An Investigation into Physical and Communications Trust Frameworks for Collaborative Teams of Autonomous Underwater Vehicles

Andrew Bolster

University of Liverpool andrew.bolster@liv.ac.uk

- 1 Issues
- 2 Aims

- Approach
- 4 Impact

Context

- Increasing use of Autonomy in Underwater Acoustic Networks
- Extremely constrained communications/processing/power
- Drive towards smaller, disposable, decentralised systems of systems for applications in MHPC in defence, petrochemical, and environmental applications

Fig. 1: REMUS 100 AUV at CMRE: Potential target application

Adoption of open interoperability stds. and "CoTS" procurement pipelines

Novel and unique threats to trust and security

Issues Aims Approach Impact References

Open Questions

- Centralised security difficult/expensive to maintain
- Presents single-point-of-failure for operational support
- Move from Centralised to Distributed trust management already demonstrated in Terrestrial MANETs
- Constrained comms. make comms. only monitoring non-optimal

Fig. 2: Autonomy is driving increasingly towards distributed applications

Can these MANET techniques be applied to the marine context?
What metrics can be used to establish and maintain distributed trust?

Trust Management in Marine Networks

- Comms. only Trust Management Frameworks (TMFs) in MANETs
- Generally Bayesian Estimation of binary success/fail observation
- Not stable in sparse, variable, & noisy environments
- Can (generally) only detect misbehaviour, not classify
- Only detects packet-dropping misbehaviours
- Recent work uses multiple, continuous, measurements (e.g. SNR, Delay, Throughput, PLR) utilising Grey Theory[1] to form a trust "vector"
- Provides multi-dimensional classification of misbehaviour

Novelty

- Assess existing approaches in simulated UAN, characterising their bounds of suitability/performance
- Extend multi-metric approach to encompass physical behaviours as well as comms.
- Treat threat surface as a multi-dimensional constraint space, aiming to restrict and protect operations

Fig. 3: The available threat surface can be protected through extending trust observations across multiple types of observation

Current Results

- Demonstration of PoC TMF utilising Behavioural Metrics
- Protocol for identification/assessment of metric suitability across several misbehaviour types
- Performance assessment of Hermes, OTMF, and MTFM in simulated marine environment
- Information theoretic assessment of multi-domain combination strategies

Fig. 4: Factor Analysis of Malicious, Selfish and Fair behaviours

Current Outputs

- Summer Research Placement with DSTL (Software Systems and Dependability for Autonomous Teams/Naval Systems Group)(2013, PDW)
- Paper Presentation to the Association for the Advancement of Artificial Intelligence (AAAI) (Stanford, USA) [2]
- Technical Report for the UK/US/CAN/AUS/NZ Technical Cooperation Programme [3]
- DSTL CDE Collaboration with NPL and Plextek Ltd. on "Precision Timing and Navigation, Resilient Time and Location Estimation for Networked Assets" (CDE 33135)
- Paper Presentation to the IEEE International Symposium on Recent Advances of Trust, Security and Privacy in Computing and Communications (TrustComm, Helsinki, FI) [4]

Future Impacts

- Advisory factor to FF2020 on application & verifiability of in-field autonomy
- Deployment of smaller/cheaper collective assets, through lowering comms overheads
- Increase viability / confidence for "stand-off" MCM
- Increased reliability of autonomous/mixed SoS through continual self-policing
- Applications beyond marine; applicable to any constrained / DTN as well as to virtual/cyber-physical systems (i.e. the application of these methods to abstract metric domains)

References I

Andrew Bolster and Alan Marshall. "A Multi-Vector Trust Framework for Autonomous Systems". In: 2014 AAAI Spring Symp. Ser. Stanford, CA, 2014, pp. 17–19. URL: http://www.aaai.org/ocs/index.php/SSS/SSS14/paper/viewFile/7697/7724.

References II

The End