Introduction to Machine Learning

Information Theory KL and Maximum Entropy

Learning goals

- Know the defining properties of the KI
- Understand the relationship between the maximum entropy principle and minimum discrimination information
- Understand the relationship between Shannon entropy and relative entropy

PROBLEMS WITH DIFFERENTIAL ENTROPY

Differential entropy compared to the Shannon entropy:

- Differential entropy can be negative
- Differential entropy is not invariant to coordinate transformations
- ⇒ Differential entropy is not an uncertainty measure and can not be meaningfully used in a maximum entropy framework.

In the following, we derive an alternative measure, namely the KL divergence (relative entropy), that fixes these shortcomings by taking an inductive inference viewpoint. • Caticha 2004

INDUCTIVE INFERENCE

We construct a "new" entropy measure S(p) just by desired properties.

Let $\mathcal X$ be a measurable space with σ -algebra $\mathcal F$ and measure μ that can be continuous or discrete.

We start with a prior distribution q over $\mathcal X$ dominated by μ and a constraint of the form

$$\int_D a(\mathbf{x})dq(\mathbf{x}) = c \in \mathbb{R}$$

with $D \in \mathcal{F}$. The constraint function $a(\mathbf{x})$ is analogous to moment condition functions $g(\cdot)$ in the discrete case. We want to update the prior distribution q to a posterior distribution p that fulfills the constraint and is maximal w.r.t. S(p).

For this maximization to make sense, S must be transitive, i.e.,

$$S(p_1) < S(p_2), S(p_2) < S(p_3) \Rightarrow S(p_1) < S(p_3).$$

CONSTRUCTING THE KL

1) Locality

The constraint must only update the prior distribution in D, i.e., the region where it is active.

For this, it can be shown that the non-overlapping domains of $\mathcal X$ must contribute additively to the entropy, i.e.,

$$S(p) = \int F(p(\mathbf{x}), \mathbf{x}) d\mu(\mathbf{x})$$

where *F* is an unknown function.