1

Definitions

Vector Space

Assume that u, v, w are vectors in V, and a, b, c are scalars in \mathbb{R} . A **vector space** is a set V with the following properties:

Commutativity:

•
$$u + v = v + u$$

Associativity:

•
$$(u + v) + w = u + (v + w)$$

•
$$(ab)v = a(bv)$$

Additive Identity:

• there exists $0 \in V$ such that v + 0 = v for all $v \in V$

Multiplicative Identity:

• for all $v \in V$, there exists $w \in V$ such that v + w = 0

Distributive Properties:

- a(u+v) = au + av
- (a+b)v = av + bv

Linear Combination

A linear combination of a list of vectors v_1, \ldots, v_n is itself a vector, taking the form:

$$a_1v_1 + \ldots + a_mv_m$$

where each $a_1, \dots a_n \in \mathbb{R}$

Span

The set of all linear combinations of a list of vectors v_1, \ldots, v_n is called the **span** of v_1, \ldots, v_n , or $\mathrm{Span}(v_1, \ldots, v_n)$. Defined as:

$$\mathrm{span}(v_1, ..., v_n) = \{a_1v_1 + \cdots + a_nv_n : a_1, ..., a_m \in \mathbb{R}\}\$$

If the span is equal to some space $\operatorname{span}(\nu_1, \dots, \nu_n) = V$, then you could say that ν_1, \dots, ν_n spans V.

Linearly Independent

For $\nu_1, \ldots, \nu_n \in V$ and $\alpha_1, \ldots, \alpha_n \in \mathbb{R}$ such that:

$$a_1v_1 + \cdots + a_nv_n = 0$$

The list of vectors v_1, \dots, v_n is called **linearly independent** when

$$a_1 = \cdots = a_n = 0$$

for all possible values of v_1, \ldots, v_n .

Inner Product

TODO

Proofs

Law of Cosines

TODO

Triangle Inequality

TODO

Cauchy-Schwartz Inequality

TODO