Klein-Nishina formula

The Klein-Nishina formula is the lab frame cross section for $\gamma + e^- \rightarrow \gamma + e^-$.

It is easy to derive the Klein-Nishina formula from Dirac's equation by starting out in the center-of-mass frame and then boosting to the lab frame. The following center-of-mass momentum vectors have $E = \sqrt{\omega^2 + m^2}$.

$$p_{1} = \begin{pmatrix} \omega \\ 0 \\ 0 \\ \omega \end{pmatrix} \qquad p_{2} = \begin{pmatrix} E \\ 0 \\ 0 \\ -\omega \end{pmatrix} \qquad p_{3} = \begin{pmatrix} \omega \\ \omega \sin \theta \cos \phi \\ \omega \sin \theta \sin \phi \\ \omega \cos \theta \end{pmatrix} \qquad p_{4} = \begin{pmatrix} E \\ -\omega \sin \theta \cos \phi \\ -\omega \sin \theta \sin \phi \\ -\omega \cos \theta \end{pmatrix}$$

Spinors for p_2 .

$$u_{21} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} E+m\\0\\-\omega\\0 \end{pmatrix} \qquad u_{22} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} 0\\E+m\\0\\\omega \end{pmatrix}$$
spin up

Spinors for p_4 .

$$u_{41} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} E+m \\ 0 \\ p_{4z} \\ p_{4x} + ip_{4y} \end{pmatrix} \qquad u_{42} = \frac{1}{\sqrt{E+m}} \begin{pmatrix} 0 \\ E+m \\ p_{4x} - ip_{4y} \\ -p_{4z} \\ \text{spin down} \end{pmatrix}$$

The scattering amplitude $\mathcal{M}_{ab}^{\mu\nu}$ for spin ab and polarization $\mu\nu$ is

$$\mathcal{M}_{ab}^{\mu\nu} = \mathcal{M}_{1ab}^{\mu\nu} + \mathcal{M}_{2ab}^{
u\mu}$$

where

$$\mathcal{M}_{1ab}^{\mu\nu} = \frac{\bar{u}_{4b}(-ie\gamma^{\mu})(\not q_1 + m)(-ie\gamma^{\nu})u_{2a}}{s - m^2}$$
$$\mathcal{M}_{2ab}^{\nu\mu} = \frac{\bar{u}_{4b}(-ie\gamma^{\nu})(\not q_2 + m)(-ie\gamma^{\mu})u_{2a}}{u - m^2}$$

Matrices $\not q_1$ and $\not q_2$ represent momentum transfer.

$$\mathbf{q}_1 = (p_1 + p_2)^{\alpha} g_{\alpha\beta} \gamma^{\beta}$$
$$\mathbf{q}_2 = (p_4 - p_1)^{\alpha} g_{\alpha\beta} \gamma^{\beta}$$

Scalars s and u are Mandelstam variables.

$$s = (p_1 + p_2)^2$$
$$u = (p_1 - p_4)^2$$

In component form

$$\mathcal{M}_{1ab}^{\mu\nu} = \frac{(\bar{u}_{4b})_{\alpha}(-ie\gamma^{\mu\alpha}{}_{\beta})(\not q_1 + m)^{\beta}{}_{\rho}(-ie\gamma^{\nu\rho}{}_{\sigma})(u_{2a})^{\sigma}}{s - m^2}$$

$$\mathcal{M}_{2ab}^{\nu\mu} = \frac{(\bar{u}_{4b})_{\alpha}(-ie\gamma^{\nu\alpha}{}_{\beta})(\not q_2 + m)^{\beta}{}_{\rho}(-ie\gamma^{\mu\rho}{}_{\sigma})(u_{2a})^{\sigma}}{u - m^2}$$

Expected probability density $\langle |\mathcal{M}|^2 \rangle$ is the sum over squared amplitudes divided by the number of inbound states.

$$\langle |\mathcal{M}|^2 \rangle = \frac{1}{4} \sum_{ab} \sum_{\mu\nu} \left| \mathcal{M}_{ab}^{\mu\nu} \right|^2$$

Summing over $\mu\nu$ requires $g_{\mu\nu}$ to lower indices.

$$\langle |\mathcal{M}|^2 \rangle = \frac{1}{4} \sum_{ab} \mathcal{M}_{ab}^{\mu\nu} \left(g_{\mu\alpha} \mathcal{M}_{ab}^{\alpha\beta} g_{\beta\nu} \right)^*$$

Expand the summand and label the terms. By positivity $\boxed{2} = \boxed{3}$.

$$\langle |\mathcal{M}|^{2} \rangle = \frac{1}{4} \sum_{ab} \left[\mathcal{M}_{1ab}^{\mu\nu} \left(g_{\mu\alpha} \mathcal{M}_{1ab}^{\alpha\beta} g_{\beta\nu} \right)^{*} + \mathcal{M}_{1ab}^{\mu\nu} \left(g_{\nu\alpha} \mathcal{M}_{2ab}^{\alpha\beta} g_{\beta\mu} \right)^{*} \right.$$

$$\left. + \mathcal{M}_{2ab}^{\nu\mu} \left(g_{\mu\alpha} \mathcal{M}_{1ab}^{\alpha\beta} g_{\beta\nu} \right)^{*} + \mathcal{M}_{2ab}^{\nu\mu} \left(g_{\nu\alpha} \mathcal{M}_{2ab}^{\alpha\beta} g_{\beta\mu} \right)^{*} \right]$$

$$\left. \left. \right]$$

The following Casimir trick uses matrix arithmetic to sum over spin and polarization states.

$$\begin{split} & \sum_{ab} \boxed{1} = \frac{e^4}{(s - m^2)^2} \operatorname{Tr} \left[(\not p_2 + m) \gamma^{\mu} (\not q_1 + m) \gamma^{\nu} (\not p_4 + m) \gamma_{\nu} (\not q_1 + m) \gamma_{\mu} \right] \\ & \sum_{ab} \boxed{2} = \frac{e^4}{(s - m^2)(u - m^2)} \operatorname{Tr} \left[(\not p_2 + m) \gamma^{\mu} (\not q_2 + m) \gamma^{\nu} (\not p_4 + m) \gamma_{\mu} (\not q_1 + m) \gamma_{\nu} \right] \\ & \sum_{ab} \boxed{4} = \frac{e^4}{(u - m^2)^2} \operatorname{Tr} \left[(\not p_2 + m) \gamma^{\mu} (\not q_2 + m) \gamma^{\nu} (\not p_4 + m) \gamma_{\nu} (\not q_2 + m) \gamma_{\mu} \right] \end{split}$$

Probability density $\langle |\mathcal{M}|^2 \rangle$ can be reformulated as

$$\langle |\mathcal{M}|^2 \rangle = \frac{e^4}{4} \left[\frac{f_{11}}{(s-m^2)^2} + \frac{2f_{12}}{(s-m^2)(u-m^2)} + \frac{f_{22}}{(u-m^2)^2} \right]$$

with Casimir trick terms

$$f_{11} = \operatorname{Tr}\left[(\not p_2 + m)\gamma^{\mu} (\not q_1 + m)\gamma^{\nu} (\not p_4 + m)\gamma_{\nu} (\not q_1 + m)\gamma_{\mu} \right]$$

$$f_{12} = \operatorname{Tr}\left[(\not p_2 + m)\gamma^{\mu} (\not q_2 + m)\gamma^{\nu} (\not p_4 + m)\gamma_{\mu} (\not q_1 + m)\gamma_{\nu} \right]$$

$$f_{22} = \operatorname{Tr}\left[(\not p_2 + m)\gamma^{\mu} (\not q_2 + m)\gamma^{\nu} (\not p_4 + m)\gamma_{\nu} (\not q_2 + m)\gamma_{\mu} \right]$$

The following formulas are equivalent to the Casimir trick. (Recall that $a \cdot b = a^{\mu}g_{\mu\nu}b^{\nu}$.)

$$f_{11} = 32(p_1 \cdot p_2)(p_1 \cdot p_4) + 32(p_1 \cdot p_2)m^2 + 32m^4$$

$$f_{12} = 16(p_1 \cdot p_2)m^2 - 16(p_1 \cdot p_4)m^2 + 32m^4$$

$$f_{22} = 32(p_1 \cdot p_2)(p_1 \cdot p_4) - 32(p_1 \cdot p_4)m^2 + 32m^4$$
(2)

In Mandelstam variables

$$f_{11} = -8su + 24sm^{2} + 8um^{2} + 8m^{4}$$

$$f_{12} = 8sm^{2} + 8um^{2} + 16m^{4}$$

$$f_{22} = -8su + 8sm^{2} + 24um^{2} + 8m^{4}$$
(3)

Scattering experiments are typically done in the lab frame. Define Lorentz boost Λ for transforming momentum vectors to the lab frame.

$$\Lambda = \begin{pmatrix} E/m & 0 & 0 & \omega/m \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \omega/m & 0 & 0 & E/m \end{pmatrix}$$

The electron is at rest in the lab frame.

$$\Lambda p_2 = \begin{pmatrix} m \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Mandelstam variables are invariant under a boost.

$$s = (p_1 + p_2)^2 = (\Lambda p_1 + \Lambda p_2)^2$$

$$t = (p_1 - p_3)^2 = (\Lambda p_1 - \Lambda p_3)^2$$

$$u = (p_1 - p_4)^2 = (\Lambda p_1 - \Lambda p_4)^2$$
(4)

In the lab frame, let ω_L be the angular frequency of the incident photon and let ω_L' be the angular frequency of the scattered photon.

$$\omega_L = \Lambda p_1 \cdot \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = \frac{\omega^2}{m} + \frac{\omega E}{m}$$

$$\omega_L' = \Lambda p_3 \cdot \begin{pmatrix} 1\\0\\0\\0 \end{pmatrix} = \frac{\omega^2 \cos \theta}{m} + \frac{\omega E}{m}$$

It can be shown that

$$s = m^{2} + 2m\omega_{L}$$

$$t = 2m(\omega'_{L} - \omega_{L})$$

$$u = m^{2} - 2m\omega'_{L}$$
(5)

Then by (1), (3), and (5) we have

$$\langle |\mathcal{M}|^2 \rangle = 2e^4 \left[\frac{\omega_L}{\omega_L'} + \frac{\omega_L'}{\omega_L} + \left(\frac{m}{\omega_L} - \frac{m}{\omega_L'} + 1 \right)^2 - 1 \right]$$
 (6)

Lab scattering angle θ_L is given by the Compton equation

$$\cos \theta_L = \frac{m}{\omega_L} - \frac{m}{\omega_L'} + 1$$

Hence

$$\langle |\mathcal{M}|^2 \rangle = 2e^4 \left(\frac{\omega_L}{\omega_L'} + \frac{\omega_L'}{\omega_L} + \cos^2 \theta_L - 1 \right)$$
$$= 2e^4 \left(\frac{\omega_L}{\omega_L'} + \frac{\omega_L'}{\omega_L} - \sin^2 \theta_L \right)$$

Now that we have derived $\langle |\mathcal{M}|^2 \rangle$ we can investigate the angular distribution of scattered photons. For simplicity let us drop the L subscript from lab variables. From now on the symbols ω , ω' , and θ will be lab frame variables.

The differential cross section is

$$\frac{d\sigma}{d\Omega} = \frac{1}{4(4\pi\varepsilon_0)^2 s} \left(\frac{\omega'}{\omega}\right)^2 \langle |\mathcal{M}|^2 \rangle$$

where

$$s = m^2 + 2m\omega = (mc^2)^2 + 2(mc^2)(\hbar\omega)$$

and ω' is given by the Compton equation

$$\omega' = \frac{\omega}{1 + \frac{\hbar\omega}{mc^2}(1 - \cos\theta)}$$

For the lab frame we have

$$\langle |\mathcal{M}|^2 \rangle = 2e^4 \left(\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - \sin^2 \theta \right)$$

Hence in the lab frame

$$\frac{d\sigma}{d\Omega} = \frac{e^4}{2(4\pi\varepsilon_0)^2 s} \left(\frac{\omega'}{\omega}\right)^2 \left(\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - \sin^2\theta\right)$$

Substituting

$$e^2 = 4\pi\varepsilon_0 \alpha \hbar c$$

we have

$$\frac{d\sigma}{d\Omega} = \frac{\alpha^2 (\hbar c)^2}{2s} \left(\frac{\omega'}{\omega}\right)^2 \left(\frac{\omega}{\omega'} + \frac{\omega'}{\omega} - \sin^2 \theta\right)$$

which is the Klein-Nishina formula.