ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Effect of Pt:Pd ratio on CO and hydrocarbon oxidation

Sung Bong Kang^a, Melanie Hazlett^a, Vemuri Balakotaiah^a, Christos Kalamaras^b, William Epling^{a,*}

- ^a Department of Chemical and Biomolecular Engineering, University of Houston, United States
- ^b Saudi Aramco Research and Development Center, Dhahran, 31311, Saudi Arabia

ARTICLE INFO

Article history: Received 5 September 2016 Received in revised form 10 May 2017 Accepted 20 May 2017 Available online 25 May 2017

Keywords:
Diesel oxidation catalyst
Emissions catalysis
Low temperature combustion
aftertreatment

ABSTRACT

For several reasons, typical diesel oxidation catalysts (DOCs) contain a mixture of Pt and Pd and in this study, the effect of the Pt:Pd ratio on a DOC's ability to oxidize CO and different hydrocarbon types was investigated. The concentrations and types of pollutant species were used to simulate those found in low temperature combustion (LTC) engine exhaust. Representative hydrocarbon species were selected; C₂H₄ (short-chain alkene), C₂H₆ (short-chain alkane), C₆H₁₄ (long-chain alkane) and C₇H₈ (aromatic). Two types of experiments were performed, one in which the oxidation of each hydrocarbon or CO reactant was examined individually (simple feed conditions), and the second in which all reactants were added together (full feed conditions). Under the simple feed conditions, CO and C_2H_6 oxidation increased with increasing Pd content, while C₂H₄ and C₆H₁₄ oxidation improved with higher Pt content. When the full mixture of CO and hydrocarbons was used, hydrocarbon oxidation light off consistently followed that of CO, regardless of the Pt:Pd ratio, due to strong inhibition by CO. The best CO oxidation activity was observed over the Pd-only catalyst, and performance over the bimetallic samples was a function of both CO inhibition and Pt:Pd ratio. More specifically, as Pd content increased, CO inhibition was dampened, and as Pt content increased its inherent activity toward alkene oxidation became significant. Since inhibition is a function of the Pt/Pd content and the individual metals have different inherent activities toward the oxidation of different hydrocarbons, results obtained from the experiments with the simple feed could not be directly correlated to those from the experiments with the mixture of hydrocarbons.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Recently, low temperature combustion (LTC) engines have been developed to meet ever tightening fuel economy standards [1,2]; a challenge from the emissions standpoint is the relatively lower exhaust gas temperature and higher concentrations of CO and hydrocarbons [2–4]. This puts emphasis on the need to design and develop improved low temperature oxidation catalysts for LTC engine exhaust treatment. In evaluating such catalysts, often a single pollutant is used but predicting catalytic activity based on such results may be complicated due to the co-existence of multiple reactant species, their mutual inhibition and inhibition via formation of surface intermediate species [4–6]. For example, Patterson et al. [5] reported that the addition of 1% CO in the feed severely inhibited the oxidation activity of hexane, toluene and benzene over a Pt/Al₂O₃ monolith catalyst. The authors attributed this to

the competitive adsorption of CO and hydrocarbons onto the catalyst surface. Similarly, Hazlett et al. [4] noted strong CO inhibition of C_3H_6 oxidation, as well as C_3H_6 inhibition of CO oxidation. The former was attributed to the strong adsorption of CO on the precious metal sites, and the latter to C_3H_6 partial oxidation surface intermediates blocking active sites.

The typical oxidation catalyst formulation found in the literature has shifted from a Pt-only precious metal composition to a bimetallic Pt/Pd system. The addition of Pd, when substituted for Pt, of course lowers catalyst cost, but Pd also improves thermal resistance as it has been shown to slow Pt particle sintering [7,8]. And of course it has its own oxidation performance [9,10]. There have been several studies examining the effect of Pt:Pd ratio on CO and hydrocarbon oxidation [11–13]. For example, Skoglundh et al. [11] have shown that for different Pt:Pd ratios, the bimetallic catalysts outperformed the monometallic samples. However, there was not one ratio that proved best for all the species examined; a 1:4 Pt:Pd ratio was best for CO and C_7H_8 oxidation, and the 1:1 for C_3H_6 oxidation. Shakya and coworkers [14] studied a variety of Pt:Pd blends and demonstrated that more Pt led to improved C_3H_6 , C_7H_8 , $C_{10}H_{22}$

^{*} Corresponding author. E-mail address: wsepling@virginia.edu (W. Epling).

Table 1Sample content as a function of Pt:Pd ratio.

Sample	Pt:Pd molar ratio	Content of metal atom (mol/ft ³ . _{monolith})		Content of metal mass (g/ft ³ . _{monolith})	
		Pt	Pd	Pt	Pd
Pt-only	100:0	1.42×10^{-1}	-	27.8	_
3:1 Pt:Pd	75:25	1.07×10^{-1}	0.35×10^{-1}	20.8	3.8
1:1 Pt:Pd	50:50	0.71×10^{-1}	0.71×10^{-1}	13.9	7.6
1:3 Pt:Pd	25:75	0.35×10^{-1}	1.07×10^{-1}	6.9	11.4
Pd-only	0:100	_	1.42×10^{-1}	_	15.1

and NO oxidation, whereas CO oxidation was best over the higher Pd content catalysts. Finally, Kim et al. [12] systematically studied Pt:Pd ratio effects and found that better performance for NO and C_3H_6 oxidation, when evaluated as a mixture, was found with a Pt-rich bimetallic catalyst. They also showed that the optimal ratio changes with aging and the addition of other gas components.

In this study, we used both simple feed flows (CO or hydrocarbon and O_2) as well as more complex mixtures in order to (i) understand the role of the precious metal ratio on oxidation activity, including inhibition characteristics, and (ii) evaluate the reliability of simplified simulated mixtures in determining the performance under more realistic conditions. The hydrocarbon species selected were a short-chain alkene (ethylene, C_2H_4), a short-chain alkane (ethane, C_2H_6), a long-chain alkane (hexane, C_6H_{14}) and an aromatic (toluene, C_7H_8) species as representative hydrocarbon molecules. CO and NO were also included in the feed gas.

2. Experimental

2.1. Catalyst preparation and characterization

A series of five catalyst samples were prepared: 1:0, 3:1, 1:1, 1:3 and 0:1 Pt:Pd supported on an Al_2O_3 washcoated cordierite monolith (1.59 g/in³ Al_2O_3 , 400 cpsi). The total Pt and Pd metal content was kept constant, 1.42×10^{-1} mol/ft³ of monolith, regardless of the Pt and Pd ratio. All the values are listed in Table 1. The Al_2O_3 washcoated monolith was provided by Johnson Matthey. The Pt and Pd precursors, Pt(NH₃)₄(NO₃)₂ and/or Pd(NO₃)₂ (Sigma-Aldrich), were mixed to form aqueous solutions, into which the Al_2O_3 washcoat monoliths were dipped. The monolith samples were dried at 80 °C for 24 h and subsequently calcined at 550 °C for 4 h in air. All monolith catalysts were hydrothermally aged in a flowing mixture of 14% O_2 , 5% H_2O and N_2 balance at 700 °C for 24 h.

Pulsed CO chemisorption was used to measure metal dispersion and particle size, with the sample scraped off from the cordierite. The powder was pretreated in 10% H₂/Ar at 500 °C for 1 h, then the temperature was lowered to 35 °C in an Ar flow. CO pulses, $(1.12 \times 10^{-6} \text{ mol})$ were injected until no CO uptake was observed. The metal dispersion and mean particle sizes were calculated using standard dispersion and particle size calculations [15,16], and specific metal surface areas were taken from references [17,18]. A 1:1 adsorption stoichiometry was assumed and for the bimetallic samples, a weighted average for the metals based on ratio was used for density and weight. Identical Pd and Pt interatomic distances were assumed for simplification, and the resulting dispersions and mean particle sizes are summarized in Table 2. Samples with higher Pd content had higher dispersions/smaller particle sizes, attributed to the thermal stability found with Pd addition to Pt under oxidizing conditions [8,19].

2.2. Catalytic performance test

A monolith catalyst (3/4) diameter and (3/4) diameter and (3/4) was wrapped in insulation to prevent gas bypass and was placed in a quartz tube

Table 2Dispersion and particle size.

Sample	Dispersion (%)	Particle size (nm)
Pt-only	5.8	19.4
3:1 Pt:Pd	15.6	7.2
1:1 Pt:Pd	21.7	5.2
1:3 Pt:Pd	23.5	4.8
Pd-only	26.4	4.3

reactor. Four thermocouples were placed in the reactor to measure the gas temperature ~2 cm upstream of the catalyst, front and back temperatures of the monolith core, and the reactor wall at the catalyst inlet. The data are plotted versus inlet gas temperature. The gas mixture used for the "complex" feed contained 5500 ppm CO, 150 ppm C_2H_4 , 150 ppm C_2H_6 , 260 ppm C_6H_{14} and 50 ppm C_7H_8 , 30 ppm NO, 10% O₂, 5% CO₂, and 5% H₂O in a N₂ balance. Similar experiments, but with respect to a single reactant (CO or hydrocarbon) were also performed to compare the catalytic oxidation activity of the individual components to its oxidation in the more complex mixture. The reactor space velocity of both full mixture and simple feed conditions was $50,000 \, h^{-1}$. Water and liquid hydrocarbons, C₆H₁₄ and C₇H₈, were vaporized and introduced into the reactor using Bronkhorst CEM liquid delivery systems. The reactor effluent concentrations were monitored using a MKS MultiGas 2030 FTIR analyzer. A pretreatment was used prior to each test, with a feed containing 14% O₂, 5% H₂O and N₂ balance at 600 °C for

3. Results and discussion

3.1. Simple feed conditions

Simple feed conditions refer to the experiments where a single pollutant reactant was considered, i.e. CO oxidation, or ethylene oxidation, etc. CO and individual hydrocarbon species oxidation were evaluated as a function of the Pt:Pd ratio. As shown in Fig. 1a, CO oxidation consistently improved with increasing Pd content in the catalyst, ultimately resulting in the best reactivity observed over the monometallic Pd catalyst. This is consistent with previous work that has shown CO oxidation T₅₀ (temperature at which 50% conversion is observed) values monotonically decreased with increasing Pd levels [20]. This is also consistent with Pd being less sensitive to CO self-poisoning compared to Pt [21,22]. Moreover, the addition of the smallest amount of Pd had the most significant impact, with the largest change in T₅₀ occurring between the monometallic Pt sample and the 3:1 Pt:Pd sample. Note, although there was also a significant difference in particle size between the monometallic Pt samples and the bimetallic samples, the overall performance was not solely due to this parameter, as otherwise light off would have been observed at similar temperatures, which was not the case. Conversion was observed at lower temperature with the addition of Pd.

The opposite trend was observed in C_2H_4 oxidation as a function of Pt:Pd ratio (Fig. 1b), where a higher relative Pt content led to

Fig. 1. Effect of Pt:Pd ratio on (a) CO, (b) C_2H_4 , (c) C_2H_6 , (d) C_6H_{14} and (e) C_7H_8 oxidation activity under the simpler feed conditions. Feed: 5500 ppm Co or 150 ppm C_2H_4 or 150 ppm C_2H_6 or 260 ppm C_6H_{14} or 230 ppm C_7H_8 , 10% O_2 , 5% CO_2 , 5% H_2O and N_2 balance at a space velocity of 50,000 h^{-1} .

greater reactivity. This is again consistent with previous literature observations, where Pt was found to be more active in olefin and paraffin oxidation than Pd [5,11,12]. Etheridge et al. [13] reported similar behavior for C_3H_6 oxidation under lean conditions such

as those used in this work, an increase in the Pt ratio in a Pt-Pd bimetallic catalyst led to better C_3H_6 oxidation.

A trend also exists in the rate of change in C_2H_4 conversion (slope of the conversion curve as a function of temperature), which increased with Pt content. As the Pd content increased, the rate's

Fig. 2. (a) C_2H_4 oxidation conversion as a function of reaction time, and (b) CO_2 formation during a TPO with ramp rate of 8 °C/min after the time on stream tests; measured using the Pd-only and 1:1 Pt:Pd catalysts. Feed: (a) 150 ppm C_2H_4 , 10% O_2 , 5% H_2O , 5% CO_2 and N_2 balance at a space velocity of 50,000 h^{-1} , (b) 10% O_2 and N_2 balance at a space velocity of $5000 \, h^{-1}$.

sensitivity to temperature decreased, especially in the 250–300 °C range. This would normally be attributable to activation energy values, as a measure of the reaction's sensitivity to temperature, but the monometallic Pd results point to another possibility. These data suggest a buildup of coke, or some carbonaceous intermediate, on the surface leading to site blocking and therefore reaction inhibition. To test this hypothesis, time on stream experiments with the 1:1 Pt:Pd and the monometallic Pd samples were performed, and example data are shown in Fig. 2a. Ethylene conversion over both catalysts decreased with time, though the Pd sample resulted in less activity loss than that observed with the 1:1 Pt:Pd catalyst. This is seemingly contradictory to the data shown in Fig. 1b, but a lower overall conversion was also achieved explaining the less significant drop. A temperature-programmed oxidation (TPO) characterization was run after each time on stream test, with the CO₂ evolved shown in Fig. 2b. A much smaller amount of CO₂ desorbed from the Pd-only catalyst compared to the 1:1 Pt:Pd catalyst, consistent with the data from Fig. 2a. Such data would suggest that the opposite trend should have been observed, a slower rate of change in conversion with the 1:1 since there was more surface carbon buildup. However, it is apparent there are two TPO features associated with the bimetallic sample. The higher temperature feature is common to both samples, and this we attribute to the buildup of the inhibiting species causing the conversion rate change observed.

The lower temperature feature is only associated with the bimetallic and its desorption temperature is near that where, although slight, an inflection is observed in the conversion profiles in Fig. 1b (most noticeable with the 1:3 sample). Previous work, but evaluating C₃H₆ oxidation [4], has shown a series of intermediates form on a Pt/Al₂O₃ sample and the C₃H₆ oxidation pathway has been shown to go through a surface ethylene intermediate that inhibits oxidation as does an acetate species which forms during the stepwise oxidation process. Furthermore, CO has been observed as a C₃H₆ partial oxidation product and been considered an intermediate in the route to CO₂ formation [24], and Pd is less prone to inhibition by CO [21,22] as is also noted by the data in Fig. 1a. The inflection noted at 125-130°C for the monometallic Pt sample is indeed likely due to intermediate CO formation. Therefore, the lower temperature feature we assign to a separate intermediate species that forms in the presence of Pt and induces the plateauing in conversion observed at high temperatures, such that ultimately the monometallic Pd sample can achieve higher conversions although had the higher light off temperature. This lack of impact on the monometallic Pd sample may be related to the Pd existing primarily as the oxide, whereas in bimetallic systems, the Pt has been shown to facilitate Pd reduction such that some portion exists in the metal state [7]. This is supported by the findings of Persson et al. [23] who reported that on a monometallic Pd catalyst the Pd existed primarily as Pd oxide, while oxide formation was negligible on the Pt-rich bimetallic catalyst.

In the case of C_2H_6 oxidation, although not so obvious because of the small conversions attained, the trend as a function of Pt:Pd ratio was opposite to that of the C_2H_4 . With increasing Pd content, more conversion was observed, as shown in Fig. 1c. Little overall conversion was attained due to the relative stability of the C_2H_6 molecule. This trend in activity behavior is consistent with CH_4 oxidation, where Pd is considered more active than Pt [25,26]. Note, in a separate experiment the possibility of ethane steam reforming was examined with the monometallic Pt and Pd catalysts. Indeed reforming was observed on the monometallic Pd catalyst starting at $250\,^{\circ}$ C, while none was observed with the Pt sample up to $350\,^{\circ}$ C. Therefore, the ethane conversion noted is not through oxidation with O_2 , but through steam reforming.

In terms of the longer chain alkane, catalytic C_6H_{14} oxidation as a function of Pt:Pd ratio (Fig. 1d), followed a similar trend as C₂H₄ oxidation. More Pt led to better oxidation performance, particularly in the temperature region below 300 °C. Higher temperatures were not used to evaluate performance in order to avoid the homogeneous oxidation chemistry that was observed above 350 °C. In comparing the trends in alkane species, it is apparent that reactivity as a function of the Pt:Pd ratio strongly depends on the chain length, as has been previously reported [27,28]. Pd performs better in oxidizing the shorter chain length alkanes, and Pt the longer. A possible explanation for this difference in trend when comparing C₆H₁₄ and C₂H₆ may be the different efficiencies Pt and Pd have in activating hydrocarbon C-H versus C-C bond cleavage. Pt metal is more active in breaking C—C bonds, while Pd oxide is for C—H bonds [23,29]. With the longer chain and therefore larger prevalence of C—C bonds, C₆H₁₄ oxidizes more readily over the Pt surface, while C₂H₆ does over the Pd surface. An anomalous trend at high temperature was observed with Pd, similar to what was observed in C2H4 oxidation. Again, this is attributed to monometallic Pd being less prone to inhibition by partial oxidation surface intermediates.

Fig. 3. Oxidation performance demonstrated by conversion for the (a) monometallic Pt, (b) 3:1 Pt:Pd, (c) 1:1 Pt:Pd, (d) 1:3 Pt:Pd and (e) monometallic Pd catalysts under full mixture conditions. Feed: 5500 ppm C_0 , 150 ppm C_2 H₄, 150 ppm C_2 H₆, 260 ppm C_6 H₁₄, 50 ppm C_7 H₈, 30 ppm NO, $10\% \text{ O}_2$, $5\% \text{ CO}_2$, $5\% \text{ H}_2\text{O}$ and N_2 balance at a space velocity of $50,000 \text{ h}^{-1}$.

In the oxidation of C_7H_8 , a non-monotonic trend in performance as a function of Pt:Pd ratio was observed (Fig. 1e), with the 1:1 sample showing the best performance. This oxidation behavior is likely due to toluene's unique structure, consisting of benzene ring with π -bonds and the methyl functional group. One possible explana-

tion is that Pt attacks one type of site and Pd the other. But, the role of the two metals in the bimetallic Pt-Pd samples is not clear, and there is further complicating evidence that reaction mechanisms differ (Eley Rideal vs Langmuir Hinshelwood vs Mars van Krevelen) depending on the metal and support [30–32].

3.2. Full mixture feed conditions

The full mixture or complex conditions refer to the experiments where all reactants were co-fed. The CO, NO and hydrocarbon conversions observed over the different catalysts when feeding all the components together are shown in Fig. 3. In all cases, CO oxidation was observed first. Over the monometallic Pt (Fig. 3a), the order in observed conversion was $CO > C_2H_4 > C_7H_8 > C_6H_{14} > C_2H_6$. Similar findings, CO oxidizing prior to the hydrocarbon species, have been observed previously [4,5,12,33,34]. This is attributed to the strong adsorption of CO, and once its oxidation begins, sites become available for adsorption and onset of oxidation of the other species. The C_2H_4 and C_7H_8 light off at about the same temperature, and C_2H_4 achieved higher conversions more rapidly. C₆H₁₄ on the other hand lit off just after the other two hydrocarbons and its conversion reached a relative maximum of ~80%. This plateau, as discussed above, is attributed to formation of surface intermediates. No C₂H₆ conversion was observed.

In terms of NO oxidation, only 13% NO conversion was achieved by $350\,^{\circ}\text{C}$ and negligible conversion was noted until most of the hexane was oxidized. Previous research has shown that NO_2 is a strong CO and hydrocarbon oxidant over Pt-based catalysts and any formed is reduced back to NO. Thus a lack of conversion is often observed until near complete CO and hydrocarbon removal [36.37].

In comparing the monometallic Pt with the 3:1, 1:1 and 1:3 Pt:Pd catalysts (Fig. 3b-d), the species oxidation order was similar, except with the addition of Pd C₇H₈ oxidized before C₂H₄. Moreover, the overall oxidation performance was improved with the addition of Pd. For example, CO oxidation over the 1:1 Pt:Pd sample was observed at \sim 140 °C and 90% conversion (T_{90}) was achieved at 188 °C, while with the Pt-only, 90% conversion was attained at 297 °C and conversion was first observed at ~200 °C. Moreover, the addition of Pd resulted in hydrocarbon oxidation at lower temperature, particularly in the case of C₂H₄ and C₇H₈ species. For the bimetallic catalysts, although hexane oxidation lit off at a lower temperature, its rate of conversion change with temperature was slower compared to the monometallic Pt catalyst. It also worth noting that the bimetallic samples were able to achieve >80% conversion indicating that the intermediate species over the bimetallic catalysts resulted in less inhibition compared to the Pt-only sample.

As shown in Fig. 3e, the monometallic Pd catalyst resulted in the best CO oxidation performance, and C₂H₆ oxidation improved with increasing Pd content. The onset of C₇H₈ oxidation followed that of CO, but not as immediately as with the Pt-containing samples. This was similarly observed in the case of C2H4 oxidation, where the increase in difference required for CO and C2H4 oxidation light off temperatures increased as a function of Pd content. This increase or apparent delay in oxidation is due to the lower temperature required for CO oxidation with increasing Pd content. Since CO adsorption is inhibiting the oxidation of the other species, as the temperature for the onset of CO oxidation decreases, the inhibition effect is shifted to lower and lower temperatures and at some point it will be lower than that required for the onset of the hydrocarbon species oxidation in the absence of such an inhibitor. For example, the results shown in Fig. 1 demonstrate that the onset of C₇H₈ oxidation in the absence of CO, and other hydrocarbons, is $\sim 150 \,^{\circ}$ C, which is similar to the light off temperature over the monometallic Pd catalyst under the full mixture test conditions.

The T_{90} values, as another way to compare, for CO, C_2H_4 and C_7H_8 oxidation are plotted as a function of Pt:Pd ratio in Fig. 4. CO poisoning dominates the performance as the hydrocarbon oxidation light off temperatures consistently followed that of CO, regardless of the Pt and Pd content. In the case of CO oxidation, a drastic T_{90} decrease, from 295 to 188 °C, was observed with the addition of Pd up to 1:1 Pt:Pd, while a further increase in the Pd

Fig. 4. Light-off temperatures as T_{90} values for CO, C_2H_4 and C_7H_8 oxidation as a function of Pt:Pd mole ratio under full mixture conditions. Feed: 5500 ppm CO, $150 \text{ ppm } C_2H_4$, $150 \text{ ppm } C_2H_6$, $260 \text{ ppm } C_6H_{14}$, $50 \text{ ppm } C_7H_8$, 30 ppm NO, $10\% O_2$, $5\% CO_2$, $5\% H_2O$ and N_2 balance at a space velocity of $50,000 \text{ h}^{-1}$.

content still led to some decrease in T₉₀ temperature but to a lesser extent. Similarly, higher Pd content initially led to improved C₂H₄ and C₇H₈ oxidation activity, although previous studies have reported that Pt was more effective for hydrocarbon oxidation in comparison of Pd. except for short chain alkane species such as methane and ethane [23,38]. This apparent improved performance in C₂H₄ and C₇H₈ oxidation is due to the coincident decreased CO oxidation light off temperature, and thus decreased temperature where inhibition plays a significant role. However, for higher Pd content, i.e. 1:3 Pt:Pd and monometallic Pd samples, the C2H4 oxidation performance decreased. Again, this latter trend is consistent with Pt being more active in olefin and paraffin oxidation than Pd [5,11,12] and is observed due to the decreased impact of CO poisoning. Thus, overall, C₂H₄ oxidation is mainly controlled by CO poisoning for high Pt content samples [5,33], but as the light off for CO oxidation dropped with the addition of relatively more Pd, the influence of the precious metal's inherent activity in C₂H₄ oxidation was ultimately observed.

3.3. Simple vs. full mixture feed conditions

In comparing the two types of experiments, there are some obvious differences in trends, but also clear consistencies. In terms of C_2H_6 , in both cases, i.e. in the experiment with just C_2H_6 as the hydrocarbon reactant and in the experiment with all the hydrocarbons and CO included, with increased Pd content, although the conversions were low, better performance was achieved. This was expected, as Pd is known to be the better CH₄ oxidation catalyst as well. Hexane, a longer chain alkane, followed a different pattern. The monometallic Pt sample proved best, with this alkane oxidation difference discussed above in terms of the two metals having different efficacies in cleaving C-C versus C-H bonds. In both experiment types, the same C_6H_{14} oxidation pattern as a function of Pt:Pd ratio was observed; more Pt, better oxidation conversion. CO oxidation was also consistent between the two experiment types, as shown in Fig. 5a, where the T_{90} values are plotted as a function of Pt:Pd ratio. Higher Pd content led to better CO oxidation in both the simple and full mixture feed conditions.

On the other hand, ethylene and toluene oxidation trends were not consistent between the two feeds (Fig. 5b and c). In the simple feed case, the higher Pt content results in better C_2H_4 oxidation performance, with the monometallic Pt catalyst the most active sample. On the contrary for the case of the full mixture feed, the

Fig. 5. T_{90} values for (a) CO, (b) C_2H_4 and (c) C_7H_8 oxidation as a function of Pt:Pd ratio obtained with the simpler feed and full mixture conditions. Simpler feed: 5500 ppm CO or 150 ppm C_2H_4 or 230 ppm C_7H_8 , 10% O_2 , 5% CO_2 , 5% H_2O and N_2 balance. Full mixture feed: 5500 ppm CO, 150 ppm C_2H_4 , 150 ppm C_2H_6 , 260 ppm C_6H_{14} , 50 ppm C_7H_8 , 30 ppm NO, 10% O_2 , 5% CO_2 , 5% H_2O and N_2 balance at a space velocity of 50,000 h⁻¹.

best sample proved to be the 1:1 Pt:Pd, with monometallic actually Pt proving to be the worst. For the higher Pt content samples the pattern follows CO oxidation, whereas at higher Pd content it follows the simple feed condition pattern. This combined pattern is dictated by CO inhibition. Pt is more susceptible to CO poisoning but more active toward C₂H₄ oxidation. Thus, at high Pt loads, the poor C₂H₄ oxidation performance is due to strong CO poisoning. Nonetheless, at lower Pt content the poor performance is due to the relatively lower activity associated with Pd toward C₂H₄ oxidation. Similarly, in the case of toluene under the simple feed condition, the minimum in light off was observed 1:1 Pt:Pd sample, but with the full mixture feed, the C₇H₈ oxidation followed the CO oxidation pattern, made a bit more apparent in comparing the data shown in Fig. 4. Overall, the oxidation of species with lower oxidation light off temperatures was a function of both CO oxidation light off and Pt:Pd ratio, while those with higher oxidation light off temperatures were a function of Pt:Pd ratio only since CO oxidation occurred at much lower relative temperatures and its inhibition was therefore not pronounced.

Besides the CO inhibition effect, another key factor influencing oxidation trends can be the exotherm generated when the CO and hydrocarbon species are oxidized. As an example, in evaluating CO and C_2H_4 oxidation over the 1:1 Pt:Pd sample results, plotted in Fig. 6a, CO oxidation was inhibited by the presence of the other hydrocarbon species. The onset of C_2H_4 oxidation was also shifted to higher temperatures demonstrating inhibition by CO. However, once light off was achieved, higher C_2H_4 conversions were attained at much lower temperatures in the presence of CO versus in its absence. This is due to the heat generated via CO oxidation. The adiabatic temperature rise for oxidation of 5500 ppm CO is $\sim 50\,^{\circ}$ C, which is more than sufficient to induce the rapid conversion rate of change with temperature when compared to the absence of CO, or other hydrocarbons. Similar findings were also observed with the other samples, with the monometallic Pd sample as a further examples illustrated in Fig. 6b.

Summarizing, in the present study strong CO inhibition of hydrocarbon oxidation was observed, as has been well-reported in literature [4,5,34,35,39]. Moreover, hydrocarbon inhibition of CO oxidation was observed, as has also been previously reported [6,12,33,40,41]. Using these data, a model has been developed that describes these mutual inhibitions and light off behavior as a function of the Pt:Pd ratio [42]. It is apparent that the most important performance indicator amongst the studied samples and feed conditions is CO oxidation. The lower the CO oxidation light off

Fig. 6. CO and C₂H₄ conversions over the (a) 1:1 Pt:Pd and (b) monometallic Pd catalysts under simple and full mixture conditions.

temperature, the better alkene oxidation performance. Hexane and ethane oxidation were less impacted by CO inhibition as their light off temperatures were higher than that of CO for all samples examined.

4. Conclusions

The effect of Pt:Pd ratio on CO and hydrocarbon oxidation was investigated under two sets of reactor inlet conditions. In the case of the simple feed condition, containing only CO or a single hydrocarbon, oxidation activities for CO and C₂H₆ increased with increasing Pd content in the catalyst. The opposite was observed for C₂H₄ and C₆H₁₄ oxidation where higher reactivity was observed with the monometallic Pt catalyst. With the full mixture feed, hydrocarbon oxidation was not observed until after CO oxidation light off, regardless of the Pt:Pd formulation, demonstrating strong CO poisoning of the catalyst surface. On the other hand, after the light off temperature is achieved, the presence of CO in the feed stream can promote oxidation activity via the exotherm generated from its oxidation. For the bimetallic catalysts, C₂H₄ and C₇H₈ oxidation were both influenced by both CO inhibition and the inherent activity of Pt vs Pd. At higher Pd content, less CO poisoning was noted, and at higher Pt content better alkene oxidation was noted. The results of the present work demonstrate that CO oxidation is a critical factor in comparing catalysts for aftertreatment applications. In addition, it is suggested that the use of a single hydrocarbon feed is inappropriate to probe the oxidation kinetics under realistic conditions where other species are present.

Acknowledgments

The authors gratefully acknowledge Saudi Aramco for funding this work.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.apcatb.2017.05.057.

References

- [2] M. Zheng, U. Asad, G.T. Reader, Y. Tan, M. Wang, Int. J. Energy Res. 33 (2009)
- [3] D. Han, A.M. Ickes, S.V. Bohac, Z. Huang, D.N. Assanis, Fuel 99 (2012) 13-19.
- [4] M.J. Hazlett, W.S. Epling, Catal. Today 267 (2016) 157–166.
- [5] M.J. Patterson, D.E. Angove, N.W. Cant, Appl. Catal. B: Environ. 26 (2000)
- [6] S.B. Kang, S.B. Nam, B.K. Cho, I.-S. Nam, C.H. Kim, S.H. Oh, Catal. Today 231 (2014) 3–14.
- [7] A. Morlang, U. Neuhausen, K.V. Klementiev, F.-W. Schütze, G. Miehe, H. Fuess, E.S. Lox, Appl. Catal. B: Environ. 60 (2005) 191–199.
- [8] M. Kaneeda, H. Iizuka, T. Hiratsuka, N. Shinotsuka, M. Arai, Appl. Catal. B: Environ. 90 (2009) 564–569.
- [9] M.V. Twigg, Catal. Today 163 (2011) 33-41.
- [10] A.P. Russell, W.S. Epling, Catal. Rev. Sci. Eng. 53 (2011) 337–423.
- [11] M. Skoglundh, L.O. Löwendahl, J.-E. Ottersted, Appl. Catal. 77 (1991) 9–20.
- [12] C.H. Kim, M. Schmid, S.J. Schmieg, J. Tan, W. Li, SAE Tech. Pap. No. 2011-01-1134, 2011.
- [13] J.E. Etheridge, T.C. Watling, A.J. Izzard, M.A.J. Paterson, SAE Tech. Pap. No. 2015-01-1053, 2015.
- [14] B.M. Shakya, B. Sukumar, Y.M. López-De-Jesús, P. Markatou, SAE Tech. Pap. No. 2015-01-1052, 2015.
- [15] S.B. Kang, H.J. Kwon, I.-S. Nam, Y.I. Song, S.H. Oh, Ind. Eng. Chem. Res. 50 (2011) 5499–5509.
- [16] D. Roth, P. Gélin, A. Kaddouri, E. Garbowski, M. Primet, E. Tena, Catal. Today 112 (2006) 134–138.
- [17] E.N. Coker, W.A. Steen, J.T. Miller, A.J. Kropf, J.E. Miller, J. Mater. Chem. 17 (2007) 3330–3340.
- [18] M.O. Nutt, J.B. Hughes, M.S. Wong, Environ. Sci. Technol. 39 (2005) 1346–1353.
- [19] H. Shinjoh, H. Muraki, Y. Fujitani, Stud. Surf. Sci. Catal. 71 (1991) 617–628.
- [20] L. Glover, R. Douglas, G. McCullough, M. Keenan, P. Revereault, C. McAtee, SAE Tech. Pap. No. 2011-24-0193, 2011.
- [21] S. Salomons, M. Votsmeier, R.E. Hayes, A. Drochner, H. Vogel, J. Gieshof, Catal. Today 117 (2006) 491–497.
- [22] R. Chen, Z. Chen, B. Ma, X. Hao, N. Kapur, J. Hyun, K. Cho, B. Shan, Comp. Theor. Chem. 987 (2012) 77–83.
- [23] K. Persson, A. Ersson, K. Jansson, J.L.G. Fierro, S.G. Järås, J. Catal. 243 (2006) 14–24
- [24] G.R. Bamwenda, A. Ogata, A. Obuchi, J. Oi, K. Mizuno, J. Skrzypek, Appl. Catal. B: Eviron. 6 (1995) 311–323.
- [25] P. Gélin, L. Urfels, M. Primet, E. Tena, Catal. Today 83 (2003) 45–57.
- [26] P. Gélin, M. Primet, Appl. Catal. B: Environ. 39 (2002) 1-37.
- [27] F. Diehl, J. Barbier Jr., D. Duprez, I. Guibard, G. Mabilon, Appl. Catal. B: Environ. 95 (2010) 217–227.
- [28] T. Maillet, C. Solleau, J. Barbier Jr., D. Duprez, Appl. Catal. B: Environ. 14 (1997) 85–95.
- [29] R. Burch, D.J. Crittle, M.J. Hayes, Catal. Today 47 (1999) 229-234.
- [30] S. Ordóñez, L. Bello, H. Sastre, R. Rosal, F.V. Díez, Appl. Catal. B: Environ. 38 (2002) 139–149.
- [31] Y.-F.Y. Yao, J. Catal. 87 (1984) 152-162.
- [32] N. Burgos, M. Paulis, M.M. Antxustegi, M. Montes, Appl. Catal. B: Environ. 38 (2002) 251–258.
- [33] J.R. González-Velasco, J.A. Botas, J.A. González-Marcos, M.A. Gutiérrez-Ortiz, Appl. Catal. B: Environ. 12 (1997) 61–79.
- [34] K. Hauff, U. Tuttlies, G. Eigenberger, U. Nieken, Appl. Catal. B: Environ. 100 (2010) 10–18.

- [35] S.-K. Ihm, Y.-D. Jun, D.-C. Kim, K.-E. Jeong, Catal. Today 93–95 (2004) 149–154.[36] S.R. Katare, J.E. Patterson, P.M. Laing, SAE Tech. Pap. No. 2007–01–3984, 2007.
- [37] K. Irani, W.S. Epling, R. Blint, Appl. Catal. B: Eviron. 92 (2009) 422–428.
 [38] W.R. Patterson, C. Kemball, J. Catal. 2 (1963) 465–478.
- [39] S.E. Voltz, C.R. Morgan, D. Liederman, S.M. Jacob, Ind. Eng. Chem. Prod. Res. Dev. 12 (1973) 294-301.
- [40] R. Caporali, S. Chansai, R. Burch, J.J. Delgado, A. Goguet, C. Hardacre, L. Mantarosie, D. Thompsett, Appl. Catal. B: Environ. 147 (2014) 764–769.
- [41] I. Amon-Mézière, F. Castagna, M. Prigent, A. Pentenero, SAE Tech. Pap. No. 950932, 1995.
- [42] K. Daneshvar, R.K. Dadi, D. Luss, V. Balakotaiah, S.B. Kang, C.M. Kalamaras, W.S. Epling, Chem. Eng. J. 323 (2017) 347–360.