

INTERNATIONAL INSTITUTE OF FISHERIES ECONOMICS & TRADE (IIFET)

Coupling commercial fisheries and survey data: a practical solution to boost the amount of information in data-poor context

Marie-Christine Rufener, Kasper Kristensen, Grete E. Dinesen, J. Rasmus Nielsen, François Bastardie

Data-poor species in fisheries science and their limitations

Do not follow most of the assumptions of the existing quantitative stock assessment models

- Data-poor species in fisheries science and their limitations
 - Do not follow most of the assumptions of the existing quantitative stock assessment models
- Couple availabe information to increase the amount of data
 - Fishery-independent data (Scientific surveys)
 Fishery-dependent data (Commercial fisheries)

 Different sampling designs -> bias

Data-poor species in fisheries science and their limitations

Methodology

- Do not follow most of the assumptions of the existing quantitative stock assessment models
- Couple availabe information to increase the amount of data
 - Fishery-independent data (Scientific surveys)
 Fishery-dependent data (Commercial fisheries)

 Different sampling designs -> bias

Main objective

Develop a flexible and robust statistical model to estimate and predict species abundance in space and time

Spatial & temporal sampling coverage

Fishery dependent data: Long time & short spatial coverage;

Fishery-independent data: Short time & long spatial coverage;

5

Fishing catchability

Fishery-dependent data

10 - N=12.657 N=44.958 Métiers OTB_DEF_>=105_1_110 OTB_DEF_>=105_1_120 OTB_DEF_>=105_1_120 OTB_DEF_>=105_1_110 PTB_DEF_>=105_1_110 PTB_DEF_>=105_1_110 PTB_DEF_>=105_1_110 SDN_DEF_>=105_1_120 SDN_DEF_>=105_1_120

Fishery-independent data

Fishing effort

Fishery-independent data

Trawled distance

$$d(s,t) \sim NB(\lambda(s,t), \phi)$$

$$exp(\lambda(s,t)) = \beta_0 + \gamma + \sum_{k=1}^{n_k} \beta_k x_k(s,t) + \sum_{l=1}^{n_l} f_l(\upsilon_l) + \xi(s,t)$$

$$d(s,t) \sim NB(\lambda(s,t), \phi)$$

$$\exp(\lambda(s,t)) = \beta_0 + \gamma + \sum_{k=1}^{n_k} \beta_k x_k(s,t) + \sum_{l=1}^{n_l} f_l(v_l) + \xi(s,t)$$

Intercept

$$d(s,t) \sim NB(\lambda(s,t), \phi)$$

$$exp(\lambda(s,t)) = \beta_0 + \gamma + \sum_{k=1}^{n_k} \beta_k x_k(s,t) + \sum_{l=1}^{n_l} f_l(\upsilon_l) + \xi(s,t)$$

Offset (fishing effort)

$$d(s,t) \sim NB(\lambda(s,t), \mathbf{\phi})$$

$$exp(\lambda(s,t)) = \beta_0 + \gamma + \left(\sum_{k=1}^{n_k} \beta_k x_k(s,t)\right) + \sum_{l=1}^{n_l} f_l(\upsilon_l) + \xi(s,t)$$

Covariates (Depth, Sediment type and time of the year)

$$d(s,t) \sim NB(\lambda(s,t), \phi)$$

$$exp(\lambda(s,t)) = \beta_0 + \gamma + \sum_{k=1}^{n_k} \beta_k x_k(s,t) + \underbrace{\sum_{l=1}^{n_l} f_l(\upsilon_l)} + \xi(s,t)$$

Random effect (Fishing catchability)

$$d(s,t) \sim NB(\lambda(s,t), \phi)$$

$$exp(\lambda(s,t)) = \beta_0 + \gamma + \sum_{k=1}^{n_k} \beta_k x_k(s,t) + \sum_{l=1}^{n_l} f_l(\upsilon_l) + \boxed{\xi(s,t)}$$

Spatio & temporal correlation

$$d(s,t) \sim NB(\lambda(s,t), \phi)$$

$$exp(\lambda(s,t)) = \beta_0 + \gamma + \sum_{k=1}^{n_k} \beta_k x_k(s,t) + \sum_{l=1}^{n_l} f_l(v_l) + \xi(s,t)$$

Response variable (N/age)

(count data)

Option 1

Fishery-dependent data

Option 2

Fishery-independent data

Option 3

Fishery-dependent + independent data

- DFAD (Danish fisheries analysis database)
- VMS (Vessel monitoring system)
- Vessel logbook

- BITS (Baltic International Trawl Surveys)
- IBTS (International Bottom Trawl Surveys)

Model		AIC		
		Commercial	Survey	Both
m1	Time	392280.9	5240.1	397808.8
m2	Time + Depth	392174.4	5009.1	397634.4
m3	Time + Depth ²	392140.9	5019.1	397588.3
m4	Time + Sediment	392295.0	5264.0	397822.0
m5	Time + Depth + Sediment	392148.3	5035.0	397592.8
m6	Time + Depth ² + Sediment	392089.4	5044.9	397515.7
m7	Time + Depth:Sediment	392170.1	5060.9	397604.4

- Different results according to the input data;
- Combined model is driven by the dataset containing the highest amount of data;

Survey (option 2)

Combined (option 3)

Thank you!