Line Assignment

Anusha Jella

September 21, 2022

Problem: In Fig.1, PQRS and ABRS are parallelograms and X is any point on side BR. Show that

1. ar(PQRS) = ar(ABRS)

2. ar(AXS) = 1/2 ar(PQRS)

Fig 1. Parallelogram

Solution 1:

Two parallelograms PQRS and ABRS, on the same base SR and between the same parallels PB and SR are given (see Fig.1).

We need to prove that ar(PQRS) = ar(ABRS). Let, In PQRS

$$S - R = p1 \tag{1}$$

$$S - P = p2 \tag{2}$$

$$P - Q = q1 \tag{3}$$

$$R - Q = q2 \tag{4}$$

According to parrallelogram condition

$$\|\mathbf{p1}\| = \|\mathbf{q1}\| \& \& \|\mathbf{p2}\| = \|\mathbf{q2}\| \tag{5}$$

Let,In ABRS

$$S - R = s1 \tag{6}$$

$$S - A = s2 \tag{7}$$

$$A - B = r1 \tag{8}$$

$$R - B = r2 \tag{9}$$

According to parallelogram condition

$$\|\mathbf{s1}\| = \|\mathbf{r1}\| \& \& \|\mathbf{s2}\| = \|\mathbf{r2}\|$$
 (10)

Area of parallelogram PQRS

$$p1Xp2$$
 (11)

Now, area of parallelogram ABRS

$$= SRXSA \tag{12}$$

$$= s1Xs2 \tag{13}$$

$$= SRX(SP + PA) \tag{14}$$

$$[PA \parallel PQ : PA = k p1]$$

$$= \mathbf{p1}X(\mathbf{p2} + k\mathbf{p1}) \tag{15}$$

[from [5] and [10] $\|\mathbf{p1}\| = \|\mathbf{s1}\|$]

$$= p\mathbf{1}Xp\mathbf{2} + p\mathbf{1}Xkp\mathbf{1} \tag{16}$$

$$= \mathbf{p1}X\mathbf{p2} + k(\mathbf{p1}X\mathbf{p1}) \tag{17}$$

$$= p1Xp2 \tag{18}$$

[: $p1 \times p1 = 0$]

=Area of parallelogram ABRS

Hence proved

So, from [11] and [18] PQRS and ABRS parallalograms are equal in area.

solution 2:

Let ΔAXS and parallelogram ABRS be on the same base AS and between the same parallels

- \boldsymbol{AS} and \boldsymbol{BR} (see Fig. 1).
- You wish to prove that

$$ar (AXS) = \frac{1}{2} ar (PQRS)$$

Draw BY \parallel AS to obtain another parallelogram AXYS as in Fig 2. Now parallelograms ABRS and AXYS are on the same base AS and between the same parallels AS and BY.

$$\therefore ar(ABRS) = ar(AXYS)$$
(By Solution 1) (19)

But $\Delta AXS \cong \Delta XYS$ (Diagonal SX divides parallelogram AXYS into two congruent triangles.)

$$A - X = a1 \tag{20}$$

$$S - X = d1 \tag{21}$$

$$X - Y = x1 \tag{22}$$

$$Y - S = x2 \tag{23}$$

$$S - A = x3 \tag{24}$$

from parallelogram condition

$$a1 = x2 \& \& x3 = x1 \tag{25}$$

$$ar(AXS) = ar(SXY)$$
 (26)

Therefore,

ar (AXS)=
$$\frac{1}{2}$$
 * (**x3** X **a1**)

ar (AXYS)=
$$(x3 \times a1) \implies SA \times AX$$

$$\begin{array}{l} \text{ar (AXS)=}1/2 \text{ ar (AXYS)} \\ = \frac{1}{2}(\boldsymbol{S}\boldsymbol{A} \ \mathbf{X}\boldsymbol{A}\boldsymbol{X}) \\ = \frac{1}{2} (\boldsymbol{S}\boldsymbol{A} \ \mathbf{X} \ (\boldsymbol{A}\boldsymbol{B} + \boldsymbol{B}\boldsymbol{X})) \\ = \frac{1}{2} ((s\boldsymbol{2} + \mathbf{k} \ s\boldsymbol{1}) \ \mathbf{X} \ (s\boldsymbol{1} + \mathbf{k}\boldsymbol{1}(s\boldsymbol{2} + \mathbf{k} s\boldsymbol{1}))) \end{array}$$

$$\begin{bmatrix} =\frac{1}{2} (\mathbf{s1} \times \mathbf{s2}) [\mathbf{a} \times \mathbf{a} = 0] \\ =\frac{1}{2} (\mathbf{SR} \times \mathbf{SA}) \end{bmatrix}$$

This gives ar (AXS) = $\frac{1}{2}$ ar (ABRS) [From (1) and (3)]

ar $(AXS) = \frac{1}{2}$ ar (PQRS) [From solution 1]

Construction

The following python code is used for constructing PQRS and ABRS parallalograms.

https://github.com/AnushaJella/ assigment_line/blob/main/code/asgn1. py

See Fig 1 for the input parameters in Table 1.

Symbol	Value	Description
S	$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$	S Point
a	4	SR
θ	80°	∠RSP
b	5	SP
k	1.5	Point A

Table 1

For construction, let S = 0, P,R are input vectors.

the fourth point be

$$Q = P + R - S$$

choose k value and define

$$\boldsymbol{A} = \frac{k\boldsymbol{P}}{k+1}$$

B is fourth vertex of ABRS parallelogram

$$B=A+R-S$$

X be any point on BR k value and define

$$X = \frac{kB}{k+1}$$

draw a line parallel from S such that AX \parallel SY. So,AXYS is a parallalogram

$$Y=S+X-A$$

Proof:Two parallelograms PQRS and ABRS, on the same base SR and between the same parallels PB and SR are given (see Fig.1).

We need to prove that ar (PQRS) = ar (ABRS). In Δ PSA and Δ QRB,

$$\angle SPA = \angle RQB$$
 (27)

(Corresponding angles from PS \parallel RQ and transversal PB)

$$\angle PAS = \angle QBR$$
 (28)

(Corresponding angles from AS \parallel BR and transversal PB)

Therefore,
$$\angle PSA = \angle QRB$$
 (29)

(Angle sum property of a triangle)

$$Also, PS = QR \tag{30}$$

(Opposite sides of the parallelogram PQRS) So,
$$\Delta$$
 PSA \cong Δ QRB

$$Therefore, ar(PSA) = ar(QRB)$$
 (31)

(Congruent figures have equal areas)

$$ar (PQRS) = ar (PSA) + ar (AQRS)$$

$$= ar (QRB) + ar (AQRS) [From(33)]$$

$$= ar (ABRS)$$

So, parallelograms PQRS and ABRS are equal in area.

2