Теория Вероятностей и Статистика <u>Асимптоти</u>ческие доверительные интервалы

Потанин Богдан Станиславович

доцент, научный сотрудник, кандидат экономических наук

2023-2024

Мотивация

• Для построения доверительных интервалов мы брали за основу некоторые статистики.

- Для построения доверительных интервалов мы брали за основу некоторые статистики.
- Зачастую, найти распределение этих статистик может оказаться весьма затруднительным.

- Для построения доверительных интервалов мы брали за основу некоторые статистики.
- Зачастую, найти распределение этих статистик может оказаться весьма затруднительным.
- Однако, асимптотическое распределение этих статистик может иметь достаточно простой вид.

- Для построения доверительных интервалов мы брали за основу некоторые статистики.
- Зачастую, найти распределение этих статистик может оказаться весьма затруднительным.
- Однако, асимптотическое распределение этих статистик может иметь достаточно простой вид.
- Рассмотрим асимптотические доверительные интервалы, то есть построенные с помощью асимптотического распределения статистик.

- Для построения доверительных интервалов мы брали за основу некоторые статистики.
- Зачастую, найти распределение этих статистик может оказаться весьма затруднительным.
- Однако, асимптотическое распределение этих статистик может иметь достаточно простой вид.
- Рассмотрим асимптотические доверительные интервалы, то есть построенные с помощью асимптотического распределения статистик.
- Применение асимптотических доверительных интервалов, как правило, требует выборок больших объемов $n \geq 100$.

Математическое ожидание

• Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения с конечными математическим ожиданием $E(X_1)=\mu$ и дисперсией $Var(X_1)=\sigma^2$.

Математическое ожидание

- Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения с конечными математическим ожиданием $E(X_1)=\mu$ и дисперсией $Var(X_1)=\sigma^2$.
- Применяя ЦПТ, получаем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\stackrel{d}{\longrightarrow}\mathcal{N}\left(0,1\right)$$

Математическое ожидание

- Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения с конечными математическим ожиданием $E(X_1)=\mu$ и дисперсией $Var(X_1)=\sigma^2$.
- Применяя ЦПТ, получаем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\overset{d}{\longrightarrow}\mathcal{N}\left(0,1\right)$$

• Поскольку $\hat{\sigma} \xrightarrow{p} \sigma$, то $\sigma/\hat{\sigma} \xrightarrow{p} 1$, а значит, используя теорему Слуцкого, имеем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\frac{\sigma}{\hat{\sigma}_{n}}\stackrel{d}{\to}\mathcal{N}\left(0,1\right)\times1\implies\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\hat{\sigma}_{n}}\stackrel{d}{\to}\mathcal{N}\left(0,1\right)$$

Математическое ожидание

- Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения с конечными математическим ожиданием $E(X_1)=\mu$ и дисперсией $Var(X_1)=\sigma^2$.
- Применяя ЦПТ, получаем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\overset{d}{\longrightarrow}\mathcal{N}\left(0,1\right)$$

• Поскольку $\hat{\sigma} \xrightarrow{p} \sigma$, то $\sigma/\hat{\sigma} \xrightarrow{p} 1$, а значит, используя теорему Слуцкого, имеем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\frac{\sigma}{\hat{\sigma}_{n}}\stackrel{d}{\to}\mathcal{N}\left(0,1\right)\times1\implies\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\hat{\sigma}_{n}}\stackrel{d}{\to}\mathcal{N}\left(0,1\right)$$

• Используя асимптотическое распределение соответствующей статистики получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для μ :

$$\left[\overline{X}_n - z_{1-\gamma/2} \sqrt{\frac{\hat{\sigma}_n^2}{n}}, \overline{X}_n + z_{1-\gamma/2} \sqrt{\frac{\hat{\sigma}_n^2}{n}}\right]$$

Математическое ожидание

- Рассмотрим выборку $X = (X_1, ..., X_n)$ из распределения с конечными математическим ожиданием $E(X_1) = \mu$ и дисперсией $Var(X_1) = \sigma^2$.
- Применяя ЦПТ, получаем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\overset{d}{\longrightarrow}\mathcal{N}\left(0,1\right)$$

• Поскольку $\hat{\sigma} \xrightarrow{p} \sigma$, то $\sigma/\hat{\sigma} \xrightarrow{p} 1$, а значит, используя теорему Слуцкого, имеем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\frac{\sigma}{\hat{\sigma}_{n}}\stackrel{d}{\to}\mathcal{N}\left(0,1\right)\times1\implies\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\hat{\sigma}_{n}}\stackrel{d}{\to}\mathcal{N}\left(0,1\right)$$

• Используя асимптотическое распределение соответствующей статистики получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для μ :

$$\left[\overline{X}_n - z_{1-\gamma/2} \sqrt{\frac{\hat{\sigma}_n^2}{n}}, \overline{X}_n + z_{1-\gamma/2} \sqrt{\frac{\hat{\sigma}_n^2}{n}}\right]$$

Пример: имеется выборка объемом n=100 наблюдений. Были посчитаны выборочное среднее $\overline{x}_{100}=2$ и исправленная выборочная дисперсия $\hat{\sigma}_{100}^2=25$. Найдем реализацию асимптотического 95%-го доверительного интервала для математического ожидания наблюдения.

Математическое ожидание

- Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения с конечными математическим ожиданием $E(X_1)=\mu$ и дисперсией $Var(X_1)=\sigma^2$.
- Применяя ЦПТ, получаем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\overset{d}{\longrightarrow}\mathcal{N}\left(0,1\right)$$

• Поскольку $\hat{\sigma} \xrightarrow{p} \sigma$, то $\sigma/\hat{\sigma} \xrightarrow{p} 1$, а значит, используя теорему Слуцкого, имеем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\frac{\sigma}{\hat{\sigma}_{n}}\stackrel{d}{\to}\mathcal{N}\left(0,1\right)\times1\implies\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\hat{\sigma}_{n}}\stackrel{d}{\to}\mathcal{N}\left(0,1\right)$$

• Используя асимптотическое распределение соответствующей статистики получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для μ :

$$\left[\overline{X}_n - z_{1-\gamma/2} \sqrt{\frac{\hat{\sigma}_n^2}{n}}, \overline{X}_n + z_{1-\gamma/2} \sqrt{\frac{\hat{\sigma}_n^2}{n}}\right]$$

Пример: имеется выборка объемом n=100 наблюдений. Были посчитаны выборочное среднее $\overline{x}_{100}=2$ и исправленная выборочная дисперсия $\hat{\sigma}_{100}^2=25$. Найдем реализацию асимптотического 95%-го доверительного интервала для математического ожидания наблюдения. Поскольку $z_{0.975}\approx 1.96$, то:

Математическое ожидание

- Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения с конечными математическим ожиданием $E(X_1)=\mu$ и дисперсией $Var(X_1)=\sigma^2$.
- Применяя ЦПТ, получаем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\overset{d}{\longrightarrow}\mathcal{N}\left(0,1\right)$$

• Поскольку $\hat{\sigma} \xrightarrow{p} \sigma$, то $\sigma/\hat{\sigma} \xrightarrow{p} 1$, а значит, используя теорему Слуцкого, имеем:

$$\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\sigma}\frac{\sigma}{\hat{\sigma}_{n}}\stackrel{d}{\to}\mathcal{N}\left(0,1\right)\times1\implies\frac{\sqrt{n}\left(\overline{X}_{n}-\mu\right)}{\hat{\sigma}_{n}}\stackrel{d}{\to}\mathcal{N}\left(0,1\right)$$

• Используя асимптотическое распределение соответствующей статистики получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для μ :

$$\left[\overline{X}_n - z_{1-\gamma/2} \sqrt{\frac{\hat{\sigma}_n^2}{n}}, \overline{X}_n + z_{1-\gamma/2} \sqrt{\frac{\hat{\sigma}_n^2}{n}}\right]$$

Пример: имеется выборка объемом n=100 наблюдений. Были посчитаны выборочное среднее $\overline{x}_{100}=2$ и исправленная выборочная дисперсия $\hat{\sigma}_{100}^2=25$. Найдем реализацию асимптотического 95%-го доверительного интервала для математического ожидания наблюдения. Поскольку $z_{0.975}\approx 1.96$, то:

$$\left[2 - 1.96\sqrt{25/100}, 2 + 1.96\sqrt{25/100}\right] = [1.02, 2.98]$$

Разница математических ожиданий

• Рассмотрим независимые выборки $X = (X_1, ..., X_n)$ и $Y = (Y_1, ..., Y_m)$ из распределений с конечными математическими ожиданиями μ_X , μ_Y и дисперсиями σ_X^2, σ_Y^2 .

Разница математических ожиданий

- Рассмотрим независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений с конечными математическими ожиданиями μ_X , μ_Y и дисперсиями σ_X^2,σ_Y^2 .
- Действуя по аналогии с предыдущим случаем получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для $\mu_X \mu_Y$:

$$\left[\overline{X}_n - \overline{Y}_m - z_{1-\gamma/2}\sqrt{\frac{\hat{\sigma}_X^2}{n} + \frac{\hat{\sigma}_Y^2}{m}}, \overline{X}_n - \overline{Y}_m + z_{1-\gamma/2}\sqrt{\frac{\hat{\sigma}_X^2}{n} + \frac{\hat{\sigma}_Y^2}{m}}\right]$$

Разница математических ожиданий

- Рассмотрим независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений с конечными математическими ожиданиями μ_X , μ_Y и дисперсиями σ_X^2,σ_Y^2 .
- Действуя по аналогии с предыдущим случаем получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для $\mu_X \mu_Y$:

$$\left[\overline{X}_n - \overline{Y}_m - z_{1-\gamma/2}\sqrt{\frac{\hat{\sigma}_X^2}{n} + \frac{\hat{\sigma}_Y^2}{m}}, \overline{X}_n - \overline{Y}_m + z_{1-\gamma/2}\sqrt{\frac{\hat{\sigma}_X^2}{n} + \frac{\hat{\sigma}_Y^2}{m}}\right]$$

Пример: имеются две независимые выборки: одна из равномерного распределения, а другая – из некоторого распределения с конечными математическими ожиданием и дисперсией. Объемы этих выборок равняются $n_X=100$ и $n_Y=225$ соответственно. Кроме того, были посчитаны выборочные средние $\overline{x}=5$ и $\overline{y}=3$, а также исправленные выборочные дисперсии $\hat{\sigma}_X^2=16$ и $\hat{\sigma}_Y^2=25$. Найдем реализацию 99%-го доверительного интервала для разницы математических ожиданий.

Разница математических ожиданий

- Рассмотрим независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений с конечными математическими ожиданиями μ_X , μ_Y и дисперсиями σ_X^2,σ_Y^2 .
- Действуя по аналогии с предыдущим случаем получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для $\mu_X \mu_Y$:

$$\left[\overline{X}_n - \overline{Y}_m - z_{1-\gamma/2}\sqrt{\frac{\hat{\sigma}_X^2}{n} + \frac{\hat{\sigma}_Y^2}{m}}, \overline{X}_n - \overline{Y}_m + z_{1-\gamma/2}\sqrt{\frac{\hat{\sigma}_X^2}{n} + \frac{\hat{\sigma}_Y^2}{m}}\right]$$

Пример: имеются две независимые выборки: одна из равномерного распределения, а другая – из некоторого распределения с конечными математическими ожиданием и дисперсией. Объемы этих выборок равняются $n_X=100$ и $n_Y=225$ соответственно. Кроме того, были посчитаны выборочные средние $\overline{x}=5$ и $\overline{y}=3$, а также исправленные выборочные дисперсии $\hat{\sigma}_X^2=16$ и $\hat{\sigma}_Y^2=25$. Найдем реализацию 99%-го доверительного интервала для разницы математических ожиданий. Поскольку $z_{0.995}\approx 2.58$, то искомая реализация:

Разница математических ожиданий

- Рассмотрим независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений с конечными математическими ожиданиями μ_X , μ_Y и дисперсиями σ_X^2,σ_Y^2 .
- Действуя по аналогии с предыдущим случаем получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для $\mu_X \mu_Y$:

$$\left[\overline{X}_n - \overline{Y}_m - z_{1-\gamma/2} \sqrt{\frac{\hat{\sigma}_X^2}{n} + \frac{\hat{\sigma}_Y^2}{m}}, \overline{X}_n - \overline{Y}_m + z_{1-\gamma/2} \sqrt{\frac{\hat{\sigma}_X^2}{n} + \frac{\hat{\sigma}_Y^2}{m}}\right]$$

Пример: имеются две независимые выборки: одна из равномерного распределения, а другая – из некоторого распределения с конечными математическими ожиданием и дисперсией. Объемы этих выборок равняются $n_X=100$ и $n_Y=225$ соответственно. Кроме того, были посчитаны выборочные средние $\overline{x}=5$ и $\overline{y}=3$, а также исправленные выборочные дисперсии $\hat{\sigma}_X^2=16$ и $\hat{\sigma}_Y^2=25$. Найдем реализацию 99%-го доверительного интервала для разницы математических ожиданий. Поскольку $z_{0.995}\approx 2.58$, то искомая реализация:

$$\left[5-3-2.58\sqrt{16/100+25/225},5-3+2.58\sqrt{16/100+25/225}\right]\approx \left[0.66,3.34\right]$$

ullet Имеется ММП оценка $\hat{ heta}_n$ параметр heta, а также определена информация Фишера i(heta).

- Имеется ММП оценка $\hat{\theta}_n$ параметр θ , а также определена информация Фишера $i(\theta)$.
- Вследствие асимптотической нормальности ММП оценок и теоремы Слуцкого получаем:

$$\sqrt{\textit{ni}(\hat{\theta}_{\textit{n}})} \left(\hat{\theta}_{\textit{n}} - \theta \right) \xrightarrow{\textit{d}} \mathcal{N}(0,1)$$

- Имеется ММП оценка $\hat{\theta}_n$ параметр θ , а также определена информация Фишера $i(\theta)$.
- Вследствие асимптотической нормальности ММП оценок и теоремы Слуцкого получаем:

$$\sqrt{\textit{ni}(\hat{\theta}_{\textit{n}})} \left(\hat{\theta}_{\textit{n}} - \theta \right) \xrightarrow{\textit{d}} \mathcal{N}(0,1)$$

• Действуя стандартным образом получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для θ :

$$\left[\hat{\theta}_n - z_{1-\gamma/2}\sqrt{\frac{1}{ni(\hat{\theta}_n)}}, \hat{\theta}_n + z_{1-\gamma/2}\sqrt{\frac{1}{ni(\hat{\theta}_n)}}\right]$$

- Имеется ММП оценка $\hat{\theta}_n$ параметр θ , а также определена информация Фишера $i(\theta)$.
- Вследствие асимптотической нормальности ММП оценок и теоремы Слуцкого получаем:

$$\sqrt{\textit{ni}(\hat{\theta}_{\textit{n}})} \left(\hat{\theta}_{\textit{n}} - \theta \right) \xrightarrow{\textit{d}} \mathcal{N}(0,1)$$

• Действуя стандартным образом получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для θ :

$$\left[\hat{\theta}_n - z_{1-\gamma/2}\sqrt{\frac{1}{ni(\hat{\theta}_n)}}, \hat{\theta}_n + z_{1-\gamma/2}\sqrt{\frac{1}{ni(\hat{\theta}_n)}}\right]$$

Пример: имеется выборка объемом в n=100 наблюдений из экспоненциального распределения и с реализацией выборочного среднего $\overline{x}_{100}=0.2$. Построим 99%-й доверительный интервал для λ .

- Имеется ММП оценка $\hat{\theta}_n$ параметр θ , а также определена информация Фишера $i(\theta)$.
- Вследствие асимптотической нормальности ММП оценок и теоремы Слуцкого получаем:

$$\sqrt{\textit{ni}(\hat{\theta}_{\textit{n}})} \left(\hat{\theta}_{\textit{n}} - \theta \right) \xrightarrow{\textit{d}} \mathcal{N}(0,1)$$

• Действуя стандартным образом получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для θ :

$$\left[\hat{\theta}_n - z_{1-\gamma/2}\sqrt{\frac{1}{ni(\hat{\theta}_n)}}, \hat{\theta}_n + z_{1-\gamma/2}\sqrt{\frac{1}{ni(\hat{\theta}_n)}}\right]$$

Пример: имеется выборка объемом в n=100 наблюдений из экспоненциального распределения и с реализацией выборочного среднего $\overline{x}_{100}=0.2$. Построим 99%-й доверительный интервал для λ . Поскольку $\hat{\lambda}_{100}(x)=1/\overline{x}_{100}=1/0.2=5$, $i(\lambda)=1/\lambda^2$, $i(\hat{\lambda}_{100}(x))=1/5^2=0.04$, $z_{0.995}\approx 2.58$, то искомая реализация имеет вид:

- Имеется ММП оценка $\hat{\theta}_n$ параметр θ , а также определена информация Фишера $i(\theta)$.
- Вследствие асимптотической нормальности ММП оценок и теоремы Слуцкого получаем:

$$\sqrt{\textit{ni}(\hat{\theta}_{\textit{n}})} \left(\hat{\theta}_{\textit{n}} - \theta \right) \xrightarrow{\textit{d}} \mathcal{N}(0,1)$$

• Действуя стандартным образом получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для θ :

$$\left[\hat{\theta}_n - z_{1-\gamma/2}\sqrt{\frac{1}{ni(\hat{\theta}_n)}}, \hat{\theta}_n + z_{1-\gamma/2}\sqrt{\frac{1}{ni(\hat{\theta}_n)}}\right]$$

Пример: имеется выборка объемом в n=100 наблюдений из экспоненциального распределения и с реализацией выборочного среднего $\overline{x}_{100}=0.2$. Построим 99%-й доверительный интервал для λ . Поскольку $\hat{\lambda}_{100}(x)=1/\overline{x}_{100}=1/0.2=5$, $i(\lambda)=1/\lambda^2$, $i(\hat{\lambda}_{100}(x))=1/5^2=0.04$, $z_{0.995}\approx 2.58$, то искомая реализация имеет вид:

$$\left\lceil 5 - 2.58\sqrt{1/\left(100 \times 0.04\right)}, 5 + 2.58\sqrt{1/\left(100 \times 0.04\right)} \right\rceil = \left[3.71, 6.29\right]$$

• Имеется ММП оценка $\hat{\theta}_n$ параметр θ , а также определена информация Фишера $i(\theta)$.

- ullet Имеется ММП оценка $\hat{ heta}_n$ параметр heta, а также определена информация Фишера i(heta).
- ullet При монотонной дифференцируемой функции g(.), применяя дельта метод, получаем:

$$\sqrt{\text{ni}(\hat{\theta}_n)/g'(\hat{\theta}_n)^2} \left(g(\hat{\theta}_n) - g(\theta)\right) \xrightarrow{d} \mathcal{N}(0,1)$$

- ullet Имеется ММП оценка $\hat{ heta}_n$ параметр heta, а также определена информация Фишера i(heta).
- ullet При монотонной дифференцируемой функции g(.), применяя дельта метод, получаем:

$$\sqrt{\textit{ni}(\hat{\theta}_{\textit{n}})/\textit{g}'(\hat{\theta}_{\textit{n}})^2}\left(\textit{g}(\hat{\theta}_{\textit{n}})-\textit{g}(\theta)\right) \xrightarrow{\textit{d}} \mathcal{N}(0,1)$$

• Получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для $g(\theta)$:

$$\left[g(\hat{\theta}_n)-z_{1-\gamma/2}\sqrt{\frac{g'(\hat{\theta}_n)^2}{ni(\hat{\theta}_n)}},g(\hat{\theta}_n)+z_{1-\gamma/2}\sqrt{\frac{g'(\hat{\theta}_n)^2}{ni(\hat{\theta}_n)}}\right]$$

- ullet Имеется ММП оценка $\hat{ heta}_n$ параметр heta, а также определена информация Фишера i(heta).
- При монотонной дифференцируемой функции g(.), применяя дельта метод, получаем:

$$\sqrt{ extit{ni}(\hat{ heta}_n)/ extit{g}'(\hat{ heta}_n)^2} \left(extit{g}(\hat{ heta}_n) - extit{g}(heta)
ight) \overset{d}{
ightarrow} \mathcal{N}(0,1)$$

• Получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для $g(\theta)$:

$$\left[g(\hat{\theta}_n) - z_{1-\gamma/2}\sqrt{\frac{g'(\hat{\theta}_n)^2}{ni(\hat{\theta}_n)}}, g(\hat{\theta}_n) + z_{1-\gamma/2}\sqrt{\frac{g'(\hat{\theta}_n)^2}{ni(\hat{\theta}_n)}}\right]$$

Пример: имеется выборка объемом в n=100 наблюдений из экспоненциального распределения и с реализацией выборочного среднего $\overline{x}_{100}=0.2$. Построим 99%-й доверительный интервал для дисперсии $Var(X_1)=1/\lambda^2$.

- ullet Имеется ММП оценка $\hat{ heta}_n$ параметр heta, а также определена информация Фишера i(heta).
- ullet При монотонной дифференцируемой функции g(.), применяя дельта метод, получаем:

$$\sqrt{ extit{ni}(\hat{ heta}_n)/ extit{g}'(\hat{ heta}_n)^2} \left(extit{g}(\hat{ heta}_n) - extit{g}(heta)
ight) \overset{d}{
ightarrow} \mathcal{N}(0,1)$$

• Получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для $g(\theta)$:

$$\left[g(\hat{\theta}_n)-z_{1-\gamma/2}\sqrt{\frac{g'(\hat{\theta}_n)^2}{ni(\hat{\theta}_n)}},g(\hat{\theta}_n)+z_{1-\gamma/2}\sqrt{\frac{g'(\hat{\theta}_n)^2}{ni(\hat{\theta}_n)}}\right]$$

Пример: имеется выборка объемом в n=100 наблюдений из экспоненциального распределения и с реализацией выборочного среднего $\overline{x}_{100}=0.2$. Построим 99%-й доверительный интервал для дисперсии $Var(X_1)=1/\lambda^2$. Поскольку $g(\lambda)=Var(X_1)=1/\lambda^2$, $\hat{\lambda}_{100}(x)=5$, $i(\hat{\lambda}_{100}(x))=0.04$, $g(\hat{\lambda}_{100})=1/5^2=0.04$, $g'(\lambda)=-2/\lambda^3$, $g'(\hat{\lambda}_{100}(x))=-2/5^3=-0.016$ и $z_{0.995}\approx 2.58$, то искомая реализация имеет вид:

- ullet Имеется ММП оценка $\hat{ heta}_n$ параметр heta, а также определена информация Фишера i(heta).
- При монотонной дифференцируемой функции g(.), применяя дельта метод, получаем:

$$\sqrt{\text{ni}(\hat{\theta}_n)/g'(\hat{\theta}_n)^2} \left(g(\hat{\theta}_n) - g(\theta)\right) \xrightarrow{d} \mathcal{N}(0,1)$$

• Получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для $g(\theta)$:

$$\left[g(\hat{\theta}_n)-z_{1-\gamma/2}\sqrt{\frac{g'(\hat{\theta}_n)^2}{ni(\hat{\theta}_n)}},g(\hat{\theta}_n)+z_{1-\gamma/2}\sqrt{\frac{g'(\hat{\theta}_n)^2}{ni(\hat{\theta}_n)}}\right]$$

Пример: имеется выборка объемом в n=100 наблюдений из экспоненциального распределения и с реализацией выборочного среднего $\overline{x}_{100}=0.2$. Построим 99%-й доверительный интервал для дисперсии $Var(X_1)=1/\lambda^2$. Поскольку $g(\lambda)=Var(X_1)=1/\lambda^2$, $\hat{\lambda}_{100}(x)=5$, $i(\hat{\lambda}_{100}(x))=0.04$, $g(\hat{\lambda}_{100})=1/5^2=0.04$, $g'(\lambda)=-2/\lambda^3$, $g'(\hat{\lambda}_{100}(x))=-2/5^3=-0.016$ и $z_{0.995}\approx 2.58$, то искомая реализация имеет вид:

$$\left\lceil 0.04 - 2.58 \sqrt{\frac{(-0.016)^2}{100 \times 0.04}}, 0.04 + 2.58 \sqrt{\frac{(-0.016)^2}{100 \times 0.04}} \right\rceil \approx \left[0.019, 0.061 \right]$$

Дополнительный пример

Каждый день кот ученый мяукает до тех пор, пока его не покормят. Вероятность того, что кота покормят после очередного 'мяу', не зависит от числа изданных ранее 'мяу' и всегда равняется $p \in (0,1)$. Ученый кот собрал выборку объема n=2500 из количества мяуканий, которые ему пришлось произвести прежде, чем его покормили. Реализации выборочного среднего и исправленной выборочной дисперсии оказались равны 1.25 и 0.3 соответственно. Помогите ученому коту найти реализацию 90%-го асимптотического доверительного интервала:

Дополнительный пример

Каждый день кот ученый мяукает до тех пор, пока его не покормят. Вероятность того, что кота покормят после очередного 'мяу', не зависит от числа изданных ранее 'мяу' и всегда равняется $p \in (0,1)$. Ученый кот собрал выборку объема n=2500 из количества мяуканий, которые ему пришлось произвести прежде, чем его покормили. Реализации выборочного среднего и исправленной выборочной дисперсии оказались равны 1.25 и 0.3 соответственно. Помогите ученому коту найти реализацию 90%-го асимптотического доверительного интервала:

- Математического ожидания числа мяуканий, предшествующих получению питания.
- Вероятности того, что после очередного мяуканья ученый кот получит питание.
- Вероятности того, что кота покормят раньше, чем он успеет мяукнуть трижды.

Дополнительный пример

Каждый день кот ученый мяукает до тех пор, пока его не покормят. Вероятность того, что кота покормят после очередного 'мяу', не зависит от числа изданных ранее 'мяу' и всегда равняется $p \in (0,1)$. Ученый кот собрал выборку объема n=2500 из количества мяуканий, которые ему пришлось произвести прежде, чем его покормили. Реализации выборочного среднего и исправленной выборочной дисперсии оказались равны 1.25 и 0.3 соответственно. Помогите ученому коту найти реализацию 90%-го асимптотического доверительного интервала:

- Математического ожидания числа мяуканий, предшествующих получению питания.
- Вероятности того, что после очередного мяуканья ученый кот получит питание.
- Вероятности того, что кота покормят раньше, чем он успеет мяукнуть трижды.

Решение:

$$\bullet \ \, \left[1.25 - 1.645\sqrt{0.3/2500}, 1.25 + 1.645\sqrt{0.3/2500} \right] \approx [1.23, 1.27]$$

Дополнительный пример

Каждый день кот ученый мяукает до тех пор, пока его не покормят. Вероятность того, что кота покормят после очередного 'мяу', не зависит от числа изданных ранее 'мяу' и всегда равняется $p \in (0,1)$. Ученый кот собрал выборку объема n=2500 из количества мяуканий, которые ему пришлось произвести прежде, чем его покормили. Реализации выборочного среднего и исправленной выборочной дисперсии оказались равны 1.25 и 0.3 соответственно. Помогите ученому коту найти реализацию 90%-го асимптотического доверительного интервала:

- Математического ожидания числа мяуканий, предшествующих получению питания.
- Вероятности того, что после очередного мяуканья ученый кот получит питание.
- Вероятности того, что кота покормят раньше, чем он успеет мяукнуть трижды.

Решение:

- $\bullet \ \, \left[1.25 1.645\sqrt{0.3/2500}, 1.25 + 1.645\sqrt{0.3/2500} \right] \approx [1.23, 1.27]$
- ullet Используя ММП получаем $\hat{
 ho}_n(x)=1/1.25=0.8$ и $i(\hat{
 ho}_n(x))=1/\left((1-0.8)0.8^2
 ight)=7.8125$, откуда:

$$\left[0.8 - 1.645/\sqrt{2500 \times 7.8125}, 0.8 + 1.645/\sqrt{2500 \times 7.8125}\right] = [0.788, 0.812]$$

Дополнительный пример

Каждый день кот ученый мяукает до тех пор, пока его не покормят. Вероятность того, что кота покормят после очередного 'мяу', не зависит от числа изданных ранее 'мяу' и всегда равняется $p \in (0,1)$. Ученый кот собрал выборку объема n=2500 из количества мяуканий, которые ему пришлось произвести прежде, чем его покормили. Реализации выборочного среднего и исправленной выборочной дисперсии оказались равны 1.25 и 0.3 соответственно. Помогите ученому коту найти реализацию 90%-го асимптотического доверительного интервала:

- Математического ожидания числа мяуканий, предшествующих получению питания.
- Вероятности того, что после очередного мяуканья ученый кот получит питание.
- Вероятности того, что кота покормят раньше, чем он успеет мяукнуть трижды.

Решение:

- $\bullet \ \, \left[1.25 1.645\sqrt{0.3/2500}, 1.25 + 1.645\sqrt{0.3/2500} \right] \approx [1.23, 1.27]$
- ullet Используя ММП получаем $\hat{p}_n(x)=1/1.25=0.8$ и $i(\hat{p}_n(x))=1/\left((1-0.8)0.8^2
 ight)=7.8125$, откуда:

$$\left[0.8 - 1.645/\sqrt{2500 \times 7.8125}, 0.8 + 1.645/\sqrt{2500 \times 7.8125}\right] = [0.788, 0.812]$$

• Поскольку $P(X_1 < 3) = 1 - (1 - p)^2$ и $P'(X_1 < 3) = 2(1 - p)$, то:

$$\left[1 - (1 - 0.8)^2 - 1.645 \sqrt{\frac{(2(1 - 0.8))^2}{2500 \times 7.8125}}, 1 - (1 - 0.8)^2 + 1.645 \sqrt{\frac{(2(1 - 0.8))^2}{2500 \times 7.8125}} \right] = [0.955, 0.965]$$

ullet Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения Бернулли с параметром $p\in (0,1).$

- ullet Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения Бернулли с параметром $p\in (0,1).$
- Используя теоремы Муавра–Лапласа и Слуцкого получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для p:

$$\left[\overline{X}_{n}-z_{1-\gamma/2}\sqrt{\overline{X}_{n}\left(1-\overline{X}_{n}\right)},\overline{X}_{n}+z_{1-\gamma/2}\sqrt{\overline{X}_{n}\left(1-\overline{X}_{n}\right)}\right]$$

- ullet Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения Бернулли с параметром $p\in (0,1).$
- Используя теоремы Муавра–Лапласа и Слуцкого получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для p:

$$\left[\overline{X}_{n}-z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1-\overline{X}_{n}\right)}{n}},\overline{X}_{n}+z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1-\overline{X}_{n}\right)}{n}}\right]$$

Пример: по результатам опроса 100 жителей очень большого города оказалось, что половина из них готова поддержать на выборах председателя академии наук кандидатуру ученого кота. Найдем реализацию 95%-го асимптотического доверительного интервала для вероятности того, что случайно выбранный житель проголосует за ученого кота (исходя из 3БЧ она бует приблизительной равняться доле людей, которые за него проголосуют).

- ullet Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения Бернулли с параметром $p\in (0,1).$
- Используя теоремы Муавра–Лапласа и Слуцкого получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для p:

$$\left[\overline{X}_{n}-z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1-\overline{X}_{n}\right)}{n}},\overline{X}_{n}+z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1-\overline{X}_{n}\right)}{n}}\right]$$

Пример: по результатам опроса 100 жителей очень большого города оказалось, что половина из них готова поддержать на выборах председателя академии наук кандидатуру ученого кота. Найдем реализацию 95%-го асимптотического доверительного интервала для вероятности того, что случайно выбранный житель проголосует за ученого кота (исходя из 354 она бует приблизительной равняться доле людей, которые за него проголосуют). Поскольку $\overline{x}_{100} = 50/100 = 0.5$ и $z_{0.975} \approx 1.96$, то:

- ullet Рассмотрим выборку $X=(X_1,...,X_n)$ из распределения Бернулли с параметром $p\in (0,1).$
- Используя теоремы Муавра–Лапласа и Слуцкого получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для p:

$$\left[\overline{X}_{n}-z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1-\overline{X}_{n}\right)}{n}},\overline{X}_{n}+z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1-\overline{X}_{n}\right)}{n}}\right]$$

Пример: по результатам опроса 100 жителей очень большого города оказалось, что половина из них готова поддержать на выборах председателя академии наук кандидатуру ученого кота. Найдем реализацию 95%-го асимптотического доверительного интервала для вероятности того, что случайно выбранный житель проголосует за ученого кота (исходя из 354 она бует приблизительной равняться доле людей, которые за него проголосуют). Поскольку $\overline{x}_{100} = 50/100 = 0.5$ и $z_{0.975} \approx 1.96$, то:

$$\boxed{0.5 - 1.96\sqrt{\frac{0.5(1 - 0.5)}{100}}, 0.5 + 1.96\sqrt{\frac{0.5(1 - 0.5)}{100}}} = [0.402, 0.598]$$

Разница долей

• Рассмотрим независимые выборки $X=(X_1,...,X_n)$ и $Y=(Y_1,...,Y_m)$ из распределений Бернулли с параметрами $p_X\in(0,1)$ и $p_Y\in(0,1)$ соответственно.

Разница долей

- Рассмотрим независимые выборки $X = (X_1, ..., X_n)$ и $Y = (Y_1, ..., Y_m)$ из распределений Бернулли с параметрами $p_X \in (0,1)$ и $p_Y \in (0,1)$ соответственно.
- Используя теоремы Муавра-Лапласа и Слуцкого получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для p_X-p_Y :

$$\left[\overline{X}_{n} - \overline{Y}_{m} - z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1 - \overline{X}_{n}\right)}{n} + \frac{\overline{Y}_{m}\left(1 - \overline{Y}_{m}\right)}{m}}, \overline{X}_{n} - \overline{Y}_{m} + z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1 - \overline{X}_{n}\right)}{n} + \frac{\overline{Y}_{m}\left(1 - \overline{Y}_{m}\right)}{m}}\right]$$

Разница долей

- Рассмотрим независимые выборки $X = (X_1, ..., X_n)$ и $Y = (Y_1, ..., Y_m)$ из распределений Бернулли с параметрами $p_X \in (0,1)$ и $p_Y \in (0,1)$ соответственно.
- Используя теоремы Муавра-Лапласа и Слуцкого получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для p_X-p_Y :

$$\left[\overline{X}_{n} - \overline{Y}_{m} - z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1 - \overline{X}_{n}\right)}{n} + \frac{\overline{Y}_{m}\left(1 - \overline{Y}_{m}\right)}{m}}, \overline{X}_{n} - \overline{Y}_{m} + z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1 - \overline{X}_{n}\right)}{n} + \frac{\overline{Y}_{m}\left(1 - \overline{Y}_{m}\right)}{m}}\right]$$

Пример: ученый кот и Лаврентий независимо друг от друга изобрели лекарство от лени. Ученый кот испытал свое лекарство на 225 добровольцах, а Лаврентий – на 100. Среди добровольцев ученого кота лениться меньше стали 180 испытуемых, а у Лаврентия – 60%. Найдите реализацию 95%-го асимптотического доверительного интервала для разницы в вероятностях успешного действия лекарства ученого кота и Лаврентия.

Разница долей

- Рассмотрим независимые выборки $X = (X_1, ..., X_n)$ и $Y = (Y_1, ..., Y_m)$ из распределений Бернулли с параметрами $p_X \in (0,1)$ и $p_Y \in (0,1)$ соответственно.
- Используя теоремы Муавра-Лапласа и Слуцкого получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для p_X-p_Y :

$$\left[\overline{X}_{n} - \overline{Y}_{m} - z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1 - \overline{X}_{n}\right)}{n} + \frac{\overline{Y}_{m}\left(1 - \overline{Y}_{m}\right)}{m}}, \overline{X}_{n} - \overline{Y}_{m} + z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1 - \overline{X}_{n}\right)}{n} + \frac{\overline{Y}_{m}\left(1 - \overline{Y}_{m}\right)}{m}}\right]$$

Пример: ученый кот и Лаврентий независимо друг от друга изобрели лекарство от лени. Ученый кот испытал свое лекарство на 225 добровольцах, а Лаврентий – на 100. Среди добровольцев ученого кота лениться меньше стали 180 испытуемых, а у Лаврентия – 60%. Найдите реализацию 95%-го асимптотического доверительного интервала для разницы в вероятностях успешного действия лекарства ученого кота и Лаврентия. Обратим внимание, что $\overline{x}_{225} = 180/225 = 0.8$, $\overline{y}_{100} = 0.6$ и $z_{0.975} \approx 1.96$, поэтому:

Разница долей

- Рассмотрим независимые выборки $X = (X_1, ..., X_n)$ и $Y = (Y_1, ..., Y_m)$ из распределений Бернулли с параметрами $p_X \in (0,1)$ и $p_Y \in (0,1)$ соответственно.
- Используя теоремы Муавра-Лапласа и Слуцкого получаем $100(1-\gamma)$ процентный асимптотический доверительный интервал для p_X-p_Y :

$$\left[\overline{X}_{n} - \overline{Y}_{m} - z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1 - \overline{X}_{n}\right)}{n} + \frac{\overline{Y}_{m}\left(1 - \overline{Y}_{m}\right)}{m}}, \overline{X}_{n} - \overline{Y}_{m} + z_{1-\gamma/2}\sqrt{\frac{\overline{X}_{n}\left(1 - \overline{X}_{n}\right)}{n} + \frac{\overline{Y}_{m}\left(1 - \overline{Y}_{m}\right)}{m}}\right]$$

Пример: ученый кот и Лаврентий независимо друг от друга изобрели лекарство от лени. Ученый кот испытал свое лекарство на 225 добровольцах, а Лаврентий – на 100. Среди добровольцев ученого кота лениться меньше стали 180 испытуемых, а у Лаврентия – 60%. Найдите реализацию 95%-го асимптотического доверительного интервала для разницы в вероятностях успешного действия лекарства ученого кота и Лаврентия. Обратим внимание, что $\overline{x}_{225} = 180/225 = 0.8$, $\overline{y}_{100} = 0.6$ и $z_{0.975} \approx 1.96$, поэтому:

$$\left[0.8 - 0.6 - 1.96\sqrt{\frac{0.8(1 - 0.8)}{225} + \frac{0.6(1 - 0.6)}{100}}, 0.8 - 0.6 + 1.96\sqrt{\frac{0.8(1 - 0.8)}{225} + \frac{0.6(1 - 0.6)}{100}}\right] \approx [0.09, 0.31]$$