# RNA IRSI4 & ROC4

# Types de Réseaux de Neurones Artificiels (RNA)

• Il existe plusieurs types de réseaux de neurones en fonction des tâches qu'ils accomplissent :

#### . Réseaux de Neurones Feedforward (FNN)

- Les plus simples des RNA.
- L'information circule dans un seul sens, de l'entrée à la sortie.
- Utilisé pour la classification et la régression.
- Exemple: Perceptron Multi-Couches (MLP).

#### . Réseaux de Neurones Convolutifs (CNN)

- Conçu pour traiter les données sous forme de grilles, comme les images.
- Utilise des couches de convolution pour extraire des caractéristiques.
- Utilisé en vision par ordinateur (classification d'images, détection d'objets).
- Exemples : VGGNet, ResNet, EfficientNet.

#### . Réseaux de Neurones Récurrents (RNN)

- Adapté aux données séquentielles comme le texte ou les séries temporelles.
- Prend en compte les dépendances entre les éléments de la séquence.
- Variantes avancées : LSTM (Long Short-Term Memory), GRU (Gated Recurrent Unit).
- Applications : NLP, reconnaissance vocale.

#### Réseaux de Neurones à Transformer

- Remplacent de plus en plus les RNN en NLP.
- Utilisent le mécanisme d'attention (Self-Attention).
- Exemples : **BERT, GPT-4, T5**.
- Applications : Chatbots, traduction automatique, génération de texte.

### Réseaux de Neurones Généraux (GANs)

- Utilisés pour générer des données réalistes.
- Composés d'un générateur et d'un discriminateur.
- Applications : génération d'images, deepfake, amélioration de résolution.

### **Autoencodeurs (AE)**

- Utilisés pour la compression et la réduction de dimension.
- Applications : détection d'anomalies, réduction de bruit.

## Quand utiliser quoi?

. .

| Problème                                                 | Type de RNA recommandé          |  |
|----------------------------------------------------------|---------------------------------|--|
| Classification simple (emails, sentiments, images)       | FNN, CNN                        |  |
| Vision par ordinateur (détection d'objets, segmentation) | CNN, ViTs (Vision Transformers) |  |
| Séries temporelles (prédictions boursières, météo)       | RNN, LSTM, GRU                  |  |
| Traduction automatique, chatbots                         | Transformers (GPT, BERT, T5)    |  |
| Génération d'images ou vidéos                            | GANs, VAEs                      |  |
| Détection d'anomalies (fraude, erreurs)                  | Autoencodeurs, CNN, RNN         |  |

### Comment utiliser un RNA?

- •Prétraitement des données : nettoyage, normalisation, augmentation.
- •Définition de l'architecture : choix du type de réseau et des hyperparamètres.
- •Choix des fonctions d'activation (relu, sigmoid, softmax).
- •Optimisation avec un algorithme d'optimisation (Adam, SGD).
- •Entraînement avec des données et réglage des hyperparamètres.
- •Évaluation et amélioration (validation croisée, tuning).

## Les fonctions d'activations

#### Introduire la non-linéarité

- •Permet au réseau d'apprendre des relations complexes entre les variables.
- •Sans fonction d'activation, le modèle ne peut pas capturer des structures complexes.

#### Contrôler la propagation du signal

- Certaines activations comme ReLU évitent l'explosion des gradients.
- •D'autres comme **sigmoïde** normalisent les sorties entre 0 et 1.

#### Faciliter l'apprentissage

- •Réduire la saturation des gradients et accélérer la convergence.
- •Éviter le problème du vanishing gradient en profondeur.

#### Adapter le réseau à différentes tâches

- •Softmax : Classifier plusieurs classes.
- •ReLU: Accélérer l'apprentissage en réseaux profonds.
- •Sigmoïde/Tanh: Traiter des sorties entre 0-1 ou -1 à 1.

#### 1. Fonction Sigmoïde

#### Formule:

$$\sigma(x)=rac{1}{1+e^{-x}}$$

#### Pourquoi l'utiliser?

- Produit une sortie entre 0 et 1, utile pour interpréter les résultats comme des probabilités.
- Utilisée dans la classification binaire.

#### 2. Fonction Tanh

#### Formule:

$$tanh(x)=rac{e^x-e^{-x}}{e^x+e^{-x}}$$

#### Pourquoi l'utiliser?

- Similaire à la sigmoïde mais centrée autour de 0 (-1 à 1), ce qui améliore la convergence.
- Évite le problème des petits gradients mieux que la sigmoïde.

#### 3. Fonction ReLU (Rectified Linear Unit)

#### Formule:

$$ReLU(x) = \max(0, x)$$

#### Pourquoi l'utiliser?

- Simple et efficace, elle accélère la convergence des réseaux profonds.
- Évite le problème de saturation des gradients rencontré avec Sigmoïde et Tanh.

#### 4. Fonction Softmax

#### Formule:

$$\sigma(x_i) = rac{e^{x_i}}{\sum_{j=1}^n e^{x_j}}$$

#### Pourquoi l'utiliser?

- Convertit un vecteur de valeurs en probabilités (somme des sorties = 1).
- Permet de comparer directement les sorties comme des scores de classification.

## Courbes mathématiques des FA



## **Résumé : Quand Utiliser Quelle Fonction ?**

| Fonction | Utilisation                  | Exemples                                             |  |
|----------|------------------------------|------------------------------------------------------|--|
| Sigmoïde | Classification binaire       | Détection de spam, reconnaissance de chiffres (0/1)  |  |
| Tanh     | NLP, RNN                     | Traitement du langage naturel, analyse de sentiments |  |
| ReLU     | Réseaux profonds (CNN, MLP)  | Vision par ordinateur, classification d'images       |  |
| Softmax  | Classification multi-classes | Reconnaissance d'objets, NLP (analyse de texte)      |  |

## Introduction aux Optimisateurs pour l'Apprentissage des Réseaux de Neurones

- Les optimisateurs sont des algorithmes qui ajustent les poids d'un réseau de neurones pour minimiser l'erreur et améliorer la convergence.
- Ils utilisent la descente de gradient, qui met à jour les poids en suivant la direction qui réduit la fonction de coût.
- Différentes variantes existent pour améliorer la vitesse, stabilité, et efficacité de l'apprentissage.

#### Pourquoi Utiliser un Optimiseur?

- ✓ Accélérer la convergence → Trouver une solution optimale plus rapidement.
- ✓ Améliorer la stabilité → Empêcher les mises à jour brutales des poids.
- ✓ Éviter les minima locaux → Assurer une meilleure généralisation du modèle.
- ✓ Adapter dynamiquement le taux d'apprentissage → Optimisation plus fine selon le type de données.
- ✓ Gérer de grands ensembles de données → Optimisation efficace sans exploser la mémoire.
- 💡 Choisir le bon optimiseur est essentiel pour obtenir un modèle performant et bien entraîné. 🥩

# Les principales méthodes d'ontimisation

| Optimiseur                                   | Description                                                                                              | Avantages                                                        | Inconvénients                                                                  | Utilisation recommandée                                     |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------------------------------|-------------------------------------------------------------|
| Gradient<br>Descent (GD)                     | Met à jour les poids en<br>calculant le gradient sur<br>l'ensemble des données.                          | Stable, trouve un<br>bon minimum<br>global.                      | Très lent pour les<br>grandes bases de<br>données.                             | Petites bases de<br>données,<br>problèmes<br>convexes.      |
| Stochastic<br>Gradient<br>Descent (SGD)      | Met à jour les poids<br>après chaque<br>échantillon, sans<br>attendre l'ensemble des<br>données.         | Très rapide,<br>efficace sur<br>grands jeux de<br>données.       | Très bruité, peut<br>converger vers un<br>minimum local<br>sous-optimal.       | Réseaux profonds,<br>grands ensembles<br>de données.        |
| Mini-batch SGD                               | Compromis entre GD et<br>SGD : met à jour les<br>poids après un sous-<br>ensemble (batch) de<br>données. | Plus rapide que<br>GD, plus stable<br>que SGD.                   | Nécessite un choix<br>optimal de la taille<br>du batch.                        | Apprentissage<br>profond, NLP,<br>vision par<br>ordinateur. |
| Adam (Adaptive<br>Moment<br>Estimation)      | Combine SGD avec un<br>taux d'apprentissage<br>adaptatif, basé sur<br>l'historique des<br>gradients.     | Très efficace<br>pour les réseaux<br>profonds et les<br>CNN/RNN. | Peut parfois sur-<br>ajuster les poids,<br>instable sur certains<br>problèmes. | CNN, RNN, NLP,<br>classification<br>d'images.               |
| RMSprop (Root<br>Mean Square<br>Propagation) | Ajuste dynamiquement<br>le taux d'apprentissage<br>selon la variance du<br>gradient.                     | Très efficace<br>pour les séries<br>temporelles et<br>RNN.       | Nécessite un réglage précis de son paramètre de décroissance.                  | Séries temporelles,<br>NLP,<br>reconnaissance<br>vocale.    |

## **Quel Optimiseur Choisir en Fonction du Contexte?**

| Contexte                                          | Optimiseur Recommandé |
|---------------------------------------------------|-----------------------|
| Petite base de données                            | GD (Gradient Descent) |
| Grand jeu de données                              | Mini-batch SGD        |
| Réseaux convolutifs (CNN - Vision par ordinateur) | Adam                  |
| Réseaux récurrents (RNN, séries temporelles, NLP) | RMSprop, Adam         |
| Données bruitées nécessitant de la stabilité      | Mini-batch SGD        |
| Optimisation rapide avec adaptabilité             | Adam                  |