Si chiama **moto circolare** un moto piano la cui traiettoria è una circonferenza. La velocità varia continuamente direzeione, quindi l'accelerazione **centripeta** è sempre presente.

Nel moto circolare uniforme la velocità è costante in modulo e l'accelerazione tangente è nulla per cui $\bar{a} = \bar{a}_n$; Se invece il modulo della velocità cambia nel tempo il moto circolare non è uniforme e $\bar{a}_t \neq 0$.

$$(\star) \quad s(t) = \theta(t)R, \begin{cases} x(t) = R\cos(\theta(t)) \\ y(t) = R\sin(\theta(t)) \end{cases}$$

Se il punto che sta compiendo il moto all'istante t occupa la posizione angolare θ_1 e all'istante $t + \Delta t$ occupa la posizione angolare θ_2 allora la variazione di spazio angolare è $\Delta \theta = \theta_2 - \theta_1$.

Si definisce velocità angolare media il rapporto tra $\Delta \theta$ e Δt :

$$\omega_m = \frac{\theta(t_f) - \theta(t_i)}{t_f - t_i} = \frac{\Delta \theta}{\Delta t}$$

La velocità angolare istantanea è definita come limite per $\Delta t \to 0$ della velocità angolare media:

$$\omega = \lim_{\Delta t \to 0} \frac{\Delta \theta}{\Delta t} = \frac{d\theta}{dt}$$

 $\omega = \frac{d\theta}{dt} \implies \text{se uniforme } \omega \text{ è costante.}$

$$\bar{v} = v_s \cdot \bar{u}_t = \frac{ds}{dt} \bar{u}_t = R \frac{d\theta}{dt} \cdot \bar{u}_t$$

Oppure se teniamo conto della relazione ⋆:

$$\omega = \frac{d\theta}{dt} = \frac{1}{R} \frac{ds}{dt} = \frac{v}{R}$$

la velocità angolare è proporzionale alla velocità con cui è descritta la traiettoria, se v è variabile anche ω lo sarà. Nel moto circolare la velocità radiale è nulla perchè il raggio vettore è costante in modulo e la velocità trasversa coincide con la velocità: da $\bar{v}_{\theta} = \frac{rd\theta}{dt}$ ritroviamo:

$$v_s = R\omega$$

0.1 Moto circolare uniforme

Il moto circolare più semplice è quello **uniforme**, in cui la velocità e la velocità angolare sono costanti. Le leggi orarie del moto circolare uniforme sono:

$$\theta(t) = \theta_0 + \omega t$$
 dove $\theta = \theta_0$ per $t = 0$

$$s(t) = s_0 + vt$$
 dove $s = s_0$ per $t = 0$

Il moto ricolare uniforme è un moto con accelerazione costante e ortogonale alla traiettoria:

$$a_t = 0$$
 $a = a_N = \frac{v^2}{R} = \frac{\omega^2 R^2}{R} = \omega^2 R$

$$a_t = \frac{dv_s}{dt} = \frac{Rd\omega}{dt}$$
 $a_n = \frac{v_s^2}{R} = \omega^2 R$

0.2 Moto circolare non uniforme

Nel caso di moto circolare non uniforme oltre all'accelerazione centripeta, che è variabile perchè la velocità varia anche in modulo, dobbiamo considerare l'accelerazione tangenziale $a_T = \frac{dv}{dt}$. Dato che la velocità angolare ω occorre considerare l'accelerazione angolare media:

$$\alpha_m = \frac{d\omega}{dt} \implies a_t = R\alpha \quad a_n = \omega^2 R$$

L'accelerazione angolare istantanea è:

$$\alpha = \frac{d\omega}{dt} = \frac{d^2\theta}{dt^2} = \frac{1}{R}\frac{dv}{dt} = \frac{a_T}{R}$$

Se è nota la legge oraria oraria $\theta(t)$ con le due derivazioni determiniamo le variaziani dell'angolo e della velocità angolare. Viceversa nota la funzione $\alpha(t)$:

$$\omega = \omega_0 + \int_{t_0}^t \alpha dt = \omega_0 + \alpha (t - t_0)$$

$$\theta = \theta_0 + \int_{t_0}^t \omega dt = \theta_0 + \omega_0 (t - t_0) + \frac{1}{2} \alpha (t - t_0)^2$$

0.3 Notazione vettoriale nel moto circolare

Si definisce velocità angolare il vettore $\bar{\omega}$:

- $\bar{\omega} = \frac{d\theta}{dt}$
- La direzione è perpendicolare al piano in cui giace la circonferenza
- \bullet il verso è tale che dall'estremo del vettore $\bar{\omega}$ il moto appaia antiorario

$$\bar{v} = \bar{\omega} \times \bar{r}$$

L'equazione rimane valida anche se $\bar{\omega}$ non è applicata al centro della circonferenza, ma in un punto O' dell'asse di rotazione; infatti direzione e verso di \bar{v} restano eguali e il modulo vale ancora $v = \omega r \sin \phi = \omega R$.

$$v_s = \omega R$$

Da ω , derivando rispetto al tempo, si ottiene il vettore $\bar{\alpha}$, l'accelerazione angolare che risulta parallelo a ω , dato che questa ha direzione costante, e ha verso determinato dalla variazione del modulo di ω e modulo uguale a $\alpha = \frac{d\omega}{dt}$. Tramite α e ω si ottiene l'accelerazione del moto circolare:

$$\bar{a} = \frac{d\bar{v}}{dt} = \frac{\bar{\omega} \times \bar{r}}{dt} = \frac{d\bar{\omega}}{dt} \times \bar{r} + \bar{\omega} \times \frac{d\bar{r}}{dt} \implies \bar{a} = \bar{\alpha} \times \bar{r} + \bar{\omega} \times \bar{v}$$

Dove \bar{a} è l'accelerazione totale, $\bar{\alpha} \times \bar{r}$ è l'accelerazione tangenziale \bar{a}_T e $\bar{\omega} \times \bar{v}$ è l'accelerazione centripeta $\bar{a}_N = \bar{\omega} \times \bar{v} = \bar{\omega} \times (\bar{\omega} \times \bar{r})$. Nel moto circolare unforme ω è un vettore costante anche in mdoulo, α è nulla $\bar{a} = \bar{a}_N = \bar{\omega} \times \bar{\omega} \times \bar{r}$.

0.3.1 Formuline del profe

$$\bar{v} = v_s \cdot \bar{u}_t$$

$$wr \cdot \sin \frac{\pi}{2} = wr \quad \bar{\alpha} = \frac{d\bar{\omega}}{dt} \quad \bar{a} = \bar{\alpha} \times \bar{r} + \bar{\omega} \times \bar{v} \implies \bar{a} = \alpha \cdot r + \bar{\omega} \times \bar{v}$$

$$\bar{a}_t = \bar{\alpha} \times \bar{r}$$

$$\bar{a}_n = \bar{\omega} \times \bar{v}$$