数据库的自然语言接口

2020-06-04

告序的目為语言按口大键技术研光

华商理工大学 2020/6/2

数据库的自然语言接口关键技术研究

胡玮文

华南理工大学

2020/6/2

- 自我介绍
- 题目

Time: 00:18

- 1 背景
- 2 提出的方法
 - SQL 预处理和后处理
 - 上下文编码机制
 - 关系编码机制
- 3 实验
- 4 结论

数据库的自然语言接口

└─目录

9 HH 提出的方法
 ◆ SQL 预处理和后处理
 ◆ 上下文编码机制
 ◆ 关系编码机制 0.88 ● 排轮

Time: 00:25

2020-06-04

4□ > 4□ > 4□ > 4□ > 4□ > 4□

- 1 背景
- 2 提出的方法
 - SQL 预处理和后处理
 - 上下文编码机制
 - 关系编码机制

胡玮文 (SCUT)

- 3 实验
- 4 结论

数据库的自然语言接口 -背景 └─目录

2020-06-04

9 HH 0.88 4 40 mg

数据库的自然语言接口

日常生活中,人们每天都在和无数数据库打交道

图: 当前与数据库交互的方式

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□ >

数据库的自然语言接口 上背景

─数据库的自然语言接口

- 生活中很多信息系统,数据库
- 普通用户很少与数据库直接交互,需要专业,SQL,但普通用户不具有这样的专业能力

普通用户通过用户界面与数据库交互

Time: 01:00

2020-06-04

胡玮文 (SCUT) 数据库的自然语言接口 2020/6/2 4/22

数据库的自然语言接口

图: 通过自然语言接口与数据库直接交互

意义

广大用户首次获得了直接面对大数据的能力

数据库的自然语言接□ └─背景

─数据库的自然语言接口

大数据时代,数据产生快,分析数据水平不够。帮助用户获取分析任何 信息,探索。

如何实现?(过渡)

Time: 01:25

2020-06-04

胡玮文 (SCUT)

数据库的自然语言接口

2020/6/2

5 / 22

自然语言到 SQL 转换任务

实现数据库的自然语言接口的方式之一:将自然语言转换为 SQL

图: 通过自然语言到 SQL 转换与数据库交互

<ロ > ← □ > ← □ > ← □ > ← □ = ・ つへ(~ □

2020/6/2

数据库的自然语言接口 └─背景

2020-06-04

一自然语言到 SQL 转换任务

実現長期何的知恵前建田的方式之一、自由部高前教务 50。 明天和凡泉从广州 SELECT count(*) … 大志京市城市! 特定器 12

方法之一。所有现有数据库都能获得自然语言接口的能力。

目标:构建一个这样的转换器

过渡: 为了实现这个目标,之前也有不少努力。

Time: 01:45

胡玮文 (SCUT) 数据库的自然语言接口

SParC 数据集

SParC 数据集是跨领域的,上下文相关的自然语言到 SQL 转换任务数 据集

What are all the airlines?

SELECT * FROM AIRLINES

Of these, which is Jetblue Airways? SELECT * FROM AIRLINES WHERE

Airline = "JetBlue Airways"

What is the country corresponding it?

SELECT Country FROM AIRLINES WHERE

Airline = "JetBlue Airways"

图: 数据库架构

胡玮文 (SCUT) 数据库的自然语言接口 2020/6/2 数据库的自然语言接口 -背景

2020-06-04

SELECT Country FROM AIRLINES WHERE

SParC 数据集基跨领域的。上下文相关的自然语言到 SQL 转换任务数

What are all the airlines? SELECT . FROM AIRLINES Of these, which is Jetblue Airways' SELECT . FROM AIRLINES WHERE Airline - "JetBlue Airways"

What is the country corresponding it?

Airline = "JetBlue Airways"

-SParC 数据集

- 内容包括数据库架构,以及多轮与数据库的交互
- 每轮交互包括一个自然语言的查询和对应的 SQL 语句
- 目标:构建转换器,输入:数据库架构,自然语言查询。输出:对 应 SQL 语句
- 介绍跨领域
- 介绍上下文相关

- 1 背景
- 2 提出的方法
 - SQL 预处理和后处理
 - 上下文编码机制
 - 关系编码机制
- 3 实验
- 4 结论

数据库的自然语言接口 └─提出的方法

└─目录

2020-06-04

4□ > 4□ > 4□ > 4□ > 4□ > 4□

整体架构

胡玮文 (SCUT)

图: 模型整体架构

数据库的自然语言接口

←□▶ ←□▶ ← □ ▶

2020/6/2

数据库的自然语言接口 └─提出的方法

2020-06-04

─整体架构

主要:编码器、解码器过渡:后面主要介绍本研究中的改进内容

SQL 预处理和后处理

- SQL 中包含冗余的,抽象层次低的结构,将显著影响模型预测的准确率
- EditSQL 的方案为去除 SQL 中最为冗余的 FROM 子句,但并非所有 FROM 的内容都是冗余的。17.3% 的 SQL 无法还原

例 (去掉 FROM 子句后将丢失信息)

Which students have pets?

SELECT DISTINCT T1.fname

FROM student AS T1

JOIN has_pet AS T2 ON T1.stuid = T2.stuid

转换为

SELECT DISTINCT student.fname

数据库的自然语言接口 └─提出的方法 └─SQL 预处理和后处理 └─SQL 预处理和后处理

SQL 预处理和后处理

- SQL 中包含冗余的,抽象层次低的结构,将显著影响模型预测的 确率
- 有 FROM 的内容都是冗余的。17.3% 的 SQL 无法还原

Which students have pets?

SELECT DISTINCT T1.fname FROM student AS T1

JOIN has_pet AS T2 ON T1.stuid = T2.stuid

SELECT DISTINCT student.fname

胡玮文 (SCUT)

SQL 预处理和后处理

本文方案

更细粒度地处理 FROM 子句,保留必要的信息。仅 2.3% 的 SQL 无法 还原

预处理过程

- 解析列引用,将引用表达式替换为"表名.列名"的规范形式
- ② 去除所有 JOIN 子句中的 ON 部分
- 3 去除 FROM 子句中用于多对多关联的 JOIN 子句
- 在 FROM 子句中,去除所有在 SQL 的其他部分引用过的表。若所 有表都被去除,则去除整个 FROM 子句。

后处理过程

- 将所有在 SQL 中引用过的表添加到 FROM 子句中。
- ② 根据外键关系,将数据库中的所有表构造成无向图,并使用 Kruskal 算法求解包含当前 FROM 子句中的表的最小生成树,根据生成树 的边和节点来重建 JOIN 子句中的 ON 部分。
- 有多张表时,恢复别名

数据库的自然语言接口 提出的方法 -SQL 预处理和后处理 SQL 预处理和后处理

SQL 预处理和后处理

预处理过程

更细粒度地处理 FROM 子句,保留必要的信息。仅 2.3% 的 SQL 无法

a 解析到引用,将引用表达式替换为"表名,列名"的提取形式

- a 去除 FROM 子句中用于多对多关联的 JOIN 子句
- a 在 FROM 子句中,去除所有在 SQL 的其他部分引用过的表。若用
- a 将所有在 SQL 中引用过的表源加到 FROM 子句中
- 算法或解包含当前 FROM 子句中的表的最小生成树。根据生成树 的边和节点来重建 JOIN 子句中的 ON 部分

SQL 预处理和后处理

本文方案

```
例
```

```
SELECT T3.Party_Theme, T2.Name FROM party_host AS T1
    JOIN host AS T2 ON T1.Host_ID = T2.Host_ID
    JOIN party AS T3 ON T1.Party_ID = T3.Party_ID
转换为
SELECT party.Party_Theme, host.Name
```

- 解析别名 T2, T3 为真正的表名
- party_host 是多对多关联表, host 和 party 表均在 SELECT 子 句中被引用过,所以整个 FROM 子句全部被去除。

数据库的自然语言接口 └─提出的方法 └─SQL 预处理和后处理 └─SQL 预处理和后处理

2020-

QL 预处理和后处理

图 SELECT T3.Party_Theme, T2.Name FROM party_host AS T1 JOIN host AS T2 ON T1.Host_ID = T2.Host_ID JOIN party_AS T3 ON T1.Party_ID = T3.Party_ID 转换为

- ■解析别名 T2、T3 为真正的表名
- party_host 是多对多关联表, host 和 party 表均在 SELECT 切中被引用过,所以整个 FROM 子切全部被去除。

上下文编码机制

EditSQL 使用会话级别 RNN 编码上下文信息

图: EditSQL 编码上下文方案

メロトス部トスミトスミト (意)

数据库的自然语言接口 └─提出的方法 └─上下文编码机制 └─上下文编码机制

胡玮文 (SCUT)

上下文编码机制

BERT 等模型经过大规模无标注文本数据预训练,能更好地理解自然语 言的上下文信息,如指代、省略等现象。

What are all the airlines? Of these, 编码器 which is Jetblue Airways? What is the country corresponding it?

图: 本文上下文编码机制

2020-06-04

数据库的自然语言接口 提出的方法 -上下文编码机制 ─上下文编码机制

胡玮文 (SCUT)

数据库的自然语言接口

2020/6/2

14 / 22

关系编码机制

胡玮文 (SCUT)

- 数据库架构中包含有主键,外键等信息。这些信息被以往的很多方 法忽略
- 本文将数据库架构的编码结合进预训练注意力机制中

●自己 ●同一列中其他单词 ●同一表中其他列 ●所在表 ●一对多关联表 ●其他

图: 关系编码机制示意1

◆□▶ ◆□▶ ◆□▶ ◆□▶ ○□ ● ○○○○ 2020/6/2 15 / 22

数据库的自然语言接口 2020-06-04 提出的方法 -关系编码机制 - 关系编码机制 0000000000 第一个系统联系统定令

1为了展示网流、标点符号对应的表示记省略。它们全部使用"其他"关系、此处仅 展示了解心主星条句。

编码有向图

¹为了展示简洁,标点符号对应的表示已省略,它们全部使用"其他"关系。此处仅 展示了部分关系类型。 数据库的自然语言接口

- 1 背景
- 2 提出的方法
 - SQL 预处理和后处理
 - 上下文编码机制
 - 关系编码机制
- ③ 实验
- 4 结论

数据库的自然语言接口 └─实验 └─目录

2020-06-04

● 提出的方法 ◆ SQL 预处理和后 ◆ 上下文编码机制 ◆ 关系编码机制

9 412

6 888

4□ > 4團 > 4 ≣ > 4 ≣ > ■ 9 Q (?)

总体结果

胡玮文 (SCUT)

	问题准确率	交互准确率
SyntaxSQL-con	18.5	4.3
CD-Seq2Seq	21.9	8.1
EditSQL with BERT	47.2	29.5
本文模型 with BERT	54.3	34.6
本文模型 with XLNet	58.5	39.6
使用标注的历史 SQL 查询		
EditSQL with BERT	53.4	29.2
本文模型 with BERT	60.7	34.6
本文模型 with XLNet	64.3	39.3

表: SParC 实验总体结果

数据库的自然语言接口

←□ → ←□ → ← □ → ← □ → ○ へ ○ ○

数据库的自然语言接口 └─实验

─总体结果

2020-06-04

	问题准确率	交互准備
SyntaxSQL-con	18.5	
CD-Seq2Seq	21.9	
EditSQL with BERT	47.2	2
本文模型 with BERT	54.3	3
本文模型 with XLNet	58.5	3
使用标注的历史 SQL	在到	
EditSQL with BERT	53.4	2
本文模型 with BERT	60.7	3
本文模型 with XLNet	64.3	3

总体结果

表: SParC 实验总体结果

消融实验

SQL 预处理和后处理

- "无 FROM"为 EditSQL 所用方案
- "FROM 未引用表"为本文最终采用方案

胡玮文 (SCUT)

图: 各种预处理方案对比

数据库的自然语言接口

2020/6/2

数据库的自然语言接□ └─实验

2020-06-04

└─消融实验

EditSQL 的方案虽然会导致信息丢失,但依然是有助提升性能的。 要预测的冗余的信息越多,准确率越低

消融实验

上下文编码 & 关系编码机制

	问题准确率	交互准确率
本文模型	58.5	39.6
- 上下文编码	54.2	33.9
- 关系编码	57.1	38.9

表: 消融实验结果

实验对比结果

- 上下文编码机制虽然简单,但效果显著
- 关系编码机制带来较小提升

数据库的自然语言接口 └─实验

2020-06-04

─消融实验

关系编码提升小,可能原因:

- 预训练模型能从内容中较好理解关系,编码仅是锦上添花
- 编码未能良好融入预训练模型后

错误分析

- 大多数错误出现在单个 子查询内
- 较高层次的查询骨架错 误和较低层次的列选择 错误都较多
- 语法错误几乎没有

图: 预测错误分析

数据库的自然语言接口 2020-06-04

-实验

-错误分析

大多查询不包括子查询和组合结构。其预测准确率也很低

- 1 背景
- 2 提出的方法
 - SQL 预处理和后处理
 - 上下文编码机制
 - 关系编码机制
- 3 实验
- 4 结论

数据库的自然语言接口 └─结论 日录

● 背景

● 液油的方法

・ SQL 预处理和后处理

・ 上下文编码和制

・ 天系编码机制

● 本验

● 瑜论

2020-06-04

└─目录

4□ > 4□ > 4□ > 4□ > 4□ > 4□

结论

工作总结

- 提出了三项简单的改进措施,并实验验证其有效
- 融入最新预训练模型 XLNet, 进一步提升结果
- 在 SParC 数据集,跨领域上下文相关的自然语言到 SQL 转换任务 上,取得了新的最优准确率

工作展望

- 使用类似 ORM 系统的方式,继续改进预处理方案
- 强化关系编码效果,并可应用于其他领域
- 数据库自然语言接口系统的进一步研究与实现

< ロ > < 回 > < 巨 > < 巨 > し ≥ ・ り < ②

数据库的自然语言接口

─结论

-06 - 04

· 使用类似 ORM 系统的方式,继续改进预处理方案 ... 数据成自然语言抽口系统的讲一也研究与定理

- 1. 设计更适合机器学习预测的,能确定性转换为 SQL 的查询语言
- 2. 准确率不足以在实际工程项目中

胡玮文 (SCUT)

数据库的自然语言接口

2020/6/2

22 / 22