

QUANTA CHEMISTRY

An Institute of Chemical Sciences

CSIR-NET | IIT-GATE | IIT-JAM | Other MSc. Entrance

DPP- (2) Mossbauer Spectroscopy

-											
1.	To record mösspauer spectrum of Fe containing sample, a source X is used. X after the nuclear transformation										
	gives r-radiation used in M.B spectroscopy.										
	(a) 57 Fe, β -emission	(b) ⁵⁷ Co, β-emission	(c) 57 Co, e^{Θ} -capture	(d) 57 Fe, e^{Θ} -capture							
2.	To record mössbauer	spectra of Sn containing	g sample, a source X is ı	used. X after the nuclear transformation							
	gives r-radiation used	es r-radiation used in M.B spectroscopy.									
	(a) 57 Fe, β -emission	(b) 57 Co, β -emission	(c) ¹¹⁹ Sn	(d) 57 Fe, e^{Θ} -capture							
3.	Which radiations used in Mössbauer spectroscopy?										
	(a) X-ray	(b) r-rays	(c) Radiowaves	(d) Microwaves							
4.	For a Nuclei to be Mössbauer active:										
	(a) Nuclear magnetic quantum number equal to zero(b) Nuclear magnetic quantum number less than zero(c) Nuclear magnetic quantum number greater the zero										
	(d) None of these										
5.	What will be the Exci	ted state I value for ⁵⁷ Fe	Nuclei								
	(a) $\frac{1}{2}$	(b) $\frac{3}{2}$	(c) $\frac{5}{2}$	(d) 1							
6.	What will be the Ground state I value for ⁵⁷ Fe Nuclei										
	(a) $\frac{1}{2}$	(b) $\frac{3}{2}$	(c) $\frac{5}{2}$	(d) $\frac{7}{2}$							
7.	What will be the Ground state I value for ¹¹⁹ Sn Nuclei										
	(a) $\frac{1}{2}$	(b) $\frac{3}{2}$	(c) $\frac{5}{2}$	(d) 1							
8.	What will be the Exci	ted state I value for 119Sn	Nuclei								
	(a) $\frac{1}{2}$	(b) $\frac{3}{2}$	(c) $\frac{5}{2}$	(d) 1							
9.	Which of the following Nuclei is Mössbauer active Nuclei?										
	(a) ¹ H	(b) ¹³ C	(c) ⁵⁷ Fe	(d) ¹¹⁹ Sn							
10.	Which of the following	g Nuclei is Mössbauer ac	ctive Nuclei?								
	(a) ⁵⁷ Fe	(b) ⁵⁷ Co	(c) 119Sn	(d) ^{127}I							
11.	Among the following	those can act as Mössbaı	uer nuclei								
	(a) ^{129}I	(b) ⁵⁷ Co	(c) ⁵⁷ Fe	(d) ¹²¹ Sb							

1. 8.	(c) (b)	2.9.	(c) (c,d)	3. 10.	(b) (a,c,d)	4. 11.	(c) (a,c,d)	5. 12.	(b) (123.5	6. 57)	(a)	7. 13.	(a) (0.097)
1			()				ER K		<i>(</i> 1.)		()	7	()
					A 1	NCW	TD L	FV					
	(d) All o	fthese											
	10 aı	nd 150 k	æV.										
	(c) The	energy of	nuclear	transisti	on must b	e large	enough t	o give u	seful rac	liation 1	neans th	at E_{r} mu	st lie between
	(b) The	excited s	tat of en	nitter mu	ıst hav a p	orecurs	or which	is long-	lived an	rasona	bly easy	to hand	lle.
	(a) Samp	ple will b	e alway	s solid.									
20.	Which of	f the follo	owing st	atement	s are true	for Mö	ssbauer s	sectroph	notomet	er:			
	(a) One		(l	b) Two		(0	c) Three		(d) Four			
19.	Find out	the num	ber of M	1össbaue	er signal i	n Fe ₃ (C	Co) ₁₂ .						
	(a) One	_		b) Two	>	-	c) Three		(d) Four			
18.	Find out		·			`				•			
	(a) 12.5		(l	b) 15.0		(0	20.5		(d	25.0			
17.	keV is:	n energy	oi a iviç	ıssvauye	er mucmae	oi ma	ss 139 an	nu 18 2.3) IVIEV.	ne ene	agy emi	uea by t	he nucleus in
17	(a) 35.5		`	b) 25.5 l			c) 20.2 N		`) 15.5 The one		Had b.v.4	h a mu al au a :
	at a veloc	_			_	-					MII		
16.			-				` -				Hz) is m	nove tow	vards absorbr
	(a) 39.6	\times 10 ¹⁰ H	Hz (l	o) 42 ×	$10^{10}\mathrm{Hz}$	(0	e) 8 × 10	⁹ Hz	(d) 55 ×	10 ¹² Hz		
13.	emitting			•							., -		ŕ
15.	(a) 1.95												vt. 100) when
	What is h	ne recoil	energy?										
14.				'e makes	the trans	sition fi	om the E	excited	state of	energy	14.4 ke ^v	V to the	ground state.
	excitd sta			ıs navıng	g a nait-ii	11 01 9.8	3 × 10 ⁻ °s.						
13.				•	•	C		ural line	e width	of the r	-ray emi	ssion fr	om 14.4 keV
	5.76 × 10) ¹⁸ Hz. W	Vhat is tl	he Dopp	ler shift o	of the r	ray frequ	iency to	an outs	side obs	serven?		
12.	Calculate	e the reco	oil veloc	ity and ϵ	energy of	the fre	e Mössba	uer nuc	eleu 119S	n when	emitting	g a r-ray	of frequency

Address : 50 Mall Road, Near GTB Nagar Metro Station Gate No 3, Kingsway Camp, Delhi 110009 Contact Us : 9990382567, 7082062392, 9717373074, 8285815185

(d)

18.

(a)

19.

(b)

20.

(d)

14.

(a,b) 15.

(a)

16.

(b)

17.

HINTS & SOLUTION

12.**Soln.**Mass of ¹¹⁹Sn =
$$\frac{119 \times 10^{-3} \text{ kg mol}^{-1}}{6.023 \times 10^{23} \text{ mol}^{-1}} = 19.76 \times 10^{-26} \text{ kg}$$

Recoil momentum of the nucleus
$$=\frac{hv}{c}$$

Recoil velocity of the nucleus,
$$v = \frac{hv/c}{mass of the nucleus}$$

$$v = \frac{(6.626 \times 10^{-34} \text{ Js})(5.76 \times 10^{18} \text{ s}^{-1})}{(3 \times 10^8 \text{ m/s})(19.76 \times 10^{-26} \text{ kg})}$$

$$= 64.36 \, \text{ms}^{-1}$$

Recoil energy
$$E_{re}$$
 = $\frac{1}{2}$ mv² = $\frac{1}{2}$ (19.767×10⁻²⁶ kg)(64.36m/s)²

$$= 40.94 \times 10^{-23} \text{ J} = 2.56 \times 10^{-3} \text{ eV}$$

Doppler shift
$$\Delta v = v \frac{v}{c} = \frac{(5.76 \times 10^{18} \, \text{s}^{-1})64.36 \, \text{m/s}}{3 \times 10^8 \, \text{m/s}}$$

$$= 123.57 \,\mathrm{Hz}$$

13.**Sol**. Mean lifetime,
$$\Delta t = \frac{\text{Half Life}}{\ln 2} = \frac{9.8 \times 10^{-8} \text{s}}{\ln 2} = 14.138 \times 10^{-8} \text{s}$$

Uncertainty in freq,
$$\Delta v = \frac{1}{2\pi\Delta t} = \frac{1}{2\pi \times (14.139 \times 10^{-8} \text{s})} = 1.125 \times 10^6 \text{ Hz}$$

Energy of the emitted, r-ray $E_r = 14.4 \text{ keV} = 23.04 \times 10^{-16} \text{ J}$

Frequency of r-ray, v
$$= \frac{(1.125 \times 10^{6} \text{ s}^{-1})(3 \times 10^{8} \text{ m/s})}{3.477 \times 10^{18} \text{ s}^{-1}}$$
$$= 0.97 \times 10^{-4} \text{ ms}^{-1}$$
$$= 0.097 \text{ mms}^{-1}$$

14.**Sol**. Recoil velocity
$$E_{re} = \frac{E_0^2}{2mc^2}$$

Energy of gamma-ray,
$$E_0 = (14.4 \times 10^2 \text{ eV}) (1.6 \times 10^{-19} \text{ J/eV})$$

= $23.04 \times 10^{-16} \text{ J}$

Mass of the nucleus, m =
$$\frac{57 \times 10^{-3} \, kg \, mol^{-1}}{6.02 \times 10^{23} \, mol^{-1}} = 9.468 \times 10^{-26} \, kg$$

15.**Sol**. Recoil velocity,
$$v = \frac{\text{recoil momentum of nucleus}}{\text{mass of nucleus}}$$

$$=$$
 $\frac{h/J}{m}$

$$v = \frac{6.626 \times 10^{-34} \,\mathrm{J/s}}{(0.1 \times 10^{-9} \,\mathrm{m})(1.67 \times 10^{-25} \,\mathrm{kg})} = 39.68 \;\mathrm{ms^{-1}}$$

Doppler shift,
$$\Delta v$$
 = $v \frac{V}{c} = \frac{V}{\lambda} = \frac{39.68}{0.1 \times 10^{-9} \text{ m}}$ = $39.68 \times 10^{10} \text{ Hz}$

$$E_{re} = \frac{(23.04 \times 10^{-16} \,\text{J})^2}{2(9.468 \times 10^{-26} \,\text{kg})(3 \times 10^8 \,\text{m/s})^2} = \boxed{3.1148 \times 10^{-22} \,\text{J}}$$
$$= \boxed{1.95 \times 10^{-3} \,\text{eV}}$$

16.**Soln**. Frequency shift
$$(\Delta v) = \frac{Vv}{c}$$
; where $V = \text{relative velocity of source and observer}$

$$v =$$
 frequency of emittd radiaion

17.**Soln.** Recoil energy R =
$$\frac{\epsilon_{\rm r}^2}{2{\rm mc}^2}$$

Recoil enery R =
$$\frac{536 E_r^2}{M} eV$$

$$2.5 \times 10^6 \qquad = \frac{536 \, E_r^2}{139 \times 931.5}$$

$$E_{r} = \sqrt{\frac{2.5 \times 139 \times 931.5 \times 10^{6}}{536}}$$

$$E_r = 24.57 \times 10^3 \, \text{eV}$$

18.**Soln.** Both Fe are equivalent 1 signal

19.**Soln**.
$$Fe_3(Co)_{12}$$

2 Fe are equivalent and 1 Fe are different 2 signals for Fe.

