Задача 5. Крадущаяся змея, затаившееся полимино

Коченюк Анатолий

Школы 564

26 - 31 марта 2019 года, г. Санкт-Петербург

Введение

Введение 0000

> 1 Ломаную можно представить как путь в $\{(x,y)\in\mathbb{R}^2\mid x\in\mathbb{Z}$ или $y\in\mathbb{Z}\}$ Введём специальные обозначения, для задания ломаной.

> > а, А – отрезки направленные вправо и влево

b, B – вверх и вниз

Для удобства будут также использоваться аналоги:

- $a^{-1} = A$
- $b^{-1} = B$
- 2 Общее количество таких отрезков будем называть длиной ломаной.

Допускается случай ломаной с длиной $0-\varepsilon$

- 1 Ломаная замкнутая, если её конец совпадает с началом
- 2 Ломаная простая, если у неё нет самопересечений по вершинам (допускается пересечение начала и конца – случай замкнутой ломаной)
- 3 За алфавит S будем обозначать множество $S = \{a, b, a^{-1}, b^{-1}\} = \{a, b, A, B\}$

Введём 2 операции над ломаными:

- 1 Вытягивание и затягивание добавление в любое место пути $l \in \{aA, Aa, bB, Bb\}$
- 2 Перенос мы можем свободно перемещать в любое место пути определённые комбинации.

Введение

Дополнительные определения

- $l_1 \equiv l_2 \iff$ одну можно перевести в другую
- **2** Префикс l ломаная, идущая по тому же маршруту и не превышающая по длине
- З Ломаная кратчайшая ← нет эквивалентной с меньшей длиной
- 4 Ломаная максимальная ломаная кратчайшая и единственная кратчайшая ломаная, префиксом которой она является – это она сама

Определение

Введение 000€

Коммутатор двух букв x, y из алфавита $s [x, y] = xyx^{-1}y^{-1}$

Понятно, что каждый коммутатор либо эквивалентен пустому слову, либо по второму движению коммутативен со всеми элементами.

Кроме того, с его помощью можно менять местами буквы следующим образом:

$$[a,b]ba = aba^{-1}b^{-1}ba \equiv ab$$

Аналогично меняются местами другие буквы. В ячейке я буду записывать то, что нужно добавить.

	a	b	a^{-1}	b^{-1}
\overline{a}	×	[a,b]	×	$[a,b]^{-1}$
\overline{b}	$[a,b]^{-1}$	×	[a,b]	×
a^{-1}	×	$[a,b]^{-1}$	×	[a,b]
b^{-1}	[a,b]	×	$[a,b]^{-1}$	×

- $babA[AbaB]BB \equiv ba[AbaB]bABB =$ 1 $bbb \equiv babAAba$ $b[aA]ba[Bb]ABB \equiv bb[aA]BB \equiv b[bB]B \equiv bB \equiv \varepsilon \Rightarrow bbb \equiv bbabAAba$
- $bbA \not\equiv aaB$. Отметим, что никакое движение не изменяет конечную точку и сумму степеней при каждой из букв (если заменить A и Bна a^{-1} и b^{-1}).

 $abAB \not\equiv aabbAABB$

Определение

У отрезков ломаной есть направление. Будем считать, что если в многоугольнике стороны направлены против часовой стрелке, то площадь положительна. В противном случае считаем её отрицательной.

Теорема

При действии движений, если рассматривать многоугольник составленный из точек ломаной в порядке букв в слове, то его ориентированная площадь не изменится. Такой многоугольник существует, когда ломаная замкнутая.

Очевидно, что площадь первой ломаной (1) не равна площади второй (4), а значит они неэквивалентны.

Определение

Ломаная является кратчайшей, если с помощью наших движений её нельзя перевести в ломаную с меньшей длиной.

$$abAB[abAB] \equiv a[abAB]bAB \equiv aabAAB$$

Теорема

У каждой ломаной есть единственное представление в виде $[a,b]^z b^y a^x$, где $[a,b] = aba^{-1}b^{-1}$, степень — конкатенация, т.е. $[a,b]^2 = [a,b][a,b], a x, y, z \in \mathbb{Z}^3$

Тогда классы ломаных можно обозначать за $(z, y, x) = [[a, b]^z b^y a^x]$

Лемма

Если у ломаной некратчайший префикс, то сама ломаная – некратчайшая.

Определение

 $K_{Aacc}(z, y, z)$ будем называть максимальным, если $len((z,y,x)*class(s)) < len((z,y,x)), \forall s \in S$ Если в классе есть максимальная ломаная, то класс максимальный, а если класс максимальный, то все кратчайшие ломаные в этом классе максимальные

Для кратчайшей ломаной l и буквы s выполнятся следующее ls – кратчайшая ломаная \iff в классе [l] нет кратчайшего представителя, оканчивающегося на s^{-1}

Доказательство.

 $\Rightarrow ls$ — кратчайшая. Пусть есть такой представитель $l's^{-1} \equiv l$ $[ls] = [l'ss^{-1}] = [l'] \quad l's^{-1}$ — кратчайшая в классе $[l] \Rightarrow |l| = |l's^{-1}| = |l'| + 1 \Rightarrow |l'| = |l| - 1$ l' — кратчайшая в классе $[ls] \Rightarrow |l'| = |ls| = |l| + 1$ Мы получили два противоречащих равенства \Rightarrow допущение неверно.

- \Leftarrow Пусть в классе [l] нет кратчайшего представителя, оканчивающегося на $s^{-1}.$ И пусть ls не кратчайшая. [ls]=[l'],l' кратчайшая
 - $len([l]) 1 \leqslant len([ls]) \leqslant len([l]) + 1$. Второе неравенство выполняется по неравенству треугольника в метрике на графе Кэли группы всех слов.

Первое неравенство (тоже по неравенству треугольника):

$$len([ls]) \geqslant len(lss^{-1}) - len([s^{-1}]) = len([l]) - 1$$

А тогда
$$|l| - 1 \leqslant |l'| = len([ls]) \leqslant |l| + 1$$

 $|l|-1\leqslant |l'|<|ls|\leqslant |l|+1$. Между крайними числами в этом неравенстве есть 3 числа. Ни одно из средних чисел не равно l, а значит они "расходятся"по крайним. А значит |l|-1=|l'|

Понятно, что
$$[l] = [l's^{-1}]$$

 $len([l's^{-1}]) = len([l]) = |l| = |l'| + 1 = |l's^{-1}|$. Таким образом существует слово в классе [w], которое заканчивается на s^{-1} ??! Противоречие с условием, а значит допущение неверно.

Теорема (Условие на максимальность класса)

Класс ломаных максимален \iff в этом классе есть кратчайшие слова, оканчивающиеся на все буквы алфавита S

Теорема

Любая кратчайшая замкнутая ломаная – максимальная

Теорема

Любая кратчайшая ломаная – простая

Условия:

- **1** L— кратчайшая \iff ∄L': L' ≡ L & len(L') < len(L)
- 2 Ломаная кратчайшая, когда она является частью кратчайшей ломаной

Замкнутые кратчайшие ломаные – максимальные – простые.

Определение

Полимино – плоские геометрические фигуры, образованные путём соединения нескольких одноклеточных квадратов по их сторонам

Благодарность

Спасибо за внимание!

