PROYECTO FINAL MECATRONICA

Profesores:

Ing. Blanca, Ezequiel

Ing. Lukaszewicz, Cristian Leandro

Ing. Szombach, Juan Ignacio

Alumnos:

Fernandez Malenotti, Ignacio Moscariello, Christian Yacono, Emiliano

Contenido

Propuesta Final	3
Título del Proyecto	3
Motivación y Antecedentes	3
Descripción de la Propuesta	3
Alcance	4
Limitaciones:	4
Escenario de uso	4
Docentes para Consultas	5
Especificación de requerimientos	5
Diseño funcional	6
Lista de materiales y costos	8

Propuesta Final

<u>Título del Proyecto</u>

Dron Autónomo para Detección de Incendios y Rescate de Personas

Motivación y Antecedentes

Durante el verano, zonas de parques nacionales y áreas de montaña enfrentan dos problemáticas críticas:

- 1. La aparición de focos de incendio, que pueden propagarse rápidamente debido a la vegetación seca.
- 2. El extravío de personas en zonas de difícil acceso, como bosques y áreas montañosas.

Actualmente, la cobertura de grandes extensiones con personal reducido dificulta las tareas de vigilancia, control y rescate. Esto retrasa la respuesta inicial ante un incendio o la localización de personas, aumentando riesgos y daños. Además, el coste de patrullaje de un helicóptero es elevado y su espacio aéreo de observación acotado.

Descripción de la Propuesta

Se propone el desarrollo de un prototipo de dron autónomo a escala, capaz de:

- 1. Detectar visual y térmicamente focos de incendio en su etapa inicial.
- 2. Localizar personas extraviadas mediante análisis de imagen e infrarrojo.
- 3. Transmitir coordenadas precisas a los equipos de intervención.
- 4. Transportar pequeñas cargas, como materiales para iniciar la extinción de focos o suministros de supervivencia y primeros auxilios.

El proyecto se centra en mostrar la viabilidad técnica de un sistema aéreo no tripulado para inspeccionar grandes superficies de forma rápida y eficiente, incluso en zonas de difícil acceso terrestre.

Alcance

En la presentación final se podrá mostrar:

- 1. El dron volando y detectando de forma representativa un foco de incendio o una persona.
- 2. El sistema de sujeción de pequeñas cargas (prototipo).
- 3. Transmisión de coordenadas y visualización de imágenes térmicas o simuladas.

Limitaciones:

- La capacidad de carga estará restringida por el tamaño y peso del dron prototipo.
- La parte de extinción o entrega de suministros será demostrativa, no a escala real por razones de peso y seguridad.
- No está contemplada la navegación en interiores ni que pueda sortear autónomamente obstáculos, puesto que no contará con sensor de tipo radar 3D debido a restricciones monetarias y temporales en el desarrollo.

Escenario de uso

- Parques provinciales, nacionales, etc., campos privados y todo tipo de establecimiento donde se requiera patrullaje activo en época de peligro de incendios.
- Parques provinciales, nacionales, etc. y cualquier ubicación donde se practique treking u otra actividad que lleve a personas a áreas remotas y de difícil acceso, dónde puedan perderse o sufrir un accidente y por lo consiguiente necesiten ser ubicadas en el menor periodo de tiempo posible.
- Para un mejor aprovechamiento de la tecnología se propone el uso de múltiples drones,
 con la finalidad de poder rastrillar simultáneamente mayor superficie de terreno.

Docentes para Consultas

- Catedra de procesamiento de señales: uso de filtros y diversas formas de usar sensores para obtener señales en su forma más representativa.
- Catedra de mecánica de los fluidos: cálculo de fuerzas de empuje y sustentación.
- Catedra de modelado y dinámica de sistemas mecánicos: modelado de estructuras, fuerzas y cargas

Especificación de requerimientos

- Auto pilotaje: Mediante un sistema de coordenadas GPS dinámico y un acelerómetro, el dron deberá realizar una ruta de vuelo tipo rastrillaje y volver al punto de origen al finalizar.
- Procesamiento de imágenes térmicas: Utilizando un sensor IR deberá ser capaz de detectar focos de anormalidad térmica.
- Procesamiento de imágenes RGB: Utilizando una cámara y una inteligencia artificial correctamente entrenada alojada en un Raspberry pi, el dron deberá detectar de qué se trata el foco de anomalia térmica (principio de incendio, persona perdida, animal).
- Transporte de kit de auxilio: En caso de que se este buscando una persona y la misma sea encontrada, mediante un sistema tipo gripper/dropper se le proporcionará un kit de primera contingencia.

Diseño funcional

Conexionado individual

Detalle preliminar de pines

Componente	Función	Interfaz	Pin / Puerto	Dirección	Notas
Raspberry Pi 4	Cámara RGB (PiCam)	CSI (MIPI)	Conector CSI	_	No usa GPIO
	Sensor térmico MLX90640	USB	Puerto USB	_	No usa GPIO
ı	Trigger IR	Digital IN	GPIO17 (Pin 11)	Entrada 3,3 V	Con pull-up/down y antirrebote
	LED de estado	Digital OUT	GPIO27 (Pin 13)	Salida 3,3 V	Blink armado/captura/error
	Buzzer	Digital OUT	GPIO22 (Pin 15)	Salida 3,3 V	Beeps de evento
	Servo gripper (SG90)	PWM HW	GPIO18 (Pin 12)	Salida 3,3 V (señal)	50 Hz, pulso 1–2 ms. Servo alimentado con BEC 5 V (≥1 A). GND común
	Enlace Pi ↔ ESP32 (opcional)	UART0	GPIO14 TXD0 (Pin 8) / GPIO15 RXD0 (Pin 10)	TX/RX 3,3 V	Telemetría básica (si se activa)
	Enlace Pi ↔ ESP32 (opcional)	UART0	GPIO14 TXD0 (Pin 8) / GPIO15 RXD0 (Pin 10)	TX/RX 3,3 V	Telemetría básica (si se activa)
ESP32 (Control de vuelo)	IMU MPU6050	I ² C	GPIO21 SDA / GPIO22 SCL	Bi-direccional 3,3 V	Dirección 0x68/0x69. Pull-ups 2k2–4k7
	GPS u-blox NEO-7M	UART2	GPIO16 RX2 / GPIO17 TX2	RX/TX	Baud 9600–38400. Alimentación módulo 5 V. Si TX es 5 V fijo, usar divisor
	Receptor RC (PPM)	Digital IN	GPIO4	Entrada 3,3 V	Señal PPM. Alternativa: SBUS en UART1 RX GPIO32 (requiere inversión)
	ESC ×6 (motores)	PWM (LEDC)	GPIO25, 26, 27, 14, 12, 13	Salidas	PWM 50–400 Hz (servo-PWM clásico o DSHOT si se reconfigura)
	LED de estado FC	Digital OUT	GPIO2	Salida	LED onboard en algunas placas
	Buzzer FC	Digital OUT	GPIO15	Salida	Alarma armado/failsafe
	Switch ARM	Digital IN	GPIO34	Entrada	Entrada solo lectura; requiere pull-up externo
	Enlace a Pi (opcional)	UARTO/1	GPIO1 TX / GPIO3 RX (UART0) o pines remapeados	TX/RX	Puede usarse para telemetría hacia la Pi

Lista de materiales y costos

Materiales	Cant.	Precio unitario (ARS)	Precio total (ARS)	Precio unitario (USD)	Precio total (USD)
Motor brushless + ESC 30A + Hélice	6	50.000	300.000	36,36	218,18
Batería LiPo 3S	1	70.000	70.000	50,91	50,91
ESP32	1	10.000	10.000	7,27	7,27
Kit NAZA M V2	1	160.000	160.000	116,36	116,36
Estructura (aluminio + placas)	1	40.000	40.000	29,09	29,09
Cámara térmica IR	1	180.000	180.000	130,91	130,91
Raspberry Pi 4	1	100.000	100.000	72,73	72,73
Cámara RGB	1	35.000	35.000	25,45	25,45
Rollo filamento PETG	1	18.000	18.000	13,09	13,09
Misceláneos (tornillería, cables, luces)	1	15.000	15.000	10,91	10,91
Total			928.000		674,91