CIND-221: Árbol de expansión mínima

Felipe Osorio

f.osoriosalgado@uandresbello.edu

Facultad de Ingeniería, UNAB

Definición:

Considere una red G=(N,A) con $N=\{1,\ldots,n\}$. Un árbol corresponde a una red que consiste en un subconjunto de todos los nodos disponibles donde no se permiten ciclos.

Definición:

Un árbol de expansión se define como un árbol que une todos los nodos de una red G=(N,A).

Objetivo:

El objetivo es construir un árbol de expansión de manera tal que una todos los nodos de la red y que la suma de los pesos de las aristas sea mínima, donde G=(N,A).

A continuación, se describirá un algoritmo para construir un árbol de expansión de costo mínimo. Suponga $N=\{1,\ldots,n\}$ el conjunto de nodos de la red y considere:

 C_k : el conjunto de nodos conectados de forma permanente en la k-ésima iteración.

 \overline{C}_k : conjunto de nodos que aún se deben conectar de forma permanente.

Algoritmo de árbol de expansión mínima:

Considere una red G = (N, A) con nodos $N = \{1, \dots, n\}$.

Inicialización: Asignar $C_0 = \emptyset$ y $\overline{C}_0 = N$.

- Paso 1: Elegir cualquier nodo en en conjunto \overline{C}_0 de nodos no conectados y hacer $C_1=\{i\}$. De este modo, $\overline{C}_1=N-\{i\}$, y tomar k=2.
- Paso k: Seleccionar aquél nodo j^* en el conjunto \overline{C}_{k-1} que produzca el arco más corto hacia un nodo en el conjunto C_{k-1} . Enlazar j^* en forma permanente con C_{k-1} , es decir,

$$C_k = C_{k-1} \cup \{j^*\}, \qquad \overline{C}_k = \overline{C}_{k-1} - \{j^*\}.$$

Si el conjunto \overline{C}_k es vacio, detener el algoritmo. En caso contrario, hacer k=k+1 y repetir el paso.

Ejemplo:

Considere la siguiente red G=(N,A), con $N=\{1,2,3,4,5,6\}$, con:

Iteración 0:

Tenemos que,

$$C_0 = \emptyset, \qquad \overline{C}_0 = \{1, 2, 3, 4, 5, 6\}.$$

Iteración 1:

Comencemos por el 1er nodo, es decir,

$$C_1 = \{1\}, \qquad \overline{C}_1 = N - \{1\} = \{2, 3, 4, 5, 6\}.$$

Iteración 2:

Desde el nodo 1, el arco más corto es (1,2) (longitud 1). Así $j^*=2$, y

$$C_2 = C_1 \cup \{2\} = \{1, 2\}, \qquad \overline{C}_2 = \overline{C}_1 - \{2\} = \{3, 4, 5, 6\}.$$

 $^{{\}bf 1} {\rm Mientras\ que\ los\ arcos\ } (1,3), (1,4)\ {\rm y\ } (1,5)\ {\rm tienen\ longitud\ } {\bf 5,\ 7\ y\ 9,\ respectivamente}.$

Iteración 3:

Desde el nodo 2, tenemos los siguientes arcos:

- \triangleright (2,5): con longitud 3,
- \triangleright (2,3): cuya longitud es 6, y
- \triangleright (2,4): de longitud 4.

De este modo, $j^* = 5$, y

$$C_3 = C_2 \cup \{5\} = \{1, 2, 5\}, \qquad \overline{C}_3 = \overline{C}_2 - \{5\} = \{3, 4, 6\}.$$

Iteración 4:

Actualmente $C_3=\{1,2,5\}$ y $\overline{C}_3=\{3,4,6\}$. Note que los arcos desde los nodos 3 o 4 son:

- ightharpoonup (3,1): con longitud 5, y (3,2): de longitud 6, mientras que
- ightharpoonup (4,1): de longitud 7, y (4,2): cuya longitud es 4.

De este modo, $j^* = 4$, y

$$C_4 = C_3 \cup \{4\} = \{1, 2, 4, 5\}, \qquad \overline{C}_4 = \overline{C}_3 - \{4\} = \{3, 6\}.$$

Iteración 5:

Tenemos $C_4=\{1,2,4,5\}$ y $\overline{C}_4=\{3,6\}$. Luego, el arco más corto desde el conjunto de nodos conectados C_4 es (4,6) con longitud 3. De este modo, $j^*=6$, y

$$C_5 = C_4 \cup \{6\} = \{1, 2, 4, 5, 6\},$$

 $\overline{C}_5 = \overline{C}_4 - \{6\} = \{3\}.$

Iteración 6:

Tenemos $C_5=\{1,2,4,5,6\}$ y $\overline{C}_5=\{3\}$. Podemos conectar el nodo 3 ya sea con el nodo 1 o el nodo 4, pues sus arcos tienen la misma longitud. De este modo, $j^*=3$, y

$$C_6 = C_5 \cup \{3\} = \{1, 2, 3, 4, 5, 6\}, \qquad \overline{C}_6 = \overline{C}_5 - \{3\} = \emptyset.$$

Como $\overline{C}_6=\varnothing$ el algoritmo se detiene.

Finalmente el árbol de expasión mínimo luce como sigue:

La longitud total de los arcos
$$(1,2)+(2,5)+(2,4)+(4,6)+(3,1)$$
 es:
$$1+3+4+3+5=16. \label{eq:1}$$

Ejercicio propuesto:

Se planea trazar una red de televisión para dar servicio a cinco área urbanizadas. El costo asociado a cada arista (en kilómetros de cable) es dado en la siguiente tabla:

	1	2	3	4	5	6
1		1	5	7	9	
2			6	4	3	
3				5		10
4					8	3
5						
6						

- (a) Dibuje la red G = (N, A).
- (b) Obtenga el trazado de la red de costo mínimo.