

# **CONTENTS**

- I Introduction
- II Methodology
- III Results & Discussion



# Introduction

# **Home Advantage:**

- ✓ Teams will perform better on a pitch that they constantly play on with the encouragement of the majority of the stadium.
- ✓ The home advantage will give an underlying boost to the home team.



### Mean square error:

- ✓ Small errors means the model is good.
- ✓ Need to assume that the bookmakers are doing a good job (<u>limitation</u>).

### PLL measure (better):

$$PLL = \sum_{K=1}^{N} \{ \delta_{K}^{H} log(P_{K}^{H}) + \delta_{K}^{D} log(P_{K}^{D}) + \delta_{K}^{A} log P_{K}^{A} \}$$

- $\checkmark$   $\delta_K^H = 1$  and  $\delta_K^A = 0$  if home team wins;  $\delta_K^H = 0$  and  $\delta_K^A = 1$  if away team wins;  $\delta_K^H = 0$  and  $\delta_K^A = 0$  if teams draw.
- ✓  $P_K^H$ ,  $P_K^A$  and  $P_K^D$  represent the probabilities of home team wins, away team wins and team draw respectively.

### PLL measure:

- ✓ The result is always non-positive.
- ✓ Maximise this via making it least negative as possible.
- ✓ PLL  $\rightarrow$  0 indicates the model has predicted the event with high probability.

For data of varied lengths one can take **mean PLL** as a measure instead:

| Company  | Bet365  | Betway  | Stan James | Interwetten | Ladbrokes | Sportingbet |
|----------|---------|---------|------------|-------------|-----------|-------------|
| Mean PLL | -0.9554 | -0.9574 | -0.9611    | -0.9585     | -0.9630   | -0.9644     |

The results are <u>very similar</u> between the bookmakers (they use similar models).

- **1** A model with mean **PLL of -1** would be of similar quality to the bookmakers'.
- 2 Models that approach values **greater than -0.95** over large testing datasets will actually predict better than bookmakers.





# **Elo Ratings in Football:**

Developed by Physics Professor Arpad Elo as a measure of skill level between two opponents.

**01**Mean 1500

in the league will always have mean 1500.

**02**Minimum 1200

Bad teams have Elo ratings dropping as low as 1200. **U3**Maximum 1800

Historically good teams have Elo ratings that peak at 1800.

**04**Difference

Difference in Elo rating is the main focus in predicting the outcome of the

game.

# **Elo Ratings Theory:**

### An expected outcome:

$$E = \frac{1}{1 + 10^{-\frac{dr}{400}}}$$

### **Implications:**

- ✓ Method is zero sum.
- ✓ Mean rating always lies at 1500.
- ✓ Large margins of victory affect Elo rating more than small ones.
- ✓ Upsets have bigger affect on Elo rating.

### The difference:

STEP I

STEP II

STEP III

$$dr = Elo_H - Elo_A + 62$$

- $\checkmark$  **Elo**<sub>H</sub> = home Elo rating
- $\checkmark$  **Elo**<sub>A</sub> = away Elo rating

### An expected outcome:

$$Elo'_{H} = Elo_{H} + KG(O - E)$$

$$\checkmark \quad \mathbf{0} = \begin{cases} 1, Home \ win \\ 1/2, Draw & \& \ \mathbf{K}=20 \\ 0, Away \ win \end{cases}$$

✓ **G** depends on margin of victory



## The Big Six:





# **Two Inputs**

Home Elo Rating Away Elo Rating 02

## **The Model**

- ✓  $log\left(\frac{P(Home\ win)}{P(Away\ win)}\right) = 0.3732401 + 0.00674583Elo_H 0.00659926Elo_A$
- ✓  $log\left(\frac{P(Draw)}{P(Awaywin)}\right) = 1.1073225 + 0.00280756Elo_H 0.00349202Elo_A$
- $\checkmark$   $P(Home\ win) + P(Draw) + P(Away\ win) = 1$

03

Multinomial Output

P(Home Win) P(Draw) P(Away Win)

### **Pros and Cons of the Elo Model:**



#### **Positives**

- ✓ Mean PLL of within 1.5% of the best bookmakers' for 1500 Premier League fixtures.
- ✓ Highly generalisable to other leagues.
- ✓ Can predict uncertain games at the very start of the season.
- ✓ Simple to use once the model is trained.

### **Negatives**

- ✓ Not quite as accurate as bookmakers or other models we found.
- ✓ Performs slightly worse on other leagues (3% worse PLL than Bet365 on the 2018/19 Serie A season).



- ✓ Evaluate the parameter of each team.
- ✓ Predict the probability of the game result.

### The Possession

During the possession, the team would try large number of times to attack with small probability P to shoot successfully under the defence of the opponent.

### **Poisson Limit Theorem**

$$\lim_{n \to \infty} \binom{n}{k} p^k (1-p)^{n-k} = e^{-\lambda} \frac{\lambda^k}{k!}$$





# <u>Poisson Regression Model:</u>

# The goals generally follow the Poisson distribution:

- ✓ The goal of each team follows the Poisson distribution.
- ✓ The goal between each team and its opponent is independent.
- ✓ Each score-line is independent from match to match.

### The Model:

$$P(X_{i,j} = x, Y_{i,j} = y | \lambda, \mu)$$

$$= \frac{\lambda^{x} exp(-\lambda)}{x!} \frac{\mu^{y} exp(-\mu)}{y!}$$

- ✓ X & Y are the <u>goals scored</u> in the game where team *i* plays against team *j*.
- ✓ These two random variables are independent so that the joint probability is the product of the two independent probabilities.

### Parameter Estimation:

$$\lambda = exp(\alpha_i - \beta_j + \gamma)$$
$$\mu = exp(\alpha_i - \beta_i)$$

- $\checkmark \alpha_i$  is the attack ability of the team *i*.
- $\checkmark$   $\beta_i$  is the defense ability of the team i.
- $\checkmark$   $\gamma$  is the home advantage.

Substitute the expected value into pmf and take the logarithm, if k games are observed:

$$L = \sum_{i=1}^{k} logp(x_i, y_i | \lambda_i, \mu_i)$$

To avoid multiple combination of parameters which may produce the same model:

$$\sum \alpha_i = 0 \& \sum \beta_i = 0$$

The probability of each result (win/draw/lose) be forecasted.

$$P(home\ win) \sum_{x=1}^{\infty} \sum_{y=0}^{x-1} p(x,y|\lambda,\mu)$$

$$P(away\ win) \sum_{y=1}^{\infty} \sum_{x=0}^{y-1} p(x,y|\lambda,\mu)$$

$$P(home\ draw) \sum_{x=1}^{\infty} p(x,x|\lambda,\mu)$$



"Attack ability vs. Defense ability in 18/19 season"

- ✓ The Dixon-Coles model think that the goal condition among 0:0, 1:0, 0:1 and 1:1 are not independent.
- ✓ Therefore, one probability modified function would be added in the Poisson regression model.

$$\tau(x, y, \lambda, \rho) = \begin{cases} 1 - \lambda \mu \rho, & x = 0 \& y = 0 \\ 1 + \lambda \rho, & x = 0 \& y = 1 \\ 1 + \mu \rho, & x = 1 \& y = 1 \\ 1 - \rho, & x = 1 \& y = 1 \\ 1, & otherwise \end{cases}$$

### The Dixon-Coles Model:

$$P(X_{i,j} = x, Y_{i,j} = y | \lambda, \mu, \rho) = \tau(x, y, \lambda, \rho) \frac{\lambda^x exp(-\lambda)}{x!} \frac{\mu^y exp(-\mu)}{y!}$$

# Time Weighting:

### Time weight function:

$$\emptyset(t) = \begin{cases} exp(-\xi t) & t \le t_0 \\ 0 & t > t_0 \end{cases}$$

Where  $\xi$  is a constant and  $t_0$  is a time at which our prediction is being made.

- ✓ Older data has less effect than more recent data.
- ✓ A game long time ago has no effect on the result of prediction.

Insert the time weight function to the log-likelihood:

$$l = \sum_{i=1}^{k} \emptyset(t_i) log P(x_i, y_i | \lambda_i, \mu_i)$$

 $\checkmark$  The ξ with the highest mean PLL may represent that such model could predict the results best.

### Plots of the Mean PLL:



Both Dixon Coles model and Poisson regression model could perform best without adding time weight.



The  $\xi$  of weight function should be set as 0.0044 for the best predictions.

# **Predicting the Results:**



- ✓ All the models are able to predict much better than the null model.
- ✓ The predicting ability between each model and bookmaker model is very similar.

| The Model    | Dixon Coles | Poisson<br>Regression |  |  |
|--------------|-------------|-----------------------|--|--|
| 1 year data  | -0.9504066  | -0.9481608            |  |  |
| 3 years data | -0.9439942  | -0.9424600            |  |  |

### <u>Artificial neural networks(ANN):</u>

A simulation of human neural networks, more directly, it is a mathematical model, which can be achieved by computer or electric circuit.

Artificial neuron is a basic unit of ANN, which is a simulation of biological neuron.



Input:

$$X = (x_1, x_2, x_3, ..., x_n)$$

Weight:

$$W = (w_1, w_2, w_3, ..., w_n)^T$$

**Net Input:** 

$$net = \sum x_i w_i$$

**Activation Function:** 

$$o = f(net)$$



### **Basic assumptions:**

- $\checkmark$  Network contains L layer.
- $\checkmark$  Connection matrix :  $w^1$ ,  $w^2$ ,  $w^3$ , ...,  $w^L$ .
- ✓ Sample set:  $S = \{(x_1, y_1), (x_2, y_2), ..., (x_s, y_s)\}.$
- ✓ Neurons in layer  $k: H_k$ .

| Home       | Away           | Vector |      | Odds.Win | Odds.Draw | Odds.Lose |        |
|------------|----------------|--------|------|----------|-----------|-----------|--------|
| Brighton   | Huddersfield   | 0.84   | 0.07 | 0.09     | 0.5168    | 0.2393    | 0.2440 |
| Burnley    | Crystal Palace | 0.19   | 0.30 | 0.51     | 0.2865    | 0.3189    | 0.3946 |
| Man United | Southampton    | 0.93   | 0.01 | 0.06     | 0.5512    | 0.2191    | 0.2297 |
| Tottenham  | Arsenal        | 0.95   | 0.00 | 0.05     | 0.5590    | 0.2146    | 0.2264 |
| West Ham   | Newcastle      | 0.72   | 0.15 | 0.13     | 0.4701    | 0.2677    | 0.2623 |
| Wolves     | Cardiff        | 0.93   | 0.01 | 0.06     | 0.5507    | 0.2194    | 0.2299 |

# **The Softmax Function:**



$$\sigma(Z)_i = \frac{e^{Z_i}}{\sum_{i=1}^K e^{Z_i}}$$
 for  $i = 1, ..., K \& Z = (Z_1, ..., Z_K) \in R^K$ 

57%

Prediction Accuracy

18/19

Last 100 Matches

-1.012

The Mean PLL





# **III** Results & Discussion

# **Three Models:**

01

#### The Elo Model

Long-term prediction or dealing with general situations.

02

**The Poisson Model** 

Short-term prediction.

03

**BP ANN** 

Potential.

# **Limitations:**

#### Teams in transition:

- ✓ Player suspensions and injuries.
- ✓ A team playing particularly badly will look to change their manager.

### Quality of data:

- ✓ One should also consider the data available.
- ✓ A more detailed dataset would be also surely beneficial.

