

Exemplu

Există o mulțime numărabilă de formule φ a.î. atât φ cât și $\neg \varphi$ sunt satisfiabile.

Dem.: Demonstrăm că mulțimea $V = \{\varphi_n := v_n \mid n \in \mathbb{N}\} \subseteq Form$ satisface condiția din enunț. Fie $n \in \mathbb{N}$. Considerăm interpretările $e_1, e_2: V \to \{0, 1\}$ definite astfel

$$e_1(v_i) = egin{cases} 1 & ext{dacă } i = n \ ext{arbitrar} & ext{dacă } i
eq n \end{cases}, \quad e_2(v_i) = egin{cases} 0 & ext{dacă } i = n \ ext{arbitrar} & ext{dacă } i
eq n \end{cases}.$$

Atunci

$$e_1^+(\varphi_n) = e_1^+(v_n) = e_1(v_n) = 1,$$

deci $e_1 \models \varphi_n$. Pe de altă parte,

$$e_2^+(\neg \varphi_n) = e_2^+(\neg v_n) = \neg e_2^+(v_n) = \neg e_2(v_n) = \neg 0 = 1,$$

deci $e_2 \models \neg \varphi_n$.

Metoda tabelului

Fie φ o formulă arbitrară și $Var(\varphi) = \{x_1, x_2, \dots, x_k\}$. Pentru orice evaluare $e: V \to \{0,1\}, e^+(\varphi)$ depinde doar de $e(x_1), \ldots, e(x_k)$, conform Propoziției 1.13.

Aşadar, $e^+(\varphi)$ depinde doar de restricția lui e la $\{x_1, x_2, \dots, x_k\}$:

$$e': \{x_1, \ldots, x_k\} \to \{0, 1\}, \quad e'(x_i) = e(x_i).$$

Sunt 2^k astfel de funcții posibile $e'_1, e'_2, \dots, e'_{2^k}$. Asociem fiecăreia o linie într-un tabel:

<i>x</i> ₁	<i>X</i> ₂		x_k	\dots subformule ale lui $arphi$ \dots	φ
$e_1'(x_1)$	$e_1'(x_2)$		$e_1'(x_k)$		${e_1^\prime}^+(arphi)$
$e_{2}'(x_{1})$	$e_2'(x_2)$		$e_2'(x_k)$		$e_2^{\prime+}(arphi)$
:	:	٠	į	·. <u>.</u>	:
$e_{2^k}'(x_1)$	$e_{2^{k}}'(x_{2})$				$\left \begin{array}{c} e_{2^k}^{\prime}^+(arphi) \end{array} \right $

Pentru orice i, e'_i (φ) se definește similar cu Teorema 1.11.

 φ este tautologie ddacă $e_i^{\prime +}(\varphi) = 1$ pentru orice $i \in \{1, \dots, 2^k\}$.

Metoda tabelului

Exemplu:

Fie

$$\varphi = v_1 \rightarrow (v_2 \rightarrow (v_1 \wedge v_2)).$$

Vrem să demonstrăm că $\models \varphi$.

$$Var(\varphi) = \{v_1, v_2\}.$$

v_1	<i>v</i> ₂	$v_1 \wedge v_2$	$v_2 ightharpoonup (v_1 \wedge v_2)$	φ
0	0	0	1	1
0	1	0	0	1
1	0	0	1	1
1	1	1	1	1

Tautologii

Definiția 1.16

Fie φ, ψ două formule. Spunem că

- $ightharpoonup \varphi$ este consecință semantică a lui ψ dacă $Mod(\psi) \subseteq Mod(\varphi)$. Notație: $\psi \models \varphi$.
- $ightharpoonup \varphi$ și ψ sunt (logic) echivalente dacă $Mod(\psi) = Mod(\varphi)$. Notație: $\varphi \sim \psi$.

Observatie

Relația \sim este o relație de echivalență pe mulțimea Form a formulelor lui LP.

Propoziția 1.17

Fie φ, ψ formule. Atunci

- (i) $\psi \models \varphi$ ddacă $\models \psi \rightarrow \varphi$.
- (ii) $\psi \sim \varphi$ ddacă ($\psi \models \varphi$ și $\varphi \models \psi$) ddacă $\models \psi \leftrightarrow \varphi$.

Dem.: Exercițiu.

Tautologii, consecințe semantice și echivalențe

Propoziția 1.18

Pentru orice formule φ, ψ, χ ,

$$tertul \ exclus \qquad \qquad \models \varphi \lor \neg \varphi \tag{1}$$

modus ponens
$$\varphi \land (\varphi \rightarrow \psi) \vDash \psi$$
 (2)

afirmarea concluziei
$$\psi \models \varphi \rightarrow \psi$$
 (3)

contradicția
$$\models \neg(\varphi \land \neg \varphi)$$
 (4)

dubla negație
$$\varphi \sim \neg \neg \varphi$$
 (5)

contrapoziția
$$\varphi \to \psi \sim \neg \psi \to \neg \varphi$$
 (6)

negarea premizei
$$\neg \varphi \models \varphi \rightarrow \psi$$
 (7)

modus tollens
$$\neg \psi \land (\varphi \rightarrow \psi) \vDash \neg \varphi$$
 (8)

tranzitivitatea implicației
$$(\varphi \to \psi) \land (\psi \to \chi) \vDash \varphi \to \chi$$
 (9)

Tautologii, consecințe semantice și echivalențe

legile lui de Morgan
$$\varphi \lor \psi \sim \neg((\neg \varphi) \land (\neg \psi))$$
 (10)

$$\varphi \wedge \psi \sim \neg((\neg \varphi) \vee (\neg \psi))$$
 (11)

exportarea și importarea
$$\varphi \to (\psi \to \chi) \sim \varphi \land \psi \to \chi$$
 (12)

idempotența
$$\varphi \sim \varphi \land \varphi \sim \varphi \lor \varphi$$
 (13)

slăbirea
$$\vDash \varphi \land \psi \rightarrow \varphi \qquad \vDash \varphi \rightarrow \varphi \lor \psi \quad (14)$$

comutativitatea
$$\varphi \wedge \psi \sim \psi \wedge \varphi$$
 $\varphi \vee \psi \sim \psi \vee \varphi$ (15)

asociativitatea
$$\varphi \wedge (\psi \wedge \chi) \sim (\varphi \wedge \psi) \wedge \chi$$
 (16)

$$\varphi \lor (\psi \lor \chi) \sim (\varphi \lor \psi) \lor \chi$$
 (17)

absorbţia
$$\varphi \lor (\varphi \land \psi) \sim \varphi$$
 (18)

$$\varphi \wedge (\varphi \vee \psi) \sim \varphi$$
 (19)

distributivitatea
$$\varphi \wedge (\psi \vee \chi) \sim (\varphi \wedge \psi) \vee (\varphi \wedge \chi)$$
 (20)

$$\varphi \lor (\psi \land \chi) \sim (\varphi \lor \psi) \land (\varphi \lor \chi)$$
 (21)

Tautologii, consecințe semantice și echivalențe

$$\varphi \to \psi \land \chi \sim (\varphi \to \psi) \land (\varphi \to \chi)$$
 (22)

$$\varphi \to \psi \lor \chi \sim (\varphi \to \psi) \lor (\varphi \to \chi)$$
 (23)

$$\varphi \wedge \psi \to \chi \sim (\varphi \to \chi) \vee (\psi \to \chi)$$
 (24)

$$\varphi \lor \psi \to \chi \sim (\varphi \to \chi) \land (\psi \to \chi)$$
 (25)

$$\varphi \to (\psi \to \chi) \sim \psi \to (\varphi \to \chi) \sim (\varphi \to \psi) \to (\varphi \to \chi)$$
 (26)

$$\neg \varphi \sim \varphi \rightarrow \neg \varphi \sim (\varphi \rightarrow \psi) \land (\varphi \rightarrow \neg \psi) \qquad (27)$$

$$\varphi \to \psi \sim \neg \varphi \lor \psi \sim \neg (\varphi \land \neg \psi)$$
 (28)

$$\varphi \lor \psi \sim \varphi \lor (\neg \varphi \land \psi) \sim (\varphi \to \psi) \to \psi$$
 (29)

$$\varphi \leftrightarrow (\psi \leftrightarrow \chi) \sim (\varphi \leftrightarrow \psi) \leftrightarrow \chi$$
 (30)

$$\models (\varphi \to \psi) \lor (\neg \varphi \to \psi)$$
 (31)

$$\vDash (\varphi \to \psi) \lor (\varphi \to \neg \psi) \tag{32}$$

$$\vDash \neg \varphi \to (\neg \psi \leftrightarrow (\psi \to \varphi)) \quad (33)$$

$$\vDash (\varphi \to \psi) \to (((\varphi \to \chi) \to \psi) \to \psi) \tag{34}$$

Dem.: Exercitiu.

Exemplu de demonstrație

Demonstrăm (1): $\vDash \varphi \lor \neg \varphi$.

Fie $e: V \to \{0,1\}$ o evaluare arbitrară. Trebuie să arătăm că $e^+(\varphi \vee \neg \varphi) = 1$. Observăm că $e^+(\varphi \vee \neg \varphi) = e^+(\varphi) \vee \neg e^+(\varphi)$. Putem demonstra că $e^+(\varphi) \vee \neg e^+(\varphi) = 1$ în două moduri.

I. Folosim tabelele de adevăr.

$e^+(arphi)$	$\neg e^+(\varphi)$	$e^+(\varphi) \lor \neg e^+(\varphi)$
0	1	1
1	0	1

II. Raționăm direct.

Avem două cazuri:

•
$$e^+(\varphi) = 1$$
. Atunci $\neg e^+(\varphi) = 0$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

•
$$e^+(\varphi) = 0$$
. Atunci $\neg e^+(\varphi) = 1$ și, prin urmare, $e^+(\varphi) \lor \neg e^+(\varphi) = 1$.

De multe ori este convenabil să avem o tautologie canonică și o formulă nesatisfiabilă canonică.

Observație

 $v_0 \rightarrow v_0$ este tautologie și $\neg (v_0 \rightarrow v_0)$ este nesatisfiabilă.

Dem.: Exercițiu.

Notații

Notăm $v_0 \to v_0$ cu \top și o numim adevărul. Notăm $\neg (v_0 \to v_0)$ cu \bot și o numim falsul.

- ightharpoonup arphi este tautologie ddacă $arphi \sim \top$.
- $ightharpoonup \varphi$ este nesatisfiabilă ddacă $\varphi \sim \bot$.

3/

Substituția

Definiția 1.19

Pentru orice formule φ, χ, χ' , definim

 $\varphi_{\chi}(\chi')$:= expresia obținută din φ prin înlocuirea tuturor aparițiilor lui χ cu χ' .

 $\varphi_\chi(\chi')$ se numește substituția lui χ cu χ' în φ . Spunem și că $\varphi_\chi(\chi')$ este o instanță de substituție a lui φ .

- $ightharpoonup \varphi_{\chi}(\chi')$ este de asemenea formulă.
- ▶ Dacă χ nu este subformulă a lui φ , atunci $\varphi_{\chi}(\chi') = \varphi$.

Exemple:

Fie $\varphi = (v_1 \rightarrow v_2) \rightarrow \neg (v_1 \rightarrow v_2)$.

- $ightharpoonup \chi = v_1 \rightarrow v_2, \ \chi' = v_4. \quad \varphi_{\chi}(\chi') = v_4 \rightarrow \neg v_4$

Substituția

Propoziția 1.20

Pentru orice formule φ, χ, χ' ,

$$\chi \sim \chi'$$
 implică $\varphi \sim \varphi_{\chi}(\chi')$.

Propoziția 1.20 poate fi aplicată pentru a arăta că o formulă este tautologie.

Exemplu:

Să se demonstreze că, pentru orice formule φ , ψ , formula $\theta = (\neg \varphi \lor \psi) \lor \neg (\varphi \to \psi)$ este tautologie.

Dem.: Conform (28), $\neg \varphi \lor \psi \sim \varphi \to \psi$. Aplicăm Propoziția 1.20 cu $\chi = \neg \varphi \lor \psi$ și $\chi' = \varphi \to \psi$ pentru a obține că $\theta \sim (\varphi \to \psi) \lor \neg (\varphi \to \psi)$. Pe de altă parte, $(\varphi \to \psi) \lor \neg (\varphi \to \psi)$ este tautologie, din (1). Prin urmare, θ este tautologie.

Substituția

Propoziția 1.21

Pentru orice formule φ, ψ, χ și orice variabilă $v \in V$,

- $ightharpoonup \varphi \sim \psi$ implică $\varphi_{\mathbf{v}}(\chi) \sim \psi_{\mathbf{v}}(\chi)$.
- Dacă φ este tautologie atunci și $\varphi_v(\chi)$ este tautologie.
- Dacă φ este nesatisfiabilă, atunci şi $\varphi_{V}(\chi)$ este nesatisfiabilă.

39

Conjuncții și disjuncții finite

Notații

Scriem $\varphi \wedge \psi \wedge \chi$ în loc de $(\varphi \wedge \psi) \wedge \chi$. Similar, scriem $\varphi \vee \psi \vee \chi$ în loc de $(\varphi \vee \psi) \vee \chi$.

Fie $\varphi_1, \varphi_2, \dots, \varphi_n$ formule. Pentru $n \geq 3$, notăm

$$\varphi_1 \wedge \ldots \wedge \varphi_n := ((\ldots(\varphi_1 \wedge \varphi_2) \wedge \varphi_3) \wedge \ldots \wedge \varphi_{n-1}) \wedge \varphi_n$$

$$\varphi_1 \vee \ldots \vee \varphi_n := ((\ldots(\varphi_1 \vee \varphi_2) \vee \varphi_3) \vee \ldots \vee \varphi_{n-1}) \vee \varphi_n.$$

- $ightharpoonup \varphi_1 \wedge \ldots \wedge \varphi_n$ se mai scrie și $\bigwedge_{i=1}^n \varphi_i$ sau $\bigwedge_{i=1}^n \varphi_i$.
- $ightharpoonup \varphi_1 \vee \ldots \vee \varphi_n$ se mai scrie și $\bigvee_{i=1}^n \varphi_i$ sau $\bigvee_{i=1}^n \varphi_i$.

4

Conjuncții și disjuncții finite

Propoziția 1.22

Pentru orice evaluare $e:V \rightarrow \{0,1\}$,

- $e^+(\varphi_1 \wedge \ldots \wedge \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru orice $i \in \{1, \ldots, n\}$.
- $e^+(\varphi_1 \vee \ldots \vee \varphi_n) = 1$ ddacă $e^+(\varphi_i) = 1$ pentru un $i \in \{1, \ldots, n\}$.

Dem.: Exercițiu.

Propoziția 1.23

$$\neg(\varphi_1 \vee \ldots \vee \varphi_n) \sim \neg\varphi_1 \wedge \ldots \wedge \neg\varphi_n$$
$$\neg(\varphi_1 \wedge \ldots \wedge \varphi_n) \sim \neg\varphi_1 \vee \ldots \vee \neg\varphi_n$$

Dem.: Exercițiu.

42

Mulțimi de formule

Fie Γ o mulțime de formule.

Definiția 1.24

- ▶ O evaluare $e: V \to \{0,1\}$ este model al lui Γ dacă este model al fiecărei formule din Γ (adică $e \vDash \gamma$ pentru orice $\gamma \in \Gamma$). Notație: $e \vDash \Gamma$.
- Γ este satisfiabilă dacă are un model.
- r este finit satisfiabilă dacă orice submulțime finită a sa este satisfiabilă.
- Dacă Γ nu este satisfiabilă, spunem și că Γ este nesatisfiabilă sau contradictorie.

Notații: Mulțimea tuturor modelelor lui Γ se notează $Mod(\Gamma)$. Notăm $Mod(\varphi_1, \ldots, \varphi_n)$ în loc de $Mod(\{\varphi_1, \ldots, \varphi_n\})$.

▶ $Mod(\Gamma) = \bigcap_{\varphi \in \Gamma} Mod(\varphi)$.

Mulțimi de formule

Fie Γ , Δ mulțimi de formule.

Definiția 1.25

O formulă φ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\varphi)$. Notație: $\Gamma \models \varphi$. Dacă φ nu este consecință semantică a lui Γ , scriem $\Gamma \not\models \varphi$.

Notăm cu $Cn(\Gamma)$ mulțimea consecințelor semantice ale lui Γ .

 $Cn(\Gamma) = \{ \varphi \in Form \mid \Gamma \vDash \varphi \}.$

Definiția 1.26

Aşadar,

- ▶ Δ este consecință semantică a lui Γ dacă $Mod(\Gamma) \subseteq Mod(\Delta)$. Notație: $\Gamma \models \Delta$.
- $ightharpoonup \Gamma$ şi Δ sunt (logic) echivalente dacă $Mod(\Gamma) = Mod(\Delta)$. Notație: $\Gamma \sim \Delta$.

Următoarele rezultate colectează diverse proprietăți utile.

Observație

- $\blacktriangleright \ \psi \vDash \varphi \ \text{ddacă} \ \{\psi\} \vDash \varphi \ \text{ddacă} \ \{\psi\} \vDash \{\varphi\}.$
- $\psi \sim \varphi$ ddacă $\{\psi\} \sim \{\varphi\}$.

Propoziția 1.27

- ▶ $Mod(\emptyset) = \{0,1\}^V$, adică orice evaluare $e: V \to \{0,1\}$ este model al mulțimii vide. În particular, mulțimea vidă este satisfiabilă.
- ► $Cn(\emptyset)$ este mulțimea tuturor tautologiilor, adică φ este tautologie ddacă $\emptyset \vDash \varphi$.

Dem.: Exercițiu ușor.

...