This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

.

© EPODOC / EPO

PN - RU2054717 C 19960220

PD - 1996-02-20

PR - RU19930036349 19930714

OPD - 1993-07-14

TI - PULSED NEUTRON GENERATOR

IN - KOZLOVSKIJ KONSTANTIN I (RU)PRORVICH VLADIMIR A (RU)

PA - KOZLOVSKIJ KONSTANTIN I (RU)PRORVICH VLADIMIR A (RU)

IC - G21G4/02

@ WPI / DERWENT

 Pulse neutron generator - has two targets set coaxially along axis of symmetry of body and uses two coaxial electromagnetic coils to control form of produced plasma clouds

PR - RU19930036349 19930714

PN - RU2054717 C1 19960220 DW199646 G21G4/02 005pp

PA - (KOZL-I) KOZLOVSKII K I

IC - G21G4/02

IN - KOZLOVSKII K I; PRORVICH V A

AB - RU2054717 The pulse neutron generator contains first and second plasma-forming targets and both targets are placed coaxially on the axis of symmetry of a body, while a magnetic system contains a high voltage forming line, discharge electrodes forming a discharge, two symmetrically positioned coaxial electromagnetic coils enclosing the targets and additional optical elements in a pulse laser acting on the targets.

- USE Used for the formation of pulse flows of high density neutrons in experimental neutron physics and nuclear geophysics.
- ADVANTAGE Neutron pulses with high usability parameters are obtd..
- (Dwg.1/1)

OPD - 1993-07-14

AN - 1996-463376 [46]

(51) 6 G 21 G 4/02

Комитет Российской Федерации по патентам и товарным знакам

(12) ОПИСАНИЕ ИЗОБРЕТЕНИЯ

к патенту Российской Федерации

1

(21) 93036349/25

(22) 14.07.93

(46) 20.02.96 Бюл. № 5

(76) Козловский Константин Иванович, Прорвич Владимир Антонович

(56) 1. Кирьянов Г.П. Ядернофизические методы анализа вещества. М.: Атомиздат, 1971, с.279-287. 2. Авторское свидетельство СССР N 766048, кл. G 21G 4/02, 1979. (54) ИМПУЛЬСНЫЙ ГЕНЕРАТОР НЕЙТ-РОНОВ

(57) Использование: в нейтронной физике, ядерной геофизике, при нейтронно-активационном анализе, в источниках нейтронов. Сущность изобретения: импульсный генера-

2

тор нейтронов содержит две плазмообразующие мишени, расположенные внутри герметизированного цилиндрического корпуса на его оси, с поверхностями плазмообразования, обращенными одна к другой. Вокруг мишеней соосно установлены магнитные катушки, связанные с разрядным электроном высоковольтной формирующей линией. Генератор снабжен импульсным лазером, оптической системой формирования лазерных пятен на мишенях и разрядном электроде, а также каналами ввода лазерных лучей в зону воздействия. 1 ил.

7

0547

30

Изобретение относится к нейтронной технике, к средствам формирования импульсных потоков нейтронов высокой плотности и может быть использовано в экспериментальной нейтронной физике, ядерной геофизике, при анализе материалов, в том числе нейтронно-активационном анализе, и в других областях ядерной техники и технологии.

Развитие нейтронной техники сформи- 10 ровало ряд условий. обуславливающих потребительские параметры используемых на практике всевозможных источников (генераторов) нейтронов. Радиоизотопные так называемые Ро-Ве-источники по ряду причин не обладают современными потребительскими параметрами. Поэтому во всем мире в прикладных задачах нейтронной физики предпочтительно используют генераторы нейтронов, способные формировать импульсные потоки нейтронов с регулируемыми параметрами. Как правило, в генераторах нейтронов формируют ионный поток, содержащий ядра для бомбардировки нейтронообразующей мишени, так или иначе реализуя ядерные реакции типа $Be^9(d,n)B^{10}$. $T(d.n)He^4$. Д(d.n)He³.

Известны импульсные источники нейтронов, используемые для целей ядерной геофизики и активационного анализа. содержащие отпаянную нейтронную трубку, излучающую импульсные потоки нейтронов. блок питания ионного источника трубки, источник высоковольтного ускоряющего напряжения и блок синхронизации 35 поджигающего импульса ионного источника нейтронной трубки и импульса ускоряющего напряжения [1].

Применяемые в трубке средства формирования ионного пучка, однако, не обеспе- 40 TOGBNP необходимых параметров импульсного потока нейтронов.

Известен импульсный генератор нейтронов, содержащий ионоускоряющую электродную систему, расположенную в 45 вакуумированном корпусе цилиндрической геометрии, две лазерные мишени, одна из которых выполнена плазмообразующей. причем первая предназначена для образования ионов. а вторая - для образования 50 нейтронов, установленные соответственно на аноде и катоде электродной системы. причем анод размещен на оси катода, в качестве которого служит корпус, а мишень на его внутренней поверхности образует ци- 55 линдрический слой, лазерный плазмообразователь с системой сканирования и фокусировки лазерного излучения на анодную мишень, импульсный разрядник, синхронизированный, С лазерным:

плазмообразователем и включенный между источником высоковольтного напряжения и ионоускоряющей электродной системой, "антидинаторную" магнитную систему, создающую магнитное поле в зоне формирования ионного потока [2].

Использование лазерного плазмообразователя качественным образом позволило улучшить параметры импульсного потока нейтронов, в первую очередь за счет регулируемости степени плазмообразования с удобным фронтом ионного импульса. Причем один и тот же лазерный луч путем его раздвоения полупропускающей и полупреломляющей оптической системой легко может быть использован ДЛЯ плазмообразования, так и в качестве поджигающего импульса ионного источника. В результате может быть получен импульс нейтронного потока малой длительности и высокой плотности. Известный генератор нейтронов принят в качестве прототипа.

Известные импульсные генераторы нейтронов имеют существенные недостатки, в частности недостаток, заключающийся в том, что сформированные импульсы нейтронного потока непрерывно сопровождается гамма-излучением за счет тормозного излучения ускоренных между анодом и катодом электронов. Присутствие интенсивного импульсного гамма-фона порождает нежелательные процессы, искажая результаты измерений во всех прикладных задачах применения нейтронных генераторов.

С другой стороны, наличие неподвижной мишени. бомбардируемой мощными импульсами ускоренных ионов, приводит к ее эродированию (разрушению). Это обстоятельство порождает ухудшение выходных параметров генераторов. Для восстановления потребительских параметров нейтронного генератора в этом случае требуется заменить мишень в герметизированном корпусе или использовать мозаику мишеней с системой перенлцеливания неитронообразующей мишени пучка ускоренных ионов поочередно на каждую мишень. При этом необходимо учесть, что из-за "расхода" материалов на плазмообразование плазмообразующая мишень также разрушается. Но степень разрушения неподвижной мишени из-за ее бомбардировки тяжелыми ионами гораздо выше таковон плазмообразующей мишени, "бомбардируемой" расчетными импульсами лазерного излучения.

Для ускорения ионов до энергии нейтронообразования (например, порядка 100 кэВ) в известных импульсных генераторах нейтронов применяют источник высоковольтного ускоряющего напряжения. Меха-

низм ионообразования и ускорения, как правило, сопровождается возникновением и ускорением электронного "облака" за счет прямых или вторичных электронов. Замедляясь на материалах конструкции нейтрон- 5 ного генератора или неподвижной мишени. электроды порождают тормозное излучение. Это излучение становится сопутствующим нейтронному излучению как гамма-фон со всеми нежелательными факторами.

Цель предложения - устранение перечисленных выше отрицательных факторов известных импульсных генераторов нейтро-

На чертеже представлена схема им- 15 пульсного генератора неитронов. где 1 корпус, 2 и 3 - плазмообразующие мишени, 4 – электромагнитные катушки, 5 – высоковольтная формирующая линия магнитной системы. 6 и 7 — разрядные электроды. 8 импульсный лазер. 9 и 10 - оптические элементы раздвоения лучей. 11 и 13 – линзы-диафрагмы, 14-16 - системы сканирования. 17-19 - оптические каналы вывода лучей в зоны плазмообразования и разрядных элек- 25 тродов, 20 и 21 – плазменные "облака".

Обе лазерные плазмообразующие мишени 2 и 3 импульсного генератора закреплены внутри корпуса 1 соосно вдоль его оси мишеней параллельны друг другу. Обе электромагнитные катушки 4 магнитной системы также расположены соосно внутри корпуса, причем расположены обе симметрично с охватом своими витками зоны ми- 35 шеней 2 и 3. Импульсное питание катушек 4 обеспечивается за счет их симметричного подключения к питающей линии электрода 7. Электрод 7 с электродом 6. подключенным к высоковольтной формирующей линии 40 5. образуют разрядную зону для образования соответствующего питающего импульса магнитных катушек 4.

Генератор содержит импульсный лазер временно для плазмообразования на обеих мишенях 2 и 3 и разрядного "поджига" электродов 6 и 7 высоковольтной формирующей линии 5. Для обеспечения этих условий использованы оптические элементы 9 и 10. 50 Каждый из этих элементов "раздваиваёт" падающий на них лазерный луч. При этом элемент 9 пропускает часть исходного лазерного луча на элемент 10 и преломляет другую часть луча на поверхность мишени 2. 55 а элемент 10 пропускает часть уже "раздвоенного" и падающего на него луча в разрядный объем между электродами 6 и 7. а другую часть луча отражает (преломляет) на вторую мишень 3. С помощью линз-диаф-

рагы 11-13 концентрирую на поверхностях мишеней 2 и 3, а также разрядного электрода лучевые пятна заданного диаметра, а с помощью систем 14-16 сканирования ла зерные пятна перемещают по поверхности на участки воздействия. При этом использованы соответствующие оптические каналы 17- 19 ввода лучей.

į,

Генератор работает следующим обра-10 30M.

В заданный момент времени включается импульсный лазер 8. Излучение лазера с помощью оптических систем и элементов фокусируется в виде лазерных пятен на поверхностях мишеней 2 и 3, а также разрядного электрода 7 (высоковольтная формирующая линия 5 должна к этому времени подготовить стартовые условия между разрядными электродами 6 и 7). Мощность исходного лазерного импульса может быть выбрана и распределена в лазерных пятнах на участках воздействия заданным образом, исходя из условий эксплуатации генератора.

Энергия. заключенная во вторичных лазерных импульсах, вызывает быстрое прогревание поверхности мишеней 2 и 3 и электрода 7. и струеобразно возникает высокотемпературное плазменное облако симметрии. При этом плоские поверхности 30 ядер мишени, причем для каждой мишени свое: 20 для мишени 2 и 21 для мишени 3. Одновременно лазерный разряд на электродах 6 и 7 создает мощный импульс питающего магнитные катушки 4 напряжения.

Первоначально плазменное облако от каждой мишени имеет вид эллипсоида, вытнянутого вдоль нормали к поверхности мишени 2 и 3. Материалы мишеней подбираются в соответствии с заданной реакцией нейтронообразования. Например. при реакции дейтерия Д на дейтерии Д или дейтерия Д на тритии Т мишени должны содержать соответственно Д (обе мишени) или Д — одна мишень, а Т — другая. Могут 8. Лазерный импульс используется одно- 45 быть и другие комбинации. В результате плазмообразования на обеих мишенях в соответствующих плазменных облаках нахо-ДЯТСЯ ядра (ионы) элементов нейтронообразования.

Установлено, что при соответствующем подборе величины и конфигурации магнитного поля В в заявленной конструкции возникают условия трансформации плазменных облаков в сходящие встречные взаимно пронизывающие пучки. Причем в зоне взаимного вхождения ядра приобретают достаточную энергию для нейтрообразования. Из-за высокой плотности (за счет схождения) ядер в пучках и базиса столкновения (пути движения до столкновения) ко5

25

⁷ личество нейтронов в импульсе может достигать значительной величины и эта величина может быть оптимизирована соответствующим подбором электрофизических и геометрических параметров генератора.

Также установлено, что в сходящихся пучках плазменных облаков не возникают условия образования тормозного излучения с энергией квантов ~100 эВ, так как элект- 10 роны имеют существенно меньшую энергию из-за малости массы по отношению к массе ионов при одинаковой скорости.

Генерация нейтронов на встречных пучках требует в 4 раза меньше энергии нейт- 15 ронообразующих частиц, чем при бомбардировке неподвижной мишени. Для дейтронов эта энергия порядка 25 кэВ и 100 кэВ соответственно.

Нарастающее магнитное поле В, созда- 20 ющееся катушками 4 синхронно с плазмообразованием, обеспечивает компенсирование газокинетического давления плазмы поперек поля в соответствии с условием

$$\frac{B^2}{8} = enV \tag{1}$$

где е - разряд электрона:

п - плотность плазмы;

V - поперечная скорость плазмы.

Условие (1) справедливо на расстояниях от оси менее $10d_o$, где d_o – диаметр лазерного пятна на мишенях. Магнитное поле B=5-10 Т. Время нарастания поля $\tau_{\text{нар}}=10$ нс подбирается исходя из времени разлета 35 плазмы на расстояние $10d_o$, где $d_o=0,1-0.5$ мм.

Магнитное поле В обеспечивает одновременно ускорение плазменного облака. В

Формула изобретения 40

ИМПУЛЬСНЫЙ ГЕНЕРАТОР НЕЙТ-РОНОВ, содержащий герметизированный цилиндрический корпус. установленные в корпусе две мишени, одна из 45 которых выполнена плазмообразующей. расположенный вне корпуса импульсный лазер с оптическими элементами фокусировки и сканирования, магнитную систему, причем корпус снабжен каналом 50 ввода лучей лазера в зону плазмообразующей мишени. *опличающийся* тем. вторая мишень также выполнена плазмообразующей. обе мишени соосно установлены в корпусе вдоль его оси 55 симметрии с обращенными одна к другой поверхностями плазмообразования, магнитная система включает высоковольтную формирующую линию, разрядные электроды. образующие разрядник.

результате сжатия плазмы в поперечном направлении и ускорения в продольном возникают сходящиеся и взаимно пронизывающие друг друга пучки.

Выход нейтронов N_n определяется соотношением

 $N_n = N_{nn} \cdot \sigma \cdot n \cdot l$

где σ - сечение ядерной реакции;

п – плотность частиц в плазменном пучке в момент встречи с встречным пучком;

I – длина плазменного пучка (базис реакции);

N_{пл} – число частиц в плазме.

Число частиц в плазме N_{пл} и плотность частиц в пучке п связаны между собой соотношением

$$n = \frac{N_{nn}}{(10d_o)^2 \cdot 1}$$

Длина плазменного пучка $I \sim (20-40) d_o$. Число частиц в плазме $N_{\rm пл} = 10^{17}-10^{18}$. Из приведенных расчетов следует, что число нейтронов в импульсе (выход нейтронов) может составить $N_{\rm n} = 10^9-10^{10}$ нейтр./имп.

Таким образом. благодаря формированию взаимно пронизывающих пучков плазмы генерация нейтронов происходит при меньших энергиях ионов в пучке, низком тормозном излучении, меньшем расходе мишени, высокой плотности частиц в зоне нейтронообразования и, как следствие, имеется возможность получить импульсы нейтронов с высокими потребительскими параметрами, в том числе получить импульсы нейтронов с высокой плотностью и практически без фонового гамма-излучения.

симметрично установленные в корпусе две соосные электромагнитные катушки. охватывающие мишени, причем высоковольтная формирующая линия связана с одним из электродов разрядника. электромагнитные катушки - с другим электродом, импульсный лазер снабжен дополнительными оптическими элементами раздвоения лазерного луча. элементами раздвоения одного из лазерных лучей. направленных на плазмообразующие мишени. и дополнительными элементами фокусировки и сканирования лазерных лучей. при этом корпус снабжен дополнительным каналом ввода лазерных лучей в зону второй плазмообразующей мишени. а разрядник снабжен каналом ввода лазерных лучей в разрядный объем на поверхность одного из разрядных электродов.

Редактор Т.Юрчикова

Составитель К.Козловский Техред М.Моргентал

Корректор С.Патрушева

Заказ 1512

Тираж Подписное НПО "Поиск" Роспатента 113035. Москва, Ж-35, Раушская наб., 4/5