

(Time-)Frequency Analysis of EEG Waveforms

Niko Busch

Charité University Medicine Berlin; Berlin School of Mind and Brain

niko.busch@charite.de

From ERP waveforms to waves

- ERP analysis:
 - time domain analysis: when do things (amplitudes) happen?
 - treats peaks and troughs as single events.

- Frequency domain (spectral) analysis (Fourier analysis):
 - magnitudes and frequencies of waves no time information.
 - peaks and troughs are not treated as separate entities.
- Time-frequency analysis (wavelet analysis):
 - when do which frequencies occur?

From ERP waveforms to waves

- ERP analysis:
 - time domain analysis: when do things (amplitudes) happen?
 - treats peaks and troughs as single events.

- Frequency domain (spectral) analysis (Fourier analysis):
 - magnitudes and frequencies of waves no time information.
 - peaks and troughs are not treated as separate entities.
- Time–frequency analysis (wavelet analysis):
 - when do which frequencies occur?

From ERP waveforms to waves

- ERP analysis:
 - time domain analysis: when do things (amplitudes) happen?
 - treats peaks and troughs as single events.

- Frequency domain (spectral) analysis (Fourier analysis):
 - magnitudes and frequencies of waves no time information.
 - peaks and troughs are not treated as separate entities.
- Time-frequency analysis (wavelet analysis):
 - when do which frequencies occur?

Why bother?

(Time–)Frequency analysis complements signal analysis:

- neurons are oscillating.
- analysis of signals with trial-to-trial jitter.
- analysis of longer time periods.
- analysis of pre-stimulus and spontaneous signals.
- necessary for sophisticated methods (coherence, coupling, causality, etc.).

Parameters of waves

Oscillations regular repetition of some measure over several cycles.

Wavelength length of a single cycle (a.k.a. period).

Frequency $\frac{1}{wavelength}$ — the speed of change.

Phase current state of the oscillation — angle on the unit circle. Runs from 0° (- π) — 360° (π)

Magnitude (permanent) strength of the oscillation.

How to disentangle oscillations

Jean Joseph Fourier (1768—1830): "An arbitrary function, continuous or with discontinuities, defined in a finite interval by an arbitrarily capricious graph can always be expressed as a sum of sinusoids".

The discrete Fourier transform

- The DFT transforms the signal from the time domain into the frequency domain.
- Requires that the signal be stationary.

The discrete Fourier transform

- The DFT transforms the signal from the time domain into the frequency domain.
- Requires that the signal be stationary.

The discrete Fourier transform

- The DFT transforms the signal from the time domain into the frequency domain.
- Requires that the signal be stationary.

- Non-stationary signals:
 - When does the 10 Hz oscillation occur?
 - DFT does not give time information.
 - Time information is not necessary for stationary signals
 - Frequency contents do not change all frequency components exist all the time.
 - How to investigate event-related spectral changes in brain signals?

Event-related synchronisation / desynchronisation

• Cut the signal in two time windows and assume stationarity in each half.

•
$$ERD/ERS^1 = \frac{poststimulus\ power-baseline\ power}{baseline\ power}*100$$

- But why not use even smaller windows?
- ⇒ Windowed FFT / Short term Fourier transform.

¹Pfurtscheller & Lopes da Silva (1999). Clin Neurophysiol

The short term Fourier transform (STFT) I

- Assume that some portion of a non-stationary signal is stationary.
- Important parameters:
 - window function (Hamming, Hanning, Rectangular, etc.)
 - window overlap
 - window length: width should correspond to the segment of the signal where its stationarity is valid.

The short term Fourier transform (STFT) I

- Assume that some portion of a non-stationary signal is stationary.
- Important parameters:
 - window function (Hamming, Hanning, Rectangular, etc.)
 - window overlap
 - window length: width should correspond to the segment of the signal where its stationarity is valid.

The short term Fourier transform (STFT) I

- Assume that some portion of a non-stationary signal is stationary.
- Important parameters:
 - window function (Hamming, Hanning, Rectangular, etc.)
 - window overlap
 - window length: width should correspond to the segment of the signal where its stationarity is valid.

The short term Fourier transform (STFT) II

- Window length affects resolution in time and frequency
 - short window: good time resolution, poor frequency resolution.
 - long window: good frequency resolution, poor time resolution.

Uncertainty principle

- Werner Heisenberg (1901—1976):
 - Energy and location of a particle cannot be both known with infinite precision.
 - a result of the wave properties of particles (not the measurement).
- Applies also to time–frequency analysis:
 - We cannot know what spectral component exists at any given time instant.
 - What spectral components exist at any given interval of time?
- Spectral/temporal resolution trade off cannot be avoided but it can be optimised.
 - Good frequency resolution at low frequencies.
 - Good time resolution at high frequencies.

From STFT to wavelets

- STFT: fixed temporal & spectral resolution
 - ullet Analysis of high frequencies \Rightarrow insufficient temporal resolution.
 - ullet Analysis of low frequencies \Rightarrow insufficient spectral resolution.
- Wavelet analysis:
 - ullet Analysis of high frequencies \Rightarrow narrow time window for better time resolution.
 - ullet Analysis of low frequencies \Rightarrow wide time window for better spectral resolution.

What is a wavelet?

Motherwavelet

- Zero mean amplitude.
- Finite duration.
- Mother wavelet: prototype function (f = sampling frequency).
- Wavelets can be scaled (compressed) and translated.

What is a wavelet?

Motherwavelet

- Zero mean amplitude.
- Finite duration.
- Mother wavelet: prototype function (f = sampling frequency).
- Wavelets can be scaled (compressed) and translated.

Wavelet transform of ERPs

ERP

Bandpass-filtered ERP

Wavelet transformed ERP

Gamma-Band: ca. 30 - 80 Hz

- ... but be careful:
 - any signal can be represented as oscillations w. time-frequency analysis
 - but it does not imply that the signal is oscillatory!

Important parameters of a wavelet

- Length how many cycles does a wavelet have?
 - e.g. 40 Hz wavelet (25 ms/cycle), 12 cycles \Rightarrow 250 ms length
 - σ_t standard deviation in time domain: $\sigma_t = \frac{m}{2\pi * f_0}$
 - σ_f standard deviation in frequency domain: $\sigma_f = \frac{1}{2\pi * \sigma_t}$ time resolution increases with frequency, whereas frequency resolution decreases with frequency.

Evoked and induced oscillations I

Evoked time-frequency representation of the average of all trials (ERP). Induced average of time-frequency transforms of single trials.

Evoked and induced oscillations II

Wavelet analysis of single trials reveals non-phase-locked activity.

Evoked time-frequency representation of the average of all trials (ERP). Induced average of time-frequency transforms of single trials.

Phase-locking factor (PLF)

- a.k.a. intertrial coherence (ITC) or phase–locking–value (PLV).
- measures phase consistency of a frequency at a particular time across trials.
- PLF = 1: perfect phase alignment.
- PLF = 0: random phase distribution.

The EEG state space

- Frequency x phase locking x amplitude changes²
- Evoked and induced activity are extremes on a continuum.
- ERPs cover only small part of the EEG space.

²Makeig, Debener, Onton, Delorme (2004). TICS

Examples 1: spontaneous EEG

- Stimulus pairs are presented at different phases of the alpha rhythm sequential or simultaneous?³
- ullet If the stimulus pair falls within the same alpha cycle \Rightarrow perceived simultaneity.
- Does the visual system take snapshots at a rate of 10 Hz?

Simultaneity and the alpha rhythm

³Varela et al. (1981): Perceptual framing and cortical alpha rhythm. Neuropsychologia

Examples 2: pre-stimulus EEG power

- Spatial attention to left or right.
- Stronger alpha power over ipsilateral hemisphere.⁴

Attention: ipsi- vs. contra-lateral

⁴Busch & VanRullen (2010): Spontaneous EEG oscillations reveal periodic sampling of visual attention. PNAS.

Examples 3: analysis of long time intervals

- Sternberg memory task with different set sizes.
- Alpha power increases linearly with set size.⁵

Effect of set size

⁵Jensen et al. (2002): Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex.

Recommended reading

WWW:

- EEGLAB's time-frequency functions explained: http://bishoptechbits.blogspot.com/
- FFT explained: http://blinkdagger.com/matlab/matlab-introductory-fft-tutorial/
- Wavelet tutorial http://users.rowan.edu/ polikar/WAVELETS/WTtutorial.html

Books:

- Barbara Burke Hubbard: The World According to Wavelets.
- Steven Smith: The Scientist & Engineer's Guide to Digital Signal Processing (http://www.dspguide.com/).
- Herrmann, Grigutsch & Busch: EEG oscillations and wavelet analysis. In: Event-related Potentials: A Methods Handbook.

Papers:

- Tallon-Baudry & Bertrand (1999) Oscillatory gamma activity in humans and its role in object representation. TICS.
- Samar, Bopardikar, Rao & Swartz (1999) Wavelet analysis of neuroelectric waveforms: a conceptual tutorial. Brain Lang.

Thank you...

... for your interest!

Please ask questions!!!