

UNIVERSIDADE DE SÃO PAULO

INSTITUTO DE CIÊNCIAS MATEMÁTICAS E COMPUTACIONAIS - ICMC

Notas de Aula de Análise

Renan Wenzel - 11169472

Alexandre Nolasco de Carvalho - andcarva@icmc.usp.br

14 de março de 2023

Conteúdo

1	Aula $01 - 13/03/2023$:
	.1 Motivação	,
	.2 Os Números Naturais	,
	3 Números Inteiros e Racionais	4

1 Aula 01 - 13/03/2023

1.1 Motivação

- Relembrar sistemas básicos da matemática;
- Relembrar propriedades básicas das principais estruturas.

1.2 Os Números Naturais

Os números naturais são os que utilizamos para contar objetos, e são caracterizados pelos Axiomas de Peano:

- 1) Todo número natural tem um único sucessor;
- 2) Números naturais diferentes têm sucessores diferentes;
- 3) Existe um único número natural, zero (0), que não é sucessor de nenhum número natural.
- 4) Seja $X \subseteq \mathbb{N}$ tal que $0 \in X$ e, se n pertence a X, seu sucessor n+1 também pertence a X. Então, $X = \mathbb{N}$. (Propriedade de Indução).

<u>Definição</u>. Definimos a adição por: $n+0=n, n \in \mathbb{N}$, $e \ n+(p+1)=(n+p)+1, p \in \mathbb{N}$. Além disso, a multiplicação é dada por: $n.0=0, n.(p+1)=n.p+n, n, p \in \mathbb{N}$. Ou seja, sabendo somar ou multiplicar um número, sabemos somar e multiplicar seu sucessor.

Com relação ao quarto axioma, ele leva este nome porque um dos métodos de demonstração, conhecido como prova por indução. Nele, mostramos um caso base, o caso 0, e utilizamos a segunda parte para provar que, se um resultado vale para o caso n, ele vale para n+1, portanto sendo verdadeiro para todos os naturais.

Lema. Para todo n natural, 1 + n = n + 1.

<u>Prova.</u> Note que o resultado é verdadeiro para n=0. Suponha que o resultado seja válido para n=k e mostremos que vale também para n=k+1. Com efeito, segue pela propriedade de indução e pela definição de soma que

$$1 + (k+1) = (1+k) + 1 = (k+1) + 1.$$

Segue que o resultado vale para todo n natural. ■

A seguir, mostramos a associatividade e a comutatividade, respectivamente, das operações nos naturais.

<u>Lema.</u> Para todo n, p, r naturais, (n + p) + r = n + (p + r).

<u>Prova</u>. Note que o resultado é válido trivialmente para r = 0 e r = 1. Suponha que o resultado seja válido para r = k e mostremos que vale também para r = k + 1. Com efeito, pela hipótese de indução e definição de adição,

$$n + (p + (k + 1)) = n + ((p + k) + 1) = (n + (p + k)) + 1 = ((n + p) + k) + 1 = (n + p) + (k + 1).$$

Segue o resultado por indução.

<u>**Lema.**</u> Para todo n, p naturais, n + p = p + n.

<u>Prova.</u> Observe que já mostramos o caso em que p = 1. Suponha que o resultado vale para p = k e vamos mostrar o caso p = k + 1. De fato, pela hipótese de indução e definição de adição, junto do lema de associatividade, temos

$$n + (k + 1) = (n + k) + 1 = (k + n) + 1 = 1 + (k + n) = (1 + k) + n = (k + 1) + n.$$

Por indução, segue que isso vale para todo natural n.

Definição. Definimos uma ordem em \mathbb{N} colocando que $m \leq n$ se existe p natural tal que n = m + p.

A relação de ordem possui as seguintes propriedades:

- i) Reflexiva: Para todo n
 natural, $n \le n$;
- ii) Antissimétrica: Se $m \le n$ e $n \le m$, então m = n;
- iii) Transitiva: Se $m \leq n$ e $n \leq p$, então $m \leq p$;
- iv) Dados m, n naturais, temos ou $m \le n$, ou $n \le m$;
- v) Se $m \leq n$ e p é um natural, então $m+p \leq n$ e $mp \leq np$

1.3 Números Inteiros e Racionais

Usualmente, construimos os inteiros a partir dos naturais tomando os pares ordenados de números naturais com a seguinte identificação $(a, b) \sim (c, d)$ se a + d = b + c