Pre-Informe

1.0) Exprese la siguientes números en notación científica:

$$659.4 = 6.594 \times 10^{2}$$
 $0.00045 = 4.5 \times 10^{4}$
 $17.3 = 1.73 \times 10$
 $0.0008 = 8 \times 10^{4}$
 $100.750 = 1.00750 \times 10^{3}$
 $0.106 = 1.06 \times 10^{1}$

1.b) Exprese los siguientes velores en noteción de ingeniería:

$$10000 [v] = 10 \times 10^{6} [v]$$
 $10 [wv]$
 $500 [v] = 0.5 \times 10^{3} [v]$ $0.5 [wv]$
 $10000000 [v] = 10 \times 10^{6} [v]$ $10 [mv]$
 $0.0000000 [a] = 6 \times 10^{6} [a]$ $6 [uA]$
 $0.00001258 [a] = 125.8 \times 10^{6} [a] = 125.8 [uA]$
 $0.0000000001 [a] = 1 \times 10^{9} [a]$ $1 [nA]$

1.0) Sume los siguientes números y aplique el redondes al número correcto de cifras significativas:

125.862 17.54 3.4 1500. 1646.802

15.0085 3.001 16.0104 0.06 34.0799 34.081 2) En el circuito de la figura, considere R=750 De. Para los distintos valores de la fuente V, indicados en la tabla, en cuentre el valor de corriente que circulará por la resistencia R, y complete la tabla.

	No	V2 [V]	I.LAI	No	VaLVI	I. [A]
	Apren A	9	0	9	80	0.107
	2	10	0.013	10	90	0.12
\forall \forall \forall \exists	3	20	0.027		110	O.133
	4	30	0.04	12	120	0.147
	5	40	0.653	13	130	9.16
R = 750 [w]	6	50	0.067	14	140	Ø.173
	7	60	0.08	15	150	0.187
In = 1 V1 [A]	8	70	0.093	16	160	0.2

3) Realice la simulación del circuito presentado, variando el valor de la fuente V1, y de la resistencia R = 750 se complete la tabla.

No	Vn[V]	[A]	No	VIEVI	STEAT
1	0	0	9	80	0.107
2	10	0.0133	10	୧୭	0.17
3	50	0.0267	11	100	0.133
4	30	0.04	12	110	0.147
5	40	0.0533	13	120	0.16
6	50	0.0667	14	130	0.173
7	60	0.08	15	140	0.187
8	70	0.0933	16	150	0.2

PRÁCTICA 1 MARTES	15: 05 Hora	3E 02 104 124 Grupo Fecha	T 124 Gestión	
CABALLERO BURGOA	CARLOS	EDVAROD Nombre(s)		VoBo Docente Laboratorio

RESISTENCIA	GRANDE	MEDIANA	PEQUEÑA
ETIQUETA	250 Sb	500 A	1 K.S
MEDICIÓN OHMETRO	257 St	521 JU	1.046 KN

Tabla 1.3. Medición de resistencias de valor fijo

	F0	F10	F20	F30	F40	F50	F60	F70	F80	F90	F100
G1		The state of the state of the state of			and the second s		The second control of the Company of the	the second second second	A STATE OF THE STA	1	
G2	123.1	119.6	112.8	107.7	101.1	95.3	88.6	855	F.48	73.8	86.5

Tabla 1.4. Medición de resistencia variable

N°	V_{t}	TEÓRICO	SIMULACIÓN I, LmA	LABOR V, Tu]	ATORIO
1	0 V	0	Ø	0	0
2	10 V	13.33	13.3	10.0	13.3
3	20 V	26.67	26.7	19.8	26.1
4	30 V	40	40	29.9	39.6
5	40 V	53.33	53.3	40.4	53.4
6	50 V	66-67	66.7	49.9	66
7	60 V	80	80	60.0	74.3
8	70 V	93.33	93.3	70.1	92.7
9	80 V	166.67	107	86.3	106.2
10	90 V	120	120	90.2	119.2
11	100 V	133.33	133	100.2	132.3
12	110 V	146.67	147	110.4	145.3
13	120 V	160	160	120.0	157.5
14	130 V	173.33	173	130.3	169.5
15	140 V	186.67	187	140.5	180.0
16	150 V	200	200	150,1	189.9

Tabla 1.5. La Ley de Ohm