Intervals, Transformations, and Slope Solution (version 44)

1. The function f is graphed below.

Indicate the following intervals using interval notation. Remember, you can use \cup between two intervals to indicate the union. Except for range, all intervals will indicate x values; this is standard.

Feature	Where
Positive	$(4,6) \cup (8,10)$
Negative	$(-10,4) \cup (6,8)$
Increasing	$(1,5) \cup (7,10)$
Decreasing	$(-10,1) \cup (5,7)$
Domain	(-10, 10)
Range	(-9,6)

Intervals, Transformations, and Slope Solution (version 44)

2. In the four graphs below, y = f(x) is graphed as a dotted line. With a solid line, please graph the transformations indicated by the equations below.

3. Let function g be defined by the table below. Use the formula $\frac{g(x_2)-g(x_1)}{x_2-x_1}$ to find the average rate of change between $x_1=57$ and $x_2=72$. Express your answer as a reduced fraction.

$$\frac{g(72) - g(57)}{72 - 57} = \frac{12 - 39}{72 - 57} = \frac{-27}{15}$$

The greatest common factor of -27 and 15 is 3. Divide numerator and denominator by the greatest common factor.

$$AROC = \frac{-9}{5}$$

2