Prerequisites

0.1 Regularization

Definice 0.1 (Regularization kernel)

 $\eta \in C_0^{\infty}(B_1(\mathbf{o}))$, non-negative, radially symmetric, $\int_{B_1(\mathbf{o})} \eta(x) dx = 1$.

Definice 0.2 (Regularization of function)

Let $f \in L^p(\Omega)$. We extend f by zero to $\mathbb{R}^d \setminus \Omega$ and define $f_{\varepsilon} := \eta_{\varepsilon} * f$, where $\eta_{\varepsilon}(x) := \frac{1}{\varepsilon^d} \eta(x/\varepsilon)$.

Poznámka

 $f_{\varepsilon} \in C^{\infty}(\mathbb{R}^d), f_{\varepsilon} \to f \text{ in } L^p(\Omega) \text{ if } p \in [1, \infty) \text{ and } f_{\varepsilon} \rightharpoonup^* f \text{ in } L^{\infty}.$

Věta 0.1

 $L^p(\Omega)$ is a Banach space, separable for $p \in [1, \infty)$, reflexive for $p \in (1, \infty)$.

Důsledek

 f^n is a bounded sequence in $L^p(\Omega)$, $\Omega \subseteq \mathbb{R}^d$ measurable bounded bounded. Then

- 1. $p \in (1, \infty)$: $\exists f^{n_k}, f : f^{n_k} \to f \text{ in } L^p(\Omega). \iff \forall g \in L^{p'}(\Omega) : \lim_{k \to \infty} \int_{\Omega} f^{n_k} g = \int_{\Omega} f g,$ where $\frac{1}{p} + \frac{1}{p'} = 1$).
- 2. $p = \infty$: $\exists f^{n_k}, f: f^{n_k} \rightharpoonup^* f \text{ in } L^{\infty}(\Omega). \ (\Leftrightarrow g \in L^1(\Omega): \lim_{\Omega} \int_{\Omega} f^{n^k} g = \int_{\Omega} f g).$
- 3. p=1: $\exists f^{n_k}, f \colon f^{n_k} \rightharpoonup^* f \text{ in } M(\overline{\Omega}) \text{ (Radon measures)}. (\Leftrightarrow \forall g \in C(\overline{\Omega}) : \int_{\Omega} f^{n_k} g \rightarrow \langle f, g \rangle_M = \int_{\overline{\Omega}} g df.)$
- 4. p = 1: $\exists f^{n_k}, \tilde{f} \ \exists \Omega_1 \subseteq \Omega_2 \subseteq \Omega_3 \subseteq \ldots, |\Omega \backslash \Omega_l| \to 0 \text{ as } l \to \infty$: $\forall l \in \Omega : f^{n_k} \to \tilde{f} \text{ in } L^1(\Omega)$. (\tilde{f} is called biting limit.)

0.2 Fixpoint theorems

Věta 0.2

 $F: X \to X$, where X is a Banach space, F is continuous and compact. Let there exists closed convex non-empty set $U \subseteq X$ such that $F(U) \subset U$. Then $\exists x \in U : F(x) = x$.

Věta 0.3

 $F: \mathbb{R}^d \to \mathbb{R}^d$, F is continuous. Let there exists closed, convex non-empty set $U \subseteq \mathbb{R}^d$: $F(U) \subseteq U$. Then $\exists x \in U : F(x) = x$.

0.3 Nemytskii operator

Věta 0.4

Let $\Omega \subseteq \mathbb{R}^d$ be open and $f: \Omega \times \mathbb{R}^N \to \mathbb{R}$ is Carathéodory (i.e. $\forall y \in \mathbb{R}^N : f(\cdot, y)$ is measurable and for almost all $x \in \Omega$: $f(x, \cdot)$ is continuous). Assume that $|f(x, y)| \leq |g(x)| + c \cdot \sum_{i=1}^N |y_i|^{p_i/p}$ for some $p_1 \in [1, \infty)$, $p \in [1, \infty)$ with $y \in L^p(\Omega)$.

Then $\forall u_i \in L^{p_i}(\Omega)$, the function $f(x, u_1(x), \ldots, u_N(x))$ is measurable and the mapping (named Nemytskii operator) $(u_1, \ldots, u_N) \mapsto f(\cdot, u_1, u_2, \ldots, u_N)$ is continuous from $L^{p_1}(\Omega) \times \ldots \times L^{p_N}(\Omega)$ to $L^p(\Omega)$.

TODO!!!

TODO!!!

Věta 0.5

Let $\Omega \subseteq \mathbb{R}^d$ open bounded, $\Omega_{\delta} := \{x \in \Omega | B_{\delta}(x) \subseteq \Omega\}, \ u_i^h(x) := \frac{u(x+h \cdot e_i) - u(x)}{h}, \ and \ p \in [1, \infty].$ Then

1. if
$$u \in W^{1,p}(\Omega)$$
 then $\forall \delta > 0 \ \forall h \leqslant \frac{\delta}{2} : \|u_i^h\|_{L^p(\Omega_{\delta})} \leqslant \left\|\frac{\partial u}{\partial x_i}\right\|_{L^p(\Omega)}$;

2. if
$$p \in (1, \infty]$$
 and $\sup_{\delta > 0} \sup_{h < \delta/2} \|u_i^h\|_{L^p(\Omega_\delta)} \leqslant K$ then $\frac{\partial u}{\partial x_i}$ exists and $\left\|\frac{\partial u}{\partial x_i}\right\|_{L^p(\Omega)} \leqslant K$;

3. if
$$p \in [1, \infty)$$
 and $u \in W^{1,p}(\Omega)$ then $u_i^n \to \frac{\partial u}{\partial x_i}$ as $h \to 0_+$ in $L^p_{loc}(\Omega)$.

 $D\mathring{u}kaz$

"2.": $p \in (1, \infty)$ then L^p is reflexive. $p = \infty$ then L^∞ has separate procedure. Fix $\Omega' \subseteq \overline{\Omega'} \subseteq \Omega$. $\|u_i^h\|_{L^p(\Omega')} \leqslant K \Longrightarrow$

$$p \in (1, \infty) : \exists h_n : u_i^{h_n} \to \overline{u_i} \text{ in } L^p(\Omega'),$$

$$p = \infty : \exists h_n : u_i^{h_n} \to^* \overline{u_i} in L^p(\Omega').$$

$$\implies \|\overline{u_i}\|_{L^p(\Omega')} \leqslant \lim_{h_n \to 0} \|u_i^h\|_{L^p(\Omega')} \leqslant K. \qquad \Omega' \nearrow \Omega \implies \|\overline{u_i}\|_{L^p(\Omega)} \leqslant K.$$

Remain to show: $\overline{u_i} = \frac{\partial u}{\partial x_i}$.

TODO!!!

"1.": $u \in W^{1,p}(\Omega)$. Mollify to u_{ε} . $u_{\varepsilon} \to u$ in $W^{1,p}_{loc}(\Omega)$, for $p \neq 8$, and $u_{\varepsilon} \rightharpoonup^*$ in $W^{1,\infty}_{loc}(\Omega)$ for $p = \infty$. $D^{\alpha}u_{\varepsilon} = (D^{\alpha}u)_{\varepsilon}$ in Ω_{ε} for $p = \infty$, $D^{\alpha}u_{\varepsilon} \to D^{\alpha}u$ in $L^{p}_{loc}(\Omega)$ for $p \neq \infty$. $x \in \Omega_{\varepsilon}, h \leq \delta/2$:

$$\frac{u_{\varepsilon}(x+h\cdot e_{i})-u_{\varepsilon}(x)}{h} = \frac{1}{h} \int_{0}^{1} \frac{d}{dt} u_{\varepsilon}(x+h\cdot t\cdot e_{i}) dt = \int_{0}^{1} \frac{\partial u_{\varepsilon}}{\partial x_{i}} (x+h\cdot t\cdot e_{i}) dt.$$

$$\int_{\Omega_{\delta}} \left| \frac{u_{\varepsilon}(x+h\cdot e_{i})-u_{\varepsilon}(x)}{h} \right|^{p} dx \leqslant \int_{\Omega_{\delta}} \left| \int_{0}^{1} \frac{u_{\varepsilon}}{\partial x_{i}} (x+h\cdot t\cdot e_{i}) dt \right|^{p} \underset{\leqslant}{\text{Jensen}} \int_{\Omega_{\delta}} \int_{0}^{1} \left| \frac{\partial u_{\varepsilon}}{\partial x_{i}} (x+h\cdot t\cdot e_{i}) \right|^{p} dt dx \leqslant \int_{0}^{1} \int_{\Omega_{\delta}} \left| \frac{\partial u_{\varepsilon}}{\partial x_{i}} (x+h\cdot t\cdot e_{i}) \right|^{p} dx dt \leqslant \int_{0}^{1} \int_{\Omega_{\delta}} \left| \frac{\partial u_{\varepsilon}}{\partial x_{i}} (x+h\cdot t\cdot e_{i}) \right|^{p} dx dt \leqslant \left\| \frac{\partial u}{\partial x} \right\|_{L^{p}(\Omega)}.$$

"3.": It is enough to show that $u_i^{h^n}$ is Cauchy in $L_{loc}^p(\Omega)$:

$$u_i^{h^m} - u_i^{h^m} = \int_0^1 \frac{\partial u}{\partial x_i} (x + h^m \cdot t \cdot e_i) - \frac{\partial u}{\partial x_i} (x + h^n \cdot t \cdot e_i) dt.$$

$$\int_{\Omega_\delta} |u_i^{h^n} - u_i^{h^m}|^p \leqslant \int_0^1 \int_{\Omega} \left| \frac{\partial u}{\partial x_i} (x + h^m \cdot t \cdot e_i) - \frac{\partial u}{\partial x_i} (x + h^n \cdot t \cdot e_i) \right|^p dx dt \leqslant \varepsilon \text{ provided } h^n, h^m \leqslant 1.$$

$$\implies u_i^h \text{ is Cauchy.}$$

0.4 Properties up to the boundary

Věta 0.6

Let $\Omega \subseteq \mathbb{R}^d$ be bounded and open and $p \in [1, \infty)$. Then $\forall u \in W^{1,p}(\Omega)$:

- 1. $\exists \{u^n\}_{n=1}^{\infty} \subseteq C^{\infty}(\Omega) \text{ such that } u^n \to u \text{ in } W^{1,p}(\Omega);$
- 2. if $\Omega \in C^0$ then $\exists \{u^n\}_{n=1}^{\infty} \subseteq C^{\infty}(\overline{\Omega})$ such that $u^n \to u$ in $W^{1,p}(\Omega)$.

 $D\mathring{u}kaz$

"1.": Prose? covering of Ω : $\Omega_i := \{x \in \Omega | \operatorname{dist}(x, \partial \Omega) > \frac{1}{i} \}$. $\Omega_i \subseteq \Omega_j$ for $i \leqslant j$. $\bigcup_{i=1}^{\infty} \Omega_i = \Omega$. Define $V_i = \Omega_{i+3} \setminus \overline{\Omega_{i+1}} = \{x \in \Omega | \frac{1}{i+1} > \operatorname{dist}(x, \partial \Omega) > \frac{1}{i+3} \}$. Find $V_0 \subseteq \Omega$ such that $\bigcup_{i=0}^{\infty} V_i = \Omega$.

 $u_i = u\varphi_i$, where φ_i is partition of unity (from next lemma). So $\forall i \; \exists j \; \text{such that} \; u_i \subset V_j$. $\forall \varepsilon \; \text{find (by convolution)} \; u_i^n \in C^{\infty}(\mathbb{R}^d) : \|u_i - u_i^n\|_{W^{1,p}}(\Omega) \leqslant \frac{\varepsilon}{2^i}$. (Such that $u_i^n \subseteq \Omega_{i+n} \setminus \overline{\Omega_i}$)

Define $u^n := \sum_{i=0}^{\infty} u_i^n$. $K \subseteq \Omega$ compact, then

$$||u-u^n||_{W^{1,p}(\Omega)} = ||\sum u\varphi_i - \sum u_i^n||_{W^{1,p}(K)} = ||\sum (u_i - u_i^n)||_{W^{1,p}(\Omega)} \leqslant \sum ||u_i - u_i^n||_{W^{1,p}(\Omega)} \leqslant \varepsilon \cdot \sum \frac{1}{2^i} \leqslant 2\varepsilon.$$

$$\implies ||u^n - u||_{W^{1,p}(\Omega)} \leqslant 2\varepsilon.$$

"2." TODO!!!?

Start with u_{M+1} . $u_{M+1} = u \cdot \varphi_{M+1}$. supp $\varphi_{M+1} \subset \Omega \implies u_{M+1} \in W^{1,p}(\mathbb{R}^d)$. $u_{M+1}^{\varepsilon} := u_{M+1} * \eta_{\sigma(\varepsilon)}$, where δ is taken such that $\|u_{M+1}^{\varepsilon} - u_{M+1}\|_{W^{1,p}(\Omega)} \leqslant \frac{\varepsilon}{M+1}$.

 u_1 : assume $T_r = id.$ $u_1 = u \cdot \varphi_1$. $u_1^h(x; x_d) := u_1(x; x_d + h)$. $h \leq h_0$:

$$||u_1^n - u_1||_{W^{1,p}(\Omega)} = ||u_1^n - u_1||_{W^{1,p}(V^+)} \le \frac{\varepsilon}{2 \cdot (M+1)}.$$

 $u_1^{\varepsilon} = u_1^h * \eta_{\delta(\varepsilon,h,\varphi_1,a_1)} \in C^{\infty}(\overline{\Omega}). \ \|u_1^{\varepsilon} - u^h\|_{W^{1,p}(V^+)} \leqslant \frac{\varepsilon}{2(M+1)}.$ Find $\delta: (x;x_d) \in \Lambda, \ y \in B_{\sigma}(x;x_d), \ a(y') > y_d - h.$

$$a(y') \ge a(x') - |a(x') - a(y')| = x_d - |a(x') - a(y')| \ge y_d - (|a(x') - a(y')| + |y_d - x_d|).$$

Find $\delta_0 > 0$: $\forall x, y, |x - y| \le \delta_0 : |a(x') - a(y')| + |y_d - x_d| < h$.

Lemma 0.7 (For the previous proof: Partition of unity I)

Let $\Omega \subseteq \mathbb{R}^d$ be open set. Assume that $\{V_i\}_{i\in I}$ be (uncountable) covering-?. Then there exists countable system $\{\varphi_j\}_{j=1}^{\infty}$ such that $\varphi_j \in C_0^{\infty}(\mathbb{R}^d)$, $\forall j \in \mathbb{N} \ \exists i \in I : \operatorname{supp} \varphi_j \subset V_i, \ 0 \leqslant \varphi_j \leqslant 1$, and $\forall x \in \Omega : \sum_{j=1}^{\infty} \varphi_j(x) = 1$. Moreover, for any compact $K \subseteq \Omega$, we have that $\varphi_j(x) \neq 0$ for finitely many j's.

Lemma 0.8 (For the previous proof: Partition of unity II)

Let $\overline{\Omega}$ be a compact set and $\left\{ \tilde{V}_i \right\}_{i=1}^N$ be its open covering $(\overline{\Omega} \subseteq \bigcup_{i=1}^N \tilde{V}_i)$. Then $\exists \varphi_i \in C_0^{\infty}(\tilde{V}_i)$, $0 \leqslant \varphi_i \leqslant 1$, such that $\forall x \in \overline{\Omega} : \sum_{i=1}^N \varphi_i(x) = 1$.

TODO!!!?

Věta 0.9 (Extension)

Let $\Omega \in C^{0,1}$ and $p \in [1, \infty]$. Then there exists continuous linear operator $E : W^{1,p}(\Omega) \to W^{1,p}(\mathbb{R}^d)$ such that $\forall u \in W^{1,p}(\Omega)$:

- 1. Eu = u in Ω :
- 2. $\exists B_R \subseteq \mathbb{R}^d : Eu = 0 \text{ in } \mathbb{R}^d \backslash B_R;$
- 3. $||Eu||_{W^{1,p}(\mathbb{R}^d)} \le c(\Omega, p, d) \cdot ||u||_{W^{1,p}}(\Omega)$.

Důkaz

"1." By picture. "2.": $u = \sum_{r=1}^{M+1} u_r$, where $u_r := u\varphi_r \in W^{1,p}(\Omega)$. Step 0: extension of u_{M+1} by zero is trivial. Step 1: u_1 , $T_1 = \mathrm{id}$, $u_1 \in W^{1,p}(V_1^+)$. $F: V_1 \to \overline{V_1}$, $(x', x_d) \mapsto (y', y_d)$, y' = x', $y_d = x_d - a_1(x')$. $F^{-1}: \overline{V_1} \to V_1$, x' = y', $x_d = y_d + a(y')$.

TODO!!!

Proof of (*): It is enough to show that $\frac{\partial Ev(y)}{\partial y_1} = \frac{\partial v(y)}{\partial y_1}$ for $y_d > 0$ and $\dots = \frac{\partial v}{\partial y_i}(y', -y_d)$ for $y_d < 0$; and $\frac{\partial E(y)}{\partial d} = \frac{\partial v(y)}{\partial y_d}$ for $y_d > 0$ and $\dots = -\frac{\partial v}{\partial y_d}(y'; y_d)$ for $y_d < 0$.

We know $Ev \in W^{1,p}(\overline{V_1^+})$ and $Ev \in W^{1,p}(\overline{V_1^-})$. $||Ev||_{W^{1,p}(V_1^-)} = ||Ev||_{W^{1,p}(V_1^+)}$.

TODO!!!???

1 Embeddings

Věta 1.1

Let $\Omega \in C^{0,1}$ and $p \in [1, \infty]$. Then:

- $W^{1,p}(\Omega) \hookrightarrow L^{\frac{dp}{d-p}}(\Omega)$ if p < d;
- $W^{1,p}(\Omega) \hookrightarrow L^q(\Omega)$ for all q if p = d;
- $W^{1,p}(\Omega) \hookrightarrow L^{\infty}(\Omega)$ if p > d;
- $W^{1,p}(\Omega) \hookrightarrow C^{0,1-\frac{d}{p}}(\overline{\Omega}) \hookrightarrow \hookrightarrow C^{0,\beta}(\overline{\Omega}) \text{ if } p > d \text{ (for } \beta < 1 \frac{d}{p});$
- $W^{1,p}(\Omega) \hookrightarrow \hookrightarrow L^q(\Omega)$ for $q < \frac{dp}{d-p}$ if p < d (respectively $< \infty$ if p = d).

 $D\mathring{u}kaz \text{ (Case } p > d)$

Lemma (Marey): Let $u \in W^{1,1}(B_R)$ and \mathbf{o} be the Lebesgue point of u. Then

$$\left| \int_{B_R} u dx - u(\mathbf{o}) \right| \leqslant c(d, A) R^A \sup_{\varrho \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} dx \qquad \forall A \in (0, 1).$$

Proof of lemma:

$$\begin{split} & \int_{B_R} u dx - u(\mathbf{o}) = \lim_{r \to 0_+} \left(\int_{B_R} u - \int_{B_r} u \right) = \lim_{r \to 0_+} \int_r^R \frac{d}{d\varrho} \int_{B_\varrho} u(x) dx d\varrho = \\ & = \lim_{r \to 0_+} \int_r^R \frac{d}{d\varrho} \int_{B_1} u(\varrho x) dx = \lim_{r \to 0_+} \int_r^R \int_{B_1} \frac{\nabla u(\varrho x) \cdot x}{\sum_{i=1}^d \frac{\partial u}{\partial y_i}(\varrho x) \cdot x_i} dx d\varrho \leqslant \\ & \leqslant \lim_{r \to 0_+} \int_r^R \int_{B_1} |\nabla u(\varrho x)| dx d\varrho = \lim_{r \to 0_+} \int_r^R \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \frac{\varrho^{d-1+A}}{\varrho^d} dx d\varrho \varkappa(\varrho) d\varrho = \\ & = \lim_{r \to 0_+} \int_r^R \varrho^{A-1} \left(\int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} dx \right) d\varrho \leqslant \left(\sup_{0 \leqslant \varrho \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \right) \varkappa(d) \int_0^R \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho = \frac{\varkappa(d)}{A} R^A \sup_{r \leqslant R} \int_{B_\varrho} \frac{|\nabla u|}{\varrho^{d-1+A}} \varrho^{A-1} d\varrho$$

Lemma (Marey II) Let $u \in W^{1,1}_{loc}(\mathbb{R}^d)$ and x, y be Lebesgue points. Then

$$|u(x) - u(y)| \le c(d, A)|x - y|^A \sup_{\varrho \le R, z \in [x, y]} \int_{B_\varrho(z)} \frac{|\nabla u|}{\varrho^{d-1+A}} dx.$$

Proof of lemma: (R = |x - y|)

$$|u(x)-u(y)| \leq \left| \int_{B_{R}(x)} u(z)dz - u(x) \right| + \left| \int_{B_{R}(y)} u(z)dz - u(y) \right| + \left| \int_{B_{R}(x)} u(z)dz - \int_{B_{R}(y)} u(z)dz \right| \leq$$

$$\leq c(d,A)R^{A} \left(\sup_{\varrho \leq R} \int_{B_{\varrho}(x)} \frac{|\nabla u|}{\varrho^{d-1+A}} + \sup_{\varrho \leq R} \int_{B_{\varrho}(y)} \frac{|\nabla u|}{\varrho^{d-1+A}} \right) + \left| \int_{0}^{1} \frac{d}{dt} \int_{B_{R}(tx+(1-t)y)} u(z)dzdt \right| =$$

$$= \dots + \left| \int_{0}^{1} \frac{d}{dt} \int_{B_{R}(\mathbf{o})} u(tx + (1-t)y + z)dz \right| \leq \dots + \left| \int_{0}^{1} \int_{B_{R}(\mathbf{o})} \nabla u(tx + (1-t)y + z) \cdot (x-y)dz \right| \leq$$

$$\leq \dots + \int_{0}^{1} R^{A} \int_{0}^{1} \varkappa^{-1}(1) \int_{B_{R}(tx+(1-t)y)} \frac{|\nabla u|}{R^{d-1+A}} dzdt \leq$$

$$\leq \tilde{c}(d,A)R^{A} \sup_{\varrho \leq R} \sup_{z \in [x,y]} \int_{B_{\varrho}(z)} \frac{|\nabla u|}{\varrho^{d-1+A}}.$$

Proof of theorem: We have $||u||_{C^{0,\alpha}} \leq c \cdot ||u||_{1,p}$ for $u \in C^1(\overline{\Omega})$

 $\|u\|_{C^{0,\alpha}(\overline{\Omega})} = \|Eu\|_{C^{0,\alpha}(\overline{\Omega})} \leqslant \|Eu\|_{C^{0,\alpha}(B_R)} \stackrel{1.}{\leqslant} c(\overline{B_R},p,d) \cdot \|Eu\|_{W^{1,p}(\mathbb{R}^d)} \stackrel{\text{Extension}}{\leqslant} C(\overline{B_R},p,d,\Omega) \|u\|_{W^{1,p}(\Omega)},$ where $\overline{B_R}$ is support of E.

$$u \in C_0^1(\overline{B_R})$$

$$\sup_{x \neq y} \frac{u(x) - u(y)}{|x - y|^A} \leqslant \sup_{x \neq y} c(d, A) \sup_{\varrho \leqslant |x - y|, z \in [x, y]} \int_{B_\varrho(z)} \frac{|\nabla u|}{\varrho^{d - 1 + A}} dx \leqslant$$

 $D\mathring{u}kaz$ (Case d > p (d = p), only for $u \in C_0^{\infty}(\mathbb{R}^d)$)

$$(*): \quad \|u\|_{L^{\frac{dp}{d-p}}(\mathbb{R}^d)} \leqslant c(d,p)\|\nabla u\|_{L^p(\mathbb{R}^d)} \overset{\text{At home}^{1,p}}{W}(\Omega) \hookrightarrow L^{\frac{dp}{d-p}}(\Omega) \qquad p < d, \Omega \in C^{0,1}.$$

"Step 1: If (*) is true for p=1, then (*) is true for $p\in[1,d)$ ": (Set $v:=|u|^q$)

$$\left(\int_{\mathbb{R}^d} |u|^{\frac{q \cdot d}{d-1}}\right)^{\frac{d-1}{d}} = \|v\|_{L^{\frac{d}{d-1}}} \leqslant c(d) \cdot \|\nabla v\|_{L^1} \leqslant c(d) \int_{\mathbb{R}^d} q \cdot |u|^{q-1} \cdot |\nabla u| \leqslant c(d,q) \|\nabla u\|_{L^p} \cdot \|u\|_{L^{p'(q-1)}}^{q-1}.$$

Set $q := \frac{p \cdot (d-1)}{d-p}$:

$$\left(\int_{\mathbb{R}^d} |u|^{\frac{dp}{d-p}}\right)^{\frac{d-1}{d}} \leqslant c(d,p) \|\nabla u\|_p \cdot \|u\|_{\frac{dp}{d-p}}^{\frac{p\cdot (d-1)}{d-p}-1}.$$

$$\left(\frac{p}{p-1} \cdot \left(\frac{p\cdot (d-1)}{d-p}-1\right) = \frac{dp}{d-p}\right).$$

Lemma (Gagliardo): Let $u_i \in C_0^{\infty}(\mathbb{R}^{d-1})$, $i \in [d]$. Define $v_i(x_1, \dots, x_d) := u_i(x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_d)$ Then

$$\int_{\mathbb{R}^d} \prod_{i=1}^d |v_i(x)| dx \leqslant \prod_{i=1}^d ||u_i||_{L^{d-1}(\mathbb{R}^{d-1})}.$$

Proof of lemma: By induction (with respect to d):

$$\begin{split} d &= 2: \qquad \int_{\mathbb{R}^d} |v_1(x)| \cdot |v_2(x)| dx = \int_{\mathbb{R}^2} |u_1(x_2)| \cdot |u_2(x_1)| dx_1 dx_2 = \|u_1\|_{L^1(\mathbb{R})} \cdot \|u_2\|_{L^1(\mathbb{R})}. \\ d &\Longrightarrow d + 1: \qquad \int_{\mathbb{R}^{d+1}} \prod_{i=1}^{d+1} |v_i(x)| dx = \int_{\mathbb{R}^d} |v_{d+1}(x)| \cdot \left(\int_{\mathbb{R}} \prod_{i=1}^d |v_i(x)| dx_{d+1}\right) dx_1 \dots dx_d \overset{\text{H\"older}}{\leqslant} \\ &\leqslant \left(\int_{\mathbb{R}^d} |v_{d+1}(x)|^d dx_1 \dots dx_d\right)^{1/d} \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}} \prod_{i=1}^d |v_i| dx_{d+1}\right)^{d'} dx_1 \dots dx_d\right)^{1/d'} \overset{\text{H\"older}}{\leqslant} \\ &\leqslant \|u_{d+1}\|_{L^d(\mathbb{R}^d)} \left(\int_{\mathbb{R}^d} \prod_{i=1}^d \left(\int_{\mathbb{R}} |v_i|^d dx_{d+1}\right)^{1/d}\right)^{d'} dx_1 \dots dx_d\right)^{1/d'} \leqslant \\ &= \|u_{d+1}\|_{L^d(\mathbb{R}^d)} \cdot \left(\int_{\mathbb{R}^d} \prod_{i=1}^d \left(\int_{\mathbb{R}} |v_i|^d dx_{d+1}\right)^{\frac{1}{d-1}} dx_1 \dots dx_d\right)^{1/d'} \leqslant \\ &\leqslant \|u_{d+1}\|_{L^d(\mathbb{R}^d)} \cdot \left(\int_{\mathbb{R}^d} \prod_{i=1}^d |z_i| dz\right)^{1/d'} \overset{\text{Induction hypothesis}}{\inf(x_i) \cap x_i} \|u_{d+1}\|_{L^d(\mathbb{R}^d)} \prod_{i=1}^d \|z_i\|_{L^d-1}^{\frac{d-1}{d}} = \\ &= \|u_{d+1}\|_{L^d(\mathbb{R}^d)} \prod^d TODO = \prod^{d+1} \|u_i\|_{L^d}. \end{split}$$

Proof of theorem: We want $\|u\|_{L^{\frac{d}{d-1}}(\mathbb{R}^d)} \overset{9}{\leqslant} c(d) \|\nabla u\|_{L^1(\mathbb{R}^d)} \forall u \in \mathbb{C}^{\infty}(\mathbb{R}^d)$

Důkaz (Compact embeddings)

Step 1: $W^{1,1}(\Omega) \hookrightarrow \hookrightarrow L^1(\Omega)$. Step 2: $W^{1,p}(\Omega) \hookrightarrow \hookrightarrow L^q(\Omega)$, $q < \frac{dp}{d-p}$.

"Step 1 \Longrightarrow Step 2": $p \le q \le z$:

$$||u||_{L^q} \le ||u||_{L^p}^{\alpha} \cdot ||u||_z^{1-\alpha}, \qquad \frac{1}{q} = \frac{\alpha}{p} + \frac{1-\alpha}{z}.$$

S bounded set in $W^{1,p}(\Omega)$. Goal: $\forall \varepsilon > 0 \ \exists \ \{u_i\}_{i=1}^N \subset L^q(\Omega) \ \forall u \in S : \min_i \|u - u_i\| < \varepsilon$. $W^{1,p}(\Omega) \hookrightarrow W^{1,1}(\Omega) \stackrel{\text{Step 1}}{\Longrightarrow} \forall \tilde{\varepsilon} > 0 \ \exists \ \{u_i\}_{i=1}^{N(\tilde{\varepsilon},S)} : \min_i \|u - u_i\|_{L^1(\Omega)} \leqslant \tilde{\varepsilon}$.

$$||u - u_i||_{L^q(\Omega)} \le ||u - u_i||_{L^1(\Omega)}^{\alpha} \cdot ||u - u_i||_{\frac{dp}{d-p}}^{1-\alpha}, \qquad \frac{1}{q} = \frac{\alpha}{1} + \frac{(1-\alpha) \cdot (d-p)}{dp} \le c(\Omega, p) ||u - u_i||_{L^1(\Omega)}^{\alpha} \cdot ||u - u_i||_{W^{1,p}(\Omega)}^{1-\alpha} \le c(\Omega, p, S) \cdot ||u - u_i||_{L^1(\Omega)}^{\alpha}.$$

$$\min ||u - u_i||_{L^q(\Omega)} \le c(\Omega, p, S) \tilde{\varepsilon}^{\alpha}.$$

Given $\varepsilon > 0$. $\tilde{\varepsilon} := \frac{\varepsilon^{1/\alpha}}{c(\Omega, p, S)^{1/\alpha}}$, find $\{u_i\}$ from Step $1 \implies \min_i \|u - u_i\|_{L^q} \leqslant \varepsilon$.

"Step 1": Enough $W_0^{1,1}(B_R) \hookrightarrow \hookrightarrow L^1(B_R)$. $u \in W_0^{1,1}(B_R)$, $u_\delta := u * \eta_\delta$.

$$\begin{split} \int_{\mathbb{R}^d} |u - u_{\delta}| dx &= \int_{\mathbb{R}^d} \left| \int_{\mathbb{R}^d} (u(y) - u(x)) \eta_{\delta}(x - y) dx \right| dy = \\ &= \int_{\mathbb{R}^d} \int_{\mathbb{R}^d} \frac{|u(x + y) - u(x)|}{|y|} \eta_{\delta}(y) |y| dx dy, \\ &\leqslant \|\nabla u\|_{L^1(\mathbb{R}^d)} \cdot \int_{\mathbb{R}^d} |y| \eta_{\delta}(y) dy \leqslant \delta \|\nabla u\|_{L^1(\mathbb{R}^d)}. \end{split}$$

Recall: $C^1(\overline{B_R}) \hookrightarrow \hookrightarrow C^0(\overline{B_R}) \hookrightarrow \hookrightarrow L^1(\overline{B_R})$ (Arzela–Ascoli + Hölder).

S set bounded in $W^{1,1}(\overline{B_R})$. $S_{\delta} := \{u_{\delta}, u \in S\}$. $\|u_{\delta}\|_{C^1(\overline{B_R})} \leqslant \frac{C(B_R) \cdot \|u\|_{W^{1,1}(B_R)}}{\delta}$ (for δ small).

Given $\varepsilon > 0 \ \exists \delta \colon \|u - u_{\delta}\|_{L^{1}} \leqslant \frac{\varepsilon}{2} \ \forall u \in S. \ u_{\delta} \in S_{\delta} \ (\text{bounded set in } C^{1}(\overline{B_{R}})), \ \|u_{\delta}\|_{C^{1}} \leqslant \frac{c}{\delta} = c(\varepsilon). \ \text{Find} \ \{u_{\delta}^{i}\}_{i=1}^{N(\varepsilon)} \colon \min \|u_{\delta} - u_{\delta}^{i}\|_{L^{1}} \leqslant \frac{\varepsilon}{2}.$

$$||u - u_{\delta}^{i}||_{L^{1}} \le ||u - u_{\delta}||_{L^{1}} + ||u_{\delta} - u_{\delta}^{i}|| \le \varepsilon.$$

1.1 Traces

Poznámka (C^1 functions on cube) $\Omega = (-1,1)^{d-1} \times (0,1), \ x' = (x_1,\ldots,x_{d-1}). \ u \in C^1(\overline{\Omega}), \ u(x',1) = 0.$

Optimal q such that $\int_{(-1,1)^{d-1}} |u(x',\mathbf{o})|^q dx_1 \dots dx_{d-1} \leqslant c \cdot \|\nabla u\|_{L^p(\Omega)}^q$?

$$\int_{(-1,1)^{d-1}} |u(x',0)|^q dx' = \int_{(-1,1)^{d-1}} - \int_0^1 \frac{\partial}{\partial x_d} |u(x',x_d)|^q dx_d dx' \leqslant q \cdot \int_{\Omega} |u|^{q-1} \cdot |\nabla u| dx \leqslant q \cdot \int_{\Omega} |u|^{q-1} \cdot |\nabla u|^{q-1} \cdot |\nabla u|^{q-1$$

$$\leqslant q \cdot \|\nabla u\|_{L^{p}(\Omega)} \cdot \||u|^{q-1}\|_{L^{p'}(\Omega)} \stackrel{?}{\leqslant} q \cdot \|\nabla u\|_{L^{p}(\Omega)} \cdot \|u\|_{L^{\frac{dp}{d-p}}(\Omega)}^{q-1}.$$

Set
$$q: (q-1)p' = \frac{dp}{d-p} \implies q = \frac{d(p-1)}{d-p} + 1 = \frac{dp-p}{d-p} = \frac{p \cdot (d-1)}{d-p}$$
.

$$||u||_{L^{\frac{p(d-1)}{d-p}}((-1,1)^{d-1})} \le C(\Omega,p) \cdot ||u||_{W^{1,p}(\Omega)}.$$

Poznámka (Integral on boundary for $\Omega \in C^{0,1}$)

$$\int_{\partial\Omega} f ds := \int_{\partial\Omega} \sum_{i=1}^{N} f \varphi_i = \sum_{i=1}^{N} \int_{(-1,1)^{d-1}} f(T_i(y)) \varphi_i(T_i(y)) \sqrt{1 + |\nabla y|^2} dy',$$

where φ_i is partition of unity corresponding to $C^{0,1}$ and T_i .

We should show independence on φ_i , V_i . Also we can show $\int_{\Omega} \frac{\partial f}{\partial x_i} dx = \int_{\partial \Omega} f n_i dS$. $(\forall f \in C^1(\overline{\Omega}).)$

TODO!!!

Poznámka (On spaces with non-integer derivative) tr is not onto $L^{\frac{(d-1)p}{d-p}}(\partial\Omega)$.

Věta 1.2 (Inverse trace theorem)

 $\Omega \in C^{0,1}, \ p \in (1,\infty], \ s \in (1/p,1]. \ Then \ \mathrm{tr} \ is \ bounded \ linear \ from \ W^{s,p}(\Omega) \ to \ W^{s-\frac{1}{p},p}(\partial\Omega).$ $Moreover \ \exists \ \mathrm{tr}^{-1} : W^{s-\frac{1}{p},p}(\partial\Omega) \to W^{s,p}(\Omega) \ linear \ bounded, \ such \ that \ \mathrm{tr}(\mathrm{tr}^{-1}) = u \ on \ \partial\Omega.$

Definice 1.1 (Sobolev–Slobodeckij spaces)

We say that $u \in W^{s,p}(\Omega)$, $s \in (0,1)$, iff

$$\int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|^p}{|x - y|^{d + ps}} dx dy < \infty \qquad \wedge u \in L^p(\Omega).$$

$$||u||_{W^{s,p}(\Omega)} := ||u||_{L^p(\Omega)}.$$

Definice 1.2 (Nikólskii spaces)

We say that $u \in N^{s,p}(\Omega), p \in [1, \infty], s \in (0, 1], \text{ iff}$

$$\sup_{h,i} \int_{\Omega_h} \frac{|u(x+he_i) - u(x)|^p}{h^{p \cdot s}} dx < \infty.$$

Lemma 1.3

$$W^{s,p}(\Omega) \hookrightarrow N^{s,p}(\Omega) \hookrightarrow W^{s-\varepsilon,p}(\Omega), \qquad \forall 0 < \varepsilon < s.$$

Důkaz

At home.

2 Nonlinear elliptic equations as a "compact" perturbation of linear PDE

Poznámka

 $-\Delta u = f(x, u, \nabla u)$ in Ω , u = 0 on $\partial \Omega$, $f : \Omega \times \mathbb{R} \times \mathbb{R}^d$ is Caratheódory, $|f(x, u, \xi)| \leq c$ $(\forall u \in \mathbb{R}, \xi \in \mathbb{R}^d$, and almost all $x \in \Omega$).

Lemma 2.1

$$\exists u \in W_0^{1,2}(\Omega): \int_{\Omega} \nabla u \nabla \varphi = \int_{\Omega} f(\cdot, u, \nabla u) \varphi \qquad \forall \varphi \in W_0^{1,2}(\Omega).$$

Důkaz

Consider $M: W_0^{1,2}(\Omega) \to W_0^{1,2}(\Omega), v \mapsto u$:

$$\int_{\Omega} \nabla u \cdot \nabla \varphi = \int_{\Omega} f(x, v, \nabla v) \varphi \qquad \forall \varphi \in W_0^{1,2}(\Omega).$$

Linear theory $\implies \forall v \in W_0^{1,2}(\Omega) \; \exists ! u \in W_0^{1,2}(\Omega) \text{ satisfying this equation.}$

Does M have a fixpoint? Schauder fixpoint theorem assumptions: (A1) $\exists K$ convex set in $W_0^{1,2}(\Omega)$ such that $M(K) \subseteq K$, (A2) M compact, continuous.

Ad (A1): Set $\varphi := u$.

$$C_1 \|u\|_{1,2}^2 \le \|\nabla u\|_2^2 = \int_{\Omega} \nabla u \nabla u = \int_{\Omega} f(x, v, \nabla v) u \le C \int_{\Omega} |u| \le \tilde{C}(\Omega) \|u\|_{1,2} \implies \|u\|_{1,2} \le \tilde{\tilde{C}}.$$

$$K \subseteq W_0^{1,2}(\Omega), K = \left\{ u \in W_0^{1,2}(\Omega) \middle| \|u\|_{1,2} \leqslant \tilde{\tilde{C}} \right\}.$$

Ad (A2):
$$v^n \to v$$
 in $W_0^{1,2}(\Omega)$, $u^n = M(v^n)$. $\exists u^{n_k} \to u$ strongly in $W_0^{1,2}(\Omega)$?

$$||u^n||_{1,2} \leqslant \tilde{\tilde{C}}, u^{n_k} \to u \text{ in } W_0^{1,2}(\Omega), u^{n_k} \to u \text{ in } L^2(\Omega).$$

Set $\varphi := u^n - u \in W_0^{1,2}(\Omega)$.

$$\lim_{n_k \to 0} \|u^{n_k} - u\|_{1,2}^2 \leqslant C \cdot \lim \|\nabla u^{n_k} - \nabla u\|_2^2 = C \cdot \lim \int_{\Omega} \nabla u^{n_k} \cdot (\nabla u^{n_k}, \nabla u) - C \cdot \lim \int_{\Omega} \nabla u \cdot (\nabla u^{n_k} - \nabla u) = C \cdot \lim_{n_k \to 0} \|u^{n_k} - u\|_{1,2}^2 \leqslant C \cdot \lim_{n_k \to 0} \|\nabla u^{n_k} - \nabla u\|_2^2 = C \cdot \lim_{n_k \to 0} \|\nabla u^{n_k} - \nabla u\|_{1,2}^2 \leqslant C \cdot \lim_{n_k \to 0} \|\nabla u^{n_k} - \nabla u\|_2^2 = C \cdot \lim_{n_k \to 0} \|\nabla u^{n_k} - \nabla u\|_{1,2}^2 \leqslant C \cdot \lim_{n_k \to 0} \|\nabla u^{n_k} - \nabla u\|_2^2 = C \cdot \lim_{n_$$

$$= C \cdot \lim \int_{\Omega} f(\cdot, v^n, \nabla v^n) (u^{n_k} - u) - C \cdot \lim \int_{\Omega} \nabla u \cdot (\nabla u^{n_k} - \nabla u),$$

TOOD!!!

TODO!!!

Poznámka

Works also if $|f(x, u, \xi)| \le C(g(x) + |u|^{\alpha} + |\xi|^{\alpha})$, where $0 \le \alpha < 1$ and $g \in L^{2}(\Omega)$.

No estimates available (in principle): $-\Delta u = l|u|^{p-2}u$ in Ω , u = 0 on $\partial\Omega$. Does the problem have nontrivial solution? TODO!!!

$$-\Delta v = \lambda A^{2-p} \cdot |v|^{p-2} v$$

if $\exists \lambda > 0$ $u \not\equiv 0$ solving $-\Delta u = \lambda |u|^{p-2}u$, then $\forall B > 0$ $\exists v : -\Delta v = B|v|^{p-2}v$.

Lemma 2.2

Let $p < \frac{2d}{d-2}$. Then $\exists \lambda > 0$ $\exists u \in W_0^{1,2}(\Omega)$ such that $-\Delta u = \lambda |u|^{p-2}u$ in $\Omega.x$ TODO!!!

Důkaz TODO!!!

TOOD!!!

TODO!!!

TODO!!!

 $\mathrm{TODO}!!!$

TODO!!!

TODO!!!

TODO!!!