GUJARAT TECHNOLOGICAL UNIVERSITY

BE - SEMESTER- III (New) EXAMINATION - WINTER 2019

		0211120121	111 (11011) 1111111111111111111111111111	
Subject Co	de:	2130702		Date: 28/11/2019

Subject Name: Data Structure

Time: 02:30 PM TO 05:00 PM Total Marks: 70

Instructions:

- 1. Attempt all questions.
- 2. Make suitable assumptions wherever necessary.
- 3. Figures to the right indicate full marks.
- Q.1 (a) Define primitive and non-primitive data types with example. 03
 - (b) Differentiate linear and non-linear data structures. 04
 - (c) Write algorithms for PUSH and POP stack operations. 07
- Q.2 (a) Enlist applications of stack and queue. 03
 - (b) Evaluate the following postfix expression using stack. Show each step. 5 3 + 6 2 / * 3 5 * +
 - (c) Write a C functions for insertion and deletion operation in simple queue. 07

OR

- (c) Write an algorithm to delete an element from circular queue. Show the steps of insertion and deletion operation in sample circular queue.
- Q.3 (a) Describe the advantages of linked list over array. 03
 - (b) Write an algorithm to insert a node at last position in doubly linked list. 04
 - (c) Write an algorithm to print the singly linked list in reverse order using stack.

OR

- Q.3 (a) Describe following terms with respect to binary tree:
 (1) depth of tree (2) balanced tree (3) complete tree
 - (b) Construct the binary tree for the following tree traversals.

 Inorder: B F G H P R S T W Y Z

 Preorder: P F B H G S R Y T W Z
 - (c) Write an algorithm to insert a node into binary search tree.
- Q.4 (a) Prove that a binary tree with 20 nodes have 21 null branches. 03
 - (b) Write a recursive algorithm for preorder traversal of binary tree. 04
 - (c) Describe Prim's minimum spanning tree algorithm with example.

OR

Q.4 (a) Show the resultant BST after applying following operations in sequence on given tree. Delete 8 b) Insert 9 c) Delete 7

- (b) Enlist and describe different ways for representing graph data structure with example. 04
- (c) Show the steps of BFS and DFS traversal for following graph starting from vertex 2. Consider adjacency list is sorted in ascending order.

07

07

Q.5	(a)					
	(b)					
	(c)	Write an algorithm for merge sort. Show the steps of its working with				
		sample data.				
	OR					
Q.5	(a)	Define hash function. Describe any two hash methods with example.	03			
	(b)	Write an algorithm for binary searching.	04			
	(c)	Apply bubble sort on following data and show all steps.	07			
		123, 34, 65, 105, 27, 79, 12, 10, 125, 156				
