1. Дослідження залежності $I_c(U_{3B})$ для п-канального польового МДН транзистора 2N7000

одержуємо наступний графік залежності I_c(U_{3B}):

ТАблиця залежності Струму каналу від напруги затвор-виток. $I_c(U_{3B})$:

Uзв, V	Ic, A
0,20	0,000000000000241
0,40	0,000000000000440
0,60	0,000000000000639
0,80	0,000000000000839
1,00	0,00000000001040
1,20	0,00000000001242
1,40	0,00000000001439
1,60	0,000005
1,80	0,003309
2,00	0,013050
2,20	0,028461

Розрахунок порогової напруги Un:

Изв	Ic
1.8386878V	4.7009885mA
2.083371V	18.723306mA

$$Ic2=4\cdot Ic1=b/2(U3B2-U\pi)2$$

$$4.7009885 \text{M} = 500 * b * (1.8386878 - Up)^2$$

$$18.723306 M = 500 * b * (2.083371 - Up)^{2}$$

3 формул наведених на попередньому кроці можна визначити порогову напругу і параметр транзистору b

 $U\pi = 2U3B1 - U3B2 = 2*1.8386878 - 2.083371 = 1.5940046$

b=0.15704 м

Uзв V	Струм стоку Ltspice	Струм стоку з формули	Похибка%
1,60	0,000005	0,000003	45,65
1,80	0,003309	0,003332	0,69
2,00	0,013050	0,012943	0,82
2,20	0,028461	0,028835	1,31

Реальні вимірювання

Изв	Ic		
0,20	0,00		
0,40	0,00		
0,60	0,00		
0,80	0,0000018		
1,00	0,00000361		
1,20	0,00001553		
1,40	0,000955		
1,60	0,0129		
1,80	0,0318		
2,00	0,0595		

Розрахунок порогової напруги Un:

Uзв	Ic
1.6V	12,9mA
2V	59,5mA

Іс1=b/2(Изв1-Ип)2

$$Ic2=4·Ic1=b/2(U3β2-Uπ)2$$

$$12,9M = 500 * b * (1.6 - Up)^2$$

$$59.5 \text{M} = 500 * b * (2.083371 - Up)^2$$

3 формул наведених на попередньому кроці можна визначити порогову напругу і параметр транзистору b

b=0.16125 м

3. Дослідження підсилювача з загальним витоком на польовому МДН транзисторі 2N7000

R1	121500,00	Om
R2	50600,00	Om
R3	235,00	Om
C1	10,00	uF
C2	10.00	пЕ

3.2 Робоча точка при відсутності вхідного сигнулу

Симуляція:

Uзв0=1.47 V

Uвс0=4.307 V

Ic0=2.949 mA

Реальні вимірювання:

Uзв0= 1,463V

UBc0 = 3,67 V

Ic0 = 5,67mA

3.3 Напругу вхідного сигналу амплітудою 20 мВ та частотою 1 КГц - жовтий графік.

ВИХ	ВХ	Ки_практичне
0,36200	0,02153	16,81

3.4 Визначення максимальної величини змінної напруги на вході, при якій схема виходить з лінійного режиму підсилення і починають виникати нелінійні спотворення сигналу на виході. U=60 mV

3.5

R1	121500,00	Om
R2	55250,00	Om
R3	235,00	Om
C1	10,00	uF
C2	10,00	uF

Uзв1=1,556 V

ΔUзв=0,093 V

Іс1=11,51 мА

ΔІс=5,84 мА

Визначимо передаточну провідність за формулою gm=ΔIc/ΔUзв

 $g_m = 0.0628 \text{ M}$

 $K_u = g_m * R3 = 0.0628 * 235 = 14.758$

Передаточну провідність також можна розрахувати за формулою gm=b·(Uзв0-Uп)

 $g_m = 0.16125 \text{ M} * (1.47-1.2) = 0.044$

 $K_u = g_m * R3 = 0.044 * 235 = 10.34$

Висновок: було досліджено схему на біполярному транзисторі із індукованим пканалом із загальним витоком. Спочатку було складена схема у режимі великого сигналу, відсутній вхідний сигнал, для визначення точок спокою. Потім подали малий змінний сигнал який ми підсилюємо, виміряли амплітуди вхідного і вихідного сигналу і визначили коеф. Підсилення за напругою і порівняли його з розрахованим значенням.