

### **Canonical Cover**

- Sets of functional dependencies may have redundant dependencies that can be inferred from the others
  - For example:  $A \rightarrow C$  is redundant in:  $\{A \rightarrow B, B \rightarrow C, A \rightarrow C\}$
  - Parts of a functional dependency may be redundant
    - ▶ E.g.: on RHS:  $\{A \rightarrow B, B \rightarrow C, A \rightarrow CD\}$  can be simplified to

$$\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$$

▶ E.g.: on LHS:  $\{A \rightarrow B, B \rightarrow C, AC \rightarrow D\}$  can be simplified to

$$\{A \rightarrow B, B \rightarrow C, A \rightarrow D\}$$

 Intuitively, a canonical cover of F is a "minimal" set of functional dependencies equivalent to F, having no redundant dependencies or redundant parts of dependencies



#### **Extraneous Attributes**

- Consider a set F of functional dependencies and the functional dependency  $\alpha \to \beta$  in F.
  - Attribute A is **extraneous** in  $\alpha$  if  $A \in \alpha$  and F logically implies  $(F \{\alpha \rightarrow \beta\}) \cup \{(\alpha A) \rightarrow \beta\}$ .
  - Attribute A is extraneous in β if A ∈ β and the set of functional dependencies
     (F {α → β}) ∪ {α → (β A)} logically implies F.
- Note: implication in the opposite direction is trivial in each of the cases above, since a "stronger" functional dependency always implies a weaker one
- **Example:** Given  $F = \{A \rightarrow C, AB \rightarrow C\}$ 
  - B is extraneous in  $AB \rightarrow C$  because  $\{A \rightarrow C, AB \rightarrow C\}$  logically implies  $A \rightarrow C$  (I.e. the result of dropping B from  $AB \rightarrow C$ ).
- **Example:** Given  $F = \{A \rightarrow C, AB \rightarrow CD\}$ 
  - C is extraneous in AB → CD since AB → C can be inferred even after deleting C



## Testing if an Attribute is Extraneous

- Consider a set F of functional dependencies and the functional dependency  $\alpha \to \beta$  in F.
- To test if attribute  $A \in \alpha$  is extraneous in  $\alpha$ 
  - 1. compute  $(\{\alpha\} A)^+$  using the dependencies in F
  - 2. check that  $(\{\alpha\} A)^+$  contains  $\beta$ ; if it does, A is extraneous in  $\alpha$
- **To test if attribute**  $A \in \beta$  is extraneous in  $\beta$ 
  - 1. compute  $\alpha^+$  using only the dependencies in  $F' = (F \{\alpha \rightarrow \beta\}) \cup \{\alpha \rightarrow (\beta A)\},$
  - 2. check that  $\alpha^+$  contains A; if it does, A is extraneous in  $\beta$



## **Canonical Cover**

- A canonical cover for F is a set of dependencies  $F_c$  such that
  - F logically implies all dependencies in F<sub>c</sub>, and
  - F<sub>c</sub> logically implies all dependencies in F, and
  - No functional dependency in F<sub>c</sub> contains an extraneous attribute, and
  - Each left side of functional dependency in F<sub>c</sub> is unique.
- To compute a canonical cover for F: repeat

```
Use the union rule to replace any dependencies in F \alpha_1 \to \beta_1 and \alpha_1 \to \beta_2 with \alpha_1 \to \beta_1 \beta_2 Find a functional dependency \alpha \to \beta with an extraneous attribute either in \alpha or in \beta /* Note: test for extraneous attributes done using F_{c,} not F*/ If an extraneous attribute is found, delete it from \alpha \to \beta until F does not change
```

Note: Union rule may become applicable after some extraneous attributes have been deleted, so it has to be re-applied



# **Computing a Canonical Cover**

$$R = (A, B, C)$$

$$F = \{A \to BC$$

$$B \to C$$

$$A \to B$$

$$AB \to C\}$$

- Combine  $A \rightarrow BC$  and  $A \rightarrow B$  into  $A \rightarrow BC$ 
  - Set is now  $\{A \rightarrow BC, B \rightarrow C, AB \rightarrow C\}$
- $\blacksquare$  A is extraneous in  $AB \rightarrow C$ 
  - Check if the result of deleting A from AB→ C is implied by the other dependencies
    - Yes: in fact,  $B \rightarrow C$  is already present!
  - Set is now  $\{A \rightarrow BC, B \rightarrow C\}$
- $\blacksquare$  C is extraneous in  $A \rightarrow BC$ 
  - Check if  $A \to C$  is logically implied by  $A \to B$  and the other dependencies
    - Yes: using transitivity on  $A \rightarrow B$  and  $B \rightarrow C$ .
      - Can use attribute closure of A in more complex cases
- The canonical cover is:  $A \rightarrow B$  $B \rightarrow C$