Control Systems

G V V Sharma*

\sim				
(NΠ	rei	VΠ	ГС

1 SIGNAL FLOW GRAPH

1	Signal Flow Graph	1	2 Gain of Feedback Circuits
2	Gain of Feedback Circuits 2.1 Voltage Amplifiers	1	Voltage Amplifiers We are given with a feedback voltage amplifier
3	Bode Plot	4	shown in 2.1.1.We can neglect r_o and given with $R_1 + R_2 >> R_D$.
4	Second order System	4	(a)Find expressions for G and H hence amount of feedback.
5	Routh Hurwitz Criterion	4	(b) Noting that the feedback can be eliminated by removing R_1 and R_2 and connecting the
6	State-Space Model	4	gate of Q to a constant dc voltage (signal ground) give the input resistance R_i and output
7	Nyquist Plot	4	resistance R_o of the open-amplifier. (c)Using standard circuit analysis (i.e =,
8	Compensators	4	without invoking the feedback approach), find the input resistance R_{if} and the output
9	Gain Margin	4	resistance R_{of} . How does R_{if} relate to R_i and R_{of} relates to R_o ?
10	Phase Margin	4 2.1.2.	part(a): We have to find the expressions for
11	Oscillator	4	G(open loop gain) , H (the feedback factor) and hence the amount of feedback.
12	Root Locus	4	Solution: For this , first we have to draw
13	Polar Plot	4	the Small-Signal Model for the above Circuit, we ground all constant voltage sources
14	PID Controller	4	and open all constant current sources. All Small-Signal paramters are obtained from DC-
	tract—This manual is an introduction to constant based on GATE problems.Links to sample Python.		Analysis of the circuit.In Small-Signal Analysis a N-MOSFET is modelled as a Current

codes are available in the text.

Download python codes using

svn co https://github.com/gadepall/school/trunk/ control/codes

*The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India e-mail: gadepall@iith.ac.in. All content in this manual is released under GNU GPL. Free and open source.

Source to Drain. 2.1.3. For finding open loop gain (G) and the feedback factor (H).

> Solution: For finding the open loop gain we have to remove R_2 and R_1 and the gate should be grounded.

> Source with value of current equal to $g_m v_{gs}$ flowing from Drain to Source. Whereas a P-

> MOSFET is modelled as a Current Source with

value of current equal to $g_m v_{sg}$ flowing from

Fig. 2.1.1

Fig. 2.1.2: Small Signal Model

Solution:

$$V_o = -g_m V_{gs} * R_D (2.1.4.1)$$

$$V_{gs} = -V_S (2.1.4.2)$$

$$G = \frac{V_o}{V_c}$$
 (2.1.4.3)

$$G = g_m R_D \tag{2.1.4.4}$$

2.1.5. Finding the Expression for the feedback factor *H*.

Solution:

$$H = \frac{V_f}{V_o}$$
 (2.1.5.1)

$$V_f = \frac{R_1}{R_1 + R_2} V_o (2.1.5.2)$$

$$H = \frac{R_1}{R_1 + R_2} \tag{2.1.5.3}$$

Amount of feedback is defined as : 1 + GH

$$1 + GH = 1 + \frac{g_m R_D R_1}{R_1 + R_2}$$
 (2.1.5.4)

The figure for part(b):

Fig. 2.1.5: CG amplifier

2.1.6. Part(b): We have to eliminate the feedback by removing R_1 and R_2 and connecting the gate of Q to a constant DC voltage (signal ground). We have to find the expression of the input resistance R_i and the output resistance R_o of the open loop amplifier.

Solution:

2.1.4. Finding the open loop gain(G)

When the R_1 and R_2 and gate of Q is connected to a constant DC voltage (signal ground) it becomes a CG(Common gate amplifier) without feedback. We can directly see from the 2.1.5 the expression of input resistance R_i and output resistance R_o .

For finding input resistance, output constant voltages are grounded and hence the only current flowing is $g_m V_{gs}$. Hence R_i is:

$$I_{in} = -g_m V_{gs} (2.1.6.1)$$

$$V_{in} = V_S$$
 (2.1.6.2)

$$V_S = -V_{gs} (2.1.6.3)$$

$$R_i = \frac{V_{in}}{I_{in}} {(2.1.6.4)}$$

$$R_i = \frac{1}{g_m} \tag{2.1.6.5}$$

Similarly, for finding output R_o , V_{in} that is V_S will be zero and hence g_mV_{gs} will be zero. Hence only R_D will be left which is the output resistance.

$$R_o = R_D$$
 (2.1.6.6)

2.1.7. Part(c): Using standard circuit analysis that is without using feedback approach we have to find the input resistance R_{if} and output resistance R_{of} and how they relate to R_i and R_o , which we find earlier.

Solution:

We will find them one by one.

2.1.8. finding expression for R_{if}

Solution:

To obtain R_{if} consider the figure 2.1.7: We gave test input voltage V_x and current I_x to find the input resistance from the input side to find R_i .

Fig. 2.1.7

$$R_{if} = \frac{V_x}{I_x}$$
 (2.1.8.1)

$$I_x = -g_m V_{gs} (2.1.8.2)$$

$$V_o = I_x R_D (2.1.8.3)$$

$$V_f = \frac{V_o R_1}{R_1 + R_2} = \frac{I_x R_D R_1}{R_1 + R_2}$$
 (2.1.8.4)

$$V_x = -V_{gs} + V_f (2.1.8.5)$$

$$V_x = \frac{I_x}{g_m} + \frac{I_x R_D R_1}{R_1 + R_2}$$
 (2.1.8.6)

$$\frac{V_x}{I_x} = \frac{1}{g_m} + \frac{R_D R_1}{R_1 + R_2} \tag{2.1.8.7}$$

$$rearranging:$$
 (2.1.8.8)

$$R_{if} = \frac{1}{g_m} (1 + \frac{g_m R_D R_1}{R_1 + R_2})$$
 (2.1.8.9)

$$R_{if} = R_i(1 + GH) (2.1.8.10)$$

The input impedance is increased by a factor of (1 + GH). R_{if} is related to R_i by :

$$R_{if} = R_i(1 + GH) \tag{2.1.8.11}$$

The figure for finding output resistance:

2.1.9. finding expression for R_{of}

Solution:

To obtain R_{of} consider the figure 2.1.8 : We gave test input voltage V_x and current

Fig. 2.1.8

 I_x from the output side to find the output resistance and made the input constant voltages as zero.

$$R_{of} = \frac{V_x}{I_x}$$
 (2.1.9.1)

$$I_x = g_m V_{gs} (\frac{V_x}{R_1 + R_2}) + (\frac{V_x}{R_D})$$
 (2.1.9.2)

$$V_{gs} = \frac{R_1 V_x}{R_1 + R_2}$$
 (2.1.9.3)

$$I_x = \frac{g_m R_1 V_x}{R_1 + R_2} + \frac{V_x}{R_1 + R_2} + (\frac{V_x}{R_D})$$
 (2.1.9.4)

$$R_{of} = \frac{V_x}{I_x} \qquad (2.1.9.5)$$

$$R_{of} = \frac{V_x}{I_x} \qquad (2.1.9.6)$$

$$R_{of} = \frac{1}{\frac{g_m R_1 + 1}{R_1 + R_2} + \frac{1}{R_D}}$$
 (2.1.9.7)

rearranging and multiply both the numerator and denominator by R_D

$$R_{of} = \frac{R_D}{\frac{g_m R_1 R_D}{R_1 + R_2} + 1 + \frac{R_D}{R_1 + R_2}}$$
(2.1.9.8)

since
$$R_1 + R_2 >> R_D \implies \frac{R_D}{R_1 + R_2} = 0$$

$$R_{of} = \frac{R_D}{1 + \frac{g_m R_1 R_D}{R_1 + R_2}}$$
 (2.1.9.9)

$$R_{of} = \frac{R_o}{1 + GH} \tag{2.1.9.10}$$

The output impedance is decreased by a factor of (1 + GH). R_{of} is related to R_o by :

$$R_{of} = \frac{R_o}{1 + GH} \tag{2.1.9.11}$$

The table showing all the expressions we find out in this problem:

G	$g_m R_D$		
Н	$\frac{R_1}{R_1 + R_2}$		
R_i	$\frac{1}{g_m}$		
R_o	R_D		
R_{if}	$(\frac{1}{g_m})(1 + \frac{g_m R_D R_1}{R_1 + R_2})$		
R_{of}	$\frac{R_D}{1 + \frac{g_m R_D R_1}{R_1 + R_2}}$		

TABLE 2.1.9

 $I_x = V_x \left(\frac{g_m R_1 + 1}{R_1 + R_2} + \frac{1}{R_D}\right)$ (2.1.9.52.1.10. Now for spice stimulation we will assume some values which are not given and see the spice simulation.

Solution:

For verifying G (The open loop Gain) we simulate the circuit and plot the ratio: $\frac{V_o}{V}$ Finding g_m to be 0.09

$$G = g_m R_D (2.1.10.1)$$

$$G = 0.93645$$
 (2.1.10.2)

For verifying H (The open loop Gain) we simulate the circuit and plot the ratio: $\frac{V_f}{V}$

As in circuit we have taken values of R_1 and R_2 to be $10k\Omega$ and $10k\Omega$

$$H = \frac{R_1}{R_1 + R_2}$$

$$H = 0.5$$
(2.1.10.3)
(2.1.10.4)

2.1.11. Simulate the circuit 2.1.1 using spice simulators and plot the generated output of the gains using python script

Solution: The plot for Open loop gain(G) is :

Fig. 2.1.11.6

Fig. 2.1.11.7

Find the netlist of the simulated circuit here:

codes/es17btech11019/spice/ es17btech11019.net Python code used for generating the output:

codes/es17betch11019/spice/ es17btech11019.py

- 3 Bode Plot
- 4 SECOND ORDER SYSTEM
- 5 Routh Hurwitz Criterion
 - 6 STATE-SPACE MODEL
 - 7 Nyquist Plot
 - 8 Compensators
 - 9 Gain Margin
 - 10 Phase Margin
 - 11 OSCILLATOR
 - 12 Root Locus
 - 13 Polar Plot
 - 14 PID Controller