WHAT IS CLAIMED IS:

	1. A processing core comprising:
2	one or more processing pipelines having a total of N-number of processing
3	paths, each of said processing paths for processing instructions on M-bit data words; and
4	a plurality of register files, each having Q-number of registers, said Q-number
5	of registers being M-bits wide;
6	wherein said Q-number of registers within each of said plurality of register
7	files are either private or global registers, and wherein when a value is written to one of said
8	Q-number of said registers which is a global register within one of said plurality of register
9	files, said value is propagated to a corresponding global register in the other of said plurality
0	of register files, and wherein when a value is written to one of said Q-number of said registers
1	which is a private register within one of said plurality of register files, said value is not
2	propagated to a corresponding register in the other of said plurality of register files.
_	
1	2. The processing core as recited in claim 1, wherein every two of said N-
2	number of processing paths share one of said plurality of register files.
1	The processing core as recited in claim 1, wherein a processing
2	instruction comprises N-number of P-bit instructions appended together to form a very long
3	instruction word (VLIW), and said N-number of processing paths process N-number of P-bit
4	instructions in parallel.
7	
1	4. The processor chip as recited in claim 3, wherein M=64, Q=64, and
2	P=32.
1	5. The processing core as recited in claim 1, wherein said processing
1	pipeline comprises an execute stage which includes an execute unit for each of said N-
2	number of M-bit processing paths, each of said execute units comprising an integer
3	processing unit, a load/store processing unit, a floating point processing unit, or any
4	combination of one or more of said integer processing units, said load/store processing units,
5	and said floating point processing units.
6	
1	6. The processing core as recited in claim 5, wherein an integer
2	processing unit and a floating point processing unit share one of said plurality of register
3	files.

1	7. The processing core as recited in claim 1, wherein Q=64, and a 64-bit
2	special register stores bits indicating whether a register in a register file is a private register or
3	a global register, each bit in the 64-bit special register corresponding to one of said registers
4	in said register file.
	8. The processing core as recited in claim 1, wherein each of said
1	8. The processing core as recited in claim 1, wherein each of said plurality of register files is connected to a bus, and a value written to a global register in one
2	•
3	of said plurality of register files is propagated to a corresponding global register in the other
4	of said plurality of register files across said bus.
1	9. The processing core as recited in claim 1, wherein said plurality of
2	register files are connected together in serial, and a value written to a first global register in a
3	first of said plurality of register files is propagated to a corresponding first global register in a
4	second of said plurality of register files connected directly to said first of said plurality of
5	register files.
1	10. A VLIW processing core comprising:
2	one or more processing pipelines each including a fetch stage, a decode stage,
3	an execute stage, and a write-back stage, said execute stage having an execute unit
4	comprising an integer processing unit, a load/store processing unit, a floating point
5	processing unit, or any combination of one or more of said integer processing units, said
6	load/store processing units, and said floating point processing units; and
7	a register file for each of said one or more processing pipelines;
8	wherein an integer processing unit and a floating point processing unit within
9	said one or more processing pipelines both access said register file.
1	11. In a computer system, a scalable computer processing architecture,
2	comprising: one or more processor chips, each comprising:
4	a processing core, including:
	a processing pipeline having N-number of processing paths, each of said
5	processing paths for processing instructions on M-bit data words; and
6	a plurality of register files, each having Q-number of registers, said Q-number
7	
8	of registers being M-bits wide;

9	an I/O link configured to communicate with other of said one or more
10	processor chips or with I/O devices;

a communication controller in electrical communication with said processing core and said I/O link;

said communication controller for controlling the exchange of data between a first one of said one or more processor chips and said other of said one or more processor chips;

wherein said computer processing architecture can be scaled larger by connecting together two or more of said processor chips in parallel via said I/O links of said processor chips, so as to create multiple processing core pipelines which share data therebetween.

- 12. The computer processing architecture as recited in claim 11, wherein in said processing core of each of said processor chips, every two of said N-number of processing paths share one of said plurality of register files.
- 13. The computer processing architecture as recited in claim 11, wherein a processing instruction comprises N-number of P-bit instructions appended together to form a very long instruction word (VLIW), and said N-number of processing paths process N-number of P-bit instructions in parallel.
- 14. The computer processing architecture as recited in claim 13, wherein M=64, Q=64, and P=32.
- 15. The computer processing architecture as recited in claim 11, wherein said processing pipeline comprises an execute stage which includes an execute unit for each of said N-number of M-bit processing paths, each of said execute units comprising an integer processing unit, a load/store processing unit, a floating point processing unit, or any combination of one or more of said integer processing units, said load/store processing units, and said floating point processing units.
- 16. The computer processing architecture as recited in claim 15, wherein an integer processing unit and a floating point processing unit share one of said plurality of register files.

17. The computer processing architecture as recited in claim 11, wherein
said Q-number of registers within each of said plurality of register files are either private or
global registers, and wherein when a value is written to one of said Q-number of said
registers which is a global register within one of said plurality of register files, said value is
propagated to a corresponding global register in the other of said plurality of register files,
and wherein when a value is written to one of said Q-number of said registers which is a
private register within one of said plurality of register files, said value is not propagated to a
corresponding register in the other of said plurality of register files.

4. ·

- 18. The computer processing architecture as recited in claim 17, wherein Q=64, and a 64-bit special register stores bits indicating whether a register in a register file is a private register or a global register, each bit in the 64-bit special register corresponding to one of said registers in said register file.
- 19. The computer processing architecture as recited in claim 17, wherein each of said plurality of register files is connected to a bus, and a value written to a global register in one of said plurality of register files is propagated to a corresponding global register in the other of said plurality of register files across said bus.
- 20. The computer processing architecture as recited in claim 19, wherein said plurality of register files are connected together in serial, and a value written to a first global register in a first of said plurality of register files is propagated to a corresponding first global register in a second of said plurality of register files connected directly to said first of said plurality of register files.