

Exercícios sobre trigonometria

Quer ver este material pelo Dex? Clique aqui

Exercícios

- 1. Quanto ao arco 4555°, é correto afirmar.
 - a) Pertence ao segundo quadrante e tem como côngruo o ângulo de 55°
 - b) Pertence ao primeiro quadrante e tem como côngruo o ângulo de 75°
 - c) Pertence ao terceiro quadrante e tem como côngruo o ângulo de 195°
 - d) Pertence ao quarto quadrante e tem como côngruo o ângulo de 3115°
 - e) Pertence ao terceiro quadrante e tem como côngruo o ângulo de 4195°
- 2. O círculo a seguir tem o centro na origem do plano cartesiano xy e raio igual a 1. Nele, AP determina um arco de 120°.

As coordenadas de P são:

- a) $\left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$
- **b)** $\left(-\frac{1}{2}, \frac{\sqrt{2}}{2}\right)$
- c) $\left(-\frac{\sqrt{3}}{2},\frac{1}{2}\right)$
- $\mathbf{d)} \quad \left(-\frac{\sqrt{2}}{2}, \frac{1}{2}\right)$

3. Patrik Onom Étrico, um jovem curioso, observada janela do seu quarto (A) uma banca de revistas (R), bem em frente ao seu prédio, segundo um ângulo de 60° com a vertical. Desejando avaliar a distância do prédio à banca, Patrik sobe seis andares (aproximadamente 16 metros) até o apartamento de um amigo seu, e passa a avistar a banca (do ponto B) segundo um ângulo de 30° com a vertical.

Calculando a distância "d", Patrik deve encontrar, aproximadamente, o valor: (Dados: $\sqrt{2}$ = 1,4; $\sqrt{3}$ = 1,7)

- **a)** 8,0
- **b)** 11,2
- **c)** 12,4
- **d)** 13,6
- **e)** 15,0
- **4.** A figura abaixo representa um rio plano com margens retilíneas e paralelas. Um topógrafo situado no ponto A de uma das margens almeja descobrir a largura desse rio. Ele avista dois pontos fixos B e C na margem oposta. Os pontos B e C são visados a partir de A, segundo ângulos de 60° e 30°, respectivamente, medidos no sentido anti-horário a partir da margem em que se encontra o ponto A. Sabendo que a distância de B até C mede 100 m, qual é a largura do rio?

- **a)** $50\sqrt{3}$ m
- **b)** $75\sqrt{3}$ m
- **c)** $100\sqrt{3}$ m
- **d)** $150\sqrt{3}$ m
- **e)** $200\sqrt{3}$ m

- 5. Um caminhão sobe uma ladeira com inclinação de 15°. A diferença entre a altura final e a altura inicial de um ponto determinado do caminhão, depois de percorridos 100 m da ladeira, será de, aproximadamente: **Dados**: use $\sqrt{3} \cong 1,73$ e $\sqrt{2} \cong 1,4$
 - **a)** 7 m
 - **b)** 26 m
 - **c)** 40 m
 - **d)** 52 m
 - **e)** 67 m
- **6.** Dois navios deixam um porto ao mesmo tempo. O primeiro viaja a uma velocidade de 16 km/h em um curso de 45° em relação ao norte, no sentido horário. O segundo viaja a uma velocidade 6 km/h em um curso de 105° em relação ao norte, também no sentido horário. Após uma hora de viagem, a que distância se encontrarão separados os navios, supondo que eles tenham mantido o mesmo curso e velocidade desde que deixaram o porto?
 - a) 10 km.
 - **b)** 14 km.
 - **c)** 15 km.
 - **d)** 17 km.
 - **e)** 22 km.

7. Uma praça circular de raio R foi construída a partir da planta a seguir:

Os segmentos \overline{AB} , \overline{BC} e \overline{CA} simbolizam ciclovias construídas no interior da praça, sendo que $\overline{AB}=80~m$. De acordo com a planta e as informações dadas, é CORRETO afirmar que a medida de R é igual a

- a) $\frac{160\sqrt{3}}{3}$ m
- **b)** $\frac{80\sqrt{3}}{3}$ m
- **c)** $\frac{16\sqrt{3}}{3}$ m
- **d)** $\frac{8\sqrt{3}}{3}$ m
- **e)** $\frac{\sqrt{3}}{3}$ m

8. Seja x um número real tal que sen x + $\cos x = 0.2$. Logo, $|\sin x - \cos x|$ é igual a

- **a**) 0,5
- **b**) 0,8
- c) 1,1
- d) 1,4
- **e**) 1,5

9. Observe o gráfico:

Sabendo-se que ele representa uma função trigonométrica, a função y(x) é:

- **a)** -2cos(3x)
- **b)** -2sen(3x)
- **c)** 2cos(3x)
- **d)** 3sen(2x)
- **e)** 3cos(2x)

10. Os desfiles de moda parecem impor implicitamente tanto o "vestir-se bem" quanto o "ser bela" definindo desse modo padrões de perfeição. Nesses desfiles de moda, a rotação pélvica do andar feminino é exagerada quando comparada ao marchar masculino, em passos de igual amplitude. Esse movimento oscilatório do andar feminino pode ser avaliado a partir da variação do ângulo θ conforme ilustrado na figura abaixo, ao caminhar uniformemente no decorrer do tempo (t).

Um modelo matemático que pode representar esse movimento oscilatório do andar feminino é dado por:

- $\theta(t) = \frac{\pi}{10} \cos\left(\frac{4\pi}{3}t\right)$. Nestas condições, o valor de $\theta\left(\frac{3}{2}\right)$ é:
- a) $\frac{\pi}{8}$
- **b)** $\frac{\pi}{10}$
- c) $\frac{\pi}{12}$
- d) $\frac{\pi}{18}$
- e) $\frac{\pi}{20}$

Gabarito

1. E

Dividindo 4555° por 360° obtemos quociente 12 e resto 235° Concluímos, então que o arco tem extremidade no terceiro quadrante. Dividindo 4195+ por 360 obtemos quociente 11 e resto235° Concluímos, então que 4555° é côngruo de 4195° Logo a resposta E é a correta.

2. A

Calculando:

sen 120° = sen 60° =
$$\frac{\sqrt{3}}{2}$$

cos 120° = $-\cos 60$ ° = $-\frac{1}{2}$

3. D

Sen60° = d/16 d/16 = $\sqrt{3}/2$ d = $8\sqrt{3}$, que é a, aproximadamente, 13,6.

4. A

Considere a figura, em que H é o pé da perpendicular baixada de A sobre a reta BC.

Queremos calcular AH.

Temos que CAB = BAH = 30°. Logo, do triângulo AHB, vem

$$tgBAH = \frac{\overline{HB}}{\overline{AH}} \Leftrightarrow \overline{HB} = \frac{\sqrt{3}}{3} \cdot \overline{AH}.$$

Por outro lado, do triângulo AHC, obtemos

$$tgCAH = \frac{\overline{HB} + \overline{BC}}{\overline{AH}} \Leftrightarrow \sqrt{3} \cdot \overline{AH} = \frac{\sqrt{3}}{3} \cdot \overline{AH} + 100$$
$$\Leftrightarrow \frac{2\sqrt{3}}{3} \cdot \overline{AH} = 100$$
$$\Leftrightarrow \overline{AH} = \frac{150}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = 50\sqrt{3} \text{ m.}$$

5. B

Considere a figura, em que h é a diferença pedida.

Calculando sen15º, temos:

$$sen15^{\circ} = sen(45^{\circ} - 30^{\circ}) = sen45^{\circ} \cos 30^{\circ} - sen30^{\circ} \cos 45^{\circ} = \frac{\sqrt{2}\sqrt{3} - \sqrt{2}}{4} \cong 0,26$$

Portanto,

$$h = 100 \cdot sen15^{\circ} \cong 100 \cdot 0,26 = 26 \text{ m}.$$

6. B

Depois de uma hora de viagem o navio 1 (N_1) terá percorrido 16 km e o navio 2 (N_2) terá percorrido 6 km.

Temos, então, a seguinte figura:

Sendo d a distância entre os navios, temos:

$$d^2 = 16^2 + 6^2 - 2 \cdot 16 \cdot 6 \cdot \cos 60^\circ$$

$$d^2 = 256 + 36 - 192 \cdot \left(\frac{1}{2}\right)$$

$$d^2 = 196$$

$$d = 14km$$

7. B

Pela Lei dos Senos, segue que:

$$\frac{\overline{AB}}{sen\,60^\circ} = 2R \Leftrightarrow 2R = \frac{80}{\frac{\sqrt{3}}{2}} \Leftrightarrow R = \frac{80}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{80\sqrt{3}}{3} \; m.$$

8. D

Tem-se que

$$(\operatorname{sen} x + \cos x)^2 = 0.2^2 \Leftrightarrow 1 + 2\operatorname{sen} x \cos x = 0.04$$
$$\Leftrightarrow 2\operatorname{sen} x \cos x = -0.96.$$

Logo, sabendo que
$$|y|^2 = y^2$$
, para todo $y \in \mathbb{R}$, vem $|\operatorname{sen} x - \cos x|^2 = (\operatorname{sen} x - \cos x)^2 = 1 - 2\operatorname{sen} x \cos x$.

Em consequência, encontramos

$$|\sec x - \cos x|^2 = 1 + 0.96 \Rightarrow |\sec x - \cos x| = \sqrt{1.96}$$

\Rightarrow |\sen x - \cos x| = 1.4.

9. B

Reparemos que a imagem varia de -2 a 2.0u seja, o intervalo foi multiplicado por 2. Então, sabemos que a função foi multiplicada por 2. Agora, reparemos que o período é de $2\pi/3$. Como sabemos, o período T de uma função trigonométrica é dado pela fórmula T = $2\pi/|k|$, assim, k = 3. Por fim, como f(0) = 0, temos que a função trigonométrica é uma função seno.

10 F

$$\theta\left(\frac{3}{2}\right) = \frac{\pi}{10} \cdot \cos\left(\frac{4\pi}{3} \cdot \frac{3}{2}\right)$$

$$\theta\left(\frac{3}{2}\right) = \frac{\pi}{10} \cdot \cos(2\pi)$$

$$\theta\left(\frac{3}{2}\right) = \frac{\pi}{10} \cdot 1$$

$$\theta\left(\frac{3}{2}\right) = \frac{\pi}{10}$$