Application

how to use random forest to fill missing data

For example, given that we have many samples that that can be used to train the model and tell if it rains or not

However, for one of the samples there is no wind speed being recorded

For example, given that we have many samples that that can be used to train the model and tell if it rains or not

However, for one of the samples there is no wind speed being recorded

The general idea of this method is that we first "make a guess" about what the missing data would look like and then gradually tune/refine it to a more optimal value.

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes

In order to fill the missing "wind speed" data "X"

Step 1: we locate all the rain value with the same "YES"

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes

Average wind speed = 11.0

In order to fill the missing "wind speed" data "X"

Step 1: we locate all the rain value with the same "YES"

Step 2: For all the sub-selected dataset, the average wind speed is 11.0, so the initial guess of the missing value is 11.0

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes

Average wind speed = 11.0

In order to fill the missing "wind speed" data "X"

Step 1: we locate all the rain value with the same "YES"

Step 2: For all the sub-selected dataset, the average wind speed is **11.0**, so the initial guess of the missing value is **11.0**

Here is the new dataset with the initial guess of missing data

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes

Step 3: So using the new dataset, we are able to create a bunch of random forest trees

Step 3: So using the new dataset, we are able to create a bunch of random forest trees

Step 4: We run each dataset down through all the trees individually, and locate similar dataset/samples

For example, when we use the first tree

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes

As you can see, each dataset/sample will end up at one leaf

Step 3: So using the new dataset, we are able to create a bunch of random forest trees

Step 4: We run each dataset down through all the trees individually, and locate similar dataset/samples

For example, when we use the first tree

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes

The first and the 4th dataset ends up at the same leaf, this means that these two dataset are similar

Step 5: we keep track of similar samples using "Proximity matrix"

It has both rows/columns equal to the number of samples

Step 3: So using the new dataset, we are able to create a bunch of random forest trees

Step 4: We run each dataset down through all the trees individually, and locate similar dataset/samples

Step 4: We run each dataset down through all the trees individually, and locate similar dataset/samples

Step 5: we keep track of similar samples using "Proximity matrix"

 1
 2
 3
 4
 5
 6

 1
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

It has both rows/columns equal to the number of samples

As for this example, when we go through the first tree, the 1st and 4th dataset are similar, so we have

Step 4: We run each dataset down through all the trees individually, and locate similar dataset/samples

Step 5: we keep track of similar samples using "Proximity matrix"

 1
 2
 3
 4
 5
 6

 1
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...

It has both rows/columns equal to the number of samples

We put "1" here to

As for this example, when we go through the first tree, the 1st and 4th dataset are similar, so we have

Similar, this location also represents the same dataset combination, so we put "1" here as well

Step 4: We run each dataset down through all the trees individually, and locate similar dataset/samples

Step 5: we keep track of similar samples using "Proximity matrix"

	1	2	3	4	5	6
1						
2						
3						
4						
5						
6						

It has both rows/columns equal to the number of samples

As for this example, when we go through the first tree, the 1st and 4th dataset are similar, so we have

Our "Proximity matrix" looks like the left after we go through the first tree

Step 5: we keep track of similar samples using "Proximity matrix"

	1	2	3	4	5	6
1				1		
2						
3						
4	1					
5						
6						

Our "Proximity matrix" looks like the left after we go through the **first** tree

Step 5: we keep track of similar samples using "Proximity matrix"

	1	2	3	4	5	6
1				1		
2						
3						
4	1					
5						
6						

Our "Proximity matrix" looks like the left after we go through the **first** tree

	1	2	3	4	5	6
1				2	1	
2						
3				1		
4	2		1			
5						1
6						

Our "Proximity matrix" looks like the left after we go through the 2nd tree (sample 1 and sample 4 ended up the same leaf again ...)

Step 5: we keep track of similar samples using "Proximity matrix"

	1	2	3	4	5	6
1				1		
2						
3						
4	1					
5						
6						

Our "Proximity matrix" looks like the left after we go through the **first** tree

•••••

	1	2	3	4	5	6
1				8	1	
2			2			
3		2		3	1	
4	8		3			
5			1			1
6						

Ultimately, after gone through all the trees, our "Proximity matrix" looks like the left

Step 5: we keep track of similar samples using "Proximity matrix"

	1	2	3	4	5	6
1				1		
2						
3						
4	1					
5						
6						

Our "Proximity matrix" looks like the left after we go through the **first** tree

	1	2	3	4	5	6
1				0.8		
2			0.2			
3		0 2		0.3	0.1	
4	0.8		0.3			
5			0.1			0.1
6					0.1	

Ultimately, after gone through all the trees, our "Proximity matrix" looks like the left. And we divide the proximity value by the total number of trees (assuming we have 10 trees).

Step 5: we keep track of similar samples using "Proximity matrix"

	1	2	3	4	5	6
1				1		
2						
3						
4	1					
5						
6						

Our "Proximity matrix" looks like the left after we go through the first tree

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes

Ultimately, after gone through all the trees, our "Proximity matrix" looks like the left. And we divide the proximity value by the total number of trees (assuming we have 10 trees).

Now we can use the "Proximity matrix" to make a better guess for the missing value

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes

- 1. the proximity matrix is a diagonal matrix,
- 2. the shaded area indicate the weight function for different samples against sample 6 (which has the missing value)

Weight function

1					
	Rain	Speed	Wind S	Humidity	Temperature
2	Yes		15.0	80.0	281.0
	No		11.0	45.0	291.5
3	Yes		13.0	70.0	294.0
	Yes		5.0	65.0	278.5
4	No		8.0	75.0	283.0
4	Yes		11.0	80.0	285.6
5					

Sample 6

Note that

- 1. the proximity matrix is a diagonal matrix,
- 2. the shaded area indicate the weight function for different samples against sample 6 (which has the missing value)

Weight function

The weight for sample 1

$$w_1 = 15.0 \times \frac{0.0}{0.3 + 0.1} = 0.0$$

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes

	1	2	3	4	5	6
1				0.8		
2			0.2			0.3
3		0.2		0.3	0.1	
4	0.8		0.3			
5			0.1			0.1
6		0.2			0.1	

The weight for sample 1

Sample 6

$$w_2 = 11.0 \times \frac{0.3}{0.2 \times 0.1} = 8.25$$

Note that

- 1. the proximity matrix is a diagonal matrix,
- 2. the shaded area indicate the weight function for different samples against sample 6 (which has the missing value)

Weight function

						1	2	3	4	5	6	
	1	1		1	1				0.8			
Temperature	Humidity	Wind Speed	Rain									
281.0	80.0	15.0	Yes		2			0.2			0.3	
291.5 294.0	45.0 70.0	11.0	No Yes		3		0.2		0.3	0.1		
278.5	65.0	5.0	Yes	1			0.2		0.5	0.1		
283.0	75.0	8.0	No	1								
285.6	80.0	11.0	Yes	1	4	0.8		0.3				
				٠.	5			0.1			0.1	
			Sample 6	ſ	6		0.3			0.1		1
	The weight for sample 1 $w_1 = 15.0 \times \frac{0.0}{0.3 + 0.1} = 0.0$ The weight for sample 2 $w_2 = 11.0 \times \frac{0.3}{0.3 + 0.1} = 8.25$											
						l	0	1				
	The weig	ht for sa	mple 5		$v_5 = 8$	8.0 ×	0.3 +	- 0.1	= 2.	0		

- 1. the proximity matrix is a diagonal matrix,
- 2. the shaded area indicate the weight function for different samples against sample 6 (which has the missing value)

Weight function

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes

	1	2	3	4	5	6
1				0.8		
2			0.2			0.3
3		0.2		0.3	0.1	
4	0.8		0.3			
5			0.1			0.1
6		0.3			0.1 0.1	

- the proximity matrix is a diagonal matrix,
- 2. the shaded area indicate the weight function for different samples against sample 6 (which has the missing value)

Weight function

Sample 6

$$w_1 = 15.0 \times \frac{0.0}{0.3 + 0.1} = 0.0$$

$$w_2 = 11.0 \times \frac{0.3}{0.3 + 0.1} = 8.25$$

•••••

The weight for sample 5

$$w_5 = 8.0 \times \frac{0.1}{0.3 + 0.1} = 2.0$$

The weight for sample 6

$$w_6 = 0.0$$

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes

	1	2	3	4	5	6
1				0.8		
2			0.2			0.3
3		0.2		0.3	0.1	
4	0.8		0.3			
5			0.1			0.1
6		0.3			0.1 0.1	

- the proximity matrix is a diagonal matrix,
- 2. the shaded area indicate the weight function for different samples against sample 6 (which has the missing value)

Weight function

Sample 6

$$w_1 = 15.0 \times \frac{0.0}{0.3 + 0.1} = 0.0$$

$$w_2 = 11.0 \times \frac{0.3}{0.3 + 0.1} = 8.25$$

•••••

The weight for sample 5

$$w_5 = 8.0 \times \frac{0.1}{0.3 + 0.1} = 2.0$$

The weight for sample 6

$$w_6 = 0.0$$

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes

	1	2	3	4	5	6
1				0.8		
2			0.2			0.3
3		0.2		0.3	0.1	
4	0.8		0.3			
5			0.1			0.1
6		0.3			0.1	

- 1. the proximity matrix is a diagonal matrix,
- 2. the shaded area indicate the weight function for different samples against sample 6 (which has the missing value)

Weight function

Sample 6

$$w_1 = 15.0 \times \frac{0.0}{0.3 + 0.1} = 0.0$$

$$w_2 = 11.0 \times \frac{0.3}{0.3 + 0.1} = 8.25$$

The weight for sample 5

$$w_5 = 8.0 \times \frac{0.1}{0.3 + 0.1} = 2.0$$

The weight for sample 6

$$w_6 = 0.0$$

Ultimately, the weighted guess for the missing data is 8.25 + 2.0 = 10.25

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	V	Yes
		X	

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes
		11.0	

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	10.25	Yes
		TO.23	

Missing data

Simple average (initial guess)

Weighted average (2nd guess)

So we can see that how our guess for the missing data gets tuned

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	V	Yes
		X	

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes
		11.0	

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	10.25	Yes
		10.23	

Missing data

Simple average (initial guess)

Weighted average (2nd guess)

So we can see that how our guess for the missing data gets tuned

Then we do this whole thing again

- ⇒ Revise our guess
- ⇒ Build a random forest,
- ⇒ Run the data through all the trees
- ⇒ Recalculate the proximity matrix
- ⇒ Recalculate the missing data

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	V	Yes
		X	

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	11.0	Yes
		11.0	

Temperature	Humidity	Wind Speed	Rain
281.0	80.0	15.0	Yes
291.5	45.0	11.0	No
294.0	70.0	13.0	Yes
278.5	65.0	5.0	Yes
283.0	75.0	8.0	No
285.6	80.0	10.25	Yes
		10.23	

Missing data

Simple average (initial guess)

Weighted average (2nd guess)

So we can see that how our guess for the missing data gets tuned

Then we do this whole thing again

- ⇒ Revise our guess
- ⇒ Build a random forest,
- ⇒ Run the data through all the trees
- ⇒ Recalculate the proximity matrix
- ⇒ Recalculate the missing data

We do this many times, until the missing value does not change (converged)

•••••