Miara i calka

by a plebanek fangirl :> 21.03.2137

1 Zbiory

1.1 Rodziny

Pierscien zbiorow to rodzina $\mathscr{R}\subseteq\mathscr{P}(\mathtt{X})$ taka, ze

$$\hookrightarrow \emptyset \in \mathscr{R}$$

$$\hookrightarrow$$
 A, B $\in \mathscr{R} \implies$ A \cup B, A \setminus B $\in \mathscr{R}$

Cialo zbiorow to pierscien zbiorow, dla ktorego $\mathbf{X} \in \mathcal{R}$

 σ -pierscien zbiorow to rodzina \mathcal{R} ktora jest pierscieniem zamknietym na przeliczalne sumy. Z tego wynika, ze

$$A_n \in \mathscr{R} \implies \lim_{n \to \infty} \sup A_n, \lim_{n \to \infty} \inf A_n \in \mathscr{R}$$

 $\sigma\text{-cialo}$ zbiorow to $\sigma\text{-pierscien}$ do ktorego nalezy X

Niech $\mathscr{F}\subseteq\mathscr{P}(\mathtt{X})$ bedzie rodzina zbiorow, wowczas

 $\hookrightarrow \mathbf{r}(\mathscr{F})$ - pierscien generowany przez rodzine \mathscr{F}

 $\hookrightarrow \mathbf{s}(\mathscr{F})$ - σ -pierscien generowany przez rodzine \mathscr{F}

 $\hookrightarrow \mathsf{a}(\mathscr{F})$ - cialo generowane przez \mathscr{F}

 $\hookrightarrow \sigma(\mathscr{F})$ - σ -cialo generowane przez \mathscr{F}

 $\sigma\text{-cialo zbiorow borelowskich}(*)$ [Bor(R)] - najmniejsze cialo zawierajace rodzine wszystkich otwartych podzbiorow R

(*) zbior borelowski - dowolny zbior otwarty (domkniety) uzyskany przez sume/przekroj/dopelnienie przeliczalnie wielu
zbiorow otwartych (domknietych)

$$\label{eq:liminf} \lim \inf A_n = \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_k \quad \lim \sup A_n = \bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_k$$

Jesli $\lim A_n = \lim A_n = A$, to $\lim A_n = A$.

1.2 Funkcyje

Funkcja zbioru – dla ustalonej rodziny \mathscr{R} funkcja postaci f : $\mathscr{R} \to \mathbb{R}$

Addytywna funkcja zbioru (miara skonczenie addytywna) – dla $\mathscr R$ bedacego pierscieniem zbiorow to funkcja $\mu:\mathscr R\to[\emptyset,\infty]$ spelniajaca:

$$\hookrightarrow \mu(\emptyset) = \emptyset$$

$$\hookrightarrow$$
 A, B $\in \mathscr{R} \land A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B)$

Przeliczalnie addytywna funkcja zbioru μ – jesli dla dowolnego R i A_n takich, ze $(\forall \; i \; , \; j) \; A_i \cap A_j = \emptyset$ oraz R = $\bigcup_n A_n$ zachodzi wzor

$$\mu(\bigcup_{\mathsf{n}}\mathsf{A}_{\mathsf{n}})=\sum_{\mathsf{n}}\mu(\mathsf{A}_{\mathsf{n}})$$

Warunek rownowazny: jest ciagla z dolu, czyli dla $A_n \uparrow A$ zachodzi $\lim_{n \to \infty} \mu(A_n) = \mu(A)$ Jesli zbiory A_n nie sa rozlaczne, to

$$\mu(\bigcup_{n} A_n) \leq \sum_{n} \mu(A_n)$$

Dla addytywnej funkcji zbioru $\mu: \mathscr{R} \to \mathbb{R}$ ponizsze sa rownowazne:

 $\hookrightarrow \mu$ jest przeliczalnie addytywna

 $\hookrightarrow \mu$ jest ciagla z dolu: $A_n \downarrow A \implies \lim_{n \to \infty} \mu(A_n) = \mu(A)$

 $\hookrightarrow \mu$ jest ciagla z gory na zbiorze \emptyset : $A_n \downarrow \emptyset \implies \lim_{n \to \infty} \mu(A_n) = \emptyset$

1.3 Miara Lebesgue'a

Niech \mathscr{R} bedzie peirscieniem na \mathbb{R} generowanym przez zbiory postaci [a,b), wowczas funkcje $\lambda:\mathscr{R}\to\mathbb{R}$ dla zbioru $\mathsf{R}=\bigcup\limits_{i=1}^n [a_i,b_i),$ $(\forall\;i,j)\;[a_i,b_i)\cap[a_j,b_j)=\emptyset,\;a_i< b_i\;\text{definiu-}$

jemy

$$\lambda(R) = \sum_{i=1}^{n} (b_i - a_i)$$

Miara Lebesgue'a to standardowy sposob przypisywania miary podzbiorom przestrzeni

n-wymiarowej, gdzie λ odpowiada n = 1 (dla n = 2 liczymy pole, a dla n = 3 - objetosc).

Niech $[a_n,b_n)$ bedzie dowolnym ciagiem takim, ze $(\forall i,j) [a_i,b_i) \cap [a_j,b_j) = \emptyset$, $[a_i,b_i) \subseteq [a,b)$, wtedy

$$\sum_n (b_n - a_n) \le b - a$$

Jesli $[a_n,b_n)$ jest dowolnym ciagiem przedzialow takim, ze $[a,b)\subseteq\bigcup_n[a_n,b_n)$ to

$$b-a \leq \sum_n (b_n-a_n)$$