

Contrast-to-Noise Ratio Evaluation for X-ray Computed Tomographic Imaging of Water in Polymer Electrolyte Fuel Cells

Hong Xu^a, Jens Eller^a, Felix N. Büchi^a, Thomas J. Schmidt^{a,b}

- ^aElectrochemistry Laboratory, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- ^bLaboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland

Email: hong.xu@psi.ch

Background & Challenges

Background:

- Water management is crucial to the performance of polymer electrolyte fuel cell (PEFC)^[1]; Optimal operation is needed to maintain the humidity of membrane and reduce the degree of saturation in gas diffusion layer (GDL);
- Operando X-ray tomographic imaging is a promising of water transient technique investigating phenomena^[2].

> Challenges:

- Sub-second tomographic imaging is required to study water dynamics^[2];
- Reduction of time scan limited by water segmentation which requires suitable image quality.

PEFC Experimental Setup

- Double channel polymer electrolyte fuel cell (PEFC) [2];
- Gas diffusion layer: SGL 24BC;
- Catalyst coated membrane (CCM): SolviCore H400;
- Cathode channels filled with water;
- The dashed yellow rectangles indicate the sampling area for CNR calculation.

Schematic of cell components

X-ray tomographic through-plain slice of **PEFC**

PEFC Basics

0.5 s

> PEFC conditions:

- Wide operation temperature range with current densities up to $2 \sim 3 \text{ A/cm}^2$;
- Water is generated at the cathode therefore insulates the transports of gases especially oxygen.

Contrast-to-Noise Ratio (CNR)

Indicator for image quality:

- Contrast-to-Noise Ratio (CNR);
- Define as: $CNR(A/B) = \frac{|Mean(A) - Mean(B)|}{StdDEV(B)}$
- CNR(H₂O/Void) between cathode (water) and anode (void) channels represents for the contrast between water and void in GDL.

X-ray Tomographic Imaging

> X-ray tomographic imaging settings:

- Performed at TOMCAT beamline of Swiss Light Source;
- Energy range: 13.5-21.0 keV (monochromatic beam, $\Delta E/E=2~3\%$);
- Flux densities: $10^{11} \sim 10^{12}$ photons /(s·cm²);
- Output: 3D-grey images with 3 μm voxel size;
- Absorption contrast reconstruction.

CNR Evaluation & Analysis

Influence of **Beam Energy** on contrast-to-noise ratio of water versus void [CNR(H₂O/Void)] in PEFC channels

Excellent

image

quality

Straight

forward

water

segmentation

In-plain tomographic slices

Influence of Mean & StdDEV on CNR

 $CNR(H_2O/Void) = \frac{|Mean(H_2O) - Mean(Void)|}{|}$ StdDEV(Void)Void 8.0x10 8.0x10⁻⁶ H2O ▲ FF 7.0x10⁻² 7.0x10 Beam@13.5 keV 6.0x10⁻⁴ 6.0x10⁻⁴ 5.0x10⁻⁴ 4.0x10⁻⁴ Void 5.0x10⁻⁴ H2O Beam@13.5 keV 3.0x10⁻⁻ 2.0x10⁻⁴ 1.0x10⁻⁴ 1.0x10⁻⁴ Scan Time (s) Scan Time (s)

• The standard deviation for void, water and flow field all increased exponentially with decreasing the

Influence of Exp Time & No. of Projections on CNR

• The CNR between flow field and void, flow field and water, water and void all decreased with decreasing Exposure time or No. of projections independently.

Conclusions & Outlook

- Double channel PEFC with cathode channels filled with liquid water has been investigated using synchrotron X-ray tomographic imaging.
- Dependency of CNR on beam energy was studied both qualitatively and quantitatively: 13.5 keV is the preferred energy in terms of CNR (H₂O/Void).
- Standard deviation dominates the value of CNR; Decreasing exposure time or No. of projections reduces the CNR independently.
- Next step is studying the influence of the imaging parameters on water segmentation and feature detectability in GDL.

SNR Fund No. 200021 166064

SWISS NATIONAL SCIENCE FOUNDATION

Acknowledgements

scan time, while the mean maintains stable.

References