0.1 正规子群

定义 0.1 (正规子群)

令 (G, \cdot) 是一个群, 且 $N \subset G$. 我们称 N 是个正规子群, 记作 $N \triangleleft G$, 若

N 是个子群,

 $\forall a \in G, aN = Na.$

注 注意 $aN = Na \Leftrightarrow an = na, \forall n \in N$. 虽然 $an = na, \forall n \in N \Rightarrow aN = Na$, 但是 $aN = Na \Rightarrow an = na, \forall n \in N$. 实际 $\bot, aN = Na \Leftrightarrow \exists n, n' \in N \text{ s.t. } an = n'a$.

引理 0.1

设 G 是一个幺半群, 若 H < G, 则 HH = H.

🕏 笔记 因为群也是幺半群,所以这个引理对群也成立.

证明 一方面, 对 $\forall h_1, h_2 \in H$, 根据乘法封闭性 (乘法是 H 上的代数运算), 都有 $h_1h_2 \in H$. 故 $HH \subset H$. 另一方面, 设 $h \in H$, 则 $h = he \in HH$, 其中 $e \in HH$ 的单位元. 故 $H \subset HH$. 因此 HH = H.

命题 0.1

 $(aN) \cdot (bN) = (ab)N.$

是良定义的.

注 因为陪集代表元的不唯一性可能导致上述乘积运算结果不唯一, 所以上述乘积运算不一定是良定义的, 需要给出证明.

结论 元素与群 (其实只要满足结合律的半群就足够了) 的乘积满足广义结合律. 例如: 设 G 是一个群, 若 H,K < $G,a,b\in G,$ 则

$$aHbK=(aH)(bK)=a((Hb)K)=a(H(bK))=(a(Hb))K=((aH)b)K.$$

$$abHK=(ab)(HK)=a((bH)K)=a(b(HK))=((ab)H)K.$$

.

即两个陪集相乘可以看作一个陪集或两个陪集的乘积的陪集等.

证明 证法一:设 aN = a'N, bN = b'N,则由引理??可知 $a^{-1}a', b^{-1}b' \in N$,我们只须证明 abN = a'b'N,即 $(ab)^{-1}a'b' = b^{-1}a^{-1}a'b' \in N$. 首先中间这个部分,即 $a^{-1}a'$,是在 N 中的. 接着,利用 N 是个正规子群,再结合引理??,我们可以得到 $b^{-1}Nb = N$,因此, $b^{-1}a^{-1}a'b' \in b^{-1}Nb' = N$. 进一步地,由引理??可得 abN = a'b'N. 这就证明了良定义性.

证法二:事实上,这个乘法可以简单地理解成子集乘法,即 $(aN)(bN) = \{xy : x \in aN, y \in bN\}$. 我们只须说明,这从集合意义上,等于 abN. 而这几乎是显然的. 由于 Nb = bN 及引理 0.1, 我们有 aNbN = abNN = abN. 这样,既然从集合意义上相等,那么自然就是良定义的(因为我们不必选取单位元).

命题 0.2 (商群)

令 (G,\cdot) 是一个群, 且 $N \triangleleft G$, 则 $(G/N,\cdot)$ 构成一个群, 称为(G 在 N 上的)**商群**, 其中的单位元是 eN=N,每个陪集 aN 的逆元是 $a^{-1}N$.

证明 由命题 0.1可知商群 $(G/N, \cdot)$ 的乘法是良定义的.

封闭性: 对 $\forall aN, bN \in (G/N, \cdot)$, 其中 $a, b \in G$, 根据 G 对乘法的封闭性可得 $ab \in G$, 从而 $(aN)(bN) = abN \in G$

 $(G/N, \cdot)$.

结合律: 令 $a,b,c \in G$,则利用乘法的定义,(aNbN)cN = (abN)(cN) = ((ab)c)N. 利用 G 对乘法的结合律,得到这是等于 (a(bc))N 的. 类似地, 这最终等于 aN(bNcN).

单位元: 令 $a \in G$, 则 aNeN = (ae)N = aN, 类似地 eNaN = aN.

逆元: 令 $a \in G$, 则 $aNa^{-1}N = (aa^{-1})N = eN$, 类似地 $a^{-1}NaN = eN$.

综上, 若 $N \triangleleft G$, 则 G/N 在这个自然的乘法下构成群, 称为一个商群.

引理 0.2 (正规子群的等价条件)

令 (G,\cdot) 是一个群, 且 N < G, 则下列命题等价

- (1) $N \neq G$ 的正规子群, 即 $\forall a \in G, aN = Na$.
- $(2) \ \forall a \in G, aNa^{-1} = N.$
- (3) $\forall a \in G, aNa^{-1} \subset N$.
- (4) $\forall a \in G, \forall n \in N, ana^{-1} \in N$.

证明 显然 (3) 和 (4) 等价.

(1) ⇔ (2): 一方面, 设 $N \neq G$ 的正规子群. 则由引理??可得 $\forall a \in G, aNa^{-1} = N$.

另一方面,设(2)成立.则由引理??可得 $\forall a \in G, aN = Na$.

(1) ⇔ (3): 一方面, 设 $N \neq G$ 的正规子群. 令 $a \in G$, 则 aN = Na. 同时右乘 a^{-1} 并取一半的包含关系, 我们得到了 $aNa^{-1} \subset N$.

另一方面, 设 (3) 成立. 令 $a \in G$, 则由 $aNa^{-1} \subset N$ 及引理??得到 $aN \subset Na$, 由 $a^{-1}N(a^{-1})^{-1} \subset N$ 及引理??得到 $AB \subset AB$. 因此,AB = Na.

例题 0.1 证明: $SL(n,\mathbb{R}) \triangleleft GL(n,\mathbb{R})$.

证明 显然 $SL(n,\mathbb{R}) < GL(n,\mathbb{R})$. 任取 $A \in GL(n,\mathbb{R}), N \in SL(n,\mathbb{R})$, 都有

$$\det(ANA^{-1}) = \frac{\det(A)\det(N)}{\det(A)} = \det(N) = 1.$$

从而 $ANA^{-1} \in SL(n,\mathbb{R})$. 故 $SL(n,\mathbb{R}) \triangleleft GL(n,\mathbb{R})$.

命题 0.3 (正规子群的任意交还是正规子群)

 $(N_i)_{i\in I}$ 是一族 G 的正规子群,则它们的交集仍然是 G 的正规子群,即

$$\bigcap_{i\in I}N_i\lhd G.$$

证明 首先,由子群的任意交仍是子群可知 $\bigcap_{i \in I} N_i < G$. 因此我们只需证明正规性. 利用正规子群的等价条件 (3)可知,对 $\forall a \in G$, $\forall n \in \bigcap_{i \in I} N_i$,我们只须证明 $ana^{-1} \in \bigcap_{i \in I} N_i$ 即可. 任取 $i \in I$,则 $n \in N_i$. 由于 $N_i \triangleleft G$,我们有 $ana^{-1} \in N_i$. 因此,由 i 的任意性可知 $ana^{-1} \in \bigcap_{i \in I} N_i$. 这就证明了 $\bigcap_{i \in I} N_i \triangleleft G$.

命题 0.4

令 (G, \cdot) 是一个群,则

$$\{e\} \lhd G$$
,

 $G \triangleleft G$.

证明 平凡群: 怎么乘都是单位元, 所以对乘法封闭; 包含单位元; 唯一的元素的逆元还是单位元; 在这个群中,a的左右陪集都是 $a\{e\} = \{e\}a = \{a\}$. 因此, $\{e\} \triangleleft G$.

整个群: 子群是显然的; 在整个群 G 中, 每个元素的左右陪集都是全集, 即 aG = Ga = G, 这是因为 $a \in G$. 因此, $G \triangleleft G$ (推论??).

П

推论 0.1

- (1) 若 G 是一个群, e 是其单位元, 则 $G/\{e\}$ 同构于 G, 即 $G/\{e\} \simeq G$.
- (2) 若 G 是一个群,则 G/G 是平凡群,即 $G/G = \{e\}$.

证明

(1) 令

$$f: G \to G/\{e\}, a \mapsto a\{e\} = \{a\}.$$

显然 f 是双射. 对 $\forall a,b \in G$, 我们都有

$$f(ab) = \{ab\} = ab\{e\} = (a\{e\})(b\{e\}) = \{a\}\{b\} = f(a)f(b).$$

因此 f 也是同态映射. 于是 f 是同构映射. 故 $G/\{e\} \simeq G$.

(2) 由命题 0.2及命题0.4可知 G/G 是一个群. 注意到 $\forall a \in G$, 都有 aG = G. 因此 G/G = G. 于是 |G/G| = 1. 故 $G/G = \{e\}$.

命题 0.5

令(G,·)是个阿贝尔群,则子群就是正规子群,正规子群也就是子群,即

$$H < G \iff H \lhd G$$

证明 ⇐: 由于正规子群都是子群, 故显然成立.

 \Rightarrow : 根据阿贝尔群满足交换律可知 $aH = \{ah : h \in H\} = \{ha : h \in H\} = Ha$.

定理 0.1 (群同构第一定理)

设 $f: G \to G'$ 是一个群同态,则 $\ker(f) \triangleleft G$,且 G 在 $\ker(f)$ 上的商群同构于 $\operatorname{im}(f)$,即

$$G/\ker(f) \cong \operatorname{im}(f)$$
.

特别地, 若f是满同态, 则

$$G/\ker(f) \cong G'$$
.

若 f 是单同态,则

$$G/\{e\} \cong G \cong \operatorname{im}(f).$$

若 G 是有限群,则

$$\frac{|G|}{|\ker(f)|} = |\operatorname{im}(f)|, \, \, \operatorname{UP}|G| = |\ker(f)||\operatorname{im}(f)|.$$

注 要注意, 同态的像 (im(f)) 未必是 G' 的正规子群, 往往只是普通的子群.

证明 根据命题??和 Lagrange 定理, 这三条推论都是显然的, 唯一要说明的是 $G/\{e\}$ 为什么同构于 G, 这由推论 0.1(1)可直接得到. 这就意味着我们只须证明原命题即可.

首先要说明每个同态的核都是定义域的正规子群. 我们只须证明, 若 $a \in G, n \in \ker(f)$, 则 $ana^{-1} \in \ker(f)$. 注意到

$$f(ana^{-1}) = f(a)e'f(a)^{-1} = e'.$$

因此 $ana^{-1} \in \ker(f)$. 这就证明了 $\ker(f) \triangleleft G$.

接下来, 我们要找到一个从商群 $G/\ker(f)$ 到像集 $\operatorname{im}(f)$ 的同构映射. 我们称这个映射叫 $\tilde{f}: G/\ker(f) \to \operatorname{im}(f)$, 对于 $a \in G$, 定义为

$$\tilde{f}(a \ker(f)) = f(a).$$

为了方便起见,在不会引起歧义的情况下,我们令 $N = \ker(f)$,也即

$$\tilde{f}(aN) = f(a)$$
.

考虑到陪集代表元的不唯一性, 我们要证明良定义性. 假设 aN=a'N, 或 $a^{-1}a'\in N$, 只须证明 f(a)=f(a'), 而这是因为

$$f(a') = f(aa^{-1}a') = f(a)f(a^{-1}a') = f(a)f(eN) = f(a)e' = f(a).$$

其中 e 是 G 的单位元, e' 是 G' 的单位元. 这就证明了良定义性.

接下来, 我们要证明 \tilde{f} 既是同态, 也是双射 (单射+满射).

同态: $\Diamond a, b \in G$, 则 $\tilde{f}(aN) = f(a), \tilde{f}(bN) = f(b)$, 而由 $N = \ker f \triangleleft G$ 及 f 是一个群同态可得

$$\tilde{f}((aN)(bN)) = \tilde{f}(abN) = f(ab) = f(a)f(b) = \tilde{f}(aN)\tilde{f}(bN).$$

这就证明了 \tilde{f} 是一个同态.

单射: 只须证明 $\ker(\tilde{f}) = \{N\}$. 设 $\tilde{f}(aN) = e'$, 则根据定义, f(a) = e', 故 $a \in \ker(f) = N$, 所以 aN = N, 这就证明了 \tilde{f} 是一个单射.

满射: 令 $a' \in \text{im}(f)$, 取 $a \in G$ 使得 a' = f(a). 因此, $\tilde{f}(aN) = f(a) = a'$, 这就证明了 \tilde{f} 是一个满射.

综上所述, \tilde{f} 是一个从商群 $G/\ker(f)$ 到像集 $\operatorname{im}(f)$ 的同构. 作为结论,

$$G/\ker(f) \cong \operatorname{im}(f)$$
.

这就完成了整个命题的证明.

图 1: 群同构第一定理示意图

例题 0.2 证明: $GL(n,\mathbb{R})/SL(n,\mathbb{R}) \cong \mathbb{R}^{\times}$.

证明 由命题??可知

 $\det: GL(n,\mathbb{R}) \to \mathbb{R}^{\times}.$

是个满同态,且 ker(det) = $SL(n,\mathbb{R})$,故由群同构第一定理,我们有

 $SL(n,\mathbb{R}) \triangleleft GL(n,\mathbb{R}) \perp \perp GL(n,\mathbb{R})/SL(n,\mathbb{R}) \cong \mathbb{R}^{\times}.$

推论 0.2

设 G 是有限群, $f: G \to G'$ 是一个群同态, 则

$$|\operatorname{im} f| |\operatorname{gcd}(|G|, |G'|).$$

证明 由群同构第一定理可知, $|\operatorname{im} f|$ G. 由 Lagrange 定理可知, $|\operatorname{im} f|$ G'. 故

$$|\operatorname{im} f| \left| \operatorname{gcd} \left(|G|, |G'| \right).$$

例题 0.3 设 $f: C_{12} \to C_{35}$ 是一个群同态, 求证: f 是平凡同态, 即对 $\forall x \in C_{12}$, 都有 f(x) = e, 也即 im $f = \{e\}$., 其中 $e \in C_{35}$ 的单位元.

证明 由推论 0.2可知, $|\text{im } f| | \gcd(12,35) = 1$. 又因为 im f < G', 所以 $\text{im } f = \{e\}$.

引理 0.3

设 (G, \cdot) 是一个群, 且 $N \triangleleft G, H \triangleleft G$, 则 $HN \triangleleft G$.

证明 设 $e \not\in G$ 的单位元,则由 $N \triangleleft G, H \triangleleft G$ 可知, $e \in N \cap H$. 从而 $e = ee \in HN$.

对 $\forall h_1 n_1, h_2 n_2 \in HN$, 其中 $h_1, h_2 \in H, n_1, n_2 \in N$. 由 $N \triangleleft G, H \triangleleft G$ 可得

$$h_1 n_1 \left(h_2 n_2\right)^{-1} = h_1 n_1 n_2^{-1} h_2^{-1} = h_1 n_1 h_2^{-1} n_2^{-1} = h_1 h_2^{-1} n_1 n_2^{-1} \in HN.$$

故 HN < G.

定理 0.2 (群同构第二定理)

设 (G, \cdot) 是一个群, 且 $N \triangleleft G, H \triangleleft G$. 则 $H \cap N \triangleleft H, N \triangleleft HN$, 且

 $H/(H \cap N) \cong HN/N$.

这和之前两个子群乘积的阶的公式是类似的.

注 由引理 0.3可知 HN < G. 故此时 $N \triangleleft HN$ 是有意义的.

证明 第一,要证明 $H \cap N \triangleleft H$. 令 $h \in H$, 而 $x \in H \cap N$, 则 $hxh^{-1} \in H$, 而且因为 $N \triangleleft G$, $hxh^{-1} \in N$, 因此 $hxh^{-1} \in H \cap N$. 第二,要证明 $N \triangleleft HN$. 令 $hn \in HN$, 而 $n' \in N$. 则由引理 0.2(2)可得 $hnn'(hn)^{-1} = h(nn'n^{-1})h^{-1} \in hNh^{-1} = N$. 第三,要证明 $H/(H \cap N) \cong HN/N$. 令 $f: H \to HN/N$, 定义为

$$f(h) = hN$$
.

这显然是良定义的 (若 $h = h' \in H$, 则 $h^{-1}h' = e \in N$, 从而 f(h) = hN = h'N = f(h')). 又由 $N \triangleleft G$ 及引理 0.1可知, 对 $\forall h_1, h_2 \in H$, 都有

$$f\left(h_{1}h_{2}\right)=h_{1}h_{2}N=h_{1}h_{2}NN=h_{1}Nh_{2}N=f\left(h_{1}\right)f\left(h_{2}\right).$$

故 f 是同态的. 根据 $HN/N = \{hnN : h \in H, n \in N\} = \{hN : h \in H\}$ 可知, f 还是个满同态.

接下来, 根据引理??可知, f 的核是 $\ker(f) = \{h \in H : hN = eN\} = \{h \in H : h \in N\} = H \cap N$. 因此, 根据群同构第一定理,

$$H/(H \cap N) \cong HN/N$$
.

这就证明了群同构第二定理.

引理 0.4

设 (G, \cdot) 是一个群, 且 $N < G, M \triangleleft G, M < N$, 则 $M \triangleleft N$.

证明 $\Diamond n \in N \subset G, m \in M$, 则由 $M \lhd G$ 可知, $nmn^{-1} \in M$. 因此由引理 0.2可知 $M \lhd N$.

定理 0.3 (群同构第三定理)

设 (G,\cdot) 是一个群, 且 $N \lhd G, M \lhd G, M < N$. 则 $N/M \lhd G/M$, 且

 $(G/M)/(N/M) \cong G/N$.

证明 首先显然有 $N/M \subset G/M$. 由引理 0.4可知 $M \lhd N$. 因此 N/M 是个商群. 因为这两个都是群, 所以对单位元、乘法和逆元都有封闭性. 因此就有 N/M < G/M. 接下来我们可以先证明正规性, 这也几乎是显然的. 令 $nM \in N/M(n \in N), gM \in G/M(g \in G)$, 则由 $M \lhd N, N \lhd G$ 可得

$$(gM)(nM)(gM)^{-1} = (gng^{-1})M \in \{nM : n \in N\} = N/M.$$

因此 $N/M \triangleleft G/M$.

那么, 我们要定义 $f:G/M \to G/N$, 定义为

$$f(gM) = gN$$
.

要证明良定义性. 假设 gM=g'M, 则 $g^{-1}g'\in M$, 故 $g^{-1}g'\in N$, 所以 gN=g'N.

同态是显然的: 对 $\forall gM, g'M \in G/M$, 都有

$$f(gMg'M) = f(gg'M) = gg'N = gNg'N = f(gM)g(g'M).$$

满同态几乎也是显然的. 任取 $gN \in G/N(g \in G)$, 则 f(gM) = gN.

最后,注意到

$$\ker(f) = \{gM : f(gM) = gN = eN\} = \{gM : g \in N\} = N/M.$$

于是根据群同构第一定理, 这就告诉我们

$$(G/M)/(N/M) \cong G/N$$
.

综上所述, 我们就证明了群同构第三定理.