If f is a proper function on \mathbb{R} , then its effective domain being convex is an interval whose relative interior is an open interval (a,b). In Proposition 51.16, we can pick y=1 so $\langle y,u\rangle=u$, and for any $x\in(a,b)$, since the limits $f'_-(x)=-f'(x;-1)$ and $f'_+(x)=f'(x;1)$ exist, with $f'_-(x)\leq f'_+(x)$, we deduce that $\partial f(x)=[f'_-(x),f'_+(x)]$. The numbers $\alpha\in[f'_-(x),f'_+(x)]$ are the slopes of nonvertical lines in \mathbb{R}^2 passing through (x,f(x)) that are supporting lines to the epigraph $\operatorname{epi}(f)$ of f.

Example 51.10. If f is the celebrated **ReLU** function (ramp function) from deep learning defined so that

$$ReLU(x) = \max\{x, 0\} = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0, \end{cases}$$

then $\partial \operatorname{ReLU}(0) = [0, 1]$. See Figure 51.20. The function ReLU is differentiable for $x \neq 0$, with $\operatorname{ReLU}'(x) = 0$ if x < 0 and $\operatorname{ReLU}'(x) = 1$ if x > 0.

Figure 51.20: The graph of the ReLU function.

Proposition 51.16 has several interesting consequences.

Proposition 51.17. Let $f: \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\}$ be a convex function. For any $x \in \mathbb{R}^n$, if f(x) is finite and if f is subdifferentiable at x, then f is proper. If f is not subdifferentiable at x, then there is some $y \neq 0$ such that

$$f'(x;y) = -f'(x;-y) = -\infty.$$

Proposition 51.17 is proven in Rockafellar [138] (Theorem 23.3). It confirms that improper convex functions are rather pathological objects, because if a convex function is subdifferentiable for some x such that f(x) is finite, then f must be proper. This is because if f(x) is finite, then the subgradient inequality implies that f majorizes an affine function, which is proper.

The next theorem is one of the most important results about the connection between one-sided directional derivatives and subdifferentials. It sharpens the result of Theorem 51.14.