0.1 可列集与不可列集

0.1.1 可列集

定义 0.1 (可列集)

与自然数集 № 对等的集合称为可列集, 其基数记为 80(读作阿列夫零). 有限集和可列集统称为可数集.

命题 0.1

A 是可列集当且仅当 A 可以写成 $A = \{a_n\}_{n=1}^{\infty}$.

证明 A 可列,则存在 \mathbb{N} 到 A 的一一映射 φ ,记为 $\varphi(n) = a_n, n \in \mathbb{N}$,则 $A = \{a_n\}_{n=1}^{\infty}$.反过来,若 $A = \{a_n\}_{n=1}^{\infty}$,将每个 a_n 与其下标 n 建立一一对应,则 A 与 \mathbb{N} 对等,从而是可列集

命题 0.2 (可列集的性质)

- (1) 任何无限集必包含一个可列子集.
- (2) 可列集的任何无限子集都是可列集.
- (3) 有限集与可列集的并集是可列集.
- (4) 有限个可列集的并集是可列集.
- (5) 可列个可列集的并集是可列集.
- (6) 若 A 为无限集, B 为有限集或可列集, 则 $\overline{A \cup B} = \overline{A}$.
- (7) 设A, B为可列集,则 $A \times B$ 是可列集.
- (8) A_1, A_2, \cdots, A_n 可列, 则 $A_1 \times A_2 \times \cdots \times A_n$ 可列.

室 笔记 (1) 也说明, 众多无限集中, 最小的基数是可列集的基数 **☆**₀. **证明**

- (1) 设 A 为无限集. 从 A 中任取一元 a_1 ; 由于 $A \{a_1\} \neq \emptyset$, 取 $a_2 \in A \{a_1\}$; 又 $A \{a_1, a_2\} \neq \emptyset$, 取 $a_3 \in A \{a_1, a_2\}$; ……, 因为 A 是无限集, 这一过程可以一直继续下去, 从而得到 A 的一个可列子集 $\{a_n\}_{n=1}^{\infty}$.
- (2) 设 $A = \{a_1, a_2, \dots, a_n, \dots\}$. $B \neq A$ 的无限子集. 按照 A 中元素的次序依次寻找 B 中元素,分别记为 a_{n_1}, a_{n_2}, \dots ,则 $B = \{a_{n_1}, a_{n_2}, \dots, a_{n_k}, \dots\}$ 为可列集.
- (3) 设 $A = \{a_1, a_2, \dots, a_n\}, B = \{b_1, b_2, \dots\}.$ 不妨设 $A \cap B = \emptyset$, 则

$$A \cup B = \{a_1, a_2, \cdots, a_n, b_1, b_2, \cdots\}$$

可列.

(4) 设 $A_k = \{a_1^{(k)}, a_2^{(k)}, a_3^{(k)}, \cdots\}, k = 1, 2, \cdots, n$ 为可列集,则 $\bigcup_{k=1}^n A_k$ 的元素可以按下面的方式编号排序

$$A_1 = \{a_1^{(1)} \quad a_2^{(1)} \quad a_3^{(1)} \quad \cdots \}$$

 $A_2 = \{a_1^{(2)} \quad a_2^{(2)} \quad a_3^{(2)} \quad \cdots \}$

:

$$A_n = \{a_1^{(n)} \quad a_2^{(n)} \quad a_3^{(n)} \quad \cdots \}$$

必要时删掉后续的重复元(实际上,取集合后就自动删去了重复元,因为集合内不含重复元),可得到

$$\bigcup_{k=1}^{n} A_k = \{a_1^{(1)}, \cdots, a_1^{(n)}, a_2^{(1)}, \cdots, a_2^{(n)}, a_3^{(1)}, \cdots\}$$

可列.

(5) 设 $\{A_n\}_{n=1}^{\infty}$ 为一列可列集,则 $\bigcup_{n=1}^{\infty} A_n$ 的元素可以按下面的方式编号排序

$$A_{1} = \{a_{1}^{(1)} \rightarrow a_{2}^{(1)} \rightarrow a_{3}^{(1)} \rightarrow a_{4}^{(1)} \cdots \}$$

$$A_{2} = \{a_{1}^{(2)} \quad a_{2}^{(2)} \quad a_{3}^{(2)} \quad a_{4}^{(2)} \cdots \}$$

$$A_{3} = \{a_{1}^{(3)} \quad a_{2}^{(3)} \quad a_{3}^{(3)} \quad a_{4}^{(3)} \cdots \}$$

$$\vdots$$

$$A_{n} = \{a_{1}^{(n)} \quad a_{2}^{(n)} \quad a_{3}^{(n)} \quad a_{4}^{(n)} \cdots \}$$

$$\vdots$$

必要时删掉后续的重复元(实际上,取集合后就自动删去了重复元,因为集合内不含重复元),可得到

$$\bigcup_{n=1}^{\infty} A_n = \{a_1^{(1)}, a_1^{(2)}, a_2^{(1)}, \cdots, a_{2n+1}^{(1)}, a_{2n}^{(2)}, \cdots, a_{2n+1}^{(n)}, \cdots\}$$

(依次是下标之和等于 $2, 3, \dots, 2n + 2, \dots$) 可列.

(6) 不妨设 $A \cap B = \emptyset$, 否则用 B - A 代替 B 即可. A 为无限集, 由 (1) 可知, A 包含一个可列子集 A_1 . 由于 $A_1 \cup B$ 是可列集, 故 $A_1 \cup B \sim A_1$. 注意到 $(A - A_1) \cap (A_1 \cup B) = \emptyset$, 则有

$$A \cup B = (A - A_1) \cup A_1 \cup B = (A - A_1) \cup (A_1 \cup B) \sim (A - A_1) \cup A_1 = A.$$

因此, $\overline{\overline{A \cup B}} = \overline{\overline{A}}$.

(7) 由命题 0.1可设 $A = \{x_i\}_{i=1}^{\infty}, B = \{y_i\}_{i=1}^{\infty}, 则$

$$A \times B = \{(x, y) : x \in A, y \in B\} = \bigcup_{x \in A} \{(x, y) : y \in B\}$$
$$= \bigcup_{x \in A} \bigcup_{y \in B} (x, y) = \bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} (x_i, y_j).$$

由(5)可知, 对 $\forall i \in \mathbb{N}$, $\bigcup_{j=1}^{\infty} (x_i, y_j)$ 都可列. 于是再由(5)可知 $\bigcup_{i=1}^{\infty} \bigcup_{j=1}^{\infty} (x_i, y_j)$ 也可列.

(8) 利用 (7) 及数学归纳法不难证明.

例题 0.1 有理数集 ◎ 是可列集.

证明 $\mathbb{Q} = \mathbb{Q}^+ \cup \{0\} \cup \mathbb{Q}^-$,其中 \mathbb{Q}^+ , \mathbb{Q}^- 分别表示正、负有理数集. 由对称性以及可列集的性质 (3)和可列集的性质 (4),只需证明 \mathbb{Q}^+ 可列.

对每个 $n \in \mathbb{N}$,令

$$A_n = \left\{ \frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \dots \right\}$$

则 A_n 可列. 又 $\mathbb{Q}^+ = \bigcup_{n=1}^{\infty} A_n$ (除去重复元), 由可列集性质 (5)知 \mathbb{Q}^+ 可列.

命题 0.3

实轴 ℝ 上互不相交的开区间至多有可列个.

证明 开区间的长度大于 0, 故必含有有理数, 在每一个开区间内取出一个有理数. 因为开区间互不相交, 所以取出的有理数都不相等, 从而这些有理数构成 $\mathbb Q$ 的一个子集. 又 $\mathbb Q$ 是可列集, 故这样的开区间至多有可列个. $\mathbb Q$ 例题 0.2 整系数多项式的全体 $\mathbb P$ 是可列集.

证明 对每个 $n \in \{0\} \cup \mathbb{N}$,令

$$P_n = \{a_0 x^n + a_1 x^{n-1} + \dots + a_n : a_i \in \mathbb{Z}, i = 0, 1, \dots, n, a_0 \neq 0\}$$

则

$$P_n \sim \mathbb{Z} - \{0\} \times \underbrace{\mathbb{Z} \times \cdots \times \mathbb{Z}}_n$$

由命题 0.2(8)知 P_n 可列. 又 $\mathbf{P} = \bigcup_{n=0}^{\infty} P_n$, 由可列集性质知 \mathbf{P} 可列.

整系数多项式的根称为代数数,由于每个多项式只有有限个根,故代数数的全体构成一可列集.

命题 0.4

ℝ上单调函数的间断点至多有可列个.

证明 不妨只讨论 f 是开区间 (a,b) 上的单调增加函数, 且有无限多个间断点.

设 x_1 是f的另一个间断点,且 $x_0 < x_1$.我们要证明

$$(f(x_0^-), f(x_0^+)) \cap (f(x_1^-), f(x_1^+)) = \varnothing. \tag{1}$$

为此在 x_0 和 x_1 之间插入x,x'如下:

$$x_0 < x < x' < x_1$$

则有不等式

$$f(x) \leqslant f(x')$$

固定x',令 $x \to x_0^+$,由单调函数的单侧极限存在定理和函数极限的保不等式性,得到

$$f(x_0^+) \leqslant f(x')$$

再令 $x' \rightarrow x_1^-$,又得到

$$f(x_0^+) \leqslant f(x_1^-)$$

于是得到

$$f(x_0^-) < f(x_0^+) \leqslant f(x_1^-) < f(x_1^+)$$

即所要证明的 (1). 这样就得到与无限多个间断点——对应的跳跃区间,且两两不交.而由命题 0.3可知这些跳跃区间至多有可列个.这就证明了单调函数的间断点至多有可列个.

0.1.2 不可列集

定义 0.2 (不可列集)

不是可列集的无限集称为不可列集.

定理 0.1

[0,1] 是不可列集.

证明 假设 [0,1] 可列,则可表示为 $[0,1] = \{x_n\}_{n=1}^{\infty}$. 把 [0,1] 三等分为: [0,1/3], [1/3,2/3], [2/3,1],则其中至少有一个闭区间不包含 x_1 ,记该区间为 I_1 ,则 $x_1 \notin I_1$; 把 I_1 三等分,则其中至少有一个闭区间不包含 x_2 ,记该区间为 I_2 ,则 $x_2 \notin I_2$, $I_2 \subset I_1$; ……,依次做下去,可得到一列闭区间 $\{I_n\}$ 满足:

- (i) $I_1 \supset I_2 \supset \cdots \supset I_n \supset \cdots$;
- (ii) $x_n \notin I_n, n \in \mathbb{N}$;
- (iii) I_n 的长度为 $1/3^n \to 0, n \to \infty$.

由闭区间套定理,存在 $\xi \in \bigcap_{n=1}^{\infty} I_n$. 由于 $\xi \in [0,1] = \{x_n\}_{n=1}^{\infty}$,则必存在 $n_0 \in \mathbb{N}$ 使得 $\xi = x_{n_0}$. 而 $x_{n_0} \notin I_{n_0}$,这与 $\xi \in \bigcap_{n=1}^{\infty} I_n$ 矛盾.

定义 0.3

若 $A \sim [0,1]$, 则称 A 具有连续基数, 记 $\overline{A} = \$$.

定理 0.2

对 $\forall a, b \in \mathbb{R}$, 都有 $\overline{[a,b]} = \overline{(a,b)} = \overline{(a,b)} = \overline{\mathbb{R}} = \mathbb{X}$.

证明 对 $\forall a, b \in \mathbb{R}$, 映射 f(x) = a + (b - a)x 建立了 [0,1] 与 $[\underline{a,b}]$ 之间的一一对应,故 $\overline{[a,b]} = \aleph$. 又 (a,b) 和 (a,b] 与 [a,b] 分别只差一个点和两个点,由可列集的性质 (6)知 $\overline{(a,b)} = \overline{(a,b]} = \overline{[a,b]} = \aleph$. 最后,由 \S 与 R 对等] 例 题??以及刚证明的结论可得, $\overline{\mathbb{R}} = \overline{[-1,1]} = \aleph$.

推论 0.1

无理数的基数为 %.

证明 记无理数集为 \mathbb{I} , 注意到 $\mathbb{I} \cup \mathbb{Q} = \mathbb{R}$, 且 \mathbb{Q} 可列, 由可列集的性质 (6) 可得 $\mathbb{I} = \mathbb{I} \cup \mathbb{Q} = \mathbb{R} = \aleph$.

定理 0.3

设 $\{A_n\}$ 为一集列, 若对每个 n 都有 $\overline{A_n} = \aleph$, 则 $\bigcup_{n=1}^{\infty} A_n = \aleph$.

证明 不妨设 $A_i \cap A_j = \emptyset$. 由于 $\overline{\overline{A_n}} = \aleph$, 则 $A_n \sim (n, n+1]$, 从而 $\bigcup_{n=1}^{\infty} A_n \sim [1, \infty) \sim \mathbb{R}$.

定义 0.4

设 A 为集合, 记 2^A 为 A 的幂集. 若 A 为含有 n 个元素的有限集, 则 2^A 由 1 个空集, C_n^1 个单元素集, C_n^2 个 两元素集, ……, C_n^n 个 n 元素集, 所以, 2^A 中元素的个数为

$$1 + C_n^1 + C_n^2 + \dots + C_n^n = (1+1)^n = 2^n = 2^{\overline{A}}$$

更一般地,设 $\overline{A} = \mu$,定义 $\overline{2^A} = 2^{\mu}$.

命题 0.5

设A, B都是非空集合,则 $A \sim B$ 的充要条件是 $2^A \sim 2^B$.

证明 必要性: 由 $A \sim B$ 可知 $\overline{A} = \overline{B}$. 于是 $\overline{2^A} = 2^{\overline{A}} = 2^{\overline{B}} = \overline{2^B}$. 故 $2^A \sim 2^B$. 充分性: 假设 A = B 不对等, 则不妨设 $\overline{A} > \overline{B}$, 则 $\overline{2^A} = 2^{\overline{A}} > 2^{\overline{B}} = \overline{2^B}$, 这与 $2^A \sim 2^B$ 矛盾! 故 $A \sim B$.

引理 0.1

设 A 是一个非空集合,则 A 上所有特征函数的全体 \mathcal{F}_A 与 2^A 对等,即 $\mathcal{F}_A \sim 2^A$. 进而 $\overline{\mathcal{F}_A} = \overline{2^A} = 2^{\overline{A}}$.

证明 对于每个 $E \in 2^A$, 可以唯一的对应一个特征函数

$$\chi_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \in A - E \end{cases}$$

反之亦然. 这说明 A 上所有特征函数的全体 \mathcal{F}_A 与 2^A 对等.

定理 0.4

 $\aleph = 2^{\aleph_0}$.

m

证明 用 $\mathcal{F}_{\mathbb{N}}$ 表示 \mathbb{N} 上特征函数的全体, 只需证 $\mathcal{F}_{\mathbb{N}}$ 与 (0,1] 对等. 对任意的 $\varphi \in \mathcal{F}_{\mathbb{N}}$, 作映射

$$f: \varphi \to \sum_{n=1}^{\infty} \frac{\varphi(n)}{3^n}, \varphi(n) \in \{0, 1\}.$$

易知, f 是从 $\mathcal{F}_{\mathbb{N}}$ 到 (0,1] 的单射, 故命题??可知 $\overline{\mathcal{F}_{\mathbb{N}}} \leqslant \overline{(0,1]}$.

另一方面, 对每一个 $x \in (0,1]$, 用 2 进制表示为 (不进位)

$$x = \sum_{n=1}^{\infty} \frac{a_n}{2^n}, a_n \in \{0, 1\}.$$

定义映射

$$g: x \to \varphi \in \mathcal{F}_{\mathbb{N}}, \quad \varphi(n) = a_n, \quad n = 1, 2, \cdots$$

易知, g 是从 (0,1] 到 $\mathcal{F}_{\mathbb{N}}$ 的单射, 故由命题??可知 $\overline{\overline{(0,1)}} \leqslant \overline{\mathcal{F}_{\mathbb{N}}}$.

由 Bernstein 定理可知 $\overline{(0,1]} = \overline{\mathcal{F}_{\mathbb{N}}}$. 再由引理 0.1 可得 $\aleph = \overline{(0,1]} = \overline{\mathcal{F}_{\mathbb{N}}} = \overline{2^{\mathbb{N}}} = 2^{\aleph_0}$.

例题 $0.3 \mathbb{R}^2 \sim \mathbb{R}$.

证明 由定理 0.4及命题 0.5和 $\mathbb{N} \sim \mathbb{Z} - \mathbb{N}$ 可知 $\mathbb{R} \sim 2^{\mathbb{N}} \sim 2^{\mathbb{Z} - \mathbb{N}}$,故再由命题??可得 $\mathbb{R} \times \mathbb{R} \sim 2^{\mathbb{N}} \times 2^{\mathbb{Z} - \mathbb{N}} \sim 2^{\mathbb{Z}} \sim 2^{\mathbb{N}} \sim \mathbb{R}$.

例题 0.4 用 M 表示 [0,1] 上实值有界函数的全体,则 $\overline{M}=2^{\aleph}$.

证明 设E为[0,1]的任一子集,则E唯一对应一个特征函数

$$\chi_E(x) = \begin{cases} 1, & x \in E \\ 0, & x \in [0, 1] - E \end{cases}$$

显然, $\chi_E \in M$. 故 $\overline{\overline{M}} \geqslant \overline{\overline{2^{[0,1]}}} = 2^{\aleph}$.

 $\frac{S-\bar{f}}{\overline{M}}$,对每一个 $f \in M$,其图像 $\{(x,f(x)): x \in [0,1]\}$ 为平面上的一有界子集,两者构成一一对应关系,故 $\overline{\overline{M}} \leqslant 2^{\mathbb{R}^2} = 2^{\mathbb{N}}$. 由伯恩斯坦定理, $\overline{\overline{M}} = 2^{\mathbb{N}}$.

定理 0.5 (无最大基数定理)

设 A 为非空集, 则 $A < 2^A$.

 \Diamond

证明 由于 2^A 中的单元素集与 A 对等, 故 $A \leq 2^A$.

若存在集合 A 满足 $\overline{A} = \overline{2^A}$, 则存在 $f: A \to 2^A$ 为一一映射. 令

$$B = \{x \in A : x \notin f(x)\}\$$

注意到 $\varnothing \in 2^A$, 则存在 $x_0 \in A$ 使得 $f(x_0) = \varnothing$, 故 $x_0 \notin f(x_0)$. 这说明 $x_0 \in B$, 从而 $B \neq \varnothing$.

又 $B \in 2^A$, 则存在 $x_B \in A$ 使得 $f(x_B) = B$. 下面考察 $x_B \in B$ 的关系: 若 $x_B \in B$, 则 $x_B \notin f(x_B) = B$, 矛盾; 若 $x_B \notin B$, 即 $x_B \notin f(x_B)$, 这又蕴涵 $x_B \in B$, 矛盾.