Lecture 18

MGF

Expo MGF

 $X \sim Expo(1)$, find MGF, moment

$$M(t) = E(e^{tx}) = \int_0^\infty e^{-tx} e^{-x} dx = \int_0^\infty e^{-x(1-t)} dx = rac{1}{1-t}, t < 1$$

$$M'(0) = E(X), M''(0) = E(X^2), M'''(0) = E(X^3)...$$

$$|t| < 1, \frac{1}{1-t} = \sum_{n=0}^{\infty} t^n = \sum_{n=0}^{\infty} n! \frac{t^n}{n!}$$
 $E(X^n) = n!$

$$Y \sim Expo(\lambda)$$
, let $X = \lambda Y \sim Expo(1)$, so $Y^n = rac{X^n}{\lambda^n}$

$$E(Y^n) = rac{E(X^n)}{\lambda^n} = rac{n!}{\lambda^n}$$

Normal MGF

Let $Z \sim N(0,1)$, find all its moment

 $E(Z^n)=0$ for n, odd by symmetry

MGF
$$M(t) = e^{t^2/2} = \sum_{n=0}^{\infty} rac{(t^2/2)^n}{n!} = \sum_{n=0}^{\infty} rac{(2n)!t^{2n}}{z^n n!(2n)!}$$

$$^{=>}E(Z^{2n})=rac{(2n)!}{2^n n!}$$

Poisson MGF

$$X \sim Pois(\lambda)$$
 $E(e^{tx}) = \sum_{k=0}^{\infty} e^{tx} e^{-\lambda} rac{\lambda^k}{k!} = e^{-\lambda} e^{\lambda e^t}$

let $Y \sim Pois(\mu)$ indep of X ,find distribution of X + Y ,

Multiply MGFs,
$$e^{\lambda(e^t-1)}e^{\mu(e^t-1)}=e^{(\lambda+\mu)(e^t-1)}=>X+Y\sim Pois(\lambda+\mu)$$

sum of independent Poisson is still Poisson

Counter-example if X, Y dependent: $X = Y \Rightarrow X + Y = 2X$ is not Poisson since:

$$E(X+Y)=E(2X)=2\lambda, Var(2X)=4\lambda$$

Joint Distribution

X, Y Bernouli

Example. 2D

	Y=0	Y=1	
X=0	2/6	1/6	3/6
X=1	2/6	1/6	3/6
	4/6	2/6	

They are independent

X, Y r.vs

Joint CDF

$$F(x,y) = P(X \le x, Y \le y)$$

Joint PMF (discrete case)

$$P(X = x, Y = y)$$

Marginal CDF

 $P(X \leq x)$ is marginal dist. of X

Joint PDF (cont.)

f(x,y) such that

$$P((X,Y) \in B) = \iint_B f(x,y) dx dy$$

Independence

X,Y independent if and only if $F(x,y)=F_X(x)F_Y(y)$

Equiv.

$$P(X = x, Y = y) = P(X = x)P(Y = y)$$

$$f(x,y)=f_X(x)f_Y(y)$$
 for all $x,y>0$

Getting marginals

$$P(X=x,Y=y) = \sum_y P(X=x,Y=y)$$
 discrete

$$f_Y(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

Example

1. Uniform on $square\{(x,y): x,y \in [0,1]\}$

joint PDF const. on the square, 0 outside

integral is area c = 1/area = 1

marginal: X,Y are independent Unif(0,1)

2. Unif in disc $x^2=y^2\leq 1$

joint PDF: $1/\pi$ inside the circle; 0 otherwise

X,Y dependent.

Given X=x , $|y| \leq \sqrt{1-x^2}$