University of Central Florida CGS 2545 Database Concepts

Entity Relationship Model Basic Concepts

ER Model

- The ER model defines the conceptual view of a database.
- It works around real-world entities and the associations among them.
- At view level, the ER model is considered a good option for designing databases.

Entity

- An entity can be a real-world object, either animate or inanimate, that can be easily identifiable.
- For example, in a school database, students, teachers, classes, and courses offered can be considered as entities.
- All these entities have some attributes or properties that give them their identity.

Entity

- An entity set is a collection of similar types of entities.
- An entity set may contain entities with attribute sharing similar values.
- For example, a Students set may contain all the students of a school; likewise a Teachers set may contain all the teachers of a school from all faculties.
- Entity sets need not be disjoint.

Attributes

- Entities are represented by means of their properties, called attributes.
- All attributes have values.
- For example, a student entity may have name, class, and age as attributes.
- There exists a domain or range of values that can be assigned to attributes.
- For example, a student's name cannot be a numeric value. It has to be alphabetic. A student's age cannot be negative, etc.

Types of Attributes

Simple attribute

- Simple attributes are atomic values, which cannot be divided further.
- For example, a student's phone number is an atomic value of 10 digits.

Composite attribute

- Composite attributes are made of more than one simple attribute.
- For example, a student's complete name may have first_name and last_name.

- Types of Attributes
 - Derived attribute
 - Derived attributes are the attributes that do not exist in the physical database, but their values are derived from other attributes present in the database.
 - For example, average_salary in a department should not be saved directly in the database, instead it can be derived. For another example, age can be derived from data_of_birth.

- Types of Attributes
 - Single-value attribute
 - Single-value attributes contain single value.
 - For example Social_Security_Number.
 - Multi-value attribute
 - Multi-value attributes may contain more than one values.
 - For example, a person can have more than one phone number, email_address, etc.

- Types of Attributes
 - These attribute types can come together in a way like
 - simple single-valued attributes
 - simple multi-valued attributes
 - composite single-valued attributes
 - composite multi-valued attributes

- Entity-Set and Keys
 - Key is an attribute or collection of attributes that uniquely identifies an entity among entity set.
 - –For example, the roll_number of a student makes him/her identifiable among students.

Entity-Set and Keys

Super Key

 A set of attributes (one or more) that collectively identifies an entity in an entity set.

Candidate Key

- A minimal super key is called a candidate key.
- An entity set may have more than one candidate key.

Primary Key

 A primary key is one of the candidate keys chosen by the database designer to uniquely identify the entity set.

- Relationship
 - The association among entities is called a relationship.
 - For example
 - an employee works_at a department, a student enrolls in a course.
 - Here, Works_at and Enrolls are called relationships.

- Relationship
 - –Relationship Set
 - A set of relationships of similar type is called a relationship set.
 - Like entities, a relationship too can have attributes.
 - These attributes are called descriptive attributes.

- Relationship
 - Degree of Relationship
 - The number of participating entities in a relationship defines the degree of the relationship.
 - -Binary = degree 2
 - -Ternary = degree 3
 - -n-ary = degree

- Relationship
 - –Mapping Cardinalities
 - Cardinality defines the number of entities in one entity set, which can be associated with the number of entities of other set via relationship set.

- Relationship
 - Mapping Cardinalities
 - One-to-one One entity from entity set A can be associated with at most one entity of entity set B and vice versa.

- Relationship
 - Mapping Cardinalities
 - One-to-many One entity from entity set A can be associated with more than one entities of entity set B however an entity from entity set B, can be associated with at most one entity.

- Relationship
 - Mapping Cardinalities
 - Many-to-one More than one entities from entity set A can be associated with at most one entity of entity set B, however an entity from entity set B can be associated with more than one entity from entity set A.

- Relationship
 - Mapping Cardinalities
 - Many-to-many One entity from A can be associated with more than one entity from B and vice versa.

- Relationship
 - Mapping Cardinalities
 - Many-to-many One entity from A can be associated with more than one entity from B and vice versa.

