ELETTRONICA DIGITALE

Corso di Laurea in Ingegneria Informatica

Prova scritta del 02 settembre 2015

Esercizio A

$R_1 = 20 \text{ k}\Omega$	$R_{11}=2.4\;k\Omega$	V
$R_3 = 4 \text{ k}\Omega$	$R_{12} = 3 \text{ k}\Omega$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$R_4 = 3.2 \text{ k}\Omega$	$R_{13} = 1 \text{ k}\Omega$	R_{1} R_{2} R_{3} R_{11}
$R_5 = 1 \text{ k}\Omega$	$R_{14} = 20 \text{ k}\Omega$	$\left\{\begin{array}{c c} R_{5} & R_{7} & R_{8} \\ R_{8} & R_{7} \end{array}\right\}$
$R_6 = 1.5 \text{ k}\Omega$	$R_{15} = 50 \Omega$	R_3 Q_2 C_3 R_{13}
$R_7 = 2.3 \text{ k}\Omega$	$C_1 = 100 \text{ nF}$	C_1 R_{15} R_{10}
$R_8 = 500 \Omega$	$C_2 = 10 \text{ nF}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$R_9 = 18.8 \text{ k}\Omega$	$C_3 = 68 \text{ nF}$	
$R_{10} = 8.6 \text{ k}\Omega$	$V_{CC} = 18 \text{ V}$	

 Q_1 è un transistore BJT BC109B resistivo con $h_{re} = h_{oe} = 0$; Q_2 è un transistore MOS a canale p resistivo, con la corrente di drain in saturazione data da $I_D = k(V_{GS} - V_T)^2$ con k = 0.25 mA/V² e $V_T = -1$ V;. Con riferimento al circuito in figura:

- Calcolare il valore della resistenza R₂ in modo che, in condizioni di riposo, la tensione sul source di Q₂ sia 12.6 V. Determinare, inoltre, il punto di riposo dei due transistori e verificare la saturazione di Q₂. (R: R₂ = 5274.5 Ω)
- 2) Determinare l'espressione e il valore di V_U/V_i alle frequenze per le quali C_1 , C_2 , e C_3 possono essere considerati dei corto circuiti. (R: $V_U/V_i = -16.9$)
- 3) (<u>Solo per 12 CFU</u>) Determinare la funzione di trasferimento V_U/V_i e tracciarne il diagramma di Bode quotato asintotico del modulo. (R: $f_{z1} = 0$ Hz; $f_{p1} = 17318.6$ Hz; $f_{z2} = 6919.8$ Hz; $f_{p2} = 8577.5$ Hz; $f_{z3} = 0$ Hz; $f_{p3} = 97.5$ Hz;)

Esercizio B

Progettare una porta logica in tecnologia CMOS, utilizzando la tecnica della pull-up network e della pull-down network, che implementi la funzione logica:

$$Y = \overline{DE} \left(\overline{A} B + \overline{C} \overline{D} \right) + \overline{A} \overline{B} \overline{D} + A B \overline{E}$$

Determinare il numero dei transistori necessari e disegnarne lo schema completo. Dimensionare inoltre il rapporto (W/L) di tutti i transistori, assumendo, per l'inverter di base, W/L pari a 2 per il MOS a canale n e pari a 5 per quello a canale p. Si specifichino i dettagli della procedura di dimensionamento dei transistori.

Esercizio C

$R_1 = 200 \Omega$	$R_6 = 500 \Omega$
$R_2 = 500 \Omega$	$R_7 = 1 \text{ k}\Omega$
$R_3 = 2 k\Omega$	C = 47 nF
$R_4 = 500 \Omega$	$V_{CC} = 6 V$
$R_5 = 2 k\Omega$	

Il circuito IC_1 è un NE555 alimentato a $V_{CC} = 6V$, Q_1 ha una $R_{on} = 0$ e $V_T = 1V$; l'inverter è ideale. Determinare la frequenza del segnale di uscita del multivibratore in figura. (R: f = 32564 Hz)

ESERCITIO B

$$= (\overline{D} + \overline{E})(\overline{AB} + \overline{CO}) + \overline{ABO} + \overline{ABE} =$$

$$= \widehat{A} \widehat{D} + \widehat{C} \widehat{B} + \widehat{B} \widehat{E} =$$

$$\frac{(W)_{1}}{(V)_{2}} = \rho = 5$$

$$\frac{(W)_{2}}{(V)_{2}} = n = 2$$

$$\frac{(W)_{2}}{(V)_{2}} = n = 2$$

$$\frac{(W)_{2}}{(V)_{2}} = n = 2$$

Serie
$$U_3 - U_5$$
; $U_4 - U_5$; $U_6 - U_7$

$$\frac{1}{x} + \frac{1}{x} = \frac{1}{p} = x = xp = 10$$

$$(\frac{W}{L})_3 = (\frac{W}{L})_5 = (\frac{W}{L})_5 = (\frac{W}{L})_7 = 2p = 10$$

•) PDN
Serie
$$Q_8 - Q_{11} - Q_{12}$$
 oppur $Q_9 - Q_{11} - Q_{12}$
 $\frac{1}{x} + \frac{1}{x} + \frac{1}{x} = \frac{1}{n} = 0$ $x = 3n = 6$
 $(\frac{1}{x})_{3,3,11,12} = 3n = 6$

Serie $Q_{\varphi} - Q_{10}$ ppure $Q_{\varphi} - Q_{10}$ con $Q_{\varphi} = Q_{\varphi}$ giá dinuminti $\frac{1}{x} + \frac{1}{3n} = \frac{1}{n} = 3 \times \frac{3}{2} = 3 \times \frac{3}{2} \times \frac{1}{2} = 3$ ERC 1210 (

$$R_1 = 200R$$

$$R_2 = 500R$$

$$R_3 = 2KR$$

$$R_4 = 500R$$

$$R_5 = 2KR$$

$$R_6 = 500R$$

$$R_7 = 1KR$$

$$C = 47nF$$

$$Vcc = 6V$$

$$V_{1} = \frac{1}{3} V_{CC} = \frac{2V}{2V}$$

$$V_{R_{1}} = V_{CC} \frac{R_{1} + R_{5}}{R_{4} + R_{5} + R_{2} 11 R_{3}} = 5.172 V$$

Se
$$V_{TH} = \frac{2}{3}V_{CC} = 4V$$

$$I_{4} = \frac{V_{TH}}{R_{4+}R_{5}} = I.6 \text{ m.A}$$

$$T_{1} = T_{1} \left(\frac{V_{1} - V_{\ell_{1}}}{V_{0R_{1}} - V_{\ell_{2}}} \right) = 1.378 \times 10^{-5} \text{ S}$$

 $R_{4} = \frac{V_{12}}{R_{3}} = \frac{V_{13}}{V_{60}} = \frac{3.32 \, V}{V_{12} \times V_{60}} \times V_{12} \times V_{12} \times V_{12} \times V_{13} \times V_{1$

RV2= R1+ { R211 R311 [R4+ R511 R6] } = 926.923 S

Tz = (1Ruz = 2.24 x10-5 5

 $T_2 = c_2 \ln \frac{V_{i2} - V_{R}}{V_{40R_2} - V_{R_2}} = 1.693 \times 10^{-5}$

Par Mr T= Tx+12= 3.071 x10-5 s

f= = 32563.9 He