Ministère de l'éducation nationale Inspection académique de Kédougou Cellule de Mathématiques

M.BA

Classe: Tle

Année scolaire 2023-2024

Date: 14-05-2024 Durée: 3h 00

Correction du Devoir N2 Du Second Semestre

Exercice 1:6 pts

Resoudre dans \mathbb{R} 1pt+1pt+1,5pts+1pt+1,5pts

- a) $\ln(2x-1) = \ln(x+1)$
- b) $\ln(x-1) + \ln(x+1) = \ln(x+2)$
- c) $\ln(2x-1) + 2\ln(x+1) = \ln(x-1)$
- d) $\ln(x-1) \le \ln(3-x)$
- e) $\ln(1-x) \ln(2x+3) \ge \ln(x-1)$

Correction Exercice 1:6 pts

a)
$$\ln(2x-1) = \ln(x+1)$$

Domaine de Validité : D

L'équation n'a de sens que si 2x - 1 > 0 et x + 1 > 0

Posons 2x - 1 = 0 et x + 1 = 0

C'est-à-dire $x = \frac{1}{2}$ et x = -1

Donc D=]
$$\frac{1}{2}$$
, + ∞ [

$$\ln(2x-1) = \ln(x+1) \Longrightarrow 2x - 1 = x + 1 \Longrightarrow x = -2$$

Comme $-2 \notin D$ Donc $S = \emptyset$

b) $\ln(x-1) + \ln(x+1) = \ln(x+2)$

Domaine de Validité : D

L'équation n'a de sens que si x - 1 > 0, x + 1 > 0 et x + 2 > 0.

Posons x - 1 = 0, x + 1 = 0 et x + 2 = 0.

C'est-à-dire x = 1, x = -1 et x = -2.

x	-∞ -	-2 -	-1 1	L	$+\infty$
x-2	_ (ϕ_+	+	+	
x+1	_	_ (\mathfrak{I}_{+}	+	
x-1	_	_	- () +	

Donc $D =]1, +\infty[$.

Résolution

$$\ln(x-1) + \ln(x+1) = \ln(x+2) \Longrightarrow \ln((x-1)(x+1)) = \ln(x+2)$$

$$\implies (x-1)(x+1) = x+2 \Longrightarrow x^2-1 = x+2 \Longrightarrow x^2-x-3 = 0$$

$$\implies (x-3)(x+1) = 0 \implies x = 3 \text{ ou } x = -1.$$

Comme $x \in D$, donc $S = \{3\}$.

c)
$$\ln(2x-1) + 2\ln(x+1) = \ln(x-1)$$

Domaine de Validité : D

L'équation n'a de sens que si 2x - 1 > 0, x + 1 > 0 et x - 1 > 0.

Posons 2x - 1 = 0, x + 1 = 0 et x - 1 = 0.

C'est-à-dire $x = \frac{1}{2}$, x = -1 et x = 1.

x	-∞ -	-1	<u>L</u> 1	L +	-∞
x + 1		ϕ_+	+	+	
2x-1	_	_ (p_+	+	
x-1	_	_) +	

Donc $D =]1, +\infty[$.

Résolution

$$\ln(2x-1) + 2\ln(x+1) = \ln(x-1) \Longrightarrow \ln((2x-1)(x+1)^2) = \ln(x+2)$$

$$\Longrightarrow (2x-1)(x^2+2x+1) = x+2 \Longrightarrow 2x(x^2+2x+1) - (x^2+2x+1) = x+2$$

$$\implies 2x^3 + 4x^2 + 2x - x^2 - 2x - 1 = x + 2 \implies 2x^3 + 3x^2 + x - 3 = 0$$

Grosse erreur de ma part car pas de racines évidentes.

$$\mathbf{d})\ln(x-1) < \ln(3-x)$$

Domaine de Validité : D

L'équation n'a de sens que si x - 1 > 0 et 3 - x > 0

Posons x - 1 = 0 et 3 - x = 0

C'est-à-dire x = 1 et x = 3

Donc D=
$$]3, +\infty[$$

Résolution

$$\overline{\ln(x-1)} \le \ln(3-x) \Longrightarrow x-1 \le 3-x \Longrightarrow x \le 4 \Longrightarrow x \in]-\infty,4]$$

S=[3,+\infty[\cap]-\infty,4]

$$S =]3;4[$$

e)
$$\ln(1-x) - \ln(2x+3) \ge \ln(x-1)$$

Domaine de Validité : D

L'équation n'a de sens que si 1-x>0, 2x+3>0 et x-1>0.

Posons 1 - x = 0, 2x + 3 = 0 et x - 1 = 0.

C'est-à-dire x = 1, $x = -\frac{3}{2}$ et x = 1.

x	$-\infty$	$-\frac{3}{2}$		1	$+\infty$
2x+3		_ Φ+	+	+	
x-1			_	Φ +	
x+1			_	Φ +	

Donc
$$D =]1, +\infty[$$
.

Résolution

$$\frac{\ln(1-x) - \ln(2x+3)}{\ln(1-x) - \ln(2x+3)} \ge \ln(x-1) \Longrightarrow \ln(1-x) \ge \ln(2x+3) + \ln(x-1)
\Longrightarrow \ln(1-x) \ge \ln[(2x+3)(x-1)] \Longrightarrow (1-x) \ge (2x+3)(x-1) \Longrightarrow 1-x \ge 2x^2 - 2x + 3x - 3
\Longrightarrow 2x^2 + 2x - 4 \le 0.$$

Posons
$$x^2 + x - 1 = 0$$

$$\Delta = 5$$
 $x_1 = \frac{-1 + \sqrt{5}}{2}$ et $x_1 = \frac{-1 - \sqrt{5}}{2}$

$$\Delta = 3 x_1 = \frac{-1 + \sqrt{5}}{2} \text{ et } x_1 = \frac{-1 - \sqrt{5}}{2} \text{Donc } S = \left] \frac{-1 - \sqrt{5}}{2}, \frac{-1 + \sqrt{5}}{2} \right[\cap]1, +\infty[= \emptyset]$$

Correction Exercice 2:6 pts

1) Développons

$$(x+1)(x-3)(x+2)$$

Pour développer (x+1)(x-3)(x+2), procédons en plusieurs étapes en utilisant la distributivité. D'abord, développons les deux premiers facteurs :

$$(x+1)(x-3) = x(x-3) + 1(x-3) = x^2 - 3x + x - 3 = x^2 - 2x - 3$$

Ensuite, multiplions ce résultat par le troisième facteur (x+2):

$$(x^2 - 2x - 3)(x + 2) = (x^2 - 2x - 3)x + (x^2 - 2x - 3)2$$

Développons les deux produits :

$$(x^{2} - 2x - 3)x = x^{3} - 2x^{2} - 3x$$
$$(x^{2} - 2x - 3)2 = 2x^{2} - 4x - 6$$

En ajoutant ces deux résultats ensemble, nous obtenons :

$$x^{3} - 2x^{2} - 3x + 2x^{2} - 4x - 6 = x^{3} + (-2x^{2} + 2x^{2}) + (-3x - 4x) - 6 = x^{3} - 7x - 6$$

Donc, le résultat final est : $(x+1)(x-3)(x+2) = x^3 - 7x - 6$

2) résolvons

$$e^{3x} - 7e^x - 6 = 0$$

Pour résoudre l'équation $e^{3x} - 7e^x - 6 = 0$, faisons un changement de variable. Posons $y = e^x$. Ainsi, l'équation devient :

$$e^{3x} = (e^x)^3 = y^3$$

L'équation se réécrit donc :

$$y^3 - 7y - 6 = 0$$

Or, pla forme factorisée de $y^3 - 7y - 6$ est :

$$(y+1)(y-3)(y+2)$$

Ainsi,
$$y^3 - 7y - 6 = 0 \Longrightarrow (y+1)(y-3)(y+2) = 0 \Longrightarrow (e^x+1)(e^x-3)(e^x+2) = 0$$

Donc, $(e^x+1)(e^x-3)(e^x+2) = 0 \Longrightarrow e^x+1 = 0$ ou $e^x-3 = 0$ ou $e^x+2 = 0$

Cela donne les solutions suivantes :
$$\begin{cases} e^x = -1 \text{ impossible} \\ e^x = 3 \\ e^x = -2 \text{ impossible} \end{cases} \implies \left\{ x = \ln 3 \right.$$

Donc, la solution de l'équation $e^{3x} - 7e^x - 6 = 0$ est :

$$S = \ln 3$$

3) résolvons

$$x^4 - 5x^2 + 6 = 0$$
 puis $e^{4x} - 5e^{2x} + 6 = 0$

Pour résoudre $x^4 - 5x^2 + 6 = 0$, faisons un changement de variable. Posons $y = x^2$. Ainsi, l'équation devient :

$$y^2 - 5y + 6 = 0$$

Ici, a = 1, b = -5, et c = 6. Calculons le discriminant :

$$b^2 - 4ac = (-5)^2 - 4 \times 1 \times 6 = 25 - 24 = 1$$

Donc, les solutions pour y sont :

$$y_1 = \frac{5-1}{2} = 2, y_2 = \frac{5+1}{2} = 3$$

Ce qui donne:

$$y_1 = 2$$
 et $y_2 = 3$

Revenons à la variable x, nous avons $y=x^2$, donc :

$$x^2 = 3 \implies x = \pm \sqrt{3}$$

 $x^2 = 2 \implies x = \pm \sqrt{2}$

Les solutions pour x sont donc :

$$x = \pm \sqrt{3}, \quad x = \pm \sqrt{2}$$

$$S = \left\{ -\sqrt{3}, \sqrt{3}, -\sqrt{2}, \sqrt{2} \right\}$$

Maintenant, résolvons $e^{4x} - 5e^{2x} + 6 = 0$. Faisons un changement de variable similaire. Posons $z = e^{2x}$. Ainsi, l'équation devient :

$$z^2 - 5z + 6 = 0$$

Cette équation est identique à l'équation précédente en y. Les solutions sont :

$$z = 3$$
 et $z = 2$

Revenons à la variable x, nous avons $z=e^{2x}$, donc :

$$e^{2x} = 3 \implies 2x = \ln 3 \implies x = \frac{\ln 3}{2}$$

 $e^{2x} = 2 \implies 2x = \ln 2 \implies x = \frac{\ln 2}{2}$

Les solutions pour x sont donc :

$$x = \frac{\ln 3}{2}, x = \frac{\ln 2}{2}$$

$$S = \left\{ \frac{\ln 3}{2}, \frac{\ln 2}{2} \right\}$$

En résumé, les solutions sont :

Pour $x^4 - 5x^2 + 6 = 0$:

$$S = \left\{ -\sqrt{3}, \sqrt{3}, -\sqrt{2}, \sqrt{2} \right\}$$

Pour $e^{4x} - 5e^{2x} + 6 = 0$:

$$S = \left\{ \frac{\ln 3}{2}, \frac{\ln 2}{2} \right\}$$

4) Développons

(3+x)(2x-1) et (x-2)(3+x)(2x-1)

Développons d'abord (3+x)(2x-1):

$$(3+x)(2x-1) = 3(2x-1) + x(2x-1) = 6x - 3 + 2x^2 - x = 2x^2 + 5x - 3$$
$$(3+x)(2x-1) = 2x^2 + 5x - 3$$

Ensuite, développons (x-2)(3+x)(2x-1). Nous utilisons le résultat précédent :

$$(x-2)(2x^2+5x-3)$$

Donc, le résultat final est :

$$(x-2)(3+x)(2x-1) = 2x^3 + x^2 - 13x + 6$$

5) résolvons

$$2e^{-2x} + 5e^{-x} - 3 = 0$$
 et $2e^{3x+1} + e^{2x+1} - 13e^{x+1} + 6e = 0$

Pour résoudre $2e^{-2x} + 5e^{-x} - 3 = 0$:

Faisons un changement de variable. Posons $y = e^{-x}$. Ainsi, l'équation devient :

$$2y^2 + 5y - 3 = 0$$

D'après ce qui précède, $2y^2 + 5y - 3 = (3+y)(2y-1)$

Donc $2y^2 + 5y - 3 = 0 \implies y = -3$ ou $y = \frac{1}{2}$

Revenons à la variable x, nous avons $z = e^{-x}$, donc :

$$e^{-x} = \frac{1}{2} \implies -x = \ln \frac{1}{2} \implies x = \ln 2$$

La solution pour x est donc :

$$x = \ln 2$$

$$S = \{\ln 2\}$$

Pour résoudre $2e^{3x+1} + e^{2x+1} - 13e^{x+1} + 6e = 0$:

Faisons un changement de variable. Posons $z = e^x$. Ainsi, l'équation devient :

$$2z^3e + z^2e - 13ze + 6e = 0 \implies 2z^3 + z^2 - 13z + 6 = 0$$

D'après ce qui précède, $2z^3 + z^2 - 13z + 6 = (z-2)(3+z)(2z-1)$

Donc $2z^3 + z^2 - 13z + 6 = 0 \implies z = 2$ ou z = -3 ou $z = \frac{1}{2}$

Revenons à la variable x, nous avons $z = e^x$, donc :

$$e^{x} = 2 \implies x = \ln 2$$

 $e^{x} = \frac{1}{2} \implies x = \ln \frac{1}{2} \implies x = -\ln 2$

Les solutions pour x sont donc :

$$x = \ln 2, x = -\ln 2$$

$$S = \{\ln 2, -\ln 2\}$$

6) résolvons dans \mathbb{R}^2

$$\begin{cases} x + y = 2\\ \ln x + \ln y = 0 \end{cases}$$

Pour résoudre ce système d'équations dans \mathbb{R}^2 , commençons par la deuxième équation. Utilisons la propriété des logarithmes $\ln x + \ln y = \ln(xy)$:

$$ln(xy) = 0$$

Donc,

$$xy = e^0 = 1$$

Nous avons maintenant le système :

$$\begin{cases} x + y = 2 \\ xy = 1 \end{cases}$$

Pour résoudre ce système, nous pouvons exprimer y en fonction de x à partir de la première équation :

$$y = 2 - x$$

Substituons cette expression dans la deuxième équation :

$$x(2-x) = 1$$

Ce qui donne :

$$2x - x^2 = 1 \implies x^2 - 2x + 1 = 0 \implies (x - 1)^2 = 0$$

La seule solution est:

$$x = 1$$

En substituant x = 1 dans y = 2 - x, nous obtenons :

$$y = 2 - 1 = 1$$

Donc, la solution du système est :

$$S = \{(1,1)\}$$

Problème: 8 pts

Soit $f(x) = \ln(x^2 - 6x + 9)$

1) a- Montrer que l'esemble de définition de f est $Df=\mathbb{R}\setminus\{3\}$ et détermine les limites aux bornes de $Df.\mathbf{0.5pt+1pt}$

b- Etuider les variations de f.1,5pt

2) Soit la courbe (Cf) représentative de f dans un repère orthonormé (unité 1 cm).

- a- Déterminer les points d'intersections de Cf avec les axes du repère. $\mathbf{1pt}$
- b- Ecrire une équation de la tangente (T) à (Cf) au point d'abscisse 0.0,5pt
- c- Montrer que la droite d'équation x=3 est axe de symétrie de (Cf). ${\bf 1pt}$
- d- Tracer (Cf) et la tangente (T). 1,5pt
- 3) Montrer que $f(x) = 2\ln(x-3)$ sur $]3 + \infty[$. **1pt**

Correction du problème : 8 pts

Soit
$$f(x) = f(x) = \ln(x^2 - 6x + 9)$$
.

1) a - Ensemble de définition et limites

Montrer que l'ensemble de définition de f est $D_f = \mathbb{R} \setminus \{3\}$

La fonction f est définie lorsque l'argument du logarithme est strictement positif :

$$x^2 - 6x + 9 > 0$$

Nous remarquons que :

$$x^2 - 6x + 9 = (x - 3)^2$$

Donc, l'inéquation devient :

$$(x-3)^2 > 0$$

Ainsi, $\forall x \in \mathbb{R} \setminus \{3\}$ f existe donc

$$D_f = \mathbb{R} \setminus \{3\}$$

Déterminer les limites aux bornes de D_f

Cherchons la limites à gauche et à droite de 3.

1. Lorsque $x \to 3^-$ (par la gauche) :

$$\lim_{x \to 3^{-}} \ln(x^2 - 6x + 9) = \ln(0^+) = -\infty$$

Donc,

$$\lim_{x \to 3^{-}} f(x) = -\infty$$

2. Lorsque $x \to 3^+$ (par la gauche) :

$$\lim_{x \to 3^+} \ln(x^2 - 6x + 9) = \ln(0^+) = -\infty$$

Donc,

$$\lim_{x \to 3^+} f(x) = -\infty$$

1. Lorsque $x \to -\infty$:

$$\lim_{x \to \infty} \ln(x^2 - 6x + 9) = \ln(+\infty) = +\infty$$

Donc,

$$\lim_{x \to -\infty} f(x) = +\infty$$

2. Lorsque $x \to +\infty$:

$$\lim_{x \to +\infty} \ln(x^2 - 6x + 9) = \ln(+\infty) = +\infty$$

Donc,

$$\lim_{x \to +\infty} f(x) = +\infty$$

b - Étudions les variations de f

Pour étudier les variations de f, nous allons calculer sa dérivée et analyser son signe.

Calcul de la dérivée de f

La fonction f(x) est définie par :

$$f(x) = \ln(x^2 - 6x + 9)$$

Calculons u'(x):

$$u(x) = x^2 - 6x + 9 \implies u'(x) = 2x - 6$$

Donc, la dérivée de f est :

$$f'(x) = \frac{2x - 6}{x^2 - 6x + 9}$$

Signe de f'(x)

Analysons le signe de f'(x):

$$f'(x) = \frac{2(x-3)}{(x-3)^2}$$

Le signe de f'(x) dépend du signe de (x-3):

 $\forall x \in]-\infty, 3[, f'(x) < 0 \text{ est croissante.}$

 $\forall x \in]3, +\infty[, f'(x) > 0 \text{ est décroissante.}$

2) Intersection de la courbe Cf avec les axes

a - Intersection avec l'axe des ordonnées

Pour trouver l'intersection avec l'axe des ordonnées, nous devons évaluer f(0):

$$f(0) = \ln(0^2 - 6 \cdot 0 + 9) = \ln(9) = \ln(3^2) = 2\ln(3)$$

Donc, la courbe Cf intersecte l'axe des ordonnées au point $(0, 2 \ln(3))$.

b - Intersection avec l'axe des abscisses

Pour trouver l'intersection avec l'axe des abscisses, nous devons résoudre f(x) = 0:

$$\ln(x^{2} - 6x + 9) = 0$$

$$x^{2} - 6x + 9 = e^{0} = 1$$

$$x^{2} - 6x + 9 - 1 = 0$$

$$x^{2} - 6x + 8 = 0$$

Résolvons ce trinôme du second degré :

où
$$a = 1, b = -6, \text{ et } c = 9.$$

$$\Delta' = 1$$

$$x = 2$$

$$x = 4$$

Donc, la courbe Cf intersecte l'axe des abscisses aux points (2,0) et (4,0).

2) b - Équation de la tangente à Cf au point d'abscisse 0

1. Calcul de f(0)

$$f(0) = \ln(0^2 - 6 \cdot 0 + 9) = \ln(9) = \ln(3^2) = 2\ln(3)$$

Le point de tangence est donc $(0, 2 \ln(3))$.

2. Calcul de la dérivée f'(x) et évaluation en x = 0

La dérivée de f est :

$$f'(x) = \frac{2}{x-3}$$

Évaluons f'(x) en x = 0:

$$f'(0) = \frac{2}{0-3} = -\frac{2}{3}$$

3. Équation de la tangente

L'équation de la tangente T en x=0 est donnée par :

$$y = f(x) + f'(x)(x - x_0)$$
$$y = f(0) + f'(0)(x - 0)$$
$$y = 2\ln(3) - \frac{2}{3} \cdot x$$
$$y = -\frac{2}{3}x + 2\ln(3)$$

Ainsi, l'équation de la tangente T à Cf au point d'abscisse 0 est :

$$(T): y = -\frac{2}{3}x + 2\ln(3)$$

2) c - Symétrie de la courbe par rapport à la droite x=3

Pour montrer que la droite d'équation x=3 est un axe de symétrie de Cf, nous devons prouver que f(-x+6)=f(x).

Pour ce faire, vérifions si $\ln(x^2 - 6x + 9) = \ln((6 - x)^2 - 6(6 - x) + 9)$. Calculons $\ln((6 - x)^2 - 6(6 - x) + 9)$:

$$(6-x)^2 = 36 - 12x + x^2$$
$$-6(6-x) = -36 + 6x$$

Donc,

$$(6-x)^2 - 6(6-x) + 9 = x^2 - 6x + 9$$

Ainsi, $\ln(x^2 - 6x + 9) = \ln((6 - x)^2 - 6(6 - x) + 9)$.

Cela montre que $\ln(x^2 - 6x + 9)$ est symétrique par rapport à x = 3,

car pour tout x, $\ln((6-x)^2 - 6(6-x) + 9) = \ln(x^2 - 6x + 9)$.

Conclusion : $\ln(x^2 - 6x + 9)$ a comme axe de symétrie la droite verticale x = 3.

Tableau de variation

2) d - Tracé de Cf et de la tangente T

3) Preuve que $f(x) = 2\ln(x-3)$ sur $]-2, +\infty[$

Commençons par simplifier l'expression de f(x):

$$f(x) = \ln(x^2 - 6x + 9)$$

Nous reconnaissons que $(x^2 - 6x + 9)$ peut être factorisé en un carré parfait :

$$x^2 - 6x + 9 = (x - 3)^2$$

Ainsi,

$$f(x) = \ln((x-3)^2)$$

Nous utilisons maintenant la propriété des logarithmes qui dit que $\ln(a^b) = b \ln(a)$:

$$f(x) = \ln((x-3)^2) = 2\ln(x-3)$$

Par conséquent, nous avons montré que :

$$f(x) = 2\ln(x-3)$$

Il est important de noter que l'expression $\ln((x-3)^2) = 2\ln(x-3)$ est définie pour x-3>0, c'est-à-dire x>3. Donc, sur l'intervalle $[3,+\infty[$, nous avons :

$$f(x) = 2\ln(x-3)$$