MATH 270: Homework #4

Jesse Farmer

29 October 2004

1. Show that the region $G = \{z \mid |\Re z| < 1 \text{ and } |\Im z| < 3\} \cup \{z \mid |\Re z| < 3 \text{ and } |\Im z| < 1\}$ is star-shaped.

Let $z_0 \in G$, then the line segment joining 0 and z_0 is parameterized by $\gamma(t) = tz_0$ for $t \in [0, 1]$. Then $|\Re tz_0| = t|\Re z_0| \le |\Re z_0|$ and $|\Im tz_0| = t|\Im z_0| \le |\Im z_0|$. If $z_0 \in \{z \mid |\Re z| < 1 \text{ and } |\Im z| < 3\}$ then $|\Re \gamma(t)| < 1$ and $|\Im \gamma(t)| < 3$, so $\gamma(t)$ is contained in the same set for all $t \in [0, 1]$ (and likewise if z_0 is in the other rectangle). Therefore G is a star-shaped region about 0 since every point in G is connected to 0 through a line segment.

- 2. Evaluate the following integrals without performing an explicit computation:
 - (a) $\int_{\gamma} \frac{1}{z} dz$ where $\gamma(t) = \cos t + 2i \sin t$ for $t \in [0, 2\pi]$. γ parameterizes an ellipse, which is homotopic to a circle which can be parameterized

by $\gamma(\theta)=e^{i\theta}$ for $\theta\in[0,2\pi]$. Hence

$$\int_{\gamma} \frac{1}{z} dz = \int_{0}^{2\pi} i = 2\pi i$$

(b) $\int_{\gamma} \frac{1}{z^2} dz$ where γ is as in (a).

This function is entire and therefore the integral is 0 since γ is closed.

(c) $\int_{\gamma} \frac{e^z}{z} dz$ where $\gamma(t) = 2 + e^{it}$ for $t \in [0, 2\pi]$.

 γ is closed and the function is entire, so the integral is 0.

(d) $\int_{\gamma} \frac{1}{z^2-1} dz$ where γ is a circle of radius 1 centered about 1.

We can decomposed this into partial fractions by writing

$$\frac{1}{z^2 - 1} = \frac{1}{2} \frac{1}{z - 1} - \frac{1}{2} \frac{1}{z + 1}$$

However, $\frac{1}{z+1}$ is holomorphic on this disc and so its contribution to the integral is 0. $\frac{1}{z-1}$ around the circle centered at 1 is the same as the integral of $\frac{1}{\zeta}$ around the unit disc centered at 0 through a simple change of variables. From part (a) this integral is $2\pi i$, so

$$\int_{C(1,1)} \frac{1}{z^2 - 1} dz = \frac{1}{2} \int_{C(0,1)} \frac{1}{\zeta} d\zeta = \pi i$$

1

3. Evalutate $\int_{\gamma} \frac{1}{z} dz$ where γ is the line segment joining 1 to i.

By Cauchy's theorem the integral along this line joined with the quarter of the unit circle in the first quadrant is 0. The quarter-circle is parameterized by $\gamma(\theta)=e^{i\theta}$ for $\theta\in\left[0,\frac{\pi}{2}\right]$, hence

$$\int_{\gamma} \frac{dz}{z} = \int_0^{\frac{\pi}{2}} i \, dz = \frac{i\pi}{2}$$

4. Evaluate $\int_{\gamma} \sin z \, dz$ where γ is the unit circle.

 $\sin z$ is holomorphic since $\sin z = \Re e^{iz} = \frac{e^{iz} - e^{-iz}}{2i}$, and e^{iz} is certainly holomorphic. Hence the integral is 0.