Движения

Определение 1. *Движением* называется взаимно-однозначное преобразование плоскости, не меняющее расстояния между точками.

Обозначим тождественное преобразование плоскости через E, параллельный перенос на вектор \vec{a} через $T_{\vec{a}}$, осевую симметрию относительно прямой l через S_l , центральную симметрию относительно точки O через Z_O , поворот вокруг точки O на угол α через R_O^{α} .

Задача 1. Найдите композиции: **a)** $T_{\vec{x}} \circ T_{\vec{y}}$; **b)** $Z_A \circ Z_B$; **b)** $S_l \circ S_m$; **r)** $T_{\vec{x}} \circ Z_A$; **д)** $S_l \circ R_O^{\alpha}$, где $O \in l$; **e)** n центральных симметрий (с разными центрами).

Задача 2. При каких n можно однозначно восстановить n-угольник по серединам сторон?

Задача 3. Верно ли, что для любых движений F, G и H **a)** $F \circ G = G \circ F;$ **б)** $F \circ (G \circ H) = (F \circ G) \circ H?$

Задача 4*. Найдите композиции: **a)** $T_{\vec{x}} \circ R_O^{\alpha}$; **б)** $S_l \circ R_O^{\alpha}$, где $O \not\in l$; **в)** $R_A^{\alpha} \circ R_B^{\beta}$

Задача 5°. Пусть точки A, B и C не лежат на одной прямой. Докажите, что движение однозначно определяется тем, куда оно переводит эти точки.

Определение 2. Скользящей симметрией называется движение, являющееся композицией осевой симметрии и параллельного переноса на вектор, параллельный оси. (Если вектор нулевой, получается обычная осевая симметрия; мы будем рассматривать её как частный случай скользящей симметрии.)

Задача 6. Докажите, что композиция осевой симметрии и параллельного переноса на произвольный вектор — скользящая симметрия.

Определение 3. *Неподвижной точкой* преобразования F называется такая точка x, что F(x) = x.

Задача 7. а) Найдите множество неподвижных точек для тождественного преобразования, поворота, параллельного переноса, симметрии и скользящей симметрии (с ненулевым вектором).

б) Докажите, что множество неподвижных точек движения плоскости есть либо пустое множество, либо одна точка, либо прямая, либо вся плоскость.

Задача 8°. ($Teopema\ Шаля$) Докажите, что любое движение плоскости есть поворот, параллельный перенос или скользящая симметрия.

Задача 9°. Докажите, что любое движение плоскости можно представить как композицию не более чем трёх осевых симметрий.

Задача 10. Пусть композиция n осевых симметрий равна композиции m осевых симметрий. Докажите, что (n-m) чётно.

Задача 11*. Опишите все движения трёхмерного пространства, имеющие хотя бы одну неподвижную точку.

1 a	<u>1</u> б	1 В	1 Г	1 д	1 e	2	3 a	3 6	4 a	4 б	4 B	5	6	7 a	7 б	8	9	10	11

Преобразования подобия

Определение 4. Преобразованием подобия с коэффициентом k > 0 называется преобразование плоскости, меняющее расстояния между точками ровно в k раз. Гомотетия H_O^k с центром в точке O и коэффициентом $k \neq 0$ переводит каждую точку A в такую точку A', что $\overrightarrow{OA'} = k\overrightarrow{OA}$.

Задача 12. Какое преобразование является композицией двух гомотетий с коэффициентами k_1 и k_2 , если **a)** $k_1k_2=1$; **б)** $k_1k_2\neq 1$?

Задача 13. а) Даны два параллельных отрезка разной длины. Укажите все гомотетии, переводящие первый отрезок во второй. б) (Замечательное свойство трапеции) Докажите, что в любой трапеции точка пересечения диагоналей, точка пересечения продолжений боковых сторон и середины оснований лежат на одной прямой.

Задача 14. Какое преобразование является композицией гомотетии и параллельного переноса?

Задача 15. а) Даны две окружности. Укажите все гомотетии, переводящие первую во вторую. **6)** Даны три окружности различных радиусов. Для каждой пары окружностей нашли точку пересечения их общих внешних касательных. Докажите, что эти три точки лежат на одной прямой.

Задача 16. В окружности проведены два непараллельных радиуса. Постройте хорду, которая делится этими радиусами на три равные части.

Задача 17°. Докажите, что любое преобразование подобия есть композиция гомотетии и движения.

Задача 18. Можно ли перевести **a)** любую параболу в любую другую параболу преобразованием подобия; **б)** график функции $y = \sin x$ в график функции $y = \sin^2 x$ преобразованием подобия? А гомотетией?

Задача 19°. Докажите, что всякое преобразование подобия с коэффициентом, не равным 1, **а)** имеет неподвижную точку; **б)** является композицией гомотетии и поворота с общим центром или композицией гомотетии и симметрии относительно оси, проходящей через центр гомотетии.

Задача 20. На стене висят двое часов, одни побольше, другие поменьше. Докажите, что прямые, соединяющие концы минутных стрелок в разные моменты времени, проходят через одну точку.

12 a	12 6	13 a	13 б	14	15 a	15 б	16	17	18 a	18 б	19 a	19 б	20