Федеральное государственное бюджетное образовательное учреждение высшего образования

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ

(ТУСУР)

На правах рукописи

Lups

Трубачев Анатолий Андреевич

ГЕНЕРАТОРНО-ПРЕОБРАЗОВАТЕЛЬНЫЕ УСТРОЙСТВА СВЧ И КВЧ ДИАПАЗОНОВ НА ДИОДАХ ГАННА

Специальность 05.12.07 – Антенны, СВЧ устройства и их технологии

Диссертация на соискание учёной степени кандидата технических наук

Научный руководитель доктор физико-математических наук, профессор Гошин Геннадий Георгиевич

Содержание

]	ВВЕДЕНИЕ4
	. ЭЛЕМЕНТЫ И КОНСТРУКЦИИ ГЕНЕРАТОРНО-
ПРЕО	БРАЗОВАТЕЛЬНЫХ УСТРОЙСТВ СВЧ И КВЧ ДИАПАЗОНОВ9
	.1 Диод Ганна и его математическая модель
	.2 Перспективы развития диодов Ганна
	.3 Устройства на диодах Ганна
	.3.1 Генератор
	.3.2 Автодинные устройства
	.4 Основные результаты раздела. Постановка цели и задач исследования 30
,	2. РАСЧЁТ И МОДЕЛИРОВАНИЕ ЭЛЕМЕНТОВ ГЕНЕРАТОРНО-
ПРЕО	БРАЗОВАТЕЛЬНЫХ УСТРОЙСТВ
,	2.1 Моделирование работы диода Ганна
,	2.2 Расчёт и моделирование пассивных элементов устройства
,	2.2.1 Расчёт размеров резонатора
,	2.2.2 Расчёт параметров фильтра нижних частот
,	2.3 Активные антенны
,	2.3.1 Спиральная антенна
,	2.3.2 Бисекторный полуволновый симметричный вибратор47
,	2.4 Волноводные делители мощности
,	2.5 Основные результаты раздела
, •	в. ЭКСПЕРИМЕНТАЛЬНЫЕ ИССЛЕДОВАНИЯ ГЕНЕРАТОРНО-
ПРЕО	БРАЗОВАТЕЛЬНЫХ УСТРОЙСТВ И ИХ ЭЛЕМЕНТОВ63

	3.1	Экспериментальные	исследования	автодинного	генераторно-		
преобразовательного устройства диапазона КВЧ							
	3.2	Экспериментальные	исследования	автодинного	генераторно-		
преобразовательного устройства СВЧ диапазона							
	3.2.1	Экспериментальные ис	следования ВАХ	циодов	70		
	3.2.2	Экспериментальное и	сследование коэф	фициентов шу	ма и передачи		
автодинного устройства СВЧ диапазона							
	3.3 O	сновные результаты раз	здела		81		
	4. ПР	ИМЕНЕНИЕ	РАЗРАБОТАННЬ	ЫХ ГЕ	ЕНЕРАТОРНО-		
ПРЕОБРАЗОВАТЕЛЬНЫХ УСТРОЙСТВ СВЧ И КВЧ ДИАПАЗОНОВ83							
4.1 Автодинный тахометр диапазона КВЧ							
	4.2 Измеритель скорости подвижных объектов						
	4.3 Ближнеполевой измеритель параметров листовых материалов 9						
	4.4 Основные результаты						
	ЗАКЛЮЧЕНИЕ						
	Спис	ок сокращений и услов	ных обозначений.		98		
	Спис	ок использованных ист	очников		99		
	Прил	ожение А. Документы	об использовании	результатов ди	иссертационной		
работ	гы				111		

ВВЕДЕНИЕ

Развитие различных направлений науки и техники, связанных с использованием радиосигналов, характеризуется освоением все более высоких частот электромагнитных колебаний. Последние десятилетия ознаменовались бурным освоением СВЧ диапазона. В настоящее время радиосигналы СВЧ диапазона широко применяются в связи, радиометрии, радиолокации, медицине и других областях.

Актуальность темы исследования и степень её разработанности

Одним из основных элементов систем СВЧ и КВЧ диапазонов различного применения являются генераторно-преобразовательные устройства, которые преобразуют спектр сигнала несущего колебания в сигнал промежуточной частоты, с сохранением информационного модулирующего сигнала. Такое преобразование необходимо для последующей обработки информационного сигнала, что представляет достаточно сложную задачу при непосредственной работе в указанных диапазонах.

Под генераторно-преобразовательным устройством понимается совокупность генератора сигнала и смесителя. В некоторых случаях один и тот же элемент может выступать и в качестве генератора и в качестве смесителя, тем самым упрощая схему устройства.

Освоение всё более высокочастотных диапазонов ставит ряд задач по генерации и преобразованию сигналов, эффективно решаемых при помощи приборов с междолинным переносом зарядов – диодов Ганна. Генераторы на диодах Ганна, имеющих преимущество в простоте конструкции, могут, например, использоваться в качестве самогенерирующих преобразователей частоты, конкурентоспособных на рынке технической продукции широкого применения.

В научной литературе опубликовано значительное количество работ, посвященных теоретическому описанию, схемотехнической реализации и различным конструкциям данных устройств. Однако, целый ряд вопросов, связанных с практической реализацией, исследованием характеристик активных

элементов, методик и отдельных аспектов проектирования генераторно-преобразовательных устройств, остаются не решёнными.

Поэтому актуальность работ, связанных с разработкой и исследованием генераторно-преобразовательных устройств СВЧ и КВЧ диапазонов на диодах Ганна, подтверждается необходимостью создания многофункциональных малогабаритных изделий.

Цели и задачи

Исследование характеристик диодов Ганна и разработка генераторнопреобразовательных устройств СВЧ и КВЧ на их основе.

Задачи исследования

- 1. Математическое моделирование работы диода Ганна с целью выбора толщины активного слоя.
- 2. Исследование параметров и характеристик диодов Ганна с целью их оптимизации для задач генерации и преобразования сигналов.
- 3. Разработка и экспериментальное исследование генераторнопреобразовательных устройств СВЧ и КВЧ диапазонов частот.

Научная новизна

- 1. Впервые экспериментально обнаружены характерные зависимости вольтамперной, вольт—ваттной и передаточной характеристик диода Ганна, позволяющие оптимизировать параметры генераторно-преобразовательного устройства КВЧ диапазона в качестве генератора либо самогенерирующего смесителя (автодина).
- 2. Впервые предложен экспериментальный метод исследования и настройки автодинных устройств с использованием измерителя коэффициента шума, позволяющий оптимизировать приёмные характеристики генераторнопреобразовательного устройства.
- 3. Проведено исследование влияния параметров конструктивных элементов резонатора генераторно-преобразовательного устройства на его выходные параметры.

4. Разработан волноводный делитель мощности КВЧ диапазона для проведения экспериментальных исследований автодинных устройств на диоде Ганна, который обеспечивает деление мощности между двумя каналами с неравномерностью менее 0,2 дБ и коэффициентом стоячей волны по входу менее 1,2 в 15% полосе от центральной рабочей частоты.

Теоретическая и практическая значимость работы

Результаты диссертации были применены в АО «НИИПП» при разработке и изготовлении в интересах АО «ФНПЦ «Алтай», г. Бийск, макетов автодинных генераторно-преобразовательных устройств на основе диодов Ганна с выходной мощностью до 30 мВт диапазонов 9-10, 14-15 ГГц и с выходной мощностью до 10 мВт диапазона 30-33 ГГц.

Методы исследования

Для решения поставленных задач применяются теории методы электрических цепей, матричной алгебры, вычислительной математики. специализированные системы моделирования автоматизированного И проектирования.

Положения, выносимые на защиту

- 1. Установлено, что максимальная амплитуда сигнала доплеровской частоты в диапазоне от 20 Гц до 1 кГц на выходе генераторнопреобразовательного устройства автодинного типа на диоде Ганна диапазона КВЧ, не совпадает с максимальной излучаемой устройством мощностью, а в большей степени обусловлена характеристикой коэффициента усиления.
- 2. Установлено, что коэффициент усиления генераторнопреобразовательного устройства автодинного типа на диоде Ганна диапазона СВЧ при значениях промежуточной частоты от 30 до 80 МГц, слабо изменяется с ростом рабочего напряжения в пределах участка вольтамперной характеристики диода с отрицательным дифференциальным сопротивлением, после достижения максимальной выходной мощности.
- 3. Разработанный для проведения экспериментальных исследований автодинных устройств на диоде Ганна в КВЧ диапазоне волноводный делитель

мощности обеспечивает деление мощности пополам с неравномерностью менее 0,2 дБ и коэффициентом стоячей волны по входу менее 1,2 в 15% полосе от центральной рабочей частоты.

Степень достоверности

Достоверность расчётов пассивных и активных элементов генераторнопреобразовательных устройств СВЧ И КВЧ диапазонов, определяется совпадением результатов экспериментов численных системах автоматизированного проектирования c результатами экспериментальных исследований макетов, совпадением с результатами других авторов и не противоречит фундаментальным теоретическим представлениям.

Апробация результатов

Основные результаты диссертационной работы были представлены на следующих конференциях:

- 1. VII, X Международные научно-практические конференции «Электронные средства и системы управления» (2011, 2014), г. Томск.
- 2. I, II международные научно-технические конференции «Радиотехника, электроника и связь» (2011, 2013), г. Омск
- 3. 5-я Международная научно-практическая конференция «Актуальные проблемы радиофизики», 2013, г. Томск.
- 4. XVIII международная научно-техническая конференция «Радиолокация, навигация, связь» (RLNC*2013), г. Воронеж.
- 5. II Всероссийская с международным участием научно-практическая конференция по инновациям в неразрушающем контроле SibTest, 2013, г. Томск.
- 6. XIV международная научно-техническая конференция "Измерение, контроль, информатизация", 2013, г. Барнаул.

Публикации

По результатам проведённых исследований опубликовано 14 работ, в том числе 4 публикации в журналах из перечня ВАК, 8 публикаций в сборниках международных конференций, 1 публикация в сборнике международной конференции, индексируемой в базе SCOPUS.

Личный вклад автора

Диссертация является итогом исследований автора, проводившихся совместно с сотрудниками АО «НИИПП» и ТУСУР. Основные исследования, результаты которых представлены в диссертации, были выполнены по инициативе автора, лично им или с его непосредственным участием. Совместно с научным руководителем обсуждались цели работы и пути их достижения, результаты работы. Личный вклад включает разработку схемотехнических решений, выбор методик исследований, моделирование в САПР, обработку экспериментальных результатов. В совместных работах автору принадлежат результаты, изложенные в диссертации.

1. ЭЛЕМЕНТЫ И КОНСТРУКЦИИ ГЕНЕРАТОРНО-ПРЕОБРАЗОВАТЕЛЬНЫХ УСТРОЙСТВ СВЧ И КВЧ ДИАПАЗОНОВ

Построение и широкое применение радиолокационных и радионавигационных высокоточных систем, развитие сетей радиокоммуникаций, аппаратуры управления и контроля технологическими процессами расширяют применение СВЧ и КВЧ электронных приборов с различными функциональными возможностями. В последнее время особый интерес представляют высокоточные, широкополосные и малогабаритные радиотехнические устройства, реализация которых наиболее успешно решается в КВЧ диапазоне [1].

Важнейшими электронными приборами, во многом определяющими характеристики радиоаппаратуры разного назначения, являются источники электромагнитных колебаний с различными диапазонными, энергетическими и спектральными характеристиками [1].

Полупроводниковые источники колебаний нашли широкое применение и с успехом заменили электровакуумные приборы в СВЧ и КВЧ диапазонах, в частности, в приёмных устройствах с высокой чувствительностью, передающих устройствах с мощностями десятки и сотни Ватт, широкодиапазонных усилителях с низким уровнем шума и полосой рабочих частот, превышающей октаву, эффективных умножителях частоты с высокой кратностью умножения, малогабаритных когерентных приёмо-передающих устройствах и т.п. [1].

Основными факторами, определившими бурное развитие полупроводниковой элементной базы в диапазонах СВЧ и КВЧ, явились высокая надёжность И устойчивость полупроводниковых приборов внешним эксплуатационным воздействиям, возможность существенного уменьшения массогабаритных параметров аппаратуры, реализуемость приборов интегральном исполнении, что в условиях серийного производстваобеспечивает значительное снижение их стоимости [1].

Создание современных генераторно-преобразовательных устройств на основе полупроводниковых источников мощности в диапазонах СВЧ и КВЧ базируется на применении новых полупроводниковых материалов и их

композиций, внедрении новых физических принципов, разработке и применении прецизионных технологических операций и оборудования, обеспечивающих субмикронные размеры элементов полупроводниковых структур, высокую надёжность соединений активных элементов и цепей, контроль параметров и характеристик в процессе производства [1].

Полупроводниковое генераторно-преобразовательное устройство является единой конструкцией, включающей активный полупроводниковый прибор и электродинамическую систему, cкоторой ОН соединён. Оптимизация конструкции, схемы построения и выбор режимов работы устройства для необходимых выходных параметров требует достижения совместного рассмотрения характеристик полупроводниковых приборов и СВЧ цепей, в результате которого максимально реализуются возможности активных элементов и достигаются требуемые характеристики устройства [1]. В качестве активного элемента рассмотрим диод Ганна как обладающий наиболее широким освоенным диапазоном рабочих частот (от 1 до 150 ГГц).

1.1 Диод Ганна и его математическая модель

Диод Ганна — это кристалл полупроводникового материала электронной проводимости с двумя омическими контактами на противоположных сторонах. Активная часть диода Ганна обычно имеет длину l=1-100 мкм и концентрацию легирующих донорных примесей $n_0=2\cdot 10^{14} - 2\cdot 10^{16}$ см⁻³. Слои полупроводника с повышенной концентрацией примесей $n^+=10^{18} - 10^{19}$ см⁻³ служат для создания омических контактов. На рисунке 1.1 представлена типовая структура кристалла диода Ганна [3].

Рисунок 1.1. Структура диода Ганна типа «сэндвич» [3]

В 1963 г. Ганн обнаружил, что если приложить постоянное электрическое поле E_0 , большее некоторого порогового значения E_p , к образцу арсенида галлия или фосфида индия n-типа, то наблюдаются спонтанные периодические колебания тока, протекающего через образцы (рисунок 1.2). Для GaAs напряженность порогового поля E_p составляла около 3 кВ/см, для InP — около 6 кВ/см. Период колебаний T_0 приближенно равнялся времени пролета электронов от катода к аноду:

$$T_o = \frac{l}{v_g},\tag{1.1}$$

где l — длина образца, $\upsilon_{\rm g}$ — дрейфовая скорость электронов (около 10^7 см/с при $E_0 = E_p$).

Рисунок 1.2. Экспериментальная временная зависимость тока, протекающего через ганновский образец [3]

В [3] дано описание эффекта Ганна, приведенное ниже. Для использованных Ганном образцов с $2\cdot10^{-3}$ см < l < $2\cdot10^{-2}$ см частота колебаний лежала в СВЧ диапазоне. Оказалось, что при $E > E_p$ в образце возникает область сильного электрического поля (домен), дрейфующая от катода к аноду со скоростью около 10^7 см/с и исчезающая у анода. Этот процесс периодически повторяется, причём при формировании домена ток падает, а при исчезновении домена вновь возрастает до пороговой величины. В 1963 г. Ридли показал [2], что явления доменной неустойчивости возникают в полупроводнике с N-образной вольт-амперной характеристикой. Плотность тока в однородном образце равна

$$j = q n_0 v, \tag{1.2}$$

где q—заряд электрона, n_0 — концентрация носителей, v — средняя дрейфовая скорость носителей. Из формулы (1.2) следует, что плотность тока может падать с ростом электрического поля, если либо концентрация носителей либо их дрейфовая скорость уменьшаются при увеличении поля [3].

Рассмотрим механизм Ридли-Уоткинса-Хилсума [2], приводящий к падению скорости электронов с ростом напряженности электрического поля на примере двухдолинной модели зоны проводимости. Пусть при малых энергиях ξ , меньших, чем Δ , электроны в зоне проводимости обладают эффективной массой m_1^* . При $\xi > \Delta$ электроны могут находится не только в нижней, но и в верхней долине,в которой эффективная масса электронов $m_2^* >> m_1^*$. Большой эффективной массе электронов соответствует большая плотность состояний и поэтому при $\xi > \Delta$ подавляющее большинство электронов будет находиться в верхней долине зоны проводимости. Для простоты будем считать, что при $\xi > \Delta$ все электроны находятся в верхней долине. Такая модель качественно отражает основные черты строения зоны проводимости реальных полупроводников, в которых наблюдается эффект Ганна. При достаточно низкой температуре и в слабом электрическом поле практически все электроны находятся в нижней долине ($n_1 = n_0$, где n_1 – концентрация электронов, находящихся в нижней долине) [3].

Средняя дрейфовая скорость электронов будет пропорциональна приложенному электрическому полю $v = {}_{1}E$, где ${}_{1}$ – подвижность электронов с эффективной массой m_{1}^{*} (в нижней долине). Плотность электрического тока, протекающего через образец, определяется по закону Ома

$$j = q n_{0} _{1} E. (1.3)$$

В достаточно сильном электрическом поле энергия электронов возрастает, часть электронов приобретает энергию, большую Δ и переходит из нижней долиныв верхнюю. Большой эффективной массе электронов в верхней долине соответствует низкое значение их подвижности $\mu_2 << \mu_1$. Поэтому при очень больших полях, когда подавляющее большинство электронов находится в верхней долине, имеем $v \approx {}_{_2}E$. При промежуточных значениях электрического поля

скорость электронов падает с ростом напряжённости поля, так как часть электронов находится в верхней, а часть – в нижней долине и тогда плотность тока равна

$$j = q(n_{1-1} + n_{2-2})E = qn_0 v(E).$$
 (1.4)

Среднюю дрейфовую скорость электронов v(E) можно записать в виде

$$v(E) = \frac{{}_{1}n_{1}(E) + {}_{2}n_{2}(E)}{n_{1}(E) + n_{2}(E)} E = \frac{{}_{1}n_{1}(E) + {}_{2}n_{2}(E)}{n_{0}} E,$$
(1.5)

где $n_0 = n_1(E) + n_2(E)$ — общее число электронов проводимости, не зависящее от поля и равное равновесной концентрации электронов.

Уравнения математической модели диода Ганна

Физические процессы в диоде Ганна могут быть описаны путем решения двух фундаментальных уравнений [2, 3]: уравнения Пуассона

$$divE = \frac{\rho}{\mathcal{E}_{\alpha}} \tag{1.6}$$

где ρ – плотность объемного заряда, ϵ_a – диэлектрическая проницаемость полупроводникового материала (ϵ_a = $\epsilon\epsilon_0$, ϵ = 12,5 для арсенида галлия), и уравнения плотности полного тока

$$div j_{\Sigma} = 0, \tag{1.7}$$

где

$$j_{\Sigma} = j_{np} + j_{\partial u\phi} + j_{cM}, \qquad (1.8)$$

 j_{Σ} — плотность полного тока, $j_{\rm пp}$ — плотность тока проводимости, $j_{\rm диф}$ — плотность диффузионного тока, $j_{\rm cm}$ — плотность тока смещения.

В [3] дана детальная расшифровка уравнений (1.7), (1.8), выдержки из которой представлены ниже. Следует отметить, что в рассматриваемой конструкции диода заряды движутся в одном направлении – от катода к аноду, поэтому можно полагать, что в плоскости поперечного сечения не изменяются ни плотность тока, ни электрическое поле. При таких допущениях задача упрощается и уравнения становятся одномерными.

Объемная плотность заряда равна

$$\rho = q_0(n - n_0), \tag{1.9}$$

где n — концентрация электронов, n_0 — концентрация доноров. Плотность тока проводимости определяется выражением

$$j_{np} = q_0 n v, \tag{1.10}$$

где q_0 – заряд электрона, n – концентрация электронов в активной области диода.

Плотность диффузионного тока в одномерном случаем определяется выражением

$$j_{\partial u\phi} = -q_0 D \frac{\partial n}{\partial x} \tag{1.11}$$

где D — коэффициент диффузии. В общем случае D = D(E), однако учёт зависимости D от E не приводит к новым результатам, поэтому для упрощения решения уравнений полагают D = const. Тогда, плотность тока смещения равна

$$j_{\scriptscriptstyle CM} = \varepsilon_{\scriptscriptstyle \alpha} \frac{\partial E}{\partial t}. \tag{1.12}$$

Уравнение для одномерного случая имеет вид $\partial j_{\Sigma}/\partial x=0$. Отсюда вытекает, что плотность суммарного тока внутри диода j_{Σ} не зависит от координаты и может быть приравнена плотности тока i_a/S , протекающего через выводы диода во внешней цепи.

С учетом соотношений (1.10), (1.8) - (1.12) запишем уравнения (1.6) и (1.7) в одномерном приближении:

$$\frac{\partial E}{\partial x} = \frac{q_0}{\varepsilon_{\alpha}} (n - n_0), \tag{1.13}$$

$$q_0 n v - q_0 D \frac{\partial n}{\partial x} + \varepsilon_\alpha \frac{\partial E}{\partial t} = \frac{i_a}{S}, \tag{1.14}$$

где i_a – ток во внешней цепи.

В уравнения (1.13) и (1.14) входят две неизвестные функции: n(x,t) и E(x,t). Для удобства решения целесообразно (1.13) и (1.14) объединить в одно уравнение. С этой целью n из (1.13) подставим в (1.14) и в результате получим:

$$D\frac{\partial^{2} E}{\partial x^{2}} - v(E)\frac{\partial E}{\partial x} - \frac{\partial E}{\partial t} + \frac{q_{0}}{\varepsilon_{\alpha}}D\frac{dn_{0}}{dx} - \frac{q_{0}}{\varepsilon_{\alpha}}n_{0}v(E) + \frac{i_{\alpha}}{\varepsilon_{\alpha}S} = 0.$$
 (1.15)

При выводе уравнения (1.15) принято во внимание, что концентрация доноров n_0 может изменяться вдоль координаты x, т.е. $n_0 = n_0(x)$. Нелинейные свойства диода учитываются тем, что скорость v зависит от E.

Уравнение (1.15) рассматривается в области $0 \le x \le l$ при изменении времени t от 0 до бесконечности. В этом случае для однозначного решения необходимо задать начальные и граничные условия. В качестве начального условия задают функцию E(x) в начальный момент времени t=0. В качестве граничных условий необходимо задать E(t) и $\partial E/\partial t$ на границах активной области диода, т.е. при x = 0 и x = l.

Начальное условие [3]

Полагаем, что в начальный момент времени приложенное к диоду напряжение $u_a = 0$. При этом E(x) = 0 в случае, когда $dn_0/dx = 0$. Если же имеется градиент концентрации примесей, то возникает ток диффузии, образуются внутренние области зарядов и, как следствие, появляется ток проводимости.

В состоянии равновесия при $u_a = 0$ сумма токов проводимости и диффузии должна быть равна нулю. Учитывая, что в плоскости поперечного сечения плотность тока не изменяется, поэтому в результате сложения (1.10) и (1.11) получим уравнение

$$q_0 n_{n} E(x) - q_0 D \frac{dn}{dx} = 0,$$
 (1.16)

откуда следует

$$E(x) = \frac{D}{n} \frac{1}{n} \frac{dn}{dx}.$$
 (1.17)

В соответствии с соотношением Эйнштейна [3]

$$\frac{D}{T} = \varphi_T, \tag{1.18}$$

где ϕ_T – температурный потенциал (ϕ_T =0,025 В при T=300 К).

Полагая, что в начальный момент времени $n=n_0$, преобразуем начальное условие к виду

$$E(x,t=0) = \varphi_T \frac{1}{n_0(x)} \frac{dn_0(x)}{dx}.$$
 (1.19)

Граничные условия [3]

Чтобы задать граничные условия, нужно знать реальное распределение примесей по длине кристалла. Так как на границе активной области диода концентрация примеси n_0 увеличивается до значений 10^{18} - 10^{19} см⁻³, то контакты диода по своим электрическим свойствам близки к металлу, т.е. имеют весьма малое сопротивление. Если к диоду приложена разность потенциалов, то падения напряжения на контактах практически нет и напряженность электрического поля близка к нулю. Отсюда получаем граничные условия

$$E(0, t) = 0, E(l_{\pi}, t) = 0,$$
 (1.20)

где $l_{\rm д}$ – суммарная длина диода, включающая активную часть и приконтактные области.

Уравнение (1.15) совместно с условиями (1.19) и (1.20) представляют собой модель диода Ганна. Решая численно уравнение (1.15) можно рассчитать функцию $E(x,t_k)$ в дискретные моменты времени $t_1, t_2, ..., t_k$. При этом необходимо знать значения внешнего тока в соответствующие моменты времени $i_a(t_k)$. По известным функциям E(x) можно рассчитать напряжение на диоде

$$u_{a}(t_{k}) = \int_{0}^{l_{\pi}} E(x, t_{k}) dx.$$
 (1.21)

Зная $u_a(t_k)$, можно рассчитать ток $i_a(t_k)$, решая уравнения для внешней цепи.

Далее переходим к следующему этапу расчета, вновь обращаясь к уравнению (1.15) и определяя u_a в момент времени t_{k+1} . В конечном итоге получаем временные зависимости $u_a(t)$, $i_a(t)$. Кроме того, становится известным распределение поля E(x) вдоль диода в различные моменты времени. Можно также вычислить распределение концентрации электронов n вдоль диода из уравнения (1.13).

Характеристики и параметры модели [3]

Для использования модели диода необходимо знать зависимости $\upsilon(E)$, $n_0(x)$, а также параметры $d,\ l,\ h.$ Зависимость $\upsilon(E)$ может быть аппроксимирована выражением [2]:

$$v(E) = \frac{{}_{n}E + v_{nac} \left(\frac{E}{E_{m}}\right)^{4}}{1 + \left(\frac{E}{E_{m}}\right)^{4}},$$
(1.22)

где $\upsilon_{\text{нас}} = 10^7$ см/с — дрейфовая скорость, соответствующая насыщению характеристики при больших напряженностях поля; E_m =4000 В/см.

Подвижность электронов μ_n в слабом поле зависит от концентрации доноров n_0 по закону

$$= \frac{1}{1 + \sqrt{\frac{n_0}{10^{17}}}},$$
 (1.23)

где μ_i – подвижность электронов в идеальном беспримесном полупроводнике (для GaAs равна $8000 \text{ cm}^2/(\text{B·c})$).

Для GaAs с концентрацией донорных примесей n_0 = $2\cdot10^{14}$ - $2\cdot10^{16}$ см⁻³

 $\mu_{\rm n}$ лежит в диапазоне от 5500 до 8000 см²/(В·с), пороговая напряженность поля $E_{\rm nop} = 3.5$ кВ/см, дрейфовая скорость, соответствующая пороговой напряженности поля, $\nu_{\rm nop}=1.5-2\cdot10^7$ см/с.

Коэффициент диффузии можно вычислить по формуле [3]

$$D = {}_{n} \varphi_{T} + 1.5 \tau_{s} v_{nop}^{2}, \qquad (1.24)$$

где τ_9 – время релаксации энергии в полупроводнике (для *GaAs* имеем τ_9 = 10^{-13} c).

Следует отметить, что параметры диода $\upsilon_{\text{нас}}$, μ_n , D зависят от температуры кристалла T и могут быть аппроксимированы следующим образом [3].

$$_{n}(T) = _{n}\left(\frac{300}{T}\right)^{1,14}, \, v_{nac}(T) = v_{nac}\left(\frac{300}{T}\right)^{0,7}.$$
 (1.25)

Границы применимости модели [3]

Границы применимости модели обусловлены принятыми допущениями:

- 1. Средняя дрейфовая скорость зависит от мгновенного значения напряжённости электрического поля.
 - 2. Коэффициент диффузии не зависит от напряжённости поля.

Первое допущение ограничивает применимость модели до некоторой частоты (примерно 40 ГГц) и накладывают ограничение на длину активной области диода (l > 1 мкм). Второе допущение не приводит к каким-либо заметным ограничениям [3].

1.2 Перспективы развития диодов Ганна

В настоящее время во всём мире с учётом большого прогресса в технологии производства изделий микроэлектроники активно развивается направление создания монолитных интегральных схем (МИС) различных устройств. Не обошла эта общемировая тенденция и диоды Ганна. В последнее время был опубликован ряд работ [4-7] по созданию планарных диодов Ганна, в том числе совместимых по технологии с транзисторами с высокой подвижностью электронов (ТВПЭ) и устройств на их основе. Типовая структура такого диода представлена на рисунке 1.3.

Рисунок 1.3. Структура слоев планарного диода Ганна [4]

Достигнутые значения генерируемой мощности P_0 , частоты f_0 и коэффициент полезного действия (КПД) в миллиметровом диапазоне длин волн являются многообещающими. Так, в работе [5] авторами достигнуты значения P_0 = 0,1 мВт; f_0 = 164 ГГц. На рисунке 1.4 представлена фотография изготовленного

авторами планарного диода, полученная с использованием сканирующего электронного микроскопа.

Рисунок 1.4. Фотография планарного диода под увеличением [4]

Совместимость технологии производства с ТВПЭ [6] и диодами с барьером Шоттки, но с гораздо менее жесткими требованиями ПО зависимости топологического размера элемента от рабочей частоты, открывает большие данного направления. Возможно создание монолитных перспективы ДЛЯ интегральных схем целого устройства, например, приёмника КВЧ диапазона с интегрированными генератором, смесителем и усилителем промежуточной частоты, выполненных на одном кристалле в едином технологическом цикле, что значительно сократит затраты на производство сложнофункциональных устройств, таких как активные фазированные антенные решетки или бортовые системы ближней радиолокации. Также перспективным является интегрирование в одной микросхеме, помимо пассивных и активных элементов устройства, печатных антенн.

Применение планарных диодов Ганна приводит к развитию разработок полностью монолитных интегральных схем (МИС) генераторов, что, в свою очередь, является еще одним шагом квсё большему внедрению устройств типа "система-на-кристалле", позволяющая существенно снизить стоимость и массогабаритные характеристики разрабатываемых изделий.

1.3 Устройства на диодах Ганна

1.3.1 Генератор

Основным применением диодов Ганна в СВЧ технике несомненно являются генераторы.

Основными характеристиками СВЧ генератора являются [8]:

- выходная мощность $P_{\text{вых}}$ минимальное значение мощности, выделяемой на полезной нагрузке в рабочем диапазоне частот;
- КПД η отношение выходной мощности к мощности P_0 , потребляемой от источника питания;
- рабочий диапазон частот $(f_{max} f_{min})$ диапазон частот, в котором обеспечивается заданная выходная мощность и другие параметры;
- стабильность частоты δf наибольшее относительное отклонение частоты от номинального значения f_0 : $\delta f = \Delta f/f_0$.
- температурный коэффициент частоты (ТКЧ) $\delta f/\Delta T$, где ΔT изменение температуры, вызывающее изменение частоты;
- надёжность, определяемая временем наработки на отказ;
- шумовые характеристики уровень амплитудных (частотных или фазовых) шумов.

В общем случае диодный генератор состоит из диода, резонатора, фильтра нижних частот по цепи питания (для ослабления сигнала высокой частоты) и устройств связи диода с резонатором и резонатора с нагрузкой.

Обобщенная структурная схема генератора на диоде Ганна представлена на рисунке 1.5.