

Particle-scale Evaluation of Aggregate-Geogrid Behavior under Cyclic Wheel Loading

Sangy Hanumasagar

Advisor: Prof. J. David Frost

Sustainable Geotechnical Systems Laboratory

24 October 2018

Outline

- **□** Introduction
- **☐** Bench-scale Pavement Testing
- □ Experimental Study I
- □ Experimental Study II
- ☐ Future Work and Conclusions

Introduction: Motivation and Background

Understanding fundamental aggregate-geogrid interaction

Lateral spreading of particles

Reduced spreading by interlocking with geogrid

Confinement induced by aggregate-geogrid interlocking

(Tensar Subgrade Stabilization Manual)

Introduction: Motivation and Background

- How do we maximize interlocking?
 - Grid location
 - Aggregate-Geogrid Compatibility
 - Aggregate properties
- How do we measure it?

Confinement induced by aggregate-geogrid interlocking

(Tensar Subgrade Stabilization Manual)

Introduction: Motivation and Background

Schematic showing cross-sections of full-scale and bench-scale specimens

Bench-scale Pavement Testing Setup

- 1) Wheel system
 - a) Wheel (3 in \emptyset , 1 in width)
- b) Adjustable yoke
- c) Linear variable displacement 4) Box transducers
- d) Support frame

- 2) Direction of wheel motion 5) Transparent lexan wall
- 3) Micro-conroller driven track actuator
- 6) Suspended loading system

- - a) 36 in length
 - b) 6 in height
 - c) 8 in width

Bench-scale Pavement Testing Setup

Experimental Study I Effect of Aggregate Morphology on Rutting Behavior

Material Properties

RA Material
Pea Gravel
Sub-rounded and smooth

QA Material #89 Stone Angular and rough

Aggregate Samples

Steel Grids (SG)

Steel Grid	Aperture Size,	Rib Thickness,	
	in. (mm)	in. (mm)	
SG1	0.25 (6.35)	0.020 (0.50)	
SG2	0.50 (12.7)	0.032 (0.815)	
SG3	0.75 (19.05)	0.069 (1.76)	
SG4	1.00 (25.4)	0.055 (1.4)	

Grain Size Distribution

Grain size analysis Chart

Experimental Program

- Loading stress = 5 psi (35 kPa)
- Loading Duration = 35 cycles
- Testing Program
 - 2 aggregates
 - 4 scenarios of stabilization using each grid

Typical rut formations

Cross-section of specimen setup

Rutting depth for (a) RA and (b) QA materials and all four grid openings

RA Aggregate: Rutting behavior for various stabilization scenarios

QA Aggregate: Rutting behavior for various stabilization scenarios

 QA showed consistent reduction in rutting while RA only showed change for shallow grid placement

GG performance $\sim f(\sigma_{v}, H', b)$

QA is more bilinear than RA

Hypothetical zones of confinement induced by geogrid

Experimental Study II Effect of Subgrade Stiffness and Geosynthetic Stabilization on Pavement Performance

Material Properties

Subgrade and GAB Material Properties

	Gordon Co	Hall Co	GAB
USCS Classification	MH	MH	GW
Percentage fines	53.1	57.2	5.5
Plastic Limit	41.7	37.4	-
Liquid Limit	63.4	57.1	-
Plasticity Index	21.7	19.7	-
Max Dry Density (pcf)	107.0	114.0	133.5
Optimum Water Content	17.5	15.0	7.2

Material Properties

Geosynthetics Material Properties

		GG1000*	GG500	GG250	GG125	GT*
Opening size,		1.0	0.5	(0.25)	0.125	0.024
inch (mm)		(25.4)	(12.7)	6.35	(3.18)	(0.6)
Minimum rib thickness, inch (mm)		0.05	0.08	0.05	0.03	-
		(1.27)	(1.95)	(1.30)	(0.74)	
Tensile Strength @ 2% strain lb/ft (kN/m)	MD	410	292	209	132	-
		(6.0)	(4.26)	(3.05)	(1.93)	
	XMD	620	347	249	163	-
		(9.0)	(5.06)	(3.63)	(2.38)	
Tensile Strength @ 5% strain lb/ft (kN/m)	MD	810	402	286	169	1274
		(11.8)	(5.87)	(4.18)	(2.46)	(18.6)
	XMD	1340	492	363	206	1439
		(19.6)	(7.18)	(5.3)	(3.02)	(21.0)
Ultimate Tensile Strength lb/ft (kN/m)	MD	1310	410	292	169	2640
		(19.2)	(5.99)	(4.26)	(2.46)	(38.5)
	XMD	1970	504	405	206	2460
		(28.8)	(7.36)	(5.91)	(3.02)	(35.9)

Geosynthetics used in study

^{*}Provided by manufacturer

Experimental Program

- Loading stress = 28 psi (190 kPa)
- Loading Duration = 250-500 cycles
- Testing Program
 - At least 2 subgrade stiffness conditions
 - 5 scenarios of stabilization using each geosynthetic

Typical rut formations

Cross-section of specimen setup

Rutting with Stiff Subgrades at CBR>2.5

Effect of geosynthetic stabilization on a) Gordon (CBR 5.5) and b) Hall Co (CBR>10) subgrades with CBR>2.5

Rutting with Soft Subgrades at CBR<2.5

Effect of geosynthetic stabilization on a) Gordon and b) Hall Co subgrades with CBR<2.5

Stresses with Stiff Subgrades at CBR>10

Vertical stresses measured over stiff Gordon (CBR>10) in a) unstabilized b) GG250 stabilized conditions

Stresses with Soft Subgrades at CBR<2.5

Future Work

- Locate zone of confinement in AB layer surrounding geogrid by tracking particle displacement and horizontal stress
- Can this be a new way to represent performance of geogrid which encapsulates aggregate-aggregate and aggregate-geogrid interaction?

Future Work

- What is stress distribution under geogrid?
 - Is there stabilization period while interlocking is mobilized?
 - Model horizontal stress and displacement as well
 - How are force chains in granular media affected with geogrid introduction?
- Can we predict rutting performance using vertical stress, relative density, and morphological properties of aggregates + geogrid geometry, location using curve fitting parameters?

$$\epsilon_a = a.e^{-(\frac{b}{N^c})}$$

 ϵ_a is axial permanent strain

N is number of load cycles

a, b and c are fitting parameters

References

- Al-Qadi, I.L. & Dessouky, S.H. & Kwon, J. & Tutumleur, E., 2008. Geogrid in Flexible Pavements: Validated Mechanism, Transportation Research Record: Journal of the Transportation Research Board, No 2045, 102-109.
- Barksdale, R.D. & Itani, S.Y., 1989. Influence of aggregate shape on base behavior, *Transportation Research Record: Journal of the Transportation Research Board*, No 1227, 173-182.
- Barksdale, R.D. & Brown, S.F. & Chan, F., 1989. Potential Benefits of Geosynthetics in Flexible Pavement Systems, NCHRP Report 315, Transportation Research Board, Washington, D.C.
- Brown, S.F. & Kwan, J. & Thom, N.H., 2007. Identifying the key parameters that influence geogrid reinforcement of railway ballast, Geotextiles and Geomembranes, 25, 326-335.
- Giroud, J. P., Ah-Line, C., and Bonaparte, R. Design of unpaved roads and trafficked areas with geogrids. Polymer grid reinforcement, 1985. 116–127.
- Giroud, J.P. & Han, J., 2004. Design Method for Geogrid-Reinforce Unpaved Roads: Development of Design Method, *Journal of Geotechnical and Geoenvironmental Engineering*, Vol. 130, 775-786.
- Jang, D. J., 1997. Quantification of sand structure and its evolution during shearing using image analysis, PhD Thesis, Georgia Institute of Technology, Atlanta.
- Kim, T. & Tutumleur, E., 2005. Unbound Aggregate Rutting Models for Stress Rotations and Effects of Moving Wheel Loads, *Transportation Research Record: Journal of the Transportation Research Board*, No 1913, 41-49.
- Kwon, J. & Boudreau, R.L. & Tutumleur, E. & Wayne, M.H., 2014. Evaluation and Characterization of Aggregates for Sustainable Use in Pavement Engineering, ASCE Geo-Congress, 3373-3382.
- Kwon, J. & Kim, S. & Tutumleur, E. & Wayne, M.H., 2017. Characterization of Unbound Aggregate Materials considering physical and morphological properties, *International Journal of Pavement Engineering*, 18:4, 303-308.
- Mishra, D. & Tutumleur, E., 2012. Aggregate Physical Properties Affecting Modulus and Deformation Characteristics of Unsurfaced Pavements, *Journal of Materials in Civil Engineering*, 24(9), 1144-1152.
- Monismith, C.L. & Ogawa, N. & Freeme, C.R., 1985. Permanent Deformation Characteristics of Subgrade Soils due to Repeated Loading, *Transportation Research Record: Journal of the Transportation Research Board*, No 537, 1-17.
- Thompson, M.R., 1998. State of the Art: Unbound base performance, Proceedings of the Sixth Annual Symposium of International Center for Aggregate Research (ICAR), Austin, TX.
- Archer, S. & Wayne. M.H., 2012. Relevancy of Material Properties in Predicting the Performance of Geogrid-Reinforced Roadways, ASCE Geo-Congress, 1320-1329
- Tseng, K.H. & Lytton, R.L., 1989. Prediction of Permanent Deformation in Flexible Pavement Materials, ASTM STP, 1016, 154-172
- Xiao, Y., Tutumleur, E. & Qian, Y. & Siekmeier, J.A., 2012. Gradation Effects Influencing Mechanical Properties of Aggregate Base-Granular Subbase Materials in Minnesota, *Transportation Research Record: Journal of the Transportation Research Board*, No 2267, 14-26.
- Vangla, P., Roy, N., & Gali, M. L. (2018). Image based shape characterization of granular materials and its effect on kinematics of particle motion. Granular Matter, 20(1), 6.
- Zornberg, J.G., 2011. Advances in the Use of Geosynthetic in Pavement Design, *Proceedings of the Second National Conference on Geosynthetics, Geosynthetics India* '11, Vol 1, 3-21.

THANK YOU

Questions and Comments?

