

FISHERIES PRODUCTION

SPINY LOBSTER

PEOPLE BENEFIT IN MANY WAYS

natural capital

FOOD

TOURISM AND RECREATION

CULTURAL HERITAGE

INVEST FISHERIES MODEL

- 1. Estimate catch and revenue
- 2. Estimate changes in catch and revenue related to changes in habitat, fishing pressure, etc.

INVEST FISHERIES MODEL

natural capital

LIBRARY OF SINGLE SPECIES MODELS

Caribbean spiny lobster Belize

Dungeness Crab Hood Canal, WA

White Shrimp Galveston Bay, TX

Blue CrabGalveston Bay, TX

INVEST FISHERIES MODEL

SPINY LOBSTER EXAMPLE

INPUTS

Life History

Recruitment Age at maturity Migration Survival

Fishery Behavior

Fishing pressure Market value

Habitat

Where? How much?

OUTPUTS

Catch of spiny lobster (number/year)

Aggregate market value of catch

(\$/fishing zone/year)

AGE-STRUCTURED MODEL (8 CLASSES)

Recruitment function

Habitats influence survivorship

$$\left(\frac{\sum_{x} SB_{x,y}}{SB_{0}} \left(\alpha + \beta \frac{\sum_{x} SB_{x,y}}{SB_{0}}\right)^{1} \frac{H_{h,x,SCEN}}{\sum_{x} H_{h,x,SCEN}} S_{a,x}\right) \quad \text{if } a = 0$$

$$N_{a,x,y+1} = \begin{cases} \left(N_{a-1,x,y} - C_{a-1,x,y}\right) S_{a,x} \\ \left(N_{A-1,x,y} - C_{A-1,x,y}\right) S_{A,x} \\ + \left(N_{A,x,y} - C_{A,x,y}\right) S_{A,x} \end{cases} \quad \text{if } a = A$$

Regulations influence catch

MULTIPLE SUB-REGIONS

HABITAT

LOSS (km²)

<u>- 100</u>

Seagrasses

MODEL LIMITATIONS

- Equilibrium model = good for scenarios, not for predicting next year's catch.
- Habitat dependencies are obligatory (i.e. habitat substitutability is not explicitly represented).
- Harvest rates are assumed to be constant (not responsive to abundance).
- Model must be adapted for each species/region.

natural capital

FIND OUT MORE...

- It's in InVEST!
- How it works
- Case study: Belize
- On the horizon: new approaches

