第12章

网络地址转换(NAT)

使用Windows Server 2008 R2的**网络地址转换**(Network Address Translation, NAT)功能,位于内部网络的多台计算机只需要共享一个public IP地址,就可以同时连接因特网、浏览网页与收发电子邮件。

- NAT的特色与原理
- NAT服务器架设实例演练
- ☑ DHCP分配器与DNS中继代理
- ≥ 开放因特网用户来连接内部服务器
- ≥ 因特网连接共享 (ICS)

12-1 NAT的特色与原理

您可以将Windows Server 2008 R2设置为NAT服务器,它拥有以下的特色:

- 支持内部多个局域网内多人同时通过NAT服务器连接因特网,而且只需要使用一个 public IP地址。
- 支持DHCP功能,可自动分配IP地址给内部网络的计算机。
- 支持DNS中继代理功能,可为内部局域网的计算机查询外部主机IP地址。
- 支持TCP/UDP端口映射功能,让因特网用户可以访问内部网站、电子邮件服务器等。
- 🔪 NAT服务器的外部网络接口可使用多个public IP地址,然后搭配地址映射功能,让因 特网的应用程序可以通过NAT服务器来与内部网络的应用程序通信。

12-1-1 NAT的网络架构实例图

Windows Server 2008 R2 NAT服务器至少需要有两个网络接口,一个用来连接因特网, 个用来连接内部网络。以下列举几种常见的NAT架构:

🧎 通过路由器连接因特网的NAT架构 如图 12-1所示,NAT服务器至少需要两块网卡,一块连接内部网络,一块连接路由器, 并通过路由器来连接因特网,其中的外网卡应该要手动输入IP地址、默认网关与DNS 服务器等。

图 12-1

🔊 通过固接式xDSL连接因特网的NAT架构 同样NAT服务器至少需要两块网卡,一块连接内部网络,一块连接xDSL(例如ADSL、 VDSL)调制解调器,并通过xDSL调制解调器连接因特网,如图12-2所示,其中外网 卡请输入由ISP(因特网服务提供商,例如HiNet)分配的IP地址、默认网关与DNS服 务器等。

图 12-2

≥ 通过非固接式xDSL连接因特网的NAT架构

如图 12-3所示,此处您需要在NAT服务器上新建PPPoE请求拨号连接,此PPPoE请求拨号连接是通过连接ADSL调制解调器的外网卡来发送数据。通过PPPoE请求拨号连接来拨接到ISP成功后,ISP会自动分配IP地址、默认网关与DNS服务器等设置给此PPPoE请求拨号连接。

图 12-3

② 提示

只有一块网卡也可以扮演NAT服务器角色,PPPoE请求拨号连接是新建在这块网卡上,也就是说NAT服务器对内通信的网卡接口与对外通信的PPPoE接口,实际上都是通过同一块网卡在发送数据,也因此安全与效率比较差,故不建议采用这种架构。

■ 通过电缆调制解调器(cable modem)连接因特网的NAT架构 如图 12-4所示,NAT服务器至少需要两块网卡,一块连接内部网络,一块连接电缆调制解调器。当通过电缆调制解调器成功连上ISP后,ISP会自动分配IP地址、默认网关与DNS服务器等给NAT服务器的外网卡。

图 12-4

(2)

NAT服务器也可以利用一般调制解调器与电话网络来连接ISP与因特网,不过因为它的速度太慢(56 Kbps),故较少人使用。

12-1-2 NAT的IP地址

NAT服务器的每一个网络接口(PPPoE请求拨号连接或网卡的本地连接)都必须要有一个IP地址,且不同接口的IP地址有着不同的设置:

- 若是连接到因特网的公用网络接口,则其IP地址必须是public IP地址若是通过路由器或固接式xDSL连接因特网的话,则此IP地址是由ISP事先分配,此时您需要自行将此IP地址输入到网卡的TCP/IP设置处;若是通过非固接式xDSL或电缆调制解调器连接因特网的话,则IP地址是由ISP动态分配的,不需要手动设置。
- 若是连接内部网络的专用网接口,则其IP地址可使用private IP地址
 Private IP地址可使用的范围如表 12-1所示。我们在前面几个示例图中所采用的private
 IP地址的网络标识符为192.168.8.0、子网掩码为255.255.255.0。

网络标识符	默认子网掩码	Private IP地址范围
10.0.0.0	255.0.0.0	10.0.0.1~10.255.255.254
172.16.0.0	255.240.0.0	172.16.0.1~172.31.255.254
192.168.0.0	255.255.0.0	192.168.0.1~192.168.255.254

表 12-1

12-1-3 NAT的工作原理

支持TCP或UDP协议的服务,都有一或多个用来代表此服务的端口号(port number),表 12-2中列出一些最常用的服务器服务与端口号。而客户端应用程序(例如网页浏览器)的端口号 是 由 系 统 动 态 产 生 的 , 例 如 当 用 户 在 浏 览 器 Internet Explorer 内 输 入 类 似 http://www.microsoft.com/的URL路径上网时,系统就会为Internet Explorer新建端口号。

② 提示

如果您已经上网的话,可以利用netstat -n命令来查看浏览器与网站所使用的端口号。

表 12-2

服务名称	TCP端口号
HTTP	80
HTTPS	443
FTP控制通道	21

,	솶	#2	`
ľ	头	衣	,

服务名称	TCP端口号
FTP数据信道	20
SMTP	25
POP3	110
NNTP	119

在介绍NAT原理之前,我们先简单说明一般浏览网页的过程。两台计算机内支持TCP或UDP的应用程序是通过IP地址与端口号来相互通信的,例如图 12-5中右方的服务器A兼具网站 (80)、FTP站点 (21)与邮件服务器 (25、110)的角色,如果计算机A的用户利用浏览器来连接图中网站的话,则计算机A与服务器A之间的互动如下所示(假设浏览器的端口号为2222):

图 12-5

- 1. 由端口号为2222的浏览器提出浏览网页的请求后,计算机A会将此请求发送给IP地址为 240.2.3.4的服务器A,并指定要交给支持端口号为80的应用程序(网站)。
- 2. 服务器A收到此请求后,会由支持端口号为80的应用程序(网站)来负责处理此请求。
- 3. 服务器A的网站将网页发送给IP地址为140.55.66.77的计算机A,并指定要交给支持端口号为2222的应用程序(浏览器)。
- 4. 计算机A收到网页后,会由支持端口号2222的浏览器来负责显示网页内容。

NAT(Network Address Translation)运作的基本程序,就是执行IP地址与端口号的转换工作。NAT服务器至少要有两个网络接口,其中连接因特网的网络接口需要使用public IP地址,而连接内部网络的网络接口采用private IP地址即可,例如图 12-6中NAT服务器的外网卡与内网卡的IP地址分别是public IP 220.11.22.33与private IP 192.168.8.254。

图 12-6

我们以图中内部网络的计算机A的用户要通过NAT服务器连接外部网站为例,来解说NAT 的转换运作过程。假设计算机A的浏览器端口号为2222,而网站的端口号为默认的80。

1. 计算机A将上网数据包发送给NAT服务器。此数据包header内的源IP地址为192.168.8.2、 端口为2222,目的IP地址为240.2.3.4、端口号为80。

源IP地址	源端口	目的IP地址	目的端口
192.168.8.2	2222	240.2.3.4	80

2. NAT服务器收到数据包后,会将数据包header内的源IP地址与端口号替换成NAT服务器 外网卡的IP地址与端口号, IP地址就是public IP 220.11.22.33, 而端口号是动态产生的, 假设是3333。NAT服务器不会改变此数据包的目的IP地址与端口号。

源IP地址	源端口	目的IP地址	目的端口
220.11.22.33	3333	240.2.3.4	80

同时NAT服务器会建立一个如下所示的对照表,以便之后按照对照表,将从网站得到的网 页内容回传给计算机A(此对照表被称为NAT Table)。

源IP地址	源端口	更改后的源IP地址	更改后的源端口
192.168.8.2	2222	220.11.22.33	3333

3. 网站收到浏览网页的数据包后,会根据数据包内的源IP地址与端口号将网页发送给NAT 服务器,此网页数据包中的源IP地址为240.2.3.4、端口号为80,目的IP地址为 220.11.22.33、端口号为3333。

源IP地址	源端口	目的IP地址	目的端口
240.2.3.4	80	220.11.22.33	3333

4. NAT服务器收到网页数据包后,会根据对照表(NAT Table),将数据包中的目的IP地址 更改为192.168.8.2、端口号更改为2222,但是不会更改源IP地址与端口号,然后将网页

数据包发送给计算机A的浏览器来处理。

源IP地址	源端口	目的IP地址	目的端口
240.2.3.4	80	192.168.8.2	2222

NAT服务器通过IP地址与端口的转换,让位于内部网络的计算机只需要使用private IP地址就可以上网。由以上介绍可知,NAT服务器会隐藏内部计算机的IP地址,外界计算机只能够接触到NAT服务器的public IP地址,无法直接与内部使用private IP地址的计算机通信,因此可以增加内部计算机的安全性。

12-2 实例演练——NAT服务器架设

以下将列举两个示例来说明如何设置NAT服务器与客户端计算机。

12-2-1 路由器、固接式xDSL或电缆调制解调器环境的NAT设置

我们以图 12-7的路由器。固接式xDSL或电缆调制解调器为例。来说明如何设置图中的NAT 服务器, 此服务器为Windows Server 2008 R2计算机。

包 提示:

只要NAT服务器可以上网,则不论NAT服务器的外网卡是连接到路由器或其他NAT设备,您都可以让连接在内网卡的内部网络客户通过这台NAT服务器上网。

图 12-7

图中NAT服务器内安装了2块网卡,一块连接路由器、xDSL调制解调器或电缆调制解调器,一块连接内部网络,其相应的网络连接名称默认是本地连接与本地连接2,建议您将其更改为易于识别的名称,例如在图 12-8中我们分别将其重命名为内网卡与外网卡,重命名的方法为【开始②对着网络单击右键②属性②单击更改适配器设置②对着所选网络连接单击右键②重命名】。

图 12-8

- STEP 1 单击左下角服务器管理器图示 □ □ 角色 □ 单击添加角色。
- STEP 2 出现开始之前界面时单击下一步。
- STEP 3 在图 12-9中选择网络策略和访问服务后下一步。

图 12-9

- STEP 4 出现网络策略和访问服务界面时单击下一步。
- STEP 5 如图 12-10所示选择路由和远程访问服务后单击下一步。

图 12-10

- STEP 6 在确认安装选择界面中单击安装,之后单击关闭。
- STEP 7 选用【开始⇒管理工具⇒路由和远程访问⇒如图 12-11所示对着本机计算机单击右 键⊃配置并启用路由和远程访问】。

图 12-11

- STEP 8) 在欢迎使用路由和远程访问服务器安装向导界面中单击下一步。
- STEP 9 如图 12-12所示【选择网络地址转换(NAT)后单击下一步 ⇒选择用来连接因特网的网络接口(外网卡)】,然后单击下一步。

图 12-12

⑤ 提示

除了连接因特网的公用网络接口外,如果NAT服务器还拥有两个(含)以上专用网接口的话,则系统会要求您从中选择一个可通过NAT服务器来连接因特网的专用网。如果要开放多个专用网可以通过NAT服务器来连接因特网的话,请在完成NAT服务器的架设后再来增加。

STEP 10 如果安装向导检测不到网络中有提供DHCP与DNS服务的话,就会出现图 12-13的 界面,此时您可以如图所示选择让这台NAT服务器来提供DHCP与DNS服务,然后单击下一步,内部网络客户的IP地址设置为自动获取即可。

图 12-13

STEP 11 由图 12-14可看出NAT服务器会分配网络标识符为192.168.8.0的IP地址给内部网络的客户端,它是依据图 12-7内网卡的IP地址(192.168.8.254)来决定此网络标识符,您可以事后修改此设置。

图 12-14

- STEP 12 出现完成路由和远程访问服务器安装向导界面时单击完成。
- STEP 13) 图 12-15为完成后的界面。您可以双击界面右边的内网卡、外网卡来更改内外网卡的设置。

图 12-15

STEP 14 虽然NAT服务器具备DNS中继代理功能,它可以代替内部客户端来查询DNS主机名,不过您需要在NAT服务器的Windows防火墙来开放DNS流量(端口号为UDP 53),以便允许接受客户端传来的DNS查询流量.【开始⊃管理工具⊃高级安全Windows防火墙⊃单击入站规则右方的新建规则…⊃选择端口后单击下一步⊃如图 12-16所示将端口号设置为UDP 53 つ…】。

图 12-16

完成以上设置后,如果NAT服务器目前已经连上因特网的话,则当内部网络客户的连接因特网请求(例如上网、收发电子邮件等)被发送到NAT服务器后,NAT服务器就会代替客户端来连接因特网。

12-2-2 非固接式xDSL环境的NAT设置

我们以图 12-17的非固接式xDSL为例,来说明如何设置图中的NAT服务器,此服务器为 Windows Server 2008 R2计算机。

图 12-17

图中NAT服务器内安装了两块网卡,一块连接xDSL调制解调器,一块连接内部网络,其相应的网络连接名称默认是本地连接与本地连接2,建议您将其更改为易于识别的名称,例如在图 12-18中我们分别将其改名为内网卡与外网卡,改名的方法为【开始⊃对着网络单击右键 ⊃属性⊃单击更改适配器设置⊃对着所选网络连接单击右键⊃重命名】。

图 12-18

STEP 1 单击左下角服务器管理器图示 □ 角色 □ 单击添加角色。

STEP 2 出现开始之前界面时单击下一步。

STEP 3 在图 12-19中选择网络策略和访问服务后下一步。

图 12-19

- STEP 4 出现网络策略和访问服务界面时单击下一步。
- STEP 5 如图 12-20所示选择路由和远程访问服务后单击下一步。

图 12-20

- STEP 6 在确认安装选择界面中单击安装,之后单击关闭。
- STEP 7 选用【开始⊃管理工具⊃路由和远程访问⊃如图 12-21所示对着本机计算机单击右键⊃配置和启用路由和远程访问】。

图 12-21

- **STEP 8** 在**欢迎使用路由和远程访问服务器安装向导**界面中单击下一步。
- STEP 9 如图 12-22所示【选择网络地址转换 (NAT) 后单击下一步 ⇒选择创建一个新的到 Internet的请求拨号接口后单击下一步】。

图 12-22

STEP 10 在图 12-23中选择被允许通过NAT服务器来连接因特网的内部网络,例如图中选择 连接在NAT服务器**内网卡**的网络。

图 12-23

STEP 11 如果安装向导检测不到网络中有提供DHCP与DNS服务的话,就会出现图 12-24的 界面,此时您可以如图所示选择让这台NAT服务器来提供DHCP与DNS服务之后,单击下一步,因此内部网络客户的IP地址设置为自动获得即可。

图 12-24

STEP 12 由图 12-25可看出NAT服务器会分配网络标识符192.168.8.0的IP地址给内部网络的

客户端,它是依据图 12-17内网卡的IP地址(192.168.8.254)来决定此网络标识符,您可以事后修改此设置。

图 12-25

- STEP 13 出现准备应用选择界面时单击下一步。
- STEP 14 出现欢迎使用请求拨号接口向导界面时单击下一步,
- **STEP 15** 在图 12-26中为此连接设置名称,例如**PPPoE请求拨号**,然后选择利用**PPPoE**协议来连接因特网。

图 12-26

STEP 16 在图 12-27中单击下一步。**服务名称**保留空白或按照ISP(因特网服务提供供应商)指示来设置,请勿随意设置,否则可能无法连接。

图 12-27

STEP 17 如果ISP没有支持密码加密功能的话,请在图 12-28中增加选择**如果这是唯一连接的** 方式的话,请发送纯文本密码后单击下一步。

图 12-28

STEP 18 在图 12-29中输入用来连接到ISP的用户名与密码后单击下一步。

核向导 出 凭据 连接到远程路由器时提供	要使用的用户名和密码。
你必须没要这块就是我吃	中器时业接口使用的提出货粮。这些货粮必须和东流
程路笛器上歐盟的接入程	由器时此接口使用的拨出凭据。这些凭据必须和在远据匹配。
程盤甾器上歐洲的接入程 用户名(U):	調である。 87654321@163. com
	and the state of the second second

图 12-29

- STEP 19 出现完成请求拨号接口向导界面时单击完成。
- STEP 20 出现完成路由和远程访问服务器安装向导界面时单击完成。
- STEP 21 如图 12-30所示【展开到IPv4⊃对着静态路由单击右键⊃新建静态路由】。

图 12-30

STEP 22 如图 12-31所示为NAT服务器新建一个默认网关(目标与默认网关为0.0.0.0),以便让NAT服务器要连接因特网时,可以通过PPPoE请求拨号接口来连接ISP与因特网。

图 12-31

我们在第11章中说过若有多个路径可供选择的话,则系统会挑选路径跃点数较低的 路径。若NAT服务器的网络适配器指定有默认网关的话,以1 Gbps网络来说,其默 认的**路径跃点数**为266,在图 12-31中我们将PPPoE请求拨号的**跃点数**(它是**网关跃** 点数)设置为1、而PPPoE的接口跃点数默认为50,故此PPPoE请求拨号的**路径跃点 数**为**接口跃点数+网关跃点数=** 51,它比网卡的**路径跃点数266**低,故当NAT服务器 接收到内部计算机的上网要求时,会挑选PPPoE请求拨号来自动连接因特网。

请不要将图 12-31中的**跃点数(网关跃点数**)设置得太高,以免此PPPoE请求拨号 的路径跃点数超过网卡的路径跃点数,造成NAT服务器不通过PPPoE请求拨号而自 动连接因特网的后果。

STEP 23 图 12-32为完成后的界面。

注意

虽然从图右边的静态路由表看似系统已经自动针对PPPoE请求拨号新建了路径(目标处 为::,看似为IPv6的默认网关),但是该路径却无法让NAT服务器与内部网络的计算机连 接因特网,故我们需要另外自行新建上述目标为0.0.0.0的路径。

图 12-32

STEP 24 虽然NAT服务器具备DNS中继代理功能,它可以代替内部客户端来查询DNS主机 名,不过您需要在NAT服务器的Windows防火墙来开放DNS流量(端口号为UDP 53),以便允许接受客户端传来的DNS查询流量:【开始⊃管理工具⊃高级安全

Windows防火墙 ⇒ 单击入站规则右方的新建规则 · · ⇒ 选择端口后单击下一步 ⇒ 如图 12-33 所示将端口号设置为UDP 53 ⇒ · · · 】。

图 12-33

完成设置后,当内部客户端用户的连接因特网请求(例如上网、收发电子邮件等)被发送到NAT服务器后,NAT服务器就会自动通过PPPoE请求拨号来连接ISP与因特网。

12-2-3 内部网络包含多个子网

如果内部网络包含多个子网区段的话,则请确认各个子网的上网请求会被发送到NAT服务器,例如图 12-34中内部网络包含**子网1、子网2**与**子网3**,则请确认当**路由器2**收到**子网3**来的上网请求时,它会将此请求发送给**路由器1** (必要时可能需在路由表内手动新建路径),再由**路由器1**发送给NAT服务器,否则**子网3**内的计算机无法通过NAT服务器上网。

图 12-34

还有因为NAT服务器只会分配IP地址给一个网段,例如图 12-34它只会分配192.168.8.0的 IP地址给**子网1**内的计算机,无法分配IP地址给**子网2**与**子网3**内的计算机,因此这两个子网内的计算机,其IP地址需手动设置或另外通过其他DHCP服务器来分配。

12-2-4 新增NAT网络接口

如果NAT服务器拥有多个网络接口(例如多块网卡),这些网络接口分别连接到不同的网

络,其中连接因特网的接口被称为**公用接口**,而连接内部网络的接口被称为**专用接口**。系统 默认仅开放一个内部网络的计算机可以通过NAT服务器来连接因特网,若要开放其他内部网络 的话,请通过【如图 12-35所示展开到IPv4⊃对着NAT单击右键⊃新增接口⊃选择连接该网络 的专用接口(假设是**内网卡2) ** 选择**专用接口连接到专用网络 \ ··· 】**的方法。

图 12-35

若NAT服务器有多个专用网接口的话,例如图 12-36的内部网络有3个专用网接口,由于 NAT服务器只会分配IP地址给其中一个网络,因此只有一个网络内的计算机可以向NAT服务 器自动索取IP地址,其他网络内的计算机的IP地址需手动设置或另外通过其他DHCP服务器 来分配。

图 12-36

12-2-5 内部网络的客户端设置

内部网络客户(参见前面图 12-17)的IP地址设置必须正确,才能够通过NAT服务器来连 接因特网,以Windows 7为例,其设置方法为【开始与控制面板 D网络和Internet D网络和共享

中心〇单击本地连接〇单击属性〇单击Internet协议版本4(TCP/IPv4)〇单击属性】然后选择

■ 自动获得IP地址:如图 12-37所示,此时客户端会自动向NAT服务器或其他DHCP服务器来索取IP地址、默认网关与DNS服务器等设置。若是向NAT服务器索取IP地址的话,由于NAT服务器只会发放与内网卡相同网络标识符的IP地址,故这些客户端需位于此网卡所连接的网络内。

图 12-37

▶ 使用下列的IP地址:如图 12-38所示,图中客户端IP地址的网络标识符与NAT服务器内网卡的IP地址相同、默认网关为NAT服务器内网卡的IP地址、首选DNS服务器可以被指定到NAT服务器内网卡的IP地址(因它具备DNS中继代理功能)或其他正常运行的DNS服务器的IP地址。

图 12-38

如果内部网络包含多个子网或NAT服务器拥有多个专用网接口的话,由于NAT服务器只会分配IP地址给一个网段,因此其他网络内的计算机的IP地址需手动设置或另外通过其他DHCP

服务器来分配。

12-2-6 连接错误排除

如果PPPoE请求拨号无法成功连接ISP的话,请利用手动拨号的方式来查找可能的原因: 【如图 12-39所示单击网络接口⊃对着PPPoE请求拨号接口单击右键⊃连接】。您也可以通过图中设置认证选项来更改账户与密码。

图 12-39

》 若连接时出现类似图 12-40的界面:可能是ISP端不支持密码加密功能,此时请【对着 PPPoE请求拨号接口单击右键⊃属性⊃如图 12-41所示选择允许没有加密的密码】。

图 12-40

图 12-41

★ 若连接时出现图 12-42的界面: 可能是硬件连接有问题或PPPoE请求拨号的服务名称有误, 若为后者的话,请【对着PPPoE请求拨号接口单击右键→属性→在图 12-43中将服务名称清除或按ISP的提示来输入】。

图 12-42

图 12-43

■ PPPoE请求拨号连接ISP成功,但是NAT服务器与客户端却无法连接因特网:请检查前面的图 12-32中是否有另外新建正确的静态路由。

12-3 DHCP分配器与DNS中继代理

Windows Server 2008 R2 NAT服务器还具备着以下的两个功能:

- > DHCP分配器: 用来分配IP地址给内部网络的客户端计算机。
- ▶ DNS中继代理: 可代替内部计算机向DNS服务器查询DNS主机的IP地址。

12-3-1 DHCP分配器

DHCP分配器(DHCP Allocator)扮演着类似DHCP服务器的角色,用来分配IP地址给内部网络的客户端。要查看或更改DHCP分配器设置的话,请【如图 12-44所示展开到IPv4\0000单击 NAT\0000单击上方的属性图示\0000单击前图中的地址分配标签】。

图 12-44

在架设NAT服务器时,如果系统检测到内部网络上有DHCP服务器的话,它就不会自动启 动DHCP分配器。

图中DHCP分配器分配给客户端的IP地址的网络标识符为192.168.8.0,这个默认值是根据 NAT服务器内网卡的IP地址(192.168.8.254)来产生的。您可以自行修改这个默认值,不过必 须与NAT服务器内网卡IP地址一致,也就是网络标识符需相同。

若内部网络内某些计算机的IP地址是自行输入的,且这些IP地址是位于上述IP地址范围内的 话,则请通过界面中的排除来将这些IP地址排除,以免这些IP地址被发放给其他客户端计算机。

若内部网络包含多个子网或NAT服务器拥有多个专用网接口的话,由于NAT服务器的 DHCP分配器只能够分配一个网段的IP地址,因此其他网络内的计算机的IP地址需手动设置或 另外通过其他DHCP服务器来分配。

12-3-2 DNS中继代理

当内部计算机需要连接网站、FTP站点或电子邮件服务器等时,它们可以将查询这些服务 器IP地址的请求发到NAT服务器,然后由NAT服务器的DNS中继代理(DNS proxy)来替它们 查询这些服务器的IP地址。

您可以通过图 12-45中**名称解析**标签来启动或更改DNS中继代理的设置,选择**使用域名系** 统(DNS)的客户端,即表示要启用DNS中继代理的功能,以后只要客户端要上网、发送电子邮 件等,NAT服务器都可以代替这些客户端来向DNS服务器查询网站、邮件服务器等主机的IP 地址(这些主机可能位于因特网或内部网络)。

图 12-45

NAT服务器会向哪一台DNS服务器来查询呢? 它会向TCP/IP设置处的首选DNS服务器或 **备用DNS服务器**来查询。如果这台DNS服务器是位于因特网,而且NAT服务器是通过PPPoE 请求拨号来连接因特网的话,则请选择图 12-45中当名称需要解析时连接到公用网络,以便让 NAT服务器可以自动利用PPPoE请求拨号来连接因特网。

12-4 开放因特网用户来连接内部服务器

NAT服务器让内部用户可以连接因特网,不过因为内部计算机使用private IP地址,这种IP地址不可以暴露在因特网上,外部用户只能够接触到NAT服务器的外网卡的public IP地址,因此若要让外部用户来连接内部服务器的话(例如内部网站、SMTP服务器等),就需要通过NAT服务器来转发。

12-4-1 端口映射

通过TCP/UDP端口映射功能(port mapping),可以让因特网用户来连接内部使用private IP 的服务器。以图 12-46为例来说,内部网站的IP地址为192.168.8.1、端口号为默认的80,SMTP 服务器的IP地址为192.168.8.2、端口号为默认的25。若要让外部用户可以问此网站与SMTP服务器的话,请对外宣称网站与SMTP服务器的IP地址是NAT服务器的外网卡的IP地址 220.11.22.33,也就是将此IP地址注册到DNS服务器内:

图 12-46

- ⇒ 当因特网用户通过类似http://220.11.22.33/路径来连接网站时,NAT服务器会将此请求 转发到内部计算机A的网站、网站将所需网页发送给NAT服务器、再由NAT服务器将 其发送给因特网用户。
- 当因特网用户通过IP地址 220.11.22.33来连接SMTP服务器时,NAT服务器会将此请求 转发到内部计算机B的SMTP服务器。

以图 12-46为例,要将从因特网来的上网请求转发到内部计算机A,设置方法为【如图 12-47 所示展开到IPv4⊃单击NAT⊃对着外网卡单击右键⊃属性】。

图 12-47

图 12-48

注意

您无法更改图中默认服务的标准输入与输出端口号,若您的输入或输出端口非标准号码 的话,请通过后图添加来自行新建新服务。

如果NAT服务器的外网卡拥有多个public IP地址的话,则您还可以从**在此地址池项**来选择 其他的public IP地址(后述)。

12-4-2 地址映射

前一小节的端口映射功能,可以让从因特网送到NAT服务器外网卡(IP地址220.11.22.33)的不同类型的请求转交给不同的计算机来处理,例如将HTTP请求转给计算机A、将SMTP请求转给计算机B。

如果NAT服务器外网卡拥有多个IP地址的话,则您可以利用**地址映射**(address mapping)方式来保留特定IP地址给内部特定的计算机。例如图 12-49中NAT服务器外网卡拥有两个public IP地址(220.11.22.33与220.11.22.34),此时我们可以将第1个IP地址220.11.22.33保留给计算机A、将第2个IP地址220.11.22.34保留给计算机B,因此所有送到第1个IP地址220.11.22.33的流量都会转给计算机A、所有送到第2个IP地址220.11.22.34的流量都会转发给计算机B。

图 12-49

同时所有从计算机A发出的外送流量会通过第1个IP地址220.11.22.33发出,从计算机B发出的外送流量会通过第2个IP地址220.11.22.34发出。

地址池的设置

NAT服务器需要多个public IP地址,才可以享有地址映射的功能。假设NAT服务器外网卡除了原有的IP地址220.11.22.33之外,还需要另外一个IP地址220.11.22.34。请完成以下两项工作:

→ 请在外网卡的TCP/IP设置处添加两个IP地址【开始⊃对着网络单击右键⊃属性⊃单击更改适配器设置⊃对着代表外网卡的连接单击右键⊃属性⊃单击Internet协议版本4(TCP/IPv4)⊃单击属性⊃单击高级⊃单击IP地址处的添加⊃…】,如图 12-50所示为完成后的界面。

图 12-50

→ 添加地址池:【打开路由和远程访问控制台⊃展开到IPv4⊃单击NAT⊃对着外网卡单击右键⊃属性⊃如图 12-51所示单击地址池标签下的添加 ⊃输入NAT服务器外网卡的IP地址范围与子网掩码 ⊃… 」。

图 12-51

地址映射的设置

请单击前面图 12-51中后图右下方的保留,然后如图 12-52所示来设置,图中我们将地址池中的public IP地址220.11.22.33保留给内部使用private IP地址 192.168.8.1的计算机A(参考前面图 12-49)。

图 12-52

完成以上设置后,所有由计算机A(192.168.8.1)发出的外送流量都会从NAT服务器的IP地址220.11.22.33发出;同时因为我们还选择了**允许将会话传入到此地址**,因此所有从因特网发送给NAT服务器IP地址220.11.22.33的数据包,都会被NAT服务器转发给内部网络IP地址为

192.168.8.1的计算机A。

12-5 因特网连接共享 (ICS)

因特网连接共**享**(Internet Connection Sharing, ICS)是一个功能较简易的NAT,它一样可以让内部网络多人同时通过ICS计算机来连接因特网、只需要使用一个public IP地址、可以通过路由器/电缆调制解调器/固接式或非固接式xDSL等来连接因特网。不过ICS在使用上比较缺乏弹性,例如:

- □ 只支持一个专用网接口,也就是只有该接口所连接的网络内的计算机可以通过ICS来连接因特网。
- DHCP分配器只能够分配网络标识符为192.168.137.0/24的IP地址(前版Windows系统的DHCP分配器为192.168.0.0/24)。
- ≥ 无法将DHCP分配器停用,也无法更改其设置,因此若内部网络已经有DHCP服务器在服务的话,请小心设置或将其停用,以免DHCP分配器与DHCP服务器所分配的IP地址相冲突。
- 🕍 只支持一个public IP地址,因此无**地址映射**的功能。

由于ICS与路由和远程访问不可以同时启用,故要启用ICS前请先将路由和远程访问停用。启用ICS的步骤为:【开始⊃对着网络单击右键⊃属性⊃单击更改适配器设置⊃如图 12-53 所示对着连接因特网的连接(例如外网卡或xDSL连接)单击右键⊃属性⊃选择共享标签下的允许其他网络用户通过此计算机的Internet连接来连接⊃单击确定】。

∌ 提示

由于ICS计算机只允许从一个专用网接口来的用户可以通过ICS计算机连接因特网,因此若ICS计算机拥有两个以上专用网接口的话,则图 12-53中的前图会要求您从中选择一个专用网接口,只有从这个接口来的请求可以通过ICS计算机连接因特网。

图 12-53

之后将出现图 12-54的界面,表示一旦您启用ICS后,系统会将内部专用网接口(例如内网卡)的IP地址改为192.168.137.1/24,因此该网络接口所连接网络内的计算机的IP地址,其网络标识符也必须是192.168.137.0/24,否则无法通过ICS计算机来连接因特网。

图 12-54

ICS客户端的TCP/IP设置方法与NAT客户端相同。一般来说,客户端的IP地址设置成自动取得即可,此时它们会自动向ICS计算机来索取IP地址、默认网关与首选DNS服务器等设置。它们所取得的IP地址将是192.168.137.x的格式,而默认网关与首选DNS服务器都是ICS计算机内网卡的IP地址192.168.137.1。

如果您希望客户端使用非192.168.137.x格式的IP地址的话,则ICS计算机的内网卡与客户端计算机的IP地址都必须自行手动输入(网络标识符必须相同),同时客户端的默认网关必须指定到ICS计算机内网卡的IP地址,首选DNS服务器可以指定到ICS内网卡的IP地址或任何一台正常运行的DNS服务器。

如果专用网接口所连接的网络内,包含着多个子网的话,则请确认各个子网的上网请求会被发送到ICS计算机,也就是各子网的上网数据包能够通过路由器来发送到ICS计算机(必要时可能需在路由器的路由表内手动新建路径)。