Consolidation week Word Embeddings and End-to-end NLP

Venelin Kovatchev

Lecturer in Computer Science

v.o.kovatchev@bham.ac.uk

Outline

- Semantics
- Word embeddings
 - Count based
 - Word2vec
 - Elmo
- Compositionality and end-to-end

Mid-term exam

• Takes place on Monday (26th) in the lab session

• 10 multiple choice questions

• Cover weeks 1-5

• 20% of the final grade

Textbooks and materials for next few weeks

• Some parts of Speech and Language Processing

 Natural Language Processing with transformers (https://transformersbook.com/)

• Individual journal articles and conference papers

Semantics

What do the words mean?

- What does "A blue cat sat on the red mat" mean?
- What does "cat" mean?
- What does "a blue cat" mean?
- What does "the blue cat" mean?
- Now consider the sentence "Joanna sat on the red mat?"
 - What does "Joanna" mean?
 - Does the meaning change for someone who knows her compared with someone who doesn't?

Some concepts of semantics

- The meaning of a linguistic unit can be
 - A list of properties (small, carnivore, four legged, has fur)
 - A set of all entities that contain said properties ("A cat" can refer to any and all cats)
 - An abstract concept: some undetermined cat performing the act of sitting
 - A concrete and determined entity (Simon's cat, your friend Joanna)
 - A set of other related entities (e.g., a "cat" is a type of "animal")

• And humans still manage to talk to and understand each other, talk about concepts they have never seen or entities that don't exist (e.g., unicorns)

But wait! There is more

- How to go from the meaning of ["a blue cat", "sat", "on the red mat"] to a single meaning?
- What does "a blue cat sat on the red mat" mean?
 - It is not a cat, or a mat, or the color blue
 - It could be truth or a lie. Perhaps a blue cat has never sat on a red mat. Or blue cats don't exist

What we have learned so far

• Semantics is the study of meaning

How to represent meaning for algorithms?

- Do we need full theory of meaning?
 - Goal oriented representations

Pop quiz

- Which of the following are meaning representations
 - Part-of-speech tag
 - Word2vec
 - Syntactic tree
 - Tf-idf vector
 - ELMO
 - Wordnet synset

The distributional hypothesis and word embeddings

- The distributional hypothesis
 - What does it state?
 - How does it affect NLP?

- Word embeddings
 - Encoding words as "semantic" vectors

Count based vector representations

• Obtain a large corpus in the language/domain of interest

Define a context of co-occurrence

• What contexts can you think of?

Count and fill in a co-occurrence matrix

• Apply transformations (which?)

Word2Vec

• Learning embeddings directly from text

• A simple neural architecture

- Two algorithms
 - What is the difference between them?

Pop Quiz

- Negative sampling is used to:
 - Improve fairness in classifiers
 - Process negation in text
 - Improve computational efficiency
 - Create dictionaries of negation
 - Reduce the effect of positive sampling

Negative Sampling

• Global objective: maximize the log probability of the dataset of size T with a context size c

$$\frac{1}{T} \sum_{t=1}^{T} \sum_{-c \le j \le c, j \ne 0} \log p(w_{t+j}|w_t)$$

Calculate the probability of every word given context (or the other way around)

$$p(w_O|w_I) = \frac{\exp(v'_{w_O}^T v_{w_I})}{\sum_{w=1}^W \exp(v'_w^T v_{w_I})}$$

• Training with a softmax over the whole vocabulary is expensive

Convert the task into "classifying the correct objective" using a logistic

$$P(+|w,c) = \sigma(\mathbf{c} \cdot \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{c} \cdot \mathbf{w})}$$

Calculating similarity

- How do we calculate similarity between vectors?
- Dot product

dot product(
$$\mathbf{v}, \mathbf{w}$$
) = $\mathbf{v} \cdot \mathbf{w} = \sum_{i=1}^{N} v_i w_i = v_1 w_1 + v_2 w_2 + ... + v_N w_N$

Cosine

$$cosine(\mathbf{v}, \mathbf{w}) = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} = \frac{\sum_{i=1}^{N} v_i w_i}{\sqrt{\sum_{i=1}^{N} v_i^2} \sqrt{\sum_{i=1}^{N} w_i^2}}$$

Difference between count-based vectors and w2v

Are count based vectors word embeddings?

Are tf-idf vectors word embeddings?

Can you list some differences between count-based vectors and word embeddings?

ELMO

• What is the most important difference between ELMO and word2vec?

What makes ELMO representations "deep"?

• What is the training objective behind ELMO?

Compositionality and End-to-end

Feature engineering

Analyze the problem, the input, and the desired outcome

• Explore existing resources and processing techniques

• Select the most relevant features and feature-extraction methods

Empirically test what works best

Text classification using features

- Step by step process
- Involves active human engagement
 - Feature selection and extraction

• Data is fed into a classifier (Logistic, NB, SVM)

• Iteratively improve feature selection and model (hyper) parameters

Why not go end to end?

- Do we need full pipelines?
- Embeddings make it possible to "feed" text directly into models

- Is it possible to go fully end-to-end and eliminate
 - Accumulation of errors
 - Human labor and supervision
 - (In)compatibility issues between elements?

Embeddings and the problem of compositionality

• Embeddings represent individual words

NLP deals with processing texts

- How to go from word representations to text representations?
 - Can you list different compositional approaches?

Vector operations

- Vector addition
- Pointwise vector multiplication
- Vector concatenation

Complex matrix-vector operations

• Which of these operations consider text structure?

Compositionality using neural networks

Convert words into word vectors

Let the neural network learn compositionality

• What architectures have we discussed?

• What determines the "weights" of the compositionality?

Multi-layer perceptron

•
$$y = softmax(h_1 \cdot W_2 + b_2)$$

•
$$h_1 = f(h_0 \cdot W_1 + b_1)$$

•
$$h_0 = f(x \cdot W_0 + b_0)$$

Non-linear functions f:

• Sigmoid:
$$\sigma(x) = \frac{1}{\exp(-x)}$$

• Hyperbolic:
$$tanh(x) = \frac{1 - exp(-2x)}{1 + exp(-2x)}$$

• ReLU: rect(x) = max(0, x)

Recurrent neural networks

- How to represent text of varying length?
- Copy the network for each word
- At each timestep t, input is X_t and h_(t-1)
- I + like + tacos + "al pastor"
- Left to right, combining words one at a time
- Sequence classification
- Sequence to sequence

RNNs (formally)

- At each timestep
 - Input x_t, and previous hidden state h_(t-1)
 - Three sets of weights:
 - input (W_x), hidden (W_h), and output (W_o)
 - $h_t = f_h(W_x x_t + W_h h_{(t-1)})$
 - $O_t = f_o(W_o h_t)$
 - $J_t = f(O_t, y_t)$
- Pop-quiz: What are we predicting at O?

Neural language modeling with RNNs

- More formally:
 - $h_t = tanh(W_x x_t + W_h h_{(t-1)})$
 - $\hat{y}_t = softmax(W_y h_t)$
 - $J_t = -\log \hat{y}_{t, \text{ correct}}$ (- log prob the word at t+1)

• $J_{\text{sent}} = \frac{1}{T} \sum_{t=1}^{T} -log \ \hat{y}_{t, \text{ correct}}$

Pop quiz: What is "weight tying" in RNNs?

Stacked and bidirectional RNNs

• The basic RNN is a powerful tool

• We can go deeper

Stacking RNNs

Bidirectional RNNs

LSTM

- Popular variation of RNN that address native limitations
- Same recurrent concept (copy the network)
- Three different "gates":
 - Forget gate
 - Input gate
 - Output gate
- Gates manipulate the flow of information through time
 - Addressing conflicting objectives

Understanding the gates

- All gates have the same format:
 - A feedforward layer followed by a sigmoid
- The gates are filtering out information at a certain part of the network
- Each gate has two important aspects:
 - How to calculate the filter
 - What is the input that the filter is applied to
- Pop quiz: which memory we use to calculate gates?

What we have learned so far

Convolutional neural networks (CNN)

- Another popular architecture for NLP
 - Deals with text of various size

• Inspired by computer vision success

- Applying filters of different size to the input (2,3,4) + pooling
 - Analogous to n-grams

Convolutional neural networks (CNN)

Pop quiz: input size

- Can each of these architecture process text of infinite size
 - RNN
 - MLP
 - CNN
 - LSTM
 - Bi-LSTM

Compositionality

- How each network "composes" meaning
 - Feed-forward network
 - Linear combination of words (no order) + activation function
 - RNN/LSTM
 - Recursively, word by word (linear order)
 - CNN
 - Locally, similar to n-gram (proximity window, limited order importance)

Multimodality and multilinguality

- Embeddings and multilinguality
 - Words of any language can be mapped to vectors
 - Words of different languages can be mapped to the same space
 - Mapping and similarity across languages

- Embeddings and multimodality
 - Images, sound, and other modalities can also be mapped to vectors (e.g., using CNNs)
 - Shared multimodal spaces (vision + language)

The first "should I worry about my job"

Rapid change in technologies can be stressful

- Three "major" milestones in NLP in the past 10 years
 - Word2Vec and end-to-end models (BiLSTM, CNN) 2013
 - BERT (and the transformer family) 2018
 - Large generative language models (GPT3, ChatGPT, Bard) 2022 2023

• There are still many unsolved problems

Some concerns

Explainability and Interpretability

- Interpreting feature-based models
 - Feature values ("v1agra") + weights = prediction ("spam")

- Interpreting end-to-end neural networks
 - Feature values (300d dense vector)
 - weights (input, forget, output gates)
 - different types of nonlinearity

Explainability and Interpretability

• Why did you do that?

• How did you do that? What makes you say that?

• How can I verify your results?

Bias, Guarantees, and Robustness

Does the algorithm discriminate?

• Does the algorithm contain bias with respect to race, gender, religion, sexual orientation?

• Does the algorithm guarantee consistent and robust performance?

Is the algorithm secure from adversarial attacks?

New fields of study in NLP in the are of deep learning

• Explainability of neural networks

Algorithmic fairness

• Evaluation, unit testing, and adversarial attacks for NLP

Data centric Al

Conclusions

Embeddings in NLP

Embeddings changed the way we do NLP

- Valuable stand-alone resource
 - Can be used to query lexical information
 - Can be used as automatically extracted features
 - Can be used for a simple text representation
 - Static and dynamic embeddings, polisemy

• Enable end-to-end neural models

End-to-end neural models

- Minimizing human interaction and supervision
 - Remove the need of feature engineering
 - Only require labeled data for classification tasks

• Improving efficiency and removing accumulation of errors in pipeline

• Enabling full training without depending on external resources

End-to-end neural models

- Introducing new challenges and problems
 - Increased computational complexity
 - Need for more data
 - Error accumulation becomes internal
 - Difficult to interpret and debug
 - Potentially containing biases
 - Ultimately re-invent many of the pipeline parts during training