	Project:	Doc Nos:	Rev:
Office/Discipline:	-		Page: 1/2.
	Subject:	Prepared: RIKT	Date: 20/07/18
	Eginpropedes; system und consderab	Checked:	Date:
	ATR/Job:	Approved:	Date:

Eigenproperties of system and considerates.

subject to
$$J\ddot{y} = 0$$
.

where (M, K, C, J) are all this-invariant.

Let
$$Z = Null(J)$$
 (ie rectangular modise whose columns span the rull space JJ).

By dynator
$$JZ = 0$$

Let $Zu = y$

Note
$$\begin{bmatrix}
y \\
j \\
j
\end{bmatrix} = \begin{bmatrix}
Z & 0 \\
0 & Z
\end{bmatrix} \begin{bmatrix}
u \\
i
\end{bmatrix}$$

Protes
$$Z\ddot{u} = \dot{y}$$

A function of three (ix is three-morarion).

State-space representation of
$$O$$
:
$$\begin{bmatrix}
\dot{y} \\
\dot{y}
\end{bmatrix} = \begin{bmatrix}
0 \\
-M^{-1}K + R^{-1}C
\end{bmatrix} \begin{bmatrix}
\dot{y}
\end{bmatrix} + \begin{bmatrix}
0 \\
M^{-1}
\end{bmatrix} \begin{bmatrix}
\dot{y}
\end{bmatrix}$$
ie $\dot{z} = A$ $\dot{z} + B$ of

Substitute for
$$(\ddot{y}, \dot{y}, \dot{y})$$
 in eqn $(\ddot{y}, \ddot{y}, \dot{y})$ in eqn (\ddot{z}^{\dagger}) then pre-mudliply by Z^{\dagger} :

$$(Z^{\dagger}MZ)\ddot{u} = -(Z^{\dagger}KZ)\underline{u} - (Z^{\dagger}CZ)\dot{u} + Z^{\dagger}J.$$

Let $M' = Z^{\dagger}MZ$

$$K' = Z^{\dagger}KZ$$

$$C' = Z^{\dagger}CZ$$

$$\ddot{u} = -M^{\dagger}K'\underline{u} - M^{\dagger}C'\dot{u} + (M^{\dagger}Z^{\dagger})J$$

COWI	Project:	Doc Nos:	Rev:	
			Page: 2/2.	
COM	Subject:	Prepared: RIMT	Date: 20/07/18	
Office/Discipline:		Checked:	Date:	
	ATR/Job:	Approved:	Date:	

Thus:
$$\begin{bmatrix} \dot{u} \\ \ddot{u} \end{bmatrix} = \begin{bmatrix} 0 & T \\ -M^{-1}K^{2} \end{bmatrix} \begin{bmatrix} u \\ \dot{u} \end{bmatrix} + \begin{bmatrix} 0 \\ M^{-1}Z^{T} \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

where. Z' is state read for unconstrained pobler.

A' is state making I unconstrained pobler.

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

$$\Rightarrow \lambda \times \partial e^{\lambda t} = A \times \partial e^{\lambda t}$$

I'd are againstres of A' }.

Hence by solving for engagingedes of the (state madre of unconducted of unconducted of problem)

One debuted, eigenrectors can be consided back to eigenrectors of constrained problem:

$$Z_0 = Z_2 Z_0$$
 where $Z_2 = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$