Московский физико-технический институт Физтех-школа прикладной математики и информатики

ТЕОРИЯ ГРУПП

III CEMECTP

Лектор: Богданов Илья Игоревич

Автор 2020: Даниил Дрябин

Дополнил 2022: Даниил Максимов

 $\Pi poeкm$ на Github

Содержание

1	Осн	новные понятия теории групп	2		
	1.1	Повторение изученного	2		
	1.2	Нормальные подгруппы	5		
	1.3	Гомоморфизмы групп и факторгруппа	8		
	1.4	Действие группы на множестве	13		
	1.5	Лемма Бернсайда	18		
2	Виды групп и теоретико-групповые конструкции				
	2.1	Прямое произведение групп	21		
	2.2	Коммутант группы	23		
	2.3	Разрешимые группы	25		
	2.4	Простые группы	28		
3	Задание групп				
	3.1	Свободные группы	31		
	3.2	Образующие и соотношения	32		
4	Строение групп				
	4.1	Теоремы Силова	34		
	4.2	Свободные абелевы группы	36		
	4.3	Конечнопорожденные абелевы группы	39		
5	Кольца и поля				
	5.1	Идеалы колец и факторкольцо	43		
	5.2	Кольцо многочленов над полем	47		

1 Основные понятия теории групп

1.1 Повторение изученного

Определение 1.1. *Группой* называется множество G с определенной на нем бинарной операцией $\cdot: G^2 \to G$ такой, что:

- 1. (Ассоциативность) $\forall a, b, c \in G : a(bc) = (ab)c$
- 2. (Существование нейтрального элемента) $\exists e \in G : \forall a \in G : ae = ea = a$
- 3. (Существование обратного элемента) $\forall a \in G : \exists a^{-1} \in G : aa^{-1} = a^{-1}a = e$

Напоминание. Нейтральный элемент в группе единственен, как и обратный элемент к каждому элементу группы.

Определение 1.2. *Порядком группы G* называется мощность множества G. Обозначение — |G|.

Определение 1.3. Порядком элемента $a \in G$ называется минимальное число $n \in \mathbb{N}$ такое, что $a^n = e$. Если такого числа не существует, порядок a считается равным ∞ . Обозначение — ord a.

Определение 1.4. Пусть G — группа. Подгруппой G называется множество $H \subset G, H \neq \varnothing$ такое, что:

- 1. $\forall a, b \in H : ab \in H$
- 2. $\forall a \in H : a^{-1} \in H$

Иными словами, множество H само является группой с той же операцией. Обозначение — $H \leqslant G$.

Определение 1.5. Группа G называется *абелевой*, если операция в ней коммутативна: $\forall a,b \in G: ab=ba$.

Пример. Рассмотрим несколько примеров групп:

- 1. $(\mathbb{Z}, +), (\mathbb{Z}_n, +)$
- 2. $(R, +), (R^*, \cdot),$ где R произвольное кольцо
- 3. (V, +), где V произвольное линейное пространство
- 4. (S_n, \circ) группа перестановок

Далее групповая операция в записи группы будет опускаться, если она восстанавливается из контекста.

Напоминание. $\forall \sigma \in S_n : \sigma$ раскладывается в произведение независимых циклов.

Напоминание. Беспорядком в перестановке $\sigma \in S_n$ называется пара $(i,j) \in \{1,\ldots,n\}^2$ такая, что i < j, но $\sigma(i) > \sigma(j)$. Знаком перестановки $\sigma \in S_n$ называется число $(-1)^{N(\sigma)}$, где $N(\sigma)$ — количество беспорядков в σ . Обозначение — sgn σ .

Напоминание. $\forall \sigma, \tau \in S_n : \operatorname{sgn}(\sigma \tau) = \operatorname{sgn} \sigma \cdot \operatorname{sgn} \tau$.

Определение 1.6. Изоморфизмом групп G и H называется биекция $\varphi: G \to H$ такая, что $\forall a,b \in G: \varphi(ab) = \varphi(a)\varphi(b)$. Группы G и H называются изоморфизми, если существует соответствующий изоморфизм. Обозначение — $G \cong H$.

Напоминание (Теорема Кэли). $\forall G, |G| = n : \exists H \leqslant S_n : G \cong H.$

Пример. Рассмотрим несколько примеров групп и подгрупп в них:

- 1. $GL_n(\mathbb{F}) = (M_n(\mathbb{F}))^* = \{A \in M_n(\mathbb{F}) : \det A \neq 0\}$, где \mathbb{F} произвольное поле. GL означает general linear
- 2. $SL_n(\mathbb{F}) = \{A \in M_n(\mathbb{F}) : \det A = 1\} \leqslant GL_n(\mathbb{F}),$ где \mathbb{F} произвольное поле. SL означает special linear
- 3. $\mathcal{O}_n = \{A \in M_n(\mathbb{R}) : A^T A = E\} \leqslant \mathrm{GL}_n(\mathbb{R})$ группа ортогональных матриц
- 4. $U_n = \{A \in M_n(\mathbb{C}) : A^T \overline{A} = E\} \leqslant \operatorname{GL}_n(\mathbb{C})$ группа унитарных матриц
- 5. $\mathbb{T} = \{z \in \mathbb{C} \colon |z| = 1\} \leqslant \mathbb{C}^*$
- 6. $\mathbb{C}_n=\{z\in\mathbb{C}:z^n=1\}\leqslant\mathbb{T}\leqslant\mathbb{C}^*$ группа комплексного корня n-й степени из единицы
- 7. $A_n = \{ \sigma \in S_n : \operatorname{sgn} \sigma = 1 \} \leqslant S_n$ подгруппа чётных перестановок
- 8. \mathcal{O}_2 символизирует все ортогональные преобразования на плоскости. Среди них есть те, что образуют особенные nodгруппы \mathcal{A} иэ ∂ ра $D_n \leqslant \mathcal{O}_2$ это группы самосовмещений правильного n-угольника, то есть $\forall \varphi \in D_n \ \varphi(P_n) = P_n$, если P_n это множество точек такого n-угольника.

Определение 1.7. Пусть G — группа, $M \subset G$. Подгруппой, порожденной M, называется наименьшая по включению подгруппа в G, содержащая M. Обозначение — $\langle M \rangle$.

Напоминание. Если G — группа, $M \subset G$, то $\langle M \rangle$ можно представить в следующем виде:

$$M = \{ m_1^{\varepsilon_1} \cdots m_k^{\varepsilon_k} : m_1, \dots, m_k \in M, \varepsilon_1, \dots, \varepsilon_k \in \{\pm 1\} \}$$

Определение 1.8. Группа G называется $uu\kappa nuueckoŭ$, если $\exists a \in G : \langle a \rangle = G$, то есть $G = \{a^n : n \in \mathbb{Z}\}.$

Напоминание. Если группа G — циклическая, то либо $G \cong \mathbb{Z}$ (если G бесконечна), либо $G \cong \mathbb{Z}_n$ (если G конечна). Более того, если $H \leqslant G$, то H — тоже циклическая, причем либо $H \cong n\mathbb{Z}, n \in \mathbb{N} \cup \{0\}$, либо $H \cong k\mathbb{Z}_n, k \in \mathbb{N}, k \mid n$.

Определение 1.9. Пусть G—группа, $A, B \subset G$. Тогда, определим следующие операции на множествах:

- 1. $AB := \{ab : a \in A, b \in B\}$
- $2. \ A = \{a\} \Rightarrow aB := AB$
- 3. $A^{-1} := \{a^{-1} : a \in A\}$

Замечание. Введённые операции совершенно не означают, что мы сделали множество подмножеств само по себе группой. Тем не менее, верна ассоциативность:

$$\forall A,B,C\subset G \quad (AB)C=A(BC)=\{abc\colon a\in A,b\in B,c\in C\}$$

Замечание. Если $H \leqslant G$, то $HH = H^{-1} = H$

Определение 1.10. Пусть G — группа, $H \leq G$, $a \in G$. Тогда левым смежным классом a по подгруппе H называется $aH = \{ah : h \in H\}$, правым смежным классом a по подгруппе H - Ha. Обозначение множества всех левых смежных классов по H в G - G/H, правых смежных классов $- H \setminus G$.

Утверждение 1.1. Пусть G — группа, $H \leq G$, $a, b \in G$. Тогда следующие утверждения эквивалентны:

- 1. $aH \cap bH \neq \emptyset$
- 2. $b^{-1}a \in H$
- 3. aH = bH
- $4. \ a \in bH$

Доказательство.

- $\triangleright (1 \Rightarrow 2)$ По условию, $\exists h_1, h_2 \in H : ah_1 = bh_2$, откуда $b^{-1}a = h_2h_1^{-1} \in H$
- > (2 \Rightarrow 3) Поскольку H группа и $b^{-1}a\in H,$ то $(b^{-1}a)H=H,$ и, следовательно, aH=bH
- \triangleright (3 \Rightarrow 4) Заметим, что a=ae, поэтому $a\in aH=bH$
- \triangleright (4 \Rightarrow 1) Поскольку a=ae и $a\in bH$, то $a\in aH\cap bH$, следовательно, $aH\cap bH\neq\varnothing$

Замечание. Аналогичное утверждение для правых смежных классов будет верно, если заменить в формулировке второго пункта $b^{-1}a \in H$ на $ab^{-1} \in H$.

Теорема 1.1 (Лагранжа). Пусть G — конечная группа, $H \leqslant G$. Тогда верно равенство:

$$|G| = |H| \cdot |G/H| = |H| \cdot |H \setminus G|$$

Доказательство. Если смежные классы пересекаются хотя бы по одному элементу, то они совпадают. Тогда, поскольку $\forall a \in G : a \in aH$, G разбивается на непересекающиеся смежные классы порядка |H|, откуда и следует требуемое равенство.

Напоминание. Из теоремы выше, в частности, следует, что если G — конечная группа, то имеет место 3 факта:

- 1. $\forall H \leq G \quad |H| \mid |G|$
- 2. $\forall a \in G \quad \text{ord } a \mid |G|$

3.
$$\forall a \in G \quad a^{|G|} = e$$

Утверждение 1.2. Пусть G – группа. Тогда $\forall H \leqslant G : |G/H| = |H \backslash G|$.

Доказательство. Сопоставление $aH\mapsto (aH)^{-1}=Ha^{-1}$ является биекцией, поскольку оно обратимо, из чего следует и сюръективность, и инъективность.

Определение 1.11. Пусть G—группа, $H \leqslant G$. Индексом H в G называется величина $|G/H| = |H \backslash G|$. Обозначение — |G:H|.

Упражнение. Если $K \leqslant H \leqslant G$, то имеет место равенство

$$|G:K| = |G:H| \cdot |H:K|$$

при условии, что |G:H| и |H:K| конечны (Оно верно и в общем случае, только надо говорить не о порядках, а о биекциях между множествами).

1.2 Нормальные подгруппы

Определение 1.12. Пусть G — группа, $g, x \in G$. Элементом, сопряженным κ g c помощью x, называется $g^x := x^{-1}gx \in G$. Элементы $g_1, g_2 \in G$ называются сопряженными, если $\exists x \in G : g_1 = g_2^x$.

Замечание. Пусть G—группа, $H \leqslant G, g \in G$. Будем обозначать $g^{-1}Hg$ как H^g .

Утверждение 1.3. Пусть $G - \epsilon pynna$. Тогда:

- 1. $\forall g, x, y \in G : g^{xy} = (g^x)^y$
- 2. $\forall g_1, g_2, x \in G : (g_1g_2)^x = g_1^x g_2^x$

Доказательство. Произведем непосредственную проверку:

- 1. $(g^x)^y = y^{-1}(x^{-1}gx)y = (xy)^{-1}g(xy) = g^{xy}$
- 2. $g_1^x g_2^x = (x^{-1}g_1x)(x^{-1}g_2x) = x^{-1}(g_1g_2)x = (g_1g_2)^x$

Утверждение 1.4. Сопряженность является отношением эквивалентности в группе G.

Доказательство. Произведем непосредственную проверку:

- \triangleright (Рефлексивность) $\forall g \in G : g = g^e$
- \triangleright (Симметричность) Если $g_2=g_1^x$, то $g_2^{x^{-1}}=(g_1^x)^{x^{-1}}=g_1^e=g_1$
- ightharpoonup (Транзитивность) Если $g_2=g_1^x,\,g_3=g_2^y,\,$ то $g_3=(g_1^x)^y=g_1^{xy}$

Определение 1.13. Пусть G—группа, $g \in G$. Классом сопряженности элемента g называется множество g^G , то есть класс эквивалентности по отношению сопряженности, содержащий g.

ФПМИ МФТИ, осень 2022

Определение 1.14. Пусть G—группа, $H \leqslant G$. Подгруппа H называется *нормальной в* G, если $\forall g \in G$ gH = Hg. Обозначение — $H \leqslant G$.

Утверждение 1.5. Определение выше имеет ряд эквивалентных формулировок:

- 1. $G/H = H \backslash G$
- 2. $\forall g \in G : H^g = H$
- 3. $\forall g \in G : gH \subset Hg$
- $4. \ \forall g \in G : H^g \subset H$

Доказательство.

- \triangleright (опр. \Leftrightarrow 1) В сторону 1 очевидно, а в обратную предположим противное: $gH \neq Hg$. Но по условию это должно быть эквивалентно $gH \cap Hg = \emptyset$. Тем не менее, $gH \cap Hg \supset \{g\}$, а потому определение выполнено
- ⊳ (опр. ⇔ 2) Очевидно
- ⊳ (опр. ⇔ 3) Если выполнено условие 3, то тогда

$$\forall q \in G \ q^{-1}H \subset Hq^{-1} \Longleftrightarrow \forall q \in G \ Hq \subset qH$$

 $\triangleright (3 \Leftrightarrow 4)$ Очевидно

Пример. Рассмотрим несколько примеров нормальных подгрупп в соответствующих группах:

- 1. $\forall H \leqslant G : H \leqslant G$, где G абелева группа
- 2. $G \leqslant G$, $\{e\} \leqslant G$, где G—произвольная группа
- 3. $A_n \leqslant S_n$, поскольку $\forall \sigma \in S_n, \forall \tau \in A_n \quad \mathrm{sgn}(\sigma \tau \sigma^{-1}) = \mathrm{sgn}\, \tau = 1$, то есть $\forall \sigma \in S_n: \sigma A_n \sigma^{-1} \subset A_n$

Пример. Продемонстрируем ненормальную подгруппу. Рассмотрим S_3 и подгруппу $H = \langle (1\ 2) \rangle = \{ (1\ 2), e \}$. Проверим сопряжение H:

$$(1\ 2)^{(1\ 3)} = (1\ 3)(1\ 2)(1\ 3) = (2\ 3) \notin H$$

Упражнение. Пусть G — группа, $H \leqslant G$. Тогда $H \leqslant G \Leftrightarrow H$ — объединение некоторого количества классов сопряженности в G.

Утверждение 1.6. Пусть G — группа, $H_1 \leqslant G$, $H_2 \leqslant G$. Тогда $H_1 \cap H_2 \leqslant G$.

Доказательство.
$$\forall g \in G \ g(H_1 \cap H_2)g^{-1} \subset (gH_1g^{-1}) \cap (gH_2g^{-1}) = H_1 \cap H_2.$$

Утверждение 1.7. Пусть G — группа, $H \leqslant G$, $K \leqslant G$. Тогда:

1. $HK \leq G$

 $\Phi\Pi M M \Phi T M$, осень 2022

2. Если $K \leqslant G$, то $HK \leqslant G$

Доказательство. Заметим, что $HK = \bigcup_{k \in K} Hk = \bigcup_{k \in K} kH = KH$. Воспользуемся этим свойством:

- 1. (HK)(HK) = H(KH)K = H(HK)K = (HH)(KK) = HK, поэтому HK замкнуто относительно умножения, и, аналогично, $(HK)^{-1} = K^{-1}H^{-1} = KH = HK$
- 2. $\forall g \in G : g(HK)g^{-1} = (gHg^{-1})(gKg^{-1}) = HK$

Пример. Требование, что хотя бы одна подгруппа нормальна, существенно. Рассмотрим подгруппы $S_3 \geqslant \langle (1\ 2) \rangle, \langle (1\ 3) \rangle$. Тогда $\langle (1\ 2) \rangle \langle (1\ 3) \rangle \not \leqslant S_3$, ибо

$$|\langle (1\ 2)\rangle\langle (1\ 3)\rangle| = 2\cdot 2 = 4 \not\mid |S_3| = 6$$

Утверждение 1.8. Пусть $H, K \leq G, H \cap K = \{e\}$. Тогда

$$|HK| = |H| \cdot |K|$$

Доказательство. Заметим факт: если $h_1,h_2\in H,\ k_1,k_2\in K$ и при этом $h_1k_1=h_2k_2,$ то $h_1=h_2$ и $k_1=k_2.$ Действительно

$$h_1k_1 = h_2k_2 \Rightarrow h_2^{-1}h_1 = k_2k_1^{-1} \in H \cap K = \{e\} \Rightarrow h_2^{-1}h_1 = k_2k_1^{-1} = e$$

Упражнение. Если $H, K \leq G, |G| < \infty, H \cap K = L,$ то имеет место равенство:

$$|HK| = \frac{|H|\cdot |K|}{|L|}$$

Утверждение 1.9. Пусть G — группа, $H \leqslant G$, |G:H| = 2. Тогда $H \leqslant G$.

Доказательство. По условию, $G/H = \{H, G \backslash H\} = H \backslash G$.

Замечание. Покажем, что $|S_n:A_n|=2$ при $n\geqslant 2$. Действительно, сопоставление $\sigma\mapsto (1,2)\sigma$ осуществляет биекцию между A_n и $S_n\backslash A_n$, поэтому $S_n/A_n=\{A_n,(1,2)A_n\}$.

Упражнение. Пусть G — группа, $g_1, g_2 \in G$. Докажите, что тогда $g_1^G g_2^G$ — объединение нескольких классов сопряженности, причем необязательно одного.

Пример. Пусть $\sigma \in S_n$. Представим σ в виде произведения независимых циклов, $\sigma = (a_1 \dots a_k)(b_1 \dots b_l) \dots$, и рассмотрим σ^{τ} для произвольного $\tau \in S_n$. Если $a_i' := \tau^{-1}(a_i), i \in \{1,\dots,k\}$, то $\sigma^{\tau}(a_i') = (\tau^{-1}\sigma\tau)(a_i') = a_{i+1}'$. Значит, $\sigma^{\tau} = (a_1' \dots a_k')(b_1' \dots b_l') \dots$, и, следовательно, σ^{S_n} состоит из перестановок того же циклического типа, что и σ , причем из всех, потому что по каждой такой перестановке легко восстанавливается соответствующая $\tau \in S_n$.

П

1.3 Гомоморфизмы групп и факторгруппа

Определение 1.15. Пусть G, H — группы. Гомоморфизмом групп G и H называется отображение $\varphi \colon G \to H$ такое, что

$$\forall g_1, g_2 \in G \quad \varphi(g_1g_2) = \varphi(g_1)\varphi(g_2)$$

Замечание. Дадим определение всех остальных нужных морфизмов:

- ⊳ Эпиморфизм это сюръективный гомоморфизм
- ▶ Мономорфизм это инъективный гомоморфизм
- ▶ Изоморфизм это биективный гомоморфизм
- ⊳ Эндоморфизм это гомоморфизм группы в себя
- ▶ Автоморфизм это изоморфизм группы в себя

Пример. Рассмотрим несколько примеров гомоморфизмов групп:

- 1. Любой изоморфизм групп, в частности, автоморфизм $\varphi(g) = g$
- 2. $\varphi:G\to H,\, \forall g\in G: \varphi(g)=e,$ где G,H произвольные группы
- 3. Сопряжение при помощи $x \in G$, где G—произвольная группа, поскольку $\forall g_1, g_2 \in G: (g_1g_2)^x = g_1^xg_2^x$ (более того, сопряжение—это автоморфизм, поскольку существует обратное отображение: $\forall g \in G: \varphi^{-1}(g) = g^{x^{-1}}$)
- 4. $\det: \operatorname{GL}_n(F) \to F^*$, поскольку $\forall A, B \in \operatorname{GL}_n(F) : \det(AB) = \det A \det B$
- 5. sgn : $S_n \to \mathbb{Q}^*$, поскольку $\forall \sigma, \tau \in S_n : \mathrm{sgn}(\sigma \tau) = \mathrm{sgn}\,\sigma\,\mathrm{sgn}\,\tau$
- 6. Отображение $\varphi: \mathbb{Z} \to \mathbb{Z}_n$ такое, что $\forall a \in \mathbb{Z}: \varphi(a) = a + n\mathbb{Z}$, поскольку $\forall a, b \in \mathbb{Z}: \varphi(a+b) = (a+b) + n\mathbb{Z} = \varphi(a) + \varphi(b)$

Утверждение 1.10. Пусть $\varphi \colon G_1 \to G_2$ - гомоморфизм. Тогда верно 2 утверждения:

- 1. $\varphi(e_1)=e_2$ нейтральный элемент переходит в нейтральный элемент
- 2. $\forall a \in G_1 \ \varphi(a^{-1}) = \varphi(a)^{-1}$

Доказательство.

1.
$$\varphi(e_1) = \varphi(e_1^2) = \varphi(e_1) \cdot \varphi(e_1) \Rightarrow \varphi(e_1) = \varphi(e_1) \cdot \varphi(e_1)^{-1} = e_2$$

2.
$$\varphi(e_1) = \varphi(a \cdot a^{-1}) = \varphi(a) \cdot \varphi(a^{-1}) = e_2 \Rightarrow \varphi(a^{-1}) = \varphi(a)^{-1}$$

Определение 1.16. Пусть G, H — группы, $\varphi : G \to H$ — гомоморфизм G и H. Тогда:

- ho Образом φ называется $\operatorname{Im} \varphi := \{ \varphi(g) : g \in G \} = \varphi(G)$
- ho Ядром φ называется $\operatorname{Ker} \varphi := \{g \in G : \varphi(g) = e\} = \varphi^{-1}(e)$

Замечание. Далее мы часто будем обозначать $\varphi(g)$ как \overline{g} .

Утверждение 1.11. Пусть $G, H- \mathit{группы}, \ \varphi: G \to H- \mathit{гомоморфизм}, \ K:= \mathrm{Ker} \ \varphi.$ Тогда $\forall g \in G: \varphi^{-1}(\overline{g}) = gK = Kg.$

Доказательство. Пусть $a \in G$. Тогда $a \in \varphi^{-1}(\overline{g}) \Leftrightarrow \overline{a} = \overline{g} \Leftrightarrow e = \overline{g}^{-1}\overline{a} = \overline{g^{-1}}a \Leftrightarrow g^{-1}a \in \operatorname{Ker} \varphi = K \Leftrightarrow a \in gK$. Аналогично доказывается, что $a \in \varphi^{-1}(\overline{g}) \Leftrightarrow a \in Kg$.

Следствие. φ — мономорфизм \Leftrightarrow Ker $\varphi = \{e\}$.

Утверждение 1.12. Пусть G, H-группы, $\varphi: G \to H-$ гомоморфизм. Тогда:

- 1. Im $\varphi \leqslant H$
- 2. Ker $\varphi \leqslant G$

Доказательство.

- 1. Если $h_1,h_2\in \operatorname{Im}\varphi$, то $h_1=\overline{g_1},\,h_2=\overline{g_2},\,$ откуда $h_1h_2=\overline{g_1g_2}\in \operatorname{Im}\varphi$ и $h_1^{-1}=\overline{g_1^{-1}}\in \operatorname{Im}\varphi$
- 2. Если $g_1,g_2\in \mathrm{Ker}\,\varphi$, то $\overline{g_1}=\overline{g_2}=e$, откуда $\overline{g_1g_2}=e$ и $\overline{g_1^{-1}}=e$, и, более того, $\forall g\in G$ $gK=Kg=\varphi^{-1}(\overline{g})$

Замечание. Пусть $H\leqslant G$. Тогда существует гомоморфизм $\varphi\colon H\to G$ тривиального вида:

$$\forall h \in H \ \varphi(h) = h \Rightarrow \operatorname{Im} \varphi = H$$

Замечание. Если G, H — группы, $\varphi: G \to H$ — гомоморфизм и $G' \leqslant G$, то $\varphi|_{G'}: G' \to H$ — тоже гомоморфизм, поэтому $\varphi(G') = \operatorname{Im} \varphi|_{G'} \leqslant H$. С другой стороны, если $H' \leqslant H$, то существует гомоморфизм $\psi = \operatorname{id}|_{H'}: H' \to H$ такой, что $H' = \operatorname{Im} \psi$.

Определение 1.17. Пусть G — группа, $K \leq G$. Тогда, мы можем ввести операцию умножения на G/K, совпадающую с умножением подмножеств группы:

$$\forall g_1, g_2 \in G \quad (g_1K) \cdot (g_2K) = g_1(Kg_2)K = g_1g_2KK = g_1g_2K$$

Замечание. Несмотря на то, что мы смогли показать замкнутость умножения в G/K, надо ещё проверить корректность, то есть независимость от выбранного представителя класса смежности.

Пусть $g'_1 = g_1 k_1$, $g'_2 = g_2 k_2$. Тогда:

$$g_1'g_2'e = g_1k_1g_2k_2 = g_1g_2k_1'k_2 \Rightarrow g_1'g_2'K \cap g_1g_2K \neq \{e\} \Rightarrow g_1'g_2'K = g_1g_2K$$

Утверждение 1.13. Пусть G — группа, $K \leqslant G$. Тогда $(G/K, \cdot)$ — группа.

Доказательство. Проверим непосредственно, что множество G/K является группой:

▶ (Ассоциативность)

$$\forall g_1 K, g_2 K, g_3 K \in G/K \quad (g_1 K g_2 K) g_3 K = (g_1 g_2 g_3) K = g_1 K (g_2 K g_3 K)$$

> (Нейтральный элемент) $\exists eK = K \in G/K \mid \forall gK \in G/K \quad (gK)K = K(gK) = gK$

⊳ (Обратный элемент)

$$\forall gK \in G/K \ \exists (gK)^{-1} = g^{-1}K \in G/K \ \big| \ (gK)(gK)^{-1} = (gK)^{-1}(gK) = K$$

Определение 1.18. Пусть G — группа, $K \leq G$. Группа G/K называется факторгруппой G по K.

Определение 1.19. *Коммутативной диаграммой* называется рисунок, где отображены алгебраические структуры и функции, отображающие их друг в друга - морфизмы. Коммутативность диаграммы означает, что композиция морфизмов вдоль любого направленного пути зависит только от начала и конца пути (то есть композиции, полученные разными путями, должны давать равный результат).

Теорема 1.2 (Основная теорема о гомоморфизме).

- 1. Пусть G группа, K
 leq G. Тогда $\exists \pi: G \to G/K$ эпиморфизм такой, что $\ker \pi = K$.
- 2. Пусть G, H группы, $\varphi : G \to H$ гомоморфизм. Тогда $\operatorname{Im} \varphi \simeq G / \operatorname{Ker} \varphi$.

Доказательство. Традиционно эту теорему показывают при помощи коммутативной диаграммы, которая отражает 2 соотношения: $\varphi = \Theta \circ \pi$ и $\pi = \psi \circ \varphi$

1. Очевидно хмочется определить $\pi: G \to G/K$ следующим образом:

$$\forall q \in G \quad \pi(q) = qK$$

Это уже эпиморфизм из доказанных выше свойств. Остаётся показать, что ядро действительно совпадает с подгруппой:

$$\operatorname{Ker} \pi = \{ g \in G \colon \pi(g) = gK = K \} = K$$

2. Обозначим $K_{\varphi} := \operatorname{Ker} \varphi \leqslant G$. Тогда, нам нужно построить $\psi \colon \operatorname{Im} \varphi \to G/K_{\varphi}$ - изоморфизм. Мы уже доказали, что такое прообраз элемента из образа G, а потому логично рассмотреть такую ψ :

$$\forall q \in G \quad \psi(\overline{q}) = qK_{\omega}$$

Проверим, что полученная функция задаёт изоморфизм:

⊳ (Гомоморфизм) ⊲

$$\forall \overline{g_1}, \overline{g_2} \in \operatorname{Im} \varphi \quad \psi(\overline{g_1} \cdot \overline{g_2}) = \psi(\overline{g_1}\overline{g_2}) = g_1g_2K_{\varphi} = (g_1K_{\varphi})(g_2K_{\varphi}) = \psi(\overline{g_1})\psi(\overline{g_2})$$

 $\overline{\Phi\Pi M M \Phi T M}$, осень 2022

⊳ (Сюръективность)

$$\forall g K_{\varphi} \in G/K_{\varphi} \quad \psi(\overline{g}) = gK_{\varphi}$$

⊳ (Инъективность) Как уже известно, достаточно проверить тривиальность ядра:

$$\forall \overline{g} \in \text{Im } \varphi \quad \psi(\overline{g}) = K \Rightarrow gK = K \Rightarrow g \in K \Rightarrow \overline{g} = \overline{e}$$

Теорема доказана, но убедимся непосредственно в том, что диаграмма коммутативна, то есть $\Theta \circ \pi = \varphi$, или $\Theta^{-1} \circ \varphi = \psi \circ \varphi = \pi$:

$$\forall g \in G : \psi(\varphi(g)) = \psi(\overline{g}) = gK = \pi(g)$$

Замечание. «Гомоморфный образ группы, будь во имя коммунизма изоморфен факторгруппе по ядру гомоморфизма!»

Замечание. Есть и другая версия стишка, позволяющая доказать недостижимость коммунизма:

«Гомоморфный образ группы изоморфен факторгруппе по ядру гомоморфизма до победы коммунизма»

Так как математическая истина вечна, то коммунизм никогда не победит.

Замечание. Эпиморфизм π называется *каноническим эпиморфизмом*.

Пример. В группе перестановок у нас есть функция знака, которая тоже является гомоморфизмом (при $n \ge 2$):

$$\operatorname{sgn}: S_n \to \mathbb{C}_2 = (\{\pm 1\}, \cdot) \simeq \mathbb{Z}_2$$

Верно 2 вещи: $\operatorname{Im}\operatorname{sgn}=\mathbb{C}_2$ и $\operatorname{Ker}\operatorname{sgn}=A_n \leqslant S_n$. Стало быть

$$S_n/A_n \simeq \mathbb{C}_2 \simeq \mathbb{Z}_2$$

Теорема 1.3 (Первая теорема об изоморфизме). Пусть $G- \mathit{группа},\ K \leqslant G,\ H \leqslant G.$ Тогда $HK = KH \leqslant G,\ K \cap H \leqslant H\ u\ HK/K \simeq H/(K \cap H).$

Доказательство. Первое утверждение теоремы уже было доказано, поэтому докажем оставшиеся два. Для этого рассмотрим канонический эпиморфизм $\pi: G \to G/K$ и $\forall g \in G$ обозначим $\overline{g} := \pi(g)$.

Пусть $\varphi := \pi|_H : H \to G/K$. Тогда $\operatorname{Ker} \varphi = \operatorname{Ker} \pi \cap H = K \cap H$, откуда $K \cap H \leqslant H$. $\operatorname{Im} \varphi = \{\overline{h} : h \in H\} = \{hK : h \in H\} = HK/K$, поскольку $HK/K = \{hkK : h \in H, k \in K\} = \{hK : h \in H\}$. По основной теореме о гомоморфизме, $HK/K \cong H/(K \cap H)$.

Пример. Положим $G = S_4$, за $H = S_3$, а $K = V_4 = \{e, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}$ - четверная группа Клейна. Заметим, что $V_4 \leqslant S_4$ - это так, потому что V_4 состоит из двух классов сопряженности. Более того, $HK = S_3V_4 = S_4$. Стало быть

$$S_4/V_4 = HK/K \simeq H/(H \cap K) = S_3/\{e\} \simeq S_3$$

Теорема 1.4 (Вторая теорема об изоморфизме, или теорема о соответствии). Пусть G-группа, $K \leq G$, $K \leq H \leq G$

- 1. Каждой такой подгруппе H сопоставляется $\overline{H} = H/K \leqslant G/K = \overline{G}$. При этом соответствие $H \mapsto \overline{H}$ это биекция между между множеством подгрупп со свойством как y H и подгрупп $\epsilon \overline{G}$.
- 2. Имеет место эквивалентность $H \leq G \Leftrightarrow \overline{H} \leq \overline{G}$. Если нормальность присутствует, тогда верен изоморфизм:

$$G/H \cong \overline{G}/\overline{H} = (G/K)/(H/K)$$

Замечание. Шуточно говоря, второе свойство утверждает возможность сократить дробь на K.

Утверждение 1.14. Если $\varphi \colon G_1 \to G_2$ - гомоморфизм, то есть 2 свойства:

$$\forall H \leqslant G_1 \Rightarrow \varphi(H) \leqslant G_2$$

$$\triangleright \ \forall D \leqslant G_2 \Rightarrow \varphi^{-1}(D) \leqslant G_1$$

Доказательство. Для доказательства достаточно показать замкнутость соответствующих множеств относительно операции своей группы:

- $ightharpoonup 1. \ \forall a,b \in H \quad \varphi(a) \cdot \varphi(b) = \varphi(ab),$ где $ab \in H,$ то есть $\varphi(ab) \in \varphi(H)$
 - 2. $\forall a \in H \ \varphi(a) \cdot \varphi(a^{-1}) = \varphi(e) = e$, откуда $\varphi(a)^{-1} = \varphi(a^{-1}) \in \varphi(H)$
- $ightharpoonup 1. \ \forall a,b \in arphi^{-1}(D)$ верно, что $arphi(a), arphi(b) \in D \Rightarrow arphi(a) \cdot arphi(b) = arphi(ab) \in D \Rightarrow ab \in arphi^{-1}(D)$
 - 2. $\forall a \in \varphi^{-1}(D) \Rightarrow \varphi(a) \in D \Rightarrow \varphi(a^{-1}) = \varphi(a)^{-1} \in D \Rightarrow a^{-1} \in \varphi^{-1}(D)$

Доказательство.

1. Рассмотрим канонический эпиморфизм $\pi:G\to G/K=\overline{G}$. Тогда

$$\forall K \leqslant H \leqslant G : \pi(H) = \overline{H} = H/K \leqslant G/K$$

С другой стороны, любой прообраз можно записать в следующем виде:

$$\forall L \leqslant \overline{G} \ \pi^{-1}(L) = \bigcup_{qK \in L} gK \leqslant G$$

Проверим, что π осуществляет требуемую биекцию. Действительно, $\pi^{-1} \circ \pi = \mathrm{id}$, поскольку $\pi^{-1}(\pi(H)) = H$ (H- объединение нескольких левых смежных классов по K), и $\pi \circ \pi^{-1} = \mathrm{id}$, ибо $\forall L \leqslant \overline{G} : \pi(\pi^{-1}(L)) = L$.

2. Если $H \leqslant G$, то $\forall g \in G: gH = Hg$, поэтому, применяя эпиморфизм π , получаем, что $\forall \overline{g} \in \overline{G}: \overline{g}\overline{H} = \overline{H}\overline{g}$, то есть $\overline{H} \leqslant \overline{G}$. Пусть теперь, наоборот, $\overline{H} \leqslant \overline{G}$. Рассмотрим канонический эпиморфизм $\pi': \overline{G} \to \overline{G}/\overline{H}$. Тогда $\varphi := \pi' \circ \pi: G \to \overline{G} \to \overline{G}/\overline{H}$ тоже эпиморфизм, причем

$$\operatorname{Ker} \varphi = \pi^{-1}((\pi')^{-1}(\overline{H})) = \pi^{-1}(\overline{H}) = H$$

Значит, $H \leqslant G$, и, по основной теореме о гомоморфизме, $G/H \cong \overline{G}/\overline{H}$.

Пример. Рассмотрим $G=\mathbb{Z}$ и $G\geqslant n\mathbb{Z}\geqslant k\mathbb{Z}$, тогда $n\mid k,\ \overline{H}=n\mathbb{Z}/k\mathbb{Z}=n\cdot\mathbb{Z}_k$. Вторая теорема утверждает, что

$$\overline{G}/\overline{H} = \mathbb{Z}_k/n\mathbb{Z}_k \cong \mathbb{Z}_n$$

Упражнение. Укажите в явном виде изоморфизм $G/H \to \overline{G}/\overline{H}$ из предыдущей теоремы.

1.4 Действие группы на множестве

Замечание. Многие группы оказываются группами преобразований над множествами. Примерами будут $S_n, D_n, \operatorname{GL}_n(\mathbb{F}), \mathcal{O}_n, \mathcal{U}_n$. Идея того, что любую группу можно *интерпретировать* как группу преобразований, является одной из ключевых в теории групп.

Определение 1.20. Пусть G—группа, Ω —множество. Будем говорить, что определено ∂ ействие группы G на множестве Ω , если для каждого $g \in G$ и $\omega \in \Omega$ определен элемент $g\omega := g(\omega) \in \Omega$, причем выполнены следующие свойства:

- 1. $\forall g_1, g_2 \in G : \forall \omega \in \Omega \quad (g_1g_2)\omega = g_1(g_2\omega)$
- 2. $\forall \omega \in \Omega \quad e\omega = \omega$

Определение 1.21. Пусть G — группа, Ω — множество. Определим группу $S(\Omega) := \{ \sigma : \Omega \to \Omega : \sigma$ — биекция $\}$. Тогда *действие группы G на множестве* Ω — это гомоморфизм $\varphi : G \to S(\Omega)$.

Утверждение 1.15. Данные выше определения действия группы G на множестве Ω эквивалентны.

Доказательство.

 $\triangleright (1 \Rightarrow 2) \ \forall g \in G$ определим $I_g \colon \Omega \to \Omega$ так, что

$$\forall w \in \Omega \quad I_q(\omega) := g\omega$$

Нужно проверить гомоморфность и биективность каждой I_q . Начнём с первого:

$$(I_g \circ I_h)(\omega) = g(h(\omega)) = (gh)(\omega) = I_{gh}(\omega)$$

Теперь проверим, что I_g — это биекция. Действительно, $I_e=\mathrm{id}$, поэтому $\forall g\in G:I_g\circ I_{g^{-1}}=I_{g^{-1}}\circ I_g=\mathrm{id}$. Значит, $\varphi(g)=I_g$ — гомоморфизм групп G и $S(\Omega)$.

 $\triangleright (2 \Rightarrow 1)$ Для каждого $g \in G$ определим $g\omega := \varphi(g)(\omega)$. Тогда

- 1. $(g_1g_2)\omega = \varphi(g_1g_2)(\omega) = \varphi(g_1)(\varphi(g_2)(\omega)) = g_1(g_2\omega)$
- 2. $e\omega = \varphi(e)(\omega) = \mathrm{id}(\omega) = \omega$

Определение 1.22. Пусть группа G действует на множество Ω . Ядром действия называется ядро соответствующего гомоморфизма $\varphi: G \to S(\Omega)$, то есть

$$\operatorname{Ker} \varphi = \{ g \in G \mid \forall \omega \in \Omega \ \varphi(g)\omega = g\omega = \omega \}$$

 $\overline{\Phi\Pi M M \Phi T M}$, осень 2022

Замечание. Ядро действия группы G—это нормальная подгруппа в G, поскольку это ядро гомоморфизма.

Определение 1.23. Пусть группа G действует на множество Ω . Действие называется *точным*, или *эффективным*, если его ядро тривиально, то есть равно $\{e\}$.

Определение 1.24. Действие называется *свободным*, если $\forall g \in G, g \neq e : \forall \omega \in \Omega : g\omega \neq \omega$

Пример. Рассмотрим несколько примеров действий групп на соответствующих множествах:

- 1. S_n действует на $X_n := \{1, \dots, n\}$ с гомоморфизмом id, а если $\forall \sigma \in S_n$ и $\forall x, y \in X_n$ положить $\sigma(x, y) := (\sigma(x), \sigma(y))$, то результатом будет действие S_n на X_n^2
- 2. $GL_n(F)$ действует на F^n , $\forall A \in GL_n(F) : \forall v \in F^n : A(v) = Av$, и, аналогично, $GL_n(F)$ действует на любом линейном пространстве V над полем F таком, что dim V = n, а также на множестве всех подпространств V
- 3. Группа диэдра $D_n = \{ \varphi \in \mathcal{O}_2 : \varphi(\mathcal{P}_n) = \mathcal{P}_n \} \leqslant \mathcal{O}_2$, где \mathcal{P}_n правильный n-угольник в V_2 , действует на плоскости V_2 и на множестве вершин или ребер \mathcal{P}_n (в последних двух случаях имеет место гомоморфизм $\mathcal{D}_n \to S_n$)

Определение 1.25. Пусть группа G действует на множество Ω . *Орбитой* элемента $x \in \Omega$ называется $G(x) := \{g(x) : g \in G\}$.

Определение 1.26. Пусть группа G действует на множество Ω . Элементы $x,y\in\Omega$ называются эквивалентными относительно действия G, если $x\in G(y)$.

Утверждение 1.16. Эквивалентность относительно действия является отношением эквивалентности, причем класс эквивалентности элемента $x \in \Omega$ — это G(x).

Доказательство. Произведем непосредственную проверку:

- \triangleright (Рефлексивность) e(x) = x, поэтому $x \in G(x)$
- ightharpoonup (Симметричность) Если $x\in G(y),$ то x=g(y), $g\in G$ и $g^{-1}(x)=g^{-1}(g(y))=e(y)=y,$ поэтому $y\in G(x)$
- > (Транзитивность) Если x=g(y), y=g'(z), то x=(gg')(z) и $x\in G(z)$

Замечание. Если ω_1 и ω_2 эквивалентны, то $G(\omega_1) = G(\omega_2)$ по уже доказанному утверждению. Говорят, что всё Ω разбивается на орбиты; множество классов обозначатеся через Ω/G .

Пример. Рассмотрим действие \mathcal{O}_n на \mathbb{R}^n , имеющее вид A(x) = Ax. Если на \mathbb{R}^n введено стандартное скалярное произведение, то нетрудно показать, что $\mathcal{O}_n(x) = \{y \in \mathbb{R}^n : ||y|| = ||x||\}$.

Определение 1.27. Пусть группа G действует на множество Ω . C табилизатором, или c танционарной подгруппой элемента $x \in \Omega$ называется $\mathrm{St}(x) := \{g \in G : gx = x\}$.

Замечание. Очевидно, что $St(x) \leq G$.

Утверждение 1.17. Пусть $x, y \in \Omega$, $y \in G(x)$, причём $y = g_0 x, g_0 \in G$. Тогда

$$\{g \in G : gx = y\} = g_0 \operatorname{St}(x) = \operatorname{St}(y)g_0$$

Доказательство.

1.
$$gx = y \Leftrightarrow g_0^{-1}gx = g_0^{-1}y = x \Leftrightarrow g_0^{-1}g \in St(x) \Leftrightarrow g \in g_0 St(x)$$

2.
$$gx = y \Leftrightarrow gg_0^{-1}g_0x = y \Leftrightarrow (gg_0^{-1})y = y \Leftrightarrow gg_0^{-1} \in St(y) \Leftrightarrow g \in St(y)g_0$$

Следствие. Если $x, y \in \Omega$ эквивалентны относительно действия $G, y = g_0 x, g_0 \in G$, то $St(y) = g_0 St(x)g_0^{-1}$, то есть St(x) и St(y) сопряжены.

Следствие. |G(x)| = |G: St(x)|. В частности, если группа G конечна, то $|G(x)| = \frac{|G|}{|St(x)|}$.

Доказательство. Построим биекцию $\varphi: G(x) \to G/\operatorname{St}(x)$ следующим образом:

$$\forall y \in G(x), y = q_0 x \quad \varphi(y) = \{q \in G : qx = y\} = q_0 \operatorname{St}(x)$$

Согласно уже доказаному утверждению, отображение корректно. Осталось проверить биективность:

 \triangleright Инъективность. Пусть $\varphi(y) = \varphi(z)$, то

$$\{g \in G \colon gx = y\} = \{g \in G \colon gx = z\} \Longrightarrow \exists g \in \varphi(y), \ y = gx = z$$

⊳ Сюръективность. Она выполнена по простой причине:

$$\forall g_1 \operatorname{St}(x) \in G / \operatorname{St}(x) \ \exists y = g_1 x \in \Omega \ | \ \varphi(y) = g_1 \operatorname{St}(x)$$

Теорема 1.5. (Формула орбит) Пусть группа G действует на конечное множество Ω , $\Omega_1, \ldots, \Omega_k$ — орбиты действия, $x_i \in \Omega_i, i \in \{1, \ldots, k\}$ — представители орбит. Тогда:

$$|\Omega| = \sum_{i=1}^{k} |\Omega_i| = \sum_{i=1}^{k} |G : \operatorname{St}(x_i)|$$

Доказательство. Первое равенство тривиально, а второе справедливо в силу следствия из предыдущего утверждения. \Box

Пример. Группа G действует на себя *левыми сдвигами*, $\forall g, x \in G$ g(x) = gx. Очевидно, это действие (а чтобы получить аналогичное действие *правыми сдвигами*, следует задать его как $g(x) = xg^{-1}$). Данное действие точно, и, более того, свободно. Оно определяет гомоморфизм $\varphi \colon G \to S(G)$, и, в силу точности, это мономорфизм, поэтому $G \cong \varphi(G) \leqslant S(G)$ — получена теорема Кэли.

Замечание. Пусть группа G действует на множества Ω_1 и Ω_2 . Эти два действия называются эквивалентными, или изоморфными, если существует биекция $\mu \colon \Omega_1 \to \Omega_2$ такая, что

$$\forall g \in G \ \forall \omega \in \Omega_1 \ \mu(g(\omega)) = g(\mu(\omega))$$

В этом смысле действия G на себя левыми и правыми сдвигами изоморфны, и изоморфизм имеет вид $\mu(x) = x^{-1}$, $\forall g, x \in G \ \mu(g(x)) = (gx)^{-1} = x^{-1}g^{-1} = g(\mu(x))$.

Пример. Пусть G—группа, $H \leqslant G$. Тогда G действует на G/H левыми сдвигами:

$$\forall q \in G : \forall xH \in G/H : q(xH) = qxH$$

Найдем St(xH):

$$g \in \operatorname{St}(xH) \Leftrightarrow gxH = xH \Leftrightarrow g^x = x^{-1}gxH = H \Leftrightarrow g \in H^{(x^{-1})}$$

Значит, если обозначить гомоморфизм действия как φ , то его ядро запишется следующим образом:

$$\operatorname{Ker} \varphi = \{g \in G \colon \forall x H \in G/H, \, g(xH) = xH\} = \bigcap_{x \in G} x H x^{-1}$$

Утверждение 1.18. В рамках последнего примера, $K := \operatorname{Ker} \varphi$ является наибольшей по включению подгруппой H такой, что $K \leqslant G$.

Доказательство. Пусть $L \leqslant H, L \leqslant G$. Тогда

$$\forall x \in G \ L = x^{-1}Lx \leqslant x^{-1}Hx \Rightarrow L \leqslant K$$

Упражнение. Пусть $H \leq G$, $|G:H| = n \in \mathbb{N}$. Докажите, что тогда верно следующее:

$$\exists K \leqslant H, K \leqslant G \ \big| \ |G:K| \leqslant n!$$

Пример. Группа G действует на себя сопряжениями:

$$\forall g,x\in G \ g(x):=x^{g^{-1}}=gxg^{-1}$$

Проверим, что это действительно действие (это же и объяснит, почему надо именно так его определять):

1.
$$\forall g_1, g_2, x \in G \ g_1(g_2(x)) = g_1 g_2 x g_2^{-1} g_1^{-1} = (g_1 g_2) x (g_1 g_2)^{-1} = (g_1 g_2)(x)$$

2.
$$\forall x \in G \ e(x) = exe^{-1} = x$$

Определение 1.28. Рассмотрим действие группы G на себя сопряжениями. Тогда cmabuлизатор элемента $x \in G$ носит собственное название — qнтрализатор элемента $C_G(x)$:

$$C_G(x) = \{g \in G \colon gxg^{-1} = x\} = \{g \in G \colon gx = xg\}$$

Определение 1.29. Рассмотрим действие группы G на себя сопряжениями $(\varphi \colon G \to S(G))$. Тогда *центром группы* G называется ядро этого действия:

$$\operatorname{Ker} \varphi = \{g \in G \colon \forall x \in G \ gx = xg\} = \bigcap_{x \in G} \operatorname{St}(x)$$

Замечание. Легко видеть, что $C_G(x)$ — это наибольшая по включению подгруппа $H \leqslant G$ такая, что $x \in H$ и $x \in Z(H)$.

Действительно, x коммутирует со всеми элементами $C_G(x)$, причём мы взяли все такие элементы.

Утверждение 1.19. Пусть G- конечная группа, действующая на себя сопряжениями, $u\ a\in G.\ Tor\partial a\ |a^G|\ |\frac{|G|}{\operatorname{ord} a}.$

Доказательство. Поскольку
$$a^G$$
 — орбита a относительно действия сопряжениями, $|a^G| = |G: \operatorname{St}(a)| = |G: C_G(a)| = \frac{|G|}{|C_G(a)|}$. Заметим, что $a \in C_G(a)$, тогда $\langle a \rangle \leqslant C_G(a)$ и ord $a = |\langle a \rangle| \mid |C_G(a)| = \frac{|G|}{|a^G|}$, поэтому $|a^G| \mid \frac{|G|}{\operatorname{ord} a}$.

Определение 1.30. Все автоморфизмы группы G образуют группу автоморфизмов $\operatorname{Aut} G \leq S(G)$. Автоморфизм $\psi \in \operatorname{Aut} G$ называется внутренним, если $\psi = I_g$ для некоторого $g \in G$. Множество всех внутренних автоморфизмов обозначается как $\operatorname{Inn} G$.

Замечание. Тогда если $\varphi \colon G \to S(G)$ — гомоморфизм действия группы сопряжениями на себя, то $\operatorname{Im} \varphi = \operatorname{Inn} G \leqslant \operatorname{Aut} G$. Более того, поскольку $\operatorname{Im} \varphi = \operatorname{Inn} G$ и $\operatorname{Ker} \varphi = Z(G)$, то, по основной теореме о гомоморфизме, $\operatorname{Inn} G \cong G/Z(G)$.

Пример. Рассмотрим несколько примеров внутренних автоморфизмов:

- 1. Если группа G абелева, то $Inn G = \{id\}$
- 2. Если $G = S_n, n \geqslant 3$, то $Z(S_n) = \{e\}$ (поскольку каждая перестановка в $Z(S_n)$ должна коммутировать со всеми транспозициями), следовательно, $\operatorname{Inn} G \cong S_n$

Упражнение. Докажите, что $\operatorname{Inn} G \leqslant \operatorname{Aut} G$.

Определение 1.31. Естественно, множество $\operatorname{Aut} G \backslash \operatorname{Inn} G$ называется множеством внешних автоморфизмов группы G.

Пример. Пусть G-группа, $\Omega-$ множество всех подгрупп в G. Тогда G действует на Ω сопряжениями:

$$\forall H \in \Omega, g \in G \ g(H) = gHg^{-1}$$

Определение 1.32. Пусть группа G действует на множество всех своих подгрупп. Тогда для $H \leqslant G$ нормализатором называется её стабилизатор:

$$N(H):=\operatorname{St}(H)=\{g\in G\colon gHg^{-1}=H\}=\{g\in G\colon gH=Hg\}$$

Замечание. N(H) является наибольшей по включению подгруппой в G такой, что H нормальна в этой подгруппе.

Определение 1.33. Конечная группа G называется p-группой, если $|G|=p^n$, где $n\in\mathbb{N},$ p—простое число.

Теорема 1.6. Пусть G - p-группа. Тогда $Z(G) \neq \{e\}$.

$$|\Omega| = |G| = \sum_{i} |\Omega_i| = \sum_{i} |x_i^G|$$

Заметим такую цепочку равносильных утверждений:

$$g \in Z(G) \Leftrightarrow C_G(g) = G \Leftrightarrow g^G = \{g\}$$

Значит, среди представителей орбит есть такие, что их орбита состоит только из них. Не умаляя общности, скажем, что такими были только первые l. Получим такое равенство:

$$p^n = |G| = \sum_{i=1}^k |x_i^G| = \underbrace{|Z(G)|}_{l} + \sum_{i=l+1}^k |G: C_G(x_i)|$$

Что можно сказать про оставшиеся слагаемые? Так как элементы с $C_G(g) = G$ лежат только в центре, то индексы оставшихся заведомо больше единицы. При этом как |G|, так и $|C_G(x_i)|$ кратны p. Стало быть, вся сумма делится на p и оставшееся слагаемое - тоже:

$$p \mid l = |Z(G)| \geqslant 1 \Longrightarrow |Z(G)| \geqslant p$$

Пример. Не все p-группы являются абелевыми. Рассмотрим, например, $G \leq \operatorname{GL}_3(\mathbb{Z}_p)$ — верхнетреугольные матрицы с единичной диагональю. Тогда $|G| = p^3$, и легко показать, что в G есть некоммутирующие элементы.

С другой стороны, если G — такая конечная группа, что |G|=p, то $\forall g\in G\backslash\{e\}: \mathrm{ord}\, g=p$ по теореме Лагранжа, тогда G — циклическая и потому абелева.

Теорема 1.7. Пусть G — неабелева группа. Тогда G/Z(G) не является циклической.

Доказательство. По условию, $Z(G) \neq G$, и, как уже было показано, $Z(G) \leqslant G$. Предположим, что $G/Z(G) = \langle aZ(G) \rangle$ для некоторого $a \in G$. Пусть $g_1, g_2 \in G$, тогда $g_1Z(G) = a^{n_1}Z(G)$ и $g_2Z(G) = a^{n_2}Z(G)$ в силу нормальности Z(G), поэтому $g_1 = a^{n_1}z_1$ и $g_2 = a^{n_2}z_2, z_1, z_2 \in Z(G)$. Тогда $g_1g_2 = a^{n_1}z_1a^{n_2}z_2 = a^{n_2}z_2a^{n_1}z_1 = g_2g_1$, и, в силу произвольности g_1, g_2, G — абелева, но это неверно.

Следствие. Пусть G — такая конечная группа, что $|G|=p^2$. Тогда G — абелева.

Доказательство. Предположим, что G не является абелевой, то есть $Z(G) \neq G$, тогда |Z(G)| = p, поскольку центр нетривиален. Но тогда |G/Z(G)| = p и группа G/Z(G) циклическая, следовательно, G является абелевой — противоречие.

1.5 Лемма Бернсайда

Определение 1.34. Действие группы G на множестве Ω называется mранзитивным, если Ω является единственной орбитой действия. Иными словами, $\forall \omega_1, \omega_2 \in \Omega : \exists g \in G : g(\omega_1) = \omega_2$.

Пример. S_n действует на $\{1,\ldots,n\}$ транзитивно, а $S_{n-1} \leqslant S_n$ действует на $\{1,\ldots,n\}$ нетранзитивно.

Теорема 1.8 (Лемма Бернсайда). Пусть конечная группа G действует на множестве Ω транзитивно. Для $\forall g \in G$ обозначим $F(g) := |\{\omega \in \Omega : g\omega = \omega\}|$. Тогда:

$$\sum_{g \in G} F(g) = |G|$$

Доказательство. Положим $S:=\{(g,\omega)\in G\times\Omega\colon g\omega=\omega\}$. Посчитаем это множество двумя способами:

 \triangleright С одной стороны, можно просуммировать множество пар при фиксированном ω . Это будет ничто иное как $St(\omega)$:

$$|S| = \sum_{\omega \in \Omega} |\operatorname{St}(\omega)| = \sum_{\omega \in \Omega} \frac{|G|}{|G(\omega)|} = \sum_{\omega \in \Omega} \frac{|G|}{|\Omega|} = |G|$$

 \triangleright C другой стороны, можно написать аналогичную сумму по преобразованиям $g \in G$:

$$|S| = \sum_{g \in G} |\{\omega \in \Omega \colon g\omega = \omega\}| = \sum_{g \in G} F(g)$$

Следствие (Лемма Бернсайда, другая формулировка). Пусть конечная группа G действует на множестве $\Omega, F(g)$ определено как в последней теореме. Тогда:

$$|\Omega/G| = \frac{1}{|G|} \sum_{g \in G} F(g)$$

Доказательство. Пусть $k:=|\Omega/G|$. Представим Ω в виде $\Omega=\bigsqcup_{i=1}^k \Omega_i$, где Ω_1,\ldots,Ω_k орбиты действия. Тогда $\forall i\in\{1,\ldots,k\}:G$ действует на Ω_i транзитивно (значит, в частности, Ω конечно). Для $\forall g\in G$ положим $F_i(g):=|\{\omega\in\Omega_i:g\omega=\omega\}|$ и воспользуемся леммой Бернсайда:

$$\sum_{g \in G} F(g) = \sum_{g \in G} \sum_{i=1}^{k} F_i(g) = \sum_{i=1}^{k} |G| = k|G| \Rightarrow k = \frac{1}{|G|} \sum_{g \in G} F(g)$$

Замечание. Формально стоит требовать $|\Omega| < \infty$ в последнем следствии, но, вообще говоря, даже так равенство будет выполнено (с двух сторон просто могут быть бесконечности из-за $|\Omega| = +\infty$).

Пример. Рассмотрим ожерелья из p бусинок (p>2—простое число), в которых каждая бусинка покрашена в один из k цветов. Найдем количество различных ожерелий (с точностью до поворота и переворота). Пусть Ω —множество неподвижных ожерелий, то есть не допускающих повороты и перевороты, тогда $|\Omega|=k^p$. Группа $G=\mathcal{D}_p$ действует на Ω , и искомая величина—это $|\Omega/G|$, поскольку элементы одной орбиты отличаются

друг от друга только композицией поворотов и переворотов. Элементы G имеют один из следующих видов:

- \triangleright Если $g=\mathrm{id}$, то $F(g)=|\Omega|=k^p$
- ightharpoonup Если g поворот на $2\pi \frac{k}{p},\, 0 < k < p,\,$ то F(g)=k в силу простоты $p,\,$ поскольку любая фиксированная бусинка совпадает по цвету с бусинками, в которые она переходит при повороте на $2\pi \frac{k}{p}, 2\pi \frac{2k}{p}, \ldots, 2\pi \frac{(p-1)k}{p},\,$ и полученные таким образом бусинки образуют все ожерелье
- ightharpoonup Если g переворот, то есть симметрия, то $F(g)=k^{\frac{p+1}{2}}$, поскольку $\frac{p+1}{2}$ подряд идущих бусинок, начиная с той, через которую проходит ось симметрии, однозначно задают пвета оставшихся

Применим теперь лемму Бернсайда:

$$|\Omega/G| = \frac{k^p + (p-1)k + pk^{\frac{p+1}{2}}}{2p}$$

Следствие. При помощи леммы Бернсайда, либо из этого примера, либо из аналогичного без отражений, можно доказать малую теорему Ферма.

Определение 1.35. Пусть G действует на множестве Ω . Обозначим за $\Omega^{[k]}$ такое множество:

$$\Omega^{[k]} = \{(\omega_1, \dots, \omega_k) \in \Omega^k : i \neq j \Rightarrow \omega_i \neq \omega_j\}$$

Действие называется k-транзитивным, если выполнено условие:

$$\forall (\omega_1, \dots, \omega_k), (\delta_1, \dots, \delta_k) \in \Omega^{[k]} \exists g \in G \colon (g\omega_1, \dots, g\omega_k) = (\delta_1, \dots, \delta_k)$$

Другими словами, G действует на $\Omega^{[k]}$ транзитивно.

Упражнение. Пусть группа G действует на множестве Ω , причем действие 2-транзитивно. Для $\forall g \in G$ обозначим $F(g) := |\{a \in \Omega : ga = a\}|$. Докажите, что выполнено следующее равенство:

$$\sum_{g \in G} F(g)^2 = 2|G|$$

2 Виды групп и теоретико-групповые конструкции

2.1 Прямое произведение групп

Определение 2.1. Пусть A, B — группы. Тогда их (внешним) прямым произведением называется группа $G = A \times B$ со следующей операцией:

$$\forall (a_1, b_1), (a_2, b_2) \in G \ (a_1, b_1)(a_2, b_2) = (a_1 a_2, b_1 b_2)$$

Замечание. Действительно, G является группой: ассоциативность очевидна, нейтральный элемент в G – это $e = (e_A, e_B)$, и $\forall (a, b) \in G \ (a, b)^{-1} = (a^{-1}, b^{-1})$.

Утверждение 2.1. Пусть $A, B - \mathit{группы}, G = A \times B$. Тогда:

- 1. $A \times \{e_B\} \leqslant G, \{e_A\} \times B \leqslant G$
- 2. $A \times B \cong B \times A$
- 3. Ecnu C epynna, mo $(A \times B) \times C \cong A \times (B \times C)$

Доказательство.

1. Очевидно, $A \times \{e_B\} \leqslant G$, и, более того:

$$\forall (a, e_B) \in A \times \{e_B\}, (a', b') \in G \quad (a', b')(a, e_B)((a')^{-1}, (b')^{-1}) = (a^{(a')^{-1}}, e_B) \in A \times \{e_B\}$$

Поэтому $A \times \{e_B\} \leqslant G$ (вторая часть утверждения доказывается аналогично)

- 2. Предъявим изоморфизм: $(a, b) \mapsto (b, a)$
- 3. Предъявим изоморфизм: $((a,b),c)\mapsto (a,(b,c))$

Замечание. В силу «ассоциативности» прямого произведения, мы будем опускать скобки в прямых произведениях трех и более групп, записывая их в следующем виде:

$$A_1 \times \dots \times A_k = \prod_{i=1}^k A_i = \{(a_1, \dots, a_k) : a_1 \in A_1, \dots, a_k \in A_k\}$$

Утверждение 2.2. Пусть $A, B - \mathit{группы}, \ A_1 \leqslant A, B_1 \leqslant B.$ Тогда $A_1 \times B_1 \leqslant A \times B, \ \mathit{npu}$ этом $(A \times B)/(A_1 \times B_1) \cong (A/A_1) \times (B/B_1).$

Доказательство. Пусть $\pi_A: A \to A/A_1$, $\pi_B: B \to B/B_1$ — канонические эпиморфизмы. Рассмотрим $\pi:=\pi_A\times\pi_B: (A\times B)\to (A/A_1)\times (B/B_1)$ — такое отображение, что $\forall (a,b)\in A\times B: \pi((a,b))=(\pi_A(a),\pi_B(b))$. Тогда π — это гомоморфизм, причем сюръективный в силу сюръективности π_A,π_B . Im $\pi=(A/A_1)\times (B/B_1)$, Ker $\pi=\operatorname{Ker} \pi_A\times \operatorname{Ker} \pi_B=A_1\times B_1$, и, следовательно, $A_1\times B_1 \leqslant A\times B$. Наконец, по основной теореме о гомоморфизме, $(A\times B)/(A_1\times B_1)\cong (A/A_1)\times (B/B_1)$, причем изоморфизм имеет следующий вид: $(a,b)(A_1\times B_1)\mapsto (aA_1,bB_1)$.

Замечание. Легко видеть, что $A \times \{e_B\} \cong A$, $\{e_A\} \times B \cong B$, поэтому далее мы будем отождествлять эти подгруппы с A и B. Тогда, по утверждению выше:

$$(A \times B)/A \cong (A/A) \times (B/\{e_B\}) \cong \{A\} \times B \cong B$$

Замечание. Если группы A и B — абелевы, их прямое произведение часто обозначается как $A \oplus B$.

Теорема 2.1. Пусть $G-\mathit{группa},\ A,B\leqslant G,\ \mathit{причем}\ A\cap B=\{e\}\ u\ AB=G.$ Тогда $G\cong A\times B.$

Доказательство. Сначала заметим, что есть коммутативность такого вида: $\forall a \in A, b \in B \ ab = ba$. Действительно, проверим это так:

$$ab(ba)^{-1} = (aba^{-1})b^{-1} = a(ba^{-1}b^{-1}) \in A \cap B \Rightarrow ab(ba)^{-1} = e \Rightarrow ab = ba$$

Построим изоморфизм $\varphi \colon A \times B \to G$ следующим образом: $\varphi((a,b)) = ab$. Проверим свойства изоморфизма:

⊳ Гомоморфизм:

$$\forall (a_1, b_1), (a_2, b_2) \in A \times B \quad \varphi((a_1, b_1)(a_2, b_2)) = (a_1 a_2)(b_1 b_2) = (a_1 b_1)(a_2 b_2) = \varphi((a_1, b_1)) \cdot \varphi((a_2, b_2))$$

⊳ Инъективность:

$$\operatorname{Ker} \varphi = \{(a, b) \in A \times B : ab = e\} = \{(a, b) \in A \times B : a = b^{-1}\} = \{(e, e)\}\$$

 \triangleright Сюръективность: Im $\varphi = AB = G$

Значит, φ действительно является изоморфизмом G и $A \times B$.

Определение 2.2. Если G — группа, $A, B \leq G$, причём $A \cap B = \{e\}$ и AB = G, то G называется внутренним прямым произведением своих подгрупп A и B.

Определение 2.3. Пусть G — группа, $A \leq G$, $B \leq G$. Если $A \cap B = \{e\}$ и AB = G, то G называется полупрямым произведением A и B. Обозначение — $G = A \setminus B$.

Замечание. Рассмотрим канонический эпиморфизм $\pi\colon G\to G/A$ (в обозначениях определения выше). Тогда, по первой теореме об изоморфизме, $G/A=AB/A\cong B/(A\cap B)\cong B$, как и в случае внутреннего прямого произведения.

Пример. Рассмотрим несколько полупрямых произведений:

- 1. $S_n = A_n \setminus \langle (12) \rangle$ (если $n \geqslant 2$)
- 2. $S_4 = V_4 \times S_3$

Замечание. Пусть G — группа, $A \leq G$, $B \leq G$, и $G = A \searrow B$. Рассмотрим действие B на A сопряжениями: $\forall b \in B, a \in A$ $b(a) = bab^{-1} \in A$, поскольку $A \leq G$. Данному действию соответствует гомоморфизм $\varphi \colon B \to S(A)$. Более того, поскольку $\forall b \in B$ $bAb^{-1} = A$ и сопряжение с помощью b^{-1} — это автоморфизм G, то это также автоморфизм A. Значит,

на самом деле $\varphi \colon B \to \operatorname{Aut} A \leqslant S(A)$. Структура полупрямого произведения однозначно (точнее, не более чем однозначно) задается группами A, B и гомоморфизмом φ (здесь, в отличие от внутреннего произведения, нет коммутативности между элементами из A и B):

$$(a_1b_1)(a_2b_2) = a_1b_1a_2b_2 = a_1(b_1a_2b_1^{-1})b_1b_2 = a_1\varphi_{b_1}(a_2)b_1b_2$$

Определение 2.4. Пусть A, B — группы, $\varphi: B \to \operatorname{Aut} A$. Определим на $G = A \times B$ операцию следующим образом: $\forall (a_1, b_1), (a_2, b_2) \in G: (a_1, b_1)(a_2, b_2) = (a_1 \varphi_{b_1}(a_2), b_1 b_2)$. Полученная конструкция называется полупрямым произведением A u B, заданным гомоморфизмом φ . Обозначение — $G = A \searrow_{\varphi} B$.

Упражнение. Докажите, что $G = A \searrow_{\varphi} B$ является группой, причем $A \searrow_{\varphi} \{e_B\} \cong A$, $\{e_A\} \searrow_{\varphi} B \cong B$ и $G = A \searrow B$ (в смысле первого определения).

Замечание. Если группа G является полупрямым произведением $A \leqslant G$ и $B \leqslant G$, и $\varphi: B \to \operatorname{Aut} A$ — соответствующий действию B на A сопряжениями гомоморфизм, то, как и в случае прямого произведения, $A \searrow_{\varphi} B \cong G$, и изоморфизм имеет вид $(a,b) \mapsto ab$.

Отметим также, что прямое произведение является частным случаем полупрямого: гомоморфизм, описанный выше, каждому элементу $b \in B$ сопоставляет $\varphi_b = \mathrm{id}$.

2.2 Коммутант группы

Определение 2.5. Пусть G — группа, $x, y \in G$. Коммутатором элементов x и y называется элемент $[x, y] := xyx^{-1}y^{-1}$.

Утверждение 2.3. Пусть G – группа, $x, y \in G$. Тогда:

- 1. xy = [x, y]yx
- 2. $xy = yx \Leftrightarrow [x, y] = e$
- 3. $[x, y]^{-1} = [y, x]$
- 4. $\forall g \in G : [x, y]^g = [x^g, y^g]$

Доказательство.

- 1. $[x,y]yx = xyx^{-1}y^{-1}yx = xy$
- $2. \ xy = yx \Leftrightarrow xyx^{-1}y^{-1} = e \Leftrightarrow [x,y] = e$
- 3. $[x,y]^{-1} = (xyx^{-1}y^{-1})^{-1} = yxy^{-1}x^{-1} = [y,x]$
- 4. Данное равенство можно проверить непосредственно, но оно следует из того, что сопряжение с помощью $g \in G$ это автоморфизм G

Замечание. Пусть $\varphi: G \to A$ —гомоморфизм групп G и A, причем A—абелева. Тогда $\varphi([x,y]) = [\varphi(x), \varphi(y)] = e$, поскольку $\varphi(x)$ и $\varphi(y)$ коммутируют.

Определение 2.6. Пусть G — группа. Коммутантом группы G называется $G' := \langle [x,y] : x,y \in G \rangle \leqslant G$. Рекурсивно определяется n-ный коммутант $G^{(n)} := (G^{(n-1)})' \leqslant G^{(n-1)}$.

Определение 2.7. Пусть G—группа, $K, H \leq G$. Взаимным коммутантом K и H называется $[K, H] := \langle [k, h] : k \in K, h \in H \rangle$.

Замечание. Определения имеют именно такой вид, потому что возможна ситуация, когда $\{[x,y]:x,y\in G\}$ не является подгруппой в G. Отметим также, что $G^{(n)}=[G^{(n-1)},G^{(n-1)}]$.

Утверждение 2.4. Пусть $\varphi: G \to H$ — гомоморфизм групп G и H. Тогда $\varphi(G') \leqslant H'$. Более того, если φ — эпиморфизм, то $\varphi(G') = H'$.

Доказательство. Поскольку $G' = \langle [x,y] : x,y \in G \rangle$, то $\varphi(G') = \langle \varphi([x,y]) : x,y \in G \rangle = \langle [\varphi(x),\varphi(y)] : x,y \in G \rangle \leqslant \langle [p,q] : p,q \in H \rangle$. Если же φ – эпиморфизм, то последнее включение тоже становится равенством.

Следствие. Пусть G—группа, $K \leqslant G$. Тогда $K' \leqslant G$.

Доказательство. Рассмотрим $g \in G$. Сопряжение с помощью g — это автоморфизм $I_g: G \to G, \ \forall x \in G: I_g(x) = x^g$. Следовательно, $I_g(K) = K$, то есть $I_g|_K: K \to K$ — автоморфизм, и, по утверждению выше, $I_g(K') = K'$, тогда, в силу произвольности g, $K' \leqslant G$.

Следствие. $G' \leq G$, и, по индукции, $\forall n \in \mathbb{N} : G^{(n)} \leq G$.

Теорема 2.2. Пусть $G - \epsilon pynna$. Тогда:

- 1. Если $G' \leqslant K \leqslant G$, то $K \leqslant G$ и G/K абелева.
- 2. Если $K \leq G$ и G/K абелева, то $G' \leq K$.

Доказательство.

- 1. Рассмотрим канонический эпиморфизм $\pi: G \to G/G'$. Тогда $\{G'\} = \pi(G') = (G/G')'$. Поскольку G' нейтральный элемент в G/G', все коммутаторы в G/G' единичны, поэтому G/G' абелева. По второй теореме об изоморфизме, подгруппе $G' \leqslant K \leqslant G$ соответствует $\overline{K} = K/G' \leqslant \overline{G} = G/G'$, и, более того, $\overline{K} \leqslant \overline{G} \Leftrightarrow K \leqslant G$. Поскольку \overline{G} абелева, $\overline{K} \leqslant \overline{G}$, значит, и $K \leqslant G$. Наконец, $G/K \cong \overline{G}/\overline{K}$ абелева группа.
- 2. Рассмотрим канонический эпиморфизм $\pi: G \to G/K$. Тогда $\pi(G') = (G/K)' = \{K\}$. Значит, $G' \leqslant \operatorname{Ker} \pi = K$.

Замечание. Согласно теореме выше, G' — наименьшая по включению нормальная подгруппа в G такая, что G/G' — абелева.

Упражнение. Пусть G — группа, $H \leq G$, K = [G, H]. Докажите, что K — это наименьшая нормальная подгруппа в G такая, что $H/K \leq Z(G/K)$.

Определение 2.8. Пусть G — группа, $M \subset G$. Нормальной подгруппой, порожеденной M, называется $\langle M \rangle_{norm} = \bigcap_{M \subset H}^{H \triangleleft G} H$

Замечание. Конечно, $\langle M \rangle_{norm} \leqslant G$ как пересечение некоторого числа нормальных подгрупп.

Утверждение 2.5. Пусть G – группа, $M \subset G$. Тогда $\langle M \rangle_{norm} = \langle M^G \rangle$.

Доказательство.

- \geqslant Если $H \leqslant G, M \subset H$, то, в силу нормальности группы $H, M^G \subset H$, тогда $M^G \subset \langle M \rangle_{norm}$, и, так как $\langle M \rangle_{norm}$ группа, $\langle M^G \rangle \leqslant \langle M \rangle_{norm}$
- \leqslant Заметим, что $\forall g \in G \ (M^G)^g = M^G$. Следовательно:

$$\forall g \in G \ \langle M^G \rangle = \bigcap_{H \leqslant G \atop M^G \subset H} H = \bigcap_{H \leqslant G \atop M^G \subset H^{(g^{-1})}} H = \bigcap_{K \leqslant G \atop M^G \subset K} K^g = \left(\bigcap_{K \leqslant G \atop M^G \subset K} K\right)^g = \left\langle M^G \right\rangle^g$$

To есть $\langle M^G \rangle \leqslant G$, и поэтому $\langle M \rangle_{norm} \leqslant \langle M^G \rangle$

Поскольку доказаны оба включения, $\langle M \rangle_{norm} = \langle M^G \rangle$.

Утверждение 2.6. Пусть G — группа, $M \subset G$, $G = \langle M \rangle$. Тогда $G' = \langle [m_1, m_2] : m_1, m_2 \in M \rangle_{norm}$.

Доказательство. Обозначим $\langle [m_1, m_2] : m_1, m_2 \in M \rangle_{norm}$ через H и докажем, что H = G'.

- \leqslant Поскольку все коммутаторы лежат в G' и $G' \leqslant G$, то $H \leqslant G'$
- \geqslant Рассмотрим канонический эпиморфизм $\pi\colon G\to G/H$, тогда $\forall m_1,m_2\in M\colon [\overline{m_1},\overline{m_2}]=[\overline{m_1,m_2}]=e$, тогда, поскольку $G/H=\langle\overline{m}\colon m\in M\rangle$, то G/H—абелева, и потому $G'\leqslant H$

Замечание. Центр и коммутант группы G показывают, насколько G «близка» к абелевой группе: для абелевой группы A верно, что $Z(A) = A, A' = \{e\}.$

2.3 Разрешимые группы

Определение 2.9. Группа G называется pазрешимой, если $\exists n \in \mathbb{N} : G^{(n)} = \{e\}$. Наименьшее $n \in \mathbb{N}$, для которого это выполнено, называется cmenehoo paspewumocmu G.

Замечание. Разрешимые группы степени 1—это абелевы группы. Разрешимые группы степени 2 часто называют *метаабелевыми*.

Замечание. Если G — конечная группа, то последовательность вида $G \geqslant G' \geqslant G'' \geqslant \dots$ обязательно стабилизируется, но необязательно на $\{e\}$.

Утверждение 2.7. Пусть G — разрешимая группа, $H \leqslant G$. Тогда H тоже разрешима.

Доказательство. Достаточно заметить, что $H\leqslant G\Rightarrow H'\leqslant G'\Rightarrow \cdots\Rightarrow H^{(n)}\leqslant G^{(n)}=\{e\}.$

Теорема 2.3. Пусть G – группа, $K \leqslant G$. Тогда G разрешима $\Leftrightarrow K$ и G/K разрешимы.

Доказательство.

 \Rightarrow Если G разрешима, то $K\leqslant G$ разрешима, и, поскольку при каноническом эпиморфизме $\pi\colon G\to G/K$ выполнено равенство $\pi(G')=(G/K)'$, то, по индукции, $(G/K)^{(n)}=\pi(G^{(n)})=\{K\}$

 \Leftarrow Если $K^{(m)}=\{e\}$ и $(G/K)^{(n)}=\{K\}$, то, снова рассматриавя канонический эпиморфизм, получаем, что $\pi(G^{(n)})=(G/K)^{(n)}=\{K\}\Rightarrow G^{(n)}\leqslant \operatorname{Ker}\pi=K\Rightarrow G^{(n+m)}\leqslant K^{(m)}=\{e\}$

Следствие. Пусть G — группа, $K_1, K_2 \leqslant G$ разрешимы. Тогда группа K_1K_2 разрешима.

Доказательство. Заметим, что $K_1 \leqslant K_1K_2$ и, по первой теореме об изоморфизме, $K_1K_2/K_1 \cong K_2/(K_1 \cap K_2)$. Группы K_1 и K_1K_2/K_1 разрешимы, поэтому K_1K_2 разрешима.

Следствие. Пусть G — конечная группа. Тогда в G существует наибольшая по включению разрешимая нормальная подгруппа K.

Доказательство. Пусть $K_1, \ldots, K_m \leqslant G$ — это все разрешимые нормальные подгруппы в G. Тогда, обобщая предыдущее следствие на случай m нормальных подгрупп в G по индукции, получаем, что $K = K_1 \cdots K_m \leqslant G$ — нормальная разрешимая подгруппа, причем $K_1, \ldots, K_m \leqslant K$.

Пример. (Применение доказанных следствий для разрешимости групп)

 A_4 — разрешимая подгруппа. Действительно, $V_4 \leqslant A_4$ — абелева, а также $A_4/V_4 \cong \mathbb{Z}_3$ — тоже абелева.

 S_4 — разрешимая группа. В самом деле, теперь $A_4 \leqslant S_4$, причём $S_4/A_4 \cong \mathbb{Z}_2$ — абелева группа.

Утверждение 2.8. *Если* G-p-группа, то G разрешима.

Доказательство. Пусть $|G| = p^n$. Будем вести индукцию по n:

- ightharpoonup База n=1: если |G|=p, то $G\cong \mathbb{Z}_p$ циклическая и, в частности, абелева, а потому разрешима.
- \triangleright Переход n>1: по теореме о центре p-группы уже знаем, что $Z(G)\neq\{e\}$. Если Z(G)=G, то группа абелева и всё доказано. Иначе $|Z(G)|, |G/Z(G)|< p^n$ это p-группы меньшего порядка. Пользуясь предположением индукции, получаем, что они обе разрешимы. Тогда и G разрешима.

Теорема 2.4. Пусть G — группа. Тогда следующие утверждения эквивалентны:

- 1. G разрешима
- 2. В G существует ряд $G = G_0 \geqslant G_1 \geqslant \ldots \geqslant G_n = \{e\}$ такой, что $\forall i \in \{1, \ldots, n\}$ $G_i \bowtie G$ и G_{i-1}/G_i абелева (нормальный ряд c абелевыми факторами)
- 3. В G существует ряд $G = G_0 \geqslant G_1 \geqslant \ldots \geqslant G_n = \{e\}$ такой, что $\forall i \in \{1, \ldots, n\}$ $G_i \triangleleft G_{i-1}$ и G_{i-1}/G_i абелева (субнормальный ряд c абелевыми факторами)

Доказательство.

- $ightharpoonup (1 \Rightarrow 2)$ Достаточно расмотреть ряд $G \geqslant G' \geqslant \ldots \geqslant G^{(n)} = \{e\}$, и по свойствам коммутантов все необходимые свойства будут выполнены.
- $\triangleright (2 \Rightarrow 3)$ Заметим, что нормальный ряд также является и субнормальным: если $\forall i \in \{1, ..., n\}$ $G_i \leqslant G$, то $\forall i \in \{1, ..., n\}$ $G_i \leqslant G_{i-1}$.
- \triangleright (3 \Rightarrow 1) Докажем, что $\forall i \in \{0, \dots, n\}$ $G^{(i)} \leqslant G_i$, по индукцией по i:
 - База i = 0: тривиально
 - Переход i > 0: поскольку $G_i \leqslant G_{i-1}$ и G_{i-1}/G_i абелева, то $(G_{i-1})' \leqslant G_i$. Это доказывает переход индукции:

$$G^{(i)} = (G^{(i-1)})' \leqslant (G_{i-1})' \leqslant G_i$$

Остаётся посмотреть на последний член субнормального ряда: $\{e\} = G_n \geqslant G^{(n)}$ по доказанной индукции.

Замечание. В доказательстве выше мы предъявили существование ряда, явно построив его из коммутантов группы. Несложно понять, что наименьшая длина нормального или субнормального ряда с абелевыми факторами — всегда степень разрешимости G.

Замечание. Мы могли бы доказать разрешимость S_4 , сославшись на соответствующий ряд:

$$\{e\} \leqslant V_4 \leqslant S_4$$

Следствие. Если G — разрешимая группа, то $G' \neq G$.

Теорема 2.5. Пусть G-p-группа, $|G|=p^n$. Тогда $\forall k\in\mathbb{N}, k\leqslant n\ \exists H\leqslant G\ |H|=p^k$.

Доказательство. Проведём индукцию по n:

- \triangleright База n=1: доказывать нечего
- ⊳ Переход n>1: пусть $Z=Z(G)\neq\{e\}$. Пусть $e\neq a\in Z$. Тогда ord $a=p^l$. Стало быть, ord $a^{p^{l-1}}=p$ нашли элемент порядка p. Обозначим $b=a^{p^{l-1}}$, тогда $K=\langle b\rangle\leqslant Z$, |K|=p и $K\leqslant G$ как подгруппа центра.

Если надо было найти ответ для k=1, то мы это уже сделали. Иначе рассмотрим канонический эпиморфизм $\pi\colon G\to G/K$, тогда $\overline{G}=G/K$, $|\overline{G}|=p^{n-1}$. По предположению индукции, существует $\overline{L}\leqslant \overline{G},$ $|\overline{L}|=p^{k-1}$. По второй теореме об изоморфизме $\overline{L}\mapsto L$, причём $L\leqslant G$ из-за \overline{L} . Остаётся заметить, что $|L|=p^{k-1}\cdot p=p^k$

Замечание. Термин «разрешимости» пришёл из теории Галуа. Эваристу Галуа удалось построить для уравнений с рациональными многочленами некоторую группу и показать, что уравнение разрешимо в радикалах тогда и только тогда, когда соответствующая группа будет разрешимой.

2.4 Простые группы

Определение 2.10. Пусть G — группа, |G| > 1. G называется npocmoй, если в ней нет нормальных подгрупп, отличных от $\{e\}$ и G.

Замечание. Пусть G — конечная разрешимая группа. Рассмотрим максимальный субнормальный ряд (факторы не обязательно абелевы, поэтому разрешимость мы не затрагиваем. Требуется лишь нормальность) $G = G_0 \triangleright G_1 \triangleright \cdots \triangleright G_n = \{e\}$, в котором все группы различны. Тогда $\forall i \in \{1,\ldots,n\}$ G_{i-1}/G_i — простая, поскольку иначе $\exists H/G_i \leqslant G_{i-1}/G_i$ и, по второй теореме об изоморфизме, $H \leqslant G_{i-1}$. При этом $G_i \leqslant H$, коль скоро G_i нормальна в большей группе G_{i-1} . Стало быть, можем вставить H в наш ряд, а это невозможно по максимальности.

Замечание. Существует *теорема Жордана-Гёльдера*, гласящая, что в любых двух наибольших по включению нормальных (субнормальных) рядах соответствующие факторгруппы изоморфны (с точностью до перестановки).

Утверждение 2.9. Абелева группа A — простая $\Leftrightarrow A \cong \mathbb{Z}_p$, где число p — простое. Доказательство.

- \Rightarrow Коль скоро A простая, то $\exists a \in A \setminus \{e\}$. Рассмотрим 2 ситуации:
 - ord a = n. Тогда возьмём любой простой множитель $p \mid n$. Положим $b = a^{n/p} \in A$, для которого ord b = p. В силу абелевости A, имеем нормальную подгруппу $\langle b \rangle \leqslant A$. В силу простоты, $A \cong \mathbb{Z}_p$ (и, соответственно, n = p).
 - ord $a = \infty$. Поймём, что такой ситуации не может быть в принципе. Посмотрим на $H = \langle a^2 \rangle$. Тогда $a \notin H$ и, следовательно, $H \neq \{e\} \land H \neq G$, то есть G непроста.
- \Leftarrow Если $A\cong \mathbb{Z}_p$, то $\forall B\leqslant A\ |B|=1$ или |B|=p, то есть $B=\{e\}$ или B=A, поэтому A простая.

Утверждение 2.10. Пусть G — конечная группа, $H \leq G$, причем |G:H| = 2, $u h \in H$. Если $C_G(h) \neq C_H(h)$, то $h^G = h^H$. В противном случае, $|h^G| = 2|h^H|$.

Доказательство. Коль скоро |G:H|=2, то $H \leqslant G$ и верно такое разбиение G:

$$\forall g \in G \backslash H \ G = H \sqcup gH = H \sqcup Hg$$

 $ightharpoonup C_G(h) \neq C_H(h)$. Возьмём $g \in C_G(h) \backslash C_H(h)$, для которого gh = hg и $g \notin H$. Значит, с его помощью мы разбиваем g на 2 класса: $G = H \sqcup gH$. Осталась цепочка равенств:

$$h^G = h^{H \sqcup gH} = h^H \cup h^{gH} = h^H \cup (h^g)^H = h^H$$

ightharpoonup Теперь $C_G(h) = C_H(h)$. Тогда $\forall g \in G \backslash H \ h^g \notin h^H$. Действительно, если бы это было так, то:

$$h^g = h^x, x \in H \Rightarrow h^{gx^{-1}} = h^{xx^{-1}} = h \Rightarrow gx^{-1} \in C_G(h) = C_H(h) \leqslant H$$

Но в то же время $gx^{-1} \notin H$. Значит, для такого элемента g имеет место равенство $h^G = h^H \sqcup h^{gH}$ и остаётся доказать, что классы равномощны. Для этого построим

явно биекцию между h^H и $h^{Hg}=h^{gH}$ как $x\mapsto x^g$ (обратное отображение имеет явный вид $y\mapsto y^{g^{-1}},$ что доказывает биективность).

Теорема 2.6. A_5 является простой группой

Доказательство. Отметим, что $|A_5| = 60$. Доказательство состоит в том, чтобы рассмотреть всевозможные $\{e\} \neq H \leqslant A_5$, причём мы знаем их вид — объединение классов сопряженности и, более того, |H| | 60. Пользуясь доказанным утверждением, перечислим все классы сопряженности элементов $h \in A_5$ в A_5 и S_5 :

h^{S_5}	$g \in C_{S_5}(h) \backslash C_{A_5}(h)$	h^{A_5}	$ h^{A_5} $
id^{S_5}	(12)	id^{S_5}	1
$(123)^{S_5}$	(45)	$(123)^{S_5}$	$\frac{A_5^3}{3} = 20$
$((12)(34))^{S_5}$	(12)	$((12)(34))^{S_5}$	$\frac{C_5^2 C_3^2}{2} = 15$
$(12345)^{S_5}$	_	$(12345)^{A_5}$	$\frac{1}{2}\frac{P_5}{5} = 12$
(12040)		$(12354)^{A_5}$	$\frac{1}{2}\frac{P_5}{5} = 12$

Поясним отсутствие элемента из разности централизаторов для последнего класса: $|(12345)^{S_5}| = 24 \not | 60$, то есть по формуле мощности орбиты это точно не один класс в A_5 . Остается непосредственно убедиться, что сумма мощностей никаких двух и более классов сопряженности в A_5 не является собственным делителем $|A_5| = 60$:

- $ightharpoonup H\supseteq (123)^{S_5}$. Тогда $|H|\geqslant 21$ и, чтобы |H| делило 60, оно должно стать хотя бы 30, то есть содержать минимум ещё один класс сопряженности, а это уже точно больше 30 и такое возможно лишь при H=G.
- \triangleright Если $H \supseteq ((12)(34))^{S_5}$ и не содержит $(123)^{S_5}$, то $|H| \geqslant 16$ и нам снова нужен как минимум ещё один из оставшихся классов, но ни сумма с 12, ни сумма с 24 элементами не даёт делитель 60.
- ⊳ Остаётся 3 варианта с классами по 12 элементов, но ни один из них не подойдёт по соображениям делимости.

Значит, в A_5 нет подгрупп, отличных от единицы или всей группы, то есть A_5 проста. \square

Теорема 2.7. $\forall n \in \mathbb{N}, n \geqslant 5$ группа A_n — простая.

Доказательство. Проведем теперь индукцию по n:

- \triangleright База n=5: доказано предыдущей теоремой.
- \triangleright Переход n > 5: Рассмотрим произвольную $H \leqslant A_n, H \neq \{id\}$. Сделаем переход в 2 шага:
 - 1. Покажем, что $\exists \tau \in H \colon \exists i \in \{1,\dots,n\}, \ \tau(i) = i \mathsf{B}\ H$ есть перестановка с неподвижной точкой. Без ограничения общности, пусть $\sigma \in H$ и $\sigma(1) = 2$. Если мы найдём $\sigma' \in H \colon \sigma' \neq \sigma \land \sigma'(1) = 2$, то $\tau := \sigma' \circ \sigma^{-1}$. В силу того, что $n \geqslant 6$, у нас есть $i \notin \{1,2\}$ такое, что $\sigma(i) = j \notin \{1,2\}$. Если $\sigma(i) = i = j$, то мы уже нашли

требуемое $(\tau = \sigma)$. Иначе дополнительно возьмём $k, l \notin \{1, 2, i, j\}$. Утверждается, что подходящей σ' будет такая перестановка:

$$\sigma' = \sigma^{(jkl)} = (jkl)^{-1}\sigma(jkl)$$

Действительно, $\sigma' \in H$ из-за нормальности H и $\sigma'(1) = 2$, ибо сопряжение никак не задевает эти значения в силу выбора. С другой стороны, $\sigma' \neq \sigma$, ибо $\sigma'(i) = l \neq j = \sigma(i)$.

2. Без ограничения общности, пусть $\exists \sigma \in H \setminus \{\text{id}\} \mid \sigma(n) = n$, то есть $\sigma \in A_{n-1}$. Тогда посмотрим на $L := H \cap A_{n-1} \leqslant A_{n-1}$. По предположению индукции, $L = A_{n-1}$, поскольку L нетривиальна, и, следовательно, $(123) \in L \subset H \Rightarrow \langle (123)^{A_n} \rangle = A_n \leqslant H$, то есть $H = A_n$

Замечание. Группа A_4 — уже не простая, поскольку $V_4 \leq A_4$.

Замечание. Можно показать, что если $\mathbb{F}-$ поле, $k\geqslant 2$, то группа $\mathrm{PSL}_k(\mathbb{F}):=\mathrm{SL}_k(\mathbb{F})/Z(\mathrm{SL}_k(\mathbb{F}))$ проста при $|\mathbb{F}|\geqslant 4$ или $k\geqslant 3$ $(Z(\mathrm{SL}_k(\mathbb{F}))=\{\alpha E:\alpha\in\mathbb{F},\alpha^k=1\}).$

Упражнение. Докажите, что $PSL_2(\mathbb{Z}_2) \cong S_3$.

Замечание. Можно также показать, что $\mathrm{PSL}_2(\mathbb{Z}_3)\cong A_4$ и, кроме того, $\mathrm{PSL}_2(\mathbb{F}_4)\cong\mathrm{PSL}_2(\mathbb{Z}_5)\cong A_5$.

Замечание. На данный момент классификация конечных простых групп *считается* завершенной. Она состоит из конечного числа бесконечных серий и конечного числа так называемых *спорадических* групп, не попадающих ни в одну из серий.

Утверждение 2.11. Пусть G — неабелева простая группа. Тогда G' = G.

Доказательство. $G' \neq \{e\}$ в силу неабелевости G, и $G' \leqslant G$, следовательно, G' = G. \square

Следствие. $\forall n \in \mathbb{N}, n \geqslant 5$: группа A_n неразрешима.

Теорема 2.8. Группа $SO_3 = \{A \in \mathcal{O}_3 : \det A = 1\} - npocmas.$

Доказательство. Воспользуемся следующим фактом из линейной алгебры: $\forall A \in SO_3: \exists S \in SO_3:$

$$S^{-1}AS = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

Рассмотрим $H \leq SO_3, H \neq \{E\}$. Пусть $A \in H, A \neq E$ —вращение на угол α вокруг некоторой оси, тогда A^{SO_3} —это все вращения на угол α (то есть вокруг любой оси в пространстве), и $A^{SO_3} \subset H$.

Пусть $B(\beta)$ — вращение на угол β вокруг оси, подобранной так, что $B(\beta)$ не коммутирует с A при $\beta = \beta_0$, то есть $A^{B(\beta_0)} \neq A$. Положим $C(\beta) := (A^{B(\beta)})^{-1}A$. Заметим, что тогда C(0) = E и $C(\beta_0) \neq E$, причем элементы C — непрерывные функции β . Если $C(\beta)$ — это вращение на угол $\mu(\beta)$, то, поскольку след матрицы инвариантен относительно замены базиса и $1 + 2\cos\mu = \operatorname{tr} C(\beta)$, $\mu(\beta)$ — тоже непрерывная функция β . Значит, H содержит хотя бы по одному повороту на каждый угол из отрезка $[0, \mu(\beta_0)]$, $\mu(\beta_0) \neq 0$, и, следовательно, содержит все такие повороты. Но тогда H содержит и все повороты на углы из отрезков $[0, 2\mu(\beta_0)], [0, 3\mu(\beta_0)], \ldots, [0, 2\pi]$. Значит, $H = \mathrm{SO}_3$.

Замечание. Группа SO_n проста при $n \geqslant 3$, кроме n = 4.

3 Задание групп

3.1 Свободные группы

Определение 3.1. Пусть F_n — группа, $F_n = \langle f_1, \dots, f_n \rangle$. Такая группа F_n называется *сво-* бодной со свободными образующими $f_1, \dots, f_n \in F_n$, если для любой группы G выполнено универсальное свойство:

$$\forall g_1,\ldots,g_n\in G\ \exists \varphi\colon F_n o G$$
 — гомоморфизм $\mid \forall i\in\{1,\ldots,n\}\ \varphi(f_i)=g_i$

Замечание. Если такой гомоморфизм существует, то он единственен, поскольку F_n порождена элементами f_1, \ldots, f_n .

Замечание. Аналогичным образом можно определить и свободные группы с бесконечным количеством свободных образующих.

Замечание. Если $G = \langle g_1, \dots, g_n \rangle$, то $G = \operatorname{Im} \varphi \cong F_n / \operatorname{Ker} \varphi$, то есть свободная группа как минимум своими факторами задаёт все группы, порождённые n элементами.

Теорема 3.1. Свободная группа F_n со свободными образующими f_1, \ldots, f_n существует.

Доказательство. Заведём алфавит символов $\Sigma = \{f_1, \dots, f_n, f_1^{-1}, \dots, f_n^{-1}\}$. Тогда F_n как множество можно описать следующим образом:

$$F_n = \{ w \in \Sigma^* : \forall i \in \{1, \dots, n\} \ w \text{ не содержит подслов } f_i f_i^{-1} \text{ и } f_i^{-1} f_i \}$$

Определим операцию на F_n следующим образом: если $w_1, w_2 \in F_n$, то сократим взаимно обратные элементы алфавита с конца w_1 и начала w_2 , получив w_1' и w_2' , и положим $w_1 \cdot w_2 := w_1'w_2'$.

Докажем, что F_n — действительно группа:

- \triangleright (Нейтральный элемент) $\exists \varepsilon \in F_n \mid \forall w \in F_n \ w \cdot \varepsilon = \varepsilon \cdot w = w.$
- ightharpoonup (Обратный элемент) Пусть $w \in F_n, w = f_{i_1}^{\alpha_1} \dots f_{i_k}^{\alpha_k}$, где $f_{i_j} \in \{f_1, \dots, f_n\}$ и $\alpha_{i_j} \in \{\pm 1\}$. Тогда $\exists w^{-1} = f_{i_k}^{-\alpha_k} \dots f_{i_1}^{-\alpha_1} \in F_n \mid w \cdot w^{-1} = w^{-1} \cdot w = \varepsilon$.
- \triangleright (Ассоциативность) Докажем, что $\forall a, b, c \in F_n : (ab)c = a(bc)$ индукцией по |b|.
 - База |b|=0: это соответствует только $b=\varepsilon$, свойство ассоциативности тривиально.
 - База |b|=1: нужно сделать разбор случаев, чем заканчивается a и начинается c.
 - Переход |b| > 1: пусть $b = xb', x \in \Sigma$. Тогда

$$(ab)c = (a(xb'))c = ((ax)b')c = (ax)(b'c) = a(x(b'c)) = a((xb')c) = a(bc)$$

Проверим теперь, что F_n —свободная группа. Пусть G—произвольная группа, $g_1,\ldots,g_n\in G$. Определим $\varphi\colon F_n\to G$ следующим образом: $\varphi(f_{i_1}^{\alpha_1}\ldots f_{i_k}^{\alpha_k})=g_{i_1}^{\alpha_1}\ldots g_{i_k}^{\alpha_k}$. Тогда, по определению, $\forall i\in\{1,\ldots,n\}$ $\varphi(f_i)=g_i$. Наконец, φ —гомоморфизм, поскольку $\forall w_1,w_2\in F_n$ в записях $\varphi(w_1w_2)$ и $\varphi(w_1)\varphi(w_2)$ сокращаются одни и те же элементы. \square

Теорема 3.2. Пусть F_n — свободная группа со свободными образующими f_1, \ldots, f_n, G_n — свободная группа со свободными образующими g_1, \ldots, g_n . Тогда существует изоморфизм $\varphi \colon F_n \to G_n$ такой, что $\forall i \in \{1, \ldots, n\}$ $\varphi(f_i) = g_i$.

Доказательство. По определению свободной группы, существует гомоморфизм $\varphi: F_n \to G_n$ такой, что $\forall i \in \{1, \dots, n\}$ $\varphi(f_i) = g_i$, и, аналогично, существует гомоморфизм $\psi G_n \to F_n$ такой, что $\forall i \in \{1, \dots, n\}$ $\psi(g_i) = f_i$. Тогда $\psi \circ \varphi = \mathrm{id}_{F_n}$, $\varphi \circ \psi = \mathrm{id}_{G_n}$, поэтому эти гомоморфизмы биективны и взаимно обратны.

Пример. Рассмотрим $F_1 = \{f_1^n : n \in \mathbb{Z}\}$. Легко видеть, что $F_1 \cong \mathbb{Z}$.

Замечание. При $n \geqslant 2$ группа F_n — уже неабелева, например, потому, что $f_1 f_2 \neq f_2 f_1$.

Упражнение. Пусть $G = \mathrm{SL}_2(\mathbb{Z}[x])$. Рассмотрим следующую подгруппу в G:

$$F = \left\langle \begin{pmatrix} 1 & 0 \\ x & 1 \end{pmatrix}, \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \right\rangle \leqslant G$$

 \mathcal{A} окажите, что F-cвободная группа c соответствующими свободными образующими.

Определение 3.2. Пусть $w \in F_n$, G — группа, $g_1, \ldots, g_n \in G$. Тогда значение w в группе G — это $w(g_1, \ldots, g_n) := \varphi(w)$, где φ — гомоморфизм F_n и G такой, что $\forall i \in \{1, \ldots, n\}$ $\varphi(f_i) = g_i$.

3.2 Образующие и соотношения

Определение 3.3. Пусть F_n —свободная группа, $S \subseteq F_n$, G—группа, $g_1, \ldots, g_n \in G$, $G = \langle g_1, \ldots, g_n \rangle$. Положим $K := \langle S \rangle_{norm}$. Говорят, что G задается образующими g_1, \ldots, g_n u соотношениями S, если $K = \operatorname{Ker} \varphi$, где φ —гомоморфизм F_n и G такой, что $\forall i \in \{1, \ldots, n\}$ $\varphi(f_i) = g_i$.

Обозначение — $G = \langle g_1, \dots, g_n \mid S|_{f_i \mapsto g_i} = e \rangle$, где $S|_{f_i \mapsto g_i}$ — множество слов, полученных формальной подстановкой символов g_1, \dots, g_n вместо f_1, \dots, f_n в слова из S.

Замечание. В терминах определения выше, $G = \langle g_1, \ldots, g_n \rangle = \operatorname{Im} \varphi \cong F_n/K$. Значит, группа G задается образующими и соотношением однозначно. Кроме того, $\forall w \in S \ w(g_1, \ldots, g_n) = \varphi(w) = e$, и, неформально говоря, все соотношения элементов G следуют из соотношений S.

Пример. $\mathbb{Z}_n \cong \langle a \mid a^n \rangle$, поскольку $\langle n \rangle_{norm} = n\mathbb{Z}$ и $\mathbb{Z}_n \cong \mathbb{Z}/n\mathbb{Z} \cong F_1/n\mathbb{Z}$. Этот факт также можно записать в виде $\mathbb{Z}_n \cong \langle a \mid a^n = e \rangle$.

Замечание. Отметим, что $F_n = \langle f_1, \dots, f_n \mid \varnothing \rangle$: на элементы F_n не накладывается никаких соотношений.

Теорема 3.3. (Универсальное свойство группы, заданной образующими и соотношениями) Пусть $S \subseteq F_n$, $G = \langle g_1, \ldots, g_n \mid S|_{f_i \mapsto g_i} \rangle$, H - группа, $u \mid h_1, \ldots, h_n \in H$ таковы, что $\forall w \in S \ w(h_1, \ldots, h_n) = e$. Тогда сущетвует $\varphi \colon G \to H$ — гомоморфизм такой, что $\forall i \in \{1, \ldots, n\} \ \varphi(g_i) = h_i$.

Доказательство. Будем считать, что $H = \langle h_1, \dots, h_n \rangle$ (если есть что-то лишнее, то мы об этом «забудем», ведь строим просто гомоморфизм).

Пусть $\psi: F_n \to G$, $\psi(f_i) = g_i$. В силу задания группы G соотношениями, имеем $\ker \psi = K = \langle S \rangle_{norm}$. В силу универсального свойства свободной группы, у нас есть гомоморфизм $\Theta: F_n \to H$, имеющий вид $\Theta(f_i) = h_i$. По условию

$$\Theta(S) = e \Rightarrow S \leqslant \operatorname{Ker} \Theta =: L \leqslant F_n$$

Стало быть, $K = \langle S \rangle_{norm} \leqslant L$. По второй теореме об изоморфизме получаем такую цепочку:

$$H \cong F_n/L \cong (F_n/K)/(L/K)$$

При этом, естественно $L/K \leqslant F_n/K$. Как и в построении этого изоморфизма, можно рассмотреть канонический эпиморфизм $\pi \colon F_n/K \to (F_n/K)/(L/K)$, заменив множество значений сразу на F_n/L . При этом $aK \mapsto aL$, а изоморфизмы для G и H утверждают, что $g_i \mapsto f_i K$ и $h_i \mapsto f_i L$, то есть сквозной гомоморфизм φ будет соблюдать равенство $\varphi(g_i) = h_i$.

Замечание. Построенный φ единственен.

Упражнение. Если в G выполняются соотношения из S, u она удовлетворяет универсальному свойству, то она и задана соотношениями из S.

Далее конспект не отредактирован с 2020 года.

Пример. Рассмотрим $G := \langle a, b \mid a^2 = b^2 = (ab)^2 = e \rangle$. Поскольку $a^2 = b^2 = e$, то элементы группы G — это слова из a, b, в которых нет подряд идущих одинаковых символов. Более того, $abab = e \Rightarrow ab = ba$, поэтому $G = \{e, a, b, ab\}$ и $|G| \leq 4$.

Покажем, что $G \cong \mathbb{Z}_2 \times \mathbb{Z}_2$. Рассмотрим в $H := \mathbb{Z}_2 \times \mathbb{Z}_2$ элементы $a' = (\overline{1}, \overline{0}), b' = (\overline{0}, \overline{1})$. Тогда $a'^2 = b'^2 = (a'b')^2 = e$, и, по предыдущей теореме, $\exists \varphi : G \to H$ — гомоморфизм такой, что $\varphi(a) = a', \varphi(b) = b'$. Значит, $\operatorname{Im} \varphi = H$, тогда |G| = 4 и $G \cong H$.

Замечание. Пусть $G = \langle g_1, \dots, g_n \mid S \rangle$. Чтобы выяснить, что это за группа, можно описать все различные элементы G. Однако этот способ нельзя алгоритмизовать, потому что в общем случае нельзя алгоритмически определить, равны ли два слова из символов g_1, \dots, g_n при заданных соотношениях S.

4 Строение групп

4.1 Теоремы Силова

Определение 4.1. Пусть G — конечная группа, |G|=n, p — простой делитель числа $n, n=p^k s, (p,s)=1$. Тогда подгруппа $H\leqslant G$ такая, что $|H|=p^k$, называется силовской p-nодгруппой группы G.

Замечание. Если G — конечная группа, $|G| = n, t \mid n$, то необязательно в G есть подгруппа порядка t. Например, в группе A_4 , $|A_4| = 12$ нет подгруппы порядка 6.

Теорема 4.1. (Теоремы Силова) Пусть G — конечная группа, |G| = n, p — простой делитель числа n, $n = p^k s$, (p,s) = 1. Обозначим через N_p количество силовских p-подгрупп в G Тогда:

- 1. В G существует силовская p-подгруппа, то есть $N_p > 0$
- 1'. Любая р-подгруппа в G содержится в некоторой силовской
- 2. Все силовские p-подгруппы в G сопряжены
- 3. $N_p \equiv_p 1$
- 3'. $N_p \mid s$

Доказательство 1 и 3. Положим $\Omega := \{M \subset G : |M| = p^k\}$ и рассмотрим действие G на Ω левыми сдвигами: $\forall g \in G : \forall M \in \Omega : g(M) = gM$. Если для некоторого $M \in \Omega$ его стабилизатор — это $H \leqslant G$, то $M = HM = \bigcup_{m \in M} Hm$, то есть M разбивается на непересекающиеся правые смежные классы по H. В частности, это означает, что $|H| \mid |M| = p^k$, то есть $|H| = p^l, l \leqslant k$. Тогда

$$|H|=p^k \Leftrightarrow \exists g \in G \colon M=Hg \Leftrightarrow |G(M)|=|G : H|=s$$

Если же $|H|=p^l, l < k$, то $|G(M)|=|G:H|=p^{k-l}s\equiv_p 0$. Обозначим через Ω_1,\ldots,Ω_r орбиты действия и воспользуемся формулой орбит:

$$\binom{n}{p^k} = |\Omega| = \sum_{i=1}^r |\Omega_i| = \sum_{i=1}^r |G: \operatorname{St}(M_i)| \equiv_p N_p s$$

Заметим, что полученное сравнение для $N_p s$ зависит лишь от числа n, но не от конкретного вида группы. Значит, мы имеем право рассмотреть конкретную группу порядка n, например, \mathbb{Z}_n . У неё единственная силовская p-подгруппа — это $s\mathbb{Z}_n$, поэтому в данном случае $N_p = 1$ и $\binom{n}{p^k} \equiv_p s$. Возвращаясь к общему случаю, получаем, что

$$s \equiv_p \binom{n}{p^k} \equiv_p N_p s \Longrightarrow p \mid (N_p - 1)s \Longrightarrow N_p \equiv_p 1$$

Доказательство 1' и 2. Пусть $P \leqslant G$ — силовская p-подгруппа, а Q — p-подгруппа в G. Рассмотрим действие Q на G/P левыми сдвигами: $\forall q \in Q, gP \in G/P$ q(gP) = qgP.

Обозначим через $\Omega_1, \ldots, \Omega_r$ орбиты действия и воспользуемся формулой орбит:

$$s = |G/P| = \sum_{i=1}^{r} |\Omega_i| = \sum_{i=1}^{r} |Q : St(\omega_i)|$$

Поскольку правая часть — это сумма выражений вида $p^l, l \in \mathbb{Z}$, и $p \nmid s$, то

$$\exists i \in \{1, \dots, r\} \mid |Q : \operatorname{St}(\omega_i)| = 1 \Leftrightarrow \operatorname{St}(w_i) = Q$$

Пусть $\omega_i = gP$, тогда $QgP = gP \Rightarrow QP^{g^{-1}} = P^{g^{-1}} \Rightarrow Q \leqslant P^{g^{-1}}$, причем подгруппа $P^{g^{-1}}$ — силовская. Если же Q — тоже силовская p-подгруппа в G, то |Q| = |P|, поэтому $Q = P^{g^{-1}}$.

Доказательство 3'. Пусть $P \leqslant G$ — силовская p-подгруппа. Тогда все силовские p-подгруппы имеют вид P^g , $g \in G$. Они образуют орбиту P^G при действии G на множестве своих подгрупп сопряжениями. Тогда $N_p = \frac{|G|}{|N_G(P)|}$ и, поскольку $P \leqslant N_G(P)$ (так как любой элемент P при сопряжении P даст просто P), $N_p \mid s$.

Замечание. Пусть G — конечная группа, |G|=n, p — простой делитель числа $n, n=p^ks, (p,s)=1$. Обозначим через $N_p(l)$ число подгрупп порядка $p^l, l\leqslant k$. Аналогично доказательству выше, можно показать, что $N_p(l)\equiv_p 1$.

Утверждение 4.1. Пусть p < q — простые числа. Тогда любая группа порядка рq разрешима u, более того, она изоморфна $\mathbb{Z}_q \setminus \mathbb{Z}_p$

Доказательство. Пусть |G|=pq. По теореме Силова, в ней есть силовские p- и q-подгруппы. Обозначим таковыми $|H_p|=p, |H_q|=q$. В силу простоты порядка этих подгрупп, для них есть изоморфизм $H_p\cong \mathbb{Z}_p$ и $H_q\cong \mathbb{Z}_q$. Более того, по теореме Силова:

$$N_q \equiv 1 \pmod{q} \land N_q \mid p < q \Rightarrow N_q = 1$$

Это означает, что действие сопряжениями на H_q даёт всегда её же. Стало быть, $H_q \leq G$. Осталось сказать, что $H_q \cap H_p = \{e\}$. Это так, ибо порядок пересечения должен делится на порядки этих групп. Стало быть, $H_q \leftthreetimes H_p = G$. Про полупрямое произведение мы знаем, что $G/H_q \cong H_p$, и притом H_p, H_q абелевы. Стало быть, G разрешима.

Теорема 4.2. Пусть $G - \kappa$ онечная группа. Тогда:

- 1. Если P силовская p-подгруппа в G, то $P \leqslant G \Leftrightarrow N_p = 1$
- 2. Все силовские подгруппы нормальны в G тогда и только тогда, когда их внутренее прямое произведение является самой G

Доказательство.

- 1. \Leftarrow Если $N_p = 1$, то $\forall g \in G : P^g = P$, поэтому $P \leqslant G$.
 - \Rightarrow Если $P \leqslant G$, то любая другая силовская p-подгруппа в G имеет вид $P^g, g \in G$. Тогда, поскольку $\forall g \in G \ P^g = P, \ N_p = 1$.
- 2. \Leftarrow Если $G = P_1 \times \ldots \times P_m$, то из определения прямого произведения, $\forall i \in \{1,\ldots,m\}$ $P_i \leqslant G$. При этом, если посмотреть на любой $p \mid |G|$, то в силу равенства $|G| = |P_1| \cdot \ldots \cdot |P_m|$ будет существовать P_i (и ровно одна для всей G из-за предыдущего пункта) силовская p-подгруппа.

 \Rightarrow Проведем индукцию по m. База, m=1, тривиальна. Пусть теперь m>1. Положим $H:=P_1\dots P_{m-1}\leqslant G$. Тогда в H есть силовские подгруппы $P_1,\dots,P_{m-1},$ и, более того, все они нормальны в H. По предположению индукции, $H=P_1\times\dots\times P_{m-1}$. Поскольку $(|H|,|P_m|)=1$, то $H\cap P_m=\{e\}\Rightarrow HP_m=G,$ и $G=P_1\times\dots\times P_m.$

4.2 Свободные абелевы группы

В данном разделе и далее рассматриваемые группы будут абелевыми, и операция в них будет обозначаться через +.

Пример. Группа \mathbb{Q} не является конечнопорожденной. Она не является циклической, и любые две нетривиальных подгруппы в ней имеют нетривиальное пересечение.

Замечание. Если (n,k)=1, то $\mathbb{Z}_n\oplus\mathbb{Z}_k\cong\mathbb{Z}_{nk}$, поскольку $\operatorname{ord}(\overline{1},\overline{1})$ в этой группе равен nk.

Определение 4.2. Пусть G — абелева группа. Система элементов (e_1, \ldots, e_k) группы G называется независимой, если $\forall n_1, \ldots, n_k \in \mathbb{Z}$ $\sum_{i=1}^k n_i e_i = 0 \Rightarrow n_1 = \ldots = n_k = 0$.

Определение 4.3. Система (e_1, \ldots, e_k) называется *базисом* в G, если она независима и $G = \langle e_1, \ldots, e_k \rangle$.

Замечание. Любая непустая система в \mathbb{Z}_n зависима.

Утверждение 4.2. Пусть (e_1, \ldots, e_k) — базис в абелевой группе G. Тогда $\forall g \in G \; \exists ! n_1, \ldots, n_k \in \mathbb{Z} \; g = \sum_{i=1}^k n_i e_i.$

Доказательство. Существование коэффициентов n_1, \ldots, n_k следует из определения базиса. Если же $g = \sum_{i=1}^k n_i e_i = \sum_{i=1}^k m_i e_i$, то $\sum_{i=1}^k (n_i - m_i) e_i = 0$, откуда $\forall i \in \{1, \ldots, k\}$ $n_i = m_i$.

Определение 4.4. Абелева группа G называется csobodhoù asenesoù rpynnoù pahra <math>k, если в ней существует базис из k элементов.

Утверждение 4.3. Пусть G- свободная абелева группа ранга k. Тогда $G\cong \mathbb{Z}^k$.

Доказательство. Пусть (e_1,\ldots,e_k) — базис в G. Рассмотрим отображение $\varphi:\mathbb{Z}^k\to G$ такое, что $\forall (n_1,\ldots,n_k)\in\mathbb{Z}^k: \varphi((n_1,\ldots,n_k))=\sum_{i=1}^k n_i e_i$. Очевидно, это гомоморфизм, причем биективный в силу предыдущего утверждения.

Замечание. Группа \mathbb{Z}^k обладает базисом. Например, им является система $e_1 = (1,0,\ldots,0),\ldots,e_k = (0,\ldots,0,1).$

Утверждение 4.4. (Универсальное свойство свободной абелевой группы) Пусть G — свободная абелева группа с базисом (e_1, \ldots, e_n) . Тогда для любой абелевой группы A выполнено универсальное свойство:

$$\forall a_1,\ldots,a_n \in A \; \exists \varphi \colon G \to A \; - \;$$
гомоморфизм $\mid \forall i \in \{1,\ldots,n\} \; \varphi(e_i) = a_i$

 $\ensuremath{\mathcal{A}}$ оказательство. Отображение φ задается однозначно:

$$\forall g \in G, \ g = \sum_{i=1}^{n} k_i e_i \Rightarrow \varphi(g) = \sum_{i=1}^{n} k_i a_i$$

Определение корректно в силу единственности разложения каждого элемента по базису. Остается проверить, что полученное отображение действительно является гомоморфизмом:

$$\forall g, h \in G, g = \sum_{i=1}^{n} k_i e_i, h = \sum_{i=1}^{n} l_i e_i \Rightarrow \varphi(g) + \varphi(h) = \sum_{i=1}^{n} k_i a_i + \sum_{i=1}^{n} l_i a_i = \sum_{i=1}^{n} (k_i + l_i) a_i = \varphi(g + h)$$

Утверждение 4.5. Пусть G — свободная абелева группа c базисом (e_1, \ldots, e_n) . Тогда:

$$G \cong \langle a_1, \dots, a_n \mid \forall i, j \in \{1, \dots, n\} \ [a_i, a_j] = e \rangle \cong F_n / F'_n$$

где F_n — свободная группа порядка n.

Доказательство. Положим $H := \langle a_1, \dots, a_n \mid \forall i, j \in \{1, \dots, n\} \ [a_i, a_j] = e \rangle$. Группа H — абелева, поскольку все ее порождающие коммутируют. Тогда, по универсальному свойству G, существует гомоморфизм $\varphi : G \to H$ такой, что $\forall i \in \{1, \dots, n\} : \varphi(e_i) = a_i$. Поскольку G — абелева, то соотношения, задающие H, выполнены и в G, и, по универсальному свойству H, существует гомоморфизм $\psi : H \to G$ такой, что $\forall i \in \{1, \dots, n\} : \psi(a_i) = e_i$. Остается заметить, что $\varphi \circ \psi = \mathrm{id}_H$, $\psi \circ \varphi = \mathrm{id}_G$, поэтому этим гомоморфизмы биективны и взаимно обратны. Наконец, по определению группы, заданной образующими и соотношениями, $H \cong F_n/\langle [a_i, a_j] : i, j \in \{1, \dots, n\} \rangle_{norm} \cong F_n/F'_n$.

Замечание. Изоморфизмы в утверждении выше имеют следующий вид: $e_i \mapsto a_i \mapsto \overline{f_i} = f_i F'_n$.

Теорема 4.3. Пусть G — свободная абелева группа, (e_1, \ldots, e_n) и (e'_1, \ldots, e'_k) — два базиса в G. Тогда n = k.

Доказательство. Пусть без ограничения общности n < k. Поскольку (e_1, \ldots, e_n) — базис, то $(e'_1, \ldots, e'_k) = (e_1, \ldots, e_n)S$ для некоторой матрицы $S \in M_{n \times k}(\mathbb{Z}) \subset M_{n \times k}(\mathbb{Q})$. По основной лемме о линейной зависимости, столбцы S линейно зависимы над $\mathbb{Q} : \exists \overline{q} \in \mathbb{Q}^k, \overline{q} \neq \overline{0} : S\overline{q} = \overline{0}$. Можно считать, что $\overline{q} \in \mathbb{Z}^k$, поскольку умножение всех элементов столбца на наименьшее общее кратное их знаменателей сохраняет равенство. Но тогда $(e'_1, \ldots, e'_k)\overline{q} = 0$, то есть система (e'_1, \ldots, e'_k) зависима — противоречие.

Определение 4.5. Пусть G — свободная абелева группа. Ее *рангом* называется число элементов в любом базисе в G.

Замечание. Мы доказали, что любая система из n+1 элемента в свободной абелевой группе ранга n зависима, но из этого не следует, что один из элементов такой системы выражается через остальные. Например, система (2,3) в $\mathbb Z$ зависима, но 2 и 3 не выражаются друг через друга.

Теорема 4.4. Пусть G — свободная абелева группа, (e_1, \ldots, e_n) — базис в G. Рассмотрим $(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)S$, $S \in M_n(\mathbb{Z})$. Тогда (e'_1, \ldots, e'_n) — базис в $G \Leftrightarrow \det S = \pm 1$.

Доказательство.

- \Rightarrow Если (e'_1, \ldots, e'_n) базис в G, то $(e_1, \ldots, e_n) = (e'_1, \ldots, e'_n)T = (e_1, \ldots, e_n)ST$, $T \in M_n(\mathbb{Z})$. В силу единственности разложения, ST = E, тогда, поскольку определители S и T целочисленны, $|\det S| = |\det T| = 1$.
- \Leftarrow Если $\det S = \pm 1$, то, по формуле Крамера, $S^{-1} \in M_n(\mathbb{Z})$. Тогда $(e_1, \dots, e_n) = (e'_1, \dots, e'_n)S^{-1}$, поэтому $G = \langle e'_1, \dots, e'_n \rangle$. Наконец, система (e'_1, \dots, e'_n) независима: если для некоторого $\overline{z} \in \mathbb{Z}^n$ $(e'_1, \dots, e'_n)\overline{z} = 0$, то тогда $(e_1, \dots, e_n)S\overline{z} = 0$, откуда $S\overline{z} = \overline{0}$, и, в силу невырожденности $S, \overline{z} = \overline{0}$.

Замечание. В ходе доказательства теоремы мы также получили, что $(M_n(\mathbb{Z}))^* = \{S \in M_n(\mathbb{Z}) : \det S = \pm 1\}$. Эта группа обозначается через $\mathrm{GL}_n(\mathbb{Z})$.

Замечание. Для любой абелевой группы $A = \langle a_1, \dots, a_n \rangle$ существует гомоморфизм $\varphi : \mathbb{Z}^n \to A$ такой, что $\forall i \in \{1, \dots, n\} : \varphi(e_i) = a_i$. Этот гомоморфизм сюръективен, тогда, по основной теореме о гомоморфизме, $A \cong \mathbb{Z}^n / \operatorname{Ker} \varphi$.

Теорема 4.5. Пусть G — свободная абелева группа ранга n, $H \leqslant G$. Тогда H — свободная абелева группа ранга k, $k \leqslant n$.

Доказательство. Проведем индукцию по n. База, n=0, тривиальна, поскольку в этом случае $G=H=\{e\}$.

Пусть теперь $n \geqslant 1$, (e_1, \ldots, e_n) — базис в G. Рассмотрим гомоморфизм $\varphi: G \to \mathbb{Z}$ такой, что $\varphi(e_n) = 1$, $\forall i \in \{1, \ldots, n-1\}: \varphi(e_i) = 0$. Тогда $G_1 := \langle e_1, \ldots, e_{n-1} \rangle = \operatorname{Ker} \varphi$ — свободная абелева группа ранга n-1. Пусть $\psi:=\varphi|_H$, $H_1 := \operatorname{Ker} \psi = G_1 \cap H \leqslant G_1$. По предположению индукции, H_1 — свободная абелева группа с базисом $(h_1, \ldots, h_l), l \leqslant n-1$. Если $\operatorname{Im} \psi = \{0\}$, то $H = H_1$. Иначе — $\operatorname{Im} \psi = m\mathbb{Z}, m \geqslant 1$. Выберем h_{l+1} из $\psi^{-1}(m)$ и докажем, что (h_1, \ldots, h_{l+1}) — базис в H.

С одной стороны, $\forall h \in H : \exists h' \in \text{Ker } \psi : h = h' + \frac{\psi(h)}{m} h_{l+1}$, поэтому $H = \langle h_1, \dots, h_{l+1} \rangle$. С другой стороны, если $\sum_{i=1}^{l+1} \alpha_i h_i = 0$, то:

$$0 = \psi\left(\sum_{i=1}^{l+1} \alpha_i h_i\right) = \sum_{i=1}^{l+1} \alpha_i \psi(h_i) = \alpha_{k+1} m$$

Значит, $\alpha_{l+1}=0$. Но тогда, в силу независимости $(h_1,\ldots,h_l),\ \alpha_1=\cdots=\alpha_l=0,\$ и (h_1,\ldots,h_{l+1}) независима.

Замечание (Теорема Нильсена-Шрайера). Пусть F_n — свободная группа, $H \leqslant F_n$. Тогда H — тоже свободная группа, однако число свободных порождающих в H может превышать n и даже быть бесконечным.

Пример. Пусть $F_2 = \langle a, b \rangle$ — свободная группа со свободными образующими a, b. Тогда $H = \langle a^k b a^k : k \in \mathbb{N} \rangle \leqslant F_2$ — свободная группа со свободными образующими $a^k b a^k$, $k \in \mathbb{N}$.

Замечание. Если G— свободная абелева группа и $H \leqslant G$ — свободная абелева группа того же ранга, что и G, то необязательно H = G. Например, $2\mathbb{Z} \neq \mathbb{Z}$.

Упражнение. Рассмотрим линейное пространство \mathbb{R}^n с базисом $(\overline{e_1}, \dots, \overline{e_n})$. $\Gamma := \langle \overline{e_1}, \dots, \overline{e_n} \rangle \leqslant \mathbb{R}^n$ — свободная абелева группа, также называемая решеткой. Тогда:

- 1. Фундаментальный объем, то есть $V(\Gamma):=|V(\overline{e_1},\ldots,\overline{e_n})|$, не зависит от выбора базиса в Γ
- 2. Если $\Gamma_1 \leqslant \Gamma_2 \partial se$ решетки ранга n s \mathbb{R}^n , то $|\Gamma_2 : \Gamma_1| = \frac{V(\Gamma_1)}{V(\Gamma_2)}$

Решение.

- 1. Пусть $e = (\overline{e_1}, \dots, \overline{e_n})$ и $e' = (\overline{e'_1}, \dots, \overline{e'_n})$ два базиса в Γ , $\Gamma(e)$, $\Gamma(e')$ матрицы Грама этих базисов. Если S матрица перехода из e в e', то $|\det S| = 1$, поэтому $V(e') = \sqrt{\det \Gamma(e')} = \sqrt{\det (S^T \Gamma(e)S)} = \sqrt{\det \Gamma(e)} = V(e)$.
- 2. Данное утверждение следует из теоремы о согласованных базисах из следующего раздела.

4.3 Конечнопорожденные абелевы группы

Утверждение 4.6. Пусть $A \in M_{n \times k}(\mathbb{Z})$. Тогда $\exists P \in GL_n(\mathbb{Z}) : \exists Q \in GL_k(\mathbb{Z}) : \exists D = diag(u_1, u_2, \dots) \in M_{n \times k}(\mathbb{Z}), u_1, u_2, \dots \geqslant 0, u_1 \mid u_2 \mid \dots : A = PDQ$.

Доказательство. Уточним формулировку утверждения: мы будем получать D из A, используя целочисленные элементарные преобразования строк (и столбцов), обратные преобразования к которым также целочисленны:

- 1. Прибавление к строке (столбцу) другой строки (другого столбца) с целочисленным коэффициентом
- 2. Перестановка строк (столбцов) местами
- 3. Умножение строки (столбца) на ±1

Если мы получим таким образом матрицу D требуемого вида, то $D = P'AQ', P' \in \operatorname{GL}_n(\mathbb{Z}), Q' \in \operatorname{GL}_k(\mathbb{Z})$, откуда $A = (P')^{-1}D(Q')^{-1}$. Проведем индукцию по $\min(n,k)$, без ограничения общности считая, что $\min(n,k) = k$. Базовыми случаями будем считать k = 0 и A = 0, оба этих случая тривиальны.

Пусть теперь $k\geqslant 1$ и $A\neq 0$. Получим из A указанными выше преобразованиями матрину $B=(b_{ij})\in M_{n\times k}(\mathbb{Z})$ такую, что $b_{11}>0$ и число b_{11} минимально. В силу минимальности $b_{11},\ \forall i\in\{1,\ldots,n\}:b_{11}\mid b_{i1}$ и $\forall j\in\{1,\ldots,k\}:b_{11}\mid b_{1j}$. Тогда, вычитая из остальных строк первую с соответствующим коэффициентом и делая то же самое со столбцами, мы приведем B к виду $C=\mathrm{diag}(b_{11},C')$, где $C'=(c_{ij})\in M_{(n-1)\times(k-1)}(\mathbb{Z})$. Заметим теперь, что, в силу минимальности $b_{11},\ \forall i\in\{1,\ldots,n-1\}:\forall j\in\{1,\ldots,k-1\}:b_{11}\mid c_{ij}$. Значит, к C' достаточно применить предположение индукции, поскольку преобразования строк и столбцов C' сохраняют первую строку и первый столбец C.

Замечание. Представление матрицы A в таком виде, как в утверждении выше, называется ее *нормальной формой Смита*.

Следствие. Группа $\mathrm{GL}_n(\mathbb{Z})$ порождается матрицами целочисленных элементарных преобразований.

Доказательство. Рассмотрим матрицу $A \in \mathrm{GL}_n(\mathbb{Z})$ и ее нормальную форму Смита A = PDQ. Из доказательства утверждения выше следует, что P, Q—это произведения элементарных целочисленных матриц, а D—диагональная матрица с неотрицательными элементами такая, что $|\det D| = 1$. Значит, D = E и A = PQ.

Упражнение. Докажите, что матрица D в нормальной форме Смита матрицы A определена однозначно.

Решение. Обозначим через $g_i(A)$ НОД миноров матрицы A порядка i. Легко проверить, что целочисленные элементарные преобразования строк и столбцов сохраняют величину g_i . Тогда, в силу предыдущего следствия, для любой нормальной формы Смита A = PDQ выполнено $g_i(A) = g_i(D)$. Но $g_i(D) = u_1 \cdots u_i$, значит, элементы D заданы однозначно: $u_1 = g_1(A), \, \forall i \in \{2, \ldots, \min(n, k)\} : u_i = \frac{g_i(A)}{g_{i-1}(A)}$.

Теорема 4.6. Пусть G — свободная абелева группа ранга n и $H \leq G$ — свободная абелева группа ранга $k \leq n$. Тогда в G и H существуют базисы (g_1, \ldots, g_n) и (h_1, \ldots, h_k) такие, что $\forall i \in \{1, \ldots, k\} : h_i = u_i g_i, u_i \in \mathbb{Z}, u_i \geqslant 1$, причем $u_1 \mid \cdots \mid u_k$.

Доказательство. Пусть (e_1, \ldots, e_n) — базис в G, (a_1, \ldots, a_k) — базис в H. Тогда $(a_1, \ldots, a_k) = (e_1, \ldots, e_n)A$, где $A \in M_{n \times k}(\mathbb{Z})$. Пусть A = PDQ — нормальная форма Смита матрицы A. Тогда базисы $(g_1, \ldots, g_n) = (e_1, \ldots, e_n)P$, $(h_1, \ldots, h_k) = (a_1, \ldots, a_k)Q^{-1}$ являются искомыми.

Замечание. Базисы в G и H из теоремы выше называются согласованными.

Следствие. Пусть A — конечнопорожденная абелева группа. Тогда $A \cong Z^l \oplus \mathbb{Z}_{u_1} \oplus \cdots \oplus \mathbb{Z}_{u_k}$, где $l, u_1, \ldots, u_k \in \mathbb{Z}, l \geqslant 0, u_1, \ldots, u_k \geqslant 1, u_1 \mid \cdots \mid u_k$.

Доказательство. Пусть $A = \langle a_1, \dots, a_n \rangle$. Тогда $A \cong G/H$, где G—свободная абелева группа ранга $n, H \leqslant G$ —свободная абелева группа ранга k. Выберем в G и H согласованные базисы (g_1, \dots, g_n) и (h_1, \dots, h_k) . Заметим теперь, что $G = \langle g_1 \rangle \oplus \dots \oplus \langle g_n \rangle$, $H = \langle h_1 \rangle \oplus \dots \oplus \langle h_k \rangle$ и, более того, $\forall i \in \{1, \dots, k\} : \langle h_i \rangle \leqslant \langle g_i \rangle$. Тогда, считая, что $h_{k+1} = \dots = h_n = 0$, получим:

$$A \cong G/H \cong \bigoplus_{i=1}^{n} \langle g_i \rangle / \langle h_i \rangle \cong \mathbb{Z}_{u_1} \oplus \cdots \oplus \mathbb{Z}_{u_k} \oplus \mathbb{Z}^{n-k}$$

Замечание. Возможна ситуация, в которой несколько первых прямых слагаемых в разложении A в доказательстве следствия выше — это нулевые подгруппы.

Утверждение 4.7. Пусть $n \in \mathbb{N}, \ n = \prod_{i=1}^k p_i^{\alpha_i} - каноническое разложение <math>n$. Тогда $\mathbb{Z}_n \cong \bigoplus_{i=1}^k \mathbb{Z}_{p_i^{\alpha_i}}$.

Доказательство. Положим $G:=\bigoplus_{i=1}^k\mathbb{Z}_{p_i^{\alpha_i}}$ и рассмотрим элемент $g:=(\overline{1},\ldots,\overline{1})\in G$. Тогда ord $g=\mathrm{HOK}(p_1^{\alpha_1},\ldots,p_k^{\alpha_k})=\prod_{i=1}^kp_i^{\alpha_i}=n$. Значит, $G=\langle g\rangle$ и $G\cong\mathbb{Z}_n$.

Определение 4.6. Пусть p — простое число, $\alpha \in \mathbb{N}$. Группа $\mathbb{Z}_{p^{\alpha}}$ называется npuмарной uuклической группой.

Следствие. Пусть G — конечнопорожденная абелева группа. Тогда G представима в виде прямой суммы \mathbb{Z}^k и примарных циклических групп:

$$G \cong \mathbb{Z}^k \oplus \mathbb{Z}_{p_1^{\alpha_1}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{\alpha_t}}$$

Замечание. Числа в наборе $p_1^{\alpha_1}, \dots, p_t^{\alpha_t}$ могут совпадать.

Определение 4.7. Пусть G — абелева группа. Ее nepuoduческой частью, или <math>nodepynnoй $\kappa pyvehus$, называется $Tor G := \{g \in G : ord g \in \mathbb{N}\}.$

Утверждение 4.8. Пусть G-абелева группа. Тогда $\mathrm{Tor}\, G\leqslant G.$

Доказательство. Пусть
$$a, b \in \text{Tor } G$$
, то есть $\exists n, k \in \mathbb{N} : na = 0, kb = 0$. Тогда $n(-a) = -na = 0$ и $nk(a+b) = k(na) + n(kb) = 0$, поэтому $-a \in \text{Tor } G$ и $a+b \in \text{Tor } G$.

Замечание. Для неабелевой группы G утверждение выше необязательно верно. Например, произведение двух вращений на угол π в SO_3 может быть вращением на угол, не являющийся рациональным кратным π .

Утверждение 4.9. Пусть G — абелева группа. Тогда G / Tor G — это группа без кручения, то есть $Tor(G/Tor G) = \{Tor G\}$.

Доказательство. Если $a+\operatorname{Tor} G\in G/\operatorname{Tor} G$ и $n(a+\operatorname{Tor} G)=\operatorname{Tor} G$ для некоторого $n\in\mathbb{N},$ то $na\in\operatorname{Tor} G,$ но тогда и $a\in\operatorname{Tor} G.$

Утверждение 4.10. Если $G = \mathbb{Z}^k \oplus \mathbb{Z}_{p_1^{\alpha_1}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{\alpha_t}}$, то $\operatorname{Tor} G = \mathbb{Z}_{p_1^{\alpha_1}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{\alpha_t}}$, $u \in G / \operatorname{Tor} G \cong \mathbb{Z}^k$.

Доказательство. Положим $H:=\mathbb{Z}_{p_1^{\alpha_1}}\oplus\cdots\oplus\mathbb{Z}_{p_t^{\alpha_t}}.$ Если $g\in H,$ то $g\in \mathrm{Tor}\, G.$ Если же $g\not\in H,$ то одна из первых k компонент g- ненулевая, поэтому порядок g бесконечен. Тогда:

$$G/\operatorname{Tor} G = G/(\{(\underbrace{0,\ldots,0}_k)\} \oplus H) \cong \mathbb{Z}^k/\{(\underbrace{0,\ldots,0}_k)\} \oplus H/H \cong \mathbb{Z}^k$$

Следствие. Пусть G — конечнопорожденная группа, представимая в следущем виде:

$$G \cong \mathbb{Z}^k \oplus \mathbb{Z}_{p_1^{\alpha_1}} \oplus \cdots \oplus \mathbb{Z}_{p_s^{\alpha_t}} \tag{*}$$

Тогда G однозначно задает k и $\mathbb{Z}_{p_1^{\alpha_1}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{\alpha_t}} \cong \operatorname{Tor} G$.

Доказательство. Вторая часть утверждения уже доказана, а первая верна потому, что при $l \neq k$ у \mathbb{Z}^l и \mathbb{Z}^k различное число базисных элементов, поэтому $\mathbb{Z}^l \ncong \mathbb{Z}^k$.

Утверждение 4.11. Пусть G — конечная группа, q_1, \ldots, q_s — все простые делители |G|, $Q_{q_1}, \ldots, Q_{q_s} \leqslant G$ — соответствующие силовские подгруппы в G. Тогда $\forall i \in \{1, \ldots, s\}$: Q_{q_i} — это прямая сумма всех слагаемых в (*), для которых $p_j = q_i$.

Доказательство. Заметим, что произведение порядков слагаемых в (*), для которых $p_j = q_i$, — это наибольшая степень q_i , входящая в |G|, то есть $|Q_{q_i}|$. Но все силовские подгрупны в абелевой группе нормальны и потому единственны, что и означает требуемое.

Следствие. Конечная группа G однозначно задает прямые суммы всех слагаемых с одним и тем же p_i .

Утверждение 4.12. Пусть q — простое число, H — q-группа, u $H = \mathbb{Z}_{q^{\alpha_1}} \oplus \cdots \oplus \mathbb{Z}_{q^{\alpha_t}}$. Тогда H однозначно задает набор $\alpha_1, \ldots, \alpha_t$.

Доказательство. Проведем индукцию по |H|. Если |H|=q, то тогда $H\cong \mathbb{Z}_q$. Пусть теперь $|H|=q^n, n>1$. Тогда рассмотрим $qH=\{qh:h\in H\}\cong \mathbb{Z}_{q^{\alpha_1-1}}\oplus \cdots \oplus \mathbb{Z}_{q^{\alpha_t-1}}$, поэтому $H/qH=\underbrace{\mathbb{Z}_q\oplus \cdots \oplus \mathbb{Z}_q}_t, |H/qH|=q^t$. Значит, число t задано однозначно. По предположе-

нию индукции для qH, те числа из набора $\alpha_1, \ldots, \alpha_t$, которые больше единицы, заданы однозначно. Но и количество единиц задано однозначно в силу однозначности t.

Теорема 4.7. Пусть G — конечнопорожденная абелева группа. Тогда G представима в виде прямой суммы \mathbb{Z}^k и примарных циклических групп:

$$G \cong \mathbb{Z}^k \oplus \mathbb{Z}_{p_1^{\alpha_1}} \oplus \cdots \oplus \mathbb{Z}_{p_t^{\alpha_t}}$$

Более того, в любом таком представлении G одно и то же число k и один и тот же набор $p_1^{\alpha_1}, \ldots, p_t^{\alpha_t}$.

Доказательство. Существование такого разложения уже было доказано. Единственность выполнена в силу утверждений выше. \Box

Следствие. Пусть G — конечнопорожденная абелева группа без кручения, то есть $Tor G = \{0\}$. Тогда G — свободная абелева группа.

Пример. Сами подгруппы, образующие разложение, могут быть заданы неоднозначно.

- 1. $G = \mathbb{Z}_p^n$ линейное пространство над \mathbb{Z}_p , поэтому для любого базиса $(\overline{e_1}, \dots, \overline{e_n})$ в \mathbb{Z}_p^n выполнено $G = \langle \overline{e_1} \rangle \oplus \dots \oplus \langle \overline{e_n} \rangle$
- 2. $G = \mathbb{Z} \oplus \mathbb{Z}_2 = \langle (1, \overline{1}) \rangle \oplus \langle (0, \overline{1}) \rangle$

Замечание. Рассмотрим разложение $G \cong Z^l \oplus \mathbb{Z}_{u_1} \oplus \cdots \oplus \mathbb{Z}_{u_k}$, где $l, u_1, \ldots, u_k \in \mathbb{Z}, l \geqslant 0$, $u_1, \ldots, u_k > 1$, $u_1 \mid \cdots \mid u_k$. Теорема выше позволяет показать, что l, u_1, \ldots, u_k также заданы однозначно.

Следствие. Пусть F — поле, $G \leqslant F^*$ — конечная подгруппа. Тогда G — циклическая. В частности, если F конечно, то F^* — циклическая группа.

Доказательство. Рассмотрим разложение $G \cong \mathbb{Z}_{u_1} \oplus \cdots \oplus \mathbb{Z}_{u_k}$, где $u_1, \ldots, u_k \in \mathbb{Z}$, $u_1, \ldots, u_k > 1$, $u_1 \mid \cdots \mid u_k$, тогда $|G| = u_1 \cdots u_k$. Для любого элемента $g \in G$ выполнено $g^{u_k} = 1$. Значит, все элементы G—это корни многочлена $x^{u_k} - 1$, то есть $|G| \leqslant u_k$. Следовательно, k = 1 и $G \cong \mathbb{Z}_{u_k}$.

5 Кольца и поля

5.1 Идеалы колец и факторкольцо

Напоминание. *Кольцом* называется множество R с определенными на нем бинарными операциями + и \cdot такими, что:

- 1. (R, +) абелева группа
- 2. $\forall a,b,c \in R: a(bc)=(ab)c$ (то есть (R,\cdot) является $\mathit{nonyepynnoй}$)
- 3. $\forall a, b, c \in R : a(b+c) = ab + ac, (a+b)c = ac + bc$

R называется кольцом c единицей, если в нем есть нейтральный элемент относительно умножения, обозначаемый через 1.

Пример. Рассмотрим несколько примеров колец:

- 1. \mathbb{Z} , \mathbb{Z}_n
- 2. F[x], где F произвольное поле
- 3. $M_n(F)$, где F произвольное поле

Напоминание. Алгеброй над полем F называется множество R с определенными на нем бинарными операциями + и \cdot и операцией умножения на скаляры из F такими, что:

- 1. $(R, +, \cdot)$ кольцо
- 2. R линейное пространство над F
- 3. $\forall \alpha \in F : \forall a, b \in A : \alpha(ab) = (\alpha a)b = \alpha(\alpha b)$

R называется алгеброй c единицей, если в ней есть нейтральный элемент относительно умножения, обозначаемый через 1.

Замечание. Мы всегда предполагаем, что 0 и 1 в кольце или алгебре не совпадают.

Определение 5.1. Π одкольцом кольца R называется множество $S \subset R, S \neq \varnothing$, замкнутое относительно сложения, умножения и взятия обратного элемента относительно сложения. Обозначение — $S \leqslant R$.

Подалгеброй алгебры R над полем F называется $S\leqslant R$ —подкольцо, замкнутое относительно умножения на скаляры из F. Если R—кольцо (алгебра) с единицей, то S называется подкольцом (подалгеброй) с единицей при условии, что $1\in S$.

Замечание. $M_n(F) \supset M_{n-1}(F)$, но единицы в этих кольцах различны, поэтому $M_{n-1}(F)$ — подкольцо в $M_n(F)$, но не подкольцо с единицей.

Замечание. Если R — алгебра с единицей 1 над полем F, то тогда $F \cdot 1 \leqslant R$ — подалгебра, изоморфная F, причем $F \cdot 1$ содержится в центре алгебры.

Определение 5.2. Пусть R, S — кольца. Гомоморфизмом колец R и S называется отображение $\varphi: R \to S$ такое, что $\forall x, y \in R: \varphi(x+y) = \varphi(x) + \varphi(y), \ \varphi(xy) = \varphi(x)\varphi(y).$

Если R, S — кольца с единицей, то φ называется гомоморфизмом колец с единицей при условии, что $\varphi(1)=1.$

Замечание. Гомоморфизм алгебр над одним полем F — это гомоморфизм колец, являющийся при этом линейным отображением.

Определение 5.3. Пусть R, S- кольца, $\varphi: R \to S-$ гомоморфизм R и S. Тогда:

- ightharpoonup Называется $\operatorname{Im} \varphi := \varphi(R)$
- \triangleright Ядром φ называется $\operatorname{Ker} \varphi := \varphi^{-1}(0)$

Определение 5.4. Пусть R — кольцо (алгебра), $I \subset R$. I называется $udeanom\ R$, если:

- 1. $(I, +) \leq (R, +)$ (в случае, когда R алгебра, I должно быть подпространством в R)
- 2. $\forall a \in R : aI \subset I, Ia \subset I$

Обозначение — $I \leq R$.

Напоминание. В любом кольце R выполнено свойство $\forall a \in R : 0a = a0 = 0.$

Утверждение 5.1. Пусть $\varphi: R \to S$ — гомоморфизм колец (алгебр). Тогда $\operatorname{Im} \varphi \leqslant S$ и $\operatorname{Ker} \varphi \leqslant R$.

Доказательство.

- 1. Пусть $a,b \in \text{Im } \varphi$, то есть $a=\varphi(x),b=\varphi(y),x,y\in R$. Тогда $a+b=\varphi(a+b),-a=\varphi(-x),ab=\varphi(xy)\in \text{Im } \varphi$ (а в случае гомоморфизма алгебр $\forall \alpha\in F:\alpha a=\alpha\varphi(x)=\varphi(\alpha x)\in \text{Im } \varphi$) поэтому $\text{Im }\varphi\leqslant S$.
- 2. Пусть $x, y \in \text{Ker } \varphi$, тогда $\varphi(x + y) = \varphi(x) + \varphi(y) = 0$, $\varphi(-x) = -\varphi(x) = 0$ (а в случае гомоморфизма алгебр $\forall \alpha \in F : \varphi(\alpha x) = \alpha \varphi(x) = 0$). Наконец, $\forall a \in R : \varphi(ax) = \varphi(a)\varphi(x) = \varphi(a)0 = 0$ и, аналогично, $\forall a \in R : \varphi(xa) = 0$. Значит, $\text{Ker } \varphi \leqslant R$.

Определение 5.5. Пусть R- кольцо, $I \leqslant R$, $I \neq R$. Тогда R/I- аддитивная факторгруппа. Определим умножение на R/I следующим образом: $\forall a,b \in R: (a+I)(b+I):= := ab+I$.

Замечание. В отличии от случая факторгруппы, здесь операция задана не инвариантным образом, поэтому требуется проверить корректность определения. Пусть $a' \in a+I$, тогда $a' = a+x, x \in I$, поэтому $a'b = ab+xb \in ab+I$. Аналогично проверяется независимость от выбора представителя во втором множителе.

Теорема 5.1. Пусть R-кольцо, $I \leq R$, $I \neq R$. Тогда $(R/I,+,\cdot)-$ кольцо. Более того, отображение $\pi: R \to R/I$, $\forall a \in R: \pi(a) = a+I$, является сюръективным гомоморфизмом колец.

Доказательство. Проверим сначала, что φ сохраняет операции:

- \triangleright (Сложение) $\forall a, b \in I : \pi(a+b) = a+b+I = (a+I)+(b+I) = \pi(a)+\pi(b)$
- \triangleright (Умножение) $\forall a, b \in I : \pi(ab) = ab + I = (a + I)(b + I) = \pi(a)\pi(b)$

Отображение π сюръективно и сохраняет операции, из чего следует, что R/I — кольцо, а π — гомоморфизм колец. $\hfill\Box$

ФПМИ МФТИ, осень 2022

Определение 5.6. Пусть R — кольцо, $I \leqslant R$, $I \neq R$. Кольцо R/I называется фактор-кольцом R по I.

Замечание. В терминах теоремы выше, $\operatorname{Ker} \pi = I$ аналогично случаю факторгруппы. Значит, любой идеал является ядром некоторого гомоморфизма.

Замечание. Если R — кольцо с единицей $1, I \leq R$. Легко видеть, что тогда $I \neq R \Leftrightarrow 1 \notin I$. При $I \neq R$ факторкольцо I/R является кольцом с единицей $1 + I \neq I$.

Теорема 5.2 (Основная теорема о гомоморфизмах колец).

- 1. Пусть R-кольцо, $I \leqslant R, \ I \neq R.$ Тогда $\exists \pi: R \to R/I-$ эпиморфизм колец такой, что $\operatorname{Ker} \varphi = I.$
- 2. Пусть R,S-кольца, $\varphi:R\to S-$ гомоморфизм колец. Тогда $I:=\mathrm{Ker}\,\varphi\leqslant R,\ u,$ более того, $\mathrm{Im}\,\varphi\cong R/I.$

Доказательство. Большая часть теоремы уже была доказана выше, остается доказать лишь последнее утверждение. Мы уже знаем, что $(\operatorname{Im} \varphi, +) \cong (R/I, +)$, причем этот изоморфизм групп имеет вид $\Theta: \operatorname{Im} \varphi \to R/I$, $\forall x \in \operatorname{Im} \varphi: \Theta(x) = \varphi^{-1}(x)$. Проверим, что Θ сохраняет умножение: $\forall x, y \in \operatorname{Im} \varphi: \forall a \in \varphi^{-1}(x): \forall b \in \varphi^{-1}(y): ab \in \varphi^{-1}(xy) \Rightarrow \Theta(x) = a + I, \Theta(y) = b + I, \Theta(xy) = ab + I, поэтому <math>\Theta(xy) = \Theta(x)\Theta(y)$.

Замечание. Аналогично случаю групп, Θ^{-1} имеет следующий вид: $\forall a+I \in R/I : \Theta^{-1}(a+I) = \varphi(a)$. Кроме того, имеет место аналогичная коммутативная диаграмма:

Замечание. Если R — алгебра с единицей, то понятия идеала в R как в кольце и как в алгебре эквивалентны, поскольку $F \cong F \cdot 1 \leqslant R$. Дальнейшая теория для гомоморфизмов алгебр (вне зависимости от наличия единицы в R) строится аналогоично, но с некоторым дополнением.

Определение 5.7. Пусть V — линейное пространство над полем $F, U \leqslant V$. Тогда $(U, +) \leqslant (V, +)$, поэтому можно определить факторгруппу $(V/U, +) = \{\overline{v} + U : \overline{v} \in V\}$. Определим умножение на скаляры из F на V/U следующим образом: $\forall \alpha \in F : \forall \overline{v} \in V : \alpha(\overline{v} + U) := := \alpha v + U$.

Замечание. Корректность определения выше проверяется аналогично случаю колец. Далее аналогичным образом можно доказать, что $\pi:V\to V/U,\ \forall\overline{v}\in V:\pi(\overline{v})=\overline{v}+U-$ сюръективное линейное отображение такое, что $\ker\pi=U,$ поэтому V/U- линейное пространство, называемое факторпространством.

Наконец, если R — алгебра, $I \leqslant R, I \neq R,$ то R/I — алгебра, и также имеет место основная теорема о гомоморфизмах алгебр.

Упражнение. Пусть V- конечномерное линейное пространство, $\varphi \in \mathcal{L}(V),\ U\leqslant V$ инвариантно относительно φ . Тогда в базисе, согласованном с U, матрица φ имеет вид:

 $\varphi \underset{e}{\longleftrightarrow} A = \begin{pmatrix} B & C \\ 0 & D \end{pmatrix}$

Докажите, что D – это матрица оператора $\psi \in \mathcal{L}(V/U)$ такого, что $\forall \overline{v} \in V : \psi(\overline{v} + U) = \varphi(\overline{v}) + U$.

Peшение. Проверим сначала, что оператор ψ определен корректно. Пусть $\overline{v}+U=\overline{w}+U,$ тогда $\overline{v}-\overline{w}\in U$ и $\overline{v}=\overline{w}+\overline{u},\overline{u}\in U.$ Значит, $\psi(\overline{v}+U)=\varphi(\overline{v})+U=\varphi(\overline{w}+\overline{u})+U=\varphi(\overline{w})+U.$ Пусть теперь $e=(\overline{e_1},\ldots,\overline{e_n})-$ такой базис в V, что $(\overline{e_1},\ldots,\overline{e_k})-$ базис в U. Легко убедиться, что тогда $(\overline{e_{k+1}}+U,\ldots,\overline{e_n}+U)-$ базис в V/U. Значит, в данном базисе D- это матрица оператора $\psi.$

Замечание. Аналогично случаю групп, имеют место теоремы об изоморфизмах колец и алгебр.

Определение 5.8. Пусть R — кольцо, $I \leqslant R$, $I \neq R$. I называется максимальным идеалом, если $\forall J \leqslant R, I \subsetneq J: J = R$.

Определение 5.9. Пусть R — кольцо, $a \in R$. Главным идеалом, порожденным a, называется наименьший по включению идеал, содержащий a. Обозначение — (a).

Замечание. Если R — коммутативное кольцо с единицей, то $(a) = aR := \{ar : r \in R\}$, а если R — некоммутативное кольцо с единицей, то $(a) = RaR := \{\sum_{i=1}^n r_i as_i : \forall i \in \{1, \dots, n\} : r_i, s_i \in R\}$.

Теорема 5.3. Пусть R-коммутативное кольцо c единицей, $I \leqslant R, I \neq R.$ Тогда I максимален $\Leftrightarrow R/I-$ поле.

Доказательство.

- \Leftarrow Пусть I не максимален, то есть $\exists J \leqslant R: J \neq R, I \subsetneq J$. Легко показать, что тогда $J/I \leqslant R/I$, причем $J/I \neq \{I\}$ и $J/I \neq R/I$. Но в поле любой ненулевой идеал совпадает со всем полем, поскольку он содержит единицу поля, противоречие.
- \Rightarrow Пусть I максимален, $a+I\in R/I,\ a\not\in I.$ Рассмотрим идеал $J=I+(a)\leqslant R.$ В силу максимальности $I,\ J=R.$ Значит, $1\in J,$ то есть единица представима в виде $1=x+ar,x\in I,r\in R.$ Значит, (a+I)(r+I)=(1-x)+I=1+I. Поскольку 1+I- это единица в R/I, то a+I обратим в I и, в силу произвольности $a,\ R/I-$ поле.

Замечание. Если p — простое число, то $p\mathbb{Z} \leqslant \mathbb{Z}$ — максимальный идеал, поэтому $\mathbb{Z}/p\mathbb{Z} = \mathbb{Z}_p$ — поле.

Замечание. Некоммутативное кольцо с единицей без нетривиальных идеалов может содержать необратимые элементы, поэтому теорема выше для некоммутативных колец неверна.

Упражнение. Пусть F — поле. Докажите, что в кольце $M_n(F)$ нет нетривиальных идеалов.

Решение. Пусть $I \leq M_n(F)$ и $I \neq \{0\}$. Все матрицы одного ранга можно привести к одному и тому же упрощенному виду элементарными преобразованиями и $M_n(F)I$, $IM_n(F) \subset I$. Следовательно, если I содержит одну матрицу ранга k, то I содержит все матрицы ранга k.

Поскольку $I \neq \{0\}$, то в I есть матрица ненулевого ранга. Значит, I содержит все матрицы этого ранга, и из них легко получить с помощью сложения матрицы произвольного ранга. Таким образом, I содержит все матрицы произвольного ранга, то есть $I = M_n(F)$.

Определение 5.10. Кольцо, не имеющее нетривиальных идеалов, называется простым.

5.2 Кольцо многочленов над полем

Напоминание. Кольцо многочленов над полем F — это множество формальных записей вида $a_n x^n + \ldots + a_0, \forall i \in \{0, \ldots, n\} : a_i \in F$. Обозначение — F[x].

Теорема 5.4. Пусть F - none. Тогда:

- 1. Любой идеал в F[x] главный
- 2. Если $p \in F[x]$, то идеал (p) максимален \Leftrightarrow многочлен p неприводим над F.

Доказательство.

- 1. Пусть $I \leq F[x]$. Если $I = \{0\}$, то I = (0). В противном случае выберем многочлен $p \in I, p \neq 0$, наименьшей степени. Тогда, из соображений деления с остатком, $\forall g \in I: p \mid g$. Значит, (p) = pF[x] = I.
- 2. Если $p \in F$, $p \neq 0$, то (p) = (1) = F[x]—не максимальный идеал. Если $p = p_1p_2$, $\deg p_1, \deg p_2 < \deg p$, то $(p_1), (p_2) \supset (p)$. Пусть теперь p неприводим. Тогда рассмотрим $J = (q) \leqslant F[x], J \supset (p)$. Значит, $q \mid p$, и либо p, q ассоциированы, либо $q \in F$. В первом случае (p) = (q), а во втором -(q) = (1) = F[x].

Замечание. Если $p \in F[x]$ неприводим, то в поле K := F[x]/p есть подполе, изоморфное p, имеющее вид $\{\overline{\alpha} = \alpha + (p) : \alpha \in F\}$. Поэтому можно считать, что $F \leqslant K$. Кроме того, $\overline{x} = x + (p) \in K$, и $p(\overline{x}) = p(x) + (p) = (p)$. Поскольку (p) — нулевой элемент в K, то \overline{x} — это корень p в поле K.

Определение 5.11. Пусть R — коммутативное кольцо, $S \leq R$. Тогда:

- $\triangleright R$ называется расширением кольца S.
- \triangleright Расширением кольца S элементами $a_1, \ldots, a_k \in R$ называется наименьшее по включению подкольцо в R, которое содержит S и a_1, \ldots, a_k . Обозначение $S[a_1, \ldots, a_k]$.

Замечание. $S[a_1, \ldots, a_k] = \{p(a_1, \ldots, a_k) : p \in S[x_1, \ldots, x_k]\}.$

Определение 5.12. Пусть K — поле, $F \leqslant K$. Тогда:

- $\triangleright K$ называется расширением поля F.
- \triangleright Расширением поля F элементами $a_1, \ldots, a_k \in K$ называется наименьшее по включению подполе в K, которое содержит F и a_1, \ldots, a_k . Обозначение $-F(a_1, \ldots, a_k)$.

Замечание. Аналогично случаю колец, выполнено равенство:

$$F(a_1, \dots, a_k) = \left\{ \frac{p(a_1, \dots, a_k)}{q(a_1, \dots, a_k)} : p, q \in F[x_1, \dots, x_k], q(a_1, \dots, a_k) \neq 0 \right\}$$

Определение 5.13. Если поле K — расширение поля F, то K — это линейное пространство над F. Размерность K называется cmenehoo pacuupehus. Обозначение — [K:F]. Расширение называется koneuhum, если его степень koneuhum.

Замечание. Если F, K, L- поля такие, что $F \leqslant K \leqslant L$ и оба расширения конечны, то [L:F] = [L:K][K:F].

Определение 5.14. Пусть K — расширение поля F, $a \in K$. Элемент a называется aл-гебраическим над F, если $\exists p \in F[x], p \neq 0 : p(a) = 0$. Многочлен наименьшей степени, удовлетворяющий этому условию, называется минимальным многочленом элемента a.

Теорема 5.5. Пусть K — расширение поля F, $a \in K$. Тогда:

- 1. a-алгебраический над $F \Leftrightarrow$ расширение F(a) конечно
- 2. Если расширение F(a) конечно, то $F(a) = F[a] \cong F[x]/(p)$, где p минимальный многочлен элемента a

Доказательство.

- 1. Рассмотрим поле F(a) и систему элементов $\{1, a, a^2, \dots\}$ в нем. Если a— не алгебраческий над F, то эта система линейно независима над F, поэтому $[F(a):F]=\infty$. Если же a— алгебраический над F, то для некоторого $p \in F[x]$, $\deg p = n \geqslant 1$ выполнено p(a) = 0. Отсюда a^n выражается через $1, \dots, a^{n-1}$, и, по индукции, $\forall k \in \mathbb{N}: a^{n+k}$ выражается через $1, \dots, a^{n-1}$. Значит, $\dim F[a] \leqslant n$, и, в силу следующего пункта, $\dim F(a) \leqslant n$.
- 2. Рассмотрим p минимальный многочлен элемента a. В силу минимальности, p неприводим над F, и F[x]/(p) это поле. Рассмотрим гомоморфизм колец $\varphi: F[x] \to K$, $\forall q \in F[x]: \varphi(q) = q(a)$. Пусть $I:= \operatorname{Ker} \varphi$, тогда $p \in I$ и $(p) \subset I$. Поскольку идеал (p) максимален и $I \neq F[x]$, то I=(p). Тогда, по основной теореме о гомоморфизмах колец, $F[x]/(p) \cong \operatorname{Im} \varphi = F[a]$. Но F[x]/(p) поле, поэтому F[a] тоже поле и F[a] = F(a).

Следствие. Если K — расширение поля F и $a_1, \ldots, a_k \in K$ — алгебраические над F, то и все элементы в $F(a_1, \ldots, a_k)$ — тоже алгебраические, поскольку степень $[F(a_1, \ldots, a_k) : F]$ конечна.

Замечание. Мы доказали, что расширение поля корнем неприводимого многочлена единственно с точностью до изоморфизма. Отсюда можно получить индукцией по степени многочлена, что поле разложения любого многочлена единственно с точностью до изоморфизма. Следовательно, поле порядка p^n , полученное как поле разложения многочлена $x^{p^n} - x$ над \mathbb{Z}_p , единственно с точностью до изоморфизма.