In [1]: import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Ridge, RidgeCV, Lasso
from sklearn.preprocessing import StandardScaler

In [2]: df = pd.read_csv(r"C:\Users\Sudheer\AppData\Local\Microsoft\Windows\INetCache\
 df

Out[2]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	14.0
197	177.0	9.3	6.4	14.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	18.4

200 rows × 4 columns

In [3]: df.head()

Out[3]:

	TV	Radio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	12.0
3	151.5	41.3	58.5	16.5
4	180.8	10.8	58.4	17.9

```
In [4]: df.describe()
```

```
Out[4]:
```

	IV	Radio	newspaper	Sales
count	200.000000	200.000000	200.000000	200.000000
mean	147.042500	23.264000	30.554000	15.130500
std	85.854236	14.846809	21.778621	5.283892
min	0.700000	0.000000	0.300000	1.600000
25%	74.375000	9.975000	12.750000	11.000000
50%	149.750000	22.900000	25.750000	16.000000
75%	218.825000	36.525000	45.100000	19.050000
max	296.400000	49.600000	114.000000	27.000000

```
In [5]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 200 entries, 0 to 199
Data columns (total 4 columns):
```

```
Column
              Non-Null Count Dtype
   TV
0
               200 non-null
                               float64
              200 non-null
                              float64
1
   Radio
2
   Newspaper 200 non-null
                               float64
3
               200 non-null
                              float64
   Sales
```

dtypes: float64(4)
memory usage: 6.4 KB

```
In [6]: df.columns
```

```
Out[6]: Index(['TV', 'Radio', 'Newspaper', 'Sales'], dtype='object')
```



```
In [9]: plt.figure(figsize = (10, 10))
sns.heatmap(df.corr(), annot = True)
```

Out[9]: <Axes: >


```
In [10]: features = df.columns[0:2]
    target = df.columns[-1]
    #X and y values
    X = df[features].values
    y = df[target].values
    #splot
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, randof print("The dimension of X_train is {}".format(X_train.shape))
    print("The dimension of X_test is {}".format(X_test.shape))
    #Scale features
    scaler = StandardScaler()
    X_train = scaler.fit_transform(X_train)
    X_test = scaler.transform(X_test)
```

The dimension of X_train is (140, 2) The dimension of X_test is (60, 2)

```
In [11]: #Ridge Regression Model
    ridgeReg = Ridge(alpha=10)
    ridgeReg.fit(X_train,y_train)
    #train and test scorefor ridge regression
    train_score_ridge = ridgeReg.score(X_train, y_train)
    test_score_ridge = ridgeReg.score(X_test, y_test)
    print("\nRidge Model:\n")
    print("The train score for ridge model is {}".format(train_score_ridge))
    print("The test score for ridge model is {}".format(test_score_ridge))
```

Ridge Model:

The train score for ridge model is 0.913873609964124 The test score for ridge model is 0.8486032178989196

Linear Regression Model:

The train score for lr model is 0.9174763132374348 The test score for lr model is 0.8567416956374659


```
In [14]: #Lasso regression model
print("\nLasso Model: \n")
lasso = Lasso(alpha = 10)
lasso.fit(X_train,y_train)
train_score_ls =lasso.score(X_train,y_train)
test_score_ls =lasso.score(X_test,y_test)
print("The train score for ls model is {}".format(train_score_ls))
print("The test score for ls model is {}".format(test_score_ls))
```

Lasso Model:

The train score for ls model is 0.0
The test score for ls model is -0.0064111102763571015

```
In [15]: pd.Series(lasso.coef_, features).sort_values(ascending = True).plot(kind = "ba
```

Out[15]: <Axes: >


```
In [16]: #Using the linear CV model
    from sklearn.linear_model import LassoCV
    #Lasso Cross validation
    lasso_cv = LassoCV(alphas = [0.0001, 0.001, 0.01, 1, 10], random_state=0).
#score
    print(lasso_cv.score(X_train, y_train))
    print(lasso_cv.score(X_test, y_test))
```

- 0.9174763126220602
- 0.8567421168446285

```
In [17]: #plot size
    plt.figure(figsize = (10, 10))
    #add plot for ridge regression
    plt.plot(features,ridgeReg.coef_,alpha=0.7,linestyle='none',marker='*',markers
    #add plot for lasso regression
    plt.plot(lasso_cv.coef_,alpha=0.5,linestyle='none',marker='d',markersize=6,col
    #add plot for linear model
    plt.plot(features,lr.coef_,alpha=0.4,linestyle='none',marker='o',markersize=7,
    plt.xticks(rotation = 90)
    plt.legend()
    plt.title("Comparison plot of Ridge, Lasso and Linear regression model")
    plt.show()
```

Comparison plot of Ridge, Lasso and Linear regression model

In [18]:	<pre>#Using the Linear CV model from sklearn.linear_model import RidgeCV #Ridge Cross validation ridge_cv = RidgeCV(alphas = [0.0001, 0.001, 0.01, 1, 10]).fit(X_train, y_t #score print("The train score for ridge model is {}".format(ridge_cv.score(X_train, y_t) print("The train score for ridge model is {}".format(ridge_cv.score(X_test, y_t))</pre>
	The train score for ridge model is 0.9174759031352496 The train score for ridge model is 0.8566880002211078
In []:	
In [23]:	
In []:	
In []:	