1

NCERT Analog Assignment

EE23BTECH11007 - Aneesh Kadiyala*

TABLE 0 PARAMETERS

Parameter	Value	Description
v		Speed
R		Radius of circular track
M		Mass of bob
g		Acceleration due to gravity
g_e	$\sqrt{g^2 + a^2}$	Effective gravitational acceleration

Question 11.14.17: A simple pendulum of length l and having a bob of mass M is suspended in a car. The car is moving in a circular track of radius R with a uniform speed v. If the pendulum makes small oscillations in a radial direction about its equilibrium position, what will be its time period? **Solution:**

$$a_{centripetal} = \frac{v^2}{R} \tag{1}$$

$$F_{centrifugal} = \frac{Mv^2}{R}$$
 (2)

$$a_{centripetal} = \frac{v^2}{R}$$

$$F_{centrifugal} = \frac{Mv^2}{R}$$

$$\implies a_{centrifugal} = \frac{v^2}{R}$$
(2)
$$\implies a_{centrifugal} = \frac{v^2}{R}$$
(3)

Time period of a simple pendulum T is given by:

$$T = 2\pi \sqrt{\frac{l}{g_e}} \tag{4}$$

$$T = 2\pi \sqrt{\frac{l}{g_e}}$$

$$= 2\pi \sqrt{\frac{l}{\sqrt{g^2 + a_{centrifugal}^2}}}$$
(5)

$$=2\pi\sqrt{\frac{lR}{\sqrt{g^2R^2+v^4}}}\tag{6}$$

Therefore, the time period of the pendulum is $2\pi \sqrt{\frac{lR}{\sqrt{g^2R^2+v^4}}}$ seconds.