Satz 0.1. Seien $\mathfrak{a} \subset A$, dann

- a) \mathfrak{a} ist Primideal $\Leftrightarrow A/\mathfrak{p}$ ist Integritätsbereich (nullteilerfrei)
- b) \mathfrak{a} ist maximales Ideal $\Leftrightarrow A/\mathfrak{a}$ ist ein Körper.

Beweis. a) \Rightarrow Sei $a + \mathfrak{a} \in A/p$ ein Nullteiler, dann existiert $x \in A \setminus p$, sodass

$$(a+\mathfrak{a})(x+\mathfrak{a}) = ax + \mathfrak{a} = p$$

Also ist $ax \in \mathfrak{a}$ und da \mathfrak{a} Primideal folgt $a \in \mathfrak{a}$.

 \Leftarrow Sei A/\mathfrak{a} Integritätsbereich und sei $ab \in \mathfrak{a}$, dann ist

$$(a+\mathfrak{a})(b+\mathfrak{a}) = ab + \mathfrak{a} = \mathfrak{a}$$

Da A/\mathfrak{a} Integritätsbereich ist gilt $a + \mathfrak{a} = \mathfrak{a}$ oder $b + \mathfrak{a} = \mathfrak{a}$, also $a \in \mathfrak{a}$ oder $b \in \mathfrak{a}$.

b) \Rightarrow Sei I/\mathfrak{a} ein Ideal in A/\mathfrak{a} . Hierbei ist I eine Ideal in A welches \mathfrak{a} enthält, also $\mathfrak{a} \subseteq I \subseteq A$. Da \mathfrak{a} maximal ist, muss $\mathfrak{a} = I$ oder $\mathfrak{a} = A$. Also ist A/\mathfrak{a} ein Körper.

 \Leftarrow Sei I ein Ideal in A mit $\mathfrak{a} \subseteq I \subseteq A$. Dann ist I/\mathfrak{a} eine Ideal in A/\mathfrak{a} , d.h.

$$I/\mathfrak{a} = \mathfrak{a}/\mathfrak{a}$$
 oder $I/\mathfrak{a} = A/\mathfrak{a}$

Damit folgt $I = \mathfrak{a}$ oder $I = \mathfrak{A}$.

Bemerkung. Insbesondere ist jedes maximale ideal prim.

Definition 0.2. Sei $A \neq \emptyset$. Eine **Relation** auf A ist eine Teilmenge $R \subset A \times A$. R heißt **partielle Ordnung** wenn

- a) $\forall a \in A \text{ gilt } (a, a) \in R \text{ (Reflexivität)}$
- b) $\forall a,b,c \in A$ gilt $(a,b) \in R$ und $(b,c) \in R$, so gilt auch $(a,c \in R)$ (Transitivität)
- c) $\forall a, b \in A \text{ mit } (a, b \in R) \text{ und } (b, a) \in \mathbb{R}, \text{ dann gilt } a = b. \text{ (Antisymmetrie)}$

Ist R eine partielle Ordnungn auf A so schrieben wir für $(a,b) \in R$ auch $a \leq b$.

Zwei Elemente $a, b \in A$ heißen **vergleichbar**, wenn $a \leq b$ oder $b \leq a$ ist. Eine Teilmenge $B \subset A$ heißt **Kette**, wenn für alle $a, b \in B$ gilt, dass $a \leq b$ oder $b \leq a$.

Lemma 0.3. Sei $A \neq \emptyset$ partielle geordnet. Hat jede Kette $B \neq \emptyset$ in A eine obere Schranke in A, d.h. es gibt ein $a \in A$, sodass $b \leq a$ für alle $b \in B$., so besitzt A ein maximales Element.

Theorem 0.4. Sei $A \neq 0$ ein Ring, dann besitzt A ein maximales Ideal.

Beweis. Sei $\Sigma = \{I \subset A \mid I \text{ ist Ideal}\}$. Dann ist $O \in \Sigma$ und Σ ist partielle geordnet durch die mengentheoretische Inklusion. Sei $(C_i)_{i \in I}$ eine Kette in Σ . Dann ist

$$C = \bigcup_{i \in I} C_i$$

ein Ideal in A. Aus $I \notin C_i$ für alle $i \in I$ folgt, dass $I \notin C$,d.h. $C \in \Sigma$. Somit hat Σ ein maximales Element.

Korollar 0.5. Sei A ein Ring und $I \subsetneq A$ ein Ideal, dann ist I in einem maximalen Ideal enthalten.

Korollar 0.6. Sei A ein Ring und $a \in A \setminus A^*$. Dann ist a in einem maximalen Ideal enthalten.

Beweis. Betrachte $(a) = Aa \neq A$.

0.1 Lokale Ringe

Definition 0.7. Ein Ring A mit nur eine maximalen Ideal \mathfrak{m} heißt lokaler Ring und A/\mathfrak{m} heißt Restklassenkörper von A.

Satz 0.8. Sei A ein Ring und $\mathfrak{m} \neq A$ eine Ideal in A.

Ist jedes $x \in A \setminus +m$ eine Einheit, si ist A ein lokaler Ring mit maximalen Ideal m

Beweis. Für jedes Ideal $I \subseteq A$ gilt $I \cap A^* = \emptyset$, enthält also keine Einheiten und ist somit in \mathfrak{m} enthalten. Somit ist \mathfrak{m} das einzige maximale Ideal.

Satz 0.9. Sei A ein Ring und $\mathfrak{m} \subset A$ eine maximales Ideal, sodass jedes Element m eine Einheit in A ist. Dann ist A ein lokaler Ring.

Beispiel 0.10.1. Jedes Ideal in \mathbb{Z} ist der Form $(m) = \mathbb{Z}m$ mit $m \in \mathbb{Z}_{\geq 0}$. Es gilt, dass (m) genau dann Primideal ist, wenn m = 0 oder m Primzahl. Ist \mathfrak{p} Primzahl, so ist (p) maximal.

Sei K ein Körper und $A = K[X_1, ..., X_n]$. Dann ist der Kern des Homomorphismus $\phi: A \to K, f \mapsto f(0)$ ein maximales Ideal in A.

0.2 Radikale

Satz 0.11. Sei A eine Ring und $N = \{a \in A \mid a \text{ ist nilpotent}\}$. Dann ist N ein Ideal in A und A/N enthält keine nilpotenten $Elemente \neq 0$.

Beweis. • Zz: N ist eine additive Untergruppe von A Seien $x, y \in N$ mit $x^n = y^m = 0$. Dann ist

$$(x+y)^{n+m} = \sum_{k=0}^{n+m} \binom{n+m}{k} x^k y^{n+m-k} = 0$$

denn kann nicht sowohl k < n, als auch n + m - k < m sein.

• Z.z. $AN \subset N$.

Sei $x \in N$ mit $x^n = 0$ und $a \in A$. Dann ist $(ax)^n = a^n x^n = 0$, also $ax \in N$.

Also ist N Ideal in A.

Sei nun $a+N\in A/N$ nilpotent. Dann ist $(a+N)^n=0$ für ein n>0. Also ist $a^n+N=0$, also $a^n\in N$.

Dann ist $(a^n)^m = 0$ udn somit $a^{nm} = 0$, also nilpotent. Es folgt, dass $a \in N$.

Definition 0.12. Das Ideal $N = \{a \in A \mid a \text{ ist Nilpotent}\}$ heißt das **Nilikal** von A.

Definition 0.13. Sei A ein Ring dann nennt man $J = \{x \in A \mid \forall y \in A : 1 - xy \text{ ist Einheit}\}$ das **Jacobsonradikal**.

Satz 0.14. Sei A eine Ring, dann ist

- a) das Nilradikal von A der Schnitt aller Primideal von A.
- b) das Jacobsonradikal von A der Schnitt aller Maximalen Ideale von A.

Definition 0.15. Sei A ein Ring und $\mathfrak{a} \subset A$ ein Ideal in A. Dann wird

$$r(a) := \{ x \in A \mid x^n \in \mathfrak{a} \text{ für ein } n > 0 \}$$

als **Radikal** von \mathfrak{a} bezeichnet. (auch Rad (\mathfrak{a}) , $\sqrt{\mathfrak{a}}$)

Beweis. Sei $\pi: A \to A/\mathfrak{a}$ die Kanonische Projektion. Dann ist $r(a) = \pi^{-1} \left(N_{A/\mathfrak{a}} \right)$. Also ist r(a) ein Ideal.

Satz 0.16. Sei a, b ein Ideal, dann gilt

- $a) \ \mathfrak{a} \subseteq r(\mathfrak{a})$
- b) $r(r(\mathfrak{a})) = r(\mathfrak{a})$
- c) $r(\mathfrak{aa}) = r(\mathfrak{a} \cap \mathfrak{b}) = r(\mathfrak{a}) \cap r(\mathfrak{b})$
- $d) \ r(\mathfrak{a}) = A \Leftrightarrow \mathfrak{a} = A.$
- $e) r(\mathfrak{a} + \mathfrak{b}) = r(r(\mathfrak{a}) + r(\mathfrak{b})).$

0.2.1 Operationen auf Radikalen

Definition 0.17. Sein A ein Ring.

a) Seien $\mathfrak{a}, \mathfrak{b} \subset A$ Ideale in A. Dann ist

$$a + b =: \{x + y \mid x \in \mathfrak{a}, y \in \mathfrak{b}\}\$$

ein Ideal in A.

b) Analog: Sei $(\mathfrak{a}_i)_{i\in I}$ eine Familie von Idealen in A, für eine Indexmenge I. Dann ist

$$\sum_{i \in I} \mathfrak{a}_i =: \left\{ \sum_{i \in I} x_i \mid x_i \in \mathfrak{a}_i \text{ und fast alle } x_i = 0 \right\}$$

ein Ideal in A.

c) Sei $(\mathfrak{a}_i)_{i\in I}$ eine Familie von Idealen in A, für eine Indexmenge I. Dann ist der Schnitt

$$\bigcap_{i\in I}\mathfrak{a}_i$$

ein Ideal in A.

d) Seien $\mathfrak{a}, \mathfrak{b} \subset A$ Ideal in A. Dann ist

$$\mathfrak{ab} = \left\{ \sum_{i=1}^{n} a_i b_i \mid a_i \in \mathfrak{a}, b_i \in \mathfrak{b}, n \in \mathbb{N} \right\}$$

ein Ideal in A.

Satz 0.18. Die Operationen Summe, Durchschnitt und Produkt auf Idealen sind kommutativ und Assoziativ und es gilt das Distributivgesetz.

Definition 0.19. Sei A ein Ring. Zwei Ideale $\mathfrak{a}, \mathfrak{b} \subseteq A$ heißen **teilerfremd**, wenn $\mathfrak{a} + \mathfrak{b} = A = (1)$.

Satz 0.20. Sei A ein Ring, \mathfrak{a} , $\mathfrak{b} \subset A$ Ideale in A. Dann sind äquivalent:

- a) a, b sind Teilerfremd
- b) Es gibt ein $x \in \mathfrak{a}, y \in \mathfrak{b}$, sodass x + y = 1.

Beweis. 2) \Rightarrow 1) Sei $z \in A$ und $x \in \mathfrak{a}, y \in \mathfrak{b}$, mit x + y = 1. Dann ist z = zx + zy, wobei $zx \in \mathfrak{a}, zy \in \mathfrak{b}$, also $z \in \mathfrak{a} + \mathfrak{b}$.

$$1){\Rightarrow}2)$$

Satz 0.21. Sei A ein Ring und seinen $\mathfrak{a}_1,...,\mathfrak{a}_n$ paarweise teilerfremde Ideal in A. Dann gilt

- a) Jedes \mathfrak{a}_i ist teilerfremd zu $\prod_{\substack{j=1\\j\neq i}}^n \mathfrak{a}_j$.
- b) Es gilt

$$\prod_{i=1}^n \mathfrak{a}_i = \bigcap_{i=1}^n \mathfrak{a}_i$$

Beweis. a) Sei i fest. Es gibt Elemente $x_j \in \mathfrak{a}_i, y_j \in \mathfrak{a}_j$ mit $1 = x_j + y_j$ für $i \neq j$. Dann ist

$$1 = \prod_{\substack{j=1\\j\neq i}} (x_j + y_j) = \underbrace{x}_{\in \mathfrak{a}_i} + \prod_{\substack{j=1\\j\neq i}\\\in \prod_{j=1} \mathfrak{a}_j} \in \mathfrak{a}_i + \prod_{\substack{j=1\\j\neq i}} \mathfrak{a}_j$$

b) Durch Induktion über n.

n=2 Sei $z\in \mathfrak{a}\cap \mathfrak{b}.$ Schreie
b1=x+ymit $x\in \mathfrak{a},y\in \mathfrak{b}.$ Dann is
t $z=zx+zy\in \mathfrak{ab}.$

n>2 Sei

$$\mathfrak{b} = \prod_{i=1}^{n-1} a_i$$

Wir nehmen an es gelte

$$\prod_{i=1}^{n-1} a_i = \prod_{i=1}^{n-1} \mathfrak{a}_i$$

Dann ist aber

$$\prod_{i=1}^n \mathfrak{a}_i = \mathfrak{a}_i \mathfrak{b}_i = \mathfrak{a}_i \cap \mathfrak{b} = \bigcap_{i=1}^n a_i$$

Definition 0.22. Sei A ein Ring und seinen $\mathfrak{a}_i,, \mathfrak{a}_n$ Ideale in A. Wir definieren die Abbildung

$$\phi: A \to \prod_{i=1}^{n} (A/\mathfrak{a}_{i})$$
$$a \mapsto (a + \mathfrak{a}_{1}, ..., a + \mathfrak{a}_{n})$$

Proposition 0.23. a) ϕ ist ein Ringhomomorphismus und

$$\operatorname{Kern}(\phi) = \bigcap_{i=1}^{n} \mathfrak{a}_i$$

b) ϕ ist genau dann surjektiv, wenn die \mathfrak{a}_i paarweise disjunkt sind. Insbesondere ist

$$A/\prod_{i=1}^n \mathfrak{a}_i \simeq \prod_{i=1}^n A/\mathfrak{a}_i$$

Beweis. b) \Rightarrow Sei ϕ surjektiv. Wir zeigen, dass \mathfrak{a}_1 und \mathfrak{a}_2 teilerfremd sind.

Es gibt ein $x \in A$ mit $\phi(x) = (1_{A/a_1}, 0, ..., 0)$.

Also ist $x = 1 \mod \mathfrak{a}_i$ und $x = x \mod \mathfrak{a}_2$.

Dann ist

$$1 = \underbrace{(1-x)}_{\in \mathfrak{a}_i} + \underbrace{x}_{\in \mathfrak{a}_2} \in \mathfrak{a}_1 + \mathfrak{a}_2$$

 \Leftarrow Seien un die \mathfrak{a}_i paarweise teilerfremd.

Es reicht zu zeigen, dass es Elemente $x_i \in A$ mit

$$\phi(x_i) = (0, ..., 0, 1, 0, ..., 0)$$

(1 an der *i*-ten Position) gibt.

Wir zeigen für i = 1:

Da $\mathfrak{a}_1+\mathfrak{a}_j=A$ für alle j>1, gibt es $x_j\in\mathfrak{a}_1,y_j\in\mathfrak{a}_j$ mit $x_j+y_j=1$ Sei nun

$$x := \prod_{i=2}^{n} y_j = \prod_{i=2}^{n} 1 - x_j = 1 \mod \mathfrak{a}_1$$

und $x = 0 \mod \mathfrak{a}_j$ für j > 1.

0.3 Ringe von Brüchen

Definition 0.24. Sei A ein Ring. Eine Teilmenge $S \subset A$ heißt **multiplikativ** abgeschlossen, wenn

- a) Für alle $s, t \in S$ gilt, dass $st \in S$
- b) $1 \in S$.

Bemerkung 0.25. Auf $A \times S$ wird durch

$$(a,s) \sim (b,t) \Leftrightarrow (at-bs)u = 0$$
 für ein $u \in S$

eine Äquivalenzklasse definiert.

Für die Transitivität wird die multiplikative Abgeschlossenheit von S benötigt.

Die Äquivalenzklassen von (a, s) wird mit a/s bezeichnet.

Die Menge der Äquivalenzklasssen wir als $S^{-1}A$ geschrieben.

Definition 0.26. Seien $a/s, b/t \in S^{-1}A$. Man definiert

- a/s + b/t := (at + bs)/st
- $a/s \cdot b/t := ab/st$

Definition 0.27. Diese Verknüpfungen sind wohldefiniert und versehen $S^{-1}A$ mit einer Ringstruktur.

 $S^{-1}A$ wird als der Ring der Brüche von A bezüglich S bezeichnet.

Beispiel 0.28. Sei $A = \mathbb{Z}$ und $S = \mathbb{Z} \setminus \{0\}$. Dann ist $S^{-1}A$ isomorph zu \mathbb{Q} .

Korollar 0.29. Die Abbildung

$$\varphi_S: A \to S^{-1}A$$
$$a \mapsto a/1$$

hat folgende Eigenschaften:

- a) φ_S ist ein Ringhomomorphismus. (i.A. nicht injektiv)
- b) Sei $s \in S$, dann ist $\varphi_S(s)$ eine Einheit in $S^{-1}A$.
- c) $\operatorname{Kern}(\varphi_S) = \{ a \in A \mid as = 0 \text{ für ein } s \in S \}.$
- d) Jedes Element in $S^{-1}A$ ist der Form $\varphi_S(a)\varphi_S(s)^{-1}$ für ein $a \in A$, $s \in S$.

Beweis. b) Sei $s \in S$, dann ist $s/1 \cdot 1/s = s/s = 1/1 = 1_{S^{-1}A}$

c) Sei $a \in \text{Kern}(\varphi_S)$, dann ist a/1 = 0/1, also (a1 - 01)s = 0 für ein $s \in S$. Also ist as = 0 für ein $s \in S$. d) Sei $a/s \in S^{-1}A$. Dann ist

$$\varphi_S(a) = a/1$$
 $\qquad \varphi_S(s) = s/1$ $\qquad \varphi_S(s)^{-1} = 1/s$

Es folgt

$$\varphi_S(a)\varphi(s)^{-1} = a/1 \cdot 1/s = a/s$$

Satz 0.30. Seien A, B Ringe und $S \subset A$ multiplikativ abgeschlossen. Sei $g: A \to B$ ein Ringhomomorphismus, der 1)-3) aus erfüllt, dann gibt es einen eindeutigen Isomorphismus $h: S^{-1}A \to B$ mit $h \circ \varphi_S = g$.

$$A \xrightarrow{g} B$$

$$\downarrow^{\varphi_S} \xrightarrow{h}$$

$$S^{-1}A$$

Definition 0.31. Sei A ein Integritätsbereich und $S = A \setminus \{0\}$. Dann nennt man $S^{-1}A$ den **Quotientenkörper**

Lemma 0.32. Der Quotientenkörper ist ein Körper, φ_S ist injektiv und wir können A mit seinem Bild in $S^{-1}A$ identifizieren.

Definition 0.33. Sei A ein Ring. Sei \mathfrak{p} ein Primideal in A. Man schreibt $A_{\mathfrak{p}}$ für $S^{-1}A$ und nennt $A_{\mathfrak{p}}$ die **Lokalisierung** von A bezüglich \mathfrak{p} .

Lemma 0.34. Sei A ein Ring. Sei \mathfrak{p} ein Primideal in A. Dann ist $S = A \setminus \mathfrak{p}$ multiplikativ Abgeschlossen.

Lemma 0.35. Sei $A = \mathbb{Z}$ und $p \in \mathbb{Z}$ eine Primzahl. Dann ist $\mathbb{Z}_{(p)} = \{m/n \mid m/n \in \mathbb{Q}, p \not | n\}$.

Satz 0.36. Sei A ein Ring und $S \subset A$ multiplikativ abgeschlossen. Dann ist

- a) Ist I ein Ideal in A so ist auch $S^{-1}I = \{a/s \mid a \in I\}$ ein Ideal in $S^{-1}A$
- b) Die Ideale in $S^{-1}A$ sind der Form $S^{-1}I$, wobei I ein Ideal in A ist.
- c) Sind I, J Ideal in A, dann gilt

$$S^{-1}(I+J) = S^{-1}I + S^{-1}J$$

$$S^{-1}(I \cap J) = S^{-1}I \cap S^{-1}J$$

$$S^{-1}(IJ) = (S^{-1}I)(S^{-1}J)$$

Beweis. Wir beweisen nur 2).

Sei J ein Ideal in $S^{-1}A$. Dann ist $I=\varphi_S^{-1}(J)$ ein Ideal in A und $J=S^{-1}I$: Sei $a/s\in S^{-1}I$. Aus $I=\varphi_S^{-1}(J)$ folgt, dass $\varphi_S(a)\in J$. Also ist

$$a/s = \underbrace{a/1}_{\varphi_S(a)} \cdot \underbrace{1/s}_{\in S^{-1}A} \in J$$

d.h.
$$s \in \varphi_S^{-1}(J) = I$$
 und $a/s \in S^{-1}I$.

0.4 Integritätsbereiche und Hauptidealringe

Definition 0.37. Sei A ein Ring. Ein Ideal der Form (a) = Aa heißt **Hauptideal**.

Definition 0.38. Ein Ring A heißt **Hauptidealring**, wenn jede Ideal in A Hauptideal ist.

Definition 0.39. Ein Ring A heißt $\mathbf{euklidisch}$, wenn es eine Abbildung

$$\lambda: A \setminus \{0\} \to \mathbb{N}_0$$

gibt, sodass zu je zwei Elementen $a,b\in A$ mit $b\neq 0$ Elemente $q,r\in A$ existieren mit a=qb+r wobei $\lambda(r)<\lambda(b)$ oder r=0.

Beispiel 0.40. a) \mathbb{Z} ist euklidisch unter $\lambda(x) = |x|$.

b) Sei K ein Körper. Dann ist K[X] euklidisch mit $\lambda(f) = \deg(f)$.

Satz 0.41. Sei A ein euklidischer Ring. Dann ist A ein Hauptidealring.

Beweis. Sei $\mathfrak{a} \neq 0$ in Ideal in A. Dann hat

$$\lambda(x) \mid x \in a, x \neq 0$$

ein kleinstes Element, d.h. es gibt ein $x \in \mathfrak{a} \setminus \{0\}$ mit $\lambda(x) \leq \lambda(y)$ für alle $y \in \mathfrak{a} \setminus \{0\}$.

Es gilt $\mathfrak{a} = (x)$.

Sei $y \in a \setminus \{0\}$. Schreibe y = qx + r mit r = 0 oder $\lambda(r) < \lambda(x)$.

Dann ist $r \in \mathfrak{a}$ und aus der Minimalität von $\lambda(x)$ folgt r = 0 und damit $\mathfrak{a} \subset (x)$.

Definition 0.42. Sei A ein Ring und seinen $a, b \in A$.

 $d \in A$ heißt Größter gemeinsamer Teiler von a und b, wenn gilt

- a) d|a und d|b.
- b) Wenn es $g \in A$ gibt mit g|a und g|b, dann muss g|d.

Wir schreiben $d = \gcd(a, b) = (a, b)$

Definition 0.43. Sei A ein Ring und seinen $a, b \in A$.

 $d \in A$ heißt kleinstes gemeinsames Vielfaches von a und b, wenn gilt

- a) a|v und b|v.
- b) Wenn es $g \in A$ gibt mit a|g und b|g, dann muss v|v.

Wir schreiben v = lcm(a, b) = (a, b)

Satz 0.44. Sei A ein Hauptidealring und seien $a, b \in A$.

Dann existiert ein $d = \gcd(a, b)$ und $v = \operatorname{lcm}(a, b)$ von a, b und es gilt

- a) (a) + (b) = (d)
- $b) \ (a) \cap (b) = (v)$

Beweis. • Da A ein Hauptidealring ist, gilt (a) + (b) = (d) für ein $d \in A$. Es gilt $a, b \in (d)$, also d|a und d|b. Sei $g \in A$ mit g|a und g|b. Dann ist $(a) \subset (g)$ und $(b) \subset (g)$. Daraus folgt, dass $(a) + (b) \subseteq (g)$, also $(d) \subset (g)$. Damit folgt g|d.

• Analog für lcm.

Definition 0.45. Sei A in Integritätsbereich. Zwei Elemente $a,b\in A$ heißen assoziiert, wenn

- a|b und b|a.
- (äquivalent) a = bu für ein $u \in A^*$.
- (äquivalent) (a) = (b).

Man schreibt dann $a \sim b$.

Definition 0.46. Sei A in Integritätsbereich. Ein Element $p \in A$ heißt **prim**, **Primelement**, wenn

- $p \notin A^*$, $p \neq 0$ und aus p|ab folgt p|a oder p|b.
- (äquivalent) $p \neq 0$ und (p) ist Primideal.

Definition 0.47. Sei A in Integritätsbereich. $c \in A$ heißt **irreduzibel** oder **unzerlegbar**, wenn

- a) für $c \notin A^*$ und $c \neq 0$ aus c = ab folgt, dass $a \in A^*$ oder $b \in A^*$.
- b) (äquivalent) für $c \neq 0$ für alle $a \in A$ gilt, dass aus $(c) \subset (a)$ folgt, dass (a) = A oder (a) = (c).

Satz 0.48. Sei A ein Integritätsbereich und $p \in A$ prim. Dann ist p irreduzibel.

Beweis. Sei p=ab, dann gilt p|ab. Es folgt p|a oder p|b. Angenommen p|a, dann ist a=px für ein $x\in A$ und p=pxb. Es folgt, dass p(1-bx)=0 und da A Integritätsbereich ist 1-bx=0. Also muss bx=1 also ist $b\in A^*$.

Satz 0.49. Sei A ein Hauptidealring und Integritätsbereich. Dann gilt für $c \in A$

 $c prim \Leftrightarrow c irreduzibel$

Beweis. Sei c irreduzibel, also ist (c) maximal. Daraus folgt, dass (c) Primideal ist und somit c prim.

Definition 0.50. Ein Integritätsbereich heißt faktoriell, wenn

- a) Jedes $a \in A \setminus A^*$, $a \neq 0$ zerfällt in ein Produkt von irreduziblen Elementen.
- b) Die Zerlegung ist bis auf Reihenfolge und Einheiten eindeutig. D.h.

D.h. wenn $a = c_1 \cdot ... \cdot c_m = d_1 \cdot ... \cdot d_n$ mit c_1, d_1 irreduzibel, so folgt m = n und es gibt $\pi \in S_n$ mit $c_1 \sim d_{\pi(i)}$ für alle i = 1, ..., n.

Bemerkung 0.51. Die Eindeutigkeit der Faktorisierung impliziert, dass es irreduzibles Element in einem faktoriellen Integritätsbereich prim ist.

Lemma 0.52. Sei A ein Hauptidealring und S eine nichtleere Menge von Idealen in A. Dann hat S ein maximales Element (bezüglich \subset)

Beweis. Angenommen S hat kein maximales Element. Dann gibt es zu jedem $\mathfrak{a}_1 \in S$ ein $\mathfrak{a}_2 \in S$ mit $\mathfrak{a}_1 \subsetneq \mathfrak{a}_2$. Es gibt also eine unendliche Kette

$$\mathfrak{a}_1 \subsetneq \mathfrak{a}_2 \subsetneq \dots$$

von Idealen in S. Sei nun $\mathfrak{a} := \bigcup_{j=1}^{\infty} \mathfrak{a}_i$.

Dann ist a ein Ideal in A, also ist \mathfrak{a} ein Hauptideal und $\mathfrak{a} = (x)$ für ein $x \in A$. Dann folgt insbesondere, dass $x \in \mathfrak{a}$. Damit folgt, dass es $j_0 \in \mathbb{N}$ gibt, mit $x \in \mathfrak{a}_{j_0}$.

Somit ist $(x) \subset \mathfrak{a}_{j_0}$ und somit $\mathfrak{a} = \mathfrak{a}_{j_0}$.

Dies bedeutet aber, dass die Kette stationär wird, was ein Widerspruch zur Annahme ist. $\hfill\Box$

Theorem 0.53. Sei A ein Integritätsbereich. Ist A ein Hauptidealring, so ist A faktoriell.

Beweis. Zerlegbarkeit der Elemente Sei $S = \{(a) \mid a \in A, a \notin A^*, a \neq 0 \text{ a zerfällt nicht in irreduzible Faktoren}\}.$

Angenommen $S \neq \emptyset$. Dann hat S eine maximales Element (a) und a ist nicht irreduzibel.

Dann gibt es $b, c \in A \setminus A^*$, mit a = bc.

Also ist $(a) \subsetneq (b)$ und $(a) \subsetneq (c)$. Da (a) maximal in S ist folgt daraus, dass $(b), (c) \notin S$.

Somit zerfallen b,c in irreduzible Faktoren und damit gilt $a \in S.$ Widerspruch!.

Eindeutigkeit der Zerlegung Sei $a \in A$. Angenommen es gäbe zwei irreduzible Zerlegungen $a = c_1...c_m = d_1...d_n$ mit $m \le n$.

Dann ist c_1 irreduzibel und somit prim. Also muss $c_1|d_i$ für ein i gelte.

Nach Umnummerierung gilt $c_1|d_1$, also $d_1 = u_1c_1$ für $u_1 \in A^*$.

Also ist

$$c_1...c_m = u_1c_1d_2...d_n$$

$$\Rightarrow c_2...c_m = d_2...d_n$$

Fortsetzen des Argumentes liefert

$$1 = u_1...u_m d_{m+1}...d_n$$

für geeignete $u_i \in A^*$.

Dann sind aber $d_{m+1}, ..., d_n$ Einheiten und damit Eindeutig bis auf Einheiten und Reihenfolge.

0.5 Inverse und direkte Limiten

Definition 0.54. Man nennt I eine unter \leq **partiell geordnete Menge**, wenn für alle $x, y, z \in I$ gilt

- a) x < x.
- b) Aus $x \leq y$ und $y \leq z$ folgt $x \leq z$.
- c) Aus $x \le y$ und $y \le x$ folgt x = y.

Definition 0.55. Für jedes $i \in I$ sei A_i ein Ring und sei für jedes Paar $i, j \in I$ mit $i \leq j$ die Abbildung $f_{ij} : A_j \to A_i$ ein Ringhomomorphismus, sodass

- a) $f_{ii} = \mathrm{id}_{A_i}$ für alle $i \in I$
- b) $f_{ik} = f_{ij} \circ f_{jk}$ falls $i \leq j \leq k$.

Dann nennt man das System $(A_i, f_{ij})_{i,j \in I}$ projektives System von Ringen.

Definition 0.56. Ein Ring A zusammen mit dem Homomorphismus $f_i: A \to A_i$, sodass $f_i = f_{ij} \circ f_j$ für $i \leq j$ heißt **projektiver Limes** oder **inverser Limes** des Systems (A_i, f_{ij}) , wenn folgende universelle Eingenschaft erfüllt ist: Sind $h_u: B \to A_i$ für alle $i \in I$ Ringhomomorphismen mit $h_i = f_{ij} \circ h_j$ für $i \leq j$, so existiert genau ein Ringhomomorphismus $h: B \to A$ mit $h_i = f_i \circ h$ für alle $i \in I$.

Bemerkung 0.57. Falls ein projektiver Limes existiert, so ist er bis auf kanonische Isomorphie eindeutig:

Sind (A, f_i) und (B, h_i) projektive Limiten von (A_i, f_{ij}) , so gibt es Homomorphismen $h: B \to A$ und $g: A \to B$, die die oben beschrieben Verträglichkeitsbedingungen erfüllen.

Durch Zusammensetzen dieser Homomorphismen erhalten wir Abbildungen Die Eindeutigkeitsbedingung Impliziert nun, dass $g \circ h = \mathrm{id}_B$ und $h \circ g = \mathrm{id}_A$.

Man schreibt auch $A = \varprojlim_{i \in I} A_i$ für den projektiven Limes des Systems (A_i, f_{ij}) .

Existenz des Projektiven Limes. Sei $(A_i, f_{ij})_{i,j \in I}$ ein projektives System von Ringen.

Setze

$$A = \{(x_i)_{i \in I \mid f_{ij}(x_j) = x_i \text{ für } i \leq j}\} \subset \prod_{i \in I} A_i$$

und $h_j: A \to A_j, (x_i)_{i \in I} \mapsto x_j$.

Dann ist $(A, h_i)_{i \in I}$ ein projektiver Limes von (A_i, f_{ij}) .

Insebsondere definiert jede Famiele $(x_i)_{i \in I}$ mit $f_{ij}(x_j) = x_i$ ein eindeutiges Element $x \in \lim_{i \in I} A_i$.

 $Beispiel\ 0.58.$ Ein Beispiel für einen projektiven Limes sind die $p\text{-}\mathrm{adisches}$ ganzen Zahlen.

Sei $p \in \mathbb{Z}$ eine Primzahl, $I = \mathbb{N}$, mit der Ordnung \leq .

Für $n \ge 1$ sei $A_n = \mathbb{Z}/p^n\mathbb{Z}$. Sei

$$f_{mn}: A_n = \mathbb{Z}/p^n\mathbb{Z} \to A_m = \mathbb{Z}/p^m\mathbb{Z}$$

 $x \mapsto x \mod p^m$

Dann ist $(A_m, f_{mn})_{m,n\geq 1}$ ein projektives System. Der projektive Limes wird als Ring der p-adischen ganzen Zahlen

$$\mathbb{Z}_p = \varprojlim_{n \ge 1} A_n$$

bezeichnet. Also ist

$$\mathbb{Z}_p = \{ (x_n)_{n \ge 1} \mid x_n \in \mathbb{Z}/p^n \mathbb{Z}, f_{mn}(x_n) = x_n \text{ für } m \le n \}$$
$$= \{ (x_n)_{n \ge 1} \mid x_n \in \mathbb{Z}/p^n \mathbb{Z}, x_n \mod p^{n-1} = x_{n-1} \}$$

Wir schreiben die Elemente aus \mathbb{Z}_p auch als Folgen

$$x = (x_n)_{n>1} = (..., x_{n+1}, x_n,, x_1)$$

 $mit x_n \mod p^{n-1} = x_{n-1}.$

Addition und Multiplikation erfolgen komponentenweise.

Sie Abbildung

$$\mathbb{Z} \to \mathbb{Z}_p$$

 $m \mapsto (..., m + p^n, ..., m + p)$

ist in injektiver Ringhomomorphismus.

Sei $x=(...,x_n,x_{n-1},...,x_1)$. Ist $x\neq 0$, so ist x der Form $(...,x_{n+1},x_n,0,...,0)$ und für $j\leq n$ sind alle Einträge $x_j\neq$. Weiterhin gilt

 $p|x \Leftrightarrow x|x_n$ für alle $n \geq 1$

Satz 0.59. Sei $x \in \mathbb{Z}_p$. Dann ist

- a) $x \in \mathbb{Z}_p^* \Leftrightarrow p \not| x$
- b) Ist $x \neq 0$, so lässt sich x eindeutig schreiben als $x = p^n u$ mit $u \in \mathbb{Z}_p^*$ und $n \geq 0$.

Beweis. a) \Rightarrow Sei $x = (..., x_n, ..., x_1) \in \mathbb{Z}_p^*$. Dann exitsiert ein $y = (..., y_n, ..., y_1) \in \mathbb{Z}_p^*$ mit

$$xy = (..., x_n, ..., x_1)(..., y_n, ..., y_1)$$

= $(..., x_n y_n, ..., x_1 y_1)$
= $(..., 1, ..., 1) = 1$

d.h. jeder Eintrag von x_j von x ist invertierbar, d.h. $p \not| x_n$ für alle $n \ge 1$.

 \Leftarrow Angenommen $p \not| x$, dann muss $p \not| x_n$ für ein $n \ge 1$. Dann muss aber $p \not| x_n$ für alle $n \ge 1$. d.h. jedes x_n ist invertierbar. Sei

$$y = (..., x_n^{-1}, ..., x_1^{-1}) \in \prod_{n \ge 1} \mathbb{Z}/p\mathbb{Z}$$

dann erfüllt y die Kompatibilitätsbedingungen, d.h. $y \in \mathbb{Z}_p$ und xy = 1

b) Ist klar.

Definition 0.60. Sei $x \in \mathbb{Z}_p$, $x \neq 0$. Schreibe $x = p^n u$ mit $u \in \mathbb{Z}_p^*$. Dann heißt

$$n = \nu_p(x)$$

die p-adische Bewertung von x.

Man setzt $\nu_p(0) = \infty$.

Man bezeichnet $|x|_p = p^{-\nu_p(x)}$ als den *p*-adischen Betrag.

Lemma 0.61. Für die p-adische Bewertung gilt:

a)
$$\nu_p(xy) = \nu_p(x) + \nu_p(y)$$

b)
$$\nu_p(x+y) \ge \inf \{\nu_p(x), \nu_p(y)\}$$

Satz 0.62. \mathbb{Z}_p ist ein Integritätsbereich.

Der Quotientenkörper \mathbb{Q}_p von \mathbb{Z}_p wird als Körper der p-adischen Zahlen bezeichnet.

 \mathbb{Q}_p kann auch (analytisch) als Vervollständigung von \mathbb{Q} bezüglich des p-adischen Betrage konstruiert werden.

Definition 0.63. Man nennt I eine unter \leq **gerichtete Menge**, wenn für alle $x,yz\in I$ gilt

- a) x < x
- b) Aus $x \leq y$ und $y \leq z$ folgt $x \leq z$
- c) Für alle x, y exitsiert ein $z \in I$ mit $x \le z, y \le z$

Definition 0.64. Für jedes $i \in I$ sei ein Ring A_i und für jedes Paar $i, j \in I$ mit $i \leq j$ sei ein Ringhomomorphismus $f_{ij} : A_i \to A_j$ gegeben, mit

- a) $f_{ii} = \mathrm{id}_{A_i}$ für alle $i \in I$
- b) $f_{ik} = f_{jk} \circ f_{ij}$ für alle $i \leq j \leq k$

$$A_i \xrightarrow{f_{ij}} A_j \xrightarrow{f_{jk}} A_k$$

Ein solches System (A_j, f_{ij}) heißt induktives System von Ringen.

Definition 0.65. Ein Ring A zusammen mit dem einem Homomorphismus $f_i: A_i \to A$, sodass gilt $f_i = f_j \circ f_{ij}$ für $i \leq j$ heißt **induktiver Limes** oder **direkter Limes** des Systems (A_i, f_{ij}) , wenn folgende Universelle Eigenschaft erfüllt ist:

Ist B ein Ring, und sind $h_i:A_i\to B,\ i\in I$ Ringhomomorphismen mit $h_i=h_j\circ f_{ij}$ für $i\le j$, so existiert genau ein Ringhomomorphismus $h:A\to B$ mit $h_i=h\circ f_i$ für alle $i\in I$.

Lemma 0.66. Falls ein indktiver Limes existiert, so ist er eindeutig.

Beweis. Sei

$$\hat{A} = \bigcup_{i \in I} A_i = \bigcup_{i \in I} \{(i, x) \mid x \in A_i\}$$

Wir definieren die Äquivalenzrelation \sim auf \hat{A} : Seien $x, y \in \hat{A}$, d.h. $x \in A_i, y \in A_j$.

 $x \sim y \Leftrightarrow \text{ ex gibt ein } k \in I \text{ mit } i \leq k \text{ und } j \leq k \text{ und } f_{ik}(x) = f_{jk}(x)$

1 Polynomringe

1.1 Polynome mit einer Variable

Sei in diesem Abschnitt A ein Ring.

Definition 1.1. Sei A[X] die Menge der Folgen $(a_0, a_1, ...,)$ mit $a_i \in A$ und $a_i = 0$ für fast alle $i \in \mathbb{N}$.

Die Elemente dieser Menge heißen Polynome.

Definition 1.2. A[X] ist ein Ring mit

$$(a_0, a_1, ...,) + (b_0, b_1, ...) = (a_0 + b_0, a_1 + b_1, ...)$$

 $(a_0, a_1, ...,) \cdot (b_0, b_1, ...) = (c_0, c_1, ...)$

 $mit c_n = \sum_{k=0}^n a_{n-k} b_k.$

Das Nullelement ist $0=(0,0,\ldots)$ und $1=(1,0,0,\ldots)$ ist das Neutrale Element der Multiplikation.

Definition 1.3. A[X] wird als der **Polynomring** in der **Variablen** X bezeichnet.

Proposition 1.4. a) Die Abbildung $A \to A[X], a \mapsto (a, 0, 0, ...)$ ist ein Injektiver Ringhomomorphismus und A ist Unterring von A[X].

- b) Sei X=(0,1,0,...). Dann ist $X^n=(0,0,...,0,1,0,...)$ an n-ter Stelle und $aX^n=(0,...,0,a,0,...)$.
- c) Polynome lassen sich schreiben als

$$(a_0, a_1, ...) = \sum_{i=0}^{n} a_i X^i$$

d) Dann gilt für Addition und Multiplkation:

$$\sum_{k} a_k X^k + \sum_{k} b_k X^k = \sum_{k} (a_k + b_k) X^k \left(\sum_{k} a_k X^k \right) \left(\sum_{k} b_k X^k \right) = \sum_{k} c_k X^k$$

mit $c_k = \sum_{i+j=k} a_i b_j$.

Definition 1.5. a) Für ein Polynom $f = \sum_k a_k X^k$ heißt a_k der k-te Koeffizient von f.

b) Für $f \neq 0$ heißt

$$\deg(f) = \max\{i \mid a_i \neq 0\}$$

der Grad von f. (Falls f = 0, dann ist deg $f := -\infty$)

- c) Der Koeffizient a_n mit $n = \deg(f)$ heißt **Führender Koeffizient** von f.
- d) Ist der führende Koeffizient $a_n = 1$, so heißt f normiert

Theorem 1.6. Seien $f, g \in A[X]$.

- a) Dann ist $\deg(f+g) \le \max(\deg(f), \deg(g))$ und $\deg(fg) \le \deg(f) + \deg(g)$.
- b) Sind die führenden Koeffizienten von f oder g keine Nullteiler, so idt $\deg(fg) = \deg(f) + \deg(g)$.

Korollar 1.7. A ist genau dann Integritätsbereich wenn A[X] Integritätsbereich ist.

In diesem Fall qilt $A[X]^* = A^*$.

Beweis. \Leftarrow Ist A[X] ein Integritätsbereich, dann ist insbesondere $A \subset A[X]$.

 \Rightarrow Sei A ein Integritätsbereich. Dann gilt $\deg(fg) = \deg(f) + \deg(g)$. Sei zusätzlich $f,g \in A[X]$ mit fg = 0, dann ist $\deg(fg) = -\infty$.

Also muss $\deg(f) = -\infty$ oder $\deg(g) = -\infty$. Damit f = 0 oder g = 0. Also ist A[X] Integritätsbereich.

Sei nun fg = 1, dann ist $\deg(fg) = 0$, also muss $\deg(f) = \deg(g) = 0$. Dann sind $f, g \in A$.

Beispiel 1.8. Sei I ein Ideal in A. Die Komposition $A \to A/I \to (A/I)[X]$ ist ein Ringhomomorphismus. Dieser induziert einen Ringhomomorphismus π : $A[X] \to (A/I)[X]$ mit $\pi(x) = x$.

Diese Abbildung ist die Reduktion der Koeffizienten modulo I.

$$\operatorname{Kern}(\pi) = \{ \sum_{i} a_i X^i \mid a_i \in I \} = I[X]$$

und somit

$$(A/I)[X] \stackrel{\sim}{=} A[X/I[X]]$$

Lemma 1.9. Es gilt I ist Primideal in $A \Leftrightarrow I[X]$ ist Primideal in A[X].

1.2 Nullstellen von Polynomen

Definition 1.10. Sei $f \in A[X]$, $f \neq 0$. $a \in A$ heißt **Nullstelle** von f, wenn f(a) = 0.

Satz 1.11. Sei $f \in A[X]$, $f \neq 0$ und $a \in A$. Dann gilt

 $a \text{ ist Nullstelle von } f \Leftrightarrow (x-a)|f$

Beweis. \Rightarrow Sei f(a) = 0. Division mit Rest liefert

$$f = q(x - a) + r$$

П

mit deg(r) < 1. Aus f(a) = r folgt (x - a)|f

Satz 1.12. Sei $f \in A[X]$, $f \neq 0$ ein Polynom das eine Nullstelle in A hat. Dann gibt es paarweise verschiedene Elemente $a_1, ..., a_m \in A$ und $n_1, ..., n_m \in \mathbb{N}$ und ein Polynom $g \in A[X]$, welchen keine Nullstellen in A hat, sodass

$$f = g \prod_{i=1}^{m} (x - a_i)^{n_i}$$

ist.

Es gilt

$$\sum_{i=1}^{m} n_i \le \deg(f)$$

Beweis. Teilen mit Rest.

Definition 1.13. Lässt sich $f \in A[X], f \neq 0$ schreiben als

$$f = c \prod_{i=1}^{m} (x - a_i)^{n_i}$$

mit $c, a_1, ..., a_m \in A$ und $n_1, ..., n_m \in \mathbb{N}$, dann sag man f zerfällt in Linearfaktoren.

Satz 1.14. Sei A ein Integritätsbereich. Dann hat $f \in A[X]$ mit $f \neq 0$ höchsten $n = \deg(f)$ verschiedene Nullstellen in A.

Beweis. Durch Induktion über n:

Induktionanfang: Sei n = 0. (Konstantes Polynom \Rightarrow keine Nullstelle)

Induktionsschritt: Sei n > 0. Ist $a \in A$ eine Nullstelle von f, so ist f = g(x-a) mit $\deg(q) = n-1$.

Sei $b \neq a$ eine weitere Nullstelle von f, dass ist 0 = f(b) = q(b)(b - a).

Da aber $(b \neq a)$ ist, muss b Nullstelle von q sein.

Nach Induktionsannahme hat q höchstens n-1 verschiedene Nullstellen.

Korollar 1.15. Sei A ein unendlicher Integritätsbereich und $f \in A[X]$, $f \neq 0$. Dann gibt es ein $a \in A$ mit $f(a) \neq 0$.

Beispiel 1.16. Sei K ein endlicher Körper und sei

$$f = \prod_{a \in K} (x - a)$$

Dann ist f(a) = 0 für alle $a \in K$.

Satz 1.17. Sei G_1 zyklische Gruppe der Ordnung n_1 , G_2 zyklische Gruppe der Ordnung n_2 .

Sein n_1, n_2 Teilerfremd, so ist $G_1 \times G_2$ zyklisch.

Beweis. Sei $G_1 = \langle x_1 \rangle$ und $G_2 = \langle x_2 \rangle$. Die Abbildung

$$\mathbb{Z} \to G_1 \times G_2$$
$$m \mapsto (mx_1, mx_2)$$

hat den Kern $n_1, n_2 \in \mathbb{Z}$ und ist surjektiv nach ?? Dann ist

$$\mathbb{Z}/n_1n_2\mathbb{Z} \stackrel{\sim}{=} G_1 \times G_2$$

Theorem 1.18. Sei K ein Körper und $G \subset K^*$ Untergruppe. Ist G endlich, so ist G zyklisch.

Beweis. Da G einen endliche abelsche Gruppe ist zerfällt G in

$$g = \bigotimes_{p \text{ prim}} G_p$$

Dabei ist $G_p = \{g \in G \mid g^q = 1 \text{ für ein } q = p^n\}.$

Angenommen G_p ist nicht zyklisch. Dann ist $\operatorname{ord}(g) \leq |G_p|$ für alle $g \in G_p$ und es gibt ein $q = p^n < |G_p|$ mit $g^q = 1$ für alle $q \in G_p$.

Dann hat aber das Polynom $X^q - 1$ mehr als q Nullstellen in K. Widerspruch!

Also sind alle G_p zyklisch. Dann folgt nach ??, dass G zyklisch ist. \square

Korollar 1.19. Ist K endlicher Körper, so ist K^* zyklisch.

 $\textbf{Satz 1.20.} \ \ Sie \ A \ ein \ faktorieller \ Integrit \"{a}tsbereich \ mit \ Quotientenk\"{o}rper \ K. \\ Sei$

$$f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_i X^1 + a_0$$

ein Polynom in K[X].

Ist b = c/d eine Nullstelle von f in K mit teilerfremden c, d, so gilt

$$c|a_0 \ und \ d|a_n$$

Beweis. Aus f(b) = 0 folgt

$$a_n (c/d)_n + a_{n-1} (c/d)^{n-1} + \dots + a_0$$

Dann ist (nach Multiplikation mit d^n)

$$a_n c^n + a_{n-1} c^{n-1} d + \dots + a_n d^n = 0$$

Dann ist

$$a_n d^n = c(\dots)$$
$$a_n c^n = d(\dots)$$

Also gilt $c|a_0$ und $d|a_n$

Definition 1.21. Sei $f \in A[X]$, $f \neq 0$. Ist $a \in A$ eine Nullstelle von f, so gibt es ein $n \in \mathbb{N}$ mit

$$(x-a)^n|f$$
$$(x-a)^{n-1} \not f$$

Dann heißt n die Vielfachheit oder Multiplizität von a und man nennt a eine n-fache Nullstelle von f.

Definition 1.22. Die Abbildung

$$D: A[X] \to A[X]$$

$$\sum_{j=0}^{n} a_j X^j \mapsto \sum_{j=1}^{n} j a_j X^{j-1}$$

Man schreibt f' := D(f).

Lemma 1.23. Seien $f, g \in A[X]$, $a, b \in A$ Für die Ableitung D gilt

a)
$$D(af + bg) = aD(f) + bD(g)$$
 (Linearität)

b)
$$D(fg) = (Df)g + f(Dg)$$
 (Produktregel)

Satz 1.24. Sei $f \in A[X]$, $f \neq 0$. Sei $a \in A$ eine Nullstelle von f. Dann gilt

a hat Vielfachheit
$$1 \Leftrightarrow f'(a) \neq 0$$

Beweis. Da a eine Nullstelle von f ist gilt

$$f = q(x - a)$$

für ein $q \in A[X]$. Es folgt

$$f' = q + q'(X - a)$$

und a hat genau dann Vielfachheit 1, wenn $(x-a) \not| q$, also $(x-a) \not| f'$, bzw. $f'(a) \neq 0$.

Definition 1.25. Die Abbildung

$$\chi: \mathbb{Z} \to A$$
$$n \mapsto n \cdot 1$$

Ist ein Ringhomomorphismus und

$$\operatorname{Kern}(\chi) = (n) = n\mathbb{Z}$$

für ein $n \in \mathbb{Z}$, $n \ge 0$.

n heißt die **Charakteristik** von A und man schreibt n = char(A).

Lemma 1.26. Ist A ein Integritätsbereich, so ist n = 0 oder n ist prim.

Satz 1.27. Sei K ein Körper und $f \in K[X]$ $f \neq const$, dann gilt

a) Ist char(K) = 0, so gift

$$\deg(f') = \deg(f) - 1$$

b) Ist char(K) = p > 0, so gilt

$$\deg(f') \le \deg(f) - 1$$

Weiterhin gilt

$$f' = 0 \Leftrightarrow f(X) = g(X^p) \text{ für ein } g \in K[X]$$

1.3 Bewertungen

Definition 1.28. Sei K ein Körper. Ein **Betrag** auf K ist eine Abbildung

$$|\cdot|:K\to\mathbb{R}$$

mit

- a) $|x| \ge 0$ und $|x| = 0 \Leftrightarrow x = 0$
- b) |xy| = |x| |y|
- c) $|x + y| \le |x| |y|$

Definition 1.29. Ein Betrag $|\cdot|$ heißt **Archimedisch**, wenn es $x,y\in K$ gibt, sodass

$$|x + y| > \max\{|x| |y|\}$$

bzw nicht-archimedisch, wenn für alle x, y gilt, $dass|x + y| \le max\{|x|, |y|\}$.

Satz 1.30. Sei $|\cdot|$ ein nicht-archimedischer Betrag auf K. Ist $|x| \neq |y|$, so gilt

$$|x + y| = \max\{|x|, |y|\}$$

Beweis. Sei $|x| \leq |y|$. Dann ist

$$|x + y| \le \max\{|x|, |y|\} = |x|$$

Andererseits ist x = (x + y) + (-y), sodass

$$|x| = |(x+y) + (-y)| \le \max\{|x+y|, |y|\} = |x+y|$$

also $|x| \leq |x+y|$.

Definition 1.31. Sei A ein Integritätsbereich. Eine **Bewertung** auf A ist eine Abbildung

$$\nu: A \to \mathbb{R} \cup \{\infty\}$$

mit

a)
$$\nu(a) = \infty \Leftrightarrow a = 0$$

- b) $\nu(ab) = \nu(a) + \nu(b)$
- c) $\nu(a+b) \ge \min{\{\nu(a), \nu(b)\}}$

Satz 1.32. Sei A ein Integritätsbereich und $\nu: A \to \mathbb{R} \cup \{\infty\}$ eine Bewertung auf A.

a) ν kann zu einer Bewertung auf dem Quotientenkörper K von A fortgesetzt werden, durch

$$\nu(a/b) = \nu(a) - \nu(b)$$

b) Sei $c \in \mathbb{R}$ und c > 1. Dann definiert

$$|x| = c^{-\nu(x)}$$

 $einen\ nciht-archimedischen\ Betrag\ auf\ K.$

Beispiel 1.33.1. Sei A ein faktorieller Integritätsbereich und $p \in A$ prim. Dann lässt sich ein beliebiges $a \in A \setminus \{0\}$ schreiben als

$$a = a'p^{\nu_p(a)}$$

mit gcd(a', p) = 1 und $\nu_p(a) \in \mathbb{N}_0$.

Mit der Bedingung, dass $\nu_p(0) = \infty$, ist die Abbildung

$$\nu: A \to \mathbb{R} \cup \{\infty\}$$

eine Bewertung auf A.

Diese setzt sich zu einer Bewertung auf dem Quotientenkörper fort.

Beispiel 1.33.2. Sei $p \in \mathbb{Z}$ eine positive Primzahl. Dann definiert

$$\nu_p: \mathbb{Z} \to \mathbb{R} \cup \{\infty\}$$

wie Oben einen Bewertung auf $\mathbb Z$. Diese setzt sich zu einer Bewertung auf $\mathbb Q$ fort. Man definiert für $x\in\mathbb Q$

$$|x|_p := p^{-\nu_p(x)}$$

Dies liefert einen Betrag auf Q.

Sei $x\in\mathbb{Q}$. Schreibe $x=a/bp^n$ mit $p\not|ab$. Dann ist $|x|_p=p^{-n}$ und die Folge $1,p,p^2,\ldots$ ist eine Nullfolge, bzgl $\left|\cdot\right|_p$.

Die Vervollständigung von Q bezüglich $|\cdot|_p$ ist isomorph zu \mathbb{Q}_p .

Theorem 1.34 (Lemma von Gauß). Sei A in Integritätsbereich mit Quotientenkörper K und sei $\nu: A \to \mathbb{R} \cup \infty$ eine Bewertung auf A. Setze ν fort zu einer Bewertung auf K durch

$$\nu(a/b) = \nu(a) - \nu(b)$$

Für $f = \sum a_j X^j \in K[X]$ definieren wir

$$\nu(f) = \min\{\nu(a_i)\}\$$

 $f\ddot{u}r \ f \neq 0 \ und \ \nu(0) = \infty.$

Dann ist ν eine Bewertung auf K[X].

Beweis. Wir zeigen

$$\nu(fg) = \nu(f) + \nu(g).$$

- Seien f,g Konstant, dann ist die Aussage klar.
- Sei nun $g = c \in K$. Dann ist

$$\nu(gf) = \nu(cf)$$

$$= \min\{\nu(ca_i)\} = \min\{\nu(c) + \nu(a_i)\}$$

$$= \nu(c) + \min\{\nu(a_i)\}$$

$$= \nu(g) + \nu(f)$$

Seien nun f, g nicht Konstant. Durch multipliaktion mit geeigenter Konstante können wir erreichen, dass

$$\nu(f) = \nu(g) = 0$$

Es ist zu zeigen, dass $\nu(fg)=0$. Sei dazu $f=\sum_{i=0}^n a_i X^i,\,g=\sum_{j=0}^m b_j x^j.$ Dann ist

$$fg = \sum_{k=0}^{m+n} c_k X^k$$

 $_{
m mit}$

$$c_k = \sum_{i+j=k} a_i b_j$$

Es gilt

$$\nu(c_k) \ge \min\{\underbrace{\nu(a_i b_j)}_{=\nu(a_i) + \nu(b_j) \ge 0}\} \ge 0$$

sodass $\nu(fg) \geq 0$.

Aus $c_{s+t} = a_0 b_{s+t} + a_1 b_{s+t-1} + \dots + a_s b_t + \dots + a_{s+t} b_0$ folgt

$$a_s b_t = c_{s+t} - a_0 b_{s+t} - a_1 b_{s+t-1} - \dots - a_{s+t} b_0$$

Dann ist also

$$\nu(a_s b_t) \ge \min\{\nu(c_{s-t}), \underbrace{\nu(a_0 b_{s+t})}_{=\nu(a_0)+\nu(b_{s+t}>0)}, ..., \nu(a_{s+t} b_0)\} > 0$$

damit $\nu(a_s) + \nu(b_t) > 0$. Widerspruch!

1.4 Der Satz von Gauß

Definition 1.35. Sei A ein faktorieller Integritätsbereich mit Quotientenkörper K.

Ein Polynom

$$f = a_n X^n + a_{n-1} X^{n-1} + \dots + a_n \in A[X]$$

heißt **primitiv**, wenn für seine Koeffizienten gilt: $gcd(a_0,...,a_n) = 1$.

Äquivalent dazu $\nu_p(f) = 1$ für alle Primelemente $p \in A$.

Ein Polynom $f \in K[X]$, $f \neq 0$ lässt sich schreiben als $f = c\tilde{f}$ mit $\tilde{f} \in A[X]$ primitiv und $c \in K$.

Satz 1.36. Sei A ein faktorieller Integritätsbereich mit Quotientenkörper K und $f \in A[X]$ primitiv mit $\deg(f) \geq 1$. Dann gilt

f ist irreduzibel in $A[X] \Leftrightarrow f$ ist irreduzibel in K[X]

 $Beweis. \Rightarrow \text{Sei } f$ irreduzibel in A[X]. Sei f=gheine Zerlegung von f in K[X]. Schreibe

$$g = c\tilde{g}$$
 $h = d\tilde{h}$

mit $\tilde{g}, \tilde{h} \in A[X]$ primitiv. Dann ist

$$f = cd\tilde{g}\tilde{h}$$

und insbesondere

$$\underbrace{\nu_p(f)}_{\geq 0} = \nu_p(cd) + \underbrace{\nu_p(\tilde{g})}_{=0} + \underbrace{\nu_p(\tilde{h})}_{=0}$$

Also $\nu_p(cd) \geq 0$ für alle $p \in A$ prim.

Dann muss aber die Potenz von jedem Primfaktor des Nenners = 0 sein.

Also ist $a = cd \in A$. Da $A[X]^* = A^*$ und $f = a\tilde{g}\tilde{h}$ und da f irreduzibel ist muss $a\tilde{g}$ oder \tilde{h} eine Einheit in A[X] sein.

Dann ist $a\tilde{g}$ oder \tilde{h} in A^* , also g oder h Konstant und somit in $K^* = K[X]^*$.

 \Leftarrow Sei f irreduzibel in K[X]. Sei f=gh in A[X]. Dann ist g oder h in $K[X^*]$, also konstant.

Sei g = c für ein $c \in A$, dann ist

$$\nu_p(f) = \nu_p(c) + \nu_p(h)$$

Da f primitiv ist, ist $\nu_p(f) = 0$.

Dann gilt $\nu_p(c) = \nu_p(h) = 0$ für alle $p \in A$ prim.

Also muss $c \in A^* = A[X]^*$.

Bemerkung. Sei A wie Oben, $f \in A[X]$, nicht zwingend Primitiv mit $\deg(f) \ge 1$ und f irreduzible in K[X], dann ist f irreduzible in A[X].

Theorem 1.37 (Satz von Gauß). Sei A ein faktorieller Integritätsbereich. Dann ist auch A[X] ein faktorieller Integritätsbereich.

Beweis. Sei K der Quotientenkörper von A. Sei $f \in A[X] \setminus (A[X^*] \cup \{0\})$.

Wir zeigen, dass f über A[X] in irreduzible Faktoren zerfällt.

Wir schreiben $f = c\tilde{f}$ mit $\tilde{f} \in A[X]$ primitiv und $c \in A$.

c zerfällt in A in irreduzible Faktoren.

Diese sind auch irreduzibel in A[X].

Da K[X] auch faktoriell ist, zerfällt \tilde{f} in K[X] in irreduzible Faktoren $\tilde{f}=\tilde{f}_1\cdot\ldots\cdot\tilde{f}_n$ mit $\deg(\tilde{f}_i)\geq 1$.

Es gibt insbesondere eine Zerlegung

$$\tilde{f} = d\tilde{f}_1 \cdot \dots \cdot \tilde{f}_n$$

mit $d \in K$ und $\tilde{f}_i \in A[X]$ primitiv und $\deg(\tilde{f}_i) \geq 1$. Mit 1.36 sind die \tilde{f}_i auch irreduzible in A[X].

Aus

$$\underbrace{\nu_p(\tilde{f})}_{=0} = \nu_p(d) + \underbrace{\nu_p(\tilde{f}_1)}_{=0} + \dots + \underbrace{\nu_p(\tilde{f}_n)}_{=0}$$

folgt $\nu_p(d) = 0$ für alle $p \in A$ prim.

Jetzt ist noch zu zeigen, dass die gefundenen Zerlegung eindeutig ist. Se

$$f = c_1 \cdot \ldots \cdot c_m g_1 \cdot \ldots \cdot g_r$$
$$= d_1 \cdot \ldots \cdot d_n h_1 \cdot \ldots \cdot h_s$$

mit $c_i, d_j \in A$ irreduzibel und $g_i.h_j \in A[X]$ irreduzibel mit deg ≥ 1 . Dann ist

$$c/d \cdot g_1 \cdot \ldots \cdot g_r = h_1 \cdot \ldots \cdot h_s$$

mit $c = c_1 \cdot ... \cdot c_m$, $d = d_1 \cdot ... \cdot d_n$ sind die g_i, h_j irreduzible in A[X] und somit auch in K[X].

Da K[X] faktoriell ist, ist r = s und nach Umsortierung ist

$$c/d \cdot g_1 = x_1 h_1$$
$$g_j = x_j h_j$$

für alle j > 1.

Dann ist

$$\nu_p(c/d) + \underbrace{\nu_p(g_1)}_{=0} = \nu_p(x_1) + \underbrace{\nu_p(h_1)}_{=0}$$
$$\nu_p(x_i) - \nu_p(c/d) = 0$$
$$\nu_p(x_i \cdot d/c) = 0$$

Wir definieren $\epsilon_1 := x_i \cdot d/c$. Dann ist $\epsilon_1 \in A^*$.

Zusätzlich ist

$$\underbrace{\nu_p(g)}_{\geq 0} = \nu_p(x_j) + \underbrace{\nu_p(h_j)}_{=0}$$

Sei $\epsilon_j = x_j$ für $j \ge 1$. Dann ist $\epsilon_j = x_j \in A^*$. Also ist

$$g_i = \underbrace{\epsilon_i}_{\in A^*} h_i$$

Weiterhin folgt $c = \epsilon d$ für ein $\epsilon \in A^*$.

Da A faktoriell ist, gilt m=n und nach Umnummerieren $c_i\eta_i d_i$ mit $\eta_i d \in A^*$.

Korollar 1.38. Sie K ein Körper, dann ist $K[X_1,, X_n]$ ein faktorieller Integritätsbereich.

Beispiel 1.39.1. $\mathbb{Z}[X]$ ist ein faktorieller Integritätsbereich aber kein Hauptidealring.

Beispiel 1.39.2. Sei K ein Körper. K[X] ist ein Hauptidealring und somit faktorieller. K[X,Y] ist kein Hauptidealring aber faktoriell.

1.5 Der Hilbertsche Basissatz

Theorem 1.40 (Hilbertscher Basissatz). Sei A ein noetherscher Ring. Dann ist auch A[X] noethersch.

 $Beweis.\,$ Sei $I\subset A[X]$ ein Ideal. W
r zeigen, dass Iendlich erzeugt ist. Für
 $n\in\mathbb{N}_0$ sei

$$I_n := \{ f \in I \mid \deg(f) \le n \}$$

Für $f = \sum_{a_i X^i \in A[X]} \text{ sei } b_n(f) = a_n.$ Dann gilt

$$b_n(f+g) = n_b(f) + b_n(g)$$
$$b_n(af) = ab_n(f)$$

für alle $f, g \in A[X]$ und $a \in A$.

Die Menge $I(n) := b_n(I_n)$ ist ein Ideal in A und es gilt

$$I(0) \subset I(1) \subset \dots$$

den $f \in I_n$ impliziert $Xf \in I_{n+1}$. Dann ist $b_n(f) = b_{n+1}(Xf) \in I(n+1)$. Da A noethersch ist wird jede Folge stationär. Also gibt es $m \in \mathbb{N}$, mit

$$I(m) = I(m+1) = \dots$$

Für jedesn=0,1,... wähle Polynome f_{n_j} , sodass I(n) von den Koeffizienten $b_n(f_{n_j})$ erzeugt wird.

Dann wird I von den f_{n_j} über A[X] erzeugt: Sei $f \in I$ vom Grad t.

• Ist $t \leq m$, so hat

$$f - \sum_{t} a_{t_j} f_{t_j} \in I$$

 $Grad \leq t - 1$.

Nach endlich vielen Schritten hat man f als Linearkombination der f_{n_j} dargestellt.

• Ist t > m, so reduziert man den Grad von f durch

$$f - \sum a_{t_j} X^{t-m} f_{m_j} \in I$$

Eigenschaften von Polynomringen

Sei A ein Ring.

- a) A Integritätsbereich $\Leftrightarrow A[X_1,...,X_n]$ Integritätsbereich. Dann gilt $A[X-1,...,X_n]^*=A^*.$
- b) (Gauss) A faktorieller Integritätsbereich $\Leftrightarrow A[X_1,...,X_n]$ faktorieller Integritätsbereich.
- c) (Hilbert) A noethersch $\Leftrightarrow A[X_1,...,X_n]$ noethersch.
- d) Sei A zusätzlich Integritätsbereich, dann ist A Körper $\Leftrightarrow A[X]$ Hauptidealring.

1.7 Irreduziblitätskriterien

Theorem 1.41 (Eisenstein). Sei A ein faktoriell Integritätsbereich mit Quoti $entenk\"{o}rper\ K = Q(A).$ Sei

$$f = a_n X^n + \dots + a_0 \in A[X]$$

 $mit \deg(f) = n \ge 1$. Sei $p \in A$ prim $mit \ p|a_i \ f\"ur \ i = 0, ..., n-1 \ und \ a \ /a_n \ und$ $p^2 \not| a_0$.

Dann ist f irreduzibel in K[X].

Ist f zusätzlich primitiv, so ist f auch irreduzibel in A[X].

Beweis. Sei $f=c\tilde{f}$ mit $\tilde{f}\in A[X]$ primitiv und $c\in A$. Es reciht zu ziegen, dass \tilde{f} irreduzibel in A[X] ist.

Angenommen $f = gh \text{ mit } g, h \in A[X] \setminus A$. Sei

$$\tilde{f} = \sum_{k=0}^{n} \tilde{a}_k X^k$$
$$g = \sum_{k=0}^{s} b_k X^k$$
$$h = \sum_{k=0}^{s} a_k X^k$$

Dann folgt aus $p \not| a_n$, dass $p \not| c$ und aus $p | a_0$, dass $p | \tilde{a}_0 = b_0 d_0$.

Wir können annehmen. dass $p|b_0$.

Aus $p^2 \not| a_0$ folgt, das $p \not| d_0$. Es gibt aber j, sodass $p \not| b_j$ (da sonst p|g).

Wähle nun j, sodass $p|b_i$ für alle i < j und $p \not|b_j$.

Dann muss $1 \le j \le s \le n$. Aus

$$\tilde{a}_i = b_0 d_i + b_1 d_{i-1} + \dots + b_i d_0$$

folgt, (da $p|\tilde{a}_i$), dass $p|b_id_0$ und $p|d_0$. Widerspruch!.

Beispiel 1.42. Sei $p \in \mathbb{Z}$ eine positive Primzahl. dann ist das p-te Kreisteilunsgpolynom

$$f = X^{p-1}X^{p-2} + \dots + 1$$

irreduzibel in Z[X].

Satz 1.43 (Reduktionskriterium). Sei A ein faktorieller Integritätsbereich mit Quotientenkörper K, $p \in A$ prim und $d = a_n X^n + ... + a_0$ ein Polynom in A[X] mit $\deg(f) \geq 1$ und $\neq a_n$.

$$\pi: A[X] \to (A/(p))[X]$$

und $\pi(f)$ irreduzible in (A/(p))[X], dann ist f irreduzibel in K[X].

Beweis. Wir nehmen an, dass f primitiv ist.

Ist f reduzibel über K[X] so auch über A[X].

Sei f = gh mit $g, h \in A[X] \setminus A$. Da p den höchsten Koeffizienten von f nicht teilt, gilt dies auch für g und h dun es gilt

$$\pi(f) = \pi(gh) = \pi(g)\pi(h)$$

d.h. $\pi(f)$ zerfällt in (A/(p))[X].

Sei f nun beliebig. Schreibe $f = c\tilde{f}$ mit $x \in A$ und $\tilde{f} \in A[X]$ primitiv.

Angenommen f ist nicht irreduzibel in K[X], dann gilt f reduzibel in $K[X] \Rightarrow \tilde{f}$ ist reduzibel in $K[X] \Rightarrow \tilde{f}$ ist reduzibel in $A[X] \Rightarrow \tilde{f} = gh$ mit $g, h \in A[X] \setminus A \Rightarrow f = cgh$.

Somit ist

$$\pi(f) = \pi(cg)\pi(h)$$

eine Zerlegung von $\pi(f)$.

Beispiel 1.44.1. Wir zeigen, dass $F = X^2 + 3X^2$ irreduzibel in $\mathbb{Q}[X]$ ist. Wir fassen f als Polynom über \mathbb{Z} auf und reduzierten die Koeffizienten mod 3.

$$\pi(f) = X^3 - X - 1$$

Da $\pi(f)(t) \neq 0$ für alle $t \in \Pi_3$ ist, ist $\pi(f)$ irreduzibel über Π_3 und somit auch über \mathbb{Q} .

Beispiel 1.44.2. Das Polynom $f = X^4 + 1$ ist irreduzibel in $\mathbb{Q}[X]$ und in Z[X]. Allerdings ist $\pi(f) \in \Pi_p[X]$ reduzibel für alle positiven Primzahlen p.

1.8 Symmetrische Polynome

Definition 1.45. Für $f \in A[X_1,...,X_n]$ und $\sigma \in S_n$ sei

$$\sigma(f) = \sigma(f(X_1, ..., X_n)) := f(X_{\sigma(1)}, ..., X_{\sigma(n)})$$

Dies liefert eine Operation von S_n auf $A[X_1,...,X_n]$.

Bemerkung 1.46. Insbesondere gilt für $\sigma, \tau \in S_n$, dass $(\sigma \tau)(f) = \sigma(\tau(f))$.

Definition 1.47. Die Polynome in $A[X_1,...,X_n]^{S_n}$ (invariant unter S_n) werden als **symmetrische Polynome** bezeichnet.

Proposition 1.48. Die Gruppenoperationen $\sigma \in S_n$ sind Automorphismen auf $A[X_1,...,X_n][X]$.

Satz 1.49. a) $A[X_1,...X_n]^{S_n}$ enthält A und ist ein Unterring von $A[X_1,...,X_n]$.

b) S_n operiert auf $A[X_1,...,X_n][X]$ durch

$$\sigma\left(\sum_{j=0}^{n} a_j X^j\right) = \sum_{j=0}^{n} \sigma(a_j) X^j$$

c) Sei $f = (X - X_1)(X - X_2)...(X - X_n)$. Dann ist

$$f = X^{n} + \sum_{j=1}^{n} (-1)^{j} s_{j} X^{n-j}$$

für eindeutig bestimmte Polynome $s_j \in A[X_1,...,X_n]$

$$d) \ \sigma(f) = f$$

Definition 1.50. Sei $f \in [X - 1, ..., X_n][X], \sigma \in S_n$. Dann bezeichnet man die s_j in

$$f = \sigma(f) = \sigma\left(X^n + \sum_{j=1}^n (-1)^j s_j X^{n-j}\right)$$

als elementarsymmetrische Polynome.

Lemma 1.51. Die elementarsymmetrischen Polynom sind symmetrisch, d.h. $\sigma(s_i) = s_i$. Sie sind gegeben durch

$$s_1 = X_1 + X_2 + \dots + X_n s_2 = X_1 X_1 + X_1 X_3 + \dots + X_1 X_n + X_2 X_3 + \dots + X_{n-1} X_n$$

$$= \sum_{i \le j} X_i X_j \vdots$$

$$s_n = X_1 \dots X_n$$

Satz 1.52. Die Polynome s_i sind homogen vom Grad j.

Definition 1.53. Das Monom $X_1^{i_1}...X_n^{i_n} \in A[X_1,...,X_n]$ hat Grad $i_1+...+i_n$. Für den **Grad** $\deg(f)$ für $f \in A[X_1,...,X_n]$ ist das Maximum über den Grad der Monome.

Definition 1.54. Das Monom $X_1^{i_1}...X_n^{i_n} \in A[X_1,...,X_n]$ hat Gewicht $i_1+2i_2+...+ni_n$.

Das Gewicht gew(f) für $f \in A[X_1,...,X_n]$ ist das Maximum über das Gewicht der Monome.

Theorem 1.55. a) Sei $f \in A[X_1,..,X_n]^{S_n}$ mit $\deg(f) = d$. Dann gibt es eine Polynom $g \in A[X_1,...,X_n]$ mit $\gcd(g) \leq d$, sodass $f = g(s_1,...,s_n)$.

b) Ist f zusätzlich homogen, so hat jedes Monom Gewicht d.

Beweis. a) Wir beweisen durch vollständige Induktion über n. Für n=1 gilt die Behauptung, da $s_1=x_1$.

Angenommen die Behauptung gilt für Polynome in $A[X_1, ..., X_{n_1}]^{S_{n-1}}$. Sei $f \in A[X-1, ..., X_n]$. Es ist zu zeigen, dass f ein Polynom in $s_1, ..., s_n$ ist.

Setzt man $X_n = 0$ in

$$\prod_{j=1}^{n} (X - X_j) = X^n + \sum_{j=1}^{n} (-1)^j s_j X^{n-j}$$

für $s_j = s_j(X_1, ..., X_n)$, so erhält man

$$(X - X_1)(X - X_2)...(X - X_{n-1})(X) = X^n \sum_{j=1}^n (-1)^j (s_j)_0 X^{n-j}$$

mit $(s_j)_0 := s_j(X_1, ..., X_{n-1}, 0)$. Andererseits ist

$$(X - X_1)(X - X_2)...(X - X_{n-1})(X) = X \left(X^{n-1} \sum_{j=1}^{n-1} (-1)^j \tilde{s}_j X^{n-1-j} \right)$$

Dann muss aber $(s_1)_0 = \tilde{s}_1,...,(s_{n-1})_0 = \tilde{s}_{n-1}$ und $(s_n)_0 = 0$.

Wir beweisen die Aussage durch Induktion über $d = \deg(f)$.

Hat f Grad 0, so ist die Behauptung trivial.

Sei also $\deg(f)=d>0$. Dann gibt es ein Polynom $g_1\in A[X_1,...,X_{n-1}]$ mit $\gcd(g)\leq d$, sodass

$$f(X_1,...,X_{n-1},0) = g_1((s_1)_0,...,(s_{n-1})_0)$$

Grad $\leq d$ in $X_1,...,X_{n-1}$ hat, da $f(X_1,...,X_{n-1},0)$ symmetrisch unter S_{n-1} ist.

Das Polynom $g_1(s_1,...,s_{n-1})$ hat Grad $\leq d$ in $X_1,...,X_n$ weil die s_j homogen sind.

Das Polynom

$$f_1(X_1,...,X_n) = \underbrace{f(X_1,...,X_n)}_{\begin{subarray}{c} \operatorname{Grad} \leq d \\ \operatorname{in} X_1,...,X_n \end{subarray}} - \underbrace{g(s_1,...,s_{n-1})}_{\begin{subarray}{c} \operatorname{Grad} \leq d \\ \operatorname{in} X_1,...,X_n \end{subarray}}$$

hat Grad $\leq d$ in $X_1,...,X_n$ uns ist symmetrisch.

Aus $f_1(X_1,...,X_{n-1},0) \ge 0$ folgt $X_n|f_1$. Damit auch $X_i|f_1$ und somit $s_n|f_1$.

Dann gibt es f_2 , sodass $f_1 = s_n f_2$.

Dabei ist f_2 symmetrisch unter S_n und hat $\operatorname{Grad} \leq d-n$.

Nach Induktionshypothese gibt es ein Polynom $g_2 \in A[X_1,...,X_n]$ mit Gewicht $\leq d-n$, sodass

$$f_2 = g_2(s_1, ..., s_n)$$

Es folgt $f = f_1 + g_1 = s_n g_2 + g_1$.

Dann ist

$$f(X_1,...,X_n) = g_1(s_1,...,s_{n-1}) + s_n g_2(s_1,...,s_n) = g(s_1,...,s_n)$$

mit

$$g(X_1, ..., X_n) = \underbrace{g_1(X_1, ..., X_n)}_{\text{Gewicht } \leq d} + \underbrace{\underbrace{X_n}_{\text{Gew } n} \underbrace{g_2(X_1,, X_n)}_{\text{Gew } \leq d - n}}_{\text{Gew } < d}$$

b) Siehe Lang

Theorem 1.56. Sie elementarsymmetrischen Polynome $s_1, ..., s_n \in A[X - 1, ..., X_n]$ sind algebraisch unabhängig über A.

Beweis. Durch Induktion über n.

Für n = 1 ist die Behauptung klar.

Sei n > 1 und die $s_1, ..., s_n$ seien nicht algebraisch unabhängig.

Wähle $f \in A[X_1,...,X_n]$ mit kleinstem Grad und $f \neq 0$, sodass

$$f(s_1, ..., s_n) = 0$$

Schreibe f als Polynom in X_n mit Koeffizienten in $A[X_1,...,X_{n_1}]$.

$$f(X_1,...,X_n) = f_0(X_1,...,X_{n-1}) + f_1(X_1,...,X_{n-1})X_n + ... + f_d(X_1,...,X_{n-1})X_n^d$$

Angenommen $f=X_n\psi$ für ein $\psi\in A[X-1,...,X_n]$ und $x_n\psi(s_1,...,s_n)=0,$ dann muss $\psi(s_1,...,s_n=0)$ sein.

Dies ist ein Wiederspruch zu der Annahme, dass f minimalen Grad hat.

Also muss $f_0 \neq 0$ sein.

Wir setzen nun $x_i = s_i$ und erhalten

$$0 = f(s_1, ..., s_n)$$

= $f_0(s_1, ..., s_n) + ... + f_d(s_1, ..., s_{n-1})s_n^d$

Nun setzen wir $X_n = 0$. Dann ist

$$0 = f((s_1)_0, ..., (s_{n-1})_0) = f_0(\tilde{s}_1, ..., \tilde{s}_{n-1})$$

Nach Induktionshypothese sind die $\tilde{s}_1,...,\tilde{s}_n$ algebraisch unabhängig. Widerspruch!

Beispiel 1.57. Sei n=3 Dann ist $X_1^3+X-2^3+X_3^3$ ein symmetrisches Polynom. Es gilt

$$X_1^3 + X_2^3 + X_3^3 = s_1^3 - 3s_1s_2 + 3s_3$$

Definition 1.58. Sei $f \in A[X]$ ein normiertes Polynom vom Grad n. Dann ist die **Diskriminante** von f definiert als

$$D(f) := d_n(-c_1, c_2, -c_3, ..., (-1)^n c_n) \in A$$

Dabei ist $d_n \in \mathbb{Z}[X-1,...,X_n]$ mit

$$d_n(s_1, ..., s_n) := \prod_{i \le j} (X_i - X_j)^2$$

Satz 1.59. Sei $f \in A[X]$ ein normiertes Polynom. Ist

$$f = \prod_{i=1}^{n} (X - \alpha i)$$

eien Faktorisierung von f in einem Oberring $B \supset A$, dann ist

$$D(f) = \prod_{i \le j} (\alpha_i - \alpha_j)^2$$

Beweis. Es ist

$$\prod_{i=1}^{n} = X^{n} + \sum_{i=1}^{n} (-1^{i}) s_{i} X^{n-i}$$

so dass

$$f = \prod_{i=1}^{n} (X - \alpha_i) = X^n + \sum_{i=1}^{n} (-1)^i s_i(\alpha_1, ..., \alpha_n) X^{n-1} = X^n + \sum_{i=1}^{n} x_i X^{n-i}$$

d.h.

$$c_i = (-1)^i s_i(\alpha_1, ..., \alpha_n)$$

und

$$D(f) = d_n(-c_1, c_2, ..., (-1)^n c_n)$$

= $d_n(s_1(\alpha_1, ..., \alpha_n), ..., s_n(\alpha_1, ..., \alpha_n))$
= $\prod_{i < j} (\alpha_1 - \alpha_j)^2$

Satz 1.60. Ist $B \supset A$ ein Integritätsbereich so gilt

 $D(f) = 0 \Leftrightarrow f \text{ hat Mehrfache Nullstellen in } B$

Beispiel 1.61.1. Für $f=X^2+aX+b$ ist $D(f)=a^2-4b$ (Wurzel der pq-Formel) Beispiel 1.61.2. Für $f=X^3+aX+b$ ist $D(f)=-4a^3-27b^2$.

2 Körpererweiterungen

2.1 Grundbegriffe

Definition 2.1. Sei L ein Körper, $K \subset L$ heißt **Teilkörper** von L, wenn K abgeschlossen beglich Addition und Multiplikation ist und unter diesen Operationen selbst wieder Körper ist.

Definition 2.2. Sei K ein Körper. Sei $L \supset K$ selbst wieder Körper, dann bezeichnet man L als **Erweiterungskörper** von K und spricht von der **Körpererweiterung** L/K.

Definition 2.3. Sei L/K eine Körpererweiterung. Dann heißt der Körper M mit $K \subset M \subset L$ **Zwischenkörper** der Erweiterung L/K.

Definition 2.4. Sei L/K eine Körpererweiterung und $M \subset L$. Dann bezeichnet man mit K(M) den **kleinsten Teilkörper** von L, der $K \cup M$ enthält. Man sagt, dass K(M) durch Adjunktion von M zu K entsteht.

Proposition 2.5. Sei L/K eine Körpererweiterung und $M \subset L$. Dann besteht K(M) aus allen Elementen der Form

$$\frac{f(a_1, ..., a_n)}{g(a_1, ..., a_n)}$$

mit $f, g \in K[X_1, ..., X_n], g(a_1, ..., a_n) \neq 0$ und $a_1, ..., a_n \in M$.

Beweisskizze. Die angegebenen Elemente bilden einen Teilkörper von L, der $K \cup M$ enthält und jeder Teilkörper von L der $K \cup M$ enthält, enthält auch die angegebene Elemente.

Proposition 2.6. Für jedes $a \in K(M)$ gibt es eine endliche Teilmenge $M' \subset M$, sodass $a \in K(M')$.

Definition 2.7. Sei K ein Körper. Sei

$$\mathbb{Z} \xrightarrow{\phi} K$$
$$n \mapsto n \cdot 1$$

Dann ist $\operatorname{Kern}(\phi) = (n)$ für ein eindeutiges $n \in \mathbb{N}$. n wird als **Charakteristik** von K bezeichnet.

Korollar 2.8. Sei K ein Körper, dann ist char(K) = 0 oder prim.

Beweis. Da
$$\mathbb{Z}/(n) = \mathbb{Z}/\operatorname{Kern}(\phi) \cong \operatorname{Im}(f) \subset K$$
 keine Nullteiler hat.

Beispiel 2.9. a) $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ haben Charakteristik 0.

b) Sei $p \in \mathbb{Z}$ eine positive Primzahl. Dann hat $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ Charakteristik p.

Proposition 2.10. Ist K ein Teilkörper von L, so gilt

$$char(K) = char(L)$$

Definition 2.11. Sei K ein Körper. Dann heißt

$$P := \bigcap_{L \text{ Teilk\"orper von } K} L$$

der **Primkörper** von K.

Satz 2.12. Sei K ein Körper und P der Primkörper von K. Dann gilt

- a) $char(K) = p \text{ für } p > 0, p \text{ prim } \Leftrightarrow P \stackrel{\sim}{=} F_p$
- b) $\operatorname{char}(K) = 0 \Leftrightarrow P \stackrel{\sim}{=} \mathbb{Q}.$

Definition 2.13. Ist K ein Teilkörper von L, sokönnen wir L als Vektorraum über K auffassen.

Die Dimension diese Vektorrausm heißt Grad von L über K.

$$[L:K] := \dim_K(L)$$

Definition 2.14. Die Erweiterung L/K heißt **endlich**, wenn $[L:K]<\infty$.

Proposition 2.15. Ist L endlich und K kein Teilkörper von L, so gilt

$$|L| = |K|^m$$

mit m = [L:K].

Theorem 2.16 (Gradsatz). Seien $K \subset L \subset M$ Körpererweitungen. Dann gilt

$$[M:K] = [M:L][L:K]$$

Ist $(x_i)_{i\in I}$ eine Basis von L/K und $(y_j)_{j\in J}$ eine Basi von M/L, so ist $(x_iy_j)_{(i,j)\in I\times J}$ eine Basis von M/K.

Beweis. Es reicht die zweite Behauptung zu zeigen.

Sei $z \in M$. Dann ist

$$z = \sum_{j \in J} a_j y_j$$

mit $a_j \in L$ und $a_j = 0$ für fast alle $j \in J$.

Wir können a_j schreibe als

$$a_j = \sum_{i \in I} b_{ji} x_i$$

mit $b_{ij} \in K$ und $j_{ij} = 0$ für fast alle $i \in I$.

Also ist

$$z = \sum_{i \in I, j \in J} b_{ij} x_i y_j$$

d.h. $(x_i, y_j)_{(i,j) \in I \times J}$ ist ein Erzeugendensystem von M/K.

Wir zeigen, dass die Vektoren x_i, y_i linear unabhängig über K sind. Sei

$$\sum_{i,j} \underbrace{c_{ij}}_{\in K} \underbrace{x_i}_{\in K} \underbrace{y_i}_{\in M} = 0$$

Dann gilt für jedes j, dass

$$\sum_{i \in I} c_{ij} x_i = 0$$

weil die y_i linear unabhängig über L sind.

Aus der linearen Unabhängigkeit der x_i über K folgt $c_{ij} = 0$.

2.2 Algebraische Körpererweiterungen

Definition 2.17. Sei L/K eine Körpererweiterung. $\alpha \in L$ heißt **algebraische** über K, wenn es eine

Definition 2.18. Ein Körper K heißt **algebraisch abgeschlossen** wenn jedes Polynom $f \in K[X] \setminus K$ eine Nullstelle in K hat. (Äquivalent: f zerfällt in Linearfaktoren)

Satz 2.19. Ein Körper K ist genau dann algebraisch abgeschlossen wenn es keine echte algebraische Erweiterung L/K zulässt.

Theorem 2.20. Sei K ein Körper. Dann gibt es einen algebraische abgeschlossen Körper L mit $K \subseteq L$.

Artin. Sei $K \hookrightarrow L_i$ eine Einbettung, sodass jedes nicht Konstante Polynome in K[X] eine Nullstelle in L_i hat. Sei $I = K[X] \setminus K$. Wir betrachten den Polynomring

$$K[(X_i)_{i \in I}]$$

Sei

$$A = \{ f(X_f) \mid f \in I \}$$

Dann ist $A \neq K[(X_i)_{i \in I}]$, denn: Angenommen $A = K[(X_i)_{i \in I}]$, dann ist $1 \in A$, d.h.

$$1 = \sum_{j=1}^{n} g_j f_j(X_{f_j})$$

für geeignete $g_j \in K[(X_i)_{i \in I}]$ und $f_i \in I$.

Es gibt aber einen Erweiterungskörper K' von K, sodass jedes f_j eine Nullstelle $a_j \in K'$ hat.

Definiere

$$K([(X_i)_{i\in I}\to K[(X_i)_{i\in I}]$$

 $mit \varphi|_K = id.$

Dann ist $\varphi(X_i) = X_i$ für $i \in I \setminus \{f_1, ..., f_n\}$ und $f(X_{f_i}) = a_i$ für $i \in \{1, ..., n\}$ und

$$1 = \varphi(1) = \sum_{j=1}^{m} f(g_j) \underbrace{f(f(x_{f_j}))}_{=0} = 0$$

Widerspruch, da in Körpern $1 \neq 0$ sein muss.

Also ist $A \subsetneq K[(X_i)_{i \in I}]$.

Dann ist A in einem maximalen Ideal M enthalten und es gibt π

$$K \hookrightarrow K[(X_i)_{i \in I}] \xrightarrow{\pi} \underbrace{K[(X_i)_{i \in I}]/M}_{=L_i}$$

Setze $K = L_0$. Dann ist

$$L_0 \stackrel{\varphi_{01}}{\longleftrightarrow} L_1$$

Sei $f \in I$. Dann ist

$$\underbrace{\varphi_{01}}_{\in L_1[X]} \left(\pi(X_f) \right) = \pi \left(f(X_f) \right) = 0$$

d.h. $\varphi_{01}(f)$ hat eine Nullstelle in L_1 . Durch Fortführung dieser Konstruktion erhalten wir eine Sequenz

$$L_0 \stackrel{\varphi_{01}}{\longleftrightarrow} L_1 \stackrel{\varphi_{12}}{\longleftrightarrow} \dots$$

und die Abbildungen

$$L_i \stackrel{\varphi_{ij}}{\hookrightarrow}$$

Sei nun

$$L = \lim_{\leftarrow} L_i = \bigcup_{i=1}^{\infty} L_i / \sim$$

der Direkten L_i und sein die Abbildungen

$$\varphi_i: L_i \to L$$

die entsprechenden Einbettungen.

Dann ist L ein Ring und die φ_i Ringhomomorphismen.

Seien $a, b \in L$. Dann existieren $a_i, b_i \in L_i$, mit $a\varphi_i(a_i), b = \varphi_i(b_i)$ und

$$a + b = \varphi_i(a_i + b_i)$$
$$ab = \varphi_i(a_ib_i)$$

Somit ist L Körper.

Sei $g \in L[X] \setminus L$. Dann gibt es ein i und ein $g_i \in L[X] \setminus L_i$, sodass

$$g = \varphi_i(g_i)$$

Dei Abbildung $\varphi_{ii+1}(g_i)$ zerfällt über L_{i+1} in Linearfaktoren. Somit zerfällt auch

$$g = \varphi_i(g_i) = \varphi_i(f_{ij}(g_i))$$

Satz 2.21. Sei K ein Körper, dann gibt es einen algebraisch abgeschlossenen Körper \overline{K} , der K enthält und algebraisch über K ist. \overline{K} wird als der algebraische Abschluss von K bezeichnet.

Beweis. Es gibt einen algebraisch abgeschlossenen Körper L der Kenthält. Setze

$$\overline{K} = \{ a \in L \mid a \text{ algebraisch ""uber } K \}$$

Dann ist \overline{K} ein Teilkörper von L der K enthält.

Zz: \overline{K} ist algebraisch abgeschlossen:

Sei $\underline{f} \in \overline{K}[X] \setminus \overline{K}$. Dann hat f eine Nullstelle α in L. α ist algebraisch über \overline{K} . Da \overline{K} algebraisch über K ist ist α auch algebraisch über K. Damit ist $\alpha \in \overline{K}$.

Korollar 2.22. Seien L, L' algebraische Abschlüsse des Körpers K, dann ist $L \stackrel{\sim}{=} L'$.

Beweis. Ist $\sigma: K \to L$ ein Homomorphismus von Körpern, so induziert σ einen Homomorphismus $K[X] \to L[X]$.

Ist α eine Nullstelle von $f \in K[X]$ in K, so ist $\sigma(\alpha)$ eine Nullstelle von $\sigma(f)$ in L.

Abbildung 1: Kommutierendes Diagramm der Algebraischen Körpererweitungen

Satz 2.23. Sei K ein Körper und $K' = K(\alpha)$ eine einfache algebraische Körpererweiterung von K und $\sigma: K \to L$ ein Homomorphismus. Dann gilt

a) Ist $\sigma': K' \to L$ ein Homomorphismus der σ fortsetzt, so ist $\sigma'(\alpha)$ Nullstelle von

$$\sigma'(m_{\alpha,K}) = \sigma(m_{\alpha,K})$$

Satz 2.24. Sei K ei Körper $K' = K(\alpha)$ eine einfache algebraische Erweiterung von K und $\sigma: K \to L$ ein Körperhomomorphismus.

- a) Ist $\sigma': K' \to L'$ ein Homomorphismus, der σ Fortsetzt, so ist $\sigma'(\alpha)$ Nullstelle von $\sigma(m_{\alpha,K}) = \sigma'(m_{\alpha,K})$.
- b) Es gibt zu jeder Nullstelle $\beta \in L$ von $\sigma(m_{\alpha,K})$ genau eine Fortsetzung $\sigma' : K' \to L'$ von σ mit $\sigma'(\alpha) = \beta$.

Beweis. • Sei $\beta \in L$ Nullstelle von $\sigma(m_{\alpha,K})$ und sei

$$\phi: K[X] \to K[\alpha] \qquad \psi: K[X] \to L$$
$$g \mapsto g(\alpha) \qquad g \mapsto \sigma(g)(\beta)$$

Dann ist $(m_{\alpha,K}) = \text{Kern}(\varphi)$ und $(m_{\alpha,K}) \subset \text{Kern}(\psi)$.

Wir erhalten das kommutierende Diagramm 1 invertierbar. Definiere $\sigma':=\overline{\psi}\circ\overline{\varphi}^{-1}.$

Dann ist $\sigma: K[\alpha] \to L$ und

$$\sigma'(\alpha) = \overline{\psi}(X + (m_{\alpha,K})) = \psi(X) = \beta$$

Das beweist die Existenz von σ' . Die Eindeutigkeit folgt draus, dass jedes Fortsetzung σ' durch ihren Wert auf α festgelegt ist.

П

Theorem 2.25 (Fortsetzungssatz). Sei K ein Körper, L ein algebraisch abgeschlossener Körper und $\sigma: K \to L$ ein Körperhomomorphismus. Sei K'/K eine algebraische Körpererweiterung.

Dann lässt sich σ fortsetzen zu einem Homomorphismus $\sigma': K' \to L$.

Ist K' zusätzlich abgeschlossen und L algebraisch über $\sigma(K)$, so ist jedes Fortsetzung σ' von σ ein Isomorphismus.

Beweis. Sei M die Menge der Paare (F, τ) , wobei $K \subset F \subset K'$ ein Zwischenkörper und $\tau : F \to L$ eine Fortsetzung von σ ist. Dann ist M partiell geordnet durch

$$(F_1, \tau_1) \leq (F_2 \tau_2) \Leftrightarrow F_1 \subset F_2 \text{ und } \tau_2 | F_1 = \tau_1$$

Es gilt $M \neq \emptyset$, weil $(K, \sigma) \in M$.

Jede Kette in M hat eine obere Schranke, somit hat M ein maximales Element

 (F,τ) .

Es gilt F = K', denn:

Angenommen $F \neq K'$. Sei $\alpha \in K' \setminus F$. Dann lässt sich τ fortsetzen zu einem Homomorphismus $\tau : F(\alpha) \to L$. Widerspruch!

Sei nun K' algebraisch abgeschlossen, L algebraisch über $\sigma(K)$ und $\sigma': K' \to L$ eine Fortsetzung von σ .

L ist algebraisch über $\sigma(K)$ und damit über $\sigma'(K')$.

 $\sigma'(K')$ ist aber bereits algebraisch abgeschlossen.

Es folgt
$$\sigma'(K') = L$$
.

Korollar 2.26. Sei K ein Körper und seien \overline{K}_1 und \overline{K}_2 algebraische Abschlüsse von K. Dann gibt es einen Isomorphismus $\sigma: \overline{K}_1 \to \overline{K}_2$ der die Identität auf K fortsetzt.

Beweis. Die Einbettung $\sigma: K \hookrightarrow \overline{K}_2$ lässt sich fortsetzen zu einem Homomorphismus $\sigma: \overline{K}_1 \to \overline{K}_2$. Diese ist ein Isomorphismus.

Beispiel 2.27. Der algebraische Abschluss $\overline{\mathbb{Q}} = \{a \in \mathbb{C} \mid a \text{ ist algebraisch ""über } \mathbb{Q} \}$ von \mathbb{Q} in \mathbb{C} ist ein algebraischer Abschluss von \mathbb{Q} .

2.3 Zerfallskörper

Definition 2.28. Seien K/L und L'/K Körpererweiterungenund sien $\sigma: L \to L'$ ein Homomorphismus.

 σ wird als K-Homomorphismus ($\sigma|_K = \operatorname{id}|_K$) bezeichnet, wenn σ eine Fortsetzung der Identität auf K ist.

Definition 2.29. Sei L/K eine Körpererweiterung und $F \subset K[X] \setminus K$ eine Menge nicht-konstanter Polynome.

Eine Erweiterung L/K heißt **Zerfällungskörper** von F, über K, wenn

- a) Jedes $f \in K$ zerfällt in Linearfaktoren über L
- b) Die Körpererweiterung L/K wird con Nullstellen der $f \in F$ erzeugt.

Lemma 2.30. Sei \overline{K} ein algebraischer Abschluss von K und M die Menge der Nullstellen der Polynome von F in \overline{K} . Dann ist $L = K(M) \subset \overline{K}$ ein Zerfällungskörper von F.

Satz 2.31. Sei $F \subset K[X] \setminus K$ und seine L_1 und L_2 zwei Zerfällungskörper von F über K. Sei $\sigma: L_1 \to \overline{L}_2$ ein K-Homomorphismus in einen algebraischen Abschluss von L_2 .

Dann gilt $\sigma(L_1) = L_2$.

Beweis. Wir beweisen schrittweise:

• Wir nehmen zuerst an, dass F nur eine Polynom f enthält. Seien $a_1, ..., a_n$ die Nulsstelle von f in L_1 und $b_1, ..., b_n$ die Nullstelle von f in L_2 . Dann ist

$$f = \prod_{i = \infty}^{N} (\mathcal{X} - \dashv_i)$$

mit $c \in K$ und

$$\sigma(f) = c \prod_{i=1}^{n} (X - \sigma(a_i)) = c \prod_{i=1}^{n} (X - b_i)$$

d.h. nach Umnummerierung also $\sigma(a_i) = b_i$. Es folgt

$$L_2 = K(b_1, ..., b_n) = K(\sigma(a_1), ..., \sigma(a_n)) = \sigma(K(a_1, ..., a_n)) = \sigma(L_1)$$

- Falls f endlich viele Polynome enthält, so argumentiert man anlog mit dem Produkt der Polynome.
- Sei F nun unendlich, M_1 die Menge der Nullstelle von F in L_1 , M_2 die Menge der Nullstellen von F in L_2 und sei $a \in L_1$. Dann gibt es eine endliche Teilmenge $M_1' \subset M_1$, sodass $a \in K(M_1')$, d.h. es gibt eine endliche Teilmenge $F' \subset F$, sodass a im Zerfällungskörper L_1' von F' über K in L_1 liegt.

Dann gilt $\sigma(L_1') = L_2'$, d.h. $\sigma(a) \in L_2$ und $\sigma(L_1) \subset L_2$. Analog gilt $L_2 \subset \sigma(L_1)$.

Korollar 2.32. Sei $F \in K[X] \setminus K$ und seien L_1 und L_2 Zerfällungskörper von F über K.

Dann gibt es einen K-Isomorphismus $L_1 \rightarrow L_2$

Beweis. Die Inklusion $K \hookrightarrow \overline{L}_2$ lässt sich zu einer K-Homomorphismus $L_1 \xrightarrow{\sigma} \overline{L}_2$ fortsetzen. Für diesen gilt $\sigma(L_1) = L_2$

Theorem 2.33. Sei L/K eine algebraische Körpererweiterung. Dann sind äquivalent:

- a) L ist der Zerfällungskörper einer Menge nicht-konstanter Polynome in K[X].
- b) Ist $\sigma: L \to \overline{L}$ ein K-Homomorphismus, so gilt $\sigma(L) = L$.
- c) Jedes irreduzible Polynom $f \in K[X]$, das mindestens eine Nullstelle hat zerfällt in L vollständig in Linearfaktoren.

Beweis. 1) \Rightarrow 2) Folgt aus 2.31 mit $L_1 = L_2 = L$

- 2) \Rightarrow 3) Sei $f \in K[X]$ irreduzibel und $a \in L$ eine Nullstelle von f in L. Dann ist f bis auf eine Konstante das Minimalpolynom $m_{\alpha,K}$. Ist b eine weitere Nullstelle von f in \overline{L} , so hat die Einbettung $K \hookrightarrow \overline{L}$ eine Fortsetzung $\sigma: K(\alpha) \to \overline{L}$ mit $\sigma(a) = b$ (2.24). Diese lässt sich Fortsetzen (2.25) zu einm K-Homomorphismus $\sigma: L \to \overline{L}$. Aus $\sigma(L) = L$ folgt $b \in L$.
- 3) \Rightarrow 1) Es ist L = K(M) für eine Teilmenge $M \subset L$ bestehend aus algebraischen Elementen (über K).

Für $a \in M$ ist $m_{a,K}$ irreduzibel über K und hat a als Nullstelle in L. Somit zerfällt $m_{a,K}$ in Linearfaktoren über L.

Also ist L der Zerfällungskörper der $m_{a,K}$.

Definition 2.34. Eine algebraische Körpererweiterung L/K die eine der Bedingungen von 2.33 erfüllt heißt **normal**.

Satz 2.35. Sei L/K eine normale Körpererweiterung und $K \subset M \subset L$ ein Zwischenkörper. Dann ist auch L/M normal.

Beweis. Sei $\sigma \in \operatorname{Hom}_M(L, \overline{L})$, dann ist $\sigma \in \operatorname{Hom}_K(L, \overline{L})$. Dann ist $\sigma(L) = L$.

Beispiel 2.36. a) Sei L/K eine Körpererweiterung von Grad 2, dann ist L/K normal.

b) Die Erweiterungen $\mathbb{Q}(\sqrt[4]{2})/(\mathbb{Q}(\sqrt{2}))$ und $\mathbb{Q}(\sqrt{2})/\mathbb{Q}$ sind normal. Die Erweiterung $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}$ hingegen nicht.

2.4 Separabel Körpererweiterungen

In diesem Abschnitt bezeichne K ein Körper.

Definition 2.37. Ein Polynom $f \in K[X]$ heißt **separabel**, wenn f nur einfache Nullstellen in einem algebraischen Abschluss \overline{K} von K hat. (Dies ist unabhängig von der Wahl von \overline{K})

Satz 2.38. Sei $f \in K[X]$ irreduzible, dann

$$f \ separabel \Leftrightarrow f' \neq 0$$

Beweis. Sei $\alpha \in K$ eine Nullstelle von f. Dann ist $f = cm_{\alpha,K}$ für ein $c \in K^*$ und es gilt

 α ist mehrfache Nullstelle $\Leftrightarrow f(\alpha) = f'(\alpha) = \Leftrightarrow f' = 0$ weil $\deg(f') < \deg(f)$

Definition 2.39. Sei L/K eine algebraische Körpererweiterung. $a \in L$ heißt separabel über K, wenn $m_{a,K}$ separabel ist.

Definition 2.40. Sei L/K eine algebraische Körpererweiterung. L heißt **separabel** über K, wenn jedes $a \in L$ separabel über K ist

Satz 2.41. Sei char(K) = 0 und L/K eine algebraische Körpererweiterung. Dann ist L/K separabel.

Definition 2.42. Sei L/K eine algebraische Körpererweiterung und \overline{K} der algebraische Abschluss von K.

Der **Separabilitätsgrad** $[L:K]_S$ von L über K ist definiert als

$$[L:K]_S := \left| \operatorname{Hom}_K(L, \overline{K}) \right|$$

Diese Definition ist unabhängig von \overline{K} .

Satz 2.43. Sei K(a)/K eien einfach algebraische Körpererweiterung. Dann gilt

a) Der Separabilitätsgrad $[K(a):K]_S$ ist gleich der Anzahl der verschiedenen Nullstellen von $M_{a,K}$ in einem algebraischen Abschluss \overline{K} von K.

- b) aist genau dann separabel über K, wenn $[K(a):K]_S = [K(a),K]$.
- Beweis. a) 2.25 gibt, dass die Anzahl der verschiedene K-Homomorphismen $\varphi: K(a) \to \overline{K}$ gelilch der Anzahl der verschiedenen Nullstellen von $m_{a,K}$ in \overline{K} ist.
 - b) Es gilt

a ist separabel über K

- $\Leftrightarrow m_{a,K}$ ist separabel
- $\Leftrightarrow m_{a,K}$ hat nur einfache Nullstellen in \overline{K}
- \Leftrightarrow die Anzahl der Nullstellen von $m_{a,K}$ ist $\deg(m_{a,K})$

 $\Leftrightarrow [K(a):K]_S = [K(a):K]$

Theorem 2.44 (Gradsatz der Separabilität). Sei $K \subset L \subset M$ algebraische Körpererweiterungen. Dann gilt

$$[M:K]_S = [M:L]_S[L:K]_S$$

Beweis. Sei \overline{K} eine algebraischer Abschluss von M. Dann ist \overline{K} auch ein algebraischer Abschluss von K und $K \subset L \subset M \subset \overline{K}$. Sei

$$\operatorname{Hom}_K(L, \overline{K}) = \{ \sigma_i \mid i \in I \}$$

$$\operatorname{Hom}_L(M,\overline{K}) = \{\tau_i \mid i \in J\}$$

mit paarweise verschiedenen σ_i und τ_i .

Wir können $\sigma_i:L\to \overline{K}$ zu einerm K-Automorphismus $\overline{\sigma_i}:\overline{K}\to \overline{K}$ fortsetzen. Es gilt

- a) Die Abbildung $\overline{\sigma_i} \circ \overline{\tau_j}$ sind paarweise verschiedene, denn: Sei $\overline{\sigma_i} \circ \tau_j = \overline{\sigma_{i'}} \circ \tau_{j'}$. Die Restriktionen beider Seiten auf L liefert $\sigma_i = \sigma_{i'}$, d.h. i = i'. Es folgt $\tau_j = \tau_{j'}$ und j = j'.
- b) $\operatorname{Hom}_K(M,\overline{K})=\{\overline{\sigma}\circ\tau_j\mid i\in I, j\in J\}$, denn: Die Abbildungen $\overline{\sigma}_i\circ\tau_i$ sind K-Homomorphismen. Es beleibt zu zeigen, dass jedes Element in $\operatorname{Hom}_K(M,\overline{K})$ dieser Form ist. Sei $\tau\in\operatorname{Hom}_K(M,\overline{K})$. Dann ist $\tau|_L=\sigma_i$ für ein i. Die Abbildung $\overline{\sigma}_i^{-1}\circ\tau$ ist in $\operatorname{Hom}_L(M,\overline{K})$. d.h. $\overline{\sigma_i}^{-1}\circ\tau=\tau_j$ für ein $j\in J$. Also ist $\tau=\overline{\sigma_i}\circ\tau_j$.

Es folgt die Behauptung.

Satz 2.45. Sei L/K eine endliche Körpererweiterung. Dann gilt

$$[L:K]_S \leq [L:K]$$

Beweis. L/K ist algebraisch, d.h. $L=K(a_1,...,a_n)$ für geeigente $a_1,...,a_n\in L$. Sei $L_0=K,\,L_1=K(a_1),...,\,L_n=K(a_1,...,a_n)$.

Äquivalent dazu ist $L_i = L_{i-1}(a_i)$ für $1 \le i \le n$. Dann gilt

$$[L_i:L_{i-1}] = [L_{i-1}(a_i):L_{i-1}] = \deg(m_{a_i,L_{i-1}})$$

 \geq Anzahl der verschidenen Nullstellen von $m_{a_iL_{i-1}}$ in $\overline{K}=[L_i:L_{i-1}]_S$

Da aber zusätzlich

$$[L:K] = \prod_{i=1}^{n} [L_i:L_{i-1}]$$
$$[L:K]_S = \prod_{i=1}^{n} [L_i:L_{i-1}]_S$$

folgt $[L:K]_S \leq [L:K]$

Theorem 2.46. Sei L/K eine endliche Körpererweiterung. Dann sin äquivalent

- a) L/K ist separabel.
- b) Es gibt über K separabele Elemente $a_1,...,a_n \in L$, sodass $L = K(a_1,...a_n)$.
- c) $[L:K]_S = [L:K]$

Beweis. 1) \Rightarrow 2) ist klar.

2) \Rightarrow 3) Setze $L_0 = K, L_I = L_{i-1}(a_i)$.

Dann ist a_i separable über K, d.h. $m_{a_i,K}$ hat nur einfache Nullstellen in \overline{K} . Es gilt $m_{a_i,L_{i-1}}|m_{a_i,K}$.

Also hat auch $m_{a_i,L_{i-1}}$ nur einfache Nullstellen in \overline{K} . Somit ist a_i separabel über L_{i-1} und daher gilt $[L_i:L_{i-1}]_S=[L_1:L_{i-1}]$. Es folgt

$$[L:K]_S = \prod_{i=1}^n [L_i:L_{i-1}]_S = \prod_{i=1}^n [L_i:L_{i-1}] = [L:K]$$

3) \Rightarrow 1) Sei $a \in L$. Dann ist a algebraisch über K und $K \subset K(a) \subset L$. Dann gilt mit dem Gradsatz

$$[L:K]_S = [L:K(a)]_S[K(a):K]_S$$

 $[L:K] = [L:K(a)][K(a):K]$

Mit der Annahme dass $[L:K] = [L:K]_S$ und 2.45

$$[L:K(a)]_S \le [L:K(a)]$$

 $[K(a):K]_S \le [K(a):K]$

folgt, dass

$$[K(a):K]_S \le [K(a):K]$$

d.h. a ist separabel über K.

Satz 2.47. Sei $f \in K[X] \setminus K$ separabel. Dann ist auch der Zerfällungskörper von f über K separabel.

Beweis. Seien $a_1,...,a_n$ die Nullstellen von f in \overline{K} . Dann ist $K(a_1,...,a_n)$ ein Zerfällungskörper von f über K. Aus $f(a_i)=0$ folgt, dass $m_{a_i,K}|f$. Somit hat $m_{a_i,K}$ nur einfache Nullstellen in \overline{K} d.h. a_i ist separabel über K.

Korollar 2.48. Sei L/K eine algebraische Körpererweiterung und $M \subset L$, sodass L = K(M). Dann sind äquivalent

- a) L/K ist separabel
- b) Alle $a \in M$ sind separabel über K.

Ist ein dieser Bedingungen erfüllt, so gilt

$$[L:K]_S = [L:K]$$

Beweis. 1) \Rightarrow 2) klar.

2) \Rightarrow 1) Sei $c \in L$. Dann gibt es immer endlich viele $a_1, ..., a_n \in M$, sodass $c \in K(a_1, ..., a_n)$. Nach ?? ist $K(a_1, ..., a_n)$ separabel über K und somit auch c.

Für L/K endlich gilt ??.

Sei also $[L:K]=\infty$. Da L/K separabel ist, gilt dies auch für jeden Zwischenkörper $K\subset E\subset L$. Falls $[E:K]<\infty$, so gilt

$$[L:K]_S = [L:E]_S[E:K]_S \ge [E:K]_S = [E:K]$$

Es folgt $[L:K]_S = \infty$, weil L/K Zwischenkörper beliebig hohen aber endlichen Grad hat.

Korollar 2.49. Seien $K \subset L \subset M$ algebraische Körpererweiterungen. Dann gilt M/K ist genau dann separabel, wenn M/L und L/K separabel sind.

Beweis. \Rightarrow Sei M/K separabel. Dann ist auch L/K separabel. Sei $a \in M$. Dann gilt $m_{a,L}|m_{a,K}$, d.h. a ist separabel über L.

 \Leftarrow Seien M/L und L/K separabel. Sei $a \in M$. Der Erweiterungskörper L' von K der von den Koeffizienten von $m_{a,L}$ erzeugt wird ist endlich über K. Aus $L' \subset L$ folgt $m_{a,L}|m_{a,L'}$. Da $m_{a,L} \in L'[X]$ gilt aber auch $m_{a,L'}|m_{a,L}$. Also ist $m_{a,L} = m_{a,L'}$ und L'(a)/L' ist separabel.

Theorem 2.50 (Satz vo primitiven Element). Sei L/K einen endliche separable Körpererweiterung. Dann gibt es ein $a \in L$, sodass L = K(a)

Beweis. K endlich Sei K endlich, so auch L. Sei a ein Erzeuger von L^* , Dann ist L = K(a).

K unendlich Sei K unendlich. Da L/K einen endliche Erweiterung ist gibt es Elemente $a_1, ..., a_n \in L$, sodass $L = K(a_1, ..., a_n)$. Durch zusammenfassen $a_i a_j$ zu c reicht es für n = 2 zu zeigen:

Sei L=K(a,b) für geeignete $a,b\in L$ gegeben. Sei $m=[L:K]_S$ und seien $\sigma_1,...,\sigma_m$ die verschiedenen Elemente in $\mathrm{Hom}_K(L,\overline{K})$. Definiere

$$g = \prod_{i \neq j} \left(\left(\sigma_i(a) - \sigma_j(a) \right) + \left(\sigma_i(b) - \sigma_j(b) \right) \right) \in \overline{K}[X]$$

Dann ist g nicht das Nullpolynom, denn für $i \neq j$ ist $\sigma_i(a) \neq \sigma_j(a)$ oder $\sigma_i(b) \neq \sigma_j(b)$. Da K unendlich gibt es ein $c \in K$, sodass mit $g(c) \neq 0$. Es folgt

$$((\sigma_i(a) - \sigma_j(a)) + (\sigma_i(b) - \sigma_j(b))) c \neq 0$$

bzw. $\sigma_i(a+bc) \neq \sigma_j(a+bc)$ für alle $i \neq j$.

Die Elemente $\sigma(a+bc)$ si also paarweise verschieden. Sei f das Minimalpolynom von a+bc über K. Es folgt

$$[L:K]_S m \le \deg(f)^{=} [K(a+bc):K] \le [L:K]$$

Da L/K separabel ist folgt Gleichheit.

2.5 Endliche Körper

Definition 2.51. Sei p eine positiv Primzahl. Dann ist $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ ein Körper mit p Elementen und $\operatorname{char}(\mathbb{F}_p) = p$.

Satz 2.52. Sei F ein endlicher Körper, dann ist $\operatorname{char}(F) = p > 0$ und F enthält $q = p^n$ Elemente, wobei $n = [F : \mathbb{F}_p]$.

F ist der Zerfällungskörper des Polynoms $X^q - X$ über \mathbb{F}_p . Die Erweiterung F/\mathbb{F}_p ist normal.

Beweis. Da F endlich ist hat F einen endlichen Primkörper \mathbb{F}_p und $\operatorname{char}(F) = p$. F ist eine endlich-dimensionaler Vektorraum über \mathbb{F}_p , d.h. $F = \mathbb{F}_p^n$ mit $n = [F : \mathbb{F}_p]$ und $|F| ? p^n = q$.

Die multiplikative Gruppe F^* hat q-1 Elemente, d.g. $a^{q-1}=1$ für alle $a\in F^*$. Jedes $a\in F$ ist also Nullstelle von $f=X(X^{q-1}-1)=X^q-X$.

F ist also der Zerfällungskörper von $f = X^q - X$ über \mathbb{F}_p .

Theorem 2.53. Sei p eine positive Primzahl. Dann gibt es zu jedem positiven $n \in \mathbb{N}$ einen Erweiterungskörper $\mathbb{F}_q/\mathbb{F}_p$ mit $q=p^n$ Elementen. \mathbb{F}_q ist bis auf Isomorphie eindeutig charakterisiert, als der Zerfällungskörper von X^q-X über \mathbb{F}_p und besteht aus den q Nullstellen. dieses Polynoms. Jeder endliche Körper ist isomorph zu genau einem Körper des Typs \mathbb{F}_q .

Beweis. Sei $f=X^q-X\in\mathbb{F}_p[X]$ und $L\subset\overline{\mathbb{F}_p}$ der Zerfällungskörper von f über $\mathbb{F}_p.$

Da f' = -1hat f nur einfache Nullstellen in $\overline{\mathbb{F}}_p$.

Seien $a, b \in \overline{\mathbb{F}_p}$ zwei Nullfolge von f. Dann gilt

$$(a+b)^q = \sum_{j=0}^q \binom{q}{j} a^{q-j} b^j$$
$$= a^q + \underbrace{\binom{q}{1}}_{=0} a^{q-1} b + \dots + b^q$$
$$= q^q + b^q$$
$$= a+b$$

Da heißt a-b ist Nullstelle von f in $\overline{\mathbb{F}_p}$. Für $b\neq 0$ ist

$$(ab^{-1})^q = a^q (b^{-1})^q$$

= $a^q (b^q)^{-1}$
= ab^{-1}

D.h. ab^{-1} ist Nullstelle von f.

Die Nullstellen von f in $\overline{\mathbb{F}_p}$ bilden als einen Teilkörper von $\overline{\mathbb{F}_p}$.

Folglich besteht L aus den q Nullstellen von f in $\overline{\mathbb{F}_p}$.

Sei F ein zweiter Körper mit q Elementen, dann ist na2.52 F ein Zerfällungskörper von $X^q - X$ über seinem Primkörper \mathbb{F}_p . F ist somit isomorph.

Bemerkung 2.54. Wir können di Körper \mathbb{F}_q auch Konstruieren, indem wir die Nullstellen eines irreduziblen Polynoms zu \mathbb{F}_p adjungiert.

Satz 2.55. Sei $n \in \mathbb{N}$. Dann gibt es ein irreduzibles Polynom f mit $\deg_{\mathbb{F}_p}(f) = n$.

Beweis. Sei $q=p^n$. Dann ist $\mathbb{F}_q/\mathbb{F}_p$ eine separable Erweiterung vom Grad n. Nach dem Satz vom Primitven Element 2.50 ist $\mathbb{F}_q=\mathbb{F}_p(a)$ für ein $a\in\mathbb{F}_q$. Dann ist m_{a,\mathbb{F}_p} irreduzibel und vom Grad n.

Beispiel 2.56. Das Polynom X^2+1 ist irreduzible über $\mathbb{F}_3.$ Also

$$\mathbb{F}_9 = \mathbb{F}_3(\theta) = \{a + \theta b \mid a, b \in \mathbb{F}_3\} \mathbb{F}_3[X]/(X^2 + 1)$$

 $mit \ \theta^2 = -1.$

Satz 2.57. Sei F eine endlicher Körper und K/F eine algebraische Erweiterung. Dann ist K/F normal und separabel.

Beweis. Sei \mathbb{F}_p der Primkörper von F und \overline{K} ein algebraischer Abschluss von \mathbb{F}_p . Dann ist \overline{K} auch ein algebraischer Abschluss von F_p . Schreibe $\overline{K} = \overline{F_p}$ Dann

$$F_p\subset F\subset K\subset \overline{F_p}$$

Falls $|K| \leq \infty$, so ist K isomorph zu \mathbb{F}_q mit $q = p^n$ und K ist als Zerfällungskörper des separablen Polynom $X^q - X$ normal und separabel über F_p und somit über F.

Sei $|K| = \infty$. Wähle $M \subset K$ mit K = F(M).

Dann ist K die Vereinigung von Körper F(M') wobei M' eine endliche Teilmenge von M ist.

F(M') ist eine endliche Erweiterung von F und somit von F_p , d.h. F(M') ist isomorph zu F_q . Somit ist K normal und separabel über F.

Definition 2.58. Sei F_q mit $q=p^n$ ein endlicher Körper. Dann ist die Abbildung

$$\operatorname{Fr}: F_q \to F_q$$
$$x \mapsto x^p$$

ein F_p -Automorphismus von F_q . Diese wir als **Frobenius-Automorphismus** bezeichnet

Theorem 2.59. Seiq = p^n , dann ist die Gruppe $\operatorname{Aut}_{F_p}(F_q)$ zyklisch mit Ordnung n. Und $\operatorname{Aut}_{F_p}(F_q) = \langle \operatorname{Fr} \rangle$ wird vom Frobenius-Automorphismus erzeugt.

Beweis. Sei s die Ordnung von Fr, d.h. $s = |\langle Fr \rangle|$. Für $a \in F_q$ gilt

$$Fr^n(a) = a^{p^n} = a^q = a$$

s.h. s|n. Andererseits ist $\operatorname{Fr}^s(a) = a^{p^s} = a$ für alle $a \in F_q$.

Das Polynom $X^{p^s}-X$ hat höchsten p^s verschiedene Nullstellen, d.h. $p^s\geq q=p^n$. Also gilt s=n.

Die Erweiterungen F_q/F_p ist normal und separabel, sodass

$$\left|\operatorname{Aut}_{F_p}(F_q)\right| = \left|\operatorname{Hom}_{F_p}(F_q, \overline{F}_p)\right|$$

da F_q/F_p normal ist.

$$= [F_q : F_p]_S$$
$$= [F_q : F_p]$$

Da F_q/F_p separabel ist

= n

d.h. Fr erzeugt $\operatorname{Aut}_{F_p}(F_q)$.

3 Galois-Erweiterungen

Definition 3.1. Eine algebraische, normale, separabele Körpererweiterung L/K heißt **Galoiserweiterung**.

Definition 3.2. Man bezeichnet $\operatorname{Aut}_K(L)$ als **Galoisgruppen** von L/K und schreibt G(L/K) für $\operatorname{Aut}_K(L)$.

Beispiel 3.3.

Sei F ein endlicher Körper und K/F eine algebraische Körpererweiterung. Dann ist K/F eine Galois-Erweiterung.

Sei p ein positive Primzahl und $q=p^n$. $\mathbb{F}_q/\mathbb{F}_p$ ist eine Galois-Erweiterung. Die Galoisgruppe ist zyklisch der Ordnung n und wird vom Frobenius-Automorphismus erzeugt.

 \mathbb{C}/\mathbb{R} ist eine Galois-Erweiterung. Die Galoisgruppe wird von der komplexen Konjugation erzeugt.

Satz 3.4. Sei L/K eine normale Körpererweiterung und $f \in K[X]$ irreduzible. Dann permutiert $\mathrm{Aut}_K(L)$ die Nullstellen von f transitiv.

Beweis. Falls f keine Nullstellen in L hat so ist nichts zu zeigen. Sei $a \in L$ eine Nullstelle von f und $\varphi \in \operatorname{Aut}_K(L)$. Dann gilt

$$f(\varphi(a)) = \varphi(\underbrace{f(a)}_{=0}) = 0$$

d.h. $\varphi(a)$ ist Nullstelle von f.

Weiterhin ist $f = cm_{a,K}$ für ein $c \in K$.

Sei nun b eine weitere Nullstelle von f in L. Dann ist b auch Nullstelle von $m_{a,K}$ und die Einbettung

$$K \hookrightarrow \overline{L}$$

lässt sich fortsetzen als

$$K(a) \stackrel{a}{\hookrightarrow} \overline{L}$$

mit $\sigma(a) = bzu$ einem K-Homomorphismus

$$L \xrightarrow{\sigma} \overline{L}$$

Da L/K normal ist gilt $\sigma(L) = L$. Somit ist $\sigma \in \operatorname{Aut}_K(L)$ mit $\sigma(a) = b$.

Satz 3.5. Sei L/K eine normale Körpererweiterung dann gilt

$$|\operatorname{Aut}_K(L)| = [L:K]_S = \left|\operatorname{Hom}_K(L,\overline{K})\right|$$

Beweis. Sei \overline{L} ein algebraischer Abschluss von L. Dann ist \overline{L} auch ein algebraischer Abschluss von K.

Ist $\varphi: L \to \overline{L}$ ein K-Homomorphismus, so gilt $\varphi(L) = L$. Als ist die Abbildung

$$\operatorname{Hom}_K(L, \overline{K}) \to \operatorname{Aut}_K(L)$$

eine Bijektion.

Satz 3.6. Sei L/K eine endliche Galois-Erweiterung. Dann ist

$$[L:K] = |G(L/K)|$$

Beweis. Nach 3.5 gilt mit Separabilität

$$|\mathrm{Aut}_K(L)| = [L:K]_S = [L:K]$$

Definition 3.7. Sei Lein Körper und Geine Untergruppe von $\operatorname{Aut}_K(L).$ Dann ist

$$L^G := \{ x \in L \mid g(x) = x \forall g \in G \}$$

ein Teilkörper von L. Dieser wird als **Fixkörper** von G bezeichnet.

Satz 3.8. Sei L/K eine Galois-Erweiterung. Dann sit der Fixkörper von G(L/K) genau K.

Beweis. Sei G = G(L/K). Dann ist $\subset L^G$.

Sei $a \in L/K$. Dann ist $\deg(m_{a,K}) \geq 2$. Da L/K normal ist, zerfällt $m_{a,K}$ über L in Linearfaktoren. Weil L/K separabel ist, ist a eine einfache Nullstelle von $m_{a,K}$. Es gibt als ein $b \in L$ mit $b \neq a$ mit $m_{a,K}(b) = 0$. Da G(L/K) die Nullstellen von $m_{a,K}$ transitiv permutiert gibt es ein $\varphi \in G(L/K)$ mit $\varphi(a) = b$.

Satz 3.9. Sei L ein Körper und H eine endliche Untergruppe von $\operatorname{Aut}_K(L)$. Dann ist L/L^H eine endliche Galois-Erweiterung mit Galoisgruppe H und

$$[L:L^H] = |H|$$

Beweis. Sei $a \in L$ un $Y_a = \{\varphi(a) \mid \varphi \in H\} \subset L$. seine $a_1, ..., a_n$ die verschiedenen Elemente von Y_a . Sei

$$f_a = \prod_{i=1}^n (X - a_i)$$

Dann ist für $\varphi \in H$

$$\varphi(f_a) = \prod_{i=1}^n (X - \varphi(a_i)) = f_a$$

Also ist $f_a \in L^H[X]$. Da a Nullstelle des Polynoms f_a ist ist a separabel. Die Erweiterung L/L^H ist als separabel.

Dann ist L der Zerfällungskörper der Polynome $F = \{f_a \mid a \in L\}$. Somit ist L/L^H eien Galoiserweiterung.

Aus $m_{a,L^H}|f_a$ folgt

$$\deg(m_{a,L^H}) \le \deg(f) \le |H| \tag{*}$$

Ist $|H|<[L:L^H]\leq\infty,$ so gibt es eine endliche Teilmenge $S\subset L,$ sodass für $M=L^H(S)$ gilt

$$\infty > [M:L^H] > |H|$$

Zusätzlich ist M/L^H separabel, da L/L^H separabel ist. Nach Satz 2.50 gibt es ein $c \in L$, sodass $M = L^H(c)$ ist. Dann gilt

 $\deg(m_{c,L^H}) = [M:L^H] > |H|$

Widerspruch zu (\star) .

Also ist $[L:L^H] \leq |H|$.

D.h. L/L^H ist einen endliche Galoiserweiterung.

Aus $H \subset \operatorname{Aut}_{L^H}(L)$ folgt

$$|H| \le |\mathrm{Aut}_{L^H}(L)| = [L:L^H] \le |H|$$

Somit gilt $H = \operatorname{Aut}_{L^H}(L)$

Bemerkung 3.10. Für $a \in L$ ist $m_{a,L^H} = f_a$ in der Notation des Beweises.

Theorem 3.11 (Hauptsatz der Galoistheorie). Sei L/K eine endliche Galois-Erweiterung. Sei U die Menge der Untergruppen von G(L/K) und Z die Menge der Zwischenkörper von L/K. Dann sind die Abbildungen

$$\Phi: Z \to U$$

$$\Psi: U \to Z$$

$$H \mapsto L^H$$

zueienander inverse Bijektionen. Für einen Zwischenkörper M von L/K ist die Erweiterung M/K normal genau dann wenn G(L/M) normal in G(L/K) ist. In diesem Fall ist

$$G(L/K) \to G(M/K)$$

 $\sigma \mapsto \sigma|_M$

eine surjektiver Gruppenhomomorphismus mit $\operatorname{Kern}() = G^0(L/M)$. Dieser induziert einen Isomorphismus

$$G(M/K) \stackrel{\sim}{=} G(L/K)/G(L/M)$$

Beweis. Sei M ein Zwischenkörper von L/K. Dann ist L/M eine Galois-Erweiterung und $G(L/M) = \operatorname{Aut}_M(L)$, sowie $c \operatorname{Aut}_K(L) = G(L/K)$, weil $L \subset M$. Somit ist Φ wohldefiniert. Sei $M \in \mathbb{Z}$, dann ist

$$M = L^{G(L/M)} = L^{\Phi(M)}$$
$$= \Psi(\Phi(M))$$

Somit ist $\Psi \circ \Phi = \stackrel{\sim}{=}_Z$.

Sei $H \in U$. Dann ist L/L^H eine Galois-Erweiterung mit Galoisgruppe H. Also ist

$$H = G(L/L^{H}) = \Phi(L^{H})$$
$$= \Phi(\Psi(H))$$

d.h. $\Phi \circ \Psi = \mathrm{id}_U$.

Somit sind Φ und Ψ zue
inander inverse Bijektionen.

Sei M ein Zwsichenkörper von L/K. Dann ist $M=L^H$ für ein $H\in U$. Ist die Erweiterung M/K normal, so ist die Abbildung

$$\varphi: G(L/K) \to G(M/K)$$
$$\sigma \mapsto \sigma_M$$

ein surjektiver Gruppenhomomorphismus.

Sei \overline{L} ein algebraischer Abschluss von L. Dann ist \overline{L} auch ein algebraischer Abschluss von K und von M. Sei $\sigma \in G(L/K)$. Dann ist

$$M \xrightarrow{\sigma} \overline{L}$$

Da M normal ist gilt $\sigma(M) = M$ d.h. $\sigma|_M \in G(M/K)$. Also ist φ wohldefiniert. Weiterhin gilt

$$(\sigma_1 \sigma_2)|_M = \sigma_1|_M \sigma_2|_M$$

Sei $\sigma \in G(M/K)$. Dann lässt sich die Abbildung

$$M \xrightarrow{\sigma} \overline{L}$$

fortsetzen zu einem K-Homomorphismus

$$L \xrightarrow{\sigma} \overline{L}$$

weil L/M algebraisch ist. Da L/K normal ist folgt $\sigma(L)=L$. φ ist also surjektiv

Es gilt $\operatorname{Kern}(\varphi) = G(L/M)$, d.h. G(L/M) ist eine normaler Untergruppe von G(L/K).

Sei nun H eine normale Untergruppe von G(L/K). Wir zeigen, dass die Erweiterung L/L^H normal ist:

Sei \overline{L} ein algebraischer Abschluss von L und $\sigma: L^H \to \overline{L}$ ein K-Homomorphismus. Dann gilt $\sigma(L^H) = L^H$. Da $K \subset L^H \subset L \subset \overline{L}$ können wir σ zu einem K-Homomorphismus $\sigma: L \to \overline{L}$ fortsetzen weil L/L^H algebraisch ist. Da L/K normal ist gilt $\sigma(L) = L$. Wir können σ also auffassen als K-Homomorphismus $\sigma: L^H \to L$.

Sei $b \in \sigma(L^H)$. Dann ist $b = \sigma(a)$ für ein $a \in L^H$.

Sei $\tau \in H$. Da $H\sigma = \sigma H$ ist gibt es $\tau' \in H$, sodass

$$\tau(b) = \tau(\sigma(a)) = \sigma(\underbrace{\tau'(a)}_{=a}) = \sigma(a) = b$$

d.h. $b \in L^H$ und $\sigma(L^H) \subset L^H$.

Zum Beweis der Gleichheit setzen wir den K-Homomorphismus

$$\underbrace{\sigma(L^H)}_{\subset L^H} \xrightarrow{\sigma^{-1}} L^H \to \overline{L}$$

zu einem K-Homomorphismus $\rho: L^H \to \overline{L}$ fort.

Diesen können wir wie oben als $K\text{-Homomorphismus}\ L^H\to L$ auffassen. Dann ist $\rho(L^H)\subset L^H$ und

$$L^H \xrightarrow{\sigma} L^H \xrightarrow{\rho} L^H$$

ist die Identität auf L^H , d.h. $\rho \sigma = \mathrm{id}_{L^H}$.

Analog konstruieren wir einen K-Homomorphismus $\eta:L^H\to L$ mit $\eta(L^H)\subset L^H$ und $\eta\rho=\mathrm{id}_{L^H}$. Es folgt

$$\sigma\rho=\operatorname{id}_{L^H}\sigma\rho=\eta\rho\sigma\rho=\eta\rho=\operatorname{id}_{L^H}$$

Satz 3.12. Sei L/K eine endliche Galois-Erweiterung. Seien L_1, L_2 Zwischenkörper von L/K die zu Untergruppen H_1 und H_2 von G(L/K) korrespondieren. Dann gilt für $\sigma \in G(L/K)$

$$\sigma(L_1) = L_2 \Leftrightarrow \sigma H_1 \sigma^{-1} = H_2$$

Satz 3.13 (Translationssatz). Seien L/K und M/K Körpererweiterungen, sodass L und M in einem Gemeinsamen Erweiterungskörper von K enthalten sind.

Ist L/K eine endliche Galois-Erweiterung, so ist auch L/K eine endliche Galois-Erweiterung und die Abbildung

$$G(L\cdot M/M)\to G(L/K)$$

$$\sigma\mapsto \sigma|_L$$

definiert einen Isomorphismus

$$G(L \cdot M/M) \cong G(L/L \cap M)$$

(Dabei ist $L \cdot M$ das Kompositum $L \cdot M := L(M) = M(L)$)

Beweis. Sei aein Primelement der Erweiterung L/Kund seien $a_1,...,a_n$ die Nullstelle von $m_{a,K}$ in L. Dann ist

$$L = K(a_1, ..., a_n)$$

und damit

$$L \cdot M = M(L) = M(a_1, ..., a_n)$$

d.h. $L \cdot M/M$ ist eine endliche Galois-Erweiterung.

Wohldefiniertheit Sei $\sigma \in G(L \cdot M/M)$ und $b \in L$. Dann zerfällt $m_{b,K}$ in L, also

$$m_{b,K} = \prod_{j=1}^{n} (X - \underbrace{b_j}_{\in L})$$

und

$$m_{b,K} = \sigma(m_{b,K}) = \prod_{j=1}^{n} (X - \underbrace{\sigma(b_i)}_{\in L})$$

Es folgt $\sigma(b) \in L$.

Injektivität Sei $\sigma \in G(L \cdot M/M)$ mit $\sigma|_L = \mathrm{id}_L$. Aus $L \cdot M = M(L) = M(a_1, ..., a_n)$ und $\sigma(a_i) = a_i$ folgt $\sigma = \mathrm{id}$.

Sei H das Bild der Abbildung. Dann ist

$$L^H = L \cap (L \cdot M)^{G(L \cdot M/M)} = L \cap M$$

Die Erweiterung L/L^H ist eine endliche Galois-Erweiterung mit Galoisgruppe H. Aus der Injektivität der Abbildung folgt

$$G(L \cdot M/M) \stackrel{\sim}{=} H = H(L/L^H) = G(L/L \cap M)$$

Theorem 3.14 (Produktsatz). Seien L_1/K und L_2/K endliche Galois-Erweiterungen, sodass L_1 und L_2 in einem gemeinsamen Erweiterungskörper enthalten sind. Dann ist $L_1 \cdot L_2/K$ eine endliche Galois-Erweiterung und die Abbildung

$$G(L_1 \cdot L_2/K) \to G(L_1/K) \times G(L_2/K)$$

$$\sigma \mapsto (\sigma|_{L_1}, \sigma|_{L_2})$$

definiert einen injektiven Gruppenhomomorphismus. Ist $L_1 \cap L_2 = K$, so ist die Abbildung ein Isomorphismus. Beweis. Sei $L_1 = K(a)$ und $L_2 = K(b)$. Seien $a_1, ..., a_n$ die Nullstellen von $m_{a,K}$ und $b_1, ..., b_n$ die Nullstellen on $m_{b,K}$. Dann ist

$$L_1 = K(a_1, ..., a_n)$$

$$L_2 = K(b_1, ..., b_m)$$

$$L_1 \cdot L_2 = L_1(L_2) = L_2(L_1)$$

$$= K(a_1, ..., a_n, b_1, ..., n_m)$$

 $L_1 \cdot L_2/K$ ist als einen endliche Galois-Erweiterung.

Wohldefiniertheit wie oben.

Injektivität Sei $\sigma \in G(L_1 \cdot L_2/K)$ mit $\sigma|_{L_1} = \mathrm{id}_1$ und $\sigma|_{L_2} = \mathrm{id}_2$.

Dann folgt, aus $L_1 \cdot L_2 = L_1(L_2)$, dass $\sigma = \mathrm{id}_{l_1 \cdot L_2}$ ist.

Die Gruppen $G(L_1 \cdot L_2/L_1)$ und $G(L_1 \cdot L_2/L_2)$ sind Untergruppen von $G(L_1 \cdot L_2/K)$.

Sei nun $L_1 \cap L_2 = K$. Dann

$$G(L_1 \cdot L_2/L_1) \cap G(L_1 \cdot L_2/L_2) = \{1\}$$

Aus dem Translationssatz folgt dann

$$G(L_1 \cdot L_2/L_1) \stackrel{\sim}{=} G(L_2/L_1 \cap L_2) = G(L_2/K)$$

 $G(L_1 \cdot L_2/L_2) \stackrel{\sim}{=} G(L_1/L_1 \cap L_2) = G(L_1/K)$

Die Abbildung ist in diesem Fall also ein Isomorphismus.

Theorem 3.15. Sei L/K eine endliche Galois-Erweiterung und sei a ein primitives Element, d.h. L = K(a). Sei außerdem $H \subset G(L/K)$. Dann ist

$$L^H = K(a_0, ..., q_1)$$

wobei die a_i die Koeffizienten von

$$f = \prod_{\sigma \in H} (X - \sigma(a)) = \sum_{i=0}^{n} a_i X^i$$

sind.

3.1 Die Galoisgruppe einer Gleichung

In diesem Abschnitt sei K ein Körper

Definition 3.16. Sei f ein separabeles Polynom und L ein Zerfällungskörper von f über K. Dann ist L/K einen endliche Galois-Erweiterung und G(L/K) eird in diesem Falls als **Galoisgruppe von** f **über** K bezeichnet.

Satz 3.17. Sei $f \in K[X] \setminus K$ separabel und vom Grad n mit Zerfällungskörper L über K.

Seien $a_1, ..., a_n$ die Nullstellen von f in L. Dann definiert die Abbildung

$$G(L/K) \to S(\{a_1, ..., a_n\})$$

 $\sigma \mapsto \sigma|_{\{a_1, ..., a_n\}}$

einen injektiven Gruppenhomomorphismus. Insbesondere gilt |G(L/K)| |n!. f ist genau dann irreduzible über K wenn G(L/K) transitiv auf dem Nullstellen on f operiert.

Beweis. Sei $\sigma \in G(L/K)$. Da $\sigma(f) = f$ bildet σ Nullstellen von f in Nullstellen von f ab.

Da σ injektiv ist, ist die Einschränkung auf $\{a_1, ..., a_n\}$ eine Bijektion.

Wegen $L = K(a_1, ..., a_n)$ ist $\sigma \in G(L/K)$ eindeutig durch seine Operation auf $\{a_1, ..., a_n\}$ festgelegt.

Somit ist f injektiv.

Wir haben bereits gesehen, dass G(L/K) trasnitiv auf den Nullstellen von f operiert, wenn f irreduzibel ist.

Angenommen G(L/K) permutiert die Nullstellen von f transitiv.

Sei a eine Nullstellen von f. Dann sind die Nullstellen von f gegeben durch $\sigma_1(a),...,\sigma_n(a)$ für geeignete $\sigma_i \in G(L/K)$ und

$$f = c \prod_{i=1}^{n} (X - \sigma(a))$$

Es ist $f = cm_{a,K}$, denn $\sigma_1(a), ..., \sigma_n(a)$ sind auch Nullstellen on $m_{a,K}$. Somit ist f irreduzibel.

Korollar 3.18. Sei L/K eine endliche Galoiserweiterung vom Grad n. Dann ist G(L/K) eine Untergruppe von S_n .

Beispiel 3.19. Sei K ein Körper mit $\operatorname{char}(K) \neq 2, f \in K[X]$ ein irreduzibles, separables, normiertes Polynom vom Grad 3 und L ein Zerfällungskörper von f. Dann gilt

$$G(L/K) = \begin{cases} \mathbb{Z}/3\mathbb{Z} & \text{, falls } \Delta f \text{ ein Quadrat in } K \text{ ist} \\ S_3 & \text{, sonst} \end{cases}$$

Beweis. Sei a einen Nullstelle von f in L. Dann ist

$$[L:K] = [L:K(a)] \underbrace{[K(a):K]}_{=3}$$

weil f irreduzibel und nach 3.18 muss [L:K] teilt 6.

D.h. [L:K]=3 oder = 6. Im ersten Fall ist G(L/K) eine Untergruppe von S_3 mit Index 2. Also muss $G(L/K) \cong A_3 \cong \mathbb{Z}/3\mathbb{Z}$.

Seiene a_1, a_2, a_3 die Nullstellen von f in L. Dann ist

$$\delta := (a_1 - a_2)(a_1 - a_3)(a_2 - a_3) \neq 0$$

Dann ist $\Delta(f) = \delta^2$. Falls $G(L/K) = S_3$ ist, so gilt

$$\tau(\delta) = \operatorname{sgn}(\tau)\delta$$

für alle $\tau \in G(L/K)$.

Ist $G(L/K) = A_3$, so gilt $\tau(\delta) = \delta$ für alle $\tau \in G(L/K)$.

Da $char(K) \neq 2$ folgt

$$G(L/K) = A_3 \Leftrightarrow \tau(\delta) = \delta \forall \tau \in G(L/K) \Leftrightarrow \delta \in K$$

Beispiel 3.20. Für $f = X^3 + aX + b$ ist

$$\Delta(f) = -4a^3 - 27b^2$$

Das Polynom $f = X^3 - x + 1 \in \mathbb{Q}[X]$ ist irreduzibel und hat Diskriminante

$$\Delta(f) = 4 - 27 = -23$$

somit gilt für den Zerfällungskörper L von \mathbb{Q} , dass $G(L/\mathbb{Q}) = S_3$.

Beispiel 3.21. Sei $f = X^4 - 2 \in \mathbb{Q}[X]$. Dann gilt

$$f = (X - a)(X + a)(X - ia)(X + ia)$$

mit $a = \sqrt[4]{2}$. Der Zerfällungskörper von f über \mathbb{Q} ist $L = \mathbb{Q}(a, i)$.

Das Eisenstein Kriterium zeigt, dass f irreduzibel über \mathbb{Q} ist. Somit ist $f=m_{a,\mathbb{Q}}$ und $[Q(a),\mathbb{Q}]=4$.

Weiterhin ist $[L:\mathbb{Q}(a)]=2$, da $\mathbb{Q}(a)$ keine negativen Quadrate hat und damit nicht i enthält. Es folgt

$$[L:\mathbb{Q}]=8$$

Wir bestimmen die Galoisgruppe von f. Da f 4 Nullstellen hat und die Galoisgruppe die Nullstellen permutiert muss $G(L/\mathbb{Q}) \subset S_4$ sein.

Jedoch muss zusätzlich für $\sigma \in G(L/K)$ gelte, dass

$$\sigma(-a) = -\sigma(a)$$
$$\sigma(-ia) = -\sigma(ia)$$

Es gibt 8 Permutationen in $S(\{a, -a, ia, -ia\})$ die die Bedingungen erfüllen. Diese sind somit die Elemente in $G(L/\mathbb{Q})$.

Seien $\sigma, \tau \in G(L/\mathbb{Q})$ durch

$$\sigma(a) = ia$$
$$\sigma(ia) = -a$$

(d.h.
$$\sigma(i) = i$$
)

$$\tau(a) = -a$$
$$\tau(ia) = ia$$

(d.h.
$$\tau(i) = -i$$
)

Die von σ erzeugt Untergruppe $\langle \sigma \rangle$ hat Ordnung 4 und ist somit normal in $G(L/\mathbb{Q})$.

Weil $Tabelle \notin \langle \sigma \rangle$ gilt

$$G(L/\mathbb{Q}) = \langle \sigma \rangle \cup \langle \sigma \rangle \tau$$

$$= \langle \sigma \rangle \cup \tau \langle \sigma \rangle$$

$$= \{1, \sigma, \sigma^2 \sigma^3, \tau, \tau \sigma, \tau \sigma^2, \tau \sigma^3\}$$

 τ und σ genügen der Relation $Tabelle\sigma = \sigma^3 \tau$.

Für Untergruppen von $G(L/\mathbb{Q})$ erhält man folgendes Schema 2

Abbildung 2: Untergruppen

Definition 3.22. Sei $L = K(X_1, ..., X_n)$ der Quotientenkörper von $K[X_1, ..., X_n]$. Die Element von L sin die rationalen Funktionen f/g mit $f, g \in K[X_1, ..., X_n]$ und $g \neq 0$.

 S_n operiert durch Permutationen der X_i auf L.

 $M=L^{S_n}$ wird als Körper der symetrischen rationalen Funktionen bezeichnet. Die Erweiterung L/M ist eine endliche Galois-Erweiterung mit Galoisgruppe S_n .

Beweis. Es gilt $M = K(s_1, ..., s_n)$:

Die Inklusionen $K(s_1,...,s_n) \subset M \subset L$ impliziert

$$L: K(s_1, ..., s_n) = \underbrace{[L:M]}_{=n!}[M: K(s_1, ..., s_n)]$$

Das Polynom

$$f = \prod_{i=1}^{n} (X - X_i) \in K(s_1, ..., s_n)[X] \subset L[X]$$

ist separabel und hat L als Zerfällungskörper. Also ist

$$[L: K(s_1, ..., s_n)] \le n!$$

Es folgt die Behauptung.

Satz 3.23. Sei G eine endliche Gruppe, dann gibt es eine Galois-Erweiterung L/K mit $G(L/K) \stackrel{\sim}{=} G$.

Beweis. Sei n|G|. Für $a \in G$ definiere

$$\tau_a: G \to G$$
$$g \mapsto ag$$

Dann ist τ_a eine Permutation von G. Weiterhin ist

$$\tau_a \tau_b = \tau_{ab}$$

Wir haben also eine Injektion

$$G \to S_n$$

Wir können G also mit einer Untergruppe von S_n identifizieren. Dann operiert G auf $L = K(X_1, ..., X_n)$ durch Permutation der X_i . Sei $M = L^G$ dann ist L/M eine Galoiserweiterung mit Galoisgruppe G.

3.2 Kreisteilugspolynome

In diesem Abschnitt sei K ein Körper und \overline{K} ein algebraischer Abschluss von K.

Definition 3.24. Die Nullstellen des Polynom X^n-1 $n\geq 0$ werden als n-te **Einheitswurzeln** in \overline{K} bezeichnet.

Proposition 3.25. Die *n*-ten Einheitswurzeln bilden einer Untergruppe U_n von \overline{K}^* .

Ist $\operatorname{char}(K) = 0$ oder $\operatorname{char}(K) \not | n$, so haben $X^n - 1$ und seine Ableitung nX^{n-1} keine gemeinsamen Nullstellen. Also ist $X^n - 1$ separabel.

In diesem Fall ist $|U_n| = n$.

Falls $\operatorname{char}(K) = p > 0$ und p|n, so schreibt man $n?mp^r$ mit (m,p) = 1. Dann ist

$$(X^m - 1)^{p^r} = X^n - 1$$

Die Nullstellen von X^m-1 stimmen mit den Nullstellen von X^n-1 überein und $U_m=U_n$.

Satz 3.26. Sei K ein Körper und $n \in \mathbb{Z}$, n > 0 mit $\operatorname{char}(K) \not| n$, dann ist U_n eine zyklische Gruppe der Ordnung n.

Definition 3.27. $\xi \in U_n$ heißt **primitive** n-te Einheitswurzel, wenn ξ die Gruppe U_n erzeugt.

Satz 3.28. Seien $m, n \in \mathbb{Z}$, m, n > 0 mit (m, n) = 1 und K ein Körper mit $\mathrm{char}(K) \neq |mn|$.

Dann ist die Abbildung

$$U_m \times U_n \to U_{mn}$$

 $(\xi, \eta) \mapsto \xi \eta$

 $ein\ Isomorphismus\ von\ Gruppen.$

Definition 3.29. Für $n \in \mathbb{Z}$, n > 0 definiert

$$\varphi(n) = |(Z/n\mathbb{Z})^*|$$

die Eulersche φ -Funktion.

Lemma 3.30. Ist p eine Primzahl, so gilt

$$\varphi(p^k) = p^k - p^{k-1} = p^k (1 - \frac{1}{p})$$

Satz 3.31. Seien $m, n \in \mathbb{Z}$ mit m, n > 0 und (m, n) = 1. Dann ist

$$\varphi(mn) = \varphi(m)\varphi(n)$$

Beweis. Die aussage folgt aus dem Chinesischen Restsatz: Der Ring-Isomorphismus

$$\mathbb{Z}/mn\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

$$(x \mod mn) \mapsto (x \mod m, x \mod n)$$

liefert einen Isomorphismus

$$(\mathbb{Z}/mn\mathbb{Z})^* \to (\mathbb{Z}/m\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z})^* = (\mathbb{Z}/m\mathbb{Z})^* \times (\mathbb{Z}/n\mathbb{Z})^*$$

Daraus folgt die Multiplikativ der φ Funktion.

Satz 3.32. Sei $n \in \mathbb{Z}$, n > 0. Ein Element a erzeugt die additive zyklische Gruppe $\mathbb{Z}/n\mathbb{Z}$ genau dann wenn a eine Einheit in $\mathbb{Z}/n\mathbb{Z}$ ist.

Satz 3.33. Sei K ein Körper und $n \in \mathbb{Z}$, $n \geq 0$ mit $\operatorname{char}(K) \not | n$. Dann enthält U_n genau $\varphi(n)$ primitive n-te Einheitswurzeln.

Ist ξ primitive n-te Einheitswurzel, so ist ξ^r genau dann primitive n-te Einheitswurzel, wenn (r, n) = 1 ist.

Satz 3.34. Sei char(K) \not n und ξ eine primitive Einheitswurzel.

Dann ist $K(\xi)$ der Zerfällungskörper von $X^n - 1$.

Außerdem ist $K(\xi)/K$ eine endliche Galois-Erweiterung.

Definition 3.35. Falls $K = \mathbb{Q}$ ist so heißt $\mathbb{Q}(\xi)$ der n-te Kreisteilungskörper.

Theorem 3.36. Sei $\xi \in \overline{\mathbb{Q}}$ eine primitive n-te Einheitswurzel. Dann ist $\mathbb{Q}(\xi)/\mathbb{Q}$ eine endliche Galois-Erweiterung mit

$$[\mathbb{Q}(\xi):\mathbb{Q}] = \varphi(n)$$

Beweis. Jedes $\sigma \in G(\mathbb{Q}(\xi)(\mathbb{Q})$ bildet U_n nach U_n (Menge der *n*-ten Einheitswurzeln).

Insbesondere ist $\sigma(\xi)$ wieder eine primitive n-te Einheitswurzel.

Sei $f = m_{\xi,\mathbb{Q}}$. Da f irreduzibel über \mathbb{Q} ist operiert $G(\mathbb{Q}(\xi)/\mathbb{Q})$ transivit auf den Nullstellen von f, d.h. jede Nullstelle von f ist eine primitive n-te Einheitswurzel.

Also gilt

$$[Q(\xi):\mathbb{Q}] \leq \varphi(n)$$

Wir zeigen jetzt, dass jede primitive n-te Einheitswurzel Nullstelle von f ist. Da ξ Nullstelle von X^n-1 ist gilt

$$X^n - 1 = fg$$

für ein normiertes $g \in \mathbb{Q}[X]$.

Sei p Primzahl. Wir betrachten die p-adische Bewertung. Da X^n-1 nicht von p geteilt wird ist

$$0 = \nu_p(fg)$$

$$0 = \underbrace{\nu_p(f)}_{\geq 0} + \underbrace{\nu_p(g)}_{\geq 0}$$

Dann muss aber $\nu_p(f)=\nu_p(g)=0$ für alle Primzahlen p gelten. Somit ist $f,g\in\mathbb{Z}[X].$

Sei nun peine Primzahl mit $p\not\mid n.$ Dann ist ξ^p eine primitive n-te Einheitswurzel.

Angenommen $f(\xi^p) \neq 0$, dann muss $g(\xi^p) = 0$ (da ξ Nullstelle von fg). D.h. ξ ist Nullstelle von X^p , dann $f|g(X^p)$. Sei $g(X^p) = fh$, dann ist h ein normiertes Polynom in $\mathbb{Z}[X]$.

Reduzieren der Koeffizienten mod p

$$\mathbb{Z}[X] \to (\mathbb{Z}/p\mathbb{Z})[X]$$

Dann geht

$$g = \sum_{j=0}^{m} a_j X^j$$

über in

$$\overline{g} = \sum_{j=0}^{m} \overline{a}_j X^j$$

In \mathbb{F}_p gilt $a^p = a$, sodass

$$\overline{g}^p = \left(\sum_{j=0}^m \overline{a}_j X^j\right)^p \\
= \sum_{j=0}^m \overline{a}_j^p X^{jp} \\
= \sum_{j=0}^m \overline{a}_j X^{jp} \\
= \overline{g}(X^p) \\
= \overline{fh}$$

Aus $\overline{g}^p = \overline{fh}$ folgt, dass \overline{f} und \overline{g} nicht teilerfremd sind in \mathbb{F}_p . Somit hat $X^n - 1 = \overline{f}\overline{g}$ merhfache Nullstellen in \mathbb{F}_p . Dies widerspricht $p \not| n!$ Also muss ξ^p eine Nullstelle von f.

Sei nun η eine beliebige primitive n-te Einheitswurzel. Dann ist $\eta = \xi^m$ mit (m,n)=1. Sei $m=p_1\cdot\ldots\cdot p_k$ die Zerlegung von m im Primfaktoren, sodass

$$\eta = \xi^m = (...(\xi^{p_1})^{p_2}...)^{p_k}$$

Also ist ξ^{p_1} eine Nullstelle in f. f ist auch das Minimaplolynom von ξ^{p_1} . Analog zeigt man, dass $(\xi^{p_1})^{p_2}$ eine Nullstelle von f ist. Es folgt schließlich, dass η eine Nullstelle von f ist.

Dann folgt

$$\mathbb{Q}(\xi):\mathbb{Q}]=\varphi(n)$$

Satz 3.37. Seien $\xi_m, \xi_n \in \overline{\mathbb{Q}}$ primitive m-te bzw n-te Einheitswurzeln mit (m,n)=1.

Dann ist

$$\mathbb{Q}(\xi_m) \cap \mathbb{Q}(\xi_n) = \mathbb{Q}$$

Beweis. Es ist $\xi_{mn} = \xi_n \xi_m$ auch primitive Einheitswurzel. Es folgt

$$\mathbb{Q}(\xi_{mn}) = \mathbb{Q}(\xi_m, \xi_n)$$

und

$$\underbrace{\left[\mathbb{Q}(\xi_{mn}):\mathbb{Q}\right]}_{=\varphi(mn)} = \left[\mathbb{Q}(\xi_{mn}:\mathbb{Q}(\xi_{m}))\right]\underbrace{\left[\mathbb{Q}(\xi_{m}):\mathbb{Q}\right]}_{=m}$$

sodass

$$[\mathbb{Q}(\xi_{mn}):\mathbb{Q}(\xi_m)]=\varphi(m)$$

Abbildung 3: Körperdiagramm mit Erweiterungsgrad

Sei
$$L = \mathbb{Q}(\xi_m) \cap \mathbb{Q}(\xi_n)$$
. Es ist

$$\deg(m_{\xi_m,\mathbb{Q}(\xi_n)}) = \varphi(m)$$
$$\deg(m_{\xi_m,L}) \ge \varphi(m)$$

und

$$\mathbb{Q} \subset L \subset \mathbb{Q}(\xi_m)$$
$$\mathbb{Q}(\xi_m) \subset L(\xi_m) \subset \mathbb{Q}(\xi_m)$$

d.h.

$$L(\xi_m) = \mathbb{Q}(\xi_m)$$

Damit folgt

$$\underbrace{[L(\xi_m):\mathbb{Q}]}_{=\varphi(n)} = \underbrace{[L(\xi_m):L]}_{\geq \varphi(m)}[L:Q]$$

Also muss $[L:\mathbb{Q}]=1$, also $L=\mathbb{Q}$.

Satz 3.38. Sei $\xi \in \overline{K}$ eine primitive n-te Einheitswurzel mit char(K) $\not| n$. Dann gilt

- a) $K(\xi)$ ist der Zerfällungskörper des separablen Polynom $X^n 1$ über K. Und die Erweiterung $K(\xi)/K$ ist eine endliche Galois-Erweiterung mit $Grad \leq \varphi(n)$ und abelscher Galoisgruppe.
- b) Zu jedem $\sigma \in G(K(\xi)/K)$ gibt es <u>eine</u> positive ganze Zahl, $r(\sigma)$ mit $\sigma(\xi) = \xi^{r(\sigma)}$, wobei die Restklasse $r(\sigma) \in \mathbb{Z}/n\mathbb{Z}$ eine Einheit ist, die unabhängig von der Wahl von ξ eindeutig durch σ bestimmt ist.

Und die Abbildung

$$G(K(\xi)/K) \to (\mathbb{Z}/n\mathbb{Z})^*$$

 $\sigma \mapsto \overline{r(\sigma)}$

ist ein injektiver Gruppenhomomorphismus.

Beweis.

Sei $\sigma \in G(K(\xi)/K)$. Dann ist $\sigma(U_n) = U_n$. Also $\sigma(\xi) = \xi^{r(\sigma)}$ für ein positive ganze Zahl $r(\sigma)$.

Da ξ primtive n-te Einheitswurzel ist ist $r(\sigma)$ eundeutig modulo n und $(n, r(\sigma)) = 1$.

Es gilt

$$\sigma(\xi^s) = \sigma(\xi)^s = (\xi^{r(\sigma)})^s = (\xi^s)^{r(\sigma)}$$

sodass $r(\sigma)$ nicht von der Wahl von ξ abhängt. Die Abbildung

$$\Psi: G(K(\xi)/K) \to (\mathbb{Z}/n\mathbb{Z})^*$$
$$\sigma \mapsto \overline{r(\sigma)}$$

ist ein Gruppenhomomorphismus, denn für $\sigma, \tau \in G(K(\xi)/K)$

$$\begin{split} (\sigma\tau)(\xi) &= \sigma(\tau(\xi)) \\ &= \sigma(\xi^{r(\tau)}) \\ &= (\xi^{r(\tau)})^{r(\sigma)} \\ &= \xi^{r(\tau)r(\sigma)} \end{split}$$

sodass

$$\begin{split} \Psi(\sigma\tau) &= \overline{r(\sigma\tau)} \\ &= \overline{r(\sigma)r(\tau)} \\ &= \overline{r(\sigma)r(\tau)} \\ &= \Psi(\sigma)\Psi(\tau) \end{split}$$

Aus $\overline{r(\sigma)} = 1$ folgt, dass $\sigma(\xi) = \xi$, also ist σ die Identität auf $K(\xi)$.

Korollar 3.39. Sei $\xi \in \overline{\mathbb{Q}}$ eine primitive n-te Einheitswurzel. Dann ist $\mathbb{Q}(\xi)/\mathbb{Q}$ eine endliche Galois-Erweiterung mit Galoisgruppe $(\mathbb{Z}/n\mathbb{Z})^*$.

Wir zeigen nun, dass sich jede endliche abelsche Gruppe als Galoisgruppe über $\mathbb Q$ realisieren lässt.

Theorem 3.40 (Dirichlet). Sei $a, b \in \mathbb{Z}$ mit a, b > 0 und (a, b) = 1. Dann enthält $\{a + nb \mid n \in \mathbb{Z}\}$ unendlich viele Primzahlen.

Theorem 3.41. Sei G eine endliche abelsche Gruppe. Dann gibt es eine endliche Galoiserweiterung K/\mathbb{Q} mit $G(K/\mathbb{Q}) \cong G$.

Beweis. G zerfällt in zyklische Gruppen, d.h.

$$G = \bigoplus_{i=1}^{n} \mathbb{Z}/p_i^{l_i}$$

mit p_i prim.

Nach 3.40 gilt $\{1 + m_i p_i^{l_i}\}$ enthält unendliche viele Primzahlen, d.h. wir können teilerfremde Primzahlen q_i wählen, mit

$$q_i = 1 \mod p_i^{l_i}$$

Schreibe $q_i = 1 - m_i p_i^{l_i}$. Sei $q = \prod_{i=1}^n q_i, \xi \in \overline{\mathbb{Q}}$ eine primitive q-te Einheitswurzel und wähle $K = \mathbb{Q}(\xi)$. Dann ist

$$G(K/\mathbb{Q}) \stackrel{\sim}{=} (\mathbb{Z}/q\mathbb{Z})^*$$

$$= \bigoplus_{i=1}^n (\mathbb{Z}/q_i\mathbb{Z})^*$$

$$= \bigoplus_{i=1}^n \mathbb{Z}/m_i p_i^{l_i} \mathbb{Z}$$

Wähle nun

$$H_i = p_i^{l_i} \mathbb{Z} / m_i p_i^{l_i} \mathbb{Z}$$

dann ist H_i eine Untergruppe von $\mathbb{Z}/m_i p_i 1^{l_i} \mathbb{Z}$ mit

$$\frac{\mathbb{Z}/m_i p_i^{l_i} \mathbb{Z}}{H_i} = \mathbb{Z}/p_i^{l_i} \mathbb{Z}$$

Definiere nun $H = \bigoplus_{i=1}^{n} H_i$. Dann ist

$$G(K/\mathbb{Q})/H \stackrel{\sim}{=} G$$

d.h. K^H/\mathbb{Q} ist eine Galoiserweiterung mit Galoisgruppe

$$G(K^H/\mathbb{Q}) = \frac{G(K/\mathbb{Q})}{G(K/K^H)} = \frac{G(K/\mathbb{Q})}{H} = G$$

Theorem 3.42 (Kronecker-Weber). Sei K/\mathbb{Q} eine endliche Galoiserweiterung mit abelscher Galoisgruppe. Dann ist K in einem Kreisteilungskörper enthalten.

Definition 3.43. Sei $n \in \mathbb{Z}$, n > 0 und $\operatorname{char}(K) / n$. Seien $\xi_1, ..., \xi_m$ mit $m = \varphi(n)$ die primitiven n-ten Einheitswurzeln in \overline{K} . Dann heißt

$$\Phi_{n,K} = \prod_{i=1}^{m} (X - \xi_i)$$

das n-te **Kreisteilungspolynom** über K.

Im Fall $K = \mathbb{Q}$ schreiben wir Φ_n für $\Phi_{n,K}$.

Satz 3.44. a) $\Phi_{n,K}$ ist ein normiertes separables POlynom über K vom Grad $\phi(n)$

- b) Für $K = \mathbb{Q}$ gilt $\Phi_n \in \mathbb{Z}[X]$ und Φ_n ist irreduzibel in $\mathbb{Z}[X]$ und in $\mathbb{Q}[X]$.
- c) $X^n 1 = \prod_{d|n} \Phi_{d,K}$

Beweis. a) Sei $L = K(\xi_i)$. Dann ist L/K eine Galoiserweiterung un $L^{G(L/K)} = K$. Sei $\sigma \in G(L/K)$.

Dann permutiert σ die Primitiven Einheitswurzeln, d.h. $\Phi_{n,K} = \Phi_{n,K}$. Somit liegen die Koeffizienten von $\Phi_{n,K}$ in K.

- b) Sei $\xi \in \overline{\mathbb{Q}}$ primitive *n*-te Einheitswurzel. Dann hat $m_{\xi,\mathbb{Q}}$ Grad $\varphi(n)$. Da $\Phi_n(\xi) = 0$ ist und Φ_n Grad $\varphi(n)$ hat ist $\Phi_n = m_{\xi,\mathbb{Q}}$. Somit ist Φ_n irreduzibel über \mathbb{Q} . Aus $\Phi_n|(X^n 1)$ und der Normiertheit von Φ_n folgt $\Phi_n \in \mathbb{Z}[X]$.
- c) Es ist

$$X^n-1=\prod_{\xi\in U_n}(X-\xi)=\prod_{d\mid n}\prod_{\xi\in P_d}(X-\xi)$$

$$=\prod_{d\mid n}\Phi_{d,K}$$

wobei P_d die Menge der d-ten Einheitswurzeln in U_n ist.

Satz 3.45. Sei $n \in \mathbb{Z}$, n > 0 und p prim mit $p \nmid n$. Sei e die Ordnung von p in $(\mathbb{Z}/n\mathbb{Z})^*$. Dann zerfällt Φ_{n,\mathbb{F}_p} in $\varphi(n)/e$ verschiedene Faktoren vom Grad e über \mathbb{F}_p .

Beweis. Sei f ein irreduzibler normierter Faktor von Φ_{n,\mathbb{F}_p} . Dann ist f das Minimalpolynom einer primitiven n-te Einheitswurzel $\xi \in \overline{\mathbb{F}_p}$ über \mathbb{F}_p . Sei $K = \mathbb{F}_p(\xi)$ und $m = [K : \mathbb{F}_p]$. Dann ist $m = \deg(f)$.

Wir zeigen m = e:

 ξ hat Ordnung n in U_n , K^* ist zyklisch der Ordnung P^{m-1} . Es folgt

$$n|p^m - 1$$

$$p^m = 1 \mod n$$

$$e|m$$

$$e \le m$$

Andererseits folgt aus $p^e = 1 \mod n$, dass

$$\xi^{p^e} = \xi^1 = \xi$$

so dass di Abbildung

$$k \to K$$
$$x \mapsto x^{p^e}$$

trivial auf K ist, da das Polynom $X^{p^e} - X$ höchsten p^e Nullstellen hat, ist

$$|K| \le p^e$$

$$p^m \le p^e$$

$$m \le e$$

Es folgt m = e.

Beispiel3.46. Sei peine ungerade Primzahl und $\xi\in\overline{F_p}$ eine primitive 8-te Einheitswurzel. Dann ist

$$G\left(\mathbb{F}_p(\xi)/\mathbb{F}_p\right) \hookrightarrow \left(\mathbb{Z}/8\mathbb{Z}\right)^*$$

$$= \{1, 3, 5, 7\} = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}.$$

Somit ist

$$G(\mathbb{F}_p(\xi)/\mathbb{F}_p) = \begin{cases} 1 & \text{mod } 8 \\ \mathbb{Z}/2\mathbb{Z}, \text{ sonst} \end{cases}$$

Bemerkung 3.47. Sei p eine ungerade Primzahl. Dann ist $(\mathbb{Z}/p^n\mathbb{Z})^*$ zyklisch der Ordnung p^n-p^{n-1} .

Für p=2 ist

$$\begin{split} &(\mathbb{Z}/2\mathbb{Z})^* = 1\\ &(\mathbb{Z}/4\mathbb{Z})^* = \mathbb{Z}/2\mathbb{Z}\\ &(\mathbb{Z}/2^n\mathbb{Z})^* = \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{n-2}\mathbb{Z} \text{ für } n \geq 3 \end{split}$$

4 Moduln

4.1 Definitionen

Definition 4.1. Sei R ein Ring. Ein **Linksmodul** über R ist eine abelsche Gruppe M mit einer Abbildung

$$R \times M \to M$$

sodass

$$a(x + y) = ax + ay$$
$$(a + b)x = ax + bx$$
$$a(bx) = (ab)x$$
$$1x = x$$

für alle $a, b \in R$ und $x, y \in M$.

Definition 4.2. Seien M', M R-Moduln. Eine Abbildung

$$f: M \to M'$$

heißt R-linear oder Modulhomomorphismus, wenn

$$f(x+y) = f(x) + f(y)$$
$$f(ax) = af(x)$$

für alle $a \in R$ und $x, y \in M$.

Beispiel 4.3. a) Sei G eine abelsche Gruppe. Dann ist G ein \mathbb{Z} -Modul unter

$$ng = \begin{cases} \underbrace{g + \dots + g}_{n \text{ Summanden}} & n > 0\\ 0 & n = 0\\ \underbrace{(-g) + \dots + (-g)}_{n \text{ Summanden}} & n < 0 \end{cases}$$

- b) Jeder \mathbb{Z} -Modul ist eine abelsche Gruppe (indem man die Modul-Struktur vergisst)
- c) Zwei \mathbb{Z} -Moduln sind genau dann isomorph, wenn sie als abelsche Gruppen isomorph sind.
- d) Sei Rein Ring und Mein $R\text{-}\mathrm{Modul}$ und $f:M\to M$ ein Modulhomomorphismus. Dann ist Mein $R[X]\text{-}\mathrm{Modul}$ unter

$$R[X] \times M \to M$$

 $(a_i X^i, v) \mapsto \sum a_i f^i(v)$

e) Für zwei $R\operatorname{\!-Moduln} M$ und M' ist die Menge der $R\operatorname{\!-linearen}$ Abbildungen unter

$$(af)(v) = af(v)$$

ein R-Modul

Definition 4.4. Sei ; ein R-Modul. Ein Untermodul von M ist eine Untergruppe N von M, die Invariant unter Operstionen von R ist, d.h. $ax \in N$ für alle $a \in R$, $x \in N$.

Beispiel 4.5. Sei M ein R-Modul und $(M_i)_{i\in I}$ eine Familie von Untermoduln. Dann sind

$$\bigcap_{i \in I} M_i \quad \text{ und } \quad \sum_{i \in I} M_i = \{ \sum_{i \in I} x_i \mid x_i \in M_i, \text{ fast allle } x_i = 0 \}$$

Untermoduln von M.

4.2 Faktormoduln

Definition 4.6. Sei M ein R-Modul und $N \subset M$ ein Untermodul, so erhält man auf der **Faktorgruppe** M/N eine R-Modulstruktur. Mit a(x+N)=ax+N für $x \in M$, $a \in R$ wird M/N als **Faktormodul** bezeichnet.

Die Abbildung $\pi: M \to M/N, x \mapsto x + N$ ist ein Modulhomomorphismus.

Theorem 4.7. Seien M, M' R-Moduln, $f: M \to M'$ ein Modulhomomorphismus und $N \subset \operatorname{Kern}(f)$ ein Untermodul von M. Dann gibt es eine eindeutigen Homomorphismus $\overline{f}: M/N \to M'$, sodass

$$M \xrightarrow{f} M'$$

$$\downarrow \qquad \qquad \downarrow$$

$$M/N$$

Satz 4.8. Sei M ein R-Modul und N ein Untermodul. Dann insuziert die Projektion $\pi: M \to M/N$ eine Bijektion zwischen den Untermoduln von M die N enthalten und den Untermoduln von M/N.

4.3 Direkte Summen und Produkte

Definition 4.9. Sei $(M_i)_{i \in I}$ eine Familie von R-Moduln. Dann ist das **Modul-Produkt**

$$\prod_{i \in I} M_i = \{(x_i)_{i \in I} \mid x_i \in M_i\}$$

ein R-Modul und

$$\bigoplus_{i \in I} M_i = \{(x_i)_{i \in I} \mid x_i \in M_i \text{ und fast alle } x_i = 0\}$$

ein Untermodul. Dieser wird als direkte Summe bezeichnet.

4.4 Erzeugendensysteme und Basen

Definition 4.10. Sei M ein R-Modul. Eine Familie $(x_i)_{i \in I}$ von Element in M heißt **Erzeugendensystem** von M über R, wenn

$$m = \sum_{i \in I} Rx_i$$

ist.

Besitzt M ein endliches Erzeugendensystem, so heißt M endliche erzeugt oder endlicher R-Modul.

Ein Familie $(x_i)_{i \in I}$ heißt **linear unabhängig**, wenn aus

$$\sum_{i \in I} a_i x_i = 0$$

(mit fast alle $a_i = 0$) folgt, dass alle $a_i = 0$ sind.

Definition 4.11. Ein linear unabhängiges Erzeugendensystem wird als **Basis** bezeichnet.

In diesem Falls lässt sich jedes $x \in M$ schreiben als

$$x = \sum_{i \in I} a_i x_i$$

mit eindeutig bestimmtem $a_i \in R$. In diesem Fall heißt M frei.

Satz 4.12. Sei R ein Ring mit $1 \neq 0$ und M ein R-Modul. Sind $(v,...,v_m)$ und $(w_1,...,w_n)$ zwei R-Basen von M, so ist m=n.

4.5 Exakte Sequenzen

Definition 4.13. Eine Folge von R-Moduln und R-linearen Abbildungen

$$\dots \to M_{i-1} \xrightarrow{f_i} M_i \xrightarrow{f_{i+1}} M_{i+1} \to \dots$$

heißt **exakt bei** M_i , wenn $\text{Im}(f_i) = \text{Kern}(f_i)$.

Definition 4.14. Eine Sequenz heißt **exakte Sequenz**, wenn sie an jedem M_i exakt ist.

Definition 4.15. Ein kurze exakte Sequenz ist eine Sequenz der Form

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

Exakheit bedeuet hierbei, dass f injektiv, g surjektiv und Im(f) = Kern(g).

Beispiel 4.16. Sei M ein R-Modul und $N \subset M$ ein Untermodul. Dann ist

$$0 \to N \hookrightarrow M \to M/N \to 0$$

eine kurze exakte Sequenz.

Satz 4.17. Sei

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

eine kurze exakte Sequenz von R-Moduln. Dann sind äquivalent:

- a) Es gibt einen Untermodul $N \subset M$ mit $M = N \oplus \text{Kern}(g)$
- b) Es gibt eine R-lineare Abbildung $s: M'' \to M$ mit $g \circ s = \mathrm{id}_{M'}$
- c) Es gibt eine R-lineare Abbildung $t: M \to M'$ mit $t \circ f = \mathrm{id}_{M'}$

Korollar 4.18. Sei

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

eine kurze exakte Sequenz von R-Moduln. Sind M' und M" frei, so ist M frei.

Beweis. Da M'' frei ist gilt $M \cong M' \oplus M''$.

4.6 Endlich erzeugbare Moduln

Definition 4.19. Ein R-Modul M heißt **endlich erzeugbar**, wenn M ein endliches Erzeugendensystem hat.

Äquivalent: Es gibt einen surjektiven Homomorphismus $\mathbb{R}^n \to M$.

Beispiel 4.20. Sei K ein Körper und $R = K[X_1, X_2, ...]$ der Polynomring über K in abzählbar vielen Variablen und sei

$$I = \{ f \in R \mid \text{Konstanter Term } a_0 = 0 \}$$

Dann ist I ein Ideal in R, d.h. I ist ein R-Untermodul von R. Dann ist zwar R endlich erzeugbar $(R^1 \to R)$ aber I ist nicht endlich erzeugt als R-Modul.

Satz 4.21. Sei

$$0 \to M'' \xrightarrow{f} M \xrightarrow{g} 0$$

eine kurze Exakte Sequenz von R-Moduln. Dann gilt

- a) Ist M endlich erzeugt, so auch M''.
- b) Sind M' und M'' endlich erzeugt, so auch M.

Beweis. a) Ist $(v_1, ..., v_n)$ ein Erzeugendensystem von M, so ist $(g(v_1), ..., v(v_n))$ ein Erzeugendensystem von M''.

b) Sei $(v_1, ..., v_N)$ ein Erzeugendensystem von M' und $(x_1, ..., w_m)$ ein Erzeugendensystem von M''. Setze

$$s_i = f(v_i)$$
 $w_i = q(t_i)$

Dann ist $(s_1,...,s_n,t_1,...,t_m)$ ein Erzeugendensystem von M, denn: Sei $x\in M.$ Dann gilt

$$g(x) = \sum_{i=1}^{n} a_i w_i = \sum_{i=1}^{n} a_i g(t_i)$$

Dann folgt, dass insbesondere

$$g\left(x - \sum_{i=1}^{n} a_i t_i\right) = 0$$

also ist

$$x - \sum_{i=1}^{n} a_i t_i \in \text{Kern}(g) = \text{Im}(f)$$

$$x - \sum_{i=1}^{n} a_i t_i = \sum_{i=1}^{m} b_j s_j$$

Sodass abschließend gilt

$$x = \sum_{i=1}^{m} b_j s_j + \sum_{i=1}^{n} a_i t_i$$

Satz 4.22. Seien $M_1, ..., M_n$ R-Moduln und sei $M = \bigoplus_{i=1}^n M_i$. Dann ist M genau dann endlich erzeugt, wenn alle M_i endlich erzeugt sind.

Beweis. "

"Klar: Endliche Menge von endlichen Erzeugendensystemen.

" \Rightarrow " Setze $M' = \bigoplus_{i \neq j} M_i$. Dann ist für jedes j

$$0 \to M' \to M \to M_i \to 0$$

eine exakte Sequenz.

Dann ist M_j endlich nach ??.

Definition 4.23. Ein R-Modul heißt **noethersch**, wenn jeder Untermodul von M endlich erzeugbar ist.

Satz 4.24. Sei M ein R-Modul. Dann sind äquivalent:

- a) M ist noethersch.
- b) Jede aufsteigende Kette von Untermoduln wird stationär.
- c) Jede nichtleere Teilmenge von Untermoduln von M hat ein maximales Element

Satz 4.25. Sei

$$0 \to M' \xrightarrow{f} M \xrightarrow{g} M'' \to 0$$

eine kurze exakte Sequenz von R-Moduln. Dann ist M genau dann noethersch, wenn M' und M'' noethersch sind.

Beweis. " \Rightarrow " Sei M noethersch. Dann ist M' noethersch weil Untermoduln von M' isomorph unter f zu einem Untermodul von M ist.

Jeder Untermodul von M'' ist das homomorphe Bild eines Untermoduls von M unter g und somit endlich erzeugbar.

" \Leftarrow " Seiene nun M' und M'' noethersch. Sei N ein Untermodul von M. Dann

$$0 \to f^{-1} \xrightarrow{f} N \xrightarrow{g} g(N) \to 0$$

exakte Sequenz. Da $f^{-1}(N)$ und g(N) endlich erzeugt sind ist auch N endlich erzeugt.

Satz 4.26. Seien $M_1, ..., M_n$ R-Moduln und sei $M = \bigoplus_{i=1}^n M_i$. Dann ist M genau dann noethersch, wenn jedes M_i noethersch ist.

Beweis. " \Leftrightarrow " Durch Induktion über n.

Für n=1 ist $M=M_1$. Sei n>1. Definiere $M'=\bigoplus_{i=1}^{n-1}M_i$. Dann definiert

$$0 \to M' \to M \to M_n \to 0$$

eine kurze exakte Sequenz bei der M' und M_n noethersch sind. Somit ist M noethersch.

"⇒" Sei $M' = \bigoplus_{i \neq j}$. Dann ist für jedes j

$$0 \to M' \to M \to M_i \to 0$$

eine kurze exakte Sequenz. DaMnoethersch ist auch ${\cal M}_j$ noethersch.

Satz 4.27. Sei R ein noetherscher Ring und M ein endlich erzeugbarer R-Modul. Dann ist M noethersch.

Beweis. Es gibt einen subjektiven Homomorphismus $g:R^n\to M$ und eine exakte Sequenz

$$0 \to \operatorname{Kern}(g) \to R^n \xrightarrow{g} M \to 0$$

Somit ist M noethersch.

5 Ganze Ringerweiterungen

5.1 Definitionen und Eigenschaften

Definition 5.1. Sei B ein Ring und $A \subset B$ ein Unterring. $x \in B$ heißt **ganz** über A, wenn es ein normiertes $f \in A[X]$ mit f(x) = 0 gibt.

Satz 5.2. Sei B ein Ring, $A \subset B$ ein Unterring und $x \in B$. Dann sind äquivalent:

- a) x ist ganz über A.
- b) Der Ring A[x] ist ein endlich erzeugter A-Modul.
- c) Der Ring A[x] ist ein einem Unterring $C \subset B$ enthalten, sodass C ein endlich erzeugter A-Modul ist.

Beweis. ,1) \Rightarrow 2)" Ist $x \in B$ ganz, so gibt es ein normiertes $f \in A[X]$ mit f(x) = 0, d.h.

$$x^n + a_{n-1}x^{n-1} + \dots + a_0 = 0$$

für geeignete $a_i \in A$.

Es folgt, dass

$$x^n = -a_{n-1}x^{n-1} - \dots - a_0$$

D.h. A[x] wird von $1, x, x^2, ..., x^{n-1}$ als A-Modul erzeugt.

- "2) \Rightarrow 3)" Wähle C = A[x].
- "3) \Rightarrow 1)" Sei $C = \sum_{i=1}^{n} Ac_i$. Weil $A[x] \subset C$ gilt $xc_i \in C$. Es gibt also $\gamma_{ij} \in A$ mit

$$xc_i = \sum_{j=1}^n \gamma_{ij}c_i$$

Wir können diese Gleichung schreiben als

$$\sum_{j=1}^{n} (xc_j\delta_{ij} - \gamma_{ij}c_j) = 0$$

$$\sum_{j=1}^{n} \underbrace{(x\delta_{ij} - \gamma_{ij})}_{:=m_{ij}} c_j = 0$$

$$Mu = 0$$

Definiere nun $M=(m_{ij})$ und $u=(c_1,...,c_n)^T.$ Sei M^{ad} die zu M adjungierte Matrix. Dann ist

$$M^{ad}Mu = \det(M)u$$

Es folgt

$$\det(M)c_i = 0$$

und damit

$$\det(M)c = 0$$

für alle $c \in C$. Da $1 \in C$ ist det(M) = 0.

Korollar 5.3. Sei B ein Ring und A ein Unterring.

- a) Sind $x_1,...,x_n \in B$ ganz über A, so ist $A[x_1,...,x_n]$ ein endlich erzeugter A-Modul.
- b) Sei B ein Unterring eines Rings C. Ist B ein endlich erzeugter A-Modul und $y \in C$ ganz über B, so ist y ganz über A.

Beweis. a) Durch Induktion über n. Im Fall n = 1 gilt ??.

Sei n>1. Nach Induktionsvoraussetzung ist $A[x_1,...,a_{n-1}]$ ein endlich erzeugter A-Modul.

 x_n ist ganz über A, somit ist x_n auch ganz über $A[x_1,...,x_{n-1}]$. Somit ist $A[x_1,...,x_{n-1}][x_n]$ ein endlich erzeugter $A[x_1,...,x_{n-1}]$ -Modul.

$$A[x_1, ..., x_{n-1}] = \sum_{i=1}^{k} Af_i$$

mit $f_i \in A[x_1, ..., x_{n-1}]$

$$A[x_1, ..., x_n] = \sum_{i=1}^{l} A[x_1, ..., x_{n-1}]g_j$$

mit $g_j \in A[x_1, ..., x_n]$

$$= \sum_{j=1}^{l} \sum_{i=1}^{k} A f_i g_j$$

Dann ist auch $A[x_1,...,x_n]$ ein endlich erzeugter A-Modul.

b) B[y] ist ein endlich erzeugter B-Modul. Da B ein endlich erzeugter A-Modul ist gilt $A[y] \subset B[y]$ un dann mit $\ref{eq:module}$, dass y ganz über A ist.

Definition 5.4. Sei B ein Ring und $A \subset B$ ein Unterring. Dann nennt man

$$\overline{A} := \{ x \in B \mid x \text{ ist ganz "uber } A \}$$

die ganze Hülle von A in B.

Satz 5.5. Sei B ein Ring und $A \subset B$ ein Unterring. Dann ist die ganze Hülle \overline{A} von A über B ein Unterring von B.

Beweis. Sind $x, y \in B$ ganz über A, so ist A[x, y] ein endlich erzeugter A-Modul. Dieser enthält x - y, x + y und xy. Somit sind diese Elemente ganz über A[x, y] und somit auch über A.

Definition 5.6. Ist $\overline{A} = B$, so heißt B ganz über A.

Satz 5.7. Seien $A \subset B \subset C$ Ringerweiterungen. Ist C ganz über B und B ganz über A, so ist auch B ganz über A.

Beweis. Sei $c \in C$. Dann ist

$$x^{n} + b_{n-1}c^{n-1} + \dots + b_{0} = 0$$

für geeigente $b_i \in B$.

Sei $R = A[b_0, ..., b_{n-1}]$. Dann ist R[c] ein endlich erzeugter R-Modul

Da die b_i ganz sind ist R ein endlich erzeugter A-Modul. Somit ist R ein endlich erzeugter A-Modul.

Es folgt, dass \overline{A} ganz abgeschlossen ist (also $x \in B$ ist ganz über \overline{A} und \overline{A} ist ganz über A. Also ist x ganz über A).

Definition 5.8. Ein Integritätsbereich heißt **ganz abgeschlossen**, wenn er ganz abgeschlossen in seinem Quotientenkörper ist.

Satz 5.9. Sei A ein faktorieller Integritätsbereich. Dann ist A ganz abgeschlossen.

Beweis. Sei K der Quotientenkörper von A.

Sei $\frac{a}{b} \in K$ mit $a, b \in A, (a, b) = 1$ und ganz über A. Dann ist

$$(\frac{a}{b})^n + c_{n-1}(\frac{a}{b})^{n-1} + \dots + c_0 = 0$$

für geeignete $c_i \in A$. Multiplikation mit b^n liefert

$$a^{n} + c_{n-1}a^{n-1}b + \dots + c_{0}b^{n} = 0$$

d.h. $b|a^n$.

Somit muss b eine Einheit sein, also $\frac{a}{b} \in A$.

Satz 5.10. Sei A ein Integritätsbereich mit Quotientenkörper K und sei A ganz abgeschlossen in K. Sei L/K ein algebraisch Körpererweiterung. Dann ist $\alpha \in L$ genau dann ganz über A, wenn $m_{\alpha,K} \in A[X]$ liegt.

Beweis. " \Leftarrow " Klar weil $m_{\alpha,K}$ normiert ist.

"⇒" Sei $\alpha \in L$ ganz über A. Es gibt als eine normiertes Polynom $f \in A[X]$ mit $f(\alpha) = 0$.

In K[X] gilt $m_{\alpha,K}|f$

Über einem geeigneten algebraisch Abschluss \overline{L} von L zerfällt $m_{\alpha,K}$ d.h.

$$m_{\alpha,K} = \prod_{i=1}^{n} (X - \alpha_i)$$

Aus $m_{\alpha,K}|f$ folgt, dass $f(\alpha_i) = 0$ für alle α_i .

Somit ist jedes α_i ganz über A.

Dann sind auch die Koeffizienten von $m_{\alpha,K}$ ganz über A.

Da A ganz abgeschlossen in K ist gilt $m_{\alpha,K} \in A[X]$.

5.2 Dedekindringe

Definition 5.11. Ein Integritätsbereich A heißt **Dedekindring**, wenn

- a) A noethersch
- b) A ist ganz abgeschlossen
- c) Jedes Primideal $\neq 0$ ist maximal.

Definition 5.12. Ein algebraischer Zahlkörper K ist eine endliche Erweiterung von \mathbb{Q} .

Definition 5.13. Die ganze Hülle von \mathbb{Z} in K wird als **Ring der ganzen Zahlen** in K bezeichnet. Man schreibt diesen als

$$O_K := \{ a \in K | \exists f \in \mathbb{Z}[X] \text{ normiert mit } f(a) = 0 \}$$

Theorem 5.14. Sei K ein algebraischer Zahlkörper. Dann ist O_K ein Dedekindring.

Beispiel 5.15. Sei $d \in \mathbb{Z}$, $n \neq 1$ und quadratfrei.

Wähle $K = \mathbb{Q}(\sqrt{d})$ und

$$\omega_d = \begin{cases} \sqrt{d} & \text{, falls } d = 2, 3 \mod 4 \\ \frac{1}{2}(1 + \sqrt{d}) & \text{, falls } d = 1 \mod 4 \end{cases}$$

Dann ist

$$O_K = \mathbb{Z} + \mathbb{Z}\omega_d$$

Betrachte nun $\mathbb{Q}(\sqrt{-5})$. Dann ist in O_K

$$21 = 3 \cdot 7 = (1 - 2\sqrt{-5})(1 + 2\sqrt{-5})$$

D.h. man erhält Faktorisierungen in Primafaktoren von 21, die nicht zueinander assoziiert sind.

Theorem 5.16. Sei A ein Dedekindring, $I \neq 0$ und $I \neq A$ ein Ideal in A. Dann gilt

$$I = P_1...P_n$$

 $mit\ eindeutigen\ Primidealen\ P_i.$

5.3 Der Noethersche Normalisierungssatz

Der Noethersche Normalisierungssatz impliziert den Hilbertschen Nullstellensatz und ist daher für die algebraische Geometrie von großer Bedeutung.

Theorem 5.17. Sei K ein Körper und $B = [b_1, ..., b_n]$ endlich erzeugter Ring. Dann existieren Elemente $x_1, ..., x_r \in B$, die algebraisch unabhängig über K sind, sodass B als Modul endlich erzeugt über $K[x_1, ..., x_r]$ ist.

Beweis. Sind $b_1,...,b_n$ algebraisch unabhängig über K so kann man $x_1,...,x_r \in B$ finden, die algebraisch unabhängig sind.

Angenommen $b_1, ..., b_n$ sind algebraisch abhängig über K. Dann existiert eine Relation

$$\sum_{(\nu_1,...,\nu_n)\in I} a_{\nu_1,...,\nu_n} b_1^{\nu_i}...b_n^{\nu_n} = 0 \tag{Gl. 5.1}$$

mit $a_{\nu_1,\dots,\nu_n} \in K \setminus \{0\}$ und endlichem I. Sei

$$x_{1} = b_{1} - b_{n}^{s}$$

$$\vdots$$

$$x_{n-1} = b_{n-1} - b_{n}^{s_{n}-1}$$

mit $s_1, ..., s_{n-1} \in \mathbb{N} \setminus \{0\}$. Dann ist

$$\begin{split} B &= K[b_1,...,b_n] \\ &= K[x_1,...,x_{n-1},b_n] \\ &= K[x_1,...,x_{n-1}][b_n] \end{split}$$

Setzt man $b_i = x_i + b_n^{s_i}$ in Gl. 5.1 und spaltet

$$b_i^{\nu_i} = (x_i + b_n^{s_i})^{\nu_i} = b_n^{s_i \nu_i} + \dots$$

so erhält man

$$\sum_{(\nu_1,...,\nu_n)\in I} a_{\nu_1,...,\nu_n} b_n^{s_1\nu_1+s_2\nu_2+...+s_{n-1}\nu_{n-1}+\nu_n} + \underbrace{f(x_1,...,c_{n-1},b_n)}_{\in K[x_1,...,x_{n-1},b_n]} = 0 \ (\text{Gl. 5.2})$$

Dabei ist $f(x_1,...,x_{n-1},b_n)$ ein Polynom in b_n mit Koeffizient in $K[x_1,...,x_{n-1}]$ wobei der Grad in b_n echt kleiner ist als das Maximum der Summe $s_1\nu_1+...+s_{n-1}\nu_{n-1}+\nu_n$ mit $(\nu_1,...,\nu_n)\in I$.

Wir können nun die Exponenten $s_1, ..., s_{n-1}$ so wählen, dass die Summen $x_1\nu_1 + ... + s_{n-1}\nu_{n_1} + \nu_n$ für alle $(\nu_1, ..., \nu_n) \in I$ paarweise verschieden sind.

 $(\mathbb{Q}^n$ wird nicht durch endlich viele Hyperebenen ausgeschöpft)

Dann ist Gl. 5.2 eine Gleichung der Form

$$\underbrace{ab_n^N}_{\in K\backslash\{0\}} + \underbrace{g(x_1,...,x_{n-1,b_n})}_{\in K[x_1,...,x_{n-1}][b_n]} = 0$$

wobei b_n^N die höchste Auftretenden Potenz von b_n ist. Multiplikation mit $a^{-1} \in K$ zeigt, dass b_n ganz über $K[x_1,...,x_{n-1}]$ ist. Somit ist

$$B = K[x_1, ..., x_{n-1}][b_n]$$

ein endlich erzeugter $K[x_1,...,x_{n-1}]$ -Modul.

Sind $x_1, ..., x_{n-1}$ algebraisch unabhängig über K gilt die Behauptung. Ansonsten wenden wir das Verfahren auf den RIng $K[x_1, ..., x_{n-1}]$ an und finden $y_1, ..., y_{n-1}$, sodass $K[x_1, ..., x_{n-1}]$ ein endlich erzeugter $K[y_1, ..., y_{n-2}]$ -Modul ist.

Auf diese weise fährt man fort, bis man ein eine über K algebraisch unabhängigen System gelangt ist.

Satz 5.18. Sei $A \subset B$ eine Ringerweiterungen, B ganz über A und seien A und B Integritätsbereiche.

Dann ist A genau dann Körper, wenn B Körper ist.

Beweis. Sei A ein Körper und $b \in B \setminus \{0\}$. Wähle $f \in A[X]$ normiert udn minimalen Grades, sodass f(b) = 0. Dann ist

$$f = X^n + a_1 X^{n-1} + \dots + a_n$$

mit $a_n \neq 0$ und

$$b(b^{n-1} + a_{n-1}b^{n-1} + \dots + a_{n-1}) = 0$$

$$b\underbrace{\left(-\frac{1}{a_n}\right)}_{\in A}\underbrace{\left(b^{n-1} + a_{n-1}b^{n-2} + \dots + a_{n-1}\right)}_{\in B} = 1$$

Also ist $b \in B^*$.

Sei B ein Körper und $a \in A \setminus \{0\}$. Dann ist $a^{-1} \in B$ und a^{-1} ist ganz über A, d.h.

$$(a^{-1})^n + a_i(a^{-1})^{n-1} + \dots + a_n = 0$$

für geeignete $a_i \in A$. Es folgt

$$a^{-n} = -a_1 a^{-n+1} - \dots - a_n$$

 $a^{-1} = \underbrace{-a_1 - \dots - a_n a^{n-1}}_{\in A}$

Also ist A ein Körper.

Theorem 5.19. Sei L/K eine Körpererweiterung und $L = K[x_1, ..., x_n]$ für geeignete $x_1, ..., x_n \in L$. Dann ist L/K endlich.

Beweis. Nach dem Noetherschen Normalisierungssatz 5.17 gibt es über K algebraisch unabhängige Elemente $y_1,...,y_r\in L$, sodass L ein endlich erzeugter $K[y_1,...,y_r]$ -Modul ist. Aus

$$K[y_1,...,y_r] \subset L$$

folgt, dass $K[y_1, ..., y_r]$ ein Körper ist. Also ist r = 0.

Satz 5.20. Sei K ein Körper und $\mathfrak{m} \subset K[X_1,...,X_n]$ ein maximales Ideal. Dann ist L/K mit $L=K[X_1,...,X_n]/\mathfrak{m}$ eine endliche Körpererweiterung.

Beweis. Es gilt
$$L = K[x_1, ..., x_n]$$
 mit $x_i = X_i + m$.

5.4 Anfänge der algebraischen Geometrie

Definition 5.21. Sei K ein beliebiger Körper.

$$A^n = A_K^n := \{(a_1, ..., a_n) \mid a_i \in K\}$$

 A^n wird als n-dimensionaler affiner Raum bezeichnet.

Definition 5.22. Für $F \in K[x_1,...,x_n]$ definiert man

$$V(F) := \{ p \in A^n \mid F(p) = 0 \}$$

die V???-Menge.

Für $S \subset K[X_1, ..., X_n]$ sei

$$V(S) := \{ p \in A^n \mid F(p) = 0 \forall_{F \in S} \} = \bigcap_{F \in S} V(F)$$

Beispiel 5.23. Sei $n = 2, K = \mathbb{R}, F = X_1^2 - X_2$.

Definition 5.24. Eine Teilmenge $Y \subset A_n$ heißt algebraisch, wenn y = V(S) für ein $S \subset K[X_1, ..., X_n]$ ist.

Satz 5.25. Sei $S \subset K[X_1,...,X_n]$ und I = (S) das erzeugte Ideal. Dann gilt

$$V(S) = V(I)$$

Beweis. \supset Ist klar.

 \subset Sei $p \in V(S)$ und $F \in I$. Dann ist $F = \sum c_i F_i$ mit $c_i \in K[X_1, ..., X_n], F_i \in S$ und

$$F(p) = \sum_{i=0}^{\infty} c_i(p) \underbrace{F_i(p)}_{=0} = 0$$

Da $K[X_1,...,X_n]$ noethersch ist (Hilbertscher Basissatz ??) ist

$$I = (F_1, ..., F_m) = \sum_i K[X_1, ..., X_n] F_i$$

für geeignete $F_i \in I$.

Wie eben sieht man

$$V(I) = V((F_1, ..., F_m)) = V(F_1, ..., F_m)$$

Definition 5.26. Sei K ein Körper und $n \in \mathbb{N}$, dann ist \mathbb{A}_K^n die Menge der Algebraischen Mengen in K^n .

Beispiel 5.27. Betrachte $V(Y^2 - X(X^2 - 1)) \subset \mathbb{A}^2_{\mathbb{R}}$.

Satz 5.28. Die Abbildung

$$V: \left\{ \begin{matrix} Ideale \ in \\ K[X_1,...,X_n] \end{matrix} \right\} \rightarrow \left\{ Algebraische \ Teilmengen \ von \ \mathbb{A}^n_K \right\}$$

hat folgende Eigenschaften

- a) $V(0) = \mathbb{A}_K^n$, $V(K[X_1, ..., X_n]) = \emptyset$
- b) Wenn $I \subset J$, dann gilt $V(J) \subset V(I)$.
- c) Für das Produkt gilt: $V(IJ) = V(I \cap J) = V(I) \cup V(J)$
- d) Für die Summe gilt: $V(\sum_i J_i) = \bigcap_i V(J_i)$

Beweis. Wir zeigen nur

Es gilt

$$IJ \subset I \cap J \subset I$$
$$IJ \subset I \cap J \subset J$$

dann mit 2):

$$V(IJ) \supset V(I \cap J) \supset V(I)$$

 $V(IJ) \supset V(I \cap J) \supset V(J)$

es folgt, dass

$$V(IJ) \supset V(I \cap J) \supset V(I) \cup V(J)$$

Sei nun $p\in \mathbb{A}^n_K\setminus (V(I)\cup V(J)).$

Dann gibt es ein $f \in I$ mit $f(p) \neq 0$ und ein $g \in J$ mit $g(p) \neq 0$. Also ist

$$0 \neq \underbrace{(fg)}_{\in IJ}(p)$$

d.h. $p \notin V(IJ)$. Also ist $V(IJ) \subset V(I) \cup V(J)$ und es gilt Gleichheit.

Satz 5.29. Die Abbildung I

$$I: \{Algebraische \ Teilmengen \ von \ \mathbb{A}^n_K\} \to \left\{ \begin{matrix} Ideale \ in \\ K[X_1,...,X_n] \end{matrix} \right\}$$
$$M \mapsto \{f \in K[x_1,...,x_n] \mid f(p) = 0 \forall p \in M\}$$

hat folgende Eigenschaften:

- a) Sei $M \subset N$, dann gilt $I(M) \supset I(N)$
- b) Für eine beliebige Teilmenge $M \subset \mathbb{A}^n_K$ gilt

$$M \subset V(I(M))$$

Gleichheit gilt genau dann wenn M algebraisch ist.

c) Für ein Ideal $J \subset K[X_1,...,X_n]$ gilt

$$J \subset I(V(J))$$

Beweis. Wir zeigen:

b) " \Rightarrow " Sei M = V(I(M)), so ist M algebraisch.

"
—" Sei M algebraisch, dann ist M=V(J) für ein Ideal J. Dann ist

$$J \subset I(M) \tag{3}$$

$$V(J) \supset V(I(M)) \tag{4}$$

Es folgt Gleichheit.

Definition 5.30. Sei eine Menge \mathbb{A}^n_K abgeschlossen wenn sie algebraisch ist und deren Komplemente offen.

Die erzeugte Topologie wird als Zariski-Topologie bezeichnet.

Beispiel 5.31. Sei K algebraisch abgeschlossen. Dann sind in \mathbb{A}^1_K die Menge \mathbb{A}^1_K und $\{\}$ offen und abgeschlossen.

Sei $M \subsetneq \mathbb{A}^1_K$ abgeschlossen. Dann ist

$$M \overset{M \text{ alg. }}{=} V(I) \overset{K[X] \text{ HIR }}{=} V(f)$$

$$= V \big((X - a_1)...(X - a_n) \big)$$

$$\overset{K \text{ alg. abg. }}{=} \{a_1, ..., a_n\}$$

d.h. M ist endlich. Die nicht-leeren offenen Teilmengen von \mathbb{A}^1_K sind dicht in A^1_K .

Die nicht-leere offenen Teilmenge von A_K^1 sind dicht in A_K^1 .

Satz 5.32. Seien $a_1, ..., a_n \in K$. Dann ist

$$J = (X_1, a_1, x_2 - a_2, ..., X_n - a_n)$$

maximal in $K[X_1,...,X_n]$ und K ist isomorph zu $K[X_1,...,X_N]/J$

Beweis. Sei $f \in K[X_1,...,X_n] = K[X_1,...,X_{n-1}][X_n]$. Dann ist

$$f = (X_n - a_n)g_n + c_n$$

wobei (X_n-a_n) Grad 1 in X_n hat, $g_n\in K[X_1,...,X_{n-1}][X_n]$ ist und c_n Grad 0 in X_n hat, d.h. $c_n\in K[X_1,....,X_{n-1}]$. Dann folgt

$$f = (X_n - a_n)g_n + (X_{n-1}a_{n-1})g_{n-1} + c_{n-1}$$

$$\vdots$$

$$= (X_n - a_n)g_n + \dots + (X_1 - a_1)g_1 + \underbrace{c_1}_{\in K}$$

Also ist $K[X_1,...,X_n]/J = K$ und J ist maximal.

 ${\bf Theorem~5.33~(Schwacher~Null teiler satz).~Sei~K~algebraisch~abgeschlossen~und}$

$$J \subsetneq K[X_1, ..., X_n]$$

Dann ist $V(J) \neq \emptyset$.

Beweis. J ist in einem maximalen Ideal \mathfrak{m} enthalten und $V(\mathfrak{m}) \subset V(J)$. Die Abbildung

$$K \hookrightarrow K[X_1, ..., X_n] \xrightarrow{\pi} L := K[X_1, ..., X_n]/\mathfrak{m}$$

Liefert eine Einbettung $K \hookrightarrow L$.

Sei $a_i = \pi(X_i) \in L$. Dann folgt aus dem Noethersche Normalisierungssatz 5.17, dass $L = K[a_1, ..., a_n]$ und dass L/K algebraisch ist.

Da K algebraisch abgeschlossen ist folgt K = L.

Weiterhin ist $X_i-a_i\in\mathfrak{m}$ und $(X_1-a_1,...,X_n-a_n)\subset\mathfrak{m}$. Da $(X_1-a_1,...,X_n-a_n)$ maximal ist folgt

$$(X_1 - a_1, ..., X_n - a_n) = \mathfrak{m}$$

Es folgt, dass

$$V(\mathfrak{m}) = \{(a_1, ..., a_n)\}$$

Theorem 5.34 (Hilbertscher Nullstellensatz). Sei K algebraisch abgeschlossen und J ein Ideal in $K[X_1,...,X_n]$. Dann gilt

$$I(V(J)) = rad(J) = \{ f \in K[X_1, ..., X_n] \exists n > 0 : id f^n \in J \}$$

Rabinowitsch. rad $(J) \subset I(V(J))$: Sei $f \in \text{rad}(J)$, dann ist f^n in J. Dann $f^n \in I(V(J))$, dann $f^n(p) = 0 \forall p \in V(J)$, dann $f(p) = 0 \forall p \in V(J)$ und damit $f \in I(V(J))$.

 $\operatorname{rad}(J) \supset I(V(J))$ Sei $g \in I(V(J))$. Schreibe $J = (f_1, ..., f_t)$ und definiere

$$I = (f_1, ..., f_t X_{n+1}g - 1) \subset K[X_1, ..., X_n, X_{n+1}]$$

Dann ist

$$f_1(x_1, ..., x_n) = 0$$

$$\vdots$$

$$f_t(x_1, ..., x_n) = 0$$

$$x_{n+1}f(x_1, ..., x_n) - 1 = 0$$

Dann ist $V(I) \subset A_K^{n+1}$ leer.