| # LAB ASSIGNMENT - 09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Answer (a): - a ? ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| V-11/30-V/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Signal of the state of the stat |
| Sine, TISE is of the form:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\nabla^2 \psi + 2m \left( \mathcal{E} - v \right) \psi = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Now, we have to determine the Laplace operators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| èn sphenical coordinate!-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| C K = Ssino Cos of sold by the state of the  |
| U = SSINA SINO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Z 2 86080 0 = 910 3 3 10 12 12 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\chi^2 = \mu^2 + y^2 + z^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (E) (4)2-(8)4-10)2 - (1) - (1) - (2) - (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 4 tan 0 = y/n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| tilber i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| The schridingen each in Polar coordinate is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Thur Schridinger equit in Palar coordinate is:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1 - 1 /2 04 / 4 - 1 - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8 00 1 00 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Carrell Carrel |
| $+ 2m \left( \varepsilon - v \right) \psi = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| f <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| This is schrodingen equal in spherical coordinate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

Page No.

(d) man (d)

Since, S.E in follow forming

 $\frac{1}{\sqrt{2}} \frac{J}{UK} \left( \frac{\chi^2 J \psi}{J \pi} \right) + \frac{1}{\sqrt{2} \sin \theta} \frac{J}{J \theta} \left( \frac{\sin \theta J \psi}{J \theta} \right) + \frac{1}{\sqrt{2} \sin^2 \theta} \frac{J^2 \psi}{J \theta^2}$ 

+ 2m (E-V) > 0

multiply by Y2sino! -

Sin20 d (x2 dy) + sino d (sho dy) + d2y

 $\frac{+2m\chi^2\sin^2\theta}{R^2}\left(\xi-V\right)\psi=0$ 

Pulling (2) in (1)!-

1 sin20 2 (821R(x)) + sin0 2 (sino dRo)

(R6) 48 (821R(x)) + Sin0 2 (sino dRo)

+ 1 200 + 2m2 sin20 (2-v) = 0

| 2020                  | Puy | 1246 |
|-----------------------|-----|------|
| Control of the second |     |      |

R dx (82 dr) + sino d (sinodP) + 2mx2 sin20 (e-u)

2 - 1 <u>d28</u> 8 dp<sup>2</sup>

are equal to same constant:

:. Sin20 d (82 dR) + sin0 d (smode) + 2mx2 sin20 (E-V) = m2

<u>~</u> (3)

dividing this by sin20:

 $\frac{1}{R} \frac{\partial}{\partial \delta} \left( \frac{\chi^2 dR}{d\chi} \right) + \frac{2m \, \chi^2}{f_1^2} \left( \frac{\varepsilon - v}{2} \right)^2 \frac{m^2}{5ih^2e} - \frac{1}{Psihe} \frac{\partial}{\partial \delta} \left( \frac{sho dP}{d\delta} \right)$ 

-(4)

Now, again equaling to a constant!

- (5)

This is rudial fant

644 48

Page No.
Date: 1/1/

| 4 [ ~2           |       |    |       |      |    |       |      |
|------------------|-------|----|-------|------|----|-------|------|
| 4 m <sup>2</sup> | ]     | 9  | (sino | dp 1 | 12 | 212+1 | 1    |
| _ L sin20        | Psino | 10 | al.   | do   | 1  | Y) ,  | 717. |

This is angular fart.

(0)

Since the nadial Equation is!

$$\frac{1}{R} \frac{\partial}{\partial s} \left( \frac{8^2 dR}{ds} \right) + \frac{2ms^2}{f^2} \left( \frac{\varepsilon - v}{s} \right) = l(l+1)$$

Let, R>K

912

Differentiating (1) again w.r.x R:-

2020 Phy 1216

Page No.

Put (3) in (2):-

d (82dR), 2dK/ -2K + 8d2K -2dK +24

(de (2 dr) = rd2k

Put this in (\*):

 $\frac{\sqrt[3]{\left(\frac{d^2k}{dx^2}\right)}}{\sqrt[3]{dx^2}} + \frac{2mx^2}{\sqrt[3]{2}} + \frac{(\varepsilon-v)}{\sqrt[3]{2}} > 2(141)$ 

x² d²k - 2mp² (v-E) = (l'lt1) €

Multiply by - h2 on both side! -

 $\frac{-f^2}{2mk^2} \frac{d^2k}{ds^2} + (V-E)k = \frac{l(l+1)k \times -f^2}{2ms^2}$ 

 $\frac{3 - k^2}{2m} \frac{d^2k}{dx^2} + \left[ \begin{array}{c} 1 + k^2 \left( 1 + 1 \right) \\ 2m & 6^2 \end{array} \right] = \frac{1}{2m} \frac{d^2k}{dx^2}$ 

Here, Veffective = V+ R2 l(141)

2m x2



 $\frac{1}{2} - \frac{me^{4}}{2(4\pi\epsilon_{0})^{2}} \frac{J^{2}}{\xi^{2}} k + \frac{me^{4}}{2(4\pi\epsilon_{0})^{2}} \frac{2}{\hbar^{2}} \left[ \frac{1}{2} + \frac{2}{2} \frac{(2+1)}{2} \right]$ 

: [K(x))2 K (x1) G ]

Page No.
Date: / /

Energy ground still hydrogen atom is !-+ me 4 1612 2 K2 (4118)2 - 82k (x') d 812 812 8 (841) Egur becomes ! k(x1) + vk(x1) = ek(x1) d 712 eque in This the nadial is dimensionless form. (d) !..it t f2 (lti) Uct+ 2 x2 Zh (lawical Prtential (coulombian) Centritugal term @ Coulomb fortential es attractive The coulom's fortential Turning only the into account energy gets smaller the n in

| Ο        |    |     |
|----------|----|-----|
| 2020phy  | 11 | 16  |
| - Ul voy | 16 | 1.7 |

Page No.

| 74.                                                  |
|------------------------------------------------------|
| The effective fortential on the other hand is        |
| BUSITIVE making it makulcine.                        |
| Sperifically, it you get close to the origin)        |
| 78 → 0 the centrifital fotential Vcentrifictal + +∞. |
| In Physics systems tend to minimize their energy,    |
| So a fosition where fotential energy is mary         |
| large is not attractive for the system and you       |
| can say that the centrifetal fortential is keeping   |
| the wave function away from Oxigin.                  |
| V ,                                                  |
| (+)                                                  |
|                                                      |
| The dimensionless wave function 4(x) should be:      |
| Zero, at 820                                         |
| zero, ut reas.                                       |
|                                                      |
| . U(1) to be a acceptable wave function.             |
| (1)=0 on polarysigs.                                 |
| Extraction 1                                         |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |
|                                                      |

## 1 Discussion

1. This is the plot for effective potential and normal non-dimensionalised potential.



Figure 1:

2. These are the Eigen Values along with the non dimensional analytical eigen values for forst ten eigen states with l=0,1,2.

| Ei | gen Values for | 1 =0              |
|----|----------------|-------------------|
|    | Eigen Values   | Analytical Values |
| 0  | -0.963049      | -1.000000         |
| 1  | -0.247558      | -0.250000         |
| 2  | -0.110624      | -0.111111         |
| 3  | -0.062345      | -0.062500         |
| 4  | -0.039936      | -0.040000         |
| 5  | -0.027747      | -0.027778         |
| 6  | -0.020392      | -0.020408         |
| 7  | -0.015615      | -0.015625         |
| 8  | -0.012308      | -0.012346         |
| 9  | -0.009516      | -0.010000         |

Figure 2:

```
Eigen Values for 1 =1
   Eigen Values
                   Analytical Values
       -0.250850
                             -0.250000
0
       -0.111502
                             -0.111111
1
2
       -0.062701
                             -0.062500
3
       -0.040115
                             -0.040000
4
       -0.027849
                             -0.027778
       -0.020456
                             -0.020408
6
       -0.015658
                             -0.015625
                             -0.012346
       -0.012342
7
       -0.009574
8
                             -0.010000
       -0.006343
                             -0.008264
9
```

Figure 3:

| Eigen | Values for | 1 =2              |
|-------|------------|-------------------|
| Ei    | gen Values | Analytical Values |
| 0     | -0.111144  | -0.11111          |
| 1     | -0.062531  | -0.062500         |
| 2     | -0.040024  | -0.040000         |
| 3     | -0.027795  | -0.027778         |
| 4     | -0.020421  | -0.020408         |
| 5     | -0.015634  | -0.015625         |
| 6     | -0.012330  | -0.012346         |
| 7     | -0.009606  | -0.010000         |
| 8     | -0.006458  | -0.008264         |
| 9     | -0.002583  | -0.006944         |

Figure 4:

3. This is the plot for the Radial Waveform for first four



Figure 5:

4. In this part we are plotting the Probability Density for mentioned state along with  $\xi$ 



Figure 6:



Figure 7:



Figure 8:

B.Sc.(Hons.) Physics 32221501 Teacher: Mamta

## S.G.T.B. Khalsa College Quantum Mechanics (2022-23) Lab Assignment # 9 H- atom using Finite Difference Method

Due Date and Time: 11.09.2022, 11:59PM Max. Marks : 20

The objective of this assignment is to

• numerically solve the radial part of Schrödinger Equation for "electron in H-atom" with Finite Difference method and determine the energy eigenvalues and corresponding normalised radial wavefunctions.

## 1. (10 marks) Theory

- (a) Write down the Schrödinger Equation for an electron in H-atom potential in spherical polar coordinates.
- (b) Use separation of variable method to separate this into angular and radial part. (Use  $\psi_{n\ell m}(r,\theta,\phi) = \mathcal{R}_{n\ell}(r)\mathcal{Y}_{\ell m}(\theta,\phi)$  and take the separation constant as  $\ell(\ell+1)$ .)
- (c) Convert the Radial part of the Schrödinger Equation dimensionless form. Take  $\mathcal{R}_{n\ell}(r) = \mathcal{K}_{n\ell}(r)/r$  and write the equation satisfied by  $\mathcal{K}_{n\ell}(r)$ . For this rescale r by Bohr radius and the energies by  $|E_1|$ ,  $|E_1|$  being the ground state Bohr energy.
- (d) Discuss  $V_{\text{eff}}(x)$  and its implications.
- (e) Write down the analytical expressions for Bohr radius, Energy Eigenvalues and Energy eigenfunctions in this dimensionless form.
- (f) Discuss the boundary conditions for numerical solution using finite difference method.

## 2. (10 marks) **Programming**

- (a) Write a Python code to
  - i. Plot V(r) and  $V_{\rm eff}(r)$  as a function of r for  $\ell=1,2,3$  on the same plot. Take range of r to be  $[r_{\rm min}:r_{\rm max}]$  with  $r_{\rm min}=10^{-14}$  and  $r_{\rm max}=50$ , r being the dimensionless variable.
  - ii. Determine the first ten energy eigenvalues and normalised eigenfunctions for  $\ell=0$  using finite difference method with  $r_{\rm max}=10$ .
  - iii. plot the first four radial wavefunctions (as points) along with the corresponding analytical wavefunctions (as continuous curves).
- (b) Extend the code to determine the first ten energy eigenvalues and normalised eigenfunctions for  $\ell=1,2$
- (c) Extend the code to plot all radial probability densities (as scatter plots) along with the corresponding analytical wavefunction (as continuous curves) for all  $\ell$  corresponding to a given n. i.e. the following graphs
  - i. radial probability density for  $n=1, \ell=0$
  - ii. radial probability density for  $n=2,\,\ell=0,\,1$
  - iii. radial probability density for  $n = 3, \ell = 0, 1, 2$
- (d) Repeat for  $r_{\text{max}} = 2$ , 20.