

CS632/SEP564: Embedded Operating Systems (Fall 2008)

# Flash Memory



### **Memory Types**

#### **FLASH**

- High-density
- Low-cost
- High-speed
- Low-power
- High reliability

#### **DRAM**

- High-density
- Low-cost
- High-speed
- High-power



#### **EPROM**

- Non-volatile
- High-density
- Ultraviolet light for erasure

#### **EEPROM**

- Non-volatile
- Lower reliability
- Higher cost
- Lowest density
- Electrically byte-erasable

#### **ROM**

- High-density
- Reliable
- Low-cost
- Suitable for high production with stable code

Source: Intel Corporation.

### Flash Memory Characteristics

- Erase-before-write
  - Read
  - Write or Program change state from 1 to 0
  - Erase change state from 0 to 1
- Bulk Erase
  - Program unit:
    - NOR: byte or word
    - NAND: sector or page
  - Erase unit: block



### **NOR Flash**

#### NOR Flash

- Random, direct access interface
- Fast random reads
- Slow erase and write
- Mainly for code storage
- Intel, Spansion, STMicro, ...



### **NAND** Flash

#### NAND Flash

- I/O mapped access
- Smaller cell size
- Lower cost
- Smaller size erase blocks
- Better performance for erase and write
- Mainly for data storage
- Samsung, Toshiba, Hynix, ...



### NOR vs. NAND Flash (1)



Source: Toshiba

### NOR vs. NAND Flash (2)

#### Mass Storage-NAND



**Memory Cards** 

(mobile computers)

**Solid-State Disk** 

(rugged & reliable storage)



**Digital Camera** 

(still & moving pictures)



Voice/Audio Recorder

(near CD quality)

- Low Cost and High Density
- Good P/E Cycling Endurance

### **Code Memory-NOR**



**BIOS/Networking** 

(PC/router/hub)

**Telecommunications** 





(code & data)



POS / PDA / PCA

(code & data)

- Fast Random Access
- XIP

Source: Samsung Electronics



CS632/SEP564: Embedded Operating Systems (Fall 2008)

# NAND Flash Memory



# NAND Technology (1)

### Hwang's Law

 The density of the top-of-the-line flash memory chips will double every 12 months





# NAND Technology (2)

#### Density Growth



Source: Samsung Electronics

### NAND Flash Architecture (1)

#### 2Gb NAND Flash Device Organization



# NAND Flash Architecture (2)

#### NAND Flash Interface

| Pin Name                           | Pin Function                                 |
|------------------------------------|----------------------------------------------|
| I/O <sub>0</sub> ~I/O <sub>7</sub> | DATA INPUS/OUTPUTS Command, address, or data |
| CLE                                | COMMAND LATCH ENABLE                         |
| ALE                                | ADDRESS LATCH ENABLE                         |
| CE                                 | CHIP ENABLE                                  |
| RE                                 | READ ENABLE                                  |
| WE                                 | WRITE ENABLE                                 |
| WP                                 | WRITE PROTECT                                |
| R/B                                | READY/BUSY OUTPUT                            |
| VCC                                | POWER                                        |
| VSS                                | GROUND                                       |

| NC = 1 O        | 48 <b>□</b> NC   |
|-----------------|------------------|
| NC $\square_2$  | 47 🗖 NC          |
| NC = 3          | 46 NC            |
|                 | 45 NC            |
|                 |                  |
| ALIE -          | 44 🗀 1/0 8       |
| GND = 6         | 42 🗀 1/0 7       |
| R/B <b>=</b> 7  | 42 🗖 1/0 6       |
| RE# <b>=</b> 8  | 41 🗖 1/0 5       |
| CE# = 9         | 40 P NC          |
| NC 🗖 10         | 39 P NC          |
| NC <b>二</b> 11  | 38 <b>戸</b> NC   |
| Vcc = 12        | 37 <b>፫</b> Vccq |
| Vss 🗖 13        | 36 <b>□</b> Vss  |
| NC 🗖 14         | 35 <b>戸</b> NC   |
| NC <b>二</b> 15  | 34 <b>□</b> NC   |
| CLE 中 16        | 33 <b>□</b> NC   |
| ALE <b>1</b> 7  | 32 🗀 1/0 4       |
| WE# 🗖 18        | 31 🗀 1/0 3       |
| WP# <b>=</b> 19 | 30 🗖 1/0 2       |
| NC = 20         | 29 🗀 1/0 1       |
| NC = 21         | 28 P NC          |
|                 | 27 NC            |
|                 | 26 NC            |
|                 |                  |
| NC 1 24         | 25 P NC          |

### **NAND Operations (1)**

#### READ



### **NAND Operations (2)**

#### PROGRAM



# NAND Operations (3)

#### BLOCK ERASE



# **NAND Flash Types (1)**

#### SLC NAND Flash

- Small block (≤ 1Gb)
- Large block (≥ 1Gb)

#### MLC NAND Flash



# NAND Flash Types (2)

|                       | SLC NAND <sup>1</sup><br>(small block)                 | SLC NAND <sup>2</sup><br>(large block) | MLC NAND <sup>3</sup>          |
|-----------------------|--------------------------------------------------------|----------------------------------------|--------------------------------|
| Page size (Bytes)     | ize (Bytes) 512+16 2,048+64                            |                                        | 4,096+128                      |
| Pages / Block         | 32                                                     | 64                                     | 128                            |
| Block size            | 16KB                                                   | 128KB                                  | 512KB                          |
| $t_R$                 | 15 μs (max)                                            | 20 μs (max)                            | 50 μs (max)                    |
| t <sub>PROG</sub>     | 200 μs (typ) 200 μs (typ)<br>500 μs (max) 700 μs (max) |                                        | 600 μs (typ)<br>1,200 μs (max) |
| t <sub>BERS</sub>     | 2 ms (typ)<br>3 ms (max)                               | 1.5 ms (typ)<br>2 ms (max)             | 3 ms (typ)                     |
| NOP                   | 1 (main), 2 (spare)                                    | 4                                      | 1                              |
| Endurance Cycles      | 100K                                                   | 100K                                   | 10K                            |
| ECC<br>(per 512Bytes) | 1 bit ECC<br>2 bits EDC                                | 1 bit ECC<br>2 bits EDC                | 4 bits ECC<br>5 bits EDC       |

<sup>&</sup>lt;sup>1</sup> Samsung K9F1208X0C (512Mb) <sup>2</sup> Samsung K9K8G08U0A (8Gb) <sup>3</sup> Micron Technology Inc.

# NAND Flash Types (3)

#### Extended NAND Flash Architecture

#### Multi-plane



#### Multi-die





Multi-die Chip Package

Source: Zeen Info. Tech.

### NAND Flash Types (4)

### ■ Samsung OneNAND™



Source: Samsung's OneNAND ebrochure

### NAND Flash Types (5)

### ■ Samsung moviNAND<sup>TM</sup>



Source: Samsung Fusion Memory

# NAND Flash Types (6)

### ■ Samsung Flex-OneNAND<sup>TM</sup>



Source: Samsung Fusion Memory

### **NAND** Constraints (1)

#### Bit Errors

Error correction codes (ECC) in spare area

#### Bad Blocks

- Factory-marked bad blocks
- Run-time bad blocks
- Bad block management

### Limited Program/Erase Cycles

- 100K for SLCs
- 10K for MLCs
- Wear-leveling

### **NAND** Constraints (2)

#### NOP

- Partial-page programming
- 1 / sector for most SLCs (4 for 2KB page)
- 1 / page for most MLCs

### Sequential Page Programming

- For large block SLCs and MLCs
- From page 0 to page 63 for SLCs
- From page 0 to page 127 for MLCs

# **NAND** Constraints (3)

- Pair-page Programming in MLCs
  - Performance difference
  - Interference



#### I/O-split MLCs

| 107 | 106 | 105 | 104 | 103 | 102 | 101 | 100 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 1   | 0   | 0   | 1   | 0   | 0   | 1   | 1   |

Page 0

#### Page-split MLCs



| 107 | 106 | 105 | 104 | 103 | 102 | 101 | 100 |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 1   | 1   | 0   | 0   | 1   | 1   | 0   | 0   |
| 1   | 0   | 0   | 1   | 1   | 0   | 0   | 1   |
|     |     |     |     |     |     |     |     |

Page 0

Page 1

### **Beauty and the Beast**

- NAND Flash memory is beauty.
  - Small, light-weight, robust, low-cost, low-power non-volatile device
- NAND Flash memory is a beast.
  - Much slower program/erase operations
  - No in-place-update
  - Erase unit > write unit
  - Limited lifetime (10K~100K program/erase cycles)
  - Bad blocks, ...
- Software support for NAND flash memory is very important for performance & reliability.



CS632/SEP564: Embedded Operating Systems (Fall 2008)

# Memory Architectures for Mobile Devices



### Requirements

#### Code











Read Writes **Density** Reliability Small -Fast Medium No bad bits Random Medium

Mobile

Consumer **Electronics** 

Networking

#### **Data**







MP3



**USB** Drives

| Read               | Writes | Density | Reliability         |
|--------------------|--------|---------|---------------------|
| Fast<br>Sequential | Fast   | Large   | Bad bits<br>allowed |

Source: "Non-Volatile Memories", Intel Corp.

### **NOR XIP**

#### Pros

- Simple, easy to design
- Execute-In-Place (XIP)
- Predictable read latency
- Code + Data in NOR
- Firmware upgrades

- Slow read speed
- Much slower write speed
- The high cost of NOR



### **NOR Shadowing**

#### Pros

- Faster read and write
- Easy boot-up
- Use a relatively pricey NOR only to boot up the system
- Code can be compressed

- Larger DRAM needed
- Require more design time
- Not energy efficient



### **NAND** Shadowing

#### Pros

- Faster read and write
- Cost effective
- NAND for both code and data storage

- Require a special boot mechanism
- Extensive ECC for NAND
- Larger DRAM needed
- Require more design time
- Not energy efficient



### **Hybrid NAND Shadowing**

#### Pros

- Much faster read and write speed
- ECC embedded
- Cost effective
- NAND for both code and data storage

- Larger DRAM needed
- Not energy efficient



### **NAND** Demand Paging

#### Pros

- Less DRAM required
- Low cost
- Energy efficient
- NAND for both code and data storage

- Require MMU-enabled CPU
- Unpredictable read latency
- Complex to design and test





CS632/SEP564: Embedded Operating Systems (Fall 2008)

# Flash Translation Layers (FTL)



### FTL (1)

#### Flash Cards Internals







### FTL (2)

#### FTL

 A software layer to make NAND flash fully emulate traditional block device (e.g., disks)

### Why FTL?

- No in-place-update
- Bulk erase
- Asymmetry in read and write speeds

Source: Zeen Info. Tech.





### FTL (3)

#### Flash Cards, SSDs

**Applications** 

**Operating System** 

File Systems

**Block Device Driver** 

**Flash Translation Layer** 

NAND Controller

NAND Flash Memory

#### **Embedded Flash Storage**

**Applications** 

**Operating System** 

File Systems

**Block Device Driver** 

**Flash Translation Layer** 

**NAND Controller** 

NAND Flash Memory

### FTL (4)

#### For Performance

- Sector mapping (address translation)
- Garbage collection

### For Reliability

- Power-off recovery
- Wear-leveling
- Bad block management
- Error correction code (ECC)

### **Address Translation**

### Mapping granularity

- Page mapping
- Block mapping
- Hybrid mapping

### Block organization

- In-place
- Out-of-place

### Managing mapping info.

- Per block
- Map block



## Page Mapping

#### Characteristics

- Each table entry maps one page
- Large memory footprint



### Naïve Block Mapping

#### Characteristics

- Each table entry maps one block
- Small RAM usage



## Replacement Block Scheme

- Data Block
  - Storage for an ordinary data
- Replacement Block



# Log Block Scheme (1)

### Log Block

- A temporary storage for small writes
- Incremental updates from the first page



# Log Block Scheme (2)

### Block Merge

- When there is no free log block to allocate.
- Allocate a free block and copy all the up-to-date pages



### **FAST**



Sharing log blocks

#### Pros

- Increase log block utilization
- Reduces the number of erase operations

#### Cons

Increased merge time

#### **Flash Memory**



## Superblock Scheme (1)

### Superblock

- N logically adjacent blocks
- Page-level address translation within a superblock

### Update Block

- A superblock shares log blocks
- More than one log blocks can be allocated to a superblock.



# Superblock Scheme (2)

- Merge Operation
  - Gathers hot pages into the same block

**Superblock** 

B C

Free

Free

Free

Free

Free

Free

Free

Free

Н

D

G

Log Block

## Comparison

|                  |                       | Replacement<br>block<br>scheme | Log block<br>scheme | FAST                                | Superblock scheme |
|------------------|-----------------------|--------------------------------|---------------------|-------------------------------------|-------------------|
| Data<br>blocks   | Terminology           | Data blocks                    | Data blocks         | Data blocks                         | D-blocks          |
|                  | Management scheme     | In-place                       | In-place            | In-place                            | Out-of-place      |
|                  | The degree of sharing | 1                              | 1                   | 1                                   | N                 |
| Update<br>blocks | Terminology           | Replacement<br>blocks          | Log blocks          | Random/<br>sequential<br>log blocks | U-blocks          |
|                  | Management scheme     | In-place                       | Out-of-place        | Out-of-place                        | Out-of-place      |
|                  | The degree of sharing | 1                              | 1                   | Р                                   | N                 |

N: superblock size, P: the number of pages in a block

### Performance (1)

#### Simulation Environment

- 4GB flash memory
  - Large block SLC NAND (2KB page, 128KB block)
- FTL schemes
  - Naïve block mapping
  - Replacement block
  - Log block
  - Superblock
- Workload
  - Trace from PC using NTFS

## Performance (2)

- Extra Erase and Write Operations
  - 256 extra blocks





## Performance (3)

### Garbage Collection Overhead



# **Bad Block Management (1)**

#### Bad Blocks

- Factory-marked bad blocks
  - Marked "non-FF" at the first byte in the spare area (either 1st or 2nd page of every initial bad block)
  - < 2% of entire blocks
  - The first block is guaranteed to be good.
  - Should not erase or program factory-marked bad blocks.

#### Run-time bad blocks

- Bit errors
- Endurance cycle
- PROGRAM/ERASE failures

# **Bad Block Management (2)**

- Issues
  - Bad block table organization
    - Space
    - Bad block #, Remapped block #
    - Very sparse
  - Fast lookup
    - Time
  - Number of reserved blocks

## Wear-Leveling (1)

### Wear-leveling

 A software technique for balancing the erase counts of physical blocks to fully utilize the lifetime of NAND flash.

|         | With Wear-Leveling                          | Without Wear-Leveling                                             |
|---------|---------------------------------------------|-------------------------------------------------------------------|
| Feature | Maintain erase counts in both flash and RAM | Randomly select a block at run-time                               |
| Pros    | Maximize the lifetime up to spec. value     | No performance overhead                                           |
| Cons    | Performance degradation<br>RAM overhead     | Excessive wear-out in the specific area depending on the workload |

## Wear-Leveling (2)

### Naïve Wear-leveling

- Use blocks in a round-robin fashion
- Performance!
- JFFS

### Sophisticated Wear-leveling

- Keep erase count per block (in spare area)
- Dynamic mapping
- Consider erase counts during garbage collection
- Block swapping

## Wear-Leveling (3)

- Hot-Cold Swapping
  - Swap if  $max(EC_i) min(EC_i) > Threshold$
- CAT (Cost, Age, Times)
  - Erase the block with minimizes the following score:

Cleaning 
$$Cost_i \times \frac{1}{Age_i} \times Number \ of \ Cleaning_i = \frac{\mu_i \times \varepsilon_i}{(1 - \mu_i) \times a_i(t)}$$

- $-\mu_i$ : utilization (the percentage of valid data)
- $-a_i(t)$ : the elapsed time since the block was erased
- $-\mathcal{E}_i$ : the erase count

## Wear-Leveling (4)

#### Issues

- Maintaining erase counts
  - Per block
  - Separate area
- Memory footprint
  - Min/Max erase count
  - All the erase counts
  - Building in-memory data structure
- Performance degradation
  - Overhead due to wear-leveling

### **Error Correction Codes**

#### ECC

Hardware vs. Software

| Error Correction | Bits Required in the NAND Flash Spare Area |              |     |  |  |
|------------------|--------------------------------------------|--------------|-----|--|--|
| Level            | Hamming                                    | Reed-Solomon | ВСН |  |  |
| 1                | 13                                         | 18           | 13  |  |  |
| 2                | N/A                                        | 36           | 26  |  |  |
| 3                | N/A                                        | 54           | 39  |  |  |
| 4                | N/A                                        | 72           | 52  |  |  |
| 5                | N/A                                        | 90           | 65  |  |  |
| 6                | N/A                                        | 108          | 78  |  |  |
| 7                | N/A                                        | 126          | 91  |  |  |
| 8                | N/A                                        | 144          | 104 |  |  |
| 9                | N/A                                        | 162          | 117 |  |  |
| 10               | N/A                                        | 180          | 130 |  |  |

Source: Micron Technology, Inc.

### **Power-Off Recovery**

- Power-Off Recovery
  - For every modifying operations: write, reclaim
  - Atomicity (transactional operation)
  - Scan vs. checkpointing
    - Per Block
    - Map Block
  - File system level vs. FTL level
  - System-wide power-management scheme is necessary
    - On detecting power-off, system should notify devices drivers to safely close the current operation
  - Super capacitor?

## Summary (1)

- Small memory footprint
  - Directly related to the SRAM size (\$\$\$)
- Handling random writes
- Garbage collection
  - Minimize valid copy during garbage collection
  - Wear-leveling
- Wear-leveling
- Power-off recovery
- Real-time performance

## Summary (2)

### Physical Constraints

- Large block NAND
  - Sequential page programming
  - NOP 4
- MLC (Multi-Level Cell) NAND
  - NOP 1
  - Less endurance cycles (~ 10K)
  - More bit errors
  - Most of spare area is dedicated to ECC/EDC
  - Pair-page programming