Exposing Thread-level Parallelism

- Previously, we looked at exposing parallelism at the instruction level
 - SIMD: Single Instruction, Multiple Data
- Now, still parallelism, but at the thread-level.
 - What are Multi-Core Processors?
 - Why are they coming now?
 - How can we use them?

AMD dual-core Opteron

What are Multi-Core Processors

- Two (or more) complete processors, fabricated on the same silicon chip
- Execute instructions from two (or more) programs/threads at same time

Multi-Cores are Everywhere.

It is now hard to buy a computer with 1 core

XBox360: 3 PowerPC cores

Sony Playstation 3: Cell processor, an asymmetric multi-core with 9 cores (1 general-purpose, 8 special purpose SIMD processors)

Why Multi-cores Now?

number of transistors we can put on a chip growing exponentially, and

And, performance is scaling up

- But, power is scaling up, also
 - Power has become limiting factor in current chips

Hence, Multi-cores

As programmers, do we care?

What happens if we run a program on a multi-core?

```
void
array_add(int A[], int B[], int C[], int length) {
  int i;
  for (i = 0 ; i < length ; ++ i) {
    C[i] = A[i] + B[i];
  }
}</pre>
```

