Homework VI

- 1. Consult the AdaBoost algorithm given in Bishop Chapter 14. Suppose there are two weak leaners h_1 and h_2 , and a set of 17 points.
 - a) Let say h_1 makes one mistake and h_2 makes four mistakes on the dataset. Which leaner will AdaBoost choose in the first iteration (namely m=1)?
 - b) What is α_1 ?
 - c) Calculate the data weighting co-efficient w_2 for the following two cases (1) the points on which chosen leaner made a mistake and (2) the points on which the chosen leaner did not make a mistake. [10 Points]
- 2. The diagram shows training data for a binary concept where a heart denotes positive examples. Also shown are three decision stumps (A, B and C) each of which consists of a linear decision boundary. Suppose that AdaBoost chooses A as the first stump in an ensemble and it has to decide between B and C as the nest stump. Which will it choose? Explain. What will be the ϵ and α values for the first iteration? [5 Points]

3. Consider cluster 1D data with a mixture of 2 Guassian using the EM algorithm. You are given the ID data points $x = [1 \ 10 \ 20]$. Suppose the output of the E step is the following matrix

$$R = \begin{bmatrix} 1 & 0 \\ 0.4 & 0.6 \\ 0 & 1 \end{bmatrix}$$

where entry $r_{i,c}$ is the probability of observation x_i belonging to cluster c (the responsibility of cluster c for data point i). You have to compute the M step. You may state the equations for maximum likelihood estimates of these quantities (which you should know) without proof; you just have to apply the equations to this data set. You may leave your answer in fractional form.

- a. Write down the likelihood function you are trying to optimize.
- b. After performing M step for the missing weights π_1, π_2 , what are the new values?
- c. After performing M step for the means μ_1 , μ_2 , what are the new values?

[10 Points]

4. In the following figure some data points are shown which lie on integer grid. Suppose we apply the K-means algorithm to this data, using K =2 and with the centers initialized at the two circled data points. Draw the final clusters obtained after K-means converges. [5 Points]

5.	Consider training a two-input perceptron. Give an upper bound on the nur examples sufficient to assure with 90% confidence that the learned perceptro error of at most 5%?	
6.	The VC dimension is always less than size of the hypothesis space. True/False?	[5 Points]
7.	Computational Learning Theory	[10 Points]
(a)	Consider the class C of concepts of the form: $(a \le x_1 \le b) \land (c \le x_2 \le d)$. Note that each concept in this class corresponds to a rectangle in 2-dimensions. Let a, b be integers in the range $[0, 199]$ and c, d be integers in the range $[0, 99]$. Give an upper bound on the number of training examples sufficient to assure that for any target concept $c \in C$, any consistent learner using $C \in C$ will, with probability 0.99, output a hypothesis with error at most 0.05.	
(b)	Consider the class C of concepts of the form: $(a \le x_1 \le b)$ \land $(c \le x_2 \le d)$ Note that each concept in this class corresponds to a hyper-rectangle in 3-d. Now b, c, d, e, f take on real values instead of integers. Give an upper bound on the nu examples sufficient to assure that for any target concept c \in C, a learner will, with output a hypothesis with error at most 0.01.	v suppose that a, umber of training