Step-1

4764-1.6-63P AID: 124

RID: 232 | 28/1/2012

Given that producing x_1 trucks and x_2 planes requires $x_1 + 50x_2$ tons of steel, $40x_1 + 1000x_2$ pounds of rubber, and $2x_1 + 50x_2$ months of labor.

Suppose the unit costs y_1, y_2, y_3 are \$700 per ton, \$3 perpound and \$3000 per month.

Given that Ax gives the amounts of steel, rubber, and labor to produce x.

We have to find A.

Step-2

From the given data, we get

$$Ax = \begin{bmatrix} x_1 + 50x_2 \\ 40x_1 + 1000x_2 \\ 2x_1 + 50x_2 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & 50 \\ 40 & 1000 \\ 2 & 50 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 50 \\ 40 & 1000 \\ 2 & 50 \end{bmatrix}$$
Therfore,

Step-3

Here $(Ax)^T y$ is the cost of inputs while $x^T (A^T y)$ is the value of outputs.