МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №3 по дисциплине «Информатика»

Тема: Машина Тьюринга и конечные автоматы

Студент гр. 3341		Романов А.К.
Преподаватель		Иванов Д. В.
	Санкт-Петербург	

2023

Цель работы

Целью лабораторной работы является изучение работы конченых автоматов, в частноти машины Тьюрингаю

Для достижения поставленной цели требуется решить следующие задачи:

- 1) Ознакомиться с концепцией машины Тьюринга
- 2) Создать программу, моделирующую работу машины Тьюринга, выполняющую определенную задачу.

Задание

Вариант работы №4.

На вход программе подается строка неизвестной длины. Каждый элемент является значением в ячейке памяти ленты Машины Тьюринга.

На ленте находится последовательность латинских букв из алфавита {a, b, c}, которая начинается с символа 'a'.

Напишите программу, которая заменяет в исходной строке символ, идущий после последних двух встретившихся символов 'a', на предшествующий им символ(гарантируется, что это не пробел). Наличие в строке двух подряд идущих символов 'a' гарантируется.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Для примера выше лента будет выглядеть так:

Алфавит:

- **o** a
- **1** b
- **o** c
- " " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
- 2. Гарантируется, что длинна строки не менее 5 символов и не более 13.
- 3. В середине строки не могут встретиться пробелы.

- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.
- 6. Нельзя использовать дополнительную ленту, в которую записывается результат.

Ваша программа должна вывести полученную ленту после завершения работы.

Выполнение работы

Для решения задачи таблица состояний машины Тьюринга (см. ниже) была реализована в виде словаря table.

Далее осуществляется ввод строки с клавиатуры в переменную tape (лента машины). Затем в массив tape добавляется несколько (13+1) пустых ячеек. Дополнительо добавляется одна пустая ячейка в начало массива (перед началом слова согласно заданию).

Переменная index используется для обозначения текущей ячейки, обрабатывемой машиной Тьюринга. (Изначально равна 0). Переменная state содержит текущее состояние машниы Тьюринга. Изначально q start.

Далле в цикле while перебираются символы ленты (массива tape). Текущий символ записывается в переменную symb. Далее обновляются переменные new_symb (на что меняется текущий символ), movement (сдвиг ленты машины Тьюринга: 1 — вправо, -1 — влево), state (новое состояние машины Тьюринга).

Функция возвращает строку, полученную из списка *tape* методом *join()*. Массиву table соответствует таблица состояний машины Тьюринга:

	'a'	'b'	'c'	'A'	'B'	'C'	'0'	' '
q_start	a; 1; q_f	b; 1; q_f	c; 1; q_f					' '; 1;
								q_start
q_f	a; 1; q_f	b; 1; q_f	c; 1; q_f					' '; -1;
								q_rv
q_rv	0; 1;	0; 1; q_b	0; 1; q_c	A; -1;	B; -1;	C; -1;	0; -1;	' '; 1;
	q_a			q_rv	q_rv	q_rv	q_rv	q_start
q_a	a; 1;	b; 1; q_a	c; 1; q_a	A; 1;	B; 1;	C; 1;	0; 0; q_a	A; -1;
	q_a			q_a	q_a	q_a		q_rv
q_b	a; 1;	b; 1; q_a	c; 1; q_a	A; 1;	B; 1;	C; 1;	0; 0; q_a	B; -1;
	q_a			q_a	q_a	q_a		q_rv

q_c	a; 1;	b; 1; q_a	c; 1; q_a	A; 1;	B; 1;	C; 1;	0; 0; q_a	C; -1;
	q_a			q_a	q_a	q_a		q_rv
q_end				a; 1;	b; 1;	c; 1;	' '; 1;	' '; 0; qT
				q_end	q_end	q_end	q_end	
qT								_

q_start — начальное состояние. Машина двигается по ленте вправо, пока не найдет первый символ, отличный от пробела (a, b, c). После чего переходит в состояние q f.

 q_f — машина нашла первый символ строки, после чего двигается вправо до конца строки, пока снова не найдет пробел. Потом переходит в состояние q_r v.

q_rv — машина двигается по строке в обратном направлении (влево), пока не встретит пробел. (Т.е. пока не дойдет до начала строки). Если в данном состоянии машина встречает символ отличный от 0, она заменяет его на 0 и переходит в состояне q_a, если символ был a, состояние q_b — если b, и q_c — если с. Если символ был A, B или C он не меняется, машина продолжает двигаться влево. Если машина в данном состоянии встречает пробел, машина переходит в состояние q_end.

q_а — машина двигается вправо, пока не находит первый пробел. После чего она заменяет его на A и переходит в состояние q_rv.

q_b — машина двигается вправо, пока не находит первый пробел. После чего она заменяет его на В и переходит в состояние q rv.

q_c — машина двигается вправо, пока не находит первый пробел. После чего она заменяет его на С и переходит в состояние q_rv.

q_end — мащина двигается вправо, пока не найдет пробел. Она заменяет 0 на пробелы, а строчные буквы на прописные. После чего машина переходит в терминальное состояние.

Разработанный программный код см. в приложении А.

Тестирование

Результаты тестирования представлены в табл. 1.

Таблица 1 – Результаты тестирования

№ п/п	Входные данные	Выходные данные
1.	abca	acba
2.	abababaca	acabababa
1.	aaaaca	acaaaa

Выводы

Была разработана программа на языке программирования Python, симулирующая работу машины Тьюринга. Была описана программа машины Тьюринга, с помощью которой автомат способен обработать строку символов определённым образом.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

Название файла: main.py

Программный код:

```
table = {'q_start': {'a': ('a', 1, 'q_f'), 'b': ('b', 1, 'q_f'),
                       'c': ('c', 1, 'q_f'),
                        ' ': (' ', 1, 'q start')
                       },
          'q_f': {'a': ('a', 1, 'q_f'),
                   'b': ('b', 1, 'q_f'),
                   'c': ('c', 1, 'q_f'),
                   ' ': (' ', -1, 'q rv')
          'q rv': {'a': ('0', 1, 'q a'),
                    'b': ('0', 1, 'q b'),
                    'c': ('0', 1, 'q c'),
                    'A': ('A', -1, 'q_rv'),
'B': ('B', -1, 'q_rv'),
                    'C': ('C', -1, 'q_rv'),
                    '0': ('0', -1, 'q_rv'),
                    ' ': (' ', 1, 'q end'),
          'q a': {'a': ('a', 1, 'q a'),
                   'b': ('b', 1, 'q a'),
                   'c': ('c', 1, 'q a'),
                   'A': ('A', 1, 'q_a'),
'B': ('B', 1, 'q_a'),
                   'C': ('C', 1, 'q a'),
                   '0': ('0', 1, 'q a'),
                   ' ': ('A', -1, 'q rv')
          'q b': {'a': ('a', 1, 'q b'),
                   'b': ('b', 1, 'q b'),
                   'c': ('c', 1, 'q b'),
                   'A': ('A', 1, 'q b'),
                   'B': ('B', 1, 'q b'),
                   'C': ('C', 1, 'q_b'),
                   '0': ('0', 1, 'q_b'),
                   ' ': ('B', -1, 'q rv')
          'q c': {'a': ('a', 1, 'q c'),
                   'b': ('b', 1, 'q c'),
                   'c': ('c', 1, 'q c'),
                   'A': ('A', 1, 'q c'),
                   'B': ('B', 1, 'q_c'),
                   'C': ('C', 1, 'q c'),
                   '0': ('0', 1, 'q_c'),
                   ' ': ('C', -1, 'q rv')
          'q_end': {'0': (' ', 1, 'q end'),
```