Artificial Neural Nets

Outline

- ANN
- Examples
- Support Vector Machines

INPUTS:
$$X_1$$
 X_2 X_p

HIDDEN LAYERS

OUTPUTS: Y_1 Y_2 Y_K

$$Z_{m} = \sigma(a_{0m} + a_{m}^{T}X),$$

$$T_{k} = \beta_{0k} + \beta_{k}^{T}Z,$$

$$f_{k}(X) = g_{k}(T)$$

$$Z = (Z_{1}, Z_{2}, ..., Z_{M})$$

$$T = (T_{1}, T_{2}, ..., T_{K})$$

$$\sigma(v) = \frac{1}{1 + e^{-v}} (SIGMOIDAL)$$

$$g_{k}(T) = \frac{e^{T_{k}}}{\sum_{l=1}^{K} e^{T_{l}}} (SOFTMAX)$$

Estimation

$$Z_{m} = \sigma(a_{0m} + a_{m}^{T} X),$$

$$T_{k} = \beta_{0m} + \beta_{m}^{T} Z,$$

$$f_{k}(X) = g_{k}(T)$$

$$Z = (Z_{1}, Z_{2}, ..., Z_{K})$$

$$T = (T_{1}, T_{2}, ..., T_{K})$$

$$\sigma(v) = \frac{1}{1 + e^{-v}} (SIGMOIDAL)$$

$$g_{k}(T) = \frac{e^{T_{k}}}{\sum_{l=1}^{K} e^{T_{l}}} (SOFTMAX)$$

Minimize
$$R(\theta) = \sum_{k=1,i=1}^{K,N} (y_{ik} - f_k(x_i))^2$$

 $R(\theta) = -\sum_{k=1,i=1}^{K,N} y_{ik} \log f_k(x_i)$

How to Use it

```
Example 1
library(nnet)
pex= read.table("project2/pex23.txt")
p = pex[sample(2993,200),]
predict(nnet(p[,1:10],p[,24],size=10,subset=rep(c(T,F),c(100,100))))-> v
table(round(y),p[,24])
Example 2
library(nnet)
ird <- data.frame(rbind(iris3[,,1], iris3[,,2], iris3[,,3]),
           species = factor(c(rep("s",50), rep("c", 50), rep("v", 50)))
ir.nn2 <- nnet(species \sim ., data = ird, subset = samp, size = 6, rang = 0.1,
         decay = 1e-2, maxit = 2000)
labels.nnet <- predict(ir.nn2, ird[-samp,], type="class")
table(ird$species[-samp], labels.nnet)
# labels.nnet
# csv
#c 22 0 3
#s 0 25 0
#v 3 0 22
# accuracy
mean(ird$species[-samp] == labels.nnet)
# 0.96
```

SVM

- 1. Suport vector machines can be generalized to Nonlinear separation.
- 2. It is an example of linear optimization.

The algorithm is a simplex minimization

Figure 4.15: The same data as in Figure 4.13. The shaded region delineates the maximum margin separating the two classes. There are three support points indicated, which lie on the boundary of the margin, and the optimal separating hyperplane (blue line) bisects the slab. Included in the figure is the boundary found using logistic regression (red line), which is very close to the optimal separating hyperplane (see Section 12.3.3).

How to Use it

MORE ON BAGGING BOOSTING

Unstable predictors

We can always assume

$$y = f(x) + \varepsilon$$
, where $E(\varepsilon \mid x) = 0$

Assume that we have a way of constructing a predictor, $\hat{f}_D(x)$, from a dataset D.

We want to choose the estimator of f that minimizes J, squared loss for example.

$$J(\hat{f}, D) = \mathbf{E}_{y,x} (y - \hat{f}_D(x))^2$$

Bias-variance decomposition

If we could average over all possible datasets, let the average prediction be

$$\bar{f}(\mathbf{x}) = \mathbf{E}_{\scriptscriptstyle D} \, \hat{f}_{\scriptscriptstyle D}(\mathbf{x})$$

The average prediction error over all datasets that we might see is decomposable

$$E_D J(\hat{f}, D) = E \mathbf{E}^2 + E_x (f(\mathbf{x}) - \bar{f}(\mathbf{x}))^2 + E_{x,D} (\hat{f}_D(\mathbf{x}) - \bar{f}(\mathbf{x}))^2$$
= noise + bias + variance

Bias-variance decomposition (cont.)

$$E_D J(\hat{f}, D) = E \mathbf{E}^2 + E_x (f(\mathbf{x}) - \bar{f}(\mathbf{x}))^2 + E_{x,D} (\hat{f}_D(\mathbf{x}) - \bar{f}(\mathbf{x}))^2$$
= noise + bias + variance

- The noise cannot be reduced.
- The squared-bias term might be reducible
- The variance term is 0 if we use

$$\hat{f}_{\scriptscriptstyle D}(\boldsymbol{x}) = \bar{f}(\boldsymbol{x})$$

But this requires having an infinite number of datasets

Goal: Variance reduction

Method: Create bootstrap replicates of the dataset and fit a model to each. Average the predictions of each model.

Properties:

- Stabilizes "unstable" methods
- Easy to implement, parallelizable
- Theory is not fully explained

Bagging algorithm

- 1. Create *K* bootstrap replicates of the dataset.
- 2. Fit a model to each of the replicates.
- 3. Average (or vote) the predictions of the *K* models.

Bootstrapping simulates the stream of infinite datasets in the bias-variance decomposition.

Bagging Example

CART decision boundary

100 bagged trees

Regression results

Squared error loss

Classification results

Misclassification rates

Random Forests

"The key to accuracy is low correlation and bias. To keep bias low, trees are grown to maximum depth.

To keep correlation low, the current version uses this randomization.

- 1) Each tree is grown on a bootstrap sample of the training set.
- 2) A number m is specified much smaller than the total number of variables M. At each node, m variables are selected at random out of the M, and the split is the best split on these m variables.

(see Random Forests, Machine Learning (2001) 45 5-320)

An important feature is that it carries along an internal test set estimate of the prediction error.

For every tree grown, about one-third of the cases are out-of-bag (out of the bootstrap sample). Abbreviated oob.

Put these oob cases down the corresponding tree and get response estimates for them.

For each case n, average or pluralize the response estimates over all time that n was oob to get a test set estimate \hat{y}_n for y_n .

Averaging the loss over all n give the test set estimate of prediction error.

Table 3 Test Set Errors (%)

	Data Set	Adaboost	Forest-RC		
			Selection	Two Features	One Tree
۱	glass	22.0	24.4	23.5	42.4
_	breast cancer	3.2	3.1	2.9	5.8
	diabetes	26.6	23.0	23.1	32.1
	sonar	15.6	13.6	13.8	31.7
	vowel	4.1	3.3	3.3	30.4
	ionosphere	6.4	5.5	5.7	14.2
	vehicle	23.2	23.1	22.8	39.1
	German credit	23.5	22.8	23.8	32.6
	image	1.6	1.6	1.8	6.0
	ecoli	14.8	12.9	12.4	25.3
	votes	4.8	4.1	4.0	8.6
	liver	30.7	27.3	27.2	40.3
	letters	3.4	3.4	4.1	23.8
	sat-images	8.8	9.1	10.2	17.3
	zip-code	6.2	6.2	7.2	22.7
	waveform	17.8	16.0	16.1	33.2
	twonorm	4.9	3.8	3.9	20.9
	threenorm	18.8	16.8	16.9	34.8
	ringnorm	6.9	4.8	4.6	24.6

Adaptive Bagging

Goal: Bias and variance reduction

Method: Sequentially fit *bagged* models, where each fits the current residuals

Properties:

- Bias and variance reduction
- No tuning parameters

Adaptive bagging algorithm

- 1. Fit a bagged regressor to the dataset D.
- 2. Predict "out-of-bag" observations.
- 3. Fit a new bagged regressor to the bias (error) and repeat.

For a new observation, sum the predictions from each stage.

Regression results

Squared error loss

Classification results

Misclassification rates

Bagging References

- Leo Breiman's homepage www.stat.berkeley.edu/users/breiman/
- Breiman, L. (1996) "Bagging Predictors," *Machine Learning*, 26:2, 123-140.
- Friedman, J. and P. Hall (1999) "On Bagging and Nonlinear Estimation" www.stat.stanford.edu/~jhf

Peter Buhlmann and Bin Yu. Explaining bagging. Can be downloaded from http://stat.ethz.ch/~buhlmann/bibliog.html, September 2000.

J.H. Friedman and O. Hall. On bagging and nonlinear estimation. Can be downloaded from http://www-stat.stanford.edu/~jhf/#reports, May 2000.

Andreas Buja's home page:

``The Effect of Bagging on Variance, Bias and Mean Squared Error"

A. Buja, W. Stuetzle.

Bootstrap aggregation ("bagging") is a device for reducing the variance of learning algorithms. We give a complete second-order analysis of the effect of bagging on finite sums of U-statistics.

"Smoothing Effects of Bagging"

A. Buja, W. Stuetzle.

An short note on bagging. It relates the von Mises expansion of a bagged statistical functional to the Efron-Stein ANOVA expansion of the unbagged functional to show that the bagged functional is always smooth.

INVENTORS & T. FORD

Boosting

Goal: Improve misclassification rates

Method: Sequentially fit models, each more heavily weighting those observations poorly predicted by the previous model

Properties:

- Bias and variance reduction
- Easy to implement
- Theory is not fully (but almost) explained

Generic boosting algorithm

Equally weight the observations $(y,x)_i$

For *t* in 1,...,*T*

Using the weights, fit a classifier $f_t(x) \rightarrow y$ Upweight the poorly predicted observations

Downweight the well-predicted observations

Merge $f_1, ..., f_T$ to form the boosted classifier

Real AdaBoost

Schapire & Singer 1998

$$y_i \in \{-1,1\}, w_i = 1/N$$

For *t* in 1,...,*T* do

1. Estimate $P_w(y=1|\mathbf{x})$.

2. Set
$$f_t(x) = \frac{1}{2} \log \frac{\hat{P}_w(y=1|x)}{\hat{P}_w(y=-1|x)}$$

3. $w_i \leftarrow w_i \exp(-y_i f_i(\mathbf{x}_i))$ and renormalize

Output the classifier
$$F(x) = \text{sign}\left(\sum_{t} f_t(x)\right)$$

Boosting Example

After one iteration

CART splits, larger points have great weight

After 3 iterations

After 20 iterations

Decision boundary after 100 iterations

Boosting as optimization

- Friedman, Hastie, Tibshirani [1998] AdaBoost is an optimization method for
 finding a classifier.
- Let $y \in \{-1,1\}, F(x) \in (-\infty,\infty)$

$$J(F) = E(e^{-yF(x)} \mid x)$$

Criterion

• $E(e^{-yF(x)})$ bounds the misclassification rate.

$$I(yF(x) < 0) < e^{-yF(x)}$$

• The minimizer of $E(e^{-yF(x)})$ coincides with the maximizer of the expected Bernoulli likelihood.

$$J(F) = E\ell(F) = E\left[y^*F(\mathbf{x}) - \log\left(1 + e^{F(\mathbf{x})}\right) | \mathbf{x} \right]$$

 $y^* = \frac{1}{2}(1+y) \in \{0, 1\}$

Optimization step

$$J(F+f) = E(e^{-y(F(x)+f(x))} \mid x)$$

• Select f to minimize J...

$$F^{(t+1)} \leftarrow F^{(t)} + \frac{1}{2} \log \frac{E_w[I(y=1) \mid x]}{1 - E_w[I(y=1) \mid x]}$$

$$w(x, y) = e^{-yF^{(t)}(x)}$$

Let $J(F) = E[e^{-yF(x)}]$. Suppose we have a current estimate F(x) and seek an improved estimate F(x) + cf(x). For fixed c (and x), we expand J(F(x) + cf(x)) to second order about f(x) = 0

$$J(F+cf) = E[e^{-y(F(x)+cf(x))}]$$

$$\approx E[e^{-yF(x)}(1-ycf(x)+c^2y^2f(x)^2/2)]$$

$$= E[e^{-yF(x)}(1-ycf(x)+c^2/2)]$$

since $y^2=1$ and $f(x)^2=1$. Minimizing pointwise with respect to $f(x)\in\{-1,1\}$, we write

$$f(x) = \arg\min_{f} E_w(1 - ycf(x) + c^2/2|x)$$
 (16)

Here the notation $E_w(\cdot|x)$ refers to a weighted conditional expectation, where $w = w(x,y) = e^{-yF(x)}$, and

$$E_w[g(x,y)|x] \stackrel{\text{def}}{=} \frac{E[w(x,y)g(x,y)|x]}{E[w(x,y)|x]}.$$

For c > 0, minimizing (16) is equivalent to maximizing

$$E_w[yf(x)] \tag{17}$$

The solution is

$$f(x) = \begin{cases} 1 & \text{if } E_w(y|x) = P_w(y=1|x) - P_w(y=-1|x) > 0\\ -1 & \text{otherwise} \end{cases}$$
 (18)

LogitBoost

Friedman, Hastie, Tibshirani [1998]

Logistic regression

$$y = \begin{cases} 1 & \text{with probability } p(x) \\ 0 & \text{with probability } 1 - p(x) \end{cases}$$

$$p(x) = \frac{1}{1 + e^{-F(x)}}$$

• Expected log-likelihood of a regressor, F(x)

$$E \ell(F) = E(yF(x) - \log(1 + e^{F(x)}) | x)$$

Newton steps

$$J(F+f) = E(y(F(x)+f(x)) - \log(1+e^{F(x)+f(x)}) | x)$$

Iterate to optimize expected log-likelihood.

$$F^{(t+1)}(x) \leftarrow F^{(t)}(x) - \frac{\frac{\partial}{\partial f}J(F^{(t)} + f)\Big|_{f=0}}{\frac{\partial^2}{\partial f^2}J(F^{(t)} + f)\Big|_{f=0}}$$

LogitBoost, continued

Newton steps for Bernoulli likelihood

$$F(x) \leftarrow F(x) + E_w \left(\frac{y - p(x)}{p(x)(1 - p(x))} \middle| x \right)$$
$$w(x) = p(x)(1 - p(x))$$

- In practice the $E_w(\cdot|x)$ can be any regressor trees, smoothers, etc.
- Trees are adaptive and work well for high dimensional data.

Misclassification rates

Friedman, Hastie, Tibshirani [1998]

Naïve Bayes Classification

Probabilistic Classification

$$P(Y = y \mid X_1 = x_1, ..., X_d = x_d) = \frac{P(\underline{X} \mid Y = y)P(Y = y)}{P(X)}$$

The naïve Bayes assumption

$$P(X | Y = y) = P(X_1 = x_1 | Y = y) \cdots P(X_d = x_d | Y = y)$$

Estimation

Probability estimates are trivial

$$\hat{P}(X_j = x_j \mid Y = y) = \frac{\text{count}(X_j = x_j \cap Y = y)}{\text{count}(X_j = x_j)}$$

• Estimation is linear in the number of predictors and the number of observations

Interpretability

Consider the log-odds in favor of Y=1

$$\log \frac{P(Y=1 \mid \underline{X})}{P(Y=0 \mid \underline{X})} = w_0 + \sum_{j=1}^d w_j(X_j)$$

- Positive w_i are evidence in favor of Y=1
- Negative w_i are evidence in favor of Y=0

Evidence balance sheets

Evidence in favor of		Evidence against	
knee surgery		knee surgery	
Female	+8	Prior evidence	-10
Knee is unstable	+88	Age 50	-12
Knee locks	+172	No effusion	-62
Tender med JL	+49	Negative	-38
		McMurray's	
Total positive	+317	Total negative	-122
evidence		evidence	
Total evidence		+195	
Probability of knee surgery		88%	

Boosting algorithms

- 1. Learn a classifier from the data
- 2. Upweight observations poorly predicted, downweight observations well predicted
- 3. Refit the model using the new weighting
- 4. After *T* iterations, have each model vote on the final prediction.

AdaBoost algorithm

Freund & Shapire (1997)

- AdaBoost defines a particular reweighting scheme and a voting method for merging the classifiers
- AdaBoost decreases bias and variance in many settings Bauer and Kohavi [1998]
- Boosted naïve Bayes tied for first place in the 1997 KDD Cup

AdaBoost

• Extremely dense voting scheme

$$P(Y = 1 \mid x) = \frac{1}{1 + \prod_{t=1}^{T} \beta_{t}^{2r(x)-1}} \qquad r(x) = \frac{\sum_{t=1}^{T} (\log \frac{1}{\beta_{t}}) P_{t}(Y = 1 \mid x)}{\sum_{t=1}^{T} (\log \frac{1}{\beta_{t}})}$$

• Destroys interpretability

Regaining Interpretability

Rewriting the voting scheme...

$$\log \frac{P(Y=1|X)}{P(Y=0|X)} = \sum_{t=1}^{T} (\log \beta_t) \left(1 - 2 \left(1 + e^{-\log \frac{P_t(Y=1|X)}{P_t(Y=0|X)}} \right)^{-1} \right)$$

Substitute Taylor expansion...

$$\frac{1}{1+e^{-x}} = \frac{1}{2} + \frac{1}{4}x - \frac{1}{48}x^3 + O(x^5)$$

Regained Interpretability

$$\sum_{t=1}^{T} \alpha_{t} \log \frac{P_{t}(Y=1)}{P_{t}(Y=0)} + \sum_{j=1}^{d} \sum_{t=1}^{T} \alpha_{t} \log \frac{P_{t}(X_{j} \mid Y=1)}{P_{t}(X_{j} \mid Y=0)}$$

= boosted prior weight of evidence +

 $\sum_{j=1}^{d} \text{boosted weight of evidence from } X_{j}$

- Boosting biases parameter estimates
- Adjusts naïve Bayes' for over-optimism

Misclassification rates

	Naïve	AdaBoost	Weight of
	Bayes		evidence
Knee diagnosis	14.0%	13.8%	13.4%
Diabetes	25.0%	24.4%	24.4%
Credit approval	16.8%	15.5%	15.5%
CAD	18.4%	18.3%	18.3%
Breast tumors	3.9%	3.8%	3.8%

- Boosting offers modest improvement
- Actual AdaBoost and approximation are close

Calibration

Boosting References

- Rob Schapire's homepage www.research.att.com/~schapire
- Freund, Y. and R. Schapire (1996). "Experiments with a new boosting algorithm," Machine Learning: Proceedings of the 13th International Conference, 148-156.
- Jerry Friedman's homepage www.stat.stanford.edu/~jhf
- Friedman, J., T. Hastie, R. Tibshirani (1998). "Additive Logistic Regression: a statistical view of boosting," Technical report, Statistics Department, Stanford University.