Análise Matemática B

Folha 4

Derivadas de funções compostas

1. Para
$$z = \cos(x^2y)$$
, onde $x = s^3t^2$ e $y = s^2 + \frac{1}{t}$, calcule $\frac{\partial z}{\partial s}$ e $\frac{\partial z}{\partial t}$.

2. Sendo
$$z = txy^2$$
 em que $x = t + \ln(y + t^2)$ e $y = e^t$, calcule $\frac{\partial z}{\partial t}$ e $\frac{dz}{dt}$.

3. Calcule
$$\frac{d^2u}{dt^2}$$
 para $u=e^{x-2y}$, onde $x=\sin t$ e $y=t^3$.

4. Seja
$$z = f(x, y)$$
, onde $x = 2v + \ln t$ e $y = \frac{1}{t}$. Calcule $\frac{\partial^2 z}{\partial v^2}$, $\frac{\partial^2 z}{\partial t \partial v}$, $\frac{\partial^2 z}{\partial t^2}$.

- 5. Considere que a temperatura T num certo líquido depende da profundidade z e do tempo t, através da fórmula $T=e^{-t}z$.
 - a) Determine a taxa de variação da temperatura relativamente ao tempo, num ponto que se move no líquido, de modo que no instante t se encontre ao nível de profundidade z = f(t).
 - b) Calcule a taxa de variação de temperatura considerada na alínea anterior quando $f(t) = e^t$.

Funções implícitas

- 1. Considere a equação $1 + y = x^2 \ln y$.
 - (a) Mostre que a equação dada define y como função implícita de x numa vizinhança do ponto $(\sqrt{2}, 1)$.
 - (b) Determine $\frac{dy}{dx}(\sqrt{2})$ e $\frac{d^2y}{dx^2}(\sqrt{2})$.
 - (c) Escreva a equação da recta tangente no ponto de abcissa $\sqrt{2}$.
- 2. Determine $\frac{dy}{dx}$ sabendo que $x^3 + y^3 = 6xy$.
- 3. Determine $\frac{dy}{dx}$ e $\frac{d^2y}{dx^2}$ da função dada implicitamente pela equação $x^2y^2 + x 2y^3 = 0$.