FCC and ISED Canada Testing of the

Ecolab Inc. 92053073

In accordance with FCC 47 CFR Part 15.249 & ISED Canada's Radio Standards Specifications RSS-210

Prepared for: Ecolab Inc.

1201 Jupiter Park Drive Jupiter, FL 33458

FCC ID: Z9O-92053073 IC: 10060A-92053073

COMMERCIAL-IN-CONFIDENCE

Document Number: TP72156787.202 | Version Number: 03

RESPONSIBLE FOR	NAME	DATE	SIGNATURE		
Authorized Signatory	Peter Walsh	2020 -March-16	Bely Walsh		
Testing	Thierry Jean-Charles	2020-March-16	Jan Charles for The		

Signatures in this approval box have checked this document in line with the requirements of TÜV SÜD America, Inc. document control rules.

FCC Accreditation

Innovation, Science, and Economic Development Canada Accreditation

Designation Number US1063 Tampa, FL Test Laboratory

Site Number 2087A-2 Tampa, FL Test Laboratory

EXECUTIVE SUMMARY

Samples of this product were tested and found to be in compliance with FCC Part 15.249. and ISED Canada's RSS-210.

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD America with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD America. No part of this document may be reproduced without the prior written approval of TÜV SÜD America. © TÜV SÜD.

DISCLAIMER AND COPYRIGHT

Our A2LA Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our A2LA Accreditation. Results of test not covered by our A2LA Accreditation Schedule are marked NUA (Not A2LA Accredited).

TÜV SÜD America 5610 West Sligh Ave., Suite 100 Tampa, FL 33634 Phone: 813-284-2715 www.tuv-sud-america.com

Contents

1	Report Summary	3
1.1	Report Modification Record	
1.2	Introduction	3
1.3	Brief Summary of Results	
1.4	Product Information	
1.5	Deviations from the Standard	8
1.6	EUT Modification Record	8
1.7	Test Location	g
2	Test Details	10
2.1	Antenna Requirements	10
2.2	20 dB Bandwidth	11
2.3	99% Bandwidth	
2.4	Field Strength of Fundamental and Spurious Emissions	15
2.5	Power Line Conducted Emissions	
3	Test Equipment Information	26
4	Diagram of Test Set-ups	27
5	Measurement Uncertainty	29
6	Accreditation, Disclaimers and Copyright	30

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	2020-February-27
2	Corrected typo on Grantee Code	2020-March-05
3	Corrected Model Number	2020-March-16

1.2 Introduction

The purpose of this report is to demonstrate compliance with Part 15 Subpart C of the FCC's Code of Federal Regulations Section 15.249 and Innovation Science and Economic Development Canada's Radio Standards Specification RSS-210 for the tests documented herein.

Applicant Ecolab Inc.

Manufacturer Ecolab Inc.

Applicant's Email Address <u>david.snodgrass@ecolab.com</u>

Model Number(s) 92053073

Serial Number(s) N/A

FCC ID Z9O-92053073

ISED Certification Number 10060A-92053073

Hardware Version(s) 1
Software Version(s) 1.00

Number of Samples Tested 1

Test Specification/Issue/Date US Code of Federal Regulations (CFR): Title 47, Part 15,

Subpart C: Radio Frequency Devices, Intentional Radiators,

2019

Innovation, Science and Economic Development Canada Radio Standards Specification: RSS-210 — Licence-Exempt Radio Apparatus: Category I Equipment, Issue 10,

December 2019

Test Plan/Issue/Date 2020-January-15

Order Number 72156787

Date 2020-January-26
Date of Receipt of EUT 2020-February-13
Start of Test 2020-February-17
Finish of Test 2020-February-24

Name of Engineer(s) Thierry Jean-Charles, Jean N. Rene

Related Document(s) ANSI C63.10-2013: American National Standard of

Procedures for Compliance Testing of Unlicensed Wireless

Devices

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC Part 15.249 and ISED Canada's RSS-210 is shown below.

Table 1.3-1: Test Result Summary

Test Parameter	Test Plan (Yes/No)	Test Result	FCC Rule Part	ISED Canada Radio Standards Specifications	Test Report Page No
Antenna Requirements	Yes	Pass	15.203		10
20 dB Bandwidth	Yes	Pass	15.215		11
99% Bandwidth	Yes	Pass		RSS-GEN 6.6	13
Field Strength of Fundamental and Spurious Emissions	Yes	Pass	15.249	RSS-210 B.10	15
Frequency Stability	No		15.249(b)(2)		
Power Line Conducted Emissions	Yes	Pass	15.207	RSS-GEN 8.8	22

1.4 Product Information

1.4.1 Technical Description

The EUT, HHCM915 BDG ASSGMT DVC ASSY model 92053073, is used to change the internal configuration of a HCW Badge. The EUT includes a 917 MHz transceiver and a 125 kHz transmitter. The two radios are not capable of transmitting simultaneously. The test report addresses the compliance of the 917 MHz radio.

Radio Parameters:

Mode of Operation: 917 MHz Frequency Range: 917 MHz

Number of Channels: 1 Channel Separation: N/A Data Rate: 12 kbps Modulations: 2-FSK

Antenna Type/Gain: Ceramic Chip Antenna, -2.5 dBi

Input Power: 5 VDC USB

A full description and detailed product specification details are available from the manufacturer.

Table 1.4.1-1 – Cable Descriptions

Cable/Port	Description
USB	1.8 m, Not Shielded, EUT to Laptop
Power	1.8m, Not Shielded, Molded Ferrite, Power Supply to Laptop
Power	0.98 m, Not Shielded, Power Supply to AC Mains

Table 1.4.1-2 - Support Equipment Descriptions

Make/Model	Description
Lenovo / B570	Laptop Computer, SN: WB06182206
Lenovo / CPA-A065	AC/DC Adapter 20V, 3.25 A, SN: 11S36001943ZZ40023J6EC

Declaration of Build Status

		EQ	UIPMENT	DESC	RIPTION		
Model Name/Nu	mber	HHCM915 BDG ASSGMT DVC ASSY					
Part Number		92053073	92053073				
Hardware Version	on	1					
Software Version	n	1.00					
FCC ID (if applic	able)		Z9O-920	53073			
ISED ID (if applie	cable)		10060A-9	920530	73		
	cription (Please provide intended use of the equ		Used to c	change	the internal conf	figuration of an HCW Badge.	
		UN-	INTENTIO	NAL RA	ADIATOR		
	ncy generated or used in e operates or tunes	the device of	or on	917 N	MHz		
	Lowest frequency generated or used in the device or on which the device operates or tunes 32.768kHz						
A)	Device (Use in commerc	•			ronment) 🛚 (Us	lsed in hospitals, not sure if this is Class	
			Power	Sourc	е		
AC	Single Phase		Т	hree Pl	hase	Nominal Voltage	
AO						N/A	
External DC	Nomir	nal Voltage				Maximum Current	
External DC	5	5VDC				< 100mA	
Datta	Nomir	nal Voltage			Batte	ery Operating End Point Voltage	
Battery		N/A				N/A	
		E	XTREME (CONDI.	TIONS		
Maximum temperature +40 °C Minimum temperature -0 °C							
			Anci	Ilaries			
Please list all an	cillaries which will be us	ed with the	device.				
USB cable attac	hed to PC or laptop com	puter.					

I hereby declare that the information supplied is correct and complete.

Name: David L. Snodgrass

Position held: Lead Electrical Engineer Date: 02/10/20

1.4.2 Modes of Operation

The EUT was configured to transmit continuously at 917 MHz at 100% duty cycle. The EUT was powered through a laptop computer via USB.

1.4.3 Monitoring of Performance

The EUT was evaluated for radiated, RF conducted and power line conducted emissions.

The radiated emissions evaluation was performed for the EUT in the orientation of typical use.

The bandwidth measurements were performed for the EUT configurated with an RF connector at the antenna port.

1.4.4 Performance Criteria

The EUT was evaluated in accordance to FCC Part 15 Supbart C and ISED Canada RSS-210 for the following parameters.

Table 1.4.4 -1: Performance Criteria

Parameter	Requirement
Antenna Requirement	FCC: Section 15.203. 15.204
20 dB Bandwidth	FCC: Section 15.215(c)
99% Bandwidth	ISED Canada RSS-GEN 6.6
Intentional Radiator Field Strength of Fundamental and Spurious Emissions	FCC Part 15.249(a) and ISED Canada RSS 210 B.10
Power Line Conducted Emissions	FCC Part 15.207 and ISED Canada RSS-GEN 8.8

1.5 Deviations from the Standard

The EUT was evaluated without any deviation from the test standards.

1.6 EUT Modification Record

The table below details modifications made to the EUT during the test programme. The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State	Description of Modification still fitted to EUT	Modification Fitted By	Date Modification Fitted	

The equipment was tested as provided without any modifications.

1.7 Test Location

TÜV SÜD Product Service conducted the following tests at our Tampa FL Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation
DC Powered Operating		
Antenna Requirement	Thierry Jean-Charles	A2LA
20 dB Bandwidth	Thierry Jean-Charles	A2LA
99% Bandwidth	Thierry Jean-Charles	A2LA
Radiated Field Strength of Fundamental and Spurious Emissions	Jean N. Rene	A2LA
Power Line Conducted Emissions	Jean N. Rene	A2LA

Office Address:

TÜV SÜD America, Inc. 5610 W. Sligh Ave, Suite 100 Tampa, FL 33634 USA

2 Test Details

2.1 Antenna Requirements

2.1.1 Specification Reference

FCC: Section 15.203, 15.204

2.1.2 Equipment Under Test and Modification State

S/N: N/A

2.1.3 Date of Test

2/25/2020

2.1.4 Test Method

N/A

2.1.5 Environmental Conditions

Ambient Temperature N/A
Relative Humidity N/A
Atmospheric Pressure N/A

2.1.6 Test Results

Limit Clause FCC Sections: 15.203, 15,204

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

The EUT uses a -2.5 dBi Ceramic Chip antenna which is directly soldered to the PCB. The antenna is not removable/replaceable and therefore meets the requirements of FCC Section 15.203.

2.1.7 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

As this is a visual inspection, no test equipment was used.

2.2 20 dB Bandwidth

2.2.1 Specification Reference

FCC: Section 15.215

2.2.2 Equipment Under Test and Modification State

SN: N/A

2.2.3 Date of Test

2/18/2020

2.2.4 Test Method

The 20 dB bandwidth was measured in accordance with ANSI C63.10 Subclause 6.9.2. The spectrum analyzer span was set between two times and five times the OBW. The RBW of the spectrum analyzer was set to 1% to 5% if the OBW. The VBW was approximately three times RBW. A peak detector was used for the measurements.

2.2.5 Environmental Conditions

Ambient Temperature 24°C Relative Humidity 41.1 % Atmospheric Pressure 1018.4 mbar

2.2.6 Test Results

DC Powered Operating

Limit Clause FCC Part 15.215

The intentional radiator must be designed to ensure that the 20 dB bandwidth of the emission is contained within the frequency band designated in the rule section under which the equipment is operated.

Table 2.2.6-1: 20 dB Bandwidth Test Results

Frequency	20 dB Bandwidth	
(MHz)	(kHz)	
917.0	61.1625	

Date: 18.FEB.2020 16:32:59

Figure 2.2.6-1: 20 dB Bandwidth Test Results

2.2.7 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

Instrument	Manufacturer	Type No	TE No	Software / Firmware Revision	Calibration Period (months)	Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSP40	BEMC00283	4.50 SP5	24	04-Oct-2021
Attenuator 10dB, 2.9 mm-M/F, DC-40GHz 2 W	Aeroflex Inmet	40AH2W-10	BEMC02110	N/A	12	27-Jul-2020
Duratest High Frequency Cable Max. frequency 26.5GHz	Teledyne Storm Products	921-0101-036	BEMC02112	N/A	12	12-Oct-2020

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable

2.3 99% Bandwidth

2.3.1 Specification Reference

ISED Canada: RSS-GEN 6.6

2.3.2 Equipment Under Test and Modification State

SN: N/A

2.3.3 Date of Test

2/18/2020

2.3.4 Test Method

The 99% occupied bandwidth was measured in accordance with ANSI C63.10 Subclause 6.9.3. The spectrum analyzer span was set to fully display the emission. The RBW was set to 1% to 5% of the approximated bandwidth. The occupied 99% bandwidth was measured by using 99% bandwidth equipment function of the spectrum analyzer using a peak detector.

2.3.5 Environmental Conditions

Ambient Temperature 24°C Relative Humidity 41.1 % Atmospheric Pressure 1018.4 mbar

2.3.6 Test Results

DC Powered Operating

Limit Clause ISED RSS-GEN 6.6

Table 2.3.6-1: 99% Bandwidth Test Results

Frequency	99% Bandwidth
(MHz)	(kHz)
917.00	62.9375

Date: 18.FEB.2020 16:29:11

Figure 2.3.6-1: 99% Bandwidth Test Results

2.3.7 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

Instrument	Manufacturer	Type No	TE No	Software / Firmware Revision	Calibration Period (months)	Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSP40	BEMC00283	4.50 SP5	24	04-Oct-2021
Attenuator 10dB, 2.9 mm-M/F, DC-40GHz 2 W	Aeroflex Inmet	40AH2W-10	BEMC02110	N/A	12	27-Jul-2020
Duratest High Frequency Cable Max. frequency 26.5GHz	Teledyne Storm Products	921-0101-036	BEMC02112	N/A	12	12-Oct-2020

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable

2.4 Field Strength of Fundamental and Spurious Emissions

2.4.1 Specification Reference

FCC Part 15.249(a) ISED Canada RSS-210 B.10

2.4.2 Equipment Under Test and Modification State

S/N: N/A, DC Powered

2.4.3 Date of Test

2/17/2020 to 2/19/2020

2.4.4 Test Method

Radiated emissions tests were made over the frequency range of 9 kHz to 10 GHz, 10 times the highest fundamental frequency. Each emission found to be in a restricted band as defined by section 15.205, including any emission at the operational band-edge, was compared to the radiated emission limits as defined in Section 15.209.

For measurements below 30 MHz, the receive antenna height was set to 1 m and the EUT was rotated through 360 degrees. The resolution bandwidth was set to 200 Hz below 150 kHz and to 9 kHz above 150 kHz.

The EUT was rotated through 360° and the receive antenna height was varied from 1m to 4m so that the maximum radiated emissions level would be detected. For frequencies below 1000 MHz, quasipeak measurements were made using a resolution bandwidth RBW of 120 kHz and a video bandwidth VBW of 300 kHz. For frequencies above 1000 MHz, peak measurements are made with RBW of 1 MHz and VBW of 3 MHz. Average measurements are performed in the linear scale using VBW of 10 kHz.

2.4.5 Environmental Conditions

Ambient Temperature 24.7°C
Relative Humidity 40.9 %
Atmospheric Pressure 1019.4 mbar

2.4.6 Test Results

Limit FCC Section 15.249(a) and ISED Canada RSS-210 B.10

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902-928 MHz	50	500
2400-2483.5 MHz	50	500
5725-5875 MHz	50	500
24.0-24.25 GHz	250	2500

Table 2.4.6-1: Radiated Spurious Emissions Test Results

Eroguopov	Le	vel	Antenna	Correction	Corrected Level		Li	imit	Ma	rgin
Frequency (MHz)	(dE	BuV)	Polarity	Factors	(dBuV/m)		(dBuV/m)		(dB)	
(1411 12)	Pk	QPk/Avg	(H/V)	(dB)	Pk	QPk/Avg	Pk	QPk/Avg	Pk	QPk/Avg
	Fundamental Frequency									
917		51.93	Н	31.39		83.32		94		10.7
917		41.01	V	31.39		72.40		94		21.6
				Spurious En	nissions					
1834	43.28	29.01	Н	-3.63	39.65	25.38	74	54	34.3	28.6
1834	44.71	29.81	V	-3.63	41.08	26.18	74	54	32.9	27.8
3668	43.02	33.63	Н	0.78	43.80	34.41	74	54	30.2	19.6
3668	43.40	35.91	V	0.78	44.18	36.69	74	54	29.8	17.3
7336	39.46	25.13	Н	9.57	49.03	34.7	74	54	25.0	19.3
7336	39.01	24.95	V	9.57	48.58	34.52	74	54	25.4	19.5

Notes:

- All the emissions above 7.34 GHz were attenuated below the limits and the noise floor of the measurement equipment.

Figure 2.4.6-1: Radiated Emissions 9 kHz - 30 MHz - Vertical Polarization

Figure 2.4.6-2: Radiated Emissions 30 MHz - 1 GHz - Horizontal Polarization

Figure 2.4.6-3: Radiated Emissions 30 MHz - 1 GHz - Vertical Polarization

Figure 2.4.6-4: Radiated Emissions 1 GHz – 18 GHz – Horizontal Polarization

Figure 2.4.6-5: Radiated Emissions 1 GHz – 18 GHz – Vertical Polarization

2.4.7 Sample Calculations

RC = RU + CFT

Where:

CFT = Total Correction Factor (AF+CA+AG)-DC (Average Measurements Only)

RU = Uncorrected Reading
RC = Corrected Level
AF = Antenna Factor
CA = Cable Attenuation
AG = Amplifier Gain

DC = Duty Cycle Correction Factor

Example Calculation: Peak

Corrected Level: $43.28 + (-3.63) = 39.65 \text{ dB}\mu\text{V/m}$ Margin: $74 \text{ dB}\mu\text{V/m} - 39.65 \text{ dB}\mu\text{V/m} = 34.35 \text{ dB}$

Example Calculation: Average

Corrected Level: $29.01 + (-3.63) - (0) = 25.38 \text{ dB}\mu\text{V/m}$ Margin: $54 \text{ dB}\mu\text{V/m} - 25.38 \text{ dB}\mu\text{V/m} = 28.62 \text{ dB}$

2.4.8 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

Instrument	Manufacturer	Type No	TE No	Software / Firmware Revision	Calibration Period (months)	Calibration Due
9kHz-26.5GHz EMC analyzer/HYZ	Agilent	E7405A	BEMC00523	A.14.06	24	27-Nov-2020
Tile Automation Software	ETS Lindgren	TILE4! - Version 4.2.A	BEMC02095	4.2A	N/A	NCR
BI LOG PERIODIC, ANTENNA	Schaffner	CBL6112B	TEMC00005	N/A	24	31-Oct-2021
Loop Antenna	Com Power	AL-130	TEMC00025	N/A	24	26-Sep-2021
EMC Chamber	Panasheild	N/A	TEMC00031	N/A	36	28-Jan-2021
Double Ridge Guide Horn	ETS Lindgren	3117	TEMC00061	N/A	24	13-Feb-2020
PAM-118A	Com-Power Corporatio	PAM-118A	TEMC00160	N/A	12	27-Apr-2020
4A & 4B Test Cables	MegaPhase, LLC	1GVT4	TEMC00171	N/A	24	30-May-2020
1.2 GHz High Pass Filter	Micro-Tronics	HPM50108- 01	TEMC00175	N/A	12	10-Apr-2020
Radiated Cable Set 30 MHz - 1 GHz	TUV SUD Tampa	Cable 2	TEMC00179	N/A	12	07-May-2020
Radiated Cable Set 9 kHz - 30 MHz	TUV SUD Tampa	Cable 2	TEMC00186	N/A	12	08-May-2020

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable NCR – No Calibration Required

2.5 Power Line Conducted Emissions

2.5.1 Specification Reference

FCC: Section 15.207

ISED Canada; RSS-GEN 8.8

2.5.2 Equipment Under Test and Modification State

S/N: N/A

2.5.3 Date of Test

2/17/2020

2.5.4 Test Method

ANSI C63.10 section 6.2 was the guiding document for this evaluation. Conducted emissions were performed from 150 kHz to 30 MHz with the spectrum analyzer's resolution bandwidth set to 9 kHz and the video bandwidth set to 30 kHz. The calculation for the conducted emissions is as follows:

Corrected Reading = Analyzer Reading + LISN Loss + Cable Loss Margin = Applicable Limit - Corrected Reading

2.5.5 Environmental Conditions

Ambient Temperature 23.9 °C
Relative Humidity 43.0 %
Atmospheric Pressure 1018.6 mbar

2.5.6 Test Results

Frequency of Emission (MHz)	Conducted Limit (dBµV)		
	Quasi-Peak Average		
0.15-0.5	66 to 56*	56 to 46*	
0.5-5	56	46	
5-30	60	50	

^{*}Decreases with the logarithm of the frequency.

Table 2.5.6-1: Quasi-Peak Conducted Emissions Test Results

Frequency (MHz)	Quasi-peak (dBµV)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	51.44	N	10.2	14.56	66.00
0.334500	33.16	L1	10.0	26.18	59.34
0.469500	32.34	L1	10.0	24.18	56.52
2.161500	24.29	N	10.5	31.71	56.00
9.708000	23.30	N	11.0	36.70	60.00
17.272500	30.10	N	11.4	29.90	60.00
19.792500	31.44	N	11.4	28.56	60.00
20.157000	31.95	N	11.5	28.05	60.00
21.669000	36.32	N	11.5	23.68	60.00
27.730500	39.00	N	11.7	21.00	60.00

Table 2.5.6-2: Average Conducted Emissions Test Results

Frequency (MHz)	Average (dBµV)	Line	Corr. (dB)	Margin (dB)	Limit (dBµV)
0.150000	35.09	N	10.2	20.91	56.00
0.384000	20.52	L1	10.0	27.67	48.19
0.478500	21.94	N	10.3	24.43	46.37
0.550500	15.55	L1	10.0	30.45	46.00
1.158000	18.53	N	10.5	27.47	46.00
2.166000	18.34	N	10.5	27.66	46.00
2.913000	18.62	N	10.6	27.38	46.00
3.624000	16.87	N	10.6	29.13	46.00
17.574000	24.49	N	11.4	25.51	50.00
27.708000	31.94	N	11.7	18.06	50.00

Figure 2.5.6-1: Line and Neutral Conducted Emissions Composite Plot

2.5.7 Test Location and Test Equipment Used

This test was carried out in TÜV SÜD America, Inc., 5610 W. Sligh Ave, Suite 100, Tampa, FL 33634, USA.

Instrument	Manufacturer	Type No	TE No	Software / Firmware Revision	Calibration Period (months)	Calibration Due
LISN	Rohde & Schwarz	ESH3-Z5	TEMC00002	N/A	24	30-Sep-2021
EMI Test Receiver	Rohde & Schwarz	ESCS30	TEMC00011	2.3002.0102. 36	24	03-Oct-2021
RFI/EMI Shielded Enclosure	UNIVERSAL SHIELDING CORP.	N/A	TEMC00100	N/A	N/A	NCR
Test Software	Rohde & Schwarz	EMC32	TEMC00184	10.50.00	N/A	NCR

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable NCR - No Calibration Required

3 Test Equipment Information

1						
Instrument	Manufacturer	Type No	TE No	Software / Firmware Revision	Calibration Period (months)	Calibration Due
Spectrum Analyzer	Rohde & Schwarz	FSP40	BEMC00283	4.50 SP5	24	04-Oct-2021
9kHz-26.5GHz EMC analyzer/HYZ	Agilent	E7405A	BEMC00523	A.14.06	24	27-Nov-2020
Tile Automation Software	ETS Lindgren	TILE4! - Version 4.2.A	BEMC02095	4.2A	N/A	NCR
Attenuator 10dB, 2.9 mm-M/F, DC-40GHz 2 W	Aeroflex Inmet	40AH2W-10	BEMC02110	N/A	12	27-Jul-2020
Duratest High Frequency Cable Max. frequency 26.5GHz	Teledyne Storm Products	921-0101-036	BEMC02112	N/A	12	12-Oct-2020
LISN	Rohde & Schwarz	ESH3-Z5	TEMC00002	N/A	24	30-Sep-2021
BI LOG PERIODIC, ANTENNA	Schaffner	CBL6112B	TEMC00005	N/A	24	31-Oct-2021
EMI Test Receiver	Rohde & Schwarz	ESCS30	TEMC00011	2.3002.0102. 36	24	03-Oct-2021
Loop Antenna	Com Power	AL-130	TEMC00025	N/A	24	26-Sep-2021
EMC Chamber	Panasheild	N/A	TEMC00031	N/A	36	28-Jan-2021
Double Ridge Guide Horn	ETS Lindgren	3117	TEMC00061	N/A	24	13-Feb-2020
RFI/EMI Shielded Enclosure	UNIVERSAL SHIELDING CORP.	N/A	TEMC00100	N/A	N/A	NCR
PAM-118A	Com-Power Corporatio	PAM-118A	TEMC00160	N/A	12	27-Apr-2020
4A & 4B Test Cables	MegaPhase, LLC	1GVT4	TEMC00171	N/A	24	30-May-2020
1.2 GHz High Pass Filter	Micro-Tronics	HPM50108- 01	TEMC00175	N/A	12	10-Apr-2020
Radiated Cable Set 30 MHz - 1 GHz	TUV SUD Tampa	Cable 2	TEMC00179	N/A	12	07-May-2020
Test Software	Rohde & Schwarz	EMC32	TEMC00184	10.50.00	N/A	NCR
Radiated Cable Set 9 kHz - 30 MHz	TUV SUD Tampa	Cable 2	TEMC00186	N/A	12	08-May-2020

TU - Traceability Unscheduled O/P MON - Traceability Unscheduled N/A - Not Applicable NCR - No Calibration Required

4 Diagram of Test Set-ups

Figure 4-1 - Radiated Emissions Test Setup up to 1 GHz

Figure 4-2 - Radiated Emissions Test Setup above 1 GHz

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Table 6-1 - Values of U_{cispr} and U_{Lab}

Measurement	U_{cispr}	U_{Lab}
Conducted disturbance (mains port) (9 kHz – 150 kHz) (150 kHz – 30 MHz)	3.8 dB 3.4 dB	3.71 dB 3.31 dB
Conducted disturbance (telecom port) (150 kHz – 30 MHz 55 dB LCL) (150 kHz – 30 MHz 65 dB LCL) (150 kHz – 30 MHz 75 dB LCL)	5.0 dB 5.0 dB 5.0 dB	4.11 dB 4.50 dB 4.94 dB
Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1 000 MHz) (1 – 6 GHz) (6-18 GHz)	6.3 dB 5.2 dB 5.5 dB	5.85 dB 4.48 dB 4.48 dB

Notes:

 U_{cispr} resembles a value of measurement uncertainty for a specific test, which was determined by considering uncertainties associated with the quantities listed in CISPR 16-4-2:2011.

6 Accreditation, Disclaimers and Copyright

TÜV SÜD America Inc.'s reports apply only to the specific sample tested under stated test conditions. It is the manufacturer's responsibility to assure the continued compliance of production units of this model. TÜV SÜD America, Inc. shall have no liability for any deductions, inferences or generalizations drawn by the client or others from TÜV SÜD America, Inc.'s issued reports.

This report is the confidential property of the client. As a mutual protection to our clients, the public and TÜV SÜD America, Inc., extracts from the test report shall not be reproduced, except in full without TÜV SÜD America, Inc.'s written approval.

This report must not be used to claim product certification, approval, or endorsement by A2LA, NIST, or any agency of the federal government.