Berekening fundering op staal

conform NEN 9997-1+C1:2012

B = 1,00 m (breedte funderingsstrook) taludhelling naast poer
L = 1,00 m (gehele lengte funderingselement) 0
GWS = -0,30 m t.o.v. Ref. (grondwaterstand) taludhelling naast poer

Belastingen

V_d	=	107,5 kN/m	$V_{mom;d}$	=	1,0 kN/m Teken	afspraak = +
$H_{dwars;d}$	=	0,0 kN/m	$H_{langs;d}$	=	0,0 kN/m	7
$M_{dwars;d}$	=	0,0 kNm/m	$M_{dwars;mom;d}$	=	0,0 kNm/m	
$M_{langs;d}$	=	0,0 kNm/m	$M_{langs;mom;d}$	=	0,0 kNm/m	
						\uparrow \uparrow \uparrow

Bodemopbouw

ber.

(onderkant laag 1 = onderkant fundering) (t.p.v. GWS altijd nieuwe laag kiezen)

Grondparameters (representatief)

laag	laag	Gewicht grond					
	dikte	γ^{c}	γ_{sat}	φ _{rep}	c'	Cu	
	m	m kN/m3 kN/m3		grad	grad	kN/m2	
1	0,30	18,5	18,5	27,2	2,0	20,0	
2	7,70	18,5	18,5	27,2	2,0	20,0	
3	6,40	10,4	10,4	29,8	1,0	20,0	
4	4,90	18,0	20,0	32,5	0,1	20,0	
5	0,00	15,5	15,5	34,8	0,0	0,0	
6	0,00	17,5	17,5	33,4	0,0	0,0	

Berekening fundering op staal (vervolg)

conform NEN 9997-1+C1:2012

Toetsing draagkracht gedraineerde toestand (alle lagen) art. 6.5.2.2 (i) В breedte funderingselement 1,00 m Tekenafspraak L lengte funderingselement = 1,00 m $e_{\scriptscriptstyle B}$ excentriciteit verticaalkracht t.o.v. midden fundering **0,00** m **0,00** m excentriciteit verticaalkracht t.o.v. midden fundering e_L excentriciteit vert.kracht door moment in dwarsrichting \mathbf{X}_{B} = = 0,00 m excentriciteit vert.kracht door moment in langsrichting 0,00 m . = = X_L h' B - 2*e_B - 2*x_B 1,00 m = = ť' L - 2*e₁ - 2*x₁ 1.00 m = = b'* {' A' 1,00 m²/m (t.o.v. onderkant fundering) 1,5*b' 1,50 m = $\sigma'_{v;\text{bijk};d}$ (ev. extra gewicht) 0,0 kPa 5,5 kPa $\sigma'_{v;z;d}$ 24.08° $\Sigma H_i * \varphi_{i:d} * X_i / (\Sigma H_i * X_i)$ φ'_{gem;d} = $\Sigma H_j * \gamma_{j;d} * X_j / (\Sigma H_j * X_j)$ 6,77 kN/m³ γ'_{gem;d} = $\Sigma H_i * C_{i;d} * X_i / (\Sigma H_i * X_i)$ 1,3 kPa c'gem;d (N_q - 1) * cot ($\phi'_{\text{gem;d}}$) N_c 19,43 $e^{p^{t} \tan(\phi' \text{gem};d)} * [\tan(45^{\circ} + 0.5^{*} \phi'_{\text{gem};d})]^{2}$ 9,68 N_q $N_{\gamma^{\prime}}$ $2 * (N_q - 1) * tan (\phi'_{gem;d})$ 7,76 = = $s_q * N_q - 1 / N_q - 1$ 1,455 \mathbf{S}_{C} = = 1 + (b' / ℓ ') * $sin(\phi'_{gem;d})$ $\mathbf{S}_{\mathbf{q}}$ 1,408 = = 1 - 0,3 * (b' / \(\ext{t} \) S_{γ} 0,700 $i_q * N_q - 1 / N_q - 1$ ic 1,000 $[1 - (0.7 * H_d) / (V_d + A' * c'_{qem;d} * cot(\varphi'_{qem;d}))]^3$ 1,000 i_q = $[1 - (H_d) / (V_d + A' * c'_{qem;d} * cot(\varphi'_{qem;d}))]^3$ įγ 1,000 = λ_{c} $(N_q *e^{-\alpha} - 1) / (N_q - 1)$ 1,000 = [1 - $\tan \beta$]^{1,9} λ_{q} 1,000 $[1 - 0.5^* \tan \beta]^6$ 1,000 λ_{γ} $0,0349 * \beta * tan (\phi'_{qem:d})$ 0.000 α = $V_{\text{d}} \\$ zie belastingen 107 kN/m = $(c'_{gem;d}{}^*N_c{}^*s_c{}^*b_c{}^*i_c{}^*\lambda_c) + (\sigma'_{v;z;d}{}^*N_q{}^*s_q{}^*b_q{}^*i_q{}^*\lambda_q) + (0,5{}^*\gamma'_{gem;d}{}^*b'{}^*N_\gamma{}^*s_{\gamma'}{}^*b_{\gamma'}{}^*i_{\gamma'}{}^*\lambda_g) + (0,5{}^*\gamma'_{gem;d}{}^*b'{}^*N_\gamma{}^*s_{\gamma'}{}^*b_{\gamma'}{}^*\lambda_g) + (0,5{}^*\gamma'_{gem;d}{}^*b'{}^*N_\gamma{}^*s_{\gamma'}{}^*\lambda_g) + (0,5{}^*\gamma'_{gem;d}{}^*b'{}^*N_\gamma{}^*s_{\gamma'}{}^*\lambda_g) + (0,5{}^*\gamma'_{gem;d}{}^*N_\gamma{}^*S_\gamma{}^*N_\gamma{}^*S_\gamma{}^*N_\gamma{}^*S_\gamma{}^*N_\gamma$ $\sigma'_{\text{max;d}}$ 129 kPa $\sigma'_{max:d} * A'$ R_d 129 kN/m toets: $V_d \le R_d$ voldoet Samenvatting Aanwezigheid horizontaalkracht: nee voldoet Aanwezigheid moment: nee geen aanvullende toetsing nodig Aanwezigheid cohesieve grondlagen: geen aanvullende toetsing nodig nee Verschil in f > 6° toetsing doorponsen nodig ja =>

geen toetsing 'squeezing' nodig

Belasting strookvormig:

nee

blad

ber.

project nr. 411708

titel PPE JLD-Dijkstabilisator

blad

ber.

project nr. 411708

titel PPE JLD-Dijkstabilisator

Berekening fundering op staal (vervolg)

conform NEN 9997-1+C1:2012

Toetsing ongedraineerd gedrag eerste cohesieve grondlaag

art. 6.5.2.2 (g)

betreft grondlaag:		1									
Belastingen											
V_d	=	86,0	+	1,00	*	1,00	*	0	=	86,0 kN/m	
H_d	=								=	0,0 kN/m	
$M_{dwars;d}$	=	0,0	+	0,0	*	0,60			=	0,0 kNm/m	ì
$M_{langs;d}$	=	0,0							=	0,0 kNm/m	1
B _{fictief}	=	1,00	+ (tan	8 °	*	0,00)	* 2		=	1,00 m	
$L_{fictief}$	=	1,00	+ (tan	0,0	*	0,00)	* 2		=	1,00 m	
e_B	=	excentricite	it vertica	alkracht t	.o.v. m	idden fund	ering		=	0,00 m	
e_L	=	excentricite	it vertica	alkracht t	.o.v. m	idden fund	ering		=	0,00 m	
x_B	=	excentricite	it vert.kr	acht door	mome	nt in dwars	richting		=	0,00 m	
\mathbf{x}_{L}	=	excentricite	it vert.kr	acht door	mome	nt in langsr	richting		=	0,00 m	
b' fictief	=	B _{fictief} - 2*e _E	₃ - 2*x _B						=	1,00 m	
ℓ' fictief	=	L _{fictief} - 2*e _L	- 2*x _L						=	1,00 m	
A' _{fictief}	=	b' _{fictief} x {' _{ficti}	ef						=	1,00 m ²	
$\sigma'_{v;bijk;d}$	=	uit eventue	el extra (gewicht					=	0,0 kPa	
$\sigma'_{v;z;d}$	=								=	5,5 kPa	
$C_{u;d}$	=	cohesie 1	laag						=	14,8 kPa	
i _c	=	0,5 * [1+ (1	-(H _d / A'	* c _{u;d})) ^{0,5}]					=	1,000	
S _c	=	1 + 0,2 * (b	' / {')						=	1,20	
λ_{c}	=	(N _q *e ^{-α} - 1))					=	1,000	
λ_{q}	=	$[1 - \tan \beta]^{1,5}$							=	1,000	
λ_{γ}	=	[1 - 0,5* tar	າ β] ⁶						=	1,000	
α	=	0,0349 * β	* tan (φ'	gem;d)					=	0,000	
V_d	=	zie belastin	gen						=	86,00 kN/m	
$\sigma'_{\text{max;d}}$	=	$(\pi + 2) * C_u$;d * S _c * i	$_{c}$ * λ_{c} + $\sigma_{v;z}$	$_{z;d}$ * λ_{q}				=	96,94 kPa	
R_d	=	$\sigma'_{\text{max;d}} * A'$							=	97 kN/m	
						toets: V	$d \leq R_d$			voldoe	t

Berekening fundering op staal (vervolg)

conform NEN 9997-1+C1:2012

Toetsing zijdelings wegpersen van ongedraineerde cohesieve grondlaag	art. 6.5.2.2 (s)

betreft grondlaag:		1											
Belastingen													
V_d		=	107,47	+	1,00	*	1,00	*		0,0	=	107,5	kN/m
H_d		=									=	0,0	kN/m
$M_{\text{dwars;d}}$		=	0,00	+	0,00	*	0,00				=	0,0	kNm/m
$M_{langs;d}$		=	0,00								=	0,0	kNm/m
В	=		breedte fo								=	1,00	
L	=		lengte fur	_							=	1,00	
e_B	=		excentric					-			=	0,00	
e_L	=		excentric					•			=	0,00	
x_B	=		excentric	iteit vert	kracht d	oor mon	nent in dv	arsrichtin	ng		=	0,00	m
x_L	=		excentric	excentriciteit vert.kracht door moment in langsrichting							=	0,00	m
b'		=	B - 2*e _B -	2*x _B							=	1,00	m
ℓ'		=	L - 2*e _L -	$2*x_L$							=	1,00	m
Α'		=	b'* l'								=	1,00	m
$\sigma'_{v; \text{bijk}; d}$		=	uit eventu	ieel extr	a gewich	nt					=	0,0	kPa
$\sigma'_{v;z;d}$		=									=	5,54	kPa
C _{u;d}		=	cohesie	1 laag							=	14,81	kPa
h_{sq}		=									=	0,30	m
V_d		=	zie belast	tingen							=	107,47	kN/m
σ' _{sq;d}		=	$[(\pi + 2) +$	-] * C _{u:d} +	$Q^{\Lambda,2,q}$					=	172,46	
R_d		=	σ' _{sq;d} * A'	. 547.	- 4,4	*,2,4					=		kN/m
J			toets: $V_d \le R_d$										voldoet