Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Bis{5-[(2-propyn-1-yloxy)methyl]-1,3-phenylene}-32-crown-10

Yu Yang, Zhi-kai Xu, Deng-ke Yang, Shao-wu Pan and La-sheng Jiang*

School of Chemistry and Environment, South China Normal University, Guangzhou 510006, People's Republic of China

Correspondence e-mail: jiang6128@yahoo.com.cn

Received 29 September 2011; accepted 3 November 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean $\sigma(C-C) = 0.003$ Å; R factor = 0.042; wR factor = 0.113; data-to-parameter ratio = 14.3.

The molecule of the title compound {systematic name: 17,35-bis[(2-propyn-1-yloxy)methyl]-2,5,8,11,14,20,23,26,29,32-decaoxatricyclo[31.3.1.1^{15,19}]octatriaconta-1(37),15,17,19 (38),33,-35-hexaene}, $C_{36}H_{48}O_{12}$, has crystallographic inversion symmetry and adopts a chair-like conformation. The polyether bridges of the macrocycle adopt *gauche* conformations and the cavity of the macrocycle is collapsed. In the crystal structure, there are weak intermolecular $C-H\cdots O$ hydrogen bonds driven in part by the elevated acidity of acetylenyl H atoms.

Related literature

For applications of crown ethers, see: Gokel *et al.* (2004); Raymo *et al.* (1999) and of bisphenylene crown erthers, see: Loeb (2007); Fang *et al.* (2010); Kay *et al.* (2007). For cryptands, see: Zhang *et al.* (2010). For supramolecular interlocked structures, see: Xu *et al.* (2011) For the synthesis of bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10, see: Gibson & Nagvekar (1997) and for the synthesis of the title compound, see: Xu *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{lll} {\rm C_{36}H_{48}O_{12}} & & a = 9.2256 \; (13) \; {\rm \mathring{A}} \\ M_r = 672.74 & & b = 9.8561 \; (14) \; {\rm \mathring{A}} \\ {\rm Triclinic}, \; P\overline{\rm I} & & c = 10.0808 \; (14) \; {\rm \mathring{A}} \end{array}$

 $\begin{array}{lll} \alpha = 97.213 \; (2)^{\circ} & \text{Mo } K\alpha \; \text{radiation} \\ \beta = 98.658 \; (2)^{\circ} & \mu = 0.09 \; \text{mm}^{-1} \\ \gamma = 99.226 \; (2)^{\circ} & T = 298 \; \text{K} \\ V = 883.9 \; (2) \; \mathring{\text{A}}^3 & 0.64 \times 0.32 \times 0.10 \; \text{mm} \\ Z = 1 \end{array}$

Data collection

Bruker APEXII CCD diffractometer 3108 independent reflections 3108 reflections 3108 independent reflections 3108 reflections 3108 independent reflections 2350 reflections with $I > 2\sigma(I)$ $T_{\min} = 0.965$, $T_{\max} = 0.991$

Refinement

 $\begin{array}{ll} R[F^2>2\sigma(F^2)]=0.042 & 217 \text{ parameters} \\ wR(F^2)=0.113 & \text{H-atom parameters constrained} \\ S=1.05 & \Delta\rho_{\max}=0.26 \text{ e Å}^{-3} \\ 3108 \text{ reflections} & \Delta\rho_{\min}=-0.21 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

D $ H$ $\cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	D $ H$ $\cdot \cdot \cdot A$
C13-H13B···O6 ⁱ	0.97	2.49	3.247 (2)	135
C18-H18···O4 ⁱⁱ	0.93	2.54	3.203 (2)	128
C18-H18···O5 ⁱⁱ	0.93	2.52	3.431 (3)	166

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

The authors gratefully acknowledge the support of the National Natural Science Foundation of China (No. 21072066) and the Natural Science Foundation of Guangdong Province of China (No. 8151063101000015).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LD2029).

References

Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA

Fang, L., Olson, M. A., Benitez, D., Tkatchouk, E., Goddard, W. A. & Stoddart, J. F. (2010). *Chem. Soc. Rev.* **39**, 17–29.

Gibson, H. W. & Nagvekar, D. S. (1997). Can. J. Chem. 75, 1375-1384.

Gokel, G. W., Leevy, W. M. & Weber, M. F. (2004). *Chem. Rev.* **104**, 2723–2750. Kay, E. R., Leigh, D. A. & Zerbetto, F. (2007). *Angew. Chem. Int. Ed.* **46**, 72–191.

Loeb, S. J. (2007). Chem. Soc. Rev. 36, 226-235.

Raymo, F. M. & Stoddart, J. F. (1999). Chem. Rev. 99, 1643-1664.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Xu, Z. K., Huang, X. M., Liang, J. D., Zhang, S. H., Zhou, S. G., Chen, M. J., Tang, M. F. & Jiang, L. S. (2010). *Eur. J. Org. Chem.* pp. 1904–1911.

Xu, Z. K., Jiang, L. S., Feng, Y. H., Zhang, S. H., Liang, J. D., Pan, S. W., Yang,
 Y., Yang, D. K. & Cai, Y. P. (2011). Org. Biomol. Chem. 9, 1237–1243.

Zhang, M. M., Zhu, K. L. & Huang, F. H. (2010). Chem. Commun. 46, 8131–8141.

supplementary m	aterials	

Acta Cryst. (2011). E67, o3244 [doi:10.1107/S1600536811046435]

Bis{5-[(2-propyn-1-yloxy)methyl]-1,3-phenylene}-32-crown-10

Y. Yang, Z. Xu, D. Yang, S. Pan and L. Jiang

Comment

Crown ethers are important building blocks in supramolecular chemistry and have been widely used in materials and biological sciences for sensors and switches (Gokel *et al.*, 2004; Raymo *et al.*, 1999). Recently, bisphenylene crown ethers, such as bisparaphenylene-34-crown-10 (BPP34C10) and bismetaphenylene-32-crown-10 (BMP32C10), attracted great interests and were extensively used for construction of interlocked molecules (Loeb, 2007), mechanically bonded macromolecules(Fang *et al.*, 2010) and molecular machines(Kay *et al.*, 2007). Their wide uses are mainly because bisphenylene crown erther hosts can form relatively stable molecular complexes with electron deficient paraquat derivatives by virtue of multiple noncovalent interactions, such as hydrogen bondging and charge-transfer interactions. As part of our project to explore novel crown ether-based cryptands (Zhang *et al.*, 2010,) in supramolecular self-assembly (Xu *et al.*, 2010) and interlocked structures(Xu *et al.*, 2011), we tackled the synthesis of bisacetylene-substituted BMP32C10, an important precursor to cryptands. We envisioned that the title compound could be obtained by the reaction of bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10 with propargyl bromide in the presence of sodium hydride.

As shown in Fig. 1, the title compound has crystallographic inversion symmetry in the solid state. The phenyl rings are at a centroid-centroid distance of 9.422 Å and they are arranged in an edge-to-edge conformation rather than a face-to-face one. The polyether bridges of the macrocycle adopt a *gauche* conformation and the cavity of the macrocycle is collapsed. The molecule as a whole adopts a chair-like conformation. Weak intermolecular C—H···O hydrogen bonds driven by the elevated acidity of acetylene hydrogen were observed.

Experimental

The title compound was synthesized from bis(5-hydroxymethyl-1,3-phenylene)-32-crown-10 (Gibson, *et al.*, 1997) which was reacted with sodium hydride and propargyl bromide (Xu *et al.*,2010). Colourless block crystal of the title compound suitable for X-ray diffraction analysis was obtained by slow evaporation of its acetone solution at room temperature.

Refinement

The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.95 - 0.99 Å, and U_{iso} =1.2–1.5 U_{eq} (C).

Figures

Fig. 1. View of the title compound showing the atom-labelling scheme. Ellipsoids are drawn at the 50% probability level.

17,35-Bis[(2-propyn-1-yloxy)methyl]-2,5,8,11,14,20,23,26,29,32- decaoxatricyclo[31.3.1.1^{15,19}]octatriaconta-1(37),15,17,19 (38),33,35-hexaene

Crystal data

 $C_{36}H_{48}O_{12}$ $V = 883.9 (2) \text{ Å}^3$ $M_r = 672.74$ Z = 1

 $M_r = 6/2./4$ Z = 1Triclinic, PT F(000) = 360

Hall symbol: -P 1 $D_x = 1.264 \text{ Mg m}^{-3}$

a = 9.2256 (13) Å Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$

 $\alpha = 9.2256 \text{ (13) A}$ MIO Ka radiation, $\lambda = 0.710$

 $\begin{array}{lll} b = 9.8561 \ (14) \ \mbox{\mathring{A}} & \mu = 0.09 \ \mbox{mm}^{-1} \\ c = 10.0808 \ (14) \ \mbox{\mathring{A}} & T = 298 \ \mbox{K} \\ \alpha = 97.213 \ (2)^{\circ} & \mbox{Block, colourless} \\ \beta = 98.658 \ (2)^{\circ} & 0.64 \times 0.32 \times 0.10 \ \mbox{mm} \end{array}$

 $\gamma = 99.226 (2)^{\circ}$

Data collection

Bruker APEXII CCD diffractometer 3108 independent reflections

Radiation source: fine-focus sealed tube 2350 reflections with $I > 2\sigma(I)$

graphite $R_{\text{int}} = 0.020$

 ϕ and ω scans $\theta_{max} = 25.2^{\circ}, \, \theta_{min} = 2.1^{\circ}$

Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.965, T_{\max} = 0.991 \qquad k = -7 \rightarrow 11$

4551 measured reflections $l = -12 \rightarrow 10$

Refinement

Refinement on F^2 Primary atom site location: structure-invariant direct

methods

Least-squares matrix: full

Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring

 $R[F^2 > 2\sigma(F^2)] = 0.042$ Hydrosites

 $wR(F^2) = 0.113$ H-atom parameters constrained

S = 1.05	$w = 1/[\sigma^2(F_0^2) + (0.0506P)^2 + 0.1259P]$ where $P = (F_0^2 + 2F_c^2)/3$
3108 reflections	$(\Delta/\sigma)_{\text{max}} < 0.001$
217 parameters	$\Delta \rho_{max} = 0.26 \text{ e Å}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.21 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	y	Z	$U_{\rm iso}*/U_{\rm eq}$
C1	0.19258 (19)	0.18786 (18)	0.55393 (17)	0.0405 (4)
H1	0.0968	0.1897	0.5717	0.049*
C2	0.21585 (18)	0.15530 (18)	0.42298 (16)	0.0393 (4)
C3	0.35977 (19)	0.15509 (19)	0.39575 (17)	0.0428 (4)
Н3	0.3744	0.1335	0.3068	0.051*
C5	0.45832 (19)	0.21882 (18)	0.63403 (17)	0.0427 (4)
H5	0.5393	0.2404	0.7049	0.051*
C6	0.31507 (19)	0.21810 (18)	0.65978 (16)	0.0392 (4)
C8	-0.13388 (19)	0.0898 (2)	0.18269 (18)	0.0472 (5)
H8A	-0.1242	-0.0054	0.1536	0.057*
H8B	-0.2380	0.0914	0.1867	0.057*
C7	-0.04096 (18)	0.1423 (2)	0.32005 (17)	0.0456 (4)
H7A	-0.0407	0.2406	0.3455	0.055*
H7B	-0.0801	0.0923	0.3878	0.055*
C9	-0.1580 (2)	0.1224 (2)	-0.04624 (17)	0.0513 (5)
H9A	-0.2653	0.1062	-0.0510	0.062*
Н9В	-0.1291	0.0348	-0.0762	0.062*
C10	0.4014 (2)	0.2810(2)	0.89901 (17)	0.0519 (5)
H10A	0.4619	0.3688	0.8916	0.062*
H10B	0.4639	0.2107	0.8987	0.062*
C11	0.3400(2)	0.2938 (2)	1.02859 (17)	0.0520 (5)
H11A	0.2712	0.2091	1.0311	0.062*
H11B	0.4206	0.3065	1.1054	0.062*
C12	0.2334 (2)	0.4423 (2)	1.17067 (16)	0.0492 (5)
H12A	0.3250	0.4829	1.2333	0.059*
H12B	0.1886	0.3588	1.2018	0.059*
C13	0.1296 (2)	0.5426 (2)	1.16786 (17)	0.0513 (5)

H13A	0.0356	0.4998	1.1098	0.062*
H13B	0.1102	0.5687	1.2587	0.062*
C14	0.1140 (2)	0.7742 (2)	1.13577 (19)	0.0553 (5)
H14A	0.1367	0.8184	1.2299	0.066*
H14B	0.0076	0.7388	1.1128	0.066*
C4	0.47982 (19)	0.18667 (18)	0.49997 (17)	0.0408 (4)
C15	0.63517 (19)	0.1857 (2)	0.46986 (19)	0.0492 (5)
H15A	0.6738	0.1108	0.5088	0.059*
H15B	0.6298	0.1666	0.3723	0.059*
C16	0.6984(3)	0.4263 (2)	0.4602 (2)	0.0663 (6)
H16A	0.7603	0.5112	0.5111	0.080*
H16B	0.5954	0.4319	0.4656	0.080*
C18	0.7341 (2)	0.4114 (2)	0.2047 (2)	0.0671 (6)
H18	0.7476	0.4066	0.1147	0.081*
C17	0.7173 (2)	0.4175 (2)	0.3175 (2)	0.0567 (5)
O6	0.73584 (14)	0.31229 (15)	0.52126 (12)	0.0566 (4)
O1	0.10633 (13)	0.11960 (14)	0.31046 (11)	0.0512 (4)
O3	0.28037 (13)	0.24304 (13)	0.78669 (11)	0.0463 (3)
O4	0.26536 (15)	0.40777 (14)	1.03810 (11)	0.0512(3)
O5	0.19356 (13)	0.66270 (14)	1.11802 (12)	0.0506(3)
O2	-0.08593 (13)	0.17487 (13)	0.08915 (11)	0.0490(3)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0395 (9)	0.0443 (10)	0.0403 (10)	0.0095 (8)	0.0102 (7)	0.0095 (8)
C2	0.0433 (9)	0.0424 (10)	0.0335 (9)	0.0107 (8)	0.0051 (7)	0.0089(7)
C3	0.0487 (10)	0.0493 (11)	0.0342 (9)	0.0136 (8)	0.0121 (8)	0.0088 (8)
C5	0.0413 (9)	0.0467 (11)	0.0391 (10)	0.0050(8)	0.0047 (7)	0.0095 (8)
C6	0.0464 (10)	0.0416 (10)	0.0313 (9)	0.0067 (8)	0.0113 (7)	0.0076 (7)
C8	0.0416 (9)	0.0574 (12)	0.0425 (10)	0.0079 (9)	0.0061 (8)	0.0098 (9)
C7	0.0414 (10)	0.0587 (12)	0.0398 (10)	0.0125 (9)	0.0097 (8)	0.0122 (9)
C9	0.0546 (11)	0.0577 (12)	0.0383 (10)	0.0145 (9)	-0.0011 (8)	0.0002 (9)
C10	0.0512 (11)	0.0671 (13)	0.0349 (10)	0.0101 (10)	0.0029 (8)	0.0043 (9)
C11	0.0608 (12)	0.0579 (12)	0.0353 (10)	0.0090 (10)	0.0023 (8)	0.0089 (9)
C12	0.0623 (11)	0.0568 (12)	0.0271 (9)	0.0020 (9)	0.0092 (8)	0.0103 (8)
C13	0.0495 (10)	0.0712 (14)	0.0298 (9)	0.0012 (10)	0.0071 (8)	0.0074 (9)
C14	0.0589 (11)	0.0735 (14)	0.0369 (10)	0.0245 (11)	0.0067 (8)	0.0070 (9)
C4	0.0443 (10)	0.0416 (10)	0.0399 (10)	0.0101 (8)	0.0118 (8)	0.0106(8)
C15	0.0441 (10)	0.0566 (12)	0.0510 (11)	0.0109 (9)	0.0140 (8)	0.0148 (9)
C16	0.0830 (15)	0.0566 (13)	0.0629 (14)	0.0066 (12)	0.0300 (12)	0.0094 (11)
C18	0.0694 (14)	0.0862 (17)	0.0565 (14)	0.0202 (12)	0.0215 (11)	0.0315 (12)
C17	0.0597 (12)	0.0608 (13)	0.0564 (13)	0.0135 (10)	0.0199 (10)	0.0201 (10)
O6	0.0530 (8)	0.0709 (10)	0.0438 (8)	-0.0001 (7)	0.0092 (6)	0.0150(7)
O1	0.0435 (7)	0.0752 (9)	0.0350 (7)	0.0193 (6)	0.0034 (5)	0.0017(6)
O3	0.0456 (7)	0.0607 (8)	0.0307 (6)	0.0048 (6)	0.0077 (5)	0.0051 (6)
O4	0.0700 (8)	0.0582 (8)	0.0279 (6)	0.0123 (7)	0.0118 (6)	0.0114 (6)
O5	0.0489 (7)	0.0630 (9)	0.0454 (7)	0.0154(6)	0.0136 (6)	0.0163 (6)

O2	0.0529 (7)	0.0567 (8)	0.0336 (7)	0.0045 (6)	0.0002 (5)	0.0078 (6)		
Geometric para	ameters (Å, °)							
C1—C2		1.376 (2)	C10-	-H10B	0	.9700		
C1—C6		1.398 (2)	C11–			1.409 (2)		
C1—H1		0.9300		-H11A		.9700		
C2—O1		1.3682 (19)		-H11B		.9700		
C2—C3		1.396 (2)	C12-			.423 (2)		
C3—C4		1.373 (2)	C12-	-C13		.482 (3)		
C3—H3		0.9300	C12-	-H12A		.9700		
C5—C6		1.384(2)	C12-	-H12B	0	.9700		
C5—C4		1.400(2)	C13-	-O5	1	.420 (2)		
C5—H5		0.9300	C13-	-H13A	0	.9700		
C6—O3		1.3672 (19)	C13-	-H13B	0	.9700		
C8—O2		1.412 (2)	C14-	-O5	1	.423 (2)		
C8—C7		1.497 (2)	C14-	-C9 ⁱ	1	.492 (3)		
C8—H8A		0.9700		-H14A		.9700		
C8—H8B		0.9700		-H14B		.9700		
C7—O1		1.428 (2)	C4—			.510 (2)		
C7—H7A		0.9700	C15-			.418 (2)		
С7—Н7В		0.9700		-H15A		.9700		
C9—O2		1.418 (2)		–H15B		.9700		
C9—C14 ⁱ		1.492 (3)	C16-			.412 (3)		
C9—H9A		0.9700	C16–			.468 (3)		
C9—H9B		0.9700		-H16A		.9700		
C10—O3		1.431 (2)		-H16B		.9700		
C10—C11		1.499 (2)	C18–			.167 (3)		
C10—H10A		0.9700	C18–			.9300		
C2—C1—C6		118.97 (15)		-C11—H11B		09.6		
C2—C1—H1		120.5		—C11—H11B		08.1		
C6—C1—H1		120.5		C12—C13		09.57 (14)		
O1—C2—C1		125.21 (15)		C12—H12A		09.8		
O1—C2—C3		114.18 (14)		-C12—H12A		09.8		
C1—C2—C3		120.60 (15)		C12—H12B		09.8		
C4—C3—C2		120.15 (15)		-C12H12B		09.8		
C4—C3—H3		119.9		—С12—Н12В		08.2		
C2—C3—H3		119.9	O5—	C13—C12	1	09.56 (15)		
C6—C5—C4		119.21 (15)	O5—	C13—H13A	1	09.8		
C6—C5—H5		120.4	C12-	-C13H13A	1	09.8		
C4—C5—H5		120.4	O5—	C13—H13B	1	09.8		
O3—C6—C5		124.27 (15)	C12-	-C13—H13B	1	09.8		
O3—C6—C1		114.76 (14)	H13A	— С13—Н13В	1	08.2		
C5—C6—C1		120.95 (15)	05—	C14—C9 ⁱ	1	09.25 (15)		
O2—C8—C7		109.34 (15)		C14—H14A		09.8		
O2—C8—H8A		109.8		-C14—H14A		09.8		
C7—C8—H8A		109.8		C14—H14B		09.8		
O2—C8—H8B		109.8		-C14—H14B		09.8		
52 C0 110D		107.0	C9—	-C141114D	1	07.0		

C7—C8—H8B	109.8		H14A—C14—H14B		108.3	
H8A—C8—H8B	108.3		C3—C4—C5			11 (15)
O1—C7—C8	106.52 (14)		C3—C4—C15			37 (15)
O1—C7—H7A	110.4		C5—C4—C15			02 (16)
C8—C7—H7A	110.4		O6—C15—C4			54 (15)
O1—C7—H7B	110.4		O6—C15—H15A		108.9	
C8—C7—H7B	110.4		C4—C15—H15A		108.9	
H7A—C7—H7B	108.6		O6—C15—H15B		108.9	
O2—C9—C14 ⁱ	108.95 (16)		C4—C15—H15B		108.9)
O2—C9—H9A	109.9		H15A—C15—H15B		107.7	7
C14 ⁱ —C9—H9A	109.9		O6—C16—C17		113.5	58 (17)
О2—С9—Н9В	109.9		O6—C16—H16A		108.8	3
C14 ⁱ —C9—H9B	109.9		C17—C16—H16A		108.8	3
Н9А—С9—Н9В	108.3		O6—C16—H16B		108.8	3
O3—C10—C11	109.13 (15)		C17—C16—H16B		108.8	
O3—C10—H10A	109.9		H16A—C16—H16B		107.7	
C11—C10—H10A	109.9		C17—C18—H18		180.0	
O3—C10—H10B	109.9		C18—C17—C16		179.1	
C11—C10—H10B	109.9		C16—O6—C15		113.5	57 (15)
H10A—C10—H10B	108.3		C2—O1—C7			54 (13)
O4—C11—C10	110.25 (15)		C6—O3—C10		117.4	19 (13)
O4—C11—H11A	109.6		C11—O4—C12		112.0	09 (13)
C10—C11—H11A	109.6		C13—O5—C14		112.8	33 (14)
O4—C11—H11B	109.6		C8—O2—C9		112.4	17 (14)
C6—C1—C2—O1	177.94 (16)		C5—C4—C15—O6		-55.4	4(2)
C6—C1—C2—C3	-1.3 (3)		O6—C16—C17—C18		-90 (
O1—C2—C3—C4	-178.87 (15	5)	C17—C16—O6—C15		-69.0	
C1—C2—C3—C4	0.4(3)	,	C4—C15—O6—C16		-64.9	
C4—C5—C6—O3	177.64 (16)		C1—C2—O1—C7		13.2	
C4—C5—C6—C1	-1.0(3)		C3—C2—O1—C7		-167	(.59 (15)
C2—C1—C6—O3	-177.18 (15	5)	C8—C7—O1—C2		-178	.61 (15)
C2—C1—C6—C5	1.5 (3)		C5—C6—O3—C10		4.2 (2	2)
O2—C8—C7—O1	-67.06 (18)		C1—C6—O3—C10		-177	(.17 (16)
O3—C10—C11—O4	-67.2 (2)		C11—C10—O3—C6		-176	0.06 (15)
O4—C12—C13—O5	-57.51 (19)		C10—C11—O4—C12		-167	.39 (15)
C2—C3—C4—C5	0.2(3)		C13—C12—O4—C11		-168	3.70 (16)
C2—C3—C4—C15	179.74 (16)		C12—C13—O5—C14		-169	.02 (14)
C6—C5—C4—C3	0.1(3)		C9 ⁱ —C14—O5—C13		-163	.09 (15)
C6—C5—C4—C15	-179.47 (16	<u>(</u>	C7—C8—O2—C9		173.5	50 (14)
C3—C4—C15—O6	125.04 (18)		C14 ⁱ —C9—O2—C8			71 (15)
Symmetry codes: (i) $-x$, $-y+1$, $-z+1$.			011 07 02 00			()
Symmetry codes. (i) x , $y+1$, $z+1$.						
Hydrogen-bond geometry (Å, °)						
<i>D</i> —H··· <i>A</i>		<i>D</i> —Н	$H\cdots A$	D··· A		<i>D</i> —H··· <i>A</i>
C13—H13B···O6 ⁱⁱ		0.97	2.49	3.247 (2)		135.
C18—H18···O4 ⁱⁱⁱ		0.93	2.54	3.203 (2)		128.

C18—H18···O5ⁱⁱⁱ 0.93 2.52 3.431 (3) 166. Symmetry codes: (ii) -x+1, -y+1, -z+2; (iii) -x+1, -y+1, -z+1.

Fig. 1

