

### BACKGROUND

### Introduction of Co Processors

- FPGA (field-programmable gate array)
- ASIC (application-specific integrated circuit)
- GPU (Graphic Processing Unit)

### GPU ARCHITECTURE

Tesla M2070 Processor:

Streaming Multiprocessors (SM): 14

Streaming Processors on each SM: 32

Total cores =  $14 \times 32 = 448$  cores

Each Streaming Multiprocessor supports 1024 threads.



Compute unified device architecture

## ADVANTAGES OF GPU

Parallel Processing



Faster result

## GPU IN MODERN DATABASES



# CHALLENGES OF USING GPU FOR DATABASE APPLICATION

#### Transfer Bottleneck

- Low Interconnect Bandwidth
- Small GPU memory capacity
- Coarse grain cooperation of CPU and GPU
- How to access data in main memory from GPU?

### FAST INTERCONNECT

Faster interconnects help to remedy transfer bottleneck issues

NVLink 2.0





# ANALYSIS OF A FAST INTERCONNECT

NVLink 2.0 improves the GPU's interconnect performance

(data transfer)



#### (a) NVLink 2.0 vs. CPU & GPU Interconnects.



#### (b) NVLink 2.0 vs. CPU memory.



(c) NVLink 2.0 vs. GPU memory.

# CHALLENGES DESPITE FAST CONNECTS (NV LINK) FOR QUERY PROCESSING

- Out-of-core GPU join operator must perform both data access and computation efficiently
- ☐ Join CPU and GPU requires effective cooperation. Locality and synchronization cost

□Increase build side → increase NP –HJ → spill Hash table to CPU memory → more irregular access to CPU memory (inefficient)

## GOAL OF THE PAPER

"Scale up GPU-accelerated data management to arbitrary data volumes"

### Hash-Join

Partition both relations using hash funtion h: R tuples in partition i will only match S tuples in partition i

Read in a partition of R, hash it using h2 (<> h!). Scan matching partition of S, probe hash table for matches





## NO PARTITION HASH JOIN (R ⋈S)

To take advantage of multi core processing

#### Build

Scan relation R and create a hash table on join key.

#### Probe

For each tuple in S, look up its join key in hash table for R. If a match is found, output combined tuple.

## DATA TRANSFER BETWEEN CPU AND GPU

Push => CPU push data to GPU

Pull => GPU pull data from CPU

Table 1: An overview of GPU transfer methods.

| Method                                          | Semantics | Level | Granularity | Memory            |
|-------------------------------------------------|-----------|-------|-------------|-------------------|
| Pageable Copy<br>Staged Copy<br>Dynamic Pinning | Push      | SW    | Chunk       | Pageable          |
| Pinned Copy<br>UM Prefetch                      |           |       |             | Pinned<br>Unified |
| UM Migration                                    |           | OS    | Page        | Unified           |
| Zero-Copy                                       | Pull      | HW    | Byte        | Pinned            |
| Coherence                                       |           |       |             | Pageable          |

**Coherence**: GPU can directly access any CPU memory during execution (because of NVLink)

# SCALING GPU HASH JOIN: SCALING PROBE SIZE

- 1. Build hash table on GPU by pulling R tuples on demand from CPU
- 2. Using Coherence transfer

CPU NVLink 2.0 GPU hash(key)

(b) Data in CPU memory and hash table in GPU memory.

Baseline: data is copied into GPU memory to build hash table

## SCALING GPU HASH JOIN : SCALING BUILD SIZE

- Hash Table is stored in CPU memory
- 2. No longer constrained by the GPU's memory capacity



(a) Data and hash table in CPU memory.

# SCALING GPU HASH JOIN: OPTIMIZE HASH TABLE PLACEMENT

#### Since GPU is much faster than CPU:

- 1. Place Hash Table on GPU memory and then spill to CPU memory
- 2. It is done by using Hybrid Hash table
- 3. Hybrid hash table uses virtual memory to abstract the physical location of memory page



(b) Data in CPU memory and hash table spills from GPU memory into CPU memory.



Figure 8: Allocating the hybrid hash table.

SCALING-UP USING CPU AND GPU: TASK SCHEDULING

To solve load imbalance issue

- 1. Adapt the CPU-oriented, morsel-driven approach
- 2. Give each processor the right amount of work to minimize execution skew by considering the increased latency of scheduling work on a GPU, and the higher processing rate of the GPU



Figure 10: Dynamically scheduling tasks to CPU and GPU processors.

SCALING-UP USING CPU AND GPU: HETEROGENEOUS HASH TABLE PLACEMENT

A. CPU and GPU processing a join using a globally shared hash table (Het strategy) Same as scaling build size



(a) Cooperatively process join on CPU and GPU with hash table in CPU memory.

# SCALING-UP USING CPU AND GPU: HETEROGENEOUS HASH TABLE PLACEMENT

Processors are fastest when accessing their local memories



Figure 11: Hash table placement decision.

# SCALING-UP USING CPU AND GPU: HETEROGENEOUS HASH TABLE PLACEMENT (WHEN HASH IS SMALL)

- 1. GPU build hash table in local memory
- 2. Copy to all other processors
- 3. Execute the probe phase on all processors using our heterogeneous scheduling strategy.



(b) Build hash table on GPU, copy the hash table to processor-local memories, and then cooperatively probe on CPU and GPU.

### MULTI GPU HASH TABLE PLACEMENT

### Advantages of multi-GPU

- 1. Using only GPUs avoids computational skew
- 2. Distributing large hash tables within GPU memory frees CPU memory bandwidth for loading the base relations
- 3. interleaving the hash table over multiple GPUs utilizes the full bi-directional bandwidth of fast interconnects, as opposed to the mostly uni-directional traffic of the Het strategy

## **EXPERIMENT: WORKLOADS**

Table 2: Workload Overview.

| Property         | A (from [10])          | В                      | C (from [54])                 |
|------------------|------------------------|------------------------|-------------------------------|
| key / payload    | 8 / 8 bytes            | 8 / 8 bytes            | 4 / 4 bytes                   |
| cardinality of R | 2 <sup>27</sup> tuples | 2 <sup>18</sup> tuples | 1024 · 10 <sup>6</sup> tuples |
| cardinality of S | 2 <sup>31</sup> tuples | 2 <sup>31</sup> tuples | 1024 · 10 <sup>6</sup> tuples |
| total size of R  | 2 GiB                  | 4 MiB                  | 7.6 GiB                       |
| total size of S  | 32 GiB                 | 32 GiB                 | 7.6 GiB                       |

## EXPERIMENT RESULT (NVLINK VS OTHERS)

NVLink throughput is higher than PCI-e 3.0

Coherence produces the highest throughput



## EXPERIMENT RESULT (DATA LOCATION)

Performance best when data in 1 GPU memory



## EXPERIMENT RESULT (HASHTABLE LOCATION)

Performance best when hash table in 1 GPU memory



## EXPERIMENT RESULT (SCALING DATA SIZE)

Interconnects. The CPU achieves the highest throughput, and outperforms NVLink 2.0

Branching vs. Predication. Branching performs better than predication on the GPU with NVLink 2.0.



## EXPERIMENT RESULT (SCALING PROBE SIZE)



The throughput of NVLink 2.0 is the fastest

## EXPERIMENT RESULT (SCALING BUILD SIZE)

NV Link provides best through put

NVLink 2.0 with Hybrid Hash Table degrades gracefully



Figure 17: Scaling the build-side relation.

## EXPERIMENT RESULT (BUILD TO PROBE RATIO)

The build phase takes 71% of the time

For larger ratios, the build-side takes up a smaller proportion of time



Figure 18: Different build-to-probe ratios on NVLink.

## EXPERIMENT RESULT (BUILD DATA SKEW)

Higher skew leads to a higher throughput



Figure 19: Join performance when the probe relation follows a Zipf distribution.

## EXPERIMENT RESULT (JOIN SELECTIVITY)

Join throughput decreases with higher selectivity



Figure 20: The effect of join selectivity on throughput.

# EXPERIMENT RESULT (CPU GPU CO PROCESSING SCALE UP)

- 1. Using a GPU always achieves the same or better throughput than the CPU-only strategy, and never decreases throughput.
- 2. GPU-only strategy achieves the best throughput for most of our workloads.



(b) Time per join phase in workload C (scaled).

### **INSIGHTS**

- GPUs have high-bandwidth access to CPU memory
- •GPUs can efficiently process large, out-of-core data
- •GPUs are able to operate on out-of-core data structures, but should use GPU memory if possible
- Scaling-up co-processors with CPU + GPU makes performance more robust.
- Due to cache-coherence, memory pinning is no longer necessary to achieve high transfer bandwidth.
- •Fair performance comparisons between GPUs vs. CPUs have become practical.

### CONCLUSION

With fast interconnects, GPU acceleration becomes an attractive scale-up alternative that promises large speedups for databases.

## THANK YOU