Test #1 Equation Sheet: Even/Odd Components:

$$\begin{aligned} x_{odd} &= \frac{x(t) - x(-t)}{2} \\ x_{even} &= \frac{x(t) + x(-t)}{2} \end{aligned}$$

Energy and Power:

$$E_{a,b} = \int_{a}^{b} |x(t)|^2 dt$$

Ea,b =
$$\int_a^b |x(t)|^2 dt$$

 $P_{a,b} = \frac{1}{b-a} \int_a^b |x(t)|^2 dt = \frac{E_{a,b}}{b-a}$

$$x(t) = A \cos(\omega_0 t + \theta)$$

Rotating Phasors:

$$x(t) = A\cos(\omega_0 t + \theta)$$

 $\tilde{x}(t) = Ae^{\omega_0 t + \theta}$

$$x(t) = Ae^{-0.1}$$
$$x(t) = \frac{\tilde{x}(t) + \tilde{x}^*(t)}{2}$$

$$\begin{array}{l} \textbf{Double Sided Spectrum:} \\ x(t) = \frac{A}{2} e^{j\theta} e^{j(\omega_0 t)} + \frac{A}{2} e^{-j\theta} e^{j(-\omega_0 t)} \end{array}$$

$$\omega_0 = 2\pi f_0, \quad f_0 = \frac{1}{T_0}$$

 $\delta(t) Properties$

$$\delta(at) = \frac{1}{-1}\delta(t)$$

$$\delta(t) Properties$$

$$\delta(at) = \frac{1}{|a|} \delta(t)$$

$$\delta(t) = \delta(-t)$$

$$\int_a^b x(t) \delta(t - t_0) = \begin{cases} x(t_0) & \text{if } a \le t_0 \le b \\ 0 & \text{else} \end{cases}$$

$$x(t) \delta(t - t_0) = x(t_0) \delta(t - t_0)$$

$$\delta(t) = \frac{d}{dt} u(t)$$

$$\delta(t) = \frac{d}{dt}u(t)$$

Properties of Systems:

Linear: Scaling and Additive must hold, i.e.
$$y_1(t) = H\{x_1(t)\}\$$
 $\Rightarrow H\{\alpha x_1 + \beta x_2\} = \alpha y_1 + \beta y_2$ $y_2(t) = H\{x_2(t)\}$

Time Invariant: Shift by the same amount, i.e. $y(t) = H\{x(t)\} \Rightarrow H\{x(t-\tau)\} = y(t-\tau)$

$$y(t) = H\left\{x(t)\right\} \Rightarrow H\left\{x(t-\tau)\right\} = y(t-\tau)$$

Causal: Output begins at the same same time or after, i.e. $x_1=x_2$ for $t\leq t_0\Rightarrow H\left\{x_1\right\}=H\left\{x_2\right\}$ for $t\leq t_0$

Stable: Bounded Input \Rightarrow Bounded Output

Convolution:

$$\begin{split} y\left[n\right] &= x\left[n\right] * h[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k], \quad h[n] = H\{\delta[n]\} \\ y(t) &= x(t) * h(t) = \int_{-\infty}^{\infty} x(t)h(t-\lambda)d\lambda, \quad h(t) = H\{\delta(t)\} \\ \text{Graphical Representation:} \end{split}$$

Circuit Equations:

Capacitors:
$$v_c = \frac{1}{C} \int i_c dt$$
 Capacitors:
$$i_c = C \frac{dv_c}{dt}$$

$$v_L = L \frac{di_L}{dt}$$
 Inductors:
$$i_L = \frac{1}{L} \int v_L dt$$

Test #2 Equation Sheet: Trigonometric Fourier Series:

$$\begin{split} x(t) &= a_0 + \sum_{n=1}^{\infty} a_n cos(n\omega_0 t) + \sum_{n=1}^{\infty} b_n sin(n\omega_0 t) \\ a_0 &= \frac{1}{T_0} \int_{T_0} x(t) dt \\ a_n &= \frac{2}{T_0} \int_{T_0} x(t) cos(n\omega_0 t) dt \\ b_n &= \frac{2}{T_0} \int_{T_0} x(t) sin(n\omega_0 t) dt \end{split}$$

Complex Exponential Fourier Series:

$$x(t) = \sum_{n = -\infty}^{\infty} X_n e^{jn\omega_0 t}$$

$$X_n = \frac{1}{T_0} \int_{T_0} x(t) e^{-jn\omega_0 t} dt$$

σT_0		
	x(t)	X_n
	real	even mag., odd phase
	real and even	even mag. and purely real
	real and odd	even mag. and purely imaginary

Relationship between complex and trig Fourier Series:

$$a_0 = X_0$$

$$a_n = X_n + X_{-n}$$

Average power of a signal (Parseval's Theorem):

$$\frac{1}{T_0} \int_{t_0}^{t_0 + T_0} |x(t)|^2 dt = \sum_{n = -\infty}^{\infty} |X_n|^2$$

The Fourier Transform:
$$X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt \Longleftrightarrow x(t) = \int_{-\infty}^{\infty} X(f)e^{j2\pi ft}dt$$

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(f)|^2 dt$$

The Important Problem: (Works for all sinusoids) $y(t) = h(t) * A \cos(2\pi f_0 t + \theta) = A|H(f_0)|\cos(2\pi f_0 t + \theta + \angle H(f_0))$

Ideal Filters: (impossible to create because they're not causal.)

ideal I liters: (impossible to create because they re not causai.)				
	Filter H(f)		h(t)	
	LPF	$\Pi\left(\frac{f}{2fc}\right)$	$(2f_c)\operatorname{sinc}(2f_ct)$	
	HPF	$1 - \Pi\left(\frac{f}{2f_c}\right)$	$\delta(t) - (2f_c)\operatorname{sinc} 2f_c t$	
	BPF	$\Pi\left(\frac{f-f_0}{B}\right) + \Pi\left(\frac{f+f_0}{B}\right)$	$2B\operatorname{sinc}(Bt)\cos(2\pi f_0 t)$	
	BRF	$1 - \Pi\left(\frac{f - f_0}{B}\right) \Pi\left(\frac{f + f_0}{B}\right)$	$\delta(t) - 2B\operatorname{sinc}(Bt)\cos(2\pi f_0 t)$	

Inductors and Capacitors:

Variable	Inductor	Capacitor
v(t)	$L\frac{di(t)}{dt}$	$\int \frac{1}{C} \int i(t)dt$
i(t)	$rac{1}{L}\int v(t)dt$	$C\frac{dv(t)}{dt}$