雪江代数学 1(群論入門):解答集

2021年7月27日

目次														
E	次													2
第1章の演習問題													2	
	1.1.1 .													2
	1.1.2-((1)												2
	1.1.2-((2)												2
	1.1.2-((3)												2
	1.1.2-((4)												2
第2章									3					
	2.3.3 .													3
	2.3.14													3
	2.3.15													3
	2.3.20													3
	2.3.22													3
	2.4.4 .													4
	2.4.17													4
第2章の演習問題 4												4		
	2.1.1 .													4
	2.1.2 .													4
	2.1.4 .													4
	2.2.2 .													5
	2.3.1 .													5
	2.3.2 .													6
	2.3.3 .													6

第1章の演習問題

1.1.1

 $f \text{ ff } g, A \text{ ff } X, B \text{ ff } {}^t XX$ にそれぞれ対応する.

1.1.2-(1)

 $f(S) = \{3, 4\}$

1.1.2-(2)

1.1.2-(3)

1 $2 \in B$ であるが、 $f(2) = \emptyset$ であるため、f は全射でない.

1.1.2-(4)

f(3) = f(5) であるが、 $3 \neq 5$ であるため、f は単射でない。

第2章

2.3.3

 $Proof.\ H_1, H_2$ は G の部分群ゆえ命題 2.3.2 より、 $1_G \in H_1$ かつ $1_G \in H_2$. したがって、 $1_G \in H_2 \cap H_2$. さらに、 $a,b \in H_1 \cap H_2$ であるとき、 $a,b \in H_1$ であるから、命題 2.3.2 より $ab \in H_1$. 同様にして $ab \in H_2$. したがって、 $ab \in H_1 \cap H_2$. $a \in H_1 \cap H_2$ とすると、 $a \in H_1$ と命題 2.3.2 より $a^{-1} \in H_1$. 同様に $a \in H_2$ より $a^{-1} \in H_2$. したがって、 $a^{-1} \in H_1 \cap H_2$. 以上より、命題 2.3.2 の (1)(2)(3) を $H_1 \cap H_2$ は満たすから、 $H_1 \cap H_2$ は G の部分群.

2.3.14

Proof. $S_1 \subset S_2$ ならば、 S_1 のすべての元を S_2 が含むので、 S_1 の元による語はすべて、 S_2 の元から作れる。 したがって、 $\langle S_1 \rangle \subset \langle S_2 \rangle$

2.3.15

2.3.20-(3)

 $S = \{\sigma, \tau\}$ とすると、 $\{\sigma\} \subset S$ かつ $\{\tau\} \subset S$ と命題 2.3.14 より、 $\langle \sigma \rangle \subset \langle S \rangle$ かつ $\langle \tau \rangle \subset \langle S \rangle$. したがって $\langle \sigma \rangle \cup \langle \tau \rangle \subset \langle S \rangle$ となり、(1),(2) の結果と合わせて、回答のようになる.

2.3.22

 $j=1,\cdots,t$ に対し写像

$$i_j: G_j \ni g_j \mapsto (1_{G_1}, \dots, 1_{G_{j-1}}, g_j, 1_{G_{j+1}}, \dots, 1_{G_t}) \in G_1 \times \dots \times G_t$$

を考えると、これは単射であるから、 G_j を $G_1 \times \cdots \times G_t$ の部分集合とみなせるというのは、写像の終域 $G_1 \times \cdots \times G_t$ の部分集合の元に対して、 G_j の元がただ一つ対応するということから、 G_j を $G_1 \times \cdots \times G_t$ の部分集合と "みなす" ことができるということ。

 $^{^{\}dagger 1}$ 冪 x^n の定義は定義 2.1.3 による

2.4.4

Proof. $n \in \mathbb{Z}$ に対して r(n) を以下で定義する. †1

$$r(n) = egin{cases} (n \ \mbox{\it e} \ m \ \mbox{\it o} \ \mbox{\it e} \ \mbox{\it o} \ \mbox{\it o} \ \mbox{\it e} \ \mbox{\it o} \ \mbox{\it e} \ \mbox{\it o} \ \mbox{\it e} \ \mbox{\it e} \ \mbox{\it o} \ \mbox{\it e} \ \mbox{\it o} \ \mbox{\it e} \ \mbox{\it e} \ \mbox{\it o} \ \mbox{\it e} \ \mbox{\it e}$$

 $\sigma=(i_1\cdots i_m)$ とすると, σ により i_j は $i_{r(j+1)}$ に移る.ある $n\in\mathbb{N}$ に対して σ^n によって i_j は $i_{r(j+n)}$ に移る るとすると, σ^{n+1} によって i_j は $i_{r(j+n+1)}$ に移る.数学的帰納法により, σ^n によって i_j は $i_{r(j+n)}$ に移る.ここで,j=r(j+n) を満たす最小の自然数 n は m である.これは, $1\leq j\leq m$ の任意の j に対して成立する.したがって, σ の位数は m である.

2.4.17

ここでの群は、加法による群である。 $d\in H$ ならば $d+d\in H$ である。 これを繰り返せば $d^q=qd\in H$ である。 H は $\mathbb Z$ の部分群であるから、 $(d^q)^{-1}=-qd\in H$ である。 よって、 $n\in H$ ならば $r=n+(-qd)=n-qd\in H$ である。 ところで、 r は $0\leq r< d$ を満たすものであるので、 $r\neq 0$ とすると d 未満の正整数が H の元としてあることになって、 d の取り方に矛盾する。 よって、 r=0 であるから、 $n=qd\in d\mathbb Z$ となり、 $n\in H$ ならば $n\in d\mathbb Z$ である。 したがって、 $H\subset d\mathbb Z$. †1

Proof. $(H \supset d\mathbb{Z}$ の証明) $n \in d\mathbb{Z}$ とすると, $d\mathbb{Z} = \langle \{d\} \rangle$ であり, $d \in H$ ゆえ, $\{d\} \subset H$ である.また,命題 2.3.13 より $\{d\} \subset H$ ならば $\langle \{d\} \rangle \subset H$ である.したがって, $d\mathbb{Z} \subset H$ である.

 $H \subset d\mathbb{Z}$ かつ $H \supset d\mathbb{Z}$ より $H = d\mathbb{Z}$

第2章の演習問題

2.1.1

lacksquare 1 が単位元であるlacksquare 0 に逆元がないことがわかるlacksquare したがって,lacksquare は演算lacksquare により群とならないlacksquare

2.1.2

0 が単位元である。a+b+ba=0 とすると, $a\neq -1$ のときは $b=-\frac{a}{1+a}$ となるが,a=-1 のときは任意の $b\in\mathbb{R}$ に対して a+b+ab=-1 となるため,-1 の逆元が存在しない.したがって, \mathbb{R} は演算。により群とならない。 $^{\dagger 1}$

2.1.4

$$((ab)c)d = (a(bc))d = a((bc)d)$$

 $^{^{\}dagger 1}$ j=m だったりすると, i_{j+1} に移るわけではないので,そういったものを防ぐために r を導入した.

[†] $H \supset d\mathbb{Z}$ は明らかなのか、証明が省かれている。

^{†1} 結合法則は成立している

2.2.2

(3) 39 を法とする合同式を使うと

$$16^8 = (13+3)^8$$
 $\equiv 13^8 + 3^8$ (これら以外の項は 13 と 3 の両方を因数に持つ) $\equiv 13(12+1)^7 + 3^2 \cdot 27 \cdot 27$ $\equiv 13 + 3^2(13 \cdot 2 + 1)(13 \cdot 2 + 1)$ ($(12+1)^7$ を展開すると、 1 以外の項は全て 3 を因数に持つ) $\equiv 13 + 3^2 \cdot 1 = 22$

となる. ここから答えがわかる.

(4) (3) と同様に計算を行うと

$$16^{34} = (13+3)^{34}$$

$$\equiv 13^{34} + 3^{34}$$

$$\equiv 13(12+1)^{33} + 3(13 \cdot 2 + 1)^{11}$$

$$\equiv 13+3=16$$

となる. ここから答えがわかる.

2.3.1

Proof. H が G の部分群であることと同値な条件は命題 2.3.2 から、

$$\begin{cases}
① & 1_G \in H \\
② & \forall x, \forall y \in H, xy \in H \\
③ & \forall x, x^{-1} \in H
\end{cases}$$

である. これを用いて証明する.

 \Longrightarrow の証明:② と③ より H が G の部分群であれば,任意の $x,y\in H$ に対して $x^{-1}y\in H$ \Longleftrightarrow の証明: 任意の $x\in H$ に対して $x^{-1}x=1_G\in H$ である (①). $1_G\in H$ より,任意の $x\in H$ に対して $x^{-1}1_G=x^{-1}\in H$ である (③). 任意の $x\in H$ に対して $x^{-1}y=xy\in H$ である (②).

Proof. まずは、命題 2.3.2 を使って考えてみる。 $G=\mathrm{GL}_{2n}(\mathbb{R})$ とする. $^{\dagger 1}$ 単位行列 $I_{2n}=1_G\in G$ は $^tI_{2n}J_nI_{2n}=J_n$ を満たすから、 $1_G\in\mathrm{Sp}(2n)$ である。また、 $A,B\in\mathrm{Sp}(2n)$ とすると、

$$^{t}(AB)J_{n}(AB) = {}^{t}B^{t}AJ_{n}AB = {}^{t}BJ_{n}B = J_{n}$$

となるから、 $AB \in \mathrm{Sp}(2n)$ である。また、 $A \in \mathrm{Sp}(2n)$ とすると

$${}^{t}(A^{-1})J_{n}A^{-1} = ({}^{t}A)^{-1}J_{n}A^{-1} = ({}^{t}A)^{-1}{}^{t}AJ_{n}AA^{-1} = J_{n}$$

となるから、 $A^{-1} \in \operatorname{Sp}(2n)$ である.

Proof. 次に,演習問題 2.3.1 の必要十分条件を使って考えてみる. $1_G\in \mathrm{Sp}(2n)$ より, $\mathrm{Sp}(2n)$ は空でない G の部分集合である. $A,B\in \mathrm{Sp}(2n)$ とすると

$${}^{t}(A^{-1}B)$$
 ${}^{J_{n}}(A^{-1}B) = {}^{t}B^{t}(A^{-1}){}^{t}AJ_{n}AA^{-1}B = {}^{t}B({}^{t}A)^{-1}{}^{t}AJ_{n}B = {}^{t}BJ_{n}B = J_{n}$

となるから、 $A^{-1}B \in \operatorname{Sp}(2n)$ である

2.3.3

Proof. 命題 2.3.2 を使って考える. $G=\mathrm{GL}_n(\mathbb{C})$ とする. 単位行列 $I_n=1_G\in G$ は ${}^t\bar{I_n}I_n={}^tI_nI_n=I_n$ を満たすから, $1_G\in\mathrm{U}(n)$ である. また, $A,B\in\mathrm{U}(n)$ とすると,

$$^{t}(\bar{A}\bar{B})(AB) = {}^{t}\bar{B}{}^{t}\bar{A}AB = {}^{t}\bar{B}B = I_{n}$$

となるから、 $AB \in U(n)$ である。また、 $A \in U(n)$ とすると、

$${}^{t}\overline{A^{-1}}A^{-1} = {}^{t}\overline{A^{-1}}I_{n}A^{-1} = {}^{t}\overline{A}^{-1}{}^{t}\overline{A}AA^{-1} = I_{n}$$

となるから、 $A^{-1} \in U(n)$ である.

Proof. 演習問題 2.3.1 の必要十分条件を使って考える. $1_G \in \mathrm{U}(n)$ より、 $\mathrm{U}(n)$ は空でない G の部分集合である. $A,B \in \mathrm{U}(n)$ とすると

$${}^{t}(\overline{A^{-1}B})(A^{-1}B) = {}^{t}\bar{B}^{t}(\overline{A^{-1}})\underline{I_{n}}A^{-1}B = {}^{t}\bar{B}({}^{t}\bar{A})^{-1}\underline{A}AA^{-1}B = {}^{t}\bar{B}B = I_{n}$$

となるので、 $A^{-1}B \in \mathrm{U}(n)$. ただし、共役を取ってから逆行列を求めても、逆行列を求めてから共役を取っても変わらず $^{\dagger 1}$ 、共役を取ってから転置を取っても、転置をとってから共役を取っても変わらないことを用いた.

^{†1} P31 例 2.3.9 によると、 $\operatorname{Sp}(2n) = \operatorname{Sp}(4n,\mathbb{R})$ となるはずだが、 $\operatorname{GL}_{2n}(\mathbb{R})$ の部分群になるためにはそんな訳ないので、ここでは $\operatorname{Sp}(2n) = \operatorname{Sp}(2n,\mathbb{R})$ と考える。

^{†1} 行列式の計算は和と積のみで、余因子を求めるときにも和と積の計算しかしない。任意の複素数 z,w に対して $\overline{zw}=\bar{z}\bar{w}$ で、 $\overline{z+w}=\bar{z}+\bar{w}$ であることからこれがわかる。