CMPUT463/563 Probabilistic Graphical Models

Representation: Bayesian Network

Lili Mou

Dept. Computing Science, University of Alberta

lmou@ualberta.ca

Consider the environment before printing.

Please print double-sided.

Introduction

Describing a probabilistic distribution

Discrete variable (with finite values)

- One variable: probability table
- Multiple variables: joint probability table
- Consider two variables, each taking value 0 or 1

Joint probability

Introduction

N variables, each taking K values

- No independencies are known
 - $K^N 1$ free parameters
- All variables are independent
 - N(K-1) free parameters
- What if we know X_i depends on X_{i-1} only for $i=2,\cdots,N$?

$$p(X_1, \dots X_N) = p(X_1)p(X_2 | X_1) \dots p(X_n | X_n - 1)$$

- For X_1 , we have K-1 parameters
- For X_i , $i=2,\dots,N$, we have K(K-1) parameters

In total, we have $K^2 - 1$ parameters

$$X_1$$
 X_2 X_N

Key Idea

Factorize a joint probability by conditional probabilities

Tree

Medical Diagnosis (Microsoft)

Thanks to: Eric Horvitz, Microsoft Research

Daphne Koller

Original source

Bayesian Network (intuition)

- Interested in random variables X_1, \dots, X_n
- Each variable X_i has its parent node(s), roughly speaking "cause(s)," denoted by $\operatorname{Par}(X_i)$
- Model the conditional probability of a variable X_i given its parent(s)
- Joint probability = Conditional probabilities

Bayesian Network (definition)

- Let X_1, \dots, X_N be a set of variables
- A Bayesian network is a directed acyclic graph (DAG)

$$G = \langle V, E \rangle$$
, where

$$- V = \{X_1, \dots, X_N\}$$

$$E = \{X_i \rightarrow X_j : X_i \text{ is a parent of } X_j\}$$

Joint probability

$$p(X_1, \dots, X_N) = \prod_{i=1}^N p(X_i | \operatorname{Par}(X_i))$$

Note: If a node X_i has no parent, then $Par(X_i) = \emptyset$. $p(X_i | Par(X_i))$ is simply $p(X_i)$

BN must be acyclic

• p(X|Y)p(Y|X) is not p(X,Y) in general

- Other than being acyclic, there are no other restrictions
 - A BN may be connected, disconnected, etc.
 - May be a chain, a tree, or a graph in general

Example

E	P(E)	
0	0.8	
1	0.2	

Α	P(A)	
0	0.9	
1	0.1	

Е	Α	J	P(J E, A)
0	0	0	0.99
0	0	1	0.01
0	1	0	0.03
0	1	1	0.97
1	0	0	0.05
1	0	1	0.95
1	1	0	0.01
1	1	1	0.99

Finite-value discrete variables may be modeled by conditional probability tables (CPTs)

Example

- P(J=1)=0.0072+0.0776+0.1710+0.0198=0.2756
- P(E=0, A=0|J=1) = 0.0072 / 0.2756 = 2.61%
- P(E=0, A=1|J=1) = 0.0776 / 0.2756 = 28.16%
- P(E=1, A=0|J=1) = 0.1710 / 0.2756 = 62.05%
- P(E=1, A=1|J=1) = 0.0198 / 0.2756 = 7%

Е	P(E)	
0	0.8	
1	0.2	

А	P(A)	
0	0.9	
1	0.1	

Е	Α	J	P(J E, A)	P(E, A, J)
0	0	0	0.99	0.7128
0	0	1	0.01	0.0072
0	1	0	0.03	0.0024
0	1	1	0.97	0.0776
1	0	0	0.05	0.0090
1	0	1	0.95	0.1710
1	1	0	0.01	0.0002
1	1	1	0.99	0.0198

Dependencies in BN

- Recall the purpose of BN: Model a distribution by
 - Capturing important dependencies
 - Ignoring unimportant dependencies
- A natural question
 - Given a BN, what variables are independent? What variables are dependent?

Dependencies in BN

- If $X \to Y$, then X, Y are dependent*
- If $X \to Z \to Y$, then X, Y are also dependent* when Z is unknown
- However, X, Y are independent if Z is known, $X \perp Y \mid Z$
- Example: Coursework → Mark → Grade
- $X \leftarrow Z \rightarrow Y$
- If Z is known, X, Y are independent, i.e., $X \perp Y \mid Z$
- if Z is unknown, X, Y are dependent*
- Example: Course 1 ← Instructor → Course 2

^{*} Here, "dependency" means the variables may be dependent. They may be independent anyway with certain conditional probability tables

Dependencies in BN

- "v-structure": $X \rightarrow Y \leftarrow Z$
- If Z is unknown, X, Y are independent, $X \perp Y$
- if Z is known, X, Y are dependent*

* Here, "dependency" means the variables may be dependent. They may be independent anyway with certain conditional probability tables

Example

- $P(E=1 \mid A=1, J=1) = 0.0198 / (0.0198 + 0.0776) = 20.3\%$
- $P(E=1 \mid A=0, J=1) = 0.1710 / (0.1710 + 0.0072) = 95.96\%$
- P(E=1 | J=1) = (0.1710+0.0198) /
 (0.0072+0.0776+0.1710+0.0198) = 69.23%

E	P(E)	
0	0.8	
1	0.2	

А	P(A)	
0	0.9	
1	0.1	

Е	Α	J	P(J E, A)	P(E, A, J)
0	0	0	0.99	0.7128
0	0	1	0.01	0.0072
0	1	0	0.03	0.0024
0	1	1	0.97	0.0776
1	0	0	0.05	0.0090
1	0	1	0.95	0.1710
1	1	0	0.01	0.0002
1	1	1	0.99	0.0198

Example

- $P(E=1 \mid A=1, J=1) = 0.0198 / (0.0198 + 0.0776) = 20.3\%$
- $P(E=1 \mid A=0, J=1) = 0.1710 / (0.1710 + 0.0072) = 95.96\%$
- P(E=1 | J=1) = (0.1710+0.0198) / (0.0072+0.0776+0.1710+0.0198) = 69.23%
- Intuition: House jumping is an unlikely event. If it happens, we need to find a cause.
 - Either cause is also an unlikely event, but given house jumps, there should be some cause
 - If there is no air crash, then it's very likely that there's an earthquake.
 - If there is an air crash, then the chance of earthquake is lowered, because it's extremely unlikely that both air crash and earthquake happen
- This is known as explaining away

Another Example of Explaining away

- I had a stomachache
 - It might be either HP (infection of some bacteria) or cancer, but
 I was uncertain, so I felt concerned
 - I did a lab test, and it was HP. It was a relief, because HP is benign and can be treated by antibiotics
- PGM perspective
 - HP and Ca are (roughly speaking) independent events
 - HP test does not rule out the possibility of Ca
 - Given stomachache, HP explains Ca away. I.e., given stomachache and HP, the chance of cancer is much lowered.

Jargons

- **Def (active trail)**: $X_1 X_2 \cdots X_n$ is an active trail if, for every node X_i with $i = 2, \cdots, n-1$,
 - X_i or its descendent is given if X_i has a v-structure $X_{i-1} \to X_i \leftarrow X_{i+1}$.
 - X_i is not given otherwise.
- **Def (d-separation).** X and Y are d-separated given observations Z in graph G if there is no active trail between X and Y, denoted by d-sep $_G(X,Y|Z)$

Example

- o Blank node: unobserved (not given)
- Black node: observed (given)

d-sep(A, E|C) ?

A - C - E: inactive

A - C - B - E: active

No, d-sep(A, E|C) does not hold

d-sep(D, E|C)?

D-C-E, D-C-B-E, D-F-E: none is active

d-sep(D, E|C) holds

Getting rid of v-structures

- V-structures are sometimes confusing. We may determine d-sep without v-structures
- For a query about d-sep(X, Y | Z)
 - Draw variables mentioned and their ancestors
 - Moralize of the observed nodes, i.e., marry parents (if multiple parents, draw an edge pairwise)
 - Delete given variables and their edges
 - Check if the variables in question are connected

Question: d-sep(A, E | C)?

Soundness

- D-separations are said in terms of graphs
- Independencies are said in terms of probability
- They are very related

Theorem (soundness). Suppose a probability distribution P factorizes according to a Bayesian network G. If $d\text{-sep}_G(X,Y|Z)$, then $X\perp Y|Z$.

(Soundness means that d-sep captures "correct" independencies)

But converse $X \perp Y \mid Z =$ d-sep_G $(X, Y \mid Z)$ is **false**.

Completeness

Theorem (completeness). If not d-sep_G(X, Y | Z), then there exists some (but almost all) distribution P that factorizes according to G where $X \perp Y | Z$ does not hold.

Completeness means d-sep also captures all independencies.

However, this does not assert for every distribution, but **some** (although almost all) distribution, that factorizes according to G.

Proof sketch: Check a local structure + Induction

I-map

I(G): independencies captured by G

$$I(G) = \{X \perp Y | Z : d\text{-sep}(X, Y | Z)\}$$

I(P): independencies in the distribution P

Def (I-map). G is an I-map of P if

$$I(G) \subseteq I(P)$$

G is appropriate to model P

G cannot assert more independencies than P, but can drop independencies in P

I-map

I(G): independencies captured by G

$$I(G) = \{X \perp Y | Z : d\text{-sep}(X, Y | Z)\}$$

I(P): independencies in the distribution P

Def (I-map). G is an I-map of P if

$$I(G) \subseteq I(P)$$
 ?

G is appropriate to model P

Cause and Effect in BN

- BN models cause and effect in a loose sense.
- The physical cause and effect is not modeled by conditional probabilities

- Example:
 - Since it rained yesterday, the road is wet
 - Since the road is wet, it must have rained yesterday

$$P(R, W) = P(R)P(W|R) = P(W)P(R|W)$$

Both are valid BNs and can model any joint distribution on R and W

BN can model any discrete finite-value distributions

•
$$P(X_1, X_2, \dots, X_n) = P(X_1)P(X_2 | X_1) \dots P(X_n | X_1, \dots, X_{n-1})$$

- Tabular parametrization of CDTs
 - Inefficient (how many parameters)?
- Function parametrization (e.g., by neural networks)
 - Actually outperforms models with dependency assumptions
 - Application: text generation

Cause and Effect in BN

Designing BN by cause and effect simplifies the structure

- t: standard time, t_i : time by clock i
 - An intuitive BN: every clock is adjusted by the standard time
 - But what if we reverse $t \rightarrow t_i$
 - Requirement: Retain all dependencies

Cause and Effect in BN

- Designing BN by cause and effect simplifies the structure
- t: standard time, t_i : time by clock i
 - In (a), we know $t_1 \perp t_2$ does not hold in general, but (b) loses such dependency. To recover that, we need to connect t_i, t_j for every i, jRetaining all dependencies, but in

Dependencies lost

efficient parameterization

I-equivalence

Different BNs may capture exactly the same independencies

V-structure has different independencies than other structures If not v-structure, then it doesn't matter

I-equivalence

• Def (I-equivalence): If $I(G_1) = I(G_2)$, then G_1 and G_2 are I-equivalent.

- Theorem. G_1 and G_2 are I-equivalent if
 - They have the same skeleton (undirected graphs are the same)

AND

They have the same v-structures

Example: Naïve Bayes

- Features X_1, \dots, X_n
- Label Y
- Generation story
 - First, a label is generated
 - Then, every feature is generated independently given the category Y
- Application: Text classification
 - Y: spam VS not spam
 - X_i : whether *i*th word occurs or not

Plate diagram: a rectangle means repeatedly drawing variables

Example: Markov Model

• Temporal data X_1, \dots, X_n

Parametrization

- Generation story
 - X_1 is generated Initial probability π
 - For every time step $t \ge 2$, X_t is generated based on X_{t-1}
- Applications:
 - X_i : weather on Day i
 - X_i : location of a moving object

Transition probability ${\cal T}$

T is shared among different time steps

Plate diagrams are confusing for temporal graphs. Expand it.

Example: Hidden Markov Model

- Still temporal data, where Y_1, \dots, Y_n follow a Markov model
- Generation story

Parametrization

Emission probability E

- Y_1 is generated Initial probability π
- At every step $t \ge 2$
 - Y_t is generated based on Y_{t-1} Transition probability T_t
 - X_t is generated based on Y_t

 Y_1 Y_2 \cdots Y_n Y_n X_1 X_2 \cdots X_n

Shared among different time steps

Example: Hidden Markov Model

- Application
 - POS tagging
 - Y_i : POS tag, X_i : word
 - State space representation
 - Y_i : actual position of an object
 - X_i : Position read from radar

Learning the Parameters

- Consider a BN with tabular CDTs
- Training data $\{X_1^{(m)}, \cdots X_n^{(m)}\}_{m=1}^M$
- Then, learning BN parameters is simply counting
- Example

$$\hat{P}(X = x \mid Y = y) = \frac{\sum_{m=1}^{M} I(X^{(m)} = x, Y^{(m)} = y)}{\sum_{m=1}^{M} I(Y^{(m)} = y)}$$

I(*) is an indicator function. I(*)=1 if * is true, I(*)=0 otherwise.

- Some estimated probability may be 0
 - Add-k smoothing: add k counts for every configuration. k may be a real number, e.g., 0.1.

Summary

- BN factorizes a joint distribution by conditional distributions
- Dependencies and independencies
 - v-structure VS other structures
 - Active trail ⇒ (may be) dependent
 - No active trail ⇒ independent
- D-sep, I-map, I-equivalence
- BN can model any distribution
- Designing BN in an intuitive way simplifies parametrization

