

Abstraction

Addition

Addition

Multiplication

Multiplication

C'est l'histoire de Loulou Lapierre Une p'tite mère ben ordinaire	A A	
Qui travaille à temps partiel	В	
Comme femme de chambre dans un hôtel	В	
Joyeux calvaire! - Les Cowboys Fringants		

C'est l'histoire de Loulou Lapierre	A	
Une p'tite mère ben ordinaire	A	
Qui travaille à temps partiel	В	
Comme femme de chambre dans un hôtel	В	
Joyeux calvaire! - Les Cowboys Fringants		
و لا في بهالحب مصاري	A	
و لا في بهالحب مصاري و لا ممكن فيه ليرات	В	
و لا ممكن في اراضي و لا فيه مجو هرات	A	
و لا فیه مجو هرات	В	
Ziad Rahbani - بلا و لا شي		

Story time

TW: category theory!

Theorem: A distributive law between two monads induces a composite monad structure.

Theorem: A distributive law between two monads induces a composite monad structure.

$$(\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ \overline{M} (\widehat{\eta} \diamond \eta) = \mathbb{1}_{\overline{M}} \qquad (\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ (\widehat{\eta} \diamond \eta) \overline{M} = \mathbb{1}_{\overline{M}}$$

$$(\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ (\widehat{\mu} \diamond \mu) \overline{M} \circ \widehat{M} \lambda M \overline{M} = (\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ \overline{M} (\widehat{\mu} \diamond \mu) \circ \overline{M} \widehat{M} \lambda M$$

Theorem: A distributive law between two monads induces a composite monad structure.

$$(\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ \overline{M} (\widehat{\eta} \diamond \eta) = \mathbb{1}_{\overline{M}}$$

$$(\widehat{\mu} \diamond \mu) \circ \widehat{M} \lambda M \circ (\widehat{\eta} \diamond \eta) \overline{M} = \mathbb{1}_{\overline{M}}$$

Examples

Quantum Processes

Quantum Teleportation

Links: paper, book, quantum NLP, graphical linear algebra

Quantum Circuits

We can now rewrite the Toffoli gate to a more efficient construction:

Links: <u>paper</u>, <u>community</u>, <u>Julia implementation</u>, <u>Python implementation</u>

Feynman Diagrams n. n. n. n. n. n. n.

Links: paper

Figure 1. Composition of categorical Feynman diagrams, cf. Section 4.4.

Game Theory

Figure 26: Bimatrix Game

Links: paper, paper (games on graphs)

Figure 30: Cournot Duopoly

Automata

$$\langle e+f\rangle = \xrightarrow{(C4)}_{KAA} \xrightarrow{(C4)}_{KAA} \xrightarrow{(C4)}_{F} \qquad \langle 0\rangle = \xrightarrow{(C3)}_{KAA} \xrightarrow{(C3)}_{KAA} \xrightarrow{(C2)}_{KAA} \xrightarrow{(C4)}_{KAA} \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{KAA} \xrightarrow{(C2)}_{KAA} \xrightarrow{(C3)}_{KAA} \xrightarrow{(C2)}_{KAA} \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C2)}_{KAA} \xrightarrow{(C2)}_{KAA} \xrightarrow{(C3)}_{KAA} \xrightarrow{(C4)}_{F} \qquad \langle 1\rangle = \xrightarrow{(C4$$

For example, $\langle ab(a+ab)^* \rangle =$

Links: paper, paper (probabilistic automata)

Monoidal Width

Example 5.16. The 3-clique has a branch decomposition as shown on the top. The corresponding monoidal decomposition is shown below it.

Theorems

$$\mathsf{twd}(G) \le \mathsf{mtwd}(g) \le 2 \cdot \mathsf{twd}(G)$$

 $\frac{1}{2} \cdot \mathsf{bwd}(G) \le \mathsf{mwd}(g) \le \mathsf{bwd}(G) + 1$
 $\mathsf{pwd}(G) = \mathsf{mpwd}(g)$

Links: <u>paper</u>, <u>2nd paper</u>

Scientific Modelling

Links: paper, bloqpost, AlgebraicJulia

Logic in Color

Links: <u>présentation vidéo</u>, <u>paper</u>, <u>Christian Williams</u>

Demo!

Adding

Copying

Adding meets Copying

$$= \qquad (B2)$$

Source: GLA

Merci!