Funzione

Una funzione f è una relazione tra gli insieme di A e B, che sono rispettivamente dominio e codominio, tale che la legge f verifica che:

per ogni a appartenente all'insieme A, esiste una sola b appartenente all'insieme B tale che b=f(a)

$$\forall a \in A, \exists ! b \in B : f(a) = b$$

L'immagine

La funzione immagine prende un sottoinsieme di A e ne restituisce il sottoinsieme corrispondente di B, quindi l'insieme delle parti di A fa riferimento all'insieme delle parti di B ($f:P(A)\to P(B)$) e viene definita in questa maniera:

$$f(E):=f(a)|a\in E$$

dove E è un qualsiasi sottinsieme di A, ed f(E) è il sottinsieme di B che contiene tutte le immagini degl'elementi di E.

L'insieme immagine

Se prendiamo tutto l'insieme di A e lo mettiamo in E (invece che solo un sottoinsieme), l'immagine di A sotto la funzione f prende il nome di immagine di f:

$$imf := f(A)$$

questo forma il sottoinsieme di B formato da tutte le immagini degl'elementi A quindi l'insieme immagine si trova all'interno del Coodominio

Controimmagine

La funzione controimmagine, al contrario della funzione immagine va a restituire gli elementi dell'insieme A associati all'elemento dell'insieme B sul quale viene applicata la funzione immagine, quindi l'insieme delle parti di B fa riferimento all'insieme delle parti di A ($f: P(B) \to P(A)$), e si definisce:

$$f^{-1}(F):=a\in A|f(a\in F)$$

L'insieme controimmagine

quindi l'insieme delle controimmagini presenti nel dominio formano l'insieme controimmagine spiegazione grafica:

9 è l'immagine di 1, quindi 1 è la controimmagine di 9; lo stesso vale per 5 e 4 quindi possiamo affermare:

im F(1) = 9

Grafico

Il grafico di una funzione G(f) è il sottoinsieme del prodotto cartesiano tra il dominio ed il codominio AXB (ovvero tutte le coppie possibili tra A e B) e viene definito cosi:

il G(f) è uguale all'insieme di coppie a e b ristretto alle a appartenenti ad A, ed alle b appartenenti a B, dove f(a)=b

$$G(f)=(a,b)|a\in A,b\in B,f(a)=b$$

Iniettiva

Una funzione si dice iniettiva quando nessuna delle ordinate si incorcia con più di un punto della funzione.

Quindi f:A o B si dice iniettiva se per ogni a1,a2 appartenente all' insieme A,a_1 è diverso da a_2 come $f(a_1)$ è diverso da $f(a_2)$

$$orall a_1, a_2 \in A, [a_1
eq a_2
ightarrow f(a_1)
eq f(a_2)]$$

Iniettiva

non iniettiva

Suriettiva

Una funzione si dice suriettiva quando l'immagine della funzione corrisponde al codominio B; quindi per ogni valore y del codominio vi è un valore x corrispondente della funzione.

quindi f:A o B si dice suriettiva se per ogni b appartenente a B, esiste almeno un' a appartenente ad A tale che f(a)=b

$$\forall b \in B, \exists a \in A: f(a) = b$$

Biettiva / Biunivoca

Una funzione si dice biettiva o biunivoca se è sia iniettiva che suriettiva

per ogni y presente nel codominio (uguale all'immagine della funzione), è presente una sola x corrispondente tale che f(x) = y

$$orall b \in B, \exists ! a \in A : f(a) = b$$

se la funzione è biunivoca possiamo ricavarne l'inversa $f^{-1}(b)=a$ rappresentando la funzione inversa:

$$f^{-1}:B o A, f^{-1}(b)=a\implies f(a)=b$$

Funzioni composte

Un funzione composta sostanzialmente è la composizione, indicata dal simbolo ∘, per esempio avendo le due funzioni:

- ullet A o f(a) o B dove la funzione f, passa dall'insieme A all'insieme B
- B o g(b) o C dove la funzione g, passa dall'insieme B all'insieme C possiamo creare una funzione composta $g\circ f$, che implicherà un passaggio dall'insieme A all'insieme C:

$$g\circ f:A o G\implies (g\circ f)(a)=g(f(a))$$

Proprietà

• se sia f che g sono iniettive, allora anche la loro composizione $g \circ f$ sarà iniettiva:

$$orall a_1, a_2 \in A, a_1
eq a_2 \implies f(a_1)
eq f(a_2), g(a_1)
eq g(a_2) \implies (g \circ f)(a_1)
eq (g \circ f)(a_2)$$

• se sia f che g sono suriettive, allora anche la loro composizione $g \circ f$ sarà suriettiva:

$$orall c \in C, \exists a \in A: (g \circ f)(a) = c$$

• se sia f che g sono biunivoche, allora anche la loro composizione $g \circ f$ sarà biunivoca

Composizione inversa

allo stesso modo della composizione $g \circ f$ che ci fa passare dall'insieme A all'insieme C, esistono le composizioni inverse che ci fanno ritornare all'insieme di partenza:

$$(g\circ f)^{-1} = f^{-1}\circ g^{-1}$$

Funzioni reali monotone

Una funzione monotona è una funzione con andamento, crescente o decrescente, che non cambia mai; in una funzione monotona crescente infatti non può esserci nemmeno un punto in cui la funzione decresca e viceversa, in sostanza le due leggi per una funzione monotona sono:

- crescente: $\forall x_1, x_2 \in A, x_1 < x_2 \implies x_1 < x_2$
- decrescente: $\forall x_1, x_2 \in A, x_1 < x_2 \implies x_1 > x_2$

bisogna anche fare una distinzione tra funzioni monotone strettamente cresc/decresc, e funzioni monotone debolmente cresc/ decresc:

• le funzioni strettamente monotone non hanno segmenti della funzione in cui la loro variazione può essere pari a 0, e quindi x_1 sarà sempre o maggiore o minore di x_2 ; la legge in particolare di queste è

$$\forall x_1, x_2 \in A, x_1 < x_2 \implies x_1 < x_2$$

$$orall x_1, x_2 \in A, x_1 < x_2 \implies x_1 > x_2$$

• le funzioni debolmente monotone invece hanno punti della funzione in cui rimangono invariate e quindi è possibile la condizione $x_1 = x_2$; di conseguenza le leggi saranno:

$$\forall x_1, x_2 \in A, x_1 < x_2 \implies x_1 \leq x_2$$

$$orall x_1, x_2 \in A, x_1 < x_2 \implies x_1 \geq x_2$$

caso particolare

ovviamente una funzione come detto prima non può essere sia strettamente crescente che strettamente decrescente, ma al contrario può essere debolmente crescente e debolmente decrescente contemporaneamente; ciò accade quando una funzione non subisce alcuna variazione (costanti) rispettando

entrambe le leggi delle funzioni debolmente monotone, come per esempio:

strettamente monotone & iniettivita

una funzione strettamente monotona, quindi strettamente crescente o decrescente sarà sempre iniettiva; in quanto ne rispetta la legge; al contrario, non tutte le funzioni iniettive sono strettamente monotone, per esempio:

la funzione è iniettiva in quanto nessuna y incontra più di una x della funzione, ma allo stesso tempo non è strettamente monotona in quanto non mantiene un andamento crescente o decrescente, bensì si alterna.

Funzioni simmetriche

le funzioni simmetriche sono coloro che si specchiano sul grafico e si dividono in due gruppi:

• pari: ovvero quelle che si specchiano sull'asse delle ordinate

nelle funzioni pari in particolare vediamo come sia ad x che al suo opposto corrisponde la stessa y, quindi possiamo ricavarne la legge:

$$orall x \in A, f(x) = f(-x)$$

• dispari: ovvero quelle che si specchiano sull'origine

qua vediamo come ad x corrisponda una y che è esattamente l'opposto della y che corrisponde all'opposto di x, quindi possiamo ricavarne la legge:

$$orall x \in A, f(-x) = -f(x)$$

cos & sin

di conseguenza seguendo questi ultimi ragionamenti e leggi troveremo come i, coseno è pari, mentre il seno è dispari:

cos(x)

sin(x)

Funzioni valore assoluto

La funzione valore assoluto f restituisce il valore massimo tra la a fornita alla funzione ed il suo opposto, quindi: $f(a) = max(a, -a) \rightarrow \mid a \mid$; di conseguenza avremo che la funzione si comporta nella seguente maniera:

$$\mid a \mid = egin{cases} a
ightarrow a \geq 0 \ -a
ightarrow a \leq 0 \end{cases}$$

il grafico di tale funzione quindi sarà rappresentato solo nella parte positiva del grafico, dove la parte negativa verrà specchiata sull'asse delle ordinate, quindi prendendo in considerazione |x|:

Propietà

- $\mid a \mid = 0 \rightarrow a = 0$
- \bullet $\mid a \mid \leq a \leq \mid a \mid$
- ullet |-a|=|a|
- se $\mid a \mid \leq b$ allora $-b \leq a \leq b$, con b che necessariamente de essere $b \geq 0$

disuguaglianze triangolari prima

la prima disuguaglianza triangolare afferma che per ogni a,b appartenenti all'insieme \mathbb{R} , il valore assoluto di a+b è minore o uguale al valore assoluto di a più il valore assoluto di b:

dimostrazione:

$$egin{aligned} orall a, b \in \mathbb{R} \mid a+b \mid \leq \mid a \mid + \mid b \mid \ \left\{ egin{aligned} -\mid a \mid \leq a \leq \mid a \mid \ = -(\mid a \mid + \mid b \mid) \leq a+b \leq \mid a \mid + \mid b \mid \ \mid a \mid \leq b \iff -b \leq a \leq b \end{aligned}
ight. \ A = \mid a+b \mid, B = \mid a \mid + \mid b \mid \rightarrow \mid A \mid \leq \mid B \mid \ A \leq B = \mid a+b \mid \leq \mid a \mid + \mid b \mid \end{aligned}$$

seconda

la seconda disuguaglianza triangola **di continuità** afferma che il valore assoluto della differenza degl'assoluti di a e b, per intenderci: $|\ (|\ a\ |\ -\ |\ b\ |)\ |$, è minore o uguale alla differenza assoluta tra i due

$$orall a,b \in \mathbb{R} \mid\mid a\mid -\mid b\mid\mid \leq \mid a-b\mid$$

che andiamo a dimostrare utilizzando la prima disuguaglianza triangolare abbiamo:

$$|a| = |(a - b) + b| \le |a - b| + |b|$$

qua andiamo ad utilizzare la prima disuguaglianza triangolare, e tenendo presente $-B \le A \le B$ andiamo a verificare entrambi i simboli:

• prima verifichiamo $A \leq B$ con:

$$\mid a \mid - \mid b \mid \leq \mid a - b \mid$$

qua come possiamo vedere $\mid a-b\mid =B, \mid a\mid -\mid b\mid =A,$ di conseguenza $A\leq B$

ullet poi verifichiamo $-B \leq A$ prendendo l'opposto di $\mid a-b \mid$ ovvero -B che è $-\mid a-b \mid$

$$-\mid a-b\mid \leq \mid a\mid -\mid b\mid$$

cosi da ottenere appunto $-B \le A$

Infine otterremo cosi che $-\mid a-b\mid \leq \mid a\mid -\mid b\mid \leq \mid a-b\mid$, ovvero, tenendo presente della nostra notazione: $\mid a-b\mid =B, \mid a\mid -\mid b\mid =A$:

$$-B \le A \le B$$

e grazie a questa proprietà della funzione assoluta verifichiamo la seconda disuguaglianza triangolare di continuità.

ricopiare esempi di esercizi

Insiemi Numerici

una relazione sull' insieme X, che è sottoinsieme dell'insieme R, nel piano cartesiano formato da X * X, dove troviamo due punti $x, y \in R$, questi due punti si dicono in relazione

Relazioni di equivalenza

una relazione di equivalenza è tale se fra i due punti in relazione (x, y) vengono rispettate le 3 propietà:

- riflessiva: x in relazione con x, che si scrive $\forall x \in \mathbb{X} x \simeq x$
- simmetrica: x in relazione con y e viceversa, si scrive $\forall x,y \in \mathbb{X} x \simeq y \implies y \simeq x$
- transitiva: x in relazione con y, y in relazione con z, quindi x in relazione con z, si scrive:

$$orall x,y,z\in \mathbb{X} x\simeq y,y\simeq z\implies x\simeq z$$

i punti (x,y) e (x_0,y_0) sono in relazione tra loro se rispettano il criterio: $x-x_0=y-y_0$ data questa nozione di equivalenza si dice classe di equivalenza: $[x]=y\in\mathbb{X}:y\simeq x$

Relazioni d'ordine

una relazione d'ordine tra due insieme si denota con il simbolo \leq di precedenza, e si dice che un insieme X preceda nell'ordine un altro insieme se sono rispettate le propietà:

- riflessiva
- transitiva
- anti-simmetrica: ovvero $x \le y, y \le x \implies x = y$

esempio

avendo $\mathbb{U}, \mathbb{X} = P(\mathbb{U})$ dove X è l'insieme della parti di U, abbiamo che $\mathbb{A}, \mathbb{B} \in P\mathbb{U}$, da qui possiamo constatare che:

- $\mathbb{A} \leq \mathbb{B}$ se ogni elemento di A è elemento anche di B
- $\mathbb{A} \leq \mathbb{B} \ \mathbf{e} \ \mathbb{B} \leq \mathbb{A} \ \mathbf{se} \ \mathbb{A} = \mathbb{B}$
- $\mathbb{A} \leq \mathbb{B} \in \mathbb{B} \leq \mathbb{A} \text{ quindi } \Longrightarrow \mathbb{A} \leq \mathbb{C}$

Relazione d'ordine totale

una relazione d'ordine si dice totale quando gli elementi sono confrontabili

Insieme numeri reali

Partendo dalla dichiarazione: $(\mathbb{X}, +, *, \leq)$ dove il + ed il * vanno ad indicarci la presenza di 4 assiomi per simbolo, mentre il \leq va ad indicarci che la composizione interna dell'insieme è una relazione d'ordine totale. In totale gli assiomi dell'insieme dei numeri razionali \mathbb{R} è composto da 11 assiomi.

Assioma: Principio evidente per sé, e che perciò non ha bisogno di esser dimostrato, posto a fondamento di una teoria deduttiva

Per definire l'insieme dei numeri reali $\mathbb N$ bisogna definire un 12° assioma, detto Assioma di Dedekind, che dice che per ogni $\mathbb A,\mathbb B\subset\mathbb R$ tali che $\forall a\in A,b\in B,a\leq b$ allora esiste un elemento $c\in\mathbb R$ tale da separare i due insiemi, e quindi: $\forall a\in\mathbb A,b\in\mathbb B,a\leq c\leq b$, questo viene chiamato anche assioma dell'elemento separatore.

$$\mathbb{X}=\mathbb{Q}$$
 insieme dei numeri razionali
$$\mathbb{A}=x\in\mathbb{Q}:x<=0 o x^2<=2$$

$$\mathbb{B}=\mathbb{Q}/\mathbb{A}$$

 $\sqrt{2}$ non è razionale quindi non è seperatore, per tanto è nell'insieme A o in B, sistenendo: $\sqrt{2}\in\mathbb{R}$ e che esiste un $c\in\mathbb{Q}^+:c^2<2$ allora:

$$\exists n \in \mathbb{N}^+: \left(c+rac{1}{n}
ight)^2 < 2$$

ciò vuol dire che c è un razionale positivo, il quale il quadrato è minore di 2, ma aggiungendo a c un infinitesimo e ne facciamo il quadrato, avremo sempre un numero <2 ma più vicino, quindi non esiste un numero separatore razionale.

Maggioranti

Un insieme A si dice limitato superiormente se ammette maggioranti M, quindi ogni a appartenente ad A, deve essere minore di ogni elemento dell'insieme dei maggioranti:

$$\forall a \in \mathbb{A}, a \leq M$$

l'insieme dei maggioranti di A si indica con il simbolo: $\mathbb{M}_{\mathbb{A}}$. per esempio l'insieme \mathbb{N} non è limitato superiormente quindi non ammette maggioranti.

L'esistenza del massimo

Oltre a ciò dobbiamo tenere inconsiderazione la possibile esistenza di un massimo dell'insieme A, mettendo caso che $\mathbb{A}=(-\infty,1]$, ovvero l'insieme A comprende tutti i numeri da meno infinito ad 1 compreso, sappiamo perfettamente che il massimo di questo insieme sarà 1; ma mettendo il caso che $\mathbb{A}=(-\infty,1[$ allora il massimo dell'insieme A sarà un numero infinitamente vicino ad 1 ma pur sempre <1, e per l'assioma del numero separatore sappiamo che esisterà sempre un numero più vicino di un altro ad 1 ma comunque <1; quindi in questo caso l'insieme A non ha massimo.

nota bene: il massimo dell' insieme: $max(\mathbb{A})$ è uguale al minimo dell'insieme dei maggioranti dell'insieme di A: $min(\mathbb{M}_{\mathbb{A}})$; quindi $max(\mathbb{A}) = min(\mathbb{M}_{\mathbb{A}})$

Minoranti

stessa roba dei maggioranti vale per i minoranti, ovviamente qua parliamo di limiti inferiori e si tratta di seguire la regola:

$$orall a \in A, a \geq m$$

l'esistenza del minimo

allo stesso modo , se abbiamo un insieme $A=]-1,+\infty)$ avremo che l'insieme A non ha un minimo in quanto per l'assioma di dedekin

nota bene: il minimo dell' insieme: $min(\mathbb{A})$ è uguale al massimo dell'insieme dei minoranti dell'insieme di A: $max(\mathbb{m}_{\mathbb{A}})$; quindi $min(\mathbb{A}) = max(\mathbb{m}_{\mathbb{A}})$

Insieme dei numeri immaginari e complessi

L'insieme dei numeri immaginari serve a dare soluzione a quelle operazioni che di fatto non hanno soluzione; l'intero insieme è basato sull' equazione $x^2+1=0$ che vorrebbe a dire $x=\sqrt{-1}$ che è impossibile negl'insiemi $\mathbb R$ ed $\mathbb N$,quindi si attribuisce ad una variabile immaginaria i il valore di $\sqrt{-1}$, di conseguenza

$$i^2 = -1$$

Numeri complessi

Un numero complesso è un numero composto da un numero reale ed un numero immaginario, quindi si dice che l'insieme dei numeri complessi (C) è composto nella seguente maniera:

$$\mathbb{C} = \{a+bi: a,b \in \mathbb{R}\}$$

quindi vi è un inclusione stretta di R in C; il numero complesso viene indicato dalla variabile z, che è di conseguenza composta dalla parte reale e dalla parte immaginaria i.

Operazioni

• la somma tra due z avviene sommando separatamente parti reali ed immaginarie:

$$(3+4i) + (5-7i) = (3+5) + (4-7)i = 8-3i$$

• la moltiplicazione tra due z avviene come una semplice prodotto di somme che già conosciamo, ricordando però che $i^2=-1$, di conseguenza:

$$(3+4i)*(5-7i)=15-21i+20i-28*i^2=15-21i+20i-(28*-1)=15-i+28=43-i$$

• il reciproco di z, ovvero quello che si solito scriveremmo come $\frac{1}{z}$ viene calcolato in questo caso attraverso la formula:

$$rac{1}{z}=rac{a}{a^2+b^2}-rac{b}{a^2+b^2}i$$

per esempio il reciproco di z = 3+4i (ovvero quel numero che moltiplicato per z restituisce 1) lo calcoliamo cosi:

$$\frac{1}{3+4i} = \frac{3}{9+16} - \frac{4}{9+16}i = \frac{3-4i}{25}$$

e possiamo verificarlo semplicemente moltiplicandolo per z. (se restituisce 1 è verificato)

• coniugato di z è quel numero che conserva la parte reale di Z ma ha opposta parte immaginaria, se

$$z=3+4i
ightarrow\overline{z}=3-4i$$

• il modulo di Z si fa applicando la radice quadrata alle due parti di Z elevate entrambe alla seconda (valore assoluto), quindi: $|z| = \sqrt{Rez^2 + Imx^2}$, per esempio:

$$|_3+4i|=\sqrt{3^2+4^2}=\sqrt{25}=5$$

propietà

- $\overline{z+w} = \overline{z} + \overline{w}$
- $\overline{z*w} = \overline{z}*\overline{w}$
- $\overline{\overline{z}} = z$
- $z=-\overline{z} \implies \mathbb{R}$ ez=0
- $|z| = |\overline{z}|$
- $|z+w| \le |z| + |w|$
- |z * w| = |z| * |w|
- $z*\overline{z} = |z|^2$
- $\bullet \quad \frac{1}{z} = \frac{\overline{z}}{|z|^2}$
- $ullet \quad rac{w}{z} = w * rac{1}{z} = w * rac{ar{z}}{|z|^2} = rac{w * ar{z}}{|z|^2}$
- $|z+w|^2 \le (|z|+|w|)^2$

Piano di Gaus

il piano di gaus è un piano cartesiano dove la i viene rappresentata sulla delle ordinate (y); quindi per esempio avendo z=3+4i avremo:

se sei curioso <u>piano di gaus</u>

Sempre con il piano di gaus possiamo ottenere la somma geometrica di due numeri complessi z+w, completando il parallelogramma come formano i due segmenti complessi e facendone il modulo (il modulo

di un numero complesso restituisce la distanza tra quel punto e l'origine del piano):

Forma trigonometrica

Chiamiamo argomento di z (arg(z)) di un numero complesso z appartenente all'insieme dei numeri complessi (escluso lo 0), la misura in radianti dell'angolo formato tra la semiretta passante per 0 e z ed il semiasse positivo reale.

quindi se la condizione $z \neq 0$ viene rispettata si può constatare che:

$$z = \mid z \mid (\cos(arg(z)) + i * sen(arg(z)))$$

si chiama forma trigonometrica di un numero la scrittura di esso sotto la forma:

$$z = p(\cos o + i * \cos o)$$

dove p>0 e $o\in\mathbb{R}$; in questo caso p è il modulo di z e o ne è l'argomento.

Per passare dalla forma algebrica alla trigonometrica, se abbiamo z diverso da 0, avremo che:

$$p=\mid z\mid=\sqrt{a^2+b^2}$$

e calcoleremo coseno e seno con la seguente formula:

$$egin{cases} \cos o = rac{\mathbb{R}_z}{|z|} = rac{a}{\sqrt{a^2+b^2}} \ \sin o = rac{\mathbb{I}_z}{|z|} = rac{b}{\sqrt{a^2+b^2}} \end{cases}$$

ovviamente l'argomento di z deve essere compreso tra 0 e 2π .

- $\bar{z} = \rho \left(\cos(-\theta) + i \sin(-\theta) \right)$
- $\frac{1}{z} = \frac{1}{\rho}(\cos(-\theta) + i\sin(-\theta))$
- $z^n = \rho^n (\cos(n * \theta) + i \sin(n * \theta))$
- se $w^n=z$ allora $R^n=
 ho o R=
 ho^{rac{1}{n}}$
- $z =
 ho(\cos(\theta) + i\sin(\theta))$, $w = R(\cos(\phi) + i\sin(\phi))$ allora:

$$z*w = (\rho*R)(\cos(\theta+\phi) + i\sin(\theta+\phi))$$

• allo stesso modo avendo $\frac{z}{w}$ avremo:

$$z*w = rac{
ho}{R}(\cos(heta-\phi) + i\sin(heta-\phi))$$

Moltiplicare due numeri complessi, come w e z, comporta una rotazione e un cambiamento di dimensione sul piano complesso. Se w ha modulo 1, il prodotto wz risulta in una rotazione di z attorno all'origine di un angolo pari a $\arg(w)$. Ad esempio, moltiplicare z per i lo ruota di un quarto di giro in senso antiorario. Se w ha un modulo diverso da 1, oltre alla rotazione, z viene anche dilatato o compresso in base al modulo di w

Radici N-esime di un numero complesso

le radici n-esime di un numero complesso si ottengono "sparpagliando" n numeri complessi lungo una circonferenza, tutti con lo stesso modulo, ma con angoli differenti che si trovano aggiungendo multipli di $2\pi/n$.

esempio:

Teorema fondamentale dell'algebra

Il **Teorema Fondamentale dell'Algebra** afferma che ogni polinomio di grado n con coefficienti complessi ha esattamente n soluzioni (dette radici) nei numeri complessi, tenendo conto delle loro molteplicità. Questo significa che se hai un polinomio del tipo Pn(z), dove z è un numero complesso e il grado del polinomio è n, ci saranno n soluzioni complesse per l'equazione Pn(z)=0.

Ora, se il polinomio ha **coefficienti reali** (anziché complessi), succede una cosa interessante. Se una radice del polinomio è un numero complesso non reale (cioè appartiene ai numeri complessi, ma non ai numeri reali), allora anche il **coniugato** di quel numero complesso sarà una radice del polinomio.

Questo accade perché i polinomi a coefficienti reali hanno una proprietà simmetrica rispetto ai numeri complessi: se una radice è complessa, anche il suo coniugato deve esserlo, con la stessa molteplicità.

Principio del minimo intero

il principio del minimo intero esprime il buon ordinamento dei numeri naturali.

Applicando il teorema di esistenza dell'estremo superiore si dimostra che ogni insieme $\mathbb{A} \subseteq \mathbb{N}$ (ovvero A sottoinsieme di N) che è non vuoto ha un minimo.

Principio di induzione

Il principio di induzione serve a dare senso alle definizioni ricorsive, ed è utile nella verifica di propietà che dipendono da un numero naturale.

Se abbiamo un insieme $\mathbb{S} \subseteq \mathbb{N}$ che verifica:

- $0 \in \mathbb{S}$
- $ullet \ orall n \in \mathbb{S} \implies n+1 \in \mathbb{S}$ allora $\mathbb{S} = \mathbb{N}$

esempio:

mettendo che volessimo definire il fattoriale (!), sappiamo che la funzione $f: \mathbb{N} \to \mathbb{N}$ e data da:

$$egin{cases} f(0)=1\ f(n+1)=(n+1)*f(n) ext{ se } n\geq o \end{cases}$$

quindi come possiamo vedere verificando la funzione $f(n_0)$ e la funzione di f(n), possiamo verificare la funzione di f(n+1) semplicemente paragonandola alla funzione f(n) già verificata:

$$f(n)=1*2*3*4*\cdots*n$$
 $f(n+1)$ non verificata, ma $f(n)*(n+1)$ è verificata di conseguenza anche $f(n+1)$ viene verificata

Principio di induzione applicato ai predicati

Il principio di induzione applicato ai predicati viene utilizzato per dimostrare la verità di una proposizione P(n), definita su numeri naturali, per ogni $n \in \mathbb{N}$. Vediamo di spiegare come viene applicato.

Il principio di induzione dice che, se si hanno le seguenti due proprietà per un predicato P(n):

- 1. Base: P(0) è vero (ossia la proposizione è vera per il caso base, solitamente n=0).
- 2. **Passo induttivo**: per ogni $n \in \mathbb{N}$, se P(n) è vero, allora risulta vero anche P(n+1).

Se queste due proprietà sono soddisfatte, possiamo concludere che P(n) è vero per ogni $n \in \mathbb{N}$. Questo procedimento funziona perché la base P(0) fornisce il punto di partenza, e il passo induttivo ci permette di estendere la verità del predicato a tutti i numeri naturali.

Ricaviamo il principio di induzione dal principio del minimo intero

- principio del minimo intero: ogni sottoinsieme non vuoto dei numeri naturali ha un elemento minimo.
- Vogliamo dimostrare che un proposizione P(n) è vera per un valore iniziale n_0 , e se per ogni $n \in (N)$ la verità P(n) implica la verità P(n+1), allora P(n) è vera per tutti i numeri naturali.
- Supponiamo per assurdo che esista un valore n per cui P(n) non è vero, e prendiamo in considerazione l'insieme $S=\{n\in N|P(n)\ \text{è falso}\}$, di conseguenza sappiamo che S non è vuoto perché vi è almeno un elemento n.
- Utilizzando il principio del minimo intero su S (insieme non vuoto di N), sappiamo che esiste un numero minimo $m \in S$ tale che P(m) è falso, ma per ogni k < m, P(k) è vero.
- Sapendo che $P(n_0)$, dove n_0 è il valore iniziale, è verificato, e quindi non può essere $m=n_0$,di conseguenza $m>n_0$
- ora che sappiamo che P(m-1) è vero, in quanto m è il valore minimo per cui P(m) risulta falso. Ma dall'ipotesi del principio di induzione, se P(m-1) è verificato, allora anche P(m-1+1)=P(m) dovrebbe esserlo; ciò va così a contraddire la scelta di m come elemento minimo di S
- Quindi la nostra assunzione iniziale, ovvero che esiste un numero minimo m tale che P(m) sia falso, porta ad una contraddizione; portandoci così a concludere che S sia un insieme vuoto, e che quindi non esistono numeri naturali n per cui P(n) sia falso; di conseguenza P(n) è verificato per tutti i naturali. In conclusione riusciamo a derivare il principio di induzione dal principio del minimo intero per assurdo; ovvero che se una proprietà P fosse falsa per un qualunque numero naturale n, esisterebbe un numero naturale minimo per cui la proprietà è falsa, ma ciò porterebbe ad una contraddizione con l'ipotesi del passo induttivo. Di conseguenza la proprietà deve essere verificata per tutti i naturali.