SBML Model Report

Model name: "Smolen2004_CircClock"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by Nicolas Le Novre¹ at June 24th 2005 at 12:05 a.m. and last time modified at February 25th 2015 at 1:17 p.m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	9
events	0	constraints	0
reactions	22	function definitions	0
global parameters	45	unit definitions	2
rules	6	initial assignments	0

Model Notes

No inititial conditions are specified in the paper. Because there is a basal rate of transcription for each gene, it doesn't matter much. With the agreement of Paul Smolen, I put all the initial concentration at 0.001 nanomoles. N Le Novre.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

¹EMBL-EBI, lenov@ebi.ac.uk

In summary, you are entitled to use this encoded model in absolutely any manner you deem suitable, verbatim, or with modification, alone or embedded it in a larger context, redistribute it, commercially or not, in a restricted way or not.

To cite BioModels Database, please use: Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan MI, Snoep JL, Hucka M, Le Novre N, Laibe C (2010) BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol., 4:92.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit time

Name hour

Definition 3600 s

2.2 Unit substance

Name nanomole

Definition nmol

2.3 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.4 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.5 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment_0000002	cytoplasm		3	1	litre		
${\tt compartment_0000001}$	nucleus		3	1	litre		${\tt compartment_0000002}$

3.1 Compartment compartment_0000002

This is a three dimensional compartment with a constant size of one litre.

Name cytoplasm

3.2 Compartment compartment_0000001

This is a three dimensional compartment with a constant size of one litre, which is surrounded by compartment_0000002 (cytoplasm).

Name nucleus

4 Species

This model contains nine species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
species_000001	P0nuc	compartment_0000001	$nmol \cdot l^{-1}$		
species_0000002	P1nuc	compartment_0000001	$nmol \cdot l^{-1}$		\Box
species_0000003	P2nuc	${\tt compartment_0000001}$	$nmol \cdot l^{-1}$	\Box	\Box
species_0000004	P0cyt	${\tt compartment_0000002}$	$nmol \cdot l^{-1}$	\Box	\Box
species_0000005	P1cyt	$compartment_0000002$	$nmol \cdot l^{-1}$	\Box	
species_0000006	P2cyt	$compartment_0000002$	$nmol \cdot l^{-1}$	\Box	
species_0000007	VRI	$compartment_0000001$	$nmol \cdot l^{-1}$	\Box	
species_0000008	CLK	$compartment_0000001$	$nmol \cdot l^{-1}$	\Box	
species_0000009	PDP	${\tt compartment_0000001}$	$nmol \cdot l^{-1}$	\Box	

5 Parameters

This model contains 45 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
parameter- _0000001	ACvri	0.000	
parameter- _0000002	ACper	0.000	
parameter- _0000003	ACpdp	0.000	
parameter- _0000005	Kpv	0.200	
parameter- _0000006	Крр	0.240	
parameter- _0000007	Kppd	0.100	Ø
parameter- $_{-}$ 0000008	Kvc	0.540	
parameter- _0000010	Kpdc	0.540	
parameter- _000011	Kcv	0.083	
parameter- _000012	Кср	0.134	
parameter- _000013	Kcpd	0.248	
parameter- _000014	Kvdeac	0.212	
parameter- _000015	Kpdeac	0.212	
parameter- _000016	Kpddeac	0.212	\square
parameter- _0000017	Fv	1.062	
parameter- _000018	Fp	1.062	\square
parameter- _000019	Fpd	1.062	
parameter- _0000020	OPvri	0.000	

Id	Name	SBO Value	Unit Constant
parameter- _0000021	OPper	0.000	
parameter- _0000022	OPpdp	0.000	
parameter- _0000023	Tvriop	2.825	\mathbf{Z}
parameter- _0000024	Tperop	2.825	
parameter- $_{-}$ 0000025	Tpdpop	2.825	
parameter- _0000026	N	5.000	
parameter- _0000027	Vper	10.620	
parameter- _0000028	Vvri	76.464	
parameter- _0000029	Vpdp	344.090	
parameter- _0000030	Vclk	1.062	
parameter- _0000031	Rpbas	0.021	
parameter- $_{-}$ 0000032	Rvbas	0.191	
parameter- _0000033	Rebas	0.001	
parameter- _0000034	Rpdbas	0.382	
parameter- _0000036	Vdclk	0.212	
parameter- _0000037	vdvri	0.743	\mathbf{Z}
parameter- _0000038	vdpdp	0.690	\mathbf{Z}
parameter- _0000039	Tdelay	2.825	\mathbf{Z}
parameter- _0000040	Vpcyt	1.699	\mathbf{Z}
parameter- _0000041	Kpcyt	0.250	\mathbf{Z}
parameter- _0000042	Vpnuc	0.319	

Id	Name	SBO Val	lue Unit	Constant
parameter- _0000043	Kpnuc	0.0	001	Ø
parameter- _000044	Vtrans	1.0	699	\mathbf{Z}
parameter- _000045	Ktrans	0.2	250	\mathbf{Z}
parameter- _000046	Vdegp	5.3	310	
parameter- _000047	Kdegp	0.0	010	Ø
parameter- _0000048	kd	0.0	005	

6 Rules

This is an overview of six rules.

6.1 Rule parameter_0000001

Rule parameter_0000001 is a rate rule for parameter parameter_0000001:

$$\frac{d}{dt} parameter_0000001$$
= parameter_0000017 ·
$$\frac{[species_0000008]}{[species_0000008] + parameter_0000011}$$
·
$$\frac{parameter_0000005}{parameter_0000005 + [species_0000001] + [species_0000002] + [species_0000003]}$$
·
$$(1 - parameter_0000001) - parameter_0000014 \cdot parameter_0000001$$

6.2 Rule parameter_0000002

Rule parameter_0000002 is a rate rule for parameter parameter_0000002:

$$\frac{d}{dt} parameter_0000002$$

$$= parameter_0000018 \cdot \frac{[species_0000008]}{[species_0000008] + parameter_0000012}$$

$$\cdot \frac{parameter_0000006}{parameter_0000006 + [species_0000001] + [species_0000002] + [species_0000003]}$$

$$\cdot (1 - parameter_0000002) - parameter_0000015 \cdot parameter_0000002$$

6.3 Rule parameter_0000003

Rule parameter_0000003 is a rate rule for parameter parameter_0000003:

$$\frac{d}{dt}parameter_0000003$$

$$= \operatorname{parameter_0000019} \cdot \frac{[\operatorname{species_0000008}]}{[\operatorname{species_0000008}] + \operatorname{parameter_0000013}} \cdot \frac{\operatorname{parameter_0000007}}{\operatorname{parameter_0000007} + [\operatorname{species_0000001}] + [\operatorname{species_0000002}] + [\operatorname{species_0000003}]} \cdot (1 - \operatorname{parameter_0000003}) - \operatorname{parameter_0000001} \cdot \operatorname{parameter_0000003}$$

6.4 Rule parameter_0000020

Rule parameter_0000020 is a rate rule for parameter parameter_0000020:

$$\frac{d}{d\textit{t}} parameter_0000020 = \frac{parameter_0000001^{parameter_0000026} - parameter_0000020}{parameter_0000023} \tag{4}$$

6.5 Rule parameter_0000021

Rule parameter_0000021 is a rate rule for parameter parameter_0000021:

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{parameter_0000021} = \frac{\mathrm{parameter_0000002}^{\mathrm{parameter_0000026}} - \mathrm{parameter_0000021}}{\mathrm{parameter_0000024}}$$
 (5)

6.6 Rule parameter_0000022

Rule $parameter_0000022$ is a rate rule for parameter $parameter_0000022$:

$$\frac{d}{dt}parameter_0000022 = \frac{parameter_000003^{parameter_0000026} - parameter_0000022}{parameter_0000025} \quad (6)$$

7 Reactions

This model contains 22 reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

N⁰	Id	Name	Reaction Equation	SBO
1	reaction- _0000001	Per production	Ø —→ species_0000004	
2	reaction- _0000002	Vri production	$\emptyset \longrightarrow \text{species_}0000007$	
3	reaction- _0000003	Pdp production	$\emptyset \longrightarrow \text{species_}0000009$	
4	reaction-	Clk production	$\emptyset \xrightarrow{\text{species_0000009, species_00000007}} \text{species_000}$	80000
5	reaction- _0000005	Clk specific degradation	$species_0000008 \longrightarrow \emptyset$	
6	reaction- _0000006	Pdp specific degradation	$species_0000009 \longrightarrow \emptyset$	
7	reaction- _0000007	Vri specific degradation	$species_0000007 \longrightarrow \emptyset$	
8	reaction- _0000008	first cytoplasmic Per phosphorylation	species_0000004 species_0000005	
9	reaction- _0000009	second cytoplasmic Per phosphorylation	species_0000005 species_0000006	
10	reaction- _0000010	Per nuclear transport	species_0000006 species_0000001	
11	reaction- _0000011	first nuclear Per phosphorylation	species_0000001 — species_0000002	

N₀	Id	Name	Reaction Equation	SBO
12	reaction- _0000012	second nuclear Rer phosphorylation	species_0000002 species_0000003	
13	reaction- _0000013	Per specific degradation	$species_0000003 \longrightarrow \emptyset$	
14	reaction- _0000014	Clk aspecific degradation	$species_0000008 \longrightarrow \emptyset$	
15	reaction- _0000015	Pdp aspecific degradation	$species_0000009 \longrightarrow \emptyset$	
16	reaction- _0000016	Vri aspecific degradation	$species_0000007 \longrightarrow \emptyset$	
17	reaction- _0000017	Per_cyt aspecific degradation	$species_0000004 \longrightarrow \emptyset$	
18	reaction- _0000018	Per-P_cyt aspecific degradation	$species_0000005 \longrightarrow \emptyset$	
19	reaction- _0000019	Per-PP_cyt aspecific degradation	$species_0000006 \longrightarrow \emptyset$	
20	reaction- _0000020	Per_nuc aspecific degradation	$species_0000001 \longrightarrow \emptyset$	
21	reaction- _0000021	Per-P_nuc aspecific degradation	$species_00000002 \longrightarrow \emptyset$	
22	reaction- _0000022	Per-PP_nuc aspecific degradation	$species_0000003 \longrightarrow \emptyset$	

7.1 Reaction reaction_0000001

This is an irreversible reaction of no reactant forming one product.

Name Per production

Reaction equation

$$\emptyset \longrightarrow \text{species_0000004}$$
 (7)

Product

Table 6: Properties of each product.

	· · · · · · · · · · · · · · · · · · ·	
Id	Name	SBO
species_0000004	P0cyt	

Kinetic Law

Derived unit contains undeclared units

$$v_1 = \text{vol} \left(\text{compartment_0000002} \right) \\ \cdot \left(\text{parameter_0000027} \cdot \text{parameter_0000021} + \text{parameter_0000031} \right)$$
 (8)

7.2 Reaction reaction_0000002

This is an irreversible reaction of no reactant forming one product.

Name Vri production

Reaction equation

$$\emptyset \longrightarrow \text{species}_0000007$$
 (9)

Product

Table 7: Properties of each product.

Id	Name	SBO
species_0000007	VRI	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol} \left(\text{compartment_0000001} \right)$$

$$\cdot \left(\text{parameter_0000028} \cdot \text{parameter_0000020} + \text{parameter_0000032} \right)$$

$$(10)$$

7.3 Reaction reaction_0000003

This is an irreversible reaction of no reactant forming one product.

Name Pdp production

Reaction equation

$$\emptyset \longrightarrow \text{species_0000009}$$
 (11)

Product

Table 8: Properties of each product.

	1	
Id	Name	SBO
species_0000009	PDP	

Kinetic Law

Derived unit contains undeclared units

$$v_3 = \text{vol} (\text{compartment} _0000001) \cdot \text{delay}$$
 (12)

7.4 Reaction reaction_0000004

This is an irreversible reaction of no reactant forming one product influenced by two modifiers.

Name Clk production

Reaction equation

$$\emptyset \xrightarrow{\text{species_0000009, species_00000007}} \text{species_0000008}$$
 (13)

Modifiers

Table 9: Properties of each modifier.

Id	Name	SBO
species_0000009	PDP	
species_0000007	VRI	

Product

Table 10: Properties of each product.

Id	Name	SBO
species_0000008	CLK	

Kinetic Law

Derived unit contains undeclared units

$$\begin{split} \nu_{4} &= vol \left(compartment_0000001 \right) \\ &\cdot \left(parameter_0000030 \cdot \frac{[species_0000009]^{2}}{[species_0000009]^{2} + parameter_0000010^{2}} \right. \\ &\cdot \frac{parameter_0000008^{2}}{[species_0000007]^{2} + parameter_0000008^{2}} + parameter_00000033} \right) \end{split} \tag{14}$$

7.5 Reaction reaction_0000005

This is an irreversible reaction of one reactant forming no product.

Name Clk specific degradation

Reaction equation

$$species_0000008 \longrightarrow \emptyset$$
 (15)

Reactant

Table 11: Properties of each reactant.

Id	Name	SBO
species_0000008	CLK	

Kinetic Law

Derived unit contains undeclared units

$$v_5 = \text{vol} (\text{compartment_0000001}) \cdot \text{parameter_0000036} \cdot [\text{species_0000008}]$$
 (16)

7.6 Reaction reaction_0000006

This is an irreversible reaction of one reactant forming no product.

Name Pdp specific degradation

Reaction equation

$$species_0000009 \longrightarrow \emptyset$$
 (17)

Reactant

Table 12: Properties of each reactant.

Id	Name	SBO
species_0000009	PDP	

Kinetic Law

Derived unit contains undeclared units

$$v_6 = \text{vol}(\text{compartment_0000001}) \cdot \text{parameter_0000038} \cdot [\text{species_0000009}]$$
 (18)

7.7 Reaction reaction_0000007

This is an irreversible reaction of one reactant forming no product.

Name Vri specific degradation

Reaction equation

$$species_0000007 \longrightarrow \emptyset$$
 (19)

Reactant

Table 13: Properties of each reactant.

Id	Name	SBO
species_0000007	VRI	

Kinetic Law

Derived unit contains undeclared units

$$v_7 = \text{vol} \left(\text{compartment_0000001} \right) \cdot \text{parameter_0000037} \cdot \left[\text{species_0000007} \right]$$
 (20)

7.8 Reaction reaction_0000008

This is an irreversible reaction of one reactant forming one product.

Name first cytoplasmic Per phosphorylation

Reaction equation

$$species_0000004 \longrightarrow species_0000005 \tag{21}$$

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
species_0000004	P0cyt	

Product

Table 15: Properties of each product.

Id	Name	SBO
species_0000005	P1cyt	

Kinetic Law

$$\nu_8 = vol \, (compartment_0000002) \cdot \frac{parameter_0000040 \cdot [species_0000004]}{parameter_0000041 + [species_0000004]} \tag{22}$$

7.9 Reaction reaction_0000009

This is an irreversible reaction of one reactant forming one product.

Name second cytoplasmic Per phosphorylation

Reaction equation

$$species_0000005 \longrightarrow species_0000006 \tag{23}$$

Reactant

Table 16: Properties of each reactant.

Id Name SBO

species_0000005 P1cyt

Product

Table 17: Properties of each product.

	•	
Id	Name	SBO
species_0000006	P2cyt	

Kinetic Law

Derived unit contains undeclared units

$$v_9 = \text{vol} \left(\text{compartment_0000002} \right) \cdot \frac{\text{parameter_0000040} \cdot [\text{species_0000005}]}{\text{parameter_0000041} + [\text{species_0000005}]}$$
 (24)

7.10 Reaction reaction_0000010

This is an irreversible reaction of one reactant forming one product.

Name Per nuclear transport

Reaction equation

$$species_0000006 \longrightarrow species_0000001 \tag{25}$$

Reactant

Table 18: Properties of	of each re	eactant.
Id	Name	SBO
species 0000006	P2cvt	

Product

Table 19: Properties of each product.

	· · · · · · ·	
Id	Name	SBO
species_0000001	P0nuc	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = vol \left(compartment_0000002 \right) \cdot \frac{parameter_0000044 \cdot [species_0000006]}{parameter_0000045 + [species_0000006]} \tag{26}$$

7.11 Reaction reaction_0000011

This is an irreversible reaction of one reactant forming one product.

Name first nuclear Per phosphorylation

Reaction equation

$$species_0000001 \longrightarrow species_0000002 \tag{27}$$

Reactant

Table 20: Properties of each reactant.

Id	Name	SBO
species_0000001	P0nuc	

Product

Table 21: Properties of each product.

Id	Name	SBO
species_0000002	P1nuc	

Tunie SBO

Kinetic Law

Derived unit contains undeclared units

$$v_{11} = \text{vol} \left(\text{compartment_0000001} \right) \cdot \frac{\text{parameter_0000042} \cdot [\text{species_0000001}]}{\text{parameter_0000043} + [\text{species_0000001}]}$$
 (28)

7.12 Reaction reaction_0000012

This is an irreversible reaction of one reactant forming one product.

Name second nuclear Rer phosphorylation

Reaction equation

$$species_0000002 \longrightarrow species_0000003 \tag{29}$$

Reactant

Table 22: Properties of each reactant.

Id Name SBO

species_0000002 P1nuc

Product

Table 23: Properties of each product.

Id	Name	SBO
species_0000003	P2nuc	

Kinetic Law

Derived unit contains undeclared units

$$v_{12} = \text{vol} \left(\text{compartment_0000001} \right) \cdot \frac{\text{parameter_0000042} \cdot [\text{species_0000002}]}{\text{parameter_0000043} + [\text{species_0000002}]}$$
 (30)

7.13 Reaction reaction_0000013

This is an irreversible reaction of one reactant forming no product.

Name Per specific degradation

Reaction equation

$$species_0000003 \longrightarrow \emptyset$$
 (31)

Reactant

Table 24: Properties of each reactant.

Id	Name	SBO
species_0000003	P2nuc	

Kinetic Law

Derived unit contains undeclared units

$$v_{13} = \text{vol} \left(\text{compartment_0000001} \right) \cdot \frac{\text{parameter_0000046} \cdot [\text{species_0000003}]}{\text{parameter_0000047} + [\text{species_0000003}]}$$
 (32)

7.14 Reaction reaction_0000014

This is an irreversible reaction of one reactant forming no product.

Name Clk aspecific degradation

Reaction equation

$$species_0000008 \longrightarrow \emptyset$$
 (33)

Reactant

Table 25: Properties of each reactant.

Id	Name	SBO
species_0000008	CLK	

Kinetic Law

$$v_{14} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \text{parameter_0000048} \cdot \left[\text{species_0000008}\right]$$
 (34)

7.15 Reaction reaction_0000015

This is an irreversible reaction of one reactant forming no product.

Name Pdp aspecific degradation

Reaction equation

$$species_0000009 \longrightarrow \emptyset$$
 (35)

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
species_0000009	PDP	

Kinetic Law

Derived unit contains undeclared units

$$v_{15} = \text{vol} \left(\text{compartment_0000001} \right) \cdot \text{parameter_0000048} \cdot \left[\text{species_0000009} \right]$$
 (36)

7.16 Reaction reaction_0000016

This is an irreversible reaction of one reactant forming no product.

Name Vri aspecific degradation

Reaction equation

$$species_0000007 \longrightarrow \emptyset$$
 (37)

Reactant

Table 27: Properties of each reactant.

Id	Name	SBO
species_0000007	VRI	

Kinetic Law

$$v_{16} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \text{parameter_0000048} \cdot \left[\text{species_0000007}\right]$$
 (38)

7.17 Reaction reaction_0000017

This is an irreversible reaction of one reactant forming no product.

Name Per_cyt aspecific degradation

Reaction equation

$$species_0000004 \longrightarrow \emptyset$$
 (39)

Reactant

Table 28: Properties of each reactant.

Id	Name	SBO
species_0000004	P0cyt	

Kinetic Law

Derived unit contains undeclared units

$$v_{17} = vol(compartment_0000002) \cdot parameter_0000048 \cdot [species_0000004]$$
 (40)

7.18 Reaction reaction_0000018

This is an irreversible reaction of one reactant forming no product.

Name Per-P_cyt aspecific degradation

Reaction equation

$$species_0000005 \longrightarrow \emptyset$$
 (41)

Reactant

Table 29: Properties of each reactant.

Id	Name	SBO
species_0000005	P1cyt	

Kinetic Law

$$v_{18} = \text{vol}\left(\text{compartment_0000002}\right) \cdot \text{parameter_0000048} \cdot \left[\text{species_0000005}\right]$$
 (42)

7.19 Reaction reaction_0000019

This is an irreversible reaction of one reactant forming no product.

Name Per-PP_cyt aspecific degradation

Reaction equation

$$species_0000006 \longrightarrow \emptyset$$
 (43)

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
species_0000006	P2cyt	

Kinetic Law

Derived unit contains undeclared units

$$v_{19} = \text{vol} \left(\text{compartment_0000002} \right) \cdot \text{parameter_0000048} \cdot \left[\text{species_0000006} \right]$$
 (44)

7.20 Reaction reaction_0000020

This is an irreversible reaction of one reactant forming no product.

Name Per_nuc aspecific degradation

Reaction equation

$$species_0000001 \longrightarrow \emptyset$$
 (45)

Reactant

Table 31: Properties of each reactant.

Id	Name	SBO
species_0000001	P0nuc	

Kinetic Law

$$v_{20} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \text{parameter_0000048} \cdot \left[\text{species_0000001}\right] \tag{46}$$

7.21 Reaction reaction_0000021

This is an irreversible reaction of one reactant forming no product.

Name Per-P_nuc aspecific degradation

Reaction equation

$$species_0000002 \longrightarrow \emptyset$$
 (47)

Reactant

Table 32: Properties of each reactant.

Id	Name	SBO
species_0000002	P1nuc	

Kinetic Law

Derived unit contains undeclared units

$$v_{21} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \text{parameter_0000048} \cdot \left[\text{species_0000002}\right] \tag{48}$$

7.22 Reaction reaction_0000022

This is an irreversible reaction of one reactant forming no product.

Name Per-PP_nuc aspecific degradation

Reaction equation

$$species_0000003 \longrightarrow \emptyset$$
 (49)

Reactant

Table 33: Properties of each reactant.

Id	Name	SBO
species_0000003	P2nuc	

Kinetic Law

$$v_{22} = \text{vol}\left(\text{compartment_0000001}\right) \cdot \text{parameter_0000048} \cdot \left[\text{species_0000003}\right]$$
 (50)

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- · parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species species_0000001

Name P0nuc

Initial concentration 0.0010 nmol·1⁻¹

This species takes part in three reactions (as a reactant in reaction_0000011, reaction_0000020 and as a product in reaction_0000010).

$$\frac{d}{dt} \text{species}_{0000001} = |v_{10}| - |v_{11}| - |v_{20}|$$
 (51)

8.2 Species species_0000002

Name Plnuc

Initial concentration 0.0010 nmol·l⁻¹

This species takes part in three reactions (as a reactant in reaction_0000012, reaction_0000021 and as a product in reaction_0000011).

$$\frac{d}{dt} \text{species}_{0000002} = |v_{11} - v_{12}| - |v_{21}|$$
(52)

8.3 Species species_0000003

Name P2nuc

Initial concentration $0.0010 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000013, reaction_0000022 and as a product in reaction_0000012).

$$\frac{d}{dt} \text{species} \ 0000003 = |v_{12}| - |v_{13}| - |v_{22}|$$
 (53)

8.4 Species species_0000004

Name P0cyt

Initial concentration $0.0010 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000008, reaction_0000017 and as a product in reaction_0000001).

$$\frac{d}{dt} \text{species} \ 0000004 = |v_1| - |v_8| - |v_{17}| \tag{54}$$

8.5 Species species_0000005

Name P1cyt

Initial concentration $0.0010 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000009, reaction_0000018 and as a product in reaction_0000008).

$$\frac{d}{dt} \text{species} 0000005 = |v_8| - |v_9| - |v_{18}|$$
 (55)

8.6 Species species_0000006

Name P2cyt

Initial concentration $0.0010 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000010, reaction_0000019 and as a product in reaction_0000009).

$$\frac{d}{dt} \text{species} \ 0000006 = |v_9| - |v_{10}| - |v_{19}| \tag{56}$$

8.7 Species species_0000007

Name VRI

Initial concentration $0.0010 \text{ nmol} \cdot l^{-1}$

This species takes part in four reactions (as a reactant in reaction_0000007, reaction_0000016 and as a product in reaction_0000002 and as a modifier in reaction_0000004).

$$\frac{d}{dt} \text{species} \ 0000007 = |v_2| - |v_7| - |v_{16}| \tag{57}$$

8.8 Species species_0000008

Name CLK

Initial concentration $0.0010 \text{ nmol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in reaction_0000005, reaction_0000014 and as a product in reaction_0000004).

$$\frac{d}{dt} \text{species}_{0000008} = |v_4| - |v_5| - |v_{14}| \tag{58}$$

8.9 Species species_0000009

Name PDP

Initial concentration $0.0010 \text{ nmol} \cdot 1^{-1}$

This species takes part in four reactions (as a reactant in reaction_0000006, reaction_0000015 and as a product in reaction_0000003 and as a modifier in reaction_0000004).

$$\frac{d}{dt} \text{species} \ 0000009 = |v_3| - |v_6| - |v_{15}| \tag{59}$$

SML2ATEX was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany