Vv285 Recitation Class 1

Yuxiang Chen

May 13, 2022

Outline

- About Me and My RC
- 2 Review of Vector Spaces
- 3 Linear Equations & Basis
- 4 Inner Product
- Seference

Logistics and Style

- Mind-Map track through Horst's slides
 - More intuitive explanation.
 - ② No repetition. Ideal: my RC = $(Horst' slides)^{\perp}$.
 - Marked importance.
- Exercises with emphasis
 - 1 80% of them is close to exam's difficulty
 - 20% of them is a bit harder, through which I hope to strengthen your understanding for some important concepts
- Interactions and timely-feedback
 - 1 Hope to see your faces online :)
 - Welcome to any questions during or after my RC
 - On't be shy posting your solution on the chat board or just speaking up.

Vector Space

Definition: A tripe $(V, +, \cdot)$ is called a **real** vector space if

- 1. V is any set
- 2. +: $V \times V \rightarrow V$ is a map (addition) with the following properties:
 - Communicativity:

$$u + v = v + u$$
 for all $u, v \in V$

Associativity:

$$(u+v)+w=u+(v+w)$$
 for all $u,v,w\in V$

- Additive Identity:
 - there exist an element $0 \in V$ such that v + 0 = v for all $v \in V$
- o Additive Inverse:
 - for every $v \in V$, there exists $w \in V$ such that v + w = 0

4 / 23

Vector Space

- 3. $\cdot : \mathbb{R} \times V \to V$ is a map (scalar multiplication) with the following properties:
 - Multiplication Identity:
 - $1 \cdot u = u$ for all $u \in V$
 - Associativity:

$$(ab)v = a(bv)$$
 for all $u, v, w \in V$ and all $a, b \in \mathbb{R}$

Distributive Property:

$$a(u+v)=au+av$$
 and $(a+b)v=av+bv$ for all $a,b\in\mathbb{R}$ and all $u,v\in V$

Subspace

Definition: Let $(V,+,\cdot)$ be a real or complex vector space. If $U\subseteq V$ and $(U,+,\cdot)$ is also a vector space, then we say that $(U,+,\cdot)$ is a subspace of $(V,+,\cdot)$

Subspace

Definition: Let $(V,+,\cdot)$ be a real or complex vector space. If $U\subseteq V$ and $(U,+,\cdot)$ is also a vector space, then we say that $(U,+,\cdot)$ is a subspace of $(V,+,\cdot)$

There is no need to prove the above properties of addition and scalar multiplication of $(U, +, \cdot)$, actually, we only need to verify that

- > 0 ∈ *V*
- $\triangleright u_1 + u_2 \in U$ for all $u_1, u_2 \in U$
- \blacktriangleright $\lambda u \in U$ for all $u \in U$ and $\lambda \in \mathbb{R}$ (or $\lambda \in \mathbb{C}$ for complex vector space)

In a word, we need to verify if this subset is closed under addition and multiplication, with confirmation of unit element. you can review the proof on Vv186 *Slide 339*

Exercise - Is this a vector space

Let ∞ and $-\infty$ denote two distinct objects, neither of which is in **R**. Define an addition and scalar multiplication on $\mathbf{R} \cup \{\infty\} \cup \{-\infty\}$ as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for $t \in \mathbf{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} \infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ -\infty & \text{if } t > 0, \end{cases}$$
$$t + \infty = \infty + t = \infty, \qquad t + (-\infty) = (-\infty) + t = -\infty,$$
$$\infty + \infty = \infty, \qquad (-\infty) + (-\infty) = -\infty, \qquad \infty + (-\infty) = 0.$$

Is $\mathbf{R} \cup \{\infty\} \cup \{-\infty\}$ a vector space over \mathbf{R} ? Explain.

Exercise - Is this a vector space

Let ∞ and $-\infty$ denote two distinct objects, neither of which is in **R**. Define an addition and scalar multiplication on $\mathbf{R} \cup \{\infty\} \cup \{-\infty\}$ as you could guess from the notation. Specifically, the sum and product of two real numbers is as usual, and for $t \in \mathbf{R}$ define

$$t\infty = \begin{cases} -\infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ \infty & \text{if } t > 0, \end{cases} \qquad t(-\infty) = \begin{cases} \infty & \text{if } t < 0, \\ 0 & \text{if } t = 0, \\ -\infty & \text{if } t > 0, \end{cases}$$
$$t + \infty = \infty + t = \infty, \qquad t + (-\infty) = (-\infty) + t = -\infty,$$
$$\infty + \infty = \infty, \qquad (-\infty) + (-\infty) = -\infty, \qquad \infty + (-\infty) = 0.$$

Is $\mathbf{R} \cup \{\infty\} \cup \{-\infty\}$ a vector space over \mathbf{R} ? Explain.

No! Uniqueness of unit element, i.e. **0**

Real and Complex Vector Spaces

• The set of all functions $f: \mathbb{R} \to \mathbb{R}$: real vector space (with addition and scalar multiplication defined as pointwise way, i.e, conventional way)

Real and Complex Vector Spaces

- The set of all functions $f: \mathbb{R} \to \mathbb{R}$: real vector space (with addition and scalar multiplication defined as pointwise way, i.e, conventional way)
- The set of n-tuples (n dimensional vectors) $\mathbb{R}^n = \{x = (x_1, ..., x_n) : x_1, ..., x_n \in \mathbb{R}\}$ is a real vector space if the addition is defined by

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n)$$

:= $(x_1 + y_1, ..., x_n + y_n), \quad x, y \in \mathbb{R}$

and scalar multiplication defined by

$$\lambda x = \lambda \cdot (x_1, ..., x_n) := (\lambda x_1, ..., \lambda x_n), \quad \lambda \in \mathbb{R}, \ x \in \mathbb{R}^n$$

Real and Complex Vector Spaces

- The set of all functions $f: \mathbb{R} \to \mathbb{R}$: real vector space (with addition and scalar multiplication defined as pointwise way, i.e, conventional way)
- The set of n-tuples (n dimensional vectors) $\mathbb{R}^n = \{x = (x_1, ..., x_n) : x_1, ..., x_n \in \mathbb{R}\}$ is a real vector space if the addition is defined by

$$x + y = (x_1, ..., x_n) + (y_1, ..., y_n)$$

:= $(x_1 + y_1, ..., x_n + y_n), \quad x, y \in \mathbb{R}$

and scalar multiplication defined by

$$\lambda x = \lambda \cdot (x_1, ..., x_n) := (\lambda x_1, ..., \lambda x_n), \quad \lambda \in \mathbb{R}, \ x \in \mathbb{R}^n$$

• The above vector space is complex if the multiplication factor λ is defined over \mathbb{C} .

Exercises

 $V,\,U$ are real (complex) vector spaces, then which of the followings are true

- A $V \cap U$ is a vector space
- B $V \cup U$ is a vector space
- C $V + U := \{u + v : \forall u \in U, \forall v \in V\}$ is a vector space
- D Suppose U is a subspace of V, then $V \setminus U$ is a vector space
- E Suppose U is a subspace of V, then $(V \setminus U) \bigcup \{0\}$ is a vector space
- F Suppose U is a subspace of V and $v \in V$, then $v + U := \{v + u : u \in U\}$ is always a vector space

Exercises

V, U are real (complex) vector spaces, then which of the followings are true

- A $V \cap U$ is a vector space
- B $V \cup U$ is a vector space
- C $V + U := \{u + v : \forall u \in U, \forall v \in V\}$ is a vector space
- D Suppose U is a subspace of V, then $V \setminus U$ is a vector space
- E Suppose U is a subspace of V, then $(V \setminus U) \bigcup \{0\}$ is a vector space
- F Suppose U is a subspace of V and $v \in V$, then $v + U := \{v + u : u \in U\}$ is always a vector space

Answer: A and C

Normed Vector Space

What is "norm"?

Normed Vector Space

What is "norm"?

Norm is a map (function) defined over a vector space V, $\|\cdot\|: V \to \mathbb{R}$, such that for all $u, v \in V$ and all $\lambda \in \mathbb{R}$ (\mathbb{C} if V is a complex vector space):

- 1. $||v|| \le 0$ and ||v|| = 0 if and only if v = 0
- $2. \|\lambda \cdot \mathbf{v}\| = |\mathbf{v}| \cdot \|\mathbf{v}\|$
- 3. $||u+v|| \le ||u|| + ||v||$

Normed Vector Space

What is "norm"?

Norm is a map (function) defined over a vector space V, $\|\cdot\|: V \to \mathbb{R}$, such that for all $u, v \in V$ and all $\lambda \in \mathbb{R}$ (\mathbb{C} if V is a complex vector space):

- 1. $||v|| \le 0$ and ||v|| = 0 if and only if v = 0
- $2. \|\lambda \cdot \mathbf{v}\| = |\mathbf{v}| \cdot \|\mathbf{v}\|$
- 3. $||u+v|| \le ||u|| + ||v||$

If we can define a norm over a vector space V, then we say V is a **normed vector space**.

Normed Vector Spaces - Examples

⇒ p-Norm: $\|x\|_p = (\sum_{j=1}^n |x_j|^p)^{1/p}$ for any $p \in \mathbb{N} \setminus \{0\}$ in \mathbb{R}^n when p = 2 we obtain the usual Euclidean norm when $p = \infty$ obtain the max norm $\|x\|_\infty = \max_{1 \le k \le n} |x_k|$

Normed Vector Spaces - Examples

- P-Norm: $\|x\|_p = (\sum_{j=1}^n |x_j|^p)^{1/p}$ for any $p \in \mathbb{N} \setminus \{0\}$ in \mathbb{R}^n when p=2 we obtain the usual Euclidean norm when $p=\infty$ obtain the max norm $\|x\|_\infty = \max_{1 \le k \le n} |x_k|$
- $ightharpoonup C([a,b]), \ [a,b] \subseteq \mathbb{R}, \ \text{with} \ \|f\|_{\infty} = \sup_{x \in [a,b]} |f(x)|.$
- Later we'll talk about inner product space and induced norm.

Review for this week - Linear equations & Basis

- 1. Systems of linear equations know the proof of fundamental lemma for homogeneous equations
- 2. Finite dimensional vector space
 - Linear combination and span
 - > Important: definition of basis (unique presentation), property (1. span the whole space 2. linear independence)
 - Dimension of vector space
 - Basis extension theorem
 - > Sums of vector spaces. **Important**: direct sum

Something Horst asks us to do

3.28. Theorem. Let V be a vector space and $U, W \subset V$ be finite-dimensional subspaces of V. Then

$$\dim(U+W)+\dim(U\cap W)=\dim U+\dim W.$$

The proof will discussed in recitation class.

Inner Product Space - Basic properties

- Positivity
- Definiteness
- Additivity in the **second** slot (note the difference with other references!)
- Homogeneity in the second slot
- Conjugate symmetry

Inner Product Space - Basic properties

- Positivity
- Definiteness
- Additivity in the **second** slot (note the difference with other references!)
- Homogeneity in the second slot
- Conjugate symmetry

How to prove the additivity in the first slot ?

Inner Product Space - Basic properties

- Positivity
- Definiteness
- Additivity in the **second** slot (note the difference with other references!)
- Homogeneity in the second slot
- Conjugate symmetry

How to prove the additivity in the first slot ?

Is inner product linear in the first slot?

ightharpoonup Cauchy-Schwarz Inequality: $|\langle u, v \rangle| \leq ||u|| \cdot ||v||$

- ➤ Cauchy-Schwarz Inequality: $|\langle u, v \rangle| \le ||u|| \cdot ||v||$ More intuitive proof – using orthogonal projection
- ➤ Induced norm. Question: Is every norm an induced norm?
- Angel between vectors.
- Important: Orthogonality, orthogonal complement, Pythagoras' Theorem (the generality of linear algebra)
- Orthonormal bases (orthogonal + normal (unit norm)), Parseval's Theorem
- ightharpoonup Projection theorem: decompose a vector in to U and U^{\perp} , which is unique
- Bessel's inequality

Simpler proof for best approximation (slides 104)

Suppose P_v is the projection from $v \in V$ to U, i.e, $P_v = \sum_{i=1}^r \lambda_i e_i$, and $u \in U$ is any vector.

We want to show $||v - P_v|| \le ||v - u||$

Simpler proof for best approximation (slides 104)

Suppose
$$P_v$$
 is the projection from $v \in V$ to U , i.e, $P_v = \sum_{i=1}^r \lambda_i e_i$, and $u \in U$ is any vector.

We want to show $||v - P_v|| \le ||v - u||$

Proof:

$$||v - u||^{2} = \left|\left|\underbrace{v - P_{v}}_{\in U^{\perp}} + \underbrace{P_{v} - u}_{\in U}\right|\right|^{2} = ||v - P_{v}||^{2} + ||P_{v} - u||^{2}$$

$$> ||v - P_{v}||^{2}$$

➤ Important: **Gram-Schmidt Orthonormalization** (remember to reduce the norm to unit!)

Exercises - Orthogonal Complement

Suppose U is a subspace for a finite dimension vector space V, prove that $U=(U^\perp)^\perp$

Exercise* - deterministic property of inner product

Let V be a real vector space and $\tau: V \times V \to \mathbb{R}$. Show that if

- (a) $\tau(v, v) > 0$ for some $v \in V$;
- (b) $\tau(v, v) \neq 0$ for any $v \neq 0$;
- (c) $\tau(v, \lambda u) = \lambda \tau(v, u)$ for $v, u \in V$ and $\lambda \in \mathbb{R}$;
- (d) $\tau(v, u) = \tau(u, v)$;
- (e) $\tau(v, u + w) = \tau(v, u) + \tau(v, w)$

then τ is an inner product on V.

Exercise* - deterministic property of inner product

Proof:1

Suppose that there is some $u \in V$ with $\tau(u,u) < 0$. Let $g: [0,1] \to \mathbb{R}$ be defined by

$$g(t) = \tau(tv + (1-t)u, tv + (1-t)u).$$

g is continuous because of (c) and (d). By the Mean Value Theorem for continuous functions, $g(t_0)=0$ for some $t_0\in(0,1)$. Since $v\neq t^{-1}(t-1)u$ (why?), this shows that $\tau(h,h)=0$ for some $h\neq 0$, contradicting (b). Therefore, $\tau(h,h)>0$ for all $h\in V\setminus\{0\}$. Then (c) implies that $\tau(0,0)=0$. It follows that τ is an inner product on V.

¹This proof is from Leyang Zhang

Exercise - Cauchy-Schwarz Inequality

Prove that

- 1. $16 \le (a+b+c+d)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})$
- 2. $(x_1 + \cdots + x_n)^2 \le n(x_1^2 + \cdots + x_n^2)$ for all positive integers n and all real numbers x_1, \dots, x_n

Exercise - Cauchy-Schwarz Inequality

Prove that

1.
$$16 \le (a+b+c+d)(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d})$$

2. $(x_1 + \cdots + x_n)^2 \le n(x_1^2 + \cdots + x_n^2)$ for all positive integers n and all real numbers x_1, \dots, x_n

Hint

1 for 2, try u = (1, ..., 1) and $v = (x_1, ..., x_n)$

Exercise - Gram-Schmidt Orthonormalization

On $\mathcal{P}_2(\mathbf{R})$, consider the inner product given by

$$\langle p, q \rangle = \int_0^1 p(x)q(x) dx.$$

Apply the Gram–Schmidt Procedure to the basis $1, x, x^2$ to produce an orthonormal basis of $\mathcal{P}_2(\mathbf{R})$.

Exercise - Gram-Schmidt Orthonormalization

Solution:

Memorize the algorithm, given $\{v_1, v_2, v_3\}$ an independent set:

$$\begin{split} e_1 &= \frac{v_1}{\|v_1\|} = 1 \\ e_2 &= \frac{v_2 - \langle v_2, e_1 \rangle e_1}{\|v_2 - \langle v_2, e_1 \rangle e_1\|} = 2\sqrt{3}(x - \frac{1}{2}) \\ e_3 &= \frac{v_3 - \langle v_3, e_2 \rangle e_2 - \langle v_3, e_1 \rangle e_1}{\|v_3 - \langle v_3, e_2 \rangle e_2 - \langle v_3, e_1 \rangle e_1\|} = 6\sqrt{5}(x^2 - x + \frac{1}{6}) \end{split}$$

References I

- VV186 slides from Horst Hohberger
- VV285 slides from Horst Hohberger
- Answers from Leyang Zhang
- Linear Algebra Done Right from Axler