Section I (Amendments to the Claims)

Please amend claim 30, as set forth below in the listing of claims 1-106 of the application.

- 1-29. (Cancelled)
- 30. (Currently amended) A hydrogen gas detector, comprising:
 - a light source;
 - a thermal energy source that is separate from the light source;

an optical filter having an optical transmissivity responsive to the presence and concentration of hydrogen gas in an ambient environment to which the optical filter is exposed, said optical filter being disposed in proximity to the light source such that said optical filter is illuminated with light from the light source, and being operatively coupled to the thermal source such that the optical filter is heated by the thermal source to an elevated temperature;

a light detector generating an output signal, the state of said output signal being proportional to the intensity of light impinging on the light detector, said light detector being disposed in light-sensing relationship to the optical filter,

whereby wherein the light source, the optical filter and the light detector are constructed and arranged so that light from the light source passing through the optical filter impinges on the light detector and generates said output signal as a indication of the presence and/or concentration of hydrogen gas in the ambient environment.

- 31. (Previous presented) The hydrogen gas detector of claim 30, wherein the light source comprises a light-generating element selected from the group consisting of incandescent bulbs, light emitting diodes, fluorescent lamps, electroluminescent lamps, and optical lasers, and optical waveguides illuminated by any such light-generating element.
- 32. (Previously presented) The hydrogen gas detector of claim 30, wherein the thermal energy source comprises a heat-generating element selected from the group consisting of incandescent bulbs, resistive wires, exothermic chemical reactions, ultrasonic radiation, acoustic radiation, microwave radiation, and laser radiation.

33-34. (Cancelled).

- 35. (Original) The hydrogen gas detector of claim 30, wherein the light detector comprises a light detection element selected from the group consisting of photodiodes, avalanche photodiodes, phototubes, photomultiplier tubes, microchannel plates, solar cells, image intensifiers, photoconductor detectors, charge-coupled devices, and combinations or arrays thereof.
- 36. (Original) The hydrogen gas detector of claim 30, wherein the optical filter comprises a rare earth metal thin film deposited on an optical output surface of the light source.
- 37. (Original) The hydrogen gas detector of claim 36, wherein the rare earth metal thin film comprises a rare earth metal component selected from the group consisting of trivalent rare earth metals reactive with hydrogen to form both metal dihydride and metal trihydride reaction products, wherein the metal dihydride and metal trihydride reaction products have differing optical transmissivity.
- 38. (Previously presented) The hydrogen gas detector of claim 36, wherein the rare earth metal thin film comprises at least one metal selected from the group consisting of:

scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and lawrencium,

alloys thereof, and

alloys containing one or more of such metals alloyed with an alloying component selected from the group consisting of magnesium, calcium, barium, strontium, cobalt and iridium.

 (Original) The hydrogen gas detector of claim 36, wherein the rare earth metal thin film comprises yttrium.

- 40. (Original) The hydrogen gas detector of claim 36, wherein the rare earth metal thin film is overlaid by a hydrogen-permeable material comprising a metal selected from the group consisting of Pd, Pt, Ir, Ag, Au, Ni, Co, and alloys thereof.
- 41. (Original) The hydrogen gas detector of claim 36, wherein the rare earth metal thin film is overlaid in sections by a plurality of hydrogen-permeable material, each comprising a metal selected from the group consisting of Pd, Pt, Ir, Ag, Au, Ni, Co, and alloys thereof, wherein each overlay section exhibits a unique permeability to hydrogen.
- 42. (Original) The hydrogen gas detector of claim 36, wherein the rare earth metal thin film is overlaid by a hydrogen-permeable material that is doped with a dopant selected from the group consisting of Mg, Ca, Al, Ir, Ni and Co.
- 43. (Original) The hydrogen gas detector of claim 36, wherein the rare earth metal thin film is overlaid in sections by a plurality of hydrogen-permeable materials, each of which is doped with a dopant selected from the group consisting of Mg, Ca, Al, Ir, Ni and Co, wherein each overlay section exhibits a unique permeability to hydrogen.
- 44. (Original) The hydrogen gas detector of claim 36, wherein the rare earth metal thin film is overlaid by a thin film of a material including a metal selected from the group consisting of palladium, platinum, and iridium.
- 45. (Previously presented) A hydrogen detection system for monitoring an extended or remote area region for the incursion or generation of hydrogen therein, said hydrogen detection system comprising a multiplicity of hydrogen gas detectors as in claim 30, each of which is arranged for exposure to a specific individual locus of the extended area region.

46-70. (Cancelled).

71. (Previously presented) The hydrogen gas detector of claim 30, wherein the optical filter is to increase its transmission of light in response to a presence of hydrogen.

- 72. (Previously presented) The hydrogen gas detector of claim 30, wherein the optical filter comprises a rare earth metal.
- 73. (Previously presented) The hydrogen gas detector of claim 30, wherein the optical filter comprises a layer of material having an optical transmissivity responsive to hydrogen deposited over a roughened substrate.
- 74. (Previously presented) The hydrogen gas detector of claim 30, wherein the optical filter comprises a protective layer.

75-106. (Cancelled).