Multi-Source Domain Adaptation with von Neumann Conditional Divergence

NEC

- > Feature similarity includes:
- > the invariance of marginal distributions,
- and the closeness of conditional distributions given the desired response y

Problem Definition & Motivation

- Traditional methods learn features without fully taking into consideration the information in y, which in turn may lead to a mismatch of the conditional distributions.
- > Our main contributions are summarized as follows:
 - ightharpoonup We introduce D_{vN} to the problem of domain adaptation (DA) and generalization,
- and develop a novel learning objective and a generalization bound for multi-source DA.
- The D_{vN}-based objective improves the unsupervised robustness for new tasks.

Background Knowledge

- Let \mathcal{X} and \mathcal{Y} be the input and the output spaces. Given K source domains $\{D_i\}_{i=1}^K$, N_i training samples $\{x_i^j, y_i^j\}_{i=1}^{N_i}$ from $P_i(\mathbf{x}, \mathbf{y})$ over $\mathcal{X} \times \mathcal{Y}$.
- \succ A network with feature extractor $f_{\theta} \colon \mathcal{X} \to \mathcal{T}$ (param. by θ) and a predictor $h_{\varphi} \colon \mathcal{T} \to \mathcal{Y}$ (param. by φ).
- > The similarity of the latent representation *t* includes:
 - > the invariance of marginal distributions (i.e., $P(f_{\theta}(x))$ across different domains, and
- ➤ the functional closeness of using t to predict y.
- \succ Goal: generalize a parametric model learned from samples in $\{D_i\}_{i=1}^K$ to an unseen target domain D_{K+1} .

von Neumann Conditional Divergence

> Yu et al. (2020) [1] defines the relative divergence between $P_1(y|x)$ and $P_2(y|x)$ as:

$$D(P_1(y|x)||P_2(y|x)) = D_{vN}(\sigma_{xv}||\rho_{xv}) - D_{vN}(\sigma_x||\rho_x),$$

where σ_{xy} , ρ_{xy} , σ_{x} and ρ_{x} denote the covariance matrices. D_{vN} is the von Neumann divergence [2,3]. $D_{vN}(\sigma||\rho) = \operatorname{tr}(\sigma \log \sigma - \sigma \log \rho - \sigma + \rho)$, operating on symmetric positive definite (SPD) matrices σ and ρ .

> To achieve symmetry, the following is formulated: $D(P_1(y|x): P_2(y|x)) = D(P_1(y|x)||P_2(y|x)) + D(P_2(y|x)||P_1(y|x))$

Interpreting the von Neumann Conditional Divergence as a Loss Function

- $ightharpoonup P_1(x,y)$ and $P_2(x,y)$ share same marginal P(x) i.e., $(\sigma_x = \rho_x)$.
- The symmetric von Neumann conditional divergence reduces to:

Ammar Shaker and Shujian Yu

NEC Labs Europe

$$D(P_1(x,y)||P_2(x,y)) = \frac{1}{2}\operatorname{Tr}(\sigma_{xy} - \rho_{xy})(\log \sigma_{xy} - \log \rho_{xy})$$

- > We term the r.h.s. as the Jeffery von Neumann divergence on σ_{xy} and ρ_{xy} and denote it as $J_{vN}(\sigma_{xy}:\rho_{xy})$.
- > The squared root $\sqrt{J_{\nu N}(\sigma_{xy}:\rho_{xy})}$ can be interpreted and used as a loss function to train a deep neural network.
- This is because $J_{\nu N}(\sigma_{\mathrm{f(x)y}}:\rho_{xy})$ measures the closeness between the true mapping (or σ_{xy} labeling) function f and the estimated predictor \hat{f} .

Our Method: Multi-source Domain Adaptation With Matrix-Based Discrepancy Distance

Definition 1:

The matrix-based discrepancy distance (D_{M-disc}) measures the longest distance between two domains (with respect to $\mathcal{H})$ in a metric space equipped with the square root of J_{vN} as a distance function. Given D_s and D_t and their distributions P_s and P_t , for any two hypotheses $h, {h'}_s \in \mathcal{H}, \; D_{M-disc}$ takes the

form:
$$D_{\text{M-disc}}(P_s, P_t) = \max_{h, h' \in \mathcal{H}} \sqrt{J_{vN}(\sigma_{x, h(x)}^s : \sigma_{x, h'(x)}^s)} -$$

 $\sqrt{J_{vN}(\sigma^t_{x,h(x)}:\sigma^t_{x,h'(x)})}$, with $a \in \{s,t\}$ and $g \in \{h,h'\}$, the matrix $\sigma^a_{x,g(x)}$ is the covariance matrix for the pair of variables x,g(x) in domain D_a .

Theorem 2:

Given a set of K source domains $S = \{D_{s_1}, \dots, D_{s_K}\}$, for any hypothesis $h \in \mathcal{H}$, the square root of J_{vN} on the target domain

$$D_t$$
 is bound as follows: $\sqrt{J_{vN}(\sigma_{x,h(x)}^t; \sigma_{x,f_t(x)}^t)} \le$

$$\sum_{i=1}^{K} w_i \left(\sqrt{J_{\nu N} \left(\sigma_{x,h(x)}^{S_i} : \sigma_{x,f_{S_i}(x)}^{S_i} \right)} \right) + D_{\mathsf{M-disc}}(P_t, P_\alpha; h) +$$

 $\eta_Q(f_\alpha,f_t)$, where f_t is the ground truth mapping function for D_{s_i} associated with the weight w_i , f_α is the convex combination of all functions f_{s_i} , $\eta_Q(f_\alpha,f_t)$ is the minimum joint empirical losses on the source D_α and the target D_t , achieved by an optimal hypothesis h^* .

Optimization by Adversarial Min-Max Game

We explicitly implement the idea exhibited by Theorem 2 and combine a feature extractor $f_{\theta}: \mathcal{X} \to \mathcal{T}$ and a class of predictor $h: \mathcal{T} \to \mathcal{Y}$ in a unified learning framework:

$$\min_{\substack{f_{\theta},h \in \mathcal{H} \\ ||\alpha||=1}} \max_{\substack{t' \in \mathcal{H} \\ ||\alpha||=1}} \left(\sum_{i=1}^{K} w_i \left(J_{vN} \left(\sigma_{x,h(f_{\theta}(x))}^{s_i} : \sigma_{x,y}^{s_i} \right) \right) + \right. \\ \left. \left. \left| \sum_{i=1}^{K} w_i \sqrt{J_{vN} \left(\sigma_{f_{\theta}(x),h(f_{\theta}(x))}^{s_i} : \sigma_{f_{\theta}(x),h'(f_{\theta}(x))}^{s_i} \right) - \right. \right. \right.$$

$$\sqrt{J_{vN}(\sigma_{f_{\theta}(x),h(f_{\theta}(x))}^{t}:\sigma_{f_{\theta}(x),h'(f_{\theta}(x))}^{t})}\right).$$

The general idea is to find a feature extractor $f_{\theta}(x)$ that for any given pair of h and h', it is hard to discriminate the target domain P_t from the weighted combination of source distribution P_{α} .

Experiment I: Amazon Review Data

AHD-MSDA	MDAN-Max	MDAN-Dyn	MDD
ba 0.586(0.003)	0.591(0.015)	0.711(0.006)	0.583 (0.007)
be 0.608(0.005)	0.628(0.003)	0.656(0.004)	0.591(0.005)
ca 0.534(0.006)	0.522(0.005)	0.598(0.006)	0.508 (0.004)
co 0.61(0.004)	0.682(0.016)	0.829(0.055)	0.605 (0.008)
el 0.657(0.002)	0.654(0.001)	0.670(0.003)	0.651 (0.002)
go 0.566(0.003)	0.552(0.003)	0.553(0.003)	0.549 (0.001)
gr 0.527(0.002)	0.519(0.002)	0.538(0.003)	0.514 (0.007)

Performance comparison in terms of MAE over 5 iterations on the Amazon data.

ba:baby, be:beauty, ca:camera, co:computer, el:electro., go:gourmet, gr:grocery

Experiment 2: Year Prediction MSD Data

Dom2 8.28(0.02) 42.8(14.7) 43.4(14.7) 8.14(0.11) Dom3 7.8(7.4) 33.4(9) 33.8(9.4) 7.69(0.12) Dom4 7.61(0.04) 28.5(10.2) 29.9(11) 7.63(0.04)		AHD-MSDA	MDAN-Max	MDAN-Dyn	MDD
Dom3 7.8(7.4) 33.4(9) 33.8(9.4) 7.69(0.12) Dom4 7.61(0.04) 28.5(10.2) 29.9(11) 7.63(0.04)	Dom1	7.04(0.07)	18.1(9.2)	16.8(8.6)	6.69 (0.18)
Dom4 7.61 (0.04) 28.5(10.2) 29.9(11) 7.63(0.04)	Dom2	8.28(0.02)	42.8(14.7)	43.4(14.7)	8.14 (0.11)
	Dom3	7.8(7.4)	33.4(9)	33.8(9.4)	7.69(0.12)
Dom5 7.5(0.05) 23.5(8.3) 24.6(8) 7.45 (0.09)	Dom4	7.61 (0.04)	28.5(10.2)	29.9(11)	7.63(0.04)
	Dom5	7.5(0.05)	23.5(8.3)	24.6(8)	7.45(0.09)

Performance comparison in terms of mean absolute error (MAE) over five iterations on YearPredictionMSD data.

Conclusion

- Introduced the von Neumann conditional divergence D_{vN} to match the functional similarity of latent representation t to response variable y across domains.
- \succ Derived a new generalization bound based on a new loss induced by D_{vN} that gives robustness guarantees.

References

[1] Y. Yu, A. Shaker, F. Alesiani, and J. C. Principe. Measuring the discrepancy between conditional distributions: Methods, properties and applications. In JICAI 2020. I.2] M. A. Nieisen and I. Chuang. Quantum computation and quantum information, 2002. (3] B. Kulis, M. A. Sustik, and I. S. Dhillon. Low-rank kernel learning with bregman matrix divergences. JMIR 2009.