Dokumentace k projektu z IMP Měření vzdálenosti ultrazvukovým senzorem

 $\begin{array}{c} {\rm Hung~Do} \\ {\rm xdohun} 00@{\rm stud.fit.vutbr.cz} \end{array}$

12. prosince 2022

Obsah

1	Popis problému	3
2	Zapojení HW	3
3	Implementace	3
	3.1 Hlavní program	3
	3.2 Práce se segmentovým displejem	4
	3.3 Práce se ultrazvukovým senzorem	4
	3.4 Diagramy	4
4	Závěr	5
5	Doplňující odkazy	5

1 Popis problému

Cílem tohoto projektu je za pomocí ultrazvukového senzoru HY-SRF05 naměřit vzdálenost a výslednou hodnotu zobrazit na sedmi-segmentovým LED displeji. Oba senzor i displej musí být připojeny na vývojovou desku s mikrokontrolerem typu ARM. V tomto projektu byla použita vývojová deska FITkit v3.0. Všechny součástky byly zapůjčeny z Ústavu počítačových systémů (UPSY) na Fakultě informačních technologií VUT v Brně.

2 Zapojení HW

Obrázek 1: Zapojení systému

3 Implementace

3.1 Hlavní program

Program nejprve nainicializuje modul časovače a potřebné porty pro komunikaci se senzory. Ze zapojení 2 můžeme vidět, že ultrazvukový senzor i sedmi-segmentový displej jsou zapojený na programovatelných GPIO pinech portů $\bf A$ a $\bf D$. Následně se inicializuje časový modul $\bf PIT$, ve kterém se aktivují tři ze čtych kanálů. První kanál slouží k odpočtu $10~\mu s$ při generování signálu $\it TRIG$. Druhý kanál uchovává délku pulzu mezi nástupnou a sestupnout hranou signálu $\it ECHO$. Výsledek pak slouží k samotnému výpočtu vzdálenosti. A poslední třetí kanál opožďuje čas mezi jednotlivými měřěními (o 100 ms).

V hlavní funkci programu se zapne signál TRIG společně s prvním časovačem a následně se program přesune do nekonečné smyčky, ve které aktualizuje/zobrazuje vypočítanou vzdálenost na displeji.

3.2 Práce se segmentovým displejem

Program zobrazuje na displeji hodnotu uloženou v globální proměnné distance. Hodnota je poté rozdělena na jednotlivé cifry a ty se postupně rozsvítí s určitým časovým zpožděním. Na zápis jednotlivých cifer byla naimplementovaná makra DIGIT_n(c_pos), kde n určuje hodnota cifry a c_pos určuje pozici na displeji.

3.3 Práce se ultrazvukovým senzorem

Celá práce s ultrazvukovým senzorem je řízená přes **PIT** modul a portem **A**. Nejprve je vygenerovaný signál TRIG po dobu 10 μ s, poté se čeká na nástupnou hranu signálu ECHO. Po přijetí tohoto signálu se zapne **PIT1** časovač, který se zastaví až po přijetí sestupné hrany. Počet taktů se pak převedou na uběhnutý čas v μ s a hodnota se vydělí číslem 58^1 . Výsledek je uložen do globální proměnné **distance**.

Paralelně s tímto jede třetí časovač $\mathbf{PIT2}$, který po vypršení časového limitu opět vygeneruje TRIG signál a měřění začne znovu.

3.4 Diagramy

Obrázek 2: Konečný automat systému

¹viz. dokumentace https://www.robot-electronics.co.uk/htm/srf05tech.htm

Obrázek 3: Struktura programu

4 Závěr

Během testování senzor z nějakého neznámého důvodu vracel nižší hodnotu než se očekávalo. Například pro 16 cm senzor naměřil pouhých 13 cm. Prvním pokusem o zpřesnění výpočtu bylo změnou konstanty pro výpočet vzdálenosti z 58 na 50. Po této úpravě došlo k zlepšení výstupních hodnot. Nakonec bylo zapotřebí zinicializovat časový modul **MCG**, který nastavil frekvenci procesoru a poté již senzor měřil dobře (s konstantou 58).

Při implementaci projektu bylo problémové též rozjetí displeje z důvodu rozmístění GPIO portů na periferii $\mathbf{P1}$. Šest pinů bylo umístěné na portu \mathbf{A} a druhá polovina na portu \mathbf{D} . Jinak byl projekt vcelku velice jednoduchý a zábavný.

5 Doplňující odkazy

Odkaz na video: https://drive.google.com/file/d/1qnb50sG01FpfHTN3c1mjMN9AdAEpws3M/view?usp=share_link