Quiz-II: MA 222: Elementary Number Theory and Algebra Model Solutions

1.	Let x be the 100-cycle (1 2 3 \cdots 100) and let y be the 2-cycle (49 50) in the permutation group S_{100} . What is the order of xy ?
	Answer: 99. Solution: Clearly, $xy = (1\ 2\ \cdots\ 49\ 51\ \cdots\ 100)$ is a 99-cycle. Therefore, the order of xy is 99.
2.	The number of elements in $\mathbb{Z}_{1000001}$ of orders 101 and 1001 are, respectively [1]
	Answer: 100 and 0. Solution: The group $\mathbb{Z}_{1000001}$ is cyclic and 101 divides its order, i.e., 1000001. Hence the number of elements of order 101 in $\mathbb{Z}_{1000001}$ is $\phi(101) = 100$. Since 1001 does not divide 1000001, there is no element of order 1001 in $\mathbb{Z}_{1000001}$.
3.	The number of cyclic subgroups of order 4 in S_4 is equal to [1]
	Answer: 3. Solution: Any cyclic subgroup of order 4 is generated by an element of order 4 and only elements of order 4 in S_4 are 4-cycles. There are six 4-cycles in S_4 , namely $(1\ 2\ 3\ 4),\ (1\ 2\ 4\ 3),\ (1\ 3\ 2\ 4),\ (1\ 3\ 4\ 2),\ (1\ 4\ 3\ 2),\ and\ (1\ 4\ 2\ 3).$ Subgroups generated by these six 4-cycles are: $\langle (1\ 2\ 3\ 4)\rangle = \{(1),(1\ 2\ 3\ 4),(1\ 3)\ (2\ 4),(1\ 4\ 3\ 2)\} = H_1,$ $\langle (1\ 2\ 4\ 3)\rangle = \{(1),(1\ 2\ 4\ 3),(1\ 4)\ (3\ 2),(1\ 3\ 4\ 2)\} = H_2,$ $\langle (1\ 3\ 2\ 4)\rangle = \{(1),(1\ 3\ 2\ 4),(1\ 2)\ (3\ 4),(1\ 4\ 2\ 3)\} = H_3,$ $\langle (1\ 4\ 3\ 2)\rangle = H_1,$ $\langle (1\ 4\ 3\ 2)\rangle = H_1,$ $\langle (1\ 4\ 2\ 3)\rangle = H_3.$ Therefore, S_4 has three distinct cyclic subgroups of order 4.
4.	The number of elements of order 12 in S_7 is equal to [2]
	Answer: 420. Solution: The only possible way to write a 12-order element in S_7 is a product of 4 and 3-cycle. The total number of 4-cycles in S_7 is $\frac{^7P_4}{4} = 210$. The remaining thre symbols can form 2 possible 3-cycles. Thus, we have $210 \times 2 = 420$ elements of order 1 in S_7 .
5.	The number of elements in the set $\{x \in S_5 : x^4 = (1)\}$ is equal to
	Answer: 56. Solution: The set contains the elements from S_5 of order 1, 2, and 4. In S_5 , element of order 4 are 4-cycles only, and there are $\frac{^5P_4}{4} = 30$ number of 4-cycles. Whereas 2-cycles and product of two distinct 2-cycles are of order 2. The number of 2-cycles in S_5 is $\frac{^5P_2}{2} = 10$.

For counting elements which are product of two 2-cycles, notice that after choosing first 2-cycle in $({}^5C_2 =)$ 10 ways, we need to choose 2 symbols from remaining 3 symbols in $({}^3C_2 =)$ 3 ways. Since elements like $(1\ 2)(3\ 4)$ and $(3\ 4)(1\ 2)$ are same, we divide by

2, to get the total number of elements which are product of two distinct 2-cycles equal to $\frac{10\times3}{2}=15$. The identity is the only element of order 1 in any group, therefore, we get the total number of elements in the set equal to 30+10+15+1=56.

6. Which of the following is(are) field(s)? [2] (A)
$$\mathbb{C}[x]/(x^2+2)$$
 (B) $\mathbb{Z}[x]/(x^2+2)$ (C) $\mathbb{Q}[x]/(x^2-2)$ (D) $\mathbb{R}[x]/(x^2-2)$

Answer: (C).

Solution: Since \mathbb{Q} is a field and $x^2 - 2$ is irreducible in $\mathbb{Q}[x]$, hence $\frac{\mathbb{Q}[x]}{(x^2-2)}$ is a field. Clearly, $x^2 + 2$ and $x^2 - 2$ have roots in \mathbb{C} and \mathbb{R} , respectively. Therefore, $\frac{\mathbb{C}[x]}{(x^2+2)}$ and $\frac{\mathbb{R}[x]}{(x^2-2)}$ are not fields. We have

$$R := \frac{\mathbb{Z}[x]}{(x^2 + 2)} = \left\{ ax + b + (x^2 + 2) : a, b \in \mathbb{Z} \right\},\,$$

with unity $1+(x^2+2)$. Consider $z=2+(x^2+2)\in R$, then z has no inverse in R. Hence, R is not a field. \Box

7. Write down all the irreducible polynomials of degree 2 in $\mathbb{Z}_2[x]$. [1]

Answer: $x^2 + x + 1$.

Solution: All possible polynomials of degree 2 in $\mathbb{Z}_2[x]$ are x^2 , $x^2 + x$, $x^2 + x + 1$, and $x^2 + 1$. Substituting x = 0 and x = 1, we observe that the polynomials x^2 , $x^2 + x$, and $x^2 + 1$ have roots in \mathbb{Z}_2 . But $f(x) = x^2 + x + 1$ has no root in \mathbb{Z}_2 , hence f(x) is the only irreducible polynomial of degree 2.

- 8. For rings R and S, consider the ring $R \times S = \{(r, s) : r \in R, s \in S\}$ with respect to componentwise addition and multiplication. Then, which of the following statement(s) is(are) TRUE?
 - (A) The characteristic of the ring $6\mathbb{Z}$ is 6
 - (B) The ring $6\mathbb{Z}$ has no zero divisor
 - (C) The characteristic of the ring $(\mathbb{Z}/6\mathbb{Z}) \times 6\mathbb{Z}$ is zero
 - (D) The ring $6\mathbb{Z} \times 6\mathbb{Z}$ is an integral domain

Answer: (B) and (C).

Solution: Characteristic of the ring $6\mathbb{Z}$ is 0.

The ring $6\mathbb{Z}$ has no zero divisors as it is a subring of an integral domain \mathbb{Z} . Since characteristic of $6\mathbb{Z}$ is 0, therefore characteristic of $(\mathbb{Z}/6\mathbb{Z}) \times 6\mathbb{Z}$ is also 0. For any $0 \neq a \in 6\mathbb{Z}$, we have $(a,0) \cdot (0,a) = (0,0)$. Therefore, $6\mathbb{Z} \times 6\mathbb{Z}$ has zero divisors and it is not an integral domain.

9. The number of units f in the ring $\mathbb{Z}_{12}[x]$ such that $\deg(f) \leq 2$ is equal to [2]

Answer: 16.

Solution: Nilpotent elements in \mathbb{Z}_{12} are 0 and 6. Units in \mathbb{Z}_{12} are 1, 5, 7, and 11. We know that $f(x) = ax^2 + bx + c$ is a unit if a and b are nilpotent elements, and c is a unit. Hence, we have $2 \times 2 \times 4 = 16$ polynomials which are units in $\mathbb{Z}_{12}[x]$.

- 10. Let $I = \{f(x) \in \mathbb{Z}[x] : f(0) = 0\}$ and $J = \{f(x) \in \mathbb{Z}[x] : f(0) \in 2\mathbb{Z}\}$. Which of the following statement is TRUE?
 - (A) Both I and J are maximal ideals (B) I is maximal but J is not maximal
 - (C) J is maximal but I is not maximal (D) Both I and J are not maximal ideals

Answer: (C).

Solution: Clearly $I \subsetneq J \subsetneq \mathbb{Z}[x]$, therefore I is not a maximal ideal.

Let J_1 be an ideal of $\mathbb{Z}[x]$ such that $J \subsetneq J_1$. Then J_1 contains a polynomial g(x) whose constant term is an odd number. Also, $h(x) = g(x) + 1 \in J \subset J_1$, therefore $1 = h(x) - g(x) \in J_1$ which gives $J_1 = \mathbb{Z}[x]$. Hence, J is a maximal ideal. \square

• • •