Enhanced Self-Organizing Map Solution for the Traveling Salesman Problem

Joao P. A. Dantas

Andre N. Costa

Marcos R. O. A. Maximo

Takashi Yoneyama

Introdução

- Problema do caixeiro viajante: NP-Completo
- Aprendizado não supervisionado
- Enhanced Self-Organizing Map

Self-Organizing Map (SOM)

- Técnica de organização e visualização inspirada nas RNAs.
- Redução de dimensionalidade
- Correlação entre os dados
- Competitive learning vs error-correction learning
- Mapas auto-organizáveis: estudado por Kohonen (1998)
- Auto-organiza para colocar nós que representam partes semelhantes próximos uns dos outros.

Arquitetura do SOM

- 2 camadas: entrada e saída
- Não há função de ativação
- Vetor de pesos

Treinamento no SOM

- 1. Competição
- 2. Cooperação
- 3. Adaptação

Competição

Cooperação

Adaptação

O algoritmo

- 1. Os pesos de cada nó são inicializados.
- 2. Um vetor é escolhido aleatoriamente no conjunto de dados de treinamento.
- 3. Cada nó é examinado para calcular quais pesos são mais parecidos com o vetor de entrada. O nó vencedor é comumente conhecido como Best Matching Unit (BMU).
- 4. Em seguida, a vizinhança do BMU é calculada. A quantidade de vizinhos diminui com o tempo.
- 5. O peso vencedor é recompensado por se tornar mais parecido com o vetor de amostra. Os vizinhos também se tornam mais parecidos com o vetor de amostra. Quanto mais próximo um nó está do BMU, mais seus pesos são alterados e quanto mais longe o vizinho está do BMU, menos ele aprende.
- 6. Repita a etapa 2 para N iterações.

Iterações do algoritmo

Iterações do algoritmo

Ajustes do Modelo

- A conectividade de rede pode mudar
 - Não apenas uma grade retangular, mas hexagonal, octogonal, políonos côncavos.
- O mapa nem sempre converge, você precisa de uma maneira de equilibrar a exploration e a exploitation do modelo.
- Solução: introdução do fator de aprendizagem (α) e descontos fator de aprendizagem e tamanho da vizinhança [Martin 2018]
 - Reduzir a taxa de aprendizagem permite forçar a convergência.
 - Reduzir a vizinhança força a exploration primeiro e, em seguida, a exploitation de mais áreas locais.

Ajuste de hiperparâmetros

Number of	Discount Rate	Learning	Discount Rate	Population	F1
Iterations	Iterations	Rate	Learning Rate	Size	Score
100	0.9997	0.8	0.99997	8	0.06878
100,000	0.9997	0.8	0.99997	8	0.07800
100,000	0.9997	0.8	0.99997	16	0.07784
100,000	0.9997	0.8	0.99997	4	0.07855
100,000	0.9997	0.8	0.99997	2	0.07853
100,000	0.9997	0.8	0.99997	6	0.07885
100,000	0.9997	0.8	0.99997	5	0.07869
100,000	0.99997	0.8	0.99997	6	0.07854
100,000	0.997	0.8	0.99997	6	0.07834
100,000	0.997	0.01	1.00000	6	0.07769
100,000	0.9997	0.8	0.99997	7	0.07878

Modificações adicionais

- 1. A escolha do primeiro nó
- 2. Variação do population size em cada mapa e a escolha do melhor

Conclusões e trabalhos futuros

- SOM é uma técnica muito interessante que oferece bons resultados no geral
- Aplicar o SOM ao TSP resulta em uma técnica muito sensível aos hiperparâmetros

- Melhoras nas técnicas de escolha dos hiperparâmetros
- Melhorar nas escolhas estocásticas do algoritmo dependendo do tipo de aplicação

