Kapitel 1 - Das einfache lineare Regressionsmodell

Einfaches lineares Regressionsmodell

Das einfache lineare Regressionsmodell hat die Form

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \dots, n$$

für ein festes numerisches x_i und $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$. Beachte, dass per Definition gilt $Y_i | x_i \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$

Kleinste Quadrate (KQ) Schätzer

Wir schätzen die Parameter (β_0, β_1) durch

$$(\hat{\beta}_0, \hat{\beta}_1) = \underset{(\beta_0, \beta_1)}{\operatorname{arg\,min}} \sum_{i=1}^n (Y_i - (\beta_0 + \beta_1 x_i))^2 \qquad (1)$$

und nennen $(\hat{\beta}_0, \hat{\beta}_1)$ den KQ-Schätzer von (β_0, β_1) und $\hat{\varepsilon}_i := Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)$ die Residuen.

Existenz und Berechnung vom KQ Schätzer

Der KQ-Schätzer existiert und ist eindeutig, falls $\sum_{i=1}^{n} (x_i - \overline{x})^2 \neq 0$. Dieser lässt sich berechnen als

$$\hat{\beta}_1 = \frac{S_{xY}}{S_x^2} = \frac{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})(Y_i - \overline{Y})}{\frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2}$$

$$\hat{\beta}_0 = \overline{Y} - \hat{\beta}_1 \overline{x}.$$

Durch differenzieren von der Gleichung (1) erhält man $(\hat{\beta}_0,\hat{\beta}_1)$ als Lösung der Normalengleichungen

$$\sum_{i=1}^{n} \hat{\varepsilon}_i = 0$$
$$\sum_{i=1}^{n} \hat{\varepsilon}_i x_i = 0$$

Interpretation der Modellparameter

Für $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$, i = 1, ..., n mit $\mathbb{E}(Y_i|x_i) = \beta_0 + \beta_1 x_i$ gilt,

- wenn x um eine **Einheit** steigt, dann steigt Y im **Erwartungswert** um β_1 Einheiten.
- Es gilt $\beta_0 = \mathbb{E}(Y|X=0)$.
- Der Parameter σ die erwartete Abweichung der Y_i -Werte von der Regressionsgerade an.

Eigenschaften des KQ-Schätzers

Gegeben dem einfachen linearen Modell, gilt für den KQ-Schätzer $(\hat{\beta}_0, \hat{\beta}_1)$

- Erwartungstreue: $\mathbb{E}(\hat{\beta}_0, \hat{\beta}_1) = (\beta_0, \beta_1)$.
- $\mathbb{V}(\hat{\beta}_1) = \frac{\sigma^2}{nS_x^2}$ und $\mathbb{V}(\hat{\beta}_0) = \sigma^2(\frac{1}{n} + \frac{\overline{x}^2}{nS_x^2})$.
- $(\hat{\beta}_0, \hat{\beta}_1)$ ist der maximum-likelihood Schätzer.

Schätzer für σ^2

Gegeben dem einfachen linearen Modell mit $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$, gilt

$$\hat{\sigma}^2 := \frac{1}{n-2} \sum_{i=1}^n \hat{\varepsilon}_i^2$$

ist ein erwartungstreuer Schätzer von σ^2 und

$$\frac{n-2}{\sigma^2}\hat{\sigma}^2 \sim \chi_{n-2}^2.$$

Der KQ-Schätzer $(\hat{\beta}_0, \hat{\beta}_1)$ und der Schätzer $\hat{\sigma}^2$ sind stoch.unabhängig.

Konfidenzintervalle für β_0 und β_1

Gegeben dem einfachen linearen Modell mit $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$, gilt für $\hat{\beta}_1$ und $\hat{\beta}_0$

$$\frac{\hat{\beta}_1 - \beta_1}{\hat{\sigma}_{\hat{\beta}_1}} \sim t_{n-2} \text{ mit } \hat{\sigma}_{\hat{\beta}_1} := \sqrt{\frac{\hat{\sigma}^2}{\sum_{i=1}^n (x_i - \overline{x})^2}}$$

$$\frac{\hat{\beta}_0 - \beta_0}{\hat{\sigma}_{\hat{\beta}_0}} \sim t_{n-2} \text{ mit } \hat{\sigma}_{\hat{\beta}_0} := \sqrt{\hat{\sigma}^2 \frac{\sum_{i=1}^n x_i^2}{n \sum_{i=1}^n (x_i - \overline{x})^2}}$$

Damit können wir Konfidenzintervalle zum Niveau $1 - \alpha$ für β_1 und β_0 erzeugen:

$$[\hat{\beta}_1 - \hat{\sigma}_{\hat{\beta}_1} t_{1-\alpha/2}(n-2); \hat{\beta}_1 + \hat{\sigma}_{\hat{\beta}_1} t_{1-\alpha/2}(n-2)]$$

$$[\hat{\beta}_0 - \hat{\sigma}_{\hat{\beta}_0} t_{1-\alpha/2}(n-2); \hat{\beta}_0 + \hat{\sigma}_{\hat{\beta}_0} t_{1-\alpha/2}(n-2)]$$

Quadratsummenzerlegung

Gegeben sei ein einfaches linearen Modell mit $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ und $\hat{Y}_i := \hat{\beta}_0 + \hat{\beta}_1 x_i$. Dann gilt

$$\underbrace{\sum_{i=1}^{n} (Y_i - \overline{Y})^2}_{\text{SST}} = \underbrace{\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2}_{\text{SSE}} - \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \overline{Y})^2}_{\text{SSM}}.$$

SST(otal): Gesamtstreuung von Y

SSE(rror): Streuung der Residuen

SSM(odel): Streuung, die das Modell erklärt

Bestimmtheitsmaß

Unter Verwendung der obigen Notation definieren wir das Bestimmtheitsmaß als

$$R^2 = \frac{\text{SSM}}{\text{SST}} = 1 - \frac{\text{SSE}}{\text{SST}}.$$

Es gilt

$$R^2 = r_{xY}^2 = \frac{S_{xY}}{S_x S_Y},$$

wobei r_{xY} der Bravais-Pearson Korrel. koeffizient ist.

Interpretation von R^2

- R^2 beschreibt den Anteil der Varianz von Y, die durch x erklärt wird.
- R ist invariant gegenüber linearen linearen Transformationen von x und Y.
- R ist symmetrisch bzgl. x und Y.
- ! \mathbb{R}^2 hängt auch von der Streuung von x in der Stichprobe ab.

Prognosewert

Gegeben sei ein einfaches linearen Modell mit $\varepsilon_i \sim \mathcal{N}(0, \sigma^2)$ und $\hat{Y}_i := \hat{\beta}_0 + \hat{\beta}_1 x_i, \quad i = 1, \dots, n$. Sei nun eine weitere Beobachtung x_{n+1} mit zugehörigem $Y_{n+1} = \beta_0 + \beta_1 x_{n+1} + \varepsilon_{n+1}$ gegeben. Der Prognosewert von Y_{n+1} ist definiert als $\hat{Y}_{n+1} = \hat{\beta}_0 + \hat{\beta}_1 x_{n+1}$

Prognosefehler

Gegeben sei ein einfaches linearen Modell, sowie eine weitere Beobachtung x_{n+1} mit zugehörigem Y_{n+1} sowie der Prognosewert \hat{Y}_{n+1} . Dann gilt

$$\mathbb{E}(\hat{Y}_{n+1} - Y_{n+1}) = 0$$

$$\mathbb{V}(\hat{Y}_{n+1} - Y_{n+1}) = \sigma^2 \left[1 + \frac{1}{n} + \frac{(x_{n+1} - \overline{x})^2}{\sum_{i=1}^{n} (x_i - \overline{x})^2} \right]$$

Prognoseintervall

Gegeben sei ein einfaches linearen Modell, sowie eine weitere Beobachtung x_{n+1} mit zugehörigem Y_{n+1} sowie der Prognosewert \hat{Y}_{n+1} . Dann können wir für Y_{n+1} ein Konfidenzintervall zum Niveau $1-\alpha$ konstruieren:

$$[\; \hat{Y}_{n+1} - \hat{\sigma}_{\hat{Y}_{n+1}} t_{1-\alpha/2}(n-2); \hat{Y}_{n+1} + \hat{\sigma}_{\hat{Y}_{n+1}} t_{1-\alpha/2}(n-2)]$$
 mit

$$\hat{\sigma}_{\hat{Y}_{n+1}} = \hat{\sigma}^2 \left[1 + \frac{1}{n} + \frac{(x_{n+1} - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right].$$

R-Code

```
# simuliere aus einfachem lin. Modell
beta0 <- 3
beta1 <- 1
sigma <- 2
x <- seq(from = 0, to = 10, by = 0.5)
e <- rnorm(length(x), sd = sigma)
y <- beta0 + beta1 * x + e
dat <- data.frame(x, y)

# Lineares Modell erzeugen
reg = lm(y ~ x, data = dat)
summary(reg)

# Konfidenzintervalle
confint(reg, level = 0.95)</pre>
```

Interpretation von transformierten Modellen

• Log-Log-Modell:

$$\log(Y_i) = \beta_0 + \beta_1 \log(x_i) + \varepsilon_i$$

Wenn x_i um den Faktor a steigt, dann steigt Y_i im Erwartungswert um den Faktor $a^{\beta_1} = e^{\beta_1 \log(a)}$

Alternativ: Wenn x_i um 1% steigt, dann steigt Y_i im Erwartungswert um $(e^{\beta_1 log(1.01)} - 1)\%$.

• Linear-Log-Modell:

$$Y_i = \beta_0 + \beta_1 \log(x_i) + \varepsilon_i$$

Wenn x_i um p% steigt, dann steigt Y_i im Erwartungswert um $\beta_1 \cdot \log(1+p)\%$.

Alternativ: Wenn x_i um 1% steigt, dann steigt Y_i im Erwartungswert um approximativ β_1 Einheiten.

• Log-Linear-Modell:

$$\log(Y_i) = \beta_0 + \beta_1 x_i + \varepsilon_i$$

Wenn x_i um eine Einheit steigt, dann steigt Y_i im Erwartungswert um e^{β_1} Einheiten.

Vorlesung

 R^2 ist abhängig von X. Das heißt über mehrere Studien hinweg, die das gleiche messen, ist R^2 nur vergleichbar, wenn auch X vergleichbar ist. Je sichererer wir mit unserem Schätzer sein wollen, desto höher sollten wir die Varianz von X einstellen. Gegeben, dass der Zusammenhang tatsächlich linear ist, würde eine höhere Varianz von X zu einer geringeren Varianz von $\hat{\beta}_1$ führen.

Im multiplen Reg.modell ist es KEINE Annahme, dass x_i, x_j unabhängig voneinander sind. Es wäre nur praktisch für die Interpretation der Effekte. Das "magische" am multiplen Reg.modell ist, dass ich für verschiedene Größen kontrollieren/korrigieren kann.

Erwartungstreue gilt auch bei abhängigkeit und normalverteilt ist nicht nötig. Varianzformel benötigt unabhängigkeit.

Kapitel 2 - Das multiple lineare Regressionsmodell

Multiples lineares Regressionsmodell

Das multiple lineare Regressionsmodell hat die Form

$$Y_i = \underbrace{\beta_0 + \beta_1 x_{i1} + \dots + \beta_p x_{ip}}_{\boldsymbol{x}_i^\top = (1, x_{i1}, \dots, x_{ip})} + \varepsilon_i; i = 1, \dots, n$$

oder in Matrix-Vektor Notation: $\boldsymbol{Y} = \boldsymbol{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$ mit

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \mathbf{X} = \begin{pmatrix} 1 & x_{11} & \dots & x_{1p} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & x_{n1} & \dots & x_{np} \end{pmatrix},$$
$$\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \vdots \\ \beta_p \end{pmatrix}, \boldsymbol{\varepsilon} = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}.$$

Wir nehmen dabei an, dass $\boldsymbol{X} \in \mathbb{R}^{n \times (p+1)}$ eine feste Design-Matrix ist und dass $\boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$. Wir definieren außerdem p' := p + 1.

Kleinste Quadrate (KQ) Schätzer

Wir schätzen den Parameter(vektor) β durch

$$\hat{\boldsymbol{\beta}} = \underset{\boldsymbol{\beta} \in \mathbb{R}^{p+1}}{\operatorname{arg\,min}} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta})^{\top} (\boldsymbol{Y} - \boldsymbol{X}\boldsymbol{\beta}) \tag{2}$$

und nennen $\hat{\beta}$ den KQ-Schätzer von β und $\hat{\varepsilon}_i := Y_i - \boldsymbol{x}_i^{\top} \hat{\beta}$ die Residuen.

Existenz und Berechnung vom KQ Schätzer

Der KQ-Schätzer existiert und ist eindeutig, falls $\boldsymbol{X}^{\top}\boldsymbol{X}$ invertierbar ist. Dieser lässt sich berechnen als

$$\hat{\boldsymbol{\beta}} = (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1} \boldsymbol{X}^{\top} \boldsymbol{Y}$$

Durch differenzieren von der Gleichung (2) erhält man $\hat{\pmb{\beta}}$ als Lösung der Normalengleichung

$$\boldsymbol{X}^{\top}\hat{\boldsymbol{\varepsilon}} = 0$$

Interpretation der Modellparameter

- Y_i hängt linear von x_{i1}, \ldots, x_{in} ab.
- Steigt x_k um eine Einheit, so steigt Y (ceteris paribus) im Erwartungswert um β_k Einheiten, **wenn** alle anderen x-Variablen festgehalten werden.
- ! β_k charakterisiert den Einfluss von x_k unter Berücksichtigung der übrigen Variablen (Confounder-Korrektur). Das heißt, dass in einem einfachen linearen Regressionsmodell mit $Y_i = \beta_0 + \beta_k' x_{ik} + \varepsilon_i$ wäre im Allgemeinen $\beta_k' \neq \beta_k$.

Eigenschaften des KQ-Schätzers

Gegeben dem multiplen linearen Modell, gilt für den KQ-Schätzer $\hat{\beta}$

- Erwartungstreue: $\mathbb{E}(\hat{\boldsymbol{\beta}}) = \boldsymbol{\beta}$. ! Gilt auch ohne die Annahme $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \boldsymbol{I})$, solange $\mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0}$
- $V(\hat{\boldsymbol{\beta}}) = \sigma^2 (\boldsymbol{X}^{\top} \boldsymbol{X})^{-1}$. ! Gilt auch ohne die Annahme $\boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$, solange $Cov(\boldsymbol{\varepsilon}) = \sigma^2 \boldsymbol{I}$
- $\hat{\boldsymbol{\beta}} \sim \mathcal{N}(\boldsymbol{\beta}, \sigma^2(\boldsymbol{X}^{\top}\boldsymbol{X})^{-1})$

Hat-Matrix und Residualmatrix

Gegeben dem multiplen linearen Modell mit rang(X) = p' gilt

$$\hat{m{Y}} := m{X} \underbrace{(m{X}^ op m{X})^{-1} m{X}^ op m{Y}}_{\hat{m{eta}}}$$
 $m{P} := \underbrace{m{X} (m{X}^ op m{X})^{-1} m{X}^ op}_{n imes n}$
 $\hat{m{arepsilon}} = m{Y} - \hat{m{Y}} = (m{I} - m{P}) m{Y}$
 $m{Q} := m{I} - m{P}$

P heißt Hat-Matrix und Q heißt Residualmatrix.

Geometrische Interpretation

Die KQ-Schätzung ist eine orthogonale Projektion von \boldsymbol{Y} auf den von den \boldsymbol{x} -Vektoren aufgespannten Unterraum.

Eigenschaften von P und Q

Die Hat-Matrix \boldsymbol{P} und die Residual matrix \boldsymbol{Q} sind Projektionsmatrizen und zuein ander orthogonal:

$$egin{aligned} oldsymbol{P}^{ op} &= oldsymbol{P} \ oldsymbol{Q}^{ op} &= oldsymbol{Q} \ oldsymbol{Q} &= oldsymbol{Q} \ oldsymbol{P} oldsymbol{Q} &= oldsymbol{Q} \ oldsymbol{P} oldsymbol{Q} &= oldsymbol{Q} oldsymbol{P} = oldsymbol{Q}. \end{aligned}$$

Daraus folgt

$$V(\hat{Y}) = \sigma^2 P$$

$$V(\hat{\varepsilon}) = \sigma^2 Q, \text{ da } \hat{\varepsilon} = Q \varepsilon$$

Schätzer für σ^2

 $\mathbb{E}(\boldsymbol{\varepsilon}) = \mathbf{0} \text{ und } \operatorname{Cov}(\boldsymbol{\varepsilon}) = \sigma^2 \boldsymbol{I}$

Gegeben dem multiplen linearen Modell, gilt

$$\hat{\sigma}^2 := \frac{\hat{\varepsilon}^\top \hat{\varepsilon}}{n - (p+1)} = \frac{1}{n - (p+1)} \sum_{i=1}^n \hat{\varepsilon}_i^2$$

ist ein erwartungstreuer Schätzer von σ^2 . ! Gilt auch ohne die Annahme $\boldsymbol{\varepsilon} \sim \mathcal{N}(\boldsymbol{0}, \sigma^2 \boldsymbol{I})$, solange

Kapitel 3 - Quadratsummenzerlegung und statistische Inferenz im multiplen linearen Regressionsmodell

Quadratsummenzerlegung

Gegeben sei das multiple lineare Regressionsmodell mit rang(X) = p'. Dann gilt

$$\underbrace{(\boldsymbol{Y} - \overline{\boldsymbol{Y}})^{\top} (\boldsymbol{Y} - \overline{\boldsymbol{Y}})}_{SST} = \underbrace{(\boldsymbol{Y} - \hat{\boldsymbol{Y}})^{\top} (\boldsymbol{Y} - \hat{\boldsymbol{Y}})}_{SSE} + \underbrace{(\hat{\boldsymbol{Y}} - \overline{\boldsymbol{Y}})^{\top} (\hat{\boldsymbol{Y}} - \overline{\boldsymbol{Y}})}_{SSM}.$$

SST(otal): Gesamt-Quadratsumme (korrigiert)

SSE(rror): Fehler-Quadratsumme SSM(odel): Modell-Quadratsumme

Quadratsummenzerlegung ohne β_0

Gegeben sei das multiple lineare Regressionsmodell mit, aber ohne Absolutglied β_0 . Dann gilt

$$\underbrace{\boldsymbol{Y}^{\top}\boldsymbol{Y}}_{SST^*} = \underbrace{(\boldsymbol{Y} - \hat{\boldsymbol{Y}})^{\top}(\boldsymbol{Y} - \hat{\boldsymbol{Y}})}_{SSE} + \underbrace{\hat{\boldsymbol{Y}}^{\top}\hat{\boldsymbol{Y}}}_{SSM^*}.$$

 SST^* : Gesamt-Quadratsumme (nicht korrigiert)

SSE: Fehler-Quadratsumme (wie zuvor)

 SSM^* : Modell-Quadratsumme (nicht korrigiert)

Erwartungswerte der Quadratsummen

Gegeben sei das multiple lineare Regressionsmodell mit den üblichen Annahmen. Wir definieren

$$oldsymbol{e} = egin{pmatrix} 1 \ dots \ 1 \end{pmatrix} ext{ und } oldsymbol{P_e} = oldsymbol{e} (oldsymbol{e}^ op oldsymbol{e})^{-1} oldsymbol{e}^ op ext{ und } oldsymbol{Q_e} = oldsymbol{I} - oldsymbol{P_e}.$$

Dann gilt

$$\mathbb{E}(SST^*) = \sigma^2 n + \boldsymbol{\beta}^\top \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{\beta}$$

$$\mathbb{E}(SST) = \sigma^2(n-1) + \boldsymbol{\beta}^{\mathsf{T}}(\boldsymbol{Q_e}\boldsymbol{X})^{\mathsf{T}}(\boldsymbol{Q_e}\boldsymbol{X})\boldsymbol{\beta}$$

$$\mathbb{E}(SSE) = \sigma^2(n - p')$$

$$\mathbb{E}(SSM^*) = \sigma^2 p' + \boldsymbol{\beta}^\top \boldsymbol{X}^\top \boldsymbol{X} \boldsymbol{\beta}$$

$$\mathbb{E}(SSM^*) = \sigma^2(p'-1) + \boldsymbol{\beta}^{\top}(\boldsymbol{Q_eX})^{\top}(\boldsymbol{Q_eX})\boldsymbol{\beta}$$

Wir können diese Eigenschaften zur Konstruktion von Tests verwenden. Es gilt nämlich unter anderem $\beta = 0 \implies \mathbb{E}(SST^*) = \sigma^2 n$

$$\beta_1 = \cdots = \beta_p = 0 \implies \mathbb{E}(SSM) = \sigma^2(p'-1)$$

Chi-Quadrat Verteilung

Sei $Z \sim \mathcal{N}_n(\boldsymbol{\mu}, \boldsymbol{I})$, so heißt $\boldsymbol{W} = \boldsymbol{Z}^{\top} \boldsymbol{Z} = \sum_{i=1}^n Z_i^2$ (nicht-zentral) Chi-Quadrat-verteilt und wir schreiben

$$W \sim \chi^2(n, \delta)$$
.

Wir nennen n die Zahl der Freiheitsgrade und $\delta = \mu^{\top} \mu$ den Nicht-Zentralitätsparameter. Es gilt

$$\mathbb{E}(W) = n + \delta$$

$$V(W) = 2n + 4\delta$$

t-Verteilung

Seien $Z \sim \mathcal{N}(\delta,1)$ und $W \sim \chi^2(n,0)$ unabhängig. Dann heißt $T = \frac{Z}{\sqrt{\frac{W}{n}}}$ (nicht-zentral) t-verteilt mit n Freiheitsgraden und Nicht-Zentralitätsparameter δ und wir schreiben

$$T \sim t(n, \delta)$$
.

Es gilt

$$\mathbb{E}(T) = \delta \sqrt{\frac{n}{2}} \frac{\Gamma(\frac{n-1}{2})}{\Gamma(\frac{n}{2})} \text{ für } n > 1$$

F-Verteilung

Sei $W_1 \sim \chi^2(n_1,\delta)$ und $W_2 \sim \chi^2(n_2,0)$ unabhängig. Dann heißt $X = \frac{W_1/n_1}{W_2/n_2}$ (nicht-zentral) Fverteilt mit n_1 und n_2 Freiheitsgraden und Nicht-Zentralitätsparameter δ und wir schreiben

$$X \sim F(n_1, n_2, \delta).$$

Es gilt

$$\mathbb{E}(X) = \frac{n_2 + \frac{n_2 \delta}{n_1}}{n_2 - 2} \text{ für } n_2 > 2$$

Kapitel 4 - Diskrete Einflußgrößen

Kodierung

Sei C eine nominale Variable mit K Ausprägungen.

Dummy-Kodierung:

Wir definieren K neue Variablen Z_1, \ldots, Z_K als

$$Z_k(C) = \begin{cases} 1, & \text{falls } C = k \\ 0, & \text{sonst} \end{cases}$$

 Z_1, \dots, Z_K sind abhängig, da $Z_K = 1 - \sum_{k=1}^{K-1} Z_k$

Effekt-Kodierung: Wir definieren K-1 neue Variablen Z_1^e, \ldots, Z_{K-1}^e als

$$Z_k^e(C) = \begin{cases} 1, & \text{falls } C = k \\ -1, & \text{falls } C = K \\ 0, & \text{sonst} \end{cases}$$

Note:
$$Z_k(\mathbf{C}) = \begin{pmatrix} Z_k(C_1) \\ \vdots \\ Z_k(C_n) \end{pmatrix}$$
 und $Z_k^e(\mathbf{C}) = \begin{pmatrix} Z_k^e(C_1) \\ \vdots \\ Z_k^e(C_n) \end{pmatrix}$

Setup einfache Varianzanalyse

Im folgenden betrachten wir die einfache Varianzana-

lyse mit nur einer diskreten Einflußgröße $\boldsymbol{C} = \begin{pmatrix} C_1 \\ \vdots \\ C_n \end{pmatrix}$

mit K Ausprägungen. Sei n_k dabei die Anzahl der Beobachtungen mit $C_i = k$.

Mittelwertsmodell

Das Mittelwertsmodell ist gegeben durch

$$Y_{k_l} = \mu_k + \epsilon_{k_l}$$
 $l = 1, \dots, n_k$ $k = 1, \dots, K$

oder in Matrix-Vektor Notation:

$$oldsymbol{Y} = \left(Z_1(oldsymbol{C}) \cdots Z_K(oldsymbol{C})
ight) \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_K \end{pmatrix} + oldsymbol{\epsilon}$$

Bei dem Mittelwertsmodell gibt es keinen Intercept und die μ_k sind die Mittelwerte der k-ten Gruppe. Der Effekt der k-ten Gruppe ist also μ_k .

Mittelwertsmodell Beispiel

Für K=3 Ausprägungen und $n_k=2$ für alle k=1,2,3 erhalten wir als Mittelwertsmodell:

$$\boldsymbol{Y} = \begin{pmatrix} Y_{1_1} \\ Y_{1_2} \\ Y_{2_1} \\ Y_{2_2} \\ Y_{3_1} \\ Y_{3_2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} \mu_1 \\ \mu_2 \\ \mu_3 \end{pmatrix} + \begin{pmatrix} \varepsilon_{1_1} \\ \varepsilon_{1_2} \\ \varepsilon_{2_1} \\ \varepsilon_{2_2} \\ \varepsilon_{3_1} \\ \varepsilon_{3_2} \end{pmatrix}$$

Modell mit Effekt-Kodierung

Das Modell mit Effekt-Kodierung ist gegeben durch

$$Y_{k_l} = \mu + \tau_k + \epsilon_{k_l}; \quad \tau_K = -\sum_{k=1}^{K-1} \tau_k$$

für $l=1,\ldots,n_k$ $k=1,\ldots,K$ oder in Matrix-Vektor Notation:

$$m{Y} = (m{e} \;\; Z_1^e(m{C}) \cdots Z_{K-1}^e(m{C})) egin{pmatrix} \mu \ au_1 \ dots \ au_{K-1} \end{pmatrix} + m{\epsilon}$$

Bei dem Modell mit Effekt-Kodierung gibt es einen Intercept μ und die τ_k sind die Abweichungen der k-ten Gruppe vom Gesamtmittelwert bzw. vom Intercept μ . Der Effekt der k-ten Gruppe ist also $\mu + \tau_k$.

Modell mit Effekt-Kodierung Beispiel

Für K = 3 Ausprägungen und $n_k = 2$ für alle k = 1, 2, 3 erhalten wir als Modell mit Effekt-Kodierung:

$$\boldsymbol{Y} = \begin{pmatrix} Y_{1_1} \\ Y_{1_2} \\ Y_{2_1} \\ Y_{2_2} \\ Y_{3_1} \\ Y_{3_2} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & -1 & -1 \\ 1 & -1 & -1 \end{pmatrix} \begin{pmatrix} \mu \\ \tau_1 \\ \tau_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_{1_1} \\ \varepsilon_{1_2} \\ \varepsilon_{2_1} \\ \varepsilon_{2_2} \\ \varepsilon_{3_1} \\ \varepsilon_{3_2} \end{pmatrix}$$

Modell mit Referenz-Kodierung

Das Modell mit Referenz-Kodierung ist gegeben durch

$$Y_{k_l} = \mu_K + \tau_k + \epsilon_{k_l}; \quad \tau_K = 0$$

für $l=1,\ldots,n_k$ $k=1,\ldots,K$ oder in Matrix-Vektor Notation:

$$oldsymbol{Y} = (oldsymbol{e} \ \ Z_1(oldsymbol{C}) \cdots Z_{K-1}(oldsymbol{C})) \left(egin{matrix} \mu_K \ au_1 \ dots \ au_{K-1} \end{matrix}
ight) + oldsymbol{\epsilon}$$

Beim Modell mit Referenz-Kodierung gibt es einen Intercept μ_K der den Mittelwert der K-ten Gruppe angibt und die τ_k sind die Abweichungen der k-ten Gruppe vom Mittelwert der K-ten Referenz-Gruppe. Der Effekt der k-ten Gruppe ist also $\mu_K + \tau_k$ für $k = 1, \ldots, K-1$ und μ_K für k = K.

Modell mit Referenz-Kodierung Beispiel

Für K=3 Ausprägungen und $n_k=2$ für alle k=1,2,3 erhalten wir als Modell mit Referenz-Kodierung:

$$\boldsymbol{Y} = \begin{pmatrix} Y_{1_1} \\ Y_{1_2} \\ Y_{2_1} \\ Y_{2_2} \\ Y_{3_1} \\ Y_{3_2} \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} \mu_3 \\ \tau_1 \\ \tau_2 \end{pmatrix} + \begin{pmatrix} \varepsilon_{1_1} \\ \varepsilon_{1_2} \\ \varepsilon_{2_1} \\ \varepsilon_{2_2} \\ \varepsilon_{3_1} \\ \varepsilon_{3_2} \end{pmatrix}$$

Bemerkungen-Kodierung

Alle Modellvarianten führen zur gleichen Modellanpassung (R^2) . Die Parameter haben aber unterschiedliche Interpretationen. Parameter und deren Schätzer sind aber ineinander umrechenbar.

Setup zweifaktorielle Varianzanalyse

Im folgenden betrachten wir zwei diskrete Einfluß-

größen
$$C = \begin{pmatrix} C_1 \\ \vdots \\ C_n \end{pmatrix}$$
 und $D = \begin{pmatrix} D_1 \\ \vdots \\ D_n \end{pmatrix}$ mit K_C bzw.

 K_D Ausprägungen. Sei $n_{k,l}$ dabei die Anzahl der Beobachtungen mit $C_i = k$ und $D_j = l$.

! Hier ist die Mittelwertsdarstellung bzw. das Mittelwertsmodell nicht möglich, da dieser davon abhängig ist, welche Variable zuerst kodiert wird.

Modell mit Effekt-Kodierung (mehrfaktoriell)

Das Modell mit Effekt-Kodierung ist gegeben durch

$$oldsymbol{Y} = (oldsymbol{e} \ \ Z_1^e(oldsymbol{C}) \cdots Z_{K-1}^e(oldsymbol{C})) egin{pmatrix} \mu \ au_1 \ dots \ au_{K-1} \end{pmatrix} + oldsymbol{\epsilon}$$

Bei dem Modell mit Effekt-Kodierung gibt es einen Intercept μ und die τ_k sind die Abweichungen der k-ten Gruppe vom Gesamtmittelwert bzw. vom Intercept μ . Der Effekt der k-ten Gruppe ist also $\mu + \tau_k$.