EXAMENUL DE BACALAUREAT - 2009 Proba scrisă la Fizică

Proba E: Specializarea: matematică-informatică, ştiințe ale naturii Proba F: Filiera tehnologică - toate profilele, filiera vocațională - toate profilele şi specializările, mai puțin specializarea matematică-informatică

- Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
 B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul efectiv de lucru este de 3 ore.

B. ELEMENTE DE TERMODINAMICA

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametri

de stare ai gazului ideal într-o stare dată există relația: $p \cdot V = vRT$. Exponentul adiabatic este definit prin relația: $\gamma = \frac{C_P}{C_V}$.

SUBIECTUL I -

Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului considerat corect.

1. Știind că simbolurile mărimilor fizice sunt cele utilizate în manuale de fizică, relația de definiție a capacității calorice este:

a. $C = \frac{Q}{m \cdot \Delta T}$

b. $C = \frac{Q}{v \cdot \Delta T}$ **c.** $C = \frac{Q}{\Delta T}$

d. $C = Q \cdot \Delta T$ (2p)

2. Ținând cont că simbolurile mărimilor fizice și ale unităților de măsură sunt cele utilizate în manuale de fizică, unitatea de măsură a mărimii reprezentate prin produsul $\nu C_V T$ este:

a. K

(3p)

3. Volumul maxim al unei cantități date de gaz, considerat ideal, care este supus transformării $1 \rightarrow 2 \rightarrow 3 \rightarrow 4$ reprezentată în coordonate p-T în figura alăturată, corespunde stării:

a. 1

b. 2

c. 3

d. 4. **4.** Masa unei cantități de apă ($\mu = 18 \text{ kg/kmol}$) care conține 1,204 · 10²³ molecule este egală cu:

a. 3,6 g

b. 7.2 a

c. 3.6 kg

d. 7.2 kg

(3p)

(5p)

5. Un gaz ideal, aflat inițial în starea 1, având presiunea $p_1 = 2.5 \cdot 10^5 \,\text{N/m}^2$ şi volumul $V_1 = 2 \,\ell$, este supus unei transformări izoterme, în urma căreia volumul crește de e² ori, e fiind baza logaritmilor naturali (e ≅ 2,718...). Lucrul mecanic efectuat de gaz în cursul acestei transformări are valoarea:

a. 250 J

b. 500 J

c. 1000 J

d. 2000 J

(2p)