Question Number	Answer		Mark
12a	Arrow upwards along wire labelled tension (accept <i>T</i>)	(1)	2
	Throw up was as and me that contain (moseph 1)	(1)	_
	Arrow downwards from bob labelled weight (accept W, mg,		
	gravitational force, force due to gravity)	(1)	
12bi	Resolve vertically	(4)	4
	$T\cos\theta = mg$	(1)	
	Resolve horizontally		
	$T\sin\theta = m\omega^2 r \text{ Or } T\sin\theta = \frac{mv^2}{r}$	(1)	
	r	(1)	
	Use radius of circular path = $l \times \sin \theta$	(1)	
	Continue Continue Prince	(1)	
	Suitable algebra	(1)	
	Example of derivation		
	$T\cos\theta = mg$		
	$T\sin\theta = m\omega^2 r$		
	$T\sin\theta = ml\sin\theta\omega^2$		
	$\cos\theta = \frac{g}{l\omega^2}$		
	$\omega = \sqrt{\frac{g}{l\cos\theta}}$		
12bii		(1)	3
12011	Use of $\omega = \sqrt{\frac{g}{l\cos\theta}}$	(1)	3
	•		
	Use of $T = \frac{2\pi}{\omega}$	(1)	
	ω		
	Confirmation of value of $T = 5.0$ (s) with conclusion		
	Or $l = 6.4$ (m) with conclusion		
	Or $\theta = 13.9$ (°) with conclusion		
	Or $g = 9.81$ (N kg ⁻¹) with conclusion		
	Or calculates $\omega = 1.26 \text{ (s}^{-1})$ from both equations with conclusion	(1)	
	Example of calculation		
	2		
	$\omega = \frac{2\pi}{5.0s} = 1.26 \text{s}^{-1}$		
	$\omega = \sqrt{\frac{9.81 \text{ N kg}^{-1}}{6.4 \text{ m} \times \cos 13.9^{\circ}}}$		
	$\omega = 1.26 \mathrm{s}^{-1}$		
	Total for question 12		9