

Estrategias para la exploración coordinada multi-VANT

Luis Alberto Ballado Aradias Dr. José Gabriel Ramirez-Torres Dr. Eduardo Arturo Rodriguez-Tello CINVESTAV - UNIDAD TAMAULIPAS

Vehículos Aéreos No Tripulados Estadísticas

Los Vehículos Aéreos No Tripulados (VANTS), han experimentado un rápido crecimiento en los últimos años. Su versatilidad y capacidad para acceder a áreas de difícil acceso han impulsado su adopción en diferentes sectores. A medida que la tecnología continúa avanzando, se espera que los drones autónomos desempeñen un papel cada vez más importante en áreas como la inteligencia artificial y la integración en la vida cotidiana.[4]

Robot Autónomo

Los robots autónomos representan una fascinante frontera en la robótica y la inteligencia artificial, ya que deben poseer la capacidad de tomar decisiones y ejecutar tareas de manera independiente.

Para que un robot sea considerado autónomo, debe responder las siguientes preguntas:

- ¿Dónde estoy?

 Sensores avanzados como cámaras y lidar, permiten conocer su entorno.

 Esta conciencia espacial les permite adaptarse dinámicamente y ubicarse en su entorno.
- ¿A dónde voy? Capacidad de determinar una dirección futura se basa en algoritmos de planificación y toma de decisiones, considerando variables como obstáculos y restricciones del entorno.
- ¿Cómo llego ahí?

 La percepción,
 planificación y ejecución
 de sus movimientos,
 permite adaptarse a
 entornos dinámicos y
 superar obstáculos de
 manera autónoma.

VANT tipo Multi-rotor

- 1. Sensores de Percepción. Incluyen cámaras, lidar, entre otros, que permiten al VANT recopilar información sobre su entorno.
- 2. **Sistema de Control**. Contiene el procesador y los algoritmos que permiten al VANT tomar decisiones autónomas basadas en la información recopilada por los sensores.
- 3. **Sistema de Propulsión**, Los motores y las hélices proporcionan la fuerza necesaria para el vuelo. La configuración de los motores puede variar según su capacidad de maniobra.

Arquitectura Exploración

Exploración es una tarea fundamental en robots autónomos. El objetivo es crear un mapa de un ambiente desconocido.

- Sensor Incluyen cámaras, lidar, entre otros, que permiten al VANT recopilar información sobre su entorno.
- Creación Mapa Incluyen cámaras, lidar, entre otros, que permiten al VANT recopilar información sobre su entorno.
- Localización Incluyen cámaras, lidar, entre otros, que permiten al VANT recopilar información sobre su entorno.
- Exploración Incluyen cámaras, lidar, entre otros, que permiten al VANT recopilar información sobre su entorno.
- Planificación trayectoria Incluyen cámaras, lidar, entre otros, que permiten al VANT recopilar información sobre su entorno.
- Control Incluyen cámaras, lidar, entre otros, que permiten al VANT recopilar información sobre su entorno.

Aplicaciones

Estrategia exploración coordinada

Referencias

- [1] Ashten Akemoto and Frances Zhu. Informative path planning to explore and map unknown planetary surfaces with gaussian processes. In 2022 IEEE Aerospace Conference (AERO), pages 1–12, 2022.
- [2] Titus Cieslewski, Andreas Ziegler, and Davide Scaramuzza.

 Exploration Without Global Consistency Using Local Volume Consolidation, page 559–574.

 Springer International Publishing, 2022.
- [3] Yixin Jiang, Lingyun Zhou, Yijia Tang, Ya Tu, Chunhong Liu, and Qingjiang Shi. A collaborative jamming algorithm based on multi-uav scheduling, 2023.
- [4] Claude E. Shannon.

 A mathematical theory of communication.

 Bell System Technical Journal, 27(3):379-423, 1948.