Alan Copa

Machine Learning Assignment 1 Linear Models & Kernel Methods

Submission deadline: October 26, 2024

1 Problem 1. Ridge Regression (10 points)

In a regression task, we have vectors $\mathbf{x} \in \mathbb{R}^D$, target values $y \in \mathbb{R}$ associated with them, and some model $f(\mathbf{x}) : \mathbb{R}^D \to \mathbb{R}$ to predict the target values for arbitrary vectors in \mathbb{R}^D .

Suppose we have a training dataset $\{\Phi, \mathbf{t}\}$, where $\Phi \in \mathbb{R}^{N \times D}$ is the design matrix in which each row is a feature vector $\phi(\mathbf{x})$ of a training point \mathbf{x} , and $\mathbf{t} \in \mathbb{R}^{N \times 1}$ is the vector with target values for the training points. N is the number of points in the training dataset, and D is the dimensionality of the feature space. Suppose that each entry in the last column of Φ is equal to 1. Your task is to derive the closed form solution for the optimal parameters of a ridge regression model.

- State the equation of a ridge regression model and identify the model parameters
- State the equation for the loss function (mean squared error) with an ℓ_2 regularization weighted by λ
- State which condition should be met in order to find the model parameters
- Find the ideal model parameters under the proposed loss function.

Note: You can use $\|\cdot\|$ as the Euclidean norm of a vector; $\phi(\mathbf{x}_n)$ and t_n are the *n*-th rows of Φ and \mathbf{t} respectively.

2 Problem 2. Feature Engineering (10 points) and Basic Concepts (10 points)

Suppose you have the following set S of 2D points, $S_n = (x_n^{(1)}, x_n^{(2)})$.

Figure 1: Color denotes the class attribution of a point: blue points belong to the class C_1 , yellow points belong to the class C_2 .

- Explain in detail 2 classification algorithms that could solve the problem. Discuss advantages and disadvantages of each.
- Propose new features for points in S based on $x^{(1)}$ and $x^{(2)}$. In this new feature space, classes C_1 and C_2 should be linearly separable. Come up with 2 different solutions meeting the stated criteria.

Problem 3. Kernel Functions (10 points)

Consider the following function $f: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$:

$$f(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{x})(\mathbf{x}^T \mathbf{y})(\mathbf{y}^T \mathbf{y})$$

Prove that f is a valid kernel or prove the opposite.

The only rules allowed to use without proof are the following:

- Kernel functions are *linear* and positive.
- Kernel functions can be expressed as an inner product
- A kernel function of 2 inputs can be expressed as another kernel of a transformation of those inputs (into a potentially different space).

Begin by formalizing those rules and apply them to prove or disprove the statement.

Problem 4. SVM (10 points)

Consider the following training data:

Class	x_1	x_2
+	1	1
+	2	2
+	0	2
_	1	-1
_	-1	0
_	0	0

- 1. Plot the six training points. Are the classes $\{+, -\}$ linearly separable?
- 2. Construct the weight vector of the maximum margin hyperplane by inspection and identify the support vectors.
- 3. If you remove one of the support vectors, does the size of the optimal margin decrease, stay the same, or increase?
- 4. Is your answer to (3) also true for any dataset? Provide a counterexample or give a short proof.

1 Problem 1. Ridge Regression (10 points)

In a regression task, we have vectors $\mathbf{x} \in \mathbb{R}^D$, target values $y \in \mathbb{R}$ associated with them, and some model $f(\mathbf{x}) : \mathbb{R}^D \to \mathbb{R}$ to predict the target values for arbitrary vectors in \mathbb{R}^D .

Suppose we have a training dataset $\{\Phi, \mathbf{t}\}$, where $\Phi \in \mathbb{R}^{N \times D}$ is the design matrix in which each row is a feature vector $\phi(\mathbf{x})$ of a training point \mathbf{x} , and $\mathbf{t} \in \mathbb{R}^{N \times 1}$ is the vector with target values for the training points. N is the number of points in the training dataset, and D is the dimensionality of the feature space. Suppose that each entry in the last column of Φ is equal to 1. Your task is to derive the closed form solution for the optimal parameters of a ridge regression model.

- State the equation of a ridge regression model and identify the model parameters
- State the equation for the loss function (mean squared error) with an ℓ_2 regularization weighted by λ
- ${\cal C}$ State which condition should be met in order to find the model parameters
- $d \bullet$ Find the ideal model parameters under the proposed loss function.

Note: You can use $\|\cdot\|$ as the Euclidean norm of a vector; $\phi(\mathbf{x}_n)$ and t_n are the *n*-th rows of Φ and \mathbf{t} respectively.

$$\frac{d^{N} \times d^{N}}{d^{N}} = \begin{pmatrix} \phi_{0}(x_{0}) & \phi_{1}(x_{0}) & \dots & \phi_{D}(x_{N}) & 1 \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{0}(x_{N}) & \phi_{1}(x_{N}) & \dots & \phi_{D}(x_{N}) & 1 \end{pmatrix}$$

$$\frac{d^{N} \times d^{N}}{d^{N}} = \begin{pmatrix} \phi_{1}(x_{0}) & \dots & \phi_{D}(x_{N}) & 1 \\ \vdots & \ddots & \ddots & \vdots \\ \psi_{D} & \vdots & \ddots & \vdots \\ \psi_{D} &$$

a) Ridge Vegression model J: predicted target values J: design onatrix v: model parameters $\mathcal{G} = \mathcal{J} w$ b) $E(w) = \frac{1}{11} \sum_{n=1}^{10} \frac{1}{2} (w^T \rho(x_n) - t_n)^2$ MSE

MSE loss function with & veg. term.: $\frac{1}{2}\left(w\right) = \frac{1}{2}\left(w^{T}\phi(x_{n}) - t_{n}\right)^{2} + \frac{1}{2}\left|w\right|_{2}^{2}$

d) optimal pavameters
$$2(w) = \frac{1}{\nu} \sum_{n=1}^{\nu} \frac{1}{2} (w^{T} \rho(x_{n}) - t_{n})^{2} + \frac{\lambda}{2} (|w||_{2}^{2})$$

$$\frac{1}{\nu} \sum_{n=1}^{\nu} \frac{1}{2} (w^{T} \rho(x_{n}) - t_{n}) \cdot \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} \sum_{n=1}^{\nu} (x^{T} \rho(x_{n}) - t_{n}) \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) + \lambda w$$

$$= \frac{1}{\nu} (w^{T} \rho(x_{n}) \rho^{T} (x_{n}) \rho^{T} (x_{n}) - \sum_{n=1}^{\nu} t_{n} \rho(x_{n}) \rho^{T} (x_{n}) + \lambda w$$

2 Problem 2. Feature Engineering (10 points) and Basic Concepts (10 points)

Suppose you have the following set S of 2D points, $S_n = (x_n^{(1)}, x_n^{(2)})$.

Figure 1: Color denotes the class attribution of a point: blue points belong to the class C_1 , yellow points belong to the class C_2 .

- Explain in detail 2 classification algorithms that could solve the problem. Discuss advantages and disadvantages of each.
- Propose new features for points in S based on $x^{(1)}$ and $x^{(2)}$. In this new feature space, classes C_1 and C_2 should be linearly separable. Come up with 2 different solutions meeting the stated criteria.

a) non pavametric KhN classifier: this algorithm consider the closest k data points to determine by majority to which class the current data point has to be assigned. KKN steps: @ set the number of kneighbors 2 calculate distance of auvvent point from all other points of the data set 3 find the Kneavest neighbors of the (i) identify the class of the point by looking at the majority of the k neavest neighbors advantages: · no need to train the model not for non linearity . non parametric, can easily abapt for non linearity no assumptions about data distribution disadvantages:

need to compute al distances/define for
closeness

sensitive to outlievs does not discover structure problematic in high dimensional space

Logistic regression

Losistic Vegression is a linear model ased for binary classification. It works by modeling the relationship between the input features and fre probability of a point to belong to a specific class.

This model ages a sigmoid function to convert the linear output into a probability (from o to 1). During training the algorithm adjust the weights w and the biash to minimize the log loss function, which penalizes the incorrect pre dictions.

P(y=1/X) = 1+e-(wtx+b)

advantages:

training quich and less computing power needed. probabilistic output useful for confidence level

disadvantages

- not suitable for this case: the classes are not linearly separable unless we introduce non linearity with the features
- . sensitive to outliers . no closed form to compute wandb
- Circle! feature introduction

 Z=\((x^0)^2 + (x^0)^2 \)

 This will introduce a circle base feature and open to non linearity in the model.

 The leaving harmonic follow a circle

The decision boundary will follow a circle shape classifing better the points.

New polynomial feature $Z_1 = \left(\chi^{(1)}\right)^2 + \left(\chi^{(2)}\right)^2 \qquad Z_2 = \chi^{(1)} \cdot \chi^{(2)}$

In introduces the squared ratial distance from the origin that combined with zz can imitate the ring behaviour of the distribution of the data

Problem 3. Kernel Functions (10 points)

Consider the following function $f: \mathbb{R}^D \times \mathbb{R}^D \to \mathbb{R}$:

$$f(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^T \mathbf{x})(\mathbf{x}^T \mathbf{y})(\mathbf{y}^T \mathbf{y})$$

Prove that f is a valid kernel or prove the opposite.

The only rules allowed to use without proof are the following:

- (7) Kernel functions are *linear* and positive.
- **b** Kernel functions can be expressed as an inner product
- (into a potentially different space).

Begin by formalizing those rules and apply them to prove or disprove the statement.

a)
$$k(x,y) = ck_1(x,y)$$

 $k(x,y) = k_1(x,y) + k_2(x,y)$

b)
$$k(x,y) = \phi(x)^{T} \phi(y)$$

(x), (x) transformed Exactave rectors

g duansformation function to a new space

To prove that f is a valid kennel ove need to show that f is symmetric, positive semi-befinite and that it can be expressed as an inner product.

$$\begin{aligned}
& \text{O Symmetric} \\
& \text{E(x,y)} \stackrel{?}{=} \text{E(y,x)} \\
& \text{E(x,y)} \stackrel{?}{=} \text{E(x,y)} \\
& \text{E($$

(2) positive semi-definite

for any vector c ER CKC 70

must be satisfied. k is the kernel

matrix

(of stake $x_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix} \quad x_2 = \begin{bmatrix} 6 \\ 1 \end{bmatrix}$ $f(x_1/x_2) = (10)(0+0)(0+1) = 0 = f(x_2/x_1)$ $f(x_2/x_2) = 1.1.1 = 0$

F(x1/x1) = 7.1.1 = 1

 $k = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ $c = \begin{bmatrix} 17 \\ -2 \end{bmatrix}$ $c \uparrow \qquad k$ $c \qquad \stackrel{?}{>} 0$

[1-2] [0] [1] = 200 =[-2] [-2] = -2-2 = -20] =[-2] = -2-2 = -20

fasa inner product $\beta(x)^T \beta(y)$ $f(x,y) = (|x|)^2 \beta(x)^T \beta(y) (|x|)^2$ $(|x|)^2 \text{ ond } (|y|)^2 \text{ indroduce non linearity.}$

Farthernove:

combination of valid kernel able to create f Since it is a non linear combination of inner products.

we could express fwith $g(x) = (11x11^2, x)$ sf. f(x,y) = k'(g(x), g(y))but k! with g doesn't preserve its linearity