ESPECIFICAÇÕES SISTEMA DE ARQUIVOS

Alunos: Isadora Coelho, Maria Eduarda e Gabriel Lenser

Docente: Marcio Seiji Oyamada Disciplina: Sistemas operacionais

1. ESPECIFICAÇÃO

Método de alocação	Alocação contígua
Gerenciamento de espaços livres	Mapa de bits

tabela 01: combinações escolhidas

O sistema de arquivos a ser desenvolvido pela equipe usa a alocação contígua sendo que a memória do disco é segmentada em setores de 512 bytes, que são a menor unidade alocável possível, quanto ao gerenciamento de espaços livres a estratégia escolhida foi o bitmap.

Como mostra a figura abaixo, o disco será dividido em quatro principais áreas, a primeira delas, o boot record, o qual ocupa sempre o primeiro setor do disco. Nele é possível encontrar informações pertinentes à organização do sistema. Em seguida, temos o diretório raiz, que será o único pois adotamos o diretório de apenas um nível, que armazena informações de todos os arquivos presentes no sistema e após ele a área de dados, que contém os dados dos arquivos. Por fim, temos um mapa de bits, que registra se os setores do disco estão ocupados ou não.

imagem 01: ilustração do disco dividida por setores

2. ÁREAS DO DISCO

BOOT RECORD:

Offset	Size (bytes)	Info
0	2	Bytes por setor
		default 512
2	2	Setores reservados
		default 1
4	2	Número de entradas de
		diretório raiz
		default 128
6	8	Tamanho do diretório raiz
		em bytes
12	8	Início do bitmap em
		setores
20	8	Tamanho do bitmap em
		bytes

tabela 02: Boot record

DIRETÓRIO RAIZ:

Offset	Length (bytes)	Info
0	12	10 caracteres para nome
		e 3 para extensão.
12	8	Primeiro setor
20	4	Tamanho do arquivo em
		bytes
24	8	Número de setores

tabela 03: root dir

Para sabermos se tem uma entrada disponível para alocação de arquivo, o primeiro bytes estará zerados.

DADOS

Os dados são armazenados em setores, obrigatoriamente um setor é ocupado por apenas um arquivo, mesmo que sua utilização ocupe apenas alguns bytes.

BITMAP:

Características do Bitmap:

- Cada byte no bitmap corresponde a um setor do disco.
- O bitmap será inicializado com os primeiros 9 setores ocupados, sendo referentes ao boot record e ao diretório raíz.
- O bitmap será atualizado a cada mudança realizada em um arquivo.
- O tamanho do bitmap será equivalente ao número de setores no disco.
- Em cada posição no bitmap, 0 indicará livre e 1 ocupado.

Início do bitmap = setores reservados + tamanho rootdir + área de dados

3. OPERAÇÕES DE USO

3.1 Formatador

Para criar uma partição do disco, o usuário informará o número de setores desejados, e a partir disso é necessário realizar os seguintes cálculos, considerando que o boot record sempre ocupará 1 setor:

Tamanho do diretório raiz em bytes = 128 * 32, *onde*:

128 = número máximo de entradas do diretório raiz

32 = tamanho de cada entrada

Tamanho do bitmap em bytes = n

Tamanho do bitmap em setores = ceil(n/512), onde:

n = *n*ú*meros de setores formatado pelo usu*ário

Por conta do arredondamento para cima, caso o bitmap contenha mais bytes que setores, todos eles serão postos como ocupados para evitar acessos fantasmas.

Início do bitmap em bytes = tamanho do boot record + tamanho diretório raíz + tamanho área de dados

Número de setores por arquivo = tamanho do arquivo / tamanho do setor

Número de setores na área de dados = total de setores - boot record - rootdir - bitmap

3.2 Cópia de um arquivo do disco rígido para o sistema de arquivos

A primeira parte para realizar essa operação será solicitar ao usuário que arquivo ele deseja copiar para o sistema de arquivos. O arquivo obrigatoriamente deverá estar no mesmo diretório que a imagem e código fonte. Em seguida será necessário:

- 1. Calcular quantos setores o arquivo ocupa e, verificar se existe espaço para alocá-lo contiguamente;
- Ocupar uma entrada no diretório raíz com o nome do arquivo a ser copiado e seus dados;
- 3. Ir até o primeiro setor e enquanto lê o arquivo do disco rígido, descarregar as suas informações no sistema de arquivos até elas atingirem o seu tamanho.

3.3 Cópia de um arquivo do sistemas de arquivos para o disco rígido

A primeira parte para realizar essa operação será solicitar ao usuário que arquivo ele deseja copiar para o disco rígido. O arquivo será criado no mesmo diretório que a imagem e código fonte. Em seguida será necessário:

- 1. Encontrar o arquivo no diretório raíz e navegar até seu primeiro setor;
- 2. Criar o arquivo no disco rígido;
- 3. Ler as informações presentes nos setores e ir descarregando no disco até que o tamanho seja alcançado.

3.4 Listagem dos arquivos

Para realizar a listagem dos arquivos presentes no sistema de arquivos será necessário realizar os seguintes passos:

- 1. Ir até o ínicio do diretório raiz;
- 2. Verificar se os dois primeiros bytes indicam que o arquivo foi excluído;
 - a. Caso esteja apagado, apenas ignorar e seguir para próxima entrada;
- 3. Imprimir na tela o nome dos arquivos que são entradas válidas até que uma delas esteja vazia, indicando que elas acabaram.

3.5 Remoção de arquivos

Para remover um arquivo, será solicitado ao usuário o nome do arquivo que ele deseja apagar, em seguida serão realizadas as seguintes operações:

- 1. Identificar a entrada no diretório raíz referente ao arquivo a ser apagado;
- 2. Mudar os primeiros dois bytes para "E5", indicando que a entrada foi excluída;
- 3. Identificar quais setores pertencem ao arquivo, e mudá-los no bitmap para livres.