Partial derivative #definition

Let
$$f: \mathbb{R}^n \to \mathbb{R}$$

Partial derivative of f at point $a=(a_1,\ldots,a_n)$ in respect to variable x_i is defined as

$$egin{aligned} f_{x_i}(a) &= rac{\partial}{\partial x_i} f(a) = \lim_{h o 0} rac{f(a+he_i) - f(a)}{h} = \ &= \lim_{h o 0} rac{f(a_1, \ldots, a_{i-1}, a_i+h, a_{i+1}, \ldots, a_n) - f(a_1, \ldots, a_n)}{h} \end{aligned}$$

$$f(x,y) = egin{cases} rac{13x^3 + \pi y^3}{x^2 + y^2} & (x,y)
eq (0,0) \ 0 & (x,y) = (0,0) \end{cases} \ f_x(0,0) = \lim_{h o 0} rac{f(h,0) - f(0,0)}{h} = \lim_{h o 0} rac{13h^3}{h^3} = 13 \ f_y(0,0) = \lim_{h o 0} rac{f(0,h) - f(0,0)}{h} = \lim_{h o 0} rac{\pi h^3}{h^3} = \pi$$

$$f(x,y) = egin{cases} rac{xy}{x^2+y^2} & (x,y)
eq (0,0) \ 0 & (x,y) = (0,0) \end{cases} \ f_x(0,0) = \lim_{h o 0} rac{f(h,0) - f(0,0)}{h} = \lim_{h o 0} rac{0h}{h^3} = 0 \ f_y(0,0) = \lim_{h o 0} rac{f(0,h) - f(0,0)}{h} = \lim_{h o 0} rac{0h}{h^3} = 0$$

Note: this example shows that existence of all partial derivatives, and even their equality, does not imply that the function is continuous

Higher order derivatives

For higher order derivatives, order of differentiation matters

e.g.
$$f_{xx}(a) = (f_x(a))_x \ f_{xy}(a) = (f_x(a))_y \ f_{yx}(a) = (f_y(a))_X \ f_{yy}(a) = (f_y(a))_y$$

Schwarz theorem #theorem

If all partial derivatives of order k are continuous Then we can change order of differentiation up to order k

For functions of one variable:

$$y - f(a) = f'(a)(x - a)$$

$$y = f(a) + f'(a)(x - a)$$

This is a Taylor polynomial of order 1 around point a

Directional derivative #definition

Let
$$u \in \mathbb{R}^n$$

Directional derivative along vector u is then defined as

$$f_u(a) = \lim_{h o 0} rac{f(a+hu)-f(a)}{h\|u\|}$$

Gradient #definition

Gradient of function f at point a is defined as

$$abla f(a) = (f_{x_1}(a), \ldots, f_{x_n}(a))$$

If partial derivatives are continuous, then directional derivative can be calculated as:

$$f_u(a) = rac{\langle u,
abla f(a)
angle}{\|u\|} = rac{u \cdot
abla f(a)}{\|u\|}$$