Q1. Delivery_time -> Predict delivery time using sorting time

1. Import necessary libraries

2. Importing Dataset

```
In [8]: 1 delivery_data=pd.read_csv('delivery_time.csv')
2 delivery_data
```

Out[8]:		Delivery_Time	Sorting_Time
	0	21.00	10
	1	13.50	4
	2	19.75	6
	3	24.00	9
	4	29.00	10
	5	15.35	6
	6	19.00	7
	7	9.50	3
	8	17.90	10
	9	18.75	9
	10	19.83	8
	11	10.75	4
	12	16.68	7
	13	11.50	3
	14	12.03	3
	15	14.88	4
	16	13.75	6
	17	18.11	7
	18	8.00	2
	19	17.83	7
	20	21.50	5

3. EDA

```
In [11]: 1 delivery_data.dtypes
```

Out[11]: Delivery_Time float64
Sorting_Time int64
dtype: object

4. Data Visualization

5. Correlation check

In [15]: 1 delivery_data.corr()

Out[15]:

	Delivery_Time	Sorting_Time
Delivery_Time	1.000000	0.825997
Sorting_Time	0.825997	1.000000

6. Model Building

In [44]: 1 import statsmodels.formula.api as smf
2 del_model=smf.ols("Delivery_Time~Sorting_Time",data=delivery_data).fit()

7. Model Testing

In [45]: 1 del_model.params

Out[45]: Intercept 6.582734 Sorting_Time 1.649020

dtype: float64

```
In [46]:
              del model.tvalues, del model.pvalues
Out[46]: (Intercept
                           3.823349
          Sorting_Time
                           6.387447
          dtype: float64,
          Intercept
                           0.001147
          Sorting Time
                           0.000004
          dtype: float64)
In [47]:
           1 del model.rsquared , del model.rsquared adj
Out[47]: (0.6822714748417231, 0.6655489208860244)
         8. Model Prediction
In [48]:
           1 # Manual prediction for sorting time (x=3)
           2 delivery_time = ((1.649020)*3) + (6.582734) \#y=mx+c
           3 delivery time
Out[48]: 11.52979399999999
In [49]:
           1 # System prediction for 2 values
           2 new_pred = pd.Series([3,5])
           3 new_pred
Out[49]: 0
              3
         dtype: int64
In [50]:
              predicted data = pd.DataFrame(new pred,columns=['Sorting Time'])
             predicted data
Out[50]:
             Sorting_Time
                      3
          0
          1
                      5
In [51]:
              del_model.predict(predicted_data)
Out[51]: 0
              11.529794
              14.827833
         dtype: float64
 In [ ]:
```

Q2. Salary_hike -> Build a prediction model for Salary_hike

2. Importing Dataset

Out[52]:		YearsExperience	Salary
	0	1.1	39343.0
	1	1.3	46205.0
	2	1.5	37731.0
	3	2.0	43525.0
	4	2.2	39891.0
	5	2.9	56642.0
	6	3.0	60150.0
	7	3.2	54445.0
	8	3.2	64445.0
	9	3.7	57189.0
	10	3.9	63218.0
	11	4.0	55794.0
	12	4.0	56957.0
	13	4.1	57081.0
	14	4.5	61111.0
	15	4.9	67938.0
	16	5.1	66029.0
	17	5.3	83088.0
	18	5.9	81363.0
	19	6.0	93940.0
	20	6.8	91738.0
	21	7.1	98273.0
	22	7.9	101302.0
	23	8.2	113812.0
	24	8.7	109431.0
	25	9.0	105582.0
	26	9.5	116969.0
	27	9.6	112635.0
	28	10.3	122391.0
	29	10.5	121872.0

3. EDA

```
In [53]:
              sal_data.dtypes
Out[53]: YearsExperience
                             float64
                             float64
         Salary
         dtype: object
In [54]:
              sal_data.isna().sum()
Out[54]: YearsExperience
                             0
         Salary
                             0
         dtype: int64
In [55]:
              sal_data.shape
Out[55]: (30, 2)
```

4. Data Visualization

```
In [56]: 1 sns.distplot(sal_data['YearsExperience'])
2 plt.show()
```


5. Correlation check

In [58]: 1 sal_data.corr()

Out[58]:

	YearsExperience	Salary
YearsExperience	1.000000	0.978242
Salary	0.978242	1.000000

```
In [59]: 1 sns.regplot(x=sal_data['YearsExperience'],y=sal_data['Salary'])
2 plt.show()
```


6. Model Building

```
In [60]: 1 sal_model = smf.ols("Salary~YearsExperience",data=sal_data).fit()
```

7. Model Testing

In [62]: 1 sal_model.params

Out[62]: Intercept 25792.200199 YearsExperience 9449.962321 dtype: float64

In [63]: 1 sal_model.tvalues,sal_model.pvalues

Out[63]: (Intercept 11.346940
YearsExperience 24.950094

dtype: float64,

Intercept 5.511950e-12 YearsExperience 1.143068e-20

dtype: float64)

sal model.rsquared, sal model.rsquared adj

In [64]:

```
Out[64]: (0.9569566641435086, 0.9554194021486339)
         8. Model Prediction
In [66]:
              #Manual prediction for say 5 years of experience
           2 salary = (25792.200199) + (9449.962321)*(3) #y=mx+c
              salary
Out[66]: 54142.087162
In [67]:
           1 #System prediction for 5 and 7 years
             new_pred=pd.Series([5,7])
           3 new pred
Out[67]: 0
              7
         dtype: int64
In [68]:
              predicted_data = pd.DataFrame(new_pred,columns=['YearsExperience'])
              predicted data
Out[68]:
             YearsExperience
                         5
          0
                         7
          1
In [69]:
              sal model.predict(predicted data)
Out[69]: 0
              73042.011806
              91941.936449
         dtype: float64
 In [ ]:
```