Lab 2 – interpolacja

Barbara Doncer

1. Polecenie

Wyznacz dla zagadnienia Lagrange'a wielomian interpolujący w postaci Lagrange'a i Newtona. Interpolację przeprowadź dla różnej liczby węzłów (np. n = 3, 4, 5, 7, 10, 15, 20). Dla każdego przypadku interpolacji porównaj wyniki otrzymane dla różnego rozmieszczenia węzłów: równoodległe oraz Czebyszewa. Oceń dokładność, z jaką wielomian przybliża zadaną funkcję. Poszukaj wielomianu, który najlepiej przybliża zadaną funkcję. Wyszukaj stopień wielomianu, dla którego można zauważyć efekt Runge'go (dla równomiernego rozmieszczenia węzłów). Porównaj z wyznaczonym wielomianem dla węzłów Czebyszewa.

2. Zadana funkcja i jej wykres

$$f(x) = 20 + \frac{x^2}{2} - 20 \cdot \cos(2x)$$
$$x \in [-3\pi, 3\pi]$$

Wykres 2.1 Funkcja f(x) na zadanym przedziale

3. Wyniki interpolacji

Poniżej przedstawione są wykresy funkcji (niebieski) oraz wyniku interpolacji metodą Lagrange'a (żółty) oraz Newtona (zielony). Na niektórych wykresach nie widać zielonej linii dlatego, że wynik uzyskany metodą Newtona pokrywa się znacząco z tym uzyskanym metodą Lagrange'a. Zastosowano oznaczenie:

n – liczba węzłów

Tabela 3.1 Wykresy interpolacji dla różnych typów i liczby węzłów

4. Błędy interpolacji

Sprawdzenie dokładności wielomianu odbyło się na dwa sposoby. Kolorem niebieskim zostały oznaczone najlepsze wyniki. Zastosowano oznaczenia:

f(x) – funkcja podana w zadaniu W(x) – wyznaczony wielomian

 $N-ilo\acute{s}\acute{c}$ punktów, w których zostały obliczone błędy N=1000

a. <u>Błąd kwadratowy</u>

$$\sum_{i=1}^{N} (f(x_i) - W(x_i))^2$$

Tabela 4.1 Błąd kwadratowy dla poszczególnych przypadków

n	węzły rozmieszczone równolegle		węzły Czebyszewa	
	Lagrange	Newton	Lagrange	Newton
5	570791.0243059717	570791.0243059718	316484.6841492898	316484.68414928974
8	398667.89271778375	1606557.2163090303	382144.76225615747	1606557.2163090303
10	837940.0667131372	837940.066713121	377448.6770810762	377448.67708107556
12	2979105.0294921375	1606557.2163090303	308683.2783198298	1606557.2163090303
15	793446345.85485	1606557.2163090303	245890.92228666123	1606557.2163090303
18	251013455.92525792	1606557.2163090303	82835.63983143147	1606557.2163090303
20	156348398.73501274	156348398.7369383	14594.878451740395	14594.878452933344
23	24033901.63773249	1606557.2163090303	97.96990692844096	1606557.2163090303
26	1180905.9364769605	1606557.2163090303	2.5104291253207824	1606557.2163090303
30	5939.575619249512	5939.576138355226	0.000932268200010994	0.0009322593886365957
40	7.362797283010531e-05	7.325753966284045e-05	1.3375327865550092e-14	9.282581294633787e-09
50	0.00011915332764571147	4.1401305995081276e-06	5.400694766619709e-25	1.7294693185269263e-05
60	165.87079026560224	3.1297350015053884	8.83519737787731e-25	0.00017212364403539356
70	133147398.08562024	176487.99819582625	1.0671965102317458e-24	126.53445048622882

b. Maksymalna różnica

$$\max_{i=1,\dots,N}|f(x_i)-w(x_i)|$$

Tabela 4.2 Maksymalna różnica dla poszczególnych przypadków

n	węzły rozmieszczone równolegle		węzły Czebyszewa	
	Lagrange	Newton	Lagrange	Newton
5	52.73861440526481	52.7386144052648	37.856002611244215	37.85600261124421
8	39.99162806495062	79.19412735575	41.74023682118006	79.19412735575
10	58.05045316407126	58.050453164068266	42.508455868625994	42.508455868625944
12	183.49936017392616	79.19412735575	40.8414568207902	79.19412735575
15	3620.6823258257505	79.19412735575	30.79461532629665	79.19412735575
18	2268.392078899585	79.19412735575	20.54809720395585	79.19412735575
20	1918.602438424995	1918.6024383749038	7.708519649689342	7.708519649759313
23	828.6880570170313	79.19412735575	0.757551543196989	79.19412735575
26	196.62629956348053	79.19412735575	0.08533422054708754	79.19412735575
30	15.21479085662451	15.214790847708649	0.0015605344019438763	0.0015605327295273442
40	0.002014827254527063	0.002000738813933367	5.929287283379381e-09	1.927847241489644e-05
50	0.0050108848670618045	0.0007258528783609108	9.947598300641403e-14	0.0008599450532074115
60	5.764648899522939	0.6165853244382689	1.2789769243681803e-13	0.0029658186261727337
70	6651.885921004967	167.8336607256207	1.4210854715202004e-13	4.4576343616624

5. Najlepsze przybliżenie funkcji

a. <u>Błąd kwadratowy</u>

Najmniejszy błąd kwadratowy:

- Lagrange, węzły rozmieszczone równolegle: n = 40
- Newton, wezły Czebyszewa: n = 40
- Newton, węzły rozmieszczone równolegle: n = 50
- Lagrange, węzły Czebyszewa: n = 50

Najmniejszy błąd kwadratowy ze wszystkich: metoda Lagrange'a, węzły Czebyszewa, n = 50 (5.400694766619709e-25)

Wykres 5.1 Wynik interpolacji metodą Lagrange'a z użyciem 50 węzłów Czebyszewa

b. Maksymalna różnica

Najmniejsza maksymalna różnica:

- Lagrange, węzły rozmieszczone równolegle: n = 40
- Newton, wezły Czebyszewa: n = 40
- Newton, węzły rozmieszczone równolegle: n = 50
- Lagrange, węzły Czebyszewa: n = 50

Najmniejsza maksymalna różnica ze wszystkich: metoda Lagrange'a, węzły Czebyszewa, n = 50 (9.947598300641403e-14)

Wykres 5.2 Wynik interpolacji metodą Lagrange'a z użyciem 50 węzłów Czebyszewa

Zarówno w przypadku błędu kwadratowego jak i maksymalnego odchylenia najlepszym wielomianem interpolującym okazał się ten otrzymany dzięki metodzie Lagrange'a na 50 węzłach Czebyszewa.

6. Efekt Runge'go

Efekt ten polega na pogorszeniu się jakości interpolacji wielomianowej i następuje od pewnej liczby węzłów n i z jej wzrostem się pogłębia. Jest to szczególnie zauważalne na końcach przedziałów.

Zgodnie z oczekiwaniami w przypadku interpolacji używającej węzłów równoodległych można go coraz wyraźniej dostrzec od n = 10. Można zaobserwować to na wykresach oraz przy porównaniu błędów, które w przypadku użycia węzłów Czebyszewa są znacznie mniejsze. Na przedstawionych poniżej wykresach widać znaczącą różnicę w zależności od typu użytych węzłów.

Tabela 6.1 Porównanie wykresów i wyników błędów otrzymanych przy użyciu węzłów równoodległych i Czebyszewa

7. Wnioski końcowe

- metoda Lagrange'a i Newtona dają zbliżone wyniki
- najlepszą dokładność daje użycie metody Lagrange'a na 50 węzłach Czebyszewa
- efekt Runge'go rozpoczyna się po użyciu około 10 12 równoodległych węzłów i pogłębia się ze wzrostem ich ilości