Lecture 2 Linear Regression

Sung Kim <hunkim+ml@gmail.com>

Acknowledgement

- Andrew Ng's ML class
 - https://class.coursera.org/ml-003/lecture
 - http://www.holehouse.org/mlclass/ (note)
- Convolutional Neural Networks for Visual Recognition.
 - http://cs23 I n.github.io/
- Tensorflow
 - https://www.tensorflow.org
 - https://github.com/aymericdamien/TensorFlow-Examples

Predicting exam score: regression

x (hours)	y (score)
10	90
9	80
3	50
2	30

Regression (data)

X	У
1	1
2	2
3	3

Regression (presentation)

X	Y
1	1
2	2
3	3

(Linear) Hypothesis

Which hypothesis is better?

Which hypothesis is better?

Cost function

• How fit the line to our (training) data

$$\left(H(x)-y\right)^{2} \longleftarrow \overset{\mathrm{de}}{\Leftrightarrow} \overset{\mathrm{de}}{\to} \overset{\mathrm{de}}{\to}$$

Cost function

• How fit the line to our (training) data

$$\frac{(H(x^{(1)}) - y^{(1)})^2 + (H(x^{(2)}) - y^{(2)})^2 + (H(x^{(3)}) - y^{(3)})^2}{3}$$

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$

Cost function

$$cost = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^{2}$$
$$H(x) = Wx + b$$

$$cost(W, b) = \frac{1}{m} \sum_{i=1}^{m} (H(x^{(i)}) - y^{(i)})^2$$

Goal: Minimize cost