The best scores are highlighted.

	ADE20k	ADE20k-outdoor	CelebA-HQ	DeepFashion
Pix2pixHD	0.833	0.848	0.914	0.943
SPADE	0.856	0.867	0.922	0.936
MUNIT	0.723	0.704	0.848	0.910
SIMS	N/A	0.822	N/A	N/A
EGSC-IT	0.734	0.723	0.915	0.942
Ours	0.862	0.873	0.949	0.968

Quantitative Comparison

Table 3: Comparison of style relevance. A higher score indicates a higher appearance similarity relative to the exemplar. The best scores are highlighted.

	ADE20k		Celeb	CelebA-HQ		DeepFashion	
	Color	Texture	Color	Texture	Color	Texture	
SPADE	0.874	0.892	0.955	0.927	0.943	0.904	
MUNIT	0.745	0.782	0.939	0.884	0.893	0.861	
EGSC-IT	0.781	0.839	0.965	0.942	0.945	0.916	
Ours	0.962	0.941	0.977	0.958	0.982	0.958	

Comparison

Mask-to-image synthesis: ADE20k

Mask-to-image synthesis: ADE20k

Mask-to-face: CelebA-HQ

Edge-to-image synthesis: CelebA-HQ

Pose-to-image synthesis: DeepFashion

Application

Sparse Correspondence

Sparse correspondence of different domains.

Dense Correspondence

Application: Image editing (Demo)

Application: Makeup transfer

Given a portrait along with makeup edits (1st column), we can transfer the makeup to other portraits by matching the semantic correspondence

Application: Makeup transfer

Figure 10: **Makeup transfer.** Given a portrait along with makeup edits (1st column), we can transfer the makeup to other portraits by matching the semantic correspondence.

Limitation

Figure 12: **Limitation.** Our method may produce mixed color artifact due the one-to-many mapping (1st row). Besides, the multiple instances (pillows in the figure) may use the same style in the cases of many-to-one mapping (2nd row).

Thank you!