MTH141 Quiz 1 Solution

TA & Solution Author: Mariam Walaa

September 19, 2023

Question

Let $\mathbf{u} = (-1, a, -2)$ and $\mathbf{v} = (2, 9, b)$. Find values of a and b such that vectors \mathbf{u} and \mathbf{v} are parallel.

Solution

Two vectors are parallel if they are scalar multiples of each other. In other words, vectors \mathbf{u} and \mathbf{v} are parallel if there exist constants k_1 and k_2 such that:

$$\mathbf{u} = k_1 \mathbf{v}$$

In this case, $\mathbf{u} = (-1, a, -2)$ and $\mathbf{v} = (2, 9, b)$.

So, we can write:

$$(-1, a, -2) = k_1(2, 9, b)$$

This means that each component of \mathbf{u} is a multiple of the corresponding component of \mathbf{v} . So, we can write three equations:

$$-1 = 2k_1$$

$$a = 9k_1$$

$$-2 = bk_1$$

We must solve these equations.

From the first equation, we have:

$$-1 = 2k_1$$

Solving for k_1 :

$$k_1 = -\frac{1}{2}$$

Now, from the second equation, we have:

$$a = 9k_1$$

Substituting the value of k_1 we found:

$$a=9\left(-\frac{1}{2}\right)=-\frac{9}{2}$$

Finally, from the third equation, we have:

$$-2 = bk_1$$

Substituting the value of k_1 we found:

$$-2 = b\left(-\frac{1}{2}\right)$$

Solving for b:

$$b = -2 \cdot \left(-\frac{1}{2}\right) = 4$$

So, to make vectors \mathbf{u} and \mathbf{v} parallel, you should have:

$$a = -\frac{9}{2} \quad \text{and} \quad b = 4$$