Tune-Up: Clock Arithmetic

Thm (2010) "Non-Conventional" ergodic theorem:

- $T: \mathbb{Z}^r \curvearrowright (X, \Sigma, \mu)$ commuting probability-preserving \mathbb{Z}^r actions
- $(I_N)_{N>1}$ Følner sequence of subsets of \mathbb{Z}^r .
- $(a_N)_{N\geq 1}$ sequence of points in \mathbb{Z}^r
- $f_1, f_2, \dots f_d \in L^{\infty}(\mu)$

The sequence of "non-conventional" ergodic averages converges in $L^2(\mu)$.

$$\frac{1}{|I_N|} \sum_{n \in I_n + a_N} \prod_{i=1}^d f_i \circ T_i^n$$

Let's try a re-phrasing of the theorem.

Thm (2010) The sequence x_n converges. $x_n \to x$.

Let's try with a couple of more details. We have the sequence of averages of other functions.

Thm (2010) The sequence of functions $\operatorname{Avg}_1(f),\ldots\operatorname{Avg}_n(f)$ converges in the function space $L^2(\mu)$. Here $Avg_n=\sum_{i=0}^{n-1}T^i$ or "shuffle n times", we have separated the procedure from the thing it's acting on.

Ex \mathbb{Q}^{\times} is a multiplicative group. I am being sloppy we could write $\mathbb{Q}^{\times} \simeq \mathbb{Z}^{\infty}$. This is a contradiction because we could write an equally true statement for any number field $F^{\times} \simeq \mathbb{Z}^{\infty}$. The term seems to be "loclly compact abelian group".

 $\mathbf{Ex} \times 2 \times 3$ these are commuting operations. The arithmetic makes it instantly clear even though

- "divide by 2 parts and shuffle"
- "divide by 3 parts and shuffle"

could be very different if we switch the operations.										
d=1 book ¹		s the	Von	Neumann	ergodic	theorem	which	is already	in the	text-
Refe	erence	es								
				he Norm 5.0320	Converg	ence of	non-c	onvention	al ergo	odic
¹ it's	new textb	ook as	of 2011							