Chap.4 인공 신경망 (Artificial Neural Network)

방 수 식 교수

(bang@tukorea.ac.kr)

한국공학대학교 전자공학부

2024년도 1학기 머신러닝실습 & 인공지능설계실습1

신경망 (Neural Network)

Neuron

Neural Network in Brain

- 축색종단에서의 도파민(신경전달물질) 분비 여부
 - 전달된 신호의 강도에 따라 결정됨
 - 즉, 신호의 강도가 임계값을 넘으면 도파민 분비 → 활성화
 - 신호의 강도가 임계값을 넘지 않으면 도파민 분비되지 않음 → 비활성화

Artificial Neuron

- Neuron의 핵심 기능
 - **전파(Propagation)** 기능
 - 신호(도파민)를 받아 전달
 - **활성화(Activation)** 기능
 - 신호의 강도에 따라 신호 활성화 유무를 결정
- Artificial Neuron(인공 뉴런)
 - Neuron 세포를 모방하여 설계

Artificial Neuron

- 전파(Propagation) 기능
 - 입력과 Weights 들의 선형 조합을 전파
- **활성화(Activation)** 기능
 - 선형 조합의 크기에 따라 다음 뉴런에 전달할지 여부를 결정

Logistic Regression과의 비교

- Artificial Neuron의 관점에서의 Logistic Regression
 - 일반적인 Logistic Regression 모델

• Sigmoid 함수를 Activation Function으로 사용하는 Artificial Neuron과 동일한 구조

Perceptron

- 퍼셉트론 (Perceptron)
 - 입력층과 출력층 만으로 구성된 Single-Layer Neural Network
 - Neural Network의 <u>기본 구성 단위</u>
 - Binary Classification 시스템 (출력이 0 or 1)
 - (예) 입력 속성이 2개인 Perceptron

Perceptron

- 퍼셉트론 (Perceptron)
 - Node: 해당 Node로 들어온 **모든 값을 더한 다음 Activation Function을 통과시킨 값을 출력**
 - Input node의 Activation Function: f(x)=x (별도표기하지 않음)
 - 화살표: 화살표 위에 적힌 weight만큼 **곱 연산**을 수행
 - 별도 표기가 없는 화살표의 weight는 1

Multi-Class Classification in Single Layer

■ One-Hot Encoding (범주형 Class의 이진화)

- 확률론적 접근 + 기계가 인식 가능한 숫자
 - ✓ Binary Class: 음성 or 양성 => 0 or 1
 - ✓ Multi-Class: 개 or 고양이 or 말 => 100 or 010 or 001 (y₀, y₁, y₂)

Single Layer Neural Network의 한계

- Single Layer Neural Network의 한계
 - 단층 신경망은 로지스틱 회귀의 성능과 동일
 - 속성 공간의 "선형 분할"만 가능
 - ▶ Decision Boundary가 선형적

Multi-Layer Neural Network

Two-Layer Neural Network

- Input layer (입력층)
 - ▶ 2 Input: 일반노드 2개 + 더미노드 1개 <= 데이터의Input 속성수에의해 결정
- Hidden Layer (은닉층)
 - ▶ 일반노드 2개 + 더미노드 1개 <= 모델 설계자가 결정(Hyper-parameter)</p>
- Output Layer (출력층)
 - ➤ 3-Class: 일반노드 3개 <= 데이터의 Output class 수에의해 결정

Multi-Layer Neural Network

• Node 별 입출력 계산

Hidden Layer 입출력 관계

Output Layer 입출력

$$\beta_0 = w_{00}b_0 + w_{10}b_1 + w_{20}b_2 \qquad \qquad \hat{y}_0 = f_2(\beta_0)$$

$$\beta_1 = w_{01}b_0 + w_{11}b_1 + w_{21}b_2 \qquad \qquad \hat{y}_1 = f_2(\beta_1)$$

$$\beta_2 = w_{02}b_0 + w_{12}b_1 + w_{22}b_2 \qquad \qquad \hat{y}_2 = f_2(\beta_2)$$

Artificial Neural Network(ANN) 모델의 학습 목표

 $\hat{y}_0 \approx y_0, \hat{y}_1 \approx y_1, \hat{y}_2 \approx y_2$ 를 만족하는 최적 매개변수를 찾는다.

2-Input, 3-Class with 2-Hidden node

Dummy node 는 일반적으로 카운팅하지 않음.

Hidden Layer 입출력

$$x_2 = 1$$

$$\alpha_0 = v_{00}x_0 + v_{10}x_1 + v_{20}x_2$$

$$\alpha_1 = v_{01}x_0 + v_{11}x_1 + v_{21}x_2$$

$$b_0 = f_1(\alpha_0)$$

$$b_1 = f_1(\alpha_1)$$

$$b_2 = 1$$

Output Layer 입출력

$$\beta_0 = w_{00}b_0 + w_{10}b_1 + w_{20}b_2$$

$$\beta_1 = w_{01}b_0 + w_{11}b_1 + w_{21}b_2$$

$$\beta_2 = w_{02}b_0 + w_{12}b_1 + w_{22}b_2$$

$$\hat{y}_0 = f_2(\beta_0)$$

$$\hat{y}_1 = f_2(\beta_1)$$

$$\hat{y}_2 = f_2(\beta_2)$$

M-Input, Q-Class with L-Hidden node

2-Input, 3-Class with 2-Hidden node

Dummy node 는 일반적으로 카운팅하지 않음.

Hidden Layer 입출력 $x_2 = 1$

$$x_2 = 1$$

$$\alpha_0 = v_{00}x_0 + v_{10}x_1 + v_{20}x_2$$

$$\alpha_1 = v_{01}x_0 + v_{11}x_1 + v_{21}x_2$$

$$b_0 = f_1(\alpha_0)$$

$$b_1 = f_1(\alpha_1)$$

$$b_2 = 1$$

M-Input, Q-Class with L-Hidden node

Hidden Layer 입출력

$$x_M = 1$$

$$\alpha_l = v_{0l}x_0 + v_{1l}x_1 + \dots + v_{Ml}x_M = \sum_{m=0} v_{ml}x_m$$
 $l = 0, 1, \dots, L-1$

$$b_l = f_1(\alpha_l) = f_1\left(\sum_{m=0}^{M} v_{ml}x_m\right) \qquad b_L = 1$$

Output Layer 입출력

$$\beta_0 = w_{00}b_0 + w_{10}b_1 + w_{20}b_2$$

$$\beta_1 = w_{01}b_0 + w_{11}b_1 + w_{21}b_2$$

$$\beta_2 = w_{02}b_0 + w_{12}b_1 + w_{22}b_2$$

$$\hat{y}_0 = f_2(\beta_0)$$

$$\hat{y}_1 = f_2(\beta_1)$$

$$\hat{y}_2 = f_2(\beta_2)$$

Output Layer 입출력

$$\beta_{q} = w_{0q}b_{0} + w_{1q}b_{1} + \dots + w_{lq}b_{l} + w_{Lq}b_{L}$$

$$= \sum_{l}^{L} w_{lq}b_{l}, \qquad q = 0, 1, \dots, Q - 1$$

$$\hat{y}_q = f_2(\beta_q) = f_2\left(\sum_{l=0}^L w_{lq}b_l\right)$$

• 1개의 데이터에 대해: M-Input, Q-Class with L-Hidden node 연산의 행렬화

Hidden Layer 입력 $\alpha_l = v_{0l}x_0 + v_{1l}x_1 + \dots + v_{Ml}x_M = \sum_{m=0}^{M} v_{ml}x_m$ $l = 0, 1, \dots, L-1$ L' = L-1 일 때, $\alpha_0 = v_{00}x_0 + v_{10}x_1 + \dots + v_{M0}x_M$ $\alpha_1 = v_{01}x_0 + v_{11}x_1 + \dots + v_{M1}x_M$

Hidden Layer 출력

$$b_l = f_1(\alpha_l) = f_1\left(\sum_{m=0}^{M} v_{ml}x_m\right) \qquad b_L = 1$$

$$b_{0} = f_{1}(\alpha_{0})$$

$$b_{1} = f_{1}(\alpha_{1})$$

$$\vdots$$

$$b_{l} = f_{1}(\alpha_{l})$$

$$\vdots$$

$$b_{L'} = f_{1}(\alpha_{L'})$$

$$b_{L} = 1$$

$$b = \begin{bmatrix} f_{1}(\alpha_{0}) \\ f_{1}(\alpha_{1}) \\ \vdots \\ f_{1}(\alpha_{l}) \\ \vdots \\ f_{1}(\alpha_{L'}) \\ 1 \end{bmatrix}$$

$$(L+1 \text{ by } 1)$$

$$L' = L - 1 \stackrel{\mbox{\subseteq}}{\mbox{\subseteq}} \mbox{Π},$$

$$\alpha_0 = v_{00}x_0 + v_{10}x_1 + \dots + v_{M0}x_M$$

$$\alpha_1 = v_{01}x_0 + v_{11}x_1 + \dots + v_{M1}x_M$$

$$\vdots$$

$$\alpha_l = v_{0l}x_0 + v_{1l}x_1 + \dots + v_{Ml}x_M$$

$$\vdots$$

$$\alpha_{l'} = v_{0l'}x_0 + v_{1l'}x_1 + \dots + v_{Ml'}x_M$$

$$\vdots$$

$$\alpha_{l'} = v_{0l'}x_0 + v_{1l'}x_1 + \dots + v_{Ml'}x_M$$

$$\alpha(l \ by \ 1)$$

$$\begin{bmatrix} \alpha_0 \\ \alpha_1 \\ \vdots \\ \alpha_l \\ \vdots \\ \alpha_{l'} \end{bmatrix} = \begin{bmatrix} v_{00} \ v_{10} & \dots & v_{M0} \\ v_{01} \ v_{11} & \dots & v_{M1} \\ \vdots & \ddots & \vdots \\ v_{0l'} \ v_{1l'} & \dots & v_{Ml'} \end{bmatrix} \begin{bmatrix} x \ (M+1 \ by \ 1) \\ x_0 \\ x_1 \\ \vdots \\ x_M \end{bmatrix}$$

 $\alpha = vx$

• 1개의 데이터에 대해: M-Input, Q-Class with L-Hidden node 연산의 행렬화

Output Layer 입출력
$$\beta_q = w_{0q}b_0 + w_{1q}b_1 + \dots + w_{lq}b_l + w_{Lq}b_L$$

$$= \sum_{l=0}^{L} w_{lq}b_l, \qquad q = 0, 1, \dots, Q - 1$$

$$\hat{y}_q = f_2(\beta_q) = f_2\left(\sum_{l=0}^{L} w_{lq}b_l\right)$$

$$Q' = Q - 1 \, \text{일} \, \text{때},$$

$$\begin{bmatrix}
\beta_{0} \\
\beta_{1} \\
\vdots \\
\beta_{q} \\
\vdots \\
\beta_{Q'}
\end{bmatrix} = \begin{bmatrix}
w_{00} & w_{10} & \cdots & w_{L0} \\
w_{01} & w_{11} & \cdots & w_{L1} \\
\vdots & \ddots & \vdots \\
w_{0q} & w_{1q} & \ddots & w_{Lq} \\
\vdots & \vdots & \ddots & \vdots \\
w_{0Q'} & w_{1Q'} & \cdots & w_{LQ'}
\end{bmatrix} \begin{bmatrix}
f_{1}(\alpha_{0}) \\
f_{1}(\alpha_{1}) \\
\vdots \\
f_{1}(\alpha_{l}) \\
\vdots \\
f_{1}(\alpha_{L'}) \\
1
\end{bmatrix}$$

$$(Q \text{ by 1}) \quad \hat{y} = \begin{bmatrix}
\hat{y}_{0} \\
\hat{y}_{1} \\
\hat{y}_{2} \\
\vdots \\
\hat{y}_{q} \\
\vdots \\
\hat{y}_{Q-1}
\end{bmatrix} = \begin{bmatrix}
f_{2}(\beta_{0}) \\
f_{2}(\beta_{1}) \\
f_{2}(\beta_{2}) \\
\vdots \\
f_{2}(\beta_{l}) \\
\vdots \\
f_{2}(\beta_{Q-1})
\end{bmatrix}$$

N개의 데이터

데이터	입력	출력
번호	$x_0, \cdots, x_m, \cdots, x_{M-1}$	$y_0, \cdots, y_q, \cdots, y_{Q-1}$
0	x_{00} , \cdots , x_{m0} , \cdots , $x_{(M-1)0}$	y_{00} ,, y_{q0} ,, $y_{(Q-1)0}$
:	:	:
n	$x_{0n},\cdots,x_{mn},\cdots,x_{(M-1)n}$	$y_{0n}, \cdots, y_{qn}, \cdots, y_{(Q-1)n}$
:	:	:
N-1	$x_{0(N-1)},\cdots,x_{m(N-1)},\cdots,x_{(M-1)(N-1)}$	$y_{0(N-1)},\cdots,y_{q(N-1)},\cdots,y_{(Q-1)(N-1)}$

❖ n번째 데이터에 대해서 (n은 0부터 N-1까지의 정수)

▶ Training 관점: n-1 번째 데이터로부터 업데이트 된 weights

Chap.4 실습 - 1주차

각 실습문제에 대해 code(+주석), 그래프, 분석 내용 등은 필수적으로 포함시킬 것

- 1) One-Hot Encoding 구현
 - 데이터에서의 y값(target) 으로부터 분류 할 Class가 몇 개인지 Check
 - 각 Class에 대해 One-Hot 표현으로 변환
 - "NN data.csv"에 적용
- 2) Two-Layer Neural Network 구현
 - 데이터에서의 Input 속성 수 및 Output Class 수를 자동으로 Check하는 기능
 - Hidden layer의 Node 수를 자유롭게 설정하는 기능
 - Input 속성 수, Output Class 수, Hidden Node 수로부터 Weight Matrix 생성 및 초기화
 - "NN_data.csv"에 적용: 랜덤 초기화 된 Weight Matrix로부터 \hat{y} 값 도출
- 3) Accuracy 함수 구현
 - \hat{y} 값에서 0.5를 기준으로 0 or 1로 변환
 - 전체 Training set에 대해서 $\hat{y} = y$ 인 데이터 개수 count => 정확도 계산

Chap.4 실습 데이터

■ 각 Class별 300개씩 총 1800개

- 1) Class1: (x0,x1,x2)=(1,3,5)을 중심으로 노이즈가 추가된 데이터
- 2) Class2: (x0,x1,x2)=(3,5,7)을 중심으로 노이즈가 추가된 데이터
- 3) Class3: (x0,x1,x2)=(5,7,9)을 중심으로 노이즈가 추가된 데이터
- 4) Class4: (x0,x1,x2)=(7,9,5)을 중심으로 노이즈가 추가된 데이터
- 5) Class5: (x0,x1,x2)=(9,5,3)을 중심으로 노이즈가 추가된 데이터
- 6) Class6: (x0,x1,x2)=(5,3,1)을 중심으로 노이즈가 추가된 데이터

Neural Network 모델의 학습 알고리즘

- Error Backpropagation (오차 역전파) 알고리즘
 - 경사하강법 기반
 - 개별 훈련 데이터에 대해서 알고리즘 적용
 - 설정한 Cost Function로부터 모델의 예측값과 실측값 간의 Error 값으로부터 역으로 전파되면서 Weight를 업데이트함
 - ✓ 본 강의자료에서는 Activation Function은 Sigmoid, Cost Function은
 MSE 기준으로 설명

Hidden Layer

<u>활성화함수 f1과 f2는 Sigmoid 함수로 선택하였다고 가정</u>

예측값 계산 과정: Forward-propagation (순전파)

Output Layer

Weight 업데이트 과정: Back-propagation(역전파)

❖ Cost Function을 MSE로 설정하였을 때, n번째 데이터에 대해서

$$\begin{split} v_{ml} &\leftarrow v_{ml} - \eta \frac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n) \\ w_{lq} &\leftarrow w_{lq} - \eta \frac{\partial}{\partial w_{lq}} \epsilon_{MSE}(n) \end{split} \qquad \epsilon_{MSE}(n) = \sum_{q=0}^{Q-1} \left(\hat{y}_{qn} - y_{qn}\right)^2 \end{split}$$

일단, 특정 weight 에 대한 편미분 고려

Step 2-1) 경사하강법에서의 도함수 계산

$$\frac{\partial}{\partial w_{lq}} \epsilon_{MSE}(n) = \frac{\partial \epsilon_{MSE}(n)}{\partial \hat{y}_{qn}} \cdot \frac{\partial \hat{y}_{qn}}{\partial \beta_{qn}} \cdot \frac{\partial \beta_{qn}}{\partial w_{lq}}$$

$$\frac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n) = \frac{\partial \epsilon_{MSE}(n)}{\partial b_{ln}} \cdot \frac{\partial b_{ln}}{\partial \alpha_{ln}} \cdot \frac{\partial \alpha_{ln}}{\partial v_{ml}}$$

• $\frac{\partial}{\partial w_{la}} \epsilon_{MSE}(n)$ 구하기

$$rac{\partial}{\partial w_{lq}} \epsilon_{MSE}(n) = rac{\partial \epsilon_{MSE}(n)}{\partial \hat{y}_{qn}} \cdot rac{\partial \hat{y}_{qn}}{\partial eta_{qn}} \cdot rac{\partial eta_{qn}}{\partial w_{lq}} \cdot rac{\partial eta_{qn}}{\partial w_{lq}}$$

우변 1항

$$\frac{\partial \epsilon_{MSE}(n)}{\partial \hat{y}_{qn}} = \frac{\partial}{\partial \hat{y}_{qn}} \sum_{j=0}^{Q-1} (\hat{y}_{jn} - y_{jn})^{2}
= \frac{\partial}{\partial \hat{y}_{qn}} \left\{ (\hat{y}_{0n} - y_{0n})^{2} + \dots + (\hat{y}_{qn} - y_{qn})^{2} + \dots + (\hat{y}_{(Q-1)n} - y_{(Q-1)n})^{2} \right\}
= 2(\hat{y}_{an} - y_{an})$$

우변 2항

$$\frac{\partial \hat{y}_{qn}}{\partial \beta_{qn}} = \frac{\partial}{\partial \beta_{qn}} f(\beta_{qn}) = f(\beta_{qn}) \left(1 - f(\beta_{qn}) \right) = \hat{y}_{qn} \left(1 - \hat{y}_{qn} \right)$$

(참고) 시그모이드 함수의 미분
$$f'(x) = f(x) (1 - f(x))$$

•
$$\frac{\partial}{\partial w_{Ia}} \epsilon_{MSE}(n)$$
 구하기

$$\frac{\partial}{\partial w_{lq}} \epsilon_{MSE}(n) = \frac{\partial \epsilon_{MSE}(n)}{\partial \hat{y}_{qn}} \cdot \frac{\partial \hat{y}_{qn}}{\partial \beta_{qn}} \cdot \frac{\partial \beta_{qn}}{\partial w_{lq}}$$

우변 3항

$$\frac{\partial \beta_{qn}}{\partial w_{lq}} = \frac{\partial}{\partial w_{lq}} \sum_{i=0}^{L} w_{jq} b_{jn} = \frac{\partial}{\partial w_{lq}} \left(w_{0q} b_{0n} + \dots + w_{lq} b_{ln} + \dots + w_{lq} b_{Ln} \right) = b_{ln}$$

최종

$$\frac{\partial \epsilon_{MSE}(n)}{\partial w_{lq}} = \frac{\partial \epsilon_{MSE}(n)}{\partial \hat{y}_{qn}} \cdot \frac{\partial \hat{y}_{qn}}{\partial \beta_{qn}} \cdot \frac{\partial \beta_{qn}}{\partial w_{lq}}$$

$$= 2(\hat{y}_{qn} - y_{qn}) \hat{y}_{qn} (1 - \hat{y}_{qn}) b_{ln}$$

$$= \delta_{qn} b_{ln}$$

 δ_{qn} : q번째 output node에 대해, 2*output*(output - target)*(1-output)

- Forward-propagation 기준
- w_{lq} 통과 **전** 입력값=> b_{ln}
- w_{lq} 통과 **후** 지나게 되는 모든 Node => 출력층 g 번째 Node

• $\frac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n)$ 구하기

$$\frac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n) = \frac{\partial \epsilon_{MSE}(n)}{\partial b_{ln}} \cdot \frac{\partial b_{ln}}{\partial \alpha_{ln}} \cdot \frac{\partial \alpha_{ln}}{\partial v_{ml}}$$

우변1항

$$\begin{split} \frac{\partial \epsilon_{MSE}(n)}{\partial b_{ln}} &= \frac{\partial}{\partial b_{ln}} \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn})^2 = 2 \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn}) \frac{\partial \hat{y}_{qn}}{\partial b_{ln}} \\ &= 2 \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn}) \frac{\partial}{\partial b_{ln}} f\left(\sum_{j=0}^{L} w_{jq} b_{jn}\right) \\ &= 2 \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn}) \frac{\partial}{\partial b_{ln}} f\left(w_{0q} b_{0n} + \dots + w_{lq} b_{ln} + \dots + w_{Lq} b_{Ln}\right) \\ &= 2 \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn}) f\left(\sum_{j=0}^{L} w_{jq} b_{jn}\right) \left(1 - f\left(\sum_{j=0}^{L} w_{jq} b_{jn}\right)\right) w_{lq} \\ &= 2 \sum_{q=0}^{Q-1} (\hat{y}_{qn} - y_{qn}) \hat{y}_{qn} (1 - \hat{y}_{qn}) w_{lq} \end{split}$$

 $=\sum_{i=1}^{\infty}\delta_{qn}w_{lq}$ l 번째 Hidden Node와 연결된 weight 들과 Output Node를 고려하게 됨.

• $\frac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n)$ 구하기

$$rac{\partial}{\partial v_{ml}} \epsilon_{MSE}(n) = rac{\partial \epsilon_{MSE}(n)}{\partial b_{ln}} \cdot rac{\partial b_{ln}}{\partial lpha_{ln}} \cdot rac{\partial lpha_{ln}}{\partial v_{ml}}$$

우변 2항

$$\frac{\partial b_{ln}}{\partial \alpha_{ln}} = \frac{\partial}{\partial \alpha_{ln}} f(\alpha_{ln}) = f(\alpha_{ln}) (1 - f(\alpha_{ln})) = b_{ln} (1 - b_{ln})$$

우변 3항

$$\frac{\partial \alpha_{ln}}{\partial v_{ml}} = \frac{\partial}{\partial v_{ml}} \sum_{i=0}^{M} v_{jl} x_{jn} = \frac{\partial}{\partial v_{ml}} (v_{0l} x_{0n} + \dots + v_{ml} x_{mn} + \dots + v_{Ml} x_{Mn}) = x_{mn}$$

최종

$$\frac{\partial \epsilon_{MSE}(n)}{\partial v_{ml}} = \frac{\partial \epsilon_{MSE}(n)}{\partial b_{ln}} \cdot \frac{\partial b_{ln}}{\partial \alpha_{ln}} \cdot \frac{\partial \alpha_{ln}}{\partial v_{ml}}$$

$$= \sum_{n=0}^{Q-1} \delta_{qn} w_{lq} \, b_{ln} (1 - b_{ln}) x_{mn}$$

- v_{ml} 통과 **전** 입력값 => x_{mn}
- v_{ml} 통과 $\hat{\boldsymbol{r}}$ 지나게 되는 모든 Node => I 번째 Hidden node, 모든 Output Node

Neural Network 모델의 학습 알고리즘

■ 전체 알고리즘 적용 순서

- 1) 신경망 모델 설계 (Hidden Layer 수, Node 수, 활성화 함수, Learning Rate 등)
- 2) 설계된 모델에 따른 Weight Matrix 생성 및 초기화
- 3) N개의 훈련 데이터 Shuffle
- 4) 0부터 N-1번째 데이터에 대해 순차적으로 오차 역전파 알고리즘 적용 (1 epoch)
 - for n번째 데이터
 - (순전파) n-1에서 업데이트 된 Weight로부터 예측값 \hat{y}_{an} 계산
 - (역전파) 실제값(Target)과 예측값(Output) 간의 오차로부터 Weight 업데이트 => 주의사항: Input layer에 가까운 weight부터 업데이트
- 5) 업데이트 된 weight로부터 accuracy 계산
- 6) 사용자가 입력한 epoch 수 만큼 3~4) 반복

Two-Layer Neural Network 적용 예시

- 데이터
 - 2입력 3클래스 분류 데이터
 - 입력 속성: 출석률, 시험성적
 - 출력 속성: 학점 (A, B, C)

	100	0	Cla	iss-1						0	0			
	90	×	Cla	iss-2							(5		
	80	V	Cla	iss-3	×				0					
	70												0	
ore	60					;	×							_
Exam score	50						,							
EX	40										:	×		_
	30			٥										_
	20		_	•										_
	10	~	,							\$ \$				_
	0	10)	20	30		40 Attor	50 idanc	6	0 7	0 8	80	90	100

데이터	0) B	력	출력	
번호	출석률	시험성적	학점	
0	76	98	А	
1	65	94	A	
2	80	86	A	
3	89	74	A	
4	55	77	A	
5	30	79	В	
6	39	64	В	
7	38	63	B One	-Hot Enco
8	45	49	В	
9	80	42	В	
10	68	7	С	
11	64	8	С	
12	21	26	С	
13	15	14	С	
14	11	12	С	

데이터	입	력	출력			
번호	출석률	시험성적	y_0	y_1	y_2	
0	76	98	1	0	0	
1	65	94	1	0	0	
2	80	86	1	0	0	
3	89	74	1	0	0	
4	55	77	1	0	0	
5	30	79	0	1	0	
6	39	64	0	1	0	
ding	38	63	0	1	0	
8	45	49	0	1	0	
9	80	42	0	1	0	
10	68	7	0	0	1	
11	64	8	0	0	1	
12	21	26	0	0	1	
13	15	14	0	0	1	
14	11	12	0	0	1	

Two-Layer Neural Network 적용 예시

Confusion Matrix로 나타내 보자

■ 학습 성공 시,

Confusion Matrix (모델 성능을 표현하는 가장 보편적 방법)

28

Two-Layer Neural Network 적용 예시

■ 학습 실패 시,

위의 결과를 Confusion Matrix로 나타내 보자

Softmax Function

■ 다중 분류를 위한 Softmax Function

$$o_j = \frac{e^{s_j}}{\sum_{i=1,c} e^{s_i}}$$

- 동작 예시
 - softmax는 max를 모방(출력 노드의 중간 계산 결과 s_i^L 에서 최댓값은 더욱 활성화하고 작은 값은 억제
 - 모두 더하면 1이 되어 확률 모방

Softmax Function

- Softmax를 출력함수로 사용할 때의 Cost Function
 - Cross-Entropy

* 이진분류 =>
$$\epsilon_{CEE} = -\frac{1}{N} \sum_{n=0}^{N-1} \{y_n \ln p_n + (1 - y_n) \ln (1 - p_n)\}$$

$$\{y_n \ln p_n + (1 - y_n) \ln (1 - p_n)\}$$

$$= \{y_{0,n} \ln p_{0,n} + (y_{1,n}) \ln (p_{1,n})\}$$

$$= \sum_{k=0}^{1} y_{k,n} \ln p_{k,n} \Rightarrow \sum_{k=0}^{K-1} y_{k,n} \ln (p_{k,n})$$

$$\epsilon_{CEE} = -\frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=0}^{K-1} y_{i,n} \ln (p_{i,n})$$

$$\epsilon_{CEE} = -\frac{1}{N} \sum_{n=0}^{N-1} \sum_{k=0}^{K-1} y_{i,n} \ln (p_{i,n})$$

ANN 정리

https://www.youtube.com/watch?v=aircAruvnKk

[참고] Deep Learning으로의 확장

Node의 활성화 함수가 모두 동일하다고 했을 때, w1을 update 하기 위해서는 활성화 함수의 도함수를 3 번 곱한 값이 들어감.

Deep Learning으로의 확장

Sigmoid 함수

"Gradient Vanishing Problem"

도함수를 곱할수록 값이 작아져
Weight Update가 잘 이뤄지지 않음.
=> Hidden Layer가 많을수록 불리

ReLU 함수 Gradient Vanishing 문제를 해결하기 위해 제안된 활성화 함수

$$f(x) = egin{cases} 0 & x < 0 \ x & x \geq 0 \end{cases} \qquad f(x) = max(0,x)$$

Hidden Layer가 많아도, 즉, <u>Neural Network가 Deep</u>해져도 Weight*를 업데이트 할 수 있음*

Dropout

- Dropout (드롭아웃)
 - 신경망의 일부 Node를 랜덤으로 비활성화하며 훈련시키는 기법
 - Regularization (Overfitting을 방지하기 위해 사용)

(a) Standard Neural Net

(b) After applying dropout.

각 node 가 존재할 확률 p

통상 알려진 default 입력층: 0.8 은 닉층: 0.5

출력층은?

Dropout

■ Dropout에서의 Training 단계

$$l$$
번째 은닉층의 j 번째 노드의 연산:
$$z_j^l = \tau_l(s_j^l) \\ \text{이때 } s_j^l = \mathbf{u}_j^l \mathbf{z}^{l-1}$$
 \Rightarrow 드롭아웃 적용:
$$z_j^l = \tau_l(s_j^l) \\ \text{이때 } \left\{ \mathbf{\tilde{z}}^{l-1} = \mathbf{z}^{l-1} \odot \mathbf{\pi}^{l-1} \right.$$

Boolean 배열 π에 노드 제거 여부를 표시
Boolean 배열: 배열 내부에 True or False 만 존재

Dropout

- Dropout에서의 Test 단계
 - 가중치에 생존 비율(p)을 곱하여 전방 계산
 - 학습 과정에서 가중치가 생존 비율(p) 만큼만 참여했기 때문

Chap.4 실습 - 2주차

각 실습문제에 대해 code(+주석), 그래프, 분석 내용 등은 필수적으로 포함시킬 것

- 1) Error Back-Propagation 알고리즘 구현
 - Chap. 4 강의자료 24 page에 나와있는 알고리즘을 사용자 지정함수로 구현
- 2) Two-Layer Neural Network "Training"
 - "NN data.csv"를 7:3 으로 Training set :Test set 분할
 - Training set과 1)에서 구현한 알고리즘으로부터 Two-Layer Neural Network를 Training
 - Epoch에 따른 Accuracy 및 MSE 그래프 도출
 - Hyper-parameter tuning을 통해 최적화
- 3) Two-Layer Neural Network "Test"
 - 2)에서 도출한 Two-Layer Neural Network에 Testing set 삽입
 - Confusion Matrix 도출