

Assessment Report for

Predict Product Return

Submitted as partial fulfillment for the award of

BACHELOR OF TECHNOLOGY DEGREE

SESSION 2024-25

in

Computer Science and Engineering (Artificial Intelligence)

By

Mayank Chaudhary (Roll No -202401100300152)

KIET Group of Institutions, Ghaziabad

Introduction

In the fast-growing e-commerce industry, managing product returns is critical for improving customer satisfaction and operational efficiency. Returns can be driven by multiple factors — from delivery issues to customer dissatisfaction with the product itself. This project aims to develop a machine learning model that predicts whether a purchased item will be returned, using purchase-related features and post-purchase feedback such as review scores and delivery metrics.

By accurately predicting product returns, companies can proactively identify high-risk orders, optimize logistics, and offer better-targeted customer service, ultimately reducing return-related losses.

Methodology

1. Dataset Overview

The dataset used for this project includes records of individual purchases with the following key features:

- purchase_amount: The total amount spent by the customer on the item.
- review_score: The rating (typically from 1 to 5) given by the customer after delivery.
- days_to_delivery: Number of days between order placement and delivery.
- returned: Target variable indicating whether the product was returned (1) or not (0).

Additional metadata (e.g., product category, customer ID) may also be included if available.

2. Preprocessing Steps

- Handling Missing Values: Checked for nulls in all columns and applied appropriate strategies (mean/mode imputation or row removal).
- Feature Scaling: Scaled numerical columns
 (purchase_amount, days_to_delivery) using Min-Max

 Scaler or StandardScaler.
- Encoding Review Score: Treated review_score as an ordinal feature or converted to one-hot encoding based on distribution and correlation with the target.
- Outlier Detection: Applied IQR or z-score methods to identify and optionally cap/floor extreme values in purchase_amount or days_to_delivery.

3. Handling Class Imbalance

Since the number of returned products is often much lower than non-returned, class imbalance is addressed using:

- SMOTE (Synthetic Minority Oversampling Technique): For generating synthetic samples of the minority class.
- Class Weight Adjustment: Leveraged class weighting in models like Logistic Regression and XGBoost.

Ensemble Balancing: Models such as Balanced Random
 Forest were also explored.

4. Models Used

Several classification models were trained and compared:

- Logistic Regression As a baseline model.
- Random Forest Classifier Robust to outliers and nonlinear features.
- **XGBoost Classifier** Efficient, handles imbalance with built-in options.
- LightGBM Fast training and high performance on large datasets.

Hyperparameter tuning was done using **GridSearchCV** or **RandomizedSearchCV** to improve performance.

5. Evaluation Metrics

To evaluate the models effectively (especially with imbalance), the following metrics were used:

 Precision, Recall, F1-Score – To understand trade-offs between false positives and false negatives.

- ROC-AUC Score Measures the model's ability to distinguish between classes.
- Confusion Matrix Visual tool to assess true positives, false positives, etc.
- Cross-Validation Accuracy To ensure generalization and avoid overfitting.

6. Code:

The code for this project was written on Google Colab. It includes steps such as data upload, preprocessing, SMOTE balancing, model training using Random Forest, prediction, and evaluation

Import the required libraries

import pandas as pd # For working with data

import seaborn as sns # For making plots

import matplotlib.pyplot as plt # For showing plots

from sklearn.model selection import train test split # To split data

from sklearn.ensemble import RandomForestClassifier # The model

from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score # For evaluation

```
# Step 1: CSV file
```

```
from google.colab import files uploaded = files.upload()
```

Step 2: Read the CSV file

import io

file_name = list(uploaded.keys())[0] # Get the name of the uploaded file data = pd.read_csv(io.BytesIO(uploaded[file_name])) # Load data into a table

Step 3: Look at the data

```
print(" First few rows of the data:")
print(data.head())
```

Step 4: Change 'yes' and 'no' to 1 and 0

data['returned'] = data['returned'].map({'yes': 1, 'no': 0})

Step 5: Separate the input (features) and the output (target)

```
X = data.drop('returned', axis=1) # Input features
y = data['returned'] # Target we want to predict
```

Step 6: Split the data into training and testing sets

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
```

Step 7: Train the model

model = RandomForestClassifier(random state=42)

Step 8: Make predictions on the test set

```
y_pred = model.predict(X_test)
```

Step 9: Check how good the model is

```
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
```

```
print("\n  Model Evaluation:")
print(f"Accuracy: {accuracy:.2f}")
print(f"Precision: {precision:.2f}")
print(f"Recall: {recall:.2f}")
```

Step 10: Show a confusion matrix as a heatmap

Output/Result:

References/Credits:

- 1. Dataset Source: Predict Product Return
- 2. Libraries used:
 - pandas

- 。 scikit-learn
- imbalanced-learn (SMOTE)

Files Uploaded to GitHub:

- Jupyter Notebook (.ipynb)
- PDF Report
- README.md