EE-421: Digital Systems Design

Expressing Sequential Circuits

Instructor: Dr. Rehan Ahmed [rehan.ahmed@seecs.edu.pk]

Quick Review: Sequential Circuits

Combinational + Memory = Sequential

Review: Sequential Logic

- In a combinational circuit, the values of the outputs are determined solely by the present values of its inputs.
- A sequential circuit has states, which in conjunction with the present values of inputs determine its behavior:
 - Such circuits include storage elements that store the values of logic signals
 - The contents of the storage elements are said to represent the state of the circuit

Review: Gated D Latch

Clk	D	Q(t+1)
0	x	Q(t)
1	0	0
1	1	1

(b) Characteristic table

(c) Graphical symbol

(d) Timing diagram

Review: Master Slave D-flip flop

Level-Sensitive vs Edge-Triggered Storage Elements

A flip-flop is a storage element that can have its output state changed only on the edge of the controlling clock signal

Discussion: Level-Sensitive vs Edge-Triggered Storage Elements

- Ref to fig in the previous slide:
- The D input changes its values more than once during each half of the clock cycle.
- Observe that:
 - the gated D latch follows the D input as long as the clock is high.
 - The positive-edge-triggered flip-flop responds only to the value of D when the clock changes from 0 to 1
 - The negative-edge-triggered flip-flop responds only to the value of D when the clock changes from 1 to 0.

Expressing Sequential Circuits in Verilog-HDL

Sequential Logic in Verilog

- Define blocks that have memory:
 - Flip-Flops, Latches, Finite State Machines
- Sequential Logic state transition is triggered by a "CLOCK" signal:
 - Latches are sensitive to level of the signal
 - Flip-flops are sensitive to the transitioning of signal
- Combinational constructs are not sufficient:
 - We need **new constructs**:
 - always_ff
 - posedge/negedge

Recall: The "always" Block

```
always @ (sensitivity list)
statement;
```

Whenever the event in the sensitivity list occurs, the statement is executed

Describing a Positive-Edge D-Flip Flop

- posedge defines a rising edge (transition from 0 to 1).
- Statement executed when the clk signal rises (posedge of clk)
- Once the clk signal rises: the value of d is copied to q

Describing a Positive-Edge D-Flip Flop

Also note:

- assign statement is **not** used within an always block
- <= describes a non-blocking assignment</p>
- clk is the only input that can cause an event on the output
 - Therefore clk is the only signal in the sensitivity list
- Special sensitivity list @(posedge Clock):
 - This event expression tells the Verilog compiler that any reg variable assigned a value in the always construct is the output of a D flip-flop

Describing a Positive-Edge D-Flip Flop

- Assigned variables need to be declared as reg
- The name reg does not necessarily mean that the value is a register (It could be, but it does not have to be)
 - We have seen examples before while doing combinational ccts!!!

Recommended Reading

 Digital System Design with Verilog HDL, 3/e, b Stephen Brown and Zvonko Vranesic. [S&Z]

- S&Z,
 - Chapter-5

THANK YOU

