Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики университет университет итмо

УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u> M3202</u>	_К работе допущен
Студент Кочубеев Николай	_Работа выполнена
Преподаватель Тимофеева Эльвира	Отчет принят

Рабочий протокол и отчет по лабораторной работе № 1.24v

Оборотный маятник Катера

- 1. Цель работы.
 - 1. Изучение колебательного движения оборотного маятника
 - 2. Определение ускорения свободного падения
- 2. Задачи, решаемые при выполнении работы. Построить графики зависимостей $\langle T1(x2) \rangle$ и $\langle T2(x2) \rangle$, определить относительную и абсолютную погрешности величины ускорения свободного падения, определите какая из погрешностей прямых измерений дает максимальный вклад в погрешность экспериментально определенного ускорения свободного падения
- 3. Объект исследования. Оборотный маятник
- 4. Метод экспериментального исследования.
 Измерение значений периода оборотного маятника при разном расстоянии от точки подвеса до груза М1 и М2
- 5. Рабочие формулы и исходные данные.
- 1 Фотодатчик
- 2 Счетчик
- 3 Точка подвеса маятника
- 4-Груз М1 (1.4 кг)
- 5-Груз М2 (1.0 кг)
- 6 Стержень маятника (L=1.2 м)

Расстояние между точками подвеса: 800 мм

$$\varepsilon_g \equiv \frac{\Delta_g}{g} = \sqrt{\left(\frac{2\Delta T}{T}\right)^2 + \left(\frac{\Delta \ell_{\rm \Pi p}}{\ell_{\rm \Pi D}}\right)^2},$$

$$g = \frac{4\pi^2 \ell_{\text{пр}}}{T^2}.$$

6. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Электронный секундомер			

7. Схема установки (перечень схем, которые составляют Приложение 1)

Лабораторная установка

Рис. 3. Схема установки

Схема оборотного маятника, используемого в работе, представлена на рис. За. Оборотный маятник представляет собой стальной стержень 6, на котором неподвижно закреплены точка подвеса 3, а также тяжелые грузы 4 и 5. Маятник подвешивается на кронштейне за один из крепежей. На стойке прибора укреплен фотодатчик 1, который подключен в электронному секундомеру 2. Электронный секундомер (рис. Зb) предназначен для измерения периода колебаний оборотного маятника и конструктивно выполнен единым блоком с пусковым устройством. Когда маятпик проходит положение равновесия, он пересекает оптическую ось фотодатчика. При этом обращенная к фотодатчику сторона отражает луч света, испущенный осветителем фотодатчика на фотоэлемент фотодатчика. Генерируемые при этом в фотодатчике электрические импульсы управляют работой электронного секундомера.

		1			
Nº	262 MM	<i>T</i> 1, мс	<i>T</i> 2, мс	< T1 >,	< T2 >,
1	<i>х</i> 2, мм	1917,7	1812,3	MC	MC
2		1917,7	1810,5		
3		1917,5	1811,6		
4		1917,5	1813,5		
5	100	1917,5	1813,6	1918,34	1812,3
1	100	1852,8	1805,6	1010,04	1012,0
2		1856,5	1805,4		
3		1854,2	1807,6		
4		1855,6	1803,5		
5	125	1850,8	1804,8	1853,98	1805,38
1	120	1798,8	1797,9	1000,00	1000,00
2		1794,3	1799,1		
3		1800,1	1798		
4		1799,6	1800,4		
5	150	1798,7	1798,4	1798,3	1798,76
1	100	1758,5	1790,6	1730,0	1730,70
2		1758,5	1791,6		
3		1756,4	1791,6		
4		1757,8	1793,1		
5	175	1752,2	1791,9	1756,68	1791,76
1	170	1702,2	1784,8	1700,00	1701,70
2		1724,7	1788,3		
3		1725,9	1786,8		
4		1725,2	1786,7		
5	200	1726,1	1787,4	1725,08	1786,8
1		1702,2	1779,9	1120,00	1100,0
2		1702,2	1781,9		
3		1701,5	1781,7		
4		1702,1	1781,5		
5	225	1701,8	1782,2	1701,96	1781,44
1		1683,4	1776,2	,	,
2		1682,9	1777		
3		1683,9	1776,5		
4		1685,3	1775,8		
5	250	1682,2	1777,7	1683,54	1776,64
1		1671,6	1773,7		
2		1669,3	1771,2		
3		1671,4	1772,6		
4		1670	1774,1		
5	275	1671,3	1773,2	1670,72	1772,96
1		1663,8	1769,4		
2		1664,5	1769,8		
3		1664,5	1768		
4		1663,5	1767,9		
5	300	1662,4	1769,7	1663,74	1768,96
1		1660,5	1764,7		
2		1659,4	1767,5		
3		1658,2	1765,9		
4	325	1659,9	1766,6	1659,6	1766,28

5		1660	1766,7		
1		1657,7	1762,8		
2		1657,7	1765,1		
3		1660,6	1763,1		
4					
5	350	1658,8	1765,1	1658,76	1764,28
1	330	1659,1	1765,3	1000,70	1704,20
2		1660,5 1661,8	1763,5 1764,1		
3		1663,4			
4			1763,1		
5	275	1663,1	1762,7	1662.04	1760 F
1	375	1661,4	1764,1	1662,04	1763,5
		1666,6	1759,6		
2		1665	1761,9		
3		1668,1	1763,3		
4	400	1666,6	1761	4000.04	4704 50
5	400	1665,4	1762	1666,34	1761,56
1		1672,2	1759,5		
2		1673,7	1760,3		
3		1675	1762,6		
4		1674,3	1761,8		
5	425	1672,5	1761,3	1673,54	1761,1
1		1683,8	1763,4		
2		1683,6	1764,4		
3		1682	1762,8		
4		1681,7	1762,9		
5	450	1683,5	1764	1682,92	1763,5
1		1693,7	1763,5		
2		1692,5	1763,5		
3		1692,8	1764,9		
4		1692,4	1765,1		
5	475	1692,2	1763,6	1692,72	1764,12
1		1704,5	1766,3		
2		1704,6	1764,5		
3		1704,9	1767,5		
4		1705,6	1764,5		
5	500	1703,6	1767,3	1704,64	1766,02
1		1717,8	1767,7		
2		1718,6	1767,5		
3		1719,4	1768		
4		1718,8	1768,7		
5	525	1719,9	1770	1718,9	1768,38
1		1733,8	1773,2		
2		1734,8	1774,4		
3		1734,4	1772,8		
4		1733,4	1772,2		
5	550	1732,8	1774,5	1733,84	1773,42
1		1747,7	1779,3		
2		1748,4	1779,4		
3		1747,4	1778,7		
4		1747,3	1778,8		
5	575	1748	1778,5	1747,76	1778,94
1		1763	1782,2		
2	600	1763,5	1782,2	1764,54	1783,92

1		17040	4704		
3		1764,9	1784,7		
4		1764,8	1785,1		
5		1766,5	1785,4		
1		1781,3	1788,7		
2		1780,4	1791,5		
3		1780,8	1790		
4		1781,5	1788,7		
5	625	1782,1	1789,8	1781,22	1789,74
1		1799,5	1798,1		
2		1798,4	1798,9		
3		1796,5	1798,3		
4		1800	1799,5		
5	650	1799,9	1798,1	1798,86	1798,58
1		1816	1805,9		
2		1814,4	1807,3		
3		1815,9	1808,6		
4		1816,5	1806,4		
5	675	1815,9	1805,9	1815,74	1806,82
1		1831,8	1816,9		
2		1833,7	1817		
3		1833	1816,6		
4		1832,8	1816,6		
5	700	1833,9	1815,6	1833,04	1816,54

$$\begin{split} & I_{\text{пp}} = \text{x}_2 + \text{x}_2 \text{'} = 110 + 650 = 810 \text{mm} = 0,81 \text{ m}; \text{ T} = 1800 \text{ mc} = 1,8 \text{ c} \\ & g = \frac{4\pi^2 * \ln p}{T^2} = 9,8696 \text{ m/c} \\ & \varepsilon_g \equiv \frac{\Delta_g}{g} = \sqrt{\left(\frac{2\Delta T}{T}\right)^2 + \left(\frac{\Delta \ell_{\text{пp}}}{\ell_{\text{пp}}}\right)^2}, \end{split}$$

$$\Delta T = -109 \text{ MC} = -0,109 \text{ C}$$

$$\Delta I_{\Pi p} = 1 \text{ MM} = 0,001$$

$$\epsilon_g = 0,1211$$

$$\Delta g = \epsilon_g * g = 1,1953$$

9. Выводы и анализ результатов работы.

Я изучил колебательные движения оборотного маятника, определил ускорения свободного падения и определил, что Δg дает максимальный вклад в погрешность экспериментально определенного ускорения свободного падения, потому что $\Delta g > \epsilon_g$

10. Замечания также помец	преподавателя (цают в этот пункт	исправления, ⁻).	вызванные	замечаниями	преподавателя