Zhengdong Zhang

Email: zhengz@uoregon.edu Course: MATH 649 - Abstract Algebra

Instructor: Professor Sasha Polishchuk

Homework - Week 3

ID: 952091294 Term: Spring 2025

Due Date: 23^{th} April, 2025

Problem 11.5.5

Let \mathbb{K}/\mathbb{k} be a Galois extension, and \mathbb{L} , \mathbb{M} be intermediate fields. Denote by $\mathbb{L} \vee \mathbb{M}$ the minimal subfield of \mathbb{K} containing \mathbb{L} and \mathbb{M} .

- (a) $(\mathbb{L} \cap \mathbb{M})^* = \langle \mathbb{L}^*, \mathbb{M}^* \rangle$.
- (b) $(\mathbb{L} \vee \mathbb{M})^* = \mathbb{L}^* \cap \mathbb{M}^*$.
- (c) Assume that \mathbb{L}/\mathbb{k} is normal. Then $Gal(\mathbb{L}\vee\mathbb{M}/\mathbb{M})\cong Gal(\mathbb{L}/(\mathbb{L}\cap\mathbb{M}))$.

Solution:

- (a) We know that $L \cap M \subseteq L$, by the Galois correspondence, we have $L^* \subseteq (L \cap M)^*$. Similarly, we can see that $M^* \subseteq (L \cap M)^*$. Note that $\langle L^*, M^* \rangle$ is the smallest subgroup containing L^* and M^* . This implies $(L \cap M)^*$ contains $\langle L^*, M^* \rangle$. On the other hand, suppose $a \in \mathbb{K}$ is fixed by every element in the group $\langle L^*, M^* \rangle$, so a is invariant under every element in L^* and M^* . This is the same as $a \in L$ and $a \in M$, so $a \in L \cap M$. This proves $\langle L^*, M^* \rangle^* \subseteq L \cap M$, by Galois correspondence, we have $(L \cap M)^* \subseteq \langle L^*, M^* \rangle$. Thus, we can conclude that $(L \cap M)^* = \langle L^*, M^* \rangle$.
- (b) By definition, we know that $L \vee M \supseteq L$ and $L \vee M \supseteq M$, by Galois correspondence, we have $(L \vee M)^* \subseteq L^*$ and $(L \vee M)^* \subseteq M^*$, so $(L \vee M)^* \subseteq L^* \cap M^*$. On the other hand, $L^* \cap M^* \subseteq L^*$ and $L^* \cap M^* \subseteq M^*$, by Galois correspondence, we have $(L^* \cap M^*)^* \supseteq L$ and $(L^* \cap M^*)^* \supseteq M$. Note that $L \vee M$ is the smallest subfield containing L and M, so $(L^* \cap M^*)^* \supseteq L \vee M$, by Galois correspondence, we have $L^* \cap M^* \subseteq (L \vee M)^*$. Thus, we can conclude that $(L \vee M)^* = L^* \cap M^*$.
- (c) Consider the field extension $\mathbb{L}/(\mathbb{L}\cap\mathbb{M})/\mathbb{k}$. We know \mathbb{L}/\mathbb{k} is normal, so $\mathbb{L}/\mathbb{L}\cap\mathbb{M}$ is also normal. The Galois correspondence and the isomorphisms in (a) and (b) give us two graphs as follows

By the second isomorphism theorems in groups, we know that $\mathbb{L}^* \cap \mathbb{M}^*$ is normal in \mathbb{M}^* and we have an isomorphism

$$\langle \mathbb{L}^*, \mathbb{M}^* \rangle / \mathbb{L}^* \cong \mathbb{M}^* / \mathbb{L}^* \cap \mathbb{M}^*.$$

Apply the Galois correspondence again, and we have

$$(\mathbb{L}\cap\mathbb{M})^*/\mathbb{L}^*\cong \operatorname{Gal}(\mathbb{L}/\mathbb{L}\cap\mathbb{M})\cong (\mathbb{L}\vee\mathbb{M})^*/\mathbb{M}^*\cong \operatorname{Gal}(\mathbb{L}\vee\mathbb{M}/\mathbb{M}).$$

Problem 11.5.6

Let \mathbb{K}/\mathbb{k} be a finite Galois extension and p be a prime number.

- (a) \mathbb{K} has an intermediate subfield \mathbb{L} such that $[\mathbb{K} : \mathbb{L}]$ is a prime power.
- (b) If \mathbb{L}_1 and $\mathbb{L}_{\not=}$ are intermediate subfields with $[\mathbb{K} : \mathbb{L}_1]$, $[\mathbb{K} : \mathbb{L}_2]$ both p-powers, and $[\mathbb{L}_1 : \mathbb{k}]$, $[\mathbb{L}_2 : \mathbb{k}]$ both prime to p, then \mathbb{L}_1 is \mathbb{L}_1 is \mathbb{L} -isomorphic to \mathbb{L}_2 .

Solution:

- (a) Suppose $[\mathbb{K} : \mathbb{k}] = n$ is finite. We know n can be written as product of prime powers and suppose $n = p^k m$ for some prime number p and (p, m) = 1. The Galois group $G = \operatorname{Gal}(\mathbb{K}/\mathbb{k})$ has order n and by Sylow's theorem, the Sylow p-subgroup of G exists and has order p^k . By Galois correspondence, there exists a subfield $\mathbb{K}/\mathbb{L}/\mathbb{k}$ such that $[\mathbb{K} : \mathbb{L}] = p^k$.
- (b) Under the same assumption of (a), suppose $[\mathbb{K} : \mathbb{L}_1] = [\mathbb{K} : \mathbb{L}_2] = p^k$ and since $[\mathbb{L}_1 : \mathbb{k}]$, $[\mathbb{L}_2] : \mathbb{k}$ are prime to p, the Galois group $\operatorname{Gal}(\mathbb{K}/\mathbb{L}_1)$ and $\operatorname{Gal}(\mathbb{K}/\mathbb{L}_2)$ are Sylow p-subgroups in G, and by Sylow theory, they are conjugate. There exists $g \in G$ such that $g\mathbb{L}_1^*g^{-1} = \mathbb{L}_2^*$. By Galois correspondence and the proof of Theorem 11.5.4 (iv), we know that

$$g\mathbb{L}_1^*g^{-1} = g(\mathbb{L}_1)^* = \mathbb{L}_2^*.$$

So $g: \mathbb{K} \to \mathbb{K}$ restricting to \mathbb{L}_1 defines an isomorphism $\mathbb{L}_1 \to \mathbb{L}_2$ fixing the base field \mathbb{k} .

Problem 11.5.7

Let $f \in \mathbb{k}[x]$, \mathbb{K}/\mathbb{k} be a splitting field for f over \mathbb{k} , and $G := \operatorname{Gal}(\mathbb{K}/\mathbb{k})$.

- 1. G acts on the set of the roots of f.
- 2. G acts transitively if f is irreducible.
- 3. If f has no multiple roots and G acts transitively then f is irreducible.

Solution:

(a) We need to show that for any $g \in G$ and any $\alpha \in \mathbb{K}$ is a root of f, $g(\alpha)$ is also a root of f. Indeed, we know that $g(\alpha)$ is a root of g(f) and since $f \in \mathbb{k}[x]$ and g fixes every element in \mathbb{k} , g fixes the polynomial f, so g(f) = f. Thus, we can conclude that G acts on the set of roots of f.

- (b) By Theorem 11.3.3, \mathbb{K}/\mathbb{k} is a normal extension and by Proposition 11.3.9, G acts transitively if f is irreducible.
- (c) The condition is equivalent to \mathbb{K}/\mathbb{k} is a finite Galois extension. Assume f is not irreducible over \mathbb{k} and h|f for some irreducible polynomial $h \in \mathbb{k}[x]$. Suppose $\alpha_1, \ldots, \alpha_n \in \mathbb{K}$ are roots of f and $\alpha_1, \ldots, \alpha_k$ are roots of h for $1 \leq k < n$. Note that for any $g \in G$, g fixes $h \in \mathbb{k}[x]$ so g must send a root of h to another root of h. This means there does not exists $g \in G$ such that $g(\alpha_1) = \alpha_n$. This contradicts the assumption that G acts transitively, so f is irreducible.

Problem 11.6.2

Let \mathbb{k} be a field, p(x) be an irreducible polynomial in $\mathbb{k}[x]$ of degree n, and let \mathbb{K} be a Galois extension of \mathbb{k} containing a root α of p(x). Let $G = \operatorname{Gal}(\mathbb{K}/\mathbb{k})$, and G_{α} be the set of all $\sigma \in G$ with $\sigma(\alpha) = \alpha$. Then:

- (a) $[G:G_{\alpha}] = n;$
- (b) $G_{\alpha}^* = \mathbb{k}(\alpha);$
- (c) If G_{α} is normal in G then p(x) splits in the fixed field of G_{α} .

Solution:

(a) Suppose $\alpha = \alpha_1, \alpha_2, \dots, \alpha_n \in \mathbb{K}$ are roots of p(x). For all $1 \leq i \leq n$, choose $\sigma_i \in G$ satisfying $\sigma_i(\alpha_1) = \alpha_i$.

<u>Claim:</u> $G = \sigma_1 G_\alpha \sqcup \cdots \sqcup \sigma_n G_\alpha$ is a coset decomposition of G with respect to the subgroup G_α .

<u>Proof:</u> We first prove the cosets are disjoint. Suppose there exists $g \in \sigma_i G_\alpha \cap \sigma_j G_\alpha$ for some $1 \le i, j \le n$, then $g = \sigma_i g_1 = \sigma_j g_2$ for some $g_1, g_2 \in G_\alpha$. Then

$$\alpha_i = \sigma_i g_1(\alpha_1) = \sigma_j g_2(\alpha_1) = \alpha_j.$$

This implies i=j. Next, we are going to show that for every $g \in G$, g must be in one of the coset. Suppose $g(\alpha_1) = \alpha_k$ for some $1 \le k \le n$. Note that $\sigma_k^{-1}g(\alpha_1) = \alpha_1$, so $\sigma_k^{-1}g \in G_\alpha$. There exists $g' \in G_\alpha$ such that $\sigma_k^{-1}g = g'$, namely $g = \sigma_k g'$, so $g \in \sigma_k G_\alpha$.

From the claim, we know that G_{α} has n cosets in G, so by definition $[G:G_{\alpha}]=n$.

(b) By definition, G_{α} fixes every element in $\mathbb{k}(\alpha)$, so $G_{\alpha} \subseteq \operatorname{Gal}(\mathbb{k}(\alpha)/\mathbb{k})$. By Galois correspondence, this means $G_{\alpha}^* \supseteq \mathbb{k}(\alpha)$. Moreover, by Galois correspondence and (a), we have

$$[\mathbb{k}(\alpha) : \mathbb{k}] = |\operatorname{Gal}(\mathbb{k}(\alpha)/\mathbb{k})| = n = [G : G_{\alpha}] = [G_{\alpha}^* : \mathbb{k}].$$

This tells us that $G_{\alpha}^* = \mathbb{k}(\alpha)$.

(c) If G_{α} is normal in G, by Galois correspondence, G_{α}^*/\mathbb{k} is a normal extension. We know the polynomial p(x) already has one root α in $G_{\alpha}^* = \mathbb{k}(\alpha)$, by definition of normal extension, p(x) splits in G_{α}^* .

Problem 11.6.3

Let $\mathbb{k}(\alpha)/\mathbb{k}$ be a field extension obtained by adjoining a root α of an irreducible separable polynomial $f \in \mathbb{k}[x]$. Then there exists an intermediate field $\mathbb{k} \subsetneq \mathbb{F} \subsetneq \mathbb{k}(\alpha)$ if and only if $\operatorname{Gal}(f;\mathbb{k})$ is imprimitive (as a permutation group on the roots), in which case \mathbb{F} can be chosen so that $[\mathbb{F} : \mathbb{k}]$ is equal to the number of imprimitive blocks.

Solution: By Theorem 7.1.11 (Primitivity Criterion), $G = \operatorname{Gal}(f; \mathbb{k})$ is primitive if and only if the stabilizer G_{β} is a maximal subgroup for any root β of the polynomial f. Write \mathbb{N} as the splitting field of f. Suppose there exists an intermediate field $\mathbb{k} \subsetneq \mathbb{F} \subsetneq \mathbb{k}(\alpha)$, by Galois correspondence, there exists a proper subgroup $\mathbb{F}^* \subsetneq G$ containing the stabilizer $\mathbb{k}(\alpha)^* = G_{\alpha}$. This implies G is not primitive. Conversely, suppose G is not primitive. Then there exists a proper subgroup H satisfying $G_{\alpha} \subsetneq H \subsetneq G$. By Galois correspondence, the fixed field H^* is an intermediate field and $[H^* : \mathbb{k}] = [G : H] = n$. Write

$$G = g_1 H \sqcup \cdots \sqcup g_n H$$

and define $X_i := \{g_i h \cdot \alpha \mid h \in H\}$ for $1 \leq i \leq n$. We have proved in the proof of Theorem 7.1.11, X_1, \ldots, X_n are imprimitivity blocks, so this implies that $\mathbb{F} = H^*$ can be chosen so that $[\mathbb{F} : \mathbb{k}]$ is equal to the number of imprimitive blocks.

Problem 11.6.6

Find all subfields of the splitting field of $x^3 - 7$ over \mathbb{Q} . Which of the subfields are normal over \mathbb{Q} ?

Solution: Write

$$x^{3} - 7 = (x - \sqrt[3]{7})(x - \sqrt[3]{7}\omega)(x - \sqrt[3]{7}\omega^{2})$$

where ω is the 3rd primitive root of unit satisfying $\omega^2 + \omega + 1 = 0$. The splitting field of $x^3 - 7$ is $\mathbb{K} = \mathbb{Q}(\sqrt[3]{7}, \omega)$. We know that

$$[\mathbb{K} : \mathbb{Q}] = [\mathbb{K} : \mathbb{Q}(\sqrt[3]{7})][\mathbb{Q}(\sqrt[3]{7}) : \mathbb{Q}] = 2 \cdot 3 = 6.$$

So the Galois group $G = \operatorname{Gal}(\mathbb{K}/\mathbb{Q})$ is a group of order 6. Consider the following two field automorphisms $\sigma, \tau : \mathbb{K} \to \mathbb{K}$ where σ fixes $\sqrt[3]{7}$ and permutes ω and ω^2 in \mathbb{K} , τ sends $\sqrt[3]{7}$ to $\sqrt[3]{7}\omega$, $\sqrt[3]{7}\omega$ to $\sqrt[3]{7}\omega^2$ and $\sqrt[3]{7}\omega^2$ to $\sqrt[3]{7}$. $\sigma \in G$ is an element of order 2 and $\tau \in G$ is an element of order 3. Note that

$$\sigma\tau(\sqrt[3]{7}) = \sigma(\sqrt[3]{7}\omega) = \sqrt[3]{7}\omega^2 \neq \sqrt[3]{7}\omega = \tau\sigma(\sqrt[3]{7}).$$

So G is not commutative and has to be S_3 . The subgroup generated by σ is a subgroup of index 2 in G, thus it is the normal subgroup $\langle (123) \rangle$, corresponding to the normal extension $\mathbb{Q}(\omega)/\mathbb{Q}$. The subgroups $\langle (12) \rangle$, $\langle (23) \rangle$ and $\langle (13) \rangle$ are conjugate Sylow 2-group in G of index 3, corresponding to the degree 3 subextension $\mathbb{Q}(\sqrt[3]{7})$, $\mathbb{Q}(\sqrt[3]{7}\omega)$ and $\mathbb{Q}(\sqrt[3]{7}\omega^2)$. None of them are normal. These are all the subfields of \mathbb{K} .

Problem 11.6.7

Let \mathbb{K} be a splitting field for $x^4 + 6x^2 + 5$ over \mathbb{Q} . Find subfields of \mathbb{K} .

Solution: Write

$$x^4 + 6x^2 + 5 = (x+i)(x-i)(x+\sqrt{5}i)(x-\sqrt{5}i).$$

We know that

$$[\mathbb{K}:\mathbb{Q}] = [\mathbb{Q}:\mathbb{Q}(i)][\mathbb{Q}(i):\mathbb{Q}] = 2 \cdot 2 = 4.$$

So the Galois group $G = \operatorname{Gal}(\mathbb{K}/\mathbb{Q})$ is either the cyclic group C_4 or the direct sum of two cyclic groups $C_2 \oplus C_2$. Note that $\mathbb{Q}(i)$ and $\mathbb{Q}(\sqrt{5})$ are two different subfields of \mathbb{K} , but C_4 only has one nontrivial proper subgroup, so $G = C_2 \oplus C_2$. G has three subgroups of index 2, corresponding to the subfields $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{5})$ and $\mathbb{Q}(\sqrt{5}i)$. All of them are normal because G is an abelian group.