TD3. Integrabilité uniforme

Exercice 1. (RADON-NIKODYM) Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité tel que il existe une famille dénombrable $(E_n)_{n\geqslant 1}$ d'événements tels que $\mathcal{F}=\sigma(E_n,n\geqslant 0)$. On dit alors que la tribu \mathcal{F} est denombrablement généré. Soit \mathbb{Q} une mesure finie sur (Ω,\mathcal{F}) . On considère les propriétés suivantes.

i. \mathbb{Q} est absolument continue par rapport à \mathbb{P} , $(\mathbb{Q} \ll \mathbb{P})$ ssi $\mathbb{P}(A) = 0 \Rightarrow \mathbb{Q}(A) = 0$ pour tout $A \in \mathcal{F}$.

ii.

$$\forall \varepsilon > 0 \,\exists \delta > 0 \colon \forall A \in \mathcal{F}, \, \mathbb{P}(A) \leqslant \delta \Rightarrow \mathbb{Q}(A) \leqslant \varepsilon. \tag{1}$$

iii. Il existe une v.a. positive $X\in L^1(\mathbb{P})$ telle que $\mathbb{Q}=X$ \mathbb{P} (c-à-d. $\mathbb{Q}(A)=\int_A X\ d\mathbb{P}$ pour tout $A\in\mathcal{F}$)

On veut montrer que elle sont équivalentes.

- a) Montrer que $(i) \Rightarrow (ii)$.
- b) Montrer que (iii)⇒(i).
- c) Soit $\mathcal{F}_n = \sigma(E_k, 1 \leq k \leq n)$. Montrer que $(\mathcal{F}_n)_{n \geq 1}$ est une filtration et que $\operatorname{card}(\mathcal{F}_n) < +\infty$. En déduire qu'il existe une famille disjointe $\mathcal{A}_n \subseteq \mathcal{F}_n$ telle que $\sigma(\mathcal{A}_n) = \mathcal{F}_n$.
- d) Soit

$$M_n = \sum_{A \in A_n} \frac{\mathbb{Q}(A)}{\mathbb{P}(A)} \mathbb{I}_A.$$

Montrer que $\mathbb{Q}(B) = \int_B M_n d\mathbb{P}$ pour tout $B \in \mathcal{F}_n$ et que $(M_n)_{n \geqslant 1}$ est une martingale par rapport à $(\mathcal{F}_n)_{n \geqslant 1}$ (sur la probabilité \mathbb{P}).

- e) Montrer que la martingale M_n est uniformément intégrable.
- f) En déduire que $\mathbb{Q} = X \mathbb{P}$ ou $X = \lim_n M_n$.
- g) Montrer que si $\mathbb{Q} = X \mathbb{P}$ alors M_n est uniformément intégrable.

Exercice 2. Soit $\Omega = [0, 1[$ avec sa tribu Boreliénne \mathcal{B} . On remarque que \mathcal{B} est engendrée par les intervalles dyadiques $\{I_{n,k} = [k\,2^{-n}, (k+1)2^{-n}[:n \geqslant 0, 0 \leqslant k \leqslant 2^n - 1\}$. On note \mathcal{B}_n la tribu engendrée par $\{I_{k,l}, 0 \leqslant k \leqslant n, 0 \leqslant l \leqslant 2^k - 1\}$ de sorte que $\mathcal{B}_n \uparrow \mathcal{B}$. Soit \mathbb{P} la mesure de Lebesgue sur Ω . Soit $f: \Omega \to \mathbb{R}$ une fonction absolument continue, c-à-d telle que pour toute collection d'intevalles $\{[a_i, b_i]\}_i$ de Ω et tout $\varepsilon > 0$ admet $\delta > 0$ tel que

$$\sum_{i} |a_{i} - b_{i}| \leqslant \delta \Rightarrow \sum_{i} |f(a_{i}) - f(b_{i})| \leqslant \varepsilon.$$

Soit

$$M_n(\omega) = 2^n \sum_{k=0}^{2^n-1} \left(f((k+1)2^{-n}) - f(k2^{-n}) \right) \mathbb{I}_{I_{n,k}}(\omega).$$

- a) Montrer que $(M_n)_{n\geqslant 1}$ est une martingale.
- b) Montrer que $(M_n)_{n\geqslant 1}$ est uniformément intégrable.
- c) Déduire que pour tout f absolument continue il existe $g \in L^1(\Omega)$ telle que

$$f(x) = f(0) + \int_0^x g(y) dy.$$