CM068 – Variáveis Complexas Prof. Hudson Lima

Lista 1

- Resolva os exercícios abaixo.
- 1. Mostre que $z = 1 \pm i$ satisfaz $z^2 = 2z + 2$.
- 2. Prove por indução que

$$(1+z)^n = \binom{n}{0} + \binom{n}{1}z + \dots + \binom{n}{n}z^n,$$

onde
$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
.

- 3. Verifique que
 - (a) $\overline{iz} = -i \cdot \overline{z}$;
 - (b) $\frac{\overline{(2+1)^2}}{3-4i} = 1;$
 - (c) $|(2\bar{z}+5)(\sqrt{2}-i)| = \sqrt{3} \cdot |2z+5|;$
- 4. Se $z_1 = r_1 \cdot cis(\theta_1)$ e $z_2 = r_2 \cdot cis(\theta_2)$, justifique que

$$\frac{z_1}{z_2} = (r_1/r_2) \cdot cis(\theta_1 - \theta_2).$$

- 5. É verdade que $\left|\frac{z_1}{z_2+z_3}\right| \le \frac{|z_1|}{||z_2|-|z_3||}$ para $|z_2| \ne |z_3|$?
- 6. $|Re(z)| + |Im(z)| \le \sqrt{2} \cdot |z|$?
- 7. $cis(\theta_1) = cis(\theta_2) \Leftrightarrow \theta_1 = \theta_2 + 2n\pi, n \in \mathbb{Z}.$
- 8. Fixado $z_0 \in \mathbb{C}$, verifique que $z^n = z_0$ se, e somente se,

$$\frac{z}{\sqrt[n]{r_0} \cdot cis(\frac{\theta_0}{n})}$$

é uma n-raiz da unidade, onde $z_0 = r_0 \cdot cis(\theta_0)$. Conclua que as raízes de $z^n - z_0$ são da forma $z = \sqrt[n]{r_0} \cdot cis(\frac{\theta_0 + 2k\pi}{n})$, para k = 0, 1, ..., n - 1.