Table 1: Calibration

Macroeconomic Parameters							
ε	0.36	Capital's Share of Income					
٦	$0.94^{1/4}$	Depreciation Factor					
σ_{Θ}^2	0.00001	Variance Aggregate Transitory Shocks					
σ_{Ψ}^2	0.00004	Variance Aggregate Permanent Shocks					
Steady State of Perfect Foresight DSGE Model							
$(\sigma_{\Psi} = \sigma_{\Theta} = \sigma_{\psi} = \sigma_{\theta} = \wp = D = 0, \Phi_t = 1)$							
$reve{K}/reve{K}^arepsilon$	12.	SS Capital to Output Ratio					
$reve{K}$	≈ 48.55	SS Capital to Labor Productivity Ratio (= $12^{1/(1-\varepsilon)}$)					
W	≈ 2.59	SS Wage Rate $(=(1-\varepsilon)\breve{K}^{\epsilon})$					
ř	= 0.03	SS Interest Rate $(= \varepsilon \breve{K}^{\varepsilon-1})$					
$reve{\mathcal{R}}$	≈ 1.014	SS Between-Period Return Factor $(= \mathbb{k} + \check{r})$					
	Preference Parameters						
ho	2.	Coefficient of Relative Risk Aversion					
β_{SOE}	0.969	SOE Discount Factor (= $0.99 \cdot \mathcal{D} \breve{\mathcal{R}} / \mathbb{E} [\psi]^{-\rho}$)					
β_{DSGE}	≈ 0.986	HA-DSGE Discount Factor $(= \breve{\mathcal{R}}^{-1})$					
П	0.25	Probability of Updating Expectations (if Sticky)					
Idiosyncratic Shock Parameters							
σ_ψ^2	0.004	Variance Idiosyncratic Perm Shocks $(=\frac{4}{11} \times \text{Annual})$					
$\sigma_{ heta}^2$	0.12	Variance Idiosyncratic Tran Shocks (= $4\times$ Annual)					
60	0.05	Probability of Unemployment Spell					
D	0.005	Probability of Mortality					

Table 2: Equilibrium Statistics

	SOE Model		HA-DSGE	Model
	Frictionless Sticky		Frictionless	Sticky
Means				
A	7.76	7.70	59.95	59.82
C	2.71	2.71	3.48	3.48
Standard Deviations				
Aggregate Time Serie	es ('Macro')			
$\log A$	0.344	0.333	0.276	0.273
$\Delta \log {f C}$	0.011	0.007	0.010	0.005
$\Delta \log \mathbf{Y}$	0.011	0.011	0.008	0.008
Individual Cross Sect	tional ('Micro')			
$\log \mathbf{a}$	1.028	1.030	1.006	1.006
$\log \mathbf{c}$	0.926	0.927	0.687	0.688
$\log p$	0.938	0.938	0.938	0.938
$\log \mathbf{y} \mathbf{y}>0$	0.995	0.995	0.995	0.995
$\Delta \log \mathbf{c}$	0.099	0.100	0.056	0.057
Cost Of Stickiness	5.06e-4		4.79e-	4

Notes: The cost of stickiness is calculated as the proportion by which the permanent income of a newborn frictionless consumer would need to be reduced in order to achieve the same reduction of expected value associated with forcing them to become a sticky expectations consumer.

Table 3: Placeholder for Empirical US table

Table 4: Micro Consumption Regression on Simulated Data

$$\Delta \log \mathbf{c}_{t+1,i} = \varsigma + \chi \Delta \log \mathbf{c}_{t,i} + \eta \mathbb{E}_{t,i} [\Delta \log \mathbf{y}_{t+1,i}] + \alpha \underline{a}_{t,i}$$

Model of				
Expectations	χ	η	α	$ar{R}^2$
Frictionless				
	0.020			0.000
		0.011		0.003
			-0.187	0.009
	0.052	0.014	-0.181	0.014
Sticky				
	0.013			0.000
		0.011		0.003
			-0.188	0.009
	0.043	0.013	-0.182	0.013

Notes: $\mathbb{E}_{t,i}$ is the expectation from the perspective of person i in period t; \bar{a} is a dummy variable indicating that agent i is in the top 99 percent of the normalized a distribution. Simulated sample size is large enough such that standard errors are effectively zero. Sample is restricted to households with positive income in period t.

Table 5: Aggregate Consumption Dynamics in SOE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

	$\Delta \log \mathbf{C}_{t+1} =$	$\zeta + \chi \Delta \log Q$	$\cup_t + \eta_{\mathbb{L}}$	$t [\Delta \log \mathbf{Y}_{t+1}] -$	$+\alpha A_t + \epsilon_{t+1}$	
Expectations : Dep Var			OLS	2 nd Stage	KP p -val	
Independent Variables			or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$	
Frictionless: $\Delta \log \mathbf{C}_{t+1}$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);						
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.287^{\bullet\bullet\bullet}$			OLS	0.083		
(0.066)						
$0.643^{\bullet \bullet}$			IV	0.037	0.245	
(0.312)					0.586	
	$0.436^{\bullet \bullet}$		IV	0.032	0.071	
	(0.211)				0.434	
		-6.19e-4	IV	0.025	0.000	
		(5.57e-4)			0.367	
0.407	0.245	0.31e-4	IV	0.038	0.528	
(0.440)	(0.368)	(9.11e-4)			0.541	
Memo: For	r instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	037 ; $var(\xi_t) = 6.14e-6$	
Sticky : Δ	$\log \mathbf{C}_{t+1}$ (no	measureme	nt erroi	:)		
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.864^{\bullet\bullet\bullet}$			OLS	0.747		
(0.035)						
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (wi	th measurer	nent eri	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t \times$	ξ_t);	
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.501^{\bullet\bullet\bullet}$			OLS	0.256		
(0.059)						
$0.799^{\bullet \bullet \bullet}$			IV	0.252	0.000	
(0.105)					0.545	
	$0.828^{\bullet \bullet \bullet}$		IV	0.188	0.072	
	(0.183)				0.239	
		$-7.58e-4^{\bullet \bullet}$	IV	0.063	0.000	
		(3.75e-4)			0.001	
0.663	0.181	0.49e-4	IV	0.254	0.376	
(0.183)	(0.260)	(4.65e-4)			0.549	
Memo: For	r instruments	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = C_t$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.2$	253; $var(\xi_t) = 6.14e-6$	

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, $95\%,~{\rm and}~99\%$ of the standard normal distribution. Instruments $\mathbf{Z}_t =$ $\{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 6: Aggregate Consumption Dynamics in HA-DSGE Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

	$\Delta \log \mathcal{O}_{t+1} =$	$\zeta + \chi \Delta \log Q$	$C_t + \eta \mathbb{E}$	$t [\Delta \log \mathbf{Y}_{t+1}]$	$+\alpha A_t + \epsilon_{t+1}$	
Expectations : Dep Var			OLS	2 nd Stage	KP p -val	
Independent Variables			or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$	
Frictionless: $\Delta \log \mathbf{C}_{t+1}$ (with measurement error $\mathbf{C}_t^* = \mathbf{C}_t \times \xi_t$);						
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.185^{\bullet \bullet}$			OLS	0.035		
(0.073)						
0.461			IV	0.018	0.318	
(0.350)					0.556	
	0.339		IV	0.016	0.141	
	(0.309)				0.463	
		-0.34e-4	IV	0.015	0.000	
		(0.93e-4)			0.443	
0.283	0.181	-0.06e-4	IV	0.019	0.596	
(0.475)	(0.561)	(1.74e-4)			0.545	
Memo: Fo	r instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1} = 3$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	022 ; $var(\xi_t) = 4.22e-6$	
Sticky : Δ	$\log \mathbf{C}_{t+1}$ (no	measureme	ent erroi	:)		
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.834^{\bullet\bullet\bullet}$			OLS	0.696		
(0.040)						
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (wi	th measurer	nent eri	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t \times$	$(\xi_t);$	
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t				
$0.461^{\bullet\bullet\bullet}$			OLS	0.217		
(0.061)						
$0.772^{\bullet \bullet \bullet}$			IV	0.227	0.000	
(0.107)					0.533	
	$0.841^{\bullet \bullet \bullet}$	•	IV	0.136	0.139	
	(0.241)				0.197	
		$-0.95\mathrm{e}\text{-}4^{\bullet}$	IV	0.058	0.000	
		(0.52e-4)			0.002	
$0.676^{\bullet\bullet\bullet}$	0.150	0.08e-4	IV	0.228	0.481	
(0.177)	(0.332)	(0.79e-4)			0.555	
Memo: Fo	r instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$C_{t+1}^* = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.2$	230; $var(\xi_t) = 4.22e-6$	

Memo: For instruments \mathbf{Z}_t , $\Delta \log \mathbf{C}_{t+1}^* = \mathbf{Z}_t \zeta$, $R^2 = 0.230$; $\operatorname{var}(\xi_t) = 4.22 \text{e-}6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t = \{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-2}, A_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$

Table 7: Aggregate Consumption Dynamics in RA Model $\Delta \log \mathbf{C}_{t+1} = \varsigma + \chi \Delta \log \mathbf{C}_t + \eta \mathbb{E}_t [\Delta \log \mathbf{Y}_{t+1}] + \alpha A_t + \epsilon_{t+1}$

Expe	ctations : De	p Var	OLS	2 nd Stage	KP p -val
Independent Variables			or IV	$ar{R}^2$	Hansen J $p\text{-}\mathrm{val}$
Frictionles	s: $\Delta \log \mathbf{C}_{t+}$.1 (with mea	asureme	nt error $\mathbf{C}_t^* =$	$\mathbf{C}_t \times \xi_t$);
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
-0.014			OLS	0.002	
(0.077)					
0.404			IV	0.015	0.360
(0.391)					0.581
	0.395		IV	0.017	0.078
	(0.307)				0.471
		-0.27e-4	IV	0.016	0.000
		(1.08e-4)			0.490
0.133	0.267	0.11e-4	IV	0.019	0.561
(0.528)	(0.586)	(2.13e-4)			0.579
Memo: Fo	r instrument	s $\mathbf{Z}_t,\Delta\log\mathbf{C}$	$\Im_{t+1} = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.0$	18; $var(\xi_t) = 3.30e-6$
Sticky : Δ	$\log \mathbf{C}_{t+1}$ (no	measureme	ent error	:)	
$\Delta \log \mathbf{C}_t$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.799^{\bullet\bullet\bullet}$			OLS	0.638	
(0.043)					
Sticky : Δ	$\log \mathbf{C}_{t+1}^*$ (wi	th measure	ment eri	$\operatorname{cor} \mathbf{C}_t^* = \mathbf{C}_t \times$	$(\xi_t);$
$\Delta \log \mathbf{C}_t^*$	$\Delta \log \mathbf{Y}_{t+1}$	A_t			
$0.417^{\bullet \bullet \bullet}$			OLS	0.183	
(0.063)					
$0.790^{\bullet\bullet\bullet}$			IV	0.188	0.001
(0.134)					0.544
	$0.651^{\bullet\bullet\bullet}$	•	IV	0.132	0.077
	(0.164)				0.188
		-0.50e-4	IV	0.076	0.000
		(0.50e-4)			0.022
$0.649^{\bullet\bullet\bullet}$	0.101	0.08e-4	IV	0.189	0.321
(0.224)	(0.292)	(0.78e-4)			0.500
Memo: Fo	r instrument	s $\mathbf{Z}_t,\Delta\log$ ($C_{t+1}^* = 2$	$\mathbf{Z}_t \zeta, \bar{R}^2 = 0.1$	91; $var(\xi_t) = 3.30e-6$

Notes: Reported statistics are the average values for 100 samples of 200 simulated quarters each. Bullets indicate that the average sample coefficient divided by average sample standard error is outside of the inner 90%, 95%, and 99% of the standard normal distribution. Instruments $\mathbf{Z}_t =$ $\{\Delta \log \mathbf{C}_{t-2}, \Delta \log \mathbf{C}_{t-3}, \Delta \log \mathbf{Y}_{t-2}, \Delta \log \mathbf{Y}_{t-3}, A_{t-2}, A_{t-3}, \Delta_8 \log \mathbf{C}_{t-2}, \Delta_8 \log \mathbf{Y}_{t-2}\}.$