Session 3-5 Normalization

Kyunghee Lee, PhD

Relation Anomalies to Cause Data Duplication

- Insertion Anomaly: adding new rows forces user to create duplicate data
- Deletion Anomaly: deleting rows may cause a loss of data that would be needed for other future rows
- Update (Modification) Anomaly: changing data in a row forces changes to other rows because of duplication

Normalization to Avoid Unnecessary Duplication

- The process of decomposing relations with anomalies to produce smaller, wellstructured relations
 - A relation that contains minimal data redundancy and allows users to insert, delete, and update rows without causing data inconsistencies
- General rule of thumb: A table should not pertain to more than one entity type

Is This Table Well-structured?

Emp_ID	Name	Dept_Name	Salary	Course_Title	Date_Completed
100	Margaret Simpson	Marketing	48,000	SPSS	6/19/200X
100	Margaret Simpson	Marketing	48,000	Surveys	10/7/200X
140	Alan Beeton	Accounting	52,000	Tax Acc	12/8/200X
110	Chris Lucero	Info Systems	43,000	Visual Basic	1/12/200X
110	Chris Lucero	Info Systems	43,000	C++	4/22/200X
190	Lorenzo Davis	Finance	55,000		
150	Susan Martin	Marketing	42,000	SPSS	6/19/200X
150	Susan Martin	Marketing	42,000	Java	8/12/200X

Insertion–can't enter a new class without having some employee take that class

Deletion–if we remove employee 140, we lose information about the existence of a Tax Acc class

Mike Ilitch School of Business

Modification–giving a salary increase to employee 100 forces us to update multiple records

WAYNE STATE

Anomaly Example

Staff Branch

staffNo	sName	position	salary	branchNo	bAddress
SL21	John White	Manager	30000	B005	22 Deer Rd, London
SG37	Ann Beech	Assistant	12000	B003	163 Main St, Glasgow
SG14	David Ford	Supervisor	18000	B003	163 Main St, Glasgow
SA9	Mary Howe	Assistant	9000	B007	16 Argyll St, Aberdeen
SG5	Susan Brand	Manager	24000	B003	163 Main St, Glasgow
SL41	Julie Lee	Assistant	9000	B005	22 Deer Rd, London

If StaffNo is primary key what happens if we insert a new branch with no staff yet?

What if the staffNO SA9 left the organization? What would happen to Branch B007?

What if someone spelled 'Glasgow' as 'Glasgoaw' in some rows?

INSERT ANOMALY

DELETE ANOMALY

UPDATE ANOMALY

Functional Dependencies and Keys

Functional Dependency: The value of one attribute (the determinant) determines the value of another attribute

Customer_ID → Customer_Name, Customer_Address

- Candidate Key: A unique identifier. One of the candidate keys will become the primary key
- Full dependency: Each non-key field is functionally dependent on every candidate key

Functional Dependencies

The Process of Normalization

- Executed as series of steps to produce a specific normal form
- Relations become progressively more restricted (stronger) in format and also less vulnerable to update anomalies

Table with multivalued attributes, not in 1st normal form – Un-normalized form (UNF)

 A table that contains one or more repeating groups – Multi-valued attributes

Order_ID	Order_ Date	Customer_ ID	Customer_ Name	Customer_ Address	Product_ID	Product_ Description	Product_ Finish	Unit_ Price	Ordered_ Quantity
1006	10/24/2006	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
					5	Writer's Desk	Cherry	325.00	2
					4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2006	6	Furniture Gallery	Boulder, CO	11	4-Dr Dresser	Oak	500.00	4
					4	Entertainment Center	Natural Maple	650.00	3

First Normal Form (1NF)

- No multivalued attributes (no repeating groups)
- Every attribute value is atomic
- Primary key identifed

=> All relations are in 1st Normal Form (1NF)

Table with no Multivalued Attributes and Unique Rows (in 1NF)

PK (Composite)									
Order_ID	Order_ Date	Customer_ ID	Customer_ Name	Customer_ (Address	Product_ID	Product_ Description	Product_ Finish	Unit_ Price	Ordered_ Quantity
1006	10/24/2006	2	Value Furniture	Plano, TX	7	Dining Table	Natural Ash	800.00	2
1006	10/24/2006	2	Value Furniture	Plano, TX	5	Writer's Desk	Cherry	325.00	2
1006	10/24/2006	2	Value Furniture	Plano, TX	4	Entertainment Center	Natural Maple	650.00	1
1007	10/25/2006	6	Furniture Gallery	Boulder, CO	11	4-Dr Dresser	Oak	500.00	4
1007	10/25/2006	6	Furniture Gallery	Boulder, CO	4	Entertainment Center	Natural Maple	650.00	3

Second Normal Form (2NF)

- 1NF + no partial dependency
 - Partial functional dependency: nonkey attributes are functionally dependent on part (but not all) of the primary key
- Every non-key attribute must be defined by the entire key, not by only part of the primary key

Functional Dependency Diagram for INVOICE

Order_ID → Order_Date, Customer_ID, Customer_Name, Customer_Address

Customer_ID → Customer_Name, Customer_Address

Product_ID → Product_Description, Product_Finish, Unit_Price

Order_ID, Product_ID → Order_Quantity

Therefore, NOT in 2NF

Removing Partial Dependencies

Third Normal Form (3NF)

- 2NF + no transitive dependencies
 - Transitive dependency: functional dependencies on non-primary-key attributes
- Solution:
 - Non-key determinant with transitive dependencies go into a new table
 - Non-key determinant becomes primary key in the new table and stays as foreign key in the old table

Removing Transitive Dependencies

Wrap-Up

Codd's Law

A non-key field must provide a fact about

NF1 - the *key*

NF2 - the whole key

NF3 - and nothing but the key

so help me Codd.

