Chapter 1 Notations

Raisonnement et symbolisme mathématiques

1.1 Raisonnement logique

Solution 1.1

Il ne faut pas se laisser impressionner par l'allure de cette assertion. En effet $A \implies B$ est une écriture pour B ou (non A); ici A (la proposition (1 = 2)) est fausse, donc (non A) est vraie et B ou (non A) l'est également. Donc l'assertion $A \implies B$ est vraie, quand A est fausse et quelque soit la proposition B.

Solution 1.2

- **1.** *P* et non *Q*;
- **2.** «non P ou Q» ce qui la même chose que « $P \implies Q$ »;
- **3.** (non P) ou ((non Q) ou (non R)) (on peut supprimer les parenthèses);
- **4.** non P et (non Q ou non R) (ici les parenthèses sont importantes);
- 5. P et Q et R et non S;

Solution 1.3

1. il faut	4. il suffit	7. il faut	
2. il faut et il suffit	5. il faut et il suffit		
3. il faut et il suffit	6. il faut et il suffit	8. il suffit	

Solution 1.5

- **1.** Vrai.
- 2. Vrai.
- 3. Vrai.
- **4.** Faux. Par exemple avec x = -11. On a bien $x^2 > 4$ mais non (x > 2).
- **5.** Vrai.

Solution 1.6

- **1.** Cette affirmation s'écrit $x \ge 1 \implies x > 2$. Celle-ci est signifie $non(x \ge 1)$ ou (x > 2). Cette affirmation est donc vraie si, et seulement si (x < 1 ou x > 2).
- **2.** Cette affirmation s'écrit $x > 2 \implies x \ge 1$. Celle-ci est vraie si, et seulement si $x \in \mathbb{R}$.
- 3. Cette affirmation s'écrit $x \ge 1 \implies x \ne 1$. Celle-ci est vraie si, et seulement si $x \ne 1$.

Solution 1.7

Solution 1.8

1. La proposition P équivaut à $(0 < x \text{ et } x \le 1)$. La négation de P est donc $(x \le 0 \text{ ou } x > 1)$.

- **2.** La négation de Q est bien entendu $xy \neq 0$. On peut aussi remarquer que $xy = 0 \iff (x = 0 \text{ ou } y = 0)$, et que $xy \neq 0 \iff (x \neq 0 \text{ et } y \neq 0)$.
- 3. La négation de R est $(x^2 = 1$ et $x \ne 1)$, c'est-à-dire x = -1. Nous retrouvons ainsi le fait que R est vraie si et seulement si $x \ne 1$.

1.2 Quantificateurs

Solution 1.10

Solution 1.11

- 1. $\forall x \in \mathbb{R}, x^2 \ge 0$. Cette assertion est vraie.
- **2.** $\exists x \in \mathbb{R}, x > x^2$. L'exemple $x = \frac{1}{2}$ prouve que la proposition est vraie.
- **3.** $\exists p \in \mathbb{N}, \forall n \in \mathbb{N}, p \geq n$. Cette assertion est évidement fausse. En effet, si un tel p existait, on aurait $p \geq p + 1$ et donc $0 \geq 1$.
- **4.** C'est la négation de la précédente: $\forall p \in \mathbb{N}, \exists n \in \mathbb{N}, p < n$. Cette assertion est donc vraie.

Solution 1.12

- 1. $\forall x \in [-1, 1], \exists \theta \in \mathbb{R}, x = \sin \theta$.
- **2.** $\forall x \in [-10, 10], \exists \theta \in \mathbb{R}, x = \sin \theta.$

La première assertion est vraie, la seconde est fausse.

Solution 1.13

- **1.** $\exists ! x_0 \in \mathbb{R}, f(x_0) = 1.$
- **2.** $\forall x \in \mathbb{R}, f(x) \neq 0.$
- 3. Voici trois possibilités parmis d'autres

$$\forall (x, y) \in \mathbb{R}^2, f(x) = f(y).$$

$$\forall x \in \mathbb{R}, f(x) = f(0).$$

$$\exists \lambda \in \mathbb{R}, \forall x \in \mathbb{R}, f(x) = \lambda.$$

4. Il existe $(a, b) \in \mathbb{R}^2$ tel que

$$(a \neq b)$$
 et $(\forall x \in \mathbb{R}, (f(x) = a \text{ ou } f(x) = b))$.

5. L'ensemble de définition étant symétrique par rapport à 0, f impaire s'écrit : $\forall x \in \mathbb{R}, f(-x) = -f(x)$.

- 1. La proposition signifie que $x + y^2$ est toujours nul ; le contre-exemple (x, y) = (1, 1) montre que cette proposition est fausse.
- 2. Le réel x étant donné, nous ne pouvons trouver $y \in \mathbb{R}$ tel que $x + y^2 = 0$ que si $x \le 0$: par exemple, pour x = 1, il n'existe pas de réel y tel que $y^2 = -x = -1$. La proposition est donc fausse.

- **3.** La proposition signifie que y^2 est constant quand y décrit \mathbb{R} ; elle est évidemment fausse (On peut montrer que négation $\forall x \in \mathbb{R}, \exists y \in \mathbb{R}, x + y^2 \neq 0$ » est vraie).
- **4.** Le réel y étant donné, en posant $x = -y^2$, nous avons bien $x \in \mathbb{R}$ et $x + y^2 = 0$; la proposition est donc vraie.
- **5.** L'exemple (x, y) = (-1, 1) prouve que la proposition est vraie.

Solution 1.15

- 1. Proposition : $\exists x \in]0, +\infty[, x^3 < 0.$ Négation : $\forall x \in]0, +\infty[, x^3 > 0.$
- **2.** Proposition : $\exists (x, y) \in I^2$, f(x)f(y) < 0. Négation : $\forall (x, y) \in I^2$, $f(x)f(y) \ge 0$.
- 3. Proposition : $\exists M \in \mathbb{R}, \forall x \in I, f(x) \leq M$. Négation : $\forall M \in \mathbb{R}, \exists x \in I, f(x) > M$.
- **4.** Proposition : $\forall x \in \mathbb{R}, x^3 = 2 \implies 1 < x < 2$. Négation : $\exists x \in \mathbb{R}, x^3 = 2$ et $(x \le 1 \text{ ou } x \ge 2)$.

Solution 1.16

Solution 1.18

Cette assertion est fausse. En effet, si l'on considère les fonctions

$$f: \mathbb{R} \to \mathbb{R} \qquad \text{et} \qquad g: \mathbb{R} \to \mathbb{R} \qquad .$$

$$x \mapsto \begin{cases} 0: x \ge 0 \\ 9: x < 0 \end{cases} \qquad x \mapsto \begin{cases} 23: x \ge 0 \\ 0: x < 0 \end{cases}$$

Alors

$$\forall x \in \mathbb{R}, f(x)g(x) = \begin{cases} 0 \cdot 9 : x \ge 0 \\ 23 \cdot 0 : x > 0 \end{cases} = 0.$$

L'assertion

$$\forall x \in \mathbb{R}, f(x)g(x) = 0$$

est donc vraie.

Néanmoins l'assertion ($\forall x \in \mathbb{R}, f(x) = 0$) est fausse puisque f(-3) = 9. De même l'assertion ($\forall x \in \mathbb{R}, g(x) = 0$) est fausse puisque g(5) = 23. Leur disjonction

$$(\forall x \in \mathbb{R}, f(x) = 0)$$
 ou $(\forall x \in \mathbb{R}, g(x) = 0)$.

est donc également fausse.

Ainsi l'implication de l'énoncé est fausse (($vrai \implies faux$) est fausse). Remarquez qu'il est par contre exact d'écrire

$$(\forall x \in \mathbb{R}, f(x)g(x) = 0) \implies (\forall x \in \mathbb{R}, (f(x) = 0 \text{ ou } g(x) = 0)).$$

¹Les questions **3.** et **4.** prouvent qu'on change le sens de la proposition en échangeant les symboles ∃ et ∀.

1.3 Ensembles

Solution 1.20

On a

$$X = \{ x \in \mathbb{R} \mid 0 < x < 1/100000000 \}$$
 et $Y = \{ y \in \mathbb{R} \mid 0 \le y \le 1000000000 \}$.

Soit $x \in X$, alors 0 < x < 1/100000000. Puisque $1/100000000 \le 100000000$, on a

$$0 \le x \le 100000000$$
,

c'est-à-dire $x \in Y$.

Conclusion

 $\forall x \in X, x \in Y \text{ c'est-à-dire } X \subset Y.$

Solution 1.21

1. E = A.

2. $E \neq \emptyset$.

Solution 1.22

1. $2 \in \mathbb{N}$ est vraie, 2 est un entier.

2. $\{2\} \in \mathbb{N}$ est fausse, $\{2\}$ n'est pas un entier.

3. $2 \subset \mathbb{N}$ est fausse. Elle signifie $\forall x \in 2, x \in \mathbb{N}$ qui ne signifie pas grand chose.

4. $\{2\} \subset \mathbb{N}$ est vraie. Elle signifie $\forall x \in \{2\}, x \in \mathbb{N}$ et on a bien $x \in \{2\} \implies x = 2 \implies x \in \mathbb{N}$.

5. $\{\{2\}\}\subset\mathbb{N}$ est fausse. Elle signifie $\forall x\in\{\{2\}\}, x\in\mathbb{N}$, c'est-à-dire $\{2\}\in\mathbb{N}$, ce qui est faux.

6. $2 \in \mathcal{P}(\mathbb{N})$ est fausse. Elle signifie $2 \subset \mathbb{N}$.

7. $\{2\} \in \mathcal{P}(\mathbb{N})$ est vraie. Elle signifie $\{2\} \subset \mathbb{N}$.

8. $2 \subset \mathcal{P}(\mathbb{N})$ est fausse. Elle signifie $\forall x \in 2, x \in \mathcal{P}(\mathbb{N})$ qui n'a pas beaucoup de sens.

9. $\{2\} \subset \mathcal{P}(\mathbb{N})$ est fausse. Elle signifie $\forall x \in \{2\}, x \in \mathcal{P}(\mathbb{N})$ et on a pas $2 \in \mathcal{P}(\mathbb{N})$.

10. $\{\{2\}\}\subset \mathcal{P}(\mathbb{N})$ est vraie. Elle signifie $\forall x\in\{\{2\}\}, x\in\mathcal{P}(\mathbb{N})$ et on a bien $\{2\}\in\mathcal{P}(\mathbb{N})$.

Solution 1.23

Solution 1.24

Soit $z \in E$. On a $z^3 = \overline{z}$, donc nécessairement $|z^3| = |\overline{z}|$, et puisque $z \neq 0$,

$$|z|^3 = |z|$$
 d'où $|z| = 1$.

Puisque |z| = 1, on a $z \in \mathbb{U}$ et $\overline{z} = \frac{1}{z}$. D'où

$$z^3 = \overline{z} \implies z^4 = 1 \implies z \in \mathbb{U}_4.$$

Finalement $E \subset \mathbb{U}_4 = \{ 1, i, -1, -i \}.$

Réciproquement,

$$1^3 = 1 = \overline{1}$$
 $i^3 = -i = \overline{i}$ $(-1)^3 = -1 = \overline{-1}$ $(-i)^3 = i = \overline{-i}$.

On a donc $\mathbb{U}_4 \subset E$.

Conclusion

$$E = \mathbb{U}_4 = \{ 1, i, -1, -i \}.$$

Solution 1.25

Si a = b, les deux ensembles sont égaux à { a }.

On se place donc dans le cas où a < b et on note $B = \{ (1 - \lambda)a + \lambda b \mid \lambda \in [0, 1] \}$.

Soit $x \in B$, alors il existe $\lambda \in [0, 1]$ tel que $x = (1 - \lambda)a + \lambda b = a + \lambda(b - a)$. Or b - a > 0, donc

$$0 < \lambda(b-a) < b-a$$
 puis $a < a + \lambda(b-a) < b$,

c'est-à-dire $x \in [a, b]$. On a donc $B \subset [a, b]$.

Réciproquement, soit $x \in [a, b]$. On pose $\lambda = \frac{x-a}{b-a}$. Puisque $a \le x \le b$, on a $0 \le x - a \le b - a$, d'où

$$0 \le \lambda = \frac{x-a}{b-a} \le 1$$
 et $(1-\lambda)a + \lambda b = a + \lambda(b-a) = x$.

Ainsi, $x \in B$. On a donc $[a, b] \subset B$.

Conclusion

Par double inclusion, on a $[a, b] = \{ (1 - \lambda)a + \lambda b \mid \lambda \in [0, 1] \}.$

Solution 1.26

On a

$$\mathcal{P}(E) = \left\{ \, \emptyset, \left\{ \, 0 \, \right\}, \left\{ \, 1 \, \right\}, \left\{ \, 0, 1 \, \right\} \, \right\}.$$

On en déduit

$$\mathcal{P}(\mathcal{P}(E)) = \left\{ \emptyset, \left\{ \emptyset \right\}, \left\{ \left\{ 0 \right\} \right\}, \left\{ \left\{ 1 \right\} \right\}, \left\{ \left\{ 0, 1 \right\} \right\}, \left\{ \emptyset, \left\{ 0 \right\} \right\}, \left\{ \emptyset, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\} \right\}, \left\{ \left\{ 0, 1 \right\} \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\} \right\}, \left\{ \left\{ 0 \right\}, \left\{ 1 \right\}, \left\{ 0, 1 \right\}, \left\{ 0,$$

Solution 1.27

- **1.** $E = \{ 5k \mid k \in \mathbb{Z} \text{ et } -7 \le k \le 7 \} = \{ n \in \mathbb{Z} \mid -35 \le n \le 35 \text{ et } 5 \text{ divise } n \}.$
- **2.** $F = \{ k^2 \mid k \in [1, 10] \} = \{ k^2 \mid k \in \mathbb{N} \text{ et } 1 \le k \le 10 \} = \{ y \in \mathbb{Z} \mid \exists x \in \mathbb{N}^*, x \le 10 \text{ et } y = x^2 \}.$
- **3.** $I = \{ 2k + 1 \mid k \in \mathbb{Z} \} = \{ n \in \mathbb{Z} \mid n \equiv 1 \pmod{2} \}.$

Solution 1.29

1.4 Constructeurs

- **1.** $A \cap B = \{ -7, 8, 10 \}$ et $A \cup B = \{ -7, 0, 2, 4, 8, 10, 12 \}$.
- **2.** $A \cap B = [-3, 5]$ et $A \cup B = [-5, 10]$.

- **3.** $A \cap B = \emptyset$ et $A \cup B = \mathbb{R}$.
- **4.** $A \cap B = \{3\} \times [2, 4]$ et $A \cup B = [1, 7] \times [2, 4]$.

Solution 1.31

1. Pour tout x,

 $x \in A \text{ et } x \in B \implies x \in A \implies x \in A \text{ ou } x \in B.$

Ce qui montre $A \cap B \subset A \subset A \cup B$.

2. Supposons $A \subset C$ et $B \subset C$. Soit $x \in A \cup B$, c'est-à-dire $x \in A$ ou $x \in B$.

Si $x \in A$, alors $x \in C$ car $A \subset C$.

Si $x \in B$, alors $x \in C$ car $B \subset C$.

Dans tous les cas, $x \in C$. On a montré

 $\forall x \in A \cup B, x \in C$,

c'est-à-dire $A \cup B \subset C$.

Réciproquement, si $A \cup B \subset C$, on a d'après (1.)

 $A \subset A \cup B \subset C$ et $B \subset A \cup B \subset C$.

On a donc $A \subset C$ et $B \subset C$.

Conclusion

 $(A \subset C \text{ et } B \subset C) \iff (A \cup B \subset C).$

3. Supposons $A \subset B$ et $A \subset C$. Alors, si $x \in A$, on a $x \in B$ et $x \in C$. D'où $A \subset B \cap C$. Réciproquement, si $A \subset B \cap C$, on a $A \subset B$ car $B \cap C \subset B$ et $A \subset C$ car $B \cap C \subset C$.

Conclusion

 $(A \subset B \text{ et } A \subset C) \iff (A \subset B \cap C).$

4. Supposons $A \subset B$ et montrons que $A \cap C \subset B \cap C$.

Soit $x \in A \cap C$, c'est-à-dire $x \in A$ et $x \in C$. Puisque $x \in A$ et $A \subset B$, on a $x \in B$. De plus, $x \in C$, d'où $x \in B \cap C$.

Conclusion

On a donc montré

 $\forall x \in A \cap C, x \in B \cap C,$

c'est-à-dire $A \cap C \subset B \cap C$.

5. Supposons $A \subset B$ et montrons que $A \cup C \subset B \cup C$.

Soit $x \in A \cup C$, c'est-à-dire $x \in A$ ou $x \in C$.

Si $x \in A$, on a $x \in B$ puisque $A \subset B$, et donc a fortiori $x \in B \cup C$.

Si $x \in C$, on a $x \in B \cup C$ puisque $C \subset B \cup C$.

Dans tous les cas, $x \in B \cup C$.

Conclusion

On a montré

 $\forall x \in A \cup C, x \in B \cup C,$

c'est-à-dire $A \cup C \subset B \cup C$.

6. Supposons $A \subset B$ et $C \subset D$ et montrons que $A \cup C \subset B \cup D$.

Soit $x \in A \cup C$, c'est-à-dire $x \in A$ ou $x \in C$.

Si $x \in A$, alors $x \in B$ car $A \subset B$.

Si $x \in C$, alors $x \in D$ car $C \subset D$.

Dans tous les cas, $x \in B$ ou $x \in D$, c'est-à-dire $x \in B \cup D$.

Conclusion

On a montré

 $\forall x \in A \cup C, x \in B \cup D,$

c'est-à-dire $A \cup C \subset B \cup D$.

7. Supposons $A \subset B$ et $C \subset D$ et montrons que $A \cap C \subset C \cap D$.

Soit $x \in A \cap C$, c'est-à-dire $x \in A$ et $x \in C$.

Puisque $x \in A$ et $A \subset B$, on a $x \in B$. Puisque $x \in C$ et $C \subset D$, on a $x \in D$.

Finalement, $x \in B$ et $x \in D$, c'est-à-dire $x \in B \cap D$.

Conclusion

On a montré

 $\forall x \in A \cap C, x \in B \cap D,$

c'est-à-dire $A \cap C \subset B \cap D$.

Solution 1.32

Supposons

$$(F \cup G) \subset (F \cup H)$$
 et $(F \cap G) \subset (F \cap H)$

Montrons $G \subset H$. Soit $x \in G$, alors $x \in F \cup G$ et donc $x \in F \cup H$. On a donc $x \in F$ ou $x \in H$.

Or si $x \in F$, alors $x \in F \cap G$ et par hypothèse $x \in F \cap H$, d'où $x \in H$.

Dans les deux cas, $x \in H$.

Conclusion

 $\forall x \in G, x \in H$, c'est-à-dire $G \subset H$.

$$x \in A \setminus (E \setminus B) \iff x \in A \text{ et } x \notin (E \setminus B)$$

$$\iff x \in A \text{ et non} (x \in E \text{ et } x \notin B) \iff x \in A \text{ et } (x \notin E \text{ ou } x \in B).$$

$$\iff \underbrace{(x \in A \text{ et } x \notin E)}_{\text{impossible}} \text{ ou } (x \in A \text{ et } x \in B) \iff x \in A \text{ et } x \in B.$$

Conclusion

$$A \setminus (E \setminus B) = A \cap B.$$

Solution 1.34

Solution 1.35

Un jeu de 32 cartes

$$A \times B = \{ (as, coeur), (as, carreau), \dots, (7, trèfle), (7, pique) \}.$$

Solution 1.36

Solution 1.37

1. Soit x un élément quelconque. On a

$x \in A$	$x \in B$	$x \in C$	$x \in B \cup C$	$x \in A\Delta(B \cup C)$	$x \in A\Delta B$	$x \in A\Delta C$	$x \in (A\Delta B) \cup (A\Delta C)$
\overline{F}	F	F	F	F	F	F	\overline{F}
$\boldsymbol{\mathit{F}}$	${m F}$	V	V	V	\boldsymbol{F}	V	V
F	V	${m F}$	V	V	V	$oldsymbol{F}$	V
F	V	V	V	V	V	V	V
V	$\boldsymbol{\mathit{F}}$	${m F}$	F	V	V	V	V
V	${m F}$	V	V	\boldsymbol{F}	V	$oldsymbol{F}$	V
V	V	${m F}$	V	$\boldsymbol{\mathit{F}}$	\boldsymbol{F}	V	V
V	V	V	V	\boldsymbol{F}	F	$\boldsymbol{\mathit{F}}$	F

À finir...

1.5 Famille d'ensembles

Solution 1.39

Notons

$$I = \bigcap_{n=1}^{+\infty} \left[3, 3 + \frac{1}{n^2} \right] = \{ 3 \}.$$

Montrons que $I = \{3\}$ par double inclusion.

Pour tout $n \ge 1$, on a $3 \in \left[3, 3 + \frac{1}{n^2}\right]$, donc $\{3\} \subset I$.

Réciproquement, soit $x \in I$. Alors,

$$\forall n \ge 1, 3 \le x \le 3 + \frac{1}{n^2}.$$

Par compatibilité de la relation d'ordre avec la limite, on a $3 \le x \le 3$, c'est-à-dire x = 3. On a donc $I \subset \{3\}$. **Solution 1.40**

Notons

$$I = \bigcap_{n=1}^{+\infty} \left[-2 - \frac{1}{n}, 4 + n^2 \right].$$

Montrons que I = [-2, 5] par double inclusion.

Soit $x \in I$, alors

$$\forall n \ge 1, -2 - \frac{1}{n} \le x \le 4 + n^2.$$

Par compatibilité de la relation d'ordre avec la limite, on a $-2 \le x$. De plus, en spécifiant la relation précédente pour n = 1, on obtient $x \le 5$.

Finalement $x \in [-2, 5]$. On a donc $I \subset [-2, 5]$.

Réciproquement, soit $x \in [-2, 5]$. Alors pour tout $n \ge 1$, on a

$$-2 - \frac{1}{n^2} < -2 \le x \le 5 \le 4 + n^2.$$

On a donc,

$$\forall n \ge 1, x \in \left] -2 - \frac{1}{n^2}, 4 + n^2 \right].$$

c'est-à-dire $x \in I$.

Solution 1.41

Solution 1.42

Solution 1.43

Montrons que $J =]1, +\infty[$ par double inclusion.

Soit $x \in J$. Alors, il existe $n \ge 2$ tel que

$$1 + \frac{1}{n} \le x \le n.$$

Et puisque $1 < 1 + \frac{1}{n}$, on a bien x > 1, c'est-à-dire $x \in]1, +\infty[$.

Réciproquement, soit $x \in]1, +\infty[$. On a donc x > 1 et donc, pour $n \ge 2$,

$$x \ge 1 + \frac{1}{n} \iff x - 1 \ge \frac{1}{n} \iff n \ge \frac{1}{x - 1}.$$

Posons $n_1 = \left\lfloor \frac{1}{x-1} \right\rfloor + 1$ et $n_2 = \lfloor x \rfloor + 1$. Alors, pour $n = \max 2, n_1, n_2$, on a

$$1 + \frac{1}{n} \le 1 + \frac{1}{n_1} \le x \le n_2 \le n.$$

On a donc montrer l'existence d'un entier $n \ge 2$, tel que $x \in \left[1 + \frac{1}{n}, n\right]$, donc $x \in J$.

1.6 Rédaction

- **1.** Raisonnement direct. «Supposons P, alors... donc Q.»
 - Raisonnement par contraposée. «Supposons non Q, alors... donc non P.»
 - Raisonnement par l'absurde. «Sachant que P est vraie. Supposons que Q soit fausse, c'est-à-dire ..., alors ..., ce qui est absurde donc Q est vraie.»

- 2. En général par double implication $P \implies Q$ et $Q \implies P$, par l'un des trois types de raisonnement ci-dessus). Parfois, on peut raisonner directement par équivalences, par exemple lors de la résolution d'une équation; pour une démonstration assez longue, c'est assez rare (et plutôt dangereux...).
- **3.** «Soit $x \in A$, alors... donc $x \in B$.»
- **4.** Souvent par double inclusion. «Soit $x \in A$, alors... donc $x \in B$.» Puis : «Soit $x \in B$, alors... donc $x \in A$.»
- **5.** Par double inclusion. «On a bien $0 \in A$ et $0 \in B$, donc $\{0\} \subset A \cap B$. Soit $x \in A \cap B$, alors $x \in A$ et $x \in B$, c'est-à-dire... donc x = 0. On a donc $A \cap B \subset \{0\}$ et par double inclusion $A \cap B = \{0\}$.»
- **6.** «Soit $x \in A$, montrons que P(x)», ... «d'où P(x)».
- 7. «On cherche $x \in A$ tel que P(x)», ... «On pose x = ..., on a donc $x \in A$ et P(x)».
- **8.** On commence par construire un tel x, ou montrer qu'un tel x existe : «On pose x = ..., alors $x \in A$ et P(x)». Puis : «Soit $x, x' \in A$ tels que P(x) et P(x'), alors..., donc x = x'.»
 - On effectue un raisonnement par condition nécessaire et condition suffisante.
 - CN. On cherche le(s) candidat(s) pour x. «Supposons qu'il existe x tel que P(x). Alors... donc x = ...»
 - CS. On vérifie que le candidat (ou un seul des candidats) vérifie P(x). «Posons x = ..., alors $x \in A$ et P(x) est vraie.
- 9. On part d'une expression pour arriver à l'autre « $\exp r_1 = \cdots = \exp r_2$ ». Parfois on trouve une expression intermédiaire commune : « $\exp r_1 = \cdots = \exp r_3$ et $\exp r_2 = \cdots = \exp r_3$, d'où $\exp r_1 = \exp r_2$ ».
- **10.** «Montrons (i) \implies (ii) \implies (iii) \implies (i).» En choisissant le cycle le plus facile.