Jiná pravděpodobnostní rozložení a typy modelů

- Vícerozměrné normální rozložení $y=(y_1,\ldots,y_k)$
- $\phi(y) = \frac{1}{\sqrt{|2\pi\Sigma|}} e^{-\frac{1}{2}(y-\mu)\Sigma^{-1}(y-\mu)}$
 - ▶ |.| je determinant, pokud počet složek y označíme k je $|2\pi\Sigma| = (2\pi)^k |\Sigma|$.
- pokud Σ není invertibilní, má závislé sloupce, tj. proměnné y_i jsou lineárně závislé.
 - ightharpoonup vezmeme hodnost matice Σ (označ. ℓ), pak existuje matice A a vektor ν . že
 - $y = Az + \nu$ pro ℓ dimenzionální nové souřadnice z
 - lacktriangledown my: přejdeme k novým souřadnicím, pro které má Σ plnou hodnost.

Marginalizace

- Máme: $\frac{1}{\sqrt{|2\pi\Sigma|}}e^{-\frac{1}{2}(y-\mu)\Sigma^{-1}(y-\mu)}$
- ▶ chceme: rozložení na veličinách $\{y_3, y_5, y_7\} \subset \{y_1, \dots, y_n\}$
- marginální rozložení dostaneme, když 'nezajímavé' dimenze prostě vynecháme, tj.

$$\mu_{3,5,7} = (\mu_3, \mu_5, \mu_7) \text{ a } \Sigma_{3,5,7} = \begin{bmatrix} \Sigma_{33} & \Sigma_{35} & \Sigma_{37} \\ \Sigma_{53} & \Sigma_{55} & \Sigma_{57} \\ \Sigma_{73} & \Sigma_{75} & \Sigma_{77} \end{bmatrix}$$

$$\qquad \qquad \textbf{tj.} \ \, \frac{1}{\sqrt{|2\pi\Sigma_{3,5,7}|}} e^{-\frac{1}{2} \left(y_{3,5,7} - \mu_{3,5,7}\right) \Sigma_{3,5,7}^{-1} \left(y_{3,5,7} - \mu_{3,5,7}\right)} \\$$

Podmiňování

- ▶ Zajímá nás $\pi(A|B)$, kde
 - $ightharpoonup A \subset \{y_1, \ldots, y_n\}$ o q prvcích,
 - lacksquare zbytek $B=\{y_1,\ldots,y_n\}\setminus A$ má (n-q) prvků.
- přeházíme řádky (a sloupce), aby A byly u sebe, pak všechna B; dostaneme: $y = \begin{bmatrix} y_A \\ y_B \end{bmatrix}$ (1 sloupec), $\mu = \begin{bmatrix} \mu_A \\ \mu_B \end{bmatrix}$ (1 sloupec), $\Sigma = \begin{bmatrix} \Sigma_{AA} & \Sigma_{AB} \\ \Sigma_{BA} & \Sigma_{BB} \end{bmatrix} \text{ o dimenzích } \begin{bmatrix} q \times q & q \times (n-q) \\ (n-q) \times q & (n-q) \times (n-q) \end{bmatrix}.$
- Parametry podmíněného normálního rozložení $\pi(A|B=b) = N(\mu_{A|B=b}, \Sigma_{A|B=b})$ jsou:

$$\mu_{A|B=b} = \mu_A + \Sigma_{AB} \Sigma_{BB}^{-1} (b - \mu_B)$$

$$\Sigma_{A|B=b} = \Sigma_{AA} - \Sigma_{AB} \Sigma_{BB}^{-1} \Sigma_{BA}$$

Přidání nové složky y_{n+1}

- Pokud chceme do modelu přidat proměnnou y_{n+1}, stále předpokládáme vícerozměrné gaussovské
- přidáme lineární funkci průměru (střední hodnoty):
 - $\mu_{y_{n+1}|y_{1,...,n}} = c_0 + \sum_{i=1,...,n} c_i y_i$
 - rozpty $\sigma_{(n+1)}^2$
 - případně kovariance k ostatním veličinám.

Se gaussovsky rozloženými veličinami můžeme dělat 'totéž' (grafický model, rozklad, propagace) jako v diskrétním.

Změníme parametrizaci rozložení

- ► Gaussovské rozložení $\phi(y) = \frac{1}{\sqrt{|2\pi\Sigma|}} e^{-\frac{1}{2}(y-\mu)\Sigma^{-1}(y-\mu)}$
- definujeme:
 - koncentrační matice $K = \Sigma^{-1}$
 - $h = K\mu$
 - $a = -\frac{1}{2}\log(2\pi) + \frac{1}{2}\log(|K|) \frac{1}{2}\mu^{T}K\mu$
- pak vícerozměrnou gaussovskou hustotu přepíšeme

$$\phi(y) = (2\pi)^{-\frac{d}{2}} |K|^{\frac{1}{2}} \exp\left\{-\frac{1}{2}(y-\mu)K(y-\mu)\right\}$$

$$= (2\pi)^{-\frac{d}{2}} |K|^{\frac{1}{2}} \exp\left\{-\frac{1}{2}\mu^{T}K\mu + h^{T}y - \frac{1}{2}y^{T}Ky\right\}$$

$$= \exp\left\{a + h^{T}y - \frac{1}{2}y^{T}Ky\right\}$$

$$= \exp\left\{a + \Sigma_{u}h_{u}y_{u} - \frac{1}{2}\Sigma_{u,v}K_{u,v}y_{u}y_{v}\right\}$$

Rozložitelnost

- $\phi(y) = \exp \left\{ a + \sum_{u \in U} h_u y_u \frac{1}{2} \sum_{u,v} K_{u,v} y_u y_v \right\}$
- ▶ Mějme množiny vrcholů A, B separované množinou C. Pak máme $\forall u \in A, v \in B \ k_{uv} = 0.$
- Podíváme se na vzorec a sumy rozdělíme: $\phi(y) =$ $\exp \left\{ a + \sum_{u \in A \cup C} h_u y_u + \sum_{v \in B \cup C} h_v y_v - \sum_{v \in C} h_v y_v \right.$ $\left. \left. \left. \left(\sum_{u,v \in A \cup C} K_{u,v} y_u y_v + \sum_{u,v \in B \cup C} K_{u,v} y_u y_v - \sum_{u,v \in C} K_{u,v} y_u y_v \right) \right\} \right.$ $\begin{array}{c|cccc} A & K_{AA} & K_{AC} & \\ C & K_{AC} & K_{CC} & K_{CB} \\ B & & K_{BC} & K_{BB} & \\ \end{array}$ $Tedv \ \phi(y) = g(A,C)h(C,B)$

Diskrétní veličiny

- Mějme tři veličiny, A, B, C, libovolnou pravděpodobnostní distribuci p(A, B, C) (velkým proměnná, malým konkrétní hodnota) můžeme zapsat pomocí (neznámých) parametrů u_*^* , tzv. interaction terms:
 - ▶ $log(p(a,b,c)) = u + u_a^A + u_b^B + u_c^C + u_{ab}^{AB} + u_{ac}^{AC} + u_{bc}^{BC} + u_{abc}^{ABC}$ (u je víc než je třeba, protože ...)
 - lacktriangle aby prošlo i pro nulu, napíšeme v exponenciálním tvaru $ilde{u}=\exp u$:
 - $p(a,b,c) = \tilde{u} \cdot \tilde{u}_a^A \cdot \tilde{u}_b^B \cdot \tilde{u}_c^C \cdot \tilde{u}_{ab}^{AB} \cdot \tilde{u}_{ac}^{AC} \cdot \tilde{u}_{bc}^{BC} \cdot \tilde{u}_{abc}^{ABC}$
- lacktriangle log-lineární modely některé interakce z u_* dají napevno rovné nule
 - s úmluvou, že pokud dám rovno nule u_{AB}, tak i všechny vyšší interakce u^{ABC} atd. musí být rovny nule.
 - pro specifikaci hierarchického modelu stačí zadat maximální interakce, tzv. generátory.
 - ▶ např. $\{a, b\}$ a $\{a, c\}$ generují model:
 - ▶ $log(p(a,b,c)) = u + u_a^A + u_b^B + u_c^C + u_{ab}^{AB} + u_{ac}^{AC}$ (jedno-složkové interakce jsou tam proto, že jsou podmnožinou více-složkového generátoru).

Faktorizace

- \triangleright $log(p(a,b,c)) = u + u_a^A + u_b^B + u_c^C + u_{ab}^{AB} + u_{ac}^{AC}$
- model výše lze rozepsat na součin:
- ▶ Vidíte tam podmíněnou nezávislost $B \perp \!\!\! \perp C | A$?
- obecně: dva faktory jsou nezávislé dáno zbytek právě když interakce této dvojice je nuceně 0 (tj. nevyskytují se spolu v žádné interakci)
- graf: hrana právě když je interakce dvojice povolena (ne-nutně-nula).
- grafické modely: log-lineární modely s generátory definovanými klikami grafu.
- Najděte log-lineární model, který není grafický.
- Obecně je třeba log-lineární modely učit iterativně i pro plná data.
- ▶ Pro rozložitelné modely existuje přímý výpočet. Rozložitelný model: lze rozebrat tak, že vždy eliminujeme simpliciální uzel, existuje prefektní eliminační posloupnost, graf je triangulovaný (kružnice délky 4 a víc mají tětivu).
- Najděte grafický model, který není rozložitelný.

Mixed interaction models

- A teď diskrétní a gaussovské dohoromady.
- podmíněná gaussovská hustota pro x(i, y), i seznam diskrétních proměnných, y seznam spojitých proměnných
- $f(i,y) = p(i)(2\pi)^{-\frac{q}{2}}|\Sigma|^{-\frac{1}{2}}\exp(-\frac{1}{2}(y-\mu(i))\Sigma^{-1}(y-\mu(i)))$
- ▶ parametry $p(i), \mu(i), i \in \mathcal{I}, \Sigma$ se nazývají moment parameters
- když rovnici převedeme do tvaru 'exponenciálních rodin'

$$f(i,y) = \exp \left\{ g(i) + h(i)^T y - \frac{1}{2} y^T K y \right\}$$
$$= \exp \left\{ g(i) + \Sigma_u h_u(i) y_u - \frac{1}{2} \Sigma_{u,v} K_{u,v} y_u y_v \right\}$$

ightharpoonup parametry $g(i), h(i), i \in \mathcal{I}, K$ se nazývají kanonické parametry

Mixed interaction models

- Marginála už nemusí být podmíněná gaussovská hustota (je to směs gaussovských hustot)
- ještě pořád se s tím dá počítat
 - za předpokladu, že všechny diskrétní veličiny jsou 'u sebe'
 - tj. pokud existuje cesta mezi diskrétními veličinami, existuje i jejich neobsahující spojitý uzel
 - pak |ze počítat |ikelihood a učit model.

Exponenciální rodiny

distribuční funkce ve tvaru

$$p(x) = h(x)e^{\theta^T T(x) - A(\theta)}$$

nebo obecněji ve tvaru

$$p(x) = h(x)e^{\eta(\theta)^T T(x) - A(\eta(\theta))}$$

- ightharpoonup heta vektor parametrů
- $ightharpoonup \eta$ natural parameters
- ► T(x) sufficient statistics
- ► A(θ) normalizační funkce
- ► *h*(*x*)
- ▶ klíčová myšlenka: θ a x jsou společně jen v $e^{\theta^T T(x)}$

Příklady rozložení z exponenciálních rodin

$$\begin{array}{lll} \text{(tj. dají se 'reparametrizovat')} \\ \text{Gaussian} & \phi(y) = \frac{1}{\sqrt{|2\pi\Sigma|}} e^{-\frac{1}{2}(y-\mu)\Sigma^{-1}(y-\mu)} & x \in R \\ \text{Bernoulli} & p(x) = \alpha^x (1-\alpha)^{1-x} & x \in \{0,1\} \\ \text{Binomial} & p(x) = \binom{n}{x} \alpha^x (1-\alpha)^{n-x} & x \in \{0,1,\dots,n\} \\ \text{Multinomial} & p(x) = \frac{n!}{x_1! x_2! \dots x_n!} \Pi_{i=1}^n \alpha_i^{x_i} & x \in \{0,1,\dots,n\}, \Sigma_i x_i = n \\ \text{Exponential} & p(x) = \lambda e^{-\lambda x} & x \in R^+ \\ \text{Poisson} & p(x) = \frac{e^{-\lambda}}{x_1!} \lambda^x & x \in \{0,1,\dots\} \\ \text{Dirichlet} & p(x) = \frac{\Gamma(\Sigma_i \alpha_i)}{\Pi_i \Gamma(\alpha_i)} \Pi_i x_i^{\alpha_i - 1} & x \in <0,1 >, \Sigma_i x_i = 1 \\ \end{array}$$

$$\Gamma(k) = k!, \ \Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$$

Příklad: USA senát: hledání skupin podobně hlasujících

Justin Grimmer: An Introduction to Bayesian Inference via Variational Approximations

- \triangleright N senátorů i=1,...,N.
- každý v právě jednom z K klastrů k = 1, ..., K podobně hlasujících
- $ightharpoonup au_i$ je K rozměrný vektor, indikuje klastr i–tého senátora
- lacktriangle pravděpodobnost klastrů (bloků) π
- ightharpoonup pravděpodobnost *i*–tý senátor v bloku k: $au_i | \pi pprox \textit{Multinomial}(1,\pi)$
- pozorovali jsme J hlasování
 - každé hlasování má pro každý blok parametr 'pravděpodobnost pozitivního hlasování'

$$\theta_k = (\theta_{k1}, \dots, \theta_{kJ})$$

- lacktriangleright i –tý senátor (v bloku $au_{ik}=1$), j–té hlasování
 - $ightharpoonup V_{ij}| au_{ik}=1pprox Bernoulli(heta_{kj})$
- apriorní rozložení předpokládáme
 - $\pi \approx Dirichlet(\alpha)$
 - $ightharpoonup \forall k,j \; \theta_{kj} pprox \textit{Beta}(\gamma_1,\gamma_2)$

'Běžné metody'

- MCMC vzorkování má problém
 - pro různé permutace 'identifikátorů bloků' stejný výsledek i likelihood
 - snadno může přeskakovat a nedržet se jednoho konkrétního
 - pak jsou napočtené četnosti i hodně daleko od reality
- EM klastrování
 - hodně parametrů (s každým hlasováním další)
 - ▶ potřebuje invertovat matici 218,694 × 218,694
 - potřebuje hodně dat
 - senátorů ale není neomezeně
- ► EM v M kroku počítá maximálně věrohodný model = JEDEN
- následující algoritmus bude držet (přibližné) rozložení na 'všech' modelech

Variational approximation

- ▶ Chceme 'posterior' $p(model|data) = p(\theta, \pi, \tau)$
- aproximujeme pomocí $q(\theta, \pi, \tau)$
- ▶ a předpokládáme nezávislost parametrů, $q(\theta, \pi, \tau) = q(\pi) \prod_{k=1}^{K} \prod_{i=1}^{J} q(\theta_{ki} \prod_{i=1}^{N} q(\tau_i))$
- předpokládáme rozložení (viz dříve)
 - $\mathbf{q}(\tau_i) = Multinomial(1, r_i), \text{ kde } r_i = (r_{i1}, \dots, r_{iK})$
 - $q(\pi) = Dirichlet(\lambda)$, kde $\lambda = (\lambda_1, \dots, \lambda_k)$
 - $\forall k, j \ q(\theta_{kj}) = Beta(\eta_{kj1}, \eta_{kj2})$
- iterujeme podobně jako v EM, jen minimalizujeme KL divergenci KL(q(), p(|data)).
- Máme λ_k^{old} , θ_{kj}^{old} , chceme r_{ik}^{new} :

$$r_{ik}^{new} \propto \exp \left\{ E(log \pi_k) \sum_{j=1}^J \{V_{ij} \left(E(log heta_{kj1})
ight) + (1 - V_{ij}) \left(E(log heta_{kj2})
ight) \}
ight\}$$

where $\mathrm{E}[\log \pi_k] = \Psi(\lambda_k^{\mathrm{old}}) - \Psi(\sum_{z=1}^{\kappa} \lambda_z^{\mathrm{old}})$, $\mathrm{E}[\log \theta_{kj1}] = \Psi(\eta_{kj1}^{\mathrm{old}}) - \Psi(\eta_{kj1}^{\mathrm{old}} + \eta_{kj2}^{\mathrm{old}})$, and $\mathrm{E}[\log \theta_{kj2}] = \Psi(\eta_{kj2}^{\mathrm{old}}) - \Psi(\eta_{kj1}^{\mathrm{old}} + \eta_{kj2}^{\mathrm{old}})$. $\Psi(\cdot)$ is the Digamma function, the derivative of the Gamma function. Next, we set λ_k^{new} to $\lambda_k^{\mathrm{new}} = \alpha_k + \sum_{i=1}^{N} r_{ik}^{\mathrm{new}}$. And finally, we set $\theta_{kj}^{\mathrm{new}}$ to, $\theta_{kj1}^{\mathrm{new}} = \gamma_1 + \sum_{i=1}^{N} r_{ik}^{\mathrm{new}} V_{ij}$ and $\theta_{kj2}^{\mathrm{new}} = \gamma_2 + \sum_{i=1}^{N} r_{ik}^{\mathrm{new}} (1 - V_{ij})$.

$$\Psi(x) = \frac{\Gamma'(x)}{\Gamma(x)}$$

Příklad: USA senát: hledání skupin podobně hlasujících

Table 1 Voting blocs in U.S. Senate

Label	Example senators	Distinctive Vote	%
Cons. Rep Mod. Rep	Coburn, DeMint, Inhofe, Sessions	Amendment 521: Reduce	37.7
		Federal Debt	10.0
	Coleman, Hagel, Lugar, Murkowski	Amendment 2662: Prohibit Canyon Funds	12.2
Mod. Dem	Bayh, McCaskill, Lieberman, Ben Nelson	Cloture on S. 2633: Iraq Redeployment	17.0
Lib. Dem	Clinton, Kennedy, Obama, Sanders	Table Amendment 4388: Mortgages	33.0

Součin členů exp. rodin

- součin dvou členů exp. rodin je také z exp. rodin,
- ale nemusí mít hezkou parametrickou formu

$$h(x)e^{\theta_1^TT(x)-A(\theta)}\cdot h(x)e^{\theta_2^TT(x)-A(\theta)}=\tilde{h}(x)e^{(\theta_1+\theta_2)^TT(x)-\tilde{A}(\theta_1,\theta_2)}$$

součet dvou členů exp. rodin už do exp. rodin patřit nemusí.

Bayesovské rozhodování, konjugované hustoty

- ▶ máme–li 'hezké' $p(\theta)$ a $p(x|\theta)$, součin $p(x|\theta)p(\theta)$ už být hezký nemusí
- ale může: když zvolíme vhodné hustoty
- Dirichlet a Multinomial
- gausovské a gausovské
- beta a bernoulli
- a další.