Stage Olimpiadi - Teoria dei Numeri

Fabio Lilliu

February 2025

1 Teoria

1.1 Conteggio dei divisori

Problema 1 (Febbraio 2000) Qual è il più piccolo intero positivo che possiede esattamente 15 divisori?

Problema 2 (Febbraio 16, 2016) Sia $a_1, a_2, \ldots, a_n, \ldots$ una sequenza di interi positivi tali che a_{i+1} è il numero di divisori positivi di a_i per ogni $i \geq 1$. Supponiamo che $a_2 \neq 2$. Dimostrare che esiste un indice m tale che a_m sia un quadrato perfetto.

1.2 Congruenze

Problema 3 Risolvere per x, y naturali l'equazione $4^x - 2^y = 4094$.

Problema 4 (Cesenatico 5, 2002) Sia $A = 5^n + 3^n + 1$. È vero che se A è primo, allora n è divisibile per 12?

1.3 Divisibilità e simili

Problema 5 (Febbraio 1997) Dato un numero primo p, determinare tutte le coppie ordinate di numeri interi positivi (m, n) che risolvono l'equazione

$$\frac{1}{m} + \frac{1}{n} = \frac{1}{p}. (1)$$

Problema 6 (Febbraio 15, 2013) Determinare tutte le terne di interi strettamente positivi (a, b, c) tali che

- $a \le b \le c$;
- MCD(a, b, c) = 1;
- $a \ \dot{e} \ divisore \ di \ b + c$, $b \ \dot{e} \ divisore \ di \ c + a \ e \ c \ \dot{e} \ divisore \ di \ a + b$.

2 Esercizi

Esercizio 1 (Febbraio 15, 2020)

- 1. Supponiamo che $n=k^2$ sia un quadrato perfetto. Dimostrare che il numero di divisori positivi di n strettamente minori di k è uguale al numero di divisori di n strettamente maggiori di k.
- 2. Supponiamo che $n = k^2$ sia un quadrato perfetto. Dimostrare che n ha al massimo 2k 1 divisori positivi.
- 3. Trovare tutti gli interi positivi k tali che k^2 abbia esattamente 2k-1 divisori positivi.

Esercizio 2 (Cesenatico 2, 2006) Determinare tutti i valori di m, n, p tali che $p^n + 144 = m^2$, dove m e n sono interi positivi e p è un numero primo.

Esercizio 3 (Febbraio 17, 2014) Trovare tutte le coppie (a,b) di numeri interi positivi tali che a+1 sia un divisore di b-1 e b sia un divisore di a^2+a+2 .