第1次印刷教材勘误表

序 号	位置	问题	修改建议
1	P13 倒数 第 2	$Sa(t)$ 是偶函数,当 $t = 2k\pi$,	将 2kπ 修改为 kπ
2	P17, 图 1.4.3 (c)	图的左右反了	波形需要横向翻转,修改后:
3	P102	倒数第3个公式	矩形脉冲的宽度不对,应修改为: $f_1(t) = u(t+\tau) - u(t-\tau)$
4	P140	第2行和第10行	公式 4.1.9 和 4.1.12 是对 ω 求积分 $x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega$ $y(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) \underbrace{H(\omega) e^{j\omega t}}_{e^{j\omega t} \text{hiphi}} d\omega$
5	P142	图 4.1.6	图形的横轴标注应该是 <i>t</i>
6	P132	习题 3-12(2)	将 $f(t)/4$ 修改为 $f(t/4)$
7	P211	第 2 个公式 $f(0_+) = \lim_{s \to +\infty} s \cdot \frac{-2}{s+1} = 2$	将 2 修改为-2
8	P218	最后一个公式 $c(t) = K_{p}e(t) + K_{i} \int_{0}^{\infty} e(\tau) d\tau + K_{d} \frac{d}{dt}e$ $= K_{p} \left[\delta(t) + \frac{1}{T_{i}} u(t) + T_{d} \delta'(t) \right] e(t)$	г , ј

	D004	HE F3 5 40			
9	P221	题图 5-12	「由信号流图求系統函数】利用梅森公式東題图5-12所示系統的系统函数 ルカップ・ファイン・ファイン・ファイン・ファイン・ファイン・ファイン・ファイン・ファイン		
			图中的线方向标反了		
10	P247	公式(6.6.3)	将小于等于号修改为大于等于号		
		$\omega \leq 2\omega_{\rm m}$ (6.6.3)			
11	P248	第2行	将小于等于号修改为大于等于号		
		$T_{\rm s}\omega_{\rm s}=2\pi \left(2T\omega_{\rm m}=2\Omega_{\rm m}\right)$			
12	P253	式 6.7.11	修改为		
		$H(e^{j\Omega}) = H(z) _{z=e^{j\Omega}} = \frac{1}{N} e^{-j\Omega(N-1)} \frac{e^{j\Omega N} - 1}{e^{-j\Omega(N-1)}}.$ (6.7.11	$H(e^{j\Omega}) = H(z) _{z=e^{j\Omega}} = \frac{1}{N}e^{-j\Omega(N-1)}\frac{e^{j\Omega N}-1}{e^{j\Omega}-1}$		
第1次重印后					
1	P68	例 2.5.1	去掉"一阶"两个字		
		方法一 激励侧与响应侧差分阶数相等,包含 <mark>一阶</mark> 单位脉冲项			
2	P83	图 3.1.1 下面第 2 行	$_{ ightarrow 1}$ C_{12} \mathbf{V}_2		
		矢量 \mathbf{V}_1 可以利用 \mathbf{V}_2 表示为不同的近似	请删除		
		结果 $^{C_{12}}\mathbf{V}_{2}$ <mark>和 $^{C_{12}}\mathbf{V}_{2}$</mark>			
3	P92	倒数第一个公式的第三项,cos 里面少	第三项修改为		
		一个 t	$f(t) = 1 + 2\cos\left(\omega_1 t - \frac{\pi}{4}\right) + \cos\left(2\omega_1 t + \frac{\pi}{4}\right) + \frac{1}{2}\cos\left(3\omega_1 t - \frac{\pi}{2}\right)$		
4	P141	例 4.1.2 倒数第 3 行	应该修改为		
		少了系数 $\frac{1}{2}$	$y(t) = \frac{1}{2} [y_1(t) + y_2(t)]$		
5	P14	图 4.1.7 左边,V2(omega)的计算公	应该修改为		
	2	式第三个等号的第二个项,少了 E	$= \frac{E}{j\omega} \left(1 - e^{-j\omega\tau} \right) - \frac{E}{\alpha + j\omega} \left(1 - e^{-j\omega\tau} \right)$		
6		5.3.5 节,卷积定理的公式等式左边的	修改后为		
		变量不是 s,是 t	$\mathbb{L}\left[f_1(t) * f_2(t)\right] = F_1(s)F_2(s)$		
7	P79	习题 2-20 的题干	"对位相乘 <mark>法求和</mark> ",修改为"对位相乘 <mark>求和法</mark> "		
8	P13	习题 3-28	" <mark>独立</mark> 变量"修改为" <mark>自</mark> 变量"		
	4				
9	P17	习题 4-7(1)中	"截止 <mark>带宽</mark> "修改为"截止 <mark>频率</mark> "		
	2				
10	P22	题图 5-21,开关开闭方向画反了	正确的是 $t=0$ 从闭合到打开:		
	2				

