6.2 因为可在 D_1 内取充分小单连通开集, 不妨设 D_1 单连通. 设 u 在 D_1 内恒为常数 a, 取 v 为 u 在 D_1 内共 轭调和, 作 f=u+iv 为 D_1 内解析. 因为在 D_1 内 $v_x=-u_y,v_y=u_x$, 所以 v 在 D_1 内为某常数 b, 从而 f 在 D_1 内恒为 a+bi, 由解析函数唯一性得 f 在 D 内也恒为 a+bi, 因此在 D 内 u 恒为 a.

6.3
$$0 = \frac{\partial^2 f^2}{\partial z \partial \overline{z}} = 2 \frac{\partial f}{\partial z} \frac{\partial f}{\partial \overline{z}} + 2 f \frac{\partial^2 f}{\partial z \partial \overline{z}} = 2 \frac{\partial f}{\partial z} \frac{\partial f}{\partial \overline{z}}.$$
 得 $\frac{\partial f}{\partial z} = 0$ 或 $\frac{\partial f}{\partial \overline{z}} = 0$.

- **6.6** $u = v = x^2 y^2$ 调和, 但 uv 不调和.
- **6.8** 存在非常值整函数 f = u + iv, 根据 Weierstrass 定理 f 的像在 \mathbb{C} 中稠密, 从而 u 既无上界也无下界.
- **6.10** 分式线性变换 $w_1 = \frac{1-z}{1+z}$ 将单位圆变成右半平面, |z| = 1 变到虚轴. $w = w_1^2$ 将右半平面变为 $\mathbb{C} \setminus \{w \le 0\}$, 将虚轴变为 $\{w \le 0\}$. 这样一来 $w = (\frac{1-z}{1+z})^2$ 将 |z| = 1 变为 $\{w \le 0\}$.
- 6.13 利用最大、最小值原理的证明方法即可.
- **6.14** (Poisson公式) 设函数 u(z) 在 |z-a| < R 内调和, 在 $|z-a| \le R$ 上连续, 则当 |z-a| < R 时有

$$u(z) = \frac{1}{2\pi} \int_{|\xi - a| = R} \frac{R^2 - |z|^2}{|\xi - z|^2} u(\xi) d\theta, \ \xi = a + Re^{i\theta}.$$