Fatigómetro Visual Adaptativo — Fundamento Científico y Protocolos

Propósito

El Fatigómetro Visual Adaptativo es una herramienta de chequeo rápido diseñada para prevenir el burnout en profesionales sanitarios. Detecta signos visuales de fatiga mediante la cámara y genera pautas personalizadas a través de inteligencia artificial (OpenAl GPT-4). Su objetivo es ofrecer una intervención temprana, accesible y empática basada en criterios clínicos reconocidos.

Pilar 1 — Índice de Fatiga Funcional (IFF)

Objetivo

Diseñar un índice compuesto que integre observaciones visuales objetivas, se base en escalas clínicas reconocidas y pueda utilizarse como herramienta de seguimiento y comparación.

Estructura del IFF

El IFF es un índice de 0 a 6 puntos, resultado de sumar:

- Componente físico (0 a 3): basado en biomarcadores visuales y patrones de expresión facial
- Componente emocional (0 a 3): derivado de autorreportes o inferencias del lenguaje

Componente físico

Inspirado en escalas como KSS y FAS, se construye en base a observaciones tales como:

- Nivel 0: mirada estable, bajo parpadeo, tono muscular normal
- **Nivel 1:** signos leves de fatiga ocular o postura pasiva
- Nivel 2: pálpebras caídas, menor tonicidad facial, mirada vacía
- Nivel 3: signos críticos: cierre ocular intermitente, expresión desconectada, cabeza ladeada

Métricas posibles a medir:

- EAR (Eye Aspect Ratio)
- Blink rate (frecuencia de parpadeo)
- Inclinación cefálica (head pose estimation)
- Pérdida de expresividad facial (facial action units)

Componente emocional

Inspirado en MBI-HSS y OFER-15, se infiere mediante:

- Preguntas autoaplicadas estilo MBI
- Análisis de lenguaje en prompts GPT (uso reiterado de expresiones de saturación, frustración, cinismo, etc.)

Validación del IFF

- Comparación con escalas estándar como FAS y OFER-15
- Estudios piloto pre/post turno con personal sanitario
- Cruce de datos con patrones de uso y rendimiento en tareas

Pilar 2 — Protocolos de intervención adaptativa

Objetivo

Definir una respuesta estandarizada por nivel de IFF que permita actuar antes de que la fatiga evolucione hacia el burnout.

Niveles de intervención

IFF	Tipo de intervención	Escala clínica inspiradora	Ejemplo de pauta
0	Refuerzo positivo	FAS	"Todo está en equilibrio, cuidá lo que ya hacés bien."
1	Microintervención	KSS	"Tomate 2 minutos, hidratate, respirá lento."
2	Reorganización	OFER-15	"Priorizá tareas, bajá el ritmo una hora."
3– 4	Frenado activo	МВІ	"Delegá. Salí del modo automático. Esto es señal roja."
5– 6	Alerta de protección	MBI + evidencia clínica	"Frená completamente. Esto no es negociable."

Las pautas generadas por GPT-4 se adaptan según este esquema.

Pilar 3 — Modelo de detección visual con respaldo científico

Objetivo

Implementar una capa objetiva de observación biométrica que permita correlacionar signos visuales con estados de fatiga en tiempo real, sin contacto.

Variables observables

- Eye Aspect Ratio (EAR)
- Blink rate (parpadeos por minuto)
- Head pose (inclinación de cabeza)
- Facial expressiveness (nivel de activación facial)

Herramientas y papers relevantes

Recurso / Estudio	Qué aporta	Fuente
OpenFace 2.0	Detección de microexpresiones, mirada, head pose	CMU / MIT
rPPG Toolbox / PyVHR	Estimación de HR y variabilidad cardiaca desde cámara	IEEE / PhysioNet
DFAT Dataset	Dataset etiquetado de conductores fatigados	ResearchGate
NUST-VFDD	Imágenes de fatiga ocular y expresiones	Universidad NUST
Facial Fatigue Detection via CNN	Modelos de detección de fatiga visual basados en redes neuronales	PubMed, arXiv

Estas fuentes permiten construir un sistema basado en visión por computadora para estimar el componente físico del IFF.

Escalas clínicas de referencia

- Fatigue Assessment Scale (FAS) Michielsen et al., 2003
- Karolinska Sleepiness Scale (KSS) Åkerstedt & Gillberg, 1990
- **OFER-15** Winwood et al., 2005
- Maslach Burnout Inventory (MBI-HSS) Maslach et al., 1996

Conclusión y próximos pasos

El Fatigómetro puede convertirse en una herramienta pionera de autochequeo de fatiga con base científica y uso práctico. Los próximos pasos serán:

- Validación clínica preliminar (estudio piloto)
- Ajuste fino del índice IFF y su visualización
- Incorporación progresiva de biomarcadores visuales
- Publicación como herramienta open source para investigación en salud digital

Este documento puede ser parte del README, dossier de validación o presentación para incubadoras y colaboraciones clínicas.

Escalas clínicas de referencia

1. Fatigue Assessment Scale (FAS)

- Autoadministrada, 10 ítems
- Mide fatiga general (mental + física)

- Validada internacionalmente
- Referencia: Michielsen et al., 2003

2. Karolinska Sleepiness Scale (KSS)

- Escala de somnolencia inmediata (1-9)
- Muy usada en estudios de fatiga en conductores y medicina del sueño
- Referencia: Åkerstedt & Gillberg, 1990

3. OFER-15 (Occupational Fatigue Exhaustion/Recovery)

- Evalúa fatiga aguda, fatiga crónica y capacidad de recuperación en el trabajo
- Útil en entornos sanitarios exigentes
- Referencia: Winwood et al., 2005

4. Maslach Burnout Inventory (MBI-HSS)

- Estándar para evaluar burnout emocional, despersonalización y logro personal
- No se usa directamente, pero inspira la componente emocional del modelo

Propuesta de Índice de Fatiga Funcional (IFF)

IFF = componente físico (0-3) + componente emocional (0-3)

Escala total de 0 a 6.

Componente físico (basado en detección visual):

- Nivel 0: alerta (mirada firme, bajo parpadeo)
- Nivel 1: inicio de fatiga (parpadeo leve, postura relajada)
- Nivel 2: fatiga visible (párpados caídos, expresión neutra o cansada)
- Nivel 3: fatiga crítica (ojos semicerrados, mirada perdida, cabeza ladeada)

Componente emocional (autoevaluación o GPT):

- Nivel 0: sin carga emocional
- Nivel 1: carga leve
- Nivel 2: saturación moderada
- Nivel 3: agotamiento emocional perceptible (reporte o patrones de uso)

Umbrales de intervención:

- IFF ≤ 2: reforzamiento positivo
- IFF 3–4: sugerencias activas de recuperación
- IFF ≥ 5: alerta de autocuidado urgente (delegar, frenar, comunicar)

Datasets y repositorios para entrenamiento visual (fase futura)

Datasets públicos sugeridos:

Dataset	Contenido	Aplicación
DFAT	Videos de conductores con fatiga etiquetada	Reconocimiento de parpadeo, posturas
NUST-VFDD	Imágenes de expresión facial con niveles de fatiga ocular	Entrenamiento de modelos visuales
WESAD	Dataset multimodal de emociones + sensores fisiológicos	Cruzamiento con HRV / EDA
Sleep-EDF (PhysioNet)	Datos EEG / HR de episodios de sueño y somnolencia	Validación biomédica

Intervenciones sugeridas según nivel

Nivel IFF Pauta adaptativa GPT

- 0 Mantené el ritmo, reforzá hábitos positivos
- 1 Microdescanso, respiración, pausa breve
- 2 Reorganizá prioridades, hablá con tu equipo
- 3 Delegá tareas, frená 10–20 min, pedí apoyo
- 4 Iniciá recuperación emocional, evitá decisiones críticas
- 5–6 Frená, pedí ayuda, no continúes sin apoyo

Bibliografía clave

- Michielsen, H. J., et al. (2003). Fatigue Assessment Scale.
- Åkerstedt, T., & Gillberg, M. (1990). Subjective and objective sleepiness.
- Winwood, P. C., et al. (2005). OFER-15 development and validation.
- Maslach, C., Jackson, S. E., & Leiter, M. P. (1996). MBI-Human Services Survey.
- Johns, M. W. (1991). A new method for measuring daytime sleepiness: the Epworth Sleepiness Scale.

Este documento está en constante actualización y puede servir como anexo científico del proyecto o como base para validación ante entidades clínicas o instituciones de salud digital.