Introduction Méthodologie Conclusion

PROJET AMAZON: ANALYSE DE SENTIMENTS

Soutenance d'Introduction au Machine Learning

Mohamed NIANG - Hoang Dung NGUYEN - Yao GNONSOU Enseignante : Pr. Agathe GUILLOUX

Master 2 Data Science : Université Paris-Saclay

23 octobre 2019

PLAN

- Introduction
- Méthodologie
 - Description des Données et Création de Nouvelles Variables
 - Preprocessing des textes
 - Machine Learning Modèle
- Conclusion

Introduction

Dans ce projet, nous fessons face à un problème de classification supervisé sur des commentaires récoltés sur amazon.

Le but ici est de traiter puis d'implémenter différent modèles afin de déterminer le meilleur modèle pour faire de la prédiction sur de nouveaux commentaires.

Les principaux modèles utilisés dans ce projet sont :

- Logistic Regression
- Support vector machine
- K-nearest neighbors
- Neural network

Méthodologie Suivie

Notre plan de travail est résumé par le schéma ci-après :

M	df_train.describe(include='all')						
		label	text				
cor	int	3600000	3600000				
uniq	ue	2	3600000				
t	ор	label1	the hands do not glow in dark: the quality of				
fr	ea	1800000	1				

М	df	train	['text']	[2]

'Amazing!: This soundtrack is my favorite music of all time, hand s down. The intense sadness of "Prisoners of Fate" (which means a 11 the more if you've played the game) and the hope in "A Distan

M df train['text'][10]

"The Worst!: A complete waste of time. Typographical errors, poor grammar, and a totally pathetic plot add up to absolutely nothin g. I'm embarrassed for this author and very disappointed I actual ly paid for this book."

ы	df train	.head(20)				
	label	text				
0	label2	Stuning even for the non-gamer: This sound tra				
1	label2	The best soundtrack ever to anything.: I'm rea				
2	label2	Amazing!: This soundtrack is my favorite music				
3	label2	Excellent Soundtrack: I truly like this soundt				
4	label2	Remember, Pull Your Jaw Off The Floor After He				
5	label2	an absolute masterpiece: I am quite sure any o				
6	label1	Buyer beware: This is a self-published book, a				
7	label2	Glorious story: I loved Whisper of the wicked				
8	label2	A FIVE STAR BOOK: I just finished reading Whis				
9	label2	Whispers of the Wicked Saints: This was a easy				
10	label1	The Worst!: A complete waste of time. Typograp				
11	label2	Great book: This was a great book,I just could				
12	label2	Great Read: I thought this book was brilliant,				

Remarque

- Une proportion équilibrée entre les deux labels
- Les distributions de taille par label sont légèrement différentes

Exemple du texte qui est marqué "good" :

Great desk and a great buy! Thanks Amazon:): We bought this desk for my seven year old daughter to keep her lap top on and to do homework. It was not to disappoint...

Exemple du texte qui est marqué "bad" :

Awful beyond belief!: I feel I have to write to keep others from wasting their money. This book seems to have been written by a 7th grader with poor grammatical skills for her age! As another reviewer points out, there is a misspelling on the cover, and I believe there is at least one per chapter...

On observe maintenant la distribution de quelques ponctuations spéciales :

En conclure, on conservera ces ponctuations lors de la tokenzation.

Analyse de l'intensité des sentiments

Avec l'algorithme VADER (Valence Aware Dictionary and Sentiment Reasoner)

VADER est un modèle utilisé pour l'analyse des sentiments textuels qui est sensible à la polarité (positive/négative) et à l'intensité (force) des émotions. Introduite en 2014, l'analyse du sentiment textuel VADER utilise une approche centrée sur l'humain, combinant l'analyse qualitative et la validation empirique en utilisant des évaluateurs humains et la sagacité des autres.

Compound	Negative	Neutral	Positive	Compound	Negative	Neutral	Positiv
0.54	0.0	0.534	0.466	-0.5962	0.564	0.436	0
This pre	sentatio	on is n	ot good,				
	sentatio			This pr	esentat	ion is r	norma
		isfies r		This pr			

Nous voyons donc la première prédiction obtenue par cette algorithme

	precision	recall	f1-score	support
bad good	0.85 0.63	0.49 0.91	0.62 0.75	5097 4903
accuracy macro avg	0.74	0.70	0.70 0.69	10000

Mohamed NIANG, Hoang Dung NGUYEN et Yao GNONSOU

PROIET AMAZON : ANALYSE DE SENTIMENTS

Détection de langues

On vient ici d'identifier des commentaires qui sont rédigés en autres langages.

			text	label_new	len	lan
		881	Good read	good	35	c
		1249	Il grande ritorno!: E' dai tempi del tour di "	good	153	
		1259	La reencamación vista por un científico: El p	good	34	
		1260	Excelente Libro / Amazing book!!: Este libro h	good	105	6
		1261	Magnifico libro: Brian Weiss ha dejado una mag	good	47	0
		1639	El libro mas completo que existe para nosotras	good	29	e
anguage	Frequency	1745	Excelentel: Una excelente guia para todos aque	good	49	6
en	9970	2316	Nightwish is unique and rocks for eva: Moi to	good	47	
es	16	2486	Palabras de aliento para tu caminar con Dios:	good	80	
fr	8	2760	Completement nul: Fait sur commande et ennuyan	bad	18	
de	3	2903	fabuloso: mil gracias por el producto fabuloso	good	22	
it	1	2908	Geh: Blah blah, sexy girl, blah blah, fighting	bad	21	
id	1	3318	Excelentes botas., excelentes boots: Excelente	good	31	6
		3694	Why not Spanish ???: Alguien me puede decir po	bad	103	
		4144	LEAKED FIRST DAY FOR MY GUEST: IT HAD A LEAK F	bad	27	d
		4820	La mejor película de Moore: A mi juicio, esta	good	21	
		4914	De la poudre aux yeux: J'ai acheté un Sansa Vi	bad	65	
		5720	C'est magnifique! il y a du vrai dans ce qui1	good	96	
		5875	Erreur: "Les Triplettes de Belleville" n'a pas	good	25	

Cependant, en terme de proportion cela ne représente que 0,31% des commentaires (sur 10.000 obs). Pour la suite on décide de ne pas retenir ce traitement car il demande énormément de temps de calcul.

Notre tokenizer

Pour cette étape, nous faisons :

- Tokenizer les text
- Enlever les ponctuations (en conservant les ponctuations spéciales)
- Enlever les stopwords
- Faire une lemmatisation avec part of speach

```
print('Pharse originale : \n')
print (df train['text'][979], 'n')
print ('Pharse transformée: 'n')
print(' '.join(text process(df train['text'][979])), '\n')
print(' liste de mots (Tokenization): \n')
text_process(df_train['text'][32])
```

Pharse originale :

Great desk and a great buy! Thanks Amazon:): We bought this desk for my seven year old daughter to keep her lap top on and to do homework. It was not to disappoint. The desk is perfect size for her to sit and work. Very high qualit y and easy to put together. I would highly recommend this product to others?

Pharse transformée:

great desk great buy exclamation mark thanks amazon emotion happy bought desk seven year old daughter keep lap top homework disappoint desk perfect size sit work high quality easy put together would highly recommend product others question mark

Liste de mots (Tokenization):

```
['title',
'hollywood',
'debacle',
'plot',
'ridiculous',
'wonder',
```

'even'.

Fréquence d'apparition des mots

Fréquence d'apparition des mots

Count	Mean	Std	Min	Quantile 25%	Quantile 50%	Quantile 75%	Max		
20611	14,45	94,36	1	1	2	5	5326		
Number o	f words appe	aring only	1 time	Num	Number of frequencies of the 10000th word				
	9730					2			

BoWs vs TF-IDF

Le poid des mots dans la matrice de Bag of Words

Le poid des mots dans la matrice de TF-IDF

Réduction de la dimensionnalité

Dimension reduction methods	Computing time (in second)	Number of new features
Principal component analysis (PCA)	1	200
Random projection (RP)	13	20
Latent Dirichet Allocation (LDA)	52	100
Uniform Manifold Approximation and Projection (UMAP)	73	20

Modèles de ML

Machine Learning model	Reduction method	Accuracy score	Computing time (in second)	Computing time added dimension reduction time (in second)	Estimated computing time on all training set (in second)
Logistic Regression	Full matrix	0,848	0,35	0,35	127
Logistic Regression	PCA	0,837	0,23	1,38	497
Logistic Regression	LDA	0,583	0,20	14,10	5 074
Logistic Regression	RP	0,664	0,48	53,38	19 216
Logistic Regression	UMAP	0,635	0,20	73,30	26 389
SVM	Full matrix	0,839	9,32	9,32	3 354
SVM	PCA	0,836	9,04	10,19	3 669
SVM	LDA	0,582	5,91	19,80	7 130
SVM	RP	0,664	10,81	63,71	22 935
SVM	UMAP	0,642	3,67	76,77	27 639
K-nearest neighbors	Full matrix	0,641	1,62	1,62	582
K-nearest neighbors	PCA	0,651	5,05	6,19	2 230
K-nearest neighbors	LDA	0,520	1,75	15,64	5 631
K-nearest neighbors	RP	0,598	9,20	62,10	22 356
K-nearest neighbors	UMAP	0,618	0,24	73,34	26 403
Neural network	Full matrix	0,840	3,98	3,98	1 434
Neural network	PCA	0,826	2,76	3,91	1 407
Neural network	LDA	0,566	2,65	16,55	5 957
Neural network	RP	0,668	3,29	56,19	20 228
Neural network	UMAP	0,654	2,90	76,00	27 359

Modèles de ML

Conclusion

Perspectives

- Implémentation de la logistic regression
- Gestion du problème de big data
- Compréhension de la procédure de traitement de texte

Conclusion

Piste d'amélioration

- Augmentation de taille du jeu d'apprentissage
- Test de robustesse du modèle optimal sur plusieurs sous échantillon
- Test de différentes procédures de traitement de texte : N-grams, Vec2Doc, etc

Introduction Méthodologie Conclusion

Thank you for attention!