

Marco Listanti

Lo strato di collegamento Parte 4

"Flow Control" e "Protocolli PPP e HDLC"

Marco Listanti

Controllo di flusso

Flow Control

- Il ricevitore dispone di un buffer limitato per memorizzare le frame entranti
- Nel buffer di ricezione si possono verificare fenomeni di overflow a causa di
 - Differenza tra il rate di arrivo delle frame e il rate con cui il ricevitore elabora le frame
 - Picchi nell'arrivo delle frame
- Il Flow Control ha lo scopo di prevenire gli overflow del buffer di ricezione regolando il tasso di emissione delle frame da parte del Transmitter

XON / XOFF (Backpressure)

- Si deve attivare il segnale di Off in modo da evitare la perdita di pacchetti
 - Lo spazio disponibile nel buffer deve essere almeno uguale a 2*T_{prop}*R bit

Window Flow Control

- Finestra scorrevole di ampiezza W_s uguale al buffer disponibile
 - \blacksquare Il Transmitter non può in nessun caso emettere più di W_s frame
- Gli ACK possono essere interpretati come permessi a trasmettere e possono regolare il rate di trasmissione
- Problemi
 - Scelta della dimensione della finestra
 - Interazione tra rate di trasmissione e ritrasmissioni
 - TCP separa error & flow control

Marco Listanti

Il protocollo PPP

Protocolli di data link punto-punto

- Un mittente, un destinatario
 - non è necessaria la funzione di controllo di accesso al mezzo (MAC)
 - non occorre indirizzamento MAC esplicito
 - il collegamento potrebbe essere una linea telefonica seriale commutata
- Protocolli punto-punto DLC più diffusi
 - PPP (point-to-point protocol) [RFC 1547]
 - HDLC (high-level data link control)

Funzioni del PPP

Framing dei pacchetti

il protocollo PPP incapsula un pacchetto a livello di rete all'interno del un pacchetto PPP a livello di link

Trasparenza

- il protocollo PPP non deve porre alcuna restrizione ai dati che sono contenuti nel pacchetto a livello di rete
- Rilevazione degli errori (ma non la correzione)
- Disponibilità della connessione
 - il protocollo deve rilevare la presenza di eventuali guasti a livello di link e segnalare l'errore al livello di rete
- Negoziazione degli indirizzi di rete
 - PPP deve fornire un meccanismo alle entità di strato di rete per ottenere o configurare gli indirizzi di rete

Funzioni non coperte dal PPP

- Correzione degli errori
- Controllo di flusso
- Controllo di sequenza
 - il protocollo PPP non deve necessariamente trasferire le frame al ricevente mantenendo lo stesso ordine
- Tutte le funzioni elencate sono delegate ai livelli superiori

Applicazioni del PPP

Point-to-point applications

- Telephone Modem Links (30-54 kbit/s)
- Packet over SDH (600 Mbit/s to 10 Gbit/s)

Shared links

- supporto di funzioni di autenticazione
- PPP over Ethernet (RFC 2516)
- xDSL

Formato dei pacchetti dati PPP

Flag

ogni frame inizia e termina con un byte con valore 01111110

Address

unico valore (11111111)

Control

unico valore; ulteriori valori potrebbero essere stabiliti in futuro

			1 o 2 byte	variabile	2 or 4 byte	
Flag 01111110	Address 11111111	Control 00000011	Protocol	Information	FCS	Flag 01111110

Formato dei pacchetti dati PPP

Protocol

 indica al PPP del ricevente qual è il protocollo del livello superiore cui appartengono i dati incapsulati

Information

incapsula la PDU (es. pacchetto IP) trasmesso da un protocollo del livello superiore sul collegamento PPP

Checksum

utilizzato per rilevare gli errori nei bit contenuti in un pacchetto; utilizza un codice a ridondanza ciclica a due o a quattro byte

			1 o 2 byte	variabile	2 or 4 byte	
Flag 01111110	Address 11111111	Control 00000011	Protocol	Information	FCS	Flag 01111110

Delimitazione (Byte stuffing)

Requisito di trasparenza

nel campo informazioni deve essere possibile inserire una stringa <01111110>

Transmitter

si aggiunge un byte <01111101> prima di ogni byte di dati <01111110> o <01111101>

Receiver

- Se si rivelano due byte <01111101> consecutivi si scarta il primo e continua la ricezione dei dati
- Se si rivelano una sequenza <01111101> <01111110> si scarta il primo byte e continua la ricezione dei dati
- Se si rivela un singolo byte <01111110> si tratta di un flag

Collegamento PC-ISP: fasi del PPP

- 1. Il PC si connette all'ISP via modem
- 2. Il PC and l'ISP scambiano pacchetti LCP per negoziare I parametri del protocollo PPP
- 3. Controllo delle identità
- 4. Scambio di pacchetti NCP per configurare lo strato di rete (es. IP address assignment)
- 5. Emissione e ricezione di pacchetti IP send/receive IP packets
- 6. Il protocollo NCP è usato per abbattere lo strato di rete (rilascio degli IP address); Il protocollo LCP abbatte la connessione di data link layer
- 7. Il Modem si disconnette

PPP Authentication

Password Authentication Protocol

- La parte "Initiator" deve inviare la coppia [userID & password]
- La parte "Authenticator" replica indicando il successo o il fallimento dell'autenticazione
- Dopo alcuni tentativi falliti, il collegamento viene chiuso
- Se la trasmissione non è cifrata, la coppia [userID & password] può essere intercettata

Challenge-Handshake Authentication Protocol (CHAP)

- Initiator & authenticator condividono una chiave segreta
- L'Authenticator emette una "sfida" (un numero random)
- L'Initiator e L'Authenticator calcolano la versione cifrata della "sfida" utilizzando la chiave segreta condivisa
- L'Initiator trasmette la versione cifrata della sfida verso l'Authenticator
- L'Authenticator confronta la risposta dell'Initiator con la propria versione della sfida cifrata

Marco Listanti

Il protocollo HDLC

High-Level Data Link Control (HDLC)

- Bit-oriented data link control
- Derivato dal protocollo Synchronous Data Link Control (SDLC) della IBM
- E' la base dei protocolli della famiglia Link Access Procedure Balanced (LAPB)
 - LAPD in ISDN
 - LAPDm nel GSM

HDLC

Modalità di trasferimento

Normal Response Mode

Linee multidrop con polling

Asynchronous Balanced Mode

Link full-duplex, point-to-point

HDLC Frame Format

Flag	Address	Control	Information	FCS	Flag		

Flag

funzioni di delimitazione (01111110)

Address

- identifica la stazione secondaria (1 ottetto)
 - Nella modalità ABM, una station può agire come primario o secondario quindi il valore del campo può cambiare

Control

identifia il tipo di frame e le funzioni ad essa collegate (1 o 2 ottetti)

Information

dati d'utente (lunghezza variabile)

Frame Check Sequence

CRC 16 o 32-bit

Campo di controllo

Information Frame

1 2-4 5 6-8 0 N(S) P/F N(R)

Supervisory Frame

1 0 5 5 P/F N(R)

Unnumbered Frame

- S: Supervisory Function Bits
- N(R): Receive Sequence Number
- N(S): Send Sequence Number

- M: Unnumbered Function Bit
- P/F: Poll/final bit used in interaction between primary and secondary

Information frame (I-frame)

- Ogni I-frame contiene un numero di sequenza N(S)
- Positive ACK piggybacked
 - N(R) = Numero di sequenza della prossima frame che il receiver si aspetta di ricevere
 - Riscontra tutte le frame fino a quella numerata con N(R)-1
- Numero di sequenza composto da 3 (modulo 8) o 7 (modulo 128)
 - Mssima dimensione della finestra in trasmissione 7 o 127
- Poll/Final Bit
 - Il primario indica I comandi con bit P=1
 - Il Secondario impone F=1 nell'ultima I-frame in risposta

Supervisory frame

- Implementano le funzioni di error control (ACK, NAK) e flow control
- Receive Ready (RR), "SS" = "00"
 - hanno il significato di ACK quando non è possibile il piggyback
- REJECT (REJ), "SS" = "01"
 - hanno il significato Negative ACK
 - indicano che la frame numerata con N(R) è la prima frame ricevuta non correttamente
 - il Transmitter deve ritrasmettere tutte le frame a partire da quella numerata con N(R)
- Receive Not Ready (RNR), "SS" = "10"
 - Riscontra le frame fino a quella numerta con N(R)-1
 - blocca la trasmissione delle frame successive
- Selective REJECT (SREJ), "SS" = "11"
 - Richiede che sia ritrasmessa solo la frame numerata con N(R)

Unnumbered Frame

Modalità del protocollo

- SABM: Set Asynchronous Balanced Mode
- UA: indicano l'accettazione della modalità di trasmissione
- **DISC**: termina la connessione di strato di link

Information Transfer tra stazioni

UI: Unnumbered information

Funzioni di Recovery

- FRMR: frame con FCS corretto, ma non comprensibile
- RSET: indicano il reset del collegamento

Connection Establishment & Release

- Le Supervisory frame sono usate per stabilire e rilasciare la connessione di link
- In HDLC
 - Set Asynchronous Balanced Mode (SABM)
 - Disconnect (DISC)
 - Unnumbered Acknowledgment (UA)

Frame Exchange using Asynchronous Balanced Mode

Flow Control

- Il controllo di flusso è richiesto per evitare la perdita di PDU in caso di overflow del buffer
- Il ricevitore può controllare il flusso ritardando l'emissione dei riscontri
- Il ricevitore può usare le supervisory frame per controllare esplicitamente il transmitter
 - Receive Not Ready (RNR) & Receive Ready (RR)

