New Multigroup Transport Equations Derived via Homogeneity and Isotropy Restoration (HIRE) Theory

Nam Zin Cho nzcho@kaist.ac.kr

Presented in the Plenary Session at PHYTRA5 in Xian, China (online)
May 10-11, 2021

Table of Contents

1. Introduction

- Limitations of Conventional Multigroup Transport Equations
- 2. Methodology of New Multigroup (Few Group) Transport Equations
 - Homogeneity and Isotropy Restoration (HIRE) Theory
 - Partial Current Discontinuity Factor (PCDF) Iteration
 - JFNK Method with Exponential Transformation

3. Numerical Results

- Test Problem 1:1 pin-cell size (reflective BC)
- Test Problem 2 : 1 pin-cell size (albedo BC)
- Test Problem 3: 4 pin-cell size (reflective BC)
- Test Problem 4: 16 pin-cell size (baffle effect)
- Test Problem 5: 1 pin-cell size (rim effect in depletion)
- 4. Summary and Concluding Remarks
- 5. References

1. Introduction (1/3)

□ Continuous-energy neutron transport equation is rigorously derived as:

$$ec{\Omega} \cdot
abla arphi(ec{r}, E, ec{\Omega}) + \sigma_t(ec{r}, E) arphi(ec{r}, E, ec{\Omega}) = \int d\Omega' \int dE' \sigma_s(ec{r}, E' o E, ec{\Omega}' o ec{\Omega}) arphi(ec{r}, E', ec{\Omega}')
onumber \ + rac{\chi(E)}{k_{eff}} \int d\Omega' \int dE'
u \sigma_f(ec{r}, E') arphi(ec{r}, E', ec{\Omega}').
onumber \ (1)$$

□ To obtain corresponding multigroup transport equations, Eq. (1) is integrated over an energy interval $E_g \le E \le E_{g-1}$ leading to:

$$egin{aligned} ec{\Omega} \cdot
abla arphi_g(ec{r},ec{\Omega}) + \sigma_{t,g}(ec{r},ec{\Omega}) arphi_g(ec{r},ec{\Omega}) &= \sum_{g'=1}^G \int d\Omega' \sigma_{s,gg'}(ec{r},ec{\Omega}'
ightarrow ec{\Omega}) arphi_{g'}(ec{r},ec{\Omega}') \ &+ rac{\chi_g}{k_{eff}} \sum_{g'=1}^G
u \sigma_{f,g'}(ec{r}) \phi_{g'}(ec{r}), \end{aligned}$$

where the standard notations are used.

1. Introduction (2/3)

□ Note that the group total cross section in Eq. (2) becomes angle-dependent and space-dependent as:

$$\sigma_{t,g}(ec{r}, ec{\Omega}) = rac{\int_{E_g}^{E_{g-1}} dE \sigma_t \left(ec{r}, E
ight) arphi(ec{r}, E, ec{\Omega})}{\int_{E_g}^{E_{g-1}} dE arphi(ec{r}, E, ec{\Omega})}.$$

- ☐ Previous studies on angle-dependency of the group total cross section
 - Removal of angle-dependency
 - Consistent *P* approximation
 - Extended (BHS) transport approximation: outflow/inflow approximations
 - Angle-dependency is expanded in Legendre functions and retained in LHS.
 - Anisotropic media approach
 - Angle-dependent portion is moved to RHS and expanded in spherical harmonics and added to the scattering term.
 - Generalized energy condensation (GEC) scheme

1. Introduction (3/3)

- ☐ Homogeneity and Isotropy Restoration (HIRE) Theory in this presentation:
 - Homogeneity in material region
 - Angle-independence in total XS
 - Preservation of region-wise reaction rate are achieved in the derivation of multigroup transport equations by the device of partial current discontinuity factor (PCDF).

2. Methodology: Problems of Multigroup XS (1/7)

 \square On reaction terms in Eq. (2), we perform, over V_m of material region m,

$$oldsymbol{\sigma}_{t,g}(ec{r},ec{\Omega}) = rac{\int_{E_g}^{E_{g-1}} dE \sigma_t (ec{r},E) arphi(ec{r},E,ec{\Omega})}{\int_{E_g}^{E_{g-1}} dE arphi(ec{r},E,ec{\Omega})},$$

$$oldsymbol{\sigma}_{t,g}^{m} = rac{\displaystyle\int_{ec{r} \in V_{m}} dV \int d\Omega \int_{E_{g}}^{E_{g-1}} dE \sigma_{t}(ec{r},E) arphi(ec{r},E,ec{\Omega})}{\displaystyle\int_{ec{r} \in V_{m}} dV \int d\Omega \int_{E_{g}}^{E_{g-1}} dE arphi(ec{r},E,ec{\Omega})},$$
 (3a)

$$\sigma_{s,gg'}(ec{r},ec{\Omega}'
ightarrowec{\Omega}) = rac{\displaystyle\int_{E_g}^{E_{g-1}} dE \int d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \sigma_s(ec{r},E'
ightarrow E,ec{\Omega}'
ightarrow E,ec{\Omega}'
ightarrowec{\Omega}) arphi(ec{r},E',ec{\Omega}')}{\displaystyle\int_{E_{g'}}^{E_{g'-1}} dE' arphi(ec{r},E',ec{\Omega}')},$$

$$\sigma^m_{s0,gg'} = rac{\displaystyle\int_{ec{r}\in V_m} dV \int d\Omega \int_{E_g}^{E_{g-1}} dE \int d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \sigma_s(ec{r},E' o E,ec{\Omega}' o ec{\Omega}) arphi(ec{r},E',ec{\Omega}')}{\displaystyle\int_{ec{r}\in V_m} dV \int d\Omega \int d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' arphi(ec{r},E',ec{\Omega}')},$$
 (4a)

2. Methodology: Problems of Multigroup XS (2/7)

$$\nu\sigma_{f,g'}(\vec{r}) = \frac{\int d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \nu\sigma_{f}(\vec{r}, E') \varphi(\vec{r}, E', \vec{\Omega}')}{\int d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \varphi(\vec{r}, E', \vec{\Omega}')}.$$
(5)

$$\nu\sigma_{f,g'}^{m} = \frac{\int_{\vec{r}\in V_{m}} dV \int d\Omega \int d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE' \nu\sigma_{f}(\vec{r},E')\varphi(\vec{r},E',\vec{\Omega}')}{\int_{\vec{r}\in V_{m}} dV \int d\Omega \int d\Omega' \int_{E_{g'}}^{E_{g'-1}} dE'\varphi(\vec{r},E',\vec{\Omega}')},$$
(5a)

$$\chi_{g}^{m} = \frac{\int_{\vec{r} \in V_{m}} dV \int d\Omega \int_{E_{g}}^{E_{g-1}} dE \int d\Omega' \sum_{g'=1}^{G} \int_{E_{g'}}^{E_{g'-1}} dE' \chi(E) \nu \sigma_{f}(\vec{r}, E') \varphi(\vec{r}, E', \vec{\Omega}')}{\int_{\vec{r} \in V_{m}} dV \int d\Omega \int d\Omega' \sum_{g'=1}^{G} \int_{E_{g'}}^{E_{g'-1}} dE' \nu \sigma_{f}(\vec{r}, E') \varphi(\vec{r}, E', \vec{\Omega}')}.$$
(6a)

The above multigroup constants are obtained by tallies from the continuous-energy Monte Carlo calculation on a unit problem with albedo boundary condition α .

2. Methodology: HIRE Theory (3/7)

□ Multigroup Transport Equations

- Eq. (2) becomes, after averaging over each material region and integrating over angle,

$$\frac{1}{V_{m}} \int_{\partial V_{m}} dA \vec{n} \cdot \vec{J}(\vec{r}) + \sigma_{t,g}^{m} \phi_{g}^{m} = \sum_{g'=1}^{G} \sigma_{s0gg'}^{m} \phi_{g'}^{m} + \frac{\chi_{g}^{m}}{k_{eff}} \sum_{g'=1}^{G} \nu \sigma_{f,g'}^{m} \phi_{g'}^{m} , \qquad (7) \text{ 10 oddaddadd}$$

$$ext{where } ec{J}_{g}(ec{r}) = \int \; d\Omega ec{\Omega} arphi(ec{r},ec{\Omega}), \;\; \phi_{g}^{m} = rac{1}{V_{m}} \int_{ec{r} \in V_{m}} dV \phi_{g}(ec{r}) \; .$$

Eq. (2) is then recast in the following multigroup equations with cross sections of Eqs.
 (3a)-(6a):

with albedo boundary condition $arphi_g(ec{r},ec{\Omega}')=lpha_karphi_g(ec{r},ec{\Omega}),\,k=1$ to 4 .

- Eq. (8) is the multigroup transport equations, derived in this paper.
- Only σ_{s0} term remains : a byproduct
- Eigenvalue and material region-wise flux distributions, as such obtained with the usual continuity conditions, will show discrepancies compared to those from the continuous-energy calculation. \Leftrightarrow PCDF

 Γ_3

Methodology: HIRE Theory (4/7)

Partial Current Discontinuity Factor (PCDF)

To preserve the reference neutron leakages, PCDF is introduced to each outgoing and incoming current with respect to material region surface k (Γ_k , k=1 to 8) as:

$$f_{g,k}^- arphi_g(ec{r}_k, ec{\Omega}) \;\; ext{for} \;\; ec{\Omega} \cdot ec{n}_k < 0,$$

where $f_{g,k}^{\pm}$ are initially guessed and updated by PCDF iterations.

Fig. 1. Surface divisions for PCDFs.

2. Methodology: HIRE Theory (5/7)

☐ Update of PCDFs

Partial currents obtained from the multigroup transport solution:

$$oxed{J_{g,k}^+ = \int_{ec{r} \in \Gamma_k} dA \! \int_{ec{\Omega} \cdot ec{n}_k > 0} d\Omega \left| ec{n}_k \cdot ec{\Omega}
ight| arphi_g(ec{r}, ec{\Omega}),} (10 \mathrm{a})}$$

$$oxed{J_{g,k}^-} = \int_{ec{r} \in \Gamma_k} dA \! \int_{ec{\Omega} \cdot ec{n}_k < 0} d\Omega \left| ec{n}_k \cdot ec{\Omega}
ight| oldsymbol{arphi}_g(ec{r}, ec{\Omega}). \ (10 \mathrm{b})$$

Discontinuity in partial currents:

$$\tilde{J}_{g,k}^{-} = f_{g,k}^{-} J_{g,k}^{-},$$
 (11a)

$$\tilde{J}_{g,k}^{+} = f_{g,k}^{+} J_{g,k}^{+}.$$
 (11b)

Conditions on the updated PCDFs:

Fig. 2. Leakage corrections based on PCDFs at interface k.

Reference surface net current $J_{g,k}^{ref}$ from the continuous-energy MC calculation

$$m{J}_{g,k}^{ref} = m{J}_{g,k}^{+} - ilde{m{J}}_{g,k}^{-} = m{J}_{g,k}^{+} - m{f}_{g,k}^{-} m{J}_{g,k}^{-}$$

$$\Leftrightarrow$$

$$egin{aligned} oldsymbol{f}_{g,k}^- &= egin{aligned} oldsymbol{J}_{g,k}^+ &= oldsymbol{J}_{g,k}^- \end{aligned} \end{aligned}$$

$$m{J}_{g,k}^{ref} = ilde{m{J}}_{g,k}^{+} - m{J}_{g,k}^{-} = m{f}_{g,k}^{+} m{J}_{g,k}^{+} - m{J}_{g,k}^{-}$$

$$\Leftrightarrow$$

$$f_{g,k}^{+} = \frac{J_{g,k}^{-} + J_{g,k}^{ref}}{J_{g,k}^{+}}$$
 (12b)

2. Methodology: HIRE Theory (6/7)

□ PCDF iteration scheme

Fig. 3. Flow Chart of PCDF Iteration.

2. Methodology: HIRE Theory (7/7)

□ JFNK Method with Exponential Transformation

$$ec{F}(ec{f}) = \left(F_{g,k}^{\pm}(ec{f})
ight)_{g=1..G,\,k=1..8} = 0,$$

where

$$m{F}_{g,k}^{\pm}(ec{f}) = rac{m{J}_{g,k}^{\mp}(ec{f}) + m{J}_{g,k}^{ref}}{m{J}_{g,k}^{\pm}(ec{f})} - m{f}_{g,k}^{\pm},$$

$$ec{f}=\left(f_{g,k}^{\pm}
ight)_{g=1..G,\,k=1..8}$$
 .

 $2) \quad \text{Since} \quad \vec{f} > 0,$

$$\vec{G}(\vec{x}) \equiv \vec{F}(\exp(\vec{x})) = 0.$$

Then, the PCDFs become $\exp(\vec{x})$.

Fig. 4. PCDF Iteration with the JFNK method.

3. Numerical Results (1/11)

☐ Pin Specifications

- Pin pitch = 1.26 cm
- Fuel radius = 0.4095 cm
- UO_2 : 10.2 g/cc with U-235 enrichment 3.3 w/o
- Moderator: 800 ppm boron concentration
- Divisions of surfaces for application of PCDFs

Fig. 5. 2-D UO_2 Pin Geometry.

☐ Test of HIRE theory with PCDF iteration

- Step 1. Continuous-energy MC calculations
- Step 2. Generation of region-averaged multigroup XS and net currents on region interfaces
- Step 3. PCDF iteration with multigroup method of characteristics (MOC) calculation

3. Numerical Results (2/11)

☐ Test Problems

- Test Problem 1: One pin-cell problem (reflective BC)
- Test Problem 2: One pin-cell problem (albedo BC)
- Test Problem 3: 2×2 pin-cell problem (3 fuel pins and 1 moderator) (reflective BC)
- Test Problem 4: 4×4 pin-cell problem (fuel and baffle) (albedo BC)
- Test Problem 5: One pin-cell problem (rim effect in depletion)

Fig. 6. Geometry of Test Problems 1~3 (#.# are albedo values at surfaces).

3. Numerical Results (3/11)

□ Calculational Conditions

- Continuous-energy Monte Carlo calculation: McBOX
 - No. of inactive cycles: 100
 - No. of active cycles: 200
 - No. of histories per cycles: 5,000,000
 - Energy group boundary: 0.625 eV
- Two-group MOC calculation : CRX3
 - Mesh division: 4 rings with 8 sectors in a pin cell
 - Angular mesh: 8 azimuthal/3 polar angles per quadrant
 - No. of rays per cell per angle: 50
 - Stopping criteria: 1.0e-7 for fission source and $k_{
 m eff}$
- PCDF iteration
 - Stopping criterion: 1.0e-7 for surface net current

3. Numerical Results (4/11)

☐ Numerical Results: Two-Group Cross Sections

Table I. Two-group cross sections [cm⁻¹] for test problem 2

Region	Group	σ_t	$\nu\sigma_t$	$\sigma_{s0,* o 1}$	$\sigma_{s0,* o 2}$
F., .1	1	4.0702E-01	2.3291E-02	3.7740E-01	6.7072E-04
Fuel	2	7.6754E-01	6.9308E-01	4.0395E-04	3.9355E-01
Madagatag	1	8.7733E-01	0.0000E+00	8.3570E-01	4.0810E-02
Moderator	2	1.9473E+00	0.0000E+00	4.6988E-04	1.9066E+00

 Group cross sections in Test Problem 1 and 3 are slightly different from those in Table I, even for the same material, due to the differing leakages.

3. Numerical Results (5/11)

□ Numerical Results: PCDFs

Table II. PCDFs for test problem 2

Group	f_1^-	f_2^-	f_3^-	f_4^-
1	0.99904	0.99768	0.99511	0.99184
2	0.99773	0.99808	0.99270	0.99015
Group	f_5^+	f_6^+	f_7^+	f_8^+
1	1.00576	1.00521	1.00606	1.00550
2	0.99630	0.99653	0.99405	0.99696
Group	f_5^-	f_6^-	f_7^-	f_8^-
1	0.99432	0.99388	0.99449	0.99288
2	1.00253	1.00289	1.00370	1.00282

- PCDF are not symmetric, because of the boundary conditions.

3. Numerical Results (6/11)

□ Numerical Results: Multiplication Factor

Table III. Multiplication factor from PCDF iteration

Problem	k_{eff}^{ref}	$k_{eff}^{ m HIRE}$	Δk_{eff} (pcm)	Number of fixed-point iterations /MOC calculations	Number of JFNK iterations /MOC calculations
1	1.283819 (±2.6 pcm)*	1.283823	0.4	987/988	2/23
2	1.125992 (±2.6 pcm)*	1.125990	-0.2	825/826	4/60
3	1.199928 (±2.8 pcm)*	1.199925	-0.3	847/848	4/124

^{*} Standard deviation of the reference MC calculation.

 Note that the multiplication factors of the PCDF iteration converge to those in the reference calculations for all three test problems.

3. Numerical Results (7/11)

□ Numerical Results: Flux Error

Table IV. Maximum relative error in region-averaged flux

Problem	Group 1 (%)	Std.* of Group 1 (%)	Group 2 (%)	Std.* of Group 2 (%)
1	2.64E-05	1.25E-03	1.33E-04	2.84E-03
2	7.63E-05	2.03E-03	1.07E-03	4.46E-03
3	5.82E-02	4.59E-03	1.63E-03	4.60E-03

^{*}Std.: standard deviation of the region-averaged flux in the reference MC calculation

- Three test problems have maximum errors of less than 0.06%.
 - Hence, the converged PCDFs give accurate region-averaged fluxes in the multigroup transport calculation.
- Tables III and IV reveal that the HIRE theory generates group constants
 (cross sections and PCDFs) that can reproduce the multiplication factor and
 region-averaged reaction rates of the continuous-energy MC transport
 calculation.

3. Numerical Results (8/11)

- ☐ Test Problem 5: Sub-pin level depletion (rim effect) (via MC code McBOX)
 - 10 equally spaced concentric rings in fuel region
 - Continuous-energy nuclear data library: ENDF/B-VII.0 at 600K
 - Decay constant and yield data : ORIGEN2 library
 - Matrix exponential calculation: Chebyshev rational approximation method (CRAM)
 - Power: 100 kW (520 full power days)

Table V. Materials and radii of concentric rings

Material Region Radii of Concentric Material

Index Rings [cm]

	1.26 cm
--	---------

Fig. 7. UO2 pin-cell problem; axial length with 100 cm (all reflective boundary conditions)

Material Region Index	Radii of Concentric Rings [cm]	Material
1	0.03922	UO_2
2	0.07844	UO_2
3	0.11765	UO_2
4	0.15687	UO ₂
5	0.19609	UO ₂
6	0.23531	UO ₂
7	0.27453	UO ₂
8	0.31374	UO_2
9	0.35296	UO_2
10	0.39218	UO_2
11	0.40005	Helium
12	0.45720	Cladding
13	-	Moderator

3. Numerical Results (9/11)

Fig. 8. Multiplication factors versus full power days.

Fig. 9. Number densities of U-238 (left y-axis) and Pu-239 (right y-axis) versus radial position within the fuel pin at 520 full power days.

- The rim effect is observed in a high burnup UO₂ fuel (at 520 full power days).

3. Numerical Results (10/11)

□ Application of two-group HIRE theory to high burnup UO₂ fuel pin

- Continuous-energy MC simulation (McBOX) to tally two-group cross sections (collision estimator) and surface net currents (surface-crossing estimator)

• No. of inactive cycles: 50

• No. of active cycles: 200

• No. of histories per cycles: 5,000,000

• Energy group boundary: 1 eV

- Two-group MOC calculation for PCDF iteration (multigroup MOC code CRX3)
 - Mesh division: 13 rings with 8 azimuthal sectors in a pin cell
 - Angular mesh: 8 azimuthal/3 polar angles per quadrant
 - No. of ray per cell per angle: 150
 - Stopping criteria: 1.0e-8 for fission source and $k_{\rm eff}$
 - Stopping criterion for PCDF iteration: 1.0e-6 for surface net current

Table VI. Multiplication factor from PCDF iteration with JFNK method

k_{eff}^{MC}	k_{eff}^{MOC}	$rac{\Delta k_{eff}}{ ext{(pcm)}}$	Number of PCDF iterations	Number of MOC calculations	Computing times for PCDF iterations
0.980556 (2.2 pcm)*	0.980552	-0.434 pcm	3	146	8.42 sec**

^{*}Standard deviation of the continuous-energy MC simulation

^{**}Intel® Core™ i7-7700K processor

3. Numerical Results (11/11)

4.2E+14
— Average Thermal Flux
— Relative Difference
— Uncertainty in Flux Tally

3.9E+14

3.5E+14

0.00

Pure 201

3.5E+14

0.00

Radial Position within Fuel Pin [cm]

Fig. 10. Region-wise volume averaged fast scalar flux distributions (left axis), their relative difference distributions (right axis), and uncertainty distributions in fast flux(right axis).

Fig. 11. Region-wise volume averaged thermal scalar flux distributions (left axis), their relative difference distributions (right axis), and uncertainty distributions in thermal flux (right axis).

- Relative differences in flux distributions less than 0.2%.
- Uncertainty errors in HIRE-theoretic group constants (cross sections and net currents)
 - Small fast net current (near to zero) at the innermost region
 - Inefficient collision estimator at helium gap

4. Summary and Concluding Remarks (1/2)

☐ Summary

- Homogeneity and Isotropy Restoration (HIRE) theory:
 - Provides multigroup transport equations with
 - ✓ Material region-wise homogeneous XS (restoration of homogeneity)
 - ✓ Angle-independent total XS (restoration of isotropy)
 - ✓ In scattering terms, only σ_{s0} term remains in the multigroup transport equations.
 - Partial current discontinuity factors (PCDFs) are introduced to preserve the neutron leakages at material interfaces.
- For the test problems, HIRE theory with PCDF iteration via JFNK gives accurate results very fast, compared to the MC reference values:
 - Multiplication factor with errors < 1 pcm.
 - Region-averaged flux with errors < 0.07%.

4. Summary and Concluding Remarks (2/2)

☐ Concluding Remarks

- The volume of integration for material region can be chosen:
 - 1) A multi-region such as pin-cell homogenization or baffle-reflector homogenization
 - 2) Resolved regions such as rings in a fuel rod for i) rim effect in depletion
 - ii) fuel temperature feedback effect

4. Summary and Concluding Remarks (2/2)

☐ Concluding Remarks

- The volume of integration for material region can be chosen:
 - 1) A multi-region such as pin-cell homogenization or baffle-reflector homogenization
 - 2) Resolved regions such as rings in a fuel rod for i) rim effect in depletion
 - ii) fuel temperature feedback effect
- Multigroup cross sections and PCDFs could be tabulated or functionalized in:
 - i) a values
 - ii) Burnup
 - iii) Fuel and moderator temperatures

4. Summary and Concluding Remarks (2/2)

☐ Concluding Remarks

- The volume of integration for material region can be chosen:
 - 1) A multi-region such as pin-cell homogenization or baffle-reflector homogenization
 - 2) Resolved regions such as rings in a fuel rod for i) rim effect in depletion
 - ii) fuel temperature feedback effect
- Multigroup cross sections and PCDFs could be tabulated or functionalized in :
 - i) a values
 - ii) Burnup
 - iii) Fuel and moderator temperatures
- Need a study for "representativeness" of a unit problem, depending on the
 reactor types: a square pin cell, a super-hexagon of fuel assemblies
- for the choice of few-group G(2-10), depending on the reactor types.
- The few-group HIRE equations can be solved efficiently in Two-Level p-CMFD acceleration framework.

5. References

- 1. N. Z. Cho, Y.G. Jo, and S. Yuk, "A New Derivation of the Multigroup Transport Equations via Homogeneity and Isotropy Restoration Theory," *Ann. Nucl. Energy*, 110, 798-804 (2017).
- 2. Y.G. Jo, N. Z. Cho, and S. Yuk, "Depletion Rim Effect Incorporated in HIRE-Theoretic Multigroup Transport Equations," *Trans. Am. Nucl. Soc.*, 117, 1436-1439 (2017).
- 3. N. Z. Cho, "A Proposed New Framework for Nuclear Reactor Physics Analysis with Transport Calculation," Transactions of the Korean Nuclear Society Autumn Meeting, Yeosu, Korea, October 24-26, 2018. https://www.kns.org/files/pre_paper/40/18A-132조날진I.pdf
- 4. N. Z. Cho, "The Roles of Transport Partial Current Information in Two-Level p-CMFD Acceleration in the Whole-Core Transport Calculation," Trans. Am. Nucl. Soc., 121, 1323-1326 (2019).
- 5. N. Z. Cho, "Krylov Subspace Wraps around the Two-Level p-CMFD Acceleration in the Whole-Core Transport Calculation," *Trans. Am. Nucl. Soc.*, 123, 1327-1330 (2020).

Thank you!