Lecture 5: GWAS (cont.)

ECE 365 - Data Science and Genomics

Announcements:

- □ Lab 2 (Sequence alignment) due on Thursday
- □ Lab 3 (GWAS) released tomorrow

Genotype data

 $\hfill\Box$ Focus on a set of common variants in the genome

Genotype data

Focus on a set of common variants in the genome

Genotype data

□ Focus on a set of common variants in the genome

Genotype data (VCF file) looks like this:

Genome-Wide Association Studies (GWAS)

Genome-Wide Association Studies (GWAS)

- Which SNPs are associated with a given phenotype?
- □ Given a new individual's genotype, can you predict their phenotype?

□ Predict binary variable from real-valued features

$$P(1|X) = \frac{e^{\beta_0 + \underline{\beta}^T X}}{1 + e^{\beta_0 + \underline{\beta}^T X}} = \frac{1}{1 + e^{-(\beta_0 + \underline{\beta}^T X})}$$

$$1 + e^{\beta_0 + \beta_1^T \times} \qquad 1 + e^{-(\beta_0 + \beta_1^T \times)}$$

$$1 + e^{-(\beta_0 + \beta_1^T \times)} = \frac{1}{\beta} \Rightarrow e^{-(\beta_0 + \beta_1^T \times)} = \frac{1}{\beta} - 1 = \frac{1-\beta_1}{\beta_1}$$

-)
$$ln\left(\frac{p}{1-p}\right) = \beta_0 + \beta^{\top} x$$

line model

$$\frac{P}{1-p}$$
: olds ratio $E(0,\infty)$
 $M = \frac{P}{1-p}$: log odds ratio $E(-\infty,\infty)$

Can we use Logistic Regression for GWAS?

Can we use Logistic Regression for GWAS?

 \square Problem: Number of SNPs can be $\sim 10^6$

□ Can we use Logistic Regression for GWAS?

 \square Problem: Number of SNPs can be $\sim 10^6$

Run a separate logistic regression for each SNP

- Use this to identify small subset of SNPs associated with phenotype
- Let's look at some examples on a Jupyter notebook

 \square We will get a β for each SNP

SNP 1				,	SNP m	phenotype	
[0	1	1	0	0	1	$\lceil 0 \rceil$	model for ith SNP:
1	0	2	1	0	2	0	
1	1	1	0	0	0	1	a (p(i x.) \
0	0	0	2	1	1	1	$ln\left(\frac{p(1 x_i)}{1-p(1 x_i)}\right) = \beta_0 + \beta_i x_i$
1	1				0		(- p(1 (\(\)))
0	2	0	0	1	0	0	V
1	1	0	1	0	2	1	LOR for reference
β,	ßz				βm		genome (no ALT SNPs)
	$\begin{bmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 \\ 1 & 0 \\ 1 & 1 \\ 0 & 0 \\ 1 & 1 \\ 0 & 2 \\ 1 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 2 \\ 1 & 1 & 1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \\ 0 & 2 & 0 \\ 1 & 1 & 0 \\ \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 2 & 1 \\ 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 2 \\ 1 & 1 & 1 & 0 \\ 0 & 2 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 2 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 \\ 1 & 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 0 \\ \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 2 & 1 & 0 & 2 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 2 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 2 & 1 & 0 & 2 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 2 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$

□ Idea: combine all beta coefficients into a single model:

$$\ln\left(\frac{p(1|x)}{1-p(1|x)}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$

□ Idea: combine all beta coefficients into a single model:

$$\ln\left(\frac{p(1|x)}{1-p(1|x)}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$

Problems with this approach:

□ Idea: combine all beta coefficients into a single model:

$$\ln\left(\frac{p(1|x)}{1-p(1|x)}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$

- Problems with this approach:
 - $lue{}$ Since m is very large, some eta_i s will be large **by chance**

□ Idea: combine all beta coefficients into a single model:

$$\ln\left(\frac{p(1|x)}{1-p(1|x)}\right) = \beta_0 + \beta_1 x_1 + \dots + \beta_m x_m$$

- Problems with this approach:
 - $lue{}$ Since m is very large, some eta_i s will be large **by chance**
 - \square Some x_i s are correlated

(e.g., anyone with
$$X_3 = 1$$
 has $X_4 = 1$)

Identifying statistically significant SNPs

 \Box To measure the significance of the association, we use the p-value

Identifying statistically significant SNPs

- \square To measure the significance of the association, we use the p-value
 - $lue{}$ Probability that the coefficient eta_i would be obtained by chance if there was **no** association

- \square We can use the statsmodels Python package to perform the logistic regressions and compute the p-values
- Let's return to the jupyter notebook

Manhattan plots

- □ Allow us to see the significance of all SNPs in the genome
- □ We plot $-\log_{10}(p$ -value)

