

Verifiable Delay Functions and More from Isogenies and Pairings

Luca De Feo

based on joint work with J. Burdges, S. Masson, C. Petit, A. Sanso

IBM Research Zürich

December 4, 2019, ECC, Bochum

Slides online at https://defeo.lu/docet

Participants A, B, ..., Z want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Participants A, B, ..., Z want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Cheating participant **Z** waits to see all other strings, then brute-forces s_Z to win lottery.

Participants **A**, **B**, ..., **Z** want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Cheating participant **Z** waits to see all other strings, then brute-forces s_Z to win lottery.

Fixes

- Make the hash function **slooooooooooooooooooooo**;
 - e.g., participants have 10 minutes to submit s_x ,
 - outcome will be known after 20 minutes.

Participants **A**, **B**, ..., **Z** want to agree on a random winning ticket.

Flawed protocol

- Each participant x broadcasts a random string s_x ;
- Winning ticket is $H(s_A, \ldots, s_Z)$.

Cheating participant **Z** waits to see all other strings, then brute-forces s_Z to win lottery.

Fixes

- Make the hash function **slooooooooooooooooooooo**;
 - e.g., participants have 10 minutes to submit s_x ,
 - outcome will be known after 20 minutes.
- Make it possible to verify $w = H(s_A, ..., s_Z)$ fast.

Wanted

```
Function (family) f: X \to Y s.t.:
```

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs x,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Wanted

```
Function (family) f: X \rightarrow Y s.t.:
```

- Evaluating f(x) takes long time:
 - uniformly long time,
 - \triangleright on almost all random inputs x,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Exercise

Wanted

```
Function (family) f: X \rightarrow Y s.t.:
```

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs x,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Wanted

```
Function (family) f: X \to Y s.t.:
```

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs x,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

Wanted

Function (family) $f: X \rightarrow Y$ s.t.:

- Evaluating f(x) takes long time:
 - uniformly long time,
 - on almost all random inputs x,
 - even after having seen many values of f(x'),
 - even given massive number of processors;
- Verifying y = f(x) is efficient:
 - ideally, exponential separation between evaluation and verification.

Exercise

Think of a function you like with these properties

Got it?

You're probably wrong!

Sequentiality

Ideal functionality:

$$y = f(x) = \underbrace{H(H(\cdots(H(x))))}_{T ext{ times}}$$

- Sequential assuming hash output "unpredictability",
- but how do you verify? (you're not allowed to say "SNARKs")

Setup

A group of unknown order, e.g.:

- $\mathbb{Z}/N\mathbb{Z}$ with N=pq an RSA modulus, p,q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

x

Evaluation

With delay parameter T:

$$f:G\longrightarrow G \ x\longmapsto x^{2^T}$$

Setup

A group of unknown order, e.g.:

- $\mathbb{Z}/N\mathbb{Z}$ with N=pq an RSA modulus, p,q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

x^2

Evaluation

With delay parameter T:

$$f:G\longrightarrow G \ x\longmapsto x^{2^{7}}$$

Setup

A group of unknown order, e.g.:

- $\mathbb{Z}/N\mathbb{Z}$ with N=pq an RSA modulus, p,q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T:

$$f:G\longrightarrow G \ x\longmapsto x^{2^T}$$

Setup

A group of unknown order, e.g.:

- $\mathbb{Z}/N\mathbb{Z}$ with N=pq an RSA modulus, p,q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter T:

$$egin{aligned} f:G &\longrightarrow G \ x &\longmapsto x^{2^{7}} \end{aligned}$$

Setup

A group of unknown order, e.g.:

- $\mathbb{Z}/N\mathbb{Z}$ with N=pq an RSA modulus, p,q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter *T*:

$$f:G\longrightarrow G \ x\longmapsto x^{2^{lpha}}$$

Setup

A group of unknown order, e.g.:

- $\mathbb{Z}/N\mathbb{Z}$ with N=pq an RSA modulus, p,q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Verification

Interactive proofs that y = f(x), (non interactivity via Fiat-Shamir):

Evaluation

With delay parameter *T*:

$$f:G\longrightarrow G \ x\longmapsto x^{2^T}$$

Setup

A group of unknown order, e.g.:

- $\mathbb{Z}/N\mathbb{Z}$ with N=pq an RSA modulus, p,q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter *T*:

$$f:G\longrightarrow G \ x\longmapsto x^{2^{s}}$$

Conjecturally, fastest algorithm is repeated squaring.

Verification

Interactive proofs that y = f(x), (non interactivity via Fiat-Shamir):

Pietrzak '19:

- Proof size $O(\log(T))$,
- Hard to find (non-trivial) $w \in G$ of known order \Rightarrow Proof is sound.

Setup

A group of unknown order, e.g.:

- $\mathbb{Z}/N\mathbb{Z}$ with N=pq an RSA modulus, p,q unknown (e.g., generated by some trusted authority),
- Class group of imaginary quadratic order.

Evaluation

With delay parameter *T*:

$$f:G\longrightarrow G \ x\longmapsto x^{2^T}$$

Conjecturally, fastest algorithm is repeated squaring.

Verification

Interactive proofs that y = f(x), (non interactivity via Fiat-Shamir):

Pietrzak '19:

- Proof size $O(\log(T))$,
- Hard to find (non-trivial)
 w ∈ G of known order
 ⇒ Proof is sound.

Wesolowski '19:

- Proof size O(1),
- More emphad hoc security assumption.

Isogeny cycles

- Vertices are elliptic curves:
 - Ordinary,
 - ▶ Supersingular $/\mathbb{F}_p$.
- Edges are horizontal isogenies.

Isogeny cycles

- Vertices are elliptic curves:
 - Ordinary,
 - ightharpoonup Supersingular $/\mathbb{F}_p$.
- Edges are horizontal isogenies.
- The class group of $\operatorname{End}(E)$ acts upon the cycle:

```
\begin{array}{ccc} \text{isogeny} & \leftrightarrow & \text{ideal} \\ \text{endomorphism} & \leftrightarrow & \text{principal ideal} \\ \text{degree} & \leftrightarrow & \text{norm} \\ \text{dual} & \leftrightarrow & \text{complex conjugate} \\ \text{cycle size} & \leftrightarrow & \text{order of the ideal} \end{array}
```


Isogeny cycles

- Vertices are elliptic curves:
 - Ordinary, Couveignes-Rostovtsev-Stolbunov Supersingular $/\mathbb{F}_p$. CSIDH

order of the ideal

- Edges are horizontal isogenies.
- The class group of $\operatorname{End}(E)$ acts upon the cycle:

```
\begin{array}{ccc} \text{isogeny} & \leftrightarrow & \text{ideal} \\ \text{endomorphism} & \leftrightarrow & \text{principal ideal} \\ \text{degree} & \leftrightarrow & \text{norm} \\ \text{dual} & \leftrightarrow & \text{complex conjugate} \end{array}
```

 \leftrightarrow

cycle size

Setup

With delay parameter T:

• A laaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,

Setup

With delay parameter T:

- A laaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,
- A starting curve E_0 ,
- An isogeny $\phi: E_0 \to E_T$ of degree 2^T .

Setup

With delay parameter T:

- A laaaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,
- A starting curve E_0 ,
- An isogeny $\phi: E_0 \to E_T$ of degree 2^T .

Evaluation

 ϕ **is** the VDF:

$$\phi: E_0(\mathbb{F}_p) \longrightarrow E_T(\mathbb{F}_p) \ P \longmapsto \phi(P)$$

Conjecturally, no faster way than composing degree 2 isogenies.

Setup

With delay parameter T:

- A laaaaaaaaaaaaaaaaaaaaaarge isogeny cycle,
- A starting curve E_0 ,
- An isogeny $\phi: E_0 \to E_T$ of degree 2^T .

Evaluation

 ϕ is the VDF:

$$\phi: E_0(\mathbb{F}_p) \longrightarrow E_T(\mathbb{F}_p) \ P \longmapsto \phi(P)$$

Conjecturally, no faster way than composing degree 2 isogenies.

Isogeny <3 Pairing

Theorem

Let $\phi: E \to E'$ be an isogeny and $\hat{\phi}: E' \to E$ its dual. Let e_N be the Weil pairing of E and e'_N that of E'. Then

$$e_N(P,\hat{\phi}(Q))=e_N'(\phi(P),Q),$$

for any $P \in E[N]$ and $Q \in E'[N]$.

Corollary

$$e_N'(\phi(P),\phi(Q))=e_N(P,Q)^{\deg\phi}.$$

Refresher: Boneh-Lynn-Shacham (BLS) signatures

Setup: • Elliptic curve E/\mathbb{F}_p , s.t $N|\#E(\mathbb{F}_p)$ for a large prime N,

ullet (Weil) pairing $e_N: E[N] imes E[N] o \mathbb{F}_{p^k}$ for some small embedding degree k,

• A decomposition $E[N] = X_1 \times X_2$, with $X_1 = \langle P \rangle$.

• A hash function $H: \{0,1\}^* \to X_2$.

Private key: $s \in \mathbb{Z}/N\mathbb{Z}$.

Public key: *sP*.

Sign: $m \mapsto sH(m)$.

Verifiy: $e_N(P, sH(m)) = e_N(sP, H(m))$.

$$egin{aligned} X_1 imes X_2 & \xrightarrow{[s] imes 1} X_1 imes X_2 \ 1 imes [s] igg| igg| e_N \ X_1 imes X_2 & \xrightarrow{e_N} \mathbb{F}_{p^k} \end{aligned}$$

US patent 8,250,367 (Broker, Charles and Lauter 2012)

Signatures from isogenies + pairings

- Replace the secret $[s]: E \to E$ with an isogeny $\phi: E \to E'$;
- Define decompositions

$$E[N]=X_1\times X_2, \qquad E'[N]=Y_1\times Y_2,$$

s.t.
$$\phi(X_1) = Y_1$$
 and $\phi(X_2) = Y_2$;

• Define a hash function $H: \{0, 1\}^* \to Y_2$.

Isogeny VDF (principle)

Setup

- Pairing friendly curve E,
- Isogeny $\phi: E \to E'$ of degree ℓ^T ,
- Point $P \in X_1$, image $\phi(P) \in Y_1$.

Evaluation

Input: random $Q \in Y_2$,

Output: $\hat{\phi}(Q) \in X_2$.

Verification

$$e_N(P,\hat{\phi}(Q)) \stackrel{?}{=} e_N'(\phi(P),Q).$$

The curves

- Need a *large enough* isogeny class;
- Need pairing friendliness;

 \Rightarrow supersingular curves.

The curves

- Need a large enough isogeny class;
- Need pairing friendliness;

```
⇒ supersingular curves.
```

- Choose $p+1=N\cdot f$,
 - ▶ for degree $\ell = 2$ also need 8|f;

The curves

- Need a large enough isogeny class;
- Need pairing friendliness;

```
→ supersingular curves.
```

- Choose $p+1=N\cdot f$,
 - for degree $\ell = 2$ also need 8 f;
- Choose E/\mathbb{F}_p on an ℓ -isogeny cycle
 - ▶ If $\ell = 2 \Rightarrow$ choose E with maximal endomorphism ring;
 - Otherwise $\left(\frac{-p}{\ell}\right) = 1$.

The curves

- Need a large enough isogeny class;
- Need pairing friendliness;

```
· ⇒ supersingular curves.
```

- Choose $p + 1 = N \cdot f$,
 - for degree $\ell = 2$ also need 8|f;
- Choose E/\mathbb{F}_p on an ℓ -isogeny cycle
 - ▶ If $\ell = 2 \Rightarrow$ choose E with maximal endomorphism ring;
 - Otherwise $\left(\frac{-p}{\ell}\right) = 1$.
- There are only two ℓ^T -isogenies from E, choose any.

The curves

- Need a large enough isogeny class;
- Need pairing friendliness;

```
⇒ supersingular curves.
```

- Choose $p + 1 = N \cdot f$,
 - for degree $\ell = 2$ also need 8|f;
- Choose E/\mathbb{F}_n on an ℓ -isogeny cycle
 - If $\ell = 2 \Rightarrow$ choose E with maximal endomorphism ring;
 - Otherwise $\left(\frac{-p}{4}\right) = 1$.
- There are only two ℓ^T -isogenies from E, choose any.
- Set $X_2 = E[N] \cap E(\mathbb{F}_p)$ and X_1 as the other eigenspace of Frobenius:
 - $X_1 = E[(N, \pi + 1)], \qquad X_2 = E[(N, \pi 1)].$ Short notation:
 - Similarly:

There's nothing special with isogeny cycles

- May as well use isogeny walks in the full supersingular graph (like Charles-Goren-Lauter, SIDH, ...)
- But we still need a canonical decomposition $E[N] = X_1 \times X_2$ \Rightarrow start from E/\mathbb{F}_v .

Technicalities

There's nothing special with isogeny cycles

- May as well use isogeny walks in the full supersingular graph (like Charles-Goren-Lauter, SIDH, ...)
- But we still need a canonical decomposition $E[N] = X_1 \times X_2$ \Rightarrow start from E/\mathbb{F}_v .

Technicalities

• $p+1=N\cdot f$, no conditions on (p,ℓ) ;

There's nothing special with isogeny cycles

- May as well use isogeny walks in the full supersingular graph (like Charles-Goren-Lauter, SIDH, ...)
- But we still need a canonical decomposition $E[N] = X_1 \times X_2$ \Rightarrow start from E/\mathbb{F}_p .

Technicalities

- $p+1=N\cdot f$, no conditions on (p,ℓ) ;
- There are exponentially many ℓ^T -isogenies, choose any (pseudorandomly);

There's nothing special with isogeny cycles

- May as well use isogeny walks in the full supersingular graph (like Charles-Goren-Lauter, SIDH, ...)
- But we still need a canonical decomposition $E[N] = X_1 \times X_2$ \Rightarrow start from E/\mathbb{F}_p .

Technicalities

- $p+1=N\cdot f$, no conditions on (p,ℓ) ;
- ullet There are exponentially many ℓ^T -isogenies, choose any (pseudorandomly);
- Impossible to hash into $Y_2 = \phi(X_2)$:
 - ▶ Domain of VDF is all of E'[N];
 - To make the protocol sound we compose $\hat{\phi}$ with the trace of E/\mathbb{F}_{p^2} .

Comparison

	Wesolowski		Pietrzak		Ours	
	RSA	class group	RSA	class group	\mathbb{F}_{p}	\mathbb{F}_{p^2}
proof size	O(1)	$O(\log(T))$	O(1)	$O(\log(T))$	_	_
aggregatable	yes	yes	yes	yes	_	_
watermarkable	yes	yes	yes	yes	(yes)	(yes)
perfect soundness	no	no	no	no	yes	yes
<i>long</i> setup	no	no	no	no	yes	yes
trusted setup	yes	no	yes	no	yes	yes
best attack	$L_N(1/3)$	$L_N(1/2)$	$L_N(1/3)$	$L_N(1/2)$	$L_p(1/3)$	$L_p(1/3)$
quantum annoying	no	no	no	no	no	yes

Implementation

- PoC implementation in SageMath (re-implemented Montgomery isogenies);
- $p+1=N\cdot 2^{1244}\cdot 63$, enables time/memory compromise in evaluation.

Protocol	Step	Parameters size ($Tpprox 2^{16}$)	Time	Throughput
\mathbb{F}_p graph	Setup	238 kb	_	0.75 isog/ms
	Evaluation	_	_	0.75 isog/ms
	Verification	_	0.3 s	_
\mathbb{F}_{p^2} graph	Setup	491 kb	_	0.35 isog/ms
	Evaluation	_	_	0.23 isog/ms
	Verification	_	4 s	_

Table: Benchmarks (Intel Core i7-8700 @3.20GHz) at 128 bits of security (aggressively optimizing for size).

Security

Attacks

Security goal

Given the isogeny $\phi: E \to E$, the adversary is allowed poly(T) precomputation.

Later, it is given a random $Q \in Y_2$: its probability of computing $\hat{\phi}(Q)$ in less than "T steps" must be negligible.

Attack avenues:

- Speed-up/parallelize isogeny computation;
- Solve the pairing equation;
- Find isogeny shortcuts.

Attacking the computation?

RSA:

 $x \longmapsto x^2 \mod N$

Isogenies:

$$x \longmapsto x rac{xlpha_i-1}{x-lpha_i} \mod p$$

 $(\alpha_1, \ldots, \alpha_T \text{ depend on the chosen isogeny})$

e.g., $\log_2 N \approx 2048$, $\log_2 p \approx 1500$.

No speedup? Even with unlimited parallelism? Really?

See Bernstein, Sorenson. Modular exponentiation via the explicit Chinese remainder theorem.

Attacking the pairing

A pairing inversion problem:

$$e(P, \red{???}) = e(\phi(P), Q)$$

Quantum: Broken by Shor's algorithm;

Classical: Subexponential $L_p(1/3)$ attack.

Note: Solving the equation gives the true value of $\hat{\phi}(Q)$ (perfect soundness)

Computing shortcuts

• E

- Isogeny degree = $\ell^T \leftrightarrow \text{walk length} = T$;
 - e.g., for delay \approx 1 hour, $T \approx 2^{20}$;

Computing shortcuts

- Isogeny degree = $\ell^T \leftrightarrow \text{walk length} = T$;
 - e.g., for delay \approx 1 hour, $T \approx 2^{20}$;
 - ► Typically much larger than graph diameter (= $O(\log p) \approx 2^{10}$).
 - (which isogeny graph is meant depends on the variant)

Computing shortcuts

- Isogeny degree = $\ell^T \leftrightarrow \text{walk length} = T$;
 - e.g., for delay \approx 1 hour, $T \approx 2^{20}$;
 - ► Typically much larger than graph diameter (= $O(\log p) \approx 2^{10}$).
 - (which isogeny graph is meant depends on the variant)
- Goal: find a *shortcut*, i.e., a shorter walk.

$\operatorname{End}(E)$ gives shortcuts

\mathbb{F}_p case

- End $_{\mathbb{F}_p}(E) \subset \mathbb{Q}(\sqrt{-p})$: the class group Cl(-4p) acts on the set of supersingular curves $/\mathbb{F}_p$;
- - shortcuts in the graph.
 - see CSI-FiSh signatures (Beullens–Kleinjung–Vercauteren);
 - akin to attack on class group VDF.
- Some additional work to find endomorphism ω such that $\omega \circ \hat{\psi}(Q) = \hat{\phi}(Q)$.

$\operatorname{End}(E)$ gives shortcuts

\mathbb{F}_p case

- $\operatorname{End}_{\mathbb{F}_p}(E) \subset \mathbb{Q}(\sqrt{-p})$: the class group $\operatorname{Cl}(-4p)$ acts on the set of supersingular curves $/\mathbb{F}_p$;
- - see CSI-FiSh signatures (Beullens-Kleinjung-Vercauteren);
 - akin to attack on class group VDF.
- Some additional work to find endomorphism ω such that $\omega \circ \hat{\psi}(Q) = \hat{\phi}(Q)$.

General case (both \mathbb{F}_p and \mathbb{F}_{p^2})

- End(E) isomorphic to an order in a quaternion algebra;
- Structure of $\operatorname{End}(E)$ (or $\operatorname{End}(E')$) \updownarrow shortcuts (through \mathbb{F}_{p^2}).
 - Related to attacks on the Charles–Goren–Lauter hash function.
- Additional work to find $\omega \in \operatorname{End}(E)$.

$\operatorname{End}(E)$ gives shortcuts

\mathbb{F}_p case

- End $_{\mathbb{F}_p}(E) \subset \mathbb{Q}(\sqrt{-p})$: the class group Cl(-4p) acts on the set of supersingular curves $/\mathbb{F}_p$;
- - see CSI-FiSh signatures (Beullens-Kleinjung-Vercauteren);
- akin to attack on class group VDF.
 Some additional work to find endomorphism ω such that

General case (both \mathbb{F}_p and \mathbb{F}_{p^2})

- End(E) isomorphic to an order in a quaternion algebra;
- Structure of $\operatorname{End}(E)$ (or $\operatorname{End}(E')$) \updownarrow shortcuts (through \mathbb{F}_{p^2}).
 - Related to attacks on the Charles–Goren–Lauter hash function.
- Additional work to find $\omega \in \operatorname{End}(E)$.

WE HAVE A PROBLEM!

No known way to construct supersingular curves without knowledge of $\operatorname{End}(E)$.

Only known fix: Trusted setup.

$$y^2 = x^3 + x$$

Start from a well known supersingular curve,

$$y^2 = x^3 + x$$

- Start from a well known supersingular curve,
- Do a random walk,

$$y^2 = x^3 + x$$

 $\bullet E$

- Start from a well known supersingular curve,
- Do a random walk,
- Forget it.

$$y^2 = x^3 + x$$

• *F*;

- Start from a well known supersingular curve,
- Do a random walk,
- Forget it.

	Classical		Quantum	
	\mathbb{F}_p graph	\mathbb{F}_{p^2} graph	\mathbb{F}_p graph	\mathbb{F}_{p^2} graph
Computing shortcuts	$L_p(1/2)$	$O(\sqrt{p})$	polylog(p)	$O(\sqrt[4]{p})$
Pairing inversion	$L_p(1/3)$	$L_p(1/3)$	polylog(p)	$\operatorname{polylog}(p)$

Quantum annoyance:

- Computing shortcuts in \mathbb{F}_{p^2} is quantumly hard;
- Pairing inversion attacks must be run online, useless if Shor's algorithm takes much longer than target delay.

Mitigate trusted setup woes by distributing trust:

• Participant i performs a random walk (in \mathbb{F}_p),

- Participant i performs a random walk (in \mathbb{F}_p),
- Publishes a proof of isogeny knowledge,

- Participant i performs a random walk (in \mathbb{F}_p),
- Publishes a proof of isogeny knowledge,
- Repeat.

- Participant i performs a random walk (in \mathbb{F}_p),
- Publishes a proof of isogeny knowledge,
- Repeat.

- Participant i performs a random walk (in \mathbb{F}_p),
- Publishes a proof of isogeny knowledge,
- Repeat.

- Participant i performs a random walk (in \mathbb{F}_p),
- Publishes a proof of isogeny knowledge,
- Repeat.

Mitigate trusted setup woes by distributing trust:

- Participant i performs a random walk (in \mathbb{F}_p),
- Publishes a proof of isogeny knowledge,
- Repeat.

Proof options:

- Generic ZK proofs,
- Isogeny ZK proofs (SeaSign),
- Pairing proofs (not ZK!):

$$egin{aligned} P,\,Q &= \mathcal{H}(E_i,E_{i+1}),\ e_i(P,\hat{\phi}_i(Q)) &= e_{i+1}(\phi_i(P),\,Q). \end{aligned}$$

Properties: asynchronous, robust against n-1 coalition, verification scales linearly, updatable, ...

Beyond VDFs

Watermarking

Goal: reward evaluator for its effort.

Watermarking: issue proof of evaluation tied to evaluator identity

Secret key: scalar $s \in \mathbb{Z}/N\mathbb{Z}$,

Public key: $s\phi(P) \in E'$ (+ proof of exponent knowledge),

Proof of work: $s\hat{\phi}_1(Q) \in E_{\mathrm{mid}}$,

Verification: $e_{\mathrm{mid}}(\phi_2(P), s\hat{\phi}_1(Q)) = e'(s\phi(P), Q)$.

Properties: blind (can be checked before the computation is complete).

Encryption to the future (time-locks)

Goal: encrypt now, decryption only possible after delay.

Applications: auctions, voting, ...

Idea: start from Boneh–Franklin IBE, just add isogeniesTM.

Bidder

Auctioneer

Publishes auction key $Q = \mathcal{H}(sid)$ starts evaluating $\hat{\phi}(Q)$

```
samples random s \in \mathbb{Z}/N\mathbb{Z}

computes k = e(\phi(P), Q)^s

encrypts offer o_k = \operatorname{Enc}_k(o)

sends (o_k, sP) \longrightarrow
```

 \vdots computes $k=e(sP,\hat{\phi}(Q))$ decrypts o_k

• Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?
- Remove trusted setup:
 - Hash into the supersingular set, or
 - Construct ordinary pairing friendly curves with large discriminant.

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?
- Remove trusted setup:
 - Hash into the supersingular set, or
 - Construct ordinary pairing friendly curves with large discriminant.
- Explore more advanced pairing+delay constructions.

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?
- Remove trusted setup:
 - Hash into the supersingular set, or
 - Construct ordinary pairing friendly curves with large discriminant.
- Explore more advanced pairing+delay constructions.
- Spend millions on dedicated hardware for 2-isogenies.

- Understand the impact of large memory requirements in evaluation; is a time/memory trade-off reasonable?
- Remove trusted setup:
 - Hash into the supersingular set, or
 - Construct ordinary pairing friendly curves with large discriminant.
- Explore more advanced pairing+delay constructions.
- Spend millions on dedicated hardware for 2-isogenies.

Just Add Isogenies™!

