	Ulech
Name:	
Roll No.:	A State of the Sta
Invigilator's Signature :	

CS/B.Tech(ECE)/SEM-7/EC-704B/2012-13 2012

ADVANCED ENGINEERING MATHEMATICS FOR ELECTRONIC ENGINEERING

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

GROUP - A

(Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following: $10 \times 1 = 10$
 - i) If A be an orthogonal matrix then

a)
$$A^{-1} = A + A^T$$

b)
$$A^{-1} = A^T$$

- c) A^{-1} does not exist
- d) none of these.

7335

If ω is the cube root of unity then the value of the

b)
$$\omega^2$$

c)
$$1 + \omega$$

- d) none of these.
- Which of the following functions is nowhere iii) differentiable?
 - a) z Im(z)

b)
$$(x^3 - 3xy^2) + i(3x^2y - y^3)$$

- c) iz + 2
- d) Re(z).
- The value of the integral $\int_{c} \frac{e^{z}}{(z-3)^{2}} dz$, c being |z| = 2,

is

a)
$$2 \pi i e^3$$

b)
$$-2 \pi i e^{-3}$$

- c) 0
- d) none of these.

v)
$$L^{-1}\left\{\frac{1}{(s+a)^2}\right\}$$
 is

a) e^{at} c) $t e^{at}$

b)
$$\frac{s}{s^2 - 4s + 5}$$

c)
$$\frac{1}{s^2 + 4s + 5}$$

d) none of these.

vii) If Fourier transform of f(x, y), $\mathcal{F}\{f(x, y) : x \to s\} = F(s, y)$ and $f(x, y) \to 0$ as $x \to \pm \infty$ then

a)
$$F\left\{ \begin{array}{c} \frac{\partial^n f}{\partial x^n} \\ \end{array} \right\} = (-is)^{-n} F(s, y)$$

b)
$$F\left\{ \frac{\partial^n f}{\partial x^n} \right\} = (-is)^n F(s, y)$$

c)
$$\mathcal{F}\left\{\begin{array}{l} \frac{\partial^n f}{\partial x^n} \end{array}\right\} = (-is)^{\frac{n}{2}} F(s, y)$$

d)
$$\mathcal{F}\left\{\begin{array}{c} \frac{\partial^n f}{\partial x^n} \end{array}\right\} = (-is)^{\frac{1}{n}} F(s, y).$$

viii) If the trace of a 3×3 matrix is 12, and two of its eigenvalues are 4 and 6 then the third eigenvalue is

a) 2

b) 1

c) 8

d) 3.

ix) The value of a for which the rank of the matrix

$$\begin{pmatrix} 2 & 0 & 1 \\ 5 & a & 3 \\ 0 & 3 & 1 \end{pmatrix}$$
 is less than 3 is

a) $\frac{3}{4}$

b) $\frac{3}{5}$

c) $\frac{3}{2}$

d) none of these.

b)
$$\sqrt{\frac{2\pi}{x}}\cos x$$

c)
$$\sqrt{\frac{\pi}{2x}}\cos x$$
 d) $\sqrt{\frac{2}{\pi x}}\sin x$.

d)
$$\sqrt{\frac{2}{\pi x}} \sin x$$

xi) The
$$pde \frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}$$
 is of type

a) elliptic

- b) parabolic
- c) hyperbolic
- d) none of these.

xii) The order of the differential equation

$$\frac{\partial^2 x}{\partial t^2} + 2\left(\frac{\partial x}{\partial t}\right)^3 \left(\frac{\partial y}{\partial t}\right)^2 + t^3 \left(\frac{\partial y}{\partial t}\right)^3 = (\log t)^4$$

a)

b)

c)

d) None of these.

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

2. If
$$A(\theta) = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
, prove that

$$A(\theta) \ A(\varphi) = A(\varphi) \ A(\theta) = A(\theta + \varphi).$$

Using Cauchy's integral formula evaluate $\int_{c} \frac{z}{z^2 - 1} dz$, 3. where C is the circle |z| = 2.

7335

- 4. When *n* is a positive integer, show that $J_{-n}(x) = (-1)^n J_n(x)$.
- 5. Evaluate $L^{-1}\left\{\frac{1}{s^2(s^2+a^2)}\right\}$ using convolution theorem.
- 6. Obtain the general solution of the following linear PDE:

$$(mz-nz) \frac{\partial z}{\partial x} + (nx-lz) \frac{\partial z}{\partial y} = ly-mx.$$

GROUP - C

(Long Answer Type Questions)

Answer any *three* of the following. $3 \times 15 = 45$

- 7. a) Show that the function $f(x) = e^{-\frac{x^2}{2}}$ is self reciprocal w.r.t. symmetric definition of Fourier transform.
 - b) Determine the temperature u (x, t) in a bar of infinite length ($-\infty < x < \infty$) from the governing equation

$$\frac{\partial u}{\partial t} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad x > 0, \quad t > 0$$

subject to the conditions:

- (i) u(0, t) = 0, for t > 0
- (ii) $u(x, 0) = \begin{cases} 1, & 0 < x < 1 \\ 0, & x \ge 1 \end{cases}$
- (iii) u(x, t) is bounded.

7 + 8

- 8. a) Find $L\left\{\frac{\sin^2 t}{t}\right\}$ and hence evaluate
 - b) Solve the PDE : $(D^3 + D^2D^T DD^T)^2 D^T$ $Z = e^x \cos 2y$, where $\frac{\partial^r}{\partial x^r} = D^r$ and $\frac{\partial^r}{\partial y^r} = D^T$
 - c) Find the bilinear transformation which maps the points z = 1, 0, -1 on the points w = i, 0, -i and find the fixed points of transformation. (3 + 2) + 5 + (4 + 1)
- 9. a) State Cauchy's Residue theorem. Use it to evaluate $\int\limits_{0}^{2\pi} \frac{d\theta}{5+4\cos\theta}$
 - b) Expand $f(z) = \frac{z+1}{(z-3)(z-4)}$ in a Laurent's series for the region 2 < |z| < 4. Find also the region of convergence.

(2+5)+(5+3)

- 10. a) Prove that $J'_n(x) = \frac{1}{2} \left[J_{n-1}(x) J_{n+1}(x) \right]$, where $J_n(x)$ is Bessel's Function of order n.
 - b) Prove that $\int_{-1}^{1} \left[P_n(x) \right]^2 dx = \frac{2}{2n+1}$, where $P_n(x)$ is Legendre's polynomial of order n.
 - e) Express $P(x) = x^4 + 2x^3 + 2x^2 x 3$ in terms of Legendre's polynomials. 4 + 6 + 5

7335

- 11. a) Diagonalise the matrix $\begin{pmatrix} 1 & 1 & -2 \\ -1 & 2 & 1 \\ 0 & 1 & -1 \end{pmatrix}$.
 - b) Find the rank of the following matrix:

$$\left(\begin{array}{cccccc} 1 & 3 & 2 & 4 & 1 \\ 0 & 0 & 2 & 2 & 0 \\ 2 & 6 & 2 & 6 & 2 \\ 3 & 9 & 1 & 10 & 6 \end{array}\right).$$

c) Solve the following partial differential equation:

$$(p^2 + q^2) y = qu.$$
 7 + 4 + 4