Dynamic visualization of high-dimensional data via low-dimension projections and sectioning across 2D and 3D display devices

Mid canidature review

Monash University, Faculty of Information Technology

Nicholas Spyrison

Thesis Supervisors

Prof. Kimbal Marriott Prof. Dianne Cook

Committee Members

Dr. Maxime Cordiel Dr. Shirui Pan

Chair

Assoc. Prof. Bernhard Jenny

Presention Date

DD Feburuary, 2020

Contents

Contents			1
1	Introduction		1
	1.1	Motivation	1
		1.1.1 Current state of the field	1
	1.2	From discrete to continuous	2
	1.3	Research objectives	4
	1.4	Methodology	5
2	Progress since confirmation		6
	2.1	Publication	6
	2.2	Software	6
	2.3	Experimental study	7
3	Proposed thesis structure		
	3.1	Structure	7
	3.2	Program requirements	7
4	Potential issues for panel to consider		
	4.1	Funding for human subjects	8
	4.2	Support for conference travel	8
5	Ack	nowledgements	9
R	References		

Contents

1 Introduction

1.1 Motivation

The term exploratory data analysis was coined by J. W. Tukey (1977), who leaves it as an intentionally broad term that encompasses the initial summarization and visualization of a data set. This is a critical first step of checking for realistic values and validating model assumptions. It may be tempting to review a series of summary statistics to check model assumptions. However, there are known datasets where the same summary statistics miss glaringly obvious visual patterns (Anscombe 1973; Matejka and Fitzmaurice 2017). It is strikingly simple to look at the wrong, or incomplete set of statistics needed to validate assumptions. Data visualization is fast, versatile, and robust relative to the alternative of numeric statistical summarization. Data visualization does and must remain a primary component of data analysis and model validation.

Consider tabular data containing many attributes (variables). Visualization of this ubiquitous type of dataset is key to its understanding and exploration. Visualization of spaces in more than 3 dimensions quickly becomes problematic. We will discuss the use of linear projections to mitigate this obstacle. The motivation for this research is two-fold: expand the dimensionality support and improve the understanding from such visualizations.

1.1.1 Current state of the field

Consider plotting 2 variables as an XY scatterplot. To add a 3rd variable append the z-axis orthogonal (right angle to) the XY plane. Adding a 4th dimension is not so easily solved. To resolve this we will use scatterplot matrices to introduce axes and bases. Then we generalize to linear projections before discussing principal component analysis and introducing tours.

Scatterplot matrices (Chambers et al. 1983) plot every combination of variable pairs and views them in a matrix. This is a good method to check variable ranges and extreme values but is not the ideal visualization. Consider a bar stool as in figure ??. Given 3 still-frames of the variable-pair (that is, a square-on view from each dimension) does not necessarily convey the full information of the data. For instance, a three-quarter perspective helps relate the square on images and are ubiquitous in assembly and machining instructions. This perspective relates information contained in the view of sides. Mathematically, we describe the angle of

view as a basis. Bases (plural of basis) are depicted as unit axes, they point in the direction each dimension is oriented. The axes for the three-quarter perspective differ from the square-on views in that the directions are a combination of 2 and 3 variables respectively, rather than one variable mapped fully to the horizontal or vertical.

Building on pairs of variables, an arbitrary p variables can be projected down to 2 dimensions. This seems unintuitive at first, but we have already discussed some trivial cases with scatterplot matrices. Consider figure ?? again. The first 3 cases plot pairs variables, while the third direction extends directly beyond the XY plane. These are trivial projections of 3- down to 2- dimensions, where the 3rd variable has no contribution with a row of zeros in the basis. The three-quarter perspective is more interesting as more than one variable contributes to each direction. The resulting plot is said to be a linear projection when the basis is produced with an affine transformation, that is, any transformation in which all parallel lines remain parallel. One crucial aspect of linear projections is that they are interoperable back to the original attributes; any observation identified in any linear projection can be mapped back to its variable values. Recently, some non-linear projection techniques such as self-organizing maps (Kohonen 1990) and t-distributed stochastic neighbor embedding (Maaten and Hinton 2008) have received a substantial following. However, due to their non-linear transformation observations cannot be mapped back to the original attribute-space and interpretation becomes opaque. For this reason, non-linear transformations are precluded from the exploration of data- or parameter-spaces.

Principal component analysis (PCA; Pearson 1901) is one common way of identifying projections to consider. In PCA the new components are formed from a linear combination of the original attributes. The new components must be orthogonal to all previous components and ordered by descending variation explained. A pair of these new components are then viewed as an XY scatterplot. This has the added benefit of viewing the most variation in as few dimensions as possible. The scree plot/test (Cattell 1966) can be used on the components to quickly zero in on a space that has the intrinsic dimensionality of the data. This is a common data processing step once the number of attributes becomes sizable (larger than 10 or so).

1.2 From discrete to continuous

The above methods have suggested a discrete number of linear projections to look at. At the same time, the stool example illustrates that looking at intermediate views improves understanding. A continuous animation of the object being rotated would improve this understanding even further. This is analogous to the idea of a data visualization tour(Asimov 1985; Buja and Asimov 1986). A tour produces a relatively high number of

linear projections and views them in quick succession, typically as an animation. When the bases have a relatively small change in the contributions the projections are much closer. Single points and features can be tracked and follow from projection to projection allowing for a better understanding of the local structure.

One key feature of tours is the selection of the path animated. Asimov originally purposed a grand tour. In the grand tour, several target planes are identified somewhat close to the starting basis. Many interim planes are found between target planes via geodesic interpolation. Figure 1 illustrates a simplification of this process. A little tour (Wickham et al. 2011) starts on a basis with only 2 variables contributing and trades the contribution one variable for another single variable. This effectively animates between the planes displayed in a scatterplot matrix. A local tour explores a dense area of the possible projections around the initiated basis. It walks a short distance away before returning to the starting basis and selecting a new random frame very nearby.

Figure 1: Similified illustration of a grand tour target and interim frames (Buja et al. 2005)

The guided tour (Cook, Buja, and Cabrera 1993) makes use of projection pursuit (Kruskal 1969; Kruskal 1972) to identify a path. Here a selected index function is selected. Starting from the initial basis several nearby bases are checked to see if they perform better on the index function. If so, this new basis is moved and nearby bases are checked again in an iterative process. If the closest bases do not perform better, bases slightly further away are checked as in simulated annealing (Kirkpatrick, Gelatt, and Vecchi 1983). If no better basis is identified within the selected stopping criterium, the algorithm stops.

The discrete methods above identity bases that highlight some feature. The above tours can help understand

the structure leading to and from certain projections. To explore higher dimensional spaces visually, we need human-in-the-loop (Karwowski 2006) tools. We need to be able to choose and direct the change to a basis. (Cook and Buja 1997) introduces the idea of the manual tour. In a manual tour, an individual variable is selected as the manipulation variable. Its contribution to the basis is then controlled. The contributions of the remaining variables also change as they perform an orthogonally-constrained rotation. Figure 2 This allows for the exploration of a given projection as defined by the user.

Figure 2: Manipulation space of a manual tour. Variable 5 is being manipulated as though the red segment is rotated about the origin changing the contribution of all variables on the basis axes on the blue projection plane.

1.3 Research objectives

Data and models are typically high-dimensional, with many variables and parameters. Developing new methods to visualize high dimensions has been a pursuit of statisticians, computer scientists and visualization researchers for decades. As technology evolves examining, extending, and assessing current techniques, in new environments, for new data challenges, is an important endeavor. The primary objectives of this Ph.D. research can then be summarized as the following.

1. How can UCS be generalized to work within graphic-specific environments for 2D projections?

Building from the UCS algorithm in Cook and Buja (1997), the algorithm should be modified for

generalized use with graphic-specific environments. This enables fine control to explore the sensitivity of structure to the variable contributing to the projection and sets the foundation to be used in the remaining objectives.

2. Does 2D UCS tours provide benefits over alternatives?

The quality and effectiveness of 2D UCS will be compared with alternatives of static, single, linear and non-linear projection techniques. They will be quantified by the measurement of structure, variation, and clustering across on benchmark datasets.

3. How can UCS be extended to 3D?

The addition of a 3rd dimension potentially allows for the improved perception of the structure of the data in dynamic UCS. To investigate this UCS algorithm needs to be extended to a third dimension. This would also allow for novel application multi-parameter function projection. This will involve the addition of a new angle and it controls the projection space, reference axes, and manipulation space. In particular, the manipulation space, now in 4D, will be hard to visualize, but it should be able to stand as a mathematical construct facilitated through interaction with a point (the projection coefficients of the selected manipulation variable) on the now 3D reference axes volume.

1.4 Methodology

This research is interdisciplinary; touring was developed by statisticians to explore physics data. Modern advances in hardware from information technology allow for 3D rending in higher quality and immersion than previously possible. Looping back to the original use care, applications in high energy physics identified (Cook, Laa, and Valencia 2018).

The research corresponding with RO #1 entails algorithm design following and further clarifying the work done in Cook and Buja (1997). In the application of the manual tour, we clarified the creation of the rotation matrix. The key to the matrix is to specify the 2 axes of rotation for the manipulation space and apply Rodegeze's formula. In the application, attention was given to both pre-compiled tour and human-in-the-loop UCS. We provide an open-source version of the manual tour in the R package, spinifex, which has since been published on CRAN. This forms the foundation for future work in the remaining objectives.

The second objective is addressed with a benchmark dataset *performance comparison* between dynamic linear projections and alternatives (static linear and static non-linear projections such as principal component analysis, multidimensional scaling, and t-distributed neighbor embeddings, described in more detail in chapter

??). Benchmark datasets will be compared across techniques, measurements will include variation explained, transparency to the original variable space, clustering identification, and outlier identification.

The research resulting from RO #2 is a controlled experimental study to explore the efficacy of interactive UCS compared with the benchmarks factors of PCA and the grand tour. This is designed as a within-participant study where each participant performs all factors, the study is balanced by assigning participants into one of 3 groups where the factor order is controlled by a Latin square while simulation order remains the same.

The research for RO #3 involves algorithm design, where the work in RO #1 will be extended to display with the use of a third spatial dimension. This will also be used to develop visualizations of projected multi-dimension function surfaces. This forms the calculation base for the work. Several difficulties may arise when bringing dynamic projection into 3D spaces, especially when exploring 3D surfaces (discussed in more detail in chapter ??).

2 Progress since confirmation

During the candidature confirmation review (27 March 2019) we discussed exploratory data analysis, visualization of high dimensional spaces, covered the literature for tours and 3D rendering for information perception. We concluded with a process for a manual tour that allows for user-controlled steering. The appending the document was a mostly complete R package and respective paper providing an open-source application as well as clarifying the rotation matrix that was outlined in Cook and Buja (1997).

2.1 Publication

The paper has since been accepted in the R Journal and it currently undergoing editorial review. This will be published in the first issue of 2020 and available at journal.r-project.org.

2.2 Software

The R package, spinifex (v0.1.0), has been approved and hosted for public use on the Comprehensive R Archival Network, CRAN (cran.r-project.org/web/packages/spinifex/)(https://cran.r-project.org/web/packages/spinifex/index.html).

New functionality has been added to the development branch, specifically around the interactive use. A user application is developed with shiny(Chang et al. 2018). It allows users to explore their data without the

need for coding familiarity. It features interactive or precompiled manual touring. It also contains a gallery for flagging bases which can then further be reviewed or saved as .gif and .png files.

2.3 Experimental study

The prominent appeal of the manual tour is that it allows users to control the contributions of individual variables. In theory, this should enable the finer exploration of features of interest. The hypothesis we will study is Does the finer control afforded by the manual tour improve the ability of the analyst to understand the importance of variables contributing to the structure?

3 Proposed thesis structure

3.1 Structure

Thesis

- Introduction 60%
- Literature review 80%
- Manual tour and user-controlled steering 90%
- Experimental study 40%
- The extension of the manual tour to 3D 0%
- Conclusion and future plans 0%

3.2 Program requirements

- WES Academic record
 - FIT5144: 2019 S1+2, **In progress**, extended to the pre-submission seminar with the unit coordinator for the usual 2 opportunities to complete.
 - * Hours: 147>120 hours **Tracked**, following required (12 hr total)
 - * Needed: CYR 2 (A & B) 2x 3hr
 - * Needed: Faculty of IT Workshop 1 and 3 on Ethical Research and Publishing 2x 3hr
 - FIT5113: 2018 S2, **Exemption**

Figure 3: Proposed research timeline.

- FIT6021: 2018 S2, Completed with distinction
- myDevelopment IT: Monash Doctoral Program Compulsory Module
 - Monash graduate research student induction: Completed
 - Research Integrity Choose the Option most relevant: Completed
 - Faculty Induction: Completed

4 Potential issues for panel to consider

4.1 Funding for human subjects

• Beverage voucher: $$5 \times 24 \text{ people (est)} = 120

4.2 Support for conference travel

Conferences:

CHI 2021: May 8-13, 2021 Yokohama, Japan

submission: Thursday Sep. 10, 2020 (+ 1wk for full)

https://chi2021.acm.org/

IEEE VIS - SciVis 2020: 25-30 October 2020 Salt Lake City, Utah, USA

submission: Saturday, March 21, 2020 (+ 10 days for full) SciVis - Empirical Study

http://ieeevis.org/year/2020/info/call-participation/scivis-paper-types

5 Acknowledgements

This report was created in R (R Core Team 2019), using bookdown (Xie 2016) and rmarkdown (Xie, Allaire, and Grolemund 2018).

For version control, transparency, and reproducibility, the source files are made available found at github.com/nspyrison/mid canidature.

References

Anscombe, F. J. 1973. "Graphs in Statistical Analysis." The American Statistician 27 (1): 17–21. doi:10.2307/2682899.

Asimov, Daniel. 1985. "The Grand Tour: A Tool for Viewing Multidimensional Data." SIAM Journal on Scientific and Statistical Computing 6 (1): 128–43. doi:https://doi.org/10.1137/0906011.

Buja, Andreas, and Daniel Asimov. 1986. "Grand Tour Methods: An Outline." In *Proceedings of the Seventeenth Symposium on the Interface of Computer Sciences and Statistics on Computer Science and Statistics*, 63–67. New York, NY, USA: Elsevier North-Holland, Inc. http://dl.acm.org/citation.cfm?id=26036.26046.

Cattell, Raymond B. 1966. "The Scree Test for the Number of Factors." *Multivariate Behavioral Research* 1 (2): 245–76.

Chambers, J.M., W.S. Cleveland, B. Kleiner, and P.A. Tukey. 1983. "Graphical Methods for Data Analysis." Chang, Winston, Joe Cheng, J. J. Allaire, Yihui Xie, and Jonathan McPherson. 2018. Shiny: Web Application

Framework for R. https://CRAN.R-project.org/package=shiny.

Cook, Dianne, and Andreas Buja. 1997. "Manual Controls for High-Dimensional Data Projections." *Journal of Computational and Graphical Statistics* 6 (4): 464–80. doi:10.2307/1390747.

Cook, Dianne, Andreas Buja, and Javier Cabrera. 1993. "Projection Pursuit Indexes Based on Orthonormal Function Expansions." *Journal of Computational and Graphical Statistics* 2 (3): 225–50. doi:10.1080/10618600.1993.10474610.

Cook, Dianne, Ursula Laa, and German Valencia. 2018. "Dynamical Projections for the Visualization of PDFSense Data." Eur. Phys. J. C 78 (9): 742. doi:10.1140/epjc/s10052-018-6205-2.

Karwowski, Waldemar. 2006. International Encyclopedia of Ergonomics and Human Factors, -3 Volume Set. CRC Press.

Kirkpatrick, Scott, C. Daniel Gelatt, and Mario P. Vecchi. 1983. "Optimization by Simulated Annealing." Science 220 (4598): 671–80. doi:10.1126/science.220.4598.671.

Kohonen, Teuvo. 1990. "The Self-Organizing Map." Proceedings of the IEEE 78 (9): 1464–80.

Kruskal, Joseph B. 1969. "Toward a Practical Method Which Helps Uncover the Structure of a Set of Multivariate Observations by Finding the Linear Transformation Which Optimizes a New 'Index of Condensation'." In *Statistical Computation*, edited by Roy C. Milton and John A. Nelder, 427–40. Academic Press. doi:10.1016/B978-0-12-498150-8.50024-0.

——. 1972. "Linear Transformation of Multivariate Data to Reveal Clustering." Multidimensional Scaling: Theory and Applications in the Behavioral Sciences 1: 181–91.

Maaten, Laurens van der, and Geoffrey Hinton. 2008. "Visualizing Data Using T-SNE." Journal of Machine Learning Research 9 (Nov): 2579–2605.

Matejka, Justin, and George Fitzmaurice. 2017. "Same Stats, Different Graphs: Generating Datasets with Varied Appearance and Identical Statistics Through Simulated Annealing." In *Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems - CHI '17*, 1290–4. Denver, Colorado, USA: ACM Press. doi:10.1145/3025453.3025912.

Pearson, Karl. 1901. "LIII. on Lines and Planes of Closest Fit to Systems of Points in Space." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 (11): 559–72.

R Core Team. 2019. R: A Language and Environment for Statistical Computing. Vienna, Austria: R

Foundation for Statistical Computing. https://www.R-project.org/.

Tukey, John W. 1977. Exploratory Data Analysis. Vol. 32. Pearson.

Wickham, Hadley, Dianne Cook, Heike Hofmann, and Andreas Buja. 2011. "Tourr: An R Package for Exploring Multivariate Data with Projections." *Journal of Statistical Software* 40 (2). doi:10.18637/jss.v040.i02.

Xie, Yihui. 2016. Bookdown: Authoring Books and Technical Documents with R Markdown. Boca Raton, Florida: Chapman; Hall/CRC. https://github.com/rstudio/bookdown.

Xie, Yihui, J. J. Allaire, and Garrett Grolemund. 2018. *R Markdown: The Definitive Guide*. Boca Raton, Florida: Chapman; Hall/CRC. https://bookdown.org/yihui/rmarkdown.