

Phrase Mining: Can We Reduce Annotation Cost?

- Phrase mining: Originated from the NLP community—"Chunking"
 - Model it as a sequence labeling problem (B-NP, I-NP, O, ...)
- Need annotation and training
 - Annotate hundreds of documents as training data
 - Train a supervised model based on part-of-speech features
- Recent trend:
 - ☐ Use distributional features based on web n-grams (Bergsma et al., 2010)
 - □ State-of-the-art performance: ~95% accuracy, ~88% phrase-level F-score
- Limitations
 - High annotation cost, not scalable to a new language, a new domain/genre
 - May not fit domain-specific, dynamic, emerging applications
 - Scientific domains, query logs, or social media (e.g., Yelp and Twitter data)

Unsupervised Phrase Mining and Topic Modeling

- Many studies of unsupervised phrase mining are linked with topic modeling
- Topic modeling
 - Represents documents by multiple topics in different proportions
 - Each topic is represented by a word distribution
 - Does not require any prior annotations or labeling of the documents
- Statistical topic modeling algorithms
 - □ The most common algorithm: LDA (Latent Dirichlet Allocation) [Blei, et al., 2003]
- ☐ Three strategies on phrase mining with topic modeling
 - \square Strategy 1: Generate bag-of-words \rightarrow generate sequence of tokens
 - Strategy 2: Post bag-of-words model inference, visualize topics with n-grams
 - Strategy 3: Prior bag-of-words model inference, mine phrases and impose on the bag-of-words model

Strategy 1: Simultaneously Inferring Phrases and Topics

- Bigram Topic Model [Wallach'06]
 - Probabilistic generative model that conditions on previous word and topic when drawing next word
- □ Topical N-Grams (TNG) [Wang, et al.'07] (a generalization of Bigram Topic Model)
 - Probabilistic model that generates words in textual order
 - Create n-grams by concatenating successive bigrams
- □ Phrase-Discovering LDA (PDLDA) [Lindsey, et al.'12]
 - Viewing each sentence as a time-series of words, PDLDA posits that the generative parameter (topic) changes periodically
 - Each word is drawn based on previous m words (context) and current phrase topic
- Comments on this strategy
 - High model complexity: Tends to overfitting
 - High inference cost: Slow

Strategy 2: Post Topic-Modeling Phrase Construction (I): TurboTopics

- TurboTopics [Blei & Lafferty'09] Phrase construction as a post-processing step to Latent Dirichlet Allocation
 - Perform Latent Dirichlet Allocation on corpus to assign each token a topic label
 - Merge adjacent unigrams with the same topic label by a distribution-free permutation test on arbitrary-length back-off model
 - End recursive merging when all significant adjacent unigrams have been merged

Annotated documents

What is $phase_{11}$ transition₁₁? Why is there $phase_{11}$ transitions₁₁? These is are old_{127} questions₁₂₇ people₁₇₀ have been $asking_{195}$ for many $years_{127}$ but get_{153} few $answers_{127}$ We $established_{127}$ one $general_{11}$ theory₁₂₇ based₁₅₃ on $game_{153}$ theory₁₂₇ and topology₈₅ it $provides_{11}$ a $basic_{127}$ understanding₁₂₇ to $phase_{11}$ transitions₁₁ We $proposed_{11}$ a $modern_{127}$ definition₁₁₇ of $phase_{11}$ transition₁₁ based₁₅₃ on $game_{153}$ theory₁₂₇ and topology₈₅ of $symmetry_{11}$ group₁₈₄ which unified₁₃₅ Ehrenfests definition₁₁₇ A $spontaneous_{11}$ result₆₈ of this topological₈₅ $phase_{11}$ transition₁₁ theory₁₂₇ is the universal₁₄ equation₁₁₇ of coexistence₁₉₅ curve₁₉₅ in $phase_{11}$ diagram₁₁ it holds₁₅₃ both for classical₁₂₂ and $phase_{11}$ transition₁₁ This

LDA topic #11

phase, transitions, phases, transition, quantum, critical, symmetry, field, point, model, order, diagram, systems, two, theory, system, study, breaking, spin, first

Turbo topic #11

phase transitions, model, symmetry, point, quantum, systems, phase transition, phase diagram, system, order, field, order, parameter, critical, two, transitions in, models, different, symmetry breaking, first order, phenomena

Post Topic-Modeling Phrase Construction (II): KERT

- □ **KERT** [Danilevsky et al.'14] Phrase construction as a post-processing step to LDA
 - Run bag-of-words model inference and assign topic label to each token
 - Perform frequent pattern mining to extract candidate phrases within each topic
 - Perform phrase ranking based on four different criteria
 - **Popularity:** e.g., "information retrieval" vs. "cross-language information retrieval"
 - Concordance
 - "powerful tea" vs. "strong tea"
 - "active learning" vs. "learning classification"
 - Informativeness: e.g., "this paper" (frequent but not discriminative, not informative)
 - □ Completeness: e.g., "vector machine" vs. "support vector machine"

Comparability property: directly compare phrases of mixed lengths