

Contents

0.1	Bloch-Redfield and Redfield Failing for degenerate Hamiltonians		
	0.1.1	Cumulant and global failing (What I didn't see before)	6
	0.1.2	Different initial state	7
	0.1.3	Finite Temperature	7
	0.1.4	Summary	8
0.2	Redfield Issue check "Analytically"		6
	0.2.1	Jump operator checks	6
	0.2.2	Constucting the Differential equations	10

0.1 Bloch-Redfield and Redfield Failing for degenerate Hamiltonians

In The SYK model: Inspired by the steady state of this dissipator being the maximally entangled state let us construct a qubit entangler out of it

```
The Hamiltonian in this example is then given by
Quantum object: dims=[[2, 2], [2, 2]], shape=(4, 4), type='oper', dtype=CSR, isherm=True
Qobj data =
[[-1. 0. 0. 0.]
 [ 0. 1. 0. 0.]
 [ 0. 0. 1. 0.]
 [ 0. 0. 0. -1. ] ]
   While the coupling operator to the bath is simply
   Where each a_i is a real number, randomly generated from a Gaussian
Quantum object: dims=[[2, 2], [2, 2]], shape=(4, 4), type='oper', dtype=CSR, isherm=True
Qobj data =
[[0.+0.j 1. -1.j 1. -1.j 0.+0.j]
 [1.+1.j 0.+0.j 0.+0.j -1.+1.j]
 [ 1.+1.j 0.+0.j 0.+0.j 1. -1.j]
 [0.+0.j -1. -1.j 1.+1.j 0.+0.j]
   We consider the initial state to be
Quantum object: dims=[[2, 2], [2, 2]], shape=(4, 4), type='oper', dtype=Dense, isherm=True
Qobj data =
[[0.5 0.5 0. 0.]
 [0.5 0.5 0. 0.]
 [0. 0. 0. 0.]
 [0. 0. 0. 0.]]
from qutip import concurrence
concurrence(rho0)
0.0
   And consider an underdamped spectral density at zero temperature with \gamma = 5.0,
\lambda = 2.942830956382712, \omega_0 = 10. After fitting the correlation function one obtains
Correlation function fit:
Result of fitting the real part of
                                                                        |Result of fitting the im
the correlation function with 3 terms:
                                                                        of the correlation funct
 Parameters
                       b
                                                                        | Parameters|
           | -1.04e -01 | -9.53e+00 |3.27e -10
                                                                            | 1
```


Steady states (Not really steady but at t = 50)

HEOM

from qutip import concurrence

```
results_syk[0].states[ -1]
```

```
Quantum object: dims=[[2, 2], [2, 2]], shape=(4, 4), type='oper', dtype=Dense, isherm=False
Qobj data =
[[7.74773463e -01+3.22111203e -11j    4.17294148e -04 -3.66713072e -03j
    6.67324336e -07+2.39009067e -05j -1.07291624e -11+2.58247904e -01j]
[4.17294145e -04+3.66713072e -03j -2.47585882e -02 -3.21988331e -11j
    -8.26277948e -03 -1.07419532e -11j    2.39009067e -05+6.67324376e -07j]
[6.67324376e -07 -2.39009067e -05j -8.26277948e -03 -1.07415156e -11j
    -8.26277948e -03 -1.07403046e -11j    2.39009067e -05+6.67324376e -07j]
[1.07293865e -11 -2.58247904e -01j    2.39009067e -05 -6.67324336e -07j
    2.39009067e -05 -6.67324336e -07j
```

/tmp/ipykernel_7099/1673502128.py:1: RuntimeWarning: divide by zero encountered in divide
 plt.plot(lam*times/E01,[concurrence(i) for i in results_syk[0].states])
/tmp/ipykernel_7099/1673502128.py:1: RuntimeWarning: invalid value encountered in divide
 plt.plot(lam*times/E01,[concurrence(i) for i in results_syk[0].states])

[<matplotlib.lines.Line2D at 0x7eff921c4fe0>]

Cumulant

[<matplotlib.lines.Line2D at 0x7eff85b5f620>]

Bloch-Redfield

[<matplotlib.lines.Line2D at 0x7eff85bcd130>]

From what we see in both the trace distance and fidelity plots, the Bloch-Redfield approach does terribly when we consider this scenario (multiple implementations where checked). Notice that this issue seems to be about the coupling operator, rather than the Hamiltonian.

Every Equation is ok

Consider a different coupling operator just the majorana fermion denoted by the index 0 coupled to the environment or in the notes notation $(b_0 = -i, b_1 = 0)$

Quantum object: dims=[[2, 2], [2, 2]], shape=(4, 4), type='oper', dtype=CSR, isherm=True Qobj data =

```
[[0.+0.j \ 0. -1.j \ 0.+0.j \ 0.+0.j]
 [0.+1.j 0.+0.j 0.+0.j 0.+0.j]
 [0.+0.j \ 0.+0.j \ 0.+0.j \ 0. -1.j]
 [0.+0.j 0.+0.j 0.+1.j 0.+0.j]]
Correlation function fit:
```

```
Result of fitting the real part of
the correlation function with 2 terms:
```

Parameters 1 b а | 4.63e -01 | -2.56e+00 | 9.66e+00 | -8.49e -02 | -9.15e+00 |3.96e -08

|A normalized RMSE of 1.

| Parameters|

1 1

|Result of fitting the im

of the correlation funct

a

| -4.47e -0

A normalized RMSE of 5.49e -06 was obtained for the the real part of |of the correlation func the correlation function.

The current fit took 0.426879 seconds.

|The current fit took 0.

Solving HEOM

```
10.1%. Run time: 3.18s. Est. time left: 00:00:00:28
20.2%. Run time: 6.56s. Est. time left: 00:00:00:25
30.3%. Run time: 9.96s. Est. time left: 00:00:00:22
40.4%. Run time: 13.29s. Est. time left: 00:00:00:19
50.5%. Run time: 16.75s. Est. time left: 00:00:00:16
60.6%. Run time: 19.54s. Est. time left: 00:00:00:12
70.7%. Run time: 22.15s. Est. time left: 00:00:00:09
80.8%. Run time: 24.71s. Est. time left: 00:00:00:05
90.9%. Run time: 27.26s. Est. time left: 00:00:00:02
100.0%. Run time: 29.73s. Est. time left: 00:00:00:00
Total run time: 29.73s
```

HEOM Done

Solving Cumulant

```
Calculating Integrals ...: 100%|| 4/4 [00:00<00:00, 3486.54it/s]
Calculating time independent matrices...: 100%|| 4/4 [00:00<00:00, 2278.89it/s]
Calculating time dependent generators: 100%|| 4/4 [00:00<00:00, 1265.54it/s]
Computing Exponential of Generators . . . .: 100%|| 100/100 [00:00<00:00, 391.30it/s]
```

Cumulant Done

Solving Redfield

Started integration and Generator Calculations Finished integration and Generator Calculations Computation Time: 0.011269092559814453

Started interpolation

```
Finished interpolation
Computation Time: 0.004649162292480469
Started Solving the differential equation
Finished Solving the differential equation
Computation Time: 0.7239315509796143
_____
Redfield Done
Solving Bloch -Redfield
Bloch -Redfield Done
_____
                                      Traceback (most recent call last)
AttributeError
Cell In[48], line 6, in trd(states, H, times)
- - - -> 6
              sdd=np.array([tracedist(i.states[j],states[0].states[j]) for j in range(len(ti
     7 except:
AttributeError: 'list' object has no attribute 'states'
During handling of the above exception, another exception occurred:
IndexError
                                      Traceback (most recent call last)
Cell In[58], line 1
 - - - -> 1 trd(results_syk2,H,times)
Cell In[48], line 8, in trd(states, H, times)
              sdd=np.array([tracedist(i.states[j],states[0].states[j]) for j in range(len(ti
          except:
     7
                  sdd=np.array([tracedist(i[j],states[0].states[j]) for j in range(len(times
 - - - -> 8
           plt.plot(times,sdd,label=labels[k],linestyle=style[k])
    10 plt.legend(fontsize=14)
IndexError: list index out of range
from qutip import bell_state, concurrence
bell=bell_state("01")
bell_dens=bell*bell.dag()
bell_dens
results_syk[0].states[ -1]
fidelity(results_syk2[0].states[ -1],bell_dens)
  I observe the same behaviour in many spin chain configurations for large N
```

Cumulant and global failing (What I didn't see before)

Another example $(b_0 = 1, b_1 = -i)$

Heom Steady

```
results_syk3[0].states[ -1]
```

Global Steady

```
results_syk3[1][ -1]
```

0.1.2 Different initial state

To make things more confusing let us consider a different initial state and see how things work, and then don't

But it does definitely seems to have something to do with ergodicity

```
N=2
state_list = [basis(2, 0)] + [-1j*basis(2, 0)] * (N - 1) # change the initial state to be awa
state_list2 = [basis(2, 0)] + [basis(2, 0)] * (N - 1) # change the initial state to be away fr
state_list.reverse()
psi0 = tensor(state_list)
rho02=psi0*psi0.dag()
H.dims=rho0.dims
Q.dims=rho0.dims
times=np.linspace(0,50,100)
tfit=np.linspace(0, 80, 5000)
rho02
   We use the first coupling operator
Q
bath=BosonicBath.from_environment(env,Q)
bath.T=0
# notice one mode is also a pretty good approximation
print(fitinfo['summary'])
results_syk4=solve_dynamics(H,Q,bath,bath,rho02)
trd(results_syk4,H,times)
plot_fidelities(results_syk4,H,times)
```

0.1.3 Finite Temperature

For Finite Temperature I find the exact same behaviour T=1We use the first initial state

Steady state from HEOM

Steady state from BR

```
bath=BosonicBath.from_environment(env,Q)
bath.T=1
# notice one mode is also a pretty good approximation
results_syk10=solve_dynamics(H,Q,bath,bath,rho02)
bath=BosonicBath.from_environment(env,Q2)
bath.T=1
# notice one mode is also a pretty good approximation
results_syk11=solve_dynamics(H,Q2,bath,bath,rho02)
```

```
bath=BosonicBath.from_environment(env,0.01*Q3)
bath.T=1
# notice one mode is also a pretty good approximation
results_syk12=solve_dynamics(H,0.01*Q3,bath,bath,rho02,depth=12)
results_syk12[0].states[ -1]
plot_fidelities(results_syk12,H,times)
```

0.1.4 Summary

The effect happens for both finite and zero temperature, it depends on the coupling operator and the initial state mostly

The Coupling operators are:

 Q_1

 Q_2

 Q_3

For the initial state

At T = 0

Finite Temperature

For the initial state

Finite Temperature

0.2 Redfield Issue check "Analytically"

Since there seems to be an issue with the Bloch-Redfield Solver in qutip and my not so good implementation of the time dependent redfield, here's a quick Analytical check to make sure it's not, by solving the equation for the SYK(2) model symbolically. The Hamiltonian is given by

```
H = diag( -a,a,a, -a)#the times 20 is to rescale time
Eq(S('H'), H, evaluate=False)

Eq(H, Matrix([
  [-a, 0, 0, 0],
  [ 0, a, 0, 0],
  [ 0, 0, a, 0],
```

Here I define the coupling operator q that make things break for Bloch-Redfield on the SYK model

```
Eq(S("q"), Q, evaluate=False)
```

[0, 0, 0, -a]]))

I then get the eigenvalues and eigenvectors to obtain the jump operators (this steps are hidden in the pdf)

```
for key, value in jumps.items():
    display(Eq(S(f"A({key}))"), value, evaluate=False))
Eq(A(2*a), Matrix([
                                b1, 0],
[0,
                                 0, 0],
[0,
                  0,
                                 0, 0],
[0,
                  0,
[0, -conjugate(b1), conjugate(b0), 0]]))
Eq(A(-2*a), Matrix([
             0, 0, 0,
                         0],
[conjugate(b0), 0, 0, -b1],
[conjugate(b1), 0, 0,
```

0]]))

0.2.1 Jump operator checks

0, 0, 0,

The jump operators must satisfy

$$[H, A(\omega)] = -\omega A(\omega) \tag{1}$$

$$[H, A^{\dagger}(\omega)A(\omega)] = 0 \tag{2}$$

$$\sum_{w} A(\omega) = A \tag{3}$$

0.2.2 Constucting the Differential equations

We now construct the differential equations from the GKLS form of the bloch Redfield generator

$$\begin{split} \rho_{S}^{I}(t)t &= \sum_{\omega,\omega',\alpha,\beta} \gamma_{\beta,\alpha}(\omega,\omega') \left(S_{\alpha}(\omega') \rho_{S}^{I}(t) S_{\beta}^{\dagger}(\omega) - \frac{\{S_{\beta}^{\dagger}(\omega) S_{\alpha}(\omega'), \rho_{S}^{I}(t)\}}{2} \right) \\ &+ i \sum_{\omega,\omega',\alpha,\beta} S_{\beta,\alpha}(\omega,\omega') \Big[\rho_{S}^{I}(t), S_{\beta}^{\dagger}(\omega) S_{\alpha}(\omega') \Big] \end{split}$$

I solve in the interaction picture generally, I did the same in my numerics so it should not be an issue (I rotate in the end). By neglecting Lambshift as in the numerics

$$\rho_{S}^{I}(t)t = \sum_{\omega,\omega',\alpha,\beta} \gamma_{\beta,\alpha}(\omega,\omega') \left(S_{\alpha}(\omega')\rho_{S}^{I}(t)S_{\beta}^{\dagger}(\omega) - \frac{\{S_{\beta}^{\dagger}(\omega)S_{\alpha}(\omega'),\rho_{S}^{I}(t)\}}{2} \right)$$
(4)

As the sum goes on (ω, ω') pairs I construct all combinations

(jumps[(2*a)]*jumps[-2*a]*rho+ rho*jumps[(2*a)]*jumps[-2*a]).expand()

[2*b0*conjugate(b0)*conjugate(rho_4) + 2*b1*conjugate(b1)*conjugate(rho_4), b0*conjugate(b0)*conjuga

Then I construct the generator by multiplying the appropiate coefficient to each of the GKLS from matrices. Now for the coefficients we have

$$\Gamma_{\alpha,\beta}(\omega,t) = \int_0^t ds e^{i\omega s} \langle B_{\alpha}^{\dagger}(t) B_{\beta}^{\dagger}(t-s) \rangle_B \tag{5}$$

Since I mainly care about bloch-redfield I make $t \to \infty$ (in the integral) so

$$\Gamma_{\alpha,\beta}(\omega,\omega',t) = \int_0^\infty ds e^{i\omega s} \langle B(s)B(0)\rangle_B = \Gamma_{\alpha,\beta}(\omega) \tag{6}$$

Where $\Gamma_{\alpha,\beta}(\omega)$ is the power spectrum

The decay rate in the redfield equation is given by

$$\gamma(\omega, \omega', t) = e^{i(\omega - \omega')t} (\Gamma(\omega') + \overline{\Gamma(\omega)})$$

gmm,gpp=symbols("\\gamma_{ - -} \\gamma_{++}",real=True)
gpm=symbols("\\gamma_{+ -}")

Assuming an underdamped spectral density

$$J(\omega) = \frac{\lambda^2 \gamma \omega}{((\omega_0^2 - \omega^2)^2 + \gamma^2 \omega^2)}$$
 (7)

Then the generator of the dynamics is given by

Eq(S('G'), gene, evaluate=False)

Next we simply vectorize the density matrix and construct the system of ODES

```
for i in eqs:
                                          display(i)
Eq(Derivative(rho_1(t), t), \gamma_{++}*(b0*rho_7(t)*conjugate(b1) + b1*rho_10(t)*conjugate(b0
Eq(Derivative(rho_2(t), t), \gamma_{2mma_{++}}*(-rho_2(t)*Abs(b0)**2/2 - rho_2(t)*Abs(b1)**2/2) + \gamma_{2mma_{++}}*(-rho_2(t)*Abs(b0)**2/2 - rho_2(t)*Abs(b1)**2/2) + \gamma_{2mma_{++}}*(-rho_2(t)*Abs(b0)**2/2 - rho_2(t)*Abs(b1)**2/2) + \gamma_{2mma_{++}}*(-rho_2(t)*Abs(b0)**2/2 - rho_2(t)*Abs(b1)**2/2) + \gamma_{2mma_{++}}*(-rho_2(t)*Abs(b1)**2/2) + \gamma_{2mma_{++}}*(-rho_2(t)*Abs(b1)**
Eq(Derivative(rho_3(t), t), \gamma_{amma_{++}*(-rho_3(t)*Abs(b0)**2/2 - rho_3(t)*Abs(b1)**2/2) + \gamma_{amma_{++}*(-rho_3(t)*Abs(b1)**2/2) + \gamma_{amma_{++}*(-r
Eq(Derivative(rho_4(t), t), \gamma_{t}) + b0**2*rho_7(t) + b0*b1*rho_11(t) - b0*b1*rho_6(t) - b0*b1*rho_6(t)
Eq(Derivative(rho_5(t), t), \gamma_{samma_{++}*(-rho_5(t)*Abs(b0)**2/2 - rho_5(t)*Abs(b1)**2/2) + \gamma_{samma_{++}*(-rho_5(t)*Abs(b1)**2/2) + \gamma_{samma_{
 Eq(Derivative(rho_7(t), t), \gamma_{t}) + \gamma_{t} 
Eq(Derivative(rho_8(t), t), \gamma_{8mma_{++}*(-rho_8(t)*Abs(b0)**2/2 - rho_8(t)*Abs(b1)**2/2) + \gamma_{8mma_{++}*(-rho_8(t)*Abs(b1)**2/2) + \gamma_{8mma_{++}*(-r
Eq(Derivative(rho_9(t), t), \gamma_{4}) + \gamma_{5}(-rho_9(t)*Abs(b0)**2/2 - rho_9(t)*Abs(b1)**2/2) + \gamma_{5}(-rho_9(t)*Abs(b1)**2/2) +
Eq(Derivative(rho_10(t), t), \gamma_{h}) + \gamma_{h} = (-rho_10(t)*Abs(b0)**2 - rho_10(t)*Abs(b1)**2) + \gamma_{h} = (-rho_10(t)*Abs(b1)**2) + \gamma_{h} = (-rho_10(t)*Abs(b1)*2) + \gamma_{h} = (-rho_10(t)*Abs(b1)*2) + \gamma_{h} = (-rho
Eq(Derivative(rho_11(t), t), \gamma_{t+}*(-rho_11(t)*Abs(b0)**2 - rho_11(t)*Abs(b1)**2) + \gamma_{t+}*(-rho_11(t)*Abs(b1)**2) + \gamma_{
Eq(Derivative(rho_13(t), t), \gamma_{++}*(rho_10(t)*conjugate(b0)**2 + rho_11(t)*conjugate(b0)
Eq(Derivative(rho_14(t), t), \gamma_{++}*(-rho_14(t)*Abs(b0)**2/2 - rho_14(t)*Abs(b1)**2/2) +
Eq(Derivative(rho_15(t), t), \gamma_{15(t)*Abs(b0)**2/2 - rho_15(t)*Abs(b1)**2/2) + rho_15(t)**2/2) + rho_15(t)**2/2)
Eq(Derivative(rho_16(t), t), \gamma_{++}*( -b0*rho_7(t)*conjugate(b1) - b1*rho_10(t)*conjugate
                                Then We make \gamma_{--} = 0 as we consider zero temperature T = 0
    (eqs[0].rhs + eqs[5].rhs + eqs[10].rhs + eqs[15].rhs ).subs(gmm,0).expand()
0
for i in eqs:
                                         display(i.subs(gmm,0))
Eq(Derivative(rho_1(t), t), \gamma_{++}*(b0*rho_7(t)*conjugate(b1) + b1*rho_10(t)*conjugate(b0
Eq(Derivative(rho_3(t), t), \gamma_{amma_{++}*(-rho_3(t)*Abs(b0)**2/2 - rho_3(t)*Abs(b1)**2/2) + 8*
Eq(Derivative(rho_4(t), t), \gamma_{t}) + b0*b1*rho_11(t) - b0*b1*rho_6(t) - b0*b1*rho_11(t) - b0*b1*rho_
Eq(Derivative(rho_5(t), t), \gamma_{samma_{++}*(-rho_5(t)*Abs(b0)**2/2 - rho_5(t)*Abs(b1)**2/2) + \gamma_{samma_{++}*(-rho_5(t)*Abs(b0)**2/2 - rho_5(t)*Abs(b1)**2/2)}
 Eq(Derivative(rho_6(t), t), \gamma_{4} - rho_6(t) * Abs(b0) * 2 - rho_6(t) * Abs(b1) * 2) ) 
 Eq(Derivative(rho_7(t), t), \gamma_{++}*(-rho_7(t)*Abs(b0)**2 - rho_7(t)*Abs(b1)**2))
 Eq(Derivative(rho_8(t), t), \gamma_{emma_{++}*(-rho_8(t)*Abs(b0)**2/2 - rho_8(t)*Abs(b1)**2/2) + \gamma_{emp}
```

```
Eq(Derivative(rho_10(t), t), \gamma_{amma_{++}}*(-rho_10(t)*Abs(b0)**2 - rho_10(t)*Abs(b1)**2))
Eq(Derivative(rho_11(t), t), \gamma_{1}(t)*Abs(b1)**2 - rho_11(t)*Abs(b1)**2))
Eq(Derivative(rho_12(t), t), \gamma_1(t)*Abs(b1)**2/2 - rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2 - rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2 - rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2 - rho_12(t)**Abs(b1)**2/2 - rho_12(t)**2/2 - r
Eq(Derivative(rho_13(t), t), \gamma_{++}*(rho_10(t)*conjugate(b0)**2 + rho_11(t)*conjugate(b0)
Eq(Derivative(rho_14(t), t), \gamma_{man}_{++}*(-rho_14(t)*Abs(b0)**2/2 - rho_14(t)*Abs(b1)**2/2) +
Eq(Derivative(rho_16(t), t), \gamma_{++}*( -b0*rho_7(t)*conjugate(b1) - b1*rho_10(t)*conjugate
                    Then at T=0, and in the Schrodinger picture (So that there is no phase and \gammas are real). We
have \gamma_{+-} = \gamma_{-+} = \frac{\gamma_{++}}{2}
for i in eqs:
                          display(i.subs(gmm,0).subs(gpm,gpp/2).subs(conjugate(gpm),gpp/2))
Eq(Derivative(rho_1(t), t), \gamma_{++}*(b0*rho_7(t)*conjugate(b1) + b1*rho_10(t)*conjugate(b0
Eq(Derivative(rho_2(t), t), \gamma_{2(t)*Abs(b0)**2/2 - rho_2(t)*Abs(b1)**2/2) + \gamma_{2(t)*Abs(b1)**2/2) + \gamma_{2(t)*Abs(b1)**2/2) + \gamma_{2(t)*Abs(b1)**2/2) + \gamma_{2(t)*Abs(b1)**2/2) + \gamma_{2(t)*Abs(b1)**2/2} + \gamma_{2(t)*Abs(b1)**2/2) + \gamma_{2(t)*Abs(b1)**2/2} + \gamma_{2(t)*Abs(b1)**2/2) + \gamma_{2(t)*Abs(b1)**2/2} + 
Eq(Derivative(rho_3(t), t), \gamma_{amma_{++}*(-rho_3(t)*Abs(b0)**2/2 - rho_3(t)*Abs(b1)**2/2) + \gamma_{amma_{++}*(-rho_3(t)*Abs(b1)**2/2) + \gamma_{amma_{++}*(-r
Eq(Derivative(rho_4(t), t), \gamma_{t}) + b0**2*rho_7(t) + b0*b1*rho_11(t) - b0*b1*rho_6(t) - b0*b1*rho_11(t) - b0*b1*rho_1
Eq(Derivative(rho_8(t), t), \gamma_{emma_{++}*(-rho_8(t)*Abs(b0)**2/2 - rho_8(t)*Abs(b1)**2/2) + \gamma_{emma_{++}*(-rho_8(t)*Abs(b0)**2/2 - rho_8(t)*Abs(b0)**2/2 - rho_8(t)**2/2 - rho_8(t)*
Eq(Derivative(rho_9(t), t), \gamma_{4+}*(-rho_9(t)*Abs(b0)**2/2 - rho_9(t)*Abs(b1)**2/2) + \gamma_{4+}*(-rho_9(t)*Abs(b1)**2/2) + \gamma_
Eq(Derivative(rho_10(t), t), \gamma_{amma_{++}}*(-rho_10(t)*Abs(b0)**2 - rho_10(t)*Abs(b1)**2))
Eq(Derivative(rho_11(t), t), \gamma_{1}(t)*Abs(b1)**2 - rho_11(t)*Abs(b1)**2))
Eq(Derivative(rho_12(t), t), \gamma_1(t)*Abs(b1)**2/2 - rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2 - rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2 - rho_12(t)*Abs(b1)**2/2) + rho_12(t)*Abs(b1)**2/2 - rho_12(t)**Abs(b1)**2/2 - rho_12(t)**2/2 - r
Eq(Derivative(rho_13(t), t), \gamma_{++}*(rho_10(t)*conjugate(b0)**2 + rho_11(t)*conjugate(b0)
Eq(Derivative(rho_15(t), t), \gamma_{15(t)*Abs(b0)**2/2 - rho_15(t)*Abs(b1)**2/2) + rho_15(t)*Abs(b1)**2/2) + rho_15(t)*Abs(b1)**2/2)
Eq(Derivative(rho_16(t), t), \gamma_{++}*( -b0*rho_7(t)*conjugate(b1) - b1*rho_10(t)*conjugate
eqs2=[i.subs(gmm,0).subs(gpm,gpp/2).subs(conjugate(gpm),gpp/2) for i in eqs]
                    At this point, we are still preserving the trace
Eq(eqs2[0].lhs + eqs2[5].lhs + eqs2[10].lhs + eqs2[15].lhs,(eqs2[0].rhs + eqs2[5].rhs + eqs2[1].lhs
```

```
Eq(Derivative(rho_1(t), t) + Derivative(rho_11(t), t) + Derivative(rho_16(t), t) + Derivative(
                          I first solve the really easy ones: (\rho_{10}, \rho_{11}, \rho_7, \rho_6)
 sols_easy=dsolve([eqs2[i] for i in (5,6,9,10)])
 sols_subs={i.lhs:i.rhs for i in sols_easy}
 eqs3_full=[i.subs(sols_subs) for i in eqs2]
 eqs3=[i.simplify() for i in eqs3_full if i.simplify()!=True ]
for i in eqs3:
                                    display(i)
Eq(Derivative(rho_1(t), t), \gamma_{++}*(C1*Abs(b0)**2 + C2*b0*conjugate(b1) + C3*b1*conjugate
Eq(Derivative(rho_3(t), t), -\gamma_{mma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_3(t)/2 + \gamma_{mma_{++}*(bs(b0)**2 + Abs(b1)**2)*rho_3(t)/2 + \gamma_{mma_{++}*(bs(b1)**2)*rho_3(t)/2 + \gamma_{mma_{
Eq(Derivative(rho_4(t), t), -\gamma_4) - C2*b0*b1 - C2*b0**2 + C3*b1**2 - C4*b0*b1)*exp(-\gamma_6)
Eq(Derivative(rho_5(t), t), -\gamma_{mma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_5(t)/2 - \gamma_{mma_{++}*(bs(b0)**2 + Abs(b1)**2)*rho_5(t)/2 - \gamma_{mma_{++}*(bs(b1)**2)*rho_5(t)/2 - \gamma_{mma_{
Eq(Derivative(rho_8(t), t), -\gamma_{man}_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_8(t)/2 - \gamma_{man}_{++}*(bs(b0)**2)*rho_8(t)/2 - \gamma_{man}_{++}*(bs(b0)**2)*
Eq(Derivative(rho_9(t), t), -\gamma_{man}_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_9(t)/2 + \gamma_{man}_{++}*(bs(b0)**2 + Abs(b1)**2)*rho_9(t)/2 + \gamma_{man}_{++}*(bs(b1)**2)*rho_9(t)/2 + \gamma_{man}_{+
Eq(Derivative(rho_12(t), t), -\gamma_{amma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_12(t)/2 + \gamma_{amma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_12(t)/2 + \gamma_{amma_{++}*(Abs(b1)**2 + Abs(b1)*2 + Abs(b1)**2)*rh
Eq(Derivative(rho_13(t), t), -\gamma_{++}*(C1*conjugate(b0)*conjugate(b1) + C2*conjugate(b1)**
Eq(Derivative(rho_14(t), t), -\gamma_{4}) + Abs(b0)**2 + Abs(b1)**2)*rho_14(t)/2 - \gamma_{4}
Eq(Derivative(rho_15(t), t), -\gamma_{4}) + Abs(b0)**2 + Abs(b1)**2)*rho_15(t)/2 + \gamma_{4}
Eq(Derivative(rho_16(t), t), \gamma_{t+}*(C1*Abs(b1)**2 - C2*b0*conjugate(b1) - C3*b1*conjugate(b1))
                           The trace is still preserved as expected
Eq(eqs2[0].lhs + eqs2[5].lhs + eqs2[10].lhs + eqs2[15].lhs,(eqs3_full[0].rhs + eqs3_full[5].rh
Eq(Derivative(rho_1(t), t) + Derivative(rho_11(t), t) + Derivative(rho_16(t), t) + Derivative(
 sols_easy2=dsolve([eqs3[i] for i in (0,3,8,11)])
 sols_subs2={i.lhs:i.rhs for i in sols_easy2}
 eqs4_full=[i.subs(sols_subs).subs(sols_subs2) for i in eqs2]
 eqs4=[i.simplify() for i in eqs4_full if i.simplify()!=True ]
 for i in eqs4:
                                    display(i)
Eq(Derivative(rho_2(t), t), -\gamma_{man}_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_2(t)/2 + \gamma_{man}_{++}*(bs(b0)**2 + Abs(b1)**2)*rho_2(t)/2 + \gamma_{man}_{++}*(bs(b1)**2)*rho_2(t)/2 + \gamma_{man}_{+
Eq(Derivative(rho_3(t), t), -\gamma_{mma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_3(t)/2 + \gamma_{mma_{++}*(bs(b0)**2 + Abs(b1)**2)*rho_3(t)/2 + \gamma_{mma_{++}*(bs(b1)**2)*rho_3(t)/2 + \gamma_{mma_{
Eq(Derivative(rho_5(t), t), -\gamma_{man}_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_5(t)/2 - \gamma_{man}_{++}*(bs(b0)**2 + Abs(b1)**2)*rho_5(t)/2 - \gamma_{man}_{++}*(bs(b1)**2)*rho_5(t)/2 - \gamma_{man}_{+
```

 $Eq(Derivative(rho_8(t), t), -\gamma_{mma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_8(t)/2 - \gamma_{mma_{++}*(bs(b0)**2 + Abs(b1)*2)*rho_8(t)/2 - \gamma_{mma_{++}*(bs(b0)**2 + Abs(b1)*2)*rho_8(t)/2 - \gamma_{mma_{++}*(bs(b0)**2 + Abs(b1)*2)*rho_8(t)/2 - \gamma_{mma_{++}*(bs(b0)**2 + Abs(b1)*2 - \gamma_{mma_{++}*(bs(b0)**2 + Abs(b1)*2)*rho_8(t)/2 - \gamma_{mma_{++}*(bs(b0)**2 + Abs(b1)*2 - \gamma_{mma_{++}*($

```
Eq(Derivative(rho_9(t), t), -\gamma_{man}_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_9(t)/2 + \gamma_{man}_{++}*(bs(b0)**2 + Abs(b1)**2)*rho_9(t)/2 + \gamma_{man}_{++}*(bs(b1)**2)*rho_9(t)/2 + \gamma_{man}_{+
Eq(Derivative(rho_12(t), t), -\gamma_{amma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_12(t)/2 + \gamma_{amma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_12(t)/2 + \gamma_{amma_{++}*(Abs(b1)**2)*rho_12(t)/2 + \gamma_{amma_{++}*(Abs(b1)**2)*rho_
Eq(Derivative(rho_14(t), t), -\gamma_{amma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_14(t)/2 - \gamma_{amma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_14(t)/2 - \gamma_{amma_{++}*(Abs(b1)**2)*rho_14(t)/2 - \gamma_{amma_{++}*(Abs(b1)**2)*rho_
Eq(Derivative(rho_15(t), t), -\gamma_{amma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_15(t)/2 + \gamma_{amma_{++}*(Abs(b0)**2 + Abs(b1)**2)*rho_15(t)/2 + \gamma_{amma_{++}*(Abs(b1)**2)*rho_15(t)/2 + \gamma_{amma_{++}*(Abs(b1)**2)*rho_
                      The set of equation does preserve the trace, we made a mistake in person
Eq(eqs2[0].lhs + eqs2[5].lhs + eqs2[10].lhs + eqs2[15].lhs,(eqs4_full[0].rhs + eqs4_full[5].rh
Eq(Derivative(rho_1(t), t) + Derivative(rho_11(t), t) + Derivative(rho_16(t), t) + Derivative(
                      I cannot solve analytically for the general case due to the degree of the polynomial, I can then use
specific values of b_0 and b_1 so that I can express it as radicals (I did not try mathematica though but
even If I do it would be a root object). But I can solve the diagonal (But that does not help because
the diagonal works)
for i in sols_easy:
                             display(i)
Eq(rho_6(t), C1*exp(-t*(\gamma_{++}*Abs(b0)**2 + \gamma_{++}*Abs(b1)**2)))
Eq(rho_7(t), C2*exp(-t*(\gamma_{++}*Abs(b0)**2 + \gamma_{++}*Abs(b1)**2)))
Eq(rho_10(t), C3*exp(-t*(\gamma_{4+}*Abs(b0)**2 + \gamma_{4+}*Abs(b1)**2)))
Eq(rho_11(t), C4*exp(-t*(\gamma_{4+})*Abs(b0)**2 + \gamma_{4+}*Abs(b1)**2)))
for i in sols_easy2:
                             display(i)
Eq(rho_1(t), C5 - (C1*Abs(b0)**2 + C2*b0*conjugate(b1) + C3*b1*conjugate(b0) + C4*Abs(b1)**2)*
Eq(rho_4(t), C6 + (C1*b0*b1 - C2*b0**2 + C3*b1**2 - C4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*c4*b0*b1)*exp(-t*(\gamma_{++}*Abs(b0)**2)*exp(-t*(\gamma_{++}*Abs(b0)**2)*exp(-t*(\gamma_{++}*Abs(b0)**2)*exp(-t*(\gamma_{++}*Abs(b0)**2)*exp(-t*(\gamma_{++}*Abs(b0)**2)*exp(-t*(\gamma_{++}*Abs(b0)**2)*exp(-t*(\gamma_{++}*Abs(b0)**2)*exp(-t*(\gamma_{++}*Abs(b0)**2)*exp(-t*(\gamma_{++}*Abs(b0)**2)*exp(-t*(\gamma_{++}*Abs(b0)**2)*exp(-t*(\gamma_{++}*Abs(
Eq(rho_13(t), C7 + (C1*conjugate(b0)*conjugate(b1) + C2*conjugate(b1)**2 - C3*conjugate(b0)**2
Eq(rho_16(t), C8 - (C1*Abs(b1)**2 - C2*b0*conjugate(b1) - C3*b1*conjugate(b0) + C4*Abs(b0)**2)
                      And No contradiction because the trace is preserved, but the time dependent trace does have an
issue because
trace_pres=Eq(sols_easy2[0].lhs + sols_easy[0].lhs +sols_easy[ -1].lhs+sols_easy2[ -1].lhs ,so
trace_pres
Eq(rho_1(t) + rho_1(t) + rho_1(
                      Which simplifies to
Eq(trace_pres.lhs,trace_pres.rhs.simplify())
Eq(rho_1(t) + rho_11(t) + rho_16(t) + rho_6(t), C5 + C8)
                      Which is odd, and perhaps inconsistent
```

```
15
final=dict((v, k) for k, v in to_funcs.items())
      So I then try for the steady state
      From those equations obviously \rho_{10}, \rho_{6}, \rho_{11} = 0, Substitution then gives us no information on the
diagonal, but no inconsistency as we puzzled about before
c= symbols('c0:8')
ss2=[Eq(i.rhs,0).subs(final).subs(rho[2,1],0).subs(rho[1,1],0).subs(rho[2,2],0) for i in eqs
ss2=[i.simplify() for i in ss2 if i.simplify()!=True ]
new_vars={gpp/2 * (abs(b[0])**2 + abs(b[1])**2 ):c[0]}
for i in ss2:
        display(i.subs(new_vars))
Eq(\gamma_{++}*(b0**2*conjugate(rho_2) + b0*b1*conjugate(rho_3) - b0*rho_8*conjugate(b1) - rho
Eq(\gamma_{++}*(b0*b1*conjugate(rho_2) + b1**2*conjugate(rho_3) + b1*rho_12*conjugate(b0) + rh
Eq(\gamma_{++}*(b1*conjugate(b0)*conjugate(rho_8) - rho_2*conjugate(b0)**2 - rho_3*conjugate(b
Eq(\gamma_{++}*(b0*b1*conjugate(rho_12) - b1**2*conjugate(rho_8) + b1*rho_2*conjugate(b0) - rh
Eq( -\gamma_{++}*(b0*conjugate(b1)*conjugate(rho_12) + rho_2*conjugate(b0)*conjugate(b1) + rho
Eq( -\gamma_{mma}_{++}*(b0**2*conjugate(rho_12) - b0*b1*conjugate(rho_8) + b0*rho_3*conjugate(b1) - b0*b1*conjugate(rho_8) + b0*rho_8*conjugate(b1) - b0*b1*conjugate(rho_8) + b0*rho_8*conjugate(b1) - b0*b1*conjugate(rho_8) + b0*rho_8*conjugate(b1) - b0*b1*conjugate(b1) - b0*conjugate(b1) 
Eq(\gamma_{++}*(b0*conjugate(b1)*conjugate(rho_2) + rho_12*conjugate(b0)*conjugate(b1) - rho_8
Eq(\gamma_{++}*(b1*conjugate(b0)*conjugate(rho_3) + rho_12*conjugate(b0)**2 - rho_8*conjugate(
      The problem here is that I have more unknowns that solutions, for exmaple equations 1 and 3 are
just one equation, same for each pair so I have 4 equations but I have 8 variables the real and the
imaginary part of \rho_2, \rho_3, \rho_8, \rho_{12}, the diagonal is also undetermined from this set of equations
from sympy.physics.quantum import Commutator
rho = symbols('rho_1:17')
rho = Matrix(
        [rho[0: 4],
          rho[4: 8],
          rho[8: 12],
          rho[12:]])
rho=rho.subs({rho[4]: conjugate(rho[1]), rho[8]: conjugate(rho[2]),
                    rho[12]:conjugate(rho[3]),rho[6]:conjugate(rho[9]),
                    rho[13]: conjugate(rho[7]), rho[14]:conjugate(rho[11])})
rho
Matrix([
rho_1,
                                                             rho_2,
                                                                                                     rho_3, rho_4,
                                                             rho_6, conjugate(rho_10), rho_8],
[conjugate(rho_2),
                                                           rho_10,
                                                                                                  rho_11, rho_12],
[conjugate(rho_3),
[conjugate(rho_4), conjugate(rho_8), conjugate(rho_12), rho_16]])
```

rho

rhoo

rhoo,Hh=symbols("rho H",commutative=False)

```
Eq(Commutator(Hh,rhoo),H*rho -rho*H,evaluate=False)
Eq([H,rho], Matrix([
                                    -2*a*rho_2,
                                                              -2*a*rho_3,
                                                                                     0],
                                                                        0, 2*a*rho_8],
[2*a*conjugate(rho_2),
                                              0,
[2*a*conjugate(rho_3),
                                              0,
                                                                        0, 2*a*rho_12],
                     0, -2*a*conjugate(rho_8), -2*a*conjugate(rho_12),
                                                                                     0]]))
   For an operator to commute with H \rho_2 = \rho_3 = \rho_8 = \rho_{12} = 0
     Tip
 Because the density matrix is hermitian this means we also have \rho_5 = \rho_9 = \rho_{15} = \rho_{14} = 0
rho=rho.subs({rho[0,1]:0,rho[0,2]:0,rho[1,3]:0,rho[2,3]:0})
rho
Matrix([
Γ
            rho_1,
                         Ο,
                                                 rho_4],
0, rho_6, conjugate(rho_10),
                                                       0],
0, rho_10,
                                       rho_11,
                                              0, rho_16]])
[conjugate(rho_4),
                         0,
A=jumps[2*a]
Α
Matrix([
[0,
                                 b1, 0],
                 b0,
[0,
                                  0, 0],
                  Ο,
[0,
                  0,
                                  0, 0],
[0, -conjugate(b1), conjugate(b0), 0]])
A*rho -rho*A
Matrix([
[0,
                                         -b0*rho_1 + b0*rho_6 + b1*rho_10 + rho_4*conjugate(b1),
[0,
                                                                                                  0,
[0,
[0, -b0*conjugate(rho_4) + rho_10*conjugate(b0) + rho_16*conjugate(b1) - rho_6*conjugate(b1),
   So an operator that commutes with both needs to satisy
eqs_commutant=[Eq(i,0) for i in flatten(A*rho -rho*A) if i!=0]
for i in eqs_commutant:
    display(i)
Eq( -b0*rho_1 + b0*rho_6 + b1*rho_10 + rho_4*conjugate(b1), 0)
Eq(b0*conjugate(rho_10) - b1*rho_1 + b1*rho_11 - rho_4*conjugate(b0), 0)
Eq( -b0*conjugate(rho_4) + rho_10*conjugate(b0) + rho_16*conjugate(b1) - rho_6*conjugate(b1),
Eq( -b1*conjugate(rho_4) + rho_11*conjugate(b0) - rho_16*conjugate(b0) - conjugate(b1)*conjugate
```

I think this has infinitely many solutions as well!