Chapter 6

Quiz

1) Which one of the following is correct? A) $v + \lambda = c$ B) $v \div \lambda = c$ C) $v = c\lambda$ D) $\lambda = c v$ E) $v\lambda = c$
2) Of the following,radiation has the shortest wavelength. A) X-ray B) radio C) microwave D) ultraviolet E) infrared
3) Of the following transitions in the Bohr hydrogen atom, thetransition results in the emission of the lowest-energy photon. A) $n = 1 \rightarrow n = 6$ B) $n = 6 \rightarrow n = 1$ C) $n = 6 \rightarrow n = 3$ D) $n = 3 \rightarrow n = 6$ E) $n = 1 \rightarrow n = 4$
 4) In the Bohr model of the atom, A) electrons travel in circular paths called orbitals B) electrons can have any energy C) electron energies are quantized D) electron paths are controlled by probability E) both A and C
5) According to the Heisenberg Uncertainty Principle, it is impossible to know precisely both the position and theof an electron. A) mass B) color C) momentum D) shape E) charge
6) All of the orbitals in a given electron shell have the same value as thequantum number. A) principal B) angular momentum

C) magnetic D) spin E) psi
7) Which one of the following is <u>not</u> a valid value for the magnetic quantum number of an electron in a 5d subshell? A) 2 B) 3 C) 0 D) 1 E) -1
8) Which of the subshells below do <u>not</u> exist due to the constraints upon the angular momentum quantum number? A) 2d B) 2s C) 2p D) all of the above E) none of the above
9) An electron cannot have the quantum numbers n =, l =, m_l = A) 2, 0, 0 B) 2, 1, -1 C) 3, 1, -1 D) 1, 1, 1 E) 3, 2, 1
10) Which quantum number determines the energy of an electron in a hydrogen atom? A) n B) E C) m/ D) 1 E) n and 1
11) Which of the following is <u>not</u> a valid set of four quantum numbers? (n, l, m _l , m _s) A) 2, 0, 0, $+1/2$ B) 2, 1, 0, $-1/2$ C) 3, 1, -1 , $-1/2$ D) 1, 0, 0, $+1/2$ E) 1, 1, 0, $+1/2$
12) Which of the following is a valid set of four quantum numbers? (n, l, m _l , m _S)

A)
$$2, 1, 0, +1/2$$

C)
$$1, 0, 1, +1/2$$

D)
$$2, 1, +2, +1/2$$

13) Which electron configuration represents a violation of the Pauli exclusion principle?

B)

2s

C)

2s

D)

2s

E)

2s

14) Which electron orbital diagram represents a violation of the Aufbau principle?

A)

2s

B)

2s

C)

2s

D)

15) Which electron configuration represents a violation of Hund's rule for an atom in its ground state?

16) Which electron orbital diagram is written correctly for an atom without any violations?

21) Ham radio operators often broadcast on the 6-meter band. The frequency of this electromagnetic radiation isMHz. A) 500 B) 200 C) 50 D) 20 E) 2.0
22) What is the wavelength of light (nm) that has a frequency of 3.22×10^{14} s-1? A) 932 nm B) 649 nm C) 9.66×10^{22} nm D) 9.32×10^{-7} nm E) 1.07×10^{6} nm
23) Visible light with a wavelength of 550 nm has a frequency ofHz. A) 5.5×105 B) 1.7×1011 C) 5.5×1014 D) 1.7×102 E) 5.5×1017
24) The wavelength of a photon that has an energy of 6.33×10^{-18} J ism. A) 3.79×10^{-7} B) 3.10×10^{-8} C) 2.38×10^{23} D) 4.21×10^{-24} E) 9.55×10^{15}
25) What is the energy of a photon (J) that has a wavelength of 105 nm? A) 1.89×10^{-13} B) 1.89×10^{-32} C) 1.89×10^{-18} D) 1.89×10^{-36} E) 1.89×10^{-27}
26) Using Bohr's equation for the energy levels of the electron in the hydrogen atom, determine the energy (J) of an electron in the $n=4$ level. A) -1.36×10^{-19} B) -5.45×10^{-19}

C) -7.34×1018
D) $-1.84 \times 10-29$
E) $+1.84 \times 10-29$
27) The energy (J) required for an electronic transition in a Bohr hydrogen atom from $n = 1$ to n
= 3 isJ.
A) -8.90×10^{-1}
B) 3.00×10^{-19}
C) -3.00×10^{-19}
D) 1.94×10^{-18}
E) 8.90×10^{-1}
28) The frequency of electromagnetic radiation required to promote an electron from $n = 2$ to $n = 2$
4 in a Bohr hydrogen atom isHz.
A) 4.13 × 10-19
B) 6.17×1014
C) 5.46×10^{-19}
D) 8.22 × 1014
E) 4.13×1019
29) When the electron in a hydrogen atom moves from n = 6 to n = 1, light with a wavelength ofnm is emitted. A) 487 B) 411 C) 434 P) 92.0
D) 93.8 E) 657
L) 037
30) Each d-subshell can accommodate a maximum ofelectrons. A) 6 B) 2 C) 10 D) 3 E) 5
31) There areunpaired electrons in a ground state fluorine atom. A) 0 B) 1 C) 2 D) 3 E) 4