R tools for a code-based data workflow

Contents

Webinar Information
Description
Presenters
When
Location
Additional resources
Outline
Introduction ($McCrea, 10 min$)
Planning (McCrea, 10 min)
Documenting (Adam, 10 min)
Acquiring (Adam, 10 min)
Processing (Adam, 10 min)
Analyzing (Adam, 5 min)
Sharing (McCrea, 10 min)
Archiving (McCrea, 5 min)
An example R project / Live demo (10 min)
Questions (10 min)
Resources (Links)

Webinar Information

Description

After a brief review of the advantages of a code-based workflow for ecological survey data, we introduce participants to some useful tools available via the R programming language for moving data along the data life cycle. We suggest some accessible tools in R for each step of the life cycle, and conclude with a walk through of how the functionality available in R can increase the reliability, efficiency, and transparency of scientific data management.

Presenters

• McCrea Cobb (Refuge Inventory and Monitoring Program, Alaska) and Adam Smith (Refuge Inventory and Monitoring Program, IR2/4)

When

June 24, 2020 (3:00-4:30 EST)

Location

- DOI Talent
- Webinar slides (use arrow keys to advance)

Additional resources

GitHub repository

Outline

Introduction (McCrea, 10 min)

Planning (McCrea, 10 min)

Documenting (Adam, 10 min)

Acquiring (Adam, 10 min)

Processing (Adam, 10 min)

Analyzing (Adam, 5 min)

Sharing (McCrea, 10 min)

Archiving (McCrea, 5 min)

An example R project / Live demo (10 min)

Questions (10 min)

Resources (Links)

Introduction to R

- An Introduction to R book
- R for Excel Users

Resources for Teaching R

- DataCamp's tidyverse course
- learnr package
- RStudio teaching resources
- Data Wrangling, Exploration and Analysis with R "STAT 545"
- Learn the tidyverse
- Geocomputation with R

R Resources

- Why learn R
- What they forgot to teach you about R
- R cheatsheets
- Project-oriented workflow

Style Guides - Tidyverse style guide - DataNovia R style guide

R Packages

- Packaging your reproducible analysis
- R packages
- Packaging data analytical work reproducibly using R (and friends)
- R Docker tutorial

Project management

• Stop working directory insanity!

- A minimal project tree in R
- Organizing the project directory
- Designing projects
- Project management with RStudio
- File structure for data management
- Organizing files for data analysis
- A meaningful file structure for R projects
- An introduction to Docker for R users

Project Directory Templates

- MakeProject package
- rrtools package
- prodigenr package

General Coding Best Practices

- What's in a name? The concepts and language of replication and reproducibility
- Best practices for scientific computing
- Good enough practices in scientific computing
- Ten simple rules for documenting scientific software
- Art of README see examples and checklist
- Introduction to roxygen2 vignette

Version Control

• Happy Git with R

Other

- How to share your data with a statistician
- Tools for reproducible research
- Reproducibility vs. replicability: a brief history of a confused terminology