Decision Tree $E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$

Entropy(PlayGolf) = Entropy (5,9) = Entropy (0.36, 0.64) = - (0.36 log₂ 0.36) - (0.64 log₂ 0.64)

E(T,X) =	$= \sum_{c \in X} P(c) E(c)$

		Play Golf		
		Yes	No	
Outlook	Sunny	3	2	5
	Overcast	4	0	4
	Rainy	2	3	5
				14
		1		

E(PlayGolf, Outlook) = P(Sunny)*E(3,2) + P(Overcast)*E(4,0) + P(Rainy)*E(2,3)= (5/14)*0.971 + (4/14)*0.0 + (5/14)*0.971

Rule-Based Classifiers Weather data

Outlook	Temp	Humidity	Windy	Play
Sunny	Hot	High	False	No
Sunny	Hot	High	True	No
Overcast	Hot	High	False	Yes
Rainy	Mild	High	False	Yes
Rainy	Cool	Normal	False	Yes
Rainy	Cool	Normal	True	No
Overcast	Cool	Normal	True	Yes
Sunny	Mild	High	False	No
Sunny	Cool	Normal	False	Yes
Rainy	Mild	Normal	False	Yes
Sunny	Mild	Normal	True	Yes
Overcast	Mild	High	True	Yes
Overcast	Hot	Normal	False	Yes
Rainy	Mild	High	True	No

Outlook		yes count
	sunny	2/5
	rainy	3/5
temperature		
	hot	0/2
	mild	3/5
	cool	2/3
humidity		
	high	1/5
	normal	4/5
windy		
	TRUE	4/6
	FALSE	1/4
_		_
If Humidity = normal and ? then play = Yes		

	Outlook		yes count		
		sunny	2/3		
		rainy	2/2		
	temperature				
		hot	2/3		
		mild	2/2		
		cool	4/5		
	windy				
		FALSE	3/3	Greater Coverage	
		TRUE	1/2		
	Rule 2:				
If Humidity = "normal" and windy = FALSE					

Naïve Bayes Classifier

Posterior Probability Predictor Prior Probability

CASE 1: 2nd child male ? P(servived=yes | pclass = 2nd , age = child , sex = male) = Alpha * P(pclass = 2nd | servived = yes) * P(age = child | servived = yes) * P(sex = male | servived = yes) * P(servived = yes) (H4+1)/(K4+4)*(H10+1)/(I10+2)*(H16+1)/(I16+2)*(K4+1)/(K5+2) 0.002258411978 = Alpha * P(servived=No | pclass = 2nd , age = child , sex = male) = Alpha * 0.002473390596 $P(c \mid X) = P(x_1 \mid c) \times P(x_2 \mid c) \times \cdots \times P(x_n \mid c) \times P(c)$ 0.002258*Alpha + 0.009783*Alpha =1 => Alpha = 211.3359516

then play = Yes

Naïve Bayes Text Classifier

$$P(c) = \frac{N_c}{N}$$

$$\frac{\text{words in document}}{\text{Chinese Beijing Chinese}}$$

$$\frac{\text{Chinese Beijing Chinese}}{\text{Chinese Chinese Shanghai}}$$

$$\frac{\text{Chinese Macao}}{\text{Tokyo Japan Chinese}}$$

$$\frac{\text{Chinese Chinese Chinese Chinese Chinese}}{\text{Chinese Chinese Chinese Chinese}}$$

 $P(c|d_s) \propto P(c) \cdot P(Chinese|c) \cdot P(Japan|c) \cdot P(Tokyo|c) \cdot (1 - P(Beijing|c)) \cdot (1 - P(Shanghai|c)) \cdot (1 - P(Macao|c)) = P(Chinese|c) \cdot P(Japan|c) \cdot P(Tokyo|c) \cdot P(Tokyo|c)$

 $3/4 \cdot 4/5 \cdot 1/5 \cdot 1/5 \cdot (1-2/5) \cdot (1-2/5) \cdot (1-2/5) \approx 0.005$ $P(-c|d_5) \propto 1/4 \cdot 2/3 \cdot 2/3 \cdot 2/3 \cdot (1-1/3) \cdot (1-1/3) \cdot (1-1/3) \approx 0.022$

Multınomıal Model

 $P(t|c) = \frac{T_{c,t}+1}{\sum_{t \in V} (T_{c,t}+1)} = \frac{T_{c,t}+1}{(\sum_{t \in V} T_{c,t})+|V|}$

Conditional probabilities:

Priors: P(c) = 3/4 and P(c) = 1/4

P(Chinese|c) = (5+1)/(8+6) = 6/14 = 3/7 P(Tokyo|c) = P(Japan|c) = (0+1)/(8+6) = 1/14

P(Chinese|-c) = (1+1)/(3+6) = 2/9P(Tokyo|-c) = P(Japan|-c) = (1+1)/(3+6) = 2/9 $P(c|d_5) \propto 3/4 \cdot (3/7)^3 \cdot 1/14 \cdot 1/14 \approx 0.0003.$ $P(-c|d_5) \propto 1/4 \cdot (2/9)^3 \cdot 2/9 \cdot 2/9 \approx 0.0001.$

Thus, the classifier assigns the test document to c = Chin

Linear Models

Perceptron

For each misclassified training tuple $sign(\mathbf{w}^T\mathbf{x}^k) \neq v^k$

 $P(c \mid d) = \alpha * P(c) * \Pi_{t \in d} P(t \mid c)$

esult: $c_{map} = \operatorname{argmax}_c P(c|d)$

$$\mathbf{w} = \mathbf{w} + \boldsymbol{\eta} \cdot y^k \mathbf{x}^k$$

Linear Regression

$$\nabla_E(\mathbf{w}) = -\frac{1}{n} \sum_{k=1}^n (y^k - \mathbf{w}' \mathbf{x}^k) \mathbf{x}^k$$

E = (1/(2*n)) * (np.sum((y-w@X.T)**2))

$$\mathbf{w} \leftarrow \mathbf{w} - \kappa \nabla_{\scriptscriptstyle E}(\mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} + \kappa \frac{1}{n} \sum_{k=1}^{n} (y^k - \mathbf{w}' \mathbf{x}^k) \mathbf{x}^k$$

 $w = w + \text{kappa*}((1/n)*(\text{np.sum}((y-w@X.T).T*X, axis=0, keepdims=True})))$

Logistic Regression

$$\nabla_E(\mathbf{w}) = -\frac{1}{n} \sum_{k=1}^n \frac{y^k \mathbf{x}^k}{1 + e^{y^k \mathbf{w}^T \mathbf{x}^k}}$$

$$\mathbf{w} \leftarrow \mathbf{w} - \kappa \, \nabla_{E}(\mathbf{w})$$