INSTITUTO FEDERAL	Curso:	Engenharia de Controle e Automação	
INSTITUTO FEDERAL Espírito Santo	Turma:	ENG7 (7° Período)	
Campus Linhares	Disciplina:	Robótica Móvel	
Coordenadoria de Automação Industrial	Professor:	Lucas Vago Santana	
Alunos(as):			
Atividade:	Data:	Valor: 15 pts Nota	1:

Estudo Dirigido Sobre Desvio de Obstáculos

Forma de avaliação:

- Experimental, simulação, oral via autoavaliação;

Introdução:

O conceito de desvio de obstáculos está associado a controladores de posição/trajetória de um robô que levam em consideração um caminho livre entre a origem do movimento e o destino final do robô.

Um ambiente real pode sofrer modificações pela inserção de obstáculos estáticos (mesas, cadeiras, etc.) ou dinâmicos (pessoas andando, outros robôs navegando, etc.) e caminhos livres podem ser ocupados, impossibilitando o alcance da posição desejada.

Como solução, a literatura apresenta diversos métodos de navegação autônoma baseados em autômatos finitos, algoritmos reativos, planejadores de caminho, supervisores de controle, entre outros, que auxiliam os robôs móveis a vencer tanto obstáculos convexos como obstáculos não-convexos (Ver Figura 1).

Figura 1 – Tipos mais comuns de obstáculos no cominho dos robôs

No contexto desta atividade, pretende-se apresentar um estudo de caso para realizar o desvio de **obstáculos convexos** que são mais simples de compreender e resolver.

Robô de Simulação:

Para as atividades de simulação, o robô do V-REP foi equipado com três sensores do tipo infravermelho que responde até 1m de distância. Sua denominação ficou como (Sl - sensor da esquerda; Sc - sensor do centro; Sr - sensor da direita). A posição deles foi distribuída conforme Figura 2.

Figura 2 – Robô da Simulação.

No código, a sua utilização se dá pela chamada da função Ler_Sensores , conforme:

StateL, StateC, StateR, s1, sc, sr = Ler_Sensores(SensorL, SensorC, SensorR)

Onde:

- StateL, StateC e StateR: variáveis binárias que indicam a leitura no sensor (0: Sem leitura, 1: Com leitura);
- s1, sc e sr: variáveis de ponto flutuante que indicam a leitura de cada sensor na faixa $0m \le s \le 1.0m$;

Parte 1 - Desvio de Obstáculos Convexos

Referência:

BRAITENBERG, V. Vehicles: Experiments in Synthetic Psychology. 1. Ed. A Bradford Book. 1986.

Algoritmo de Braitenberg:

Sistemas de navegação para desvio de obstáculos convexos podem ser construídos a partir de estratégias reativas. O algoritmo de Braitenberg, por exemplo, propõe um mecanismo de reação aos obstáculos que utiliza a matriz de pesos (P) para ponderar o vetor de leituras normalizadas dos sensores (S) e convertê-las em sinais que alteram as velocidades das rodas do robô para que o mesmo desvie dos obstáculos.

O algoritmo generalizado para n sensores é dado por:

$$P = \begin{bmatrix} P_{1l} & \dots & P_{nl} \\ P_{1r} & \dots & P_{nr} \end{bmatrix}$$

$$S = \begin{bmatrix} 1 - \frac{S_1}{S_{max}} \\ \vdots \\ 1 - \frac{S_n}{S_{max}} \end{bmatrix}$$

$$\begin{bmatrix} \omega_{e_b} \\ \omega_{d_b} \end{bmatrix} = P * S$$

- P_{1l} Peso aplicado à medida normalizada do sensor 1 na roda esquerda;
- P_{nl} Peso aplicado à medida normalizada do sensor n na roda esquerda;
 P_{1r} Peso aplicado à medida normalizada do sensor 1 na roda direita;
- P_{nr} Peso aplicado à medida normalizada do sensor n na roda direita;
 P_{nr} Peso aplicado à medida normalizada do sensor n na roda direita;
 S₁ Medida do sensor n;
 S_{max} Medida máxima de distância que um sensor pode entregar;

- ω_{e_b} Modificação da velocidade angular da roda esquerda calculada pelo algoritmo de Braitenberg;
- ω_{d_b} Modificação da velocidade angular da roda direita calculada pelo algoritmo de Braitenberg;

Quando aplicado em conjunto com a estratégia Goal-To-Goal tal algoritmo obtém resultados como o da Figura 3. Nela, o robô inicia seu caminho até o alvo, desviando de três obstáculos. Uma vez contornados os obstáculos, o controlador de posição reassume a navegação levando o robô até seu destino, desde que este seja alcançável.

Figura 3 – Robô simulado realizando controle de posição com desvio de obstáculo.

Questões:

Usando o modelo de simulação fornecido, responda:

- 1. Qual a distância máxima que cada sensor consegue medir (S_{max}) ?
- 2. Qual é a resposta de cada sensor, quando a distância medida ($s \ge S_{max}$)?
- 3. Considerando o modelo de normalização da leitura dos sensores dado pela equação $N_i = 1 \frac{S_i}{S_{max}}$, onde i = l, c, r. Qual é a resposta N_i para as seguintes leituras:

•
$$s_r = 0.5m$$
?

•
$$s_l = 0.8m$$
?

•
$$s_r = 1.0m$$
?

•
$$s_c = 1.3m$$
?

4. Supondo a matriz de pesos (P) e o vetor de leituras normalizadas (S) definidos como:

$$P = \begin{bmatrix} K & K & -K \\ -K & -K & K \end{bmatrix} \quad \text{e} \quad S = \begin{bmatrix} N_l \\ N_c \\ N_r \end{bmatrix} = \begin{bmatrix} 1 - sl/S_{max} \\ 1 - sr/S_{max} \\ 1 - sr/S_{max} \end{bmatrix}$$

Quais são as equações que determinam a modificação da velocidade de cada roda ω_{e_b} e ω_{d_b} ?

- 5. Diante destas equações, responda:
 - a. Supondo K=30.0 e uma detecção apenas no sensor do centro de $s_c=0.6$, em qual sentido o robô deverá girar?
 - b. Em qual sentido o robô deverá girar quando o sensor da esquerda detectar um obstáculo? Justifique pelas equações.
 - c. Em qual sentido o robô deverá girar quando o sensor do centro detectar um obstáculo? Justifique pelas equações.
 - d. Em qual sentido o robô deverá girar quando o sensor da direita detectar um obstáculo? Justifique pelas equações.
- 6. Implemente essa estratégia de desvio de obstáculo e apresenta-a ao professor em funcionamento.