

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования САМАРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт автоматики и информационных технологий Кафедра «Информатика и Вычислительная техника»

ОТЧЕТ о выполнении лабораторной работы №6

по дисциплине	Компьютерные средства искусственного интеллекта						
на тему	Классическое машинное обучение						
Преподаватель				А.А. Тюгашев			
	(должность)	(подпись)	(дата)	(инициалы, фамилия)			
				К.В. Портнов			
	(должность)	(подпись)	(дата)	(инициалы, фамилия)			
Студенты	4-ИАИТ-119			Е.А. Щаев			

(подпись)

(дата)

(инициалы, фамилия)

(группа)

Цель работы — использование классического машинного обучения на датасете.

Выбранный датасет – IRIS

Столбцы:

Sepal_length – Длинна чашелистика

Sepal_width – Ширина чашелистика

Petal_length – Длинна лепестка

Petal_width – Ширина лепестка

Species – Сорт ирис

Ход работы:

Рисунок 1 – Дата Фрейм

Раздели данные на столбцы для прогнозирования X и целевой столбец (species) у. Train – для обучения модели, test – для тестирования.

```
X = data.drop(columns=['species'])
y = data['species']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

```
model = DecisionTreeClassifier()
model.fit(X_train, y_train)

v DecisionTreeClassifier
DecisionTreeClassifier()
```

Рисунок 2 – Создали и обучили модель

Предсказали целевой столбец на основании X_test.

Рисунок 3 — Столбцы: истинные и прогнозированные значения

```
[68] accuracy = accuracy_score(y_test, y_pred)
print("Точность:", accuracy)
```

Точность: 1.0

Рисунок 4 — Точность — 100%, всё верно

<pre>[69] print(classification_report(y_test, y_pred)) </pre>								
	precision	recall	f1-score	support				
Iris-setosa Iris-versicolor Iris-virginica	1.00 1.00 1.00	1.00 1.00 1.00	1.00 1.00 1.00	10 9 11				
accuracy macro avg weighted avg	1.00 1.00	1.00	1.00 1.00 1.00	30 30 30				

Рисунок 5 – Отчёт о классификации

Создали древо решения рис 6.

```
plt.figure(figsize=(20,10))

tree.plot_tree(model, fontsize=10)
plt.show()
```


Рисунок 6 – Дерево решений

Вывод: научились решать задачу классификации: прогнозировать метки класса для новых данных на основе обучающего набора данных, который содержит признаки и соответствующие метки классов, а также строить дерево решений и ориентировать по нему.