Academic Year: 2014-15

QUESTION BANK FOR MATHEMATICS – I (MA6151)

I-YEAR B.E./ B.TECH. (COMMON TO ALL BRANCHES)

UNIT – I MATRICES PART – A

1. Find the sum and product of the eigen values of the matrix $\begin{bmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ -2 & -1 & 3 \end{bmatrix}$

Ans: Sum of the eigen values = Sum of the main diagonal elements = 1+0+3=4Product of the eigen values = |A| = -13

2. If 3 and 15 are the two eigen values of $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$, find |A|, without expanding the

determinant.

Ans: If λ is the third eigen value of A, then $3 + 15 + \lambda = 8 + 7 + 3 => \lambda = 0$ We know that, |A| = product of eigen values = (0)(3)(15) = 0

3. The product of two eigen values of the matrix $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ is 16. Find the third eigen

value.

Ans: Let λ_1 , λ_2 , λ_3 be the eigen values of the given matrix, then $\lambda_1\lambda_2\lambda_3 = |A|$ $\Rightarrow (16) \lambda_3 = 6(9-1) + 2(-6+2) + 2(2-6)$ [since product of two eigen values is 16] $\Rightarrow (16) \lambda_3 = 32 \Rightarrow \lambda_3 = 2$

4. One of the eigen values of $\begin{bmatrix} 7 & 4 & 4 \\ 4 & -8 & -1 \\ 4 & -1 & -8 \end{bmatrix}$ is -9, Find the other two eigen values.

Ans: If λ_1 , λ_2 be the other two eigen values, then

 $\Rightarrow \lambda_1 + \lambda_2 - 9 = 7 - 8 - 8 = -9$ (since sum of the eigen values = sum of the leading diagonal elements)

$$\Rightarrow \lambda_1 + \lambda_2 = 0 \Rightarrow \lambda_1 = -\lambda_2 \dots (1)$$

 \Rightarrow -9 $\lambda_1\lambda_2 = |A| = 441$ (since product of the eigen values = | A |)

$$\Rightarrow \lambda_1 \lambda_2 = -49 \Rightarrow \lambda_1 = \frac{-49}{\lambda_2} \quad \dots \quad (2)$$

substitute in (1) we get, $\lambda_2 = \pm 7$

(1) $\Rightarrow \lambda_1 = \pm 7$. Hence the other two eigen values are 7 and -7.

5. Find the eigen values of A^2 , if $A = \begin{bmatrix} 3 & 1 & 4 \\ 0 & 2 & 6 \\ 0 & 0 & 5 \end{bmatrix}$

Ans: In a triangular matrix, the main diagonal values are the eigen values of the matrix. Here 3, 2, 5 are the eigen values of A. Hence the eigen values of $A^2 = 3^2$, 2^2 , $5^2 = 9,4,25$.

6. If -2,3,6 are the eigen values of a 3×3 matrix A, then what are the eigen values of $6A^{-1}$ and A^{T} ?

Ans: Eigen values of $A^{-1} = \frac{-1}{2}, \frac{1}{3}, \frac{1}{6}$

: Eigen values of $6A^{-1} = \frac{-6}{2}, \frac{6}{3}, \frac{6}{6} = -3, 2, 1.$

Eigen values of A^{T} = Eigen values of A = -2,3,6

7. State Cayley Hamilton theorem.

Ans: Every square matrix satisfies its own characteristics equation.

8. Given $A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix}$, Find A^{-1} using Cayley – Hamilton theorem.

Ans: The characteristics equation is $|A - \lambda I| = 0$

 $\Rightarrow \lambda^2 - 4 \lambda - 5 = 0$. By Cayley – Hamilton theorem $A^2 - 4 A - 5I = 0$

Pre multiplying by A^{-1} , we get $A - 4I - 5A^{-1} = 0$

 $\therefore A^{-1} = \frac{1}{5}[A - 4I] = \begin{bmatrix} \frac{-3}{5} & \frac{2}{5} \\ \frac{4}{5} & \frac{-1}{5} \end{bmatrix}$

9. If $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$ is an eigen vector of $\begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$, find the corresponding eigen value.

Ans: $(A - \lambda I)X = 0 \Rightarrow \begin{pmatrix} -2 - \lambda & 2 & -3 \\ 2 & 1 - \lambda & -6 \\ -1 & -2 & -\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow \begin{pmatrix} -2 - \lambda & 2 & -3 \\ 2 & 1 - \lambda & -6 \\ -1 & -2 & -\lambda \end{pmatrix} \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

 $(-2-\lambda)(1)+2(2)+(-3)(-1)=0 \implies \lambda=5.$

10. Find the eigen vector of $\begin{pmatrix} 2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2 \end{pmatrix}$ corresponding to the eigen value 2.

Ans: The eigen vectors are given by $(A - \lambda I)X = 0$

$$\Rightarrow \begin{pmatrix} 2 - \lambda & 0 & 1 \\ 0 & 2 - \lambda & 0 \\ 1 & 0 & 2 - \lambda \end{pmatrix} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \\ \mathbf{x}_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$$

When $\lambda = 2$, $\begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \Rightarrow x_3 = 0 \& x_1 = 0$. Therefore the eigenvector is $\begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$

11. Find the constants a and c such that the matrix $\begin{pmatrix} a & 4 \\ 1 & c \end{pmatrix}$ has 3 &-2 as eigen values.

Ans: Sum of the eigen values = Trace of the matrix \Rightarrow a + c = 3-2 = 1----(1) Product of the eigen values = Determinant of the matrix

$$ac-4 = (3)(-2) = -6 \implies ac = -2$$
 : $c = -2/a$

sub c in (1) $a + c = 1 \Rightarrow a + (-2/a) = 1 \Rightarrow a = -1, 2 \Rightarrow c = 2, -1$

12. Determine λ so that $\lambda (x^2 + y^2 + z^2) + 2xy - 2xz + 2zy$ is positive definite.

Ans: The matrix of the given quadratic form is $A = \begin{pmatrix} \lambda & 1 & -1 \\ 1 & \lambda & 1 \\ -1 & 1 & \lambda \end{pmatrix}$

$$D_1 = \lambda$$
, $D_2 = \begin{vmatrix} \lambda & 1 \\ 1 & \lambda \end{vmatrix} = \lambda^2 - 1 = (\lambda + 1)(\lambda - 1) \& D_3 = |A| = (\lambda + 1)^2(\lambda - 2)$

The Quadratic form is positive definite if D_1 , D_2 & $D_3 > 0 \implies \lambda > 2$

13. If λ_1 , λ_2 , λ_3 , ..., λ_n are the eigen values of an n x n matrix A, then show that λ_1^3 , λ_2^3 , λ_3^3 ,..., λ_n^3 are the eigen values of A^3 .

Ams: Let λ_r be the eigen value of A with the eigen vector X_r , then $AX_r = \lambda_r X_r$

Consider,
$$A^3X_r = A^2 (AX_r)$$

 $= A^2 (\lambda_r X_r)$
 $= \lambda_r A(AX_r)$
 $= \lambda_r A(\lambda_r X_r) = \lambda_r^2 (AX_r) = \lambda_r^3 X_r$

14. Determine the nature of the following quadratic form: $f(x_1,x_2,x_3) = x_1^2 + 2x_2^2$.

Ans: The matrix of the given quadratic form is $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

The above matrix is a diagonal matrix, so the diagonal elements are their Eigen values.

(i.e) 1,2,0. Here two eigen values are positive another one is zero,

 \therefore the nature of the quadratic form is positive semi definite.

15. If 1 & 2 are the eigen values of a 2 x 2 matrix A, what are the eigen values of A^2 , adj A and A+7I.

Ans: The eigen values of A^2 are 1^2 , $2^2 = 1$, 4

The eigen values of A+7I are 1+7, 2+7 = 8, 9.

The eigen values of adj A are $\frac{|A|}{1}$, $\frac{|A|}{2} = \frac{2}{1}$, $\frac{2}{2} = 2,1$ [since

$$A^{-1} = \frac{1}{|A|} adjA \Rightarrow adjA = |A|A^{-1} \text{ and } |A| = 2$$

16. Find the characteristic equation of $A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 1 & -1 \\ 1 & -1 & 1 \end{bmatrix}$

Ans: The characteristic equation is $\lambda^3 - S_1 \lambda^2 + S_2 \lambda - S_3 = 0$.

 $S_1 = Sum of the main diagonal elements = 3;$

 $S_2 = Sum \text{ of the minors of the main diagonal elements} = -1$

 $S_3 = |A| = -9$. Therefore the characteristic equation is $\lambda^3 - 3\lambda^2 - \lambda + 9 = 0$.

Find the Rank, index and signature of the Quadratic form whose Canonical form is **17.** $x_1^2 + 2x_2^2 - 3x_3^2$

Ans: Rank (r) = Number of terms in the C.F = 3,

Index (p) = Number of Positive terms in the C.F = 2

Signature (s) = 2p - r = 1

18.

Show that
$$\mathbf{A} = \begin{bmatrix} \mathbf{cos}\theta & \mathbf{sin}\theta \\ -\mathbf{sin}\theta & \mathbf{cos}\theta \end{bmatrix}$$
 is orthogonal.

Ans: $\mathbf{AA}^{\mathrm{T}} = \begin{bmatrix} \mathbf{cos}\theta & \mathbf{sin}\theta \\ -\mathbf{sin}\theta & \mathbf{cos}\theta \end{bmatrix} \begin{bmatrix} \mathbf{cos}\theta & -\mathbf{sin}\theta \\ \mathbf{sin}\theta & \mathbf{cos}\theta \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} = \mathbf{I}$

$$\mathbf{A}^{\mathrm{T}}\mathbf{A} = \begin{bmatrix} \mathbf{cos}\theta & -\mathbf{sin}\theta \\ \mathbf{sin}\theta & \mathbf{cos}\theta \end{bmatrix} \begin{bmatrix} \mathbf{cos}\theta & \mathbf{sin}\theta \\ -\mathbf{sin}\theta & \mathbf{cos}\theta \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} = \mathbf{I}$$

Write the matrix of the quadratic form $3x_1^2 + 5x_2^2 - 5x_3^2 - 2x_1x_2 + 2x_2x_3 + 6x_3x_1$ **19.**

Ans: The matrix of the quadratic form is given by

$$a_{11} = coeff of x_{11} = 3$$

$$a_{22} = \text{coeff of } x_{22} = 5$$

$$a_{33} = \text{coeff of } x_{33} = -5$$

$$a_{12} = a_{21} = \frac{1}{2} (\text{coeff of } x_1 x_2) = \frac{-2}{2} = -1$$

$$a_{13} = a_{31} = \frac{1}{2} (\text{coeff of } x_1 x_3) = \frac{6}{2} = 3$$
 $a_{23} = a_{32} = \frac{1}{2} (\text{coeff of } x_1 x_3) = \frac{2}{2} = 1$

$$a_{23} = a_{32} = \frac{1}{2} (\text{coeff of } x_1 x_3) = \frac{2}{2} = \frac{1}{2}$$

$$\Rightarrow A = \begin{bmatrix} 3 & -1 & 3 \\ -1 & 5 & 1 \\ 3 & 1 & -5 \end{bmatrix}$$

Write down the quadratic form for the given matrix $A = \begin{vmatrix} 2 & 1 & -2 \\ 1 & 3 & -1 \\ -2 & -1 & -4 \end{vmatrix}$ 20.

Ans: Quadratic form is $X^T A X = \begin{bmatrix} \mathbf{x_1} & \mathbf{x_2} & \mathbf{x_3} \end{bmatrix} \begin{bmatrix} 2 & 1 & -2 \\ 1 & 3 & -1 \\ -2 & -1 & -4 \end{bmatrix} \begin{bmatrix} \mathbf{x_1} \\ \mathbf{x_2} \\ \mathbf{x_3} \end{bmatrix}$

$$\Rightarrow 2x_1^2 + 3x_2^2 - 4x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_3x_1$$

PART – B

1(a) Find the eigen values and eigen vectors of the matrix
$$A = \begin{pmatrix} 2 & 0 & -1 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$$

Hints: The Characteristic equation is $|A - \lambda I| = 0$

Characteristic equation: $\lambda^3 - 6 \lambda^2 + 11\lambda - 6 = 0$.

Solve the characteristic equation and get the eigen values $\lambda = 1,2,3$

Eigen vectors are given by $|A - \lambda I| X = 0$

Eigen vectors:
$$\lambda = 1 \Rightarrow X_1 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}; \lambda = 2 \Rightarrow X_2 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}; \lambda = 3 \Rightarrow X_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix};$$

(b) Using Cayley-Hamilton theorem, find
$$A^{-1}$$
 and A^{4} , if $A = \begin{pmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{pmatrix}$

Hints: The Characteristic equation is $|A - \lambda I| = 0$

Characteristic equation: $\lambda^3 - 5\lambda^2 + 9\lambda - 1 = 0$

Cayley-Hamilton theorem states that "Every Square matrix satisfies its own characteristic equation"

$$\Rightarrow$$
 A³ - 5A² + 9A - I = 0

Pre multiplying A on both sides and get $A^4 = 5A^3 - 9A^2 + A$.

Pre multiplying A^{-1} on both sides and get $A^{-1} = A^2 - 5A + 9I$

$$A^{4} = \begin{pmatrix} -55 & 104 & 24 \\ -20 & -15 & 32 \\ 32 & -40 & -23 \end{pmatrix}, \qquad A^{-1} = \begin{pmatrix} 3 & 2 & 6 \\ 1 & 1 & 2 \\ 2 & 2 & 5 \end{pmatrix}$$

2(a) Find the Eigen values and Eigen vectors of the matrix
$$A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$$

Hints: The Characteristic equation is $|A - \lambda I| = 0$

Characteristic equation: $\lambda^3 - 7\lambda^2 + 11\lambda - 5 = 0$

Eigen values $\lambda = 1,1,5$

Eigen vectors:
$$\lambda=5$$
, $X_1=\begin{bmatrix}1\\1\\1\end{bmatrix}$; $\lambda=1$, $X_2=\begin{bmatrix}1\\0\\-1\end{bmatrix}$; $\lambda=1$, $X_3=\begin{bmatrix}0\\1\\-2\end{bmatrix}$

(b) Using Cayley-Hamilton theorem, Evaluate the matrix equation

$$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I \text{ for } A = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$

Hints: The characteristic equation is $|A - \lambda I| = 0$

Characteristic equation: $\lambda^3 - 5\lambda^2 + 7\lambda - 3 = 0$

Cayley-Hamilton theorem states that "Every Square matrix satisfies its own characteristic equation"

$$\Rightarrow A^{3} - 5A^{2} + 7A - 3 = 0$$

$$A^{8} - 5A^{7} + 7A^{6} - 3A^{5} + A^{4} - 5A^{3} + 8A^{2} - 2A + I$$

$$= A^{5} (A^{3} - 5A^{2} + 7A - 3I) + A(A^{3} - 5A^{2} + 7A - 3I) - 15A^{2} + 5A - I$$

$$= -15A^{2} + 5A - I = -11 \begin{pmatrix} 6 & 5 & 5 \\ 0 & -11 & 0 \\ -55 & -55 & -66 \end{pmatrix}$$

Hints: The Characteristic equation is $|A - \lambda I| = 0$

Characteristic equation: $\lambda^3 - 17\lambda^2 + 42\lambda = 0$.

Solve the characteristic equation and get the eigen values $\lambda = 0, 3, 14$

Eigen vectors are given by $|A - \lambda I| X = 0$

Eigen vectors:
$$\lambda = 0 \Rightarrow X_1 = \begin{pmatrix} 1 \\ -5 \\ 4 \end{pmatrix}; \lambda = 3 \Rightarrow X_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}; \lambda = 14 \Rightarrow X_3 = \begin{pmatrix} -3 \\ 1 \\ 2 \end{pmatrix};$$

(b) Find the matrix A whose eigen values are 2, 3 and 6 and eigen vectors are $\{1, 0, -1\}^T$, $\{1, 1, 1\}^T$, $\{1, -2, 1\}^T$

Hints: Since the given eigen vectors $\{1, 0, -1\}^T$, $\{1, 1, 1\}^T$, $\{1, -2, 1\}^T$ are pairwise orthogonal, we know by orthogonal reduction $N^T A N = D$

$$\Rightarrow A = NDN^{T} = \begin{pmatrix} 3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3 \end{pmatrix}$$

4(a) Find the eigen values and eigen vectors of the matrix $\begin{pmatrix} 6 & -6 & 5 \\ 14 & -13 & 10 \\ 7 & -6 & 4 \end{pmatrix}$

Hints: The Characteristic equation is $|A - \lambda I| = 0$

Characteristic equation: $\lambda^3 + 3\lambda^2 + 3\lambda + 1 = 0$.

Solve the characteristic equation and get the eigen values $\lambda = -1, -1, -1$

Eigen vectors are given by $|A - \lambda I|X = 0$

Eigen vectors: $\lambda = -1 \Rightarrow X_1 = \begin{pmatrix} -5 \\ 0 \\ 7 \end{pmatrix}; \lambda = -1 \Rightarrow X_2 = \begin{pmatrix} 6 \\ 7 \\ 0 \end{pmatrix}; \lambda = -1 \Rightarrow X_3 = \begin{pmatrix} 0 \\ 5 \\ 6 \end{pmatrix};$

(b) Verify that $A = \begin{pmatrix} 1 & 2 \\ 2 & -1 \end{pmatrix}$ satisfies its own characteristic equation and hence find A^4

Hints: The Characteristic equation is $|A - \lambda I| = 0$

Characteristic equation : $\lambda^2 - 5 = 0$

Cayley-Hamilton theorem states that "Every Square matrix satisfies its own characteristic equation"

$$\Rightarrow A^2 - 5I = 0$$

Verification: Find A² as $A^2 = \begin{pmatrix} 5 & 0 \\ 0 & 5 \end{pmatrix}$ and then prove $A^2 - 5I = 0$

To find A^4 : Pre multiply A^2 on both sides and get $A^4 - 5A^2 = 0$

$$\Rightarrow A^4 = \begin{pmatrix} 25 & 0 \\ 0 & 25 \end{pmatrix}$$

5 Verify Cayley- Hamilton theorem for the matrix $A = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}$ and also find A^4 and A^{-1}

Hints: The characteristic equation is $|A - \lambda I| = 0$

 \Rightarrow The characteristic Equation is $\lambda^3 - 6\lambda^2 + 8\lambda - 3 = 0$.

Cayley-Hamilton theorem states that "Every Square matrix satisfies its own characteristic equation"

$$\Rightarrow A^3 - 6A^2 + 8A - 3I = 0$$
 ----(1)

To verify Cayley Hamilton theorem, we have to verify $A^3 - 6A^2 + 8A - 3I = 0$

Find A² and A³ as A² =
$$\begin{pmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{pmatrix}$$
; A³ = $\begin{pmatrix} 29 & -28 & 38 \\ -22 & 23 & -28 \\ 22 & -22 & 29 \end{pmatrix}$;

$$A^{3} - 6A^{2} + 8A - 3I = \begin{pmatrix} 29 & -28 & 38 \\ -22 & 23 & -28 \\ 22 & -22 & 29 \end{pmatrix} - 6 \begin{pmatrix} 7 & -6 & 9 \\ -5 & 6 & -6 \\ 5 & -5 & 7 \end{pmatrix} + 8 \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix} - 3 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

⇒ Cayley Hamilton Theorem is verified.

To Find A⁴

Premultiply (1) by A

$$(A^3 - 6A^2 + 8A - 3I)A = 0$$
 $\Rightarrow A^4 - 6A^3 + 8A^2 - 3A = 0$

$$\Rightarrow A^4 = 6A^3 - 8A^2 + 3A$$

$$\Rightarrow A^4 = \begin{pmatrix} 124 & 123 & 162 \\ -95 & 96 & -123 \\ 95 & -95 & 124 \end{pmatrix}$$

To Find A⁻¹

Premultiply (1) by A⁻¹

$$A^{-1}(A^3 - 6A^2 + 8A - 3I) = 0$$
 $\Rightarrow A^2 - 6A + 8I - 3A^{-1} = 0$

$$\Rightarrow$$
 A⁻¹ = A² - 6A + 8I

$$\Rightarrow A^{-1} = \frac{1}{3} \begin{pmatrix} 3 & 0 & -3 \\ 1 & 2 & 0 \\ -1 & 1 & 3 \end{pmatrix}$$

6 Diagonalise the matrix
$$A = \begin{pmatrix} 2 & 0 & 4 \\ 0 & 6 & 0 \\ 4 & 0 & 2 \end{pmatrix}$$
 by means of an orthogonal transformation.

Hints:

 \Rightarrow The characteristic equation is $\lambda^3 - 10\lambda^2 + 12\lambda + 72 = 0$.

$$\Rightarrow \lambda = -2, 6, 6$$

Case (1):
$$\lambda = -2 \implies X_1 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$

Case (2):
$$\lambda = 6 \Rightarrow X_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$$

Let the third eigen vector be $X_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and X_3 should be orthogonal with X_1 and X_2 .

$$X_1^T X_3 = \begin{pmatrix} 1 & 0 - 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \implies (a - c) = 0$$

$$X_2^T X_3 = \begin{pmatrix} 1 & 0 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \implies (a+c) = 0$$

Solving the above equations, we get a = c = 0 and b can take any value.

Choose b = 1 we get $X_3 = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$ Clearly the eigen vectors are pair wise orthogonal.

The Normalised modal matrix are
$$N = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \\ 0 & 0 & 1 \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 \end{bmatrix}$$

$$\mathbf{N}^{\mathrm{T}} \mathbf{A} \, \mathbf{N} = \begin{pmatrix} -2 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 6 \end{pmatrix} = D(-2,6,6)$$

7 Diagonalise the matrix $\begin{pmatrix} 3 & 1 & 1 \\ 1 & 3 & -1 \\ 1 & -1 & 3 \end{pmatrix}$ by means of an orthogonal transformation.

Hints: The characteristic equation is $|A - \lambda I| = 0$

 \Rightarrow The characteristic equation is $\lambda^3 - 9\lambda^2 + 24\lambda - 16 = 0$.

$$\Rightarrow \lambda = 1, 4, 4$$

Case (1):
$$\lambda = 1 \Rightarrow X_1 = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$

Case (2):
$$\lambda = 4 \Rightarrow X_2 = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

Let the third eigen vector be $X_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and X_3 should be orthogonal with X_1 and X_2 .

$$X_1^T X_3 = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \implies (-a+b+c) = 0$$

$$X_2^T X_3 = \begin{pmatrix} 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = 0 \implies (b-c) = 0$$

Solving the above equations, we get $X_3 = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$

Clearly the eigen vectors are pair wise orthogonal.

Clearly the eigen vectors and IThe Normalised modal matrix are $N = \begin{bmatrix} \frac{-1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & -1 & 1 \end{bmatrix}$

$$\mathbf{N}^{\mathrm{T}} \mathbf{A} \, \mathbf{N} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix} = \mathbf{D}(1, 4, 4)$$

8 Reduce quadratic form $8x_1^2 + 7x_2^2 + 3x_3^2 - 12x_1x_2 - 8x_2x_3 + 4x_3x_1$ to canonical form through an orthogonal transformation. Also find the index, nature and rank of the quadratic form.

Hints: The symmetric matrix
$$A = \begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$$

The characteristic equation is $|A - \lambda I| = 0$

- \Rightarrow The characteristic equation is $\lambda^3 18 \lambda^2 + 45\lambda = 0$.
- \Rightarrow $(\lambda)(\lambda-3)(\lambda-15)=0$
- $\Rightarrow \lambda = 0.3,15$
- Case (1): $\lambda = 0 \implies \text{Eigen vector } X_1 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$
- Case (2): $\lambda = 3 \implies \text{Eigen vector } X_2 = \begin{pmatrix} 2 \\ 1 \\ -2 \end{pmatrix}$
- Case (3): $\lambda = 15$ \Rightarrow Eigen vector $X_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$

It is clear that $X_1^T X_2 = X_1^T X_3 = X_2^T X_3 = 0$

- Normalized matrix N= $\begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \end{bmatrix}$
- $\mathbf{N}^{\mathrm{T}}\mathbf{A}\mathbf{N} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{bmatrix} = D (0,3,15)$

Canonical Form is
$$Y^{T}(N^{T}AN)Y = Y^{T}DY = \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 15 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}$$

$$=3y_2^2+15y_3^2$$

Rank (r): 2 (No of non zero rows)

Index (p): 2 (No of Positive terms)

Signature (s) = 2p - r = 2(2) - 2 = 2

Nature: Positive semi definite

9 Reduce the quadratic form $x_1^2 + 2x_2^2 + x_3^2 - 2x_1x_2 + 2x_2x_3$ to canonical Form through an orthogonal transformation and hence show that it is positive semi definite. Also give a non-zero set of values (x_1, x_2, x_3) which makes the quadratic form zero.

Hints: The symmetric matrix
$$A = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 2 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

The characteristic equation is $|A - \lambda I| = 0$

- \Rightarrow The characteristic Equation is $\lambda^3 4 \lambda^2 + 3\lambda = 0$.
- \Rightarrow $(\lambda)(\lambda-1)(\lambda-3)=0$
- $\Rightarrow \lambda = 0,1,3$

Consider
$$\begin{pmatrix} 1-\lambda & -1 & 0 \\ -1 & 2-\lambda & 0 \\ 0 & 1 & 1-\lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = 0$$
 ----(1)

- Case (1): $\lambda = 0$ \Rightarrow Eigen vector is $X_1 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$
- Case (2): $\lambda = 1$ \Rightarrow Eigen vector is $X_2 = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$

Case (3):
$$\lambda = 3$$
 \Rightarrow Eigen vector is $X_3 = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$

It is clear that $X_1^T X_2 = X_1^T X_3 = X_2^T X_3 = 0$

Normalized modal matrix N = $\begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}$

$$\mathbf{N}^{\mathrm{T}}\mathbf{A}\mathbf{N} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} = D (0,1,3)$$

Canonical Form is $Y^{T}(N^{T}AN)Y = Y^{T}DY = \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}$

$$=y_2^2+3y_3^2$$

The orthogonal transformation is

$$X = NY$$

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$$

$$x_1 = \frac{1}{\sqrt{3}}y_1 + \frac{1}{\sqrt{2}}y_2 - \frac{1}{\sqrt{6}}y_3$$
, $x_1 = \frac{1}{\sqrt{3}}y_1 + 0y_2 + \frac{2}{\sqrt{6}}y_3$, $x_1 = \frac{-1}{\sqrt{3}}y_1 + \frac{1}{\sqrt{2}}y_2 + \frac{1}{\sqrt{6}}y_3$

The canonical form contains only two terms both are positive, it is positive semi definite. Quadratic form becomes zero, when $y_2 = 0$, $y_3 = 0$ & y_1 is arbitrary.

Taking
$$y_1 = \sqrt{3}$$
, $y_2 = 0$ & $y_3 = 0$ we get $x_1 = 1$, $x_2 = 1$ & $x_3 = -1$

For these values of $x_1, x_2 & x_3$ the required quadratic form is zero.

10 Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 - 4xy - 2yz + 4xz$ into a canonical form by an orthogonal reduction. Hence find its rank and nature.

Hints: The symmetric matrix $A = \begin{pmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{pmatrix}$

The characteristic equation is $|A - \lambda I| = 0$

- \Rightarrow The characteristic equation is $\lambda^3 12 \lambda^2 + 36\lambda 32 = 0$.
- $\Rightarrow \lambda = 8, 2, 2$

Case (1):
$$\lambda = 8 \implies \text{Eigen vector } X_1 = \begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$$

Case (2):
$$\lambda = 2 \implies \text{Eigen vector } X_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}$$

Case (3) : $\lambda = 2$

Let the third eigen vector be $X_3 = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ and X_3 should be orthogonal with X_1 and X_2

$$X_1^T X_3 = X_2^T X_3 = 0$$

$$\Rightarrow \text{ Eigen vector } X_3 = \begin{pmatrix} -2\\1\\5 \end{pmatrix}$$

Normalized modal matrix N= $\begin{bmatrix} \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{30}} \\ \frac{-1}{\sqrt{6}} & \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{30}} \\ \frac{1}{\sqrt{6}} & 0 & \frac{5}{\sqrt{30}} \end{bmatrix}$

$$\mathbf{N}^{\mathrm{T}}\mathbf{A}\mathbf{N} = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} = \mathbf{D} (8, 2, 2)$$

Canonical Form is
$$Y^{T}(N^{T}AN)Y = Y^{T}DY = \begin{bmatrix} y_{1} & y_{2} & y_{3} \end{bmatrix} \begin{bmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} y_{1} \\ y_{2} \\ y_{3} \end{bmatrix}$$

$$=8y_1^2 + 2y_2^2 + 2y_3^2$$

Rank (r): 3 (No of non zero rows)

Nature: Positive definite.

UNIT - 2 SEQUENCES AND SERIES

PART - A

1. Define Bounded below Sequence

Ans: A Sequence $\{a_n\}$ is said to be bounded below if there exists 'm' in R such that $m \le a_n$ for every n. Here 'm' is called lower bound to the sequence $\{a_n\}$

2. Define Bounded above sequence

Ans: A Sequence $\{a_n\}$ is said to be bounded above if there exists 'M' in R such that $a_n \le M$ for every n. Here 'M' is called upper bound to the sequence $\{a_n\}$

3. Define Bounded Sequence

Ans: A sequence $\{a_n\}$ is said to be bounded when it is bounded below and bounded above

4. Define Monotonically increasing and Monotonically decreasing sequence with examples

Ans: A sequence $\{a_n\}$ is said to be monotonically increasing if $a_n \le a_{n+1}$, for every $n \ge a_n = \{n\}$ is said to be monotonically decreasing if $a_{n+1} \le a_n$, for every $n \ge a_n = \{n\}$ is monotonically increasing

 $a_n = \{-n\}$ is monotonically decreasing

5. Write any two properties of series.

- **Ans:** (1) The convergence of a series is not affected by the suppression of a finite number of its terms
 - (2) If the series $u_1 + u_2 + u_3 \dots$ converges and its sum S, then the series $c u_1 + c u_2 + c u_3 \dots$

where c is some fixed number, also converges, and its sum is c S.

6. Write the Comparison test for convergence

Ans: (a) If there are two series of positive terms $\sum u_n$ and $\sum v_n$ such that

- (i) $\sum v_n$ Converges (ii) $u_n \leq v_n$ for all values of n . Then $\sum u_n$ also converges.
- (b) If there are two series of positive terms $\sum u_n$ and $\sum v_n$ such that
 - (i) $\sum v_n$ Diverges (ii) $v_n \le u_n$ for all values of n . Then $\sum u_n$ also diverges.

7. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n!}$

Ans: Clearly $2^n < n!$ for all n > 3.

$$\Rightarrow \frac{1}{2^n} > \frac{1}{n!} \Rightarrow \sum \frac{1}{n!} < \sum \frac{1}{2^n}$$
 for all $n > 3$

But the series $\sum \frac{1}{2^n}$ is a geometric series with common ratio $r = \frac{1}{2} < 1$ which is convergent.

Hence $\sum_{n=1}^{\infty} \frac{1}{n!}$ is also convergent by comparison test

8. Write the Integral test for convergence

Ans: A positive term series $f(1) + f(2) + f(3) + \dots + f(n) + \dots$ where f(n) decreases as n increases converges or diverges according as the integral $\int_{1}^{\infty} f(x) dx$ is finite or infinite.

9. Test the convergence of $\sum_{1}^{\infty} \frac{1}{n \log n}$

Ans: $\sum_{1}^{\infty} \frac{1}{n \log n}$ is a positive term series decreases as n increases after $n \ge 2$.

So we can apply integral test.

$$\int_{2}^{\infty} \frac{1}{x \log x} dx = \int_{2}^{\infty} \frac{(1/x)}{\log x} dx = \left[\log(\log x) \right]_{2}^{\infty} = \infty$$

By integral test, the series diverges.

10. Write D' Alembert's Ratio Test for convergence

Ans: The series of $\sum u_n$ of positive terms is convergent if $\lim_{n\to\infty}\frac{u_{n+1}}{u_n}<1$ and diverges if

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}>1$$

11. Test the convergence of $\sum \frac{n! \, 2^n}{n^n}$

Ans: Let
$$u_n = \frac{n! \, 2^n}{n^n}$$
, $u_{n+1} = \frac{(n+1)! \, 2^{(n+1)}}{(n+1)^{(n+1)}}$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \left(\frac{(n+1)! \ 2^{(n+1)}}{(n+1)^{(n+1)}} \right) \left(\frac{n^n}{n! \ 2^n} \right)$$

$$= \lim_{n \to \infty} \left(2 \left(\frac{n}{n+1} \right)^n \right) = \lim_{n \to \infty} \left(2 \left(\frac{1}{1+\frac{1}{n}} \right)^n \right) = \frac{2}{e} < 1$$

By Ratio Test, $\sum \frac{n! \, 2^n}{n^n}$ converges.

12. Show that the series $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$ is a convergent series.

Ans: The terms of the given series are alternately positive and negative.

Clearly 1.
$$1 > \frac{1}{\sqrt{2}} > \frac{1}{\sqrt{3}} > \frac{1}{\sqrt{4}} > ...$$
(numerically)

2. Here
$$u_n = \frac{1}{\sqrt{n}}$$
; $\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{\sqrt{n}} = 0$

Hence by Leibnitz's rule the given series is convergent.

13. Write the Leibnitz's test for convergence

Ans: An alternating series $u_1 - u_2 + u_3 - u_4 + \dots$ converges if

- (i) Each term is numerically less than its preceding term (i.e.) $u_1 > u_2 > u_3$
- (ii) $\lim_{n\to\infty} u_n = 0$
- 14. Define Absolute convergence

Ans: If the series of arbitrary terms $u_1 + u_2 + u_3 + \dots + u_n + \dots$ be such that the series $|u_1| + |u_2| + |u_3| + \dots + |u_n| + \dots$ is convergent, then the series $\sum u_n$ is said to be absolute convergent

15. Define Conditional convergence

Ans: If $\sum u_n$ is convergent and $\sum |u_n|$ is divergent, then $\sum u_n$ is said to be conditionally convergent.

16. Test the convergence of the series $5 - 4 - 1 + 5 - 4 - 1 + 5 - 4 - 1 + \dots$

Ans: For the given series $S_n = 5 - 4 - 1 + 5 - 4 - 1 + 5 - 4 - 1 + \dots$ to n terms

= 0, 5, 1 according to the number of terms are 3n,3n+1,3n+2

 $\lim_{n \to \infty} S_n =$ does not tend to a unique limit

Clearly the series oscillates finitely

Test the convergence of the series $\frac{5}{2} - \frac{7}{4} + \frac{9}{6} - \frac{11}{8} + \dots$ **17.**

Ans: Clearly the series is an alternating series. It is of the form $\sum (-1)^n u_n$ where

$$\begin{split} u_n &= \frac{2n+3}{2n} \\ & \Rightarrow u_{n+1} = \frac{2n+5}{2n+2} \quad \text{and} \quad u_n - u_{n+1} = \frac{2n+3}{2n} - \frac{2n+5}{2n+2} = \frac{6}{2n(2n+2)} > 0 \;, \forall n \\ & \Rightarrow \lim_{n \to \infty} u_n = 1 \neq 0 \end{split}$$

By Leibnitz Rule, The given series oscillates

Test the convergence of the series $\frac{1}{12} - \frac{1}{34} + \frac{1}{72} - \dots$ 18.

Ans: Clearly the series is an alternating series. It is of the form $\sum (-1)^{n-1} u_n$ where

$$u_n = \frac{1}{(2n-1)(2n)}$$

$$\Rightarrow u_{n+1} = \frac{1}{(2n+1)(2n+2)} \text{ and } u_n > u_{n+1}, \forall n$$

$$\Rightarrow \lim_{n \to \infty} u_n = 0$$

By Leibnitz Rule, The given series is converges Prove that $\frac{\sin x}{1^3} - \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3} - \dots$ converges absolutely. 19.

Ans: The series $\frac{\sin x}{1^3} - \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3} - \dots$ is an alternating series

It is of the form $\sum (-1)^{n-1} u_n$ where $u_n = \frac{\sin nx}{n^3}$

clearly
$$|u_n| = \left| \frac{\sin nx}{n^3} \right| \le \frac{1}{n^3} \ \forall n.$$

Clearly $\sum \frac{1}{n^3}$ is convergent. By comparison test $\sum |u_n|$ also converges.

⇒ Given series is absolutely convergent.

20. Test the convergence of the series
$$\log 2 + \log \left(\frac{3}{2}\right) + \log \left(\frac{4}{3}\right) + \log \left(\frac{5}{4}\right) + \dots$$

Ans: For the given series $S_n = \log 2 + \log \left(\frac{3}{2}\right) + \log \left(\frac{4}{3}\right) + \log \left(\frac{5}{4}\right) + \dots + \log \left(\frac{n+1}{n}\right)$ $=\log \left[2\left(\frac{3}{2}\right)\left(\frac{4}{3}\right)\left(\frac{5}{4}\right).....\left(\frac{n+1}{n}\right)\right] = \log(n+1)$

$$\lim_{n\to\infty} S_n = \infty$$

⇒ The Series is divergent.

PART B

1(a) Discuss the convergence of the series $\sum \frac{\sqrt{2n^2 - 5n + 1}}{4n^3 - 7n^2 + 2}$

Hints: We have
$$u_n = \sum \frac{\sqrt{2n^2 - 5n + 1}}{4n^3 - 7n^2 + 2}$$

Choose
$$v_n = \frac{1}{n^2}$$

As
$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\sqrt{2n^2 - 5n + 1}}{4n^3 - 7n^2 + 2} \times n^2$$
$$= \frac{\sqrt{2}}{4} \text{ (a finite quantity)}$$

So both $\sum u_n$ and $\sum v_n$ converge or diverge together. But $\sum v_n$ converges so $\sum u_n$ also converges.

(b) Show that the series $e^{-1} + 2e^{-2} + 3e^{-3} + ... + ne^{-n} + ...$ converges.

Hints: Here $f(x) = xe^{-x}$

Then
$$\sum_{n=1}^{\infty} f(n) = \sum_{n=1}^{\infty} ne^{-n}$$

f(x) > 0 and is decreasing in $[1, \infty)$

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} xe^{-x} dx = 2e^{-1} = \frac{2}{e} \text{(finite)}$$

$$\int_{1}^{\infty} f(x) dx \text{ converges.}$$

∴ By Integral test, $\sum_{1}^{\infty} f(n)$ also converges.

2(a) Show that the harmonic series $\sum \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$

Hints: Case (i) when p > 1

$$\frac{1}{1^{p}} = 1, \frac{1}{2^{p}} + \frac{1}{3^{p}} < \frac{1}{2^{p}} + \frac{1}{2^{p}} = \frac{1}{2^{p-1}} \qquad \qquad \because \frac{1}{3^{p}} < \frac{1}{2^{p}} \\
\frac{1}{4^{p}} + \frac{1}{5^{p}} + \frac{1}{6^{p}} + \frac{1}{7^{p}} < \frac{1}{4^{p}} + \frac{1}{4^{p}} + \frac{1}{4^{p}} + \frac{1}{4^{p}} = \frac{1}{4^{p-1}} = \frac{1}{\left(2^{p-1}\right)^{2}}$$

$$\because \frac{1}{5^p} < \frac{1}{4^p}, \frac{1}{6^p} < \frac{1}{4^p} etc.$$

Similarly, the sum of next eight terms

$$\frac{1}{8^{p}} + \frac{1}{9^{p}} + \dots + \frac{1}{15^{p}} < \frac{1}{8^{p}} + \frac{1}{8^{p}} + \dots + \frac{1}{8^{p}} = \frac{1}{8^{p-1}} = \frac{1}{(2^{p-1})^{3}}$$

$$\sum \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots + \frac{1}{n^p} + \dots$$

$$= \frac{1}{1^p} + \left(\frac{1}{2^p} + \frac{1}{3^p}\right) + \left(\frac{1}{2^p} + \frac{1}{3^p} + \frac{1}{4^p} + \frac{1}{5^p}\right) + \dots - (1)$$

Each term of (1) after the first is less than the corresponding term in

$$=1+\frac{1}{2^{p-1}}+\frac{1}{(2^{p-1})^2}+\dots$$

But (2) is a G.P. whose common ratio = $\frac{1}{2^{p-1}}$ =1

 \therefore (2) is convergent \Rightarrow (1) is convergent

Case (ii) when p=1

$$\sum \frac{1}{n^{p}} = \sum \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$$

$$1 + \frac{1}{2} = 1 + \frac{1}{2}, \quad \frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2}, \quad \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2}$$

$$\sum \frac{1}{n} = 1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) \dots$$

$$(1)$$

Each term of (1) after the second is greater than the corresponding term is

$$=1+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\dots$$
 (2)

But after the second term (2) is a G.P whose common ratio = 1

 \therefore (2) is divergent \Rightarrow (1) is divergent

Case (iii) When p < 1

$$p < 1 \implies n^p < n \implies \frac{1}{n^p} > \frac{1}{n} \quad \forall n$$

But the series $\sum \frac{1}{n}$ is divergent (by case (ii)). Hence $\sum \frac{1}{n^p}$ is also divergent

(b) Using D'Alembert's ratio test show that $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$ converges.

Hints:

$$u_{n} = \frac{n^{2}}{2^{n}}$$

$$u_{n+1} = \frac{(n+1)^{2}}{2^{n+1}}$$

$$\therefore \frac{u_{n+1}}{u_{n}} = \frac{(n+1)^{2}}{2^{n+1}} \times \frac{2^{n}}{n^{2}} = \frac{1}{2} \left(1 + \frac{1}{n}\right)^{2}$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_{n}} = \frac{1}{2} < 1$$

 \therefore By D'Alembert's ratio test, $\sum u_n$ is a convergent series.

3(a) Discuss the convergence of the series $\sum_{n=2}^{\infty} \frac{1}{n (\log n)^p}, (p > 0)$

Hints: Here
$$u_n = \frac{1}{n (\log n)^p}$$
 $\therefore f(x) = \frac{1}{x (\log x)^p}$

For $x \ge 2$, p > 0, f(x) is +ve and monotonic decreasing.

... By Cauchy's Integral test $\sum_{n=2}^{\infty} u_n$ as $\int_{2}^{\infty} f(x) dx$ is finite or infinite.

Case (i) when $p \neq 1$

$$\int_{2}^{\infty} f(x) dx = \int_{2}^{\infty} (\log x)^{-p} \frac{dx}{x} = \left[\frac{(\log x)^{-p+1}}{-p+1} \right]_{2}^{\infty}$$

Sub case (i)

when p > 1, p - 1 is +ve, so that

$$\int_{2}^{\infty} f(x) dx = -\frac{1}{p-1} \left[\frac{1}{(\log x)^{p-1}} \right]_{2}^{\infty} = -\frac{1}{p-1} \left[\frac{1}{(\log 2)^{p-1}} \right] = finite$$

$$\Rightarrow \int_{2}^{\infty} f(x) dx \text{ is finite } \Rightarrow \sum_{n=2}^{\infty} u_{n} \text{ converges}$$

Sub case (ii)

when p < 1, 1-p is +ve, so that

$$\int_{2}^{\infty} f(x) dx = \frac{1}{1-p} \left[(\log x)^{1-p} \right]_{2}^{\infty} = \frac{1}{1-p} \left[\infty - (\log 2)^{1-p} \right] = \infty$$

$$\Rightarrow \int_{2}^{\infty} f(x) dx \text{ is inf inite } \Rightarrow \sum_{n=2}^{\infty} u_{n} \text{ diverges}$$

Case (ii)

when
$$p=1$$
, $f(x) = \frac{1}{x (\log x)}$

$$\int_{2}^{\infty} f(x) dx = \int_{2}^{\infty} \frac{dx}{x \log x} = \left[\log (\log x) \right]_{2}^{\infty} = \infty$$

$$\Rightarrow \int_{2}^{\infty} f(x) dx \text{ is inf inite } \Rightarrow \sum_{n=2}^{\infty} u_{n} \text{ diverges}$$

Hence $\sum_{n=2}^{\infty} u_n$ converges if p > 1 and diverges 0 .

(b) Test the convergence of the series $\sin \pi + \frac{1}{4} \sin \frac{\pi}{2} + \frac{1}{9} \sin \frac{\pi}{3} + ...$ using Intergral test Hints:

Let
$$f(x) = \frac{1}{x^2} \sin \frac{\pi}{x}$$

$$\sum_{n=1}^{\infty} f(n) = \sum_{n=1}^{\infty} \frac{1}{n^2} \sin \frac{\pi}{n}$$

$$\int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} \frac{1}{x^2} \sin \frac{\pi}{x} = \frac{2}{\pi} \text{(finite)}$$

$$\therefore \int_{1}^{\infty} f(x) dx \text{ converges.}$$

∴ By Integral test, $\sum_{n=1}^{\infty} f(n)$ also converges.

4(a) Test the convergence of the series $1 + \frac{2}{5}x + \frac{6}{9}x^2 + \frac{16}{17}x^3 + ... + \frac{2^n - 2}{2^n + 1}x^{n-1} + ..., x > 0$ Hints:

The general term
$$u_n = \frac{2^n - 2}{2^n + 1} x^{n-1}$$
, $u_{n+1} = \frac{2^{n+1} - 2}{2^{n+1} + 1} x^n$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \left[\frac{2^{n+1} - 2}{2^{n+1} + 1} \cdot \frac{x^n}{2^n - 2} \cdot \frac{2^n + 1}{x^{n-1}} \right]$$

$$= \lim_{n \to \infty} \left(\left(\frac{2 - \frac{2}{2^n}}{2 + \frac{1}{2^n}} \right) \left(\frac{1 + \frac{1}{2^n}}{1 - \frac{2}{2^n}} \right) (x) \right) = \left(\left(\frac{2 - 0}{2 + 0} \right) \left(\frac{1 + 0}{1 - 0} \right) (x) \right) = x$$

Thus by Ratio test $\sum u_n$ converges if x<1 and diverges for x >1 But it fails when x=1

So let x=1 then
$$u_n = \frac{2^n - 2}{2^n + 1}$$

$$\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1 - \frac{2}{2^n}}{1 + \frac{1}{2^n}} = 1 \neq 0$$

 $\therefore \sum u_n \text{ diverges when } x = 1$

Hence the given series converges for x < 1 and diverges for $x \ge 1$

(b) Test for convergence $\sum_{n=1}^{\infty} \sqrt{n^4 + 1} - n^2$ by Comparison test

Hints:

Here
$$\sum_{n=1}^{\infty} \sqrt{n^4 + 1} - n^2 = \frac{1}{\sqrt{n^4 + 1} + n^2}$$

Choose $v_n = \frac{1}{n^2}$

$$\sum v_n = \sum \frac{1}{n^2}$$
 is convergent

$$\lim_{n\to\infty}\frac{u_n}{v_n}=\frac{1}{2}(\text{finite})$$

Since $\sum v_n$ is convergent $\sum u_n$ is also convergent.

5(a) Examine the convergence of the series $\sum_{1}^{\infty} \frac{n}{(n+1)(n+2)} x^n$

Hints: The general term $u_n = \frac{n}{(n+1)(n+2)}x^n$, $u_{n+1} = \frac{n+1}{(n+2)(n+3)}x^{n+1}$

$$\lim_{n\to\infty}\frac{u_{n+1}}{u_n}=\lim_{n\to\infty}\left(\frac{n+1}{(n+2)(n+3)}x^{n+1}\right)\left(\frac{(n+1)(n+2)}{n}\frac{1}{x^n}\right)$$

$$= \lim_{n \to \infty} \frac{(n+1)^2}{n(n+3)} x = \lim_{n \to \infty} \frac{\left(1 + \frac{1}{n}\right)^2}{\left(1 + \frac{3}{n}\right)} = x$$

 $\therefore \sum u_n$ is convergent if x < 1, if x > 1, $\sum u_n$ diverges

If x=1, the series becomes
$$u_n = \frac{n}{(n+1)(n+2)}$$

Choose
$$v_n = \frac{1}{n}$$

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \left(\frac{n}{(n+1)(n+2)} \right) \left(\frac{n}{1} \right)$$

$$= \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right)} = 1 \text{ (a finite quantity)}$$

Both $\sum u_n \& \sum v_n$ behave alike, but $\sum v_n = \sum \frac{1}{n}$ is divergent

- $\therefore \sum u_n$ also divergent by comparison test
- (b) Test the convergence of the series $\frac{x}{1+x} \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} \frac{x^4}{1+x^4}$...(0 < x < 1). Hints: The given series is an alternating series.

$$u_{n} = \frac{x^{n}}{1+x^{n}}$$

$$\therefore u_{n+1} = \frac{x^{n+1}}{1+x^{n+1}}$$

$$u_{n} - u_{n+1} = \frac{x^{n}}{1+x^{n}} - \frac{x^{n+1}}{1+x^{n+1}}$$

$$= \frac{x^{n}(1-x)}{(1+x^{n})(1+x^{n+1})}$$

when x is + ve and less than 1, 1-x < 1 and also $u_{n+1} < u_n$

- $\therefore \lim_{n\to\infty} u_n = 0$
- ∴ By Leibnitz's test, The series is convergent.
- 6(a) Test the convergence of the series $\sum_{n=1}^{\infty} \left[\frac{1}{\sqrt{n} + \sqrt{n+1}} \right]$

Hints: We have
$$u_n = \left[\frac{1}{\sqrt{n} + \sqrt{n+1}}\right]$$

$$= \frac{1}{n+1-n} \left[\sqrt{n+1} - \sqrt{n}\right] = \sqrt{n+1} - \sqrt{n}$$

$$= \sqrt{n} \left[\left(1 + \frac{1}{n}\right)^{1/2} - 1\right] = \sqrt{n} \left[1 + \frac{1}{2n} - \frac{1}{8n^2} + \dots - 1\right]$$

$$= \frac{1}{\sqrt{n}} \left[\frac{1}{2} - \frac{1}{8n} + \dots\right]$$

Choose
$$v_n = \frac{1}{\sqrt{n}}$$

As
$$\lim_{n\to\infty} \frac{u_n}{v_n} = \lim_{n\to\infty} \left(\frac{1}{2} - \frac{1}{8n} + \dots\right) = \frac{1}{2}$$
 (a finite quantity)

So both $\sum u_n$ and $\sum v_n$ converge or diverge together but $\sum v_n$ diverges so $\sum u_n$ also diverges.

(b) Discuss the convergence and divergence of the following series:

$$\frac{1}{2^3} - \frac{1}{3^3} (1+2) + \frac{1}{4^3} (1+2+3) - \frac{1}{5^3} (1+2+3+4) + \dots$$

Hints: The given series is an alternating series.

$$u_n = \frac{1+2+3+...+n}{(n+1)^n} = \frac{n}{2(n+1)^2}$$

$$u_n - u_{n+1} = \frac{-n^2 + n + 1}{2n^2(n+1)^2} < 0 \text{ for } n > 1$$

Also
$$\lim_{n\to\infty} u_n = 0$$

 \therefore By Leibnitz's test, The series is convergent.

7(a) Examine the series $1 - \frac{x^2}{2^2} + \frac{x^4}{2^2 4^2} - \frac{x^6}{2^2 4^2 6^2} + \dots$ for absolute convergence.

Hints: We have
$$\sum u_n = \sum (-1)^n \frac{x^{2n}}{2^2 4^2 6^2 ... (2n)^2}$$

$$\left| u_{n} \right| = \frac{\left| x \right|^{2n}}{2^{2} 4^{2} 6^{2} ... (2n)^{2}} ; \left| u_{n+1} \right| = \frac{\left| x \right|^{2n+2}}{2^{2} 4^{2} 6^{2} ... (2n)^{2} (2n+2)^{2}}$$

$$\frac{\left|u_{n+1}\right|}{\left|u_{n}\right|} = \frac{\left|x\right|^{2n+2}}{2^{2} 4^{2} 6^{2} ... (2n)^{2} (2n+2)^{2}} \frac{2^{2} 4^{2} 6^{2} ... (2n)^{2}}{\left|x\right|^{2n}} = \frac{\left|x\right|^{2}}{(2n+2)^{2}}$$

$$\lim_{n \in \mathbb{Y}} \frac{\left| u_{n+1} \right|}{\left| u_{n} \right|} = \frac{\left| x \right|^{2}}{(2n+2)^{2}} = 0 < 1$$

Hence by Ratio test $\sum |u_n|$ is convergent for all values of x.

i.e. $\sum u_n$ is convergent absolutely for all values of x.

(b) Test the convergence of the series $\sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{2.4.6...2n} .x^{n-1}, x > 0 \text{ by Ratio test.}$

Here
$$u_n = \frac{1.3.5...(2n-1)}{2.4.6.2n} x^{n-1}$$

$$\frac{u_n}{u_{n+1}} = \frac{2n+2}{2n+1} \frac{1}{x}$$

$$\therefore \lim_{n\to\infty} \frac{u_n}{u_{n+1}} = \frac{1}{x}$$

If $\frac{1}{x} > 1$ i.e., if x < 1 then by ratio test, $\sum u_n$ converges.

If $\frac{1}{x} < 1$ i.e., if x > 1 then by ratio test, $\sum u_n$ diverges.

If x = 1, the ratio test fails.

when x = 1, we have $u_n = \frac{1}{2} < 1$

$$\therefore \lim_{n\to\infty} u_n \neq 0$$

... The series is divergent.

8(a) Test the convergence of the series $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots$ by Comparison test

Hints:
$$u_n = \frac{1}{n(n+1)(n+2)}$$
 Take $v_n = \frac{1}{n^3}$

We have $\lim_{n\to\infty} \frac{u_n}{v_n} = 1$, finite & non zero

 $\therefore \sum u_n \& \sum v_n$ converges or diverges together.

But the series $\sum v_n = \sum \frac{1}{n^3}$ is convergent.

so $\sum u_n$ also convergent.

(b) Test for the convergence of the series $\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots$ by D' Alembert's ratio test

Hints: Here
$$u_n = \frac{x^n}{n(n+1)}$$

$$\frac{u_n}{u_{n+1}} = \frac{n}{n+2} x$$

$$\therefore \lim_{n\to\infty} \frac{u_n}{u_{n+1}} = x$$

If x > 1, $\sum u_n$ diverges.

If $x < 1, \sum u_n$ converges.

If x = 1, the ratio test fails.

when x = 1, we have $u_n = \frac{1}{n(n+1)}$

Take
$$v_n = \frac{1}{n^2}$$

$$\therefore \lim_{n \to \infty} u_n = 1 \neq 0$$

By Comparison test, both $\sum u_n$ and $\sum v_n$ will converge or diverge.

But $\sum v_n = \frac{1}{n^2}$ is a convergent series.

 \therefore The series $\sum u_n$ is convergent.

9(a) Test for the convergence, absolute convergence and conditional convergence of the series $1 - \frac{1}{4} + \frac{1}{7} - \frac{1}{10} + ...$

Hints:

$$u_n = \frac{1}{3n-2}$$

Clearly (i)
$$1 > \frac{1}{4} > \frac{1}{7} > \frac{1}{10} > \dots$$

$$(ii) \lim_{n \to \infty} u_n = 0$$

∴ By Leibnitz's test the given series is convergent.

$$\sum_{n=1}^{\infty} |u_n| = \sum_{n=1}^{\infty} \frac{1}{3n-2}$$

Let
$$v_n = \frac{1}{n}$$
. $\therefore \sum v_n$ is divergent.

$$\therefore \sum_{n=1}^{\infty} |u_n| \text{ is also divergent.}$$

- \therefore The given series is convergent but $\sum_{n=1}^{\infty} |u_n|$ is divergent.
- \therefore The given series converges conditionally.
- (b) Test the series $1 \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} \frac{1}{4\sqrt{4}} + \dots$ for
 - (i) absolute convergence
 - (ii) conditional convergence

Hints:

The given series is an alternating series with $u_n = \frac{1}{n\sqrt{n}}$

Clearly (i)
$$1 > \frac{1}{2\sqrt{2}} > \frac{1}{3\sqrt{3}} > \frac{1}{4\sqrt{4}} > \dots$$
 (numerically) (ii) $\lim_{n \to \infty} u_n = 0$

.. By Leibnitz's test the given series is convergent.

Now
$$\sum_{n=1}^{\infty} |u_n| = \sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$$
 is convergent.

... The given series is absolute convergent.

10(a) Test for the convergence of $\sum_{n=1}^{\infty} (-1)^n (n+1)x^n, x < \frac{1}{2}$

Hints:

$$u_n = (n+1)x^n$$

Now
$$\lim_{n\to\infty} \frac{|u_n|}{|u_{n+1}|} = |x| < \frac{1}{2}$$

By ratio test,

The series
$$\sum |u_n|$$
 is convergent, $x < \frac{1}{2}$

.. The given series is absolutely convergent and hence convergent.

(b) Test the convergence of the series
$$\sum_{n=0}^{\infty} ne^{-n^2}$$

Hints

Let
$$\sum_{1}^{\infty} ne^{-n^2} = \sum_{n=1}^{\infty} f(n)$$

f(x) > 0 and decreasing in $[1, \infty)$

$$\therefore \int_{1}^{\infty} f(x) dx = \int_{1}^{\infty} x e^{-x^2} dx = \frac{1}{4e}$$

$$\int_{1}^{\infty} f(x) dx \text{ converges.}$$

Hence $\sum_{n=1}^{\infty} f(n)$ also converges.

UNIT – III APPLICATIONS OF DIFFERENTIAL CALCULUS

1. Find the radius of curvature at $x = \frac{\pi}{2}$ on the curve $y = 4\sin x$

Ans:
$$y = 4\sin x$$

Differentiating w.r.t x,

$$y_1 = 4\cos x, \ y_2 = -4\sin x$$

At
$$x = \frac{\pi}{2}$$
, $y_1 = 0$, and $y_2 = -4$

The radius of curvature is
$$\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_2} = \frac{(1+0)^{\frac{3}{2}}}{-4} = -\frac{1}{4}$$
 \therefore $\rho = \frac{1}{4}$

2. Find the radius of curvature of $y = e^x$ at the point where the curve cuts the y axis.

Ans: The curve $y = e^x$ cuts the y axis at x = 0

$$y_1 = e^x$$
, and $y_2 = e^x$

At
$$x = 0$$
, $y_1 = 1$ and $y_2 = 1$

The radius of curvature is
$$\rho = \frac{(1+y_1^2)^{\frac{3}{2}}}{y_2} = \frac{(1+1)^{\frac{3}{2}}}{1} = 2^{3/2} = 2\sqrt{2}$$

3. Find the curvature of the curve $x^2 + y^2 - 2x - 4y - 4 = 0$

Ans: The general circle equation is $x^2 + y^2 + 2gx + 2fy + c = 0$, $r = \sqrt{f^2 + g^2 - c}$ Given curve is a circle 2g = -2, 2f = -4, c = -4 \therefore g = -1, f = -2

:. The radius
$$r = \sqrt{(-1)^2 + (-2)^2 + 4} = 3$$

... The radius of curvature = Radius of the circle = 3 Hence the curvature = 1/r = 1/3

4. Find the radius of curvature at any point on $y = c \log \left(\sec \left(\frac{x}{c} \right) \right)$

Ans: $y_1 = c \frac{1}{\sec\left(\frac{x}{c}\right)} \sec\left(\frac{x}{c}\right) \tan\left(\frac{x}{c}\right) \frac{1}{c} = \tan\left(\frac{x}{c}\right), \quad y_2 = \frac{1}{c} \sec^2\left(\frac{x}{c}\right)$

$$\rho = \frac{\left(1 + \tan^2\left(\frac{x}{c}\right)\right)^{3/2}}{\frac{1}{c}\sec^2\left(\frac{x}{c}\right)} = c\sec\left(\frac{x}{c}\right)$$

5. Find the centre of curvature of $y = x^2$ at the origin

Ans: $y = x^2$

$$y_1 = 2x$$
, $y_1|_{(0,0)} = 0$; $y_2 = 2$, $y_2|_{(0,0)} = 2$

$$\overline{x} = x - \frac{y_1}{y_2} (1 + y_1^2) = 0;$$
 $\overline{y} = y + \frac{1}{y_2} (1 + y_1^2) = \frac{1}{2}$

- \therefore The centre of curvature is $\left(0,\frac{1}{2}\right)$
- 6. Define the curvature of a plane curve and what is the curvature of a straight line?Ans: The rate of bending of a curve is called curvature. Curvature of straight line is zero.
- 7. Find the curvature of the curve $2x^2 + 2y^2 + 5x 2y + 1 = 0$ Ans: Radius of the circle $= \sqrt{f^2 + g^2 c} = \sqrt{\frac{25}{16} + \frac{1}{4} \frac{1}{2}} = \frac{\sqrt{21}}{4} = \text{radius of curvature}$
 - $\therefore \text{Curvature} = \frac{1}{\rho} = \frac{4}{\sqrt{21}}$
- 8. Define Evolute.Ans: The locus of centre of curvature of a curve is called Evolute.
- 9. State any two properties of evolute.

 Ans:
 - (i) The normals drawn to a curve become tangents to its evolute.
 - (ii) The difference between the radii of curvature at two points of a curve is equal to the arc length of the evolute between the two corresponding points.
- 10. Find the centre of curvature of the curve $y = x^2$ at the point (1,-1)

Ans:
$$\bar{x} = x - \frac{y_1}{y_2} (1 + y_1^2) = -4; \quad \bar{y} = y + \frac{(1 + y_1^2)}{y_2} = \frac{3}{2}$$

- \therefore Centre of curvature is $\left(-4, \frac{3}{2}\right)$
- 11. Find the evolute of the curve whose centre of curvature of the curve is

$$\overline{x} = 2a + 3at^2$$
, $\overline{y} = -2at^3$

Ans:
$$\left(\frac{\bar{x}-2a}{3a}\right)^3 = t^6 = \left(\frac{\bar{y}}{2a}\right)^2 \Rightarrow 27ay^2 = 4(\bar{x}-2a)^3$$

- \therefore Equation of the evolute is $27ay^2 = 4(x-2a)^3$
- 12. Find the curvature at (3,-4) for the curve $x^2+y^2=25$

Ans: Radius = 5, \therefore The curvature at any point is 1/5

13. Find the envelope of the family of lines $\frac{x}{t} + yt = 2c$, t being the parameter.

Ans:
$$\frac{x}{t} + yt = 2c$$
 -----(1)

Diff. w.r.to 't' partially, we get $-\frac{x}{t^2} + y = 0$

$$t^2 = \frac{x}{y} \Rightarrow t = \sqrt{\frac{x}{y}} - ----(2)$$

Using (2) in (1), we get $xy = c^2$

14. Find the envelope of $(x-\alpha)^2 + y^2 = 4\alpha$, α being the parameter.

Ans:
$$(x-\alpha)^2 + y^2 = 4\alpha$$
 ----- (1)

Differentiating partially w.r.to α , we get

$$2(x-\alpha)(-1) = 4 \Rightarrow \alpha = x + 2$$

Substituting α in (1), we get

 $(-2)^2 + y^2 = 4(x+2)$ \Rightarrow $y^2 = 4(x+1)$ is the required envelope.

15. Find the envelope of the family of straight lines $x \cos \alpha + y \sin \alpha = a \sec \alpha$, α being the parameter.

Ans: $x \cos \alpha + y \sin \alpha = a \sec \alpha$ ----(1)

Dividing by, $\cos \alpha$ we get

$$x + y \tan \alpha = a(1 + \tan^2 \alpha)$$

 $a(\tan^2\alpha) - y \tan\alpha + a - x = 0$ which is quadratic in $\tan\alpha$

$$\therefore$$
 The envelope is $B^2 - 4AC = 0$

$$(-y)^2 - 4a(a-x) = 0 \implies y^2 = 4a(a-x)$$

16. Find the envelope of the family of lines $(x/a) \cos\theta + (y/b) \sin\theta = 1$, θ being the parameter.

Ans: $(x/a) \cos\theta + (y/b) \sin\theta = 1$ -----(1)

Diff. w.r.to ' θ ' partially, we get

$$-(x/a)\sin\theta + (y/b)\cos\theta = 0$$
 -----(2)

$$(1)^{2} + (2)^{2} \implies \frac{x^{2}}{a^{2}} (\cos^{2}\theta + \sin^{2}\theta) + \frac{y^{2}}{b^{2}} (\sin^{2}\theta + \cos^{2}\theta) = 1 \implies \frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1$$

17. Find the envelope of the family of straight lines y = mx + a/m, m being the parameter

Ans: Given
$$y = mx + a/m$$
----(1)

$$my = m^2x + a$$

 m^2x -my + a = 0 which is quadratic in m

 \therefore The envelope of (1) is $B^2 - 4AC = 0$ (i.e.) $y^2 = 4ax$

18. Find the radius of curvature of the parabola $y^2 = 4ax$ at y = 2a

Ans:
$$y = 2a \Rightarrow x = a$$

$$y_1 = \frac{2a}{y}$$
, $y_1|_{(a,2a)} = 1$ and $y_2 = \frac{-2ay'}{y^2}$, $y_2|_{(a,2a)} = -\frac{1}{2a}$

The radius of curvature is $\rho = \frac{[1+y_1^2]^{\frac{3}{2}}}{y_2} = \frac{[1+1]^{\frac{3}{2}}}{-1/2a} = \frac{2^{3/2}}{-1/2a} = -4\sqrt{2}a$

19. For the catenary $y = c \cosh(x/c)$, find the curvature.

Ans:
$$y_1 = \sinh\left(\frac{x}{c}\right), \quad y_2 = \frac{1}{c}\cosh\left(\frac{x}{c}\right)$$

$$\rho = \frac{\left(1 + \sinh^2\left(\frac{x}{c}\right)\right)^{3/2}}{\frac{1}{c}\cosh\left(\frac{x}{c}\right)} = \frac{y^2}{c} \qquad \therefore \frac{1}{\rho} = \frac{c}{y^2}$$

20. Find the envelope of the family of circles $(x-\alpha)^2 + y^2 = r^2$, α being the parameter.

Ans:
$$(x-\alpha)^2 + y^2 = r^2$$
-----(1)

Diff. w.r.to '
$$\alpha$$
' partially, we get $-2(x-\alpha) = 0 \implies \alpha = x$(2)

Substitute (2) in (1) we get $y^2 = r^2 \implies y = \pm r$ is the required envelope.

1(a) Find the radius of curvature of the curve $\sqrt{x} + \sqrt{y} = 1$ at $\left(\frac{1}{4}, \frac{1}{4}\right)$

Hints: Given
$$y = (1 - \sqrt{x})^2 = 1 + x - 2\sqrt{x}$$

$$y_1 = 1 - \frac{1}{\sqrt{x}}$$
 $y_2 = \frac{1}{2x^{3/2}}$. At $\left(\frac{1}{4}, \frac{1}{4}\right)$, $y_1 = -1$, $y_2 = 4$

$$\therefore \qquad \rho = \frac{\left(1 + y_1^2\right)^{\frac{3}{2}}}{y_2} = \frac{1}{\sqrt{2}}$$

(b) Find the radius of curvature of the curve $x^3 + y^3 = 3axy$ at $\left(\frac{3a}{2}, \frac{3a}{2}\right)$

Hints: At
$$\left(\frac{3a}{2}, \frac{3a}{2}\right)$$
, $y_1 = -1$; $y_2 = -\frac{32}{3a}$; $\rho = \frac{\left[1 + y_1^2\right]^{3/2}}{y_2} = \frac{-3\sqrt{2}a}{16}$ $\therefore |\rho| = \frac{3\sqrt{2}a}{16}$

2(a) Find the radius of curvature at the point 't' of the curve

$$x = a(\cos t + t\sin t); y = a(\sin t - t\cos t)$$

Hints:
$$y_1 = \tan t$$
; $y_2 = \frac{1}{at \cos^3 t}$; $\rho = \frac{\left[1 + y_1^2\right]^{3/2}}{y_2} = at$

(b) Find the radius of curvature at any point θ of the cycloid $x = a(\theta + \sin \theta)$; $y = a(1 - \cos \theta)$

Hints:
$$\frac{dy}{dx} = \tan\left(\frac{\theta}{2}\right); \ \frac{d^2y}{dx^2} = \frac{1}{4a\cos^4\left(\frac{\theta}{2}\right)}; \quad \rho = \frac{\left[1 + y_1^2\right]^{3/2}}{y_2} = 4a\cos\left(\frac{\theta}{2}\right)$$

3(a) If ρ is the radius of curvature at any point (x, y) on the curve $y = \frac{ax}{a+x}$, show that

$$\left(\frac{2\rho}{a}\right)^{2/3} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2$$

Hints:
$$\frac{dy}{dx} = \frac{a^2}{(a+x)^2}$$
; $\frac{d^2y}{dx^2} = \frac{-2y^3}{ax^3}$; $\therefore \rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}} \Rightarrow \left(\frac{2\rho}{a}\right)^{2/3} = \left(\frac{x}{y}\right)^2 + \left(\frac{y}{x}\right)^2$

(b) Find the points on the curve $y^2 = 4x$ at which the radius of curvature is $4\sqrt{2}$

Hints:
$$\frac{dy}{dx} = \frac{2}{y}$$
; $\frac{d^2y}{dx^2} = \frac{-4}{y^3}$; $\rho = \frac{\left[1 + \left(\frac{dy}{dx}\right)^2\right]^{3/2}}{\frac{d^2y}{dx^2}} = \frac{\left(y^2 + 4\right)^{3/2}}{4}$.

Given
$$\rho = 4\sqrt{2} \Rightarrow \frac{\left(y^2 + 4\right)^{3/2}}{4} = 4\sqrt{2} \Rightarrow y = \pm 2 \text{ and } x = 1$$
. The points are $(1, \pm 2)$

4(a) Find the equation of the circle of curvature of the curve at (c, c) on $xy = c^2$

Hints:
$$\left(\frac{dy}{dx}\right)_{(c,c)} = -1; \quad \left(\frac{d^2y}{dx^2}\right)_{(c,c)} = \frac{2}{c}; \quad \rho = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} = \sqrt{2}c;$$

$$\overline{x} = x - \frac{y_1}{y_2} (1 + y_1^2) = 2c; \quad \overline{y} = y + \frac{(1 + y_1^2)}{y_2} = 2c$$

The circle of curvature is
$$\left(x - \overline{x}\right)^2 + \left(y - \overline{y}\right)^2 = \rho^2 \implies \left(x - 2c\right)^2 + \left(y - 2c\right)^2 = 2c^2$$

(b) Find the circle of curvature of the curve $\sqrt{x} + \sqrt{y} = \sqrt{a}$ at (a/4, a/4).

Hints:
$$\left(\frac{dy}{dx}\right)_{(a/4,a/4)} = -1; \left(\frac{d^2y}{dx^2}\right)_{(a/4,a/4)} = \frac{4}{a}; \quad \rho = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} = \frac{a}{\sqrt{2}}$$

$$\overline{x} = x - \frac{y_1}{y_2} (1 + y_1^2) = \frac{3a}{4}; \quad \overline{y} = y + \frac{(1 + y_1^2)}{y_2} = \frac{3a}{4}$$

The circle of curvature is $\left(x - \overline{x}\right)^2 + \left(y - \overline{y}\right)^2 = \rho^2 \implies \left(x - \frac{3a}{4}\right)^2 + \left(y - \frac{3a}{4}\right)^2 = \left(\frac{a}{\sqrt{2}}\right)^2$

5(a) Find the equation of circle of curvature of $y^2 = 12x$ at (3,6)

Hints:
$$\left(\frac{dy}{dx}\right)_{(3,6)} = 1; \left(\frac{d^2y}{dx^2}\right)_{(3,6)} = -\frac{1}{6}; \quad \rho = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} = -12\sqrt{2} \quad \therefore |\rho| = 12\sqrt{2}$$

$$\overline{x} = x - \frac{y_1}{y_2} (1 + y_1^2) = 15;$$
 $\overline{y} = y + \frac{(1 + y_1^2)}{y_2} = -6$

The circle of curvature is $\left(x - \overline{x}\right)^2 + \left(y - \overline{y}\right)^2 = \rho^2 \implies \left(x - 15\right)^2 + \left(y + 6\right)^2 = \left(12\sqrt{2}\right)^2$

(b) Find the equation of the circle of curvature of the rectangular hyperbola xy = 12 at the point (3,4)

Hints:
$$\left(\frac{dy}{dx}\right)_{(3,4)} = \frac{-4}{3}$$
; $\left(\frac{d^2y}{dx^2}\right)_{(3,4)} = \frac{8}{9}$; $\rho = \frac{\left(1 + \left(\frac{dy}{dx}\right)^2\right)^{\frac{3}{2}}}{\frac{d^2y}{dx^2}} = \frac{125}{24}$

$$\overline{x} = x - \frac{y_1}{y_2} (1 + y_1^2) = \frac{43}{6}; \quad \overline{y} = y + \frac{(1 + y_1^2)}{y_2} = \frac{57}{8}$$

The circle of curvature is $\left(x - \overline{x}\right)^2 + \left(y - \overline{y}\right)^2 = \rho^2 \implies \left(x - \frac{43}{6}\right)^2 + \left(y - \frac{57}{8}\right)^2 = \left(\frac{125}{24}\right)^2$

6(a) Find the equation of the evolute of the parabola $y^2 = 4ax$

Hints: The parametric form of the parabola is $x = at^2$, y = 2at

$$y_1 = \frac{dy}{dx} = \frac{2a}{2at} = \frac{1}{t}; \quad y_2 = \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{1}{t}\right) = \frac{d}{dt}\left(\frac{1}{t}\right)\frac{dt}{dx} = -\frac{1}{t^2}\frac{1}{2at} = -\frac{1}{2at^3}$$

$$X = x - \frac{y_1}{y_2} \left(1 + y_1^2 \right) = 3at^2 + 2a - \dots (1)$$

$$Y = y + \frac{\left(1 + y_1^2\right)}{y_2} = -2at^3 - ----(2)$$

Now we have to eliminate t between (1) and (2), we get

$$27aY^2 = 4(X - 2a)^3$$

Changing X and Y to x and y, the locus of (X,Y) becomes $27ay^2 = 4(x-2a)^3$

(b) Find the equation of the evolute of the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

Hints: The parametric equations of the ellipse are

$$x = a\cos\theta, \quad y = b\sin\theta$$

$$y_1 = \frac{dy}{dx} = \frac{b\cos\theta}{-a\sin\theta} = \frac{-b}{a}\cot\theta$$

$$y_2 = \frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{dy}{dx} \right) = \frac{-b}{a^2} \cos ec^3\theta$$

$$X = x - \frac{y_1(1 + y_1^2)}{y_2} = \left(\frac{a^2 - b^2}{a}\right)\cos^3\theta$$
----(1)

$$Y = y + \frac{1 + y_1^2}{y_2} = \left(\frac{b^2 - a^2}{b}\right) \sin^3 \theta - (2)$$

To find the equation of the evolute we have to eliminate θ between (1) and (2), we have

$$(aX)^{2/3} + (bY)^{2/3} = (a^2 - b^2)^{2/3}$$

... The locus of (X,Y) is $(ax)^{2/3} + (by)^{2/3} = (a^2 - b^2)^{2/3}$ which is the equation of the evolute of the given ellipse.

7(a) Show that the evolute of the cycloid $x = a(\theta - \sin \theta)$, $y = a(1 - \cos \theta)$ is another cycloid

Hints:
$$y_1 = \cot\left(\frac{\theta}{2}\right)$$
 $y_2 = -\frac{1}{4\sin^4\left(\frac{\theta}{2}\right)}$

$$X = x - \frac{y_1(1 + y_1^2)}{y_2} = a(\theta + \sin \theta) - (1)$$

$$Y = y + \frac{1 + y_1^2}{y_2} = -a(1 - \cos\theta) - ---(2)$$

The locus of (X,Y) is $x = a(\theta + \sin \theta)$, $y = -a(1 - \cos \theta)$ which represents another cycloid.

(b) Find the evolute of the rectangular hyperbola $xy = c^2$

Hints: The parametric equation for $xy = c^2$ are x = ct, $y = \frac{c}{t}$

$$y_1 = \frac{-1}{t^2}; \quad y_2 = \frac{2}{ct^3}$$

$$X = x - \frac{y_1}{y_2} (1 + y_1^2) = \frac{3ct}{2} + \frac{c}{2t^3}$$
 -----(1)

$$Y = y + \frac{1 + y_1^2}{y_2} = \frac{3}{2} \frac{c}{t} + \frac{ct^3}{2} - - - - - (2)$$

Now we have to eliminate t between (1) and (2), we get

$$(X+Y)^{2/3} - (X-Y)^{2/3} = (4c)^{2/3}$$

Changing X and Y to x and y, the locus of (X,Y) becomes

$$(x+y)^{2/3} - (x-y)^{2/3} = (4c)^{2/3}$$

8(a) Find the envelope of $\frac{x}{a} + \frac{y}{b} = 1$ where the parameters a and b are related by $ab = c^2$, where c is constant.

Hints: Given $b = \frac{c^2}{a}$, hence the straight line becomes $a^2y - ac^2 + c^2x = 0$ which is a quadratic in 'a'. Hence the envelope is $B^2 - 4AC = 0 \Rightarrow 4xy = c^2$

(b) Find the envelope of $\frac{x}{a} + \frac{y}{b} = 1$, where a and b are parameters that are connected by

 $a^2 + b^2 = c^2$, c being a constant

Hints: Given
$$\frac{x}{a} + \frac{y}{b} = 1 \implies \frac{da}{db} = \frac{-a^2 y}{b^2 x}$$
 -----(1)

and
$$a^2 + b^2 = c^2 \Rightarrow \frac{da}{db} = -\frac{b}{a}$$
----(2)

From (1) and (2)
$$\frac{-a^2 y}{b^2 x} = -\frac{b}{a} \implies a = \left(xc^2\right)^{1/3}, \ b = \left(yc^2\right)^{1/3}$$

Substituting in $a^2 + b^2 = c^2$ we get $x^{2/3} + y^{2/3} = c^{2/3}$

9(a) Find the envelope of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ given $a^n + b^n = c^n$, where c is a known constant

Hints:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \Rightarrow \frac{da}{db} = \frac{-a^3 y^2}{b^3 x^2} - - - (1)$$

$$a^{n} + b^{n} = c^{n} \Rightarrow \frac{da}{db} = \frac{-b^{n-1}}{a^{n-1}}$$
----(2)

From (1) and (2)
$$\frac{-a^3y^2}{b^3x^2} = \frac{-b^{n-1}}{a^{n-1}} \Rightarrow a^n = (c^nx^2)^{\frac{n}{n+2}}; b^n = (c^ny^2)^{\frac{n}{n+2}}$$

Substituting in $a^n + b^n = c^n$ we get $x^{\frac{2n}{n+2}} + y^{\frac{2n}{n+2}} = c^{\frac{2n}{n+2}}$

(b) Find the envelope of the system of lines $\frac{x}{l} + \frac{y}{m} = 1$, where *l* and *m* are connected by the

relation $\frac{l}{a} + \frac{m}{b} = 1$, l and m are the parameters.

Hints:
$$\frac{x}{l} + \frac{y}{m} = 1 - - - (1); \quad \frac{l}{a} + \frac{m}{b} = 1, - - - (2)$$

Differentiating (1) and (2) w.r.t. t, we get

$$-\frac{x}{l^2}\frac{dl}{dt} - \frac{y}{m^2}\frac{dm}{dt} = 0 - - - (3)$$

$$\frac{1}{a}\frac{dl}{dt} + \frac{1}{b}\frac{dm}{dt} = 0 - - - (4)$$

From (3) and (4) we have

$$\frac{x}{l^2/a} = \frac{y}{m^2/b} \implies l = \sqrt{ax}, \ m = \sqrt{by} - ----(5)$$

Using (5) in (1) we get $\sqrt{\frac{x}{a}} + \sqrt{\frac{y}{b}} = 1$

10(a) Find the evolute of $y^2 = 4ax$ considering it as the envelope of its normals.

Hints: Given $y^2 = 4ax$

The parametric form is $x = at^2$, y = 2at

$$m = \frac{dy}{dx} = \frac{2a}{2at} = \frac{1}{t}$$

We know that the equation of the normal is

$$y - y_1 = \frac{-1}{m}(x - x_1)$$
 \Rightarrow $y = at^3 - tx + 2at$ -----(1)

Now to find envelope of (1)

Diff. (1), p.w.r. to 't', we get
$$t = \left(\frac{x - 2a}{3a}\right)^{1/2}$$

$$(1) \Rightarrow y = a \left(\frac{x - 2a}{3a}\right)^{3/2} - \left(\frac{x - 2a}{3a}\right)^{1/2} x + 2a \left(\frac{x - 2a}{3a}\right)^{1/2}$$

$$\Rightarrow 27ay^2 = 4(x-2a)^3$$

(b) Find the evolute of $x^{2/3} + y^{2/3} = a^{2/3}$ considering it as the envelope of its normals.

Hints: The parametric equation is $x = a\cos^3\theta$, $y = a\sin^3\theta$

$$m = \frac{dy}{dx} = -\tan\theta$$

We know that the equation of the normal is

$$y - y_1 = \frac{-1}{m}(x - x_1)$$
 \Rightarrow $y \sin \theta - x \cos \theta = -a \cos 2\theta$ ----(1)

Now to find envelope of (1)

Diff. (1), p.w.r. to ' θ ', we get $y\cos\theta + x\sin\theta = 2a\sin 2\theta$ ----(2)

From (1) and (2), $x = a\cos^3 \theta + 3a\cos\theta\sin^2\theta$ -----(3)

$$y = a\sin^3\theta + 3a\cos^2\theta\sin\theta - \dots (4)$$

Eliminate θ from (3) and (4) we get $(x+y)^{2/3} + (x-y)^{2/3} = a^{2/3}$ which is the required equation.

UNIT – IV DIFFERENTIAL CALCULUS OF SEVERAL VARIABLES

1. If
$$u = \frac{y}{z} + \frac{z}{x}$$
, find the value of $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z}$

Ans: Given
$$u = \frac{y}{z} + \frac{z}{x}$$
, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} + z \frac{\partial u}{\partial z} = -\frac{z}{x} + \frac{y}{z} - \frac{y}{z} + \frac{z}{x} = 0$

[Note:
$$\frac{\partial u}{\partial x} = -\frac{z}{x^2}$$
; $\frac{\partial u}{\partial y} = \frac{1}{z}$; $\frac{\partial u}{\partial z} = -\frac{y}{z^2} + \frac{1}{x}$]

2. If
$$u = f(x-y, y-z, z-x)$$
 find $u_x + u_y + u_z$

Ans: Let
$$x_1 = x - y$$
, $x_2 = y - z$, $x_3 = z - x$

$$\frac{\partial u}{\partial x} = \frac{\partial u}{\partial x_1} \frac{\partial x_1}{\partial x} + \frac{\partial u}{\partial x_2} \frac{\partial x_2}{\partial x} + \frac{\partial u}{\partial x_3} \frac{\partial x_3}{\partial x} = \frac{\partial u}{\partial x_1} - \frac{\partial u}{\partial x_3}.$$

Similarly,
$$\frac{\partial u}{\partial y} = -\frac{\partial u}{\partial x_1} + \frac{\partial u}{\partial x_2}$$
 and $\frac{\partial u}{\partial z} = -\frac{\partial u}{\partial x_2} + \frac{\partial u}{\partial x_3}$

$$\therefore u_x + u_y + u_z = 0$$

3. Find $\frac{du}{dt}$ when $u = \sin(x/y)$, $x = e^t$, $y = t^2$

Ans:
$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt}$$

$$\frac{du}{dt} = \frac{1}{y} \cos\left(\frac{x}{y}\right) e^t - \frac{x}{y^2} \cos\left(\frac{x}{y}\right) 2t$$

4. If $x = r \cos \theta$, $y = r \sin \theta$ find $\frac{\partial(r, \theta)}{\partial(x, y)}$

Ans:
$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r$$

$$\therefore \frac{\partial(r,\theta)}{\partial(x,y)} = \frac{1}{\frac{\partial(x,y)}{\partial(r,\theta)}} = \frac{1}{r}$$

5. If $x^y + y^x = c$, find $\frac{dy}{dx}$

Ans: Let
$$f(x, y) = x^{y} + y^{x} - c$$

$$\frac{dy}{dx} = -\frac{\partial f / \partial x}{\partial f / \partial y} = -\frac{yx^{y-1} + y^x \log y}{x^y \log x + xy^{x-1}}$$

6. Show that $f(z) = \frac{x^2 y}{x^4 + y^2}$, $z \neq 0$ and f(0) = 0 is discontinuous at z = 0

Ans: Consider the radius y = mx

$$\lim_{z \to 0} f(z) = \lim_{\substack{y = mx \\ x \to 0}} \frac{x^2 y}{x^4 + y^2} = \lim_{x \to 0} \frac{x^2 (mx)}{x^4 + x^2 m^2} = \lim_{x \to 0} \frac{mx}{x^2 + m^2} = 0$$

Now consider a curve, $y = x^2$ let us take the limit by approaching 0 along this curve

$$\lim_{z \to 0} f(z) = \lim_{\substack{y = x^2 \\ y = 0}} \frac{x^2 y}{x^4 + y^2} = \lim_{x \to 0} \frac{x^2 (x^2)}{x^4 + x^4} = \frac{1}{2}$$

Since $\lim_{z\to 0} f(z)$ does not have a unique value, $\lim_{z\to 0} f(z)$ does not exist and hence f(z) is discontinuous at z=0

7. State any two properties of Jacobian.

Ans:

(i) If u and v are functions of r and s, r and s are functions of x and y then,

$$\frac{\partial(u,v)}{\partial(r,s)}\frac{\partial(r,s)}{\partial(x,y)} = \frac{\partial(u,v)}{\partial(x,y)}$$

- (ii) If u and v are functions of x and y then, $\frac{\partial(u,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(u,v)} = 1$ (i.e) JJ' = 1
- 8. If u = xy and v = x + y find $\frac{\partial(x, y)}{\partial(u, v)}$

Ans:

$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} y & x \\ 1 & 1 \end{vmatrix} = y - x$$

$$\frac{\partial(x,y)}{\partial(u,v)} = \frac{1}{y-x}$$

9. If x = u(1+v) and y = v(1+u), find $\frac{\partial(x,y)}{\partial(u,v)}$

Ans:
$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} 1+v & u \\ v & 1+u \end{vmatrix} = 1+u+v$$

10. Prove that JJ' = 1.

Ans:
$$JJ' = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = 1$$

11. Find the Jacobian of the transformation $x = r \cos \theta$, $y = r \sin \theta$

Ans:
$$\frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix} = r$$

12. If
$$u = \frac{y^2}{x}$$
, $v = \frac{x^2}{y}$, find $\frac{\partial(u,v)}{\partial(x,y)}$

Ans:
$$\frac{\partial(u,v)}{\partial(x,y)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} = \begin{vmatrix} \frac{-y^2}{x^2} & \frac{2y}{x} \\ \frac{2x}{y} & \frac{-x^2}{y^2} \end{vmatrix} = -3$$

13. If
$$x + y + z = u$$
, $y + z = uv$, $z = uvw$ find $\frac{\partial(x, y, z)}{\partial(u, v, w)}$

Ans:
$$y = uv - z = uv(1-w)$$
; $x = u - uv = u(1-v)$; $z = uvw$

$$J = \frac{\partial(x, y, z)}{\partial(u, v, w)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} & \frac{\partial y}{\partial w} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w} \end{vmatrix} = \begin{vmatrix} 1 - v & -u & 0 \\ v(1 - w) & u(1 - w) & -uv \\ vw & uw & uv \end{vmatrix} = u^2 v$$

14. Find Taylor's series expansion of x^y near the point (1,1) up to first degree terms.

Ans:
$$f(x,y) = f(a,b) + [(x-a)f_x(a,b) + (y-b)f_y(a,b)]$$

$$f(x,y) = x^y,$$
 $f(1,1) = 1$

$$f_x(x, y)=yx^{y-1},$$
 $f_x(1,1)=1$

$$f_y(x,y) = x^y \log x$$
, $f_y(1,1) = 0$

$$f(x,y) = 1 + [(x-1)(1) + (y-1)(0)] = x.$$

15. Find Taylor's series expansion of $e^x \sin y$ near the point $\left(-1, \frac{\pi}{4}\right)$ up to first degree

Ans:
$$f(x, y) = e^x \sin y$$
, $f_x(x, y) = e^x \sin y$, $f_y(x, y) = e^x \cos y$

$$f(-1,\frac{\pi}{4}) = \frac{1}{e\sqrt{2}}, \quad f_x(-1,\frac{\pi}{4}) = \frac{1}{e\sqrt{2}}, \quad f_y(-1,\frac{\pi}{4}) = \frac{1}{e\sqrt{2}}.$$

$$\therefore f(x,y) = f(a,b) + [(x-a)f_x(a,b) + (y-b)f_y(a,b)] = \frac{1}{e\sqrt{2}} \left[1 + (x+1) + \left(y - \frac{\pi}{4}\right) \right]$$

16. Expand $e^x \cos y$ in Taylor's series in powers of x and y up to terms of first degree.

Ans:
$$f(x,y) = e^x \cos y$$
, $f(0,0) = 1$

$$f_x(x,y) = e^x \cos y$$
, $f_x(0,0) = 1$

$$f_y(x,y) = -e^x \sin y,$$
 $f_y(0,0) = 0.$

$$\therefore f(x,y) = f(a,b) + [(x-a)f_x(a,b) + (y-b)f_y(a,b)] = 1 + x$$

17. Write the sufficient conditions for f(x,y) to have a maximum value at (a,b)

Ans: If
$$f_x(a,b) = 0$$
, $f_y(a,b) = 0$ and $f_{xx}(a,b) = A$, $f_{xy}(a,b) = B$, $f_{yy}(a,b) = C$ then $f(x,y)$ is maximum value at (a,b) if $AC - B^2 > 0$ and $A < 0$

18. Find the maxima and minima of $f(x, y) = 3x^2 + y^2 + 12x + 36$

Ans:
$$f_x = 6x + 12 = 0 \implies x = -2$$
; $f_y = 2y = 0 \implies y = 0$.

The stationary point is (-2,0).

$$A = f_{xx} = 6$$
, $B = f_{xy} = 0$, $C = f_{yy} = 2$, $AC - B^2 = 12 > 0$ and $A > 0$.

 \therefore f is minimum at (-2,0) and the minimum value is f(-2,0) = 24.

19. Find the possible extreme point of $f(x,y) = x^2 + y^2 + \frac{2}{x} + \frac{2}{y}$

Ans:
$$f(x,y) = x^2 + y^2 + \frac{2}{x} + \frac{2}{y}$$

 $\frac{\partial f}{\partial x} = 2x - \frac{2}{x^2}; \quad \frac{\partial f}{\partial x} = 0 \implies x = 1$
 $\frac{\partial f}{\partial y} = 2y - \frac{2}{y^2}; \quad \frac{\partial f}{\partial y} = 0 \implies y = 1$

 \therefore The possible extreme point is (1,1).

20. Find the stationary points of $f(x,y) = x^2 - xy + y^2 - 2x + y$

Ans:
$$f_x = 2x - y - 2 = 0$$
, $f_y = -x + 2y + 1 = 0$.

$$2x - y = 2, -2x + 4y = -2 \implies y = 0, x = 1.$$

 \therefore The stationary point is (1,0).

1(a) If u is a homogeneous function of degree n in x and y, show that

(i)
$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u$$

(ii) Given
$$u(x,y) = x^2 \tan^{-1} \left(\frac{y}{x}\right) - y^2 \tan^{-1} \left(\frac{x}{y}\right)$$

Find the value of
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$$

Hints: (i) By Euler's theorem $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nu$ -----(1)

Differentiating (1) partially w.r.to x, we get

$$x\frac{\partial^2 u}{\partial x^2} + y\frac{\partial^2 u}{\partial x \partial y} = (n-1)\frac{\partial u}{\partial x} - - - - (2)$$

Differentiating (1) partially w.r.to y,we get

$$y\frac{\partial^2 u}{\partial y^2} + x\frac{\partial^2 u}{\partial y \partial x} = (n-1)\frac{\partial u}{\partial y} - - - - (3)$$

$$(2) \times x + (3) \times y \Rightarrow$$

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u$$

(ii) u(x, y) is a homogeneous function of degree 2.

Hence by Euler's extension theorem

$$x^{2} \frac{\partial^{2} u}{\partial x^{2}} + 2xy \frac{\partial^{2} u}{\partial x \partial y} + y^{2} \frac{\partial^{2} u}{\partial y^{2}} = n(n-1)u = 2(1)u = 2u$$

(b) If
$$u = \cos^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, prove that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}\cot u$

Hints: Let
$$\cos u = \frac{x+y}{\sqrt{x}+\sqrt{y}}$$

$$\cos u = \frac{x}{\sqrt{x}} \left(\frac{1 + y/x}{1 + \sqrt{y}/\sqrt{x}} \right) = x^{1/2} F(y/x)$$

This is a homogenous function of degree $\frac{1}{2}$

By Euler's theorem, $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = nf$

$$x\frac{\partial(\cos u)}{\partial x} + y\frac{\partial(\cos u)}{\partial y} = \frac{1}{2}\cos u$$

$$x(-\sin u)\frac{\partial u}{\partial x} + y(-\sin u)\frac{\partial u}{\partial y} = \frac{1}{2}\cos u$$

$$x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = -\frac{1}{2}\cot u$$

2(a) If
$$u = x^2 + y^2 + z^2$$
 and $x = e^{2t}$, $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$, find $\frac{du}{dt}$

Hints:

$$\frac{du}{dt} = \frac{\partial u}{\partial x} \frac{dx}{dt} + \frac{\partial u}{\partial y} \frac{dy}{dt} + \frac{\partial u}{\partial z} \frac{dz}{dt}$$

$$= 2x(2e^{2t}) + 2y(2e^{2t}\cos 3t - 3e^{2t}\sin 3t) + 2z(2e^{2t}\sin 3t + 3e^{2t}\cos 3t)$$

$$= 4e^{4t} + 4e^{4t}\cos^2 3t - 6e^{4t}\cos 3t\sin 3t + 4e^{4t}\sin^2 3t + 6e^{4t}\sin 3t\cos 3t$$

$$= 4e^{4t} + 4e^{4t}(\cos^2 3t + \sin^2 3t) = 8e^{4t}$$

(b) If z = f(x, y) where $x = r \cos \theta$ and $y = r \sin \theta$, show that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$

Hints: Here z = f(x, y) and $x = x(r, \theta)$, $y = y(r, \theta)$

$$\therefore \frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} = \frac{\partial z}{\partial x} \cos \theta + \frac{\partial z}{\partial y} \sin \theta - - - (1)$$

$$\frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta} = \frac{\partial z}{\partial x} (-r \sin \theta) + \frac{\partial z}{\partial y} r \cos \theta$$

$$\therefore \frac{1}{r}\frac{\partial z}{\partial \theta} = -\frac{\partial z}{\partial x}\sin\theta + \cos\theta\frac{\partial z}{\partial y}$$
-----(2)

$$(1)^{2} + (2)^{2} \Rightarrow \left(\frac{\partial z}{\partial r}\right)^{2} + \frac{1}{r^{2}} \left(\frac{\partial z}{\partial \theta}\right)^{2} = \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}$$

3(a) If z = f(x, y), where $x = u^2 - v^2$, y = 2uv, prove that

$$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = 4(u^2 + v^2) \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \right)$$

Hints: Given z = f(x,y), $x = u^2 - v^2$, y = 2uv

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} = 2u \cdot \frac{\partial z}{\partial x} + 2v \cdot \frac{\partial z}{\partial y}$$

$$\frac{\partial^2 z}{\partial u^2} = \frac{\partial^2 z}{\partial x^2} 4u^2 + \frac{\partial^2 z}{\partial y \partial x} 8uv + 2\frac{\partial z}{\partial x} + \frac{\partial^2 z}{\partial y^2} 4v^2 - (1)$$
and
$$\frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} = (-2v) \cdot \frac{\partial z}{\partial x} + (-2u) \cdot \frac{\partial z}{\partial y}$$

$$\frac{\partial^2 z}{\partial v^2} = \frac{\partial^2 z}{\partial x^2} 4v^2 - \frac{\partial^2 z}{\partial y \partial x} 4uv - 2\frac{\partial z}{\partial x} - \frac{\partial^2 z}{\partial x \partial y} 4uv + \frac{\partial^2 z}{\partial y^2} 4u^2 - (2)$$

$$(1)+(2) \Rightarrow$$

$$\frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = 4(u^2 + v^2) \frac{\partial^2 z}{\partial x^2} + 4(u^2 + v^2) \frac{\partial^2 z}{\partial y^2} \quad \Rightarrow \frac{\partial^2 z}{\partial u^2} + \frac{\partial^2 z}{\partial v^2} = 4(u^2 + v^2) \left(\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} \right).$$

(b) Given the transformation $u = e^x \cos y$, $v = e^x \sin y$ and that φ is a function of u and v and also x and y, prove that $\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = (u^2 + v^2) \left(\frac{\partial^2 \varphi}{\partial u^2} + \frac{\partial^2 \varphi}{\partial v^2} \right)$

Hints: Given $u = e^x \cos y$; $v = e^x \sin y$

$$\frac{\partial \varphi}{\partial x} = \frac{\partial \varphi}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial \varphi}{\partial v} \frac{\partial v}{\partial x} = u \frac{\partial \varphi}{\partial u} + v \frac{\partial \varphi}{\partial v} - \dots - (1)$$

$$\frac{\partial^2 \varphi}{\partial x^2} = u^2 \frac{\partial^2 \varphi}{\partial u^2} + uv \frac{\partial^2 \varphi}{\partial u \partial v} + uv \frac{\partial^2 \varphi}{\partial v \partial u} + v^2 \frac{\partial^2 \varphi}{\partial v^2} + u \frac{\partial \varphi}{\partial u} + v \frac{\partial \varphi}{\partial v} - \dots - (1)$$

$$\frac{\partial \varphi}{\partial y} = \frac{\partial \varphi}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial \varphi}{\partial v} \frac{\partial v}{\partial y} = -v \frac{\partial \varphi}{\partial u} + u \frac{\partial \varphi}{\partial v}
\frac{\partial^2 \varphi}{\partial y^2} = v^2 \frac{\partial^2 \varphi}{\partial u^2} - uv \frac{\partial^2 \varphi}{\partial u \partial v} - uv \frac{\partial^2 \varphi}{\partial v \partial u} + u^2 \frac{\partial^2 \varphi}{\partial v^2} - u \frac{\partial \varphi}{\partial u} - v \frac{\partial \varphi}{\partial v} - \cdots (2)$$

$$(1)+(2) \implies \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = (u^2 + v^2) \left(\frac{\partial^2 \varphi}{\partial u^2} + \frac{\partial^2 \varphi}{\partial v^2} \right)$$

4(a) Find the Jacobian of y_1, y_2, y_3 with respect to x_1, x_2, x_3 if $y_1 = \frac{x_2 x_3}{x_1}$, $y_2 = \frac{x_1 x_3}{x_2}$,

$$y_3 = \frac{x_1 x_2}{x_3}$$

Hints:
$$\frac{\partial \left(y_{1}, y_{2}, y_{3}\right)}{\partial \left(x_{1}, x_{2}, x_{3}\right)} = \begin{vmatrix} \frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} & \frac{\partial y_{1}}{\partial x_{3}} \\ \frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}} & \frac{\partial y_{2}}{\partial x_{3}} \\ \frac{\partial y_{3}}{\partial x_{1}} & \frac{\partial y_{3}}{\partial x_{2}} & \frac{\partial y_{3}}{\partial x_{3}} \end{vmatrix} = \begin{vmatrix} \frac{-x_{2}x_{3}}{x_{1}} & \frac{x_{3}}{x_{1}} & \frac{x_{2}}{x_{1}} \\ \frac{x_{3}}{x_{2}} & \frac{-x_{3}x_{1}}{x_{2}} & \frac{x_{1}}{x_{2}} \end{vmatrix} = 4$$

(b) If u = 2xy, $v = x^2 - y^2$, and $x = r\cos\theta$, $y = r\sin\theta$. Evaluate $\frac{\partial(u,v)}{\partial(r,\theta)}$ without actual substitution.

Hints:
$$\frac{\partial(u,v)}{\partial(r,\theta)} = \frac{\partial(u,v)}{\partial(x,y)} \frac{\partial(x,y)}{\partial(r,\theta)} = \begin{vmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{vmatrix} \begin{vmatrix} \frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} \\ \frac{\partial y}{\partial r} & \frac{\partial y}{\partial \theta} \end{vmatrix}$$

$$= \begin{vmatrix} 2y & 2x \\ 2x & -2y \end{vmatrix} \begin{vmatrix} \cos\theta & -r\sin\theta \\ \sin\theta & r\cos\theta \end{vmatrix}$$

$$= -4(x^2 + y^2)r = -4r^3 \quad (\because x^2 + y^2 = r^2)$$

5(a) If u = xy + yz + zx, $v = x^2 + y^2 + z^2$ and w = x + y + z. Determine the functional relationship between u, v, w

Hints:

$$\frac{\partial(u,v,w)}{\partial(x,y,z)} = \begin{vmatrix} u_x & u_y & u_z \\ v_x & v_y & v_z \\ w_x & w_y & w_z \end{vmatrix} = \begin{vmatrix} y+z & x+z & y+x \\ 2x & 2y & 2z \\ 1 & 1 & 1 \end{vmatrix}$$
$$= (y+z)(2y-2z) - (x+z)(2x-2z) + (y+x)(2x-2y)$$
$$= 2[y^2 - z^2 - (x^2 - z^2) + x^2y^2] = 0$$

 \therefore u, v and w are functionally dependent.

$$w^{2} = (x + y + z)^{2} = (x^{2} + y^{2} + z^{2}) + 2(xy + yz + zx)$$

(i.e.,) $w^2 = v + 2u$ is the required relationship.

(b) Expand the function $\sin(xy)$ at $\left(1, \frac{\pi}{2}\right)$ as a Taylor series.

Hints:

Function	Values at $\left(1, \frac{\pi}{2}\right)$
$f(x,y) = \sin xy$	f = 1
$f_x = y\cos(xy)$	$f_x = 0$
$f_{y} = x \cos(xy)$	$f_y = 0$
$f_{xx} = -y^2 \sin(xy)$	$f_{xx} = -\frac{\pi^2}{4}$
$f_{xy} = -xy\sin(xy) + \cos(xy)$	$f_{xy} = -\frac{\pi}{2}$
$f_{yy} = -x^2 \sin(xy)$	$f_{yy} = -1$

$$f(x,y) = f(a,b) + \left[hf_x(a,b) + kf_y(a,b)\right] + \frac{1}{2}\left[h^2f_{xx}(a,b) + 2hkf_{xy}(a,b) + k^2f_{yy}(a,b)\right] + \dots$$

$$= 1 + \frac{1}{2}\left[\frac{-\pi^2}{4}(x-1)^2 - \pi(x-1)\left(y - \frac{\pi}{2}\right) - \left(y - \frac{\pi}{2}\right)^2\right] + \dots$$

6(a) Expand $x^2y + 3y - 2$ in powers of (x-1) and (y+2) upto 3^{rd} degree terms.

Hints:

$$f(x,y) = x^{2}y + 3y - 2$$

$$f(1,-2) = -10$$

$$f_{x}(x,y) = 2xy$$

$$f_{y}(1,-2) = -4$$

$$f_{y}(x,y) = x^{2} + 3$$

$$f_{y}(1,-2) = 4$$

$$f_{xx}(x,y) = 2y$$

$$f_{xx}(1,-2) = -4$$

$$f_{xy}(x,y) = 2x f_{xy}(1,-2) = 2$$

$$f_{yy}(x,y) = 0$$

$$f_{xxx}(x,y) = 0$$

$$f_{xxy}(x,y) = 2$$

$$f_{xyy}(x,y) = 0$$

$$f_{yyy}(x,y) = 0$$

$$f(x,y) = f(1,-2) + (x-1)f_x(1,-2) + (y+2)f_y(1,-2) + \frac{1}{2!}\{(x-1)^2 f_{xx}(1,-2) + 2(x-1)(y+2)f_{xy}(1,-2) + (y+2)^2 f_{yy}(1,-2)\}$$

$$+ \frac{1}{3!} \left\{ \begin{array}{c} (x-1)^3 f_{xxx}(1,-2) + 3(x-1)^2 (y+2) f_{xxy}(1,-2) \\ +3(x-1)(y+2)^2 f_{xyy}(1,-2) + (y+2)^3 f_{yyy}(1,-2) \end{array} \right\}$$

$$= -10 - 4(x-1) + 4(y+2) + \frac{1}{2!} \{-4(x-1)^2 + 4(x-1)(y+2)\}$$

$$+ \frac{1}{3!} \{6(x-1)^2 (y+2)\}$$

(b) Expand $e^x \log(1+y)$ in powers of x and y up to third degree using Taylor's series. Hints:

Function	Values at (0,0)
$f(x,y) = e^x \log(1+y)$	f = 0
$f_x = e^x \log(1+y)$	$f_x = 0$
$f_{y} = e^{x} \left(1 + y\right)^{-1}$	$f_y = 1$
$f_{xx} = e^x \log(1+y)$	$f_{xx} = 0$
$f_{xy} = e^x \left(1 + y\right)^{-1}$	$f_{xy} = 1$
$f_{yy} = -e^x \left(1 + y\right)^{-2}$	$f_{yy} = -1$
$f_{xxx} = e^x \log(1+y)$	$f_{xxx} = 0$
$f_{xxy} = e^x \left(1 + y\right)^{-1}$	$f_{xxy} = 1$
$f_{xyy} = -e^x \left(1 + y\right)^{-2}$	$f_{xyy} = -1$
$f_{yyy} = 2e^x \left(1 + y\right)^{-3}$	$f_{yyy} = 2$

$$f(x,y) = f(a,b) + \left[hf_x(a,b) + kf_y(a,b)\right] + \frac{1}{2}\left[h^2f_{xx}(a,b) + 2hkf_{xy}(a,b) + k^2f_{yy}(a,b)\right] + \dots$$

$$= \frac{y}{1!} + \frac{2xy - y^2}{2!} + \frac{3x^2y - 3xy^2 + 2y^3}{3!} + \dots$$

7(a) Find the maximum and minimum values of $f(x, y) = x^3 + y^3 - 3x - 12y + 20$

Hints:
$$f(x,y) = x^3 + y^3 - 3x - 12y + 20$$

 $f_x(x, y) = 3x^2 - 3; f_y(x, y) = 3y^2 - 12$
 $A = f_{xx}(x, y) = 6x; B = f_{yy}(x, y) = 0; C = f_{yy}(x, y) = 6y$

To find the stationary points:

fx = 0	fy = 0
$\therefore 3x^2 - 3 = 0$	$3y^2 - 12 = 0$
$x^2 - 1 = 0$	$y^2 - 4 = 0$
$x = \pm 1$	$y = \pm 2$

:.

The stationary points are (1,2), (1,-2), (-1,2), (-1,-2)

	(1,2)	(1,-2)	(-1,2)	(-1,-2)
A = 6x	6 > 0	6>0	-6<0	-6 < 0
B=0	0	0	0	0
$AC - B^2$	72 > 0	-72 < 0	-72 < 0	72 > 0
Conclusion	min. point	saddle point	saddle point	max. point

Maximum value of
$$f(x, y)$$
 is $f(-1, -2) = (-1)^3 + (-2)^3 - 3(-1) - 12(-2) + 20$
= $-1 - 8 + 3 + 24 + 20 = 38$

Minimum value of
$$f(x,y)$$
 is $f(1,2) = (1)^3 + (2)^3 - 3(1) - 12(2) + 20 = 2$

(b) Find the extreme values of the function $f(x,y) = x^3 y^2 (1-x-y)$

Hints:
$$f(x, y) = x^3 y^2 - x^4 y^2 - x^3 y^3$$

 $f_x = 3x^2 y^2 - 4x^3 y^2 - 3x^2 y^3$
 $f_y = 2x^3 y - 2x^4 y - 3x^3 y^2$
 $A = f_{xx} = 6xy^2 - 12x^2 y^2 - 6xy^3$
 $B = f_{xy} = 6x^2 y - 8x^3 y - 9x^2 y^2$
 $C = f_{yy} = 2x^3 - 2x^4 - 6x^3 y$

The stationary points are (0,0), $(\frac{1}{2},\frac{1}{3})$

$$At (0,0), \quad AC - B^2 = 0$$

At
$$\left(\frac{1}{2}, \frac{1}{3}\right)$$
, $AC - B^2 > 0 & A < 0$

Thus $\left(\frac{1}{2}, \frac{1}{3}\right)$ is a maximum point and maximum value is $\frac{1}{432}$.

8(a) Find the maximum value of $x^m y^n z^p$, when x + y + z = a

Hints: Let $F = x^m y^n z^p + \lambda (x + y + z - a)$ -----(1), where λ is Lagrange multiplier

$$F_x = mx^{m-1}y^nz^p + \lambda; \quad F_y = nx^my^{n-1}z^p + \lambda; \quad F_z = px^my^nz^{p-1} + \lambda$$

For a maximum at (x, y, z) we have

$$F_x = 0 \Rightarrow mx^{m-1}y^nz^p + \lambda = 0 \Rightarrow mx^{m-1}y^nz^p = -\lambda$$
 (2)

$$F_{\nu} = 0 \Rightarrow nx^{m}y^{n-1}z^{p} + \lambda = 0 \Rightarrow nx^{m}y^{n-1}z^{p} = -\lambda$$
 (3)

$$F_z = 0 \Rightarrow px^m y^n z^{p-1} + \lambda = 0 \Rightarrow px^m y^n z^{p-1} = -\lambda$$
 (4)

From(2),(3) and (4)

$$mx^{m-1}y^nz^p = nx^my^{n-1}z^p = px^my^nz^{p-1}$$

(ie)
$$\frac{mx^my^nz^p}{x} = \frac{nx^my^nz^p}{y} = \frac{px^my^nz^p}{z}$$

$$=> \frac{m}{x} = \frac{n}{y} = \frac{p}{z} = \frac{m+n+p}{x+y+z} = \frac{m+n+p}{a}$$

$$\therefore \frac{m}{x} = \frac{m+n+p}{a}, y = \frac{m+n+p}{a}, z = \frac{m+n+p}{a}$$

$$\therefore x = \frac{am}{m+n+p}, y = \frac{an}{m+n+p}, z = \frac{ap}{m+n+p}$$

Thus the maximum value

$$x^{m}y^{n}z^{p} = \frac{a^{m+n+p}m^{m}n^{n}p^{p}}{(m+n+p)^{m+n+p}}$$

(b) A rectangular box open at the top is to have a volume of 32 cc. Find the dimensions of the box, that requires the least material for its construction.

Hints: Let x, y, z be the length, breadth and height of the box

surface area =
$$xy + 2yz + 2zx$$

$$volume = xyz = 32$$

Let the auxiliary function be,

$$F(x, y, z) = (xy + 2yz + 2zx) + \lambda(xyz - 32)$$
 (1)

where λ is langrange multiplier

$$F_x = y + 2z + \lambda(yz); F_y = x + 2z + \lambda(xz); F_z = 2y + 2x + \lambda(xy)$$

To find the stationary point:

$$F_x = 0 \Rightarrow y + 2z + \lambda(yz) = 0 \Rightarrow \frac{1}{z} + \frac{2}{y} + \lambda = 0$$

$$\Rightarrow \frac{1}{z} + \frac{2}{y} = -\lambda \tag{2}$$

$$F_y = 0 \Rightarrow x + 2z + \lambda(xz) = 0 \implies \frac{1}{z} + \frac{2}{x} + \lambda = 0$$

$$\Rightarrow \frac{1}{z} + \frac{2}{x} = -\lambda \tag{3}$$

$$F_z = 0 \Rightarrow 2y + 2x + \lambda(xy) = 0 \Rightarrow \frac{2}{x} + \frac{2}{y} + \lambda = 0$$

$$\Rightarrow \frac{2}{x} + \frac{2}{y} = -\lambda \tag{4}$$

From (2) and (3) $\Rightarrow x = y$

From (3) and (4)
$$\Rightarrow y = 2z$$

$$\therefore \qquad x = y = 2z$$

since
$$xyz = 32$$

$$(2z)(2z)z = 32$$

$$z^3 = \frac{32}{4} = 8$$
 $z = 2$ $\therefore x = 4$, $y = 4$.

Thus the dimension of the box are 4,4,2

9(a) The temperature u(x,y,z) at any point in space is $u=400\,xyz^2$. Find the highest temperature on surface of the sphere $x^2+y^2+z^2=1$

Hints:

Let the auxiliary function F be

$$F(x, y, z) = (400xyz^{2}) + \lambda(x^{2} + y^{2} + z^{2} - 1) - - - (1)$$

For maximum or minimum

$$F_{y} = 0 \Rightarrow \frac{200xz^{2}}{y} = -\lambda - - - - - - (3)$$

$$F_z = 0 \Rightarrow 400xy = -\lambda$$
 ----(4)

From (2) and (3) we get x = y and from (3) and (4) we get $z^2 = 2y^2$ and hence we have

$$z = \pm \frac{1}{\sqrt{2}}$$

$$\Rightarrow x = \pm \frac{1}{2} \text{ and } y = \pm \frac{1}{2}$$

 $\therefore u = 400xyz^2$, we take x,y,z to be positive

$$\therefore u = 50$$

(b) Find the volume of the largest rectangular solid which can be inscribed in the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

Hints: Let 2x, 2y, 2z be the dimensions of the required rectangular solid.

Let
$$F(x,y,z) = 8xyz + \lambda \left(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1\right)$$

$$\frac{\partial F}{\partial x} = 8yz + \lambda \frac{2x}{a^2} = 0 \dots (1) \quad \& \quad \frac{\partial F}{\partial y} = 8xz + \lambda \frac{2y}{b^2} = 0 \dots (2)$$

$$\frac{\partial F}{\partial z} = 8xy + \lambda \frac{2z}{c^2} = 0 \dots (3) \quad \& \quad \frac{\partial F}{\partial \lambda} = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1 = 0 \dots (4)$$

Equating the value of λ from (1), (2) and (3)

$$\lambda = \frac{-4yza^2}{x} = \frac{-4xzb^2}{y} = \frac{-4xyc^2}{z}$$

From the first two ratios, we get $\frac{x^2}{a^2} = \frac{y^2}{b^2} \dots (5)$

and from the last two ratios, we get $\frac{y^2}{b^2} = \frac{z^2}{c^2} \dots$ (6)

from (5) and (6) we have
$$\frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2} = k$$
, say

Substituting this in (4), we get 3k = 1, (i. e.,) $k = \frac{1}{3}$

$$\therefore x = \frac{a}{\sqrt{3}}, y = \frac{b}{\sqrt{3}}, z = \frac{c}{\sqrt{3}}$$

- \therefore Maximum volume = $\frac{8abc}{3\sqrt{3}}$.
- 10(a) Find the dimensions of the rectangular box open at the top of maximum capacity whose surface area is 432 square metre.

Hints: Let x, y, z be the dimensions of the open rectangular box

The surface area is S = xy + 2xz + 2yz

Volume V = xyz

We have to maximize f(x, y, z) = xyz subject to the constraint

$$\emptyset(x, y, z) = xy + 2xz + 2yz = 432$$

$$F=f+\emptyset \lambda = xyz + \lambda (xy + 2xz + 2yz - 432)$$
 necessary condition are

$$F_x = 0 = F_y = F_z = F_{\lambda}$$

$$yz + \lambda (y + 2z) = 0$$

$$xz + \lambda (x + 2z) = 0$$

$$yx + \lambda (2x + 2y) = 0$$

$$xy + 2xz + 2yz = 432$$

$$\lambda = \frac{-yz}{y+2z} = \frac{-xz}{x+2z} = \frac{-yx}{2x+2y}$$

Solving we have
$$x = y = 2z$$
 hence $12z^2 = 432$ and $z = 6, -6$

$$x = 12$$
, $y = 12$, $z = 6$

(b) Find the shortest and the longest distances from (1,2,-1) to the sphere $x^2 + y^2 + z^2 = 24$, using Lagrange's method of maxima and minima.

Hints:

Let (x, y, z) be any point on the sphere, then distance of the point (x, y, z) from (1, 2, -1) is given by $d = \sqrt{(x-1)^2 + (y-2)^2 + (z+1)^2}$; $d^2 = (x-1)^2 + (y-2)^2 + (z+1)^2$ Let $F = (x-1)^2 + (y-2)^2 + (z+1)^2 + \lambda(x^2 + y^2 + z^2 - 24)$, where λ is Lagrange multiplier. The stationary points of F are given by $F_x = 0$; $F_y = 0$; $F_z = 0$ and the points are (2, 4, -2), (-2, -4, 2)

The value of d at (2,4,-2) is $\sqrt{6}$ and at (-2,-4,2) is $3\sqrt{6}$

 \therefore Shortest and longest distances are $\sqrt{6}$ and $3\sqrt{6}$ respectively.

UNIT – V MULTIPLE INTEGRALS PART – A

- 1. Evaluate $\int_{1}^{2} \int_{0}^{x^{2}} x \, dy \, dx$.
 - **Ans:** $\int_{1}^{2} \int_{0}^{x^{2}} x \, dy \, dx = \int_{1}^{2} x (y)_{0}^{x^{2}} \, dx = \int_{1}^{2} x^{3} \, dx = \frac{15}{4}$
- 2. Evaluate $\int_{x=1}^{2} \int_{y=0}^{x} \frac{1}{x^2 + y^2} dx dy$.

Ans:
$$I = \int_{x=1}^{2} \int_{y=0}^{x} \frac{1}{x^2 + y^2} dy dx = \int_{x=1}^{2} \left[\frac{I}{x} \tan^{-1} \left(\frac{y}{x} \right) \right]_{0}^{x} dx = \frac{\pi}{4} \log 2$$

3. Evaluate $\int_{2}^{a} \int_{2}^{b} \frac{dx dy}{xy}$.

Ans:
$$I = \int_{2}^{a} \frac{1}{y} \left[\log x\right]_{2}^{b} dy = \int_{2}^{a} \left[\log b - \log 2\right] \frac{dy}{y} = \log\left(\frac{b}{2}\right) \int_{2}^{a} \frac{dy}{y}$$
$$= \log\left(\frac{b}{2}\right) \left[\log y\right]_{2}^{a} = \log\left(\frac{b}{2}\right) \left[\log a - \log 2\right] = \log\left(\frac{b}{2}\right) \log\left(\frac{a}{2}\right)$$

4. Shade the region of integration in $\int\limits_0^a \int\limits_{\sqrt{ax-x^2}}^{\sqrt{a^2-x^2}} dx \, dy.$

Academic Year: 2014-15

Ans: $y = \sqrt{ax - x^2} \Rightarrow x^2 + y^2 - ax = 0$ which is a circle with centre at (a/2, 0) and radius a/2 $y = \sqrt{a^2 - x^2} \Rightarrow x^2 + y^2 = a^2$ which is a circle with centre at (0,0) and radius a

5. Change the order of integration in $\int_{0}^{1} \int_{x^{2}}^{2-x} f(x,y) dy dx$.

Ans

Given,
$$I = \int_{0}^{1} \int_{x^{2}}^{2-x} f(x, y) dy dx$$

After changing order of integration

$$I = \int_{0}^{1} \int_{0}^{\sqrt{y}} f(x,y) dx dy + \int_{1}^{2} \int_{0}^{2-y} f(x,y) dx dy$$

6. Evaluate $\iint_R (x^2 + y^2) dy dx$ over the region R for which $x, y \ge 0$, $x+y \le 1$.

Ans: The region of integration is the triangle bounded by the

lines
$$x = 0$$
, $y = 0$ and $x + y = 1$

Limits of y:0 to 1-x; Limits of x:0 to 1

$$\iint_{R} (x^{2} + y^{2}) dy dx = \int_{0}^{1} \int_{0}^{1-x} (x^{2} + y^{2}) dy dx = \int_{0}^{1} \left[x^{2}y + \frac{y^{3}}{3} \right]_{0}^{1-x} dx$$

$$= \int_{0}^{1} \left[x^{2} (1-x) + \frac{(1-x)^{3}}{3} \right] dx$$

$$= \left[\frac{x^{3}}{3} - \frac{x^{4}}{4} - \frac{(1-x)^{4}}{12} \right]_{0}^{1} = \frac{1}{3} - \frac{1}{4} + \frac{1}{12} = \frac{1}{6}$$

7. Change the order of integration in $\int_{-a}^{a} \int_{0}^{\sqrt{a^2-x^2}} (x^2+y^2) dx dy.$

Ans: I =
$$\int_{x=-a}^{x=a} \int_{y=0}^{y=\sqrt{a^2-x^2}} (x^2+y^2) dy dx$$
 (Correct Form)

$$\int_{y=0}^{y=a} \int_{x=-\sqrt{a^2-y^2}} \int_{x=-\sqrt{a^2-y^2}} (x^2+y^2) dx dy \quad \text{(afterchanging the order)}$$

8. Change the order of integration in $\int_{0}^{1} \int_{v}^{2-y} xy \, dx \, dy$.

After changing order of integration

$$I = \int_{0}^{1} \int_{0}^{x} xy \, dy \, dx + \int_{0}^{2} \int_{0}^{2-x} xy \, dy \, dx$$

9. Compute the area enclosed by $y^2 = 4x$, x + y = 3 and y = 0.

Ans: Area A =
$$\iint_{R} dx dy = \int_{y=0}^{2} \int_{x=y^{2}/4}^{3-y} dx dy = \int_{y=0}^{2} \left[x\right]_{y^{2}/4}^{3-y} dy$$

= $\int_{y=0}^{2} \left[3 - y - \frac{y^{2}}{4}\right] dy = \left[3y - \frac{y^{2}}{2} - \frac{y^{3}}{12}\right]_{0}^{2}$
= $6 - 2 - \frac{8}{12} = 4 - \frac{2}{3} = \frac{10}{3}$

10. Evaluate $\int_{0}^{a} \int_{0}^{\sin \theta} r dr d\theta.$

Ans:
$$\int_{0}^{a} \int_{0}^{\sin \theta} r dr d\theta = \int_{0}^{a} \left(\frac{r^{2}}{2}\right)_{0}^{\sin \theta} d\theta = \int_{0}^{a} \left[\frac{\sin^{2} \theta}{2}\right] d\theta = \frac{1}{4} \left(a - \frac{\sin 2a}{2}\right)$$

11. Evaluate $\int_{0}^{\pi} \int_{0}^{5} r \sin^{2}\theta dr d\theta.$

Ans:
$$I = \int_{0}^{\pi} \sin^{2}\theta \begin{bmatrix} 5 \\ 0 \end{bmatrix} r dr d\theta = \int_{0}^{\pi} \sin^{2}\theta \begin{bmatrix} \frac{r^{2}}{2} \end{bmatrix}_{0}^{5} d\theta = \frac{25}{2} \int_{0}^{\pi} \sin^{2}\theta d\theta$$

$$= \frac{25}{4} \int_{0}^{\pi} [1 - \cos 2\theta] d\theta = \left(\frac{25}{4}\right) \left[\theta - \frac{\sin 2\theta}{2}\right]_{0}^{\pi} = \left(\frac{25}{4}\right) \left[\left\{\pi - \frac{\sin 2\pi}{2}\right\} - 0\right] = \frac{25\pi}{4}$$

12. Evaluate $\int_{0}^{\pi/2} \int_{0}^{\infty} \frac{r dr d\theta}{(r^2 + a^2)^2}.$

Ans:
$$I = \int_{0}^{\pi/2} \int_{0}^{\infty} \frac{r \, dr \, d\theta}{(r^2 + a^2)^2} = \int_{0}^{\pi/2} \frac{1}{2} \left[\int_{0}^{\infty} \frac{d(r^2)}{(r^2 + a^2)^2} \right] d\theta = \int_{0}^{\pi/2} \frac{1}{2} \left[\frac{-1}{r^2 + a^2} \right]_{0}^{\infty} d\theta$$

$$= \frac{1}{2} \int_{0}^{\pi/2} \left[0 + \frac{1}{a^2} \right] d\theta = \frac{1}{2} \left(\frac{1}{a^2} \right) \left[\theta \right]_{0}^{\pi/2} = \frac{\pi}{4a^2}$$

13. Evaluate $\int_{0}^{\pi/2} \int_{0}^{\sin \theta} r \, dr \, d\theta.$

Ans

$$I = \int_{0}^{\pi/2} \int_{0}^{\sin\theta} r \, dr \, d\theta = \int_{0}^{\pi/2} \left[\frac{r^2}{2} \right]_{0}^{\sin\theta} d\theta = \int_{0}^{\pi/2} \left[\frac{\sin^2 \theta}{2} - 0 \right] d\theta = \frac{1}{2} \int_{0}^{\pi/2} \sin^2 \theta \, d\theta = \frac{1}{2} \left(\frac{1}{2} \cdot \frac{\pi}{2} \right) = \frac{\pi}{8}$$

14. Evaluate $\int_{0}^{\pi} \int_{0}^{\cos \theta} r dr d\theta$.

Ans:
$$I = \int_{0}^{\pi} \left[\frac{r^2}{2} \right]_{0}^{\cos \theta} d\theta = \frac{1}{2} \int_{0}^{\pi} \cos^2 \theta \ d\theta = \frac{1}{2} 2 \int_{0}^{\frac{\pi}{2}} \cos^2 \theta \ d\theta = \frac{1}{2} \left(\frac{\pi}{2} \right) = \frac{\pi}{4}$$

15. Transform the integration $\int_{0}^{\infty} \int_{0}^{y} dx dy$ into polar coordinates.

Ans: Let $x = r \cos\theta$ and $y = r \sin\theta$, $dxdy = r drd\theta$

$$\int_{0}^{\infty} \int_{0}^{y} dx dy = \int_{0}^{\frac{\pi}{2}} \int_{0}^{\infty} r dr d\theta$$
$$\theta = \frac{\pi}{4} r = 0$$

16. Compute the entire area bounded by $r^2 = a^2 \cos 2\theta$.

Ans:

Area A =
$$\iint_{R} r \, dr \, d\theta = 4 \int_{0}^{\pi/4} \int_{0}^{a\sqrt{\cos 2\theta}} r \, dr \, d\theta$$

= $4 \int_{0}^{\pi/4} \left[\frac{r^2}{2} \right]_{0}^{a\sqrt{\cos 2\theta}} d\theta = 4 \int_{0}^{\pi/4} \left[\frac{a^2 \cos 2\theta}{2} \right] d\theta$
= $2a^2 \left[\frac{\sin 2\theta}{2} \right]_{0}^{\pi/4} = a^2$

17. Transform the integration from Cartesian to polar co-ordinates

$$\int_{x=0}^{2a} \int_{y=0}^{\sqrt{2ax-x^2}} (x^2+y^2) dx dy.$$

Ans: Let $x = r \cos\theta$ and $y = r \sin\theta$, $dxdy = r drd\theta$

$$\int_{x=0}^{2a} \int_{y=0}^{\sqrt{2ax-x^2}} (x^2 + y^2) dx dy = \int_{0}^{\pi/2} \int_{0}^{2a \cos \theta} r^3 dr d\theta$$

18. Express the region bounded by $x \ge 0$, $y \ge 0$, $z \ge 0$, $x^2 + y^2 + z^2 \le 1$ as a triple integral.

Ans: Here z varies from 0 to $\sqrt{1-x^2-y^2}$, y varies from 0 to $\sqrt{1-x^2}$, x varies from 0 to 1

$$\therefore I = \int_{0}^{1} \int_{0}^{\sqrt{1-x^2}} \int_{0}^{\sqrt{1-x^2-y^2}} dz \, dy \, dx$$

19. Evaluate $\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} dx dy dz.$

Ans:
$$I = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} e^{x+y+z} dxdydz = \int_{0}^{11} \left[e^{1+y+z} - e^{y+z} \right] dydz$$

= $\int_{0}^{1} \left(e^{z+2} - 2e^{z+1} + e^{z} \right) dz = e^{3} - 3e^{2} + 3e - 1 = (e-1)^{3}$

20. Evaluate
$$\int_{0}^{4} \int_{0}^{x} \int_{0}^{\sqrt{x+y}} z \, dx \, dy \, dz.$$

Ans:
$$I = \int_{0}^{4} \int_{0}^{x} \int_{0}^{\sqrt{x+y}} z \, dz \, dy \, dx = \int_{0}^{4x} \left[\frac{z^2}{2} \right]_{0}^{\sqrt{x+y}} \, dy dx = \frac{1}{2} \int_{0}^{4x} (x+y) \, dy dx$$

$$= \frac{1}{2} \int_{0}^{4} \left(xy + \frac{y^2}{2} \right)_{0}^{x} dx = \frac{1}{2} \int_{0}^{4} \left(x^2 + \frac{x^2}{2} \right) dx = \frac{3}{4} \int_{0}^{4x} x^2 \, dx = \frac{3}{4} \left(\frac{x^3}{3} \right)_{0}^{4} = 16$$

PART-B

1(a) Evaluate $\iint_R \frac{e^{-y}}{y} dx dy$, where R is the region bounded by the lines x = 0, x = y, and $y = \infty$

Hints:

We first integrate w.r.to x and then y

$$\therefore I = \int_{y=0}^{\infty} \left[\int_{x=0}^{y} \frac{e^{-y}}{y} dx \right] dy = \int_{0}^{\infty} \left[\frac{e^{-y}}{y} . x \right]_{0}^{y} dy = \int_{0}^{\infty} e^{-y} dy = \left[\frac{e^{-y}}{-1} \right]_{0}^{\infty}$$

$$I = 1$$

(b) Change the order of integration in $\int_0^a \int_v^a \frac{x}{x^2+y^2} dx dy$ and hence evaluate it.

Hints:

We change the order of integration the first integration should be w.r.to y and then w.r.to x.

$$\int_{0}^{a} \int_{y}^{a} \frac{x}{x^{2} + y^{2}} dx dy = \int_{0}^{a} \int_{0}^{x} \frac{x}{x^{2} + y^{2}} dy dx = \int_{0}^{a} \left[\tan^{-1} \left(\frac{y}{x} \right) \right]_{y=0}^{y=x} dx = \int_{0}^{a} \left[\tan^{-1} \left(1 \right) - \tan^{-1} \left(0 \right) \right] dx$$
$$= \int_{0}^{a} \left[\frac{\pi}{4} - 0 \right] dx = \frac{\pi}{4} \int_{0}^{a} dx = \frac{\pi}{4} \left[x \right]_{0}^{a} = \frac{\pi}{4} \left[a - 0 \right]$$

$$\int_{0}^{a} \int_{0}^{a} \frac{x}{x^2 + y^2} \, dx \, dy = \frac{\pi}{4} \, a$$

2(a) Change the order of integration in $\int_{0}^{1} \int_{x^2}^{2-x} xy \, dy \, dx$ and hence evaluate it.

Hints:

Academic Year: 2014-15

We change the order of integration the first integration should be w.r.to x and then w.r.to y.

$$\int_{0}^{1} \int_{x^{2}}^{2-x} xy \, dx \, dy = \int_{0}^{1} \int_{0}^{\sqrt{y}} xy \, dx \, dy + \int_{1}^{2} \int_{0}^{2-y} xy \, dx \, dy = \frac{1}{2} \left[\frac{y^{3}}{3} \right]_{0}^{1} + \frac{1}{2} \int_{1}^{2} \left(4y - 4y^{2} + y^{3} \right) dy$$

$$= \frac{1}{6} + \frac{1}{2} \left[2y^{2} - \frac{4y^{3}}{3} + \frac{y^{4}}{4} \right]_{1}^{2} = \frac{1}{6} + \frac{1}{2} \left[\left(8 - \frac{32}{3} + 4 \right) - \left(2 - \frac{4}{3} + \frac{1}{4} \right) \right]$$

$$\int_{0}^{1} \int_{0}^{2-x} xy \, dx \, dy = \frac{3}{8}$$

(b) Change the order of integration in $\int_{0}^{\infty} \int_{0}^{y} y e^{\frac{-y^2}{x}} dx dy$ and hence evaluate it.

Hints:

We change the order of integration the first integration should be w.r.to y and then w.r.to x.

$$\int_{0}^{\infty} \int_{0}^{y} y e^{\frac{-y^{2}}{x}} dx dy = \int_{0}^{\infty} \int_{x}^{\infty} y e^{\frac{-y^{2}}{x}} dy dx = \frac{1}{2} \int_{0}^{\infty} \int_{x}^{\infty} 2y e^{\frac{-y^{2}}{x}} dy dx = \frac{1}{2} \int_{0}^{\infty} \left[\int_{x}^{\infty} e^{\frac{-y^{2}}{x}} d(y^{2}) \right] dx$$

$$= \frac{1}{2} \int_{0}^{\infty} \left[\frac{e^{\frac{-y^{2}}{x}}}{-\frac{1}{x}} \right]_{x}^{\infty} dx = \frac{1}{2} \int_{0}^{\infty} \left[-x e^{\frac{-y^{2}}{x}} \right]_{x}^{\infty} dx = \frac{1}{2} \int_{0}^{\infty} \left[0 - \left(-x e^{-x} \right) \right] dx = \frac{1}{2} \int_{0}^{\infty} x e^{-x} dx = \frac{1}{2} \left[x e^{-x} - \left(1 \right) \frac{e^{-x}}{(-1)^{2}} \right]_{0}^{\infty}$$

$$= -\frac{1}{2} \left[x e^{-x} + e^{-x} \right]_{0}^{\infty} = \frac{-1}{2} \left[(0 + 0) - (0 + 1) \right]$$

$$\int_{0}^{\infty} \int_{0}^{y} y e^{\frac{-y^{2}}{x}} dx dy = \frac{1}{2}$$

3(a) Transform the integral into polar co-ordinates and hence evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^2+y^2\right)} dx dy$

Hints:

Let us transform this integral in polar co-ordinates by taking $x = r \cos \theta$, $y = r \sin \theta$ and $dx dy = r dr d\theta$

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} dx dy = \int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^{2}} r dr d\theta = \int_{0}^{\pi/2} \int_{0}^{\infty} e^{-r^{2}} \frac{1}{2} d\left(r^{2}\right) d\theta = \frac{1}{2} \int_{0}^{\pi/2} \left[-e^{-r^{2}}\right]_{0}^{\infty} d\theta = \frac{1}{2} \left[\theta\right]_{0}^{\pi/2}$$

$$\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} dx dy = \frac{\pi}{4}$$

(b) Transform the integral into polar co-ordinates and hence evaluate $\int_0^a \int_v^a \frac{x^2}{\sqrt{x^2+y^2}} dx dy$

Hints:

Let us transform this integral in polar co-ordinates by taking $x = r \cos \theta$, $y = r \sin \theta$ and $dx dy = r dr d\theta$

$$\therefore \int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\sqrt{x^{2} + y^{2}}} dx dy = \int_{0}^{\pi/4} \int_{0}^{a \sec \theta} \frac{r^{2} \cos^{2} \theta}{\sqrt{(r \cos \theta)^{2} + (r \sin \theta)^{2}}} r dr d\theta = \int_{0}^{\pi/4} \int_{0}^{a \sec \theta} \frac{r^{3} \cos^{2} \theta}{\sqrt{r^{2} (\cos^{2} \theta + \sin^{2} \theta)}} dr d\theta$$

$$= \int_{0}^{\pi/4} \int_{0}^{a \sec \theta} \frac{r^{3} \cos^{2} \theta}{r} dr d\theta = \int_{0}^{\pi/4} \cos^{2} \theta \left[\frac{r^{3}}{3} \right]_{0}^{a \sec \theta} d\theta = \int_{0}^{\pi/4} \cos^{2} \theta \left[\frac{a^{3} \sec^{3} \theta}{3} - 0 \right] d\theta = \frac{a^{3}}{3} \int_{0}^{\pi/4} \sec \theta d\theta$$

$$= \frac{a^{3}}{3} \left[\log(\sec \theta + \tan \theta) \right]_{0}^{\pi/4} = \frac{a^{3}}{3} \left[\log(\sqrt{2} + 1) - \log(1 + 0) \right]$$

$$\int_{0}^{a} \int_{y}^{a} \frac{x^{2}}{\sqrt{x^{2} + y^{2}}} dx dy = \frac{a^{3}}{3} \log(\sqrt{2} + 1).$$

4(a) Evaluate $\iint_R (x+y)^2 dx dy$, where R is the parallelogram in the xy-plane with vertices

(1,0),(3,1),(2,2),(0,1) using the transformation u=x+y and v=x-2y Hints:

The vertices A(1,0), B(3,1), C(2,2), D(0,1) of the parallelogram in the xy-plane become A'(1,1), B'(4,1), C'(4,-2), D'(1,-2) in the uv-plane under the given transformation.

The region R in the xy-plane becomes the region R' in the uv-plane which is the rectangle bounded by the lines u = 1, u = 4, and v = -2, v = 1

Solving the given equations, we get, $x = \frac{1}{3}(2u + v)$, $y = \frac{1}{3}(u - v)$

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = -\frac{1}{3}$$

$$\therefore \iint_{R} (x+y)^{2} dxdy = \iint_{R} u^{2} |J| dudv = \iint_{-2}^{1} \int_{1}^{4} u^{2} \frac{1}{3} dudv = \int_{-2}^{1} \frac{1}{3} \left(\frac{u^{3}}{3}\right)_{1}^{4} dv = \int_{-2}^{1} 7 dv = 21$$

(b) By using the transformation
$$x+y=u$$
, $y=uv$, show that $\int_{0}^{1} \int_{0}^{1-x} e^{\frac{y}{x+y}} dy dx = \frac{e-1}{2}$

Hints:

Given
$$x+y=u$$
, $y=uv$, $x=u(1-v)$

Now
$$y = 0 \Rightarrow u = 0 (or)v = 0$$

 $y = 1 - x \Rightarrow u = 1, x = 0 \Rightarrow u = 0 (or)v = 1$

$$J = \frac{\partial(x, y)}{\partial(u, v)} = \begin{vmatrix} 1 - v & -u \\ v & u \end{vmatrix} = u$$

$$\int_{0}^{1} \int_{0}^{1-x} e^{\frac{y}{x+y}} dy dx = \iint_{\mathbb{R}^{2}} e^{\frac{uv}{u}} |J| du dv = \int_{0}^{1} \int_{0}^{1} e^{v} u du dv = \frac{1}{2} \int_{0}^{1} e^{v} dv = \frac{e-1}{2}$$

5(a) By transforming into polar coordinates, Evaluate $\iint_R \frac{x^2y^2}{\sqrt{x^2+y^2}} dxdy$ over the annular region R

between the circles $x^2+y^2=a^2$ and $x^2+y^2=b^2$, (b>a)

Hints:

Put $x = r \cos \theta$, $y = r \sin \theta$, then $x^2 + y^2 = a^2 \implies r = a$, $x^2 + y^2 = b^2 \implies r = a$ and θ varies from 0 to 2π

$$\iint \frac{x^2 y^2}{x^2 + y^2} dx dy = \int_0^{2\pi} \int_0^b \frac{r^2 \cos^2 \theta r^2 \sin^2 \theta}{r^2 \cos^2 \theta + r^2 \sin^2 \theta} r dr d\theta = \int_0^{2\pi} \int_0^b r^3 \cos^2 \theta \sin^2 \theta dr d\theta$$

$$= \int_0^{2\pi} \cos^2 \theta \sin^2 \theta \left(\frac{r^4}{4}\right)_a^b d\theta = \left(\frac{b^4 - a^4}{4}\right) \int_0^{2\pi} \cos^2 \theta \sin^2 \theta d\theta = \left(\frac{b^4 - a^4}{4}\right) 4 \int_0^{\pi/2} \cos^2 \theta \sin^2 \theta d\theta$$

$$\iint \frac{x^2 y^2}{x^2 + y^2} dx dy = \frac{\pi}{16} \left(b^4 - a^4\right)$$

(b) Find the area of the cardioid $r = a(1 + \cos \theta)$

Hints:

The curve is symmetrical about the initial line.

The required area
$$= 2 \int_{\theta=0}^{\theta=\pi} \int_{r=0}^{r=a(1+\cos\theta)} r \, dr \, d\theta = 2 \int_{0}^{\pi} \left[\frac{r^2}{2} \right]_{0}^{a(1+\cos\theta)} d\theta$$

$$= \int_{0}^{\pi} \left[a^2 \left(1 + \cos\theta \right)^2 - 0 \right] d\theta = a^2 \int_{0}^{\pi} \left[1 + \cos^2\theta + 2\cos\theta \right] d\theta = a^2 \int_{0}^{\pi} \left[1 + \frac{1 + \cos 2\theta}{2} + 2\cos\theta \right] d\theta$$

$$= a^2 \left[\frac{3}{2}\theta + \frac{\sin 2\theta}{4} + 2\sin\theta \right]_{0}^{\pi} = a^2 \left[\left(\frac{3}{2}\pi + 0 + 0 \right) - (0 + 0 + 0) \right] = \frac{3}{2}\pi a^2 \text{ Sq.units.}.$$

6(a) Find the smaller of the area bounded by y=2-x and $x^2+y^2=4$ Hints:

The required area
$$= \int_{0}^{2} \int_{2-x}^{\sqrt{4-x^2}} dy \, dx = \int_{0}^{2} \left[y \right]_{2-x}^{\sqrt{4-x^2}} \, dx = \int_{0}^{2} \left[\sqrt{4-x^2} - (2-x) \right] dx$$

$$= \int_{0}^{2} \sqrt{4-x^2} \, dx - \int_{0}^{2} (2-x) \, dx = \left[\frac{x}{2} \sqrt{4-x^2} + \frac{4}{2} \sin^{-1} \left(\frac{x}{2} \right) \right]_{0}^{2} - \left[2x - \frac{x^2}{2} \right]_{0}^{2}$$

$$= \left[\left(0 + 2\frac{\pi}{2} \right) - (0+0) \right] - \left[(4-2) - (0-0) \right] = \pi - 2 \text{ Square units.}$$

(b) Find the area lying inside the circle $r = a \sin \theta$ and outside the cardioid $r = a(1 - \cos \theta)$ Hints:

$$\therefore \text{ The required area} = \int_{0}^{\pi/2} \int_{a(1-\cos\theta)}^{a\sin\theta} r \, dr \, d\theta = \int_{0}^{\pi/2} \left[\frac{r^2}{2} \right]_{a(1-\cos\theta)}^{a\sin\theta} d\theta$$

$$= \frac{a^2}{2} \int_{0}^{\pi/2} \left[\sin^2\theta - 1 - \cos^2\theta + 2\cos\theta \right] d\theta = \frac{a^2}{2} \int_{0}^{\pi/2} \left[-2\cos^2\theta + 2\cos\theta \right] d\theta = a^2 \int_{0}^{\pi/2} \left[-\cos^2\theta + \cos\theta \right] d\theta$$

$$= a^2 \left[-\frac{1}{2} \frac{\pi}{2} + 1 \right] = a^2 \left(1 - \frac{\pi}{4} \right)$$

7(a) Find the surface area of the sphere $x^2 + y^2 + z^2 = a^2$ Hints:

Given
$$x^2 + y^2 + z^2 = a^2 \Rightarrow z^2 = a^2 - x^2 - y^2$$

Surface Area
$$S = \iint_{S'} \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dxdy = 2 \iint_{R} \frac{a}{\sqrt{a^2 - x^2 - y^2}} dxdy$$

Let us transform this integral in polar co-ordinates by taking $x = r \cos \theta$, $y = r \sin \theta$ and $dx dy = r dr d\theta$

$$S = 2 \int_{0}^{2\pi} \int_{0}^{a} \frac{a}{\sqrt{a^2 - r^2}} r dr d\theta = -2a \int_{0}^{2\pi} \left(\sqrt{a^2 - r^2} \right)_{0}^{a} d\theta = 4\pi a^2 \text{ sq units}$$

(b) Find the area of the portion of the cylinder $x^2 + z^2 = 4$ lying inside the cylinder $x^2 + y^2 = 4$

Hints:

Given
$$x^2 + y^2 = 4 \Rightarrow y = \sqrt{4 - x^2}$$

Surface Area
$$S = \iint_{S'} \sqrt{1 + \left(\frac{\partial y}{\partial x}\right)^2 + \left(\frac{\partial y}{\partial z}\right)^2} dz dx = 8 \int_0^2 \int_0^{\sqrt{2^2 - x^2}} \frac{2}{\sqrt{2^2 - x^2}} dz dx = 16 \int_0^2 dx = 32 \text{ sq.units.}$$

8(a) Find the common area between the curves $y^2 = 4x$ and $x^2 = 4y$ Hints:

Given
$$y^2 = 4x$$
 and $x^2 = 4y \Rightarrow y = \frac{x^2}{4}$

$$\frac{x^2}{16} = 4x \Longrightarrow x^4 - 64x = 0 \Longrightarrow x = 0, 4$$

.. The required area
$$=\int_{0}^{4}\int_{\frac{x^2}{4}}^{2\sqrt{x}} dy \, dx = \int_{0}^{4} \left(2\sqrt{x} - \frac{x^2}{4}\right) dx = \left(\frac{4}{3}x^{\frac{3}{2}} - \frac{x^3}{12}\right)_{0}^{4} = \frac{16}{3}$$
 square units.

(b) Find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Hints:

$$V = 8 \iint_{R} z dx dy = 8 \int_{0}^{a} \int_{0}^{b\sqrt{1-\frac{x^{2}}{a^{2}}}} c \sqrt{1-\frac{x^{2}}{a^{2}} - \frac{y^{2}}{b^{2}}} dy dx = 8 \int_{0}^{a} \int_{0}^{b} c \sqrt{t^{2} - \frac{y^{2}}{b^{2}}} dy dx,$$

Where $t = \sqrt{1 - \frac{x^2}{a^2}}$. (keeping x constant) Put y = bt sin θ . Then we have,

$$V = 8c\int_{0}^{a} \left[\int_{0}^{\frac{\pi}{2}} t \cos \theta . bt \cos \theta \, d\theta \right] dx = 8bc\int_{0}^{a} \left[\int_{0}^{\frac{\pi}{2}} t^{2} \cos^{2} \theta \, d\theta \right] dx = 8bc\int_{0}^{a} \frac{t^{2}}{2} \frac{\pi}{2} dx = 2bc\pi \int_{0}^{a} \left(1 - \frac{x^{2}}{a^{2}} \right) dx$$
$$= 2bc\pi \left(x - \frac{x^{3}}{3a^{2}} \right)_{0}^{a} = 2bc\pi \left(a - \frac{a}{3} \right) = \frac{4}{3}\pi abc \text{ Cubic units.}$$

9(a) Find the volume of the tetrahedron bounded by the plane $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ and the coordinate planes.

Hints:

The volume of the tetrahedron is obtained by integrating the surface $z = c\left(1 - \frac{x}{a} - \frac{y}{b}\right)$ over the region R.

(b) Evaluate
$$\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} \int_{0}^{\sqrt{a^2-x^2-y^2}} \frac{dz \, dy \, dx}{\sqrt{a^2-x^2-y^2-z^2}}$$

Hints:

$$I = \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \int_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \frac{dz \, dy \, dx}{\sqrt{a^{2}-x^{2}-y^{2}-z^{2}}} = \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \left[\sin^{-1} \left(\frac{z}{\sqrt{a^{2}-x^{2}-y^{2}}} \right) \right]_{0}^{\sqrt{a^{2}-x^{2}-y^{2}}} \, dy \, dx$$

$$= \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \left[\sin^{-1} (1) - \sin^{-1} (0) \right] \, dy \, dx = \int_{0}^{a} \int_{0}^{\sqrt{a^{2}-x^{2}}} \left[\frac{\pi}{2} - 0 \right] \, dy \, dx = \frac{\pi}{2} \int_{0}^{a} \left[y \right]_{0}^{\sqrt{a^{2}-x^{2}}} \, dx$$

$$= \frac{\pi}{2} \int_{0}^{a} \sqrt{a^{2}-x^{2}} \, dx = \frac{\pi}{2} \left[\frac{x}{2} \sqrt{a^{2}-x^{2}} + \frac{a^{2}}{2} \sin^{-1} \left(\frac{x}{a} \right) \right]_{0}^{a} = \frac{\pi}{2} \left[\left(0 + \frac{a^{2}}{2} \frac{\pi}{2} \right) - \left(0 + 0 \right) \right]$$

$$\begin{bmatrix} a & \sqrt{a^2 - x^2} & \sqrt{a^2 - x^2 - y^2} \\ \int & \int & \int \\ 0 & 0 & 0 \end{bmatrix} \frac{dz \, dy \, dx}{\sqrt{a^2 - x^2 - y^2 - z^2}} = \frac{\pi^2 a^2}{8}$$

10(a) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$ Hints:

$$V = 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2} - x^{2}}} \int_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} dz \, dy \, dx = 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2} - x^{2}}} \left[z \right]_{0}^{\sqrt{a^{2} - x^{2} - y^{2}}} dy \, dx$$

$$= 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2} - x^{2}}} \left[\sqrt{a^{2} - x^{2} - y^{2}} - 0 \right] dy \, dx = 8 \int_{0}^{a} \int_{0}^{\sqrt{a^{2} - x^{2}}} \sqrt{\left(\sqrt{a^{2} - x^{2}}\right)^{2} - y^{2}} \, dy \, dx$$

$$=8\int_{0}^{a} \left[\frac{y}{2} \sqrt{a^{2} - x^{2} - y^{2}} + \frac{a^{2} - x^{2}}{2} \sin^{-1} \left(\frac{y}{\sqrt{a^{2} - x^{2}}} \right) \right]_{0}^{\sqrt{a^{2} - x^{2}}} dx = 8\int_{0}^{a} \left[\left(0 + \frac{a^{2} - x^{2}}{2} \frac{\pi}{2} \right) - \left(0 + 0 \right) \right] dx$$

$$= 2\pi \int_{0}^{a} \left(a^{2} - x^{2} \right) dx = 2\pi \left[a^{2}x - \frac{x^{3}}{3} \right]_{0}^{a} = 2\pi \left[\left(a^{3} - \frac{a^{3}}{3} \right) - \left(0 - 0 \right) \right]$$

$$V = \frac{4}{3} \pi a^{3}.$$

(b) Evaluate $\iiint_V \frac{dz \, dy \, dx}{\left(x+y+z+1\right)^3}$ over the region of integration bounded by the planes

$$x = 0, y = 0, z = 0, x + y + z = 1$$

Hints:

$$\iiint_{V} \frac{dz \, dy \, dx}{\left(x+y+z+1\right)^{3}} = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \left(x+y+z+1\right)^{-3} dz \, dy \, dx = \int_{0}^{1} \int_{0}^{1-x} \left[\frac{\left(x+y+z+1\right)^{-2}}{-2}\right]_{0}^{1-x-y} \, dy \, dx \\
= -\frac{1}{2} \int_{0}^{1} \int_{0}^{1-x} \left[\frac{1}{4} - \left(x+y+1\right)^{-2}\right] dy \, dx = -\frac{1}{2} \int_{0}^{1} \left[\frac{1}{4} y + \left(x+y+1\right)^{-1}\right]_{0}^{1-x} \, dx \\
= -\frac{1}{2} \int_{0}^{1} \left[\left(\frac{1}{4} (1-x) + 2^{-1}\right) - \left(0 + \left(x+1\right)^{-1}\right)\right] dx = -\frac{1}{2} \int_{0}^{1} \left[\frac{3}{4} - \frac{x}{4} - \frac{1}{1+x}\right] dx = -\frac{1}{2} \left[\frac{3}{4} x - \frac{x^{2}}{8} - \log(1+x)\right]_{0}^{1} \\
= -\frac{1}{2} \left[\left(\frac{3}{4} - \frac{1}{8} - \log 2\right) - \left(0 - 0 - 0\right)\right]$$

$$\iiint_{V} \frac{dz \, dy \, dx}{\left(x+y+z+1\right)^{3}} = \frac{1}{2} \log 2 - \frac{5}{16}$$