Continuous Probability Distributions Lecture

1- Normal probability Distribution:

One of the most important continuous Probability distribution is normal distribution.

* Probability density function of normal distribution is:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(\frac{x-\mu}{6})^2}$$

$$-\infty < x < \infty$$

Properties:

- i) It is a bell shaped distribution.
- it peaks at a single value.

- about a vertical axis through the mean μ .
- variance = 6. It is denoted by:
- * Modal value

 $X \sim N(\mu, \sigma^2).$

- v) It ranges from so to so.
- vi) The mean, median and made are equal.
- vii) The total area under the normal curve (above the horizontal axis) is always equal to 1.
- viii) If $X \sim N(\mu, 6^2)$ and if $Y = a + b \times A$ then, $Y \sim N(a + b\mu, b^2 6^2)$

Y = a + b X

mean (Y) = a + b mean (x)

mean(Y) = a+by

Y = a + b X

Var(Y) = Var(a) + Var(bx)

 $= 0 + b^2 \operatorname{Var}(x)$

:. Var(y) = 62 62

* 3f
$$\times N(16, 100)$$
, and if $Y = 3X + 2$,
then $Y \sim N(50, 900)$.

ix) The sum of independent normal variables is a normal variable. i.e;

of
$$X_1 \sim N(\mu_1, \sigma_1^2)$$

and $X_2 \sim N(\mu_2, \sigma_2^2)$
then $X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

* 3f
$$X_1 \sim N(7, 36)$$
 and $X_2 \sim N(12, 64)$ also, $Y = X_1 + X_2$, then $Y \sim N(19, 100)$.

Revision:

- Areas under normal curve remains in certain fixed proportions within a specified number of standard deviations on either side of u.
 - My 46 will contain 68.26 %.
- 1) H± 36 will contain 95.44%
-) 4 ± 36 will contain 99.73%.

"Standard Normal Distribution

The distribution of a normal random variable with mean "O" and variance "I" is called a standard normal distribution. It is denoted by Z.

i.e; Z ~ N(0,1).

where

$$Z = \frac{X - \mu}{6}$$

* Under standing of tables of cumulative normal distribution.