SZABÁLYOZÁSTECHNIKA LABORZÁRTHELYI 2007.12.13/1

Név	Neptun kód	Kurzus	Gyakorlatvezető	Összpontszám

1. Adott az alábbi szabályozási kör:

a./ K = 2 mellett adja meg a rendszer vágási körfrekvenciáját és fázistöbbletét. (2 pont)

$$r(t) \equiv 0$$
 és $y_z(t) = \delta(t)$, $t \ge 0$ zavarójel esetén

b./ ábrázolja minőségileg helyesen az y(t) kimenőjel időbeli lefolyását, írja le a megoldás menetét. (4 pont)

c./ adja meg az e(t) hibajel állandósult értékét és maximális értékét. (2 pont)

2. Egy mintavételes szabályozási körben a szakasz átviteli függvénye:

$$P(s) = \frac{1+s}{(1+0.5s)(1+5s)}e^{-0.8s}$$
. A mintavételezési idő: $T_s = 0.4$.

- a./ Zérusrendű tartószerv esetén adja meg a tartószerv és a szakasz együttes G(z) impulzusátviteli függvényét zérus-pólus alakban. (4 pont)
- b./ Egy diszkrét PI szabályozó impulzusátviteli függvénye $C(z) = 4\frac{z-z_1}{z-1}$. Határozza meg z_1 értékét póluskiejtéses szabályozó esetén. (1 pont)
- c./ Ábrázolja a szabályozó ugrásválaszát és adja meg kezdeti és végértékét. (3 pont)
- 3. Egy folytonos szakasz átviteli függvénye $P(s) = \frac{1}{(1+s)(1+4s)}e^{-s}$. Az $u(t) = \sin 4t$ bemenőjel esetén állandósult állapotban a kimenőjel $y(t) = A\sin(\omega t \varphi)$. Határozza meg az A, ω, φ paraméterek értékét. **(6 pont)**
- 4. Adott az alábbi folytonos folyamat:

$$A = \begin{bmatrix} -1 & 1 \\ 0 & -2 \end{bmatrix}, b = \begin{bmatrix} 0 \\ 2 \end{bmatrix}, c = \begin{bmatrix} 4 & 0 \end{bmatrix}, d = 0.$$

Tervezzen állapotvisszacsatolásos szabályozást úgy, hogy a zárt rendszer olyan másodrendű lengő tag legyen, amelynek csillapítási tényezője 0.7 és időállandója 2. (5 pont) Határozza meg az alapjelkövetéshez (egységnyi erősítés) a statikus kompenzációs tényező értékét is. (3 pont)