Simplifications of Context-Free Grammars

A Substitution Rule

A Substitution Rule

$$S \rightarrow aB \mid ab$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc$$

ขางก็ด p > 6 ขางไปแลง

$$B \rightarrow aA$$

Substitute

$$B \rightarrow aA$$

$$S \rightarrow aB \mid ab \mid aaA$$

$$A \rightarrow aaA$$

$$A \rightarrow abBc \mid abbc \mid abaAc$$

Equivalent grammar

mologorou 13 -> a A

In general:

$$A \rightarrow xBz$$

$$B \rightarrow y_1$$

Substitute
$$B \rightarrow y_1$$

$$A \rightarrow xBz \mid xy_1z$$

equivalent grammar

Nullable Variables

milia sentence aussina loop

$$A \rightarrow \lambda$$

$$A \Rightarrow \ldots \Rightarrow \lambda$$

Removing Nullable Variables

Example Grammar:

$$S \rightarrow aMb$$
 $M \rightarrow aMb$
 $M \rightarrow \lambda$
Nullable variable

Final Grammar

$$S \to aMb$$

$$M \to \lambda$$

Substitute
$$M \rightarrow \lambda$$

$$S \to aMb$$

$$S \to (ab)$$

$$M \to aMb$$

$$M \to (ab)$$

Unit-Productions

production of a Van mover das 1 or s

Unit Production: $A \rightarrow B$

$$A \rightarrow B$$

(a single variable in both sides)

Removing Unit Productions

Observation:

Is removed immediately

Example Grammar:

$$S \to aA$$

$$A \to a$$

$$A \to B$$

$$B \to A$$

$$B \to bb$$

$$S \to aA$$

$$A \to a$$

$$A \to B$$

$$B \to A$$

$$B \to bb$$

$$S \to aA \mid aB$$

$$A \to a$$

$$B \to A \mid B$$

$$B \to bb$$

$$S \to aA \mid aB$$

$$A \to a$$

$$B \to A \mid B$$

$$B \to bb$$

Remove
$$B \rightarrow B$$

$$S \rightarrow aA \mid aB$$
 $A \rightarrow a$
 $B \rightarrow A$
 $B \rightarrow bb$

Substitute
 $A \rightarrow a$
 $B \rightarrow bb$

Substitute
 $A \rightarrow a$
 $B \rightarrow bb$

Remove repeated productions

$$S \to aA \mid aB \mid aA$$

$$A \to a$$

$$B \to bb$$

Final grammar

$$S \rightarrow aA \mid aB$$

$$A \rightarrow a$$

$$B \rightarrow bb$$

Useless Productions

Some derivations never terminate...

$$S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow ... \Rightarrow aa...aA \Rightarrow ...$$

Another grammar:

$$S o A$$
 $A o aA$
 $A o \lambda$
 $B o bA$ Useless Production

Not reachable from 5

In general: contains only terminals $S \Rightarrow \ldots \Rightarrow x A y \Rightarrow \ldots \Rightarrow w$ if $Var A = ue / d \text{ Total answer} \text{ for any solution of } w \in L(G)$

then variable A is useful

otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless

$$S o aSb$$
 $S o \lambda$ Productions
Variables $S o A$ useless infominally useless $A o aA$ useless and terminally useless $A o C$ useless and terminally useless $C o D$ useless and useless are useless and useless and useless and useless and useless and useless and usel

Removing Useless Productions

Example Grammar:

182

$$S \to aS \mid A \mid C$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

First:

find all variables that can produce strings with only terminals

1 en variable gransmans terminal strong for

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

Round 1:
$$\{A,B\}$$

$$S \to A$$

Round 2:
$$\{A,B,S\}$$

Keep only the variables

that produce terminal symbols: $\{A,B,S\}$

(the rest variables are useless)

$$S \to aS \mid A \mid \emptyset$$

$$A \to a$$

$$B \to aa$$

$$C \to aCb$$

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

Remove useless productions

Second: Find all variables reachable from S

7 8-12/1/21 2 /2/21/2

Use a Dependency Graph

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

not

reachable

Keep only the variables reachable from S

(the rest variables are useless)

Final Grammar

$$S \to aS \mid A$$

$$A \to a$$

$$B \to aa$$

$$A \to a$$

$$A \to a$$

$$A \to a$$

Remove useless productions

Removing All

Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

Step 3: Remove Useless Variables

Normal Forms
for

Context-free Grammars

Chomsky Normal Form

Each productions has form:

Examples:

$$S \rightarrow AS$$

$$S \rightarrow a$$

$$A \rightarrow SA$$

$$A \rightarrow b$$

Chomsky Normal Form

$$S \rightarrow AS$$

$$S \rightarrow AAS$$

$$A \rightarrow SA$$

$$A \rightarrow aa$$

Not Chomsky Normal Form

Convertion to Chomsky Normal Form

Example:
$$S \to ABa$$

$$A \to aab$$

$$B \to Ac$$

Not Chomsky Normal Form

Introduce variables for terminals: T_a, T_b, T_c

Introduce intermediate variable: V_1

$$S \to ABT_{a}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

$$S \to AV_{1}$$

$$A \to T_{a}T_{a}T_{b}$$

$$A \to T_{a}T_{a}T_{b}$$

$$B \to AT_{c}$$

$$T_{a} \to a$$

$$T_{b} \to b$$

$$T_{c} \to c$$

Introduce intermediate variable:

Final grammar in Chomsky Normal Form:

Initial grammar
$$S \to ABa$$

$$A \to aab$$

$$B \to Ac$$

In general:

From any context-free grammar (which doesn't produce λ) not in Chomsky Normal Form

xus ctt grammar an silasolu chumsky NR we can obtain: Insunsugramor vious NeTulo

> An equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables

Unit productions

Then, for every symbol a:

mschant forming 1 200 now

Add production $T_a \rightarrow a$

In productions: replace $\,a\,\,$ with $\,T_a\,\,$

New variable: T_a

Replace any production $A \rightarrow C_1 C_2 \cdots C_n$

with
$$A \rightarrow C_1 V_1$$
 $V_1 \rightarrow C_2 V_2$
...
$$V_{n-2} \rightarrow C_{n-1} C_n$$

New intermediate variables: $V_1, V_2, ..., V_{n-2}$

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Chomsky Normal Form

Observations

· Chomsky normal forms are good for parsing and proving theorems

• It is very easy to find the Chomsky normal form for any context-free grammar

Greibach Normal Form

All productions have form:

Examples:

$$S \to cAB$$

$$A \to aA |bB| b$$

$$B \to b$$

$$S \to abSb$$

$$S \to aa$$

Not Greibach Normal Form

Conversion to Greibach Normal Form:

$$S \to abSb$$
$$S \to aa$$

$$S \to aT_bST_b$$

$$S \to aT_a$$

$$T_a \to a$$

$$T_b \to b$$

Greibach Normal Form

Theorem:

For any context-free grammar (which doesn't produce λ) there is an equivalent grammar in Greibach Normal Form

Observations

 Greibach normal forms are very good for parsing

• It is possible to find the Greibach normal form of any context-free grammar

The CYK Parser (Cocke-Younger-Kasami)

algorithm militains panse truy and moderni

The CYK Membership Algorithm

Input:

how to ched if wel

 \cdot Grammar G in Chomsky Normal Form

· String w

Output:

find if $w \in L(G)$

The Algorithm

Input example:

• Grammar $G: S \rightarrow AB$ $A \rightarrow BB$ $A \rightarrow a$ $B \rightarrow AB$ $B \rightarrow b$

• String w: aabbb

aabbb

b b a a ab bb bb aa ns slide bbb aab abb aabb abbb aabbb

$$S \to AB$$
$$A \to BB$$

$$A \rightarrow DI$$

$$A \rightarrow a$$

$$B \to AB$$

$$B \rightarrow b$$

8-1 same 10-Q

a

B

B

B

aa

ab

bb

bb

aab

abb

bbb

aabb abbb

aabbb

48

$$S \rightarrow AB$$

$$A \rightarrow BB$$

$$A \rightarrow a$$

$$B \rightarrow AB$$

$$B \rightarrow b$$

$$A \rightarrow a$$

$$A$$

Therefore: $aabbb \in L(G)$

Time Complexity:

Observation: The CYK algorithm can be easily converted to a parser (bottom up parser)