https://fr.wikipedia.org/wiki/Courbe_du_chien

Exercice 1

On a $\alpha(t) = (x(t), y(t))$, $\beta(t) = (a, z(t))$, $\alpha(0) = (0, 0)$ et $\alpha'(0) = (1, 0)$. Donc on a $\beta(0) = (a, 0)$ car $\alpha'(t)$ est orienté vers $\beta(t)$.

1.1 - Calculer $\alpha'(t)$

Comme $\alpha(t)$ est sur la droite allant de (x(t), y(t)) vers (a, z(t)), on a $\alpha'(t) = (a - x(t), z(t) - y(t))$.

1.2 - Calculer $\beta(t)$

Le point $\beta(t)$ est à l'intersection de la droite verticale passant par (a,0) et de la droite passant par le point (x(t),y(t)) et de coefficient directeur $\alpha'(t)$. La droite s'écrit $y=\alpha'(t).x+c$ avec $c=y(t)-\alpha'(t).x(t)$ β se deplacant sur la droite verticale (a,0) et est au point (a,0) à t_0 , on a z(t)=y Donc $z(t)=y=\alpha'(t).a+y(t)-\alpha'(t).x(t)=\alpha'(t)(a-x(t))+y(t)$. On a $\beta(t)=(a,\alpha'(t)(a-x(t))+y(t))$

1.3 - Calculer $\beta'(t)$

 β se déplacant sur un droite verticale, on a:

$$\beta'(t) = (0, (\alpha'(t)(a - x(t)) + y(t)') = (0, -\alpha'(t) + (a - x(t))\alpha''(t) + y'(t))$$

1.4 - relation entre $\beta'(t)$ et $\alpha'(t)$

La vitesse $\alpha'(t)$ est toujours proportionnelle à la vitesse $\|\beta'(t)\| = \frac{1}{k} \cdot \|\alpha'(t)\|$. Comme k=1 on a, $\|\beta'(t)\| = \|\alpha'(t)\|$ La distance parcourue par β est également proportionelle à la distance parcourue par α .

$$\sqrt{0^2 + -\alpha'(t) + (a - x(t))\alpha''(t) + y'(t))^2} = -\alpha'(t) + (a - x(t))\alpha''(t) + y'(t)$$

$$\sqrt{(z(t) - y(t))^2 + (a - x(t))^2} = \sqrt{(\alpha'(t)(a - x(t)) + y(t) - y(t))^2 + (a - x(t))^2} = (a - x(t))\sqrt{\alpha'^2(t) + 1}$$
QED