Project Title: Cab Booking System – Data Analysis

Name: Praneeth

Course: SQL

Introduction

A Cab Booking System is an application that allows customers to book rides, track drivers, and make payments seamlessly. It connects customers with available drivers, making transportation faster and more convenient.

Data analysis plays a crucial role in improving the efficiency of such a system. By analyzing customer booking patterns, cancellation trends, and driver performance, companies can enhance customer satisfaction, optimize revenue generation, and improve driver utilization. This helps the business make better decisions, such as adjusting pricing during peak hours, identifying top customers, and rewarding high-performing drivers.

In this project, we designed a relational database schema for the cab booking system, inserted sample data, and wrote SQL queries to analyze important trends such as customer behavior, booking frequency, cancellations, and driver ratings. These insights can help improve operations and provide a better overall experience for both customers and drivers.

Objective:

A cab service company wants to enhance its operations by analyzing customer bookings, driver performance, and trip details. The company aims to: - Monitor ongoing and completed bookings. - Track customer preferences and behavior. - Evaluate driver efficiency and performance. - Analyze revenue trends based on fares and trip details. - Identify operational bottlenecks and areas for improvement. By structuring and querying the database, stakeholders can make data-driven decisions to improve the efficiency of the cab booking system.

Database Schema

Cab Booking System for Data Analysis

Problem Statement:

Customer and Booking Analysis

1. Identify customers who have completed the most bookings. What insights can you draw about their behavior?

SELECT

c.customer_id,

c.name,

COUNT(b.booking_id) AS completed_bookings

FROM Customers c

JOIN Bookings b ON c.customer_id = b.customer_id

WHERE b.status = 'Completed'

GROUP BY c.customer_id, c.name

ORDER BY completed_bookings DESC;

2. Find customers who have canceled more than 30% of their total bookings. What could be the reason for frequent cancellations?

SELECT

customer_id,

COUNT(*) AS total_bookings,

SUM(CASE WHEN status = 'Cancelled' THEN 1 ELSE 0 END) AS cancelled_bookings,

(SUM(CASE WHEN status = 'Cancelled' THEN 1 ELSE 0 END) / COUNT(*))

* 100 AS cancellation_rate

FROM Bookings

GROUP BY customer_id

HAVING cancellation_rate > 30

ORDER BY cancellation_rate DESC;

	customer_id	total_bookings	cancelled_bookings	cancellation_rate
•	2	1	1	100.0000
	11	2	1	100.0000
	37	1	1	100.0000
	47	1	1	100.0000
	7	2	1	50.0000
	8	2	1	50.0000
	20	2	1	50.0000

3. Determine the busiest day of the week for bookings. How can the company optimize cab availability on peak days?

SELECT

DAYNAME(booking_time) AS day_of_week,

COUNT(*) AS total_bookings

FROM Bookings

GROUP BY day_of_week

ORDER BY total_bookings DESC

limit 1;

Driver Performance & Efficiency

1.Identify drivers who have received an average rating below 3.0 in the past three months. What strategies can be implemented to improve their performance?

SELECT

d.driver_id,

d.name AS driver_name,

ROUND(AVG(f.rating),2) AS avg_rating

FROM Drivers d

JOIN Feedback f ON d.driver_id = f.driver_id

WHERE f.feedback_date >= DATE_SUB(CURDATE(), INTERVAL 3 MONTH)

GROUP BY d.driver_id, d.name

HAVING avg_rating < 3.0

ORDER BY avg_rating ASC;

driver_id	driver_name	avg_rating	total_feedbacks
8	Praveen Yadav	3.70	3
9	Arvind Joshi	3.73	3
2	Suresh Mehta	3.75	2
5	Dinesh Shetty	3.80	3.80
15	Nitin Jain	3.80	7
25	Farhan Khan	3.85	2
22	Anil Saini	3.95	2
19	Suraj Malhotra	4.00	2
26	Mithun Joshi	4.05	2
29	Vishal Gupta	4.05	2

2. Find the top 5 drivers who have completed the longest trips in terms of distance. What does this say about their working patterns?

SELECT

d.driver_id,

d.name AS driver name,

SUM(t.distance_km) AS total_distance,

COUNT(t.trip_id) AS total_trips

FROM Drivers d

JOIN Bookings b ON d.driver_id = b.cab_id -- if cab is linked to driver

JOIN TripDetails t ON b.booking_id = t.booking_id

WHERE b.status = 'Completed'

GROUP BY d.driver_id, d.name

ORDER BY total_distance DESC

LIMIT 5;

3. Identify drivers with a high percentage of canceled trips. Could this indicate driver unreliability?

SELECT

d.driver_id,

d.name AS driver_name,

COUNT(CASE WHEN b.status = 'Cancelled' THEN 1 END) AS cancelled_trips,

COUNT(*) AS total_trips,

ROUND((COUNT(CASE WHEN b.status = 'Cancelled' THEN 1 END) * 100.0 / COUNT(*)), 2) AS cancel_percentage

FROM Drivers d

JOIN Cabs c ON d.driver_id = c.driver_id

JOIN Bookings b ON c.cab_id = b.cab_id

GROUP BY d.driver_id, d.name

HAVING cancel_percentage > 30

ORDER BY cancel_percentage DESC;

Revenue & Business Metrics

1.Calculate the total revenue generated by completed bookings in the last 6 months. How has the revenue trend changed over time?

2. Identify the top 3 most frequently traveled routes based on PickupLocation and DropoffLocation. Should the company allocate more cabs to these routes?

SELECT

b.pickup_location,

b.drop_location,

COUNT(*) AS trip_count

FROM Bookings b

WHERE b.status = 'Completed'

GROUP BY b.pickup_location, b.drop_location
ORDER BY trip_count DESC

LIMIT 3;

 Yes, the company should allocate more cabs to these highdemand routes.

It might also:

- Introduce **shared ride options** for busy routes.
- Offer discounts or surge pricing depending on demand.
- Improve driver availability during peak times on these routes.

3. Determine if higher-rated drivers tend to complete more trips and earn higher fares. Is there a direct correlation between driver ratings and earnings?

SELECT

```
d.driver_id,d.name AS driver_name,ROUND(AVG(f.rating), 2) AS avg_rating,COUNT(t.trip_id) AS total_trips,SUM(t.fare) AS total_earnings
```

FROM Drivers d

JOIN Cabs c ON d.driver_id = c.driver_id

JOIN Bookings b ON c.cab_id = b.cab_id

JOIN TripDetails t ON b.booking id = t.booking id

LEFT JOIN Feedback f ON d.driver_id = f.driver_id

WHERE b.status = 'Completed'

GROUP BY d.driver_id, d.name

ORDER BY avg rating DESC;

- If top-rated drivers have **higher trip counts & earnings**, there may be a **positive correlation**:
- They likely get repeat customers.
- They might receive **priority bookings** due to better ratings.
- If there is **no clear correlation**, you might need to:
- Investigate if good drivers are underutilized.
- Adjust cab assignment algorithm to favor high-rated drivers.

Operational Efficiency & Optimization

1. Analyze the average waiting time (difference between booking time and trip start time) for different pickup locations. How can this be optimized to reduce delays?

SELECT

b.pickup_location,

ROUND(AVG(TIMESTAMPDIFF(MINUTE, b.booking_time, t.trip_start_time)), 2) AS avg_waiting_time_minutes,

COUNT(*) AS total_trips

FROM Bookings b

JOIN TripDetails t ON b.booking_id = t.booking_id

WHERE b.status = 'Completed'

GROUP BY b.pickup_location

ORDER BY avg_waiting_time_minutes DESC;

	pickup_location	avg_waiting_time_minutes	total_trips
١	KR Puram	17.00	1
	HSR Layout	14.00	4
	Whitefield	14.00	2
	Marathahalli	11.60	5
	Yeshwanthpur	10.50	2
	Majestic	10.00	1
	Banashankari	10.00	1
	Rajajinagar	9.50	2
	Indiranagar	8.80	5
	MG Road	8.33	3

2.Identify the most common reasons for trip cancellations from customer feedback. What actions can be taken to reduce cancellations?

SELECT

f.comments AS cancellation reason,

COUNT(*) AS total_cancellations,

ROUND(COUNT(*) * 100.0 /

(SELECT COUNT(*)

FROM Feedback fb

JOIN Bookings b2 ON fb.customer_id = b2.customer_id

WHERE b2.status = 'Cancelled'), 2) AS percentage

FROM Feedback f

JOIN Bookings b ON f.customer_id = b.customer_id

WHERE b.status = 'Cancelled'

GROUP BY f.comments

ORDER BY total_cancellations DESC

LIMIT 5;

3. Find out whether shorter trips (low-distance) contribute significantly to revenue. Should the company encourage more short-distance rides?

SELECT

CASE

WHEN t.distance_km < 5 THEN 'Short Trip (<5 km)'

ELSE 'Long Trip (>=5 km)'

END AS trip_category,

COUNT(*) AS total_trips,

SUM(t.fare) AS total_revenue,

ROUND(SUM(t.fare) * 100.0 / (SELECT SUM(fare) FROM TripDetails), 2)
AS revenue_percentage

FROM TripDetails t

JOIN Bookings b ON t.booking_id = b.booking_id

WHERE b.status = 'Completed'

GROUP BY trip_category;

Comparative & Predictive Analysis

1.Compare the revenue generated from 'Sedan' and 'SUV' cabs. Should the company invest more in a particular vehicle type?

SELECT

c.cab_type,

ROUND(SUM(t.fare), 2) AS total_revenue,

COUNT(*) AS total_trips,

ROUND(AVG(t.fare), 2) AS avg_fare_per_trip

FROM Cabs c

JOIN Bookings b ON c.cab_id = b.cab_id

JOIN TripDetails t ON b.booking id = t.booking id

WHERE b.status = 'Completed'

GROUP BY c.cab_type

ORDER BY total_revenue DESC;

2. Predict which customers are likely to stop using the service based on their last booking date and frequency of rides. How can customer retention be improved?

SELECT

c.customer_id,

c.name AS customer_name,

COUNT(b.booking_id) AS total_bookings,

MAX(b.booking_time) AS last_booking_date,

DATEDIFF(CURDATE(), MAX(b.booking_time)) AS days_since_last_booking

FROM Customers c

LEFT JOIN Bookings b ON c.customer_id = b.customer_id

GROUP BY c.customer_id, c.name

HAVING days_since_last_booking > 30 -- no trips in the last 30 days

OR total_bookings < 3 -- very few total rides

ORDER BY days_since_last_booking DESC;

3. Analyze whether weekend bookings differ significantly from weekday bookings. Should the company introduce dynamic pricing based on demand?

SELECT

CASE

WHEN DAYOFWEEK(b.booking_time) IN (1,7) THEN 'Weekend' -- 1=Sunday, 7=Saturday

ELSE 'Weekday'

END AS day_type,

COUNT(b.booking_id) AS total_bookings,

ROUND(SUM(t.fare), 2) AS total_revenue,

ROUND(AVG(t.fare), 2) AS avg_fare_per_trip

FROM Bookings b

JOIN TripDetails t ON b.booking_id = t.booking_id

WHERE b.status = 'Completed'

GROUP BY day_type

ORDER BY total_bookings DESC;

	day_type	total_bookings	total_revenue	avg_fare_per_trip
١	Weekday	31	9590.00	309.35
	Weekend	7	2290.00	327.14