上海交通大学试卷 (考试卷) (2022至2023学年第1学期)

班级号	学号	姓名(中&法)										
课程名称:Alg	: 程名称:Algèbre linéaire et bilinéaire I 成绩											
小之外 小边面												
我承诺,我将严 格遵守考试纪律。	题号											
俗过了为风儿件。												
承诺人:	得分											
	业											
	批阅人(流水 阅卷教师签名											
	处)											

Avertissements:

- 1. Les exercices sont indépendants. Ils peuvent être traités dans un ordre quelconque. 各个题目是不相关的,可以按照任何顺序来完成。
- 2. Tous les documents sur papiers et les outils électroniques (téléphone, smartphone, ordinateur, tablette, etc.) sont interdits.
 不能使用任何参考资料和电子设备包括手机、翻译器和计算器。
- 3. Toutes vos réponses doivent être justifiées.

所有解答需要证明或说明理由。

1 Question de cours (20 Points)

1. Énoncer la définition d'une application linéaire f de E dans E' . (Entierèment)

Réponse				
Voir le co	urs			

2. Énoncer le théorème du rang et le démontrer.

Réponse

Voir le cours

2 Exercice: (20 points)

Dans le \mathbb{R} -espace vectoriel \mathbb{R}^3 , on considère les vecteurs :

$$v_1 = (1, -1, 1), \quad v_2 = (0, -1, 2), \quad v_3 = (1, -2, 3)$$

1. La partie $\{v_1, v_2, v_3\}$ est elle libre?

Réponse

La partie $\{v_1, v_2, v_3\}$ n'est pas libre, car $v_1 + v_2 - v_3 = 0_{\mathbb{R}^3}$.

2. On désigne par F le sous-espace vectoriel de \mathbb{R}^3 engendré par la partie $\{v_1, v_2, v_3\}$. Déterminer une base de F et en déduire sa dimension.

Réponse

(a) Montrons que $\{v_1, v_2\}$ est une partie libre. Soit $(a, b) \in \mathbb{R}^2$ tel que $a.v_1 + b.v_2 = 0_{\mathbb{R}^3}$, c'est-à-dire,

$$a.(1,-1,1) + b.(0,-1,2) = (0,0,0)$$

On déduit trivialement a=b=0. Donc $\{v_1,v_2\}$ est une partie libre.

(b) Montrons que $\{v_1, v_2\}$ est une partie génératrice de F. D'une part, on a $\text{Vect}(\{v_1, v_2\}) \subset \text{Vect}(\{v_1, v_2, v_3\}) = F$.

D'autre part, si $x \in F$, il existe des nombres réels $(a, b, c) \in \mathbb{R}^3$ tel que $x = a.v_1 + b.v_2 + c.v_3$.

Or $v_1 + v_2 = v_3$ on a $x = (a+c) \cdot v_1 + (b+c) \cdot v_2 \in \text{Vect}(\{v_1, v_2\})$. Donc $F \subset \text{Vect}(\{v_1, v_2\})$

(c) Finalement $F=\mathrm{Vect}(\{v_1,v_2\})$. La partie. $\{v_1,v_2\}$ étant à la fois libre et génératrice, c'est donc une base de F.

Par conséquent, $\dim(F) = 2$.

3. On considère la partie

$$G = \{(a, b, c) \in \mathbb{R}^3, a + 2b + c = 0\}.$$

Montrer que G est un sous-espace vectoriel de \mathbb{R}^3 .

Réponse

(Méthode 1) On montre par définition

- (a) Il est clair que G n'est pas vide puisque $(0,0,0) \in G$.
- (b) Stable par l'addition, car soit $(v, v') \in G^2$, on a $v + v' \in G$

(c) Stable par la multiplication par un scalaire, car soit $v \in G$ et soit $a \in \mathbb{R}$, on a $a.v \in G$ Ainsi G est bien un sous-espace vectoriel de \mathbb{R}^3 .

 $(Méthode\ 2): G$ représente aussi un noyau d'une application linéaire .

4. Comparer F et G

Réponse

On voit facilement que $v_1 = (1, -1, 1)$ et $v_2 = (0, -1, 2)$ sont des éléments de G.

Par suite, la relation $\{v_1, v_2\} \subset G$ implique la relation $\text{Vect}(v_1, v_2) \subset \text{Vect}(G) = G$. et aussi $G \subset \text{Vect}(v_1, v_2)$.

Par les questions précédentes, nous pouvons donc conclure à F = G.

3 Exercice: (30 points)

1. Soit

$$E = \{(u_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}, (u_n)_{n \in \mathbb{N}} \text{ converge}\},$$

F l'ensemble des suites convergeant vers 0. Trouver les relations entre E, F et G puis le démontrer.

Réponse

On note F l'espace vectoriel des suites constantes et G l'espace vectoriel des suites convergeant vers 0.

- Montrons que $F \cap G = 0_{\mathbb{R}^{\mathbb{N}}}$. En effet une suite constante qui converge vers 0 est la suite nulle.
- Montrons que F + G = E.

Soit $(u_n)_{n\in\mathbb{N}} \stackrel{\text{not}}{=} (u_n) \in E$. Notons l la limite de (u_n) . Soit $(v_n)_{n\in\mathbb{N}} \stackrel{\text{not}}{=} (v_n)$ la suite définie par

$$v_n = u_n - l,$$

alors (v_n) converge vers 0. Donc $(v_n) \in G$.

Notons $(w_n)_{n\in\mathbb{N}} \stackrel{\text{not}}{=} (w_n)$ la suite constante égale à l. Alors nous avons

$$u_n = l + u_n - l,$$

ou encore $u_n = w_n + v_n$, ceci pour tout $n \in \mathbb{N}$. En terme de suite cela donne

$$(u_n) = (w_n) + (v_n).$$

Ce qui donne $E \subset F + G$. Et aussi $F + G \subset E$.

- Finalement : F et G sont en somme directe dans E :

$$E = F \oplus G$$
.

2. Soit $(a,b) \in \mathbb{R}^2$, on note $E_{a,b} = \{(u_n)_n \in \mathbb{R}^{\mathbb{N}}, \forall n \in \mathbb{N}, u_{n+2} = au_{n+1} + bu_n\}$. Soit l'application définie par :

$$\phi : \begin{cases} E_{a,b} \to \mathbb{R}^2 \\ x \mapsto (u_0, u_1) \end{cases}$$

- (i) Montrer que $E_{a,b}$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.
- (ii) Montrer que ϕ est un isomorphisme entre $E_{a,b}$ et \mathbb{R}^2 .
- (iii) Déterminer la dimension de $E_{a,b}$

Réponse

- (i) On vérifie la définition d'un sous-espace vectoriel. On a $E_{a,b} \subset \mathbb{R}^{\mathbb{N}}$
 - · On a bien $0_{\mathbb{R}^{\mathbb{N}} \in E_{a,b}}$.
 - · Stable par l'addition, car soit $(x,y) \in (E_{a,b})^2$, on a $x+y \in E_{a,b}$
 - · Stable par la multiplication par un scalaire, car soit $x \in E_{a,b}$ et soit $a \in \mathbb{R}$, on a $a.x \in E_{a,b}$

Finalement, $E_{a,b}$ est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

(ii) Montrons que $\phi \in \mathcal{L}(E_{a,b}, \mathbb{R}^2)$. Soit $(x,y) \in E_{a,b}^2$ et $(\lambda,\mu) \in \mathbb{R}^2$, On a bien $x_{n+2} = ax_{n+1} + bx_n$ et $y_{n+2} = ay_{n+1} + by_n$, en particulier $(\lambda x_0 + \mu y_0, x_1 + \mu y_1) = \lambda.(x_0, x_1) + \mu(y_1, y_2)$. Ainsi

$$\phi(\lambda . x + \mu . y) = \lambda . \phi(x) + \mu . \phi(y)$$

Donc ϕ est bien une application linéaire.

Montrons que ϕ est injective.

On suppose $x \in E_{a,b}$ telle que $\phi(x) = 0_{\mathbb{R}^2}$ i.e. $x_0 = x_1 = 0$. On obtient par une récurrence élémentaire, $x = 0_{\mathbb{R}^N}$ Donc on a

$$\ker(\phi) = 0_{\mathbb{R}^{\mathbb{N}}}$$

donc ϕ est injective.

Montrons que ϕ est surjective.

Soit $(\lambda, \mu) \in \mathbb{R}^2$. On doit trouver un antécédent par ϕ à ce couple de réels. On pose x la suite de $E_{a,b}$ telle que $x_0 = \lambda$ et $x_1 = \mu$ (cela définit bien une suite de $E_{a,b}$, encore par une récurrence élémentaire .)

Par construction même,

$$\phi(x) = (\lambda, \mu)$$

donc ϕ est surjective.

D'où ϕ bijective.

En conclusion, l'application ϕ est un isomorphisme entre $E_{a,b}$ et \mathbb{R}^2 .

(iii) Comme \mathbb{R} 2 est de dimension 2, et ϕ est un isomorphisme entre $E_{a,b}$ et \mathbb{R}^2 , Donc la dimension de $E_{a,b}$ égale 2.

4 Exercice: (30 points)

Soit p et q deux projecteurs d'un \mathbb{K} -espace vectoriel E.

(a) Montrer que si $p \circ q = q \circ p$, alors $p \circ q$ est un projecteur.

Réponse

Supposons que $p \circ q = q \circ p$. On a :

$$p \circ q \circ p \circ q = p \circ p \circ q \circ q = p \circ q$$

ce qui prouve que $p\circ q$ est un projecteur.

(b) Démontrer l'équivalence des trois propriétés suivantes :

 $p\circ q+q\circ p=0_{_{\mathscr{L}(E)}}\quad\Leftrightarrow\quad p\circ q=q\circ p=0_{_{\mathscr{L}(E)}}\quad\Leftrightarrow\quad p+q\text{ est un projecteur}.$

Réponse

i. Supposons que

$$p \circ q + q \circ p = 0_{\mathscr{L}(E)}$$

Nous en déduisons, en composant à gauche par p:

$$p \circ (p \circ q + q \circ p) = p \circ 0_{\mathscr{L}(E)} = 0_{\mathscr{L}(E)}$$

puis, p étant un projecteur, on a

$$p \circ q + p \circ q \circ p = 0_{\mathscr{L}(E)} \quad (1)$$

Composons de nouveau par p, mais cette fois à droite. Il vient :

$$(p\circ q + p\circ q\circ p)\circ p = 0_{\mathscr{L}(E)}\circ p = 0_{\mathscr{L}(E)}$$

puis, p étant toujours un projecteur, on a

$$2p \circ q \circ p = 0_{\mathscr{L}(E)}$$

En portant ce résultat dans (1), on obtient $p \circ q = 0_{\mathscr{L}(E)}$ puis, $q \circ p = 0_{\mathscr{L}(E)}$.

Supposons que $p \circ q = q \circ p = 0_{\mathscr{L}(E)}$, il est claire $p \circ q + q \circ p = 0_{\mathscr{L}(E)}$

ii. L'application p+q étant un endomorphisme, pour que p+q soit un projecteur, il faut et il suffit que $(p+q) \circ (p+q) = p+q$, soit :

$$p \circ p + p \circ q + q \circ p + q \circ q = p + q.$$

Puisque par hypothèse p et q sont des projecteurs,

$$p + p \circ q + q \circ p + q = p + q$$
,

soit, après simplification,

$$p \circ g + q \circ p = 0_{\mathscr{L}(E)}$$

Nous pouvons donc conclure, en utilisant la question précédente que p+q est un projecteur si et seulement si $p\circ q=q\circ p=0$ $_{\mathscr{L}(E)}$

(c) Montrer que si p + q est un projecteur, alors

$$\operatorname{Im}(p+q) = \operatorname{Im}(p) + \operatorname{Im}(q)$$
 et $\operatorname{Ker}(p+q) = \operatorname{Ker}(p) \cap \operatorname{Ker}(q)$.

Réponse

Supposons maintenant que p + q soit un projecteur.

i. Montrons que $\operatorname{Im}(p+q) = \operatorname{Im}(p) + \operatorname{Im}(q)$. - Soit $x \in \operatorname{Im}(p+q)$. Il existe alors $t \in \operatorname{Im}(p+g)$ tel que l'on ait x = (p+q)(t) = p(t) + q(t), ce qui montre clairement que $x \in \operatorname{Im}(p) + \operatorname{Im}(q)$. Par suite,

$$Im(p+g) \subset Im(p) + Im(q)$$
.

- D'autre part, si $x \in \text{Im}(p) + \text{Im}(q)$, il existe $y \in \text{Im}(p)$ et $z \in \text{Im}(q)$ tels que x = y + z et par conséquent, il existe $t \in E$ tel que y = p(t) ainsi que $u \in E$ tel que z = q(u). Par suite,

$$x = p(t) + q(u)$$

On en déduit

$$p(x) = p(t) + (p \circ q)(u).$$

Or, par hypothèse, p + q est un projecteur.

Donc d'après cequi précède, $p\circ q=0_{\mathscr{L}(E)}$

Finalement, p(x) = pt). De même, on a $q \circ p = 0_{\mathcal{L}(E)}$, donc

$$q(x) = (p \circ q)(t) + q(u).$$

Comme on a aussi $q \circ p = 0_{\mathscr{L}(E)}$ on en déduit q(x) = qu). Alors x = (p+q)(x) et donc $x \in \text{Im}(p+q)$. Par suite,

$$Im(p+q) \subset Im(p) + Im(q)$$

Finalement

$$Im(p+q) = Im(p) + Im(q)$$

ii. Montrons que $Ker(p+q) = Ker(p) \cap Ker(q)$.

- Soit $x \in \text{Ker}(p) \cap \text{Ker}(q)$. On a donc $p(x) = 0_E$ et $g(x) = 0_E$, d'où

$$(p+q)(x) = p(x) + q(x) = 0_E,$$

ce qui implique $x \in \text{Ker}(p+q)$, et donc

$$Ker(p) \cap Ker(q) \subset Ker(p+q)$$

- D'autre part, si $x \in \text{Ker}(p+q)$, on a $(p+g)(x) = 0_E$, soit :

$$p(x) + g(x) = 0_E \quad (2)$$

Nous en déduisons

$$p[p(x) + q(x)] = p(0_E) = 0_E,$$

soit encore $(p \circ p)(x) + (p \circ q)(x) = 0_E$. Or, puisque p + q est un projecteur, $p \circ q = 0_{\mathscr{L}(E)}$ - Par suite, $(p \circ p)(x) = 0_E$, soit $p(x) = 0_E$, ce qui montre que $x \in \text{Ker}(p)$.

La relation (2) entraı̂ne également

$$q[p(x) + q(x)] = q(0_E) = 0_E,$$

soit

$$(q \circ p)(x) + (q \circ q)(x) = 0_E$$

Compte tenu de $q \circ p = 0_{\mathscr{L}(E)}$, on obtient $(g \circ q)(x) = 0_E$ soit $q(x) = 0_E$, ce qui montre que $x \in \mathrm{Ker}(q)$. Ainsi, x est élément de $\mathrm{Ker}(p) \cap \mathrm{Ker}(q)$. et donc

$$Ker(p+q) \subset Ker(p) \cap Ker(q)$$
.

Nous pouvons donc conclure à

$$Ker(p+q) = Ker(p) \cap Ker(q)$$

(d) Montrer que si $p \circ q = q \circ p$, alors

$$\operatorname{Im}(p \circ q) = \operatorname{Im}(p) \cap \operatorname{Im}(q)$$
 et $\operatorname{Ker}(p \circ q) = \operatorname{Ker}(p) + \operatorname{Ker}(q)$.

Réponse

Supposons maintenant que $p \circ q = q \circ p$.

- i. Montrons que $Im(p \circ q) = Im(p)$
 - Soit $x \in \text{Im}(p \circ q)$. Par conséquent, Il existe $t \in E$ tel que

$$x = (p \circ)(t) = p[q(t)],$$

et il est clair que $x \in Imp$). Puisque $p \circ q = q \circ p$, on a aussi

$$x = (g \circ p)(x) = q[p(t)],$$

ce qui montre que $x \in \text{Im}(q)$.

Finalement, $x \in \mathrm{Im}(p) \cap \mathrm{Im}(q)$ et

$$\operatorname{Im}(p \circ q) \subset \operatorname{Im}(p) \cap \operatorname{Im}(q)$$

- D'autre part, si $x \in \text{Im}(p) \cap \text{Im}(q)$, on déduit de la Question précédente que

p(x) = x et q(x) = x.

Par suite, p[q(x)] = p(x), soit $(p \circ q)(x) = p(x) = x$. Donc, $x \in \text{Im}(p \circ q)$ et l'inclusion

$$Im(p) \cap Im(q) \subset Im(p \circ q)$$

est vérifiée. Nous pouvons donc conclure à

$$\mathrm{I} m(p \circ q) = \mathrm{I} m(p) \cap \mathrm{I} m(q)$$

ii. Montrons que $\operatorname{Ker}(p \circ q) = \operatorname{Ker}(p) + \operatorname{Ker}(q)$. - Soit $x \in \operatorname{Ker}(p \circ q)$, on a donc $(p \circ q)(x) = 0_E$, on a aussi $q(x) \in \operatorname{Ker}(p)$. Ecrivons

$$x = q(x) + x - q(x)$$

on a $x - q(x) \in \text{Ker}(q)$. Il en résulte que x est la somme d'un élément de Ker(p) et d'un élément de Ker(q). Donc, x appartient à Ker(p) + Ker(q), d'où :

$$Ker(p \circ q) \subset Ker(p) + Ker(q).$$

- D'autre part, soit $a \in Ker(p) + Ker(q)$, il existe $y \in Ker(p)$ et $z \in Ker(q)$, tels que x = y + z. On a donc $p(y) = 0_E$ et $q(z) = 0_E$ - Calculons maintenant

$$p \circ q(x) = p[q(y+z)] = p[q(y) + q(z)]$$

= $p[q(y) + 0_E] = (p \circ q)(y)$
= $(q \circ p)(y) = q[q(y)] = q(0_E) = 0_E$

Par suite, $x \in \mathrm{Ker}(p \circ q)$ et $\mathrm{Ker}(p) + \mathrm{Ker}(q) \subset \mathrm{Ker}(p \circ q)$. Nous pouvons donc conclure à

$$Ker(p \circ q) = Ker(p) + Ker(q).$$