2048 Game

Manasa Tallapaka

During testing and evaluation of MyAgent.py, I found that the **min-max strategy consistently outperforms the greedy approach** in score. This is expected due to the fundamental difference in how the two strategies evaluate future moves.

The **greedy agent** evaluates only the immediate reward (i.e., the score gained from the current move) and makes no consideration for the board's future state. As a result, it often makes locally optimal but globally harmful decisions, such as combining tiles too early or pushing valuable tiles into difficult corners.

In contrast, the **min-max agent**, although it does not model randomness correctly (it treats new tiles as adversarial rather than stochastic), performs **iterative deepening** and evaluates deeper branches of the game tree. This allows it to **choose actions that maintain flexibility** in the board and preserve high-value tile positions. It may not always choose the highest scoring move immediately, but it leads to better long-term results.

Attempt1:

python Play.py MyAgent 1.5 -g 600

Attempt2:

python Play.py MyAgent 1.5 -g 500

python Play.py MinMax 2.0 -g 600

Greedy

python Play.py Greedy.py 2.0 -g 600

python Play.py MinMax 2.0 -g 600

2048			- 🗆 X		
Score: 11112					
8	2	8	2		
32	1024	16	4		
8	32	256	8		
4	2	64	4		

2 048			- 0 X	
Score: 13944				
4	1024	64	2	
8	512	128	8	
2	16	4	2	
16	32	2	4	