Some symbolic tools for the Fox H-function

Le Chen

Department of Maathematics and Statistics

Auburn University

le.chen@auburn.edu, chenle02@gmail.com

November 12, 2023

In this note, we explain the code for checking the conditions of the Fox H-function [Fox61]. Here we follow the notation from Kilbas and Saigo [KS].

Let m, n, p, q be configure integers such that

$$0 < m < q$$
 and $0 < n < p$.

Let $a_i, b_j \in \mathbb{C}$ and $\alpha_i, \beta_j \in \mathbb{R}_+$ be the parameters given below:

$\in (\mathbb{C}, \mathbb{R}_+)$	Front list	Rear list	
p	$(a_1,\alpha_1),\cdots,(a_n,\alpha_n)$	$(a_{n+1},\alpha_{n+1}),\cdots,(a_p,\alpha_p)$	Upper list
q	$(b_1,\beta_1),\cdots,(b_m,\beta_m)$	$(b_{m+1},\beta_{m+1}),\cdots,(b_q,\beta_q)$	Lower list

and denote

$$H_{p,q}^{m,n}(s) := \frac{\prod_{i=1}^{n} \Gamma\left(1 - a_i - \alpha_i s\right)}{\prod_{i=n+1}^{p} \Gamma\left(a_j + \alpha_i s\right)} \times \frac{\prod_{j=1}^{m} \Gamma\left(b_j + \beta_j s\right)}{\prod_{j=m+1}^{q} \Gamma\left(1 - b_j - \alpha_j s\right)}.$$
 (1)

Then the Fox H-function $H_{2,3}^{2,1}\left(z \middle| \begin{array}{c} \dots \\ \dots \end{array}\right)$ is defined by a Mellin-Barnes

type integral of the form

$$H_{m,n}^{p,q} \left(z \middle| \begin{array}{c} (a_1, \alpha_1), \cdots, (a_p, \alpha_p) \\ (b_1, \beta_1), \cdots, (b_q, \beta_q) \end{array} \right) := \frac{1}{2\pi i} \int_{\mathcal{L}} H_{p,q}^{m,n}(s) z^{-s} ds.$$
 (2)

The basic assumption for the well-posedness of the Fox H-function is that two sets of poles do not overlap, i.e.,

$$\left\{b_{j\ell} = \frac{-b_j - \ell}{\beta_j}, \ell = 0, 1, \cdots\right\} \bigcap \left\{a_{ik} = \frac{1 - a_i + k}{\alpha_i}, k = 0, 1, \cdots\right\} = \emptyset.$$
(3)

The contour \mathcal{L} in (2) is given by one of the following three cases:

- 1. $\mathcal{L} = \mathcal{L}_{-\infty}$ is a left loop situated in a horizontal strip starting at point $-\infty + i\phi_1$ and terminating at point $-\infty + i\phi_2$ for some $-\infty < \phi_1 < \phi_2 < \infty$;
- 2. $\mathcal{L} = \mathcal{L}_{+\infty}$ is a right loop situated in a horizontal strip starting at point $+\infty + i\phi_1$ and terminating at point $\infty + i\phi_2$ for some $-\infty < \phi_1 < \phi_2 < \infty$;
- 3. $\mathcal{L} = \mathcal{L}_{i\gamma\infty}$ is a contour starting at point $\gamma i\infty$ and terminating at point $\gamma + i\infty$ for some $\gamma \in (-\infty, \infty)$.

We need a set of conditions to ensure the convergence of the integral in (2). To explain this, let's denote (following p. 2 of [KS])

$$a^* := \sum_{i=1}^n \alpha_i - \sum_{i=n+1}^p \alpha_i + \sum_{j=1}^m \beta_j - \sum_{j=m+1}^q \beta_j;$$

$$\Delta := \sum_{j=1}^q \beta_j - \sum_{i=1}^p \alpha_i$$

$$\delta := \prod_{n=1}^\infty \cdots$$

Figure 1: Diagram for the parameterization of the Fox H-function.

1 Example FoxH32-21.wls

File content

```
{
    (* Upper List *) {
        (* Upper Front List *) {{1, α^(-1)}},
        (* Upper Rear List *) {{Ceiling[β], β}}
},
    (* Lower List *) {
        (* Lower Front List *) {{1/2, α/2}, {1, 1}},
        (* Lower Rear List *) {{1, α/2}}
}
}
```

Fox H-function

$$H_{2,3}^{2,1}\left(\cdot \left| \begin{array}{c} \left(1,\frac{1}{\alpha}\right),\left(\lceil\beta\rceil,\beta\right) \\ \\ \left(\frac{1}{2},\frac{\alpha}{2}\right),\left(1,1\right),\left(1,\frac{\alpha}{2}\right) \end{array} \right)$$

$$H_{2,3}^{2,1}\left(\cdot \left|\begin{array}{c|c} \left(1,\frac{1}{\alpha}\right) & \left(\lceil\beta\rceil,\beta\right) \\ \hline \left(\frac{1}{2},\frac{\alpha}{2}\right),\left(1,1\right) & \end{array}\right)$$

Summary

$$a^* = \frac{1}{\alpha} - \beta + 1$$

$$\Delta = \alpha - \frac{1}{\alpha} - \beta + 1$$

$$\delta = 2^{-\alpha} \left(\frac{1}{\alpha}\right)^{-1/\alpha} \left(2^{\alpha/2} \alpha^{\alpha/2} + \alpha^{\alpha}\right) \beta^{-\beta}$$

$$\mu = 1 - \lceil \beta \rceil$$

$$a_1^* = \frac{1}{2} (\alpha - 2\beta + 2)$$

$$a_2^* = \frac{1}{\alpha} - \frac{\alpha}{2}$$

$$\xi = \frac{3}{2} - \lceil \beta \rceil$$

$$c^* = \frac{1}{2}$$

Poles 1. First ten poles from upper front list

$$a_{i,k} = \begin{pmatrix} 0 \\ \alpha \\ 2\alpha \\ 3\alpha \\ 4\alpha \\ 5\alpha \\ 6\alpha \\ 7\alpha \\ 8\alpha \\ 9\alpha \\ 10\alpha \end{pmatrix}$$

$$b_{j,\ell} = \begin{pmatrix} -\frac{1}{\alpha} & -1 \\ -\frac{3}{\alpha} & -2 \\ -\frac{5}{\alpha} & -3 \\ -\frac{7}{\alpha} & -4 \\ -\frac{9}{\alpha} & -5 \\ -\frac{11}{\alpha} & -6 \\ -\frac{13}{\alpha} & -7 \\ -\frac{15}{\alpha} & -8 \\ -\frac{17}{\alpha} & -9 \\ -\frac{19}{\alpha} & -10 \\ -\frac{21}{\alpha} & -11 \end{pmatrix}$$

2 Example FoxH32-21-Y.wls

File content

```
{
    (* Upper List *) {
        (* Upper Front List *) {{1, 1}},
        (* Upper Rear List *) {{β + γ, β}}
},
    (* Lower List *) {
        (* Lower Front List *) {{d/2, α/2}, {1, 1}},
        (* Lower Rear List *) {{1, α/2}}
}
}
```

Fox H-function

$$H_{2,3}^{2,1}\left(\cdot \left| \begin{array}{c} \left(1,1\right),\left(\beta+\gamma,\beta\right) \\ \left(\frac{d}{2},\frac{\alpha}{2}\right),\left(1,1\right),\left(1,\frac{\alpha}{2}\right) \end{array} \right)$$

$$H_{2,3}^{2,1}\left(\cdot \left| \begin{array}{c|c} (1,1) & (\beta+\gamma,\beta) \\ \hline \left(\frac{d}{2},\frac{\alpha}{2}\right),(1,1) & \end{array} \right)$$

Summary

$$a^* = 2 - \beta$$

$$\Delta = \alpha - \beta$$

$$\delta = 2^{-\alpha} \left(2^{\alpha/2} \alpha^{\alpha/2} + \alpha^{\alpha} \right) \beta^{-\beta}$$

$$\mu = \frac{1}{2} (-2\beta - 2\gamma + d + 1)$$

$$a_1^* = \frac{1}{2} (\alpha - 2\beta + 2)$$

$$a_2^* = 1 - \frac{\alpha}{2}$$

$$\xi = \frac{1}{2} (d - 2(\beta + \gamma - 1))$$

$$c^* = \frac{1}{2}$$

Poles 1. First ten poles from upper front list

$$a_{i,k} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{pmatrix}$$

$$\begin{pmatrix}
-\frac{d}{\alpha} & -1 \\
-\frac{d+2}{\alpha} & -2 \\
-\frac{d+4}{\alpha} & -3 \\
-\frac{d+6}{\alpha} & -4 \\
-\frac{d+8}{\alpha} & -5 \\
b_{j,\ell} = -\frac{d+10}{\alpha} & -6 \\
-\frac{d+12}{\alpha} & -7 \\
-\frac{d+14}{\alpha} & -8 \\
-\frac{d+16}{\alpha} & -9 \\
-\frac{d+18}{\alpha} & -10 \\
-\frac{d+20}{\alpha} & -11
\end{pmatrix}$$

3 Example FoxH32-21-Z.wls

File content

```
{
  (* Upper List *) {
     (* Upper Front List *) {{1, 1}},
     (* Upper Rear List *) {{Ceiling[β], β}}
},
  (* Lower List *) {
     (* Lower Front List *) {{d/2, α/2}, {1, 1}},
     (* Lower Rear List *) {{1, α/2}}
}
}
```

Fox H-function

$$H_{2,3}^{2,1}\left(\cdot \left| \begin{array}{c} \left(1,1\right),\left(\lceil \beta \rceil,\beta\right) \\ \left(\frac{d}{2},\frac{\alpha}{2}\right),\left(1,1\right),\left(1,\frac{\alpha}{2}\right) \end{array} \right)$$

$$H_{2,3}^{2,1}\left(\cdot \left|\begin{array}{c|c} (1,1) & (\lceil \beta \rceil,\beta) \\ \hline \left(\frac{d}{2},\frac{\alpha}{2}\right),(1,1) & \end{array}\right)$$

Summary

$$a^* = 2 - \beta$$

$$\Delta = \alpha - \beta$$

$$\delta = 2^{-\alpha} \left(2^{\alpha/2} \alpha^{\alpha/2} + \alpha^{\alpha} \right) \beta^{-\beta}$$

$$\mu = \frac{1}{2} (-2\lceil \beta \rceil + d + 1)$$

$$a_1^* = \frac{1}{2} (\alpha - 2\beta + 2)$$

$$a_2^* = 1 - \frac{\alpha}{2}$$

$$\xi = \frac{1}{2} (-2\lceil \beta \rceil + d + 2)$$

$$c^* = \frac{1}{2}$$

Poles 1. First ten poles from upper front list

$$a_{i,k} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{pmatrix}$$

$$\begin{pmatrix}
-\frac{d}{\alpha} & -1 \\
-\frac{d+2}{\alpha} & -2 \\
-\frac{d+4}{\alpha} & -3 \\
-\frac{d+6}{\alpha} & -4 \\
-\frac{d+8}{\alpha} & -5 \\
b_{j,\ell} = -\frac{d+10}{\alpha} & -6 \\
-\frac{d+12}{\alpha} & -7 \\
-\frac{d+14}{\alpha} & -8 \\
-\frac{d+16}{\alpha} & -9 \\
-\frac{d+18}{\alpha} & -10 \\
-\frac{d+20}{\alpha} & -11
\end{pmatrix}$$

4 Example FoxH32-21-Z-Star.wls

File content

```
{
    (* Upper List *) {
        (* Upper Front List *) {{1, 1}},
        (* Upper Rear List *) {{1, β}}
    },
    (* Lower List *) {
        (* Lower Front List *) {{d/2, α/2}, {1, 1}},
        (* Lower Rear List *) {{1, α/2}}
    }
}
```

Fox H-function

$$H_{2,3}^{2,1}\left(\cdot\left|\begin{array}{c} \left(1,1\right),\left(1,\beta\right)\\ \\ \left(\frac{d}{2},\frac{\alpha}{2}\right),\left(1,1\right),\left(1,\frac{\alpha}{2}\right) \end{array}\right)$$

$$H_{2,3}^{2,1}\left(\cdot\left|\begin{array}{c|c} (1,1) & (1,eta) \\ \hline \left(rac{d}{2},rac{lpha}{2}
ight),(1,1) & \end{array}
ight)$$

Summary

$$a^* = 2 - \beta$$

$$\Delta = \alpha - \beta$$

$$\delta = 2^{-\alpha} \left(2^{\alpha/2} \alpha^{\alpha/2} + \alpha^{\alpha} \right) \beta^{-\beta}$$

$$\mu = \frac{d-1}{2}$$

$$a_1^* = \frac{1}{2} (\alpha - 2\beta + 2)$$

$$a_2^* = 1 - \frac{\alpha}{2}$$

$$\xi = \frac{d}{2}$$

$$c^* = \frac{1}{2}$$

Poles 1. First ten poles from upper front list

$$a_{i,k} = \begin{pmatrix} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{pmatrix}$$

$$\begin{pmatrix}
-\frac{d}{\alpha} & -1 \\
-\frac{d+2}{\alpha} & -2 \\
-\frac{d+4}{\alpha} & -3 \\
-\frac{d+6}{\alpha} & -4 \\
-\frac{d+8}{\alpha} & -5 \\
b_{j,\ell} = -\frac{d+10}{\alpha} & -6 \\
-\frac{d+12}{\alpha} & -7 \\
-\frac{d+14}{\alpha} & -8 \\
-\frac{d+16}{\alpha} & -9 \\
-\frac{d+18}{\alpha} & -10 \\
-\frac{d+20}{\alpha} & -11
\end{pmatrix}$$

5 Example FoxH-Cos.wls

File content

```
{
    (* Upper List *) {
        (* Upper Front List *) {{1, 1/2}},
        (* Upper Rear List *) {{1/2, 1/2}}
},
    (* Lower List *) {
        (* Lower Front List *) {},
        (* Lower Rear List *) {}
}
```

Fox H-function

$$H_{2,0}^{0,1}\left(\cdot \mid \left(1,\frac{1}{2}\right), \left(\frac{1}{2},\frac{1}{2}\right)\right)$$

$$H_{2,0}^{0,1}\left(\cdot\left|\begin{array}{c|c} \left(1,rac{1}{2}
ight) & \left(rac{1}{2},rac{1}{2}
ight) \end{array}
ight)$$

Summary

$$a^* = 0$$

$$\Delta = -1$$

$$\delta = 0$$

$$\mu = -\frac{1}{2}$$

$$a_1^* = -\frac{1}{2}$$

$$a_2^* = \frac{1}{2}$$

$$\xi = \frac{1}{2}$$

$$c^* = 0$$

Poles 1. First ten poles from upper front list

$$a_{i,k} = \begin{pmatrix} 0 \\ 2 \\ 4 \\ 6 \\ 8 \\ 10 \\ 12 \\ 14 \\ 16 \\ 18 \\ 20 \end{pmatrix}$$

6 Example FoxH-Mittag-Leffler.wls

File content

```
{
    (* Upper List *) {
        (* Upper Front List *) {{0, 1}},
        (* Upper Rear List *) {}
},
    (* Lower List *) {
        (* Lower Front List *) {{0, 1}},
        (* Lower Rear List *) {{1 - μ, ρ}}
}
```

Fox H-function

$$H_{1,2}^{1,1}\left(\cdot \left| \begin{array}{c} \left(0,1
ight) \\ \left(0,1
ight), \left(1-\mu,
ho
ight) \end{array}
ight)$$

$$H_{1,2}^{1,1}\left(\cdot \left| \begin{array}{c} (0,1) \\ \hline (0,1) \end{array} \right| \right)$$

Summary

$$a^* = 2 - \rho$$

$$\Delta = \rho$$

$$\delta = \text{ComplexInfinity}$$

$$\mu = \frac{1}{2} - \mu$$

$$a_1^* = 1$$

$$a_2^* = 1 - \rho$$

$$\xi = \mu - 1$$

$$c^* = \frac{1}{2}$$

Poles 1. First ten poles from upper front list

$$a_{i,k} = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \end{pmatrix}$$

$$b_{j,\ell} = \begin{pmatrix} 0 \\ -1 \\ -2 \\ -3 \\ -4 \\ -5 \\ -6 \\ -7 \\ -8 \\ -9 \\ -10 \end{pmatrix}$$

7 Example FoxH-Sin.wls

File content

```
{
    (* Upper List *) {
        (* Upper Front List *) {},
        (* Upper Rear List *) {}
},
    (* Lower List *) {
        (* Lower Front List *) {{1/2, 1}},
        (* Lower Rear List *) {{0, 1}}
}
```

Fox H-function

$$H_{0,2}^{1,0}\left(oldsymbol{\cdot} \middle| \left(rac{1}{2},1
ight),\left(0,1
ight)
ight)$$

$$H_{0,2}^{1,0}\left(\cdot\left|\begin{array}{c} \\ \hline \left(rac{1}{2},1
ight) \end{array}\right.
ight)$$

Summary

$$a^* = 0$$

$$\Delta = 2$$

$$\delta = \text{ComplexInfinity}$$

$$\mu = -\frac{1}{2}$$

$$a_1^* = 1$$

$$a_2^* = -1$$

$$\xi = \frac{1}{2}$$

$$c^* = 0$$

Poles 1. First ten poles from upper front list

$$b_{j,\ell} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{3}{2} \\ -\frac{5}{2} \\ -\frac{7}{2} \\ -\frac{9}{2} \\ -\frac{11}{2} \\ -\frac{13}{2} \\ -\frac{15}{2} \\ -\frac{17}{2} \\ -\frac{19}{2} \\ -\frac{21}{2} \end{pmatrix}$$

References

- [Fox61] Charles Fox. The G and H functions as symmetrical Fourier kernels. $Trans.\ Amer.\ Math.\ Soc.,\ 98:395-429,\ 1961.$
- [KS] Anatoly A. Kilbas and Megumi Saigo. *H-transforms*, volume 9 of *Analytical Methods and Special Functions*. Chapman & Hall/CRC, Boca Raton, FL. Theory and applications.