内部,闭包

Prof: 对 x e int (Ai) 有: xeX

 $x \neq y \in I$, $x \in int(\bigcap_{i \in I} A_i)$ $\exists r \in \mathbb{R}_{>0}$, s.t. $B(x,r) \subseteq \bigcap_{i \in I} A_i$

 $\cdots \, \mathbb{B}(\mathbf{x}, \mathbf{r}) \subseteq \bigcap_{i \in \mathbf{I}} A_i \subseteq A_j \qquad \cdots \, \mathbf{x} \in \operatorname{int} A_j$

 $\therefore \ \ \chi \in \bigcap_{j \in I} \text{ int } A_j \ = \bigcap_{i \in I} \text{ int } A_i$

 $\therefore \operatorname{rint}\left(\bigcap_{\mathbf{v} \in \mathbf{I}} A_{\mathbf{v}} \right) \subseteq \bigcap_{\mathbf{v} \in \mathbf{I}} \operatorname{rint} A_{\mathbf{v}} \qquad \boxed{}$

 $L_{emra}: (X, d)$ 是度量空间, $A_i \subseteq X$ (i=1,2,...,n) $(n \in \mathbb{Z}_{ji})$. 则有: $int(\bigcap_{i=1}^n A_i) = \bigcap_{i=1}^n int A_i$

Proof: bL - 3| $EL / f: int(\hat{A}_i) \subseteq \hat{A}_i \text{ int}(\hat{A}_i)$

对 X ∈ n int Ai, 有: X ∈ int A, 且 X ∈ int A, 且 x ∈ int A,

··(X,d)是度量空间,A,SX, xeintA,

 $A = A_{>0}$, s.t. $B(x, y) \subseteq A_1$

··(X,d)是度量空间, A2SX, XeintA2

 $A_1 = R_{>0}$, S.t. $B(x_i x_i) \subseteq A_2$

··(X,d)是度量空间,AnSX, xeintAn

:∃rneR>o, s.t. B(x;rn)⊆An

 $:: \Upsilon_1, \Upsilon_2, ..., \Upsilon_n \in \mathbb{R}_{>0}$ $:: \text{non} \{r_1, r_2, ..., r_n\} \in \mathbb{R}_{>0}$ 任取 ε∈R>o, s.t. ε< mon {r, r2, ..., rn} xtVk=1,2,..., n, 有: B(x, E) ⊆ B(x, rk) ⊆ Ak $\therefore B(x; \varepsilon) \subseteq \bigcap_{i=1}^{n} A_{i} \qquad \therefore x \in int \left(\bigcap_{i=1}^{n} A_{i}\right)$ $\dots \bigcap_{i=1}^{n} \operatorname{int} A_{i} \subseteq \operatorname{int} \left(\bigcap_{i=1}^{n} A_{i} \right)$ $\therefore \operatorname{int}\left(\bigcap_{i=1}^{n} A_{i}\right) = \bigcap_{i=1}^{n} \operatorname{int} A_{i}$ L_{emma} (内部和闭包的幂等性) (X, d)是度量空间, $A \subseteq X$,则有: \bigcirc int (int A) = int A $\mathfrak{D}_{cl}(clA) = clA$ Proof: (X, d)是度量空间, $A\subseteq X$: int A = (X, d) 的开集 \therefore int A = int (int A)T(X, d)是度量空间, $A \subseteq X$: $c(A \neq (X, d)$ 的闭集 $\therefore clA = cl(clA)$ Lemma: (X,d)是度量空间, AisX (rieI).则有: $\operatorname{cl}\left(\bigcap_{i\in I}A_{i}\right)\subseteq\bigcap_{i\in I}\operatorname{cl}A_{i}$

 $Proof: xtyj \in I, :: Cl(A_i) \subseteq ClA_i$ $:: Cl(A_i) \subseteq A_i \subseteq A_i :: Cl(A_i) \subseteq ClA_i$ $:: Cl(A_i) \subseteq A_i \subseteq A_i :: Cl(A_i) \subseteq ClA_i$

Remark: 补充用定义的证法. zty xe cl ((Ai) , 有:

xtyjeI. xtyreR>0, «x∈cl(Ai) «B(x,r)∩(Ai) + Ø

.. B(x,r) \(\lambda\) \(\psi\) \(\psi\)

 $\therefore x \in \bigcap_{i \in I} clA_i \qquad \therefore cl\left(\bigcap_{i \in I} A_i\right) \subseteq \bigcap_{i \in I} clA_i \qquad \boxed{}$

定义(两个度量空间的积空间) (X_1, d_1) 和 (X_2, d_2) 是两个度量空间, 定义 $X_1 \times X_2$ 上的度量为:

 $x + Y(x_1, x_2), (y_1, y_2) \in X_1 \times X_2, d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$ 则有: $(X_1 \times X_2, d)$ 是度量空间。

Lemma: (X,×X2,d)是度量空间

 $Proof: xf \forall (x_1, x_2), (y_1, y_2) \in X_1 \times X_2, \hat{A}:$ $0 d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2) \in \mathbb{R}_{>0}$

3) $d((x_1, x_2), (y_1, y_2)) = 0 \iff d_1(x_1, y_1) + d_2(x_2, y_2) = 0$ $\iff d_1(x_1, y_1) = 0 \text{ } d_2(x_2, y_2) = 0 \iff x_1 = y_1 \text{ } d_2(x_2 = y_2)$ $\iff (x_1, x_2) = (y_1, y_2)$ ラマナヤ (x1, x2), (y1, y2), (z1, z2) EX, × X2 (其中x1, y1, z1 EX1, $X_2, y_2, z_2 \in X_2$), f: $d((x_1, x_2), (y_1, y_2)) = d_1(x_1, y_1) + d_2(x_2, y_2)$ $\leq d_{1}(x_{1}, z_{1}) + d_{1}(z_{1}, y_{1}) + d_{2}(x_{2}, z_{2}) + d_{2}(z_{2}, y_{2})$ $= \left(d_{1}(x_{1}, z_{1}) + d_{2}(x_{2}, z_{2})\right) + \left(d_{1}(z_{1}, y_{1}) + d_{2}(z_{2}, y_{2})\right)$ $= d((x_1,x_2),(z_1,z_2)) + d((z_1,z_2),(y_1,y_2))$ $:(X_1 \times X_2, d)$ 是度量空间。 L_{emma} (积空间上的另一种度量) (X_1, d_1) 和 (X_2, d_2) 是两个度量空间, 定义X,XX。上的度量的P: $xff(x_1,x_2),(y_1,y_2)\in X_1\times X_2, p((x_1,x_2),(y_1,y_2))=max\{d_1(x_1,y_1),d_2(x_2,y_2)\}.$ 则有: $(X_1 \times X_2, \rho)$ 是度量空间. Proof: xt∀ (x1, x2), (y1, y2) ∈ X1 × X2 (#+ x1, y1 ∈ X1, x2, y2 ∈ X2), f: $((x_1, x_2), (y_1, y_2)) = \max \{d_1(x_1, y_1), d_2(x_2, y_2)\} \in \mathbb{R}_{>0}$ $= \rho\left((y_1,y_2),(x_1,x_2)\right)$

●
$$x \nmid \forall (x_1, x_2), (y_1, y_2), (\pm_1, \pm_2) \in X_1 \times X_2 \quad (\pm_1 \nmid x_1, y_1, \pm_1 \in X_1, x_2, y_2, \pm_2 \in X_2), \neq \rho((x_1, x_2), (y_1, y_2)) = \max \{d_1(x_1, y_1), d_2(x_2, y_2)\}$$

∴ $x_1, y_1, \pm_1 \in X_1$
∴ $d_1(x_1, y_1) \leqslant d_1(x_1, \pm_1) + d_1(\pm_1, y_1)$
∴ $d_1(x_1, y_1) \leqslant d_1(x_1, \pm_1) + d_1(\pm_1, y_1)$

$$\leq \max \{d_1(x_1, \pm_1), d_2(x_2, \pm_2)\} + \max \{d_1(\pm_1, y_1), d_2(\pm_2, y_2)\}$$

$$= \rho((x_1, x_2), (\pm_1, \pm_2)) + \rho((\pm_1, \pm_2), (y_1, y_2))$$
∴ $x_2, y_2, \pm_2 \in X_2$
∴ $d_2(x_2, y_2) \leqslant d_2(x_2, \pm_2) + d_2(\pm_2, y_2)$

$$= \rho((x_1, x_2), (\pm_1, \pm_2)) + \rho((\pm_1, \pm_2), (y_1, y_2))$$
∴ $\rho((x_1, x_2), (y_1, y_2)) = \max \{d_1(x_1, y_1), d_2(x_2, y_2)\}$

$$\leq \rho((x_1, x_2), (\pm_1, \pm_2)) + \rho((\pm_1, \pm_2), (y_1, y_2))$$
∴ $\sum_{i=1}^{n} (x_i, x_i), (\pm_1, \pm_2), (\pm_1, \pm_2) + \rho((\pm_1, \pm_2), (y_1, y_2))$
∴ $\sum_{i=1}^{n} (x_i, x_i), (\pm_1, \pm_2), (\pm_1, \pm_2) + \rho((\pm_1, \pm_2), (y_1, y_2))$
∴ $\sum_{i=1}^{n} (x_i, x_i), (\pm_1, \pm_2), (\pm_1, \pm_2) + \rho((\pm_1, \pm_2), (y_1, y_2))$
∴ $\sum_{i=1}^{n} (x_i, x_i), (\pm_1, \pm_2), (\pm_1, \pm_2) + \rho((\pm_1, \pm_2), (y_1, y_2))$
∴ $\sum_{i=1}^{n} (x_i, x_i), (\pm_1, \pm_2), (\pm_1, \pm_2) + \rho((\pm_1, \pm_2), (y_1, y_2))$
∴ $\sum_{i=1}^{n} (x_i, x_i), (\pm_1, \pm_2), (\pm_1, \pm_2), (\pm_1, \pm_2), (\pm_1, \pm_2), (\pm_1, \pm_2), (\pm_1, \pm_2)$