LeCHe I (January 2025)

Elementary Integrals

 $\{ \underline{\text{Le}} \text{ andros's } \underline{\text{C}} \text{ alculus } \underline{\text{He}} \text{ aven } \}$

The following is a practice exam designed to gauge your knowledge of elementary integrals. Each question
is worth 4 points and are sorted into different stages of difficulty (named "levels"). Level 2s are the simplest
questions, consisting of simple computational and conceptual challenges. Level 3s are of more intermedi-
ate difficulty, consisting of advanced computational and indermediate conceptual challenges. Level 4s are
the hardest type of questions, consisting of advanced conceptual challenges which demand a mastery and
thorough understanding of all concepts involved.
This exam will test you on the following concepts:

- Left, right, midpoint, and trapezoidal sums
- $\bullet\,$ Definition of integral as limit of riemman sum
- Fundamental theorem of calculus
- Basic rules of integrals
- Reverse power rules

- U-substitution
- Reverse trig identities
- Mean value theorem
- Integration by dividing each theorem
- Integration by dividing by polynomial

You have 60 minutes to complete the entire test. Show all work, read each question carefully, follow all instructions

For grader use only			
Final score: / 184	Comments:		

- 1. For each of the following equations, compute the riemann sum in the provided form and range, given that there are n subintervals
 - (a) (4 points) (Level 2) compute the right riemann sum: f(x) = 3x; [0,4]; n = 4 subintervals

(b) (4 points) (Level 2) compute the <u>left</u> riemann sum: $f(x) = x^2$; [2,8]; n = 3 subintervals

(c) (4 points) (Level 3) compute the midpoint riemann sum: $f(x) = \sin(x)$; $[0, 2\pi]$; n = 4 subintervals

(d) (4 points) (Level 3) compute the <u>trapezoidal</u> riemann sum: $f(x) = x^3 - 2x^2 + x + 8$; [-5,3]; n = 4 subintervals

(e) (4 points) (Level 3) compute the <u>trapezoidal</u> riemann sum: $f(x) = \sqrt{3x+2}$; [0,6]; n=3 subintervals

- 2. Use the Fundamental Theorem of Calculus to evaluate each of the following expressions
 - (a) (4 points) (Level 2) $\frac{d}{dx} \int_5^x x^3 dx$

(b) (4 points) (Level 2) $\frac{d}{dx} \int_0^x e^x dx$

(c) (4 points) (Level 3) $\frac{d}{dx} \int_{-\pi}^{\sin(x)} \cos(x) dx$

(d) (4 points) (Level 3) $\frac{d}{dx} \int_{-x^3}^{4x^2} (\ln(\sqrt{x}))^2 dx$

3. Use the given values and rules for integrals to solve each integral

$$\int_{1}^{4} f(x) \, dx = 5; \quad \int_{4}^{9} f(x) \, dx = -3; \quad \int_{1}^{9} g(x) \, dx = 2; \quad \int_{4}^{9} g(x) \, dx = 3; \quad \int_{9}^{15} g(x) \, dx = 5$$

(a) (4 points) (Level 2) $\int_7^7 f(x) dx$

(b) (4 points) (Level 3) $\int_4^1 f(x) + g(x) dx$

(c) (4 points) (Level 3) $\int_1^9 f(x) - g(x) dx$

(d) (4 points) (Level 3) $\int_{15}^{1} g(x) dx$

- 4. Use geometry to find the value of each integral
 - (a) (4 points) (Level 2) $\int_0^5 x \, dx$

(b) (4 points) (Level 2) $\int_2^6 3x \, dx$

(c) (4 points) (Level 3) $\int_{-1}^{4} |2x - 6| dx$

(d) (4 points) (Level 3) $\int_{-4}^4 \sqrt{16-x^2}\,dx$

(e) (4 points) (Level 3) $\int_{-5}^{5} 5 - \sqrt{25 - x^2} dx$

(f) (4 points) (Level 3) $\int_{-2}^{3} 5 - |x| dx$

- 5. Convert each integral into Newton's notation and then evaluate the integral using a summation and a limit.
 - (a) (4 points) (Level 3) $\int_0^5 5x + 1 dx$

(b) (4 points) (Level 3) $\int_{-2}^{5} 3x^2 - 2x + 1 dx$

(c) (4 points) (Level 3) $\int_1^9 \frac{x^2}{4} - 4 dx$

- 6. Evaluate
 - (a) (4 points) (Level 2) $\int 3x^2 + 7x 4 dx$

(b) (4 points) (Level 3) $\int \frac{3x^3 + 5x^2 + 2}{\sqrt{x}} dx$

(c) (4 points) (Level 3) $\int \frac{5x^4+5x+2}{x+1} dx$

(d) (4 points) (Level 3) $\int 3 \sec^3 x \tan(x) dx$

(e) (4 points) (Level 3) $\int x^5 \sqrt{x^3} dx$

(f) (4 points) (Level 3) $\int \frac{1}{4+x^2}\,dx$

(g) (4 points) (Level 3) $\int \frac{8x^3 - 3x + 1}{\sqrt[3]{x}} dx$

(h) (4 points) (Level 3) $\int \frac{\sin x}{\cos^2 x} dx$

(i) (4 points) (Level 3) $\int \frac{2x^3 - 3x^2 + 1}{x - 1} dx$

(j) (4 points) (Level 3) $\int \sqrt{4x+3} \, dx$

(k) (4 points) (Level 3) $\int x \ln(3x^2) dx$

(l) (4 points) (Level 3) $\int x^2 \ln(3x^3) dx$

(m) (4 points) (Level 3) $\int \cos x \sqrt{\sin x} \, dx$

(n) (4 points) (Level 3) $\int \frac{1}{\sqrt{16-x^2}} dx$

(o) (4 points) (Level 3) $\int (1+\frac{1}{x})^2 \frac{1}{x^2} dx$

- 7. Find the average value of each function on the given interval, if MVT holds for the function, find the x value of the point in the interval whose y value corresponds to the average value
 - (a) (4 points) (Level 3) e^{2x} on [1,5]

(b) (4 points) (Level 3) $\frac{x^3+1}{x+1}$ on [3,7]

(c) (4 points) (Level 3) $(x-5)^6$ on [0,2]

(d) (4 points) (Level 3) $\sqrt{2x+3}$ on [2,9]

- 8. For each of the following derivatives, find the original function
 - (a) (4 points) (Level 2) $f'(x) = 3x^2$; f(x) = ?

(b) (4 points) (Level 4) f'(x) = 2f(x); f(x) = ?

(c) (4 points) (Level 4) $f'(x) = x^2 f(x)$; f(x) = ?

9. (4 points) (Level 4) In an AC circuit, current I is given by $I = I_M \sin \omega t$, where t is the time and I_M is the maximum current. The rate P at which heat is being produced in the resistor of R ohms is given by $P = I^2 R$. Compute the average rate of production of heat over one complete cycle (from t = 0 to $t = \frac{2\pi}{\omega}$).

10. (4 points) (Level 4) Evaluate $\int \frac{1}{x^2-x+1}\,dx$