

RAV-0001 1 de 4

REGISTRO DE ANÁLISE DE VIABILIDADE

HISTÓRICO				
Revisão	Data	Descrição		
Α	15/02/2021	Versão inicial		

	AUTOR	AUTOR	AUTOR	AUTOR
Função				
Nome	Felipe Bardella			
Data	14/02/2021			
Visto	Felipe			

	REVISOR	REVISOR	APROVADOR	APROVADOR
Função				
Nome	Vinícius	Victor	Vinícius	Victor
Data	15/02/2021	15/02/2021	15/02/2021	15/02/2021

MOTIVAÇÃO

O ano de 2020 causou danos às pessoas de diversas formas diferentes, seja com a pandemia, com o desemprego ou com os impactos emocionais que tudo isso causou. Porém, no ano passado, houve mais um fator que impactou nosso planeta como um todo: As queimadas

Devido a tantas polêmicas no ano, é plausível dizer que as queimadas de 2020 no Brasil foram muito repercutidas no cenário global e certamente marcaram a vida de pessoas moradoras em vilas próximas a esses biomas.

Do outro lado do oceano, muitas vilas de Portugal são vítimas desse mesmo cenário. Porém, no caso delas, há um agravante: o clima seco. As queimadas nas proximidades das vilas de Portugal acontecem de repente e rapidamente cercam uma vila.

Após esses eventos ocorrerem e repercutirem o mundo todo, gera-se a dúvida: e essas vilas e pequenos povos? Como são impactados por esses fatores e como um sensor de queimadas poderia auxiliá-las?

OBJETO

1. Queimadas

A cada ano que passa, o número de focos de queimadas cresce e, com isso, a preocupação das populações que estão expostas a esse tipo de fenômeno. Tomemos como exemplo as queimadas de 2020 no pantanal, em que em torno de 40 famílias que vivem nessa região perderam suas colheitas e muitas tiveram que recomeçar suas plantações do zero.

2. Diagrama de Blocos

RAV-0001

2 de 4

O projeto consiste em um sistema com dois dispositivos, o "dispositivo sensor" que detecta um padrão nos dados coletados pelos sensores, se este padrão estiver no range de emergência, manda um sinal para o "dispositivo final" que emitirá um alerta sonoro que está ocorrendo uma queimada.

3. Microcontrolador-1

3.1 Função

Coletar os dados dos sensores, analisar e enviar para o microcontrolador-2.

3.2 Estrutura

Microcontrolador: tensilica 32-bit RISC CPU Xtensa LX106.

Sensor de temperatura e umidade: dht 22

RAV-0001

3 de 4

Sensor de Co2: Mq-135 Alimentação: placa solar. Comunicação: módulo LoRa.

3.1 Microcontrolador -2

3.1 Função

Receber os dados do microcontrolador-1, conferir os dados e ativar a sirene.

3.2 Estrutura

Microcontrolador: tensilica 32-bit RISC CPU Xtensa LX106.

Alimentação: placa solar. Comunicação: módulo LoRa.

Alerta:buzzer.

ANÁLISE DE IMPACTOS, CONSEQUÊNCIAS E RISCOS

1 Monitoramento

Será possível monitorar, em tempo real, situações de incêndios em diversos locais.

2 Alertas

No momento que o equipamento detectar o início de uma queimada dentro do seu raio de operação, será alertado aos usuários da região sobre o ocorrido e os devidos cuidados.

ESTUDO DE MERCADO

1. Governo

Governadores das regiões afetadas por queimadas podem se interessar pelo produto devido ao monitoramento dos incêndios e prevenção de maiores danos causados a esses moradores.

2. Moradores das vilas

Vilarejos localizados em locais secos são alvo de incêndios, portanto a existência de alertas e monitoramento de incêndios para os moradores e visitantes desta vila pode ser crucial para a vivência do local

3. Fazendeiros

A perda da colheita nas fazendas devido a incêndios pode se tornar algo prejudical para a família que depende do plantio como renda ou até mesmo como fonte de alimento

FATORES COMPETITIVOS E CRÍTICOS

- 1. Características técnicas
 - 1.1 Natureza de comunicação LoRa

LoRa beneficia o projeto trazendo comunicação com baixo consumo de energia e escalabilidade dos sensores, já que é possível ter 1 base de comunicações para diversos sensores, cobrindo uma área considerável.

1.2 Base de comunicações conectado a internet

RAV-0001

4 de 4

Com a conexão à internet é possível consultar em tempo real dados dos sensores das localidades em que estão instalados.

2. Aspectos culturais

Em Portugal já existe uma consciência e preocupação com incêndios em vilarejos.

"SWOT"

- 1. Pontos Forte.
 - 1.1 Alimentação através de energia renovável.
 - 1.2 Dispositivo com fácil utilização e escalabilidade.
 - 1.3 Monitoramento a distância
- 2. Pontos Fracos.
 - 2.1 Dependência da internet para o monitoramento a distância
- 3. Oportunidade.
 - 3.1 Baixa concorrência.
 - 3.2 Crescimento das ocorrências de queimadas.
- 4. Ameaças.
 - 1. Vilas desprovidas de Internet/eletricidade.
 - 1.1 Confiabilidade do sinal do LoRa em locais de alta densidade florestal.

ESTUDO FINANCEIRO

- 1. Primeira Versão
 - 1. 1 Orçamento

Componente	Unidade	Preço (USD para mil unidades)
Microcontrolador	2	\$ 13,000
Módulo Transceptor LoRa	2	\$ 30,000
Sensor CO2	1	\$6,000
Sensor de umidade e temperatura	1	\$4,000
Buzzer	1	\$1,000
Placa Solar	2	\$8,000