Final Project Submission

Please fill out:

Student name: Namita Rana

• Student pace: Full time

Scheduled project review date/time: December 10th @ 2:30 PM PST

Instructor name: Mark Barbour

• Blog post URL:https://medium.com/@namitarana

Movie Industry Analysis for Microsoft

This proposal contains an analysis of various movie data in order to inform executive decision making regarding Microsoft's movie studio who is just about to venture into the movie making business. Specifically, it provides actionable insights with respect to what types of films the studio should focus on creating with the goal of maximizing box office performance. Initial descriptive analysis of box office performance and other movie data shows that box office earnings are related to genre, runtime, rating, release month of the movie and the language preferred by its target audience.

Business Problem:

Microsoft is interested in developing original video content to remain competitive in the tech world by creating a movie studio. This project will examine the movie industry to provide a set of recommendations on where to get started.

Several data sets have been explored, but the following are included in the results:

- Box Office Mojo
- IMDB
- TheMovieDB

Let's import the required libraries:

Questions Our Data Can Answer

- Which Genres are gathering the highest worldwide gross?
- Which languages have generated the maximum reneue: domestically & worldwide?
- Does release month of a movie matter?
- Does votes for a movie count? How does an average_voted movie perform at Box Office?

```
In [325... #importing the libraries.
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns

%matplotlib inline
```

Collecting Data:

Importing all the dataset we will be using for this project:

Box Office Mojo:

This dataframe could be useful in determining which movie generated the highest gross earnings and for which year. It can also help us in understanding which studio is producing the movie's with highest gross earnings.

Imdb Data:

For this analysis imdb.title.basics is used which provides data about runtime,genre,original title.

Tmdb Data:

This data can provide us with great insight about which language is the most preferred one by audiences and which language movie has the most voter_count.

```
In [326... #Import all data files
    bom_movie_gross = pd.read_csv('zippedData/bom.movie_gross.csv.gz')
    imdb_title_basics = pd.read_csv('zippedData/imdb.title.basics.csv.gz')
    tmdb_data = pd.read_csv('zippedData/tmdb.movies.csv.gz')
```

```
In [327... #bom_movie information
         bom_movie_gross.info()
         bom_movie_gross.head()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3387 entries, 0 to 3386 Data columns (total 5 columns):

		,	
#	Column	Non-Null Count	Dtype
0	title	3387 non-null	object
1	studio	3382 non-null	object
2	domestic_gross	3359 non-null	float64
3	foreign_gross	2037 non-null	object
4	year	3387 non-null	int64
dtyp	es: float64(1),	int64(1), object	(3)

memory usage: 132.4+ KB

Out[327...

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000	2010
3	Inception	WB	292600000.0	535700000	2010
4	Shrek Forever After	P/DW	238700000.0	513900000	2010

In [328...

```
#imdb basics information
imdb_title_basics.info()
imdb_title_basics.head()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 146144 entries, 0 to 146143

Data columns (total 6 columns):

#	Column	Non-Null Count	Dtype
0	tconst	146144 non-null	object
1	<pre>primary_title</pre>	146144 non-null	object
2	original_title	146123 non-null	object
3	start_year	146144 non-null	int64
4	runtime_minutes	114405 non-null	float64
5	genres	140736 non-null	object

dtypes: float64(1), int64(1), object(4)

memory usage: 6.7+ MB

Out[328...

genres	runtime_minutes	start_year	original_title	primary_title	tconst	•
Action,Crime,Drama	175.0	2013	Sunghursh	Sunghursh	tt0063540	0
Biography, Drama	114.0	2019	Ashad Ka Ek Din	One Day Before the Rainy Season	tt0066787	1
Drama	122.0	2018	The Other Side of the Wind	The Other Side of the Wind	tt0069049	2
Comedy,Drama	NaN	2018	Sabse Bada Sukh	Sabse Bada Sukh	tt0069204	3
Comedy, Drama, Fantasy	80.0	2017	La Telenovela Errante	The Wandering Soap Opera	tt0100275	4

In [329...

#tmdb data information

tmdb_data.info()

tmdb_data.head()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 26517 entries, 0 to 26516 Data columns (total 10 columns): Column Non-Null Count Dtype _____ 26517 non-null int64 0 Unnamed: 0 genre_ids 26517 non-null object 1 26517 non-null int64 2 original_language 26517 non-null object original_title 26517 non-null object 3 4 5 26517 non-null float64 popularity 26517 non-null object release date 7 title 26517 non-null object 26517 non-null float64 8 vote_average 9 vote count 26517 non-null int64 dtypes: float64(2), int64(3), object(5)

memory usage: 2.0+ MB

Out[329...

	Unnamed: 0	genre_ids	id	original_language	original_title	popularity	release_date	
0	0	[12, 14, 10751]	12444	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	
1	1	[14, 12, 16, 10751]	10191	en	How to Train Your Dragon	28.734	2010-03-26	
2	2	[12, 28, 878]	10138	en	Iron Man 2	28.515	2010-05-07	I
3	3	[16, 35, 10751]	862	en	Toy Story	28.005	1995-11-22	
4	4	[28, 878, 12]	27205	en	Inception	27.920	2010-07-16	lr

Primary Interest

Our primary interest lies in finding the factors that contribute to high Domestic and worldwide gross I will limit the scope of my analysis to five factors.

- Genre
- Runtime
- Language
- Average_vote count
- Release Month

Data Preparation:

My goal for this step is to merge the datasets into a final datset which I will be using for analysis of the the factors that can help Microsoft in taking the business decisions before investing in the movie industry.

We will start with cleaning the first dataset bom_movie_gross and get it ready to merge:

```
# Convert domestic gross value data type to int
In [330...
           #bom_movie_gross['domestic_gross'] = bom_movie_gross['domestic_gross'].fil
           bom_movie_gross['foreign_gross'] = bom_movie_gross['foreign_gross'].str.rep
           bom movie gross['foreign gross'] = bom movie gross['foreign gross'].astype
           bom_movie_gross
In [331...
                                           title
                                                    studio domestic_gross foreign_gross
Out[331...
              0
                                     Toy Story 3
                                                       BV
                                                              415000000.0
                                                                            652000000.0
                                                                                         2010
                                                              334200000.0
                                                                            691300000.0
                        Alice in Wonderland (2010)
                                                       BV
                                                                                         2010
                       Harry Potter and the Deathly
              2
                                                       WB
                                                              296000000.0
                                                                            664300000.0 2010
                                   Hallows Part 1
              3
                                       Inception
                                                       WB
                                                              292600000.0
                                                                            535700000.0
                                                                                         2010
                               Shrek Forever After
                                                              238700000.0
                                                                            513900000.0
              4
                                                     P/DW
                                                                                         2010
           3382
                                      The Quake
                                                                   6200.0
                                                                                         2018
                                                     Magn.
                                                                                    NaN
           3383
                        Edward II (2018 re-release)
                                                                   4800.0
                                                                                         2018
                                                                                    NaN
           3384
                                        El Pacto
                                                      Sony
                                                                    2500.0
                                                                                    NaN 2018
           3385
                                       The Swan Synergetic
                                                                    2400.0
                                                                                    NaN 2018
           3386
                                An Actor Prepares
                                                     Grav.
                                                                    1700.0
                                                                                    NaN 2018
```

3387 rows × 5 columns

```
In [332... #Replacing the null values in foreign gross with 0:
    #as it may have not been released worlwide
    bom_movie_gross['foreign_gross'].fillna(0, inplace=True)
    bom_movie_gross['domestic_gross'].fillna(0,inplace=True)
In [333... display(bom_movie_gross.info())
    bom_movie_gross
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 3387 entries, 0 to 3386 Data columns (total 5 columns): Column Non-Null Count Dtype _____ 0 title 3387 non-null object studio 3382 non-null 1 object 2 domestic_gross 3387 non-null float64 foreign_gross 3387 non-null float64 year 3387 non-null int64 dtypes: float64(2), int64(1), object(2) memory usage: 132.4+ KB

Ou	+	г	3	2	3	
Οu	L	L	J	J	J	•••

	title	studio	domestic_gross	foreign_gross	year
0	Toy Story 3	BV	415000000.0	652000000.0	2010
1	Alice in Wonderland (2010)	BV	334200000.0	691300000.0	2010
2	Harry Potter and the Deathly Hallows Part 1	WB	296000000.0	664300000.0	2010
3	Inception	WB	292600000.0	535700000.0	2010
4	Shrek Forever After	P/DW	238700000.0	513900000.0	2010
•••					•••
3382	The Quake	Magn.	6200.0	0.0	2018
3383	Edward II (2018 re-release)	FM	4800.0	0.0	2018
3384	El Pacto	Sony	2500.0	0.0	2018
3385	The Swan	Synergetic	2400.0	0.0	2018
3386	An Actor Prepares	Grav.	1700.0	0.0	2018

3387 rows × 5 columns

Preparing the imdb dataset:

We will be splitting the Imdb datset column genres into discrete genre columns.

In [334... #We will separate the genres column into discrete columns:
 imdb_title_basics[['genre_1','genre_2','genre_3']] = imdb_title_basics['genre_1','genre_2','genre_3']]

Ou	+	г	2	2	/1	
υu	. L	Н	0	J	4.	• •

	tconst	primary_title	original_title	start_year	runtime_minutes	
0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime
1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography
2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	

Comedy	NaN	2018	Sabse Bada Sukh	Sabse Bada Sukh	tt0069204	3
Comedy,Drama,I	80.0	2017	La Telenovela Errante	The Wandering Soap Opera	tt0100275	4
C	75.0	2018	A Thin Life	A Thin Life	tt0111414	5
Horror	NaN	2017	Bigfoot	Bigfoot	tt0112502	6
Adventure, Animation, C	83.0	2017	Joe Finds Grace	Joe Finds Grace	tt0137204	7
Documentary,	NaN	2012	O Silêncio	O Silêncio	tt0139613	8
Bic	82.0	2012	Nema aviona za Zagreb	Nema aviona za Zagreb	tt0144449	9
	136.0	2010	Pál Adrienn	Pál Adrienn	tt0146592	10
	100.0	2010	Oda az igazság	So Much for Justice!	tt0154039	11
Docun	180.0	2013	Cooper and Hemingway: The True Gen	Cooper and Hemingway: The True Gen	tt0159369	12
	89.0	2010	A zöld sárkány gyermekei	Children of the Green Dragon	tt0162942	13
Docun	60.0	2018	T.G.M osvoboditel	T.G.M osvoboditel	tt0170651	14
Animation,Drama,	160.0	2011	Az ember tragédiája	The Tragedy of Man	tt0176694	15
	NaN	2011	How Huang Fei-hong Rescued the Orphan from the	How Huang Fei-hong Rescued the Orphan from the	tt0187902	16
	104.0	2018	Reverse Heaven	Heaven & Hell	tt0192528	17
	120.0	2010	The Final Journey	The Final Journey	tt0230212	18
Drama,N	110.0	2011	Los pájaros se van con la muerte	Los pájaros se van con la muerte	tt0247643	19

```
In [335... #Drop the genres and tconst column:
    imdb_title_basics.isna().sum()
    imdb_title_basics.rename(columns={'primary_title': 'title'}, inplace=True)
    imdb_title_basics
```

Out[335...

tconst ti		title	original_title	start_year	runtime_minutes	g	
	0	tt0063540	Sunghursh	Sunghursh	2013	175.0	Action,Crime,I
	1	tt0066787	One Day Before the Rainy Season	Ashad Ka Ek Din	2019	114.0	Biography,l
	2	tt0069049	The Other Side of the Wind	The Other Side of the Wind	2018	122.0	ſ
	3	tt0069204	Sabse Bada Sukh	Sabse Bada Sukh	2018	NaN	Comedy,I
	4	tt0100275	The Wandering Soap Opera	La Telenovela Errante	2017	80.0	Comedy,Drama,Fa
	•••						
	146139	tt9916538	Kuambil Lagi Hatiku	Kuambil Lagi Hatiku	2019	123.0	1
	146140	tt9916622	Rodolpho Teóphilo - O Legado de um Pioneiro	Rodolpho Teóphilo - O Legado de um Pioneiro	2015	NaN	Docum
	146141	tt9916706	Dankyavar Danka	Dankyavar Danka	2013	NaN	Cc
	146142	tt9916730	6 Gunn	6 Gunn	2017	116.0	
	146143	tt9916754	Chico Albuquerque - Revelações	Chico Albuquerque - Revelações	2013	NaN	Docum

146144 rows × 9 columns

Feature engineering:

Merge the imdb & bom movie gross datasets.

```
In [336... #Merged data set of bom_movie_gross & imdb_title_basics
imdb_bom_dataset = pd.merge(imdb_title_basics, bom_movie_gross, on='title'
imdb_bom_dataset
```

Out[336...

	tconst	title	original_title	start_year	runtime_minutes	ge
0	tt0315642	Wazir	Wazir	2016	103.0	Action,Crime,D
1	tt0337692	On the Road	On the Road	2012	124.0	Adventure, Drama, Rom
2	tt2404548	On the Road	On the Road	2011	90.0	D
3	tt3872966	On the Road	On the Road	2013	87.0	Docume
4	tt4339118	On the Road	On the Road	2014	89.0	D
•••						
3361	tt8404272	How Long Will I Love U	Chao shi kong tong ju	2018	101.0	Rom
3362	tt8427036	Helicopter Eela	Helicopter Eela	2018	135.0	D
3363	tt8851262	Spring Fever	Spring Fever	2019	NaN	Comedy,H
3364	tt9078374	Last Letter	Ni hao, Zhihua	2018	114.0	Drama,Rom
3365	tt9151704	Burn the Stage: The Movie	Burn the Stage: The Movie	2018	84.0	Documentary,N

3366 rows × 13 columns

Preparing tmdb dataset

Dropping the genre_ids and orginial column as it doesn't add any value to the data:

```
In [337... #Dropping the genre_ids:
    tmdb_data.drop(columns =['genre_ids','id'], axis = 1,inplace = True)
    tmdb_data
```

Out[337		Unnamed: 0	original_language	original_title	popularity	release_date	t
	0	0	en	Harry Potter and the Deathly Hallows: Part 1	33.533	2010-11-19	Harry Potter the Dea Hallows: Pa
	1	1	en	How to Train Your Dragon	28.734	2010-03-26	How to T Your Dra
	2	2	en	Iron Man 2	28.515	2010-05-07	Iron Ma
	3	3	en	Toy Story	28.005	1995-11-22	Toy St
	4	4	en	Inception	27.920	2010-07-16	Incep
	•••						
	26512	26512	en	Laboratory Conditions	0.600	2018-10-13	Labora [†] Conditi
	26513	26513	en	_EXHIBIT_84xxx_	0.600	2018-05-01	_EXHIBIT_84>
	26514	26514	en	The Last One	0.600	2018-10-01	The Last (
	26515	26515	en	Trailer Made	0.600	2018-06-22	Trailer M
	26516	26516	en	The Church	0.600	2018-10-05	The Chu

26517 rows × 8 columns

Preparing the final dataset:

After merging and cleaning the 2 datasets now I mergerd the imdb_bom_dataset with tmdb_data. This final_movie_dataset will be used for the analysis.

```
In [338... #Our final dataset
    final_movie_dataset = pd.merge( tmdb_data,imdb_bom_dataset)
    final_movie_dataset
```

Out[338		Unnamed: 0	original_language	original_title	popularity	release_date	title	vote.
	0	1	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	
	1	2	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	
	2	4	en	Inception	27.920	2010-07-16	Inception	
	3	7	en	Toy Story 3	24.445	2010-06-17	Toy Story 3	
	4	8	en	Despicable Me	23.673	2010-07-09	Despicable Me	
	•••							
	3193	24778	sv	Unga Astrid	4.734	2018-11-23	Becoming Astrid	
	3194	24916	it	Nico, 1988	3.789	2018-07-04	Nico, 1988	
	3195	25037	en	Maria by Callas	3.184	2018-11-02	Maria by Callas	
	3196	25148	en	Bilal: A New Breed of Hero	2.707	2018-02-02	Bilal: A New Breed of Hero	
	3197	25189	es	La Boda de Valentina	2.550	2018-02-09	La Boda de Valentina	

3198 rows × 19 columns

In [339... #Splitting the final_movie_dataset column release_month into 'year', 'Month
final_movie_dataset[['year', 'Month', 'Date']] = final_movie_dataset['release
final movie dataset

Out[339		Unnamed: 0	original_language	original_title	popularity	release_date	title	vote _.
	0	1	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	
	1	2	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	
	2	4	en	Inception	27.920	2010-07-16	Inception	
	3	7	en	Toy Story 3	24.445	2010-06-17	Toy Story 3	
	4	8	en	Despicable Me	23.673	2010-07-09	Despicable Me	
	•••							
	3193	24778	sv	Unga Astrid	4.734	2018-11-23	Becoming Astrid	
	3194	24916	it	Nico, 1988	3.789	2018-07-04	Nico, 1988	
	3195	25037	en	Maria by Callas	3.184	2018-11-02	Maria by Callas	
	3196	25148	en	Bilal: A New Breed of Hero	2.707	2018-02-02	Bilal: A New Breed of Hero	
	3197	25189	es	La Boda de Valentina	2.550	2018-02-09	La Boda de Valentina	

3198 rows × 21 columns

```
In [340... #Dropping columns: 'tconst', start_year
    final_movie_dataset.drop(['tconst','start_year'],axis = 1,inplace = True)

In [341... #COnverting month value to respective month name:
    import calendar
    final_movie_dataset['Month'] = final_movie_dataset['Month'].astype(int)
    final_movie_dataset['Month'] = final_movie_dataset['Month'].apply(lambda x
    final_movie_dataset
```

Out[341		Unnamed: 0	original_language	original_title	popularity	release_date	title	vote _.
	0	1	en	How to Train Your Dragon	28.734	2010-03-26	How to Train Your Dragon	
	1	2	en	Iron Man 2	28.515	2010-05-07	Iron Man 2	
	2	4	en	Inception	27.920	2010-07-16	Inception	
	3	7	en	Toy Story 3	24.445	2010-06-17	Toy Story 3	
	4	8	en	Despicable Me	23.673	2010-07-09	Despicable Me	
	•••							
	3193	24778	sv	Unga Astrid	4.734	2018-11-23	Becoming Astrid	
	3194	24916	it	Nico, 1988	3.789	2018-07-04	Nico, 1988	
	3195	25037	en	Maria by Callas	3.184	2018-11-02	Maria by Callas	
	3196	25148	en	Bilal: A New Breed of Hero	2.707	2018-02-02	Bilal: A New Breed of Hero	
	3197	25189	es	La Boda de Valentina	2.550	2018-02-09	La Boda de Valentina	

3198 rows × 19 columns

Calculating the total Worldwide Gross

Calculate the total worldwide gross by adding the values of domestic & foreign gross.

```
In [342... #calculate the total worldwide gross
final_movie_dataset['worldwide_gross'] = final_movie_dataset['domestic_grosfinal_movie_dataset['Average_gross'] = final_movie_dataset['worldwide_grossfinal_movie_dataset.info()
```

```
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3198 entries, 0 to 3197
Data columns (total 21 columns):
                      Non-Null Count Dtype
    Column
    _____
                      -----
    Unnamed: 0
0
                      3198 non-null int64
    original_language 3198 non-null
 1
                                     object
    original_title
 2
                      3198 non-null
                                     object
 3
    popularity
                      3198 non-null float64
 4
    release_date
                      3198 non-null object
 5
    title
                     3198 non-null object
                     3198 non-null float64
 6
    vote average
 7
    vote count
                     3198 non-null int64
    runtime_minutes 3010 non-null float64
 8
 9
                     3152 non-null object
    genres
                      3152 non-null object
 10
   genre 1
 11
                      2376 non-null object
    genre_2
 12
    genre_3
                     1598 non-null object
 13 studio
                     3198 non-null object
 14 domestic_gross
                     3198 non-null float64
 15 foreign_gross
                     3198 non-null float64
 16 year
                     3198 non-null object
 17
    Month
                      3198 non-null
                                     object
 18
   Date
                      3198 non-null
                                     object
 19
                      3198 non-null
                                     float64
   worldwide_gross
                                     float64
20 Average_gross
                      3198 non-null
dtypes: float64(7), int64(2), object(12)
```

Merging Series to compute results.

memory usage: 549.7+ KB

```
In [343... #merging the worldwide gross,title, highest worldiwde gross:
    final_movie_dataset.info()
    final_movie_dataset1 = final_movie_dataset[['genres', 'title','worldwide_gross
    final_movie_dataset1
```

<class 'pandas.core.frame.DataFrame'>
Int64Index: 3198 entries, 0 to 3197
Data columns (total 21 columns):

#	Column	Non-Null Count	Dtype				
0	Unnamed: 0	3198 non-null	int64				
1	original_language	3198 non-null	object				
2	original_title	3198 non-null	object				
3	popularity	3198 non-null	float64				
4	release_date	3198 non-null	object				
5	title	3198 non-null	object				
6	vote_average	3198 non-null	float64				
7	vote_count	3198 non-null	int64				
8	runtime_minutes	3010 non-null	float64				
9	genres	3152 non-null	object				
10	genre_1	3152 non-null	object				
11	genre_2	2376 non-null	object				
12	genre_3	1598 non-null	object				
13	studio	3198 non-null	object				
14	domestic_gross	3198 non-null	float64				
15	foreign_gross	3198 non-null	float64				
16	year	3198 non-null	object				
17	Month	3198 non-null	object				
18	Date	3198 non-null	object				
19	worldwide_gross	3198 non-null	float64				
20	Average_gross	3198 non-null	float64				
dtyp	types: float64(7), int64(2), object(12)						

dtypes: float64(/), int64(2), object(1

memory usage: 549.7+ KB

Out	. 3	/	3	
ひนし	J	ユ	J	

	genres	title	worldwide_gross
0	Action,Adventure,Animation	How to Train Your Dragon	4.949000e+08
1	Action,Adventure,Sci-Fi	Iron Man 2	6.239000e+08
2	Action,Adventure,Sci-Fi	Inception	8.283000e+08
3	Adventure, Animation, Comedy	Toy Story 3	1.067000e+09
4	Animation, Comedy, Family	Despicable Me	5.431000e+08
•••			
3193	Biography, Drama	Becoming Astrid	1.200000e+05
3194	Biography, Drama, Music	Nico, 1988	7.330000e+04
3195	Biography, Documentary, Music	Maria by Callas	1.300000e+06
3196	Action,Adventure,Animation	Bilal: A New Breed of Hero	2.191000e+06
3197	Comedy,Romance	La Boda de Valentina	2.800000e+06

3198 rows × 3 columns

Getting a list of all genres.

```
In [344... #Get a list of all the genres:
    #By splitting each genre using ',' as the delimiter and stacking the rows of
    final_movie_dataset2 = final_movie_dataset.set_index('title').genres.str.sp
    final_movie_dataset2.columns = ['title', 'genres']
    final_movie_dataset2.head()
```

Out[344		title	genres
	0	How to Train Your Dragon	Action
	1	How to Train Your Dragon	Adventure
	2	How to Train Your Dragon	Animation
	0	Iron Man 2	Action
	1	Iron Man 2	Adventure

Merging the 2 dataframes:

final_movie_dataset1 & final_movie_dataset2

```
In [345... Genre_popularity = pd.merge( final_movie_dataset1,final_movie_dataset2).drc
Genre_popularity
```

out[345		genres	title	worldwide_gross
	0	Comedy	Grown Ups	271400000.0
	1	Documentary	Unstoppable	167800000.0
	81	Horror	The Town	154000000.0
	82	Comedy	Remember Me	56100000.0
	84	Thriller	Remember Me	56100000.0
	•••			
	3471	Drama	The Bookshop	11500000.0
	3472	Drama	The Children Act	17548000.0
	3473	Horror	Beast	800000.0
	3474	Comedy	An Actor Prepares	1700.0
	3475	Drama	What They Had	260000.0

526 rows × 3 columns

Generating Visualizations

Genre generating the highest Worldwide Gross.

```
#Creating a bar plot to show which Genre is creating the highest worldwide
Genre_popularity_fig, Genre_popularity_ax = plt.subplots(nrows=1, ncols=1,

sns.barplot(ax= Genre_popularity_ax, x='genres', y='worldwide_gross', data:
Genre_popularity_ax.set_xlabel('Genre')
Genre_popularity_ax.set_ylabel('worldwide_gross in dollars)')
Genre_popularity_ax.set_title('Worldwide gross by Genre')
Genre_popularity_ax.yaxis.set_major_formatter('${x:1.2f}')
Genre_popularity_ax.tick_params(axis='x', rotation=90)

plt.tight_layout()

plt.savefig('Images/Genre_popularity_fig.png', dpi=200)

plt.show()
```


Conclusion

SCi-Fi seems to be gathering the highest worldwide gross.

Creating new dataframes.

```
In [347... #creating a new dataframe for year
    year_df = final_movie_dataset[['year','title']]
    year_df
```

Out[347		year	title
	0	2010	How to Train Your Dragon
	1	2010	Iron Man 2
	2	2010	Inception
	3	2010	Toy Story 3
	4	2010	Despicable Me
	•••		
	3193	2018	Becoming Astrid
	3194	2018	Nico, 1988
	3195	2018	Maria by Callas
	3196	2018	Bilal: A New Breed of Hero
	3197	2018	La Boda de Valentina

3198 rows × 2 columns

```
In [348... #Merging the two:
    popular_genre = pd.merge(Genre_popularity, year_df,)
    popular_genre
```

```
title worldwide_gross
Out[348...
                      genres
                                                                 year
              0
                      Comedy
                                     Grown Ups
                                                    271400000.0
                                                                2010
                 Documentary
                                   Unstoppable
                                                    167800000.0 2010
                                   Unstoppable
                                                   167800000.0 2010
              2 Documentary
                 Documentary
                                   Unstoppable
                                                    167800000.0 2010
                                   Unstoppable
                                                    167800000.0 2010
                 Documentary
           1927
                       Horror
                                                       800000.0 2018
                                         Beast
           1928
                       Horror
                                         Beast
                                                       800000.0 2018
           1929
                                                       800000.0 2018
                       Horror
                                         Beast
           1930
                      Comedy An Actor Prepares
                                                         1700.0 2018
           1931
                       Drama
                                 What They Had
                                                       260000.0 2018
```

1932 rows × 4 columns

```
In [349... #Checking for languagecounts: final_movie_dataset['original_language'].value_counts().en
```

Out[349... 2862

Language most preferred by audiences Worldwide & Domestic.

Language generating maximum Worldwide Gross.

```
In [350... #Language generating maximum worldwide gross:
    Language_preferred_fig, final_movie_dataset_ax = plt.subplots(nrows=1, nco.)
    sns.barplot(ax= final_movie_dataset_ax, x='original_language', y='worldwide final_movie_dataset_ax.set_xlabel('Language')
    final_movie_dataset_ax.set_ylabel('Worldwide gross (in dollars)')
    final_movie_dataset_ax.set_title('Language generating highest worldwide grofinal_movie_dataset_ax.yaxis.set_major_formatter('${x:1.2f}')
    final_movie_dataset_ax.tick_params(axis='x', rotation=90)
    plt.tight_layout()
    plt.savefig('Images/Language_Worldwide.png', dpi=200)
    plt.show()
```


Conclusion:

Language generating maximum WorldWIde Gross is 'te' which stands for 'Telegu'.

Language generating maximum Domestic Gross.

```
In [351... #Language generating highest domestic gross:
    Language_preferred_fig, final_movie_dataset_ax = plt.subplots(nrows=1, nco.)

sns.barplot(ax= final_movie_dataset_ax, x='original_language', y='domestic_final_movie_dataset_ax.set_xlabel('Language')
    final_movie_dataset_ax.set_ylabel('Domestic gross (in dollars)')
    final_movie_dataset_ax.set_title('Language generating highest domestic grost final_movie_dataset_ax.yaxis.set_major_formatter('${x:1.2f}')
    final_movie_dataset_ax.tick_params(axis='x', rotation=90)

plt.tight_layout()

plt.savefig('Images/Domestic_gross_language.png', dpi=200)

plt.show()
```


Conclusion:

Language generating maximum Domestic Gross is 'en' which stands for 'English'.

Relationship between runtime of movies and their popularity:

Find how popularity of a movie and it's runtime are related.

```
# Create a scatter plot to visualize the correlation between runtime & pope fig, ax = plt.subplots(figsize=(10,6))

sns.regplot(ax=ax, x='runtime_minutes', y='popularity', data=final_movie_data.set_xlabel('runtime_minutes')
ax.set_ylabel('popularity)')
ax.set_ylabel('popularity count of movies by runtime')
ax.set(xlim=(0,175))
ax.set(ylim=(0,175))
ax.set(ylim=(0,100))
ax.axvline(90, color='red', ls=':')
ax.axvline(150, ls=':', color ='red')
plt.tight_layout()

plt.savefig('Images/Popularity count of movies by runtime.png', dpi=150)
plt.show()
```


Conclusion:

There seems to be a close correlation between popularity of a movie and it's runtime. 100-120 seems to be an ideal range.

Most profitable year for the movie industry.

```
#create a bar plot to check which year was the most profitable one
Releasedate_fig, final_movie_dataset_ax = plt.subplots(nrows=1, ncols=1, f:

sns.barplot(ax= final_movie_dataset_ax, x='year', y='worldwide_gross', data
final_movie_dataset_ax.set_xlabel('Year')
final_movie_dataset_ax.set_ylabel('worldwide_gross in dollars)')
final_movie_dataset_ax.set_title(' worldwide gross by release date')
final_movie_dataset_ax.yaxis.set_major_formatter('${x:1.2f}')
final_movie_dataset_ax.tick_params(axis='x', rotation=90)

plt.tight_layout()

plt.savefig('Images/Profitable_Year.png', dpi=200)

plt.show()
```


Conclusion:

The plot above concludes 2017 was the most profitable year for the business.

Release Month that gathers the maximum Worldwide gross.

```
In [354... #release_month = final_movie_dataset.groupby('Month')[['worldwide_gross']]
    #release_month.head()

In [355... #Sorting out the months by values.
    final_movie_dataset.sort_values(['worldwide_gross'], ascending = False)
    release_month = final_movie_dataset.groupby(['Month'])['worldwide_gross'].r
    release_month = release_month.reset_index()
```

Out[355		Month	worldwide_gross
	0	Apr	5.212346e+07
	1	Aug	6.775637e+07
	2	Dec	1.050386e+08
	3	Feb	9.262619e+07
	4	Jan	5.958827e+07
	5	Jul	1.255259e+08
	6	Jun	1.244365e+08
	7	Mar	6.601934e+07
	8	May	1.083706e+08
	9	Nov	1.415103e+08
	10	Oct	4.537215e+07
	11	Sep	7.792712e+07

Updating the Month column by names

```
In [356... #updating cell values to month names instead of numbers
    month_names = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep
    month_nums = list(release_month['Month'])
    months_dict = dict(zip(month_nums, month_names))
    release_month['Month'] = release_month['Month'].map(months_dict)
    release_month
```

\bigcirc 11+	Г 3 5 6	
Out	3 3 0	

	Month	worldwide_gross
0	Jan	5.212346e+07
1	Feb	6.775637e+07
2	Mar	1.050386e+08
3	Apr	9.262619e+07
4	May	5.958827e+07
5	Jun	1.255259e+08
6	Jul	1.244365e+08
7	Aug	6.601934e+07
8	Sep	1.083706e+08
9	Oct	1.415103e+08
10	Nov	4.537215e+07
11	Dec	7.792712e+07

In [357...

```
#Create a plot to understand which month gathers the maximum Gross earning.
Release month fig, release month ax = plt.subplots(nrows=1, ncols=1, figsi:
sns.barplot(ax= release_month_ax, x='Month', y='worldwide_gross', data= rel
release_month_ax.set_xlabel('Month')
release_month_ax.set_ylabel('worldwide_gross in dollars)')
release_month_ax.set_title('Highest worldwide gross by month')
release_month_ax.yaxis.set_major_formatter('${x:1.2f}')
release month ax.tick params(axis='x', rotation=90)
plt.tight layout()
plt.savefig('Images/releasemonth_gross.png', dpi=200)
plt.show()
```


Conclusion:

November is the month that gathers the maximum Worldwide Gross.

Dependency of Worldwide Gross on Average vote count.

Conclusion:

Average_Vote count 4.4 seems to gather maximum Worldwide Gross which concludes that a movie averagely rated also does well.

Evaluation:

This analysis provides five recommendations for Microsoft's new movie studio in order to take calculated business decisions. Knowing the demography of your target audience is crucial, here is the list that can be taken into consideration.

- Make movies of the highest grossing genres. The movies that could be categorized in the Sci Fi, family & animation, tended to have higher box office earnings. Microsoft should focus on these genres the most.
- Runtime should not be overlooked. In general, movies that had longer runtimes
 also had higher box office earnings. However, once movies surpassed a runtime
 threshold, box office performance was hampered. Microsoft should focus on making
 movies within that sweet spot between 100 and 120 minutes.
- Average vote count for a movie is important, the above analysis shows even with an average rating the movie can perform well in generating profit.
- Release Month for a movie everything. The data showed that the movies released
 in a particular month tend to have higher box office earnings. Microsoft should
 prioritize making quality, well reviewed movies that can score at least a 6 on IMDb's
 scale.
- Knowing the language preferred by your audience domestically and worldwide.
 This plays a pivotal role in deciding how much audience you can gather, which will help the movie make profit.

While the past years of data show that this should be a good recipe for success, one limitation is that we are currently in a global pandemic, which has negatively affected many facets of the global economy. The visualizations above displaying movie gross over time clearly show a rise movie gross till year(2018). However, since movies take quite a bit of time to produce, the expectation is that the market will be trending in the right direction by the time a future movie would be released.

Next Steps

Sourcing more data and conducting further analysis could provide Microsoft more insight on what type of movies to create. Including more data, for example data on movie budgets, distribution location, release date, actors, directors, and more, could provide much more detailed insight into how to make profitable movies.