

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 5 : A01N 25/34, 47/36, 43/64 A01N 39/04		A1	(11) International Publication Number: WO 93/13658 (43) International Publication Date: 22 July 1993 (22.07.93)
 (21) International Application Number: PCT/US92/11305 (22) International Filing Date: 30 December 1992 (30.12.92)		 (72) Inventor; and (75) Inventor/Applicant (<i>for US only</i>) : JACKISCH, David, Alan [US/US]; 307 Walden Road, Wilmington, DE 19803 (US). (74) Agents: COSTELLO, James, A. et al.; E.I. du Pont de Nemours and Company, Legal/Patent Records Center, 1007 Market Street, Wilmington, DE 19898 (US).	
 (30) Priority data: 07/817,247 6 January 1992 (06.01.92) 07/817,248 6 January 1992 (06.01.92)		US	 (60) Parent Applications or Grants (63) Related by Continuation US 07/817,247 (CIP) Filed on 6 January 1992 (06.01.92) US 07/817,248 (CIP) Filed on 6 January 1992 (06.01.92)
 (71) Applicant (<i>for all designated States except US</i>): E.I. DU PONT DE NEMOURS AND COMPANY [US/US]; 1007 Market Street, Wilmington, DE 19898 (US).		 (81) Designated States: AU, BB, BG, BR, CA, CS, FI, HU, JP, KP, KR, LK, MG, MN, MW, NO, NZ, PL, RO, RU, SD, UA, US, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, SN, TD, TG). Published <i>With international search report.</i>	

(54) Title: TABLET FORMULATION WITH INTERNAL DESICCANT

(57) Abstract

A tablet formulation comprising a pesticide and a delivery system, the delivery system comprising a range of acid/base combinations, a dispersant, a wetting agent, polyvinylpolypyrrolidone, and a characterizing internal desiccant to ensure tablet stability, the tablet being selected to complement the particular class of base selected for the formulation.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	FR	France	MR	Mauritania
AU	Australia	GA	Gabon	MW	Malawi
BB	Barbados	GB	United Kingdom	NL	Netherlands
BE	Belgium	GN	Guinea	NO	Norway
BF	Burkina Faso	GR	Greece	NZ	New Zealand
BG	Bulgaria	HU	Hungary	PL	Poland
BJ	Benin	IE	Ireland	PT	Portugal
BR	Brazil	IT	Italy	RO	Romania
CA	Canada	JP	Japan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic of Korea	SD	Sudan
CG	Congo	KR	Republic of Korea	SE	Sweden
CH	Switzerland	KZ	Kazakhstan	SK	Slovak Republic
CI	Côte d'Ivoire	LJ	Liechtenstein	SN	Senegal
CM	Cameroon	LK	Sri Lanka	SU	Soviet Union
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	MC	Monaco	TC	Togo
DE	Germany	MD	Madagascar	UA	Ukraine
DK	Denmark	ML	Mali	US	United States of America
ES	Spain	MN	Mongolia	VN	Viet Nam

TITLE

TABLET FORMULATION WITH INTERNAL DESICCANT

An effervescent tablet produces gas bubbles by the reaction between an acid
5 and a base. Should the water level in the tablet exceed about 0.1%, the tablet will begin to lose its effervescence even though it is stored in its container. Normally, an amount of water exceeding 0.1% is required to formulate a tablet having acceptable integrity and strength.

One way to keep the water employed during formulation from ruining the
10 tablet during long-term storage is to package the tablet with a desiccant. The water in the tablet diffuses out and is taken up by the desiccant. This water is held by the desiccant and so cannot cause the acid/base reaction to occur. However, the need for an external desiccant complicates design of the tablet package.

15 One such tablet formulation that does not have an internal desiccant is disclosed in WO 90/00007. Two formulations that contain an internal desiccant are disclosed in CA-A-2,013,918 and WO 88/09161. CA-A-2,013,918 discloses a tablet comprising potassium carbonate and/or potassium bicarbonate as bases and a desiccant which physically adsorbs water. WO 88/09161 discloses an
20 effervescent tablet for cleaning dentures comprising pancreatin, an acid component, a base component, and a drying agent.

SUMMARY OF THE INVENTION

This invention comprises a tablet formulation consisting essentially of by total weight of the formulated composition:

- 25 (i) about 0.1% to 75% of a pesticide;
(ii) about 25% to 99.9% of a delivery system characterized by a panel of components complementary to the pesticide of (i) having the following components:
30 (a) about 5% to 75% of a dibasic or tribasic organic carboxylic acid or a mixture thereof;
(b) about 5% to 75% of an ammonium, lithium, sodium or potassium carbonate or bicarbonate or a mixture thereof;
(c) about 0.5% to 20% of a dispersant;
(d) about 0.1% to 5% of water-insoluble cross-linked polyvinyl-
35 polypyrrolidone;

(e) about 0.1% to 5% of an anionic or nonionic wetting agent; and
(f) about 1% to 20% of an internal desiccant being selected from the

group:

- 5 (A) one or a mixture of desiccants that chemically bind water, and
(B) one or a mixture of desiccants that physically adsorb water;
the desiccant being (A) when (b) is potassium carbonate or potassium
bicarbonate.

This delivery system is characterized by the inter-relationship of components (a) to (f) in the recited ranges to effect rapid disintegration of finely dispersed pesticide particles (i). Preferred ranges of the composition are 5% to 10% more preferably 10% to 60% of the pesticide; and 30% to 95%, more preferably 40% to 90% of the delivery system.

By "tablet formulation" is meant the tablet made from the composition described herein, as well as the composition formulated in accordance with this disclosure but not in tablet form. The preferred tablet formulation of the present invention is in the form of a tablet.

Contemplated pesticides include those selected from the following classes, including mixtures thereof: herbicides, fungicides, bactericides, insecticides, nematocides, acaricides, and growth regulants.

20 Preferred dibasic and tribasic organic carboxylic acids include citric, fumaric, phthalic, maleic, malic, oxalic, adipic, glutaric, 2-methyl glutaric, succinic, and tartaric, or mixtures of any of them.

The term "dispersants" includes sodium, potassium, ammonium and calcium salts of naphthalene sulfonic acid-formaldehyde condensates; lithium, sodium, 25 potassium, calcium, and ammonium salts of lignosulfonates; sodium; potassium and ammonium salts of polyacrylates and carboxylates; sodium salts of maleic anhydride-isobutylene copolymers; and water soluble nonionic polymers such as polyvinyl-pyrrolidone, polyethylene oxides and cellulose derivatives. Preferred dispersants include the sodium, potassium, ammonium and calcium salts of 30 naphthalene sulfonic acid-formaldehyde condensates, with the ammonium salts more preferred.

Water-insoluble, cross-linked polyvinylpolypyrrolidone disintegrant refers to any of the generic, but is not limited to, crospovidone disintegrating agents.

35 The term "anionic wetting agent" includes, but is not limited to, salts of alkylbenzene sulfonates, alkyl and dialkylnaphthalene sulfonates, alkyl and

alcohol sulfates, sulfoalkylamides, carboxylates, alpha-olefin sulfonates and dialkyl sulfosuccinates. The term "nonionic wetting agent" includes acetylenic diols, ethylene oxide-propylene oxide copolymers, alkylphenol ethoxylates, fatty acid ethoxylates, alcohol ethoxylates, sorbitan fatty acid ester ethoxylates and 5 castor oil ethoxylates. The preferred wetting agents are sodium dialkyl sulfosuccinates of which sodium diisobutyl sulfosuccinate, sodium diamyl sulfosuccinate and sodium dicyclohexyl sulfosuccinate are more preferred.

The internal desiccants that "chemically bind" water are those that actually undergo chemical reactions with water to form a new compound. An example of 10 this type of material is CaO which reacts with water to form Ca(OH)₂. Other materials representative of those which react in this manner are magnesium oxide and boric anhydride.

The internal desiccants that "physically adsorb" water are those selected from the group consisting of highly-dispersed silicic acids such as silica gel; 15 aluminum oxide; clays such as montmorillonite; and amorphous and crystalline aluminosilicates such as molecular sieves and zeolites. Combinations of these desiccants with those that form hydroxides and hydrates can be used. Kirk-Othmer's Encyclopedia of Chemical Technology (3rd ed., Vol. 8, p 115) describes desiccants suitable for use in the tablet formulation of this invention as Type 1 20 and Type 4 desiccants. Either type can be employed, singly or in combination, as long as the desiccant does not expand when it picks-up water. Such expansion causes the tablet to crack or crumble on long term storage.

Internal desiccants useful in the tablet formulation of this invention also include materials that chemically bind water, not in the sense of a chemical 25 reaction that forms a hydroxide, but in the sense of a chemical reaction that produces a hydrate. Representative of useful desiccants that form hydrates are CaSO₄, NaOAc, MgSO₄, Na₂SO₄, CaCl₂, and ZnSO₄. Representative of the hydrate-forming reaction is that undergone by CaCl₂ to form CaCl₂·H₂O. One or 30 more desiccants from each group, the hydroxide-forming and the hydrate-forming, can be employed, alone or in combination, depending on the particular properties sought by the formulator. In any event, the desiccants employed in the tablets of this invention are not those of the water-adsorbing type employed in prior art tablet formulations. Kirk-Othmer's Encyclopedia of Chemical 35 Technology (Third Edition, Vol. 8, page 115) further describes desiccants of the type contemplated for this invention as so-called Type 1 materials.

A preferred tablet formulation is one wherein component (b) is an ammonium, sodium or lithium carbonate or bicarbonate or mixture thereof, and the internal desiccant is selected from (A), (B) and a mixture of (A) and (B).

Also preferred is a tablet formulation wherein (b) is potassium carbonate or bicarbonate or mixture thereof, and the internal desiccant is (A).

Preferred pesticides are those having a melting point of at least about 100°C and solubility in pH 7 water at 20°C of no more than about 5% by weight.

Representatives of such pesticides are herbicides such as: acifluorfen, asulam, atrazine, bensulfuron, bentazon, bromacil, bromoxynil, chloramben, chlorimuron

10 ethyl, chloroxuron, chlorsulfuron, chlortoluron, clomazone, cyanazine, dazomet, desmediphan, dicamba, dichllobenil, dichlorprop, diphenamid, dipropetryn, diuron, thiameturon, 2-[[[N-(4-methoxy-6-methyl-1,3,5-triazine-2-yl)-N-methylamino]carbonyl]amino]sulfonyl]benzoic acid, methyl ester, fenac, fenuron, fluometuron, fluridone, fomesafen, glyphosate, hexazinone, imazamethabenz,

15 imazaquin, imazethapyr, ioxynil, isoproturon, isouron, isoxaben, karbutilate, lenacil, MCPA, MCPB, mefluidide, methabenzthiazuron, methazole, metribuzin, metsulfuron methyl, monuron, naptalam, neburon, nitralin, norflurazon, oryzalin, perfluidone, phenmedipham, picloram, prometryn, pronamide, propazine, pyrazon, siduron, simazine, sulfometuron methyl, tebuthiuron, terbacil,

20 terbutylazine, terbutryn, triclopyr, 2,4-D, 2,4-DB, triasulfuron, primisulfuron, 2-[3-(4,6-bis(difluoromethoxy)pyrimidin-2-yl)ureidosulfonyl]benzoic acid methyl ester, 5-pyrazolesulfonamide, N-[(4-methoxy-6-methyl-pyrimidine-2-yl)-amino-carbonyl]-4-methoxy-carbonyl-1-methyl-, N-[(4,6-dimethoxy-2-pyrimidinyl)-amino]carbonyl]-3-(ethylsulfonyl)-2-pyridinesulfonamide, 2-[[[[(4,6-dimethoxy-

25 2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-N,N-dimethyl-3-pyridine-carboxamide, methyl 2-[[[[(4-ethoxy-6-(methylamino)-1,3,5-triazin-2-yl)-amino]carbonyl]amino]sulfonyl]benzoate, methyl 2-[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-6-(trifluoromethyl)-3-pyridine-carboxylate, 2-(2-chloroethoxy)-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide, methyl 2-[[[[(4-(dimethyl-amino)-6-

30 (2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]amino]carbonyl]sulfonyl]-3-methylbenzoate, sodium 2-chloro-6-[(4,6-dimethoxy-2-pyrimidinyl)thio]benzoate; fungicides such as: carbendazim, thiuram, dodine, chloroneb, cymoxanil, captan, folpet, thiophanatemethyl, thiabendazole, chlorothalonil, dichloran, captafol,

35 iprodione, vinclozolin, kasugamycin, triadimenol, flutriafol, flusilazol,

hexaconazole or fenarimol; bactericides such as oxytetracycline dihydrate; acaricides such as: hexathiazox, oxythioquinox, dienochlor or cyhexatin; insecticides such as: carbofuran, carbaryl, thiodicarb or deltamethrin.

More preferred pesticides are hexazinone, 2,4-D, chlorsulfuron,

- 5 sulfometuron methyl, chlorimuron ethyl, metsulfuron methyl, ethametsulfuron methyl, thifensulfuron methyl, tribenuron ethyl, bensulfuron methyl, primisulfuron, methyl 2-[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-amino]sulfonyl]-6-(trifluoro-methyl)-3-pyridinecarboxylate, 2-(2-chloroethoxy)-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide,
- 10 ethyl 5-[[[[4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-1-methyl-1*H*-pyrazole-4-carboxylate, *N*-[(4,6-dimethoxy-2-pyrimidinylamino]-carbonyl]-3-(ethylsulfonyl)-2-pyridinesulfonamide, 2-[[[[4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-*N,N*-dimethyl-3-pyridinecarboxamide, methyl 2-[[[[4-(dimethylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]amino]carbonyl]sulfonyl]-3-methylbenzoate, and sodium 2-chloro-6-[(4,6-dimethoxy-2-pyrimidinyl)thio]benzoate.
- 15

- The most preferred pesticides are sulfonylurea herbicides such as chlorsulfuron, sulfometuron methyl, chlorimuron ethyl, metsulfuron methyl, ethametsulfuron methyl, thifensulfuron methyl, tribenuron ethyl, bensulfuron methyl, primisulfuron, methyl 2-[[[(4,6-dimethoxy-2-pyrimidinyl)amino]-carbonyl]amino]sulfonyl]-6-(trifluoromethyl)-3-pyridinecarboxylate, 2-(2-chloroethoxy)-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]benzenesulfonamide, ethyl 5-[[[[4,6-dimethoxy-2-pyrimidinyl)amino]-carbonyl]amino]sulfonyl]-1-methyl-1*H*-pyrazole-4-carboxylate, *N*-[(4,6-dimethoxy-2-pyrimidinylamino]carbonyl]-3-(ethylsulfonyl)-2-pyridinesulfonamide, 2-[[[[4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-*N,N*-dimethyl-3-pyridinecarboxamide, and methyl 2-[[[[4-(dimethylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]amino]carbonyl]-sulfonyl]-3-methylbenzoate.
- 20
 - 25

30

DETAILS OF THE INVENTION

- The most common method for applying water insoluble pesticides is as fine aqueous dispersions which are sprayed onto the field or crop using ground or aerial spray rigs. The tablets of this invention combine a high level of physical integrity with rapid break-up in water using minimal or no agitation while providing fine dispersions of active ingredient. Since the spray nozzles are
- 35

typically protected against clogging by 50 mesh screens (U.S. mesh size), the dispersions must be fine enough to pass through this size screen without plugging it. This ability is characteristic of pesticide dispersions delivered by the delivery system of this invention.

5 High physical integrity of the tablets is desirable so that the tablets themselves can withstand the tabletting operation and survive handling, packaging and shipping without breaking. An axial breaking strength of greater than about 9×10^3 newtons is generally necessary for a tablet to survive such treatment.

10 Rapid break-up in water is desirable for the convenience of the growers who require quick turnaround times for the preparation of the dispersions. Generally, the tablets of the invention disperse completely in less than 10 minutes, most in less than 5 minutes using even the cold water drawn from wells in the early spring.

15 It is substantially impossible to obtain rapid break-up of a tablet of substantially water-insoluble active ingredient in aqueous media without the use of effervescence. The reaction of the organic acid and carbonate or bicarbonate base affords carbon dioxide gas which aids in this respect.

20 A dispersant is required so that the particles of the active ingredient formed during the disintegration of the tablet remain separated in the cold, hard water.

25 The disintegrant allows the penetration of the water into the interior of the tablet through a wicking or swelling action. Common starch or cellulose-based disintegrants are unsuitable in agricultural applications as they typically form gels on the 50 mesh spray nozzle screens. Hence, a water insoluble cross-linked polyvinylpolypyrrolidone is used.

30 A wetting agent is required to control the size of the carbon dioxide bubbles formed during the reaction of the acid base. The wetting agent reduces the surface tension between the bubbles and the solid tablet resulting in the formation of smaller bubbles which readily detach from the tablet surface. As a consequence, the tablet remains submerged in the water for a longer period of time, thus improving contact of the entire tablet surface with water.

35 If a tablet floats immediately after being dropped in the water its top rapidly dries out and the reaction slows down there. This increases the time required for complete dispersion of active ingredient. When a tablet sinks, water wets the entire exterior of the tablet. Then, when the tablet floats to the surface (as a result of the buoyancy of the attached carbon dioxide bubbles when the tablet has

5 partially dispersed and become lighter) the top remains wet so that effervescent reaction continues. Dispersion times for active ingredients formulated as described herein are very much more rapid than in formulations that produce tablets designed for flotation. To ensure that the tablet will sink initially, inert ingredients are employed that produce a tablet with a density greater than that of water (specific gravity greater than 1.00).

10 Inert ingredients up to 99.9% of the total weight of the composition can be employed. Inert fillers such as sugar or clay can be added as long as they do not affect the chemical stability of the active ingredient(s). Materials such as glidants, anti-adherents, and lubricants can also be employed to facilitate production in the tablet press. The amounts and types of such ingredients will be readily determinable by one skilled in the tabletting art given the disclosure herein.

15 The formulation ingredients are typically ground and mixed in a mill, e.g., an air or hammermill. The ground premix is passed through a 50 or 100 mesh (U.S.A. Standard Sieve Series) screen. The average particle size of the ground premix should be in the range of 5 to 15 microns. If it is much smaller, the tablet will be strong, but will not break up very fast. If the premix is much larger, the dispersion will not be fine enough to pass a wet screen test used to indicate 20 whether the dispersion will clog the spray nozzle and protective screen discussed previously.

25 The tablets can be prepared using conventional tablet-making equipment. Their diameter can vary from about 1 cm or less, to 7.5 cm, depending on the tablet weight desired. Flat-faced, beveled-edge punches, with or without a breakline, produce attractive tablets.

To keep the tablet from sticking to the die or punch faces, a lubricant such as magnesium stearate or boric acid can be used. Such lubricants and anti-adherents can be brushed onto the die surface or incorporated into the formulation.

30 Tablets have been formed in a hydraulic press with a capacity of 18,000 kg of force. Pressures between about 3.43×10^7 to 6.86×10^7 pascals will produce strong tablets that break up rapidly. Break-up times are determined by dropping a tablet, typically 5 to 15 g into 1000 mL of water. The "end point" of final dispersion is easy to determine because the tablet floats to the surface as it loses 35 weight shortly before it finally disperses.

The resultant dispersion is then poured through a nest of 50/100/200 mesh screens (300 mm, 150 mm, 75 mm holes, respectively). A qualitative judgment is then made about the amount of material that is retained on each screen. A good tablet will leave just a "trace" on the 200 mesh screen, and the larger screens will 5 be free of residue.

The strength of the tablet can be measured by a tester such as the Erweka® Model TBH 28. The tablet is stood on end and the machine tip moves to the tablet along an axial path. The force to break the tablet in two is normally recorded in newtons (N). Good tablets normally have strengths in the range of 10 8.896×10^3 to 4.448×10^4 N.

EXAMPLE 1

The following ingredients were weighed out and milled for 1 min in a Tekmar® A-10 analytical laboratory mill. The premix was passed through a 50 mesh screen and blended well. A 15 g tablet, 4.34 cm in diameter, was made 15 with a hand-operated hydraulic press at a pressure of 525 kg/cm².

	Concentration, Weight %
Ingredient	
Thifensulfuron methyl	55.3
Citric Acid	10.0
Sodium Bicarbonate	25.4
Lomar PWA® (ammonium salt of naphthalene sulfonic acid-formaldehyde condensate)	5.7
Polyplasdone XL-100® (polyvinylpolypyrrolidone)	1.22
Monawet MB-100® (sodium diisobutyl sulfosuccinate)	1.05
Magnesium Oxide	1.33

The fresh tablet took 2 min and 23 sec to dissolve in 25°C water with only a trace of solids on the screens. A second 15 g tablet was allowed to sit at room temperature for 3 days to allow the water in it to diffuse into the internal desiccant 30 (MgO). The tablet was sealed in a tight jar and aged at 45°C for 3 weeks. This accelerated aging simulates about two years of storage at ambient conditions. After aging, the tablet took 3 min and 10 sec to dissolve in 25°C water. The wet screens had only a trace of solids on them.

EXAMPLE 2

The following ingredients were milled and tableted as in Example 1.

	<u>Ingredient</u>	<u>Concentration, Weight %</u>
5	Thifensulfuron methyl	52.7
	Citric Acid	9.5
	Sodium Bicarbonate	24.2
	Lomar PWA® (ammonium salt of naphthalene sulfonic acid-formaldehyde condensate)	5.45
10	Polyplasdone XL-100® (polyvinylpolypyrrolidone)	1.15
	Monawet MB-100® (sodium diisobutyl sulfosuccinate)	1.00
	Molecular Sieves	6.00

The fresh tablet took 2 min and 50 s to break-up in 25°C water. There was
 15 only a trace of solids on the screens. The second tablet was aged as in Example 1.
 After aging, the tablet took 2 min and 51 s to break-up. There was only a trace of
 solids on the wet screens.

EXAMPLES 3 TO 19

In the same manner employed for Example 1, tablets can be prepared using
 20 the active ingredients in the first column of Table 2 with one or more of the
 desiccants listed in the second and third columns, except that when the base
 employed is potassium carbonate or bicarbonate, the desiccant(s) employed
 therewith are to be selected solely from Column A.

TABLE 2

<u>Active Ingredient</u>	<u>Column (A)</u>	<u>Desiccant</u>
3) hexazinone	selected from the group, CaO, MgO,	selected from the group
4) 2,4-D	B ₂ O ₃ , CaSO ₄ ,	highly dispersed silicic acids such as silica gel,
5) chlorsulfuron	NaOAc, MgSO ₄ ,	aluminum oxide, clays
6) sulfometuron methyl	Na ₂ SO ₄ , CaCl ₂ ,	such as
7) chlorimuron ethyl	and ZnSO ₄	montmorillonite, and amorphous aluminosilicates such as
8) metsulfuron methyl		molecular sieves and zeolites
9) ethametsulfuron methyl		
10) tribenuron ethyl		
11) bensulfuron methyl		
12) primisulfuron		
13) methyl 2-[[[(4,6-dimethoxy-2-pyrimidinyl)-amino]carbonyl]amino]sulfonyl]-6-(trifluoromethyl)-3-pyridinecarboxylate		
14) 2-(2-chloroethoxy)-N-[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]-benzenesulfonamide		
15) ethyl 5-[[[(4,6-dimethoxy-2-pyrimidinyl)-amino]carbonyl]amino]sulfonyl]-1-methyl-1 <i>H</i> -pyrazole-4-carboxylate		
16) <i>N</i> -[(4,6-dimethoxy-2-pyrimidinylamino)-carbonyl]-3-(ethylsulfonyl)-2-pyridinesulfonamide		
17) 2-[[[(4,6-dimethoxy-2-pyrimidinyl)amino]-carbonyl]amino]sulfonyl]- <i>N,N</i> -dimethyl-3-pyridinecarboxamide		
18) methyl 2-[[[(4-(dimethylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl)amino]-carbonyl]sulfonyl]-3-methylbenzoate		
19) sodium 2-chloro-6-[(4,6-dimethoxy-2-pyrimidinyl)thio]benzoate		

EXAMPLES 20 TO 37

By the general procedure of Example 1, tablet formulations can be made whereby the active ingredient pesticide is as described hereafter and the delivery system with its characteristic internal desiccant is as defined herein.

EXAMPLE 20

The pesticide, described in more detail in U.S. 4,127,405, is a compound of the formula:

10

wherein

R₁ is

15

R₃ and R₆ are independently hydrogen, fluorine, chlorine, bromine, iodine,

alkyl of 1-4 carbon atoms, alkoxy of 1-4 carbon atoms, nitro,

trifluoromethyl, cyano, CH₃S(O)_n- or CH₃CH₂S(O)_n-;

20 R₄ is hydrogen, fluorine, chlorine, bromine or methyl;

R₅ is hydrogen, fluorine, chlorine, bromine, methyl or methoxy;

R₇ is hydrogen, fluorine, chlorine, bromine, alkyl of 1-2 carbon atoms or
alkoxy of 1-2 carbon atoms;

R₈ is hydrogen, methyl, chlorine or bromine;

25 R₉ and R₁₀ are independently hydrogen, methyl, chlorine or bromine;

W and Q are independently oxygen or sulfur;

n is 0, 1 or 2;

X is hydrogen, chlorine, bromine, methyl, ethyl, alkoxy of 1-3 carbon atoms, trifluoromethyl, $\text{CH}_3\text{S}-$ or CH_3OCH_2- ; and

Z is methyl or methoxy, or their agriculturally suitable salts.

5

EXAMPLE 21

The pesticide, described in more detail in U.S. 4,394,506, is a compound of the formula:

10

N-(heterocyclicaminocarbonyl)arylsulfonamides in which the aryl radical is substituted in the 2-position by a carboxy radical, ester, thioester, or amide thereof; e.g., *N*-[(4,6-dimethylpyrimidin-2-yl)aminocarbonyl]-methoxycarbonyl]benzenesulfonamide or *N*-[(4,6-dimethoxy-1,3,5-triazin-2-yl)amino-carbonyl]-2-methoxycarbonylbenzenesulfonamide.

EXAMPLE 22

15

The pesticide, described in more detail in U.S. 4,481,029, is a compound of the formula:

20

wherein

W is O or S;

A' is H, Cl, Br, C_1-C_4 alkyl, OCH_3 , NO_2 or CF_3 ;

A is $-\text{C}(=\text{O})\text{Q}-\text{R}^{\text{I}}$ or $-\text{C}(=\text{T})\text{R}^{\text{II}}$ where

Q is O, S or $-\text{N}(\text{R}_4)-$;

T is O or $=\text{N}$
OR^{III}

25

where

R^{III} is H, C₁-C₄ alkyl or C₃-C₄ alkenyl; when Q is O or S then
 R^I is C₁-C₆ alkyl C₃-C₆ alkenyl; C₃-C₆ alkynyl; C₂-C₆ alkyl substituted
 with 1-3 Cl, F or Br, or one of CN or OCH₃; C₃-C₆ alkenyl
 substituted with 1-3 Cl; C₃-C₆ alkynyl substituted with Cl; C₅-C₆
 5 cycloalkyl; cyclohexenyl; cyclohexyl substituted with 1-3 CH₃;
 C₄-C₇ cycloalkylalkyl or

10 where

R₇ and R₈ are independently H, Cl, CH₃ or OCH₃;

n is 0 or 1; and

R₉ is H or CH₃;

where

20 Z is N, CH or C-F;

X=H, Cl, -CH₃, -OCH₃ or -OCH₂CH₃;

Y=H, Cl, C₁-C₄ substituted alkyl;

with the proviso that when X and Y are both H, then

R^I and R^{II} are less than 5 carbons;

25 X₁=H, Cl, OCH₃, OCH₂CH₃ or CH₃;

Y₁=H, OCH₃ or CH₃; and

X_{III} =O or CH_2 and further provided that when A contains greater than 5 carbon atoms, then Y contains ≤ 4 carbon atoms, and their agriculturally suitable salts;

all other substituents being as defined in U.S. 4,481,029.

5

EXAMPLE 23

The pesticide, described in more detail in U.S. 4,435,205, is a compound of the formula:

10

where

W is O or S;

Q is O or NR_5 ;

R_1 is $C_1\text{-}C_4$ alkyl, $C_1\text{-}C_4$ alkyl substituted with 1-3 atoms of F, Cl or Br,

15

$\text{CH}_2\text{CH}_2\text{OCH}_3$, $\text{CH}_2\text{CH}_2\text{CH}_2\text{OCH}_3$ or

R_2 is H, F, Cl, Br, OCH_3 , NO_2 , CF_3 or $C_1\text{-}C_2$ alkyl;

20

R_3 is H, F, Cl, Br or CH_3 ;

R_4 is H, CH_3 or OCH_3 ;

R_5 is $C_1\text{-}C_4$ alkyl;

R_6 and R_7 are independently H, F, Cl, Br, CH_3 , CF_3 , NO_2 or OCH_3 ;

A is

5

X is NH_2 , $\text{N}(\text{CH}_3)_2$, NHCH_3 , $\text{C}_1\text{-C}_4$ alkyl, $\text{C}_1\text{-C}_4$ alkyl substituted with 1-3 atoms of F, Cl or Br, CH_2OCH_3 , $\text{CH}_2\text{OCH}_2\text{CH}_3$, $\text{C}_1\text{-C}_4$ alkoxy, $\text{C}_1\text{-C}_2$ alkylthio, $\text{C}_3\text{-C}_4$ alkenyloxy, $\text{C}_3\text{-C}_4$ alkynyloxy,

10 OCH₂CH₂OCH₃ or C₂-C₄ alkoxy substituted with 1-3 atoms of F, Cl or Br;

n is 1 or 2;

Y is H, CH₃, OCH₃ or Cl;

X_1 is O or CH₂;

15 Y_1 is H, CH_3 , OCH_3 or Cl;

X_2 and Y_2 are independently CH_3 or OCH_3 ; and

Z is CH, N, CCH₃, CBr, CCl, CF, Cl, CC₂H₅, CCH₂CH₂Cl or

$$\text{CCH}_2\text{CH}=\text{CH}_2.$$

EXAMPLE 24

20 The pesticide, described in more detail in U.S. 4,420,325, is a compound of
the formula:

25 wherein

R₁ is F, Cl, Br, CF₃, C₁-C₃ alkoxy, C₁-C₃ alkyl, NO₂, CO₂R₄, SO₂R₅, SO₂NR₆R₇, SO₂N(OCH₃)CH₃, SO₂OCH₂CF₃, OSO₂R₅ or CH₂L;

L is SO₂NR₆R₇, OCH₃, OC₂H₅, CO₂H₅, CO₂CH₃ or CO₂C₂H₅;

R₂ is H, Cl, Br, F, CF₃ or OCH₃;

5 R₄ is C₁-C₃ alkyl, CH₂CH=CH₂, CH₂CH₂Cl or CH₂CH₂OCH₃;

R₅ is C₁-C₃ alkyl or CF₃;

R₆ and R₇ are independently C₁-C₃ alkyl;

R₈ is H or CH₃;

R₉ is H or C₁-C₃ alkyl;

10 R₃ is

15

W is O or S;

X is CH₃, OCH₃ or Cl;

20 Y is CH₃, C₂H₅, OCH₃, OC₂H₅, CH₂OCH₃, NH₂, NHCH₃ or N(CH₃)₂;

Z is CH or N;

X₁ is H, Cl, CH₃, OCH₃ or OC₂H₅;

X₂ is CH₃, C₂H₅, OCH₃ or OC₂H₅;

X₃ is CH₃ or OCH₃; and

25 Y₁ is CH₃ or OCH₃;

and their agriculturally suitable salts.

EXAMPLE 25

The pesticide, described in more detail in U.S. 4,514,211, is a compound of the formula:

5

10 wherein

Q is O, S, SO or SO₂;

Q₁ is O, S or SO₂;

L is SO₂NHCNA;
 ||
 W
 |
 R₁₂

15

R₁ is H or C₁-C₄ alkyl;

- R₂ is H or C₁-C₄ alkyl;
 R₃ is H or CH₃;
 R₄ is H, Cl, CH₃, CF₃, OCH₃, Br, F, SCH₃ or OCF₂H;
 R₅ is H, CH₃, OCH₃, Cl, Br, NO₂, CO₂R₇, SO₂R₈, OSO₂R₉,
 5 SO₂NR₁₀R₁₁, F, CF₃, SCH₃, OCF₂H or SO₂N(OCH₃)CH₃;
 R₆ is H, Cl, Br or C₁-C₄ alkyl;
 R₆ is H, CH₃, Cl or Br;
 R₇ is C₁-C₃ alkyl, CH₂CH=CH₂, CH₂CH₂OCH₃ or CH₂CH₂Cl;
 R₈ is C₁-C₃ alkyl;
 10 R₉ is C₁-C₃ alkyl or CF₃;
 R₁₀ and R₁₁ are independently C₁-C₂ alkyl;
 R₁₂ is H or CH₃;
 W is O or S;
 A is

15

20

- X is H, CH₃, OCH₃, Cl, F, OCF₂H or SCF₂H;
 Y is CH₃, OCH₃, OC₂H₅, CH₂OCH₃, NH₂, NHCH₃, N(CH₃)₂,
 CH(OCH₃)₂, CH(OCH₂CH₃)₂, C₂H₅, CF₃, CH₂=CHCH₂O,
 25 CH≡CCH₂O, CF₃CH₂O, OCH₂CH₂Cl, OCH₂CH₂Br, OCH₂CH₂F,

CN, $\text{CH}_2\text{OCH}_2\text{CH}_3$, $\text{OCH}_2\text{CH}_2\text{OCH}_3$ or GCF_2T wherein G is O or S and T is H, CHClF , CHBrF , CF_2H or CHFCF_3 ;

Z is CH, N, CCH_3 , CC_2H_5 , CCl or CBr ;

⁵ Y₁ is O or CH_2 ;

X₁ is CH_3 , OCH_3 , OC_2H_5 or OCF_2H ;

X₂ is CH_3 , C_2H_5 or CH_2CF_3 ;

Y₂ is C_2H_5 , CH_3 , OCH_3 , OC_2H_5 , SCH_3 or SC_2H_5 ; and

X₃ is CH_3 or OCH_3 .

EXAMPLE 26

¹⁰ The pesticide, described in more detail in U.S. 4,547,215, is a compound of the formula:

¹⁵ wherein

R is C_2H_5 or $\text{CH}(\text{CH}_3)_2$;

and their agriculturally suitable salts.

EXAMPLE 27

²⁰ The pesticide, described in more detail in U.S. 4,548,638, is a compound of the formula:

wherein

²⁵ R is CO_2CH_3 , $\text{CO}_2\text{CH}_2\text{CH}_3$, $\text{CO}_2\text{CH}_2\text{CH}_2\text{CH}_3$, $\text{CO}_2\text{CH}_2\text{CH}=\text{CH}_2$, $\text{CO}_2\text{CH}(\text{CH}_3)$, $\text{CO}_2\text{CH}_2\text{CH}_2\text{Cl}$, $\text{SO}_2\text{N}(\text{CH}_3)_2$ or OSO_2CH_3 .

EXAMPLE 28

The pesticide, described in more detail in U.S. 4,479,821, is a compound of the formula:

5

wherein

- A is a C₁-C₆ alkyl radical which is substituted by C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl or C₁-C₄ alkylsulfonyl;
- 10 X is oxygen, sulfur, a sulfinyl or sulfonyl bridge;
- Z is oxygen or sulfur;
- m is 1 or 2;
- R₂ is hydrogen, halogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₁-C₄ haloalkyl, or a radical -Y-R₅, -COOR₆, -NO₂ or -CO-NR₇R₈;
- 15 R₃ and R₄, each independently of the other, are hydrogen, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkyl, halogen or alkoxy-alkyl of at most 4 carbon atoms;
- R₅ and R₆, each independently of the other, are C₁-C₅ alkyl, C₂-C₅ alkenyl or C₂-C₆ alkynyl;
- 20 R₇ and R₈, each independently of the other, are hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl or C₂-C₆ alkynyl; and
- Y is oxygen, sulfur, a sulfinyl or sulfonyl bridge, and salts of these compounds.

EXAMPLE 29

- 25 The pesticide, described in more detail in U.S. 4,566,898, is a compound of the formula:

EXAMPLE 30

The pesticide, described in more detail in U.S. 4,435,206, is a compound of the formula:

5

wherein

R is

10

R₁ is H, Cl, Br, F, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, NO₂, CF₃, COOR₅ or SO₂NR₆R₇;

15

R₂ is H, Cl, Br or CH₃;

R₃ and R₄ are independently H or CH₃;

R₅ is C₁-C₆ alkyl, C₃-C₆ alkenyl, CH₂CH₂OCH₃, CH₂CH₂OCH₂CH₃, CH₂CH₂CH₂OCH₃ or CH₂CH₂Cl;

R₆ and R₇ are independently CH₃ or CH₃CH₂;

20

W is oxygen or sulfur;

X is CH₃-OCH₃ or -OCH₂CH₃;

Y is H, Cl, CH₃, CF₃, -NHCH₃, -N(CH₃)₂, -CH₂OR₈, -CH₂CH₂OR₈, -OCH₂CF₃ or VR₆;

Z is CH or N;

25

V is oxygen or sulfur;

R₈ is CH₃, CH₃CH₂, CH₂CO₂R₈, -CH₂CH₂OR⁶, C(CH₃)HCO₂R₈ or CH₂CH₂CO₂R₈;

Y₁ is H, CH₃ or OCH₃; and

X_1 is H, Cl, -OCH₃, -OCH₂CH₃ or CH₃;
and agricultural salts thereof.

EXAMPLE 31

The pesticide, described in more detail in U.S. 4,514,212, is a compound of
5 the formula:

and the salts thereof with amines, alkali metal or alkaline earth metal bases or
10 with quaternary ammonium bases wherein:

Q is fluorine, fluoromethyl, chloromethyl, trichloromethyl, 1,2-dichloroethyl, 1,2-dibromoethyl, 1,2-dichloropropyl, 1,2-dibromopropyl, 1,2-dibromoisobutyl, 1,2-dichloro-1-methyl-ethyl or 1,2-dibromo-1-methylethyl;

15 X is oxygen, sulfur, a sulfinyl or sulfonyl bridge;

Z is oxygen or sulfur;

R_2 is hydrogen, halogen, C₁-C₅ alkyl, C₂-C₅ alkenyl, C₁-C₄ haloalkyl, or a radical -Y-R₅, -COOR₆, -NO₂ or -CO-NR₇-R₈;

20 R₃ and R₄, each independently of the other, are hydrogen, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ haloalkyl, halogen or alkoxyalkyl of at most 4 carbon atoms;

R₅ and R₆, each independently of the other, are C₁-C₅ alkyl, C₂-C₅ alkenyl or C₂-C₆ alkynyl;

25 R₇ and R₈, each independently of the other, are hydrogen, C₁-C₅ alkyl, C₂-C₅ alkenyl or C₂-C₆ alkynyl; and

Y is oxygen, sulfur, a sulfinyl or sulfonyl bridge.

EXAMPLE 32

The pesticide, described in more detail in U.S. 4,478,635, is a compound of
the formula:

23

wherein

X is a radical of the formula:

5

Y is C₁-C₃ alkyl, C₁-C₃ haloalkyl, C₁-C₃ alkoxy, C₁-C₃ haloalkoxy, C₂-C₃ alkoxyalkyl, C₁-C₃ alkylthio, halogen or -NR₁₆R₁₇;

10 Z is oxygen or sulfur;

R₁ is hydrogen, halogen, cyano, nitro, C₁-C₄ haloalkyl, C₁-C₄ alkyl, C₁-C₄ alkoxy, -CO-R₆, -NR₇R₈, -S(O)_m-C₁-C₄ alkyl or -SO₂R₉;

R₂ is hydrogen, fluorine, chlorine, bromine, nitro, trifluoromethyl, -NR₂₀R₂₁, methyl, ethyl, methoxy, ethoxy or -S(O)_m-C₁-C₄ alkyl;

15 R₃ is hydrogen, fluorine, chlorine, bromine, amino, nitro or methoxy;

R₆ is hydrogen, C₁-C₄ alkyl, C₁-C₃ alkenyloxy, C₃-C₅ alkynyloxy, C₁-C₄ haloalkyl, C₁-C₅ alkylthio, phenoxy, benzyloxy, -NR₁₀R₁₁ or C₁-C₅ alkoxy which is unsubstituted or substituted by 1 to 3 halogen atoms or C₁-C₃ alkoxy;

20 R₇ is hydrogen, methoxy, ethoxy, C₁-C₄ alkyl or -CO-R₁₂;

R₈ is hydrogen or -CO-R₁₂;

R₉ is an -O-R₁₃ or -NR₁₄R₁₅ group;

R₁₁ is C₁-C₄ alkyl which is unsubstituted or substituted by 1 to 3 halogen atoms, or is phenyl or benzyl;

25 R₁₂ is hydrogen, C₁-C₄ alkyl or C₁-C₄ alkoxy; and

m is 0, 1 or 2;

and R₄ has the same meaning as R₂; R₅ has the same meaning as R₁; R₁₀, R₁₁, R₁₄ and R₂₀ each have the same meaning as R₇; and R₁₂, R₁₅, R₁₆, R₁₇ and R₂₁ each have the same meaning as R₈.

EXAMPLE 33

- 5 The pesticide, described in more detail in U.S. 4,634,465, is a compound of the formula:

10 wherein

Z is oxygen or sulfur;

E is nitrogen or =C-;

R₁ is hydrogen, halogen, nitro, C₁-C₄ alkyl, C₁-C₄ haloalkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ alkoxy carbonyl, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl, C₁-C₄ alkylsulfonyl or C₂-C₅ alkoxyalkoxy;

15 R₂ is hydrogen, C₁-C₄ alkyl or C₁-C₃ alkoxy;

R₃ and R₄, each independently of the other, are hydrogen, C₁-C₄ alkyl, C₁-C₄ alkoxy, C₁-C₄ haloalkoxy, C₁-C₄ haloalkylthio, C₁-C₄ alkylthio, halogen, C₂-C₅ alkoxyalkyl, C₂-C₅ alkoxyalkoxy or

20 -NR₅R₆, wherein R₅ and R₆ are hydrogen or C₁-C₄ alkyl; and

A is an unsubstituted or substituted bridge of 3 or 4 atoms which contains 1 or 2 oxygen, sulfur or nitrogen atoms and, together with the linking carbon atom, forms a non-aromatic 5- or 6-membered heterocyclic ring system, with the proviso that two oxygen atoms are separated by at least one carbon atom and that oxygen and sulfur atoms are only linked to each other if the sulfur atom takes the form of the -SO- or -SO₂- group.

EXAMPLE 34

The pesticide, described in more detail in EPA-202,830, is:

30 2-[[N-(4-methoxy-6-methyl-1,3,5-triazin-2-yl)-N-methylamino-carbonyl]aminosulfonyl]benzoic acid, methyl ester.

EXAMPLE 35

The pesticide, described in more detail in EPA-237,292, is a compound of the formula:

5

wherein

J is

10

J-1

J-2

J-3

or

J-4

R is H or CH₃;

15 R₁ is H or C₁-C₃ alkyl;

R₂ is C₁-C₃ alkyl or C₁-C₂ alkoxy; or

R₁ and R₂ may be taken together to form -(CH₂)_n-, wherein n is 2, 3 or 4;

R₃ is H, Cl, F, Br, CH₃, CF₃, OCH₃ or COF₂H; and

X is CH₃, CH₂F, CH₂CH₃, OCH₃, OCH₂CH₃, Cl, OCF₂H or CH₂OCH₃.

20

EXAMPLE 36

The pesticide, described in more detail in EPA-87,780, is a compound of the formula:

wherein

- 5 A represents a hydrogen atom, a C₁-C₈ alkyl group or a phenyl group which may be substituted with C₁-C₈ alkyl groups, halogen atoms or nitro groups; B and C represent independently hydrogen atoms, halogen atoms, nitro groups, C₁-C₈ alkyl groups, arylalkyl groups, C₁-C₈ alkoxy groups; haloalkyl groups, -CO₂R [where R is a hydrogen atom, a C₁-C₈ alkyl group, an allyl group or a propargyl group], -CONR₁R₂ (where R₁ is a hydrogen atom, a C₁-C₈ alkyl group or a phenyl group, R₂ is a hydrogen atom or a C₁-C₈ alkyl group, or R₁ and R₂ taken together may represent -(CH₂)_m- (m is 4, 5 or 6), -CH₂CH₂OCH₂CH₂- or -CH₂CH₂N(CH₃)CH₂CH₂-], -S(O)_nR₃ (where R₃ is a C₁-C₈ alkyl group, a phenyl group or an arylalkyl group and n is 0, 1 or 2), -SO₂NR₄R₅ [where R₄ is a C₁-C₈ alkyl group, R₅ is a hydrogen atom or a C₁-C₈ alkyl group, or R₄ and R₅ taken together may represent -(CH₂)_p- (p is 4, 5 or 6), -CH₂CH₂OCH₂CH₂- or -CH₂CH₂N(CH₃)CH₂CH₂-] or a phenyl group which may be substituted with C₁-C₈ alkyl groups, halogen atoms or nitro groups, D represents a hydrogen atom or a C₁-C₈ alkyl group; X and Y represent independently hydrogen atoms, halogen atoms, C₁-C₈ alkyl groups, C₁-C₈ alkoxy groups, C₁-C₈ alkoxyalkyl groups; -CF₃ groups, C₁-C₈ haloalkoxy groups, alkylamino
- 20 R
/
- 25 groups, dialkylamino groups, -OCHCO₂R₇ (where R₆ and R₇ each represent hydrogen atoms or C₁-C₈ alkyl groups) or either X or Y may form a five-membered ring containing an oxygen atom together with X; and X represents a nitrogen atom or C-R₈ (where R₈ represents a hydrogen atom, a haloalkyl group or may
- 30

form a five-membered ring containing an oxygen atom together with X or Y).

EXAMPLE 37

The pesticide, described in more detail in U.S. 4,710,221, is a compound of
5 the formula:

wherein

- 10 R is H or CH₃;
- R₁ is C₁-C₃ alkyl, C₃-C₄ alkoxyalkyl, C₂-C₄ haloalkyl, C₃-C₄ alkenyl or C₃-C₄ alkynyl;
- R₂ is C₂-C₆ alkoxy, C₃-C₆ cycloalkoxy, C₄-C₆ cycloalkylalkoxy, C₁-C₆ haloalkoxy, C₂-C₆ alkenyloxy, C₂-C₆ haloalkenyloxy, C₃-C₆ alkynyloxy, C₃-C₆ haloalkynyloxy, C₂-C₄ alkoxyalkoxy, C₂-C₄ haloalkoxyalkoxy, C₂-C₄ alkylthioalkoxy, C₂-C₄ haloalkylthioalkoxy, C₂-C₄ alkylsulfinylalkoxy, C₂-C₄ haloalkylsulfinylalkoxy, C₂-C₄ alkylsulfonylalkoxy, C₂-C₄ haloalkylsulfonylalkoxy, C₂-C₄ cyanoalkoxy, OCH₂C(O)CH₃, OCH₂CH₂C(O)CH₃, C₂-C₄ aminoalkoxy, C₁-C₈ alkylthio, C₃-C₆ cycloalkylthio, C₄-C₆ cycloalkylalkylthio, C₁-C₈ haloalkylthio, C₂-C₆ alkenylthio, C₂-C₆ haloalkenylthio, C₃-C₆ alkynylthio, C₃-C₆ haloalkynylthio, C₂-C₄ alkoxyalkylthio, C₂-C₄ haloalkoxyalkylthio, C₂-C₄ alkylthioalkylthio, C₂-C₄ haloalkylthioalkylthio, C₂-C₄ cyanoalkylthio, SCH₂C(O)CH₃, SCH₂CH₂C(O)CH₃, C₂-C₄ aminoalkylthio, SC₆H₅, SCH₂C₆H₅, C₁-C₈ alkylsulfinyl, C₃-C₆ cycloalkylsulfinyl, C₄-C₆ cycloalkylalkylsulfinyl, C₁-C₈ haloalkylsulfinyl, C₂-C₆ alkenylsulfinyl, C₂-C₆ haloalkenylsulfinyl, C₃-C₆ alkynylsulfinyl, C₃-C₆ haloalkynylsulfinyl, C₂-C₄ alkoxyalkylsulfinyl, C₂-C₄ haloalkoxyalkylsulfinyl, C₂-C₄ cyanoalkylsulfinyl, S(O)CH₂C(O)CH₃, S(O)CH₂CH₂C(O)CH₃, C₂-C₄ aminoalkylsulfinyl, C₂-C₈ alkylsulfonyl, C₃-C₆ cycloalkylsulfonyl, C₄-C₆ cycloalkylalkyl-

sulfonyl, C₁-C₈ haloalkylsulfonyl, C₂-C₆ alkenylsulfonyl, C₂-C₆
 haloalkenylsulfonyl, C₃-C₆ alkynylsulfonyl, C₃-C₆ haloalkynyl-
 sulfonyl, C₂-C₄ alkoxyalkylsulfonyl, C₂-C₄ haloalkoxyalkylsulfonyl,
 C₂-C₄ cyanoalkylsulfonyl, SO₂CH₂C(O)CH₃,
 5 SO₂CH₂CH₂C(O)CH₃, C₂-C₄ aminoalkylsulfonyl, CH₂F, CH₂Cl,
 CHCl₂, CH₂Br, CHBr₂, C₂-C₆ alkyl substituted with 1-3 atoms of F,
 Cl or Br, C₂-C₆ alkenyl, C₂-C₆ haloalkenyl, C≡CH, C₂-C₆
 haloalkynyl, OC(O)C₁-C₄ alkyl, CH₂C(O)NR_aR_b, NHCH₃, NR_bR_c
 10 or C₁-C₄ alkyl substituted with C₁-C₄ alkoxy, C₃-C₄ cycloalkoxy,
 cyclopropylmethoxy, C₁-C₄ haloalkoxy, C₂-C₄ alkenyloxy, C₂-C₄
 haloalkenyloxy, C₃-C₄ alkynyoxy, C₃-C₄ haloalkynyoxy, C₂-C₄
 alkoxyalkoxy, C₂-C₄ aminoalkoxy, C₁-C₄ alkylcarbonyloxy, C₁-C₄
 haloalkylcarbonyloxy, C₁-C₄ carbamoyloxy, C₁-C₄ alkoxy-
 carbonyloxy, OH, OP(O)(OC₁-C₂ alkyl)₂, C₁-C₄ alkylsulfonyloxy,
 15 C₁-C₂ haloalkylsulfonyloxy, OSi(CH₃)₃, OSi(CH₃)₂C(CH₃)₃, C₁-C₄
 alkylthio, C₃-C₄ cycloalkylthio, cyclopropylmethylthio, C₁-C₄
 haloalkylthio, C₂-C₄ alkenylthio, C₂-C₄ haloalkenylthio, C₃-C₄
 alkynylthio, C₃-C₄ haloalkynylthio, C₂-C₄ alkoxyalkylthio, C₂-C₄
 aminoalkylthio, SH, SP(O)(OC₁-C₂ alkyl)₂, C₁-C₄ alkylsulfinyl,
 20 C₃-C₄ cycloalkylsulfonyl, cyclopropylmethylsulfinyl, C₁-C₄
 haloalkylsulfinyl, C₂-C₄ alkenylsulfinyl, C₂-C₄ haloalkenylsulfinyl,
 C₃-C₄ alkynylsulfinyl, C₃-C₄ haloalkynylsulfinyl, C₂-C₄
 alkoxyalkylsulfinyl, C₂-C₄ aminoalkylsulfinyl, C₁-C₄ alkylsulfonyl,
 C₃-C₄ cycloalkylsulfonyl, cyclopropylmethylsulfonyl, C₁-C₄
 25 haloalkylsulfonyl, C₂-C₄ alkenylsulfonyl, C₂-C₄ haloalkenylsulfonyl,
 C₃-C₄ alkynylsulfonyl, C₃-C₄ haloalkynylsulfonyl, C₂-C₄
 alkoxyalkylsulfonyl or C₂-C₄ aminoalkylsulfonyl;
 R_a and R_b are independently H or C₁-C₃ alkyl;
 R_c is C₂-C₄ alkyl, cyclopropylmethyl, C₂-C₄ cyanoalkyl, CH₂C(O)CH₃,
 30 CH₂CH₂C(O)CH₃, C₁₀-C₄ haloalkyl, C₃-C₄ alkenyl, C₃-C₄
 haloalkenyl, C₃-C₄ alkynyl, C₃-C₄ haloalkynyl, C₁-C₄ alkyl
 substituted with C₁-C₄ alkoxy, C₁-C₄ alkylthio, C₁-C₄ alkylsulfinyl,
 C₁-C₄ alkylsulfonyl, OH, NH₂, NHCH₃ or N(CH₃)₂;
 X is CH₃, OCH₃, OC₂H₅, Cl or Br;

Y is C₁-C₂ alkyl, C₁-C₂ alkoxy, OCH₂CH₂F, OCH₂CHF₂, OCH₂CF₃, NHCH₃ or N(CH₃)₂; and
Z is CH or N; and
their agriculturally suitable salts.

CLAIMS

What is claimed is:

- 5 1. A tablet formulation consisting essentially of by total weight of the formulated composition:
 - (i) about 0.1% to 75% of a pesticide;
 - (ii) about 25% to 99.9% of a delivery system characterized by a panel of components complementary to the pesticide of (i) having the following
- 10 components:
 - (a) about 5% to 75% of a dibasic or tribasic organic carboxylic acid or a mixture thereof;
 - (b) about 5% to 75% of an ammonium, lithium, sodium or potassium carbonate or bicarbonate or a mixture thereof;
 - (c) about 0.5% to 20% of a dispersant;
 - (d) about 0.1% to 5% of water-insoluble cross-linked polyvinylpolypyrrolidone;
 - (e) about 0.1% to 5% of an anionic or nonionic wetting agent; and
 - (f) about 1% to 20% of an internal desiccant being selected from the group:
 - (A) one or a mixture of desiccants that chemically bind water, and
 - (B) one or a mixture of desiccants that physically adsorb water;the desiccant being (A) when (b) is potassium carbonate or potassium bicarbonate.
- 15 2. A tablet formulation according to Claim 1 wherein (b) is an ammonium, sodium or lithium carbonate or bicarbonate or mixture thereof, and the internal desiccant is selected from (A), (B) and a mixture of (A) and (B).
- 20 3. A tablet formulation according to Claim 1 wherein (b) is potassium carbonate or bicarbonate or mixture thereof, and the internal desiccant is (A).
- 25 4. A tablet formulation according to Claim 1 in the form of a tablet.
- 30 5. A tablet formulation according to Claim 2 in the form of a tablet.
- 35 6. A tablet formulation according to Claim 3 in the form of a tablet.
- 35 7. A tablet formulation according to any one of Claims 1 to 6 wherein the pesticide is a sulfonylurea herbicide selected from the group consisting of chlorsulfuron, sulfometuron methyl, chlorimuron ethyl, metsulfuron methyl, ethametsulfuron methyl, thifensulfuron methyl, tribenuron ethyl, bensulfuron methyl, primisulfuron, methyl 2-[[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]-

- carbonyl]amino]sulfonyl]-6-(trifluoro-methyl)-3-pyridinecarboxylate, 2-(2-chloroethoxy)-N-[[[(4-methoxy-6-methyl-1,3,5-triazin-2-yl)amino]carbonyl]-benzenesulfonamide, ethyl 5-[[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]-amino]sulfonyl]-1-methyl-1*H*-pyrazole-4-carboxylate, *N*-[[[(4,6-dimethoxy-2-pyrimidinylamino]carbonyl]-3-(ethylsulfonyl)-2-pyridinesulfonamide, 2-[[[[[(4,6-dimethoxy-2-pyrimidinyl)amino]carbonyl]amino]sulfonyl]-*N,N*-dimethyl-3-pyridinecarboxamide, and methyl 2-[[[[[4-(dimethylamino)-6-(2,2,2-trifluoroethoxy)-1,3,5-triazin-2-yl]amino]carbonyl]sulfonyl]-3-methylbenzoate.
8. A tablet formulation according to Claim 7 wherein the pesticide is a sulfonlurea herbicide selected from the group consisting of thifensulfuron methyl, tribenuron ethyl, and bensulfuron methyl.

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 92/11305

J. CLASSIFICATION OF SUBJECT MATTER (If several classification symbols apply, indicate all)⁶

According to International Patent Classification (IPC) or to both National Classification and IPC
 Int.CI. 5 A01N25/34; A01N47/36; A01N43/64;

A01N39/04

II. FIELDS SEARCHED

Minimum Documentation Searched⁷

Classification System	Classification Symbols
Int.CI. 5	A01N

Documentation Searched other than Minimum Documentation
 to the Extent that such Documents are Included in the Fields Searched⁸

III. DOCUMENTS CONSIDERED TO BE RELEVANT⁹

Category ¹⁰	Citation of Document, ¹¹ with indication, where appropriate, of the relevant passages ¹²	Relevant to Claim No. ¹³
X	EP,A,0 391 851 (CIBA-GEIGY) 10 October 1990 see column 1, line 1 - line 24 see column 2, line 1 - line 20 see column 2, line 36 - column 4, line 16 see column 5, line 2 - column 9, line 55	1,2,4,5, 7,8
Y	& CA,A,2 013 918 cited in the application ---	3,6
Y	PATENT ABSTRACTS OF JAPAN vol. 9, no. 1 (C-259)(1724) 5 January 1985 & JP,A,59 155 311 (NISSAN) 4 September 1984 see abstract ---	3,6
		-/-

¹⁰ Special categories of cited documents :¹⁰

- "A" document defining the general state of the art which is not considered to be of particular relevance
- "E" earlier document but published on or after the international filing date
- "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- "O" document referring to an oral disclosure, use, exhibition or other means
- "P" document published prior to the international filing date but later than the priority date claimed

"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step

"Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art

"&" document member of the same patent family

IV. CERTIFICATION

Date of the Actual Completion of the International Search
18 MARCH 1993

Date of Mailing of this International Search Report

20.04.93

International Searching Authority
EUROPEAN PATENT OFFICE

Signature of Authorized Officer
LAMERS W.

III. DOCUMENTS CONSIDERED TO BE RELEVANT (CONTINUED FROM THE SECOND SHEET)		
Category	Citation of Document, with indication, where appropriate, of the relevant passages	Relevant to Claim No.
Y	WO,A,9 000 007 (E.I.DU PONT DE NEMOURS) 11 January 1990 see the whole document ---	1,2,4,5, 7,8
Y	GB,A,2 242 130 (INFOWISE) 25 September 1991 see page 4, line 2 - line 19 see page 6; example B see page 7, line 7 - line 12 ---	1,2,4,5, 7,8
P,X	EP,A,0 488 660 (SUMITOMO CHEMICAL) 3 June 1992 see page 2, line 10 - page 7, line 5 see page 7, line 21 - line 24 ---	1-8
A	EP,A,0 415 688 (AECI) 6 March 1991 see the whole document ---	1-8
A	EP,A,0 367 887 (CIBA-GEIGY) 16 May 1990 see the whole document ---	1-8
A	US,A,4 180 467 (J.B.BARTH) 25 December 1979 see column 1, line 11 - line 26 see column 1, line 65 - column 2, line 22 ---	1-8
A	DE,A,2 710 107 (HOYER) 14 September 1978 see page 2; claims 9,10 see page 8, paragraph 3 - page 9, paragraph 3 ---	1-8

**ANNEX TO THE INTERNATIONAL SEARCH REPORT
ON INTERNATIONAL PATENT APPLICATION NO.**

US 9211305
SA 68875

This annex lists the patent family members relating to the patent documents cited in the above-mentioned international search report. The members are as contained in the European Patent Office EDP file on The European Patent Office is in no way liable for these particulars which are merely given for the purpose of information. 18/03/93

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
EP-A-0391851	10-10-90	AU-B-	625467	09-07-92
		AU-A-	5304290	11-10-90
		CA-A-	2013918	07-10-90
		JP-A-	2290801	30-11-90
WO-A-9000007	11-01-90	AU-B-	626551	06-08-92
		AU-A-	3691189	23-01-90
		CN-A-	1039948	28-02-90
		EP-A-	0422026	17-04-91
		JP-T-	3505451	28-11-91
		US-A-	5180587	19-01-93
GB-A-2242130	25-09-91	None		
EP-A-0488660	03-06-92	JP-A-	5000903	08-01-93
EP-A-0415688	06-03-91	AU-A-	6204390	07-03-91
		CA-A-	2024291	01-03-91
		JP-A-	3163004	15-07-91
EP-A-0367887	16-05-90	US-A-	4933000	12-06-90
		AU-B-	625412	09-07-92
		AU-A-	2588688	08-02-90
		JP-A-	2048506	19-02-90
US-A-4180467	25-12-79	None		
DE-A-2710107	14-09-78	None		