Ex. No: 1

STUDY OF LOGIC GIATES

DATE:

AIM:

To Verity the truth table for AND, OR, NOT, NAND, NOR and Ex-DR gates.

FORMULA:

- * The Boolean equation for AND gate is Y=AB
- * The Boolean equation for OR gate is . Y=A+B
- * The Boolean equation for NOT gate is $Y=A'(\bar{A})$
- * The Boolean equation for NAND gate is $Y = \overline{A \cdot B}$
- * The Boolean equation for NOR gate is $Y=\overline{A+B}$
- * The Boolean equation for Ex-OR gate is $Y=A\oplus B$

1. AND GIATE:

Logic Diagram:

Truth table:

Α	В	Y= A.B
0	0 1 0 1	0 0

2. OR GIATE:

Logic Diagram:

Truth table:

A	В	Y= A+B
0	0	0
0	1	
1	0	i
1	1	1

3. NOT GATE:

Logic diagram:

Truth table:

A	×Ā
0	(
1	0

4. NAND GIATE:

Logic Diagram:

Truth table:

A	В	Y=A·B
0	0	1
0	1	1
1	D	1
1	1	0

5. NOR GIATE !

Logic Diagram:

Truth table:

	1	_
A	В	Y= A+B
0	D	
0	1 1	(
1	0	0
,	,	0
'		0

6. EX-OR GTATE:

Logic Diagram:

Truth table!

Α	В	Y= ABB
O	O	D
0	Ī	١
\	0	(
: :	(0

Ex. No: 2

DATE:

NAND AS UNIVERSAL GIATE

AIM:

To realise NOT, AND, OR, Ex-OR gate using NAND gates.

FORMULA:

- * The Boolean equation for NOT gate is $Y=\overline{A}$
- * The Boolean equation for AND gate is Y=A.B
- * The Boolean equation for OR gate is Y= A+B
- * The Boolean equation for Ex-or gate is $Y=A\oplus B$

Logic gate diagram:

1. AND FUNCTION: USING NAND GIATE

A	B	Y=A.B
0	U	D
0	,	0
1	0	Ö
1	1	1

R. NOT FUNCTION: USING NAND GIATE

Truth table:

A	Y=Ā
0	1
1	0

3. OR FUNCTION: USING NAND GIATE

Truth table:

A	В	Y= A+B
0	Ø	0
0	1	1
1	0	1
)	1	1

υ , ,			
	A	В	Y=ADB
	O	0	0
	D	1	1
	1	0	1
	1	1	0

RESULT:

B

Thus the realisation of NOT, AND, OR, Ex-DR gates using NAND gate is verified.

Ex. No :

NOR AS UNIVERSAL GIATE

DATE:

AIM:

To realise NOT, OR, AND and EX-OR using Nor gales.

FORMULA:

* The Boblean equation for NOT gate is $Y=\overline{A}$

* The Bothean equation for AND gate is Y= A.B

* The Boolean Equation for DR gate is $Y_{=}A+B$

* The Boolean equation for Ex-OR gate is $Y = A \oplus B$

LOGIC GATE DIAGRAM:

1. NOT FUNCTION: USING NOR GLATE

A	Y= A
D	1
1	D

2. OR FUNCTION: USING NOR GIATE.

Truth table:

A	B	Y=A+B
0	0	0
0	1	1
(0	1
1	1	1

3. AND FUNCTION : USING NOR GIATE

Truth table:

A	В	Y=AB
0	0	O
D	1	0
1	0	D
1	ŧ	I

A	В	Y- ADB
0	0 101	0

RESULT:

Frus the realisation of NOT, OR, AND, Ex-OR gates using NOR gate is verified.

LOGIC DIAGRAM: USING NAND GIATES

Trush table:

A	В	C	D	F
0	0	0	0	0
	0	0	1	
0	0	1	0	0
0	0	1	(1
0	1	0		0
0 0 0 0 0 0 1	1		0	0
D		0 1	D	4
1	0	0	0	0
1	0 0 0 0	0	1	0
ı	0	1	0	x od
1	1	1	1	x 1 d
1	1	D D	0 1 0 1 0 1	X o d
1	1	1	0	0
1	1	1	1	xid

(dont care condition)

Thus the Simplified logic Circuit using k-map is Verified Successfully.

FX. NO: 5

VERIFICATION OF DEMORGIAN'S THEOREM

DATE:

AIM:

To Verity de morgan's law.

FORMULA:

- * The complement of sum equals the product of the complement $\overline{A+B} = \overline{A} \cdot \overline{B}$
- * The complement of product equals the Sum of the complement $\overline{A \cdot B} = \overline{A + B}$ LOGIC DIAGRAM:

1.
$$\overline{A+B} = \overline{A} \cdot \overline{B}$$

Truth table:

	1	,				
A	В	Ā	B	A+B	Y = A+B	YR = A B
0	0	1	1	0	(
0	1	1	O	1	D	(2)
	0	0	1	,	0	0
(1	0	0	1	0	D
						Ü

$$R. \quad \overline{A \cdot B} = \overline{A} + \overline{B}$$

A	В	Ā	B	A.B	YL = A.B	YR = A+B
0 0 1	0 1 0	1 0 0	1010	0 0 0 1	1 1 0	1

RESULT:

Thus the De-morgan's law is Verified.

Ex.No:6

VERIFICATION OF ASSOCIATIVE LAW

DATE:

AIM:

To Verify the associative law

FORMULAS:

ASSOCIATIVE LAWS:

OR FUNCTION: (A+B)+C= A+ (B+C)

AND FUNCTION: A.(B.C) = (A.B).C

LOGIC DIAGRAM FOR ASSOCIATIVE LAW:

1. DR FUNCTION: (A+B)+ (= A+(B+C)

Truth toble:

A	В	C	A+B	B-+-c	YL = (A+B)+C	YR = A+ (B+C)
0	0	0	0	0	U	0
0	0	1	O	- 1	1	t
0	i	0	1	1	t l	1
1	0	0	1	1	l l	ı
	0	1	',	0	1	1
	1	0			1	1

A	В	C	Bic	A.B	YL = A. (B.C)	YR=(A.B).C
0	0	0	D	D	0	0
0	1	Par .	0	0	0	D
0	1	0	D	0	0	0
1	0	0	D	0	0	0
	U	1	0	0	0	O
1	1	0	0	1	001	0

RESULT:

The associative law for OP, AND function is verified successfully.

A	В	С	BC	A+B	A+C	YL.	YR
0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 0 1 1 0 0 1	0 1 0 1 0 1 0 1	0 0 0 1 0 0 0	0		0	0

2. AND FUNCTION: A. (B+C) = (A·B)+ (A·C)

				1		0.7	YL	YR
	A	B	C	BIL	A·B	A.C		
t	0	0	D	0	0	0	0	0
	0	0	1	1	0	0	0	0
	0	1	0	,	0	0	0	0
	U	1	1	1	0	0	0	0
	1	0	0	0	0	0	n	0
	1	0	1	1	D	1		1
	1	1	0	1	1	0	1	1
- Contraction of the Contraction	1	i	1		1	1		

RESULT:

The distributive law for OR, AND is Verified Successfully.

EX.	M	٥	•	Q

IMPLEMENTATION OF HALF ADDER AND

DATE:

FULL ADDER

AIM:

adder using basic gates and Ex-or gates.

1. HALF ADDER :

Carry = xy

R. FULL ADDER:

(wry = 2 (x +y)+xy

LOGIC GATE FOR HALF ADDER:

1. USING BASIC GIATES:

In	ut	Output		
×	y	X	<u>y</u>	
0	0	0	0	
0	t	1	0	
1	D	1	0	
1	1	0	1	

FULL ADDER:

1. USING BASIC AND EX-OR GIATES:

	Inp	ut	Output		
χ	y	7	Sum	Carry	
0	U	0	0	0	
0	D	1	1	0	
0	,	0	1	0	
1	0	D	0	1	
1	D	1	10	D	
1	1	0	0	1	
	I	1	-	1	

RESULT:

Thus the implementation of halfadder and ifull adder using basic gates and Ex-OR gate are verified successfully.

The state of the s	1000 2000 2000

EX.No:9

THPLEMENTATION OF HALF SUBTRACTOR AND

DATE:

FULL SUBTRACTOR

AIM:

To implement the half subtractor and full subtractor using basic gates and Ex-OR gates.

FORMULA:

HALF SUBTRACTOR:

Difference = x'y + xy'

Borrow = x'y

FULL CUBTRACTOR:

Difference = ZA (XBY

BOYYOW = x'(yAz)+yz

LOGIC DIAGRAM:

HALF SUBTRACTOR USING BASIC GIATES:

Inp	ut	Output				
×	y	Difference	Borrow			
0	0	0	0			
0	1	1	1			
- 1	0	1	0			
1	1	b	0			

FULL SUBTRACTOR:

	Thpu	Ł	Output			
K	y	Z	Difference	BOYYOW		
0	0	0	0	0		
0	0		\	1		
0	1	0	1	١		
0	1	l	0	1		
1	0	0	1	0		
	0	1	0	0		
1	1	0	0	0		

RESULT:

Thus the Implementation of half Subtractor and if all subtractor using basic gates and Ex-DR gates are Verified successfully.

To Construct a four bit binary adder LOGIC DIAGRAM:

Truth table:

A ₃	A ₂	Aı	Αυ	83	B ₂	8,	80	(3	S3	5,	S,	So
1	0	0	0	0	0	1	ì	0		0	,	ţ
D	1	1	1	0	0	-	0	0		0	0	1
D	1	D	1	0	1	D	1	0	1	0	1	D
D	,	b	D	0	0	1	1	0	0	1	1	ţ
1	1	D	D	0	-	0	b	1	0	0	0	D

RESULT:

Thus the four bit binday adder is Constructed and verified successfully.