Mathematisches Seminar Prof. Dr. Sören Christensen Henrik Valett, Fan Yu, Oskar Hallmann, Nele Rothert

Sheet 10

Computational Finance

Exercises for all participants

C-Exercise 36 (Valuation of a European Call using the Crank-Nicolsen finite difference scheme) (4 points)

Write a Python function

that approximates the option values $v(0,x_1),\ldots,v(0,x_{m-1})$ of a European call option with strike K>0 and maturity T>0 in the Black-Scholes model using the Crank-Nicolson finite difference scheme. Here, $x_i=K\exp(a+i\frac{b-a}{m})$ denote the initial stock prices and a,b,m,v_{max} are the parameters of the algorithm presented in the course. Test your function for

$$r = 0.05$$
, $\sigma = 0.2$, $a = -0.7$, $b = 0.4$, $m = 100$, $v_{max} = 2000$, $T = 1$, $K = 100$.

Compare your result with the exact solution using the BS-formula by plotting the difference between the finite difference approximation and the exact option price for all underlying initial stock prices.

C-Exercise 37 (Boundary Conditions) (4 points)

Modify C-Exercise 33 such that it includes the improved boundary conditions from the section on page 72 in the lecture notes.

C-Exercise 38 (Valuation of an American Put using the explicit finite difference scheme) (4 points)

Write a Python function

that approximates the option values $v(0,x_1),\ldots,v(0,x_{m-1})$ of an American put option with strike K>0 and maturity T>0 in the Black-Scholes model using the explicit finite difference scheme (or if you want to, any of the other two). Here, $x_i=K\exp(a+i\frac{b-a}{m})$ denote the initial stock prices and a,b,m,v_{max} are the parameters of the algorithm presented in the course. Test your function for

$$r = 0.05$$
, $\sigma = 0.2$, $a = -0.7$, $b = 0.4$, $m = 100$, $v_{max} = 2000$, $T = 1$, $K = 95$.

Compare your result with the results from C-Exercise 06.

Please include your name(s) as comment in the beginning of the file. Do not forget to include comments in your Python-programs.

Submit until: Fri, 30.06.2023, 10:00