Defining and Mitigating Algorithmic Bias

A practitioner's perspective

Hinda Haned, Ph.D.
University of Amsterdam | Owls & Arrows
August 16th, 2023

- Entrepreneur | Data Science ~ 2022
- Endowed professor data science ~ 2018
- Lead data scientist retail/pharma ~ 2015-2020
- Forensic statistician ~ 2010 2015
- PhD applied statistics ~ 2010

Practitioner's perspective

Practitioner: Anyone who needs to take a decision based on an automated (AI) system OR/AND must answer questions about possible harms caused by the system: data analysts/scientists, business analysts, business leaders, policy/compliance officers

Responsible Al

A set of best practices, guidelines, and tools that ensure any Al-driven is trustworthy, safe, and respectful of human rights and dignity

Algorithmic bias

Systematic errors of an AI system can cause significant harm to individuals and communities

Algorithmic bias

Algorithmic bias

- Biased data
- Unclear tasks
- Flawed model design
- Stereotypes
- Opaque systems

Responsible Al: why bother?

Complex systems raise concerns

- Why this ad?
- Why this discount?
- Why this recommendation?
- Why was I rejected?
- Can I change the outcome?
- When will the system fail?

Harmful outcomes

BY MELISSA HEIKKILÄ

MARCH 29, 2022 | 6:14 PM

Dutch scandal serves as a warning for Europe over risks of using algorithms

The Dutch tax authority ruined thousands of lives after using an algorithm to spot suspected benefits fraud – and critics say there is little stopping it from happening again.

Compliance

EUROPEAN COMMISSION

Brussels, 21.4.2021 COM(2021) 206 final 2021/0106(COD)

Proposal for a

REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL

LAYING DOWN HARMONISED RULES ON ARTIFICIAL INTELLIGENCE (ARTIFICIAL INTELLIGENCE ACT) AND AMENDING CERTAIN UNION LEGISLATIVE ACTS

{SEC(2021) 167 final} - {SWD(2021) 84 final} - {SWD(2021) 85 final}

Ethics Guidelines

The EU AI ACT

Building trust

Responsible AI in practice

How do we avoid algorithmic bias?

slido.com #2031

Responsible Al pillars

Fairness

"Al systems" should treat people fairly, that is, without discrimination on the grounds of protected sensitive characteristics such as age, gender, disability, ethnic or racial origin, religion or belief, or sexual orientation

Fairness

- Fairness is concerned with how outcomes are assigned to particular group of individuals
- Core principle: avoid bias even if it is supported by data, as to avoid the perpetuation of existing discrimination
- Fairness is a political construct: someone decides to avoid (direct or indirect) harms

Types of harm

- Harm of allocation: when a system allocates or withholds certain groups, an opportunity or resource. Economically oriented view (e.g. who gets a discount, who gets hired)
- Harm of representation: systems reinforce the subordination of certain groups along the lines of identity like race, class, gender etc. (e.g. search results biased against a group)

Harm of allocation

BY MELISSA HEIKKILÄ

MARCH 29, 2022 | 6:14 PM

Dutch scandal serves as a warning for Europe over risks of using algorithms

The Dutch tax authority ruined thousands of lives after using an algorithm to spot suspected benefits fraud – and critics say there is little stopping it from happening again.

Harm of representation

Queried APR22

Fairness testing

Goal: different groups experience comparable outcomes; outcome is statistically independent of sensitive attribute

Prerequisite: sensitive attribute or group membership (e.g., age, gender, race)

Definition of fair: $E[(d(v) \mid a] = E[d(v)]$

Key insight: group-blindness does not ensure equitable group outcomes (Dwork et al., 2012)

Fairness testing

Fairness testing

- Check datasets imbalances
- Ensure model treats all groups fairly

Practical challenges

In practice, there are many limitations to testing and correcting for fairness:

- Fairness testing requires unavailable/inaccessible sensitive features
- Potential fairness intervention impact cannot be monitored
- Fairness objectives not compatible with business requirements

Evaluating and mitigating algorithmic bias requires navigating uncertainty

Mitigating algorithmic bias

- There is no unifying framework to tackle algorithmic bias testing and mitigation
- In most use cases, mitigation is performed after a system is built and decisions have been made based on this system

Mitigation algorithms

- Mitigation: the action of reducing the severity, seriousness, or painfulness of something
- Mitigation algorithms: algorithms to remove or reduce bias in data and model outputs

Mitigation algorithms

Known sensitive attributes Defined fairness objectives

Fairness intervention

Monitor fairness intervention

https://aif360.mybluemix.net/

Use case

Common setting

- Automate tedious or repetitive task
- Al System acquired or co-designed
- Challenged by end-user adoption and acceptance

Use case: Company acquires succession planning tool

- Model: regressor trained on historical data to predict when a candidate has a positive recommendation score
- **Tool**: software that generates a promotion score for each candidate based on HR-related metrics (performance, education, tenure),
- Practitioner task: evaluate the tool and approve the use by HR team

Common setting

- Automate tedious or repetitive task
- Al System acquired or co-designed
- Challenged by end-user adoption and acceptance

How can we make this system fair in deployment?

Limited agency

- Regulatory constraints
- Deployment/maintenance costs

- Limited agency
- Mitigation after system is built

Need for a culture shift

Ask fundamental questions

- Why do you need AI for this task?
- Is the system transparent?
- When and how does the system fail?
- What are the potential harms that could occur?
- What is a (un)fair outcome?
- Can we ensure fair outcomes?
- Who is responsible for ensuring fairness?

Perform impact assessments

Invest in talent

Business

Practitioner

Vendor

Invest in talent

Educate stakeholders

Adopt best practices

Adopt best practices

Example: CRoss Industry Standard Process for Data Mining (CRISP-DM)

Consider Al technology an ecosystem

What can YOU do?

Use-cases

Thank you!

h.haned@uva.nl hindantation.github.io

Fairness challenge card

FAIRNESS CHALLENGE CARD

Raising fair AI awareness within organizations

Author: Hinda Haned

CC BY-NC-SA 4.0

December 2021

Questions about Privacy The system is opaque and it's unclear to the users/customers how their data is being used and to what end ☐ Are the users aware of what personal data is used in the system? No risk assessment of potentially biased outcomes. ☐ Are there any potentially harmful outcomes of the system identified? GDPR test ☐ Can associates/users/customers opt out from using the system? Are the logic of the

subjects?

☐ Is the impact of the

Has there been an a

for the intended task

Questions about Governance/Agency

A dependency on external partners who do not transfer their knowledge of the system after project completion, continuity and in-depth knowledge of the system are no longer safeguarded within the organization

☐ Do you understand how the system operates (Input/Output, know where to find the documentation)?

Risk of perpetuating biased/harmful outcomes with no possibility of recourse either from users or developers.

□ Do you have ways to challenge the system's outputs?

Lack of accountability around model ownership and governance.

☐ Who is the ultimate owner (or owners) of the system?