

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

ternal objects by the same principle on which the mariner steers by his compass. Thus the two cranial eyes are analogous, in principle and situation, to two magnetic compasses placed upon a ship's deck; while the third, or cerebral eye, corresponds to another compass placed in the cabin below; and the mind, situated like the captainmariner in his cabin, knows, from consulting the cerebral eye, on what point of direction the body is steering; although the mind no more perceives either any external object, nor yet any image in the cranial eye, than the mariner perceives (even in the vulgar sense of the word perceiving) the far-off land, or haven, towards which he is surely making his way."

A paper was read, "On the Thermostat or Heat Governor, a self-acting physical Apparatus for regulating Temperature;" constructed by Andrew Ure, M.D., F.R.S.

The principle of the instrument here described is the unequal expansion of different metals by heat. A bar of zinc, alloyed with four or five per cent. of copper, and one of tin, about an inch in breadth, one quarter of an inch thick, and two feet long, is firmly and closely riveted along its face to the face of a similar bar of steel of about one third in thickness. The product of the rigidity and strength should be nearly the same, so that the texture of each may pretty equally resist the strains of flexure. Twelve such compound bars are united in pairs by a hinge joint at each of their ends; having the zinc or alloy bars fronting one another. At ordinary temperatures these bars will be parallel, and nearly in contact; but when heated, they bend outwards, receding from each other at their middle parts, like two bows tied together at their ends. more considerable expansion is wanted, a series of such bars is laid one over the other. The movement thus resulting is applied by the author in various ways to regulate the opening of dampers, letting in either cold air or cold water, or closing the draught of a fireplace, as the case may be. He proposes its employment to regulate the safety valves of steam boilers, as working with more certainty than the common expedients.

A paper was read, "On the Determination of the Thickness of solid Substances, not otherwise measurable, by Magnetic Deviations." By the Rev. William Scoresby, F.R.S. Lond. & Edin. Corresponding Member of the Royal Academy of Sciences of Paris, &c.

In the first part of this paper, the author states the results of a series of experiments undertaken by him with the view of ascertaining whether all bodies are equally and uniformly permeable to the magnetic influence. Out of a great number of substances not ferruginous, but of various qualities, thickness, and solidity, which were subjected to trial, no instance occurred of their offering any perceptible obstruction to the action of a magnet on a compass, when interposed between them. No interruption to this action occurred even when the intervening bodies were iron ores, of which several

were tried, excepting in one or two cases in which the ore was found to be itself magnetic. Hence the author was led to conceive that an accurate estimation of the magnetic influence transmitted through solid substances, might afford an excellent mode of ascertaining the thickness of such substances which might not be otherwise deter-In order to judge of the degree of accuracy with which this might be accomplished, he instituted various sets of experiments; first placing the magnet in a line pointing to the centre of the compass, and on a level with it, in the east and west magnetic direction; and secondly in positions more or less oblique to this direction. He found reason to conclude from these trials, that the degree of accuracy attainable by this method was such as to render it highly advantageous in mining operations. Thus the thickness of a mass of freestone rock on the Liverpool and Manchester rail-way, three feet two inches in thickness, was determined by this method to within the eighth of an inch of its actual measurement, exhibiting an error of only one 334th part of the whole.

Many experiments were made to determine the effect which the form, dimensions, quality, and number of magnets have on the extent of their directive influence on the compass. It was found that little, if any augmentation of power results from increasing the thickness of the magnet: but that, with magnets of similar form, the directive forces are nearly in the direct ratio of their lengths. The author gives the results of an extensive series of experiments on the combined influence of several magnets, arranged, either in contact or in juxta-position, in a great variety of ways. The contact of dissimilar poles was in all cases productive of an increase, and that

of similar poles of a diminution of efficiency.

In the second part of this paper the author enters into an investigation of the law of the magnetic directive power with reference to distance: in which he finds it convenient to estimate all distances in multiples of the length of the magnet employed, or, more correctly, of the interval between its two poles. From the established law of magnetic force, - namely, that it is in the inverse duplicate ratio of the distance,—the author deduces formulæ for estimating the directive power of a magnet on a compass at different distances. The combined action of four magnets, on a compass of Captain Kater's construction, which was five inches in diameter, will afford a tolerably accurate measurement of the thickness of any solid intervening substance, when about forty feet thick; but even at the distance of eighty-two feet the deviation produced by the magnet will be two minutes of a degree, and therefore still very appreciable. But the sensibility of the compass to the magnetic influence might be much further increased, by the application of a small directing magnet, placed in such a situation as to neutralize the greater part of the directive influence of the earth. By this means the author obtained a deviation in the compass of about 5', at a distance of 61 feet, which extended through a variety of solid materials including soil, stones, and brick-work.

In the third part of this paper the author treats of the practical

application of the magnetical influence in engineering, in tunneling, and in mining, for determining the thickness of solid masses in different situations where circumstances preclude the possibility of direct measurement. He adduces a variety of instances in which the information thus obtained would prove of the greatest value, in directing the operations in progress, or determining those to be undertaken, and frequently in preventing the occurrence of accidents which the want of such knowledge may occasion. He concludes with a statement and explanation of various practical directions for the employment of the method recommended.

A paper was read, "On a new Register Pyrometer for measuring the Expansion of Solids." Part II. By J. F. Daniell, Esq. F.R.S.,

Professor of Chemistry in King's College, London.

In this paper, which is a sequel to that published in the Philosophical Transactions for 1830, the author prosecutes the series of experiments he had commenced on the dilatation of the metals: pursuing the comparison between the results of the experiments of Dulong and Petit, with those given by his own instrument. He finds a striking accordance between them in the case of copper, as he had already done with respect to iron and platina. He gives the result of some trials which he made with a view to obtain registers of uniform composition, so as to preclude the necessity of determining the rate of expansion in each individual instance. The results of his experiments on the dilatation of the metals are given in tables; the first showing in arcs of the scales the expansions of four metals from 62° to 212°, and thence to 662° of Fahrenheit; and their respective melting points: and the second, exhibiting the expansion of certain alloys to the same points. The experiments on the melting point of cast iron give a mean of 2768°, and present a remarkable coincidence with the corrected temperature deduced from the expansion of a platina bar, plunged into melted cast iron, which was 2786°; thus affording a conclusive proof of the accuracy of the pyrometer, and of its competency to determine fixed and comparable points of very high temperature. The author accordingly thinks himself warranted in recommending the introduction of the instrument extensively in all arts and manufactures, where it is an object to regulate high temperatures, and where it is calculated to determine many questions of the highest importance both to practical and theoretical science.

Two papers were read; the one entitled, "On the Influence of Screens in arresting the Progress of Magnetic Action:" the other, "On the Power of Masses of Iron to control the attractive Force of a Magnet." By William Snow Harris, Esq. F.R.S.

The object of the first paper is to show that every substance susceptible of magnetism by induction, when interposed as a screen, tends to arrest the action of a magnet upon a third substance: this intercepting power being directly as the mass and inversely as the susceptibility to induced magnetism. Thus, although a single plate