Schema Refinement

R&G Ch 19

Functional Dependencies

- A <u>functional dependency</u> $X \to Y$ holds over relation R if for every pair of tuples t_1, t_2 in R, it holds that if $\pi_X t_1 = \pi_X t_2$, then $\pi_Y t_1 = \pi_Y t_2$.
 - X and Y are sets of columns
- A FD isn't just a statement about a particular instance of R, but about application semantics.
 - We can check to see of an FD holds over R, but can't check to see if R has an FD.

Contracts(cid, sid, jid, did, pid, qty, value)

- I. C is a key: $C \rightarrow CSJDPQV$
- 2. ProJects purchase Parts using a single Contract: JP → C
- 3. Depts. purchase at most one Part from any Supplier: $SD \rightarrow P$
- 4. (1), (2) imply that $JP \rightarrow CSJDPQV$
- 5. (3) implies that $SDJ \rightarrow JP$
- 6. (4), (5) imply that SDJ \rightarrow CSJDPQV

Decomposition

- Replace R(A,B,C,D) with, for example,
 - RI(A,B), R2(B,C,D) or
 - RI(A,C,D), R2(A,B,D)

- When is it useful to decompose?
 - What are the costs of decomposition?

Normal Forms

Normal Forms

- If a relation is in one of the normal forms (BCNF, 3NF) certain problems are avoided/minimized.
- Decomposition can produce relations in/closer to a normal form.
- FDs help us detect redundancy
 - For R(A,B,C), if $A \rightarrow B$, and several tuples have the same A value, they'll all have the same Bs.

Boyce-Codd Normal Form (BCNF)

- R (with FDs F) is in BCNF if for all $X \rightarrow A \in F^+$:
 - $A \subseteq X$ (the trivial FD), or
 - X contains a key for R
- In other words, R is in BCNF if the only nontrivial FDs that hold over R are key constraints.

BCNF Isn't Always Viable

Ship	Crew Role	Officer
Enterprise	Captain	Kirk
Enterprise	Science	Spock
Enterprise	Medical	McCoy
Excelsior	Captain	Sulu

Ship, Crew Role → Officer

Officer → Crew Role

Keys: {Ship, Crew Role}, {Crew Role, Officer}

BCNF Isn't Always Viable

Ship	Crew Role	Officer
Enterprise	Captain	Kirk
Enterprise	Science	Spock
Enterprise	Medical	McCoy
Excelsior	Captain	Sulu

Ship, Crew Role → Officer

Officer >> Crew Role

Keys: {Ship, Crew Role}, {Crew Role Officer}

3rd Normal Form

- R (with FDs F) is in BCNF if for all $X \rightarrow A \in F^+$:
 - $A \subseteq X$ (the trivial FD), or
 - X contains a key for R, or
 - A is a subset of any key for R
 - Recall that keys are minimal sets of attributes.
- Weaker form of BCNF
 - ...used when BCNF impractical, impossible.

3rd Normal Form

- If 3NF is violated by $X \rightarrow A$ then:
 - X is a subset of some key K
 - Some (X,A)s are being stored redundantly.
 - X is not a proper subset of any key
 - So there exists redundancy: $K \rightarrow X \rightarrow A$
 - But this can still happen in 3NF.

3NF Isn't Always Perfect

Ship	Crew Role	Officer
Enterprise	Captain	Kirk
Enterprise	Science	Spock
Enterprise	Medical	McCoy
Excelsior	Captain	Sulu

Ship, Crew Role → Officer

Officer → Crew Role

Keys: {Ship, Crew Role}, {Crew Role, Officer}

3NF Isn't Always Perfect

Ship	Crew Role	Officer
Enterprise	Captain	Kirk
Enterprise	Science	Spock
Enterprise	Medical	McCoy
Excelsior	Captain	Sulu

Ship, Crew Role → Officer

Officer — Crew Role

Keys: {Ship Crew Role} {Crew Role, Officer}

3NF Isn't Always Perfect

- BCNF can't always be decomposed (as in example)
- 3NF is a compromise:
 - Guaranteed to be possible to decompose to 3NF.
 - Not guaranteed to lack redundancy.

Decomposition

- Starting with $R(A_1, ..., A_n)$, a decomposition creates relations $R_1, R_2, ...$ such that
 - $R_i \subset R$ (R_i contains only attributes in R)
 - $R \equiv R_1 \cup R_2 \cup ...$ (each attribute appears at least once in a decomposed rel)
- We store instances of the R_is instead of R.

- Officers(Oid, Name, Post, Rank, Salary)
 - $F = \{O \rightarrow N, P, R, S; R \rightarrow S\}$
 - R → S violates 3NF
- Store: Officers'(ONPR), Salaries(RS)
 - Can we just project Officers down to O',S?
 - What problems could occur?

Decomposition Costs

- Queries become more expensive:
 - How much does Sheridan earn? (2 way join)
- May not be possible to reconstruct original relation from instances.
 - R₁(A,B), R₂(B,C), R₃(A,C)
- Checking dependencies may require reconstituting the decomposed relation.

Lossy Decompositions

R

A	В	U
		ı
	2	2
2	I	2
2	2	ı

Lossy Decompositions

R

A	В	C
	_	
	2	2
2	I	2
2	2	

	R	I
>		

A	В
_	
I	2
2	I
2	2

В	C
1	I
2	2
1	2
2	I

 R_2

A	В
ı	_
ı	2
2	2
2	

 R_3

Lossy Decompositions

A	В	С
	I	I
	2	2
2	I	2
2	2	
2	2	2
2	I	I
ı	2	ı
I	-	2

7/	
1	

 R_1

A	В
1	2
2	
2	2

В	U
	-
2	2
ı	2
2	I

 R_2

A	В
ı	
1	2
2	2
2	

 R_3

Lossless Join Decompositions

- For a relation **R** with FDs **F**:
 - A decomposition of R into R_1 , R_2 is <u>lossless</u> iff F^+ contains $R_1 \cap R_2 \rightarrow R_1$, or $R_1 \cap R_2 \rightarrow R_2$.
- In other words, $R_1 \cap R_2$ must contain a key for R.
- Don't let data loss happen to you.
 - Practice lossless decomposition.

Decomposition into BCNF

- Start with relation R with FDs F
- If X→Y Violates BCNF
 - Decompose R into $R_1=(R-Y)$, $R_2=XY$.
- Recur on R₁,R₂ until all satisfy BCNF.
 - Guaranteed to terminate.
- There might be multiple violations, the order in which they are resolved drastically changes the output.

Contracts(cid, sid, jid, did, pid, qty, value)

- I. C is a key: $C \rightarrow CSJDPQV$
- 2. ProJects purchase Parts using a single Contract: $JP \rightarrow C$
- 3. Depts. purchase at most one Part from any Supplier: $SD \rightarrow P$
- 4. Each ProJect uses one Supplier: $J \rightarrow S$

Contracts(cid, sid, jid, did, pid, qty, value)

- I. C is a key: $C \rightarrow CSJDPQV$
- 2. ProJects purchase Parts using a single Contract: JP → C
- 3. Depts. purchase at most one Part from any Supplier: $SD \rightarrow P$
- 4. Each ProJect uses one Supplier: $J \rightarrow S$

(1): OK, C is a key

Contracts(cid, sid, jid, did, pid, qty, value)

- I. C is a key: $C \rightarrow CSJDPQV$
- 2. ProJects purchase Parts using a single Contract: JP → C
- 3. Depts. purchase at most one Part from any Supplier: $SD \rightarrow P$
- 4. Each ProJect uses one Supplier: $J \rightarrow S$

(2): OK, JP is a key

Contracts(cid, sid, jid, did, pid, qty, value)

- I. C is a key: $C \rightarrow CSJDPQV$
- 2. ProJects purchase Parts using a single Contract: JP → C
- 3. Depts. purchase at most one Part from any Supplier: $SD \rightarrow P$
- 4. Each ProJect uses one Supplier: $J \rightarrow S$

(3): Not OK

Contracts(cid, sid, jid, did, pid, qty, value)

- I. C is a key: $C \rightarrow CSJDPQV$
- 2. ProJects purchase Parts using a single Contract: JP → C
- 3. Depts. purchase at most one Part from any Supplier: $SD \rightarrow P$
- 4. Each ProJect uses one Supplier: $J \rightarrow S$

Contracts(cid, sid, jid, did, qty, value)
PartSupp(sid, did, pid)

- I. C is a key: $C \rightarrow CSJDPQV$
- 2. ProJects purchase Parts using a single Contract: JP → C
- 3. Depts. purchase at most one Part from any Supplier: $SD \rightarrow P$
- 4. Each ProJect uses one Supplier: $J \rightarrow S$

(4): Not OK

Contracts(cid, sid, jid, did, qty, value)
PartSupp(sid, did, pid)

- I. C is a key: $C \rightarrow CSJDPQV$
- 2. ProJects purchase Parts using a single Contract: JP → C
- 3. Depts. purchase at most one Part from any Supplier: $SD \rightarrow P$
- 4. Each ProJect uses one Supplier: $J \rightarrow S$

Contracts(cid, jid, did, qty, value)

PartSupp(sid, did, pid)

ProjectSupp(jid, sid)

- I. C is a key: $C \rightarrow CSJDPQV$
- 2. ProJects purchase Parts using a single Contract: JP → C
- 3. Depts. purchase at most one Part from any Supplier: $SD \rightarrow P$
- 4. Each ProJect uses one Supplier: $J \rightarrow S$

BCNF Isn't Always Viable

Ship	Crew Role	Officer
Enterprise	Captain	Kirk
Enterprise	Science	Spock
Enterprise	Medical	McCoy
Excelsior	Captain	Sulu

Ship, Crew Role → Officer

Officer → Crew Role

BCNF Isn't Always Viable

Ship	Crew Role	Officer
Enterprise	Captain	Kirk
Enterprise	Science	Spock
Enterprise	Medical	McCoy
Excelsior	Captain	Sulu

Ship, Crew Role → Officer

Officer → Crew Role

No decomposition preserves all FDs No Dependency Preserving Decomposition

Dependency Preserving Decomposition

- Simple modification to the algorithm for 3NF:
 - If decomposition can't enforce X→Y, add relation XY.
- But XY may still violate 3NF
 - E.g., Relation <u>AB</u>C with FDs AB \rightarrow C, B \rightarrow C
- Refinement: Only enforce FDs in the Minimal Cover.

Minimal Cover

- For a set of FDs F, the minimal cover G satisfies:
 - Closure of F = Closure of G
 - RHS of each FD in G is a single attribute
 - Any deletion of an FD in G or attributes in an FD in G changes its closure.

For the following set of FDs

$$A \rightarrow B$$
 $ACD \rightarrow E$ $EF \rightarrow G$ $EF \rightarrow H$

For the following set of FDs

For the following set of FDs

For the following set of FDs

For the following set of FDs

