Transform Data with

row/column binding

rows: rbind() or dplyr::bind_rows()

StationCode	isSWMP	DateTimeStamp	Historical	Provisiona	CollMethd	REP	F_Record	PO4F	F_PO4F	NH4F	F_NH4F	N
gndbhnut	Р	1/13/2016 12:05	0	1	1	1			<-2> [GDM] (CSM)		<-2> [GDM] (CSM)	
gndbhnut	Р	1/13/2016 12:06	0	1	1	2			<-2> [GDM] (CSM)		<-2> [GDM] (CSM)	
gndbhnut	P	2/10/2016 8:51	0	1	1	1		0.002	<-4> [SBL]	0.038	<0>	
gndbhnut	P	11/16/2016 12:00	0	1	1	1		0.009	<0>	0.032	<0>	
gndbhnut	P	11/16/2016 12:01	0	1	1	2		0.014	<0>	0.038	<0>	
gndbhnut	P	12/14/2016 8:28	0	1	1	1		0.002	<0>	0.016	<1> [GSM] (CHB)	
gndbhnut	Р	12/14/2016 8:29	0	1	1	2		0.002	<0>	0.016	<1> [GSM] (CHB)	

additional information as additional rows.

gndbhnut	P	1/17/2017 11:18	0	1	1	1	0.004	<0>	0.153	<0>
gndbhnut	Р	1/17/2017 11:19	0	1	1	2	0.005	<0>	0.153	<0>
gndbhnut	Р	2/13/2017 10:43	0	1	1	1	0.002	<-4> [SBL]	0.158	<0>
gndbhnut	Р	2/13/2017 10:44	0	1	1	2	0.002	<-4> [SBL]	0.173	<0>
gndbhnut	Р	3/13/2017 10:56	0	1	1	1	0.003	<0>	0.157	<0>
gndbhnut	Р	3/13/2017 10:57	0	1	1	2	0.002	<0>	0.148	<0>
gndbhnut	Р	4/10/2017 16:35	0	1	1	1	0.002	<0>	0.01	<0>
gndbhnut	Р	4/10/2017 16:36	0	1	1	2	0.004	<0>	0.01	<0>
gndbhnut	Р	5/8/2017 17:19	0	1	1	1	0.002	<-4> [SBL]	0.09	<0>
gndbhnut	Р	5/8/2017 17:20	0	1	1	2	0.002	<0>	0.081	<0>
gndbhnut	Р	6/19/2017 16:09	0	1	1	1	0.016	<0>	0.064	<0>
gndbhnut	Р	6/19/2017 16:10	0	1	1	2	0.018	<0>	0.128	<0>
gndbhnut	Р	7/19/2017 16:32	0	1	1	1	0.006	<0>	0.012	<0>

columns: columns: column

•	year_sampled [‡]	salinity_ppt [‡]	water_temp_c
1	2005	8.1	23.3
2	2005	7.9	24.3
3	2005	8.2	24.8
4	2005	8.2	25.3
5	2005	9.0	24.8
6	2005	9.2	28.1
7	2005	8.4	26.2
8	2005	8.9	27.3
9	2005	11.5	27.6
10	2005	10.3	27.8
11	2005	10.4	26.5
12	2005	12.0	28.9
13	2005	10.2	27.6
14	2005	18.5	29.3

- after PCA/nMDS
- after a 'for' loop

Joining Datasets

mutatingjoins

Motivating Example: Fish data

	А	В	С	D	E
1	site	habitat_type	lat	long	location
2	11	erosional edge	30.37163	-88.4438	Bayou Cumbest
3	14	erosional edge	30.3557	-88.4495	Pt aux Chens Bay
4	2	scagrace	30.38508	-88.4022	Middle Bay
5	3	Secgrass	30.36205	-88.3977	Grand Bay
6	6	erosional edge	30.34905	-88.3973	Grand Battures
7	8	seagrass	20.35493	-88.4106	Jose Bay
O					

additional information as additional columns based on matching information

	А	В	С	D	Е	F	G
1	collection_id	site	season	year_sampled	salinity_ppt	do_mgl	water_temp_c
2	NFM08-142	2	Vinter	2008	18.4	8.24	14
3	NFM08-143	3	Winter	2008	17.3	7.98	14.5
4	NFM08-146	6	Winter	2008	17.8	8.68	13.9
5	NFM08-148	8	Winter	2008	19.3	8.52	15.2
6	NFM08-151	11	Winter	2008	18.1	7.27	17.1
7	NFM08-154	14	Winter	2008	19.6	9.12	18.3
8	NFM08-156	2	Spring	2008	17.4	6.15	27.4
9	NFM08-157	3	Spring	2008	18.7	5.8	28.2
10	NFM08-160	6	Spring	2008	18.2	6.17	30
11	NFM08-162	8	Spring	2008	18.7	7.16	29.1
12	NFM08-165	11	Spring	2008	12.9	5.92	31.9
13	NFM08-168	14	Spring	2008	16.7	7.72	31.9
14	NFM08-169	2	Summer	2008	18.8	3.42	29.6
15	NFM08-170	3	Summer	2008	19.2	4.12	28.6
16	NFM08-173	6	Summer	2008	19.2	5.78	29.8
17	NFM08-175	8	Summer	2008	20.8	5.07	30.2
18	NFM08-178	11	Summer	2008	10.4	4.29	31.9
19	NFM08-180	14	Summer	2008	20.5	5.81	31.5

Motivating Example: Fish data

additional information as additional columns based on matching information

2 NFM08-143 3 seagrass 30.36205 -88.39772 Winter 2008 17.3 7.98 14.5 3 NFM08-146 6 erosional edge 30.34905 -88.39725 Winter 2008 17.8 8.68 13.9 4 NFM08-148 8 seagrass 30.35493 -88.41063 Winter 2008 19.3 8.52 15.2 5 NFM08-151 11 erosional edge 30.37163 -88.44382 Winter 2008 18.1 7.27 17.1 6 NFM08-154 14 erosional edge 30.35570 -88.44950 Winter 2008 19.6 9.12 18.3											
2 NFM08-143 3 seagrass 30.36205 -88.39772 Winter 2008 17.3 7.98 14.5 3 NFM08-146 6 erosional edge 30.34905 -88.39725 Winter 2008 17.8 8.68 13.9 4 NFM08-148 8 seagrass 30.35493 -88.41063 Winter 2008 19.3 8.52 15.2 5 NFM08-151 11 erosional edge 30.37163 -88.44382 Winter 2008 18.1 7.27 17.1 6 NFM08-154 14 erosional edge 30.35570 -88.44950 Winter 2008 19.6 9.12 18.3	_	collection_id [‡]	site [‡]	habitat_type [‡]	lat [‡]	long	eason	year_sampled [‡]	salinity_ppt [‡]	do_mgl [‡]	water_temp_c
3 NFM08-146 6 erosional edge 30.34905 -88.39725 Winter 2008 17.8 8.68 13.9 4 NFM08-148 8 seagrass 30.35493 -88.41063 Winter 2008 19.3 8.52 15.2 5 NFM08-151 11 erosional edge 30.37163 -88.44382 Winter 2008 18.1 7.27 17.1 6 NFM08-154 14 erosional edge 30.35570 -88.44950 Winter 2008 19.6 9.12 18.3	1	NFM08-142	2	seagrass	30.38508	-88.40215	Winter	2008	18.4	8.24	14.00
4 NFM08-148 8 seagrass 30.35493 -88.41063 Winter 2008 19.3 8.52 15.2 5 NFM08-151 11 erosional edge 30.37163 -88.44382 Winter 2008 18.1 7.27 17.1 6 NFM08-154 14 erosional edge 30.35570 -88.44950 Winter 2008 19.6 9.12 18.3	2	NFM08-143	3	seagrass	30.36205	-88.39772	Winter	2008	17.3	7.98	14.50
5 NFM08-151 11 erosional edge 30.37163 -88.44382 Winter 2008 18.1 7.27 17.1 6 NFM08-154 14 erosional edge 30.35570 -88.44950 Winter 2008 19.6 9.12 18.3	3	NFM08-146	6	erosional edge	30.34905	-88.39725	Winter	2008	17.8	8.68	13.90
6 NFM08-154 14 erosional edge 30.35570 -88.44950 Winter 2008 19.6 9.12 18.3	4	NFM08-148	8	seagrass	30.35493	-88.41063	Winter	2008	19.3	8.52	15.20
	5	NFM08-151	11	erosional edge	30.37163	-88.44382	Winter	2008	18.1	7.27	17.10
7 NFM08-156 2 seagrass 30.38508 -88.40215 Spring 2008 17.4 6.15 27.4	6	NFM08-154	14	erosional edge	30.35570	-88.44950	Winter	2008	19.6	9.12	18.30
	7	NFM08-156	2	seagrass	30.38508	-88.40215	Spring	2008	17.4	6.15	27.40
8 NFM08-157 3 seagrass 30.36205 -88.39772 Spring 2008 18.7 5.80 28.2	8	NFM08-157	3	seagrass	30.36205	-88.39772	Spring	2008	18.7	5.80	28.20
9 NFM08-160 6 erosional edge 30.34905 -88.39725 Spring 2008 18.2 6.17 30.0	9	NFM08-160	6	erosional edge	30.34905	-88.39725	Spring	2008	18.2	6.17	30.00

common syntax

Each join function returns a data frame / tibble.

Toy data

```
band <- tribble(
    ~name, ~band,
    "Mick", "Stones",
    "John", "Beatles",
    "Paul", "Beatles"
)</pre>
```

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

Toy data

left

band %>% left_join(instrument, by = "name")

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
Mick	Stones	<na></na>
John	Beatles	guitar
Paul	Beatles	bass

right

band %>% right_join(instrument, by = "name")

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
John	Beatles	guitar
Paul	Beatles	bass
Keith	<na></na>	guitar

full

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
Mick	Stones	<na></na>
John	Beatles	guitar
Paul	Beatles	bass
Keith	<na></na>	guitar

inner

band %>% inner_join(instrument, by = "name")

band

name	band
Mick	Stones
John	Beatles
Paul	Beatles

name	plays
John	guitar
Paul	bass
Keith	guitar

name	band	plays
John	Beatles	guitar
Paul	Beatles	bass

What if the names do not match?

Use a named vector to match on variables with different names.

Toy data

```
band <- tribble(
    ~name, ~band,
    "Mick", "Stones",
    "John", "Beatles",
    "Paul", "Beatles"
)</pre>
```

```
name band

MICK Stones

John Beatles

Paul Beatles
```

```
instrument2 <- tribble(
    ~artist, ~plays,
    "John", "guitar",
    "Paul", "bass",
    "Keith", "guitar"
)</pre>
```


nonmatching names

band %>% left_join(instrument2, by = c("name" = "artist"))

name	band	plays
Mick	Stones	<na></na>
John	Beatles	guitar
Paul	Beatles	bass

Recap: Two table verbs

Two table verbs

Combine Tables

Combine Variables

Use **bind_cols()** to paste tables beside each other as

bind_cols(...)

Returns tables placed side by side as a single table. BE SURE THAT ROWS ALIGN.

Use a "Mutating Join" to join one table to columns from another, matching values with the rows that they correspond to. Each join retains a different combination of values from the tables.

A B C D left_join(x, y, by = NULL, b u 2 2 copy=FALSE, suffix=c(".x",".y"),...) Join matching values from y to x.

A B C D inner_join(x, y, by = NULL, copy = a ! 1 3 b u 2 2 FALSE, suffix=c("x",".y"),...)

Join data. Retain only rows with matches.

full_join(x, y, by = NULL, copy=FALSE, suffix=c(".x",".y"),...) Join data. Retain all values, all

A B.x C B.y D Use by = c("col1", "col2") to a t 1 t 3 b u 2 u 2 specify the column(s) to match

 $left_join(x, y, by = "A")$

A.x B.x C A.y B.y Use a named vector, by = a t 1 d w c("col1" = "col2"), to match on columns with different names in each data set.

left_join(x, y, by = c("C" = "D"))

A1 B1 C A2 B2 Use suffix to specify suffix to give a t 1 d w to duplicate column names.

c v 3 a ! left_join(x, y, by = c("C" = "D"), suffix = c("1", "2"))

Combine Cases

Use **bind_rows()** to paste tables below each other as they are.

DF A B C bind_rows(..., .id = NULL)

x b u 2 Returns tables one on top of the other as a single table. Set .id to a column name to add a column of the original table names (as pictured)

intersect(x, y, ...)

ABC b u 2

setdiff(x, y, ...)

union(x, y, . . .)

Rows that appear in x or z. (Duplicates removed). union_all() retains duplicates.

Use setequal() to test whether two data sets contain the exact same rows (in any order).

Extract Rows

Use a "Filtering Join" to filter one table against the rows of another.

A B C semi_join(x, y, by = NULL, ...)

Return rows of x that have a match in y. USEFUL TO SEE WHAT WILL BE JOINED.

anti_join(x, y, by = NULL, ...)

Return rows of x that do not have a match in y. USEFUL TO SEE WHAT WILL NOT BE JOINED.

CC BY-SA RStudio