انجیبنتری حساب (جلد اول)

خالد خان يوسفر. كي

جامعه کامسیٹ، اسلام آباد khalidyousafzai@comsats.edu.pk

عنوان

хi																																		پ	د يبا
xiii																														اچ	کادیہ	<u>_</u>	ي كتا	پيا نا جوا	مير د
1																											ت	باوار	ي مي	تفر ف	ساده	ول	. جدا	ور	1
2																														ئى مەسىي	نموز		1.	1	
14										ولر	ب	کید	رز	اور	مت	ے سر	ن کی	رال	ميا.		طلد	ئى م	زياؤ	ومية	كاجيو	'y'	' =	= ;	f(x, y	_/)		1.	2	
23																														، پاعلیم			1.	3	
39																														۔ پاساد			1.4	4	
51																														ی مار اساده			1.:	•	
68																														ی خو ی خط			1.		
	•																يت	بتائ	بر یک	تاو	دین	وجو	ما کی	حل	ت:	ب ساوا،	يىر نى مى	ں تفر ف	رر ت	ِ ائی قیم	ر. ابتد		1.	_	
- 0																																			_
79																														، تفرق		وم	. جه د	נו	2
																										-				یں خو	•		2.	1	
95																																	2.	2	
110																																	2.	3	
114																																	2.	4	
130																												وات	مسا	كوشى	يولر		2.	5	
138																							L	ونسح	؛ور	تائی	وريكأ	تاو	ۇرىي	کی وج	حل		2.	6	
147																								ت	أوار) مسر	فر ق	اده ته	ی سا	متجانس	غير		2.	7	
159																											٦	رگر	ناثر	ن ار ت	جبرة		2.	8	
165																				ىك	ملی م	۶_	يطه.	كاج	حل	عال	زار	برق		2.8	3.1				
169																														ادوار			2.	_	
180										ىل	کاح	ت	باوار	مــه	رقی	تف	اده) سر	نطح	: س	متجانه	نير •	سے غ	تج	ر ا	کے ط	خ_	بر ل	لوم	ارمع	مقد	2	2.1	0	

iv

نظى ساده تفر قى مساوات		3
متجانس خطی ساده تفرقی مسادات	3.1	
مستقلّ عدد کی سروا کے متجانس خطی سادہ تفرقی مساوات	3.2	
غير متجانس خطی ساده تفرقی مساوات	3.3	
غیر متجانس خطی سادہ تفر قی مساوات	3.4	
	نظامِ تفرق	4
قالب اور سمتىيە كے بنیادی حقائق		
سادہ تفر تی مساوات کے نظام بطورانجینئر کی مسائل کے نمونے	4.2	
نظرىيە نظام سادە تفرقى مساوات اور ورونسكى	4.3	
4.3.1 نظی نظام		
ستقل عددی سروالے نظام۔ سطح مرحلہ کی ترکیب		
نقطہ فاصل کے جانچ کڑتال کامسلمہ معیار۔استحکام		
ي في تراكيب برائے غير خطي نظام		
ع د میب ایک در جی مساوات میں تباد کہ		
۱۰۰۲ مارون کو حتایت کا متاس تعطی نظام	4.7	
نادو کرن عرف کے بیر ہو جی من کا من کا ہے۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔ ۔	1.,	
2)1		
ں ہے سادہ تفر تی مساوات کاحل۔اعلٰی تفاعل	طاقق تسلسا	5
ى كى مادى مادى مادى ئارى ئارى ئارى ئارى ئارى ئارى ئارى ئار		٥
رىي ب ن ى داردى		
مبَسُوط طاقتى تسلىل ـ تركيب فَرومنيوس	<i>5</i> 2	
taran da antara da a	5.3	
5.3.1 علملى استعال	5.3	
مسادات بىيىل اور بىيىل تفاعل	5.4	
ساوات بىيل اور بىيل تفاعل	5.4 5.5	
مساوات بىيىل اور بىيىل نفاعل	5.4 5.5 5.6	
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7	
مساوات بىيىل اور بىيىل نفاعل	5.4 5.5 5.6 5.7	
مساوات بيمبل اور بيمبل نفاعل	5.4 5.5 5.6 5.7 5.8	6
مساوات ببیل اور ببیل نفاعل	5.4 5.5 5.6 5.7 5.8	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 لا پلاس تاد 6.1	6
مساوات بيمبل اور بيمبل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پياس تاباد 6.1 6.2	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پاس تا 6.1 6.2 6.3	6
مساوات بيل اور بيل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پاس جاد 6.1 6.2 6.3 6.4	6
مساوات بيل اور بيل نفاعل	5.4 5.5 5.6 5.7 5.8 ال پاس جاد 6.1 6.2 6.3 6.4	6
مساوات بيسل اور بيسل نفاعل	5.4 5.5 5.6 5.7 5.8 6.1 6.2 6.3 6.4 6.5 6.6	6

عـــنوان V

لایلاس بدل کے عمومی کلیے	6.8	
مرا: سمتيات	خطىالجه	7
برر. غير سمتيات اور سمتيات	7.1	•
سر سیال از اور سایال ۱۹۵۰ میل ۱۹۵۰ میل ۱۹۵۰ میل ۱۹۵۶ میل	7.2	
سمتيات كالمجموعه، غير سمتى كے ساتھ ضرب	7.3	
ي مناه و خطح تابعيت اور غير تابعيت	7.4	
ل صلاح کا بلیت و میر مابیت	7.5	
الدروني شرب فضا	7.6	
ستي ضرب	7.7	
ن رب	7.8	
غير سمق سه ضرب اورديگر متعدد ضرب	7.9	
ير ن شه سرب اورو ير مسرو سرب	1.9	
برا: قالب، سمتىي، مقطع يه خطى نظام	خطىالجبر	8
قالب اور سمتیات به مجموعه اور غیر سمق ضرب	8.1	
قالبی ضرب "	8.2	
8.2.1 تېدىلىمى كى		
خطی مساوات کے نظام۔ گاو تی اسقاط	8.3	
8.3.1 صف زيند دار صورت		
خطى غير تالعيت در حبه قالب ـ سمتي فضا	8.4	
خطی نظام کے حل: وجو دیت، کیتا کی	8.5	
	8.6	
مقطع۔ قاعدہ کریم	8.7	
معكوس قالب_گاوُس جار دُن اسقاط	8.8	
سمتی فضا،اندرونی ضرب، خطی تبادله	8.9	
برا: امتيازي قدر مسائل قالب	خطىالج	9
بردانسیادی خدر مسائل قالب امتیازی اقدار اورامتیازی سمتیات کا حصول	9.1	
امتیازی مسائل کے چنداستعال 🐪 👢 🗓 👢 🗓 👢 🗓 دیں دیا ہے۔ دیا ہے جنداستعال 👚 دیا ہے 672	9.2	
تشاكلي، منحرف تشاكلي اور قائمه الزاويه قالب	9.3	
امتیازی اساس، وتری بناناه دودرجی صورت	9.4	
مخلوط قالب اور خلوط صورتیں	9.5	
ر قی علم الاحصاء ـ سمتی تفاعل 711	سمتی تفر	10
	10.1	
	10.2	
منحتي		
· · · · · · · · · · · · · · · · · · ·	10.4	
•••••••••••••••••••••••••••••••••••••••	10.5	
ستتحار فآراوراسراط	10.6	

vi

745																																	
751 .																					ن	لوال) ۋھ	ن کم	ميدا	سمتی	غير	رق،	متى تف	س	10.8	3	
764																					يات	سمتب	كاك	رار	رتبادا	ماور	بانظا	نددې	إدل م	ت	10.9)	
769																										بميلاو	کی کچ	بران	متی مب	- 1	0.10)	
777 .																									. (رو شر	کی گر	عل	متى تفا	ر 1	0.11		
																												,			6		
781																															سمتی تکم		Ĺ
782																												ل	طی تکم	<i>;</i>	11.1		
782 . 787 .																											حل	ل کا	طی تکم	<i>;</i>	11.2	2	
796																												ىل	وہرائکم	,	11.3	;	
810																							لہ .	ا تباد	میں	أتكمل	خطى	ل کا	وہر اکم	,	11.4	ļ	
820																																	
825																																	
837																												ل	طحی تک		11.7	7	
845																																	
850																							. ر	تتعا	اورا	تائج	کے و	يلاو.	سُله کچ	م	11.9)	
861 . 866 .																						•		ء ،	٠,		ر	نوتسر	سكله سن	1 م	1.10)	
869		•	•	•		•	•	•	•	•		•	•	•	•	•	•	•		•	•			٠	٠ (الكمل	لتحطى	آزاد	اہسے	1را	1.12	2	
883																													,	نلىر	فوريئر ^ت	12	,
884																								ىل	, تىل	زناذ ونياذ	، تکو	فاعل	•		/		•
889																																	
902																																	
907																																	
916																																	
923																							ول	ا حصا	بتكمل	ابغير	اسرک	ردې	رييزء	فو	12.6)	
931 . 936 .				•		•	•		•	•			•	•	•					•			٠,		•		ں ر	إنعاث	بر کاار په	?	12.7	,	
936		٠	٠	•	 •	٠	٠	٠	•	•	 •	٠	•	٠	•	٠		•	•		علل	ب	_ مكعر	۔ کئی	لتثيرا	نگونی	لعبه	ببذر	قريب خ	υ	12.8	3	
940														•											•			مل	ريئر	فو	12.9)	
953																												ا. •• .	رمد اه	نة ټ	جزوی ^آ	. 13	2
953 .																															.رون 13.1		,
958																																	
960																																	
973																																	
979																																	
987																						رت	وحرا	ر بها	خ میر	سلار	آیکی	الساف	متنابح	IJ	13.6)	

vii

	13.7	1 نمونه کشی:ار تعاش پذیر جھلی۔ دوابعادی مساوات موج ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،	993 .	•
	13.9	1 قطبی محدد میں لایلاس	006 .	1
		13 دائری جیلی۔ مساوات بیبل		
	13.11	13 مساوات لا پلاس- نظر بير مخفّى قوه	018.	1
		13 کروی محدد میں مساوات لاپلاس۔مساوات لیزاندر ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ، ،		
	13.13	13 لا پلاس تبادل برائے جزوی تفرقی مساوات	030.	1
		, re		
14	مخلوط اعداد	مداديه مخلوط تخليل نفاعل 	1037	
	14.1	مداد سوط سان ها ن 1 مخلوطاعداد	038 .	1
	14.3	1 مخلوط سطح میں منحنیات اور خطیے	054 .	1
	14.4	1 مخلوط تفاعل ـ - حد ـ تفرق ـ تتحليلي تفاعل	059 .	1
		1 كوشي ريمان مساوات ـ		
		1		
	14.7	1 قوت نمائی تفاعل	084 .	1
	14.8	1 تىكونىاتى اور بذلولى تفاعل	089 .	1
	14.9	1 لوگار تقم به عمومی طاقت	095 .	1
		٠ ک ۀ		
15		راويه نقشه کشي عرب	1103	
		1 تشته گثی	104 .	1
		1 محافظ زاوییه نقش		
		1 مخطی کسری تبادل		
		1 مخصوص خطی کسری تبادل		
		1 نقش زیردیگر تفاعل		
	15.6	1 ريمان سطين	149 .	1
16	مخلوط تكملاب	(A	1157	
10	16.1	نات 1 مخلوط مستوی میں خطی تکمل	157	1
		۔		
	16.2	1 کوشی کا کا موال	172	1
	10.5	ا مون قامستگه شن	1/4.	1
	10.4	ا من من ما ميت قاصلول بدر يعه غير من	184.	1
	16.5	1 كوشى كاكلية تكمل	189 .	1
	16.6	1 تحلیلی نفاعل کے تفرق	194 .	1
17	ر ترتیباور ^ن	. تبا	1201	
1 /		اور سن 1 ترتیب		
	17.1	1 رئيب 1 شكل	201.	1.
	17.2	ا کس	∠∪8. 213	1.
	1 /)	ا و العول م وربت رائے رسیادر رن	41.7.	1

17.4 كي سر حقيقي ترتيب ليبنئز آزمائش برائے حقيقي تسلسل	
1243 طاقتى تىلىل، ئىل تىلىل اورلوغوں تىلىل 18.1 طاقتى تىلىل . 18.2 طاقتى تىلىل كى روپ ميں نفائل 18.3 ئىل تىلىل كى روپ ميں نفائل 18.4 ئىل تىلىل عاصلى كرنے عملى تراكيب 18.5 طاقتى تىلىل عاصل كرنے عملى تراكيب 18.6 كياں استرار 18.6 لوغوں تىلىل 18.6	18
1303 18.8 1315 ا حَمْل بذریعہ ترکیب بقیہ 1315 19.1 1322 19.2 1327 19.3 1327 19.3 1335 19.3 1335 19.3 1335 19.3 1336 19.3 1337 19.3 1338 19.4	19
1343 علوط تحليل تفاعل اور نظريد مخفي قوه 20.1 ماكن برقى سكون 20.1 عامل برقى سكون 20.1 عامل برقى سكون 20.2 دوبعدى بهاوسيال 20.3 يار مونى نفاعل كے عمومی خواص 20.3 يوسول كليد كلمل 20.4 يوسول كليد كلم	20
1371 اعدادی تجربیه 21.1 1372 خالس اور غلطیاں۔ کمپیوٹر 21.2 1374 ایر انے سے مساوات کا علی 1385 21.3 1392 21.4 1401 پاہمی تحریف 21.5 کیکدار منحنیات 1408 21.5 1408 21.6 1416 21.7	21
1417 اضافی ثبوت مفید معلومات 1421	

میری پہلی کتاب کادیباچہ

گزشتہ چند برسوں سے حکومتِ پاکستان اعلیٰ تعلیم کی طرف توجہ دے رہی ہے جس سے ملک کی تاریخ میں پہلی مرتبہ اعلیٰ تعلیمی اداروں میں تحقیق کا رجحان پیدا ہوا ہے۔امید کی جاتی ہے کہ یہ سلسلہ جاری رہے گا۔

پاکستان میں اعلٰی تعلیم کا نظام انگریزی زبان میں رائج ہے۔دنیا میں تحقیقی کام کا بیشتر حصہ انگریزی زبان میں ہی چھپتا ہے۔انگریزی زبان میں ہر موضوع پر لا تعداد کتابیں پائی جاتی ہیں جن سے طلبہ و طالبات استفادہ کرتے ہیں۔

مارے ملک میں طلبہ و طالبات کی ایک بہت بڑی تعداد بنیادی تعلیم اردو زبان میں حاصل کرتی ہے۔ان کے لئے انگریزی زبان میں موجود مواد سے استفادہ کرنا تو ایک طرف، انگریزی زبان ازخود ایک رکاوٹ کے طور پر ان کے سامنے آتی ہے۔یہ طلبہ و طالبات ذبین ہونے کے باوجود آگے بڑھنے اور قوم و ملک کی بھر پور خدمت کرنے کے قابل نہیں رہے۔ایسے طلبہ و طالبات کو اردو زبان میں نصاب کی اچھی کتابیں درکار ہیں۔ہم نے قومی سطح پر ایسا کرنے کی کوئی خاطر خواہ کوشش نہیں گی۔

میں برسوں تک اس صورت حال کی وجہ سے پریشانی کا شکار رہا۔ پچھ کرنے کی نیت رکھنے کے باوجود پچھ نہ کر سکتا تھا۔ میرے لئے اردو میں ایک صفحہ بھی لکھنا ناممکن تھا۔ آخر کار ایک دن میں نے اپنی اس کمزوری کو کتاب نہ لکھنے کا جواز بنانے سے انکار کر دیا اور بوں بیہ کتاب وجود میں آئی۔

یہ کتاب اردو زبان میں تعلیم حاصل کرنے والے طلبہ و طالبات کے لئے نہایت آسان اردو میں لکھی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کوشش کی گئی ہے۔ کہ اسکول کی سطح پر نصاب میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان موجود نہ تھے وہاں روز مرہ میں استعال ہونے والے الفاظ چنے گئے۔ تکنیکی الفاظ کی چنائی کے وقت اس بات کا دہان رکھا گیا کہ ان کا استعال دیگر مضامین میں بھی ممکن ہو۔

کتاب میں بین الا توامی نظامِ اکائی استعال کی گئے۔ اہم متغیرات کی علامتیں وہی رکھی گئی ہیں جو موجودہ نظامِ تعلیم کی نصابی کتابوں میں رائج ہیں۔ یوں اردو میں کھی اس کتاب اور انگریزی میں اسی مضمون پر کھی کتاب پڑھنے والے طلبہ و طالبات کو ساتھ کام کرنے میں دشواری نہیں ہو گی۔

امید کی جاتی ہے کہ یہ کتاب ایک دن خالصتاً اردو زبان میں انجنیرُ نگ کی نصابی کتاب کے طور پر استعال کی جائے گی۔اردو زبان میں برقی انجنیرُ نگ کی مکمل نصاب کی طرف یہ پہلا قدم ہے۔

اس کتاب کے پڑھنے والوں سے گزارش کی جاتی ہے کہ اسے زیادہ سے زیادہ طلبہ و طالبات تک پہنچانے میں مدد دیں اور انہیں جہاں اس کتاب میں غلطی نظر آئے وہ اس کی نشاندہی میری ای-میل پر کریں۔میں ان کا نہایت شکر گزار ہوں گا۔

اس کتاب میں تمام غلطیاں مجھ سے ہی سر زد ہوئی ہیں البتہ انہیں درست کرنے میں بہت اوگوں کا ہاتھ ہے۔میں ان سب کا شکریہ اداکرتا ہوں۔ یہ سلسلہ ابھی جاری ہے اور مکمل ہونے پر ان حضرات کے تاثرات یہاں شامل کئے جائیں گے۔

میں یہاں کامسیٹ یونیورسٹی اور ہائر ایجو کیش کمیشن کا شکرید ادا کرنا چاہتا ہوں جن کی وجہ سے ایسی سر گرمیاں ممکن ہوئیں۔

خالد خان يوسفر. ئي

28 اكتوبر 2011

باب21

اعدادی تجزیه

انجینئری حساب کا متیجہ آخر کار اعدادی ہوتا ہے للذا انجینئری طالب علم کے لئے بنیادی اعدادی تو اکیب ا جاننا ضروری ہیں جن کی مدد سے دیے گئے مواد سے اعدادی جوابات اخذ کرنا ممکن ہو۔

بعض اوقات نظریہ سے حاصل کردہ جوابات عملاً قابل استعال نہیں ہوتے ہیں، مثلاً یک درجی خطی تفرقی مساوات کے حل کا تعملی کلیہ (حصہ 1.5)، خطی الجبرائی مساوات کے نظام کا مقطع کی مدد سے حل بذریعہ قاعدہ کریمر (حصہ 8.7)۔ کئی بار نظریہ صرف حل کی وجودیت کی یقین دہانی کرتا ہے لیکن اصل حل حاصل کرنے کے بارے میں کوئی مدد فراہم نہیں کرتا ہے۔

اعدادی تراکیب کی اہمیت کمپیوٹر کی ایجاد کی نظر ہے۔ ہم ان تراکیب کے نظریہ اور عملی استعال پر غور کریں گے۔تجزیہ خلل 2 پر بھی غور کیا جائے گا جو اعدادی تراکیب میں زیادہ اہمیت کے حامل ہے۔

 $\begin{array}{c} numerical\ methods^1 \\ error\ analysis^2 \end{array}$

اب 21.اعدادي تحبزيد

21.1 خلل اور غلطیاں۔ کمپیوٹر

چونکہ اعدادی تراکیب میں متناہی تعداد کے اعداد استعال کرتے ہوئے متناہی تعداد کے چال کے بعد جواب حاصل کیا جاتا ہے لہذا یہ تراکیب متناہی چال³ بین جو اصل (نا معلوم) بالکل درست حل کا نقریب⁴ بیش کرتے ہیں ماسوائے ان چند صور توں میں جب اصل جواب کافی سادہ ناطق عدد ہو اور ہم کوئی ایسا اعدادی ترکیب استعال کریں جو یہی بالکل درست جواب فراہم کرتا ہو۔

اگر کسی مقدار کی اندازاً قیمت a^* ہو اور اس کی اصل قیمت a ہو تب فرق $\epsilon = a^* - a$ کا حتمی خلل یا مخشراً a^* کا خلل a^* بیں۔یوں

$$a^* = a + \epsilon$$
 خلل + اصل قیت = تقریب خلل + اصل

ہو گا۔ a^* کی اضافی خلل ϵ_r کی تعریف درج زیل ہے۔

$$\epsilon_r = \frac{\epsilon}{r} = \frac{a^* - a}{a} = \frac{\dot{\omega}}{a}$$
 ($a \neq 0$)

 $\gamma=$ ایک نئی مقدار $\epsilon_rpprox rac{\epsilon}{a^*}$ ہو تب $\epsilon_rpprox rac{\epsilon}{a^*}$ ہو تب کی مقدار $|\epsilon|$ کا $|\epsilon|$ کی قیمت سے بہت کم ہو تب $\epsilon_rpprox rac{\epsilon}{a^*}$ ہو گا۔ ہم ایک نئی مقدار $a-a^*=-\epsilon$

$$a=a^*+\gamma$$
 ورستگی $a=a^*+\gamma$ اصل قیمت $a=a^*+\gamma$

ہو گا۔ آخر میں a^* کی حد خلل 9 سے مراد عدد β ہے جس کی تعریف درج ذیل ہے۔

$$|a^* - a| \le \beta \implies |\epsilon| \le \beta$$

خلل کی تین قشمیں تجربی خلل، قطع چال خلل اور تعداد اعداد خلل ہیں۔ تجربی خلل اسے مراد مواد میں خلل ہے (جو تجربی ناپ کی وجہ سے ہو سکتے ہیں)۔ ہالکل درست جواب تک پہنچنے کی خاطر متناہی (یا لامتناہی) تعداد کے حسابی

finite processes³ approximation⁴ error⁵

relative error⁶

correction⁷

یں گے۔ $\gamma = -\epsilon$ کی جاتی ہے۔ آپ کی ایک تعریف کو تسلیم کرتے ہوئے آگے بڑھ سکتے ہیں۔ ہم خلال کی تعریف $\gamma = -\epsilon$

error bound⁹

Experimental errors¹⁰

چال (قدم) درکار ہوں گے۔ حقیقت میں کسی خاص تعداد کے چال بعد حساب روک دیا جاتا ہے اور یوں قطع چال خلل 11 پیدا ہو گا۔ ہر قدم پر حساب کے دوران کمپیوٹر متناہی تعداد کے اعداد استعال کرتے ہوئے کمتر ہندسہ سے کم قیتوں کو رد کرتا ہے جس سے تعداد ہندسہ خلل 12 پیدا ہو گا جس پر ہم اب غور کرتے ہیں۔

اعشاری نظام میں ہر عدد کو متناہی یا لامتناہی تعداد کے اعشاری ہندسوں سے ظاہر کیا جاتا ہے۔ کمپیوٹر لامتناہی تعداد کے ہندسوں سے کے ہندسوں کو ذخیرہ نہیں کر سکتا ہے لہذا کمپیوٹر استعال کرتے ہوئے کی بھی عدد کو متناہی تعداد کی ہندسوں سے ظاہر کیا جاتا ہے۔ مقورہ نقطہ 13 نظام میں نقطہ اعشاریہ کے بعد مقررہ تعداد کے ہندسے پائے جاتے ہیں مثلاً 35.143 ، 0.076 ، 5.000 جبکہ غیر مقورہ نقطہ 14 نظام میں ملحوظ ہندسوں 15 کی تعداد متعین ہوتی ہے مثلاً 10 کا میں ملحوظ ہندسہ سے مراد 10 کا ہر ہندسہ ہے مادا کے طور پر سول کی تعداد چار ہے۔ عدد 10 کے محوظ ہندسہ سے مراد 10 کا ہر ہندسہ ہے مادا کے علاوہ ہر صفر بھی جانب صفر جو اعشاریہ کا مقام تعین کرتا ہو۔ (یوں اس کے علاوہ ہر صفر بھی 10 مادا کے بہلا غیر صفر عدد کی بائیں جانب صفر جو اعشاریہ کا مقام تعین کرتا ہو۔ (یوں اس کے علاوہ ہر صفر بھی 16 مادا کے بہلا غیر صفر عدد کی بائیں جانب صفر جو اعشاریہ کا مقام تعین کرتا ہو۔ (یوں اس کے علاوہ ہر صفر بھی 10 مثال کے طور پر 5420 ، 1.340 اور 0.001460 میں سے ہر ایک میں چار محوظ ہندسے 10 ہیں۔

تعداد ہندسہ خلل کا قاعدہ اب بیان کرتے ہیں۔ (k ملحوظ ہندسوں تک قطع کرنے کی تعریف بھی یہی ہے پس اس میں ہندسہ کی جگہ ملحوظ ہندسہ پر کریں۔)

k+1 وال ہندسہ اور اس کے بعد تمام ہندسوں کو رد کریں۔اگر رد شدہ عدد مقام k کی اکائی کی نصف سے کم ہو تب مقام k پر ہندسہ کو تبدیل نہ کریں ("گھٹانا")۔اگر رد شدہ عدد مقام k کی اکائی کی نصف سے زیادہ ہو تب تب مقام k کی ہندسے کے ساتھ k جمع کریں ("بڑھانا")۔اگر رد شدہ عدد مقام k کی اکائی کا نصف ہو تب اگر مقام k کا ہندسہ طاق ہو تب اس کو بڑھا کر جفت بنائیں۔(مثال کے طور پر k اور k کو اشاریہ کے بعد ایک ہندسہ تک قطع کرتے ہوئے بالترتیہ k اور k واصل ہوگا۔)

اس قاعدہ کا آخری حصہ یقینی بناتا ہے کہ عدد کا کمتر حصہ رد کرتے ہوئے اوسطاً برابر مرتبہ عدد بڑھایا اور گھٹایا جاتا ہے۔

Truncation error¹¹

rounding error¹²

fixed point¹³

floating point¹⁴

significant digits¹⁵

 $^{^{16}}$ ابیاجہ ول جو k ملحوظ ہندے دیتاہویں، جب تک کہاناجائے کہ ابیانہیں ہے، ہم فرض کرتے ہیں کہ دیا گیاعدد *a، بالکل درست قیت a=1 آخری ہندے کی = 0.5 اکایاں مختلف ہور کیا گئا ہے۔ مثال کے طور پراگر = 0.1996 ہو سکتا ہے۔ مثال کے طور پراگر = 0.1996 ہو کہاناجائے کہ المحالی کے المحالی کا معربی المحربی المحر

اب 21 اعدادی تحب زید

اگر ہم 1.2535 کو 3 ، 2 اور 1 اشاریہ تک قطع کریں تب ہمیں بالترتیب 1.254 ، 1.25 اور 1.3 حاصل ہو گالیکن، بغیر مزید معلومات کے، 1.25 کو ایک اشاریہ تک قطع کرنے سے ہمیں 1.2 ملتا ہے۔

تعداد ہندسہ خلل کی وجہ سے کوئی بھی حساب مکمل غلط ہو سکتا ہے۔عموماً چال کی تعداد بڑھانے سے یہ خلل بڑھتا ہے۔یوں حسابی پروگرام کو اس خلل کی نقطہ نظر سے دیکھنا ضروری ہو گا اور اس خلل کو کم سے کم کرنا لازم ہو گا۔

21.2 دہرانے سے مساوات کاحل

ہمیں عموماً مساوات

$$(21.1) f(x) = 0$$

 $\int dt \, cold \,$

اعدادی دہرانے کے طریقہ میں ہم اختیاری x_0 منتخب کرتے ہوئے درج ذیل روپ کلیہ

(21.2)
$$x_{n+1} = g(x_n)$$
 $(n = 0, 1, 2, \cdots)$

ے، بار بار حل کرتے ہوئے، ترتیب x_0, x_1, x_2, \cdots حاصل کرتے ہیں جہاں g کسی ایسے وقفہ پر معین $x_1 = g(x_0)$ کا حلقہ اسی وقفہ پر ہے۔ یوں ہم یک بعد دیگرے $g(x_0)$ کا حلقہ اسی وقفہ پر ہے۔ یوں ہم یک بعد دیگرے $g(x_0)$ ، $g(x_0)$ ،

اس حصه میں دائرہ کار اور حلقہ g(x) دونوں حقیقی کیر پر ہوں گے۔زیادہ عمومی معمہ میں x یا g اور یا دونوں سمتات ہو سکتے ہیں۔

algebraic equations¹⁷

roots¹⁸

transcendental equations¹⁹

دہرانے کے تراکیب اعدادی تجزیہ کے لئے انتہائی اہم ہیں۔

مساوات 21.1 کو حل کرنے کے لئے دہرانے کے تراکیب کئی طریقوں سے حاصل کیے جا سکتے ہیں۔ہم ان میں سے تین خصوصاً اہم طریقوں پر غور کرتے ہیں۔

الجبرائی تبادل ہے ہم مساوات 21.1 کو الجبرائی طور پر تبدیل کرتے ہوئے درج ذیل روپ حاصل کر سکتے ہیں x = g(x)

جو مساوات 21.2 کی روپ میں ہے۔مساوات 21.3 کے حل کو g کا مقررہ نقطہ 20 کہتے ہیں۔ویے گئے مساوات 21.1 کے کئی مطابقتی مساوات 21.3 ہو سکتے ہیں جن کے ترتیب x_0, x_1, \dots مختلف (اور x_0 کے تابع) ہوں گے۔آئیں ایک سادہ مثال دکھتے ہیں جس میں یہ حقائق ابھر کر سامنے آتے ہیں۔

مثال 21.1: دہرانے کی ترکیب

ماوات $f(x) = x^2 - 3x + 1 = 0$ کے لئے وہرانے کی ترکیب عمل میں لائیں۔چونکہ ہمیں اس ماوات کے حل

 $x = 1.5 \mp \sqrt{1.25}$, $x_1 = 2.618034$, $x_2 = 0.381966$

معلوم ہیں، ہم دہرانے کے عمل کے دوران خلل کا رویہ دیکھ سکتے ہیں۔ہم دیے گئے مساوات سے

(21.4)
$$x = g_1(x) = \frac{1}{3}(x^2 + 1) \implies x_{n+1} = \frac{1}{3}(x_n^2 + 1)$$

کھ سکتے ہیں۔ یوں $x_0=1$ منتخب کرتے ہوئے ہمیں درج ذیل ترتیب ملتی ہے

 $x_0 = 1.000$, $x_1 = 0.667$, $x_2 = 0.481$, $x_3 = 0.411$, $x_4 = 0.390$, ...

جو چھوٹے جذر کی طرف گامزن ہے (شکل 21.1-الف)۔اگر ہم $x_0=3.000$ منتخب کریں تب درج ذیل ملتا ہے

 $x_0 = 3.000$, $x_1 = 3.333$, $x_2 = 4.037$, $x_3 = 5.766$, $x_4 = 11.414$, ...

جو منفرج ترتیب ہے (شکل 21.1-الف)۔ دی گئی مساوات سے درج زبل بھی حاصل کیا جا سکتا ہے۔

(21.5)
$$x = g_2(x) = 3 - \frac{1}{x} \implies x_{n+1} = 3 - \frac{1}{x_n}$$

fixed point²⁰

اب 21,اعب ادی تحب زیب

شكل 21.1:اشكال برائے مثال 21.1

اب x_0 منتخب کرتے ہوئے

 $x_0 = 1.000$, $x_1 = 2.000$, $x_2 = 2.500$, $x_3 = 2.600$, $x_4 = 2.615$, ...

 $x_0 = 3$ منتخب کرتے $x_0 = 3$ منتخب کرتے ہو بڑے جذر کی طرف گامزن ترتیب ہے (شکل 21.1-ب)۔اس طرح

 $x_0 = 3.000$, $x_1 = 2.667$, $x_2 = 2.625$, $x_3 = 2.619$, $x_4 = 2.618$, ...

حاصل ہوتا ہے (شکل 21.1-ب)۔ شکل کو دیکھ کر واضح ہوتا ہے کہ مر کوزیت اس صورت ہو گی جب حل کی پڑو س میں منحنی g(x) کی ڈھلوان سیدھے خط y=x کی ڈھلوان سے کم ہو۔ ہم اب دیکھتے ہیں کہ مر کوزیت کے لئے |g'(x)| < 1 کی شرط کافی ہے (جہاں خط y=x کی ڈھلوان y=x کی ڈھلوان y=x کے۔

اگر x_0 کا مطابقتی مساوات 21.2 سے حاصل کردہ ترتیب x_0, x_1, \dots مر تکز ہو تب ہم کہتے ہیں کہ مساوات 21.2 میں دی گئی دہرانے کی ترکیب موتکز ہے۔

ار تکاز کے لئے کافی شرط درج ذیل مسلم پیش کرتا ہے جس کے کئی اہم عملی استعال پائے جاتے ہیں۔

مسّله 21.1: (ارتكاز)

x=s کا حل x=s کا حل x=s ہیا جاتا x=s کا جاتا ہیں ہے اور فرض کریں کہ کسی ایسے وقفہ

 $|g'(x)| \leq \alpha < 1$ میں $|g'(x)| \leq \alpha < 1$ میں |g'(x)| ہو تب مساوات 21.2 عمل دی گئی دہرانے کی ترکیب |g'(x)| میں ہر |g'(x)| کے لئے مر تکز ہو گی۔

ثبوت: تفرقی علم الاحصاء کے مسکلہ اوسط قیمت کے تحت x اور s کے درمیان ایسا ج پایا جائے گا جو درج ذیل کو مطمئن کرے گا،

$$g(x) - g(s) = g'(\xi)(x - s)$$

جہاں x وقفہ J میں پایا جاتا ہے۔ چونکہ g(s)=s اور $g(x_0)$ ، $x_1=g(x_0)$ ، بیں لہذا ہمیں ورح ذیل ملتا ہے۔

$$|x_n - s| = |g(x_{n-1}) - g(s)| = |g'(\xi)| |x_{n-1} - s| \le \alpha |x_{n-1} - s|$$

$$\le \alpha^2 |x_{n-2} - s| \le \dots \le \alpha^n |x_0 - s|$$

چونکہ $|x_n-s| o 0$ اور $|x_n-s| o 0$ اور $|x_n-s|$ ہوں گے۔یوں ثبوت ممل ہوتا ہے۔

مثال 21.2: دہرانے کا طریقہ۔ مسئلہ 21.1

 $f(x)=x^3+x-1=0$ وہرانے کے طریقہ سے $f(x)=x^3+x-1=0$ کا حل تلاش کریں۔اس مساوات کا جلدی سے خاکہ بنا کر آپ دیکھ سکتے ہیں۔ x=1 کے قریب پایا جاتا ہے۔ ہم اس مساوات سے درج ذیل لکھ سکتے ہیں۔

$$x = g_1(x) = \frac{1}{1 + x^2}$$
 \Longrightarrow $x_{n+1} = \frac{1}{1 + x_n^2}$

یوں کی بھی x کے لئے x کے اپنے $\left|g_1'(x)\right| = \frac{2|x|}{(1+x^2)^2} < 1$ پر مرکوزیت پائی جائے گی۔ ہم x منتخب کرتے ہوئے درج ذیل حاصل کرتے ہیں (شکل 21.2)

 $x_1 = 0.500$, $x_2 = 0.800$, $x_3 = 0.610$, $x_4 = 0.729$, $x_5 = 0.653$, $x_6 = 0.701$, ...

جبکہ چھ ہندسوں تک درست اصل جذر $s=0.682\,328$ ہیں۔ $s=0.682\,328$

$$x = g_2(x) = 1 - x^3$$
, $\left| g_2'(x) \right| = 3x^2$

بابدادی تخب زیه

شكل 21.2: شكل برائے مثال 21.2

 $x_0=1$ جذر کے قریب $|g_2'|$ کی قیمت اکائی سے زیادہ ہے المذا ہم ار نکاز کی توقع نہیں کر سکتے ہیں۔ آپ $x_0=1$ ہے شروع کرتے ہوئے اپنی تسلی کر سکتے ہیں۔ $x_0=2$ ، $x_0=0.5$

مساوات f(x)=0 ، جہاں f(x)=0 قابل تفرق ہے، کو توکیب نیوٹن سے بھی حمل کیا جا سکتا ہے۔ اس ترکیب میں ہم f(x)=0 کا تخمینہ اس کے موزوں مماس سے حاصل کرتے ہیں۔ اس ترکیب میں ہم f(x)=0 کا مماس بناتے ہیں۔ یہ مماس f(x)=0 کور کو f(x) یہ قطع کرتا ہے (شکل 21.3)۔ یوں f(x)=0 کا مماس بناتے ہیں۔ یہ مماس f(x)=0 کور کو f(x)=0 کے قطع کرتا ہے (شکل 21.3)۔ یوں

$$\tan \beta = f'(x_0) = \frac{f(x_0)}{x_0 - x_1} \implies x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

ہو گا۔اگلے قدم پر ہم

$$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)}$$

حاصل کرتے ہیں۔ای طرح چلتے ہوئے جذر تک پہنچا جاتا ہے۔یوں دہرانے کے طریقے کا عمومی کلیہ درج ذیل ہو گا۔

مثال 21.3: جذر المربع

کسی مثبت حقیقی عدد c کا جذر المربع حاصل کرنے کے لئے دہرانے کی ترکیب بنائیں۔اس ترکیب کو استعال کرتے ہوئے c کا جذر المربع تلاش کریں۔ہمارے پاس \sqrt{c} لیعنی c=2 کا جذر المربع تلاش کریں۔ہمارے پاس \sqrt{c} لیعنی c=2 کا جدر المربع تلاش کریں۔ہمارے پاس صورت اختیار کرتی ہے۔ f'(x)=2x

$$x_{n+1} = x_n - \frac{x_n^2 - c}{2x_n} = \frac{1}{2} \left(x_n + \frac{c}{x_n} \right)$$

اب اس ترکیب سے c=2 کا جذر المربع تلاش کرتے ہیں۔ ہم $x_0=1$ منتخب کرتے ہوئے درج ذیل حاصل کرتے ہیں۔

 $x_1 = 1.500\,000$, $x_2 = 1.416\,667$, $x_3 = 1.414\,216$, $x_4 = 1.414\,214$, \cdots

2 کا جذر المربع x_4 جواب دیتا ہیں کہ x_4 جواب دیتا x_4 دیتا

مثال 21.4: ماورائی مساوات کا دہرانے کی ترکیب سے حل مثال 21.4: ماورائی مساوات کا دہرانے کی ترکیب سے حل مساوات $f(x)=x-2\sin x$ مساوات $f(x)=x-2\sin x$ کی مساوات $1-2\cos x$ مساوات 21.6 کی صورت درج ذیل ہو گی۔

$$x_{n+1} = x_n - \frac{x_n - 2\sin x_n}{1 - 2\cos x_n} = \frac{2(\sin x_n - x_n\cos x_n)}{1 - 2\cos x_n} = \frac{N_n}{D_n}$$

باب 21.اعب دادي تخب زمه

ل برائے مثال 21.4	جدول 21.1:جدو
-------------------	---------------

x_{n+1}	D_n	N_n	x_n	n
1.901	1.832	3.483	2.000	0
1.896	1.648	3.125	1.901	1
1.896	1.639	3.107	1.896	2

 $x_0=2$ کی ترسیم سے ہم دیکھتے ہیں کہ اس کا عل $x_0=2$ کے قریب ہے۔یوں ہم جدول 21.1 حاصل کرتے ہیں۔ چواب 1.8955 ہے۔ $x_0=2$ کی ترسیم سے ہم درست جواب 1.8955 ہے۔

مثال 21.5: ترکیب نیوٹن کا الجبرائی مساوات پر اطلاق مساوات $f(x)=x^3+x-1=0$ کو ترکیب نیوٹن سے طل کریں۔مساوات 21.6 سے ورج ذیل ہو گا۔

$$x_{n+1} = x_n - \frac{x_n^3 + x_n - 1}{3x_n^2 + 1} = \frac{2x_n^3 + 1}{3x_n^2 + 1}$$

ے شروع کرتے ہوئے درج ذیل حاصل ہو گا۔ $x_0 = 1$

$$x_1 = 0.750\,000$$
, $x_2 = 0.686\,047$, $x_3 = 0.682\,340$, $x_4 = 0.682\,328$, ...

 x_4 چھ ملحظ ہندسوں تک درست ہے۔ مثال 21.2 کے ساتھ موازنہ کرنے سے آپ دیکھ سکتے ہیں کہ موجودہ مثال x_4 بہت تیزی کے ساتھ اصل حل پر مرکوز ہوتا ہے۔ اس سے دہرانے کی ترکیب کے درجہ کا تصور پیدا ہوتا ہے جس پر اب بات کی جائے گی۔

 $\zeta_{n} = g(x_{n})$ کا حل x = g(x) ایک دہرانے کی ترکیب ہے ϵ_{n} کا حل ϵ_{n} کا حل ϵ_{n} کا حل ϵ_{n} کا ور ϵ_{n} کی ϵ_{n} کی ϵ_{n} کی جہاں ϵ_{n} میں خلل ϵ_{n} جو اس حل کے قریب قریب قبیت ϵ_{n} ویل تفرق ہے لہذا ٹیلر کے کلیہ سے متعدد بار قابل تفرق ہے لہذا ٹیلر کے کلیہ سے

$$x_{n+1} = g(x_n) = g(s) + g'(s)(x_n - s) + \frac{1}{2}g''(s)(x_n - s)^2 + \cdots$$
$$= g(s) + g'(s)\epsilon_n + \frac{1}{2}g''(s)\epsilon_n^2 + \cdots$$

 ${\rm order}^{21}$

ہے، اور ارتکاز کی صورت میں بڑی n کے لئے ϵ_n چھوٹا ہو گا لہذا ترکیب کا درجہ اس کی مرکوزیت کی ناپ ہے۔

ترکیب نیوٹن دو درجی ہے ترکیب نیوٹن کے لئے درج ذیل ہے

$$g(x) = x - \frac{f(x)}{f'(x)}, \quad g'(x) = 1 - \frac{f'f' - ff''}{(f')^2} = \frac{f(x)f''(x)}{f'(x)^2}$$

اور چونکہ g'(s)=0 ہے لہذا g'(s)=0 ہو گا؛ یوں ترکیب نیوٹن کم از کم دو درجی ہے۔ایک اور $g_1(x)=\frac{1}{1+x^2}$ بید $g''(s)=\frac{1}{1+x^2}$ ماتا ہے جو عموماً غیر صفر ہو گا۔ مثال 21.2 میں $g_1(x)=\frac{f''(s)}{f'(s)}$ اور $g'(x)=-\frac{2x}{(1+x^2)^2}$

ونے کی صورت میں ترکیب نیوٹن مشکلات پیدا کرتا ہے لیکن f'(x)=0 ہونے کی صورت میں ترکیب نیوٹن مشکلات پیدا کرتا ہے لیکن حل کے قریب f(x)=0 کی ترسیم کو دیکھتے ہوئے، ترکیب نیوٹن کی جیومیٹریائی تصور کو مد نظر رکھتے ہوئے عموماً اس مشکل سے چھٹکارا حاصل کرنا ممکن ہوگا۔ اگر درکار حل کے قریب f'(x)=0 ہو تب f(x)=0 کی بہتر قیمت حاصل کرنا ضروری ہوگا۔ ایس مساوات کو بد خو f'(x)=0 اور f'(x)=0 کو بد خو f'(x)=0 کو بد خو f'(x)=0 کی بہتر ہیں۔

اس اس کو حل کرنے کی تیسری ترکیب جس کو مقام غلط کی ترکیبf(x)=0 کو حل کرنے کی تیسری ترکیب بین مختی f(x)=0 کا مشاہہ وتر تصور کیا جاتا ہے (شکل 21.4)۔ یہ وتر محور x کو

(21.7)
$$x_1 = \frac{x_0 f(b) - b f(x_0)}{f(b) - f(x_0)}$$

x کے عل X_0 کے حل f(x)=0 کے قریب ہو گا۔ اگلے قدم پر اس سے بہتر حل

(21.8)
$$x_2 = \frac{x_1 f(b) - b f(x_1)}{f(b) - f(x_1)}$$

حاصل کیا جاتا ہے۔ اس طرح بتدر سے بہتر حل حاصل کیے جا سکتے ہیں۔ b کو X_0 کے قریب کرنے سے ارتکاز کو بہتر بنایا جا سکتا ہے۔ عموماً قیاس کے ذریعہ ایسا کرنا ممکن ہو گا۔

 $^{{\}rm ill\text{-}conditioned^{22}}$ method of false position 23

باب 21,اعب ادی تحب زیب

شکل 21.4: منحنی کامشابہ وترسے کیا گیاہے

مثال 21.6: مساوات x=1 مثال 21.6: مساوات x=1 مثال 21.6: مساوات x=1 مثال 21.6: مساوات x=1 وه جذر تلاش کریں جو x=1 اور x=1 المراح والمراح وال

$$x_1 = \frac{0.5 \cdot 1 - 1 \cdot (-0.375)}{1 - (-0.375)} = 0.64$$

ماتا ہو گا جبکہ مساوات 21.8 سے 21.8 ماتا ہے۔ہم اسی طرح بتدریج بہتر حل تلاش کر سکتے ہیں۔ $x_2=0.672$

سوالات

سوال 21.1 نوٹن میں $x^3 - 3.9x^2 + 4.79x - 1.881 = 0$ کا جذر ترکیب نیوٹن میں $x_0 = 1$ کے کر تین قدم چلتے ہوئے $x_1 = 1.900000$ جواب: $x_1 = 1.900000$

سوال 21.2: $x_0=2$ کا جذر ترکیب نیوٹن میں $x_0=2$ کے کر تین قدم سوال 21.2: $x_0=2$ کے کر تین قدم حلتے ہوئے تلاش کریں۔ $x_1=1.478$ کواب:

 $x_0=1$ سوال 21.3 سوال 21.1 میں دیے گئے مساوات کے جذر 0.9 میں دیے 1.1 اور 1.9 ہیں۔ اگرچہ جذر 0.9 جزر 0.9 اور 1.1 کے قریب ہے لیکن ترکیب نیوٹن ان کی جگہ جذر 1.9 تلاش کرتا ہے۔ ایسا کیوں ہے؟ x_0 کی کوئی اور قیمت منتخب کرتے ہوئے ترکیب نیوٹن سے جذر 1.1 حاصل کریں۔ جواب: تفاعل $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ پر قطع کرتا ہے۔ آپ $x_0=1.2$ پر قطع کرتا ہے۔ آپ $x_0=1.2$ پر مماس $x_0=1.2$ پر قطع کرتا ہے۔ آپ $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ پر مماس $x_0=1.2$ ہیں۔

سوال 21.4 تا سوال 21.7 میں دیے مساوات کی ترکیب نیوٹن کی مدد سے تمام جذر تلاش کریں۔

سوال 21.4: cos *x* = *x* جواب: 0.739

 $x + \ln x - 2$:21.5 موال 1.577 جواب:

 $2x + \ln x - 1$:21.6 سوال 0.687 :جواب:

 $x^4 - 0.1x^3 - 0.82x^2 - 0.1x - 1.82$:21.7 سوال -1.3, 1.4

سوال 21.8: وکھائیں کہ مثال 21.2 میں $|g_1'(x)|$ کی زیادہ سے زیادہ قیت $\tilde{x} = \mp \frac{1}{\sqrt{3}}$ پر حاصل ہو گی اور کہ یہ قیت $|g_1'(x)| = \frac{3\sqrt{3}}{8} = 0.65$ برابر ہے۔

سوال 21.9: ایما کیوں ہے کہ مثال 21.1 میں یک سر ترتیب حاصل ہوتی ہے لیکن مثال 21.2 میں ایما نہیں ہوتا ہے؟

سوال 21.10: مثال 21.2 کی آخر میں دہرانے کی ترکیب سے حاصل قیمتوں کو از خود حاصل کریں اور شکل 21.2 کی طرز کا شکل بنائیں۔

اب 21 اعدادی تحب زید

سوال 21.14: وہرانے کی ترکیب استعال کرتے ہوئے دکھائیں کی مساوات $x = \tan x$ کا کم تر جذر تقریباً $x = \tan x$ عماوات کو بیا جاتا ہے؛ مساوات کو جدر $x_0 = \frac{3\pi}{2}$ کے قریب پایا جاتا ہے؛ مساوات کو $x = \pi + \tan^{-1} x$

سوال 21.15 کی ترکیب سے حاصل کرتے ہوئے $\sqrt{5}$ کو مثال 21.3 کی ترکیب سے حاصل کرتے ہوئے ہوئے $\sqrt{5}$ استعال کرتے ہوئے ظل حاصل کریں۔ $\sqrt{5}=2.236\,068$ جواب: x_1,x_2,x_3,x_4 جواب: $\epsilon_4=0.000\,000$ ، $\epsilon_3=0.000\,043$ ، $\epsilon_2=0.013\,932$ ، $\epsilon_1=0.236\,068$

سوال 21.16: و کھائیں کہ مثال 21.3 میں ہارے یاس

$$x_{n+1}^2 - c = \frac{1}{4} \left(x_n - \frac{c}{x_n} \right)^2$$

ہے جو در شکی کی ناپ ہے۔د کھائیں کہ تقریباً

$$\left|x_n - \sqrt{c}\right| \approx \frac{1}{2} \left|x_n - \frac{c}{x_n}\right|$$

ہو گا۔ اس کا اطلاق سوال 21.15 پر کریں۔

سوال 21.17: شبت x محور پر ایبا وقفہ تلاش کریں کہ c=2 لیتے ہوئے مسئلہ 21.1 کی شرط کو مثال 21.3 کے دہرانے کی ترکیب مطمئن کرتی ہو۔ $x \geq \sqrt{\frac{2}{1+2\alpha}}$, $\alpha < 1$ جواب: $\alpha < 1$

سوال 21.18: جذر الکعب کے لئے ترکیب نیوٹن بنائیں۔اس ترکیب کو استعال کرتے ہوئے $x_0=2$ سے شروع کر کے تین قدم چل کر $\sqrt[3]{7}$ تلاش کریں۔

21.3 متانى فرق

وال 21.19: مثبت عدو c کا k وال جذر حاصل کرنے کے لئے ترکیب نیوٹن بنائیں۔ $f(x)=x^k-c$, $x_{n+1}=(1-\frac{1}{k})x_n+\frac{c}{kx_n^{k-1}}$:جواب:

سوال 21.20: $x^4=2$ کا حقیقی جذر بذریعہ غلط مقام دہرانے کی ترکیب حاصل کریں۔ جواب: 0, 1

سوال 21.21: $x^4 = 2x$ كا حقیقی جذر بذریعه غلط مقام دہرانے كی ترکیب حاصل كریں۔ $x^4 = 2x$ وجواب: $x^4 = 2x$ عامل كريں۔

سوال 21.22: $3 \sin x = 2x$ کا حقیقی جذر بذریعہ غلط مقام دہرانے کی ترکیب حاصل کریں۔ جواب: 0, 1.49

سوال 21.23: سوال 21.20 میں حاصل کردہ شبت جذر ہر صورت اصل جذر سے معمولی کم ہو گا۔اییا کیوں ہے؟

سوال 21.24: ترکیب نیوٹن میں f'(x) کا حساب کرنا ہوتا ہے۔ عملی استعال میں جمعی بھاریہ قدم کافی پیچیدہ ثابت ہو سکتا ہے۔ f'(x) سے چھٹکارا حاصل کرنا کا ایک طریقہ یہ ہے کہ اس کی جگہ f'(x) استعال کیا جائے۔ یوں حاصل کردہ کلیہ کا غلط مقام کلیہ کے ساتھ کیا تعلق پایا جاتا ہے؟

سوال 21.25: فرض کریں بند وقفہ I میں g استمراری ہے اور اس کا حلقہ بھی I میں پایا جاتا ہے۔ دکھائیں کہ مساوات x=g(x) کا کم از کم ایک حل اس وقفہ میں پایا جائے گا۔ دکھائیں کہ اس وقفہ میں مساوات کے زیادہ جذر بھی ممکن ہیں۔

21.3 تنابى فرق

متنائی فرق کا استعال اعدادی تجزیہ کے کئی شاخوں میں پایا جاتا ہے مثلاً دو قیمتوں کے درمیان قیمت کا تخمینہ لگانے میں، جدول کی جانج پڑتال میں، تخمینہ لگانے میں، تفرق میں، اور تفرقی مساوات کے حل میں۔ ہم فرض کرتے ہیں

ا كاجدول فرق $f(x)=x^3$, $x=-3(1)$ كاجدول فرق:21

x	$f(x) = x^3$	پہلا فرق	دوسرا فرق	تيسرا فرق	چوتھا فرق
- 3	-27				
		19			
-2	-8		-12		
	_	7	_	6	
-1	-1	1	-6		0
0	0	1	0	6	0
	0	1	U	6	U
1	1	1	6	U	0
	-	7	Ü	6	O
2	8		12		
		19			
3	27				

کہ ہمیں تفاعل f کی اعدادی قیتوں $f_j = f(x_j)$ کا جدول دیا گیا ہے جہاں نقطے f ایک جیسے فاصلے پر ہیں۔

f(x) کو عموماً کی کلیہ یا تجربہ سے حاصل کیا جاتا ہے۔ ہم جدول میں ہر f(x) کو اگلی (بڑی) x کی مطابقتی قیمت سے تفریق کرتے ہوئے پہلا فوق²⁴ حاصل کرتے ہیں۔جدول 21.2 میں اس کی مثال پیش کی گئی ہے جہاں قیمت سے تفریق کرتے ہوئے $f(x)=x^3$, $f(x)=x^3$, f(x)=x

جدول فرق میں فرق کو ظاہر کرنے کے تین مختلف طریقے رائج ہیں۔ان میں سے جو بھی طریقہ استعال کیا جائے، جدول میں نہ کوئی فرق تبدیل ہو گا اور نا ہی اس کا مقام۔ پہلی (اور غالباً اہم ترین) اظہار جس کو وسطی فوق²⁷ کہتے

 $^{{\}rm first\ difference^{24}}$

يردگ ٿڻ ٿي۔ $x=b\cdots \cdot x=a+2h\cdot x=x+h\cdot x=a$ پردگ ٿڻ ٿي۔ $x=a(h)b^{25}$

second difference²⁶ central difference²⁷

21.3. تنانى فرق

ول فرق _ ملحوظ ہند سوں کی تعداد چارہے۔	امِو $f(x) = \frac{1}{x}$, $x =$	جدول 21.3: تفاعل 2(0.2) =
--	-----------------------------------	---------------------------

x	$f(x) = x^3$	پہلا فرق	دوسرا فرق	تيسرا فرق
1.0	1.0000			
		-1667		
1.2	0.8333		477	
		-1190		-180
1.4	0.7143		297	
		-893		-98
1.6	0.6250		199	
		-694		-61
1.8	0.5556		138	
		-556		
2.0	0.5000			

ہیں درج ذیل ہے

$$\delta^2 f_m = \delta f_{m+1/2} - \delta f_{m-1/2}$$

ہو گا۔ دیگر فرق بھی اس طرح حاصل کیے جاتے ہیں۔ ایک جیسی زیر نوشت والے اجزاء ایک ہی صف میں پائے جاتے ہیں۔ (دھیان رہے کہ ضروری نہیں ہے کہ جدول میں x کی سب سے چھوتی قیت x_0 ہو۔ مثال کے طور $\delta f_{1/2} = -0.0694$ ، $f_0 = 0.6250$ بیں؛ تب $x_0 = 0.6250$ ہیں؛ تب $x_0 = 0.0199$ بین ہم $x_0 = 0.0199$ ہوں گے۔)

باب.21 اعب دادی تحب زید

دوسری اظہار جس کو آگھے فوق^{28 کہتے} ہیں درج ذیل ہے

ہے۔اسی طرح

$$\Delta^2 f_m = \Delta f_{m+1} - \Delta f_m$$

 $\Delta f_0 = -0.0694$ ، $f_0 = 0.6250$ لیا جائے تب $x_0 = 1.6$ مثال کے طور پر اگر جدول 21.3 میں 21.3 میں $\Delta^2 f_0 = 0.0138$ ، $\Delta^2 f_0 = 0.0138$ ، $\Delta^2 f_0 = 0.0138$ ، رخ لیروں پر پائے جائیں گے۔

تیسری اظہار جس کو پیچھے فرق^{29 کہتے} ہیں درج ذیل ہے

ور
$$\nabla f_1 = f_1 - f_0$$
 اور $\nabla f_0 = f_0 - f_{-1}$ ، $\nabla f_{-1} = f_{-1} - f_{-2}$ بیان $\nabla f_m = f_m - f_{m-1}$

forward difference²⁸ backward difference²⁹

21.3. شاى فرق

جدول 21.4: فلطى تمام فرق ميں پھيل جاتى ہے۔ يہاں نفاعل 2.0(0.1) جدول 4x, x=2.0(0.1) ہيں ہے۔ يہاں نفاعل 2.6x

x	\sqrt{x}		فرق		\sqrt{x}		فرق			يھيلنا	ϵ کا	علف
2.0	1.4142				1.41412							
		349				349						
2.1	1.4491		-8		1.4491		8					
		341		1		341		<u>11</u>				ϵ
2.2	1.4832		-7		1.4832		<u>3</u>				ϵ	
		334		-1		<u>344</u>		-31		ϵ		-3ϵ
2.3	1.5166		-8		<u>1.5176</u>		-28		ϵ		-2ϵ	
		326		1		<u>316</u>		<u>31</u>		$-\epsilon$		3ϵ
2.4	1.5492		-7		1.5492		<u>3</u>				ϵ	
		319		2		319		$-\underline{8}$				$-\epsilon$
2.5	1.5811		-5		1.5811		<u>−5</u>					
		314				314						
2.6	1.6125				1.6125							

ہو گا۔اسی طرح

$$\nabla^2 f_m = \nabla f_m - \nabla f_{m-1}$$

ہو گا۔ باقی اجزاء بھی اسی طرح حاصل کیے جاتے ہیں۔ ایک جیسے زیر نوشت والے اجزاء تر چھی لکیروں پر اوپر رخ یا جدول میں پیچھیے رخ لکیروں پر بائے جاتے ہیں۔ جدول کی آخر میں حساب کے دوران چیچے فرق عموماً زیادہ مدد گار ثابت ہوتا ہے۔

جدول میں کسی بھی فرق کو اب تنین مختلف علامتوں سے ظاہر کیا جا سکتا ہے۔مثال کے طور پر جدول 21.3 میں ہم جدول میں کسی بھی فرق کو اب تنین مختلف علامتوں سے ظاہر کیا جا $0.0893=\delta f_{-1/2}=\Delta f_{-1}=\nabla f_0$ پس تب $0.0893=\delta f_{m-1/2}=\nabla^n f_{m-1/2}=\nabla^n f_{m-1/2}$

ہو گا۔

جدول میں غلطیوں کی نشاندہ ہی کرنے کے لئے فرق کا سہارا لیا جاتا ہے۔جیسا جدول 21.4 میں دکھایا گیا ہے، تفاعل میں خلل ϵ جلد تمام فرق میں پھیل جاتا ہے۔یوں فرق میں بہت زیادہ اتار چڑھاو تفاعل کی قیمت میں غلطی کو ظاہر کرتی ہے۔ظاہر ہے کہ کم تعداد کی ملحوظ ہندسوں کی بنا معمولی اتار چڑھاو ہر صورت پائی جائے گی۔ اب 21.اعدادي تحبزيد

تفاعل کو کثیر رکنی سے ظاہر کرنے میں بھی فرق اہم کردار ادا کرتا ہے۔قدم n لیتے ہوئے n در جی کثیر رکنی $p_n(x) = a_0 x^n + a_1 x^{n-1} + \cdots + a_n$ ویں فرق مستقل n ویں فرق مستقل n ویں فرق مستقل n برابر) ہوں گے اور ان سے بلند فرق صفر ہوں گے۔اییا اس لئے ہو گا کہ پہلے فرق

$$p_n(x+h) - p_n(x) = a_0[(x+h)^n - x^n] + \dots = a_0nhx^{n-1} + \dots$$

کا درجہ n-1 ہے، دوسرے فرق کے کثیر رکنی کا درجہ n-2 ہو گا اور اس کے پہلے جزو کا عددی سر $a_0n(n-1)h^2$ ہو گا، وغیرہ وغیرہ وغیرہ لیا گر تفاعل f کے جدول فرق میں n ویں فرق کسی حلقہ میں تقریباً مستقل ہوں تب جدول کی قیمتوں کو اس حلقہ میں n درجی کثیر رکنی p_n سے ظاہر کیا جا سکتا ہے۔ آئیں دیے f کی صورت میں کثیر رکنی f کے حصول کی ایک ترکیب دیکھیں۔

مثال 21.7: تفاعل کو کثیر رکنی سے ظاہر کرنا

جدول 21.4 میں دوسرا فرق تقریباً مستقل (7 کے برابر) ہیں۔ یوں ہم دو درجی کثیر رکنی p_2 تلاش کر سکتے ہیں جو دیے گیے تفاعل کے مشابہ ہو گا۔ ہم پہلے جدول فرق بناتے ہیں۔ یہ فرض کرتے ہوئے کہ تمام دوسرے فرق ٹھیک ٹھیک 7 کے برابر ہیں ہم حلقہ کے وسط میں تفاعل کی کوئی قیت اور پہلا فرق منتخب کرتے ہیں مثلاً 1.5166 اور 334 جس سے جدول 21.5 حاصل ہوتا ہے۔ p_2 کے پہلے عددی سرکو

ورجہ اول ہو گا اور جدول 21.5 سے ہم حماب لگا کر دیکھتے ہیں کہ اس کے پہلے صفر تقریباً مشقل ($a_1=\frac{0.04915}{0.1}=0.4915$ عاصل ہوتا ہے۔ آخر میں ہیں اور ہم جانتے ہیں کہ یہ a_h کے برابر ہے۔ یوں $a_1=\frac{0.04915}{0.1}=0.4915$ حاصل ہوتا ہے۔ آخر میں $p_1(x)-0.4915x=a_2=0.5713$

$$p_2(x) = -0.0350x^2 + 0.4915x + 0.5713$$

ہو گا۔اس مثال سے آپ دکھ سکتے ہیں کہ فرق کو استعال کرتے ہوئے کثیر رکنی حاصل کرنے سے پہلے، مشابہ کثیر رکنی کی درشگی کا معیار جانا جا سکتا ہے۔مشابہ کثیر رکنی کی حصول کے دیگر تراکیب پر اگلے جھے ہیں غور کیا جائے گا۔

21.3. شناءى فرق

جدول 21.5: قاعل $x = \sqrt{x}$ کودودر جی کثیر رکنی p_2 سے ظاہر کرنا

x	$p_2(x)$	فرق
2.0	1.4143	
		348
2.1	1.4491	-7
		341
2.2	1.4832	-7
2.2	1 =1 ((<u>334</u>
2.3	<u>1.5166</u>	-7 327
2.4	1.5493	327 —7
2. 4	1.3493	320
2.5	1.5813	-7
2.0	1.0010	313
2.6	1.6126	

سوالات

سوال 21.26: قلم و كاغذ استعال كرتے ہوئے جدول 21.2 حاصل كريں۔

سوال 21.27: قلم و كاغذ استعال كرتے ہوئے جدول 21.3 حاصل كريں۔

سوال 21.28: جدول 21.3 میں $x_0 = 1.2$ منتخب کرتے ہوئے (الف) وسطی فرق، (ب) آگے فرق اور (پ) پیچیے فرق کے جدول مکمل کریں۔

سوال 21.29: $x_0 = 2$ منتخب کرتے ہوئے تفاعل $f(x) = x^3$ کا $x_0 = 2$ کے لئے (الف) وسطی فرق، (ب) آگے فرق اور (پ) پیچیے فرق کے جدول مکمل کریں۔

سوال 21.30: درج ذیل د کھائیں۔

$$\delta^2 f_m = f_{m+1} - 2f_m + f_{m-1}$$

$$\delta^3 f_{m+1/2} = f_{m+2} - 3f_{m+1} + 3f_m - f_{m-1}$$

اب 21.اعدادي تحبزيد 1392

سوال 21.31: $f(x) = \frac{1}{x+1}$ کی قیمتیں f(x) = 0 کے لئے (الف) دو ملحوظ ہندسوں، (ب) تین ملحوظ ہندسوں اور (پ) چار ملحوظ ہندسوں تک حاصل کریں۔ان کے مطابقتی جدول فرق میں تعداد ہندسہ خلل کا آپس میں موازنہ کریں۔

سوال 21.32: x = 0(1) کا جدول فرق مکمل کریں۔ایک اور جدول میں سوال 21.32: $f(x) = x^2$ کے لئے x = 0(1) کا جدول فرق علاق کریں۔جدول میں f(5) = 25 کا چھیا و کی جگہ 26 کا کھیے ہوئے پہلا فرق، دوسرا فرق، تیسرا فرق اور چوتھا فرق علاق کریں۔جدول میں غلطی کا پھیلنا و کیھیں۔

سوال 21.33: فرق استعال كرتے ہوئے درج ذيل جدول كى جانچ پڑتال كريں۔

سوال 21.34: مثال 21.7 میں کی گئی تمام حساب خود کریں۔

21.4 بالهمى تحريف

عوماً تفاعل f(x) کی قیمتوں کا جدول دیا گیا ہو گا اور ہمیں ان x پر تفاعل کی قیمت درکار ہو گی جو جدول میں دیے گئے x کی قیمتوں کے در میان پائے جاتے ہوں۔ایسی قیمتوں کے حصول کی عمل کو ہم باہمی تحریف x گئے۔ اس عمل میں f(x) کی استعال ہونے والی قیمتوں کو چول قیمتیں x گئے۔ اس عمل میں x کی استعال ہونے والی قیمتوں کو چول قیمتیں x کی استعال ہونے والی قیمتوں کو کشیر رکن x سے ظاہر کرنا ممکن ہے المذا x کے مفروضہ پر مبنی ہے کہ نقطہ x کے قریب تفاعل x قیمت تصور کیا جا سکتا ہے۔ x کی قیمت کو اس نقطے پر نفاعل کی قیمت تصور کیا جا سکتا ہے۔

interpolation³⁰ pivotal values³¹

21.4 بابمی تحسریف

شكل 21.5: خطى باجمى تحريف

سادہ ترین طریقہ خطی باہمی تحریف 32 ہے۔اس ترکیب میں جدول میں درکار x کی دونوں جانب درج نقطوں مادہ ترین طریقہ خطی باہمی تحریف f(x) سے اس خطہ میں f(x) کو ظاہر کیا جاتا ہے (شکل 21.5)۔یوں جیسا ہم چیوٹی جماعتوں کی حماب سے جانتے ہیں، نقطہ $x=x_0+r$ پر $x=x_0+r$ کی قیت تقریباً

(21.12)

$$f(x) \approx p_1(x) = f_0 + r(f_1 - f_0) = f_0 + r\Delta f_0$$
 $(r = \frac{x - x_0}{h}, 0 \le r \le 1)$

ہو گا۔ یوں اگر $\ln 9.0 = 2.197$ اور $\ln 9.5 = 2.251$ ہوں تب $\ln 9.0 = 2.197$ ماصل کرنے کی خاطر ہم $r = \frac{0.2}{0.5} = 0.4$

$$\ln 9.2 = \ln 9.0 + 0.4(\ln 9.5 - \ln 9.0) = 2.219$$

حاصل کرتے ہیں۔

خطی باہمی تحریف اس صورت تسلی بخش ہو گی جب جدول میں x کی قیمتیں اتنی قریب قریب ہوں کہ ان کے مابین منحیٰ سے سید ھی قطعات کی انحراف کم ہو، مثلاً ہر x_0 اور x_1 کے در میان ہر x کے لئے انحراف جدول میں آخری ہندسہ کی اکائی کی نصف ($\frac{1}{2}$) سے کم ہو۔

دو درجی بابھی تحریف 33 میں ہم x_0 اور $x_0=x_0+2h$ اور $x_0=x_0+2h$ کو ایسی و درجی قطع مکافی سے ظاہر کرتے ہیں جو نقطہ (x_0,f_0) ، (x_0,f_0) اور (x_0,f_0) سے گزرتی ہو۔یوں بہتر کلیہ

(21.13)

$$f(x) \approx p_2(x) = f_0 + r\Delta f_0 + \frac{r(r-1)}{2}\Delta^2 f_0$$
 $(r = \frac{x - x_0}{h}, \ 0 \le r \le 2)$

linear interpolation³² quadratic interpolation³³

باب.21 اعبدادی تحبزید

$$f_0 + 2(f_1 - f_0) + [(f_2 - f_1) - (f_1 - f_0)] = f_2$$

ہو گی۔

مثال 21.8: خطی اور دو درجی باهمی تحریف

 $\ln 9.2 = 2.2188$ اور $\ln 9.5 = 2.2513$ ہوں تب مساوات $\ln 9.0 = 2.1972$ اور $\ln 9.0 = 2.1972$ ماصل ہوتا ہے جو تین ملحوظ ہند سوں تک درست ہے جبکہ $\ln 10.0 = 2.3026$ الیتے ہوئے مساوات $\ln 1.13$

$$\ln 9.2 = 2.1972 + 0.4 \cdot 0.0541 + \frac{0.4 \cdot (-0.6)}{2} (-0.0028) = 2.2192$$

دیتی ہے جو چار ملحوظ ہند سول تک درست جواب ہے۔

مزید بہتر جوابات حاصل کرنے کی خاطر زیادہ بلند درجی کثیر رکنی استعال کرنی ہو گی۔ n+1 مختلف نقطوں پر قیمتوں سے بکتا n درکار ہے کہ قیمتوں سے بکتا n درکار ہے کہ

$$p_n(x_0) = f_0, \cdots, p_n(x_n) = f_n$$

 $f_n=f(x_n)$ ہوں جہاں $f_0=f(x_0)$ ہیں۔ یہ کثیر رکنی آگیے فرق، $f_n=f(x_n)$ ہوں جہاں ہیں۔ یہ کثیر رکنی آگیے فرق، باہمی تحریف کلیہ نیوٹن $f_n=f(x_n)$

(21.14)
$$f(x) \approx p_n(x) = f_0 + r\Delta f_0 + \frac{r(r-1)}{2!} \Delta^2 f_0 + \frac{r(r-1)(r-2)}{3!} \Delta^3 f_0 + \cdots + \frac{r(r-1)\cdots(r-n+1)}{n!} \Delta^n f_0$$
$$(x = x_0 + rh, \ r = \frac{x - x_0}{h}, \ 0 \le r \le n)$$

ویتی ہے۔ اس کلیہ میں n=1 پر کرنے سے مساوات 21.12 اور n=2 پر کرنے سے مساوات 21.13 اور $p_n(x_k)=f_k\;(k=0,1,\cdots,n)$ خاصل ہوتا ہے۔ ہمیں اب $p_n(x_k)=f_k\;(k=0,1,\cdots,n)$ ثابت کرنا ہو گا۔ مساوات 21.14 کے وائیں ہاتھ سے

$$(21.15) f_k = {k \choose 0} f_0 + {k \choose 1} \Delta f_0 + {k \choose 2} \Delta^2 f_0 + \dots + {k \choose k} \Delta^k f_0$$

Newton's forward-difference interpolation formula³⁴

21.4 بابمی تحسریف

کھا جا سکتا ہے جہاں ثنائی عددی 35 سر ورج ذیل ہیں جہاں $s!=1\cdot 2\cdot 3\cdot \cdot s$ کے برابر ہے۔

(21.16)
$$\binom{k}{0} = 1$$
, $\binom{k}{s} = \frac{k(k-1)(k-2)\cdots(k-s+1)}{s!}$ $(s \ge 0, \frac{2}{s})$

در حقیقت مساوات 21.14 میں r=k پر کرنے سے مساوات 21.14 کا دایاں ہاتھ اور مساوات 21.15 بالکل ایک جیسے ہوں گے۔مساوات 21.15 کو الکراجی ماخوذ سے ثابت کرتے ہیں۔

ثبوت: k=q کے لئے مساوات 21.15 درست ہے۔ فرض کریں کہ یہ k=q کے لئے بھی درست ہے۔ تب مساوات 21.15 میں k=q استعال کر کے، Δ کی اطلاق سے درج ذیل لکھا جا سکتا ہے۔

$$f_{q+1} = f_q + \Delta f_q$$

$$= \binom{q}{0} f_0 + \binom{q}{1} \Delta f_0 + \binom{q}{2} \Delta^2 f_0 + \dots + \binom{q}{q} \Delta^q f_0$$

$$+ \binom{q}{0} \Delta f_0 + \binom{q}{1} \Delta^2 f_0 + \binom{q}{2} \Delta^3 f_0 + \dots + \binom{q}{q} \Delta^{q+1} f_0$$

 $\Delta^s f_0$ کا عددی سر (مساوات $\Delta^s f_0$ کا عددی

$$\binom{q}{s} + \binom{q}{s-1} = \binom{q+1}{s}$$

ہے جو k=q+1 کے لئے مساوات 21.15 دیتا ہے۔ یول الکراجی ماخوذ کے ذریعہ ثبوت مکمل ہوتا ہے۔

مساوات 21.14 کی طرح ایسا کلیہ جو پیچیے فرق پر مبنی ہو، پیچھے فرق، باہمی تحریف کلیہ نیوٹن³⁶

(21.17)
$$f(x) \approx p_n(x) = f_0 + r \nabla f_0 + \frac{r(r+1)}{2!} \nabla^2 f_0 + \cdots + \frac{r(r+1) \cdots (r+n-1)}{n!} \nabla^n f_0$$

ے جہال مساوات 21.14 کی طرح $x = x_0 + rh$, $r = \frac{x - x_0}{h}$, $0 \le r \le n$ بیں۔

 $binomial\ coefficients^{35}$

Newton's backward-difference interpolation formula³⁶

اب 21.اعبدادي مخبزيه

باہمی تحریف کے کلیات اور استعال پر کثیر مواد پایا جاتا ہے۔مثال کے طور پر صرف جفت درجہ فرق پر مبنی کلیات پائے جاتے ہیں۔اس طرز کا ایک انتہائی اہم اور سادہ ترین کلیہ ایورٹ³⁷ ورج ذیل ہے۔

$$(21.18) f(x) \approx (1-r)f_0 + rf_1 + \frac{(2-r)(1-r)(-r)}{3!} \delta^2 f_0 + \frac{(r+1)r(r-1)}{3!} \delta^2 f_1$$

$$-\mathcal{O}_{\mathcal{F}}^{\mathbf{r}} r = \frac{x-x_0}{h}, \ 0 \le r \le 1$$

مثال 21.9: كليه ايورث كا استعمال

تفاعل الاستعمال والمستعمل المستعمل الم

$$\begin{array}{c|ccc} x & e^x & \delta^2 \\ \hline 1.2 & 3.3201 & 333 \\ 1.3 & 3.6693 & 367 \end{array}$$

اب $r = \frac{0.04}{0.1} = 0.4$ بے لہذا مساوات 21.18 درج ذیل دے گ

$$e^{1.24} \approx 0.6 \cdot 3.3201 + 0.4 \cdot 3.6693 + \frac{1.6 \cdot 0.6 \cdot (-0.4)}{6} \cdot 0.0333$$

+ $\frac{1.4 \cdot 0.4 \cdot (-0.6)}{6} \cdot 0.0367$
= $3.4598 - 0.0021 - 0.0021 = 3.4556$

جو چار ملحوظ ہندسوں تک درست جواب ہے۔دھیان رہے کہ خطی باہمی تحریف 3.4598 دیتی ہے جو صرف دو $e^{1.1}=3.0042$ ہندسوں تک درست جواب ہے۔ (آپ $e^{1.1}=3.0042$ اور $e^{1.4}=4.0552$ استعال کرتے ہوئے دوسرے فرق کی جانچ پڑتال کر سکتے ہیں۔)

عمومی کلیہ ایورٹ 38 درج زیل ہے

(21.19)
$$f(x) = qf_0 + rf_1 + {\binom{q+1}{3}} \delta^2 f_0 + {\binom{r+1}{3}} \delta^2 f_1 + {\binom{q+2}{5}} \delta^4 f_0 + {\binom{r+2}{5}} \delta^4 f_1 + \cdots$$

Everett formula³⁷ Everett formula³⁸ 21.4 بابهی تحسریف

جہال $r=rac{x-x_0}{h},\ 0\leq r\leq 1$ اور $r=rac{x-x_0}{h},\ 0\leq r\leq 1$ عدد ی جہال کی نسبت

$$\frac{\binom{q+2}{5}}{\binom{q+1}{3}} = \frac{q^2 - 4}{20}$$

ہے۔ای طرح $\delta^4 f_1$ اور $\delta^2 f_1$ کے عددی سرول کی نسبت $\frac{r^2-4}{20}$ ۔یہ دونوں نسبت وقفہ 0 تا 1 میں بہت کم تبریل ہوتے ہیں۔یوں اگر ان کی جگہ ان کی کوئی موزوں اوسط قیمت μ منتخب کی جائے تب تبدیل شدہ دوسرمے فرق 89

(21.20)
$$\delta_m^2 f = \delta^2 f + \mu \delta^4 f, \quad \mu = -0.18393$$

استعال کرتے ہوئے چوتھی فرق کے اثر کو مساوات 21.18 میں سمویا جا سکتا ہے، جہاں μ کی دی گئی قیمت ایک موزوں قیمت ہے۔

n ہم بغیر ثبوت پیش کے بتلانا چاہتے ہیں کہ اگر x_0, x_1, \cdots, x_n کے آپس میں فاصلے اختیاری ہوں تب x_0, x_1, \cdots, x_n کرتا ہو، جہاں x_0, x_1, \cdots منقسم فرق باہمی عربی کثیر رکنی جو x_0, x_1, \cdots منقسم فرق باہمی تحریف کلیہ نیوٹن x_0, x_1, \cdots منقسم فرق باہمی تحریف کلیہ نیوٹن x_0, x_1, \cdots

(21.21)
$$f(x) \approx f_0 + (x - x_0)f[x_0, x_1] + (x - x_0)(x - x_1)f[x_0, x_1, x_2] + \cdots + (x - x_0)\cdots(x - x_{n-1})f[x_0, \dots, x_n]$$

کا دایاں ہاتھ ہو گا جہاں منقسم فرق⁴¹ درج ذیل دہرانے کے تعلقات دیتے ہیں۔

(21.22)
$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}, \quad f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}, \dots$$
$$f[x_0, \dots, x_k] = \frac{f[x_1, \dots, x_k] - f[x_0, \dots, x_{k-1}]}{x_k - x_0}$$

 $f[x_0,\cdots,x_k]=rac{\Delta^k f_0}{k!h^k}$ ہو تب $f[x_0,\cdots,x_k]=rac{\Delta^k f_0}{k!h^k}$ ہو گا اور مساوات 21.21 سے مساوات 21.14 حاصل ہو گی۔

باہمی تحریف کی مختلف تراکیب فرق میں ہم فرق معلوم کرتے ہیں جس کو جدول کی درنگی کے لئے بھی استعال کیا جاتا ہے۔البتہ کس درجہ کی باہمی تحریف استعال کی جائے، عموماً اس سوال کا جدول میں جواب نہیں دیا جاتا

modified second differences³⁹

Newton's divided difference interpolation formula⁴⁰

divided difference⁴¹

اب 21.اعبدادي مخبزيد (1398

ے۔لیگرینج باہمی تحریف⁴²کی ترکیب لیگرینج باہمی تحریف کے کلیہ

(21.23)
$$f(x) \approx L_n(x) = \sum_{k=0}^n \frac{l_k(x)}{l_k(x_k)} f_k$$

یر مبنی ہے جہاں ضروری نہیں ہے کہ x_0, \dots, x_n برابر فاصلوں پر ہوں اور

$$l_0(x) = (x - x_1)(x - x_2) \cdots (x - x_n)$$
(21.24)
$$l_k(x) = (x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_n), \quad 0 < k < n$$

$$l_n(x) = (x - x_0)(x - x_1) \cdots (x - x_{n-1})$$

 $j \neq k$ نقطوں کا کلیہ لیگرینج کہتے ہیں۔ چونکہ مساوات 21.24 سے n+1 نقطوں کا کلیہ لیگرینج کہتے ہیں۔ چونکہ مساوات 21.24 سے n+1 نقطوں کا کلیہ لیگرینج کہتے ہیں۔ چونکہ مساوات $l_k(x_j)=0$ ماصل ہوتے ہیں لہذا $x=x_k$ ماصل ہوتے ہیں لہذا $l_k(x_j)=0$ ہو گا۔ اس ترکیب میں فرق حاصل کرنے کی ضرورت نہیں ہے اور ہم مختلف f_k کے اثرات کو سیدھ و سیدھ دیکھ سکتے ہیں۔ ہاں اب حساب زیادہ مشکل ضرور ہوگا اور جدول میں غلطی کی جانچ پڑتال ممکن نہیں ہوگی۔ اس کئے ضروری ہے کہ یہ ترکیب صرف مستنہ جدول پر لاگو کیا جائے۔

مثال 21.10: لیگرینج کلیہ باہمی تحریف کا استعمال اللہ اللہ کا اللہ کا اللہ اللہ کا کا اللہ کا کے اللہ کا اللہ

$$l_1(x)=(x-9)(x-10)(x-11)$$
 ، $l_0(x)=(x-9.5)(x-10)(x-11)$ ، $l_0(x)=(x-9.5)(x-10)(x-11)$ ، $l_0(x)=(x-9.5)(x-10)(x-11)$ ، $l_0(x)=(x-9.5)(x-10)(x-11)$ ، $l_0(x)=(x-9.5)(x-10)(x-11)$

$$\ln 9.2 = \frac{-0.43200}{-1.00000} \cdot 2.19722 + \frac{0.28800}{0.37500} \cdot 2.25129 + \frac{0.10800}{-0.50000} \cdot 2.30259 + \frac{0.04800}{3.00000} \cdot 2.39790 = 2.21920$$

ہو گا جو پانچ ملحوظ ہندسوں تک درست جواب ہے۔

Lagrangian interpolation⁴²

21.4. باہمی محسریف

جدول 21.46: جدول برائے سوال 21.36 تاسوال 21.41

x	sin x	پہلا فرق	دوسرا فرق
0.0	0.00000		
0.0	0.400.6	19867	700
0.2	0.19867	19 075	-792
0.4	0.38942	19073	-1553
0.1	0.000 12	17 522	1000
0.6	0.56464		-2250
0.0	0.545.04	15 272	2011
0.8	0.717 36	12 411	-2861
1.0	0.841 47	14411	

سوالات

 (x_2, f_2) ، (x_1, f_1) ، (x_0, f_0) ویا گیا قطع مکافی نقطہ (x_1, f_1) ، (x_1, f_1) ، (x_2, f_2) ، مساوات 21.13 میں دیا گیا قطع مکافی نقطہ (x_1, f_1) ، (x_1, f_1) ، (x

جدول 21.6 كو سوال 21.41 تا سوال 21.36 مين استعال كرين

سوال 21.37: sin 0.26 کی قیمت دو در جی باہمی تحریف یعنی مساوات 21.13 کی مدد سے حاصل کریں۔ دکھائیں پہلے تین ملحوظ ہندسے بالکل درست ہیں۔ جواب: 0.257 53

سوال 21.38: جدول 21.6 میں تیسرے فرق اور چوشے فرق شامل کرتے ہوئے $\sin 0.26$ کی قیمت مساوات n=3 (الف) n=3 اور n=3 اور n=3 کی مدد سے (الف) n=3 اور n=3 اور n=3 کی مدد سے راست جواب n=3 اور n=3 کی ساتھ کریں۔آپ دیکھیں گے کہ n=3 سے تین ملحوظ ہند سول تک درست جواب حاصل ہوگا۔ n=3 سے بین ملحوظ ہند سول تک درست جواب حاصل ہوگا۔

با__21.اعبدادی تحبزیه 1400

n=2 (() n=1 (الف) n=1 کو مساوات 21.17 کی مدد سے (الف) n=1 کے کر اور () لے کر حاصل کریں۔آپ دیکھیں گے کہ دونوں صور توں میں پہلے دو ملحوظ ہندسے درست ہوں گے۔یوں موجودہ متیجہ سوال 21.36 کے متیجہ سے کم درست ہے۔ کیوں؟ جوابات: (الف) 0.258 27 (ب)

n = 4 (الف) n = 3 کر، n = 4 کر، n = 3 کر، n = 4 کر، n = 4 کر، n = 4 کر، n = 4 کر الف x = 3 اور n = 5 کی قیمت تلاش کریں۔آپ کو n = 5 اور n = 5 اور اپ n = 5 اور اپ کی مدد سے sin x کی قیمتیں در کار ہوں گی اور مطابقتی فرق در کار ہوں گے۔سائن تفاعل sin x کی قیمتیں در کار ہوں گے۔سائن تفاعل کی کون سی خاصیت اس وسعت کو آسان بناتی ہے۔موجودہ نتائج سوال 21.38 کے نتائج سے کیوں کم ٹھیک ہیں؟ جوابات: (الف) 0.25709 ، (ب) 0.25705 اور (پ) 0.25708 ؛ جواب (پ) يانچ ملحوظ هندسول

سوال 21.41: د کھائیں کہ بہت کم محنت کے ساتھ کلیہ ابورٹ (مساوات 21.18) استعال کرتے ہوئے = sin 0.26 0.257 07 حاصل ہوتا ہے۔

سوال 21.42: مثال 21.9 میں کی گئی حیاب کی تصدیق کریں۔

f(2.6) = 1.612452 let f(2.3) = 1.516575 (f(2.0) = 1.414214استعال کرتے ہوئے تفاعل x = f(x) = 0 کی دو درجی ہاہمی تحریف کریں۔ نتائج کا جدول 21.5 کے ساتھ موازنہ $f(x)pprox 0.566\,106 + 0.496\,098x - 0.036\,022x^2$ جوابات:

سوال 21.44: درج ذیل د کھائیں۔

$$\Delta^{k} f_{n} = {\binom{k}{0}} f_{n+k} - {\binom{k}{1}} f_{n+k-1} + \dots + (-1)^{k} {\binom{k}{k}} f_{n}$$

سوال 21.45: f(1)=2 اور f(2)=77 اور f(2)=11 ، f(1)=2 عمومی کلیه لیگرینج f(3) حاوات 21.23) سے f(3) تلاش کریں۔ $6x^2 - 15x + 9$, $6x^2 - 15x + 9$

21.10 لين جبكه $\ln 10$ ، $\ln 9.5$ ، $\ln 9.0$ لين جبكه $\ln 8.5 = 2.140$ كي قيمتين مثال $\ln 8.5 = 2.140$ عوال میں دی گئی ہیں۔ $\ln 9.2$ کو (الف) n=3 اور $x_0=8.8$ لیتے ہوئے مساوات 21.14 سے حاصل کری؛ (ب) n = 3 اور $x_0 = 10$ للتے ہوئے مساوات 21.17 سے حاصل کریں۔ 21.5. كىپكدار منحنيات

سوال 21.47: $\ln 8.5 = 2.140\,07$ لیں جبکہ $\ln 10$ ، $\ln 10$ اور $\ln 11$ مثال 21.10 میں دی گئی n = 3 ہیں۔اب n = 3 سیاوات 21.23 سے 21.23 کی قیمت تلاش کریں۔حاصل جواب کا مثال 21.10 کے متیجہ سے موازنہ کریں۔

جواب: 2.219 21 جو کم درست ہے چوکلہ آخری ہندسہ میں 1 اکائی کا خلل ہے۔

سوال 21.48: سوال 21.46 میں دی گئی مواد استعال کرتے ہوئے $\ln 9.2$ کی قیت (الف) مساوات 21.18 استعال کرتے ہوئے تلاش کریں۔ n=3 (ب

$$f(x) \approx -\binom{r-1}{3}f_0 + \frac{r(r-2)(r-3)}{2}f_1 - \frac{r(r-1)(r-3)}{2}f_2 + \binom{r}{3}f_3$$

سوال 21.50: سوال 21.49 کا کلیہ استعال کرتے ہوئے سوال 21.48-ب کا نتیجہ دوبارہ حاصل کریں۔

سوال 21.51: (فرق کمی جانچ پڑتال) و کھائیں کہ قطار میں دیے گئے اندراجات کا مجموعہ گزشتہ قطر کی آخری اور پہلی اندراج کے فرق کے برابر ہو گا۔اس جزوی پر کھ کی جدول 21.3 پر اطلاق کریں۔

21.5 كيكدار منحنيات

 $a \leq x \leq b$ کاروں میں مشابہ کثیر رکنی کو کچکدار منحنی کہتے ہیں۔اس کا مطلب ہے کہ وقفہ $a \leq x \leq b$ پر ہم دیے گیے نفاعل g(x) کا مشابہ نفاعل اصل کرنا چاہتے ہیں۔ظاہر ہے کہ ہم چاہیں گے کہ مشابہ نفاعل اصل نفاعل کے g(x) کا مشابہ نفاعل $a \leq x \leq b$ مشابہ نفاعل مصل کرنے کی خاطر وقفہ $a \leq x \leq b$ کو چھوٹے خانوں کرنے کی خاطر وقفہ $a \leq x \leq b$ کو چھوٹے خانوں کاروں)

$$(21.25) a = x_0 < x_1 < \dots < x_n = b$$

اب 21 اعدادی تحب زید

میں تقسیم کرتے ہیں جہاں خانوں کے سروں کو جوڑ 43 کہا جاتا ہے۔ہم خانے پر g(x) کو ایک ایسی کثیر رکنی سے ظاہر کیا جاتا ہے کہ خانے کی سروں پر g(x) بار بار قابل تفرق ہو۔یوں پورے وقفہ $a \leq x \leq b$ پر تفاعل فاہر کرتے ہیں۔یوں حاصل f(x) کو مشابہ کثیر رکنی سے ظاہر کرنے کی بجائے ہم اس کو n عدد کثیر رکنی سے ظاہر کرتے ہیں۔یوں حاصل مشابہ g(x) باہمی تحریف میں بہتر ثابت ہوتا ہے۔ مثال کے طور پر وقفہ $a \leq x \leq b$ کے ہم ایک خانے میں کثیر رکنی سے $a \leq x \leq b$ کا ارتعاثی کم ہو گا۔یوں حاصل تفاعل g(x) کو چلکدار منحنیات $a \leq x \leq b$

ہم ہر خانے کا مثابہ خطی تفاعل استعال کر سکتے ہیں لیکن ایسا تفاعل خانہ کی جوڑوں پر غیر استمراری ہو گا۔ایسا تفاعل جو وقفہ $a \leq x \leq b$ ہے ہر نقطہ پر کئی بار قابل تفرق ہو بہتر ثابت ہوتا ہے۔

ہم تعبی کچکدار منحنیات پر غور کرتے ہیں جو عملی استعال کے نقطہ نظر سے غالباً اہم ترین ہیں۔ تعریف کی رو سے وقفہ $a \leq x \leq b$ پر مساوات 21.25 میں دیے گئے خانوں کے لحاظ سے تعبی لچکدار منحنی $a \leq x \leq b$ سے مراد استمراری تفاعل g(x) ہے جس کے استمراری ایک درجی اور دو درجی تفرق پورے وقفہ پر پائے جاتے ہوں اور جس کو ہر خانہ پر ایسی کثیر رکنی سے ظاہر کیا گیا ہو جس کا درجہ تین سے زیادہ نہ ہو۔ یوں ہر خانہ میں g(x) کو ایک کتبی کثیر رکنی سے ظاہر کیا جائے گا۔

اگر وقفہ کے خانے (مساوات 21.25) منتخب کیے گئے f(x) دیا گیا ہو اور اس وقفہ کے خانے (مساوات 21.25) منتخب کیے گئے ہوں تب، گزشتہ حصہ کی طرح، f(x) کی مشابہ تعبی کچکدار منحنی g(x) درج ذیل کو مطمئن کرتے ہوئے حاصل ہوگی۔

(21.26)
$$g(x_0) = f(x_0), \quad g(x_1) = f(x_1), \dots, g(x_n) = f(x_n)$$

ہم فرض کرتے ہیں کہ ایسا تعبی کچکدار منحنی g(x) پایا جاتا ہے جو مساوات 21.26 کو مطمئن کرتا ہو۔اب اگر g(x) درج ذیل بھی شرائط

(21.27)
$$g'(x_0) = k_0, \quad g'(x_n) = k_n$$

(جہاں k_0 اور k_n دیے گئی عدد ہیں) پر بھی پورا اترتا ہو تب g(x) کیتا ہو گا۔ درج ذیل مسلہ کچکدار منحن کی موجود گی اور بکتائی کو بیان کرتا ہے۔

مسّله 21.2: كعبى لچكدار منحنيات

فرض کریں کہ وقفہ کے خانے مساوات 21.25 میں f(x) دیا گیا ہے اور اس وقفہ کے خانے مساوات 21.25 میں

nodes⁴³

splines or flexible $curves^{44}$

 $cubic spline^{45}$

21.5 لحيكدار منحنيات 21.5

دیے گئے ہوں اور فرض کریں کہ k_0 اور k_n کوئی دو عدد ہوں۔تب مساوات 21.25 کے لحاظ سے ایسا صرف اور صرف ایک تعبی کچکدار منحنی g(x) موجود ہو گا جو مساوات 21.26 اور مساوات 21.27 کو مطمئن کرتا ہو۔

g(x) فیر کرتا ہے، کچکدار منحنی $x_j \leq x \leq x_{j+1}$ میں، جس کو $x_j \leq x \leq x_{j+1}$ فاہر کرتا ہے، کچکدار منحنی اور کعبی کثیر رکنی $p_j(x)$ ایک جیسے ہوں گے اور درج ذیل کو مطمئن کریں گے۔

(21.28)
$$p_i(x_i) = f(x_i), \quad p_i(x_{i+1}) = f(x_{i+1})$$

اور $\frac{1}{x_{j+1}-x_j}=c_j$ اور

(21.29)
$$p'_{i}(x_{j}) = k_{j}, \quad p'_{i}(x_{j+1}) = k_{j+1}$$

 $p_j(x)$ ۔ اور a_n اور a_n دیے گئے ہیں جبکہ k_1, \dots, k_{n-1} بعد میں حاصل کیے جائیں گے۔ a_n اور a_0 اور مساوات 21.28 اور مساوات 21.29 میں دیے چار شرائط کو مطمئن کرنا ہو گا۔ سیدھے حساب سے ہم تصدیق کر سکتے ہیں کہ ایسا تعبی کثیر رکنی $p_j(x)$ جو ان شرائط کو مطمئن کرتا ہو درج ذیل ہے۔

(21.30)
$$p_{j}(x) = f(x_{j})c_{j}^{2}(x - x_{j+1})^{2}[1 + 2c_{j}(x - x_{j})] + f(x_{j+1})c_{j}^{2}(x - x_{j})^{2}[1 - 2c_{j}(x - x_{j+1})] + k_{j}c_{j}^{2}(x - x_{j})(x - x_{j+1})^{2} + k_{j+1}c_{j}^{2}(x - x_{j})^{2}(x - x_{j+1})$$

اس کا دو درجی تفرق درج ذیل دیگا۔

(21.31)
$$p_i'' = -6c_i^2 f(x_i) + 6c_i^2 f(x_{i+1}) - 4c_i k_i - 2c_i k_{i+1}$$

(21.32)
$$p_j''(x_{j+1}) = -6c_j^2 f(x_j) + 6c_j^2 f(x_{j+1}) + 2c_j k_j + 4c_j k_{j+1}$$

تحریف کی رو سے ورج ذیل شرط حاصل ہوتا ہے۔

$$p''_{j-1}(x_j) = p''_j(x_j)$$
 $j = 1, 2, \dots, n-1$

n-1 مساوات 21.32 میں j کی جگہ j اور مساوات 21.31 استعال کرتے ہوئے ہم دیکھتے ہیں کہ یہ عدد مساوات درج ذیل صورت اختیار کرتے ہیں

(21.33)
$$c_{j-1}k_{j-1} + 2(c_{j-1} + c_j)k_j + c_jk_{j+1} = 3[c_{j-1}^2 \nabla f_j + c_j^2 \nabla f_{j+1}]$$

اب 21 اعدادی تحب زید

 $j=1,\cdots,n-1$ بین جبکه $\nabla f_{j+1}=f(x_{j+1})-f(x_{j})$ اور $\nabla f_{j}=f(x_{j})-f(x_{j-1})$ بین جبکه $p=1,\cdots,n-1$ بین جبکه $p=1,\cdots,n-1$ بین جبک اس نظام کے تمام عددی سر غیر منفی بین اور مرکزی و تر پر ہر جزو، مطابقتی صف کے باقی اجزاء کے مجموعہ سے زیادہ ہے لہذا عددی سر قالب صفر نہیں ہو سکتا ہے۔ اس طرح ہم جوڑ پر $p=1,\cdots,n-1$ کی کیک درجی تفرق کے کیکا $p=1,\cdots,n-1$ حاصل کرتے ہیں۔ اس طرح ثبوت مکمل ہوتا ہے۔

آئیں اس مسئلے کو ایک مثال کی مدد سے دیکھیں۔

مثال 21.11: مشابه لچکدار منحنی

وقفہ $f(x)=x^4$ کے اور $x_2=1$ اور $x_1=0$ ، $x_0=-1$ پر $x_1=0$ ، $x_1=0$ ، $x_2=1$ کی مثابہ کعبی کچکدار منحنی تلاش کریں جو مساوات 21.26 کو مطمئن کرتی ہو اور g'(-1)=f'(-1) ہوں۔ g'(1)=f'(1)

عُلْ: الله ممین ورج ذیل کے عددی سر علاش کرنے ہوں گے۔

$$p_0(x) = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

$$p_1(x) = b_3 x^3 + b_2 x^2 + b_1 x + b_0$$

$$p_0'(0)=p_1'(0)$$
 سے $a_0=b_0=0$ سے $a_0=b_0=0$ سے $a_0=b_0=0$ سے $a_0=b_0=0$ سے $a_1(0)=a_1=0$ اور $a_1=b_1$ سے $a_1=b_1$

$$p_0(x) = a_3 x^3 + a_2 x^2 + a_1 x$$

$$p_1(x) = b_3 x^3 + a_2 x^2 + a_1 x$$

ہو گا۔ باقی چار عددی سروں کو باقی چار شرائط سے حاصل کرتے ہیں۔

(21.34)
$$p_0(-1) = -a_3 + a_2 - a_1 = f(-1) = 1$$
$$p_1(1) = b_3 + a_2 + a_1 = f(1) = 1$$
$$p'_0(-1) = 3a_3 - 2a_2 + a_1 = f'(-1) = -4$$
$$p'_1(1) = 3b_3 + 2a_2 + a_1 = f'(1) = 4$$

اس نظام کا حل میں در کار کیکدار منحتی $b_3=2$ ، $a_3=-2$ ، $a_2=-1$ ، $a_1=0$ اس نظام کا حل

(21.35)
$$g(x) = \begin{cases} -2x^3 - x^2 & -1 \le x \le 0\\ 2x^3 - x^2 & 0 \le x \le 1 \end{cases}$$

21.5. كىپكدار منحنيات

(21.11 قاعل f(x) اور (نقطه دار) تعبی کچکدار منحنی g(x) (مثال f(x)

ہو گی (شکل 21.6 میں نقطہ دار منحنی)۔

کپلدار منحنیات کی ایک دلچیپ نمتر خوبی ہے جس کو اب اخذ کرتے ہیں۔ فرض کریں کہ مسّلہ 21.2 میں وقفہ کپلدار منحنیات کی ایک دلجی استمراری ہے اور اس وقفہ پر f(x) کے یک درجی اور دو درجی استمراری تفرق پائے جاتے ہیں۔ فرض کریں کہ مساوات 21.2 کی صورت درج ذبل ہے (مثال 21.11 کی طرح)۔

(21.36)
$$g'(a) = f'(a), \quad g'(b) = f'(b)$$

تب a اور b پر g'-g'-g' صفر ہو گا۔ تمل بالحصص سے

$$\int_{a}^{b} g''(x)[f''(x) - g''(x)] dx = -\int_{a}^{b} g'''(x)[f'(x) - g'(x)] dx$$

حاصل ہو گا۔چونکہ وقفہ کے ہر چھوٹے جھے پر g'''(x) مستقل ہے لہذا دائیں ہاتھ تکمل کو کسی ایک ٹکڑے پر حاصل کرتے ہوئے c[f(x)-g(x)] ملتا ہے جہاں c مستقل ہے اور تکمل کی بیہ قیمت ٹکڑے کے سروں پر حاصل کی جائے گی جو مساوات 21.26 کی بنا صفر حاصل ہو گی۔چونکہ ہر ککڑے پر تکمل صفر ہے لہذا پورے وقفے پر تکمل صفر ہو گا۔اس طرح درج ذیل ثابت ہوتا ہے۔

$$\int_{a}^{b} f''(x)g''(x) \, \mathrm{d}x = \int_{a}^{b} g''(x)^{2} \, \mathrm{d}x$$

اب 21 اعدادی تحبزید

نتيجتأ

$$\int_{a}^{b} [f''(x) - g''(x)]^{2} dx = \int_{a}^{b} f''(x)^{2} dx - 2 \int_{a}^{b} f''(x)g''(x) dx + \int_{a}^{b} g''(x)^{2} dx$$
$$= \int_{a}^{b} f''(x)^{2} dx - \int_{a}^{b} g''(x)^{2} dx$$

ہو گا۔ بائیں ہاتھ متکمل غیر منفی ہے للذا تکمل بھی غیر منفی ہو گا جس سے درج ذیل ملتا ہے۔

اس نتیجہ کو درج ذیل مسکلہ بیش کرتا ہے۔

مسله 21.3: كعبى لچكدار منحنى كى كمتر خاصيت

فرض کریں کہ وقفہ $a \leq x \leq b$ پر تفاعل f(x) اور اس کے یک درجی اور دو درجی تفرق استمراری مول کریں کہ اس وقفہ کے خانوں (مساوات 21.25) کے لحاظ سے g(x) مطابقتی تعبی لچکدار منحیٰ ہو جو مساوات 21.36 اور g(x) مساوات 21.36 کو مطمئن کرتی ہو۔ تب f(x) اور g(x) مساوات 21.36 کو مطمئن کرتی ہو۔ تب g(x) اور g(x) تعبی لچکدار منحیٰ g(x) میں علامت مساوات g(x) اس صورت کو ظاہر کرتی ہے جب g(x) تعبی لچکدار منحیٰ کہو۔

سوالات

سوال 21.52: تصدیق کریں کہ مساوات 21.30 میں دیا گیا $p_j(x)$ مساوات 21.28 اور مساوات 21.29 کو مطمئن کرتا ہے۔

سوال 21.53: مساوات 21.31 اور مساوات 21.32 کو مساوات 21.30 سے اخذ کریں۔

سوال 21.54: مثال 21.11 پر غور کریں۔ دکھائیں کہ مثال میں دی گئی شرائط کے تحت مساوات 21.30 درج ذیل دے گ

$$p_0(x) = -2x^3 - x^2 + k_1 x(x+1)^2$$

$$p_1(x) = 2x^3 - x^2 + k_1 x(x-1)^2$$

21.5 لىپكدارمنحنيات 21.5

جبکه مساوات 21.33 سے $k_1=0$ حاصل ہو گا اور یوں مساوات 21.35 حاصل ہو گا۔

سوال 21.55: مثال 21.11 میں تعبی کچکدار منحنی کا موازنہ پورے وقفہ پر دو درجی مثابہ کثیر رکنی p(x) کے نادہ سے زیادہ انحراف کتنی ہیں۔ ساتھ کریں۔ g(x) سے g(x) اور g(x) کی زیادہ سے زیادہ انحراف کتنی ہیں۔

سوال 21.56: مساوات 21.34 میں دیے گئے نظام کا حل تلاش کریں۔

سوال 21.57: دکھائیں کہ وقفہ کے خانوں کے لحاظ سے تعبی لیکدار منحنیات سمتی فضا (حصہ 7.4) بناتے ہیں۔

سوال 21.58: وکھائیں کہ وقفہ کے دیے گئے خانوں (مساوات 21.25) کے لحاظ سے n+1 کیا تعبی کچکدار منحنیات $g_i'(a)=g_i'(b)=0$ موجود ہوں گی جو $g_0(x),\cdots,g_n(x)$ اور

$$g_j(x_k) = \delta_{jk} = \begin{cases} 0 & j \neq k \\ 1 & j = k \end{cases}$$

کو مطمئن کریں گی۔ جواب: مسئلہ 21.2 سے ایسا اخذ ہوتا ہے۔

سوال 21.59: دکھائیں کہ اگر ایک لحکدار منحیٰ تین بار قابل تفرق ہو تب یہ ضرور کثیر رکنی ہو گا۔

سوال 21.60 اییا ممکن ہے کہ وقفہ $a \leq x \leq b$ کی دو قریبی خانوں کی کچکدار منحنیات ایک جیسی $x_1 = 0$ ، $x_0 = -\frac{\pi}{2}$ کی خاطر وقفہ $\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$ کی خانوں $g'(-\frac{\pi}{2}) = f'(-\frac{\pi}{2})$ کی خاطر وقفہ $g'(-\frac{\pi}{2}) = f'(-\frac{\pi}{2})$ کی ایس کچکدار منحنیات تلاش کریں جو $g'(-\frac{\pi}{2}) = f'(-\frac{\pi}{2})$ اور $g'(-\frac{\pi}{2}) = f'(\frac{\pi}{2})$ کو مطمئن کرتی ہوں۔ $g(x) = -\frac{4}{\pi^3}x^3 + \frac{3}{\pi}x$

سوال 21.61: مساوات 21.37 کی جیومیٹریائی مطلب کچھ یوں ہے۔یہ مساوات کہتی ہے کہ لچکدار منحنی، مربع انخا کے تکمل کی قیمت کو کم کرنے کی کوشش کرتی ہے۔اس پر بحث کریں۔

اب 21 اعدادی تحب زید

21.6 اعدادی تکمل اور تفرق

اعدادی تکمل 46 سے مراد قطعی کمل

$$(21.38) J = \int_a^b f(x) \, \mathrm{d}x$$

کی اعدادی قیمت کی تلاش ہے جہاں a اور b دیے گئے ہوں گے اور f دیا گیا تفاعل کی قیمتوں کا جدول ہو گا۔

ہم جانتے ہیں کہ اگر ہم ایبا قابل تفرق تفاعل F تلاش کر سکیں جس کا تفرق f ہو تب J کو درج ذیل کلیہ سے حاصل کیا جا سکتا ہے۔

$$J = \int_{a}^{b} f(x) dx = F(b) - F(a)$$
 $[F'(x) = f(x)]$

انجینئری میں عموماً ایسے تکمل پائے جاتے ہیں جن کا متکمل جدول کی صورت میں ہو گا یا تکمل کو متناہی تعداد کے بنیادی نفاعل کی صورت پیچیدہ اور غیر مفید ثابت ہو گی۔ ایسی صورتوں میں اعدادی تکمل کارآ مد ثابت ہوتا ہے۔

چونکہ وقفہ $a \leq x \leq b$ میں تفاعل f(x) کے نیچے خطہ R کا رقبہ J ہے (شکل 21.7) للذا ہم گتے R کے شکل کاٹ کر، گتے کی اس مکٹرے کے وزن کو اکائی رقبہ گتے کی وزن سے تقسیم کرتے ہوئے R کا رقبہ دریافت کر سکتے ہیں۔ ہم کاغذ توسیم R پر R کی شکل بنا کر ڈب گن کر بھی R کا رقبہ دریافت کر سکتے ہیں۔ رقبہ کی بہتر ناپ کے لئے سطح پیما R4 کیا استعمال ضروری ہو گا۔

numerical integration⁴⁶ graph paper⁴⁷

planimeter⁴⁸

شكل21.7 قطعى تكمل كى جيو ميٹريائي معنی

(ب) ذوزنقه قاعده

(الف)مستطيل قاعده

شكل21.8:اعدادي تكمل

کو سیڑھی تفاعل 49 (کلڑوں میں مستقل تفاعل) ظاہر کرے گی۔شکل 21.8 الف کے n مستطیلوں کے انفرادی رقبے $hf(x_1^*), \cdots, hf(x_n^*)$

(21.39)
$$J = \int_{a}^{b} f(x) dx \approx h[f(x_{1}^{*}) + f(x_{2}^{*}) + \dots + f(x_{n}^{*})], \quad \left(h = \frac{b - a}{n}\right)$$

step function 49 rectangular rule 50

باب.21 اعبدادي تحبزيد

تفاعل f کو کمگروں میں خطی قطعات (شکل 21.8-ب) سے ظاہر کرنے سے اعدادی کمکمل کا ذوزنقہ قاعدہ f تفاعل (21.40)

$$J = \int_a^b f(x) \, \mathrm{d}x \approx h\left[\frac{1}{2}f(a) + f(x_1) + f(x_2) + \dots + f(x_{n-1}) + \frac{1}{2}f(b)\right]$$

حاصل ہو گا جہاں $x_0 = a$ ہے اور $x_0 = a$ ہے اور $x_0 = a$ ہیں جو $x_0 = a$ ہیں ہو گا جہاں $x_0 = a$ ہو گا۔ شکل $x_0 = a$ ہیں جو کا۔ شکل $x_0 = a$ ہو گا۔ شکل a ہو گا۔ شکل کے گا ہو گا۔ شکل کے گا ہو گا ہو

$$\frac{1}{2}[f(a)+f(x_1)]h$$
, $\frac{1}{2}[f(x_1)+f(x_2)]h$, \cdots , $\frac{1}{2}[f(x_{n-1})+f(b)]h$

ہیں جن کا مجموعہ مساوات 21.40 کا دایاں ہاتھ دے گا۔

میں خلل (حصہ 21.1 ϵ ررج ذیل ہو گا۔ J^*

$$\epsilon = J^* - J$$

f(x) اگر f(x) خطی تفاعل ہو تب $\epsilon=0$ ہو گا اور تمام t کے لئے t مستقل اور t صفر ہو گا۔ عین ممکن ہو گے کہ کسی عمومی تفاعل t (جس کا استمراری دو در جی تفرق پایا جاتا ہو) کی صورت میں ہم حد خلل t (یعنی خلل ϵ کی حد) تلاش کر سکیں جو t پر مخصر ہو۔ اس خاطر ہم t کی جگہ متغیر t لیتے ہوئے مساوات t کا حد) تلاش کر سکیں جو t پر مخصر ہو۔ اس خاطر ہم t کی جگہ متغیر t لیتے ہوئے مساوات t اطلاق t ہے کہ کرتے ہیں۔ تب مطابقتی خلل

$$\begin{split} \varepsilon(t) &= \frac{t-a}{2}[f(a)+f(t)] - \int_a^t f(x) \, \mathrm{d}x \\ &= \frac{t-a}{2}[f(a)+f(t)] - \frac{1}{2}[f(a)+f(t)] + \frac{t-a}{2}f'(t) - f(t) \\ &= \frac{1}{2}[f(a)+f(t)] + \frac{t-a}{2}f'(t) - f(t) \\ &= \frac{1}{2}[f(a)+f(t)] + \frac{t-a}{2}f'(t) - f(t) \\ &= \frac{1}{2}[f(a)+f(t)] + \frac{1}{2}[f'(a)+f(t)] + \frac{1}{2}[f'(a)+f(t)] + \frac{1}{2}[f'(a)+f(t)] \end{split}$$

trapezoidal rule⁵¹ error bound⁵²

 M_2 عاصل ہو گا جس میں وقفہ $a \leq x \leq b$ پر f'' کی کم سے کم قیمت M_2^* اور زیادہ سے زیادہ قیمت پر کرنے سے وقفے پر تمام t کے لئے عد خلل

$$\frac{1}{2}(t-a)M_2^* \le \epsilon''(t) \le \frac{1}{2}(t-a)M_2$$

حاصل ہوتا ہے۔ a تا t تمل لینے سے

$$\frac{1}{4}(t-a)^2 M_2^* \le \epsilon'(t) - \epsilon'(a) \le \frac{1}{4}(t-a)^2 M_2$$

t=a+h ککھتے ہوئے دوبارہ کمل لے ک $\epsilon'(a)=0$ اور $\epsilon(a)=0$ پر کرتے ہوئے دوبارہ کمل لے ک

$$\frac{1}{12}h^3M_2^* \le \epsilon(a+h) \le \frac{1}{2}h^3M_2$$

باقی n-1 کلڑوں کی خلل کے لئے اس طرح کے n-1 عدد مطابقی عدم مساوات حاصل ہوں گے۔ان $h=\frac{b-a}{n}$ تمام n عدم مساوات کا مجموعہ a تا a کمل کے لئے خلل ϵ کی عدم مساوات دے گا۔ چونکہ a تا a کہ خلال ہمیں

(21.41)
$$KM_2^* \le \epsilon \le KM_2, \qquad [K = \frac{(b-a)^3}{12n^2}]$$

حاصل ہوتا ہے جہاں تکمل کے وقفہ پر f'' کی کم سے کم قیمت M_2^* اور زیادہ سے زیادہ قیمت M_2 ہے۔

مثال 21.12: ذوزنقه قاعده ـ تخمينه خلل

ی مدد سے حاصل کریں۔جدول $J=\int_0^1 e^{-x^2}\,\mathrm{d}x$ مدد سے حاصل کریں۔جدول $J=\int_0^1 e^{-x^2}\,\mathrm{d}x$ ماتا ہے۔ J=1.7

$$J \approx 0.1(0.5 \cdot 1.367879 + 6.778167) = 0.746211$$

چونکہ
$$f''(x) = 2(2x^2 - 1)e^{-x^2}$$
 پیونکہ

$$M_2^* = f''(0) = -2, \quad M_2 = f''(1) = 0.735759$$

 $K = \frac{1}{1200}$ ہوں گے۔مزید $K = \frac{1}{1200}$ کے تحت

 $-0.001667 \le \epsilon \le 0.000614$

اب 21.اعدادي محبزيد

جدول 21.12: جدول برائے مثال 21.12

J	x_j	x_j^2	e ⁻	$-x_j^2$
0	0	0	1.000 000	
1	0.1	0.01		0.990 050
2	0.2	0.04		0.960789
3	0.3	0.09		0.913 931
4	0.4	0.16		0.852 144
5	0.5	0.25		0.778 801
6	0.6	0.36		0.697 676
7	0.7	0.49		0.612 626
8	0.8	0.64		0.527 292
9	0.9	0.81		0.444 858
10	1.0	1.00	0.367 879	
		مجموعه	1.367 879	6.778 167

ہو گا۔ یوں J کی درست قیمت

کے در میان ہو گی۔ (چھ ملحوظ ہند سول تک درست جواب 0.746 824 ہے۔)

⁵³ برطانوى رياضى دان طامس سمسن [1710-1761]

ے ماوات 21.23 سے طاہر کرتے ہیں جہال f_i سے مراد $f(x_i)$ ہے۔ مساوات 21.23 سے $p_2(x)$

(21.42)

$$p_2(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} f_0 + \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} f_1 + \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} f_2$$

 $x-x_0=(s+1)h$ و گر جہاں نسب نما $s=rac{x-x_1}{h}$ اور $2h^2$ کے برابر ہیں۔ $s=rac{x-x_1}{h}$ اور $x-x_2=(s-1)h$ اور $x-x_1=sh$ ، و گر جہاں نسب نما $x-x_1=sh$

(21.43)
$$p_2(x) = \frac{1}{2}s(s-1)f_0 - (s+1)(s-1)f_1 + \frac{1}{2}(s+1)sf_2$$

کھا جا سکتا ہے۔اب ہم x کے ساتھ x_0 تا x_0 تا x_0 کمل کے x_0 ساتھ x_0 تا x_0 کمل کے مترادف ہے۔چونکہ x_0 ہے لہذا

$$\int_{x_0}^{x_2} f(x) \, \mathrm{d}x \approx \int_{x_0}^{x_2} p_2(x) \, \mathrm{d}x = h\left(\frac{1}{3}f_0 + \frac{4}{3}f_1 + \frac{1}{3}f_2\right)$$

ہو گا۔اگلے دو ٹکڑوں، x_2 تا x_2 ، اور باقی دو دو ٹکڑوں کے لئے بھی اسی طرح کے نتائج حاصل ہوں گے۔ان تمام n عدد نتائج کا مجموعہ قاعدہ سمسہ: 54

(21.44)
$$\int_a^b f(x) \, \mathrm{d}x \approx \frac{h}{3} (f_0 + 4f_1 + 2f_2 + 4f_3 + \dots + 2f_{2n-2} + 4f_{2n-1} + f_{2n})$$

وے گا جہاں $h=\frac{b-a}{2n}$ اور $f_j=f(x_j)$ ہیں۔ تکمل کے وقفہ میں f کے چار در جی تفرق کی موجود گی اور استمرار فرض کرتے ہوئے مساوات 21.44 کی حد خلل ϵ_S کو ذوز نقہ قاعدہ (مساوات 21.40) کی خلل کی طرح حاصل کیا جا سکتا ہے۔ تیجہ درج ذیل ہے

(21.45)
$$CM_4^* \le \epsilon_S \le CM_4 \qquad [C = \frac{(b-a)^5}{180(2n)^4}]$$

جہاں تکمل کے وقفہ پر f کی چار درجہ تفرق کی زیادہ سے زیادہ قیمت M_4 اور کم سے کم قیمت M_4^* ہے۔

مثال 21.13: قاعده سمسن ـ تخمينه حد خلل

کے عاصل کریں۔ حد خلل کا تخیینہ بھی حاصل $\int_0^1 e^{-x^2} \, \mathrm{d}x$ کی قیت قاعدہ سمسن سے حاصل کریں۔ حد خلل کا تخیینہ بھی حاصل کریں۔ چونکہ h=0.1 ہے، جدول h=0.1 سے درج ذیل حاصل ہو گا۔

$$J \approx \frac{0.1}{3}(1.367\,879 + 4 \cdot 3.740\,266 + 2 \cdot 3.037\,901) = 0.746\,825$$

Simpson's rule⁵⁴

j	x_j	x_j^2		$e^{-x_j^2}$	
0	0.0	0.00	1.000 000		
1	0.1	0.01		0.990050	
2	0.2	0.04			0.960789
3	0.3	0.09		0.913931	
4	0.4	0.16			0.852144
5	0.5	0.25		0.778801	
6	0.6	0.36			0.697676
7	0.7	0.49		0.612626	
8	0.8	0.64			0.527292
9	0.9	0.81		0.444858	
10	1.0	1.00	0.367 879		
مجموعه			1.367 879	3.740 266	3.037 901

جدول 21.44: جدول برائے مثال 21.44

تخمینہ حد خلل: چار در جی تفرق $f^{(4)}(x) = 4(4x^4 - 12x^2 + 3)e^{-x^2}$ کم وقفہ کمل میں کم سے تخمینہ حد خلل: چار در جی تفرق $X = x^* = 2.5 + 0.5\sqrt{10}$ کم قیمت $X = x^* = 2.5 + 0.5\sqrt{10}$ اور زیادہ سے زیادہ قیمت $X = x^* = 2.5 + 0.5\sqrt{10}$ اور $X = x^* = 0$ بین للذا X = 0 اور X = 0 اور X = 0 بین للذا X = 0 کا X = 0 اور X = 0 کا X = 0 کا

 $-0.000\,004 \le \epsilon_S \le 0.000\,006$) $0.746\,818 \le J \le 0.746\,830$

ہوں گے۔آپ دیکھ سکتے ہیں کہ موجودہ تقریب سے کم از کم چار ملحوظ ہندسوں تک درست جواب حاصل ہوتا ہے۔ حقیقت میں موجودہ جواب پانچ ملحوظ ہندسوں تک درست ہے چونکہ چھ ملحوظ ہندسوں تک درست جواب J=0.746824

غور کریں کہ مثال 21.12 میں حاصل متیجہ سے موجودہ متیجہ بہت زیادہ بہتر ہے اگرچہ ہمیں دونوں مثالوں میں تقریباً ا ایک جتناکام کرنا پڑا ہے۔

قاعدہ سمسن سے حاصل نتائج کی در تھی عموماً انجینئری مسئلوں کے لئے کافی ہوتی ہیں۔اس لئے کمپیوٹر سے اعدادی کلمل کے حصول میں زیادہ در تھی کے کلیوں کی بجائے ترکیب سمسن کو زیادہ ترجیح دی جاتی ہے۔ زیادہ طاقت کی کثیر رکنی استعال کرتے ہوئے زیادہ در تھی کے کلیات حاصل کیے جاتے ہیں۔ہم یہاں دو الیمی کلیات کا ذکر کرتے ہیں جو بعض او قات مفید ثابت ہوتی ہیں۔ نقطہ (x_0, f_0) ، (x_1, f_1) ، (x_0, f_0) ہے گررتی کتبی سے قاعدہ آٹھ میں سے تین

(21.46)
$$\int_{x_0}^{x_3} f(x) dx \approx \frac{3h}{8} (f_0 + 3f_1 + 3f_2 + f_3)$$

حاصل 55 ہوتا ہے جو کعبی کثیر رکنی کی صورت (مثلاً قاعدہ سمسن) میں بالکل درست ثابت ہوتا ہے۔ مزید وقفہ کی طاق کلڑوں (جو 3 سے قابل تقییم ہو) پر اس قاعدہ کو لا گو کیا جا سکتا ہے۔ چھ درجی کثیر رکنی جو (x_0, f_0) تا (x_0, f_0) سے گزرتی ہو سے پیچیدہ عددی سر والا کلیہ حاصل ہوتا ہے البتہ اسی قسم کا ایک اور کلیہ جس کی در شکی نستاً کم ہے اور جس کو قاعدہ ویڈل 56 کہتے ہیں درج ذیل ہے۔

(21.47)
$$\int_{x_0}^{x_6} f(x) dx = \approx \frac{3h}{10} (f_0 + 5f_1 + f_2 + 6f_3 + f_4 + 5f_5 + f_6)$$

(21.48)
$$\int_{-1}^{1} f(x) dx \approx \sum_{j=1}^{n} A_{j} f_{j} \qquad [f_{j} = f(x_{j})]$$

کھ جا سکتا ہے جس میں ہم ایسے 2n مستقل A_n تا A_n اور x_n تا x_n حاصل کر سکتے ہیں کہ کثیر رکنی کے کا درجہ m جتنا چاہیں بڑا ہو، مساوات 21.48 بالکل درست جواب دے۔ چونکہ درجہ 2n-1 کثیر رکنی کے عددی سرول کی تعداد 2n ہے لہٰذا 2n-1 ہو گا۔گاوں کے تحت اس صورت درجہ 2n-1 کثیر رکنی کے لئے بالکل درست جواب حاصل ہو گا جب x_1, \dots, x_n درجہ x_n لیڑانڈر کثیر رکنی x_n درجہ x_n کی کے لئے بالکل درست جواب حاصل ہو گا جب x_1, \dots, x_n درجہ x_n درجہ x_n کی استحقید کا میں میں کشیر کئی رکنی کے لئے بالکل درست جواب حاصل ہو گا جب

$$P_n(x) = \frac{(2n)!}{2^n (n!)^2} x^n - \frac{(2n-2)!}{2^n 1! (n-1)! (n-2)!} x^{n-2} + \frac{(2n-4)!}{2^n 2! (n-2)! (n-4)!} x^{n-4} - + \cdots$$

three-eight's rule⁵⁵ Weddle's rule⁵⁶

Legendre polynomial⁵⁷

باب 21.اعب دادی تحب زیب

لعيني

$$P_0 = 1$$
, $P_1(x) = x$, $P_2(x) = \frac{1}{2}(3x^2 - 1)$, $P_3(x) = \frac{1}{2}(5x^3 - 3x)$, ...

ک n صفر ہوں اور A_j کی موزوں قیمتیں منتخب کی جائیں۔ ایسی صورت میں مساوات 21.48 کو گاوسی کلیہ تکمل x_1, \dots, x_n کی غیر کیساں فاصلے دخواری کا سبب بنتے ہیں۔

چونکہ مساوات 21.48 میں مستعمل آخری سر 1 اور 1 کثیر رکنی $P_n(x)$ کے صفر نہیں ہیں (یہ دونوں x کیہ مساوات 31.48 میں شامل نہیں ہیں) للذا گاوی کلیہ x کمل کھلا کلیہ x کہلاتا ہے۔یوں بند کلیہ x میں وقفہ تکمل کے سر بھی شامل ہوں گے (مثال کے طور پر مساوات 21.40، مساوات 21.44، مساوات 21.44 اور مساوات 41.47 میں)۔ بند کلیات ہیں)۔

باہمی تحریف کی طرح اعدادی کمل کو بھی فرق سے حاصل کیا جا سکتا ہے۔ایک انتہائی موثر کلیہ درج ذیل گاوسی وسطی فرق کلیہ⁶¹ ہے۔

(21.49)
$$\int_{x_0}^{x_1} f(x) dx \approx \frac{h}{2} \left(f_0 + f_1 - \frac{\delta^2 f_0 + \delta^2 f_1}{12} + \frac{11(\delta^4 f_0 + \delta^4 f_1)}{720} \right)$$

21.7 اعدادی تفرق

Gaussian integration formula⁵⁸

open formula⁵⁹

closed formula 60

central-difference formula by Gauss^{61}

اضافی ثبوت

صفحہ 139 پر مسکلہ 2.2 بیان کیا گیا جس کا ثبوت یہاں پیش کرتے ہیں۔

$$(0.1) y'' + p(x)y' + q(x)y = 0, y(x_0) = K_0, y'(x_0) = K_1$$

کے دو عدد حل $y_1(x)$ اور $y_2(x)$ یائے جاتے ہیں۔ہم ثابت کرتے ہیں کہ $y_1(x)$

$$y(x) = y_1(x) - y_2(x)$$

کمل صفر کے برابر ہے۔ یوں $y_1(x) \equiv y_2(x)$ ہو گا جو کیتائی کا ثبوت ہے۔

یو نکہ مساوات 1.1 خطی اور متجانس ہے للذا y(x) پر y(x) جمی اس کا حل ہو گا اور چونکہ y_1 اور y_2 دونوں یکسال ابتدائی معلومات پر پورا اترتے ہیں للذا الله ورج ذیل ابتدائی معلومات پر پورا اترے گا۔

$$(0.2) y(x_0) = 0, y'(x_0) = 0$$

ہم تفاعل

$$(1.3) z = y^2 + y'^2$$

انسانی ثبوت ضمیم المنافی شوت

اور اس کے تفرق

$$(1.4) z' = 2yy' + 2y'y''$$

پر غور کرتے ہیں۔ تفرقی مساوات 1.1 کو

$$y'' = -py' - qy$$

لکھتے ہوئے اس کو z' میں پر کرتے ہیں۔

$$(0.5) z' = 2yy' + 2y'(-py' - qy) = 2yy' - 2py'^2 - 2qyy'$$

اب چونکه بر اور بر حقیقی تفاعل بین للذا ہم

$$(y \mp y')^2 = y^2 \mp 2yy' + y'^2 \ge 0$$

لعيني

(1.7)
$$(1.7) 2yy' \le y^2 + y'^2 = z, -2yy' \le y^2 + y'^2 = z,$$

لکھ سکتے ہیں جہاں مساوات 1.1 کا استعال کیا گیا ہے۔مساوات 1.7-ب کو z-z' کلھے ہوئے مساوات 1.7 کھو سکتے ہیں جہاں مساوات 5.1 کے دونوں حصوں کو z=z' کھا جا سکتا ہے۔یوں مساوات 1.5 کے آخری جزو کے لئے

$$-2qyy' \le \left| -2qyy' \right| = \left| q \right| \left| 2yy' \right| \le \left| q \right| z$$

کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ ساتھ $p \leq |p|$ استعال کرتے ہوئے اور مساوات 1.7-الف کو مساوات 1.5 کھا جا سکتا ہے۔اس نتیج کے ساتھ ساتھ کے جزو میں استعال کرتے ہوئے

$$z' \le z + 2|p|y'^2 + |q|z$$

ماتا ہے۔اب چونکہ $y'^2 \leq y^2 + y'^2 = z$ ہنتا اس سے

$$z' \le (1+|p|+|q|)z$$

ملتا ہے۔ اس میں 1 + |q| + |p| = h کھتے ہوئے

$$(1.8) z' \le hz x \checkmark$$

حاصل ہوتا ہے۔اسی طرح مساوات 1.5 اور مساوات 7.1 سے درج ذیل بھی حاصل ہوتا ہے۔

(i.9)
$$-z' = -2yy' + 2py'^2 + 2qyy' \leq z + 2|p|z + |q|z = hz$$

مساوات 8. ا اور مساوات 9. ا کے غیر مساوات درج ذیل غیر مساوات کے متر ادف ہیں
$$z'-hz \leq 0, \quad z'+hz \geq 0$$

جن کے بائیں ہاتھ کے جزو تکمل درج ذیل ہیں۔

 $F_1 = e^{-\int h(x) \, dx}, \qquad F_2 = e^{\int h(x) \, dx}$

چونکہ h(x) استمراری ہے للذا اس کا تکمل پایا جاتا ہے۔ چونکہ F_1 اور F_2 مثبت ہیں للذا انہیں مساوات 1.10 کے ساتھ ضرب کرنے سے

 $(z'-hz)F_1 = (zF_1)' \le 0, \quad (z'+hz)F_2 = (zF_2)' \ge 0$

حاصل ہوتا ہے۔اس کا مطلب ہے کہ I پر zF_1 بڑھ نہیں رہا اور zF_2 گھٹ نہیں رہا۔ مساوات zF_1 تحت z=1.2 کی صورت میں z=1.2 کی صورت میں z=1.2 کی صورت میں عرب کی میں میں جاندا

$$(.11) zF_1 \ge (zF_1)_{x_0} = 0, zF_2 \le (zF_2)_{x_0}$$

ہو گا اور اسی طرح $x \geq x_0$ کی صورت میں

$$(0.12) zF_1 \leq 0, zF_2 \geq 0$$

ہو گا۔اب انہیں مثبت قیتوں F₁ اور F₂ سے تقسیم کرتے ہوئے

$$(0.13)$$
 $z \le 0$, $z \ge 0$ $z \ge 0$ $z \le 1$

 $y_1 \equiv y_2$ کی $y \equiv 0$ پ $y \equiv 0$ ہاتا ہے جس کا مطلب ہے کہ $y \equiv 0$ پ $z = y^2 + y'^2 \equiv 0$ پر $y \equiv 0$ ماتا ہے جس کا مطلب ہے کہ $y \equiv 0$ باتا ہے جس کا مطلب ہے کہ $y \equiv 0$ باتا ہے جس کا مطلب ہے کہ ایک مطلب

1420 صمير المنافى ثبوت

صميمه ب مفيد معلومات

1.ب اعلی تفاعل کے مساوات

e = 2.718281828459045235360287471353

(4.1)
$$e^x e^y = e^{x+y}, \quad \frac{e^x}{e^y} = e^{x-y}, \quad (e^x)^y = e^{xy}$$

قدرتی لوگارهم (شکل 1.ب-ب)

(...2)
$$\ln(xy) = \ln x + \ln y, \quad \ln \frac{x}{y} = \ln x - \ln y, \quad \ln(x^a) = a \ln x$$

$$-\ln x = e^{\ln \frac{1}{x}} = \frac{1}{x} \quad \text{let} \quad e^{\ln x} = x \quad \text{where } a = x \text{ for } a =$$

 $\log x$ اساس دس کا لوگارهم $\log_{10} x$ اساس دس کا لوگارهم

(....3) $\log x = M \ln x$, $M = \log e = 0.434294481903251827651128918917$

$$(-.4) \quad \ln x = \frac{1}{M} \log x, \quad \frac{1}{M} = 2.302585092994045684017991454684$$

شكل 1. ب: قوت نمائي تفاعل اور قدرتي لو گار تھم تفاعل

شكل2.ب:سائن نما تفاعل

ال کا الث $\log x = 10^{\log x} = 10^{\log x}$ اور $\log x = 10^{\log x} = 10^{\log x}$ کیاں۔ $\log x$

سائن اور کوسائن تفاعل (شکل 2.ب-الف اور ب)۔ احسائے کملات میں زاویہ کو ریڈئی میں ناپا جاتا ہے۔یوں $\sin x$ اور کوسائن تفاعل (شکل 2.ب-الف اور بی عرصہ $\sin x$ ہوگا۔ $\sin x$ طاق ہے لینی $\sin x$ $\sin x$ کا دور کی عرصہ $\cos x$ ہوگا۔ $\cos x$ طاق ہے لینی $\cos x$ جنہ $\cos x$ ہوگا۔

 $1^{\circ} = 0.017453292519943 \text{ rad}$ $1 \text{ radian} = 57^{\circ} 17' 44.80625'' = 57.2957795131^{\circ}$ $\sin^2 x + \cos^2 x = 1$

$$\sin(x + y) = \sin x \cos y + \cos x \sin y \sin(x - y) = \sin x \cos y - \cos x \sin y$$
$$\cos(x + y) = \cos x \cos y - \sin x \sin y$$
$$\cos(x - y) = \cos x \cos y + \sin x \sin y$$

$$(-.7) \sin 2x = 2\sin x \cos x, \cos 2x = \cos^2 x - \sin^2 x$$

$$\sin x = \cos\left(x - \frac{\pi}{2}\right) = \cos\left(\frac{\pi}{2} - x\right)$$

$$\cos x = \sin\left(x + \frac{\pi}{2}\right) = \sin\left(\frac{\pi}{2} - x\right)$$

(-.9)
$$\sin(\pi - x) = \sin x, \quad \cos(\pi - x) = -\cos x$$

(-.10)
$$\cos^2 x = \frac{1}{2}(1 + \cos 2x), \quad \sin^2 x = \frac{1}{2}(1 - \cos 2x)$$

$$\sin x \sin y = \frac{1}{2} [-\cos(x+y) + \cos(x-y)]$$

$$(-.11)$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)]$$

$$\sin u + \sin v = 2\sin\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos u + \cos v = 2\cos\frac{u+v}{2}\cos\frac{u-v}{2}$$

$$\cos v - \cos u = 2\sin\frac{u+v}{2}\sin\frac{u-v}{2}$$

$$(-.13) A\cos x + B\sin x = \sqrt{A^2 + B^2}\cos(x \mp \delta), \tan \delta = \frac{\sin \delta}{\cos \delta} = \pm \frac{B}{A}$$

(ب.14)
$$A\cos x + B\sin x = \sqrt{A^2 + B^2}\sin(x \mp \delta)$$
, $\tan \delta = \frac{\sin \delta}{\cos \delta} = \mp \frac{A}{B}$

ٹینجنٹ، کوٹینجنٹ، سیکنٹ، کوسیکنٹ (شکل 3.ب-الف، ب)

$$(-.15) \tan x = \frac{\sin x}{\cos x}, \cot x = \frac{\cos x}{\sin x}, \sec x = \frac{1}{\cos x}, \csc = \frac{1}{\sin x}$$

$$(-.16) \tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y}, \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

شكل 3.ب: ٹىنجنٹ اور كو ٹىنجنٹ

بذلولى تفاعل (بذلولى سائن sin hx وغيره - شكل 4.ب-الف، ب)

$$\sinh x = \frac{1}{2}(e^x - e^{-x}), \quad \cosh x = \frac{1}{2}(e^x + e^{-x})$$

$$\tanh x = \frac{\sinh x}{\cosh x}, \quad \coth x = \frac{\cosh x}{\sinh x}$$

$$\cosh x + \sinh x = e^x, \quad \cosh x - \sinh x = e^{-x}$$

$$\cosh^2 x - \sinh^2 x = 1$$

(-.19)
$$\sinh^2 = \frac{1}{2}(\cosh 2x - 1), \quad \cosh^2 x = \frac{1}{2}(\cosh 2x + 1)$$

$$\sinh(x \mp y) = \sinh x \cosh y \mp \cosh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$
$$\cosh(x \mp y) = \cosh x \cosh y \mp \sinh x \sinh y$$

(21)
$$\tanh(x \mp y) = \frac{\tanh x \mp \tanh y}{1 \mp \tanh x \tanh y}$$

گیما نفاعل (شکل 5.ب) کی تعریف درج زیل کمل ہے
$$\Gamma(\alpha) = \int_0^\infty e^{-t} t^{\alpha-1} \, \mathrm{d}t \qquad (\alpha>0)$$

-ب coth x ہے۔ نقطہ دار خط x tanh x ہے۔

(الف) تھوس خط sinh x ہے جبکہ نقطہ دار خط cosh x ہے۔

شكل 4.ب: ہذلولی سائن، ہذلولی تفاعل۔

جو صرف مثبت ($\alpha>0$) کے لئے معنی رکھتا ہے (یا اگر ہم مخلوط α کی بات کریں تب ہے α کی ان قیمتوں کے لئے معنی رکھتا ہے جن کا حقیقی جزو مثبت ہو)۔ حکمل بالحصص سے درج ذیل اہم تعلق حاصل ہوتا ہے۔

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha)$$

مساوات 22.ب سے $\Gamma(1)=1$ ملتا ہے۔ یوں مساوات 23.ب استعال کرتے ہوئے $\Gamma(2)=1$ حاصل ہوگا جے دوبارہ مساوات 23.ب میں استعال کرتے ہوئے $\Gamma(3)=2\times1$ ملتا ہے۔ای طرح بار بار مساوات 23.ب استعال کرتے ہوئے κ کی کئی بھی عدد صحیح مثبت قیت κ کے لئے درج ذیل حاصل ہوتا ہے۔

$$\Gamma(k+1) = k!$$
 $(k = 0, 1, 2, \cdots)$

مساوات 23.ب کے بار بار استعال سے درج ذیل حاصل ہوتا ہے

$$\Gamma(\alpha) = \frac{\Gamma(\alpha+1)}{\alpha} = \frac{\Gamma(\alpha+2)}{\alpha(\alpha+1)} = \cdots = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)}$$

جس کو استعال کرتے ہوئے ہم می کی منفی قیمتوں کے لئے گیما تفاعل کی درج ذیل تعریف پیش کرتے ہیں

$$(-.25) \qquad \Gamma(\alpha) = \frac{\Gamma(\alpha+k+1)}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+k)} \qquad (\alpha \neq 0, -1, -2, \cdots)$$

جہاں k کی ایسی کم سے کم قیت چی جاتی ہے کہ $\alpha+k+1>0$ ہو۔ مساوات 22.ب اور مساوات 25.ب منفی قیمتوں کے لئے سیما تفاعل دیتے ہیں۔ مل کر α کی تمام مثبت قیمتوں اور غیر عددی صحیحی منفی قیمتوں کے لئے سیما تفاعل دیتے ہیں۔

شكل 5.ب: سيما تفاعل

گیما تفاعل کو حاصل ضرب کی حد بھی فرض کیا جا سکتا ہے لینی

$$\Gamma(\alpha) = \lim_{n \to \infty} \frac{n! n^{\alpha}}{\alpha(\alpha+1)(\alpha+2)\cdots(\alpha+n)} \qquad (\alpha \neq 0, -1, \cdots)$$

مساوات 25.ب اور مساوات 26.ب سے ظاہر ہے کہ مخلوط α کی صورت میں $\alpha=0,-1,-2,\cdots$ پر علی مساوات کے قطب یائے جاتے ہیں۔

e کی بڑی قیت کے لئے سیما تفاعل کی قیت کو درج ذیل کلیہ سٹرلنگ سے حاصل کیا جا سکتا ہے جہاں e قدرتی لوگار تھم کی اساس ہے۔

$$\Gamma(\alpha+1) \approx \sqrt{2\pi\alpha} \left(\frac{\alpha}{e}\right)^{\alpha}$$

آخر میں گیما تفاعل کی ایک اہم اور مخصوص (درج ذیل) قیمت کا ذکر کرتے ہیں۔

$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

نا مكمل گيما تفاعل

$$(-.29) \qquad P(\alpha, x) = \int_0^x e^{-t} t^{\alpha - 1} dt, \quad Q(\alpha, x) = \int_x^\infty e^{-t} t^{\alpha - 1} dt \qquad (\alpha > 0)$$

(...30)
$$\Gamma(\alpha) = P(\alpha, x) + Q(\alpha, x)$$

بيٹا تفاعل

$$(-.31) B(x,y) = \int_0^1 t^{x-1} (1-t)^{y-1} dt (x > 0, y > 0)$$

بیٹا تفاعل کو سیما تفاعل کی صورت میں بھی پیش کیا جا سکتا ہے۔

$$B(x,y) = \frac{\Gamma(x)\Gamma(y)}{\Gamma(x+y)}$$

تفاعل خلل(شكل 6.ب)

$$(-.33) \qquad \text{erf } x = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

ماوات 33.ب کے تفرق $x=rac{2}{\sqrt{\pi}}e^{-t^2}$ کی مکلارن شکسل

$$\operatorname{erf}' x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

کا تمل لینے سے تفاعل خلل کی تسلسل صورت حاصل ہوتی ہے۔

$$(-.34) \qquad \text{erf } x = \frac{2}{\sqrt{\pi}} \left(x - \frac{x^3}{1!3} + \frac{x^5}{2!5} - \frac{x^7}{3!7} + \cdots \right)$$

ے۔ مکملہ تفاعل خلل $\operatorname{erf} \infty = 1$

(ب.35)
$$\operatorname{erfc} x = 1 - \operatorname{erf} x = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} dt$$

فرسنل تكملات (شكل 7.ب)

(...36)
$$C(x) = \int_0^x \cos(t^2) dt, \quad S(x) = \int_0^x \sin(t^2) dt$$

شكل 7.ب: فرسنل تكملات

1
اور $rac{\pi}{8}$ اور $S(\infty)=\sqrt{rac{\pi}{8}}$ اور $C(\infty)=\sqrt{rac{\pi}{8}}$

$$c(x) = \frac{\pi}{8} - C(x) = \int_{x}^{\infty} \cos(t^2) dt$$

$$(-.38) \qquad \qquad s(x) = \frac{\pi}{8} - S(x) = \int_{x}^{\infty} \sin(t^2) dt$$

تكمل سائن (شكل 8.ب)

$$(-.39) Si(x) = \int_0^x \frac{\sin t}{t} dt$$

کے برابر ہے۔ تکملہ تفاعل Si $\infty = \frac{\pi}{2}$

(.40)
$$\operatorname{si}(x) = \frac{\pi}{2} - \operatorname{Si}(x) = \int_{x}^{\infty} \frac{\sin t}{t} dt$$

complementary functions¹

تكمل كوسائن

$$(-.41) si(x) = \int_{x}^{\infty} \frac{\cos t}{t} dt (x > 0)$$

تكمل قوت نمائي

تكمل لوگارهمي

(i.43)
$$\operatorname{li}(x) = \int_0^x \frac{\mathrm{d}t}{\ln t}$$