

K. J. Somaiya College of Engineering, Mumbai-77

(A Constituent College of Somaiya Vidyavihar University)

Department of Computer Engineering

New Concepts to be learned:

Application of algorithmic design strategy to any problem, Greedy method of problem solving Vs other methods of problem solving, optimality of the solution, knapsack problem and their applications

Knapsack Problem Algorithm

Algorithm GreedyKnapsack (m, n)

Analysis of Knapsack Problem algorithm:

Time complexity- only for sorting so $O(n \log(n))$

Example: Knapsack Problem

Page 20 of 43

AOA Sem IV Jan-May 2023

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

16	010121110	B 2		
fractional kna				
Place values strentezy. If unable	with highest of	vofit, rate of fractional	or lowest we part till a	ight no per the weight is full
- Degrat step	till all is ex	austed er kna	psock full	
e complexity:	O (hlogh)	Sorting		
Example u	leight 10	100	120	
	Capacity: 50			
Naxinize prof	lit			
	30	20	220	
Minimje Weig	ght		2 -	
	10	100	2 30 2 1120	= 240
ximize vatio				
	60	100 17		
Test	6.0	5.0 4.	0	

K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

```
import java.util.*;
public class Main
      public static void main(String[] args) {
              double [] profit = \{1,2,4,3,5\};
              double [] weight = \{2,1,4,5,7\};
              double capacity=7;
              double[][] ratio = new double[5][5];
              for(int i=profit.length-1;i>=0;i--){
                ratio[i][0]=profit[i]/weight[i];
                ratio[i][1]=weight[i];
              //sort ArrayList
              ratio=insetionSort(ratio);
              int i=0;
              while(capacity>0){
                 capacity=capacity-ratio[i][1];
                 if(capacity>0){
                 System.out.println("chosen object with weight "+ratio[i][1]);
               i++;
                 if(i==5){//on capacity less than objects
                   break;
      public static double[][]
                                             insetionSort(double[][] arr1){
         for(int i=1;i<arr1.length;i++){
           double key=arr1[i][0];
           int j=i-1;
           while(arr1[j][0] < key){
              //swap ratio
              double temp=arr1[j+1][1];
              arr1[j+1][1]=arr1[j][1];
              arr1[i][1]=temp;
              //swap weight
               temp=arr1[j+1][0];
```


K. J. Somaiya College of Engineering, Mumbai-77 (A Constituent College of Somaiya Vidyavihar University) Department of Computer Engineering

arr1[j+1][0]=arr1[j][0]; arr1[j][0]=temp; j--; if(j<0){ break; }

// for(int i=0;i<arr1.length;i++){
// System.out.print(arr1[i]+",");
// }

return arr1;

Output-

}

chosen object with weight 1.0 chosen object with weight 4.0

Conclusion:

Thus we have understood how to implement fractional knapsack using greedy strategy. We used the p/w ratio to implement the best possible profit. This has many applications including thread scheduling policies

Page 23 of 43