Practical Regression Hints

Po-Chun Huang NCCU, Spring 2021

Outline

- Units of Measurement and Functional Form
- Dummy Variables and Interactions
- Practical Regression Hints

• Units of Measurement and Functional Form

1. Units of Measurement and Functional Form

TABLE 2.3 Su	mmary of Functiona	l Forms Involving Loga	rithms
Model	Dependent Variable	Independent Variable	Interpretation of $oldsymbol{eta}_1$
Level-level	У	X	$\Delta y = \beta_1 \Delta x$
Level-log	У	log(x)	$\Delta y = (\beta_1/100)\% \Delta x$
Log-level	log(y)	X	$\%\Delta y = (100\beta_1)\Delta x$
Log-log	log(y)	log(x)	$\%\Delta y = \beta_1\%\Delta x$

- On average, one year increase in years of education is associated with 0.89 increase in hourly wage
- . reg wage school

Source	SS	df	MS	Number of ob	s =	5,898
				F(1, 5896)	=	0.63
Model	26626.3053	1	26626.3053	Prob > F	=	0.4258
Residual	247524950	5,896	41981.8436	R-squared	=	0.0001
				Adj R-square	d =	-0.0001
Total	247551576	5,897	41979.2396	Root MSE	=	204.89
	'					
wage	Coef.	Std. Err.	t	P> t [95%	Conf.	Interval]
school	.8953485	1.124262	0.80	0.426 -1.308	616	3.099313
_cons	.0085636	14.54931	0.00	1.000 -28.51	341	28.53053

- On average, one year increase in years of education is associated with 7.68% increase in hourly wage
 - . gen lnwage=log(wage)
 - . reg lnwage school

Source	SS	df	MS		er of obs 5896)	=	5,898 435.38
Model Residual	196.236742 2657.48287	1 5,896	196.236742 .450726402	2 Prob 2 R-squ	> F lared	=	0.0000 0.0688
Total	2853.71961	5,897	.483927354	_	R-squared MSE	=	0.0686 .67136
lnwage	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
school _cons	.0768647 .8257507	.0036838	20.87 17.32	0.000	.069643		.0840862 .9192062

• On average, one hundred percent increase in years of schooling is associated with 10.95 increase in hourly wage

```
. gen lnschool=log(school)
(2 missing values generated)
```

. reg wage lnschool

Soi	urce	SS	df	MS		er of obs		5,896
Mo Resid	odel dual	27334.8591 247524105	1 5,894	27334.859 41995.945	1 Prob 9 R-sq	5894) > F uared	= = =	0.65 0.4198 0.0001
То	otal	247551440	5,895	41993.458	_	R-squared MSE	d = =	-0.0001 204.93
7	wage	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
lnscl	hool	10.95816 -16.27237	13.5826 34.40568	0.81 -0.47	0.420 0.636	-15.668 -83.720		37.58502 51.17537

• On average, one hundred percent increase in years of schooling is associated with 88 percent increase in hourly wage

. reg lnwage lnschool

SS	df	MS	Numb	er of obs	=	5,896
			- F(1,	5894)	=	388.23
176.300231	1	176.300231	Prob	> F	=	0.0000
2676.52194	5,894	.454109594	l R-sq	uared	=	0.0618
			- Adj	R-squared	=	0.0616
2852.82217	5,895	.4839393	Root	MSE	=	.67388
Coef.	Std. Err.	t	P> t	[95% Coi	nf.	Interval]
.8800464 4186734	.0446642	19.70 -3.70	0.000			.9676045 1968824
	176.300231 2676.52194 2852.82217 Coef.	176.300231 1 2676.52194 5,894 5,895 Coef. Std. Err8800464 .0446642	176.300231	F(1, 176.300231	F(1, 5894) 176.300231	F(1, 5894) = 176.300231

• Dummy Variables and Interactions

Dummy Variables

• Use regression to estimate gender earning differential

$$\ln wage = \beta_0 + \beta_1 male + u$$

• male: a variable that's equal to 1 for males and 0 for females

Dummy Variables

. reg lnwage male

Source	SS	df	MS		er of obs	=	5,898
Model Residual	69.3584016 2784.36121	1 5,896	69.3584016	R-sq	•	= =	146.87 0.0000 0.0243 0.0241
Total	2853.71961	5,897	.483927354	_	-	=	.6872
lnwage	Coef.	Std. Err.	t	P> t	[95% Cor	nf.	Interval]
male _cons	.2171958 1.689189	.017922 .0130078	12.12 129.86	0.000	.1820621 1.663689		.2523294 1.714689

Dummy Variables

. reg lnwage male school

Source	SS	df	MS		er of obs	=	5,898 332.77
Model Residual	289.496622 2564.22299	2 5,895	144.748313 .43498269	l Prob 5 R-squ	> F lared	=	0.0000 0.1014
Total	2853.71961	5,897	.483927354	_	R-squared MSE	=	0.1011
lnwage	Coef.	Std. Err.	t	P> t	[95% Co	onf.	Interval]
male school _cons	.2529257 .0817576 .6302659	.0172735 .0036343 .0486983	14.64 22.50 12.94	0.000 0.000 0.000	.219063 .074633 .534799	31	.2867881 .0888821 .7257324

Dummy Variables and Interactions

- . gen male_school=male*school
- . reg lnwage male school male_school

Source	SS	df	MS	Number of obs	=	5,898
				F(3, 5894)	=	225.78
Model	294.141681	3	98.047227	Prob > F	=	0.0000
Residual	2559.57793	5,894	.434268396	R-squared	=	0.1031
				Adj R-squared	=	0.1026
Total	2853.71961	5,897	.483927354	Root MSE	=	.65899

lnwage	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
male	.5576785	.0947668	5.88 17.48	0.000	.3719009	.7434561
male_school	0238893	.0073045	-3.27	0.001	0382088	0095699
_cons	.4590116	.0714809	6.42	0.000	.3188828	.5991404

Dummy Variables and Interactions

• Test the return to education are the same

$$H0: \beta_3 = 0$$

• Test expected earnings conditional on education are the same:

H0:
$$\beta_1 = \beta_3 = 0$$

Dummy Variables for Multiple Categories

- If there are *n* categories, you have to include *n-1* dummies average earning of each category
- Example: race = 1 for non-Hispanic African-Americans, 2 for Hispanics, and 3 for non-Hispanic Caucasians
 - Include two dummies to estimate the average earnings of each race group

$$\ln wage = \beta_0 + \beta_1 H + \beta_2 W + u$$

- H=1 if Hispanics
- W=1 if non-Hispanic Caucasians

Dummy Variables for Multiple Categories

. reg wage i.race

Source	SS	df	MS		er of obs	s = =	5,898 0.88
Model Residual	74127.2826 247477449	2 5,895	37063.6413 41980.9073	Prok	F(2, 5895) Prob > F R-squared Adj R-squared		0.4136 0.0003
Total	247551576	5,897	41979.2396	_	R-squared MSE	d = =	-0.0000 204.89
wage	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
race 2 3	.8503192 7.396608	7.848541 6.135244	0.11 1.21	0.914 0.228	-14.53 -4.630		16.23634 19.42393
_cons	7.450497	4.872869	1.53	0.126	-2.102	113	17.00311

Interactions

• You want to measure the relationship between earnings and marital status, and whether this relationship differs by gender. You estimate the following regression:

$$Y = \beta_0 + \beta_1 MARRIED + \beta_2 FEMALE + \beta_3 FEMXMARRIED + u$$

• Y = log wages, MARRIED = 1 if married and 0 otherwise, FEMALE = 1 if female and 0 otherwise, and FEMXMARR is the interaction FEMALE×MARRIED

Interactions

. reg Y MARRIED FEMALE FEMXMARR

Source	ss	df	MS		er of obs		532 45.09
Model Residual	43.1239872 168.323763	3 528	14.3746624 .318795006	Prob	528) > F uared R-squared	= = = d =	0.0000 0.2039 0.1994
Total	211.447751	531	.398206687	_	_	u – =	.56462
Y	Coef.	Std. Err.	t	P> t	[95% (Conf.	Interval]
MARRIED FEMALE FEMXMARR _cons	0028192 5405201 0421958 1.690307	.0993045 .1180226 .1302137 .0928228	-0.03 -4.58 -0.32 18.21	0.977 0.000 0.746 0.000	19789 77237 29799	716 963	.1922612 3086686 .2136047 1.872655

Interactions

• What is the estimated average of log wages for unmarried men? What about unmarried women?

• What is the estimated effect of being married on log wages for men? What is the estimated effect of being married on log wages for women?

• How would you test the null hypothesis that the effect of being married on log wages does not vary with gender? Write down the null hypothesis in terms of the regression coefficients. Do you reject the null hypothesis?

• Practical Regression Hints

2. Practical Regression Hints

1. Do not always attempt to maximize R-squared, adjusted R-squared, or some other goodness-of-fit measure. Might inadvertently include in \mathbf{x} factors that should not be held fixed.

EXAMPLE: *y* is individual or family demand for a product, x_1, \ldots, x_{k-1} include various product prices, income, and demographics. Should we include the demand for a competing product as x_k ? Usually does not make sense to hold a quantity demanded fixed and change the price of any good (bad control problem)

• It is possible to obtain a convincing estimate of a causal effect with a low *R*-squared. For example, under random assignment, a simple regression estimate consistently estimates the causal effect, but the "treatment" may not explain much of the variation in *y*.

• More precisely, in the equation

$$y = \beta_0 + \beta_1 x + u,$$

the question of whether u is correlated with w is very different from the relative sizes of Var(y) and Var(u).

• There are many other factors that explain the health indicator and health expenditures other than the treatment, but there can be no "omitted variable bias" because of random assignment.

2. Be careful in interpreting models nonlinear in explanatory variables, especially with interactions. Coefficients on level terms may become essentially meaningless.

Example: the effect of log hourly wage on minutes of sleep..

. reg sleep lhrwage

Source	SS	df	MS	Numl	per of obs	=	532
				— F(1	, 530)	=	2.40
Model	445336.018	1	445336.01	8 Prob	o > F	=	0.1216
Residual	98181344.4	530	185247.8	2 R-sc	quared	=	0.0045
				– Adj	R-squared	. =	0.0026
Total	98626680.4	531	185737.62	8 Root	MSE	=	430.4
sleep	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
lhrwage _cons	-45.89257 3325.137	29.59886 46.2837	-1.55 71.84	0.122	-104.03 3234.2		12.25292 3416.059

. reg sleep lhrwage educ

Source	SS	df	MS	Numk	er of obs	=	532
				- F(2,	529)	=	1.81
Model	668573.104	2	334286.552	2 Prob	> F	=	0.1654
Residual	97958107.3	529	185176.006	R-sc	quared	=	0.0068
				- Adj	R-squared	=	0.0030
Total	98626680.4	531	185737.628	3 Root	MSE	=	430.32
	'						
sleep	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
lhrwage	-36.61547	30.7757	-1.19	0.235	-97.0730	6	23.84212
educ	-7.91636	7.209991	-1.10	0.273	-22.0800	9	6.247368
_cons	3412.647	92.1608	37.03	0.000	3231.60	1	3593.693

. gen lhrwage_educ=lhrwage*educ
(174 missing values generated)

. reg sleep lhrwage educ lhrwage_educ

Source	SS	df	MS	Numb	per of obs	; =	532
				- F(3	, 528)	=	1.24
Model	691238.925	3	230412.97	5 Prob	o > F	=	0.2937
Residual	97935441.5	528	185483.793	l R-so	quared	=	0.0070
				- Adj	R-squared	l =	0.0014
Total	98626680.4	531	185737.628	3 Root	. MSE	=	430.68
	'						
sleep	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
lhrwage	5.036041	123.0679	0.04	0.967	-236.72	167	246.7988
educ	-3.395601	14.80935	-0.23	0.819	-32.488	808	25.69688
lhrwage_educ	-3.262565	9.33311	-0.35	0.727	-21.597	15	15.07202
_cons	3356.447	185.3494	18.11	0.000	2992.3	34	3720.56

. reg sleep lhrwage educ c.lhrwage#c.educ

Source	SS	df	MS	Number of obs F(3, 528)	=	532 1.24
Model Residual	691238.949 97935441.4	3 528	230412.983 185483.791	Prob > F R-squared	=	0.2937
Total	98626680.4	531	185737.628	Adj R-squared Root MSE	=	0.0014 430.68

sleep	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lhrwage educ	5.036064 -3.395599	123.0679 14.80935	0.04	0.967 0.819	-236.7267 -32.48808	246.7988 25.69688
c.lhrwage#c.educ	-3.262566	9.33311	-0.35	0.727	-21.59715	15.07202
_cons	3356.447	185.3494	18.11	0.000	2992.334	3720.56

• Little variation in education around zero.

. sum sleep lhrwage educ

Variable	Obs	Mean	Std. Dev.	Min	Max
sleep	706	3266.356	444.4134	755	4695
lhrwage	532	1.430977	.6310362	-1.049822	3.569814
educ	706	12.78045	2.784702	1	17

- The coefficient on *lhrwage* measures the effect of one hundred percent increase in hourly wage on minutes of sleep for individuals with "zero year of education".
- The variables *lhrwage* and *lhrwage_educ* are probably highly collinear.
- The collinearity is a result of trying to estimate a poorly identified parameter: the partial effect of *lhrwage* at *educ*=0 is poorly identified and uninteresting.

Solution I: centering

- . qui sum educ
- . gen educ_mean=r(mean)
- . gen c_educ=educ-educ_mean
- . gen lhrwage_ceduc=lhrwage*c_educ
 (174 missing values generated)
- . reg sleep lhrwage educ lhrwage_ceduc

Source	SS	df	MS	Number of obs	=	532
				F(3, 528)	=	1.24
Model	691238.947	3	230412.982	Prob > F	=	0.2937
Residual	97935441.4	528	185483.791	R-squared	=	0.0070
				Adj R-squared	=	0.0014
Total	98626680.4	531	185737.628	Root MSE	=	430.68

sleep	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lhrwage	-36.66102	30.80154	-1.19	0.234	-97.16964	23.8476
educ	-3.395599	14.80935	-0.23	0.819	-32.48808	25.69688
lhrwage_ceduc	-3.262566	9.33311	-0.35	0.727	-21.59715	15.07202
_cons	3356.447	185.3494	18.11	0.000	2992.334	3720.56

Solution II: use margins command

• This table is the same as the table on page 27.

. reg sleep lhrwage educ c.lhrwage#c.educ

Source	SS	df	MS	Number of obs	=	532
 				F(3, 528)	=	1.24
Model	691238.949	3	230412.983	Prob > F	=	0.2937
Residual	97935441.4	528	185483.791	R-squared	=	0.0070
				Adj R-squared	=	0.0014
Total	98626680.4	531	185737.628	Root MSE	=	430.68

sleep	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
lhrwage educ	5.036064 -3.395599	123.0679 14.80935	0.04 -0.23	0.967 0.819	-236.7267 -32.48808	246.7988 25.69688
c.lhrwage#c.educ	-3.262566	9.33311	-0.35	0.727	-21.59715	15.07202
_cons	3356.447	185.3494	18.11	0.000	2992.334	3720.56

• Can evaluate the effect at the mean of education using stata margins command

educ

]	Delta-method				
	dy/dx	Std. Err.	t	P> t	[95% Conf.	Interval]
lhrwage	-36.50033	30.80303	-1.18	0.237	-97.01187	24.0112

= 12.7312 (mean)