Note: Show all your operations in detail. The solutions that do not have enough details will be graded with zero points.

- 1. (P.112 Q.6a) Use appropriate Lagrange interpolating polynomials of degrees one, two, and three to approximate f(0.43), if f(0) = 1, f(0.25) = 1.64872, f(0.5) = 2.71828, and f(0.75) = 4.48169.
- 2. (P.113 Q.14b) Construct the Lagrange interpolating polynomials for $f(x) = \log_{10}(x)$, using the samples of f(x) at $x_0 = 3.0$, $x_1 = 3.2$, $x_2 = 3.5$, and n = 2, and find a bound for the absolute error on the interval $[x_0, x_2]$.
- 3. (P.121 Q.2b) Use Neville's method to obtain the approximations for Lagrange interpolating polynomials of degrees one, two, and three to approximate f(0), if f(-0.5) = 1.93750, f(-0.25) = 1.33203, f(0.25) = 0.800781, and f(0.5) = 0.687500.
- 4. (P.121 Q.6) Neville's method is used to approximate f(0.5), giving the following table:

$$x_0 = 0$$
 $P_0 = 0$
 $x_1 = 0.4$ $P_1 = 2.8$ $P_{0,1} = 3.5$
 $x_2 = 0.7$ P_2 $P_{1,2}$ $P_{0,1,2} = \frac{27}{7}$

Determine $P_2 = f(0.7)$.