QUALIFICATIONS

- Completed dissertation solving two pressing microbiological questions with bioinformatic approaches
- Currently in post-doctoral position using network analysis and bioinformatics to counteract contaminant transport in an urban river system
- Proven history in pharmaceutical industry design drug formulations and stability
- Proven history of team leadership and interaction with clients
- Educational experience underscores ability to communicate and inform others

EDUCATION

Doctor of Philosophy -Environmental Engineering Focus in bioinformatics, environmental microbiology, antibiotic resistance, nanotoxicology University of Texas at Austin No. 3rd Environmental Engineering Program in world by Academic Rankings of World Universities (Shanghai) No. 4th Environmental Engineering Program in US by US News No. 20th Engineering program in world by Times Higher Ed. * note: A 6-7-year graduation timeline in engineering curricula is common at major USA universities. Students are required to design at least 3 projects on their own and find funding to conduct this research

May 2018

May

2007

Master of Engineering -Environmental Engineering Focus in nanotoxicology, nanoparticle fate & transport, environmental microbiology, drinking water University of Texas at Austin No. 3rd Environmental Engineering Program in world by Academic Rankings of World Universities (Shanghai) No. 4th Environmental Engineering Program in US by US News No. 20th Engineering program in world by Times Higher Ed. Bachelor of Science - Biochemistry Focus in antibiotic design, natural product isolation, gene pathway characterizationUniversity of Texas at Austin No. 23 in Biochemistry Program in world by Academic Rankings of

 $December\ 2013$

PROFESSIONAL EXPERIENCE

World Universities (Shanghai)

- Built contaminant transport through urban watershed model using informatics approach capable of identifying sources of microbial pollution input into water system.
- Led 1-year 7 person field research campaign sampling 10 sites for 14 parameters to identify sources of contamination
- Designed molecular source tracking methods to isolate bacterial contamination sources
- Tracked antibiotic resistance in bacteria resulting from metal exposure using whole genome sequencing and bioinformatics

May 2018-present

Graduate Research Assistant – University of Texas at Austin

- Identified new source and model of antibiotic resistance using bioinformatics and microbiological approach
- Created comprehensive model of Silver nanoparticle-bacteria interaction based on bioinformatic model
- Characterized fate and transport of eight nanoparticles based on core and coating
- Build biofilm-nanoparticle interaction model describing inclusion of metals in sanitation waterlines
- Responsible for lab operations while mentoring 7 undergraduate students; 3 of whom are now in graduate school
- Led metagenomics consulting group, analyzing data for more than 15 clients over 4 years

January 2011-2018

- Built contaminant transport through urban watershed model using informatics approach capable of identifying sources of microbial pollution input into water system.
- Led 1-year 7 person field research campaign sampling 10 sites for 14 parameters to identify sources of contamination
- Designed molecular source tracking methods to isolate bacterial contamination sources
- Tracked antibiotic resistance in bacteria resulting from metal exposure using whole genome sequencing and bioinformatics

 $May \\ 2018\text{-}present$

Teaching Assistant – University of Texas at Austin

- Taught more than 100 course hours from fields as diverse as molecular biology and cell biology to hydraulic engineering and chemistry
- Built five new learning labs for three courses in biotechnology, molecular biology, and
- Developed small "choose your own adventure" problem-based learning program for large student classes resulting in a "small classroom teaching environment" for large class sizes

January 2011-2018

- Built contaminant transport through urban watershed model using informatics approach capable of identifying sources of microbial pollution input into water system.
- Led 1-year 7 person field research campaign sampling 10 sites for 14 parameters to identify sources of contamination
- Designed molecular source tracking methods to isolate bacterial contamination sources
- Tracked antibiotic resistance in bacteria resulting from metal exposure using whole genome sequencing and bioinformatics

May 2018-present

SIAD Mentor and Lab Head – University of Texas at Austin

- Mentored more than 100 independent first-year student projects on topics ranging from artificial intelligence and organic chemistry, to psychology and social science
- Responsible for a research lab including a lab manager, 15 peer mentors, and 100 students
- Developed course model that led to successful publication pipeline for undergrad researchers
- Wrote new course materials teaching grant application process and professional presentation
- Efforts in this position led to 96% retention (improved from 54%) of at-risk students in natural sciences

August 2016-2018

- Built contaminant transport through urban watershed model using informatics approach capable of identifying sources of microbial pollution input into water system.
- Led 1-year 7 person field research campaign sampling 10 sites for 14 parameters to identify sources of contamination
- Designed molecular source tracking methods to isolate bacterial contamination sources
- Tracked antibiotic resistance in bacteria resulting from metal exposure using whole genome sequencing and bioinformatics

May 2018-present

Engineers without Borders Professional Mentor – Austin, Texas

- Led team of 26 students on projects in Panama and Peru
- Designed water filtration system with 10-year lifespan costing \$50 for use in communities
- Directed 10-person travel team in Panama for on-site building and community negotiations
- Designed irrigation system near Lima, Peru helping two high mountain communities gain access to water

August 2010-2015

- Built contaminant transport through urban watershed model using informatics approach capable of identifying sources of microbial pollution input into water system.
- Led 1-year 7 person field research campaign sampling 10 sites for 14 parameters to identify sources of contamination
- Designed molecular source tracking methods to isolate bacterial contamination sources
- Tracked antibiotic resistance in bacteria resulting from metal exposure using whole genome sequencing and bioinformatics

 $May \\ 2018-present$

Clubes De Ciencias Instructor – University of Guanajuato, Mexico

- Developed biotechnology and societal technology course for at risk students in Mexico
- Developed lab in community and wrote 4 new lab courses in Spanish
- Designed bacterial fuel cells with 10% improvement on reported operational output
- Mentored 30 students, 4 of which are now in graduate schools including Harvard and UCLA

January 2015

- Built contaminant transport through urban watershed model using informatics approach capable of identifying sources of microbial pollution input into water system.
- Led 1-year 7 person field research campaign sampling 10 sites for 14 parameters to identify sources of contamination
- Designed molecular source tracking methods to isolate bacterial contamination sources
- Tracked antibiotic resistance in bacteria resulting from metal exposure using whole genome sequencing and bioinformatics

May 2018-present

Outreach Coordinator – OffRoad Sciences/UT Student Outreach

- Wrote more than 40 hands-on research demonstrations accessible to kids in kindergarten through high school illustrating lecture series topics
- Created 4-year college research plan preparing high school students for courses in college
- Built a comprehensive biology-physics-chemistryeconomics-societal final research project illustrating how all facets of education are fused in real world scenarios
- Co-chaired team of 10 graduate students in efforts and led communication with lecture organizers

August 2012-2016

- Built contaminant transport through urban watershed model using informatics approach capable of identifying sources of microbial pollution input into water system.
- Led 1-year 7 person field research campaign sampling 10 sites for 14 parameters to identify sources of contamination
- Designed molecular source tracking methods to isolate bacterial contamination sources
- Tracked antibiotic resistance in bacteria resulting from metal exposure using whole genome sequencing and bioinformatics

 $May \\ 2018\text{-}present$

Research Chemist II and Drug Design Researcher I – Pharmaform L.L.C

June 2007-2009

- Led organic and chemical research group analyzing stability and formulation effectivity of new active drug ingredients through analytical and physical chemistry
- Conducted patent and legal analysis, preparing data and approaches for expert witnesses
- Developed 3 U.S. pharmacopeia analytical testing methods for drug release and stability analysis
- Pioneered new review process to establish project success and drug safety for company

PROFESSIONAL SKILLS

Bioinformatics: metagenomic analysis, transcriptomics (differential/relative), proteomics, mutational analysis, microarray analysis, weighted network analysis, random forest, various clustering analysis, PCA, tsne, motif analysis, correlational tree analysis

Bioinformatic Software Familiarity: Bioconductor, DESeq2, BowTie, DiffCuff, InParinoid, MeMeSuite, Qiime, MATLab bioinformatics toolkit, some Qiime2 Molecular Biology: DNA, RNA, Protein extractions, PCR, qPCR, RT-qPCR, ELISA, northern/western/southern blot, cloning, HIS-tag-preparations Programing Languages: R, MATLab, Fortran, some Python Microbiology: culturing, transformations, biofilm culturing, chemostat culturing, motility assays, enumeration, flow cytometry, growth assays, antibiotic resistance assays, EPS-characterization, enzymatic activity assays, various staining, sporulation assays, familiar with novel plate reader based high sensitivity growth analysis, BSL-2 and 3 trained

Microscopy: SEM, eSEM, TEM, confocal, phase contrast, brightfield, AFM Nano: DLS, SLS, goniometry, fractal analysis, nano-sight, reductive synthesis and capping modification, SPR, fractional analysis, see microscopy Analytical Chemistry: HPLC, UHPLC, GC, NFIR/IR, Flame AA, ICP-OES/AAS, MS, stripping voltammetry

Languages: English - Native, Spanish - conversational (EU B-1/2), Danish - intermediate (EU A-1/2)

PUBLICATIONS

* Denotes undergraduate mentee IN PREPARATION

Chambers, B. A., Hofmann, H., Kirisits, M. J., Silver and silver nanoparticles cause and select for antibiotic resistance in Pseudomonas aeruginosa. *Manuscript in preparation for Proceedings of the National Academy of Science*

Chambers, B. A., D'Alton, S., *Smith, S. K., Kirisits, M. J., A molecular biological model for the surface attachment action of silver nanoparticles. *Manuscript in preparation for American Chemical Society Nano*

Chambers, B. A., Sabaraya, I. V., Saleh, N.B., Kirisits, M. J. Cohort adoption: The effect of a four-year pre-college STEM outreach program. *Manuscript in preparation for the Journal of Science Education and Technology*

PUBLISHED

Chambers, B. A. A molecular biological model describing silver nanoparticle mechanisms of toxicity and associated antibiotic resistance. Dissertation Published by The University of Texas at Austin. 2018
Saleh, N. B., Chambers, B. A., Aich N., Kirisits, M. J. Mechanistic lessons learned from studies of planktonic bacteria with metallic nanomaterials: implications for interactions between nanomaterials and biofilm bacteria, Frontiers in Microbiology. 2015

Chambers, B. A., Afrooz A. R. M. N., Bae S., Aich N., Katz, L. E., Saleh N. B., Kirisits, M. J. Effects of Chloride and Ionic Strength on Physical Morphology, Dissolution, and Bacterial Toxicity of Silver Nanoparticles. *Environmental Science and Technology.* **2014** 48 (1) 761-769. DOI: 10.1021/es403969x.

Saleh, N. B., Aich, N., **Chambers, B. A.**, Afrooz, A. R. M., Kirisits, M. J. Influence of tin doping on environmental interactions of nano indium oxides in aqueous systems. *Abstracts of Papers of the American Chemical Society*. **2014**

C.B. Mendez, S. Bae, **B. A. Chambers**, S. Fakhreddine, T. Gloyna, S. Keithley, L. Untung, M.E. Barrett, K. Kinney, and M. J. Kirisits, Effect of Roof Material on Water Quality for Rainwater Harvesting Systems Additional Physical, Chemical, and Microbiological Data. *Texas Water Development Board* **2010**

PRESENTATIONS

Landsman M. R., **Chambers B.A.**, Kirisits M. J., Contaminant transport in an Austin Urban Watershed: approaches to isolate human influence. Waller Creek Consortium. Austin Texas, May 9th, 2019

Chambers B. A., Smith, S. K., Kirisits M. J., Silver nanoparticles induce antibiotic resistance in *Pseudomonas aeruginosa*. American Chemical Society National Meeting, New Orleans March 18-22, 2018

Chambers B. A., Smith S. K., Kirisits M. J., Resistance is not futile: Metals generate antibiotic resistance in engineered systems. Sustainability Conference. University of Texas, November 8-11, 2016

Chambers B. A., Kirisits M. J., Antibiotic resistance consequences of silver nanoparticle use. Gordon Microbial Stress Response. Mount Holyoke, July 17 -26, 2016

Chambers B. A., Kirisits, M, Chloride drive low fractal dimension silver nanoparticle formation, controlling toxicity and stress response. University of Texas, March 20, 2014

Chambers B. A., Katz L. E., Kirisits M. J., Chloride concentrations and ionic strength impact the toxicity and stability of silver nanoparticles in bacterial exposure media. 87th American Chemical Society Colloid and Surface Science Symposium. University of California Riverside, June 23-June 26, 2013

Chambers B., Nguyen H. Kirisits, M.J. Microarray Analysis of Nanosilver Tolerance Strategies in *Pseudomonas aeruginosa* and *Escherichia coli*. Environmental Nanotechnology Gordon Conference, 2011, Waterville Valley, NH. Poster Presentation.

TEACHING EXPERIENCE

Clubes De Ciencias, University Of		January 2015
Guanajuato, Mexico		2016, 2017, 2018
From trash to treasure:	2017	
Using bacteria to power		2016
the future		2015
Self-written course		2015
The University of Texas At Austin		2014
Scientific Inquiry Across		2011, 2013
the Disciplines	2015	
Stuart Reichler and		2014
Self-written		2011
Cell Biology		2010
Arturo De Lozanne and		2006
Self-written		2005
Introduction to		
Environmental		
Engineering		
Mary Jo Kirisits		
Hydraulic Engineering		
John Burgin		
Microbiology		
Pratibha Saxena		
Marvin Whiteley		
Mary Jo Kirisits		
Molecular Biology		
Scott Stevens		
Ellen Gottlieb		
Mary Jo Kirisits		
General Engineering		
Chemistry		
Self-written course		
Organic Chemistry and		
Biochemistry for Nursing		
Students		
Fatima Fahkreddine		
General Chemistry		
Sarah Sutcliffe		
Average rating: 4.62 out of 5		

CERTIFICATIONS

Translating nano-experience to an academic career: Integrating social aspects in engineering education through active learning

Active Learning

Active Learning

Certification Program

Interdisciplinary Education

Certificate

School of Undergraduate Education, University Of Texas At Austin

AWARDS

 $Ben\ D.\ Gees lin\ Endowed\ Presidential \quad 2013,\ 2017\mbox{-}2015,$

Scholarship 2016, 2017 Kolodzey Travel Grant 2016

American Water Works Association 2015 Scholarship 2014-2015 University of Texas at Austin Legacy 2014

Fellowship 2011-2012

Earnest Gloyna Presidential

Scholarship

Texas American Water Works

Association Fellowship

 $Gus\ Fruh\ Memorial\ Fellowship$

PROFESSIONAL SOCIETIES

American Water Works Association American Chemical Society

PERSONAL

bicycle touring, hiking/camping, language and history enthusiast, swing dancing, amateur geologist

October

2016

Fall

2016