

Carátula para entrega de prácticas

Facultad de Ingeniería

Laboratorio de docencia

Laboratorios de computación salas A y B

Profesor:	Alejandro Esteban Pimentel Alarcon.	
Asignatura:	Fundamentos de Programación.	
Grupo:	3	
No de Práctica(s):	5	
Integrante(s):	Rodríguez Guzmán Paola Mariel.	
No. de Equipo de cómputo empleado:	20	
No. de Lista o Brigada:	4926	
Semestre:	Primer semestre.	
Fecha de entrega:	2-septiembre-2019	
Observaciones:		
	CALIFICACIÓN:	

Objetivo:

Elaborar un pseudocódigo que representa soluciones algorítmicas empleando la sintaxis y semántica adecuada.

Introducción:

El pseudocódigo es una forma de expresar los distintos pasos que va a realizar un programa, de la forma más parecida a un lenguaje de programación. Su principal función es la de representar por pasos la solución a un problema o algoritmo, de la forma más detallada posible, utilizando un lenguaje cercano al de programación.

Por eso la importancia de abordar y realizar está práctica para aplicar ya el lenguaje de programación adecuado.

Procedimiento:

Actividad 1:

Desarrollar un pseudocodigo que reciba un número obtenga su factorial.

INICIO

n: INT READ n DO:

contador: INT
multiplicador: INT
resultado: INT
resultado=n
contador=1
multiplicador=n-contador
resultado=resultado*multiplicador
contador=contador+1
WHILE multi >= 1

FIN

Verificar algoritmos con los valores:

- 0: INICIO

n: 0

Read 0

DO:

contador: INT multiplicador: INT resultado: INT resultado=0 contador=1

multiplicador= 0 - 1

resultado=1*1 contador= 1

PRINT "La solución es 1"

FIN

- 2: INICIO

n: 2

Read 2

DO:

contador: INT multiplicador: INT resultado: INT resultado=2 contador=1

multiplicador= 2 - 1

resultado=2*1 contador= 2

PRINT "La solución es 2"

FIN

- -4:INICIO

n: -4 Read -4 DO:

contador: INT multiplicador: INT resultado: INT resultado=-4 contador=1 multiplicador= -4+2

resultado=-4*-2 contador= 3 WHILE multi >1

multiplicador= -4+3 resultado=-4*-1 contador= 4 WHILE multi >1

PRINT "La solución es -24"

FIN

- 5:INICIO

n: 5 multiplicador= 5-3 Read 5 resultado=60*2 DO: contador= 4 contador: INT WHILE multi >1 multiplicador: INT resultado: INT multiplicador= 5-4 resultado=5 resultado=120*2 contador=1 contador 5 multiplicador= 5-1 WHILE multi > 1 resultado=5*4 PRINT "La solución es 120" contador= 2 FIN WHILE multi > 1

Actividad 2: Para calcular impuestos, se hace a través de una tabla como la siguiente

Nivel	Base (\$)	Cuota fija (\$)	Impuesto (%)
1	0.00	0.00	1.92
2	6,942.21	133.28	6.40
3	58,922.16	3,460.00	10.88
4	103,550.45	8,315.57	16.00
5	120,372.84	11,007.14	17.92
6	144,119.24	15,262.49	21.36
7	290,667.76	46,565.26	23.52
8	458,132.30	85,952.92	30.00
9	874,650.01	210,908.23	32.00
10	1,166,200.01	304,204.21	34.00
11	3,498,600.01	1,097,220.21	35.00

Desarrollar un pseudocódigo que lea 2 datos, nivel e ingreso. El programa debe:

- Verificar que no se tiene un nivel mayor al ingreso (el ingreso debe ser mayor que la base)
- Mostrar el impuesto a pagar.

El porcentaje del impuesto se aplica a la diferencia entre el ingreso y la base. Y el impuesto se calcula con la suma del resultado anterior más la cuota fija.

```
INICIO
nivel: INT
ingreso: REAL POSITIVO
READ nivel, ingreso
PI: REAL POSITIVO
I: REAL POSITIVO
base: REAL POSITIVO
CF:REAL POSITIVO
IF nivel <=11
 PRINT "Digite un nivel"
 PRINT "Digite un ingreso"
 SWICH nivel:
   case 1:
      base > 0
      base < 6,942.21
      CF= 0
      ingreso > base
      PI= ((Ingreso - base)/1000)*1.92
      I=PI + CF
      PRINT "El impuesto es la solución"
      BREAK
   case 2:
      base > 6,942.21
      base < 58,922.16
      CF= 133.28
      ingreso > base
      PI= (Ingreso - base)/100)*6.4
      I=PI + CF
      PRINT "El impuesto es la solución"
      BREAK
   case 3:
      base > 58,922.16
      base < 103,550.45
      CF= 3,460.00
      ingreso > base
      PI= (Ingreso - base)/1000)*10.88
      I=PI + CF
      PRINT "El impuesto es la solución"
      BREAK
   case 4:
      base > 103,550.45
      base < 120,372.84
      CF= 8,315.57
      ingreso > base
      PI= (Ingreso - base)/1000)*16.00
```

```
I=PI + CF
  PRINT "El impuesto es la solución"
  BREAK
case 5:
  base > 120,372.84
  base < 144,119.24
  CF= 11,007.14
  ingreso > base
  PI= (Ingreso - base)/1000)*17.92
  I=PI + CF
  PRINT "El impuesto es la solución"
  BREAK
case 6:
  base > 144,119.24
  base < 290,667.76
  CF= 15,262.49
  ingreso > base
  PI= (Ingreso - base)/1000)*21.36
  I=PI + CF
  PRINT "El impuesto es la solución"
  BREAK
case 7:
  base > 290,667.76
  base < 458,132.30
  CF= 46,565.26
  ingreso > base
  PI= (Ingreso - base)/1000)*23.52
  I=PI + CF
  PRINT "El impuesto es la solución"
  BREAK
case 8:
  base > 458,132.30
  base < 874,650.01
  CF= 85,952.92
  ingreso > base
  PI= (Ingreso - base)/1000)*30.00
  I=PI + CF
  PRINT "El impuesto es la solución"
  BREAK
```

```
case 9:
      base > 874,650.01
      base < 1,166,200.01
      CF= 210,908.23
      ingreso > base
      PI= (Ingreso - base)/1000)*32.00
      I=PI + CF
      PRINT "El impuesto es la solución"
      BREAK
   case 10:
      base > 1,166,200.01
      base < 3,498,600.01
      CF= 304,204.21
      ingreso > base
      PI= (Ingreso - base)/1000)*34.00
      I=PI + CF
      PRINT "El impuesto es la solución"
      BREAK
    case 11:
      base > 3,498,600.01
      CF= 1,097,220.21
      ingreso > base
      PI= (Ingreso - base)/1000)*35.00
      I=PI + CF
      PRINT "El impuesto es la solución"
      BREAK
  END SWITCH
ELSE
FIN
Actividad 2: Verificar el algoritmo con los pares
   (1, 5000)
INICIO
nivel: 1
ingreso: 5000
READ nivel
PI: REAL POSITIVO
I: REAL POSITIVO
base: REAL POSITIVO
CF:REAL POSITIVO
IF nivel <=11
 PRINT 1
 READ ingreso
 PRINT 5000
 SWICH nivel:
```

```
case 1:

base > 0

CF= 0

5000 > 0

PI= (5000 - 0)/1000)*1.92

I=9.6 + 0

PRINT 9.6

BREAK

ELSE
```

FIN

- (7,8000): El ingreso no corresponde al nivel.
- (12,5000,000): El nivel no está ingresado en los datos anteriores, ni el ingreso. No se puede calcular respecto a los datos anteriores.

Conclusión:

Está práctica me ayudo a practicar más los pseudocódigos como también los diagramas de flujo porque fueron hechos primero los diagramas y después se pasó a pseudocódigo. Para mi mayor facilidad. Como también se aprendió a sacar el impuesto no solo con pseudocódigo, sino también de forma manual.

.