Elliptic Curves

Harry Armitage

November 3, 2020

Contents

1	Fermat's Method of Infinite Descent	2
	1.1 A Variant for Polynomials	3
2	Some Remarks on Algebraic Curves 2.1 Order of Vanishing	3 5 7
3	Weierstrass Equations	7
4	Group Law4.1Explicit Formulae for the Group Law4.2Elliptic Curves over \mathbb{C}	10 11 13
5	Isogenies	14
6	The Invariant Differential	19
7	Elliptic Curves over Finite Fields 7.1 Zeta Functions	21 22
8	Formal Groups	24

1 Fermat's Method of Infinite Descent

Suppose we have a right-angled triangle Δ with side lengths a, b, c, so that by Pythagoras we have $a^2 + b^2 = c^2$, and area $(\Delta) = \frac{1}{2}ab$.

Definition 1.1. Δ *is* **rational** *if* a, b, $c \in \mathbb{Q}$, and **primitive** *if* a, b, $c \in \mathbb{Z}$ *coprime*.

Lemma 1.2. Every primitive triangle is of the form $a = u^2 - v^2$, b = 2uv, $c = u^2 + v^2$ for coprime integers u > v > 0.

Proof. If a, b were both odd, then $a^2 + b^2 \equiv 2 \mod 4$, and we have no solutions for c. If a, b both even, then they are not coprime. So we may assume a is odd, b is even, c is odd.

Then $(\frac{b}{2})^2 = \frac{c+a}{2} \frac{c-a}{2}$, and the right hand side is a product of coprime positive integers. So by unique prime factorisation in the integers, $\frac{c+a}{2} = u^2$, $\frac{c-a}{2} = v^2$ for some coprime integers u, v. Rearranging, we have the lemma.

Definition 1.3. $D \in \mathbb{Q}_{>0}$ *is a* **congruent number** *if it is the area of a rational triangle.*

Note that, by scaling the triangle, it suffices to consider $D \in \mathbb{Z}_{>0}$ squarefree.

For example, D = 5, 6 are congruent numbers. $6 = \frac{1}{2} \cdot 3 \cdot 4$, and $3^2 + 4^2 = 5^2$, and 5 is left as an exercise.

Lemma 1.4. $D \in \mathbb{Q}_{>0}$ is congruent if and only if $Dy^2 = x^3 - x$ for some $x, y \in \mathbb{Q}, y \neq 0$.

Proof. Lemma **1.2** shows that *D* is congruent if and only if $Dw^2 = uv(u^2 - v^2)$ for some $u, v, w \in \mathbb{O}$. $w \neq 0$.

Setting
$$x = \frac{u}{v}$$
, $y = \frac{w}{v^2}$ finishes the proof.

Fermat showed that 1 is not a congruent number.

Theorem 1.5. There is no solution to

$$w^2 = uv(u+v)(u-v) \tag{*}$$

in integers u, v, w with $w \neq 0$.

Proof. Without loss of generality, u,v are coprime with u>0, w>0. If v<0 then replace (u,v,w) by (-v,u,w). If u,v are both odd, then replace (u,v,w) by $(\frac{u+v}{2},\frac{u-v}{2},\frac{w}{2})$. So we may assume that all of u,v,u+v,u-v are coprime positive integers whose product is a square, and hence are all squares, say a^2,b^2,c^2,d^2 respectively, where $a,b,c,d\in\mathbb{Z}_{>0}$.

Since $u \not\equiv v \mod 2$, both c, d are odd. Consider the right angled triangle with side lengths, $\frac{c+d}{2}$, $\frac{c-d}{2}$, a. This is a primitive triangle, and it has area $\frac{c^2-d^2}{8} = \frac{v}{4} = (\frac{b}{2})^2$.

Let $w_1 = \frac{b}{2}$. Then lemma **1.2** gives $w_1^2 = u_1 v_1 (u_1^2 - v_1^2)$ for some $u_1, v_1 \in \mathbb{Z}$, giving a new solution to (*). But $4w_1^2 = b^2 = v | w^2$, and so $w_1 \le \frac{1}{2}w$.

So by Fermat's method of infinite descent, if there were a solution we would have a strictly decreasing infinite sequence of positive integers $\frac{1}{2}$. Hence there is no solution to (*).

1.1 A Variant for Polynomials

Here, *K* is a field with char $K \neq 2$. The algebraic closure of *K* will be \overline{K} .

Lemma 1.6. Let $u, v \in K[t]$ be coprime. If $\alpha u + \beta v$ is a square for four distinct $(\alpha : \beta) \in \mathbb{P}^1$, then $u, v \in K$.

Proof. Without loss of generality we may assume $K = \overline{K}$, as that doesn't change the degree of polynomials, and every square is still a square.

Changing coordinates on \mathbb{P}^1 , we may assume the ratios $\alpha:\beta$ are $(1:0),(0:1),(1:-1),(1:-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$, with $\mu = \sqrt{\lambda}$.

Then $u = a^2$, $v = b^2$, u - v = (a + b)(a - b), $u - \lambda v = (a + \mu b)(a - \mu b)$ are all squares. They are also coprime, and so by unique factorisation in K[t], (a + b), (a - b), $(a + \mu b)$, $(a - \mu b)$ are all squares.

But $\max\{\deg a, \deg b\} \le \frac{1}{2} \max\{\deg u, \deg v\}$. So by Fermat's method of infinite descent, we get that the original $u, v \in K$.

Now we have some important definitions:

Definition 1.7.

- 1. An elliptic curve E over a field K is the projective closure of the affine curve $y^2 = f(x)$ where $f \in K[x]$ is a monic cubic polynomial with distinct roots.
- 2. For L/K any field extension, $E(L) = \{(x, y) \in L^2 : y^2 = f(x)\} \cup \{0\}$. 0 is called the **point at infinity**.

We call the point at infinity 0 because we will see that E(L) is naturally an abelian group under an operation we will denote by +, and 0 will be the identity for that group. In this course we will study E(L) for L a finite field, a local field, and a number field.

Lemma **1.4** and theorem **1.5** together imply that, if *E* is given by $y^2 = x^3 - x$, then $E(\mathbb{Q}) = \{0, (0, 0), (\pm 1, 0)\}$, which we will see is the group $C_2 \times C_2$.

Corollary 1.8. Let E/K be an elliptic curve. Then E(K(t)) = E(K).

Proof. Without loss of generality, $K = \overline{K}$. By a change of coordinates we may assume $E: y^2 = x(x-1)(x-\lambda)$ for some $\lambda \in K \setminus \{0,1\}$. Suppose $(x,y) \in E(K(t))$. Write $x = \frac{u}{v}$ with $u,v \in K[t]$ coprime. Then $w^2 = uv(u-v)(u-\lambda v)$ for some $w \in K[t]$.

Unique factorisation in K[t] gives $u, v, u - v, u - \lambda v$ are all squares, and so by lemma **1.6**, $u, v \in K$, and so $x, y \in K$.

2 Some Remarks on Algebraic Curves

We will be working over an algebraically closed field *K*.

Definition 2.1. An (irreducible) plane algebraic curve $C = \{f(x,y) = 0\} \subset \mathbb{A}^2$ is **rational** if it has a rational parametrization, i.e. there are $\phi, \psi \in K(t)$ such that:

- 1. $\mathbb{A}^1 \to \mathbb{A}^2$; $t \mapsto (\phi(t), \psi(t))$ is injective on $\mathbb{A}^1 \setminus \{\text{finite set}\}$.
- 2. $f(\phi(t), \psi(t)) = 0$.

Examples 2.2.

1. Any nonsingular plane conic is rational. For example, take a circle $x^2 + y^2 = 1$. Pick a point on it, (-1,0). Now draw a line through it with slope t, and solve for the points of intersection between the curve and the line.

Solving for the coordinates of p, we get the quadratic $x^2 + t^2(x+1)^2 = 1$, i.e. x = -1 or $\frac{1-t^2}{1+t^2}$. So we have the rational parametrization $(x,y) = \left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$

2. Any singular plane cubic is rational.

- (a) Rational Parametrization $(x, y) = (t^2, t^3)$
- (b) Left as an example on the first sheet
- 3. Corollary **1.8** shows that elliptic curves are *not* rational.

Definition 2.3. *The* **genus** $g(C) \in \mathbb{Z}_{\geq 0}$ *is an invariant of a smooth projective curve.*

• If $K = \mathbb{C}$, then g(C) = genus of the Riemann surface C.

• A smooth plane curve $C \subset \mathbb{P}^2$ of degree d has genus $g(C) = \frac{(d-1)(d-2)}{2}$.

Proposition 2.4. *Let C be a smooth projective curve over K*, *an algebraically closed field. Then:*

- 1. C is rational \iff g(C) = 0.
- 2. C is an elliptic curve \iff g(C) = 1.

Proof. A proof of 1 is omitted from this course. For 2, we check (on the first example sheet) that elliptic curves are smooth plane curves. Then they have degree 3, so genus $\frac{2\cdot 1}{2} = 1$. For the other direction, see later on in the course.

2.1 Order of Vanishing

C will be an algebraic curve, and K(C) its function field, with $P \in C$ a smooth point. Write ord $_P(f)$ to mean the order of vanishing of $f \in K(C)$ at P (negative if f has a pole).

Fact: $\operatorname{ord}_P : K(C)^{\times} \to \mathbb{Z}$ is a discrete valuation, i.e. $\operatorname{ord}_P(f_1 f_2) = \operatorname{ord}_P(f_1) + \operatorname{ord}_P(f_2)$ and $\operatorname{ord}_P(f_1 + f_2) \ge \min\{\operatorname{ord}_P(f_1), \operatorname{ord}_P(f_2)\}.$

We say $t \in K(C)^{\times}$ is a *uniformizer* at the point P if $ord_P(t) = 1$.

Example 2.5. Let $C = \{g(x,y) = 0\} \subseteq \mathbb{A}^2$, where $g \in K[x,y]$ is irreducible. Then $K(C) = \operatorname{Frac} \frac{K[x,y]}{g}$, with $g = g_0 + g_1(x,y) + g_2(x,y) + \dots$, g_i homogeneous of degree i.

Suppose $P = (0,0) \in C$ is a smooth point, i.e. $g_0 = 0$, $g_1(x,y) = \alpha x + \beta y$ with α, β not both zero.

Let $\gamma, \delta \in K$. It is a fact that $\gamma x + \delta y \in K(C)$ is a uniformizer at P if and only if $\frac{\gamma}{\delta} \neq \frac{\alpha}{\beta}$, i.e. $\alpha \delta - \beta \gamma \neq 0$.

Example 2.6. $\{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{A}^2, \lambda \neq 0, 1$. We take the projective closure, i.e. homogenize the equation as $\{Y^2Z = X(X-Z)(X-\lambda Z)\} \subset \mathbb{P}^2$ by setting x = X/Z, y = Y/Z.

Have we got new points by taking projective closure? We only get these when Z=0, i.e. $0=X^3 \implies X=0, Y\neq 0$. Since we're in projective space, this is just one point: P=(0:1:0). We compute $\operatorname{ord}_P(x)$ and $\operatorname{ord}_P(y)$. Put t=X/Y, w=Z/Y (since we can't return to the original affine piece, as it doesn't contain Z=0). Then we get $w=t(t-w)(t-\lambda w)$. Now P is the point (t,w)=(0,0). This is a smooth point, as there are linear terms at that point (namely w). So $\operatorname{ord}_P(t)=\operatorname{ord}_P(t-2)=\operatorname{ord}_P(t-\lambda w)=1$, and $\operatorname{ord}_P(w)=1+1+1=3$.

Then:

$$\operatorname{ord}_{P}(x) = \operatorname{ord}_{P}(X/Z) = \operatorname{ord}_{P}(t/w) = 1 - 3 = -2$$

 $\operatorname{ord}_{P}(y) = \operatorname{ord}_{P}(Y/Z) = \operatorname{ord}_{P}(1/w) = -3$

2.2 Riemann Roch Spaces

Let C be a smooth projective curve. Then a *divisor* is a formal sum of points on C, say $D = \sum_{P \in C} n_P P$ where $n_P \in \mathbb{Z}$, and only finitely many n_P are nonzero, and let $\deg D = \sum_{P \in C} n_P$. These divisors form a group under addition, denoted $\mathrm{Div}(C)$.

D is said to be *effective*, written $D \ge 0$ if $n_p \ge 0$ for all $P \in C$.

If $f \in K(C)^{\times}$, we write $\operatorname{div}(f) = \sum_{P \in C} \operatorname{ord}_{P}(f)P$.

The Riemann Roch space of $D \in Div(C)$ is:

$$\mathcal{L}(D) = \{ f \in K(C) : \operatorname{div}(f) + D \ge 0 \} \cup \{ 0 \}$$

i.e. the K-vector space of rational functions on C with "poles no worse than specified by D."

Theorem 2.7 (Riemann Roch for genus 1).

$$\dim \mathcal{L}(D) = \begin{cases} 0 & \deg D < 0 \\ 0 \text{ or } 1 & \deg D = 0 \\ \deg D & \deg D > 0 \end{cases}$$

Example 2.6 (revisited). Our curve is $\{y^2 = x(x-1)(x-\lambda)\} \subset \mathbb{A}^2$, together with P = (0:1:0), the point at infinity. Recall $\operatorname{ord}_P(x) = -2$, $\operatorname{ord}_P(x) = -3$.

We thus deduce that $\mathcal{L}(2P) = \langle 1, x \rangle$, $\mathcal{L}(3P) = \langle 1, x, y \rangle$.

Proposition 2.8. Let K be an algebraically closed field not of characteristic 2. Let $C \subset \mathbb{P}^2$ be a smooth plane cubic, and that $P \in C$ is a point of inflection. Then we may change coordinates such that:

$$C: Y^2Z = X(X - Z)(X - \lambda Z), \quad \lambda \neq 0, 1$$

 $P = (0:1:0)$

Proof. We make a change of coordinates such that P = (0:1:0) and the tangent line to C at P, $T_P(C) = \{Z = 0\}$. Now let $C = \{F(X, Y, Z) = 0\}$.

Since $P \in C$ is a point of inflection, F(t, 1, 0) has a triple root at t = 0. But F is degree 3, so we have $F(t, 1, 0) = kt^3$ for k some constant. I.e., there are no terms in F of the form X^2Y , XY^2 , Y^3 .

So $F \in \langle Y^2Z, XYZ, YZ^2, X^3, X^2Z, XZ^2, Z^3 \rangle$. The coefficient of Y^2Z is nonzero, as otherwise P would be singular. The coefficient of X^3 is also nonzero, as C is irreducible and otherwise $\{Z=0\} \subset C$.

We are free to rescale X, Y, Z, F, and so wlog C is defined by

$$Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$$

We call this Weierstrass form.

Since our field doesn't have characteristic 2, we may complete the square by substituting $Y = Y - \frac{1}{2}a_1X - \frac{1}{2}a_3Z$, we may assume $a_1 = a_3 = 0$.

Now $C: Y^2Z = Z^3f(X/Z)$, where f is a monic cubic polynomial. Since C is smooth, f has distinct roots, which are wlog $0, 1, \lambda$. So

$$C: Y^2Z = X(X - Z)(X - \lambda Z)$$

which we call the Legendre form.

It may be shown that the points of inflection on $C = \{F = 0\} \subset \mathbb{P}^2$ are given by $F = \det\left(\frac{\partial^2 f}{\partial X_i \partial X_j}\right) = 0$

2.3 The Degree of a Morphism

Let $\phi: C_1 \to C_2$ be a nonconstant morphism of smooth projective curves. Let $\phi^*: K(C_2) \to K(C_1)$, $f \mapsto f \circ \phi$.

Definition.

- 1. $\deg \phi = [K(C_1) : \phi^*K(C_2)]$
- 2. ϕ is separable if $K(C_1)/\phi^*K(C_2)$ is a separable field extension (which by Galois theory is automatic if char K=0)

Suppose $P \in C_1, Q \in C_2, \phi : P \to Q$. Let $t \in K(C_2)$ be a uniformizer at Q. We then define $e_{\phi}(p) = \operatorname{ord}_P(\phi^*t)$, which is always ≥ 1 , and independent of t. $e_{\phi}(P)$ is called the *ramification index* of ϕ at p.

Theorem 2.9. Let $\phi: C_1 \to C_2$ be a nonconstant morphism of smooth projective curves. Then

$$\sum_{p \in \phi^{-1}(Q)} e_{\phi}(P) = \deg \phi$$

for any point $Q \in C_2$. Moreover, if ϕ is separable then $e_{\phi}(P) = 1$ with at most finitely many exceptions. In particular:

- 1. ϕ is surjective
- 2. If ϕ is separable, $\#\phi^{-1}(Q) \leq \deg \phi$, with equality for all but finitely many choices of Q.

Remark 2.10. Let *C* be an algebraic curve. A rational map is given by $\phi : C \to \mathbb{P}^n$, $P \mapsto (f_0(P) : \dots : f_n(P))$, where $f_0, \dots, f_n \in K(C)$ are not all zero. If *C* is smooth then ϕ is a morphism.

3 Weierstrass Equations

In this section, K is a perfect field (so that all finite extensions of K are separable), with algebraic closure \bar{K} .

Definition. An elliptic curve E over K is a smooth projective curve of genus 1 defined over K with a specified K-rational point O_E .

Example: Take $\{X^3 + pY^3 + p^2Z^3 = 0\} \subset \mathbb{P}^2$ for p prime. This is not an elliptic curve over \mathbb{Q} since there is no \mathbb{Q} -points.

Theorem 3.1. Every elliptic curve E is isomorphic over K to a curve in Weierstrass form via an isomorphism taking O_E to (0:1:0).

Proposition **2.8** treated the special case where E is a smooth plane cubic and O_E is a point of inflection.

If $D \in \text{Div}(E)$ is defined over K (i.e. fixed by the natural action of $\text{Gal}(\bar{K}/K)$, then $\mathcal{L}(D)$ has a basis in K(E), not just in $\bar{K}(E)$).

Proof. Note that

$$\mathcal{L}(2O_E) \subset \mathcal{L}(3O_E)$$

Pick bases of these spaces, say $\{1, x\}$ and $\{1, x, y\}$.

Note that $\operatorname{ord}_{O_E}(x) = -2$, $\operatorname{ord}_{O_E}(y) = -3$. The 7 elements $\{1, x, y, x^2, xy, x^3, y^2\}$ are rational functions with no pole except at O_E , where they have poles of degree at most 6, so they all lie in $\mathcal{L}(6O_E)$. Riemann-Roch tells us this space has dimension 6, so there is a dependence relation between these elements.

Leaving out x^3 or y^2 gives a basis for $\mathcal{L}(6O_E)$ since each term has a different order pole at O_E , so they are independent.

Therefore this dependence relation *must* involve both x^3 and y^2 . Rescaling x, y we get

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$

Let *E'* be the curve defined by this equation (or rather its projective closure).

There is a morphism

$$\phi: E \to E'$$

$$P \mapsto (x(P): y(P): 1) = \left(\frac{x}{y}(P): 1: \frac{1}{y}(P)\right)$$

$$O_E \mapsto (0: 1: 0)$$

$$[K(E):K(x)] = \deg(E \xrightarrow{x} \mathbb{P}^1) = \operatorname{ord}_{O_E} \left(\frac{1}{x}\right) = 2$$
$$[K(E):K(y)] = \deg(E \xrightarrow{y} \mathbb{P}^1) = \operatorname{ord}_{O_E} \left(\frac{1}{y}\right) = 3$$

This gives us a diagram of field extensions

So [K(E):K(x,y)] divides both 2 and 3 by the tower law, and hence K(E)=K(x,y), and hence $\deg(E \xrightarrow{\phi} E')=1$, and ϕ is birational. If E' is singular, then it is rational, and so E is also rational ξ . So E' is not singular and hence smooth, and we may use remark **2.10** to ϕ^{-1} to see that ϕ^{-1} is a morphism, and hence ϕ is an isomorphism.

Proposition 3.2. Let E, E' be elliptic curves over K in Weierstrass form. Then $E \cong E'$ over K if and only if the Weierstrass equations are related by a change of variables of the form

$$x = u^2x' + r$$

$$y = u^3y' + u^2sx' + t$$

for $u, r, s, t \in K, u \neq 0$.

Proof. Using the notation of the previous proof,

$$\begin{split} \langle 1, x \rangle &= \mathcal{L}(2O_E) = \langle 1, x' \rangle \\ \langle 1, x, y \rangle &= \mathcal{L}(3O_E) = \langle 1, x', y' \rangle \\ &\Longrightarrow \begin{cases} x = \lambda x' + r & \lambda_1 r \in K, \lambda \neq 0 \\ y = \mu y' + \sigma x' + t & \mu, \sigma, t \in K, \mu \neq 0 \end{cases} \end{split}$$

Looking at the coefficients of x^3 and y^2 , $\lambda^3 = \mu^2 \implies (\lambda, \mu) = (u^2, u^3)$ for $u \in K^{\times}$.

Put
$$s = \sigma/u^2$$

The effect of this transformation on the coefficients a_i is on the formula sheet for this course. A Weierstrass equation defines an elliptic curve if and only if defines a smooth curve, if and only if $\Delta(a_1, \ldots, a_6) \neq 0$ where Δ is as follows:

$$b_2 := a_1^2 + 4a_2$$

$$b_4 := 2a_4 + a_1a_3$$

$$b_6 := a_3^2 + 4a_6$$

$$b_8 := a_1^2a_6 + 4a_2a_6 - a_1a_3a_4 + a_2a_3^2 - a_4^2$$

$$\Delta := -b_2^2b_8 - 8b_4^3 - 27b_6^2 + 9b_2b_4b_6$$

If char $K \neq 2, 3$, then we can reduce to the case

$$E: y^2 = x^3 + ax + b$$
$$\Delta = -16(4a^3 + 26b^2)$$

Corollary 3.3. Assume char $K \neq 2,3$. If we have two elliptic curves

$$E: y^2 = x^3 + ax + b$$

 $E': y^2 = x^3 + a'x + b'$

then they are isomorphic over K if and only if

$$a' = u^4 a$$
$$b' = u^6 b$$

for some $u \in K^{\times}$.

Proof. E and E' are related as in **3.2** with r = s = t = 0.

Definition. The *j-invariant* is $j(E) = \frac{1728(4a^3)}{4a^3 + 27b^2}$. Note that the denominator is nonzero since the discriminant is nonzero.

Corollary 3.4. $E \cong E' \implies j(E) = j(E')$, and the converse holds if $K = \overline{K}$.

Proof.

$$E \cong E' \iff a' = u^4 a; b' = u^6 b \text{ for some } u \in K^{\times}$$

 $\implies (a^3 : b^2) = ((a')^3 : (b')^2)$
 $\iff j(E) = j(E')$

and the reverse implication holds in the second line if $K = \bar{K}$.

4 Group Law

Let $E \subset \mathbb{P}^2$ be a smooth plane cubic, and $O_E \in E(K)$. Since E is of degree 3, it meets each line in 3 points counted with multiplicity. Hence, given two points P, Q on E, the line \overline{PQ} meets E at a third point S. Then the line $\overline{O_ES}$ meets E at a third point S. We then define $P \oplus Q = R$.

If P = Q, then we take the tangent line at P, likewise if $S = O_E$. We can view this diagrammatically as follows:

Figure 2: Illustration of the group operation on an elliptic curve

We call this the "chord and tangent process".

Theorem 4.1. (E, \oplus) *is an abelian group.*

Proof.

- (i) $P \oplus Q = Q \oplus P$ by construction.
- (ii) O_E is the identity.
- (iii) For inverses, let *S* be the third point of intersection of T_{O_E} and *E*, and *Q* be the third point of intersection of \overline{PS} and *E*. Then $P \oplus Q = O_E$.
- (iv) Associativity is much harder.

Definition. $D_1, D_2 \in Div(E)$ are *linearly equivalent* (written $D_1 \sim D_2$) if there is $f \in \overline{K}(E)^{\times}$ such that $\operatorname{div}(f) = D_1 - D_2$. Then we will let $[D] = \{D' : D' \sim D\}$.

Definition. The *Picard group of E*, $Pic(E) = Div(E)/\sim$. We write $Div^0(E) := ker \left(Div(E) \xrightarrow{deg} \mathbb{Z}\right)$ for the group of degree 0 divisors on *E*, and then $Pic^0(E) = Div^0(E)/\sim$. Sometimes Pic^0 is called

Proposition 4.2. Let $\psi : E \to \operatorname{Pic}^0(E); P \mapsto [(P) - (O_E)]$. Then:

- 1. $\psi(P \oplus Q) = \psi(P) + \psi(Q)$
- 2. ψ is a bijection

the Jacobian.

Proof.

1. Referring back to Fig. 2, let $\{\ell = 0\}$ be the line \overline{PQ} , and $\{m = 0\}$ be the line $\overline{O_ER}$. Then:

$$\operatorname{div}(\ell/m) = (P) + (S) + (Q) - (R) - (S) - (O_E)$$

$$= (P) + (Q) - (O_E) - (P \oplus Q)$$

$$\Longrightarrow (P \oplus Q) + (O_E) \sim (P) + (Q)$$

$$\Longrightarrow (P \oplus Q) - (O_E) \sim (P) - (O_E) + (Q) - (O_E)$$

$$\Longrightarrow \psi(P \oplus Q) = \psi(P) + \psi(Q)$$

2. For injectivity, suppose $\psi(P) = \psi(Q)$. Then there is $f \in \bar{K}(E)^{\times}$ such that $\operatorname{div}(f) = P - Q$. Then $\operatorname{deg}\left(E \xrightarrow{f} \mathbb{P}^1\right) = \operatorname{ord}_P(f) = 1$. But then f is a birational morphism, so an isomorphism, and $E \cong \mathbb{P}^1 \not$.

For surjectivity, let $[D] \in \operatorname{Pic}^0(E)$. Then $D + (O_E)$ has degree 1 (as D had degree 0). Then Riemann-Roch tells us $\dim \mathcal{L}(D + (O_E)) = 1$, and so there exists some $f \in \overline{K}(E)^{\times}$ such that $\operatorname{div}(f) + D + (O_E) \geq 0$. Since f is rational, deg $\operatorname{div}(f) = 0$, and deg D = 0. So the coefficients of $\operatorname{div}(f) + D + (O_E)$ are non-negative and sum to 1, hence one of them is 1 and the rest are 0. So $\operatorname{div}(f) + D + (O_E) = (P)$ for some $P \in E$. But then $(P) - (O_E) \sim D$, i.e. $\psi(P) = [D]$.

So ψ is a bijection respecting the group law, and so we deduce that \oplus is associative, and then $(E, \oplus) \stackrel{\psi}{\cong} (\operatorname{Pic}^0 E, +)$.

4.1 Explicit Formulae for the Group Law

We consider E in Weierstrass form, with O_E the point at infinity:

$$y^2 + a_1 x y + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6$$
 (*)

Note that O_E is a point of inflection. Now $P_1 \oplus P_2 \oplus P_3 = O_E \iff P_1, P_2, P_3$ are collinear. We will use the following notation:

and put $P_i = (x_i, y_i), P' = (x', y').$

Now $\Theta P_1 = (x_1, -(a_1x_1 + a_3) - y_1)$, just by setting $y = -y_1$ in (*).

The line through P_1 , P_2 has equation say $y = \lambda x + \nu$. Substituting into (*) and looking at the coefficient of x^2 , we get:

$$\lambda^2 + a_1 \lambda - a_2 = x_1 + x_2 + x'$$

Since $x_3 = x'$, we have:

$$x_3 = \lambda^2 + a_1\lambda - a_2 - x_1 - x_2$$

$$y_3 = -(a_1x' + a_3) - y'$$

$$= -(\lambda + a_1)x_3 - \nu - a_3$$

It remains to find λ and ν . There are 3 cases:

1. $x_1 = x_2, P_1 \neq P_2$.

Then $P_1 \oplus P_2 = O_E$.

2. $x_1 \neq x_2$.

$$\lambda = \frac{y_2 - y_1}{x_2 - x_1}, \quad \nu = y_1 - \lambda x_1 = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}$$

3. $P_1 = P_2$.

Here we have to compute the equation of the tangent line etc. The solutions are:

$$\lambda = \frac{3x_1^2 + 2a_2x_1 + a_4 - a_1y_1}{2y_1 + a_1x_1 + a_3}, \ \ \nu = \frac{-x_1^3 + a_4x_1 + 2a_6 - a_3y_1}{2y_1 + a_1x_1 + a_3}$$

Corollary 4.3. E(K) is an abelian group.

Proof. It is a subgroup of $E (= E(\overline{K}))$.

Identity: $O_E \in E(K)$ by definition.

Closure: See formulae above.

Inverses: See formulae above.

Associativity: Inherited from $E(\bar{K})$.

Commutativity: Inherited from $E(\bar{K})$.

If there is no ambiguity (i.e. we are not also adding numbers at the same time), the circles will be dropped from the group operation.

Theorem 4.4. Elliptic curves are group varieties.

$$i.e., [-1]: E \rightarrow E; P \mapsto -P \ and \ +: E \times E \rightarrow E; (P,Q) \mapsto P + Q \ are \ morphisms \ of \ algebraic \ varieties.$$

Proof. The above formulae show that [-1] and + are rational maps. We know immediately that [-1] is a morphism, as it is a rational map from a smooth curve to a projective variety.

The formulae also show that + is regular on the set

$$U = \{(P, Q) \in E \times E \mid P, Q, P + Q, P - Q \neq O_E\}$$

For $P \in E$, let $\tau_P : E \to E$; $X \mapsto P + X$ be the "translation by P" map.

Then τ_P is a rational map from a smooth curve to a projective variety, so is a morphism.

We factor + as:

$$E \times E \xrightarrow[\tau_{-A} \times \tau_{-B}]{} E \times E \xrightarrow[\tau_{A+B}]{} E \xrightarrow[\tau_{A+B}]{} E$$

Now + is regular on $(\tau_A \times \tau_B)(U)$ for all $A, B \in E$, and so + is regular on $E \times E$.

<u>Definition.</u> For any $n \in \mathbb{Z}_{>0}$, let $[n]: E \to E; P \mapsto P + \ldots + P$, n times, and $[-n] = [-1] \circ [n]$, $[0]: P \mapsto O_E$ (i.e., the standard way of turning an abelian group into \mathbb{Z} module).

Definition. The *n*-torsion subgroup of *E* is $E[n] = \ker([n] : E \to E)$.

Lemma 4.5. If char(K) \neq 2, and E: $y^2 = (x - e_1)(x - e_2)(x - e_3)$.

Then $E[2] = (0, (e_1, 0), (e_2, 0), (e_3 0)) \cong (\mathbb{Z}/2\mathbb{Z})^2$.

Proof. Let
$$P = (x, y) \in E$$
. Then $[2]P = 0 \iff P = -P \iff (x, y) = (x, -y) \iff y = 0$.

4.2 Elliptic Curves over ℂ

Let $\Lambda = \{a\omega_1 + b\omega_2 : a, b \in \mathbb{Z}\}$, where ω_1, ω_2 form a basis for \mathbb{C} over \mathbb{R} .

Then the meromorphic functions on the Riemann surface (or lattice) \mathbb{C}/Λ are the same as the Λ -invariant meromorphic functions on \mathbb{C} (i.e. $f(z) = f(z + \lambda)$ for $\lambda \in \Lambda$).

This set of functions is a field, and is generated by $\wp(z)$ and $\wp'(z)$, where:

$$\wp(z) = \frac{1}{z^2} + \sum_{0 \neq \lambda \in \Lambda} \left(\frac{1}{(z - \lambda)^2} - \frac{1}{\lambda^2} \right)$$

They satisfy $\wp'(z)^2 = 4\wp(z)^3 - g_2\wp(z) - g_3$, for some $g_1, g_3 \in \mathbb{C}$ depending on λ . We call \wp the *Weierstrass p-function*.

One can show that $\mathbb{C}/\Lambda \cong E(\mathbb{C})$, where E is the elliptic curve $y^2 = 4x^3 - g_2x - g_3$. This is an isomorphism, not only of Riemann surfaces, but moreover of groups

Theorem 4.6 (Uniformisation Theorem). *Every elliptic curve over* \mathbb{C} *arises in this way.*

Thus, for elliptic curves E/\mathbb{C} , we have:

- $(1) E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$
- (2) deg $[n] = n^2$

We will show that 2 holds over any field K, and 1 holds if char $K \nmid n$.

Summary of Results (N.B. the isomorphisms in 1, 2, 4 respect the relevant topologies)

1.
$$K = \mathbb{C}$$

$$E(\mathbb{C}) \cong \mathbb{C}/\Lambda \cong \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$$

2.
$$K = \mathbb{R}$$

$$E(\mathbb{R}) \cong \begin{cases} \mathbb{Z}/2\mathbb{Z} \times \mathbb{R}/\mathbb{Z} & \Delta > 0 \\ \mathbb{R}/\mathbb{Z} & \Delta < 0 \end{cases}$$

3.
$$K = \mathbb{F}_q$$
 $|\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$

4.
$$[K:\mathbb{Q}_p]<\infty$$
 $E(K)$ has a subgroup of finite index isomorphic to $(\mathcal{O}_K,+)$

5.
$$[K:\mathbb{Q}]<\infty$$
 $E(K)$ is a finitely generated abelian group.

5 Isogenies

Let E_1 , E_2 be elliptic curves.

Definition. An *isogeny* ϕ : $E_1 \to E_2$ is a non-constant morphism taking O_{E_1} to O_{E_2} , and we say E_1 and E_2 are *isogenous* if there is an isogeny $E_1 \to E_2$.

Definition. Hom $(E_1, E_2) = \{\text{isogenies } E_1 \to E_2\} \cup \{0\}$. This is a group under $(\phi + \psi)(P) = \phi(P) + \psi(P)$.

If $E_1 \xrightarrow{\phi} E_2 \xrightarrow{\psi} E_3$ are isogenies, then $\psi \phi$ is an isogeny. The tower law tells us that $\deg(\psi \phi) = \deg(\phi) \deg(\psi)$.

Lemma 5.1. *If* $0 \neq n \in \mathbb{Z}$, then $[n] : E \rightarrow E$ is an isogeny.

Proof. Theorem **4.4** tells us that [n] is a morphism. We must show that $[n] \neq 0$.

Assume char $K \neq 2$, then we can use Lemma 4.5. If n = 2, then #E[2] = 4, and so $[2] \neq 0$.

If *n* is odd, then there is $0 \neq T \in E[2]$. Then $nT = T \neq 0$, so [n] is not the zero map.

Now $[m][n] = [m] \circ [n]$, and any $n = 2^k m$ for m odd, so [n] is not the zero map for any $n \neq 0$.

If char K = 2, then replace **4.5** with a lemma computing E[3].

Corollary. Hom(E_1 , E_2) is torsion-free as a \mathbb{Z} -module.

Lemma 5.2. Let $\phi: E_1 \to E_2$ be an isogeny. Then $\phi(P+Q) = \phi(P) + \phi(Q)$ for all $P, Q \in E_1$.

Sketch proof. ϕ induces a map $\phi_* : \operatorname{Div}^0(E_1) \to \operatorname{Div}^0(E_2)$ given by $\sum_{P \in E_1} n_P P \mapsto \sum_{P \in E_1} n_P \phi(P)$.

Recall that, via a pullback, $\phi^* : K(E_2) \hookrightarrow K(E_1)$.

If $f \in K(E_1)^*$, then $\phi_*(\text{div } f) = \text{div}(N_{K(E_1)/K(E_2)}f)$ - this is a fact that we'll take for granted.

So ϕ_* takes principal divisors to principal divisors. Since $\phi(O_{E_1}) = O_{E_2}$, the following diagram

commutes:

$$E_{1} \xrightarrow{\phi} E_{2}$$

$$\downarrow \psi_{1} \qquad \downarrow \psi_{2} \quad \text{,where } \psi_{1} : P \mapsto [(P) - (O_{E_{1}})], \psi_{2} : Q \mapsto [(Q) - (O_{E_{2}})].$$

$$\text{Pic}^{0}(E_{1}) \xrightarrow{\phi_{*}} \text{Pic}^{0}(E_{2})$$

Since ϕ_* is a group homomorphism, ϕ is also a group homomorphism.

Lemma 5.3. Let $\phi: E_1 \to E_2$ be an isogeny. Then there is a morphism ξ making the following diagram commute:

$$E_1 \xrightarrow{\phi} E_2$$

$$\downarrow^{x_1} \qquad \downarrow^{x_2}$$

$$\mathbb{P}^1 \xrightarrow{\xi} \mathbb{P}^1$$

where x_i is the x-coordinate in a Weierstrass equation for E_i .

Moreover, if $\xi(t) = \frac{r(t)}{s(t)}$ for $r, s \in K[t]$ coprime, then $\deg \phi = \deg \xi = \max(\deg r, \deg s)$.

Proof. For i = 1, 2, $K(E_i)/K(x_i)$ is a degree 2 extension, since the extension is given by adjoining y_i , which satisfies a quadratic (see the Weierstrass equation). Moreover, it is Galois, as $[-1]^*$ is a non-trivial automorphism of $K(E_i)$ fixing $K(x_i)$.

Since ϕ is a group homomorphism, we have that $\phi(-P) = -\phi(P)$, i.e. $\phi \circ [-1] = [-1] \circ \phi$.

If $f \in K(x_2)$, then $[-1]^*f = f$, and $[-1]^*(\phi^*f) = \phi^*([-1]^*f) = \phi^*f$. Hence ϕ^*f is fixed by [-1], so is in $K(x_1)$, and $K(x_2) \le K(x_1)$.

Taking $f = x_2$, then $\phi^* x_2 \in K(x_1)$, say $\xi(x_1)$ for some rational function ξ . Then ξ is as required.

Since $[K(E_1):K(x_1)] = [K(E_2):K(x_2)] = 2$, we have the following diagram of field extensions:

Using the tower law, $\deg \phi = \deg \xi$. Now, $K(x_2) \hookrightarrow K(x_1)$ via $x_2 \mapsto \xi(x_1) = \frac{r(x_1)}{s(x_2)}$ for $r, s \in K[t]$ coprime.

The minimal polynomial of x_1 over $K(x_2)$ is $f(t) = r(t) - s(t)x_2 \in K(x_2)[t]$ - this is clearly a polynomial for x_1 , but we need to check it's irreducible.

f is irreducible in $K[t][x_2] = K[x_2][t]$ as it is of degree 1 in x_2 , so one of the factors must be constant in x_2 , so divide both r and s which are coprime. Then we can use Gauss's lemma, and it is irreducible in $K(x_2)[t]$.

Hence
$$\deg \phi = \deg \xi = [K(x_1) : K(x_2)] = \deg(r(t) - s(t)x_2) = \max(\deg r, \deg s).$$

Lemma 5.4. deg[2] = 4

Proof. Assume char $K \neq 2, 3$. Then $E: y^2 = x^3 + ax + b = f(x)$.

If
$$P = (x, y)$$
, then $x(2P) = \left(\frac{3x^2 + a}{2y}\right)^2 - 2x = \frac{(3x^2 + a)^2 - 8xf(x)}{4f(x)} = \frac{x^4 + \dots}{4f(x)}$.

The numerator and denominator are coprime - suppose there was a common factor. Then $\exists \ \theta \in \overline{K}$ with $f(\theta) = (3\theta^2 + a)^2 = f'(\theta) = 0$, and so f has a multiple root. But E is an elliptic curve so f doesn't have multiple roots.

Hence
$$\deg[2] = \max(\deg x^4 + \dots, \deg 4f(x)) = \max(4,3) = 4.$$

Definition. Let A be an abelian group. We say that $q:A\to\mathbb{Z}$ is a *quadratic form* if it satisfies

- 1. $q(nx) = n^2 q(x) \ \forall n \in \mathbb{Z}, x \in A$.
- 2. $(x, y) \rightarrow q(x + y) q(x) q(y)$ is \mathbb{Z} -bilinear.

Lemma 5.5. $q:A\to\mathbb{Z}$ is a quadratic form if and only if it satisfies the parallelogram law:

$$q(x+y) + q(x-y) = 2q(x) + 2q(y) \ \forall x, y \in A$$

Proof. For the forwards direction, let $\langle x, y \rangle = q(x + y) - q(x) - q(y)$.

Then $\langle x, x \rangle = q(2x) - 2q(x) = 2q(x)$.

Then $\frac{1}{2}\langle x+y, x+y\rangle + \frac{1}{2}\langle x-y, x-y\rangle = \langle x, x\rangle + \langle y, y\rangle$ by bilinearity, and hence q(x+y) + q(x-y) = 2q(x) + 2q(y).

The reverse direction is left as an exercise on example sheet 2.

Theorem 5.6.

$$deg: Hom(E_1, E_2) \rightarrow \mathbb{Z}$$

is a quadratic form.

Proof. For the proof, we will assume char $K \neq 2,3$ for simplicity - the result still holds in those characteristics.

We write $E_2 : y^2 = x^3 + ax + b$.

Let $P,Q \in E_2$ with $P,Q,P+Q,P-Q \neq 0$, and let x_1,\ldots,x_4 be the *x*-coordinates of these 4 points. Then we have:

Lemma 5.7. There exists $w_0, w_1, w_2 \in \mathbb{Z}[a, b][x_1, x_2]$ of degree ≤ 2 in x_1 and in x_2 such that $(1 : x_3 + x_4 : x_3x_4) = (w_0 : w_1 : w_2)$.

Proof. We could prove this by direct calculation, leading to the formulae:

$$w_0 = (x_1 - x_2)^2$$

$$w_1 = 2(x_1x_2 + a)(x_1 + x_2) + 4b$$

$$w_2 = x_1^2x_2^2 - 2ax_1x_2 - 4b(x_1 + x_2) + a^2$$

As an alternative proof, let $y = \lambda x + v$ be the line through P and Q. Then

$$x^3 + ax + b - (\lambda x + \nu)^2 = (x - x_1)(x - x_2)(x - x_3) = x^3 - s_1 x^2 + s_2 x - s_3$$

where s_i is the i^{th} symmetric polynomial in (x_1, x_2, x_3) .

Comparing coefficients:

$$\lambda^{2} = s_{1}$$
$$-2\lambda \nu + a = s_{2}$$
$$\nu^{2} - b = s_{3}$$

Eliminating λ , ν , we have $F(x_1, x_2, x_3) := (s_2 - a)^2 - 4s_1(s_3 + b) = 0$. Then F has degree at most 2 in each x_i .

 x_3 is a root of the quadratic polynomial $W(t) = F(x_1, x_2, t)$, and repeating this for the line through P and -Q shows that x_4 is the other root. Hence

$$w_0(t - x_3)(t - x_4) = W(t) = w_0t^2 - w_1t + w_2$$

And so
$$(1: x_3 + x_4: x_3x_4) = (w_0: w_1: w_2)$$
.

We then show that, if ϕ , $\psi \in \text{Hom}(E_1, E_2)$, then

$$deg(\phi + \psi) + deg(\phi - \psi) \le 2 deg(\phi) + 2 deg(\psi)$$

We may assume ϕ , ψ , ϕ + ψ , ϕ – ψ ! = 0, as otherwise the result is trivial.

$$\phi: (x,y) \mapsto (\xi_1(x), \ldots)$$

$$\psi: (x,y) \mapsto (\xi_2(x), \ldots)$$

$$\phi + \psi: (x,y) \mapsto (\xi_3(x), \ldots)$$

$$\phi - \psi: (x,y) \mapsto (\xi_4(x), \ldots)$$

Then **5.7** gives $(1:\xi_3+\xi_4:\xi_3\xi_4)=((\xi_1-\xi_2)^2:\ldots:\ldots)$.

Put $\xi_i = \frac{r_i}{s_i}$ where $r_i, s_i \in K[x]$ are coprime:

$$(s_3s_4:r_3s_4+r_4s_3:r_3r_4)=((r_1s_2-r_2s_2)^2:\ldots:\ldots)$$

So we have:

$$\deg(\phi + \psi) + \deg(\phi - \psi) = \max(\deg r_3, \deg s_3) + \max(\deg r_4, \deg s_4)$$
$$= \max(\deg(s_3s_4), \deg(r_3s_4 + r_4s_3), \deg(r_3r_4))$$

Suppose $(s_3s_4, r_3s_4 + r_4s_3, r_3r_4)$ are not coprime, so that p irreducible divides all 3. Then p divides one of r_3 , r_4 , and one of s_3 , s_4 . p can't divide both s_i and r_i as they are coprime, so wlog p divides r_3 and s_4 and not r_4 nor s_3 . Then p doesn't divide $r_3s_4 + r_4s_3 \not \downarrow$. Hence these polynomials are coprime.

Hence the polynomials on RHs of (*) must be multiples of polynomials on the LHs by some irreducible polynomial, and hence each have degree \geq their corresponding polynomial on LHs, and thus, as w_i are of degree \leq 2 in r_1 , s_1 , r_2 , s_2 ,

$$\deg(\phi + \psi) + \deg(\phi - \psi) \le \max(\deg(w_0), \deg(w_1), \deg(w_2))$$

$$\le 2 \max(\deg r_1, \deg s_1) + 2 \max(\deg r_2, \deg s_2)$$

$$= 2 \deg \phi + 2 \deg \psi$$
(1)

Now replace ϕ and ψ by $\phi + \psi$ and $\phi - \psi$ to get

$$\deg(2\phi) + \deg(2\psi) \le 2\deg(\phi + \psi) + 2\deg(\phi - \psi)$$

Since deg[2] = 4,

$$2\deg(\phi) + 2\deg(\psi) \le \deg(\phi + \psi) + \deg(\phi - \psi) \tag{2}$$

(1) and (2) together give

$$2\deg(\phi) + 2\deg(\psi) = \deg(\phi + \psi) + \deg(\phi - \psi)$$

so deg satisfies the parallelogram law, and hence is a quadratic form.

Corollary 5.8.

$$deg(n\phi) = n^2 \deg(\phi) \ \forall n \in \mathbb{Z}, \phi \in \operatorname{Hom}(E_1, E_2)$$

In particular, $deg[n] = n^2$.

Example 5.9. Let E/K be an elliptic curve, suppose char $K \neq 2$, and let $O_E \neq T \in E(K)[2]$.

Then we may take $E: y^2 = x(x^2 + ax + b), a, b \in K, b(a^2 - 4b) \neq 0, T = (0, 0)$

Then if P = (x, y) and P' = P + T = (x', y'), then:

$$x' = (y/x)^{2} - a - x = \frac{x^{2} + ax + b}{x} - x - a - a = \frac{b}{x}$$
$$y' = -(y/x)x' = \frac{-by}{x^{2}}$$

Then let $\xi = x + x' + a = \frac{x^2 + ax + b}{x} = \left(\frac{y}{x}\right)^2$, and $\eta = y + y' = \frac{y}{x}(x - \frac{b}{x})$

Then
$$\eta^2 = \left(\frac{y}{x}\right)^2 \left[\left(x + \frac{b}{x}\right)^2 - 4b \right] = \xi \left((\xi - a)^2 - 4b \right) = \xi(\xi^2 - 2a\xi + a^2 - 4b)$$

Let $E': y^2 = x(x^2 + a'x + b')$ where $a' = -2a, b' = a^2 - 4b$. Then there is an isogeny $\phi: E \to E'$ given by $(x, y) \mapsto \left(\left(\frac{y}{x} \right)^2 : \frac{y(x^2 - b)}{x^2} : 1 \right); O_E \mapsto (0:1:0)$

5.3 tells us, as $x' = \left(\frac{y}{x}\right)^2 = \frac{x^2 + ax + b}{x}$, that $\deg(\phi) = \max(2, 1) = 2$, and we say ϕ is a 2-isogeny.

6 The Invariant Differential

Let *C* be an algebraic curve over an algebraically closed field. Then the **space** of differentials Ω_C is a vector space over the function field of the curve K(C), generated by df for $f \in K(C)$ subject to the relations

- 1. d(f + g) = df + dg
- 2. d(fg) = fdg + gdf
- 3. da = 0 for $a \in K$

It turns out that dim $\Omega_C = \dim C$, and since C is a curve, Ω_C is a 1-dimensional K(C)-vector space.

Let $0 \neq \omega \in \Omega_C$, and let $P \in C$ be a smooth point, with $t \in K(C)$ a uniformizer at P (has order of vanishing 1 at P). Then w = f dt for some $f \in K(C)$.

We define $\operatorname{ord}_P(\omega) = \operatorname{ord}_P(f)$. This does not depend on the choice of uniformizer.

Suppose we have $f \in K(C)^*$, and $\operatorname{ord}_P(f) = n \neq 0$. Then, if char $K \nmid n$, $\operatorname{ord}_P(df) = n - 1$.

If *C* is now a smooth projective curve, we define the divisor of $\omega \in \Omega_C$ to be

$$\operatorname{div}(\omega) = \sum_{P \in C} \operatorname{ord}_{P}(\omega)P \in \operatorname{Div}(C)$$

using the fact that $\operatorname{ord}_P(\omega)$ is zero at all but finitely many points $P \in C$.

The *space of regular differentials* is the finite dimensional vector space over K of all $\omega \in \Omega_{\mathbb{C}}$ for which $\operatorname{div}(\omega)$ is effective, i.e. there are no poles. The dimension of this space is called the *genus* of C, g(C).

As a consequence of Riemann-Roch, we have, for $0 \neq \omega \in \Omega_C$, $\deg(\operatorname{div}(\omega)) = 2g(C) - 2$.

Lemma 6.1. Assume char $K \neq 2$. Take an elliptic curve $E: y^2 = (x - e_1)(x - e_2)(x - e_3)$, where e_1, e_2, e_3 distinct.

Then $\omega = \frac{dx}{y}$ is a differential on E, and has no zeros and no poles, and so g(E) = 1.

Moreover, the space of regular differentials is just $\langle \omega \rangle$.

Proof. Let $T_i = (e_i, 0)$, so that $E[2] = \{O, T_1, T_2, T_3\}$.

Then $\operatorname{div}(y) = (T_1) + (T_2) + (T_2) - 3(O)$ - we know the zeros at T_i are simple as y is rational, so $\operatorname{deg}\operatorname{div}(y) = 0$.

Then for $P \in E$, $\operatorname{div}(x - x_P) = (P) + (-P) - 2(O)$, in the same way as above.

If $P \in E \setminus E[2]$, then $\operatorname{ord}_P(x - x_P) = 1$, so $\operatorname{ord}_P(d(x - x_P)) = \operatorname{ord}_P(dx) = 1 - 1 = 0$.

If $P = T_i$, then P = -P, and $\operatorname{ord}_P(x - x_p) = 2$, so $\operatorname{ord}_P(dx) = 2 - 1 = 1$

If P = O, then $\operatorname{ord}_P(x) = -2$, so $\operatorname{ord}_P(dx) = -3$.

Hence $\operatorname{div}(dx) = (T_1) + (T_2) + (T_3) - 3(O) = \operatorname{div}(y)$.

So $\operatorname{div}(dx/y) = \operatorname{div}(dx) - \operatorname{div}(y) = 0$. Then Riemann-Roch gives g(E) = 1, and so the space of regular differentials is 1-dimensional, so generated by ω .

Definition. If $\phi: C_1 \to C_2$ is a non-constant morphism, then we can pull back to

$$\phi^*: \Omega_{C_1} \to \Omega_{C_2}; fdg \mapsto \phi^* fd(\phi^*g)$$

Lemma 6.2. Let $P \in E$, $\tau_P : E \to E$; $X \mapsto P + X$, and $\omega = dx/y$ be as above.

Then $\tau_p^* \omega = \omega$, and so ω is called the **invariant differential**.

Proof. Since ω had no poles, $\tau_p^*\omega$ is again a regular differential, and hence equal to $\lambda_P\omega$ for some $\lambda_P \in K$, as the regular differentials are a 1-dimensional vector space over K.

The map $E \to \mathbb{P}^1$; $P \mapsto \lambda_P$ is a morphism of smooth projective curves, but is not surjective as it misses 0 and ∞ , and so this morphism is constant, by **2.8**.

So λ is independent of P. Take $P = O_E$, then τ_P is the identity map, and so λ is 1.

If $K = \mathbb{C}$, then $\mathbb{C}/\Lambda \cong E(\mathbb{C})$, via $z \mapsto (\wp(z), \wp'(z))$. Then $\frac{dx}{y} = \frac{\wp'(z)dz}{\wp'(z)} = dz$, which is invariant under $z \mapsto z + \text{const.}$.

Lemma 6.3. Let $\phi, \psi \in \text{Hom}(E_1, E_2)$, ω the invariant differential on E_2 . Then

$$(\phi + \psi)^*(\omega) = \phi^* \omega + \psi^* \omega$$

Proof. Write $E = E_2$, and consider the maps:

$$\begin{split} E \times E &\to E \\ \mu : (P,Q) &\mapsto P + Q \\ \mathrm{pr}_1 : (P,Q) &\mapsto P \\ \mathrm{pr}_2 : (P,Q) &\mapsto Q \end{split}$$

 $\Omega_{E\times E}$ is a 2-dimensional $K(E\times E)$ vector space with basis $\operatorname{pr}_1^*\omega$ and $\operatorname{pr}_2^*\omega$.

Then $\mu^* \omega = f \operatorname{pr}_1^* \omega + g \operatorname{pr}_2^* \omega$ for some $f, g \in K(E \times E)$.

For $Q \in E$, let $\iota_Q : E \to E \times E$; $P \mapsto (P, Q)$. Then

$$\begin{split} \iota_Q^*(\mu^*\omega) &= (\mu \circ \iota_Q)^*\omega = \iota_Q^*f(\mathrm{pr}_1 \circ \iota_Q)^*\omega + \iota_Q^*g(\mathrm{pr}_2 \circ \iota_Q)^*\omega \\ \tau_Q^*\omega &= \iota_Q^*f\omega + 0 \\ \omega &= \iota_Q^*f\omega \end{split}$$

So $\iota_O^* f = 1$ for all $Q \in E$, so f(P,Q) = 1 for all $P,Q \in E$.

Similarly, g(P, Q) = 1.

So $\mu^*\omega = \operatorname{pr}_1^*\omega + \operatorname{pr}_2^*\omega$. Now pull back by $E \to E \times E$; $P \mapsto (\phi(P), \psi(P))$ to get $(\phi + \psi)^*\omega = \phi^*\omega + \psi^*\omega$.

Lemma 6.4. If $\phi: C_1 \to C_2$ is a non-constant morphism, then ϕ is separable if and only if $\phi^*: \Omega_{C_2} \to \Omega_{C_1}$ is nonzero

Proof. Omitted.

Example: Let $\mathbb{G}_m = \mathbb{A}^1 \setminus \{0\} = \mathbb{P}^1 \setminus \{0, \infty, \text{ with group law } \mathbb{G}_m \times \mathbb{G}_m \to \mathbb{G}_m; (x, y) \mapsto xy.$

Let $n \ge 2$ be an integer, $\alpha : \mathbb{G}_m \to \mathbb{G}_m$; $x \mapsto x^n$.

Then $\alpha^*(dx) = d(\alpha x) = d(x^n) = nx^{n-1}dx$. So if char $K \nmid n$, then α is separable. So $\#\alpha^{-1}(Q) = \deg \alpha$ for all but finitely many $Q \in \mathbb{G}_m$.

But α is group homomorphism, so all fibres have the same size, and $\#\alpha^{-1}(Q) = \#\ker\alpha$, hence $\#\ker\alpha = \deg\alpha = n$. So $K(=\bar{K})$ contains exactly n n^{th} roots of unity.

Theorem 6.5. *If* char $K \nmid n$, then $E[n] \cong (\mathbb{Z}/n\mathbb{Z})^2$.

Proof. By **6.3** and induction, $[n]^*\omega = n\omega$. So if char $K \nmid n$, [n] is separable. So all but finitely many fibres of [n] have size $\deg[n]$, and since [n] is a group homomorphism, all fibres have the same size, and hence $\#[n]^{-1}(O_E) = \#E[n] = \deg[n] = n^2$.

By the structure theorem for finite abelian groups, $E[n] \cong \mathbb{Z}/d_1\mathbb{Z} \times ... \mathbb{Z}/d_t\mathbb{Z}$ with $d_i|d_{i+1}$. Since this group is killed by multiplication by n, all $d_i|n$ as well, and $\prod_{i=1}^t d_i = n^2$ by the previous paragraph.

If p is a prime with $p|d_1$, then $E[p] \cong (\mathbb{Z}/p\mathbb{Z})^t$, and by the first paragraph, t = 2. Then $d_1|d_2|n$, and $d_1d_2 = n^2$, hence $d_1 = d_2 = n$.

Remark (not to be used on example sheet 2). If char K = p, then [p] is not separable. It can be shown that $E[p^r] \cong \mathbb{Z}/p^r\mathbb{Z}$ for all $r \ge 1$ or E[p] = 0. The first case is described as "ordinary", and the second case is "supersingular".

7 Elliptic Curves over Finite Fields

Lemma 7.1. Let A be an abelian group and $q: A \to \mathbb{Z}$ a positive definite quadratic form. If $x, y \in A$ then $\langle x, y \rangle := |q(x+y) - q(x) - q(y)| \le 2\sqrt{q(x)q(y)}$.

Proof. We may assume $x \neq 0$ otherwise the result is clear. Let $m, n \in \mathbb{Z}$.

$$0 \le q(mx + ny)$$

$$= \frac{1}{2} \langle mx + ny, mx + ny \rangle$$

$$= m^2 q(x) + mn \langle x, y \rangle + n^2 q(y)$$

$$= q(x) \left(m + \frac{\langle x, y \rangle}{2q(x)} n \right)^2 + n^2 \left(q(y) - \frac{\langle x, y \rangle^2}{4q(x)} \right)$$

Take $m = \langle x, y \rangle$, n = -2q(x), we deduce $\langle x, y \rangle^2 \le 4q(x)q(y)$, so $|angle x, y| \le 2\sqrt{q(x)q(y)}$.

Recall that $Gal(\mathbb{F}_{q^r}/\mathbb{F}_q)$ is cyclic of order r generated by the Frobenius map $x \mapsto x^q$.

Theorem 7.2 (Hasse). Let E/\mathbb{F}_q be an elliptic curve. Then $|\#E(\mathbb{F}_q) - (q+1)| \le 2\sqrt{q}$

Proof. Let *E* have Weierstrass equation with coefficients $a_1, \ldots, a_6 \in \mathbb{F}_q$. Define the Frobenius endomorphism $\phi : E \to E; (x, y) \mapsto (x^q, y^q)$, which is an isogeny of degree q.

Then $E(\mathbb{F}_q) = \{ P \in E : \phi(P) = P \} = \ker(1 - \phi).$

$$\phi^*\omega = \phi^*\left(\frac{dx}{y}\right) = \frac{dx^q}{y^q} = \frac{qx^{q-1}dx}{y^q} = 0$$
, since $q \equiv 0 \mod p$.

So
$$(1 - \phi)^* \omega = 1^* \omega - \phi^* \omega = \omega - 0 = \omega \neq 0$$
, so $1 - \phi$ is separable.

Hence the size of all but finitely many fibres is deg $1-\phi$, and $1-\phi$ is a group homomorphism, so $\#E[\mathbb{F}_q] = \#\ker(1-\phi) = \deg(1-\phi)$.

By **5.6**, deg : End(E) := Hom(E, E) $\rightarrow \mathbb{Z}$ is a positive definite quadratic form.

By 7.1,
$$|\deg(1-\phi)-1-\deg\phi| \le 2\sqrt{\deg\phi}$$
, and hence $|\#E(\mathbb{F}_q)-(q+1)| \le 2\sqrt{q}$.

7.1 Zeta Functions

For *K* a number field:

$$\zeta_K(s) = \sum_{\mathfrak{a} \subset O_K} \frac{1}{(N_{\mathfrak{a}})^s} = \prod_{\mathfrak{p} \subset O_K \text{ prime}} \left(1 - \frac{1}{(N_{\mathfrak{p}})^s}\right)^{-1}$$

For *K* a function field, e.g. $K = \mathbb{F}_q(C)$ for C/\mathbb{F}_q a smooth projective curve:

$$\zeta_K(s) = \prod_{x \in |C|} \left(1 - \frac{1}{(Nx)^s} \right)^{-1}$$

where |C| is the set of closed points (i.e. orbit of action of $Gal(\bar{\mathbb{F}}_q/\mathbb{F}_q)$) on $C(\bar{\mathbb{F}}_q)$, and $Nx = q^{\deg x}$, where $\deg x$ is the size of the orbit.

We have that $\zeta_K(s) = F(q^{-s})$ for $F \in Q[[T]]$, where

$$F(T) = \prod_{x \in |C|} (1 - T^{\deg x})^{-1}$$

$$\log F(T) = \sum_{x \in |C|} \sum_{m=1}^{\infty} \frac{1}{m} T^{m \deg x}$$

$$\frac{d}{dT} \log F(T) = \sum_{x \in |C|} \sum_{m=1}^{\infty} \deg x T^{m \deg x}$$

$$= \sum_{n=1}^{\infty} \left(\sum_{\substack{x \in |C| \\ \deg x|n}} \deg x \right) T^{n}$$

$$= \sum_{n=1}^{\infty} \#C(\mathbb{F}_{q^{n}}) T^{n}$$

$$\implies F(T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#C(\mathbb{F}_{q^{n}})}{n} T^{n} \right) =: Z_{C}(T)$$

We define the *trace map* tr : End(E) $\rightarrow \mathbb{Z}$; $\psi \mapsto \langle \psi, 1 \rangle$.

Lemma 7.3. If $\psi \in \text{End}(E)$ then $\psi^2 - [\text{tr } \psi]\psi + [\text{deg } \psi] = 0$, where [n] means the multiplication by n endomorphism.

Proof. Example sheet 2.

Definition. The *zeta function of a variety* V/\mathbb{F}_q is

$$Z_v(T) = \exp\left(\sum_{n=1}^{\infty} \frac{\#V(\mathbb{F}_{q^n})}{n} T^n\right)$$

Lemma 7.4. Let E/\mathbb{F}_q be an elliptic curve, with $E(\mathbb{F}_q) = q + 1 - a$. Then

$$Z_E(T) = \frac{1 + aT + qT^2}{(1 - T)(1 - qT)}$$

Proof. Let $\phi: E \to E$ be the *q*-power Frobenius map. By the proof of Hasse's theorem,

$$#E(\mathbb{F}_q) = \deg(1 - \phi) = q + 1 - \operatorname{tr}(\phi)$$

Then $tr(\phi) = a$, $deg(\phi) = q$.

Then lemma 7.3 gives $\phi^2 - a\phi + q = 0$. Composing with ϕ^n for $n \ge 0$ gives

$$\phi^{n+2} - a\phi^{n+1} + q\phi^n = 0$$

$$tr(\phi^{n+2}) - a tr(\phi^{n+1}) + q tr(\phi^n) = 0$$

This second-order difference equation with initial conditions $tr(\phi^0) = tr(1) = 2$, $tr(\phi^1) = a$ has solutions

$$tr(\phi^n) = \alpha^n + \beta^n$$

where α , β are the roots of $x^2 - ax + q = 0$.

Hence $\#E(\mathbb{F}_{q^n}) = \deg(1 - \phi^n) = 1 + \deg(\phi^n) - \operatorname{tr}(\phi^n) = 1 + q^n - \alpha^n - \beta^n$.

Substituting, we have:

$$Z_E(T) = \exp\left(\sum_{n=1}^{\infty} \frac{T^n}{n} + \frac{(qT)^n}{n} - \frac{(\alpha T)^n}{n} - \frac{(\beta T)^n}{n}\right)$$

Since $-\log(1-x) = \sum_{n=1}^{\infty} \frac{x^n}{n}$, this can be simplified to:

$$Z_E(T) = \frac{(1 - \alpha T)(1 - \beta T)}{(1 - T)(1 - qT)}$$
$$= \frac{1 - aT + qT^2}{(1 - T)(1 - qT)}$$

Note that Hasse's theorem gives us $|a| \le 2\sqrt{q}$, and so the discriminant of $x^2 - aT + q$ is negative, and so $\alpha = \bar{\beta}$, $|\alpha| = |\beta| = \sqrt{q}$.

Let $K = \mathbb{F}_q(E)$. Then $\zeta_K(s) = 0 \implies Z_E(q^{-s}) = 0 \implies q^2 = \alpha$ or β , and hence $\Re \epsilon(s) = \frac{1}{2}$.

8 Formal Groups

Here, R will be a ring with $I \subset R$ an ideal. The *I-adic topology* on R is the topology with basis $\{r + I^n : r \in R, n \ge 1\}$.

A sequence (x_n) in R is *Cauchy* if, for all k there is some N with $x_m - x_n \in I^k$ for all $m, n \ge k$.

R is *complete* if

- 1. $\bigcap_{n>0} I^n = \{0\}$ and
- 2. every Cauchy sequence converges.

Note that, if $x \in I$ then $\frac{1}{1-x} = 1 + x + x^2 + \dots$, and the sequence of partial sums is Cauchy, and hence converges. So $1 - x \in R^{\times}$.

For example, we could have:

- $R = \mathbb{Z}_p$, $I = p\mathbb{Z}_p$
- $R = \mathbb{Z}[[t]], I = (t).$

Lemma 8.1 (Hensel's Lemma). Let R be an integral domain, complete with respect to I. Let $F \in R[x]$, $s \ge 1$. Suppose $a \in R$ satisfies $F(a) \equiv 0 \mod I^s$, and $F'(a) \in R^{\times}$.

Then there is a unique $b \in R$ with F(b) = 0 and $b \equiv a \mod I^s$.

Proof. Let $u \in R^{\times}$ with $F'(a) \equiv u \mod I$, e.g. u = f'(a).

Replacing F(x) by $\frac{F(x+a)}{u}$, we may assume a = 0 and $F'(0) \equiv 1 \mod I$.

We put $x_0 = 0$, $x_{n+1} = x_n - F(x_n)$.

By induction, $x_n \in I_s$ for all n.

F(x) - F(y) = (x - y)(F'(0) + xG(x, y) + yH(x, y)) for some polynomials $G, H \in R[x, y]$.

Now we claim $x_{n+1} \equiv x_n \mod I^{n+s}$ for all $n \ge 0$.

This can be proven by induction on n: in the case where n = 0, and $x_1 \in I^s$.

Suppose $x_n \equiv x_{n-1} \mod I^{n+s-1}$. Then

$$F(x_n) - F(x_{n-1}) = (x_n - x_{n-1})(1+c)$$

for some $c \in I$, and hence

$$F(x_n) - F(x_{n-1}) \equiv x_n - x_{n-1} \mod I^{n+s}$$

Rearranging, we have $x_{n+1} \equiv x_n \mod I^{n+s}$, which proves the claim.

Hence (x_n) is Cauchy, and by completeness converges to some $b \in R$. Taking the limit as $n \to \infty$, we have b = b - F(b), and so F(b) = 0, with $b \in I^s$.

For uniqueness, we can use the expression for F(x) - F(y) and the assumption that R is an integral domain.

For example, take $E: Y^2Z + a_1XYZ + a_3YZ^2 = X^3 + a_2X^2Z + a_4XZ^2 + a_6Z^3$

We pass to the affine piece $Y \neq 0$, t = X/Y, w = -Z/Y: Then

$$E: w = t^3 + a_1 t w + a_2 t^2 w + a_3 w^2 + a_4 t w^2 + a_6 w^3 = f(t, w)$$

We can apply Hensel's lemma with $R = \mathbb{Z}[a_1, \dots, a_6][[t]]$, I = (t), and $F(x) = x - f(t, x) \in R[x]$. Taking s = 3, a = 0, we have:

$$F(0) = -f(t, 0) = -t^3 \equiv 0 \mod I^3$$
 $F'(0) = 1 - a_t - a_2 t^2 \in \mathbb{R}^{\times}$

So there is a unique root of F, $w(t) \in \mathbb{Z}[a_1, \dots, a_6][[t]]$ such that w(t) = f(t, w(t)) and $w(t) \equiv 0$ mod t^3 .

Following the proof of Hensel's lemma with u=1 gives $w(t)=\lim_{n\to\infty}w_n(t)$ where $w_0(t)=0$, $w_{n+1}(t)=f(t,w_n(t))$.

In fact, we may write $w(t) = \sum_{n=2}^{\infty} A_{n-2}t^{n-1}$ with $A_1 = a_1$, $A_2 = a_1^2 + a_2$, $A_3 = a_1^3 + 2a_1a_2 + a_3$, ...

Lemma 8.2. Let R be an integral domain, complete with respect to $I \subseteq R$, and let $a_1, \ldots, a_6 \in R$, K = Frac(R).

Then $\widehat{E}(I) = \{(t, w) \in E(K) : t, w \in I\} = \{(t, w(t)) \in E(K) : t \in I\}$ is a subgroup of E(K).

Proof. The two descriptions of $\widehat{E}(I)$ agree, since given $t \in I$ we can solve for a unique $w \in I$ such that the pair $(t, w) \in E(K)$.

Taking (t, w) = (0, 0) shows that $O_E \in \widehat{E}(I)$. So it suffices to show that, if $P_1, P_2 \in \widehat{E}(I)$, then $-P_1 - P_2 \in \widehat{E}(I)$.

If $P_1 = (t_1, w_1)$, $P_2 = (t_2, w_2)$ lie on the straight line $\lambda t + \nu$, then $-P_1 - P_2$ is the third point of intersection of this line with E.

Then $\lambda = \frac{w(t_2) - w(t_1)}{t_2 - t_1}$ if $t_1 \neq t_2$, and $w'(t_1)$ if $t_1 = t_2$.

 $P_1, P_2 \in \widehat{E}(I) \implies t_1, t_2 \in I.$

Thus $\lambda = \sum_{n=2}^{\infty} A_{n-2}(t_1^n + t_1^{n-1}t_2 + \ldots + t_2^n) \in I$, and $\nu = w_1 - \lambda t_1 \in I$.

Substituting $w = \lambda t + \nu$ into w = f(t, w) gives $\lambda t + \nu = t^3 + a_1 t (\lambda t + \nu) + a_2 t^2 (\lambda t + \nu) + a_3 (\lambda t + \nu)^2 + a_4 t (\lambda t + \nu)^3 + a_6 (\lambda t + \nu)^3$.

Let A be the coefficient of t^3 , so $A = 1 + a_2 + a_4\lambda^2 + a_6\lambda^3$.

Let B be the coefficient of t^2 , so $B = a_1\lambda + a_2\nu + a_3\lambda^2 + 2a_4\lambda\nu + 3a_6\lambda^2\nu$.

Then $A \in R^{\times}$, $B \in I$, and $t_3 = -B/A - t_2 - t_2 \in I$, and $w_3 = \lambda t_3 + \nu \in I$.

Hence $-P_1 - P_2 \in \widehat{E}(I)$, and so $\widehat{E}(I)$ is a subgroup.

Taking $R = \mathbb{Z}[a_1, \dots, a_6][[t]]$, and I = (t), then the previous lemma tells us there is some power series $\iota \in \mathbb{Z}[a_1, \dots, a_6][[t]]$ with $\iota(0) = 0$ such that $[-1](t, w(t)) = (\iota(t), w(\iota(t)))$

Taking $R = \mathbb{Z}[a_1, ..., a_6][[t]]$, and $I = (t_1, t_2)$, then we get that there is some power series $F \in I$ such that $(t_1, w(t_1)) + (t_2, w(t_2)) = (F(t_1, t_2), w(F(t_1, t_2)).$

In fact, we can compute

$$\iota(x) = -x - a_1 x^2 - a_2 x^3 - (a_1^3 + a_3) x^4 + \dots$$

$$F(x, y) = x + y - a_1 x y - a_2 (x^2 y + x y^2) + \dots$$

By properties of the group law, we can deduce:

- 1. F(x,y) = F(y,x)
- 2. F(x,0) = x, F(0,y) = y
- 3. F(x, F(y, z)) = F(F(x, y), z)
- 4. $F(x, \iota(x)) = 0$

This then motivates the following definition:

Definition. Let R be a ring. A *formal group* over R is a power series $F(x, y) \in R[[x, y]]$ satisfying the properties 1, 2, and 3 above.

Exercise. Show that, for any formal group, there is a unique $\iota(x) \in R[[x]]$ such that $F(x, \iota(x)) = 0$.

Examples:

- 1. F(x, y) = x + y
- 2. F(x, y) = x + y + xy = (1 + x)(1 + y) 1
- 3. *F* as above.

We label these formal groups by $\widehat{\mathbb{G}}_a$, $\widehat{\mathbb{G}}_m$, and \widehat{E} respectively.

Definition. Let \mathcal{F} , \mathcal{G} be formal groups over R given by power series F, G respectively. Then:

- 1. A *morphism* $f: \mathcal{F} \to \mathcal{G}$ is a power series $f \in R[[t]]$ such that f(0) = 0 satisfying f(F(x,y)) = G(f(x),f(y)).
- 2. $\mathcal{F} \cong \mathcal{G}$ if there is some morphism $f : \mathcal{F} \to \mathcal{G}$, and $g : \mathcal{G} \to \mathcal{F}$ with f(g(x)) = g(f(x)) = x.

Theorem 8.3. If char(R) = 0, then any formal group \mathcal{F} over R is isomorphic to $\widehat{\mathbb{G}}_a$ over $R \otimes \mathbb{Q}$. More precisely:

1. There is a unique power series $\log : T \mapsto T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^3 + \dots$ with $a_i \in R$, such that

$$\log(F(x,y)) = \log(x) + \log(y) \tag{*}$$

2. There is a unique power series $\exp: T \mapsto T + \frac{b_2}{2!}T^2 + \frac{b_3}{3!}T^3 + \dots$ with $b_i \in R$ such that

$$\exp(\log(T)) = \log(\exp(T)) = T$$

Proof.

1. Notation: $F_1(x, y) = \frac{\partial F}{\partial x}(x, y)$ (via formal differentiation).

For uniqueness, let
$$p(T) = \frac{d}{dT} \log(T) = 1 + a_2T + a_3T^2 + \dots$$

Differentiating (*) with respect to x, we get: $p(F(x,y))F_1(x,y) = p(x) + 0$ Setting x = 0, we get $p(y)F_1(0,y) = 1$, and hence $p(y) = F_1(0,y)^{-1}$, and hence p is uniquely determined, so a_2, a_3, \ldots are uniquely determined. But then log is uniquely determined.

For existence, let $p(T) = F_1(0, T)^{-1} = 1 + a_2T + a_3T^2 + ...$, where $a_i \in R$.

Integrating up, we let $\log(T) = T + \frac{a_2}{2}T^2 + \frac{a_3}{3}T^3 + \dots$ We now check it satisfied (*).

$$F(F(x,y),z) = F(x,F(y,z))$$

$$\frac{\partial}{\partial x}F(F(x,y),z) = \frac{\partial}{\partial x}F(x,F(y,z))$$

$$F_1(F(x,y),z)F_1(x,y) = F_1(x,F(y,z))$$

$$F_1(F(0,y),z)F_1(0,y) = F_1(0,F(y,z))$$

$$F_1(y,z)F_1(0,y) = F_1(0,F(y,z))$$

$$F_1(y,z)p(y)^{-1} = p(F(y,z))^{-1}$$

$$F_1(y,z)p(F(y,z)) = p(y)$$

$$\log(F(y,z)) = \log(y) + h(z)$$

By symmetry between y, z we see that the constant of integration h(z) must be $\log(z)$.