

DE LA RECHERCHE À L'INDUSTRIE

VRP/VxP: VaRiable eXtended Precision RISC-V Accelerator of EPI

May 04, 2022

César Fuguet-Tortolero

- Context and motivation
- **2** VRP/VXP: VaRiable eXtended Precision RISC-V Accelerator
 - Hardware view
 - Software view
- **3** Hardware Prototypes
- 4 Conclusions

- Applications in many scientific domains extensively use linear algebra kernels (e.g. linear solvers or eigensolvers).
- The continuously growing complexity in problems led researchers to use Krylov subspace projective methods (instead of direct methods) because of their lower and scalable memory requirements, O(N) instead of O(N²).
- Unfortunately, these methods suffer from important instability, due to accumulated round-off errors, that may prevent solvers to converge.
- Current solutions to this issue:
 - 1. Preconditioning, or re-orthogonalization
 - Use standard double precision (64 bits).
 - This may be inapplicable due to memory cost and computational complexity.
 - 2. Extended precision (more than 64 bits)
 - Increases stability by limiting round-off errors
 - Currently implemented by **very slow** software libraries (e.g. MPFR, libquadmath)

Our solution is a hardware RISC-V accelerator enabling computations with Variable and eXtended Precision Floating-Point (FP) numbers.

Why another hardware accelerator?

Native hardware support for arithmetic and memory operations enables much higher performance than software-based approaches (up to x835 speedup)

Why variable precision (VP)?

Allows to tailor the data format to the needs of the application. This reduces both latency and memory footprint.

Why extended precision?

Allows the solver to converge faster (it reduces the number of iterations)

VaRiable eXtended Precision Processor Features (Hardware View)

- Extended RISC-V core (based on Ariane/CVA6 implementation from ETH Zürich/Univ. Bologna)
 - Support of linear algebra kernels with complex control structures and complex addressing patterns.

- Custom ISA extension (namely Xvpfloat) for supporting VP arithmetic, logic, and memory operations on FP numbers.
 - Dedicated hardware VP FPU
 - Supports up to 512 bits, and 18 bits of significand and exponent size, respectively.
 - Dedicated register file (32 registers) for VP FP numbers.
 - Memory data format complies to the IEEE extendable one (IEEE 754-20008).
- Disassociate data format and operation
 - Same code with different precisions
 - Data format is specified by dedicated "environment" registers
- Advanced L1 data-cache
 - Byte-aligned transactions to memory.
 - Programmable Hardware prefetch mechanism
 - « Hit under multiple miss » to hide memory latency (up to 128 inflight miss requests).

VaRiable eXtended Precision Processor (Programming model)

VaRiable eXtended Precision Processor (Software Stack)

Application (executed on host or natively on the VRP) offloading Solver (VPFloat software) (V)BLAS routine (assembly) Runtime **SW Emulation SW Emulation** HW (FPGA/ASIC) (MPFR) (Spike)

```
VPFloatArray X(EXP_SZ, FRAC_SZ, Ndiag);
...
Nbiter = cg_vp(precision, Ndiag, X, A, B, tol);
```

Hardware Prototypes

EPACTC 1.0

VRP core

GF22FDX

Q2 2021

VRP core (x2)

Dual-core VRP tile FPGA Q3 2021

VRP core GF22FDX
Q3 2022

EPACTC 1.0 (VRP features)

Up to 256 bits of significand

UNUM Type I memory format

2 dynamic data formats

Clock frequency: 1 GHz

EPACTC 1.5 (VRP features)

Up to 512 bits of significand

IEEE extendable memory format

8 dynamic data formats

Indexed load/store operations

High-Throughput memory subsystem

Clock frequency: 1.2 GHz

RHEA (VRP features)

Same features that in EPACTC 1.5

Two tiles with 4 VRP cores each

Clock frequency: 1.4 GHz

FPGA prototype

2 VRP cores

Clock frequency: 83 MHz

CONCLUSIONS / PERSPECTIVES

Software

- Consolidating and validating variable-precision solvers and libraries
- Working on parallel VBLAS routines and sparse matrices support
- Open position in our laboratory for developping a LLVM-based C compiler with DSL support for the variable precision accelerator (postulate! ②)

Hardware

- Working on the next generation of the VRP with focus on improving performance of solvers with sparse input matrices
 - Pipeline with Out-of-Order issue and execution.
 - Optimized memory subsystem (L1 cache and hardware prefetcher) for sparse accesses.

- The work presented is the result of the collaborative work between the members in the LSTA laboratory in the DSCIN division of the CEA List institute.
- Research and software development for rev. 1.0 (UNUM version, incl. compiler) supported by French ANR project IMPRENUM leaded by INSA Lyon, with contribution of INPG and CEA.
- EPAC 1.0 and 1.5, and RHEA Implementations supported by EPI (European Processor Initiative) SGA1 and SGA2.

Thank you

DE LA RECHERCHE À L'INDUSTRIE

PLANCHE DE PICTOGRAMMES

