	Name - Ayush Jain SAP ID - 60004200132
	Engineering Chemistry-2
	Spectroscopy - Tutorial 1
0.1>	Casculate energy associated with radiation having 1:5000 Å, in Koul/mole
Ans.	d = 5000 A = 5000 x 10 8 cm
	$E = hc = (6.628 \times 10^{-27}) \times (2.998 \times 10^{-10})$ (5000 × 10 ⁻⁸)
2	= 3974 × 10-12 e x 98 = 3974 × 10-12 × 6.023 × 1023 4.18 × 1010
	= 57.262 Kcals mole
	The energy associated with given radiation Ps 57.262 kcd mb
	calculate the smallest amount of energy that can be emmitted or absorbed at n = 2.5 x10' sec'. Also calculate wavelength of this radiation.
An&	$n = 2.5 \times 10^{12} \text{ sec}^{-1}$ $E = hc = hn$
	= (6 628 × 10 ⁻³⁴) × (2.5 × 10 ⁻¹²) = 16.57 × 10 ⁻²²]
	E = 1.657 x10-21 J
(Juntaran)	FOR EDUCATIONAL USE

	Page 2
	$n = c \implies \lambda = c = 3 \times 10^{2} = 1.2 \times 10^{4} \text{ m}$ $\lambda = c \implies \lambda = c = 3 \times 10^{12}$
	7 2.5 ×10 ¹²
	Amount ob energy emmitted or absorbed = 1.657 ×10-21]
	Wavelength of radiation = 1.2 ×10-4 m = 120 mm.
Q. 3>	Give characteristice of electromagnetic radiations.
Ane	Important characteristics of electromagnetic radiations are:
	i) These radiations are produced by the oscillations of electric
ž.	charge and magnetic field residing on the atom. The electric and
	magnetic components are mutually perpendicular and co-plomas.
	2) There are characterised by their wavelength or frequency or
1/2:-	wave numbers.
	3) The energy carried by a electromagnetic radiation is
16	directly propostional to 1ts frequency. The emmision or
- Service	absorption or radiation le quantized and each quantum of
	radiation is ralled a photon.
	4) All types of radiations travel with the same relocity and
	no medium is required for their propagation. They can
	travel through vacuum.
	5) When visible light is passed through prism, it is applit
	up through seven colours which correspond to definite
	wovelengts. This phenomenon is called dispersion. Thus, a
	gap of electromagnetic radiations can be applit up into various
	components for analysis.
Sundaram	FOR EDUCATIONAL USE