CS 458, Data Structures and Algorithms II Homework 4

June 2, 2020

Due on 11:00am June 9th, 2020. Collaboration is not allowed

Problem 1 (40 points)

Consider the following integer linear program that generalizes vertex cover

minimize
$$c_1x_1 + \ldots + c_mx_m$$

subject to $a_{i,1}x_1 + \ldots + a_{i,m}x_m \ge b_i$, for all $i \in 1, 2, \ldots, n$, $x_i \in \{0, 1\}$ for all $j \in 1, 2, \ldots, m$.

We will assume that the parameters satisfy the following conditions

- $a_{i,j}, b_i, c_j$ are all non-negative integers
- $b_i, c_j > 0$
- a feasible solution exists, namely $\sum_{j} a_{ij} \geq b_i$
- and let $f = \max_{i=1,...,n} (\sum_{j=1}^{m} a_{i,j}).$
- a. (15 points) State how the integer linear program generalizes vertex cover by defining $a_{i,j}, c_j, b_i$ and f in terms of a specific instance of vertex cover.
- b. (25 points) Give a polynomial-time approximation algorithm for any problem captured by this general integer linear programming formulation with approximation ratio less than or equal to f (you need to provide an upper bound). In other words given any linear program that satisfies the conditions outlined above give an algorithm that has approximation ratio f.

Problem 2 (30 points)

Consider the maximum cardinality matching problem on general graphs: We seek to find a maximum cardinality subset of edges $M \subseteq E$ such that no edges $e, e' \in M$ share an endpoint. The integer linear programming formulation is the following:

$$\begin{array}{ll} \text{maximize} & \sum_{e \in E} x_e \\ \\ \text{subject to} & \sum_{e \text{ incident to } v} x_e \leq 1, \qquad \forall v \in V \\ \\ & x_e \in \{0,1\}, \quad \forall e \in E \end{array}$$

Write its linear programming relaxation and show that the integrality gap is greater than or equal to 3/2 (you need to provide a lower bound)

Problem 3 (30 points)

Given an undirected graph G = (V, E), suppose we want to remove a **minimum number** of edges $F \subseteq E$ such that the remaining graph G' = (V, E - F) contains no triangle. (I.e., there are no three vertices u, v, w such that edges (u, v), (v, w), (w, u) are all in G'.)

- a . **(20 points)** Give a polynomial-time approximation algorithm to solve this problem with approximation ratio less than or equal to 3 (you need to provide an upper bound).
- b. (10 points) Provide a lower bound that matches the upper bound you proved in part (a).