EMMAN ACE G. MENION BSCPE 3A

VHDL CODE FOR Binary to gray (USING EXOR GATES):

```
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
entity Binary_Gray is
  port (
    b: in std_logic_vector(3 downto 0); -- Binary input
    g: out std_logic_vector(3 downto 0) -- Gray code output
  );
end Binary_Gray;
architecture Behavioral of Binary_Gray is
begin
  -- Gray code calculation:
  -- MSB is same, others are XOR of adjacent bits in binary input
  g(3) \le b(3);
  g(2) \le b(3) xor b(2);
  g(1) \le b(2) xor b(1);
  g(0) \le b(1) xor b(0);
end Behavioral;
```


Inputs				Outputs			
B (3)	B (2)	B (1)	B (0)	G (3)	G (2)	G (1)	G (0)
0	0	0	0	0	0	0	0
0	0	0	1	0	0	0	1
0	0	1	0	0	0	1	1
0	0	1	1	0	0	1	0
0	1	0	0	0	1	1	0
0	1	0	1	0	1	1	1
0	1	1	0	0	1	0	1
0	1	1	1	0	1	0	0
1	0	0	0	1	1	0	0
1	0	0	1	1	1	0	1
1	0	1	0	1	1	1	1
1	0	1	1	1	1	1	0
1	1	0	0	1	0	1	0
1	1	0	1	1	0	1	1
1	1	1	0	1	0	0	1
1	1	1	1	1	0	0	0

