الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2011

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: تقني رياضي

المسدة: 04سا و30د

اختبار في مادة: التكنولوجيا (هندسة مدنية)

على المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول:

المسألة الأولى دراسة تكنولوجية: (03 نقاط)

ما هي العناصر الحاملة المكونة للمنشأ العلوي لبناية ؟

المسألة الثانية دراسة طبوغرافية: (04.5 نقاط)

قطعة أرض مضلعة "ABCD" مبينة في (الشكل1) ومعرفة بالإحداثيات القائمة لرؤوسها:

النقاط	X (m)	Y (m)
A	105,30	87,40
В	212,46	102,36
C	216,38	12,78
D	90,60	8,30

"ABCD" احسب مساحة القطعة "

والموالية والتناوري والمتعالم المحادي

المسألة الثالثة دراسة جملة مثلثية: (06 نقاط)

رافدة معدنية على شكل جملة مثلثية متناظرة تخضع لمجموعة من القوى المركزة المتناظرة كذلك كما هو موضح في (الشكل2):

العمل المطلوب:

- 1. تأكد من أن النظام محدد سكونيا.
- 2. احسب ردود الأفعال في المسندين A و B (لاحظ التناظر).
- 8. احسب الجهود الداخلية المؤثرة في القضبان: (1);(2);(3);(5);(6);(6));(7) و (8)
 وحدد طبيعتها ثم دوّن النتائج في الجدول المرفق بالصفحة 4 من 8.
- 4. تأكد من مقاومة القضيب "ID" علما أن الجهد الداخلي المؤثر فيه $N_{9}=40~KN$ و مقطعه العرضي عبارة عن مجنب زاوي مضاعف (L80x80x8) كما هو موضح في (الشكل3): $\overline{\overline{\sigma}} = 1600~daN/cm^2$

المسألة الرابعة دراسة مقاومة المواد: (06.5 نقاط)

يوضح (الشكل4) رافدة خاضعة لمجموعة من الحمولات، حيث A مسند مضاعف و B مسند سبط.

العمل المطلوب:

- 1-احسب ردود الأفعال في المسندين A وB.
- -2 اكتب معادلات كل من عزم الانحناء $M_{\rm f}$ و الجهد القاطع T على طول الرافدة.
- -3 انجز المنحنى البياني لكل من الجهد القاطع -1 وعزم الانحناء -1 على الصفحة -1 من -1 المقطع العرضي للرافدة مستطيل -1 (-1 -1 وعزم الانحناء -1 المقطع العرضي للرافدة مستطيل -1 (-1 وعزم الانحان أن يأخذ إحدى الوضعيتين المبينتين في الشكل -1 في الشكل -1 .

 $M_{fmax} = 30 \ KN.m$ عزم انحناء أعظمي يقدر بـ $30 \ KN.m$ أ) احسب الإجهاد الناظمي الأقصى σ_{1max} الناتج في المقطع حسب الوضعية $30 \ KN.m$ ب) احسب الإجهاد الناظمي الأقصى $30 \ C_{1max}$ الناتج في المقطع حسب الوضعية $30 \ C_{1max}$. $30 \ C_{1max}$ الناتج في المقطع حسب الوضعية $30 \ C_{1max}$.

وثيقة مرفقة للموضوع الأول

جدول خاص بالمسألة الثالثة:

القضبان	AF	FH	AH	AC	CH	HI	CI	CD	ID
الجهد الداخلي	N ₁	N ₂	N ₃	N ₄	N ₅	N_6	N ₇	N ₈	N ₉
الشدة(KN)									40
الطبيعة									شد

منحنى خاص بالمسألة الرابعة:

ملاحظة: ينجز العمل المطلوب على الورقة، ويعاد مع الإجابة.

الموضوع الثاني:

المسألة الأولى دراسة تكنولوجية: (03 نقاط)

يوضح (الشكل1) مقطعا عرضيا لأرضية مصبوبة من الخرسانة المسلحة ذات أجسام مجوفة. سمِّ العناصر المرقمة من 1 إلى3.

الشكل 1

المسألة الثانية دراسة طبوغرافية: (05 نقاط)

قطعة أرض مضلعة الشكل "ABCD"، تم رصد رؤوس هذا المضلع إنطلاقا من المحطة (O) كما هو مبين في (الشكل2) فتحصلنا على النتائج التالية:

الزوايا الأفقية (grades)	المسافات الأفقية (m)	النقاط المرصدة	المحطة
$\alpha = 02.15$	O A=39,21	A	
$\alpha_1 = 93,15$	O B=29,55	В	0
$\alpha_2 = 123,10$	O C=33,91	C	O
$\alpha_{3} = 86,40$	O D=25,39	D	

علما أن الإحداثيات القائمة لـ :

المحطة (1591,81; 1969,73) المحطة

والنقطة (1604,00; 2007,00) والنقطة

العمل المطلوب:

- 1- احسب السمت الإحداثي GOA.
- 2- استنتج الأسمت الإحداثية:Goo ، Goo و Goo.
- 3- باستعمال طريقة الإحداثيات القطبية احسب مساحة القطعة "ABCD".

المسألة الثالثة دراسة رافدة معدنية: (06 نقاط)

رافدة معدنية ترتكز على مسند ثلاثي (موثوق) تخضع لجملة من الحمولات كما هو موضح في (الشكل3):

العمل المطلوب:

- 1- احسب ردود الأفعال في المسند A.
- 2- اكتب معادلات عزم الانحناء Mf و الجهد القاطع T.
- 3- ارسم منحنيات الجهد القاطع T وعزم الانحناء Mf على الصفحة 8 من 8 .
 - 4- حدد القيمة القصوى لكل من عزم الانحناء Mf والجهد القاطع T.
- 5 حدد اعتمادا على الجدول المرفق، المجنب المناسب الذي يحقق المقاومة علما أن الرافدة تخضع إلى عزم انحناء أعظمي يقدر بــ: $M_{\rm fmax}=37,63$ KN.m و $\frac{1600\,{\rm daN}}{5}=1600\,{\rm daN}$

جدول خصائص مجنبات IPN

S (cm ²) $W_{xx} = \frac{I_{xx}}{V} (cm^3)$		I _{xx} (cm ⁴)	e (mm)	b (mm)	h (mm)	IPN	
27,9	161	1450	6,9	82	180	180	
33,5	214	2140	7,5	90	200	200	
39,6	278	3060	8,1	98	220	220	
46,1	354	4250	8,7	106	240	240	

المسألة الرابعة دراسة مقاومة المواد: (06 نقاط)

(الشكل4) يمثل مقطعا عرضيا cm² (35x35) لجسم صلب متجانس يخضع لتأثيرات ميكانيكية

حسب الحالات	مختلفة	داخلية
الجدول التالي:	حة في	الموض

M (KN .m)	T _(KN)	N _(KN)	المعطيات
0	0	350	الحالة الأولى
0	200	0	الحالة الثانية
86	227	0	الحالة الثالثة

العمل المطلوب:

1- دراسة الحالة الأولى:

أ- ما هو نوع التحريض الناتج في المقطع؟ لماذا؟

ب- احسب الإجهاد الناتج.

 $\sigma = 42 daN/cm^2$: أكد من مقاومة المقطع علما أن

2- دراسة الحالة الثانية:

أ- ما هو نوع التحريض الناتج في المقطع؟ لماذا؟

ب- احسب الإجهاد الناتج.

 $\bar{\tau} = 25 daN / cm^2$: أن مقاومة المقطع علما أن مقاومة المقطع علما أن

3- دراسة الحالة الثالثة:

أ- ما هو نوع التحريض الناتج في المقطع؟ لماذا؟

ب- احسب الإجهادات الناتجة.

 $\tau = 20 daN/cm^2$ و $\sigma = 84 daN/cm^2$ المقاومة محققة؟ علما أن: $\sigma = 84 daN/cm^2$

ملاحظة: أعد تدوين النتائج على الجدول المرفق بالصفحة 8 من 8

وثيقة مرفقة بالموضوع الثاني

منحنى خاص بالمسألة الثالثة:

جدول خاص بالمسألة الرابعة:

المقاومة محققة "نعم " أو "لا"	T da N/cm²	σ da N/cm²	نوع التحريض	M KN-m	T KN	N	المعطيات
				0	0	350	الحالة الأولى
				0	200	0	الحالة الثانية
				86	227	0	الحالة الثالثة

ملاحظة: ينجز العمل المطلوب على الورقة، ويعاد مع الإجابة.

الإجابة النموذجية لموضوع امتحان/ مسابقة:البكالوريا.... دورة: .2011.

اختبار مادة: التكنولوجيا الشعبة/السلك (*): تقني رياضي هندسة مدنية المدة: 4 سا 30 د

عدد الصفحات | 07

الإجابة النموذجية

جزأة مجمو	24				7	1 611	1.			
166.3	•)/B= 1		- 1	به ب	س الإجاب	عناه			ضوع الأول
03 4 X0.	.75				.4	ن الحامل	اية هي :	تًا العلوي لبن	اسة تكنولوجية ملة المكونة للمنش افد - الأرضيات	العناصر الحا
V 20 - 20 - 10 - 10 - 10 - 10 - 10 - 10 -							न्द्र :	4.5) أ	اسة طبوغرافية ABC:	سألة الثانية در احة القطعة D
Leate:	Ir		X	T	Υ		Δχ	Δ΄ν	Υ ΔΧ	ΧΔΥ
54 H A.P., F		D	90.60)	8.30		1	1	1	1
01		Α	105.30		87.40	-12	21.86	-94.06	-10650.56	-9904.52
01		В	212.46	_	102.36		1.08	74.62	-11370.15	15853.7
01		C	216.38		12.78		1.86	94.06	1557.37	20352.7
0.		D	90.60		8.30		1.08	-74.62	921.96	-6760.57
	1 1						7		, , , , , , , , , , , , , , , , , , , ,	1
		A	105.30		$\frac{87.40}{\sum y_n(x_n)}$	$-x_{n+1}$)		$\sum_{n=1}^{\infty} x_n \left(y_{n-1} - x_n \right)$	+1)
0,5				$S = -\frac{1}{2}$	$\sum y_n(x_n)$			$S = \frac{1}{2}$		
0,5	- 8			$S = -\frac{1}{2}$ $S = \frac{1}{2}$	$\frac{1}{2} \sum_{n} y_{n}(x_{n})$	38= 97	70,69	$S = \frac{1}{2}$	$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} x_n \left(y_{n-1} - x_n \right)$	
0,5	X			$S = -\frac{1}{2}$ $S = \frac{1}{2}$	$\frac{1}{2} \sum_{n} y_{n}(x_{n})$	38= 97	70,69	او $S = \frac{1}{2}$ m ²	$\sum_{n=1}^{\infty} \sum_{n=1}^{\infty} x_n \left(y_{n-1} - x_n \right)$	

187

تابع الإجابة النموذجية لموضوع مقترح لامتحان / مسابقة:البكالوريا......دورة: ...2011... دورة: ...2011... اختبار مادة:التكنولوجيا..... الشعبة/السلك (*):تقني رياضي هندسة مدنية..... المدة: لا سا 30 د... P=14KN Q=8KN/m8,50 43,50 .4,00 ____ ___1,50 -[KN] 8.50 0,5 x (m) 0,5 x(m)0,5 $\frac{M_{f \max} x \frac{25}{2}}{40 \times 25^{3}} = 0,72 KN / cm^{2}$ 0,5 5- الوضعية المحققة للمقاومة هي: الوضعية A $\sigma_{
m lmax} < \sigma_{
m 2max}$ 0,5

مم	العلا		ية	عناصر الإجا			وضوع الثاني
مجمو	مجزاة		5.				
							المسالة الأولى
03	01x3					بقة الإنضىغاط بكة ملحمة	شبر
		NAME OF		(,	لمسلحة (رفيدات	روق من الخرسانة ا	ter and an artist and a second
							المسألة الثانية
						الاحداثي <u>Goa</u>	1. حساب السمت
10	0.25	$\Delta X_{OA} = X_A - X_O =$	12,19				
	0.25	ΔYOA=YA-YO=			: * *		
	0.5	$Tan(g) = \frac{\Delta X_{OA}}{\Delta Y_{OA}}$	$=\frac{12,19}{27,27}=0$	$.327 \gg G_{o}$	$_{A}=g=20.$	12 <i>Gr</i>	
		ΔI OA	31,21				G - 1 - 2
	0.5	A	20.42 1.0	245 - 449	076	.Gob , Goc ,	
	0.5	$G_{OB} = G_{OA} + \alpha_1$ $G_{OC} = G_{OA} + (\alpha_1)$ $G_{OD} = G_{OA} + (\alpha_2)$	= 20.12 + 9	3.15 = 113.	.2/Gr : 12310	= 236 376r	
	0.5	$G_{-}=G_{-}+G_{-}$	+ ac + ac)	= 2012+(93.15 + 12	(3.10 + 86.4) =	= 322.77 <i>Gr</i>
		COD COA I	رة الم) ، عدان القطر القطر	يتطيبة، طريقة	ة القطعة ABCD	3. حساب مساح
			0,500		-J. O	7,000	•
		$S = \frac{1}{2} \sum L_n L_{n+1}.s$	$\inf(G_{n+1}-G_n)$	×		*	
		L	G	L _n -L _{n+1}	G _{n+1} -G _n	Sin ΔG	$L_nL_{n+1}Sin(\Delta C)$
		A 39.21	20.12	1158.66	93.15	0.99	931.90
	4x0.5	B 29.55 C 33.91	236.37	1002.04 860.97	123.10 86.40	0.93	843.75
		D 25.39	322.77	995.54	-302.65	1	995.54
	VOLOR	$S = \frac{1}{2}[1158, 66.\sin\theta]$	(93,15) + 1002,0)4.sin(123,10)+	860,97.sin(8	6,40) + 995,54.sin	(-302,65)]
<u>5</u>	0.50	$\left[\frac{1}{2}[3918, 26] = 15\right]$	959,13m ²			ين بعد الفاصلة	إذا أخذنا رقم
		$= \left\{ \frac{1}{2} [3924, 327] = \frac{1}{2} [3924, $	1962,164m ²			لة أرقام بعد الفاصلة	إذا أخذنا ثلاث
			C < 10 E = ⁵⁴			(06 نقاط):	المسالة الثالثة
						ردود الأفعال :	
	of bex	$\Sigma F_X = 0 \Rightarrow H_A = 0$					
	0,50	$\Sigma F_Y = 0 \Rightarrow V_A$ $\Sigma M/A = 0 \Rightarrow N$					
	0.50	X(m)	1 - 31,025 F	M(KN.m)		T(K	(N)
			M(x) = -16x			T(x)=-16	
	2x0.75	$0 \le x < 0,5$	M(0)=0; M			T(0) = -16; $T($	(0,5)=16
	2x0.75	$0,5 \le x \le 2,00$	M(x) = -5	$5/2x^2 - 13,5$	x - 0,625	T(x) = -5x -	-13,5
47			M(x) = -8	;M(2)=-37	7,625	T(0,5) = -16; T	$T(2) \approx -23,5$

تابع الإجابة النموذجية لموضوع مقترح لامتحان / مسابقة:البكالوريا....... دورة: ...2011...

1917/..5 issis

* - *	2011	دورة:		البكالوريا	سابقة:	حان / مـ	نوح لامت	لموضوع مقة	ع الإجابة النموذجية		
	.4 سا 30 د.	المدة:	نندسة مدنية	ني رياضي ه	ر [*]):تق	رالسلك	الشعبة/	جيا	ار مادة:التكنولو		
					(7	06 نقاه	المواد (ة مقاومة	سألة الرابعة دراس		
									اله الأولى :		
						يط	، شد بس	التحريض	a. نوع		
	0,5						$\int N >$	M = 0	لأنه '		
							T =	M = 0			
	0,5			$\sigma =$	$\frac{N}{S} = \frac{350x}{35^2}$	$\frac{10^2}{10^2} = \frac{1}{2}$	28,57	daN /cm	ı² (ب		
	0,5								المقاومة محققة		
	0,5								عالة الثانية :		
**						بسيط	ں قص ہ	ع التحريض	أ) نوح		
							≠ 0		لأنه		
	0,5						=M	=0	עני		
	0,5		$\tau = \frac{T}{C} = \frac{200x 10^2}{25^2} = 16,33 daN / cm^2 (-1)$								
		$S=35^2$ $ au < \overline{ au} \Leftrightarrow 16,33 < 25$ المقاومة المحققة $ au < \overline{ au} \Leftrightarrow 16,33 < 25$									
	0,5		$\int N = 0$)		.,,	7 10,.	33 \ 23	الثالثة :		
	0,5		$\begin{cases} T \neq 0 \end{cases}$	ئە	ی سبط لا	ء مسته	ر انحنا	ع التحريض			
			$M \neq 0$				11.				
	0,5					$\sigma = -$	$\overline{I_x}$	=120,33	daN/cm² (
	0,5 0,25						$\tau =$	$\frac{3T}{2} = 2$	7;80dąN /cm		
	0,5	$ au > \overline{ au}$	27,8	0 > 20	j σ>	ੁ ਹ 12		40	 المقاومة غير محة 		
	0,25				او		,	1 100 15 15-2	J J - ((
		المقاومة			6.1				المعطيات		
		محققة	τ	σ	نوع التحريض	M	Т	N			
<u>06</u>		تعم " أو "لا"	da N/cm ²	da N/cm ²	٠	KN·m	KN	KN	الحالات		
		نعم	/	28.57	شد بسیط	0	0	350	الحالة الأولى		
		نعم	16.33	/	قص بسيط	0	200	0	الحالة الثانية		
		K	27.80	120.35	إنحناء مستوي بسيط	86	227	0	الحالة الثالثة		