Outline

Deep Learning

Final Assignment: Emotion Analysis with DistilBERT

P.L.D. Tien (520K0220)

Ton Duc Thang University

May 6, 2023

Outline

Introduction

Context

DistilBERT

Emotion Analysis with DistilBERT

End

What is Emotion Analysis

- ▶ A more comprehensive version of *Sentiment Analysis*.
- Instead of neutral, negative and positive, it focuses on emotions.
- ► These two sentences are considered positive for sentiment analysis
 - "This milkshake is good."
 - "I am loving this milkshake already."
- ► An emotion analysis model will say that the second sentence has a stronger positive emotion than the first.

What is DistilBERT

- DisbilBERT is a state of the art language model based on transformers.
- Smaller and faster than BERT
 - As it's pretrained on massive amounts of data
- Commonly used in sentiment analysis via fine-tuning, such as sentiment prediction.
- With an appropriate setup, it is able to detect nuances.
 - Irony, sarcasm, slang, etc.

Context: LTSM

- ▶ Before Transformers, we have *LTSM*, but it suffers from two problems.
 - 1. The model sequentially looks at every word on the input.
 - Passed in and generated sequentially.
 - ► Long words, longer processing.
 - 2. Not truly bidirectional.
 - Uses simple concatenation and analyses words separately.
 - True meaning of words lost slightly.

- Transformers solve both issues.
 - 1. Process words simultaneously
 - ► Is therefore faster
 - 2. Deeply bidirectional.
 - ▶ Able to learn from both directions simultaneously

- Transformers have two components:
 - Encoder
 - ► Takes each word simultaneously.
 - Generates embeddings (the meanings) simultaneously, being vectors.
 - 2. Decoder
 - ► Takes what the encoder generated, and uses to generate text (translation, for instance).

A basic transformer model for English-French translation.¹

- The benefits of this is that we can actually see a separation in tasks.
 - 1. Encoder
 - For the translation example, this one knows what is English and context.
 - 2. Decoder
 - Knows how English words relate to French words.
- Both of them know some bit of language.
- Due to this, we can modify each side.
 - ► Focus on decoders, we get *GPT*
 - Focus on encoders, we get BERT

What is DistilBERT

▶ DistilBERT is a variant of BERT, focusing on memory-efficiency and speed, while maintaining the accuracy of BERT (within a margin of error). Released in 2019 by HuggingFace.

Why DistilBERT

The foundational problems regarding Transformer-based models is that it keeps growing larger.

Figure 1: Parameter counts of several recently released pretrained language models.

How did DistilBERT work

- How it did it was:
 - Knowledge distillation was utilized, based on the original BERT model.
 - Using triple loss, able to make a 40% smaller Transformer, pre-trained through distillation. While being 60% faster at inference time.
 - Cross-Entropy
 - Distillation Loss
 - Cosine Embedding Loss

Knowledge Distillation¹

- ▶ A compression technique introduced in 2006 by ² in which a small model is trained to reproduce the behavior of a larger model (or models).
- ▶ This is one of the main components of *DistilBERT*.

²Caruana et al. In 2015, Geoffrey et al. utilized this in deep learning

¹Often called "teacher-student" learning, we'll call it like so.

- ▶ In DistilBERT, the original BERT is seen as the teacher.
- ► The student has two objectives:
 - 1. Minimize cross entropy between the student's prediction and the one-hot empirical distribution of the training labels.
 - 2. Minimize Kullback–Leibler divergence between the student's and teacher's prediction.

► The teacher might assign small probabilities to incorrect answers, manifesting how the teacher generalizes.

From Hinton's paper1:

An image of a BMW, for example, may only have a very small chance of being mistaken for a garbage truck, but that mistake is still many times more probable than mistaking it for a carrot.

¹https://arxiv.org/abs/1503.02531

- ▶ Because of this, the student can learn all the probabilities from the teacher.
- But minimizing the Kullback-Leibler divergence has a problem: The student doesn't learn much from the incorrect answers.
- Meaning, a well-trained teacher produces a very sharp distribution with high probability on a correct answer, and the rest are improbable.
- ► This will render distillation loss useless.

One of the solutions is to use softmax-temperature.

$$\frac{\exp(z_i/T)}{\sum_j \exp(z_j/T)}$$

- ightharpoonup T = 1: Standard softmax formula.
- T > 1: Probability distribution is softer, giving more weights to incorrect answers.
- ► This is the same temperature T to the student and teacher at training time.
- The teacher (trained and frozen) produced adjusted probability estimates which the student should learn.
- ightharpoonup T=1 is set at inference time for the student to produce the standard softmax outputs.

Other tricks

- ▶ In BERT, there are 12 encoder blocks that alternate multi-head self-attention and feed-forward layers.
- DistilBERT cuts that in half, making 6.
- ▶ BERT's weights are reused to initialize DistilBERT, providing a massive speed benefit.

Other tricks

- ► The 768-dimensional embedding vectors are kept since removing it doesn't do that much of a difference.
- ► The same dimensionality allowed the use of *cosine-distance* loss between DistilBERT and BERT.
 - ► To align directions of the the hidden vectors of the student and teacher.

The training

- ▶ Within the same corpus of BERT¹.
- DistilBERT is trained on 8 16GB NVIDIA V100 GPUs for 90 hours.
- ► For comparison, Facebook/Meta's RoBERTa model took one day on 1024 32GB V100s.

¹English Wikipedia and Toronto Book Corpus

The results

DistilBERT was able to keep ahead with the original BERT.

Table 1: DistilBERT retains 97% of BERT performance. Comparison on the dev sets of the GLUE benchmark. ELMo results as reported by the authors. BERT and DistilBERT results are the medians of 5 runs with different seeds.

Model	Score	CoLA	MNLI	MRPC	QNLI	QQP	RTE	SST-2	STS-B	WNLI
ELMo BERT-base	68.7	44.1	68.6	76.6	71.1	86.2		91.5 92.7	70.4	56.3
DistilBERT	79.5 77.0	56.3 51.3	86.7 82.2	88.6 87.5	91.8 89.2	89.6 88.5	69.3 59.9	91.3	89.0 86.9	53.5 56.3

DistilBERT was also faster for on device computation, 71% faster on an iPhone 7 Plus, running a question-answering model.

¹https://arxiv.org/abs/1910.01108, page 3 ←□ → ←♂ → ←≧ → ← ≧ →

The results

An ablation study¹ showed that the Masked Language Modeling had little impact.

Table 4: **Ablation study.** Variations are relative to the model trained with triple loss and teacher weights initialization.

Ablation	Variation on GLUE macro-score
\emptyset - L_{cos} - L_{mlm}	-2.96
L_{ce} - \emptyset - L_{mlm}	-1.46
L_{ce} - L_{cos} - \emptyset	-0.31
Triple loss + random weights initialization	-3.69

Meaning that the student learns from the teacher than the training data.

²https://arxiv.org/abs/1910.01108, page 4 () () () () () ()

2

¹Remove a part of the model to see what contributes the most

Methodology

- Datasets used are sem_eval_2018_task_1 and subtask5.english.
- ► A single Nvidia T4 GPU.
- ▶ BERT and RoBERTa for comparison.

Training

- Datasets used are sem_eval_2018_task_1 and subtask5.english.
- Parameters were:
 - ▶ Batch size of 8
 - Weight decay of 0.01
 - ▶ Learning rate of 2×10^{-5}
 - 10 epochs.
- BERT and RoBERTa for comparison.
- DistilBERT took 15 minutes to train; BERT, RoBERTa 30.

Results: DistilBERT

Results: BERT

Results: RoBERTa

Anything to talk about?