Определения по матану, семестр 4

6 мая 2018 г.

Содержание

1	Интегральные неравества Гельдера и Минковского	2
	1.1 Нераветсво Гельдера	2
	1.2 Нераверство Минковского	2
2	Интеграл комплекснозначных функции	2
3	Пространство $L_p(E,\mu), \ 1 \le p < +\infty$	2
4	Пространство $L_{\infty}(E,\mu)$	3
5	Существенный супремум	3
6	Фундаментальная последовательность, полное простран- ство	4
7	Плотное множество	4
8	Финитная функция	4
9	Измеримое множество на простой двумерной поверхности в \mathbb{R}^3	4
10	Мера Лебега на простой двумерной поверхности в \mathbb{R}^3	5

11	Поверхностный интеграл первого рода	5
12	Кусочно-гладкая поверхность в \mathbb{R}^3	5
13	Гильбертово пространство	5
14	Ортогональный ряд	6
15	Сходящийся ряд в Гильбертовом пространстве	6
16	Ортогональное семейство векторов	6
17	Ортонормированное семейство векторов	6
18	Коффициенты Фурье	6
19	Ряд Фурье в Гильбертовом пространстве	7
20	Базис, полная, замкнутая ОС	7
21	Сторона поверхности	7
22	Задание стороны поверхности с помощью касательных реперов	7
23	Интеграл II рода	8
24	Ориентация контура, согласованная со стороной поверхности	8
25	Тригонометрический ряд	9
26	Коэффициенты Фурье функции	9
27	Ядро Дирихле	10
28	Ядро Фейера	10

29 Ротор, дивергенция векторного поля	10
30 Соленоидальное векторное поле	10
31 Бескоординатное определение ротора и дивергенции	10
32 Свертка	11

1 Интегральные неравества Гельдера и Минковского

1.1 Нераветсво Гельдера

 $(X,\mathbb{A},\mu) \ f,g:E\subset X o C\ (E$ - изм.) — заданы п.в, измеримы $p,q>1:rac{1}{p}+rac{1}{q}=1.$ <u>Тогда:</u> $\int\limits_E|fg|d\mu\leq\left(\int\limits_E|f|^pd\mu
ight)^{rac{1}{p}}\cdot\left(\int\limits_E|g|^qd\mu
ight)^{rac{1}{q}}$

1.2 Нераверство Минковского

 $(X, \mathbb{A}, \mu) \ f, g$ — заданы п.в, измеримы

$$1 \le p < +\infty$$
. Тогда: $\left(\int\limits_E |f+g|^p d\mu\right)^{\frac{1}{p}} \le \left(\int\limits_E |f|^p d\mu\right)^{\frac{1}{p}} + \left(\int\limits_E |g|^p d\mu\right)^{\frac{1}{p}}$

2 Интеграл комплекснозначных функции

 $(X, \mathbb{A}, \mu), f : \mathbb{X} \to \mathbb{C}$

Назовем f - измеримой(суммирируемой), если $Ref,\ Imf$ — изм.(сумм.) Тогда <u>интегралом</u> такой функции назовем:

$$\int_{E} f d\mu = \int_{E} Ref + i \int_{E} Imf$$

3 Пространство $L_p(E,\mu), 1 \le p < +\infty$

 $(X,\mathbb{A},\mu)\,E\in\mathbb{A}$ $L_p'(E,\mu)=\{\ \mathrm{f}: \mathrm{п.в.}\ E o\mathbb{C},\ \mathrm{изм.},\ \int\limits_E|f|^pd\mu<+\infty\}$

Это линейное пространство (по нер-ву Минковского и линейности пространства измеримых функций).

У этого пространства есть дефект - если определить норму как ||f|| =

 $\left(\int\limits_{E}|f|^{p}\right)^{\frac{1}{p}}$, то будет сразу много нулей пространства (ненулевые функции, которые п.в. равны 0 будут давать норму 0). Поэтому перейдем к фактор-множеству функций по отношению эквивалентности: $f\sim g$, если f=g п.в.

$$L_p(E,\mu):=L_p'(E,\mu)/_{\sim}$$
 - лин. норм. пр-во с нормой $||f||=\left(\int\limits_E|f|^p
ight)^{\frac{1}{p}}$.

<u>NB1</u>: Его элементы — классы эквивалентности обычных функций. Будем называть их тоже функциями. Они не умеют вычислять значение в точке (т.к. можно всегда подменить значение на любое другое и получить представителя все того же класса эквивалентности), но зато их можно интегрировать!

 $\underline{\mathrm{NB2}}$: также иногда будем обозначать $||f||_p$ за норму f в пространстве $\overline{L_p}$.

4 Пространство $L_{\infty}(E,\mu)$

$$L_{\infty}(E,\mu) = \{ f : \text{п.в. } E \to \mathbb{C}, \text{ ess sup } |f| < +\infty \}$$

NB1: $||f||_{\infty} = \underset{E}{\operatorname{ess sup }} |f|.$

<u>NB2</u>: Новый вид нер-ва Гельдера : $||f \cdot g||_1 \le ||f||_p \cdot ||g||_q$ (причем можно брать $p = +\infty, q = 1$ или наоборот).

5 Существенный супремум

$$(X, \mathbb{A}, \mu), E \subset X$$
— изм., $f : \pi.в. E \to \overline{\mathbb{R}}$.

$$\underline{\text{Тогда}}$$
: ess $\sup_{x \in E} f(x) = \inf\{A \in R : f(x) \le A \text{ п.в. } x\}.$

В этом определении A - существенная верхняя граница.

Свойства:

$$1. \operatorname{ess\,sup}_{E} f \leq \sup_{E} f$$

2.
$$f(x) \le \operatorname{ess\,sup} f$$
 при п.в. $x \in E$.

3.
$$\int_{E} |fg| d\mu \le \operatorname{ess\,sup}_{E} |g| \cdot \int_{E} |f| d\mu$$
.

6 Фундаментальная последовательность, полное пространство

 $\{a_n\}$ - фундаментальная последовательность в метрическом пространстве X, если $\forall \epsilon > 0 \exists N : \forall n, k > N : \rho(a_n, a_k) < \epsilon$ Метрическое пространство называется полным, если фундаментальность последовательсти влечёт её сходимость к какому-то пределу в этом пространстве

7 Плотное множество

X — метрическое пространство.

 $A\subset X$ — (всюду) плотно в X, если для любого открытого мн-ва $G\subset X$ — $A\cap G\neq\varnothing$.

Или, эквивалентно, любой шар $B(x_0, r)$ содержит точки из A.

8 Финитная функция

f — финитная в \mathbb{R}^m , если она равна нулю вне некоторого шара.

9 Измеримое множество на простой двумерной поверхности в \mathbb{R}^3

 $M\subset R^3$ – простое 2-мерное многообразие, C^1 гладкости. $\phi: \underset{\text{откр. обл.}}{O}\subset R^2\to R^3,\,\phi\in C^1$ – гомофорфизм, $\phi(O)=M$

10 Мера Лебега на простой двумерной поверхности в R^3

 $S(E):=\int\limits_{\phi^{-1}(E)}|\phi_u' imes\phi_v'|dudv$ — взвеш. образ меры Лебега отн. ϕ . Значит это мера на \mathbb{A}_M

11 Поверхностный интеграл первого рода

M — простое, гл, 2-мерное в R^3 , ϕ — параметризация f — изм. отн. S (см. выше), f>0 (или f — суммируем. по S) — $\underline{\text{Тогда}}$: $\int_M f dS$ — называет инт. первого рода функ. f по поверхности M

12 Кусочно-гладкая поверхность в \mathbb{R}^3

 $M \subset \mathbb{R}^3$ называется кусочно-гладкой, если M представляет собой объединение:

13 Гильбертово пространство

 $\mathbb H$ - линейное пространство над $\mathbb R$ или $\mathbb C$, в котором задано скалярное произведение, и полное относительно соответствуйющей нормы, называется Гильбертовым.

^{*} конечного числа простых гладких поверхностей

^{*} конечного числа простых гладких дуг

^{*} конечного числа точек

14 Ортогональный ряд

 $x_k \in \mathbb{H}, \sum x_k$ называется ортогональным рядом, если $\forall k, l: k \neq l: x_k \bot x_l$

15 Сходящийся ряд в Гильбертовом пространстве

 $x_n \in \mathbb{H}$ $\sum x_n$ сходится к x, если $S_n := \sum_{k=1}^n x_k, S_n \to x$ (то есть $|S_n - x| \to 0$ - сходимость по мере)

16 Ортогональное семейство векторов

 $\{e_k\} \in \mathbb{H}$ - ортогональное семейство векторов, если $\forall k \neq l : e_k \bot e_l, e_k \neq 0, e_l \neq 0.$

17 Ортонормированное семейство векторов

 $\{e_k\}\in\mathbb{H}$ - ортонормированное семейство векторов, если e_k - ортогональное семейство векторов, и $\forall k:|e_k|=1$

18 Коффициенты Фурье

 $\{e_k\}$ - ортонормированная система в $\mathbb{H}, x \in \mathbb{H}$. $c_k(x) = \frac{< x, e_k>}{|e_k|^2}$ называются коэффициентами Фурье вектора x по ортогональной системе $\{e_k\}$

19 Ряд Фурье в Гильбертовом пространстве

 $\sum c_k(x) \cdot e_k$ называется рядом Фурье вектора x по ортогональной системе $\{e_k\}$

20 Базис, полная, замкнутая ОС

 $\{e_k\}$ — ортогональная система в $\mathbb H$

1.
$$\{e_k\}$$
 — базис, если $\forall x \in \mathbb{H}: \ \exists c_k$, что $x = \sum_{k=1}^{+\infty} c_k \cdot e_k$

2. $\{e_k\}$ — полная О.С., если $\forall k: z \perp e_k \Rightarrow z = 0$

3.
$$\{e_k\}$$
 — замкнутая О.С., если $\forall x \in \mathbb{H} : \sum_{k=1}^{+\infty} |c_k(x)|^2 \cdot ||e_k||^2 = ||x||^2$

21 Сторона поверхности

Сторона (простой) гладкой двумерной поверхности — непрерывное поле единичных нормалей. Поверхность, для которой существует сторона, называется двусторонней. Если же стороны не существует, она называется односторонней.

22 Задание стороны поверхности с помощью касательных реперов

 F_1, F_2 — два касательных векторных поля к M $\forall p \in M$ — $F_1(p), F_2(p)$ — Л.Н.З. касательные векторы Тогда поле нормалей стороны определяется, как $n:=F_1\times F_2$

Репе́р - пара векторов из $F_1 \times F_2$.

23 Интеграл II рода

M — простая гладкая двусторонняя двумерная поверхность в \mathbb{R}^3 n_0 — фиксированная сторона (одна из двух) $F: M \to \mathbb{R}^3$ — векторное поле

 $\underline{\text{Тогда}}$ интегралом II рода назовем $\int\limits_{M}\langle F,n_{0}
angle ds$

Замечания

- 1. Смена стороны эквивалентна смене знака
- 2. Не зависит от параметризации

24 Ориентация контура, согласованная со стороной поверхности

Ориентация контура согласована со стороной поверхности, если она задает эту сторону.

<u>Пояснение</u>: Рассмотрим некоторый контур (замкнутую петлю) и точку на нем. Построим два касательных вектора к контуру в этой точке: первый - снаружи от контура (задает направление "движения" по петле), второй - внутри контура. Тогда будем называть такую ориентацию согласованной со стороной, если направление векторного произведения первого и второго векторов в точке совпадает с направлением нормали поверхности.

25 Тригонометрический ряд

•

$$\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos(kx) + b_k \sin(kx)$$

(где a_i, b_i – коэффициенты ряда)

• Другая форма:

$$\sum_{k=\mathbb{Z}} c_k e^{ikx}$$

Тогда
$$S_n := \sum_{k=-n}^n c_k e^{ikx}$$

26 Коэффициенты Фурье функции

•

$$a_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(kx) \ dx$$

•

$$b_k(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(kx) dx$$

lacktriangle

$$c_k(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-ikx} dx$$

27 Ядро Дирихле

$$D_n(t) = \frac{1}{\pi} (\frac{1}{2} + \sum_{k=1}^n \cos(kt))$$

28 Ядро Фейера

$$\Phi_n(t) = \frac{1}{n+1} \sum_{k=0}^{n} D_k(t)$$

29 Ротор, дивергенция векторного поля

Пусть V=(P,Q,R) — гладкое векторное поле в некоторой области $E\subset\mathbb{R}^3$. Тогда:

$$\mathrm{rot}\, V = (R_y' - Q_z', \; P_z' - R_x', \; Q_x' - P_y')$$
 //TODO: Дивергенция

30 Соленоидальное векторное поле

v = (P, Q, R) — соленоидальное, если существует векторный потенциал B, т.е. v = rot B.

31 Бескоординатное определение ротора и дивергенции

$$\forall a \forall n_0 : rot(F, a, n_0) = \lim_{r \to 0} \left(\frac{1}{\pi r^2} \int_{\delta B(a, r)} F_l dl \right)$$

где F_l - проекция F на касательное направление

$$\forall a \forall n_0 : div(F, a) = \lim_{r \to 0} \left(\frac{1}{\lambda_3(B(a, r))} \iint_{\delta B(a, r)} \langle F, n_o \rangle dS \right)$$

32 Свертка

$$(f * K)(x) = \int_{-\pi}^{\pi} f(x - t)K(t)dt$$

где $f, K \in L_1([-\pi, \pi])$