LATEX Definitions are here.

一些特殊的范畴

先规定几种特殊的范畴:

- 离散范畴: 只有对象不含箭头(恒等箭头除外)的范畴。
- Set: 集合范畴, 为局部小范畴, 满足
 - Set 中对象可以是任意集合
 - *Set* 中箭头便是集合间映射。
- C^{op}: 反范畴,满足
 - C^{op} 中对象皆形如 c,
 c 为任意 C 中的对象;
 - $\mathcal{C}^{\mathrm{op}}$ 中箭头皆形如 $\phi^{\mathrm{op}}: \mathsf{c}_2 \stackrel{\mathcal{C}^{\mathrm{op}}}{\longrightarrow} \mathsf{c}_1$, $\phi: \mathsf{c}_1 \stackrel{\mathcal{C}}{\to} \mathsf{c}_2$ 可为任意 \mathcal{C} 中的箭头 。
- - C^{Cat} × D 中对象皆形如 c . d ,
 c , d 为任意 C , D 中的对象 ;
- C/c: **俯范畴**, 这里 c 为任意 C 中对象; 满足
 - \mathcal{C}/c 中对象皆形如 \cancel{x} $\cancel{1}$. ϕ , 其中 x 和 ϕ : x $\overset{c}{\rightarrow}$ c 分别为 \mathcal{C} 中任意的对象和箭头 ;

- c/C: **仰范畴**, 这里 c 为任意 C 中对象;满足
 - c/C 中对象皆形如 $1 \times . \phi$, 其中 x 和 ϕ : $c \xrightarrow{c} x$ 分别为 C 中对象和箭头;
 - \mathcal{C}/c 中箭头皆形如 \mathcal{L} id. g_1 且满足下述交换图,其中 \mathbf{x}_1 , \mathbf{x}_2 为 \mathcal{C} 中任意对象且 g_1 , ϕ_1 , ϕ_2 为 \mathcal{C} 中任意箭头;

函子

考虑范畴 C , D , 现提供函子定义:

- $P:\mathcal{C} \overset{\mathcal{C}at}{\longrightarrow} \mathcal{D}$ 为范畴当且仅当
 - 对任意 $\mathcal C$ 中对象 $\mathbf c$, $\mathbf cP$ 为 $\mathcal D$ 中对象且 $\mathbf c$ id $\mathbf P = \mathbf c \mathbf P \mathrm{id}$;
 - 对任意 \mathcal{C} 中箭头 ϕ_1 : $\mathbf{c}_1 \overset{c}{\rightarrow} \mathbf{c}_2$ 和 ϕ_2 : $\mathbf{c}_2 \overset{c}{\rightarrow} \mathbf{c}_3$, 始终都有等式 $(\phi_1 \circ \phi_2)P = \phi_1 P \overset{\mathcal{D}}{\circ} \phi_2 P$ 成立。

函子的复合

假如刚才的 P 确实构成一个函子且 $Q:\mathcal{D}\overset{\mathcal{C}at}{\longrightarrow}\mathcal{E}$ 也构成函子 , 那么

• $P \overset{\mathit{Cat}}{\circ} Q : \mathcal{C} \overset{\mathit{Cat}}{\longrightarrow} \mathcal{E}$ 也构成一个函子。

忠实和完全函子

若 \mathcal{C} , \mathcal{D} , \mathcal{E} 皆为**局部小范畴** , 则

- P 是**忠实的**当且仅当对任意 \mathcal{C} 中的对象 \mathbf{c}_1 , \mathbf{c}_2 $(\mathbf{c}_1 \overset{\mathcal{C}}{\rightarrow} \mathbf{c}_2)$ 与 $(\mathbf{c}_1 P \overset{\mathcal{D}}{\rightarrow} \mathbf{c}_2 P)$ 之间始终存在单射 ;
- P 是**完全的**当且仅当对任意 \mathcal{C} 中的对象 \mathbf{c}_1 , \mathbf{c}_2 $(\mathbf{c}_1 \overset{\mathcal{C}}{\rightarrow} \mathbf{c}_2)$ 与 $(\mathbf{c}_1 P \overset{\mathcal{D}}{\rightarrow} \mathbf{c}_2 P)$ 之间始终存在满射 ;
- P 是**完全忠实的**当且仅当对任意 \mathcal{C} 中的对象 \mathbf{c}_1 , \mathbf{c}_2 $(\mathbf{c}_1 \overset{\mathcal{C}}{\rightarrow} \mathbf{c}_2)$ 与 $(\mathbf{c}_1 P \overset{\mathcal{D}}{\rightarrow} \mathbf{c}_2 P)$ 之间始终存在双射 (即集合间同构)。

(i) Note

刚才提到的"单/满/双射"针对的都是范畴的箭头部分。

若还知道 $P_1, P_2: \mathcal{C} \overset{\mathit{Cat}}{\longrightarrow} \mathcal{D}$ 为函子 , 则

- 函子 $P_1: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$, 函子 $P_2: \mathcal{C} \xrightarrow{\mathcal{C}at} \mathcal{D}$, 函子的复合: $P_1 \circ P_2$
- 自然变换 $\eta_1: P_1 \xrightarrow{\mathcal{C}at} Q_1$,自然变换 $\eta_2: P_1 \xrightarrow{\mathcal{C}at} Q_1$,自然变换 $\theta_1: Q_1 \xrightarrow{\mathcal{C}at} R_1$ 自然变换的纵复合: $\eta_1 \circ_{\mathbf{v}} \eta_2$,自然变换的横复合: $\eta_1 \circ_{\mathbf{h}} \theta_1$,