solution of SDE and SOCP

goal: characterize asymptotic dynamics of SDE & cost of SOCP

| solution of SDE |

o consider the dynamics of SDE (X, U, P) with finite states and actions:

 $|X|, |\mathcal{U}| < \infty, \quad x^{+} \sim P(X, \mathcal{U})$

 \rightarrow starting with an initial state distribution pe $\Delta(X)$ and control policy $\gamma: X \rightarrow \Delta(X)$ compute the next state distribution $p^+ \in \Delta(X)$

- noting that pt: X > [0,1] is a function, we can compute pt(xt) for each xt EX

$$p^{+}(x^{+}) = \sum_{x \in X} p(x) \sum_{u \in U} \pi(u|x) \cdot P(x^{+}|x,u)$$

- this determines a (deterministic) DE on the set of state distributions:

$$p^{+}=F(p)$$
, $p \in [0,1]^{\times}$

-> look carefully at the definition of F:

- what kind of equation is this?

- show that pt=p. [(find 7; what is its shape?)

- the DE is linear in P ?

 $-\left[\Gamma\right]_{x^{+},x}=\sum_{u\in\mathcal{U}}\pi(u|x)P(x|u,x),$

TERNXN, N=|X|

* we can use linear systems theory to avalyze asymptotic behavior of discrete-time linear time-invariant DE (DT-LTI) $P^+ = \Gamma P_1$, since $P_t = \Gamma^+ P_0$.

- noting that Γ is right-stochastic, i.e.

- noting that I is right-stochastic, i.e. $[\Gamma]_{x_{1}^{+}x} \ge 0 \text{ and } \Gamma \cdot 1 = 1 \text{ where } 1' = (1, \dots, 1),$ conclude that $\forall \lambda \in \operatorname{spec} \Gamma : |\lambda| \leq 1$, i.e. the spectral radius p(T) = 1. -if [7]x+,x>0 (more generally, if 17-15 irreducible à aperiodic) then $\overline{p} = \lim_{t \to \infty} [P^t]_{:,j,i.e.} j- \lim_{t \to \infty} column, is$ unique right-eigenvector with unity eigenvalue: $\begin{bmatrix}
 \overline{Q} \\
 \overline{Q}
 \end{bmatrix}
 = \overline{Q}$ all initial probability distributions Po tend to p asymptotically: $p = lm P^t P_o$ $t \to \infty$

solution of SOCP

oconsider SOCP/MDP (X, U, P, c) with infinite-horizon exparentially-discounted cost, win $E[S, Y^t, Z(X+U)] = C(X, U)$

win $E\left[\sum_{t=0}^{\infty} \gamma^{t} \cdot Z(x_{t}, u_{t})\right] = C(x, u)$ s.t. $x^{t} \sim P(x, u)$

- given policy $\pi: X \to \Delta(x)$, define associated value function $v^{\pi}: X \to \mathbb{R}$

 $\forall x \in X : \sqrt{\pi}(x) = E[C \mid X_0 = X]$

-> show that v" satisfies the Bellman eg

 $\nabla^{T}(x) = \sum_{u \in \mathcal{U}} T(u|x) \sum_{x \in X} P(x^{+}|x,u) \cdot \left[\mathcal{J}(x,u) + y \cdot \sqrt{T}(x^{+}) \right]$

- (this follows by pulling out first term in the sum in c, re-indexing the remaining terms, and marginalizing over uell and x+eX)

* valve vTE RX appears linearly ?

-> determine L, b such that L.v"=b (what is the shape of L, b?) * canchde that the value of any policy can be computed by solving a linear equation?