

The Risks of Recourse in Binary Classification

The Risk of Recourse in Binary Classification

- Preprint on ArXiv (2306.00497)
- All work presented was created in collaboration with:

Dr. Tim van Erven

Dr. Damien Garreau

Programme of today

- Introduction to the problem
- Modelling the setting
- Optimal classifiers
- Near Optimal classifiers
- Strategising
- Conclusion

Introduction to the problem With a peculiar example

Leading example

2 parties:

► Credit Loan Applicant (A)

► Credit Loan Provider (P)

Loan application process:

► (A) provides (P) with a set of features:

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

 \blacktriangleright (P) has an automated decision system f

$$f(x) = 1$$
 if accepted $f(x) = -1$ if not

► (A) can ask for a counterfactual explanation

Leading example

Loan application process:

► (A) provides (P) with a set of features:

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix}$$

 \blacktriangleright (P) has an automated decision system f

$$f(x) = 1$$
 if accepted $f(x) = -1$ if not

► (A) can ask for a counterfactual explanation

This example us seen as a:

Counterfactual literature

Positive example

Strategic classification

Negative example

Modelling the situation

Model

Learning theoretic setting for classification

$$f: \mathcal{X} \subseteq \mathbb{R}^d \to \{-1,1\}$$

We assume that

$$(X_0, Y) \sim P$$

Loss is measured by counting wrong classifications

$$\mathscr{C}(f(x), y) = 1\{f(x) \neq y\}$$

Goal is to minimize expected loss (Risk/Accuracy)

$$R = \mathbb{E}_P[\mathscr{C}(f(X_0), Y)] = P(f(X_0) \neq Y).$$

The optimal classifier is the *Bayes Classifier*

$$f_P^* = \arg\min \mathbb{E}_P[\ell(f(X_0), Y)]$$

Model

Adding recourse

By adding recourse in the mix,

$$X_0 \rightarrow X$$

where X is either X_0 or $X^{\mbox{CF}}$, we induce a new distribution

$$(X_0, X, Y) \sim Q$$
.

Counterfactual point is defined as

$$\varphi(X_0) = X^{\mathsf{CF}} \in \arg\min_{z: f(z)=1} c(X_0, z)$$

For simplicity, we assume that every negative X_0 accepts recourse

Risk with **Recourse** is defined as

$$R_Q(f) = \mathbb{E}_Q[\ell(f(X), Y)] = Q(f(X) \neq Y)$$

Note that Q depends on f in general

Model

When is Recourse accepted

In general X_0 does not need to change to $X^{\sf CF}$,

This is modelled by setting

$$X = BX^{CF} + (1 - B)X_0, \quad B \sim Ber(r(X_0)).$$

The function $r(X_0)$ models how likely X_0 is to accept recourse

For the rest of the talk we will assume $r(X_0) = 1$

Modelling Q

Choice in dependency structure

We define 2 extreme cases:

► Compliant: $Q(Y|X_0,X) = P(Y|X)$

► Defiant: $Q(Y|X_0,X) = P(Y|X_0)$

Compliant case

Defiant case

Modelling Q Examples

Some examples:

- Credit loan application:
 - Compliant: Applicant improves risky behaviour
 - ► Defiant: Applicant tries to "game the system"
- Medical Diagnosis:
 - Compliant: Patient improves their health
 - Defiant: Patient takes medicine to reduce symptoms
- Job applications:
 - Compliant: Applicant improves their skills
 - Defiant: Applicant improves their CV

Compliant case

Defiant case

Modelling Q Causality

There is a very Causal interpretation to Q.

See *Improvement-Focused Causal Recourse (ICR)* [König et al.] for a more extensive treatment of this view

We view everything on a distributional level

Compliant case

Defiant case

Example (Compliant)

We assume that

$$X \mid Y = +1 \sim N(\mu, \Sigma)$$

$$X \mid Y = -1 \sim N(\nu, \Sigma)$$

$$P(Y = +1) = P(Y = -1) = \frac{1}{2}$$

Optimal classifier is (assuming $\|\mu\|_{\Sigma^{-1}} = \|\nu\|_{\Sigma^{-1}}$)

$$f_P^*(x) = \operatorname{sign}(\theta^\top x),$$

$$\theta = \Sigma^{-1}(\mu - \nu)$$

$$R_P(f_P^*) = \Phi(\|\mu - \nu\|_{\Sigma^{-1}})$$

$$R_Q(f_P^*) = \frac{1}{4} + \frac{1}{2} \Phi(\|\mu - \nu\|_{\Sigma^{-1}})$$

$$R_Q(f_P^*) > R_P(f_P^*) \text{ if } R_P(f_P^*) < \frac{1}{2}$$

Formal result

Theorem

Let $\mathscr C$ be the 0/1 loss and suppose that $P(Y=1|X_0=x)=\frac12$ for all x on the decision boundary of f_P^* , then:

A. For the Compiant case,

$$R_Q(f_P^*) = \frac{1}{2}P(f_P(X_0) = -1) + P(f_P(X_0) = 1, Y = -1) > R_P(f_P^*)$$

B. For the Defiant case,

$$R_Q(f_P^*) = P(Y = -1) > R_P(f_P^*)$$

Proof sketch (Compliant)

$$R_Q(f_P^*) = \frac{1}{2}P(f_P(X_0) = -1) + P(f_P(X_0) = 1, Y = -1) > R_P(f_P^*)$$

- ⇒ Every point is now classified as +1
- The mistakes you make are
 - \longrightarrow Original $f_P^*(X_0) = +1$ but Y = -1,
 - \implies Half of the original $f_P^*(X_0) = -1$,
 - \Longrightarrow because $P(Y = +1 \mid X) = P(Y = -1 \mid X) = \frac{1}{2}$ on the decision boundary

Proof sketch (Defiant)

$$R_Q(f_P^*) = P(Y = -1) > R_P(f_P^*)$$

- Every point is now classified as +1
- The mistakes you make are
 - \longrightarrow Original $f_P^*(X_0) = +1$ but Y = -1,
 - \rightarrow Original $f_P^*(X_0) = -1$, but Y = -1, because the label does not change in this case

More general

What if we consider non-optimal classifiers?

Need to make some extra assumptions:

- Assume $f(x) = \text{sign}(g(x) \frac{1}{2})$ for some probabilistic classifier $g(x) \colon \mathcal{X} \to [0,1]$
- ▶ The function g is " ϵ -close" to $P(Y=1 \mid X=x)$ along the decision boundary

ϵ -close assumption

More general

What is the assumption?

Informally:

▶ The function g is " ϵ -close" to P(Y = 1 | X = x) along the decision boundary

Formally:

$$\int \left| \frac{1}{2} - P(Y = 1 | X = \varphi(x_0)) | P(dx_0) < \epsilon \right|$$

$$\{x_0: g(x_0) < \frac{1}{2}\}$$

Implied by uniform bound,
$$|\frac{1}{2} - P(Y=1 | X_0 = x)| < \epsilon \text{ for all } x \text{ such that } g(x) = \frac{1}{2}$$

Formal result

Theorem

Let ℓ be the 0/1 loss, $g\colon \mathcal{X}\to [0,1]$ a continuous probabilistic classifier and assume the ϵ -condition:

A. For the Compliant case, $R_Q(f)$ is lower and upper bounded by

$$(\frac{1}{2} \pm \epsilon)P(f(X_0) = -1) + P(f(X_0) = +1, Y = -1)$$

B. For the Defiant case,

$$R_O(f) = P(Y = -1)$$

Implications

Theorem

Let ℓ be the 0/1 loss, $g\colon \mathcal{X}\to [0,1]$ a continuous probabilistic classifier and assume the ϵ -condition:

A. For the Compliant case, $R_Q(f) \ge R_P(f)$ if

$$P(Y = -1 | f(X_0) = -1) \ge \frac{1}{2} + \epsilon$$

B. For the Defiant case, $R_O(f) \ge R_P(f)$ if and only if

$$P(Y = -1 | f(X_0) = -1) \ge \frac{1}{2}$$

Interpretation

Recourse will harm the risk if

- A. For the Compliant case, if f approximates the true conditional distribution and f performs ϵ better on the negative class
- B. For the Defiant case, if f performs better than random on the negative class

Experimental results

Table 1: Estimated risks on synthetic data sets. Lower risk is bold.

	Moon R_P	is data R_Q	Circle R_P	es data R_Q	Gaussians data $R_P R_Q$		
Logistic Regression (LR)	0.13	0.33	0.51	0.34	0.14	0.32	
GradientBoostedTrees (GBT)	0.08	0.30	0.19	0.26	0.13	0.33	
Decision Tree (DT)	0.08	0.29	0.19	0.23	0.13	0.34	
Naive Bayes (NB)	0.13	0.33	0.17	0.16	0.15	0.28	
QuadraticDiscriminantAnalysis (QDA)	0.13	0.33	0.17	0.16	0.12	0.33	
Neural Network(4)	0.12	0.32	0.23	0.30	0.13	0.36	
Neural Network(4, 4)	0.04	0.26	0.17	0.22	0.12	0.40	
Neural Network(8)	0.04	0.23	0.16	0.20	0.12	0.36	
Neural Network(8, 16)	0.04	0.26	0.16	0.18	0.11	0.35	
Neural Netowrk(8, 16, 8)	0.04	0.26	0.16	0.18	0.11	0.35	

Table 2: Estimated risks on real data sets. Lower risk is bold.

	Credit data						Census data						HELOC data						
	Wachter		GS		CoGS		Wachter		GS		CoGS		Wachter		GS		CoGS		
	R_P	R_Q	R_P	R_Q	R_P	R_Q	R_P	R_Q	R_P	R_Q	R_P	R_Q	R_P	R_Q	R_P	R_Q	R_P	R_Q	
LR	0.17	0.05	0.17	0.05	0.17	0.04	0.21	0.29	0.21	0.33	0.21	0.32	0.29	0.41	0.29	0.41	0.29	0.44	
GBT	0.06	0.06	0.06	0.07	0.06	0.07	0.15	0.04	0.15	0.23	0.15	0.33	0.20	0.21	0.20	0.25	0.20	0.37	
DT	0.29	0.12	0.29	0.05	0.29	0.05	0.23	0.21	0.23	0.43	0.23	0.45	0.19	0.25	0.19	0.21	0.19	0.31	
NB	0.11	0.06	0.11	0.06	0.11	0.07	0.19	0.78	0.19	0.76	0.19	0.81	0.29	0.44	0.29	0.43	0.29	0.48	
QDA	0.12	0.06	0.12	0.06	0.12	0.07	0.20	0.78	0.20	0.75	0.20	0.82	0.32	0.46	0.32	0.47	0.32	0.52	
NN(4)	0.06	0.06	0.06	0.07	0.06	0.06	0.16	0.26	0.16	0.25	0.16	0.26	0.29	0.47	0.29	0.46	0.29	0.50	
NN(4, 4)	0.06	0.06	0.06	0.07	0.06	0.07	0.15	0.30	0.15	0.27	0.15	0.30	0.29	0.47	0.29	0.47	0.29	0.51	
NN(8)	0.06	0.06	0.06	0.06	0.06	0.07	0.16	0.34	0.16	0.33	0.16	0.33	0.28	0.44	0.28	0.46	0.28	0.51	
NN(8, 16)	0.06	0.06	0.06	0.07	0.06	0.07	0.15	0.36	0.15	0.34	0.15	0.36	0.27	0.42	0.27	0.45	0.27	0.46	
NN(8, 16, 8)	0.06	0.06	0.06	0.07	0.06	0.07	0.15	0.36	0.15	0.34	0.15	0.36	0.27	0.42	0.27	0.45	0.27	0.46	

Proof sketch (Compliant)

Upper/lower: $(\frac{1}{2} \pm \epsilon)P(f(X_0) = -1) + P(f(X_0) = +1, Y = -1)$

- ⇒ Every point is now classified as +1
- The mistakes you make are
 - \longrightarrow Original $f(X_0) = +1$ but Y = -1,
 - \longrightarrow Within ϵ -distance of half the original $f(X_0) = -1$,
- \implies Simplify $R_P(f) \le (\frac{1}{2} \epsilon)P(f(X_0) = -1)$

Proof sketch (Defiant)

$$R_{Q}(f) = P(Y = -1) > R_{P}(f)$$

- Every point is now classified as +1
- The mistakes you make are
 - \longrightarrow Original $f(X_0) = +1$ but Y = -1,
 - \longrightarrow Original $f(X_0) = -1$, but Y = -1, because the label does not change in this case

Some more examples

What if r(x) is not constant:

$$r(x) = p \in [0,1]$$

$$r(x) = e^{-\frac{1}{2\sigma} \|x - \varphi(x)\|}$$

- ▶ On y-axis: $R_Q R_P$
- From L to R: Moons, Circles, Gaussians

Example

Can (P) strategise against this accuracy drop?

► Need to assume that not everyone gets an explanation, i.e.

 $r(x_0) = 1\{\|\varphi(x_0) - x_0\| < D\}$ for some D > 0

Yes and No

Too much effort

Example

Exactly the same people get a loan

More effort

- Can generalise this result
 - Defiant case: Can only be as good as before
 - Compliant case: In principle, could have arbitrary improvement, but would increase the cost for every applicant substantially

Formal result, a new definitions

Definition

Let \mathscr{F} be some model class, $r(x_0) \in \{0,1\}$ and $\varphi^r(x_0) = r(x_0)\varphi(x_0) + (1-r(x_0))\varphi(x_0)$, define

$$\mathscr{F}_{\varphi}^{r} := \{ f' \colon x_0 \mapsto f(\varphi^{r}(x_0)) \mid f \in \mathscr{F} \}.$$

The set of functions induced by the recourse map.

If $\mathcal{F}_{\varphi}^{r}=\mathcal{F}$, we call \mathcal{F} invariant under recourse

For example,

$$\mathcal{F} = \{ f(x) = \text{sign}(a^{\mathsf{T}}x + b) \mid a, b \in \mathbb{R}^d \} \text{ and } r(x_0) = 1\{ \|\varphi(x_0) - x_0\| < D \}.$$

Then
$$\mathscr{F}=\mathscr{F}_{\varphi}$$

Formal result (Defiant)

Theorem

If \mathscr{F} is a recourse invariant model class, then $\min R_{\mathcal{D}}(f) = \min R_{\mathcal{D}}(f)$

$$\min_{f \in \mathscr{F}} R_P(f) = \min_{f \in \mathscr{F}} R_Q(f).$$

You can only do as well as before

Formal result (Compliant)

Theorem

If ${\mathscr F}$ is a recourse invariant model class, then

$$\min_{f \in \mathscr{F}} R_Q(f) \leq \min_{f \in \mathscr{F}} R_P(f) - \gamma.$$

Where $\gamma \in \mathbb{R}$ depends on P and f.

Improvement is possible when $\gamma > 0$!

For example, in the Gaussian example

However, there will be a cost for every individual

Some perspectives

Some perspectives

When can Recourse still be beneficial?

Some possible answers:

- ► In situations where Accuracy is not the most important metric
- When counterfactuals have other explanatory properties
- Should Recourse be replaced by Contestability?

Thank you for your attention!