1. **Solution:** We will use the pigeonhole principle. Let the 103 numbers in S be $a_1, a_2, \ldots, a_{103}$. Note that since S is a set, the numbers are distinct, that is $a_i \neq a_j$ for $1 \leq i < j \leq 103$. For $h \in \{0,1,2,\ldots,6\}$ let $S_h = \{a_i \mid a_i \bmod 7 = h\}$ be the set of numbers from S whose remainder when divided by 7 is h. Every a_i is in exactly one S_h and therefore S_0, S_1, \ldots, S_6 is a partition of S. This implies that $|S| = \sum_{h=0}^6 |S_h| = 103$. We claim that there is an index $r \in \{0,1,2,\ldots,6\}$ such that $|S_r| \geq 15$. This follows from the pigeon hole principle. A direct argument is the following. If $|S_h| \leq 14$ for each $h \in \{0,1,\ldots,6\}$ then $\sum_{h=0}^6 |S_h| \leq 7 \times 14 \leq 98$ but $\sum_{h=0}^6 |S_h| = 103$, a contradiction.

We claim that $S_r \subseteq S$, with $|S_r| \ge 15$ is our desired set. For any two distinct numbers $a_i, a_j \in S_r$ we have the property that $a_i \equiv a_j \mod 7$ ($a_i \mod 7$ and $a_j \mod 7$ are equal to r) which implies that $a_i - a_j$ is divisible by 7.

Rubric: 10 points for a correct proof. Small issues with a proof (such as improperly using modular arithmetic, improperly stating the pigeonhole principle, not fully defining all variables, etc.) will lose anywhere from 1 to 4 points each. Large issues with a proof (such as not letting S be an arbitrary set, only proving that there is a pair of numbers in S' whose difference is a multiple of 7, not proving that the size of S' is at least 15, etc.) will lose anywhere from 5 to 8 points each.

2. **Solution:** We assume all logarithms are with respect to base 2. This is without loss of generality since only the choice of *a*, *b* will change by a constant factor for other base values, and the rest of the proof remains the same.

We claim that $T(n) \le n \log n + 1$ for all positive integers n (this is our inductive hypothesis). We prove this by induction on n. Let $g(n) = n \log n + 1$.

For the base of induction, consider the cases n = 1, 2, 3. By the defn of T, T(n) = 1 for n = 1, 2, 3. For $n \ge 1$, $g(n) \ge 1$ since g(n) is an increasing function of n and g(1) = 1. Therefore $T(n) \le g(n)$ for n = 1, 2, 3.

For the induction step, let $n \ge 4$ and suppose that the inductive hypotheis holds for all k < n. We will show that $T(n) \le g(n)$ holds for n.

By definition of T we have $T(n) = T(\lfloor n/2 \rfloor) + 2T(\lfloor n/4 \rfloor) + n$. Since $\lfloor n/2 \rfloor$ and $\lfloor n/4 \rfloor$ are smaller than n when $n \ge 4$, applying the inductive hypothesis, we have that

$$T(\lfloor n/2 \rfloor) \le \lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor) + 1$$

and

$$T(\lfloor n/4 \rfloor) \le \lfloor n/4 \rfloor \log(\lfloor n/4 \rfloor) + 1.$$

Therefore,

$$T(n) = T(\lfloor n/2 \rfloor) + 2T(\lfloor n/4 \rfloor) + n$$

$$\leq (\lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor) + 1) + 2(\lfloor n/4 \rfloor \log(\lfloor n/4 \rfloor) + 1) + n$$

Since the function $x \to \log(x)$ is an increasing function of x, and the $\lfloor x \rfloor \le x$ for all x, we have

that
$$\lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor) \le \frac{n}{2} \log(\frac{n}{2})$$
 and $\lfloor n/4 \rfloor \log(\lfloor n/4 \rfloor) \le (n/4) \log(n/4)$. Thus,
$$(\lfloor n/2 \rfloor \log(\lfloor n/2 \rfloor) + 1) + 2(\lfloor n/4 \rfloor \log(\lfloor n/4 \rfloor) + 1) + n$$

$$\le ((n/2) \log(n/2) + 1) + 2((n/4) \log(n/4) + 1) + n$$

$$= (n/2) (\log(n/2) + \log(n/4)) + 3 + n$$

$$= (n/2) (2 \log(n) - 3) + 3 + n$$

$$= n \log(n) + 3 - \frac{n}{2}$$

$$\le n \log(n) + 1.$$

The last inequality is valid because $n \ge 4$. This completes the inductive proof.

Rubric (10): Standard induction rubric. Additional problem specific rubric: -1 for removing floor signs for T(.) instead of for anlogn+b (as T(.) is not known to be increasing). -1 each for not stating explicit, or stating incorrect a,b values. -1/2 for only one base case, instead of 3 (as we require n/4 to exist for the T(n/4) variable in the T(n) definition).

3. (a) Part a:

Solution: We use Jeff's style of inductive proof. Let w be an arbitrary string in L.

Assume that $\#(\mathbf{1}, x)$ is odd for every string $x \in L$ such that |x| < |w|.

There are four cases to consider (mirroring the four cases in the definition):

- If w = 1, then $\#(\mathbf{1}, w) = 1$ which is odd, so w is odd.
- If w = 0x for some string $x \in L$, then

$$\#(\mathbf{1}, w) = \#(\mathbf{1}, \mathbf{0}) + \#(\mathbf{1}, x) = \#(\mathbf{1}, x)$$

 $\#(\mathbf{1}, x)$ is odd by the inductive hypothesis (since |x| < |w|), hence $\#(\mathbf{1}, w)$ is odd.

• If $w = x \circ f$ for some string $x \in L$, then

$$\#(\mathbf{1}, w) = \#(\mathbf{1}, x) + \#(\mathbf{1}, \mathbf{0}) = \#(\mathbf{1}, x)$$

 $\#(\mathbf{1}, x)$ is odd by the inductive hypothesis (since |x| < |w|), hence $\#(\mathbf{1}, w)$ is odd.

• Otherwise, $w = x \mathbf{1} y$ for some strings $x, y \in L$. Then

$$\#(\mathbf{1}, w) = \#(\mathbf{1}, x) + \#(\mathbf{1}, \mathbf{1}) + \#(\mathbf{1}, y)$$

= $\#(\mathbf{1}, x) + 1 + \#(\mathbf{1}, y)$

Both $\#(\mathbf{1}, x), \#(\mathbf{1}, y)$ are odd by the inductive hypothesis (since |x| < |w| and |y| < |w|) and the sum of three odd numbers is always odd, so $\#(\mathbf{1}, w)$ is also odd.

In all four cases, we conclude that $\#(\mathbf{1}, w)$ is odd.

Rubric (10): Standard induction rubric.

(b) Part *b*:

Solution: We will prove by induction on the length of the string w that if $\#(\mathbf{1}, w)$ is odd, then $w \in L$. Let w be an *arbitrary* string such that $\#(\mathbf{1}, w)$ is odd. Assume that every string w with |x| < |w| and $\#(\mathbf{1}, x)$ odd belongs to w. We consider four cases below, and every string w with $\#(\mathbf{1}, w)$ odd falls into one of these cases.

- **Case 1:** w starts with **0.** That is $w = \mathbf{0}x$ for some string x. Then we have $\#(\mathbf{1}, x) = \#(\mathbf{1}, w)$, therefore $\#(\mathbf{1}, x)$ is odd. Since |x| < |w|, by induction hypothesis, we have that $x \in L$. By the second construction rule we have that $w = \mathbf{0}x$ is also in L.
- **Case 2:** w ends with **0.** That is w = x**0** for some string x. Then we have $\#(\mathbf{1}, x) = \#(\mathbf{1}, w)$, therefore $\#(\mathbf{1}, x)$ is odd. Since |x| < |w|, by induction hypothesis, we have that $x \in L$. By the third construction rule we have that $w = \mathbf{0}x$ is also in L.
- **Case 3**: w starts and ends with **1** and |w| = 1. Then w = 1. By the first construction rule, $w \in L$.
- **Case 4:** w starts and ends with $\mathbf{1}$ and |w| > 1. Then $\#(\mathbf{1}, w) \ge 2$, but since $\#(\mathbf{1}, w)$ is odd, we have that $\#(\mathbf{1}, w) \ge 3$. Consider the second $\mathbf{1}$ in w. Let x be the prefix of w till the second $\mathbf{1}$ in w (not including it), let y be the suffix of w after the second $\mathbf{1}$. Then $w = x\mathbf{1}y$ where $\#(\mathbf{1}, x) = 1$. Since $\#(\mathbf{1}, w) \ge 3$ and odd, and $\#(\mathbf{1}, x) = 1$, we have that $\#(\mathbf{1}, y)$ is odd as well. Since |x| < |w| and |y| < |w|, by induction hypothesis, we have that $x, y \in L$. By the fourth construction rule we have that $w = x\mathbf{1}y \in L$.

Rubric (10): Five points for each induction. Given according to the standard induction rubric.