# Regression model to predict the cost to hospital

# **Agenda**

- 1. <u>Dataset Description</u>
- 2. Package importing and loading the dataset
- 3. Exploratory Data Analysis
- 4. FeatureEngineering
- 5. Data Visulization
- 6. Train Test Split
- 7. Creating Linear Regression Model
- 8. Model Performance Metrics

## 1. Dataset Description

This dataset contains multiple fetures that depicts the health condition of a patient arrived to hospital for a treatment. It has features as below

- Age
- Gender
- Marital Statuts
- Patient height, weight
- Patient current health condition like BP, HB and present and past compliants
- Any implant done and
- The total cost to the hospital

## 2. Package importing and loading the dataset

```
In [105]:
```

```
# Firstly we import the basic libraries to read the input data set.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
```

#### In [106]:

```
# Firstly we import the basic libraries to read the input data set.
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

#### In [107]:

# Visualize the first 5 rows starting with row #0 to row#4 to ensure the data has
hospital=pd.read\_csv("/Users/saisankar/Downloads/Case\_Study/Hospital.csv")
hospital.head()

#### Out[107]:

|   | SL. | AGE  | GENDER | MARITAL<br>STATUS | KEY<br>COMPLAINTS<br>-CODE | BODY<br>WEIGHT | BODY<br>HEIGHT | HR<br>PULSE | BP -<br>HIGH | BP-<br>LOW |  |
|---|-----|------|--------|-------------------|----------------------------|----------------|----------------|-------------|--------------|------------|--|
| 0 | 1   | 58.0 | М      | MARRIED           | other- heart               | 49.2           | 160            | 118         | 100.0        | 80.0       |  |
| 1 | 2   | 59.0 | М      | MARRIED           | CAD-DVD                    | 41.0           | 155            | 78          | 70.0         | 50.0       |  |
| 2 | 3   | 82.0 | М      | MARRIED           | CAD-TVD                    | 46.6           | 164            | 100         | 110.0        | 80.0       |  |
| 3 | 4   | 46.0 | М      | MARRIED           | CAD-DVD                    | 80.0           | 173            | 122         | 110.0        | 80.0       |  |
| 4 | 5   | 60.0 | М      | MARRIED           | CAD-DVD                    | 58.0           | 175            | 72          | 180.0        | 100.0      |  |

5 rows × 24 columns

# 3. Exploratory Data Analysis

# Let us do the EDA (Exploratory Data Analysis)

#Below steps were performed as part of EDA

#A rounded value were considered which are less than 1 for features like AGE

#Redundant columns which are giving same details from other columns were Dropped.

#NAN, NULL Values have been filled either with the average or the ideal health condition values. values

#Categorical features were converted to numeric values

#For categorical features where only 2 values are expected like MARITAL STATUS have been converted to 1 and 0 using Lambda

#### In [108]:

# we observe that the column SL. has no significance and has no dependency with t
#hence droping that column
hospital.drop(['SL.'],axis=1,inplace=True)
hospital.head()

#### Out[108]:

|   | AGE  | GENDER | MARITAL<br>STATUS | KEY<br>COMPLAINTS<br>-CODE | BODY<br>WEIGHT | BODY<br>HEIGHT | HR<br>PULSE | BP -<br>HIGH | BP-<br>LOW | RR |  |
|---|------|--------|-------------------|----------------------------|----------------|----------------|-------------|--------------|------------|----|--|
| 0 | 58.0 | М      | MARRIED           | other- heart               | 49.2           | 160            | 118         | 100.0        | 80.0       | 32 |  |
| 1 | 59.0 | М      | MARRIED           | CAD-DVD                    | 41.0           | 155            | 78          | 70.0         | 50.0       | 28 |  |
| 2 | 82.0 | М      | MARRIED           | CAD-TVD                    | 46.6           | 164            | 100         | 110.0        | 80.0       | 20 |  |
| 3 | 46.0 | М      | MARRIED           | CAD-DVD                    | 80.0           | 173            | 122         | 110.0        | 80.0       | 24 |  |
| 4 | 60.0 | М      | MARRIED           | CAD-DVD                    | 58.0           | 175            | 72          | 180.0        | 100.0      | 18 |  |

5 rows × 23 columns

#### In [109]:

```
#Further it is observed that the feature Age has a decimal value and few values a #to be able to consider the feature AGE into the model we need to round it to 1 f #integer part only for the rest. Similarly for other numeric columns hospital['AGE'] = hospital['AGE'].apply(lambda x: 1 if x < 1 else x) hospital['AGE'] = (hospital.AGE.astype(int))
```

#### In [110]:

```
#we do not need the feature Total Length of stay as we can get the same data by a
#Hence dropping the total length of stay as it is redundant variable
# Similarly Implant Used can also be dropped as the cost of Implant value==0 impl
hospital.drop(['TOTAL LENGTH OF STAY'],axis=1,inplace=True)
hospital.drop(['IMPLANT USED (Y/N)'],axis=1,inplace=True)
```

#### In [111]:

```
# split train test, fit model, predict the model
hospital.head()
```

#### Out[111]:

|   | AGE | GENDER | MARITAL<br>STATUS | KEY<br>COMPLAINTS<br>-CODE | BODY<br>WEIGHT | BODY<br>HEIGHT | HR<br>PULSE | BP -<br>HIGH | BP-<br>LOW | RR |  |
|---|-----|--------|-------------------|----------------------------|----------------|----------------|-------------|--------------|------------|----|--|
| 0 | 58  | М      | MARRIED           | other- heart               | 49.2           | 160            | 118         | 100.0        | 80.0       | 32 |  |
| 1 | 59  | М      | MARRIED           | CAD-DVD                    | 41.0           | 155            | 78          | 70.0         | 50.0       | 28 |  |
| 2 | 82  | М      | MARRIED           | CAD-TVD                    | 46.6           | 164            | 100         | 110.0        | 80.0       | 20 |  |
| 3 | 46  | М      | MARRIED           | CAD-DVD                    | 80.0           | 173            | 122         | 110.0        | 80.0       | 24 |  |
| 4 | 60  | М      | MARRIED           | CAD-DVD                    | 58.0           | 175            | 72          | 180.0        | 100.0      | 18 |  |

5 rows × 21 columns

#### In [112]:

```
#Filling the NULL values for the categorical and string variables.
hospital['KEY COMPLAINTS -CODE'].fillna("NO COMPLAINT", inplace = True)
hospital['PAST MEDICAL HISTORY CODE'].fillna("NO HISTORY", inplace = True)
#Filling the NULL values for HB, Low-BP, HIgh-BP with the ideal values as these of
#For UREA and CREATININE men and women have a different ranges, an average value
hospital['BP-LOW'].fillna("80", inplace = True)
hospital['BP -HIGH'].fillna("120", inplace = True)
hospital['HB'].fillna("15", inplace = True)
hospital['UREA'].fillna("26", inplace = True)
hospital['CREATININE'].fillna("0.7", inplace = True)
```

```
In [113]:
```

```
hospital.describe()
```

# There are no NULL values in any of the features.

#### Out[113]:

|             | AGE        | BODY<br>WEIGHT | BODY<br>HEIGHT | HR PULSE   | RR         | LENGTH<br>OF STAY -<br>ICU | LENGTH<br>OF STAY-<br>WARD |
|-------------|------------|----------------|----------------|------------|------------|----------------------------|----------------------------|
| count       | 248.000000 | 248.000000     | 248.000000     | 248.000000 | 248.000000 | 248.000000                 | 248.000000                 |
| mean        | 28.891129  | 37.524677      | 130.221774     | 92.229839  | 23.540323  | 3.475806                   | 8.153226                   |
| std         | 25.887022  | 23.118822      | 39.170901      | 20.308740  | 3.840756   | 3.853520                   | 3.755793                   |
| min         | 1.000000   | 2.020000       | 19.000000      | 41.000000  | 12.000000  | 0.000000                   | 0.000000                   |
| 25%         | 6.000000   | 15.000000      | 105.000000     | 78.000000  | 22.000000  | 1.000000                   | 6.000000                   |
| 50%         | 15.500000  | 40.900000      | 147.500000     | 90.000000  | 24.000000  | 2.000000                   | 7.000000                   |
| <b>75</b> % | 55.000000  | 58.250000      | 160.000000     | 104.000000 | 24.000000  | 4.000000                   | 10.000000                  |
| max         | 88.000000  | 85.000000      | 185.000000     | 155.000000 | 42.000000  | 30.000000                  | 22.000000                  |

#### In [114]:

hospital.shape

Out[114]:

(248, 21)

# 4. Feature Engineering

#scikit-learn expects all features to be numeric. So how do we include a categorical feature in our model?

#Ordered categories: transform them to sensible numeric values (example: small=1, medium=2, large=3)

#Unordered categories: use dummy encoding (0/1) What are the categorical features in our dataset? Below are the Unordered categories:

MARITAL STATUS, KEY COMPLAINTS -CODE, PAST MEDICAL HISTORY CODE, GENDER, MODE OF ARRIVAL, STATE AT THE TIME OF ARRIVAL, TYPE OF ADMSN

## In [115]: ## Renaming few feature names to be convinient. hospital.rename(columns={'KEY COMPLAINTS -CODE':'COMPLAINTS'}, inplace=True) hospital.rename(columns={'MARITAL STATUS':'MARRIED'}, inplace=True) hospital.rename(columns={'PAST MEDICAL HISTORY CODE': 'PAST HISTORY'}, inplace=Tru hospital.rename(columns={'STATE AT THE TIME OF ARRIVAL':'ARRIVAL\_STATE'}, inplace hospital.rename(columns={'MODE OF ARRIVAL':'ARRIVAL MODE'}, inplace=True) hospital.rename(columns={'TYPE OF ADMSN':'ADMISSION'}, inplace=True) hospital.rename(columns={'TOTAL COST TO HOSPITAL ':'TOTAL\_COST'}, inplace=True) ## convert the cateogrical variables to Numerical values. hospital['MARRIED'] = hospital['MARRIED'].apply(lambda x: 1 if x=='MARRIED' else hospital['GENDER'] = hospital['GENDER'].apply(lambda x: 1 if x=='M' else 0) hospital['ADMISSION'] = hospital['ADMISSION'].apply(lambda x: 1 if x=='EMERGENCY hospital['ARRIVAL\_STATE'] = hospital['ARRIVAL\_STATE'].apply(lambda x: 1 if x=='A hospital['COMPLAINTS'] = hospital['COMPLAINTS'].apply(lambda x: 0 if x=='NO COMP hospital['PAST HISTORY'] = hospital['PAST HISTORY'].apply(lambda x: 0 if x=='NO ##Creating dummy variables. HISTORY dummies =pd.get dummies(hospital.PAST HISTORY, prefix='HISTORY') COMPLAINTS dummies = pd.get dummies(hospital.COMPLAINTS, prefix='COMPLAINTS')

ARRIVAL dummies = pd.get dummies(hospital.ARRIVAL MODE, prefix='MODE')

HISTORY dummies.sample(n=5, random state=1)

#ARRIVAL dummies.sample(n=5, random state=1)

#COMPLAINTS dummies.sample(n=5, random state=1)

#### Out[115]:

|     | HISTORY_0 | HISTORY_1 |
|-----|-----------|-----------|
| 67  | 1         | 0         |
| 247 | 1         | 0         |
| 210 | 1         | 0         |
| 224 | 1         | 0         |
| 90  | 1         | 0         |

#### In [116]:

```
hospital.shape
```

```
Out[116]:
```

(248, 21)

## In [117]:

COMPLAINTS\_dummies.sample(n=5, random\_state=1)

## Out[117]:

|     | COMPLAINTS_0 | COMPLAINTS_1 |
|-----|--------------|--------------|
| 67  | 1            | 0            |
| 247 | 0            | 1            |
| 210 | 0            | 1            |
| 224 | 0            | 1            |
| 90  | 0            | 1            |

## In [118]:

ARRIVAL\_dummies.sample(n=20, random\_state=1)

## Out[118]:

|     | MODE_AMBULANCE | MODE_TRANSFERRED | MODE_WALKED IN |
|-----|----------------|------------------|----------------|
| 67  | 0              | 0                | 1              |
| 247 | 0              | 0                | 1              |
| 210 | 0              | 0                | 1              |
| 224 | 0              | 0                | 1              |
| 90  | 0              | 0                | 1              |
| 222 | 0              | 0                | 1              |
| 58  | 0              | 0                | 1              |
| 127 | 0              | 0                | 1              |
| 179 | 0              | 0                | 1              |
| 4   | 1              | 0                | 0              |
| 78  | 0              | 0                | 1              |
| 85  | 0              | 0                | 1              |
| 95  | 0              | 0                | 1              |
| 112 | 0              | 0                | 1              |
| 174 | 0              | 0                | 1              |
| 160 | 0              | 0                | 1              |
| 183 | 0              | 0                | 1              |
| 51  | 0              | 1                | 0              |
| 27  | 1              | 0                | 0              |
| 73  | 0              | 0                | 1              |
|     |                |                  |                |

```
In [119]:
```

hospital.head(16)

Out[119]:

|    | AGE | GENDER | MARRIED | COMPLAINTS | BODY<br>WEIGHT | BODY<br>HEIGHT | HR<br>PULSE | BP -<br>HIGH | BP-<br>LOW | RR |          |
|----|-----|--------|---------|------------|----------------|----------------|-------------|--------------|------------|----|----------|
| 0  | 58  | 1      | 1       | 1          | 49.2           | 160            | 118         | 100          | 80         | 32 | <u>.</u> |
| 1  | 59  | 1      | 1       | 1          | 41.0           | 155            | 78          | 70           | 50         | 28 |          |
| 2  | 82  | 1      | 1       | 1          | 46.6           | 164            | 100         | 110          | 80         | 20 |          |
| 3  | 46  | 1      | 1       | 1          | 80.0           | 173            | 122         | 110          | 80         | 24 |          |
| 4  | 60  | 1      | 1       | 1          | 58.0           | 175            | 72          | 180          | 100        | 18 |          |
| 5  | 75  | 1      | 1       | 1          | 45.0           | 140            | 130         | 215          | 140        | 42 |          |
| 6  | 73  | 1      | 1       | 1          | 60.0           | 170            | 108         | 160          | 90         | 24 |          |
| 7  | 71  | 1      | 1       | 1          | 43.8           | 164            | 60          | 130          | 90         | 22 |          |
| 8  | 72  | 1      | 1       | 1          | 72.0           | 174            | 95          | 100          | 50         | 25 |          |
| 9  | 61  | 1      | 1       | 1          | 76.6           | 175            | 66          | 140          | 90         | 22 |          |
| 10 | 61  | 1      | 1       | 1          | 64.0           | 170            | 99          | 140          | 80         | 24 |          |
| 11 | 45  | 0      | 1       | 1          | 50.0           | 151            | 60          | 110          | 60         | 19 |          |
| 12 | 40  | 1      | 1       | 1          | 71.4           | 165            | 100         | 110          | 70         | 22 |          |
| 13 | 64  | 1      | 1       | 0          | 56.0           | 168            | 105         | 130          | 80         | 22 |          |
| 14 | 68  | 0      | 0       | 1          | 51.0           | 123            | 66          | 120          | 80         | 20 |          |
| 15 | 78  | 0      | 1       | 1          | 70.0           | 154            | 63          | 150          | 90         | 20 |          |

16 rows × 21 columns

# 5. Data Visualization

Let us plot a scatter plot between AGE and cost to hospital

#### In [120]:

hospital.plot(kind='scatter', x='AGE', y='TOTAL\_COST', alpha=0.2)

#### Out[120]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x11b18ecc0>



#### Observation:

From the above scatter plot it is evident that the age is directly proportional to the cost and similarly other attributes are also directly dependent on the cost, hence we can use a linear regression model to predict the total cost

#### In [121]:

hospital = pd.concat([hospital,ARRIVAL\_dummies], axis=1)

#### In [122]:

hospital.head(5)

#### Out[122]:

|   | AGE | GENDER | MARRIED | COMPLAINTS | BODY<br>WEIGHT | BODY<br>HEIGHT | HR<br>PULSE | BP -<br>HIGH | BP-<br>LOW | RR |  |
|---|-----|--------|---------|------------|----------------|----------------|-------------|--------------|------------|----|--|
| 0 | 58  | 1      | 1       | 1          | 49.2           | 160            | 118         | 100          | 80         | 32 |  |
| 1 | 59  | 1      | 1       | 1          | 41.0           | 155            | 78          | 70           | 50         | 28 |  |
| 2 | 82  | 1      | 1       | 1          | 46.6           | 164            | 100         | 110          | 80         | 20 |  |
| 3 | 46  | 1      | 1       | 1          | 80.0           | 173            | 122         | 110          | 80         | 24 |  |
| 4 | 60  | 1      | 1       | 1          | 58.0           | 175            | 72          | 180          | 100        | 18 |  |

5 rows × 24 columns

As we created the dummy variables for complaints, past history and mode of arrival. We also concatenated these dummy variables to the dataset, hence we need to remove the actual categorical variables from the dataset.

#### In [123]:

hospital.drop(['ARRIVAL\_MODE'],axis=1,inplace=True)

#### In [124]:

hospital.head(5)

Out[124]:

|   | AGE | GENDER | MARRIED | COMPLAINTS | BODY<br>WEIGHT | BODY<br>HEIGHT | HR<br>PULSE | BP -<br>HIGH | BP-<br>LOW | RR |  |
|---|-----|--------|---------|------------|----------------|----------------|-------------|--------------|------------|----|--|
| 0 | 58  | 1      | 1       | 1          | 49.2           | 160            | 118         | 100          | 80         | 32 |  |
| 1 | 59  | 1      | 1       | 1          | 41.0           | 155            | 78          | 70           | 50         | 28 |  |
| 2 | 82  | 1      | 1       | 1          | 46.6           | 164            | 100         | 110          | 80         | 20 |  |
| 3 | 46  | 1      | 1       | 1          | 80.0           | 173            | 122         | 110          | 80         | 24 |  |
| 4 | 60  | 1      | 1       | 1          | 58.0           | 175            | 72          | 180          | 100        | 18 |  |

 $5 \text{ rows} \times 23 \text{ columns}$ 

Now let us see the correlation or the multicolinearity among the attributes.

#### In [125]:

hospital.shape

Out[125]:

(248, 23)

#### In [126]:

corr=hospital.corr()

## In [127]:

corr

## Out[127]:

|                         | AGE       | GENDER    | MARRIED   | COMPLAINTS | BODY<br>WEIGHT | BODY<br>HEIGHT |   |
|-------------------------|-----------|-----------|-----------|------------|----------------|----------------|---|
| AGE                     | 1.000000  | 0.192781  | 0.898646  | -0.075730  | 0.848246       | 0.717074       | _ |
| GENDER                  | 0.192781  | 1.000000  | 0.167849  | -0.070640  | 0.174573       | 0.140584       | , |
| MARRIED                 | 0.898646  | 0.167849  | 1.000000  | -0.053620  | 0.831409       | 0.673006       | • |
| COMPLAINTS              | -0.075730 | -0.070640 | -0.053620 | 1.000000   | -0.135944      | -0.168374      |   |
| BODY WEIGHT             | 0.848246  | 0.174573  | 0.831409  | -0.135944  | 1.000000       | 0.849963       | , |
| BODY HEIGHT             | 0.717074  | 0.140584  | 0.673006  | -0.168374  | 0.849963       | 1.000000       |   |
| HR PULSE                | -0.483149 | -0.017826 | -0.475414 | 0.137960   | -0.564886      | -0.535004      |   |
| RR                      | -0.283955 | -0.012732 | -0.253236 | -0.028515  | -0.316843      | -0.300503      |   |
| PAST_HISTORY            | 0.495505  | 0.182849  | 0.430943  | -0.002814  | 0.422948       | 0.268000       |   |
| ARRIVAL_STATE           | -0.101247 | -0.044720 | -0.072444 | -0.026220  | -0.061983      | -0.048469      |   |
| ADMISSION               | 0.466735  | 0.117116  | 0.389710  | -0.012116  | 0.352266       | 0.274429       | į |
| LENGTH OF STAY -<br>ICU | 0.345533  | 0.144904  | 0.280433  | 0.122419   | 0.228660       | 0.137965       |   |
| LENGTH OF STAY-<br>WARD | -0.051795 | 0.012725  | -0.053263 | 0.108463   | -0.159878      | -0.139425      |   |
| COST OF IMPLANT         | 0.182193  | -0.024966 | 0.227179  | 0.152789   | 0.277585       | 0.277072       |   |
| TOTAL_COST              | 0.420852  | 0.152880  | 0.375130  | 0.180963   | 0.348270       | 0.293828       | , |
| MODE_AMBULANCE          | 0.449089  | 0.103019  | 0.372483  | -0.022647  | 0.353704       | 0.264552       | , |
| MODE_TRANSFERRED        | 0.030275  | -0.046092 | 0.016660  | -0.128973  | 0.023726       | 0.016469       | , |
| MODE_WALKED IN          | -0.436858 | -0.080788 | -0.359243 | 0.068708   | -0.344027      | -0.256847      |   |

```
In [128]:
sns.heatmap(corr,annot=True,fmt=".1f")
```

#### Out[128]:

<matplotlib.axes. subplots.AxesSubplot at 0x11b18ccc0>



#### Observation:

hospital.shape

Out[131]:

(248, 21)

From the above correlation matrix it is observed that ADMISSION and MODE\_ABULANCE are strongly correlated. Also body\_height and body\_weight are also strongly correlated. so we can drop one of the columns of the combination mentioned above which are strongly correlated.

```
In [129]:
hospital.drop(['ADMISSION'],axis=1,inplace=True)
In [130]:
hospital.drop(['BODY HEIGHT'],axis=1,inplace=True)
In [131]:
```

# In [132]: corr=hospital.corr() In [133]: sns.heatmap(corr,annot=True,fmt=".1f")

#### Out[133]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x11b609ef0>



#### Observation:

we have AGE and Married are correlated to 0.9. we can drop MARRIED as AGE is much important for a treatment and is associated to cost From the above heatmap none of the independent variables have no multi-colinearity.

#### In [134]:

```
# box plot of rentals, grouped by season
hospital.boxplot(column='TOTAL_COST', by='AGE')
```

#### Out[134]:

<matplotlib.axes.\_subplots.AxesSubplot at 0x11b8e7a58>



# 6. Train Test Split

#### In [135]:

# Isolating the output variable into a Target/Actual output
Y=hospital.TOTAL\_COST

#### In [136]:

hospital.head(5)

#### Out[136]:

|   | AGE | GENDER | MARRIED | COMPLAINTS | BODY<br>WEIGHT | HR<br>PULSE | BP -<br>HIGH | BP-<br>LOW | RR | PAST_HISTC |
|---|-----|--------|---------|------------|----------------|-------------|--------------|------------|----|------------|
| 0 | 58  | 1      | 1       | 1          | 49.2           | 118         | 100          | 80         | 32 |            |
| 1 | 59  | 1      | 1       | 1          | 41.0           | 78          | 70           | 50         | 28 |            |
| 2 | 82  | 1      | 1       | 1          | 46.6           | 100         | 110          | 80         | 20 |            |
| 3 | 46  | 1      | 1       | 1          | 80.0           | 122         | 110          | 80         | 24 |            |
| 4 | 60  | 1      | 1       | 1          | 58.0           | 72          | 180          | 100        | 18 |            |

5 rows × 21 columns

```
In [138]:

X_train, X_test, y_train, y_test = train_test_split(X,Y, random_state=123)

In [139]:

X_train.shape

Out[139]:
(186, 21)

In [140]:

X_test.head(5)

Out[140]:

AGE GENDER MARRIED COMPLAINTS BODY HR BP- BP- BP- WEIGHT PULSE HIGH LOW RR PAST_HIS
```

|   |     | AGE | GENDER | MARRIED | COMPLAINTS | WEIGHT | PULSE | HIGH | FOM | RR | PAST_HIS |
|---|-----|-----|--------|---------|------------|--------|-------|------|-----|----|----------|
| • | 204 | 12  | 0      | 0       | 1          | 26.0   | 58    | 90   | 60  | 26 |          |
|   | 91  | 3   | 1      | 0       | 1          | 13.0   | 140   | 90   | 60  | 24 |          |
|   | 145 | 1   | 0      | 0       | 1          | 6.8    | 112   | 80   | 50  | 24 |          |
|   | 52  | 71  | 1      | 1       | 1          | 56.0   | 72    | 130  | 70  | 20 |          |
|   | 19  | 47  | 1      | 1       | 1          | 59.0   | 80    | 110  | 80  | 20 |          |

5 rows × 21 columns

In [137]:

# 7. Creating Linear Regression Model

```
In [141]:
    linreg = LinearRegression()
    linreg.fit(X_train, y_train)

Out[141]:
LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, norma
lize=False)
```

```
In [142]:
y_pred = linreg.predict(X_test)
```

# 8. Model Performance Metrics

```
In [145]:

from sklearn import metrics
import numpy as np
np.sqrt(metrics.mean_squared_error(y_test, y_pred))

print ('MAE:', metrics.mean_absolute_error(y_test, y_pred))
print ('MSE:', metrics.mean_squared_error(y_test, y_pred))
print ('RMSE:', np.sqrt(metrics.mean_squared_error(y_test, y_pred)))

MAE: 6.196299387562659e-11
MSE: 5.9411847247937716e-21
RMSE: 7.707908098046948e-11

Out[145]:

<function sklearn.metrics.regression.r2_score>

In [ ]:
```