Regulære udtryk

• Regulære udtryk og sprog (def. 3.1)

• Ø •
$$L(\emptyset) = \emptyset$$

• Λ • $L(\Lambda) = \{\Lambda\}$
• a for hver $a \in \Sigma$ • $L(a) = \{a\}$
• $(r_1 + r_2)$ hvor $r_1, r_2 \in R$ • $L((r_1 + r_2)) = L(r_1) \cup L(r_2)$
• $(r_1 + r_2)$ hvor $r_1, r_2 \in R$ • $L((r_1 + r_2)) = L(r_1) \cup L(r_2)$
• (r^*) hvor $r \in R$ • $L((r^*)) = (L(r))^*$
Syntax Semantik

DEKLARATIVT. Godt til at specificere regulært sprog.

Regulære sprog er sprogene, der kan opnås ud fra de tre basiser + operationerne (3.1).

- Eksempel på regulært udtryk $r = (110)*(0+1) \Rightarrow L(r) = \{110\}*\{0,1\}$
 - o Et sprog er regulært hvis og kun hvis, der findes en FA, som accepterer sproget.

• Kleene del 1, bevist ved induktion.

Kleene: Ethvert regulært sprog kan genkendes af en endelig automat.

Idé: Vis at man kan lave en $NFA - \Lambda$ der accepterer de tre basissprog

BASIS:

$$L(\emptyset) = \emptyset$$

 $L(\Lambda) = \{\Lambda\}$
 $L(a) = \{a\}$

Induktionsskridt:

$$\begin{split} \boldsymbol{M}_{u} &= \left(\boldsymbol{Q}_{u}, \boldsymbol{\Sigma}, \boldsymbol{q}_{u}, \boldsymbol{A}_{u}, \boldsymbol{\delta}_{u} \right) \\ \boldsymbol{Q}_{u} &= \boldsymbol{Q}_{1} \cup \boldsymbol{Q}_{2} \cup \left\{ \boldsymbol{q}_{u} \right\} \\ \boldsymbol{A}_{u} &= \boldsymbol{A}_{1} \cup \boldsymbol{A}_{2} \\ \boldsymbol{\delta}_{u} \left(\boldsymbol{q}_{u}, \boldsymbol{\Lambda} \right) &= \left(\boldsymbol{q}_{1}, \boldsymbol{q}_{2} \right) \\ \boldsymbol{\forall} \boldsymbol{a} &\in \boldsymbol{\Sigma} : \boldsymbol{\delta}_{u} \left(\boldsymbol{q}_{u}, \boldsymbol{a} \right) &= \boldsymbol{\varnothing} \\ \boldsymbol{\delta}_{u} \left(\boldsymbol{q}, \boldsymbol{a} \right) &= \left\{ \begin{array}{c} \boldsymbol{\delta}_{1} \left(\boldsymbol{q}, \boldsymbol{a} \right), \boldsymbol{q} &\in \boldsymbol{Q}_{1} \\ \boldsymbol{\delta}_{2} \left(\boldsymbol{q}, \boldsymbol{a} \right), \boldsymbol{q} &\in \boldsymbol{Q}_{2} \end{array} \right. \end{split}$$

I.H.:
$$L_{1} \wedge L_{2} \in R$$

$$(M_{1} \wedge M_{2}) = NFA - \Lambda$$

$$M_{i} = (Q_{1}, \Sigma, q_{i}, A_{i}, \delta_{i})$$

$$Q_{1} \cap Q_{2} = \emptyset$$

$$i = 1 \vee 2$$

$$L(r_1 + r_2) = L(r_1) \cup L(r_2)$$

$$L(r_1 r_2) = L(r_1) L(r_2)$$

$$L(r_1^*) = L(r_1^*)$$

- NFA-lambda → FA
 - Lambda-eliminere og determinisere. Fjerne nondeterminismen → Mere effektiv.