Qualifying exam, geometry and topology

January 22, 2013

Examiners: Prof. David Auckly and Prof. Roman Fedorov

Problem 1. Let

$$\{\{2k-1,2k,2k+1\}|\ k\in\mathbb{Z}\}$$

be a basis for a topology τ on \mathbb{Z} . Is (\mathbb{Z}, τ) path-connected?

Problem 2. Let T^2 be a 2-torus, let $p: T^2 \to F$ be a covering map and let $q: E \to F$ be a covering map (where E is assumed connected). Give, with a proof, a list of all possibilities for E up to homeomorphism.

Problem 3. Let D^n be the unit ball in \mathbb{R}^n . Let X be a CW-complex with $X^{(0)} = \{p\}, X^{(1)} = X^{(0)} \cup (\{a,b\} \times D^1), X^{(2)} = X^{(1)} \cup (\{E,F\} \times D^2)$ with

$$(E, (\cos \pi \theta, \sin \pi \theta)) \sim \begin{cases} (a, 2\theta + 1) & \theta \in [-1, 0] \\ (a, 2\theta - 1) & \theta \in [0, 1]. \end{cases}$$

and

$$(F, (\cos \pi \theta, \sin \pi \theta)) \sim \begin{cases} (b, 3\theta + 1) & \theta \in [-1, -1/3] \\ (b, 3\theta) & \theta \in [-1/3, 1/3] \\ (b, 3\theta - 2) & \theta \in [1/3, 1]. \end{cases}$$

and $X=X^{(3)}=X^{(2)}\cup(\{L\}\times D^2)$ with

$$(L,(x,y,z)) \sim (E,(x,y))$$

for $x^2 + y^2 + z^2 = 1$.

- (a) Compute $H_*(X)$.
- (b) Compute $\pi_1(X)$.
- (c^*) Describe the universal cover of X.

Problem 4. For a non-empty topological space X define the *cone* CX as the quotient $(X \times [0,1])/(X \times \{1\})$. Define the *suspension* ΣX as the quotient $(X \times [0,1])/(X \times \{0,1\})$.

- (a) Show that CX is contractible.
- (b) Use Mayer–Vietoris sequence to show that for all p there is a natural isomorphism $\tilde{H}_p(\Sigma X) \simeq \tilde{H}_{p-1}(X)$.

Problem 5. (a) Let X be a 3-dimensional CW-complex such that $H^0(X,\mathbb{R}) \simeq H^1(X,\mathbb{R}) \simeq \mathbb{R}$, $H^2(X,\mathbb{R}) \simeq \mathbb{R}^2$, $H^3(X,\mathbb{R}) = 0$. Calculate its cohomology ring $H^*(X,\mathbb{R})$.

(b) Give an example of such a CW-complex.

Problem 6. Let $X = x\partial_x - y\partial_y + \partial_z$ be a vector field on \mathbb{R}^3 . Let

$$\alpha = f(x, y, z) dy \wedge dz + g(x, y, z) dz \wedge dx + h(x, y, z) dx \wedge dy$$

be a smooth 2-form on \mathbb{R}^3 .

- (a) Compute the Lie derivative $L_X \alpha$.
- (b) Compute the flow of X and find a system of straightening coordinates for X.
- (c) If

$$L_X \alpha = xy^2 \, dy \wedge dz + x^3 \, dz \wedge dx + z \, dx \wedge dy$$

and for all x and y we have

$$\alpha(x, y, 0) = dy \wedge dz,$$

what is α ?

Problem 7. Consider the surface

$$\Sigma = \{(x, y, z) \in \mathbb{R}^3 \mid x^3 + y^3 + z^3 = 27\}$$

and orient it by a 2-form Ω such that $\Omega(0,0,3)=dx\wedge dy$. Let

$$\alpha = (1 + x(x^2 + y^2 + z^2)^{-3/2}) \, dy \wedge dz$$

and let $f: \Sigma \to \Sigma$ be given by f(x, y, z) = (y, z, x).

(a) Compare

$$I_1 = \int_{\Sigma} \alpha$$
, $I_2 = \int_{\Sigma} f^* \alpha$ and $I_3 = \int_{\Sigma} f^* f^* \alpha$.

(b) Compute I_1 . (Hint: compute $I_1 + I_2 + I_3$ first.)

Problem 8. Let $f: T^3 \to S^2$ be a smooth map. $(T^3 \text{ is a 3-torus.})$

- (a) Give a definition of the set of regular values of f in S^2 (denote it by R_f).
- (b) What can you say about $f^{-1}(p)$ for $p \in R_f$?
- (c*) Given $p,q \in R_f$ with $p \neq q$, show that there is a submanifold $W \subset T^3$ such that $\partial W = f^{-1}(p) \cup f^{-1}(q)$. (Hint: modify the typical argument to establish general position of a function. In other words given a function $F: M \times P \to N$ viewed as a family of functions $M \to N$ parameterized by P, consider a regular value of projection onto the second factor $F^{-1}(n_0) \to P$. By a suitable choice of coordinates one may assume that p = (0, -1) and q = (0, 1) in \mathbb{R}^2 , and then construct a suitable $F: M \times P \to N$ to solve this problem.)