RELATIONAL DATABASES

OBJECTIVES

- DEFINE A PRIMARY KEY
- DEFINE A FOREIGN KEY
- DEFINE A COLUMN-INTEGRITY RULE
- IDENTIFY ROW, COLUMN, PRIMARY KEY, UNIQUE KEY, AND FOREIGN KEY ELEMENTS GIVEN A DIAGRAM OF A TABLE CONTAINING THESE ELEMENTS
- IDENTIFY VIOLATIONS OF DATA INTEGRITY RULES

PURPOSE

- CONCEPTUAL MODEL IS TRANSFORMED INTO A RELATIONAL DATABASE DESIGN
- THE ENTITIES, ATTRIBUTES, RELATIONSHIPS, AND UNIQUE IDENTIFIERS WILL BE TRANSLATED INTO OBJECTS IN A RELATIONAL DATABASE
- DATABASE DESIGNER MUST KNOW HOW TO IMPLEMENT THE DESIGNS AND UNDERSTAND THE STRUCTURE OF THE RELATIONAL DATABASE OBJECTS
- TRANSFORM ONE SET OF OBJECTS (ER) INTO ANOTHER (PHYSICAL CONSTRUCTS)

RELATIONAL DATABASE ILLUSTRATED

- A RELATIONAL DATABASE: COLLECTION OF OBJECTS OR RELATIONS, SET OF OPERATORS TO ACT ON THOSE RELATIONS AND DATA INTEGRITY FOR ACCURACY AND CONSISTENCY.
- A RELATIONAL DATABASE FOR A USER HAS A COLLECTION OF TWO DIMENSIONAL TABLES, EACH CONTAINING ROWS AND COLUMNS

	EMPLOYEES (table name)					
	EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID		
Davis	100	Steven	King	90		
Row	101	Neena	Kochhar	90		
	102	Lex	De Haan	90		
	200	Jennifer	Whalen	10		
	205	Shelley	Higgins	110		
Column						

• EACH ROW OF DATA DESCRIBES AN EMPLOYEE. EACH COLUMN IS AN ATTRIBUTE OF THAT EMPLOYEE.

LANGUAGE TO ACCESS DATA

- STRUCTURED QUERY LANGUAGE (SQL) ALLOWS US TO ACCESS DATA IN RELATIONAL DATABASES IN AN EFFICIENT WAY
- INSTEAD OF MANUALLY SEARCHING THROUGH EACH ROW TO FIND THE RECORD FOR EMPLOYEE 200 WE USE SQL:

SELECT LAST_NAME, DEPARTMENT_ID

FROM EMPLOYEES

WHERE EMPLOYEE_ID=200;

EMPLOYEES (table name)

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	DEPARTMENT_ID
100	Steven	King	90
101	Neena	Kochhar	90
102	Lex	De Haan	90
200	Jennifer	Whalen	10
205	Shelley	Higgins	110

SELECT last_name, department_id
FROM employees
WHERE employee_id = 200;

LAST_NAME	DEPARTMENT_ID
Whalen	10

SPECIFIC SQL QUERY

 TO FIND ALL THE EMPLOYEES IN DEPARTMENT NUMBER 90, WE WRITE A DIFFERENT SQL STATEMENT:

```
SELECT *
FROM EMPLOYEES
```

WHERE DEPARTMENT_ID = 90;

- THE * AFTER SELECT MEANS WE WANT TO SEE ALL OF THE COLUMNS IN THE TABLE.
- SQL ALLOWS US TO ACCESS THE WHOLE TABLE OR PARTS OF IT DEPENDING ON WHAT COMES AFTER SELECT AND WHAT IS SPECIFIED IN THE WHERE CLAUSE

EMPLOYEES (table name)

	EMPLOYEE_ID	FIRST_NAME	LAST_NAME		DEPARTMENT_ID
\rightarrow	100	Steven	King		90
\vdash	101	Neena	Kochhar		90
\vdash	102	Lex	De Haan		90
	200	Jennifer	Whalen		10
ı	205	Shelley	Higgins	•••	110

SELECT *
FROM employees
WHERE department_id = 90;

EMPLOYEES (table name)

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	***	DEPARTMENT_ID
100	Steven	King		90
101	Neena	Kochhar		90
102	Lex	De Haan		90

PRIMARY KEY

- A PRIMARY KEY (PK) IS A COLUMN OR SET OF COLUMNS THAT UNIQUELY IDENTIFIES EACH ROW IN A TABLE.
- IT IS ALSO A CONSTRAINT WHICH ENSURES THAT THE COLUMN CONTAINS A VALUE AND THAT THE VALUE IS UNIQUE TO THE TABLE.

ACCOUNTS

BANK_NO	ACCT_NO	BALANCE	DATE_OPENED
104	75760	12,0050.00	21-OCT-89
104	77956	100.10	
105	89570	55,775.00	15-JAN-85
103	55890	15,001.85	10-MAR-91
105	75760	5.00	22-SEP-03

Multiple Column Primary Key

_		-				_	_
	пιл	п.	LC	7 1/			г
-	na i	~		э ч			۰,
-			~	,,	-	ь.	J

EMPLOYEE_ID	FIRST_NAME	LAST_NAME	 DEPARTMENT_ID
100	Steven	King	 90
101	Neena	Kochhar	 90
102	Lex	De Haan	 90
200	Jennifer	Whalen	 10
205	Shelley	Higgins	 110

Single Column Primary Key

PRIMARY KEY

- EACH TABLE SHOULD HAVE A PRIMARY KEY
- NO PART OF THE PRIMARY KEY CAN BE EMPTY
- THERE CAN BE SEVERAL CANDIDATE KEYS IN A TABLE, ONLY ONE PRIMARY KEY,
 THE OTHERS BECOME ALTERNATE KEYS (OR UNIQUE KEYS)
- A UNIQUE KEY IS AN INTEGRITY CONSTRAINT THAT REQUIRES EVERY VALUE IN A COLUMN OR SET OF COLUMNS BE UNIQUE
- A UNIQUE KEY IS ANOTHER WAY TO LOCATE A RECORD

	_		_	_		
В. Л		п. л		_	пс	
D./I	-	ιъл	ιн.	ъ.	ы 🥆	

MEMBER_ID	LAST_NAME	FIRST_NAME	PAYROLL_ID
100	SMITH	DANA	21215
310	ADAMS	TYLER	59877
210	CHEN	LAWRENCE	1101
405	GOMEZ	CARLOS	52
378	LOUNGANI	NEIL	90386
Candidate Key			Candidate Key

• EITHER COULD BE THE PRIMARY KEY, BOTH ARE UNIQUE AND HAVE VALUES IN

MEMBERS			
MEMBER_ID	LAST_NAME	FIRST_NAME	PAYROLL_ID
100	SMITH	DANA	21215
310	ADAMS	TYLER	59877
210	CHEN	LAWRENCE	1101
405	GOMEZ	CARLOS	52
378	LOUNGANI	NEIL	90386
†			<u> </u>
Primary Key			Alternate or
			Unique Key (UK)

FOREIGN KEY

A FOREIGN KEY (FK) IS A
 COLUMN, OR
 COMBINATION OF
 COLUMNS, IN ONE TABLE
 THAT CONTAINS VALUES
 THAT MATCH THE
 PRIMARY KEY VALUE IN
 ANOTHER TABLE.

FOREIGN KEY RULES

• IF A PRIMARY KEY IS COMPOSED OF ONE OR MORE FOREIGN KEYS, THE FOREIGN KEY VALUE CANNOT BE EMPTY, IT MUST BE A MANDATORY COLUMN.

DATA INTEGRITY

- A COLUMN MUST CONTAIN ONLY VALUES THAT ARE CONSISTENT WITH THE DEFINED DATA FORMAT OF THE COLUMN
- A COLUMN IS AN IMPLEMENTATION OF AN ATTRIBUTE OR RELATIONSHIP IN A TABLE.
- A ROW IS AN ENTRY IN A TABLE, CONSISTING OF VALUES FOR EACH APPROPRIATE COLUMN.

ACCOUNTS

BANK_NO	ACCT_NO	BALANCE	DATE_OPENED
104	75760	12,0050.00	21-OCT-1989
104	77956	100.10	
105	89570	55,775.00	15-JAN-1985
103	55890	15,001.85	10-MAR-1991
105	75760	5.00	22-SEP-2003

ACCOUNTS Table Definition

Column Name	Data Type	Optionality
BANK_NO	Number (5)	Not null
ACCT_NO	Number (8)	Not null
BALANCE	Number (12,2)	Not null
DATE_OPENED	Date	

DATA INTEGRITY RULES

- DATA INTEGRITY RULES DEFINE THE RELATIONALLY CORRECT STATE FOR A DATABASE
- DATA INTEGRITY RULES ENSURE THAT USERS CAN PERFORM ONLY THOSE OPERATIONS THAT LEAVE THE DATABASE IN A CORRECT, CONSISTENT STATE.

Constraint Type	Explanation	Example
Entity Integrity	A primary key must be unique, and no part of the primary key can be null	The column emp_no in the EMPLOYEES table cannot be null
Referential Integrity	A foreign key must match an existing primary key value (or else be null if nulls are allowed)	The value in the dept_no column of the EMPLOYEES table must match a value in the dept_no column in the DEPARTMENTS table
Column Integrity	A column must contain only values consistent with the defined data format of the column	The value in the balance column of the ACCOUNTS table must be numeric
User-Defined Integrity	The data stored in a database must comply with the rules of the business	If the value in the balance column of the ACCOUNTS table is below 1.00, we must send a letter to the account owner (this will need additional programming to enforce)