COMP 335 Worksheet Properties of regular languages

- 1. Let $\Sigma = \{a, b\}$. If L is a regular language over Σ , prove that the following languages are regular.
 - (a) $Prefix(L) = \{u \mid uv \in L\}$
 - (b) $Reverse(L) = \{ w \mid w^R \in L \}$
 - (c) $even(L) = \{w_2w_4 \dots w_n \mid w_1w_2w_3 \dots w_m \in L \text{ where } m \in \{n, n+1\}\}$
 - (d) $min(L) = \{ w \in L \mid \text{there is no } u \in L, v \in \Sigma^+ \text{ such that } w = uv \}$
- 2. Which of the following languages is regular? Prove your answer.
 - (a) $\{a^{n^2} \mid n \ge 1\}$
 - (b) $\{a^n \mid n \text{ is prime}\}$
 - (c) $\{a^{2^k} \mid k \ge 1\}$
 - (d) $\{a^n \mid n \text{ is not a perfect square}\}$
 - (e) $\{a^n b^l \mid n/l \in Z\}$
 - (f) $\{a^nb^n \mid n \ge 1\} \cup \{a^nb^m \mid n \ge 1, m \ge 1\}$
 - (g) $\{a^n b^n \mid n \ge 1\} \cup \{a^n b^{n+2} \mid n \ge 1\}$
 - (h) $\{a^n b^{\ell} c^k \mid n > 5, \ell > 3, k \le \ell\}$
 - (i) $\{a^nb^\ell \mid n \le \ell \le 2n\}$
 - (j) $\{w_1cw_2 \mid w_1, w_2 \in \{a, b\}^*, w_1 \neq w_2\}$
 - (k) $\{w \in (a+b)^* \mid n_a(w) = 2n_b(w)\}$
 - (1) $\{ww^Rv \mid v, w \in (a+b)^+\}$
- 3. True or false? Explain.
 - (a) If L is regular, then any subset of L is regular.
 - (b) If L is regular, then any superset of L is regular.
 - (c) If L_1 and L_2 are regular, then $\{w \mid w \in L_1, w^R \in L_2\}$ is regular.
 - (d) Suppose L_1 is finite and $L_1 \cup L_2$ is regular. Then L_2 is regular.