

BANACH-TARSKI

PARADOX

k = 0

 M_0

k = 1

$$\frac{M_0}{2} \times \frac{1}{1+1}$$

$$\frac{M_0}{2} \times \frac{1}{1+1}$$

 M_0

k = 0

k = 1

 $\frac{M_0}{2} \times \frac{1}{1+1}$

 $\frac{M_0}{2} \times \frac{1}{1+1}$

$$k = 0$$

$$k = 1$$

$$\frac{M_0}{2} \times \frac{1}{1+1}$$

$$\frac{M_0}{2} \times \frac{1}{1+1}$$

$$k = 2$$
 $\frac{M_0}{4} \times \frac{1}{2+1}$ $\frac{M_0}{4} \times \frac{1}{2+1}$ $\frac{M_0}{4} \times \frac{1}{2+1}$ $\frac{M_0}{4} \times \frac{1}{2+1}$

$$\frac{M_0}{4} \times \frac{1}{2+1}$$

$$\frac{M_0}{4} \times \frac{1}{2+1}$$

$$\frac{M_0}{4} \times \frac{1}{2+1}$$

$$k = 0$$

 M_0

$$k = 1$$

k = 2

$$\frac{M_0}{2} \times \frac{1}{1+1}$$

$$\frac{M_0}{4} \times \frac{1}{2+1}$$

$$\frac{M_0}{4} \times \frac{1}{2+1}$$

$$\frac{M_0}{4} \times \frac{1}{2+1} \qquad \qquad \frac{M_0}{4} \times \frac{1}{2+1}$$

 $\frac{M_0}{2} \times \frac{1}{1+1}$

$$k = 0$$

$$M_{0}$$

$$k = 1$$

$$\frac{M_{0}}{2} \times \frac{1}{1+1}$$

$$\frac{M_{0}}{2} \times \frac{1}{1+1}$$

$$\frac{M_{0}}{2} \times \frac{1}{1+1}$$

$$k = 2$$

$$\frac{M_{0}}{4} \times \frac{1}{2+1}$$

 $k = 3 \qquad \frac{M_0}{8} \times \frac{1}{3+1} \qquad \frac{M_0}{8} \times \frac{1}{3+1}$

$$M_k = \frac{1}{2^k} \frac{M_0}{k+1} \tag{1}$$

$$M_k = \frac{1}{2^k} \frac{M_0}{k+1} \tag{1}$$

Massa total dos 2^k Benders no k-ésimo processo de duplicação

$$M_k = \frac{1}{2^k} \frac{M_0}{k+1} \tag{1}$$

Massa total dos 2^k Benders no k-ésimo processo de duplicação

$$M = M_0 + 2M_1 + 4M_2 + 8M_3 + \dots + 2^k M_k \tag{2}$$

$$M_k = \frac{1}{2^k} \frac{M_0}{k+1} \tag{1}$$

Massa total dos 2^k Benders no k-ésimo processo de duplicação

$$M = M_0 + 2M_1 + 4M_2 + 8M_3 + \dots + 2^k M_k \tag{2}$$

Em notação de somatório

$$M_k = \frac{1}{2^k} \frac{M_0}{k+1} \tag{1}$$

Massa total dos 2^k Benders no k-ésimo processo de duplicação

$$M = M_0 + 2M_1 + 4M_2 + 8M_3 + \dots + 2^k M_k \tag{2}$$

Em notação de somatório

$$M = \sum_{k=0}^{n} 2^k \frac{M_0}{2^k (k+1)} \tag{3}$$

$$M_k = \frac{1}{2^k} \frac{M_0}{k+1} \tag{1}$$

Massa total dos 2^k Benders no k-ésimo processo de duplicação

$$M = M_0 + 2M_1 + 4M_2 + 8M_3 + \dots + 2^k M_k \tag{2}$$

Em notação de somatório

$$M = \sum_{k=0}^{n} 2^k \frac{M_0}{2^k (k+1)} \tag{3}$$

Simplificando, obtemos a famosa série Harmônica

$$M_k = \frac{1}{2^k} \frac{M_0}{k+1} \tag{1}$$

Massa total dos 2^k Benders no k-ésimo processo de duplicação

$$M = M_0 + 2M_1 + 4M_2 + 8M_3 + \dots + 2^k M_k \tag{2}$$

Em notação de somatório

$$M = \sum_{k=0}^{n} 2^k \frac{M_0}{2^k (k+1)} \tag{3}$$

Simplificando, obtemos a famosa série Harmônica

$$M = \sum_{k=0}^{n} \frac{M_0}{k+1} \tag{4}$$

A série harmônica de fato é tida quando $n \to \infty$ e trocando de variável s = k+1

$$M = M_0 \sum_{s=1}^{\infty} \frac{1}{s} \tag{5}$$

A série harmônica de fato é tida quando $n \to \infty$

$$\int_{1}^{\infty} \frac{1}{x} \, dx = \infty. \tag{6}$$

Como a integral da equação (6) não converge, isso demonstra que soma dada pela série harmônica também não pode convergir.

Massa individual de cada Bender

$$M_k = \frac{M_0}{2^k(k+1)}$$

Massa Total acumulada

$$M = \sum_{k=0}^{n} \frac{M_0}{k+1}$$

Subscribe

Like

Share