Análisis Matemático I

Tema 3: Continuidad y límite funcional

- Continuidad
 - Continuidad en un punto
 - Continuidad global
- 2 Límite funcional
- 3 Composición de funciones
- Ejemplos de funciones continuas
 - Primeros ejemplos
 - Funciones con valores en un producto
 - Operaciones con funciones continuas
 - Campos escalares y vectoriales

Continuidad

-000

Continuidad de funciones reales de variable real

$$E \subset \mathbb{R}$$
, $f: E \to \mathbb{R}$, $x \in E$

f es continua en el punto x si, y sólo si

$$\forall \varepsilon > 0 \ \exists \ \delta > 0 \ : \ \left[y \in E, \ |y - x| < \delta \ \Rightarrow \ |f(y) - f(x)| < \varepsilon \right]$$

$$\Leftrightarrow \quad \forall \varepsilon > 0 \ \exists \ \delta > 0 \ : \ f\left(B(x,\delta)\right) \subset B\left(f(x),\varepsilon\right)$$

$$\Leftrightarrow \quad \forall \ V \in \mathcal{U}\left(f(x)\right) \ \exists \ U \in \mathcal{U}(x) \ : \ f(U) \subset V$$

$$\downarrow V \in \mathcal{U}(f(x)) \implies f^{-1}(V) \in \mathcal{U}(x)$$

E,F espacios métricos cuyas distancias se denotan ambas por d

Continuidad

Función continua en un punto

Se dice que una función $f:E\to F$ es continua en un punto $x\in E$ cuando

$$V \in \mathcal{U}(f(x)) \implies f^{-1}(V) \in \mathcal{U}(x)$$

Caracterizaciones

Para $f:E \to F$ y $x \in E$, las siguientes afirmaciones son equivalentes:

- (1) f es continua en el punto x
- (2) $\forall \varepsilon > 0 \ \exists \delta > 0 : y \in E, \ d(y,x) < \delta \ \Rightarrow \ d(f(y),f(x)) < \varepsilon$
- (3) $x_n \in E \ \forall n \in \mathbb{N}, \ \{x_n\} \to x \Rightarrow \{f(x_n)\} \to f(x)$

Carácter local

$$f: E \to F$$
, $\emptyset \neq A \subset E$, $x \in A$

- f continua en $x \implies f|_A$ continua en x
- $f|_A$ continua en x, $A \in \mathcal{U}(x) \implies f$ continua en x

$$f$$
 es continua en el punto x $\forall \varepsilon > 0 \ \exists \delta > 0 : y \in E, \ d(y,x) < \delta \ \Rightarrow \ d\big(f(y),f(x)\big) < \varepsilon$ $x_n \in E \ \forall n \in \mathbb{N}, \ \{x_n\} \to x \ \Rightarrow \ \{f(x_n)\} \to f(x)$

$$(x) = (2, (x) + (2, (x)$$

(1)

(2)

(3) =0 (1) Sea of no continua en x. Entonces, existe
$$V \in \mathcal{U}(g(x)) / g^{-3}(v) \notin \mathcal{U}(x)$$
. Si

3)=0(1) bea of no continua en x. Entonces, existe
$$V \in \mathcal{U}(f(x)) \setminus f^{-1}(V) \notin \mathcal{U}(x)$$
. Si

Sijours un $N \in \mathbb{N}$, $\mathcal{B}(x, \frac{1}{2}N) \oplus f^{-1}(V)$. $\exists x \in \mathcal{B}(x, \frac{1}{2}N) \setminus f(xn) \notin V$ (Herris razonado)

Continuidad

Una función $f: E \to F$ es continua en un conjunto no vacío $A \subset E$ cuando f es continua en todo punto $x \in A$

Si f es continua en E, se dice simplemente que f es continua

Caracterizaciones

Para $f: E \to F$ las siguientes afirmaciones son equivalentes:

- (1)f es continua
- (2) Para todo abierto $V \subset F$, $f^{-1}(V)$ es abierto
- (3) Para todo cerrado $C \subset F$, $f^{-1}(C)$ es cerrado
- (4) f preserva la convergencia de sucesiones: para toda sucesión convergente $\{x_n\}$ de puntos de E, la sucesión $\{f(x_n)\}$ es convergente

Conjuntos definidos por funciones continuas

 $f: E \to \mathbb{R}$ continua

$$\{x \in E: f(x) > 0\} = f^{-1}(\mathbb{R}^+) \quad \text{y} \quad \{x \in E: f(x) < 0\} = f^{-1}(\mathbb{R}^-) \quad \text{abiertos} \quad \{x \in E: 0 \leqslant f(x) \leqslant 1\} = f^{-1}\left([0,1]\right) \quad \text{cerrado}$$

Carácter local

De la continuidad en un punto

$$f: E \to F$$
, $\emptyset \neq A \subset E$, $x \in A$

- $\bullet \quad f \text{ continua en } x \quad \Longrightarrow \quad f \big|_A \quad \text{continua en } x$
- $f|_A$ continua en x, $A \in \mathcal{U}(x) \implies f$ continua en x

De la continuidad global

• $\emptyset \neq A = A^{\circ} \subset E$

$$f$$
 es continua en $A \iff f|_A$ es continua

- ullet f es continua \iff $\forall \ x \in E \ \exists \ U \in \mathcal{U}(x) \ : \ f \big|_{U}$ es continua

ilite fullcional

Funciones reales de variable real

$$\emptyset \neq A \subset \mathbb{R}, \quad f: A \to \mathbb{R}, \quad \alpha \in A', \quad L \in \mathbb{R}$$

$$\lim_{x \to \alpha} f(x) = L \iff \left[\forall \varepsilon > 0 \ \exists \delta > 0 : x \in A, \ 0 < |x - \alpha| < \delta \Rightarrow |f(x) - L| < \varepsilon \right]$$

Límite de una función en un punto

E, F espacios métricos, $\emptyset \neq A \subset E$, $f: A \to F$, $\alpha \in A'$

Se dice que f tiene límite en el punto α cuando existe $L \in {\cal F}$ verificando:

$$\forall \ \varepsilon > 0 \ \exists \ \delta > 0 \ : \ x \in A, \ \ 0 < d(x, \alpha) < \delta \ \ \Rightarrow \ \ d\big(f(x), L\big) < \varepsilon$$

Entonces L es único, decimos que L es el límite de f en α y escribimos:

$$L = \lim_{x \to \alpha} f(x)$$

Caracterizaciones

$$\lim_{x\to\alpha} f(x) = L \iff \forall \ V \in \mathcal{U}(L) \ \exists \ U \in \mathcal{U}(\alpha) \ : \ f\Big(U \cap (A \setminus \{\alpha\})\Big) \subset V$$

$$\iff [x_n \in A \setminus \{\alpha\} \ \forall n \in \mathbb{N}, \ \{x_n\} \to \alpha \ \Rightarrow \ \{f(x_n)\} \to L]$$

Veauus que Les único. Supongamos que existen das límites: L, y L. 850 - 38,50 x & A 0 c d(x, a) c 8, d (g(x), L1) c 8

$$d(L_1,L_2) \leq d(L_1,\beta(x)) + d(L_2,\beta(x)) < \infty$$

Carácter local y relación con la continuidad

Carácter local

$$B = \{x \in A : 0 < d(x, \alpha) < r\}$$
, que verifica $\alpha \in B'$. Entonces:

$$\lim_{x \to \alpha} f(x) = L \quad \Longleftrightarrow \quad \lim_{x \to \alpha} f \Big|_B(x) = L$$

Relación con la continuidad

- Si $a \in A \setminus A'$, entonces f es continua en a
- Si $a \in A \cap A'$, entonces: f continua en $a \iff \lim_{x \to a} f(x) = f(a)$
- Si $\alpha \in A' \setminus A$, entonces f tiene límite en α si, y sólo si, existe $g:A \cup \{\alpha\} \to F$, continua en α , con g(x) = f(x) para todo $x \in A$. En tal caso g es única: $g(\alpha) = \lim_{x \to \alpha} f(x)$

Composición de funciones y cambio de variable

Continuidad de la composición

$$G,E,F \text{ espacios métricos, } \varphi:G\to E\,, \quad f:E\to F\,, \quad f\circ\varphi:G\to F$$

$$\left. \begin{array}{ll} \varphi \ \ \text{continua en} \ \ z \in G \\ f \ \ \text{continua en} \ \ x = \varphi(z) \end{array} \right\} \quad \Longrightarrow \quad f \circ \varphi \ \ \text{continua en} \ \ z$$

$$\varphi \ \ {\rm y} \ \ f \quad {\rm continuas} \quad \Longrightarrow \quad f \circ \varphi \quad {\rm continua}$$

Cambio de variable para calcular un límite

 $E,F \ \ \text{espacios m\'etricos}, \quad \emptyset \neq A \subset E\,, \quad f:A \to F\,, \quad \alpha \in E$

G espacio métrico, $T \subset G$, $\varphi: T \to E$, $z \in T'$ cumpliendo:

$$\lim_{t\to z}\varphi(t)=\alpha\in E\quad \text{y}\quad \varphi(t)\in A\setminus\{\alpha\}\quad \forall\, t\in T\setminus\{z\}$$

Entonces $\alpha \in A'$ y se verifica la siguiente implicación:

$$\lim_{x \to \alpha} f(x) = L \in F \quad \Longrightarrow \quad \lim_{t \to z} f(\varphi(t)) = L$$

Primeros ejemplos de funciones continuas

En espacios métricos

- ullet E,F métricos. f:E o F constante \implies f continua
- $\bullet \quad \emptyset \neq F \subset \mathbb{R} \,, \quad F^{\circ} = \emptyset \,, \quad f : \mathbb{R} \to F \ \, \text{continua} \qquad \Longrightarrow \quad f \ \, \text{constante}$
- E subespacio métrico de F. Inclusión:

$$I:E \to F\,, \quad I(x)=x \quad \forall \, x \in E \quad \Longrightarrow \quad I \ \mbox{continua}$$

- $\bullet \quad \mathsf{Identidad}. \ \ I:E \to E \ , \quad I(x) = x \quad \forall \, x \in E \quad \Longrightarrow \quad I \ \ \mathsf{continua}$
- Función distancia. $d: E \times E \to \mathbb{R}$ es continua

En espacios normados

Para todo espacio normado $\, X \, , \,$ las siguientes funciones son continuas:

- La norma: $x \mapsto ||x||$, de X en \mathbb{R}
- La suma: $(x,y) \mapsto x+y$, de $X \times X$ en X
- El producto por escalares: $(\lambda, x) \mapsto \lambda x$, de $\mathbb{R} \times X$ en X

Funciones con valores en un producto

Proyecciones y componentes

$$F = F_1 \times F_2 \times ... \times F_M \neq \emptyset$$
. Proyectiones coordenadas:
 $\pi_k : F \to F_k$, $\pi_k(y) = y(k) \ \forall y \in F \ \forall k \in \Delta_M$

$$E \neq \emptyset \text{, } f: E \to F \text{ . Componentes de } f\colon \quad f_k = \pi_k \circ f: E \to F_k \quad \forall \, k \in \Delta_M$$

$$f = (f_1, f_2, \dots, f_M)$$
 $\stackrel{\mathsf{def}}{\Longleftrightarrow}$ $f(x) = (f_1(x), f_2(x), \dots, f_M(x))$ $\forall x \in E$

Caracterización de continuidad y límite funcional

- $F = F_1 \times F_2 \times ... \times F_M$ producto de espacios métricos. Entonces: $\pi_k : F \to F_k$ es continua para todo $k \in \Delta_M$
- E espacio métrico, $f=(f_1,f_2,\ldots,f_M):E\to F$ y $x\in E$. Entonces: f continua en $x\iff f_k$ continua en $x\ \forall k\in\Delta_M$

Operaciones con funciones

 $E, Y \neq \emptyset$. $\mathcal{F}(E, Y)$ conjunto de todas las funciones de E en Y

$$\mathcal{F}(E) = \mathcal{F}(E, \mathbb{R})$$

Y espacio vectorial, $f, g \in \mathcal{F}(E, Y), \lambda \in \mathbb{R}$

- Suma: $(f+g)(x) = f(x) + g(x) \quad \forall x \in E$
- Producto por escalares: $(\lambda g)(x) = \lambda g(x) \ \forall x \in E$

$$\mathcal{F}(E,Y)$$
 espacio vectorial

$$g \in \mathcal{F}(E,Y)$$
 y $\Lambda \in \mathcal{F}(E)$

 $\mathcal{F}(E)$ anillo conmutativo con unidad

$$f, g \in F(E), \quad g(x) \neq 0 \quad \forall x \in E$$

• Cociente: $(f/g)(x) = f(x)/g(x) \ \forall x \in E$

Operaciones con funciones continuas

Preservación de la continuidad

E espacio métrico, Y espacio normado, $f,g\in\mathcal{F}(E,Y)$, $\Lambda\in\mathcal{F}(E)$

 Λ, f, g continuas en $x \in E \implies f + g, \Lambda g$ continuas en x

Cuando $Y = \mathbb{R}$:

 $f,g \ \ \text{continuas en} \ \ x \in E \,, \ \ g(E) \subset \mathbb{R}^* \quad \Longrightarrow \quad f/g \ \ \text{continua en} \ \ x$

Espacios de funciones continuas

E espacio métrico, Y espacio normado

 $\mathcal{C}(E,Y)$ conjunto de todas las funciones continuas de E en Y

$$\mathcal{C}(E) = \mathcal{C}(E, \mathbb{R})$$

- C(E,Y) subespacio vectorial de $\mathcal{F}(E,Y)$
- ullet $\mathcal{C}(E)$ subanillo y subespacio vectorial $\mathcal{F}(E)$
- $f, g \in \mathcal{C}(E), \quad g(E) \subset \mathbb{R}^* \implies f/g \in \mathcal{C}(E)$

Cálculo de límites

Reglas básicas

E espacio métrico, $A \subset E$ y $\alpha \in A'$

$$f, g \in \mathcal{F}(A, Y), \quad \Lambda \in \mathcal{F}(A)$$

Supongamos que f , g y Λ tienen límite en el punto α :

$$\lim_{x\to\alpha}f(x)=y\in Y\,,\quad \lim_{x\to\alpha}g(x)=z\in Y\,,\quad \lim_{x\to\alpha}\Lambda(x)=\lambda\in\mathbb{R}$$

Entonces:
$$\lim_{x \to \alpha} (f+g)(x) = y+z$$
 y $\lim_{x \to \alpha} (\Lambda g)(x) = \lambda z$

Caso
$$Y = \mathbb{R}$$
: $g(A) \subset \mathbb{R}^*$, $z \in \mathbb{R}^*$ \Longrightarrow $\lim_{x \to \alpha} \left(\frac{f}{g}\right)(x) = \frac{y}{z}$

Campos escalares y vectoriales

Campo escalar

Un campo escalar es una función $f:A\to\mathbb{R}$ donde $\emptyset\neq A\subset\mathbb{R}^N$ También se dice que f es una función real de N variables reales

Campo vectoria

Un campo vectorial es una función $f:A\to\mathbb{R}^M$ con $\emptyset\neq A\subset\mathbb{R}^N$ y M>1 También se dice que f es una función vectorial de N variables reales

Componentes de un campo vectorial

Proyecciones coordenadas en \mathbb{R}^M : $\pi_k(y)=y(k) \ \ \forall y\in\mathbb{R}^M$, $\ \ \forall k\in\Delta_M$ Componentes de un campo vectorial $f:A\to\mathbb{R}^M$

$$f = (f_1, f_2, \ldots, f_M) \text{ donde } f_k = \pi_k \circ f \ \, \forall \, k \in \Delta_M$$

$$f_1, f_2, \dots, f_M$$
 son campos escalares

- f continuo en $x \in A \iff f_k$ continuo en $x \ \forall k \in \Delta_M$
- Para $\alpha \in A'$:

$$\lim_{x \to \alpha} f(x) = y \in \mathbb{R}^M \quad \Longleftrightarrow \quad \lim_{x \to \alpha} f_k(x) = y(k) \quad \forall k \in \Delta_M$$

Operaciones con campos escalares o vectoriales

En todo lo que sigue: $\emptyset \neq A \subset \mathbb{R}^N$, $M \in \mathbb{N}$ M > 1

- $\mathcal{C}(A,\mathbb{R}^M)$ (campos vectoriales continuos en A) subespacio vectorial de $\mathcal{F}(A,\mathbb{R}^M)$ (campos vectoriales en A)
- $\mathcal{C}(A)$ (campos escalares continuos en A) subanillo y subespacio vectorial de $\mathcal{F}(A)$ (campos escalares en A)

Los campos escalares más sencillos

- $\bullet \quad f \in \mathcal{F}(A) \,, \quad f \text{ constante} \quad \Longrightarrow \quad f \in \mathcal{C}(A)$
- $\bullet \quad k \in \Delta_N \,, \quad \pi_k(x) = x(k) \quad \forall \, x \in A \quad \implies \quad \pi_k \in \mathcal{C}(A)$

Funciones polinómicas

 $\mathcal{P}(A)$ subanillo de $\mathcal{F}(A)$ engendrado por las constantes y $\{\pi_k: k \in \Delta_N\}$ Los elementos de $\mathcal{P}(A)$ son las funciones polinómicas en A $\mathcal{P}(A)$ también es subespacio vectorial de $\mathcal{F}(A)$ y $\mathcal{P}(A) \subset \mathcal{C}(A)$

Funciones polinómicas y funciones racionales

Descripción de las funciones polinómicas

 $f: A \to \mathbb{R}$ es una función polinómica cuando:

$$f(x) = \sum_{j_1, j_2, \dots, j_N = 0}^{p} \lambda_{j_1 j_2 \dots j_N} \ x_1^{j_1} x_2^{j_2} \dots x_N^{j_N} \quad \forall x = (x_1, x_2, \dots, x_N) \in A$$

 $\text{con } p \in \mathbb{N} \cup \{0\} \quad \text{ y } \quad \lambda_{j_1 j_2 \dots j_N} \in \mathbb{R} \quad \forall j_1, j_2, j_N \in \{0, 1, \dots, p\}$

Funciones racionales

 $h: A \to \mathbb{R}$ es una función racional en A cuando:

$$\exists \ f,g \in \mathcal{P}(A) \ : \ g(x) \neq 0 \quad \text{y} \quad h(x) = \frac{f(x)}{g(x)} \quad \forall x \in A$$

 $\mathcal{R}(A)$ conjunto de las funciones racionales en A

$$\mathcal{P}(A) \subset \mathcal{R}(A) \subset \mathcal{C}(A) \subset \mathcal{F}(A)$$

Cada conjunto es subanillo y subespacio vectorial de los que le siguen