

الامتمان الوطني المومد للبكالوريا الدورة العادية 2014 الموضوع

المركز الوطني للتقويم والامتحانات والتوجيه

NS 22

3	مدة الإنجاز	الرياضيات	
7	المعامل	شعبة العلوم التجريبية بمسالكها وشعبة العلوم والتكنولوجيات بمسلكيها	الشعبة أو المسلك

تعليمات عامة

- يسمح باستعمال الآلة الحاسبة غير القابلة للبرمجة ؟
- عدد الصفحات: 3 (الصفحة الأولى تتضمن تعليمات ومكونات الموضوع والصفحتان المتبقيتان تتضمنان موضوع الامتحان) ؟
 - يمكن للمترشح إنجاز تمارين الامتحان حسب الترتيب الذي يناسبه ؛
 - ينبغى تفادي استعمال اللون الأحمر عند تحرير الأجوبة ؛
- بالرغم من تكرار بعض الرموز في أكثر من تمرين ، فكل رمز مرتبط بالتمرين المستعمل فيه ولا علاقة له بالتمارين السابقة أو اللاحقة .

مكونات الموضوع

- يتكون الموضوع من أربعة تمارين و مسألة مستقلة فيما بينها و تتوزع حسب المجالات كما يلي:

3 نقط	الهندسة الفضائية	التمرين الأول
3 نقط	الأعداد العقدية	التمرين الثاني
3 نقط	المتتاليات العددية	التمرين الثالث
3 نقط	حساب الاحتمالات	التمرين الرابع
8 نقط	دراسة دالة وحساب التكامل	المسألة

- بالنسبة للمسألة ، ln يرمز لدالة اللوغاريتم النبيري

الامتدان الوطني الموحد للبكالوريا – الدورة العادية 2014 – الموضوع – ماحة : الرياضيات — هعبة العلوم التجريبية بمسالكما وهعبة العلوم والتكنولوجيات بمسلكيما

الموضوع

التمرين الأول: (3ن)

0.5

0.5

0.75

0.5

0.75

0.75

0.5

0.75

0.5

B(-1,3,0) و A(0,3,1) النقط A(0,3,1) النقط A(0,3,1) النقط A(0,3,1) و الفضاء المنسوب إلى معلم متعامد ممنظم مباشر $X^2+Y^2+Z^2-4X-5=0$ و الفلكة $X^2+Y^2+Z^2-4X-5=0$

اً بين أن
$$\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} - \overrightarrow{j} - 2\overrightarrow{k}$$
 واستنتج أن النقط A و B و A غير مستقيمية $\overrightarrow{AB} \wedge \overrightarrow{AC} = 2\overrightarrow{i} - \overrightarrow{j} - 2\overrightarrow{k}$

$$(ABC)$$
 ب- بين أن $2x-y-2z+5=0$ هي معادلة ديكارتية للمستوى

$$\Omega(2,0,0)$$
 هو النقطة (S) و أن شعاعها هو 3

$$(S)$$
 مماس للفلكة مماس للفلكة بين أن المستوى

$$(S)$$
 و الفلكة (ABC) و الفلكة H و الفلكة (ABC) و الفلكة

التمرين الثانى: (3ن)

$$z^2 - z\sqrt{2} + 2 = 0$$
 : المعادلة (1 كورية الأعداد العقدية) حل في مجموعة الأعداد العقدية

$$u = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2}i$$
 نعتبر العدد العقدي (2

$$\arg u \equiv \frac{\pi}{3}[2\pi]$$
 و أن معيار العدد u هو $\sqrt{2}$ و أن معيار العدد 0.5

ب- باستعمال كتابة العدد
$$u$$
 على الشكل المثلثي ، بين أن u^6 عدد حقيقي

النقطتين
$$A$$
 و B النقطتين A النقطتين A و B النين ($O, \overrightarrow{e_1}, \overrightarrow{e_2}$)، انقطتين A و B النين المستوى المعقدي المنسوب إلى معلّم متعامد ممنظم مباشر ($O, \overrightarrow{e_1}, \overrightarrow{e_2}$)، انقطتين A و A النقطتين A المعقدي ا

$$\frac{\pi}{3}$$
ليكن z لحق نقطة M من المستوى و z' لحق النقطة M' صورة M بالدوران R الذي مركزه M و زاويته z'

$$z$$
 أـ عبر عن z' بدلالة 0.5

ب - تحقق من أن
$$B$$
 هي صورة A بالدوران R و استنتج أن المثلث OAB متساوي الأضلاع

التمرين الثالث: (3ن)

$$IN$$
 نعتبر المتتالية العددية $u_{n+1} = \frac{1}{2}u_n + 7$ و $u_0 = 13$ ينالي المعرفة بما يلي: $u_0 = 13$ المعرفة بما يلي : $u_0 = 13$

$$IN$$
 بين بالترجع أن $u_n < 14$ لكل n من (1

$$IN$$
 من n لكل $v_n = 14 - u_n$: بحيث المتتالية العددية بحيث (2

$$n$$
 اً- بین أن (v_n) متتالیة هندسیة أساسها $\frac{1}{2}$ ثم اکتب الله v_n بدلالة

$$(u_n)$$
 المتتالية المتتالية IN من $u_n=14-\left(\frac{1}{2}\right)^n$ ن ب - استنتج أن $u_n=14$

$$u_n > 13,99$$
 ج- حدد أصغر قيمة للعدد الصحيح الطبيعي n التي يكون من أجلها

الامتمان الوطبي الموحد للبكالوريا - الدورة العادية 2014 - الموضوع - ماحة : الرياضيات - هعوة العلوم التجريبية بمساكما وهعبة العلوم والتكنولوجيات بمسلكيما

التمرين الرابع: (3ن)

يحتوي كيس على تسع بيدقات لا يمكن التمييز بينها باللمس وتحمل الأعداد: 0 و0 و0 و0 و 0

ليكن A الحدث : " مجموع العددين اللذين تحملاهما البيدقتين المسحوبتين يساوي 1 "

$$p(A) = \frac{5}{9}$$
 بین أن

2) نعتبر اللعبة التالية: يسحب سعيد عشوائيا و في آن واحد بيدقتين من الكيس و يعتبر فائزا إذا سحب بيدقتين تحمل كل واحدة منهما العدد 1

$$\frac{1}{6}$$
 اـ بين أن احتمال فوز سعيد هو

ب- لعب سعيد اللعبة السابقة ثلاث مرات (يعيد سعيد البيدقتين المسحوبتين إلى الكيس في كل مرة) ما هو الاحتمال لكي يفوز سعيد مرتين بالضبط ؟

المسألة: (8ن)

1

0.75

1

0.25

1.5

1

0.5

$$g(x) = 1 - \frac{1}{x^2} + \ln x$$
: يلي يا الدالة العددية المعرفة على $= 1 - \frac{1}{x^2} + \ln x$ التكن و الدالة العددية المعرفة على المعرفة على الدالة العددية ا

$$]0,+\infty[$$
 لكل $g'(x)=\frac{2}{x^3}+\frac{1}{x}$ الدالة g تزايدية على $[0,+\infty[$ على $g'(x)=\frac{2}{x^3}+\frac{1}{x}$ الدالة $[0,+\infty[$

$$[1,+\infty[$$
 ثم ستنتج أن $g(x) \le 0$ لكل $g(x) \ge 0$ و $g(x) \ge 0$ لكل عن $g(x) \ge 0$ ثم استنتج أن $g(x) \le 0$ لكل عن أن $g(x) \ge 0$

$$f(x) = \left(1 + \ln x\right)^2 + \frac{1}{x^2}$$
 : ينعتبر الدالة العددية f المعرفة على $f(x) = \left(1 + \ln x\right)^2 + \frac{1}{x^2}$ المعرفة على $f(x) = \left(1 + \ln x\right)^2 + \frac{1}{x^2}$

$$(1\,cm: 1\,cm: 1\,d)$$
 و ليكن (C) المنحنى الممثل للدالة f في معلم متعامد ممنظم و المنحنى الممثل الدالة

بین أن
$$f(x) = +\infty$$
 و أول هندسیا النتیجة (1) بین أن

$$\lim_{x \to +\infty} f(x) \stackrel{\text{left}}{=} (2) 0.25$$

$$\lim_{x\to +\infty} \frac{f(x)}{x} = 0$$
 بـ بين أن $t = \sqrt{x}$ وضع $\lim_{x\to +\infty} \frac{\left(1 + \ln x\right)^2}{x} = 0$ بـ بين أن $\lim_{x\to +\infty} \frac{\left(1 + \ln x\right)^2}{x} = 0$

$$+\infty$$
 جـ حدد الفرع اللانهائي للمنحنى $+\infty$ بجوار

$$[0,1]$$
 لكل $[0,1]$ الكل $[0,+\infty]$ ناقصية على $[0,+\infty]$ كا كل $[0,+\infty]$ الكل $[0,+\infty]$ الكل $[0,+\infty]$ الكل على $[0,+\infty]$

$$]0,+\infty[$$
 من $f(x)\geq 2$ نام استنتج أن $f(x)\geq 2$ على $f(x)\geq 2$ على الدالة $f(x)=0$ على الدالة الدالة

(نقبل أن للمنحنى
$$(C)$$
نقطة انعطاف وحيدة تحديدها غير مطلوب) نشىئ (C) نقطة (C) نقطة (C) نقطة انعطاف وحيدة تحديدها غير مطلوب)

$$J = \int_{1}^{e} (1 + \ln x)^{2} dx$$
 و $I = \int_{1}^{e} (1 + \ln x) dx$: نعتبر التكاملين $I = \int_{1}^{e} (1 + \ln x) dx$

$$I=e$$
 أ- بين أن $H:x\mapsto x\ln x$ دالة أصلية للدالة $h:x\mapsto 1+\ln x$ على $J=0,+\infty$ ثم استنتج أن $J=2e-1$ ثم استنتج أن $J=2e-1$ ثم استعمال مكاملة بالأجزاء ، بين أن $J=2e-1$

ج- احسب ب
$$cm^2$$
 مساحة حيز المستوى المحصور بين المنحنى (C) و محور الأفاصيل و المستقيمين $x=e$ و $x=1$ اللذين معادلتاهما

تصحيح الإمتحان الوطني 2014 الرباضي

عناصر الإجابة:

تمریست 1 : (3 نقط)

$$\overline{AB} \wedge \overline{AC} = \begin{vmatrix} \vec{i} & -1 & 0 \\ \vec{j} & 0 & 2 \\ \vec{k} & -1 & -1 \end{vmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} ; \overline{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix} : \overrightarrow{AC} \begin{pmatrix} 0 \\ 2 \\ -1 \end{pmatrix}$$

بما أن $\overrightarrow{O}: \overrightarrow{AB} \wedge \overrightarrow{AC}
eq \overrightarrow{O}$ نإن $\overrightarrow{AB} \wedge \overrightarrow{AC} \neq \overrightarrow{O}$ نقط غير مستقيمية

. منظمية له منظمية له منظمية له منظمية له منظمية له (ABC منظمية له منظمية له منظمية له منظمية له منظمية له

$$M\left(x;y;z\right)\in\left(ABC\right)$$
 \Leftrightarrow $\overrightarrow{AM}\cdot\left(\overrightarrow{AB}\wedge\overrightarrow{AC}\right)=0$ وفي

$$\Leftrightarrow \begin{pmatrix} x \\ y-3 \\ z-1 \end{pmatrix} \cdot \begin{pmatrix} 2 \\ -1 \\ -2 \end{pmatrix} = 0$$
$$2x-y-2z+5=0$$

 (\mathbf{ABC}) إفن هي معاولة ($\mathbf{ABC})$ أو النقط \mathbf{A} و \mathbf{B} و \mathbf{C} تقت المعاولة \mathbf{C} أو النقط \mathbf{A}

$$x^2+y^2+z^2-4x-5=0 \iff (x-2)^2+y^2+z^2=9=3^2$$
 (42) في فرينا

 ${f R}={f 3}$ إفن $\Omega(2;0;0)$ هي الفلكة اللتي سركزها (S): إفن

(S) ماس للفلكة (ABC) : (يون
$$\mathbf{d}(\mathbf{ABC}) = \frac{\left|2 \times 2 - 0 - 0 + 5\right|}{\sqrt{4 + 1 + 4}} = 3$$
 الرينا $\mathbf{d}(\mathbf{ABC}) = \mathbf{d}(\mathbf{ABC})$

(ABC) والمستقيم المار من Ω و العمدوي الم Ω على Ω على المحكون المحكون و المحكون على (ABC) والمستقيم المار من Ω و العمدوي على Ω

$$\exists t \in \mathbb{R} / a = 2 + 2t \; ; b = -t \; ; c = -2t \; \mathbf{y} = 2a - b - 2c + 5 = 0 \iff \mathbf{t} = -1$$
 : فق

. H(0;1;2) فإن

تمریسن 2: (3نتطة)

$$\mathbf{z}^{2} \cdot \sqrt{2} \, \mathbf{z} + \mathbf{2} = \mathbf{0} \Leftrightarrow (\mathbf{z} - \frac{\sqrt{2}}{2})^{2} + \frac{3}{2} = \mathbf{0} \qquad \mathbf{z}^{2} \cdot \sqrt{2} \, \mathbf{z} - (\mathbf{z} - \frac{\sqrt{2}}{2})^{2} \cdot \frac{1}{2} : \mathbf{0} \Rightarrow \mathbf{z} = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2} i \text{ s} \mathbf{z} = \frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{2} i$$

$$\Rightarrow \mathbf{z} = \frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2} i \text{ s} \mathbf{z} = \frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{2} i$$

$$\mathbf{S} = \{\frac{\sqrt{2}}{2} + \frac{\sqrt{6}}{2} i, \frac{\sqrt{2}}{2} - \frac{\sqrt{6}}{2} i\}_{\mathbf{0}} \mathbf{y} = \mathbf{0} = \mathbf$$

تمريسن 3 : (3 نقطة)

 $U_{0}=13:$ ليكن $\mathbf{n}=0$ لرينا : 13 $U_{0}=13:$ ليكن $\mathbf{n}=0$ ليكن \mathbf

إونOAB مثلث متساوى الأضلاع.

$$\forall n \in \mathbb{N} : V_{n+1} = 14 - U_{n+1}$$

$$= 14 - \frac{1}{2}U_n - 7$$

$$= 7 - \frac{1}{2}U_n$$

$$= \frac{1}{2}(14 - U_n) = \frac{1}{2}V_n$$

$$orall n\in \mathbb{N}: V_n=\left(rac{1}{2}
ight)^n$$
 ومنه $V_0=1$ ومنه $\left(V_n
ight)$ هنرسة أساسها $\left(V_n
ight)$ ومنه $\left(V_n
ight)$ ومنه $\left(V_n
ight)$

 $\forall n \in \mathbb{N}: V_n = 14 - U_n \Rightarrow \forall n \in \mathbb{N}: U_n = 14 - V_n$

$$\Rightarrow \forall n \in \mathbb{N}: U_n = 14 - \left(\frac{1}{2}\right)^n : \mathbf{U}_n = 14$$

$$\lim_{n\to +\infty} U_n = 14$$
 : و بما (ن : $1 < \frac{1}{2}$ - نإن $0 : 0$ نإن $0 : 1 < \frac{1}{2} < 1$

$$U_n > 13.99 \Leftrightarrow 14 - \left(\frac{1}{2}\right)^n > 13.99 \Leftrightarrow \left(\frac{1}{2}\right)^n < 14 - 13.99$$

م لرينا:

2﴾ أد الرينا:

$$\Leftrightarrow \ln\left(\frac{1}{2}\right)^n < \ln(0.01) \Leftrightarrow -n\ln 2 < -2\ln 10 \Leftrightarrow n > \frac{2\ln 10}{\ln 2}$$

. $\mathbf{n} = 7$ ولرينا $\frac{2 \ln 10}{\ln 2} \simeq 6.67$ إفن

تمريسن 3 : <u>4</u> نقطة)

 $C_9^2 = 36$ کل إملانية مبارة عن تأليفة لعنصرين من بين تسع عناصر وعروها هو $C_9^2 = 36$

$$\mathbf{p}(\mathbf{A}) = \frac{C_4^1 \times C_5^1}{C_9^2} = \frac{20}{36} = \frac{5}{9}$$
 لرينا $\mathbf{A}'' \ \underline{10} \ ''$

$$\mathbf{p}(\mathbf{G}) = \frac{C_4^2}{C_0^2} = \frac{6}{36} = \frac{1}{6}$$
 vir. $\mathbf{G} = \frac{1}{11}$ (6) $\mathbf{G} = \frac{1}{11}$ vir. $\mathbf{G} = \frac{1}{11}$ vir. $\mathbf{G} = \frac{1}{11}$

 \mathbf{B} " $G/G/\overline{G}$ \leftarrow نعتبر الهرى " يفوز سعيرسرتين بالضبط \mathbf{B} الذي " ومالك \mathbf{B} نعتبر الهرى " يفوز سعيرسرتين بالضبط \mathbf{B}

$$\mathbf{p}(\mathbf{B}) = C_3^2 \left(\frac{1}{6}\right)^2 \left(1 - \frac{1}{6}\right) = \frac{5}{72}$$
:

(8 نتطة)

الجزء الأولي:

$$\forall x \in \mathbb{R}_{+}^{*}: g'(x) = \frac{2x}{x^{4}} + \frac{1}{x} = \frac{2}{x^{3}} + \frac{1}{x}$$
 المينا:

 \mathbb{R}_+^* وبما أن z>0: نإن x>0 نإن x>0 نإن x>0 نإن وبما أن x>0

$$\mathbb{R}_+^*$$
 الرينا g تزايرية على g نوان g وميث أن g تزايرية على g نوان و

$$x \ge 1 \Rightarrow g(x) \ge g(1) \Rightarrow g(x) \ge 0$$
 , $0 < x \le 1 \Rightarrow g(x) \le g(1) \Rightarrow g(x) \le 0$

: ﴿ وَا

X	0	1		+ ∞
g(x) إشارة	•	0	+	

$$\lim_{x\to 0} \frac{1}{x^2} = +\infty$$
 و $\lim_{x\to 0^+} \ln x = -\infty$ و $\lim_{x\to 0^+} \frac{1}{x^2} = +\infty$ و $\lim_{x\to 0^+} \frac{1}{x^2} = +\infty$

$$\mathbf{x} = \mathbf{0}$$
ړون : $\lim_{\mathbf{x} \to 0^+} f(\mathbf{x}) = +\infty$ و بنه ر $(\zeta_{\mathbf{f}})$ يقبل بقاربا ممرويا بعاولته

$$\lim_{x \to +\infty} f(x) = +\infty$$
 : و $\lim_{x \to +\infty} \frac{1}{x^2} = 0$ و $\lim_{x \to +\infty} \ln x = +\infty$ و المرينا : $\lim_{x \to +\infty} f(x) = +\infty$ و المرينا :

ب لرينا:

$$\lim_{x \to +\infty} \frac{(1+\ln x)^2}{x} = \lim_{t \to +\infty} \frac{(1+\ln(t^2))^2}{t^2}$$

$$= \lim_{t \to +\infty} \frac{1+2\ln(t^2)+(\ln(t^2))^2}{t^2}$$

$$= \lim_{t \to +\infty} \frac{1+4\ln(t)+4(\ln(t))^2}{t^2}$$

$$= \lim_{t \to +\infty} \left(\frac{1}{t^2}+4\frac{\ln(t)}{t^2}+4\frac{(\ln(t))^2}{t^2}\right)$$

$$\lim_{x\to +\infty} \frac{\left(1+\ln x\right)^2}{x} = 0 \text{ (in (t))} \lim_{t\to +\infty} \frac{\left(\ln(t)\right)^2}{t^2} = 0 \text{ (in (t))} \lim_{t\to +\infty} \frac{\ln(t)}{t^2} = 0 \text{ (in (t))} \lim_{t\to +\infty} \frac{1}{t^2} = 0 \text{ (in (t))} \lim_{t\to +\infty} \frac{\ln(t)}{t^2} = 0 \text{ (in (t))} \text{ (in (t))} \text{ (in (t))} = 0 \text{ (in (t))} \text{ (in (t))} \text{ (in (t))} = 0 \text{ (in (t))} \text{ (in (t))} = 0 \text{ (in (t))}$$

$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} \left(\frac{\left(1 + \ln x\right)^2}{x} + \frac{1}{x^3} \right) = 0 : \emptyset$$

 $+\infty$ ب لرينا $0:\lim_{x o +\infty} \frac{f(x)}{x}$ إفن $f(\zeta_{\mathbf{f}})$ يقبل نرعا شلجميا في ارتباه محور الأناصيل بجوار

$$\forall x \in \mathbb{R}_{+}^{*}: f'(x) = \frac{2(1+\ln x)}{x} - \frac{2}{x^{3}} = \frac{2}{x} \left(1+\ln x - \frac{2}{x^{2}}\right):$$
 فرينا $\frac{2g(x)}{x}$

 \mathbb{R}_+^* ملی $g(\mathrm{x})$ ومنه إشارة $f'(\mathrm{x})$ علی

ولدينا

X	0	1		+ ∞
g(x) إشارة	•	0	+	

بدلرينا:

X	0	1		+ ∞
f'(x)	-	0	+	
f	- ∞	2		+ ∞

 $orall x \in \mathbb{R}_+^*$: $f(x) \ge 2$ لرينا f تيمة ونيا مطلقة للرائة ويا الرينا ويمة ونيا مطلقة للرائة الرينا

: (ζ_f) إنشاء 4

$$orall x \in \mathbb{R}^*_+: \mathbf{H}'(\mathbf{x}) = \mathbf{lnx} + \mathbf{1}$$
 . (45) $I = \int_1^e (1 + \mathbf{lnx}) d\mathbf{x} = \mathbf{H}(\mathbf{e}) - \mathbf{H}(\mathbf{1}) = \mathbf{e}$. (46) $I = \int_1^e (1 + \mathbf{lnx}) d\mathbf{x} = \mathbf{H}(\mathbf{e}) - \mathbf{H}(\mathbf{1}) = \mathbf{e}$. (46) $I = \int_1^e (1 + \mathbf{lnx})^2 d\mathbf{x} = \mathbf{e}$. (47) $I = \int_1^e (1 + \mathbf{lnx}) d\mathbf{x} = \mathbf{e}$. (48) $I = \int_1^e (1 + \mathbf{lnx}) d\mathbf{x} = \mathbf{e}$. (49) $I = \int_1^e |f(\mathbf{x})| d\mathbf{x} \times \mathbf{lcm}^2 = (\mathbf{I} - \mathbf{e}) \mathbf{e}$. (49) $I = \int_1^e |f(\mathbf{x})| d\mathbf{x} \times \mathbf{lcm}^2 = (\mathbf{I} - \mathbf{e}) \mathbf{e}$. (40) $I = \int_1^e |f(\mathbf{x})| d\mathbf{x} \times \mathbf{lcm}^2 = (\mathbf{I} - \mathbf{e}) \mathbf{e}$. (40) $I = \int_1^e |f(\mathbf{x})| d\mathbf{x} \times \mathbf{lcm}^2 = (\mathbf{I} - \mathbf{e}) \mathbf{e}$