Sorbonne Université

Année 2015-2016

LRC Examen Réparti 1

M1 ANDROIDE
M1 DAC

Durée 2h - aucun document autorisé

Le barème n'est donné qu'à titre indicatif

1 Logique classique

Exercice 1 – Logique propositionnelle - syntaxe – 3 points Considérer la formule $F_1 = ((p \to q) \to ((q \to r) \to (p \to r)))$

- 1. Démontrer $\vdash F_1$ en utilisant le système de Hilbert (voir les rappels en annexe) et en justifiant chaque étape,
- 2. Faire la même démonstration avec le calcul des séquents (voir les rappels en annexe).

Correction:

La démonstration fait appel au schéma d'axiome $\mathbf{SA1}$ avec $A=(q \to r)$ et B=p, puis le schéma d'axiome $\mathbf{SA2}$ et enfin le théorème de déduction.

Correction: Il suffit de prouver, par élimination de l'implication, que $(p \to q), (q \to r), p \vdash r$, puis d'appliquer trois fois la règle d'introduction de l'implication.

Exercice 2 – Logique propositionnelle - sémantique – 3 points Considérer la formule $F_2 = ((p \to q) \land (q \to r)) \to (p \to r))$

- 1. Montrer en ayant recours aux tables de vérité que $\models F_2$
- 2. Mettre $\neg F_2$ sous forme normale négative
- 3. Montrer que $\models F_2$ avec la méthode des tableaux.

Exercice 3 – Logique du premier ordre – 2 points

Considèrer les deux formules $F_3 = \exists x \forall y (P(x) \land Q(x,y))$ et $F_4 = \forall x \exists y (P(x) \land Q(x,y))$. Trouver dans le domaine des entiers naturels :

- 1. Un modèle de F_4 qui n'est pas un modèle de F_3
- 2. Un modèle de F_3 et de F_4

Correction: On peut par exemple, d'interpréter P(x) comme x est positif et Q(x,y) comme y est le double de x pour obtenir un modèle de F_4 qui n'est pas un modèle de F_3 . En interprétant toujours P(x) comme x est positif mais Q(x,y) comme y est un multiple de x, on a un modèle de F_3 et F_4 .

2 Graphes conceptuels

Considérons les connaissances suivantes :

- a) Une équipe de football comporte au plus 22 joueurs
- b) Il y a au plus 11 joueurs sur le terrain de chaque équipe
- c) Il y a toujours un gardien de but de chaque équipe sur le terrain
- d) Une équipe de football ne peut pas avoir moins de 7 joueurs sur le terrain
- e) Les joueurs sont soit des remplaçants, soit sur le terrain
- f) Les gardiens de but sont des joueurs

On veut représenter les connaissances a), b), c), d), e), f) et g) à l'aide de graphes conceptuels.

Exercice 4 - 1 point

Donner le treillis des types où doivent se traduire, entre autres, les connaissances exprimées dans les propositions e), f).

Il doit contenir les concepts équipe, remplaçants, joueurs, joueurs sur le terrain, gardiens de buts.

Correction:

entité > équipe, joueurs

joueurs > joueurs_sur_le_terrain, remplaçants, gardiens_de_buts

Il faut aussi indiquer que les joueurs_sur_le_terrain et les remplaçants sont exclusifs.

Exercice 5 – 2 points

Représenter les propositions a), b), c), d), e) et f) à l'aide de graphes conceptuels en donnant à la fois la forme graphique et la forme linéaire.

Les concepts à utiliser sont ceux de l'exercice précédent. En ce qui concerne les relations, outre equipe Comprend pour établir le lien entre les équipes et les joueurs, on utilisera jouer, qui indique les joueurs qui se trouvent sur le terrain.

3 Logiques de description

Exercice 6 – 3 points

Traduire les connaissances a), b), c), d), e) et f) dans la logique de description \mathcal{ALCN} dont la syntaxe est rappelée en annexe.

Les concepts atomiques à utiliser sont ceux de l'exercice précédent, les rôles atomiques sont appartient Equipe et jouer.

Correction:

- a) Une équipe de football comporte au plus 22 joueurs $Equipe \sqsubseteq \exists^{\leq 22} equipeComprend.Joueurs$
- b) Il y a au plus 11 joueurs de chaque équipe sur le terrain Equipe \sqsubseteq $\exists^{\leq 11} equipeComprend.Joueurs_sur_le_terrain$
- c) Il y a toujours un gardien de but sur le terrain $\neg (Gardien_de_buts \sqcap Joueurs_sur_le_terrain \sqsubseteq \bot$
- d) Une équipe de football ne peut pas avoir moins de 7 joueurs sur le terrain $Equipe \sqsubseteq \exists \geq 7 joue. Joueurs_sur_le_terrain$
- e) Les joueurs sont soit des remplaçants, soit sur le terrain $Joueurs \sqsubseteq Joueurs_sur_le_terrain \sqcup Remplacants$, $Joueurs_sur_le_terrain \sqcup Remplacants \sqsubseteq Joueurs_sur_le_terrain \sqcap Remplacants \sqsubseteq \bot$
- f) Les gardiens de but sont des joueurs $Gardien_de_buts \sqsubseteq Joueurs$

Exercice 7 2 points Démontrer à l'aide de la méthode des tableaux que f) découle de c) et de e). Remarque : on remarquera que c), e) et f) s'exprime en \mathcal{ALC}

Correction: Il suffit d'ajouter à c) et e) la négation de la conclusion, à savoir $\neg (Gardien_de_buts \sqsubseteq Joueurs)$, ce qui donne $Gardien_de_buts \sqcap \neg Joueurs$

4 Logique modale

Exercice 8 – 4 points On définit une structure de Kripke $M = \langle W, R, I \rangle$, avec n+1 $(n \geq 1)$ mondes $W = \{w_0, w_1, \ldots, w_n\}$. La relation est définie telle que $\forall i \in \{1, n\} : (w_i, w_0) \in R$ et $(w_i, w_i) \in R$. Enfin, à partir du langage $P = \{a, b, c\}$, la fonction d'interprétation est donnée par $I(a) = \{w_0\}$, $I(b) = \{w_1, \ldots, w_n\}$, et $I(c) = \emptyset$. Indiquez si les formules suivante sont vraies :

- 1. $M \models \neg c$
- 2. $M \models a \rightarrow \Box c$
- 3. $M \models \Diamond a \rightarrow \Box \Box b$
- 4. $M \models \Diamond^k a \vee \neg b$ (où \Diamond^k est un enchaînement de k > 0 modalités \Diamond)

Correction:

oui, c n'est vraie en aucun monde

oui, dans le seul monde où a est vrai w_0 , on a aucun monde accessible, donc trivialement $\Box c$ est vrai.

non, on peut se placer dans un monde $w_i (i \neq 0)$, et atteindre en deux arcs w_0 où b est faux.

oui, dans les mondes où b est vrai $(w_i$ où $i \neq 0)$, on peut satisfaire la première partie de la disjonction en bouclant n-1 fois en w_i puis en arrivant en w_0 avec la dernière transition.

5 Annexe

5.1 Système de Hilbert

Rappel : le système de Hilbert pour la logique des propositions

Le système de Hilbert est caractérisé par trois schémas d'axiomes et une règle d'inférence :

• Schémas d'axiomes :

 $\mathbf{SA1}: A \to (B \to A)$

SA2: $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$

SA3: $(\neg B \rightarrow \neg A) \rightarrow (A \rightarrow B)$

• Règle d'inférence

Règle: $A, A \rightarrow B \vdash B \text{ (modus ponens)}$

- La déduction d'une formule A dans une théorie Δ est une suite finie A_0, \ldots, A_n telle que $A_n = A$ et pour tout i,
 - A_i est l'instanciation de l'un des axiomes,
 - \bullet A_i est l'une des hypothèses, c'est-à-dire $A_i \in \Delta$
 - A_i est obtenue par modus ponens appliqué à A_j et A_k avec j < i et k < i.

On peut aussi appliquer toutes les substitutions nécessaires, à condition de les effectuer dans l'ensemble de la formule.

Si on trouve une telle suite, on peut noter $\Delta \vdash A$

On peut de plus utiliser le théorème de la déduction :

$$A_1, A_2, \ldots, A_n \vdash B$$
 si et seulement si $A_1, A_2, \ldots, A_{n-1} \vdash (A_n \to B)$

5.2 Calcul des séquents

Rappel: calcul des séquents

Un **séquent** est une paire (\mathcal{F}, F) où \mathcal{F} est un ensemble de formules et F une formule.

Un séquent est **prouvable**, ce que l'on dénote $\mathcal{F} \vdash F$, si on peut le dériver à l'issue d'une nombre fini d'applications des règles suivantes :

Utilisation d'hypothèse : $F \in \mathcal{F} \Longrightarrow \mathcal{F} \vdash F$

Augmentation d'hypothèse : si $G \notin \mathcal{F}$ et $\mathcal{F} \vdash F$ alors $\mathcal{F} \cup \{G\} \vdash F$

Modus ponens: (ou élimination d'implication) si $\mathcal{F} \vdash (F \supset G)$ et $\mathcal{F} \vdash F$ alors $\mathcal{F} \vdash G$

Elimination d'hypothèse : (ou introduction d'implication) si $\mathcal{F}, F \vdash G$ alors $\mathcal{F} \vdash (F \supset F)$

G

Double négation : $\mathcal{F} \vdash F \iff \mathcal{F} \vdash \neg \neg F$

Preuve par contradiction : si $\mathcal{F}, F \vdash G$ et $\mathcal{F}, F \vdash \neg G$ alors $\mathcal{F} \vdash \neg F$

5.3 Méthode des tableaux pour la logique des propositions

Rappels : règles pour mettre en œuvre la méthode des tableaux dans la logique des propositions

Une fois la formule mise sous forme normale négative, il y a deux règles à appliquer :

- R_{\wedge} : si $P \wedge Q \in \mathcal{A}$ et soit $P \notin \mathcal{A}$ soit $Q \notin \mathcal{A}$, alors ajouter $\mathcal{A}' = \mathcal{A} \cup \{P,Q\}$ comme fils de \mathcal{A}
- R_{\vee} : si $P \vee Q \in \mathcal{A}$ et ni $P \in \mathcal{A}$ ni $Q \in \mathcal{A}$, alors ajouter les tableaux $\mathcal{A}' = \mathcal{A} \cup \{P\}$ et $\mathcal{A}'' = \mathcal{A} \cup \{Q\}$ comme fils de \mathcal{A}

4

5.4 Logiques de description

Rappels : Syntaxe de ALCN

 \mathcal{ALNC} contient des concepts, des rôle et des restrictions sur les cardinalités.

• Alphabet:

Un ensemble de concepts atomiques : A, B, C, etc.

Un ensemble de rôles atomiques : r, m, n, etc.

Un ensemble de symboles : $\{ \sqcup, \sqcap, \sqsubseteq, \exists, \forall, \neg, \top, \bot, ., \exists^{\geq n}, \exists^{\leq n} \}$

• TBox :

 \perp et \top sont des concepts,

Si A et B sont des concepts, $A \sqcup B$, $A \sqcap B$ et $\neg A$ sont des concepts,

Si A est un concept et r un rôle, $\exists r.A, \forall r.A, \exists^{\geq n} r$ et $\exists^{\leq n} r$ sont des concepts,

• **ABox** :

C étant un concept, r un rôle et I, J deux individus,

I:C signifie que I est une instance de ce concept C

 $\langle I, J \rangle$: r signifie que $\langle I, J \rangle$ est une instance de ce rôle r.

Rappels : règles pour mettre en œuvre la méthode des tableaux dans \mathcal{ALC}

Il y a quatre règles à appliquer sur les tableaux A issus des ABox:

- R_{\sqcap} : si $P \sqcap Q \in \mathcal{A}$ et soit $P \notin \mathcal{A}$ soit $Q \notin \mathcal{A}$, alors ajouter $\mathcal{A}' = \mathcal{A} \cup \{P,Q\}$ comme fils de \mathcal{A}
- R_{\sqcup} : si $P \sqcup Q \in \mathcal{A}$ et ni $P \in \mathcal{A}$ ni $Q \in \mathcal{A}$, alors ajouter les tableaux $\mathcal{A}' = \mathcal{A} \cup \{P\}$ et $\mathcal{A}'' = \mathcal{A} \cup \{Q\}$ comme fils de \mathcal{A}
- R_{\exists} : si $\exists r.C \in \mathcal{A}$ et s'il n'existe pas de constante z telle que $\langle x, z \rangle$: $r \in \mathcal{A}$ et $z : C \in \mathcal{A}$, alors ajouter le tableau $\mathcal{A}' = \mathcal{A} \cup \{\langle x, z \rangle : r, z : C\}$ comme fils de \mathcal{A}
- R_{\forall} : si $\forall r.C \in \mathcal{A}$, $\langle x, y \rangle : r \in \mathcal{A}$ et $y : C \notin \mathcal{A}$, alors ajouter le tableau $\mathcal{A}' = \mathcal{A} \cup \{y : C\}$ comme fils de \mathcal{A}