МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИИСКОИ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «Национальный исследовательский университет ИТМО»

Учебный год 2023/2024 Курс $\underline{1}$, семестр $\underline{1}$ Дисциплина Математический анализ

РАСЧЕТНО-ГРАФИЧЕСКАЯ РАБОТА №2

Предел и производная функции одной переменной

Вариант №2

Выполнили:

Шмунк Андрей Александрович Р3108 Петров Вячеслав Маркович Р3108 Таджеддинов Рамиль Эмильевич Р3108 Елисеев Константин Иванович Р3108

Содержание

Задания	
Задание 1. Пределы	
Решение	
Задание 2. Дифференциал	11
Решение	
Задание 3. Наибольшее и наименьшее значение функции	13
Решение	
Задание 4. Исследование функции	15
Решение	15
Задание 5	21
Решение	21
Вывод	22
Оценочный лист	2 3

Задания

Задание 1. Пределы

- 1) Вычислите предел последовательности при $n \to \infty$, исследуйте её на монотонность и ограниченность
- 2) Постройте график общего члена последовательности в зависимости от номера n.
- 3) Проиллюстрируйте сходимость (расходимость), ограниченность и монотонность последовательности:
- а) Вспомните определение сходимости (расходимости), ограниченность и монотонность последовательности;

Вычислите предел функции при $x \to \infty$, исследуйте её на монотонность и ограниченность.

Постройте график функции в зависимости от x.

Проиллюстрируйте сходимость (расходимость) ограниченность и монотонность функции на бесконечности:

вспомните определение сходимости (расходимости), ограниченность и монотонность функции в на бесконечности;

- б) выберите три различных положительных числа ϵ_1 , ϵ_2 и ϵ_3 ;
- в) для каждого такого числа изобразите на графике є-окрестность («є-трубу»)
- г) и найдите на графике номер N, начиная с которого все члены последовательности попадают в ε -окрестность или установите, что такого номера нет.

и найдите на графике δ-окрестность, в которой все значения функции попадают в ε-окрестность или установите, что такой окрестности нет.

$$a_n = \frac{8^{n+2} + (-7)^{n-1}}{5 \cdot 8^n + (-7)^n} \qquad f(x) = \left(\frac{1 - x^2}{2 - 7x^2}\right)^{x - 13}$$

Решение

1) Рассмотрим a_n

$$\lim_{n \to \infty} \frac{8^{n+2} + (-7)^{n-1}}{5 \cdot 8^n + (-7)^n} = \lim_{n \to \infty} \frac{8^2 + \frac{1}{-7} \left(-\frac{7}{8}\right)^n}{5 + \left(-\frac{7}{8}\right)^n}$$

Очевидно, что $\lim_{n\to\infty}(-\frac{7}{8})^n=0$, следовательно $\lim_{n\to\infty}\frac{8^{n+2}+(-7)^{n-1}}{5\cdot 8^n+(-7)^n}=\frac{64}{5}=12.8$

$$a_1=rac{8^{1+2}+(-7)^{1-1}}{5\cdot 8^1+(-7)^1}pprox 15$$
,5, $a_2=rac{8^{2+2}+(-7)^{2-1}}{5\cdot 8^2+(-7)^2}pprox 11$,1, $a_3=rac{8^{3+2}+(-7)^{3-1}}{5\cdot 8^3+(-7)^3}pprox 14$,8 $a_1>a_2< a_3$, значит последовательность не монотонна

По теореме об ограниченности сходящейся последовательности получаем, что эта последовательность ограничена сверху $a_1 \approx 15.5$, а снизу $a_2 \approx 11.1$

2) Рассмотрим a_n

График общего члена последовательности в зависимости от номера n.

3) Рассмотрим a_n

По графику видно, что последовательность сходится и ограничена сверху и снизу, при этом она не монотонна.

а)
Если у последовательности есть предел, то говорят, что данная последовательность сходится (является сходящейся), в противном случае (если у последовательности нет предела) говорят, что последовательность расходится (является расходящейся). Как мы доказали, наша последовательность имеет предел, значит она - сходящаяся

Монотонная последовательность — это последовательность, элементы которой с увеличением номера не возрастают, или, наоборот, не убывают. Как мы видим (и доказали) наша последовательность не обладает таким свойством.

Последовательность a_n называется ограниченной, если существует такое действительное число C, что для любого члена последовательности выполнено неравенство $a_n < C$. Наша последовательность ограничена снизу членом $a_2 \approx 11,1$, а сверху $a_1 \approx 15,5$

- б) <u>Рассмотрим a_n </u> Рассмотрим $\epsilon_1 = 1$, $\epsilon_2 = 0.5$ и $\epsilon_3 = 0.2$
- в) Рассмотрим a_n ϵ -окрестность (« ϵ -труба») для $\epsilon_1=1$

При ближайшем рассмотрении понимаем, что начиная с N=8, все члены последовательности попадают в ϵ -окрестность

ϵ -окрестность (« ϵ -труба») для $\epsilon_2=0.5$

При ближайшем рассмотрении понимаем, что начиная с N=13, все члены последовательности попадают в ϵ -окрестность

ϵ -окрестность (« ϵ -труба») для $\epsilon_3 = 0.2$

При ближайшем рассмотрении понимаем, что начиная с N=20, все члены последовательности попадают в ϵ -окрестность

1) Рассмотрим f(x)

$$f(x) = \left(\frac{1 - x^2}{2 - 7x^2}\right)^{x - 13}$$

$$\lim_{x \to +\infty} \left(\frac{1 - x^2}{2 - 7x^2}\right)^{x - 13} = \lim_{x \to +\infty} \left(\frac{1 - x^2}{2 - 7x^2}\right)^x * \left(\frac{1 - x^2}{2 - 7x^2}\right)^{-13} = \lim_{x \to +\infty} \left(\frac{\frac{1}{x^2} - 1}{\frac{2}{x^2} - 7}\right)^x * \lim_{x \to +\infty} \left(\frac{\frac{1}{x^2} - 1}{\frac{2}{x^2} - 7}\right)^{-13}$$

Очевидно, что $\lim_{x \to \infty} \frac{1}{x^2} = 0$, следовательно $\lim_{x \to +\infty} \left(\frac{1-x^2}{2-7x^2}\right)^{x-13} = \lim_{x \to +\infty} \left(\frac{1}{7}\right)^x * \left(\frac{1}{7}\right)^{-13} = 0 * 7^{13} = 0$

$$\lim_{x \to -\infty} \left(\frac{1 - x^2}{2 - 7x^2} \right)^{x - 13} = \lim_{x \to -\infty} \left(\frac{1 - x^2}{2 - 7x^2} \right)^x * \left(\frac{1 - x^2}{2 - 7x^2} \right)^{-13} =$$

$$= \lim_{x \to -\infty} \left(\frac{\frac{1}{x^2} - 1}{\frac{2}{x^2} - 7} \right)^x * \lim_{x \to -\infty} \left(\frac{\frac{1}{x^2} - 1}{\frac{2}{x^2} - 7} \right)^{-13} = \lim_{x \to -\infty} \left(\frac{1}{7} \right)^x * \left(\frac{1}{7} \right)^{-13} = +\infty$$

2) Рассмотрим f(x)

$$f(x)$$
 не определенна в точках $\pm \sqrt{\frac{2}{7}}$, поэтому она не непрерывна $f(x_1) = \left(\frac{1-(-0,389)^2}{2-7*(-0,389)^2}\right)^{-0,389-13} \approx 3,971,$ $f(x_2) = \left(\frac{1-0,38^2}{2-7*0,38^2}\right)^{0,38-13} \approx 6,241$ $f(x_3) = \left(\frac{1-12,66^2}{2-7*12,66^2}\right)^{12,66-13} \approx 1,941$ $f(x_4) > f(x_2) > f(x_2)$ значит функция не монотонна

Посчитаем правосторонний предел точки $\frac{\sqrt{14}}{7}$

$$\lim_{x \to \frac{\sqrt{14}}{7} + 0} \left(\frac{1 - x^2}{2 - 7x^2} \right)^{x - 13} = +\infty$$

Посчитаем левосторонний предел для точки $-\frac{\sqrt{14}}{7}$

$$\lim_{x \to -\frac{\sqrt{14}}{7} - 0} \left(\frac{1 - x^2}{2 - 7x^2} \right)^{x - 13} = +\infty$$

Функция не ограничена.

3) Рассмотрим f(x)

Функция называется сходимой на бесконечности, если

$$\lim_{x \to -\infty} f(x) = \lim_{x \to +\infty} f(x)$$

Однако, у нашей функции

$$\lim_{x\to -\infty} f(x) \neq \lim_{x\to +\infty} f(x)$$

Функция называется монотонной, если

$$\forall x_1, x_2 : x_1 < x_2 => f(x_1) \le f(x_2)$$

или

$$\forall x_1, x_2 : x_1 < x_2 => f(x_1) \ge f(x_2)$$

Явно видно, что наша функция не монотонна.

Функция называется ограниченной, если существует такое действительное число C, что для любого x выполнено неравенство f(x) < C. Наша функция не ограничена

6) Рассмотрим f(x)

Рассмотрим $\varepsilon_1 = 10$, $\varepsilon_2 = 2$ и $\varepsilon_3 = 1$

\mathbf{B}) Рассмотрим $\mathbf{f}(\mathbf{x})$

Поскольку пределы $\pm \infty$ не равны, то нет подходящей δ-окрестности ε-окрестность («ε-труба») для $\epsilon_1 = 10$

 ϵ -окрестность (« ϵ -труба») для $\epsilon_3=1$

Задание 2. Дифференциал

Дана задача. Проведите исследование:

- 1) Составьте математическую модель задачи: введите обозначения, выпишите данные, составьте уравнение (систему уравнений), содержащее неизвестное.
- 2) Решите задачу аналитически.
- 3) Сделайте графическую иллюстрацию к решению задачи. Сверьтесь с аналитическим решением.
- 4) Запишите ответ.

Вычислите приближённо площадь кругового кольца при изменении радиуса R на Величину ΔR .

Решение

- 1) Математическая модель
 - 1. Обозначения:
 - *R* исходный радиус круга.
 - ΔR изменение радиуса.
 - А исходная площадь круга.
 - A' новая площадь круга после изменения радиуса.
 - ΔA изменение площади круга.
 - 2. Данные:
 - $A = \pi R^2$ (площадь круга с радиусом R)
 - $A' = \pi (R + \Delta R)^2$ (площадь круга с измененным радиусом $R + \Delta R$)
 - $\Delta A = A' A$ (приближенное изменение площади круга)
 - 3. Уравнение:

$$\Delta A \approx 2\pi R \Delta R + \pi (\Delta R)^2$$

Приближенное значение изменения площади можно вычислить, используя формулу для первого члена ряда Тейлора функции площади круга A(R) в окрестности точки R, где $\pi(\Delta R)^2$ — второй член ряда Тейлора, который может быть опущен, если ΔR мало по сравнению с R.

2) Аналитическое решение

Для вычисления приближённой площади кругового кольца при изменении радиуса R на величину ΔR , можно использовать первую производную функции площади круга по радиусу. Формула для дифференциала площади:

$$dA = 2\pi R \Delta R$$

3) Графическое решение

На графике мы видим зависимость площади круга от его радиуса. Линии R и $R+\Delta R$ показывают исходный и изменённый радиусы соответственно.

Заштрихованная область между этими линиями представляет приблизительное значение ΔA , которое соответствует площади кругового кольца.

График и аналитическое решение согласуются: оба показывают, что при увеличении радиуса на ΔR , площадь круга увеличивается примерно на величину, равную дифференциалу площади A.

4) Ответ

Для приближённого вычисления изменения площади кругового кольца при изменении радиуса R на малую величину ΔR , мы использовали формулу первого порядка из ряда Тейлора для функции площади круга:

$$\Delta A \approx 2\pi R \Delta R$$

Если ΔR достаточно мало, то второй член ряда Тейлора $\pi(\Delta R)^2$ можно пренебречь, так как он будет значительно меньше, чем первый член при малых значениях ΔR .

Таким образом, если известны значения R и ΔR , вы можете подставить их в формулу выше, чтобы найти приближенное изменение площади ΔA .

Задание 3. Наибольшее и наименьшее значение функции

Дана задача. Проведите исследование:

- 1) Составьте математическую модель задачи: введите обозначения, выпишите данные, составьте уравнение (систему уравнений), содержащее неизвестное.
- 2) Решите задачу аналитически.
- 3) Сделайте графическую иллюстрацию к решению задачи. Сверьтесь с аналитическим решением.
- 4) Запишите ответ.

Из куска металла, ограниченного линиями y=x, x=12, y=0 требуется выпилить деталь прямоугольной формы с наибольшей площадью.

Решение

1) Математическая модель

Заметим, что линии своим пересечением образуют прямоугольный треугольник. Зададим прямоугольник:

Слева будет отсекаться равнобедренный прямоугольный треугольник со стороной х, оставшееся пространство будет занимать прямоугольник со сторонами х и 12-х, т.к сторона изначального треугольника 12, х отсекается равнобедренным.

Таким образом, зададим функцию площади треугольника, зависящую от х:

$$f(x) = (12 - x) * x = 12x - x^2,$$

где х- расстояние по оси Ох от начала координат.

2) Аналитическое решение Исследуем функцию на экстремум Продифференцируем

$$f'(x) = 12 - 2x$$

Приравняем производную к нулю:

$$12 - 2x = 0$$
 $2x = 12$
 $x = 6$
 $x=6 -$ точка максимума
 $y = 12 - x = 6$

отсюда следует, что максимальная площадь будет при сторонах прямоугольника 6 и 6, равная 36.

3) Графическое решение

По рисунку видно, что и правда, максимальная площадь прямоугольника достигается при сторонах 6 и 6

4) Ответ: 36

Задание 4. Исследование функции

Даны функции f(x) и g(x). Проведите поочерёдно их полные исследования:

- 1) Найдите область определения функции.
- 2) Проверьте, является ли функция чётной (нечётной), а также периодической, и укажите, как эти свойства влияют на вид графика функции.
- 3) Исследуйте функцию на нулевые значения и найдите промежутки ее знакопостоянства.
- 4) Исследуйте функцию с помощью первой производной: найдите интервалы монотонности и экстремумы функции.
- 5) Исследуйте функцию с помощью второй производной: найдите интервалы выпуклости (вогнутости) и точки перегиба функции.
- 6) Проверьте наличие вертикальных, горизонтальных и наклонных асимптот графика функции.
- 7) Найдите точки пересечения графика с координатными осями и (при необходимости) найдите

значения функции в некоторых дополнительных точках.

8) Постройте график. Отметьте на нём все результаты исследования.

$$f(x) = \frac{4x^3}{(1-2x)^2}$$
 $g(x) = 2x - \sin\frac{x}{2}$

Решение

1) <u>Рассмотрим f(x)</u>:

$$(1 - 2x)^2 \neq 0$$

$$1 - 2x \neq 0$$

$$2x \neq 1$$

$$x \neq 0.5$$

Область определения f(x): $x \in (-\infty; 0.5) \cup (0.5; +∞)$

Рассмотрим g(x), эта функция может принимать любые значения, т.е. $x \in (-\infty; +\infty)$

2) Рассмотрим f(x):

$$f(-x) = \frac{-4x^3}{(1+2x)^2}$$
$$f(x) \neq f(-x)$$

f(x) — функция общего вида, значит не симметрична ни относительно Ох, ни относительно Оу.

Функция не имеет внутри себя периодических функций, значит f(x) – не периодическая

<u>Рассмотрим g(x)</u>:

$$g(-x) = -2x + \sin\frac{x}{2} = -g(x)$$

Функция нечетная, значит симметрична относительно начала координат.

Из пункта 4 заметим, что производная положительна на всем отрезке, значит функция не периодическая.

3) $\underline{\text{Рассмотрим } f(x)}$:

$$f(x) = \frac{4x^3}{(1-2x)^2}$$

Пересечение с осью х

$$\frac{4x^3}{(1-2x)^2} = 0, x = 0 \text{ Одз: } x \in \mathbb{R} \setminus \left\{\frac{1}{2}\right\}$$

Пересечение с осью у

$$y = \frac{4 * 0^3}{(1 - 2 * 0)^2} = 0$$

Промежутки знакопостоянства: при $x \ge 0$ $f(x) \ge 0$, а при $x \le 0$ $f(x) \le 0$

<u>Рассмотрим g(x)</u>:

$$g(x) = 2x - \sin\left(\frac{x}{2}\right)$$

Пересечение с осью х

$$2 * 0 - \sin\left(\frac{0}{2}\right) = 0$$

Пересечение с осью у

$$0 = 2x - \sin\left(\frac{x}{2}\right)$$
$$2x = \sin\left(\frac{x}{2}\right)$$
$$x = 0$$

Промежутки знакопостоянства: при $x \ge 0$ $f(x) \ge 0$, а при $x \le 0$ $f(x) \le 0$

4) <u>Рассмотрим *f*(*x*)</u>:

$$f(x) = \frac{4x^3}{(1 - 2x)^2}$$

$$f'(x) = \frac{4*3x^2*(1-2x)^2 - 4x^3*2(1-2x)*(-2)}{((1-2x)^2)^2} = \frac{12x^2 - 8x^3}{(1-2x)^3}$$

$$\frac{12x^2 - 8x^3}{(1-2x)^3} = 0, \begin{cases} x^2 = 0\\ 3 - 2x = 0\\ x \neq \frac{1}{2} \end{cases} = \begin{cases} x = 0\\ x = \frac{3}{2}\\ x \neq \frac{1}{2} \end{cases}$$

$$f\left(\frac{3}{2}\right) = \frac{4\left(\frac{3}{2}\right)^3}{\left(1 - 2\left(\frac{3}{2}\right)\right)^2} = \frac{27}{8}$$

Локальный минимум $\frac{27}{8}$ в точке $x = \frac{3}{2}$

<u>Рассмотрим g(x)</u>:

$$g'(x) = 2 - \cos\left(\frac{x}{2}\right) * \frac{1}{2} = 2 - \frac{\cos\left(\frac{x}{2}\right)}{2}$$

ОДЗ: $x \in \mathbb{R}$

$$2 - \frac{\cos\left(\frac{x}{2}\right)}{2} = 0$$

T.K.
$$\left|\cos\left(\frac{x}{2}\right)\right| \le 1$$
, to $2 - \frac{\cos\left(\frac{x}{2}\right)}{2} > 0$

Нет локальных экстремумов g(x) на всем промежутке возрастает

5) D

<u>Рассмотрим f(x)</u>:

Исследуем функцию $f(x) = \frac{4x^3}{(1-2x)^2}$ с помощью второй производной.

Первая производная функции равна:

$$f'(x) = \frac{16x^3}{(1-2x)^3} + \frac{12x^2}{(1-2x)^2}$$

Вторая производная функции упрощается до:

$$f''(x) = \frac{24x}{16x^4 - 32x^3 + 24x^2 - 8x + 1}$$

Критические точки второй производной (точки, где вторая производная равна нулю или не существует) определены в точке x=0.

Знак второй производной функции меняется с отрицательного на положительный при переходе через точку x=0, что указывает на наличие точки перегиба в этой точке. Интервалы выпуклости и вогнутости определяются следующим образом:

- 1. Функция выпуклая вниз (вогнута) на интервале $(-\infty, 0)$, так как вторая производная отрицательна.
- 2. Функция выпуклая вверх на интервале $(0, +\infty)$, так как вторая производная положительна.

Рассмотрим g(x):

Исследуем функцию $g(x) = 2x - \sin \frac{x}{2}$ с помощью второй производной. Первая производная функции равна:

$$g'(x) = 2 - \frac{\cos\frac{x}{2}}{2}$$

Вторая производная функции упрощается до:

$$g''(x) = \frac{\sin\frac{x}{2}}{4}$$

Исследование функции на выпуклость и вогнутость, а также на точки перегиба, связано с анализом знаков второй производной.

Когда вторая производная g''(x) положительна $[4k\pi, (4k+2)\pi]$, график функции g(x)выпукл вверх (вогнут вниз). Когда g''(x) отрицательна $[(4k-2)\pi, 4k\pi]$, график выпукл вниз (вогнут вверх). Точки перегиба — это точки, в которых вторая производная меняет знак.

6) Paccмотрим f(x): $f(x) = \frac{4x^3}{(1-2x)^2}$

Вертикальные асимптоты

$$\lim_{x \to \frac{1}{2}^{-}} \frac{4x^{3}}{(1 - 2x)^{2}}$$

$$\lim_{x \to \frac{1}{2}^{-}} \frac{4x^{3}}{(1 - 2x)^{2}} : \left\{ \lim_{x \to \frac{1}{2}^{-}} 4x^{3} = \frac{1}{2} \left| \lim_{x \to \frac{1}{2}^{-}} \left(\frac{1}{1 - 2x} \right)^{2} = +\infty \right. \right\} = +\infty$$

$$\lim_{x \to \frac{1}{2}^{+}} \frac{4x^{3}}{(1 - 2x)^{2}} : \left\{ \lim_{x \to \frac{1}{2}^{+}} 4x^{3} = \frac{1}{2} \left| \lim_{x \to \frac{1}{2}^{+}} \left(\frac{1}{1 - 2x} \right)^{2} = +\infty \right. \right\} = +\infty$$

Поскольку левый и правый пределы равны $+\infty$, то вертикальная асимптота может быть в точке, в которой предел не определен, $x = \frac{1}{2}$

$$\lim_{x \to +\infty} \frac{4x^3}{(1-2x)^2} = \lim_{x \to +\infty} \frac{x^2 * 4x}{x^2 * (\frac{1}{x^2} \frac{4}{x} + 4)} : \left\{ \lim_{x \to +\infty} 4x = +\infty \left| \lim_{x \to +\infty} \frac{1}{x^2} - \frac{4}{x} + 4 = 4 \right. \right\} = +\infty$$

$$\lim_{x \to -\infty} \frac{4x^3}{(1-2x)^2} = \lim_{x \to -\infty} \frac{x^2 * 4x}{x^2 * (\frac{1}{x^2} \frac{4}{x} + 4)} : \left\{ \lim_{x \to -\infty} 4x = -\infty \left| \lim_{x \to -\infty} \frac{1}{x^2} - \frac{4}{x} + 4 = 4 \right. \right\} = -\infty$$

Поскольку пределы не конечны, то нет горизонтальных асимптот.

Наклонные асимптоты

$$\lim_{x \to +\infty} \left(\frac{4x^3}{\frac{(1-2x)^2}{x}} \right) =$$

$$= \lim_{x \to +\infty} \frac{4x^2}{1 - 4x + 4x^2} =$$

$$= \lim_{x \to +\infty} \frac{4x^2}{x^2 * \left(\frac{1}{x^2} - \frac{4}{x} + 4\right)} = \lim_{x \to +\infty} \frac{4}{\frac{1}{x^2} - \frac{4}{x} + 4} = \frac{4}{0 - 4 * 0 + 4} = 1$$

Поскольку угловой коэффициент задан для нахождения пересечения с осью у:
$$\lim_{x\to +\infty} \left(\frac{4x^3}{(1-2x)^2} - x\right) = \lim_{x\to +\infty} \left(\frac{4x^3 - (1-2x)^2 * x}{(1-2x)^2}\right) = \lim_{x\to +\infty} \left(\frac{4x^3 - (1-4x+4x^2) * x}{1-4x+4x^2}\right)$$
$$= \lim_{x\to +\infty} \left(\frac{-x+4x^2}{1-4x+4x^2}\right) = \lim_{x\to +\infty} \left(\frac{x^2*\left(-\frac{1}{x}+4\right)}{x^2*\left(\frac{1}{x^2}-\frac{4}{x}+4\right)}\right) = \frac{-0+4}{0-4*0+4} = 1$$

Значения пределов задают наклонную асимптоту y = ax + b, где а – угловой коэффициент и b – ордината точки пересечения с осью y = y = x + 1, это и есть наклонная асимптота

<u>Рассмотрим g(x)</u>: $g(x) = 2x - \sin \frac{x}{2}$

Горизонтальные асимптоты

$$\lim_{x\to +\infty} \left(2x - sin\left(\frac{x}{2}\right)\right), \quad 2x - (-1) \le 2x - sin\left(\frac{x}{2}\right) \le 2x - 1, \quad \lim_{x\to +\infty} \left(2x - (-1)\right) \le \lim_{x\to +\infty} \left(2x - sin\left(\frac{x}{2}\right)\right) \le \lim_{x\to +\infty} \left(2x - sin\left(\frac{x}{2}\right)\right) \le +\infty$$
 По теореме о двух милиционерах, внутренний предел должен быть равен $+\infty$
$$\lim_{x\to -\infty} \left(2x - sin\left(\frac{x}{2}\right)\right), \quad 2x - (-1) \le 2x - sin\left(\frac{x}{2}\right) \le 2x - 1, \quad \lim_{x\to -\infty} \left(2x - (-1)\right) \le \lim_{x\to -\infty} \left(2x - sin\left(\frac{x}{2}\right)\right) \le \lim_{x\to -\infty} \left(2x - sin\left(\frac{x}{2}\right)\right) \le -\infty$$

По теореме о двух милиционерах, внутренний предел должен быть равен $-\infty$ Поскольку пределы не конечны, функция не имеет горизонтальных асимптот

Вертикальные асимптоты

При рассмотрении функции на весь диапазон значений аргумента х, нет вертикальных асимптот, поскольку функция не имеет точек разрыва.

Наклонные асимптоты

$$\lim_{x\to +\infty} \left(\frac{2x-\sin(\frac{x}{2})}{x}\right) = \lim_{x\to +\infty} (2-\frac{\sin\left(\frac{x}{2}\right)}{x})$$
 Поскольку $\left|\sin\left(\frac{x}{2}\right)\right| \leq 1$, то $\lim_{x\to +\infty} \left(\frac{\sin\left(\frac{x}{2}\right)}{x}\right) = 0$, а значит $\lim_{x\to +\infty} \left(\frac{2x-\sin\left(\frac{x}{2}\right)}{x}\right) = 2$

Поскольку угловой коэффициент задан для нахождения пересечения с осью у:

$$\lim_{x \to +\infty} \left(2x - \sin\left(\frac{x}{2}\right) - 2x \right) = \lim_{x \to +\infty} \left(\sin\left(\frac{x}{2}\right) \right) = [-1; 1]$$

 $\lim_{x \to +\infty} \left(2x - \sin\left(\frac{x}{2}\right) - 2x \right) = \lim_{x \to +\infty} \left(\sin\left(\frac{x}{2}\right) \right) = [-1; 1]$ Функция изменяется в пределах [-1,1], следовательно, наклонные асимптоты функции отсутствуют.

7) Рассмотрим f(x):

$$f(x) = \frac{4x^3}{(1 - 2x)^2}$$
$$f(0) = \frac{4 \cdot 0^3}{(1 - 2 \cdot 0)^2} = 0$$
$$0 = \frac{4x^3}{(1 - 2x)^2} = 4x^3 = 0 \Rightarrow x = 0$$

Значит график пересекает оси x и y только в точке (0;0)Дополнительные точки:

$$f(1,5) = \frac{4 \cdot 1,5^3}{(1 - 2 \cdot 1,5)^2} = 3,375$$

Pассмотрим g(x):

$$g(x) = 2x - \sin(\frac{x}{2})$$
$$g(0) = 2 \cdot 0 - \sin(\frac{0}{2}) = 0$$

Было доказано, что функция – возрастающая, а значит, других точек пересечения с осями нет, то есть единственная точка пересечения графика и осей х и у - (0; 0)

8) <u>Рассмотрим *f*(*x*)</u>:

На графике отмечены вертикальная асимптота $x = \frac{1}{2}$ и наклонная асимптота y = x + 1

<u>Рассмотрим g(x)</u>:

Задание 5.

Написать разложения по целым неотрицательным степеням переменной х до членов указанного порядка включительно следующих функций:

$$\frac{x}{e^x - 1}$$
 до члена с x^4

Решение

Для начала рассмотрим функцию $f(x) = e^x$:

$$f(x) = e^x, f(0) = 1,$$

 $f'(x) = e^x, f'(0) = 1,$

$$f^{(n)}(x) = e^x, f^{(n)}(0) = 1.$$

Зная, что $f(x) = f(0) + \frac{x}{1!}f'(0) + \frac{x^2}{2!}f''(0) + \dots + \frac{x^n}{n!}f^{(n)}(0)$, получаем:

$$f(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{x^5}{5!} + o(x^5)$$

$$\frac{x}{e^{x} - 1} = \frac{x}{\left(1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + o(x^{5})\right) - 1} = \frac{x}{x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!} + o(x^{5})} = \frac{1}{1 + \frac{x}{2!} + \frac{x^{2}}{3!} + \frac{x^{3}}{4!} + \frac{x^{4}}{5!} + o(x^{4})} = a_{0} + a_{1}x + a_{2}x^{2} + a_{3}x^{3} + a_{4}x^{4} + o(x^{4})$$

Следовательно

$$(a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + o(x^4)) \left(1 + \frac{x}{2} + \frac{x^2}{6} + \frac{x^3}{24} + \frac{x^4}{5!} + o(x^4) \right) = 1$$

Начиная перемножать, получаем, что

$$a_0 + \left(a_1 + \frac{a_0}{2}\right)x + \left(a_2 + \frac{a_1}{2} + \frac{a_0}{6}\right)x^2 + \left(a_3 + \frac{a_2}{2} + \frac{a_1}{6} + \frac{a_0}{24}\right)x^3 + \left(a_4 + \frac{a_3}{2} + \frac{a_2}{6} + \frac{a_1}{24} + \frac{a_0}{120}\right)x^4 + o(x^4) = 1$$

Значит, $a_0 = 1$. Найдём остальные коэффициенты:

$$a_{1} + \frac{a_{0}}{2} = 0 \Rightarrow a_{1} = -\frac{a_{0}}{2} = -\frac{1}{2}$$

$$a_{2} + \frac{a_{1}}{2} + \frac{a_{0}}{6} = 0 \Rightarrow a_{2} = -\frac{a_{1}}{2} - \frac{a_{0}}{6} = \frac{1}{4} - \frac{1}{6} = \frac{1}{12}$$

$$a_{3} + \frac{a_{2}}{2} + \frac{a_{1}}{6} + \frac{a_{0}}{24} = 0 \Rightarrow a_{3} = -\frac{a_{2}}{2} - \frac{a_{1}}{6} - \frac{a_{0}}{24} = -\frac{1}{24} + \frac{1}{12} - \frac{1}{24} = 0$$

$$a_{4} + \frac{a_{3}}{2} + \frac{a_{2}}{6} + \frac{a_{1}}{24} + \frac{a_{0}}{120} = 0 \Rightarrow a_{3} = -\frac{a_{3}}{2} - \frac{a_{2}}{6} - \frac{a_{1}}{24} - \frac{a_{0}}{120} = 0 - \frac{1}{72} + \frac{1}{48} - \frac{1}{120} = 0$$

$$= -\frac{1}{720}$$

По итогу получаем, что:

$$\frac{x}{e^x - 1} = 1 - \frac{1}{2}x + \frac{1}{12}x^2 - \frac{1}{720}x^4 + o(x^4)$$

Вывод

В ходе проделанной расчётно-графической работы, мы применили на практике знания, полученные при изучении раздела предел и производная функции от одной переменной, а именно: считали пределы функций, исследовали функцию при помощи производных разных порядков, исследовали функции, решали задачи, применяя производные

Оценочный лист

Вклад каждого исполнителя по 5-балльной шкале:

- Шмунк Андрей Александрович Р3108 5 баллов
- Петров Вячеслав Маркович Р3108 5 баллов
- Таджеддинов Рамиль Эмильевич Р3108 5 баллов
- Елисеев Константин Иванович Р3108 5 баллов