Exercice 1 (Question de cours)

- 1. Une suite $(u_n)_{n\in\mathbb{N}}$ de nombre réels est de Cauchy si et seulement si $\forall \epsilon \in \mathbb{R}_+^*, \exists N \in \mathbb{N}, (p, q \geq N) \Rightarrow |u_p u_q| < \epsilon$.
- 2. Soit $(u_n)_{n\in\mathbb{N}}\in\mathbb{R}^{\mathbb{N}}$ une suite de Cauchy. La définition ci-dessus avec $\epsilon=1$ donne un entier N tel que pour tout $p\geq N$, $|u_p-u_N|<1$, et en particulier $|u_p|<|u_N|+1$. On a alors pour tout $n\in\mathbb{N}$, $|u_n|\leq \max(|u_0|,\ldots,|u_{N-1}|,|u_N|+1)$, donc $(u_n)_{n\in\mathbb{N}}$ est bornée.

Exercice 2

1. \mathcal{R} est réflexive car pour tout $x \in U$, $I(x,x) = [x,x] = \{x\} \subseteq U$. Elle est symétrique puisque pour tout $x,y \in U$, I(x,y) = I(y,x). Enfin la transitivité de \mathcal{R} suit de l'inclusion suivante : $\forall x,y,z \in U$,

$$I(x,z) \subset I(x,y) \cup I(y,z),\tag{1}$$

que l'on vérifie cas par cas : si $x \leq y \leq z$ alors $I(x,z) = I(x,y) \cup I(y,z)$, si $y \leq x \leq z$ alors $I(x,z) \subseteq I(y,z)$, si $x \leq z \leq y$, alors $I(x,z) \subseteq I(x,y)$. Les autres cas s'obtiennent en permutant x et z et en remarquant que (1) est symétrique en x et z.

- 2. Soit $x \in U$. On pose $M = \sup C(x)$, $m = \inf C(x)$ (éventuellement $m = -\infty$, $M = +\infty$) et on va montrer que C(x) =]m, M[. Si $M \in C(x)$, alors $M \in U$ et, comme U est ouvert, il existe $\epsilon > 0$ tel que $[M, M + \epsilon] \subset U$ et $(M + \epsilon)\mathcal{R}M$ puis $x\mathcal{R}(M + \epsilon)$ par transitivité, ce qui contredit la définition de M. Donc $M \notin C(x)$ et, de même, $m \notin C(x)$. D'où $C(x) \subseteq]m$, M[. Soit $y \in]m$, M[. Si $y \geq x$, par définition de M, il existe z > y avec $x\mathcal{R}z$, d'où $[x,y] \subset [x,z] \subset U$ et $y \in C(x)$. Si $y \leq x$, on procède de même en utilisant m. Ainsi C(x) = [m, M[est bien un intervalle ouvert.
- 3. Soit U/\mathcal{R} l'ensemble des classe d'équivalence de \mathcal{R} . Les classes d'équivalence de \mathcal{R} formant une partition de U, on peut définir une application $f: \mathbb{Q} \cap U \to U/\mathcal{R}$ en associant à chaque élément de $\mathbb{Q} \cap U$ l'unique classe à laquelle il appartient. Comme les classes d'équivalence sont ouvertes d'après la question précédente et que \mathbb{Q} est dense dans \mathbb{R} , f est surjective. Enfin $\mathbb{Q} \cap U$ est dénombrable, donc U/\mathcal{R} aussi.
- 4. Soit U un ouvert non vide (si U est vide, le résultat est clair). On munit U de la relation d'équivalence \mathcal{R} et on a la partition en classes d'équivalence

$$U = \bigcup_{C \in U/\mathcal{R}} C.$$

D'après les questions précédentes, les classes d'équivalence sont des intervalles ouverts et sont en quantité au plus dénombrable, donc U est bien une réunion au plus dénombrable d'intervalles ouverts disjoints.

Exercice 3

1. On a

$$\mathbb{Z}[X] = \bigcup_{d \in \mathbb{N}} \{ P \in \mathbb{Z}[X] \mid \deg(P) \le d \}.$$

Pour $d \in \mathbb{N}$ fixé, l'ensemble des polynômes de $\mathbb{Z}[X]$ de degrée inférieur ou égal à d est en bijection avec \mathbb{Z}^{d+1} par l'application $(a_0, \ldots, a_d) \in \mathbb{Z}^{d+1} \mapsto a_0 + a_1 X + \cdots + a_d X^d$. Or \mathbb{Z}^{d+1} est dénombrable, donc $\mathbb{Z}[X]$ est dénombrable comme réunion dénombrable d'ensembles dénombrables.

2. Il y avait une erreur d'énoncé (mea culpa) : avec P=0, on a P(z)=0 pour tout $z\in\mathbb{C}$, donc $A=\mathbb{C}$ et \mathbb{C} est indénombrable. En revanche, si on pose

$$A' = \{ z \in \mathbb{C} \mid \exists P \in \mathbb{Z}[X] \setminus \{0\}, P(z) = 0 \} = \bigcup_{P \in \mathbb{Z}[X] \setminus \{0\}} \{ z \in \mathbb{C} \mid P(z) = 0 \},$$

alors comme $\mathbb{Z}[X]$ est dénombrable par la question précédente et qu'un polynôme non nul a un nombre fini de racines, A' est dénombrable comme réunion dénombrable d'ensembles finis.

Exercice 4

1. (a) La relation est réflexive car, pour tout $x \in X$, x est dans tout les ouverts contenant x. Elle est transitive car, pour tout $x, y, z \in X$, si tous les ouverts contenant y contiennent x et, tous les ouverts contenant z contiennent y, alors, à fortiori, tout les ouverts contenant z contiennent y et donc contiennent x.

- (b) Pour $\mathcal{T} = \mathcal{P}(X)$: pour tout $x \in X$, le singleton $\{x\}$ est ouvert donc pour tout $x, y \in X$, $x \leq_{\mathcal{T}} y$ si et seulement si x = y. Pour $\mathcal{T} = \{\emptyset, X\}$: X est le seul ouvert non vide et il contient tous les points, donc pour tout
- $x, y \in X, \ x \leq_{\mathcal{T}} y.$ (c) Comme pour tout $a, b \in \mathbb{R}, \]-\infty, a]\cap]-\infty, b] =]-\infty, \min(a, b)], on a que pour tout <math>x \in \mathbb{R}$ et
- pour tout ouvert U contenant x, $]-\infty,x]\subseteq U$. Ainsi, pour tout $x,y\in\mathbb{R},\,x\leq y$ implique $x\leq_{\mathcal{T}}y$. Maintenant, si x et y sont deux réels tels que $x\leq_{\mathcal{T}}y$, alors tout ouvert contenant y contient x. En particulier $]-\infty,y]$ contient x et donc $x\leq y$.

En conclusion, $\leq_{\mathcal{T}}$ est la relation d'ordre usuelle sur \mathbb{R} .

2. (a) Comme \leq est réflexive, pour tout $x \in X$, $x \in V_{\leq}(x)$. On a donc $X = \bigcup_{x \in X} V_{\leq}(x) \in \mathcal{T}(\leq)$. L'ensemble vide est bien dans $\mathcal{T}(\leq)$ comme une union vide.

Par construction, $\mathcal{T}(\leq)$ est stable par union.

Enfin, pour tout $x, y \in X$, on a

$$V_{\leq}(x) \cap V_{\leq}(y) = \bigcup_{z \in V_{\leq}(x) \cap V_{\leq}(y)} V_{\leq}(z)$$

puisque si $t \leq z$, $z \leq x$ et $z \leq y$ alors $t \leq x$ et $t \leq y$ par transitivité. Ainsi on a pour $(x_i)_{i \in I} \in X^I$ et $(y_j)_{j \in J} \in X^J$,

$$\left(\bigcup_{i\in I} V_{\leq}(x_i)\right) \bigcap \left(\bigcup_{j\in J} V_{\leq}(y_j)\right) = \bigcup_{(i,j)\in I\times J} V_{\leq}(x_i) \cap V_{\leq}(y_j) = \bigcup_{(i,j)\in I\times J} \bigcup_{z\in V_{\leq}(x_i)\cap V_{\leq}(y_j)} V_{\leq}(z)$$

Donc \mathcal{T} est stable par intersection finie.

Ainsi on a démontré que \mathcal{T} définit une topologie sur X.

- (b) Les relations construites à la question 1.(b) conviennent. En effet : Supposons que pour tout $x, y \in X, x \leq y$. Alors, pour tout $x \in X, V_{\leq}(x) = X$ et $\mathcal{T}(\leq) = \{\emptyset, X\}$. Supposons que pour tout $x, y \in X, x \leq y$ si et seulement si x = y. Alors pour tout $x \in X, V_{\leq}(x) = \{x\}$ et $\mathcal{T}_{\leq} = \mathcal{P}(X)$.
- 3. (a) On remarque d'abord que si un ouvert U de \mathcal{T}_{\leq} et $y \in U$ alors $V_{\leq}(y) \subseteq U$. En effet, il existe $z \in U$ tel que $y \in V_{\leq}(z)$ et $V_{\leq}(z) \subseteq U$. Puis par transitivité de \leq , $V_{\leq}(y) \subseteq V_{\leq}(z)$. On a alors pour tout $x, y \in X$,

 $x \leq_{\mathcal{T}(\leq)} y \Leftrightarrow \text{ tout ouvert de } \mathcal{T}_{\leq} \text{ contenant } y \text{ contient aussi } x \Leftrightarrow V_{\leq}(y) \text{ contient } x \Leftrightarrow x \leq y.$

(b) Soit $U \in \mathcal{T}$ et $x \in U$, alors on a $V_{\leq_{\mathcal{T}}}(x) \subseteq U$ puisque si $y \in V_{\leq_{\mathcal{T}}}(x)$, tout ouvert contenant x contient aussi y, en particulier pour U cela donne $y \in U$. On a alors

$$U = \bigcup_{x \in U} V_{\leq \tau}(x)$$

ce qui montre que $U \in \mathcal{T}(\leq_{\mathcal{T}})$.

(c) Par définition, $V_{\leq \tau}(x)$ est l'ensemble des points y qui appartiennent à tous les ouverts contenant x, soit

$$V_{\leq \tau}(x) = \bigcap_{U \in \mathcal{T}, x \in U} U.$$

Comme X est fini, l'intersection ci-dessus est finie et donc $V_{\leq_{\mathcal{T}}}(x) \in \mathcal{T}$. Comme \mathcal{T} est stable par union, on obtient $\mathcal{T}(\leq_{\mathcal{T}}) \subseteq \mathcal{T}$.

- 4. D'après les questions 3.a et 3.c, les applications $\leq \mapsto \mathcal{T}(\leq)$ et $\mathcal{T} \mapsto \leq_{\mathcal{T}}$ définissent des bijections réciproques entre l'ensemble des pré-ordres et l'ensemble des topologies. Ces ensembles ont dont le même nombre d'éléments.
- 5. Si $X = \mathbb{R}$ avec sa topologie usuelle \mathcal{T} . Alors $x \leq_{\mathcal{T}} y$ si et seulement si x = y (puisque x doit appartenir à l'ouvert $]y \epsilon, y + \epsilon[$ pour tout $\epsilon > 0)$. Or on a vu dans la question 2.b que $\mathcal{T}(\leq) = \mathcal{P}(X)$ pour la relation d'ordre \leq correspondant à l'égalité. Ainsi $\mathcal{T}(\leq_{\mathcal{T}}) \neq \mathcal{T}$.