DO NOT WRITE ANYTHING ON QUESTION PAPER EXCEPT YOUR NAME, DEPARTMENT AND ENROLMENT No.

Name of student: Enrollment No.

Department/School:

BENNETT UNIVERSITY, GREATER NOIDA Mid Term Examination, FALL SEMESTER 2019-20

COURSE CODE: EMATIOIL
COURSE NAME: ENGINEERING CALCULUS

MAX. TIME: 1 Hour MAX. MARKS: 30

Note: This paper contains 6 questions and all questions are mandatory.

- 1. TRUE/FALSE. Give proper justifications for any FIVE of the following statements: $[2 \times 5 = 10]$
 - (a) If |f| is continuous, then f is continuous.
 - (b) $|\sin(2x) \sin(2y)| \le 2|x y|$ for all $x, y \in \mathbb{R}$.
 - (c) The radius of convergence of the series $\sum_{n=0}^{\infty} n! x^n$ is 0.
 - (d) If $f: \mathbb{R} \to \mathbb{R}$ is such that $\lim_{h \to 0} \frac{f(x+h) f(x-h)}{h}$ exists in \mathbb{R} for every $x \in \mathbb{R}$, then f must be differentiable on \mathbb{R} .
 - (e) If both the series $\sum_{n=1}^{\infty} x_n$ and $\sum_{n=1}^{\infty} y_n$ of real numbers converge, then the series $\sum_{n=1}^{\infty} x_n y_n$ converges.
 - (f) The function $f(x) = \begin{cases} x^2, & x \in \mathbb{Q} \\ 0, & x \notin \mathbb{Q}. \end{cases}$ is continuous at x = 1.
- 2. Examine the convergence of any \mathbf{TWO} of the following:

 $(a) \sum_{n=1}^{\infty} \frac{n^n}{2^{n^2}} \qquad (b) \sum_{n=1}^{\infty} \frac{1}{n} \sin\left(\frac{1}{\sqrt{n}}\right) \qquad (c) \sum_{n=1}^{\infty} \frac{n^2}{5(2n)!}.$

- 3. If $a_1 = 1$ and $a_{n+1} = 1 + \sqrt{a_n} \ \forall \ n \in \mathbb{N}$, then show that the sequence $\{a_n\}$ is convergent. Also determine the limit if convergent. [3]
- 4. Show that the function $f:[0,1] \to \mathbb{R}$ defined as $f(x) = \begin{cases} x^2 \cos \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$ is uniformly continuous on [0,1]. Also Check the differentiability of f at 0.
- 5. Find the values of $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} (-1)^n \frac{(x+2)^n}{n \cdot 4^n}$ is convergent. [4]

OR

Determine all $p \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \frac{n^2 + 2n}{(2n^4 + 1)^p}$ is convergent.

6. Let a, b, c be distinct positive real numbers and let $x_n = (a^n + b^n + c^n)^{1/n} \ \forall \ n \in \mathbb{N}$. Then find the limit of $\{x_n\}$.