الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التربية الوطنية

دورة: 2017

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 30 سا و 30 د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الآتيين: الموضوع الأول

التمرين الأول: (04 نقاط)

(P) والمستوي A(1;-1;2) نعتبر النقطة A(1;-1;2) والمستوي والمستوي A(1;-1;2) والمستوي $\begin{cases} x+y-9=0 \\ y+z-4=0 \end{cases}$: والمستقيم (D) المعرف ب

- (D) عيّن تمثيلا وسيطيا للمستقيم عيّن عيّن عيّن عيّن عين الم
- (P) ويوازي A الذي يشمل الذي يشمل ويوازي ((P')
- A'(6;3;1) حيث A' في النقطة A' في النقطة (A'(6;3;1)
- .(D) عيّن تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل A ويوازي (A) ويقطع (A)

التمرين الثاني: (04 نقاط)

و (v_n) و (v_n) متتالیتان معرفتان علی مجموعة الأعداد الطبیعیة u_n کما یلي: $u_n = \frac{u_n + 2}{1 - u_n}$ و $u_{n+1} = 3 - \frac{10}{u_n + 4}$ ، $u_n = \frac{u_n + 2}{1 - u_n}$ و من أجل كل عدد طبيعي $u_n = \frac{1}{4}$

- . $0 < u_n < 1$ ، n برهن بالتراجع أنّ: من أجل كل عدد طبيعي أنّ (1
 - بين أنّ المتتالية (u_n) متزايدة تماما ثم استنتج أنّها متقاربة.
- n بين أنّ المتتالية v_n هندسية أساسها $\frac{5}{2}$ ثمّ عبّر عن حدّها العام v_n بدلالة (2 أ) بيّن أنّ المتتالية v_n
- $\lim_{n\to +\infty} u_n$ غين أبّ أثبت أنّ: من أجل كل عدد طبيعي $u_n=1-\frac{3}{v_n+1}$ ، n عدد طبيعي والماية u_n

الشعبة: علوم تجريبية / اختبار في مادة: الرياضيات / بكالوريا 2017

التمرين الثالث: (05 نقاط)

 $(z+2)(z^2-4z+8)=0$ المعادلة: \mathbb{C} المعادلة الأعداد المركبة (I

 $(O; \vec{u}, \vec{v})$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس (II

 $z_C=-2$ و $z_B=\overline{z}_A$ ، $z_A=2-2i$ نعتبر النّقط B، A و B و التي لاحقاتها:

- اکتب کلا من z_A و z_B على الشکل الأسّى.
- ACD عين z_D لاحقة النّقطة D حتى تكون النّقطة B مركز ثقل المثلث (2
- $\operatorname{arg}\left(rac{z_B-z}{z_A-z}
 ight)=rac{\pi}{2}$ عيث (B) مجموعة النّقط M من المستوي ذات اللاحقة (Γ) اللاحقة (Γ) مجموعة (Γ) مجموعة (Γ) هو نقطة من (Γ) ثمّ عيّن طبيعة المجموعة (Γ) وأنشئها.
 - h ليكن h التحاكي الذي مركزه النقطة C ونسبته C مورة C بالتحاكي C عيّن طبيعة المجموعة C مع تحديد عناصرها المميزة.

التمرين الرابع: (07 نقاط)

, $f(x) = \frac{2}{3}x + \ln\left(\frac{x-1}{x+1}\right)$: بنعتبر الدالة العددية f المعرفة على D حيث D حيث D حيث D بنعتبر الدالة العددية D

 $\cdot(O; \vec{i}, \vec{j})$ التمثيل البياني للدالة f في المستوي المنسوب إلى المعلم المتعامد والمتجانس الدالة C_f

- بيّن أنّ الدالة f فردية ثم فسّر ذلك بيانيا.
- $\lim_{x\to -\infty} f(x)$ و $\lim_{x\to +\infty} f(x)$ ، $\lim_{x\to -1} f(x)$ ، $\lim_{x\to -1} f(x)$: احسب النهایات التالیة و $\lim_{x\to -\infty} f(x)$. استنتج أنّ $\lim_{x\to -\infty} f(x)$ یقبل مستقیمین مقاربین موازبین لحامل محور التراتیب

$$f'(x) = \frac{2}{3} \left(\frac{x^2 + 2}{x^2 - 1} \right)$$
 ، D من x کل کل کل (3) ایس الله من أجل کل برتن أنّه من أجل کل برتن أنّه من أجل كل برتن أنّه من أبرتن أنّه برتن أنّه من أبرتن أنّه برتن أن

- ب) استنتج اتجاه تغيّر الدالة f ثمّ شكّل جدول تغيراتها.
- \cdot 1,8 < lpha حيث أنّ المعادلة f(x)=0 تقبل حلا وحيدا lpha بيّن أنّ المعادلة a
- بيّن أنّ المستقيم (C_f) ذا المعادلة : $y=\frac{2}{3}x$ مستقيم مقارب مائل للمنحنى (Δ) ثم أدرس وضعية المنحنى (Δ) بيّن أنّ المستقيم (Δ) بالنسبة إلى المستقيم (Δ)
 - (C_f) والمنحنى المستقيم (Δ) والمنحنى (6
 - m وسيط حقيقى، ناقش بيانيا حسب قيم الوسيط الحقيقى m عدد حلول المعادلة:

$$(2-3|m|)x + 3\ln\left(\frac{x-1}{x+1}\right) = 0$$

انتهى الموضوع الأول

الشعبة: علوم تجريبية / اختبار في مادة: الرياضيات / بكالوريا 2017

الموضوع الثاني

التمرين الأول: (04 نقاط)

.C(0;0;1) و B(0;2;0)، A(3;0;0) نعتبر النقط المتعامد والمتجانس ($O;\vec{i},\vec{j},\vec{k}$) نعتبر النقط

- (ABC) بيّن أنّ النقط $B \cdot A$ معادلة للمستويا، ثمّ تحقّق أنّ: C = A + 3y + 6z 6 = 0 بيّن أنّ النقط $B \cdot A$ معادلة للمستوي
 - . O المستقيم (Δ) العمودي على المستوي (Δ) والذي يشمل المبدأ (Δ
 - (ABC) و (Δ) بقطة تقاطع (Δ) و (BC)
 - . ABC عمودي على (AC)، ثمّ استنتج أنّ H هي نقطة تلاقي أعمدة المثلث (AC) بيّن أنّ (BH)

التمرين الثاني: (04 نقاط)

المستوي منسوب إلى المعلم المتعامد والمتجانس ($\vec{O}; \vec{i}, \vec{j}$) المستوي منسوب

 $f(x) = \frac{3x-16}{x+11}$: كما يلي: $f(x) = \frac{3x-16}{x+11}$ كما يلي:

y=x وليكن (C_f) المنحنى الممثل لها، (Δ) المستقيم ذو المعادلة

نّم بيّن أنّ: [-4;1] تحقّق أنّ الدالة f متزايدة تماما على المجال $f(x) \in [-4;1]$ من أجل كل $x \in [-4;1]$ فإنّ $x \in [-4;1]$

- . $u_{n+1}=f\left(u_{n}
 ight)$ ، n متتالية معرّفة بحدّها الأوّل $u_{0}=0$ ومن أجل كل عدد طبيعي (u_{n}) (II
- (الا يطلب حساب الحدود) انقل الشكل المقابل ثمّ مثّل على حامل محور الفواصل الحدود u_1 ، u_0 ، u_1 ، u_2 ، u_3 ، u_4 ، u_5 انقل الشكل المقابل ثمّ مثّل على حامل محور الفواصل الحدود u_1 ، u_2 ، u_3 ، u_4 ، u_5 ، u_5 ، u_5 ، u_5 ، u_7 ، u_8 ، u_8
 - $-4 < u_n \le 0$ ، n برهن بالتراجع أنّه من أجل كل عدد طبيعي (2 ثمّ بيّن أنّ المتتالية (u_n) متناقصة تماما.
 - . $v_n \times u_n = 1 4v_n$ ، n عدد طبیعي عدد (v_n) المعرّفة كما يلي: من أجل كل عدد طبیعي (3) لتكن المتتالية العددية (v_n) حسابية أساسها (v_n) ثم احسب المجموع (v_n) حيث أثبت أنّ المتتالية (v_n) حسابية أساسها (v_n) ثم احسب المجموع (v_n)

.
$$S = v_0 \times u_0 + v_1 \times u_1 + \dots + v_{2016} \times u_{2016}$$

التمرين الثالث: (05 نقاط)

. $(O; \stackrel{
ightharpoonup}{u}, \stackrel{
ightharpoonup}{v})$ المستوي المركب منسوب إلى المعلم المتعامد والمتجانس

أجب بصحيح أو خطأ مع التعليل في كل حالة مما يلي:

$$S = \left\{-\frac{1}{2} + i\right\}$$
 هي \mathbb{C} هي المجموعة حلول المعادلة $\left(\frac{z+1-i}{z-i}\right)^2 = 1$ هي (1

$$(z+2)\times(\overline{z}+2)=\left|z+2\right|^2$$
 ، z من أجل كل عدد مركب (2

.
$$\left(\frac{1}{2} + i\frac{\sqrt{3}}{2}\right)^{3n} = 1$$
 ، n عدد طبیعي من أجل كل عدد طبیعي (3

$$\frac{\pi}{2}$$
 وزاویته S (4 التشابه المباشر الذي مرکزه النقطة Ω ذات اللاحقة S وزاویته S

 $\omega'(-2;-3)$ ونصف القطر 3 بالتشابه S هي الدائرة C' ذات المركز $\omega(0;1)$ ونصف القطر 3 بالتشابه S ونصف القطر 9 .

 $Z = (\sin \alpha + i \cos \alpha) \times (\cos \alpha - i \sin \alpha)$ من أجل كل عدد حقيقي α : إذا كان α

. عدد صحیح
$$k$$
 خیث $\operatorname{arg}(Z) = \frac{\pi}{2} - 2\alpha + 2k\pi$ فإنّ

التمرين الرابع: (07 نقاط)

 $f(x) = 2 - x^2 e^{1-x}$:نعتبر الدالة العددية f المعرفة على $\mathbb R$ كما يلي (I

. $(O; \vec{i}, \vec{j})$ سمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد والمتجانس وليكن (C_f)

 $\lim_{x \to \infty} f(x)$ وأعط تفسيرا هندسيا لهذه النتيجة ، ثمّ احسب النهاية وأعط تفسيرا هندسيا لهذه النتيجة ، ثمّ احسب النهاية وأعط تفسيرا

.
$$f'(x) = x(x-2)e^{1-x}$$
 ، $\mathbb R$ من أجل كل x من أجل أي (أ (2

- ب) ادرس اتجاه تغیّر الدالهٔ f ثمّ شکّل جدول تغیراتها.
- . 1 المماس المنحنى (C_f) عند النقطة ذات الفاصلة (T) اكتب معادلة ل
 - . $h(x) = 1 xe^{1-x}$ نعتبر الدالة العددية h المعرفة على \mathbb{R} كما يلى: (II
- .(T) بيّن أنّه من أجل كل x من \mathbb{R} فإن: $0 \geq 0$ ، ثمّ ادرس الوضع النسبي للمنحنى x والمماس (1)
 - -0.7 < lpha < -0.6 بيّن أنّ المعادلة f(x) = 0 تقبل حلاً وحيدا lpha
 - . $\left[-1;+\infty\right[$ المجال على المجال (C_f) والمنحنى (T) المجال (3
 - . $F(x) = 2x + (x^2 + 2x + 2)e^{1-x}$: کما یلی \mathbb{R} کما یلی F (4

 (C_f) على \mathbb{R} ، ثمّ احسب مساحة الحيّز المستوي المحدّد بالمنحنى F تحقّق أنّ F دالة أصلية للدالة F على \mathbb{R} ، ثمّ احسب مساحة الحيّز المستوي المحدّد بالمنحنى F

. x=1 و حامل محور الفواصل والمستقيمين اللّذين معادلتيهما: x=1

انتهى الموضوع الثاني