Information retrieval I

Introduction, efficient indexing, querying

Clovis Galiez

Mastère Big Data

December 3, 2019

Objectives of the course

- Acquire a culture in information retrieval
- Master the basics concepts allowing to understand:
 - what is at stake in novel IR methods
 - what are the technical limits

This will allow you to have the basics tools to analyze current limitations or lacks, and imagine novel solutions.

Proceedings of the lecture

- No lecture handbook, only slides and materials of the practicals session.
- So... take notes and ask questions!
- Evaluation: exam and optional project (bonus)

Outline of the lectures

- Indexing, basic querying
- Vector-space model, latent semantics, ranking
- Modern IR techniques: artificial intelligence, embeddings.
 Hands-on session: programming a search engine (Python)
- Hands-on Part-II.

What is information retrieval (IR)?

What is information retrieval (IR)?

Definition

Answering a query by extracting **relevant information** from **a collection of documents**.

What is information retrieval (IR)?

Definition

Answering a query by extracting **relevant information** from **a collection of documents**.

Typical example

Google.

Some open-source tools for in-house IR

IR tools:

NLP tools:

- NLTK (Python)
- spaCy

(far to be exhaustive!)

Information retrieval

Answering a query by extracting **relevant information** from a **collection of documents**.

Information retrieval

Answering a query by extracting **relevant information** from **a collection of documents**.

What is relevant information in the context of information retrieval?

Information retrieval

Answering a query by extracting **relevant information** from **a collection of documents**.

What is relevant information in the context of information retrieval?

Information

Subset of documents relevant to a query.

Here, documents are web pages, images, pdf, etc.

Information retrieval

Answering a query by extracting **relevant information** from **a collection of documents**.

What is relevant information in the context of information retrieval?

Information

Subset of documents relevant to a query.

Here, documents are web pages, images, pdf, etc.

What is a good answer quality?

When was the last US presidential elections?

When was the last US presidential elections?

correct or incorrect

When was the last US presidential elections?

correct or incorrect

- Blue
- 42:17

When was the last US presidential elections?

correct or incorrect

- Blue
- 42:17

true, false or...

When was the last US presidential elections?

correct or incorrect

- Blue
- 42:17

true, false or...

- 1st Sept. 2018

When was the last US presidential elections?

correct or incorrect

- Blue
- 42:17

true, false or...

- 1st Sept. 2018
- Nov. 2016

When was the last US presidential elections?

correct or incorrect

- Blue
- 42:17

true, false or...

- 1st Sept. 2018
- Nov. 2016

Relevance

When was the last US presidential elections?

correct or incorrect

- Blue
- 42:17

true, false or...

- 1st Sept. 2018
- Nov. 2016

Relevance

- Same time as the previous ones, but 5 years later

When was the last US presidential elections?

correct or incorrect

- Blue
- 42:17

true, false or...

- 1st Sept. 2018
- Nov. 2016

Relevance

- Same time as the previous ones, but 5 years later
- during the 21st Century
- 1478563200s since Unix Epoch^a

^aNumber of seconds elapsed since 1st of January 1970

Querying and ranking systems

Querying systems deal with correctness

Filter documents that correctly answers a given query

- Boolean queries
 - Checks if a word is present or not in a document
- Vector-based models
- Probabilistic models
 - Naïve Bayes model

Ranking systems deal with relevance

Ranking methods:

- structure-agnostic algorithms
- unsupervised ranking
 - PageRank
- supervised ranking
 - machine learning

What are the pitfalls?

Exercise

Take a few minutes to list what could be the different pitfalls for querying and ranking systems.

What are the pitfalls?

Exercise

Take a few minutes to list what could be the different pitfalls for querying and ranking systems.

- Complexity of natural language
- Ambiguity of natural language
- Size of the data
- ...

IR specific to the World Wide Web

IR and the web

Query

2 specificities:

- Building the collection of documents
 - Crawling the web
 - Indexing documents
- Ranking the documents (next lecture)

Gathering data on the web (crawling)

The web structure: languages

HTML (*HyperText Markup Language*) is the main language for describing a web page. From

https://en.wikipedia.org/wiki/Information_retrieval:

Information retrieval

From Wikipedia, the free encyclopedia

Main page Inf

Information retrieval (IR) is the activity of obtaining information system resources relevant to an information need from a collection of information resources. Searches can be based on full-text

HTML source code behind:

```
... obtaining <a href="/wiki/Information_system" title="Information system"> information system</a> resources relevant to an ...
```

The web structure: languages

HTML (*HyperText Markup Language*) is the main language for describing a web page. From

https://en.wikipedia.org/wiki/Information_retrieval:

Information retrieval

From Wikipedia, the free encyclopedia

Main page Information retrieval (IR) is the activity of obtaining information system resources relevant to contents an information need from a collection of information resources. Searches can be based on full-text

HTML source code behind:

... obtaining information system resources relevant to an ...

How would you collect information from the web?

The web structure: crawling

Hopping from link to link, one can collect/process data on the web:

Web crawling JumpStation (1993)

Must keep track of already visited pages (e.g. trie, hash table).

Parsing links from a web page

Use parsing tools, like context-free grammars for XML for instance. Note that for extracting links, regular experssions are enough!

Exercise

Find a regex that extracts the URL of an HTML link.

The linked text

Extend your regex to extract both the URL and the linked text.

Quality of the data: HTML errors, difficult parsing.

What is the size of the crawled data?

From technical solution to practice... Quizz:

Number of pages indexed by	
Google	
Data size crawled by Google	
Number of pages with $> k/2$ in-	
coming links	
Number of pages of length $>L/2$	

¹[Pandya et al. IJIRST 2017]

What is the size of the crawled data?

From technical solution to practice... Quizz:

Number of pages indexed by Google	$\sim 10^{11}$
Data size crawled by Google	
Number of pages with $> k/2$ in-	
coming links	
Number of pages of length $>L/2$	

¹[Pandya et al. IJIRST 2017]

What is the size of the crawled data?

From technical solution to practice... Quizz:

Number of pages indexed by Google	$\sim 10^{11}$
Data size crawled by Google	$> 10^8 {\rm Gb}$
Number of pages with $> k/2$ in-	
coming links	
Number of pages of length $>L/2$	

¹[Pandya et al. IJIRST 2017]

From technical solution to practice... Quizz:

Number of pages indexed by	- 1011
Google	~ 10
Data size crawled by Google	$> 10^8 { m Gb}$
Number of pages with $> k/2$ in-	$\sim 2^{\gamma}.N_k$ (Zipf's law)
coming links	$\sim 2^{\gamma}.N_k$ (Zipi s law)
Number of pages of length $>L/2$	

¹[Pandya et al. IJIRST 2017]

From technical solution to practice... Quizz:

Number of pages indexed by	- 1011
Google	~ 10
Data size crawled by Google	$> 10^8 { m Gb}$
Number of pages with $> k/2$ in-	$\sim 2^{\gamma}.N_k$ (Zipf's law)
coming links	$\sim 27.7V_k$ (Zipi s law)
Number of pages of length $>L/2$	$\sim 2^{\gamma}.N_L$ (Zipf's law)

¹[Pandya et al. IJIRST 2017]

From technical solution to practice... Quizz:

Number of pages indexed by	- 1011
Google	~ 10
Data size crawled by Google	$> 10^8 { m Gb}$
Number of pages with $> k/2$ in-	$\sim 2^{\gamma}.N_k$ (Zipf's law)
coming links	$\sim 27.7 V_k$ (Zipi s law)
Number of pages of length $>L/2$	$\sim 2^{\gamma}.N_L$ (Zipf's law)

6 degrees of separation law.

¹[Pandya et al. IJIRST 2017]

From technical solution to practice... Quizz:

Number of pages indexed by Google	$\sim 10^{11}$
Data size crawled by Google	$> 10^8 {\rm Gb}$
Number of pages with $> k/2$ incoming links	$\sim 2^{\gamma}.N_k$ (Zipf's law)
Number of pages of length $>L/2$	$\sim 2^{\gamma}.N_L$ (Zipf's law)

6 degrees of separation law.

Between 0.2% and 4% of the web is accessible by crawling¹.

What is "uncrawlable" is coined the deep web.

¹[Pandya et al. IJIRST 2017]

Experimental evidence of the Zipf's law

[Adamic et al. Glottometrics, 2002]

From gathering to representation

Representations of a web document

How to query for correct documents?

Exercise

Take a few minutes to think how you would retrieve the web documents corresponding to the query:

result last elections president united states

How to query for correct documents?

Exercise

Take a few minutes to think how you would retrieve the web documents corresponding to the query:

result last elections president united states

You may have encounter the following issues:

- how to correctly match words in the document (tokenization)
- how to match equivalent word (e.g. plural)
- how to implement it

Process of chopping the text of a document in atomic elements:

Brian is in the kitchen

 \rightarrow Brian is in the kitchen

Process of chopping the text of a document in atomic elements:

Brian is in the kitchen United States president

 \rightarrow Brian is in the kitchen

 \rightarrow

Process of chopping the text of a document in atomic elements:

Brian is in the kitchen United States president

- \rightarrow Brian is in the kitchen
- $\rightarrow \quad \underline{\text{United States}} \text{ president}$

Usually, tokenizers remove the punctuation.

Process of chopping the text of a document in atomic elements:

Brian is in the kitchen United States president

- \rightarrow Brian is in the kitchen
- $\rightarrow \quad \underline{\text{United States}} \ \underline{\text{president}}$

Usually, tokenizers remove the punctuation.

May be difficult: United States \neq United + States!

- Data mining approaches help to extract the right tokens: if two words are significantly seen one after the other, may be consider as a token.
- Some languages are agglutinative (e.g. Turkish).

Python library for NLP: nltk

```
>>> import nltk
>>> sentence = """At eight o'clock on Thursday morning
... Arthur didn't feel very good."""
>>> tokens = nltk.word_tokenize(sentence)
>>> tokens
['At', 'eight', "o'clock", 'on', 'Thursday', 'morning',
'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']
```

https://www.nltk.org/

Stemming

Language-specific rules defining equivalent words up to a usual transformation (e.g. -ing, -ed, -s, etc.). For instance, we would transform:

Stemming

Language-specific rules defining equivalent words up to a usual transformation (e.g. -ing, -ed, -s, etc.). For instance, we would transform:

Again, same difficulties could appear:

- ullet ambiguity: police, policy o polic
- Non-conflating: mother, maternal

Implementation of stemming in Python

```
1 >>> from nltk.stem.porter import *
2 >>> stemmer = SnowballStemmer("english")
3 >>> print(stemmer.stem("running"))
4 run
```

https://www.nltk.org/

After tokenizing and stemming: querying

Query: result last elections president united states

Stemmed tokens:

result, last, election, president, united states

After tokenizing and stemming: querying

Query: result last elections president united states

Stemmed tokens:

result, last, election, president, united states

How to query your documents?

Matrix with the occurrence of tokens in documents.

	tok 1	tok 2	tok 3	tok 4	tok 5	
	election	president	crazy	united	United States	
doc 1	1	1	0	0	1	
doc 2	0	1	1	0	1	
doc 3	1	1	1	0	1	

Matrix with the occurrence of tokens in documents.

	tok 1	tok 2	tok 3	tok 4	tok 5	
	election	president	crazy	united	United States	
doc 1	1	1	0	0	1	
doc 2	0	1	1	0	1	
doc 3	1	1	1	0	1	
Query	1	1	0	0	1	

Matrix with the occurrence of tokens in documents.

	tok 1	tok 2	tok 3	tok 4	tok 5	
	election	president	crazy	united	United States	
doc 1	1	1	0	0	1	
doc 2	0	1	1	0	1	
doc 3	1	1	1	0	1	
Query	1	1	0	0	1	

Matrix with the occurrence of tokens in documents.

	tok 1	tok 2	tok 3	tok 4	tok 5	
	election	president	crazy	united	United States	
doc 1	1	1	0	0	1	
doc 2	0	1	1	0	1	
doc 3	1	1	1	0	1	
Query	1	1	0	0	1	

Exercise

Can you foresee any practical problem?

Matrix with the occurrence of tokens in documents.

	tok 1	tok 2	tok 3	tok 4	tok 5	
	election	president	crazy	united	United States	
doc 1	1	1	0	0	1	
doc 2	0	1	1	0	1	
doc 3	1	1	1	0	1	
Query	1	1	0	0	1	

Exercise

Can you foresee any practical problem? What is the size of the matrix? Can it fit in **memory**?

Sparse representation

Since documents contain only a small fraction of existing tokens, most of the vector of token entries are null.

We can use a sparse encoding of the same information:

tok 1	tok 2	tok 3	tok 4	tok 5
election	president	crazy	united	United States

doc $1\rightarrow$ tok 1, tok 2, tok 5

doc $2\rightarrow$ tok 2, tok 3, tok 5

doc $3\rightarrow$ tok 1, tok 2, tok 3 ,tok 5

Exercise

What is the size of the sparse encoding data structure?

Sparse representation

Since documents contain only a small fraction of existing tokens, most of the vector of token entries are null.

We can use a sparse encoding of the same information:

tok 1	tok 2	tok 3	tok 4	tok 5
election	president	crazy	united	United States

 $doc 1 \rightarrow tok 1$, tok 2, tok 5

doc $2\rightarrow$ tok 2, tok 3, tok 5

doc $3\rightarrow$ tok 1, tok 2, tok 3 ,tok 5

Exercise

What is the size of the sparse encoding data structure?

Hmmm

What is the complexity of a naive algorithm extracting the matching documents from a sparse encoding doc-tok?

Let N be the number of indexed documents, T the total number of tokens, and k the average number of token per document².

• Memory complexity of the naive indexing algorithm?

 $^{^2}k$ can be related to the length of the document through Heap's law: $k=K.L^{\beta}.$ In practice, $K=50, \beta=0.5$

Let N be the number of indexed documents, T the total number of tokens, and k the average number of token per document².

• Memory complexity of the naive indexing algorithm? $\mathcal{O}(N.T)$

 $^{^2}k$ can be related to the length of the document through Heap's law: $k=K.L^{\beta}.$ In practice, $K=50, \beta=0.5$

- ullet Memory complexity of the naive indexing algorithm? $\mathcal{O}(N.T)$
- Memory complexity of the sparse indexing algorithm?

 $^{^2}k$ can be related to the length of the document through Heap's law: $k=K.L^{\beta}$. In practice, $K=50, \beta=0.5$

- Memory complexity of the naive indexing algorithm? $\mathcal{O}(N.T)$
- Memory complexity of the sparse indexing algorithm? $\mathcal{O}(N.k)$

k can be related to the length of the document through Heap's law: $k=K.L^{\beta}$. In practice, $K=50, \beta=0.5$

- Memory complexity of the naive indexing algorithm? $\mathcal{O}(N.T)$
- ullet Memory complexity of the sparse indexing algorithm? $\mathcal{O}(N.k)$
- Time complexity of your search algorithm in a sparse index?

 $^{^2}k$ can be related to the length of the document through Heap's law: $k=K.L^{\beta}.$ In practice, $K=50, \beta=0.5$

- Memory complexity of the naive indexing algorithm? $\mathcal{O}(N.T)$
- Memory complexity of the sparse indexing algorithm? $\mathcal{O}(N.k)$
- ullet Time complexity of your search algorithm in a sparse index? $\mathcal{O}(N.k)$

 $^{^2}k$ can be related to the length of the document through Heap's law: $k=K.L^{\beta}.$ In practice, $K=50, \beta=0.5$

Let N be the number of indexed documents, T the total number of tokens, and k the average number of token per document².

- Memory complexity of the naive indexing algorithm? $\mathcal{O}(N.T)$
- ullet Memory complexity of the sparse indexing algorithm? $\mathcal{O}(N.k)$
- ullet Time complexity of your search algorithm in a sparse index? $\mathcal{O}(N.k)$

Can we do better?

 $k = 10^{-2} k$ can be related to the length of the document through Heap's law: $k = K.L^{\beta}$. In practice, $K = 50, \beta = 0.5$

Complexity matters

Action	Complexity
Sorting	$\mathcal{O}(N \log N)$
Searching a sorted list	$\mathcal{O}(\log N)$
Accessing an element of a matrix	$\mathcal{O}(1)$

Complexity matters!

Electric energy consumption in France per year per person: 0.067GWh Electric energy of Google per year: 2.500GWh³. Equivalent consumption of 40.000 people.

Exercise

Imagine a way of improving how to query a big set of documents.

C. Galiez (LJK-SVH)

 $^{^{3}\}mathrm{according}$ to Google. Other sources say $4\times$ more

Inverse sparse index

Idea

Inverting the sparse representation and sorting by document allows to reduce the complexity.

tok 1	tok 2	tok 3	tok 4	tok 5
election	president	crazy	united	United States

```
doc 1\rightarrowtok 1,tok 2,tok 5
doc 2\rightarrowtok 2,tok 3,tok 5
doc 3\rightarrowtok 1,tok 2,tok 3,tok 5
```

Inverse sparse index

Idea

Inverting the sparse representation and sorting by document allows to reduce the complexity.

tok 1	tok 2	tok 3	tok 4	tok 5
election	president	crazy	united	United States

 $\begin{array}{l} doc\ 1{\rightarrow}tok\ 1{,}tok\ 2{,}tok\ 5\\ doc\ 2{\rightarrow}tok\ 2{,}tok\ 3{,}tok\ 5\\ doc\ 3{\rightarrow}tok\ 1{,}tok\ 2{,}tok\ 3{,}tok\ 5 \end{array}$

tok $1\rightarrow$ doc 1,doc 3,... tok $2\rightarrow$ doc 1,doc 2,doc 3,... tok $3\rightarrow$ doc 2,doc 3,...

tok 4→doc 102,...

tok $5\rightarrow$ doc 1,doc 2,doc 3,...

Inverse sparse index

Idea

Inverting the sparse representation and sorting by document allows to reduce the complexity.

tok 1	tok 2	tok 3	tok 4	tok 5
election	president	crazy	united	United States

 $\begin{array}{l} \mathsf{doc}\ 1{\longrightarrow}\mathsf{tok}\ 1,\mathsf{tok}\ 2,\mathsf{tok}\ 5\\ \mathsf{doc}\ 2{\longrightarrow}\mathsf{tok}\ 2,\mathsf{tok}\ 3,\mathsf{tok}\ 5\\ \mathsf{doc}\ 3{\longrightarrow}\mathsf{tok}\ 1,\mathsf{tok}\ 2,\mathsf{tok}\ 3,\mathsf{tok}\ 5 \end{array}$

tok $1\rightarrow doc 1, doc 3,...$

tok $2\rightarrow$ doc 1,doc 2,doc 3,...

tok $3\rightarrow$ doc 2,doc 3,...

tok 4→doc 102,...

tok $5\rightarrow$ doc 1,doc 2,doc 3,...

Exercise

Compute the time complexity for querying an inverse sparse index.

Building an inverted index in practice

The full sparse index does not fit in memory!

Need to use external memory... what is the main limitation?

C. Galiez (LJK-SVH)

⁴https://nlp.stanford.edu/IR-book/html/htmledition/blocked-sort-based-indexing-1.html

Building an inverted index in practice

, i

The full sparse index does not fit in memory!

Need to use external memory... what is the main limitation ?

Cannot use disk as memory because of **random accesses** when inserting a new document in the tok-doc hash table.

⁴https://nlp.stanford.edu/IR-book/html/htmledition/blocked-sort-based-indexing-1.html

Building an inverted index in practice

The full sparse index does not fit in memory!

Need to use external memory... what is the main limitation ?

Cannot use disk as memory because of **random accesses** when inserting a new document in the tok-doc hash table.

Block Sort-Based Indexing is a simple algorithm allows to invert big dictionaries that do not fit in main memory, at with linear disk access, and that can even be parallelized 4 .

⁴https://nlp.stanford.edu/IR-book/html/htmledition/blocked-sort-based-indexing-1.html

Summary

Information retrieval

From Wikipedia, the free encyclopedia

Information retrieval (IR) is the activity of obtaining information system resources relevant to an information need from a collection of information resources. Searches can be based on full-text

Patent analysis

Read the patent on https://clovisg.github.io/teaching/mastereBigData/ir/ctd1/USPatentExtract.pdf, and answer the following questions;

- What problem is at stake?
- What is the strategy to tackle the problem?
- At the end of the patent, guess the application the author is talking about.

Boolean queries are not flexible

Example

Query: result elections United States

Doc title: "White House election: live results!"

December 3, 2019

38 / 57

Boolean queries are not flexible

Example

Query: result elections United States
Doc title: "White House election: live results!"

With a good stemming and tokenization, we will match result and election... we miss the match between United States and White House:-/

Any solution?

Boolean queries are not flexible

Example

Query: result elections United States
Doc title: "White House election: live results!"

With a good stemming and tokenization, we will match result and election... we miss the match between United States and White House :-/

Any solution?

- Use semantics (ontologies)
- Use query expansion (add related terms to the query)
- Use a more flexible querying system

Boolean queries do not rank

Example

Query: result elections United States

matching results: 718,698,789

How to pick up most relevant results first?

- Next week: With richer querying and representation of the information
- Next week: By exploiting the graph structure of the web (Google)

Some open-source tools for in-house IR

IR tools:

• elastic

NLP tools:

- NLTK (Python)
- spaCy

The vector space model and the latent semantics

Representing documents as vectors in \mathbb{R}^T

From binary presence/absence...

	tok 1	tok 2	tok 3	tok 4	tok 5	
	election	president	crazy	united	United States	
doc 1	1	1	0	0	1	
doc 2	0	1	1	0	1	
doc 3	1	1	1	0	1	

Representing documents as vectors in \mathbb{R}^T

...to real vector space.

	tok 1	tok 2	tok 3	tok 4	tok 5	
	election	president	crazy	united	United States	
doc 1	0.01	0.02	0	0	0.006	
doc 2	0	0.013	0.001	0	0.001	
doc 3	0.0031	0.008	0.0043	0	0.0021	

What numbers can be useful here?

How do you quantify information according to Shannon theory?

How do you quantify information according to Shannon theory?

Example: which book are you talking about?

Piece of information Probability Information content

"the" is frequent ~ 1 Low

"Zarathustra" is frequent $\ \sim 0$ High

How do you quantify information according to Shannon theory?

Example: which book are you talking about?

 $\begin{array}{lll} \mbox{Piece of information} & \mbox{Probability} & \mbox{Information content} \\ \mbox{"the" is frequent} & \sim 1 & \mbox{Low} \\ \mbox{"Zarathustra" is frequent} & \sim 0 & \mbox{High} \\ \end{array}$

ullet information of an event depends on its probability: I(E)=f(P(E))

How do you quantify information according to Shannon theory?

Example: which book are you talking about?

Piece of information Probability Information content "the" is frequent ~ 1 Low "Zarathustra" is frequent ~ 0 High

- information of an event depends on its probability: I(E) = f(P(E))
- it should be contravariant with the probability:

$$P(e_1) < P(e_2) \Rightarrow I(E_1) > I(E_2)$$

How do you quantify information according to Shannon theory?

Example: which book are you talking about?

Piece of information	Probability	Information content
"the" is frequent	~ 1	Low
"Zarathustra" is frequent	~ 0	High

- information of an event depends on its probability: I(E) = f(P(E))
- it should be contravariant with the probability:

$$P(e_1) < P(e_2) \Rightarrow I(E_1) > I(E_2)$$

• when E_1 and E_2 are independent, we would like that:

$$I(E_1 \& E_2) = I(E_1) + I(E_2)$$

How do you quantify information according to Shannon theory?

Example: which book are you talking about?

Piece of information	Probability	Information content
"the" is frequent	~ 1	Low
"Zarathustra" is frequent	~ 0	High

- information of an event depends on its probability: I(E) = f(P(E))
- it should be contravariant with the probability:

$$P(e_1) < P(e_2) \Rightarrow I(E_1) > I(E_2)$$

ullet when E_1 and E_2 are independent, we would like that:

$$I(E_1 \& E_2) = I(E_1) + I(E_2)$$

If we moreover ask for f to be continuous and non-zero, there is only one possible class of functions: $-log_b$

Information

The information of an event e is defined as I(E) = -log(P(E))

Definition

We can now compute the information of a token as:

$$I(t) = -\log(\frac{\# \text{doc including token } t}{\# \text{docs}})$$

Vector representation of a document

A document can be represented by a vector of the fraction information associated to each of its token:

$$D_t = \frac{\# \text{ t in D}}{\# \text{ tokens in D}} \times I(t)$$

What does $||\vec{D}||_1$ represent?

Vector representation of a document

A document can be represented by a vector of the fraction information associated to each of its token:

$$D_t = \frac{\# \text{ t in D}}{\# \text{ tokens in D}} \times I(t)$$

What does $||\vec{D}||_1$ represent?

 $||\vec{D}||_1$ carries the total information carried by a document:

Vector representation of a document

A document can be represented by a vector of the fraction information associated to each of its token:

$$D_t = \frac{\# \text{ t in D}}{\# \text{ tokens in D}} \times I(t)$$

What does $||\vec{D}||_1$ represent?

 $||\vec{D}||_1$ carries the total information carried by a document:

- low if the document contains only common tokens
- average if the document contains few exceptional tokens
- high if the document contains only exceptional items

The tf-idf matrix

Definition

The matrix M which rows – corresponding to each document – are:

$$D_t = \frac{\# \ \text{t in D}}{\# \ \text{tokens in D}} \times I(t)$$

is called the **tf-idf** (term frequency-inverse document frequency) representation.

The tf-idf matrix

Definition

The matrix M which rows – corresponding to each document – are:

$$D_t = \frac{\# \ \text{t in D}}{\# \ \text{tokens in D}} \times I(t)$$

is called the **tf-idf** (term frequency-inverse document frequency) representation.

Question

What is the unit of elements of the tf-idf matrix?

Querying a set of vector

Represent the query the same way:

$$Q_t = \frac{\# \ \mathrm{t \ in \ Q}}{\# \ \mathrm{tokens \ in \ Q}} \times I(t)$$

How to retrieve documents related to the query?

Querying a set of vector

Represent the query the same way:

$$Q_t = \frac{\# \ \mathrm{t \ in \ Q}}{\# \ \mathrm{tokens \ in \ Q}} \times I(t)$$

How to retrieve documents related to the query? Naïve approach: dot product.

Indeed, it makes sense: For each document, compute:

$$\vec{D} \cdot \vec{Q} = \sum_t D_t \cdot Q_t$$

The higher the dot product, the more informative tokens \vec{Q} and \vec{D} share... and the more relevant should be the D with respect to the query Q.

Querying a set of vector

Represent the query the same way:

$$Q_t = \frac{\# \ \mathrm{t \ in \ Q}}{\# \ \mathrm{tokens \ in \ Q}} \times I(t)$$

How to retrieve documents related to the query? Naïve approach: dot product.

Indeed, it makes sense: For each document, compute:

$$\vec{D} \cdot \vec{Q} = \sum_t D_t \cdot Q_t$$

The higher the dot product, the more informative tokens \vec{Q} and \vec{D} share... and the more relevant should be the D with respect to the query Q.

For querying purposes, one can select documents such that $\vec{D}\cdot\vec{Q}>\tau$, but it can directly be used for ranking documents.

Correcting for cheaters

Problem

Imagine a way of cheating with this approach.

Correcting for cheaters

Problem

Imagine a way of cheating with this approach.

Content farms

$$\begin{array}{rcl} \vec{D} \cdot \vec{Q} & = & \sum_t D_t.Q_t \\ & = & \sum_t \frac{\# \ \text{t in D}}{\# \ \text{tokens in D}} \times I(t).\frac{\# \ \text{t in Q}}{\# \ \text{tokens in Q}} \times I(t) \\ & \propto & \frac{1}{\# \ \text{tokens in D}} \sum_t \# \text{t in D} \times \# \text{t in Q} \times I(t)^2 \end{array}$$

Correcting for cheaters

Problem

Imagine a way of cheating with this approach.

Content farms

$$\begin{array}{rcl} \vec{D} \cdot \vec{Q} & = & \sum_t D_t.Q_t \\ & = & \sum_t \frac{\# \ \text{t in D}}{\# \ \text{tokens in D}} \times I(t).\frac{\# \ \text{t in Q}}{\# \ \text{tokens in Q}} \times I(t) \\ & \propto & \frac{1}{\# \ \text{tokens in D}} \sum_t \# \ \text{t in D} \times \# \ \text{t in Q} \times I(t)^2 \end{array}$$

Documents containing many informative words will be selected and ranked first.

Content farms: pull informative words together

Content farms: pull informative words together

Content farms: pull informative words together

Content farms: pull informative words together

The cosine similarity

How could you correct for content farms cheats?

The cosine similarity

How could you correct for content farms cheats?

The cosine similarity

How could you correct for content farms cheats?

Correct by normalizing the similarity:

Consine similarity

$$\mathsf{cosim}(\vec{D}, \vec{Q}) = rac{\vec{D} \cdot \vec{Q}}{||\vec{D}||_2.||\vec{Q}||_2}$$

A flexible querying system?

With the vector space model, information of the tokens are now automatically taken into account.

Does it solve the synonymous problem?

Example

Query: result elections United States

Doc title: "White House election: live results!"

A flexible querying system?

With the vector space model, information of the tokens are now automatically taken into account.

Does it solve the synonymous problem?

Example

Query: result elections United States Doc title: "White House election: live results!"

As already pointed out, we could use a semantic approach (ontologies), but need a fixed and manually curated work.

A flexible querying system?

With the vector space model, information of the tokens are now automatically taken into account.

Does it solve the synonymous problem?

Example

Query: result elections United States Doc title: "White House election: live results!"

As already pointed out, we could use a semantic approach (ontologies), but need a fixed and manually curated work.

Can we work directly from the data?

Latent semantics

Special structure of the data: correlations

In practice a tf matrix look like:

Interlude

Video

Special structure of the data: correlations

In practice a tf matrix look like:

Interlude

Video

We observe...

A block structure.

Exercise

If M is a tf matrix and Q a binary vector over tokens, what does $\boldsymbol{M}\boldsymbol{Q}$ represent?

Exercise

If M is a tf matrix and Q a binary vector over tokens, what does MQ represent?

The fraction of occurrences of tokens of Q in each document.

Exercise

If M is a tf matrix and Q a binary vector over tokens, what does MQ represent?

The fraction of occurrences of tokens of Q in each document. If D is a binary vector over documents, what does $M^{\top}D$ represent?

Exercise

If M is a tf matrix and Q a binary vector over tokens, what does MQ represent?

The fraction of occurrences of tokens of Q in each document. If D is a binary vector over documents, what does $M^\top D$ represent? The cumulated frequencies of each token in the corpus D.

Exercise

If M is a tf matrix and Q a binary vector over tokens, what does MQ represent?

The fraction of occurrences of tokens of Q in each document.

If D is a binary vector over documents, what does $M^{\top}D$ represent?

The cumulated frequencies of each token in the corpus D.

If Q a binary vector over tokens, what does $M^{\top}MQ$ represent?

Exercise

If M is a tf matrix and Q a binary vector over tokens, what does MQ represent?

The fraction of occurrences of tokens of Q in each document.

If D is a binary vector over documents, what does $M^{T}D$ represent?

The cumulated frequencies of each token in the corpus D.

If Q a binary vector over tokens, what does $M^{\top}MQ$ represent?

The cumulated frequencies of tokens in the (virtual) corpus matching Q.

Exercise

If M is a tf matrix and Q a binary vector over tokens, what does MQ represent?

The fraction of occurrences of tokens of Q in each document.

If D is a binary vector over documents, what does $M^{\top}D$ represent?

The cumulated frequencies of each token in the corpus D.

If Q a binary vector over tokens, what does $M^{\top}MQ$ represent?

The cumulated frequencies of tokens in the (virtual) corpus matching Q.

What does it mean that $M^{\top}MQ = \lambda.Q$?

Exercise

If M is a tf matrix and Q a binary vector over tokens, what does MQ represent?

The fraction of occurrences of tokens of Q in each document.

If D is a binary vector over documents, what does $M^{\top}D$ represent?

The cumulated frequencies of each token in the corpus D.

If Q a binary vector over tokens, what does $M^{\top}MQ$ represent?

The cumulated frequencies of tokens in the (virtual) corpus matching Q.

What does it mean that $M^{\top}MQ = \lambda.Q$? What if λ is small? big?

Algebra theorem

Theorem

 $M^{\top}M$ is symmetric and its eigenvectors \vec{C}_i are orthogonal and form a basis of the token space.

$$\vec{D'} = \sum_i \alpha_i \vec{C_i}$$
$$\vec{Q'} = \sum_i \beta_i \vec{C_i}$$

We can compare search documents matching query Q using $\vec{D'}.\vec{Q'} = \sum \alpha_i.\beta_i$ or $\cos \operatorname{im}(\vec{D'},\vec{Q'})$:)

Low rank approximation

Theorem

 $M^{\top}M$ is symmetric and its eigenvectors are orthogonal and form a basis of the token space.

Theorem (Eckart-Young-Mirsky)

The best^a r-rank approximation \hat{M} of M is given by the projection on the subspace formed by the eigenvectors of $M^{\top}M$ corresponding to the r biggest eigen values.

aln the sense minimizing
$$||M-\hat{M}||_F = \sum_{i,j} (m_{i,j} - \hat{m}_{i,j})^2$$

The projection to the low rank space (columns of V^{\top} in SVD decomposition $M = U\Sigma V^{\top}$) collapse similar (i.e. *correlated*) tokens to the same component. This space is called the **Latent semantic space**.

Vector model: bright and dark side

The tf-idf vector model is good...

- Similarity based on information carried by tokens
- Flexible querying (latent semantics)
- Naturally rank documents
- Works well in practice

...but still not perfect:

• ignore polysemy

VS

• ignore the *truth* of the information

Extras

How to store already crawled URLs?

Exercise

What is the cost of checking if the crawler already visited a web page? Is it reasonable?

How to store already crawled URLs?

Exercise

What is the cost of checking if the crawler already visited a web page? Is it reasonable?

A trie structure.

How to store already crawled URLs?

Exercise

What is the cost of checking if the crawler already visited a web page? Is it reasonable?

A trie structure.

Exercise

What is the complexity in time?

Examples of (successful) companies in IR

ElasticSearch	Distributed, RESTful ⁵ search and analytics engine capa-
	ble of solving a growing number of use cases. [] cen-
	trally stores your data so you can discover the expected
	and uncover the unexpected.
swiftype	All-in-one relevance, lightning-fast setup and unprece-
	dented control.
blekko	Now in IBM Watson

⁵i.e. based on HTTP