Comments on "Understanding Migration Responses to Local Shocks" by Borusyak, Dix-Carneiro, and Kovak

Greg Howard

European UEA Conference April 2022

Contributions

Very nice paper, clearly written. Clearly will change the way the profession thinks about regressions of population on shocks

- 1. Regressing log population changes on shocks does not identify the population elasticity to that shock
 - ▶ Omitted Variables Bias—shocks to nearby areas
 - ▶ Particularly pernicioius if the shocks are industry-based
- 2. In a model, this can be fixed

Summary

In a static logit model, there isn't a huge problem:

 \triangleright ℓ is location:

$$u_i = \max_{\ell} u_{\ell} + \frac{1}{\theta} \epsilon_{i\ell}$$

where $\epsilon_{i\ell}$ is i.i.d. Gumbel

▶ Population shares given by:

$$L_{\ell} = \frac{e^{\theta u_{\ell}}}{\sum_{j} e^{\theta u_{j}}}$$

So

$$\log L_{\ell} = \theta u_{\ell} + \text{constant}$$

▶ Any good-as-random shock to u_{ℓ} is fine

Summary

What goes wrong?

▶ In a more typical model, some locations are more substitutable than others

$$L_{\ell} = \sum_{k} L_{k,t-1} \frac{e^{\theta u_{\ell} - \tau_{k\ell}}}{\sum_{j} e^{\theta u_{j} - \tau_{kj}}}$$

So

$$\log L_{\ell} = \theta u_{\ell} + \underbrace{\log \sum_{k} L_{k,t-1} \frac{e^{-\tau_{k\ell}}}{\sum_{j} e^{\theta u_{j} - \tau_{kj}}}}_{\text{Definitely not a constant}}$$

▶ In general, that second term is correlated to any shock to u_{ℓ}

Summary

What goes wrong?

▶ In a more typical model, some locations are more substitutable than others

$$L_{\ell} = \sum_{k} L_{k,t-1} \frac{e^{\theta u_{\ell} - \tau_{k\ell}}}{\sum_{j} e^{\theta u_{j} - \tau_{kj}}}$$

So

$$\log L_{\ell} = \theta u_{\ell} + \underbrace{\log \sum_{k} L_{k,t-1} \frac{e^{-\tau_{k\ell}}}{\sum_{j} e^{\theta u_{j} - \tau_{kj}}}}_{\text{Definitely not a constant}}$$

- ▶ In general, that second term is correlated to any shock to u_{ℓ}
- ▶ If you understand the model, can fix this problem
 - ► In their simple model, you would do reasonably well if you focused on migration elasticities instead of population elasticities, and if you subtract off the migration-weighted-average shock
 - ▶ I almost did this in my JMP (Howard, 2020)!
 - Even better to use NLLS

Major Comment: What if we don't understand the model?

- Migration elasticities may not be constant
 - ▶ A different weighted-average might be more appropriate
- ▶ Lots of spillovers from shocks
 - ▶ Intermediate inputs
 - Demand
 - Commuting
 - Unlikely to run into a situation where we know the size of these spillovers but not the population elasticity
- ▶ Lots of spillovers from migration itself (Howard, 2020).
 - Will amplify migration, but not typically how we think about θ

Minor Comment: Long-run Elasticities May Be Better Measured

In the very very long run in a dynamic logit model, population shares are well-approximated by a static logit model

- ▶ In other words, the weighted average converges to the same weights in the very long run, and a fixed effect would be sufficient
- ▶ We should probably be more concerned about a paper that analyzes a few years (which to be fair, is the most common), rather than a paper looking at very long differences
- ▶ Would be interesting to see such an application in their model

Conclusion

- Great paper! Formalizes some intuition on OVB in population regressions
- ▶ Proposes some solutions
- Critical for us to understand how general these solutions are
 - I am personally much less optimistic than the authors that OVB can be fixed
 - ▶ Nonetheless, applaud their efforts
- ▶ Perhaps this is a bigger issue in the short-run than the long-run