Práctica

Página

3

Adrián Carmona Lupiáñez Ignacio Sánchez Herrera

Jacobo Casado de Gracia

Jesús José Mª Maldonado Arroyo

Juan Miguel Hernández Gómez

Subsecuencia en común más larga

1. Planteamiento del problema

La Programación Dinámica se aplica en cuatro fases:

- 1. Identificar la naturaleza n-etápica del problema
- 2. Verificación del Principio de Optimalidad de Bellman
- 3. Planteamiento de una recurrencia
- 4. Cálculo de una solución.

Naturaleza n-etápica del problema

Sea la subsecuencia más larga $x_1, x_2, ..., x_n$; esta subsecuencia es resultado de una serie de sucesiones ya que tenemos que decidir los valores de x_i , con $1 \le i \le n$. Así primero tomaríamos una decisión sobre x_1 , luego sobre x_2 , y así sucesivamente.

Por lo que podemos ver que estamos ante un problema de decisión n-etápico.

Principio de Optimalidad de Bellman

Si x_i es un elemento intermedio de la subsecuencia más larga, entonces la subsecuencia $x_1, x_2, ..., x_i$ es una solución optimal, y también lo es la subsecuencia $x_i, x_{i+1}, ..., x_n$.

Planteamiento de una recurrencia

Sean X_n, Y_m las dos secuencias de tamaños n, m y X_{n-1}, Y_{m-1} las subsecuencias de tamaño n-1 y m-1 entonces llamemos $f(X_n, Y_m)$ al tamaño de la subsecuencia común más larga de X_n y Y_m , donde:

$$f(X_n, Y_m) = \begin{cases} 0 & si \quad n = 0, m = 0 \\ 1 + f(X_{n-1}, Y_{m-1}) & si \quad X = Y \\ max(f(X_n, Y_{m-1}), f(X_{n-1}, Y_m)) & si \quad X \neq Y \end{cases}$$

Cálculo de una solución

[AÑADIR TEXTO]

Práctica

Página

Adrián Carmona Lupiáñez Ignacio Sánchez Herrera Jacobo Casado de Gracia

3

Jesús José M^a Maldonado Arroyo Juan Miguel Hernández Gómez

2. Pseudocódigo

Sean S1 y S2 las secuencias de las cuales queremos hallar la subsecuencia común más larga, el algoritmo se describiría por el siguiente pseudocódigo.

```
INICIO DEL ALGORITMO
1
       cadena reconstruccion(matriz M, cadena a, cadena b,
2
          \hookrightarrowentero i, entero j)
       INICIO DE LA FUNCION
3
           Si i o j son 0:
4
                Devolver {}
5
           Si no, si a[i-1] es igual a b[j-1]:
6
                Devolver reconstruccion(M, a, b, i-1, j-1)
7
            Si no, si M[i-1][j] es mayor que M[i][j-1]:
8
                Devolver reconstruccion(M, a, b, i-1, j)
9
           Si no:
10
                Devolver reconstruccion(M, a, b, i, j-1)
11
       FIN DE LA FUNCION
12
13
       TAM1 = | S1 |
14
       TAM2 = | S2 |
15
       Crear una matriz M con TAM1 filas y TAM2 columnas
16
       Rellenar la primera fila y columna de {\tt M} con ceros
17
       Repetir desde i=1 hasta TAM1:
18
            Repetir desde j=1 hasta TAM2:
19
                Si S1[i-1] es igual a S2[j-1]:
20
                    M[i][j]=M[i-1][j-1]+1
21
                Si no:
22
                     M[i][j]=max(M[i-1][j],M[i][j-1])
23
       Devolver reconstruccion(M, S1, S2, TAM1, TAM2)
24
  FIN DEL ALGORITMO
25
```

NOTA: El algoritmo muestra al principio una función reconstrucción que es recursiva y a la cual se la llama en primer lugar en la línea 24 del código mostrado.

Práctica

Adrián Carmona Lupiáñez
3 Ignacio Sánchez Herrera

Jacobo Casado de Gracia

Página 3/7 Jesús José Mª Maldonado Arroyo Juan Miguel Hernández Gómez

3.	Eficiencia y ecuación recursiva	

Práctica

Página

3

Adrián Carmona Lupiáñez Ignacio Sánchez Herrera Jacobo Casado de Gracia Jesús José M^a Maldonado Arroyo

Juan Miguel Hernández Gómez

4. Código

Aquí se muestra el código utilizado escrito en lenguaje C++.

Hemos indicado las 2 funciones utilizadas. La primera a la que se llama desde el main es la función subsecuencia. Y esta a su vez hace uso de la función reconstrucción.

```
//Funcion de reconstruccion recursiva
1
   string reconstruccion(vector <vector <int>> matriz, string
2
      \hookrightarrow a, string b, int i, int j){
       if (i==0 || j==0)
3
            return "";
4
       else if (a[i-1] == b[j-1])
5
            return reconstruccion (matriz, a, b, i-1, j-1) + a
6
               \hookrightarrow [i-1];
       else if (matriz[i-1][j]>matriz[i][j-1])
            return reconstruccion (matriz, a, b, i-1, j);
9
       else
            return reconstruccion (matriz, a, b, i, j-1);
10
   }
11
12
13
   //Funcion para hallar la subsecuencia mas corta con
14
      \hookrightarrowprogramacion dinamica
   string subsecuencia(string a, string b){
15
       int a_tam= a.size();
16
       int b_tam= b.size();
17
18
       //Creacion de la matriz con los valores y la matriz
19
          ⇔con las direcciones
       vector <vector <int>> matriz(a_tam+1, vector <int> (
20
           \hookrightarrowb_tam+1, 0));
21
       for (int i=1; i<a_tam+1; i++){</pre>
22
            for (int j=1; j < b_tam + 1; j + +) {</pre>
23
                 if (a[i-1]==b[j-1])
24
                     matriz[i][j] = matriz[i-1][j-1]+1;
25
                 else{
26
                        (matriz[i-1][j]>matriz[i][j-1])
27
                          matriz[i][j] = matriz[i-1][j];
28
                     else
29
                          matriz[i][j]= matriz[i][j-1];
30
                 }
31
            }
32
       }
33
34
       //Return
35
       return reconstruccion(matriz, a, b, a_tam, b_tam);
36
```

Práctica

3 | 1

Adrián Carmona Lupiáñez Ignacio Sánchez Herrera Jacobo Casado de Gracia

Página 5/7

Jesús José M^a Maldonado Arroyo Juan Miguel Hernández Gómez

37 }	

Práctica

Página

3

6/7

Adrián Carmona Lupiáñez Ignacio Sánchez Herrera Jacobo Casado de Gracia Jesús José M^a Maldonado Arroyo Juan Miguel Hernández Gómez

Escenarios de ejecución **5**.

Utilizando las secuencias jacobocasadodegracia y jesusjosemariamaldonadoarroyo, la subsecuencia común más larga es josadoaa.

Aquí podemos ver la matriz de números que se construye.

```
j e s u s j o s e m a r i a m a l d o n a d o a r r o y o
1 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 5 5 5 5 5 5
1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 5 6 6 6 6 6 6 6 6
1 1 2 2 2 2 3 3 3 3 4 4 4 4 4 4 4 5 6 6 6 7 7
                      7 7 7
1 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 5 6 6 6 7 7 7 7
 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 5 6 6 6 7
 2 2 2 2 2 3 3 4 4 4 5 5 5 5 5 5 5 6 6 6 7
1 2 2 2 2 2 3 3 4 4 5 5 5 6 6 6 6 6 6 6 7 7 7 8 8 8 8 8 8
1 2 2 2 2 2 3 3 4 4 5 5 5 6 6 6 6 6 6 6 7 7 7 8 8 8 8 8 8
1 2 2 2 2 2 3 3 4 4 5 5 6 6 6 6 6 6 6 6 7 7 7 8 8 8 8 8 8
1 2 2 2 2 2 3 3 4 4 5 5 6 7 7 7 7 7 7 7 7 7 7 8 8 8 8 8 8
```

Y aquí podemos ver la matriz de direcciones que se construye.

		j	е	s	u	s	j	0	s	е	m	a	r	i	a	m	a	1	d	0	n	a	d	0	a	r	r	0	у	0
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		\								-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
a	0	1	-	-	-	-	-	-	-	-	-	\	-	-	\	-	\	-	-	-	-	\	-	-	\	-	-	-	-	-
С	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
0	0	-	-	-	-	-	-	\	-	-	-	-	-	-	-	-	-	-	-	\	-	-	-	\	-	-	-	\	-	\
b	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_
0	0	-	-	-	-	-	-	\	-	-	-	-	-	-	-	- -	-	-	-	\	-	-	-	\	-	-	-	\	-	\
С	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
a	0		-	-	-	-	-		-	-	-	\	-	-	\	-	\	-	-	-	-	\	-	-	\	-	-	-	-	-
s	0	1	-	\	-	\	-	-	\	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-
a	0	1	-	-	-	-	-	-	1	-	-	\	-	-	\	-	\	-	-	-	-	\	-	-	\	-	-	-	-	-
d	0	1	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-	-	\	-	-	-	\	-	-	-	-	-	-	-
																-														
																-														
е	0	1	\	-	-	-	-	-	-	\	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-
g	0			-	-	-	-		-		-	-	-	-	-	-	-	-			-	-		-	-	-	-	-	-	-
																-														
																-														
С	0	1	-	-	-	-	-	1	-	1	-	-	-	-	1	-	-	-	-	-	-	-	-	-	1	-	-	-	-	-
i	0	١	-	-	-	-	-	١	-	١	-	-	-	/	-	-	-	-	-	-	-	١	-	-	-	-	-	-	-	-
a	0	١	-	-	-	-	-	١	-	١	-	\	-	-	\	-	\	-	-	-	-	\	-	-	\	-	-	-	-	-

Práctica

Página

3

7/7

Adrián Carmona Lupiáñez Ignacio Sánchez Herrera Jacobo Casado de Gracia Jesús José M^a Maldonado Arroyo Juan Miguel Hernández Gómez

Vamos a observar otro ejemplo utilizando las secuencias de caracteres ignaciosanchezhe-

rrera y juanmiquelhernandezgomez, cuya subsecuencia común más larga es ignaneze.

Y aquí podemos ver la matriz de direcciones que se construye.

		j	u	a	n	m	i	g	u	е	1	h	е	r	n	a	n	d	е	z	g	0	m	е	z
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
i	0	-	-	-	-	-	\	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
g	0	-	-	-	-	-		\	-	-	-	-	-	-	-	-	-	-	-	-	\	-	-	-	-
n	0	-	-	-	\	-	-	Ť	-	-	-	-	-	-	\	-	\	-	-	-	-	-	-	-	-
a	0	-	-	\	-	-	-	-	-	-	-	-	-	-	1	\	-	-	-	-	-	-	-	-	-
С	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
i	0	-	-	-	-	-	\	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			-			-	-	-	-	-	-	-	-	-		-		-	-	-	-	\	-	-	-
			-							-					-	-	-	-	-	-	-	-	-	-	-
a	0	-	-	\	-	-	1	-	-	-	-	-	-	-	-	\	-	-	-	-	-	-	-	-	-
n	0	-	-	-	\	-	-	-	-	-	-	-	-	-	\	1	\	-	-	-	-	-	-	-	-
С	0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
h	0	-	-	1	-	-	-	-	-	-	-	\	-	-	-	1	1	-	-	-	-	-	-	-	-
е	0	-	-													-	1	-	\	-	-	-	-	\	-
z	0	-	-	1	-	-	-	-	-	Ť	-	-	Ť	-	-	-	1	-	Ť	\	-	-	-	-	\
h	0	-	-	-	-	-	-	-	-	-	-	\	-	-	-	-	-	-		1		-	-	-	-
е	0	-	-	-	-	-	-	-	-	\	-	-	\	-	-	-	-	-	\	1	-	-	-	\	-
r	0	-	-	-	-	-	-	-	-	-	-	-	-	\	-	-	-	-	-	-	-	-	-	1	-
r	0	-	-	-	-	-	-	-	-	-	-	-	-	\	-	-	-	-	-	-	-	-	-	1	-
е	0	-	-	1	-	-	-	-	-	\	-	1	\	ĺ	-	-	-	-	\	-	-	-	-	\	-
r	0	-	-	1	-	-	-	-	-	1	-	1	1	\	-	-	-	-	1	-	-	-	-	1	-
a	0	-	-	\	I	-	-	-	-	1	-	1	1	Ì	-	\	-	-	-	-	-	-	-	1	-