

Lahore University of Management Sciences

Math-300 COMPLEX VARIABLES

Course Outline (Tentative) Fall 2023-2024

Instructor	Masood H. Shah
Room No.	9-161A
Office Hours	11:00am – 01:00pm, Tuesday and Thursday
Email	mshah@lums.edu.pk
Telephone	042-35608019
Secretary/TA	Shazia Zafar & Noreen Sohail /
TA Office Hours	TBA
Course URL (if any)	Lms.lums.edu.pk

Course Basics				
Credit Hours	3			
Lecture(s)	Nbr of Lec(s) Per Week	2	Duration	75 minutes
Recitation/Lab (per week)	Nbr of Lec(s) Per Week	TBA	Duration	
Tutorial (per week)	Nbr of Lec(s) Per Week	ТВА	Duration	

Course Distribution		
Core		
Elective	Elective	
Open for Student Category	All	
Close for Student Category	None	

COURSE DESCRIPTION

This course is an introduction to the functions of a complex variable. Topics include the complex number system, Cauchy-Riemann equations, analytic functions and their properties, special analytic functions including exponential, logarithm, trigonometric and hyperbolic functions of a complex variable, complex integration and contour integrals, Cauchy-Goursat theorem, Cauchy's integral formula, Taylor series and Laurent series, the calculus of residues, improper integrals, conformal mappings, and some applications of harmonic functions.

COURSE PREREQUISITE(S)		
•	Math 205 (Introduction to (Real) Analysis - I)	

COURSE OBJECTIVES			
•	To learn about the Algebra of complex field \boldsymbol{c} and the Calculus(analysis) of complex-valued functions with domain as a subset of the complex plane \boldsymbol{c} .		

Lahore University of Management Sciences

Learning Outcomes

Ability to evaluate line integrals in the plane depending on the nature of the integrand.

• To derive and manipulate power series for complex functions.

Grading Breakup and Policy

Quizzes: 20%Mid-Term: 30%Final Exam: 50%

Examination Detail		
Midterm Exam	Yes/No: Yes Combine Separate: Duration: 1hr 30min Preferred Date: Exam Specifications	
Final Exam	Yes/No: Yes Combine Separate: Duration: 2 hours Exam Specifications: closed book, no calculators, no notes.	

COURSE OVERVIEW			
(Tentative)Week/ Lecture/ Module	Topics	Recommended Readings	Objectives/ Application
1	Algebra of complex numbers		
2	Geometry of complex numbers		
3	Functions and linear mappings		
4	The mappings and		
5	Limits and continuity		
6	Branches of functions		
7	The reciprocal transformation		
8	Differentiable and analytic functions		
9	The Cauchy - Riemann equations		

Lahore University of Management Sciences

	Lanore Oniversity of Managemen	t Belences
10	Harmonic functions	
11	Geometric series and convergence tests	
12	Power series functions	
13	Complex exponential function	
14	Complex logarithm and complex exponents	
15	Trigonometric, hyperbolic	
16	Inverse trigonometric and hyperbolic functions	
17	Contours and Contour integrals	
18	Cauchy-Goursat theorem	
19	Fundamental theorems of integration	
20	Cauchy's integral formula.	
21	Taylor series	
22	Laurent series	
23	Zeros and poles	
24	Residue theorem and calculation of residues	
25	Trigonometric integrals	
26	Improper integrals of rational functions	
27	Improper integrals involving trigonometric functions	
28	Indented contour integrals	
29	Integrands with branch points	
30	The Argument's principle and the Rouche's theorem	
31	Conformal mappings	
32	Applications of harmonic functions	

Textbook(s)/Supplementary Readings

Text:

- 1) Complex Variables and Applications, 9th edition, by J.W. Brown and R. V. Churchill, McGtaw-Hill Education, 2013.
- **2)** A First Course in Complex Analysis with Applications, by Dennis G. Zill and Patrick D. Shanahan, by Jones and Bartlett Publishers, Inc, 2003.

Reference: Mathematical Methods in the Physical Sciences, M. Boas