C_1	C_2	C_3		C_{2^k}
e_2	$C_2 + e_2$	$C_3 + e_2$		$C_{2^k} + e_2$
e_3	$C_2 + e_3$	$C_3 + e_3$	•••	$C_{2^k} + e_3$
:	:	:	÷ :	:
$e_{2^{n-k}}$	$C_2 + e_{2^{n-k}}$	$C_3 + e_{2^{n-k}}$	•••	$C_{2^k} + e_{2^{n-k}}$

Первый столбец — образцы ошибок, первая строка — все возможные кодовые слова, начиная с кодового слова, состоящего из одних нулей. Каждую строку называют **смежным классом**, а первый столбец — **лидеры смежных классов**. Таким образом, смежный класс состоит из всевозможных принимаемых кодовых слов, получающегося от частного образца ошибки (лидера смежного класса).

Пример. Задан код (5,2) с порождающей матрицей
$$G = \begin{pmatrix} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \end{pmatrix}$$
.

Тогда
$$2^k = 2^2 = 4$$
, $2^{n-k} = 2^{5-2} = 8$, проверочная матрица $H = \begin{pmatrix} 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 \end{pmatrix}$.

Стандартное расположение (таблица декодирования):

 $X_1 = (00)$

Таблица 1.

 $X_4 = (11)$

00000	01011	10101	11110
00001	01010	10100	11111
00010	01001	10111	11100
00100	01111	10001	11010
01000	00011	11101	10110
10000	11011	00101	01110
11000	10011	01101	00110
10010	11001	00111	01100

 $X_2 = (01)$ $X_3 = (10)$

Образцы ошибок с весом 2 были выбраны так, чтобы соответствующие ей синдромы отличались от тех, которые соответствуют одиночным ошибкам.

Для заданного кода минимальное кодовое расстояние $d_{\min} = 3$. Его можно определить по формуле (6.3) для разрешенных кодовых комбинаций (первая строка таблицы 1), исключая из рассмотрения нулевое кодовое слово.