Neural Networks

Statistical Learning

Master in Big Data. University of Santiago de Compostela

Manuel Mucientes

Introduction

- Basic idea:
 - Extract linear combinations of the inputs as derived features
 - Model the target as a nonlinear function of these features
- An example of a single neuron:

- $h_{W,b}(x) = f(W^T x) = f(\sum_{i=1}^3 W_i x_i + b)$
 - f is the activation function
 - b is the bias term

Activation functions

■ Sigmoid: [0, 1]

$$f(z) = \frac{1}{1 + \exp(-z)}$$

- Derivative:
 - f'(z) = f(z)(1 f(z))

Activation functions (ii)

Hyperbolic tangent: [-1, 1]

$$f(z) = \tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$$

- Derivative:
 - $f'(z)=1-(f(z))^2$

Activation functions (iii)

Rectified linear unit (ReLU):

$$f(z) = \max(0, z)$$

- Derivative:
 - 0 if z<0, 1 otherwise
 - Undefined at z=0
 - Average the gradient over many training examples during optimization
- Gaussian radial basis functions
 - RBF networks
 - $f(z) = \exp(-(1/2)(z-c)^T \Sigma^{-1}(z-c))$

Neural Network Model

A single hidden layer feed-forward neural network:

- Input layer, hidden layer, output layer
- Parameters: $(W,b)=(W^{(1)},b^{(1)},W^{(2)},b^{(2)})$
 - $W_{ij}^{(1)}$: weight associated with the connection between unit j in layer l and unit i in layer l+1
 - $W^{(1)} \in \mathbb{R}^{3 \times 3}$, and $W^{(2)} \in \mathbb{R}^{1 \times 3}$
 - $b_i^{(l)}$ is the bias associated with unit i in layer i+1
 - Bias units do not have inputs or connections going into them

Neural Network Model (ii)

- \bullet $a_i^{(1)}$: activation (output value) of unit *i* in layer *l*
 - $a_i^{(1)} = X_i$
- \blacksquare s_i : number of nodes in layer / (not counting the bias unit)

Neural Network Model (iii)

Computation:

$$a_{1}^{(2)} = f(W_{11}^{(1)}x_{1} + W_{12}^{(1)}x_{2} + W_{13}^{(1)}x_{3} + b_{1}^{(1)})$$

$$a_{2}^{(2)} = f(W_{21}^{(1)}x_{1} + W_{22}^{(1)}x_{2} + W_{23}^{(1)}x_{3} + b_{2}^{(1)})$$

$$a_{3}^{(2)} = f(W_{31}^{(1)}x_{1} + W_{32}^{(1)}x_{2} + W_{33}^{(1)}x_{3} + b_{3}^{(1)})$$

$$h_{W,b}(x) = a_{1}^{(3)} = f(W_{11}^{(2)}a_{1}^{(2)} + W_{12}^{(2)}a_{2}^{(2)} + W_{13}^{(2)}a_{3}^{(2)} + b_{1}^{(2)})$$

Neural Network Model (iv)

If $z_i^{(l+1)}$ is the total weighted sum of inputs to unit i in layer l+1:

$$z_i^{(l+1)} = \sum_{j=1}^{s_l} W_{ij}^{(l)} a_j^{(l)} + b_i^{(l)}$$

 $a_i^{(l)} = f(z_i^{(l)})$

Neural Network Model (v)

Computation: forward propagation

$$z^{(2)} = W^{(1)}x + b^{(1)}$$

$$a^{(2)} = f(z^{(2)})$$

$$z^{(3)} = W^{(2)}a^{(2)} + b^{(2)}$$

$$h_{W,b}(x) = a^{(3)} = f(z^{(3)})$$

■ In general (matrix-vector operations):

$$z^{(l+1)} = W^{(l)}a^{(l)} + b^{(l)}$$
$$a^{(l+1)} = f(z^{(l+1)})$$

Architectures

- Patterns of connectivity between neurons
 - Multiple hidden layers
 - Fully (densely) vs. locally connected
 - Weight sharing (locally connected)
 - feed-forward (no loops)
- Most common choice: multilayer feed-forward neural network (multilayer perceptron network)
 - Forward propagation step to calculate outputs of each layer

Architectures (ii)

- Regression:
 - Typically, one output unit, except when there are several outputs
 - The output function is typically the identity function
- Classification:
 - For K-class classification, K units in the output layer

E.g.
$$\begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}$$
, $\begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\1\\0 \end{bmatrix}$, $\begin{bmatrix} 0\\0\\0\\1 \end{bmatrix}$ pedestrian car motorcycle truck

Output function: softmax

$$f(z_i^{(l)}) = \frac{e^{z_i^{(l)}}}{\sum_{j=1}^K e^{z_j^{(l)}}}$$

Architectures (iii)

- An example of the output of softmax
 - Three categories (K=3): bike, car, truck

$$f(z_i^{(l)}) = \frac{e^{z_i^{(l)}}}{\sum_{j=1}^K e^{z_j^{(l)}}}$$

	Z _i	exp(z _i)	f(z _i)	Correct probs.
Bike	-0.2	0.8	0.02 (2%)	0.00
Car	3.6	36.6	0.75 (75%)	1.00
Truck	2.4	11.0	0.23 (23%)	0.00

Fitting Neural Networks

- Backpropagation algorithm
 - Training examples: $\{(x^{(1)}, y^{(1)}), \dots, (x^{(m)}, y^{(m)})\}$
 - For a single example:
 - Regression and classification:

$$J(W, b; x, y) = \frac{1}{2} ||h_{W,b}(x) - y||^2$$

• For classification (mutually exclusive classes), cross-entropy is also valid:

$$J(W, b, x, y) = -\sum_{k=1}^{K} y_k \log (h_{W,b}(x))_k$$

- For classification:
 - Sigmoid, *softmax*: y=0, 1; output in [0, 1]
 - tanh: y=-1, 1; output in [-1, 1]
- For regression: scale the outputs (range depends on the activation function)

Fitting Neural Networks (ii)

Overall cost function:

$$J(W,b) = \left[\frac{1}{m} \sum_{i=1}^{m} J(W,b;x^{(i)},y^{(i)})\right] + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} \left(W_{ji}^{(l)}\right)^2$$

$$= \left[\frac{1}{m} \sum_{i=1}^{m} \left(\frac{1}{2} \left\|h_{W,b}(x^{(i)}) - y^{(i)}\right\|^2\right)\right] + \frac{\lambda}{2} \sum_{l=1}^{n_l-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} \left(W_{ji}^{(l)}\right)^2$$

- Regularization term (weight decay): prevent overfitting
 - Not applied to the bias terms
- Minimize J through backpropagation
 - J is non-convex: local minima
 - Gradient descent: usually works fairly well

Fitting Neural Networks (iii)

One iteration of gradient descent updates W, b: Widrow-Hoff rule

$$\begin{split} W_{ij}^{(l)} &= W_{ij}^{(l)} - \alpha \frac{\partial}{\partial W_{ij}^{(l)}} J(W, b) \\ b_i^{(l)} &= b_i^{(l)} - \alpha \frac{\partial}{\partial b_i^{(l)}} J(W, b) \end{split}$$

- \blacksquare α : learning rate
- Compute the partial derivatives: backpropagation algorithm

$$\frac{\partial J\left(W,b\right)}{\partial W_{ij}^{(l)}} = \left[\frac{1}{m} \sum_{e=1}^{m} \frac{\partial J\left(W,b;x^{(e)},y^{(e)}\right)}{\partial W_{ij}^{(l)}}\right] + \lambda W_{ij}^{(l)}$$
$$\frac{\partial J\left(W,b\right)}{\partial b_{i}^{(l)}} = \frac{1}{m} \sum_{e=1}^{m} \frac{\partial J\left(W,b;x^{(e)},y^{(e)}\right)}{\partial b_{i}^{(l)}}$$

Backpropagation algorithm

- 1. Perform a feedforward pass, computing the activations for layers L_2 , L_3 , and so on up to the output layer L_{n_i} .
- 2. For each output unit i in layer n_l (the output layer), set

$$\delta_i^{(n_l)} = \frac{\partial}{\partial z_i^{(n_l)}} \frac{1}{2} \|y - h_{W,b}(x)\|^2 = -(y_i - a_i^{(n_l)}) \cdot f'(z_i^{(n_l)})$$

3. For $l = n_l - 1, n_l - 2, n_l - 3, \dots, 2$

For each node i in layer l, set

$$\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)}
ight) f'(z_i^{(l)})$$

Intuition:

 $\delta_i^{(l)}$ = error of node *i* in layer *l*

4. Compute the desired partial derivatives, which are given as:

$$\frac{\partial}{\partial W_{ij}^{(l)}}J(W,b;x,y)=a_{j}^{(l)}\delta_{i}^{(l+1)} \qquad \begin{array}{l} \text{modifications in }W_{ij}^{(l)}:\\ \text{[activation of node j in layer l+1]}\\ \frac{\partial}{\partial b_{i}^{(l)}}J(W,b;x,y)=\delta_{i}^{(l+1)}. \end{array}$$

How much error changes with

Backpropagation algorithm (ii)

Matrix-vectorial notation

- 1. Perform a feedforward pass, computing the activations for layers L_2 , L_3 , up to the output layer L_{n_l} , using the equations defining the forward propagation steps
- 2. For the output layer (layer n_l), set

$$\delta^{(n_l)} = -(y - a^{(n_l)}) \bullet f'(z^{(n_l)})$$

3. For $l = n_l - 1, n_l - 2, n_l - 3, \dots, 2$, set

$$\delta^{(l)} = \left((W^{(l)})^T \delta^{(l+1)} \right) ullet f'(z^{(l)})$$

4. Compute the desired partial derivatives:

$$egin{align}
abla_{W^{(l)}} J(W,b;x,y) &= \delta^{(l+1)} (a^{(l)})^T, \
abla_{b^{(l)}} J(W,b;x,y) &= \delta^{(l+1)}.
onumber \end{aligned}$$

Full gradient descent algorithm

- 1. Set $\Delta W^{(l)} := 0$, $\Delta b^{(l)} := 0$ (matrix/vector of zeros) for all l.
- 2. For i = 1 to m,
 - 1. Use backpropagation to compute $\nabla_{W^{(l)}}J(W,b;x,y) \text{ and } \nabla_{b^{(l)}}J(W,b;x,y).$
 - 2. Set $\Delta W^{(l)} := \Delta W^{(l)} + \nabla_{W^{(l)}} J(W, b; x, y)$.
 - 3. Set $\Delta b^{(l)} := \Delta b^{(l)} + \nabla_{b^{(l)}} J(W, b; x, y)$.
- 3. Update the parameters:

$$\begin{split} W^{(l)} &= W^{(l)} - \alpha \left[\left(\frac{1}{m} \Delta W^{(l)} \right) + \lambda W^{(l)} \right] \\ b^{(l)} &= b^{(l)} - \alpha \left[\frac{1}{m} \Delta b^{(l)} \right] \end{split}$$

Training Neural Networks

- Over-parametrized model, non-convex and unstable optimization problem
- Starting values:
 - Random values near 0 for W, biases to 0
 - With standardized inputs, random uniform weights in [-0.7, 0.7]
 - Ok for small networks
 - Xavier initialization: random() * sqrt(1/n)
 - random(): mean 0, variance 1
 - n: number of inputs
 - Model starts out nearly linear, and becomes nonlinear as weights increase
 - 0 weights give perfect symmetry, large weights lead poor solutions

Training Neural Networks (ii)

- Overfitting: regularization term (weight decay)
 - Cross-validation to estimate the regularization parameter

Neural Network - 10 Units, No Weight Decay

Neural Network - 10 Units, Weight Decay=0.02

Training Neural Networks (iii)

Scaling of the inputs:

- Can have a large effect in the quality of the final solution: scaling of the weights
- Standardize inputs (and outputs) to have mean zero and standard deviation one:
 - Treat all inputs equally: regularization
 - Choose a meaningful range for the starting weights

Number of hidden units:

- Better to have too many hidden units than too few
 - Too few: not enough flexibility to capture nonlinearities
 - Too many: extra weights can be shrunk toward zero with regularization
- Typical number of hidden units: 5 to 100 (per layer)
 - Number increasing with number of inputs and number of training cases
 - Same number in every layer (reasonable default)

Training Neural Networks (iv)

- Number of hidden layers:
 - background knowledge and experimentation
 - Allow the construction of hierarchical features at different levels of resolution
- Multiple minima: non-convex error function
 - Try a number of random starting configurations: choose the best solution
 - Better approach: average the predictions over a collection of networks
 - Another approach: bagging
- Batch learning: all the examples
 - Stochastic Gradient Descent (SGD): 1 example
- Advanced optimization methods:
 - Conjugate gradient
 - Quasi-Newton: Broyden-Fletcher-Goldfard-Shanno (BFGS) and L-BFGS

Example: ZIP Code Data

- Le Cun, 1989
- 16x16 grayscale images
- Training with 320 digits, test with 160
- Five different networks: sigmoidal output units, sum-of-squares error function

Example: ZIP Code Data (ii)

- Net-1: no hidden layer, equivalent to multinomial logistic regression
- Net-2: one hidden layer, 12 hidden units fully connected
- Net-3: two hidden layers locally connected
 - First hidden layer:
 - Inputs from a 3x3 patch
 - Units 1 unit apart are 2 pixels apart
 - Second hidden layer:
 - Inputs from a 5x5 patch
 - Units 1 unit apart are 2 pixels apart
 - Local connectivity:
 - Each unit extracts local features from the previous layer
 - Lower number of weights

10

Example: ZIP Code Data (iii)

- Net-4: two hidden layers, locally connected, weight sharing
 - First hidden layer: two 8x8 feature maps
 - Input from 3x3 patch
 - Units in the same 8x8 feature map share the same set of 9 weights (bias not shared)
 - Extracted features in different parts of the image are computed with the same linear functional: convolutional networks
 - Second hidden layer: no weight sharing
- The gradient of the error for a shared weight is the sum of the gradients to each connection controlled by the weight

Example: ZIP Code Data (iv)

- Net-5: two hidden layers, locally connected, two levels of weight sharing
 - First hidden layer: same as Net-4
 - Second hidden layer: four 4x4 feature maps
 - Input from a 5x5 patch
 - Weights shared in each of the feature maps
- Features of handwritten style should appear in more than one part of a digit
- Subject matter knowledge should be used to improve performance

Example: ZIP Code Data (v)

- Training error was 0% in all the cases
 - More parameters than training observations

Example: ZIP Code Data (vi)

	Network Architecture	Links	Weights	% Correct
Net-1:	Single layer network	2570	2570	80.0%
Net-2:	Two layer network	3214	3214	87.0%
Net-3:	Locally connected	1226	1226	88.5%
Net-4:	Constrained network 1	2266	1132	94.0%
Net-5:	Constrained network 2	5194	1060	98.4%

- Best results on a large database: Le Cun et al., 1998
 - 60,000 training and 10,000 test examples
 - LeNet-5: a more complex convolutional network
 - 99.2% correct
 - Boosted LeNet-4: boosting with a predecesor of LeNet-5
 - 99.3% correct

Bibliography

- C. Bishop, Neural Networks for Pattern Recognition. Oxford University Press, 1995.
 - Chapter 4
- T. Hastie, R. Tibshirani, y J. Friedman, The elements of statistical learning. Springer, 2009.
 - Chapter 11
- Unsupervised Feature Learning and Deep Learning Tutorial
 - http://ufldl.stanford.edu/tutorial/