Individual Events

I1	а	1	12	R	$*\frac{9}{25}$ see the remark	13	S	10	I4	k	1
	b	$\frac{1}{2}$		S	1		R	30		r	2
	C	10		T	1		T	6		S	$\frac{1}{\sqrt{2}} \left(=\frac{\sqrt{2}}{2}\right)$
	D	-2		W	$\sqrt{5}$		P	$\sqrt{7}+2$		w	9

Group Events

G1	k	1	G2	w	45	G3	r	2006	G4	R	$12\sqrt{3}$
	В	16 15		z	-13		x	$\frac{7}{4}$ (=1.75)		S	*8 see the remark
	C	$\frac{1}{4}$		S	$\frac{1}{4}$		z	30		T	$\frac{1}{2}$
	а	1		t	14		R	$\frac{15}{4}$ (= 3.75)		W	2013021

Individual Event 1

I1.1 If a is a real number satisfying $\log_2(x+3) - \log_2(x+1) = 1$, find the value of a.

$$\log_2 \frac{x+3}{x+1} = \log_2 2$$

$$x + 3 = 2x + 2$$

$$x = 1 \Rightarrow a = 1$$

I1.2 In Figure 1, O is the centre of the circle with radius 1 cm. If the length of the arc AB is equal to a cm and the area of the shaded sector *OAB* is equal to $b \text{ cm}^2$, find the value of b. (Take $\pi = 3$)

$$b = \frac{1}{2}rs = \frac{1}{2}1 \cdot 1 = \frac{1}{2}$$

I1.3 An interior angle of a regular C-sided polygon is $288b^{\circ}$, find the value of C.

Each interior angle =
$$288b^{\circ} = 144^{\circ}$$

Each exterior angle =
$$36^{\circ} = \frac{360^{\circ}}{C}$$

$$C = 10$$

I1.4 Given that C is a root of the equation $kx^2 + 2x + 5 = 0$, where k is a constant. If D is another root, find the value of D.

$$100k + 20 + 5 = 0 \Rightarrow k = -\frac{1}{4}$$

$$C + D = \text{sum of roots} = -\frac{2}{k}$$

$$10 + D = 8 \Rightarrow D = -2$$

Individual Event 2

12.1 Given that a:b:c=6:3:1. If $R=\frac{3b^2}{2a^2+bc}$, find the value of R.

Let
$$a = 6k$$
, $b = 3k$, $c = k$, then $R = \frac{3(3k)^2}{2(6k)^2 + (3k)k} = \frac{9}{25}$

Remark: original question is Given that a, b and c are three numbers not equal to 0 and a: b: c = 6:3:1, the condition a:b:c=6:3:1 already implies that a,b and c are not zero.

12.2 Given that $\frac{|k+R|}{|R|} = 0$. If $S = \frac{|k+2R|}{|2k+R|}$, find the value of S.

$$k + \frac{9}{25} = 0 \Rightarrow k = -\frac{9}{25}$$
$$S = \frac{|k + 2R|}{|2k + R|} = \frac{\left| -\frac{9}{25} + \frac{18}{25} \right|}{\left| -\frac{18}{25} + \frac{9}{25} \right|} = 1$$

12.3 Given that $T = \sin 50^{\circ} \times (S + \sqrt{3} \times \tan 10^{\circ})$, find the value of T.

$$T = \sin 50^{\circ} \times (1 + \sqrt{3} \cdot \frac{\sin 10^{\circ}}{\cos 10^{\circ}})$$

$$= \frac{\sin 50^{\circ}}{\cos 10^{\circ}} \cdot (\cos 10^{\circ} + \sqrt{3} \sin 10^{\circ})$$

$$= \frac{2\sin 50^{\circ}}{\cos 10^{\circ}} \left(\frac{1}{2} \cos 10^{\circ} + \frac{\sqrt{3}}{2} \sin 10^{\circ} \right)$$

$$= \frac{2\sin 50^{\circ}}{\cos 10^{\circ}} (\cos 60^{\circ} \cdot \cos 10^{\circ} + \sin 60^{\circ} \cdot \sin 10^{\circ})$$

$$= \frac{2\sin 50^{\circ}}{\cos 10^{\circ}} = \frac{\sin 100^{\circ}}{\cos 10^{\circ}} = 1$$

I2.4 Given that x_0 and y_0 are real numbers satisfying the system of equations $\begin{cases} y = \frac{T}{x} \\ y = |x| + T \end{cases}$.

If
$$W = x_0 + y_0$$
, find the value of W .

$$\begin{cases} y = \frac{1}{x} \\ y = |x| + 1 \end{cases}$$

$$\frac{1}{x} = |x| + 1 \dots (*)$$

$$\frac{1}{x} = x + 1 \text{ or } \frac{1}{x} = -x + 1$$

$$1 = x^2 + x \text{ or } 1 = -x^2 + x$$

$$x^2 + x - 1 = 0 \text{ or } x^2 - x + 1 = 0$$

$$x = \frac{-1 \pm \sqrt{5}}{2} \text{ or no solution}$$

Check: sub.
$$x = \frac{-1 - \sqrt{5}}{2}$$
 into (*)

LHS =
$$\frac{2}{-1-\sqrt{5}}$$
 < 0, RHS > 0 (rejected)

When
$$x = \frac{-1+\sqrt{5}}{2}$$
; LHS = $\frac{2}{-1+\sqrt{5}} = \frac{\sqrt{5}+1}{2}$; RHS = $\frac{-1+\sqrt{5}}{2}+1 = \frac{1+\sqrt{5}}{2}$ (accepted)

$$y = \frac{1+\sqrt{5}}{2}$$
 $\Rightarrow W = x_0 + y_0 = \frac{-1+\sqrt{5}}{2} + \frac{1+\sqrt{5}}{2} = \sqrt{5}$

Individual Event 3

I3.1 Given that $\frac{2x-3}{x^2-x} = \frac{A}{x-1} + \frac{B}{x}$, where A and B are constants. If $S = A^2 + B^2$, find the value of S

$$\frac{2x-3}{x^2-x} = \frac{Ax + B(x-1)}{(x-1)x}$$

$$A + B = 2, -B = -3$$

$$A = -1, B = 3$$

$$S = (-1)^2 + 3^2 = 10$$

I3.2 In Figure 1, ABCD is an inscribed rectangle, AB = (S-2) cm and AD =(S-4) cm. If the circumference of the circle is R cm, find the value of

R. (Take
$$\pi = 3$$
)

$$AB = 8 \text{ cm}, CD = 6 \text{ cm}$$

$$AC = 10$$
 cm (Pythagoras' theorem)

$$R=10\pi=30$$

I3.3 Given that x and y are integers satisfying the equation $\frac{R}{2}xy = 21x + 20y - 13$.

If
$$T = xy$$
, find the value of T .

$$15xy = 21x + 20y - 13$$

$$(3x-4)(5y-7)=15$$

$$\begin{cases} 3x - 4 = 1 \\ 5y - 7 = 15 \end{cases} \text{ or } \begin{cases} 3x - 4 = 3 \\ 5y - 7 = 5 \end{cases} \text{ or } \begin{cases} 3x - 4 = 5 \\ 5y - 7 = 3 \end{cases} \text{ or } \begin{cases} 3x - 4 = 15 \\ 5y - 7 = 1 \end{cases} \text{ or } \begin{cases} 3x - 4 = -1 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y - 7 = -15 \end{cases} \text{ or } \begin{cases} 3x - 4 = -15 \\ 5y$$

For integral solution:
$$3x - 4 = 5$$
, $5y - 7 = 3$

$$x = 3, y = 2 \Rightarrow T = 3 \times 2 = 6$$

I3.4 Let a be the positive root of the equation $x^2 - 2x - T = 0$.

If
$$P = 3 + \frac{T}{2 + \frac{T}{2 + \frac{T}{a}}}$$
, find the value of P .

$$x^2 - 2x - 6 = 0$$

$$a=1+\sqrt{7}$$

$$a^2 - 2a - 6 = 0 \Rightarrow a^2 = 2a + 6 \Rightarrow a = 2 + \frac{6}{a}$$

$$2 + \frac{T}{a} = 2 + \frac{6}{a} = a \Rightarrow 2 + \frac{T}{2 + \frac{T}{a}} = 2 + \frac{6}{a} = a \Rightarrow 2 + \frac{T}{2 + \frac{T}{2 + \frac{T}{a}}} = 2 + \frac{6}{a} = a$$

$$P = 3 + \frac{6}{a} = 1 + 2 + \frac{6}{a} = 1 + a = 1 + 1 + \sqrt{7} = 2 + \sqrt{7}$$

Individual Event 4

14.1 Let
$$\frac{k}{4} = \left(1 + \frac{1}{2} + \frac{1}{3}\right) \times \left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4}\right) - \left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}\right) \times \left(\frac{1}{2} + \frac{1}{3}\right)$$
, find the value of k .

Reference: 1995 FG6.2

Let
$$x = 1 + \frac{1}{2} + \frac{1}{3}$$
, $y = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4}$, then $\frac{k}{4} = x(y - 1) - y(x - 1) = -x + y = \frac{1}{4} \Rightarrow k = 1$

14.2 Let x and y be real numbers satisfying the equation $y^2 + 4y + 4 + \sqrt{x + y + k} = 0$.

If r = |xy|, find the value of r.

Reference: 2005 FI4.1, 2009 FG1.4, 2011 FI4.3, 2013 FI1.4, 2015 HG4, 2015 FI1.1

The equation is equivalent to $(y+2)^2 + \sqrt{x+y+k} = 0$

which is a sum of two non-negative numbers.

$$\Rightarrow$$
 $y + 2 = 0$ and $x + y + 1 = 0$

$$y = -2$$
 and $x - 2 + 1 = 0$, $x = 1$

$$r = |-2 \times 1| = 2$$

14.3 In Figure 1, there are eight positive numbers in series. Starting from the 3rd number, each number is the product of the previous two numbers. Given that the 5^{th} number is $\frac{1}{x}$ and the 8^{th}

number is $\frac{1}{s^4}$. If the first number is s, find the value of s.

$$\frac{1}{r}$$

$$\frac{1}{r^4}$$

Let the 2^{nd} number be a, then other numbers are as follows:

S

$$s^8 a^{13} = \frac{1}{r^4}$$

 $s^2a^3 = \frac{1}{r} \cdots (1)$

$$s^8a^{13} = \frac{1}{r^4} \quad \cdots \quad (2)$$

$$(2)\div(1)^4$$
: $a=1$

Sub.
$$a = 1$$
 into (1): $s^2 = \frac{1}{r} = \frac{1}{2}$; $s > 0 \Rightarrow s = \frac{1}{\sqrt{2}}$

I4.4 Let [x] be the largest integer not greater than x. For example, [2.5] = 2.

Let $w = 1 + [10 \times s^2] + [10 \times s^4] + [10 \times s^6] + \dots + [10 \times s^{2n}] + \dots$, find the value of w.

$$w = 1 + \left[10 \times \frac{1}{2}\right] + \left[10 \times \frac{1}{4}\right] + \left[10 \times \frac{1}{8}\right] + \dots + \left[10 \times \frac{1}{2^n}\right] + \dots$$

$$= 1 + 5 + 2 + 1 + 0 + 0 + \dots = 9$$

Group Event 1

G1.1 Given that k is a real number. If $x^2 + 2kx - 3k^2$ can be divisible by x - 1, find the greatest value

By factor theorem, $1^2 + 2k - 3k^2 = 0$

$$3k^2 - 2k - 1 = 0$$

$$(3k+1)(k-1)=0$$

$$k = -\frac{1}{3}$$
 or 1

Greatest value of k = 1

G1.2 Given that $x = x_0$ and $y = y_0$ satisfy the system of equations $\begin{cases} \frac{x}{3} + \frac{y}{5} = 1 \\ \frac{x}{5} + \frac{y}{2} = 1 \end{cases}$. If $B = \frac{1}{x_0} + \frac{1}{y_0}$, find the

value of B.

$$\frac{x}{3} + \frac{y}{5} = \frac{x}{5} + \frac{y}{3} = 1 \implies \frac{x}{3} - \frac{x}{5} = \frac{y}{3} - \frac{y}{5} \implies x = y$$

Sub.
$$x = y$$
 into the first equation: $\frac{x}{3} + \frac{x}{5} = 1 \Rightarrow x = y = \frac{15}{8} \Rightarrow B = \frac{16}{15}$

G1.3 Given that $x = 2 + \sqrt{3}$ is a root of the equation $x^2 - (\tan \alpha + \cot \alpha)x + 1 = 0$.

If $C = \sin \alpha \times \cos \alpha$, find the value of C.

Let the other root be y, $(2 + \sqrt{3})y = \text{product of roots} = 1 \Rightarrow y = 2 - \sqrt{3}$

$$\tan \alpha + \cot \alpha = \text{sum of roots} = 2 + \sqrt{3} + 2 - \sqrt{3} = 4$$

$$\frac{\sin\alpha}{\cos\alpha} + \frac{\cos\alpha}{\sin\alpha} = 4 \Rightarrow \frac{1}{\sin\alpha\cos\alpha} = 4 \Rightarrow C = \sin\alpha \times \cos\alpha = \frac{1}{4}$$

G1.4 Let a be an integer. If the inequality |x + 1| < a - 1.5 has no integral solution, find the greatest value of *a*.

 $|x+1| \ge 0$, In order that the equation has no integral solution, it is sufficient that a-1.5 < 0a < 1.5

Greatest integral value of a = 1

Group Event 2

G2.1 In Figure 1, PRS is a straight line, PQ = PR = QS and

$$\angle QPR = 30^{\circ}$$
. If $\angle RQS = w^{\circ}$, find the value of w.

$$\angle QPR = \angle QSP = 30^{\circ} \text{ (base } \angle \text{s isos. } \Delta\text{)}$$

$$\angle PQS = 120^{\circ} (\angle s \text{ sum of } \Delta)$$

$$\angle PQR = \angle PRQ = (180^{\circ} - 30^{\circ}) \div 2 = 75^{\circ} (\angle s \text{ sum of isos. } \Delta)$$

$$\angle RQS = 120^{\circ} - 75^{\circ} = 45^{\circ} \Rightarrow w = 45$$

G2.2 Let $f(x) = px^7 + qx^3 + rx - 5$, where p, q and r are real numbers.

If f(-6) = 3 and z = f(6), find the value of z.

Reference: 1995 FI1.3

$$f(-6) = 3 \Rightarrow -p \times 6^7 - q \times 6^3 - 6r - 5 = 3$$

$$f(6) = p \times 6^7 + q \times 6^3 + 6r - 5 = -(-p \times 6^7 - q \times 6^3 - 6r - 5) - 10 = -3 - 10 = -13$$

G2.3 If $n \neq 0$ and $s = \left(\frac{20}{2^{2n+4} + 2^{2n+2}}\right)^{\frac{1}{n}}$, find the value of s.

$$s = \left(\frac{20}{16 \cdot 2^{2n} + 4 \cdot 2^{2n}}\right)^{\frac{1}{n}} = \left(\frac{20}{20 \cdot 2^{2n}}\right)^{\frac{1}{n}} = \frac{1}{4}$$

G2.4 Given that x and y are positive integers and x + y + xy = 54. If t = x + y, find the value of t.

$$1 + x + y + xy = 55$$

$$(1+x)(1+y) = 55$$

$$1 + x = 5$$
, $1 + y = 11$ or $1 + x = 11$, $1 + y = 5$

$$x = 4$$
, $y = 10$ or $x = 10$, $y = 4$

t = 14

Group Event 3

G3.1 Given that $r = 2006 \times \frac{\sqrt{8} - \sqrt{2}}{\sqrt{2}}$, find the value of r.

It is easy to show that r = 2006.

G3.2 Given that $6^{x+y} = 36$ and $6^{x+5y} = 216$, find the value of x.

$$x + y = 2$$
(1)

$$x + 5y = 3$$
(2)

$$5(1) - (2)$$
: $4x = 7 \Rightarrow x = \frac{7}{4}$

G3.3 Given that $\tan x + \tan y + 1 = \cot x + \cot y = 6$. If $z = \tan(x + y)$, find the value of z.

$$\tan x + \tan y + 1 = \frac{\tan y + \tan x}{\tan x \tan y} = 6$$

$$\tan x + \tan y = 5; \tan x \tan y = \frac{5}{6}$$

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} = \frac{5}{1 - \frac{5}{6}} = 30$$

G3.4 In Figure 1, ABCD is a rectangle, F is the midpoint of CD and ABE : EC = 1 : 3. If the area of the rectangle ABCD is 12 cm² and the area of *BEFD* is R cm², find the value of R.

Area of
$$\Delta BCD = 6 \text{ cm}^2$$

Area of
$$\triangle CEF = \frac{3}{4} \cdot \frac{1}{2} \cdot 6 \text{ cm}^2 = \frac{9}{4} \text{ cm}^2$$

Area of *BEFD* =
$$(6 - \frac{9}{4})$$
 cm² = $\frac{15}{4}$ cm²

Group Event 4

G4.1 In Figure 1, ABCD is a parallelogram, $BE \perp CD$, $BF \perp AD$, CE = 2 cm, DF = 1 cm and $\angle EBF = 60^{\circ}$.

If the area of the parallelogram ABCD is $R \text{ cm}^2$,

find the value of R.

$$\angle EDF = 360^{\circ} - 90^{\circ} - 90^{\circ} - 60^{\circ} = 120^{\circ} \ (\angle s \text{ sum of polygon})$$

 $\angle BAD = \angle BCD = 180^{\circ} - 120^{\circ} = 60^{\circ} \ (\text{int. } \angle s \text{ //-lines})$

$$BC = \frac{2}{\cos 60^{\circ}} \text{ cm} = 4 \text{ cm} = AD$$

$$BE = 2 \tan 60^{\circ} = 2 \sqrt{3} \text{ cm}$$

$$AF = (4 - 1) \text{ cm} = 3 \text{ cm}$$

$$AB = \frac{3}{\cos 60^{\circ}} \text{ cm} = 6 \text{ cm}$$

Area of $ABCD = AB \times BE = 6 \times 2\sqrt{3} \text{ cm}^2 = 12\sqrt{3} \text{ cm}^2$

find the minimum value S. Reference: HKAL Pure Mathematics 1964 Paper 1 Q5 (b)

$$(\sqrt{a} - \sqrt{b})^2 \ge 0 \implies a + b - 2\sqrt{ab} \ge 0 \implies 1 \ge \sqrt{ab} \implies 1 \ge ab \cdots (1)$$

$$a^2 + b^2 = (a + b)^2 - 2ab = 4 - 2ab \ge 4 - 2 = 2 \cdot \dots \cdot (2)$$

$$\frac{1}{ab} \ge 1 \Rightarrow \frac{1}{a^2b^2} \ge 1 \cdot \dots (3)$$

$$S = \left(a + \frac{1}{a}\right)^2 + \left(b + \frac{1}{b}\right)^2 = a^2 + b^2 + \frac{1}{a^2} + \frac{1}{b^2} + 4$$

$$= a^2 + b^2 + \frac{a^2 + b^2}{a^2 b^2} + 4$$

$$= \left(a^2 + b^2\right)\left(1 + \frac{1}{a^2b^2}\right) + 4$$

$$\geq 2 \times (1+1) + 4 = 8$$
 (by (2) and (3))

Remark: original question \cdots a and b are positive real numbers \cdots

Positive numbers must be real, there is no need to emphasise the word 'real'.

G4.3 Let
$$2^x = 7^y = 196$$
. If $T = \frac{1}{x} + \frac{1}{y}$, find the value of T .

Reference: 2001 HI1, 2003 FG2.2, 2004 FG4.3, 2005 HI9

$$x \log 2 = y \log 7 = \log 196$$

$$x = \frac{\log 196}{\log 2}, y = \frac{\log 196}{\log 7}$$

$$T = \frac{1}{x} + \frac{1}{y} = \frac{\log 2 + \log 7}{\log 196} = \frac{\log 14}{\log 14^2} = \frac{1}{2}$$

Method 2 (provided by Denny)

$$2 = 196^{\frac{1}{x}}, 7 = 196^{\frac{1}{y}}$$

$$2 \times 7 = 14 = \sqrt{196} = 196^{\frac{1}{x}} \times 196^{\frac{1}{y}} = 196^{\frac{1}{x} + \frac{1}{y}}$$

$$\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$$

G4.4 If $W = 2006^2 - 2005^2 + 2004^2 - 2003^2 + ... + 4^2 - 3^2 + 2^2 - 1^2$, find the value of W.

$$W = (2006 + 2005)(2006 - 2005) + (2004 + 2003)(2004 - 2003) + \dots + (4+3)(4-3) + (2+1)(2-1)$$

$$= 2006 + 2005 + 2004 + \dots + 4 + 3 + 2 + 1$$

$$= \frac{2006}{2} (2006 + 1) = 1003 \times 2007 = 2013021$$

