Machine Learning: Assignment No. 1

Question No. 2 (c): Ordinal Regression & Linear Regression on Wine Dataset

Student Name: Mayuresh Rajesh Dindorkar

Roll No.: CS23MTECH14007

Student Name: Sanyam Kaul Roll No.: CS23MTECH14011

Index:

Step 1. Reading dataset

Step 2. Data Preprocessing

Step 3. Splitting the dataset into 80% Train set & 20% Test set

Step 4. Fitting the Ordinal Regression model on data

Step 5. Fitting the Linear Regression model on data

Step 6: Comparing 'Ordinal Regression' and 'Linear Regression' Results

```
In [8]: # Installing required packages
# 'mord' Package is imported for ordinal regression
!pip install mord
!pip install numpy
!pip install pandas
!pip install matplotlib
```

```
import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings("ignore")
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
import seaborn as sns
# LogisticIT - Immediate threshold, LogisticAT - All threshold
from mord import LogisticIT
%matplotlib inline
```

Step 1: Reading the dataset from csv file

```
In [2]: red_wine_dataset = pd.read_csv('Wine_Dataset/winequality-red.csv',sep=';')
    print('Red wine dataset dimensions (rows,columns):',red_wine_dataset.shape)
    white_wine_dataset = pd.read_csv('Wine_Dataset/winequality-white.csv',sep=';')
    print('White wine dataset dimensions (rows,columns):',white_wine_dataset.shape)

Red wine dataset dimensions (rows,columns): (1599, 12)
    White wine dataset dimensions (rows,columns): (4898, 12)
```

```
print('Printing Red wine samples :-')
In [3]:
          red_wine_dataset.head()
          Printing Red wine samples :-
                                                                      total
Out[3]:
                                                              free
               fixed volatile citric residual
                                                chlorides
                                                            sulfur
                                                                     sulfur
                                                                                       pH sulphates alcohol qua
                                                                             density
              acidity
                       acidity
                                acid
                                        sugar
                                                          dioxide
                                                                   dioxide
          0
                 7.4
                         0.70
                                0.00
                                           1.9
                                                   0.076
                                                              11.0
                                                                       34.0
                                                                              0.9978 3.51
                                                                                                 0.56
                                                                                                           9.4
          1
                 7.8
                         0.88
                                0.00
                                           2.6
                                                   0.098
                                                              25.0
                                                                       67.0
                                                                              0.9968 3.20
                                                                                                 0.68
                                                                                                           9.8
          2
                 7.8
                         0.76
                                0.04
                                           2.3
                                                   0.092
                                                              15.0
                                                                       54.0
                                                                              0.9970 3.26
                                                                                                 0.65
                                                                                                           9.8
          3
                11.2
                         0.28
                                0.56
                                           1.9
                                                   0.075
                                                              17.0
                                                                       60.0
                                                                              0.9980 3.16
                                                                                                 0.58
                                                                                                           9.8
          4
                                0.00
                                                   0.076
                                                                                                 0.56
                 7.4
                         0.70
                                           1.9
                                                              11.0
                                                                       34.0
                                                                              0.9978 3.51
                                                                                                           9.4
          print('Printing White wine samples :-')
          white_wine_dataset.head()
          Printing White wine samples :-
                                                                      total
Out[4]:
                                                              free
               fixed volatile citric residual
                                                chlorides
                                                            sulfur
                                                                     sulfur
                                                                                           sulphates alcohol qua
                                                                             density
                                                                                       pН
              acidity
                       acidity
                                acid
                                        sugar
                                                          dioxide
                                                                   dioxide
          0
                 7.0
                         0.27
                                0.36
                                          20.7
                                                   0.045
                                                              45.0
                                                                      170.0
                                                                              1.0010 3.00
                                                                                                 0.45
                                                                                                           8.8
```

1 6.3 0.30 0.34 0.049 9.5 1.6 14.0 132.0 0.9940 3.30 0.49 2 8.1 0.28 0.40 6.9 0.050 30.0 97.0 0.9951 3.26 10.1 0.44 3 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.9956 3.19 0.40 9.9 4 7.2 0.23 0.32 8.5 0.058 47.0 186.0 0.9956 3.19 0.40 9.9 \dashv

Step 2: Data Preprocessing

Combining both 'Red wine' and 'White wine' datasets

```
In [5]: red_white_dataset = pd.concat([white_wine_dataset])
    print('Red-White wine combined dataset dimensions (rows,columns):',red_white_dataset.s

Red-White wine combined dataset dimensions (rows,columns): (4898, 12)

In [6]: # Analysing the data: All features have real value
    red_white_dataset.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4898 entries, 0 to 4897
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	4898 non-null	float64
1	volatile acidity	4898 non-null	float64
2	citric acid	4898 non-null	float64
3	residual sugar	4898 non-null	float64
4	chlorides	4898 non-null	float64
5	free sulfur dioxide	4898 non-null	float64
6	total sulfur dioxide	4898 non-null	float64
7	density	4898 non-null	float64
8	рН	4898 non-null	float64
9	sulphates	4898 non-null	float64
10	alcohol	4898 non-null	float64
11	quality	4898 non-null	int64
		4 - 4	

dtypes: float64(11), int64(1)

memory usage: 459.3 KB

In [7]: red_white_dataset.describe().T

Out[7]:

	count	mean	std	min	25%	50%	75%	max
fixed acidity	4898.0	6.854788	0.843868	3.80000	6.300000	6.80000	7.3000	14.20000
volatile acidity	4898.0	0.278241	0.100795	0.08000	0.210000	0.26000	0.3200	1.10000
citric acid	4898.0	0.334192	0.121020	0.00000	0.270000	0.32000	0.3900	1.66000
residual sugar	4898.0	6.391415	5.072058	0.60000	1.700000	5.20000	9.9000	65.80000
chlorides	4898.0	0.045772	0.021848	0.00900	0.036000	0.04300	0.0500	0.34600
free sulfur dioxide	4898.0	35.308085	17.007137	2.00000	23.000000	34.00000	46.0000	289.00000
total sulfur dioxide	4898.0	138.360657	42.498065	9.00000	108.000000	134.00000	167.0000	440.00000
density	4898.0	0.994027	0.002991	0.98711	0.991723	0.99374	0.9961	1.03898
рН	4898.0	3.188267	0.151001	2.72000	3.090000	3.18000	3.2800	3.82000
sulphates	4898.0	0.489847	0.114126	0.22000	0.410000	0.47000	0.5500	1.08000
alcohol	4898.0	10.514267	1.230621	8.00000	9.500000	10.40000	11.4000	14.20000
quality	4898.0	5.877909	0.885639	3.00000	5.000000	6.00000	6.0000	9.00000

In [8]: red_white_dataset.isnull().sum()

```
fixed acidity
Out[8]:
         volatile acidity
                                  0
         citric acid
                                  0
         residual sugar
                                  0
         chlorides
                                  0
         free sulfur dioxide
                                  0
         total sulfur dioxide
         density
                                  0
                                  0
         рΗ
         sulphates
                                  0
         alcohol
                                  0
         quality
                                  0
         dtype: int64
```

Out[9]: <Axes: xlabel='Wine Quality', ylabel='Samples Count'>


```
In [10]: plt.figure(figsize = (10,10))
    sns.heatmap(red_white_dataset.corr(), annot=True, cbar=False)
```

Out[10]: <Axes: >


```
In [11]: # Segregating the dependant(Y) and Independant(X) varibles
    X = red_white_dataset.drop(columns=['quality'])
    print('Dimensions of X (rows,columns):',X.shape)
    Y = red_white_dataset['quality']
    print('Dimensions of Y (rows,columns):',Y.shape)

Dimensions of X (rows,columns): (4898, 11)
    Dimensions of Y (rows,columns): (4898,)
In [12]: X.head()
```

```
Out[12]:
                                                  free
                                                         total
             fixed volatile citric residual
                                       chlorides
                                                sulfur
                                                        sulfur density pH sulphates alcohol
            acidity
                   acidity
                          acid
                                 sugar
                                               dioxide
                                                      dioxide
         0
              7.0
                     0.27
                          0.36
                                  20.7
                                          0.045
                                                  45.0
                                                        170.0
                                                               1.0010 3.00
                                                                              0.45
                                                                                      8.8
         1
              6.3
                     0.30
                          0.34
                                   1.6
                                          0.049
                                                  14.0
                                                        132.0
                                                               0.9940 3.30
                                                                              0.49
                                                                                      9.5
         2
              8.1
                     0.28
                          0.40
                                   6.9
                                         0.050
                                                  30.0
                                                         97.0
                                                               0.9951 3.26
                                                                              0.44
                                                                                     10.1
         3
              7.2
                     0.23
                          0.32
                                   8.5
                                          0.058
                                                  47.0
                                                        186.0
                                                               0.9956 3.19
                                                                              0.40
                                                                                      9.9
         4
              7.2
                     0.23
                          0.32
                                   8.5
                                          0.058
                                                  47.0
                                                        186.0
                                                               0.9956 3.19
                                                                              0.40
                                                                                      9.9
         Y.head()
In [13]:
              6
Out[13]:
              6
         2
              6
         3
              6
         4
             6
         Name: quality, dtype: int64
         Step 3: Splitting the dataset into 80% Train set & 20% Test set
In [14]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state
         print('-----')
         print('Dimensions of X_train (rows,columns):', X_train.shape)
         print('Dimensions of Y_train (rows,columns):', Y_train.shape)
         print('-----')
         print('Dimensions of X_test (rows,columns):', X_test.shape)
         print('Dimensions of Y_test (rows,columns):', Y_test.shape)
         ----- Train Set
         Dimensions of X_train (rows, columns): (3918, 11)
         Dimensions of Y_train (rows,columns): (3918,)
         ----- Test Set -----
         Dimensions of X_test (rows,columns): (980, 11)
         Dimensions of Y_test (rows, columns): (980,)
         Step 4: Fitting the Ordinal Regression model on data
         ordinal_model = LogisticIT()
In [15]:
         ordinal_model.fit(X_train, Y_train)
Out[15]:
         ▼ LogisticIT
         LogisticIT()
In [16]:
         ordinal predictions = ordinal model.predict(X test)
         print('Ordinal regression Test MAE:', np.mean(np.abs(Y_test - ordinal_predictions)))
In [17]:
```

Step 5: Fitting the Linear Regression model on data

Ordinal regression Test MAE: 0.5418367346938775

```
In [18]: linear_model = LinearRegression()
linear_model.fit(X_train, Y_train)

Out[18]: v LinearRegression
LinearRegression()

In [19]: # Getting the predictions on test data
linear_reg_pred = linear_model.predict(X_test)

# Rounding off the Linear regression prediction to nearest integer value
roundedoff_linear_reg_pred = np.rint(linear_reg_pred)

In [20]: print('Linear regression Test MAE:', np.mean(np.abs(Y_test - linear_reg_pred)))
Linear regression Test MAE: 0.5862665383250459
```

Step 6: Comparing Linear regression and Ordinal regression performance

From MAE of ordinal & linear regression models, we can observe that,

Ordinal regression model (MAE = 0.5418) performed better than Linear regression model (MAE = 0.5862)