Cortez

Problema. Sea X(s), determine la amplitud de los términos $\delta(t)$ y $\delta'(t)$

$$X(s) = \frac{s^4 + 2s + 1}{s^3 + 4s^2 + 5s + 2}$$

vemos que numerador y denominador tiene por raiz-1 por lo que se puede simplificar $\,$

$$X(s) = \frac{(s+1)(s^3 - s^2 + s + 1)}{(s+1)(s^2 + 3s + 2)}$$

$$X(s) = \frac{s^3 - s^2 + s + 1}{s^2 + 3s + 2}$$
división
$$X(s) = s - 4 + \frac{11s + 9}{s^2 + 3s + 2}$$
fracciones parciales
$$X(s) = s - 4 + \frac{11s + 9}{(s+1)(s+2)}$$

$$X(s) = s - 4 + \frac{A}{(s+1)} + \frac{B}{(s+2)}$$

$$X(s) = s - 4 - \frac{2}{(s+1)} + \frac{13}{(s+2)}$$

$$\mathcal{L}^{-1}$$

$$x(t) = \mathcal{L}^{-1} \{s\} - 4\mathcal{L}^{-1} \{1\} - 2\mathcal{L}^{-1} \left\{ \frac{1}{(s+1)} \right\} + 13\mathcal{L}^{-1} \left\{ \frac{1}{(s+2)} \right\}$$

$$x(t) = \mathcal{L}^{-1}\{s\} - 4\mathcal{L}^{-1}\{1\} - 2\mathcal{L}^{-1}\left\{\frac{1}{(s+1)}\right\} + 13\mathcal{L}^{-1}\left\{\frac{1}{(s+2)}\right\}$$
$$x(t) = \delta'(t) + 4\delta(t) - 2e^{-s} + 13e^{-2s}$$

por lo que las amplitudes de $\delta\left(t\right)$ y $\delta'\left(t\right)$ son 4 y 1 respectivamente.

Problema. Encuentre la transformada inversa de

$$X(s) = \frac{s^3 - 3}{(s+1)(s+2)}$$
$$= \frac{s^3 - 3}{s^2 + 3s + 2}$$

division y fracciones parciales

$$\begin{array}{lcl} X\left(s\right) & = & s - \frac{4}{s+1} + \frac{11}{s+2} - 3 \\ \mathcal{L}^{-1} & = & \\ & = & \mathcal{L}^{-1}\left\{s\right\} - 4\mathcal{L}^{-1}\left\{\frac{1}{s+1}\right\} + 11\mathcal{L}^{-1}\left\{\frac{1}{s+2}\right\} - 3\mathcal{L}^{-1}\left\{1\right\} \\ & = & \delta\left(t\right) - 4e^{-t} + 11e^{-2t} - 3\delta'\left(t\right) \end{array}$$

Salcedo

Problema. La siguiente ecuación diferencial describe un sistema dado:

$$\frac{d^{2}}{dt^{2}}y(t) + \frac{1}{2}\frac{d}{dt}y(t) + 0.15y(t) = x(t)$$

. Entregue Y(s) y las condiciones iniciales para el sistema.

$$\mathcal{L}^{-1}\left\{\frac{d^{2}}{dt^{2}}y\left(t\right)\right\} + \frac{1}{2}\mathcal{L}^{-1}\left\{\frac{d}{dt}y\left(t\right)\right\} + 0.15\mathcal{L}^{-1}\left\{y\left(t\right)\right\} = \mathcal{L}^{-1}\left\{x\left(t\right)\right\}$$

$$s^{2}Y\left(s\right) - sy\left(0\right) - y'\left(0\right) + \frac{1}{2}\left(sY\left(s\right) - y\left(0\right)\right) + 0.15Y\left(s\right) = X\left(s\right)$$

$$Y\left(s\right)\left(s^{2} - 0.5s + 0.15\right) = X\left(s\right) + sy\left(0\right) + y'\left(0\right) + 0.5y\left(0\right)$$

$$Y\left(s\right) = \frac{X\left(s\right) + sy\left(0\right) + y'\left(0\right) + 0.5y\left(0\right)}{\left(s^{2} - 0.5s + 0.15\right)}$$

Problema. si y'(0) = 0 y y(0) = 0 son las condiciones iniciales de la ecuación diferencial, encuentre Y(s). Si se dobla la entrada del sistema a 2x(t) con transformada de Laplace 2X(s), responda la siguientes dos preguntas. 1. ¿Se dobla la salida Y(s) y entonces la transformada de laplace inversa es el doble? 2. ¿Es lineal el sistema?

Respuesta 1

$$Y_{2}(s) = \frac{2X(s) + sy(0) + y'(0) + 0.5y(0)}{(s^{2} - 0.5s + 0.15)}$$

$$Y_{2}(s) = \frac{2X(s)}{(s^{2} - 0.5s + 0.15)}$$

$$Y_{2}(s) = 2Y(s)$$

$$y_{2}(t) = 2y(t)$$

por lo tanto la señal es el doble.

Respuesta 2. Como el sistema es representado por una ecuación diferencial lineal no homogénea, entonces el sistema es lineal.

Problema. Sea

$$x(t) = 2(\delta(t+1) - \delta(t-1))$$

encuentre la transformada de Laplace y determine la región de convergencia. Buscamos la transformada de Laplace

$$X(s) = 2e^s - 2e^{-s}$$

Donde la región de convergencia es todo el plano de s

Problema. Con la función X(s) compleja, de $s = \sigma + jw$, entregue la magnitud de $|X(\sigma + jw)|$ y la fase $\angle |X(\sigma + jw)|$

$$\begin{split} X\left(s\right) &= 2e^{s} - 2e^{-s} \\ X\left(\sigma + jw\right) &= 2e^{\sigma + jw} - 2e^{-\sigma - jw} \\ X\left(\sigma + jw\right) &= 2e^{\sigma}e^{jw} - 2\frac{e^{-jw}}{e^{\sigma}} \\ &= 2e^{\sigma}\left(\cos\left(w\right) + j\sin\left(w\right)\right) - \frac{2}{e^{\sigma}}\left(\cos\left(-w\right) + j\sin\left(-w\right)\right) \\ &= \left(2e^{\sigma} - \frac{2}{e^{\sigma}}\right)\cos\left(w\right) + \left(2e^{\sigma} + \frac{2}{e^{\sigma}}\right)\sin\left(w\right)j \end{split}$$

por lo que

$$\begin{split} |X\left(\sigma+jw\right)| &= \sqrt{\left(2e^{\sigma}-\frac{2}{e^{\sigma}}\right)^{2}\cos^{2}\left(w\right)+\left(2e^{\sigma}+\frac{2}{e^{\sigma}}\right)^{2}\sin^{2}\left(w\right)} \\ &=2\sqrt{\left(e^{-2\sigma}+e^{2\sigma}-2\cos\left(2w\right)\right)} \\ \angle\left|X\left(\sigma+jw\right)\right| &= \arctan\left(\frac{\left(2e^{\sigma}+\frac{2}{e^{\sigma}}\right)}{\left(2e^{\sigma}-\frac{2}{e^{\sigma}}\right)}\tan\left(w\right)\right) \\ &= \arctan\left(\coth\left(\sigma\right)\tan\left(w\right)\right) \end{split}$$

Iglesias

Problema. Los polos correspondientes a la transformada de laplace X(s)de una señal x(t)son $p_{1,2} = -3 \pm \frac{\pi}{2} j$ y $p_3 = 0$

dándose las constantes, como A (de amplitud), entregue la forma general de la señal x dado sus polos

$$X(s) = \frac{A}{\left(s - \left(-3 + \frac{\pi}{2}j\right)\right)\left(s - \left(-3 - \frac{\pi}{2}j\right)\right)s}$$

$$= \frac{A}{\left(s - \left(-3 + \frac{\pi}{2}\sqrt{-1}\right)\right)\left(s - \left(-3 - \frac{\pi}{2}\sqrt{-1}\right)\right)s}$$

$$= \frac{A}{s\left((s + 3)^2 + \frac{\pi^2}{4}\right)}$$

$$\mathcal{L}^{-1}$$

$$x(t) = A\mathcal{L}^{-1}\left\{\frac{1}{s}\right\} \star \mathcal{L}^{-1}\left\{\frac{1}{\left((s + 3)^2 + \frac{\pi^2}{4}\right)}\right\}$$

$$x(t) = A1 \star e^{-3t}\mathcal{L}^{-1}\left\{\frac{1}{s^2 + \frac{\pi^2}{4}}\right\}$$

$$x(t) = A1 \star e^{-3t}\frac{2}{\pi}\mathcal{L}^{-1}\left\{\frac{\frac{\pi}{2}}{s^2 + \frac{\pi^2}{4}}\right\}$$

$$x(t) = \frac{2A}{\pi} \star e^{-3t}\sin\left(\frac{\pi}{2}t\right)$$

$$x(t) = \frac{2A}{\pi}\int_0^t e^{-3t}\sin\left(\frac{\pi}{2}t\right)dt$$

Problema. La función de transferencia de un sistema dado es

$$H(s) = \frac{1}{s^2 + 4}$$

Encontrar la función diferencial

Respuesta: como es función de transferencia asumimos condiciones iniciales cero

$$\frac{Y(s)}{X(s)} = \frac{1}{s^2 + 4}$$

$$Y(s)(s^2 + 4) = X(s)$$

$$s^2Y(s) + 4Y(s) = X(s)$$

$$\mathcal{L}^{-1}$$

$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} = x(t)$$

Problema. Suponga que $y\left(t\right)$ es nula para $t\geq0$, si la entrada $x\left(t\right)=\delta\left(t\right)$, encuentre las condiciones iniciales del sistema. Es decir, dado $Y\left(s\right)=0$, encuentre $y\left(0\right)$ e $y'\left(0\right)$.

Respuesta: En general, la respuesta dado un $x(t) = \delta(t)$ es la función de transferencia, si la función de transferencia tiene numerador 1 como en este caso quiere decir que las condiciones iniciales son nulas.

Rojas

Problema. La siguiente función Y(s) es la transformada de Laplace de la siguiente ecuación diferencial que representa un sistema de entrada x(t) y condiciones iniciales no nulas, con transformada de Laplace X(s):

Encuentre la ecuación diferencial que represente el sistema

$$Y(s) = \frac{X(s)}{s^2 + 2s + 3} + \frac{s + 1}{s^2 + 2s + 3}$$
$$(s^2 + 2s + 3) Y(s) = X(s) + s + 1$$
$$s^2 Y(s) + 2sY(s) + 3Y(s) = X(s) + s + 1$$

por lo que se puede deducir que la ecuación diferencial es de la forma

$$\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 3y = x(t)$$

para encontrar las condiciones iniciales del sistema

$$s^{2}Y - sy(0) - y'(0) + 2(sY - y(0)) + 3Y = X$$
$$(s^{2} + 2s + 3)Y = X + sy(0) + y'(0) + 2y(0)$$

por lo que
$$sy\left(0\right)+y'\left(0\right)+2y\left(0\right)=s+1,$$
 luego $y\left(0\right)=1$ e $y'\left(0\right)+2y\left(0\right)=1 \implies y'\left(0\right)=-1$

Problema. Suponga que la función de transferencia de un sistema dado es:

$$H\left(s\right) = \frac{s}{s^2 + s + 1}$$

Encuentre la respuesta del sistema al escalón u(t), con S(s) = H(s)X(s), y entonces desarrolle la respuesta y(t) del sistema para las siguientes entradas.

Buscamos la respuesta dado un escalon de Heaveside para reutilizarlo en las preguntas siguientes

$$x(t) = u(t)$$

$$\mathcal{L}$$

$$X(s) = \frac{1}{s}$$

$$S(s) = H(s)X(s)$$

$$S(s) = \frac{1}{s^2 + s + 1}$$

$$S(s) = \frac{1}{s^2 + s + \frac{1}{4} + \frac{3}{4}}$$

$$S(s) = \frac{1}{(s + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2}$$

$$S(s) = \frac{2}{\sqrt{3}} \frac{\frac{\sqrt{3}}{2}}{(s + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2}$$

$$\mathcal{L}^{-1}$$

$$s(t) = \frac{2}{\sqrt{3}} \mathcal{L}^{-1} \left\{ \frac{\frac{\sqrt{3}}{2}}{(s + \frac{1}{2})^2 + (\frac{\sqrt{3}}{2})^2} \right\}$$

$$s(t) = \frac{2}{\sqrt{3}} e^{-t/2} \mathcal{L}^{-1} \left\{ \frac{\frac{\sqrt{3}}{2}}{s^2 + (\frac{\sqrt{3}}{2})^2} \right\}$$

$$s(t) = \frac{2}{\sqrt{3}} e^{-t/2} \sin\left(\frac{\sqrt{3}}{2}t\right)$$

Calculamos respuestas dada las siguientes entradas, lo cual es directo

$$x_{1}(t) = u(t) - u(t - 1)$$

$$y_{1}(t) = (u(t) - u(t - 1)) * s(t)$$

$$y_{1}(t) = \int_{0}^{t} u(\tau) s(t - \tau) d\tau - \int_{0}^{t} u(\tau - 1) s(t - \tau) d\tau$$

$$y_{1}(t) = \int_{0}^{t} s(t - \tau) d\tau - \int_{1}^{t} u(\tau - 1) s(t - \tau) d\tau$$

$$x_{2}(t) = \delta(t) - \delta(t - 1)$$

$$x_{2}(t) = (\delta(t) - \delta(t - 1)) * s(t)$$

$$= s(t) - s(t - 1)$$

$$x_3(t) = r(t)$$

$$y_3(t) = (r * s)(t)$$

$$x_3(t) = r(t) - 2r(t-1) + r(t-2)$$

 $y_3(t) = (r(t) - 2r(t-1) + r(t-2)) * s(t)$

Dominguez

Problema. La función de transferencia de un sistema descrito por una ecuación diferencial de segundo orden, es:

$$H(s) = \frac{1}{s^2 + b_1 s + b_0}$$

desarrollo en el archivo matlab.

Problema. Encuentre la transformada de Laplace de $y(t) = \sin(2\pi) u(t) - \sin(2\pi (t-1)) u(t-1)$ y su región de convergencia.

$$y(t) = \sin(2\pi t) u(t) - \sin(2\pi (t-1)) u(t-1)$$

$$\mathcal{L}^{-1}$$

$$Y(s) = \frac{2}{s^2 + 2^2} - e^{-s} \frac{2}{s^2 + 2^2}$$

$$Y(s) = \frac{2(1 - e^{-s})}{s^2 + 2^2}$$

como es la suma de funciones senos, el ROC

$$\Re(s) > 0$$

Sea la función

$$x(t) = \begin{cases} 1 - \cos(2\pi t) & 0 < t < 1\\ 0 & t < 0 \text{ o } t > 1 \end{cases}$$

Usando la misma forma de la primera parte con $x_1(t) = \cos(2\pi t) u(t)$ y la diferencia $d(t) = x_1(t) - x_1(t-1)$, exprese entonces x(t) en términos de u(t) y la diferencia d(t).

Respuesta: Podemos hacer la siguiente representación funcional de x(t)

$$x(t) = (1 - \cos(2\pi t)) (u(t) - u(t-1))$$

= $(u(t) - u(t-1)) - \cos(2\pi t) (u(t) - u(t-1))$

pero cos se puede desplazar

$$= (u(t) - u(t-1)) - d(t)$$

Calculamos ahora la transformada de Laplace

$$\begin{split} x\left(t\right) &= \left(u\left(t\right) - u\left(t - 1\right)\right) - d\left(t\right) \\ \mathcal{L} \\ X\left(s\right) &= \frac{1}{s} - \frac{e^{-s}}{s} - \frac{2\pi}{s^2 + \left(2\pi\right)^2} + \mathcal{L}\left\{\cos\left(2\pi t\right)u\left(t - 1\right)\right\} \\ &= \frac{1}{s} - \frac{e^{-s}}{s} - \frac{2\pi}{s^2 + \left(2\pi\right)^2} + \mathcal{L}\left\{\cos\left(2\pi \left(t - 1\right)\right)u\left(t - 1\right)\right\} \\ &= \frac{1}{s} - \frac{e^{-s}}{s} - \frac{2\pi}{s^2 + \left(2\pi\right)^2} + e^{-s}\mathcal{L}\left\{\cos\left(2\pi \left(t\right)\right)u\left(t\right)\right\} \\ &= \frac{1}{s} - \frac{e^{-s}}{s} - \frac{2\pi}{s^2 + \left(2\pi\right)^2} + e^{-s}\frac{2\pi}{s^2 + \left(2\pi\right)^2} \\ &= \frac{1 - e^{-s}}{s} + \frac{2\pi\left(e^{-s} - 1\right)}{s^2 + \left(2\pi\right)^2} \end{split}$$

como son sumas de funciones cosenos y heaviside, entonces el ROC es

$$\Re(s) > 0$$