Parkinson's Disease prediction from Voice signals

- Siddartha, Sierra, Aro, Puthali

Parkinson's disease

- ☐ Abnormalities of the Parkinson's disease speech can be associated with several dimensions
- ☐ Symptoms include impairment in the normal production of vocal sounds (dysphonia), and problems with normal articulation of speech (dysarthria)
- ☐ Dysphonic symptoms typically include
 - ☐ reduced loudness,
 - ☐ breathiness,
 - □ roughness,
 - decreased energy in the higher parts of the harmonic spectrum, and
 - exaggerated vocal tremor

Speech measurement for PD voice disorder:

Tra	ditional methods:
	Fundamental frequency
	Absolute sound pressure level
	Jitter
	Shimmer
	Noise-to-harmonics ratios
Nov	rel measurement methods (based on non-linear dynamic systems):
	Recurrence period density entropy (RPDE), D2
	Detrended fluctuation analysis (DFA)
	Pitch period entropy (PPE)
	Spread 1, Spread 2 - Nonlinear measures of fundamental frequency variation

References:

- 1. Little MA, McSharry PE, Hunter EJ, Spielman J, Ramig LO. Suitability of dysphonia measurements for telemonitoring of Parkinson's disease. IEEE Trans Biomed Eng. 2009 Apr;56(4):1015. doi: 10.1109/TBME.2008.2005954. PMID: 21399744; PMCID: PMC3051371.
- 2. Rusz J, Cmejla R, Ruzickova H, Ruzicka E. Quantitative acoustic measurements for characterization of speech and voice disorders in early untreated Parkinson's disease. J Acoust Soc Am. 2011 Jan;129(1):350–67. doi: 10.1121/1.3514381. PMID: 21303016.

Objective:

☐ Find the key predictors, especially speech-related characteristics, of PD

☐ Try at least three different machine learning approaches to PD identification and Find the best approach.

EDA

- \Box We have 195 rows and 24 variables.
- ☐ No null values or missing values in the data

☐ All of the independent variables are numeric

data.shape

(195, 24)

<pre>data.isna().sum().</pre>	sort_value	s data.dtypes	
name	0	name	object
MDVP:Fo(Hz)	0	MDVP:Fo(Hz)	float64
PPE	0	MDVP:Fhi(Hz)	float64
D2	0	MDVP:Flo(Hz)	float64
spread2	0	MDVP:Jitter(%)	float64
spread1	0	MDVP: Jitter (Abs)	float64
DFA	0	MDVP:RAP	float64
RPDE	0	MDVP: PPQ	float64
HNR	0	Jitter:DDP	float64
NHR	0	MDVP:Shimmer	float64
Shimmer:DDA	0	MDVP:Shimmer(dB)	float64
MDVP:APQ	0	Shimmer:APQ3	float64
Shimmer:APQ5	0	Shimmer:APQ5	float64
Shimmer:APQ3	0	MDVP: APQ	float64
MDVP:Shimmer(dB)	0	Shimmer:DDA	float64
MDVP:Shimmer	0	NHR	float64
Jitter:DDP	0	HNR	float64
MDVP:PPQ	0	RPDE	float64
MDVP:RAP	0	DFA	float64
MDVP:Jitter(Abs)	0	spread1	float64
MDVP:Jitter(%)	0	spread2	float64
MDVP:Flo(Hz)	0	D2	float64
MDVP:Fhi(Hz)	0	PPE	float64
status	0	status	int64
dtype: int64		dtype: object	

EDA

- ☐ We see that there are outliers in many features.
- ☐ But all of them are in the possible biological ranges for those variables.
 - Decided to let the outliers be as is in the data,

Correlat

- We can see ers of strong correlation een the variables
- For ex, Measurements of
- Jitter are strongly correlated correlation is seen between
- with each other and a decent Shimmer and Jitter variables. Also, there is a strong
- negative correlation HNR and the rest of the variables.
- The novel measurements like RPDE, DFA, PPE etc are not
- correlated strongly as they are non-linear measures.

t	i	C)	ľ	1
3	c.	lu e	S	te	2

MDVP:Fhi(Hz) -MDVP:Flo(Hz) -

0.41				
0	0		0	
			0	
			0	
			0	
			0	
			0	
			0	
			0	
			0	
			0	
			0	
		0.066		
0			0	
0	0		0	
	0.12	0	0.006	
	0	0.006	0	
			0	
	0		0	
			0	
HNR -	RPDE -	DFA -	spread1 -	

- 0.25

Checking correlation within clusters:

- ☐ As we saw earlier, There is a strong correlation between the different measures of Jitter and similarly in the Shimmer variables.
- ☐ The information from using all the variables is limited.
- ☐ Therefore, we can drop the variables or combine them using Principal component analysis.
- ☐ We tried both approaches

Variables:

☐ We decided to consider the range of the Fundamental frequency instead of the Max and Min values of the Fundamental frequency based on our research.

```
data['MDVP:F_Spd'] = data['MDVP:Fhi(Hz)'] - data['MDVP:Flo(Hz)']
```

- ☐ Rest of the variables were left as is
- ☐ There 12 independent variables left in the data we can use for modelling
- ☐ The remaining independent variables in the data are:

```
df_scaled.columns
```

☐ First, we went with dropping the correlated variables. We also did PCA in coming up slides

Models (1):

□ Normalised the data using the standard scaler

- ☐ We have built 4 different models
 - a. Decision Tree
 - b. Random Forest
 - c. SVM
 - d. k-Neural network

☐ The performance of the models on the test data:

	Metric	DT	RF	SVM	KNN
0	Accuracy	0.820513	0.948718	0.846154	0.897436
1	F1-Score	0.881356	0.962963	0.892857	0.928571
2	Recall	0.962963	0.962963	0.925926	0.962963
3	Precision	0.812500	0.962963	0.862069	0.896552
4	R2-Score	0.157407	0.759259	0.277778	0.518519

Principal Component Analysis:

- ☐ As mentioned earlier, we have also applied PCA instead of dropping the correlated variables.
- ☐ We applied PCA on two different subsets of variables

```
variation_freq = ['MDVP:Jitter(%)', 'MDVP:Jitter(Abs)', 'MDVP:RAP', 'MDVP:PPQ', 'Jitter:DDP']
variation_amp = ['MDVP:Shimmer', 'MDVP:Shimmer(dB)', 'Shimmer:APQ3', 'Shimmer:APQ5', 'MDVP:APQ', 'Shimmer:DDA']
```

☐ Firstly, On the Frequency measures:

```
pca = PCA()
pca.fit(df_pc1)
explained_variance_ratio = pca.explained_variance_ratio_
print(explained_variance_ratio)

[9.64162746e-01 2.33046731e-02 1.11199310e-02 1.41256948e-03
7.99702317e-08]
```

☐ As we can see from the scree plot, We can use one principal component to explain the five measures of Jitter.

PCA (2)

- □ Repeating the process for the measures of Shimmer.
- ☐ We arrive at the same conclusion
- ☐ One principal component to explain the various measures of Shimmer

```
pca2 = PCA()
df_pc2 = df_pc[variation_amp]
df_pc2 = scaler.fit_transform(df_pc2)

pca2.fit(df_pc2)
explained_variance_ratio = pca2.explained_variance_ratio_
print(explained_variance_ratio)

[9.67891293e-01 2.39668230e-02 4.97378202e-03 2.88262892e-03 2.85467090e-04 6.01341259e-09]
```


PCA Final:

□ Add these two new principal component columns to the original dataset:

	MDVP:Fo(Hz)	NHR	HNR	RPDE	DFA	spread1	spread2	D2	PPE	status	MDVP:F_Spd	Jitter_pc	Shimmer_pc
0	119.992	0.02211	21.033	0.414783	0.815285	-4.813031	0.266482	2.301442	0.284654	1	82.305	0.934818	1.700278
1	122.400	0.01929	19.085	0.458359	0.819521	-4.075192	0.335590	2.486855	0.368674	1	34.831	1.751692	4.081638
2	116.682	0.01309	20.651	0.429895	0.825288	-4.443179	0.311173	2.342259	0.332634	1	19.556	2.333009	2.865896
3	116.676	0.01353	20.644	0.434969	0.819235	-4.117501	0.334147	2.405554	0.368975	1	26.505	2.020036	3.224675
4	116.014	0.01767	19.649	0.417356	0.823484	-3.747787	0.234513	2.332180	0.410335	1	31.126	3.346368	4.471558
5	120.552	0.01222	21.378	0.415564	0.825069	-4.242867	0.299111	2.187560	0.357775	1	17.375	1.832739	2.152991
6	120.267	0.00607	24.886	0.596040	0.764112	-5.634322	0.257682	1.854785	0.211756	1	22.424	-1.211720	-1.775359

Models (2):

- ☐ The same 4 models are created on the new data.
- ☐ The performance of the models in the new test data:

	Metric	DT	RF	SVM	KNN	
0	Accuracy	0.820513	0.846154	0.820513	0.897436	
1	F1-Score 0.877193		0.888889	0.877193	0.925926	
2	Recall	0.925926	0.888889	0.925926	0.925926	
3	Precision	0.833333	0.888889	0.833333	0.925926	
4	R2-Score	0.157407	0.277778	0.157407	0.518519	

Comparisons:

Model without PCA

Model with PCA

	Metric	DT	RF	SVM	KNN		Metric	DT	RF	SVM	KNN
0	Accuracy	0.820513	0.948718	0.846154	0.897436	0	Accuracy	0.820513	0.846154	0.820513	0.897436
1	F1-Score	0.881356	0.962963	0.892857	0.928571	1	F1-Score	0.877193	0.888889	0.877193	0.925926
2	Recall	0.962963	0.962963	0.925926	0.962963	2	Recall	0.925926	0.888889	0.925926	0.925926
3	Precision	0.812500	0.962963	0.862069	0.896552	3	Precision	0.833333	0.888889	0.833333	0.925926
4	R2-Score	0.157407	0.759259	0.277778	0.518519	4	R2-Score	0.157407	0.277778	0.157407	0.518519

Feature importance:

- ☐ Feature importance from the Random forest model on the non-pca data.
- □ PPE is the most important followed by spread₁ and MDVP:Fo(Hz)

```
# Get feature importances
importances = rfcl.feature_importances_

# Print feature importances
for feature, importance in zip(X.columns, importances):
    print(f"{feature}: {importance}")
```

MDVP:Fo(Hz): 0.1320668098294375 MDVP:Jitter(Abs): 0.04023009691589492 MDVP:Shimmer: 0.12493439495158931

MDVP:Shimmer: 0.12493439495158931
NHR: 0.06507400866224698
HNR: 0.052912178670557565
RPDE: 0.054599510469434204
DFA: 0.04843645923393191
spread1: 0.13853025374107053
spread2: 0.08964864860571996
D2: 0.05462080274261521
PPE: 0.1443170982033454

MDVP:F Spd: 0.0546297379741566

- ☐ Feature importance from the Random forest model on the pca data.
- ☐ We see the same variables showing up as important.

```
# Get feature importances
importances = rfc1.feature_importances_

# Print feature importances
for feature, importance in zip(X.columns, importances):
    print(f"{feature}: {importance}")
```

MDVP:Fo(Hz): 0.14001260488596276
NHR: 0.04838287411867583
HNR: 0.045100290961319435
RPDE: 0.045446291652754205
DFA: 0.04897296662768114
spread1: 0.1724148099016464
spread2: 0.08367074620695798
D2: 0.059296514587743716
PPE: 0.1851486311305981
MDVP:F_Spd: 0.05345051076479391
Jitter_pc: 0.045806867271927745
Shimmer pc: 0.07229689188993882