

Task Abstraction

Munzner's Four levels of visualization design

- domain situation
 - who are the target users?
- abstraction
 - translate from specifics of domain to vocabulary of visualization
 - what is shown? data abstraction
 - why is the user looking at it? task abstraction
 - often must transform data, guided by task

- idiom
 - how is it shown?
 - visual encoding idiom: how to draw
 - interaction idiom: how to manipulate
- algorithm
 - · efficient computation

Domain Characterization

- details of an application domain
- group of users, target domain, their questions, & their data
 - varies wildly by domain
 - must be specific enough to get traction
- domain questions/problems
 - break down into simpler abstract tasks

Design Process

Example: Find Good Movies

- identify good movies in genres I like
- domain:
 - general population, movie enthusiasts

Abstraction: Data and Task

- map what and why into generalized terms
 - identify tasks that users wish to perform, or already do
 - find data types that will support those tasks
 - possibly transform /derive if need be

Example: Find Good Movies

- identify good movies in genres I like
- domain:
 - general population, movie enthusiasts
- task: what is a good movie for me?
 - highly rated by critics?
 - highly rated by audiences?
 - successful at the box office?
 - similar to movies I liked?
 - matches specific genres?
- data: (is it available?)
 - yes! data sources IMDB, Rotten Tomatoes...

Example: Find Good Movies

- one possible choice for data and tasks, in domain language
 - data: combine audience ratings and critic ratings
 - task: find high-scoring movies for specific genre
- abstractions?
 - attribute: audience & critic ratings
 - ordinal
 - levels: 3 or 5 or 10...
 - attribute: genre
 - categorical
 - levels: < 20
 - items: movies
 - items: millions
 - task: find high values?

Example: Horrified

- same task: high-score movies
- slightly different data
 - 14K rated horror movies from IMDB
- very different visual encoding idiom
 - circle per item (movie)
 - circle area = popularity
 - stroke width/opacity = avg rating
 - year made = vertical position
- interaction idiom
 - lines connect movies w/ same director, on mouseover

https://www.alhadaqa.com/wp-content/uploads/2020/04/horrified.html

Task Abstraction: Actions and Targets

- very high-level pattern
- actions
 - analyze
 - high-level choices
 - search
 - find a known/unknown item
 - query
 - find out about characteristics of item

- {action, target} pairs
 - discover distribution
 - compare trends
 - locate outliers
 - browse topology

Actions: Analyze

- consume
 - discover vs present
 - classic split
 - aka explore vs explain
 - enjoy
 - newcomer
 - aka casual, social
- produce
 - annotate, record
 - derive
 - crucial design choice

→ Analyze

→ Consume

→ Produce

Derive

- don't just draw what you're given!
 - decide what the right thing to show is
 - create it with a series of transformations from the original dataset
 - draw that
- one of the four major strategies for handling complexity

Original Data

Analysis example: Derive one attribute

- Strahler number
 - centrality metric for trees/networks
 - derived quantitative attribute
 - draw top 5K of 500K for good skeleton

Actions: Search

- what does user know?
 - target, location
- lookup
 - ex: word in dictionary
 - alphabetical order
- locate
 - ex: keys in your house
 - ex: node in network
- browse
 - ex: books in bookstore
- explore
 - ex: cool neighborhood in new city

	Target known	Target unknown
Location known	• • • Lookup	• Browse
Location unknown	C • Locate	Explore

Example: Horrified vs stacked bars

- horrified: browse/explore
- stacked bars: locate/lookup
- which is better?
 - depends on goals / task
 - enjoy, social context, lots of time
 - find 2nd-best rated movie of all time
 - Jeopardy call, < 10 seconds to respond!

Actions: Search, query

- what does user know?
 - target, location
- how much of the data matters?
 - one, some, all
- independent choices for each of these three levels
 - analyze, search, query
 - mix and match

	Target known	Target unknown
Location known	• • • Lookup	Browse
Location unknown	C. D. Locate	< Explore

→ Query

Example: Economics

task: compare and derive

• data: derive change

Task abstraction: Targets

→ Extremes

Abstraction

these {action, target} pairs are good starting point for vocabulary

but sometimes you'll need more precision!

rule of thumb

systematically remove all domain jargon

interplay: task and data abstraction

need to use data abstraction within task abstraction

- to specify your targets!
- but task abstraction can lead you to transform the data

iterate back and forth

• first pass data, first pass task, second pass data,

..

Examples: Job market

• trends

 how did job market develop since recession overall?

Why?

Targets

→ Analyze

→ Consume

→ Produce

→ Search

• {action, target} pairs

- -discover distribution
- -compare trends
- -locate outliers
- -browse topology

	Target known	Target unknown
Location known	·.•• Lookup	:. Browse
Location unknown	₹ O . > Locate	< O Explore

Query

→ Attributes

- → Network Data
 - → Topology

Spatial Data

→ Shape

Carbon Emissions

- https://flowingdata.com/2021/01/21/car-cost-vs-emissions/
- https://www.carboncounter.com/#!/explore