Stanovení parametru termočlánku pomocí metody nejmenších čtverců

Seminární práce

Adam Krška

Gymnázium a střední odborná škola Mikulov

Obsah

- 1 Cíl Práce
- Současný stav problematiky Proložení dat funkcí Termoelektrický jev
- S Experiment a Výsledky Popis experimentu Naměřená data
- 4 Diskuze
- 5 Závěr

Cíl práce

- vysvětlení metody nejmenších čtverců
- experimentální měření dat termočlánku
- výpočet parametru termočlánku pomocí metody nejmenších čtverců

Proložení dat funkcí

Aproximace a interpolace

Interpolace

Spojení všech bodů spojitou křivkou.

Aproximace

Hledání předpisu funkce vhodně vyjadřující datové body.

Metoda nejmenších čtverců

- metoda pro nalezení parametrů předpisu funkce
- minimalizace druhých mocnin odchylek dat a funkce

Hledání minimum funkce

$$S = \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- metody řešení
 - iterativně
 - analyticky

Proložení dat funkcí

Lineární regrese

- speciální případ prokládání dat
- aproximace lineární funkcí
- analytické řešení

Termoelektrický jev

- souhrnný název pro více efektů
 - Seebeckův efekt
 - Peltierův efekt
 - Thomsonův efekt
 - Benedickův efekt
- popis souvislosti elektrického napětí a rozdílu teplot

Termoelektrický jev

Termočlánky

- spojení dvou druhů kovů
- rozdíl teplot spojů vede k vytvoření napětí
- různé kombinace kovů různé vlastnosti
- standart IEC 584

Popis experimentu

- 1 sestavení vlastního termočlánku typu T
- 2 změření termoelektrického jevu
 - ohřívání a ochlazování konců termočlánku
- 3 stanovení parametru α pro tento termočlánek

Výpočet parametru

Závislost termoelektrického napětí při nízkém rozdílu teplot.

$$E = \alpha \Delta T$$

Výpočet parametru

$$a = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2} \quad \Rightarrow \quad \alpha = \frac{\sum_{i=1}^{n} \Delta T_i \cdot E_i}{\sum_{i=1}^{n} (\Delta T_i)^2}$$

Naměřená data

Tabulka dat

i	$\frac{\Delta T}{\circ C}$	$\frac{E_1}{mV}$	$\frac{E_2}{mV}$	$\frac{\overline{E}}{\text{mV}}$	$\frac{(\Delta T)^2}{{}^{\circ}\mathbf{C}^2}$	$\frac{\Delta T \cdot \overline{E}}{\text{mV}^{\circ}\text{C}}$
1	80	2,8	2,8	2,8	6400	224,0
2	75	2,8	2,6	2,7	5625	202,5
3	70	2,6	2,4	2,5	4900	175,0
4	65	2,4	2,2	2,3	4225	149,5
5	60	2,2	2,0	2,1	3600	126,0
6	55	2,0	2,0	2,0	3025	110,0
7	50	1,8	1,8	1,8	2500	90,0
8	45	1,8	1,6	1,7	2025	76,5
9	40	1,6	1,4	1,5	1 600	60,0
10	35	1,2	1,4	1,3	1225	45,5
11	30	1,2	1,2	1,2	900	36,0
12	25	1,0	1,0	1,0	625	25,0
13	20	1,0	1,0	1,0	400	20,0
				\sum	37 050	1 340,0

Tab.: Naměřená data

Naměřená data

Data v grafu

Naměřená data

Vypočtené parametry

Vypočtený parametr termočlánku

$$\alpha = 0.036\,2\,\mathrm{mV}{\cdot}\mathrm{C}^{-1}$$

Rozptyl naměřených dat

$$R^2 = 0{,}958\,5 = 95{,}85\,\%$$

Diskuze

- provedení experiment vícekrát
- použití digitální voltmetr
- provedení experiment při zahřívání i ochlazování

- metoda nejmenších čtverců je důležitá v prokládání dat funkcí
- termočlánek dva spolu spojené druhy kovů, na kterých se projevuje termoelektrický jev
- nutno měřit koeficienty pro každou dvojici kovů
- termočlánek typu T: $\alpha = 0.0362 \,\mathrm{mV \cdot C^{-1}}$
- přesnost našeho měření: $R^2=0.958\,5=95.85\,\%$

Zdroje I

BARTOŇ. Stanislav; KŘIVÁNEK, Ivo; SEVERA, Libor. Fyzika – Laboratorní cvičení. Brno, 2005.

KUMBÁR, Vojtěch; BARTOŇ, Stanislav; KŘIVÁNEK, Ivo. Fyzikální praktikum. Brno: Mendelova Univerzita. 2015. ISBN 978-80-7509-335-6.

MEJZLÍK, Michal. Návrh a tvorba laboratorní úlohy s peltierovým článkem. 2009. Dostupné také z: https:

//www.vutbr.cz/www_base/zav_prace_soubor_verejne.php?file_id=15693. Diplomová práce. FEKT VUT. Vedoucí práce Ing. Jan MACHÁČEK.

REICHL, Jaroslav. *Peltierův jev.* Dostupné také z:

http://fyzika.jreichl.com/main.article/view/911-peltieruv-jev.

REICHL, Jaroslav. Seebeckův jev. Dostupné také z:

http://fyzika.jreichl.com/main.article/view/910-seebeckuv-jev.

REICHL, Jaroslav. Thomsonův jev. Dostupné také z: http://fyzika.jreichl.com/main.article/view/912-thomsonuv-jev.

Zdroje II

SEGETH, Karel. Od naměřených dat k jejich matematickému popisu pomocí funkce – a zase zpátky. *Pokroky matematiky, fyziky a astronomie.* 2015, roč. 60, č. 2, s. 133–147. ISSN 0032-2423. Dostupné také z: https://dml.cz/handle/10338.dmlcz/144407.

The Peltier Effect and Thermoelectric Cooling. Dostupné také z: http://ffden-2.phys.uaf.edu/212_spring2007.web.dir/sedona_price/phys_212_webproj_peltier.html.

Thermocouple base materials acc to IEC 584. Dostupné také z: http://www.nanyange.com.tw/driver/drivers/Technical%20Information_02.pdf.

Types of Thermocouple. Dostupné také z: https://www.thermocoupleinfo.com/thermocouple-types.htm.

WEISSTEIN, Eric. Least Squares Fitting: MathWorld - A Wolfram Web Resource. Dostupné také z: https://mathworld.wolfram.com/LeastSquaresFitting.html.

Stanovení parametru termočlánku pomocí metody nejmenších čtverců

Seminární práce

Adam Krška

Gymnázium a střední odborná škola Mikulov