第二章 电阻电路的等效变换

- ■等效电路的概念
- ■电阻的串联和并联
- ■电阻的Y形和△形联结
- ■电压源和电流源的串联和并联
- 实际电源的两种模型及其等效变换
- ■输入电阻

§ 2-2等效电路的概念

■等效电路的概念

如果 N1 和 N1'的外特性相同,则称两者等效。

■ 电阻的串联

$$R_{eq} = \sum_{k=1}^{n} R_k$$

■ 电阻的并联

$$R_{eq} = \frac{1}{G_{eq}} = \frac{1}{\sum_{k=1}^{n} \frac{1}{R_k}}$$

■两个电阻的串联

$$R_{eq} = R_1 + R_2$$

$$u_{R1} = \frac{R_1}{R_1 + R_2} u$$

$$u_{R2} = \frac{R_2}{R_1 + R_2} u$$

■两个电阻的并联

$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2}$$

$$i_{R_1} = \frac{R_2}{R_1 + R_2} i$$

$$i_{R_2} = \frac{R_1}{R_1 + R_2} i$$

例2-1

$$I_1 = \frac{G_1}{G_1 + G_2 + G_3} I_S = \frac{0.025}{0.025 + 0.1 + 0.04} \times 16.5 \text{ mA} = 2.5 \text{ mA}$$

$$I_2 = \frac{G_2}{G_1 + G_2 + G_3} I_S = \frac{0.1}{0.025 + 0.1 + 0.04} \times 16.5 \text{ mA} = 10 \text{ mA}$$

$$I_3 = \frac{G_3}{G_1 + G_2 + G_3} I_S = \frac{0.04}{0.025 + 0.1 + 0.04} \times 16.5 \text{ mA} = 4 \text{ mA}$$

■ 既有串联又有并联时,称为电阻的串、并联,或简称**混 联**

$$R_{\text{eq}} = R_1 + \frac{R_2(R_3 + R_4)}{R_2 + R_3 + R_4}$$

■ 桥形连接中的电阻既不是串联也不是并联

➡ 使用电阻的Y-△等效变换

■Y形联结

■△形联结

■ 电阻的Y形和△形联结之间的转换:

等效:

- 对应端子间有相同的电压 u_{12} 、 u_{23} 、 u_{31}
- 流入端子的电流相等: $i_1=i'_1$ 、 $i_2=i'_2$ 、 $i_3=i'_3$

电阻的Y形和△形联结之间的转换:

$$i_{1} = \frac{R_{3} u_{12}}{R_{1} R_{2} + R_{2} R_{3} + R_{3} R_{1}} - \frac{R_{2} u_{31}}{R_{1} R_{2} + R_{2} R_{3} + R_{3} R_{1}}$$

$$i_{2} = \frac{R_{1} u_{23}}{R_{1} R_{2} + R_{2} R_{3} + R_{3} R_{1}} - \frac{R_{3} u_{12}}{R_{1} R_{2} + R_{2} R_{3} + R_{3} R_{1}}$$

$$i_{3} = \frac{R_{2} u_{31}}{R_{1} R_{2} + R_{2} R_{3} + R_{3} R_{1}} - \frac{R_{1} u_{23}}{R_{1} R_{2} + R_{2} R_{3} + R_{3} R_{1}}$$

$$i_{12} = \frac{u_{12}}{R_{12}}, i_{23} = \frac{u_{23}}{R_{23}}, i_{31} = \frac{u_{31}}{R_{31}}$$

$$i'_{1} = \frac{u_{12}}{R_{12}} - \frac{u_{31}}{R_{31}}$$

$$i'_{2} = \frac{u_{23}}{R_{23}} - \frac{u_{12}}{R_{12}}$$

 $i_3' = \frac{u_{31}}{R} - \frac{u_{23}}{R}$

电阻的Y形和△形联结之间的转换:

$$R_1 = \frac{R_{12}R_{31}}{R_{12} + R_{23} + R_{31}}$$

$$R_2 = \frac{R_{12}R_{23}}{R_{12} + R_{23} + R_{31}}$$

$$R_3 = \frac{R_{23}R_{31}}{R_{12} + R_{23} + R_{31}}$$

如果
$$R_{12}$$
= R_{23} = R_{31} = R_{\triangle}
得 $R_1 = R_2 = R_3 = \frac{R_{\triangle}}{3}$

$$R_{12} = \frac{R_1R_2 + R_2R_3 + R_3R_1}{R_3}$$

$$R_{23} = \frac{R_1R_2 + R_2R_3 + R_3R_1}{R_1}$$

$$R_{31} = \frac{R_1R_2 + R_2R_3 + R_3R_1}{R_2}$$

如果
$$R_1$$
= R_2 = R_3 = R_Y
得 R_{12} = R_{23} = R_{31} = $3R_Y$

例2-2 解法一: △ → Y

例2-2 解法二: Y -> △

§ 2-5电压源和电流源的串联和并联

■电压源的串联

$$u_{eq} = \sum_{k=1}^{n} u_{sk}$$

注意: 如果 u_{sk} 与 u_s 的参考方向一致, u_{sk} 前面取 "+",不一致时取 "-"。

§ 2-5电压源和电流源的串联和并联

■ 电流源的并联

注意:如果 i_{sk} 与 i_{s} 的参考方向一致, i_{sk} 前面取"+",不一致时取"-"。

§ 2-5电压源和电流源的串联和并联

■ 注意:

- 1. 只有电压相等、极性一致的电压源才允许并联;
- 2. 只有电流相等、方向一致的电流源才允许串联;
- 3. 一个电压源与其他元件并联的支路,可等效为一个电压源;
- 4. 一个电流源与其他元件串联的支路,可等效为一个电流源;

■实际电压源

端口的伏安特性曲线

当 R_L =∞,即开路时, $u = u_s$,称为开路电压;

当 R_L =0,即短路时, $i = u_s/R_s$,称为短路电流;

■实际电流源

端口的伏安特性曲线

当 \mathbf{R}_{L} = ∞ ,即开路时, $u = i_{s}/\mathbf{G}_{s} = i_{s}\mathbf{R}_{s}$,称为开路电压; 当 \mathbf{R}_{L} = $\mathbf{0}$,即短路时, $i = i_{s}$,称为短路电流;

■ 两种模型的等效变换

例2-3

例2-4

$$Ri + Ri + u_c = u_S$$

$$2u_R + 4u_R = u_S$$

$$u_R = \frac{u_S}{6} = 2 \text{ V}$$

§ 2-7 输入电阻

■ 等效电阻与输入电阻

- 如果一端口网络内部仅含有电阻,可以利用 电阻电路的等效变换,求得它的等效电阻。
- 如果一端口网络内部除了含有电阻外,还含有控制电源,但不含独立电源,此一端口仍可以等效为一个电阻。一般假设在端口加一电压源u_s,求端口电流i,等效电阻

$$\mathbf{R}_{\text{eq}} = \frac{u_{\text{s}}}{i}$$

Req又称为输入电阻。

§ 2-7 输入电阻

例2-5

例 2-5 求图 2-18(a)所示一端口的输入电阻。

图 2-18 例 2-5图

解 在端口 1-1 处加电压 u_s ,求出 i,再由式 (2-12) 求输入电阻 R_i 。 将 CCCS 和电阻 R_2 的并联组合等效变换为 CCVS 和电阻的串联组合,如图 2-18(b) 所示。根据 KVL,有

$$u_{s} = -R_{2}\alpha i + (R_{2} + R_{3})i_{1} \tag{1}$$

$$u_{S} = R_{1} i_{2} \tag{2}$$

再由 KCL, $i = i_1 + i_2$, 可得 $i_1 = i - i_2 = i - \frac{u_s}{R_1}$, 代入(1)式,整理后,有

$$R_{i} = \frac{u_{s}}{i} = \frac{R_{1}R_{3} + (1 - \alpha)R_{1}R_{2}}{R_{1} + R_{2} + R_{3}}$$

上式分子中有负号出现,因此,当存在受控源时,在一定的参数条件下, R_i 有可能是零,也有可能是负值。例如,当 $R_1 = R_2 = 1$ Ω , $R_3 = 2$ Ω , $\alpha = 5$ 时, $R_i = -0.5$ Ω 。§ 1—5 中曾指出负电阻元件实际是一个发出功率的元件。本例中一端口向外发出功率是由于受控源发出功率。

课后作业

■ P30 1-18 1-19 1-20

■ P46

2-5

2-10

2-11

2-13

2-14