

4ME014-Solides: Modélisation des Solides Déformables

TD 3 : Poutres et arcs en petits déplacements

EXERCICE 1: APPLICATION DU PRINCIPE DES PUISSANCES VIRTUELLES À UNE POUTRE DROITE

On considère une poutre non pesante de longueur 2ℓ dans la direction \underline{e}_1 , dont les extrémités $x_1 = -\ell$ et $x_1 = +\ell$ sont posées sur deux appuis simples.

La poutre est en équilibre sous l'action d'une force transversale concentrée d'intensité P dirigée selon \underline{e}_3 et appliquée au point O (voir figure)

Statique

- 1) Ecrire les équations d'équilibre satisfaites par le torseur des efforts de cohésion (efforts intérieurs) de résultante $\underline{R}(x_1)$ et de moment $\underline{M}(x_1)$ en un point d'abscisse x_1 .
- 2) Donner les conditions aux limites aux deux extrémités de la poutre, ainsi que les conditions au point O.
- 3) Procéder à la résolution statique du système (détermination de la résultante $\underline{R}(x_1)$ et de moment $\underline{M}(x_1)$).

Cinématique

On suppose que la poutre est élastique et obéit à la théorie de Navier-Bernoulli. On note μ le coefficient de cisaillement, E le module de Young, J le moment d'inertie de torsion et I_2 , I_3 les moments d'inertie géométriques de la section par rapport aux axes \underline{e}_2 et \underline{e}_3 supposés axes principaux d'inertie et S l'aire de la section de la poutre.

- 1) Rappeler l'expression de la loi de comportement.
- 2) Donner l'expression de la composante selon \underline{e}_2 de la rotation $\underline{\Omega}(x_1)$ subie par la poutre en tout point.
- 3) En déduire la composante $u_3(x_1)$ du vecteur déplacement selon \underline{e}_3 en tout point de la poutre et en particulier on explicitera la flèche δ au point O, soit $\delta = u_3(x_1 = 0)$.

EXERCICE 2: APPLICATION DU PRINCIPE DES PUISSANCES VIRTUELLES À UN ARC NON PESANT

On considère un arc circulaire non pesant, de centre O, de rayon R, situé dans le plan $(O; x_1, x_2)$. On utilisera les coordonnées polaires (r, θ) et la base orthonormée naturellement associée $(\underline{e}_r, \underline{e}_\theta)$.

L'arc est orienté dans le sens des θ croissants. Les extrémités A $(\theta = -\pi)$ et B $(\theta = \pi)$ sont soumises à des forces $-F\underline{e}_3$ et $F\underline{e}_3$ respectivement.

Statique

- 1) Rappeler l'expression de l'abscisse curviligne s en fonction de R et θ et préciser le repère de Frenet pour l'arc considéré $(\underline{\tau}(s),\underline{n}(s),\underline{b}(s))$ pour l'arc considéré .
- 2) Donner les équations d'équilibre satisfaites par la résultante $\underline{R}(s)$ et le moment $\underline{M}(s)$ du torseur des efforts de cohésion en un point d'abscisse curviligne s.

 Procéder à la résolution statique.
- 3) En déduire les expressions de l'effort normal $N(s) = \underline{R}(s) \cdot \underline{\tau}(s)$, des efforts tranchants $T_n(s) = \underline{T}(s) \cdot \underline{n}(s)$ et $T_b(s) = \underline{T}(s) \cdot \underline{b}(s)$, du moment de torsion $M_t(s) = \underline{M}(s) \cdot \underline{\tau}(s)$ et des moments de flexions $M_{fn}(s) = \underline{M}(s) \cdot \underline{n}(s)$ et $M_{fb} = \underline{M}(s) \cdot \underline{b}(s)$.

Cinématique

On suppose que l'arc est élastique et obéit à la théorie de Navier-Bernoulli. On note comme précédemment μ le coefficient de cisaillement et E le module de Young J le moment d'inertie de torsion, et I le moment d'inertie géométrique de la section par rapport à l'axe (supposé principal d'inertie) passant par son centre et parallèle à \underline{e}_r .

On fait l'hypothèse a priori que les vecteurs déplacement et rotation \underline{u} et $\underline{\Omega}$ sont respectivement parallèle et orthogonal à \underline{e}_3 . On supposera de plus que ces vecteurs sont nuls au point $\theta=0$ (ce qui revient à fixer le mouvement de corps rigide laissé arbitraire par le chargement).

1) Montrer que les composantes Ω_r et Ω_θ du vecteur rotation selon les directions \underline{e}_r et \underline{e}_θ vérifient le système d'équations différentielles :

$$\begin{cases} \frac{d\Omega_r}{d\theta} - \Omega_\theta = \frac{FR^2}{EI} \sin \theta \\ \frac{d\Omega_\theta}{d\theta} + \Omega_r = \frac{FR^2}{\mu J} (1 + \cos \theta) \end{cases}$$

- 2) Éliminer Ω_r dans les équations précédentes et en déduire la valeur de Ω_{θ} le long de l'arc à une constante d'intégration près.
- 3) Calculer Ω_r le long de l'arc, et en déduire la valeur de la constante d'intégration précédente.
- 4) Montrer que (avec $u = \underline{u} \cdot \underline{e}_3$):

$$\frac{du}{d\theta} = R \Omega_r$$

et en déduire la valeur de u le long de l'arc, puis celle de la quantité $\delta \equiv u(B) - u(A)$.