W Page 1 of 7 # 14

PCT10

RAW SEQUENCE LISTING

DATE: 09/12/2002

PATENT APPLICATION: US/10/030,829

TIME: 15:54:19

Input Set : A:\100303829SeqList.txt


```
Output Set: N:\CRF4\09122002\J030829.raw
      1 <110> APPLICANT: Beclin, Christophe
              Elmayan, Taline
               Vaucheret, Herve
      5 <120 > TITLE OF INVENTION: NOVEL SGS3 PLANT GENE AND USES THEREOF
      8 -(130 > FILE REFERENCE: A34920-PCT-USA 072667.0179
     10 -: 140 > CURRENT APPLICATION NUMBER: 10/030,829
     11 -: 141 > CURRENT FILING DATE: 2002-01-11
     13 -: 150 > PRIOR APPLICATION NUMBER: PCT/FR/00/02052
     14 -: 151 > PRIOR FILING DATE: 2000-01-26
     16 -: 150 > PRIOR APPLICATION NUMBER: FR 99/09,417
     17 <151 > PRIOR FILING DATE: 1999-07-16
     19 < 160 > NUMBER OF SEQ ID NOS: 5
     21 <170 - SOFTWARE: FastSEQ for Windows Version 4.0
     23 - 210> SEQ ID NO: 1
     24 <211> LENGTH: 3275
     25 <212> TYPE: DNA
     26 - (213 > ORGANISM: Arabidopsis thaliana
     28 -(220> FEATURE:
     29 <221> NAME/KEY: primer_bind
     30 < 222 > LOCATION: (693)...(715)
     31 4223> OTHER INFORMATION: p356AD'
     33 <221> NAME/KEY: primer_bind
     34 ×222> LOCATION: (2926)...(2952)
     35 <223> OTHER INFORMATION: P356Y'
W--> 37 <400> 1
     38 qadaaacaaa caaaaattaa qcaagtcatg ttcgtagcaa taaattaata gtgggaacaa 60
     39 ttaa\mathfrak{q}ttaa\mathfrak{q} cqaaaaa\mathfrak{q}qa aaaaaaaa\mathfrak{q}q tacaaaaat\mathfrak{q} aaaacaaaat caaact\mathfrak{q}aat 120
     40 gaaaatttgg agtocagaat oggaaaaacg aggoogtttt agagottaat aagottooto 180
     41 attiquetet tettegicag titarritet teeteeggag teetgaetea etaeteteae 240
     ‡2 tehecqqeqe titaaactta eqiteteeqi eqittactei qiaaqittic iqeetiaqag 300
     43 concequited coloacedea theattoligh delegation tellititeth egetygaaaa 360
     44 attgeectaa tgttetegat ttegaaggtt tttgtgetat gggttaettt ttteectata 420
     45 tittatagit ettaggiaac galacetgeg tellaetgit tittgiteatt tigitgiget 480
     4m ticacceptit agtegetgat eggagtatit gaetgigaaa aateetiegi tittitggitt 540
     47 ttqtttcata taaatcggat tgatctacct tttgtgcttt gatgtttgtt ttttgagcct 600
```

48 atgrouttight ggettightat aachteaegt teatgitigtig athtigagat hittiggtagitig 660 49 actgtgggtt tetttggtgg etataggttg taaaaatgag ttetaggget ggteeaatgt 720 50 ctaaqqaaaa gaacgttcag ggtggttata ggcctgaggt tgaacagttg gttcaaggtt 780 51 tqqcaqqqac gagactqqct tcttcacaag atgatggagg agagtgggag gtcatttcca 840 52 aqaaqaacaa qaacaaacca qqaaacactt ctqqaaaaac ttqqqtttct caqaattcqa 900 53 atoctectag agettggggt ggteageage aagggagagg tageaaegta tetgggagag 960 54 qaaacaatqt atccqqqaqa qqtaacqqca atqqtcqqqq cattcaaqct aacatatctq 1020 55 gtcqgggacg agcqttgagc agaaagtatg ataacaactt tgtggcaccc ccacctgtat 1080

PATENT APPLICATION: US/10/030,829 TIME: 15:54:19

DATE: 09/12/2002

```
56 etegecetee titggaagga ggatggaatt ggeaggeaag aggaggitet geteageaea 1140\,
57 cagetytyca gyagttteet gaegtygagy atgatytyga taatgettet gaggaagaga 1200
58 atgattccga tgctttggat gattctgatg acgaeettge aagtgatgat tatgaetcgg 1260\,
59 atgtgagtca aaagagccat ggatcacgaa agcagaataa gtggttcaaa aagttctttg 1320
60 gcagettgga tagettgteg ategageaga taaatgaace acagaggeag tggeattgte 1380
61 cagettytea gaacggacet ggtgecateg attggtataa cetgeaceet etactagete 1440
62 atgcgaggac aaaaggaget aggegagtta ageteeatag agaattgget gaagttttag 1500
63 aaaaggatet acagatgaga ggegeatetg teatteettg tggtgagatt tatgggeagt 1560
64 qqaaqqqttt gggtgaggat gaaaaggatt atgaaattgt ctggcctcca atggtcatca 1620
65 toatgaatac tagactggat aaggacgata acgataaggt ggaattette tgtettttae 1680
66 ttotttaatt tttotottgo attotactga tottagaatg ttacattgta gtggotoggo 1740
67 atgggcaacc aagagetget ggaataette gacaagtatg aggetettag ageaegeeat 1800
68 tectatggte cacagggeea tegtgggatg agtgttetga tgtttgagag cagtgeeact 1860
69 ggctatttgg aggccgaacg cctccaccgg gagttagctg agatggggtt agatagaatt 1920
70 gcctggggtc agaagegeag tatgttttct ggaggtgttc gccaactgta tggcttcctt 1980
71 gcaacgaage aagatetgga catatteaat caacactete aaggttetet ceeccaaaga 2040
72 aatttgatat atgettttag tittgteatt ggaatttaaa gittigtigg teegigttaa 2100
73 tgcatctgtt atgtatatat ctatgattca ttaggcaaaa caaggctgaa attcgagttg 2160
74 aaatcatacc aagagatggt tgtaaaggag etgaggeaga tetetgagga caatcageag 2220
75 etgaactaet ttaagaacaa geteteaaaa eagaacaage aegeeaaggt gettgaggaa 2280
76 tototggaaa ttatgagoga gaagotgogt agaactgoag aggataatog gatogtgaga 2340
77 cagagaacta agatgcagca tgaacagaac agggaagagg tatgattttt cotagaaaat 2400
78 cacaaactty acattityta tiacctacty attoacatti tigattatat tytocaacaa 2460
79 aaaacctgtg gtggtttgaa gatggatgca cacgacaggt ttttcatgga ttcaatcaaa 2520
80 cagatocatg aaagaagaga ogcaaaggag gagaatttog agatgttgca gcagcaggaa 2580
81 cgtgccaagg ttgttggcca gcagcagcag aacattaatc cctctagcaa tgacgattgc 2640
82 cgaaagaggt atatgtacta actaacataa teeetetgge gtttttgttt tteaaaceta 2700
83 agagtaactg aattatteeg gttttgatte tttegeagag etgaggaagt gteaagette 2760
84 atcgagtttc aagagaaaga gatggaggag tttgtggaag agagggagat gctgataaaa 2820
85 gatcaagaga agaagatgga agacatgaag aagaggcatc acgaggagat atttgatctg 2880
86 gagaaagaat ttgatgaggo tttggaacag otcatgtaca agcatggoot tcacaatgaa 2940
87 gatgattgag acaaaagtot ggtacacaag acaagactaa gtttctttgt tttgcttttg 3000
88 gtatgtegga aagtaggaga tetgagagae teeatttaaa taetaggaea aatetaagga 3060
89 gattatagat tattatooto caatttttag tagaoggato taaggaagoa ttaagttott 3120
90 gtgactaaaa ccaagtttee ttagtatttt gttttttttt ggtaaaaattt catatgaaag 3180
91 ttagacatat taccaaacgt cagagtgaat cacagaatgg caaatcaaaa tcatgttttt 3240
                                                                     3275
92 agaattttat atctacaaaa tatatgggta caaat
94 <210> SEQ ID NO: 2
45 <211> LENGTH: 1878
96 <212> TYPE: DNA
97 <213> ORGANISM: Arabidopsis thaliana
99 <220> FEATURE:
100 <221> NAME/KEY: CDS
101 <222> LOCATION: (1)...(1878)
103 <400> SEQUENCE: 2
104 atgagtteta gggetggtee aatgtetaag gaaaagaaeg tteagggtgg ttataggeet 60
105 gaggttgaac agttggttca aggtttggca gggacgagac tggcttcttc acaagatgat 120
106 ggaggagagt gggaggteat tteeaagaag aacaagaaca aaccaggaaa cacttetgga 180
107 aaaacttggg tttctcagaa ttcgaatcct cctagagctt ggggtggtca gcagcaaggg 240
```

DATE: 09/12/2002 829 TIME: 15:54:19

PATENT APPLICATION: US/10/030,829

	agaggta															
109	cggggca	ttc	aagc	taaca	at a				ggacgagcgt			geaga	aaa	gtate	360	
						tgtatctcgc										
									gtgcaggagt							
									teegatgett							
						ctcggatgtg										
									ttggatagct							
									tgtcagaacg							720
	tataacc															780
									gatctacaga							
	ccttqtq															
						catcatcatg										
									ctggaatact							
									catcgtggga							
									caccycygya							
						agtatgtttt										
						gacatattca										
									caagagatgg tttaagaaca							
									attatgagcg							
	gaggataato ggatogtgag acagagaact aagatgcago atgaacagaa cagggaag															
	atggatgcac acgacaggtt tttcatggat tcaatcaaac agatccatga aagaagaga															
	gcaaaggagg agaatttcga gatgttgcag cagcaggaac gtgccaaggt tgttggccag															
	cagcagcaga acattaatcc ctctagcaat gacgattgcc gaaagagagc tgaggaagtg															
	tcaagettea tegagtttea agagaaagag atggaggagt ttgtggaaga gagggagatg															
	ctgataaaag atcaagagaa gaagatggaa gacatgaaga agaggcatca cgaggagata															
	4 titigatetgg agaaagaatt igatgagget tiggaacage teatgtacaa geatggeett															
	115 Outstand degrees												1878			
	<210> S															
	<211> L			25												
	<:212> T			_ ,												
	<213> 0				orgol	ps1s	tha.	Liana	a							
	<400> S					_		_	_	- 1	_	_	1	~ .	a 1	
	Met Ser	Ser	Arg		Gly	Pro	Met	Ser		GLu	Lys	Asn	Val		GLY	
144	1.			5			_		10		_			15		
	Gly Tyr	Arg		Glu	Val	Glu	Gln		Val	Gln	GIA	Leu		GIY	Thr	
146			20					25					30	_		
147	Arg Leu	Ala	Ser	Ser	Gln	Asp		Gly	Gly	Glu	Trp		Val	Пe	Ser	
148		32					4 0					15				
	Lys Lys													Trp	Val	
150	50					55					60					
151	Ser Gln	Asn	Ser	Asn	Pro	Pro	Arg	Ala	Trp	Gly	Gly	Gln	Gln	Gln	Gly	
152	65				70					75					80	
153	Arg Gly	Ser	Asn	Val	Ser	Gly	Arg	Gly	Asn	Asn	Val	Ser	Gly	Arg	Gly	
154	•			85					90					95		
155	Asn Gly	Asn	Gly	Arg	Gly	11e	Gln	Ala	Asn	Ile	Ser	Gly	Arg	Gly	Arg	
156	_		100					105					110			
157	Ala Leu	Ser	Arg	Lys	Tyr	Asp	Asn	Asn	Phe	Val	Ala	Pro	Pro	Pro	Val	
158		115					120					125				

DATE: 09/12/2002 TIME: 15:54:19

PATENT APPLICATION: US/10/030,829

159 160	Ser	Arg 130	Pro	Pro	Leu	Glu	Gly 135	Gly	Trp	Asn	Trp	Gln 140	Ala	Arg	Gly	Gly
161	Ser 145		Gln	His	Thr	Ala 150	Val	Gln	Glu	Phe	Pro 155	Asp	Val	Glu	Asp	Asp 160
		Asp	Asn	Ala	Ser 165		Glu	Glu	Asn	Asp 170	Ser	Asp	Ala	Leu	Asp 175	Asp
	Ser	Asp	Asp	Asp 180	Leu	Ala	Ser	Asp	Asp 185	Tyr	Asp	Ser	Asp	Val 190	Ser	Gln
167 168	Lys	Ser	His 195	Gly	Ser	Arg	Lys	Gln 200	Asn	Lys	Trp	Phe	Lys 205	Lys	Phe	Phe
169 170	Gly	Ser 210	Leu	Asp	Ser	Leu	Ser 215	He	Glu	Gln	Ile	Asn 220	Glu	Pro	Gln	Arg
	Gln 225	Trp	His	Cys	Pro	Ala 230	Cys	Gln	Asn	Gly	Pro 235	Gly	Ala	Ile	Asp	Trp 240
173 174	Tyr	Asn	Leu	His	Pro 245	Leu	Leu	Ala	His	Ala 250	Arg	Thr	Lys	Gly	Ala 255	Arg
176	_		_	260					Ala 265					270		
178			275	•				280	Pro		_		285	_	_	
180		290					295		Lys			300				
182	305					310			Arg		315					320
184	-	_		_	325	_			Glu	3.30					335	
186				340					Ser 345					350		
188	-		355					360	Ser				365			
190		370	_				375		Ala			380				
192	3 ½ 5	_	_			390			Phe		395					400
194		_			405				Asp	410					4 15	
196			_	420					Phe 425					430		
198			435	_				440	lle				445			
200		450					455					460				Val
202	465					470			Ser		475					480
204		•		_	485		_		Arg	490	_				495	
206				500					Asp 505					510		
207	Lys	Gln	Ile	His	Glu	Arg	Arg	Asp	Ala	Lys	Glu	Glu	Asn	Phe	GLu	Met

DATE 09/12/2002 TIME: 15:54:19

PATENT APPLICATION: US/10/030,829

208			515					520					525				
209	Leu	Gln	Gln	Gln	Glu	Arg	Ala	Lys	Val	Val	Gly	Gln	Gln	Gln	Gln	Asn	
210		530					535					540					
211	Ile	Asn	Pro	ser	Ser	Asn	Asp	Asp	Cys	Arg	Lys	Arg	Ala	Glu	Glu	Val	
212	545					550					555					560	
213	Ser	Ser	Phe	Ile	Glu	Phe	Gln	Glu	Lys	Glu	Met	Glu	Glu	Phe	Val	Glu	
214					565					570	_	_		~ 1	575	34 - A	
	Glu	Arg	Glu		Leu	Ile	Lys	Asp	Gln	Glu	Lys	Lys	мет	GIU	Asp	мет	
216				580				3	585	_	-	a 1	*	590	Dha	7 ~ ~	
	Lys	Lys		His	His	Glu	Glu		Phe	Asp	Leu	GIU	Lуs 605	GIU	Phe	ASP	
218			595 -	~ 1	a 1			600	T	ni a	01	Tau		Nan	<i>(</i> 211)	λan	
	Glu		Leu	GLu	Gln	Leu	мет 615	туг	гуѕ	HIS	GTÀ	620	птъ	ASII	GIU	кэр	
220		610					010					020					
	Asp																
	222 625 225 <210> SEQ ID NO: 4																
	226 - 221> LENGTH: 23 227 < 212> TYPE: DNA																
					Art	ific	ial :	Seque	ence								
		0> F						-									
231	.22	3> 0°	THER	INF	ORMA	TION	: 01	igon	icle	otide	е р3	56AD	1				
		0> S															
234	aaa	atga	gt.t.	ctage	ggct	gg to	CC										23
236	-121	0> S	EQ I	D N O	: 5												
237	- 21	1> L	ENGT	H: 2	7												
		2> T															
					Art	ific	ial :	Sequ	ence								
		0 > F					_										
					ORMA'	TION	: 01	igon	icle	otid	е рз	56Y'					
		0> S															27
245	gtc	tcaa	tca	tett	catt	gt g	aagg	CC									ا ئە

VERIFICATION SUMMARY

PATENT APPLICATION: US/10/030,829

DATE: 09/12/2002 TIME: 15:54:20

Input Set : A:\100303829SeqList.txt

Output Set: N:\CRF4\09122002\J030829.raw

L:37 M:258 W: Mandatory Feature missing, <220> not found for SEQ ID#:1