## **Cockroach Swarm Optimization Algorithm for TSP**

Le Cheng 1, a, Zhibo Wang 1,b, Song Yanhong 1,c Aihua Guo 1,d

<sup>1</sup>Department of Computer Science and Engineering, Huaian College of Information Technology, Huaian, Jiangsu, China 223003

<sup>a</sup>CL211282@163.com, <sup>b</sup> wzbbyr@163.com, <sup>c</sup> 4793173@qq.com, <sup>d</sup>65788846@qq.com

**Keywords:** cockroach swarm optimization algorithm, Traveling Salesman Problem, solution space, particle swarm optimization

**Abstract.** we propose a novel cockroach swarm optimization(CSO) algorithm for Traveling Salesman Problem(TSP) in this paper .In CSO, a series of biological behavior of cockroach are simulated such as grouping living and searching food ,moving-nest, individual equal and so on. For cockroaches crawl and search the optimal solution in the solution space, we assume that the solution which has been searched as the food can split up some new food around solution's position. The experimental results demonstrate that the CSO has better performance than particle swarm optimization in TSP.

#### Introduction

Recent years many population-based optimizations are extensively studied, such as ant colony optimization(ACO) <sup>[1]</sup>and particle swarm optimization(PSO)<sup>[2-3]</sup>.Cockroach has lived over 0.35 billion years, more than 0.3 billion years than dinosaur.Cockroach has bad eyesight and good smell . Social living make them exist until now time. Entomologist discovery that cockroach 's society is equal ,which is different from other social biology such as ant and bee.But they still possess swarm intelligence.When one member of family go out for seaching food,other members could choose following it.Dr. J.halloy 's experiment demostrates that the probability of cockroach as a tailer is about 60%<sup>[4]</sup>.

By simulating cockroach's behavior of searching food,we propose the cockroach swarm optimization. The CSO possesses simple formula and fully utilizes cockroach swarm's equality and swarm intelligence. To find better solution around the local optimal solution, we use the food-splitting strategy, which enhance the local search capability. Moving-nest make CSO possesses strong global search. The remainder of the paper is organized as follows. Section 2 firstly describes CSO in detail. The overall scheme of CSO for solving the TSP is presented in section 3. Experimental comparisons of CSO are gived in section 4. Finally, some concluding remarks are given in section 5.

## **Cockroach Swarm Optimization**

### A. The Step of Cockroach Crowling

To apply CSO to TSP,we define the step of cockroach crowling as Step(x,y). In TSP, Step(x,y) represents that x-city interchange its place with y-city in a solution. Supposing that the solution is [1,2,3,4,5], the processing of Step(2,4) is show in Fig.1.



Fig.1 The step of cockroach 's crawling

In fact,we regard [1,2,3,4,5] as a position or coordinate of 6- dimensional space, then a cockroach crawls from A[1,2,3,4,5] to B[4,3,5,1,2] can be show in Fig.2.

A: 
$$[1, 2, 3, 4, 5]$$
  
 $Step(1,4)$   
 $[4, 2, 3, 1, 5]$   
 $Step(2,3)$   
 $[4, 3, 2, 1, 5]$   
 $Step(2,5)$   
B:  $[4, 3, 5, 1, 2]$ 

Fig.2 The road of cockroach 's crawling

The road of cockroach crowling from A to B is difined in formula 1:

$$Road(B, A) = B - A = Step(1, 4) + Step(2, 3) + Step(2, 5)$$
 (1)

#### B. The Sstrategy of Food Splitting

Supposing that in TSP the number of cities is D and m cockroaches form a swarm, we look on the whole solution of TSP as D-dimensional space and each cockroach, foods, nest of cockroach are looked as a point in the D-dimensional space, and the i-th cockroach represents a D-dimensional vector  $c_i = (c_{i1}, c_2... c_{iD})$ . It means that each cockroach is a potential global optimum of the function f(x) over a given domain D.Here f(x) is used for evaluating the cockroach, using the cockroach's positional coordinates as input values. The output value is often named fitness value, and according to the fitness value, the cockroach is updated to move towards the better area by the corresponding operators till the best point is found. In fact, we look on all foods and cockroaches as D-dimensional vector. The local optimal is define as LOF(Local Optimal Food).

To search better solution around the local optimal solution, we introduce a food-spliting strategy. It can be show in *fig. 3*.



Fig.3 Food-spliting

In fig.3 the  $N*Rstep(r_x, r_y)$  represents the distance from LOF to its splitting foods . N is a positive integer, we can define its value according to the need. If in TSP the city number is D(D-TSP),  $r_x$  and  $r_y$  are the stochastic number selected from a uniform distribution in [1,D]. So Rstep() represents the one step distance of cockroach crawling and  $N*Rstep(r_x, r_y)$  is N step distance in stochastic direction.  $N*Rstep(r_x, r_y)$  and the strategy of food splitting can be difined by following formula:

$$LOF + N * Rstep(r_x, r_y)(r_x, r_y \in [1, D]; r_x \neq r_y)$$

$$\tag{2}$$

## C. Moving-nest

In CSO the distance is abstract and difference from real world's. It can be measured and recorded by the amount of Step() which cockroach crawls. We obtained an interesting result that in D-TSP the farthest distance between any two solutions is D Step(). In other word, the maximum quantity of steps which is needed by formula 1 is D. To increase the diversity of solutions, in every searching all cockroachs start to crawl from a new nest(stochastic solution) to the LOF or a food, and in this process CSO will evaluate the fitness value after every step of cockroach moving, and record the solution better than LOF. Symbol c represents cockroach's vector and symbol f represents food's vector. The process of cockroach crawling to food and LOF can be showed by following formula:

$$f_i - c_j = Road(c_j, f_i) \tag{3}$$

$$LOF - c_i = Road(c_i, LOF) \tag{4}$$

 $c_i$ (i=1...m) is the *i-th* cockroach,  $f_i$ (j=1...n) is the *j-th* food. This process can be show in fig. 4.



Fig.4 Cockroaches cralw to LOF

## **Procedure of CSO Optimizing TSP**

When we use CSO algorithm to optimize the TSP problem, firstly, all the cockroaches are initialized with the random solutions, then take the formulas for evolution until the terminal rule coming. The whole procedure of CSO optimizing the TSP problem can be described as follows:

**Step 1:** Initialize the swarm and parameters of CSO; the population size is set as m; the food size is set as n and choose the optimal food as LOF.

**Step 4:** If the terminal rule is satisfied, stop the iteration and output the results, otherwise go to *step2*.

#### **Experiment Results and Discussion**

To know the CSO well, we use Oliver30 problem to test the CSO algorithm. Oliver30 is a TSP problem with 30 cities. In reference [5], the author use ACO algorithm for Oliver30 and gets the shortest path is 423.74. We get the same result by CSO. The circumstance of experiment is Pentium R 4-2.93 GHz CPU, 256M RAM, Win XP OS, VC++6.0. Table-1 show the convergence processes and results of eight consecutive experiments. We set the population size is 200, the number of food is 20. the max iterations is 1000.

Index of Value of LOF experiment 668.58 659.65 621.75 585.52 550.70 525.89 508.31 494.27 482.21 478.87 473.71 471.94 Run1 471.07 458.63 457.79 457.63 454.62 425.65 **423.7** 678.00 636.03 612.11 569.94 553.29 538.60 475.12 427.88 424.69 **423.74** Run 2  $657.12\ 622.12\ 595.03\ 5\overline{52.06}\ 536.91\ 525.50\ 515.26\ 506.41\ 501.69\ 470.92\ 466.86\ 462.13\ 458.39$ Run 3 438.85 429.74 424.90 Run 4 630.18 587.33 566.03 489.68 467.21 455.82 448.55 428.42 **423.74** 679.95 582.19 533.29 447.09 447.09 432.12 424.74 423.91 **423.74** Run 5 601.48 499.14 499.14 476.94 441.13 435.36 430.68 425.99 **423.74** Run 6 Run 7 601.48 499.14 499.14 476.94 441.13 435.36 430.68 425.99 423.74 Run 8 551.77 551.77 526.47 515.70 507.50 490.48 425.94 425.10 423.91 423.91 **423.74** 

Table-1 Optimization results of CSO on Oliver30

In table 1,the "value of LOF" is the result of CSO getting after all cockroach crawl to all foods and LOF.

The result of CSO and PSO is showed in *Table 2*. The algorithm of PSO comes from reference [6].

Table -2
Optimization results of CSO and PSO on Oliver30

|           | populati<br>on size |        | The Length of Oliver30 |        |        |        |        |        |        |         |        |
|-----------|---------------------|--------|------------------------|--------|--------|--------|--------|--------|--------|---------|--------|
| Algorithm |                     | Run1   | Run2                   | Run3   | Run4   | Run5   | Run6   | Run7   | Run8   | Averave | Error% |
| CSO       | 200                 | 423.74 | 423.74                 | 423.74 | 423.74 | 423.74 | 423.74 | 425.48 | 423.74 | 423.96  | 0.05%  |
| PSO       | 800                 | 432.66 | 423.74                 | 425.27 | 425.48 | 423.95 | 423.74 | 426.31 | 423.74 | 424.49  | 0.28%  |

In talble -2 the average is the average length of eight experiments. *Error*% is according formula 5:

$$Error = \frac{Average - 423.74}{423.74} \times 100\%$$
 (5)

#### **Conclusions**

This paper proposes a novel cockroachs warm optimization algorithm. The performance of CSO algorithm is evaluated and compared with the well-known PSO algorithm on TSP problem. The experimental results support the claim that the proposed CSO algorithm exhibits better optimization performance in terms of global search ability. Specially, CSO further simplify the updating computation.

### References

- [1] WANG Chuan-xin. Wavelet de-noising double threshold optimization method based on ant colony algorithm[J]. Control and Decision, 2011(1):121-125
- [2] Cao P, Chen P, Liu S H. Application of improved particle swarm optimization in TSP[J]. Computer Engineering, 2008, 34(11): 217-218
- [3] M. Meissner, M. Schmuker, G. Schneider, "Optimized Particle Swarm Optimization (OPSO) and its application to artificial neural network training," Bmc Bioinformatics, England, vol. 7, pp. 125, March 2006.
- [4] Halloy J.Individual discrimination capability and collective decision-making[J]. Journal of Theoretical Biology, 2006, 239: 313-323.
- [5] WU Q ing-Hong.an ant colony algorithm with mutaion features[J]. Joutnal of computer research&development, 1999, 36(10):1240-1243
- [6] HUANG Lan. Particle Swarm Optimization for Traveling Salesman Problems[J]. Journal of jilin university (science edition),41(4):477-480

## **Emerging Engineering Approaches and Applications**

10.4028/www.scientific.net/AEF.1

# **Cockroach Swarm Optimization Algorithm for TSP**

10.4028/www.scientific.net/AEF.1.226