ABSTRACT

ĺ

The present invention is method of determining the distribution of shales, sands and
water in a reservoir including laminated shaly sands using vertical and horizontal
conductivities derived from nuclear, NMR, and multi-component induction data such as
from a Transverse Induction Logging Tool (TILT). Making assumptions about the
anisotropic properties of the laminated shale component and an assumption that the sand
is isotropic, the TILT data are inverted. An estimate of the laminated shale volume from
this inversion is compared with an estimate of laminated shale volume from nuclear logs
using a Thomas-Stieber and Waxman-Smits model. A difference between the two
estimates is an indication that the sands may be anisotropic. A check is made to see if a
bulk water volume determined from the inversion is greater than a bulk irreducible water
volume from NMR measurements. In one embodiment of the invention, NMR data are
then used to obtain sand distribution in the reservoir. This sand distribution is used in a
second inversion of the TILT data, assuming that the sand comprises a number of
intrinsically isotropic layers, to give a model that comprises laminated sands including
water and dispersed clay, laminated shales and clay-bound water. In another embodiment
of the invention, a bulk permeability measurement is used as a constraint in inverting the
properties of the anisotropic sand component of the reservoir. From the resistivities of
the sand laminae, empirical relations are used to predict anisotropic reservoir properties
of the reservoir.