Stability of equilibria of planor nexterns

(1)
$$\dot{x} = f(x)$$
, where $f \in C^1(\mathbb{R}^2, \mathbb{R}^2)$

Not
$$m^* \in \mathbb{R}^2$$
 be an equilibrium point of (1) (i.e. $f(m^*) = 0$)

(# $g \in \mathbb{R}^2$ t $\mapsto g(t, r_g)$ the unique set of the $ivp : x = f(x)$)

 $x(o) = g$

Def: 11 not is an attractor of (1) when I VED (not) s.t. 4 reV lim p(t, no) = not

2) not is a repulser when I V & D(not) s.t. treev, lim p(t, n) = n*

3) p^* is stable when $t \in >0 = 3 > 0 \text{ s.t.}$ $t \in \mathbb{R}^2$ with $||p-p^*||_{\mathbb{R}^2} < 5$ we have $||\varphi(t,p)-p^*||_{\mathbb{R}^2} < \epsilon$, $t \in [0,\infty)$

allate ton a (the nature allotanu ci org. (4)

Fr. Hability of limour panar systems.

ક	12. The linearization method to study the stability of an equilibrium	time
	of a morrhineau systems.	
	3. Examples	
3	5, eximinas	
	(1. (2) X = AX, nothers A & Uz(R) det A = 0.	
	§1. (2) $X = AX$, where $A \in U_2(R)$ det $A \neq 0$. Let $2, 2 \in \mathbb{C}$ be the eigenvalues of A .	
	$A = \lambda_1 + \lambda_2$	
•	2) dot $A \neq 0$ (=> $12^* = 0_2 \in \mathbb{R}^2$ is the unique open. 3) dot $A \neq 0$ (=> $\lambda_1 \neq 0$ and $\lambda_2 \neq 0$	of.
	3) det $A \neq 0$ (=) $t_1 \neq 0$ and $t_2 \neq 0$	
	Dop: 1 We to a livery witer 1 Mo one that O of (2) in	
_	NODE notion either 2, 4 2 20 or 0 21 42	1) .
→	SABBLE When 2, 40 4 2/2	
->	CENTER Wan . 21,2 = ±iB, BEIK	
\rightarrow	Focus when $\lambda_{1,2}=\alpha\pm i\beta$, $\alpha,\beta\in\mathbb{R}^*$, $\alpha\neq 0$.	
•		
Loss	Ti i) 4 Re (21) 40 and Re (22) 40 then 2" = 02 of (2)	is
	a global attractor.	: :
	2) If Re (2) >0 and Re (2) >0 then 2* = 02 of (2) is	2
	a global repoller.	
	3) A verter is stable. All the od of (2) with a center	r
	is a periodic function.	
•	4) A saddle is unstable	
	BRUNNEN III	

? Jacobian matrix

for a function
$$f \in C^1(\mathbb{R}^2, \mathbb{R}^2)$$
, its Jacobian materize in $X = \begin{pmatrix} X_1 \\ \times_2 \end{pmatrix}$

$$f(x) = \begin{pmatrix} \frac{\partial f_1}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) \\ \frac{\partial f_2}{\partial x_1}(x) & \frac{\partial f_2}{\partial x_2}(x) \end{pmatrix}$$

- Def: 1) The linear system (3) is called the linearization of (1) around the equil point of.
 - 2) Absume that dat of (1) \$\delta 0\$. When the eq. point Od of (3).

 is a NODE / SANDLE / CENTER / FOCUS, one say that the of point of 12* of (1) is a LINEAR NODE / LINEAR SANDLE/
 LINEAR CENTER / LINEAR FOCUS.
 - 3) Let λ_1 , $\lambda_1 \in \mathbb{C}$ be the eigenvalues of $\mathcal{F}(n2^k)$. We say that n^* is a hypothelic equal point of (1) when:

 Re $(\lambda_1) \neq 0$ and $\Re(\lambda_2) \neq 0$.

$$\begin{cases} \dot{x} = \dot{y} & \text{Nonlinear planear} \\ \dot{y} = -\sin x & \text{nextern} \end{cases}$$

$$\begin{cases} \dot{y} = -\sin x & \text{nextern} \end{cases}$$

$$\begin{cases} \dot{y} = -\sin x & \text{nextern} \\ \dot{y} = -\sin x & \text{nextern} \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

$$\begin{cases} \dot{y} = 0 & \text{of } \\ \dot{y} = 0 \end{cases}$$

I if Me is a LINEAR CENTER and there exists a first integral of (1) will defined in a neighbourhood of 12* then 12* is a stable equil point of (N). 2 10 2 2 2 2 2 2) 2) 2) 2) 2 20 1 12) 2) 12 20