

Memorandum

idm@F4E Ref: F4E_D_2KGUF6 v.1.0 Date 2020-03-17

Subject: SCD-IC Material Library for ANSYS

From: Miguel Gonzalez

Department: A&C / Engineering Unit / ITER Department

Contact miguel.gonzalez@f4e.europa.eu

To: Everybody interested

In order to keep F4E Analysis and Codes capabilities up-to-date with the latest, state-of-the-art method and pre-processing tools, a practical tool called "SDC-IC_Mat_Lib.mac" has been developed.

The tool is an ANSYS APDL based script able to generate material properties characteristics, in SI units, for all the different materials (irradiated and unirradiated) contained in [1].

This has been developed in order to centralize the SDC-IC material properties in a single routine and help to tackle an inherent step in any analysis process as it is the material properties definition.

To conclude, the tool has been verified and recorded in this document.

Copyright 2019 F4E | European Joint Undertaking for ITER and the Development of Fusion Energy ('Fusion for Energy'). Licensed under the EUPL, Version 1.1 or - as soon they will be approved by the European Commission - subsequent versions of the EUPL (the "Licence"). You may not use this work except in compliance with the Licence. You may obtain a copy of the Licence at: https://ec.europa.eu/idabc/eupl.html

Unless required by applicable law or agreed to in writing, software distributed under the Licence is distributed on an "AS IS" basis, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the Licence permissions and limitations under the Licence.

What "SDC-IC Mat Lib.mac" does

Capabilities of SDC-IC_Mat_Lib are the following ones:

- Definition of properties for the material model according [1].
- Definition of other properties according [1].

Definition of properties for the material model:

The properties for the material model are included in the material model that ANSYS use to describe the behavior of the material. These are:

- ALPX- Mean average or secant coefficient of thermal expansion
- CTEX- Instantaneous coefficient of thermal expansion
- EX- Young Modulus
- PRXY- Poisson's ratio
- DENS- Mass density
- KXX- Conductivity
- C- Specific heat
- MELAS- Stress-strain elastic curves. Nonlinear structural, multilinear elastic.
- BISO- Isotropic hardening plasticity. Bilinear stress-strain curves.
- MISO- Isotropic hardening plasticity. Multilinear stress-strain curves.
- BKIN- Kinematic hardening plasticity. Bilinear stress-strain curves.
- KINH- Kinematic hardening plasticity. Multilinear stress-strain curves.

Definition of other properties:

The so called "other" properties are properties not included in the material model but which may be used for post-processing tasks. These are:

- SY_MIN Minimum yield strength
- SY AV Average yield strength
- SU_MIN Minimum tensile strength
- SU_AV Average tensile strength
- SY IRR MIN Minimum yield strength. Material irradiated
- SY_IRR_AV Average yield strength. Material irradiated
- SU IRR MIN Minimum tensile strength. Material irradiated
- SU_IRR_AV Average tensile strength. Material irradiated
- ETOT MIN Minimum total elongation
- ETOT AV Average total elongation
- EUNIF_MIN Minimum uniform elongation
- EUNIF_AV Average uniform elongation
- ETOT IRR MIN Minimum total elongation. Material irradiated
- ETOT_IRR_AV Average total elongation. Material irradiated
- EUNIF_IRR_MIN Minimum uniform elongation. Material irradiated
- EUNIF_IRR_AV Average uniform elongation. Material irradiated
- STRAIN RUPT MIN Minimum true strain at rupture
- STRAIN_RUPT_AV Average true strain at rupture
- SM Allowable stress intensity
- SMB Design stress intensity for bolt materials
- SE_IRR Allowable stress for the primary plus secondary membrane stress intensity dependent on temperature and neutron fluence. A value of 9.99E+020 indicates that there is no limit for that Dose and Temperature.
- FATIGUE_STRAIN Fatigue curves for unirradiated material. Number of cycles Strain amplitude (Strain/2).
- FATIGUE_STRESS Fatigue curves for unirradiated material. Number of cycles Stress amplitude (Stress/2).
- K_CYCL Coefficient for cyclic stress strain curves
- m Coefficient for cyclic stress strain curves

• K \	 Coefficient for cyclic stress - strage Coefficient for cyclic stress - strage 	oin curves	
• K_\	7 - Coemoletii for Cyclic Stress - Stre	ani cuives	
• K_6	e - Coefficient for cyclic stress - stra	ain curves	
_	,		
F4E_D_2JFF	FDN v.1.0	Memorandum	Page 3/10

How to use SDC-IC Mat Lib

The SDC-IC_Mat_Lib tool operates through an ANSYS APDL code based macro. To be launched the user has to allocate the macro "SDC-IC_Mat_Lib.mac" in the corresponding ANSYS working folder.

The macro can be called as an usual ANSYS macro with the command *USE, Name, ARG1, ARG2, ARG3, ARG4.

Examples of use

1. The three lines below produce the same output:

```
*USE, SDC-IC_Mat_Lib.mac,'304L Stainless Steel',,'EX','C','ALPX','PRXY','KXX','DENS','MISO'
*USE, SDC-IC_Mat_Lib.mac,'101,'EX', 'ALPX','PRXY','KXX','DENS','MISO'
*USE, SDC-IC_Mat_Lib.mac,'304L Stainless Steel',101,'EX','ALPX','PRXY','KXX','DENS','MISO'
```

2. Defining material model properties and other properties:

```
*USE, SDC-IC_Mat_Lib.mac,,107,'ALPX','PRXY','KXX','DENS','BISO','SY_MIN_107','SU_MIN_107'
```

The list of steps for the use of the macro it's explained below.

1. Select MAT_NAME or MAT_NUMB corresponding to the desired material. Both variables are specified below in Figure 1. Only one of the two variables is needed, the other can be left blank.

MAT_NAME input variable has to be a string parameter. MAT_NUMB input variable has to be a scalar parameter. The numbers of the material are fixed and this can't be changed.

Only one material can be defined for each execution of the macro.

2. Select the desired properties to be defined in material model.

The name of the properties is specified above in the section "Definition of properties for the material model".

General information about the properties can be found in the section below under the title "Properties for the material model" and "Other properties".

MAT_NUMB - MAT_NAME - MAT_	_TAG
101 - 304L Stainless Steel - MAT	SS304
	_55316
103 - 316L (N-IG) Stainless Steel - MAT	
104 - GRADE 660 Stainless Steel - MAT	SS660
105 - XM-19 Steel - MAT	XM19
106 - Alloy 625 - MAT	ALLOY625
107 - Ti-6Al-4V Alloy - MAT	_TI64
108 - Pure Copper - MAT	_CU
109 - Copper-Chromium-Zirconium Alloy - MAT	CUCRZR
110 - Dispersion-Strengthened Copper - MAT	_CUAL25=110
111 - Aluminium-Nickel Bronze - MAT	_ALNIBRZ
112 - Alloy 718 - MAT	_INCONEL718
113 - Beryllium - MAT	BERYLLIUM
114 - Tungsten - MAT	TUNGSTEN
115 - CFC EU Grade - MAT	_CFC_EU
116 - CFC CX-2002U Grade - MAT_	_CFC_CX

Figure 1: List of Materials

SDC-IC Mat Lib verification process

The macro (SDC-IC_Mat_Lib.mac) has been developed following a script based procedure which allows extracting the material properties from the original Word file for SDC-IC [1]. Then these properties are placed inside an excel file with a specific format which allows the conversion of this file into the final APDL macro using a Python script.

Figure 2: Procedure to generate SDC-IC_Mat_Lib.mac

This procedure aims to reduce the errors (typos, mixing values...) and to automatize as much as possible the generation of the final APDL script.

On top of this measurement to avoid errors, a verification of the material properties curves generated by this script has been performed. The material properties curves obtained in ANSYS, once this script is run, have been visually compared with the ones reported in [1].

Figure 3: A.S03.3.1-1: Minimum true Stress-Strain Curves for SS 316L(N)-IG Steel - Source: [1]

Figure 4: Minimum true Stress-Strain Curves for SS 316L(N)-IG Steel – Source: APDL

Recommendations and warnings

- Testing only done visually and in part of the material properties.
- I encourage to perform a in-depth review of the material properties assigned to the

Further developments

• Update according last SDC-IC version

Appendix 1. List of properties available for each material

101 - 304L Stainless Steel

Material model properties: ALPX, CTEX, EX, PRXY, DENS, KXX, C, MELAS, BISO, MISO, BKIN, KINH

Other properties: SY_MIN_101, SY_AV_101, SU_MIN_101, SM_101, FATIGUE_STRAIN_101, K_101, m_101, K_e_101, K_v_101

102 - 316L Stainless Steel

Material model properties: ALPX, CTEX, EX, PRXY, DENS, KXX, C, MELAS, BISO, MISO, BKIN, KINH

<u>Other properties:</u> SY_MIN_PIP_FORG_102, SY_AV_PIP_FORG_102, SY_MIN_FLAT_102, SY_AV_FLAT_102, SU_MIN_PIP_102, SU_MIN_FLAT_102, SM_102, FATIGUE_STRAIN_102, K_102, m_102, K_e_102, K_v_102

103 - 316L (N-IG) Stainless Steel

Material model properties: ALPX, CTEX, EX, PRXY, DENS, KXX, C, MELAS, BISO, MISO, BKIN, KINH

Other properties: SY_MIN_103, SY_AV_103, SU_MIN_103, SU_AV_103, EUNIF_MIN_103, EUNIF_IRR_MIN_103, EUNIF_AV_103, EUNIF_IRR_AV_103, ETOT_AV_103, ETOT_IRR_AV_103, STRAIN_RUPT_AV_103, SM_103, SE_IRR_103, FATIGUE_STRAIN_103, K_103, m_103, K_e_103, K_v 103

104 - GRADE 660 Stainless Steel

Material model properties: ALPX, CTEX, EX, PRXY, DENS, KXX, C, MELAS, BISO, MISO, BKIN, KINH

Other properties: SY_MIN_104, SY_AV_104, SU_MIN_104, SU_AV_104, ETOT_AV_104, STRAIN_RUPT_AV_104, SM_STRUCTURAL_104, SMB_NONLEAKTIGHT_JOINTS_104, SMB_LEAKTIGHT_JOINTS_104, FATIGUE_STRESS_104

105 - XM-19 Steel

Material model properties: ALPX, CTEX, EX, PRXY, DENS, KXX, C, MELAS, BISO, MISO, BKIN, KINH

Other properties: SY_MIN_105, SU_MIN_105, SM_105, SMB_NONLEAKTIGHT_JOINTS_105, SMB_LEAKTIGHT_JOINTS_105, FATIGUE_STRESS_105

106 - Alloy 625

Material model properties: ALPX, EX, PRXY, DENS, KXX, C

Other properties: SY_MIN_106, SU_MIN_106, SM_106

107 - Ti-6AI-4V Alloy

Material model properties: ALPX, EX, PRXY, DENS, KXX, C, MELAS, BISO, MISO, BKIN, KINH

<u>Other properties:</u> SY_MIN_107, SY_AV_107, SU_MIN_107, SU_AV_107, EUNIF_MIN_107, ETOT_MIN_107, STRAIN_RUPT_AV_107, SM_107, SE_107

108 - Pure Copper

<u>Material model properties:</u> ALPX, EX, PRXY, DENS, KXX, C, MELAS_TUBE, MELAS_PLATE, MELAS_ROD, BISO_TUBE, BISO_PLATE, BISO_ROD, MISO_TUBE, MISO_PLATE, MISO_ROD, BKIN_TUBE, BKIN_PLATE, BKIN_ROD, KINH_TUBE, KINH_PLATE, KINH_ROD

Other properties: SY_MIN_PLATE_108, SY_MIN_TUBE_108, SY_MIN_ROD_108, SU_MIN_108, EUNIF_AV_108, ETOT_AV_108, STRAIN_RUPT_AV_108, SM_PLATE_108, SM_TUBE_108, SM_ROD_108, FATIGUE_STRAIN_108

109 - Copper-Chromium-Zirconium Alloy

Material model properties: ALPX, CTEX, EX, PRXY, DENS, KXX, C, MELAS_B, MELAS_C, BISO_B, BISO_C, MISO_B, MISO_C, BKIN_B, BKIN_C, KINH_B, KINH_C

Other properties: SY_MIN_A_109, SY_IRR_MIN_A_109, SY_MIN_B_109, SY_AV_B_109, SY_IRR_MIN_B_109, SY_MIN_C_109, SU_MIN_A_109, SU_IRR_MIN_A_109, SU_MIN_B_109, SU_IRR_MIN_B_109, SU_IRR_MIN_B_109, SU_IRR_AV_B_109, SU_MIN_C_109, SU_IRR_MIN_C_109, STRAIN_RUPT_A_AV_109, STRAIN_RUPT_B_AV_109, STRAIN_RUPT_C_AV_109, SM_A_109, SM_IRR_A_109, SE_IRR_A_109, SM_B_109, SM_IRR_B_109, SE_IRR_B_109, SM_C_109, FATIGUE_STRAIN_109, K_e_109, K_v_109

110 - Dispersion-Strengthened Copper

Material model properties: ALPX, CTEX, EX, PRXY, DENS, KXX, C

Other properties: SY_MIN_110, SY_IRR_MIN_110, SY_AV_110, SY_IRR_AV_110, SU_MIN_110, SU_IRR_MIN_110, SU_AV_110, SU_IRR_AV_110, EUNIF_AV_110, EUNIF_IRR_MIN_110, STRAIN RUPT AV 110, SM 110, SM IRR 110, FATIGUE STRAIN 110

111 - Aluminium-Nickel Bronze

<u>Material model properties:</u> ALPX, EX, PRXY, DENS, KXX, C, MELAS_BAR, MELAS_PLATE, MELAS_FORG, BISO_BAR, BISO_PLATE, BISO_FORG, MISO_BAR, MISO_PLATE, MISO_FORG, BKIN_BAR, BKIN_PLATE, BKIN_FORG, KINH_BAR, KINH_PLATE, KINH_FORG

Other properties: SY_MIN_BAR_111, SY_MIN_PLATE_111, SY_MIN_FORG_111, SU_MIN_111, EUNIF_MIN_111, EUNIF_AV_111, EUNIF_IRR_MIN_111, ETOT_MIN_111, ETOT_AV_111, ETOT_IRR_MIN_111, STRAIN_RUPT_MIN_111, SM_BAR_111, SM_PLATE_111, SM_FORG_111, FATIGUE STRAIN 111

112 - Alloy 718

Material model properties: ALPX, EX, PRXY, DENS, KXX, C, MELAS, BISO, MISO, BKIN, KINH

Other properties: SY_MIN_112, SY_AV_112, SU_MIN_BOLT_112, SU_MIN_PLATE_112, SU_AV_112, EUNIF_AV_112, ETOT_AV_112, STRAIN_RUPT_AV_112, SM_PLATE_STRUCTURAL_112, SM_BAR_FORG_STRUCTURAL_112, SMB_BAR_NONLEAKTIGHT_JOINTS_112, SMB_BAR_LEAKTIGHT_JOINTS_112, SM_IRR_PLATE_STRUCTURAL_112, SMB_IRR_BAR_NONLEAKTIGHT_JOINTS_112, SMB_IRR_BAR_LEAKTIGHT_JOINTS_112, FATIGUE_STRESS_112

113 - Beryllium

Material model properties: ALPX, EX, PRXY, DENS, KXX, C

Other properties: SY_AV_113, SU_AV_113, EUNIF_AV_113, ETOT_AV_113

114 - Tungsten

Material model properties: ALPX, EX, PRXY, DENS, KXX, C

Other properties: SY_STRESSRELIEVED_AV_114, SY_RECRISTALIZED_AV_114, SU_STRESSRELIEVED_AV_114, SU_RECRISTALIZED_AV_114, EUNIF_AV_114, ETOT_STRESSRELIEVED_AV_114, ETOT_ANNEALED_AV_114, STRAIN_RUPT_AV_114

115 - CFC EU Grade

Material model properties: ALPX, ALPY, ALPZ, PRXZ, PRXY, PRYZ, DENS, KXX, KYY, KZZ, C

116 - CFC CX-2002U Grade

Material model properties: DENS, KXX, KYY, KZZ, C