Causal Inference UConn Sports Analytics Symposium

Kevin Cummiskey

2024-04-12

Introduction to Causal Inference

1. What is the goal of causal inference?

2. How is causation different from correlation (i.e. an association)?

Table 1—Examples of Tasks Conducted by Data Scientists Working with Electronic Health Records

Data Science Task

	Description	Prediction	Causal inference
Example of scientific question	How can women aged 60–80 years with stroke history be partitioned in classes defined by their characteristics?	What is the probability of having a stroke next year for women with certain characteristics?	Will starting a statin reduce, on average, the risk of stroke in women with certain characteris- tics?
Data	Eligibility criteria Features (symptoms, clinical parameters)	 Eligibility criteria Output (diagnosis of stroke over the next year) Inputs (age, blood pressure, history of stroke, diabetes at baseline) 	 Eligibility criteria Outcome (diagnosis of stroke over the next year) Treatment (initiation of statins at baseline) Confounders Effect modifiers (optional)
Examples of analytics	Cluster analysis	Regression Decision trees Random forests Support vector machines Neural networks	Regression Matching Inverse probability weighting G-formula G-estimation Instrumental variable estimation

Figure 1: Hernan, Hse, and Healy 2019

Fundamentals of Causal Inference

Traditional conditional probability notation cannot distinguish between causation and association.

Counterfactuals and	the Potential	Outcomes	Framework
Confounding			

Causal Diagrams

1. Confounding

2. Collider

Assumptions of Causal Inference

• SUTVA (Stable Unit Treatment Value Assumption)

• Ignorability

• Positivity

Methods for Causal Inference
Matching
Propensity Score Matching
Stratification on the Propensity Score

Applications

```
** add slides **
```

References

- Austin, P.C., 2011. An introduction to propensity score methods for reducing the effects of confounding in observational studies. Multivariate behavioral research, 46(3), pp.399-424.
- Hernán MA, Robins JM (2020). Causal Inference: What If. Boca Raton: Chapman & Hall/CRC.
- Hernán, M. A., Hsu, J., & Healy, B. (2019). A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks. CHANCE, 32(1), 42–49. https://doi.org/10.1080/09332480. 2019.1579578
- Cummiskey, K., Villanti, L., and Crofford, I. (2024). Bunting and the ghost runner: a causal inference approach. https://arxiv.org/abs/2404.06587
- Chesnaye, N. C., Stel, V. S., Tripepi, G., Dekker, F. W., Fu, E. L., Zoccali, C., & Jager, K. J. (2021). An introduction to inverse probability of treatment weighting in observational research. Clinical kidney journal, 15(1), 14–20. https://doi.org/10.1093/ckj/sfab158