

Vivian Do | Bethany Wang University of San Diego MS Data Science

Overview

Problem Statement

\$17 billion

Spent annually by Medicare on hospitalizations that are avoidable

Up to 3%

of payments can be deducted if hospitals are not able to manage **excess readmissions**

\$622 billion

Total predicted **cost** of diabetes by 2030

14.4 to 22.7%

Readmission rate of diabetic patients, which is **higher** than the overall readmission rate for all inpatients

Health Facts Database

Clinical patient records at 130 hospitals and integrated healthcare networks across the US

Extracted by Strack et al. (2013)

In their research article "Impact of HbA1c Measurement on Hospital Readmission Rates: Analysis of 70,000 Clinical Database Patient Records

101,766 diabetic inpatient encounters

& 50 features

Additional criteria: Length of stay between 1-14 days, laboratory tests were performed, medications were administered

10 years of clinical patient records

From 1999-2008

Data Wrangling

Feature Deletion

- Encounters associated with a discharge to hospice or death
- Degenerated attributes
- Removed features with a large percentage of null values
 - o Weight 96.9%
 - Medical speciality of admitting physician 48.9%

Feature Extraction

- Primary/Secondary diagnoses categorized into ICD9-CM chapters
- Reduced from 800 levels to 9

Additional Pre-processing

Removed outliers >/< 1.5IQR

##	Circulator	,	Diabetes	Digestive
##	2720	15	7185	7873
##	Genitourinary System	Injury and	Poisoning	Musculoskeletal
##	444	i	6017	4217
##	Neoplasm	i	Other	Respiratory
##	276		18242	8618

Numerical Variables

Distributions

- Number of medications administered and lab procedures performed approximately normal
- All other are heavily right skewed

Correlations

- Moderate correlations between time spent in hospital and number of procedures performed (r=.33)
- Moderate correlation between number of medications administered and lab procedures performed (r=.38)
- Moderate correlation between time spent in hospital and number of medications administered (*r*=.46)

Time in hospital vs. Readmitted

 Patients who were readmitted spent more time in the hospital, on average (4 days compared to <3).

Number of diagnosis vs. Readmitted

• Patients who were readmitted have more diagnoses entered into their medical record on average (9 diagnoses compared to 8).

Discharge, Admission, and other Patient Demographics

Discharge Type

 Discharged to Medicare swing bed, outpatient services, and psychiatric unit most likely to be readmitted

Admission Source and Type

 Least likely to be readmitted if transferred from ambulatory surgery center or admitted through trauma center

Age

Increased risk of readmission with age

Race

 Increased risk of readmission if African-American or Caucasian

Primary Diagnosis

Most common

- Circulatory (31%)
- Respiratory (10%)
- Digestive (9%)
- Diabetes (8%)
- Suggests that most patients are hospitalized for other reasons besides diabetes

Readmission Risk

 Patients with a primary diagnosis of diabetes or respiratory diseases were more likely to be readmitted

##	Circulatory	Diabetes	Digestive
##	27207	7185	7873
##	Genitourinary System	Injury and Poisoning	Musculoskeletal
##	4445	6017	4217
##	Neoplasms	Other	Respiratory
##	2762	18242	8618

Key Findings

Increased Readmission Risks

Seen in patients being transferred to Medicare swing bed, outpatient services, and psychiatric unit

Vulnerable Populations

Increased risk seen in elderly and patients who are African-American or Caucasian

Comorbidities

of diabetes mellitus include circulatory, respiratory, and digestive diseases. Patients with a primary diagnosis of diabetes or respiratory diseases were more likely to be readmitted.

Time in Hospital

Patients who spend more time in the hospital and had more diagnoses entered into the system were more likely to be readmitted

Data Preparation

Train/Test Split

- Split with stratification based on proportion of 'readmitted'
- Training set: 70% (59529)
- Test set: 30% (25512)

Preprocessing

- Centering and scaling
- Conversion of categoricals to *n-1* dummy variables

Final Dataset

- 18 predictors
- Binary target variable 'readmitted'
 - YES = patient was readmitted at any time
 - NO = patient was not readmitted

Model Selection

- Suitable for solving binary classification problems
- Capable of computing large dimensional data
- Works with both the numerical and categorical features.
- Linear classification models:
 - logistic regression, penalized logistic regression, and nearest shrunken centroids model.
- Non-linear models:
 - bagged tree, gradient boosted tree, random forest tree, and K-nearest neighbor models.

4.1 Logistic Regression

- Linear machine learning algorithm used for binary classification.
- Requires that each observation independent of the other
- Assumes a linear relationship between the independent variables and the log-odds of the dependent variable.
- Predicts the probability of an instance belonging to a class.
- Accuracy: 0.59
- Sensitivity of 0.52.

4.2 Penalized Logistic Regression

- Applies regularization to the basic logistic regression.
- glmnet adopts ridge and lasso penalties
- Parameter alpha controls the proportion between pure lasso (alpha =1) and a pure ridge penalty (alpha=0).
- Parameter lambda controls the amount of penalization.
- Tuned:
 - 4 alpha values (0, 0, 0.1, 0.2, 0.4)
 - 5 lambda values between 0.01 and 0.1.
 - o Optimal: alpha = 0 and lambda = 0.01
- Accuracy: 0.59
- Sensitivity: 0.52

4.3 Nearest Shrunken Centroids Model

- Assumes the centroids in the feature space are different for each target label.
- Summarizes a set of centroids for each class.
- Use he distance between a given data instance and each centroid to find the closest centroid for classifying the query.
- Tuning hyperparameter. shrinkage
- Tuned 20 shrinkage between 0 and 15.
- The optimal model: shrinkage threshold is 0.
- Accuracy: 0.57
- Sensitivity of 0.50.

4.4 Bagged Trees

- An ensemble machine learning method to strengthen the single decision tree model.
- Weak learners learn from each other independently in parallel
- Are combined to produce a powerful tree model.
- Bagging decreases variance, and solves over-fitting issues
- With a number of bags parameter 30
- Accuracy: 0.57
- Sensitivity: 0.54.

4.5 Boosted Trees

- Ensemble method
- Starts with a base/weak learner tree
- Constructs multiple tree models in sequence.
- Each tree corrects the previous one's errors.
- The final tree model works as a strong learner that shows the weighted mean of all the tree models.
- Decreases the bias error.
- We created a tuning grid with the following perimeters:
 - interaction depth (5, 7),
 - number of trees (500),
 - o and shrinkage (0.01, 0.1).
- The optimal model: shrinkage is 0.1 and depth is 5.
- Accuracy: 0.6, Sensitivity: 0.56

4.6 Random Forest

- Builds a series of decision trees with a random sample of the training dataset and combines them to decide the final classification.
- Tuning parameters: the number of trees and the number of randomly selected predictors.
- We tuned the model with 100 trees and the number of predictors of 1, 3, 5, and 7.
- The optimal model: the number of predictors 3.
- Accuracy: 0.59 and sensitivity: 0.53..

4.7 K Nearest Neighbors (KNN)

- A lazy learner algorithm
- Stores the available data without training them.
- It classifies a new data sample based on its similarity to its K nearest neighbors.
- Tuning parameter: K, the number of neighbors.
- Tuned K with values of 5, 7, and 9
- 9 is the optimal value for K.
- Accuracy: 0.56
- Sensitivity of 0.53.

5.1 Baseline Model

- Model's ability to predict the positive (readmitted-Yes) accurately is important.
- Use the all positive model as the baseline model.
- 48% of cases have readmitted label 'Yes'.
- The accuracy for this baseline model to predict the positive is 0.48.

5.2 Evaluation

Metrics	Formula	Evaluation Focus			
Accuracy (acc)	$\frac{tp+tn}{tp+fp+tn+fn}$	In general, the accuracy metric measures the ratio of correct predictions over the total number of instances evaluated.			
Error Rate (err)	$\frac{fp + fn}{tp + fp + tn + fn}$	Misclassification error measures the ratio of incorrect predictions over the total number of instances evaluated.			
Sensitivity (sn)	$\frac{tp}{tp+fn}$	This metric is used to measure the fraction of positive patterns that are correctly classified			
Specificity (sp)	$\frac{tn}{tn + fp}$	This metric is used to measure the fraction of negative patterns that are correctly classified.			
Precision (p)	$\frac{tp}{tp+fp}$	Precision is used to measure the positive patterns that are correctly predicted from the total predicted patterns in a positive class.			
Recall (r)	$\frac{tp}{tp+tn}$	Recall is used to measure the fraction of positive patterns that are correctly classified			
F-Measure (FM) $\frac{2 * p * r}{p + r}$		This metric represents the harmonic mean between recall and precision values			

5.3 Comparisons of Models on Cross-Validation Metrics

	Metric.Train	LR	GLMN	NSC	GBM	TRBAG	RF	KNN
1	Accuracy	0.585	0.585	0.57	0.596	0.572	0.586	0.555
2	Sensitivity	0.524	0.521	0.504	0.561	0.541	0.532	0.527
3	Specificity	0.64	0.642	0.629	0.628	0.601	0.635	0.581
4	Precision	0.57	0.57	0.553	0.578	0.552	0.57	0.534
5	Recall	0.524	0.521	0.504	0.561	0.541	0.532	0.527
6	F-Measure	0.546	0.544	0.527	0.569	0.546	0.55	0.53
7	ROC	0.617	0.617	0.6	0.627	0.603	0.622	0.576
8	AUC	0.503	0.51	0.502	0.502	0.499	0.503	0.495

5.3 Comparisons of Models on Testing

	Metric.Test	LR	GLMN	NSC	GBM	TRBAG	RF	KNN	
1	Accuracy	0.586	0.586	0.575	0.601	0.569	0.587	0.557	
2	Sensitivity	0.524	0.520	0.507	0.565	0.535	0.503	0.528	
3	Specificity	0.643	0.646	0.637	0.633	0.601	0.663	0.583	
4	Precision	0.572	0.572	0.559	0.583	0.549	0.576	0.535	
5	Recall	0.524	0.520	0.507	0.565	0.535	0.503	0.528	
6	F-Measure	0.547	0.545	0.532	0.574	0.542	0.537	0.531	

5.5 Feature Importance

- Checked the first 15 important features from logistic regression, random forest, and KNN model.
- Some common important features:
 - Number_diagnoses
 - Num_procedures
 - Num_lab_procedures
 - Num_medication
 - time_in_hospital. etc.

6. Conclusion and Discussion

- Project recap
 - Help hospitals reduce readmissions of patients with diabetes
 - Gradient Boosted Tree is selected as the final model
 - It improves the baseline model's ability to predict the readmission yes by 10%
- Strength
 - Large amount of data
 - Compared multiple models
- Weakness
 - Extracted dataset-not original
 - Limited computing power
- Future work
 - Use original data
 - Run on cloud computing, AWS