# Reflective Object Sensor Model No: LBR-127HLD

### Description

The **LBR-127HLD** consist of an infrared emitting diode and an NPN silicon phototransistor, encased side-by-side on converging optical axis in a black thermoplastic housing. The phototransistor receives radiation from the IRED only. This is the normal situation. But when an object is in between, phototransistor could not receive the radiation.

Lead-free lead wire is tin-plated to prevent oxidation through the pollution of Sulfide in the air. Security ball is added into wire-bonding procedure in order to increase bonding strength.

#### **Features**

- Fast response time
- High sensitivity
- Cut-off visible wavelength  $\lambda = 840 \text{nm}$
- High analytic

## **Applications**

- For Direct PC Board
- Mouse Copier
- Non-contact Switching
- Switch Scanner

#### Outline dimensions



# Reflective Object Sensor Model No: LBR-127HLD

Absolute Maximum Ratings (Ambient Temperature: 25°C)

| Item                  |                             | Symbol      | Rating     | Units                  | Note                 |  |
|-----------------------|-----------------------------|-------------|------------|------------------------|----------------------|--|
| Input                 | Forward current             | IF          | 60         | mA                     |                      |  |
|                       | Reverse voltage             | $V_R$       | 5          | V                      |                      |  |
|                       | Peak forward current        | <b>I</b> FP | 1          | A                      | Tw=10 μ s,<br>t=10ms |  |
|                       | Power dissipation           | Pd          | 160        | mW                     |                      |  |
| Output                | Collector current           | Ic          | 20         | mA                     |                      |  |
|                       | Collector-Emitter voltage   | Vceo        | 30         | V                      |                      |  |
|                       | Emitter-Collector voltage   | Veco        | 5          | V                      |                      |  |
|                       | Collector power dissipation | Pc          | 100        | mW                     |                      |  |
| Storage Temperature   |                             | Tstg        | -40 to +85 | $^{\circ}\!\mathbb{C}$ |                      |  |
| Operating Temperature |                             | Top         | -25 to +85 | $^{\circ}\!\mathbb{C}$ |                      |  |
| Soldering Temperature |                             | Tsol        | 260        | $^{\circ}\mathbb{C}$   | 5 seconds max.       |  |

Electrical Specifications (Ambient Temperature:  $25^{\circ}$ C)

| Item            |                        | Symbol   | MIN. | TYP. | MAX. | Units | Conditions       |
|-----------------|------------------------|----------|------|------|------|-------|------------------|
| Input           | Forward voltage        | VF       |      | 1.2  | 1.5  | V     | IF=20mA          |
|                 | Reverse current        | Ir       |      |      | 10   | μA    | VR=5V            |
|                 | Peak wavelength        | λр       |      | 940  |      | nm    |                  |
|                 | View angle             | 2 θ 1/2  |      | 35   |      | Deg.  | IF=20mA          |
|                 | Dark current           | Iceo     |      |      | 100  | nA    | Vce=20V          |
| Output          | C-E saturation voltage | Vce(sat) |      |      | 0.4  | V     | Ic=2mA, IB=0.1mA |
| Light current   |                        | Ic(on)   | 0.2  |      |      | mA    | Vce=5V           |
| Leakage current |                        | ILeak    |      |      | 1    | μA    | IF=20mA          |
| Canad           | Rise Time              | tr       |      | 15   |      |       | Vce=5V<br>Ic=1mA |
| Speed           | Fall Time              | tf       |      | 15   |      | μs    | RL=1K $\Omega$   |

# **Reflective Object Sensor Reference Data**







Peak forward current  $\operatorname{Vs}\nolimits.$  Duty ratio



















Relative collector current Vs.



Test circuit for resognse time

