Recitation 3

Two's complement

$$B2T_w(\vec{x}) \doteq -x_{w-1}2^{w-1} + \sum_{i=0}^{w-2} x_i 2^i$$

Flip the bits, add 1:

e.g.:

+1:0001

-1: 1111

+2: 0010

-2: 1110

One's complement

 Inverting all the bits in the binary representation of the number:

```
e.g.:
```

+1:0001

-1: 1110

+2: 0010

-2: 1101

Arithmetic

• Addition:
$$x +_w^u y = \begin{cases} x + y, & x + y < 2^w \\ x + y - 2^w, & 2^w \le x + y < 2^{w+1} \end{cases}$$

- Subtraction: $-\frac{u}{w}x = \begin{cases} x, & x = 0 \\ 2^w x, & x > 0 \end{cases}$
- Multiplication: $x *_{w}^{u} y = (x \cdot y) \mod 2^{w}$
 - Left shift: x*8 = x << 3
- Division by power of two: right shift
 - x/8 = x >> 3

Mode		x		у		χ· у	Trunc	ated $x \cdot y$
Unsigned	5	[101]	3	[011]	15	[001111]	7	[111]
Two's comp.	-3	[101]	3	[011]	-9	[110111]	-1	[111]
Unsigned	4	[100]	7	[111]	28	[011100]	4	[100]
Two's comp.	-4	[100]	-1	[111]	4	[000100]	-4	[100]
Unsigned	3	[011]	3	[011]	9	[001001]	1	[001]
Two's comp.	3	[011]	3	[011]	9	[001001]	1	[001]

k	>> k (Binary)	Decimal	-12340/2k
0	1100111111001100	-12340	-12340.0
1	1110011111100110	-6170	-6170.0
4	11111100111111100	-772	-771.25
8	1111111111001111	-49	-48.203125