السلسلة 01، الوحدة 1/ فيزياء

الشكل

t(min)

x(mmol)

0,5-

التمرين الاول:

نريد دراسة تطور أكسدة الكحول $C_3H_7 - OH$ كتلته المولية $M = 60g \cdot mol^{-1}$ و كتلته الحجمية بشوارد البرمنغانات (ذات اللون البنفسجي في المحلول الممدد) ، من أجل ذلك ، ho = 0 , 785 $g \cdot mL^{-1}$

. وحجم $ImL = V_2$ من الكحول السابق*

في لحظة نعتبرها مبدأ لقياس الزمن (t=0) نضع المزيج السابق في كأس بيشر موضوع فوق خلاط مفناطيسي .

آ - من بين الطرق التالية :

 • قياس الـناقلية • المعايرة اللونية • قياس الضغط، ما هي أفضل طريقة لمتابعة تطور هذا التفاعل مع ذكر السبب ب - أحسب كمية المادة الابتدائية (na, الشوارد

البرمنغانات و (n_{oz}) للكحول في المزيج الابتدائي .

جـ - أكتب معادلة تفاعل الأكسدة الإرجاعية علما أن الثنائيتين الداخلتين في التفاعل المدروس هما : . الحادث $(MnO_4^{-}_{(aq)} / Mn^{2+}_{(aq)})$, $(C_3H_6O_{(aq)} / C_3H_8O_{(aq)})$

 x_{max} د - أنجز جدول تقدم تفاعل أكسدة الكحول السابق ، و استنتج التقدم الأعظمي

من V'=10mL محجما t من البياني الذي يعبر عن تطور التفاعل أخذنا في لحظة t حجما V'=10mL من المزيج التفاعلي و وضعناه في الماء البارد ثم عايرنا شوارد البرمنغانات MnO₁ المتبقية بواسطة محلول لكبريتات MnO_{a}^{-} الحديد الثنائي ذي التركيز $C' = 0,50 \, mol \cdot L^{-1}$ ، فكان الحجم الضروري لاختفاء اللون البنفسجي لـ هو مرuو الذي سمح باستنتاج تقدم التفاعل في اللحظة t . أعيدت هذه الخطوات في لحظات مختلفة فتحصلنا على البيان x = f(t) كما في الشكل.

أ - لماذا وضعت العينة المراد معايرتها في الماء البارد ؟

ب - كيف تكشف عن حدوث التكافؤ تجريبيا ؟

جـ - عرف زمن نصف التفاعل $t_{1/2}$ ، ثم حدد قيمته .

2- يمكن نمذجة تفاعل المعايرة بالمعادلة التالية:

 $MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} + 5Fe^{2}_{(aq)}^{+} = 5Fe^{3}_{(aq)}^{+} + Mn^{2}_{(aq)}^{+} + 4H_{2}O_{(1)}^{-}$

C'ا و V_{ea} المتبقية و V_{ea} و MnO_{4} المتبقية و

C'و V_{eq} و n_{o1} بدلالة بجدول التقدم السابق عبّر عن تقدم التفاعل x بدلالة بجدول التقدم السابق عبّر عن تقدم

t = 10min جـ - أحسب حجم كبريتات الحديد الثنائي المستعمل في المعايرة عند اللحظة

التمرين الثاني:

-I محلول الماء الأكسجيني ($+ L_2O_2$) تركيزه $+ L_2O_3$ ، تم تمديده $+ L_2O_3$ مرة، نأخذ حجما قدره $+ L_2O_3$ من المحلول الممدد للماء الأكسجيني الذي تركيزه المولي ($+ L_2O_3$) و نعايره بوجود حمض الكبريت المركز بواسطة محلول برمنغنات البوتاسيوم ($+ L_2O_3$) تركيزه $+ L_3O_3$. نحصل على نقطة التكافؤ بعد إضافة حجم قدره $+ L_3O_3$ من محلول برمنغنات البوتاسيوم ، المعادلة المنمذجة لتفاعل المعايرة الحادثة هي :

$$2MnO_{4\,(aq)}^{-} + 5H_2O_{2\,(aq)} + 6H_{(aq)}^{+} = 2Mn_{(aq)}^{2+} + 5O_{2\,(g)} + 8H_2O_{(1)}$$

9 الداخلتين في التفاعل (Ox / Red) الداخلتين في التفاعل -1

2- أنجز جدول التقدم لتفاعل المعايرة الحادثة ؟

 \mathbf{V}_2 ، \mathbf{V}_1 ، \mathbf{C}_2 بدلالة \mathbf{C}_1 عبارة عبارة -3

 \cdot F معامل التمديد، \cdot C احسب -4

II- الماء الأكسجيني يتفكك ببطء شديد ، معادلة هذا التفاعل هي :

$$2\;H_{\;2}\;O_{\;2\;\;(aq)}\;\;=\;\;O_{\;2\;\;(g)}\;+\;\;2\;H_{\;2}O_{\;\;(1)}$$

 $V_0=80~mL$ نمزج حجم t=0~s نمزج حجم التفاعل . عند اللحظة $V_0=80~mL$ نمزج حجم $V_0=80~mL$ ، مع حجم $V_0=0.1~mol.L^{-1}$ ، مع حجم الماء الأكسجيني تركيزه $V_0=0.1~mol.L^{-1}$ ، مع حجم البيان التالى يبين تطور كمية المادة لغاز ثنائى الأكسجين بدلالة الزمن $V_0=0.1~mol.L^{-1}$.

1- أنجز جدول التقدم لهذا التفاعل ؟

2- استنتج العلاقة الموجودة بين تقدم التفاعل و كمية مادة غاز ثنائي الأكسجين ؟

-3 استنتج التقدم النهائي للتفاعل

 $t_{1/2}$ عيّن بيانيا زمن نصف التفاعل -4

5- اكتب عبارة سرعة التفاعل عند اللحظة (t)

و أحسب قيمتها عند اللحظة (t=0s) ؟

 $t=0~\mathrm{s}$ استنتج قيمة السرعة الحجمية لإختفاء الماء الأكسجيني عند اللحظة $t=0~\mathrm{s}$?

7 - ما هي العوامل الحركية في هذا التحول ؟

* بالتوفيق و النجاح *