Экспоненциальная неустойчивость в обратной задаче Гельфанда-Кальдерона

М.И. Исаев, МФТИ(ГУ)

научный руководитель: Р.Г. Новиков

Содержание

- Введение, постановка задачи.
- Ранее полученные результаты.
- Вспомогательные утверждения.
- 4 Построение ϵ -дискретного множества и δ -сети.
- 5 Пример для комплексного потенциала.

Рассмотрим уравнение

$$-\Delta u + q(x)u = 0$$
 для $x \in \Omega$, (1)

где

- ullet Ω открытая связная область в \mathbb{R}^d ,
- \bullet $d \geq 2$,
- ullet $\partial\Omega\in C^2$,
- $q \in L^{\infty}(\Omega)$.

Определим оператор* Λ_q следующим образом:

$$\Lambda_q(u|_{\partial\Omega})=rac{\partial u}{\partial
u}|_{\partial\Omega}.$$

Здесь предполагаем, что

0 не является собственным значением для $-\Delta+q$ в $\Omega.$

st Этот оператор называется Dirichlet to Neumann map.

Задача.

- ullet Задан * оператор Λ_q .
- ullet Требуется восстановить q.

^{*} например, считаем известным его ядро.

Задача может быть рассмотрена как:

- частный случай обратной задачи Гельфанда для уравнения Шредингера с нулевой энергией,
- обобщение задачи Кальдерона в electrical impedance tomography.

Уравнение выглядит следующим образом:

$$div(\sigma(x)
abla v)=0$$
 для $x\in\Omega$.

Требуется восстановить $\sigma(x)$ при известном операторе * $ilde{\Lambda}_{\sigma}$

$$ilde{\Lambda}_{\sigma}(v|_{\partial\Omega})=\sigmarac{\partial v}{\partial
u}|_{\partial\Omega}.$$

* Этот оператор называется voltage to current map.

Задача сводится к (1) следующим образом:

$$\bullet \ q(x)=(\sigma(x))^{-1/2}\Delta(\sigma(x))^{1/2}, \ x\in\Omega,$$

$$ullet$$
 $\Lambda_q = \sigma^{-1/2} \Big(ilde{\Lambda}_\sigma \sigma^{-1/2} + rac{\partial \sigma^{1/2}}{\partial
u} \Big).$

- Единственность.
 - J.Sylvester and G.Uhlmann, 1987.
 - R.G.Novikov, 1988.
- Восстановление.
 - R.G.Novikov, 1988.
- Устойчивость.
 - G.Alessandrini, 1988.

Для размерности d=2:

- A.Nachman, 1995.
- A.L.Bukhgeim, 2008.

Теорема 1.

При выполненных условиях задачи (1) а также при

- \bullet d > 3, m > 0 и M > 0,
- $||q_i||_{C^m} \leq M, i = 1, 2,$
- $\alpha = (m-d)/m$

существует такая константа $C=C(M,\Omega,m)$, что

$$||q_1 - q_2||_{\infty} \le C \Big(\log(1 + ||\Lambda_{q_1} - \Lambda_{q_2}||_{H^{1/2} \to H^{-1/2}}^{-1}) \Big)^{-\alpha}.$$

Недостаток этой оценки в том, что lpha < 1 даже для очень больших m.

R.G.Novikov, 2010.

Оценка остается верной для $\alpha=m-d$.

N.Mandache, 2001.

Оценка не верна при lpha > 2m-m/d.

Здесь и далее зафиксируем $\Omega=B(0,1)$.

Теорема 2.

- ullet Для любого m>0, любой размерности $d\geq 2$ и любого $s\geq 0$
- ullet существует константа eta>0 такая, что для любого $\epsilon\in(0,1)$
- ullet найдутся потенциалы $q_1,q_2\in C^m$ с носителем, принадлежащим B(0,1/2):

$$||q_1 - q_2||_{\infty} \ge \left(\log(1 + ||\Lambda_{q_1} - \Lambda_{q_2}||^{*-1})\log\log(1 + ||\Lambda_{q_1} - \Lambda_{q_2}||^{-1})\right)^{-m}, \ ||q_i||_{C^m} \le \beta, \quad i = 1, 2, \ ||q_i||_{\infty} \le \epsilon, \quad i = 1, 2.$$

 * Имеется ввиду $||\Lambda_{q_1}-\Lambda_{q_2}||=||\Lambda_{q_1}-\Lambda_{q_2}||_{H^{-s} o H^s}.$

Пусть f_{jp} — ортонормированный базис в $L^2(S^{d-1}) = L^2(\partial\Omega)$:

- ullet f_{jp} сферические гармоники степени j,
- $0 \le j; 1 \le p \le p_j$
- $p_j = C_{j+d-1}^{d-1} C_{j+d-3}^{d-1}.$

Для оператора $A: L^2(S^{d-1}) o L^2(S^{d-1})$ обозначим матрицу компонент в базисе (f_{jp}) :

$$a_{jpkq} = \langle Af_{jp}, f_{kq} \rangle$$
.

Лемма 1.

Оператор $A:L^2(S^{d-1}) o L^2(S^{d-1})$, коммутирующий с поворотами, имеет матрицу компонент $a_{jpkq}=a_j\delta_{jk}\delta_{pq}.$

Идея доказательства:

- $m{\circ}$ $F(dist(x,e_d)) = \sum\limits_{m=0}^{\infty} f_m(x),$ причем f_m :
 - ullet сферическая гармоника степени m,
 - ullet функция от $dist(x,e_d)$,
 - ullet четная или нечетная, в зависимости от m.
- $A = \sum_{m=0}^{\infty} a_m \Pi_m.$

Здесь Π_m и P_m — проектор и его ядро на пространство сферических гармоник степени m.

Лемма 2.

Обозначим $\Gamma(q) = \Lambda_q - \Lambda_0$.

- ullet Пусть $r_0 \in (0,1)$,
- ullet q ограничена и $suppq\subset B(0,r_0)$,
- ullet 0 не является собственным значением $-\Delta+q$.

Тогда существует константа $ho =
ho(r_0,d)$ такая, что:

$$|\langle \Gamma(q) f_{jp}, f_{kq} \rangle| \le \rho \, r_0^{\max(j,k)} ||q||_{\infty} ||(-\Delta + q)^{-1}||_{L^2}$$

для любых $0 \leq j, 1 \leq p \leq p_j$ и $0 \leq k, 1 \leq q \leq p_k$.

В дальнейшем мы будем использовать ho =
ho(1/2,d).

Идея доказательства:

 $oldsymbol{0}$ u — решение задачи (1) с краевым условием f_{jp}

$$u_0(r,\omega) = r^j f_{jp}(\omega).$$

 $oldsymbol{@}$ Так как $(-\Delta+q)(u-u_0)=-qu_0$ в Ω , получаем:

$$u - u_0 = -(-\Delta + q)^{-1}qu_0.$$

 $oldsymbol{0} \ v = u - u_0$ — гармоническая в $\Omega \setminus B(0,r_0)$ и равна 0 на $\partial \Omega.$

$$\left\| \frac{\partial v}{\partial \nu} \right\|_{L^2(\partial\Omega)} \le \rho ||v||_{L^2(r_0 < |x| < 1)}.$$

ullet Учитывая $\Gamma(q)f_{jp}=rac{\partial v}{\partial
u}|_{\partial\Omega}$ и $\Lambda_q^*=\Lambda_{ar q}$, получаем искомое.

Лемма 3.

Пусть $d \geq 2$ и m > 0. Для $\epsilon, \beta > 0$ рассмотрим метрическое пространство:

$$X_{m\epsilon\beta} = \{ f \in C_0^m(B(0, 1/2)) : f = f(r), ||f||_{\infty} \le \epsilon, ||f||_{C^m} \le \beta \}$$

с метрикой, индуцированной из L^∞ . Тогда существует μ такое, что для произвольного $\beta>0$ и $\epsilon\in(0,\mu\beta)$ существует ϵ -дискретное множество $Z\subset X_{m\epsilon\beta}$ с по крайней мере $\exp\left(\frac{1}{4}(\mu\beta/\epsilon)^{1/m}\right)$ элементами.

Частный случай результатов A.N.Kolmogorov, V.M.Tikhomirov, 1959.

Идея доказательства:

- lacktriangled Пусть $\psi=\psi(r)$ из $C_0^\infty(\mathbb{R}^d)$ с носителем в $B(0,1/2)\setminus B(0,1/4)$ и $||\psi||_\infty=1.$
- $oldsymbol{0}$ Положим $\mu=rac{1}{||\psi||_{C^m}}$ и обозначим $N=\left[\left(rac{\mueta}{\epsilon}
 ight)^{1/m}
 ight]$.
- $oldsymbol{0}$ Функция $\psi_j = \epsilon \psi(Nr-j/2)$ имеет носитель в $B(0,rac{j+1}{2N})\setminus B(0,rac{j}{2N}).$
- $lacksymbol{0} Z = \Big\{ \sum\limits_{j=0}^{N-1} \sigma_j \psi_j \mid \; \psi(x) = 0 \; ext{для} \; x < 0 \; ext{и} \; \sigma_j \in \{0,1\} \; ext{для любого} \; j \; \Big\}.$

Определим банахово пространство

$$\begin{split} X_s &= \{(a_{jpkq}) \mid \sup_{j,p,k,q} (1 + \max(j,k))^{2s+d} |a_{jpkq}| < \infty \}, \\ &||(a_{jpkq})||_{X_s} = \sup_{j,p,k,q} (1 + \max(j,k))^{2s+d} |a_{jpkq}|. \end{split}$$

Рассмотрим оператор $A: H^{-s}(S^{d-1}) o H^s(S^{d-1})$. Тогда:

$$||A||_{H^{-s} \to H^s} \le 4||(a_{jpkq})||_{X_s}.$$

Обозначим B^∞ шар с центром в 0 и радиусом 2 в $L^\infty(B(0,1/2))$. Подмножество B^∞ функций f таких, что f=f(r) обозначим B^∞_r .

Лемма 4.

- ullet Γ отображает B_r^∞ в X_s для любого $s\geq 0$.
- Существует $0<\eta=\eta(s,d)$ такое, что для любого $\delta\in(0,e^{-1})$ существует δ -сеть Y для $\Gamma(B_r^\infty)$ в X_s с не более чем $\exp(\eta\log\delta^{-1}\log\log\delta^{-1})$ элементами.

Напоминаем, что $\Gamma(q)=\Lambda_q-\Lambda_0$.

Доказательство первой части.

 $oldsymbol{0}$ Для $q\in B_r^\infty$ имеем $||q||_\infty\leq 2$ поэтому:

$$||(-\Delta+q)^{-1}||_{L^2} \le (\lambda_{\min}-2)^{-1}.$$

 $oxed{2}$ $\lambda_{
m min}$ возрастает с повышением размерности, а при d=2 $\lambda_{
m min}pprox 5.78$, следовательно:

$$||q||_{\infty}||(-\Delta+q)^{-1}||_{L^{2}}\leq 1.$$

3 Воспользовавшись Леммой 2, получим:

$$|a_{jpkq}| \le \rho \, 2^{-\max(j,k)},$$
 $||a_{jpkq}||_{X_s} \le \sup_l (1+l)^{2s+d} \rho \, 2^{-l} < \infty.$

Доказательство второй части.

① Обозначим $l_{\delta s}$ наименьшее натуральное число такое, что $(1+l)^{2s+d} \rho \, 2^{-l} \le \delta$ для любого $l \ge l_{\delta s}$.

$$l_{\delta s} \leq C \log \delta^{-1}$$
.

 $m{Q}$ Для $l \leq l_{\delta s}$ обозначим $\delta_l = (1+l)^{-2s-d} \delta$ и рассмотрим множество

$$Y_l := \delta_l \mathbb{Z} igcap [-
ho \, 2^{-l},
ho \, 2^{-l}].$$

Оправот в пример на пр

$$Y=\Big\{(a_{jpkq})\mid a_{jpkq}=a_l\in Y_l$$
 для $j=k=l\leq l_{\delta s}$ и $p=q\Big\}.$

Теорема 2.

- ullet Для любого m>0, любой размерности $d\geq 2$ и любого $s\geq 0$
- ullet существует константа eta>0 такая, что для любого $\epsilon\in(0,1)$
- ullet найдутся потенциалы $q_1,q_2\in C^m$ с носителем, принадлежащим B(0,1/2):

$$||q_1 - q_2||_{\infty} \ge \left(\log(1 + ||\Lambda_{q_1} - \Lambda_{q_2}||^{*-1})\log\log(1 + ||\Lambda_{q_1} - \Lambda_{q_2}||^{-1})\right)^{-m},$$
 $||q_i||_{C^m} \le \beta, \quad i = 1, 2$ $||q_i||_{\infty} \le \epsilon. \quad i = 1, 2.$

 * Имеется ввиду $||\Lambda_{q_1}-\Lambda_{q_2}||=||\Lambda_{q_1}-\Lambda_{q_2}||_{H^{-s} o H^s}.$

Идея доказательства:

- f 0 Воспользуемся Леммой 3 и Леммой 4 и предположим |Z|>|Y|.
- ② Тогда найдутся два потенциала q_1 и q_2 такие, что их образы под действием Γ лежат в одном X_s -шаре радиуса δ с центром в точке из $|\mathsf{Y}|$. Имеем:

$$||\Lambda_{q_1} - \Lambda_{q_2}||_{H^{-s} \to H^s} \le 4||\Gamma(q_1) - \Gamma(q_2)||_{X_s} \le 8\delta.$$

 $oldsymbol{0}$ Подходящим образом выбирая параметры $oldsymbol{eta}$ и $oldsymbol{\delta}$, получаем искомое.

Пример для комплексного потенциала.

Рассмотрим цилиндрические координаты (r_1, θ, x') :

- $\bullet \ x'=(x3,\ldots,x_d),$
- $r_1 \cos \theta = x_1,$
- $r_1 \sin \theta = x_2$.

Возьмем $\phi \in C_0^\infty(\mathbb{R}^2)$ с носителем в $B(0,1/2)\cap \{x_1>1/4\}$ и $||\phi||_\infty=1.$

Пример для комплексного потенциала.

Теорема 3.

Для m>0 и n>0 определим:

$$q_{mn}(x) = n^{-m} e^{in\theta} \phi(r_1, |x'|).$$

Тогда $||q_{mn}||_{\infty}=n^{-m}$ и для любых d и m существуют константы c,c'>0 такие, что $||q_{mn}||_{C^m}\leq c$ и $||\Lambda_{q_{mn}}-\Lambda_0||_{L^2}\leq c'2^{-n/2}.$

Основная идея состоит в том, что:

$$\langle (\Lambda_{q_{mn}} - \Lambda_0) f_{jp}, f_{kq}
angle = 0$$
 для $j,k < n/2.$

Заключение.

Спасибо за внимание!

- G.Alessandrini, Stable determination of conductivity by boundary measurements, Appl.Anal. 27 (1988) 153-172.
- G.Alessandrini, Singular solutions of elliptic equations and the determination of conductivity by boundary measurements J. Diff. Eq. 84(1990) 252–72
- I.M.Gelfand, Some problems of functional analysis and algebra, Proceedings of the International Congress of Mathematicians, Amsterdam, 1954, pp.253-276.
- Niculae Mandache, Exponential instability in an inverse problem for the Schrödinger equation Inverse Problems. 17(2001) 1435–1444.
- R.G.Novikov, Multidimensional inverse spectral problem for the equation $-\Delta \psi + (v(x) Eu(x))\psi = 0$ Funkt. Anal. Prilozhen. 22(1988) 11–22 (in Russian) (Engl. Transl. Funct. Anal. Appl. 22(1988) 263–72).
- R.G.Novikov, New global stability estimates for the Gel'fand-Calderon inverse problem

- L.D. Faddeev, *Increasing solutions of the Schrödinger equation* Dokl. Akad. Nauk SSSR 165(1965) 514–17 (in Russian) (Engl. Transl. Sov. Phys.–Dokl. 10(1966) 1033–5).
- A.P.Calderon *On an inverse boundary value problem Seminar on Numerical Analysis and its Applications to Continuum Physics* (Rio de Janeiro: Sociedade Brasileira de Matemratica)(1980) pp 65–73.
- J.Sylvester and G.Uhlmann, A global uniqueness theorem for an inverse boundary value problem Ann. Math. 125(1987) 153–69.
- J.Sylvester and G.Uhlmann, *Inverse boundary value problems at the boundary—continuous dependence* Commun. Pure Appl. Math. 41(1988) 197–221.
- R.Beals and R.R.Coifman, *Multidimensional inverse scattering and nonlinear differential equations* Proc. Symp. Pure Math. 43(1985) 45–70.

- L. Liu, Stability estimates for the two-dimensional inverse conductivity problem PhD Thesis Department of Mathematics, University of Rochester, New York(1997)
- A.Nachman, Global uniqueness for a two-dimensional inverse boundary value problem Ann. Math. 142(1995) 71–96.
 - A.N. Kolmogorov, V.M. Tikhomirov *e-entropy and e-capacity in functional spaces* Usp. Mat. Nauk 14(1959) 3–86 (in Russian) (Engl. Transl. Am. Math. Soc. Transl. 17 (1961) 277–364)