Limit Definition of the Derivative

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Note: f'(x) represents the instantaneous rate of change of f(x).

Critical Numbers

A number a is a critical number of a function f if (and only if):

- 1. a is in the domain of f
- 2. f'(a) is either 0 or does not exist

Second Derivative Test

Given a function f that is twice differentiable at a with f'(a) = 0:

- f has a local maximum at a if f''(a) < 0
- f has a local minimum at a if f''(a) > 0
- The test is inconclusive if f''(a) = 0

Limit Laws

Assume $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. $C \in \mathbb{R}$. $k \in \mathbb{R}^+$.

Assume $\lim_{x\to a} f(x)$ and $\lim_{x\to a} g(x)$ exist. $C \in \mathbb{R}$.				
Substitution	R1	$\lim_{n \to \infty} x = a$		
Constant	R2	$\lim_{x \to a} C = C$		
Denom. of ∞	R3	$x \to \pm \infty$ $x \to \pm \infty$ $f(x)$		
Sum	A1	$\lim_{x \to a} (f(x) + g(x)) = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$		
Difference	A2	$\lim_{x \to a} (f(x) - g(x)) = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$		
Const. Factor	A3	$\lim_{x \to a} (C \cdot f(x)) = C \cdot \lim_{x \to a} f(x)$		
Product	A4	$\lim (f(x) \cdot g(x)) = \lim f(x) \cdot \lim g(x)$		
Quotient	A5	$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{\substack{x \to a \\ \lim_{x \to a} g(x)}} \frac{f(x)}{\lim_{x \to a} g(x)} \left(\lim_{x \to a} g(x) \neq 0\right)$ $\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$		
Composition	A6	$\lim_{x \to a} f(g(x)) = f\left(\lim_{x \to a} g(x)\right)$		
Part Equal	A7	(with f continuous at $\lim_{x \to a} g(x)$) $\lim_{x \to a} f(x) = \lim_{x \to a} g(x)$ $(f(x) = g(x), x \in (a - k, a) \cup (a, a + k))$		

Tangent Lines

To find the equation of a line tangent to a function f at an input of a:

- 1. Find f(a). Since the tangent line touches f when x = a, the tangent line must go through (a, f(a)).
- 2. Find f'(a). Since the derivative at a is defined to be the slope of a line tangent to f at a, m = f'(a) is the slope.
- 3. Point-slope formula $(y = m(x x_1) + y_1)$ gives:

$$y_{\text{tangent}} = f'(a)(x-a) + f(a)$$

First Derivative Test

Given a function f that is continuous at a critical number $c \in (a, b)$,

f has a local maximum at c if f'(x) > 0 on (a, c) and f'(x) < 0 on (c, b).

on (a, c) and f'(x) < 0 on (c, b). Note: f' is positive "a little" to the left of c and negative "a little" to the right of c.

f has a local minimum at c if f'(x) < 0 y
on (a, c) and f'(x) > 0 on (c, b).

Note: f' is negative "a little" to the left of c
and positive "a little" to the right of c.

• f has an inflection point at c if f'(x) < 0 on $(a,b) \setminus \{c\}$ or f'(x) > 0 on $(a,b) \setminus \{c\}$.

Note: Inflection points happen when f' has the same sign "a little" to the left and "a little" to the right of c.

A function f is continuous at a if (and only if):

- 1. f(a) is defined.
- 2. $\lim_{x \to a} f(x)$ exists.
- $3. \lim_{x \to a} f(x) = f(a)$

Note: A function is continuous if (and only if) it is continuous at every point in its domain.

Mean Value Theorem

If a function f is continuous on [a, b] and differentiable on (a, b) with a < b, then there exists a $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

Iath 251		Differential Calculu
Derivative Rules	f(x)	f'(x)
Sum	$\int f(x) + g(x)$	f'(x) + g'(x)
Difference	f(x) - g(x)	f'(x) - g'(x)
Product	$\int f(x)g(x)$	$\int f'(x)g(x) + f(x)g'(x)$
Quotient	$\frac{f(x)}{g(x)}$	$\frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$
Chain	$\int_{0}^{\infty} f(g(x))$	f'(g(x))g'(x)
Constant Factor	$\int_{0}^{x} kf(x)^{r}$	kf'(x)
Constant	$\mid k$	0
Linear	mx + b	$\mid m$
Power	x^n	nx^{n-1}
Logarithm (General)	$\log_b(x)$	$\frac{1}{x \ln(b)}$
Logarithm (Natural)	$\ln(x)$	$\left \frac{1}{\pi} \right $
Exponential (General)	b^x	$\begin{vmatrix} x \\ b^x \ln(b) \end{vmatrix}$
Exponential (Natural)	e^x	e^x
Sine	$\sin(x)$	$\cos(x)$
Cosine	$\cos(x)$	$-\sin(x)$
Tangent	$\tan(x)$	$\sec^2(x)$
Cotangent	$\cot(x)$	$-\csc^2(x)$
Secant	$\sec(x)$	$\sec(x)\tan(x)$
Cosecant	$\csc(x)$	$-\csc(x)\cot(x)$
Inverse Sine	$\sin^{-1}(x)$	
		$\sqrt{1-x^2}$
Inverse Cosine	$\cos^{-1}(x)$	$\frac{1}{\sqrt{1-x^2}}$
Inverse Tangent		$\frac{1}{1+m^2}$
Inverse Cotangent	$\cot^{-1}(x)$	$\begin{bmatrix} \frac{1+x^2}{-1} \\ \frac{1+x^2}{1+x^2} \end{bmatrix}$
Inverse Secant	$\sec^{-1}(x)$	$1+x_1^2$
mverse secam		$ x \sqrt{x^2-1}$
Inverse Cosecant	$\csc^{-1}(x)$	$\frac{1}{ x \sqrt{x^2-1}}$
Hyperbolic Sine	$\sinh(x)$	$\cosh(x)$
Hyperbolic Cosine	$\cosh(x)$	$\sinh(x)$
Hyperbolic Tangent	$\tanh(x)$	$\operatorname{sech}^2(x)$
Hyperbolic Cotangent	$\coth(x)$	$-\operatorname{csch}^2(x)$
Hyperbolic Secant	$\operatorname{sech}(x)$	$-\operatorname{sech}(x) \tanh(x)$
Hyperbolic Cosecant	$\operatorname{csch}(x)$	$-\operatorname{csch}(x)\operatorname{coth}(x)$
Inv. Hyper. Sine	$\sinh^{-1}(x)$	$\begin{array}{ c c }\hline \frac{1}{\sqrt{x_1^2+1}}\\ \underline{1} \end{array}$
Inv. Hyper. Cosine	$\cosh^{-1}(x)$	$ \begin{vmatrix} \frac{1}{\sqrt{x^2 - 1}} \\ 1 \end{vmatrix} $
Inv. Hyper. Tangent	$\tanh^{-1}(x)$	$ \frac{1}{1-x^2} $
Inv. Hyper. Cotangent	$\coth^{-1}(x)$	$\begin{bmatrix} \frac{1}{1-x^2} \\ -1 \end{bmatrix}$
Inv. Hyper. Secant	$\operatorname{sech}^{-1}(x)$	$\frac{-1}{x\sqrt{1-x^2}}$
Inv. Hyper. Cosecant	$\operatorname{csch}^{-1}(x)$	$\begin{vmatrix} \frac{-1}{x\sqrt{1-x^2}} \\ \frac{-1}{ x \sqrt{1+x^2}} \end{vmatrix}$

Related Rates

- 1. Construct a pre-calculus equation (or system of equations) that model the problem.
 - (a) In the case of a system, reduce to a single equation with only the relevant variables.
- 2. Implicitly differentiate the equation.
- 3. Substitute all variables with values except the one to be solved for, including the other rate(s).
- 4. Solve using algebra & arithmetic.
- 5. Interperate the result in terms of the word problem. (Write a sentence or two.)

Anti-Derivative

F is called an anti-derivative of f if F'(x) = f(x).

Note: f may have more than one anti-derivative. For example, consider $F_1(x) = x^2$, $F_2(x) = x^2 + 5$, and f(x) = 2x.

Intermediate Value Theorem

If a function f is continuous on [a, b] with a number u between f(a) and f(b), then there exists a $c \in (a, b)$ such that f(c) = u. Note: Here "between" means f(a) < u < f(b) or f(b) < u < f(a).

Squeeze Theorem

Given an interval I and functions f, g, and h defined on $I \setminus \{a\}$ with:

$$1. \ g(x) \le f(x) \le h(x)$$

1.
$$g(x) \le f(x) \le h(x)$$

2. $\lim_{x \to a} g(x) = \lim_{x \to a} h(x) = L$

The squeeze theorem states,

$$\lim_{x \to a} f(x) = L$$

