MACHINE LEARNING – PRETRAINED NETWORKS

Jens Baetens

DEMOS UIT
WEEK 1 WAREN
EEN
VOORBEELD

How to participate?

2 You can participate

Plaats de lagen van een convolutioneel neuraal netwerk met input van 28x28 in de juiste volgorde voor classificatie tussen 10 verschillende klasses

www.wooclap.com/EMMXTE

(1)

Is de volgende zin correct: Met neurale netwerken kan je ofwel classificatie uitvoeren of regressie maar geen combinatie van de twee. (Bijvoorbeeld niet een klasse voorspellen en de locatie van het ...

CONVOLUTIONEEL NEURAAL NETWERK

- Bestaat uit 2 delen
 - Convolutionele + Pooling lagen
 - -> Feature extraction
 - Neuraal network
 - -> Features to output

PRETRAINED NETWORK

- Netwerk dat niet door jou getrained is met data die meestal niet beschikbaar is voor jou
- Wat moet je weten om het te gebruiken?

PRETRAINED NETWORK

- Netwerk dat niet door jou getrained is met data die meestal niet beschikbaar is voor jou
- Wat moet je weten om het te gebruiken?
 - Welke lagen zijn er aanwezig
 - Type, kernels, strides, type pooling, aantal neurons, activation functions, ...
 - Alle gewichten van alle lagen
 - Kernels en neurons
 - Input dimensions en output dimensions

BRON VAN PRETRAINED NETWORKS

- https://www.tensorflow.org/hub
- Bevat een groot aantal pretrained networks voor o.a. computer visie en tekstverwerking
 - Voor afbeelding van verschillend formaat
 - Voorbeeldcode hoe het te gebruiken

OEFENING

- Ga op zoek naar een pre-trained network voor image classification
- Download het en zoek naar de code om het in te laden
- Kies een voorbeeld figuur en laat het model erop los
 - Let erop dat de afmetingen van de figuur overeenkomen met hetgene waarvoor het model getrained is
 - Opmerking: Labels zijn niet altijd eenvoudig automatisch om te zetten op basis van de voorbeeldcode
 - Oplossing: Zoek op internet de lijst met labels op en doe de conversie zelf
 - Zie demo-code als voorbeeld

WAT ALS ER GEEN EXACT NETWERK BESTAAT?

- Kan een bestaand netwerk aangepast worden?
 - Hoe zou je dit aanpakken?

WAT ALS ER GEEN EXACT NETWERK BESTAAT?

- Behoud convolutionele en pooling lagen
- Pas (gedeeltelijk) neural netwerk aan
 - Laatste laag/lagen aan te passen
 - Voeg laag toe
 - Output kan zijn wat we nodig hebben
- Wordt ook transfer learning genoemd

HOE DOE JE DEZE AANPASSING?

- Verwijder de lagen die niet gebruikt worden
 - Zorg ervoor dat de overblijvende lagen niet meer aangepast kunnen worden door training (freezen)
- Voeg de nieuwe lagen toe
- Train de gewichten in de nieuwe lagen
 - Hiervoor heb je eigen data/voorbeelden nodig
- Evalueer het resulterende model

OEFENING

- Pas voorgaande oefening aan om de classificatie te beperken tot de klassen uit de oefening van vorige week
- Hoe goed presteert dit pre-trained model in vergelijking met het zelf opgestelde model?

• Baseer je op de volgende guide: https://www.tensorflow.org/guide/keras/transfer_learning

FINE TUNING

- Uitbreiding op transfer learning
- Gewichten van het reeds bestaande model worden niet gefreezed
- Nieuwe data om verder te trainen om te fine-tunen naar wat je wil bereiken
 - Voorbeeld: algemeen netwerk meer data geven over hondenrassen om de accuraatheid voor dat problem te verbeteren.

BELANGRIJKE OPMERKINGEN

- Over compile() uit na aanpassen van de trainable property van het model/lagen
 - Anders wordt de wijziging niet doorgevoerd
- BatchNormalization
 - Bevat twee interne gewichten (mean en variance)
 - Na unfreezen voor fine-tuning moeten deze lagen terug op trainable=false gezet worden
 - Anders pas je de verdeling aan waardoor het reeds geleerde verwijderd wordt