ChernyshovDS 26122024-165922

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.504	-114.8	23.794	108.5	0.026	51.4	0.512	-55.8
1.8	0.476	-144.1	15.511	90.9	0.033	50.8	0.362	-69.6
2.5	0.470	-161.8	11.306	79.3	0.040	51.6	0.294	-81.7
3.2	0.476	-174.4	8.821	70.4	0.048	52.0	0.266	-92.6
3.9	0.482	175.9	7.221	62.5	0.056	51.9	0.251	-99.5
4.6	0.496	167.6	6.102	54.9	0.065	50.4	0.235	-107.4
5.3	0.499	160.9	5.240	48.0	0.074	49.0	0.219	-113.6
6.0	0.504	153.6	4.645	41.1	0.084	45.8	0.205	-121.2
6.8	0.519	143.8	4.077	32.9	0.093	42.3	0.178	-133.4

и частоты $f_{\scriptscriptstyle \rm H}=1.1$ ГГц, $f_{\scriptscriptstyle \rm B}=6$ ГГц.

Найти развязку на $f_{\scriptscriptstyle \mathrm{H}}.$

- 1) 21.5 дБ
- 2) 15.9 дБ
- 3) 31.7 дБ
- 4) 10.8 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.520	-110.9	25.458	110.7	0.026	52.1	0.535	-56.9
2.1	0.478	-153.8	13.250	84.8	0.037	50.9	0.314	-79.8
3.2	0.483	-175.4	8.691	69.9	0.049	51.6	0.256	-98.9
4.3	0.496	170.1	6.452	57.8	0.063	50.5	0.234	-110.7
5.4	0.503	159.3	5.055	46.8	0.078	48.1	0.209	-121.6
6.5	0.519	146.6	4.214	35.5	0.092	42.5	0.186	-138.4
8.6	0.601	127.5	3.048	14.5	0.120	31.7	0.151	157.8

Найти точку (см. рисунок 1), соответствующую s_{22} на частоте 6.5 ГГц.

Рисунок 1 — Кривые s_{11} и s_{22}

- 1) A
- 2) B
- 3) C
- 4) D

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
8.0	0.566	132.7	3.410	21.2	0.111	37.4	0.124	-162.2
8.2	0.576	131.1	3.305	19.1	0.113	35.9	0.125	-172.4
8.4	0.586	129.6	3.204	16.9	0.116	34.4	0.129	177.7
8.6	0.595	128.1	3.105	14.9	0.118	33.0	0.136	167.9
8.8	0.602	126.6	3.008	13.1	0.120	31.6	0.145	158.3
9.0	0.609	125.2	2.914	11.2	0.122	30.3	0.158	150.1
9.2	0.618	123.8	2.832	9.9	0.124	29.0	0.176	142.9
9.4	0.627	122.4	2.752	8.6	0.125	27.7	0.195	137.1
9.6	0.639	120.7	2.678	7.0	0.127	26.5	0.219	132.4
9.8	0.657	118.8	2.613	5.1	0.128	25.3	0.246	128.8
10.0	0.675	117.0	2.551	3.1	0.129	24.2	0.275	125.9

и частоты $f_{\scriptscriptstyle \rm H}=8.4$ $\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=9.4$ $\Gamma\Gamma$ ц. **Найти** неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 2.

Рисунок 2 – Частотная характеристика усиления

- 1) 0.7 дБ
- 2) 0.7 дБ
- 3) 2.5 дБ
- 4) 1.3 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.8	0.342	-176.0	7.561	78.3	0.061	66.0	0.232	-72.8
1.9	0.344	-178.6	7.147	76.2	0.064	65.5	0.222	-74.8
2.0	0.345	179.6	6.714	75.0	0.067	65.1	0.214	-77.1
2.2	0.350	176.3	6.119	72.6	0.073	64.5	0.200	-81.3
2.4	0.350	172.9	5.544	69.8	0.079	63.5	0.190	-85.2
2.6	0.355	170.0	5.114	67.8	0.084	62.7	0.181	-89.0
2.8	0.356	167.0	4.738	65.3	0.090	61.7	0.176	-92.5
3.0	0.360	164.1	4.404	63.3	0.096	60.8	0.171	-96.0
3.5	0.365	158.0	3.758	58.1	0.111	58.2	0.163	-103.4
4.0	0.371	152.2	3.283	53.0	0.125	55.3	0.157	-109.8
4.5	0.379	147.5	2.921	48.2	0.140	52.2	0.148	-115.5

и частоты $f_{\scriptscriptstyle \rm H}=2.2~\Gamma\Gamma$ ц, $f_{\scriptscriptstyle \rm B}=4.5~\Gamma\Gamma$ ц. **Найти** модуль s_{11} в дБ на частоте $f_{\scriptscriptstyle \rm H}$.

- 1) -9.1 дБ
- 2) -14 дБ
- 3) 15.7 дБ
- 4) -22.7 дБ

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=0.18+0.31\mathrm{i}$.

Рисунок 3 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Задан двухполюсник на рисунке 4, причём R1 = 128.55 Om.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать $unde\kappa c$ выбранной полуокружности.