动态规划 Assignment_1

学号BY1706126姓名刘云飞

投资问题的 dp 手工求解

问题描述

有 8 万元的投资可以投给3 个项目,每个项目在不同投资数额下(以万元为单位)的利润如下表。

投资额	0	1	2	3	4	5	6	7	8
项目1	0	5	15	40	80	90	95	98	100
项目 2	0	5	15	40	60	70	73	74	75
项目3	0	4	26	40	45	50	51	52	53

写出你所设的状态变量、决策变量、状态转移方程与递推关系式, 和手工求解的详细步骤及结果。

问题求解

设 $f_k(x)$ 表示将投资额为x万元投给前k个项目所得到的最高利润, $g_k(y)$ 表示对第k个项目投资 y 万元所获得的利润,其中 $k=1,2,3,\ x,y=0,1,2,3,4,5,6,7,8,\ s.t.\ y \le x$ 。

状态变量 $f_k(x)$ 决策变量 $g_k(y)$ 状态转移方程 f(x-y)

递推关系式 $f_k(x) = \max_{y=0,1,\dots,x} (g_k(y) + f_{k-1}(x-y))$

递推的详细过程如下:

 $f_1(x)|x$: 当只投资一个项目:

$f_1(x) x$	0	1	2	3	4	5	6	7	8
optimal	0	5	15	40	80	90	95	98	100

 $f_2(8)|x:$ 当投资两个项目,共投资x=8万元:

2 () -	. , , , , ,		, - ,	_					
у	0	1	2	3	4	5	6	7	8
$g_2(y)$	0	5	15	40	80	90	95	98	100
$f_1(x-y)$	75	74	73	70	60	40	15	5	0
$g_2(y) + f_1(x - y)$	75	79	88	110	140	130	110	103	100
f ₂ (8)					140				

 $f_2(7)|x$:当投资两个项目,共投资x = 7万元:

у	0	1	2	3	4	5	6	7
$g_2(y)$	0	5	15	40	80	90	95	98
$f_1(x-y)$	74	73	70	60	40	15	5	0
$g_2(y) + f_1(x - y)$	74	78	85	100	120	105	100	98
f ₂ (8)					120			

 $f_2(6)|x$: 当投资两个项目,共投资x = 6万元:

у	0	1	2	3	4	5	6
$g_2(y)$	0	5	15	40	80	90	95
$f_1(x-y)$	73	70	60	40	15	5	0
$g_2(y) + f_1(x - y)$	73	75	75	80	95	95	95
f ₂ (8)					95		

 $f_2(5)|x$: 当投资两个项目,共投资x = 5万元:

у	0	1	2	3	4	5
$g_2(y)$	0	5	15	40	80	90
$f_1(x-y)$	70	60	40	15	5	0
$g_2(y) + f_1(x - y)$	70	65	55	50	85	90
f ₂ (8)						90

 $f_2(4)|x$: 当投资两个项目,共投资x = 4万元:

у	0	1	2	3	4
$g_2(y)$	0	5	15	40	80
$f_1(x-y)$	60	40	15	5	0
$g_2(y) + f_1(x - y)$	60	45	30	45	80
f ₂ (8)					80

 $f_2(3,2,1,0)|x:$ 当投资两个项目,共投资x=3,2,1,0万元:

у	0	1	2	3	0	1	2	0	1	0
$g_2(y)$	0	5	15	40	0	5	15	0	5	0
$f_1(x-y)$	40	15	5	0	15	5	0	5	0	0
$g_2(y) + f_1(x - y)$	40	20	20	40	15	10	15	5	5	0
f ₂ (8)	40						15	5		0

 $f_3(8)|x:$ 当投资三个项目,共投资x=8万元:

3(-)	3(-)									
у	0	1	2	3	4	5	6	7	8	
$g_3(y)$	0	4	26	40	45	50	51	52	53	
$f_2(x-y)$	140	120	95	90	80	40	15	5	0	
$g_3(y) + f_2(x - y)$	140	124	121	130	125	90	66	57	53	
f ₂ (8)	140									

由此得到最优解为140, 向第一个项目、第二个项目、第三个投资4,4,0万元。

问题描述

一个凸 8 边形P 的顶点顺时针为 $\{v_1, v_2, \cdots, v_8\}$,任意两顶点间的线段的权重由矩阵D 给出。若 v_i 与 v_j 与是P上不相邻的两个顶点,则线段 v_iv_j 称为P的一条弦。求P的一个弦的集合T,使得T中所有的弦恰好将P分割成互不重叠的三角形,且各三角形的权重之和为最小(一个三角形的权重是其各边的权重之和)。

要求:写出递推关系式、伪代码和程序相关说明,并分析时间复杂性。

问题分析

将凸多边形的三角割分问题可以看作每完成一次三角形割分,剩下的部分,可以看作两个多边形的三角割分的子问题 (所分割的三角形不是相邻的三个顶点,否则可以看作为剩下的一个凸多边形的三角割的分子问题),如下图所示:

所以如果取得的 T 区域的三角形为凸 8 边形的一个最优的三角割分,那么当且仅当剩下的这两个割分的区域 D1 与 D2 求得的凸多边形割分的结果也是最优的。所以当选取其中两个顶点 v_i 和 v_i 来求解凸多边形的最优三角割时,有如下推导式:

$$T_{i,j} = optimal(T_{i,k} + T_{k+1,j} + weight(v_{i-1}, v_j, v_k))$$

其中 $T_{i-1,k}$ 表示 D1 的最优解, $T_{k,j+1}$ 表示 D2 的最优解,本案例中是求解三角形的权重之和最小,考虑到迭代的边界条件可以得到下面的递推关系式:

$$T_{i,j} = \begin{cases} 0 & if \ i == j \\ T_{i,k} + T_{k+1,j} + min(v_{i-1}, v_j, v_k) & otherwise \end{cases}$$

伪代码

伪代码的展示如下:

定义一个 N×N 的二维方阵 T, 此处 N=8

- 1. 初始化矩阵 T, 使全部元素都为 0
- 2. 初始化与矩阵 T 同样形状的矩阵 S 用于记录最终相连的边
- 3. 子问题的规模为 N-1, 进行如下循环:

```
For r = [1: 1: N] do // r 表示当前子问题的长度,即点的个数
   For i = [1: 1: N-r] do // N-r 表示最后一个子问题的前边界,三角形的第一个点
                    // 前边界为 r,链长度为 r 的后边界,三角形的第二个点
       T[i, i] ← T[i+1, i] + weight(i-1, i, i) // 初始化 T[i, i], 此时 k==i
       S[i, j] \leftarrow i
                                     // 初始化 S[i, i], 暂时记录为 i
       For k = [i + 1: 1: j] do
                                     // 在前边界i到后边界i之间搜索更新最
优解
           tmp \leftarrow T[i+1, j] + T[k+1, j] + weight(i-1, k, j)
           if tmp < T[i, j] then
                                     // 更新最小值和顶点
              T[i, j] \leftarrow tmp
              S[i, i] \leftarrow k
           EndIf
       EndFor
   EndFor
```

EndFor

4. 最后得到的 T[1, N-1]就是累加得到的凸多边形的三角割分的最小权重 注:其中 weight(i, j, k)是求解以 v_i , v_i , v_k 为定点的三角形三条边的权重和

算法分析

通过上述的伪代码可以分析算法的循环层数及其循环次数如下 r 层执行 N-1 次→i 层执行 N-r-1 次,其中有三个赋值和一个循环→k 层循环 r-1,其中最大 包含三个赋值。所以算法复杂公式可以如下:

$$\omega = \sum_{r=1}^{N-1} \sum_{i=1}^{N-r-1} (3 + \sum_{k=1}^{r-1} 3) = O(n^3)$$

流程图

处理结果

通过运行附件 1 的算法对应的可执行程序可以得到对应结果如下,或者点击<u>这里</u>来查看更多详细信息:

```
The optimal result is: 277
The split triangle points: v4, v6, v5
The split triangle points: v3, v6, v4
The split triangle points: v3, v7, v6
The split triangle points: v2, v7, v3
The split triangle points: v1, v7, v2
The split triangle points: v0, v7, v1
```

对应的定点序号从0~7, 共八个顶点。分割的结果如下图:

