Package 'polyBreedR'

July 19, 2020

Title Using genome-wide markers for polyploid breeding
Version 0.1
Author Jeffrey B. Endelman
Maintainer Jeffrey Endelman <endelman@wisc.edu></endelman@wisc.edu>
Description Using genome-wide markers for polyploid breeding
Depends R (>= 3.5.0)
License GPL-3
LazyData true
RoxygenNote 7.1.0
Encoding UTF-8
Imports AGHmatrix, ggplot2, ggrepel, pedigree, grDevices, utils, tidyr
Suggests knitr, rmarkdown
VignetteBuilder knitr
R topics documented:
r r
A_mat
check_ploidy
check_trio
geno_call
get_pedigree
GvsA
G_coeff
readXY
update_alias
Index

2 check_ploidy

A_mat

Additive relationship matrix from pedigree

Description

Additive relationship matrix from pedigree

Usage

```
A_mat(ped, ploidy, order.ped = TRUE)
```

Arguments

ped Pedigree in three column format: id, mother, father

ploidy 2 or 4

order.ped TRUE/FALSE does the pedigree need to be ordered so that progeny follow par-

ents

Details

This is a wrapper that prepares the pedigree in the format required for R package AGHmatrix by Amadeu et al. (2016) (cite them if you use this function). A random bivalents model for tetraploid meiosis is assumed.

Value

Additive relationship matrix (dim: indiv x indiv)

References

Amadeu et al. (2016) Plant Genome 9, doi:10.3835/plantgenome2016.01.0009

check_ploidy

Check ploidy

Description

Fraction of simplex or triplex markers

Usage

```
check_ploidy(geno, map)
```

Arguments

geno Genotype matrix (markers x indiv)

map Data frame with marker map (Marker, Chrom, Position)

check_trio 3

Details

For every indiv in the genotype matrix, the fraction of markers per chromosome called as simplex or triplex is calculated, which should be low for diploids. A small amount of missing genotype data can be tolerated.

Value

List containing

mat Matrix (indiv x chrom) of resultsplot ggplot2 barplot

check_trio

Check markers for parent-offspring trio

Description

Check markers for parent-offspring trio

Usage

```
check_trio(parentage, geno, ploidy)
```

Arguments

parentage Data frame with three columns: id, mother, father

geno Matrix of allele dosages: markers x indiv

ploidy 2 or 4

Details

Computes the percentage of markers at which the two parents and offspring have incompatible allele dosages (for tetraploids, the random bivalents model is used). For dihaploid offspring of a single tetraploid parent, use ploidy = 4 and "haploid" for the father in parentage, as well as a diploid (0,1,2) genotype for the offspring. A small amount of missing genotype data can be tolerated.

Value

Data frame with the percentage of incompatible markers for each trio

4 geno_call

geno_call Genotype calls

Description

Genotype calls based on a normal mixture model

Usage

```
geno_call(
  data,
  filename,
  model.ploidy = 4,
  sample.ploidy = 4,
  min.posterior = 0,
  transform = TRUE
)
```

Arguments

data matrix (markers x id) of input values for the normal mixture model

filename CSV filename with the model parameters

model.ploidy 2 or 4 (default)

sample.ploidy 2 or 4 (default)

min.posterior minimum posterior probability (default 0) for genotype call

transform TRUE (default) or FALSE whether to apply arcsin square root transformation

Details

The first column of the CSV input file should be the SNP ID, followed by columns for the normal distribution means, standard deviations, and mixture probabilities. Genotype calls are based on the maximum a posteriori (MAP) method. If the posterior probability of the MAP genotype is less than min.posterior, then NA is returned for that sample. By default, an arcsin square root transformation is applied to the input values to match the approach used by R package fitPoly. To use a tetraploid mixture model for diploid samples, set sample.ploidy = 2 and model.ploidy = 4.

Value

matrix of allele dosages (0,1,2,...ploidy) with dimensions markers x individuals

get_pedigree 5

Generate pedigree	
-------------------	--

Description

Generate pedigree for a set of individuals

Usage

```
get_pedigree(id, pedfile, delim = ",", na.string = "NA", trim = TRUE)
```

Arguments

id	Vector of names of individuals
pedfile	Name of pedigree file
delim	Delimiter for the pedigree file (default is "," for CSV)
na.string	String used for NA in the pedigree file (default is "NA")
trim	TRUE/FALSE whether to trim pedigree (see Details)

Details

Finds ancestors of individuals in a three-column pedigree file (id,mother,father). The id column can be the identifier for an individual or cross. String matches must be exact or based on the naming convention crossID-progenyID. The returned pedigree is ordered using R package pedigree so that offspring follow parents. When trim is TRUE (default), the pedigree is trimmed to remove ancestors with only one offspring (which are not needed to compute the pedigree relationship matrix).

Value

Data frame with columns id, mother, father

GvsA	Plot G vs. A

Description

Plot marker-based vs. pedigree-based additive relationship coefficients

Usage

```
GvsA(parentage, G, A, filename = NULL, thresh.G = Inf, thresh.A = 0.5)
```

Arguments

parentage	Data frame of individuals to plot, with 3 columns: id,mother,father
G	Genomic relationship matrix
Α	Pedigree relationship matrix
filename	Name of PDF file to save the results (optional for one individual)
thresh.G	Threshold above which names are displayed (default Inf)
thresh.A	Threshold above which names are displayed (default 0.5)

 G_{coeff}

Details

Useful for finding and correcting pedigree errors. If the G or A coefficient for an individual exceeds the threshold, its name is displayed in the figure. If parentage contains one individual, by default a ggplot2 variable will be returned, but the result can also be written to file. If multiple individuals are present, a filename is required.

G_coeff

Coefficients to make the additive G matrix

Description

Coefficients of the additive effects for bi-allelic markers

Usage

```
G_coeff(geno, ploidy)
```

Arguments

geno Matrix of allele dosages: markers x indiv

ploidy 2 or 4

Details

Additive effects are based on the traditional orthogonal decomposition of genetic variance in panmictic populations (Fisher 1918; Kempthorne 1957; Endelman et al. 2018). The G matrix can be computed from the coefficients and scaling factor according to G = tcrossprod(coeff/scale). Missing genotype data is replaced with the population mean.

Value

List containing

coeff Coefficients of the marker effects (dim: indiv x marker)

scale Scaling factor between markers and indiv

References

Fisher (1918) Trans. Roy. Soc. Edin. 52:399-433.

Kempthorne (1957) An Introduction to Genetic Statistics.

Endelman et al. (2018) Genetics 209:77-87.

readXY 7

readXY Read SNP array intensity data	
readXY Read SNP array intensity data	

Description

Read SNP array intensity data

Usage

```
readXY(filename, skip, output = "ratio")
```

Arguments

filename filename

skip number of lines to skip before the header line with the column names

output Either "ratio" or "theta"

Details

The first two columns of the tab-delimited input file should be the SNP and Sample ID. Columns labeled "X" and "Y" contain the signal intensities for the two alleles. Use output to specify whether to return the ratio = Y/(X+Y) or theta = atan(Y/X)*2/pi.

Value

matrix with dimensions markers x individuals

Description

Update names based on data frame with alias and preferred name

Usage

```
update_alias(x, alias, remove.space = TRUE)
```

Arguments

x Vector of names to update

alias Data frame with two columns: first is the preferred name and second is the alias

remove.space TRUE/FALSE

Details

Parameter remove. space indicates whether blank spaces should be removed before string matching

Value

Vector with updated names

Index

```
A_mat, 2

check_ploidy, 2
check_trio, 3

G_coeff, 6
geno_call, 4
get_pedigree, 5
GvsA, 5

readXY, 7

update_alias, 7
```