Bildgeneration mit Generative Adversarial Networks (GANs)

Wie man mit KI neue Daten erstellen kann

Struktur

Wie funktionieren GANs?

Schwierigkeit des Trainings

Verbesserung der Resultate

Use Cases

Was sind Generative Adversarial Networks?

- Engl. für "Erzeugende Konkurrierende Netzwerke"
- Art von künstlicher Intelligenz
- Bestehend aus mehreren neuronalen Netzen
- Unsupervised
- Erzeugen vorher nie gesehene Daten einer bestimmten Verteilung

Wie funktionieren GANs?

GANs sind zwei neuronale Netze die in Konkurrenz zueinander stehen:

Discriminator (Klassifizierer):

- Kriegt Bilder als Input
- Trifft real/fake Entscheidung über das Bild (0-1)

Generator:

- Kriegt zufällige Zahlen als Input (Latent Codes)
- Generiert durch upsamplen dieser ein RGB-Bild
- Bildet Latent Codes auf bestimmte Features (z.B. Haarfarbe) ab

Wie funktionieren GANs?

Warum funktionieren sie?

- Beide Netzwerke versuchen sich zu verbessern
- Discriminator lernt nach und nach wie echte Bilder aussehen
- Generator lernt durch das Feedback des Discriminators immer bessere Bilder zu generieren

369451 70359667 91088888 1416129 88064533 77081832 30848/38 A 1 3 5 0 4 5 Y 66666666 66666666 66666666 66666666 66666666 66666666 66666666 66666666

Trainingsschwierigkeiten

- Datenhungrig
- Instabiles Training (z.B. Mode Collapse)
- Rechenintensiv (CUDA GPUs benötigt)
- Trial and Error
- Parameter Tuning

Verbesserung der Resultate

- WGAN-GP Loss Funktion (Erhöhung der Trainingsstabilität)
- Progressive Growing (Erhöhung der Auflösung)
- StyleGAN(2) (Mehr Kontrolle über die generierten Bilder)

Improved Training of Wasserstein GANs: Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, Aaron Courville

<u>Progressive Growing of GANs</u> (<u>GitHub</u>): Tero Karras, Timo Aila, Samuli Laine, Jaakko Lehtinen (NVIDIA)

Style-Based Architecture for GANs (GitHub): Tero Karras, Samuli Laine, Timo Aila (NVIDIA)

StyleGAN Latent Space Interpolation

Use Cases

- Bildgeneration
- Datenkompression
- KI-Upscaling

Danke für's zuhören!

Fragen?

- in LinkedIn: https://www.linkedin.com/in/johnny-kessler/
- GitHub: https://github.com/jhKessler
- E-Mail: johnny.kessler@studium.uni-hamburg.de