高等数学 I 练习卷(5)参考答案

- 一、填空题(将答案写在答题纸相应的位置。每小题 3 分,共 15 分.)
- 1. e^{-4}
- 2. $\frac{2x}{1+x^2}dx$ 3. $-\frac{3}{2}$ 4. e^2 5. $\frac{\pi}{2}$.

- 二、单项选择题(将答案写在答题纸相应的位置。每小题 3 分,共 15 分.)
- 1. A
 - 2. B
- 3. C
- 4. A
- 三、计算题(要求写出主要计算步骤及结果。每小题7分,共49分.)
 - 1. 求函数 $y = \arcsin \sqrt{1-x^2}$ 的导数 y'.

解:
$$y' = \frac{1}{\sqrt{1 - (1 - x^2)}} (\sqrt{1 - x^2})' - - - 2$$
分
$$= \frac{1}{|x|} \cdot \frac{-2x}{2\sqrt{1 - x^2}} - - - - - - - 4$$
分

$$= \begin{cases} \frac{1}{\sqrt{1-x^2}}, -1 < x < 0 \\ \frac{1}{\sqrt{1-x^2}}, -1 < x < 0 \end{cases}$$

$$= \begin{cases} \frac{1}{\sqrt{1-x^2}}, -1 < x < 0\\ -\frac{1}{\sqrt{1-x^2}}, 0 < x < 1 \end{cases}$$

2. 已知方程 $y^3 = xe^y + 1$ 确定函数 y = y(x),求 $\frac{d^2y}{dx^2}\Big|_{x=0}$ 的值.

解: 方程 $v^3 = xe^y + 1$ 两边对x求导:

$$3y^2y' = e^y + xe^yy' - - - - - (1) - - - - - - - - - - - - - 2$$
分
再两边对x求导:

$$6y(y')^{2} + 3y^{2}y'' = e^{y}y' + e^{y}y' + xe^{y}(y')^{2} + xe^{y}y'' - - - -(2) - - - -4\pi$$

$$x = 0, y = 1, y' = \frac{e}{3}$$
代入(2)式得 $y'' = 0$

$$\mathbb{E}\left[\frac{d^2y}{dx^2}\right]_{x=0} = 0 - - - - - 7$$

3. 求极限
$$\lim_{x\to\infty} \frac{\ln(1+\frac{3}{x})}{\operatorname{arccot} x}$$

4. 确定
$$a,b$$
 的值,使函数 $f(x) = \begin{cases} x^2 + bx, & x \le 0 \\ e^x - a, & x > 0 \end{cases}$ 在 $(-\infty, +\infty)$ 内可导.

解: f(x)在x = 0处可导,则必连续,所以

$$f(0^-) = f(0^+) = f(0)$$

$$\overrightarrow{\text{mif}}f(0^{-}) = \lim_{x \to 0^{-}} (x^{2} + bx) = 0 = f(0)$$

$$f(0^+) = \lim_{x \to 0^+} (e^x - a) = 1 - a$$

又因为f(x)在x = 0处可导,则f'(0) = f'(0)

$$f'_{-}(0) = \lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{x^{2} + bx}{x} = b$$

5. 求定积分
$$\int_{-1}^{6} \frac{x}{\sqrt[3]{x+2}} dx$$
.

解: 令
$$t = \sqrt[3]{x+2}$$
,则 $x = t^3 - 2$, $dx = 3t^2 dt$, $x = -1$ 时, $t = 1$; $x = 6$ 时, $t = 2$

$$\int_{-1}^{6} \frac{x}{\sqrt[3]{x+2}} dx = \int_{1}^{2} \frac{t^{3}-2}{t} 3t^{2} dt - ---- 3$$

$$= 3 \int_{1}^{2} (t^{4}-2t) dt - ---- 5$$

$$= 3 \int_{1}^{2} (t^{4}-2t) dt - ---- 5$$

$$=3(\frac{t^5}{5}-t^2)\Big|_1^2=\frac{48}{5}-----7$$

6. 求定积分
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos x - \cos^3 x} dx.$$

解:
$$f(x) = \sqrt{\cos x - \cos^3 x}$$
为偶函数,所以

$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{\cos x - \cos^3 x} dx$$

$$=2\int_{0}^{\frac{\pi}{2}}\sqrt{\cos x - \cos^{3} x}dx - - - - - 2\pi$$

$$=2\int_{0}^{\frac{\pi}{2}}\sqrt{\cos x(1-\cos^{2}x)}dx------3$$

$$=2\int_{0}^{\frac{\pi}{2}}\sqrt{\cos x}\sin xdx-----4$$

$$=-2\int_{0}^{\frac{\pi}{2}}\sqrt{\cos x}d(\cos x)------5$$

$$= -\frac{4}{3}(\cos x)^{\frac{3}{2}} \Big|_{0}^{\frac{\pi}{2}} = \frac{4}{3} - - - - 7$$

7. 求不定积分
$$\int x^2 \sin 2x dx$$
.

四、作图题(要求写出主要计算步骤及结果。共14分.)

设函数
$$y = \frac{x^2}{x+1}$$
,

(1) 求函数单调区间与极值;

- (2) 求曲线的凹凸区间与拐点;
- (3) 求曲线的渐近线;
- (4) 画出函数的图形.

解: 定义域为 $(-\infty, -1)$ U $(-1, +\infty)$

$$y = \frac{x^2}{x+1} = x - 1 + \frac{1}{x+1}, y' = 1 - \frac{1}{(x+1)^2}, y'' = \frac{2}{(x+1)^3}$$

$$\Rightarrow$$
 y' = 0, \neq x₁ = -2, x₂ = 0; y" ≠ 0

列表:

x	$(-\infty, -2)$	-2	(-2, -1)	(-1,0)	0	$(0,+\infty)$
y'	+	0	_	_	0	+
y"	_	_		+		+
У	Z ∩	极大值-4	70	\ <u>\</u> \	极小值0	7 ∪

-----6 分

(1) 函数的单调增加区间为: $(-\infty, -2)$ 和 $(0, +\infty)$,单调减少区间为: (-2, -1) 和(-1, 0);

极大值为f(-2) = -4, 极小值为f(0) = 0

-----8 分

(2) 曲线的凸区间为 $(-\infty,-1)$,凹区间为 $(-1,+\infty)$,无拐点。-------10 分

(3)
$$\lim_{x \to -1} \frac{x^2}{x+1} = \infty$$
, 曲线有铅直渐近线 $x = -1$;

$$a = \lim_{x \to \infty} \frac{y}{x} = \lim_{x \to \infty} \frac{x}{x+1} = 1 , \quad b = \lim_{x \to \infty} (y - ax) = \lim_{x \to \infty} (\frac{x^2}{x+1} - x) = \lim_{x \to \infty} (\frac{-x}{x+1}) = -1 , \quad ------12$$

曲线有斜渐近线 y=x-1

(4) 画图

-----14 分

五、证明题(要求写出主要证明步骤。共7分.)

设0 < a < 1, c > 0, x > 0, 证明不等式: $(x+c)^a < x^a + c^a$.

$$f'(x) = a(x+c)^{a-1} - ax^{a-1} - \dots - 3$$

当0 < a < 1时,a - 1 > 0, x^{a-1} 单调减少,

$$c > 0$$
时, $(x+c)^{a-1} < x^{a-1}$

所以f'(x) < 0, f(x)单调减少,

∴
$$x > 0$$
 Fif, $f(x) < f(0), (x+c)^a - x^a - c^a < 0$,