Chapter 9 Input Modeling

Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Purpose & Overview

- м
- Input models provide the driving force for a simulation model.
- The quality of the output is no better than the quality of inputs.
- In this chapter, we will discuss the 4 steps of input model development:
 - □ Collect data from the real system
 - Identify a probability distribution to represent the input process
 - Choose parameters for the distribution
 - Evaluate the chosen distribution and parameters for goodness of fit.

Data Collection

- One of the biggest tasks in solving a real problem. GIGO garbage-in-garbage-out
- Suggestions that may enhance and facilitate data collection:
 - □ Plan ahead: begin by a practice or pre-observing session, watch for unusual circumstances
 - ☐ Analyze the data as it is being collected: check adequacy
 - Combine homogeneous data sets, e.g. successive time periods, during the same time period on successive days
 - Be aware of data censoring: the quantity is not observed in its entirety, danger of leaving out long process times
 - Check for relationship between variables, e.g. build scatter diagram
 - Check for autocorrelation
 - Collect input data, not performance data

- ы
- Histograms
- Selecting families of distribution
- Parameter estimation
- Goodness-of-fit tests
- Fitting a non-stationary process

Histograms

- M
 - A frequency distribution or histogram is useful in determining the shape of a distribution
 - The number of class intervals depends on:
 - The number of observations
 - □ The dispersion of the data
 - □ Suggested: the square root of the sample size
 - For continuous data:
 - Corresponds to the probability density function of a theoretical distribution
 - For discrete data:
 - Corresponds to the probability mass function
 - If few data points are available: combine adjacent cells to eliminate the ragged appearance of the histogram

Histograms

[Identifying the distribution]

Arrivals per Period	Frequency
0	12
1	10
2	19
3	17
4	10
5	8
6	7
7	5
8	5
9	3
10	3
11	1

There are ample data, so the histogram may have a cell for each possible value in the data range

Selecting the Family of Distributions

- A family of distributions is selected based on:
 - ☐ The context of the input variable
 - Shape of the histogram
- Frequently encountered distributions:
 - Easier to analyze: exponential, normal and Poisson
 - Harder to analyze: beta, gamma and Weibull

Selecting the Family of Distributions

- Use the physical basis of the distribution as a guide, for example:
 - □ Binomial: # of successes in n trials
 - □ Poisson: # of independent events that occur in a fixed amount of time or space
 - Normal: dist'n of a process that is the sum of a number of component processes
 - □ Exponential: time between independent events, or a process time that is memoryless
 - □ Weibull: time to failure for components
 - □ Discrete or continuous uniform: models complete uncertainty
 - Triangular: a process for which only the minimum, most likely, and maximum values are known
 - Empirical: resamples from the actual data collected

Selecting the Family of Distributions

- Remember the physical characteristics of the process
 - □ Is the process naturally discrete or continuous valued?
 - □ Is it bounded?
- No "true" distribution for any stochastic input process
- Goal: obtain a good approximation

- Q-Q plot is a useful tool for evaluating distribution fit
- If X is a random variable with cdf F, then the q-quantile of X is the γ such that

$$F(\gamma) = P(X \le \gamma) = q$$
, for $0 < q < 1$

- □ When *F* has an inverse, $\gamma = F^{-1}(q)$
- Let $\{x_i, i = 1, 2, ..., n\}$ be a sample of data from X and $\{y_j, j = 1, 2, ..., n\}$ be the observations in ascending order:

$$y_j$$
 is approximately $F^{-1}\left(\frac{j-0.5}{n}\right)$

where *j* is the ranking or order number

- The plot of y_i versus $F^{-1}((j-0.5)/n)$ is
 - □ Approximately a straight line if F is a member of an appropriate family of distributions
 - □ The line has slope 1 if F is a member of an appropriate family of distributions with appropriate parameter values

- Example: Check whether the door installation times follows a normal distribution.
 - ☐ The observations are now ordered from smallest to largest:

j	Value	j	Value	j	Value
1	99.55	6	99.98	11	100.26
2	99.56	7	100.02	12	100.27
3	99.62	8	100.06	13	100.33
4	99.65	9	100.17	14	100.41
5	99.79	10	100.23	15	100.47

□ y_j are plotted versus $F^{-1}((j-0.5)/n)$ where F has a normal distribution with the sample mean (99.99 sec) and sample variance (0.2832^2 sec^2)

■ Example (continued): Check whether the door installation times follow a normal distribution.

- Consider the following while evaluating the linearity of a q-q plot:
 - □ The observed values never fall exactly on a straight line
 - □ The ordered values are ranked and hence not independent, unlikely for the points to be scattered about the line
 - □ Variance of the extremes is higher than the middle. Linearity of the points in the middle of the plot is more important.
- Q-Q plot can also be used to check homogeneity
 - Check whether a single distribution can represent both sample sets
 - □ Plotting the order values of the two data samples against each other

Parameter Estimation

[Identifying the distribution]

- Next step after selecting a family of distributions
- If observations in a sample of size n are $X_1, X_2, ..., X_n$ (discrete or continuous), the sample mean and variance are:

$$\overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} \qquad S^{2} = \frac{\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}}{n-1}$$

If the data are discrete and have been grouped in a frequency distribution:

$$\overline{X} = \frac{\sum_{j=1}^{n} f_{j} X_{j}}{n} \qquad S^{2} = \frac{\sum_{j=1}^{n} f_{j} X_{j}^{2} - n \overline{X}^{2}}{n-1}$$

where f_j is the observed frequency of value X_j

Parameter Estimation

[Identifying the distribution]

When raw data are unavailable (data are grouped into class intervals), the approximate sample mean and variance are:

$$\overline{X} = \frac{\sum_{j=1}^{c} f_j X_j}{n} \qquad S^2 = \frac{\sum_{j=1}^{n} f_j m_j^2 - n \overline{X}^2}{n-1}$$

where f_j is the observed frequency of in the jth class interval m_i is the midpoint of the jth interval, and c is the number of class intervals

A parameter is an unknown constant, but an estimator is a statistic.

Parameter Estimation

[Identifying the distribution]

Vehicle Arrival Example (continued): Table in the histogram example on slide 6 (Table 9.1 in book) can be analyzed to obtain:

$$n = 100, f_1 = 12, X_1 = 0, f_2 = 10, X_2 = 1,...,$$

and $\sum_{j=1}^{k} f_j X_j = 364$, and $\sum_{j=1}^{k} f_j X_j^2 = 2080$

The sample mean and variance are

$$\overline{X} = \frac{364}{100} = 3.64$$

$$S^2 = \frac{2080 - 100 * (3.64)^2}{99}$$

$$= 7.63$$

- ☐ The histogram suggests X to have a Possion distribution
 - However, note that sample mean is not equal to sample variance.
 - Reason: each estimator is a random variable, is not perfect.

Goodness-of-Fit Tests

- Conduct hypothesis testing on input data distribution using:
 - □ Kolmogorov-Smirnov test
 - □ Chi-square test
- No single correct distribution in a real application exists.
 - ☐ If very little data are available, it is unlikely to reject any candidate distributions
 - If a lot of data are available, it is likely to reject all candidate distributions

Chi-Square test

[Goodness-of-Fit Tests]

- Intuition: comparing the histogram of the data to the shape of the candidate density or mass function
- Valid for large sample sizes when parameters are estimated by maximum likelihood
- By arranging the n observations into a set of k class intervals or cells, the test statistics is:

which **approximately** follows the chi-square distribution with k-s-1 degrees of freedom, where s = # of parameters of the hypothesized distribution estimated by the sample statistics.

The hypothesis of a chi-square test is:

 H_0 : The random variable, X, conforms to the distributional assumption with the parameter(s) given by the estimate(s).

 H_1 : The random variable X does not conform.

- If the distribution tested is discrete and combining adjacent cell is not required (so that E_i > minimum requirement):
 - Each value of the random variable should be a class interval, unless combining is necessary, and

$$p_i = p(x_i) = P(X = x_i)$$

If the distribution tested is continuous:

$$p_i = \int_{a_{i-1}}^{a_i} f(x) dx = F(a_i) - F(a_{i-1})$$

where a_i -1 and a_i are the endpoints of the i^{th} class interval and f(x) is the assumed pdf, F(x) is the assumed cdf.

□ Recommended number of class intervals (*k*):

Sample Size, n	Number of Class Intervals, k
20	Do not use the chi-square test
50	5 to 10
100	10 to 20
> 100	n ^{1/2} to n/5

 Caution: Different grouping of data (i.e., k) can affect the hypothesis testing result.

Chi-Square test

[Goodness-of-Fit Tests]

 H_0 : the random variable is Poisson distributed.

 H_1 : the random variable is not Poisson distributed.

\mathbf{x}_{i}	Observed Frequency, O i	Expected Frequency, E	$(O_i - E_i)^2 / E_i$	$E_i = np(x)$
0	12]	2.6	7.87	$e^{-\alpha}\alpha^x$
1	10 }	9.6	1.01	
2	19	17.4	0.15	= n
3	17	21.1	0.8	x!
4	19	19.2	4.41	
5	6	14.0	2.57	
6	7	8.5	Q.26	
7	5	4.4		
8	5	2.0		
9	3 >	0.8	11.62	Combined because
10	3	0.3		
> 11	1 1	ر 0.1		of min <i>E_i</i>
	100	100.0	27.68	

□ Degree of freedom is k-s-1 = 7-1-1 = 5, hence, the hypothesis is rejected at the 0.05 level of significance.

$$\chi_0^2 = 27.68 > \chi_{0.05,5}^2 = 11.1$$

Kolmogorov-Smirnov Test

[Goodness-of-Fit Tests]

- Intuition: formalize the idea behind examining a q-q plot
- Recall from Chapter 7.4.1:
 - □ The test compares the **continuous** cdf, F(x), of the hypothesized distribution with the empirical cdf, $S_N(x)$, of the N sample observations.
 - □ Based on the maximum difference statistics (Tabulated in A.8):

$$D = \max |F(x) - S_N(x)|$$

- A more powerful test, particularly useful when:
 - □ Sample sizes are small,
 - □ No parameters have been estimated from the data.
- When parameter estimates have been made:
 - □ Critical values in Table A.8 are biased, too large.
 - □ More conservative, i.e., smaller Type I error than specified.

p-Values and "Best Fits"

[Goodness-of-Fit Tests]

- p-value for the test statistics
 - □ The significance level at which one would just reject H_0 for the given test statistic value.
 - □ A measure of fit, the larger the better
 - ☐ Large *p-value*: good fit
 - ☐ Small p-value: poor fit
- Vehicle Arrival Example (cont.):
 - \Box H_o : data is Possion
 - \square Test statistics: $\chi_0^2 = 27.68$, with 5 degrees of freedom
 - \Box *p-value* = 0.00004, meaning we would reject H_0 with 0.00004 significance level, hence Poisson is a poor fit.

p-Values and "Best Fits"

[Goodness-of-Fit Tests]

- Many software use p-value as the ranking measure to automatically determine the "best fit". Things to be cautious about:
 - Software may not know about the physical basis of the data, distribution families it suggests may be inappropriate.
 - □ Close conformance to the data does not always lead to the most appropriate input model.
 - □ *p-value* does not say much about where the lack of fit occurs
- Recommended: always inspect the automatic selection using graphical methods.

Fitting a Non-stationary Poisson Process

- M
- Fitting a NSPP to arrival data is difficult, possible approaches:
 - □ Fit a very flexible model with lots of parameters or
 - □ Approximate constant arrival rate over some basic interval of time, but vary it from time interval to time interval.

 Our focus
- Suppose we need to model arrivals over time [0,T], our approach is the most appropriate when we can:
 - □ Observe the time period repeatedly and
 - Count arrivals / record arrival times.

Fitting a Non-stationary Poisson Process

$$\hat{\lambda}(t) = \frac{1}{n\Delta t} \sum_{j=1}^{n} C_{ij}$$

where n = # of observation periods, Δt = time interval length C_{ij} = # of arrivals during the i^{th} time interval on the j^{th} observation period

Example: Divide a 10-hour business day [8am,6pm] into equal intervals k = 20 whose length $\Delta t = \frac{1}{2}$, and observe over n =3 days

	Number of Arrivals		Estimated Arrival		
Time Period	Day 1	Day 2	Day 3	Rate (arrivals/hr)	
8:00 - 8:00	12	14	10	24	For instance, 1/3(0.5)*(23+26+32)
8:30 - 9:00	23	26	32	54 —	= 54 arrivals/hour
9:00 - 9:30	27	18	32	52	04 diffvals/flodi
9:30 - 10:00	20	13	12	30	

Selecting Model without Data

- If data is not available, some possible sources to obtain information about the process are:
 - Engineering data: often product or process has performance ratings provided by the manufacturer or company rules specify time or production standards.
 - □ Expert option: people who are experienced with the process or similar processes, often, they can provide optimistic, pessimistic and most-likely times, and they may know the variability as well.
 - Physical or conventional limitations: physical limits on performance, limits or bounds that narrow the range of the input process.
 - ☐ The nature of the process.
- The uniform, triangular, and beta distributions are often used as input models.

Selecting Model without Data

- r.
- Example: Production planning simulation.
 - Input of sales volume of various products is required, salesperson of product XYZ says that:
 - No fewer than 1,000 units and no more than 5,000 units will be sold.
 - Given her experience, she believes there is a 90% chance of selling more than 2,000 units, a 25% chance of selling more than 2,500 units, and only a 1% chance of selling more than 4,500 units.
 - Translating these information into a cumulative probability of being less than or equal to those goals for simulation input:

i	Interval (Sales)	Cumulative Frequency, c i
1	$1000 \le x \le 2000$	0.10
2	$2000 < x \le 3000$	0.75
3	$3000 < x \le 4000$	0.99
4	$4000 < x \le 5000$	1.00

Multivariate and Time-Series Input Models

Multivariate:

For example, lead time and annual demand for an inventory model, increase in demand results in lead time increase, hence variables are dependent.

Time-series:

□ For example, time between arrivals of orders to buy and sell stocks, buy and sell orders tend to arrive in bursts, hence, times between arrivals are dependent.

Covariance and Correlation

[Multivariate/Time Series]

$$(X_1 - \mu_1) = \beta(X_2 - \mu_2) + \varepsilon$$
 § is a random variable with mean

- variable with mean 0 and is independent of X₂
- \square β = 0, X_1 and X_2 are statistically independent
- \square $\beta > 0$, X_1 and X_2 tend to be above or below their means together
- \square β < 0, X_1 and X_2 tend to be on opposite sides of their means

• Covariance between X_1 and X_2 :

$$cov(X_1, X_2) = E[(X_1 - \mu_1)(X_2 - \mu_2)] = E(X_1 X_2) - \mu_1 \mu_2$$

Covariance and Correlation

[Multivariate/Time Series]

$$\rho = \operatorname{corr}(X_1, X_2) = \frac{\operatorname{cov}(X_1, X_2)}{\sigma_1 \sigma_2}$$

where
$$corr(X_1, X_2)$$

$$\begin{cases} = 0, \\ < 0, \\ > 0, \end{cases}$$
 then β
$$\begin{cases} = 0 \\ < 0 \\ > 0 \end{cases}$$

□ The closer ρ is to -1 or 1, the stronger the linear relationship is between X_1 and X_2 .

Covariance and Correlation

- A time series is a sequence of random variables X₁, X₂, X₃, ..., are identically distributed (same mean and variance) but dependent.
 - \square cov(X_t, X_{t+h}) is the lag-h autocovariance
 - \square corr(X_t , X_{t+h}) is the lag-h autocorrelation
 - □ If the autocovariance value depends only on *h* and not on *t*, the time series is covariance stationary

Multivariate Input Models

[Multivariate/Time Series]

- If X_1 and X_2 are normally distributed, dependence between them can be modeled by the bivariate normal distribution with μ_1 , μ_2 , σ_1^2 , σ_2^2 and correlation ρ
 - □ To Estimate μ_1 , μ_2 , σ_1^2 , σ_2^2 , see "Parameter Estimation" (slide 15-17, Section 9.3.2 in book)
 - □ To Estimate ρ , suppose we have n independent and identically distributed pairs (X_{11}, X_{21}) , (X_{12}, X_{22}) , ... (X_{1n}, X_{2n}) , then:

$$cov(X_1, X_2) = \frac{1}{n-1} \sum_{j=1}^{n} (X_{1j} - \hat{X}_1)(X_{2j} - \hat{X}_2)$$
$$= \frac{1}{n-1} \left(\sum_{j=1}^{n} X_{1j} X_{2j} - n \hat{X}_1 \hat{X}_2 \right)$$

$$\hat{\rho} = \frac{\hat{\text{cov}}(X_1, X_2)}{\hat{\sigma}_1 \hat{\sigma}_2}$$
Sample deviation

Time-Series Input Models

[Multivariate/Time Series]

- If $X_1, X_2, X_3, ...$ is a sequence of identically distributed, but dependent and covariance-stationary random variables, then we can represent the process as follows:
 - □ Autoregressive order-1 model, AR(1)
 - □ Exponential autoregressive order-1 model, EAR(1)
 - Both have the characteristics that:

$$\rho_h = corr(X_t, X_{t+h}) = \rho^h, \quad \text{for } h = 1, 2, ...$$

 Lag-h autocorrelation decreases geometrically as the lag increases, hence, observations far apart in time are nearly independent

AR(1) Time-Series Input Models

[Multivariate/Time Series]

$$X_{t} = \mu + \phi(X_{t-1} - \mu) + \varepsilon_{t}$$
, for $t = 2,3,...$

where $\varepsilon_2, \varepsilon_3, \ldots$ are i.i.d. normally distributed with $\mu_{\varepsilon} = 0$ and variance σ_{ε}^2

- If X_1 is chosen appropriately, then
 - $\square X_1, X_2, \dots$ are normally distributed with $mean = \mu$, and $variance = \frac{\sigma^2}{(1-\phi^2)}$
 - \square Autocorrelation $\rho_h = \phi^h$
- To estimate ϕ , μ , σ_{ϵ}^2 :

$$\hat{\mu} = \overline{X}, \qquad \hat{\sigma}_{\varepsilon}^2 = \hat{\sigma}^2 (1 - \hat{\phi}^2), \qquad \hat{\phi} = \frac{\hat{\text{cov}}(X_t, X_{t+1})}{\hat{\sigma}^2}$$

where $\hat{cov}(X_t, X_{t+1})$ is the *lag-*1 autocovariance

EAR(1) Time-Series Input Models

[Multivariate/Time Series]

$$X_{t} = \begin{cases} \phi X_{t-1}, & \text{with probability } \phi \\ \phi X_{t-1} + \varepsilon_{t}, & \text{with probability } 1-\ddot{o} \end{cases}$$
 for $t = 2,3,...$

where $\varepsilon_2, \varepsilon_3, \dots$ are i.i.d. exponentially distributed with $\mu_{a} = 1/\ddot{e}$, and $0 \le \phi < 1$

- If X_1 is chosen appropriately, then
 - $\square X_1, X_2, \dots$ are exponentially distributed with mean = $1/\lambda$
 - \square Autocorrelation $\rho_h = \phi^h$, and only positive correlation is allowed.
- To estimate ϕ , λ :

$$\hat{\lambda} = 1/\overline{X}$$
, $\hat{\phi} = \hat{\rho} = \frac{\hat{\text{cov}}(X_t, X_{t+1})}{\hat{\sigma}^2}$

where $\hat{cov}(X_t, X_{t+1})$ is the *lag-*1 autocovariance

Summary

- In this chapter, we described the 4 steps in developing input data models:
 - Collecting the raw data
 - Identifying the underlying statistical distribution
 - □ Estimating the parameters
 - □ Testing for goodness of fit