Module 7: Data Wrangling using pandas

• Submitted by: Prince Wally G. Esteban

• Performed on: 04/07/25 • Submitted on: 04/07/25

• Submited to: Engr. Roman Richard

Excercise 1

```
# 1. read each file in
import pandas as pd
apple = pd.read_csv('aapl.csv')
amazon = pd.read_csv('amzn.csv')
facebook = pd.read_csv('fb.csv')
google = pd.read_csv('goog.csv')
netflix = pd.read_csv('nflx.csv')
# 2. Add ticker column
apple['ticker'] = 'AAPL'
amazon['ticker'] = 'AMZN'
facebook['ticker'] = 'FB'
google['ticker'] = 'GOOG'
netflix['ticker'] = 'NFLX'
# 3. Combine all DataFrames
faang = pd.concat([apple, amazon, facebook, google, netflix], ignore_index=True)
# 4. Save to CSV
faang.to_csv('faang.csv', index=False)
```

faang

→		date	open	high	low	close	volume	ticker		
	0	2018-01-02	166.9271	169.0264	166.0442	168.9872	25555934	AAPL	ıl.	
	1	2018-01-03	169.2521	171.2337	168.6929	168.9578	29517899	AAPL	+//	
	2	2018-01-04	169.2619	170.1742	168.8106	169.7426	22434597	AAPL		
	3	2018-01-05	170.1448	172.0381	169.7622	171.6751	23660018	AAPL		
	4	2018-01-08	171.0375	172.2736	170.6255	171.0375	20567766	AAPL		
	•••			***	***		•••			
	1250	2018-12-24	242.0000	250.6500	233.6800	233.8800	9547616	NFLX		
	1251	2018-12-26	233.9200	254.5000	231.2300	253.6700	14402735	NFLX		
	1252	2018-12-27	250.1100	255.5900	240.1000	255.5650	12235217	NFLX		
	1253	2018-12-28	257.9400	261.9144	249.8000	256.0800	10987286	NFLX		
	1254	2018-12-31	260.1600	270.1001	260.0000	267.6600	13508920	NFLX		
	1255 rows × 7 columns									
				270.1001	260.0000	267.6600	13508920	NFLX		

Excercise 2

```
# Convert 'date' to datetime and 'volume' to integer
faang['date'] = faang['date'].apply(pd.to_datetime)
faang['volume'] = faang['volume'].apply(pd.to_numeric)
# Sort by date and ticker
faang_sorted = faang.sort_values(by=['date', 'ticker'])
# Get the 7 rows with the highest volume
top_volume = faang_sorted.nlargest(7, 'volume')
# Melt the data into long format (date and ticker are ID variables)
faang_long = pd.melt(
    faang_sorted,
    id_vars=['date', 'ticker'],
    value_vars=['open', 'high', 'low', 'close', 'volume'],
    var_name='attribute',
    value_name='value'
# Print results for verification
top_volume
\overline{\rightarrow}
                date
                         open
                                  high
                                            low
                                                   close
                                                            volume ticker
     644 2018-07-26 174.8900 180.1300 173.7500 176.2600 169803668
     555 2018-03-20 167.4700 170.2000 161.9500 168.1500 129851768
                                                                        FΒ
     559 2018-03-26 160.8200 161.1000 149.0200 160.0600 126116634
     556 2018-03-21 164.8000 173.4000 163.3000 169.3900 106598834
                                                                        FB
     182 2018-09-21 219.0727 219.6482 215.6097 215.9768
                                                         96246748
                                                                      AAPL
     245 2018-12-21 156.1901 157.4845 148.9909 150.0862
                                                         95744384
                                                                      AAPL
     212 2018-11-02 207.9295 211.9978 203.8414 205.8755
                                                         91328654
                                                                      AAPL
 Next steps: (  View recommended plots )
                                       New interactive sheet
faang_long.head()
date ticker attribute
                                         value
     0 2018-01-02
                    AAPL
                                       166.9271
                                open
     1 2018-01-02
                    AMZN
                                open 1172.0000
     2 2018-01-02
                     FB
                                open
                                       177.6800
     3 2018-01-02 GOOG
                                 open 1048.3400
     4 2018-01-02
                   NFLX
                                       196.1000
                                 open
 Next steps: ( View recommended plots
                                       New interactive sheet
```

Excercise 3

```
import requests
from bs4 import BeautifulSoup
import pandas as pd
# URL of the NHFR page listing hospitals
url = 'https://nhfr.doh.gov.ph/rfacilities2list.php'
# Send a GET request to the URL
response = requests.get(url)
response.raise_for_status() # Raise an error for bad status codes
# Parse the HTML content
soup = BeautifulSoup(response.content, 'html.parser')
# Find the table containing hospital data
table = soup.find('table', {'id': 'example'})
# Extract table headers
headers = [header.text.strip() for header in table.find_all('th')]
# Extract table rows
rows = []
for row in table.find all('tr')[1:]:
   cells = row.find all('td')
    row_data = [cell.text.strip() for cell in cells]
   rows.append(row_data)
# Create a DataFrame
df = pd.DataFrame(rows, columns=headers)
# Save to CSV
df.to_csv('hospitals.csv', index=False)
print("Data has been successfully scraped and saved to 'hospitals.csv'.")
# Save to CSV
df = pd.read_csv('v_activefacilities.csv')
df.to_csv('hospitals.csv', index=False)
# convert to dataframe
newdf = pd.read_csv('hospitals.csv')
newdf
```

	Health Facility Code	Health Facility Code Short	Facility Name	Old Health Facility Name 1	Old Health Facility Name 2	Old Health Facility Name 3	Facility Major Type	Health Facility Type	Owi Classif:
0	DOH000000000000467	467	A. DE LA CRUZ MATERNITY HOSPITAL	DE LA CRUZ MATERNITY HOSPITAL	NaN	NaN	Health Facility	Hospital	
1	DOH00000000005026	5026	A. ZARATE GENERAL HOSPITAL	NaN	NaN	NaN	Health Facility	Hospital	
2	DOH000000000006720	6720	A.M. YUMENA GENERAL HOSPITAL INC.	YUMENA SURGICAL AND MEDICAL CLINIC	NaN	NaN	Health Facility	Hospital	
3	DOH00000000003315	3315	ABELLA MIDWAY HOSPITAL	NaN	NaN	NaN	Health Facility	Hospital	
4	DOH00000000003409	3409	ABORLAN MEDICARE HOSPITAL	NaN	NaN	NaN	Health Facility	Hospital	Gov
•••		***			***	***	***	***	
1334	DOH000000000007036	7036	ZAMBOANGA DOCTORS HOSPITAL, INC.	NaN	NaN	NaN	Health Facility	Hospital	
1335	DOH00000000004975	4975	ZAMBOANGA PENINSULA MEDICAL CENTER, INC.	ZAMBOANGA CHILDREN'S HOSPITAL, INC.	NaN	NaN	Health Facility	Hospital	
1336	DOH00000000004592	4592	ZAMBOANGA PUERICULTURE LYING-IN MATERNITY HOS	NaN	NaN	NaN	Health Facility	Hospital	
1337	DOH000000000002910	2910	ZAMBOANGA SIBUGAY PROVINCIAL HOSPITAL	NaN	NaN	NaN	Health Facility	Hospital	Gov
1338	DOH00000000034464	34464	ZONE MEDICAL AND INTERVENTION HOSPITAL, INC.	NaN	NaN	NaN	Health Facility	Hospital	

1339 rows × 32 columns

Conclusion

I found it exciting wrangling data using pandas, especially now that I can actually understand what I am doing. This leads me closer to being better at coding and data science. In this activity, we practiced working with real-world datasets by reading, combining, cleaning, and transforming data using Python and pandas. We handled multiple CSV files, added relevant identifiers, and organized the data into a more useful format for analysis. Through these tasks, we strengthened our understanding of data