PH312: Physics of Fluids (Prof. McCoy) - Reflection

Huan Q. Bui Feb 26 2021

1. Explain why particle paths, streamlines, and streaklines are identical for *steady flow*.

- (a) In steady flow, the velocity field is time-independent, i.e., $\mathbf{u}(\mathbf{r},t) = \mathbf{u}(\mathbf{r})$, and thus streamlines (which are just velocity field lines) are also time-independent. Let a particle p be moving instantaneously along some streamline S. Because S is unchanging and that the tangent of S at p is always along the velocity of p, p must move along S.
- (b) Let p be moving along S. Suppose p moves onto some streamline $S_1 \neq S$. From (a), we know that S_1 and S must cross, but this is impossible because p will then have velocities in two direction. Two streamlines cannot intersect except at a position of zero velocity.
- (c) Let particles $\{p\}$ make up some streakline. By definition, each of $\{p\}$ has passed through one point belonging to some streamline S. From (b), we know that none of $\{p\}$ leaves S, and so all of $\{p\}$ must follow S.
- **2.** To transform the flow field in Figure 6.3(a) where flow is viewed from the bank to Figure 6.3(b) where flow is viewed from the ship, we add $-\mathbf{U}$ (which points Left-Right) to each velocity vector \mathbf{u}' in (a). For example, the point p in (a) with \mathbf{u}' pointing Up-Left becomes $\mathbf{u} = \text{Up-Left} + \text{Right} \approx \text{Up-Right}$. The velocity may change direction in some cases depending on how \mathbf{U} to compares to \mathbf{u}' in direction and amplitude. For example, the regions in (a) where the flow is Right-to-Left are where it was previously moving downstream in (b) **more slowly** than \mathbf{U} .

3.

- (a) $a = b_i c_{ij} d_i \checkmark$
- (b) $a = b_i c_i + d_j X$

The LHS has no free index, but the RHS does. So, this is not allowed according to the convention (p.28, K&C: the free index must appear on both sides). If we want to say that the component d_j is equal to the scalar $a - b_i c_i$ for all j then we have to be explicit to avoid confusion.

(c) $a_i = \delta_{ij}b_i + c_i X$

The contraction $\delta_{ij}b_i$ leaves b_j with free index j, which is incompatible with the free index i on a_i and c_i .

- (d) $a_k = b_k c + d_i e_{ik} = c b_k + d_i e_{ik} \checkmark$
- (e) $a_i = b_i + c_{ij}d_{ij}e_i X$

The index *i* appears 3 times in the second term on the RHS. This can cause confusion.

4. Let *A* be a second-order tensor and *R* be a rotation matrix. Because $R^{\top}R = \mathbb{I}$, i.e., $(R^{\top}R)_{mn} = \delta_{mn}$, we have

$$A'_{ii} = R_{im}R_{in}A_{mn} = R^{\top}_{mi}R_{in}A_{mn} = (R^{\top}R)_{mn}A_{mn} = \delta_{mn}A_{mn} = A_{mm} = A_{ii}.$$

So, A_{ii} , or the trace of the matrix of A, is invariant under coordinate rotations.

5. Let R be a rotation matrix. Because $R^{\top}R = \mathbb{I} = RR^{\top}$, i.e., $(RR^{\top})_{ij} = \delta_{ij}$, we have

$$\delta'_{ij} = R_{im}R_{jn}\delta_{mn} = R_{im}R_{jm} = R_{im}R^\top_{mj} = (RR^\top)_{ij} = \delta_{ij}.$$

So, δ_{ij} is an isotropic tensor.