Write your Name Here:

This is a long exam, but you will have plenty of time. I suggest that you look through the problems and do the easier ones first. The numbers in brackets [1] tell you how many points a problem will count. Showing your work is encouraged.

Definition of a periodic function	Basic Identities
f(x+p) = f(x)	$\tan \theta = \frac{\sin \theta}{\cos \theta} \sec \theta = \frac{1}{\cos \theta} \csc \theta = \frac{1}{\sec \theta}$
Definition of an odd/even function	Period for Trig Functions
f(-x) = f(x) - Even	Sine, Cosine 2π or 360°
f(-x) = -f(x) - Odd	Tangent π or 180°
Inverse Trig Function Domain: Ranges	Product to Sum Identities
Sine - Domain [-1,1]	$\sin \alpha \sin \beta = \frac{1}{2} \left[\cos (\alpha - \beta) - \cos (\alpha + \beta) \right]$
Range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ or $\left[-90^{\circ}, 90^{\circ}\right]$	$\cos \alpha \cos \beta = \frac{1}{2} \left[\cos (\alpha - \beta) + \cos (\alpha + \beta) \right]$
Cosine - Domain [-1,1] Range $[0,\pi]$ or $[0^{\circ},180^{\circ}]$	$\sin \alpha \cos \beta = \frac{1}{2} \left[\sin (\alpha + \beta) + \sin (\alpha - \beta) \right]$
Tangent - Domain R	2
Range $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ or $\left[-90^{\circ}, 90^{\circ}\right]$	$\cos \alpha \sin \beta = \frac{1}{2} \left[\sin (\alpha + \beta) - \sin (\alpha - \beta) \right]$
Pythagorean Identities	Co-Function Identities
$\sin^2\theta + \cos^2\theta = 1$	$\sin(90^{\circ} - \theta) = \cos(\theta)$
$1 - \sin^2 \theta = \cos^2 \theta$	$\cos(90^\circ - \theta) = \cos(\theta)$
$\tan^2\theta + 1 = \sec^2\theta$	
$1 + \cot^2 \theta = \csc^2 \theta$	
Even/Odd Identities	Other Trig Functions $\tan \theta = 1/\cot \theta$
$\sin\left(-\theta\right) = -\sin\left(\theta\right)$	$\sec \theta = 1/\cos \theta$
$\cos(-\theta) = \cos(\theta)$	$\csc\theta = 1/\sin\theta$
$\tan(-\theta) = -\tan(\theta)$	
Sum and Difference Identities	Half Angle Identities
$\sin(\alpha \pm \beta) = \sin(\alpha)\cos(\beta) \pm \cos(\alpha)\sin(\beta)$	$\sin\frac{\theta}{2} = \pm\sqrt{\frac{1-\cos\theta}{2}}$ $\cos\frac{\theta}{2} = \pm\sqrt{\frac{1+\cos\theta}{2}}$
$\cos(\alpha \pm \beta) = \cos(\alpha)\cos(\beta) \mp \sin(\alpha)\sin(\beta)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Law of Sines	Law of Cosines
$\frac{\sin \angle A}{a} = \frac{\sin \angle B}{b} = \frac{\sin \angle C}{c}$ SOH CAH TOA	$c^2 = a^2 + b^2 - 2ab\cos\angle C$
a b c	
	Exponential Functions & Logs
$\sin = \frac{o}{h} \cos = \frac{a}{h} \tan = \frac{o}{a}$	$y = B^x \to \log_B y = x$
Double Angle Identities	De Moivre's Formula
$\sin 2\theta = 2\sin \theta \cos \theta$ $\cos 2\theta = \cos^2 \theta - \sin^2 \theta =$	$\left(\cos\theta + i\sin\theta\right)^n = \cos n\theta + i\sin n\theta$
$\cos^2\theta - \cos^2\theta - \sin^2\theta = 2\cos^2\theta - 1 = 0$	Euler's Formula
$1-2\sin^2\theta$	$e^{i\theta} = \cos\theta + i\sin\theta$
$\tan 2\theta = 2\tan \theta / 1 - \tan^2 \theta$	C COOC I COM C

[6] 1) Simplify these expressions as much as possible

a)
$$\frac{6x^7y^3z^2}{(2xy^{-2}z^2)^2}$$

b)
$$\frac{\sqrt{5} \cdot \sqrt{5^4}}{\sqrt{20}}$$

[8] 2) For the function
$$f(x) = \frac{(x-4)(x+1)}{(x-5)(x+3)}$$

3) Indicate which of these functions are odd, even, neither or both [6]

a)
$$f(x) = \sin(x)$$

b)
$$f(x) = x^3$$

c)
$$f(x) = x^2 \cos(x)$$

[5] 4) What is the solution set of this inequality

$$|5x-4| < 9$$

[5] 5) Find **all** θ such that $\theta = \cos^{-1}(1)$

[5] 6) Find all solutions, real or complex to this equation.

Hint: you will need to use the **rational root** theorem at least once.

$$x^4 - 2x^3 - 2x^2 - 2x - 3 = 0$$

[5] 7) Find all solutions to the equation $2\cos^2\theta - 7\cos\theta + 3 = 0$

[6] 8) Verify the identity $\tan \theta + \cot \theta = \sec \theta \csc \theta$

[9] 9) Find the exact values (no calculators please)

a)
$$\sin \frac{\pi}{6}$$

b)
$$\cos 135^{\circ}$$

c)
$$\tan \frac{33\pi}{2}$$

[6] 10) Sketch a graph of $f(x) = 2\cos(x-\pi)$.

What is the amplitude and period of this function.

Amplitude = _____

Period = _____

[6] 11) Simplify and find the roots of this equation. $4(x^2-3x+2)-3(x^2-2x+1)=0$

$$4(x^2-3x+2)-3(x^2-2x+1)=0$$

[9] 12) Calculate and write the results in the form a+bi

a)
$$(5-3i)-(7-i)$$

b)
$$(2+i)(5-3i)$$

$$c) \frac{5+2i}{1-i}$$

[6] 13) Simplify the following expressions as much as possible.

a)
$$\log_4 64 =$$

b)
$$\log_3 30 + \log_3 9 - \log_3 10 =$$

[6] 14) Find the length of the side labeled *x* in the following diagram.

You can leave answers in terms of sines and cosines.

Hint: Consider using the Law of Sines

[6] 15) Find the length of the side labeled x in the following diagram

You can leave answers in terms of sines and cosines.

Hint: consider using the Law of cosines

[6] 16) Use a sum, difference or half angle formula to find the exact values, not a calculator value. [6]

b)
$$\cos(105^{\circ})$$

[3] Extra Credit 2) What are the **three** cubed roots of *i*, eg.
$$\sqrt[3]{-1} = [3]$$

[3] Extra Credit What is the solution to these three equations in three unknowns. Use any method, however, consider row reduction.

$$x + y + z = 6$$

$$2x - y + z = 3$$

$$x + y - z = 0$$