Convolutional neural network "week 3 and part of week 4"

Object localization:

In object Detection there might be multiple objects in the picture and you have detect them all and localized them

Classification with localization

$$Y = \begin{bmatrix} p_1 \\ b_x \\ b_y \\ b_h \\ b_w \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

Landmark detection

Make object detection by sliding window and change the square size and repeat

Convolutional implementation of sliding window

Turning fc layers into convolutional layers and change the soft max layer

TO:

Bounding box prediction

bx,by between 0&1

bH,bw could be>1

Intersection over union "IOU"

IOU is a measure of the overlap between two bounding boxes

Non-max Suppression

Non-max means that you are going to o/p your maximal probability classification but suppress the close by ones that are non maximal

While the rear any remaining boxes

- Pick box with the largest pc o/p that as prediction
- Discard any remaining box with IOU ≥0.5 with box o/p in the previous step

Anchor boxes

One of the problem with object detection is each of the grid cells can detect only one objects so we use the idea of anchor boxes

Week-4 (face recognition)

Face recognition

Demoed both face recognition as well as livens detection ,the latter meaning making sure that you are a live human

Face verification VS face recognition

Verification

- I/P image ,name ID
- O/P wither the I/P image is that of the claimed person

Recognition

- Has a data base of K persons
- Get an I/P image
- o/p if the image is any of the K person or not recognized
 - Face Authentication/Verification (1:1 matching)

· Face Identification/Recognition (1:N matching)

One shot learning:

Learning from one example to recognize the person a gain

Siamese Network

Use to tell us how different is between I/p of two faces

Triplet loss

Learning objective:

You well be looking at anchor image, positive image as well as negative image

Figure 3. The **Triplet Loss** minimizes the distance between an *an-chor* and a *positive*, both of which have the same identity, and maximizes the distance between the *anchor* and a *negative* of a different identity.

We use gradient decent to minimize the cost function J

Face verification and Binary classification

Binary classification gives output as 0 or 1

And the same face verification if both these are the same persons and zero if both of these are for different persons

$$\hat{y} = \sigma \left(\sum_{k=1}^{128} w_k |f(x^{(i)})_k - f(x^{(j)})_k| + b \right)$$