Основы построения защищенных баз данных

Ваша команда по спасению компьютерной безопасности $12~{\rm мартa}~2020~{\rm r}.$

Самый надежный в мире алгоритм
Всегда делать исключительно то, что горит
В самый прекрасный последний момент
Ведь для самых важных дел в принципе лучше времени нет

Anacondaz - Факап

Содержание

1 Концепция безопасности БД		ия безопасности БД
	1.0.1	Понятие безопасности БД
	1.0.2	Угрозы безопасности БД: общие и специфичные
	1.0.3	Требования безопасности БД
	1.0.4	Защита от несанкционированного доступа
	1.0.5	Защита от вывода
	1.0.6	Целостность БД
	1.0.7	Аудит
	1.0.8	Многоуровневая защита
	1.0.9	Типы контроля безопасности: потоковый, контроль вывода, контроль досту-
		па[None]

1 Концепция безопасности БД

1.0.1 Понятие безопасности БД

Для того чтобы иметь общую точку старта нам придется дать пару определений, я постараюсь быстро разобраться с обязательной копипастой и перейти к делу. Итак:

База данных 1 — это организованная коллекция данных, обычно хранящихся и доступных в электронном виде из компьютерной системы. Там, где базы данных более сложны, они часто разрабатываются с использованием формальных методов проектирования и моделирования.

Система управления базами данных (СУБД)¹ – это программное обеспечение, которое взаимодействует с конечными пользователями, приложениями и самой базой данных для сбора и анализа данных. Программное обеспечение СУБД дополнительно включает в себя основные средства, предоставляемые для администрирования базы данных. Общая сумма базы данных, СУБД и связанных приложений может называться «системой базы данных». Часто термин «база данных» также используется для обозначения любой СУБД, системы баз данных или приложения, связанного с базой данных.

Но если вас вдруг спросят, то смело отвечайте:

Согласно гражданскому кодексу Российской Федерации (часть четвертая) от 18.12.2006 N 230-ФЗ (ред. от 18.07.2019), базой данных является представленная в объективной форме совокупность самостоятельных материалов (статей, расчетов, нормативных актов, судебных решений и иных подобных материалов), систематизированных таким образом, чтобы эти материалы могли быть найдены и обработаны с помощью электронной вычислительной машины (ЭВМ).

И если с просто базами данных все более-менее понятно, то в тот момент, когда нам приходиться говорить о вопросах безопасности, все превращается в классическую задачу о двух стульях: как надо и как в законе написано. (Ну или пафосно перефразируя) Вопросы информационной безопасности баз данных целесообразно рассматривать с двух взаимодополняющих позиций (Лихоносов А. Г. 2011)²:

- оценочные стандарты, направленные на классификацию информационных систем и средств их защиты по требованиям безопасности
- технические спецификации, регламентирующие различные аспекты реализации средств защиты

Попытка защищать все и сразу обречена на провал, так что довольно логичным кажется сосредоточится на обеспечении безопасности четырех уровней информационной системы (Лихоносов А. Г. 2011):

- 1. уровня прикладного программного обеспечения, отвечающего за взаимодействие с пользователем
- 2. уровня системы управления базами данных, обеспечивающего хранение и обработку данных информационной системы
- 3. уровня операционной системы, отвечающего за функционирование СУБД и иного прикладного программного обеспечения
- 4. уровня среды доставки, отвечающего за взаимодействие информационных серверов и потребителей информации

¹Нагло скопипизженно с вечно загнивающей

²Мне стыдно указывать ресурс, где я взял этот кусок, так что пусть будет pornhub

Теперь уже можно ввести недостающие определения. Я вижу как вы соскучились по определения 3 .

Если БД рассматривать только как совокупность данных, то можно использовать следующее определения:

- **Безопасность информации [данных]**: Состояние защищенности информации [данных], при котором обеспечены ее [их] конфиденциальность, доступность и целостность.
- Информационная система (ИС) система, предназначенная для хранения, поиска и обработки информации, и соответствующие организационные ресурсы (человеческие, технические, финансовые и т. д.), которые обеспечивают и распространяют информацию.

Если БД рассматривать как информационную систему, то можно использовать следующие определения:

- Безопасность ИС (БД) можно определить как состояние защищенности ИС от угроз ее нормальному функционированию. Под защищенностью понимается наличие средств ИС и методов их применения, обеспечивающих снижение или ликвидацию негативных последствий, связанных с реализацией угроз. Изложенный подход к определению понятия безопасности ИС предполагает, что перечень и содержание угроз достаточно хорошо определены и достаточно стабильны во времени.
- Безопасность ИС (БД) можно определить как свойство системы адаптироваться к агрессивным проявлениям среды, в которой функционирует система, обеспечивающее поддержку на экономически оправданном уровне характеристики качества системы. В сформулированном определении основной акцент делается не на перечне и содержании угроз, нейтрализация которых обеспечивается, а на особую характеристику качества системы. При этом основной критерий качества ИС является экономическим, т.е. оценка средств и методов обеспечения безопасности осуществляется на основе затрат на реализацию механизмов безопасности и потенциальных выгод от недопущения ущерба, связанного с целенаправленным или случайным агрессивным проявлением среды.

Ну и не одно введение не может обойтись без заклинания

Проблема обеспечения безопасности автоматизированных информационных систем может быть определена как решение трех взаимосвязанных задач по реализации требуемого уровня:

• конфиденциальности – обеспечения пользователям доступа только к данным, для которых пользователь имеет явное или неявное разрешение на до-

 $^{^{3}{\}rm A}$ эти определения я взял с прошлого года

ступ

- **целостности** обеспечения защиты от преднамеренного или непреднамеренного изменения информации или процессов ее обработки
- доступности обеспечения возможности авторизованным в системе пользователям доступа к информации в соответствии с принятой технологией

1.0.2 Угрозы безопасности БД: общие и специфичные

Интуитивное понимание угрозы безопасности можно сформулировать как нарушение великолепной тройки: $\overline{\text{Трус}}$, $\overline{\text{Балбес}}$ и $\overline{\text{Бывалый}}$ конфиденциальность, целостность, доступность. Для формального диалога можно использовать что-то около⁴:

Угрозой информационной безопасности автоматизированный информационной системе (АИС) назовем возможность воздействия на информацию, обрабатываемую в системе, приводящего к искажению, уничтожению, копированию, блокированию доступа к информации, а также возможность воздействия на компоненты информационной системы, приводящего к утрате, уничтожению или сбою функционирования носителя информации или средства управления программно-аппаратным комплексом системы.

Для того, чтобы разобраться во всем зоопарке перечисленных воздействий на систему нам придется все это дело классифицировать. Для удобства будем сразу смотреть на это со стороны обороняющего, то есть по источнику воздействия. В этом контексте они довольно естественно разбиваются на внутренние и внешние. Для описания внешних угроз необходимо учитывать объекты воздействия. (Под объектами воздействия понимаются объекты, которые могут подвергнуться атакам или могут стать причиной их возникновения.) (Утебов Данияр Рашидович 2008)

Внешними дестабилизирующими факторами, создающими угрозы безопасности функционированию систем баз данных и СУБД, являются:

- умышленные, деструктивные действия лиц с целью искажения, уничтожения или хищения программ, данных и документов системы, причиной которых являются нарушения информационной безопасности защищаемого объекта
- искажения в каналах передачи информации, поступающей от внешних источников, циркулирующих в системе и передаваемой потребителям, а также недопустимые значения и изменения характеристик потоков информации из внешней среды и внутри системы
- сбои и отказы в аппаратуре вычислительных средств
- вирусы и иные деструктивные программные элементы, распространяемые с использованием систем телекоммуникаций, обеспечивающих связь с внешней средой или внутренние коммуникации распределенной системы баз данных
- изменения состава и конфигурации комплекса взаимодействующей аппаратуры системы за пределы, проверенные при тестировании или сертификации системы

 $^{^4}$ Нагло взято отсюда

Внутренними источниками угроз безопасности баз данных и СУБД являются:

- системные ошибки при постановке целей и задач проектирования автоматизированных информационных систем и их компонент, допущенные при формулировке требований к функциям и характеристикам средств обеспечения безопасности системы
- ошибки при определении условий и параметров функционирования внешней среды, в которой предстоит использовать информационную систему и, в частности, программно-аппаратные средства защиты данных
- ошибки и несанкционированные действия пользователей, административного и обслуживающего персонала в процессе эксплуатации системы
- недостаточная эффективность используемых методов и средств обеспечения информационной безопасности в штатных или особых условиях эксплуатации системы

Если у вас разбегаются глаза, это нормально – здесь перечислены атаки на всех уровнях. Что за уровни? Напоминаю:

- На уровне сети
 - Activex-объект
 - Интерфейсы: OLE DB, ADO, ODBC, JDBC
 - Протоколы: TCP/IP, IPX/SPX, Named Pipes, Multiprotocol
 - Рабочие станции
 - Серверы
 - Маршрут
 - URL
- На уровне ОС
 - Аппаратное обеспечение
 - Программное обеспечение
 - Файлы базы данных
 - Файлы журнала транзакций
 - Файлы резервного копирования
 - Transact-SQL, PLSQL
 - Службы: MSSQLServer, SQLServerAgent, TNSListener и т. д.
- На уровне БД
 - Пользователи
 - Роли
 - Роли приложения
 - Диаграммы

- Представления
- Таблины
- Хранимые процедуры
- Определения по умолчанию
- Правила
- Функции
- Тип данных

Дальше, также легко и непринужденно можно разбить все атаки на СУБД на:

- 1. атаки на уровне ОС
- 2. атаки на уровне сети
- 3. атаки на уровне БД

Атаки на ОС, в которых функционирует СУБД, возникают гораздо чаще, так как защитить ОС гораздо сложнее, чем СУБД. Это обусловлено тем, что число различных типов защищаемых объектов в современных ОС может достигать нескольких десятков, а число различных типов защищаемых информационных потоков – нескольких сотен. Возможность практической реализации той или иной атаки на ОС в значительной мере определяется архитектурой и конфигурацией ОС. Тем не менее существуют атаки, которые могут быть направлены практически на любые ОС:

- 1. Кража ключевой информации (паролей)
- 2. Подбор пароля
- 3. Сканирование жестких дисков компьютера
- 4. Превышение полномочий
- 5. Атаки класса «Отказ в обслуживании»

Наиболее опасные атаки на СУБД исходят из сетей. На уровне сетевого программного обеспечения возможны следующие атаки на СУБД:

- 1. Прослушивание канала
- 2. Перехват пакетов на маршрутизаторе
- 3. Создание ложного маршрутизатора
- 4. Навязывание пакетов
- 5. Атаки класса «Отказ в обслуживании»

Теперь спускаемся на уровень самой БД. Для простоты восприятия разобьем все кучкам угроз конфиденциальности, целостности и доступности(Опять же, согласно (Утебов Данияр Рашидович 2008)):

- К угрозам конфиденциальности информации можно отнести следующие:
 - 1. Инъекция SQL. Во многих приложениях используется динамический SQL формирование SQL-предложений кодом программы путем конкатенации строк и значений параметров. Зная структуру базы данных, злоумышленник может либо выполнить хранимую программу в запросе, либо закомментировать «легальные» фрагменты SQL-кода, внедрив, например, конструкцию UNION, запрос которой возвращает конфиденциальные данные. В последнее время злоумышленник может использовать специальные программы, автоматизирующие процесс реализации подобных угроз.
 - 2. Логический вывод на основе функциональных зависимостей. Пусть дана схема отношения: $R(A_1,\ldots,A_n)$. Пусть $U=\{A_1,\ldots,A_n\}, X,Y$ подмножества из U. X функционально определяет Y, если в любом отношении r со схемой $R(A_1,\ldots,A_n)$ не могут содержаться два кортежа с одинаковыми значениями атрибутов из X и с различными из Y. В этом случае имеет место функциональная зависимость, обозначаемая $X\Rightarrow Y$. В реальных БД при наличии сведений о функциональных зависимостях злоумышленник может вывести конфиденциальную информацию при наличии доступа только к части отношений, составляющих декомпозированное отношение.
 - 3. Логический вывод на основе ограничений целостности. Для кортежей отношений в реляционной модели данных можно задать ограничения целостности логические условия, которым должны удовлетворять атрибуты кортежей. При этом ограничение целостности может быть задано в виде предиката на всем множестве атрибутов кортежа. В случае попытки изменить данные в таблице, СУБД автоматически вычисляет значение этого предиката, и в зависимости от его истинности операция разрешается или отвергается. Многократно изменяя данные и анализируя реакцию системы, злоумышленник может получить те сведения, к которым у него нет непосредственного доступа. К этому виду угроз можно отнести также анализ значений первичных/вторичных ключей.
 - 4. Использование оператора UPDATE для получения конфиденциальной информации. В некоторых стандартах SQL пользователь, не обладая привилегией на выполнение оператора SELECT, мог выполнить оператор UPDATE со сложным логическим условием. Так как после выполнения оператора UPDATE сообщается, сколько строк он обработал, фактически пользователь мог узнать, существуют ли данные, удовлетворяющие этому условию.
- К угрозам целостности информации, специфические для СУБД можно отнести следующие:
 - 1. С помощью SQL-операторов UPDATE, INSERT и DELETE можно изменить данные в СУБД. Опасность заключается в том, что пользователь, обладающий соответствующими привилегиями, может модифицировать все записи в таблице.
- К угрозам доступности для СУБД можно отнести следующие:
 - 1. Использование свойств первичных и внешних ключей. В первую очередь отнесем сюда свойство уникальности первичных ключей и наличие ссылочной целостности. В том случае, если используются натуральные, а не генерируемые системой значения первичных ключей, может создаться такая ситуация, когда в таблицу невозможно будет вставить

новые записи, так как там уже будут записи с такими же значениями первичных ключей. Если в БД поддерживается ссылочная целостность, можно организовать невозможность удаления родительских записей, умышленно создав подчиненные записи.

- 2. Блокировка записей при изменении. Заблокировав записи или всю таблицу, злоумышленник может на значительное время сделать ее недоступной для обновления.
- 3. Загрузка системы бессмысленной работой. Злоумышленник может выполнить запрос, содержащий декартовое произведение двух больших отношений. Мощность декартового произведения двух отношений мощности N_1 и N_2 равна $N_1 \cdot N_2$. Это означает, что при выдаче злоумышленником запроса вида SELECT * FROM Tab1, Tab1 ORDER BY 1, где мощность отношения (количество строк в таблице Tab1) $N_1 = 10000$, мощность результирующего отношения будет $N = N_1^2 = 10000^2$. Вычисление соединения и сортировка результирующего отношения потребуют значительных ресурсов системы и отрицательно скажутся на производительности операций других пользователей.
- 4. Использование разрушающих программных средств. Например, атака типа «троянский конь» запуск пользователями программ, содержащих код, выполняющий определенные действия, внедренный туда злоумышленником.

1.0.3 Требования безопасности БД

5

1.0.4 Защита от несанкционированного доступа

6

1.0.5 Защита от вывода

7

- 1.0.6 Целостность БД
- 1.0.7 Аудит
- 1.0.8 Многоуровневая защита
- 1.0.9 Типы контроля безопасности: потоковый, контроль вывода, контроль доступа[None]

Список литературы

Утебов Данияр Рашидович, Белов Сергей Валерьевич (2008). «Классификация угроз в системах управления базами данных». В: Вестник Астраханского государственного технического университета 1, с. 87—92. URL: https://cyberleninka.ru/article/n/klassifikatsiya-ugroz-v-sistemah-upravleniya-bazami-dannyh/viewer.

 $^{^{5}}$ Прошлый год

 $^{^6\}Pi$ рошлый год

⁷Взял hrefhttp://www.e-biblio.ru/book/bib/01 informatika/b baz dan/sg.htmlздесь

Лихоносов А. Г. (2011). Интернет-курс по дисциплине Безопасность баз данных. URL: http://www.e-biblio.ru/book/bib/01_informatika/b_baz_dan/sg.html (дата обр. 01.03.2020).