Examen du jeudi 9 novembre 2023

durée: 2 heures

Pour chacun des algorithmes, on justifiera avec soin :

- que l'algorithme termine (si une boucle « tant que » est utilisée).
- que l'algorithme renvoie bien le résultat demandé.

Une réponse non justifiée sera notée sur les trois quarts des points.

Pour les boucles « pour », on adoptera les conventions suivantes. Si $a,b \in \mathbb{Z}$, « pour i allant de a à b » signifie « pour i parcourant en croissant l'intervalle $[\![a,b]\!]$ ». Lorsque b < a, cet intervalle est vide, donc aucune des instructions dans la boucle « pour » n'est effectuée (ce sera par exemple le cas si on écrit « pour i allant de 1 à n », avec n=0). On pourra utiliser l'instruction « pour i allant en décroissant de b à a », qui signifie (si $b \ge a$) « pour i prenant successivement les valeurs $b, b-1, \ldots, a$ ». Lorsque a > b, aucune instruction dans la boucle « pour » n'est alors effectuée.

Exercice 1. Écrire un algorithme pour calculer chacune des valeurs suivantes :

- 1. pour $x \in \mathbb{R}$ donné, calculer |x|,
- 2. pour $n \in \mathbb{N}$ donné, calculer n!,
- 3. pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$ donnés, calculer x^n , de manière itérative, puis récursive, (de manière basique, sans exponentiation rapide),
- 4. pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$ donnés, calculer $S = \sum_{k=0}^{n} \frac{x^k}{k!}$; pour ce calcul, on donnera un algorithme basique utilisant les algorithmes précédents, et un algorithme minimisant le nombre d'opérations,
- 5. le maximum d'une liste L non-vide.
- **Exercice 2.** 1. Soit (u_n) la suite définie comme suit : $u_0 = 1$, $u_1 = 2$ et $u_{n+2} = 3u_n + 2u_{n+1}$. Écrire un algorithme itératif qui prend en entrée élément $n \in \mathbb{N}$ et qui renvoie u_n .
 - 2. Écrire un algorithme récursif qui prend en entrée élément $n \in \mathbb{N}$ et qui renvoie u_n
 - 3. Soit $(v_n) \in \mathbb{R}^{\mathbb{N}^*}$ la suite définie comme suit : $v_1 = 1$, $v_2 = 3$ et si $n \in \mathbb{N}$, $\begin{cases} v_{2n} = v_n^2 + 5 \\ v_{2n+1} = v_n v_{n+1} + 7 \end{cases}$ Écrire un algorithme qui prend en entrée un élément $n \in \mathbb{N}^*$ et qui détermine v_n .
- **Exercice 3.** Soit $L = [a_0, \ldots, a_{n-1}]$, où les a_i sont des entiers. On rappelle le principe du tri par sélection, pour trier la liste L: on cherche d'abord l'entier (ou un des entiers) i tel que a_i est le plus petit élément de la liste. On échange ensuite a_0 et a_i . On obtient alors une suite $L_1 = [a_i, b_1, \ldots, b_{n-1}]$. On réitère ensuite le processus avec $[b_1, \ldots, b_{n-1}]$, et ainsi de suite.

Écrire un algorithme qui prend en entrée une liste d'entiers et qui la trie, en utilisant le tri par sélection.

Exercice 4. (équation de Pell-Fermat) On considère l'équation (E) $x^2-2y^2=1$, d'inconnues $x,y\in\mathbb{N}^*$. Écrire un algorithme qui renvoie la liste de tous les couples (x,y) qui sont solution de (E) et qui vérifient $y\leq 100$.

- **Exercice 5.** 1. Pour $n \in \mathbb{N}^*$, on pose $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n! \cdot n}$. Montrer que (u_n) et (v_n) sont adjacentes.
 - 2. On admet que (u_n) tend vers e. Écrire un algorithme qui prend en entrée en réel positif ϵ et qui renvoie une valeur approchée à ϵ près de e.

Exercice 6. 1. On rappelle que si $a, b \in \mathbb{N}^*$, alors $a \wedge b = b \wedge r$, où r est le reste dans la division euclidienne de a par b. On propose l'algorithme suivant, qui prend en entrée deux entiers $a, b \in \mathbb{N}$ et qui est censé déterminer leur PGCD. Fonctionne-t-il? Si oui, le justifier, sinon, le corriger.

Algorithme(a, b):

$$si \ a <= b :$$
 $| \ b, a \leftarrow a, b \$
 $Tant \ que \ b \neq 0 :$
 $| \ b \leftarrow a \ | \ b \leftarrow a\%b$
 $Renvoyer \ a.$

2. Une puce se déplace sur un axe gradué que l'on identifie avec \mathbb{Z} . Au temps t=0, la puce est en 0. Supposons que la puce est en x à l'instant n. Alors à l'instant n+1, elle est en x+1 avec probabilité 1/3, en x+2 avec probabilité 1/3, en x-3 avec probabilité 1/3. On souhaite programmer un algorithme simulant la position de la puce après 50 itérations. On propose l'algorithme suivant :

Algorithme:

```
x=0

Pour t allant de\ 1 à 50 faire :

|Si\ random() < 1/3:

|x \leftarrow x + 1|

|Si\ random() >= 1/3\ et\ random() < 2/3:

|x \leftarrow x + 2|

|Si\ random() > 2/3

|x \leftarrow x - 3|

Renvoyer x.
```

Cet algorithme fonctionne-t-il? Si oui, le justifier, sinon, le corriger (la fonction random() retourne un nombre (pseudo)-aléatoire entre 0 et 1).