

Classification Performance Evaluation

강필성 고려대학교 산업경영공학부 pilsung_kang@korea.ac.kr

AGENDA

	R Fxercise
04	Classification Performance Evaluation
03	Logistic Regression: Interpretation
02	Logistic Regression: Learning
01	Logistic Regression: Formulation

Why Evaluate?

• Over-fitting for training data

Why Evaluate?

• Over-fitting for training data

Why Evaluate?

- Multiple methods are available to classify or predict.
 - ✓ Classification:
 - Naïve bayes, linear discriminant, k-nearest neighbor, classification trees, etc.
 - ✓ Prediction:
 - Multiple linear regression, neural networks, regression trees, etc.
- For each method, multiple choices are available for settings.
 - ✓ Neural networks: # hidden nodes, activation functions, etc.
- To choose best model, need to assess each model's performance.
 - ✓ Best setting (parameters) among various candidates for an algorithm (validation).
 - ✓ Best model among various data mining algorithms for the task (test).

Example: Gender classification

Classify a person based on his/her body fat percentage (BFP).

■ Simple classifier: if BFP > 20 then female else male.

■ How do you evaluate the performance of the above classifier?

2

Classification Performance

Confusion Matrix

Summarizes the correct and incorrect classifications that a classifier produced for a certain data set.

Confusion matrix can be constructed as

Confusion Matrix		Pred	icted
		F	М
Actual	F	4	1
Actual	М	2	3

Confusion Matrix

Summarizes the correct and incorrect classifications that a classifier produced for a certain data set.

Confusion Matrix		Pred	icted
		1(+)	0(-)
Actual	1(+)	n ₁₁	n ₁₀
ACTUAL	0(-)	n _{o1}	n _{oo}

Confusion Matrix		Pred	icted
		F	M
Astrol	F	4	1
Actual	M	2	3

- Misclassification error = $(n_{01} + n_{10})/(n_{11} + n_{10} + n_{01} + n_{00}) = (2+1)/10 = 0.3$
- Accuracy = (I-Misclassification error) = $(n_{11}+n_{00})/(n_{11}+n_{10}+n_{01}+n_{00}) = (4+3)/10$ = 0.7

Confusion Matrix

Summarizes the correct and incorrect classifications that a classifier produced for a certain data set.

Confusion Matrix		Pred	icted
		1(+)	0(-)
Actual	1(+)	n ₁₁	n ₁₀
Actual	0(-)	n _{o1}	n _{oo}

Confusion Matrix		Pred	icted
		F	M
A at al	F	4	1
Actual	M	2	3

• Balanced correction rate (BCR):
$$\sqrt{\frac{n_{11}}{n_{11} + n_{10}} \cdot \frac{n_{00}}{n_{01} + n_{00}}} = \sqrt{0.8 \times 0.6} = 0.69$$

• FI-Measure:
$$\frac{2 \times Recall \times Precision}{Recall + Precision} = \frac{2 \times 0.8 \times 0.67}{0.8 + 0.67} = 0.85$$

Cut-off for classification

• A new classifier:: if BFP > θ then female else male.

Sort data in a descending order of BFS.

How do you decide the cut-off for classification?

Cut-off for classification

Performance measures for different cut-offs:

No.	BFS	Gender
1	28.6	F
2	25.4	M
3	24.2	F
4	23.6	F
5	22.7	F
6	21.5	M
7	19.9	F
8	15.7	M
9	10.0	M
10	8.9	M

■ If $\theta = 24$,

Confusion Matrix		Predicted	
		F	М
Actual	F	2	3
	M	1	4

- Misclassification error: 0.4
- Accuracy: 0.6
- Balanced correction rate: 0.57
- FI measure = 0.5

Cut-off for classification

Performance measures for different cut-offs:

No.	BFS	Gender
1	28.6	F
2	25.4	M
3	24.2	F
4	23.6	F
5	22.7	F
6	21.5	M
7	19.9	F
8	15.7	M
9	10.0	M
10	8.9	M

■ If $\theta = 22$,

Confusion Matrix		Pred	icted
		F	М
Actual	F	4	1
	М	1	4

• Misclassification error: 0.2

• Accuracy: 0.8

• Balanced correction rate: 0.8

• FI measure = 0.8

Cut-off for classification

Performance measures for different cut-offs:

No.	BFS	Gender
1	28.6	F
2	25.4	M
3	24.2	F
4	23.6	F
5	22.7	F
6	21.5	M
 7	19.9	F
8	15.7	M
9	10.0	M
10	8.9	M

■ If $\theta = 18$,

Confusion Matrix		Pred	icted
		F	М
Actual	F	5	0
	M	2	3

- Misclassification error: 0.2
- Accuracy: 0.8
- Balanced correction rate: 0.77
- FI measure = 0.83

Cut-off for classification

- In general, classification algorithms can produce the likelihood for each class in terms of <u>probability</u> or <u>degree of evidence</u>, etc.
- Classification performance highly depends on the cut-off of the algorithm.
- For model selection & model comparison, cut-off independent performance measures are recommended.
- Lift charts, receiver operating characteristic (ROC) curve, etc.

- Area Under Receiver Operating Characteristic Curve (AUROC)
 - ✓ Fault Detection Problem:
 - Classify Good/Faulty products
 - A total of 100 products
 - 20 products are fault (Fault ratio: 0.2)
 - Label: I(NG), 0(G)

• Estimated likelihood (P(NG)) and the target label information

Glass	P(NG)	Label	Glass	P(NG)	Label	Glass	P(NG)	Label	Glass	P(NG)	Label
ı	0.976	I	26	0.716	- I	51	0.41	0	76	0.186	0
2	0.973	I	27	0.676	0	52	0.406	I	77	0.183	0
3	0.971	0	28	0.672	0	53	0.378	0	78	0.178	0
4	0.967	I	29	0.662	0	54	0.376	0	79	0.176	0
5	0.937	0	30	0.647	0	55	0.362	0	80	0.173	0
6	0.936	I	31	0.64	I	56	0.355	0	81	0.17	0
7	0.929	I	32	0.625	0	57	0.343	0	82	0.133	0
8	0.927	0	33	0.624	0	58	0.338	0	83	0.12	0
9	0.923	I	34	0.613	I	59	0.335	0	84	0.119	0
10	0.898	0	35	0.606	0	60	0.334	0	85	0.112	0
11	0.863		36	0.604	0	61	0.328	0	86	0.093	0
12	0.862	I	37	0.601	0	62	0.313	0	87	0.086	0
13	0.859	0	38	0.594	0	63	0.285		88	0.079	0
14	0.855	0	39	0.578	0	64	0.274	0	89	s0.071	0
15	0.847	I	40	0.548	0	65	0.273	0	90	0.069	0
16	0.845	I	41	0.539	I	66	0.272	0	91	0.047	0
17	0.837	0	42	0.525	I	67	0.267	0	92	0.029	0
18	0.833	0	43	0.524	0	68	0.265	0	93	0.028	0
19	0.814	0	44	0.514	0	69	0.237	0	94	0.027	0
20	0.813	0	45	0.51	0	70	0.217	0	95	0.022	0
21	0.793	I	46	0.509	0	71	0.213	0	96	0.019	0
22	0.787	0	47	0.455	0	72	0.204	ı	97	0.015	0
23	0.757	I	48	0.449	0	73	0.201	0	98	0.01	0
24	0.741	0	49	0.434	0	74	0.2	0	99	0.005	0
학교 5	0.737	0	50	0.414	0	75	0.193	0	100	0.002	0 %

Confusion matrix

- Set the cut-off to 0.9
 - Malignant if P(Malignant) > 0.9, else benign.

Conf	usion	Predicted		
Ма	trix	М	В	
Actual	М	6	14	
	В	3	77	

- Misclassification error = 0.17
- Accuracy = 0.83
- Is it a good classification model?

Confusion matrix

- Set the cut-off to 0.8
 - Malignant if P(Malignant) > 0.8, else benign.

Conf	usion	Predicted		
Ma	trix	М	В	
Actual	М	10	10	
	В	10	70	

- Misclassification error = 0.2
- Accuracy = 0.8
- Is it worse than the previous model?

Receiver operating characteristics (ROC) curve

- Sort the records based on the P(interesting class) in a descending order.
- Compute the true positive rate and false positive rate by varying the cutoff.
- Draw a chart where x & y axes are false & true positive, respectively.

ROC example

■ First cut-off

Glass	P(NG)	Label
l	0.976	l
2	0.973	
3	0.971	0
4	0.967	Ī
5	0.937	0

Confusio	on Matrix	예측		
Comusic	on Macrix	NG	G	
실제	NG	0	20	
	G	0	80	

$$TPR = \frac{0}{20} = 0$$

$$FPR = \frac{0}{80} = 0$$

ROC example

Second cut-off

Glass	P(NG)	Label	TPR	FPR
			0	0
I	0.976			
2	0.973	I		
3	0.971	0		
4	0.967	Ī		
5	0.937	0		

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Confusio	on Matrix	예측		
Comusic	on racinx	NG	G	
실제	NG	I	19	
	G	0	80	

TPR =
$$\frac{1}{20} = 0.05$$

$$FPR = \frac{0}{80} = 0$$

ROC example

■ Third cut-off

Glass	P(NG)	Label	TPR	FPR
			0	0
	0.976		0.05	0
2	0.973	I		
3	0.971	0		
4	0.967			
5	0.937	0		

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Confusio	on Matrix	예측		
Comusic	on macrix	NG	G	
실제	NG	2	18	
	G	0	80	

$$TPR = \frac{2}{20} = 0.10$$

$$FPR = \frac{0}{80} = 0$$

ROC example

■ Fourth cut-off

Glass	P(NG)	Label	TPR	FPR
			0.00	0.00
I	0.976		0.05	0.00
2	0.973		0.10	0.00
3	0.971	0		
4	0.967	I		
5	0.937	0		

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

Confusio	on Matrix	예측		
Confusion Matrix		NG	G	
실제	NG	2	18	
결제	G	Ī	79	

$$TPR = \frac{2}{20} = 0.10$$

$$FPR = \frac{1}{80} = 0.0125$$

ROC example

- Compute all possible TPR and FPR
- Draw a graph with FPR as an x-axis and TPR as an yaxis

Glass	P(NG)	Label	TPR	FPR
			0.000	0.000
1	0.976		0.050	0.000
2	0.973		0.100	0.000
3	0.971	0	0.100	0.013
4	0.967		0.150	0.013
5	0.937	0	0.150	0.025
6	0.936	l	0.200	0.025
7	0.929	Ī	0.250	0.025
8	0.927	0	0.250	0.038

•	•	•	•	•
•	•	•	•	•
•	•	•	•	•

96	0.019	0	1.000	0.950
97	0.015	0	1.000	0.963
98	0.01	0	1.000	0.975
99	0.005	0	1.000	0.988
100	0.002	0	1.000	1.000

Receiver operating characteristics (ROC) curve

Area Under ROC curve (AUROC)

- The area under the ROC curve.
- Can be a useful metric for parameter/model selection.
- I for the ideal classifier
- 0.5 for the random classifier.

6

