Introduction to Multiple Linear Regression

Author: Nicholas G Reich

This material is part of the **statsTeachR** project

 $\underline{\hbox{Derivative of OpenIntro slides, released under a CC BY-NC-SA license.}}$

Outline

Introduction to multiple regression

Many variables in a model Adjusted R^2

Multiple regression

- ► Simple linear regression: Bivariate two variables: *y* and *x*
- ▶ Multiple linear regression: Multiple variables: y and x_1, x_2, \cdots

Weights of books

	weight (g)	volume (cm3)	cover
1	800	885	hc
2	950	1016	hc
3	1050	1125	hc
4	350	239	hc
5	750	701	hc
6	600	641	hc
7	1075	1228	hc
8	250	412	pb
9	700	953	pb
10	650	929	pb
11	975	1492	pb
12	350	419	pb
13	950	1010	pb
14	425	595	pb
15	725	1034	pb

From: Maindonald, J.H. and Braun, W.J. (2nd ed., 2007) "Data Analysis and Graphics Using R"

Weights of books (cont.)

The scatterplot shows the relationship between weights and volumes of books as well as the regression output. Which of the below is correct?

- (a) Weights of 80% of the books can be predicted accurately using this model.
- (b) We would expect a book that is 10 cm³ bigger than another expected to weigh 7 g more.
- (c) The correlation between weight and volume is $R = 0.80^2 = 0.64$.
- (d) The model underestimates the weight of the book with the highest volume.

Weights of books (cont.)

The scatterplot shows the relationship between weights and volumes of books as well as the regression output. Which of the below is correct?

- (a) Weights of 80% of the books can be predicted accurately using this model.
- (b) We would expect a book that is 10 cm³ bigger than another expected to weigh 7 g more.
- (c) The correlation between weight and volume is $R = 0.80^2 = 0.64$.
- (d) The model underestimates the weight of the book with the highest volume.

Modeling weights of books using volume

somewhat abbreviated output...

Coefficients:

```
Estimate Std. Error t value Pr(>|t|) (Intercept) 107.67931 88.37758 1.218 0.245 volume 0.70864 0.09746 7.271 6.26e-06
```

Residual standard error: 123.9 on 13 degrees of freedom Multiple R-squared: 0.8026, Adjusted R-squared: 0.7875 F-statistic: 52.87 on 1 and 13 DF, p-value: 6.262e-06

Weights of hardcover and paperback books

Can you identify a trend in the relationship between volume and weight of hardcover and paperback books?

Weights of hardcover and paperback books

Can you identify a trend in the relationship between volume and weight of hardcover and paperback books?

Paperbacks generally weigh less than hardcover books after controlling for the book's volume.

Modeling weights of books using volume and cover type

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 197.96284 59.19274 3.344 0.005841 **
volume 0.71795 0.06153 11.669 6.6e-08 ***
cover:pb -184.04727 40.49420 -4.545 0.000672 ***
```

Residual standard error: 78.2 on 12 degrees of freedom Multiple R-squared: 0.9275, Adjusted R-squared: 0.9154 F-statistic: 76.73 on 2 and 12 DF, p-value: 1.455e-07

Visualising the linear model

Based on the regression output below, which level of cover is the reference level? Note that pb: paperback.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.9628	59.1927	3.34	0.0058
volume	0.7180	0.0615	11.67	0.0000
cover:pb	-184.0473	40.4942	-4.55	0.0007

- (a) paperback
- (b) hardcover

Based on the regression output below, which level of cover is the reference level? Note that pb: paperback.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.9628	59.1927	3.34	0.0058
volume	0.7180	0.0615	11.67	0.0000
cover:pb	-184.0473	40.4942	-4.55	0.0007

- (a) paperback
- (b) hardcover

Which of the below correctly describes the roles of variables in this regression model?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.9628	59.1927	3.34	0.0058
volume	0.7180	0.0615	11.67	0.0000
cover:pb	-184.0473	40.4942	-4.55	0.0007

- (a) response: weight; explanatory: volume, paperback cover
- (b) **response**: weight; **explanatory**: volume, hardcover cover
- (c) response: volume; explanatory: weight, cover type
- (d) response: weight; explanatory: volume, cover type

Which of the below correctly describes the roles of variables in this regression model?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.9628	59.1927	3.34	0.0058
volume	0.7180	0.0615	11.67	0.0000
cover:pb	-184.0473	40.4942	-4.55	0.0007

- (a) response: weight; explanatory: volume, paperback cover
- (b) response: weight; explanatory: volume, hardcover cover
- (c) response: volume; explanatory: weight, cover type
- (d) response: weight; explanatory: volume, cover type

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

 $\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00
cover:pb	-184.05	40.49		-4.55

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$$

1. For *hardcover* books: plug in *0* for cover

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \times 0$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$weight = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$$

1. For *hardcover* books: plug in *0* for cover

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \times 0$$

= 197.96 + 0.72 \ volume

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$$

1. For *hardcover* books: plug in *0* for cover

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \times 0$$

= 197.96 + 0.72 \ volume

2. For paperback books: plug in 1 for cover

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \times 10^{-1}$$

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \ cover: pb$$

1. For *hardcover* books: plug in *0* for cover

$$\widehat{weight} = 197.96 + 0.72 \ volume - 184.05 \times 0$$

= 197.96 + 0.72 \ volume

2. For paperback books: plug in 1 for cover

$$\widehat{weight} = 197.96 + 0.72 \text{ volume} - 184.05 \times 1$$

= 13.91 + 0.72 volume

Visualising the linear model

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

Slope of volume: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams more.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- Slope of volume: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams more.
- Slope of cover: All else held constant, the model predicts that paperback books weigh 184 grams lower than hardcover books.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- Slope of volume: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams more.
- Slope of cover: All else held constant, the model predicts that paperback books weigh 184 grams lower than hardcover books.
- Intercept: Hardcover books with no volume are expected on average to weigh 198 grams.

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- Slope of volume: All else held constant, books that are 1 more cubic centimeter in volume tend to weigh about 0.72 grams more.
- Slope of cover: All else held constant, the model predicts that paperback books weigh 184 grams lower than hardcover books.
- Intercept: Hardcover books with no volume are expected on average to weigh 198 grams.
 - Obviously, the intercept does not make sense in context. It only serves to adjust the height of the line.

Prediction

Which of the following is the correct calculation for the predicted weight of a paperback book that is 600 cm³?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- (a) 197.96 + 0.72 * 600 184.05 * 1
- (b) 184.05 + 0.72 * 600 197.96 * 1
- (c) 197.96 + 0.72 * 600 184.05 * 0
- (d) 197.96 + 0.72 * 1 184.05 * 600

Prediction

Which of the following is the correct calculation for the predicted weight of a paperback book that is 600 cm³?

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	197.96	59.19	3.34	0.01
volume	0.72	0.06	11.67	0.00
cover:pb	-184.05	40.49	-4.55	0.00

- (a) 197.96 + 0.72 * 600 184.05 * 1 = 445.91 grams
- (b) 184.05 + 0.72 * 600 197.96 * 1
- (c) 197.96 + 0.72 * 600 184.05 * 0
- (d) 197.96 + 0.72 * 1 184.05 * 600

Another example: Modeling kid's test scores

Predicting cognitive test scores of 434 three- and four-year-old children using characteristics of their mothers. Data are from a survey of adult American women and their children - a subsample from the National Longitudinal Survey of Youth.

```
library(rstanarm)
data("kidia")
head(kidig)
##
     kid score mom hs
                          mom_iq mom_age
            65
                     1 121, 11753
## 1
                                       2.7
                                       25
## 2
            98
                     1 89.36188
                                       2.7
            85
                     1 115.44316
                                       25
## 4
            83
                     1 99.44964
## 5
           115
                     1 92.74571
                                       2.7
## 6
            98
                     0 107.90184
                                       18
```

Gelman, Hill. Data Analysis Using Regression and Multilevel/Hierarchical Models. (2007) Cambridge University Press.

Exploratory analysis

```
library(GGally)
kidiq$mom_hs <- factor(kidiq$mom_hs, levels=c(0,1), labels=c("no", "yes"))
ggpairs(kidiq)</pre>
```


What is a reasonable model

In generic model syntax

In regression formula syntax

What is the correct interpretation of the slope for mom's IQ?

```
fm <- lm(kid_score ~ mom_hs + mom_iq + mom_age, data=kidiq)
round(summary(fm)$coef, 3)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.985 9.130 2.298 0.022
## mom_hsyes 5.647 2.258 2.501 0.013
## mom_iq 0.563 0.061 9.276 0.000
## mom_age 0.225 0.331 0.680 0.497
```

, kids with mothers whose IQs are one point higher tend to score on average 0.56 points higher.

What is the correct interpretation of the intercept?

What is the correct interpretation of the intercept?

```
round(summary(fm)$coef, 3)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.985 9.130 2.298 0.022
## mom_hsyes 5.647 2.258 2.501 0.013
## mom_iq 0.563 0.061 9.276 0.000
## mom_age 0.225 0.331 0.680 0.497
```

Kids whose moms haven't gone to HS, whose moms have an IQ of 0, and who are 0 yrs old are expected on average to score 20.98. Obviously, the intercept does not make any sense in context.

What is the correct interpretation of the slope for mom_hs?

```
round(summary(fm)$coef, 3)

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 20.985 9.130 2.298 0.022
## mom_hsyes 5.647 2.258 2.501 0.013
## mom_iq 0.563 0.061 9.276 0.000
## mom_age 0.225 0.331 0.680 0.497
```

All else being equal, kids whose moms graduated from high school are estimated to score than

those whose moms did not work.

Modeling poverty

Description: Data for 3083 counties in the United States, including variables for demographic, financial, education, and other characteristics.

Source: Census website.

- FIPS: FIPS code.
- poverty: Percent below poverty level (2006-2010).
- pop2010: 2010 county population.
- female_house: Percent of population that lives in a female-owned house (2010).
- metro_res: Percent of population living in metropolitan area.
- hs_grad: Percent of population that is a high school graduate (2006-2010).

>

Modeling poverty

Predicting poverty using % female householder

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	3.31	1.90	1.74	0.09
female_house	0.69	0.16	4.32	0.00

$$R = 0.53$$

 $R^2 = 0.53^2 = 0.28$

Another look at R^2

 R^2 can be calculated in three ways:

Another look at R^2

 R^2 can be calculated in three ways:

1. square the correlation coefficient of *x* and *y* (how we have been calculating it)

Another look at R^2

R^2 can be calculated in three ways:

- 1. square the correlation coefficient of x and y (how we have been calculating it)
- 2. square the correlation coefficient of y and \hat{y}

Another look at R²

R^2 can be calculated in three ways:

- 1. square the correlation coefficient of x and y (how we have been calculating it)
- 2. square the correlation coefficient of y and \hat{y}
- 3. based on definition:

$$R^2 = \frac{\text{explained variability in } y}{\text{total variability in } y}$$

Another look at R²

R^2 can be calculated in three ways:

- 1. square the correlation coefficient of *x* and *y* (how we have been calculating it)
- 2. square the correlation coefficient of y and \hat{y}
- 3. based on definition:

$$R^2 = \frac{\text{explained variability in } y}{\text{total variability in } y}$$

Using ANOVA we can calculate the explained variability and total variability in *y*.

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

Df	Sum Sq	Mean Sq	F value	Pr(>F)
1	132.57	132.57	18.68	0.00
49	347.68	7.10		
50	480.25			
	1 49	1 132.57 49 347.68	1 132.57 132.57 49 347.68 7.10	1 132.57 132.57 18.68 49 347.68 7.10

Sum of squares of y:
$$SS_{Total} = \sum (y - \bar{y})^2 = 480.25 \rightarrow total \ variability$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

Sum of squares of y:
$$SS_{Total} = \sum_{y=0}^{\infty} (y - \bar{y})^2 = 480.25 \rightarrow total \ variability$$

Sum of squares of residuals: $SS_{Error} = \sum e_i^2 = 347.68 \rightarrow unexplained variability$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

Sum of squares of
$$y$$
: $SS_{Total} = \sum (y - \bar{y})^2 = 480.25 \rightarrow total \ variability$
Sum of squares of residuals: $SS_{Error} = \sum e_i^2 = 347.68 \rightarrow unexplained \ variability$
Sum of squares of x : $SS_{Model} = SS_{Total} - SS_{Error} \rightarrow explained \ variability$

$$= 480.25 - 347.68 = 132.57$$

	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.68	0.00
Residuals	49	347.68	7.10		
Total	50	480.25			

Sum of squares of
$$y$$
: $SS_{Total} = \sum (y - \bar{y})^2 = 480.25 \rightarrow total \ variability$
Sum of squares of residuals: $SS_{Error} = \sum e_i^2 = 347.68 \rightarrow unexplained \ variability$
Sum of squares of x : $SS_{Model} = SS_{Total} - SS_{Error} \rightarrow explained \ variability$

$$= 480.25 - 347.68 = 132.57$$

$$R^2 = \frac{\text{explained variability}}{\text{total variability}} = \frac{132.57}{480.25} = 0.28 \, \checkmark$$

Why bother?

Why bother with another approach for calculating R^2 when we had a perfectly good way to calculate it as the correlation coefficient squared?

Why bother?

Why bother with another approach for calculating R^2 when we had a perfectly good way to calculate it as the correlation coefficient squared?

- For single-predictor linear regression, having three ways to calculate the same value may seem like overkill.
- ► However, in multiple linear regression, we can't calculate R² as the square of the correlation between x and y because we have multiple xs.
- And next we'll learn another measure of explained variability, adjusted R², that requires the use of the third approach, ratio of explained and unexplained variability.

Predicting poverty using % female hh + % white

Linear model:	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2.58	5.78	-0.45	0.66
female_house	0.89	0.24	3.67	0.00
white	0.04	0.04	1.08	0.29

Df	Sum Sq	Mean Sq	F value	Pr(>F)
1	132.57	132.57	18.74	0.00
1	8.21	8.21	1.16	0.29
48	339.47	7.07		
50	480.25			
	1 1 48	1 132.57 1 8.21 48 339.47	1 132.57 132.57 1 8.21 8.21 48 339.47 7.07	1 132.57 132.57 18.74 1 8.21 8.21 1.16 48 339.47 7.07

Predicting poverty using % female hh + % white

Linear model:	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-2.58	5.78	-0.45	0.66
female_house	0.89	0.24	3.67	0.00
white	0.04	0.04	1.08	0.29

ANOVA:	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.74	0.00
white	1	8.21	8.21	1.16	0.29
Residuals	48	339.47	7.07		
Total	50	480.25			

$$R^2 = \frac{\text{explained variability}}{\text{total variability}} = \frac{132.57 + 8.21}{480.25} = 0.29$$

Does adding the variable white to the model add valuable information that wasn't provided by female_house?

R^2 vs. adjusted R^2

	R ²	Adjusted R ²
Model 1 (Single-predictor)	0.28	0.26
Model 2 (Multiple)	0.29	0.26

 R^2 vs. adjusted R^2

	R ²	Adjusted R ²
Model 1 (Single-predictor)	0.28	0.26
Model 2 (Multiple)	0.29	0.26

ightharpoonup When any variable is added to the model R^2 increases.

R^2 vs. adjusted R^2

	R ²	Adjusted R ²
Model 1 (Single-predictor)	0.28	0.26
Model 2 (Multiple)	0.29	0.26

- ▶ When any variable is added to the model R² increases.
- ▶ But if the added variable doesn't really provide any new information, or is completely unrelated, adjusted R² does not increase.

Adjusted R²

Adjusted R²

$$R_{adj}^2 = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-p-1} \right)$$

where n is the number of cases and p is the number of predictors (explanatory variables) in the model.

- ▶ Because p is never negative, R_{adi}^2 will always be smaller than R^2 .
- R²_{adj} applies a penalty for the number of predictors included in the model.
- ► Therefore, we choose models with higher R_{adi}^2 over others.

Calculate adjusted R²

ANOVA:	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.74	0.0001
white	1	8.21	8.21	1.16	0.2868
Residuals	48	339.47	7.07		
Total	50	480.25			

$$R_{adj}^2 = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-p-1}\right)$$

Calculate adjusted R²

ANOVA:	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.74	0.0001
white	1	8.21	8.21	1.16	0.2868
Residuals	48	339.47	7.07		
Total	50	480.25			

$$R_{adj}^{2} = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-p-1}\right)$$
$$= 1 - \left(\frac{339.47}{480.25} \times \frac{51-1}{51-2-1}\right)$$

Calculate adjusted R^2

ANOVA:	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.74	0.0001
white	1	8.21	8.21	1.16	0.2868
Residuals	48	339.47	7.07		
Total	50	480.25			

$$R_{adj}^{2} = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-p-1}\right)$$

$$= 1 - \left(\frac{339.47}{480.25} \times \frac{51-1}{51-2-1}\right)$$

$$= 1 - \left(\frac{339.47}{480.25} \times \frac{50}{48}\right)$$

Calculate adjusted R²

ANOVA:	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.74	0.0001
white	1	8.21	8.21	1.16	0.2868
Residuals	48	339.47	7.07		
Total	50	480.25			

$$R_{adj}^{2} = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-p-1}\right)$$

$$= 1 - \left(\frac{339.47}{480.25} \times \frac{51-1}{51-2-1}\right)$$

$$= 1 - \left(\frac{339.47}{480.25} \times \frac{50}{48}\right)$$

$$= 1 - 0.74$$

Calculate adjusted R²

ANOVA:	Df	Sum Sq	Mean Sq	F value	Pr(>F)
female_house	1	132.57	132.57	18.74	0.0001
white	1	8.21	8.21	1.16	0.2868
Residuals	48	339.47	7.07		
Total	50	480.25			

$$R_{adj}^{2} = 1 - \left(\frac{SS_{Error}}{SS_{Total}} \times \frac{n-1}{n-p-1}\right)$$

$$= 1 - \left(\frac{339.47}{480.25} \times \frac{51-1}{51-2-1}\right)$$

$$= 1 - \left(\frac{339.47}{480.25} \times \frac{50}{48}\right)$$

$$= 1 - 0.74$$

$$= 0.26$$

On your own

Play around with some regression models and ANOVAS.

```
load(url("http://www.openintro.org/stat/data/cc.RData"))
dim(countyComplete)
colnames(countyComplete)
fm <- lm(poverty ~ white_not_hispanic + female, data=countyComplete)
anova(fm)</pre>
```

Note: the actual dataset has slightly different variable names than those in the slides. More details on the dataset can be found here https://www.openintro.org/stat/data/?data=cc.