#### VISVESVARAYA TECHNOLOGICAL UNIVERSITY

"JnanaSangama", Belgaum -590014, Karnataka.



# LAB REPORT on

# Machine Learning (20CS6PCMAL)

Submitted by

N.Akhilesh Kumar Dutt (1BM19CS092)

in partial fulfillment for the award of the degree of BACHELOR OF ENGINEERING
in
COMPUTER SCIENCE AND ENGINEERING



B.M.S. COLLEGE OF ENGINEERING
(Autonomous Institution under VTU)
BENGALURU-560019

#### **May-2022 to July-2022**

## B. M. S. College of Engineering,

Bull Temple Road, Bangalore 560019

(Affiliated To Visvesvaraya Technological University, Belgaum)

Department of Computer Science and Engineering



#### **CERTIFICATE**

This is to certify that the Lab work entitled "Machine Learning" carried out by N.Akhilesh Kumar Dutt (1BM19CS092), who is bonafide student of B. M. S. College of Engineering. It is in partial fulfillment for the award of Bachelor of Engineering in Computer Science and Engineering of the Visvesvaraya Technological University, Belgaum during the year2022. The Lab report has been approved as it satisfies the academic requirements in respect of a Machine Learning (20CS6PCMAL) work prescribed for the said degree.

Asha GR Assistant Professor Department of CSE BMSCE, Bengaluru **Dr. Jyothi S Nayak**Professor and Head
Department of CSE
BMSCE, Bengaluru

,

## **Index Sheet**

| SI.<br>No. | Experiment Title                                                                                                                                                                                                           | Page No. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| 1          | Implement and demonstrate the FIND-S algorithm for finding the most specific                                                                                                                                               | 5        |
|            | hypothesis based on a given set of training data samples.                                                                                                                                                                  |          |
| 2          | For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples. | 6-7      |
| 3          | Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.                         | 8-11     |
| 4          | Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets.                                   | 12-13    |
| 5          | Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.                                                                                    | 14-16    |
| 6          | Apply k-Means algorithm to cluster a set of data stored in a .CSV file.                                                                                                                                                    | 17-19    |

| 7  | Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means algorithm and EM algorithm.                                    | 20-22 |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8  | Write a program to implement k-Nearest Neighbour algorithm to classify the iris data set. Print both correct and wrong predictions.                              | 23-25 |
| 9  | Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs.                          | 26-28 |
| 10 | Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs. | 29-33 |
|    |                                                                                                                                                                  |       |
|    |                                                                                                                                                                  |       |

#### **Course Outcome**

| CO1 | Ability to apply the different learning algorithms.                                                      |
|-----|----------------------------------------------------------------------------------------------------------|
| CO2 | Ability to analyze the learning techniques for given dataset.                                            |
| CO3 | Ability to design a model using machine learning to solve a problem.                                     |
| CO4 | Ability to conduct practical experiments to solve problems using appropriate machine learning techniques |

1. Implement and demonstrate the FIND-S algorithm for finding the most specific hypothesis based on a given set of training data samples.

```
import numpy as np
import pandas as pd
data=pd.read_csv
("testdemo.csv")
data
d = np.array(data)[:,:-1]
print("\n The attributes are: ",d)
target = np.array(data)[:,-1]
print("\n The target is: ",target)
def findS(c,t):
  for i, val in enumerate(t):
    if val == "Yes":
      specific_hypothesis = c[i].copy()
      break
  for i, val in enumerate(c):
    if t[i] == "Yes":
      for x in range(len(specific_hypothesis)):
        if val[x] != specific_hypothesis[x]:
           specific_hypothesis[x] = '?'
         else:
           pass
  return specific_hypothesis
print("\n The final hypothesis is:",findS(d,target))
```

#### **Dataset:**

| 1 | Sky   | AirTemp | Humidity | Wind   | Water | Forecast | EnjoySport |
|---|-------|---------|----------|--------|-------|----------|------------|
| 2 | Sunny | Warm    | Normal   | Strong | Warm  | Same     | Yes        |
| 3 | Sunny | Warm    | High     | Strong | Warm  | Same     | Yes        |
| 4 | Rainy | Cold    | High     | Strong | Warm  | Change   | No         |
| 5 | Sunny | Warm    | High     | Strong | Cool  | Change   | Yes        |

#### **Output:**

The final hypothesis is: ['?' 'Sunny' '?' 'Yes' '?' '?']

2. For a given set of training data examples stored in a .CSV file, implement and demonstrate the Candidate-Elimination algorithm to output a description of the set of all hypotheses consistent with the training examples.

```
import numpy as np
import pandas as pd
data=pd.DataFrame(data=pd.read_csv('candidate_elimina
tion.csv'))
data
concepts=np.array(data.iloc[:,0:-1])
print("The attributes are : ",concepts)
target=np.array(data.iloc[:,-1])
print ("\n The target is =",target)
def learn(concepts, target):
  specific_h=concepts[0].copy()
  print("\n Initialization of specfic_h and generalization")
  print(specific h)
  general_h = [["?" for i in range(len(specific_h))] for i in range(len(specific_h))]
  print(general_h)
  for i,h in enumerate(concepts):
    if target[i] =="yes":
      print("If instance is positive")
      for x in range(len(specific_h)):
        if h[x]!=specific_h[x]:
           specific h[x]='?'
           general_h[x][x]='?'
    if target[i]=="no":
      for x in range(len(specific_h)):
         if h[x] !=specific h[x]:
           general_h[x][x]=specific_h[x]
         else:
           general_h[x][x]='?'
    print("steps of candidate elimination algorithm",i+1)
    print(specific_h)
    print(general_h)
    print("\n")
    print("\n")
  indices=[i for i,val in enumerate(general_h) if val==['?','?','?']]
  for i in indices:
    general_h.remove(['?','?','?'])
  return specific_h,general_h
s_final, g_final = learn(concepts, target)
print("Final specific_h:",s_final,sep="\n")
print("Final General_h:",g_final,sep="\n")
```

| 1 | Sky   | AirTemp | Humidity | Wind   | Water | Forecast | EnjoySport |
|---|-------|---------|----------|--------|-------|----------|------------|
| 2 | Sunny | Warm    | Normal   | Strong | Warm  | Same     | Yes        |
| 3 | Sunny | Warm    | High     | Strong | Warm  | Same     | Yes        |
| 4 | Rainy | Cold    | High     | Strong | Warm  | Change   | No         |
| 5 | Sunny | Warm    | High     | Strong | Cool  | Change   | Yes        |

```
[['sunny' 'warm' 'normal' 'strong' 'warm' 'same']
 ['sunny' 'warm' 'high' 'strong' 'warn' 'same']
 ['rainy' 'cold' 'high' 'strong' 'warm' 'change']
['sunny' 'warm' 'high' 'strong' 'cool' 'change']]
['yes' 'yes' 'no' 'yes']
initialization of specific_h and general_h
['sunny' 'warm' 'normal' 'strong' 'warm' 'same']
[['?', '?', '?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?', '?', '?'], ['?', '?', '?', '?']
['sunny' 'warm' '?' 'strong' 'warm' 'same']
['sunny' 'warm' '?' 'strong' 'warm' 'same']
['sunny' 'warm' '?' 'strong' '?' 'same']
['sunny' 'warm' '?' 'strong' '?' 'same']
steps of Candidate Elimination Algorithm 3
['sunny' 'warm' '?' 'strong' '?' 'same']
['sunny', '?', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?'], ['?', '?', '?', '?', '?'], ['?', '?', '?', '?', '?', '?'], ['?', '?', '?'], ['?', '?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?'], ['?', '?']]
['sunny' 'warm' '?' 'strong' '?' 'same']
['sunny' 'warm' '?' 'strong' '?' '?']
['sunny' 'warm' '?' 'strong' '?' '?']
Final Specific h:
['sunny' 'warm' '?' 'strong' '?' '?']
Final General_h:
[['sunny', '?', '?', '?', '?', '?'], ['?', 'warm', '?', '?', '?', '?'], ['?', '?', '?', '?', '?']
```

3. Write a program to demonstrate the working of the decision tree based ID3 algorithm. Use an appropriate data set for building the decision tree and apply this knowledge to classify a new sample.

```
import math
import csv
def load_csv(filename):
  lines=csv.reader(open(filename,"r"));
  dataset = list(lines)
  headers = dataset.pop(0)
  return dataset, headers
class Node:
  def init (self,attribute):
    self.attribute=attribute
    self.children=[]
    self.answer=""
def subtables(data,col,delete):
  dic={}
  coldata=[row[col] for row in data]
  attr=list(set(coldata))
  counts=[0]*len(attr)
  r=len(data)
  c=len(data[0])
  for x in range(len(attr)):
    for y in range(r):
      if data[y][col]==attr[x]:
         counts[x]+=1
  for x in range(len(attr)):
    dic[attr[x]]=[[0 for i in range(c)] for j in range(counts[x])]
    pos=0
    for y in range(r):
      if data[y][col]==attr[x]:
        if delete:
           del data[y][col]
         dic[attr[x]][pos]=data[y]
         pos+=1
  return attr,dic
def entropy(S):
  attr=list(set(S))
  if len(attr)==1:
    return 0
  counts=[0,0]
  for i in range(2):
    counts[i]=sum([1 for x in S if attr[i]==x])/(len(S)*1.0)
  sums=0
  for cnt in counts:
```

```
sums+=-1*cnt*math.log(cnt,2)
  return sums
def compute_gain(data,col):
  attr,dic = subtables(data,col,delete=False)
  total_size=len(data)
  entropies=[0]*len(attr)
  ratio=[0]*len(attr)
  total_entropy=entropy([row[-1] for row in data])
  for x in range(len(attr)):
    ratio[x]=len(dic[attr[x]])/(total_size*1.0)
    entropies[x]=entropy([row[-1] for row in dic[attr[x]]])
    total_entropy-=ratio[x]*entropies[x]
  return total_entropy
def build_tree(data,features):
  lastcol=[row[-1] for row in data]
  if(len(set(lastcol)))==1:
    node=Node("")
    node.answer=lastcol[0]
    return node
  n=len(data[0])-1
  gains=[0]*n
  for col in range(n):
    gains[col]=compute_gain(data,col)
  split=gains.index(max(gains))
  node=Node(features[split])
  fea = features[:split]+features[split+1:]
  attr,dic=subtables(data,split,delete=True)
  for x in range(len(attr)):
    child=build_tree(dic[attr[x]],fea)
    node.children.append((attr[x],child))
  return node
def print_tree(node,level):
  if node.answer!="":
    print(" "*level,node.answer)
    return
  print(" "*level,node.attribute)
  for value,n in node.children:
    print(" "*(level+1),value)
    print_tree(n,level+2)
def classify(node,x_test,features):
  if node.answer!="":
    print(node.answer)
    return
  pos=features.index(node.attribute)
```

```
for value, n in node.children:
    if x_test[pos]==value:
        classify(n,x_test,features)

"'Main program'''
dataset,features=load_csv("id3.csv")
node1=build_tree(dataset,features)

print("The decision tree for the dataset using ID3 algorithm is")
print_tree(node1,0)
testdata,features=load_csv("id3_test_1.csv")
for xtest in testdata:
    print("The test instance:",xtest)
    print("The label for test instance:",end=" ")
classify(node1,xtest,features)
```

| Outlook  | Temperature | Humidity | Wind   | Answer |
|----------|-------------|----------|--------|--------|
| sunny    | hot         | high     | weak   | no     |
| sunny    | hot         | high     | strong | no     |
| overcast | hot         | high     | weak   | yes    |
| rain     | mild        | high     | weak   | yes    |
| rain     | cool        | normal   | weak   | yes    |
| rain     | cool        | normal   | strong | no     |
| overcast | cool        | normal   | strong | yes    |
| sunny    | mild        | high     | weak   | no     |
| sunny    | cool        | normal   | weak   | yes    |
| rain     | mild        | normal   | weak   | yes    |
| sunny    | mild        | normal   | strong | yes    |
| overcast | mild        | high     | strong | yes    |
| overcast | hot         | normal   | weak   | yes    |
| rain     | mild        | high     | strong | no     |

```
The decision tree for the dataset using ID3 algorithm is
Outlook
  rain
    Wind
      weak
       yes
      strong
        no
   sunny
    Humidity
      normal
        yes
      high
   overcast
The test instance: ['rain', 'cool', 'normal', 'strong']
The label for test instance: no
The test instance: ['sunny', 'mild', 'normal', 'strong']
The label for test instance: yes
```

# 4. Write a program to implement the naïve Bayesian classifier for a sample training data set stored as a .CSV file. Compute the accuracy of the classifier, considering few test data sets

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
df = pd.read csv("diabetes.csv")
col_names = ['num_preg', 'glucose_conc', 'diastolic_bp', 'thickness', 'insulin', 'bmi', 'diab_pred', 'age']
predicted_class = ['diabetes']
X = df[col_names].values
y = df[predicted class].values
print(df.head)
xtrain,xtest,ytrain,ytest=train_test_split(X,y,test_size=0.4)
print ('\n the total number of Training Data:', vtrain.shape)
print ('\n the total number of Test Data :',ytest.shape)
clf = GaussianNB().fit(xtrain,ytrain.ravel())
predicted = clf.predict(xtest)
predictTestData= clf.predict([[6,148,72,35,0,33.6,0.627,50]])
print('\n Confusion matrix')
print(metrics.confusion_matrix(ytest,predicted))
print('\n Accuracy of the classifier is',metrics.accuracy_score(ytest,predicted))
print('\n The value of Precision', metrics.precision_score(ytest,predicted))
print('\n The value of Recall', metrics.recall_score(ytest,predicted))
print("Predicted Value for individual Test Data:", predictTestDat
```

|     | num_preg | glucose_conc | diastolic_bp | thickness | insulin | bmi  | diab_pred | age | diabetes |
|-----|----------|--------------|--------------|-----------|---------|------|-----------|-----|----------|
| 0   | 6        | 148          | 72           | 35        | 0       | 33.6 | 0.627     | 50  | 1        |
| 1   | 1        | 85           | 66           | 29        | 0       | 26.6 | 0.351     | 31  | 0        |
| 2   | 8        | 183          | 64           | 0         | 0       | 23.3 | 0.672     | 32  | 1        |
| 3   | 1        | 89           | 66           | 23        | 94      | 28.1 | 0.167     | 21  | 0        |
| 4   | 0        | 137          | 40           | 35        | 168     | 43.1 | 2.288     | 33  | 1        |
|     |          |              |              |           |         |      |           |     |          |
| 140 | 3        | 128          | 78           | 0         | 0       | 21.1 | 0.268     | 55  | 0        |
| 141 | 5        | 106          | 82           | 30        | 0       | 39.5 | 0.286     | 38  | 0        |
| 142 | 2        | 108          | 52           | 26        | 63      | 32.5 | 0.318     | 22  | 0        |
| 143 | 10       | 108          | 66           | 0         | 0       | 32.4 | 0.272     | 42  | 1        |
| 144 | 4        | 154          | 62           | 31        | 284     | 32.8 | 0.237     | 23  | 0        |

```
Confusion matrix
[[166 37]
[ 44 61]]

Accuracy of the classifier is 0.737012987012987

The value of Precision 0.6224489795918368

The value of Recall 0.580952380952381

Predicted Value for individual Test Data: [1]
```

# 5. Implement the Linear Regression algorithm in order to fit data points. Select appropriate data set for your experiment and draw graphs

```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
dataset = pd.read_csv('salary_data.csv')
X = dataset.iloc[:,:-1].values
y = dataset.iloc[:, 1].values
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=
# Fitting Simple Linear Regression to the Training set
from sklearn.linear model import LinearRegression
regressor = LinearRegression()
regressor.fit(X_train, y_train)
# Predicting the Test set results
y_pred = regressor.predict(X_test)
# Visualizing the Training set results
viz_train = plt
viz_train.scatter(X_train, y_train, color='red')
viz_train.plot(X_train, regressor.predict(X_train), color='blue')
viz_train.title('Salary VS Experience (Training set)')
viz_train.xlabel('Year of Experience')
viz_train.ylabel('Salary')
viz train.show()
# Visualizing the Test set results
viz_test = plt
viz_test.scatter(X_test, y_test, color='red')
viz_test.plot(X_train, regressor.predict(X_train), color='blue')
viz_test.title('Salary VS Experience (Test set)')
viz_test.xlabel('Year of Experience')
viz_test.ylabel('Salary')
viz_test.show()
regressor.score(X_train,y_train)
print(regressor.score(X_test,y_test))
```

| 1  | YearsExperience | Salary |
|----|-----------------|--------|
| 2  | 1.1             | 39343  |
| 3  | 1.3             | 46205  |
| 4  | 1.5             | 37731  |
| 5  | 2.0             | 43525  |
| 6  | 2.2             | 39891  |
| 7  | 2.9             | 56642  |
| 8  | 3.0             | 60150  |
| 9  | 3.2             | 54445  |
| LØ | 3.2             | 64445  |
| l1 | 3.7             | 57189  |
| L2 | 3.9             | 63218  |
| L3 | 4.0             | 55794  |
| L4 | 4.0             | 56957  |
| L5 | 4.1             | 57081  |
| L6 | 4.5             | 61111  |
| L7 | 4.9             | 67938  |



# 6. Write a program to construct a Bayesian network considering training data. Use this model to make predictions.

```
import numpy as np
import pandas as pd
import csv
from pgmpy.estimators import MaximumLikelihoodEstimator
from pgmpy.models import BayesianModel
from pgmpy.inference import VariableElimination
heartDisease = pd.read_csv('/content/heart.csv')
heartDisease = heartDisease.replace('?',np.nan)
print('Sample instances from the dataset are given below')
print(heartDisease.head())
model = BayesianModel([('age', 'heartdisease'), ('sex', 'heartdisease'), ('exang', 'heartdisease'), ('cp', 'heartdisease'),
     ('heartdisease','restecg'),('heartdisease','chol')])
print('\n Learning CPD using Maximum likelihood estimators')
model.fit(heartDisease,estimator=MaximumLikelihoodEstimator)
print('\n Inferencing with Bayesian Network:')
HeartDiseasetest_infer = VariableElimination(model)
print('\n 1.Probability of HeartDisease given evidence= restecg :1')
q1=HeartDiseasetest_infer.query(variables=['heartdisease'],evidence={'restecg':1})
print(q1)
```

| age | sex | ср  | trestbps | chol | fbs | restecg | thalach | exang | oldpeak | slope | ca | thal | heartdisease |
|-----|-----|-----|----------|------|-----|---------|---------|-------|---------|-------|----|------|--------------|
| 63  | 1   | 1   | 145      | 233  | 1   | 2       | 150     | 0     | 2.3     | 3     | 0  | 6    | 0            |
| 67  | 1   | 4   | 160      | 286  | 0   | 2       | 108     | 1     | 1.5     | 2     | 3  | 3    | 2            |
| 67  | 1   | 4   | 120      | 229  | 0   | 2       | 129     | 1     | 2.6     | 2     | 2  | 7    | 1            |
| 37  | 1   | 3   | 130      | 250  | 0   | 0       | 187     | 0     | 3.5     | 3     | 0  | 3    | 0            |
| 41  | 0   | 2   | 130      | 204  | 0   | 2       | 172     | 0     | 1.4     | 1     | 0  | 3    | 0            |
| 56  | 1   | 2   | 120      | 236  | 0   | 0       | 178     | 0     | 0.8     | 1     | 0  | 3    | 0            |
| 62  | 0   | 4   | 140      | 268  | 0   | 2       | 160     | 0     | 3.6     | 3     | 2  | 3    | 3            |
| 57  | 0   | 4   | 120      | 354  | 0   | 0       | 163     | 1     | 0.6     | 1     | 0  | 3    | 0            |
| 63  | 1   | 4   | 130      | 254  | 0   | 2       | 147     | 0     | 1.4     | 2     | 1  | 7    | 2            |
| 53  | 1   | 4   | 140      | 203  | 1   | 2       | 155     | 1     | 3.1     | 3     | 0  | 7    | 1            |
| 57  | 1   | 4   | 140      | 192  | 0   | 0       | 148     | 0     | 0.4     | 2     | 0  | 6    | 0            |
| 56  | 0   | 2   | 140      | 294  | 0   | 2       | 153     | 0     | 1.3     | 2     | 0  | 3    | 0            |
| 56  | 1   | 3   | 130      | 256  | 1   | 2       | 142     | 1     | 0.6     | 2     | 1  | 6    | 2            |
| 44  | 1   | . 2 | 120      | 263  | 0   | 0       | 173     | 0     | 0       | 1     | 0  | 7    | 0            |
| 52  | 1   | . 3 | 172      | 199  | 1   | 0       | 162     | 0     | 0.5     | 1     | 0  | 7    | 0            |
| 57  | 1   | . 3 | 150      | 168  | 0   | 0       | 174     | 0     | 1.6     | 1     | 0  | 3    | 0            |
| 48  | 1   | . 2 | 110      | 229  | 0   | 0       | 168     | 0     | 1       | 3     | 0  | 7    | 1            |
| 54  | 1   | 4   | 140      | 239  | 0   | 0       | 160     | 0     | 1.2     | 1     | 0  | 3    | 0            |
| 48  | 0   | 3   | 130      | 275  | 0   | 0       | 139     | 0     | 0.2     | 1     | 0  | 3    | 0            |
| 49  | 1   | . 2 | 130      | 266  | 0   | 0       | 171     | 0     | 0.6     | 1     | 0  | 3    | 0            |
| 64  | 1   | 1   | 110      | 211  | 0   | 2       | 144     | 1     | 1.8     | 2     | 0  | 3    | 0            |
| 58  | 0   | 1   | 150      | 283  | 1   | 2       | 162     | 0     | 1       | 1     | 0  | 3    | 0            |
| 58  | 1   | 2   | 120      | 284  | 0   | 2       | 160     | 0     | 1.8     | 2     | 0  | 3    | 1            |
| 58  | 1   | . 3 | 132      | 224  | 0   | 2       | 173     | 0     | 3.2     | 1     | 2  | 7    | 3            |
| 60  | 1   | 4   | 130      | 206  | 0   | 2       | 132     | 1     | 2.4     | 2     | 2  | 7    | 4            |
| 50  | 0   | 3   | 120      | 219  | 0   | 0       | 158     | 0     | 1.6     | 2     | 0  | 3    | 0            |
| 58  | 0   | 3   | 120      | 340  | 0   | 0       | 172     | 0     | 0       | 1     | 0  | 3    | 0            |
| 66  | 0   | 1   | 150      | 226  | 0   | 0       | 114     | 0     | 2.6     | 3     | 0  | 3    | 0            |

1.Probability of HeartDisease given evidence= restecg :1



2. Probability of HeartDisease given evidence= cp

| Finding Elimination Orde | r: : 100%                    | 3/3 [00:00<00:00, 60.16it/s] |
|--------------------------|------------------------------|------------------------------|
| Eliminating: exang: 100% | 3/3 [00:00<00:00, 91.15it/s] |                              |
| Heartdisease             | phi(Heartdisease)            |                              |
| Heartdisease(0)          | 0.3610                       |                              |
| Heartdisease(1)          | 0.2159                       |                              |
| Heartdisease(2)          | 0.1373                       |                              |
| Heartdisease(3)          |                              |                              |
| Heartdisease(4)          |                              |                              |
|                          | '                            |                              |

## 7. Apply K-Means algorithm to cluster a set of data stored in a .CSV file.

```
import pandas as pd
      from sklearn.cluster import KMeans
      from sklearn.preprocessing import MinMaxScaler
      from matplotlib import pyplot as plt
      %matplotlib inline
      df = pd.read_csv('income.csv')
      df.head(10)
      scaler = MinMaxScaler()
      scaler.fit(df[['Age']])
     df[['Age']] = scaler.transform(df[['Age']])
     scaler.fit(df[['Income($)']])
     df[['Income($)']] = scaler.transform(df[['Income($)']])
     df.head(10)
     plt.scatter(df['Age'], df['Income($)'])
     k_range = range(1, 11)
 sse = []
 for k in k_range:
 kmc = KMeans(n clusters=k)
 kmc.fit(df[['Age', 'Income($)']])
 sse.append(kmc.inertia_)
 sse
    km = KMeans(n_clusters=3)
KMeans(n_clusters=3)
y_predict = km.fit_predict(df[['Age', 'Income($)']])
y_predict
array([0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2],
 dtype=int32)
df['cluster'] = y_predict
df.head()
df0 = df[df.cluster == 0]
```

km

df0

| Name     | Age |    | Income(\$) |
|----------|-----|----|------------|
| Rob      |     | 27 | 70000      |
| Michael  |     | 29 | 90000      |
| Mohan    |     | 29 | 61000      |
| Ismail   |     | 28 | 60000      |
| Kory     |     | 42 | 150000     |
| Gautam   |     | 39 | 155000     |
| David    |     | 41 | 160000     |
| Andrea   |     | 38 | 162000     |
| Brad     |     | 36 | 156000     |
| Angelina |     | 35 | 130000     |
| Donald   |     | 37 | 137000     |
| Tom      |     | 26 | 45000      |
| Arnold   |     | 27 | 48000      |
| Jared    |     | 28 | 51000      |
| Stark    |     | 29 | 49500      |
| Ranbir   |     | 32 | 53000      |
| Dipika   |     | 40 | 65000      |
| Priyanka |     | 41 | 63000      |
| Nick     |     | 43 | 64000      |
| Alia     |     | 39 | 80000      |
| Sid      |     | 41 | 82000      |
| Abdul    |     | 39 | 58000      |



# 8. Apply EM algorithm to cluster a set of data stored in a .CSV file. Compare the results of k-Means and EM algorithm.

```
import matplotlib.pyplot as plt
      from sklearn import datasets
      from sklearn.cluster import KMeans
      import sklearn.metrics as sm
      import pandas as pd
      import numpy as np
     iris = datasets.load_iris()
     X = pd.DataFrame(iris.data)
     X.columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width']
     y = pd.DataFrame(iris.target)
    y.columns = ['Targets']
    model = KMeans(n clusters=3)
    model.fit(X)
   plt.figure(figsize=(14,7))
   colormap = np.array(['red', 'lime', 'black'])
   plt.subplot(1, 2, 1)
   plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y.Targets], s=40)
   plt.title('Real Classification')
   plt.xlabel('Petal Length')
  plt.ylabel('Petal Width')
 plt.subplot(1, 2, 2)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[model.labels_], s=40)
plt.title('K Mean Classification')
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
print('The accuracy score of K-Mean: ',sm.accuracy_score(y, model.labels_))
print('The Confusion matrixof K-Mean: ',sm.confusion_matrix(y, model.labels_))
from sklearn import preprocessing
scaler = preprocessing.StandardScaler()
scaler.fit(X)
xsa = scaler.transform(X)
xs = pd.DataFrame(xsa, columns = X.columns)
from sklearn.mixture import GaussianMixture
gmm = GaussianMixture(n_components=3)
gmm.fit(xs)
y_gmm = gmm.predict(xs)
plt.subplot(2, 2, 3)
plt.scatter(X.Petal_Length, X.Petal_Width, c=colormap[y_gmm], s=40)
```

plt.title('GMM Classification')

```
plt.xlabel('Petal Length')
plt.ylabel('Petal Width')
```

print('The accuracy score of EM: ',sm.accuracy\_score(y, y\_gmm))
print('The Confusion matrix of EM: ',sm.confusion\_matrix(y, y\_gmm))

| Id | SepalLengt | SepalWidt | PetalLengt | PetalWidth | Species     |
|----|------------|-----------|------------|------------|-------------|
| 1  | 5.1        | 3.5       | 1.4        | 0.2        | Iris-setosa |
| 2  | 4.9        | 3         | 1.4        | 0.2        | Iris-setosa |
| 3  | 4.7        | 3.2       | 1.3        | 0.2        | Iris-setosa |
| 4  | 4.6        | 3.1       | 1.5        | 0.2        | Iris-setosa |
| 5  | 5          | 3.6       | 1.4        | 0.2        | Iris-setosa |
| 6  | 5.4        | 3.9       | 1.7        | 0.4        | Iris-setosa |
| 7  | 4.6        | 3.4       | 1.4        | 0.3        | Iris-setosa |
| 8  | 5          | 3.4       | 1.5        | 0.2        | Iris-setosa |
| 9  | 4.4        | 2.9       | 1.4        | 0.2        | Iris-setosa |
| 10 | 4.9        | 3.1       | 1.5        | 0.1        | Iris-setosa |
| 11 | 5.4        | 3.7       | 1.5        | 0.2        | Iris-setosa |
| 12 | 4.8        | 3.4       | 1.6        | 0.2        | Iris-setosa |
| 13 | 4.8        | 3         | 1.4        | 0.1        | Iris-setosa |
| 14 | 4.3        | 3         | 1.1        | 0.1        | Iris-setosa |
| 15 | 5.8        | 4         | 1.2        | 0.2        | Iris-setosa |
| 16 | 5.7        | 4.4       | 1.5        | 0.4        | Iris-setosa |
| 17 | 5.4        | 3.9       | 1.3        | 0.4        | Iris-setosa |
| 18 | 5.1        | 3.5       | 1.4        | 0.3        | Iris-setosa |
| 19 | 5.7        | 3.8       | 1.7        | 0.3        | Iris-setosa |
| 20 | 5.1        | 3.8       | 1.5        | 0.3        | Iris-setosa |
| 21 | 5.4        | 3.4       | 1.7        | 0.2        | Iris-setosa |
| 22 | 5.1        | 3.7       | 1.5        | 0.4        | Iris-setosa |
| 23 | 4.6        | 3.6       | 1          | 0.2        | Iris-setosa |
| 24 | 5.1        | 3.3       | 1.7        | 0.5        | Iris-setosa |
| 25 | 4.8        | 3.4       | 1.9        | 0.2        | Iris-setosa |
| 26 | 5          | 3         | 1.6        | 0.2        | Iris-setosa |
| 27 | 5          | 3.4       | 1.6        | 0.4        | Iris-setosa |
| 28 | 5.2        | 3.5       | 1.5        | 0.2        | Iris-setosa |

```
The accuracy score of K-Mean: 0.24
The Confusion matrixof K-Mean: [[ 0 50 0] [48 0 2] [14 0 36]]
The accuracy score of EM: 0.0
The Confusion matrix of EM: [[ 0 10 40] [50 0 0] [50 0 0]]
```





# 9. Write a Program to implement k-Nearest Neighbour algorithm to classify the iris dataset. Print both correct and wrong predictions.

```
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import classification_report, confusion_matrix
from sklearn import datasets
iris=datasets.load_iris()
x = iris.data
y = iris.target
print ('sepal-length', 'sepal-width', 'petal-length', 'petal-width')
print('class: 0-Iris-Setosa, 1-Iris-Versicolour, 2-Iris-Virginica')
print(y)
x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.3)
classifier = KNeighborsClassifier(n_neighbors=5)
classifier.fit(x_train, y_train)
y_pred=classifier.predict(x_test)
print('Confusion Matrix')
print(confusion_matrix(y_test,y_pred))
print('Accuracy Metrics')
print(classification_report(y_test,y_pred))
```

| Id | SepalLengt | SepalWidtl | PetalLengt | PetalWidth | Species     |
|----|------------|------------|------------|------------|-------------|
| 1  | 5.1        | 3.5        | 1.4        | 0.2        | Iris-setosa |
| 2  | 4.9        | 3          | 1.4        | 0.2        | Iris-setosa |
| 3  | 4.7        | 3.2        | 1.3        | 0.2        | Iris-setosa |
| 4  | 4.6        | 3.1        | 1.5        | 0.2        | Iris-setosa |
| 5  | 5          | 3.6        | 1.4        | 0.2        | Iris-setosa |
| 6  | 5.4        | 3.9        | 1.7        | 0.4        | Iris-setosa |
| 7  | 4.6        | 3.4        | 1.4        | 0.3        | Iris-setosa |
| 8  | 5          | 3.4        | 1.5        | 0.2        | Iris-setosa |
| 9  | 4.4        | 2.9        | 1.4        | 0.2        | Iris-setosa |
| 10 | 4.9        | 3.1        | 1.5        | 0.1        | Iris-setosa |
| 11 | 5.4        | 3.7        | 1.5        | 0.2        | Iris-setosa |
| 12 | 4.8        | 3.4        | 1.6        | 0.2        | Iris-setosa |
| 13 | 4.8        | 3          | 1.4        | 0.1        | Iris-setosa |
| 14 | 4.3        | 3          | 1.1        | 0.1        | Iris-setosa |
| 15 | 5.8        | 4          | 1.2        | 0.2        | Iris-setosa |
| 16 | 5.7        | 4.4        | 1.5        | 0.4        | Iris-setosa |
| 17 | 5.4        | 3.9        | 1.3        | 0.4        | Iris-setosa |
| 18 | 5.1        | 3.5        | 1.4        | 0.3        | Iris-setosa |
| 19 | 5.7        | 3.8        | 1.7        | 0.3        | Iris-setosa |
| 20 | 5.1        | 3.8        | 1.5        | 0.3        | Iris-setosa |
| 21 | 5.4        | 3.4        | 1.7        | 0.2        | Iris-setosa |
| 22 | 5.1        | 3.7        | 1.5        | 0.4        | Iris-setosa |
| 23 | 4.6        | 3.6        | 1          | 0.2        | Iris-setosa |
| 24 | 5.1        | 3.3        | 1.7        | 0.5        | Iris-setosa |
| 25 | 4.8        | 3.4        | 1.9        | 0.2        | Iris-setosa |
| 26 | 5          | 3          | 1.6        | 0.2        | Iris-setosa |
| 27 | 5          | 3.4        | 1.6        | 0.4        | Iris-setosa |
| 28 | 5.2        | 3.5        | 1.5        | 0.2        | Iris-setosa |

Confusion Matrix

[[11 0 0]

[ 0 16 1]

[ 0 1 16]]

Accuracy Metrics

|              | precision | recall | f1-score | support |
|--------------|-----------|--------|----------|---------|
| 0            | 1.00      | 1.00   | 1.00     | 11      |
| 1            | 0.94      | 0.94   | 0.94     | 17      |
| 2            | 0.94      | 0.94   | 0.94     | 17      |
| accuracy     |           |        | 0.96     | 45      |
| macro avg    | 0.96      | 0.96   | 0.96     | 45      |
| weighted avg | 0.96      | 0.96   | 0.96     | 45      |

10. Implement the non-parametric Locally Weighted Regression algorithm in order to fit data points. Print Select appropriate data set for your experiment and draw graphs.

```
import numpy as np
from bokeh.plotting import figure, show, output notebook
from bokeh.layouts import gridplot
from bokeh.io import push_notebook
from matplotlib import pyplot as plt
def local_regression(x0, X, Y, tau):# add bias term
x0 = np.r_[1, x0] # Add one to avoid the loss in information
X = np.c_{np.ones(len(X)), X]
xw = X.T * radial_kernel(x0, X, tau) # XTranspose * W
beta = np.linalg.pinv(xw @ X)
return x0 @ beta # @ Matrix Multiplication or Dot Product for prediction
def radial_kernel(x0, X, tau):
return np.exp(np.sum((X - x0) ** 2, axis=1) / (-2 * tau * tau))
n = 1000
X = np.linspace(-3, 3, num=n)
print("The Data Set ( 10 Samples) X :\n",X[1:10])
Y = np.log(np.abs(X ** 2 - 1) + .5)
print("The Fitting Curve Data Set (10 Samples) Y:\n",Y[1:10])
X += np.random.normal(scale=.1, size=n)
print("Normalised (10 Samples) X :\n",X[1:10])
domain = np.linspace(-3, 3, num=300)
print(" Xo Domain Space(10 Samples) :\n",domain[1:10])
def plot_lwr(tau):
prediction = [local_regression(x0, X, Y, tau) for x0 in domain]
plot = figure(plot_width=400, plot_height=400)
plot.title.text='tau=%g' % tau
plot.scatter(X, Y, alpha=.3)
plot.line(domain, prediction, line width=2, color='red')
return plot
show(gridplot([
[plot_lwr(10.), plot_lwr(1.)],
[plot_lwr(0.1), plot_lwr(0.01)]]))
plt.title('K Mean Classification')
plt.xlabel('Petal Length')
```

```
The Data Set ( 10 Samples) X :
         [-2.99399399 -2.98798799 -2.98198198 -2.97597598 -2.96996997 -2.96396396
         -2.95795796 -2.95195195 -2.94594595]
        The Fitting Curve Data Set (10 Samples) Y :
         [2.13582188 2.13156806 2.12730467 2.12303166 2.11874898 2.11445659
         2.11015444 2.10584249 2.10152068]
        Normalised (10 Samples) X :
          \left[ -2.86327233 \right. -2.86956667 \right. -2.82337772 \right. -2.88923105 \left. -2.77788044 \right. -3.02341724 
         -2.95836131 -2.96057068 -2.95988289]
         Xo Domain Space(10 Samples) :
         [-2.97993311 \ -2.95986622 \ -2.93979933 \ -2.91973244 \ -2.89966555 \ -2.87959866
         -2.85953177 -2.83946488 -2.81939799]
ut[4]: Text(0.5, 0, 'Petal Length')
```



```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
def kernel(point,xmat, k):
  m,n = np.shape(xmat)
  weights = np.mat(np.eye((m)))
  for j in range(m):
    diff = point - X[j]
    weights[j,j] = np.exp(diff*diff.T/(-2.0*k**2))
  return weights
def localWeight(point,xmat,ymat,k):
  wei = kernel(point,xmat,k)
  W = (X.T*(wei*X)).I*(X.T*(wei*ymat.T))
  return W
def localWeightRegression(xmat,ymat,k):
  m,n = np.shape(xmat)
  ypred = np.zeros(m)
  for i in range(m):
    ypred[i] = xmat[i]*localWeight(xmat[i],xmat,ymat,k)
  return ypred
def graphPlot(X,ypred):
  sortindex = X[:,1].argsort(0)
  xsort = X[sortindex][:,0]
  fig = plt.figure()
  ax = fig.add_subplot(1,1,1)
  ax.scatter(bill,tip, color='green')
  ax.plot(xsort[:,1],ypred[sortindex], color = 'red', linewidth=5)
  plt.xlabel('Total bill')
  plt.ylabel('Tip')
  plt.show();
data = pd.read_csv('/content/tips.csv')
bill = np.array(data.total_bill)
tip = np.array(data.tip)
mbill = np.mat(bill)
mtip = np.mat(tip)
m= np.shape(mbill)[1]
one = np.mat(np.ones(m))
X = np.hstack((one.T,mbill.T)) # 244 rows, 2 cols
ypred = localWeightRegression(X,mtip,3)
graphPlot(X,ypred)
```

| total_bill | tip  | sex    | smoker | day | time   | size |
|------------|------|--------|--------|-----|--------|------|
| 16.99      | 1.01 | Female | No     | Sun | Dinner |      |
| 10.34      | 1.66 | Male   | No     | Sun | Dinner |      |
| 21.01      | 3.5  | Male   | No     | Sun | Dinner |      |
| 23.68      | 3.31 | Male   | No     | Sun | Dinner |      |
| 24.59      | 3.61 | Female | No     | Sun | Dinner | 4    |
| 25.29      | 4.71 | Male   | No     | Sun | Dinner |      |
| 8.77       | 2    | Male   | No     | Sun | Dinner |      |
| 26.88      | 3.12 | Male   | No     | Sun | Dinner |      |
| 15.04      | 1.96 | Male   | No     | Sun | Dinner |      |
| 14.78      | 3.23 | Male   | No     | Sun | Dinner |      |
| 10.27      | 1.71 | Male   | No     | Sun | Dinner |      |
| 35.26      | 5    | Female | No     | Sun | Dinner |      |
| 15.42      | 1.57 | Male   | No     | Sun | Dinner |      |
| 18.43      | 3    | Male   | No     | Sun | Dinner |      |
| 14.83      | 3.02 | Female | No     | Sun | Dinner |      |
| 21.58      | 3.92 | Male   | No     | Sun | Dinner |      |
| 10.33      | 1.67 | Female | No     | Sun | Dinner |      |
| 16.29      | 3.71 | Male   | No     | Sun | Dinner |      |
| 16.97      | 3.5  | Female | No     | Sun | Dinner |      |
| 20.65      | 3.35 | Male   | No     | Sat | Dinner |      |
| 17.92      | 4.08 | Male   | No     | Sat | Dinner |      |
| 20.29      | 2.75 | Female | No     | Sat | Dinner |      |
| 15.77      | 2.23 | Female | No     | Sat | Dinner |      |
| 39.42      | 7.58 | Male   | No     | Sat | Dinner |      |
| 19.82      | 3.18 | Male   | No     | Sat | Dinner |      |
| 17.81      | 2.34 | Male   | No     | Sat | Dinner |      |
| 13.37      | 2    | Male   | No     | Sat | Dinner |      |
| 12.69      | 2    | Male   | No     | Sat | Dinner |      |

