# Tutorial 2 Sorting Algorithms: Probabilistic Analysis

#### Outline

- Bubble Sort
- Quick Sort
- Counting Sort
- Comparison of sorting algorithms

#### 1. Bubble Sort

- Theorem: The average number of comparisons done by bubble sort is θ (n²)
  - Proof by inversion
  - Facts
    - Each comparison remove at least one inversion
    - All the inversions must be eliminated during the process of sorting

- (1)  $\Omega$  (n<sup>2</sup>)
  - Assume n numbers, 1,2,...,n
  - □ For k (1 $\leq$ k  $\leq$ n), consider the expected number of inversions of k
    - K=n, expected inversions  $\geqslant \frac{1}{n}[(n-1)+(n-2)+...+1+0] = \frac{n(n-1)}{2n}$
    - K=n-1, expected inversions  $\geq \frac{1}{n}[(n-2)+...+1+0+0] = \frac{(n-1)(n-2)}{2n}$
    - K=i, expected inversions  $\geqslant \frac{i(i-1)}{2n}$
  - □ The expected number of inversions  $\geq \sum_{i=1}^{n} \frac{i(i-1)}{2n}$
  - Which is  $\Omega$  (n<sup>2</sup>)
- $\bullet$  (2) O(n<sup>2</sup>) easy to proof
- According to (1)(2), the average number of comparisons is  $\theta$  (n<sup>2</sup>).

- A more simple solution
- Computing the average number of inversions in inputs of size n (n>1):
  - □ For any i, j,  $(1 \le j \le i \le n)$ , either  $(x_i, x_j)$  or  $(x_j, x_i)$  is an inversion, thus the probability of inversion is 1/2.
  - □ The number of transpose pairs  $(x_i, x_j)$  on n distinct integers is n(n-1)/2.
  - So, the average number of inversions in all possible inputs is n(n-1)/4.
- The average behavior of any sorting algorithm that remove at most one inversion per key comparison must in Ω(n²)

## 2. Quick Sort

#### Quicksort: the Strategy

 Dividing the array to be sorted into two parts: "small" and "large", which will be sorted recursively.



#### QuickSort: the algorithm

- Input: Array E and indexes first, and last, such that elements E[i] are defined for first≤i≤last.
- Output: E[first],...,E[last] is a sorted rearrangement of the same elements.
- The procedure:

return

```
void quickSort(Element[] E, int first, int last)
if (first<last)
    Element pivotElement=E[first];
    Key pivot=pivotElement.key;
    int splitPoint=partition(E, pivot, first, last);
    E[splitPoint]=pivotElement;
    quickSort(E, first, splitPoint-1);
    quickSort(E, splitPoint+1, last);</pre>
```

The splitting point is chosen arbitrarily, as the first element in the array segment here.

#### How to select pivot?

- Fixed strategy
- Random strategy

#### The fixed strategy (divide and conquer)

- Input: A, n
- Divide
  - Select a item from a fixed position
  - Partition: q, n-q-1
- Conquer:
  - QuickSort(A,first,q-1)
  - QuickSort(A,q+1,last)
- Combine
- $T(n)=T(q)+T(n-q-1)+\Theta(n)$

#### The fixed strategy

- Worst case
  - Partition: 0, n-1
  - Input is sorted or inverse sorted
  - □  $T(n) = T(0) + T(n-1) + \Theta(n) = T(n-1) + \Theta(n)$
  - $\Box$  T(n)  $\subseteq \Theta$  (n<sup>2</sup>)
- Best Case
  - □ Partition: n/2, n/2
  - $T(n) = 2T(n/2) + \Theta(n)$
  - $\Box$  T(n)  $\subseteq$   $\Theta$  (nlgn)

- Average case? ⊕ (nlgn)
- What about partition: n/5, 4n/5?
  T(n)= T(n/5)+T(4n/5)+ ⊕ (n)
  Use the recursion tree for analysis, we have
  - $T(n) \subseteq \Theta (nlgn)$
- What about partition: 0.001n, 0.999n?⊕ (nlgn)
- What about partition: n/k, ((k-1)n)/k? ⊕ (nlgn)

#### Randomized Strategy

- Randomized QuickSort
- Input: Array E and indexes first, and last, such that elements E[i] are defined for first≤i≤last.
- Output: E[first],...,E[last] is a sorted rearrangement of the same elements.
- The procedure:

```
void Random_quickSort(Element[] E, int first, int last)
if (first<last)
    Element pivotElement=E[Random(first,last)];
    Key pivot=pivotElement.key;
    int splitPoint=partition(E, pivot, first, last);
    E[splitPoint]=pivotElement;
    Random_quickSort(E, first, splitPoint-1);
    Random_quickSort(E, splitPoint+1, last);
return</pre>
```

#### What is the expected number of comparisons?

- Input A, n
- Elements of A can be denoted as  $z_1, z_2, \dots, z_n$  ( $z_1 < z_2 < \dots < z_n$ ) (assume distinct)
- Let random variables

$$X_{ij} = \begin{cases} 1 & \text{if } z_i \text{ is compared to } z_j \\ 0 & \text{else} \end{cases}$$
The total comparison 
$$X = \sum_{i=1}^{n-1} \sum_{i=1}^{n} X_{ij}$$

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}$$

The expectation of X?

$$E[X] = E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij}\right] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} [X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}$$

## $\Pr\{z_i \text{ is compared to } z_j\} = ?$

- When two items are compared?
  - For example A={1,3,2,5,4,6}, if pivot=4, then A is separated into L={1,2,3}, R={5,6}
    - 4 is compared to all elements in L and R
    - Elements in L is never compared to elements in R
- Depends on the chosen of pivot
  - □ Consider  $Z_{ij} = \{z_i, z_{i+1}, ..., z_j\}$
  - If z<sub>x</sub> (i<x<j) is chosen as a pivot first, then z<sub>i</sub> and z<sub>j</sub> will not be compared
  - □ So,  $z_i$  is compared to  $z_j$  if and only if  $z_i$  (or  $z_j$ ) is chosen as a pivot before any other item in  $Z_{ij}$

As probability of each item is chosen in  $Z_{ij}$  is equal

 $\Pr\{z_i \text{ is compared to } z_j\} = \Pr\{z_i \text{ is first pivot chosen from } Z_{ij}\}$ 

+ Pr{
$$z_j$$
 is first pivot chosen from  $Z_{ij}$ } =  $\frac{2}{j-i+1}$ 

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \Pr\{z_i \text{ is compared to } z_j\}$$

$$= \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1}$$

$$= \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1}$$

$$< \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}$$

$$\approx 2 \sum_{i=1}^{n-1} (\ln(n) + \gamma) \quad \text{(Harmonic Series, book P22, equation 1.11)}$$

$$= O(n \lg n)$$

So the expected running time of randomized QuickSort is O(nlgn)

# 3. Counting Sort

#### Algorithm Description [CLRS P168]

- *Input*: A[1 ... n], where  $A[j] \in \{1, 2, ..., k\}$ .
- Output: B[1 ... n], sorted.
- Auxiliary storage: C[1...k].

```
for i \leftarrow 1 to k
    do C[i] \leftarrow 0
for j \leftarrow 1 to n
    do C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{\text{key} = i\}|
for i \leftarrow 2 to k
    do C[i] \leftarrow C[i] + C[i-1]  \triangleright C[i] = |\{\text{key } \le i\}|
for j \leftarrow n downto 1
    \operatorname{do} B[C[A[j]]] \leftarrow A[j]
         C[A[j]] \leftarrow C[A[j]] - 1
```







#### Analysis on Counting Sort

```
\Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 1 \ \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow 0 \end{cases}
\Theta(n) \begin{cases} \mathbf{for} \ j \leftarrow 1 \ \mathbf{to} \ n \\ \mathbf{do} \ C[A[j]] \leftarrow C[A[j]] + 1 \end{cases}
\Theta(k) \begin{cases} \mathbf{for} \ i \leftarrow 2 \ \mathbf{to} \ k \\ \mathbf{do} \ C[i] \leftarrow C[i] + C[i-1] \end{cases}
\Theta(n) \begin{cases} \mathbf{for} \ j \leftarrow n \ \mathbf{downto} \ 1 \\ \mathbf{do} \ B[C[A[j]]] \leftarrow A[j] \\ C[A[j]] \leftarrow C[A[j]] - 1 \end{cases}
\Theta(n+k)
```

- Running time: ⊕ (n+k)
- Extra Space: k
- K maybe large, for integers in 32-bit machine, k=2<sup>32-1</sup>
- It is efficient when  $k = \theta$  (n)

## Comparison of sorting algorithms

| Algorithm         | Best Case               | Worst Case              | Average  | Space<br>usage | Stable<br>(Ex.P216 4.51) |
|-------------------|-------------------------|-------------------------|----------|----------------|--------------------------|
| Insertion<br>Sort | n                       | n²/2                    | ⊕ (n²)   | In place       | Yes                      |
| Quick Sort        | nlgn                    | n²/2                    | ⊕ (nlgn) | Ign            | No                       |
| Mergesort         | nlgn/2                  | nlgn                    | ⊕ (nlgn) | n              | Yes                      |
| Heapsort          | 2nlgn /<br>nlgn(Accel.) | 2nlgn /<br>nlgn(Accel.) | ⊕ (nlgn) | In place       | No                       |
| Selection<br>Sort | n²/2                    | n²/2                    | ⊕ (n²)   | In place       | No                       |
| Bubble Sort       | n                       | n²/2                    | ⊕ (n²)   | In place       | Yes                      |
| Shell Sort        | _                       | _                       | _        | In place       | No                       |
| Count Sort        | n+k                     | n+k                     | ⊕ (n+k)  | k              | Yes                      |