Задача 3.4 по вычислительной математике

Требуется найти аппроксимацию значения интеграла:

$$I = \int_{a}^{b} f(x)dx,$$

$$f(x) \in F = \{\cos x; \cos^{2} 2x; \cos^{2} x\},$$

$$(a,b) \in B = \{(-1/4, 1/2); (-1/2, 1/2); (-1/3, 1/3), (-3/4, 3/2)\}$$

с помощью составной формулы Симпсона, используя сначала 3 и затем 9 узлов. Вычислите погрешность аппроксимации для каждого из случаев. Во сколько раз увеличилась точность вычисления при увеличении числа узлов в три раза? Объясните полученное значение.

В расчетах использовать элементы с индексами $id_F[f(x)], id_B[(a,b)].$

Вычислим значения индексов необходимых элементов:

$$id_F[f(x)] = (N \mod |S|) + 1 = (5 \mod 3) + 1 = 3,$$

 $id_B[(a,b)] = (N \mod |S|) + 1 = (5 \mod 4) + 1 = 2,$

где N - номер варианта по списку, |S| - мощность множества.

Выбрав элементы двух множеств с необходимыми индексами окончательно получим, что

$$I = \int_{(-1/2)}^{(1/2)} \cos^2 x \, dx$$

Решение:

Составная формула Симпсона имеет вид:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} \left[f(x_1) + 2 \sum_{i=1}^{n/2-1} (f(x_{2i+1}) + 4 \sum_{i=1}^{n/2} f(x_{2i}) + f(x_{n+1}) \right], \quad (1)$$

где

n - число подотрезков,

$$h = \frac{b-a}{n},$$

 $i=1,\ldots,n+1$ - количество узлов.

Найдем аппроксимацию значения интеграла для 3 узлов (2 подотрезков):

$$h = \frac{1/2 - (-1/2)}{2} = 1/2 \tag{2}$$

i	1	2	3		
x_i	1/2	0	1/2		
$\cos^2 x_i$	0.770151	1	0.770151		

Таблица 1. Значения узлов и функции в узлах

$$\int_{(-1/2)}^{(1/2)} \cos^2 x dx \approx \frac{1}{6} \left[0.770151 + 4 \cdot 1 + 0.770151 \right] \approx 0.923384$$
 (3)

Найдем аппроксимацию значения интеграла для 9 узлов (8 подотрезков):

$$h = \frac{1/2 - (-1/2)}{8} = 1/8 \tag{4}$$

i	1	2	3	4	5	6	 9
x_i	-1/2	-3/8	-1/4	-1/8	0	1/8	 1/2
$\cos^2 x_i$	0.770151	0.865844	0.938791	0.984456	1	0.984456	 0.770151

Таблица 2. Значения узлов и функции в узлах

$$\int_{(-1/2)}^{(1/2)} \cos^2 x dx \approx \frac{1}{24} \left[0.770151 + 2 \cdot (0.938791 + 1 + 0.938791) + 8 \cdot (0.865844 + 0.984456) + (5) + 0.770151 \right] \approx 0.920744$$

Вычислим значение интеграла для вычисления погрешности аппроксимации для каждого из случаев:

$$\int_{(-1/2)}^{(1/2)} \cos^2 x dx = \int_{(-1/2)}^{(1/2)} \frac{1 + \cos 2x}{2} dx = \frac{1}{2} \int_{(-1/2)}^{(1/2)} 1 + \cos 2x dx =$$

$$= \frac{1}{2} \left[\int_{(-1/2)}^{(1/2)} 1 dx + \int_{(-1/2)}^{(1/2)} \cos 2x dx \right] =$$

$$= \left(\frac{x}{2} + \frac{\sin 2x}{4} \right) \Big|_{-1/2}^{1/2} \approx 0.920735$$
(6)

Погрешность для 3 узлов: |0.920735 - 0.923384| = 0.002649 Погрешность для 9 узлов: |0.920735 - 0.920744| = 0.000009 Точность вычисления увеличилась в $\frac{0.002649}{0.000009} \approx 294$ раза.

Это значительное увеличение, которое можно объяснить тем, что формула Симпсона имеет четвертый порядок точности $O(h^4)$. Таким образом, при уменьшении h в k раз (в нашем случае $k = \frac{1}{2}/\frac{1}{8} = 4$), ошибка уменьшается пропорционально k^4 (в нашем случае $4^4 = 256$). Наше увеличение точности (294) близко к этой теоретической оценке (256), что подтверждает эффективность использования большего числа узлов.