4^a Lista de Exercícios

Teoria da Computação

Prof. Hamilton José Brumatto

Gramática e Linguagem Livre do contexto//Autômatos com Pilha

1. Dada as gramáticas abaixo, apresente 5 cadeias derivadas de cada uma e a linguagem que descreve cada uma

(a)
$$G = (\{S, A, B\}, \{a, b\}, R, S)$$
, onde $R = \begin{cases} S \to A \\ A \to aB \\ B \to aC|bB \\ C \to aC|bB|\varepsilon \end{cases}$
(b) $G = (\{S, A, B, C\}, \{a, b, c\}, R, s)$, one $R = \begin{cases} S \to aA \\ A \to bB \\ B \to cC \\ C \to c \end{cases}$
(c) $G = (\{S, X, Y\}, \{a, b, c\}, R, S)$, onde $R = \begin{cases} S \to aX|\varepsilon \\ X \to bX|bbY|c \\ Y \to Yc|cc|abc|\varepsilon \end{cases}$

(b)
$$G = (\{S, A, B, C\}, \{a, b, c\}, R, s)$$
, one $R = \left\{ \begin{array}{l} S \rightarrow aA \\ A \rightarrow bB \\ B \rightarrow cC \\ C \rightarrow c \end{array} \right.$

(c)
$$G = (\{S, X, Y\}, \{a, b, c\}, R, S)$$
, onde $R = \begin{cases} S \rightarrow aX | \varepsilon \\ X \rightarrow bX | bbY | c \\ Y \rightarrow Yc | cc | abc | \varepsilon \end{cases}$

- (d) Σ
- 2. Para os itens da questão apresente a sua gramática numa versão da forma Normal de Chomsky
- 3. Construa APs para as seguintes linguagens:
 - (a) $L_1 = \{a^n b^m a^n | n \ge 0 \land m > 0\}$
 - (b) $L_2 = \{a^n b^{2n} | n \ge 0\}$
 - (c) $L_3 = \{a^i b^j c^k | j = i + k\}$
 - (d) $L_4(\Sigma = \{a, b, c\}) = \{w | w \in \Sigma^* \text{ e a quantidade de } a$'s é igual à soma das quantidades de b's e c's }
- 4. Dada as linguagens da questão 3, construa as respectivas GLCs.
- 5. Para o AP abaixo, identifique a linguagem que ele reconhece. Observe que os dois diagramas representam o mesmo AP, a primeira versão é a padrão simulador, e a segunda, padrão Sipser.

• Versão do Simulador: $AP = (\{q_0, q_1, q_2\}, \{a, b\}, \{\$, P, I, B\}, \delta, q_0, \{q_2\})$ onde as transições de δ estão no diagrama abaixo.

• Versão do Sipser: $AP = (\{s, f, q_P, q_a, q_{b1}, q_{b2}, q_{I1}, q_{I2}\}, \{a, b\}, \{\$, P, I, B\}, \delta, s, \{f\})$ onde as transições δ estão no diagrama abaixo.

