1 Recursion Complexity

Substitution

Recursion-Tree

Guess Asymptotic Delete floors and ceils and suppose n of a good form. Show Answer by Induction Draw a tree, rooted with added term and recursive calls.

Theorem 1.0.1 (Master Theorem). If we have recurrence equation T(n) = aT(n/b) + f(n) where $a \ge 1, b > 1$ are integers, f(n) is asymptotically positive. Let $r = \log_b a$, we have :

- 1. If $f(n) = \mathcal{O}(n^{r-\varepsilon})$ for some $\varepsilon > 0$, then $T(n) = \Theta(n^r)$
- 2. If $f(n) = \Theta(n^r)$ then $T(n) = \Theta(n^r \log n)$
- 3. If $f(n) = \Omega(n^{r+\varepsilon})$ for some $\varepsilon > 0$, and $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n (regularity condition) then $T(n) = \Theta(f(n))$.

Applications to FFT: recursively evaluate polynomials on roots of unity.

2 Hashing

Theorem 2.0.1 (Simple Uniform Hashing Assumption). Assuming SUHA: "h equally distributes the keys into the table slots", and assuming h(x) can be computed in $\mathcal{O}(1)$, $E\left[T_{search}(n)\right] = \mathcal{O}\left(1 + \frac{n}{m}\right)$, and same for deletion time. Formally, SUHA is:

$$\forall y \in [1, |T|] \mathbb{P} (h(x) = y) = \frac{1}{|T|}$$

$$\forall y_1, y_2 \in [1, |T|]^2 \mathbb{P} (h(x_1) = y_1, \ h(x_2) = y_2) = \frac{1}{|t|^2}$$

 $H = \{h: U \rightarrow [0, |T| - 1]\}$ is Universal if :

$$\forall k_1 \neq k_2 \in U, |\{h \in H \mid h(k_1) = h(k_2)\}| \leq \frac{|H|}{m}$$

Theorem 2.0.2. If h is a hash function chosen uniformly at random from a universal family of hash functions. Suppose that h(k) can be computed in constant time and there are at most n keys. Then the expected search time is $\mathcal{O}(1+\frac{n}{|T|})$

Theorem 2.0.3. Let $p \in \mathcal{P}$ such that $U \subseteq [0, p-1]$. Then

$$H = \{ h_{a,b}(k) = ((ak+b) \mod p) \mod |T| \mid a \in \mathbb{Z}_p^* b \in \mathbb{Z}_p \}$$

is a universal family.

Theorem 2.0.4. Cuckoo Hashing inserts in constant time, searches in constant time, only for static keys.

3 Integer Sets

Proposition 3.0.1 (RBTrees). Red black tree use $\mathcal{O}(n)$ space, $\mathcal{O}(\log n)$ in time for insertion and deletion in the worst case.

Proposition 3.0.2 (Treaps). • Time for a successful search : $\mathcal{O}(\operatorname{depth}(v))$ where $\operatorname{key}(v) = k$.

• Time for an unsuccessful search : $\mathcal{O}(\max{(depth(v^-), depth(v^+))})$ where $key(v^-)$ is the predecessor of the searched key.

- Insertion Time: $\mathcal{O}(\max{(\operatorname{depth}(v^-), \operatorname{depth}(v^+))})$ where $\operatorname{key}(v^-)$ is the predecessor of the searched key.
- Deletion Time : O(tree depth)
- Split/Merge Time: same as insertion / deletion

Definition 3.0.1. A decision tree for a sorting algorithm is a binary tree that shows the possible executions of an algorithm on a set.

Proposition 3.0.3 (Van Emde Boas Trees). They maintain successor queries in $\mathcal{O}(\log \log u)$, updates in $\mathcal{O}(\log u)$ in $\Theta(u)$ space.

Proposition 3.0.4 (y-fast trees). Predecessor queries are in $\mathcal{O}(\log \log u)$ time, updates in $\mathcal{O}(\log \log u)$ expected amortised time, since insertion into the x-fast trie happens only once per $\Theta(\log u)$ new elements.

4 String Algorithms

Proposition 4.0.1 (KMP). Suppose that we have computed $B[1], \ldots, B[k-1]$. We will now compute B[k].

```
By property 3, if P[k] = P[B[k-1]+1], then B[k] = B[k-1]+1.

Else, if P[k] \neq P[B[k-1]+1], consider B^2[k-1] = B[B[k-1]]. If P[k] = P[B^2[k-1]+1], set B[k] = B^2[k-1]+1, else consider B^3[k-1], and so on.
```

This algorithm is correct and in $\mathcal{O}(m)$.

Proposition 4.0.2 (Aho-Corasick). Aho-Corasick solves multiple pattern matching with space complexity $\mathcal{O}(m)$ and time complexity $\mathcal{O}(m+n)$ if no pattern is a substring of another else in $\mathcal{O}(n+m+\#occ)$.

Proposition 4.0.3. A suffix tree for a string of length n has n leaves, and at most 2n-1 nodes and 2n-2 edges. Storing the labels on the edges can take $\Theta\left(\left|T\right|^{2}\right)$. To save space we represent each label as two numbers, the left and the right endpoints in T.

Theorem 4.0.1. Pattern Matching queries are answered in $\mathcal{O}(m + occ)$ using suffix trees that can be build in linear time.

5 Disjoint-Set

Theorem 5.0.1. Using linked-lists and the weighted-union strategy, doing m make_set, union_set and find_set, n of which are union_set takes $O(m + n \log n)$

Theorem 5.0.2. A sequence of m make_set, union_set, find_set, out of which n are make_set takes $\mathcal{O}(m\alpha(n))$ time. In other words, one operation takes $\mathcal{O}(\alpha(n))$ amortised time.

6 Graphs

Theorem 6.0.1 (White-path Theorem). In a DFS forest of a digraph, a vertex v is a descendant of a vertex u if and only if at time u.d, there is a (u,v)-path made of undiscovered vertices.

Proposition 6.0.1. G^{SCC} is a DAG and is computed by Kosaraju's two pass algorithm in linear time.

Proposition 6.0.2 (Cut and Paste Technic). Let G = (V, E) and let T be a spanning tree of G. Let $uv \in E(G) - T$ and let T_{uv} be the unique path linking u and v in T. Then for every edge xy of T_{uv} $T \setminus \{xy\} \cup \{uv\}$ is a spanning tree of T.

Theorem 6.0.2. Kruskal returns the MST in $\mathcal{O}(m \log n)$. Prim returns the MST in $\mathcal{O}(m+n \log n)$ with Fibo Heap and $\mathcal{O}(m \log n)$ with a min-heap.

Theorem 6.0.3 (Rado-Edmonds). The greedy algorithm for a problem is optimal for any weight function if and only if (E, \mathcal{I}) is a matroid.

7 Parametrized Complexity

Definition 7.0.1. A parametrized algorithmic problem is a problem where a certain parameter k is given in addition to the input. The complexity is studied as a function of n and k.

Definition 7.0.2. • A parametrized problem is Fixed-Parameter Tractable if there is an algorithm deciding \mathcal{P} in time $f(k)n^c$ where f is computable and c is constant.

• A parametrize problem \mathcal{P} is XP if there is an algorithm deciding \mathcal{P} in time $n^{f(k)}$ for some computable f and constanc c.

Definition 7.0.3. The main idea of the branching method is to reduce the problem to solving a bounded number of problems with parameter k' < k.

Definition 7.0.4. Let \mathcal{P} be a parametrized problem and f a computable function.

A kernel of size f(k) is an algorithm that, given (x,k), runs in polynomial-time in |x| + k and outputs an instance x', k' such that:

- $x, k \in \mathcal{P} \Leftrightarrow x', k' \in \mathcal{P}$
- $|x'| \le f(k)$ and $k' \le k$.

We say the kernel is polynomial is f is polynomial.

Theorem 7.0.1. A parametrized problem is FPT if and only if it is decidable and has a kernel.

8 Approximation Algorithm

Definition 8.0.1. An algorithm has an approximation ratio of $\rho(n)$ if for any input of size n the cost ALG of the solution produced by the algorithm is with a factor of $\rho(n)$ of the cost OPT of an optimal solution:

$$1 \leq \max\left(\frac{OPT}{ALG}, \frac{ALG}{OPT}\right) \leq \rho(n)$$

9 Linear Programming

Definition 9.0.1. A linear program is made of n decision variables $x_1, \ldots, x_n \in \mathbb{R}$, m linear constraints

$$\sum_{i=1}^{n} a_{ij} \star b_i$$

where $\star \in \{\leq, \geq, =\}$; and a function we want to maximise.

The set of points $x \in \mathbb{R}^n$ at which a constraint holds with equality is a hyperplane. Thus, each constraint is satisfied by a closed half-space of \mathbb{R}^n , and the set of feasible solution is the intersection of m closed half-spaces, that is, a convex polyhedron P. A linear program can have no optimal solution:

- if the set of feasible solution is empty
- if for every integer M, there exists a feasible point x such that $c \cdot x \geq M$. In this case the set of feasible solution is unbounded.