Dataset Overview

Rows: 10,000Columns: 14

• Memory Usage: ~1.1 MB

• No missing values – all columns are fully populated.

⊆ Columns Breakdown

Column	Туре	Description
UDI	int64	Unique identifier for each row (just an index).
Product ID	object	Unique ID for the manufactured product (e.g., M14860).
Туре	object	Product type (categorical: likely L, M, H).
Air temperature [K]	float64	Air temperature in Kelvin .
Process temperature [K]	float64	Process (internal machine) temperature in Kelvin .
Rotational speed [rpm]	int64	Rotational speed of the machine in RPM .
Torque [Nm]	float64	Torque applied on the machine in Newton-meters .
Tool wear [min]	int64	Tool wear measured in minutes .
Machine failure	int64	Binary label (0 = No failure, 1 = Failure).
TWF	int64	Tool Wear Failure (0/1).
HDF	int64	Heat Dissipation Failure (0/1).
PWF	int64	Power Failure (0/1).
OSF	int64	Overstrain Failure (0/1).
RNF	int64	Random Failure (0/1).

- The **target column** for this ML task would be Machine failure.
- The other failure columns (TWF, HDF, PWF, OSF, RNF) are **subcategories** of machine failure (helpful for root-cause classification).
- Features include **environmental (temperature)**, **operational (speed, torque)**, and **wear indicators**.

Here's the **Exploratory Data Analysis (EDA)** results for The Maintenance dataset:

□ 1. Data Quality Check

- ✓ No missing values were found in any of the 14 columns.
- ✓ No obvious erroneous values (e.g., negative RPM, torque, or temperature)
- all data ranges are reasonable.

11 2. Descriptive Statistics (Key Highlights)

Feature	Mean	Std	Min	Max	Insight
Air temperature [K]	300.0	2.0	295.3	304.5	Stable environment (small variation).
Process temperature [K]	310.0	1.48	305.7	' 313.8	Slightly higher & stable than air temp.
Rotational speed [rpm]	1539	179	1168	2886	Most values near 1400–1600 rpm.
Torque [Nm]	39.99	9.97	3.8	76.6	Wide spread; some low/high torque outliers.
Tool wear [min]	108 min	64 min	0	253	Even distribution across low-to-high wear.

Feature	Mean	Std	Min	Max	Insight
Machine failure	3.39% failures	-	-	-	Imbalanced dataset (failures are rare).

∆ 3. Failure Analysis

- Failure Rate: Only 3.39% of records have Machine failure = 1.
- Failures are rare events, so this is an imbalanced classification problem.
- Subtypes (TWF, HDF, PWF, OSF, RNF) have even lower rates (below 1.1%).

4. Correlation Analysis

- Process temperature and air temperature are moderately correlated (as expected).
- **Torque** and **rotational speed** show some negative correlation (higher speed = lower torque).
- Machine failure shows weak correlation with individual numeric features

 → failures are likely caused by a combination of factors, not just a single feature.

△ 5. Anomalies

- Torque [Nm] has some very low values (~3.8 Nm) which may be normal but could indicate special cases.
- Rotational speed [rpm] has a few unusually high values near 2800 (might be worth checking if these are outliers or normal high-speed operations).

1. Failure vs. Non-Failure Feature Comparison

Instead of just plotting all data together, compare:

- **Distributions** of torque, speed, temperatures for failed vs. non-failed machines (boxplots or KDE plots).
- This will show which features are most predictive of failure.

2. Categorical Feature Analysis

- Analyze Type (L/M/H):
 - Countplot showing how failures are distributed across product types.
 - o Check if certain product types fail more often.

3. Outlier Detection

- Use IQR method or Z-scores to formally flag extreme values for:
 - Torque
 - Rotational speed
 - Tool wear
- Decide whether to keep them (if they are valid rare cases) or treat them.

4. Pairwise Feature Relationships

- Use **pairplots** or **scatter plots** (colored by failure) to see:
 - o If failures cluster in certain regions (e.g., low torque + high speed).
 - Whether there's interaction between multiple features leading to failures.

5. Feature Correlation with Target

• Calculate **Point-biserial correlation** (or use feature importance from a quick decision tree) to rank features by relevance to Machine failure.