Heuristic Analysis

Air Cargo Results Comparison Matrix

The table below summarizes the results obtained from running 6 types of searches: 3 non-heuristic, and 3 heuristic approaches for each of 3 air cargo problems: P1, P2, and P3

Problem #	Search Type	Expansion	Goal Tests	New Nodes	Plan Length	Time (s)
P1	sbreadth_first_search	43	56	180	<mark>6</mark>	0.028
	depth_first_graph_search	12	13	48	12	0.007
	uniform_cost_search	55	57	224	6	0.036
	using astar_search with h_1	55	57	224	6	0.035
	h_ignore_preconditions	41	43	170	6	0.027
	h_pg_levelsum	11	13	50	6	1.055
P2	breadth_first_search	3343	4609	30509	9	12.95
	depth_first_graph_search	1669	1670	14863	1444	12.35
	uniform_cost_search	4853	4855	44041	9	11.88
	using astar_search with h_1	4853	4855	44041	9	12.10
	h_ignore_preconditions	1450	1452	13303	9	4.016
	h_pg_levelsum	86	88	841	9	184.48
P3	breadth_first_search	13601	16987	106167	12	91.16
	depth_first_graph_search	1292	1293	5744	875	3.68
	uniform_cost_search	17004	17006	132060	12	48.37
	using astar_search with h_1	17004	17006	132060	12	<mark>45.79</mark>
	h_ignore_preconditions	6550	6552	52021	13	18.23
	h_pg_levelsum	381	383	2565	12	701.63

The optimal solutions in terms of Plan Length & Time Taken are highlighted in yellow.

In terms of path length & time taken, **Breadth First Search (BFS)** and **Uniform Cost Search** (Weighted BFS/Dijkstra's) performed better. BFS performs faster, uses less memory, and is guaranteed to find the shortest path and hence it is the most optimal solution and recommended search strategy. **Depth First Graph Search (DFS)** on the other hand is the fastest, and uses the least amount of memory, but doesn't find the optimal solution as it keeps on probing deeper into the tree resulting in larger path lengths (from above table).

Non-heuristic searches (BFS) performed better with simple problems, such as P1 and P2, while heuristic approach (A* Search) performed better when the problem space was large indicating that heuristic search scales much better for complicated problems (real life problems).

Reference:

• Stuart J. Russel, Peter Norvig (2010), Artificial Intelligence: A Modern Approach (3rd edition)