Devoir TP1 proba

Romain Ferrand, 149E

Exercice 1

pour N = 1000

n : cardinal de l'ensemble

On détermine la probabilité de tirer 6 numéros distincts sur n avec remise : le nombre succès est égal au nombre de suite de 6 nombres distincts sur n, ce qui correspond à un arrangement de 6 parmi n: A_n^6 le nombre total de suite de 6 nombres est égale à n^6 car on a n possibilité pour 6 nombres ainsi comme $A_n^6 = n(n-1)(n-2)(n-3)(n-4)(n-5)$

on a bien :
$$P(n) = n(n-1)(n-2)(n-3)(n-4)(n-5)/n^6 = (n-1)(n-2)(n-3)(n-4)(n-5)/n^5$$

Moyenne de $(xV - yV)$: 0.0018534.

Définie la moyenne de la différence entre la théorie et l'expérience, cette différence est faible on est donc proche de la théorie

Moyenne de
$$(xV - yV - m)^2$$
, variance de $(xV - yV)$: 1.2929459 × 10⁻⁴.

Définie l'écart à la moyenne de la différence entre la théorie et l'expérience, on remarque que cette valeur étant faible, la dispertion de "xV-yV" est donc faible

Figure 1: Probabilité de 6 valeurs distinctes parmi n

Exercice 1

pour N = 2000

Moyenne de (xV - yV) : 2.3119848×10^{-4} .

pour N = 2000 l'expérience est 8.0164888 plus proche de la théorie que pour N = 1000

Moyenne de $(xV - yV - m)^2$, variance de (xV - yV): 8.1598791×10^{-5} .

pour N=2000 la dispersion est 1.584516 plus faible que pour N=1000

Figure 1: Probabilité de m numéro sur n dans le bon ordre

Exercice 2

pour N = 500

soit A = "m numéro sur n dans le bon ordre"

 $\Omega=$ "ensemble des suite ordonnée de m éléments sur n"

$$\Omega = \{(a1,..,am), i,j \in \{1,..,n\} \text{ ai} \neq aj \text{ pour i} \neq j\}$$

pour chaque sous partie de m éléments d'un ensemble à n éléments, il une façon de ranger dans le bon ordre les éléments.

Donc on cherche pour A le nombre de suite avec m éléments dans le bon ordre comme il y en a une par sous partie à m élément de n

on a
$$|A| = C_n^m$$

on a également $|\Omega| = A_n^m$

on a donc bien par simplification $P(A) = |A|/|\Omega| = 1/m!$

Moyenne de |pV - P| : 0.0019446.

Définie la moyenne de la différence entre la théorie et l'expérience, elle est faible donc l'expérience est proche de la théorie

Max de |pV - P| : 0.0069524.

Maximum de l'erreur entre la théorie et l'expérience

Figure 1: Probabilité de m numéro sur n dans le bon ordre

Exercice 2

pour N = 1500

Moyenne de |pV-P| : $7.4022109 \times 10^{-4}.$

Pour N = 1500 l'expérience est 2.627053 proche de la théorie que pour N = 500 $\mbox{Max de } |pV-P|: 0.0020952.$

Maximum de l'erreur entre la théorie et l'expérience