HEURISTIC ANALYSIS

Problem 1 initial state and goal: [Cargo - 2, Airports - 2, Planes - 2]

```
Init(At(C1, SF0) \( \Lambda \text{ At(P2, JFK)} \)
\( \Lambda \text{ At(P1, SF0) \( \Lambda \text{ At(P2, JFK)} \)
\( \Lambda \text{ Cargo(C1) \( \Lambda \text{ Cargo(C2)} \)
\( \Lambda \text{ Plane(P1) \( \Lambda \text{ Plane(P2)} \)
\( \Lambda \text{ Airport(JFK) \( \Lambda \text{ Airport(SF0))} \)
\( \text{Goal(At(C1, JFK) \( \Lambda \text{ At(C2, SF0))} \)
```

Search Results:

Algorithm	Nodes Expanded	Goal Test	New Nodes	Plan length	Time in seconds
breadth_first_search	43	56	180	6	0.749
breadth_first_tree_search	1458	1459	5960	6	2.289
depth_first_graph_search	12	13	48	12	0.221
depth_limited_search	101	271	414	50	0.2209
uniform_cost_search	55	57	224	6	0.1055
recursive_best_first_search h_1	4229	4230	17029	6	6.437
greedy_best_first_graph_search h_1	7	9	28	6	0.119
astar_search h_1	55	57	224	6	0.1051
astar_search h_ignore_preconditions	41	43	170	6	0.1014
astar_search h_pg_levelsum	11	13	50	6	2.001

Problem 2 initial state and goal: [Cargo - 3, Airports - 3, Planes - 3]

```
Init(At(C1, SF0) \( \Lambda \text{ At(C2, JFK)} \( \Lambda \text{ At(P3, ATL)} \)
\( \Lambda \text{ At(P1, SF0)} \( \Lambda \text{ At(P2, JFK)} \( \Lambda \text{ At(P3, ATL)} \)
\( \Lambda \text{ Cargo(C1)} \( \Lambda \text{ Cargo(C3)} \)
\( \Lambda \text{ Plane(P1)} \( \Lambda \text{ Plane(P3)} \)
\( \Lambda \text{ Airport(JFK)} \( \Lambda \text{ Airport(SF0)} \( \Lambda \text{ Airport(ATL))} \)
\( \text{Goal(At(C1, JFK)} \( \Lambda \text{ At(C2, SF0)} \) \( \Lambda \text{ At(C3, SF0))} \)
```

Search Results:

					Time in
Algorithm	Nodes Expanded	Goal Test	New Nodes	Plan length	seconds
breadth_first_search	3343	4609	30509	9	21.854
breadth_first_tree_search	-	-	-	-	timeout
depth_first_graph_search	582	583	5211	575	7.456
depth_limited_search	-	-	-	-	timeout
uniform_cost_search	4853	4855	44041	9	15.3959
recursive_best_first_search h_1	-	-	-	-	timeout
greedy_best_first_graph_search h_1	998	1000	8982	13	6.0061
astar_search h_1	4853	4855	44041	9	29.1073

astar_search h_ignore_preconditions	1450	1452	13303	9	18.6803
astar_search h_pg_levelsum	86	88	841	9	181.9675

Problem 3 initial state and goal: [Cargo - 4, Airports - 4, Planes - 2]

Init(At(C1, SF0) \(\Lambda \text{ At(C2, JFK)} \) \(\Lambda \text{ At(C3, ATL)} \) \(\Lambda \text{ At(C4, ORD)} \)
\(\Lambda \text{ At(P1, SF0)} \) \(\Lambda \text{ At(P2, JFK)} \)
\(\Lambda \text{ Cargo(C1)} \) \(\Lambda \text{ Cargo(C3)} \) \(\Lambda \text{ Cargo(C4)} \)
\(\Lambda \text{ Plane(P1)} \) \(\Lambda \text{ Plane(P2)} \)
\(\Lambda \text{ Airport(JFK)} \) \(\Lambda \text{ Airport(SF0)} \) \(\Lambda \text{ Airport(ATL)} \) \(\Lambda \text{ Airport(ORD))} \)
\(\text{Goal(At(C1, JFK)} \) \(\Lambda \text{ At(C3, JFK)} \) \(\Lambda \text{ At(C2, SF0)} \) \(\Lambda \text{ At(C4, SF0))} \)

Search Results:

					Time in
Algorithm	Nodes Expanded	Goal Test	New Nodes	Plan length	seconds
breadth_first_search	14663	18098	129631	12	196.91
breadth_first_tree_search	-	-	-	-	timeout
depth_first_graph_search	627	628	5176	596	14.3278
depth_limited_search	-	-	-	-	timeout
uniform_cost_search	18223	18225	159618	12	68.365
recursive_best_first_search h_1	-	-	-	-	timeout
greedy_best_first_graph_search h_1	5579	5581	49159	22	63.2218
astar_search h_1	18223	18225	159618	12	159.08988
astar_search h_ignore_preconditions	5040	5042	44944	12	230.2545
astar_search h_pg_levelsum	324	326	2993	12	1208.524

Comparison:

	Problem	Nodes		New	Plan	Time in
Algorithm		Expanded	Goal Test	Nodes	length	seconds
	1	43	56	180	6	0.749
	2	3343	4609	30509	9	21.854
breadth_first_search	3	14663	18098	129631	12	196.91
	1	12	13	48	12	0.221
	2	582	583	5211	575	7.456
depth_first_graph_search	3	627	628	5176	596	14.3278
	1	55	57	224	6	0.1055
	2	4853	4855	44041	9	15.3959
uniform_cost_search	3	18223	18225	159618	12	68.365
	1	41	43	170	6	0.1014
astar_search	2	1450	1452	13303	9	18.6803
_ [h_ignore_preconditions]	3	5040	5042	44944	12	230.2545
	1	11	13	50	6	2.001
	2	86	88	841	9	181.9675
astar_search [level-sum]	3	324	326	2993	12	1208.524

- Breath First Search (BFS): Shortest way to reach the goal, but it takes more compared to the other searches.
- Depth First Search (DFS): Faster compared to the breath first search, but it takes more length to reach the goal, not an optimal solution.
- Uniform Cost Search (UCS): Comparing with BFS and DFS for the given problem this search will be optimal.
- A* Search: Ignore precondition needs more expansion compared to the level-sum.

For better heuristics negative effects of the problem makes more complicated so removing will easier to calculate.

Optimal Solution:

Problem1:

Load(C1, P1, SFO) Load(C2, P2, JFK) Fly(P1, SFO, JFK) Fly(P2, JFK, SFO) Unload(C1, P1, JFK) Unload(C2, P2, SFO)

Problem2:

Load(C1, P1, SFO) Load(C2, P2, JFK) Load(C3, P3, ATL) Fly(P1, SFO, JFK) Fly(P2, JFK, SFO) Fly(P3, ATL, SFO) Unload(C3, P3, SFO) Unload(C2, P2, SFO) Unload(C1, P1, JFK)

Problem3:

Load(C1, P1, SFO) Load(C2, P2, JFK) Fly(P1, SFO, ATL) Load(C3, P1, ATL) Fly(P2, JFK, ORD) Load(C4, P2, ORD) Fly(P2, ORD, SFO) Fly(P1, ATL, JFK) Unload(C4, P2, SFO) Unload(C3, P1, JFK) Unload(C2, P2, SFO) Unload(C1, P1, JFK)