proof of Lucas-Lehmer primality test

The objective of this article is to prove the <u>Lucas-Lehmer primality test</u>: Let p>2 be a prime, and let $M_p=2^p-1$ be the corresponding <u>Mersenne number</u>. Then M_p is prime if and only if M_p divides s_{p-1} (equivalently, if and only if $s_{p-1}\equiv 0$ M_p) where the numbers $m_p=1$ 0 are given by the following recurrence relation:

$$egin{array}{ll} s_1 &= 4 \ s_{n+1} &= {s_n}^2 - 2, & n \geq 1 \end{array}$$

We show that the <u>validity</u> of the <u>primality test</u> is <u>equivalent</u> to the following <u>theorem</u>, which is then proved directly:

Theorem 1.

(Lucas) M_p is prime if and only if $lpha^{(M_p+1)/2}\equiv -1$ (M_p) , where $lpha=2+\sqrt{3}$.

To see that the two are in fact equivalent, let $eta=2-\sqrt{3}$. Then $lpha+eta=4, \quad lphaeta=1$. Thus

$$egin{array}{lll} s_1 &= lpha + eta \ s_2 &= (lpha + eta)^2 - 2 = lpha^2 + eta^2 + 2lphaeta - 2 = lpha^2 + eta^2 \ s_3 &= lpha^4 + eta^4 \ & \cdots \ s_{p-1} &= lpha^{2^{p-2}} + eta^{2^{p-2}} \end{array}$$

Note that $2^{p-2}=rac{M_p+1}{4}$. Then

$$egin{aligned} s_{p-1} &\equiv 0 \ \ (M_p) \ \Leftrightarrow lpha^{(M_p+1)/4} + eta^{(M_p+1)/4} &\equiv 0 \ \ (M_p) \ &\Leftrightarrow lpha^{(M_p+1)/2} + (lphaeta)^{(M_p+1)/4} &\equiv 0 \ \ (M_p) \ &\Leftrightarrow lpha^{(M_p+1)/2} &\equiv -1 \ \ (M_p) \end{aligned}$$

It thus remains to prove Theorem 1. We start with two simple lemmas:

Lemma 2.

If
$$p>3$$
 is prime, then $lpha^{p-1}\equiv 1 \ \ (p)$ or $lpha^{p+1}\equiv 1 \ \ (p).$

Proof.

$$lpha^p\equiv 2^p+3^{(p-1)/2}\sqrt{3}\equiv \left\{egin{array}{ll} lpha & (p) & {
m if} & \left(rac{3}{p}
ight)=1 \ eta & (p) & {
m if} & \left(rac{3}{p}
ight)=-1 \end{array}
ight.$$

where $\left(\dot{\cdot}\right)$ is the <u>Legendre symbol</u>. Thus

$$\left(rac{3}{p}
ight)=1 \;\; \Rightarrow \;\; lpha^{p-1}=lpha^plpha^{-1}=lpha^peta\equivlphaeta=1 \;\; (p)$$

$$\left(rac{3}{p}
ight) = -1 \;\; \Rightarrow \;\; lpha^{p+1} = lpha^p lpha \equiv eta lpha = 1 \;\; (p)$$

Lemma 3.

Let p be a prime with $p\equiv 7\pmod p\equiv 7\pmod p$. Then $lpha^{(p+1)/2}\equiv -1\pmod p$.

Proof.

$$\left(1+\sqrt{3}
ight)^2=4+2\sqrt{3}=2lpha$$
 , so that

$$\left(1+\sqrt{3}
ight)^{p+1}=2^{(p+1)/2}lpha^{(p+1)/2}$$

But $p\equiv 7\pmod{(8)}$, so that $\left(\frac{2}{p}\right)=1$. Thus $2^{(p+1)/2}\equiv 2\cdot 2^{(p-1)/2}\equiv 2\pmod{p}$ and therefore

$$\left(1+\sqrt{3}
ight)^{p+1} \equiv 2 lpha^{(p+1)/2} \ \ (p)$$

Also,

$$\left(1+\sqrt{3}
ight)^{p+1} = \left(1+\sqrt{3}
ight)\left(1+\sqrt{3}
ight)^p \equiv \left(1+\sqrt{3}
ight)\, \left(1+3^{(p-1)/2}\sqrt{3}
ight)\,\,\left(p
ight)$$

But
$$p \equiv 7 \;\; (12)$$
, so $3^{(p-1)/2} \equiv -1 \;\; (p)$ and thus

$$(1+\sqrt{3})^{p+1} \equiv (1+\sqrt{3}) \ (1-\sqrt{3}) = -2 \ \ (p)$$

Putting together the two expressions for $\left(1+\sqrt{3}\right)^{p+1}$, we get $lpha^{(p+1)/2}\equiv -1 \ \ (p).$ \blacksquare

We are now in a position to prove Theorem 1:

Proof.

 (\Rightarrow) : If M_p is prime where p>3 is prime, then note that $M_p\equiv 7\,(8)\,,7\,(1)\,2$ so that M_p satisfies the conditions of Lemma 3. The result follows.

 $(\Leftarrow): \ ext{If } lpha^{(M_p+1)/2}\equiv -1 \ \ (M_p)$, choose $q\mid M_p$ for q a prime. Since $M_p\equiv 7\,(1)\,2$, we have q>3. Since $lpha^{(M_p+1)/2}\equiv -1 \ \ (M_p)$ also $lpha^{(M_p+1)/2}\equiv -1 \ \ (q)$ and thus $lpha^{M_p+1}\equiv 1 \ \ (q)$. But $M_p+1=2^p$, so

$$lpha^{2^p}\equiv 1 \;\; (q)$$

Thus the order of $lpha \ (q)$ divides 2^n . It can't divide 2^{n-1} since $lpha^{(M_p+1)/2}\equiv -1 \ (q)$, so its order is precisely $2^n=M_p+1$. However, $lpha^{q+1}\equiv 1 \ (q)$ or $lpha^{q-1}\equiv 1 \ (q)$ by Lemma 2 and thus $q\geq M_p$. But $q\mid M_p$, so $q=M_p$ and M_p is in fact prime. \blacksquare

Title proof of Lucas-Lehmer primality test

Canonical name ProofOfLucasLehmerPrimalityTest

Date of creation 2013-03-22 18:42:16

Last modified on 2013-03-22 18:42:16

Owner rm50 (10146)

Last modified by rm50 (10146)

Numerical id 5

Author rm50 (10146)

Entry type Proof

Classification msc 11A51

Generated on Fri Feb 9 15:20:35 2018 by LaTeXML 1.