Complementos de Cálculo Diferencial e Integral

6ª Ficha de trabalho - 2º Semestre 2014/2015

- 1. Para cada uma das seguintes funções determine os extremos locais, indicando se são ou não extremos absolutos.
 - (a) $f(x,y) = x^3 xy^2 x^2 + y^2$
 - (b) $q(x,y) = (2x x^2)(2y y^2)$.
 - (c) $h(x,y) = x^6 + y^6 + x^3y^3 + 1$.
- 2. Seja $D \subset \mathbb{R}^n$ um conjunto compacto, e $f: D \to \mathbb{R}^m$ uma função contínua e injectiva. Prove que a função inversa $f^{-1}: f(D) \to \mathbb{R}^n$ é contínua.
- 3. Considere a função $f:[1,2]\times[0,2\pi[\to\{(x,y):\ 1\leqslant x^2+y^2\leqslant 4\}\ \text{definida por}\ f(\rho,\theta)=(\rho\cos\theta,\rho\sin\theta).$
 - (a) Justifique que f é bijectiva e contínua.
 - (b) A sua função inversa $f^{-1}:\{(x,y):\ 1\leqslant x^2+y^2\leqslant 4\}\to [1,2]\times [0,2\pi[$ é contínua?
- 4. Seja $g: \mathbb{R} \to \mathbb{R}$ de classe C^1 tal que g(1) = 1 e g'(1) = 2. Defina-se $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ através de:

$$\varphi(x,y) = (xg(y), yg(x))$$

- (a) Mostre que φ é localmente invertível numa vizinhança do ponto (1,1).
- (b) Considere uma função $F: \mathbb{R}^2 \to \mathbb{R}$ diferenciável e uma função H definida por $H = F \circ \psi$, onde ψ é a inversa local de φ referida na alínea anterior. Justifique que H é diferenciável e calcule $D_1H(1,1)$ em termos das derivadas parciais de F.
- 5. Mostre que o sistema

$$\begin{cases} e^{xy} - u + \log(x+v) = 1\\ x^2 + y^3 + u^2 - v^3 = 0 \end{cases}$$

numa vizinhança de do ponto (0,1,0,1) define implicitamente (u,v) como função (x,y). Calcule $\frac{\partial u}{\partial x}(0,1)$.

6. As funções $f:\mathbb{R}^3 \to \mathbb{R}^2$ e $g:\mathbb{R}^2 \to \mathbb{R}$ são definidas por

$$f(x, y, z) = (x + y + z + \operatorname{sen}(xyz), xyz + \operatorname{sen}(x + y + z))$$
 e $g(u, v) = 1 - e^{u-2v}$

- (a) Mostre que a equação $g \circ f(x,y,z) = 0$ define implicitamente numa vizinhança de $\left(0,-\frac{\pi}{2},\frac{\pi}{2}\right)$ uma função $y = \alpha\left(x,z\right)$ diferenciável em $\left(0,\frac{\pi}{2}\right)$.
- (b) Calcule $\frac{\partial \alpha}{\partial x} \left(0, \frac{\pi}{2} \right)$.