

Feature Selection / Dimensionality Reduction

Dr Paul Yoo

Dept CSIS 17/10/19

Birkbeck, University of London

© Copyright 2019

1

Timetable

Week	Date	Lecture (G12, Torrington, UCL)	Lab (MAL 414-417)		
1	03/10/19	Introduction, Workflow and Loading	Loading data and descriptive statistics		
2	10/10/19	Data pre-processing	Preparing data		
3	17/10/19	Feature selection and re-sampling	Selecting features and re-sampling		
4	24/10/19	DT and RF	Comparing ML algorithms		
5	31/10/19	LR and NN	Automating the process		
6	07/11/19	TensorFlow and Keras	MLP with Keras		
7	14/11/19	Project Briefing			
8	21/11/19		Project (30%)		
9	28/11/19	Image processing	Deep learning - CNN		
10	05/12/19	RNN and sequential data	Deep learning - RNN		
11	12/12/19	Real-life case	Deep learning - LSTM		

Autumn term: 30/09/2019 to 13/12/2019

Birkbeck, University of London

2

© Copyright 2019

Overview

We covered:

- · 5G and ML
- · Predictive Modelling The Analytic Workflow
- · Data for ML
- Python
- · Prediction types
- · Data pre-processing
 - Re-scale, Normalise, Binarise, Standardise
 - Concept hierarchy
 - Noisy data data smoothing (e.g. binning)

We will cover:

- Feature selection techniques
- · Re-sampling

Birkbeck, University of London

3

© Copyright 2019

3

Predictive Modelling ML Steps

- **1. Define Problem:** Investigate and characterise the problem in order to better understand the goals of the project.
- 2. Analyse Data: Use descriptive statistics and visualisation to better understand the data you have available.
- **3. Prepare Data:** Use data transforms in order to better expose the structure of the prediction problem to modeling algorithms.
- **4. Evaluate Algorithms:** Design a test harness to evaluate a number of standard algorithms on the data and select the top few to investigate further
- **5. Improve Results:** Use algorithm tuning and ensemble methods to get the most out of well-performing algorithms on your data.
- **6. Present Results:** Finalise the model, make predictions and present results.

Birkbeck, University of London

4

© Copyright 2019

5

Main Principles

The feature selection methods are typically presented in three classes based on how they combine the selection algorithm and the model building.

- Filter (e.g. chi2) pick up the intrinsic properties of the features (i.e., the "relevance" of the features) measured via univariate statistics.
- Wrapper (e.g. RFE) measures the "usefulness" of features based on the classifier performance (computationally more expensive due to repeated learning steps)
- Embedded (e.g. DT) similar to wrapper but an intrinsic model building metric is used during learning.

Birkbeck, University of London

6

© Copyright 2019

FS Techniques

- 1. Percent missing values
- 2. Amount of variation
- 3. Pairwise correlation
- 4. Pincipal Component Analysis
- 5. Cluster anlaysis
- 6. Correlation (with the target)
- 7. Forward selection
- 8. Backward elimination
- 9. Stepwise selection
- 10. Embedded (e.g. DT)

Informatio

Redundance

Predictive Power

Greedy Selection

Embedde

Birkbeck, University of London

7

© Copyright 2019

7

Percent Missing Values

- Drop variables that have a very high % of missing values
 - # of records with missing values / # of total records
- Create binary indicators (encode) to denote missing (or non-missing) values
- Review or visualise variables with high % of missing values. Why?

Birkbeck, University of London

8

© Copyright 2019

Amount of Variation

Drop or review variables that have a very low variation

- $VAR(x) = \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i \mu)^2$
- Either standardise all variables, or use standard deviation σ to account for variables with different scales
- Z-scores $(z = (x \mu) / \sigma)$ are a way to compare results from a test to a "normal" population.
- Drop variables with zero variation (unary)

Birkbeck, University of London

9

© Copyright 2019

9

Pairwise Correlations

Many variables are often correlated with each other, and hence are redundant.

- If two variables are highly correlated, keeping only one will help reduce dimensionality without much loss of information.
- · Which variable to keep?
 - The one that has a higher correlation coefficient with the target.

Birkbeck, University of London

10

© Copyright 2019

X² Correlation Test

Null hypothesis: the distribution of data is due to chance (independent).

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

- The larger the X² value, the more likely the variables are related.
- The cells that contribute the most to the X² value are those whose actual count is very different from the expected count.
- · Correlation does not imply causality
 - Causality means the second event is understood as a consequence of the first.
 - # of hospitals and # of car-theft in a city are correlated
 - Both are causally linked to the third variable: population

Birkbeck, University of London

11

© Copyright 2019

11

X² Correlation Test cont.

What does this mean?

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

- 1) Subtract the expected count (*E*) from the observed count (*O*) to find the difference between the two (also called the "residual").
- 2) Calculate the square of that number to get rid of positive and negative values (because the squares of 5 and –5 are, both 25).
- 3) Divide the result by the expected frequency to normalise bigger and smaller counts (because we don't want a formula that will give us a bigger X² value just because you're working with a bigger set of data).
- 4) The sigma, the sum of every *i* for which you calculate this relationship
 - Calculate this for each cell in the table, then add it all together. And that's it!

Birkbeck, University of London

12

© Copyright 2019

X² Correlation Test cont.

	Democrat	Republican	Total
Male	20 (25)	30 (25)	50
Female	30 (25)	20 (25)	50
Total	50	50	100

- X² value for our gender/party example is
 - $((20-25)^2/25) + ((30-25)^2/25) + ((30-25)^2/25) + ((20-25)^2/25)$, or
 - (25/25) + (25/25) + (25/25) + (25/25), or
 - 1 + 1 + 1 + 1,
 - which comes out to 4.

$$\chi^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$

- What does that mean??
 - The X² value serves as input for the more interesting piece of information: the p-value.
 - Calculating a p-value is less intuitive than a X² value
 - We simply use tools for calculating this data.

Birkbeck, University of London

13

© Copyright 2019

13

X² Correlation Test cont.

- X² value of 4, and
- Degree of freedon (df) of 1
 - For 2x2 table,
 - df=1=(2-1)(2-1)
- Use the p-value calculator: https://www.socscistatistics.com/pvalues/
- Gives us a p-value of 0.0455.
- This is interpreted as a 4.6% likelihood that the null hypothesis is correct.
- To put it best, if the distribution of this data is due entirely to chance, then you have a 4.6% chance of finding a discrepancy between the observed and expected distributions that is at least this extreme.
- x² value needed to reject the hypothesis is 3.84 (95% confidence level)
- Critical value of 3.84 < X² of 4
- So reject! The two attributes are dependent

Birkbeck, University of London

14

© Copyright 2019

X² Correlation Test cont.

• Look up the critical chi-square statistic value for p=0.05 (95% confidence level) with 1 degree of freedom \rightarrow 3.84

Degrees of	Probability										
Freedom	0.95	0.90	0.80	0.70	0.50	0.30	0.20	0.10	0.05	6.01	0.00
1	0.004	0.02	0.06	0.15	0.46	1.07	1.64	2,71	3.84	6.64	10.83
2	0.10	0.21	0.45	0.71	1.39	2.41	3.22	4.60	5.99	9.21	13.82
3	0.35	0.58	1.01	1.42	2.37	3.66	4.64	6.25	7.82	11.34	16.27
4	0.71	1.06	1.65	2.20	3.36	4.88	5.99	7.78	9.49	13.28	18.47
5	1.14	1.61	2.34	3.00	4.35	6.06	7.29	9.24	11.07	15.09	20,52
6	1.63	2.20	3.07	3.83	5.35	7.23	8.56	10.64	12.59	16.81	22.46
7	2.17	2.83	3.82	4.67	6.35	8.38	9.80	12.02	14.07	18.48	24.32
8	2.73	3.49	4.59	5.53	7.34	9.52	11.03	13.36	15.51	20.09	26.12
9	3.32	4.17	5.38	6.39	8.34	10.66	12.24	14.68	16.92	21.67	27.88
10	3.94	4.86	6.18	7.27	9.34	11.78	13.44	15.99	18.31	23.21	29.59
Y Calk	Mark S	100		Nonsig	nifican	t	dy had		8	ignifica	nt

Critical values for the X² Distribution

[Source] https://www.itl.nist.gov/div898/handbook/eda/section3/eda3674.htm

Birkbeck, University of London

15

© Copyright 2019

15

Principal Component Analysis (PCA)

Dimensionality reduction technique which emphasises variation.

- · Uses orthogonal transformation
- · When to use:
 - Excessive multicollinearity high intercorrelations or interassociations among the independent variables.
 - Explanation of the predictors is not important
 - A light overhead in implementation is okay
 - · More suitable for unsupervised learning

Birkbeck, University of London

17

© Copyright 2019

то

Cluster Analysis

- Dimensionality reduction technique which emphasizes correlation/similarity.
 - Identify groups of variables that are as correlated as possible among themselves and as uncorrelated as possible with variables in other clusters
- Produces a set of nested clusters organised as a hierarchical tree.
- · Can be visualised as a dendrogram
- · When to use:
 - Excessive multicollinearity
 - Explanation of the predictors is important

Birkbeck, University of London

20

© Copyright 2019

20

Correlation with the Target

Drop variables that have a very low correlation with the target.

• If a variable has a very low correlation with the target, it's not going to useful for the model (prediction).

Birkbeck, University of London

22

© Copyright 2019

22

Forward/Backward/Stepwise Selection

- Forward Selection
 - Identify the best variable (e.g., based on model accuracy)
 - · Add the next best variable into the model
 - And so on until some predefined criteria is satisfied.
- Backward Elimination (Recursive Feature Elimination)
 - Start with all variables included in the model.
 - Drop the least useful variable (e.g. based on the smallest drop in model accuracy)
 - And so on until some predefined criteria is satisfied.
- Stepwise Selection (combination of above)
 - Similar to forward selection process, but a variable can also be dropped if its deemed as not useful any more after a certain number of steps.

Birkbeck, University of London

23

© Copyright 2019

Tree-based

Forests of trees to evaluate the importance of features

• Fit a number of randomized decision trees on various sub-samples of the dataset and use averaging to rank order features.

Birkbeck, University of London

24

© Copyright 2019

24

Labs (scikit-learn)

- · Univariate Selection
- · Recursive Feature Elimination
- Principal Component Analysis
- Feature Importance (Tree-based)

Birkbeck, University of London

27

© Copyright 2019

28

```
Recursive Feature Elimination
  RFE class
     # Feature Extraction with RFE
      from pandas import read_csv
      from sklearn.feature_selection import RFE
     from sklearn.linear_model import LogisticRegression
     filename = 'pima-indians-diabetes.data.csv'
     names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = read_csv(filename, names=names)
     array = dataframe.values
      X = array[:,0:8]
     Y = array[:,8]
                                          Num Features: 3
      # feature extraction
                                          Selected Features: [ True False False False False True True False]
     model = LogisticRegression()
                                         Feature Ranking: [1 2 3 5 6 1 1 4]
     rfe = RFE(model, 3)
     fit = rfe.fit(X, Y)
     print("Num Features: %d" % fit.n_features_)
print("Selected Features: %s" % fit.support_)
print("Feature Ranking: %s" % fit.ranking_)
[Source] https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html#sklearn.feature_selection.RFE
                                                                                                   © Copyright 2019
 Birkbeck, University of London
                                                        29
```

Principal Component Analysis

PCA class

```
# Feature Extraction with PCA
  from pandas import read_csv
   from sklearn.decomposition import PCA
   # load data
  filename = 'pima-indians-diabetes.data.csv'
  names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = read_csv(filename, names=names)
dataframe = read_csv(filename, names=names)
array = dataframe.values
X = array[:,0:8]
Y = array[:,8]
# feature extraction
pca = PCA(n_components=3)
fit = pca.fit(X)
Explained Variance: [ 0.88854663 0.06159078 0.02579012]
[Cl_2.02176587e-03 9.78115765e-02 1.69930503e-02 6.07566861e-02 9.93110844e-01 1.40180805e-02 5.37167919e-04 -3.56474430e-03]
[Cl_2.26488861e-02 9.72210040e-01 1.41909330e-01 -5.78614699e-02 -9.46266913e-02 4.69729765e-02 8.16804621e-01 -5.78614699e-02 -9.46266913e-02 4.69729765e-02 8.16804621e-01 -5.78614699e-02 -9.46266913e-02 4.69729765e-02 8.16804621e-01 -3.07013055e-01 -9.4626913e-02 4.69729765e-02 8.16804621e-01 -3.07013055e-01 -9.4626913e-02 4.69729765e-02 8.16804621e-01 -3.6961450e-01 -3.07013055e-01 -9.4626913e-02 4.69729765e-02 8.16804621e-01 -3.07013055e-01 -9.4626913e-02 4.69729765e-02 8.16804621e-01 -3.6961450e-01 -3.6961450e-01 -3.6961450e-01 -3.07013055e-01 -9.4626913e-02 4.69729765e-02 8.0766881e-02 9.9311676e-02 1.490830e-01 -3.69674430e-03]
[Cl_2.2648903e-02 9.72210040e-01 -1.4908930e-01 -5.78614699e-02 -9.46266913e-02 4.69729766e-02 8.86804621e-02 9.9311676e-02 1.490830e-01 -3.69674430e-03]
[Cl_2.2648903e-02 9.72210040e-01 -9.22467192e-01 -3.07013055e-01 -9.4626913e-02 4.69729766e-02 8.86804621e-02 9.9311676e-02 1.490830e-01 -5.78614699e-02 -9.4626913e-02 4.69729766e-02 8.86804621e-02 9.9311676e-02 1.490830e-01 -3.69674430e-03]
[Cl_2.2648903e-02 9.72210040e-01 -4.968916-01 -3.07013055e-01 -9.4626913e-02 -9
   print("Explained Variance: %s" % fit.explained_variance_ratio_)
    print(fit.components_)
                                     [Source] https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html
```

Birkbeck, University of London

© Copyright 2019

30

Feature Importance (Tree-based)

ExtraTreesClassifier() class - fits a number of randomised decision trees (a.k.a. extra-trees) on various sub-samples of the dataset and uses averaging to improve the predictive accuracy and control over-fitting.

```
# Feature Importance with Extra Trees Classifier
from pandas import read_csv
from sklearn.ensemble import ExtraTreesClassifier
# load data
filename = 'pima-indians-diabetes.data.csv'
names = ['preg', 'plas', 'pres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = read_csv(filename, names=names)
array = dataframe.values
X = array[:,0:8]
Y = array[:,8]
# feature extraction
model = ExtraTreesClassifier()
model.fit(X, Y)
print(model.feature_importances_)
```

 $\hbox{\tt [0.11070069\ 0.2213717\ 0.08824115\ 0.08068703\ 0.07281761\ 0.14548537\ 0.12654214\ 0.15415431] }$

Birkbeck, University of London

© Copyright 2019

Quiz

Why can't you prepare your machine learning algorithm on your training dataset and use predictions from this same dataset to evaluate performance?

Birkbeck, University of London

32

© Copyright 2019

32

Re-sampling

- · Train and Test Sets
- k-fold Cross Validation
- · Leave One Out Cross Validation
- Repeated Random Test-Train Splits

Birkbeck, University of London

33

© Copyright 2019

Train and Test Sets - train_test_split class

The simplest method - train the algorithm on the first part, make predictions on the second part and evaluate the predictions against the expected results.

• The size of the split varies - common to use 67%/33% splits

```
# Evaluate using a train and a test set
from pandas import read_csv
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
filename = 'pima-indians-diabetes.data.csv'
names = ['preg', 'plas', 'pres', 'kskin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = read_csv(filename, names=names)
dataframe = read_csv(filename, names=names)
array = dataframe.values
X = array[:,0:8]
Y = array[:,8]
test_size = 0.33
seed = 7
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=test_size, random_state=seed)
model = Logistickegression()
model.fic(X_train, Y_train)
result = model.score(X_test, Y_test)
print("Accuracy: X.3f%X" % (result*100.0))
```

Birkbeck, University of London

34

© Copyright 2019

34

k-Fold Cross Validation

Kfold class - Cross-validation is an approach that you can use to estimate the performance of a ML algorithm with less variance than a single train-test set split.

Fivaluate using Cross Validation
from pandas import read.cav
from sklearn.model.selection import KFold
from sklearn.model.selection import cross.val_score
from sklearn.linear.model import LogisticRegression
filename 'pinas-indinan-diabetes data.cav
names = ['preg', 'plas', 'pres', 'ekin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe - read.cav(filename, names-names)
array = dataframe.values
X = array[:,0:8]
Y = array[:,0:8]
Num_folds = 10
seed - 7
Kfold - KFold(o.splits-num_folds, random_state-seed)
model = LogisticRegression()
results = cross_val_score(model, X, Y, cv-kfold)
print("Accuracy: %.3f%% (%.3f%%)" % (results.mean()*100.0, results.std()*100.0))

Birkbeck, University of London

	holdout (10%)	cross-validation (10-fold)
	75.3	73.8
Σ ν	77.9	75.0
sample mean $\overline{x} = \frac{\sum x_i}{}$	80.5	75.5
_n	74.0	75.5
Variance $\sigma^2 = \frac{\sum (x_i - \overline{x})^2}{}$	71.4	74.4
n-1	70.1	75.6
	79.2	73.6
Standard deviation σ	71.4	74.0
	80.5	74.5
	67.5	73.0
	$\bar{x} = 74.8$	$\bar{x} = 74.5$
	σ = 4.6	$\sigma = 0.9$

Birkbeck, University of London

36

© Copyright 2019

36

Leave One Out Cross-Validation

- n-fold cross-validation (n = total # of instances)
 - Predict each instance, training on all (n-1) other instances
- · Pros and cons:
 - Best possible learned: n-1 training examples
 - High computational cost: re-learn everything n times
 - Classes are not balanced in training / testing sets

```
# Evaluate using Leave One Out Cross Validation
from pandas import read_csv
from sklearn.model_selection import LeaveOneOut
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import cross_val_score
from sklearn.linear_model import LogisticRegression
filename = 'pina-indians-diabetes.data.csv'
names = ['preg', 'plas', 'yres', 'skin', 'test', 'mass', 'pedi', 'age', 'class']
dataframe = read_csv(filename, names=names)
array = dataframe.values
X = array[:,0:8]
Y = array[:,0:8]
Y = array[:,0:8]
I = array[:,8]
I = ar
```

Birkbeck, University of London

37

© Copyright 2019

38

Repeated Random Test-Train Splits

Create a random split of the data like the train/test split, but repeat the process of splitting and evaluation of the algorithm multiple times, like CV.

- · Pros and cons:
 - the reduction in variance in the estimated performance of k-fold cross-validation.
 - repeat the process many more times as needed to improve the accuracy.
 - repetitions may include much of the same data in the train or the test split from run to run introducing redundancy into the evaluation.

Birkbeck, University of London

39

© Copyright 2019

Repeated Random Test-Train Splits

40

Questions?

paul@dcs.bbk.ac.uk

Birkbeck, University of London

© Copyright 2019