

Molecules to Medicine Molecular Biology Sub-Block

Tools of Molecular Biology I

Matthew Taliaferro, PhD
October 16, 2020
matthew.taliaferro@cuanschutz.edu

Objectives

- 1. Describe distinct uses of PCR amplification in the diagnosis of a genetic condition in patients.
- 2. Give an example of a disease that can be diagnosed using a restriction fragment length polymorphism (RFLP) and a use of DNA fingerprinting. Describe at least three experimental stages required in each of these procedures.
- 3. Describe the use of Variable Number Tandem Repeats (VNTRs) for genotyping and identification of a DNA sample.
- 4. Explain the principles of electrophoretic separation and analysis of DNA, RNA, and protein targets.
- 5. Describe the principles behind real time PCR and its application to the diagnosis or monitoring of infection.

Outline

- PCR and gel electrophoresis
 - Principles of nucleic acid amplification and analysis in biotechnology and medicine
- Application of PCR-based tools to human genetics
 - Repeat expansion PCR, DNA fingerprinting, RFLP,
 Sanger sequencing
- Application of PCR-based tools to gene expression quantification
 - Principles of quantitative PCR and its application to medicine

Polymerase Chain Reaction

Polymerase Chain Reaction (cont.)

*number of DNA molecules doubles with each cycle... 2, 4, 8, 16, 32... After 25 cycles have 2²⁵ molecules of DNA from just one!

Gel electrophoresis for separation of DNA molecules

Gel electrophoresis for separation of DNA molecules

Gel electrophoresis separates DNA based on size

Visualizing DNA using intercalating dyes

Intercalating dye e.g. ethidium bromide

Visualizing DNA using intercalating dyes

Intercalating dye e.g. ethidium bromide

Tools for investigating DNA sequence changes between samples (patients)

- 1. Interrogation of repeat expansions using PCR
- 2. DNA fingerprinting
- 3. Restriction fragment length polymorphism
- 4. Sanger sequencing

Detection of Trinucleotide Repeat Expansion

Detection of Trinucleotide Repeat Expansion

Detection of Trinucleotide Repeat Expansion

DNA fingerprinting allows for quick comparisons of many loci

Who committed the crime?

Suspect #1 2 3 4 Crime 5 6 7

Paternity testing & DNA forensics use VNTRs

Who is the father?

By Helixitta - Own work based on work File:Test na ojcostwo schemat.svg by Pisum, CC BY-SA 3.0, https:// commons.wikimedia.org/w/index.php?curid=60072104

Restriction enzymes recognize palindromic DNA sequences (usually)

TABLE 5-1 Selected Restriction Enzymes and Their Recognition Sequences
--

ENZYME	SOURCE MICROORGANISM	RECOGNITION SITE*	ENDS PRODUCED
BamHI	Bacillus amyloliquefaciens	↓ -G-G-A-T-C-C- -C-C-T-A-G-G- ↑	Sticky
Sau3A	Staphylococcus aureus	↓ -G-A-T-C- -C-T-A-G- ↑	Sticky
EcoRI	Escherichia coli	↓ -G-A-A-T-T-C- -C-T-T-A-A-G ↑	Sticky
HindIII	Haemophilus influenzae	↓ -A-A-G-C-T-T- -T-T-C-G-A-A- ↑	Sticky
Smal	Serratia marcescens	↓ -C-C-G-G-G- -G-G-G-C-C- ↑	Blunt
Noti	Nocardia otitidis-caviarum	↓ -G-C-G-G-C-C-G-C- -C-G-C-C-G-G- ↑	Sticky

Diagnostic use of restriction enzymes

Detection of HbS mutation of sickle cell anemia

In HbS destroys MstII site (example of a Restriction Fragment Length Polymorphism; RFLP)

Diagnostic use of restriction enzymes

Detection of HbS mutation of sickle cell anemia

A to G mutation

In HbS destroys Mstll site (example of a Restriction Fragment Length Polymorphism; RFLP)

QUIZ: What is the correct interpretation of this result?

- A: Patient 1 has sickle cell anemia but Patient 2 does not.
- B. Patient 2 has sickle cell anemia but Patient 1 does not.
- C. Both patients probably don't have sickle cell anemia.
- D. Both patients probably do have sickle cell anemia.

Diagnostic use of restriction enzymes

Detection of HbS mutation of sickle cell anemia

In HbS destroys Mstll site (example of a Restriction Fragment Length Polymorphism; RFLP)

What's going on with patient 3?

What if the mutation isn't within a restriction enzyme site?

DNA sequencing ("Sanger sequencing")

Denature and separate daughter strands by electrophoresis

Assaying infection with PCR

Is there infection or not? "Yes" or "No" answer

What if we wanted to monitor extent of infection over time?

Assaying infection with PCR

Real-time, quantitative PCR (qPCR) allows estimation of the *abundance* of nucleic acid in a sample

Real-time, quantitative PCR ("qPCR")

 Dye in solution emits low fluorescence 2. Emission of the fluorescence by binding

Direct readout, so no analysis by gels

MUDDIEST POINT

MUDDIEST POINT

- A. Repeat expansion PCR
- **B. DNA Fingerprinting**
- C. Restriction fragment length polymorphism
- D. Sanger Sequencing
- E. Quantitative PCR