

(1) Publication number:

0 219 436 B1

(12)

EUROPEAN PATENT SPECIFICATION

Date of publication of patent specification: 22.12.93 (5) Int. Cl.5: C07D 277/64, A61K 31/425,

C07D 277/30, C07D 277/24,

C07D 277/56, C07D 277/82,

C07D 277/28, C07D 417/10, A61K 31/41

21) Application number: 86402327.0

② Date of filing: 16.10.86

Significant in the state of the state of

Priority: 16.10.85 JP 228912/85

- 43 Date of publication of application: 22.04.87 Bulletin 87/17
- 45 Publication of the grant of the patent: 22.12.93 Bulletin 93/51
- Designated Contracting States: BE CH DE ES FR GB IT LI NL SE
- 66 References cited: DE-A- 3 148 291

FR-A- 1 576 989

GB-A- 1 473 704

US-A- 3 137 655

US-A- 3 974 282

Proprietor: MITSUBISHI KASEI CORPORATION 5-2, Marunouchi 2-chome Chivoda-ku Tokyo 100(JP)

Inventor: Hayasi, Yosio

174, Bangai-no-banchi, Tagumachi Ushiku-shi Ibaraki-ken(JP) inventor: Oguri, Tomel 166-2, Karlyacho 4-chome Ushiku-shi Ibaraki-ken(JP) Inventor: Shinoda, Masaki 11-4-402, Chuo 1-chome, Ami-machi Inashiki-gun Ibaraki-ken(JP) Inventor: Tsutsui, Mikio 11-5-104, Chuo 1-chome, Ami-machi Inashiki-gun Ibaraki-ken(JP) Inventor: Takahashi, Kazuo 4-4, Namiki 3-chome, Sakura-mura Niihari-gun Ibaraki-ken(JP) Inventor: Miida, Hitoshi 26-36, Kasumigaokamachi Tsuchiura-shi Ibaraki-ken(JP)

74) Representative: Peaucelle, Chantal et al S.C. Ernest Gutmann - Yves Plasseraud 67, boulevard Haussmann F-75008 Paris (FR)

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid (Art. 99(1) European patent convention).

Description

35

45

50

55

BACKGROUND OF THE INVENTION

This invention relates to a novel thiazole derivative having leukotriene antagonistic action and a leukotriene antagonist containing the same as the active ingredient.

For prophylaxis or therapy of allergic diseases, there are the method which inhibits liberation of the mediator of anaphylaxis and the method which permits an antagonist to act on the mediator liberated. Disodium cromoglycate [The Merck Index, ninth edition 2585 (1976)] and Tranirast [Journal of Japanese Pharmacology, 74, 699 (1978)] are typical drugs belonging to the former and those belonging to the latter may include drugs antagonistic to hystamine which is one of the mediators of alllergic reactions such as diphenehydramine, chlorophenylamine, astemizole, terfenadine, clemastine, etc., as well known drugs. However, a substance which cannot be antagonized with an anti-hystamine agent, namely SRS (Slow Reacting Substance) has been suggested to be liberated from the lung of a bronchial asthma patient [Progr. Allergy, 6, 539 (1962)], and recently these SRS [leukotriene C4 (LTC4), leukotriene D4 (LTD4) and leukotriene E4 (LTE4)] are comprehensively called SRS [Proc. Natl. Acad. Sci. U.S.A., 76, 4275 (1979) and 77, 2014 (1980); Nature, 285, 104 (1980)] and considered as the important factor participating in human asthma attack [Proc. Natl. Acad. Sci. U.S.A., 80, 1712 (1983)].

Some leukotriene antagonists have been known in patents or literatures. For example, there have been known FPL-55712 [Agents and Actions, 9, 133 (1979)] represented by the following formula:

KC-404 [Jap. J. Pharm., 33, 267 (1983)] represented by the following formula:

KZ-111 [Chem. Abst, registration number 72637-30-0] represented by the following formula:

and the compound represented by the following formula (U.S. Patent No. 4,296,129):

$$C = C - CONHR_{2}$$

$$R_{5}$$

wherein R_1 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or a group represented by the following formula:

5

10

20

25

30

35

40

50

55

(wherein R₃ and R₄ each represent an alkyl group having 1 to 3 carbon atoms); R₂ represents an alkyl group having 8 to 15 carbon atoms or a cycloalkyl group having 6 to 12 carbon atoms; R₅ and R₆ each represent a hydrogen atom or a methyl group. However, none of these have been clinically applied.

On the other hand, of the thiazole derivatives, as the compounds in which the 2-position of thiazole and the phenyl group are bonded through 2 to 4 atoms, there have been known a large number of compounds such as the compound (Japanese Unexamine Patent Publication No. 22460/1973) represented by the formula:

the compound represented by the following formula [Farmaco. Ed. Sci, 21, 740 (1966)]:

the compound represented by the following formula (German Patent No. 31 48 291):

and the compound represented by the following formula (Japanese Unexamined Patent Publication No. 16871/1984):

However, in any of these literatures or patents, nothing is mentioned about the leukotriene antagonistic action.

The present inventors have sought after compounds having antagonistic action to leukotriene and effective as the therapeutical medicine for various diseases caused by leukotriene, and consequently found that a novel thiazole derivative has excellent leukotriene antagonistic action to accomplish the present invention.

SUMMARY OF THE INVENTION

The thiazole derivative of the present invention is a compound represented by the following formula (I):

$$R_5$$
 R_3
 R_1
 R_2
 R_2
 R_2

20

15

wherein R1 and R2 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a lower alkoxycarbonyl group or a substituted or unsubstituted phenyl group or taken together represent a tetramethylene group corresponding to a fused cyclohexane ring or a butadienylene group which is unsubstituted or substituted with a halogen atom, a lower alkoxy group, a lower alkoxycarbonyl group or an alkyl group having 1 to 3 carbon atoms corresponding to a fused benzene ring; R₃, R₄, R₅ and R₆ each independently represent a hydrogen atom, a hydroxyl group, a lower alkoxy group, an alkyl group having 1 to 3 carbon atoms or a halogen atom; A represents a linking group having 2 to 4 chain members; B represents a linking group having 2 to 5 chain members; and Q represents a carboxyl group, a lower alkoxy group, a hydroxyl group, an alkoxycarbonyl group having 2 to 6 carbon atoms or a 5-tetrazolyl group.

DETAILED DESCRIPTION OF THE INVENTION

In the above formula (I), the alkyl group having 1 to 3 carbon atoms may include methyl, ethyl, propyl

and isopropyl. The alkyl group having 1 to 8 carbon atoms may include, in addition to the alkyl groups having 1 to 3 carbon atoms as mentioned above, straight and branched aliphatic groups having 4 to 8 carbon atoms such as butyl, isobutyl, sec-butyl, t-butyl, amyl, isoamyl, sec-amyl, sec-isoamyl (1,2dimethylpropyl), t-amyl (1,1-dimethylpropyl), hexyl, isohexyl (4-methylpentyl), sec-hexyl (1-methylpentyl), 2methylpentyl, 3-methylpentyl, 1,1-dimethylbutyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 1,2-dimethylbutyl, 1,3dimethylbutyl, 1,2,2-trimethylpropyl, heptyl, isoheptyl (5-methylhexyl), 2,2-dimethylpentyl, 3,3-dimethylpentyl, 4,4-dimethylpentyl, 1,2-dimethylpentyl, 1,3-dimethylpentyl, 1,4-dimethylpentyl, 1,2,3-trimethylbutyl, 1,1,2-trimethylbutyl, 1,1,3-trimethylbutyl, octyl, isooctyl (6-methylbetyl), sec-octyl (1-methylbetyl) and toctyl (1,1,3,3-tetramethylbutyl) group, etc. The lower alkoxy group may include straight and branched alkoxy groups having 1 to 3 carbon atoms such as methoxy, ethoxy, propoxy and isopropoxy group, etc. The lower alkoxy carbonyl group may include straight and branched alkoxycarbonyl groups having 2 to 4 carbon atoms such as methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl and isopropoxycarbonyl group. The alkoxy carbonyl group having 2 to 6 carbon atoms may include, in addition to the lower alkoxycarbonyl group as mentioned above, alkoxycarbonyl groups having 5 to 6 carbon atoms such as butoxycarbonyl group and amyloxycarbonyl group and isomer-substituted groups of these. Examples of the halogen atom may include fluorine atom, chlorine atom, bromine atom and iodine atom. As the substituent on the substituted phenyl group in the definition of R₁ and R₂, there may be employed, for example, the alkyl group having 1 to 3 carbon atoms, lower alkoxy group, lower alkoxycarbonyl group and halogen atom as mentioned above. As the linking group in the definition of A, any group having 2 to 4 atoms as the chain member constituting the linking group may be used, but it should particularly preferably contain carbon atom, oxygen atom, and nitrogen atom. Examples of such a linking group may include -CH = CH-, -CH2 CH2-, -OCH2-, -NHCH2-, -CONH-, -CH = CH-CONH-, -CH2 OCH2-, more preferably -CH = CH-, -CH2 CH2-. As the linking group in the definition of B, any group having 2 to 5 atoms in the chain group constituting the linking group may be used, but it should particularly preferably contain carbon atom, oxygen atom and nitrogen

atom. Examples of such a linking group may include

- -(CH₂)_n-CONH- (wherein n represents an integer of 0-3),
- -(CH₂)_n-NH- (wherein n represents an integer of 1-4),
- -(CH₂)_n-O- (wherein n represents an integer of 1-4),
- -(CH₂)_n- (wherein n represents an integer of 2-5),

(wherein R₇ and R₈ each independently represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms as defined above),

(wherein R_7 and R_8 have the same meanings as defined above),

(wherein R₇ and R₈ have the same meanings as defined above),

(wherein R₉, R₁₀, R₁₁ and R₁₂ each independently represent a hydrogen atom, a phenyl group or an alkyl group having 1 to 6 carbon atoms),

55

50

10

20

25

30

35

(wherein $R_{9},\,R_{10},\,R_{11}$ and R_{12} have the same meanings as defined above),

(wherein $\ensuremath{R_9}$ and $\ensuremath{R_{11}}$ have the same meanings as defined above),

10

15

20

25

45

55

(wherein R₁₀ and R₁₂ have the same meanings as defined above),

(wherein R₁₀ and R₁₂ have the same meanings as defined above),

40 (wherein R₁₀ and R₁₂ have the same meanings as defined above),

(wherein R₁₀ and R₁₂ have the same meanings as defined above),

(wherein R_{10} and R_{12} have the same meanings as defined above),

10 (wherein R₁₀ and R₁₂ have the same meanings as defined above),

15

20

25

30

35

40

45

55

(wherein $\ensuremath{\mathsf{R}}_{10}$ and $\ensuremath{\mathsf{R}}_{12}$ have the same meanings as defined above),

RIO RIZ CH 2 O

(wherein R_{10} and R_{12} have the same meanings as defined above),

(wherein R₁₁ and R₁₂ have the same meanings as defined above),

50 (wherein R₁₁ and R₁₂ have the same meanings as defined above), more preferably

(wherein R_{11} and R_{12} each represent a hydrogen atom and R_9 and R_{10} each independently represent an alkyl group having 1 to 6 carbon atoms).

The thiazole derivative of the present invention is not limited to a specific isomer, but includes all of geometric isomers, steric isomers, optical isomers and their mixtures such as racemic mixture.

The thiazole derivative of the present invention can be synthesized according to various methods.

For example, in the above formula (I), the compound wherein the linking group B is bonded through a nitrogen atom to the benzene ring can be synthesized according to the synthetic routes [A]-[C].

In the synthetic routes, R_1 , R_2 , R_3 , R_4 , R_5 , R_6 and A have the same meanings as defined above, B_3 represents a direct bond or a linking group having 1 to 3 chain members, B_4 represents a linking group having 1 to 4 chain members, M represents an alkali metal atom, X represents a halogen atom and R_{13} represents an alkyl group having 1 to 5 carbon atoms.

50

The aniline derivative (II) used as the starting material can be synthesized according to the known method [Tetrahedron Letters, 25, 839 (1984)].

In the synthetic route [A], the aniline derivative (II) is allowed to react with 0.8 to 2 equal amounts of a cyclic acid anhydride to obtain the compound (Ia) (step [A-1]). As the reaction solvent, there may be employed aromatic hydrocarbons such as toluene, benzene, etc.; ether type solvent such as ethyl ether, dioxane, tetrahydrofuran, etc.; halogenated hydrocarbons such as chloroform, dichloromethane, etc. This reaction may be practiced at a temperature from under ice-cooling to the boiling point of the solvent, particularly preferably from room temperature to 60 °C. The compound (Ia) can be converted to an alkali metal salt (Ib) by the reaction with a carbonate, a hydrogen carbonate or a hydroxide of the corresponding alkali metal in a hydrous alcoholic solvent (step [A-2]). Further, the compound (Ib) can be allowed to react with 1 to 3 equivalents of an alkylating agent such as an alkyl halide or an alkyl sulfonate, etc., in a non-protonic polar solvent such as dimethyl sulfoxide, dimethylformamide, hexamethylphosphoramide triamide, etc., at 0 to 100 °C to be alkylated and converted to a carboxylic acid ester (Ic) (step [A-3]).

In the synthetic route [B], the compound (II) can be acylated by the reaction with a carboxylic acid monoester monohalide in the presence of an organic base such as pyridine, triethylamine, etc., or an inorganic base such as potassium carbonate, sodium hydrogen carbonate, etc., at 0-100 °C to synthesize the compound (Ic) (step [B-1]). As the reaction solvent, there may be used aromatic hydrocarbons, ether type solvents, halogenated hydrocarbons or non-protonic polar solvents. The compound (Ic) can be hydrolyzed in a conventional manner in a hydrous alcoholic solvent with an alkali metal type inorganic base such as sodium hydroxide, potassium carbonate, etc., to be readily converted to the compound (Ib) (step [B-2]). Also, after the above hydrolysis, the product can be treated with a mineral acid to obtain a free carboxylic acid (Ia) (step [B-3]).

In the synthetic route [C], the compound (II) can be allowed to react with a ω-halocarboxylic acid ester in the presence of an organic base such as triethylamine, pyridine, etc., in an aromatic hydrocarbon type, ether type or halogenated hydrocarbon type solvent at a temperature from 0 °C to the boiling point of the solvent to effect N-alkylation and result in synthesis of the compound (Id) (step [C-1]). The compound (Ie) can be synthesized according to the same method as in the step [B-3] (step [C-2]), and the compound (If) can be synthesized in the same manner as in the step [A-2] or the step [B-2] (step [C-3], step [C-4]).

In the above formula (I), the compound wherein the linking group B is bonded through an oxygen atom to the benzene ring can be synthesized according to the synthetic route [D] shown below.

30

35

40

45

50

In the above synthetic route, R_1 , R_2 , R_3 , R_4 , R_5 , R_6 , R_{13} , A, B₄, M and X have the same meaning as defined above.

The phenol derivative (III) used as the starting material can be synthesized according to the known method [Journal of Medicinal Chemistry, 25, 1378 (1982)].

By O-alkylation of the compound (III) with a ω -halocarboxylic acid ester in a solvent of ketone type such as acetone, methyl ethyl ketone, etc., or alcohol type, in the presence of an inorganic base such as potassium carbonate, sodium hydrogen carbonate, etc., at a temperature from 0 °C to the boiling point of the solvent, the phenylether compound (Ig) can be synthesized (step [D-1]). The compound (Ih) can be obtained from the compound (Ig) similarly as in the step [B-2] (step [D-2]), and the compound (Ih) according to the same method as in the step [A-2] (step [D-3]), or from the compound (Ig) in the same manner as in the step [B-2] (step [D-4]).

In the above formula (I), the compound when the linking group A is a vinylene group can be synthesized according to the synthetic route [E] shown below.

In the above synthetic route, R₁, R₂, R₃, R₄, R₅, R₆, R₁₃ B and M have the same meanings as defined above. The benzaldehyde derivative [IV] used as the starting material can be synthesized according to the known method [Journal of Medicinal Chemistry, 25, 1378 (1982)].

The compound (Ij) can be obtained according to the dehydrating condensation reaction by heating the benzaldehyde derivative (IV) and a 2-methylthiazole in acetic anhydride under nitrogen gas stream to 100-

200 °C (step [E-1]). Hydrolysis of the compound (Ij) in the same manner as in the step [B-3] gives the compound (Ik) (step [E-2]). From the compound (Ik), an alkali metal salt (II) can be obtained in the same manner as in the step [A-2] (step [E-3]). The alkali metal salt (II) can be obtained also by treating similarly the compound (Ij) as in the step [B-2] (step [E-4]).

The compound (I) or the present invention is characterized by having a marked leukotriene antagonistic action.

More specifically, when the antagonistic action to SRS was tested in vitro by use of an extirpated ileum of a guinea pig for the compound of the present invention, it has been found to have a selective antagonistic action for SRS even at an extremely low concentration. When further detailed LTD₄ antagonistic test was conducted by use of a guinea pig for some of the compounds of the present invention which have exhibited strong action in vitro test, it has been found that they can inhibit remarkably the asthmatic symptoms induced by LTD₄.

The leukotriene antagonist of the present invention contains the compound represented by the above formula (I) or its pharmaceutically acceptable salt as the active ingredient together with a solid or liquid carrier or diluent for medicine, namely additives such as excepients, stabilizers, etc. When the compound (I) has a carboxylic group, preferable salts are non-toxic salts which are pharmaceutically acceptable such as alkali metal salts and alkaline earth metal salts such as sodium salts, pottasium salts, magnesium salts, calcium salts or aluminum salts. It is similarly preferable to use adequate non-toxic amine salts such as ammonium salts, lower-alkylamine [e.g. triethylamine] salts, hydroxy lower-alkylamine [e.g. 2-hydroxyethylamine, bis-(2-hydroxyethyl)amine, tris(hydroxymethyl)aminomethane or N-methyl-D-glucamine] salts, cycloalkylamine [e.g. dicyclohexylamine] salts, benzylamine [e.g. N,N'-dibenzylethylenediamine] salts and dibenzylamine salts. In view of the basicity of the thiazole ring of the compound (I) of the present invention, preferable salts may include non-toxic salts such as hydrochlorides, methanesulfonates, hydrobromides, sulfates, phosphates, fumarates, succinates, etc. These salts are water-soluble and hence most preferable when used for injections. In said leukotriene antagonist, the proportion of the active ingredient to the carrier component in therapy may be variable between 1 wt.% to 90 wt.%. The leukotriene antagonist may be administered orally in the dosage form such as granules, fine particles, powders, tablets, hard capsules, soft capsules, syrup, emulsion, suspension or solution, or alternatively administered intravenously, intramascularly or subcutaneously as injections. Also, it can be used as topical administration preparation to rectum, nose, eye, lung in the dosage form such as suppository, collunarium, eye drops or inhalent. Further, it can be used in the form of powder for injection which is to be formulated when used. It is possible to use an organic or inorganic, solid or liquid carrier or diluent for medicine suitable for oral, rectal, parenteral or local administration for preparation of the leukotriene antagonist of the present invention. Examples of the excepient to be used in preparation of a solid preparation may include lactose, sucrose, starch, talc, cellulose, dextrin, kaolin, calcium carbonate, etc. Liquid preparations for oral administration, namely, emulsion, syrup, suspension, solution, etc., contain inert diluents generally employed such as water or vegetable oils, etc. These preparations can contain auxiliary agents other than inert diluents such as humectants, suspension aids, sweeteners, aromatics, colorants or preservatives. It may also be formulated into a liquid preparation which is contained in capsules of absorbable substances such as gelatin. As the solvent or suspending agent to be used for production of preparations for parentheral administration, namely injections, suppositories, collunarium, eye drops, inhalent, etc., there may be employed, for example, water, propylene glycol, polyethylene glycol, benzyl alcohol, ethyl oleate, lecithin, etc. As the base to be used for suppository, there may be included, for example, cacao fat, emulsified cacao fat, laurine fat, Witepp sol, etc. The preparations can be prepared according to conventional methods.

The clinical dose, when used by oral administration, may be generally 0.01 to 1000 mg/day as the compound of the present invention for human adult, preferably 0.01 to 100 mg, but it is more preferable to increase or decrease suitably the dose depending on the age, condition of disease and symptoms. The above mentioned dose per day of the leukotriene antagonist may be administered once per day or in 2 or 3 divided doses per day at suitable intervals, or intermittently.

On the other hand, when used as an injection, it is preferable to administer continuously or intermittently 0.001 to 100 mg/administration as the compound of the present invention to human adult.

According to the present invention, a novel thiazole derivative having remarkable leukotriene antagonistic action can be provided. Said thiazole derivative is useful as the leukotriene antagonist for prophylaxis and therapy of various diseases in which leukotriene participates.

The present invention is described in more detail by referring to Synthesis examples, Examples and Test examples, but these are not intended to limit the scope of the present invention at all. In Synthesis examples and Examples, the symbols of "IR", "TLC", "NMR" and "MS" represent "infrared-absorption spectrum", "thin layer chromatography", "nuclear magnetic resonance spectrum" and "mass analysis",

respectively, the proportion of the solvent written at the site of separation by chromatography indicating volume ratio, the solvent in the parenthesis of "TLC" indicating a developing solvent, "IR" being measured according to the KBr tablet method unless otherwise specifically noted, and the solvent in the parenthesis of "NMR" indicating the measurement solvent.

Synthesis example 1

Synthesis of 4-isopropyl-2-methylthiazole

To a solution of 25 g of 3-methyl-2-butanone dissolved in 174 ml of methanol, 15.8 ml of bromine was added dropwise while temperature of the reaction mixture was maintained within the range of 0 to 5 °C, and further the mixture was stirred at 10 °C for 1 hour. Then, 87 ml of water was added and the mixture was stirred at room temperature overnight. After completion of the reaction, the reaction mixture was extracted with ethyl ether, the extract was washed with 10% aqueous potassium carbonate solution and dried over calcium chloride, followed by evaporation of the solvent to give 53.2 g of a crude product of 1-bromo-3-methyl-4-butanone as colorless liquid. Further, without purification, 43.2 g of the above bromoketone was dissolved in 100 ml of ethanol and the solution was added at room temperature to a solution of 19.7 g of thioacetamide dissolved in 150 ml of ethanol. After the reaction was completed by refluxing for 2.5 hours, ethanol was evaporated under reduced pressure and the residue was ice-cooled to precipitate crystals. The crystals are washed with ethyl ether, poured into 250 ml of an aqueous saturated sodium hydrogen carbonate solution, free bases were extracted with n-hexane, followed by drying over anhydrous magnesium sulfate and concentration under reduced pressure to give 27.1 g (yield 73%) of the title compound as pale brown liquid.

```
IR (film): \nu = 2950, 1510, 1450, 1165, 730 cm<sup>-1</sup>
NMR (CDCl<sub>3</sub>): \delta = 1.30(6\text{H,d}), 2.68(3H,s), 3.07(1H,m), 6.67(1H,s)
```

Synthesis example 2

25

30

55

Synthesis of 4-isopropyl-2-(trans-3-nitrostyryl) thiazole

To 11.3 ml of acetic anhydride were added 29.0 g of 3-nitrobenzaldehyde and 27.1 g of 4-isopropyl-2-methylthiazole and the reaction was carried out under nitrogen gas stream at 170 °C for 23 hours. After completion of the reaction, low boiling materials were evaporated under reduced pressure and the residue was recrystallized from ethyl ether-n-hexane to give 16.8 g (yield 32%) of the title compound as yellowish white crystals.

```
NMR (CDCl<sub>3</sub>): \delta = 1.34(6H,d), 3.12(1H,m), 6.86(1H,s), 7.2-8.4(6H,m)
IR: \nu = 1625, 1590, 1435, 1305, 1210, 945, 770 \text{ cm}^{-1}
```

Synthesis example 3

Synthesis of 2-(3-nitrophenyl)methoxymethylbenzothiazole

A mixture of 1.60 g of 3-nitrobenzyl chloride, 1.3 g of 2-hydroxymethylbenzothiazole and 0.54 g of potassium carbonate in 20 ml of acetone was stirred at room temperature for 1.5 hours and then refluxed for 30 minutes. After evaporation of acetone under reduced pressure, the residue was dissolved in ethyl acetate, washed with water and dried over magnesium sulfate, followed by evaporation of the solvent under reduced pressure. The residue was purified through a silica gel column chromatography by use of ethyl ether-n-hexane to obtain 1.7 g (yield 73%) of the title compound.

```
IR: \nu = 1520, 1340, 1090, 800, 766, 725 \text{ cm}^{-1}

NMR (CDCl<sub>3</sub>): \delta = 4.65(2\text{H,s}), 4.90(2\text{H,s}), 7.1-8.2 (8\text{H,m})
```

Synthesis example 4

Synthesis of 2-[2-(3-hydroxyphenyl)ethyl]benzothiazole

A mixture of 6.0 g of 2-(trans-3-hydroxystyryl) benzothiazole and 0.5 g of 5% palladium-carbon in 80 ml of ethanol was stirred under hydrogen gas stream under normal pressure at 50 to 60 °C for 3 hours. After completion of the reaction, the catalyst was filtered off and the filtrate was evaporated under reduced

pressure to obtain 5.5 g (yield 92%) of the title compound as pale gray crystals.

IR: $\nu = 3050, 1580, 1480, 1280, 760 \text{ cm}^{-1}$

m.p.: 129-130 °C

Synthesis example 5

Synthesis of 2-(trans-3-hydroxystyryl)-4-ethyl-5-methylthiazole

An amount of 3.0 g of 2-(trans-3-aminostyryl)-4-ethyl-5-methylthiazole was added to 18 ml of 20% hydrochloric acid and to the mixture was added dropwise slowly 3 ml of an aqueous solution of 0.86 g of sodium nitrite while maintaining the inner temperature at 4 to 5 °C. After the mixture was stirred at the above temperature for 1.5 hours, the reaction mixture was added into 50 ml of boiling water over 20 minutes. After the mixture was cooled to room temperature, the precipitates formed were collected by filtration, washed with aqueous saturated sodium hydrogen carbonate solution and with water, followed by drying under reduced pressure. The crude product was washed with toluene and dried under reduced pressure to obtain 2.1 g (yield 70%) of the title compound.

m.p.: 161-162 °C IR: ν = 1620, 1598, 1575, 1215, 950, 778 cm⁻¹

so Synthesis example 6

(1) Synthesis of 2-(trans-3-hydroxystyryl)benzothiazole

A mixture of 25 g of 3-hydroxybenzaldehyde, 36.6 g of 2-methylbenzothiazole, 38.8 ml of acetic anhydride and 7.7 ml of formic acid was heated at 120 °C for 25 hours. The low boiling materials were evaporated together with toluene under reduced pressure, and the residue was added to 150 ml of methanol and refluxed with addition of 3 g of potassium carbonate for 1 hour. After cooled to room temperature, the mixture was filtered and filtrate was concentrated. The crude product formed was washed with methanol and ethyl ether and dried under reduced pressure to obtain 20.6 g (yield 40%) of the title compound.

m.p.: 210-211 °C IR: $\nu = 1620, 1570, 1190, 1145, 935, 750 \text{ cm}^{-1}$

(2) The operation similar to (1) was conducted to obtain 2-(trans-3-hydroxystyryl)-4-phenylthiazole (yield 21%).

m.p.: 150-151 °C IR: ν = 3450, 1580, 1280, 950, 730 cm⁻¹

40 Synthesis example 7

55

Synthesis of ethyl 5-(3-cyanophenyl-4-pentenoate

An amount of 0.66 g of 60% sodium hydride was added to 14 ml of anhydrous dimethyl sulfoxide and the mixture was heated under nitrogen gas stream to 75 to 80 °C to form dimsyl anions. After cooled to mixture was added to а solution of temperature. the ethoxycarbonylpropyltriphenylphosphonium bromide in 20 ml of anhydrous dimethyl sulfoxide. The mixture was stirred at room temperature for 5 minutes and a solution of 1.5 g of 3-cyanobenzaldehyde in 4 ml of anhydrous dimethyl sulfoxide, followed by stirring at room temperature for 1.5 hours. After completion of the reaction, 5% hydrochloric acid was added to stop the reaction, and the reaction mixture was extracted with toluene. After evaporation of the solvent under reduced pressure, the residue was purified through silica gel column chromatography by use of ethyl ether-n-hexane to obtain 0.94 g (yield 36%) of the title compound as colorless oily product.

IR (film): $\nu = 1725$, 1245, 1180, 1150, 960, 785 cm⁻¹ NMR (CCl₄): $\delta = 1.25(3H,t)$, 2.2-2.8(4H,m), 4.09(2H,q), 6.2-6.6(2H,m), 7.3-7.7(4H,m)

Synthesis example 8

Synthesis of ethyl 5-(3-formylphenyl)pentanoate

An amount of 660 mg of ethyl 5-(3-cyanophenyl)-4-pentenoate and 60 mg of 5% palladium-carbon were added into 6 ml of ethanol and catalytic reduction was carried out under hydrogen gas stream at room temperature for 18 hours. After the catalyst was filtered off, the filtrate was evaporated under reduced pressure and 600 mg of the crude product was used for the subsequent reaction.

Into a suspension of 986 mg of anhydrous stannous chloride in anhydrous ethyl ether was introduced hydrogen chloride gas for 2 minutes to provide a uniform solution. Next, 600 mg of the above saturated carboxylic acid ester dissolved in 4 ml of ethyl ether was added and hydrogen chloride gas was introduced again for 1 minute, followed by stirring at room temperature for 5 hours. Subsequently, each 5 ml of ethyl ether and water was added and after stirred at room temperature for 1 hour, the organic layer was extracted with toluene. After drying over magnesium sulfate, the solvent was evaporated under reduced pressure and the residue was purified through silica gel column chromatography by use of ethyl ether-n-hexane to give 460 mg (yield 68%) of the title compound as colorless oily product.

```
IR (film): \nu = 1725, 1690, 1440, 1365, 1235, 1180, 1020, 790 cm<sup>-1</sup>
NMR (CCl<sub>4</sub>): \delta = 1.20(3H,t), 1.4-1.9(4H,m), 2.0-2.9(4H,m), 4.5(2H,q), 7.2-7.8(4H,m), 9.88(1H,s)
```

20 Synthesis example 9

Synthesis of 2-[trans-3-(3-cyanopropylamino) styryl)benzothiazole

To 50 ml of toluene were added 2.02 g of triethylamine and 5.04 g of 2-(trans-3-aminostyryl)-benzothiazole at room temperature, and then 2.96 g of 4-bromobutyronitrile was added to carry out the reaction at 110 °C for 7 hours. After completion of the reaction, the reaction mixture was extracted with ethyl acetate. After evaporation of the solvent under reduced pressure, the residue was purified through silica gel column chromatography by use of ethyl acetate-ethyl ether-n-hexane (2:5:5) to give 2.55 g (yield 40%) of the title compound as colorless oily product.

```
m.p.: 97-98 °C
IR: \nu = 3400, 2250, 1600, 950, 760 cm<sup>-1</sup>
```

Synthesis example 10

Synthesis of 4-isopropyl-2-(trans-3-aminostyryl) thiazole

To a solution of 16.8 g of 4-isopropyl-2-(trans-3-nitrostyryl)thiazole dissolved in 60 ml of ethanol was added a solution of 48.4 g of stannous chloride dihydrate in 60 ml of ethanol and the mixture was refluxed for 1.5 hours. After the reaction mixture was cooled to room temperature, the mixture was adjusted to pH 13 with addition of 30% aqueous sodium hydroxide solution and then the basic portion was extracted with the use of ethyl acetate and dried over magnesium sulfate, followed by evaporation of the solvent under reduced pressure. The solid residue formed was recrystallized from ethyl ether-n-hexane to obtain 7.1 g (yield 47%) of the pale yellowish white title compound.

```
m.p.: 62-63 °C

IR: \nu = 3430, 3300, 1600, 1580, 960, 780, 740 cm<sup>-1</sup>

NMR (CDCl<sub>3</sub>): \delta = 1.32(6H,d), 2.90-3.4(1H,m), 3.70(2H,s), 6.5-7.3(7H,m)
```

Synthesis example 11

50 Synthesis of various thiazole derivatives

By carrying out the treatment similarly as in Synthesis example 10, various thiazole derivatives shown as Nos. 1-32 and 36-38 in Table 1 were obtained.

Synthesis example 12

Synthesis of 2-[2-(3-aminophenyl)ethyl]-4-ethyl-5-methylthiazole

An amount of 1.0 g of 2-(3-aminostyryl)-4-ethyl-5-methylthiazole and 200 mg of 5% palladium-carbon were added to 20 ml of ethanol and catalytic reduction was carried out in a hydrogen gas atmosphere at room temperature and normal pressure for 12 hours. After the reaction mixture was filtered, the solvent was evaporated under reduced pressure to give 0.90 g (yield 90%) of the title compound as pale yellow crystals.

m.p.: 64-65 °C

IR: $\nu = 3410, 1590, 1300, 1120, 950, 760 \text{ cm}^{-1}$

Synthesis example 13

10

15

20

30

35

50

Synthesis of various 2-[2-(3-aminophenyl)ethyl] thiazoles

By carrying out the treatment similarly as in Synthesis example 12, various 2-[2-(3-aminophenyl)ethyl]-thiazoles shown as Nos. 34 and 35 in Table 1 were obtained.

Synthesis example 14

Synthesis of 2-(trans-3-amino-4-hydroxystyryl) benzothiazole

To a solution of 282 mg of 2-(trans-3-amino-4-methoxystyryl)benzothiazoledissolved in 30 ml of dichloromethane was added 380 mg of phosphorous tribromide at 70 °C, and the mixture was gradually returned to room temperature and stirred overnight. After an aqueous saturated sodium, hydrogen carbonate solution was added to the reaction mixture to make it weakly alkaline, the mixture was extracted with ethyl acetate. The extract was dried over anhydrous magnesium sulfate and the solvent was evaporated under reduced pressure to give 260 mg (yield 97%) of the title compound.

m.p.: 192-1

IR:

192-193 °C

 ν = 3400, 1590, 1510, 1290, 800, 760 cm⁻¹

Synthesis example 15

Synthesis of 2-(trans-3-amino-6-hydroxystyryl) benzothiazole

By carrying out the treatment similarly as in Synthesis example 14, the title compound shown as No. 33 in Table 1 was obtained.

Synthesis example 16

Synthesis of 2-(trans-3-aminostyryl)-5-methoxycarbonylbenzothiazole

To a solvent mixture of 50 ml of dioxane and 30 ml of methanol, 2.0 g of 5-methoxycarbonyl-2-(trans-3-nitrostyryl)benzothiazole was added and, under vigorous stirring, a solution of 0.37 g of calcium chloride in 55 ml of water and 9.8 g of zinc powder were added, followed by refluxing for 2 hours. After cooled to room temperature, the reaction mixture was filtered and the filtrate was concentrated under reduced pressure, and the solid residue formed was washed with toluene to give 1.4 g (yield 77%) of the title compound.

m.p.: 165-167 °C IR: $\nu = 1710, 10$

 $\nu = 1710, 1630, 1305, 1100, 755 \text{ cm}^{-1}$

Example 1

Synthesis of 2-[trans-3-(cis-3-carboxypropenamide) styryl]benzothiazole (compound No. 1)

To 8 ml of toluene were added 158 mg of 2-(trans-3-aminostyryl)benzothiazole and 71 mg of maleic anhydride, and the mixture was heated at 80 °C for 1 hour. After cooled to room temperature, the crystals formed were collected by filtration and recrystallized from ethanol to give 194 mg (yield 88%) of the yellowish white title compound.

m.p.: 190-191 °C

IR: $\nu = 1700, 1625, 1550, 1490, 1405, 953 \text{ cm}^{-1}$

Example 2

5

10

Synthesis of various anilide carboxylic acids

By carrying out the treatment similarly as in Example 1, the title compounds shown as compounds Nos. 2-165 and 445-448 in Table 2 were obtained.

Example 3

Synthesis of 2-(trans-3-oxalylaminostyryl)-4-phenylthiazole (compound No. 166)

To a suspension of 1.0 g of 2-(trans-3-ethyloxalylaminostyryl)-4-phenylthiazole in 40 ml of dioxane was added, under vigorous stirring, 1 ml of an aqueous 20% potassium hydroxide solution, and hydrolysis was carried out at room temperature for 1 hour. To the reaction mixture was added 20% hydrochloric acid to adjust the pH to 1-2, and the yellow precipitates formed were collected by filtration and washed with ethanol and chloroform, followed by drying under reduced pressure to give 870 mg (yield 94%) of the title compound.

m.p.: 291-292 °C

IR: $v = 1715, 1685, 1590, 1520, 1300, 1180, 740 \text{ cm}^{-1}$

Example 4

25

30

45

Synthesis of various anilidecarboxylic acids

By carrying out the treatment similarly as in Example 3, the title compounds shown as compounds Nos. 167-169 in Table 2 were obtained.

Example 5

Synthesis of 2-[trans-3-(3-carboxypropylamino) styryl]-4-propylthiazole (compound No. 170)

To 20 ml of toluene were added 732 mg of 2-(trans-3-aminostyryl)-4-propylthiazole, 1170 mg of ethyl 4-bromobutyrate and 606 mg of triethylamine, and the reaction was carried out at 100 °C for 21 hours. After the reaction mixture was cooled to room temperature, 10 ml of ethanol and 10 ml of an aqueous 5% sodium hydroxide solution were added and the mixture was stirred at room temperature for 1.5 hours to effect hydrolysis of the ester. After completion of the reaction, ethanol was evaporated under reduced pressure and the residue was adjusted to pH 1-2 with addition of 10% hydrochloric acid, followed by extraction with ethyl ether. After drying over anhydrous magnesium sulfate, the solvent was evaporated and the solid formed was recrystallized from ethyl ether to give 629 mg (yield 64%) of the title compound.

m.p.: 115-116 °C

IR: $\nu = 1705, 1595, 1480, 1190, 940, 740 \text{ cm}^{-1}$

Example 6

Synthesis of various anilinocarboxylic acid

By carrying out the treatment similarly as in Example 5, the title compounds shown as compounds Nos. 171-182 in Table 2 were obtained.

Example 7

Synthesis of 2-(trans-3-ethyloxalylaminostyryl)-4-phenylthiazole (compound No. 183)

To 30 ml of toluene were added 0.7 g of pyridine and 2.0 g of 2-(trans-3-aminostyryl)-4-phenylthiazole and a solution of 1.1 g of ethyloxalyl chloride in 5 ml of toluene was added dropwise at 0 °C under stirring,

followed by heating at 50 °C for 1.5 hours. The reaction mixture was poured into ice-cold water and crystals formed were collected by filtration and dried, followed by recrystallization from chloroform to give 2.5 g (yield 90%) of the title compound.

m.p.: 193-194 °C

IR: $\nu = 3325, 1715, 1700, 1300, 730 \text{ cm}^{-1}$

Example 8

10

Synthesis of various anilidecarboxylic acid esters

By carrying out the treatment similarly as in Example 7, the title compounds shown as compounds Nos. 184-188 in Table 2 were obtained.

Example 9

Synthesis of 2-[trans-3-(cis-3-isoamyloxycarbonylpropenamide)styryl]benzothiazole (compound No. 189)

To 6 ml of hexamethylphosphoric triamide were added 1.0 g of sodium salt of 2-[trans-3-(cis-3-carboxypropenamide)styryl]benzothiazole and 2.13 g of isoamyliodide, and the mixture was stirred at room temperature for 4 hours. The reaction mixture was extracted with toluene in a conventional manner, the extract was dried over anhydrous magnesium sulfate and the solvent was evaporated under reduced pressure, followed by recrystallization of the residue from ethyl ether-toluene to give 616 mg (yield 55%) of the title compound.

m.p.: 82-83 °C

IR: $\nu = 3400, 1720, 1660, 1580, 1440, 1200, 755 \text{ cm}^{-1}$

Example 10

30

Synthesis of various anilidecarboxylic acid esters

By carrying out the treatment similarly as in Example 9, the title compounds shown as compounds Nos. 190-195 in Table 2 were obtained.

Example 11

Synthesis of 2-[trans-3-(4-ethoxycarbonyl)butylstyryl]benzothiazole (compound No. 196)

A mixture of 460 mg of ethyl 5-(3-formylphenyl) pentanoate, 322 mg of 2-methylbenzothiazole and 0.11 ml of acetic anhydride was heated under nitrogen gas stream to 170 °C for 30 hours. The reaction mixture was directly purified through silica gel column chromatography by use of ethyl ether-n-hexane to obtain 320 mg (yield 45%) of the title compound as brown oily product.

IR: $\nu = 1720, 1620, 1485, 1180, 950, 750 \text{ cm}^{-1}$

NMR (CCl₄): $\delta = 1.25(3H,t), 1.35-2.05(4H,m), 2.01-2.85(4H,m), 4.07(2H,q), 7.05-8.10(10H,m)$

45 Example 12

Synthesis of various 2-(trans-3-alkoxycarbonyl-alkylenestyryl)benzothiazoles

By carrying out the treatment similarly as in Example 11, the title compounds shown as compounds to Nos. 197 and 198 in Table 2 were obtained.

Example 13

Synthesis of 2-[trans-3-(3-ethoxycarbonylpropyl) aminostyryl]benzothiazole (compound No. 199)

To 10 ml of toluene were added 1.0 g of 2-(trans-3-aminostyryl)benzothiazole,0.78 g of ethyl 4-bromo-butyrate and 0.4 g of triethylamine, and the mixture was stirred at 100 °C for 20 hours. After cooled to room temperature, the mixture was extracted with toluene, dried over anhydrous magnesium sulfate and

then the solvent was evaporated under reduced pressure. The residue was purified through silica gel column chromatography by use of ethyl acetate-n-hexane to obtain 951 mg of the title compound (yield 66%).

m.p.:

68-69 °C

NMR (CDCl₃):

 $\delta = 1.25(3H,t), 2.0(2H,m), 2.35(2H,t), 3.22(2H,t), 4.23(2H,q), 6.45-8.10(10H,m)$

Example 14

Synthesis of various anilinocarboxylic acid esters

10

5

By carrying out the treatment similarly as in Example 13, the title compounds shown as compounds Nos. 200-205 in Table 2 were obtained.

Example 15

15

Synthesis of 2-(trans-3-ethoxycarbonylmethoxystyryl)benzothiazole (compound No. 206)

To 30 ml of acetone were added 200 mg of 2-(trans-3-hydroxystyryl)benzothiazole, 0.11 ml of ethyl bromoacetate and 131 mg of potassium carbonate, and the mixture was refluxed for 4 hours. After cooled to room temperature, the mixture was extracted with ethyl ether, dried over anhydrous magnesium sulfate and then the solvent was evaporated under reduced pressure. After the crude crystals of the residue were washed with ethyl ether and n-hexane, they were dried under reduced pressure to give 207 ml (yield 77%) of the title compound.

m.p.: 150-151 °C

IR:

 $\nu = 1720, 1585, 1260, 1190, 1025, 950, 755 \text{ cm}^{-1}$

Example 16

Synthesis of various alkoxycarbonylalkylphenylethers

30

35

45

25

By carrying out the treatment similarly as in Example 15, the title compounds shown as compounds Nos. 207-212 and 431-433 in Table 2 were obtained.

Example 17

Synthesis of 2-[trans-3-(cis-3-carboxypropenamide) styryl]benzothiazole sodium salt (compound No. 213)

To 350 ml of methanol was added 17.3 g of 2-[trans-3-(cis-3-carboxypropenamide)styryl]benzothiazole and then a solution of 4.1 g of sodium hydrogen carbonate in 75 ml of water, followed by refluxing for 1 hour. The solvent was evaporated under reduced pressure, and the crude crystals of the residue were washed with ethanol and ethyl ether, followed by drying under reduced pressure to give 18.9 g (yield: quantitative) of the title compound.

m.p.: 256-258 °C

IR: $\nu = 1650, 1625, 1560, 1490, 855, 750 \text{ cm}^{-1}$

Example 18

Synthesis of sodium salts of various carboxylic acids having thiazole groups

By carrying out the treatment similarly as in Example 17, the title compounds shown as compounds Nos. 214-395 and 434-436 in Table 2 were obtained.

Example 19

ss Synthesis of 2-[trans-3-(3-carboxypropyl)aminostyryl]benzothiazole sodium salt (compound No. 396)

To 8 ml of ethanol were added 1.16 g of 2-[trans-3-(3-ethoxycarbonylpropyl)aminostyryl]benzothiazole and 5 ml of 5% aqueous sodium hydroxide solution, and the mixture was stirred at 60 °C for 1.5 hours.

After evaporation of the solvent together with toluene under reduced pressure, the residue was diluted with ethanol and heated to 50 °C. After cooled to room temperature, the crystals formed were collected by filtration and washed with ethanol-ethyl ether, followed by drying under reduced pressure to give 1.11 g (yield 97%) of the title compound.

m.p.: 239-240 °C

IR: $\nu = 1360, 1570, 1410, 940, 760 \text{ cm}^{-1}$

Example 20

Synthesis of sodium salts of various carboxylic acids having thiazole groups

By carrying out the treatment similarly as in Example 19, the title compound shown as compounds Nos. 397-413 in Table 2 were obtained.

15 Example 21

Synthesis of 2-[trans-3-(cis-2-carboxycyclohexanoyl)aminostyryl]benzothiazole N-methyl-D-glucamine salt (compound No. 414)

Into a solvent mixture of 6 ml of methanol and 1 ml of water were added 96 mg of N-methyl-D-glucamine and 200 mg of 2-[trans-3-(cis-2-carboxycyclohexanoyl)aminostyryl]benzothiazole and the mixture was stirred at room temperature for 30 minutes. After evaporation of the solvent under reduced pressure, the crude crystals formed were recrystallized from ethanol-ethyl ether to obtain 215 mg (yield 73%) of the title compound.

m.p.: 113-115 °C, 245-246 °C

IR: $\nu = 1680, 1540, 1410, 1080, 750 \text{ cm}^{-1}$

Example 22

25

35

40

50

Synthesis of salts with organic bases of various carboxylic acids having thiazole groups

By carrying out the treatment similarly as in Example 21, the title compounds shown as compounds Nos. 415-421 in Table 2 were obtained. In Table 2, the following abbreviations were used.

NMG: N-methyl-D-glucamine,

tris(hydroxymethyl)aminomethane

Example 23

Tris:

Synthesis of 2-[trans-3-(4-hydroxybutanoylamino) styryl]benzothiazole (compound No. 422)

A solution of 1.0 g of 2-(trans-3-aminostyryl)-benzothiazole dissolved in 15 ml of anhydrous tetrahydrofuran was cooled to -78 $^{\circ}$ C and 2.8 ml of a n-hexane solution (1.55M) of n-butyl lithium was added dropwise in a nitrogen gas atmosphere. After a mixture was stirred at the same temperature for 25 minutes, 375 mg of γ -butyrolactone was injected, followed by stirring for 1 hour. After completion of the reaction, the mixture was extracted with ethyl acetate, dried over magnesium sulfate and the solvent was evaporated under reduced pressure. The crude crystals obtained were washed with ethyl ether and dried to obtain 160 mg (yield 12%) of the title compound.

m.p.: 191-192 °C

IR: $\nu = 3400, 1640, 1580, 1530, 1420, 1050, 940, 755 \text{ cm}^{-1}$

Example 24

Synthesis of 2-[trans-3-(4-hydroxybutoxy)styryl]benzothiazole (compound No. 423)

To 40 ml of ethyl ether was added 1.0 g of 2-[trans-3-(3-ethoxycarbonylpropoxy)styryl]benzothiazole, and 114 mg of lithium aluminum hydride was added under ice-cooling. After the mixture was stirred at the same temperature for 30 minutes, then at room temperature for 40 minutes, 114 μ l of water, 114 μ l of 15% aqueous sodium hydroxide and 340 μ l of water were successively added slowly to decompose the

aluminum complex, followed by extraction with toluene. After drying over anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure and the crude crystals formed were washed with ethyl ether under ice-cooling, followed by drying under reduced pressure to give 570 mg (yield 64%) of the title compound.

m.p.: 88-90 °C

IR: $\nu = 3280, 1590, 1570, 1285, 950, 760 \text{ cm}^{-1}$

Example 25

Synthesis of 2-[trans-3-(3-(5-tetrazolyl)propylamino)styryl]benzothiazole (compound No. 424)

To 5 ml of dimethylformamide were added 390 mg of sodium azide and 638 mg of 2-[trans-3-(3-cyanopropylamino)styryl]benzothiazole, and the mixture was heated to 120 °C for 7 hours. After cooled to room temperature, the mixture was extracted with ethyl acetate, dried over anhydrous magnesium sulfate and the solvent was evaporation under reduced pressure. The concentrate was purified through silica gel column chromatography by use of ethyl acetate to obtain 250 mg (yield 35%) of the title compound.

m.p.: 168-169 °C

IR: $\nu = 1625, 1595, 1460, 1430, 950, 760 \text{ cm}^{-1}$

20 Example 26

Synthesis of 2-[trans-3-(2-carboxyanilino)styryl] benzothiazole (compound No. 425)

To 10 mt of isoamyl alcohol were added 504 mg of 2-(trans-3-aminostyryl)benzothiazole, 311 mg of 2-chlorobenzoic acid, 290 mg of potassium carbonate, 1 mg of iodine and 15 mg of copper powder, and the mixture was refluxed for 6 hours. The solvent was evaporated under reduced pressure and the residue was extracted with ethyl acetate. The crude product after evaporation of the solvent was purified through silica gel column chromatography by use of ethyl acetate-toluene to obtain 83 mg (yield 11%) of the title compound.

IR: $\nu = 1630, 1570, 1380, 1285, 1200, 750 \text{ cm}^{-1}$

m.p.: 146-150 °C

Example 27

30

45

5 Synthesis of 2-[trans-3-(2-carboxyethylamino) styryl]benzothiazole sodium salt (compound No. 426)

To 1 ml of acetonitrile were added 1.0 g of 2-(trans-3-aminostyryl)benzothiazole and 1 ml of β -propiolactone, and the mixture was refluxed for 1 hour. After evaporation of acetonitrile under reduced pressure, toluene and 10% hydrochloric acid were added to the residue. After the insolubles were filtered off, the filtrate was made alkaline with addition of 10% aqueous sodium hydroxide solution and the precipitates formed were collected by filtration. The crude product was recrystallized from methanol-ethyl acetate to obtain 224 mg (yield 16%) of the title compound.

m.p.: 250 °C (decomposed)

IR: $\nu = 1565, 1405, 1005, 940, 750 \text{ cm}^{-1}$

Example 28

Synthesis of 2-[3-(2-carboxyethylamino)styryl]-4,5-dimethylthiazole sodium salt (compound No. 427)

An amount of 230 mg of 2-(trans-3-aminostyryl)-4,5-dimethylthiazole, 1 ml of methyl acrylate and two drops of acetic acid were added to 1.5 ml of toluene and the mixture was refluxed for 16 hours. The mixture was extracted in a conventional manner with ethyl acetate, the solvent was evaporated under reduced pressure and the residue was purified through silica gel column chromatography by use of ethyl acetate-n-hexane to obtain 160 mg of acrylate adduct. Next, 160 mg of the ester was dissolved in 5 ml of ethanol, and 2 ml of 5% aqueous sodium hydroxide was added to carry out hydrolysis by stirring at room temperature for 1 hour. The precipitates formed were collected by filtration, washed with water and then with ethyl ether, followed by drying under reduced pressure to obtain 90 mg (yield 28%) of the title compound.

m.p.: 120-123 °C

IR: $\nu = 1595, 1550, 1405, 945, 765 \text{ cm}^{-1}$

Example 29

Synthesis of 2-[trans-3-(2-carboxyethylamino) styryl]-4-phenylthiazole sodium salt (compound No. 428)

By carrying out the treatment similarly as in Example 28, 93 mg (yield 23%) of the title compound was obtained.

m.p.: 261-263 °C (decomposed)

IR: $\nu = 1700, 1590, 1440, 1220, 1195, 760 \text{ cm}^{-1}$

Example 30

10

15

Synthesis of 2-[trans-3-(2-carboxyethoxy)styryl] benzothiazole (compound No. 429)

To 3 ml of dimethylformamide were added 47 mg of 60% sodium hydride and 300 mg of 2-(trans-3-hydroxystyryl)benzothiazole, and the mixture was stirred at room temperature for 30 minutes. Then, $74 \,\mu$ l of β -propiolactone was added and the mixture was further stirred for 4.5 hours. The acidic portion was extracted in a conventional manner with chloroform, and after drying over anhydrous magnesium sulfate, the solvent was evaporated under reduced pressure and the crude crystals were washed with ethyl ether, followed by drying under reduced pressure to give 118 mg (yield 31%) of the title compound.

m.p.: 177-178 °C IR: $\nu = 1705, 1590, 1440, 1215, 1195, 960, 760 \text{ cm}^{-1}$

25 Example 31

Synthesis of 2-[tranş-3-(3-carboxy-3,3-dimethylpropyloxy)styryl]-4-isopropylthiazole (compound No. 430)

To a solution of 200 mg of 2-[trans-3-(3,3-dimethyl-3-ethoxycarbonylpropyloxy)styryl]-4-isopropyl-thiazole dissolved in 5 ml of ethanol were added 2 ml of 10% aqueous potassium hydroxide solution and three drops of 40% benzyltrimethylammonium hydroxide methanol solution, and the mixture was refluxed for 1 hour to effect hydrolysis of the ester. After completion of the reaction, ethanol was evaporated under reduced pressure and the residue was adjusted to pH 1-2 with addition of 10% hydrochloric acid and then extracted with ethyl ether. After drying of anhydrous magnesium sulfate, the solvent was evaporated and the solid formed was recrystallized from methanol to give 123 mg (yield 66%) of the title compound.

m.p.: 112-113 °C IR: ν = 1705, 1285, 1160, 1100, 740 cm⁻¹

Example 32

Synthesis of various styrylcarboxylic acids

By carrying out the treatment similarly as in Example 31, the title compounds shown as compounds Nos. 438-444 in Table 2 were obtained.

Example 33

45

Preparation of tablets

An amount of 1000 g of well pulverized 2-[trans-3-(cis-3-carboxypropenamide)styryl]benzothiazole sodium salt (compound No. 213), 5900 g of lactose, 2000 g crystalline cellulose, 1000 g of a low substitution degree hydroxypropyl cellulose and 100 g of magnesium stearate were well mixed and formed into plain tables according to the direct tableting method containing 10 mg of the above compound in 100 mg of one tablet. The plain tablet was applied with sugar coating or film coating to prepare sugar-coated tablet and film-coated tablet.

Example 34

Preparation of capsules

An amount of 1000 g of well pulverized 2-[trans-3-(cis-3-carboxypropenamide)styryl]benzothiazole sodium salt (compound No. 213), 3000 g of corn starch, 6900 g of lactose, 1000 g of crystalline cellulose and 100 g of magnesium stearate were mixed to prepare capsules containing 10 mg of the above compound in 120 mg of one capsule.

10 Example 35

Preparation of inhalent

An amount of 5 g of well pulverized 2-[trans-3-(cis-3-carboxypropenamide)styryl]benzothiazole sodium salt (compound No. 213), 10 g of a middle chain saturated fatty acid triglyceride and 0.2 g of sorbitane monooleate were well mixed, and each 15.2 mg of the mixture was weighed in 5 ml of an aluminum vessel for aerosol. Further, after 84.8 mg of Freon 12/114 (1 : 1 mixture) was filled per one vessel at low temperature, the vessel was equipped with a quantitative adaptor of 100 ul per 1 spray to prepare an inhalent of quantitative spray containing 5 mg of the above compound in 5 ml of one vessel.

Example 36

20

25

SRS antagonistic action in vitro

The ileum end portion of a male Hartley-strain guinea pig weighing 200-450 g was extirpated and after washing its lumen, the ileum was mounted within 5 ml of a tissue bath containing a Tylord solution comprising the following components. The components are 136 mM NaCl, 2.7 mM KCl, 11.9 mM NaHCO₃, 1.05 mM MgCl₂, 1.8 mM CaCl₂, 0.4 mM NaH₂PO₄ and 5.6 mM glucose. The liquid temperature in the bath was maintained at 37 °C, and aeration was effected with 95% oxygen / 5% carbon dioxide. For removing shrinkage with hystamine and acetylcholine, 10⁻⁷ g/ml of mepylamin and 5 x 10⁻⁸ g/ml of atropin were added to the above buffer. Isotonic measurement was conducted by isotonic transducer (TD-112S, trade name, produced by Nippon Koden) tension replacement convertor and recorded by Recticoder (RTG-4124, trade name, produced by Nippon Koden) as the change in grams of tension. The ileum was loaded passively with 0.5 g of tension and the ileum shrinkage reaction to SRS extracted from guinea pig lung was obtained. The persistent shrinkage height by one unit of of SRS (corresponding to 5 ng of hystamine) was used as control. Test drugs of various concentrations were added into the tissue bath, and the results of minimum effective concentration which is the concentration of the test drug attenuating shrinkage of control to 50% (IC₅₀) are shown in Table 2 and Table 3.

40 Example 37

LTD4 antagonistic action in vivo

For male Hartley-strain guinea pig weighing 350-500 g under urethane anesthesia, airway resistance was measured by use of a Harvard type respirator according to the method which is a modification of the Konzett-Roessler method, inhibition (%) by intraduodenal administration of the test drug against airway resistance increase by intraveneous administration of 0.1-1.0 µg/kg of LTD₄ was calculated to obtain the results shown in Table 2 and Table 4.

50 Test example

Acute toxicity test

With 4 to 5 ddy-strain male mice of 6 weeks old as one group, the compound of the present invention was orally administered as a suspension in 1% tragacanth solution, and observation was conducted for 7 days and the number of dead mice was examined to obtain the results shown in Table 5.

.Table 1-1

 H_2N H_2N H_3 H_2 H_3 H_3 H_3 H_4 H_4 H_5 H_4 H_5 H_4 H_5 H_4 H_5 H_5 H_5 H_6 H_7 $H_$

R1 R₂ m.p. (°C) No. Хe Хe 148~149 1 Et . 2 // 78~ 77 3 11 13 ~03 *"* CH3(CH2)2-81~ 62 . 4 CH3(CH2)3-79~ 80 5 // CH3(CH2)4-56~ 57 6 // 7 CE3(CE2)5-// S5~ 66 // 56~ 57 CH3(CH5)8-8 9 CH3(CH2)7-11 50~ 51 10 $CH_3(CH_2)_2-$ Εt 58~ 59 H 74~ 75 (CH3)3C-11 Жe $CH_3(CH_2)_3-$ 58~ 59 12 C6H5-138~139 // 13

50

10

20

25

30

35

No.	R ₁	R ₂	m.p. (°C)
- 14	-cooet	Н	93~ 94
15	-(CH ₂) ₄ -		156~ 157
16	C ₆ H ₅ -	н	137~ 139
17	p-CL -CgH4-	11	177~ 178
18	m-Me-C ₆ H ₄ -	"	117~118
19	p-EtOOC-CsH4-	//	145~146
20	- p-Ne-C6H4-	"	158~ 157
21	p-MeO-C ₆ H ₄ -	//	141~142

Table 1-2

H₂N 2 1 H 2 S 7 8 X

No.	X	Y	m.p. (°C)
22	H	H	178~179
23	5-OKe	"	143~144
24	5-Ne	"	150~151
25	5-CL	"	168~169
28	6-DNe	"	158~160
27	H	2-Ke	118~120
28	" .	6-ONe	147~148
29	"	4-C <u>0</u>	174~178
30	"	6-C2	181~182
31	"	2-0F	180~181
32	"	4-0Xe	155~156
33	"	6-0H	234~236

Table 1-3

 H_2N A S R_1 R_2

No.	R ₁	R ₂	A	m.p. (°C)
34			-(CH ₂) ₂ -	79~ 80
35	(CH ₃) ₂ CH-	H	"	-*
36	Я	"	-CH2OCH2-	- **
37	"	11	-0CH ₂ -	120~121
38	. //	11	-инси2-	102~103

* IR: 1600, 1450, 1160, 1100, 770, 730

**IR: 1820, 1480, 1310, 1080, 885, 780

Table 2-1	R ₁₄ -conn

Com- pound No.	RIA	×	т.р. (0)	Physical property values	Anti-SRS action (mindmum effective conc. (M)]	Airway resistance increase inhibition
~	Ø wa	=	193~ 4	IR 1700, 1670, 1580, 1541, 1260, 730	SXIC	
က	els CC cooli	"	131~ 2	IR 1705, 1660, 1542, 1488, 1080, 755	5×10+	
	eis CC man	u	£ ~0¢1	IR 1705, 1660, 1800, 1540, 050, 700		
ហ	trans CX cool	"	2 ~902	IR 1715, 1650, 1530, 1080, 250, 750		
φ	-(લા _{ટ) ટ્} વ્યાસ	"	219~ 20	IR 1690, 1510, 1315, 1210, 769		
~	-(ap)300H	"	227~ 30	IR 1705, 1640, 1530, 1415, 1000, 765		
•	els Ne XX	"	189~ 90	IR 1890, 1670, 1410, 1200, 550, 750		
•	Ne XX	"	108~202	IR 1705, 1650, 1540, 1250, 780		
2	Ó.∞m	*	171~801	1R 1650, 1550, 1485, 1440, 1215, 025, 725		
=	Ne COOM	"	8 ~771	IR 1710, 1670, 1545, 1200, 755		

5	Airway resistance increase inhibition (%)													
10	Anti-SRS action [minimum effective conc. (M)]													
15	alues					·				,				
20	rty v					-		. 750						
.25	Physical property values	1680, 1540, 1200, 950, 750	1705, 1660, 1540, 1180, 755	1700, 1560, 1540, 1200, 250, 750	1710, 1860, 1540, 750	1700, 1655, 1540, 1310, 850, 750	1580, 1540, 1417, 1130, 753	3210, 2950, 1680, 1540, 1080, 950, 750	1695, 1620, 1550, 1400, 050, 705	1705, 1650, 1260, 940, 750, 690	IR 1715, 1680, 1525, 1200, 945, 730	1710, 1650, 1580, 1180, 545, 800	1710, 1655, 1425, 1200, 055, 700	1R 1895, 1550, 1400, 850, 845, 785
30		1680, 154		1700, 166	1710, 166		1690, 154				1715, 16	1710, 16		1695, 15
		<u>.</u>	2 13	5 R	. TR	1 18	2 IR	70 IR	2 18	8	מט	S0 IR	8	כע
35	т. (°С)	~091	~_	~691	~69	20~	191~	163~ 70	211~	207∼	184~	~612	~902	~122
40	×	=	•	*		"	"	"	5-16	"	"	"	"	15-5
45	FI.E	F1 - 000H	H000	#B	Ne Cook	% → → *	Ne X COOH	Ne he woon	(2001	OC coos	els (C _{ext}	-(۵اء) عصصار	ျာတင်(ပုံး)-	
50	Cum- pound	21	52	=	12	<u> </u>	12	81	19	90	12	22	23	32

	Airway resistance increase inhibition (%)												·	
	Anti-SRS action Injumam effective conc. (M)]			·							2×10-2	10.		
	Physical property values	IR 1700, 1580, 1230, 1065, 705	IR 1700, 1520, 1350, 1200, 950, 800	IR 1830, 1850, 1380, 1200, 340, 600	IR 1705, 1600, 1510, 1700, 945, 800	IR 1730, 1890, 1350, 1180, 650, 700	IR 1710, 1580, 1735, 850, 780	IR 1700, 1550, 1465, 1160, 1120, 650, 730	IR 1700, 1550, 1180, 840, 600	IR 1710, 1650, 1650, 1540, 1455, 1760, 1180, 830	HYR (CDC13-DNSD-dg) : 8 = 6.56(24,d), 6.83~6.8(114, w), 10.07(114, s)	NNR (CDC1g-DKSD-dg): 8 =7.33~1.30(!!H, m), 10.73(!H, broad s)	IR 1705, 1880, 1545, 1300, 760	IR 1730, 1706, 1300, 1208, 770
•	щ.р. (()	249~ 50	189~ 80	244~ 5	7 ~ 922	189~200	196~ 9	>350	2 ~152	8 ~802	277~ 80	213~ 5	180~ 1.5	120~ 1
:	ĸ	5-01	u	"	u	5-Ofe	"	п	"	B-Offe	п	"	u	u
	Rid	Ø w	els CC COURT	-(تاء)،	-(Gi2) ₃ 000ii	(ccor	Ø coor	els CC on	- (٢١٤) عصر (٢١٤)	els (C _{attors}) 2001	HOOG	£1000	£1000-
	Com- pound No.	22	52	ız	58	22	30	16	32	8	101	5	181	185

5	Airway resistance increase inhibition (%)										83			
10	Anti-SRS action (minimum effective conc. (M)			(a)	5×10"									
15				NNT (CICIg): 8 = 1.82(6H,d), 1.27~1.00(ЛИ,m),4.18(2И,m),8.82~8.25(БН,m)						·				
20	property values), 940, 750		7~1.00(34.m).4.1	1735, 1660, 1580, 1530, 1420, 1155, 850, 760					10, 743		(
25	Physical prope	1740. 1650, 1580, 1446, 1150, 040, 750	1605, 1615, 1540, 1216, 750	-1.82(6H.d), 1.2	. 1580, 1550, 142	1720, 1680, 1540, 1175, 765	1730, 1630, 1178, 853, 750	1580, 1446, 1260, 755	1560. 1480. 1445, 1220, 050	1640, 1600, 1580, 1560, 1360, 745	IR 16to, 1550, 1483, 1405, 750	1880, 1580, 1420, 1305, 750	, 1415, 945, 725	1650, 1550, 1410, 840, 750
30	Phys	IR 1740, 1650,	IN 1605, 1615,	MR (CXCI ₃): 8	IN 1735, 1680	IR 1720, 1580	IR 1730, 1690	IR 1720, 1580	IR 1560. 1480	TR 1646, 1650	IR 1616, 1550	IR 1880, 1580	IR 1665, 1580, 1415,	IR 1650, 1550
35	m.p.	1 ~101	120~ 1	132~ 3	1 ~0)1	148~ 50	15 ~611	82~ 3	€ ~121	7 ~112	1 ~552	150~ 60	218~ 50	20~ 2
40	×	=	"	"	ŧ		u	"	"	W	"		¥	2
45	B ₁₆	Etooxil?-	(magi	्रि कळ्सऱ्याऱ्या(यभू)?	XeOC(CH2)2-	E(0XX(CH ₂) ₂ -	(maisaisaiai)	ال مرمايمهم الم	**************************************	1000	els C cooks	els CC cook	Ma COC (CH ₂) 2-	Ne∞C(CH ₂)3−
50	No.	=	8	<u>e</u>	- 25	S	<u> </u>	185	214	215	218	217	218	218

														-
5	Alrway resistance increase inhibition (%)					23								2
10	Anti-SRS action (minimum effective conc. (M)]	·					·		5×1d*			·	5×10-8	
15			-						,					
20	property values				15, 855, 755							0, 70	i	00, 050, 785
25	Physical _E	1405, 1310, 760	1825, 1560, 1400, 950, 700	945, 876, 750	1600, 1550, 1405, 1410, 1215, 255, 755	1210, 840, 750	1365, 925, 730	1650, 1545, 1400, 850, 750	850, 750	2910, 1655, 1545, 1305, 750	1210, 250, 750	1680, 1530, 1440, 1305, 250, 730	1550, 945	1680, 1580, 1530, 1400, 1300, 050, 785
30		IR 1705, 1560, 1405, 1310, 760	IR 1825, 1560,	IR 1055, 1540, 945, 870.	IR 1600, 1350.	IR 1650, 1540, 1210, 840,	IR 1635, 1540, 1365, 925,	IR 1650, 1545,	IR 1605, 1550, 850,	IR 2910, 1655,	IR 1650, 1540, 1210, 250.	IR 1680, 1590,	IR 1660, 1580, 1550,	IR 1680, 1580,
35	m.p. (°0)	180~ 11	102~261	150~ 5	11 12 ~191	120~ 2	1 0c ~921	1 oc ~521	160~ 3	1 ~002	165~ 50 1	1 0 ~522	273~ 5 [200~303
40	×	u	п	, ,	u	*	"	N	"		"	5-Ne	n	"
45	Rid	cla Xe COOKa	No OC COOMs	Ne√coore Ne	O-5 0004a	Ne S COOKe	Gelis X ∞ore	ne tame	Re J COOKe	Ne COONs	Ne Ne coorts	(COOKs	Ø emis	cis CC COONS
50	Compound Downd No.	922	122	zz	523) 22	\$22	922	122	922	82	ŝ	ğ	202

50	45	40	35	30	25	20	15	10 .	5
Pound No.	7814	×	.c. (Q)	Physica	Physical property values	values		Anti-SKS action [minimum effective conc. (M)]	Airway resistance increase inhibiton (%)
E	NaCC(CH2) 2-	"	16 ~822	IR 1660, 1565, 1410, 850, 730	110, 850, 730				
ž	NeCC(Cl2)3-	5-16	213~ 5	IR 1655, 1570, 19	1655, 1570, 1535, 1410, 1200				
522	els Comme	5-confe	30~ 5	IR 1700, 1565, 15	1700, 1505, 1546, 1400, 1300, 760	Q			
238	, ame	15-5	257~ 60	IR 1630, 1580, 14	EDO, 1580, 1480, 1430, 925				
123	Ø mr.	u .	D ~262 ·	IR 1600, 1530, 19	1600, 1530, 1565, 1480, 1330				
802	cis Comes	E .	284~ D4	IR 1680, 1580, 1	1680, 1580, 1536, 1400, 950, 790				
S E2	NetCC(Gl2) 2-	"	1 ~062	IR 1655, 1580, 13	1655, 1580, 1510, 1430, 940				
240	KeOCC (CH ₂)3-	"	215~ 7	IR 1650, 1570, 1510, 1430,	510, 1430, 940		·		
341	COOM	5-0%	215~ 7	IR 1630, 1585, 1	1630, 1585, 1430, 1280, 350, 800				
2/2	© Carre	"	295~ 0	IR 1675, 1590, 1	1675, 1590, 1540, 1490, 1230				
243	els Come	"	>350	IR 1560, 1400, 1	1560, 1300, 1270, 1190, 800				
¥2	Л вООС (СИ ₂) 2-	W	241~ 3	IR 1855, 1550, 1420,	120, 850, 725				
245	cla Cane	9,0-8	260~ \$	IR 1880, 1585, 1	1880, 1585, 140d, 1260, 250, 800	0	·		

					•
Com- pound No.	R14	×	m.p.	Anti-SRS Airway re action[min- sistance imum effec- increase tive conc. inhibition (%)	Airway re- sistance increase inhibition
415	(coon · Tris		179~ 80	IR 1625, 1560, 1350, 1330, 1060, 750	
91)	ROOC J . Tris	"	8 ~801	108~ 9 IR 1625, 1815, 1550, 1380, 1050, 750	
411	OK	"	135~ 40 224~ 5	IR 1650, 1550, 1475, 1080, 755	
81)	Trans C COOH - NMG	"	(decompo- sition)	(decompo- in 1660, 1550, 1400, 1000, 750	
. 81)	HOCC (CH2) 2- + Tris	"	162~ 3	IR 1630, 1605, 1600, 1580, 1410, 1060, 750	
445	»e ← € ®		133~ 5	133~ 5 IR 1695, 163b, 1520, 1190, 750	

5				
10	,			
15				
20		•	' ⁄≂	
25		Table 2-2	=-	
30		F.		R14-COMI
35				
40				

Airway resistance increase inhibition (%)										
Anti-SKS action [minimum Effective conc. (M)]	2×10.*									
Physical property values (IR)	1740, 1720, 1700, 1620, 1540, 1400, 845, 725	1720, 1620, 1575, 1550, 1212, 735	1695, 1880, 1510, 1410, 1280, 945, 750	1690, 1540, 1410, 1200, 040, 725	1680, 1650, 1530, 1405, 735	1700, 1650, 1595, 1400, 950, 775	3300, 2950, 1700, 1545, 1190, 950, 725	1700, 1542, 1105, 945, 725	1885, 1680, 1800, 1320, 650, 130	1960, 1550, 1400, 1440, 1210, 055, 755
щ.р. (т)	199~200	201~ 5	205∼ 8	201~ 5	8 ~702	100~ 2	158~ 60	202~ 1	181~ 5) ~281
×	=	u	ŧ	t	e.	u	"	"	"	u
Rid	رها	(X ₀₀₀₁	HDDD #10	1000 💢 110	1000 ² (CH3)-	HXXX ⁶ (CH2)-	els (CC _{COOH}	cls Ne XX	16 XX 00011	\\\\
Con- pourd No.	36	35	98	37	36	39	07	=	42	8

Com- pound No.	RIA	×	m.p.	Physical property values (IR) (IR) (IR) (IR) (IR)	Anti-sks action [minimum effective conc. (M)]	Airway resistance increase inhibition (%)
3) <u> </u>	15-4	2 ~102	1605, 1615, 1530, 1395, 1060, 045, 840, 735		
.	Ø wa	"	0Z ~e1Z	1720, 1640, 1628, 1810, 1589, 1245, 780, 760		
=	ele CX coose	"	214~ 5	1680, 1569, 1470, 1420, 840, 825, 770		
5	ete CC cool	"	210~ 3	1645, 1540, 1540, 1200, 849, 770		
=	1000 [£] (410)-	w	13 ~ 61	Jee5, 1655, 1599, 1530, 1100, 850, 740		
	els CX coost	1) ~602	1692, 1540, 1180, 850, 775		
20	els (C ₀₀₈	N	202~ 0	1659, 1540, 1290, 945, 775		
25	eis C	a-ik	0 ~481	1656, 1540, 1188, 948, 770		
25	eta Comi	ә <u>ң</u> 0−d	0 ~201	1695, 1530, 1250, 1175, 770		
53	els CC ₀₀₀₁₁	38000-d	3 ~102	1705, 1545, 1415, 1240		
246	(000)	П	1 ~922	1650, 1560, 1440, 859, 725		
247	©⊄.com•	, u	208~ 70	1960, 1580, 1550, 1480, 1380, 850, 730		
346	ele CC CONe	n	3 ~162	1842, 1549, 1400, 955, 735		102

EP 0 219 436 B1

5	Airway resistance increase inhibition (8)													
10	Anti-SRS action [minimum effective coxc. (M)]					5×10*								
15	(111)						·							
20	cy values		257	967 .	-		0, 955, 755		s, 70s	OMS. 825, 740	5, 710	5, 955, 745	. 740	. 740
25	Physical property values	1650, 1540, 1400, 955, 720	1645, 1555, 1430, 1410, 815, 735	1666, 1600, 1540, 1400, 255, 730	1065, 1550, 1405, 950, 730	1650, 1500, 1400, 1400, 250	1060, 1550, 1490, 1440, 1210, 955, 755	1500, 1470, 1085, 945, 735	1660, 1810, 1500, 1500, 138,	1660, 1550, 1465, 1080, 945	1660, 1560, 1470, 1406, 1085, 710	1660, 1600, 1550, 1100, 1095, 955, 745	1665, 1560, 1480, 1405, 850, 740	1000, 1550, 1160, 1405, 850, 740
35	m.p.	119~ 50	205~ 8	75~ 7	170~ (decomposition)	150~ 2 (decompo- sition)	G ~9C1	8 ~522	02 ~ 200	273~ 5	29 ~ €5	208~ 91	8 ~952	£ ~251
	×	5 =	"	,,	"	"	"	I2-4	"	ž.	Ł	u	. £	"
45	RIC	els (X 000%	Ma COC (CH ₂) 2-	№СС(СИ ₂) 3-	els Ne XX cooks	Ne XXX CXXXIA	O, agri	(contr	OX crosts	els Chaus	els (Coore	NaCCC (CH2) y-	els CC ccorts	cis (C conta
50	Con- pound No.	348 348	250	152	252	223	32	255	258	257	228	259	220	76!

Com- pound No.	Rit	×	(2) (2)	Physical property values (1R)	Anti-SRS action [minimum effective conc. (M)]	Airway resistance increase inhibition (%)
292	eis (X _{000fis}	т-Нё	170~ 80	1660, 1540, 1400, 950, 780, 730		
263	"	р-СМе	>200	1885, 1500, 1480, 1240, 745	-	
192	"	р-сооже	>310	1690, 1590, 1540, 1400, 1200, 740		

5		
10		
15		
20		
25	Table 2-3	= ==
30	£.	11-CO-11
35		ñ
40		

5	â	á	Ö.E	observation of the contract (R)		Airway resistance
pound No.		7	9	•	[minimum effective conc: (M)]	increase inhibition (%)
34) ·	Ne.	B ~251	1700, 1620, 1550, 365, 855	5×10-7	
52	-(۵اء)عصا	u	199~200	1720, 1640, 1530, 1080, 945		
28	1000 [£] (4α)-		208~ 10	1705, 1645, 1525, 1080, 050		
57	1000	13	149~ 50	1830, 1620, 1530, 050		
58	(OC 2001	"	181~ 3	1720, 1580, 1550, 1245, 700		
83	els CC coos	"	132~ 3	1690, 1655, 1540, 1200, 790		
09	-(CH2)2000H	"	131~ 2	1630, 1540, 1320, 1130, 780		
5) ကော ^{င်} (ရာ)-	"	16~ 7	1705, 1643, 1530, 1180, 250, 780		
29) ·	ع(کی)ئ _ا ت	151~ 2	1700, 1620, 1550, 1410, 000		
3	Ø mai	"	- ~0g1	1720, 1625, 1580, 1245, 781		

	Airway resistance increase inhibition (%)													
	Anti-SRS action [minimum effective conc. (M)]													
	Physical property values (III)	1685, 1540, 1200, 765	1605, 1540, 1320, 1180, 050, 775	1715, 1840, 1440, 1185, 050, 775	1695, 1615, 1545, 1400, 050, 855	1715, 1650, 1575, 1480, 1240, 950, 780	1700, 1680, 1540, 1480, 1320, 850, 755	1600, 1650, 1600, 1855, 1405, 1135, 050, 775	1700, 1550, 1410, 370, 800	1720, 1620, 1575, 1550, 1415, 1240, 500, 775	1600, 1540, 1440, 1410, 1200, 945	1690, 1540, 1410, 1200, 945	1710, 1650, 1540, 1440, 1180, 245	1580, 1658, 1605, 1340, 1200, 780
	m.p.	2 ~121	173~ (130~ 1	151~ 3	188~ 8	149~ 51	81~ 3	143~ (178~ 9	161~ 3	153~ 5	19 ~611	87~ .
	RI	Gl3(Gl2)2-	"	¥	CH3(CH2)1-	. "	"	"	CH ₃ (CH ₂) (-	"	"	, u	"	"
,	Rid	els (C ₀₀₀₈	-(012)20011	1000° (410)-	(2001	© ™	H002 (CH0)-)000°(4b)-	1,000	Q wa	els (C _{cool}	els (X _{000li}	16000 ² (¢10)-	الموا(قات)-
	Compound No.	99	62	98	67	88	69	70	12	72	22	22	55	78

										1				
5	Airway resistance increase inhibition (%)				,									
10	Anti-SRS action [minimum effective conc. [M]]	·												
. 15														·
20	ty values(R)	3, 865	0				. 760	1, 700						1, 730
25	Physical property values(R)	1700. 1620, 1555, 1535, 1405, 865	1710, 1625, 1580, 1550, 1250	1720, 1660, 1585, 1530, 1440	1715, 1645, 1580, 1530	1700, 1555, 1407, 860	1720, 1623, 1580, 1243, 365, 760	1720, 1660, 1530, 1180, 560, 700	1710, 1653, 1530, 785	1685, 1540, 1200, 040	1700, 1550, 1405, 860, 860	1720, 1580, 1230, 855, 780	1720, 1660, 1165, 960, 730	1705, 1880, 1550, 1220, 300, 730
30 .	Phys	1700. 16	1710, 16	1720, 16	1715, 16	1700. 18	1720, 10	1720. 1	1710, 1	1683. 1	1700. 1	1720, 1	1720, 1	1705. 1
35	м.р. (°°)	112~ 3	8 ~511	145~ 8	- ~031	160~ 1	155~ 7	146~ 5	8 ~LZ1	160~ 2	9 ~501	167~ 1	171~ 2	138~40
40	R ₁	ຕ _{ເງ} (ຕ _{ໂງ}) ₅ -	"	"	,	-9(ຊິເລ) [¢] ເລ	. "	"	"	dı ₃ (dı ₂)7-	-7£(ClD)	"	"	."
45	Rid	(age	Q and	H002 (6H0)-	-(CP))	© ∞•	-(CH2) 2000H	pxpf(4p)-	els CX cool	(₀₀₀	OC cool	-(تابي)-	-(a½) ₃ aaai
50	Compound No.	11	78	28	08	18	. 82	83	8	8 2	98	87	88	88

5		Airway resistance increase inhibition (%)													
10		Anti-SRS action [minimum effective conc. [M]]						-							
15	-	e													
20		y values (M)	51	:	·	×	55, 700, 740	180, 940	, n	50. 775	60, 763	9	55, 780	9	30, 185
25		Physical property values	1095, 1015, 1540, 1300, 845	1690, 1620, 1525, 950	1720, 1580, 1240, 953, 778	1705, 16(0, 1533, 1185, 955	1700, 1880, 1380, 1410, 355, 750, 740	3270, 1710, 1840, 1440, 1180, 940	1630, 1550, 1450, 060, 785	2950, 1710, 1850, 1180, 950, 775	1707, 1610, 1543, 1178, 960, 763	1705, 1600, 1540, 860, 625	1705, 1655, 1540, 1170, 255, 780	1705, 1657, 1105, 955, 780	1080, 1540, 1405, 1190, 050, 705
30		physi	1695, 10	1690, 16	1720, 18	1705, 10	1700, 10	3270. 17	1690, 13	2850. 17	1707. 11	1705, 10	1705, 16	1705, 16	1080, 15
35	,	(C.)	148~ s	118~ 20	182~ 3	180~ 70	150~ 0	143~ 4	175∼ B	175~ 8	160~ 1	109~200	155~ €	147~ B	154~ 5
		RI	(Gb) zai-	"	"	"	"	u.	"	. "	"	"	"		Ł
40			*	_		==	=			_	icco		1000	COOH	÷
45		Rit) 1	"e √ ασι	Ø wa	els Cham	-(CH2) 2000i	-(പേം) ചയ	€	Ke K	Ne ~α	(S) 5 mil		ne ~ α	Ne Ac COOH
50		Can- pound No.	8	18	83	8	ž	. \$8	88	87	88	68	801	101	102

	(4)	1							Τ	1	·	r —	7	T
5	Airway resistance increase inhibition (%)													
10	Anti-SFS action [minimum effective conc. (M)]												10.1	
15		·	-		·									
20	values(II)		8	9			·						· 93	
25	Physical property values(II)	1680, 1540, 950, 789	3300, 2950, 1600, 1510, 850, 780	1630, 1550, 1440, 8 40, 850, 765	1600, 1555, 1440, 950, 850, 780	1630, 1560, 1385, 855, 780	1600, 1547, 1405, 850, 780	16no, 1555, 1410, 850, 705	1645, 1550, 1410, 850, 785	1660, 1560, 1440, 850, 780	1640, 1585, 1580, 950, 780	1660, 1550, 1405, 950, 780	1660, 1550, 1410, 1150, 950, 780	1650, 1555, 1410, 850, 765
30	Physi	1680, 1540	3300, 2950	1630, 1550	1600, 155	1650, 1580	1600, 1547	1660, 155	1645, 155	1660, 158	1640, 158	1660, 155I	1660, 155	1650, 155
35	n.p.	175∼ B	155~ 8	158~ 7	135~ 40	152~ \$	8 ~))[105~ 70	1 ~012	118~ 20	t ~191	137~ 40	103~ 5	105~ 7
40	ē	"	-iD²(CiD)	Хe	£1	"	"	"	"	-(ai ₂) ₂ ai ₉	"	"	"	"
45	8. 1.	Ne Ne COOII	Ne of wall	(come	"	≪	cia (Xazota	Ne CCC (CH ₂) ₂ -	NeOCC(CH2)3-	(ccores	© ccon₁₄	els C	κ ₄ 0α(αί ₂) ₂ -	KeOCC(Cli ₂)₃
50	Corr- pound No.	103	101	592	268	287	892	569	270	1122	212	233	274	212

5		Airway resistano increase inhibition (%)													
10		Anti-SRS action (minum effective conc. (M)]												2×10-	
15		(III)				,									
20			50. 835	105, 1325, 955	5	410, 955	0	0	0	0	0		6	390, 855	
25	٠	Physical property values	1695, 1615, 1545, 1480, 950, 855	1650, 1600, 1500, 1560, 1305, 1325, 355	1665, 1560, 1410, 950, 705	1650, 1500, 1555, 1435, 1410,	1660, 1555, 1430, 948, 850	1660, 1545, 1410, 355, 700	1660, 1545, 1410, 850, 700	1660, 1560, 1410, 850, 700	1660, 1555, 1410, 845, 700	1648, 1545, 1410, 948, 767	1605, 1570, 1440, 955, 950	1650, 1600, 1500, 1560, 1350, 255	1600, 1555, 1410, 850
30	•	Phy	1695, 1	1650, 1	1665, 1	1650. 1	1660. 1	1660. 1	1660, 1	1660. 1	1660. 1	1648. 1	1002	1650, 10	1600, 13
35		(0.)	123~ 7	120~ 5	185~ 30	187~ 92	135~ 8	(deegmb)	135~ 40	05~ 93	170∼ g	8 ~522	115~ 7	118~ 20	178~ 60
40		I	-(თչ)ეთე	-(al ₂)3at	"	u	-(al ₂), al ₃	"	"	-(ai ₂) ₄ at ₀	"	<i>"</i>	-(Ol ₂)5Gl ₃	"	"
4 5		Rit	(cooks	Q coors	№00C(CH ₂) 2-	№ФС(СИ2)3-	COON	Q cooms	cls CC coope	els C wow	№00С(СИ₂)?-	жосс(СН ₂) 3-	(200%	Ø m	KsΦC(CH ₂) ₂ -
50		Com- pound No.	278	211	218	278	280	281	282	283	387	282	286	287	288

Sound No.	Rit	2	m.p.	Antia Physical property values (III) (Min) (Min) effe	Anti-SRS action [mininum effective conc. (M)]	Airway resistance increase inhibition
288	NaOCC (GI2)3-	"	107~ 70	1650, 1550, 1410, 955		
280	(cook	-(al ₂) ₆	125~ 7	1660, 1560, 1440, 950, 850, 780		
182	Q com	, <i>"</i>	g ~)!!	1650, 1580, 1390, 955, 780	10-2	
282	Hacc(CH)2-	"	150~ 5	1660, 1556, 1410, 950, 705		
233	N8 CC (CH ₂) 3-	"	199~200	1650, 1555, 1415, 955, 700		
284	cis Cook	-(01չ)դմեյ	171~ 3	1650, 1540, 1400, 350, 780	·	
295	(cooks	-C(Clp) ₃	151~ 8	1600, 1560, 1440, 1350, 850, 780		
962	(X)	"	168~ 71	1610, 1500, 1560, 1385; 355, 740		
207	.4 (CH2) 2-	"	1.4~ 1	1660, 1600, 1560, 1415, 935		
238	NeCC(CI(2) 3-	¥	132~ 3	1600, 1605, 1560, 1415, 935	5×10-	
238	(COOH.	-a((al ₃) ₂	110~ 5	1660, 1560, 1410, 1350, 350, 780		
ouc	Q come	u	165~ 50	1650, 1600, 1555, 1380, 950, 740		
301	els CC coorts	"	130~ 2	1660, 1540, 1400, 955, 780		

EP 0 219 436 B1

5	Airway re- sistance increase inhibition (%)	,				-		96		93					
10	Anti-SRS A action[min-s imum effec-1 tive conc. 1						2×10 ⁻⁹								
15				5, 780									760	780	955
20	Physical property values	110, 845, 780	108, 943, 690	1660, 1550, 1445, 1400, 1210, 855, 780	1410, 850, 780	1650, 1540, 1400, 950, 780	380, 930, 710	1660, 1550, 1260, 360, 785	1850, 1550, 1400, 950, 780	(00, 850, 775	1650, 1540, 1400, 850, 780	1650, 1540, 1400, 850, 780	1670, 1520, 1190, 960,	1670, 1540, 1410, 950, 780	1680, 1580, 1410, 1200, 955
25	Physical	1660, 1550, 1410,	1650, 1555, 1408,	1660, 1550; 14	1660, 1550, 1	1650, 1540, 1	1660, 1575, 1380,	1660, 1550, 1	1650, 1550, 1	1650, 1540, 1400, 850.	1650, 1540, 1	1650, 1540, 1	1670, 1520	1670, 1540	1680, 1580
30 .	.d.(b)	207~ 10	260~ 70	150~ 3	120~ B	S ~001	0C ~LZI	120~ 5	25~ 80	130~ 5	120~ 3	80~ 35	159~ 60	3 ~ 551	164~ 5
35	R ₁	•	-aı(aı ₁)2	"	"	u	u	u	"	"	"	"	-(CH ₂) ₂ CH ₃	ů	
40 45	R ₁₄	NaOOC (CH2)2-	NetOC(CH ₂) 3"	C coopie	Ne √ cooMa Ne	Ke ~ € σσΝα	Sylvania (O)	Ke J COOKs	Ne ~ COOMs	Et $ otin $	Ne X COOMs	Et $ mathcape{}{\leftarrow}$ Me	Et COOH	Et Coon	Me COOH
	Com- pound No.	302	333	300	305	308	307	308	308	310	311	312	446	447	4 4 8

5		
10		
15		
20		
25	rable 2-4	H 12
30	rab'	Ft 14-007MI
35		Ri
40		·
45		

Can- pound No.	Rid	RI . R2	т.р. (т)	Physical property values (IR)	Anti-SRS action (minimum effective conc. (M))	Airway resistance increase inhibition (%)
105	ر صاا	7e, 7e	150~ 2	1705, 1620, 1500, 1540, 840		
108	© ∞ m	¥	181~ 3	1700, 1650, 1515, 1255, 785		
107	cis	"	175~ 7	1660, 1600, 1545, 1210, 968, 786		
108	trans (X cooll	"	195~200	1705, 1655, 1605, 1545, 1100, 360, 780		
108	els (X _{sss}	. "	197~200	1690, 1560, 1510, 1430, 1215, 550, 780		
110	التكام (جاتا) -	"	203~ 4	1710, 1660, 1660, 1550, 1400, 1230, 790		
Ξ	اهمي (4م)-	"	6 ~901	1700, 1660, 1600, 1550, 1210, 945		
112	els (C	"	206~ 7	1875, 1540, 1405, 1200, 940, 785		
13	- B	"	167~ 70	1650, 1540, 1440, 780		
114	Ne Cood		180~200	1680, 1540, 1200, 950, 700		·

															
. 5		Airway resistance increase inhibition (%)	·												
10		Anti-SRS action [minimum effective conc. (M)]										,			
15		IR)													
20		Physical property values (IR)	525, 800	190	3320, 2910, 1680, 1540, 1410, 945, 780	190	1200, 780	730	9E	85	吾	1700, 1655, 1600, 1540, 1175, 960, 785	865	710	050, 780
25		rsical pro	1878, 1540, 1419, 1260, 355, 800	1720, 1500, 1250, 950, 780	1680, 1540.	1600, 1540, 1300, 950, 700	3270, 1710, 1650, 1530, 1200, 780	1700, 1660, 1540, 1210, 700	1703, 1650, 1540, 1250, 700	1680, 1540, 1410, 850, 785	1677, 1540, 1200, 350, 785	1600, 1540.	1720, 1600, 1550, 848, 845	1700, 1438, 1380, 1100, 710	1630, 1850, 1540, 1210, 050, 780
30		Phy	1070, 1540,	1720, 1500,	3320, 2910,	1600, 1540,	3270, 1710,	1700, 1660.	1703, 1650,	1680, 1540.	1677, 1540.	1700, 1655,	1720, 1600,	1700, 1438,	1630, 1650,
		m. p.	173~ 4	180~ 7	180~ 7	215~ B	163~ (8 ~ 821	200~ 1	211~ 2	200~ 10	104~ 5	14~ 5	112~ 3	€ ~191
35		RI , R2	Et , Ke	"	"	"		"	ž.	"	"		Cl ₃ (Cl ₂) ₂ Et	Ľ	"
40								lions .	5					_	
45		Rid	(cooi	OX cool	cis Comi	-(۵اء)عصا-)- (අප)	els Re C	Ne XXX 0001	1000 	Ne Ke COOH	, Ke ~ (000)	(0001	Ø m	cis Com
50	i	Campound No.	\$11.	116	111	118	119	120	121	133	22	124	125	126	121

Airway resistame increase inhibition													
Anti-SRS action [minimum effective conc. (M)]											·		
Physical property values (IR)	1710, 1660, 1605, 1545, 900, 705	1685, 1660, 1605, 1310, 1105, 780	1720, 1620, 1580, 1545, 1735, 350, 780	1600, 1500, 1510, 1410, 1200, 950, 785	1720, 1620, 1580, 1515, 1210, 555, 780	1700, 1655, 1600, 1840, 1080, 360, 780	1630, 1650, 1540, 1210, 950, 780	1680, 1545, 1415, 1205, 250, 730	1698, 1541, 1405, 850, 735	1660, 1595, 1530, 1250, 804	1710, 1670, 1600, 1545, 1256, 976, 785	1700, 1600, 1550, 1295, 1155, 780	1626, 1550, 1460, 1350, 1210, 340, 050
m.p.	1 ~091	2 ~18	204∼ B	133~ 5	173~ B	164~ 7	181~ 3	1 ~202	180~ 3	7 ~802	255∼ 60) ~C01	163~ 7
Ri . R2	מון (סון) ז-, בּוּ	*	C ₆ ll5-,-(Cl2)3Clt	"	ле(СП ₂)3СП ₃	*	-(al2)2d13.£t	-cocet , 11	-)(ďg)-	"	Ne , Ne	"	u u
RIA	-(042)2000	التهائراناه)٠		cls CX agai	Ø cort	els C	ela (X ₈₈₈	sis CX cook	(∞	-(CH2)2003H	∫ 200H	∫ 20013	. (200%
Pogi No.	128	123	130	E	132	8	134	135	138	137	691	187	313
	Rid Ring m.p. Physical property values (IN) action indicative effective effective conc. (M)]	R 1, R R 1, R M.p. Physical property values (III) Section [minimum] Effective COD. COD.	Rid Rid Rid Rid Rid Physical property values (IN) Section Indinum Indinum Indinum Indinum Indinum Indinum Effective COPP.	Ri4 Ri.R2 m.p. Physical property values (III) action (III) action (III) action (III) action (III) action (III) action (III) (III) (III) (III) (III) (III) (IIII) (IIII) (IIII) (IIII) (IIII) (IIIII) (IIIII) (IIIII) (IIIIII) (IIIIII) (IIIIIIII	Rid Rid	Rit Rit	Rid Ri . R2 m.p. Physical property values (IR) Section (III) Physical property values (IR) Section (III) Physical property values (IR) Section (III) Secti	Rit Ri . R2 m.p. Physical property values (III) Parti-SRS Partinium Partiniu	Rid Ri	Rit Rit	Rit Rit Ri Ri Ri Ri Ri R	Rid Rin, Ri Ri, Ri,	Rit Ri . R2 m.p. Physical property values (III) Anti-SFR Anti-SFR Physical property values (III) Anti-SFR Physical property values (III) Physical property values (IIII) Physical property values (III) Physic

	Airway resistance increase inhibition	•												
	S Airway resist increa				78			<u> </u>			-		-	+-
)	Anti-SRS action [minimum effective													
	Physical property values (1R)	1655, 1580, 1550, 1385, 850, 780	1675, 1550, 1440, 1410, 850, 780	1660, 1550, 1405, 845, 775	1660, 1575, 1510, 1130, 730	1650, 1830, 1580, 1410, 850, 780	1055, 1555, 1410, 150, 780	1650, 1540, 1410, 1250, 850, 775	1660, 1540, 1400, 850, 780	1000, 1555, 1435, 1350, 845, 780	1050, 1560, 1385, 850, 780	1685, 1545, 1405, 855, 780	1600, 1580; 1410, 845	1645, 1550, 1410, 850, 630, 780
	j. j.	165~ 7	0 ~171	242∼ B	177~ 00	203∼ B	201~ 3	167~ T0	155~ 60	141~ 2	151~ 3	150~ 5	B ~ 101	D1 ~502
	R , F2	He . Ne		u.	"	u	Ł	Ł	\	2. H	į		"	· ·
	F. F.	(€ @w.	cis Comple	Trans C COONs	cis (C) (Mile	Na CCC (CH2) 2-	ЖвОСС (СИ ₂)3 -	O-F agors	Ne COOMs	(com	©	els Channe	X4000(CH2)2-	Na CCC (CH ₂) 3−
	Can- pound No.	316	315	316	317	318	318	320	321	322	923	326	325	326

5	Airway resistance increase inhibition (%)													
10	Anti-SRS action [minimum effective conc. (M)]		5×10*				10-2							
15														
	(- (-IR)													
20	values		700	780	, 780		780					. 630	630	
25	Physical property values	1610, 955, 705	1405, 1320, X10. 700	1655, 1545, 1440, 1210, 250, 780	1680, 1545, 1410, 1360, 650, 780	1400. 250, 780	1660, 1560, 1440, 950, 850, 760	1610, 1550, 1383, 950, 700	1655, 1540, 1405, 850, 700	1660, 1550, 1405, 950, 775	1650, 1550, 1405, 950, 780	1580, 1550, 1480, 1385, 770, 690	1660. 1545. 1480. 1405. 770. 630	1645, 1545, 1380, 950, 780
30	Physical	1665, 1550, 1410, 955.	1650, 1550, 1405, 1320,	1655, 1545,	1680, 1545,	1650, 15(0, 1400, 250,	1660, 1580.	1610, 1550,	1655, 1540,	1660, 1550,	1650, 1550,	1580, 1550,	1660, 1545,	1845, IȘIS,
35	m.p.	163~ 8 (decompo-	\$ ~001	145~ 50	145~ 50	130~ 5	153~ 7	1 ~3€1	9 ~c9ſ	8 ~)91	8 ~¶81	29 ~601	153~ \$	138~ (1
40	R1 + R2	£1 . Ke	"	" .	*	ž.	aı3(al2)2-, Et	u	"	"	. "	Celis-,-(Cli2)3Cl3	"	Ne(CI2)30i3
4 5	R14	cis Ne CONN	^{Ke} ∭ ∞ωνε	\$ 000€	Ne X WOWs	Ne ~∫	(000%	Q wie	eis Comes	NaCCC(CN ₂) ₂ -	H ₈ OCC(C ³ ₂) ₃ −	OC COOK.	els Channe	O CON
50	Sound No.	327	328	328	330	33	332	333	334	302	300	337	338	339

EP 0 219 436 B1

m.p. Physical property values (R) action resistance [minimum increase (C) effective inhibition (M)	1660, 1540, 1440, 1405, 300, 780	163~ 6 1655, 15(0, 1405, 1300, 350, 780	177~ 80 1710. 1670, 1545, 1400, 1220, 780	240∼ 50 1650, 1430, 1310, 810	250~ 60 1605, 1505, 1520, 1400, 850, 810
		<u> </u>		<u> </u>	<u> </u>
R1 · R2 m · .1	Ke,-(Œ₽)ეძ!ე 185~ 9	9 ~€9! 13°C 0 0}-	-000E1, II 177~	-(Cl2)4- 240~	250~
Rid	els C cooke He.	0)- "	"	€ cco/4e	MnOCC(CH ₂) ₂ -
Compound No.	340	341	342	343	35.

5												
10		values (IR)				0		·		5, 750		
15		Physcial property values (IR)	600, 1635, 1510, 1210, 960, 750	1710, 1660, 1515, 1200, 945, 760	1700, 1650, 1435, 1215, 955, 760	1600, 1640, 1580, 1445, 1260, 780	. 1050, 760	1710, 1635, 1225, 1170, 960, 760	. 1445, 750	3300, 2950, 1680, 1630, 1445, 965, 750	1610, 1540, 1400, 1240, 955, 750	, 1040, 755
20		Physci	1600, 1635, 1510,	1710, 1660, 1515	1700, 1650, 1435	1690, 1640, 1580	1670, 1430, 1250, 1050, 760	1710, 1635, 1225	3230, 2310, 1630, 1445, 750	3300, 2950, 1680	1610, 1540, 1400	1650, 1500, 1400, 1040, 755
25	Table 2-5	m.p.	304~ 8	0 ~921	169~ 70 (decompo- sition)	305~ 7	179~ 80	197~ 8 (decompo- sition)	200 (decompo- sition)	9 ~ S81	211~ 7	22 ~001
30	R14-COMII	L	8-0:1	12-1	2-Ke (1:0-+	4-0He	6-0Nc	2-011	"	6-0H	12-1
35	· ·											
40		Rid	1000	"	"	"	,,	"	") war	, 000k	"
4 5		-	S C			-				EI C		
50		Com- pound No.	138	601	150	101	142	5	ž	145	345	346

5	
10	
15	
20	
25	
30	
35	
40	
45	

Com- pound No.	Rid	Å	φ.p.	Physical property values(1R)
347	eis Campu	2-Ne	188~201	1635, 1560, 1405, 850, 755
348	" .	110-7	2 ~152	1600, 1590, 1510, 1260, 820, 760
348	. "	4-0%p	2 ~)@	1670, 1565, 1530, 1255, 755
350	. "	6-04a	178~ 82	1650, 1550, 1500, 1400, 1235, 1030, 760
351	"	2-01	240 (decompo- sition)	1680, 1540, 1130, 755
352	£1 ≠ 0004a E1	"	200~ €	1550, 1430, 360, 750

Table 2-6	
	و الله

<u> </u>	Compound No.	4	м.р. (°0)	Physical property values (1R)	Anti-SRS action [mininum effective
ٺـــــا	9)1	-0012-	C ~281	1700, 1625, 1575, 1490, 755	
	147	-പുമ്പു-	130~ (0	1700, 1625, 1555, 1530, 953, 753	
	891	-00411-	217~ 9	1670, 1540, 1230, 1200, 750	
!	89	-GICIICMII	240~ 1	1705, 1685, 1620, 1580, 1519, 1205, 1160, 750	
<u>'</u>	53	-AIICI12-	158~ 9	1600, 1610, 1430, 840, 750	2×1¢*
	121	-2(۵ائ)-	154~ 5	1700, 1620, 1550, 850, 760	

5		
10		
15		
20 ·		<u>-</u>
25	Table 2-7	\aizaiz \int s
30	Ta	14-cowii
35		
40		·

Anti-SRS action [minimum effective										
Physical property values	151~ 3 (R 1700, 1650, 1810, 1490, 1245	IR 1710, 1640, 1530, 1440, 1180, 750	IR 1710, 1605, 1550, 1200, 730 NAG(CAC13)2.15~2.75(GH.m), 2.75~3.55(4H.m),5.57(2H,d),8.75~8.10(6H.m)	IR 1720, 1680, 1220, 1175, 760	IR 1687, 1650, 1510, 755	IR 1720, 1653, 1525, 1185, 755	IR 1710, 1660, 1540, 1180, 755	IR 2910, 1630, 1640, 1430	IR 1670, 1600, 1535, 1440, 1210, 780	125~ 7 IR 1690, 1660, 1545, 1440, 1210, 700
m.p.	151~ 3	129~ 01	1	161~ 2	158~ 9	163~ 4	130~ 1	130~ 1	8 ~521	125~ 7
RI . N2	♦	"	"	"	"	"	"	ï	(מוء) אמי- יוו	"
Rid	Q wil	ols C cool	eis (X coolt	اهمځ(داه)۔	of ∞ii	Ne COOII	Xe COOII	Ne COOH	*1*	Ne Xe
Com- No.	152	153	154	155	138	157	158	53	180	191

EP 0 219 436 B1

						Γ	1 .					Π		
5	Anti-SRS action [minimum effective]						2×10"					10.		
10						NIII((J.C.C.1.3): 6 -3.3~3.7(4H,m),3.98(3H,s),6.90~8.08(6H,m),8.80(1H,broad s)								
15	values			_		6.00~8.09(6H,								
20	Physical property values	10, 1175, 780	10. 785	307 .01	00, 1175, 790	(,m),3.98(3H,s),		85, 755		00. 755		la la	30, 955	10. 950
25	Physical	1710, 1660, 1605, 1440, 1175, 780	2920, 1680, 1430, 1130,	in 1677, 1540, 1430, 1130, 705	1705, 1655, 1605, 1400, 1175, 750	313): 6 •3.3~3.7(4)	1560, 1435, 860,760	1650, 1500, 1560, 4385, 755	1680, 1560, 1405, 755	1680, 1550, 1625, 1200, 755	1650, 1550, 1(20, 750	1655, 1545, 1435, 755	2850, 1855, 1550, 1430, 955	2850, 1850, 1550, 1410, 850
		171	IR 292	191 US	17 II	NIE (CLK	=	E	18 16	JR 16(131 161	#	18 28	IR 28
30	m.р. (°С)	78~ 80	119~ 50	9 ~\$C1	8 ~911	112~ 3	30~100 (decompo- sition)	118~ 20	7 ~025	201~ 10	165~ 8	201~28	90~ 92	70~ 80
35	R1 . R2	n,-ເວ _{້າ} (_ເ ເນ)	Et . No	"	"	⟨⟩	" "	"	"	"	"	W	"	"
40													·	
45	R14	Ne ~~ (000!	→ Omit	Ne K COOII	Ne COOH	-200°A	91000)	OC COMP.	ols CX COOPING	cis (X ₀₀₀ 0%	RaCC(CI2)2-	- O	Ne COONS	Ke L Wile
	Com- pound No.	291	163	164	165	188	35	354	355	356	357	358	358	360
50			لـــــا	اا		ا <u>۔ ۔ ۔ ۔ ۔ </u>	L			1				

5	. :	Anti-SRE action [minimum effective conc. (M)]		2×10*				5×10*
10								
15		y values	,					
20		Physical property values	100, 750	205, 735	105, 735	180, 735	300, 780	435, 875, 780
25		Physi	IR 2910, 1845, 1545, 1400, 750	IR 1650, 1540, 1440, 1205, 735	IR 1650, 1540, 1400, 1105, 735	IN 1650, 1540, 1400, 1180, 735	IR 2010, 1650, 1545, 1300, 780	75~ 00 (decompo- IR 2950, 1850, 1540, 1435, 075, 780 BLEIQUI)
30			IR 2910	1R 1650	IR 165(10 1650	IR 291(112 295
· 35		m.p.	55~ 80	00 ~98	82~ 3	01~~10	001~50	75~ 00 (decompost striou)
40	·	RI . R2		-طا(طال)1،اا	"		Et. No	"
45		Rid	Ne ~~ COOMs	**************************************	Ne of COOMa	Ke ~ Cooke	C wore	He L COOMA
50		Com- pound No.	361	362	383	384	365	368

120~ 1 18 2050, 1650, 1545, 1435, 1300, 780

387

5		
10		
15		
20		 R ₂
25	Table 2-8	- S
30		10(CIIZ) 3mi
35		
40		

Physical property values	IR 1705, 1590, 1330, 1190, 040, 678	IR 1630, 1530, 1405, 1105, 845, 775	IN 1870, 1590, 1390, 845, 730	IR 1705, 1600, 1330, 1180, 340, 780	IR 1700, 1590, 1330, 1180, 365, 715	IR 1700, 1600, 1510, 950, 700	IR 1635, 1530, 1180, 850, 780	IR 1705, 1530, 1330, 1100, 845	IR 1710, 1600, 1330, 1180, 720	IR 1710, 1550, 1550, 720
(3.)	115∼ 6	112~ 3	83~ 5	129~ 30	127~ 1	106~ 7	115~ . 8	G ~ yc	113~ 4	108~ 0
R1 . R2	-(ai ₂) ₂ ai ₃ ,Et	-aı(ab) ₂ ,ıı	".	£1 , Xe	-(۵۱۶)ر۵۱۹.۱۱	-c(c\p) _{3.11}	H. 13	-(Gl ₂) ₃ Gl _{3,} II	ان،وامي(دام)-	1, ctD ₀ (5 D)-
V	-CII-CII-	"	"	"	"	u	" "	"	"	"
Com- pound No.	121	241	173	171	175	176	171	178	179	981

			.· .	
5	· · · · · · · · · · · · · · · · · · ·		•	
10			s), 8.4~8.1(9H	
15		ty values	1800, 1100, 755): 6-1.7~2.7(5H.m),3.15(2H,1),4.58(2H,s),4.8(2H,s), 8.4~8.1(8H,m)	
20		Physical property values), 3. 15(28,1), 4.5	
25	en e	hysica	2.7(5H,	50, 1180
		, pa	IR 1685, 1800, 110 NMR (CICC)3): 6-1.7	IR 1705, 1600, 1250, 1180
30		i o	≅ £	
35		m. p.	1	120~ 3
40		R . 1.2	0	۲.
45		. V	-CH20CH2-	-0CH2-
50		Can- pound No.	181	281

5		Anti-SRS action [minimum effective conc. [M]]										
10				~2.8(*,4H),				50(ZH.m).	13(ZH.q),			
15		/alues		.2.3(a,6H), 2.2				0, 1180, 755 2.00(31,a) 2.35(61,a) 2.25~2.50(21,a), 3,4.16(21,q),8.28~7.33(61,a)),3.20(2H,m),4.			
20	~~ ~~ ~ ~ /	Physical Property values	. 740	1440, 1175, 250, 780 .25(311,1), 1,5~1,0(41,m),2.3(a,6H), 2,2~2.8(a,4H) .1(2H,4),6.3~7.4(GH,s)), 758		15, 720	30, 1190, 755 , 2.00(31,=), 2.35 =), 4.16(21,q), 8.2	NYR(СССІ3): 8-1,25(3H,4),1.78-2.48(4H,ш),3.20(2H,ш),4.13(ZH,q), 6.38-8.00(12H,m)	DO. 770	0, 735	£, 73
25	Table 2-9	Physical	1720, 1480, 1180, 860, 740	1540, 1440, 11 : 6-1.25(311.1) 4.1(2H.4)	1720, 1600, 1220, 050, 758	1710, 1595, 1180, 750	1710, 1595, 1470, 1185, 720	IR 1710, 1595, 1480, 1200 NAR (CDCl ₃): 6-1.25(3H.1) 3.20(2H,#)	: 8-1.25(311,4 6.38~8.00	1720, 1590, 1273, 1190, 770	1720, 1590, 1180, 070, 735	1725, 1265, 1180, 945, 730
30	Tab		18 1720, I	IR 1720, 1540. NAR(CACI3): 6-1	IR 1720.	IR 1710.	IR 1710,	IR 1710 NYR (COCI _O	NYR(CLC13)	IR 1720.	IR 1720.	IR 1725,
35		.d."	6 ~ 9	1	131~ 4	6 ~001	110~ 1	-	89.5~ 30	135~ 7	72~ 3	85~ 86
	.*	Я1. Р2	C ₆ ll ₅ ,1l	Ne . Na	⟨ ⟩	"	C ₆ II ₅ ,II	Ke , Ke	C ₆ ll ₅ ,1l	·	"	C ₆ ll ₅ , li
40	· .		2)4-		-W-	-HH-		1 ₂) 3 ^N II-	1 ₂) 3 ^{NII-}	-0£(2 ₁	-07 (21	-0£(2
45		>	E100C(CH ₂)	"	ELCOCCH2M	Et@C(G12)	u	E100C(GI ₂)	E100C(CI1 ₂)	Et00C(CH ₂)	E100C(CI1)	Et00C(CII)
50	·	Com- pound No.	197	138	200	501	202	202	204	202	208	82

Anti-SRS action [minimum effective	2000				2×10*	2×10²		5×10*					
Physical property values	IR 1720, 1570, 1140, 950, 780	HYR(CCC13): 6 = 0.72~2.37(104.a), 3.62(3H.s),3.40~4.21(ZH.a), 6.62~7.38(101.a) 18 1720, 1570, 145, 950, 733	NOTI(OCI4): 6 = 1.26(6H, 5) 1.36(2H, t), 3.62(3H, s), 3.32(2H, t), 8.55-7.35(10H, s) 110 110, 1570, 1260, 1040, 740	IR 2925, 1560, 1430, 1310, 855, 750	IR 2825, 1580, 1410, 860, 730	IR 1570, 1510, 1380, 1280, 750	18 1570, 1420, 1200, 950, 750	IR 1550, 1420, 1170, 840, 750	IR 1595, 1570, 1410, 940, 745	IR 1595, 1555, 1430, 955, 750	IR 1600. 1560. 1430. 360. 730	IR 1590, 1425, 940, 745	IR 1550, 1420, 840, 750
m.p.	1	ı	87~ 8	239~ 40	1 ~012	215~ 8	(decombo	255~ 8	257~ 60	0) ~6D2	1 ~075	>320	200~ 2
R1 • R2	\Diamond		"	"	C ₆ ll ₅ -,II	(>	. #	"		"	11,-211 ₅ 7	()	"
>		He COONE	OC 0-	Na COC (CI 2) 4 MII-	"	OX MI-	Ne00C(CH ₂) ₂ 0-	γ«αας(αι ₂). ₃ ο-	Маскандин-	Ne∞C(CH ₂) (NII−	u u	Mettotta120-	NeCCC(CI ₂) ₃ 0-
Cam- pound No.	210	211.	212	373	374	375	384	385	387	388	399	ē,	£03

Anti-SRS action[min-imum effective conc.				760	\$XIQ.			10-8			1.4(6H,B), 1.45(6H,d), 1.4(3H,t), 2.15(2H,t], 2.9~3.4(1H,m), 3.95~4.42(4H,m), 6.7~7.42(7H,m) 1260, 1145, 1020
Physical property values	IR 1545, 1415, 950, 730	IR 1560, 1430, 1270, 750	IR 2920, 1620, 1580, 1440, 750	IR 1575, 1520, 1480, 1445, 1165, 850, 760	IR 1545, 1400, 1200, 1030, 740	IR 1615, 1425, 1345, 1090, 1070, 823	IR 1560, 1410, 845, 750	IR 1560, 1430, 1310, 850, 750	IR 1550, 1440, 960, 730	IR 1560, 1410, 850, 785	NMR(CDCl3):6 = 1.4(6H,8), 1.45(2.15(2H,t], 2.95 3.95~4.42(4H,m) IR 1720, 1590, 1260, 1145, 1020
m.p.	209~ 90	216~ 9	730 (decompo- sition)	198~203	250 (decompo- sition)	>350	227~ 30	270~ 82	265~ 8	285~ 30	oi 1
R ₁ , R ₂	C ₆ ll ₅ -,II	(?)		,,	,	u u	"	"	Cells-, II	Ж Же	-СН (СП ₃) _{2,} II оі1
3	NaCC(CH2) 30-	Nacc(Cl ₂) 40-	C CONTRACT	Me & COOMs	(OC~0- 0000€	NaCC(CI ₂) ₃ ~	la∞c(Gl ₂) 4-	NaCOC(CH ₂)5-	γ«αας(α ₂),∢-	"	Me COOEt
Com- pound Mo.	ੜੇ	70)	405	90)	. 107	\$	410	113	213	413	431

5

					,		·
	Anti-SRS action [minimum effective conc. (M)]			2×10 ⁻⁸	10-7	10-8	
	Physical property values	N4R(CDCl ₃); 6-1.33(6H, d), 1.69(4H, q), 1.65(6H, t), 2.07(2H, t), 2.80~3.40(1H, m), 3.65(3H, s), 3.92 (2H, t), 6.66 ~ 7.35(7H, m) IR 1720, 1590, 1240, 1140, 1040	NMAR(CDCl ₃): 6m0.66 ~ 1.12(6H, m), 1.3 ~ 1.9 (4H, m), 1.95 ~ 2.30(ZH, t), 3.67(3H, t), 3.7 ~ 4.28(ZH, m), 6.69 ~ 8.10(10H, m) IR 1720, 1240, 1140, 1030, 760	IR 1580, 1380, 1210, 945, 750	IR 1610, 1505, 1380, 950, 750	IR 1575, 1520, 1445, 1040, 760	IR 1690, 1565, 1265, 1025, 965
,	m.p.	011	011	>300	287 ~ 8	198 ~ 203	179 ~ 81
	R1 , R2	-сиси _{з) 2} , и	•	·		•	-си(сиз)2, н
	М	Et COONe	Et COONe	COONA	W COONA	He COON a	-coom
	Compound No.	432	433	434	435	436	438

EP 0 219 436 B1

	Anti-SRS action [minimum effective conc (M)]	2×10 ⁻⁹		5 × 10 -8	-		
	Physical property values	IR 1690, 1590, 1220, 965, 780	NATR(CDCl ₃): 6*0.92(6H, t), 1.35(6H, d), 1.82(4H, q), 2.9 ~ 3.6(1H, m), 3.35(2H, s), 6.4 ~ 7.34(7H, m) IR 1685, 1590, 1250, 950, 770	IR 1680, 1585, 1440, 1210, 750	IR 1665, 1570, 1280, 1200, 950	IR 1690, 1440, 1260, 955	IR 1700, 1260, 1200, 1150, 960
·	м.р. (°С)	106 ~ 8	110	129 ~ 30	9 × S6	5 ~ 5	104 ~ 5
·	R1 ' R2	-сп(сн ₃) ₂ , н	•		•	-(СН ₂) ₂ СН ₃ , н	-cuch ₃ 12, R
	33	Et COOH	Et COOH	Et COOH	Et COOH	носэ	носо
	Compound No.	439	440	441	442	443	***

			-
	Table 2-10	C MILL O	annie de la company de la comp

Com- Pound No.	•	 (6)	Physical property values (IR)	Anti-SRS action [minimum effective
368	-2012-	115~ 7	1660, 1560, 1440, 750	ODDC. (M) 1
369	-4100415-	67~ 70	1570, 1440, 1355, 750	10.2
370	-00411-	277~ 80	1865, 1540, 1435, 1275, 745	
126	-IIKO-ID-K9-	341~ 4	1870, 1545, 1435, 1260, 1070, 745	
372	-4KG12-	131~ 8	1680. 1560. 1430. 1305, 850. 735	

EP 0 219 436 B1

					,								
5			Anti-SkS action [minimum effective	5×10°	2×10*								
10			(10)		·								
20	2-11	^A	Physical property values	2880. 1680. 1558, 1438, 1188, 760	1800, 1555, 1410, 950, 770	1560, 1400, 1305, 940, 770	1825, 1540, 1405, 940, 775	1560, 1410, 1100, 358, 830, 745	1560, 1420, 850, 740, 680	1540, 1410, 1330, 350, 755	1560, 1400, 1300, 940, 765	1625, 1550, 1405, 950, 758	850, 705
30	Table 2-11	NaOOC(GI2)3NII		·	5 1600, 1555,			8 1560, 1410,	7 1560, 1420,	6 1540, 1410.	1560, 1400,		5 1555, 1420, 850, 705
35		Na O	m.p.	148~ 50	133~	e 170~ 82	1 187~ 70	~102	202~	-NI	-S21	h.fl i65∼ 70	151~
40			R1 . R2		Ke . Ke	*	ري وه	II. 15	-{⊙\ ^{Ne} . II	Et, Ne	-CI((CI ₂)2.II	າ.ຕູລ _າ (ຊາວ) -	-(¤i₂)²(¤i₃,£l
4 5		•	~	-(al ₂) ₂ -	-CI-CI-	<i>"</i>	"	"	"	"	u	"	u u
5 0			Cam- pound No.	376	377	378	378	380	381	382	383	384	385

				****			-,		
Anti-SRS action [minimum effective		10.		10.4					
Physical property values (1R)	1560, 1410, 1100, 850, 745	1550, 1410, 950, 765	1555, 1410, 853, 770, 685	1595, 1560, 1435, 1410, 355, 770	1560, 1410, 950, 770, 685	1550, 1410, 050, 770	1615, 1570, 1210, 753	1675, 1600, 1560, 1400, 755	1600, 1550, 1430, 955, 730
т.р. (0°)	2 ~ssi	0) ~8CI	133~ 5	123~ 7	112~ 5	153~ (125~ 30	138~ 45	270∼ 6
Я, , R2	-C(Clβ)3·II	Et . II	-(Gl ₂) ₂ G ₁ ,11	11, dDg (5ID)-	-(CH ₂)5CH ₃ ,II	11, ₍ (GP) -	⟨ ⟩		Geli5-,II
₹	-GI-GI-	"	"	" .	. "	"	-400	-ರಿಬರಿ-	-ip-ip
Com- pound No.	386	387	388	388	390	391	392	383	400

5		
10		
15		
20		
25		Table 2-12
30		E₹
35		
40	. ,	
45		

Com- pound No.	Structural Formula	(0.)	Physical property values (1R)
302	E100C(CH2)3NH	& \ & &	1715, 1800, 1250, 1175, 750
80)	M _α αας(αι ₂) ₃ ο αι ₂	207~ 8	1557, 1430, 1165, 1040, 750
420	Tr is • HOOCCONII	22(~ \$	1680, 1520, 1440, 750
421	лис - 10000 (СПр.) Фр. (СПр.) Фр	20 ~ ∞0 .	1570, 1430, 1085, 750

EP 0 219 436 B1

Table 3

Anti-SRS action Test compound Compound Example [Minimum effective conc. (M)] 5×10^{-8} 1 9 10-6 189 13 2×10^{-7} 199 213 17 5×10^{-8} 396 19 2×10^{-7} 10-6 414 21 10⁻⁶ 422 23 10-6 423 24 5×10^{-7} 424 25 2×10^{-7} 426 27

Table 4

Test Co	Airway resistance increase inhibition (%)	
Compound No.	Dosage (mg/kg)	·
213	30	51
223	3	87
227	3	71
272	10	. 37
297	10	62
353	30 .	79
396	3	55

72

10

15

· 20

25

35

45

50

Table 5

5	Compound No.	Acute toxicity value (LD 50 mg/kg)
	2	> 3000
10	2 6	> 3000
	2 1 3	> 3000
15	2 1 6	> 3000
	2 3 2	3000
20	2 4 7	> 3000
	2 4 8	> 3000
	2 4 9	1000~ 2000
25	2 8 1	> 3000
30	3 0 0	1000~ 2000
	3 0 3	2000
	3 1 3	1560
35	3 1 4	2000~3000
	3 1 5	1000~ 2000
40	3 1 7	1 0 3 2
	3 2 4	1360
45	3 2 5	2000

50

55

Compound No.	Acute toxicity value (LD 50 mg/kg)
3 2 6	> 3000
3 5 3	3 3 0 8
3 5 5	1928
3 8 2	1 9 2 8
3 9 6	2000~3000
4 1 8	> 3000

Claims

10

15

20

-25

30

 A thiazole derivative represented by the following formula and a pharmaceutically acceptable salt thereof:

35

40

45

50

wherein R_1 and R_2 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a lower alkoxycarbonyl group having 2 to 4 carbon atoms or a phenyl group which is unsubstituted or substituted with a halogen atom, a lower alkoxy group having 1 to 3 carbon atoms, a lower alkoxycarbonyl group having 2 to 4 carbon atoms or an alkyl group of 1 to 3 carbon atoms or cooperatively represent a tetramethylene group corresponding to a fused cyclohexane ring or a butadienylene group which is unsubstituted or substituted with a halogen atom, a lower alkoxy group having 1 to 3 carbon atoms, a lower alkoxycarbonyl group having 2 to 4 carbon atoms or an alkyl group having 1 to 3 carbon atoms corresponding to a fused benzene ring; R_3 , R_4 , R_5 and R_6 each independently represent a hydrogen atom, a hydroxyl group, a lower alkoxy group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms or a halogen atom; A is a linking group selected from the group consisting of -CH=CH-, -CH₂CH₂- -OCH₂, -NHCH₂-, -CONH-, -CH=CHCONH and -CH₂OCH₂-,

B is a group selected from the group consisting of:

-(CH₂)_n-CONH-, wherein n is an integer of 0-3,

-(CH₂)_n-NH-, wherein n is an integer of 1-4,

-(CH₂)_n-0-, wherein n is an integer of 1-4,

-(CH₂)_n-, wherein n is an integer of 2-5,

55

R7 R8 CONH-

wherein R_7 and R_8 each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms as defined above,

R 7 R 8 CH 20 -

wherein R7 and R8 have the same meanings as defined above,

R 7 R 8

10

15

20

25

30

35

40

45

50

wherein R₇ and R₈ have the same meanings as defined above,

wherein R_9 , R_{10} , R_{11} and R_{12} each independently represent a hydrogen atom, a phenyl group or an alkyl group having 1 to 6 carbon atoms,

wherein R₉, R₁₀, R₁₁ and R₁₂ have the same meanings as defined above,

wherein R₉ and R₁₁ have the same meanings as defined above,

wherein R_{10} and R_{12} have the same meanings as defined above,

5

10

15

20

25

30

35

45

50

· 55

Rio Riz CH20-

wherein R_{10} and R_{12} have the same meanings as defined above,

wherein R₁₀ and R₁₂ have the same meanings as defined above,

wherein R₁₀ and R₁₂ have the same meanings as defined above,

wherein R_{10} and R_{12} have the same meanings as defined above,

wherein R_{10} and R_{12} have the same meanings as defined above,

wherein R_{10} and R_{12} have the same meanings as defined above,

wherein R₁₀ and R₁₂ have the same meanings as defined above,

wherein R_{11} and R_{12} have the same meanings as defined above, and

- wherein R₁₁ and R₁₂ have the same meanings as defined above and Q represents a carboxyl group, a lower alkoxy group having 1 to 3 carbon atoms, a hydroxyl group, an alkoxycarbonyl group having 2 to 6 carbon atoms or a 5-tetrazolyl group.
- 2. A leukotriene antagonist comprising a thiazole derivative represented by the following formula or a pharmaceutically acceptable salt thereof as the active ingredient:

wherein R_1 , R_2 , R_3 , R_4 , R_5 , R_6 A, B and Q are defined in Claim 1.

3. A thiazole derivative and the pharmaceutically acceptable salt thereof according to Claim 1 represented by the following formula:

wherein R_7 and R_8 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms or cooperatively represent a butadienylene group which is unsubstituted or substituted with a halogen atom, a lower alkoxy group having 1 to 3 carbon atoms, a lower alkoxycarbonyl group having 2 to 4 carbon atoms or an alkyl group having 1 to 3 carbon atoms corresponding to a fused benzene ring; R_9 and R_{10} each independently represent a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.

4. A leukotriene antagonist comprising a thiazole derivative represented by the following formula or a pharmaceutically acceptable salt thereof according to Claim 2 as the active ingredient:

wherein R₇, R₈, R₉, R₁₀, are defined in Claim 3.

10

15

25

30

35

40

45

50

55

5. A process for preparing a thiazole derivative represented by the formula:

$$\begin{array}{c|c}
R_{5} & R_{4} \\
R_{5} & R_{2}
\end{array}$$

$$\begin{array}{c|c}
R_{1} & R_{2} \\
CCOR_{13} & R_{2}
\end{array}$$

wherein R_1 and R_2 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a lower alkoxycarbonyl group having 2 to 4 carbon atoms or a phenyl group which is unsubstituted or substituted with a halogen atom, a lower alkoxy group having 1 to 3 carbon atoms, a lower alkoxycarbonyl group having 2 to 4 carbon atoms or an alkyl group of 1 to 3 carbon atoms or cooperatively represent a tetramethylene group corresponding to a fused cyclohexane ring or a butadienylene group which is unsubstituted or substituted with a halogen atom, a lower alkoxy group having 1 to 3 carbon atoms, a lower alkoxycarbonyl group having 2 to 4 carbon atoms or an alkyl group having 1 to 3 carbon atoms corresponding to a fused benzene ring; R_3 , R_4 , R_5 and R_6 each independently represent a hydrogen atom, a hydroxyl group, a lower alkoxy group having 1 to 3 carbon atoms, an alkyl group having 1 to 3 carbon atoms or a halogen atom; $R_{1.9}$ represents an alkyl group having 1 to 5 carbon atoms; A is a linking group selected from group consisting of -CH=CH-,-CH₂CH₂-,-COH₂-,-NHCH₂-,-CONH-,-CH=CHCONH and -CH₂OCH₂-, Z represents B_4 or

wherein B₄ represents a linking group having 1 to 4 carbon atoms and B₃ represents a direct bond or a linking group having 1 to 3 carbon atoms with the proviso that if

$$z = B_3 - C$$

than Y = NH; Y represents oxygen or -NH or a pharmaceutically acceptable salt thereof, which comprises reacting a compound represented by the formula:

wherein R₁, R₂, R₃, R₄, R₅, R₆, A and Y are the same as defined above, with a compound selected from the group of the following (I)-(K) formulae:

$$\begin{array}{c} X \\ COOR_{13} \end{array}$$

$$B_3$$
 $COOR_{1.3}$ (J)

wherein X is a halogen atom, B₃ and B₄, are the same as defined above with the proviso that B₃ is not a direct bond in formula (K) and (J) and (K) can be optionally subjected further to hydrolysis to obtain an acid salt and (I) and (J) can be optionally subjected further to esterification.

6. A process for preparing a thiazole derivative represented by the formula:

wherein R₁ and R₂ each independently represent a hydrogen atom, an alky group having 1 to 8 carbon atoms, a lower alkoxycarbonyl group having 2 to 4 carbon atoms or a phenyl group or cooperatively represent a tetramethylene group corresponding to a fused cyclohexane ring or a butadienylene group which is unsubstituted or substituted with a halogen atom, a lower alkoxy group having 1 to 3 carbon atoms, a lower alkoxycarbonyl group having 2 to 4 carbon atoms or an alkyl group having 1 to 3 carbon atoms corresponding to a fused benzene ring; R₃, R₄, R₅ and R₆ each independently represent a hydrogen atom, a hydroxyl group, a lower alkoxy group having 1 to 3 carbon atoms, a alkyl group having 1 to 3 carbon atoms or a halogen atom; R₁₃ represents an alkyl group having 1 to 5 carbon atoms;

B is a group selected from the group consisting of:

- -(CH₂)_n-CONH-, wherein n is an integer of 0-3,
- -(CH₂)_n-NH-, wherein n is an integer of 1-4,
- -(CH₂)_n-O-, wherein n is an integer of 1-4,
- -(CH₂)_n-, wherein n is an integer of 2-5,

10

. 15

20

25

30

35

40

wherein R₇ and R₈ each independently represents a hydrogen atom or an alkyl group having 1 to 3 carbon atoms as defined above,

45

wherein R₇ and R₈ have the same meanings as defined above,

50

wherein R₇ and R₈ have the same meanings as defined above,

55

wherein R_9 , R_{10} , R_{11} and R_{12} each independently represent a hydrogen atom, a phenyl group or an alkyl group having 1 to 6 carbon atoms,

wherein R₉, R₁₀, R₁₁ and R₁₂ have the same meanings as defined above,

wherein R₉ and R₁₁ have the same meanings as defined above,

wherein R_{10} and R_{12} have the same meanings as defined above,

wherein R₁₀ and R₁₂ have the same meanings as defined above,

wherein R₁₀ and R₁₂ have the same meanings as defined above,

wherein R_{10} and R_{12} have the same meanings as defined above,

wherein R₁₀ and R₁₂ have the same meanings as defined above,

wherein R_{10} and R_{12} have the same meanings as defined above,

wherein R₁₀ and R₁₂ have the same meanings as defined above,

wherein R_{10} and R_{12} have the same meanings as defined above,

wherein R_{11} and R_{12} have the same meanings as defined above, and

or a pharmaceutically acceptable salt thereof, which comprises reacting a compound represented by the formula:

5

15

20

wherein R_3 , R_4 , R_5 , R_6 , R_{13} and B are the same as defined above, with a compound represented by the formula:

30

wherein R_1 and R_2 are the same as defined above, and optionally subjecting further the thus obtained product to hydrolysis to obtain an acid or salt

85 Patentansprüche

1. Thiazolderivat, dargestellt durch die folgende Formel und eines ihrer pharmazeutisch zulässigen Salze:

45

50

40

worin R₁ und R₂ jeweils unabhängig ein Wasserstoffatom, eine Alkylgruppe mit 1 bis 8 Kohlenstoffatomen, eine Niederalkoxycarbonylgruppe mit 2 bis 4 Kohlenstoffatomen oder eine Phenylgruppe, die unsubstituiert oder substituiert mit einem Halogenatom, einer Niederalkoxygruppe mit 1 bis 3 Kohlenstoffatomen, einer Niederalkoxycarbonylgruppe mit 2 bis 4 Kohlenstoffatomen oder einer Alkylgruppe mit 1 bis 3 Kohlenstoffatomen ist, darstellen, oder gemeinsam eine Tetramethylengruppe darstellen, was einem anelierten Cyclohexanring entspricht, oder eine Butadienylengruppe darstellen, die unsubstituiert oder substituiert mit einem Halogenatom, einer Niederalkoxygruppe mit 1 bis 3 Kohlenstoffatomen, einer Niederalkoxycarbonylgruppe mit 2 bis 4 Kohlenstoffatomen oder einer Alkylgruppe mit 1 bis 3 Kohlenstoffatomen ist, was einem anellierten Benzolring entspricht; R₃, R₄, R₅ und R₆ jeweils

unabhängig ein Wasserstoffatom, eine Hydroxylgruppe, eine Niederalkoxygruppe mit 1 bis 3 Kohlenstoffatomen, eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen oder ein Halogenatom darstellen; A eine verbindende Gruppe ist, ausgewählt aus der Gruppe, bestehend aus -CH = CH-, -CH₂CH₂-, -OCH₂-, -NHCH₂-, -CONH-, -CH = CHCONH und -CH₂OCH₂-, B eine Gruppe ist, die ausgewählt ist aus der Gruppe, bestehend aus: -(CH₂)_n-CONH-, wobei n eine ganze Zahl von 0 bis 3 ist, -(CH₂)_n-NH-, wobei n eine ganze Zahl von 1 bis 4 ist, -(CH₂)_n-, wobei n eine ganze Zahl von 2 bis 5 ist,

worin R₇ und R₈ jeweils unabhängig ein Wasserstoffatom oder eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen, wie oben definiert, darstellen,

worin R7 und R8 dieselben Bedeutungen wie oben haben,

10

15

20

25

35

45

50

55

worin R7 und R8 dieselben Bedeutungen wie oben haben,

worin R_9 , R_{10} , R_{11} und R_{12} jeweils unabhängig ein Wasserstoffatom, eine Phenylgruppe oder eine Alkylgruppe mit 1 bis 6 Kohlenstoffatomen darstellen

worin R₉, R₁₀, R₁₁ und R₁₂ dieselben Bedeutungen, wie oben definiert, haben,

worin R₉ und R₁₁ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

10

15

20

25

30

35

40

45

50

55

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₁ und R₁₂ dieselben Bedeutungen wie oben haben, und

worin R₁₁ und R₁₂ dieselben Bedeutungen wie oben haben und Q eine Carboxylgruppe, eine Niederalkoxygruppe mit 1 bis 3 Kohlenstoffatomen, eine Hydroxylgruppe, eine Alkoxycarbonylgruppe mit 2 bis 6 Kohlenstoffatomen oder eine 5-Tetrazolylgruppe darstellt.

2. Ein Leukotrien-Antagonist, umfassend ein Thiazolderivat, dargestellt durch die folgende Formel, oder eines ihrer pharmazeutisch zulässigen Salze als aktiven Bestandteil:

worin R₁, R₂, R₃, R₄, R₅, R₆, A, B und Q wie in Anspruch 1 definiert sind.

Thiazolderivat und ihre pharmazeutisch zulässigen Salze gemäss Anspruch 1, dargestellt durch die folgende Formel:

worin R₇ und R₈ jeweils unabhängig ein Wasserstoffatom, eine Alkylgruppe mit 1 bis 8 Kohlenstoffatomen darstellen oder zusammen eine Butadienylengruppe darstellen, die unsubstituiert oder substituiert mit einem Halogenatom, einer Niederalkoxygruppe mit 1 bis 3 Kohlenstoffatomen, einer Niederalkoxycarbonylgruppe mit 2 bis 4 Kohlenstoffatomen oder einer Alkylgruppe mit 1 bis 3 Kohlenstoffatomen ist, was einem anellierten Benzolring entspricht; R₉ und R₁₀ jeweils unabhängig ein Wasserstoffatom oder eine Alkylgruppe mit 1 bis 6 Kohlenstoffatomen darstellen.

4. Leukotrien-Antagonist, umfassend ein durch die folgende Formel dargestelltes Thiazolderivat oder eines seiner pharmazeutisch zulässigen Salze gemäss Anspruch 2, als aktiven Bestandteil:

worin R7, R8, R9 und R10 in Anspruch 3 definiert sind.

10

15

20

25

35

40

45

50

55

30 5. Verfahren zur Herstellung eines Thiazolderivats, dargestellt durch die Formel:

$$\begin{array}{c|c}
R_5 & R_4 \\
\hline
Z & R_6 & R_2 \\
\hline
COOR_{13} & R_4 & R_3 \\
\hline
R_6 & R_7 & R_7 & R_7 \\
\hline
R_7 & R_$$

worin R₁ und R₂ jeweils unabhängig ein Wasserstoffatom, eine Alkylgruppe mit 1 bis 8 Kohlenstoffatomen, eine Niederalkoxycarbonylgruppe mit 2 bis 4 Kohlenstoffatomen, oder eine Phenylgruppe, die unsubstituiert oder substituiert mit einem Halogenatom, einer Niederalkoxygruppe mit 1 bis 3 Kohlenstoffatomen, einer Niederalkoxycarbonylgruppe mit 2 bis 4 Kohlenstoffatomen oder einer Alkylgruppe mit 1 bis 3 Kohlenstoffatomen ist, darstellen oder gemeinsam eine Tetramethylengruppe darstellen, was einem anellierten Cyclohexanring entspricht, oder eine Butadienylengruppe darstellen, die unsubstituiert oder substituiert mit einem Halogenatom, einer Niederalkoxygruppe mit 1 bis 3 Kohlenstoffatomen, einer Niederalkoxycarbonylgruppe mit 2 bis 4 Kohlenstoffatomen oder einer Alkylgruppe mit 1 bis 3 Kohlenstoffatomen ist, was einem anellierten Benzolring entspricht; R₃, R₄, R₅ und R₆ jeweils unabhängig ein Wasserstoffatom, eine Hydroxylgruppe, eine Niederalkoxygruppe mit 1 bis 3 Kohlenstoffatomen, eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen oder ein Halogenatom darstellen; R₁₃ eine Alkylgruppe mit 1 bis 5 Kohlenstoffatom darstellt; A eine verbindende Gruppe ist, die ausgewählt ist aus der Gruppe, bestehend aus -CH=CH₂, -CH₂CH₂-, -OCH₂-, -NHCH₂-, -CONH-, -CH=CHCONH und -CH₂OCH₂-; Z B₄ oder

darstellt, wobei B4 eine verbindende Gruppe mit 1 bis 4 Kohlenstoffatomen darstellt und B3 eine direkte Bindung oder eine verbindende Gruppe mit 1 bis 3 Kohlenstoffatomen darstellt, mit der Massgabe, dass, wenn

dann Y = NH ist, Y Sauerstoff oder -NH darstellt oder eines seiner pharmazeutisch zulässigen Salze, umfassend die Umsetzung einer Verbindung, dargestellt durch die Formel:

worin R₁, R₂, R₃, R₄, R₅, R₆, A und Y wie oben definiert sind, mit einer Verbindung, ausgewählt aus der Gruppe der folgenden Formeln (I) bis (K):

$$B_{4}$$

$$COOR_{13}$$
(I)

$$\begin{array}{c}
\text{COX} \\
\text{COOR}_{13}
\end{array}$$

worin X ein Halogenatom ist, B_3 und B_4 wie oben definiert sind, mit der Massgabe, dass B_3 keine direkte Bindung in Formel (K) ist, und (J) und (K) wahlweise weiterhin der Hydrolyse unterworfen werden können, so dass ein Säuresalz erhalten wird, und (I) und (J) wahlweise weiterhin der Veresterung unterworfen werden können.

6. Verfahren zur Herstellung eines Thiazolderivats, dargestellt durch die Formel

worin R₁ und R₂ jeweils unabhängig ein Wasserstoffatom, eine Alkylgruppe mit 1 bis 8 Kohlenstoffatomen, eine Niederalkoxycarbonylgruppe mit 2 bis 4 Kohlenstoffatomen, oder eine Phenylgruppe darstellen oder gemeinsam eine Tetramethylengruppe darstellen, was einem anellierten Cyclohexanring entspricht, oder eine Butadienylengruppe darstellen, die unsubstituiert oder substituiert mit einem Halogenatom, einer Niederalkoxygruppe mit 1 bis 3 Kohlenstoffatomen, einer Niederalkoxycarbonylgruppe mit 2 bis 4 Kohlenstoffatomen oder einer Alkylgruppe mit 1 bis 3 Kohlenstoffatomen ist, was einem anellierten Benzolring entspricht; R₃, R₄, R₅ und R₆ jeweils unabhängig ein Wasserstoffatom, eine Hydroxylgruppe, eine Niederalkoxygruppe mit 1 bis 3 Kohlenstoffatomen, eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen oder ein Halogenatom darstellen; R₁₃ eine Alkylgruppe mit 1 bis 5 Kohlenstoffatomen darstellt:

B eine Gruppe ist, die ausgewählt ist aus der Gruppe, bestehend aus: $-(CH_2)_n$ -CONH-, wobei n eine ganze Zahl von 0 bis 3 ist, $-(CH_2)_n$ -NH-, wobei n eine ganze Zahl von 1 bis 4 ist, $-(CH_2)_n$ -O-, wobei n eine ganze Zahl von 2 bis 5 ist,

worin R₇ und R₈ jeweils unabhängig ein Wasserstoffatom oder eine Alkylgruppe mit 1 bis 3 Kohlenstoffatomen, wie oben definiert, darstellen,

worin R7 und R8 dieselben Bedeutungen wie oben haben,

10

15

20

25

30

35

45

50

55

worin R7 und R8 dieselben Bedeutungen wie oben haben,

worin R₉, R₁₀, R₁₁ und R₁₂ jeweils unabhängig ein Wasserstoffatom, eine Phenylgruppe oder eine

Alkylgruppe mit 1 bis 6 Kohlenstoffatomen darstellen

5

15

20

25

30

35

40

45

50

55

worin R₉, R₁₀, R₁₁ und R₁₂ dieselben Bedeutungen, wie oben haben,

worin R9 und R11 dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R_{10} und R_{12} dieselben Bedeutungen wie oben haben,

10

5

15

20

25

30

35

40

45

50

55

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

R₁₀ R₁₂ CONH

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₀ und R₁₂ dieselben Bedeutungen wie oben haben,

worin R₁₁ und R₁₂ dieselben Bedeutungen wie oben haben, und

worin R_{11} und R_{12} dieselben Bedeutungen wie oben haben, oder eines seiner pharmazeutisch annehmbaren Salze, umfassend die Umsetzung einer Verbindung, dargestellt durch die Formel:

10

15

worin R_3 , R_4 , R_5 , R_6 , R_{13} und B wie oben definiert sind, mit einer Verbindung, dargestellt durch die Formel:

20

worin R_1 und R_2 wie oben definiert sind, und wahlweise weiterhin Hydrolyse des so erhaltenen Produkts zum Erhalt einer Säure oder eines Salzes.

Revendications

25

30

1. Dérivé du thiazole représenté par la formule suivante, et ses sels pharmaceutiquement acceptables:

35

40

45

dans laquelle R₁ et R₂ représentent chacun indépendamment un atome d'hydrogène, un groupe alkyle ayant 1 à 8 atomes de carbone, un groupe alcoxycarbonyle inférieur ayant 2 à 4 atomes de carbone ou un groupe phényle qui est insubstitué ou substitué par un atome d'halogène, un groupe alcoxy inférieur ayant 1 à 3 atomes de carbone, un groupe alcoxycarbonyle inférieur ayant 2 à 4 atomes de carbone ou un groupe alkyle de 1 à 3 atomes de carbone, ou représentent ensemble un groupe tétraméthylène correspondant à un noyau cyclohexane fusionné ou un groupe butadiénylène qui est insubstitué ou substitué par un atome d'halogène, un groupe alcoxy inférieur ayant 1 à 3 atomes de carbone, un groupe alcoxycarbonyle inférieur ayant 2 à 4 atomes de carbone ou un groupe alkyle ayant 1 à 3 atomes de carbone correspondant à un noyau benzène fusionné; R₃, R₄, R₅ et R₆ représentent chacun indépendamment un atome d'hydrogène, un groupe hydroxyle, un groupe alcoxy inférieur ayant 1 à 3 atomes de carbone, un groupe alkyle ayant 1 à 3 atomes de carbone ou un atome d'halogène;

50

55

A est un groupe de liaison choisi dans le groupe constitué par -CH = CH-, -CH₂ CH₂-, -OCH₂-, -NHCH₂-, -CONH-, -CH = CHCONH, et -CH₂OCH₂-,

B est un groupe choisi dans le groupe constitué par :

- -(CH₂)_n-CONH- où n est un entier de 0 à 3,
- -(CH₂)_n-NH- où n est un entier de 1 à 4.
- -(CH₂)_n-O- où n est un entier de 1 à 4,
- -(CH₂)_n- où n est un entier de 2 à 5,

dans laquelle R₇ et R₈ représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle ayant 1 à 3 atomes de carbone comme défini ci-dessus.

dans laquelle R7 et R8 ont les mêmes significations que celles définies ci-dessus,

dans laquelle R7 et R8 ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₃, R₁₀, R₁₁ et R₁₂ représentent chacun indépendamment un atome d'hydrogène, un groupe phényle ou un groupe alkyle ayant 1 à 6 atomes de carbone,

dans laquelle R₃, R₁₀, R₁₁ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₉ et R₁₁ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

CII 2 O

5

10

15

20

25

30

35

40

45

50

55

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₁ et R₁₂ ont les mêmes significations que celles définies ci-dessus, et

dans laquelle R₁₁ et R₁₂ ont les mêmes significations que celles définies ci-dessus, et Q représente un groupe carboxyle, un groupe alcoxy inférieur ayant 1 à 3 atomes de carbone, un groupe hydroxyle, un groupe alcoxycarbonyle ayant 2 à 6 atomes de carbone ou un groupe 5-tétrazolyle.

2. Antagoniste de leucotriène comprenant un dérivé de thiazole représenté par la formule suivante ou un sel pharmaceutiquement acceptable comme ingrédient actif :

dans laquelle R₁, R₂, R₃, R₄, R₅, R₆, A, B et Q sont définis comme dans la revendication 1.

3. Dérivé du thiazole et ses sels pharmaceutiquement acceptables selon la revendication 1, représenté par la formule suivante

dans laquelle R_7 et R_8 représentent chacun indépendamment un atome d'hydrogène, un groupe alkyle ayant 1 à 8 atomes de carbone ou représentent ensemble un groupe butadiénylène qui est insusbstitué ou substitué par un atome d'halogène, un groupe alcoxy inférieur ayant 1 à 3 atomes de carbone, un groupe alcoxycarbonyle inférieur ayant 2 à 4 atomes de carbone ou un groupe alkyle ayant 1 à 3 atomes de carbone correspondant à un noyau benzène fusionné; R_9 et R_{10} représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle ayant 1 à 6 atomes de carbone.

20 4. Antagoniste de leucotriène comprenant un dérivé du thiazole représenté par la formule suivante ou un sel pharmaceutiquement acceptable selon la revendication 2, comme ingrédient actif :

dans laquelle R₇, R₈, R₉ et R₁₀ sont définis comme dans la revendication 3.

5. Procédé de préparation d'un dérivé du thiazole représenté par la formule :

10

15

30

35

40

45

50

55

$$\begin{array}{c|c}
R_{5} & R_{4} \\
R_{5} & R_{2}
\end{array}$$

$$\begin{array}{c|c}
R_{5} & R_{2} \\
CCOR_{13}
\end{array}$$

dans laquelle R₁ et R₂ représentent chacun indépendamment un atome d'hydrogène, un groupe alkyle ayant 1 à 8 atomes de carbone, un groupe alcoxycarbonyle inférieur ayant 2 à 4 atomes de carbone ou un groupe phényle qui est insubstitué ou substitué par un atome d'halogène, un groupe alcoxy inférieur ayant 1 à 3 atomes de carbone, un groupe alcoxycarbonyle inférieur ayant 2 à 4 atomes de carbone ou un groupe alkyle de 1 à 3 atomes de carbone, ou représentent ensemble un groupe tétraméthylène correspondant à un noyau cyclohexane fusionné ou un groupe butadiénylène qui est insubstitué ou substitué par un atome d'halogène, un groupe alcoxy inférieur ayant 1 à 3 atomes de carbone, un groupe alcoxycarbonyle inférieur ayant 2 à 4 atomes de carbone ou un groupe alkyle ayant 1 à 3 atomes de carbone correspondant à un noyau benzène fusionné; R₃, R₄, R₅ et R₆ représentent chacun indépendamment un atome d'hydrogène, un groupe hydroxyle, un groupe alcoxy inférieur ayant 1 à 3 atomes de carbone ou un atome d'halogène; R₁₃

représente un groupe alkyle ayant 1 à 5 atomes de carbone;

A est un groupe de liaison choisi dans le groupe constitué par -CH = CH-, -CH $_2$ CH $_2$ -, -OCH $_2$ -, -NHCH $_2$ -, -CONH-, -CH = CHCONH, et -CH $_2$ OCH $_2$ -,

Z représente -B $_4$ ou -B $_3$ -CO- où B $_4$ représente un groupe de liaison ayant 1 à 4 atomes de carbone, et B $_3$ représente une liaison directe ou un groupe de liaison ayant 1 à 3 atomes de carbone, avec la réserve que, quand Z = B $_3$ -CO- alors Y = NH; Y représente un oxygène ou -NH, ou ses sels pharmaceutiquement acceptables,

qui consiste à faire réagir un composé représenté par la formule :

dans laquelle R₁, R₂, R₃, R₄, R₅, R₆, A et Y sont les mêmes que ceux définis ci-dessus, avec un composé choisi dans le groupe des formules (I)-(K) suivantes :

$$B \neq \begin{cases} X \\ COOR_{13} \end{cases}$$
 (I)

$$B_{3}^{\text{COOR}}$$

$$B_{3} \stackrel{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}{\overset{\text{C}}}{\overset{\text{C}}{\overset{C}}{\overset{\text{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}}}{\overset{C}}{\overset{C}}{\overset{C}}{\overset{C}$$

dans lesquelles X est un atome d'halogène, B₃ et B₄ sont les mêmes que ceux définis ci-dessus, avec la réserve que B₃ n'est pas une liaison directe dans la formule (K), et (J) et (K) peuvent être le cas échéant soumis en outre à une hydrolyse pour obtenir un sel d'acide et (I) et (J) peuvent être le cas échéant soumis en outre à une estérification.

50 6. Procédé de préparation d'un dérivé du thiazole représenté par la formule :

55

5

10

15

25

30

35

40

45

dans laquelle R₁ et R₂ représentent chacun indépendamment un atome d'hydrogène, un groupe alkyle ayant 1 à 8 atomes de carbone, un groupe alcoxycarbonyle inférieur ayant 2 à 4 atomes de carbone ou un groupe phényle, ou représentent ensemble un groupe tétraméthylène correspondant à un noyau cyclohexane fusionné ou un groupe butadiénylène qui est insubstitué ou substitué par un atome d'halogène, un groupe alcoxy inférieur ayant 1 à 3 atomes de carbone, un groupe alcoxycarbonyle inférieur ayant 2 à 4 atomes de carbone ou un groupe alkyle ayant 1 à 3 atomes de carbone correspondant à un noyau benzène fusionné; R₃, R₄, R₅ et R₆ représentent chacun indépendamment un atome d'hydrogène, un groupe hydroxyle, un groupe alcoxy inférieur ayant 1 à 3 atomes de carbone, un groupe alkyle ayant 1 à 3 atomes de carbone ou un atome d'halogène; R₁₃ représente un groupe alkyle ayant 1 à 5 atomes de carbone;

B est un groupe choisi dans le groupe constitué par :

- -(CH₂)_n-CONH- où n est un entier de 0 à 3,
- -(CH₂)_n-NH- où n est un entier de 1 à 4,
- -(CH₂)_n-O- où n est un entier de 1 à 4,
- -(CH₂)_n- où n est un entier de 2 à 5,

35

10

15

20

25

30

dans laquelle R₇ et R₈ représentent chacun indépendamment un atome d'hydrogène ou un groupe alkyle ayant 1 à 3 atomes de carbone comme défini ci-dessus,

45

40

dans laquelle R7 et R8 ont les mêmes significations que celles définies ci-dessus,

55

50

dans laquelle R7 et R8 ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₃, R₁₀, R₁₁ et R₁₂ représentent chacun indépendamment un atome d'hydrogène, un groupe phényle ou un groupe alkyle ayant 1 à 6 atomes de carbone,

dans laquelle R₃, R₁₀, R₁₁ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

5

10

15

25

30

35

40

45

50

dans laquelle R₉ et R₁₁ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

10

15

25

30

35

45

55

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₀ et R₁₂ ont les mêmes significations que celles définies ci-dessus,

dans laquelle R₁₁ et R₁₂ ont les mêmes significations que celles définies ci-dessus, et

dans laquelle R₁₁ et R₁₂ ont les mêmes significations que celles définies ci-dessus, ou un sel pharmaceutiquement acceptable, consistant à faire réagir un composé représenté par la formule :

dans laquelle R₃, R₄, R₅, R₆, R₁₃ et B sont les mêmes que ceux définis ci-dessus, avec un composé représenté par la formule :

dans laquelle R₁ et R₂ sont les mêmes que ceux définis ci-dessus, et le cas échéant à soumettre en outre le produit ainsi obtenu à une hydrolyse pour obtenir un acide ou un sel.