General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

(NASA-CR-173691) SPACE STATION NEEDS, N84-27817
ATTRIBUTES AND ARCHITECTURAL OPTIONS:
MISSION REQUIREMENTS Final Study Report
(McDonnell-Douglas Corp.) 68 p Unclas
EC A04/MF A01 CSCL 22B G3/18 00941

Space Station Needs, Attributes and Architectural Option Final Study Results

MISSION REQUIREMENTS

April, 1983

MISSION REQUIREMENT TOPICS

- Mission Model and Methodology
- Science and Applications
- Commercial/Technology Mission Summary
- Operations Analysis
- Benefits/Prioritization Analyses
- Integrated Mission Requirements
- Role of Man

MISSION MODEL EVOLUTION

MISSION DATA BASE

SPACE STATION MISSIONS

DATA BASE PROCESSING

Wission	Data Sneets	Ρ.	20 1 01 3	
FAYLOAD ELEMENT NAME	CODE	TYPE		
CINTACT		Application (non-commercial	Page 2 of	r 3
ORBIT CHARACTERISTICS				
Apogee, kmPe	rigeo, km	Tolorance +		- 2
Inclination, deg		Enhance +		
GTATUS Escape du Required, m/	5	ephomorits recuracy,	•	
DOPET POINTING/ON THERMAL				Page 3 of 3
Oper Wiew direc THERMAL	Ive Passi	√e.		
	e, dog C ope	orational min	max	
First fligh Pointing St Heat Rejection of flight Special Res	non-ope	orational min	m a x	
No. of [lig Special Ra	non-one	prational min		
Duration of POWER Icontonent	DUNCTON! CHARAC	TERISTICS		
OBJECTIVE Location!	☐ Internal ☐	External Rom	MDACC	ammudan Duamma
Opera Equipment	ID: Function	Pressurized	MDACC	computer Programs
Stanc	L, m L, m	W.m		
Peak		mass, kg		
Voltage, U		bles Type/		
DATA/COMMUN	Accolor	ration sor	1000	
Monitoring CREW REQUI	REMENTS	_		
LIEncrypt Craw 5178		Ta	11	1 !
בייט פור אתו ושט בייט בייט בייט בייט בייט בייט בייט בי		LEVEL		
On-Boar Descrit			11	
		Hrs/Day	1 1	
Data TUCCOUTOTNO	MATHEMANAC	Reason		
A VIII VI CEDITOR 1 T-	tarval dava			
On-Boar CONFIGURAT	turnables, kg	7 2		
Data DI CONFIGURAT	IOH CHANGESITT'			
Records	/			
SPECIAL CO	HSIDERAT!			70
	/			

COMPUTERIZED DATA FLOW

VGB580

SCIENCE AND APPLICATIONS MISSION 57 TOTAL

\$49001 ADV SOL 083(430/501) SASOUZ SIRTE SASOUS STAKLAB SASURA COMP SPEC CUSHAY NUC SASOUS EX LO LONG DUR EXP SASOUT TRANS RAD ION. CAL. SASOUS XRAY DESER SASOO9 SPACE TELESC **ASTROPHYSICS** SASOIO HIRES X&G-RAY SPEC SASOLL XRAY TIMING EXPL 19 SASU12 SOLAR INT DYNAMICS SASO13 AIN XRAY ASTROFAC SASU14 LAMARIHIMI 5A5015 VLBI SASO16 LRG DELP REFL SASO17 GAMMA RAY OBS SASO18 HIGH ENER ISO EXP SASU19 SOLAR COR DYN SASOZO COSMIC RAY OBS COMMUNICATIONS SCMOOL REMOTE SENSING REL SCHOOL ORB STANLARDS FACE 3 SCMOO3 COMM RESEARCH FAC SEEGOL OCEAN PAYLOAD SEE002 ATMOS COMP SEE003 UPPER ATMOS RES **ENVIRONMENTAL** SEE004 SPACE PLASMA PHYSICS SEE005 ZERO G CLOUD PHYSICS SEE006 NET. RES. PKG

> SEE007 ATM DYNAMICS&RAD SEE008 OP CIVIL MET

scrudi Mulliarcel ... race. SEFUUS MAND FIELD MAPFER SEPUJA PASS MICRUMAVE HAD SEPOOS LARGE FORMAT CHMER-EARTH AND BEROOG IMAGE BRECTRUMETER SEPORT LUMINESCENCE DET **PLANETARY** SEPUGE LASER RHIBING SEPOGY LANDSAT D-D' 16 SEPOID RADAR ALT SEPULL ACT FLUOR SPECT SEPONS PLAN SPECT TELE SEPUAS IN SPECT SEPULA FAR IR SPELT SEPOIS EXTER 35 DET SEPO16 PLANETARY PROC LAS SUSCIOL PRIMATE EXP FA LIFE SESOOD PLANT BIO/LS FACIL SESOUS ROBENT EXP FALLE **SCIENCES** SESOUR DRB DITHERNTING 6 SUBDICE EXP MED TREAT F-SUSCIUM HUMAN EXP FAL SMPGG1 MATERIALS FROM **MATERIALS** SMPOOL MATERIALS EXP CARE SMP003 MATERIALS EXP ASS **PROCESSING** SMPOOA WAKE SHIELD EXF SMP005 ULTRAVALUUM FAC

OF POOR QUALITY

LEGACY MISSIONS

EVALUATION OF MAN IN-ORBIT INFLUENCES

VGB617

	F-4							ASTR	ОРН	YSICS	1					COMI	1	
1		equired o=Acceptable esirable = Intolerable	ASO (SOT)	SIRTE	STAR LAB	SCRN	TRIC	XRO	HRS	XTE	HTM	VLBI	HEIE	сво	RFI	OSP	OSP	
		REAL-TIME DATA ANALYSIS	•	•	•	0	0	0	•	0	0	0	0	0	0	•	•	
	ST	MULTIPLE SENSOR USE	•	E	7		` ~ :	A 10									7	
	LT S	SENSOR MODE PARAMETER SELECTION	•	3	1	J	CI	er	ICE	9 8	ıng	1					,	
ial	SCIENTIST O3SERVER	COOPERATION WITH PRINCIPAL INVESTIGATOR	•			A	p	pli	ca	tic	on	s I	Mi	SS	ioı	าร	>	
eneficia		TARGET SELECTION	•	9	•	0	0	•	•)	9	0	•	0	0	0	− •	
ne	교교	SENSOR OPERATION	•	•	•	0	0	0	0	•	0	0	•	0	•	•	•	
Be	DEV	SENSOR EVALUATION		•	•	0	0	nti	<u> </u>	\ \ \ \	4	2	0	0	0	0	•	
		SPACE STATION	•			<u> </u>	\cup	pti	UI	lai			0	0	0	0	•	
	TECH. NICIAN	se Require	ı 13		•	•	•	•	•	•	-	0	•	•	•	0	•	
	_	Desire	18		0	0	0	0	0	0	+) /-	0	0	0	0	0		
=	ETY FLIGHT	DI.		5	0	0	0_			-	+7		0	-			0	
nta		Need Service	6	5	0	0		DI	Λ.	TF		DA	A -	0	0	0	0	
Jei	SAF	ONBOARD SAFETY	0		0	0		PL	.A	1	U	R۱	/1 <u>-</u>	0	0	0	0	
Ë	Q	ACCELERATION DISTURBANCES	0	0	0		me Si	0		D	a c i	re		7		-	-	
Detrimenta	RF GRA	EFFLUENTRELEASE	0	0		0	0	0						<u>'</u>	0	0	0	
_	PERF DEGR	REPETIT VE DUTY CYCLES	0	8	0	0	0	0	0	Ac	CC	ep.	t	1	0)	0	
oa	ce	Station Candidate	0	0	0	•	~	0	٦	U	I O		0		•	•	•	
-		Platform Candidate	0	•	0	0	0	0	0	0	0	0	0	0	•	0	-	

OF POOR QUALITY

MCDONNELL S

ACCOMMODATION REQUIREMENTS — SCIENCE AND APPLICATIONS MISSIONS

VGB769

ORBIT REQUIREMENTS SCIENCE AND APPLICATIONS MISSIONS

VGB562

SPACELAB MISSION LAUNCH

VGB582

·	0	2	
- 1	C	а	

	- Sc	hedu	led -	-	Plan	ned	-	- Projected -				
Spacelab Mission	85	86	87	88	89	90	91	92	93	94	95	
Space Biomedical Lab	Δ		Δ		Δ		Δ				-	
STAR		Δ	Δ	Δ							-	
SOT-ASO					SOT	Δ	ASO					
Shuttle Radar Lab	Δ	Δ	Δ	Δ		Δ	Δ					
International Microgravity Lab				Δ	4	2	Δ				•	
Space Plasma Lab				Δ	Δ		Δ		-		-	
SHEAL				Δ	Δ	Δ	Δ				-	
Materials Science Lab	ΔΔ	ΔΔ	ΔΔ	ΔΔ	ΔΔ	ΔΔ	ΔΔ					
SIRTF					Δ	Δ						
Env Obs			Δ	Δ	Δ	Δ	Δ			-	-	
STARLAB						Δ	Δ			-	-	
VLBI					Δ	Δ					-	
								ACCEPTAGE AND	STREET, STREET	0.57 0.000	A PROPERTY.	

NAL PESE IN

Candidate Space Station Missions

- 11 Mission/yr
- 4 Shuttle Flight/yr (Equiv) Saved

MISSION DEMAND SCIENCE AND APPLICATIONS

ORIGINAL PASSE IS

MISSION COST ESTIMATES SCIENCE AND APPLICATIONS

: GB685

EQUIPMENT STARTS

- New
 - 1.3/yr \$200 Million/yr
- Spacelab Legacy 2.7/yr \$150 Million/yr
- Other Legacy 1.5/yr \$50 Million/yr

Assumed Budget – \$400 Million/yr –

EQUIPMENT STARTS

New

1.2/yr

\$210 Million/yr

Other Legacy

0.4/yr

\$30 Million/yr

OPERATIONS

25 Missions/Yr \$360 Million/yr (Average)

> Assumed Budget --\$600 Million/yr --

1992 1993

2000

1987

VGB563A

BUDGET-CONSTRAINED SCIENCE AND APPLICATIONS PROGRAM

SCIENCE AND APPLICATIONS MISSIONS PRIORITIES AND TIME PHASING

(

MATERIALS PROCESSING LABORATORY SMP001

VGB770

CHARACTERISTICS

- Manned Laboratory
- Materials R&D
- Small-Scale ;Production

CONSIDERATIONS AND REQUIREMENTS

- Capability for Limited Evaluation of Test Results
- 10⁻³ to 10⁻⁶ g Required for Many Experiments
- Access to Space Vacuum Required for Some Processes
- Flexibility to Make Many Different Test Setups From Basic Equipment

MISSION DATA

Status: Candidate

Earlist Launch: 1993

Mass: 12300 kg

Preferred Orbit: Any

Power: 12 kW Peak, 6 kW Average

Data Rate: 10 Kbps Peak, 5 Kbps Average

Accommodation: Station — R

Platform — U Satellite — U

Operations: Scientist/Observer — 100 400

Operator/Engineer — 100 400 Technician — 100 400

Launch Volume; Long Module (6m)

Peak Rate Duty Cycle: 0.5

Priority Rating: 3

RESULTS/CONCLUSIONS SCIENCE/APPLICATIONS

MISSIONS

- 57 Defined, Prioritized, Time Phased
- 31 Legacy (Spacelab, etc.)
- 13 Service Opportunities (6 Planned) 2 Approved, 11 New Starts
- 24 New Starts (2/yr)

ORBIT INCLINATION

- 28.5 deg Required (Service and Astrophysics)
- Sun Sync Best Statisfies Remainder
- 57 deg Strong Candidate

STUDIES NEEDED

- Accomplishment vs Cost 57, 90, Sun Sync
- Integration Pointing, Contamination, FOV, etc.
- Prioritization/Schedule Review
- Role of Man

FACILITIES

- Manned Station Required
 - 4 Modules
 - 2.5 Crew
 - Multiple Pointing
- Platform Desired
- Power To 50 kW
- Data To 180 Mbps

COMMERCIAL MISSION OPPORTUNITIES

13 MISSIONS IN MDAC MISSION MODE

PROCESSES

- Electrophoresis
- **Electron Beam**
- Containerless
- Oriented Mixtu
- Crystal Growth
- Rapid Tempera
- Unidirectional Biomaterials P
- Medical Proced

 - Gallium Arseni

TARGET USERS

- AT&T Monsanto
 - Eli Lilly Fluor
 - IBM Eastman Kodak
- Union Carbide Nitinol
- Allegheney International
- Johnson Matthey Eaton
- Calcitek Staley
- Tucker Anthony GTI
- **DuPont John Deere**
- Bethlehem Steel
- Celanese MDC
- Hoffmann-LaRoche
- Baxter Travenol
- Inco Johnson & Johnson
- Ford Aerospace
 Comsat
- Microgravity Research
- Geosat Companies

CRITERIA FOR SELECTION

- High Market Value
- High Value Per Pound
- Uses Properties of Space
- Long Market Life Low **Obsolescence Rate**

COMMERCIAL MISSIONS

00 DE	NAME:	DATE DUR	STAT SEF			PURT	POWER	LIATA	DUTY	POMER *DUTY		EXPEND		W HRS E DAY	DAYS YR		
CMP001 CMP003 CMP004 CMP005 CMP005 CMP005 CMP007 CMP008 CMP009 CMP010 CMP011	MATERIALS RES FAC ELECTROPHORETIC PRO SILICON RIBBON MAN ELECTRONIC CIR ELEM MATERIAL MELT/REFORM ORIENTED MIXTURES DIR XTAL GROWTH HI STRENGTH PLASTICS SEPARATIONS LAB TOXIC WASTE MONITOR BIO PROCESSING MEDICAL FACILITY GA AS FACILITY	93 5 90 5 94 5 94 5 95 5 97 8 97 8 92 10 95 5 97 10 95 5	AA RAM B DA DA DA DA DA DA DA	SM SM LM SM SM	0 .0 0 .0 0 .0 2 .0 0 .0 0 .0 0 .0 0 .0	1 0 1		1000 1000 10 1000 G F	.80 .80 .20 .20	-		10 - 6000 - 542 -	3 3 3 5 5 EN	2 2.00 1 2.00 1 1.00 1 4.00 1 2.00	0 60 0 50 0 50 0 70 0 260 260 260		
							R	es	up	pl	y	– to	6	000) kç	₃/yr	
							P	ow	er	·	- to	25	k١	N		-	
							G	-Le	ev.	el -		10 ⁻³	to	1	0 -5		
							C	rev	٧ -		1 to	о 3					
							P	rop	ri	eta	ary	Ор	era	atio	ons		

ORIGINAL PAGE (S

COMMERCIAL MISSION SUMMARY

- New Candidate Users Identified
- Benefits and Market Potential Large
- Followup Essential
- Concept-to-Market Process Takes Years
- Space Research Laboratory Required
- Manned Interaction Essential

Users Need Incentives, Proprietary Protection, and Manned Space Facilities

Requirements on **Space Station**

- Crew
- High Power Pressurized Lab Vacuum Access
 - Participation Microgravity
- Continuous Operations

SPACE **OPERATIONS** AND **TECHNOLOGY** MISSIONS

Benefits: **Economic Technological**

- Reduced STS Flights
- Lower Transportation Costs
- Spacecraft Reuse
- Larger Systems
- Multiuse SystemsCommercial Attraction
- Enabling Technology

SATELLITE SERVICING

SATELLITE SERVICING MISSIONS

NAL TAKE U

TECHNOLOGY DEVELOPMENT IN ORBIT MISSION TECHNOLOGY

THE CET OF THE FULL OF THE FORM

FILL STOROUGE TECHNICOUS

Space Station Mission Drivers

ROTV

Satellite Servicing

Large Structure Assembly and Deployment

Large Antennas

SELECTED TECHNOLOGY **MISSIONS**

- Satellite Service Technology
- OTV Service Technology
- Crew Manipulator/Robotics
- Zero-g Antenna Range
- Fluid Storage & Mgmt
- Evaluation of Man's Role
- Large Structure-Construction
- Large Structure-Control

SPACE STATION REQUIREMENTS

- EVA/MMU Crew
- RMS Voice/Video
- **External Ports**
- Instrumentation

OF POOR

TECHNOLOGY DEVELOPMENT IN ORBIT SUBSYSTEM TECHNOLOGY

SELECTED TECHNOLOGY MISSIONS

- ECLS H₂O Recovery
- ECLS O₂ Recovery
- Advanced Technology Radiator
- Materials and Coating Technology
- Laser Comm and Tracking
- Tether Dynamics
- Evaluation of Man's Role
- Large Structure-Construction
- Large Structure-Control

SPACE STATION REQUIREMENTS

- CrewEVA/MMU
- Modular Subsystems
- Shop and Test Equip.
- Voice/Video Inst.

SEOSYNCHRONOUS TRANSPORTATION

EXPENDABLE OTV

- High-Cost Stage Expended
 Orbiter Bay Limited
 Ground Launch
- Window

- Low Transportation Cost to GEO
 Utilizes ET Propellant
 Unconstrained By Orbiter
 2-Stage ROTV Maximizes

- Flexibility

ORIGINAL PAGE IS

DEDICATED SATELLITE MISSIONS

Reusable OTV Candidate	es	# I.T.	.HUH:	II (H)	** P** ***	1 K	71. t	dr. 9 6	9.7	9 9		(A Y (UTA (B (B		FIL T	-1 н - 5 -: С,
MASSI SIMULT AS MASSI FAM UV SP MOMBON INTEL ANT MOMBON INTEL ANT MOMBON TURS AND MOMBON SATOM MOMBON SATOM MOMBON SATOM MOMBON SATOM MOMBON STO MOMBIN STO MOMBIN STO MOMBIN BANKING MOMBIN SATOOL	ECT CAP WESTER	27 16	P 5,0	ay 000	loa O k	ad (g	T De	yp eli	es ve	re	d			GEO GEO GEO GEO GEO GEO	0 2 6 2 2 6
KCM021 TELESAT KCM022 CHICOMSAT KCM023 PALAPA KCM024 MISC KCM025 NATO KCM026 TRACK/DATA KEE004 GEO OP/EHV KEP001 GEOS	ACUUISII SAI	1 1 2 2 2 2 2 2 2 2 2 2 2	0 1 1 0 0 0 0 0	2 0 1 0 1 1	U 0 1 0 0	1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 1 0 1 0 0 0	1 1 0 0 0 1 2	9 9 9 9 9 9 9	000000000000000000000000000000000000000	543421262	0 0 0 0 0 0 0	GEO GEO GEO GEO GEO GEO GEO	115 70 702 522 702 433 439 430 591

ORIGINAL PAGE 13 OF POOR QUALITY

(4)

OTV ANALYSIS FACTORS

- Traffic Model
 - Outside Users
 - NASA
- OTV Concept
 - Reusable/Expendable
 - All Propulsive/Aerobraking
 - Single/Multiple Stages/Modular
- Cryogen Availability
 - Scavenging
 - Payload Top/Off
- Ancillary Elements
 - STS
 - Propellant Depot

NUMBER OF OTV FLIGHTS

4000-kg Capability, < 4 Payload/Flight

TYPICAL MANIFEST - 1995

OTV Flight								
Numb	er	1	2	3	4	5	6	7
PLD (kg)	1	3636	3636	2273	632	1314	1136	702
	2			636	1314	1136	895	702
	3			550	702	432	702	636
	4				702	636		
Total (kg)		3636	3636	3459	3350	3518	2733	2040

CANDIDATE EXPENDABLE OTV

8770	12,454
9774	14,550
3300	3,340
0.90	,
4000	2,273

3,500 ⁽¹⁾	2,000 ⁽¹⁾
3860 ⁽¹⁾	2,180 ⁽¹⁾
1,910	1,140
1,000	636

OF POOR QUALITY

4

CANDIDATE REUSABLE OTV

Single Stage

Propellant (kg)
λ΄
GEO Delivery (kg)*
GEO Retrieval (kg)
GEO Round Trip (kg)
GEO Delivery, Expendable (kg)
45

15,460	2 x 6250	26,840
0.86	0.90	0.90
4,000	4,000	4,000
4,471	860	1,448
2,112	720	1,063
6.252	6.000**	12,240

^{*}Design Condition

^{**}One Stage Expended

MCDONNELL DOUGLAS

GEO TRANSPORT COST COMPARISON

1990-2000 MISSION MODEL

DISTRIBUTION OF TRANSPORTATION COSTS

GEO MISSION MODEL YEAR 1990-2000

Two-Stage ROTV — Multiple Payload \$3.8 Billion

Single-Stage ROTV — Multiple Payload \$5.7 Billion

GEO MISSION MODEL TRANSPORT COSTS

4

STS FLIGHT HISTORY SPACE STATION AT 28.5°

STS FLIGHT HISTORY SPACE STATION AT 57°

4

IMPACT OF OPERATIONS ON SPACE STATION

ROTV (2-Stage)

	Flights/Year
-	Dranallant Hannalit

Propellant Usage/YearTurnaround Labor

■ Electric Power

Communication

Facilities

6-12

75,000-150,000 kg

200 Man-Hours

2 kW Peak

Hardwire and RF Link

RMS, Berthing, Control Console

TMS

*	FI	ig	hts	Υ	ear
---	----	----	-----	---	-----

■ Propellant Usage/Year

■ Turnaround Labor

Electric Power

Communication

Facilities

6

6,500 kg

120 Man-Hours

1.3 kW Peak

Hardwire and RF Link

RMS, Berthing, Control Console

Payload Integration

Number of Integrations

Manpower

■ Facilities

6-12

20 Man-Hours

RMS, Storage Hangar, Control

Console

RESULTS/CONCLUSIONS -- OPERATIONS MISSIONS

VGB718

ROTV

- ROTV Can Save \$4.2 Billion
 10 Yr
- ROTV Development Offset
- Two-Stage ROTV Offers Flexibility
- Multiple Payloads Advantageous

Satellite Servicing

- Servicing of Planned High-Value Missions Would Save 2 Flights/yr
- Servicing Capability Would Allow Additional Missions (Replenishment, Random Failures, etc.)

- Potential Commercial Venture
- Early Technology Missions Needed
- Systems Analyses Recommended

Space Station Requirements

- 28.5-deg Orbit
- Two TMS Ports
- Satellite Service Port
- ROTV Port/Service
- ROTV Control Center
- Propeilant Depot
- Construction Space/Fixtures

Assembly/Contstruction

- Allows Deployment of Desired Large Systems
- Technology and Economics Analyses Needed

MISSION ACTIVITY

Model

Model

EUROPEAN MISSIONS

(1)**European Mission Model** MDAC Mission Model 104 Missions 88 Missions 89 57 Science and Application Science and Application 10(2)Operations 4 Operations Commercial Technology 11 Technology 14 13 Commercia! 26,900 10 25 Peak ORIGINAL PAGE IS OF POOR QUALITY 20 13 6.3 Avgo 14.000 δ 4.4 3700 Avgo 2.9 Avgo 1.9 Avgb 0.4 1⊲Ava Avg Avq **A**√Avq Power (kW) Duration (Yrs) Crew Time (Hr/Day) Mass (kg) (1) Data From Erno/MBB Includes 6 S/A Service Missions MDAC European

(*)

EVALUATION OF MAN IN-ORBIT INFLUENCES

VGB813

ASTROPHYSICS										(1]							
•=Required ○ := Acceptable •=Desirable ∘ = Intolerable			ASO (SOT)	SIRTE	STAR	SCRN	TRIC	XRO	HRS	ХТЕ	нтм	VLBI	HEIE	ско	RFI	ეეგ	CRF		
		REAL	TIME DATA ANALYSIS	•	9	•	T	\cap T	127	LN	AIS	123	10	J N	10	Di	=1	•	
	IST /ER	MULTI	PLE SENSOR USE	6	0	•	<u> </u>	<u> </u>			7110	,	<u> </u>					•	
	ERV	SE	DACE CTATION	<u>``</u>	•	•	0	0	0		PT	10	NI /	\ I	0	•	•	•	
بـ	SCIENTIST OBSERVER	CO PR	SPACE STATION		٥	•	0			U	7 I	10	IAY	1		•	•	•	
ENEFICIAL	0, 0	TARG	Require 36		1		0	0	•				4			0	0	•	1
SE F	EL R	SENSC	Desire 22		•	•	0	O	0	('	4			•	0	•	1
BEN	DEVE	SENSC			•	•	0	0	0	<u>_</u>	U	U	TT	U	. ا	0	0	•	
	ОШ	COMPO	Need Service 6		0	•	0	0	0	0	0	0	71	0	0	0	0	•	1
	TECH. NICIAN	EQUIP MAINT	MENT SETUP, CLECKOUT, ENANCE, CALUSRATION, ETC	9	•	•	•	•	•	9	•	• 1		•	•	•	0	•	1
	TECH		CING OF SENS OR AND MENT CONSUMABLES	•	•	0	•	0	۹[T			5	٥	0	•	
	H		NAL ENVIRONMENT	0	0	0	0	0	0	P	LA	וו	· O	HIV	'	0	0	0	1
AL	ETY FLIGH	PHYSIC	DLOGICAL L MITS	0	Ü	0	0	0	8			Do	sire	_		0	0	0	
ETRIMENTAL	AFE F FL	PSYCH	OLOGICAL STRESS	0	0	0	0	2	0	2						0	0	0	1
Σ	SA	ONBO	ARD SAFETY		0	0	2	0	0	Accept 1						0	0	0	
TR	AD	ACCEL	ERATION DISTURBANCES	0	0	0	0	0	0	- <u>}</u>	0	1 /	0	0	0	0	0	0	
1014	L C	EFFLU	ENT RELEASE	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	
	PER DEG	REPET	ITIVE DUTY CYCLES	0	8	0	0	0	0	0	0	0	0	0	0	0	0	0	1
Space Station Condidate		1	0	0	•	•	0	0	0	0	•	0	•	0	•	•			
Space Station Candidate Platform Candidate			0	•	6	0	0	0	0	0	0	•	0	0	•	0	-		
			0	0	0			•	0	0	•	0		0	0	0		•	

ORBIT REQUIREMENTS — ALL MISSIONS

VGB662

(P

MISSION ACCOMMODATION REQUIREMENTS 88 MISSIONS TOTAL MCDONNELL Need **Platform** Need Either Need Manned 24 25 16 **Space** Station Need Need Need Low **Either** High Inclination Inclination

BENEFITS AND PRIORITIZATION ANALYSES

- SOCIAL ECONOMIC CULTURAL SCIENTIFIC

 TECHNOLOGICAL ● COMMERCIAL All Missions Analyzed Population Affected: 88 Missions U.S., World 12 Evaluators Value Added by Space 19,652 Value International Appeal **Judgements** Cost 34 **FACTORS** Commercial Value **EVALUATED Resources Required** Scientific Value **Prioritized Missions** Identified Constituency **Availability**

BENEFITS/PRIORITIZATION ANALYSIS

BENEFITS ANALYSIS PARAMETERS

MISSION VALUE DISTRIBUTION

4

PRIORITIZED MISSION MODEL

GROUP 2

23 MISSIONS

VGB558

GROUP 3 21 MISSIONS

GROUP 4 24 MISSIONS

CMPOO2 SILICON RIBBON MAN CMP004 MATERIAL MELT/REFORM CMP005 ORIENTED MIXTURES CMP007 HI STRENGTH PLASTICS CMPOOS SEPARATIONS LAB CMP011 MEDICAL FACILITY CMP012 GA AS FACILITY SASOO6 EX LG LONG DUR EXP SASO10 HIRES X&G-RAY SPEC SCMOOL REMOTE SENSING RFI SCM003 COMM RESEARCH FAC SEP003 MAG FIELD MAPPER SEP011 ACT FLUOR SPECT SEP014 FAR IR SPECT SEP015 EXTRA SS DET SEP016 PLANETARY PROC LAB SUSCO ORB QUARANTINE SUS005 EXP MED TREAT FAC SMP004 WAKE SHIELD EXP SMP005 ULTRAVACUUM FAC TFM001 LASER COMM&TRACK DEV TGNOO3 MATERIALS&COAT TECH

TGN007 LIQUID DROPLET RAD TGN008 ECLS WATER REC CMPOOS ELECTRONIC CIR ELEM CMP006 DIR XTAL GROWTH CMP010 BIO PROCESSING DAIGO1 STRUCT ASSY & TEST SASOO7 TRANS RAD ION.CAL. SASOOR XRAY OBSER SASO12 SOLAR INT DYNAMICS SAS014 LAMAR (HTM) SAS016 LRG DELP REFL SAS018 HIGH ENER ISO EXP SASO19 SOLAR COR DYN SEE002 ATMOS COMP SEE005 ZERO G CLOUD PHYSICS SEE006 MET. RES. PKG SEPOO7 LUMINESCENCE DET SEP008 LASER RANGING SEP012 PLAN SPECT TELE SEP013 IR SPECT TGN001 LSS CONTR EXP TGN004 TETHER DYNAMICS

TOPOO3 CREW/MANIP CONT

CIRÓO1 MATERIALS RES FAC OTROO4 OTV OPS (2STG) SASO02 SIRTE SASO03 STARLAB SASO04 COMP SPEC COSRAY NUC. SASO15 VLBI SASO17 GAMMA RAY OBS SASO20 COSMIC RAY OBS SCMU02 ORB STANDARDS PACK SEEDOI OCEAN PAYLOAD SEE003 UPPER ATMOS RES SEE004 SPACE PLASMA PHYSICS SEE007 ATM DYNAMICS&RAD SEE008 OF CIVIL MET SEP006 IMAGE SPECTROMETER SLSOOI PRIMATE EXP FAC SLS002 PLANT BIO/LS FACIL SUSOO3 RODENT EXP FACIL SLS006 HUMAN EXP FAC SMP001 MATERIALS PROC LAB SMP002 MATERIALS EXP CARR TGN002 ZERO G ANT RANGE TONOO9 ELCS DXY REC

GROUP 1 20 MISSIONS

CMPOOL ELECTROPHORETIC PRO CMPOOP TOXIC WASTE MONITUR OSROO1 SAT SERV OPS UTROO1 THS OPS SASOO1 ADV SOL OBS (ASO/SOT) SASOO9 SPACE TELESO SASO11 XRAY TIMING EXPL SASO13 ADV XRAY ASTRUFAC SEPOOL SAR SEP002 MULTISPECT LIN ARRAY SEPOGA PASS MICROWAVE RAD SEPOOS LARGE FORMAT CAMERA SEP009 LANDSAT D-D' SEP010 RADAR ALT SMP003 MATERIALS EXP ASS TGNOOS LRG STRUCT CONSTR TGNOO6 FLUID STORE&MANAG TOPOO1 SATELL SERV TECH TOPO02 OTV SERVICE TECH TUPOU4 MAN ROLE EVAL

INCLUDES HIGH VALUE MISSIONS

- Commercial Processing
- Satellite Servicing (TMS)
- ROTV Enabling Technology
- Science and Applications (SAR, Xray, SOT, etc.)

j

MISSION FACILITY REQUIREMENTS

MISSION CAPTURE BY PRIORITY GROUP VGB351
Space Station at 28.5 deg. Platform at High Inclination

MISSION ACCOMMODATION

Prioritized Mission Model (68 Missions)

VGB664

Archi	tecture	Mis: Accom	sions modated		
Space Station	Platform	100%	75%- 100%	Total Missions Captured	OF POOR QUALITY
28.5°		54	10	64	QUALITY
28.5°	57° 90° or } Sun Sync }	57 67	26 17	83 84	95%
57°	28.5° 90° or Sun Sync	60 65	18 10	78 75	

4

UNIQUE MISSION ACCOMMODATION SPACE STATION-28°, PLATFORM-SUN SYNC

MISSION PREF	EF	REN	CE	INTERIM ACCOMMODATIO	N
SEPHIA FAR IN SPECT SACORS EL LO LONG DUR EMP SASO15 VLBI SEEOO3 UPPER ATMOS RES	P 5% E	20.5 57 57 57	}	Dedicated Satellite	
2 SASDEL ADV SOL OBS/ASO/SOT/ SASDES STARLAR	5.5 P	97 28.5	}_	Space Station at 28.5°	ORIGINAL OF POOR
TGH003 MATERIHLS&COAT TECH SCM082 ORB STANDARDS PACK SCM003 COMM RESEARCH FAC SEE006 MET. RES. PKG SEP005 LARGE FORMAT CAMERA SEE001 OCEAN PAYLOAD	P 488888 88888	3227797 335599		Platform at Sun Sync	AL PAGE 13
9 CMP009 TOXIC WASTE MONITOR SAS018 HIGH ENER ISO EXP SAS020 COSMIC RAY OBS SEE002 A'MOS COMP SEE007 ATM DYNAMICS&RAD SEP008 LASER RANGING		98 57 59 98 98	1	Growth Accommodations	
SEPSIO RADAR ALT SEPSII ACT FLUOR SPECT SEPSO2 MULTISPECT IN ARRENT P — Platform SS — Space Sta E — Either	99 35	ଜନ ଡ଼ିଶ ଓଟ 1		 ■ Platform 28.5° ■ Manned Station-Polar ■ Platform 57° 	

VGB767

STATION AT 28.5°, PLATFORM AT SUN SYNCHRONOUS

TIME-PHASED PRIORITIZED MISSION REQUIREMENTS

SPACE STATION — 28 deg PLATFORM — SUN SYNCHRONOUS . T E -

TIME-PHASED PRIORITIZED MISSION REQUIREMENTS

SPACE STATION — 28 deg

VGB708

ATTRIBUTES OF A MANNED SPACE STATION

- Schedule Compression Reduced Cost and Risk
- Combines Best Features of Unmanned Free-Flyer and Sortie Mission, e.g.,
 - Onboard Step-by-Step Development Sequence
 - Less Automation

5 July

- Reduced Cost No Free-Flyer Support Subsystems, Fewer Shuttle Launches
- Common Support Equipment
- Unlimited Data Gathering Test Conduct Time Flexibility

Man Responds Creatively as

Unanticipated Events or

Problems Arise

- Infrequent Event Seasonal Coverage
- Flight Crew Capabilities Modifications/Repair/Replacement/Assembly
 - Visual Observations
 - Real-Time Sensor Adjustments
 - Analyzing Data
 - Pointing Control
 - Targets of Opportunity
 - Failure Diagnosis/Repair
 - EVA for Structural Assembly Equipment Adjustments
 - Iterative Operations
 - Learning Curve Benefits
- Contribution of Man in Space is Historical Fact

EOS MIDDECK SYSTEM

Joint Endeavor Agreement

STS	Flight D	ates	
4 6 7 8 12 16	July April June August March July	1982 1983 1983 1983 1984 1984	(Completed)
,			0

Results From STS 4

- 1. Yield Increased 500 Times
- 2. Repeatable Quantitative Separation Demonstrated
- 3. EOS Design Concept Validated
- 4. Value Manned Participation Confirmed

VGB371

EOS HUMAN OPERATORS ACTIVITY SHUTTLE MIDDECK TASKS

SCHEDULED OPERATOR CALLS

Perform as Power Loadmaster

Cycle Power On/Off as Required

Change System Operation

- Start/Stop
- Zero Check
- Process Sample
- Collect Sample

Take Photographs of Column

Required 14X Each Day

Process Maintenance/Service

- Change Sample Input
- Change Collection Trays

During the STS-4 Flight, Four Process Out-of-Range Errors and a Mandatory Stop/Reset/Restart Software Problem. These Incidents Coupled With the Limited Ground Link Indicate That an Onboard Mission Specialist Would Significantly Increase the Efficiency of EOS Operations on Future Flights

Five Malfunctions Occurred

Product Stream Detection

- Observation is Possible but a Highly Skilled Mission Specialist is Required to Recognize and Interpret Pattern if Dye is Not Included With the Sample. Current Astronaut Training is Insufficient for Effective use of Information Obtained From Column Observation
- Shuttle Link to Ground-Based Mission Specialist Lacks Adequate Bandwidth for Useful Interaction Between Astronautics and Ground

DRIGINAL PAGE IS

ROLE OF MAN IN UROKINASE PROCESS DEVELOPMENT AND OPTIMIZATION

BENEFITS OF MAN IN SPACE — OCEANOGRAPHY

- Interpretive Capability
- Color Acuity Far Above Any Other Sensor
- Flexible Response
- Interactive Processor
- Selective Data
- Data Compression
- Real Time Oceanography
- Special Sensor Deployment and Recovery
- Cheaper Way to Do Some Research Projects
- Definitive Site, Not Necessarily At NADIR
- Orbital Height Ideal for Mesoscale Feature Identification
- Legislates Against Bias Errors in the Data
- Reduces Likelihood of Total System Failure
- Communication Point for Up-Link and Down-Link Information Transfer

VFT743

OCEANOGRAPHIC EFFECTS DISCOVERED FIRST FROM MANNED SPACECRAFT

INTERNAL WAVES

- Distribution Along Shelf Break (Apolio 6)
- Configuration Over Smalf (Apollo 6)
- Existence in the Open Ocean (Skylab)
- Extent and Configuration Along Ocean Fronts (Skylab)

OCEAN SWELL

- Refraction and Absorbtion at Current Boundaries (Skylab)
- Refraction in Flords (Skylab)
- Dissipation at Upwelling Boundaries (Skylab)

EDDIES

- Existence at Coastal Boundaries (Gemini)
- Size Variability in Confined Seas (Apollo)
- Distribution Along Current Edgas (Skylab)
- Kelvin-Helmholtz and Von Karman Vortices Island Wakes (Apollo and Skylab)
- Scale Variability (Skylab)
- Surface Manifestation of Warm and Cold Core Eddles (Skylab and ASTP)
- Coalescence (Skylab)
- Associated Cloud Formations (Skylab)

FRONTS

- Surface Manifestations of Fronts (Gemini ASTP)
- Fronts and Thermal Boundaries (ASTP)
- Mesoscale Turbulence at Frontal Boundaries (Skylab)
- Plankton Distribution (Skylab)
- Wave/Front Interaction (Skylab)

UPWELLING

■ Configuration of Upwelling Boundaries (Apollo, Skylab)

CURRENTS

Current Confluence and Retention of Identity (Skyiab)

Remotely Actuated Deployment Mechanism

Manually Actuated (EVA) Deployment Process 07 200 (m/g)

VGB353

EVA VS MECHANISMS

Reduction of Automatic Mechanisms

9	Forward Launch Support	\$133K
•	Solar Array Launch Latches	1051K
0	Radiator Launch Restraints	401K
•	+ Y and -Y Berthing Port Mechanisms	266K
0	Aft Berthing Port Mechanisms	344K
0	Antenna Launch Latch	211K

TOTAL COSTS FOR 15 MECHANISMS = \$2406K

Manual Activation to Perform the Functions of the Above-Stated Mechanisms Involves 2 EVA Crewman Approximately 2.5 Hours Which is Well Within the Capability of EVA Operations

EVA Costs (Per EVA Crewman) = \$60K-100K, Depending on EVA Support Equipment*

\$60K X 2 Crewman = \$120K

100K X 2 CREWMAN = 200K

^{*}Per MMU Users Guide, Martin Marietta Report MCR-78-517 (Contract NAS9-14593)