

HEXFET® Power MOSFET

V _{DSS}	100	V
$R_{DS(on)}$ max (@ V_{GS} = 10V)	16.4	mΩ
Q _{g (typical)}	13	nC
R _{g (typical)}	2.1	Ω
I _D (@T _{C (Bottom)} = 25°C)	35	A

results in \Rightarrow

Applications

- Primary Switch for High Frequency 48V/60V Telecom DC-DC Power Supplies
- Secondary Side Synchronous Rectifier

Features

Low $R_{DS(ON)}$ (< 16.4m Ω)
Low Thermal Resistance to PCB (<3.2°C/W)
100% Rg Tested
Low Profile (<1.05 mm)
Industry-Standard Pinout
Compatible with Existing Surface Mount Techniques
RoHS Compliant, Halogen-Free
MSL1

Benefits

Dellelits
Lower Conduction Losses
Increased Power Density
Increased Reliability
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

Base part number	Package Type	Standard Pack		Orderable Part Number
		Form	Quantity	
IRFH7194PbF	PQFN 5mm x 6 mm	Tape and Reel	4000	IRFH7194TRPbF

Absolute Maximum Ratings

	Parameter	Max.	Units
V_{GS}	Gate-to-Source Voltage	± 20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	11	
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V	35	
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V	22	- A
I _{DM}	Pulsed Drain Current ①		
P _D @T _A = 25°C	DT _A = 25°C Power Dissipation		W
P _D @T _{C(Bottom)} = 25°C Power Dissipation		39	
Linear Derating Factor		0.03	W/°C
T _J	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Notes ① through ⑤ are on page 8

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
BV_{DSS}	Drain-to-Source Breakdown Voltage	100			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		78		mV/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		13.7	16.4	mΩ	V _{GS} = 10V, I _D = 21A ③
$V_{GS(th)}$	Gate Threshold Voltage	2.0		3.6	V	$V_{DS} = V_{GS}$, $I_D = 50\mu A$
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-5.2		mV/°C	
I _{DSS}	Drain-to-Source Leakage Current			1.0	μΑ	$V_{DS} = 80V, V_{GS} = 0V$
I_{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
gfs	Forward Transconductance	45			S	$V_{DS} = 25V, I_{D} = 21A$
Q_g	Total Gate Charge		13	19		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		1.8			V _{DS} = 50V
Q_{gs2}	Post-Vth Gate-to-Source Charge		0.9		nC	V _{GS} = 10V
Q_{gd}	Gate-to-Drain Charge		4.3			I _D = 21A
Q_{godr}	Gate Charge Overdrive		6.0			
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		5.2			
Q _{oss}	Output Charge		40		nC	$V_{DS} = 50V, V_{GS} = 0V$
R_G	Gate Resistance		2.1		Ω	
t _{d(on)}	Turn-On Delay Time		2.7			$V_{DD} = 50V, V_{GS} = 10V$
t _r	Rise Time		3.3		ns	I _D = 21A
$t_{d(off)}$	Turn-Off Delay Time		8.0			$R_G = 1.0\Omega$
t _f	Fall Time		2.5			
C _{iss}	Input Capacitance		733			$V_{GS} = 0V$
Coss	Output Capacitance		374		pF	V _{DS} = 50V
C _{rss}	Reverse Transfer Capacitance		11			f = 1.0MHz

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			35	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current			140		integral reverse
	(Body Diode) ①					p-n junction diode.
V_{SD}	Diode Forward Voltage		0.8	1.3	V	$T_J = 25^{\circ}C$, $I_S = 21A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		30	45	ns	$T_J = 25^{\circ}C$, $I_F = 21A$, $V_{DD} = 50V$
Q _{rr}	Reverse Recovery Charge		26	39	nC	di/dt = 100A/µs ③

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
Eas (Thermally limited)	Single Pulse Avalanche Energy ②		220	mJ
I _{AR}	Avalanche Current ①		12	Α

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$ (Bottom)	Junction-to-Case ④		3.2	
R _θ JC (Top)	Junction-to-Case ④		22	°C/W
$R_{\theta JA}$	Junction-to-Ambient ©		35	
R _{θJA} (<10s)	Junction-to-Ambient ©		20	

Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance vs. Temperature

Fig 5. Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

1000

OPERATION IN THIS AREA

IMITED BY R

DS (on)

1000

OPERATION IN THIS AREA

1000

OPERATIO

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Fig 12. Typical Avalanche Current vs. Pulse Width

Fig 13. On-Resistance vs. Gate Voltage

Fig 14. Maximum Avalanche Energy vs. Drain Current

^{*} Use P-Channel Driver for P-Channel Measurements

Fig 15. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

Fig 16a. Unclamped Inductive Test Circuit

Fig 17a. Switching Time Test Circuit

Fig 18. Gate Charge Test Circuit

Fig 16b. Unclamped Inductive Waveforms

Fig 17b. Switching Time Waveforms

Fig 19. Gate Charge Waveform

^{**} Reverse Polarity for P-Channel

PQFN 5x6 Outline "B" Package Details

For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf

PQFN 5x6 Outline "B" Part Marking

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

PQFN 5x6 Outline "B" Tape and Reel

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualifiction Information[†]

Qualification Level	Industrial (per JEDEC JESD47F ^{††} guidelines)			
Moisture Sensitivity Level	PQFN 5mm x 6mm (per JEDEC J-STD-020D ^{††)}			
RoHS Compliant	Yes			

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- \odot Starting T_J = 25°C, L = 3.0mH, R_G = 50 Ω , I_{AS} = 12A.
- ③ Pulse width $\leq 400\mu s$; duty cycle $\leq 2\%$.
- 4 R₀ is measured at T_J of approximately 90°C.
- (5) When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/