Curves and Surfaces in CAD

Lukas, Pascal

May 14, 2014

Contents

I.	Curves	3
1.	Geometric fundamentals	4
2.	Bézier Representation2.1. Bernstein Polynomial2.2. Bézier Representation	5 5
3.	Bézier techniques	8
II.	Surfaces	9

Part I.

Curves

1. Geometric fundamentals

2. Bézier Representation

Recall that the set of polynomials of degree n forms a vector space. A basis is

$$\{1, x, \dots, x^n\}$$

Definition 2.1. A representation of a polyomial with respect to

$$\{1, x, \dots, x^n\}$$

is colled the monomial representation.

2.1. Bernstein Polynomial

$$1 = 1^{n} = (u + (1 - u))^{n} = \sum_{i=0}^{n} {n \choose i} u^{i} (1 - u)^{n-i}$$

Definition 2.2.

$$B_i^n(u) = \binom{n}{i} u^i (1-u)^{n-i}$$

is called a Bernstein Polynomial.

$$B_i^n(u) = 0$$
 if $(i < 0)$ or $(i > n)$.

Lemma 2.1. $B_0^n \dots B_n^n$ are linear independent.

Proof.

$$\sum b_i B_i^n = \sum b_i \binom{n}{i} u^i (1-u)^{n-1}$$

$$= \frac{0}{\frac{1}{(1-u)^n}}$$

$$\Rightarrow \sum b_i (\frac{u}{1-u})^i = 0$$

$$\Rightarrow \sum b_i s^i = 0$$

$$\Rightarrow b_i = 0$$

Theorem 2.1. $B_0^n ext{...} B_n^n$ form a basis for polynomials of degree n. Proof follows from Lemma 2.1 and the fact that the dimension of the space of polynomials of degree n is n+1

Lemma 2.2. Symmetry

$$B_i^n(0) = B_{n-1}^n(u)$$

Lemma 2.3.

$$B_i^n(0) = B_{n-1}^n(1) = \begin{cases} 1 & \text{if } i = 0\\ 0 & \text{otherwise} \end{cases}$$

Lemma 2.4. $B_0^n \dots B_0^n$ form a partition of unity $(\sum B_i^n = 1)$

Lemma 2.5. $B_i^n(u) > 0, u \in (0,1)$

Lemma 2.6. $B_i^{n+1}(u) = uB_{i-1}^n(u) + (1-u)B_i^n(u)$

2.2. Bézier Representation

Definition 2.3. A representation of a polynomial with respect to $B_0^n \dots B_n^n$ is calles the Bézier representation. Let $c(u) = \sum_{i=0}^n c_i B_i^n(u)$. c_i can be in \mathbb{R}^n . For practical reasons is $u \in [a,b]$.

Note: u(t) = a(1-t) + bT.

$$b(t) := c(a(t))$$

, b has same the degree as c and represents the same polinomial, but with a different parametrisation.

b(t) has a Bézierrepresentation of degree n.

$$b(t) = \sum_{i=0}^{n} b_i B_i^n(t)$$

Definition 2.4. b_i is called a control point.

Definition 2.5. *u* is a global parameter, *t* is local.

Definition 2.6. The piecewise linear interpolant of the b_i is called the control polygone.

Figure 2.1.: control polygone

Lemma 2.7.

$$b(u) = \sum_{i=0}^{n} b_{i} B_{i}^{n}(t)$$
$$= \sum_{i=0}^{n} b_{n-i} B_{n-i}^{n}(1-t)$$

Lemma 2.8 (end point interpolation).

$$(a) = 0$$

3. Bézier techniques

Part II.

Surfaces