Chapter 1

Automorphism

Definition 1 (Automorphism). An automorphism of a group G is an isomorphism of G onto itself.

Theorem 1.1. The set Aut(G) of all automorphisms of a group G is a group under the operation of composition of mappings.

Proof. Here Aut(G) is the set of all automorphisms of a group G and the operation is the composition of mappings.

Let $f, g \in Aut(G)$. Then the composite map $g \circ f$ is bijective, because f and g are bijective.

Using the hypotheses that f and g are group homomorphisms, we can conclude that $g \circ f$ is also a group homomorphism, because

$$(g \circ f)(ab) = g(f(ab))$$

$$= g(f(a) f(b))$$

$$= g(f(a)) g(f(b))$$

$$= (g \circ f)(a) (g \circ f)(b)$$

So, $g \circ f \in Aut(G)$. This is the closure property.

The associative law holds for Map(G), the set of all mappings of G into itself; so it holds in Aut(G), because Aut(G) is closed under composition of mappings.

Clearly, 1_G is the identity element of Aut(G).

If $f \in Aut(G)$, the inverse mapping $f^{-1}: G \to G$ exists and is likewise bijective. Let $f \in Aut(G)$ and $a, b, x, y \in G$ such that f(a) = x and f(b) - y. Then we have $a = f^{-1}(x)$ and $b = f^{-1}(y)$.

Since f is a group homomorphism, we have f(ab) = f(a)f(b) = xy. It gives, $f^{-1}(xy) = ab = f^{-1}(x)f^{-1}(y)$. This implies that f^{-1} is also a group homomorphism.

Hence, $f^{-1} \in Aut(G)$.

Therefore, Aut(G) is a group under composition of mappings.

1.1 Inner Automorphisms

For any fixed $a \in G$, we define a mapping $f_a : G \to G$ by setting $f_a(x) = axa^{-1}$. <u>Claim.</u> $f_a \in Aut(G)$ for every $a \in G$.

Isomorphism: A bijective group homomorphism is called an isomorphism.

¹Homomorphism: Suppose G, G' are multiplicative groups. A mapping $f: G \to G'$ is called a group homomorphism iff f(ab) = f(a)f(b) holds for all $a, b \in G$.

Proof. f_a is injective (by the cancellation law), for

$$f_a(x) = f_a(y)$$

$$\Rightarrow axa^{-1} = aya^{-1}$$

$$\Rightarrow x = y.$$

 f_a is surjective, because

$$f_a(a^{-1}xa)$$

$$= a(a^{-1}xa)a^{-1}$$

$$= x.$$

 f_a is group homomorphism, because for all $x, y \in G$, we have

$$f_a(xy)$$

$$= a(xy)a^{-1}$$

$$= (axa^{-1})(aya^{-1})$$

$$= f_a(x)f_a(y).$$

Definition 2 (Inner Automorphism). For any fixed $a \in G$ the mapping $f_a : G \to G$ defined by $f_a(x) = axa^{-1}$ is called the inner automorphism determined by a.

Theorem 1.2. The set Inn(G) of all inner automorphisms of a group G is a subgroup of Aut(G).

Proof. The relation $f_a \circ f_b = f_{ab}$ is the key.

This is easily proved, for

$$(f_a \circ f_b)(x) = f_a(f_b(x))$$

$$= f_a(bxb^{-1})$$

$$= a(bxb^{-1})a^{-1}$$

$$= (ab)x(ab)^{-1}$$

$$= f_{ab}(x) \quad \text{holds for all } x \in G$$

So, Inn(G) Is closed under composition of mappings.

The identity mapping l_G belongs to Inn(G), because $f_e = 1_G$.

The inverse of f_a , which is obviously an automorphism, is the inner automorphism determined by a^{-1} , because

$$f_a \circ f_{a^{-1}} = f_{aa^{-1}} = f_e = 1_G$$

and

$$f_{a^{-1}} \circ f_a = f_{a^{-1}a} = f_e = 1_G$$

So, Inn(G) is a subgroup of Aut(G). It remains to show that Inn(G) is a normal subgroup of Aut(G). For any $\sigma \in Aut(G)$, we have $\sigma \circ f_a \circ \sigma^{-1} = f_{\sigma(a)}$, because

$$(\sigma \circ f_a \circ \sigma^{-1})(x) = (\sigma \circ f_a)(\sigma^{-1}(x))$$

$$= \sigma(a\sigma^{-1}(x)a^{-1})$$

$$= \sigma(a)\sigma(\sigma^{-1}(x))\sigma(a^{-1})$$

$$= \sigma(a)x\sigma(a^{-1})$$

$$= \sigma(a)x(\sigma(a))^{-1}$$

$$= f_{\sigma(a)}(x) \in Inn(G)$$

So, Inn(G) is a normal subgroup of Aut(G)

Theorem 1.3. $Inn(G) \cong G/Z$, where Z denotes the center of G.

Proof. Define a mapping $\psi: G \to Inn(G)$ by setting $\psi(a) = f_a$. We have $f_a \circ f_b$, for

$$(f_a \circ f_b)(x) = f_a(f_b(x))$$

$$= f_a(bxb^{-1})$$

$$= a(bxb^{-1})a^{-1}$$

$$= (ab)x(ab)^{-1}$$

$$= f_{ab}(x) \quad \text{holds for all } x \in G$$

 ψ is a group homomorphism, for

$$\psi(ab) = f_{ab} = f_a \circ f_b = \psi(a) \circ \psi(b)$$
 holds for all $a, b \in G$

What is $\ker \psi$?

$$a \in \ker \psi \Leftrightarrow \psi(a) = f_e(a)$$

 $\Leftrightarrow f_a = 1_G$
 $\Leftrightarrow f_a(x) = 1_G(x)$ holds for every $x \in G$
 $\Leftrightarrow axa^{-1} = x$ holds for every $x \in G$
 $\Leftrightarrow ax = xa$ holds for every $x \in G$
 $\Leftrightarrow a \in Z$

This proves $\ker \psi = Z$.

By the first isomorphism theorem, we get

$$G/Z \cong Inn(G)$$

Therefore, $Inn(G) \cong G/Z$, because being isomorphism is a symmetric relation.

Example. Show that the automorphism group of Klein four-group G is isomorphic to the symmetric group S_3 .

Proof. Being abelian, the identity mapping is the only inner automorphism. In any automorphism the identity element is mapped onto itself; so, the three non-identity elements of G are permuted amongst themselves. Therefore, every automorphism is an element of S_3 .

Conversely, if σ is any permutation on three letters, and x, y, z are three non-identity elements of G in any order, then xy = z (by the group table of the Klein four-group G).

By the same argument, $\sigma(x)$ $\sigma(y) = \sigma(z)$. Extend σ to G by setting $\sigma(e) = e$; this extended mapping is then a bijective homomorphism of G.

Hence, $Aut(G) \cong S_3$ is proved.