Peer-to-Peer and Cloud Computing

MapReduce and Related Technologies

14th January 2019

Universität Augsburg Institut für Informatik Lehrstuhl für Organic Computing

Gliederung

MapReduce

The "next generation" of Big Data algorithms

MapReduce

Motivation for MapReduce

- · initially created by Google Inc.
- over the years: "hundreds of special-purpose computations that process large amounts of raw data"
 - crawled documents \rightarrow inverted indices
 - · web request logs \rightarrow frequencies
 - etc.
- computations themselves are straightforward
- however: a lot of data
 - ⇒ distributed (parallel) computation necessary

What MapReduce provides

- · simple programming model
- messy details are hidden, notably
 - · parallelisation,
 - · fault-tolerance,
 - · data distribution and
 - load balancing

Roots of MapReduce: map

- inspired by functional programming (esp. Lisp)
- example usage of Lisp's map:

```
(map 'list #'(lambda (x) (+ x 1)) '(1 2 3 4 5)) \Rightarrow (2 3 4 5 6)
```

- · takes a function and a sequence and
- applies that function to every element of the sequence returning a new sequence

Roots of MapReduce: reduce

• reduce also comes from functional languages (esp. Lisp):

```
(reduce #'(lambda (x y) (* x y)) '(1 2 3 4 5)) \Rightarrow (120)
```

- · takes a function and a sequence
- the first element serves as the first accumulator value
- then, the next accumulator value is the value of the binary function applied to the current accumulator value and the next element

The MapReduce programming model

A MapReduce application has to implement two functions with the following signatures:

· map ::
$$(k_1, v_1)$$
 → $[(k_2, v_2)]$
· reduce :: $(k_2, [v_2])$ → $[v_2]$

Note: The map-function from MapReduce has a different signature than the *original* map-function from functional programming (e.g. from Lisp)! It more resembles a function that would be used with a map-function from functional programming.

Classic example: Count occurrences of words

- · given a set of documents,
- · calculate the number of occurrences for each word
- algorithmically simple task, however: assume a very large set of documents

(Very) naïve implementation


```
public Map<Word, Integer>
  count(Set<Document> documents) {
    Map<Word, Integer> counts = new Map<>();
    for (Document d : documents) {
       for (Word w: d.toWords()) {
         counts.merge(w, 1, Integer::add);
       }
    }
}
```

MapReduce separates processing a single document from "merging" that document's word counts with the other documents' word counts.

Mapping over documents


```
public void map(Key key, Document document) {
  for (Word w : document.toWords()) {
    emitIntermediate(w, 1);
  }
}
```

Note: While **key** is not used here, it may be required in another application.

Why use emitIntermediate instead of aggregating a list
and returning?


```
public void reduce(Word w, Set<Integer> counts) {
   Integer sum = 0;
   for (Integer i : counts) {
      sum += i;
   }
   emit(w, sum);
}
```

Execution

Execution details

- input is partitioned into pieces of a user-given size (e.g. 16MB)
 - ⇒ distributed map'ing
- key space of intermediary results is partitioned using user-given partitioning function
 - ⇒ distributed reduce'ing
- "emitting" (intermediary) results ≈ writing them to a shared memory
- · role of the master node:
 - · picks idle workers for map or reduce tasks
 - · gives them the memory address of their input

Why is parallel execution so easily possible?

Because there are no dependencies between map calls (partition of input space)!

Fault tolerance

- on worker failure: simply reschedule all its tasks on other workers (no additional overhead necessary because no dependencies!)
- · on master failure: either
 - · use latest backup of its state and restart it, or
 - simply re-run the whole MapReduce task

Notable implementation: Hadoop MapReduce

- Hadoop project consists of
 - **Hadoop Distributed File System (HDFS)** high-throughput access to application data
 - **Hadoop YARN** framework for job scheduling and cluster resource management
 - **Hadoop MapReduce** YARN-based implementation of MapReduce
- · Open source!
- YARN and HDFS are general purpose
 - ⇒ they are relied on by other projects as well

The "next generation" of Big Data algorithms

Google trend graph for "MapReduce" keyword

- from a developer's perspective: MapReduce unnecessarily restricted!
 - Why only exactly support the MapReduce pipeline?
 - Why only support functional "primitives" map and reduce?
 - · E.g., why not also filter :: (a \rightarrow Bool) \rightarrow [a] \rightarrow [a]
- from a performance perspective: iterative applications (such as machine learning) not properly supported!
 - · don't behave well if too much I/O is involved
 - MapReduce always writes results to (distributed) disk
 ⇒ too much overhead through I/O

DAGs—actually just real functions

- more general than MapReduce: Directed Acyclic Graphs (DAGs)
- MapReduce is a DAG itself:
 in → map → reduce → out
- DAGs are really composed (pure!) functions
 ⇒ functional programming

Example for DAG and the corresponding function

This DAG equals the following function:

```
out(in1, in2, in3) =
  filter(
    join(
        reduce(in1),
        union(
        map(in2)),
        map(in3)))
```

Apache Spark

- "A fast and general engine for large-scale data processing."
- · more general than "just" MapReduce
- many more parallelised functional operations
- builds on a distributed storage (e.g. HDFS or a simple shared file system)
- holds more stuff in memory than (original) MapReduce
 ⇒ greatly(!) increased performance

MapReduce example using Apache Spark

 Scala has proper type inference ⇒ only difference to "non-distributed" (functional) Scala code to initially create an implicit SparkContext

```
// sc: SparkContext
val lines = sc.textFile("data.txt")
val lineLengths = lines.map(s => s.length)
val totalLength =
  lineLengths.reduce((a, b) => a + b)
```

- As long as you keep programming purely functional, no need to think about parallelism at all!
- Need lineLengths somewhere else in your application?
 → simply add lineLengths.persist() and that
 constant is written to the distributed storage

Conclusion

- increasingly less knowledge required for using parallelism
- functional programming is becoming more and more important

Quellen i

- Jeffrey Dean and Sanjay Ghemawat. "MapReduce: Simplified Data Processing on Large Clusters". In: Communications of the ACM 51.1 (2008), pp. 107–113.
- Google. MapReduce on Google Trends. 2017. URL: https://trends.google.com/trends/explore?date=all&q=MapReduce (visited on 10/11/2017).
- LispWorks Ltd. Lisp Function MAP. 2017. URL: http://clhs.lisp.se/Body/f_map.htm (visited on 10/11/2017).

Quellen ii

- LispWorks Ltd. Lisp Function REDUCE. 2017. URL: http://clhs.lisp.se/Body/f_reduce.htm (visited on 10/11/2017).
- Apache Spark Team. Apache Spark Programming Guide. 2017. URL: https://spark.apache.org/docs/latest/rddprogramming-guide.html (visited on 10/10/2017).
- Apache Spark Team. Apache Spark Website. 2017. URL: https://spark.apache.org/(visited on 10/10/2017).