

PIROB-TUS

Tentacule Ultra Sophistiqué

Contexte du projet

Mr Severin Druart (professeur de collège) désirait un dispositif similaire à l'invention "SpiRobs" pour ses élèves

Contexte du projet

Nous avons donc relever son défi et sommes parvenus à créer :

SPIROB - TUS

Premières réflexions

Une fois la direction définie, il ne nous restait plus qu'à déterminer le chemin à emprunter.

Liste de courses

Pour pouvoir mener à bien le projet, il nous fallait du matériel spécifique.

- Un filament pour imprimante 3D flexible (appelé TPU)
- Deux servomoteurs avec une course suffisante pour enrouler les fils
- Deux cartes MicroBit (suggérés par Mr Druart)

Premiers essais

Après avoir reçus le matériel nous avons demandés à Camille Bisson (manageuse du pôle numérique PNRB) pour pouvoir imprimer des premiers essais sur ses imprimantes 3D.

Premiers essais

Après avoir eu un modèle "satisfaisant" nous avons ensuite tester nos servomoteurs en les reliant à une carte MicroBit pour tester leurs courses.

Une fois les tests concluant, Alexandre à ensuite désigner une poulie permettant de tirer le fil du tentacule à l'aide de la course et de la longueur de fil qui devait être tirée pour pouvoir tendre le tentacule.

Premiers essais

Pendant ce temps là, nous avons réfléchis à la liaison entre les cartes MicroBit et les servomoteurs sur MakeCode.

Nous avons ensuite décider d'utiliser le module gyroscope (mesure la vitesse de rotation sur 3 axes) des cartes pour pouvoir contrôler les moteurs.

Emetteur

Récepteur

Servomoteur

Carte électronique

Assemblage

Une fois les tests effectués, il ne nous restait plus qu'à assembler le tout.

Alexandre à ensuite utiliser SolidWorks pour modéliser le boitier qu'il a ensuite imprimer grâce à sa propre imprimante.

Assemblage

Le résultat obtenu est le suivant :

Problèmes rencontrés

Évidemment, comme aucun projet ne se passe comme prévu, nous avons rencontrés deux problèmes technique.

Les servomoteurs nous ont poussés à utiliser une autre carte que nos cartes MicroBit pour l'alimentation des servomoteurs.

Problèmes rencontrés

Nous avons ensuite eu du fil à retordre avec les poulies, le fil sortait de la piste et ne tendait plus le tentacule.

Pour pallier à ce problème, nous avons créer plusieurs versions de poulies (quatres au total !).

Problèmes rencontrés

Poulie Version 3 → Poulie Version 4

Démonstration

Voyez par vous mêmes la démonstration de notre SPIROBS

