Lecture 10

Lost time we studied Gaussian interpolates
f(x) at xo, -. 2 $I = \int_{f(x)}^{b} dx$ cohere $C_i = \int_{-\infty}^{b} l_i (x) dx$ is independent Gaussian quadratus is to choose pts now 24. - 2 such that

	Important property of Legendre polynomis
_	Quex) has a distinct groots in
	(-1,1) Furthermone the roots are symmetric
	w.r.t the origin
-	Notation
	Xo, X,, ×n Zeros of Qn+1(x)
	$C_{i} = \int \left(\int_{j=0}^{n} \frac{x - x_{j}}{x_{i} - x_{j}} \right) dx.$
	= 0, 1,, n
The	orem If $P(x)$ is any polynomial of degree $\leq 2n+1$ then
	$\int_{-1}^{1} P(x)dx = \sum_{i=0}^{n} P(x_i) C_i$

	Today we do Composite rules
70	f(x) dx ue developed som
	ente of fix I dx we developed some
مس	2000 J
	simple rules
	These rules de not give good
	1,400€ 1,000€
	estimate for I when [a,b] is
	resonably large.
[e	nample (correct)
<u>الوح</u>	1.474 E2 (upto)
	$T = \int e^{x} dx = \frac{4 \sin x}{4 \sin x}$
bi	Trapezvidal gule
	Trapezvidal gule $I \approx 5 \left[e^0 + e^5 \right] = 3.735 E 2$
	2
be	Simpsons rule 25 57 1247 F.2
	Simpson's rule $2-5 + 5 = 1-347 = 2$ $I \approx \frac{5}{6} \left[e^{0} + 4e^{2-5} + e^{5} \right] = 1-347 = 2$
	1 ~ 6

So idea is to divide

[a, b] into N smaller intervals and to apply quadrature rule to each of these Subintervals.

and we apply quadrature ruls for each [Xi-, 2,]

We compute Number of subdivisia required to get ever < 10-5 $f(x) = sin(x^2)$ $f(x) = -4x^2 \sin(x^2) + 2 \cos(x^2)$ |f(n)| \le 6 $F = -f'(\xi) h^2 - 1$ $|E| = \left| \frac{-f''(z_1)h^2 - 1}{12} \right| \le \frac{6h^2}{12} < 10^{-5}$ 1 2 N2 C 10-5 $N^2 > 5 - 18^4$ $N > \sqrt{5} \cdot 10^2 \approx 224$

Composite Simpson' rule $\int_{\mathcal{X}_{i}} \mathcal{H}(x) dx \simeq \int_{\mathcal{X}_{i}} \left[f(x_{i-1}) + 4f(x_{i+1}) + f(x_{i}) \right]$ $\int_{a}^{b} f(x) dx = \sum_{i=1}^{N} \int_{x_{i-1}}^{x_i} f(x) dx$ $\frac{i=1}{N-1} \frac{N-1}{N-1} \frac{N}{N} \left[(X_{i-1} + \frac{h_{i}}{h_{i}}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{i}) + 4 \sum_{i=1}^{h} f(X_{i-1} + \frac{h_{i}}{h_{i}}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{i}) + 4 \sum_{i=1}^{h} f(X_{i-1} + \frac{h_{i}}{h_{i}}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{i}) + 4 \sum_{i=1}^{h} f(X_{i}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{i}) + 4 \sum_{i=1}^{h} f(X_{i}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{i}) + 4 \sum_{i=1}^{h} f(X_{i}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{i}) + 4 \sum_{i=1}^{h} f(X_{i}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{i}) + 4 \sum_{i=1}^{h} f(X_{i}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h} \left[f(X_{0}) + 2 \sum_{i=1}^{h} f(X_{0}) + 4 \sum_{i=1}^{h} f(X_{0}) \right] \\ = \frac{h}{h}$ composite Simpsons rule with N nodes

$$\mathcal{E}_{yy}(x) = \sum_{i=1}^{N} \mathcal{E}_{yy}(x) d^{-1} \left[\mathcal{H}_{i-1}, \mathcal{H}_{i} \right] \\
= \sum_{i=1}^{N} - \frac{f^{(i)}(\pi_{i})}{90} \left(\frac{h_{i}}{2} \right)^{5} \eta_{i} e^{(\mathcal{H}_{i-1}, \mathcal{H}_{i})} \\
= - \frac{f^{(i)}(\xi)}{20} \sum_{i=1}^{N} \frac{(h_{i})^{5}}{90} \xi_{i} e^{(a_{i})} \\
= - \frac{f^{(i)}(\xi)}{90} \left(\frac{h_{i}}{2} \right)^{5} N$$

$$= - \frac{f^{(i)}(\xi)}{180} \left(\frac{h_{i}}{2} \right)^{4} \left(\frac{h_{i}}{2} \right)^{4} \left(\frac{h_{i}}{2} \right)^{4}$$

Example 1
$$I = \int \sin(x^2) dx$$

$$\frac{N}{1} = \int \sin(x^2) dx$$

180 x16 N 3 7.1 Thur N=8 will give answer correct (Note that N ~ 224 for Traperoid
rule
to give acc up to 10⁵

Example

$$T = \int_{0}^{4} e^{x} dx$$

by Trapezoid rule

N	TN	Exact-
-	111-2	= e4-1
2	70.37	- 53.59
4	57.99	
<u>, </u>	•	

by simpson' rule

N	5 _N
	56.76
ک ح	53.86
4	53.6
4	5 3.6

$$E_{N}^{T} = -\frac{1}{12} \frac{(\eta) h^{2} (b-a)}{12}$$

$$E_{N}^{S} = -\frac{1}{150} \frac{(h)^{5} (h-a)}{150}$$

$$find N \quad such that \quad (N=4)$$

$$|E_{N}^{T}| \leq 10^{-5}$$

$$|E_{N}^{S}| \leq 10^{-5}$$

$$|F_{N}^{S}| \leq 10^{-5}$$

