Chapitre 4 : trigonométrie 5fr4p

## **Exercice 1**

Convertis les angles suivants en radian :

# **Exercice 2**

Convertis les angles suivants en degrés :

$$\frac{3\pi}{5} \; ; \; \frac{7\pi}{12} \; ; \; \frac{6\pi}{5} \; ; \; \frac{3\pi}{4} \; ; \; \frac{\pi}{2} \; ; \; \frac{3\pi}{2} \; ; \; 2\pi \; ; \; \frac{5\pi}{6} \; ; \; \pi \; ; \; \frac{\pi}{6} \; ; \; \frac{\pi}{4} \; ; \; \frac{8\pi}{5}$$

#### **Exercice 3**

Complète le tableau de proportionnalité suivant :

| Angle en degré                  | 180°  |         | 72° |          | 120° |         |
|---------------------------------|-------|---------|-----|----------|------|---------|
| Angle en radian (valeur exacte) | $\pi$ | $\pi/2$ |     | $3\pi/4$ |      | $\pi/6$ |

# **Exercice 4**

Sur le quart de cercle trigonométrique ci-contre, place les valeurs suivantes, correspondants aux mesures des angles en radians, représentant :  $0, \frac{\pi}{6}, \frac{\pi}{4}, \frac{\pi}{3}, \frac{\pi}{2}$ .



# Remplis le tableau suivant :

| Angle en degré                        | 0° | 30° | 45° | 60° | 90° |
|---------------------------------------|----|-----|-----|-----|-----|
| Angle en radian (valeur exacte)       |    |     |     |     |     |
| Sinus de l'angle (valeur exacte)      |    |     |     |     |     |
| Cosinus de l'angle (valeur exacte)    |    |     |     |     |     |
| Sinus de l'angle (valeur approchée)   |    |     |     |     |     |
| Cosinus de l'angle (valeur approchée) |    |     |     |     |     |

Chapitre 4 : trigonométrie 5fr4p

#### Exercice 5

Trace un cercle trigonométrique et place les mesures d'angles suivantes : (pour avoir une meilleure visibilité, tu peux aussi tracer quatre cercles trigonométriques différents, un pour chaque question).

a) En noir :  $0, \pi$  et  $2\pi$ 

b) En vert :  $0, \frac{\pi}{2}, \frac{2\pi}{2}, \frac{3\pi}{2}$  et  $\frac{4\pi}{2}$ c) En bleu :  $0, \frac{\pi}{3}, \frac{2\pi}{3}, \frac{3\pi}{3}, \frac{4\pi}{3}, \frac{5\pi}{3}$  et  $\frac{6\pi}{3}$ d) En rouge :  $0, \frac{\pi}{6}, \frac{2\pi}{6}, \frac{3\pi}{6}, \frac{4\pi}{6}, \frac{5\pi}{6}, \frac{6\pi}{6}, \frac{7\pi}{6}, \frac{8\pi}{6}, \frac{9\pi}{6}, \frac{10\pi}{6}, \frac{11\pi}{6}, \frac{12\pi}{6}$ e) En (couleur au choix) :  $0, \frac{\pi}{4}, \frac{2\pi}{4}, \frac{3\pi}{4}, \frac{4\pi}{4}, \frac{5\pi}{4}, \frac{6\pi}{4}, \frac{7\pi}{4}, \frac{8\pi}{4}$ 

## **Exercice 6**

Trace un cercle trigonométrique et place les mesures d'angles suivantes :

$$-\pi$$
,  $-\frac{\pi}{2}$ ,  $-\frac{\pi}{3}$ ,  $-\frac{\pi}{4}$ ,  $-\frac{\pi}{6}$ ,  $-\frac{3\pi}{2}$ ,  $-\frac{5\pi}{3}$ ,  $-\frac{3\pi}{4}$ ,  $-\frac{5\pi}{6}$ ,  $-2\pi$ ,  $-3\pi$ 

#### **Exercice 7**

Trace un cercle trigonométrique et place les nombres suivants :

$$-\frac{13\pi}{2},\frac{5\pi}{3},\frac{17\pi}{6},-\frac{19\pi}{3},\frac{15\pi}{2},\frac{27\pi}{4},-\frac{15\pi}{4},\frac{15\pi}{6}$$

#### **Exercice 8**

1°) Sur le repère suivant trace en bleu la fonction cosinus et en vert la fonction sinus



2°) Quelle est la période de chacune des fonctions ?

#### **Exercice 9**

Complète le tableau suivant :

| heta en rad.  | $\frac{\pi}{2}$ | $\frac{2\pi}{3}$     | $\frac{3\pi}{4}$      | $\frac{5\pi}{6}$      | π  | $-\frac{2\pi}{3}$     | $-\frac{\pi}{6}$     | $-\frac{3\pi}{4}$     |
|---------------|-----------------|----------------------|-----------------------|-----------------------|----|-----------------------|----------------------|-----------------------|
| $\sin \theta$ | 1               | $\frac{\sqrt{3}}{2}$ | $\frac{\sqrt{2}}{2}$  | $\frac{1}{2}$         | 0  | $-\frac{\sqrt{3}}{2}$ | $-\frac{1}{2}$       | $-\frac{\sqrt{2}}{2}$ |
| $\cos \theta$ | 0               | $-\frac{1}{2}$       | $-\frac{\sqrt{2}}{2}$ | $-\frac{\sqrt{3}}{2}$ | -1 | $-\frac{1}{2}$        | $\frac{\sqrt{3}}{2}$ | $-\frac{\sqrt{2}}{2}$ |

Chapitre 4 : trigonométrie 5fr4p

#### **Exercice 10**

Résous les équations suivantes, donne les solutions qui sont dans l'intervalle  $[0; 2\pi]$ :

$$\sin x = -\frac{1}{2}$$
;  $\cos x = -\frac{\sqrt{2}}{2}$ ;  $\sin x = -\frac{\sqrt{3}}{2}$ ;  $\cos x = -1$ 

#### **Exercice 11**

Résous les équations suivantes, donne les solutions dans  $[-\pi;\pi]$ :

$$\sin x = \frac{\sqrt{3}}{2}$$
;  $\cos x = -\frac{\sqrt{3}}{2}$ ;  $\sin x = -\frac{\sqrt{2}}{2}$ ;  $\cos x = -\frac{\sqrt{2}}{2}$ 

#### **Exercice 12**

Résous les équations suivantes, donne les solutions dans  $[0; 2\pi]$  et dans  $[-\pi; \pi]$ :

$$\cos x = \frac{\sqrt{3}}{2}$$
;  $\cos x = \frac{\sqrt{2}}{2}$ ;  $\sin x = \frac{\sqrt{2}}{2}$ ;  $\sin x = \frac{1}{2}$ ;  $\cos x = \frac{1}{2}$ ;  $\cos x = 0$ 

## Exercice 13

Dans cet exercice, donne les réponses en radians, dans l'intervalle  $[-\pi;\pi]$  et dans  $[0;2\pi]$ .

- a. On cherche un angle  $\theta$  tel que  $\sin \theta = \frac{\sqrt{2}}{2}$  et  $\cos \theta = -\frac{\sqrt{2}}{2}$ . Quel est cet angle ?
- b. On cherche un angle  $\theta$  tel que  $\sin \theta = -\frac{1}{2} \operatorname{et} \cos \theta = -\frac{\sqrt{3}}{2}$ . Quel est cet angle ?
- c. On cherche un angle  $\theta$  tel que  $\sin \theta = -\frac{\sqrt{3}}{2}$  et  $\cos \theta = \frac{1}{2}$ . Quel est cet angle ?
- d. On cherche un angle  $\theta$  tel que  $\sin \theta = \frac{1}{2} \operatorname{et} \cos \theta = \frac{\sqrt{3}}{2}$ . Quel est cet angle ?
- e. On cherche un angle  $\theta$  tel que  $\sin \theta = 0$  et  $\cos \theta = -1$ . Quel est cet angle ?