

# **Chapter 5: Advanced SQL**

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan
See www.db-book.com for conditions on re-use



#### **Outline**

- Accessing SQL From a Programming Language
- Functions and Procedural Constructs
- Triggers
- Recursive Queries
- Advanced Aggregation Features
- OLAP



#### **Accessing SQL From a Programming Language**



#### **Accessing SQL From a Programming Language**

- API (application-program interface) for a program to interact with a database server
- Application makes calls to
  - Connect with the database server.
  - Send SQL commands to the database server
  - Fetch tuples of result one-by-one into program variables
- Various tools:
  - ODBC (Open Database Connectivity) works with C, C++, C#, and Visual Basic. Other API's such as ADO.NET sit on top of ODBC
  - JDBC (Java Database Connectivity) works with Java
  - Embedded SQL



#### **ODBC**

- Open DataBase Connectivity (ODBC) standard
  - standard for application program to communicate with a database server.
  - application program interface (API) to
    - open a connection with a database,
    - send queries and updates,
    - get back results.
- Applications such as GUI, spreadsheets, etc. can use ODBC



### **JDBC**

- **JDBC** is a Java API for communicating with database systems supporting SQL.
- JDBC supports a variety of features for querying and updating data, and for retrieving query results.
- JDBC also supports metadata retrieval, such as querying about relations present in the database and the names and types of relation attributes.
- Model for communicating with the database:
  - Open a connection
  - Create a "statement" object
  - Execute queries using the Statement object to send queries and fetch results
  - Exception mechanism to handle errors



#### **JDBC Code**

```
public static void JDBCexample(String dbid, String userid, String passwd)
  try (Connection conn = DriverManager.getConnection(
       "jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);
      Statement stmt = conn.createStatement();
      ... Do Actual Work ....
  catch (SQLException sqle) {
    System.out.println("SQLException: " + sqle);
```

NOTE: Above syntax works with Java 7, and JDBC 4 onwards.

Resources opened in "try (....)" syntax ("try with resources") are automatically closed at the end of the try block



# JDBC Code for Older Versions of Java/JDBC

```
public static void JDBCexample(String dbid, String userid, String passwd)
   try {
      Class.forName ("oracle.jdbc.driver.OracleDriver");
      Connection conn = DriverManager.getConnection(
           "jdbc:oracle:thin:@db.yale.edu:2000:univdb", userid, passwd);
     Statement stmt = conn.createStatement();
        ... Do Actual Work ....
     stmt.close();
     conn.close();
  catch (SQLException sqle) {
     System.out.println("SQLException: " + sqle);
NOTE: Classs.forName is not required from JDBC 4 onwards. The try with resources
```

syntax in prev slide is preferred for Java 7 onwards.



# JDBC Code (Cont.)

Update to database try { stmt.executeUpdate( "insert into instructor values('77987', 'Kim', 'Physics', 98000)"); } catch (SQLException sqle) System.out.println("Could not insert tuple. " + sqle); Execute query and fetch and print results ResultSet rset = stmt.executeQuery( "select dept\_name, avg (salary) from instructor group by dept\_name"); while (rset.next()) { System.out.println(rset.getString("dept\_name") + " " + rset.getFloat(2));



#### **JDBC Code Details**

- Getting result fields:
  - rs.getString("dept\_name") and rs.getString(1) equivalent if dept\_name is the first argument of select result.
- Dealing with Null values

```
int a = rs.getInt("a");
if (rs.wasNull()) Systems.out.println("Got null value");
```



# **Prepared Statement**

PreparedStatement pStmt = conn.prepareStatement(

```
"insert into instructor values(?,?,?,?)");
pStmt.setString(1, "88877");
pStmt.setString(2, "Perry");
pStmt.setString(3, "Finance");
pStmt.setInt(4, 125000);
pStmt.executeUpdate();
pStmt.setString(1, "88878");
pStmt.executeUpdate();
```

- WARNING: always use prepared statements when taking an input from the user and adding it to a query
  - NEVER create a query by concatenating strings
  - "insert into instructor values(' " + ID + " ', ' " + name + " ', " + " ' + dept name + " ', " ' balance + ")"
  - What if name is "D'Souza"?



# **SQL** Injection

- Suppose query is constructed using
  - "select \* from instructor where name = " + name + ""
- Suppose the user, instead of entering a name, enters:
  - X' or 'Y' = 'Y
- then the resulting statement becomes:
  - "select \* from instructor where name = '" + "X' or 'Y' = 'Y" + "'"
  - which is:
    - select \* from instructor where name = 'X' or 'Y' = 'Y'
  - User could have even used
    - X'; update instructor set salary = salary + 10000; --
- Prepared stament internally uses: "select \* from instructor where name = 'X\' or \'Y\' = \'Y'
  - Always use prepared statements, with user inputs as parameters



#### **Metadata Features**

- ResultSet metadata
- E.g.after executing query to get a ResultSet rs:

```
• ResultSetMetaData rsmd = rs.getMetaData();
for(int i = 1; i <= rsmd.getColumnCount(); i++) {
    System.out.println(rsmd.getColumnName(i));
    System.out.println(rsmd.getColumnTypeName(i));
}
```

How is this useful?



# **Metadata (Cont)**

- Database metadata
- DatabaseMetaData dbmd = conn.getMetaData();

```
// Arguments to getColumns: Catalog, Schema-pattern, Table-pattern,
// and Column-Pattern
// Returns: One row for each column; row has a number of attributes
// such as COLUMN_NAME, TYPE_NAME
// The value null indicates all Catalogs/Schemas.
// The value "" indicates current catalog/schema
// The value "%" has the same meaning as SQL like clause
ResultSet rs = dbmd.getColumns(null, "univdb", "department", "%");
while( rs.next()) {
    System.out.println(rs.getString("COLUMN NAME"),
                      rs.getString("TYPE_NAME");
```

And where is this useful?



# **Metadata (Cont)**

- Database metadata
- DatabaseMetaData dbmd = conn.getMetaData();

```
// Arguments to getTables: Catalog, Schema-pattern, Table-pattern,
// and Table-Type
// Returns: One row for each table; row has a number of attributes
// such as TABLE NAME, TABLE CAT, TABLE TYPE, ...
// The value null indicates all Catalogs/Schemas.
// The value "" indicates current catalog/schema
// The value "%" has the same meaning as SQL like clause
// The last attribute is an array of types of tables to return.
   TABLE means only regular tables
ResultSet rs = dbmd.getTables ("", "", "%", new String[] {"TABLES"});
while( rs.next()) {
    System.out.println(rs.getString("TABLE_NAME"));
```

And where is this useful?



# **Finding Primary Keys**

DatabaseMetaData dmd = connection.getMetaData();



#### **Transaction Control in JDBC**

- By default, each SQL statement is treated as a separate transaction that is committed automatically
  - bad idea for transactions with multiple updates
- Can turn off automatic commit on a connection
  - conn.setAutoCommit(false);
- Transactions must then be committed or rolled back explicitly
  - conn.commit(); or
  - conn.rollback();
- conn.setAutoCommit(true) turns on automatic commit.



#### **Other JDBC Features**

- Calling functions and procedures
  - CallableStatement cStmt1 = conn.prepareCall("{? = call some function(?)}");
  - CallableStatement cStmt2 = conn.prepareCall("{call some procedure(?,?)}");
- Handling large object types
  - getBlob() and getClob() that are similar to the getString() method, but return objects of type Blob and Clob, respectively
  - get data from these objects by getBytes()
  - associate an open stream with Java Blob or Clob object to update large objects
    - blob.setBlob(int parameterIndex, InputStream inputStream).



## **JDBC Resources**

- JDBC Basics Tutorial
  - https://docs.oracle.com/javase/tutorial/jdbc/index.html



## SQLJ

- JDBC is overly dynamic, errors cannot be caught by compiler
- SQLJ: embedded SQL in Java
  - #sql iterator deptInfolter (String dept name, int avgSal); deptInfolter iter = null; #sql iter = { select dept\_name, avg(salary) from instructor group by dept name \; while (iter.next()) { String deptName = iter.dept name(); int avgSal = iter.avgSal(); System.out.println(deptName + " " + avgSal); iter.close();



#### **Embedded SQL**

- The SQL standard defines embeddings of SQL in a variety of programming languages such as C, C++, Java, Fortran, and PL/1,
- A language to which SQL queries are embedded is referred to as a host language, and the SQL structures permitted in the host language comprise embedded SQL.
- The basic form of these languages follows that of the System R embedding of SQL into PL/1.
- EXEC SQL statement is used to identify embedded SQL request to the preprocessor

EXEC SQL <embedded SQL statement >;

Note: this varies by language:

- In some languages, like COBOL, the semicolon is replaced with END-EXEC
- In Java embedding uses # SQL { .... };



Before executing any SQL statements, the program must first connect to the database. This is done using:

EXEC-SQL **connect to** *server* **user** *user-name* **using** *password*; Here, *server* identifies the server to which a connection is to be established.

- Variables of the host language can be used within embedded SQL statements. They are preceded by a colon (:) to distinguish from SQL variables (e.g., :credit\_amount)
- Variables used as above must be declared within DECLARE section, as illustrated below. The syntax for declaring the variables, however, follows the usual host language syntax.

int credit-amount;

**EXEC-SQL END DECLARE SECTION;** 



- To write an embedded SQL query, we use the declare c cursor for <SQL query> statement. The variable c is used to identify the query
- Example:
  - From within a host language, find the ID and name of students who have completed more than the number of credits stored in variable credit\_amount in the host langue
  - Specify the query in SQL as follows:

```
EXEC SQL
```

```
declare c cursor for
  select ID, name
  from student
  where tot_cred > :credit_amount
END EXEC
```



- Example:
  - From within a host language, find the ID and name of students who have completed more than the number of credits stored in variable credit\_amount in the host langue
- Specify the query in SQL as follows:

```
EXEC SQL
```

```
declare c cursor for
  select ID, name
  from student
  where tot_cred > :credit_amount
END EXEC
```

The variable *c* (used in the cursor declaration) is used to identify the query



The open statement for our example is as follows:

#### EXEC SQL open c;

This statement causes the database system to execute the query and to save the results within a temporary relation. The query uses the value of the host-language variable *credit-amount* at the time the **open** statement is executed.

The fetch statement causes the values of one tuple in the query result to be placed on host language variables.

EXEC SQL fetch c into :si, :sn END\_EXEC

Repeated calls to fetch get successive tuples in the query result



- A variable called SQLSTATE in the SQL communication area (SQLCA) gets set to '02000' to indicate no more data is available
- The **close** statement causes the database system to delete the temporary relation that holds the result of the query.

#### EXEC SQL close c;

Note: above details vary with language. For example, the Java embedding defines Java iterators to step through result tuples.



# **Updates Through Embedded SQL**

- Embedded SQL expressions for database modification (update, insert, and delete)
- Can update tuples fetched by cursor by declaring that the cursor is for update

#### **EXEC SQL**

```
declare c cursor for
select *
from instructor
where dept_name = 'Music'
for update
```

We then iterate through the tuples by performing **fetch** operations on the cursor (as illustrated earlier), and after fetching each tuple we execute the following code:

```
update instructor
set salary = salary + 1000
where current of c
```



## **Extensions to SQL**



#### **Functions and Procedures**

- SQL:1999 supports functions and procedures
  - Functions/procedures can be written in SQL itself, or in an external programming language (e.g., C, Java).
  - Functions written in an external languages are particularly useful with specialized data types such as images and geometric objects.
    - Example: functions to check if polygons overlap, or to compare images for similarity.
  - Some database systems support table-valued functions, which can return a relation as a result.
- SQL:1999 also supports a rich set of imperative constructs, including
  - Loops, if-then-else, assignment
- Many databases have proprietary procedural extensions to SQL that differ from SQL:1999.



#### **SQL Functions**

Define a function that, given the name of a department, returns the count of the number of instructors in that department.

```
create function dept_count (dept_name varchar(20))
    returns integer
    begin
    declare d_count integer;
        select count (*) into d_count
        from instructor
        where instructor.dept_name = dept_name
    return d_count;
end
```

The function dept\_count can be used to find the department names and budget of all departments with more that 12 instructors.

```
select dept_name, budget
from department
where dept_count (dept_name) > 12
```



# **SQL** functions (Cont.)

- Compound statement: begin ... end
  - May contain multiple SQL statements between begin and end.
- returns -- indicates the variable-type that is returned (e.g., integer)
- return -- specifies the values that are to be returned as result of invoking the function
- SQL function are in fact parameterized views that generalize the regular notion of views by allowing parameters.



#### **Table Functions**

- SQL:2003 added functions that return a relation as a result
- Example: Return all instructors in a given department **create function** *instructor\_of* (*dept\_name* **char**(20)) returns table ( *ID* varchar(5), name varchar(20), dept\_name varchar(20), salary numeric(8,2)) return table (select ID, name, dept name, salary from instructor **where** *instructor.dept name* = *instructor of.dept name*)

Usage

select \*
from table (instructor\_of ('Music'))



#### **SQL Procedures**

The dept\_count function could instead be written as procedure:

```
create procedure dept_count_proc (in dept_name varchar(20), out d_count integer)
begin
select count(*) into d_count
from instructor
```

**where** instructor.dept name = dept count proc.dept name

end

Procedures can be invoked either from an SQL procedure or from embedded SQL, using the call statement.

```
declare d_count integer;
call dept_count_proc( 'Physics', d_count);
```

Procedures and functions can be invoked also from dynamic SQL

SQL:1999 allows more than one function/procedure of the same name (called name overloading), as long as the number of arguments differ, or at least the types of the arguments differ



#### **Language Constructs for Procedures & Functions**

- SQL supports constructs that gives it almost all the power of a general-purpose programming language.
  - Warning: most database systems implement their own variant of the standard syntax below.
- Compound statement: begin ... end,
  - May contain multiple SQL statements between begin and end.
  - Local variables can be declared within a compound statements
- While and repeat statements:
  - while boolean expression do sequence of statements; end while
  - repeat
    sequence of statements;
    until boolean expression
    end repeat



# **Language Constructs (Cont.)**

- For loop
  - Permits iteration over all results of a query
- Example: Find the budget of all departments

```
declare n integer default 0;
for r as
    select budget from department
do
    set n = n + r.budget
end for
```



# **Language Constructs (Cont.)**

- Conditional statements (if-then-else)
   SQL:1999 also supports a case statement similar to C case statement
- Example procedure: registers student after ensuring classroom capacity is not exceeded
  - Returns 0 on success and -1 if capacity is exceeded
  - See book (page 177) for details
- Signaling of exception conditions, and declaring handlers for exceptions declare out\_of\_classroom\_seats condition declare exit handler for out\_of\_classroom\_seats begin

. . .

- .. signal out\_of\_classroom\_seats end
- The handler here is exit -- causes enclosing begin..end to be exited
- Other actions possible on exception



#### **External Language Routines**

- SQL:1999 permits the use of functions and procedures written in other languages such as C or C++
- Declaring external language procedures and functions

```
create procedure dept_count_proc(in dept_name varchar(20), out count integer)
language C
external name '/usr/avi/bin/dept_count_proc'

create function dept_count(dept_name varchar(20))
returns integer
language C
external name '/usr/avi/bin/dept_count'
```



#### **External Language Routines**

- SQL:1999 allows the definition of procedures in an imperative programming language, (Java, C#, C or C++) which can be invoked from SQL queries.
- Functions defined in this fashion can be more efficient than functions defined in SQL, and computations that cannot be carried out in SQL can be executed by these functions.
- Declaring external language procedures and functions



## **External Language Routines (Cont.)**

- Benefits of external language functions/procedures:
  - more efficient for many operations, and more expressive power.
- Drawbacks
  - Code to implement function may need to be loaded into database system and executed in the database system's address space.
    - risk of accidental corruption of database structures
    - security risk, allowing users access to unauthorized data
  - There are alternatives, which give good security at the cost of potentially worse performance.
  - Direct execution in the database system's space is used when efficiency is more important than security.



#### **Security with External Language Routines**

- To deal with security problems, we can do on of the following:
  - Use sandbox techniques
    - That is, use a safe language like Java, which cannot be used to access/damage other parts of the database code.
  - Run external language functions/procedures in a separate process, with no access to the database process' memory.
    - Parameters and results communicated via inter-process communication
- Both have performance overheads
- Many database systems support both above approaches as well as direct executing in database system address space.



# **Triggers**



#### **Triggers**

- A **trigger** is a statement that is executed automatically by the system as a side effect of a modification to the database.
- To design a trigger mechanism, we must:
  - Specify the conditions under which the trigger is to be executed.
  - Specify the actions to be taken when the trigger executes.
- Triggers introduced to SQL standard in SQL:1999, but supported even earlier using non-standard syntax by most databases.
  - Syntax illustrated here may not work exactly on your database system; check the system manuals



#### **Triggering Events and Actions in SQL**

- Triggering event can be insert, delete or update
- Triggers on update can be restricted to specific attributes
  - For example, after update of takes on grade
- Values of attributes before and after an update can be referenced
  - referencing old row as : for deletes and updates
  - referencing new row as : for inserts and updates
- Triggers can be activated before an event, which can serve as extra constraints. For example, convert blank grades to null.

```
create trigger setnull_trigger before update of takes
referencing new row as nrow
for each row
when (nrow.grade = ' ')
begin atomic
set nrow.grade = null;
end;
```



#### Trigger to Maintain credits\_earned value

create trigger credits earned after update of takes on (grade) referencing new row as nrow referencing old row as orow for each row when nrow.grade <> 'F' and nrow.grade is not null and (orow.grade = 'F' or orow.grade is null) begin atomic update student **set** tot cred= tot cred + (**select** credits from course **where** *course.course id= nrow.course id*) **where** *student.id* = *nrow.id*; end:



#### **Statement Level Triggers**

- Instead of executing a separate action for each affected row, a single action can be executed for all rows affected by a transaction
  - Use for each statement instead of for each row
  - Use referencing old table or referencing new table to refer to temporary tables (called transition tables) containing the affected rows
  - Can be more efficient when dealing with SQL statements that update a large number of rows



## When Not To Use Triggers

- Triggers were used earlier for tasks such as
  - Maintaining summary data (e.g., total salary of each department)
  - Replicating databases by recording changes to special relations (called change or delta relations) and having a separate process that applies the changes over to a replica
- There are better ways of doing these now:
  - Databases today provide built in materialized view facilities to maintain summary data
  - Databases provide built-in support for replication
- Encapsulation facilities can be used instead of triggers in many cases
  - Define methods to update fields
  - Carry out actions as part of the update methods instead of through a trigger



## When Not To Use Triggers (Cont.)

- Risk of unintended execution of triggers, for example, when
  - Loading data from a backup copy
  - Replicating updates at a remote site
  - Trigger execution can be disabled before such actions.
- Other risks with triggers:
  - Error leading to failure of critical transactions that set off the trigger
  - Cascading execution



#### **Recursive Queries**



#### **Recursion in SQL**

- SQL:1999 permits recursive view definition
- Example: find which courses are a prerequisite, whether directly or indirectly, for a specific course

This example view, *rec\_prereq*, is called the *transitive closure* of the *prereq* relation

Note: 1st printing of 6th ed erroneously used c\_prereq in place of rec prereq in some places



#### **The Power of Recursion**

- Recursive views make it possible to write queries, such as transitive closure queries, that cannot be written without recursion or iteration.
  - Intuition: Without recursion, a non-recursive non-iterative program can perform only a fixed number of joins of prereq with itself
    - This can give only a fixed number of levels of managers
    - Given a fixed non-recursive query, we can construct a database with a greater number of levels of prerequisites on which the query will not work
    - Alternative: write a procedure to iterate as many times as required
      - See procedure findAllPrereqs in book



#### **The Power of Recursion**

- Computing transitive closure using iteration, adding successive tuples to rec\_prereq
  - The next slide shows a prereq relation
  - Each step of the iterative process constructs an extended version of rec\_prereq from its recursive definition.
  - The final result is called the fixed point of the recursive view definition.
- Recursive views are required to be **monotonic**. That is, if we add tuples to *prereq* the view *rec\_prereq* contains all of the tuples it contained before, plus possibly more



## **Example of Fixed-Point Computation**

| course_id | prereq_id |
|-----------|-----------|
| BIO-301   | BIO-101   |
| BIO-399   | BIO-101   |
| CS-190    | CS-101    |
| CS-315    | CS-101    |
| CS-319    | CS-101    |
| CS-347    | CS-101    |
| EE-181    | PHY-101   |

| Iteration Number | Tuples in cl                 |
|------------------|------------------------------|
| 0                |                              |
| 1                | (CS-301)                     |
| 2                | (CS-301), (CS-201)           |
| 3                | (CS-301), (CS-201)           |
| 4                | (CS-301), (CS-201), (CS-101) |
| 5                | (CS-301), (CS-201), (CS-101) |



# **Advanced Aggregation Features**



## Ranking

- Ranking is done in conjunction with an order by specification.
- Suppose we are given a relation student\_grades(ID, GPA) giving the grade-point average of each student
- Find the rank of each student.

```
select ID, rank() over (order by GPA desc) as s_rank from student_grades
```

- An extra order by clause is needed to get them in sorted order select ID, rank() over (order by GPA desc) as s\_rank from student\_grades order by s\_rank
- Ranking may leave gaps: e.g. if 2 students have the same top GPA, both have rank 1, and the next rank is 3
  - dense\_rank does not leave gaps, so next dense rank would be 2



#### Ranking

Ranking can be done using basic SQL aggregation, but resultant query is very inefficient



## **Ranking (Cont.)**

- Ranking can be done within partition of the data.
- "Find the rank of students within each department."

```
select ID, dept_name,
    rank () over (partition by dept_name order by GPA desc)
        as dept_rank
from dept_grades
order by dept_name, dept_rank;
```

- Multiple rank clauses can occur in a single select clause.
- Ranking is done after applying group by clause/aggregation
- Can be used to find top-n results
  - More general than the **limit** n clause supported by many databases, since it allows top-n within each partition



#### **Ranking (Cont.)**

- Other ranking functions:
  - percent\_rank (within partition, if partitioning is done)
  - cume\_dist (cumulative distribution)
    - fraction of tuples with preceding values
  - row\_number (non-deterministic in presence of duplicates)
- SQL:1999 permits the user to specify nulls first or nulls last select ID,
  - rank ( ) over (order by GPA desc nulls last) as s\_rank from student\_grades



#### **Ranking (Cont.)**

- For a given constant *n*, the ranking the function *ntile*(*n*) takes the tuples in each partition in the specified order, and divides them into *n* buckets with equal numbers of tuples.
- E.g.,

select ID, ntile(4) over (order by GPA desc) as quartile from student grades;



## Windowing

- Used to smooth out random variations.
- E.g., moving average: "Given sales values for each date, calculate for each date the average of the sales on that day, the previous day, and the next day"
- Window specification in SQL:
  - Given relation sales(date, value)

select date, sum(value) over (order by date between rows 1 preceding and 1 following) from sales



## Windowing

- Examples of other window specifications:
  - between rows unbounded preceding and current
  - rows unbounded preceding
  - range between 10 preceding and current row
    - All rows with values between current row value –10 to current value
  - range interval 10 day preceding
    - Not including current row



## Windowing (Cont.)

- Can do windowing within partitions
- E.g., Given a relation transaction (account\_number, date\_time, value), where value is positive for a deposit and negative for a withdrawal
  - "Find total balance of each account after each transaction on the account"



#### **OLAP**



#### **Data Analysis and OLAP**

- Online Analytical Processing (OLAP)
  - Interactive analysis of data, allowing data to be summarized and viewed in different ways in an online fashion (with negligible delay)
- Data that can be modeled as dimension attributes and measure attributes are called multidimensional data.

#### Measure attributes

- measure some value
- can be aggregated upon
- e.g., the attribute *number* of the *sales* relation

#### Dimension attributes

- define the dimensions on which measure attributes (or aggregates thereof) are viewed
- e.g., attributes item\_name, color, and size of the sales relation



# **Example sales relation**

| item_name | color  | clothes_size | quantity |
|-----------|--------|--------------|----------|
| skirt     | dark   | small        | 2        |
| skirt     | dark   | medium       | 5        |
| skirt     | dark   | large        | 1        |
| skirt     | pastel | small        | 11       |
| skirt     | pastel | medium       | 9        |
| skirt     | pastel | large        | 15       |
| skirt     | white  | small        | 2        |
| skirt     | white  | medium       | 5        |
| skirt     | white  | large        | 3        |
| dress     | dark   | small        | 2        |
| dress     | dark   | medium       | 6        |
| dress     | dark   | large        | 12       |
| dress     | pastel | small        | 4        |
| dress     | pastel | medium       | 3        |
| dress     | pastel | large        | 3        |
| dress     | white  | small        | 2        |
| dress     | white  | medium       | 3        |
| dress     | white  | large        | 0        |
| shirt     | dark   | small        | 2        |
| chirt     | dark   | medium       | 4        |

... ... ... ...



#### Cross Tabulation of sales by item\_name and color

clothes\_size all

#### color

item name

|       | dark | pastel | white | total |
|-------|------|--------|-------|-------|
| skirt | 8    | 35     | 10    | 53    |
| dress | 20   | 10     | 5     | 35    |
| shirt | 14   | 7      | 28    | 49    |
| pants | 20   | 2      | 5     | 27    |
| total | 62   | 54     | 48    | 164   |

- The table above is an example of a **cross-tabulation** (**cross-tab**), also referred to as a **pivot-table**.
  - Values for one of the dimension attributes form the row headers
  - Values for another dimension attribute form the column headers
  - Other dimension attributes are listed on top
  - Values in individual cells are (aggregates of) the values of the dimension attributes that specify the cell.



#### **Data Cube**

- A data cube is a multidimensional generalization of a cross-tab
- Can have n dimensions; we show 3 below
- Cross-tabs can be used as views on a data cube





## **Cross Tabulation With Hierarchy**

Cross-tabs can be easily extended to deal with hierarchies

item\_name

Can drill down or roll up on a hierarchy

clothes\_size: all

category

|            |          | dark | pastel | white | tot | al |
|------------|----------|------|--------|-------|-----|----|
| womenswear | skirt    | 8    | 8      | 10    | 53  |    |
|            | dress    | 20   | 20     | 5     | 35  |    |
|            | subtotal | 28   | 28     | 15    |     | 88 |
| menswear   | pants    | 14   | 14     | 28    | 49  |    |
|            | shirt    | 20   | 20     | 5     | 27  |    |
|            | subtotal | 34   | 34     | 33    |     | 76 |

62

color

62

48

total

164



#### **Relational Representation of Cross-tabs**

- Cross-tabs can be represented as relations
  - We use the value all is used to represent aggregates.
  - The SQL standard actually uses null values in place of all despite confusion with regular null values.

| item_name | color  | clothes_size | quantity |
|-----------|--------|--------------|----------|
| skirt     | dark   | all          | 8        |
| skirt     | pastel | all          | 35       |
| skirt     | white  | all          | 10       |
| skirt     | all    | all          | 53       |
| dress     | dark   | all          | 20       |
| dress     | pastel | all          | 10       |
| dress     | white  | all          | 5        |
| dress     | all    | all          | 35       |
| shirt     | dark   | all          | 14       |
| shirt     | pastel | all          | 7        |
| shirt     | White  | all          | 28       |
| shirt     | all    | all          | 49       |
| pant      | dark   | all          | 20       |
| pant      | pastel | all          | 2        |
| pant      | white  | all          | 5        |
| pant      | all    | all          | 27       |
| all       | dark   | all          | 62       |
| all       | pastel | all          | 54       |
| all       | white  | all          | 48       |
| all       | all    | all          | 164      |



## **Extended Aggregation to Support OLAP**

- The cube operation computes union of group by's on every subset of the specified attributes
- Example relation for this section sales(item\_name, color, clothes\_size, quantity)
- E.g. consider the query

```
select item_name, color, size, sum(number)
from sales
group by cube(item_name, color, size)
```

This computes the union of eight different groupings of the *sales* relation:

```
{ (item_name, color, size), (item_name, color), (item_name, size), (color, size), (item_name), (color), (size), () }
```

where ( ) denotes an empty group by list.

For each grouping, the result contains the null value for attributes not present in the grouping.



## **Online Analytical Processing Operations**

Relational representation of cross-tab that we saw earlier, but with null in place of all, can be computed by

```
select item_name, color, sum(number)
from sales
group by cube(item name, color)
```

- The function grouping() can be applied on an attribute
  - Returns 1 if the value is a null value representing all, and returns 0 in all other cases.



# **Online Analytical Processing Operations**

- Can use the function decode() in the select clause to replace such nulls by a value such as all
  - E.g., replace item\_name in first query by
     decode( grouping(item\_name), 1, 'all', item\_name)



## **Extended Aggregation (Cont.)**

- The rollup construct generates union on every prefix of specified list of attributes
- E.g.,

- Rollup can be used to generate aggregates at multiple levels of a hierarchy.
- E.g., suppose table itemcategory(item\_name, category) gives the category of each item. Then

```
select category, item_name, sum(number)
from sales, itemcategory
where sales.item_name = itemcategory.item_name
group by rollup(category, item_name)
```

would give a hierarchical summary by *item\_name* and by *category*.



## **Extended Aggregation (Cont.)**

- Multiple rollups and cubes can be used in a single group by clause
  - Each generates set of group by lists, cross product of sets gives overall set of group by lists
- E.g.,

```
select item_name, color, size, sum(number)
from sales
group by rollup(item_name), rollup(color, size)
generates the groupings
{item_name, ()} X {(color, size), (color), ()}
= { (item_name, color, size), (item_name, color), (item_name), (color, size), (color), () }
```



# **Online Analytical Processing Operations**

- Pivoting: changing the dimensions used in a cross-tab is called
- Slicing: creating a cross-tab for fixed values only
  - Sometimes called dicing, particularly when values for multiple dimensions are fixed.
- Rollup: moving from finer-granularity data to a coarser granularity
- **Drill down:** The opposite operation that of moving from coarser-granularity data to finer-granularity data



#### **OLAP Implementation**

- The earliest OLAP systems used multidimensional arrays in memory to store data cubes, and are referred to as multidimensional OLAP (MOLAP) systems.
- OLAP implementations using only relational database features are called relational OLAP (ROLAP) systems
- Hybrid systems, which store some summaries in memory and store the base data and other summaries in a relational database, are called **hybrid OLAP** (HOLAP) systems.



## **OLAP Implementation (Cont.)**

- Early OLAP systems precomputed all possible aggregates in order to provide online response
  - Space and time requirements for doing so can be very high
    - 2<sup>n</sup> combinations of group by
  - It suffices to precompute some aggregates, and compute others on demand from one of the precomputed aggregates
    - Can compute aggregate on (item\_name, color) from an aggregate on (item\_name, color, size)
      - For all but a few "non-decomposable" aggregates such as *median*
      - is cheaper than computing it from scratch
- Several optimizations available for computing multiple aggregates
  - Can compute aggregate on (item\_name, color) from an aggregate on (item\_name, color, size)
  - Can compute aggregates on (item\_name, color, size), (item\_name, color) and (item\_name) using a single sorting of the base data



# **End of Chapter 5**

Database System Concepts, 6th Ed.

©Silberschatz, Korth and Sudarshan See <a href="https://www.db-book.com">www.db-book.com</a> for conditions on re-use