Slides: Video 9.2.1 Time-dependent perturbation basics

Text reference: Quantum Mechanics for Scientists and Engineers

Section 7.1

For time-dependent problems

consider some time-dependent perturbation $\hat{H}_p(t)$ to an unperturbed Hamiltonian \hat{H}_a

that is itself not dependent on time

The total Hamiltonian is then

$$\hat{H} = \hat{H}_o + \hat{H}_p(t)$$

To deal with such a situation

we use the time-dependent Schrödinger equation

$$i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \hat{H} |\Psi\rangle$$

where now the ket $|\Psi\rangle$ is generally time-varying

With $|\psi_n\rangle$ and E_n as the energy eigenfunctions and eigenvalues of the time-independent equation

$$\hat{H}_{o}\left|\psi_{n}\right\rangle = E_{n}\left|\psi_{n}\right\rangle$$

we expand the solution

of the time-dependent Schrödinger equation as

$$|\Psi\rangle = \sum a_n(t) \exp(-iE_n t/\hbar) |\psi_n\rangle$$

Note we included the time-dependent factor $\exp(-iE_nt/\hbar)$ explicitly in the expansion

leaving the time dependence of $a_n(t)$ to deal only with the additional changes

Now we substitute
$$|\Psi\rangle = \sum a_n(t) \exp(-iE_n t/\hbar) |\psi_n\rangle$$

into the Schrödinger equation $i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \hat{H} |\Psi\rangle$ gives $\sum (i\hbar \dot{a}_n + a_n E_n) \exp(-iE_n t / \hbar) |\psi_n\rangle$

$$\sum (i\hbar \dot{a}_n + a_n E_n) \exp(-iE_n t / \hbar) |\psi_n\rangle$$

$$= \sum_{n} a_{n} \left(\hat{H}_{o} + \hat{H}_{p} (t) \right) \exp \left(-i E_{n} t / \hbar \right) | \psi_{n} \rangle \text{ where } \dot{a}_{n} \equiv \frac{\partial a_{n}}{\partial t}$$
Replacing $\hat{H}_{o} | \psi_{n} \rangle$ with $E_{n} | \psi_{n} \rangle$ and cancelling gives

$$\sum i\hbar \dot{a}_n \exp(-iE_n t/\hbar) |\psi_n\rangle = \sum a_n \hat{H}_p(t) \exp(-iE_n t/\hbar) |\psi_n\rangle$$

Now premultiplying

$$\sum_{n} i\hbar \dot{a}_{n} \exp\left(-iE_{n}t/\hbar\right) |\psi_{n}\rangle = \sum_{n} a_{n} \hat{H}_{p}(t) \exp\left(-iE_{n}t/\hbar\right) |\psi_{n}\rangle$$

by $\langle \psi_q |$ on both sides leads to

$$i\hbar \dot{a}_{q}(t)\exp(-iE_{q}t/\hbar) = \sum_{n} a_{n}(t)\exp(-iE_{n}t/\hbar)\langle\psi_{q}|\hat{H}_{p}(t)|\psi_{n}\rangle$$

We have made no approximations so far

This is merely a restatement of Schrödinger's timedependent equation

$$i\hbar \frac{\partial}{\partial t} |\Psi\rangle = \hat{H} |\Psi\rangle$$

Now we consider a perturbation series

We introduce the expansion parameter γ as before

now writing our perturbation as $\gamma \hat{H}_p$

As before, we can set this to 1 at the end

We now express the expansion coefficients a_n as a power series

$$a_n = a_n^{(0)} + \gamma a_n^{(1)} + \gamma^2 a_n^{(2)} + \cdots$$

and we substitute this expansion into

$$i\hbar \dot{a}_{q}(t)\exp(-iE_{q}t/\hbar) = \sum_{n} a_{n}(t)\exp(-iE_{n}t/\hbar)\langle\psi_{q}|\gamma\hat{H}_{p}(t)|\psi_{n}\rangle$$

where we now have $\gamma \hat{H}_p$ instead of just \hat{H}_p

In $i\hbar \dot{a}_{q}(t) \exp(-iE_{q}t/\hbar) = \sum_{n} a_{n}(t) \exp(-iE_{n}t/\hbar) \langle \psi_{q} | \gamma \hat{H}_{p}(t) | \psi_{n} \rangle$ equating powers of γ on both sides first we obtain the zero order term $\dot{a}_{q}^{(0)}(t) = 0$

The zero order solution simply corresponds to the unperturbed solution

and hence there is no change in the expansion coefficients in time to zero order

With
$$a_n = a_n^{(0)} + \gamma a_n^{(1)} + \gamma^2 a_n^{(2)} + \cdots$$
 and
$$i\hbar \dot{a}_q(t) \exp\left(-iE_q t / \hbar\right) = \sum_n a_n(t) \exp\left(-iE_n t / \hbar\right) \left\langle \psi_q \middle| \gamma \hat{H}_p(t) \middle| \psi_n \right\rangle$$

for the first order term we have

$$\dot{a}_{q}^{(1)}(t) = \frac{1}{i\hbar} \sum_{n} a_{n}^{(0)} \exp(i\omega_{qn}t) \langle \psi_{q} | \hat{H}_{p}(t) | \psi_{n} \rangle$$

where we have introduced the notation

$$\omega_{qn} = \left(E_q - E_n\right)/\hbar$$

Note here in
$$\dot{a}_{q}^{(1)}(t) = \frac{1}{i\hbar} \sum_{n} a_{n}^{(0)} \exp \left(i\omega_{qn}t\right) \left\langle \psi_{q} \middle| \hat{H}_{p}(t) \middle| \psi_{n} \right\rangle$$
 we already know that the $a_{n}^{(0)}$ are all constants

They give the "starting" state of the system at $t=0$

We note now that, if we know the starting state, the perturbing potential and the unperturbed eigenvalues and eigenfunctions we can integrate to obtain the first order, time-dependent correction, $a_{q}^{(1)}(t)$ to the expansion coefficients

After integrating
$$\dot{a}_{q}^{(1)}(t) = \frac{1}{i\hbar} \sum_{n} a_{n}^{(0)} \exp(i\omega_{qn}t) \langle \psi_{q} | \hat{H}_{p}(t) | \psi_{n} \rangle$$

we know the new approximate expansion coefficients

$$a_q \simeq a_q^{(0)} + a_q^{(1)}(t)$$

so we know the new wavefunction

and can calculate the behavior of the system from this new wavefunction

We can proceed to higher order in this time-dependent perturbation theory

Equating powers of progressively higher order gives

$$\dot{a}_{q}^{(p+1)}(t) = \frac{1}{i\hbar} \sum_{n} a_{n}^{(p)} \exp(i\omega_{qn}t) \langle \psi_{q} | \hat{H}_{p}(t) | \psi_{n} \rangle$$

We see that this perturbation theory is also a method of successive approximations

just like the time-independent perturbation theory

We calculate each higher order correction from the preceding correction

