第八章 群和环

代数系统是由一个非空集合加上一个或几个运算构成的。

从这节起, 我们要介绍一些特殊的代数系统。

所谓特殊,是指这些代数系统中的运算具有特 殊的性质。

我们要介绍下列一些代数系统:

第一节 半群和独异点 (1)

1、半群(Semi-group)

定义: 设S是非空集合, ★是S上的二元运算, 如果 ★在S上满足 封闭性、可结合性, 则称 <S,★> 是 半群。

2. 独异点 (Monoid)

定义: 设<M,★>是个半群,如果★运算有幺元,则 称<M,★>是独异点,也称它是含幺半群。

<N,+>、<R,×>、<P(E), ∩>、<P(E), ⊕> 是否是半群?是否是独异点?

"+"法运算在自然数集合N上是封闭的、并且"+"法运 算是可结合的, 所以<N,+>是半群。 同样道理, <R,×>、<P(E), ∩>、<P(E), ⊕> 均是半群。 <N,+>的幺元是 0; <R,×>的幺元是 1; <P(E), ∩>的幺元

是 E; <P(E), ⊕>的幺元是 Φ。 所以它们都是独异点。

因为"÷"、"-"均不满足结合律,所以<R,÷ >、 <N,->不是半群,更不是独异点

N_k 是模 k 同余关系中的余数等价类,
即: N _k ={[0],[1],[2],,[k-1]},
简记成:N _k ={0,1,2,, k-1}
N _k 上的模 k 加法运算 + _k 定义为:
任取 x , y∈N _k , x + _k y= (x + y)(mod k) ;

+6	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

解:从运算表可以看出, $+_6$ 运算在集合 N_6 ={0,1,2,3,4,5} 上是封闭的; 幺元是 0;

可以验算, +6运算在集合 N6上是可结合的。

例如 $(2 +_6 3) +_6 4 = 5 +_6 4 = 3$, $2 +_6 (3 +_6 4) = 2 +_6 1 = 3$, 其它可类似验算。 所以 $< N_6, +_6 >$ 是独异点。

第一节 结束