Планирование эксперимента для моделей с мешающими параметрами

Кухтина Дарина Александровна, гр. 422

Санкт-Петербургский государственный университет Кафедра статистического моделирования

Научный руководитель: д.ф.-м.н., профессор Мелас В.Б. Рецензент: к.ф.-м.н., Шпилев П.В.

Санкт-Петербург 2015г.

Определение

 $y_j=\eta(x_j,\theta)+arepsilon_j$, где $x_j\in\chi$, $\theta\in\Omega\subset\mathrm{R}^n$, $\mathbb{E}arepsilon_j=0$, $\mathbb{E}arepsilon_j^2=\sigma^2$, $\mathbb{E}arepsilon_jarepsilon_i=0$ при $i\neq j$, $i,\ j=1,\dots,N$ — общее уравнение регрессии.

Определение

План эксперимента — это дискретная вероятностная мера на множестве планирования χ с конечным носителем:

$$\begin{pmatrix} x_1 & \dots & x_n \\ \omega_1 & \dots & \omega_n \end{pmatrix},$$

причем $\sum_{i=1}^n \omega_i = 1$ и $\omega_i \geq 0$.

• Полиномиальная модель:

$$\eta(x,\theta) = \theta_1 x^{n-1} + \ldots + \theta_{n-1} x + \theta_n$$

Некоторые нелинейные по параметрам модели:

• Модель Михаэлиса-Ментен:

$$\eta(x,\theta) = \frac{ax}{x+b}, x \in [0,d];$$

• Обобщенная модель Михаэлиса-Ментен (EMAX-модель):

$$\eta(x,\theta) = \frac{ax^h}{b+x^h}, x \in [0,d];$$

EMAX-модель:

$$\eta(x,\theta) = a + \frac{bx}{x+c}, x \in [0,d].$$

Информационная матрица плана: $M(\xi) = \int\limits_\chi f(x) f^T(x) \xi dx,$ где f(x):

- Для линейной модели: $\eta(x,\theta) = \theta^{\mathrm{T}} f(x)$, причем $f(x) = (f_1(x), \dots, f_n(t))^{\mathrm{T}}$, где $f_i(t)$ непрерывные, линейно независимые функции.
- Для нелинейной модели: $f(x) = f(x, \theta^{(0)}) = (\frac{\partial \eta(x, \theta^{(0)})}{\partial \theta_1}, \dots, \frac{\partial \eta(x, \theta^{(0)})}{\partial \theta_m})^{\mathrm{T}}.$

Определение

План ξ^* называется D-оптимальным, если $\det M(\xi^*) o \max_{\xi \in \Xi}$.

Определение

 D_s -оптимальный план максимизирует $\det M_{(s)}(\xi)$. Здесь $M_{(s)}(\xi)=M_{11}(\xi)-X^{\mathrm{T}}M_{22}(\xi)X$, где

$$M(\xi) = \begin{pmatrix} M_{11}(\xi) & M_{12}(\xi)^{\mathrm{T}} \\ M_{12}(\xi) & M_{22}(\xi) \end{pmatrix},$$

- \bullet если матрица M_{22} невырождена, $X=M_{22}^{-1}M_{12}$;
- ullet иначе: X произвольное решение системы $M_{22}X=M_{12}.$

Задача: найти D_s -оптимальные планы и исследовать их эффективность в случае полиномиальных и некоторых нелинейных моделей.

Теоремы эквивалентности

Teopeмa (Kiefer, Wolfowitz, 1961 г.)

Если множество информационных матриц компактно, то следующие условия эквивалентны:

- план $\xi^* D$ -оптимальный.
- ullet $\max_{x \in \chi} d(x, \xi^*) = m$, где $d(x, \xi) = f^T(x) D(\xi) f(x)$.

Teopeмa (Karlin, Studden, 1976 г.)

План ξ является D_s -оптимальным планом \Leftrightarrow \exists матрица X, удовлетворяющая условию:

$$M_{22}(\xi)X = M_{12}(\xi),$$

и такая что

$$\max_{x \in X} \psi(t)^{\mathrm{T}} (M_{(s)}(\xi))^{-1} \psi(x) = s,$$

где
$$\psi(x) = f_{(1)}(x) - X^{\mathrm{T}} f_{(2)}(x)$$
, $M_{(s)} = M_{11} - X^{\mathrm{T}} M_{22} X$.

Вспомогательные теоремы

Известный результат см. (Мелас, Шпилев, 2012 г.)

Для полиномиальной модели на отрезке [-1,1] точки D-оптимального плана — корни уравнения $(x^2-1)P_{n-1}^{'}$, $\omega_i=\frac{1}{n}, i=1,\dots,n.$

Teopeмa(Studden, 1979 г.)

Множество точек D_s -оптимального плана — $\{-1,1\}$ и п-1 корень уравнения

$$P'_{s}(x)U_{n-s}(x) - P'_{s-1}(x)U_{n-s-1}(x) = 0,$$

их веса
$$\omega_i = rac{2}{2n+1+U_{2s}(x_i)}, i=0,1,\dots,n, s=1,\dots,n-1$$
 .

Teopeмa(Elfving, 1952 г.)

План является c-оптимальным, если $\exists \ p$:

- $(p^{\mathrm{T}}f(x))^2 \le 1$,
- $p^{\mathrm{T}}f(x_i) = (-1)^i$,
- $oldsymbol{\circ}$ $c=\gamma\sum_{i=1}^n (-1)^i f(x_i)\omega_i$, где $\gamma=$ const, а c- единичный вектор.

Полиномиальная модель степени 4

Вектор регрессионных функций: $f(x) = (x^4, x^3, x^2, x, 1)^{\mathrm{T}}$. D-оптимальный план:

$$\begin{pmatrix} -1 & -\sqrt{\frac{3}{7}} & 0 & \sqrt{\frac{3}{7}} & 1\\ \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \end{pmatrix}.$$

Оптимальные планы для оценки коэффициентов:

при
$$(x^3,x^4)$$
: при x^4 :
$$\begin{pmatrix} -1 & -\frac{5}{2\sqrt{3}} & 0 & \frac{5}{2\sqrt{3}} & 1 \\ \frac{1}{7} & \frac{9}{35} & \frac{1}{5} & \frac{9}{35} & \frac{1}{7} \end{pmatrix}; \begin{pmatrix} -1 & -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} & 1 \\ \frac{1}{8} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{8} \end{pmatrix}.$$

Эффективность

Эффективность D-оптимального плана, относительно D_s -оптимального плана:

$$\frac{\sqrt[s]{\det M_{(s)}(\xi_2)}}{\sqrt[s]{\det M_{(s)}(\xi_1)}},$$

s — количество оцениваемых параметров модели, ξ_2 — D-оптимальный план, ξ_1 — D_s -оптимальный план.

Эффективность D_s -оптимального плана, относительно D-оптимального:

$$\frac{\sqrt[n]{\det M(\xi_1)}}{\sqrt[n]{\det M(\xi_2)}},$$

n — количество параметров модели.

Таблица: Эффективность D-оптимального плана, относительно D_s -оптимальных для полиномиальных моделей, $s=1,\ldots,4$

Планы	Степень 2	Степень 3	Степень 4
D_1	0.54	0.10	0.03
D_2	1	0.17	0.13
D_3	_	1	0.25
D_4	_	_	1

Таблица: Эффективность D_s -оптимальных планов, относительно D-оптимального плана для полиномиальных моделей, $s=1,\ldots,4$

Планы	Степень 2	Степень 3	Степень 4
D_1	0.95	0.94	0.93
D_2	1	0.95	0.96
D_3	_	1	0.98
D_4	_	_	1

Таблица: Сравнение эффективности D-оптимальных планов для полиномиальных моделей

Модели	Для модели	Для модели	Для модели
	степени 2	степени 3	степени 4
Степень 2	_	0.49	0.26
Степень 3	0	_	0.50
Степень 4	0	0	_

Проверка гипотезы

Для полиномиальной модели можем проверить гипотезу:

$$H_0: \theta_1, \ldots, \theta_s = 0.$$

Против альтернативы:

$$H_1: \exists i \in \{1, \dots, s\}: \theta_i \neq 0.$$

Рис.: Сравнение моделей

Нелинейные модели

Некоторые нелинейные по параметрам модели:

• Модель Михаэлиса-Ментен:

$$\eta(x,\theta) = \frac{ax}{x+b}, x \in [0,d];$$

ullet Обобщенная модель Михаэлиса-Ментен (EMAX-модель):

$$\eta(x,\theta) = \frac{ax^h}{b+x^h}, x \in [0,d];$$

EMAX-модель:

$$\eta(x,\theta) = a + \frac{bx}{x+c}, x \in [0,d].$$

Модель Михаэлиса-Ментен

D-оптимальный план:

$$\begin{pmatrix} \frac{bd}{d+2b} & d\\ \frac{1}{2} & \frac{1}{2} \end{pmatrix}.$$

 D_1 -оптимальный план для оценки параметра b:

$$\begin{pmatrix} \frac{bd}{(\sqrt{2}+1)\cdot b+\sqrt{2}\cdot d} & d\\ \frac{1}{\sqrt{2}} & \frac{\sqrt{2}-1}{\sqrt{2}} \end{pmatrix}.$$

 D_1 -оптимальный план для оценки параметра a:

$$\begin{pmatrix} \frac{bd}{(\sqrt{2}+1)\cdot b + \sqrt{2}\cdot d} & d\\ \frac{4+4\sqrt{2}}{5+8\sqrt{2}} & \frac{1+4\sqrt{2}}{5+8\sqrt{2}} \end{pmatrix}.$$

EMAX-модель

D-оптимальный план:

$$\xi = \begin{pmatrix} 0 & \frac{db}{2b+d} & d\\ \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{pmatrix};$$

 D_1 -оптимальный план для оценки b:

$$\begin{pmatrix} 0 & \frac{db}{2b+d} & d\\ \frac{1}{2} & \frac{1}{8} & \frac{3}{8} \end{pmatrix};$$

 D_1 -оптимальный план для оценки c:

$$\begin{pmatrix} 0 & \frac{db}{2b+d} & d \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{pmatrix}.$$

Сравнение эффективности для модели Михаэлиса-Ментен:

Рис.: D_1 -оптимальный для параметра а

Рис.: D_1 -оптимальный для параметра b

Сравнение эффективности для EMAX-модели :

Рис.: D_1 -оптимальный для параметра b

Рис.: D_1 -оптимальный для параметра с

Сравнение эффективности для модели обобщенной модели Михаэлиса-Ментен:

Результаты

- Найдены планы для оценки части параметров в полиномиальных и некоторых нелинейных моделях.
- Выяснено, что в случае полиномиальной модели усеченные планы оказываются эффективнее D-оптимальных для оценки части параметров. Также эффективны для оценки всех параметров модели, и используются при проверки гипотез о ее порядке.
- В случае модели Михаэлиса-Ментен и EMAX-модели D_s -оптимальные планы не имеют столь высокой эффективности и D-оптимальные планы оказываются эффективнее.