

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н. Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н. Э. Баумана)

ФАКУЛЬТЕТ	РАКУЛЬТЕТ «СПЕЦИАЛЬНОЕ МАШИНОСТРОЕНИЕ»				
КАФЕДРА	АФЕДРА «РАКЕТНЫЕ И ИМПУЛЬСНЫЕ СИСТЕМЫ» (СМ-6)				
	домашн	ЕЕ ЗАДАНІ	AE		
Проектир	по ди ование энергетич	ісциплине: еских установок р	акетного оружия		
		А ТЕМУ:			
Проектирование ИДК					
Выполнил: студен	нт группы СМ6-92	(подпись, дата)	Н.К. Широкопетлев (И.О. Фамилия)		
		(,,,	,		
Проверил		(полпись, дата)	А.А. Федоров (И.О. Фамилия)		

Оглавление

Технич	еское задание	3
1. Фо	ормирование недостающих исходных данных	4
1.1	Конструктивная схема, определение габаритов ИДК	4
1.2	Определение времени работы ИДК	6
1.3	Действительное значение коэффициента тяги	7
1.4	Величина тяги на квазистационарном участке	8
2. Bi	ыбор топлива и проектирование заряда	9
2.1.	Выбор марки топлива и расчет давлений	10
2.2.	Определение геометрических параметров сопла	11
2.3. сопла	Расчет газодинамических параметров в выходном от 12	сечении
2.4.	Проектирование заряда	12
3. Oi	пределение массы навески воспламенителя	16
4. Pe	ешение основной задачи внутренней баллистики	21
5. Ko	онструкторская проработка	24
Заключ	іение	27
Список	с использованной литературы	28

Техническое задание

Спроектировать блок из n=18 ИДК (3 ряда по 6 ИДК) для поперечной коррекции вращающегося ЛА калибром $D_{\rm ch}=210$ мм. Количество импульсов $N_{\kappa op}=6$ (по 3 ДУ), $N_{\kappa op}=12+6$ (6 по 2 ДУ + 6 по 1 ДУ) или $N_{\kappa op}=18$ (по 1 ДУ). Суммарный импульс коррекции не менее $J_{\Sigma}=160$ Н·с при телесном угле коррекции $2\varphi=120^{\circ}$. Частота вращения ЛА $\nu_{\rm ch}=5..8$ об/с, скорость полета в момент коррекции $V_{\rm ch\ kop}=210..260$ м/с (дозвуковая скорость полета). Время выхода двигателя на режим не более $t_{\rm e}=4$ мс. Максимальная масса одного ИДК не более $m_{\rm дy\ max}=0.42$ кг. Диапазон рабочих температур $T_{\rm H}=\pm60^{\circ}$.

1. Формирование недостающих исходных данных

1.1 Конструктивная схема, определение габаритов ИДК

Конструктивная схема расположения ИДК в корпусе ЛА дана по условию (рисунок 1). ИДК расположены радиально (3 ряда по 6 ИДК), сопла расположены под углом в 25° к оси У ЛА.

Рисунок 1. Принципиальная схема ИДК

Выполним предварительную прорисовку поперечного сечения корпуса снаряда, а именно одного сектора, чтобы определить диапазон возможных геометрических значений корпуса ИДК. Предварительная прорисовка расположения ИДК представлена на рисунке 2.

Рисунок 2. Предварительная прорисовка ИДК

Угол раствора одного сектора равен $\frac{360^{\circ}}{6} = 60^{\circ}$, минимальный зазор между ИДК примем 2h = 8 мм. Тогда разброс минимального и максимального значений равны 20 и 70 мм соответственно. Для предварительного проектирования примем внешний диаметр корпуса ИДК $D_{\rm дy} = 52$ мм.

Тогда максимальная длина корпуса и соплового блока

$$L_{\max} = \frac{\frac{D_{\text{cH}}}{2} - \frac{\sqrt{3}}{2} \cdot D_{\text{Ay}} - 2*h}{\cos \gamma} = \frac{\frac{210}{2} - \frac{\sqrt{3}}{2} \cdot 52 - 2*4}{\cos 25^{\circ}} = 47 \text{ mm}.$$

Исходя из опыта проектирования, предварительно назначим максимальное давление в камере $p_{\mathrm{Imax}}=65~\mathrm{M\Pi a}.$ Тогда толщина стенки равна

$$\delta_{
m cT} = \eta rac{p_{
m Imax} D_{
m дy}}{2\sigma_{
m d}} = 1,3 rac{65 \cdot 52}{2 \cdot 1000} = 2,2$$
 мм,

где $\eta=1$,3 — коэффициент безопасности; $\sigma_{\partial}=1000$ МПа — предел прочности материала стенки (сталь 30XГСА).

Внутренний диаметр КС

$$D_{\text{KM}} = D_{\text{IIV}} - 2\delta_{\text{CT}} = 52 - 2 \cdot 2,2 = 47,6 \text{ MM}.$$

1.2 Определение времени работы ИДК

Время работы ИДК (время коррекции) является одним из ключевых параметров при проектировании. Для вращающихся ЛА задается телесный угол коррекции и скорость вращения. Время коррекции определяется по формуле:

$$t_{\partial min} = \frac{1}{\nu_{max}} \frac{2\varphi}{2\pi} = 0.042 c,$$

$$t_{\partial max} = \frac{1}{v_{min}} \frac{2\varphi}{2\pi} = 0.067 \ c.$$

Для дальнейших расчетов, принимаем $t_{\partial}=t_{\partial min}=0.042$ с.

Время горения заряда (в первом приближении) вычисляется по формуле:

$$t_{\varepsilon} = \frac{t_{\partial}}{4} (5\xi(t_{\partial}) - 1) - \frac{3}{8} t_{\varepsilon}$$

где $t_{\rm B}\approx 0.004$ с — время выхода на режим, $\xi(t_{\partial})$ - коэффициент заполнения индикаторной кривой давления ИДК, который выбирается в соответствии с рисунком 3 методического пособия.

Рисунок 3. График зависимости коэффициента заполнения индикаторной кривой давления для ИДК

По рисунку 3 принимаем $\xi(t_{\partial})=0.75$. Отсюда время горения заряда

$$t_{c} = \frac{0.042}{4} (5 \cdot 0.75 - 1) - \frac{3}{8} \cdot 0.004 = 0.029 \text{ c.}$$

Время последействия тяги

$$t_n = t_{\partial} - t_{\varepsilon} - t_{\varepsilon} = 0.042 - 0.029 - 0.001 = 0.012 \text{ c.}$$

1.3 Действительное значение коэффициента тяги

Назначаем коэффициент расширения сопла $\zeta = 1,4$. Теоретический коэффициент тяги находится по таблице 1.

Таблица 1. Значение ζ и соответствующее K_m

ζ	1,4	1,6	1,8	2,0	2,2	2,4	2,6
K_m	1,46	1,51	1,56	1,6	1,62	1,64	1,67

Из таблицы 1 принимаем $K_{\rm T}(\zeta)=1,\!46$. Дополнительные потери на тепло и скорость учитывается введением коэффициентов $\varphi_1=0,\!95$ и $\varphi_2=0,\!95$ соответственно.

Действительное значение коэффициента тяги рассчитывается по формуле

$$K_{\partial} = K_m(\zeta)\varphi_1\varphi_2 = 1.46 \cdot 0.95 \cdot 0.95 = 1.318.$$

1.4 Величина тяги на квазистационарном участке

Имеем ЛА, движущийся на стационарном участке: скорость 210...260 м/с (M=0,618...0,765), что соответствует дозвуковой скорости движения. Исходя из этого, назначим поправочные коэффициенты $K_1=0,92$ (телесный угол $2\varphi=120^\circ=2\pi/3$) и $K_2=0,95$ (для дозвуковых скоростей полета $K_2=0,9\ldots 1,05$). Необходимая тяга на участке

$$P = \frac{J_{\Sigma}}{K_1 K_2 \xi(t_0) t_0} = \frac{J_{\Sigma}}{0.92 \cdot 0.95 \cdot 0.75 \cdot 0.042} = 5858 \text{ H}.$$

Так как коррекция поперечная, а вектор тяги наклонен под углом $\gamma=25^\circ$, ИДК должен развивать тягу больше потребной

$$P = \frac{P}{\cos \gamma} = \frac{5858}{\cos 25^{\circ}} = 6464 \text{ H}.$$

2. Выбор топлива и проектирование заряда

Прежде, чем приступить к проектированию заряда, необходимо отметить, то что все значения коэффициентов и табличных значений были выбраны при помощи предварительной оптимизации путём многократного решения прямых задач.

Алгоритм выполнения оптимизации представлен ниже:

- 1. выбираются параметры варьирования:
 - диаметр ИДК;
 - максимальное давление в камере;
 - коэффициент заполнения индикаторной кривой давления;
 - коэффициент расширения сопла;
 - топливо;
 - угол наклона дозвуковой части образующей линии конуса;
 - угол наклона сверхзвуковой части образующей линии конуса.
- 2. назначаются критерии оптимизации:
 - выполнение всех граничных условий (наличие решений для хотя бы одного модуля m);
 - минимальный диаметр ИДК.
- 3. методом генерации случайных чисел, назначаются дискретные и не дискретные значения входных параметров решения из диапазона, заданного в пункте 1;
- 4. производится «прямой» расчет задачи и проверяется соответствие критериев из пункта 2;
- 5. повторяются пункты 3 и 4 до тех пор, пока не будет собрана достаточная база данных для последующего решения.

В таблице 2 представлены результаты решения обратной задачи методом случайного итерационного варьирования.

Таблица 2. Результаты решения, методом случайного варьирования

Тип решения	Количество генераций	Время, мин
не удовлетворительные	≈ 2 млн	1800
удовлетворительные	469	-

Исходя из данных таблицы, можно сделать вывод, что данный метод достаточно непроизводительный, но тем не менее, удовлетворительные решения были получены и в дальнейшем (а также в главе выше) будет/было использоваться одно из таких решений.

2.1. Выбор марки топлива и расчет давлений

Из приведенного в условии домашнего задания банка топлив выбираем топливо Б-3, даже при поверхностном анализе топлив, заметна его превосходящая энергетика. Параметры топлива приведены в таблице 3.

Таблица 3. Характеристики выбранного топлива, Б-3

Параметр	Значение
Сила пороха, МДж/кг	1,04
Газовая постоянная, Дж/(кг·К)	338
Температура торможения, К	3080
Показатель адиабаты	1,25
Единичный импульс, м/с	2300
Термохимическая константа, К	370
Скорость горения, м/с, (р в МПа)	0,00085·(9,81p) ^{0,69} , (16 <p<150)< td=""></p<150)<>

Из уравнения Бори по значению максимального давления определим минимальное $p_{I\,min}$ и номинальное p_{IN} давления в камере:

$$\begin{cases} \frac{F_{1}(p_{IN})}{p_{IN}} = \frac{F_{1}(p_{Imax}) \cdot F_{3}(T_{max})}{p_{Imax}}; \\ \frac{F_{1}(p_{Imin})}{p_{Imin}} = \frac{F_{1}(p_{Imax}) \cdot F_{3}(T_{max})}{p_{Imax} \cdot F_{3}(T_{min}),}, \end{cases}$$

где $F_1(p)$ — зависимость скорости горения от давления, где F_3 — температурная зависимость скорости горения топлива

$$F_3(T_0) = exp(0.002(T_0 - 291.15)).$$

Из системы уравнений получаем $p_{IN}=36,73~\mathrm{M\Pi a}$ и $p_{I\,min}=22,62~\mathrm{M\Pi a}$.

2.2.Определение геометрических параметров сопла

Исходя из формулы тяги, определим площадь критического сечения сопла

$$F_{\rm kp} = \frac{P}{K_{\partial} p_{IN}} = 2,817 \cdot 10^{-5} \,\mathrm{m}^2.$$

Из определения площади поперечного сечения, определим диаметр критического сечения сопла:

$$D_{\rm kp} = \sqrt{\frac{4F_{\rm kp}}{\pi}} = 16.6 \, {
m mm}.$$

В большинстве случаев сопло ИДК изготавливают коническим с прямолинейными образующими, рекомендации по углу входной части сопла и углу образующей такие же, как для классических РДТТ. Выбираем угол входной части $\varphi_{\rm BX}=80^\circ$ и угол наклона образующей сопла к его оси $\varphi_c=30^\circ$.

Длины участков сопла находятся по формулам:

$$L_1 = \frac{D_{\text{km}} - D_{\text{kp}}}{2 \text{tg} \phi_{\text{bx}}} = 3,48 \text{ mm};$$
 $L_2 = 2...D_{\text{kp}} \text{ (mm)} = 2 \text{ mm};$
 $L_3 = \frac{D_{\text{kp}}}{2 \text{tg} \phi_{\text{c}}} = 5,42 \text{ mm}.$

Итого, длина соплового блока

$$L_c = L_1 + L_2 + L_3 = 10,9$$
 мм.

Тогда максимальная допустимая длина заряда

$$L_{3max} = 47,1 \text{ MM}.$$

2.3. Расчет газодинамических параметров в выходном сечении сопла

Безразмерная скорость потока определяется из газодинамической функции $q(\lambda)$ при заданном коэффициенте расширения сопла $\zeta = 1,4$:

$$q(\lambda) = \frac{S}{S^*} = \frac{1}{\lambda} \frac{\left(\frac{2}{k+1}\right)^{\frac{1}{k-1}}}{\left(1 - \frac{k-1}{k+1}\lambda^2\right)^{\frac{1}{k-1}}} = \frac{1}{\zeta^2}$$

Численно решая уравнение, находим значение безразмерной скорости потока в выходном сечении $\lambda_a=1,772.$

Критическая скорость звука рассчитывается по формуле:

$$c^* = \sqrt{\frac{2k}{k+1}RT_0} = 1076 \text{ m/c}.$$

Скорость звука в выходном сечении:

$$V_a = \lambda_a \cdot c^* = 1906 \text{ M/c}.$$

Давление в выходном сечении сопла:

$$p_a = \pi(\lambda_a) \cdot p_{IN} = \left(1 - \frac{k-1}{k+1}\lambda^2\right)^{\frac{k}{k-1}} \cdot p_{IN} = 4,3 \text{ M}\Pi a.$$

Температура в выходном сечении сопла:

$$T_a = \tau(\lambda_a) \cdot T_0 = \left(1 - \frac{k-1}{k+1}\lambda^2\right) \cdot T_0 = 2005 \text{ K}.$$

Плотность потока в выходном сечении сопла:

$$\rho_a = \frac{p_a}{RT_a} = 6,342 \text{ кг/м}^3.$$

2.4. Проектирование заряда

Проектирование заряда сводится к выбору топлива и формы заряда, определению параметров заряжания двигателя, а также расчету всех его геометрических размеров, параметров и характеристик. Форма заряда должна обеспечивать максимальное заполнение корпуса двигателя при условии допустимых скоростей газового потока, омывающего заряд.

Коэффициент заполнения поперечного сечения КС $\varepsilon_s > 0,5$. Для импульсных ракетных двигателей используют только вкладные заряды, изготавливаемые чаще всего из пироксилинового или баллиститного твердого топлива. Чаще всего применяются трубчатые заряды.

Наибольшая плотность укладки шашек многошашечного заряда определяется формулой

$$n = 1 + 3[(m-1) + (m-3) + (m-5) + (m-7) + \dots],$$

где m — модуль, целое число шашек, укладывающие по диаметру камеры.

Так как топливо уже выбрано (Б-3), то определим параметры заряжания:

$$A(k) = \sqrt{k\left(\frac{2}{k+1}\right)^{\frac{k+1}{k-1}}} = 0,658.$$

Коэффициент расхода сопла назначаем равным $\mu_c = 0.95$.

Расход газов через сопло равен

$$G_p = \frac{\mu_c A(k) F_{\rm KP} p_{IN}}{\sqrt{RT_0}} = 3,006 \, {\rm KF/c}.$$

Относительный запас топлива

$$\omega_m = G_p t_c = 0.087$$
 кг.

Проектирование заряда ИДК ведется для наихудшего случая — минимальной температуры окружающей среды. Расчетная толщина горящего свода при этом определяется по формуле

$$e_0 = 2F_1(p_{Imin})F_3(T_{min})t_z = 1,7 \text{ MM}.$$

Потребная площадь горения

$$S_{z} = \frac{\omega_{m}}{\rho_{m}u_{z}t_{z}} = 0,0603 \text{ m}^{2}.$$

Так как не существует аналитического решения по определению значения параметров n, L_3 , D_H , D_B , то будем последовательно задавать количество пороховых элементов и рассчитывать необходимые геометрические размеры. Критерием оценки каждого из вариантов будет максимальное значение коэффициента поперечного заполнения КС при

непревышении параметром Победоносцева критического значения. И выполнение технологических ограничений.

Зададимся $\kappa_{\text{пред}} = 180$ - критическое значение критерия Победоносцева.

Наружный диаметр заряда находится по формуле:

$$D_{H}=\frac{D_{\text{KM}}-\mathrm{dz}}{m},$$

где dz = 4 мм — зазор между стенкой и зарядом, вводится для уменьшения значения параметра Победоносцева по наружной стенке или учета зазора для теплового расширения заряда.

Внутренний диаметр заряда определяется как

$$D_{\scriptscriptstyle \theta} = D_{\scriptscriptstyle H} - 2e_0$$

Длина заряда определяются из потребной площади горения

$$L_{3} = \frac{S_{2}}{\pi \cdot n(D_{H} + D_{B})}$$

Значения параметров Победоносцева для внешней и внутренней поверхности:

$$\kappa_{\rm BH} = \frac{4L_3}{D_6};$$

$$\kappa_{\scriptscriptstyle HAD} = \frac{4n \cdot D_H L_{\scriptscriptstyle 3}}{D_{\scriptscriptstyle \rm KM}^2 - n D_{\scriptscriptstyle H}^2}$$

Коэффициент заполнения поперечного сечения

$$\varepsilon_{S} = \frac{D_{\scriptscriptstyle H}^2 - D_{\scriptscriptstyle g}^2}{D_{\scriptscriptstyle \rm KM}^2} n$$

Критерий Шварца

$$Sh = \frac{4F_{\rm kp}}{\pi D_{\rm km}^2 (1 - \varepsilon_{\rm S})} < 0.75$$

Результаты вычислений приведены в таблице 4.

Таблица 4. Вычисления при различных параметрах заряжания

m	3	5	7	9	11
n	7	19	37	61	91
D_{H} , MM	15,2	9,1	6,5	5,1	4,1
D_e , MM	11,7	5,6	3,0	1,5	0,6
L ₃ , MM	101	68,0	54,0	47,0	44,0
K_{BH}	34,67	48,7	72,5	122,74	284,21
кнар	66,4	68,84	75,03	83,43	94,38
$\boldsymbol{\varepsilon}_{s}$	0,293	0,435	0,547	0,627	0,75
Sh	0,171	0,214	0,267	0,324	0,372

По результатам расчетов видно, что единственным вариантом, который удовлетворяет всем ограничениям является решение при m=9. Так как в камере необходимо предусмотреть дополнительно места для сопловых решеток и воспламенителя, принято решение убрать два центральных ряда трубок топлива.

При этом необходимо обеспечить сохранение площади горения, а значит увеличить длину оставшихся трубок. Длина трубок с учетом увеличения равна:

$$L_3 = L_3(m=9) \cdot \left(1 + \frac{S_{\phi}}{S_0}\right) = L_3(m=9) \cdot \left(1 + \frac{n_{\phi}}{n_0}\right);$$
 $L_3 = 47 \cdot \left(1 + \frac{7}{61}\right) = 52.4 \text{ mm}.$

3. Определение массы навески воспламенителя

Рациональной массой воспламенителя является такая масса $\omega_{\rm B}$, при которой обеспечивается гарантированное воспламенение топлива во всем диапазоне T_0 заряда. Если воспламенителя недостаточно — существует опасность отсутствия воспламенения заряда.

При выборе воспламенителя рассматривается наиболее неблагоприятная ситуация при начальной температуре $t_0 = -60\,^{\circ}C$. При такой начальной температуре наблюдается затянутый процесс горения, выражающийся в недостаточном газоприходе.

Для марок воспламенителей, используемых на практике, можно считать, что скорость горения воспламенителя u_e не зависит от давления и составляет 0.05 м/с.

Принимается, что площадь горения поверхности воспламенения изменяется во времени t по следующему закону

$$S_{e} = S_{0_{\rm B}} \exp\left(-m\frac{t}{t_{e}}\right),$$

где $S_{0\mathrm{B}}$ — начальная площадь горения воспламенителя, m — показатель дегрессивности горения воспламенителя, $t_{\mathrm{B}}=\frac{e_{\mathrm{B}}}{u_{\mathrm{B}}}$ — время горения воспламенителя, e_{e} — толщина горящего свода.

Давление вспышки

$$p_{\text{BCII}} = \frac{c_m \rho_m}{\sigma_m} u(p_{min}, T_{\scriptscriptstyle H}) R_{\scriptscriptstyle \theta} T_{\scriptscriptstyle \theta} \frac{T_{\scriptscriptstyle S} - T_{\scriptscriptstyle H}}{T_{\scriptscriptstyle \theta} - T_{\scriptscriptstyle S}}$$
(1)

где $c_{\rm T}=1250~{\rm Дж/(к r\cdot K)}$ — удельная теплоемкость топлива, u — скорость горения топлива, $p_{\rm min}=0.5~{\rm M\Pi a}$ — минимальное давление устойчивого горения топлива, $R_{\rm B}$ — газовая постоянная воспламенителя, $T_{\rm S}=750~{\rm K}$ — температура вспышки топлива, $T_{\rm H}$ — начальная температура топлива, $T_{\rm G}$ — температура продуктов сгорания воспламенителя в момент вспышки топлива

$$T_e = \frac{k-1}{k} \frac{Q_e}{R_e} \tag{2}$$

Уравнение, описывающее изменение давления в камере за счет автономного горения воспламенителя

$$p_{\scriptscriptstyle G} = \left(p_{\scriptscriptstyle H} + \frac{b_1}{\frac{m}{t_{\scriptscriptstyle G}} - b_2}\right) e^{-b_2 t} - \frac{b_1}{\frac{m}{t_{\scriptscriptstyle G}} - b_2} e^{-\frac{m}{t_{\scriptscriptstyle G}} t},$$

где коэффициенты b_1 и b_2 :

$$b_1 = \frac{k-1}{W_0} Q_e S_{0B} u_e \rho_e;$$

$$k - 1 \sigma_m v_m F_0$$

$$b_2 = \frac{k}{W_0} \sqrt{R_{\scriptscriptstyle g} T_{\scriptscriptstyle g}} A(k) F_{\scriptscriptstyle KP} + \frac{k-1}{W_0} \frac{\sigma_m \nu_m F_{\scriptscriptstyle \text{OXJI}}}{R_{\scriptscriptstyle g}},$$

где $Q_{\rm B}$ — калорийность воспламенителя, $S_{0{\rm B}}$ — начальная площадь горения воспламенителя, W_0 — начальный свободный объем камеры сгорания двигателя

$$W_0 = \frac{\pi}{4} D_{\text{BX}}^2 L_{\text{of}} - \frac{\omega}{\rho_m} \tag{3}$$

Максимальное давление воспламенителя

$$p_{\text{Bmax}} = \frac{b_1}{b_2} \left(\frac{m}{b_2 t_e} \right)^{\frac{m}{b_2 t_e} - m}.$$

Начальная площадь поверхности горения воспламенителя

$$S_{0B} = \frac{p_{\text{Bmax}} b_2 \left(\frac{m}{b_2 t_e}\right)^{-\frac{m}{b_2 t_e - m}}}{(k - 1)Q_e u_e \rho_e} W_0.$$
(4)

Для надежного воспламенения при температуре -60° С давление $p_{\text{втах}}$ необходимо выбирать из условия

$$p_{\text{Bmax}} = (1,1 \dots 1,2) p_{\text{Bcn}-60},$$

где $p_{\rm всп-60}$ — давление вспышки основного заряда при температуре окружающей среды $T_{\scriptscriptstyle H} = -60\,^{\circ}C.$

Масса навески воспламенителя определяется по следующей формуле

$$\omega_{e} = \rho_{e} e_{e} S_{0B} \frac{1 - e^{-m}}{m}.$$
 (5)

Параметры воспламенителя, необходимые для расчета представлены в таблице 5.

Таблица 5. Параметры воспламенителя

Газовая постоянная R_e , Дж/(кг · К)	314
Теплота сгорания Q_{e} , кДж/кг	3050
Скорость горения u_e , м/с	0,05
Показатель адиабаты k	1,25
Плотность ρ_{e} , кг/м ³	1700
Показатель дегрессивности т	3
Толщина горящего свода зерна воспламенителя e_{s} , мм	2

Температура продуктов сгорания воспламенителя в момент вспышки основного заряда определяется по формуле (2)

$$T_e = \frac{k-1}{k} \frac{Q_e}{R_e} = \frac{1,25-1}{1,25} \cdot \frac{3050000}{314} = 1943 \text{ K}.$$

Давление вспышки основного заряда при температуре $-50^{\circ}C$ по формуле (1)

$$p_{\text{\tiny BCII-50}} = \frac{c_m \rho_m}{\sigma_m} u(p_{min}, T_{\text{\tiny H}}) R_{\text{\tiny B}} T_{\text{\tiny B}} \frac{T_{\text{\tiny S}} - T_{\text{\tiny H}}}{T_{\text{\tiny E}} - T_{\text{\tiny S}}} =$$

$$= \frac{1250 \cdot 1640}{300} \cdot 0,00185 \cdot 314 \cdot 1943 \frac{500 - 223,15}{1943 - 500} = 1,72 \text{ M}\Pi\text{a},$$

а максимальное давление воспламенителя

$$p_{\text{втах}} = 1,1 \cdot 1,7 = 1,89 \text{ МПа.}$$

Начальный свободный объем камеры сгорания двигателя согласно (3)

$$W_0 = \frac{\pi}{4} D_{\text{BX}}^2 L_{\text{of}} - \frac{\omega}{\rho_m} = \frac{\pi}{4} 0.336^2 \cdot 1.004 - \frac{131.8}{1642} = 3.049 \cdot 10^{-5} \,\text{m}^3.$$

Кривая автономного горения воспламенителя представлена на рисунке 6.

Рисунок 4. Индикаторная кривая автономного давления воспламенителя

Начальная площадь поверхности горения воспламенителя согласно формуле (4) $S_{0\rm B}=5{,}788\cdot 10^{-3}~{\rm m}^2$, масса навески воспламенителя по (5) составляет $\omega_{\rm g}=0{,}0125~{\rm kr}$.

Зная массу и плотность воспламенителя, определим занимаемый им объём

$$W_{\rm B} = \frac{m_{\rm B}}{\rho_{\rm B}} = \frac{0.0125}{1700} = 7.35 \cdot 10^{-6} \,{\rm M}^3.$$

По найденному объёму заряда, зная диаметр форкамеры, можно найти её потребную длину:

$$L_{\rm B} = \frac{W_{\rm B}}{F_{\rm B}} = \frac{W_{\rm B}}{(D_3(m=3)/2 - \delta_{\rm CT} - \delta_3)^2 \pi};$$

$$L_{\mathrm{B}} = \frac{7.35 \cdot 10^{3}}{\left(\frac{15.3}{2} - 1.2 - 0.5\right)^{2} \pi} = 41.6 \text{ mm},$$

где $\delta_{\rm cr}$ — толщина стенки форкамеры, $\delta_{\rm 3}$ — зазор между стенкой форкамеры и основным зарядом.

4. Решение основной задачи внутренней баллистики

Под основной задачей внутренней баллистики (ОЗВБ) РДТТ понимают задачу определения его внутрибаллистических характеристик, в частности, зависимости давления в камере сгорания от времени.

Рассмотрим нульмерную постановку задачи. При проведении расчетов РДТТ в нульмерной постановке полагают, что температура газов в камере постоянна и равна

$$T = \chi_{\text{тепл}} T_0$$
.

Система дифференциальных уравнений внутренней баллистики РДТТ имеет вид:

$$\begin{cases} \frac{dp}{dt} = \left[(k-1) \frac{Q_{\scriptscriptstyle B}}{\rho_{\scriptscriptstyle m} S_{\scriptscriptstyle \mathcal{E}} u_{\scriptscriptstyle \mathcal{E}}} G_{\scriptscriptstyle B} + (k-1) Q_{\scriptscriptstyle \mathcal{H}} - \chi_T^2 k \left(\mu_{\scriptscriptstyle \mathcal{E}} A(k) \frac{F_{\scriptscriptstyle \mathrm{Kp}} p}{\rho_{\scriptscriptstyle m} S_{\scriptscriptstyle \mathcal{E}} u_{\scriptscriptstyle \mathcal{E}}} \right)^2 - \right. \\ \left. - (k-1) \frac{\sigma_{\scriptscriptstyle m} \nu_{\scriptscriptstyle m} F_{\scriptscriptstyle \mathrm{OXII}} p}{R \rho_{\scriptscriptstyle m} S_{\scriptscriptstyle \mathcal{E}} u_{\scriptscriptstyle \mathcal{E}}} - \frac{kp}{\rho_{\scriptscriptstyle \mathcal{B}} \rho_{\scriptscriptstyle m} S_{\scriptscriptstyle \mathcal{E}} u_{\scriptscriptstyle \mathcal{E}}} G_{\scriptscriptstyle \mathcal{B}} - \frac{kp}{\rho_{\scriptscriptstyle m}} \right] \frac{\rho_{\scriptscriptstyle m} S_{\scriptscriptstyle \mathcal{E}} u_{\scriptscriptstyle \mathcal{E}}}{W}; \\ \left. \frac{dW}{dt} = \frac{G_{\scriptscriptstyle m}}{\rho_{\scriptscriptstyle m}} + \frac{G_{\scriptscriptstyle \mathcal{B}}}{\rho_{\scriptscriptstyle \mathcal{B}}}; \\ \frac{de}{dt} = u_{\scriptscriptstyle \mathcal{E}} \Phi_p \Phi_e. \end{cases}$$

Скорость горения основного заряда

$$u_{\varepsilon}=u_{1}p^{\nu}F_{3}(T_{0}),$$

Газоприходы основного заряда и воспламенителя определяются по формулам:

$$G_m = \rho_m S_{\varepsilon} u_{\varepsilon} \varphi_{\kappa} (\kappa(e)) \Phi_p \Phi_e;$$

$$G_{\varepsilon} = \rho_{\varepsilon} S_{0\varepsilon} \exp\left(-m \frac{t}{t_{\varepsilon}}\right) u_{\varepsilon} \Phi_{\varepsilon}.$$

Параметры $\Phi_p, \, \Phi_e \,$ и $\Phi_{\scriptscriptstyle B}$ являются функциями Хэвисайда и отвечают за следующее. Функция Φ_p отвечает за момент вспышки основного заряда

$$\Phi_p = \begin{cases} 1, & \text{если } p \geq p_{\text{всп}} \text{ или } e > 0; \\ 0, & \text{в остальных случаях.} \end{cases}$$

Функция Φ_e отвечает за горение основного заряда

$$\Phi_e =
\begin{cases}
1, & e \leq e_3; \\
0, & \text{в остальных случаях.}
\end{cases}$$

И, наконец, функция Φ_{g} отвечает за горение воспламенителя

$$\Phi_{\varepsilon} =
\begin{cases}
1, & t \leq t_{\varepsilon}; \\
0, & \varepsilon \text{ остальных случаях.}
\end{cases}$$

Интегрирование системы ДУ проводится при следующих начальных условиях:

$$\begin{cases}
p = p_{H}; \\
W = W_{0}; \\
e = 0.
\end{cases}$$

Система уравнений интегрируется с шагом $\Delta t = 5 \cdot 10^{-5} \text{ c.}$

Индикаторные кривые давлений при трех температурах $t_0 = -60^{\circ} C$, $t_0 = +18^{\circ} C$ и $t_0 = +60^{\circ} C$ приведены на рисунке .

Рисунок 5. Индикаторные кривые давления при трёх температурах

Тяга определяется по следующей формуле

$$P = G_m V_a + (p_a - p_{\scriptscriptstyle H}) F_a,$$

где $V_a=1905$,7 м/с – скорость продуктов сгорания в выходном сечении, F_a – площадь выходного сечения

$$F_a = \frac{\pi D_a^2}{4} = \frac{\pi \cdot 0.356^2}{4} = 0.0995 \text{ m}^2.$$

Тяга двигателя при трех температурах представлена на рисунке 6.

Рисунок 6. Тяга двигателя при трёх температурах

Суммарный импульс ИДК определяется как

$$J_{\Sigma} = \int_{0}^{t_{p}} P(t)dt.$$

Результаты расчета суммарных импульсов для трех температур приведены в таблице 6.

Таблица 6. Значения суммарных импульсов

t,°C	+18	+60	-60
J_{Σ} , H · c	163,97	213,92	160,23

5. Конструкторская проработка

Имея все исходные данные о геометрии ИДК, выполним моделирование и сборку. Итоговая сборка и сопутствующий чертёж представлены на рисунках 7 и 8 соотвественно.

Рисунок 7. Трёхмерная модель ИДК

Рисунок 8. Чертёж ИДК

Обечайка ИДК -1 выполнена совместно с переднем днищем, она соединена резьбовым соединением с прокладкой -9 с ФВУ -4, между ними зажата рама -5 для крепления шашек заряда -3. Внутри трубки ФВУ расположен воспламенитель -7, предвоспламенитель -12 и пиропатрон -6.

Сопловой блок -2 устанавливается на обечайку посредством резьбового соединения с герметизирующей прокладкой -13. Внутри соплового блока расположена заглушка -8 на герметизирующих кольцах -10 и 11, предназначена для защиты внутренностей ДУ от влаги, пыли и других факторов.

Располагая объёмными характеристиками элементов ИДК, выполним массовый анализ полученной конструкции. Значения масс элементов конструкции приведены в таблице 7.

Таблица 7. Значения масс элементов конструкции

Деталь/Сборочная единица	Плотность, $\kappa \Gamma/M^3$	Объем, м ³	Масса, г
Обечайка	7820	$2,32 \cdot 10^{-5}$	179
Сопловой блок	7820	1,26 · 10-5	95
Перфорированная трубка	7820	2,8 · 10-6	22
Рама для крепления зарядов	1800	1,05 · 10-5	21
Основной заряд	1600	50 · 0,956 · 10-6	35
Сопловая заглушка	2200	6,123 · 10 ⁻⁶	13
Уплотнительные кольца	1200	_	< 10
Пиропатрон	_	_	4
Сумма (вместе с навеской воспламенителя)	_	_	379

Согласно таблице 7 полученная масса ИДК меньше допустимой $m_{{\rm ду}max} = 420 \; {\rm \Gamma}.$

Заключение

Таким образом, был спроектирован импульсный двигатель коррекции, который создает требуемый суммарный импульс 160 H · с. Время выхода двигателя на режим не более 4 мс.

Исходя из приведенного банка топлив и заданных ограничениях был спроектирован заряд со следующими характеристиками: топливо Б-3, количество шашек n=54, внешний и внутренний диаметры шашки $D_{\scriptscriptstyle H}=5,1\,{\rm mm}$ и $D_{\scriptscriptstyle B}=1,5\,{\rm mm}$, длина заряда $52,4\,{\rm mm}$.

Был произведен расчет массы навески воспламенителя, который обеспечивает гарантированное воспламенение топлива для заданного интервала начальных температур заряда и последующее устойчивое горение топлива. Масса навески воспламенителя оказалась равной $\omega_{\rm B}=0.0125~{\rm kr.},$ начальная площадь поверхности горения воспламенителя $S_{0\rm B}=0.0058~{\rm m}^2,$ кривая автономного горения воспламенителя представлена на рисунке 4.

Была решена основная задача внутренней баллистики посредством интегрирования системы однородных дифференциальных уравнений. В результате были получены графики давлений (рис. 5) и тяги (рис. 6), при трех температурах $t_0 = -60\,^{\circ}C$, $t_0 = +18\,^{\circ}C$ и $t_0 = +60\,^{\circ}C$. Значения суммарного импульса $(J_{\Sigma-60} = 160,23~{\rm H}\cdot c,~J_{\Sigma+18} = 163,97~{\rm H}\cdot c,~J_{\Sigma+60} = 213,92~{\rm H}\cdot c)$ оказались больше требуемого в техническом задании $160~{\rm H}\cdot c$.

Была проведена конструкторская проработка ИДК. Модель и чертеж конструкции приведены на рисунках 7 и 8 соответственно. Масса конструкции $m_{\pi \nu} = 379~\Gamma.$

Список использованной литературы

- 1. Федоров А. А. Курс лекций по проектированию энергетических установок ракетного оружия.
- 2. Федоров А. А. Расчетное определение оптимального давления в камере РДТТ на основе критерия минимума массы: Методические указания по выполнению лабораторной работы М.: Изд-во МГТУ им. Н.Э. Баумана, 2021. 28 с., ил.
- 3. Серпинский О. С. Топливные заряда РДТТ 2021 г.
- Федоров А. А. Профилирование сопла и расчет тепловых потоков по его тракту: Методические указания по выполнению лабораторной работы – М.: Изд-во МГТУ им. Н.Э. Баумана, 2022. – 52 с.