Introduktion til sandsynlighedsteori

Læsning:

Cooper/McGillem kap. 1.7-1.10

Opsummering - axiomer

- 1. $Pr(A) \geq 0$
- 2. Pr(S) = 1
- 3. Hvis $A \cap B = \emptyset$, så er $Pr(A \cup B) = Pr(A) + Pr(B)$

 $A \cap B = \phi$ (Disjoint sets) hændelsen AUB i figur (b)?

Tænk på sandsynligheder som arealer:

- Arealet af S er 1.
- Sandsynligheden for hændelsen A i figur (a) er arealet af cirklen A .
- Sandsynligheden for hændelsen AUB
 i figur (d) er summen af arealerne af
 cirklerne A og B.

Hvad er sandsynligheden for

Opsummering - regneregler

- Relativ frekvens
- Sandsynligheden for komplementet \bar{A}
- Sandsynligheden for den simultane
 hændelse A og B, skrevet (A,B) eller (A∩B)
- Hændelserne A og B er uafhængige, hvis
- Sandsynligheden for den sammensatte hændelse A <u>eller</u> B, skrevet (AUB)
- Hvis A og B er indbyrdes disjunkte:

$$Pr(A) \approx N_A/N$$

$$\Pr(\bar{A}) = 1 - \Pr(A)$$

$$Pr(A, B) = Pr(B) \cdot Pr(A|B)$$

= $Pr(A) \cdot Pr(B|A)$

$$Pr(A, B) = Pr(A) \cdot Pr(B)$$

$$Pr(A \cup B) =$$

 $Pr(A) + Pr(B) - Pr(A \cap B)$

$$Pr(A \cup B) = Pr(A) + Pr(B)$$

Eksempel

\ Bin	1	2	3	4	5	6	Total
10Ω	500	0	200	800	1200	1000	3700
100Ω	300	400	600	200	800	0	2300
1000Ω	200	600	200	600	0	1000	2600
Total	1000	1000	1000	1600	2000	2000	8600

Tabel 1-3

- Hændelser
 - A_i = vælg den i'te bin (i = 1,2,...,6), hvor vi har valgt $Pr(A_i) = 1/6$.
 - B = træk en modstand på 10Ω
- Hvad er Pr(B)?
- Hvad er $Pr(B \cap A_i)$?
- Hvad er $Pr(A_i|B)$?

\ Bin	1	2	3	4	5	6	Total
10Ω	500	0	200	800	1200	1000	3700
100Ω	300	400	600	200	800	0	2300
1000Ω	200	600	200	600	0	1000	2600
Total	1000	1000	1000	1600	2000	2000	8600

 A_i = vælg den i'te bin (i = 1,2,...,6), hvor vi har valgt $Pr(A_i)$ = 1/6. B = træk en modstand på 10Ω

Total probability

- $S = A_1 \cup A_2 \cup \cdots \cup A_n$, hvor A'erne er indbyrdes disjunkte.
- $B = (B \cap A_1) \cup (B \cap A_2) \cup \cdots \cup (B \cap A_n)$
- $Pr(B) = Pr(B \cap A_1) + Pr(B \cap A_2) + \dots + Pr(B \cap A_n)$
- $= \Pr(B|A_1)\Pr(A_1) + \Pr(B|A_2)\Pr(A_2) + \dots + \Pr(B|A_n)\Pr(A_n)$

Eksempel – total probability

\ Bin	1	2	3	4	5	6	Total
10Ω	500	0	200	800	1200	1000	3700
100Ω	300	400	600	200	800	0	2300
1000Ω	200	600	200	600	0	1000	2600
Total	1000	1000	1000	1600	2000	2000	8600

Tabel 1-3

$$Pr(B) = Pr(B|A_1)Pr(A_1) + Pr(B|A_2)Pr(A_2) + \dots + Pr(B|A_6)Pr(A_6)$$
$$= \frac{500}{1000} \cdot \frac{1}{6} + 0 \cdot \frac{1}{6} + \frac{200}{1000} \cdot \frac{1}{6} + \frac{800}{1600} \cdot \frac{1}{6} + \frac{1200}{2000} \cdot \frac{1}{6} + \frac{1000}{2000} \cdot \frac{1}{6} = 0,3833$$

hvor

$$Pr(B|A_1) = \frac{500}{1000}$$
, $Pr(B|A_2) = 0$, $Pr(B|A_3) = \frac{200}{1000}$, $Pr(B|A_4) = \frac{800}{1600}$, $Pr(B|A_5) = \frac{1200}{2000}$, $Pr(B|A_6) = \frac{1000}{2000}$

Bayes regel

• Hvis $S = A_1 \cup A_2 \cup \cdots \cup A_n$, og A_i 'erne er indbyrdes disjunkte:

$$Pr(B) = Pr(B|A_1)Pr(A_1) + Pr(B|A_2)Pr(A_2) + \dots + Pr(B|A_n)Pr(A_n)$$

Observation:

$$Pr(B \cap A_i) = Pr(B|A_i)Pr(A_i) = Pr(A_i|B)Pr(B)$$

Bayes regel:

$$Pr(A_i|B) = \frac{Pr(B|A_i)Pr(A_i)}{Pr(B)}$$

Eksempel – Bayes regel

\ Bin	1	2	3	4	5	6	Total
10Ω	500	0	200	800	1200	1000	3700
100Ω	300	400	600	200	800	0	2300
1000Ω	200	600	200	600	0	1000	2600
Total	1000	1000	1000	1600	2000	2000	8600

Tabel 1-3

Hændelser

- A_i = vælg den i'te bin (i = 1,2,...,6), hvor vi har valgt $Pr(A_i)$ = 1/6.
- B = træk en modstand på 10Ω
- Hvad er $Pr(A_3|B)$?
- Bayes regel:

$$\Pr(A_3|B) = \frac{\Pr(B|A_3) \cdot \Pr(A_3)}{\Pr(B)} = \frac{\frac{200}{1000} \cdot \frac{1}{6}}{\frac{1}{0,3833}} = 0,0869$$

Cancer test

Prior

$$Pr(cancer) = 0.01 \rightarrow Pr(\overline{cancer}) = 0.99$$

Test

```
Pr(positiv\ test|cancer) = 0.9 (sensitivitet)

Pr(negativ\ test|\overline{cancer}) = 0.9 (specificitet)

\rightarrow

Pr(negativ\ test|cancer) = 0.1

Pr(positiv\ test|\overline{cancer}) = 0.1
```

Det store spørgsmål

Hvad er Pr(cancer|positiv test)?

$$Pr(cancer) = 0.01$$

 $Pr(\overline{cancer}) = 0.99$

Ingen cancer

Ex: $Pr(\text{neg.test} \cap \text{cancer}) = Pr(\text{neg.test})Pr(\text{cancer}|\text{neg.test})$ = Pr(cancer)Pr(neg.test|cancer)

Det store spørgsmål: Hvad er $Pr(cancer|positiv\ test)$?

Bayes regel

 $\Pr(cancer|positiv\;test) = \frac{\Pr(positiv\;test|cancer)\Pr(cancer)}{\Pr(positiv\;test)}$

Bayes regel

$$\Pr(cancer|positiv\;test) = \frac{\Pr(positiv\;test|cancer)\Pr(cancer)}{\Pr(positiv\;test)}$$

$$= \frac{\Pr(positiv\;test|cancer)\Pr(cancer)}{\Pr(positiv\;test\cap cancer) + \Pr(positiv\;test\cap \overline{cancer})}$$

$$= \frac{\Pr(positiv\;test|cancer)\Pr(cancer)}{\Pr(positiv\;test|cancer)\Pr(cancer) + \Pr(positiv\;test|\overline{cancer})\Pr(\overline{cancer})}$$

$$= \frac{0.9 \cdot 0.01}{0.9 \cdot 0.01 + 0.1 \cdot 0.99} = 0.0833 \approx 8\%$$

```
Pr(cancer) = 0.01
Pr(\overline{cancer}) = 0.99
Pr(positiv test|cancer) = 0.9
Pr(negativ test|\overline{cancer}) = 0.9
Pr(negativ test|\overline{cancer}) = 0.1
Pr(positiv test|\overline{cancer}) = 0.1
```

Binomialfordelingen

- Vi laver n gentagne eksperimenter, hvor der i hvert trial er to mulige udfald:
 - Success med sandsynlighed p
 - Failure med sandsynlighed q = 1 p
- $\Pr_n(k) = \Pr(k \text{ succeser ud af } n \text{ forsøg})$ $= \frac{n!}{k!(n-k)!} p^k q^{n-k}$ $= \binom{n}{k} p^k q^{n-k}$