MIT WORLD PEACE UNIVERSITY

Digital Electronics and Computer Architecture Second Year B. Tech, Semester 3

4 BIT CODE CONVERSION BETWEEN BINARY AND GRAY CODE USING BASIC LOGIC GATES

PRACTICAL REPORT

Prepared By

Krishnaraj Thadesar Cyber Security and Forensics Batch A2, PA 34

September 7, 2022

Contents

1	Problem Statement	1
2	ICs Used	1
3	Platform Used	1
4	Theory	1
5	Procedure	1
6	Conclusion	2

1 Problem Statement

Design and Implementation of 4 Bit code convertors using Basic Logic Gates.

- 1. 4 Bit Binary to Gray Code
- 2. 4 Bit Gray to Binary Code

2 ICs Used

74LS86 (Quad 2-Input Exclusive - OR Gates)

3 Platform Used

Digital Trainer Kit

4 Theory

Binary Code				Gray Code			
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

5 Procedure

- 1. Design Combinational logic circuits as per given problem statement.
- 2. connect the IC 7486 and other basic logic gate ICs as per diagram.
- 3. Give V_{cc} supply and ground connection to each IC.
- 4. Give variaous combinations to select lines.
- 5. Observe the output and verify the truth table.
- 6. Switch off the power supply off the trainer kit.

Gı	ay	Coc	le	Binary Code				
0	0	0	0	0	0	0	0	
0	0	0	1	0	0	0	1	
0	0	1	1	0	0	1	0	
0	0	1	0	0	0	1	1	
0	1	1	0	0	1	0	0	
0	1	1	1	0	1	0	1	
0	1	0	1	0	1	1	0	
0	1	0	0	0	1	1	1	
1	1	0	0	1	0	0	0	
1	1	0	1	1	0	0	1	
1	1	1	1	1	0	1	0	
1	1	1	0	1	0	1	1	
1	0	1	0	1	1	0	0	
1	0	1	1	1	1	0	1	
1	0	0	1	1	1	1	0	
1	0	0	0	1	1	1	1	

6 Conclusion

We have learned the Implementation of Binary to Gray and Gray to Binary code converter using logic gates.