Automatic Optimization Of Arrays In Affine Loop-Nests

Somashekaracharya G. Bhaskaracharya^{1,2} *Advisor:* Uday Bondhugula¹

CSA, Indian Institute of Science¹ National Instruments²

April 29, 2016

Introduction

- Introduction
- Intra-Array Storage Optimization Problem
- 3 Conflicts, Conflict Satisfaction
- Experimental Evaluation
- Summary

Introduction

Basic Goal Reuse memory locations for values without overlapping lifetimes

- Reuse within a given array or across different arrays
- Crucial for data-intensive programs
 - run larger problem size with a fixed amount of main memory
 - stencils, image processing applications, DSL compilers
 - affine loop-nests

Storage optimal!

Contracting A Particular Array

```
for(t=1;t<=N;i++)</pre>
                                                  for(i=1:i<=N:i++)</pre>
                                                   /*S*/A[t%2,i]=f(A[(t-1)%2,i-1]
for(t=1;t<=N;i++)</pre>
                                                                   +A[(t-1)\%2,i]
for(i=1:i<=N:i++)</pre>
                                                                   +A[(t-1)%2,i+1]):
  /*S*/ A[t,i]=f(A[t-1,i-1]
               +A[t-1.i]
                                                          (b) Array contracted to size 2 \times N
               +A[t-1.i+1]):
    (a) 1-d stencil using N<sup>2</sup> storage
                                                 for(t=1:t<=N:i++)
                                                  for(i=1;i<=N;i++)</pre>
                                                   /*S*/A[(i-t+N)%(N+1)]=f(A[(i-t+N)%(N+1)]
Dependences (1, -1), (1, 0) and (1, 1)
                                                                            +A[(i-t+1+N)%(N+1)]
                                                                            +A \Gamma(i-t+2+N) \%(N+1) \}:
      Live-out A[T, *]
                                                          (c) Array contracted to N+1 cells.
```

Reuse Across Arrays - Image Processing Applications

```
#define isbound(i,j) (i==0)||(i==(N-1))
                   ||(i==0)||(i==(N-1))
for(int i=0: i<N: ++i)</pre>
  for(int j=0; j<N: ++j)</pre>
/*S0*/ A0[i,j] = isbound(i,j) ? a[i,j]
                :a[i,j]+(a[i-1,j]+a[i+1,i]
                +a[i,i-1]+a[i][i+1]);
for(int i=0: i<N: ++i)</pre>
 for(int j=0; j<N: ++j)</pre>
/*S1*/ A1[i,i]=isbound(i,i) ? A0[i,i]
               :A0[i,i]+(A0[i-1,i]+A0[i+1,i]
               +A0[i,j-1]+A0[i,j+1]);
for(int i=0; i<N; ++i)</pre>
  for(int j=0; j<N: ++j)</pre>
/*S2*/ A2[i,j]=!isbound(i,j) ? A1[i][j]
               :A1[i,j]+(A1[i-1,j]+A1[i+1,j]
               +A1[i,i-1]+A1[i,i+1]):
```

(a) A_0 , A_1 are just intermediate arrays which are not live-out.

```
\begin{array}{ll} S_0: A_0[i,j] \to A[(i+3) \mod (N+2), j \mod N] \\ S_1: A_1[i,j] \to A[(i+1) \mod (N+2), j \mod N] \\ S_2: A_2[i,j] \to A[(i-1) \mod (N+2), j \mod N] \end{array}
```

(b) The storage mapping enabling inter-array reuse. Overall storage requirement is reduced from 3N² to N² + N.

- Introduction
- Intra-Array Storage Optimization Problem
- Conflicts, Conflict Satisfaction
- Experimental Evaluation
- **Summary**

Contract array along one or more directions to fixed sizes

Step 1: Determine *good* directions

- Canonical directions need not be good ones
- Affects dimensionality and storage size
- Can be the difference between N^2 , 2N, N+1 storage for a given $N \times N$ array

Step 2: Minimize the array size along these directions

- Thoroughly studied by Lefebvre and Feautrier (1998)
- No good heuristics for Step 1
- Darte et al(2005), Lefebvre and Feautrier(1998)
 - work with canonical basis or assume that directions are given.

An Array Space Partitioning Approach

Storage Partitioning Hyperplane

Partitions the iteration space such that each partition uses a single memory location.

Hyperplane (-1, 1) creating (2N - 1) partitions.

Good Directions? Storage hyperplanes with good orientations

Contraction? Minimize the number of partitions created

Affects the resulting storage size

Dimensionality? Number of storage hyperplanes found

Iteratively found until some criterion is met

- Introduction
- Intra-Array Storage Optimization Problem
- 3 Conflicts, Conflict Satisfaction
- 4 Experimental Evaluation
- Summary

Conflicts Within An Array Space

Conflicting indices $\vec{l} \bowtie \vec{j}$

Two array indices $\vec{l}, \vec{j}, (\vec{l} \neq \vec{j})$, conflict with each other and the conflict relation $\vec{l} \bowtie \vec{j}$ holds if the corresponding array elements are simultaneously live under the given schedule θ .

```
for (i=2; i <= n; i++) for (i=2; i <= n; i++) fib[i]=fib[i-1]+fib[i-2]; fib[i]=fib[(i-1)\%2]+fib[(i-2)\%2]; result=fib[n]; result=fib[n\%2]; (a) Before contraction (a) After contraction

Dependences? (i-2) \rightarrow_{RAW} i, (i-1) \rightarrow_{RAW} i

Live Out? fib(n)

Conflicts? Each array index conflicts with its adjacent index: i \bowtie (i-1)

\implies fib can be contracted to a 2-element array Modulo storage mapping: fib[i] \rightarrow fib[i \mod 2]
```

```
for(t=1;t<=N;i++)
    for(i=1;i<=N;i++)
    /*S*/ A[t,i]=A[t,i-1]+A[t-1,i];
for(i=1;i<=N;i++)
    result=result+A[i,N]+A[N,i];</pre>
```

(a) A producer-consumer loop-nest

The flow dependences. Live-out portion in yellow.

Conflicts in different conflict polyhedra.

Conflict Satisfaction

A conflict $\vec{i} \bowtie \vec{j}$ is said to be satisfied by a hyperplane $\vec{\Gamma}$ if $\vec{\Gamma} \cdot \vec{i} - \vec{\Gamma} \cdot \vec{j} \neq 0$.

Conflicting indices must be mapped to different partitions

Example Revisited

```
for(t=1;t<=N;i++)
  for(i=1;i<=N;i++)
/*S*/ A[t,i]=A[t,i-1]+A[t-1,i];
for(i=1;i<=N;i++)
  result=result+A[i,N]+A[N,i];</pre>
```

(a) A producer-consumer loop-nest

Conflicts in different conflict polyhedra

Candidate hyperplanes . . .

- (1,0) Satisfies only blue, green conflicts
- (0, 1) Satisfies only red, green conflicts
- (-1,1) Satisfies all conflicts creating 2N-1 partitions
- (-2, 1) Satisfies all conflicts creating 3N 2 partitions
- (-3, 1) Satisfies all conflicts creating 4N 2 partitions

Modulo Storage Mapping $A[t,i] \rightarrow A[(i-t) \mod (2N-1)]$ Storage as well as dimension optimal!

Outline

- Introduction
- Intra-Array Storage Optimization Problem
- Conflicts, Conflict Satisfaction
- Experimental Evaluation
- Summary

Storage Mappings Obtained Using SMO tool

Table: Our approach (SMO) compared to the baseline (Lefebvre and Feautrier(1998)) with B being the loop blocking factor

Benchmark		Modulo storage mapping	Reduction (approx.)	SMO time
produce-consume	baseline SMO	$A[t \mod N, i \mod N]$ $A[(i - t) \mod (2N - 1)]$	$\frac{N}{2}$	0.17s
blur-interleaved	baseline SMO	blurx[y mod 3, x mod N] blurx[(2x - y) mod (2N + 1)]	1.5	0.14s
blur-tiled	baseline SMO	$A[tx, ty, x \mod B, y \mod B]$ $A[tx, ty, (y - 2x) \mod (3B - 2)]$	<u>B</u>	0.11s
harris-corner-tiled	baseline SMO	sobel[tx , ty , x mod B , y mod B] sobel[tx , ty , ($y - 2x$) mod ($3B - 2$)]	<u>B</u>	0.12s
unsharp-mask-tiled	baseline SMO	$A[z, tx, ty, x \mod B, y \mod B]$ $A[z, tx, ty, (y - 4x) \mod (5B - 4)]$	<u>B</u>	0.82s
LBM-D2Q9	baseline SMO	$A[t \mod 2, i \mod N, j \mod N]$ $A[(i-2t) \mod (N+2), j \mod N]$	2	0.61s
LBM-D3Q19	baseline SMO	$A[t \mod 2, i \mod N, j \mod N, k \mod N]$ $A[(i-2t) \mod (N+2), j \mod N, k \mod N]$	2	3.32s
LBM-D3Q27	baseline SMO	$A[t \mod 2, i \mod N, j \mod N, k \mod N]$ $A[(i-2t) \mod (N+2), j \mod N, k \mod N]$	2	3.33s
diamond-tile	baseline SMO	$A_B[tt \mod B, it \mod (2B-1)]$ $A_B[(tt-3it) \mod (6B-5)]$	<u>B</u> 3	0.44s
stencil-1d-llelogram-tile	baseline SMO	$A_B[tt \mod B, ii \mod B]$ $A_B[(tt - ii) \mod (3B - 2)]$	<u>B</u>	0.29s
stencil-1d-hex-tile	baseline SMO	$A_B[tt \mod B, it \mod (3B - 2)]$ $A_B[(-tt + 3ii) \mod (9B - 7)]$	<u>B</u>	1.15s

Summary

- Introduction
- 2 Intra-Array Storage Optimization Problem
- Conflicts, Conflict Satisfaction
- Experimental Evaluation
- Summary

Summary

- Intra-array and inter-array storage reuse
 - Array space partitioning by finding good storage hyperplanes
- Heuristic driven by a fourfold objective function.
 - greedy conflict satisfaction (impacts dimensionality)
 - minimizes the partitions (minimizes dimension sizes)
 - factors in inter-statement conflicts (exploits inter-statement reuse)
- Developed SMO tool—a polyhedral storage optimizer.
 - Effective on several real-world examples.
 - Storage mappings which are asymptotically better than those by existing techniques.

Summary

Acknowledgements And Publications

- INRIA (France) for an associate team award PolyFlow
- National Instruments

- Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, Albert Cohen Automatic Storage Optimization for Arrays, ACM Transactions on Programming Languages and Systems (TOPLAS), accepted in 2015.
- Somashekaracharya G. Bhaskaracharya, Uday Bondhugula, Albert Cohen SMO: An Integrated Approach to Intra-Array and Inter-Array Storage Optimization, ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), St.Petersberg, USA, pages 526 538, Jan 2016.