Frequentist Statistics DA 1 report

Made by Ihor Markevych.

Data Set 1 (n=30).

Q1. Do traits X,Y,Z predict the purchasing habits of customers regarding items A-G?

- For each response identify the appropriate test Wilcox(paired=FALSE) for combinations of trait-item.
- 2) Evaluate any statistical assumptions for the test.
 - a) *independent samples* data is independent as there is no evidence that for each item 'yes' category affects 'no' category.
 - b) 2 categories for each item we have two categories 1 and 0, or yes and no.
 - c) 1 time interval we should take trait as an interval/ratio, as traits might (and should) depend on each other. And we use 1 trait for each test.
- 3) Present your data and results using descriptive statistics and tables as well as graphs if appropriate.

Data:

- traitX, traitY, traitZ numerical data
- ItemA-ItemG categorical data (0/1)

	traitX	traitY	traitZ	itemA	itemB	itemC	itemD	itemE	itemF	itemG
media	50.0000000	49.5000000	50.0000000	1.00000000	0.00000000	1.00000000	1.00000000	1.00000000	0.00000000	0.00000000
mear	50.5666667	50.4666667	50.7000000	0.60000000	0.40000000	0.60000000	0.53333333	0.53333333	0.46666667	0.4666667
SE.mear	1.0019330	1.1633615	1.3772787	0.09097177	0.09097177	0.09097177	0.09264111	0.09264111	0.09264111	0.09264111
Cl.mean.0.9	2.0491831	2.3793414	2.8168512	0.18605815	0.18605815	0.18605815	0.18947235	0.18947235	0.18947235	0.18947235
va	r 30.1160920	40.6022989	56.9068966	0.24827586	0.24827586	0.24827586	0.25747126	0.25747126	0.25747126	0.25747126
std.de	5.4878130	6.3719933	7.5436660	0.49827288	0.49827288	0.49827288	0.50741626	0.50741626	0.50741626	0.50741626
coef.va	r 0.1085263	0.1262614	0.1487903	0.83045480	1.24568220	0.83045480	0.95140549	0.95140549	1.08732056	1.08732056

• Results:

Trait:	Item:	p-value:						
traitX	itemA	0.67029	traitY	itemA	0.4834	traitZ	itemA	0.58015
traitX	itemB	0.89837	traitY	itemB	0.03195	traitZ	itemB	0.27789
traitX	itemC	0.59459	traitY	itemC	0.56636	traitZ	itemC	0.70175
traitX	itemD	0.67589	traitY	itemD	0.10831	traitZ	itemD	0.07238
traitX	itemE	0.28637	traitY	itemE	0.63147	traitZ	itemE	0.98333
traitX	itemF	0.22534	traitY	itemF	0.55926	traitZ	itemF	0.16157
traitX	itemG	0.81813	traitY	itemG	0.0334	traitZ	itemG	0.95002

As we can see, next pairs are significantly dependant:

Trait:	Item:	p-value:
traitY	itemB	0.03195
traitY	itemG	0.03340

4) Analyze your results.

There is sufficient evidence to claim that *trait* Y can predict the purchasing habits of customers regarding *items* B *and* G.

Q2: Does the purchasing of one of the items (A-G) predict purchasing other items?

- 1) For each response identify the appropriate test Fisher exact test for combinations of item item.
- 2) Evaluate any statistical assumptions for the test.
 - a) *independent samples* data is independent as there is no evidence that measuring traits would change measurements for customer buying habits.
- b) 2 variables of categorical data we have item and item, 2 binary variables (yes-no category).
- 3) Present your data and results using descriptive statistics and tables as well as graphs if appropriate.

• Data (first rows)

itemA	itemB	itemC	itemD	itemE	itemF	itemG
1	1	1	1	1	1	1
0	1	1	0	0	0	0
1	0	1	0	0	0	0
0	1	1	0	1	1	1
1	0	0	1	1	1	1
0	1	0	1	0	0	1
1	1	1	1	0	1	1
0	0	1	0	0	1	1
0	1	0	1	1	0	1
0	0	0	0	1	1	0

• Results:

Item:	Item:	p-value:			
itemA	itemB	0.45817	itemC	itemD	0.28385
itemA	itemC	0.13618	itemC	itemE	1
itemA	itemD	0.72197	itemC	itemF	1
itemA	itemE	1	itemC	itemG	1
itemA	itemF	1	itemD	itemE	0.08126
itemA	itemG	1	itemD	itemF	0.73001
itemB	itemC	0.70859	itemD	itemG	0.08126
itemB	itemD	0.28385	itemE	itemF	1
itemB	itemE	1	itemE	itemG	1
itemB	itemF	0.28385	itemF	itemG	0.46425
itemB	itemG	0.45717			

As we can see, there are no significantly dependant pairs:

4) Analyze your results.

There is NO sufficient evidence to claim that the purchasing of one of the items (A-G) predict purchasing other items.

Data Set 2 (n=1000).

Q1. Do traits X,Y,Z predict the purchasing habits of customers regarding items A-G?

- 1) For each response identify the appropriate test Wilcox(paired=FALSE) for combinations of trait-item.
- 2) Evaluate any statistical assumptions for the test.
 - a) *independent samples* data is independent as there is no evidence that for each item 'yes' category affects 'no' category.
 - b) 2 categories for each item we have two categories 1 and 0, or yes and no.
 - c) 1 time interval we should take trait as an interval/ratio, as traits might (and should) depend on each other. And we use 1 trait for each test.
- 3) Present your data and results using descriptive statistics and tables as well as graphs if appropriate.

a) Data:

_	traitX	traitY	traitZ	itemA	itemB	itemC	itemD	itemE	itemF	itemG
median	50.0000000	50.0000000	50.0000000	1.00000000	0.00000000	0.00000000	0.0000000	1.00000000	0.00000000	0.00000000
mean	49.9630000	50.0770000	49.6660000	0.50300000	0.48400000	0.49000000	0.4860000	0.51300000	0.47700000	0.49800000
SE.mean	0.2322963	0.2278618	0.2185731	0.01581902	0.01581120	0.01581614	0.0158131	0.01581395	0.01580255	0.01581917
Cl.mean.0.95	0.4558448	0.4471426	0.4289151	0.03104231	0.03102697	0.03103666	0.0310307	0.03103237	0.03101001	0.03104262
var	53.9615926	51.9209920	47.7742182	0.25024124	0.24999399	0.25015015	0.2500541	0.25008108	0.24972072	0.25024625
std.dev	7.3458555	7.2056222	6.9118896	0.50024118	0.49999399	0.50015013	0.5000541	0.50008107	0.49972064	0.50024619
coef.var	0.1470259	0.1438909	0.1391674	0.99451527	1.03304544	1.02071455	1.0289178	0.97481691	1.04763237	1.00451041

Results:

Trait:	Item:	p-value:						
traitX	itemA	0.3543725	traitY	itemA	0.4454349	traitZ	itemA	2.777927e-05
traitX	itemB	0.632612	traitY	itemB	1.488059e-07	traitZ	itemB	0.9458497
traitX	itemC	2.093716e-09	traitY	itemC	0.2990253	traitZ	itemC	0.4526224
traitX	itemD	0.8428057	traitY	itemD	4.656348e-10	traitZ	itemD	2.349502e-12
traitX	itemE	7.700772e-14	traitY	itemE	2.964637e-07	traitZ	itemE	0.08283914
traitX	itemF	3.204237e-10	traitY	itemF	0.003676207	traitZ	itemF	1.037367e-08
traitX	itemG	1.658687e-08	traitY	itemG	8.69643e-12	traitZ	itemG	2.537681e-07

As we can see, next pairs are significantly dependant:

Trait:	Item:	p-value:						
traitX	itemC	2.093716e-09	traitY	itemB	1.488059e-07	traitZ	itemA	2.777927e-05
traitX	itemE	7.700772e-14	traitY	itemD	4.656348e-10	traitZ	itemD	2.349502e-12
traitX	itemF	3.204237e-10	traitY	itemE	2.964637e-07	traitZ	itemF	1.037367e-08
traitX	itemG	1.658687e-08	traitY	itemF	0.003676207	traitZ	itemG	2.537681e-07
			traitY	itemG	8.69643e-12			

4) Analyze your results.

There is sufficient evidence to claim that

- trait X can predict the purchasing habits of customers regarding items C, E, F, G,
- trait Y can predict the purchasing habits of customers regarding items B, D, E, F, G,
- trait Z can predict the purchasing habits of customers regarding items A, D, F, G,

Q2: Does the purchasing of one of the items (A-G) predict purchasing other items?

- For each response identify the appropriate test
 Chi square test for combinations of item item.
- 2) Evaluate any statistical assumptions for the test.
 - a) *independant samples* data is independant as there is no evidence that measuring traits would change measurements for customer buying habits.
- b) 2 variables of categorical data we have item and item, 2 binary variables (yes-no category).
- c) no expected frequencies less than 5 minimum expected frequency for all of the combinations is >200 (>>5).
- 3) Present your data and results using descriptive statistics and tables as well as graphs if appropriate.
 - Data (first rows)

	•		•			
itemA	itemB	itemC	itemD	itemE	itemF	itemG
1	0	0	0	1	1	1
1	1	0	0	1	1	0
1	1	1	1	1	0	0
0	1	0	1	0	0	0
1	0	0	0	1	0	0
0	0	0	1	1	0	0
1	0	1	1	1	1	1
0	0	1	0	1	1	1
1	0	1	1	1	1	1
0	0	0	0	0	0	0
0	0	0	0	0	0	1

Results:

Item:	Item:	p-value:			
itemA	itemB	0.0189	itemC	itemD	0.19936
itemA	itemC	0.66065	itemC	itemE	0.01838
itemA	itemD	0.03632	itemC	itemF	0.12018
itemA	itemE	0.16545	itemC	itemG	0.31268
itemA	itemF	0.52095	itemD	itemE	0.83139
itemA	itemG	0.03681	itemD	itemF	0.00091
itemB	itemC	0.24626	itemD	itemG	0.00365
itemB	itemD	0.82209	itemE	itemF	0.00698
itemB	itemE	0.82881	itemE	itemG	0.06606
itemB	itemF	0.3029	itemF	itemG	0.01945
itemB	itemG	0.61554			

As we can see, there next pairs are significantly dependant:

Item:	Item:	p-value:
itemA	itemB	0.01890487
itemA	itemD	0.03632468
itemA	itemG	0.03680537

Contingency tables:

-	item			item[=72	itemG		
itemA	0	1	itemA	0	1	itemA	0	1
0	275		0	2/2	225		266	
1	241	262	1	242	261	1	236	267

4) Analyze your results.

There is sufficient evidence to claim that

• the purchasing of *item A* predict purchasing *items B, D, G (and other way dependency also)*.