UNIVERSIDADE FEDERAL DO PARANÁ DEPARTAMENTO DE ENGENHARIA QUÍMICA GRADUAÇÃO EM ENGENHARIA QUÍMICA

Disciplina: Otimização de Processos – ENQ071

Prof. Marcos L. Corazza

Data: 20/11/2023

Com consulta!

Data entrega: 27/11/2023 até as 17h.

Prova P2	
Nota: (10,0 Pts)	
Aluno:	
GRR:	

Questão 1 (3,0 Pts)

Uma corrente de processo (F_I) deve ser utilizada para resfriar outras duas correntes, Q_1 e Q_2 . As temperaturas de origem e de destino de cada uma dessas correntes, bem como o produto WC_p (considere C_p constante), encontram-se na tabela abaixo.

Atenção: A entrega deve ser cópia física contento esta folha de prova como capa.

Corrente	Fluxo Térmico <i>WCp</i> (<i>F</i> ou <i>Q</i>) (BTU/h °F)	T ₀ (°F)	<i>T_d</i> (°F)
F_1	14450	140	320
Q_1	16670	320	252
Q_2	20000	353	280

Cogita-se dois esquemas de troca térmica: **a**) esquema sequencial, em que F_1 troca calor com Q_1 e em seguida com Q_2 ; **b**) esquema em paralelo, em que uma fração x de F_1 troca calor com Q_2 e (1-x) com Q_1 , como mostra a figura abaixo. Determine qual dos dois esquemas é o mais vantajoso do ponto de vista econômico. Como não há utilidades envolvidas (parametrizadas), o critério pode ser apenas o custo de capital: $C_{cap} = A_2^{0,3X} + A_3^{0,2Y}$ [\$ / a] (onde X e Y representam o último e o penúltimo dígito do GRR).

Para o cálculo das áreas, usar U = 10X BTU/(h.ft².°F. No modelo a seguir, Q_2 e Q_3 são as cargas térmicas dos trocadores 2 e 3, respectivamente.

OBS: Temperaturas dadas em °F.

Questão 2 (3,0 Pts)

10.000 lb/h de uma corrente quente deve ser resfriada de 50 °F até -70 °F, em 3 estágios de refrigeração. Cada estágio consiste em um trocador de calor onde a corrente quente é resfriada por líquido refrigerante em ebulição. As temperaturas de entrada e de saída da corrente quente em cada trocador (t_i) encontram-se no fluxograma abaixo, bem como as temperaturas de ebulição de cada líquido refrigerante em cada trocador (T_i) . O calor latente de vaporização dos 3 líquidos refrigerantes é igual a 10Y BTU/lb. O coeficiente global de troca térmica dos três trocadores é igual a 20X BTU/(h.ft².°F). A capacidade calorífica da corrente quente é igual a 1X BTU/(lb °F). O modelo matemático de cada trocador i é dado por:

$$Q_{i} - W_{0}C_{p}\left(t_{i-1} - t_{i}\right) = 0; \qquad Q_{i} - \lambda W_{i} = 0; \qquad Q_{i} - U\!A_{i}\delta_{i} = 0; \qquad \delta_{i} - \frac{t_{i-1} - t_{i}}{\ln\frac{t_{i-1} - T_{i}}{t_{i} - T_{i}}} = 0$$

O custo de cada trocador é dado por $C_i = a_i \sqrt{A_i} + b_i W_i$ \$/h, onde os parâmetros a_i e b_i são:

Estágio	a_i	b_i
1	0,05	0,0002
2	0,05	0,0003
3	0,15	0,0004

- a) Calcule a área de troca térmica e a vazão de cada refrigerante;
- b) repetir o dimensionamento sem a especificação de t₁ e t₂, primeiro uma de cada vez e depois simultaneamente. Desenhe a região viável para este último caso;
- c) verifique para qual parâmetro, entre λ e U, o Custo Total do sistema é mais sensível. Justifique.

(X e Y os valores do último e do penúltimo dígito do GRR, respectivamente).

Questão 3 (4,0 Pts)

Uma determinada corrente contendo ácido benzoico (AB) em água (A) é tratada com benzeno (B), em um sistema de extração líquido-líquido com correntes cruzadas, de acordo com o seguinte fluxograma esquemático:

- a) apresente a modelagem matemática para este processo.
- b) Apresente a condição de processo que maximiza o lucro operacional em termos da receita e do consumo de solvente.

Dados de processo:

- 1) Para o cálculo dos estágios de equilíbrio considere a seguinte relação $y_i = Kx_i$, onde y_i é a fração mássica do soluto na corrente de extrato e x_i é a fração mássica na corrente de rafinado, em qualquer estágio i.
- 2) Preço de venda do ácido benzoico (AB): 0,4 \$ / Kg AB
- 3) Custo do benzeno (B): 0,01 \$ / kg B

OBS: Solubilidade do benzeno em água é considerada zero.

Apresente TODAS as considerações feitas.