התחלקות - הגדרות בלבד

תורת המספרים האלמנטרית - 80115

מרצה: אהוד (אודי) דה-שליט

מתרגל: גיא ספיר

סוכם ע"י: שריה אנסבכר

סמסטר ב' תשפ"ג, האונ' העברית

התחלקות - הגדרות בלבד

תוכן העניינים

3	י החלוקה	יחס	1
4	ספרים הראשוניים	המס	2
4	התחלה	2.1	
4	חוג השלמים של גאוס	2.2	
5	המשפט היסודי של האריתמטיקה	2.3	
5	שכיחות המספרים הראשוניים	2.4	

אשמח לקבל הערות והארות על הסיכומים על מנת לשפרם בעתיד, כל הערה ולו הפעוטה ביותר (אפילו פסיק שאינו במקום או רווח מיותר) תתקבל בברכה; אתם מוזמנים לכתוב לי לתיבת הדוא"ל: sraya.ansbacher@mail.huji.ac.il.

> : לסיכומים נוספים היכנסו אקסיומת השלמות - סיכומי הרצאות במתמטיקה https://srayaa.wixsite.com/math

1 יחס החלוקה

1 יחס החלוקה

 $a\cdot a\cdot q$ כך ש- $a\cdot q$ כך ש- $a\cdot a\mid b$ ונסמן $a\mid b$ ונסמן $a\mid b$ אם סיים $a\cdot a$ כך ש- $a\cdot a$ כך ש- $a\cdot a$ הגדרה 1.1. יהיו

 $a \neq 0$ אז $a \mid b$ מהגדרה נובע שאם

: משפט. יהיו שני הפסוקים $a_1,a_2,\ldots,a_n\in\mathbb{Z}$ משפט. יהיו

- י אם קיים $q\in\mathbb{Z}$ כך ש-0 אז קיים $d\in\mathbb{N}$ יחיד כך ש- $i\in\mathbb{N}$ לכל $d\mid a_i$ יים אז קיים $d\in\mathbb{N}$ אז קיים $a_i\neq 0$ אם קיים $a_i\neq 0$ מתקיים $a_i\neq 0$ מתקיים $a_i\neq 0$ מתקיים $a_i\neq 0$ מתקיים $a_i\neq 0$
- לכל $a_i\mid m$) אם $b\in\mathbb{Z}$ לכל לכל $n\in\mathbb{Z}$ לכל לכל $n\in\mathbb{Z}$ לכל לכך ער שים לכל לכך ער המתחלק בכולם לכל ובנוסף לכל לכל $a_i\mid l$ לכל לובנוסף לכל לכל לובנוסף לכל ובנוסף לכל לובנוסף לובנוסף לכל לובנוסף לובנוס

הגדרה 1.2. מחלק משותף מקסימלי וכפולה משותפת מינימלית

 $a_1,a_2,\ldots,a_n\in\mathbb{Z}$ יהיו

- את אותו שמקיים את יחיד שמקיים את פכל (a_1,a_2,\ldots,a_n) את אותו התנאים במשפט שלעיל, אם קיים $n\geq i\in\mathbb{N}$ אם אם קיים יחיד שמקיים את התנאים במשפט שלעיל, a_1,a_2,\ldots,a_n ונקרא לו המחלק המשותף המקסימלי של
- את ונקרא ונקרא נקרא נסמן במשפט שלעיל את אותו וונקר ונקרא ונקרא נסמן ב-משפט שלעיל ונקרא אותו a_1,a_2,\ldots,a_n אם אונסמן ב-משפט שלעיל ונקרא יחיד שמקיים את המינימלית של ה a_1,a_2,\ldots,a_n לו הכפולה המשותפת המינימלית של
 - ול-lcm ול-lcm הגדרות שקולות ל-gcd ול-
 - a_1,a_2,\ldots,a_n את שמחלק ביותר המקסימלי הוא הטבעי הגדול המחלק המשותף המקסימלי הוא הטבעי הגדול ביותר
 - a_1, a_2, \dots, a_n ב ביותר שמתחלק היא הטבעי היא המינימלית המינימלית הכפולה המשותפת

הסיבה להגדרה דווקא בצורה הנ"ל היא שהגדרה זו תופסת בכל חוג חילופי $^{\mathrm{L}}$

אנחנו $\gcd(a,b)=1$ אכחנו a. ו-a ו-a ו-a ו-a ו-a וים לזה", אנחנו a אכחנו פכל (לפעמים אומרים אם a, נאמר ש-a ו-a ו-a ו-a אכחנו ו-a אכחנו פכל ווים אחר בגלל הבלבול עם הראשוניים).

i
eq jכך כך ש $n \geq i, j \in \mathbb{N}$ לכל $\gcd(a_i, a_j)$ לכל זה בזוגות אם ורים זה לזה בזוגות אם מבך. $a_1, a_2, \ldots, a_n \in \mathbb{Z}$

a .a שימון: לכל $a \in \mathbb{Z}$ נסמן $a \in \mathbb{Z}$ נסמן מלח לכל $a \in \mathbb{Z}$

הגדרה 1.5. אידיאל

: קבוצה התנאים התנאים אידיאל אם מתקיימים שלושת התנאים הבאים ו $I\subseteq\mathbb{Z}$

- $.0 \in I$.1
- $a+b\in I$ מתקיים $a,b\in I$.2
- $a \cdot a \in I$ מתקיים $a \in I$ ולכל 3.
- זוהי ההגדרה של אידיאל בכל חוג חילופי, בחוג השלמים ניתן היה להסתפק בסגירות לחיבור ולחיסור מפני שניתן להמיר כל כפל שלמים לחיבור וחיסור².

[.] ¹חוג חילופי (קומוטטיבי) הוא קבוצה שעליה מוגדרות פעולות חיבור וכפל המקיימת את כל אקסיומות השדה מלבד קיום הופכי.

הסיבה לכך שנזקקנו לשתי פעולות בשדה. בריבור 1

התחלקות - הגדרות בלבד

2 המספרים הראשוניים

2.1 התחלה

 $.p
eq \pm 1$ יהי $0
eq p \in \mathbb{Z}$ יהי

מתקיים p=ab כך ש- $a,b\in\mathbb{Z}$ כלומר לכל $\pm p$. כלומר $\pm a,b\in\mathbb{Z}$ מתקיים אין לו מחלקים אין לו מחלקים שונים $\pm a$ (בa+b) או ש $a=\pm b$ או ש $a=\pm b$).

 $p\mid b$ או ש- $p\mid a$ מתקיים $p\mid a$ מתקיים או $p\mid a$ או ש- $a,b\in\mathbb{Z}$ או ש-לכל

- היה קל יותר לו היינו מגדירים את הראשוניים והאי-פריקים כטבעיים גדולים מ-1 המקיימים את התכונות הנ"ל ביחס 🕹
 - בחוג השלמים אלו הגדרות שקולות (נראה זאת בהמשך) אך ישנם חוגים אחרים שבהם המצב שונה.
 - את קבוצת הראשוניים (ב- \mathbb{R} או ב- \mathbb{Z} ע"פ ההקשר).

. האיר באיבר מספרים מספרים מספרים להציג את האחד מספרים $a,b\in\mathbb{Z}$ הם מספרים מספרים ממפלה את האחד מידים אם מידים אינו מספרים מס

בחוג השלמים האיברים ההפיכים היחידים הם ± 1 אך ישנם חוגים אחרים (למשל חוג הפולינומים וחוג השלמים של גאוס המופיע בהגדרה הבאה) שבהם המצב שונה.

2.2 חוג השלמים של גאוס

הגדרה 2.4. חוג השלמים של גאוס

. נסמן $\mathbb{Z}[i]$ חוג השלמים של גאוס. $\mathbb{Z}[i]:=\{a+bi\mid a,b\in\mathbb{Z}\}\subseteq\mathbb{C}$ נסמן

- הרעיון מאחורי הסימון $\mathbb{F}[i]$ הוא כמו הסימון $\mathbb{F}[x]$ שסימן את חוג הפולינומים בעלי מקדמים בשדה $\mathbb{F}[i]$ אלא שכעת a+bi המשתנה אינו a+bi , ואכן כל הצבה של i בפולינום עם מקדמים שלמים ניתן להציג בצורה i ואכן כל הצבח ההערות בקובץ הטענות.
- יחס החלוקה, ראשוניות ואי-פריקות מוגדרים בחוג השלמים של גאוס באותה צורה שהוגדרו בשלמים, גם בחוג השלמים
 של גאוס יש שקילות בין ראשוניות לאי-פריקות ולכן המשפט היסודי של האריתמטיקה תקף גם בו.

 $A^4N\left(a+bi
ight)=a^2+b^2$ י"י המוגדרת איי $N:\mathbb{Z}\left[i
ight] o\mathbb{N}_0$ היא פונקציה היא פונקציה שלמים של האוס). הגדרה

 $^{^{6}}$ בליניארית 2 הגדרנו פולינום הפיך אם קיים פולינום אחר כך שמכפלתם היא הפולינום 1 , לפי זה הפולינומים ההפיכים הם אלו שדרגתם 0 . בלינמר הריבוע של הנורמה ב 0 , הסיבה לשימוש בריבוע היא כדי להישאר בחוג השלמים.

2 המספרים הראשוניים

2.3 המשפט היסודי של האריתמטיקה

 i^{5} הגדרה שלם $0
eq n \in \mathbb{Z}$ לראשוניים הוא בפירוק בפירוק הגדרה הריבוי של מספר האשוניים הוא

$$\operatorname{Ord}_{p}(n) := \max \{ e \in \mathbb{N}_{0} : p^{e} \mid n \}$$

: ניתן להבחין ש- $\operatorname{Ord}_p(n)$ הוא החזקה שבה הופיע

$$n = \operatorname{sgn}\left(n\right) \cdot \prod_{i=1}^{r} p_i^{e_i}$$

 $e_1, e_2, \ldots, e_r \in \mathbb{N}$ י ו- $p_1 < p_2 < \ldots < p_r$ כאשר המקיימים המספרים מספרים המספרים המספרים ו $p_1, p_2, \ldots, p_r \in \mathbb{N}$

 $n=m^2$ כך ש- מספר עלם $m\in\mathbb{Z}$ מספר ייבועי אם ייקרא מספר $n\in\mathbb{Z}$ מספר שלם .2.7 הגדרה

מהגדרה מספר ריבועי הוא אי-שלילי 7 .

 $m \mid n$ כך ש-ח כך בועי מספר ריבועי אם א חופשי מריבועים חופשי מריבועי שלם א חופשי חופשי מריבועי א הגדרה .2.8 נאמר שמספר שלם

- מה שמייחד מספרים חופשיים מריבועים היא העובדה שכל ראשוני מופיע בפירוק שלהם פעם אחת לכל היותר.
 - ווא מספר ריבועי וגם מספר חופשי מריבועים! $\mathbf{4}$

2.4 שכיחות המספרים הראשוניים

הוא מספר M_n אם M_n סדרה מספרי מספרי נקראים בסדרה או נקראים ע"י אי המוגדרת ע"י אם M_n הוא מספר (M_n) סדרה המוגדרת פרי מחסף. האיברים בסדרה או נקראים מספרי מרסן.

הוא מספר F_n אם המוגדרת מספרי בסדרה או נקראים האיברים האיברים ע"י המוגדרת ע"י המוגדרת ע"י סדרה המוגדרת (F_n) סדרה המוגדרת (F_n) סדרה המוגדרת מספר האיברים בסדרה או נקראים פרמה.

 $[|]p^e|>n$ כך ש- $e\in\mathbb{N}$ ולכן קיים $|p|\geq 2$ יש מפני ש- $p^0=1$ והיא חסומה אינה ריקה שהרי $\{e\in\mathbb{N}_0:p^e\mid n\}$ ולכן קיים לב שמהגדרה הקבוצה $\{e\in\mathbb{N}_0:p^e\mid n\}$ אינה ריקה שהרי ערכו המוחלט של המחלק קטן מזה של המחלק.

^{.0} אם הריבוי מופיע אז הריבוי הוא -p אם הראשוני אינו מופיע אז הריבוי הוא 6

⁷בהעברית וויקיפדיה הגדירו מספר ריבועי כמספר שלם וחיובי המקיים את הנ"ל, בעוד שבוויקיפדיה האנגלית וב-MathWorld הגדירו כפי שהגדרנו כאן.