

CMS Status and Needs

Open Science Grid Council Meeting

L.A.T.Bauerdick/Fermilab

Worldwide LHC Computing Grid

- ★ OSG connected to Grids in Europe and Asia
- ★ U.S. CMS: Tier-1 at Fermilab, 7 Tier-2 centers, ~9 Tier-3 centers
- ★ Grid connectivity to access world-wide distributed data at 7 Tier-1 centers

★ Put to real-world tests with Data Challenges and first data taking

First Beam-induced Events in CMS

~ 2.109 protons on collimator ~150 m upstream of CMS

Sept. 10, 2008 Beam Splash

Massive Data Taking of Cosmic Events

Initial Running Experience

- ◆ Throughout 2008, S&C systems getting successively ready for data
 - ★ data/computing challenges, global runs, first beam, cosmics run w/ field
- ◆ S&C services behave rather well under data taking conditions
 - ★ initial beam data taking fully successful
 - ★ chain of data and work flows from HLT farm through Tier-0/1/2/3 works
 - ★ continuous Cosmic data taking at 300Hz for 4 weeks, 355M events
 - ◆ 277M events available with full detector and magnetic field, reprocessed at Tier-1s

Data Serving on the Grid for Physics Analysis

- ◆ Fermilab well established as the major CMS data center, serving CMS processing needs and supporting U.S. data analysis
 - ★ serving data to Tier-2, Tier-3 and LPC-CAF physics users

U.S. Computing Infrastructure: Tier-2 Centers

- ◆ U.S. Tier-2s extensively used for simulation and analysis processing.
 - ★ all the US Tier-2 sites reached the nominal capacity by this summer
 - ★ FY09 Tier-2 ramp to double storage and increase CPU by 50%
- ◆ Tier-2 program great success thanks to very engaged sites
 - ★ Nominal Resources per site:

	CPU T2	1MSI2k	Tier-2 Processing Nodes			
Tier-2 Summer	Disk T2	200TB	dCache (200MB/s IO)			
2008	Network	2.5-10Gb/s	WAN Networking			
	People	2FTE	Supported Tier-2 Operations			

- ◆ Organized sites in CMS to support physics analysis services for users
 - * associated sites with specific physics/detector performance groups
 - * allocated disk space for groups, and disk space for individual users

Using Tier-2s for CMS Physics

- ◆ Tier-1 to Tier-2 data transfers improved dramatically over last year
 - ★ Improvements in full mesh of Tier-1 to Tier-2
 - ★ Have successful demonstrations of 200MB/s 400MB/s to Tier-2 sites
 - ★ High transfer rates enable Tier-2 storage as dynamic physics cache
- Simulation at Tier-2s is a well established operation
 - ★ Reached design rates for production
 - ★ Good spread across grids OSG and EGEE
- ◆ Analysis moving away from CERN/Tier-1 down to Tier-2 sites
 - ★ Analysis use and adoption of distributed computing tools is expanding
 - * Rates of job submissions have steadily increased
 - ★ Some work left to do to automate and harden the infrastructure
- Results of "Tier-2 round table" with physics customers:
 - ★ feedback from each of the physics groups and individual users solicited
 - ★ overall very positive feedback, individual issues are being dealt with
 - * assessed list of services that would make user experience better

University Computing: Access to U.S. CMS Facilities and CMS Data

- ◆ Number of Tier-3s is getting >> than number of Tier-2s
 - ★ Tier-3s require particular support, from CMS, OSG, community
 - ♦ S&C providing support as part of Grid services, with OSG
 - ◆ OSG has well-defined model how to integrate new Tier-3s
 - ◆ USCMS support CMS-specific services, like software installs
 - ◆ USCMS has hired dedicated Tier-3 support personnel
 - ♦ had started the effort with 25% of an FTE during the fall
- Strategy for including University computing facility relies on OSG
 - ★ large interest at Universities to bring their resources online to the Grid
 - ★ OSG is providing what sites need to succeed on the Grid
 - * setting up OSG enables sites to get access to CMS data and resources at Tier-2 and Tier-1
- ◆ OSG enabler to include University computing ad campus grids into CMS infrastructure, and to allow University scientist access to the large samples of CMS data

CMS Computing Metrics

- ◆ Reminder of CMS Computing Model:
 - ★ user submit jobs, workload management system submits to where data is
 - * data movements are triggered by operators, physics organizers, users

LATBauerdick/Fermilab

OSG Council Meeting

March 5, 2009 10

Getting Data to Tier-2s for Physics Analysis

- Goals reached
 - ★ Tier-1 —> Tier-2 50-500MB/s in bursts
- Grid transfers work in general
 - ★ Still working to get every individual link up to speed
 - ★ great progress due to site and link commissioning work over this year
- Broad utilization of analysis tools by user
 - ★ Nearly 800 individuals submitted CRAB jobs in 2008
 - ★ Have reached nearly 100k jobs by 80-100 individual users per day
 - reaching 50k jobs for individuals as demonstrated in computing challenge
 - ★ Still working to improve the overall user experience on grid
 - but doing ok according to user feedback

Distributed Data Analysis

- ★ CMS Tool CRAB, with the glide-in WMS
- ◆ Good adoption by the collaboration: 40% of collaboration using it!

CMS Largest User VO within OSG

Weekly Use of OSG (Wall Clock Hours)

CMS did a massive production of simulated events and a reconstruction processing of cosmics data over the months of Nov 2008 - January 2009

2009 Computing Challenges

- ◆ Start of Data Taking in October, and cosmic data taking in ~July
 - ★ then a looong run for ~44 weeks
- ♦ in Spring 2009: end-to-end exercise to verify that luminosity, conditions and data quality information are consistently handled
 - ★ putting it all together, running through the standard workflows at all tiers

- Moving towards Analysis Operations
 - ★ task force started to assess effort and tools required —> needs to OSG
 - ★ transition to analysis operations in spring —> load on OSG

Specific Needs: Operations of Services

- ★ Security context. This includes operational, policy, software, validation.
- ★ BDII at the GOC.
- ★ GOC ticketing system.
- ★ Accounting and RSV, and related reporting to WLCG
- ★ Software cache and software lifecycle management via the VDT, including the OSG cache, as well as deployment testing, incl. vtb and itb.
- ★ Variety of validation, including VOMS and GIP.
- ★ Registration and administrative services
- ★ Support, including OSG-storage (office hour, ticketing), and CE deployment.

CMS identified the BDII as special among these because it is a single point of failure which can make the entirety of OSG disappear from view.

Requested scalability testing of BDII, resulting in a clear understanding of operational parameters, now and in the future.

Specific Needs: Accounting and Reporting

- ◆ Accounting, reliability, and availability reporting
 - ★ OSG is responsible for aggregating the reporting for CMS, and present CMS towards WLCG for problem resolution in WLCG accounting.
 - ★ OSG prepare a monthly report for the funding agencies to offset any misrepresentations by WLCG.
- ◆ OSG to engage in WLCG, and be pro-active about changes in WLCG requirements.
 - ★ E.g. transition to SI2006, space accounting, deployed capacity accounting.

★All goals are being met by OSG.

Tier-2 Reliability and Accounting

★ Availability and Reliability is being published since the end of the summer

		CPU	Reli- ability	Avail- ability	Reliability History		
Federation	Site	Count			Oct-08	Nov-08	Dec-08
T2_US_Caltech (USA, Caltech CMS T2)						
	cit_cms_t2	N/A	97 %	97 %	68 %	85 %	91 %
T2_US_Florida (U	JSA, Florida CMS T2)						
	uflorida-hpc	N/A	96 %	96 %	94 %	92 %	100 %
	uflorida-ihepa	N/A	100 %	100 %	99 %	100 %	100 %
	uflorida-pg	N/A	100 %	100 %	99 %	98 %	100 %
T2_US_MIT (USA	, MIT CMS T2)						
	mit_cms	N/A	77 %	77 %	87 %	93 %	90 %
T2_US_Nebraska	(USA, Nebraska CMS T2)						
	nebraska	N/A	99 %	99 %	92 %	97 %	92 %
T2_US_Purdue (l	JSA, Purdue CMS T2)						
	purdue-lear	N/A	N/A	N/A	N/A	N/A	N/A
	purdue-rcac	N/A	97 %	97 %	98 %	93 %	95 %
	purdue-steele	N/A	99 %	99 %	86 %	96 %	97 %
T2_US_UCSD (US	SA, UC San Diego CMS T2)						
	ucsdt2	N/A	88 %	88 %	100 %	98 %	78 %
T2_US_Wisconsir	n (USA, U. Wisconsin CMS T2)						
	GLOW	N/A	96 %	89 %	100 %	100 %	100 %

Specific Needs: Site Operations Improvements

- ◆ Ability to announce downtimes of both CE & SE.
- ◆ Ability to ban single FQAN at a site.
- ◆ Integrate all existing monitoring functionalities of CE & SE into one site-wide "monitoring portal".
- ◆ Ability to have multiple CEs per cluster viewed as one as in EGEE.
- ◆ Ability to reject new jobs while in drain-off.

Adequate progress made, but none of these is completed.

(completion = deployed and in operations at CMS sites)

Additional operational goals:

Both are met.

Reinstallation of CE in 4-8 hours Reinstallation of SE in 6-12 hours

WMS Issues

- ◆ OSG support during Production roll-out of glideinWMS. (ongoing)
- → Help from "scalability, reliability, usability" area in OSG with condor testing. (done)
- glideinWMS not to submit glideins to sites that are off in BDII.
 (incomplete)

Storage Issues

- ◆ A lot of progress, some open issues, and: do we need a road-map?
 - ★ LCG client tools (done)
 - ★ Achieve 2Hz SRM request rate (done)
 - ◆ CMS realized change in needs: 20-100Hz
 - ★ Additional ops tools for dCache ops.
 - ◆ Locally configurable space usage monitor (scheduled for next release)
 - ★ Procedures for operations problems to feed back into development cycle. (scheduled for end of year 3)
 - ★ Successfully deploy BestMan at 5-10 OSG sites for production use with PhEDEx. (partially done)
 - ★ Mutually compatible gLiteUI <-> OSG client.
 - (partially done via lcg client tools deployment as part of OSG client)
- ◆ future storage systems for Tier-2, Tier-3?
 - ★ need to chart out a way forward
 - ★ require more manageability, reliability, usability
 - ★ the Nebraska Hadoop "coup" shows what is feasible

Summary/Conclusions

- ◆ After several stress tests and data challenges, numerous large scale simulation exercises, a (all too) short experience with beam-induced data, and extensive cosmic runs, the S&C systems and operations teams are ready for sustained data taking, processing and analysis
 - ★ Work remains in the areas of usability, automation, reliability
- ◆ Software and Computing Systems useable for a large # physicists
 - ★ Software is functional, remaining issues are being addressed
 - ★ We have significant computing resources deployed
 - that are being used for detector commissioning and physics studies
 - ★ CMS OSG Tier-2 and Tier-3 sites are working well and are being used
 - ◆ University sites started to plug into the system
 - → -> system tests show that the system works for many users
- ♦ We are ready to operate software and computing 24/7
 - ★ Still, sizable development, integration, commissioning ahead
- ◆ OSG has been fully engaged and is major contributor to CMS