

Kryptographie in CTFs

Eine Einführung (Basierend auf Folien von Leonard Schönborn)

Benedikt Waibel | 19.05.2022

- Caesar-Chiffre
 - Jeder Buchstabe wird um einen festen Wert k verschoben
 - Brechen durch Ausprobieren oder durch Häufigkeitsanalyse einfach möglich
 - Wird heutzutage manchmal noch verwendet (spiegel.de Paywall)

- Vigenère-Chiffre
 - Wähle Schlüsselwort und verschiebe jeden Buchstaben entsprechend dem Schlüsselbuchstaben
 - Schlüssellänge bestimmen und dann Caesar-Chiffre für jede Schlüsselposition einzeln brechen.

Klassische Kryptographie

- XOR-Chiffre:
 - Verschlüssele Klartext durch XOR mit Key
 - ähnlich zu Vigenère
- One Time Pad (OTP):
 - Verwende Schlüssel mit gleicher Länge wie Klartext
 - Perfekte Sicherheit, wenn der Schlüssel gleichverteilt zufällig generiert ist und nur einmal verwendet wird

Zufall

- Zufällige Eingaben an vielen Stellen für Chiffren benötigt
- unsichere Pseudozufallszahlengeneratoren (PRNGs) Standardquelle für Zufall in vielen Sprachen
- Cryptographisch sichere RNGs:
 - /dev/urandom
 - Hardware RNGs
 - RNGs der meisten Crypto-Bibliotheken (z.B. secrets in python)

Blockchiffren

- Verschlüsselt Blöcke fester Länge
- Betriebsmodus wird zur Verschlüsselung längerer Daten verwendet

Stromchiffren

- Pseudozufälliger Schlüsselstrom wird aus Schlüssel abgeleitet
- Schlüsselstrom wird mit Klartext kombiniert

Stromchiffren

Stromchiffren

- RC4, SEAL, Salsa, CryptMT
- Mögliche Angriffe:
 - Bekannter Klartext: Aus einem bekannten Klartext m mit zugehörigem Chiffrat c kann der Schlüsselstrom K rekonstruiert werden
 - Key-Reuse: Sind c_1 und c_2 mit dem gleichen Schlüssel verschlüsselt worden, dann kann man m_1 XOR m_2 wie folgt berechnen:

Blockchiffren

- DES, IDEA, RC5, AES, Blowfish, ...
- Block- und Schlüssellänge
- Padding: Erweitern der Nachricht auf Blocklänge
- Betriebsmodi
 - Electronic Code Book (ECB)
 - Cipher Block Chaining (CBC)
 - Counter Mode (CTR)
 - Galois Counter Mode (GCM)
 - ..

- Verschlüsselt jeden Block einzeln
- Probleme:
 - Daten Einfügen möglich
 - Deterministisch

Cipher Block Chaining

Für Klartextblöcke P_i , Chiffratblöcke C_i , $i \in \{1, ..., n\}$, $C_0 = IV$

- Verschlüsseln: $C_i = Enc(P_i \oplus C_{i-1})$
- Entschlüsseln: $P_i = Dec(C_i) \oplus C_{i-1}$
- Initialisierungsvektor zufällig
- Probleme:
 - Verlust eines Chiffratblocks führt zu Verlust 2er Klartextblöcke

Asymmetrische Kryptosysteme

Verschlüsselung:

Signatur:

RSA

- Wähle zwei Primzahlen p und q
- Bestimme N = p * q
- Bestimme $\Phi(N) = (p-1) * (q-1)$
- Wähle e so, dass $ggT(e, \Phi(N)) = 1 \land 1 < e < \Phi(N)$ gilt
- Bestimme d so, dass $e * d \equiv 1 \pmod{\Phi(N)}$ gilt. (Erweiterter Euklidischer Algorithmus)
- Öffentlicher Schlüssel: N, e
- Privater Schlüssel: d
- ggT(a,b): gröSSter gemeinsamer Teiler von a und b
- $\Phi(N) = |\{a \in \mathbb{N} | 1 \le a \le n \land ggT(a, N) = 1\}|$ Anzahl aller Zahlen, die zu n teilerfremd sind bzw. Gruppenordnung (Eulersche Funktion)

RSA

Encryption:

$$c = m^e mod N$$

Decryption:

$$c^{d} modN$$

$$\iff m^{ed} modN$$

$$\iff m^{edmod\Phi(N)} modN$$

$$\iff m^{1} modN$$

Mit dem kleinen fermatschen Satz

Homomorphie:

$$c_1 = m_1^e mod N$$
 und $c_2 = m_2^e mod N$, so gilt $c_1.c_2 = m_1^e.m_2^e mod N = (m_1.m_2)^e mod N$.
Es gilt also $Enc(m_1, pk).Enc(m_2, pk) = Enc(m_1.m_2, pk)$

Bedingung	Angriff	Komplexität
Keine	Faktorisierung	$\sim exp(log(N)^{\frac{1}{3}}(loglogN)^{\frac{2}{3}})$
Kleines $d(d < \frac{1}{3}N^{\frac{1}{4}})$	Wiener's Attack	Polynomiell
$m < N^{\frac{1}{e}}$	Wurzel ziehen	Polynomiell
Senden der gleichen Nachricht	Hastad's Broadcast Attack	Polynomiell
an viele Empfänger mit selbem e		

Und viele mehr!

Aufgaben

- https://github.com/kitctf/www/tree/files/crypto.zip
- https://cryptopals.com
- https://overthewire.org/wargames/krypton
- https://picoctf.com