本历史

文档更新记录	文档名:	Lab03_简单 CPU 参考设计调试
	版本号	V0.1
	创建人:	计算机体系结构研讨课教学组
	创建日期:	2019-09-10

更新历史

序号	更新日期	更新人	版本号	更新内容
1	2019/09/10	贾凡	-	草稿。
2	2019/09/11	邢金璋	V0.1	初稿。

文档信息反馈: xingjinzhang@loongson.cn

1 实验三 简单 CPU 参考设计调试

在学习并尝试本章节前,你需要具有以下环境和能力:

- (1) 装有 Vivado 的电脑一台。
- (2) 熟悉 Vivado,并能初步使用。 如果对 Vivado 不熟悉,请参考课程讲义中的第一讲内容。
- (3) 初步掌握 Verilog 的简单语法。
- (4) 熟悉龙芯体系结构实验箱(Artix-7)。

通过本章节的学习, 你将获得:

- (1) 无阻塞五级流水线 CPU 设计的知识。
- (2) 对 CPU 实验开发环境的熟悉。
- (3) 对 CPU 设计出错类型的识别、调试的能力。

1.1 实验目的

- 1. 加深对指令集的理解。
- 2. 了解 CPU 设计中流水线切分的原理。
- 3. 学会识别常见波形异常,理解其产生原因,并能修正。
- 4. 熟悉并运用 verilog 语言进行电路设计。

1.2 实验设备

- 1. 装有 Xilinx Vivado 的计算机一台。
- 2. 龙芯体系结构教学实验箱(Artix-7)一套。

1.3 实验任务

本次实验分为两个子任务:

- 1. 子任务一:阅读并理解我们提供的代码。结合讲义,画出简单流水线 CPU 的结构设计框图,然后对照自己画的结构框图,对代码做简要阐述。
- 2. 子任务二:代码调试。我们提供的代码中加入了 7 处 bug,请大家通过仿真波形的调试修复这些 bug,使设计可以通过仿真和上板测试。
- 3. 本次实验要求每个人独立提交实验报告和调试好的 RTL 代码,以报告评分和现场检查评分作为最后的实验得分:
 - (1) 报告评分: 子任务一要求结构设计框图和相应的阐述简洁、正确且完整,子任务二要求记录下所有 bug 的调试过程和机理分析。
 - (2) 现场检查评分: 子任务二的检查包含仿真检查和上板检查。

1.4 实验检查

检查前需提交实验报告(每人一份)和调试好的 RTL 代码。本次实验在 2019 年 9 月 17 日进行检查。 现场以抽查的方式进行,分仿真检查和上板检查:

- 1) 仿真检查: 子任务二对照波形进行描述各流水级的工作内容。
- 2) 上板检查: 子任务二查看上板行为。

现场检查要求能正确应对检查者的提问,并根据要求进行正确的操作演示

1.5 实验提交

提交的作品包括纸质档和电子档。

(1) 纸质档提交

提交方式: 课上现场提交,每人都必须要有。

截止时间: 2019年9月17日18:10。 提交内容: 纸质档 lab3 实验报告。

(2) 电子档提交

提交方式:打包上传到 Sep 课程网站 lab2 作业下,每人都必须要有。

截止时间: 2019年9月17日18:10(具体以课程通知为准)。

提交内容: 电子档 lab3 实验报告,为 pdf 文档,文件名是"lab3_箱子号_学号"(请将其中的"箱子号"替换为本组箱子号,"学号"替换为自己的学号)。

1.6 实验环境

本次实验提供了 Vivada 工程文件和全部的 RTL 文件以及生成好的 IP,同学们需要调试的 CPU 设计源码位于mycpu_verify/rtl/myCPU 中。

注意:源码中包含 7 处 bug,请先理解 CPU 设计代码,画出设计框图,再进行调试。调试过程中请多多交流、多多提问。

用龙芯开源 GS132 处理器核生成参考 trace 的部分。 -cpu132 gettrace/ |--rt1/ SoC lite 设计代码目录。 SoC_lite 的顶层文件。 | |--soc lite top.v |--CPU gs132/* 龙芯开源 GS132 处理器核设计。 confreg 模块,用于访问 CPU 与开发板上数码管、拨码开关等外设。 | |--CONFREG/ |--BRIDGE/ 1×2的桥接模块,CPU的 data sram 接口同时访问 confreg 和 data_ram。 | |--xilinx ip/ 封装后的 Xilinx IP, 包含 clk_pll、inst_ram、data_ram。 |--testbench/ 功能仿真验证目录。 | |--tb top.v 仿真顶层,该模块会抓取 debug 信息生成到 trace_ref.txt 中。 |--run vivado/ Vivado 工程的运行目录。 | |--soc lite.xdc Vivado 工程设计的约束文件。 | |--cpu132 gettrace/ 创建的 Vivado 工程, 名字就叫 cpu132_gettrace。 | | | |--cpu132 gettrace.xpr Vivado 创建的工程文件。 |--trace ref.txt 利用 GS132 处理器核运行 func 测试程序所生成的参考 trace。

-soft/	功能验证所用测试程序代码及其编译环境所在目录。	
labXX_func/	第 XX 次实验任务所用的功能验证测试程序。	
include/	功能验证测试程序共享的头文件所在目录。	
asm.h	MIPS 汇编需用到的一些宏定义的头文件,比如 LEAF(x)。	
regdef.h	MIPS o32 ABI 下, 32 个通用寄存器的汇编助记定义。	
	SoC_Lite 相关参数的宏定义,如访问数码管的 confreg 的基址。	
	各功能测试点的验证程序使用的宏定义头文件。	
inst/	各功能测试点的汇编程序文件。	
Makefile	子目录里的 Makefile,会被上一级目录中的 Makefile 调用。	
n*.S	各功能测试点的验证程序,汇编语言编写。	
obj/	功能验证测试程序编译结果存放目录	
*	详见讲义第 3.2.5 节说明。	
start.S	功能验证测试的引导代码及主函数。	
Makefile	编译功能验证测试程序的 Makefile 脚本	
bin.lds.S	链接脚本源码	
bin.lds	编译 bin.lds.S 得到的结果,可被 make reset 命令清除	
convert.c	生成 coe 和 mif 文件的处理工具的 C 程序源码	
convert	convert.c 的本地编译后生成的可执行文件,可被 make reset 命令清除	
rules.make	子编译脚本,被 Makefile 调用	
*	其他功能或性能测试程序。	
I		
-mycpu_verify/	学生实现的 CPU 的验证开发环境	
rtl/	SoC_lite 设计代码目录。	
soc_lite_top.v	SoC_lite 的顶层文件。	
myCPU/*	同学们需要调试的 CPU 的 RTL 代码。	
	myCPU中需要使用的宏定义	
mycpu_top.v	CPU 的项层文件	
	取指级代码	
	译码级代码	
EXE_stage.v	执行级代码	
MEM_stage.v	访存级代码	
	写回级代码	
alu.v	算术逻辑单元	
regfile.v	寄存器模块	
	其它小模块,只要包含一些译码器	
mycpu_top.v	CPU 的顶层文件	
	取指级代码	
CONFREG/	confreg 模块,用于访问 CPU 与开发板上数码管、拨码开关等外设。	
BRIDGE/	1×2 的桥接模块, CPU 的 data sram 接口同时访问 confreg 和 data_ram。	
xilinx_ip/	封装后的 Xilinx IP,包含 clk_pll、inst_ram、data_ram。	
testbench/	功能仿真验证平台。	
mycpu_tb.v	功能仿真顶层,该模块会抓取 debug 信息与 trace_ref.txt 进行比对。	
run_vivado/	Vivado 工程的运行目录。	

```
Vivado 工程设计的约束文件。
|--soc lite.xdc
                      创建的第一个 Vivado 工程, 名字为 mycpu_prj1。
|--mycpu prj1/
                      Vivado 创建的工程文件,可直接打开。
   |--*.xpr
```

White the state of the state of