Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

• Timpul de lucru efectiv este de 3 ore.

A. MECANICĂ Test 7

Se consideră accelerația gravitațională $g = 10 \text{m/s}^2$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Despre energia mecanică a unui corp se poate afirma că este:
- a. o mărime fizică de proces
- b. o mărime fizică de stare
- c. întotdeauna pozitivă
- d. întotdeauna egală cu lucrul mecanic al forței de greutate

(qE)

- 2. Simbolurile unităților de măsură fiind cele utilizate în S.I., unitatea de măsură a accelerației poate fi scrisă sub forma:
- **a.** $J \cdot m^{-1} \cdot kg^{-1}$
- **b.** $N \cdot m^{-1} \cdot kg^{-1}$
- **c.** J·kg⁻¹

(3p)

3. Un stâlp cu masa de o tonă (distribuită uniform) are înăltimea $h=3\,\mathrm{m}$ si se află initial pe sol, în poziție orizontală. Lucrul mecanic minim efectuat pentru a ridica stâlpul în pozitie verticală este:

- **b.** 30 kJ
- c. 1,5 MJ
- **d.** 3.0 MJ (3p)

- **b.** 1,5 m/s
- c. 2 m/s
- **d.** 2,5 m/s

- **5.** Cu ajutorul unui cablu de oțel, de lungime nedeformată $\ell_0 = 6.28 (\cong 2\pi) \text{m}$ și diametru d = 1 cm, se ridică vertical, rectiliniu uniform, un corp de masă $m = 200 \,\mathrm{kg}$. Modulul de elasticitate al oțelului este $E \cong 2 \cdot 10^{11} \text{N/m}^2$. Alungirea cablului are valoarea:
- **a.** 0,2mm
- **b.** 0,4mm
- **c.** 0,8mm
- **d.** 1,0 mm

(3p)

II. Rezolvați următoarea problemă:

(15 puncte)

Două corpuri, A și B, având masele egale $m_A = m_B = 1$ kg sunt legate printr-un fir inextensibil și de masă neglijabilă, trecut peste scripetele ideal S. Inițial sistemul se află în repaus. Asupra corpului A actionează o fortă \vec{F} a cărei direcție formează cu direcția orizontală un unghi $\alpha = 37^{\circ}$ ca în figura alăturată. Valoarea coeficientului de frecare la alunecare dintre corpul A și suprafața orizontală este $\mu = 0.2$. Se consideră $\sin 37^{\circ} = 0.6$.

- b. Determinați accelerația sistemului format din cele două corpuri dacă valoarea fortei este $F = 10 \,\mathrm{N}$.
- c. Determinați valoarea forței de apăsare în axul scripetelui, S, în condițiile punctului b..
- **d.** După un interval de timp $\Delta t = 1$ s din momentul aplicării forței F = 10N firul care leagă cele două corpuri se rupe. Determinati modulul vitezei corpului A după $\Delta t' = 1$ s din momentul ruperii firului.

III. Rezolvaţi următoarea problemă:

(15 puncte)

Un corp este lansat la momentul t = 0 s de-a lungul unui plan înclinat de unghi $\alpha = 30^{\circ}$, către baza planului. În graficul alăturat este reprezentată variatia în timp a vitezei corpului. La momentul t = 4 s corpul ajunge la baza planului înclinat. Cunoscând masa corpului m = 1 kg, determinati:

- b. lucrul mecanic efectuat de forța rezultantă asupra corpului;
- c. lucrul mecanic al greutății;
- d. coeficientul de frecare la alunecare dintre corp si suprafața planului.

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. • Timpul de lucru efectiv este de 3 ore.

B. ELEMENTE DE TERMODINAMICĂ

Test 7

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$. Între parametrii de stare ai gazului ideal într-o stare dată există relatia: $p \cdot V = \nu RT$.

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Unitatea de măsură a raportului dintre energia internă a unui gaz ideal și cantitatea de gaz poate fi scrisă sub forma:
- **a.** $N \cdot m^2 \cdot mol^{-1}$
- **b.** N·m² ·K⁻¹
- **c.** $N \cdot m \cdot mol^{-1}$
- **d.** $N \cdot m \cdot mol$
- 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, masa unei molecule se poate determina utilizând relatia:
- **a.** $m_0 = \mu \cdot N_A$
- **b.** $m_0 = \mu \cdot N_A^{-1}$
- **c.** $m_0 = \mu^{-1} \cdot N_A$
- **d.** $m_0 = m \cdot v^{-1}$
- 3. Pentru o cantitate dată de gaz, considerat ideal, produsul dintre temperatura și densitatea acestuia rămâne constant într-o transformare:
- a. izotermă
- b. izocoră
- c. izobară
- d. adiabatică
- (3p)
- 4. O cantitate dată de gaz, considerat ideal, efectuează transformarea ciclică 1231 reprezentă în coordonate p-V în figura alăturată. Relația corectă dintre lucrurile mecanice schimbate de gaz cu mediul exterior este:

b.
$$L_{12} = -2L_{23}$$

c.
$$L_{12} = L_{31}$$

d.
$$L_{12} = -L_{31}$$

5. O cantitate $v = 1,20 \left(= \frac{10}{8.31} \right)$ mol de gaz ideal își micșorează volumul de patru ori pe parcursul unui proces

în care temperatura se menține egală cu 350 K. Se cunoaște $\ln 4 \cong 1,38$. Căldura schimbată de gaz cu mediul exterior are valoarea de aproximativ:

- **a.** 4830 J
- **b.** 2415 J
- **c.** -2415 J
- **d.** -4830 J
- (3p)

II. Rezolvaţi următoarea problemă:

(15 puncte)

Un cilindru orizontal are lungimea $L = 0.8 \,\mathrm{m}$ și secțiunea $S = 100 \,\mathrm{cm}^2$. Un piston foarte subțire și fără frecări împarte cilindrul în două compartimente A si B de volume egale. În fiecare compartiment se află aceeași masă $m = 3.84 \left(= \frac{32}{8.31} \right)$ g de oxigen ($\mu = 32$ kg/kmol) la presiunea $p_0 = 10^5$ Pa și la aceeași

temperatură. Pistonul este deplasat pe distanța d = 10 cm față de poziția initială, ca în figura alăturată fiind mentinut în această poziție sub acțiunea unei forte. Pe toată durata experimentului temperatura gazului rămâne constantă.

- a. Determinați numărul de molecule de gaz dintr-un compartiment.
- **b.** Determinati temperatura gazului dintr-un compartiment.
- **c.** Calculati valoarea fortei care trebuie să actionează asupra pistonului.
- d. Într-unul dintre compartimente se introduce o masă suplimentară m_1 de oxigen astfel încât după eliberarea pistonului acesta nu se deplasează. Precizați în ce compartiment a fost introdus gazul și determinați masa m_1 .

III. Rezolvati următoarea problemă:

(15 puncte)

O cantitate de gaz ideal efectuează procesul ciclic 1231 reprezentat în coordonate p-V în figura alăturată.

Transformarea BC este adiabatică, legea transformării fiind $p \cdot V^{\gamma} = \text{const.}$, unde

în funcție de parametrii stării inițiale p_1 și V_1 :

- a. valoarea energiei interne a gazului în starea 3;
- b. valoarea lucrului mecanic schimbat de gaz cu mediul exterior în cursul unui ciclu;
- c. valoarea căldurii primit de gaz în cursul unui ciclu;
- d. randamentul unui motor termic care ar funcționa după procesul ciclic 1231.

Examenul de bacalaureat naţional 2020 Proba E, d)

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu. Timpul de lucru efectiv este de 3 ore.

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

Test 7

(3p)

- I. Pentru itemii 1-5 scrieti pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, unitatea de măsură în S.I. a mărimii

fizice care are expresia $\sqrt{\frac{P}{R}}$ este:

a. A (3p)

2. La bornele unui generator electric cu tensiunea electromotoare E și rezistența interioară r a fost conectat accidental un fir cu rezistența neglijabilă. Intensitatea curentului prin generator are expresia:

a. $I_{sc} = \frac{E}{r}$

b. $I_{sc} = \frac{E}{2r}$

c. $I_{sc} = \frac{E^2}{r}$ **d.** $I_{sc} = \frac{E^2}{4r}$

3. Un consumator a cărui rezistență electrică poate fi modificată este conectat la bornele unei surse având tensiunea electromotoare E și rezistența interioară r. Intensitatea curentului electric prin consumator în funcție de tensiunea la bornele acestuia este $I = 2.4 - 0.5 \cdot U$, mărimile fiind exprimate în unități SI.

a. $r = 0.5 \Omega$

b. $r = 1 \Omega$

c. $r = 2 \Omega$

d. $r = 2.4 \Omega$

(3p)

4. Un generator alimentează un circuit electric a cărui rezistentă electrică poate fi modificată. Mărimea fizică ce atinge valoarea maximă când rezistența circuitului exterior este egală cu rezistența interioară a generatorului este:

a. intensitatea curentului electric prin circuit

Rezistența interioară a sursei este egală cu:

b. tensiunea la bornele generatorului

c. randamentul circuitului electric

d. puterea electrică debitată de generator în circuitul exterior

(3p)

5. În figura alăturată este redat graficul dependenței rezistenței electrice a unui rezistor de temperatură. Coeficientul de temperatură al rezistivității este:

a. $2.5 \cdot 10^{-3} \text{ K}^{-1}$

b. $3.0 \cdot 10^{-3} \, \text{K}^{-1}$

c. $4.0 \cdot 10^{-3} \text{ K}^{-1}$

d. $8.0 \cdot 10^{-3} \text{ K}^{-1}$

(3p) (15 puncte)

II. Rezolvaţi următoarea problemă:

În figura alăturată este reprezentată schema electrică a unui circuit. Se cunosc $E = 45 \text{ V}, r = 3 \Omega$. Rezistențele electrice ale rezistorilor din circuit au valorile $R_1 = 57\Omega$, $R_2 = 40\Omega$, $R_3 = 60\Omega$, iar ampermetrul este considerat ideal $(R_A \cong 0 \Omega)$.

Inițial întrerupătorul K este deschis. Determinați:

a. valoarea rezistenței echivalente a circuitului exterior;

b. valoarea intensității curentului electric indicată de ampermetru dacă întrerupătorul

K este deschis;

c. valoarea intensității curentului electric indicată de ampermetru dacă întrerupătorul **K** este închis;

d. intensitatea curentului ce străbate rezistorul R_2 dacă întrerupătorul **K** este închis.

III. Rezolvati următoarea problemă:

(15 puncte)

În figura alăturată este reprezentată schema unui circuit. Ampermetrul este ideal $(R_{_A}\cong 0~\Omega)$, iar rezistoarele sunt identice având rezistența electrică $R = 60\Omega$. Tensiunea electromotoare a generatorului este E = 41V.

Ampermetrul indică valoarea $I_1 = 1$ A când întrerupătorul **k** este deschis. Determinati:

a. valoarea rezistenței interioare a generatorului;

b. energia dezvoltată de circuitul exterior în intervalul de timp $\Delta t = 1 \,\text{min}$ când întrerupătorul k este deschis;

c. puterea totală dezvoltată de generator când întrerupătorul k este închis;

d. randamentul circuitului când întrerupătorul **k** este închis.

Ministerul Educației și Cercetării Centrul Național de Evaluare și Examinare

Examenul de bacalaureat naţional 2020 Proba E, d) **FIZICA**

- Filiera teoretică profilul real, Filiera vocațională profilul militar

 Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ, B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ
- Se acordă 10 puncte din oficiu.

• Timpul de lucru efectiv este de 3 ore.

Test 7 D. OPTICA

Se consideră: viteza luminii în vid $c = 3.10^8 \,\text{m/s}$, constanta Planck $h = 6.6.10^{-34} \,\text{J} \cdot \text{s}$.

- I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect. (15 puncte)
- 1. Două unde luminoase coerente între ele:
- a. au intensitătile egale
- b. au diferența de fază variabilă în timp după o lege sinusoidală
- c. au diferența de fază constantă în timp

d. au frecvente diferite.

- 2. Un obiect real este plasat între o lentilă convergentă și focarul obiect al acesteia. Imaginea obiectului este: a. reală **b.** virtuală c. răsturnată d. micsorată
- 3. Se realizează un sistem optic format din două lentile care au aceeași axă optică principală. Pentru o anumită poziție a obiectului, mărirea liniară transversală dată de prima lentilă este $\beta_1 = 0.5$ iar cea dată de a doua lentilă din sistem este $\beta_2 = -2.0$. Mărirea liniară transversală dată de sistemul optic este egală cu:
- **4.** O rază de lumină monocromatică care traversează un mediu de indice de refracție $n_1 = 1,41 (\cong \sqrt{2})$ pătrunde într-un alt mediu, de indice de refracție $n_2 = 1,73 (\cong \sqrt{3})$. Dacă măsura unghiului de incidență este $i = 60^{\circ}$, unghiul de refracție are măsura de:
- **a.** 90° **b.** 45° **c.** 30° **d.** 0° (3p)
- **5.** Un sistem optic centrat este format din două lentile convergente. Distanța focală a primei lentile (L_1) este $f_1 = 30 \, \text{cm}$. Un fascicul paralel, care intră în sistemul optic prin lentila L_1 , este transformat, la ieșirea din sistem, într-un fascicul paralel având diametrul de 2 ori mai mic. Distanța dintre cele două lentile este:
- **a.** 90 cm **b.** 60 cm **c.** 45 cm **d.** 15cm (3p)

II. Rezolvați următoarea problemă:

Pe un banc optic sunt montate: un obiect, o lentilă subțire L_1 și un ecran. Se deplasează obiectul și lentila până când pe ecran se obține o imagine clară. Se măsoară distanța d_1 dintre obiect și lentilă, precum și distanța d_2 dintre lentilă și ecran. De lentila L_1 se alipește apoi o a doua lentilă subțire L_2 . Se deplasează ecranul până când se obține din nou o imagine clară, după care se măsoară din nou distanța d_2 , dintre sistemul de lentile și ecran. Datele culese sunt prezentate în

tabelul alăturat.

a. Folosind datele culese, determinați distanța focală a lentilei

Sistem optic	d₁ (cm)	d_2 (cm)
Lentila L₁	60	20
Lentilele alipite L₁ și L₂	60	30

- **b.** Calculați mărirea liniară transversală dată de lentila L_1 .
- **c.** Utilizând datele culese, determinați distanta focală a lentilei *L*₂.
- d. Realizati un desen în care să evidentiati construcția imaginii printr-o lentilă convergentă în cazul în care distanța obiect-lentilă este egală cu dublul distanței focale

III. Rezolvați următoarea problemă:

(15 puncte)

O sursă de lumină coerentă S, ce emite o radiație cu lungimea de undă λ , este așezată pe axa de simetrie a unui dispozitiv Young la distanța $d = 0.5 \,\mathrm{m}$ de planul fantelor. Distanța dintre fante este $2\ell = 0.6 \,\mathrm{mm}$, iar distanta de la planul fantelor la ecran este D=1m. Pe ecran se observă figura de interferentă, interfranja fiind egală cu 1 mm.

- a. Determinați valoarea lungimii de undă a radiației utilizate..
- b. Determinati distanta, măsurată pe ecran, între a sasea franjă întunecoasă situată de o parte a axei de simetrie si franja luminoasă de ordinul patru situată de aceeasi parte a axei de simetrie.
- c. Se deplasează sursa de lumină monocromatică S, în planul desenului și perpendicular pe axa de simetrie, cu distanța $h = 5 \, \text{mm}$. Determinați distanța Δx_0 pe care se deplasează maximul central.
- **d.** Se plasează în fața unei fante o lamă transparentă de grosime $e_1 = 1,5 \mu m$ și indice de refracție n_1 . Se constată că maximul central revine pe axa de simetrie a dispozitivului. Determinati valoarea indicelui de refracție al lamei

D. Optică Probă scrisă la Fizică