Exploratory Data Analysis [github link]

1. Correlation of each variable

Dependent Variable : Life.expectancy

Independet Variables : Year, Adult.Mortality, infant.deaths, Alcohol, percentage.expenditure, Hepatitis.B, Measles, BMI, under.five.deaths, Polio, Total.expenditure, Diphtheria, HIV.AIDS, GDP, Population, thinness.1.19.years, thinness.5.9.years, Income.composition.of.resources, Schooling

df = read.csv("/Users/shafaqonitatingmail.com/Documents/Semester 4/Data Mining and Visualization/Life Expectancy Data.csv")

De	escription: df [6 × 2	2]							~ ^
	Country <chr></chr>	Year <int></int>	Status <chr></chr>	Life.expectancy <dbl></dbl>	Adult.Mortality <int></int>	infant.deaths <int></int>	Alcohol <dbl></dbl>	percentage.expenditure <dbl></dbl>	Hepatitis.B <int></int>
1	Afghanistan	2015	Developing	65.0	263	62	0.01	71.279624	65
2	Afghanistan	2014	Developing	59.9	271	64	0.01	73.523582	62
3	Afghanistan	2013	Developing	59.9	268	66	0.01	73.219243	64
4	Afghanistan	2012	Developing	59.5	272	69	0.01	78.184215	67
5	Afghanistan	2011	Developing	59.2	275	71	0.01	7.097109	68
6	Afghanistan	2010	Developing	58.8	279	74	0.01	79.679367	66

With the head () function above, we can identify columns that are numerical and categorical.

```
colSums(is.na(df))
 [1] "Country"
                                                                                   "Status"
                                            "Year"
[4] "Life.expectancy"
[7] "Alcohol"
                                            "Adult.Mortality"
                                                                                  "infant.deaths"
                                            "percentage.expenditure"
                                                                                  "Hepatitis.B"
[10] "Measles"
[13] "Polio"
[16] "HIV.AIDS"
                                                                                  "under.five.deaths'
                                            "Total.expenditure"
                                                                                  "Diphtheria"
                                                                                   "Population
[19] "thinness..1.19.years"
                                            "thinness.5.9.years"
                                                                                 "Income.composition.of.resources"
[22] "Schooling"
```

the code above is used to display the name of each column in the dataset. This dataset contains 22 columns of information about variables that affect life expectancy.

```
        Colsums (is.na(df))

        Country
        Year
        Status
        Life.expectancy

        0
        0
        0
        10

        Adult.Mortality
        infant.deaths
        Alcohol
        percentage.expenditure

        10
        0
        194
        0

        Hepatitis.B
        Measles
        BMI
        under.five.deaths

        553
        0
        34
        0

        Polio
        Total.expenditure
        Diphtheria
        HIV.AIDS

        19
        226
        19
        0

        GDP
        Population
        thinness.1.19.years
        thinness.5.9.years

        448
        652
        34
        34

        Income.composition.of.resources
        Schooling
        34
```

with the function colSums(is.na(df)) above, we can identify the number of null-values in each column of df. The is.na() function is used to check whether there are null values, then the colSums() function is used to sum the null-values in each df column.

Next, we will select columns in df that have numerical data type. This is needed because the cor () function will calculate the correlation between numerical variables so the variables to be calculated must be numerical.

```
df_numerical = df[, c("Life.expectancy", "Year", "Adult.Mortality", "infant.deaths",
"Alcohol", "percentage.expenditure", "Hepatitis.B", "Measles", "BMI",
"under.five.deaths", "Total.expenditure", "Diphtheria", "HIV.AIDS", "GDP", "Population",
"thinness..1.19.years", "thinness.5.9.years", "Income.composition.of.resources",
"Schooling")]
cor(df_numerical)
```

	Life.expectancy	Year	Adult.Mortality	infant deaths	Alcohol	nercentage ex	mendi ture	Henstitis R	
Life.expectancy	1	NA NA	NA NA		NA NA	per cerreage.ex	NA	NA	
Year	NA NA	1.00000000	NA NA				0.03139998	NA	
Adult.Mortality	NA NA	NA NA	1		NA.		NA	NA	
infant.deaths	NA NA	-0.03741493	NA NA			-6	0.08561222	NA	
Alcohol	NA	NA	NA NA				NA	NA	
percentage.expenditure	NA	0.03139998	NA NA	-0.08561222	NA	1	. 00000000	NA	
Hepatitis.B	NA	NA	NA NA	NA NA	NA		NA	1	
Measles	NA	-0.08249298	NA NA	0.50112834	NA.	-6	0.05659568	NA	
BMI	NA	NA	NA NA	NA NA	NA		NA	NA	
under.five.deaths	NA	-0.04293699	NA NA	0.99662888	NA	-6	0.08785231	NA	
Total.expenditure	NA	NA	NA NA	NA NA	NA		NA	NA	
Diphtheria	NA	NA	NA NA	NA NA	NA		NA	NA	
HIV.AIDS	NA	-0.13974136	NA NA	0.02523132	NA	-6	0.09785682	NA	
GDP	NA	NA	NA NA				NA	NA	
Population	NA	NA	NA NA				NA	NA	
thinness1.19.years	NA	NA	NA NA				NA	NA	
thinness.5.9.years	NA	NA	NA NA				NA	NA	
Income.composition.of.resource		NA	NA NA				NA	NA	
Schooling	NA	0.20347119	NA NA				38810498	NA	
			e.deaths Total.					ation thinness	
Life.expectancy		NA	NA	NA	N/		NA	NA	NA
Year			04293699	NA	N/		NA	NA	NA
Adult.Mortality		NA	NA	NA	N/		NA	NA	NA
infant.deaths			99662888	NA	N/		NA	NA	NA
Alcohol		NA	NA	NA	N/		NA	NA	NA
percentage.expenditure			08785231	NA	N/		NA	NA	NA
Hepatitis.B		NA	NA	NA	N/		NA	NA	NA
Measles			50780871	NA	N/		NA	NA	NA
BMI	NA	1	NA	NA	N/		NA	NA	NA
under.five.deaths			00000000	NA	N/		NA	NA	NA
Total.expenditure		NA	NA	1	N/		NA	NA	NA
Diphtheria		NA	NA	NA	1		NA	NA	NA
HIV.AIDS			03806151	NA	N/		NA	NA	NA
GDP		NA	NA	NA	N/		1	NA	NA
Population		NA	NA	NA	N/		NA	1	NA
thinness1.19.years		NA	NA	NA	N/		NA	NA	1
thinness.5.9.years		NA	NA	NA	N/		NA	NA	NA
Income.composition.of.resource		NA	NA	NA	N/		NA	NA	NA
Schooling	-0.12260854	NA -0.	20711142	NA	N/	-0.21861975	NA	NA	NA
	thinness.5.	9.years Inc	ome.composition	n.of.resources	s Schoo	ling			
Life.expectancy		NA		N/	4	NA			
Year		NA		N/	0.203	4712			
Adult.Mortality		NA		N/	Α	NA			
infant.deaths		NA		N/	-0.191	7573			
Alcohol		NA		N/	4	NA			
percentage.expenditure		NA		N/	0.388	1050			
Hepatitis.B		NA		N/	A	NA			
Measles		NA		N/	-0.122	6085			
BMI		NA		N/		NA			
under.five.deaths		NA.		N/					
Total.expenditure		NA.		N/		NA NA			
Diphtheria		NA NA		N/		NA NA			
HIV.AIDS		NA		N/					
GDP		NA		N/		NA			
Population		NA		N/		NA			
thinness1.19.years		NA		N/		NA			
thinness.5.9.years		1		N/		NA			
Income.composition.of.resour	ces	NA		1		NA			
Schooling		NA		N/	1.000	0000			

Year Life.expectancy

It is found that there are a lot of NAs which means there are a lot of missing values or null-values between the columns. This will certainly affect the data correlation plot.

```
library(reshape2)
library(ggplot2)
corr melted <- melt(cor(df numerical))</pre>
ggplot(corr melted, aes(x = Var1, y = Var2, fill = value)) +
   geom tile\overline{()} +
   scale_fill_gradient2(low = "#DEFCF9", mid = "#3282B8", high = "#142850",
                                       name = "Pearson\nCorrelation") +
   theme(axis.text.x = element text(angle = 90, vjust = 0.7, hjust = 1))
                          Schooling
Income.composition.of.resources
thinness.5.9.years
thinness.1.19.years
Population
                                                                                                                     Pearson
Correlation
                                       Population
GDP
HIV.AIDS
Diphtheria
Total.expenditure
under.five.deaths
BMI
                                                                                                                          0.75
                                                                                                                          0.50
                                 BMI-
Measles -
Hepatitis.B -
percentage.expenditure -
Alcohol -
infant.deaths -
Adult.Mortality -
                                                                                                                          0.25
                                                                                                                          0.00
```

Hepatitis.B Measles Measles BMI Under.five.deaths Total.expenditure Diphtheria HIV.AIDS GDP RDP Population thinness.1.19.years thinness.5.9.years Income.composition.of.resources Schooling -

The plot shows that the correlation is very poor because there are a lot of null-values depicted in grey.

To fix this problem, we need to impute null-values, which is the process of filling in the null-values for each data that has no value and replacing them with the mean, median, mode or other methods. This needs to be done so that the data can be analyzed better.

In this case, we will impute the null values with the mean value in each column. The first step is we will select the numerical variable by using the sapply() and is.numeric() functions which will be stored in a new data frame called df_num . Next, we will calculate the average by ignoring null-values using na.rm = TRUE in the colMeans() function.

```
df num <- df[, sapply(df, is.numeric)]</pre>
colMeans(df num, na.rm = TRUE)
                                                                   Adult.Mortality
                                    Life.expectancy
                                                                                                   infant.deaths
                                                                                                                                       Alcohol
                Year
        2.007519e+03
                                       6.922493e+01
                                                                      1.647964e+02
                                                                                                    3.030395e+01
                                                                                                                                  4.602861e+00
percentage.expenditure
                                        Henatitis B
                                                                          Measles
                                                                                                             BMT
                                                                                                                              under five deaths
                                       8.094046e+01
                                                                     2.419592e+03
                                                                                                    3.832125e+01
         7.382513e+02
                                                                                                                                  4.203574e+01
                                   Total.expenditure
                                                                        Diphtheria
                                                                                                        HIV.AIDS
         8.255019e+01
                                       5.938190e+00
                                                                      8.232408e+01
                                                                                                    1.742103e+00
                                                                                                                                   7.483158e+03
           Population
                                thinness..1.19.years
                                                                thinness.5.9.vears Income.composition.of.resources
                                                                                                                                     Schooling
                                       4.839704e+00
                                                                      4.870317e+00
```

The next step is that we will iterate over df_num to impute null-values with the mean or average value of each column. If we get columns in df_num that have null-values, we will impute values to fill the null-values.

```
for(i in names(df num)) {
   df num[, i][is.na(df num[, i])] = mean(df num[, i], na.rm=TRUE)
colSums(is.na(df num))
                                                                                                                       Alcohol
                                                            Adult.Mortality
                                                                                        infant.deaths
                Year
                                 Life.expectancy
 percentage.expenditure
                                    Hepatitis.B
                                                                  Measles
                                                                                                BMI
                                                                                                               under.five.deaths
               Polio
                                Total.expenditure
                                                               Diphtheria
                                                                                           HTV. ATDS
                                                                                                                          GDP
                             thinness..1.19.years
                                                         thinness.5.9.years Income.composition.of.resources
```

By running imputation on the null-values, it is found that there are no longer any columns that have null-values according to the output above.

Next, we will perform calculations to find the correlation value for each variable as in the beginning using the cor() function.

```
print(cor(df num))
                                          Year Life.expectancy Adult.Mortality infant.deaths
                                                                                                     Alcohol percentage.expenditure Hepatitis.B
                                                                                                                                                       Measles
                                                                                                                                                                       BMI
                                                                                     -0.03741493 -0.04816759
                                                                      -0.07886077
-0.69635931
                                                                                                                          0.03139998
0.38179117
                                                                                                                                       0.08939827 -0.08249298
0.20377144 -0.15757382
                                     1 00000000
                                                      0.1696226
                                                                                                                                                                0 1083267
  Life.expectancy
                                     0.16962259
                                                      1.0000000
                                                                                     -0.19653500
                                                                                                  0.39159834
                                                                                                                                                                 0.5592553
  Adult.Mortality
                                    -0.07886077
                                                      -0.6963593
                                                                      1.000000000
                                                                                     0.07874713
                                                                                                 -0.19040781
                                                                                                                          -0.24281353
                                                                                                                                       -0.13859091
                                                                                                                                                    0.03117404
                                                                                                                                                                 -0.3814494
  infant.deaths
                                    -0.03741493
                                                                       0.07874713
                                                                                                                          -0.08561222
                                                                                                                                       -0.17878339
                                                                                                                                                    0.50112834
                                                      -0.1965350
                                                                                     -0.11381227
  Alcohol
                                    -0.04816759
                                                      0.3915983
                                                                      -0.19040781
                                                                                                                          0.33963429
                                                                                                                                       0.07544715
                                                                                                                                                   -0.05105499
                                                                                                                                                                 0.3180703
  percentage.expenditure
                                    0.03139998
                                                      0.3817912
                                                                      -0.24281353
                                                                                     -0.08561222
                                                                                                  0.33963429
                                                                                                                          1.00000000
                                                                                                                                       0.01167932 -0.05659568
                                                                                                                                                                0.2285372
                                     0.08939827
                                                      0.2037714
-0.1575738
                                                                      -0.13859091
0.03117404
                                                                                       .17878339
                                                                                                                                                                 0.1349285
                                                                                                  0.07544715
                                                                                                                           0.01167932
                                                                                                                                       -0.09031694
  Measles
                                    -0.08249298
                                                                                     0.50112834
                                                                                                  -0.05105499
                                                                                                                          -0.05659568
                                                                                                                                                    1.000000000
                                                                                                                                                                 0.1759253
                                    0.10832670
                                                      0.5592553
                                                                      -0.38144941
                                                                                     -0.22721997
                                                                                                  0.31807030
                                                                                                                          0.22853723
                                                                                                                                       0.13492851
                                                                                                                                                   -0.17592529
                                                                                                                                                                 1.0000000
                                                                      0.09413509
-0.27269358
  under.five.deaths
                                     0.04293699
                                                      -0.2225030
                                                                                        99662888
                                                                                                                          -0.08785231
                                                                                                                                                                 0.2375850
                                                                                                    .11077713
                                    0.09381958
                                                      0.4615738
                                                                                     -0.17067376
                                                                                                  0.21374404
                                                                                                                          0.14720343
                                                                                                                                       0.40851923
  Polio
                                                                                                                                                   -0.13614628
                                                                                                                                                                0.2821559
  Total expenditure
                                     0.08186014
                                                      0.2079806
                                                                      -0.11087454
                                                                                     -0.12656412
                                                                                                  0.29489812
                                                                                                                          0.17341415
                                                                                                                                       0.05008430 -0.10456872
                                                                                                                                                                0.2318144
                                     0.13385337
                                                      0.4754184
                                                                      -0.27301389
                                                                                     -0.17515631
                                                                                                  0.21524194
                                                                                                                           0.14356978
                                                                                                                                                    -0.14186137
  HIV.AIDS
                                    -0.13974136
                                                      -0.5564568
                                                                      0.52372692
                                                                                     0.02523132
                                                                                                  -0.04864971
                                                                                                                          -0.09785682
                                                                                                                                       -0.10240544
                                                                                                                                                    0.03089872
                                                                                                                                                                 -0.2435476
                                    0.09335084
                                                      0.4304930
                                                                      -0.27705292
                                                                                     -0.10710904
                                                                                                  0.31859116
                                                                                                                          0.88814032
                                                                                                                                       0.06231758
                                                                                                                                                   -0.06805959
                                                                                                                                                                 0.2766447
  Population
  thinness..1.19.years
                                    -0.04759213
                                                      -0.4721619
                                                                      0.29986267
                                                                                     0.46559015 -0.41694557
                                                                                                                          -0.25119000 -0.10514361
                                                                                                                                                    0.22474217
                                                                                                                                                                -0.5320247
  thinness.5.9.years
Income.composition.of.resources
                                    -0 05062670
                                                      -0 4666292
                                                                      0 30536641
                                                                                     0 47122795 -0 40588068
                                                                                                                          -0.25272486 -0.10833424
                                                                                                                                                   0.22100716 -0.5389106
  Schoolina
                                    0.20347119
                                                      0.7150663
                                                                      -0.43510845
                                                                                     -0.19175731 0.49754628
```

	under.five.deaths	Polio	Total.expenditure	Diphtheria	HIV.AIDS	GDP	Population	thinness1.19.years
Year	-0.04293699	0.09381958	0.08186014	0.13385337 -0.	.13974136	0.09335084	0.014950626	-0.04759213
Life.expectancy	-0.22250302	0.46157378	0.20798062	0.47541838 -0.	.55645682	0.43049302	-0.019637702	-0.47216188
Adult.Mortality	0.09413509	-0.27269358	-0.11087454	-0.27301389 0.	52372692	-0.27705292	-0.012501453	0.29986267
infant.deaths	0.99662888	-0.17067376	-0.12656412	-0.17515631 0.	.02523132	-0.10710904	0.548521669	0.46559015
Alcohol	-0.11077713	0.21374404	0.29489812	0.21524194 -0.	.04864971	0.31859116	-0.030764657	-0.41694557
percentage.expenditure	-0.08785231	0.14720343	0.17341415	0.14356978 -0.	.09785682	0.88814032	-0.024648218	-0.25119000
Hepatitis.B	-0.18441262	0.40851923	0.05008430	0.49995767 -0.	. 10240544	0.06231758	-0.109810878	-0.10514361
Measles	0.50780871	-0.13614628	-0.10456872	-0.14186137 0.	.03089872	-0.06805959	0.236249877	0.22474217
BMI	-0.23758588	0.28215592	0.23181440	0.28105881 -0.	24354758	0.27664474	-0.063237604	-0.53202475
under.five.deaths	1.00000000	-0.18870311	-0.12826939	-0.19565055 0.	.03806151	-0.11064032	0.535864022	0.46762640
Polio	-0.18870311	1.00000000	0.13012949	0.67355332 -0.	15948864	0.19398031	-0.034881799	-0.21993756
Total.expenditure	-0.12826939	0.13012949	1.00000000	0.14559660 -0.	.00138272	0.12146709	-0.066698201	-0.26872376
Diphtheria	-0.19565055			1.00000000 -0.			-0.025457689	-0.22781986
HIV.AIDS		-0.15948864	-0.00138272	-0.16478684 1.	00000000	-0.13451379	-0.027318431	0.20392213
GDP	-0.11064032	0.19398031	0.12146709	0.18279456 -0.	13451379	1.00000000	-0.025611731	-0.26774463
Population		-0.03488180		-0.02545769 -0.			1.000000000	0.23611740
thinness1.19.years		-0.21993756	-0.26872376			-0.26774463	0.236117395	1.00000000
thinness.5.9.years		-0.22071010		-0.22110531 0.			0.233940899	0.93910199
Income.composition.of.resources	-0.16153341			0.37172915 -0.				-0.40666173
Schooling	-0.20711142			0.38994380 -0.				-0.44614009
-		-						
	,	Income.compos	ition.of.resources					
Year	-0.0506267 -0.4666292		0.236333172					
Life.expectancy			0.692482805					
Adult.Mortality	0.3053664 0.4712279		-0.440062048					
infant.deaths Alcohol			-0.143662780					
percentage.expenditure	-0.4058807		0.416099225					
Hepatitis.B	-0.2527249 -0.1083342		0.380373551 0.150992044					
Measles	0.2210072		-0.115764074					
BMI	-0.5389106		0.479837369					
under.five.deaths	0.4720986		-0.161533413					
Polio	-0.2207101		0.355397638					
Total.expenditure	-0.2752400		0.149094726					
Diphtheria	-0.2211053		0.371729147					
HIV.AIDS	0.2071396		-0.247453534					
GDP	-0.2723995		0.440317075					
Population	0.2339409		-0.007951445					
thinness1.19.years	0.9391020		-0.406661733					
thinness.5.9.years	1.0000000		-0.395778501					
Income.composition.of.resources	-0.3957785		1.000000000					
Schooling	-0.4357772		0.796207053	1.0000000				

By imputing the values in the null-values, the resulting correlation values no longer have null-values according to the output above. This will certainly help in plotting the correlation and in conducting further analysis of the data.

Then we will do melting or convert the correlation matrix format into a long format using the reshape2 library so that it will produce a data frame with three columns, namely Var1, Var2, and value, where Var1 and Var2 represent the column names in the converted correlation matrix and value is the correlation value between Var1 and Var2. After that, we can confirm by using the head () function.

```
library(dplyr)
corr melted <- melt(cor(df num))</pre>
corr melted sorted <- corr melted %>% arrange(desc(value))
head(corr melted sorted, 40)
      Var1
                                                                                                 value
      Year
                                                Year
                                                                                             1.0000000
  2 Life.expectancy
                                                Life.expectancy
                                                                                             1.0000000
      Adult.Mortality
                                                Adult.Mortality
  3
                                                                                             1.0000000
  4
     infant.deaths
                                                infant.deaths
                                                                                             1.0000000
                                                                                             1.0000000
  6 percentage.expenditure
                                                percentage.expenditure
                                                                                             1.0000000
      Hepatitis.B
                                                Hepatitis.B
                                                                                             1.0000000
  8 Measles
                                                Measles
                                                                                             1.0000000
      BMI
                                                BMI
                                                                                             1.0000000
  10 under.five.deaths
 11 Polio
                                               Polio
                                                                                            1.0000000
 12 Total.expenditure
                                               Total.expenditure
                                                                                            1.0000000
 13 Diphtheria
                                               Diphtheria
                                                                                            1.0000000
 14 HIV.AIDS
                                               HIV.AIDS
                                                                                            1.0000000
 15 GDP
                                               GDP
                                                                                            1.0000000
 16 Population
                                                                                            1.0000000
                                               Population
 17 thinness..1.19.vears
                                               thinness..1.19.vears
                                                                                            1.0000000
 18 thinness.5.9.years
                                               thinness.5.9.years
 19 Income.composition.of.resources
                                               Income.composition.of.resources
                                                                                            1.0000000
 20 Schooling
                                               Schooling
                                                                                            1.0000000
```

21	under.five.deaths	infant.deaths	0.9966289
22	infant.deaths	under.five.deaths	0.9966289
23	thinness.5.9.years	thinness1.19.years	0.9391020
24	thinness1.19.years	thinness.5.9.years	0.9391020
25	GDP	percentage.expenditure	0.8881403
26	percentage.expenditure	GDP	0.8881403
27	Schooling	Income.composition.of.resources	0.7962071
28	Income.composition.of.resources	Schooling	0.7962071
29	Schooling	Life.expectancy	0.7150663
30	Life.expectancy	Schooling	0.7150663
31	Income.composition.of.resources	Life.expectancy	0.6924828
32	Life.expectancy	Income.composition.of.resources	0.6924828
33	Diphtheria	Polio	0.6735533
34	Polio	Diphtheria	0.6735533
35	ВМІ	Life.expectancy	0.5592553
36	Life.expectancy	BMI	0.5592553
37	Population	infant.deaths	0.5485217
38	infant.deaths	Population	0.5485217
39	Population	under.five.deaths	0.5358640
40	under.five.deaths	Population	0.5358640

The output shows the 40 highest correlation values, but we only focus on the 21st row because the previous row is the correlation between the variable and the variable itself. The top three shows that there is a high correlation in under.five.deaths with infant.deaths, in thinness.5.9.years with thinness.1.19.years, and in GDP with percentage.expenditure. This output also shows a high correlation in our dependet variable (Life.Expectancy) with the variables Schooling, Income.composition.of.resources, BMI, and GDP.

Next, we will prove it by plotting the correlation value of each two numerical variables in our data using ggplot.

Based on the plot, we can conclude that there is a high correlation between the dependent variables (Life.expectancy) with Schooling, Income.composition.of.resources, BMI, and GDP and this is in accordance with the data that we have sorted above.

In addition to the resulting correlations to the dependent variables, it was also found that there is:

- High correlation between under five deaths and infant deaths
- High correlation between under five deaths and Measles
- High correlation between infant.deaths and Measles
- High correlation between Schooling and percentage.expenditure
- High correlation between Schooling and Year
- etc.

2. Statistical Testing

Now, we will use several statistical tests to answer our research questions or hypothesis, which in this section we have 4 research questions. Using the power of statistical analysis, we will gain deeper insights and meaningful conclusions from the data at hand.

1) How is the distribution of life expectancy in this dataset divided into specific quantiles?

In accordance with the question above, we will find the distribution of the variable life.expectancy in our dataset divided into specific quantiles. With the code below, we will calculate the quantile of the life.expectancy variable

This output shows that at the 25% quantile, the life expectancy value is 63.2, which means that 25% of the population in the dataset has a life expectancy below this value. Then at the 50% quantile, the life expectancy value is 72.0, which means that 50% of the population in the dataset has a life expectancy below this value. Then at the 75% quantile, the life expectancy value is 75.6, which means that 75% of the population in the dataset has a life expectancy below this value, and so on.

2) Is the minimum value of the life expectancy variable is in a normal distribution with the mean and standard deviation of the variable?

In accordance with the question above, we will find out whether the minimum value of the life.expectancy variable is in the normal distribution or not. With the code below, we will determine the extent to which the minimum value of the life expectancy variable falls within the normal distribution by using the mean and standard deviation of the variable itself. The result of this code is pMin, which represents the probability of the minimum value being in a normal distribution, where the higher pMin, the higher the probability that the minimum value of the variable comes from a normal distribution.

```
minLE <- min(df_stat$Life.expectancy)
maxLE <- max(df_stat$Life.expectancy)
meanLE <- mean(df_stat$Life.expectancy)
sdLE <- sd(df_stat$Life.expectancy)
pMin <- pnorm( q = minLE, mean = meanLE, sd = sdLE)
pMin</pre>
```

And the answer to this research question is no because we can see that the pMin value is so low that it indicates that the probability that the minimum value of the variable does not come from a normal distribution.

3) What are the quantile values of a normal distribution with specified mean and standard deviation, for ten different probabilities, ranging from 0 to 1 with intervals of 0.1?

In accordance with the question above, we will find out whether the minimum value of the life.expectancy variable is in the normal distribution or not. With the code below, we will find out how the quantile values produced by the normal distribution are

The output shows that at the 10% Quantile the life expectancy value is 57.04040, which is about 10% of the data below this value. At the 20% Quantile the life expectancy value is 61.22310, which is about 20% of the data below this value. At the 30% quantile the life expectancy value is 64.23912, which is about 30% of the data below this value. At the 40% Quantile the life expectancy value is 66.81620, which is about 40% of the data below this value. At the 50% Quantile, the life expectancy value is 69.22493, which is about 50% of the data below this value, etc. Where -inf indicates the lowest value that can be obtained in a normal distribution and inf otherwise.

4) Is there a significant difference between the average life expectancy in this dataset and the specified population mean value (69.22493 years)?

Furthermore, according to the question above we will use the previous code to evaluate whether there is a significant difference between the average life expectancy in the dataset and the specified population mean value (69.22493 years) using t-test.

In this case, the null hypothesis (H0) is that the average life expectancy in the dataset is equal to 69.22493, while the alternative hypothesis (H1) is that the average life expectancy in the dataset is significantly different from 69.22493.

The above output shows that there is not enough statistical evidence to support a significant difference between the average life expectancy in the dataset and the specified mean value of 69.22493. This is indicated by the p-value of 1, which indicates that there is not enough statistical evidence to conclude that there is a significant difference between the average life expectancy in the dataset and the specified mean value. Thus, we can conclude that with 95% confidence the average life expectancy is between 68.88100 and 69.56886 so we can accept the null hypothesis (H0).

3. Predictive Modelling using Random Forest

Step 1: Normalize the data to have the same range of values

Normalization is necessary in order to convert the values in the dataset into a uniform scale. In this normalization we will use the min-max scaling method. First, we need to define the Max and Min.

In this code, we will define Max by passing the maximum value of each column of dataset df_num represented by number 2 and Min by passing the minimum value of each column of dataset df_num represented by number 2.

```
Max <- apply(df_num, 2, max) #counts the maximum value of each column in the dataset
Min <- apply(df_num, 2, min) #counts the minimum value of each column in the dataset
```

The following is the output of the maximum value of each column in the dataset df_num

Max			
Year	Life.expectancy	Adult.Mortality	infant.deaths
2.015000e+03	8.900000e+01	7.230000e+02	1.800000e+03
Alcohol	percentage.expenditure	Hepatitis.B	Measles
1.787000e+01	1.947991e+04	9.900000e+01	2.121830e+05
BMI	under.five.deaths	Polio	Total.expenditure
8.730000e+01	2.500000e+03	9.900000e+01	1.760000e+01
Diphtheria	HIV.AIDS	GDP	Population
9.900000e+01	5.060000e+01	1.191727e+ 0 5	1.293859e+09
thinness1.19.years	thinness.5.9.years	<pre>Income.composition.of.resources</pre>	Schooling
2.770000e+01	2.860000e+01	9.480000e-01	2.070000e+01

The following is the output of the minimum value of each column in the dataset df_num

Min					
				#L X	×
	Year	Life.expectancy	Adult.Mortality	infant.deaths	
	2000.00000	36.30000	1.00000	0.00000	
	Alcohol	percentage.expenditure	Hepatitis.B	Measles	
	0.01000	0.00000	1.00000	0.00000	
	BMI	under.five.deaths	Polio	Total.expenditure	
	1.00000	0.00000	3.00000	0.37000	
	Diphtheria	HIV.AIDS	GDP	Population	
	2.00000	0.10000	1.68135	34.00000	
thinnes	ss1.19.years	thinness.5.9.years	Income.composition.of.resources	Schooling	
	0.10000	0.10000	0.00000	0.00000	

Now, we will normalize the data with the min-max scaling method and store it as a data frame. The scale() function itself is used to normalize the data in df_num by shifting and adjusting the range of variable values. The center parameter will indicate that the minimum value of each variable will be used as the center value. Then, the scale parameter will determine the value range of each variable after normalization.

	•	1)					@ × A
Descr	iption: df [6 × 20]						
	Year <dbl></dbl>	Life.expectancy <dbl></dbl>	Adult.Mortality <dbl></dbl>	infant.deaths <dbl></dbl>	Alcohol <dbl></dbl>	percentage.expenditure <dbl></dbl>	Hepatitis.B <abl></abl>
1	1.0000000	0.5445920	0.3628809	0.03444444	0	0.0036591349	0.6530612
2	0.9333333	0.4478178	0.3739612	0.03555556	0	0.0037743283	0.6224490
3	0.8666667	0.4478178	0.3698061	0.03666667	0	0.0037587051	0.6428571
4	0.8000000	0.4402277	0.3753463	0.03833333	0	0.0040135816	0.6734694
5	0.7333333	0.4345351	0.3795014	0.03944444	0	0.0003643296	0.6836735
5	0.6666667	0.4269450	0.3850416	0.04111111	0	0.0040903352	0.6632653

Step 2: Split the data into train and test

We will split df_num with a split ratio of 80%:20%, where the train dataset is 80% of the total data in df num and the test dataset is the remaining 20% of the df num data.

```
library(caTools)
set.seed(42)
```

```
split = sample.split(scaled$Life.expectancy, SplitRatio = 0.80)
train <- subset(scaled, split == TRUE)
test <- subset(scaled, split == FALSE)</pre>
```

Step 3: Create a formula for what columns will be fit to the model so that they are not written one by one. Where in this formula the dependent variable is Life. Expectancy and the independent variables are variables other than Life. Expectancy or we can see the output below:

```
f <- as.formula(paste("Life.expectancy ~", paste(n[!n %in% "Life.expectancy"], collapse
= " + ")))
f

Life.expectancy ~ Year + Adult.Mortality + infant.deaths + Alcohol +
    percentage.expenditure + Hepatitis.B + Measles + BMI + under.five.deaths +
    Polio + Total.expenditure + Diphtheria + HIV.AIDS + GDP +
    Population + thinness..1.19.years + thinness.5.9.years +
    Income.composition.of.resources + Schooling</pre>
```

Step 4: Predictive modeling using Random Forest

Loads the randomForest library into R and creates a random forest model using the randomForest() function, where the parameters are the formula above and the data to be trained.

The output shows the result of regression modeling using the Random Forest algorithm with 500 trees and 6 variables tried on each split (node). The model produces a Mean of squared residuals value of 0.001176477 and % Var explained (percentage of variation explained by the model) of 96.44.

Importance() function will calculate the importance score of independent variables in our model, this score measures how often each variable is used in the formation of decisions by each variable.

```
# importance of each predictor
importance(modelRF)
                              IncNodePurity
Year
                                  0.5935961
Adult.Mortality
                                 15.9738233
infant.deaths
                                  1.3228608
                                  0.9236581
percentage.expenditure
                                  0.5259169
Hepatitis.B
                                  0.2693687
                                  0.3550443
Measles
BMT
                                  2.7760678
under.five.deaths
                                  2.7341605
Polio
                                  1.2390567
Total.expenditure
                                  0.5262947
Diphtheria
                                  1.3340237
HIV.AIDS
                                 21.4801717
GDP
                                  0.7373768
Population
                                  0.3000999
thinness..1.19.years
                                  1.3513500
thinness.5.9.years
                                  1.9439790
Income.composition.of.resources
                                15.1867229
                                  7.4610601
Schoolina
```

From the output above we can see that importance() function returns an array containing the importance value of each feature in the random forest model. The importance value represents the relative contribution of each feature in making accurate predictions. If variables with high scores are not used in our model, the results will change significantly, so it is important to know which variables contribute the most, which in this case are HIV.AIDS, Adult.Mortality, and Income.composition.of.resources.

Then, we will predict our model using the test dataset and store it in the predictedRF variable. Then, we will combine the predictedRF and test\$Life.expectancy columns into one data frame, where predictedRF contains the predicted value generated by the model, while test\$Life.expectancy contains the actual value of the response variable. Then we will name it "Predicted Value" for the prediction and "Ground Truth" for the actual value.

```
#create a data frame to compare the predicted value with the ground truth
predictedRF <- predict(modelRF,test)
resultsRF <- cbind(predictedRF,test$Life.expectancy)

colnames(resultsRF) <- c('Predicted Value','Ground Truth')
resultsRF <- as.data.frame(resultsRF)
resultsRF</pre>
```

Description: df [589 x 2]		
	Predicted Value <dbl></dbl>	Ground Truth <dbl></dbl>
1	0.4887059	0.5445920
9	0.4172121	0.4022770
12	0.3994631	0.3927894
16	0.3810085	0.3510436
17	0.7848963	0.7874763
20	0.7679567	0.7703985
30	0.6971667	0.7020873
34	0.7252810	0.7419355
45	0.6855418	0.6717268
50	0.3547385	0.2922201

Description: df [589 v 2]

Next, we will plot between the predicted value (x-axis) and the ground truth (y-axis) using a scatter plot.

```
plotRF <- ggplot(resultsRF, aes(x=resultsRF$`Predicted Value`, y=resultsRF$`Ground
Truth`)) + geom_point() + stat_smooth() + xlab("Predicted Value") + ylab("Ground Truth")
plotRF</pre>
```


From the plot, we can see the distribution of data on the predicted value and ground truth and the line from our model, which is random forest. It can be seen that the distribution of the points is close to the line so this can be an indication of the good performance of the random forest model in predicting the target value.

A linear pattern like the output above can also be assumed that there is a significant correlation between the predicted value and the ground truth and the random forest model has good performance.

This can also be proven by calculating the Mean Square Error with the code below

```
#Calculate Mean Squared Error
MSE_RF <- sum((resultsRF$`Predicted Value` - resultsRF$`Ground Truth`)^2)/nrow(test)
MSE_RF</pre>
```

[1] 0.001205333

The Mean Squared Error result of 0.001205333 shows that the random forest model that has been made has a good ability to predict the value of Life expectancy. The lower the MSE value, the smaller the difference between the actual value and the predicted value, so it can be concluded that the model has a high level of accuracy in predicting the value of Life expectancy.

Step 4: Python Equivalent

The first thing to do is to get a dataframe that has been imputed with mean and normalized data and convert it into a csv dataset. in this case, we will convert the scaled dataframe into a csv dataset that we can later directly use for the python equivalent of the random forest regression model. So, the code will be like this

```
write.csv(scaled, "/Users/shafaqonitatingmail.com/Documents/Semester 4/Data Mining and
Visualization/scaled.csv", row.names = FALSE)
```

After running the code, the csv dataset will automatically be downloaded into the path we listed and we can immediately do the python equivalent.

Import Libraries

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error
import matplotlib.pyplot as plt
import seaborn as sns
```

Load Dataset

```
df = pd.read csv("scaled.csv")
df.head() # check if the dataset has been loaded and check the overall output
      Year Life.expectancy Adult.Mortality infant.deaths Alcohol percentage.expenditure Hepatitis.B Measles
                                                                                                            BMI under.five.deaths
 0 1.000000
                  0.544592
                                  0.362881
                                               0.034444
                                                            0.0
                                                                             0.003659
                                                                                        0.653061 0.005439 0.209733
                                                                                                                           0.0332
 1 0.933333
                  0.447818
                                  0.373961
                                               0.035556
                                                            0.0
                                                                             0.003774
                                                                                         0.622449 0.002319 0.203940
                                                                                                                           0.0344
                               0.369806
 2 0.866667
                 0.447818
                                               0.036667
                                                           0.0
                                                                             0.003759
                                                                                        0.642857 0.002027 0.198146
                                                                                                                           0.0356
                                  0.375346
                                               0.038333
                                                                             0.004014
                                                                                                                           0.0372
 3 0.800000
                  0.440228
                                                            0.0
                                                                                         0.673469 0.013135 0.192352
                  0.434535
 4 0.733333
                                  0.379501
                                               0.039444
                                                            0.0
                                                                             0.000364
                                                                                        0.683673 0.014200 0.187717
                                                                                                                           0.0388
```

Split Dataset: Split the dataset into 80% for train data and 20% for test data

```
X = df.drop("Life.expectancy", axis=1) # independent variables
y = df["Life.expectancy"] # dependent variable
X train, X test, y train, y test = train test split(X, y, test size=0.2,
random state=42)
```

Create Model: Initializes a random forest regressor object in Python using scikit-learn library

```
rf = RandomForestRegressor(random state=42)
```

Training Model: Fits or training a random forest model using the training data

```
rf.fit(X_train, y_train)
            RandomForestRegressor
   RandomForestRegressor(random_state=42)
```

Get Feature Importance: Calculates the feature importances of a random forest model

```
importances = pd.Series(rf.feature importances ,
index=X train.columns).sort values(ascending=False)
print(importances)

    HIV.AIDS

                                    0.594121
                                   0.159651
   Adult.Mortality
   Income.composition.of.resources 0.143005
   Schooling
                                    0.018830
   BMI
                                    0.014034
   under.five.deaths
                                    0.010756
0.008680
   thinness.5.9.years
   Alcohol
                                   0.007130
                                    0.007001
   Year
                                    0.005650
   thinness..1.19.years
   Total.expenditure
                                   0.005315
   Measles
                                    0.003892
   GDP
                                    0.003641
   Polio
                                    0.003590
   infant.deaths
                                    0.003420
   percentage.expenditure
                                    0.003385
   Diphtheria
                                    0.003132
   Population
                                    0.002891
   Hepatitis.B
                                    0.001875
   dtype: float64
```

In accordance with the importances using R, the 3 variables that greatly contribute to this model are HIV.AIDS, Adult.Mortality, and Income.composition.of.resources.

Predict Model using dataset test: The trained model will make predictions using the test data

```
y pred = rf.predict(X test)
```

Results: Create a data frame consisting of predicted value and ground truth

```
resultsRF = pd.DataFrame({"Predicted Value": y_pred, "Ground Truth": y_test})
resultsRF
```

₽		Predicted Value	Ground Truth	1.
	2546	0.698880	0.709677	
	650	0.754440	0.751423	
	1740	0.728330	0.719165	
	177	0.753966	0.768501	
	1377	0.323529	0.296015	
	859	0.410949	0.444023	
	1405	0.709848	0.705882	
	962	0.543188	0.470588	
	2658	0.654630	0.631879	
	2272	0.714421	0.715370	
	588 rov	vs × 2 columns		

Plot Predicted vs. Ground Truth Values: Plot the result using scatterplot

```
# create scatter plot
sns.scatterplot(x="Predicted Value", y="Ground Truth", data=resultsRF)

# add model line
sns.lineplot(x=resultsRF['Predicted Value'], y=resultsRF['Predicted Value'],
color='red')

# set axis labels
plt.xlabel("Predicted Value")
plt.ylabel("Ground Truth")

# show plot
plt.show()
```


Calculate Mean Squared Error (MSE):

```
MSE_RF = mean_squared_error(y_test, y_pred)
print("Mean Squared Error: ", MSE_RF)
Mean Squared Error: 0.000978457455815839
```

The Mean Squared Error result of 0.000978457455815839 shows that the random forest model that has been made has a good ability to predict the value of Life expectancy. The lower the MSE value, the smaller the difference between the actual value and the predicted value, so it can be concluded that the model has a high level of accuracy in predicting the value of Life expectancy.

After obtaining the MSE of the two models created with R and python we can see the difference produced by both. This difference can happen for several reasons, one of which is due to the different functions and libraries used in Python and R. The MSE generated by the model created with python has a smaller value where the performance of the model in predicting the target value on data that has never been seen before (testing data) is better than the model created with R.