Discrete Mathematics Question Bank

PCC CS401

February 15, 2025

- 1. Let A and B be two non-empty sets. Then, $(A \cup B)^c =$
 - (a) $A^c \cup B^c$
 - $A^c \cap B^c$
 - (c) $A \cap B$
 - (d) $A \cup B$
- 2. Let A and B be two non-empty sets. Then, $A\triangle B =$
 - (a) $A \cup B$
 - (b) $A \cap B$
 - $(A \cup B) (A \cap B)$
 - (d) $A^c \cap B^c$
- 3. Let S be a non-empty set and ρ be a relation on S. ρ is reflexive and transitive. Then ρ is
 - (a) equivalence relation
 - (b) partial order relation
 - (c) both
 - (d) none
- 4. Let $\mathbb N$ be the set of natural numbers with the relation '<' with its usual meaning. Then '<' is
 - (a) reflexive
 - (b) symmetric
 - (e) transitive
 - (d) none
- 5. Let us consider the set of integers $\mathbb Z$ with the relation ' ρ ' defined as ' $a\rho b$ ' if and only if (a+b) is an even number. Then ρ is
 - (a) partial order relation

- (b) equivalence relation
- (c) none
- (d) both
- 6. Let S be a non-empty set with an equivalence relation ' ρ '. Consider $a, b \in S$ such that a is not related to b. Then
 - (a) cl(a) = cl(b)
 - (b) $cl(a) \subset cl(b)$
 - (c) $cl(b) \subset cl(a)$
 - (d) $cl(a) \cap cl(b) = \emptyset$
- 7. Let S be the set of all the divisors of 12. Consider the partial order relation ' \leq ' on S as ' $a \leq b$ ' if and only if a divides b, for $a, b \in S$. Then
 - (a) $2 \le 3$
 - (b) $3 \le 4$
 - (c) $4 \le 6$
 - $(d) 3 \le 6$
- 8. Let us consider the set of integers \mathbb{Z} with the equivalence relation ' ρ ', defined as ' $a\rho b$ ' if and only if (a+b) is an even number. Then
 - (a) $cl(4) = \{4\}$
 - (b) $cl(4) = \{2, 4, 6, \dots\}$
 - (c) $cl(4) = \mathbb{Z}$
 - (d) $cl(4) = \{0, \pm 2, \pm 4, \pm 6, \dots\}$
- 9. Let us consider the set of integers \mathbb{Z} with a relation ' ρ ', defined on \mathbb{Z} as ' $a\rho b$ ' if and only if (a-b) is divisible by 3, for $a,b\in\mathbb{Z}$. Then
 - (a) ρ is a partial order relation
 - (b) ρ is an equivalence relation
 - (c) none
 - (d) both
- 10. Let us consider the set of integers \mathbb{Z} with a relation ' ρ ', defined on \mathbb{Z} as ' $a\rho b$ ' if and only if a divides b, for $a,b\in\mathbb{Z}$. Then
 - (a) ρ is an equivalence relation
 - (b) ρ is a partial order relation
 - (c) both
 - (d) none

- 11. Let us consider the assignment $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = \frac{1}{x}$ for $x \in \mathbb{R}$. Then
 - (a) f is an injective mapping
 - (b) f is an onto mapping
 - (c) both
 - (d) none
- 12. Let us consider the assignment $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$ for $x \in \mathbb{R}$. Then
 - (a) f is a surjective mapping
 - (b) f is an injective mapping
 - (c) both
 - (d) none
- 13. Let us consider the assignment $f: \mathbb{Z} \to \mathbb{Z}$ such that $f(x) = x^2$ for $x \in \mathbb{Z}$. Then
 - (a) f is a injective mapping
 - (b) f is an onto mapping
 - (c) both
 - (d) none
- 14. Let us consider the assignment $f: \mathbb{N} \to \mathbb{N}$ such that f(n) = n+1 for $n \in \mathbb{N}$. Then
 - (a) f is an injective mapping
 - (b) f is a surjective mapping
 - (c) both
 - (d) none
- 15. Let us consider the assignment $f:\mathbb{R}\to\mathbb{R}$ such that f(n)=n+1 for $n\in\mathbb{R}.$ Then
 - (a) f is an injective mapping
 - (b) f is an onto mapping
 - (e) f is a bijective mapping
 - (d) f is not a mapping
- 16. Let us consider the set of natural numbers \mathbb{N} with the relation \leq with its usual meaning. Then
 - (a) $lub{2,6} = 6$
 - (b) $glb{2,6} = 2$

- (c) both
- (d) none
- 17. Let us consider the poset (P,), where P is the set of positive integers and stands for $a \le b$ iff a divides b. Then

 \leq

- (a) $lub{3,4} = 4$
- (b) $lub{3,4} = 3$
- (c) $lub{3,4} = 12$
- (d) $lub{3,4} = 1$
- 18. Let $S = \{1, 2, 3\}$ and P be the collection of all proper non-empty subsets of S. Let us define a relation \leq on P as $A \leq B$ iff $A \subseteq B$. Then
 - (a) glb of $\{1\}$ and $\{2\}$ is \emptyset
 - (b) glb of $\{1\}$ and $\{2\}$ is $\{1\}$
 - (c) glb of $\{1\}$ and $\{2\}$ is $\{2\}$
 - (d) glb of $\{1\}$ and $\{2\}$ does not exist.
- 19. Let $S=\{1,2,3\}$ and P be the collection of all subsets of S. Let us define a relation \leq on P as $A\leq B$ iff $A\subseteq B$. Then
 - (a) $lub ext{ of } \{2,3\} ext{ and } \{3,1\} ext{ is } S.$
 - (b) lub of $\{2,3\}$ and $\{3,1\}$ does not exist.
 - (c) lub of $\{2,3\}$ and $\{3,1\}$ is $\{1,2\}$
 - (d) lub of $\{2,3\}$ and $\{3,1\}$ is \emptyset
- 20. Let S be a non-empty set and ρ is a relation defined on S such that ρ is symmetric and transitive. Then ρ is
 - (a) reflexive
 - (b) anti-symmetric
 - (c) both
 - (d) none