1 Proprietà relazioni

Seriale

 $\forall a \in A \ \exists b \in A(a,b) \in R$ Grafo: ogni vetice ha una freccia uscente Matrice: ogni riga ha almeno un "1"

Riflessiva

 $\forall a \in A \ (a,a) \in R$ Grafo: ogni vetice ha un cappio Matrice: sulla diagonale ho tutti "1"

Simmetrica

Grafo: Ogni freccia in una direzione ne ha una della direzione opposta Matrice: $Mr = Mr^T$

Antisimmetrica

 $\forall a,b \in A \ se \ (a,b) \in R \ e \ (b,a) \in R \Rightarrow a = b$ Grafo: Non ci devono essere doppie freccie Matrice: eccetto la diagonale, se in pos (i,j) c'è un 1, allora in posizione (j,i) ci deve essere 0

Transitiva

 $\forall a,b,c\in A\ (a,b)\in Re\ (b,c)\in R\Rightarrow (a,c)\in R$ Grafo: se a è collegato a b e b è collegato a c anche a deve essere collegato a c Matrice: $Mr^2\subseteq Mr$

Osservazioni

- seriale ⇒ riflessiva
- antisimmetrica

 ⇒ non simmetrica
- $\bullet \;$ transitiva + simmetrica \Rightarrow riflessiva
- riflessiva ⇒ seriale
- ullet transitiva + simmetrica + seriale \Rightarrow riflessiva

Relazioni di equivalenza

Una relazione si dice di equivalenza se è riflessiva, transitiva, simmetrica (tutti i possibili collegamenti in ogni componente connessa nel grafo)

Relazioni d'ordine

Una relazione si dice d'ordine se è riflessiva, transitiva, antisimmetrica (per esistere una ch d'ordine la relazione deve essere antisimmetrica, se facendo la chiusura riflessiva e transitiva rimane antisimmetrica ora è una ch d'ordine)

Elementi estremali

• Massimo: $se \ \forall \ x \in A \ a \leq x$

• Minimo: $se \ \forall \ x \in A \ a \ge x$

• Minimale: $\forall \ x \in A \ se \ x \leq a \Rightarrow x = a$

• Massimale: $\forall x \in A \text{ se } x > a \Rightarrow x = a$

Oss: Un minimo è minimale, un massimo è massimale (minimali e massimali esistono in relazioni d'ordine)

Maggiorante/minorante, sup/inf Un elemento m si dice

• Maggiorante di B se $\forall b \in B \ b \leq m$

• Minorante di B se $\forall b \in B \ b \geq m$

• Estremo sup di B se è il minimo dei maggioranti (se esiste)

• Estremo inf di B se è il massimo dei minoranti (se esiste)

1.1 funzioni in relazioni

Proprietà della funzionalità:

Grafo: un elemento punta solo ad un altro (possono esserci varie funzioni da una relazione, ma la relazione deve essere per forza seriale) Matrice: per avere una funz devo avere un 1 per riga

Funzione iniettiva (ha inversa destra): Matrice: in ogni colonna c'è al più un 1 Funzione suriettiva (ha inversa sinistra): Matrice: in ogni colonna c'è almeno un 1

2 Logica proposizionale

Sintassi

- Lettere enunciative: $A_1, A_2, ..., A_n$
- Connettivi: $\neg, \land, \lor, \implies, \iff$
- Simboli ausiliari: ();

Formula ben formata

- 1. Ogni lettera enunciativa è una f.b.f.
- 2. Se A, B sono sono f.b.f. allora $(A \Longrightarrow B), (A \Longleftrightarrow B), (A \land B), (A \lor B), (\neg A)$ sono f.b.f.
- 3. Nient'altro è una f.b.f.

Priorità connettivi: $\neg, \wedge, \vee, \implies$

Significato connettivi

- $(A \implies B)$ Sempre vero se A=0, Se A=1 vero solo se anche B=1
- $(A \iff B)$ Vero se A=B
- $\bullet \ \ (A \implies B) = \neg A \lor B$
- $(A \iff B) = (A \implies B) \land (B \implies A)$

2.1 equivalenze

- $A \implies B = \neg B \implies \neg A$
- $\bullet \ (\neg A \wedge A) \vee B = B$
- A ∧ (A ∨ B) = A
 A ∨ (A ∧ B) = A
- $A \wedge (B \vee C) = (A \wedge B) \vee (A \wedge C)$
- $A \lor (B \land C) = (A \lor B) \land (A \lor C)$
- \bullet Una f.b.f. A si dice soddisfacibile se esiste almeno una interpretazione che è modello di Δ
- Una f.b.f. A per cui ogni interpretazione è un modello si dice tautologia
- Una f.b.f. che non ammette modelli si dice insoddisfacibile
- Una f.b.f. B che ha gli stessi modelli di A si dice conseguenza semantica di A

Risoluzione logica proposizionale

- Letterali: Una lettera enunciativa (A) o la sua negata $(\neg A)$
- 1. Portare in forma normale congiuntiva es: $(A \lor B \lor \neg C) \land (B \lor D \lor \neg A)$ (or tra lettere e and tra gruppi)
- 2. Convertire a letterali e clausole es: $\{A,B,\neg C\},\{B,D,\neg A\}$ (ogni parentesi diventa una clausola con i propri letterali dentro)
- L'obiettivo è raggiungere la clausola vuota, abbinado una clausola con un'altra ed eliminando IL letterale che in una è normale e nell'altra è negato

3 Logica del primo ordine

3.1 sintassi

- Lettere predicative: D(x, y) = 0/1 falso o vero (es uguaglianza)
- Lettere funzionali: $P(x,y) = x \cdot y$ risultato della funzione (es moltiplicazione)
- variabili/ costanti (es x,y/a,b)
- connettivi soliti
- quantificatori: ∃, ∀

Per chiudere una formula del primo ordine si quantifica ogni variabile libera con il \forall Forma normale prenessa

Sposto tutti i quantificatori in testa (dopo aver chiuso la formula)

Forma di skolem

- la formula non deve più contenere ∃
- sostituisco le variabili precedute da ∃ con tante lettere funzionali quanti ∀ ci sono prima del ∃ che devo togliere (le variabili che uso sono quelle dei ∀ precedenti al ∃ che ho tolto)

3.2 equivalenze

- $\bullet \ \neg \forall x A(x) = \exists x \neg A(x)$
- $\bullet \quad \neg \exists x A(x) = \forall x \neg A(x)$
- $\forall A(x) \land B = \forall y (A(y) \land B(y))$
- (vale anche per ∃ e anche per ∨) (estraendo un quantificatore da ∨ o ∧ non lo cambio) (si rinomina la variabile per sicurezza)
- $\bullet \ \forall x A(x) \implies B = \exists y (A(y) \implies B)$
- $\forall xB \implies A(X) = \forall y(B \implies A(y))$

3.3 Forma a clausole

 $\forall x_1, ..., \forall x_n ((L_1 \lor L_2 \lor L_3) \land (...) \land ...)$

4 algebra

4.1 strutture algebriche

- $\bullet \;$ semigruppi \rightarrow proprietà associativa
- monoidi → semigruppi + elemento neutro
- gruppo \rightarrow monoide + inverso
- \bullet gruppo abelliano \rightarrow gruppo + commutatività
- anello (A,+,·) dove A(+) gruppo abelliano e A(·) semigruppo e vale la proprietà distributiva $x\cdot (y+z)=(x\cdot y)+(x\cdot z)$
- corpo → anello + gli elementi != 0 sono invertibili + elemento neutro
- campo \rightarrow corpo + commut rispetto a \cdot