soulist

出题人: xiaolilsq

设 $f_{i,j}$ 表示 $a_i>a_j$ 的概率,那么有 $a_i=1+\sum_{j=1}^n f_{i,j}$ 。容易发现该状态非常容易在四种操作下转移。

n 很大的时候考虑离散化,设 $f_{[l_i,r_i],[l_j,r_j]}$ 表示 $\sum_{l_i\leq x\leq r_i}\sum_{l_j\leq y\leq r_j}P(a_x>a_y)$,其中 $[l_i,r_i]$ 和 $[l_j,r_j]$ 都是离散化得到的最小区间。容易发现只有在 $l_i=r_i$ 或者 $l_j=r_j$ 的时候才会关心状态 $f_{[l_i,r_i],[l_j,r_j]}$ 的具体值,而离散化后满足 $l_i=r_i$ 的区间最多有 O(m) 个,所以初始化可以很好的做到 $O(n+m^2)$ 。

whiteqwq

出题人: xiaolilsq

考虑对所有的串求出合法的 a。对于一个串,由于题目要求是 $ax_i+b\equiv y_i\pmod p$,那么合适的 a 必须满足方程组 $\forall i,j$ 有 $y_i-ax_i\equiv y_j-ax_j\pmod p$,可以证明方程组 $\forall i$ 有 $y_i-ax_i\equiv y_{i+1}-ax_{i+1}\pmod p$ 和前面的方程组等价。

不难发现,如果 [1,n] 是 (a,b) 回文的,那么对于其子串 [l,r],如果其是 (a',b') 回文的,那么 [n-r+1,n-l+1] 也是 (a',?) 回文的(b 可能不同)。因为 $x_{n-l+1}\equiv ax_l+b\pmod p$, $x_{n-r+1}\equiv ax_r+b\pmod p$,而 $x_r\equiv a'x_l+b'\pmod p$,带入即有 $x_{n-r+1}\equiv aa'x_l+ab'+b\equiv a'(ax_l+b)+ab'+b-a'b\equiv a'x_{n-r+1}+ab'+b-a'b\pmod p$ 。

这符合 manacher 的思想,对于每个回文中心,维护其合法的同余方程组,即可在线性时间复杂度内(不考虑求解方程时间),得到每个回文中心往周围扩展 k 步后的同余方程。

考虑在同余方程的合并时,如果模数发生改变,必然至少是之前的两倍。而同余方程的模数一定是 p 的因子,所以每个回文中心至多有 $\log p$ 个本质不同的同余方程。

用桶记录在模 p 的因子 d 下余 r 的同余方程的信息,就可以在 $O(\sigma(p))$ 的时间复杂度内回答 1 a .

考虑通过 a 维护 b。注意到每个同余方程都是形如 $a\equiv w\pmod d$,那么合法的 a 的取值是 $w+kd(k\in[0,\frac{p}{d}))$ 。考虑这个串中的相对的元素 x,y,那么合法的 b 的取值是 b=y-ax=y-wx-kdx。设 $g=\gcd(\frac{p}{d},x)$,可以推出 b 将满足同余方程 $b\equiv y-wx\pmod {dg}$ 。

用桶记录在模 p 的因子 d 下余 r 的同余方程的信息,就可以在 $O(\sigma(p))$ 的时间复杂度内回答 2 b。

总时间复杂度 $O(n \log p + q\sigma(p))$

beautiful

出题人: Daniel yuan

 p_x 代表这个排列第 x 个位置的数。

对每个数 x,求出 $LCM_{i\neq x}(GCD(x,i))$,设为 a_x ,令 $x=a_x\cdot b_x$ 。

下面证明 a_x 相同的元素可以互换位置。即证 $GCD(a_x \cdot b_x, a_y \cdot b_y) = GCD(a_x \cdot s, a_y \cdot t)$ (就是使 $p_x = a_x \cdot s, p_y = a_y \cdot t$, 然后这里的 s, t 是合法的)。

如果可以证明任取合法的 s,t 都有 $GCD(a_x\cdot s,a_y\cdot t)=GCD(a_x,a_y)$ 就可以推出上面的结论。显然等式右边是左边的因子。而由 a 的定义,所有 $GCD_{\beta\neq a_x\cdot s}(a_x\cdot s,\beta)$ 都是 a_x 的因子,对 a_y 同理,所以等式左边是右边的因子。因为他们互为因子,所以他们相等。

所以 $GCD(a_x \cdot b_x, a_y \cdot b_y) = GCD(a_x, a_y) = GCD(a_x \cdot s, a_y \cdot t)$,所以可以交换。

然后 a_x 不同的不能交换,这个是显然的。

绝大多数的数的 a_x 都等于自己。可以证明,当且仅当 $x=p^k$ 且 $2p^k>n$ 时, $a_x=p^{k-1}$ 。所以对于 $k\geq 2$ 的 $x=p^k$,直接暴力枚举。对于 k=1 的 x=p,相当于是求区间内的素数个数,用 min25 筛解决即可。由于要计算阶乘,时间复杂度 $O(n^{\frac{3}{4}}+\frac{n}{\ln n})$ 。