Pattern Recognition

Song Bai

Email: songbai.site@gmail.com

What we are doing with Pattern Recognition

Outlines

- Pattern Representation Learning
 - Unsupervised Representation Learning (PCA, NMF)
 - Supervised Representation Learning (LDA, GE)
 - Clustering and Applications
- Patter Recognition Models
 - Gaussian Mixture Model and Boosting
 - Support Vector Machines
 - Deep Learning (a.k.a. deep neural networks)

Textbooks and References

(no fixed textbook)

Books

- R. O. Duda, P. E. Hart & D.G. Stork,
 "Pattern Classification",
 John Wiley, 2001.
- K. P. Murphy,
 "Machine Learning: A Probabilistic Perspective",
 MIT Press, 2012.

References

- Lists of important papers will be provided with some lectures
- CVPR, ICML, etc

Outlines

- Representation Learning
 - Unsupervised Representation Learning (PCA, NMF)
 - Supervised Representation Learning (LDA, GE)
 - Clustering and Applications
- Patter Recognition Models
 - Gaussian Mixture Model and Boosting
 - Support Vector Machines
 - Deep Learning (a.k.a. deep neural networks)

Unsupervised Feature Learning Principal Component Analysis

Representation Learning / Extraction

- Representation learning refers to transforming the raw data into another (possibly lower-dimensional) space.
- Such that, in the new space, one can perform pattern recognition more easily.
- Criterion for good representation in different problem settings:
 - Unsupervised: minimize information loss (no class information)
 - Supervised: maximize discrimination (with class information)

What is Feature Extraction

Features of Face

Why Feature Extraction?

- Many pattern recognition techniques may not be effective for high-dimensional data
 - Curse of dimensionality

- Patterns may have small intrinsic dimension
 - E.g., # genes responsible for a certain disease may be small
 - E.g., face images of one person captured with different illumination conditions

Why Feature Extraction?

Visualization: projecting high-dimensional data onto
 2D or 3D planes

Data compression: efficient storage and retrieval

Noise removal: positive effect on testing accuracy

Applications of Feature Extraction

- Face recognition
- Handwritten digit recognition
- Text mining
- Image retrieval
- Protein classification

Proteins

Face Images

Feature Extraction Algorithms

- Unsupervised (this lecture)
 - Principal Component Analysis (PCA)
 - Nonnegative Matrix Factorization (NMF)
 - Independent Component Analysis (ICA) [Reading]
- Supervised (next lecture)
 - Linear Discriminant Analysis (LDA)
 - General Graph Embedding (GE)
 - Canonical Correlation Analysis (CCA) [Reading, encouraged]

Principal Component Analysis (PCA)

- Probably the most widely-used and well-known multivariate analysis method.
- Introduced by Pearson (1901)
- First applied in ecology by Goodall (1954) under the name "factor analysis".
- De facto data pre-processing operation.

Least square error data fitting

What is Principal Component Analysis?

- Principal component analysis (PCA)
 - Reduce the dimensionality of a collection of observations by finding a new set of variables, smaller than the original set of variables
 - Capture big (principal) variability in the data and ignore small variability

- Variation in samples
 - The new variables, called principal components (PCs), are ordered by variations corresponding to different PCs.

- The 1st PC Z_1 is a minimum distance fit to a line in X space
- The $2^{\rm nd}$ PC Z_2 is a minimum distance fit to a line in the plane orthogonal to the $1^{\rm st}$ PC

PCs are a series of linear least squares fits to a sample set, each orthogonal to all the previous ones.

linear least squares fit: Large -> small variance

linear least squares fit: Small -> high variance

Algebraic Definition of PCs

Given a sample set of *n* observations on a vector of *d* variables

$$\{x_1, x_2, \dots, x_n\} \subset \mathbb{R}^d$$

define the first principal component by the linear projection a_1

$$z_1 = a_1^T x$$

where the vector
$$a_1 = (a_{11}, a_{21}, \dots, a_{d1})^T$$

is chosen such that $var[z_1]$ is maximum.

Algebraic Definition of PCs

To find a_1 first note that

$$var[z_1] = E((z_1 - \overline{z_1})^2) = \frac{1}{n} \sum_{i=1}^n (a_1^T x_i - a_1^T \overline{x})^2$$

$$= \frac{1}{n} \sum_{i=1}^{n} a_{i}^{T} \left(x_{i} - \overline{x} \right) \left(x_{i} - \overline{x} \right)^{T} a_{1} = a_{1}^{T} S a_{1}$$

where
$$S = \frac{1}{n} \sum_{i=1}^{n} \left(x_i - \overline{x} \right) \left(x_i - \overline{x} \right)^T$$

is the covariance matrix,

$$\frac{1}{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 is the mean.

Algebraic Derivation of PCs

To find a_1 that maximizes $var[z_1]$ subject to $a_1^T a_1 = 1$

Let λ be a Lagrange multiplier

$$L = a_1^T S a_1 - \lambda (a_1^T a_1 - 1)$$

$$\Rightarrow \frac{\partial}{\partial a_1} L = S a_1 - \lambda a_1 = 0$$

$$\Rightarrow (S - \lambda I_d) a_1 = 0$$

therefore a_1 is an eigenvector of S

corresponding to the largest eigenvalue $\lambda = \lambda_1$.

Algebraic Derivation of PCs

Similarly, a_2 is also an eigenvector of S whose eigenvalue $\lambda=\lambda_2$ is the second largest.

In general

$$\operatorname{var}[z_k] = a_k^T S a_k = \lambda_k$$

- The k^{th} largest eigenvalue of S is the variance of the k^{th} PC.
- The k^{th} PC Z_k retains the k^{th} greatest variation in the samples

Algebraic Derivation of PCs

- Main steps for computing PCs
 - Calculate the covariance matrix S.
 - Compute its eigenvectors: $\{a_i\}_{i=1}^d$
 - The first *p* eigenvectors $\{a_i\}_{i=1}^p$ form the *p* PCs.
 - The transformation matrix G consists of the p PCs:

$$G \leftarrow [a_1, a_2, \dots, a_p]$$
$$y = G^T x$$

Practical Computation of PCA

- In practice, we compute the PCs via singular value decomposition (SVD) on the centered data matrix.
- Form the centered data matrix:

$$X_{d,n} = [(x_1 - \bar{x}), \dots, (x_n - \bar{x})]$$

• Compute its SVD:

$$X = U_{d,d} D_{d,n} (V_{n,n})^T$$

• U and V are orthogonal matrices, D is a diagonal matrix

Practical Computation of PCA

• Note that the scatter/covariance matrix can be written as:

$$S = XX^{T} = UD^{2}U^{T}$$

- So the eigenvectors of S are the columns of U and the eigenvalues are the diagonal elements of D^2
 - why?
- Take only a few significant eigenvalue-eigenvector pairs *p* << *d*. The new reconstructed sample from low-dim space is:

$$x_i = \bar{x} + U_{d,p} U_{d,p}^T (x_i - \bar{x})$$

PCA and Classification

- Classification with PCA
 - Project both training and testing data into the PCs space
 - For each testing datum, use NN for classification
 - Issue: accuracy is sensitive to the number of PCs
- PCA is not always an optimal feature extraction procedure for classification purpose
 - Suppose there are C classes in the training data
 - PCA is based on the sample covariance which characterizes the scatter of the entire data set, irrespective of class-membership
 - The projection axes chosen by PCA might not provide good discrimination power

How to determine the number of PCs?

How many principal components to keep?

 To choose p based on percentage of variation to retain, we can use the following criterion (smallest p):

$$\frac{\sum_{i=1}^{p} \lambda_{i}}{\sum_{i=1}^{d} \lambda_{i}} \ge Threshold (e.g., 0.95)$$

Visualize PCs

Data points are represented in a rotated orthogonal coordinate system: the origin is the mean of the data points and the axes are provided by the eigenvectors.

Visualize PCs

Face images

Eigenfaces, how to plot like this?

Reconstruction with PCs

Adding eigenfaces eight at a time

$$x_i = \bar{x} + U_{d,p} U_{d,p}^T (x_i - \bar{x})$$

PCA Remarks

- PCA
 - finds orthonormal basis for data
 - Sorts dimensions in order of "importance"
 - Discard low significance dimensions
- Uses:
 - Get compact description
 - Ignore noise
 - Improve classification (hopefully)

PCA Remarks

PCA cannot capture NON-LINEAR structure!

Note: Curvilinear Component Analysis can solve this case. Study this work if you are interested.

PCA doesn't know class labels

Summary of PCA

Algorithm 1 Algorithm for PCA

Input: Samples $\{x_1, x_2, \cdots, x_N\}$.

1. Compute the covariance matrix:

$$S = \frac{1}{N} \sum_{i=1}^{N} (x_i - \bar{x})(x_i - \bar{x})^T;$$

- 2. Perform Eigenvalue Decomposition: [U] = eig(S);
- 3. Output PCs matrix U(:, 1:p).

Discussions

 What can we do with PCA (given that it is generally worse for classification than other supervised algorithms)?

Unsupervised Feature Extraction II: Nonnegative Matrix Factorization

A Quick Review of Linear Algebra

• Every vector can be expressed as the linear combination of basis vectors

$$\begin{bmatrix} 2 \\ 6 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 6 \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ or } \begin{bmatrix} 2 \\ 6 \end{bmatrix} = 2 \cdot \begin{bmatrix} 1 \\ 3 \end{bmatrix} + 0 \cdot \begin{bmatrix} -6 \\ 2 \end{bmatrix}$$

Can think of images as big vectors

(Raster scan image into vector)

• This means we can express an image as the linear combination of a set of basis images

PCA Review

• Find a set of orthogonal principal components (basis)

• The reconstructed image is a linear combination of the

principal components plus mean face

What we do not like about PCA?

- PCA involves adding up some basis vectors then subtracting others
- Basis vectors aren't physically intuitive (negative) for many applications, e.g. documents
- Subtracting doesn't make sense in context of some applications
 - How do you subtract a face?
 - What does subtraction mean in the context of document classification?

Non-negative Matrix Factorization

• Like PCA, except that the coefficients in the linear combination cannot be negative

Proposed by D. Lee and H. Seung (NIPS 2000)

Non-negative Matrix Factorization

- Matrix factorization: V≈WH
 - V: n×m matrix. Each column of which contains n nonnegative pixel values of one of the m facial images.
 - W: $(n\times r)$: r columns of W are called basis images.
 - H: (r×m): each column of H is called encoding.

V: an image is a column vector

W: a basis image is a column vector

H: a coefficient vector (shown as matrix here) is a column vector

41

NMF Basis Vectors

- Only allowing adding basis vectors makes intuitive sense
 - Has physical similarity in neurons
- Forcing the reconstruction coefficients to be nonnegative leads to nice basis vectors
 - To reconstruct vector (image), all you can do is to add in more basis vectors
 - This leads to basis vectors that represent parts

Objective Function

• Assume V is the sample matrix, the task is to approximate the original data matrix with two nonnegative data matrices:

$$\min_{W, H} ||V - WH||^2$$
 s.t. $W \ge 0, H \ge 0$.

• Let the value of a pixel in the original input image be $V_{i\mu}$. Let $(WH)_{i\mu}$ be the reconstructed pixel.

$$V_{i\mu} = (WH)_{i\mu} = \sum_{a=1}^{r} W_{ia} H_{a\mu}$$

How do we derive the update rules (H only, W similar)?

- Use gradient descent to find a local minimum
- The gradient descent update rule is:

$$H_{a\mu} \leftarrow H_{a\mu} + \eta_{a\mu} \left[(W^T V)_{a\mu} - (W^T W H)_{a\mu} \right]$$

Deriving Update Rules (H only, W similar)

Gradient Descent Rule:

$$H_{a\mu} \leftarrow H_{a\mu} + \eta_{a\mu} \left[(W^T V)_{a\mu} - (W^T W H)_{a\mu} \right]$$

• Set
$$\eta_{a\mu} = \frac{H_{a\mu}}{(W^T W H)_{a\mu}}$$

• The update rule becomes

$$H_{a\mu} \leftarrow H_{a\mu} \frac{(W^T V)_{a\mu}}{(W^T W H)_{a\mu}}$$
 Try by yourself

What's significant about this?

- This is a multiplicative update
 - If the initial values of W and H are all non-negative, then the W and H can never become negative.
- This lets us produce a non-negative factorization
- See NIPS Paper for full proof that this will converge if you are interested.

http://papers.nips.cc/paper/1861-algorithms-for-non-negative-matrix-factorization.pdf

Example: Faces

- Training set: 2429 examples
- First 25 examples shown at right
- Set consists of 19x19 face images

Example: Faces

• Basis Images:

- Basis no.: 49

- Iterations: 50

Face Reconstruction from Basis Vectors

Original

W

=

W * h

Example: Cars

- Training set: 200 examples
- First 25 examples shown at right
- Set consists of car images taken at various orientations

Example: Cars

Basis Images

- Basis no.: 49

- Iterations: 310

Car Reconstruction from Basis Vectors

Originals (1-25)

Output (1-25)

Car Reconstruction from Basis Vectors

Original image

Reconstructed image

Why fence disappeared?

Discussions

 For new image, how to obtain the reconstruction coefficients?

• How to use NMF for classification, e.g. face recognition?

Summary of NMF

Algorithm 2 Algorithm for NMF

Input: Sample matrix $V = [v_1, v_2, \dots, v_N]$. Initialize W^0 and H^0 as arbitrary positive matrices.

for
$$t = 0:1:T_{max}$$
 do

$$\begin{split} H_{a\mu}^{t+1} &= H_{a\mu}^t \frac{(W^{tT}V)_{a\mu}}{(W^{tT}W^tH^t)_{a\mu}}; \\ W_{a\mu}^{t+1} &= W_{a\mu}^t \frac{(VH^{t+1T})_{a\mu}}{(W^tH^{t+1}H^{t+1T})_{a\mu}}; \\ \text{If } \|W^t - W^{t+1}\| < \epsilon \text{ and } \|H^t - H^{t+1}\| < \epsilon \\ \text{return;} \\ \text{end for} \end{split}$$

3. Output matrices W and H.

Discussions

What are differences between NMF and PCA?

	NMF	PCA
Representation	Part-based	Holistic
Basis Image	Localized features	Eigenfaces
Constrains on W and H	Allow multiple basis images to represent a face but only additive combinations	Each face is approximated by a linear combination of all eigenfaces

Papers to Read and Self-Study

- D. Lee and H. Seung. <u>Algorithms for Non-negative Matrix Factorization</u> NIPS (2000).
- ICA (Independent Component Analysis):
 http://en.wikipedia.org/wiki/Independent component analysis
- CCA (Canonical Correlation Analysis):
 http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.101.6359&rep =rep1&type=pdf