Assignment 2

Author: Leonardo Colosi 1799057

Contributors: Bruno Francesco Nocera 1863075, Silverio Manganaro 1817504, Simone Tozzi, 1615930, Paolo Renzi 1887793, Jacopo Tedeschi 1882789, Amine Ahardane 2050689.

MARR, RLNovember 22, 2023

Contents

1	$Th\epsilon$	ory
	1.1	Exercise 1
	1.2	Exercise 2
2	Coc	le Implementation
	2.1	Policy Iteration
	2.2	iLQR

1 Theory

1.1 Exercise 1

Given the following table:

$$Q(s,a) = \begin{pmatrix} Q(1,1) & Q(1,2) \\ Q(2,1) & Q(2,2) \end{pmatrix} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

Assuming $\alpha=0.1$ and $\gamma=0.5$, after the experience: (s,a,r,s')=(1,2,3,2) we can compute the Q-table update for:

- 1. Q-Learning
- 2. SARSA in the case $a' = \pi_{\epsilon}(s') = 2$
- 1. In the case of Q-Learing we can procede using the following update rule:

$$Q(s,a) = Q(s,a) + \alpha [r + \gamma(max_aQ(s',a')) - Q(s,a)]$$

So we would have:

$$Q(s,a) = Q(1,2) + 0.1[3 + 0.5(max_aQ(2,a')) - Q(1,2)]$$

$$\rightarrow \qquad Q(1,2) + 0.1[3 + 0.5(max(Q(2,1), Q(2,2))) - Q(1,2)]$$

$$\rightarrow \qquad \qquad 2 + 0.1[3 + 0.5 \cdot 4 - 2]$$

$$\rightarrow \qquad \qquad 2 + 0.3 = 2.3$$

2. For SARSA we use as update rule:

$$Q(s, a) = Q(s, a) + \alpha [r + \gamma(Q(s', a')) - Q(s, a)]$$

in this case a' = 2, so we would have:

$$Q(s,a) = Q(1,2) + 0.1[3 + 0.5(Q(2,a')) - Q(1,2)]$$

$$\rightarrow \qquad \qquad Q(1,2) + 0.1[3 + 0.5(Q(2,2)) - Q(1,2)]$$

$$\rightarrow \qquad \qquad 2 + 0.1[3 + 0.5 \cdot 4 - 2)$$

$$\rightarrow \qquad \qquad 2 + 0.3 = 2.3$$

1.2 Exercise 2

- 2 Code Implementation
- 2.1 Policy Iteration

2.2 iLQR