Nama: Ananda Fitri Karimah

NIM : 1301170774

Kelas : IFIK – 41- 01

A. Analisis

Genetic Algorithm (GA) ini adalah algotima yang di dasar kan, atau di konsepkan berdasarkan genetika yang ada pada biologi. Sehingga tahapan-tahapan yang adapun dinamakan seperti saat ingin mengawinkan 2 genetika yang akan di sebut *crossover* kedepannya pada laporan ini. Berbeda dengan tugas sebelumnya, kali ini kami memakai algoritma ini dengan tujuan untuk mendapatkan pola aturan dari sebuah data yang diberikan.

B. Strategi Penyelesaian Masalah

Allgoritma ini banyak dipilih dikarenakan variasi yang banyak sehingga kita sebagai pengamat bisa mendapatkan sampel yang banyak dan bervariasi. Selain itu pula *genetic algorithm* (GA) ini dalam menyelesaikan masalahnya tidak di selesaikan per satu masalah, namun diselesaikan secara jamak/populasi. Sehingga dalam pencarian pola aturan algoritma lebih efisien dalam waktu. Adapun tahapan- tahapan yang berbeda dalam menggunakan *genetic algorithm* (GA) untuk *learning system* ini adalah sebagai berikut

- 1. Pada awalnya seperti biasa generate angka, disini saya memakai biner yang mana angka tersebut akan di masukkan ke dalam list, <u>saya set list disini sepanjang 15</u>.
- 2. Lalu, masing-masing list di ulang generatenya sebanyak individu yang telah di set sebelumnya, disini <u>saya set banyaknya individu sebanyak 10 individu</u>.
- 3. Setelah itu saya menterjemahkan biner-biner tersebut menjadi bahasa yang lebih dimengerti di dalam code saya, saya namakan dengan nama fungsi dikoding()

```
def dikoding(listawal) :
    for i in range /lan/li
```

4. Lalu, setelah saya menterjemahkan masing-masing individu tersebut maka, saya *compare* data acak yang berasal dari komputer saya dengan data yang telat disediakan, dengan cara memanggil file dengan ekstensi .cvs tersebut. Apabila terdapat data yang sama dengan data latih maka nilai, <u>dengan nama variable di dalam kode saya yaitu temp</u>, yang mana nilai temp ini akan bertambah 1.

```
temp = temp+1
```

- 5. Setelah didapat hasil akhir nilai temp ini maka saya bagi temp ini dengan banyak data yang ada di dalam data latih. Sehingga dari sini saya mendapatkan nilai fitness
- 6. Setelah mendapatkan nilai fitness maka selanjutnya terjadi proses GA seperti biasa, yaitu proses pemilihan parent-crossover-mutasi-regenerasi
- 7. Lalu, setelah regenerasi beberapa kali, saya disini set regenerasi sebanyak 2 kali maka didapatlah inividu terbaik darinya.
- 8. Setelah itu di *compare* lagi, kali ini dengan data uji. Jika sepanjang list data uji sama dengan individu terbaik yang telah di hasilkan maka di belakang listnya di tambah 1 element, yaitu 'Ya'
- 9. Setelah itu data kembali di ekspor ke dalam bentuk file .csv

C. Hasil Running Program

```
В
                    C D
                                                 E
['Tinggi', 'Siang', 'Berawan', 'Rendah', 'Tidak']
['Rendah', 'Siang', 'Hujan', 'Tinggi', 'Ya']
['Normal', 'Pagi', 'Hujan', 'Tinggi', 'Tidak']
['Tinggi', 'Siang', 'Hujan', 'Normal', 'Tidak']
['Rendah', 'Malam', 'Hujan', 'Rendah', 'Ya']
['Normal', 'Sore', 'Cerah', 'Normal', 'Tidak']
['Tinggi', 'Siang', 'Rintik', 'Rendah', 'Tidak']
['Rendah', 'Siang', 'Cerah', 'Rendah', 'Ya']
['Normal', 'Siang', 'Cerah', 'Rendah', 'Tidak']
['Tinggi', 'Siang', 'Hujan', 'Rendah', 'Tidak']
['Tinggi', 'Sore', 'Cerah', 'Tinggi', 'Tidak']
['Normal', 'Siang', 'Cerah', 'Tinggi', 'Tidak']
['Rendah', 'Pagi', 'Berawan', 'Normal', 'Ya']
['Rendah', 'Malam', 'Rintik', 'Tinggi', 'Ya']
['Normal', 'Siang', 'Hujan', 'Normal', 'Tidak']
['Tinggi', 'Malam', 'Cerah', 'Tinggi', 'Tidak']
['Rendah', 'Malam', 'Berawan', 'Rendah', 'Ya']
['Rendah', 'Sore', 'Rintik', 'Normal', 'Ya']
['Tinggi', 'Siang', 'Cerah', 'Rendah', 'Tidak']
['Rendah', 'Malam', 'Rintik', 'Normal', 'Ya']
```

```
nilai fitness individu ke 1 generasi ke- 2 = 0.0125
nilai fitness individu ke 2 generasi ke- 2 = 0.0125
nilai fitness individu ke 3 generasi ke- 2 = 0.0125
nilai fitness individu ke 3 generasi ke- 2 = 0.0125
nilai fitness individu ke 5 generasi ke- 2 = 0.0125
nilai fitness individu ke 5 generasi ke- 2 = 0.0125
nilai fitness individu ke 6 generasi ke- 2 = 0.0125
nilai fitness individu ke 7 generasi ke- 2 = 0.0

== PEMILIHAN ORANG TUA GENERASI KE- 2 ==

list fitness = [0.0125, 0.0125, 0.0125, 0.0, 0.0125, 0.0125, 0.0, 0.0]

letak parent 1 = 6
parent 1 = 0.0125
letak parent 2 = 0.0125
parent 2 = 6

== CROSSOVER DAN MUTASI GENERASI KE- 2 ==

Parent 1 = [1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1]
Parent 2 = [0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1]
crossover pada indeks ke- 0 (perhitungan indeks list dimulai dari 0)
Hasil crossover =

[0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1]

Mutasi pada anak 1 = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1]

Mutasi pada anak 2 = [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0]
Mutasi pada anak 2 = [0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1]
individu ke- 1 generasi ke- 2 = [1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1]
individu ke- 2 generasi ke- 2 = [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1]
hasil decode data acak = ['Normal', 'Sore', 'Hujan', 'Tinggi', 'Tidak']

individu ke- 3 generasi ke- 2 = [1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 0]
hasil decode data acak = ['Normal', 'Malam', 'Rintik', 'Tinggi', 'Tidak']
```

```
individu ke- 3 generasi ke- 3 = [1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 0]
hasil decode data acak = ['Normal', 'Malam', 'Rintik', 'Tinggi', 'Tidak']

individu ke- 4 generasi ke- 3 = [1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0]
hasil decode data acak = ['Rendah', 'Malam', 'Hujan', 'Normal', 'Tidak']

individu ke- 5 generasi ke- 3 = [1, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1]
hasil decode data acak = ['Tinggi', 'Sore', 'Rintik', '-', 'Ya']

individu ke- 6 generasi ke- 3 = [1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1]
hasil decode data acak = ['Rendah', 'Sore', 'Hujan', 'Tinggi', 'Ya']

individu ke- 7 generasi ke- 3 = [0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0]
hasil decode data acak = ['Normal', 'Sore', 'Hujan', 'Rendah', 'Tidak']

individu ke- 8 generasi ke- 3 = [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]
hasil decode data acak = ['Normal', 'Malam', 'Berawan', 'Rendah', 'Ya']

Individu terbaik dengan fitness 0.0125
terletak pada individu ke- 6
dengan kromosom = [1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1]
hasil decode = [['Rendah', 'Sore', 'Hujan', 'Tinggi', 'Ya']]

['Tinggi', 'Siang', 'Hujan', 'Tinggi', 'Tidak']
['Rendah', 'Siang', 'Hujan', 'Tinggi', 'Tidak']
['Normal', 'Sore', 'Cerah', 'Normal', 'Tidak']
['Rendah', 'Siang', 'Rintik', 'Rendah', 'Tidak']
['Rendah', 'Siang', 'Cerah', 'Rendah', 'Tidak']
['Rondah', 'Siang', 'Cerah', 'Rendah', 'Tidak']
['Rondah', 'Siang', 'Cerah', 'Rendah', 'Tidak']
['Normal', 'Siang', 'Cerah', 'Rendah', 'Tidak']
['Innggi', 'Siang', 'Rintik', 'Rendah', 'Tidak']
['Innggi', 'Siang', 'Cerah', 'Rendah', 'Tidak']
['Innggi', 'Siang', 'Cerah', 'Rendah', 'Tidak']
['Normal', 'Siang', 'Cerah', 'Tinggi', 'Tidak']
['Normal', 'Siang', 'Cerah', 'Normal', 'T
```