Import Necessary libraries

Import data

Out[2]:

	CustomerID	TOTAL_ORDERS	REVENUE	AVERAGE_ORDER_VALUE	CARRIAGE_REVE
0	22.0	124.0	11986.54	96.67	52
1	29.0	82.0	11025.96	134.46	Ę
2	83.0	43.0	7259.69	168.83	17
3	95.0	44.0	6992.27	158.92	٤
4	124.0	55.0	6263.44	113.88	17
4996	173987.0	1.0	117.49	117.49	
4997	174004.0	1.0	117.49	117.49	
4998	174038.0	1.0	117.49	117.49	
4999	200783.0	2.0	94.14	47.07	
5000	NaN	NaN	NaN	NaN	

5001 rows × 42 columns

Data Understanding

```
In [3]: 1 sales_data.shape
```

Out[3]: (5001, 42)

In [4]:	1 sales_data.isna().sum()		
Out[4]:	CustomerID	1	
	TOTAL_ORDERS	1	
	REVENUE	1	
	AVERAGE_ORDER_VALUE	1	
	CARRIAGE_REVENUE	1	
	AVERAGESHIPPING	1	
	FIRST_ORDER_DATE	1	
	LATEST_ORDER_DATE	1	
	AVGDAYSBETWEENORDERS	1	
	DAYSSINCELASTORDER	1	
	MONDAY_ORDERS	0 0	
	TUESDAY_ORDERS WEDNESDAY_ORDERS	0	
	THURSDAY_ORDERS	0	
	FRIDAY_ORDERS	0	
	SATURDAY_ORDERS	0	
	SUNDAY_ORDERS	0	
	MONDAY_REVENUE	0	
	TUESDAY REVENUE	0	
	WEDNESDAY_REVENUE	0	
	THURSDAY_REVENUE	0	
	FRIDAY_REVENUE	0	
	SATURDAY_REVENUE	0	
	SUNDAY_REVENUE	0	
	WEEK1_DAY01_DAY07_ORDERS	1	
	WEEK2_DAY08_DAY15_ORDERS	1	
	WEEK3_DAY16_DAY23_ORDERS	1	
	WEEK4_DAY24_DAY31_ORDERS	1	
	WEEK1_DAY01_DAY07_REVENUE	1	
	WEEK2_DAY08_DAY15_REVENUE	1	
	WEEK3_DAY16_DAY23_REVENUE	1	
	WEEK4_DAY24_DAY31_REVENUE TIME 0000 0600 ORDERS	1	
	TIME_0000_0000_ORDERS	1 1	
	TIME 1200 1800 ORDERS	1	
	TIME_1801_2359_ORDERS	1	
	TIME 0000 0600 REVENUE	1	
	TIME_0601_1200_REVENUE	1	
	TIME_1200_1800_REVENUE	1	
	TIME_1801_2359_REVENUE	1	
	Unnamed: 40	5001	
	Unnamed: 41	5000	
	dtype: int64		

In [5]: sales_data.dtypes Out[5]: CustomerID float64 TOTAL ORDERS float64 **REVENUE** float64 AVERAGE_ORDER_VALUE float64 float64 CARRIAGE REVENUE **AVERAGESHIPPING** float64 datetime64[ns] FIRST ORDER DATE LATEST_ORDER_DATE datetime64[ns] **AVGDAYSBETWEENORDERS** float64 DAYSSINCELASTORDER float64 MONDAY_ORDERS int64 TUESDAY_ORDERS int64 WEDNESDAY ORDERS int64 THURSDAY ORDERS int64 FRIDAY_ORDERS int64 SATURDAY_ORDERS int64 SUNDAY_ORDERS int64 MONDAY REVENUE float64 TUESDAY REVENUE float64 WEDNESDAY_REVENUE float64 THURSDAY REVENUE float64 FRIDAY REVENUE float64 float64 SATURDAY_REVENUE float64 SUNDAY REVENUE WEEK1 DAY01 DAY07 ORDERS float64 WEEK2 DAY08 DAY15 ORDERS float64 WEEK3_DAY16_DAY23_ORDERS float64 WEEK4 DAY24 DAY31 ORDERS float64 WEEK1_DAY01_DAY07_REVENUE float64 float64 WEEK2 DAY08 DAY15 REVENUE WEEK3_DAY16_DAY23_REVENUE float64 WEEK4_DAY24_DAY31_REVENUE float64 TIME_0000_0600_ORDERS float64 TIME_0601_1200_ORDERS float64 TIME 1200 1800 ORDERS float64 TIME_1801_2359_ORDERS float64 TIME 0000 0600 REVENUE float64 TIME 0601 1200 REVENUE float64 TIME_1200_1800_REVENUE float64 TIME_1801_2359_REVENUE float64 Unnamed: 40 float64 Unnamed: 41 float64 dtype: object

In [6]:

sales_data.describe().T

Out[6]:

	count	mean	std	min	25%
CustomerID	5000.0	40709.227800	49949.848017	1.00	1687.5000
TOTAL_ORDERS	5000.0	12.870400	12.679880	1.00	3.0000

REVENUE	5000.0	1681.523840	1998.618678	38.50	315.0975
AVERAGE_ORDER_VALUE	5000.0	136.537378	91.651569	10.68	83.0250
CARRIAGE_REVENUE	5000.0	46.036376	47.879226	0.00	9.9800
AVERAGESHIPPING	5000.0	3.592574	2.021360	0.00	2.5000
AVGDAYSBETWEENORDERS	5000.0	163.159618	259.699496	0.00	21.6700
DAYSSINCELASTORDER	5000.0	87.420000	80.156513	1.00	7.0000
MONDAY_ORDERS	5001.0	3.257349	115.174855	0.00	0.0000
TUESDAY_ORDERS	5001.0	3.508098	124.041478	0.00	0.0000
WEDNESDAY_ORDERS	5001.0	3.595281	127.123556	0.00	0.0000
THURSDAY_ORDERS	5001.0	4.267147	150.871508	0.00	0.0000
FRIDAY_ORDERS	5001.0	3.891622	137.601408	0.00	0.0000
SATURDAY_ORDERS	5001.0	3.366127	119.023862	0.00	0.0000
SUNDAY_ORDERS	5001.0	3.850030	136.125183	0.00	0.0000
MONDAY_REVENUE	5001.0	430.330606	15218.162544	0.00	0.0000
TUESDAY_REVENUE	5001.0	466.927475	16511.866307	0.00	0.0000
WEDNESDAY_REVENUE	5001.0	471.284331	16665.499459	0.00	0.0000
THURSDAY_REVENUE	5001.0	531.793233	18803.767727	0.00	0.0000
FRIDAY_REVENUE	5001.0	501.060896	17717.933042	0.00	0.0000
SATURDAY_REVENUE	5001.0	441.862563	15625.231731	0.00	0.0000
SUNDAY_REVENUE	5001.0	521.782304	18450.432062	0.00	0.0000
WEEK1_DAY01_DAY07_ORDERS	5000.0	2.997800	3.256980	0.00	1.0000
WEEK2_DAY08_DAY15_ORDERS	5000.0	3.062600	3.792461	0.00	0.0000
WEEK3_DAY16_DAY23_ORDERS	5000.0	3.230000	3.921043	0.00	0.0000
WEEK4_DAY24_DAY31_ORDERS	5000.0	3.580000	3.970384	0.00	1.0000
WEEK1_DAY01_DAY07_REVENUE	5000.0	378.638346	515.590218	0.00	63.9900
WEEK2_DAY08_DAY15_REVENUE	5000.0	406.595734	619.413277	0.00	0.0000
WEEK3_DAY16_DAY23_REVENUE	5000.0	421.826908	643.449120	0.00	0.0000
WEEK4_DAY24_DAY31_REVENUE	5000.0	474.462852	617.579321	0.00	80.0000
TIME_0000_0600_ORDERS	5000.0	1.028800	2.174331	0.00	0.0000
TIME_0601_1200_ORDERS	5000.0	3.746200	4.700234	0.00	1.0000
TIME_1200_1800_ORDERS	5000.0	4.434000	5.044793	0.00	1.0000
TIME_1801_2359_ORDERS	5000.0	3.661400	4.581894	0.00	1.0000
TIME_0000_0600_REVENUE	5000.0	131.062636	331.289349	0.00	0.0000

TIME_0601_1200_REVENUE	5000.0	486.863868	789.029911	0.00	35.0000
TIME_1200_1800_REVENUE	5000.0	584.731626	804.290026	0.00	89.9900
TIME_1801_2359_REVENUE	5000.0	478.865710	743.244248	0.00	1.0000
Unnamed: 40	0.0	NaN	NaN	NaN	NaN
Unnamed: 41	1.0	33212.760000	NaN	33212.76	33212.7600

Data Understanding

```
In [7]: 1 sales_data.drop(['Unnamed: 40', 'Unnamed: 41'],axis =1,inplace=T
In [8]: 1 sales_data.dropna(inplace=True)
In [9]: 1 sales_data.shape
Out[9]: (5000, 40)
```

In [10]: sales_data.isna().sum() Out[10]: CustomerID 0 TOTAL ORDERS 0 **REVENUE** 0 AVERAGE_ORDER_VALUE 0 CARRIAGE REVENUE 0 **AVERAGESHIPPING** 0 0 FIRST_ORDER_DATE 0 LATEST_ORDER_DATE 0 AVGDAYSBETWEENORDERS DAYSSINCELASTORDER 0 MONDAY_ORDERS 0 TUESDAY_ORDERS 0 WEDNESDAY_ORDERS 0 THURSDAY ORDERS 0 FRIDAY_ORDERS 0 0 SATURDAY_ORDERS SUNDAY_ORDERS 0 MONDAY_REVENUE 0 TUESDAY_REVENUE 0 WEDNESDAY_REVENUE 0 THURSDAY REVENUE 0 FRIDAY_REVENUE 0 0 SATURDAY_REVENUE SUNDAY REVENUE 0 WEEK1 DAY01 DAY07 ORDERS 0 WEEK2_DAY08_DAY15_ORDERS 0 WEEK3_DAY16_DAY23_ORDERS 0 0 WEEK4_DAY24_DAY31_ORDERS WEEK1_DAY01_DAY07_REVENUE 0 0 WEEK2 DAY08 DAY15 REVENUE WEEK3_DAY16_DAY23_REVENUE 0 WEEK4_DAY24_DAY31_REVENUE 0 TIME_0000_0600_ORDERS 0 TIME_0601_1200_ORDERS 0 0 TIME 1200 1800 ORDERS TIME_1801_2359_ORDERS 0 TIME 0000 0600 REVENUE 0 TIME 0601 1200 REVENUE 0 TIME_1200_1800_REVENUE 0 TIME_1801_2359_REVENUE 0 dtype: int64

```
In [11]:
                  sales_data.columns
Out[11]: Index(['CustomerID', 'TOTAL_ORDERS', 'REVENUE', 'AVERAGE_ORDER_VAL
             UE',
                       'CARRIAGE_REVENUE', 'AVERAGESHIPPING', 'FIRST_ORDER_DATE',
                       'LATEST_ORDER_DATE', 'AVGDAYSBETWEENORDERS', 'DAYSSINCELAST
             ORDER',
                       'MONDAY_ORDERS', 'TUESDAY_ORDERS', 'WEDNESDAY_ORDERS',
                       'THURSDAY_ORDERS', 'FRIDAY_ORDERS', 'SATURDAY_ORDERS', 'SUN
             DAY_ORDERS',
                       'MONDAY_REVENUE', 'TUESDAY_REVENUE', 'WEDNESDAY_REVENUE',
                       'THURSDAY_REVENUE', 'FRIDAY_REVENUE', 'SATURDAY_REVENUE', 'SUNDAY_REVENUE', 'WEEK1_DAY01_DAY07_ORDERS',
                       'WEEK2_DAY08_DAY15_ORDERS', 'WEEK3_DAY16_DAY23_ORDERS', 'WEEK4_DAY24_DAY31_ORDERS', 'WEEK1_DAY01_DAY07_REVENUE', 'WEEK2_DAY08_DAY15_REVENUE', 'WEEK3_DAY16_DAY23_REVENUE',
                       'WEEK4_DAY24_DAY31_REVENUE', 'TIME_0000_0600_ORDERS',
                       'TIME_0601_1200_ORDERS', 'TIME_1200_1800_ORDERS', 'TIME_1801_2359_ORDERS', 'TIME_0000_0600_REVENUE', 'TIME_0601_1200_REVENUE', 'TIME_1200_1800_REVENUE',
                       'TIME_1801_2359_REVENUE'],
                     dtype='object')
```

In [12]:

sales_data.head()

Out [12]:

	CustomerID	TOTAL_ORDERS	REVENUE	AVERAGE_ORDER_VALUE	CARRIAGE_REVENU
0	22.0	124.0	11986.54	96.67	529.5
1	29.0	82.0	11025.96	134.46	97.9
2	83.0	43.0	7259.69	168.83	171.6
3	95.0	44.0	6992.27	158.92	92.8
4	124.0	55.0	6263.44	113.88	179.0

5 rows × 40 columns

In [13]: sales_data.dtypes Out[13]: CustomerID float64 TOTAL ORDERS float64 **REVENUE** float64 AVERAGE_ORDER_VALUE float64 CARRIAGE REVENUE float64 **AVERAGESHIPPING** float64 datetime64[ns] FIRST ORDER DATE LATEST_ORDER_DATE datetime64[ns] **AVGDAYSBETWEENORDERS** float64 DAYSSINCELASTORDER float64 MONDAY_ORDERS int64 TUESDAY_ORDERS int64 WEDNESDAY ORDERS int64 THURSDAY ORDERS int64 FRIDAY_ORDERS int64 SATURDAY_ORDERS int64 SUNDAY_ORDERS int64 MONDAY REVENUE float64 TUESDAY REVENUE float64 WEDNESDAY_REVENUE float64 THURSDAY REVENUE float64 FRIDAY REVENUE float64 float64 SATURDAY_REVENUE float64 SUNDAY REVENUE WEEK1 DAY01 DAY07 ORDERS float64 WEEK2_DAY08_DAY15_ORDERS float64 WEEK3_DAY16_DAY23_ORDERS float64 WEEK4 DAY24 DAY31 ORDERS float64 WEEK1_DAY01_DAY07_REVENUE float64 WEEK2 DAY08 DAY15 REVENUE float64 WEEK3_DAY16_DAY23_REVENUE float64 WEEK4_DAY24_DAY31_REVENUE float64 TIME_0000_0600_ORDERS float64 TIME_0601_1200_ORDERS float64 TIME 1200 1800 ORDERS float64 TIME_1801_2359_ORDERS float64 TIME 0000 0600 REVENUE float64 TIME 0601 1200 REVENUE float64 TIME_1200_1800_REVENUE float64 TIME_1801_2359_REVENUE float64 dtype: object

In [14]: 1 | sales_data.describe().T

Out[14]:

	count	mean	std	min	25%	
CustomerID	5000.0	40709.227800	49949.848017	1.00	1687.5000	137
TOTAL_ORDERS	5000.0	12.870400	12.679880	1.00	3.0000	
REVENUE	5000.0	1681.523840	1998.618678	38.50	315.0975	g

AVERAGE_ORDER_VALUE	5000.0	136.537378	91.651569	10.68	83.0250	1
CARRIAGE_REVENUE	5000.0	46.036376	47.879226	0.00	9.9800	
AVERAGESHIPPING	5000.0	3.592574	2.021360	0.00	2.5000	
AVGDAYSBETWEENORDERS	5000.0	163.159618	259.699496	0.00	21.6700	
DAYSSINCELASTORDER	5000.0	87.420000	80.156513	1.00	7.0000	
MONDAY_ORDERS	5000.0	1.629000	2.236506	0.00	0.0000	
TUESDAY_ORDERS	5000.0	1.754400	2.433940	0.00	0.0000	
WEDNESDAY_ORDERS	5000.0	1.798000	2.464875	0.00	0.0000	
THURSDAY_ORDERS	5000.0	2.134000	2.468048	0.00	0.0000	
FRIDAY_ORDERS	5000.0	1.946200	2.652680	0.00	0.0000	
SATURDAY_ORDERS	5000.0	1.683400	2.449972	0.00	0.0000	
SUNDAY_ORDERS	5000.0	1.925400	2.315018	0.00	0.0000	
MONDAY_REVENUE	5000.0	215.208336	397.831999	0.00	0.0000	
TUESDAY_REVENUE	5000.0	233.510430	411.941787	0.00	0.0000	
WEDNESDAY_REVENUE	5000.0	235.689294	397.858311	0.00	0.0000	
THURSDAY_REVENUE	5000.0	265.949796	383.890024	0.00	0.0000	1
FRIDAY_REVENUE	5000.0	250.580554	400.543113	0.00	0.0000	
SATURDAY_REVENUE	5000.0	220.975468	378.892459	0.00	0.0000	
SUNDAY_REVENUE	5000.0	260.943330	406.926075	0.00	0.0000	1
WEEK1_DAY01_DAY07_ORDERS	5000.0	2.997800	3.256980	0.00	1.0000	
WEEK2_DAY08_DAY15_ORDERS	5000.0	3.062600	3.792461	0.00	0.0000	
WEEK3_DAY16_DAY23_ORDERS	5000.0	3.230000	3.921043	0.00	0.0000	
WEEK4_DAY24_DAY31_ORDERS	5000.0	3.580000	3.970384	0.00	1.0000	
WEEK1_DAY01_DAY07_REVENUE	5000.0	378.638346	515.590218	0.00	63.9900	1
WEEK2_DAY08_DAY15_REVENUE	5000.0	406.595734	619.413277	0.00	0.0000	1
WEEK3_DAY16_DAY23_REVENUE	5000.0	421.826908	643.449120	0.00	0.0000	1
WEEK4_DAY24_DAY31_REVENUE	5000.0	474.462852	617.579321	0.00	80.0000	2
TIME_0000_0600_ORDERS	5000.0	1.028800	2.174331	0.00	0.0000	
TIME_0601_1200_ORDERS	5000.0	3.746200	4.700234	0.00	1.0000	
TIME_1200_1800_ORDERS	5000.0	4.434000	5.044793	0.00	1.0000	
TIME_1801_2359_ORDERS	5000.0	3.661400	4.581894	0.00	1.0000	
TIME_0000_0600_REVENUE	5000.0	131.062636	331.289349	0.00	0.0000	
TIME_0601_1200_REVENUE	5000.0	486.863868	789.029911	0.00	35.0000	2
TIME_1200_1800_REVENUE	5000.0	584.731626	804.290026	0.00	89.9900	2

TIME_1801_2359_REVENUE 5000.0 478.865710 743.244248

Data Understanding

RFM analysis

RFM stands for recency, frequency, monetary value. In business analytics, we often use this concept to divide customers into different segments, like high-value customers, medium value customers or low-value customers, and similarly many others.

0.00

1.0000

2

Let's assume we are a company, our company name is geek, let's perform the RFM analysis on our customers

Recency: How recently has the customer made a transaction with us

Frequency: How frequent is the customer in ordering/buying some product from us

Monetary: How much does the customer spend on purchasing products from us.

28/06/22, 2:56 AM Untitled - Jupyter Notebook

In [17]:

RFMScores=pd.DataFrame(data =sales_data,columns=['CustomerID',"

RFMScores

Out[17]:

	CustomerID	DAYSSINCELASTORDER	TOTAL_ORDERS	REVENUE
0	22.0	1.0	124.0	11986.54
1	29.0	1.0	82.0	11025.96
2	83.0	1.0	43.0	7259.69
3	95.0	1.0	44.0	6992.27
4	124.0	1.0	55.0	6263.44
4995	173946.0	207.0	1.0	117.49
4996	173987.0	207.0	1.0	117.49
4997	174004.0	207.0	1.0	117.49
4998	174038.0	207.0	1.0	117.49
4999	200783.0	207.0	2.0	94.14

5000 rows × 4 columns

In [18]:

RFMScores.rename({'DAYSSINCELASTORDER': 'Recency', 'TOTAL_ORDERS

In [19]:

RFMScores.head()

Out[19]:

	CustomerID	Recency	Frequency	Monetary
0	22.0	1.0	124.0	11986.54
1	29.0	1.0	82.0	11025.96
2	83.0	1.0	43.0	7259.69
3	95.0	1.0	44.0	6992.27
4	124.0	1.0	55.0	6263.44

```
RFMScores['Frequency']=RFMScores['Frequency'].astype('int')
In [20]:
              RFMScores['Frequency']
Out[20]:
                   124
          0
          1
                    82
          2
                    43
          3
                    44
          4
                    55
          4995
                     1
          4996
                     1
          4997
                     1
                     1
          4998
          4999
                     2
          Name: Frequency, Length: 5000, dtype: int64
In [21]:
              #Descriptive Statistics (Recency)
              RFMScores.Recency.describe()
Out [21]: count
                    5000.000000
                      87.420000
          mean
          std
                      80.156513
                       1.000000
          min
          25%
                       7.000000
          50%
                      68.000000
          75%
                     171.250000
                     207.000000
          max
          Name: Recency, dtype: float64
In [22]:
              #Recency distribution plot
              import seaborn as sns
              x = RFMScores['Recency']
              ax = sns.distplot(x)
             0.0175
             0.0150
             0.0125
             0.0100
             0.0075
             0.0050
             0.0025
             0.0000
                                50
                                      100
                                             150
                                                    200
                  -50
                          0
                                                           250
```

Recency

Out[23]: count 5000.00000 12.87040 mean 12.67988 std 1.00000 min 25% 3.00000 50% 8.00000 75% 20.00000 156.00000 max

Name: Frequency, dtype: float64

```
In [24]:
```

```
#Frequency distribution plot, taking observations which have fr
import seaborn as sns
x = RFMScores.query('Frequency < 100')['Frequency']
ax = sns.distplot(x)</pre>
```


Out[25]: count 5000.000000 1681,523840 mean std 1998,618678 min 38.500000 25% 315.097500 50% 966.725000 75% 2493.072500 34847.400000 max

Name: Monetary, dtype: float64

```
In [26]: #Monateray distribution plot, taking observations which have mo
import seaborn as sns
x = RFMScores.query('Monetary < 2500')['Monetary']
ax = sns.distplot(x)</pre>
```


In [29]: #Functions to create R, F and M segments def RScoring(x,p,d): **if** $x \le d[p][0.33]$: return 1 **elif** x > d[p][0.33] **and** $x \leftarrow d[p][0.66]$: return 2 **elif** x <= d[p][1]: return 3 def FnMScoring(x,p,d): **if** $x \le d[p][0.33]$: return 3 **elif** x > d[p][0.33] **and** $x \le d[p][0.66]$: return 2 **elif** x <= d[p][1]: return 1

In [30]:

#Calculate Add R, F and M segment value columns in the existing
RFMScores['R'] = RFMScores['Recency'].apply(RScoring, args=('Re
RFMScores['F'] = RFMScores['Frequency'].apply(FnMScoring, args=
RFMScores['M'] = RFMScores['Monetary'].apply(FnMScoring, args=(
RFMScores

Out [30]:

	CustomerID	Recency	Frequency	Monetary	R	F	M	
0	22.0	1.0	124	11986.54	1	1	1	
1	29.0	1.0	82	11025.96	1	1	1	
2	83.0	1.0	43	7259.69	1	1	1	
3	95.0	1.0	44	6992.27	1	1	1	
4	124.0	1.0	55	6263.44	1	1	1	
•••								
4995	173946.0	207.0	1	117.49	3	3	3	
4996	173987.0	207.0	1	117.49	3	3	3	
4997	174004.0	207.0	1	117.49	3	3	3	
4998	174038.0	207.0	1	117.49	3	3	3	
4999	200783.0	207.0	2	94.14	3	3	3	

5000 rows × 7 columns

In [31]:

#Calculate and Add RFMGroup value column showing combined conca RFMScores['RFMGroup'] = RFMScores.R.map(str) + RFMScores.F.map(#Calculate and Add RFMScore value column showing total sum of R RFMScores['RFMScore'] = RFMScores[['R', 'F', 'M']].sum(axis = 1 RFMScores

Out[31]:

	CustomerID	Recency	Frequency	Monetary	R	F	M	RFMGroup	RFMScore
0	22.0	1.0	124	11986.54	1	1	1	111	3
1	29.0	1.0	82	11025.96	1	1	1	111	3
2	83.0	1.0	43	7259.69	1	1	1	111	3
3	95.0	1.0	44	6992.27	1	1	1	111	3
4	124.0	1.0	55	6263.44	1	1	1	111	3
4995	173946.0	207.0	1	117.49	3	3	3	333	9
4996	173987.0	207.0	1	117.49	3	3	3	333	9
4997	174004.0	207.0	1	117.49	3	3	3	333	9
4998	174038.0	207.0	1	117.49	3	3	3	333	9
4999	200783.0	207.0	2	94.14	3	3	3	333	9

5000 rows × 9 columns

In [32]:

- #Assign Loyalty Level to each customer
- Loyalty_Level = ['champions', 'Potential customers', 'need atte Score_cuts = pd.qcut(RFMScores.RFMScore, q =3, labels = Loyalty
- RFMScores['RFM_Loyalty_Level'] = Score_cuts.values
- RFMScores.reset_index().tail()

Out[32]:

	index	CustomerID	Recency	Frequency	Monetary	R	F	M	RFMGroup	RFMScore
4995	4995	173946.0	207.0	1	117.49	3	3	3	333	9
4996	4996	173987.0	207.0	1	117.49	3	3	3	333	9
4997	4997	174004.0	207.0	1	117.49	3	3	3	333	9
4998	4998	174038.0	207.0	1	117.49	3	3	3	333	9
4999	4999	200783.0	207.0	2	94.14	3	3	3	333	9

Out[33]:

	index	CustomerID	Recency	Frequency	Monetary	R	F	M	RFMGroup	RFMScore
0	1153	4.0	5.0	84	18554.49	1	1	1	111	3
1	1458	10.0	13.0	47	14309.92	1	1	1	111	3
2	1567	12.0	16.0	79	13775.96	1	1	1	111	3
3	1498	15.0	14.0	50	13180.85	1	1	1	111	3
4	1194	17.0	6.0	36	12969.98	1	1	1	111	3
419	1441	3316.0	12.0	19	1879.57	1	1	1	111	3
420	66	3335.0	1.0	19	1876.65	1	1	1	111	3
421	1365	3339.0	10.0	26	1875.33	1	1	1	111	3
422	1442	3363.0	12.0	23	1868.53	1	1	1	111	3
423	67	3365.0	1.0	21	1868.29	1	1	1	111	3

424 rows × 11 columns

```
In [ ]:
```

```
In [34]:
              import chart studio as cs
              import plotly.offline as po
              import plotly.graph_objs as gobj
              #Recency Vs Frequency
              graph = RFMScores.query("Monetary < 2500 and Frequency < 100 ")</pre>
              plot_data = [
                  gobj.Scatter(
                      x=graph.query("RFM_Loyalty_Level == 'need attention'")
                      y=graph.query("RFM_Loyalty_Level == 'need attention'")
                      mode='markers',
                      name='need attention',
                      marker= dict(size= 7,
                          line= dict(width=1),
                          color= 'blue',
                          opacity= 0.8
                          )
                  ),
                      gobj.Scatter(
                      x=graph.query("RFM_Loyalty_Level == 'Potential customer
                      y=graph.query("RFM_Loyalty_Level == 'Potential customer
                      mode='markers',
                      name='Potential customers',
                      marker= dict(size= 9.
```

```
line= dict(width=1),
            color= 'green',
            opacity= 0.5
    ),
        gobj.Scatter(
        x=graph.query("RFM_Loyalty_Level == 'champions'")['Rece
        y=graph.query("RFM_Loyalty_Level == 'champions'")['Free
        mode='markers',
        name='champions',
        marker= dict(size= 11,
            line= dict(width=1),
            color= 'red',
            opacity= 0.9
    ),
1
plot_layout = gobj.Layout(
        yaxis= {'title': "Frequency"},
        xaxis= {'title': "Recency"},
        title='Segments'
fig = gobj.Figure(data=plot_data, layout=plot_layout)
po.iplot(fig)
#Frequency Vs Monetary
graph = RFMScores.query("Monetary < 2500 and Frequency < 100")</pre>
plot_data = [
    gobj.Scatter(
        x=graph.query("RFM_Loyalty_Level == 'need attention'")
        y=graph.query("RFM_Loyalty_Level == 'need attention'")
        mode='markers',
        name='need attention',
        marker= dict(size= 7,
            line= dict(width=1),
            color= 'blue',
            opacity= 0.8
           )
    ),
        gobj.Scatter(
        x=graph.query("RFM_Loyalty_Level == 'Potential customer
        y=graph.query("RFM_Loyalty_Level == 'Potential customer
        mode='markers',
        name='Potential customers',
        marker= dict(size= 9,
            line= dict(width=1),
            color= 'green',
            opacity= 0.5
           )
    ),
        gobj.Scatter(
        x=graph.guery("RFM Lovalty Level == 'champions'")['Free
```

```
y=graph.query("RFM_Loyalty_Level == 'champions'")['Mone
        mode='markers',
        name='champions',
        marker= dict(size= 11,
            line= dict(width=1),
            color= 'red',
            opacity= 0.9
    ),
plot_layout = gobj.Layout(
        yaxis= {'title': "Monetary"},
        xaxis= {'title': "Frequency"},
        title='Segments'
    )
fig = gobj.Figure(data=plot data, layout=plot layout)
po.iplot(fig)
#Recency Vs Monetary
graph = RFMScores.query("Monetary < 50000 and Frequency < 2000"
plot data = [
    gobj.Scatter(
        x=graph.query("RFM_Loyalty_Level == 'need attention'")
        y=graph.query("RFM_Loyalty_Level == 'need attention'")
        mode='markers',
        name='need attention',
        marker= dict(size= 7,
            line= dict(width=1),
            color= 'blue',
            opacity= 0.8
    ),
        gobj.Scatter(
        x=graph.query("RFM_Loyalty_Level == 'Potential customer
        y=graph.guery("RFM Loyalty Level == 'Potential customer
        mode='markers',
        name='Potential customers',
        marker= dict(size= 9,
            line= dict(width=1),
            color= 'green',
            opacity= 0.5
           )
    ),
        gobj.Scatter(
        x=graph.query("RFM_Loyalty_Level == 'champions'")['Rece
        y=graph.query("RFM_Loyalty_Level == 'champions'")['Mone
        mode='markers',
        name='champions',
        marker= dict(size= 11,
            line= dict(width=1),
            color= 'red'.
            onacity= 0.9
```

Segments

Segments

Segments

K-Means Clustering

In [35]: #Handle negative and zero values so as to handle infinite numbe

def handle_neg_n_zero(num):
 if num <= 0:
 return 1
 else:
 return num

#Apply handle_neg_n_zero function to Recency and Monetary colum

RFMScores['Recency'] = [handle_neg_n_zero(x) for x in RFMScores
RFMScores['Monetary'] = [handle_neg_n_zero(x) for x in RFMScore

#Perform Log transformation to bring data into normal or near n
Log_Tfd_Data = RFMScores[['Recency', 'Frequency', 'Monetary']].</pre>

```
In [36]:  #Data distribution after data normalization for Recency
Recency_Plot = Log_Tfd_Data['Recency']
ax = sns.distplot(Recency_Plot)
```


In [37]:

#Data distribution after data normalization for Frequency
Frequency_Plot = Log_Tfd_Data.query('Frequency <100')['Frequenc
ax = sns.distplot(Frequency_Plot)</pre>

In [38]:

#Data distribution after data normalization for Monetary
Monetary_Plot = Log_Tfd_Data.query('Monetary < 2500')['Monetary
ax = sns.distplot(Monetary_Plot)</pre>


```
In [39]:
```

from sklearn.preprocessing import StandardScaler

#Bring the data on same scale
scaleobj = StandardScaler()
Scaled_Data = scaleobj.fit_transform(Log_Tfd_Data)

#Transform it back to dataframe
Scaled_Data = pd.DataFrame(Scaled_Data, index = RFMScores.index)

In [40]:

```
from sklearn.cluster import KMeans

sum_of_sq_dist = {}
for k in range(1,15):
    km = KMeans(n_clusters= k, init= 'k-means++', max_iter= 100 km = km.fit(Scaled_Data)
    sum_of_sq_dist[k] = km.inertia_

#Plot the graph for the sum of square distance values and Numbe
sns.pointplot(x = list(sum_of_sq_dist.keys()), y = list(sum_of_
plt.xlabel('Number of Clusters(k)')
plt.ylabel('Sum of Square Distances')
plt.title('Elbow Method For Optimal k')
plt.show()
```


In [41]:

#Perform K-Mean Clustering or build the K-Means clustering mode
KMean_clust = KMeans(n_clusters= 3, init= 'k-means++', max_iter
KMean_clust.fit(Scaled_Data)

#Find the clusters for the observation given in the dataset
RFMScores['Cluster'] = KMean_clust.labels_
RFMScores

Out [41]:

	CustomerID	Recency	Frequency	Monetary	R	F	M	RFMGroup	RFMScore	RFM
0	22.0	1.0	124	11986.54	1	1	1	111	3	
1	29.0	1.0	82	11025.96	1	1	1	111	3	
2	83.0	1.0	43	7259.69	1	1	1	111	3	
3	95.0	1.0	44	6992.27	1	1	1	111	3	
4	124.0	1.0	55	6263.44	1	1	1	111	3	
4995	173946.0	207.0	1	117.49	3	3	3	333	9	
4996	173987.0	207.0	1	117.49	3	3	3	333	9	
4997	174004.0	207.0	1	117.49	3	3	3	333	9	
4998	174038.0	207.0	1	117.49	3	3	3	333	9	
4999	200783.0	207.0	2	94.14	3	3	3	333	9	

5000 rows × 11 columns

In [42]:

```
from matplotlib import pyplot as plt
plt.figure(figsize=(7,7))

##Scatter Plot Frequency Vs Recency
Colors = ["Black", 'Red', "blue"]
RFMScores['Color'] = RFMScores['Cluster'].map(lambda p: Colors[ax = RFMScores.plot(kind="scatter", x="Recency", y="Frequency", figsize=(10,8), c = RFMScores['Color']
)
```

<Figure size 504x504 with 0 Axes>

In [43]: 1 RFMScores

Out [43]:

	CustomerID	Recency	Frequency	Monetary	R	F	M	RFMGroup	RFMScore	RFM _.
0	22.0	1.0	124	11986.54	1	1	1	111	3	
1	29.0	1.0	82	11025.96	1	1	1	111	3	
2	83.0	1.0	43	7259.69	1	1	1	111	3	
3	95.0	1.0	44	6992.27	1	1	1	111	3	
4	124.0	1.0	55	6263.44	1	1	1	111	3	
4995	173946.0	207.0	1	117.49	3	3	3	333	9	
4996	173987.0	207.0	1	117.49	3	3	3	333	9	
4997	174004.0	207.0	1	117.49	3	3	3	333	9	
4998	174038.0	207.0	1	117.49	3	3	3	333	9	
4999	200783.0	207.0	2	94.14	3	3	3	333	9	

5000 rows × 12 columns

In []: 1