

Cálculo de probabilidades (... na faculdade)

Experimento: Lançamento de um dado e anota-se a face obtida

Variável aleatória de aleatória de

X = "Número de pontos obtidos do lançamento do dado"

- Quais valores essa variável assume?
- Qual a probabilidade de sair cada um desses números?

Função ou Distribuição de t

3

Distribuição de probabilidades (V.A's. DISCRETAS)

Exemplo: Selecionam-se 3 peças de um lote e elas são classificadas como boas (B) ou defeituosas (D). Abaixo temos a distribuição de probabilidades da variável aleatória que representa a quantidade de peças defeituosas encontradas nesse experimento.

Para v.a. 's discretas, as seguintes propriedades devem ser satisfeitas:

1) $p(x_i) \ge 0$; para todo índice i;

$$2) \quad \sum_{i} p(x_i) = 1$$

Distribuição de probabilidades (V.A´s. DISCRETAS)

<u>Experimento</u>: Seleciono 3 peças de um lote e elas são classificadas como boas (B) ou defeituosas (D). O fabricante informa que sua produção possui 5% de defeitos.

X = "Qtde. de peças defeituosas dentre as 3 selecionadas"

Quais são os valores possíveis essa variável pode assumir?

$$\{BBB, DBB, BDB, BBD, DDB, DBD, BDD, DDD\}$$

• Qual a probabilidade de sair cada um desses valores?

x _i	$P(X = x_i) = p(x_i)$
0	$(0.95)^3 = 0.8574$
1	$3.(0,05).(0,95)^2 = 0,1354$
2	$3.(0,05)^2.(0,95) = 0,0071$
3	$(0.05)^3 = 0.0001$

5

Exemplo 1

Uma urna contém 5 bolas brancas, 3 pretas e 2 vermelhas. Realizo uma aposta (de bêbado...) com um amigo: se eu sorteio uma bola branca, ganho 10 créditos. Se eu retirar uma bola preta ou vermelha, perco 5 e 15 créditos, respectivamente. Monte a distribuição de probabilidades do ganho por aposta.

Exemplo 2

A distribuição de probabilidade da quantidade de aviões fabricados por mês em uma fábrica é dada abaixo:

N° de aviões	Probabilidade	
1	0,08	
2	0,14	
3	0,29	
4	0,35	
5	0,10	
6	0,04	

- a) Calcule a probabilidade de, em um mês qualquer, a fábrica produzir no mínimo dois aviões.
- b) Calcule a probabilidade de, em um mês qualquer, a fábrica produzir mais de dois aviões.

7

Média ou Valor Esperado (μ ou E(X))

Dá uma idéia de valor central da distribuição de probabilidades da variável X

V.A. DISCRETA	V.A. CONTÍNUA com fdp f(x)	
$\mu = E(X) = \sum_{i} x_{i} \cdot p(x_{i})$	$\mu = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$	

Variância (σ² ou Var(X))

É o principal parâmetro de dispersão de uma distribuição de probabilidades. Mede a dispersão dos valores em relação à média μ

V.A. DISCRETA	V.A. CONTÍNUA com fdp f(x)	
$\sigma^2 = Var(X) = \left[\sum_i x_i^2 \cdot p(x_i)\right] - \mu^2$	$\sigma^{2} = Var(X) = \left[\int_{-\infty}^{\infty} x^{2} \cdot f(x) dx\right] - \mu^{2}$	

OBS.: Desvio padrão de X: $\sigma = DP(X) = \sqrt{Var(X)}$

Exemplo 3

Uma urna contém 5 bolas brancas, 3 pretas e 2 vermelhas. Realizo uma aposta (de bêbado...) com um amigo: se eu sorteio uma bola branca, ganho 10 créditos. Se eu retirar uma bola preta ou vermelha, perco 5 e 15 créditos, respectivamente. Calcule o ganho esperado por aposta e seu desvio padrão.

X = "Ganho por aposta

Resultado do sorteio	Xi	$P(X = x_i) = p(x_i)$
Branca	10	1/2
Preta	-5	³ / ₁₀
Vermelha	-15	1/5

$$\mu = E(X) = 10 \cdot \frac{1}{2} + \left(-5\right) \cdot \frac{3}{10} + \left(-15\right) \cdot \frac{1}{5} = 0,5 \qquad \text{(Portanto, o ganho médio dessa aposta é de 0,50 créditos)}$$

$$\sigma^2 = Var(X) = \left[(10)^2 \cdot \frac{1}{2} + (-5)^2 \cdot \frac{3}{10} + (-15)^2 \cdot \frac{1}{5} \right] - (0.5)^2 = 102,25 \implies \sigma = DP(X) = \sqrt{102,25} \cong 10,11$$

10

Exemplo 4

A distribuição de probabilidade da quantidade de aviões fabricados por mês em uma fábrica é dada abaixo:

N° de aviões/m	Probabilidade	
1	0,08	
2	0,14	
3	0,29	
4	0,35	
5	0,10	
6	0,04	

- a) Obtenha a média e o desvio padrão do número de aviões fabricados por mês nessa fábrica. $E(X) = 3.37 \cdot e DP(X) = 1,197$
- b) Se em outra fábrica o n° médio mensal de aviões produzidos é igual a 5/mês e o desvio padrão é igual a 1,2/mês, qual é a média e o desvio padrão do n° total de aviões fabricados pelas duas fábricas juntas?

E(X+Y) = 8.37 e DP(X+Y) = 1.695

Propriedades de E(X)

1) E(k) = k (k é uma constante)

2) E(kX) = k.E(X)

3) $E(X \pm Y) = E(X) \pm E(Y)$

4) $E(X \pm k) = E(X) \pm k$

5) E(XY) = E(X).E(Y), desde que X e Y sejam independentes entre si

Propriedades de Var(X)

1) Var(k) = 0 (k é uma constante)

2) $Var(kX) = k^2 \cdot Var(X)$

3) $Var(X \pm k) = Var(X)$

4) Var(X±Y) = Var(X) + Var(Y), desde que X e Y sejam independentes entre si

OBS.: X e Y são duas variáveis aleatórias de interesse

11

