Migration d'interface utilisateur vers les tables interactives

André Kalawa

5 décembre 2012

Motivations

Domaine d'étude

État de l'art des approches de migration

Modélisations

Mécanismes de migrations

Prototype

Conclusions et perspectives

Applications existantes pour les tables interactives

Pourquoi migrer les applications existantes?

- Multitude de plateformes et d'applications
- Refactoring de applications existantes
 - Réduire le temps et le coût de développement
 - Faciliter le travail des développeurs en garantissant des applications utilisables

Applications existantes pour les tables interactives

Pourquoi migrer les applications existantes?

- Multitude de plateformes et d'applications
- Refactoring de applications existantes
 - Réduire le temps et le coût de développement
 - Faciliter le travail des développeurs en garantissant des applications utilisables

Pourquoi les tables interactives comme plateforme d'arrivée?

Domaines d'applications diverses et variés[KLL+09]

Applications existantes pour les tables interactives

Pourquoi migrer les applications existantes?

- Multitude de plateformes et d'applications
- Refactoring de applications existantes
 - Réduire le temps et le coût de développement
 - Faciliter le travail des développeurs en garantissant des applications utilisables

Pourquoi les tables interactives comme plateforme d'arrivée?

- Domaines d'applications diverses et variés[KLL+09]
- Offre un contexte d'utilisation différent
 - Interactions tactiles et tangibles
 - Interface multi utilisateurs et travail collaboratif

Cas d'une application BD sur une table interactive

FIGURE : Fenêtre principale de l'application CBA

Cas d'une application BD sur une table interactive

FIGURE : Fenêtre principale de l'application CBA

Une tabe interactive permet aux dessinateurs

- profiter d'un écran plus large et de nouveaux moyens d'interactions,
- avoir un nouvel espace de conception qui facilite la collaboration

Périmètres de la migration

$$\begin{split} & Application = interface~utilisateur(UI) + noyau~fonctionnel(NF) \\ & Considérons~que~le~NF~de~l'application~à~migrer~est~réutilisé \\ & \Rightarrow Hétérogénéité~des~plateformes~[TKB78] \end{split}$$

Re conception de l'UI à **partir du** NF [ккмоз] pose les questions :

- Comment déduire le style, la structure lavout de l'III cible à partir du NE?
- Comment choisir les composants graphiques et les moyens d'interactions à partir du NE?

En conservant l'UI, adapter : la structure, le layout, les interactions et le comportement de l'UI de départ

- Modéliser ces différents aspects de l'III
- Identifier les principes de conception d'UI pour de la plateforme cible.

Périmètres de la migration

$$\begin{split} & Application = interface~utilisateur(UI) + noyau~fonctionnel(NF) \\ & Considérons~que~le~NF~de~l'application~à~migrer~est~réutilisé \\ & \Rightarrow Hétérogénéité~des~plateformes~[TKB78] \end{split}$$

Re conception de l'UI à **partir du NF** [KKM03] pose les questions :

- Comment déduire le style, la structure et layout de l'UI cible à partir du NF?
- Comment choisir les composants graphiques et les moyens d'interactions à partir du NF?

En conservant l'UI, adapter : la structure, le layout, les interactions et le comportement de l'UI de départ

- Modéliser ses différents senests de l'III
- Identifier les principes de conception d'UI pour de la plateforme cible.

Périmètres de la migration

$$\begin{split} & Application = interface~utilisateur(UI) + noyau~fonctionnel(NF) \\ & Considérons~que~le~NF~de~l'application~à~migrer~est~réutilisé \\ & \Rightarrow Hétérogénéité~des~plateformes~[TKB78] \end{split}$$

Re conception de l'UI à partir du NF [KKM03] pose les questions :

- Comment déduire le style, la structure et layout de l'UI cible à partir du NF?
- Comment choisir les composants graphiques et les moyens d'interactions à partir du NF?

En conservant l'UI, adapter : la structure, le layout, les interactions et le comportement de l'UI de départ

- Modéliser ces différents aspects de l'UI
- Identifier les principes de conception d'UI
 pour de la plateforme cible.

Problèmes

Migration d'UI sur une table interactive

- Quelles guidelines suivre pendant la migration?
 ⇒ Quels types d'UI pour tables interactives?
- Comment adapter les différents aspects des UI à migrer?

Tables interactives	Utilisateurs	Instruments d'interactions	Type d'UI
DiamondTouch [SVFR04]	4 Utilisateurs	Ecran non Capacitif	UI Colocalisée, UI collaborative (Identification d'utilisateurs)
metaDesk [UI97]	Plusieurs Utilisateurs	Écran, Camera Infrarouge, Objets Tangibles Uniquement	UI Tangible, UI Collaborative
Microsoft PixenSense [Mic09]	Plusieurs Utilisateurs (Limité par le nombre de points de contact)	Écran Capacitif, Reconnaissance de Tag	UI Collaborative, UI Tangible, UI Multi Utilisateur

Tables interactives	Utilisateurs	Instruments d'interactions	Type d'UI
DiamondTouch [SVFR04]	4 Utilisateurs	Ecran non Capacitif	UI Colocalisée, UI collaborative (Identification d'utilisateurs)
metaDesk [UI97]	Plusieurs Utilisateurs	Écran, Camera Infrarouge, Objets Tangibles Uniquement	UI Tangible, UI Collaborative
Microsoft PixenSense [Mic09]	Plusieurs Utilisateurs (Limité par le nombre de points de contact)	Écran Capacitif, Reconnaissance de Tag	UI Collaborative, UI Tangible, UI Multi Utilisateur

$Type_{UI} = f(Utilisateurs, Instrument_{Interaction})$

Utilisateurs

- Nombre d'utilisateurs
- Répartition des utilisateurs

Tables interactives	Utilisateurs	Instruments d'interactions	Type d'UI
DiamondTouch [SVFR04]	4 Utilisateurs	Ecran non Capacitif	UI Colocalisée, UI collaborative (Identification d'utilisateurs)
metaDesk [UI97]	Plusieurs Utilisateurs	Écran, Camera Infrarouge, Objets Tangibles Uniquement	UI Tangible, UI Collaborative
Microsoft PixenSense [Mic09]	Plusieurs Utilisateurs (Limité par le nombre de points de contact)	Écran Capacitif, Reconnaissance de Tag	UI Collaborative, UI Tangible, UI Multi Utilisateur

$Type_{UI} = f(Utilisateurs, Instrument_{Interaction})$

Utilisateurs

- Nombre d'utilisateurs
- Répartition des utilisateurs

- Tangibilité des interactions
- Tactibilité des interactions

Tables interactives	Utilisateurs	Instruments d'interactions	Type d'UI
DiamondTouch [SVFR04]	4 Utilisateurs	Ecran non Capacitif	UI Colocalisée, UI collaborative (Identification d'utilisateurs)
metaDesk [UI97]	Plusieurs Utilisateurs	Écran, Camera Infrarouge, Objets Tangibles Uniquement	UI Tangible, UI Collaborative
Microsoft PixenSense [Mic09]	Plusieurs Utilisateurs (Limité par le nombre de points de contact)	Écran Capacitif, Reconnaissance de Tag	UI Collaborative, UI Tangible, UI Multi Utilisateur

$Type_{UI} = f(Utilisateurs, Instrument_{Interaction})$

Utilisateurs

- Nombre d'utilisateurs
- Répartition des utilisateurs

- Tangibilité des interactions
- Tactibilité des interactions
- Taille de la surface d'affichage
- Disposition de la surface d'affichage

Tables interactives	Utilisateurs	Instruments d'interactions	Type d'UI
DiamondTouch [SVFR04]	4 Utilisateurs	Ecran non Capacitif	UI Colocalisée, UI collaborative (Identification d'utilisateurs)
metaDesk [UI97]	Plusieurs Utilisateurs	Écran, Camera Infrarouge, Objets Tangibles Uniquement	UI Tangible, UI Collaborative
Microsoft PixenSense [Mic09]	Plusieurs Utilisateurs (Limité par le nombre de points de contact)	Écran Capacitif, Reconnaissance de Tag	UI Collaborative, UI Tangible, UI Multi Utilisateur

$Type_{UI} = f(Utilisateurs, Instrument_{Interaction})$

Corpus de guidelines [Mic11]

Utilisateurs

- Nombre d'utilisateurs
- Répartition des utilisateurs

- Tangibilité des interactions
- Tactibilité des interactions
- Taille de la surface d'affichage
- Disposition de la surface d'affichage

$ApprocheMigration = \langle Source, Cible, M\'{e}canismes \rangle$

Équivalences entre les éléments des plateformes source et cible

- Omment se font les équivalence entre les dispositifs d'interactions?
- Comment les bibliothèques graphiques sont comparées?
- Comment les équivalences entre les modalités d'interactions sont établies?

Modélisation des différents apects de l'Ul

Structure Interactions Layout Styl

Prise en compte des Guidelines

Comment les principes de conceptions d'UI pour la plateforme cible sont prises en compte par une approche de migration?

- basée sur les connaissances du concepteur
- formalisée par des règles de transformation

$ApprocheMigration = \langle Source, Cible, M\'{e}canismes \rangle$

Équivalences entre les éléments des plateformes source et cible

- Comment se font les équivalence entre les dispositifs d'interactions?
- Comment les bibliothèques graphiques sont comparées?
- Comment les équivalences entre les modalités d'interactions sont établies?

Modélisation des différents apects de l'Ul

Structure Interactions Layout Styl

Prise en compte des Guidelines

Comment les principes de conceptions d'UI pour la plateforme cible sont prises en compte par une approche de migration?

- basée sur les connaissances du concepteur
- formalisée par des règles de transformation

$ApprocheMigration = \langle Source, Cible, M\'{e}canismes \rangle$

Équivalences entre les éléments des plateformes source et cible

- Comment se font les équivalence entre les dispositifs d'interactions?
- Comment les bibliothèques graphiques sont comparées?
- Comment les équivalences entre les modalités d'interactions sont établies?

Modélisation des différents apects de l'UI

Structure Interactions Layout Style

Prise en compte des Guidelines

Comment les principes de conceptions d'UI pour la plateforme cible sont prises en compte par une approche de migration?

- basée sur les connaissances du concepteur
- formalisée par des règles de transformation

$ApprocheMigration = \langle Source, Cible, M\'{e}canismes \rangle$

Équivalences entre les éléments des plateformes source et cible

- Comment se font les équivalence entre les dispositifs d'interactions?
- Comment les bibliothèques graphiques sont comparées?
- Comment les équivalences entre les modalités d'interactions sont établies?

Modélisation des différents apects de l'UI

Structure Interactions Layout Style

Prise en compte des Guidelines

Comment les principes de conceptions d'UI pour la plateforme cible sont prises en compte par une approche de migration?

- basée sur les connaissances du concepteur
- formalisée par des règles de transformations

Migration de l'application AgilePlanner sur une table interactive [WGMOS]

- Approche ad hoc et manuelle de migration d'une UI
- Processus complet de migration en plusieurs étapes
 - 1. Analyse
 - 2. Identification des guidelines
 - 3. Migration
 - 4. Évaluation

Équivalences Manuelles	Guidelines prises en compte par le	Aucun Modêle d'UI
 des bibliothèques graphiques, des dispositifs d'interactions 	concepteur en se basant sur ses connaissances	

Portage d'UI sur table interactive [Bes10]

- Migration sans re conception d'UI source
- Approches spécifiques à des instruments d'interactions (Bibliothèques graphiques)
- Ensemble de techniques pour réutiliser les UI desktop sur des tables interactives
- Guidelines pour les UI collaboratives ne peuvent pas être prise en compte.

Équivalences	Guidelines prises	Méta données pour
statiques des	en compte partielles	caractériser
bibliot hèques	si la bibliothèque	Structure et les
graphiques	graphique cible est	$\operatorname{donn\acute{e}es}$
	utilisée	

$MORPH_{[MR97]}$

Model Oriented Reengineering Process for HCI

- Approche basée sur des modèles abstraits (Interactions, Structure)
 - Transformation manuelle du layout et du style
- Processus de migration en trois phases
 - 1. Détection
 - 2. Transformation
 - Génération
- Équivalences des bibliothèques graphiques basées sur les rôles des objets d'interactions
- Interactions exprimées par un modèle de connaissances

Équivalences	Guidelines prises	Modèles
Dynamique des	en compte dans	Interactions et
bibliot hèques	règles de	Structure
${ m graphiques}$	${ m transformation}$	

Services de migration [PSS09]

CRF [CCB+02]: Modèle pour la conception d'UI multi plateformes

- Tâches et concepts, AUI, CUI, FUI
- Implémentations : USIXML, MARIAXML

Mécanismes de migrations

Basés sur des modèles de conception

⇒ Modèles de l'UI source sont fournies avec

l'application à migrer

Basés sur une activité de Reverse Engineering

⇒ Modèles partiels de l'UI source sont retrouvés à partir de l'application à miger

Équivalences	Guidelines Règles de	Modèles d'UI
Statique des	transformation peu	Interactions, Structure,
bibliothèques	flexible	Layout, Style
graphiques basées sur		
des tables		
d'équivalence		

Approches de migrations

- Les approches ad hoc produisent des UI conformes aux critères ergonomiques
- La prise en compte des guidelines implique une transformation de tous les apects de l'UI source
- Approches semi automatique sont flexibles et réduisent la tâche du concepteur

Modèles

- Les modèles permet de décrire des mécanismes de transformations et d'équivalences réutilisables
- prendre en compte les guidelines

- décrire les équivalences entre les éléments des plateformes
- décrire les équivalences entre les éléments des plateformes

Approches de migrations

- Les approches ad hoc produisent des UI conformes aux critères ergonomiques
- La prise en compte des guidelines implique une transformation de tous les apects de l'UI source
- Approches semi automatique sont flexibles et réduisent la tâche du concepteur

Modèles

- Les modèles permet de décrire des mécanismes de transformations et d'équivalences réutilisables
- prendre en compte les guidelines

- décrire les équivalences entre les éléments des plateformes
- décrire les équivalences entre les éléments des plateformes

Approches de migrations

- Les approches ad hoc produisent des UI conformes aux critères ergonomiques
- La prise en compte des guidelines implique une transformation de tous les apects de l'UI source
- Approches semi automatique sont flexibles et réduisent la tâche du concepteur

Modèles

- Les modèles permet de décrire des mécanismes de transformations et d'équivalences réutilisables
- prendre en compte les guidelines

- décrire les équivalences entre les éléments des plateformes
- décrire les équivalences entre les éléments des plateformes

Approches de migrations

- Les approches ad hoc produisent des UI conformes aux critères ergonomiques
- La prise en compte des guidelines implique une transformation de tous les apects de l'III source
- Approches semi automatique sont flexibles et réduisent la tâche du concepteur

Modèles

- Les modèles permet de décrire des mécanismes de transformations et d'équivalences réutilisables
- prendre en compte les guidelines

- décrire les équivalences entre les éléments des plateformes
- décrire les équivalences entre les éléments des plateformes

Approches de migrations

- Les approches ad hoc produisent des UI conformes aux critères ergonomiques
- La prise en compte des guidelines implique une transformation de tous les apects de l'UI source
- Approches semi automatique sont flexibles et réduisent la tâche du concepteur

Modèles

- Les modèles permet de décrire des mécanismes de transformations et d'équivalences réutilisables
- prendre en compte les guidelines

- décrire les équivalences entre les éléments des plateformes
- décrire les équivalences entre les éléments des plateformes

Approches de migrations

- Les approches ad hoc produisent des UI conformes aux critères ergonomiques
- La prise en compte des guidelines implique une transformation de tous les apects de l'UI source
- Approches semi automatique sont flexibles et réduisent la tâche du concepteur

Modèles

- Les modèles permet de décrire des mécanismes de transformations et d'équivalences réutilisables
- prendre en compte les guidelines

- décrire les équivalences entre les éléments des plateformes
- décrire les équivalences entre les éléments des plateformes

Approches de migrations

- Les approches ad hoc produisent des UI conformes aux critères ergonomiques
- La prise en compte des guidelines implique une transformation de tous les apects de l'UI source
- Approches semi automatique sont flexibles et réduisent la tâche du concepteur

Modèles

- Les modèles permet de décrire des mécanismes de transformations et d'équivalences réutilisables
- prendre en compte les guidelines

- décrire les équivalences entre les éléments des plateformes
- décrire les équivalences entre les éléments des plateformes

Objectifs

- Ré engineering des applications respectant une architecture
- Reconception des UI en respectant les principes de conception
 - Utiliser des modèles abstraits
 - Assister les développeurs pour l'adaptation des différens aspects d'un UI

Objectifs

- Ré engineering des applications respectant une architecture
- Reconception des UI en respectant les principes de conception
 - Utiliser des modèles abstraits
 - Assister les développeurs pour l'adaptation des différens aspects d'un UI

Modélisation

Proposer un modèle d'interactions abstraites qui permet

- le changement de modalité d'interactions
- la conservervation des interactions de l'UI départ tout en prenant en comptes celles de plateforme d'arrivée.

Mécanismes de migrations

- une équivalence dynamique des composants graphiques (abstrait ou concret)
- une prise en compte de toutes les guidelines identifiées

Primitives d'interactions

Interactions

⇒ Exprimer les actions, les commandes, les réponses et les feedback de l'UI par des interactions atomiques sur les composants graphiques : Primitives d'interactions

Primitives d'interactions

Interactions

⇒ Exprimer les actions, les commandes, les réponses et les feedback de l'UI par des interactions atomiques sur les composants graphiques : Primitives d'interactions

Primitives d'interactions

Propriétés graphiques

- Widget Move
- Widget Rotation
- Widget Resize
- Widget Selection,
 Navigation
- Widget Display

Primitives d'interactions

Interactions

⇒ Exprimer les actions, les commandes, les réponses et les feedback de l'UI par des interactions atomiques sur les composants graphiques : Primitives d'interactions

Primitives d'interactions

Propriétés graphiques Contenu

- Widget Move

 - Widget Rotation
 - Widget Resize
 - Widget Selection, Navigation
 - Widget Display

- Data Edition
- Data Selection
- Data Move In
- Data Move Out
- Data Display
- 15/28 ←□ → ←□ → ← ≧ → ← ≧ → → へ ○

Primitives d'interactions

Interactions

Widget Display

⇒ Exprimer les actions, les commandes, les réponses et les feedback de l'UI par des interactions atomiques sur les composants graphiques : Primitives d'interactions

Primitives d'interactions

Primitives d'interactions						
$\operatorname{Contenu}$	Lien fonctionnel					
Data Edition	 Activation 					
Data Selection						
Data Move In						
Data Move Out						
 Data Display 						
	Contenu Data Edition Data Selection Data Move In Data Move Out					

Primitives d'interactions et Composants graphiques

Modèles d'UI = Primitives d'interactions + Modèle de structure

FIGURE: Modèles abstraits d'UI et UI finales

Primitives d'interactions Intrinsèques

Interactions atomiques définies des composants graphique

Primitives d'interactions Effective

Interactions atomiques des instance de composants graphiques

Internationa václloment utilicác

Primitives d'interactions et Composants graphiques

Modèles d'UI = Primitives d'interactions + Modèle de structure

FIGURE: Modèles abstraits d'UI et UI finales

Primitives d'interactions Intrinsèques

Interactions atomiques définies des composants graphiques.

Primitives d'interactions Effective

Interactions atomiques des instance de composants graphiques.

Interactions réellement utilisées

Exemple de Primitives d'interactions

FIGURE : Artéfact d'UI

Composants graphiques	Primitives d'interaction	
Liste d'images	Widget Selection, Navigation,	
	Widget Display, Data Selection,	
	Data Move Out, Activation	
	Data Display	
Liste déroulante	Widget Selection, Navigation,	
	Data Selection, Data Display,	
	Activation	

TABLE : Exemple de primitives d'interactions en entrée

• Comment décrire les équivalences à base des primitives d'interactions

 $ComposantGraphique = \langle Cardinalit\acute{e}, TypeDeDonn\acute{e}e, PrimitivesInteractions \rangle$

Opérateurs d'équivalence

- Équivalence stricte \equiv
- Équivalence simple
- Équivalence faible

Source operateur Cible

 $ComposantGraphique = \langle Cardinalit\acute{e}, TypeDeDonn\acute{e}e, PrimitivesInteractions \rangle$

Opérateurs d'équivalence

- Équivalence stricte =
- Équivalence large ≅
- Équivalence simple 🖺
- Équivalence faible ≥

Source operateur Cible

 $ComposantGraphique = \langle Cardinalité, TypeDeDonnée, PrimitivesInteractions \rangle$

Opérateurs d'équivalence

- Équivalence stricte =
- Équivalence large ≅
- Équivalence simple ≊
- Équivalence faible

 $ComposantGraphique = \langle Cardinalit\acute{e}, TypeDeDonn\acute{e}e, PrimitivesInteractions \rangle$

Opérateurs d'équivalence

- Équivalence stricte =
- Équivalence large \cong
- Équivalence simple ≅
- Équivalence faible \geq

Source operateur Cible

Exemple d'équivalences

$Source = XAML \ et \ Cible = XAMLSurface$

	=	113	21	/ II
Window				Surface
				Window
Menu	Element Menu,	SurfaceListBox		
	SurfaceMenu			
Grid	Grid	ScatterView		
ListBox	SurfaceListBox		LibraryBar	

Exemple d'équivalences

$Source = XAML\ et\ Cible = XAMLSurface$

	=	211	21	/ II
Window				Surface
				Window
Menu	Element Menu,	SurfaceListBox		
	SurfaceMenu			
Grid	Grid	ScatterView		
ListBox	SurfaceListBox		LibraryBar	

Remarques

- Quels composants graphique sélectionner si plusieurs correspondant?
- Comment adapter la structure de l'UI source?

Modèle de structure

Contenance + Type de données + Cardinalité +Primitives d'interactions effectives

Containers

Window Simple Panel Table

Modèle de structure

Contenance + Type de données + Cardinalité + Primitives d'interactions effectives

Containers

Window Simple Panel Table

Exemple

FIGURE : Illustration des types de container

Prise en compte des Guidelines

TODO: Dire comment les Guidelines sont prise en compte pendant la transformation de la structure et la sélections

Processus de migration

TODO: Présenter le processus et dire comment les primitives d'interactions permettent d'établir des équivalences dynamiques Parler des transformations de la structure Parler de la sélection pendant la génération

Implémentations

TODO:

Expérimentations

TODO:

Conclusions

Conclusion de la thèse Etat d'avancement de la rédaction

Perspectives

Bibliographie I

Guillaume Besacier.

 $Interactions\ post-WIMP\ et\ applications\ existantes\ sur\ une\ table\ interactive.$

PhD thesis, UNIVERSITÉ PARIS-SUD 11, 2010.

Gaëlle Calvary, Joëlle Coutaz, Laurent Bouillon, Murielle Florins, Quentin Limbourg,

L. Marucci, Fabio Paternò, Carmen Santoro, N. Souchon, David Thevenin, and Jean Vanderdonckt.

CAMELEON Project.

Technical report, 2002.

M. Kassoff, D. Kato, and W. Mohsin.

Creating GUIs for web services.

IEEE Internet Computing, 7(5):66-73, September 2003.

Sébastien Kubicki, Sophie Lepreux, Yoann Lebrun, Philippe Dos Santos, Christophe Kolski, and Jean Caelen.

Human-Computer Interaction. Ambient, Ubiquitous and Intelligent Interaction, volume 5612 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Microsoft.

Microsoft Surface 2 Design and Interaction Guide.

Technical Report July, 2011.

Mitsubishi Electric Research Laboratoriesb.

MERL .

Melody Moore and Spencer Rugaber.

Using Knowledge Representation to Understand Interactive Systems.

pages 60-67, May 1997.

Bibliographie II

Fabio Paternò, Carmen Santoro, and Lucio Davide Spano.

MARIA: A Universal, Declarative, Multiple Abstraction-Level Language for Service-Oriented Applications in Ubiquitous Environments.

ACM Transactions on Computer-Human Interaction, 16(4):1-30, November 2009.

Andrew Tanenbaum S., Paul Klint, and Wim Bohm.

Guidelines for Software Portability.

Software-Practice And Experience, 8(6):681-698, November 1978.

Brygg Ullmer and Hiroshi Ishii.

The metaDESK: Models and Prototypes for Tangible User Interfaces.

In UIST '97 Proceedings of the 10th annual ACM symposium on User interface software and technolog, pages 223 - 232, 1997.

Xin Wang, Yaser Ghanam, and Frank Maurer.

From Desktop to Tabletop: Migrating the User Interface of AgilePlanner. In Engineering Interactive Systems 2008, pages 263-270, 2008.