ALGEBRA LINEARE -

LEZIONE 18

۳

Note Title

17/10/2023

 $\begin{pmatrix} -29 & -48 \\ 25 & 41 \end{pmatrix}$

Matrice

richi esta

$$\mathbb{R}^2$$
 \mathbb{R}^2 $(2x - 3y, x + 4y)$ $v_1 = (1, 2)$ $w_1 = (1, 4)$ $v_2 = (1, 3)$ $w_2 = (1, 5)$

$$f(v_1) = f(1,2) = (-4,9) = a(1,4) + b(1,5)$$

$$\begin{cases} a+b = -4 & a=-29 \\ 4a+5b = 9 & b=25 \end{cases}$$

$$\begin{cases} b = 25 & b=25 \end{cases}$$

Verifica:
$$(-4,9) = -29(1,4) + 25(1,5)$$

$$f(v_2) = f(1,3) = (-7,13) = a(1,4) + b(1,5)$$

 $a+b = -7$ $a=-48$
 $a+5b = 13$ $a=-48$
 $a+5b = 13$ $a=-48$
 $a=-48$
 $a=-48$
 $a=-48$
 $a=-48$
 $a=-48$
 $a=-48$
 $a=-48$
 $a=-48$
 $a=-48$

Allora posso procedere in questo modo:

$$\rightarrow$$
 scrivo (3,2) come comb. Qin. di $v_4 e v_2$, cioè (3,2) = a (1,2) + b (1,3)

$$\begin{cases} a+b=3 & a+b=3 \\ 2a+3b=2 & b=-4 \\ 0 & a=7 \\ 0 & b=-4 \end{cases}$$
Venifica: $(3,2)=7(1,2)-4(1,3)$

$$\begin{pmatrix} -23 & -48 \\ 25 & 41 \end{pmatrix} \begin{pmatrix} 7 \\ -4 \end{pmatrix} = \begin{pmatrix} -203 + 192 \\ 175 & -164 \end{pmatrix} = \begin{pmatrix} -11 \\ 11 \end{pmatrix}$$

 $f(3,2) = -11 \omega_1 + 11 \omega_2 = -11 (1,4) + 11 (1,5)$

②
$$\psi: \mathbb{R}^2 \to \mathbb{R}^2$$
 $\psi(1,2) = (2,3)$ $\psi(2,4) = (7,8)$

Se
$$f(1,2) = (2,3)$$
, allora $f(2,4)$ deve fore $(4,6)$
Quiudi NON ESISTE

La seconda condigione è conseguenza della prima. In questo caso f esiste ma vox è unica.

Serve qui du
$$(1,2)$$
 e $(1,0)$ Sous una base di \mathbb{R}^2

$$\Phi + \mathbb{R}^2 \rightarrow \mathbb{R}$$
 $+ (1,2) \rightarrow (2,3)$
 $+ (1,3) \rightarrow (2,3)$

Esiste ed à unica, perché è fissata in una base

Osserviano de $U_3 = U_1 + U_2$, ma $f(U_3) \neq f(U_1) + f(U_2)$ quindi non esiste.

(‡)	\mathbb{R}^3	\mathbb{R}^3	$(0,1,0) \to (0,0,1)$ $(0,2,0) \to (0,0,2)$	¿ conseguenza della prima
8	\mathbb{R}^3	\mathbb{R}^3	$(0,1,0) \to (0,0,1)$ $(0,0,1) \to (0,0,1)$	

(3) Esiste ma non è unica e abbiano liberi

$$f(0,1,0) = (0,0,1)$$
 $f(1,0,0) = (a_1b,c)$
 $f(0,0,1) = (\hat{a},\hat{b},\hat{c})$

6 parametri Qiberi

8 Esi ste uou è unica e dipende da 3 parametri
$$f(0,1,0) = (0,0,1)$$

 $f(0,0,1) = (0,0,1)$

$$f(1,2,3) = (a,b,c)$$

Ci savanno fenezioni songettive tra tente quelle con Da proprietà?

Essendo tra sparsi della stessa dion., f è surojettiva ∈ f è iniettiva, e questa palesemente non lo è. Ad esempio (0,1,-1) ∈ ker f

$$(0,1,0)-(0,0,1)$$

$$f: \mathbb{R}_{\leq 2} [x] \longrightarrow \mathbb{R}_{\leq 2} [x]$$

$$p(x) \longrightarrow p(2x) + p(-x)$$

Verificare de à Dineare.

Sorivere la matrice usando in partensa ed arrivo la base

Dove va a finise
$$p(x) = 2x^2 - 3x + 1$$
?

