Resolution in Propositional and First-Order Logic

Inference rules

- · Logical inference creates new sentences that logically follow from a set of sentences (KB)
- An inference rule is \boldsymbol{sound} if every sentence \boldsymbol{X} it produces when operating on a KB logically follows from the KB
 - i.e., inference rule creates no contradictions
- An inference rule is complete if it can produce every expression that logically follows from (is entailed by) the KB.
 - Note analogy to complete search algorithms

Sound rules of inference

- · Here are some examples of sound rules of inference
- · Each can be shown to be sound using a truth table

RULE	PREMISE	CONCLUSION
Modus Ponens	$A, A \rightarrow B$	В
And Introduction	n A, B	$A \wedge B$
And Elimination	$A \wedge B$	A
Double Negation	n ¬¬A	A
Unit Resolution	A v B, ¬B	A
Resolution	A v B, ¬B v C	AvC

Soundness of modus ponens

A	В	$A \rightarrow B$	OK?
True	True	True	√
True	False	False	√
False	True	True	√
False	False	True	√

1

4/3/12

Resolution

- · Resolution is a valid inference rule producing a new clause implied by two clauses containing complementary literals
 - A literal is an atomic symbol or its negation, i.e., P, ~P
- · Amazingly, this is the only interference rule you need to build a sound and complete theorem prover
 - Based on proof by contradiction and usually called resolution refutation
- The resolution rule was discovered by Alan Robinson (CS, U. of Syracuse) in the mid 60s

Resolution

- A KB is actually a set of sentences all of which are true, i.e., a conjunction of sentences.
- To use resolution, put KB into conjunctive normal form (CNF), where each sentence written as a disjunction of (one or more) literals

Example

- KB: $[P \rightarrow Q, Q \rightarrow R \land S]$
- $\begin{array}{c} \textbf{Tautologies} \\ (A \!\!\rightarrow\!\! B) \!\!\leftrightarrow\!\! (\sim\!\! A \!\!\vee\! B) \\ (A \!\!\vee\! (B \!\!\wedge\! C)) \!\!\leftrightarrow\!\! (A \!\!\vee\! B) \!\!\wedge\! (A \!\!\vee\! C) \end{array}$
- KB in CNF: [~PvQ , ~QvR , ~QvS] Resolve KB(1) and KB(2) producing: ~PvR (i.e., P→R)
- Resolve KB(1) and KB(3) producing: ~PvS (i.e., P→S)
- New KB: [~PvQ, ~Qv~Rv~S, ~PvR, ~PvS]

Soundness of the

resolution inference rule									
α	β	γ	$\alpha \vee \beta$	$\neg \beta \lor \gamma$	ανγ				
False	False	False	False	True	False				
False	False	Тпие	False	True	True				
False	Truc	False	True	False	False				
False	True	<u>Тпие</u>	True	True	True				
True	False	False	True	True	True				
True	False	True	True	True	True				
Truc	Truc	False	True	False	Truc				
True	True	True	True	True	True				

From the rightmost three columns of this truth table, we can see that

$$(\alpha \lor \beta) \land (\beta \lor \gamma) \leftrightarrow (\alpha \lor \gamma)$$

 $\begin{array}{l} (\alpha \vee \beta) \wedge (\beta \vee \gamma) \leftrightarrow (\alpha \vee \gamma) \\ \text{is valid (i.e., always true regardless of the truth values} \end{array}$ assigned to α , β and γ

Resolution

- Resolution is a **sound** and **complete** inference procedure for unrestricted FOL
- Reminder: Resolution rule for propositional logic:

$$-P_1 \vee P_2 \vee ... \vee P_n$$

$$- \neg P_1 \vee Q_2 \vee ... \vee Q_m$$

- -Resolvent: $P_2 \vee ... \vee P_n \vee Q_2 \vee ... \vee Q_m$
- We'll need to extend this to handle quantifiers and variables

Resolution covers many cases

- - from P and P \rightarrow Q derive Q
 - from P and ¬ P v Q derive Q
- · Chaining
 - from $P \rightarrow Q$ and $Q \rightarrow R$ derive $P \rightarrow R$
 - from $(\neg P \lor Q)$ and $(\neg Q \lor R)$ derive $\neg P \lor R$
- · Contradiction detection
- from P and ¬ P derive false
- from P and \neg P derive the empty clause (=false)

Resolution in first-order logic

- •Given sentences in conjunctive normal form:
- $-P_1 \vee ... \vee P_n$ and $Q_1 \vee ... \vee Q_m$
- -P_i and Q_i are literals, i.e., positive or negated predicate symbol with its terms
- •if P_i and $\neg Q_k$ unify with substitution list θ , then derive the resolvent sentence:
- $subst(\theta, P_1 \mathsf{v} \dots \mathsf{v} P_{j-1} \mathsf{v} P_{j+1} \dots P_n \mathsf{v} \ Q_1 \mathsf{v} \dots Q_{k-1} \mathsf{v} Q_{k+1} \mathsf{v} \dots \mathsf{v} Q_m)$
- •Example
- from clause $P(x, f(a)) \vee P(x, f(y)) \vee Q(y)$
- and clause $\neg P(z, f(a)) \lor \neg Q(z)$
- -derive resolvent $P(z, f(y)) \vee Q(y) \vee \neg Q(z)$
- $-\operatorname{Using}\,\theta=\{x/z\}$

3

4/3/12

Resolution refutation

- Given a consistent set of axioms KB and goal sentence Q, show that KB |= Q
 Proof by contradiction: Add ¬Q to KB and try to prove false, i.e.:

 (KB | · Q) → (KB ¬ ¬Q) + False)
 Resolution is refutation complete; it can establish that a given sentence Q is entailed by KB, but can't (in general) generate all logical consequences of a set of sentences
 Also, it cannot be used to prove that Q is not entailed.
- Also, it cannot be used to prove that Q is **not entailed** by KB
- by KB
 Resolution won't always give an answer since
 entailment is only semi-decidable

 And you can't just run two proofs in parallel, one trying
 to prove Q and the other trying to prove -Q, since KB
 might not entail either only the prove -Q, since KB

Resolution example

- KB:
 - allergies(X) \rightarrow sneeze(X)
 - $-\operatorname{cat}(Y) \wedge \operatorname{allergicToCats}(X) \to \operatorname{allergies}(X)$
- cat(felix)
- allergicToCats(mary)
- Goal:
 - sneeze(mary)

Notation old/new