Дисциплина Многомерный анализ, интегралы и ряды

Семестр 2

повышен.

базовый

Kypc 1

Фамилия студента

Сумма баллов

проверяющего

сходимости.

непрерывной на \mathbb{R} композиция $h = f \circ g$?

С положением ознакомлен:

Фамилия

Учебный год 2011-2012

Оценка

Фамилия

экзаменатора

№ группы _

пятибалл.

десятибалл.

МФТИ - 21

(Фамилия студента)

1. ③ Исследовать числовой ряд $\sum_{n=1}^{\infty} 2^n \left(\frac{n}{n+1}\right)^{n^2+n}$ на сходимость.
2. ③ Вычислить площадь фигуры, ограниченной заданной в полярных координатах кривой, $r = \sqrt{\arccos{(\varphi/\pi)}}, \varphi \in [0, \pi].$
3. ③ Исследовать на сходимость интеграл $I = \int\limits_0^{\pi/2} \frac{\sin^{\alpha}(\sin t)}{\cos^{\alpha} t} dt$ при $\alpha \in \mathbb{R}$.
4. ⑥ Исследовать на сходимость и абсолютную сходимость интеграл при $\alpha \in \mathbb{R}$: $I = \int\limits_0^1 \frac{\cos(t^{-2})}{(2-t^2\cos(t^{-2}))^2} t^\alpha dt.$
5. ④ Исследовать функцию $f(x,y) = \begin{cases} \operatorname{tg}\left(\frac{xy^3}{x^2+y^4}\right), & x^2+y^2 \neq 0; \\ 0, & x^2+y^2 = 0; \end{cases}$ на дифференцируемость $x^2+y^2=0;$
6. ④ Найти первый и второй дифференциал функции $f(x,y) = (\cos x - \sin y)^{1/3}$ в точке $M_0 = (0, 0)$; написать формулу Тейлора с точностью до $o(\rho^2)$.
7. ③ Исследовать на сходимость и равномерную сходимость на множествах $E_1 = (0, 1)$ и $E_2 = (1, \infty)$ функциональную последовательность $f_n(x) = \sin\left(\frac{nx^2}{n^2x^4 + 1}\right)$.
8. ⑥ Исследовать на сходимость и равномерную сходимость на множествах $E_1=(0,1)$ и $E_2=(1,\infty)$ функциональный ряд $\sum_{n=1}^{\infty}xe^{-nx^2}$.
9. ④ Функцию $F(x) = \int_{-\infty}^{x} \ln(t + \sqrt{4 + t^2}) dt$ разложить в ряд Маклорена и найти его радиус

 ${f 10}^*.$ ${f 5}$ Пусть $f:\mathbb{R} \to \mathbb{R}$ и $g:\mathbb{R} \to \mathbb{R}$ равномерно непрерывные функции. Будет ли равномерно

«Использование электронных средств любых типов во время экзамена запрещено»

Дисциплина Многомерный анализ, интегралы и ряды

Kypc	1 Семе	естр 2	Учебный год 2011 –	-2012	
Фамилия студента № группы					
					<u> </u>
Сумма баллов	повышен.	базовый	Оценка	пятибалл.	десятибалл.
Фамилия			Фамилия		
проверяющего			экзаменатора		
1. ③ Исследовать чи	словой ряд	$\sum_{n=1}^{\infty} 2^{-n} \left(n \left(\epsilon \right) \right)$	$(e^{1/n}-1))^n$ на сходимос	ть.	
2. ③ Вычислить пло $r = \cos \varphi, \ \varphi \in [-$		ы, ограниче	енной заданной в поля	рных координ	атах кривой
3. ③ Исследовать на	сходимость	ь интеграл <i>I</i>	$t = \int\limits_0^{\pi/2} rac{\sin^{lpha}(\cos t)}{\sin^{lpha} t} dt$ при	$\alpha \in \mathbb{R}$.	
4. 6 Исследовать на	сходимостн	ь и абсолютн	ную сходимость интегр	ал при $\alpha \in \mathbb{R}$:
$I = \int_{0}^{1} \frac{\sin(t)}{(2 - t^4 \sin t)}$	$\frac{-4}{n(t^{-4}))^2} t^{\alpha} dt$				
5. 4 Исследовать функтической браговать бульных браговать функтической браговать	нкцию $f(x, y)$	$y) = \begin{cases} \exp\left(1, \frac{1}{2}\right) & \text{if } x \in \mathbb{R}^n \\ 1, & \text{if } x \in \mathbb{R}^n \end{cases}$	$\left(\frac{xy^4}{x^2 + y^6}\right), x^2 + y^2 \neq 0$ $x^2 + y^2 = 0$); на диффере);	енцируемості
6. ④ Найти первый и $M_0 = (0, 0);$ нап	и второй ди исать форм	фференциал улу Тейлора	п функции $f(x,y)=(\operatorname{ch}_{a} c$ точностью до $o(\rho^{2})$.	$(x + \sin y)^{1/3} =$	з точке
7. ③ Исследовать на	сходимостн	ь и равномер	оную сходимость на мн	южествах E_1	=(0, 1) и
$E_2=(1,\infty)$ фун	нкциональн	ую последов	вательность $f_n(x) = \sqrt{\frac{1}{2}}$	$\frac{nx^2}{n^2x^4+1}.$	
8. ⑥ Исследовать на	сходимостн	ь и равномер ∞	оную сходимость на мн	южествах E_1	=(0, 1) и
$E_2=(1,\infty)$ фун	нкциональн	ый ряд $\sum_{n=1}^{\infty}$	оную сходимость на мн $\sqrt{x} e^{-nx}.$		
9. 4 Функцию $F(x) =$	$= \int_{0}^{x} \arcsin t dt$	tt разложиті	ь в ряд Маклорена и на	йти его радиу	с сходимости
непрерывна на (a, b) ; фун	нкция g неп	рерывна, но	$\rightarrow \mathbb{R}$; функция f непро не равномерно непре	ерывна, но не рывна на (c, c)	e равномерно d). Может ли
функция $h = g \circ f$ быть р	авномерно	непрерывно	и на (и, и):		МФТИ — 22
«Использование электр	онных средо	ств любых ты	ипов во время экзамена	запрещено»	IVITIVI ZA
С положением ознаком	лен:		(Фамил	ия студента)	

Дисциплина Многомерный анализ, интегралы и ряды

7 1 1		, <u> </u>			
$\mathbf{Kypc} \ \boxed{1}$ Семестр $\boxed{2}$ Учебный год $\boxed{\mathbf{2011-2012}}$					
Фамилия студента _		<u>№</u>	группы		
Сумма баллов	повышен. базовый	Оценка	пятибалл.	десятибалл.	
Фамилия		Фамилия			
проверяющего		экзаменатора			
1. ③ Исследовать чи	исловой ряд $\sum_{n=1}^{\infty} 2^{n/2} \left(n \right)$	$a \ln \left(1 + \frac{1}{n}\right)^{n^2}$ на сходи	мость.		
2. ③ Вычислить пло $r = \sqrt{\arcsin(\varphi/ \varphi)}$		ненной заданной в поляг	ных координ	атах кривой	
3. ③ Исследовать на	і сходимость интеграл	$I = \int\limits_0^{\pi/2} rac{\sin^{lpha}(\sin t)}{{ m ctg}^{lpha}t} dt$ при	$\alpha \in \mathbb{R}$.		
4. ⑥ Исследовать на $I = \int\limits_0^1 \frac{\sin(t)}{(2 - t^2 \sin(t))}$		гную сходимость интегра	ал при $lpha\in\mathbb{R}$:		
5. 4 Исследовать фу в точке $(0, 0)$.	ункцию $f(x,y) = \begin{cases} \sin (x,y) \\ 0, \end{cases}$	$\left(\frac{x^3y}{x^4 + y^2}\right), x^2 + y^2 \neq 0$ $x^2 + y^2 = 0$; на диффере ;	енцируемости	
		ал функции $f(x,y) = (copa c точностью до o(\rho^2).$	$\sin x + \sin y)^{1/2}$	в точке	
7. ③ Исследовать на $E_2 = (1, \infty)$ фу	сходимость и равноменкциональную последс	ерную сходимость на мн рвательность $f_n(x) = \cos$	ожествах $E_1 = \left(\frac{n^2 x}{n^4 x^2 + 1}\right)$.	= (0, 1) и	
8. ⑥ Исследовать на $E_2 = (1, \infty)$ фун	сходимость и равномений ряд $\sum_{n=1}^{\infty}$	ерную сходимость на мн $\frac{e^{-n/x^2}}{x}$.	ожествах E_1 :	= (0, 1) и	
	-	гь в ряд Маклорена и най			
${f 10}^*$. ${f 5}$ Пусть $f:(a,b);$ функция g непрерывной равномерно непрерывной	ывна, но не равномерно	$(d) o \mathbb{R};$ функция f ра о непрерывна на (c, d) . Б			
				МФТИ — 23	
«Использование электр	онных средств любых т	типов во время экзамена	запрещено»		
/ =====================================		10			

Дисциплина Многомерный анализ, интегралы и ряды

Kypc 1

Семестр $\boxed{2}$ Учебный год $\boxed{2011-2012}$

Фамилия студента			№ группы			
Сумма баллов	повышен.	базовый	Оценка	пятибалл.	десятибалл.	
Фамилия			Фамилия			
проверяющего			экзаменатора			
1. ③ Исследовать чи	словой ряд	$\sum_{n=1}^{\infty} 2^{-n} \left(n \right) \left(4 \right)$	$(4^{1/n}-1))^n$ на сходи	мость.		
2. ③ Вычислить пло $r = \sin \varphi, \ \varphi \in [0, 1]$		ы, ограниче	енной заданной в по	лярных координ	атах кривой	
3. ③ Исследовать на	сходимость	ь интеграл $\it I$	$t = \int\limits_0^{\pi/2} \frac{\sin^{lpha}(\cos t)}{\mathrm{tg}^{lpha}t} dt$ I	при $\alpha \in \mathbb{R}$.		
4. 6 Исследовать на $I = \int_{0}^{1} \frac{\cos(t)}{(2 - t^{3} \cos(t))}$	0.		ную сходимость инт	еграл при $lpha \in \mathbb{R}$:	
5. 4 Исследовать фун в точке (0, 0).	нкцию $f(x, y)$	$y) = \begin{cases} \ln\left(1 + \frac{1}{2}\right) \\ 0, \end{cases}$	$-\frac{x^4y}{x^6+y^2}$, x^2+y^2 x^2+y^2	≠ 0; на диффере = 0;	енцируемост	
6. ④ Найти первый и $M_0 = (0, 0);$ нап	и второй ди исать форм	фференциал улу Тейлора	п функции $f(x,y) = 0$ а с точностью до $o(x)$	$\frac{(\operatorname{ch} x - \operatorname{sh} y)^{1/2}}{\rho^2}.$	з точке	
7. ③ Исследовать на $E_2 = (1, \infty)$ фун	сходимостн	ь и равномер ую последов	оную сходимость на вательность $f_n(x) =$	множествах E_1 $\sqrt{\frac{n^2}{n^4x+1}}.$	= (0, 1) и	
8. 6 Исследовать на	сходимостн	ь и равномер	оную сходимость на	множествах E_1	= (0, 1) и	
8. ⑥ Исследовать на $E_2 = (1, \infty)$ фун	нкциональн	ый ряд $\sum_{n=1}^{\infty} \frac{\epsilon}{2}$	$\frac{e^{-n/x}}{\sqrt{x}}$.			
9. 4 Функцию $F(x)$ сходимости.						
${f 10}^*$. ${f 5}$ Пусть $f:(a,b)$ функция g непрерывна, н равномерно непрерывной	о не равном					
«Иопо п. остания а тан-			4500 DO DDOME 0//500	0112 22 Ep 2000 2	МФТИ — 2	
«Использование электр С положением ознаком	•	тв люонх ти	·	ена запрещено» иилия стулента)		