Al Image Classification- KTJ_2020

TM191D64

Saurav Kumar Nishant Sachin Saw Saurabh Kumar Pandey

TRAINING & TEST RESULT SUMMARY

Problem Statement

Design an algorithm to detect whether a bowler delivery is a Legal or No-Ball delivery using the images of bowlers in action.

Our goal is to measure the probability of an image being a no-ball or not and to make the automated umpiring system and to eliminate the shortcoming of human perception.

Methods / Algorithms

We have deployed a **Convolution Neural Network (CNN)** based classification method with **VGG19** to automatically detect and differentiate foot overstepping no balls from fair balls.

We have used **Transfer learning** algorithms which use the knowledge gained from solving one problem and applying it to another related problem. Transfer learning aims to transfer knowledge from a large dataset known as source domain to a smaller dataset named target domain.

In our model, we have used **5674 images** of size **100 x 100 x 3** as input. Our input dataset contains images collected from google image search and various video clips from live matches.

Some of the techniques used to increase our image dataset are:

- 1. Randomized Cropping
- 2. Changing contrast in various proportions
- 3. Changing brightness
- 4. Horizontal flipping

The images are manually annotated and contains two classes:

- 1. No-ball
- 2. Legal-ball

We have used **Keras and Tensorflow2.0** to build our model and generate results. Our model produces a score for both possible outcomes then each of them is converted to a probability by **Sigmoid** activation function.

How to work with the Model?

- 1. **Upload** the test data set on google drive.
- 2. Give the path of the dataset folder on the drive to variable **path**.
- 3. Give 'y' (correct output of images to be tested) as text file y.txt.
- 4. The model will print **accuracy score**, **precision**, **recall and F1 score** for the test data

MODEL SUMMARY

Model: "sequential_2"

Output Shape	Param #
(None, 3, 3, 512)	20024384
(None, 4608)	0
(None, 4096)	18878464
(None, 1)	4097
	(None, 3, 3, 512) (None, 4608) (None, 4096)

Trainable params: 18,882,561 Non-trainable params: 20,024,384

None

Using this model, we eliminated the shortcoming of Umpire's perception to decide an overstep no-ball.

List of Hyperparamters

Model used for transfer learning	VGG 19
Number of hidden layers	20
Number of epochs	30
Optimizer	adam
Metrics for evaluation	Accuracy

Evaluation Metrics

Model Accuracy plot

Model Loss plot

Evaluation parameters

Model train accuracy	94.88 %
Model test accuracy	89.45 %
Precision	0.7722
Recall	0.9950
F1 score	0.8696