Question 5 IRIS

Python for Data Science - Perform Data Visualization on Iris Dataset

- a)Load the Titanic dataset into one of the data structures (NumPy or Pandas).
- b)Display header rows and description of the loaded dataset.
- c) Clean the data if applicable
- d) Find the average petal width of each category of IRIS Species
- e) Data Visualization for:
- (i) How many flowers of each species exists for each value of sepal width
- (ii) How many flowers are there whose petal width is <1, between 1 to 2 and >2
- (iii) Tally the Iris-Versicolour and Iris-Virginica species according to the value of Sepal Width

Click here to download dataset

```
In [36]: #numpy - Deals multi-dimensional arrays and matrices
    #seaborn - Deals with data visualization
    #matplotlib - Plotting; pyplot-interactive plotting
    #pandas - data structures and data analysis tools
    import seaborn as sns
    import pandas as pd
    import matplotlib.pyplot as plot
In [45]: #Import csv file into variable (dataframe)
    iris_df = pd.read_csv('iris.csv')
    iris_df.head()
```

```
Sepal_Length Sepal_Width Petal_Length Petal_Width
Out[45]:
                                                                               Class
            0
                          5.1
                                         3.5
                                                                      0.2 Iris-setosa
                                                        1.4
                          4.9
                                         3.0
            1
                                                                      0.2 Iris-setosa
                                                        1.4
            2
                          4.7
                                         3.2
                                                        1.3
                                                                      0.2 Iris-setosa
            3
                          4.6
                                         3.1
                                                                      0.2 Iris-setosa
                                                        1.5
            4
                          5.0
                                         3.6
                                                        1.4
                                                                      0.2 Iris-setosa
```

```
In [38]: #print info about dataframe
    print("This is info() output\n")
    print(iris_df.info())
    print("\nThis is describe() output\n")
    print(iris_df.describe())
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	Sepal_Length	150 non-null	float64
1	Sepal_Width	150 non-null	float64
2	Petal_Length	150 non-null	float64
3	Petal_Width	150 non-null	float64
4	Class	150 non-null	object
	63 (-)		

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

None

This is describer() output

	Sepal_Length	Sepal_Width	Petal_Length	Petal_Width
count	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.054000	3.758667	1.198667
std	0.828066	0.433594	1.764420	0.763161
min	4.300000	2.000000	1.000000	0.100000
25%	5.100000	2.800000	1.600000	0.300000
50%	5.800000	3.000000	4.350000	1.300000
75%	6.400000	3.300000	5.100000	1.800000
max	7.900000	4.400000	6.900000	2.500000

```
In [39]: #drop sepal_length
    iris_df.drop(['Sepal_Length'],axis=1,inplace=True)
    iris_df.head()
```

Out[39]: Sepal_Width Petal_Length Petal_Width Class 0 3.5 1.4 0.2 Iris-setosa 3.0 1.4 0.2 Iris-setosa 2 3.2 1.3 0.2 Iris-setosa 3 0.2 Iris-setosa 3.1 1.5 4 3.6 1.4 0.2 Iris-setosa

```
In [63]: iris_df.groupby('Class',as_index=False)[' Petal_Width'].mean()
```

Out[63]:		Class	Petal_Width
	0	Iris-setosa	0.244
	1	Iris-versicolor	1.326
	2	Iris-virginica	2.026

```
In [40]: # we increase the size of output graph
plot.figure(figsize=[12,6])
```

```
Out[40]: <Figure size 1200x600 with 0 Axes> <Figure size 1200x600 with 0 Axes>
```

```
In [52]: #plot graph of class vs sepalwidth
    ax=sns.countplot(data=iris_df,x=' Sepal_Width',hue='Class',palette='Set1')
    ax.set(title='Flower of each species',xlabel='Sepal Width',ylabel='No. of flowers')
    plot.tight_layout()
    plot.show()
```



```
In [64]: #Cut petal width according to interval and give labels from categories
  interval = (0,1,2,4)
  category = ['<1','1 to 2','>2']
  iris_df['Petal_Catg'] = pd.cut(iris_df[' Petal_Width'],interval,labels=category)
  ax = sns.countplot(data = iris_df,x = 'Petal_Catg',hue='Class',palette='Set1')
  ax.set(title='Petal Width',xlabel='Category of Petals',ylabel='No. of flowers')
  plot.show()
```


In [68]: ax = sns.countplot(data = iris_df[iris_df['Class']!='Iris-setosa'],x = ' Sepal_Widt
 ax.set(title='Versicolor vs virginica',xlabel='Sepal Width',ylabel='No. of flowers'
 plot.show()

Versicolor vs virginica

