Universität Hamburg Projekt 2016 Particle Simulation

Olliver Heidmann Benjamin Warnke

February 4, 2017

1 Projektplan

- 1. startparameter (Oliver)
 - verbose
 - algorithmus
 - autotuneing on/off
 - timestep größe
 - abstand der datei speicherung
 - optimierungsmethode festlegen (nur ohne autotuneing)
 - seed für random
- 2. prototypen/interface für Optimierte Datenstrukturen(Oliver)
 - insert(Particle):void
 - next():Particle
 - neighbours(Particle):Particlelist
 - zusätzliche? weniger?
 - dies würde die austauschbarkeit enorm vereinfachen ... autotuneing müsste nur noch eine variable ändern
 - gemeinsam treffen, nachdem die vorherigen aufgaben abgeschlossen sind.
- 3. Debug+Benchmark funktionen (Benjamin)
- 4. importieren/generieren der Startdaten (Benjamin)
 - aus Datei (Optional)
 - generieren nach bestimmten verteilungen für tests, welches verfahren wann am besten ist
 - kugel in der mitte
 - verteilte kugeln jeweils gleichmäßig gefüllt
 - gleichmäßig
 - pseudorandom
 - wenige partikel
 - viele partikel
 - weit auseinander
 - eng zusammen
 - generieren nach mustern
- 5. implementierung der Lennard-Jones-Simulation (Oliver)
 - lesen im kapitel des buches?!?
 - was für daten werden benötigt?
 - distanz zum anderen

- 6. ausgabe der Daten (Benjamin)
 - (a) eigenes txt format für tests
 - exportieren in bekannte Dateiformate (mindestens 1)
 - LAMMPS
 - ESPRESSO
 - GROMACS
 - VMD
 - ParaView/vtk
 - (b) OpenGl (optioal)
- 7. autotuneing + analyse
 - als Grid (Benjamin)
 - mit Listen der Nachbarn (Oliver)
 - gruppen zusammenfassen und nur den Schwerpunkt berechnen
 - welches verfahren sollte "gelöscht" werden -> wiso?
 - welches verfahren ist am besten -> wiso? abhängig von der eingabe??
 - kriterien für analyse?
 - eingaben kategorisieren um analysieren zu können
- 8. optimierung
 - funtions Verfahren
 - openmp
 - Intel TBB (optioal)
 - cuda (optional)
 - opencl (optional)
 - mpi (optional)
- 9. andere Simulationsverfahren
 - Smoothed Particle Hydrodynamics
 - Dissipative Particle Dynamics