

BCS for Images

S. Mun

Motivation

Background BCS-SPI

. . .

Conclusion

Block Compressed Sensing for Images

Sungkwang Mun

Department of Electrical & Computer Engineering Geosystems Research Institute Mississippi State University

November 2009

BCS for Images

S. Mun

Motivation

Background

Conclusion

Image Compression - File Size Comparison

Original image (Raw) 600K Byte

Compressed image (JPG) 30K Byte

• Compression ratio : $\frac{30K}{600K} = 0.05(5\%)$

BCS for Images

S. Mun

Motivation

Background

Conclusion

Concept of Image Compression

Original image N: number of pixels

Wavelet Transform M: number of significant coeff's

Keep M significant coefficients only; N >> M

BCS for Images

S. Mun

Motivation

Backgroun

BCS-SPL

Conclusion

- Needs extra memory for storing raw image
- Needs fast CPU to compress

BCS for Images

S. Mun

Motivation

Background

Conclusion

- Only requires one-time matrix multiplication
- Fast acquisition without additional memory

Outline

BCS for **Images**

S. Mun

Motivation

BCS-SPI

- **Motivation**
- **Background**
 - Compressed Sensing
- **BCS-SPL** for Images
 - Block CS
 - Smooth PL
 - BCS-SPL
 - Results
- **Conclusions**

Background—Compressed Sensing (CS)

BCS for Images

S. Mun

Motivation

Background Compressed Sensing

BCS-SPL

Goal

Recover $\mathbf{x} \in \Re^N$ from

$$\mathbf{y} = \mathbf{\Phi} \mathbf{x} \in \Re^M$$

- \bullet \bullet : $M \times N$ random measurement matrix, $M \ll N$
- Theory:Recovery is exact if x is sufficiently sparse
- Mathematically proven by mathematicians (E.Candes and D.L. Donoho)

Understanding Random Measurement

BCS for Images

S. Mun

Motivation

Background

Compressed Sensing

BCS-SPL

Conclusion

Random Measurements: $\Phi_{M\times N} = [\phi_1\phi_2\dots\phi_M]^T$

Background—Compressed Sensing (CS)

BCS for Images

S. Mun

Motivation

Background Compressed Sensing

BCS-SPL

Problems using CS in Practice

- 1. Huge measurement matrix
 - Thousands times larger than image (Giga bytes)
- 2. Complex recovery
 - Recovery (decompressing) is very complicated
 - Exponential time for "ideal recovery"

Solution for 1. Huge Measurement Matrix

BCS for Images

S. Mun

Motivation

Background

BCS-SPL

Block CS Smooth PL BCS-SPL Results

Canalusian

Block Compressed Sensing (BCS)

Image partitioned into small blocks ($B \times B$)

$$\mathbf{y}_j = \mathbf{\Phi}_B \mathbf{x}_j$$

$$\Phi_B$$
: $\lfloor \frac{M}{N}B^2 \rfloor \times B^2$, \mathbf{x}_j : block j of image

- Use only one small matrix on every image block
- Practical for the measurement matrix
- L. Gan, "Block compressed sensing of natural images," Int. Conf. DSP, 2007.

Solution for 2. Complex Recovery

BCS for Images

S. Mun

Motivation

Background

BCS-SPI

Block CS Smooth PI BCS-SPL Results

Conclusion

Smooth Projected Landweber (SPL)

Projected Landweber

$$\begin{split} &\check{\mathbf{x}}^{(i)} = \check{\mathbf{x}}^{(i)} + \boldsymbol{\Phi}^T \left(\mathbf{y} - \boldsymbol{\Phi} \check{\mathbf{x}}^{(i)} \right), \\ &\check{\mathbf{x}}^{(i+1)} = \begin{cases} \check{\check{\mathbf{x}}}^{(i)}, & \left| \check{\check{\mathbf{x}}}^{(i)} \right| \geq \tau^{(i)}, \tau : \textit{threshold value} \\ 0 & \textit{else}. \end{split}$$

- Find nearly exact answer by allowing small error
- Greatly reduced complexity
- Easy to incorporate additional optimization criteria
 - Wiener filter (smoothing function)
 - Dual tree discrete wavelet transform
 - Bivariate shrinkage

Block CS - Smooth Projected Landweber

BCS for Images

S. Mun

Motivation

Backgroun

BCS-SPL

Block CS Smooth PL BCS-SPL Results

Conclusion

BCS-SPL

Finally, we propose the solution for two challenges

- 1. Huge measurement matrix:
 - Block CS (BCS)
- 2. Complex recovery:
 - Smooth projected Landweber (SPL)

Results for 2D Images

BCS for Images

S. Mun

Motivation

Background

BCS-SPL Block CS Smooth PL BCS-SPL Results

Conclusion

Lenna for Compression Ratio M/N = 20%

BCS-SPL 31.37 dB 1–5 mins BCS-TV 30.59 dB 3–4 hrs SAMP 28.54 dB 2–3 mins

- TV: Total-variation minimization, close to ideal recovery
- SAMP: Sparsity adaptive matching pursuit, variant of practical recovery

Results for 2D Images

BCS for Images

S. Mun

Motivation

Backgroung

BCS-SPI

Block CS Smooth PL BCS-SPL Results

Conclusion

PSNR performance comparison for Lenna image

	Compression Ratio (M/N) %				
Algorithm	10	20	30	40	50
BCS-SPL	28.31	31.37	33.50	35.20	36.78
BCS-TV	27.86	30.60	32.56	34.25	35.89
SAMP	25.94	28.54	32.04	33.93	35.37
GPSR	24.69	28.54	31.53	33.69	35.82

Conclusions

BCS for Images

S. Mun

Motivation

Background

BCS-SPL

Conclusions

Conclusions

BCS-SPL—Practical CS image reconstruction:

- Fast
- Better visual quality
- Promising video results

References

 S. Mun and J. E. Fowler, "Block Compressed Sensing of Images Using Directional Transforms," ICIP 2009, to appear.

URL

http://www.ece.msstate.edu/~fowler/