

High-Tune Explorer: a calibration tool for parameterization improvement

F Couvreux, F Hourdin, D Williamson, R Roehrig, N Villefranque, and the HIGH-TUNE team (CNRM, LMD, Exeter University)

High-Tune Explorer: a calibration tool for parameterization improvement

F Couvreux, F Hourdin, D Williamson, R Roehrig, N Villefranque, and the HIGH-TUNE team (CNRM, LMD, Exeter University)

1/ Motivations

2/ Description of the tool

3/ Results

4/ Conclusions

Calibrating an atmospheric model

Calibrating an atmospheric model

- often through an optimization procedure

- not well documented

(Hourdin et al 2017)

Global Calibration:

- radiative metrics

Approach

To build a calibration tool that serves parameterization development based on the LES/SCM comparison => process-oriented

Use methods of the community of Uncertainty Quantification (History Matching) Tackle jointly calibration & parameterization development

The SCM/LES comparison

<u>Advantages</u>

An exact comparison : same forcing & initial conditions, no coupling with LS dynamics

Focus on parameterization

A framework largely used for model evaluation and development promoted by GCSS/GASS (Browning 1993; Randall et al 1996)

1D: very cheap, still representative of main biases of 3D model (Neggers 2015; Gettleman et al 2019)

LES: reference + provide parameterization-oriented diagnostics (Couvreux et al 2010)

History matching with iterative refocusing (Williamson et al 2013)

Machine learning approaches for tuning (UQ)

To define the sub-space of the <u>parameter values</u> for which <u>SCM</u> matches <u>LES</u> on <u>selected metrics</u> for <u>a series of cases</u> within a given <u>uncertainty</u>

Selection of **metrics** [can combine different cases and metrics]

Identify **free parameters** and their a-priori ranges

History matching with iterative refocusing (Williamson et al 2013)

Machine learning approaches for tuning (UQ)

Selection of **metrics** [can combine different cases and metrics]

Identify **free parameters** and their a-priori ranges

- Machine learning approaches for tuning (UQ)
- Extensive exploration of parameter space with emulator

Selection of **metrics** [can combine different cases and metrics]

Identify **free parameters** and their a-priori ranges

- Machine learning approaches for tuning (UQ)
- Extensive exploration of parameter space with emulator
- Taking into account different sources of uncertainties: a/observation error, b/ emulator error and c/ an error tolerance or structural error to avoid error compensation

Selection of **metrics** [can combine different cases and metrics]

Identify **free parameters** and their a-priori ranges

- Machine learning approaches for tuning (UQ)
- Extensive exploration of parameter space with emulator
- Taking into account different sources of uncertainties: a/observation error, b/ emulator error and c/ an error tolerance or structural error to avoid error compensation
- Removing progressively implausible values

Selection of **metrics** [can combine different cases and metrics]

Identify **free parameters** and their a-priori ranges

- Machine learning approaches for tuning (UQ)
- Extensive exploration of parameters space with emulator
- Taking into account different sources of uncertainties : a/ observation error, b/ emulator error and c/an error tolerance or structural error to avoid error compensation
- Removing progressively implausible values
- Can be used for other configurations than SCM (Hourdin et al 2021)

Calibration of a parameterization

- Path-tracing library for flexible implementation of Monte-Carlo algorithms in cloudy atmosphere: use of null-collision and hierarchical grids to accelerate ray-tracing computation in large 3D data + virtual synthetic images

Camera

FOV

Image plane
pixel

(a) Rayleigh

(b) Mie

Reflection (c)

(d) Absorption

- Apply offline on 3D LES fields
- Provide reference computation of 3D radiative effects => metrics for the evaluation of the ecRad parameterization code

Calibration of a parameterization

LES:

Monte-Carlo radiative computation applied offline on LES cloud scenes (+ uncertainty) => ref metrics

derived 1D cloud profiles to run EcRad offline with the right cloud information

Differences in TOA reflected SW flux between parameterization and reference [W/m2]

Disentangling calibration issues and structural errors

ARPEGE-Climat (Roehrig et al 2020) – SCM-HR-SHF [Dz=2m ->400m]

GABLS4 [only turbulence and surface scheme]

Metrics: $\theta_2m \theta_8m ws_max ws_55m$

7 Parameters : Cm, Ce, Lmin, $\alpha_{\rm eps}$, $\alpha_{\rm T}$, Kozmin. Kozmax

$$K_{\psi} = \alpha_{\psi} \mathbf{CM} L_{m} \sqrt{\bar{e}} \phi_{\psi}$$
 $L_{m} = \max \left[L_{m}^{\mathrm{BL89}}, \min(\mathbf{LMIN}, \kappa z) \right]$
 $L_{\epsilon} = \mathbf{CE} L_{m}$

LES – GABLS4 ARPEGE-Climat-CM6 Wave 1 Wave 9

- Only 4 instantaneous metrics that constrain the behaviour of the stable boundary layer throughout the night

Verification of the emulator ability

- SCM=cheap => test for a not too constraining metrics Very similar results

From 1D calibration to 3D calibration

 $cld_{max} = max(cf(z))$

9 Parameters: Mass-flux scheme+ Cloud scheme +autoconversion+ reevaporation of rain

From 1D calibration to 3D calibration

After 30 1D waves : combining 1D and 3D metrics

3D radiative metrics : Global or masked regions TOA upfluxes [9 parameters]

- Already good behaviour of the 3D model after 1D calibration
- More reduction through the 3D Calibration

LMDZ IHOP/ARMCU/RICO/SANDU

Metrics: $=\int \theta(z)dz\theta \quad \bar{q} \ v = \int qv(z)dz \quad \bar{q} \ v = \int qv(z)dz \quad z_{cld,ave} = \frac{\int cf(z)zdz}{\int cf(z)dz} \quad cld_{max} = max(cf(z))$ 9 Parameters: Mass-flux scheme+ Cloud scheme +autoconversion+ reevaporation of rain

+ 3D GCM tuning with radiative metrics

Conclusions

A new tool to accelerate model development:

Harness machine learning to improve physical parameterizations Exploit the LES/SCM comparison Complementary use of multicases with various metrics

Available freely under https://svn.lmd.jussieu.fr/HighTune/HighTune Easy to use if adopting the common format initiative (DEPHY)

Main use:

Sensitivity analysis

Quantify parametric uncertainty- Identify parameter that limit model performance Disentangle model formulation deficiencies from calibration issues

Provide guidance for global tuning

Applied to individual parameterization or all of them

Towards a well-defined tuning strategy:

With solid physical (emphasis on processes) and statistical (UQ) basis Hourdin et al (2017) => first phase on process-level calibration Model development and calibration tackled together

Conclusions

Some aspects that desserve further attention when using the tool:

- Definition of metrics => main biases
- Determination of the tolerance to error
- Still important need of modeler expertise
- When to stop the iterative processes [evolution of emulator uncertainty]

Other aspects to be further explored:

- Deep convection and high clouds => need of reference
- Coupled models
- Provide guidance for physically based initialization of ensemble forecast

...

References (http://www.umr-cnrm.fr/high-tune):

Couvreux F, F Hourdin, D Williamson, R Roehrig, V Volodina, N Villefranque, C Rio, O Audouin, J Salter, E Bazile, F Brient, F Favot, R Honnert, M-P Lefebvre, J-B Madeleine, Q Rodier, W Xu, 2021: Process-based climate model development harnessing machine learning: I A new tool for parameterization improvement, JAMES, 13

Hourdin F, D Williamson, C Rio, F Couvreux, R Roehrig, N Villefranque, I Musat, L Fairhead, F B Diallo, V Volodina, 2021: Process-based climate model development harnessing machine learning: II: model calibration from single column to global, JAMES,13

Audouin, 0., R. Roehrig, F. Couvreux, D. Williamson, 2021: Modeling the GABLS4 strongly-stable boundary layer with a GCM turbulence parameterization: parametric sensitivity or intrinsic limits? JAMES, 13

Villefranque N, S Blanco, F Couvreux, R Fournier, J Gautrais, R Hogan, F Hourdin, V Volodina, D Williamson, 2021: Process-based climate model development harnessing machine learning: III: guiding the choice of cumulus geometry parameters in a radiative transfer scheme, JAMES, 13

Supplementary: SCM/LES cases

- Ensemble of cases covering the diversity of boundarylayer regimes
- Reference simulation +sensitivities to configuration and parameterization => provide uncertainty around this reference

AMMA	100, 50	100, 20	Niamey, initiation of local storm	No	Couvreux et al., 2012	Yes
		'	Transition to deep convection			
GABLS4	1,1	500,200	Antarctica	No	Bazile etal, 2019; Couv et al 2019	Yes
GABLS1	?	1000, 500	Academic case	No	Beare et al, 2006	No
		'	Stable boundary layer			
GreyZone	250,25-90	100, 5	Transition to cumulus, North Sea	Yes	De Roode et al, in prep	Yes
ASTEX	25, 5-15	5,2	Transition to cumulus, Atlantic	Yes	Van Der Dussen et al., 2013	Yes
SANDU	35,5-15	9, 3.2	Transition to cumulus, Pacific	Yes	Sandu and Stevens, 2011	Yes
DYCOMS2	25, 5-15	5, 1.5	Stratocumulus	Yes	Stevens et al., 2005	Yes
FIRE	25, 5-15	5, 1.2	Day and Nighttime stratocumulus	Yes	Duynkerke et al. 2004	Yes
		N	Iarine strato-cumulus clouds			
CASS	50, 40	13,4	Composite cont. shallow, SGP	No	Zhang et al., 2017	Yes
SCMS	50, 40	13, 4	Continental shallow, Florida	No	Neggers et al, 2002	Yes
RICO	50, 40	13, 4	Precipitating oceanic, Caraibes	No	Van Zanten et al., 2011	Yes
BOMEX	50, 40	13, 4	Oceanic shallow, Caraibes	No	Siebesma et al., 2003	Yes
ARM	50, 40	13, 4	Continental shallow, SGP	No	Brown et al., 2002	Yes
			Boundary layer cumulus			
WANGARA	50, 40	10, 5	Semi-arid, Australia	No		Yes
AMMA	50, 40	10, 5	Semi-arid, West-Africa	No	Canut et al., 2011	Yes
IHOP	50, 40	10, 5	USA great plains	No	Couvreux et al., 2005	Yes
	-	ases of clea	ar sky continental convective bour	ıdary	layer	I
6	50, 40	10, 2	capping) and varying cst-in-time surface fluxes	No		No
AYOTTE-2	,	10, 2				No
AYOTTE-1	50. 40	10, 2	Varying inversion (strong/weak		Avotte et al. 1996	No
		(km, km)	ic cases of dry convective boundar	n lan		_
Case name	dx=dy, dz (m, m)	Lx=Ly,	Specificity	Radi	Reference	Observations
	grid resolution	Domain		Radiation		ations