Department of Statistics, The Chinese University of Hong Kong STAT5010 Advanced Statistical Inference | Term 1, 2020–21

Take-home Examination

<u>Instruction to the candidates:</u> Please attempt all of the questions. Each problem carries an equal weight of 8 points. Your final score will be capped by 40, which is also the defined full mark of this exam. Good luck!

- I. Let $X_1, \ldots X_n$ be a random sample from a $N(\theta, \sigma^2)$ population with σ^2 known. Consider estimating θ using the squared error loss. Let $\pi(\theta)$ be a $N(\mu, \tau^2)$ prior distribution on θ and let δ^{π} be the Bayes estimator of θ . Verify the following formulas for the risk function and Bayes risk.
 - (a) For any constants a and b, the estimator $\delta(\boldsymbol{X}) = a\bar{\boldsymbol{X}} + b$ has risk function

$$R(\theta, \delta) = a^2 \frac{\sigma^2}{n} + \{b - (1 - a)\theta\}^2.$$

(b) Let $\eta = \sigma^2/(n\tau^2 + \sigma^2)$. The risk function for the Bayes estimator is

$$R(\theta, \delta^{\pi}) = (1 - \eta)^2 \frac{\sigma^2}{n} + \eta^2 (\theta - \mu)^2.$$

(c) The Bayes risk for the Bayes estimator is

$$B(\pi, \delta^{\pi}) = \tau^2 \eta.$$

2. Let X be an observation from the pdf

$$f(x \mid \theta) = \left(\frac{\theta}{2}\right)^{|x|} (1 - \theta)^{1-|x|}, \quad x \in \{-1, 0, 1\}; \theta \in [0, 1].$$

- (a) Find the MLE of θ .
- (b) Define an estimator T(X) by

$$T(X) = \begin{cases} 2 & \text{, if } x = 1 \\ 0 & \text{, otherwise} \end{cases}.$$

Show that T(X) is an unbiased estimator of θ , meaning that $E(T(X)) = \theta$.

- (c) Find a better estimator than $T(\boldsymbol{X})$ and prove that it is better.
- 3. Consider a Bayesian model in which the prior distribution for Θ is standard exponential and the density for X given Θ is

Ι

$$f(x \mid \theta) = e^{\theta - x} I(x > \theta).$$

- (a) Find the marginal density for X and E(X) in the Bayesian model.
- (b) Find the Bayes estimator for Θ under squared error loss. (Assume X>0.)

4. Let F be a cumulative distribution function that is continuous and strictly increasing on $[0, \infty)$ with F(0) = 0, and let q_{α} denote the upper α th quantile for F, i.e. $F(q_{\alpha}) = 1 - \alpha$. Suppose we have a single observation X with

$$P_{\theta}(X \le x) = F(x/\theta), \quad x \in \mathbb{R}, \theta > 0.$$

- (a) Consider testing $H_0: \theta \leq \theta_0$ versus $H_1: \theta > \theta_0$. Find the significance level for the test $\phi(X) = I(X > c)$. What choice for c will give a specified level α ?
- (b) Let ϕ_{α} denote the test with level α in part (a). Show that the tests ϕ_{α} , $\alpha \in (0,1)$, are nested in the sense described in Problem 2 of Assignment 6. Give a formula to compute the p-value P(X).
- 5. Let X_1, \ldots, X_n be i.i.d. from $N(\theta, 1)$ and let U_1, \ldots, U_n be i.i.d. from a uniform distribution on (0, 1), with all 2n variables independent. Define $Y_i = X_i U_i$, $i = 1, \ldots, n$. If the X_i and U_i are both observed, then \bar{X} would be a natural estimator for θ . If only the products Y_1, \ldots, Y_n are observed, then $2\bar{Y}$ may be a more responsible estimator. Determine the asymptotic relative efficiency (ARE) of $2\bar{Y}$ with respect to \bar{X} , where ARE of $\hat{\theta}_n$ with respect to $\tilde{\theta}_n$ is defined as the ratio $\sigma_{\tilde{\theta}}^2/\sigma_{\tilde{\theta}}^2$ if

$$\sqrt{n}(\hat{\theta} - \theta_0) \stackrel{d}{\to} N(0, \sigma_{\hat{\theta}}^2)$$
 and $\sqrt{n}(\tilde{\theta} - \theta_0) \stackrel{d}{\to} N(0, \sigma_{\tilde{\theta}}^2)$,

respectively.

- 6. (a) Suppose $X_1,\dots,X_n \overset{i.i.d.}{\sim} N(\mu,1)$. For the hypotheses $H_0: \mu=0$ versus $H_1: \mu\neq 0$, show that the test that rejects H_0 when $\sqrt{n}|\bar{X}_n|>z_{\alpha/2}$, where $\bar{X}_n=n^{-1}\sum_{i=1}^n X_i$, is not uniformly most powerful (UMP) at level α . Show also that the test $\sqrt{n}\bar{X}_n>z_{\alpha}$ is UMP at level α for testing $H_0: \mu\leq 0$ versus $\mu>0$.
 - (b) Suppose $X_1, \ldots, X_n \overset{i.i.d.}{\sim}$ Uniform $(\theta, \theta + 1)$. Construct a UMP test procedure for testing $H_0: \theta = 0$ versus $H_1: \theta > 0$ at level α .