

+

$$(x_{41} + x_{51} + x_{61}) \times \frac{3}{2} + 0 \times \frac{x}{18}$$

I

hode 1

node 8

$$= 8 \times 01 + 4 \times 12 + 3 \times 13 - + 10 \times 24 + 5 \times 25 + 10 \times 34 + 4 \times 36 + 3 \times 47 + 3 \times 57$$

$$= 3 \times 67 + 0 \times 10 \times 34 + 4 \times 36 + 3 \times 47 + 3 \times 57$$
Change to dual

$$\begin{array}{rcl}
7 & \text{fmd max } b^{\text{T}} \omega \\
&= y_0 - y_8 \\
&= s, t
\end{array}$$

s,t.

$$x_{0}$$
:
 $y_{0} - y_{1}$
 ≤ 8
 x_{12} :
 $y_{1} - y_{2}$
 ≤ 4
 x_{13} :
 $y_{1} - y_{3}$
 ≤ 3
 x_{14} :
 y_{1}
 $-y_{4}$
 ≤ 10
 x_{24} :
 y_{2}
 $-y_{4}$
 ≤ 10
 x_{24} :
 y_{2}
 $-y_{5}$
 ≤ 5
 x_{34} :
 y_{3}
 $-y_{5}$
 ≤ 6
 x_{34} :
 y_{3}
 $-y_{6}$
 ≤ 6
 x_{41} :
 y_{5}
 $-y_{7}$
 ≤ 7
 x_{51} :
 y_{5}
 $-y_{7}$
 ≤ 7
 x_{61} :
 y_{6}
 y_{7}
 ≤ 9
 x_{18} :
 y_{1}
 ≤ 9
 ≤ 9

I using the gurobi to solve the yor y8

-. the minimum cost is 18

#