Inventory Management Formulas

ABC Inventory Analysis

Order sku's in decreasing order of D\$, where

D\$ = annual dollar volume = unit price times annual demand

D = total "annual" demand (or total annual usage)

 C_{τ} = transaction, ordering, or "setup" cost (ordering or procurement cost per order)

 C_{I} = holding cost (or carrying cost) per unit per year

c = cost (purchase or production) per unit

 F_i = holding cost per unit per year as a fraction of the purchase cost; $C_i = (F_i)(c)$

Q = order quantity

TC(Q) = total annual cost as a function of the amount ordered (Q)

TVC(Q) = total annual variable cost (exclusive of annual purchase costs)

Q* = optimal order quantity (or the Economic Order Quantity)

 n^* = optimal number of orders to place per year (D/Q^*)

Economic Order Quantity (EOQ) Model

Total Annual Cost = Annual Ordering Costs + Annual Average Holding Costs + Annual Purchasing Costs

$$TC(Q) = C_T\left(\frac{D}{Q}\right) + C_I\left(\frac{Q}{2}\right) + cD$$

Total Annual Variable Cost:

$$TVC(Q) = C_T\left(\frac{D}{Q}\right) + C_I\left(\frac{Q}{2}\right)$$

EOQ Formula

The optimal (economic) order quantity is: $Q^* = \sqrt{\frac{2DC_T}{c_I}}$

The optimal number of orders to place per year is $n^* = (D/Q^*)$

The optimal total annual variable cost is $TVC(Q^*) = C_T\left(\frac{D}{Q^*}\right) + C_I\left(\frac{Q^*}{2}\right) = C_IQ^*$

Newsvendor Model

- C_L marginal cost if demand is **too low** ("overage cost") typically includes cost of item – salvage value
- C_U marginal (opportunity) cost if demand is **too high** ("underage cost") typically includes opportunity cost of lost contribution margin ("lost profit") plus shortage costs, i.e., price – cost + shortage cost

Newsvendor Formula

Continuous Demand:

The optimal quantity q* is given by

$$P(\text{demand} \ge q^*) = \frac{C_L}{C_U + C_L}$$

Discrete demand distribution:

The optimal order quantity q^* is the **largest** value q for which

$$P(\text{demand} \ge q) \ge \frac{C_L}{C_U + C_L}$$