普通物理期中小结

2024年10月21日考试

1. 绪论

量纲: 牛顿力学的三个基本物理量: 长度 L, 时间 T, 质量 m; 量纲的概念(注意量纲与单位的区别); 简单的量纲分析方法

矢量分析: 矢量的概念、矢量的几个重要的运算: 求模、求角度、数乘、点乘、叉乘

2. 运动的描述

质点: 无大小、无形状、有质量的抽象概念

如何描述质点的位置:参考系;坐标系(将参考系定量化);维度(确定位置需要的独立参数);三维直角坐标系 (x,y,z);基失:i, j, k; 位失 r = xi + yj + zk

描述质点的位置变化: 速度 $v = \frac{dr}{dt} = \frac{dx}{dt} \boldsymbol{i} + \frac{dy}{dt} \boldsymbol{j} + \frac{dz}{dt} \boldsymbol{k}$; 加速度 $\boldsymbol{a} = \frac{dv}{dt} = \frac{d^2x}{dt^2} \boldsymbol{i} + \frac{d^2y}{dt^2} \boldsymbol{j} + \frac{d^2z}{dt^2} \boldsymbol{k}$

质点运动学的两类问题: 1、知道轨迹函数,求每个时刻的速度、加速度(微分); 2、知道速度、加速度、初始状态,求轨迹(积分); 一维情况几个重要公式: $v = v_0 + at$; $s = v_0t + \frac{1}{2}at^2$; $v^2 - v_0^2 = 2as$

两个重要的具体运动: 1、抛体运动: 轨迹函数、射程、最高点; 2、圆周运动: 自然坐标系, 切向基失 e_t 、法向基失 e_n ; 速度: 只有切向速度 $v = ve_t$, 加速度: $a = \frac{dv}{dt}e_t + \frac{v^2}{R}e_n$; 角速度大小 ω , $v = R\omega$, $a_n = \frac{v^2}{R} = v\omega = R\omega^2$

相对运动: 相对位失: $r = r_0 + r'$; 相对速度: $v = v_0 + v'$; 相对加速度: $a = a_0 + a'$

3. 牛顿运动定律

牛顿三大运动定律: 第一定律: 惯性定律; 第二定律: F = ma 或者 $F = \frac{dp}{dt}$; 第三定律: $F_{12} = -F_{21}$

几种常见力: 重力 $m\mathbf{g}$; 万有引力 $F_G = G\frac{mM}{r^2}$: 弹力 $F_T = -k\Delta x$ (弹 簧振子周期: $T = 2\pi\sqrt{\frac{m}{k}}$); 静摩擦力、动摩擦力 $f = \mu F_N$

非惯性系: 惯性系与非惯性系; 惯性力: $F_i = -ma_0$; 惯性离心力: $F_i = -m\omega^2 re_n$; 科里奥利力: 产生原因、方向判断

4. 动量与能量

质点系: 质点系;质点系的内力和外力;质心坐标: $r_C = \frac{\sum m_i r_i}{m}$;质心运动定理:内力不改变质心位置,合外力与质心坐标满足牛顿第二定律: $\sum F_i = ma_C$

动量定理: 冲量: 力的时间积累(过程量) $I = \int F dt$; 动量(状态量)p = mv; 动量定理: $I = \Delta p$

动量守恒定律: 质点系的合外力为 0 时, 体系的总动量保持不变

角动量守恒定律: 角动量 $L = r \times p$; 力矩 $M = r \times F$; 角动量定理: $M = \frac{dL}{dL}$; 角动量守恒定律: M = 0 时, 体系的角动量保持不变

功与能量: 做功: 力的空间积累(过程量) $W = \int \mathbf{F} \cdot d\mathbf{r}$; 功率 $P = \frac{dW}{dt} = \mathbf{F} \cdot \mathbf{v}$; 动能(状态量): $E_k = \frac{1}{2}mv^2$; 动能定理: 合外力对体系做功 $W = \Delta E_k$

保守力做功: 保守力的概念; 常见保守力: 重力、引力、弹力; 势能: 重力势能 $E_p = mgh$; 引力势能 $E_p = -G\frac{mm'}{r}$; 弹性势能 $E_p = \frac{1}{2}k(\Delta x)^2$; 指导势能函数求受力: $F_x = -\frac{dE_p}{dx}$

机械能守恒定律: 机械能: $E_k + E_p$; 机械能守恒定律: 体系只有外力和保守内力做功时, 机械能保持不变

5. 刚体的定轴转动

刚体模型及参数: 刚体:特殊的质点系,每个质元间的距离保持不变; 刚体的定轴转动:转轴、转动平面;角速度矢量:大小、方向 $\boldsymbol{v} = \boldsymbol{\omega} \times \boldsymbol{r}$;刚 体定轴转动的转动惯量: $J = \int r^2 dm$

刚体定轴转动定理: 刚体定轴转动角动量大小: $L = J\omega$; 定轴转动定

理: $M = \frac{dL}{dt} = J\frac{d\omega}{dt}$ 刚体转动角动量守恒定律

刚体定轴转动动能: 力矩做功 (过程量): $W=\int Md\theta$; 转动动能 (状

态量): $E_k = \frac{1}{2}J\omega^2$; 刚体转动动能定理: $W=\Delta E_k$