Notes

- Exam is 8AM Thursday
- Office hours Wednesday, 10-12, 1-5 (pending not getting selected for jury duty)
- Available via email rest of time
- Exam is cumulative
- 4. Binary Heaps Starting with an empty binary min heap, show the following.
- A. [3] The final state of the heap, in tree form, after adding in the values: 5, 4, 3, 6, 7, 8, 10, 2, 9, 1

B. [2] The state of the heap, in tree form, after two Dequeue() operations

C. [1] The final, array-based version of the heap

3	5	4	6	7	8	16	9		
0	1	2	3	4	5	6	7	8	9
							900		

5. [3] Merge the following two binomial heaps

Binomial Heap #1

Binomial Heap #2

5. [3] Merge the following two **binomial heaps**

7. [3] The item "B" hashes to array index 3. Insert B into the following hopscotch hashtable whose max distance is 4.

						/			
А	С	E	G	D	Н	I	IIC		
1100	0100	0010	1000	0000	1100	0000			
0	1	2	3	4	5	6	7	8	9
			_	A	Λ				

RESULT:

R	C	E	6	D	4	В	I		
1100	0100	0010	100)	0000	1010	0000	0000		
0	1	2	3	4	5	6	7	8	9

20. [2] Given the quadratic probe(i) = $(i^2 + 1)$ % 10, insert the value H, which hashes to array location 1.

Α	В	С	D	Е	F	17				
0	1	2	3	4	5	6	7	8	9	

11

19. [2] Cuckoo Hashtables. Given the following hash results, add the value <u>"A"</u> into the <u>first array</u> of the cuckoo hash below:

Hashing results:

A: 2,5 B: 1,5 C: 2,7 D: 9,3 E: 1,2 F: 7,2 G: 3,5 I: 3,3 J: 0,5 K: 2,3

Array 1:

J	В	AX	I						D
0	1	2	3	4	5	6	7	8	9

Array 2:

		E	KR		G		С		
0	1	2	3	4	5	6	7	8	9

YOUR ANSWER: After inserting 'A'

Array 1:

0	1	2	3	4	5	6	7	8	9

Array 2:

0	1	2	3	4	5	6	7	8	9

Construct an MST for the following graph:

Build a DFS articulation tree for the following graph:

Show the result of quicksort after one iteration on the following array:

Perform radix sort on the above array

U		
1	1, 1	
2	12, 2	
3	3	
4	14	
5		
6	6	
7	7	
8	8	
9	9	

3	9	1	12	14	8	1	7	2	6
1	1	12	2	3	14	6	7	8	9

What is this sorting algorithm after 1 iteration?

3	9	1	12	14	8	1	7	2	6
3	9	1	12	14	8	1	7	2	6