Propensity Score Diagnostics Lucy D'Agostino McGowan Wake Forest University

Checking balance

Love plots (Standardized Mean Difference)

ECDF plots

Standardized Mean Difference (SMD)

$$d = \frac{\bar{x}_{treatment} - \bar{x}_{control}}{\sqrt{\frac{s_{treatment}^2 + s_{control}^2}{2}}}$$

SMD in R

Calculate standardized mean differences

```
1 library(halfmoon)
2 library(tidyverse)
3
4 smds <- tidy_smd(
5   df,
6   .vars = c(confounder_1, confounder_2, ...),
7   .group = exposure,
8   .wts = wts # optional,
9   make_dummy_vars = TRUE # optional
10 )</pre>
```

Calculating SMDs

```
1 vars <- c(
2    "sex", "race", "age", "education",
3    "smokeintensity", "smokeyrs",
4    "exercise", "active", "wt71"
5 )
6
7 smds <- tidy_smd(
8    nhefs_complete_wts,
9    .vars = all_of(vars),
10    .group = qsmk,
11    .wts = w_ate,
12    make_dummy_vars = TRUE
13 )
14
15 smds</pre>
```

Calculating SMDs

```
# A tibble: 28 \times 4
  variable
                method
                       qsmk
                              smd
                <chr> <chr> <chr> <dbl>
  <chr>
1 sex1
                observed 1
                              0.160
2 race1
                observed 1 0.177
3 age
                observed 1
                              -0.282
4 education2
                observed 1
                              0.112
5 education3
                observed 1
                               0.0472
6 education4
                observed 1
                               0.0270
7 education5
                observed 1
                              -0.166
8 smokeintensity observed 1
                              0.217
9 smokeyrs
                observed 1
                              -0.159
                observed 1
10 exercise1
                              -0.0398
```

Plotting SMDs

Plot them! (in a Love plot!)

Love plot

Your turn 1

Create a Love Plot for the propensity score weighting you created in the previous exercise

06:00

ECDF

For continuous variables, it can be helpful to look at the *whole* distribution pre and post-weighting rather than a single summary measure

ECDF

Unweighted ECDF

```
1 ggplot(nhefs_complete_wts, aes(x = wt71, color = factor(qsmk))) +
2    geom_ecdf() +
3    scale_color_manual(
4    "Quit smoking",
5    values = c("#5154B8", "#5DB854"),
6    labels = c("Yes", "No")
7    ) +
8    xlab("Weight in Kg in 1971") +
9   ylab("Proportion <= x")</pre>
```

Unweighted ECDF

Weighted ECDF

```
ggplot(nhefs_complete_wts, aes(x = wt71, color = factor(qsmk))) +
geom_ecdf(aes(weights = w_ate)) +
scale_color_manual(
   "Quit smoking",
   values = c("#5154B8", "#5DB854"),
   labels = c("Yes", "No")
   ) +
   xlab("Weight in Kg in 1971") +
   ylab("Proportion <= x (Weighted)")</pre>
```

Weighted ECDF

Your turn 2

Create an unweighted ECDF examining the park_temperature_high confounder by whether or not the day had Extra Magic Hours.

Create a weighted ECDF examining the park_temperature_high confounder

06:00

Bonus! Weighted Tables in R

1. Create a "design object" to incorporate the weights

```
1 library(survey)
2
3 svy_des <- svydesign(
4   ids = ~ 1,
5   data = df,
6   weights = ~ wts
7 )</pre>
```

2. Pass to

gtsummary::tbl_svysummary()

```
1 library(gtsummary)
2 tbl_svysummary(svy_des, by = x) |>
3 add_difference(everything() ~ "smd")
4 # modify_column_hide(ci) to hide CI column
```

	0	1		
Characteristic	$N = 1,565^{1}$	$N = 1,561^{1}$	Difference ²	95% CI ²
WEIGHT IN KILOGRAMS IN 1971	69 (60, 80)	69 (59, 79)	0.01	-0.06, 0.08
0: WHITE 1: BLACK OR OTHER IN 1971			0.01	-0.06, 0.08
0	1,359 (87%)	1,352 (87%)		
1	206 (13%)	209 (13%)		
AGE IN 1971	43 (33, 52)	43 (33, 53)	-0.01	-0.08, 0.06
0: MALE 1: FEMALE			0.00	-0.07, 0.07
0	764 (49%)	764 (49%)		
1	802 (51%)	797 (51%)		
NUMBER OF CIGARETTES SMOKED PER DAY IN 1971	20 (10, 25)	20 (10, 30)	0.02	-0.05, 0.09
YEARS OF SMOKING	24 (15, 33)	24 (14, 33)	0.00	-0.07, 0.07
IN RECREATION, HOW MUCH EXERCISE? IN 1971, 0:much exercise,1:moderate exercise,2:little or no exercise			0.04	-0.03, 0.11
0	302 (19%)	294 (19%)		
1	665 (42%)	691 (44%)		
2	599 (38%)	576 (37%)		
IN YOUR USUAL DAY, HOW ACTIVE ARE YOU? IN 1971, 0:very active, 1:moderately active, 2:inactive			0.03	-0.04, 0.10
0	700 (45%)	684 (44%)		
1	718 (46%)	738 (47%)		
2	147 (9.4%)	138 (8.9%)		
¹ Median (Q1, Q3); n (%)				

Abbreviation: CI = Confidence Interval

Median (Q1, Q3); n (%)
Standardized Mean Difference

Bonus Your Turn: Weighted Tables