Math 54 Lec3

Vectors

Four equivalent statements:

Homogeneous System

Math 54 Lec3

Vectors

With any collection of vectors: $\{v_1,v_2,\ldots,v_n\}$, consider a linear combination of these vectors: $c_1v_1+c_2v_2+\cdots+c_nv_n$ where each $c_i\in\mathbb{R}$.

Do these create the "full space"? If not, then what?

Say you have n vectors in \mathbb{R}^m . Consider the matrix A, $m \times n$, whose columns are those n vectors. Can these vectors have a linear combination b, for some b in \mathbb{R}^m ?

That boils down to: is the system

$$A\mathbf{x} = \mathbf{b}$$

consistent or not?

For $\{v_1, v_2, \dots, v_n\}$, the set of linear combinations of the v_i s are the **span** of the set.

 $A\mathbf{x}$'s meaning:

$$A = egin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \ a_{21} & a_{22} & \dots & \dots \ dots & dots & \ddots & dots \ a_{m1} & \dots & \dots & a_{mn} \end{bmatrix}$$

Four equivalent statements:

- 1. $orall b \in \mathbb{R}^m$, $A\mathbf{x} = \mathbf{b}$ has a solution
- 2. Each $b \in \mathbb{R}^m$ is a linear combinations of columns of A
- 3. Columns of A span \mathbb{R}^m
- 4. A has a pivot position in every row

If it doesn't span \mathbb{R}^m , how do we find/express the span, i.e. find which b for which $a\mathbf{x} = \mathbf{b}$ is possible.

Homogeneous System

$$A\mathbf{x} = \mathbf{0}$$

Put A in row echelon form to check the solution set.