Elektronika

XX. Digitális-analóg átalakítók Analóg-digitális átalakítók

20.1. DAC

1. Digitális-analóg konverzió

- digitális jelből analóg jel előállítása (időben és amplitúdóban is folytonos !)
- ha digitális jelet kell analóg eszközön megjeleníteni, vagy analóg rendszert kell vezérelni
- egy D/A átalakító két részre bontható:

2. DAC digital-analog converter

20.1. DAC

Átalakítási karakterisztika

3. Jellemzők

- a, digitális bemenő jel:
- bináris vagy BCD kódolású,
- párhuzamos vagy soros bevitelű,
- számábrázolása kettes komplemens kódú, vagy előjel + abszolút értékkel megadott , vagy eltolt nullpontú

20.1. DAC

3. Jellemzők

- b, analóg kimenő jel:
- unipoláris → 0 MAX
- áram vagy feszültség kimenet

áram-feszültség átalakító a kimeneten

- c, beállási idő (setting time):
- a digitális jel bemenetre adásától az új analóg kimeneti jel stabilizálódásáig eltelt idő (adott hibaszázalékon belül) → a működési sebességet határozza meg
- nagyobb felbontás (több bit) \rightarrow a beállási idő is növekszik

20.2. DAC típusok

Az átalakítás lehet:

- a, közvetlen vagy közvetett
- közvetlen → az analóg jelet a digitális jel bitjeinek súlyozott összegzésével állítjuk elő
- közvetett → az analóg információt időtartam, frekvencia közvetíti
- b, soros vagy párhuzamos
- soros → több ütemű átalakítás, mindig csak egy bitet
- párhuzamos → minden bit egyidejűleg alakítja a kimeneti jelet

1. közvetlen átalakítású DAC

20.2. DAC típusok

súlyozott összegző (pl. 4 bites)

ellenállás-létrahálózatos összegző (pl. 4 bites)

20.2. DAC típusok

ellenállás-létrahálózatos összegző

- azonos értékű ellenállások kellenek → könnyű integrálni
- CMOS megoldás, 8-16 bites, 30-300 ns beállási idő

Kapcsoló megvalósítása

20.3. DAC típusok

2. közvetett átalakítással működő DAC

PDM Pulse Duration Modulation impulzus-kitöltés moduláció

Amíg Z < D → a komparátor kimenete 1 Ha Z > D → a komparátor kimenete 0 → kimenőjel periódusideje az órajel periódusidejének sokszorosa (pl. 1000-szerese), a kitöltési tényezője (1-es szint időtartama) arányos D-vel! → a középértéke is

- hátrány: nem gyors

20.3. DAC típusok

3. közvetett átalakítással működő DAC másképp

Indítás →

- referencia feszültség rákapcsolódik az integrátorra, a kondenzátor elkezd töltődni
- a számláló elkezd számlálni

Ha a számláló eléri a digitális jel értékét → komparátor kimenete 1-be vált → számláló törlődik, indítás leáll ilyenkor a kondi feszültsége kb. arányos a számlálás idejével, tehát a bemeneti digitális jel értékével, ! ha ez a tt idő kisebb mint az időállandó (R*C)

1. ADC, Analóg-digitális konverzió

- analóg jelből (időben és amplitúdóban folytonos) digitális jel (időben és amplitúdóban is diszkrét) előállítása
- a következő műveletekből áll: mintavételezés + kvantálás + kódolás

2. időbeli diszkretizálás → mintavételezés

Mintavételezés (sampling): meghatározott időnként mintát veszünk az analóg jelből

Minél gyorsabban változik a jel → a mintavételi frekvenciának (f_m) annál nagyobbnak kell lennie !!

3. A mintavételi frekvencia (f_m):

- ha túl nagy → nagyon sok adat keletkezik, illetve nagyon gyors működésű áramkör kell
- ha túl kicsi → nagyon sok adat elvész! → nem fogjuk tudni visszaállítani az eredeti jelalakot!

Shannon tétel:

$$f_m >= 2 * f_{jelmax}$$

f_{jelmax} → a jelben lévő legnagyobb frekvenciájú összetevő

4. Mintavevő-tartó áramkör

és kódolását

5. amplitúdó diszkretizálás, kvantálás + kódolás

Kvantálás: az amplitúdó tartományt felosztjuk véges számú lépcsőre (kvantumok) Kódolás: egy kvantumhoz (lépcsőhöz) biteket rendelünk → a kvantumok száma 2 hatványa legyen !!

Kvantálási lépcső: $\Delta A = A_{max}/2^n$

 $A_{max} \rightarrow maximális analóg érték$ $n \rightarrow bitek száma$

pl.
$$A_{max} = 32 \text{ mV}$$

 $n = 4$

$$\Delta A = 32 \text{ mV} / 2^4 = 2 \text{ mV}$$

6. Kvantálási karakterisztika, kvantálási hiba

Karakterisztika lehet:

- lineáris
- logaritmikus

Kvantálási hiba: $h < \Delta A/2$

- annál kisebb, minél nagyobb a felbontás (több bit), mert kisebb lépcsők vannak

7. Teljes A/D átalakítás

1. A/D átalakítók felosztása

Érték alapján lehet:

- pillanatérték átalakító → gyors
- átlag átalakító → lassú

Átalakítási módszer alapján lehet:

- összehasonlító eljárás → közvetlen → gyors (1 lépés), de drága
- folyamatos eljárás → egyszerű, lassú (2ⁿ lépés)
- fokozatos közelítésű → ('n' lépés)

2. Közvetlen ADC

Flash konverter

A referencia feszültséget (ami megegyezik az analóg jel maximum értékével) a soros ellenállások azonos szakaszokra, lépcsőkre osztják. Ezek a lépcsőfokok a komparátorként működő műveleti erősítők invertáló bemeneteire kerülnek.

A nem invertáló bemenetekre rákerül az analóg jel.

A komparátorok összehasonlítják az analóg jelet a hozzájuk tartozó lépcsőfokkal, amelyik lépcsőfoknál nagyobb az Uin értéke annak a komparátornak 1 lesz a logikai kimenete, a többié 0.

Logika

Bináris számmá alakítja a komparátorokról érkező jeleket. Pl. 8 lépcső esetén (7 komparátor)→ 3 bit, 256 lépcső esetén (255 komparátor) → 8 bit

3 bites flash ADC

Flash-Type A/D Converter Circuit Diagram

3. Fokozatos közelítésű átalakító

Successive Approximation ADC

A bemeneti jel egy komparátor pozitív bemenetére van kötve, a komparátor negatív bemenetére változtatható feszültséget kapcsolunk D/A konverterrel (DAC).

Az algoritmust a SAR (Szukcesszív approximációs regiszter) vezérli.

Az első lépésben a D/A konverter kimenetén Uref /2 van, azaz a teljes tartomány fele. Ha a jel ennél nagyobb (a komparátor kimenetén logikai magas szint van), akkor a legnagyobb helyi értékű adatbit értéke biztosan 1, ellenkező esetben 0.

A következő lépésben a felső rész felező értéke (ha az 1. bit 1 volt) lesz a D/A konverter kimenetén, ellenkező esetben az alsó rész közepe (ha az 1. bit 0 volt).

Így minden egyes lépésben egy bit értéke kiderül és feleződik az a feszültségintervallum, amiben a bemeneti jel van. Annyi összehasonlítás szükséges, amennyi a bitek száma.

Successive Approximation ADC

4. Közvetett ADC

A bemeneti feszültséget először egy másik analóg jellé alakítjuk, változtatva valamelyik jellemzőjét (frekvencia, idő).

Majd ezt az új jelet digitalizáljuk.

Lassan változó, kisfrekvenciás jeleknél lehet használni (pl. hőmérséklet szenzor).

Fűrészgenerátoros ADC

Single-slope ADC

Stabil, fix meredekségű fűrészjellel hasonlítja össze a bemeneti jelet,

→ tin arányos a bemeneti jellel (Ube) → ezt az időt mérjük számlálóval → digitális jel

Ube / Uref = tin / tref

tin = Ube * (tref / Uref)

Fűrészgenerátoros ADC

5. Dual-slope ADC

Ez is közvetett ADC

A bemeneti feszültséget is integráljuk

→ átlagértéket mérünk!

A bemeneti jelet (Uin - Vin) T1 ideig egy integrátor áramkör bemenetére kötjük, majd ezután az integrátor bemenetére egy negatív referencia feszültséget (Uref – Vref) kapcsol a vezérlő áramkör (ez kisüti a kondenzátort). Komparátor figyeli hogy mikor érjük el újra a 0 kimeneti feszültséget, közben egy számláló számol. A bemeneti feszültség átlagértéke arányos lesz ezzel a visszaintegrálási idővel (T2).

Uin = Uref
$$*(T2/T1)$$

Dual-slope ADC

