Linear Algebra I Exercises III: Vector Spaces and Fields

Dr Nicholas Sedlmayr

1. Prove the following: Suppose $\mathbf{A} = \{a_1, a_2, \dots a_n\} \subset V$ is linearly independent, where V is a vector space over F. Suppose also that $v \in V$ and there are scalars $\lambda_1, \dots \lambda_n$ and $\mu_1, \dots \mu_n$ such that

$$v = \lambda_1 a_1 + \lambda_2 a_2 + \dots \lambda_n a_n$$

and

$$v = \mu_1 a_1 + \mu_2 a_2 + \dots + \mu_n a_n$$

then $\lambda_1 = \mu_1, \ \lambda_2 = \mu_2, \dots \lambda_n = \mu_n$. (Tip: consider the definition of linear independence.)

2. Prove that the set of Pauli matrices and the 2×2 identity matrix, $A = \{\mathbb{I}_2, \boldsymbol{\sigma}^x, \boldsymbol{\sigma}^y, \boldsymbol{\sigma}^z\}$, is a basis of the vector space V, the set of all 2×2 matrices over \mathbb{C} , with addition and scalar multiplication defined in the usual way. The Pauli matrices are

$$oldsymbol{\sigma}^x = egin{pmatrix} 0 & 1 \ 1 & 0 \end{pmatrix} \,, \qquad oldsymbol{\sigma}^y = egin{pmatrix} 0 & -\mathrm{i} \ \mathrm{i} & 0 \end{pmatrix} \,, \qquad oldsymbol{\sigma}^z = egin{pmatrix} 1 & 0 \ 0 & -1 \end{pmatrix} \,.$$

- 3. Find a basis for the following vector spaces:
 - (a) The set of all 2×2 matrices over \mathbb{R} .
 - (b) \mathbb{C}^4 , i.e. the set of 4×1 column vectors with complex entries.
- 4. Which of the following are bases over \mathbb{R}^3 ? Give reasons!
 - (a) $A = \{(1,1,0)^T, (0,1,0)^T, (1,0,1)^T, (0,0,1)^T\}.$
 - (b) $B = \{(1,1,0)^T, (0,1,0)^T, (1,0,1)^T\}.$
 - (c) $C = \{(1,0,0)^T, (0,i,0)^T, (1,0,i)^T\}.$
 - (d) $D = \{(1,1,1)^T, (2,2,1)^T, (1,1,0)^T, \}.$
- 5. Find bases over the following subspaces of \mathbb{R}^3 .
 - (a) $A = \{(x, y, z)^T : 2x + y z = 0\}.$
 - (b) $B = \{(x, y, z)^T : x + y 2z = 0, x y = 0, \}.$
- 6. Prove that the set of vectors $U = \{(x, y, 0)^T : x, y \in \mathbb{R}\}$ forms a subspace of the vector space \mathbb{R}^3 .

- 7. Prove that one can not define a field of order 4 with the integers modulo $4, \{0, 1, 2, 3\}.$
- 8. Prove that one can define a field of order 4 from $\{0,1,a,a+1\}$. Tip: Start from normal addition and multiplication and determine what needs to be changed to satisfy the definition of a field. Marks will be given if a clear outline of what needs to be done can be given, even without the complete solution.