

向量空间与维数

林胤榜

主要内容

- 1 线性空间
 - 线性空间的一些基本性质
 - 线性子空间
- 2 基, 维数, 坐标
 - ■基变换和坐标变换
- 3 线性映射

线性 (向量) 空间

回顾:

定义 (线性空间)

假设 V 是集合配上两个运算 + 和 ·,

$$(m法) +: V \times V \to V,$$

(数乘) $:: \mathbb{R} \times V \to V,$

使得以下条件成立: $\forall \mu, \nu, \omega \in V$, $\forall a, b \in \mathbb{R}$,

线性 (向量) 空间

回顾:

定义 (线性空间)

假设 V 是集合配上两个运算 + 和 ·,

$$(m法) +: V \times V \to V,$$

(数乘) $:: \mathbb{R} \times V \to V,$

使得以下条件成立: $\forall \mu, \nu, \omega \in V$, $\forall a, b \in \mathbb{R}$,

例子

 \mathbb{R}^n , $M_{m \times n}$, \mathbb{R} 上的连续/可导/可积函数.

线性空间的一些基本性质

设 V 为线性空间. 性质. 0 向量唯一.

线性空间的一些基本性质

设 V 为线性空间. 性质. 0 向量唯一. 0 •0

线性空间的一些基本性质

设 V 为线性空间. 性质. 0 向量唯一.

证明.

若有两个零向量 0_1 和 0_2 , 则 $0_1 = 0_1 + 0_2 = 0_2$.

性质, 每一个向量的负向量唯一, α 的负向量记为 $-\alpha$.

线性空间的一些基本性质

设 V 为线性空间. 性质. 0 向量唯一.

证明.

若有两个零向量 0_1 和 0_2 , 则 $0_1 = 0_1 + 0_2 = 0_2$.

性质. 每一个向量的负向量唯一. α 的负向量记为 $-\alpha$.

证明.

若 α 有两个负向量, 记为 β_1 和 β_2 , 则 $\alpha + \beta_1 = 0$. 两边加上 β_2 , 得 $\beta_2 = 0 + \beta_2 = (\beta_2 + \alpha) + \beta_1 = 0 + \beta_1 = \beta_1$. [

性质.
$$0 \cdot \alpha = 0, (-1) \cdot \alpha = -\alpha, \lambda \cdot 0 = 0, \lambda \in \mathbb{R}, \alpha \in V.$$

性质. $0 \cdot \alpha = 0, (-1) \cdot \alpha = -\alpha, \lambda \cdot 0 = 0, \lambda \in \mathbb{R}, \alpha \in V.$

证明.

$$0 \cdot \alpha + \alpha = (0+1)\alpha = 1 \cdot \alpha = \alpha \Rightarrow 0 \cdot \alpha + \alpha - \alpha = \alpha - \alpha = 0.$$
 两边加上 α 的负向量,

$$(-1) \cdot \alpha + \alpha = (-1+1)\alpha = 0 \cdot \alpha = 0 \Rightarrow (-1) \cdot \alpha = -\alpha.$$
$$\lambda \cdot 0 + \lambda v = \lambda(0+v)\lambda v \Rightarrow \lambda \cdot 0 = 0.$$

性质. 若 $\lambda \alpha = 0, \lambda \in \mathbb{R}, \alpha \in V$, 则 $\lambda = 0$ 或 $\alpha = 0$.

性质. $0 \cdot \alpha = 0, (-1) \cdot \alpha = -\alpha, \lambda \cdot 0 = 0, \lambda \in \mathbb{R}, \alpha \in V.$

证明.

$$0 \cdot \alpha + \alpha = (0+1)\alpha = 1 \cdot \alpha = \alpha \Rightarrow 0 \cdot \alpha + \alpha - \alpha = \alpha - \alpha = 0.$$
 两边加上 α 的负向量.

$$(-1) \cdot \alpha + \alpha = (-1+1)\alpha = 0 \cdot \alpha = 0 \Rightarrow (-1) \cdot \alpha = -\alpha.$$

$$\lambda \cdot 0 + \lambda v = \lambda(0+v)\lambda v \Rightarrow \lambda \cdot 0 = 0.$$

性质. 若 $\lambda \alpha = 0, \lambda \in \mathbb{R}, \alpha \in V$, 则 $\lambda = 0$ 或 $\alpha = 0$.

证明.

若
$$\lambda \neq 0$$
, 则 $\alpha = 1 \cdot \alpha = (\frac{1}{\lambda} \cdot \lambda)\alpha = \frac{1}{\lambda} \cdot 0 = 0$.

生成

定义

假设 a_1, \dots, a_m 是线性空间 V 中的元素. 记 a_1, \dots, a_m 的线性 组合的集合为

$$\mathrm{span}(a_1,\cdots,a_m)=\{k_1a_1+\cdots+k_ma_m\mid k_1,\cdots,k_m\in\mathbb{R}\}\subset V.$$

令 $L = \operatorname{span}(a_1, \dots, a_m)$. 注意到, L 在加法和数乘下封闭:

- $(k_1a_1 + \dots + k_ma_m) + (\ell_1a_1 + \dots + \ell_ma_m) = (k_1 + \ell_1)a_1 + \dots + (k_m + \ell_m)a_m \in L;$
- $\ell(k_1a_1 + \cdots + k_ma_m) = (\ell k_1)a_1 + \cdots + (\ell k_m)a_m \in L$. 容易看出 $(L, +, \cdot)$ 构成一个线性空间. 它是 V 的一个线性子空

容易看出 $(L,+,\cdot)$ 构成一个线性空间. 它是 V 的一个线性子空间.

000

线性子空间

有以下一般的定义:

定义 (P145 定义 2)

给定非空子集 $L \subset V$, 若 $(L, +, \cdot)$ 构成线性空间, 则 $L \in V$ 的一 个线性子空间, 记作 L < V.

定理

上述 $\operatorname{span}(a_1, \dots, a_m)$ 是 V 的线性子空间.

命题

子空间必包含 0 向量.

假设 $L \le V$. 若 $v \in L$, 则 $0 = 0 \cdot v \in L$ (数乘下封闭).

线性子空间

子空间的 (非) 例子

例子

- 1 {0} 和 ℝ 是 ℝ 所有的线性子空间.
- \mathbb{Z} R² 中所有过原点的直线.
- 3 ℝ3 中所有过原点的直线和平面.

|子空间的(非)例子

例子

- 1 {0} 和 ℝ 是 ℝ 所有的线性子空间.
- $2 \mathbb{R}^2$ 中所有过原点的直线.
- 3 ℝ3 中所有过原点的直线和平面.

例子 (非例子)

 \mathbb{R}^2 中不过原点的直线不是线性子空间.

线性空间

子空间的 (非) 例子

例子

- 1 {0} 和 ℝ 是 ℝ 所有的线性子空间.
- 2 ℝ² 中所有过原点的直线.
- 3 ℝ3 中所有过原点的直线和平面.

例子 (非例子)

 \mathbb{R}^2 中不过原点的直线不是线性子空间.

例子 (齐次线性方程组的解集)

$$\{X\mid AX=0\}$$

基

设 V 为线性空间. 希望在 V 中找到一组向量使得

- 1 它们线性无关;
- 2 它们的线性组合可以表示所有向量.

(条件1表示没有冗余,条件2表示足够.)

定义

若一组向量 $S = \{v_{\alpha}\}_{\alpha} \subset V(\text{不一定有限})$ 满足以上两个条件, 则称 $S \to V$ 的一组基.

观察.

 $S \subset V$ 是 V 的一组基当且仅当 S 是 V 的极大线性无关组.

维数,坐标

定义

假设 $S \subset V$ 是基. 若 S 是有限集, 则 S 的元素个数 n 称为 S 的 维数, 记为 dim V = n.

假设 $S = \{v_1, \dots, v_n\} \subset V$ 一组基, $w \in V$, 则 w 可由 S 线性表示,且表达式唯一,记为

$$w=a_1v_1+\cdots+a_nv_n.$$

向量 $(a_1, \dots, a_n) \in \mathbb{R}^n$ 称为 w 在基 S 下的坐标.

基变换

假设
$$A = (a_1, \dots, a_n)$$
 是 n 维向量空间 V 的一组基, $B = (b_1, \dots, b_n)$ 是另外一组基, 使得

$$b_1 = p_{11}a_1 + p_{21}a_2 + \cdots + p_{n1}a_n,$$

 $b_2 = p_{12}a_1 + p_{22}a_2 + \cdots + p_{n2}a_n,$
 \vdots
 $b_n = p_{1n}a_1 + p_{2n}a_2 + \cdots + p_{nn}a_n.$

那么

$$P = \begin{pmatrix} p_{11} & p_{12} & \cdots & p_{1n} \\ \vdots & & & \vdots \\ p_{n1} & p_{n2} & \cdots & p_{nn} \end{pmatrix}$$

可逆.

有

$$B=(b_1,\cdots,b_n)=(a_1,\cdots,a_n)P=AP,$$

称为基变换公式. 矩阵 P 称为从基 $A = (a_1, \dots, a_n)$ 到 $B = (b_1, \dots, b_n)$ 的过渡矩阵.

坐标变换

给定向量 $v \in V$, 记 v 在基 A 下的坐标为 $x \in \mathbb{R}^n$, 在 B 下的坐标为 $y \in \mathbb{R}^n$, 则

$$Ax = v = By$$
.

又因为 B = AP, 可以推得

$$y = P^{-1}x,$$

称为坐标变换公式.

假设 $\varphi: V \to W$ 是线性映射, 亦即对任意 $v_1, v_2 \in V$ 和 $\lambda \in \mathbb{R}$,

- 1 $\varphi(\mathbf{v}_1 + \mathbf{v}_2) = \varphi(\mathbf{v}_1) + \varphi(\mathbf{v}_2);$

定义

 Ξ φ 也是双射, 则称 φ 为线性同构, V 与 W 线性同构, 并记 $V \cong W$.

假设 $\varphi: V \to W$ 是线性映射, 亦即对任意 $v_1, v_2 \in V$ 和 $\lambda \in \mathbb{R}$,

- 1 $\varphi(\mathbf{v}_1 + \mathbf{v}_2) = \varphi(\mathbf{v}_1) + \varphi(\mathbf{v}_2);$

定义

若 φ 也是双射, 则称 φ 为线性同构, V 与 W 线性同构, 并记 $V \cong W$.

定理

给出 n 维向量空间 V 的一组基 $S = \{v_1, \cdots, v_n\}$, 等同于给出一个线性同构

$$\varphi \colon V \xrightarrow{\cong} \mathbb{R}^n,$$

$$w = a_1 v_1 + \dots + a_n v_n \mapsto (a_1, \dots, a_n)$$

解释.

- 给定一组基 $S = \{v_1, \dots, v_n\} \subset V$ 基, 如上定义 $\varphi: V \to \mathbb{R}^n$, 可以证明它是线性同构;
- 给定一个线性同构 $\varphi: V \to \mathbb{R}^n$, 记 $e_i = (0, \dots, 0, 1, 0, \dots, 0)$ (第 i 个坐标为 1, 其余为 0) 的原像为 v_i , 即 $\varphi(v_i) = e_i$. 则 $\{v_i\}_{i=1}^n$ 是 v 的一组基.

定义

称 $\{e_i\}_{i=1}^n$ 为 \mathbb{R}^n 的标准基.