COPYRIGHT NOTICE THÔNG BÁO BẢN QUYỀN

© 2023 Duc A. Hoang (Hoàng Anh Đức)

COPYRIGHT (English):

This document is licensed under Creative Commons Attribution-ShareAlike 4.0 International (CC-BY-SA 4.0). You are free to share and adapt this material with appropriate attribution and under the same license.

This document is not up to date and may contain several errors or outdated information.

Last revision date: 2023-02-05

BẢN QUYỀN (Tiếng Việt):

Tài liệu này được cấp phép theo Giấy phép Quốc tế Creative Commons Attribution-ShareAlike 4.0 (CC-BY-SA 4.0). Bạn được tự do chia sẻ và chỉnh sửa tài liệu này với điều kiện ghi nguồn phù hợp và sử dụng cùng loại giấy phép.

Tài liêu này không được cấp nhất và có thể chứa nhiều lỗi hoặc thông tin cũ.

Ngày sửa đổi cuối cùng: 2023-02-05

VNU-HUS MAT3500: Toán rời rạc

Lôgic và Chứng minh

Hoàng Anh Đức

Bộ môn Tin học, Khoa Toán-Cơ-Tin học Đại học KHTN, ĐHQG Hà Nội hoanganhduc@hus.edu.vn

Nội dung

Lôgic mệnh đề

Mệnh đề Toán tử lôgic và bảng chân trị Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vị từ Lượng từ Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh Ví dụ

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ Phủ định với lượng từ Lồng các lương từ

Chứng minh

Mệnh đề

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh Ví du

Mệnh đề

Một *mệnh đề (proposition)* là một phát biểu đúng (True) hoặc sai (False), chứ không thể vừa đúng vừa sai

- ✓ Hà Nội là thủ đô của Việt Nam
- 1 = 2
- $9^3 + 8^3 + 7^3 + 6^3 + 5^3 + 4^3 + 3^3 + 2^3 1^3 = 2023$
- ✓ Mọi số chẵn lớn hơn hoặc bằng 4 là tổng của hai số nguyên tố (Giả thuyết Goldbach)
- X Mấy giờ rồi?
- X Hãy đọc quyển sách này
- X Màu xanh là tốt nhất
- x+1=2

Mệnh đề

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ

Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Ví du

Bài tập 1

Câu nào sau đây là một mệnh đề?

- (1) Trái Đất là một hành tinh
- (2) 1+2
- (3) 1+2=3
- (4) Hôm nay trời mưa
- (5) Liệu có số nguyên âm x nào thỏa mãn $x^2 = 2x$?
- (6) x + y = 5
- (7) A ha ha ha ha
- (8) Xem cuối trang này
- (9) *Rất tốt!*
- (10) Nếu x = 3, y = 4, z = 5 thì $x^2 + y^2 = z^2$

Toán tử lôgic và bảng chân trị

- Mệnh đề đúng có giá trị chân lý đúng T (True). Mệnh đề sai có giá trị chân lý sai F (False)
- Mệnh đề phức hợp (compound proposition) được xây dựng bằng cách tổ hợp một hoặc nhiều mệnh đề thông qua các toán tử lôgic (logical operators). Ngược lại, mệnh đề nguyên tử (atomic proposition) không thể biểu diễn được qua các mệnh đề đơn giản hơn

Phủ định	NOT	一
Phép hội	AND	\wedge
Phép tuyển	OR	V
Phép tuyển loại	XOR	\oplus
Phép kéo theo	IMPLIES	\rightarrow
Phép tương đương	IFF	\leftrightarrow

Mối quan hệ giữa các giá trị chân lý của các mệnh đề được thể hiện thông qua bảng chân trị (truth table)

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Toán tử lôgic và bảng chân trị

lacktriangle Với p:= "2 là số chẵn" thì $\neg p:=$ "2 không là số chẵn"

■ Bảng chân trị

p	$\neg p$
Т	F
F	T

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Toán tử lôgic và bảng chân trị

- Với p := "2 là số chẵn" và q := "2 là số nguyên tố" thì $p \wedge q :=$ "2 là số chẵn và 2 là số nguyên tố"
- Bảng chân trị

p	q	$p \wedge q$
T	Т	Т
T	F	F
F	Т	F
F	F	F

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mênh đề

Mênh đề

Toán tử lôgic và bảng chân

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ Phủ định với lượng từ

Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Toán tử lôgic và bảng chân trị

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ

Phủ định với lượng từ

Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

- Tuyển (Disjunction/Inclusive Or) của hai mệnh đề p và q, ký hiệu $p \lor q$ hoặc p+q, là mệnh đề "p hoặc q". Giá trị chân lý $p \lor q = F$ khi và chỉ khi cả p và q đều nhận giá trị F, và trong các trường hợp còn lại $p \lor q = F$
 - Với p:= "2 là số chẵn" và q:= "2 là số nguyên tố" thì $p\vee q:=$ "2 là số chẵn hoặc 2 là số nguyên tố"
- Bảng chân trị

p	q	$p \lor q$
T	T	Т
T	F	T
F	Т	T
F	F	F

Toán tử lôgic và bảng chân trị

- Tuyển loại (Exclusive Or) của hai mệnh đề p và q, ký hiệu $p \oplus q$, là mệnh đề "hoặc p hoặc q". Giá trị chân lý $p \oplus q = \mathsf{T}$ khi và chỉ khi chính xác một trong hai mệnh đề p và q nhận giá trị T , và trong các trường hợp còn lại $p \oplus q = \mathsf{F}$
 - Với p:= "2 là số chẵn" và q:= "2 là số nguyên tố" thì $p\oplus q:=$ "Hoặc 2 là số chẵn hoặc 2 là số nguyên tố, nhưng không phải cả hai"
- Bảng chân trị

p	q	$p \oplus q$
Η	\vdash	F
Т	F	T
F	T	T
F	F	F

■ Chú ý: Khi p = T và q = T thì p + q = T nhưng $p \oplus q = F$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Ví dụ

Toán tử lôgic và bảng chân trị

- Ta gọi p là "giả thiết (hypothesis)" và q là "kết luận (conclusion)". Ta cũng nói "p là điều kiện đủ (sufficient) cho q" và "q là điều kiện cần (necessary) cho p"
- Với p:= "2 là số chẵn" và q:= "2 là số nguyên tố" thì $p \to q:=$ "Nếu 2 là số chẵn, thì 2 là số nguyên tố"
- Bảng chân trị

p	q	$p \rightarrow q$
Т	\dashv	T
T	F	F
F	T	Т
F	F	T

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ Phủ định với lượng từ

Lồng các lượng từ

Chứng minh

Toán tử lôgic và bảng chân trị

- lacksquare Từ p
 ightarrow q ta có thể xây dựng một số mệnh đề mới
 - lacksquare q o p là *mệnh đề đảo (converse)* của p o q
 - $\blacksquare \neg q \rightarrow \neg p$ là mệnh đề phản đảo (contrapositive) của $p \rightarrow q$
 - $\blacksquare \neg p o \neg q$ là *mệnh đề nghịch đảo (inverse)* của p o q
- Ví dụ với $p \rightarrow q :=$ "Nếu 2 là số chẵn, thì 2 là số nguyên tố"
 - $q \rightarrow p :=$ "Nếu 2 là số nguyên tố, thì 2 là số chẵn"
 - $\neg q \rightarrow \neg p :=$ "Nếu 2 không là số nguyên tố, thì 2 không là số chẵn"
 - $\neg p \rightarrow \neg q :=$ "Nếu 2 không là số chẵn, thì 2 không là số nguyên tố"

Bài tập 2

Xây dựng bảng chân trị cho các mệnh đề trên. Có nhận xét gì về các giá trị của các mệnh đề này?

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$q \rightarrow p$	$\neg q \rightarrow \neg p$	$\boxed{\neg p \rightarrow \neg q}$
T	\vdash			T			
T	F			F			
F	Т			T			
F	F			T			

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ Phủ định với lượng từ Lồng các lương từ

Chứng minh

Toán tử lôgic và bảng chân trị

- Với p := "2 là số chẵn" và q := "2 là số nguyên tố", ta có $p \leftrightarrow q :=$ "2 là số chẵn khi và chỉ khi 2 là số nguyên tố"
- Bảng chân trị

p	q	$p \leftrightarrow q$
T	\vdash	Т
T	F	F
F	Т	F
F	F	Т

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ
Phủ định với lượng từ
Lồng các lương từ

Chứng minh

Toán tử lôgic và bảng chân trị

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh Ví du

Tổng kết các toán tử lôgic đã đề cập

p	q		$\neg p$	$p \wedge q$	$p \lor q$	$p\oplus q$	$p \rightarrow q$	$p \leftrightarrow q$
T	· T	•	F	Т	Т	F	Т	Т
T	` F		F	F	Т	Т	F	F
F	T	•	Т	F	Т	Т	Т	F
F	F		Т	F	F	F	Т	Т

- Thứ tự ưu tiên của các toán tử lôgic trong một mệnh đề phức hợp: ¬, ∧, ∨, →, ↔. Nên sử dụng ngoặc đơn "(" và ")" để xác định thứ tự ưu tiên
 - $\blacksquare \neg p \land q \text{ nghĩa là } (\neg p) \land q \text{ chứ không phải } \neg (p \land q)$

Toán tử lôgic và bảng chân trị

Ví du 1

Xây dựng bảng chân trị cho mệnh đề $(p \lor \neg q) \to q$

p	q	$\neg q$	$p \vee \neg q$	$(p \vee \neg q) \to q$
\dashv	T	F	Т	Τ
Т	F	Т	Т	F
F	Т	F	F	Т
F	F	Т	Т	F

Ví dụ 2

Xây dựng bảng chân trị cho mệnh đề $(p \leftrightarrow q) \leftrightarrow \neg (p \oplus q)$

p	q	$p \leftrightarrow q$	$p\oplus q$	$\neg (p \oplus q)$	
T	\dashv	Т	F	Т	Т
T	F	F	Т	F	T
F	Т	F	Т	F	Τ
F	F	Т	F	Т	Τ

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vị từ

Lượng từ

Phủ định với lượng từ

Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp

chứng minh

Lôgic và các toán tử bit

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

4 Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ

Phủ định với lượng từ

Lồng các lương từ

Chứng minh

- Một bit (binary digit = chữ số nhị phân) có giá trị 0 hoặc 1
- Sử dụng bit để biểu diễn giá trị chân lý: 1 cho T và 0 cho F
- Một *chuỗi nhị phân độ dài* n là một dãy sắp thứ tự $x_1x_2...x_n$ trong đó mỗi x_i là một bit $(1 \le i \le n)$.
 - Ví dụ, 1001101010 là một chuỗi nhị phân độ dài 10
- Các *toán tử bit*: (NOT), ∧ (AND), ∨ (OR), ⊕ (XOR)

x	y	\overline{x}	$x \wedge y$	$x \lor y$	$x \oplus y$
1	1	0	1	1	0
1	0	0	0	1	1
0	1	1	0	1	1
0	0	1	0	0	0

Lôgic và các toán tử bit

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mênh đề

Mênh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Ví du

Tính toán với chuỗi nhị phân: thực hiện theo từng bit

- $\overline{x_1 \dots x_n} = (\overline{x_1}) \dots (\overline{x_n})$
- $x_1 \dots x_n \wedge y_1 \dots y_n = (x_1 \wedge y_1) \dots (x_n \wedge y_n)$
- $x_1 \dots x_n \oplus y_1 \dots y_n = (x_1 \oplus y_1) \dots (x_n \oplus y_n)$

Bài tập 3

- (a) $\overline{11010} =$
- (b) $11010 \lor 10001 =$
- (c) $11010 \wedge 10001 =$
- (d) $11010 \oplus 10001 =$

Phân loại mệnh đề

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề

Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh Ví du

- Một hằng đúng (tautology) là một mệnh đề phức hợp luôn luôn đúng với mọi giá trị chân lý của các mệnh đề thành phần
 - Ký hiệu T
 - $p \lor \neg p$
- Một mâu thuẫn (contradiction) là một mệnh đề phức hợp luôn luôn sai với mọi giá trị chân lý của các mệnh đề thành phần
 - Ký hiệu F
 - $p \land \neg p$
- Một tiếp liên (contingency) là một mệnh đề phức hợp không phải là hằng đúng cũng không phải là mâu thuẫn

Bài tập 4

Xây dựng bảng chân trị cho các mệnh đề ví dụ trên

Tương đương lôgic

- Mệnh đề phức hợp p tương đương lôgic (logically *equivalent)* với mệnh đề phức hợp q, ký hiệu $p \equiv q$ hoặc $p \Leftrightarrow q$, khi và chỉ khi mệnh đề $p \leftrightarrow q$ là một hằng đúng
- **Chú ý:** p và q là tương đương lôgic khi và chỉ khi p và qcùng nhận một giá trị chân lý giống nhau trong mỗi hàng tương ứng của các bảng chân trị của chúng

Ví du 3

Chứng minh rằng $\neg(p \land q) \equiv \neg p \lor \neg q$ (luật De Morgan)

p	q	$p \wedge q$	$\neg p$	$\neg q$	$\neg p \lor \neg q$	$\neg (p \land q)$
T	Τ	T	F	F	F	F
T	F	F	F	Т	Т	T
F	Т	F	Т	F	Т	T
F	F	F	T	Т	Т	Т

Bài tập 5

Chứng minh các tương đương lôgic sau bằng bảng chân trị

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân

Lôgic và các toán tử bit

Các mênh đề tương đương

Phân loai mênh đề

Tương đương lôgic

Lôgic vi từ

Vi từ

Lương từ

Phủ định với lượng từ

Lồng các lương từ

Chứng minh

Môt số thuật ngữ Môt số phương pháp chứng minh

Tương đương lôgic

Một số tương đương lôgic quan trọng

Tên gọi	Tương đương lôgic
Luật đồng nhất	$p \wedge \mathbf{T} \equiv p$
(Identity laws)	$p \vee \mathbf{F} \equiv p$
Luật nuốt	$p \lor \mathbf{T} \equiv \mathbf{T}$
(Domination laws)	$p \wedge \mathbf{F} \equiv \mathbf{F}$
Luật lũy đẳng	$p \vee p \equiv p$
(Idempotent laws)	$p \wedge p \equiv p$
Luật phủ định kép	$\neg(\neg p) \equiv p$
(Double negation laws)	(P) = P
Luật giao hoán	$p \vee q \equiv q \vee p$
(Commutative laws)	$p \wedge q \equiv q \wedge p$
Luật kết hợp	$(p \lor q) \lor r \equiv p \lor (q \lor r)$
(Associative laws)	$(p \land q) \land r \equiv p \land (q \land r)$
Luật phân phối	$p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
(Distributive laws)	$p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề

Tương đương lôgic

Lôgic vị từ

Vi từ

Lương từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Các mênh đề tương đương Tương đương lôgic

Một số tương đương lôgic quan trọng (tiếp)

Tên gọi	Tương đương lôgic
Luật De Morgan	$\neg (p \land q) \equiv \neg p \lor \neg q$
(De Morgan's laws)	$\neg (p \lor q) \equiv \neg p \land \neg q$
Luật hấp thụ	$p \lor (p \land q) \equiv p$
(Absorption laws)	$p \land (p \lor q) \equiv p$
Luật phủ định	$p \lor \neg p \equiv \mathbf{T}$
(Negation laws)	$p \wedge \neg p \equiv \mathbf{F}$

Chú ý: Trong bảng các tương đương lôgic quan trọng ở trên, **T** là một mệnh đề phức hợp luôn đúng (hằng đúng) và $\mathbf F$ là một mệnh đề phức hợp luôn sai (mâu thuẫn)

Bài tập 6

Chứng minh các tương đương lôgic quan trọng nêu trên bằng cách lập bảng chân trị

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mênh đề

Mênh đề

Toán tử lôgic và bảng chân

Lôgic và các toán tử bit

Các mênh đề tương đương

Phân loai mênh đề

Tương đương lôgic

Lôgic vị từ

Vi từ

Lương từ

Phủ định với lương từ Lồng các lương từ

Chứng minh

Môt số thuật ngữ Môt số phương pháp chứng minh

Tương đương lôgic

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mênh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề

Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ

Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Ví du

Ví dụ 4

Chứng minh $\neg(p \lor (\neg p \land q))$ và $\neg p \land \neg q$ là tương đương lôgic bằng cách sử dụng các tương đương lôgic đã biết

 $\neg(p \lor (\neg p \land q)) \equiv \neg((p \lor \neg p) \land (p \lor q))$ $\equiv \neg(\mathbf{T} \land (p \lor q))$ $\equiv \neg((p \lor q) \land \mathbf{T})$ $\equiv \neg(p \lor q)$ $\equiv \neg p \land \neg q$

Luật phân phối
Luật phủ định
Luật giao hoán
Luật đồng nhất
Luật De Morgan

Bài tập 7

Kiểm tra lại ví dụ trên bằng cách lập bảng chân trị

Tương đương lôgic

■ Một số tương đương lôgic liên quan đến phép kéo theo

$$p \to q \equiv \neg p \vee q$$

$$p \to q \equiv \neg q \to \neg p$$

$$p \lor q \equiv \neg p \to q$$

$$(p \to q) \land (p \to r) \equiv p \to (q \land r)$$

$$(p \to r) \land (q \to r) \equiv (p \lor q) \to r$$

$$(p \to q) \lor (p \to r) \equiv p \to (q \lor r)$$

$$(p \to r) \lor (q \to r) \equiv (p \land q) \to r$$

Một số tương đương lôgic liên quan đến phép tương đương

$$p \leftrightarrow q \equiv (p \to q) \land (q \to p)$$

$$p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q$$

$$p \leftrightarrow q \equiv (p \land q) \lor (\neg p \land \neg q)$$

Bài tập 8

Chứng minh các tương đương lôgic trên bằng cách lập bảng chân trị hoặc sử dụng các tương đương lôgic đã biết

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề

Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ
Phủ định với lượng từ
Lồng các lương từ

Chứng minh

Tương đương lôgic

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mênh đề

Mênh đề

Toán tử lôgic và bảng chân

Lôgic và các toán tử bit

Các mênh đề tương đương

Phân loai mênh đề

Tương đương lôgic

Lôgic vị từ

Vi từ

Lương từ

Phủ định với lương từ

Lồng các lương từ

Chứng minh

Môt số thuật ngữ Môt số phương pháp chứng minh Ví du

Ví du 5

Chứng minh $(p \land q) \rightarrow (p \lor q)$ là một hằng đúng

$$(p \wedge q)
ightarrow (p \vee q) \equiv \neg (p \wedge q) \vee (p \vee q)$$
 Từ $p
ightarrow q \equiv \neg p \vee q$ $\equiv (\neg p \vee \neg q) \vee (p \vee q)$ Luật De Morgan $\equiv (p \vee \neg p) \vee (q \vee \neg q)$ Luật giao hoán, kế $\equiv \mathbf{T} \vee \mathbf{T}$ Luật phủ định $\equiv \mathbf{T}$ Luật nuốt

Từ
$$p o q \equiv \neg p \lor q$$

 $\equiv (p \lor \neg p) \lor (q \lor \neg q)$ Luật giao hoán, kết hợp Luật phủ định

Luật nuốt

Bài tập 9

Kiểm tra lại ví dụ trên bằng cách lập bảng chân trị cho $(p \land q) \rightarrow (p \lor q)$

Tương đương lôgic

Một tập C các toán tử lôgic được gọi là đầy đủ (functionally complete) nếu mỗi mệnh đề phức hợp tương đương với một mệnh đề phức hợp chỉ sử dụng các toán tử trong C

 $\mathcal{C} = \{\neg, \land, \lor\}$ là một tập (các toán tử lôgic) đầy đủ

Ví dụ 6

Tìm một mệnh đề tương đương của $p \to q$ chỉ sử dụng các toán tử \neg, \land, \lor

- Ung với mỗi hàng có giá trị T ở cột p → q, ta muốn tìm một biểu thức chỉ đúng với các giá trị của p và q ở hàng đó, và sai với mọi giá trị khác.
- $p \rightarrow q$ đúng khi *ít nhất một* biểu thức trên có giá trị T

p	q	$p \rightarrow q$	
Т	Т	Т	$p \wedge q$
Т	F	F	
F	Т	Т	$\neg p \land q$
F	F	Т	$\neg p \wedge \neg q$

$$(p \land q) \lor (\neg p \land q) \lor (\neg p \land \neg q)$$

Chú ý: Phương pháp sử dụng trong ví dụ trên có thể áp dụng với mọi mệnh đề phức hợp. Mệnh đề thu được gọi là *dạng* tuyển chuẩn tắc (disjunctive normal form - DNF)

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề

Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ

Lồng các lượng từ

Chứng minh

Tương đương lôgic

Một tập C các toán tử lôgic được gọi là đầy đủ (functionally complete) nếu mỗi mệnh đề phức hợp tương đương với một mệnh đề phức hợp chỉ sử dụng các toán tử trong C

lacksquare $\mathcal{C} = \{\neg, \land, \lor\}$ là một tập (các toán tử lôgic) đầy đủ

Ví dụ 6

Tìm một mệnh đề tương đương của $p \to q$ chỉ sử dụng các toán tử \neg, \wedge, \vee

- Ung với mỗi hàng có giá trị F ở cột p → q, ta muốn tìm một biểu thức chỉ sai với các giá trị của p và q ở hàng đó, và đúng với mọi giá trị khác.
- $p \rightarrow q$ sai khi *tất cả* biểu thức trên có giá trị F

p	q	$p \rightarrow q$	
T	Т	Т	
Т	F	F	$\neg p \lor q$
F	T	Т	
F	F	T	

 $\neg p \lor q$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề

Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh Ví du

với mọi mệnh đề phức hợp. Mệnh đề thu được gọi là dạng hội chuẩn tắc (conjunctive normal form - CNF)

Chú ý: Phương pháp sử dụng trong ví dụ trên có thể áp dụng

48

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề

Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Ví du

Bài tập 10

Tìm mệnh đề tương đương chỉ sử dụng các toán tử lôgic trong $\mathcal{C} = \{\neg, \land, \lor\}$ của các mệnh đề

- (1) $p \oplus q$
- (2) $p \leftrightarrow q$

Bài tập 11

Tập các toán tử lôgic C sau có đầy đủ không? Vì sao?

- (a) $C = \{\neg, \land\}$
- (b) $C = \{ \neg, \lor \}$
- (c) $C = \{\land, \lor\}$

Lôgic vị từ

Vị từ

Một *vị từ (predicate)* là một *hàm mệnh đề (propositional function)* (từ tập các đối tượng đến tập các mệnh đề) mô tả thuộc tính của các đối tượng và mối quan hệ giữa chúng

- Các biến (đối tượng) thường được ký hiệu bởi các chữ cái x,y,z,\ldots và có thể được thay thế bằng các giá trị cụ thể từ một miền (domain) $\mathcal D$ tương ứng cho trước
- Các chữ in hoa P, Q, R, \ldots thường được dùng để ký hiệu các hàm mệnh đề (vị từ)
- Với $n \geq 1$, ta gọi $P(x_1, \ldots, x_n)$ là v_i từ (n-ngôi) ((n-place) predicate) $xác định trên miền <math>\mathcal{D} = D_1 \times \cdots \times D_n$ nếu $P(a_1, \ldots, a_n)$ là một mệnh đề với bộ (a_1, \ldots, a_n) bất kỳ trong \mathcal{D} $(a_1 \in D_1, \ldots, a_n \in D_n)$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

5 Vitừ

Lượng từ Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Lôgic vị từ

Ví dụ 7

- P(x) := "x lớn hơn 3" (P := "lớn hơn <math>3" và x là một biến) với x là số tự nhiên. P(x) là vị từ xác định trên miền $\mathcal{D} = \mathbb{N}$
- Q(x,y,z) := "x cho y điểm z" với x,y là tên riêng và z là số tự nhiên. Q(x,y,z) là vị từ xác định trên miền $\mathcal{D} = T \times T \times \mathbb{N}$ trong đó T là tập các tên riêng
- P(x) không phải là mệnh đề nhưng P(3) là mệnh đề. Q(x,y,z) không phải là mệnh đề nhưng $Q(\mathit{Tý},\mathit{Tèo},10)$ là mệnh đề

Bài tập 12

P(x) := x > 0 là vị từ xác định trên miền $\mathcal{D} = \mathbb{Z}$. Tìm giá trị chân lý của các mệnh đề sau

- (a) $P(3) \vee P(-1)$
- (b) $P(3) \wedge P(-1)$
- (c) $P(3) \to P(-1)$
- (d) $P(3) \to \neg P(-1)$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ Phủ định với lượng từ Lồng các lương từ

Chứng minh

Lượng từ

Lượng từ (quantifier) (ví dụ như tất cả, nhiều, một số, không có, v.v...) thường được sử dụng với vị từ để định lượng (đếm) các đối tượng (biến) "thỏa mãn" vị từ đó

Hai lượng từ quan trọng nhất

Lượng từ	Ký hiệu
với mọi (universal quantifier)	\forall
tồn tại (existential quantifier)	3

- $\forall x P(x)$ nghĩa là "*với mọi* giá trị của x trong miền xác định $\mathcal{D}, P(x)$ đúng"
- $\exists x \, P(x)$ nghĩa là " $t \hat{o} n \, t \neq i$ giá trị của x trong miền xác định \mathcal{D} (nghĩa là có thể có một hoặc nhiều giá trị thỏa mãn), P(x) đúng"
- P(x) không phải là mệnh đề nhưng $\forall x P(x)$ và $\exists x P(x)$ là mênh đề

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lương từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Lôgic vị từ Lượng từ "với mọi"

- $\forall x P(x)$: $v\acute{\sigma}i \ moi$ giá trị của x trong miền xác định $\mathcal{D}, P(x)$ đúng
- $\blacksquare \ \forall x \, P(x) \, \mathsf{l}\grave{\mathsf{a}}$
 - \blacksquare đúng nếu P(x) đúng với mọi x trong \mathcal{D}
 - **sai** nếu P(x) sai với ít nhất một giá trị của x trong \mathcal{D}
 - Với $\mathcal{D}=\mathbb{R}$ và P(x):= " $x^2\geq 0$ ", mệnh đề $\forall x\,P(x)$ đúng
 - Với $\mathcal{D}=\mathbb{R}$ và P(x):= " $x^2-1\geq 0$ ", mệnh đề $\forall x\,P(x)$ sai
- Một *phản ví dụ (counterexample)* của mệnh đề $\forall x P(x)$ là một giá trị x trong miền \mathcal{D} sao cho P(x) sai
- Nếu $\mathcal{D} = \emptyset$ thì mệnh đề $\forall x P(x)$ đúng
- Nếu có thể liệt kê tất cả các phần tử của \mathcal{D} , ví dụ như x_1, x_2, \dots, x_n , thì $\forall x P(x)$ tương đương lôgic với

$$P(x_1) \wedge P(x_2) \wedge \cdots \wedge P(x_n)$$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lương từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Lôgic vị từ

Lượng từ "tồn tại"

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mênh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

- $\exists x P(x)$: $t \hat{o} n t \neq i$ giá trị của x trong miền xác định \mathcal{D} (nghĩa là có thể có một hoặc nhiều giá trị thỏa mãn), P(x) đúng
- $\exists x P(x)$
 - \blacksquare đúng nếu P(x) đúng với ít nhất một x trong \mathcal{D}
 - **sai** nếu P(x) sai với mọi x trong \mathcal{D}
 - Với $\mathcal{D}=\mathbb{R}$ và P(x):= " $x^2=2$ ", mệnh đề $\exists x\, P(x)$ đúng
 - Với $\mathcal{D}=\mathbb{Z}$ và P(x):= " $x^2=2$ ", mệnh đề $\exists x\,P(x)$ sai
- Nếu $\mathcal{D} = \emptyset$ thì mệnh đề $\exists x P(x)$ sai
- Nếu có thể liệt kê tất cả các phần tử của \mathcal{D} , ví dụ như x_1, x_2, \dots, x_n , thì $\exists x P(x)$ tương đương lôgic với

$$P(x_1) \vee P(x_2) \vee \cdots \vee P(x_n)$$

Ví dụ 8

Mô tả câu "Tất cả sinh viên trong lớp này đã học môn Đại Số" bằng vị từ và lượng từ

- $lackbox{\blacksquare} C(x) := "x \, d ilde{a} \, học môn Đại Số"$
- Nếu \mathcal{D} là tập *các sinh viên trong lớp này*

 $\forall x \, C(x)$

■ Nếu \mathcal{D} là tập *tất cả mọi người*. Đặt S(x) := "x là sinh viên trong lớp này" $\forall x \, (S(x) \to C(x))$

Chú ý: Tại sao không phải là $\forall x (S(x) \land C(x))$?

Ví dụ 9

Mô tả câu "Một số sinh viên trong lớp này đã học môn Đại Số" bằng vị từ và lượng từ

- $lackbox{\blacksquare} C(x) := "x \, d ilde{a} \, học môn Đại Số"$
- Nếu D là tập các sinh viên trong lớp này

 $\exists x \, C(x)$

■ Nếu \mathcal{D} là tập *tất cả mọi người*. Đặt S(x) := "x là sinh viên trong lớp này" $\exists x (S(x) \land C(x))$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lương từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Ví dụ 10

Giả sử biến x nhận giá trị từ miền \mathcal{D} . Ta chứng minh $\forall x \, (P(x) \land Q(x)) \equiv (\forall x \, P(x)) \land (\forall x \, Q(x))$. Cụ thể, ta chứng minh hai điều

- (1) Nếu $\forall x (P(x) \land Q(x))$ đúng, thì $(\forall x P(x)) \land (\forall x Q(x))$ đúng
 - Giả sử $\forall x \, (P(x) \land Q(x))$ đúng. Do đó, với mọi $a \in \mathcal{D}$, $P(a) \land Q(a)$ đúng, suy ra P(a) đúng và Q(a) đúng. Do P(a) đúng với mọi $a \in \mathcal{D}$, $\forall x \, P(x)$ đúng. Do Q(a) đúng với mọi $a \in \mathcal{D}$, $\forall x \, Q(x)$ đúng. Do đó $(\forall x \, P(x)) \land (\forall x \, Q(x))$ đúng
- (2) Nếu $(\forall x P(x)) \land (\forall x Q(x))$ đúng, thì $\forall x (P(x) \land Q(x))$ đúng
 - Giả sử $(\forall x\,P(x)) \wedge (\forall x\,Q(x))$ đúng. Do đó $(\forall x\,P(x))$ đúng và $(\forall x\,Q(x))$ đúng, suy ra với mọi $a\in\mathcal{D},\,P(a)$ đúng và Q(a) đúng. Như vậy, với mọi $a\in\mathcal{D},\,P(a)\wedge Q(a)$ đúng. Theo định nghĩa, $\forall x\,(P(x)\wedge Q(x))$ đúng.

Bài tập 13

Chứng minh $\exists x (P(x) \lor Q(x)) \equiv (\exists x P(x)) \lor (\exists x Q(x))$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lương từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

- Trước đó, ta thường phải chỉ rõ miền xác định D có chứa các giá trị của biến trước khi phát biểu mệnh đề với vị từ và lượng từ. Để thuận tiện, có thể chỉ ra D ngay trong mệnh đề
 - $\forall x > 0$ P(x) nghĩa là "Với mọi số x > 0, P(x) đúng". (\mathcal{D} là tập tất cả các số lớn hơn không.) Thực ra, đây là cách viết ngắn gọn của mệnh đề $\forall x\,Q(x)$ trong đó

 $Q(x) := (x > 0) \to P(x)$

- $\exists x > 0$ P(x) nghĩa là "Tồn tại số x > 0, P(x) đúng". (\mathcal{D} là tập tất cả các số lớn hơn không.) Thực ra, đây là cách viết ngắn gọn của mệnh đề $\exists x\,Q(x)$ trong đó $Q(x):=(x>0)\land P(x)$
- Các lượng từ ∀ và ∃ có thứ tự ưu tiên cao hơn tất cả các toán tử lôgic đã đề cập
 - $\forall x P(x) \lor Q(x)$ nghĩa là $(\forall x P(x)) \lor Q(x)$ chứ không phải $\forall x (P(x) \lor Q(x))$

Logic và Chứng minh Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lương từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Lôgic vị từ

Biến tự do và biến ràng buộc

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lương từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh Ví du

- Vị từ P(x) có biển tự do (free variable) x (nghĩa là, giá trị của x không xác định)
- Lượng từ (∀ hoặc ∃) sử dụng với một vị từ có một hoặc nhiều biến tự do "ràng buộc" những biến này, tạo thành một biểu thức có một hoặc nhiều biến ràng buộc (bound variable)

Ví dụ 11

- $\blacksquare P(x,y)$ có hai biến tự do: x và y
- $\blacksquare \ \forall x \, P(x,y)$ có một biến tự do y và một biến ràng buộc x
- Biểu thức *không có bất kỳ biến tự do nào*, ví dụ $\forall x P(x)$, là mệnh đề
- Biểu thức *có một hoặc nhiều biến tự do*, ví dụ $\forall x P(x,y)$, không là mệnh đề

Lôgic vị từ

Phủ định với lượng từ

- Phủ định của mệnh đề có lượng từ

 - $\neg \exists x P(x) \equiv \forall x \neg P(x)$
- Hai tương đương lôgic trên được gọi là *Luật De Morgan* cho lượng từ (*De Morgan's Laws for Quantifiers*). Lý do của tên gọi này là nếu ta có thể liệt kê toàn bộ các phần tử trong miền \mathcal{D} , ví dụ như x_1, \ldots, x_n , thì

$$\neg \forall x \, P(x) \equiv \neg (P(x_1) \land P(x_2) \land \cdots \land P(x_n))$$

$$\equiv \neg P(x_1) \lor \neg P(x_2) \lor \cdots \lor \neg P(x_n) \quad \text{Luật De Morgan}$$

$$\equiv \exists x \, \neg P(x)$$

$$\neg \exists x \, P(x) \equiv \neg (P(x_1) \lor P(x_2) \lor \cdots \lor P(x_n))$$

$$\equiv \neg P(x_1) \land \neg P(x_2) \land \cdots \land \neg P(x_n) \quad \text{Luật De Morgan}$$

$$\equiv \forall x \, \neg P(x)$$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vị từ

Lượng từ

Phủ định với lượng từ

Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh Ví du

Lôgic vị từ Phủ định với lượng từ

Ví du 12

P(x):= "x đã học môn Đại Số" với x là một sinh viên trong lớp này

- $\forall x\, P(x) :=$ "Tất cả sinh viên trong lớp này đã học môn Đại Số"
- $\neg \forall x \, P(x) :=$ "Không phải tất cả sinh viên trong lớp này đã học môn Đại Số" \equiv "Ít nhất một sinh viên trong lớp này đã không học môn Đại Số" $=: \exists x \, \neg P(x)$
- $\exists x \, P(x) :=$ "Tồn tại một sinh viên trong lớp này đã học môn Đại Số"
- $\neg \exists x \, P(x) :=$ "Không thể tồn tại một sinh viên trong lớp này đã học môn Đại Số" \equiv "Tất cả sinh viên trong lớp này đã không học môn Đại Số" $=: \forall x \, \neg P(x)$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vị từ

Lương từ

Phủ định với lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh Ví du

Lôgic vị từ

Lồng các lượng từ

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lương từ

Phủ định với lượng từ

Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh Ví du

Ví du 13

P(x,y):= "x nhỏ hơn y" xác định trên miền $\mathcal{D}=\mathbb{Z}\times\mathbb{Z}$

- $\exists y P(x,y) :=$ "có số nguyên y sao cho x nhỏ hơn y" (Biểu thức với 1 biến tư do—không phải mênh đề)
- $\forall x \, (\exists y \, P(x,y)) :=$ "với mọi số nguyên x có số nguyên y sao cho x nhỏ hơn y" (Biểu thức với 0 biến tự do—là mệnh đề)

Bài tập 14

Cho $x \in \mathbb{Z}$ và $y \in \mathbb{Z}$ và P(x,y) := x < y. Xác định giá trị của các mệnh đề sau

- $\blacksquare \forall x \forall y P(x,y)$
- $\blacksquare \forall x \exists y P(x,y)$
- $\blacksquare \exists x \forall y \, P(x,y)$
- $\blacksquare \exists x \exists y \, P(x,y)$

Lôgic vị từ

Lồng các lượng từ

- Một số tương đương lôgic:

 - $\exists x \exists y \, P(x,y) \equiv \exists y \exists x \, P(x,y)$
 - Để thuận tiện, có thể nối các lượng từ cùng loại
- Trừ khi tất cả các lượng từ đều là ∀ hoặc đều là ∃, thứ tự các lượng từ là quan trọng
 - $\blacksquare \ \forall x \exists y \ P(x,y) \ \textit{khác với} \ \exists y \forall x \ P(x,y)$
 - Ví dụ, với x, y là các số nguyên, mệnh đề $\forall x \exists y \, (x < y)$ đúng, vì với mỗi x ta có thể chọn y = x + 1 và hiển nhiên x < y. Ngược lại, mệnh đề $\exists y \forall x \, (x < y)$ sai, vì không tồn tại số nguyên lớn nhất

Bài tập 15

Các mệnh đề sau khi nào đúng và khi nào sai?

- (1) $\forall x \forall y P(x,y) \equiv \forall y \forall x P(x,y)$
- (2) $\forall x \exists y P(x,y)$
- $(3) \ \exists y \forall x \, P(x,y)$
- (4) $\exists x \exists y P(x,y) \equiv \exists y \exists x P(x,y)$

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ

7 Lồng các lương từ

Chứng minh

Một số thuật ngữ

Một số phương pháp chứng minh

Một số thuật ngữ

- Chứng minh (proof): một lý luận hợp lý chỉ ra tính đúng đắn của một mệnh đề toán học.
- Tiên đề (axiom/postulate): một mệnh đề được giả thiết là đúng
- Định lý (theorem): một mệnh đề đã được chứng minh là đúng
- *Mệnh đề (proposition)*: một định lý "không quá quan trọng"
- Bổ đề (lemma): một định lý nhỏ có thể được sử dụng như một công cụ hỗ trợ chứng minh các định lý khác lớn hơn
- Hệ quả (corollary): một định lý nhỏ thu được bằng cách trực tiếp áp dụng một định lý khác lớn hơn
- Giả thuyết (conjecture): một mệnh đề mà tính đúng/sai của nó chưa được xác định, nhưng thường được "tin là đúng" thông qua một số bằng chứng hoặc qua kinh nghiệm, dự đoán của một chuyên gia

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

38 Một số thuật ngữ

Một số phương pháp chứng minh

Một số phương pháp chứng minh

Chứng minh p đúng

- Chứng minh trực tiếp (direct proof)
- Chứng minh gián tiếp (indirect proof): Giả thiết $\neg p$ đúng, chứng minh $\neg p \rightarrow \mathbf{F}$ (phương pháp *Chứng minh phản chứng (Proof by Contradiction)*)

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mênh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ

Một số phương pháp chứng minh

Một số phương pháp chứng minh

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ

Một số phương pháp chứng minh

Ví du

Mục tiêu

Chứng minh $p \rightarrow q$ đúng

- Chứng minh hiển nhiên (trivial proof): Chứng minh q đúng mà không cần giả thiết gì khác
- Chứng minh trực tiếp (direct proof): Giả thiết p đúng, chứng minh q
- Chứng minh gián tiếp (indirect proof)
 - Chứng minh phản đảo (Proof by Contraposition) $(\neg q \rightarrow \neg p)$: Giả thiết $\neg q$ đúng, chứng minh $\neg p$
 - Chứng minh phản chứng (Proof by Contradiction): Giả thiết $p \wedge \neg q$ đúng, và chỉ ra rằng điều này dẫn đến một mâu thuẫn (nghĩa là, chứng minh $(p \wedge \neg q) \rightarrow \mathbf{F}$)
- Chứng minh rỗng (vacuous proof): Chứng minh $\neg p$ đúng mà không cần giả thiết gì khác

Một số nguyên n là số chặn (even) khi và chỉ khi n=2k với k là số nguyên nào đó; n là số le (odd) khi và chỉ khi n=2k+1 với k là số nguyên nào đó

Định lý 1

(Với mọi số nguyên n) n không thể vừa chẵn vừa lẻ

Chứng minh phản chứng.

- Nhắc lại: Để chứng minh p, ta chứng minh $\neg p \rightarrow \mathbf{F}$
- Giả sử tồn tại một số nguyên n vừa chẵn vừa lẻ
- lacksquare Do n chẵn, n=2k với số nguyên k nào đó
- lacksquare Do n lẻ, n=2j+1 với số nguyên j nào đó
- Do đó, 2k=2j+1, suy ra $k-j=\frac{1}{2}$. Mệnh đề này sai với mọi số nguyên k và j, đây là một mâu thuẫn. Ta có điều phải chứng minh

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ

Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Ví du

Định lý 2

(Với mọi số nguyên n) Nếu n là số lẻ, thì n^2 cũng là số lẻ

Chứng minh trực tiếp.

- lacksquare Nếu n lẻ, thì n=2k+1 với k là số nguyên nào đó
- Do đó, $n^2 = (2k+1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
- Do đó, $n^2 = 2j + 1$ với $j = 2k^2 + 2k$ là số nguyên
- Theo định nghĩa, n² lẻ

Định lý 3

(Với mọi số nguyên n) Nếu 3n+2 là số lẻ, thì n cũng là số lẻ

Chứng minh phản đảo.

- Nhắc lại: để chứng minh $p \rightarrow q$, ta chứng minh $\neg q \rightarrow \neg p$
- \blacksquare (Mệnh đề phản đảo: Nếu n chẵn, thì 3n+2 cũng chẵn)
- \blacksquare Giả sử kết luận của định lý trên là sai, nghĩa là n chẵn
- Do đó n=2k với số nguyên k nào đó
- Suy ra 3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1)
- Từ đó, 3n+2=2j với j=3k+1 là số nguyên, và do đó là số chẵn
- Ta đã chứng minh $\neg (n \stackrel{l\acute{e}}{l}) \rightarrow \neg (3n+2 \stackrel{l\acute{e}}{l})$ đúng, do đó mệnh đề phản đảo $(3n+2 \stackrel{l\acute{e}}{l}) \rightarrow (n \stackrel{l\acute{e}}{l})$ cũng đúng

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ

Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mênh đề

Mênh đề

Toán tử lôgic và bảng chân trị

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vi từ

Vi từ

Lượng từ

Phủ định với lượng từ

Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Ví du

Định lý 4

(Với mọi số nguyên n) Nếu n vừa chẵn vừa lẻ, thì $n^2=n+n$

Chứng minh rỗng.

- Nhắc lại: để chứng minh $p \to q$, ta chứng minh $\neg p$ mà không cần bất cứ giả thiết nào
- \blacksquare Mệnh đề "n vừa chẵn vừa lẻ" sai với mọi số nguyên n
- Ta có điều phải chứng minh (Tập các giả thiết là rỗng)

Đinh lý 5

(Với mọi số nguyên n) Nếu n là tổng của hai số nguyên tố, thì hoặc n chẵn hoặc n lẻ

Chứng minh hiển nhiên.

- Nhắc lại: để chứng minh $p \rightarrow q$, ta chứng minh q mà không cần bất cứ giả thiết nào
- Với mọi số nguyên n, mệnh đề "hoặc n chẵn hoặc n lẻ" đúng
- Do đó, kết luận của mệnh đề cần chứng minh luôn đúng, bất luận giả thiết là đúng hay sai
- Hiển nhiên là mệnh đề cần chứng minh luôn đúng

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Chứng minh sau của Định lý 1

(Với mọi số nguyên n) n không thể vừa chẵn vừa lẻ

đúng hay sai? Tại sao?

Chứng minh phản chứng.

- Giả sử tồn tại một số nguyên n vừa chẵn vừa lẻ
- Do n chẵn, n=2k với số nguyên k nào đó
- Do n lẻ, n=2k+1 với số nguyên k nào đó
- Do đó, 2k=2k+1, suy ra 0=1. Mệnh đề này sai với mọi số nguyên k, đây là một mâu thuẫn. Ta có điều phải chứng minh

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mệnh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vị từ

Lượng từ

Phủ định với lượng từ Lồng các lượng từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

Chứng minh sau của mệnh đề

$$1 = 2$$

là sai. Tại sao?

Chứng minh.

Gọi a, b là hai số nguyên dương bằng nhau.

(1)
$$a = b$$

Giả thiết

(2)
$$a^2 = ab$$

Nhân hai vế của (1) với a

(3)
$$a^2 - b^2 = ab - b^2$$

Trừ b^2 từ cả hai vế của (2)

(4)
$$(a - b)(a + b) = (a - b)b$$

nhân tử

Phân tích hai về của (3) thành

(5) a + b = b

Chia cả hai vế của (4) cho a-b

(6) 2b = b

Thay a bởi b trong (5) vì a=b, và đơn giản hóa

(7) 2 = 1

Chia cả hai vế của (6) cho b

Logic và Chứng minh Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vi từ

Lượng từ

Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh

l7 Ví du

Chứng minh sau của mệnh đề

(Với mọi số nguyên n) Nếu n^2 chẵn, thì n cũng chẵn

là đúng hay sai. Tại sao?

Chứng minh.

- Mệnh đề đúng với n=0. Do đó ta chỉ xét $n \neq 0$
- lacksquare Giả sử n^2 chẵn. Do đó $n^2=2k$ với số nguyên k nào đó
- Chia cả hai vế cho n, ta có n=(2k)/n=2(k/n)
- Do đó, tồn tại số j = k/n sao cho n = 2j
- Do tích của j và một số nguyên (2) là một số nguyên (n), nên j cũng là số nguyên
- Do đó n chẵn

Logic và Chứng minh

Hoàng Anh Đức

Lôgic mệnh đề

Mênh đề

Toán tử lôgic và bảng chân tri

Lôgic và các toán tử bit

Các mệnh đề tương đương

Phân loại mệnh đề Tương đương lôgic

Lôgic vị từ

Vị từ

Lượng từ Phủ định với lượng từ Lồng các lương từ

Chứng minh

Một số thuật ngữ Một số phương pháp chứng minh