関数解析レポート

百合川

2018年1月26日

a > 0, I = [0, a] とおく. C(I) から C(I) への線型作用素 T を次で定める:

$$\mathcal{D}(T) := \left\{ \, u \in C^1(I) \, \; ; \quad u(0) + u(a) = 0 \, \right\}, \quad Tu(x) = u'(x) \quad (x \in I).$$

このとき, $\sigma_p(T)$ 及び $\sigma(T)$ を求めよ.

証明.

点スペクトルについて $(\lambda I - T)u = 0$ を満たす λ に対し、微分方程式を解けば

$$u(x) = Ce^{\lambda x} \quad (x \in I, C \in \mathbb{C})$$

$$C + Ce^{\lambda a} = 0$$

が成り立つ. これは C=0 或は $\lambda=\frac{1}{a}\log(-1)$ の場合に実現する. $\lambda=\frac{1}{a}\log(-1)$ でなければ C=0 でなくてはならないが,このとき u=0 となり固有ベクトルにならないから $\lambda=\frac{1}{a}\log(-1)$ でなくてはならない.従って

$$\sigma_p(T) \subset \left\{ \begin{array}{l} \sqrt{-1} \frac{(2n+1)\pi}{a} \ ; \quad n \in \mathbb{Z} \end{array} \right\}$$

が得られる. 逆に或る $n\in\mathbb{Z}$ に対して $\lambda=(2n+1)\pi/a$ と表されているとき, 任意の $C\in\mathbb{C}$ に対して $u(x)=Ce^{\lambda x}$ $(x\in I)$ とおけば

$$\lambda u(x) - Tu(x) = 0 \quad (\forall x \in I), \quad u(0) + u(a) = 0$$

が満たされるから

$$\sigma_p(T) \supset \left\{ \begin{array}{l} \sqrt{-1} \frac{(2n+1)\pi}{a} \ ; \quad n \in \mathbb{Z} \end{array} \right\}$$

が成り立ち、 $\sigma_p(T) = \left\{ \sqrt{-1} \frac{(2n+1)\pi}{a} ; n \in \mathbb{Z} \right\}$ が得られる.

スペクトルについて $\rho(T)=\mathbb{C}\setminus\sigma_p(T)$ が成り立つことを示す.これにより $\sigma(T)=\sigma_p(T)$ が従う. $\lambda\in\mathbb{C}\setminus\sigma_p(T)$ を任意に取る. $f\in C(I)$ に対し

$$\begin{cases} u'(x) - \lambda u(x) = f(x) \\ u(0) + u(a) = 0 \end{cases} (x \in I)$$

を満たす u を考えれば,

$$\begin{cases} u'(x) - \lambda u(x) = f(x) \\ u(0) + u(a) = 0 \end{cases} \qquad (x \in I)$$

$$\Leftrightarrow \begin{cases} u(x) = e^{\lambda x} u_0 + \int_0^x e^{\lambda(x-s)} f(s) \, ds \\ u(0) + u(a) = 0 \end{cases} \qquad (x \in I)$$

$$\Leftrightarrow \begin{cases} u(x) = e^{\lambda x} u_0 + \int_0^x e^{\lambda(x-s)} f(s) \, ds \\ u(0) + e^{\lambda a} u_0 + \int_0^a e^{\lambda(a-s)} f(s) \, ds = 0 \end{cases} \qquad (x \in I)$$

$$\Leftrightarrow u(x) = -\frac{e^{\lambda x}}{1 + e^{\lambda a}} \int_0^a e^{\lambda(a-s)} f(s) \, ds + \int_0^x e^{\lambda(x-s)} f(s) \, ds \qquad (x \in I)$$

より f に対して u は唯一つ定まる.この対応を $R_\lambda:C(I)\stackrel{\mathrm{op}}{\to} C(I)$ と表せば, $\mathcal{D}(R_\lambda)=C(I)$ 且つ積分の線型性より R_λ 線型写像である.また

$$||R_{\lambda}f|| \le ||f||$$

を満たすから R_{λ} は有界で、さらに

$$R_{\lambda}(\lambda - T)u = u \quad (\forall u \in \mathcal{D}(T)),$$

 $(\lambda - T)R_{\lambda}f = f \quad (\forall f \in C(I))$

が成り立つから $R_{\lambda} = (\lambda - T)^{-1}$ が従い $\lambda \in \rho(T)$ を得る.

X,Y をそれぞれ $\mathbb{R}^m,\mathbb{R}^n$ の空でないコンパクト部分集合とし, $K \in C(X \times Y)$ とするとき

$$T: C(Y) \to C(X), \quad Tf(x) = \int_Y K(x, y)f(y) \, dy \quad (f \in C(Y))$$

はコンパクト作用素であることを示せ.

証明. m 次元 Lebesgue 測度を μ_m ,n 次元 Lebesgue 測度を μ_n と表す.講義中の例より

$$\tilde{T}: L^{\infty}(\mu_n) \ni f \longmapsto \int_{Y} K(x, y) f(y) \, \mu_n(dy)$$

により定める \tilde{T} は $L^{\infty}(\mu_n)$ から $L^{\infty}(\mu_m)$ へのコンパクト作用素である。そして $C(Y) \subset L^{\infty}(\mu_n)$, $C(X) \subset L^{\infty}(\mu_m)$ より \tilde{T} は T の拡張となっている。C(Y) から任意に有界列 $(f_n)_{n=1}^{\infty}$ を取れば, $\left(\tilde{T}f_n\right)_{n=1}^{\infty}$ の或る部分列 $\left(\tilde{T}f_{n_k}\right)_{k=1}^{\infty}$ は Banach 空間 $L^{\infty}(\mu_m)$ で収束する。今 $Tf_n = \tilde{T}f_n$ $(n=1,2,\cdots)$ 且つ

$$\|\,Tf\,\|_{\infty} = \left\|\,\tilde{T}f\,\right\|_{\mathrm{L}^{\infty}(\mu_m)} \quad (\forall f\in C(Y))$$

が満たされているから、 $(Tf_{n_k})_{k=1}^{\infty}$ もまた C(X) で sup-norm により Cauchy 列をなしていて、(C(X), sup-norm) が Banach 空間であるから $(Tf_{n_k})_{k=1}^{\infty}$ は連続関数に強収束する.ゆえに T はコンパクト作用素である.

 $a \in C_b(\mathbb{R}^d), \lambda > d$ とする. $f \in L^2(\mathbb{R}^d)$ に対し,

$$T_a f(x) = \int_{|x-y|>1} \frac{a(x)f(y)}{|x-y|^{\lambda}} dy \quad (\text{a.e.} x \in \mathbb{R}^d)$$

により $T_a: L^2(\mathbb{R}^d) \to L^2(\mathbb{R}^d)$ を定める.

- (1) T_a は連続であることを示せ.
- (2) $\lim_{|x|\to\infty} a(x) = 0$ ならば T_a はコンパクト作用素であることを示せ.

証明.

(1) 任意の $f \in L^2(\mathbb{R}^d)$ に対し $T_a f$ が二乗可積分であることと T_a の連続性を同時に示す. 以下, $L^2(\mathbb{R}^d)$ のノルムを

 $\|\cdot\|$ と書き、 $M := \sup_{x \in \mathbb{R}^d} |a(x)| < \infty$ とおく. $f \in L^2(\mathbb{R}^d)$ に対し、Hölder の不等式より

$$\int_{\mathbb{R}^{d}} \mathbb{1}_{|x-y|>1} \frac{|a(x)f(y)|}{|x-y|^{\lambda}} dy = \int_{\mathbb{R}^{d}} \mathbb{1}_{|x-y|>1} \frac{|a(x)|}{|x-y|^{\frac{\lambda}{2}}} \mathbb{1}_{|x-y|>1} \frac{|f(y)|}{|x-y|^{\frac{\lambda}{2}}} dy$$

$$\leq \left(\int_{\mathbb{R}^{d}} \mathbb{1}_{|x-y|>1} \frac{|a(x)|^{2}}{|x-y|^{\lambda}} dy \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^{d}} \mathbb{1}_{|x-y|>1} \frac{|f(y)|^{2}}{|x-y|^{\lambda}} dy \right)^{\frac{1}{2}}$$

が任意の $x \in \mathbb{R}^d$ で成立する. 右辺第一項について, $\lambda > d \ge 1$ であるから,変数変換を用いて

$$\int_{\mathbb{R}^d} 1_{|x-y|>1} \frac{|a(x)|^2}{|x-y|^{\lambda}} dy \le M^2 \int_{\mathbb{R}^d} 1_{|x-y|>1} \frac{1}{|x-y|^{\lambda}} dy = M^2 \int_{\mathbb{R}^d} 1_{|u|>1} \frac{1}{|u|^{\lambda}} du < \infty$$

が満たされる. 従って $U := \int_{\mathbb{R}^d} \mathbf{1}_{|x-y|>1} \frac{1}{|x-y|^d} dy$ とおけば U は x に依らない定数である. 今, $\mathbb{R}^d \ni x \mapsto (a(x)f(y))/|x-y|^d$ は各 $y \in \mathbb{R}^d \setminus \{x\}$ で連続, $\mathbb{R}^d \ni y \mapsto \mathbf{1}_{\{|x-y|>1\}}(a(x)f(y))/|x-y|^d$ は各 $x \in \mathbb{R}^d$ で $\mathfrak{B}(\mathbb{R}^d)/\mathfrak{B}(\mathbb{C})$ -可測より, $\mathbb{R}^d \times \mathbb{R}^d \ni (x,y) \mapsto \mathbf{1}_{\{|x-y|>1\}}(a(x)f(y))/|x-y|^d$ は $\mathfrak{B}(\mathbb{R}^d) \times \mathfrak{B}(\mathbb{R}^d)/\mathfrak{B}(\mathbb{C})$ -可測であるから,Fubini の定理より

$$||T_{a}f||^{2} = \int_{\mathbb{R}^{d}} \left| \int_{|x-y|>1} \frac{a(x)f(y)}{|x-y|^{\lambda}} dy \right|^{2} dx$$

$$\leq \int_{\mathbb{R}^{d}} \left(\int_{\mathbb{R}^{d}} \mathbb{1}_{|x-y|>1} \frac{|a(x)|^{2}}{|x-y|^{\lambda}} dy \right) \left(\int_{\mathbb{R}^{d}} \mathbb{1}_{|x-y|>1} \frac{|f(y)|^{2}}{|x-y|^{\lambda}} dy \right) dx$$

$$\leq M^{2} U \int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}} \mathbb{1}_{|x-y|>1} \frac{|f(y)|^{2}}{|x-y|^{\lambda}} dy dx$$

$$= M^{2} U \int_{\mathbb{R}^{d}} |f(y)|^{2} dy \int_{\mathbb{R}^{d}} \mathbb{1}_{|x-y|>1} \frac{1}{|x-y|^{\lambda}} dx$$

$$= M^{2} U^{2} ||f||^{2}$$

$$(1)$$

が得られる. T_a が線型性を持てば有界性と連続性は一致するから,あとは T_a が線型性を持つことを示せばよい. (2) $L^2(\mathbb{R}^d)$ が Banach 空間であるから, $B_c(L^2)$ は $B(L^2)$ の閉部分空間であり, T_a に作用素ノルムで収束する $B_c(L^2)$ の列が存在すれば $T_a \in B_c(L^2)$ が従う.今,任意に $\epsilon > 0$ を取れば,仮定より或る $N = N(\epsilon) \in \mathbb{N}$ が存在して

$$|a(x)| < \epsilon \quad (|x| > N) \tag{2}$$

が成り立つ. また

$$a_n(x) := a(x) \mathbb{1}_{|x| \le n} \quad (\forall x \in \mathbb{R}^d, \ n = 1, 2, \cdots)$$

により $(a_n)_{n=1}^{\infty}$ を定めれば、各 n に対し

$$\mathbb{R}^2 \ni (x, y) \longmapsto \mathbf{1}_{|x-y|>1} \frac{a_n(x)}{|x-y|^{\lambda}}$$

は二乗可積分であるから T_{a_n} は Hilbert-Schmidt 型積分作用素であり、従ってコンパクト作用素である。(1) より

$$\left\| T_a - T_{a_n} \right\| \le \sup_{x \in \mathbb{R}^d} |a(x) - a_n(x)| U$$

が成り立ち, (2) より n>N ならば $\sup_{x\in\mathbb{R}^d}|a(x)-a_n(x)|<\epsilon$ となるから, ϵ の任意性より

$$||T_a - T_{a_n}|| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が従う. 冒頭に書いた理由により T_a はコンパクト作用素である.

 $a=(a_n)_{n=1}^\infty\in\ell^\infty$ に対して $T:\ell^2\to\ell^2$ を $Tx=(a_nx_n)_{n=1}^\infty$ $(x=(x_n)_{n=1}^\infty\in\ell^2)$ で定める.

- (1) T がコンパクト作用素であるための必要十分条件を求めよ.
- (2) T が Hilbert-Schmidt 型作用素であるための必要十分条件を求めよ.

証明.

(1) 求める必要十分条件が $\lim_{n\to\infty} a_n = 0$ であることを示す.

十分性 任意に ℓ^2 の有界列 $(x^{\nu})_{\nu=1}^{\infty}$ $\left(x^{\nu}=(x_n^{\nu})_{n=1}^{\infty}\right)$ を取る。対角線論法により,或る部分添数列 $(\nu(k))_{k=1}^{\infty}$ が存在して,全ての $n\in\mathbb{N}$ について $\left(x_n^{\nu(k)}\right)_{k=1}^{\infty}$ が \mathbb{C} の Cauchy 列となるようにできる。実際 $\left(x_1^{\nu}\right)_{\nu=1}^{\infty}$ は \mathbb{C} において有界列であるから,Bolzano-Weierstrass の定理より或る部分列 $\left(x_1^{\nu(k,1)}\right)_{k=1}^{\infty}$ は \mathbb{C} の Cauchy 列となる。 $\left(x_2^{\nu}\right)_{\nu=1}^{\infty}$ も \mathbb{C} において有界列であるから, $(\nu(k,1))_{k=1}^{\infty}$ の部分添数列 $(\nu(k,2))_{k=1}^{\infty}$ が存在し $\left(x_2^{\nu(k,2)}\right)_{k=1}^{\infty}$ は \mathbb{C} の Cauchy 列となる。 同様に部分列を取る操作を繰り返し,任意の $n\in\mathbb{N}$ に対し $\left(x_n^{\nu(k,n)}\right)_{k=1}^{\infty}$ が \mathbb{C} の Cauchy 列となるようにできる。 $\nu(k):=\nu(k,k)$ $(k=1,2,\cdots)$ として $(\nu(k))_{k=1}^{\infty}$ を定めればよい。

$$M := \sup_{v \in \mathbb{N}} \|x^v\|_{\ell^2} < \infty$$

とおき、任意に $\epsilon > 0$ を取る. $\lim_{n \to \infty} a_n = 0$ より或る $N = N(\epsilon) \in \mathbb{N}$ が存在して

$$|a_n| \le \frac{\epsilon}{2M} \quad (\forall n > N)$$

を満たすから、任意の $k, m \in \mathbb{N}$ に対して

$$\begin{aligned} \left\| T x^{\nu(k)} - T x^{\nu(m)} \right\|_{\ell^{2}}^{2} &= \sum_{n=1}^{\infty} |a_{n}|^{2} \left| x_{n}^{\nu(k)} - x_{n}^{\nu(m)} \right|^{2} \\ &\leq \sum_{n=1}^{N} |a_{n}|^{2} \left| x_{n}^{\nu(k)} - x_{n}^{\nu(m)} \right|^{2} + 2 \frac{\epsilon^{2}}{4M^{2}} \sum_{n=N+1}^{\infty} \left(\left| x_{n}^{\nu(k)} \right|^{2} + \left| x_{n}^{\nu(m)} \right|^{2} \right) \\ &\leq \sum_{n=1}^{N} |a_{n}|^{2} \left| x_{n}^{\nu(k)} - x_{n}^{\nu(m)} \right|^{2} + \epsilon^{2} \end{aligned}$$

が成り立つ. ここで $A:=\max_{1\leq n\leq N}|a_n|$ とおけば、或る $N_j=N_j(\epsilon)\in\mathbb{N}$ $(j=1,\cdots,N)$ が存在して

$$\left|x_j^{\nu(k)} - x_j^{\nu(m)}\right| < \frac{\epsilon}{\sqrt{N}A} \quad (\forall k, m > N_j, \ j = 1, \cdots, N)$$

が成り立つ. $N' := \max_{1 \leq i \leq N} N_i$ とおけば

$$\sum_{n=1}^{N} |a_n|^2 \left| x_n^{\nu(k)} - x_n^{\nu(m)} \right|^2 \le A^2 N \frac{\epsilon^2}{NA^2} = \epsilon^2 \quad (\forall k, m > N')$$

が従うから,

$$\left\| T x^{\nu(k)} - T x^{\nu(m)} \right\|_{\ell^{2}}^{2} \leq 2\epsilon^{2} \quad (\forall k, m > N')$$

が成り立つ. ϵ の任意性より $\left(Tx_n^{\gamma(k)}\right)_{k=1}^{\infty}$ は収束列であり、T はコンパクト作用素である.

必要性 対偶, つまり $\lim_{n\to\infty}a_n=0$ が満たされない場合に或る有界点列 $(x^k)_{k=1}^\infty\subset\ell^2$ が存在して, $(Tx^k)_{k=1}^\infty$ の いかなる部分列も収束しないことを示す。 今,或る $\epsilon>0$ に対し $(a_n)_{n=1}^\infty$ の或る部分列 $(a_{n_k})_{k=1}^\infty$ が

$$|a_{n_k}| \ge \epsilon$$

を満たす.

$$x_n^k := \begin{cases} 1 & (n = n_k) \\ 0 & (n \neq n_k) \end{cases} \quad (n, k = 1, 2, \cdots)$$

として ℓ^2 の点列 $(x^k)_{k=1}^{\infty}$ を定めれば, $k \neq m$ なら

$$||Tx^k - Tx^m||^2 = |a_{n_k}|^2 + |a_{n_m}|^2 \ge 2\epsilon^2$$

を満たすから $(Tx^k)_{k=1}^{\infty}$ のいかなる部分列も収束しえない.

(2)

 (X, \mathcal{M}, μ) を σ -有限な測度空間, $H = L^2(X, \mathcal{M}, \mu) = L^2(\mu)$ とする.M-可測関数 $a: X \to \mathbb{C}$ に対して,H から H へのかけ算作用素 M_a を次で定める:

$$\mathcal{D}(M_a) = \{ u \in H ; \quad au \in H \}, \quad (M_a u)(x) = a(x)u(x) \quad (x \in X).$$

- (1) M_a は線型作用素で、 $\mathcal{D}(M_a)$ は H で稠密なことを示せ.
- (2) $M_a^* = M_{\overline{a}}$ が成り立つことを示せ.
- (3) $\sigma(M_a) = \left\{ \lambda \in \mathbb{C} ; \forall \epsilon > 0 \ \text{に対し} \ \mu \left(a^{-1}(U_{\epsilon}(\lambda)) \right) > 0 \right\}$ を示せ. (ただし $U_{\epsilon}(\lambda)$ は λ の ϵ -近傍.)
- (4) $\sigma_p(M_a) = \left\{ \lambda \in \mathbb{C} ; \mu\left(a^{-1}(\{\lambda\})\right) > 0 \right\}$ を示せ.

証明. σ -有限であるから或る系 $(X_n)_{n=1}^\infty\subset M$ が存在して $X_1\subset X_2\subset\cdots$, $\mu(X_n)<\infty$ $(orall n\in\mathbb{N})$, $\cup_{n\in\infty}X_n=X$ を満たす.

(1) 任意に $v \in H$ を取り $v_n := v \mathbb{1}_{\{|a| \le n\}}$ $(n = 1, 2, 3, \cdots)$ として関数列 $(v_n)_{n=1}^{\infty}$ を作る。全ての $x \in S$ で $|v_n(x)| \le |v(x)|$ が満たされているから $(v_n)_{n \in \mathbb{N}} \subset H$ である。また全ての $n \in \mathbb{N}$ について

$$\int_{S} |a(x)v_{n}(x)|^{2} \mu(dx) = \int_{\{|a| \le n\}} |a(x)v(x)|^{2} \mu(dx) \le n^{2} \int_{S} |v(x)|^{2} \mu(dx)$$

が成り立つから $(v_n)_{n\in\mathbb{N}}\subset D(M_a)$ も満たされる.

$$\|v - v_n\|^2 = \int_S |v(x) - v_n(x)|^2 \, \mu(dx) = \int_S \, 1_{\{|a| > n\}}(x) |v(x)|^2 \, \mu(dx)$$

となり、右辺の被積分関数は各点で0に収束し、かつnに関係なく可積分関数 $|v|^2$ で抑えられるから、Lebesgue の収束定理より

$$\lim_{n \to \infty} \|v - v_n\|_{L^2(\mu)}^2 = \lim_{n \to \infty} \int_{S} \mathbb{1}_{\{|a| > n\}}(x) |v(x)|^2 \mu(dx) = \int_{S} \lim_{n \to \infty} \mathbb{1}_{\{|a| > n\}}(x) |v(x)|^2 \mu(dx) = 0$$

が得られる. ν は任意に選んでいたから $D(M_a)$ は X において稠密である.

(2) 任意の $u, v \in \mathcal{D}(M_a) = \mathcal{D}(M_{\overline{a}})$ に対して

$$\langle M_a u, v \rangle = \int_X a(x) u(x) \overline{v(x)} \, \mu(dx) = \int_X u(x) \overline{\overline{a(x)} v(x)} \, \mu(dx) = \langle u, M_{\overline{a}} v \rangle$$

が成り立つから、 $v \in \mathcal{D}(M_a^*)$ 且つ $M_a^*v = M_{\overline{a}}v$ ($\forall v \in \mathcal{D}(M_{\overline{a}})$) が従う. 逆に任意に $u \in \mathcal{D}(M_a)$, $v \in \mathcal{D}(M_a^*)$ を取れば、

$$\langle u, M_a^* v \rangle = \langle M_a u, v \rangle = \langle u, M_{\overline{a}} v \rangle$$

となり $M_a^*v = M_{\overline{a}}v \ (\forall v \in \mathcal{D}(M_a^*))$ が従う.

(3) $\lambda \in \mathbb{C}$ を任意に取り固定し、任意の $\epsilon > 0$ に対して $V_{\epsilon} := a^{-1}(U_{\epsilon}(\lambda))$ とおく、或る $\epsilon > 0$ が存在して $\mu(V_{\epsilon}) = 0$ が成り立つ場合、

$$b(x) := \begin{cases} \frac{1}{\lambda - a(x)} & (x \in X \backslash V_{\epsilon}) \\ 0 & (x \in V_{\epsilon}) \end{cases}$$

と定めれば、任意の $u \in H$ に対して

$$\int_X |b(x)u(x)|^2 \ \mu(dx) = \int_{X \setminus V_\epsilon} \frac{1}{|\lambda - a(x)|^2} |u(x)|^2 \ \mu(dx) \leq \frac{1}{\epsilon^2} \int_X |u(x)|^2 \ \mu(dx) < \infty$$

が成り立つから $\mathcal{D}(M_b) = H$ である. 更に

$$b(\lambda - a)u = u \quad (\mu\text{-a.e.}, \ \forall u \in \mathcal{D}(M_a)),$$

 $(\lambda - a)bu = u \quad (\mu\text{-a.e.}, \ \forall u \in H)$

が成り立つから $M_b = (\lambda I - M_a)^{-1}$ であり, $M_b \in B(H)$ であるから $\lambda \in \rho(M_a)$ が成り立つ.一方任意の $\epsilon > 0$ に対して $\mu(V_\epsilon) = 0$ となる場合,任意に $\epsilon > 0$ を取り固定する.

$$\mu(V_{\epsilon}) = \lim_{n \to \infty} \mu(V_{\epsilon} \cap X_n)$$

が成り立つから、或る $N \in \mathbb{N}$ が存在して $\mu(V_{\epsilon} \cap X_N) > 0$ を満たす.

$$u_{\epsilon}(x) := \begin{cases} 1 & (x \in V_{\epsilon} \cap X_N) \\ 0 & (x \notin V_{\epsilon} \cap X_N) \end{cases}$$

と定めれば、 u_{ϵ} は二乗可積分であり

$$\int_X |a(x)u_\epsilon(x)|^2 \, \mu(dx) = \int_{V_\epsilon \cap X_N} |a(x)u_\epsilon(x)|^2 \, \mu(dx) < \infty$$

を満たすから $u_{\epsilon} \in \mathcal{D}(M_a)$ である. また

$$\|(\lambda I - M_a)u_{\epsilon}\|^2 = \int_{X} |\lambda - a(x)|^2 |u_{\epsilon}(x)|^2 \ \mu(dx) = \int_{X \setminus O(X)} |\lambda - a(x)|^2 |u_{\epsilon}(x)|^2 \ \mu(dx) \le \epsilon^2 \int_{X} |u_{\epsilon}(x)|^2 \ \mu(dx) = \epsilon^2 \|u_{\epsilon}\|^2$$

を満たす. つまり任意の ϵ に対し或る $u_{\epsilon} \in \mathcal{D}(M_a)$ が存在し

$$\frac{1}{\epsilon} \le \frac{\|u_{\epsilon}\|}{\|(\lambda I - M_a)u_{\epsilon}\|}$$

を満たす. ここで $(\lambda I - M_a)$ に対し逆作用素 $(\lambda I - M_a)^{-1}$ が存在するとしても, $u_{\epsilon} \in \mathcal{D}(M_a)$ に対して或る $v_{\epsilon} \in \mathcal{D}\big((\lambda I - M_a)^{-1}\big)$ が存在して $u_{\epsilon} = (\lambda I - M_a)^{-1}v_{\epsilon}$ を満たすが,

$$\frac{1}{\epsilon} \le \frac{\left\| (\lambda I - M_a)^{-1} v_{\epsilon} \right\|}{\left\| v_{\epsilon} \right\|}$$

が従い、 ϵ の任意性より $(\lambda I - M_a)^{-1}$ の作用素ノルムは非有界である、従ってこの場合 $\lambda \in \sigma(M_a)$ が成り立つ、

(4) 先ず $\sigma_p(M_a) \subset \left\{\lambda \in \mathbb{C} ; \mu\left(a^{-1}(\{\lambda\})\right) > 0\right\}$ が成り立つことを示す。任意の $\lambda \in \sigma_p(M_a)$ に対して固有ベクトル $\mu \in H$ が存在する、 $\mu \neq 0$ (関数類の意味で) より

$$N := \{ x \in X ; u(x) \neq 0 \}$$

とおけば $\mu(N) > 0$ が満たされる. 一方で点スペクトルの定義より $(\lambda I - M_a)u = 0$ が成り立つから

$$0 = ||(\lambda I - M_a)u||^2 = \int_X |\lambda - a(x)|^2 |u(x)|^2 \, \mu(dx) = \int_N |\lambda - a(x)|^2 |u(x)|^2 \, \mu(dx)$$

となり

$$\mu(\{x \in N ; |\lambda - a(x)| > 0 \}) = 0$$

が従う. $\mu(N) > 0$ であるから

$$\mu(a^{-1}(\{\lambda\})) \ge \mu(\{x \in N ; |\lambda - a(x)| = 0\}) > 0$$

が成り立ち $\lambda \in \left\{\lambda \in \mathbb{C} \; ; \;\; \mu\left(a^{-1}(\{\lambda\})\right) > 0\right\}$ を得る。次に $\sigma_p(M_a) \supset \left\{\lambda \in \mathbb{C} \; ; \;\; \mu\left(a^{-1}(\{\lambda\})\right) > 0\right\}$ が成り立つことを示す。任意の $\lambda \in \left\{\lambda \in \mathbb{C} \; ; \;\; \mu\left(a^{-1}(\{\lambda\})\right) > 0\right\}$ に対して

$$\Lambda := a^{-1}(\{\lambda\})$$

とおけば $\mu(\Lambda) > 0$ が満たされている.

$$\mu(\Lambda) = \lim_{n \to \infty} \mu(\Lambda \cap X_n)$$

が成り立つから、或る $n \in \mathbb{N}$ が存在して $\mu(\Lambda \cap X_n) > 0$ を満たす.

$$u(x) := \begin{cases} 1 & (x \in \Lambda \cap X_n), \\ 0 & (x \notin \Lambda \cap X_n) \end{cases}$$

として u を定めれば u は二乗可積分であり、 $\mu(\Lambda \cap X_n) > 0$ であるから関数類として $u \neq 0$ を満たす. また

$$\|(\lambda I - M_a)u\|^2 = \int_{Y} |\lambda - a(x)|^2 |u(x)|^2 \, \mu(dx) = \int_{A \cap Y} |\lambda - a(x)|^2 |u(x)|^2 \, \mu(dx) = 0$$

が成り立ち $(\lambda I - M_a)u = 0$ が従うから u は λ の固有ベクトルであり、 $\lambda \in \sigma_p(M_a)$ を得る.

 $(\mathbb{C},\mathfrak{B}(\mathbb{C}),\mu)$ を σ -有限な測度空間, $H=\mathrm{L}^2(\mathbb{C},\mathfrak{B}(\mathbb{C}),\mu)=\mathrm{L}^2(\mu)$ とする.Borel 可測関数 $a:\mathbb{C}\to\mathbb{C}$ に対して,H から H へのかけ算作用素 M_a を次で定める:

$$\mathcal{D}(M_a) = \left\{ \; u \in H \; ; \quad au \in H \; \right\}, \quad (M_a u)(z) = a(z)u(z) \quad (z \in \mathbb{C}).$$

また $E(A)=M_{{1\!\!1}_{a^{-1}(A)}}(A\in\mathfrak{B}(\mathbb{C}))$ と定める.

- (1) E は, $\mathfrak{B}(\mathbb{C})$ で定義され,H 上の直交射影を値とするスペクトル測度であることを示せ.
- (2) Borel 可測関数 $f: \mathbb{C} \to \mathbb{C}$ に対し,

$$T_f := \int_{\mathbb{C}} f(z) \, E(dxdy) \quad (z = x + iy, \ (x, y) \in \mathbb{R}^2)$$

と定める. このとき, $T_f = M_{f \circ a}$ を示せ.

証明.

(1) 任意の $A \in \mathfrak{B}(\mathbb{C})$ に対し $\mathbb{1}_{a^{-1}(A)}$ は有界であるから、春学期のレポート問題より $M_{\mathbb{1}_{a^{-1}(A)}} \in B(H)$ が成り立つ. ゆえに E は $\mathfrak{B}(\mathbb{C})$ 全体で定義される. 次に任意に $A \in \mathfrak{B}(\mathbb{C})$ を取り E(A) が H 上の直交射影であることを示す. 実際

$$E(A)^2 u = M_{ {\rm 1\hspace{-.1em}l}_{a^{-1}(A)}} M_{ {\rm 1\hspace{-.1em}l}_{a^{-1}(A)}} u = {\rm 1\hspace{-.1em}l}_{a^{-1}(A)} {\rm 1\hspace{-.1em}l}_{a^{-1}(A)} u = {\rm 1\hspace{-.1em}l}_{a^{-1}(A)} u = E(A) u \quad (\forall u \in H)$$

が成り立ち $E(A)^2 = E(A)$ が得られ、また $\mathbf{1}_{a^{-1}(A)}$ は実数値であるから

$$E(A)^* = M_{\mathbf{1}_{a^{-1}(A)}}^* = M_{\mathbf{1}_{a^{-1}(A)}} = E(A)$$

が成り立ち、E(A) は自己共役である. 最後にE がスペクトル測度であることを示す. 先ず

$$E(\mathbb{R}^d)u = M_{1_{\alpha}}u = u$$

より $E(\mathbb{R}^d)=I$ を得る. また任意の互いに素な集合列 $A_1,A_2,\dots\in\mathfrak{B}(\mathbb{C})$ を取れば

$$E(\sum_{n=1}^{\infty} A_n)u = \sum_{n=1}^{\infty} E(A_n)u \quad (\forall u \in H)$$

が成り立つ.

(2) $\mathcal{D}(T_f) = \mathcal{D}(M_{f \circ a})$ を示さなくてはいけない. f が可測単関数の場合,

$$f = \sum_{i=1}^{n} \alpha_i \, \mathbb{I}_{A_i}$$

として

$$\int_{\mathbb{C}} |f(x)|^2 \, \mu_u(dx) = \sum_{i=1}^n |\alpha_i|^2 \, \langle E(A_i)u,u\rangle = \sum_{i=1}^n |\alpha_i|^2 \, \int_{\mathbb{C}} \, 1\!\!1_{a^{-1}(A_i)} |u(x)|^2 \, \mu(dx) = \int_{\mathbb{C}} |f(a(x))|^2 |u(x)|^2 \, \mu(dx)$$

が成り立つ. f が一般の可測関数の場合は MSF-単調近似列 $(f_n)_{n=1}^\infty$ を取れば

$$\int_{\mathbb{C}} |f_n(x)|^2 \, \mu_u(dx) = \int_{\mathbb{C}} |f_n(a(x))|^2 |u(x)|^2 \, \mu(dx) \quad (\forall n \in \mathbb{N})$$

が従い、単調収束定理より両辺はそれぞれ $\int_{\mathbb{C}}|f(x)|^2\mu_u(dx)$ 、 $\int_{\mathbb{C}}|f(a(x))|^2|u(x)|^2\mu(dx)$ に収束する. 従って

$$u \in \mathcal{D}(T_f) \quad \Leftrightarrow \quad u \in \mathcal{D}(M_{f \circ a})$$

が成り立つ. 次に $T_f u = M_{f \circ a} u \ (\forall u \in \mathcal{D} \big(T_f \big))$ を示す. f が可測単関数の場合,

$$T_{f}u = \sum_{i=1}^{n} \alpha_{i} E(A_{i})u = \sum_{i=1}^{n} \alpha_{i} \mathbb{1}_{a^{-1}(A_{i})}u = f_{n} \circ au = M_{f_{n} \circ a}u \quad (\forall u \in H)$$

が成り立つ. 一般の f に対しては、MSF-単調近似列 $(f_n)_{n=1}^{\infty}$ を取る.

$$||T_f u - M_{f \circ a} u|| \le ||T_f u - T_{f_n} u|| + ||M_{f_n \circ a} u - M_{f \circ a} u||$$

が成り立つ. スペクトル積分 T_f の定義より

$$||T_f u - T_{f_n} u|| \longrightarrow 0 \quad (n \longrightarrow \infty)$$

が成り立ち、また Lebesgue の収束定理より

$$\left\| M_{f_n \circ a} u - M_{f \circ a} u \right\|^2 = \int_{\mathbb{C}} \left| f_n(a(x)) u(x) - f(a(x)) u(x) \right|^2 \ \mu(dx) \longrightarrow 0 \quad (n \longrightarrow \infty)$$

を得る. ゆえに

$$\left\| T_f u - M_{f \circ a} u \, \right\| = 0$$

が成り立つ.