Use Overfitting To Evaluate Different Models

The process of Machine Learning and using Overfitting to evaluate Linear Regression Model and Non-linear Regression.

- Please compare the following two Regression Models to see which one has more serious overfitting issue.
 - Linear Regression Model 1
 - Non-Linear Regression Model 2
- Suppose we collect a set of sample data and distribute the sample data by

Training phase: 50%Validation phase: 25%

Test phase: 25%

Training Phase			Validation Phase			Test Phase		
Real Data Set 1 50% of the collcted data	Model 1: Linear Regression	Model 2: Non- Linear Regression	Real Data Set 2 25% of the collcted data	Model 1: Linear Regression	Model 2: Non- Linear Regression	Real Data Set 3 25% of the collcted data	The better model ($\underline{\text{Model 1}}$ or $\underline{\text{Model 2}}$) selected from the $\underline{\text{Validation Phase}}$ based on the analysis of $\underline{\text{overfitting}}$ will be used to calculate \hat{y}	

- After calculating a1, b1, a2, b2 in Training Phase, the values are not changed with the new Real Data Sets in Validation Phase and Test Phase.
- Only \hat{y} values are changed with the new Real Data Sets.

X	y	$\hat{\mathbf{y}} = \mathbf{a}1 + \mathbf{b}1 * \mathbf{x}$	$\hat{\mathbf{y}} = \mathbf{a2} + \mathbf{b2} * \mathbf{x}^2$	X	y	$\hat{y}=a1+b1*x$	$\hat{y}=a2+b2*x^2$	X	$\hat{y}=a1 + b1 * x$ or $\hat{y}=a2 + b2 * x^2$
1	1.8	1.37	1.75	1.5	1.7	1.28	1.41	1.4	1.88
2	2.4	2.23	2.15	2.9	2.7	2.54	2.31	2.5	2.46
3.3	2.3	3.35	3.08	3.7	2.5	3.26	3.08	3.6	3.36
4.3	3.8	4.22	4.10	4.7	2.8	3.61	3.53	4.5	4.34
5.3	5.3	5.08	5.39	5.1	5.5	4.51	4.87	5.4	5.53
1.4	1.5	1.71	1.88	X	X	X	X	X	X
2.5	2.2	2.66	2.45	X	X	X	X	X	X
2.8	3.8	2.92	2.67	X	X	X	X	X	X
4.1	4.0	4.04	3.88	X	X	X	X	X	X
5.1	5.4	4.91	5.12	X	X	X	X	X	X

Note:

• Real Data Set 1 can be used to determine the formulas for <u>Model 1: Linear Regression</u> and <u>Model 1: Linear Regression</u>. That is, to determine the valuese of a1, b1, a2, and b2 in the following formulas:

```
• \hat{y}=a1 + b1 * x
• \hat{y}=a2 + b2 * x^2
```

- o After the formulas are determined, you can use the formulas to calculate the ŷ values in the following phases:
 - Training Phase
 - Validation Phase
 - Test Phase
- o Note: The values of "x" in " $\hat{y}=a1 + b1 * x$ " and " $\hat{y}=a2 + b2 * x^2$ " are the same as the "x" list on the "Real Data Set".
- Optional: You may want to implement the following 3 programs:
 - o Program 1: To implement <u>Linear Regression Model 1</u>

Note:

- This program is to use RealData Set 1 to determine a1 and b1 based on Model 1.
- The program can be used to fill part of the blank spaces in above table.
- o Program 2: Non-Linear Regression Model 2

Note:

- This program is to use RealData Set 1 to determine a2 and b2 based on Model 2.
- The program can be used to fill part of the blank spaces in above table.
- o Program 3: Calculate MSE

Ans:

Training Phase - Liner Regression Model:

```
import numpy as np
import matplotlib.pyplot as plt

x = np.array([1, 2, 3.3, 4.3, 5.3, 1.4, 2.5, 2.8, 4.1, 5.1])
y = np.array([1.8, 2.4, 2.3, 3.8, 5.3, 1.5, 2.2, 3.8, 4.0, 5.4])

n = x.size

ss_xy = np.sum(x*y)
ss_xx = np.sum(x*x)
s_x = np.sum(x)
s_y = np.sum(y)
```

```
b = (n*ss_xy-s_x*s_y)/(n*ss_xx-s_x*s_x)
a = (s_y - b*s_x)/n
print ("Sum of x*y", ss_xy)
print ("Sum of x*x", ss_xx)
print ("Sum of x", s_x)
print ("Sum of y", s_y)
print ("Slope_b", b)
print ("Intercept_a", a)
def plot_regression_line(x, y, a, b):
  # plotting the actual points as scatter plot
  plt.scatter(x, y, color = "m", marker = "o", s = 30)
  # predicted response vector
  y_pred = a + b*x
  # plotting the regression line
  plt.plot(x, y_pred, color = "g")
  # putting labels
  plt.xlabel('x')
  plt.ylabel('y')
  # function to show plot
  plt.show()
def main():
  for i in range(0, n):
   y_bar = a + b * x[i]
   print("Y_Value: ", y_bar)
  # plotting regression line
  plot_regression_line(x, y, a, b)
if __name__ == "__main__":
       main()
```

```
D:\Files\UNewFiles\NPU-File\MSCS\2021Summer\CS550\
Sum of x*y 120.799999999998
Sum of x*x 121.34
Sum of x 31.8000000000000004
Sum of y 32.5
Slope_b 0.8631776810447154
Intercept_a 0.5050949742778048
Y_Value: 1.3682726553225202
Y_Value: 2.2314503363672356
Y_Value: 3.3535813217253656
Y_Value: 4.216759002770081
Y_Value: 5.079936683814796
Y_Value: 1.7135437277404062
Y_Value: 2.663039176889593
Y_Value: 2.9219924812030076
Y_Value: 4.044123466561137
Y_Value: 4.907301147605853
Process finished with exit code 0
```

Non-Linear Model:

```
D:\Files\UNewFiles\NPU-File\MSCS\2021Summer\CS550\Assic
Sum of x_bar 121.34
Sum of y 32.5
Sum of x_bar * y 509.7619999999994
Sum of x_{bar} * x_{bar} 2329.9862
Slope_b 0.13456241139124608
Intercept_a 1.61721970017862
Y_Value: 1.751782111569866
Y_Value: 2.1554693457436045
Y_Value: 3.08260436022929
Y_Value: 4.105278686802761
Y_Value: 5.397077836158722
Y_Value: 1.8809620265054623
Y_Value: 2.458234771373908
Y_Value: 2.672189005485989
Y_Value: 3.879213835665466
Y_Value: 5.11718802046493
Process finished with exit code 0
```

Validation Phase - Liner Regression Model:

Non-Liner Model:

MSE – Python Program

$$y = [11,20,19,17,10]$$

 $y_bar = [12,18,19.5,18,9]$

summation = 0 #variable to store the summation of differences n = len(y) #finding total number of items in list for i in range (0,n): #looping through each element of the list difference = y[i] - y_bar[i] #finding the difference between observed and predicted value squared_difference = difference**2 #taking square of the difference summation = summation + squared_difference #taking a sum of all the differences MSE = summation/n #dividing summation by total values to obtain average print ("The Mean Square Error is: ", MSE)

$$Model_1 - Validation Phase = 0.48316$$

 $Model_2 - Validation Phase = 0.3$

Compare:

$$Model_1 = 0.48316 / 0.28129 = 1.717$$

$$Model_2 = 0.3 / 0.2348 = 1.277$$

So:

Model_2 is better model