Prob/Stats Cheatsheet

Steve Young

ABSTRACT: Everything I know about prob/stats/maybe information theory too..

Contents

1	Conventions			
2	Distributions			1
	2.1	Gaussians		1
		2.1.1	Basics	1
		2.1.2	Differentiation moment trick	2
		2.1.3	Gaussian with Linear Term	2
		2.1.4	Multivariate Gaussians	3
	2.2 Bernoulli			3
3	Prob and stats			3
3.1 The Rules of			tules of Probability	3
	3.2 Bayes' Rule			3
	3.3	Covar	riance	4
4	Information Theory			
5 Bayesian			4	
6	Optimal Stopping Theory			

1 Conventions

Math Notation

2 Distributions

2.1 Gaussians

2.1.1 Basics

1. To start with, *memorize* that

$$\int_{-\infty}^{\infty} dx \, e^{-x^2} = \pi^{1/2} \tag{2.1}$$

2. Next, anything multiplying the x^2 in the integrand is present in inverse under the square root.

$$\int_{-\infty}^{\infty} dx \, e^{-\operatorname{stuff} x^2} = \left(\frac{\pi}{\operatorname{stuff}}\right)^{1/2} \tag{2.2}$$

so, for example:

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2} = \left(\frac{2\pi}{a}\right)^{1/2} \tag{2.3}$$

3. The traditional Gaussian pdf is thus easily seen to be

$$\mathcal{N}(x|0,\sigma^2) = \frac{1}{(2\pi\sigma^2)^{1/2}} e^{-\frac{1}{2\sigma^2}x^2}$$
 (2.4)

2.1.2 Differentiation moment trick

By differentiating Eq. 2.3 wrt a, we obtain an expression for integrals of the form $\int_{-\infty}^{\infty} dx \, x^{2n} e^{-\frac{1}{2}ax^2}$, with $n \in \mathbb{Z}^+$.

e.g. for n = 1:

$$-2\frac{d}{da}\int_{-\infty}^{\infty}dx\,e^{-\frac{1}{2}ax^2} = \int_{-\infty}^{\infty}dx\,x^2e^{-\frac{1}{2}ax^2} = -2\frac{d}{da}\left(\frac{2\pi}{a}\right)^{1/2} = \left(\frac{2\pi}{a}\right)^{1/2}\frac{1}{a} \tag{2.5}$$

For n = 2:

$$\left(-2\frac{d}{da}\right)^2 \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2} = \int_{-\infty}^{\infty} dx \, x^4 e^{-\frac{1}{2}ax^2} = \left(-2\frac{d}{da}\right)^2 \left(\frac{2\pi}{a}\right)^{1/2} = \left(\frac{2\pi}{a}\right)^{1/2} \frac{1}{a} \frac{3}{a} \tag{2.6}$$

We thus obtain an expression for the expectation value of x^{2n} under the Gaussian distribution:

$$\langle x^{2n} \rangle = \frac{\int_{-\infty}^{\infty} dx \, x^{2n} e^{-\frac{1}{2}ax^2}}{\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2}} = \frac{1}{a^n} (2n - 1)(2n - 3) \cdots 5 \cdot 3 \cdot 1 \tag{2.7}$$

2.1.3 Gaussian with Linear Term

To evaluate integrals of the form

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2 + Jx},\tag{2.8}$$

first complete the square in the exponent

$$-\frac{a}{2}x^2 + Jx = -\frac{a}{2}(x^2 - \frac{2Jx}{a}) = -\frac{a}{2}\left(x - \frac{J}{a}\right)^2 + \frac{J^2}{2a}$$
 (2.9)

which gives

$$\int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}ax^2 + Jx} = \int_{-\infty}^{\infty} dx \, e^{-\frac{1}{2}a(x - J/a)} e^{J^2/2a} = \left(\frac{2\pi}{a}\right)^{1/2} e^{J^2/2a} \tag{2.10}$$

where the first integral is done by shifting $x \to x + Ja$.

Eq. 2.3 is also (close to) the *moment generating function* of the Gaussian distribution. Given a pdf p(x), the moment generating function is defined as

$$\psi_X(J) = \int_{-\infty}^{\infty} dx \, e^{Jx} p(x) \tag{2.11}$$

so that the moment generating function for the Gaussian distribution is

$$\frac{1}{(2\pi\sigma^2)^{1/2}} \int_{-\infty}^{\infty} dx \, e^{Jx} e^{-\frac{1}{2\sigma^2}x^2},\tag{2.12}$$

TODO: Finish. Figure out clear way to include normalization factor of pdf in exposition

2.1.4 Multivariate Gaussians

Promoting a to a real $N \times N$ symmetric matrix A, and x and J to a N-dim vectors \vec{x} and \vec{J} with components x_i and J_i , we have the multivariate Gaussian integral

$$\prod_{i=1}^{N} \left(\int_{-\infty}^{\infty} dx_i \right) e^{-\frac{1}{2}\vec{x}^T \mathbf{A} \vec{x} + \vec{J}^T \vec{x}} = \left(\frac{(2\pi)^N}{|\mathbf{A}|} \right)^{1/2} e^{\frac{1}{2}\vec{J}^T \mathbf{A}^{-1} \vec{J}}$$
(2.13)

TODO: finish —

2.2 Bernoulli

For $x \in \{0, 1\}$, Bernoulli dist parametrized by μ , with

$$p(x; \mu) = \mu^{x} (1 - \mu)^{1 - x}$$
(2.14)

3 Prob and stats

3.1 The Rules of Probability

• **Product Rule**: p(x, y) = p(x|y)p(y) = p(y|x)p(x)

• Sum Rule:
$$p(x) = \sum_{y} p(x, y) = \sum_{y} p(x|y)p(y)$$

3.2 Bayes' Rule

Using p(y|x)p(x) = p(x, y) = p(x|y)p(y), we have

$$p(y|x) = \frac{p(x|y)p(y)}{p(x)} = \frac{p(x|y)p(y)}{\sum_{y} p(x|y)p(y)}$$
 (3.1)

3.3 Covariance

4 Information Theory

KL divergence:

$$KL[p(x)||q(x)] = \sum_{x_i} p(x_i) \log \left(\frac{p(x_i)}{q(x_i)}\right) = -\sum_{x_i} p(x_i) \log \left(\frac{q(x_i)}{p(x_i)}\right)$$

$$= -\sum_{x_i} p(x_i) \log q(x_i) + \sum_{x_i} p(x_i) \log p(x_i)$$

$$= H(p, q) - H(p)$$

$$(4.1)$$

where H(p, q) is the cross entropy, and H(p) is the entropy.

5 Bayesian

6 Optimal Stopping Theory