Gráficas notables

Exponencial natural y logarítmica natural

Inversa

$$x^n$$
; $n\%2 = 0$

x^n ; $n\%2 \neq 0$

Trigonométricas

Seno

Coseno

Tangente

Secante y cosecante

Inversa

Graficar

Si g(x) es inversa de f(x). Grafica la reflección de f(x) en x = y.

Simetría

y de x (par)

$$f(x) = f(-x)$$

y de x (impar)

$$-f(x) = f(-x)$$

Transformaciones

$$y = f(x) + c$$

$$+c \leftarrow \S -c \rightarrow$$

$$y = f(-x)$$

↑

$$y = -f(x)$$

$$y = cf(x)$$

Extiende amplitud

$$y = f(cx)$$

Reduce longitud de onda

Valor absoluto

Derivada de una función

Pasos para graficar una función

Principales

• Cortes con los ejes

eje
$$x$$
 $f(x) = 0$
eje y $f(0)$

• Dominio

Identificar valores no definidos (c_i) en el dominio

• Asíntota vertical

$$c_i$$
 es asíntota vertical $\iff \lim_{x \to c_i} f(x) = \infty$

• Asíntota horizontal

$$\lim_{x \to -\infty} f(x) = L$$
$$\lim_{x \to +\infty} f(x) = L$$

- Intevalos de monotonía
 - 1. Obtener primera derivada
 - 2. Identificar valores no definidos
 - 3. Analizar

Secundarios

• Interpretar simetría

Revisar si es par primero

• Puntos críticos

Cortes con el eje $x(p_i)$ de f'(x), f debe ser continua en p_i

Evaluar p_i con el método de preferencia: monotonía o segunda derivada

- Intervalos de concavidad
 - 1. Obtener segunda derivada
 - 2. Identificar valores no definidos
 - 3. Analizar

Notas

• Una función cóncava, también se llama cóncava hacia abajo, mientras que una función convexa es llamada cóncava hacia arriba.