Exercício Prático - 01

1. Monte um ½ somador no Logisim.

2. Verifique a tabela verdade.

a	b	s0	co0
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

3. Identifique através de um datasheet (use a web) os componentes que possuem as portas lógicas necessárias para a construção de um meio somador (portas XOR, AND e OR).

Portas AND = Componente TTL 7408

Portas OR = Componente TTL 7432

Portas XOR = Componente TTL 7486

4. Procure os pinos de alimentação (VCC e GND) e os pinos de entrada e saída de cada porta lógica.

Componente XOR

Componente AND

Componente OR

5. Procure no simulador-97 (ou Tinkercad) os mesmos componentes.

Circuito para testar as entradas e saídas OR

Circuito para testar as entradas e saídas XOR

Circuito para testar as entradas e saídas AND

6. Monte agora o ½ somador realizado no Logisim, no simulador-97 (ou Tinkercad).

7. Usando outra porta do mesmo chip, monte outro $\frac{1}{2}$ somador e teste para verificar o funcionamento.

8. Una os 2 meio-somadores e construa um circuito somador completo de 1 bit.

9. Levantar a tabela verdade.

CiO	Α	В	s0	Co0
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	1
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

10. Explicar agora o funcionamento de um somador de 4 bits. Apresentar esse somador no Logisim.

Calculadora de 4 bits (Logisim)

Perguntas

- 1) O que acontece se um dos terminais de entrada de uma porta lógica não estiver conectado em 0 ou 1 (eletricamente ele deverá estar flutuando, ou seja não conectado a nenhum nível lógico)?
- R: A porta lógica não vai funcionar e não vai existir um output
- 2) Qual o problema de tempo associado a esse tipo de somador (pense no carry), considere o atraso médio de cada porta lógica de 10 ns.
- R: O pior caso do tempo associado a um somador vai ser 30ns no vai um e 20ns no caso da soma
- 3) Qual o tempo necessário para a computação de uma soma e do vai um em um somador de 4 bits.
- R: O tempo necessário será de 90ns no pior caso.
- 4) O que seria necessário para um somador de 32 bits?
- R: 32 ULA de 1 bit conectadas.

5) Considerando esses tempos acima, calcule a frequência de operação de um somador de 32 bits.
R: 650ns
F = 1/650ns
F = 1/650x10^-9
F = 1/65x10^-8
F = 1x10^8/65
F = 0.0153 x 10^8 Hz
F = 1.53 MHz

6) Você consegue propor alguma forma de tornar essa soma mais veloz?

R: Utilizando Carry Lookahead.