Liste des Tests du cours

Charles Vin

2022

Table des matières

1	rempiate	1
2	Test de Kolmogorov-Smirnov 2.0.1 Si n est grand $n \geq 30$	1
3	Le test du \mathcal{X}^2 d'ajustement 3.1 Le \mathcal{X}^2 d'ajustement à une famille paramétrique de loi	2
4	Le test d'homogénéité de Kolmogorov-Smirnov	4

1 Template

Conditions

Hypothèse

Statistique de test

Zone de Rejet

Méthode

2 Test de Kolmogorov-Smirnov

Conditions

- 1. Les X_i semblent provenir d'une loi à fonction de répartition continue. \Rightarrow on n'a pas plusieurs fois la même valeur (sauf si celle-ci on était arrondi).
- 2. Fonctionne $\forall n$: même si n est petit, ce test est pertinent
- 3. Si $n \ge 100$, on fait un test asymptotique.

Hypothèse

- $H_0 = \text{les } X_i$ ont pour fdr. F_X - $H_1 = \text{les } X_i$ n'ont pas pour fdr. F_X

Statistique de test

$$h(F_n, F) = \sup_{t \in \mathbb{R}} |F_n(t) - F(t)|$$

= $\max_{1 \le i \le n} (\max(\left| \frac{i}{n} - F(X_{(i)}) \right|, \left| \frac{i-1}{n} - F(X_{(i)}) \right|))$

Zone de Rejet

Si n est petit

La loi de $h(F_n, F)$ est tabulé alors :

$$\mathcal{R} = \{ h(F_n, F_X) \le h_{1-\alpha} \}.$$

avec F_n fonction de réparation empirique, $h_{1-\alpha}$ le quantile à aller chercher dans la table

2.0.1 Si n est grand $n \ge 30$

Attention pas souvenir de l'avoir fait en TD. On a pas la table de $h(F_n,F)$ mais on sait que

$$\sqrt{n}h_n \to_{n\to\infty}^{\mathcal{L}} W_{\infty}.$$

Donc on pose la zone de rejet

$$\mathcal{R} = \{ h(F_n, F_X) \le \frac{k_\alpha}{\sqrt{n}}.$$

avec F_n fonction de réparation empirique, k_α le quantile de W_∞ à aller chercher dans sa table

Méthode

Pour trouver la valeur de $h(F_n, F_X)$: Faire le grand tableau puis trouver le max. Exemple :

i	1	2	3	4	5
$X_{(i)}$	0.3	0.7	0.9	1.2	1.4
$X_{(i)} - 2$	-1.70	-1.30	-1.10	-0.80	-0.60
$F_0(X_{(i)})$	0.04	0.10	0.14	0.21	0.27
$\frac{i}{n}$	0.05	0.1	0.15	0.2	0.25
$\frac{1}{n} - F_0(X_{(i)})$	0.01	0.00	0.01	0.01	0.02
$\frac{ i-1 }{n} - F_0(X_{(i)}) $	0.04	0.05	0.04	0.06	0.07

Table 1 – Ici le max c'est 0.07 à la dernière case

3 Le test du \mathcal{X}^2 d'ajustement

Conditions

- 1. Les X_i sont à valeur dans un ensemble fini (loi discrète). Si a valeur dans \mathbb{N} , on fusionne les classes à partir d'un certain rang choisis
- 2. Test asymptotique : $\forall k \in \{1, \dots, d\}, np_k^{ref}(1-p_k^{ref}) \geq 5 \Leftrightarrow n \geq 20$

Si on ne remplis pas les conditions, on peut fusionner les classes

Hypothèse

$$H_0=p=p^{ref}$$
 i.e. $\forall k\in\{1,\ldots,d\}, p_k=p_k^{ref}$ $H_1=p\neq p^{ref}$ i.e. $\exists k\in\{1,\ldots,d\}: p_k\neq p_k^{ref}$

Avec p^{ref} un vecteur fixé à tester (par exemple pour un lancé de dé $(\frac{1}{6},\dots,\frac{1}{6})$)

Statistique de test

$$D(\bar{p_n}, p^{ref}) = n \sum_{k=1}^d \frac{(\bar{p_{k,n}} - p_k^{ref})^2}{p_k^{ref}} \to_{n \to \infty}^{\mathcal{L}} \mathcal{X}^2(d-1)$$
$$= \sum_{k=1}^d \frac{(N_{k,n} - np_k^{ref})^2}{np_k^{ref}}$$

— $N_{k,n}=\sum_{i=1}^n\mathbbm{1}_{X_ix_k}$ (ce qu'il y a dans le tableau de la consigne) — $p_{k,n}^-=\frac{N_{k,n}}{n}$ les proportions observés

Zone de Rejet

$$\mathcal{R} = \{ D(\bar{p_n}, p^{ref}) \ge h_{\alpha} \}.$$

avec h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d-1)$

Méthode

1. Etape 0 : On vérifie les conditions

$$\forall k \in \{1, \dots, d\}, n * p_k \ge 5.$$

C'est la condition de Cochran (1954), il avait testé cas possible en observant l'approximation faites.

- 2. Etape 1 : On calcule les effectifs et proportions observées : $N_{k,n}$ et $\hat{p}_{k,n}$
- 3. Etape 2 : Calcul de la statistique de test

$$D = n \sum_{d}^{k=1} \frac{(\hat{p}_{k,n} - p_k)^2}{p_k}.$$

- 4. Etape 3 : Détermination de la zone de rejet au niveau α . On lit h_{α} le quantile d'ordre $1-\alpha$ de la loi $\mathcal{X}^2(d_1)$
- 5. Etape 4: Décisions
 - si $D>h_{\alpha}$, on rejette H_0 (au niveau α).
 - Si $D \leq h_{\alpha}$ on conserve H_0

Bilan de la méthode

Aspects positifs:

- Fonctionne pour toutes les lois
- Facile à faire

Aspects négatifs:

- Problème de consistance. Regrouper les variables par intervalle ruiner l'erreur de seconde espèce.
- Asymptotique
- Dépendant du choix des intervalles. Ce qui n'est pas canonique.

3.1 Le \mathcal{X}^2 d'ajustement à une famille paramétrique de loi

Pratiquement comme avant, pas encore fait en TD, mais copier collé du cours quand même

- 1. Etape 1 : Soit $\hat{\theta}_n$ l'estimateur du maximum de vraisemblance de θ (pour P_{θ}). On estime **tous** les paramètres de la loi $(p_1^{\hat{\theta}_n}, \dots, p_d^{\hat{\theta}_n})$
- 2. Etape 2 : On vas tester l'ajustement de X_1,\ldots,X_n à $P_{\hat{\theta}_n}$ On calcule les fréquences observées $\hat{p}_{k,n}$.
- 3. Etape 3 : Vérification des conditions $np_k^{\hat{ heta}_n}$ et possible regroupement en classes

4. Etape 4 : Calcul de la stat de test D

5. Etape 5 : Zone de rejet : lecture de H_{α} le quantile d'ordre $1-\alpha$ d'une $\mathcal{X}^2(d-1-M)$ avec Mnombre de paramètre.

6. Etape 6: Décision

— $D>h_{\alpha}$ on rejette H_0

- D ≤ h_{α} on conserve H_0

4 Le test d'homogénéité de Kolmogorov-Smirnov

Conditions

Deux échantillons indépendants de variable iid.

Hypothèse

— H_0 : les X_i et Y_i ont la même loi, c'est à dire $F_{X_1}=F_{V_1}$ où F_{X_1},F_{Y_1} sont continues. — H_1 les lois sont différentes

Statistique de test

$$\sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}_{X_i \le t} - \frac{1}{n} \sum_{j=1}^{n} \mathbb{1}_{Y_j \le t} \right|.$$

Zone de Rejet

— Ce test est de taille α , si on utilise la table de $h_{n,m} = \sup_{s \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^n \mathbbm{1}_{U_i \leq s} - \frac{1}{n} \sum_{j=1}^n \mathbbm{1}_{V_j \leq s} \right|.$

— Si n et m sont trop grands, on utilise le résultat suivant : Sous H_0

$$\sqrt{rac{nm}{n+m}}h(F_n,G_n)
ightarrow^lpha_{n,m
ightarrow+\infty}W_\infty$$
 voir KS asymptotique.

On utilise alors comme zone de rejet $\sqrt{\frac{n+m}{nm}}W_{\infty}$ avec W_{∞} le quantile d'ordre $1-\alpha$ de W_{∞} .

Méthode