

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 96/11574

A01N 43/90, 43/56, 25/32

(43) International Publication Date:

25 April 1996 (25.04.96)

(21) International Application Number:

PCT/EP95/03935

A1

(22) International Filing Date:

5 October 1995 (05.10.95)

(30) Priority Data:

3120/94-5

17 October 1994 (17.10.94) CH

(71) Applicant (for all designated States except US): CIBA-GEIGY AG [CH/CH]; Klybeckstrasse 141, CH-4002 Basle (CH).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): GLOCK, Jutta [DE/CH]; Rifeldweg 2, CH-4322 Mumpf (CH). HUDETZ, Manfred [DE/US]; 1302D Adams Farm Parkway, Greensboro, NC 27407 (US). KERBER, Elmar [DE/DE]; Niederwihl 131, D-79733 Görwihl (DE).
- (74) Common Representative: CIBA-GEIGY AG; Patentabteilung, Klybeckstrasse 141, CH-4002 Basle (CH).

(81) Designated States: AL, AM, AU, BB, BG, BR, BY, CA, CN, CZ, EE, FI, GE, HU, IS, JP, KG, KP, KR, KZ, LK, LR, LT, LV, MD, MG, MK, MN, MX, NO, NZ, PL, RO, RU, SG, SI, SK, TJ, TM, TT, UA, US, UZ, VN, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG), ARIPO patent (KE, MW, SD, SZ, UG).

Published

With international search report.

(54) Title: HERBICIDAL COMPOSITIONS

(57) Abstract

Selective herbicidal compositions for controlling grasses and weeds in crops of cultivated plants, comprising: a) a herbicidally effective amount of a compound of formula (I), wherein R1 is the (i), (ii) or (iii) group; the substituents R4 are each independently of one another halogen, nitro, cyano, C1-C4alkyl, C1-C4haloalkyl, C1-C10alkoxy, C1-C4haloalkoxy, C3-C6alkenyloxy, C₃-C₆alkynyloxy, C₁-C₄alkylcarbonyl, C₁-C₄alkoxycarbonyl, C₁-C₄alkoxy-C₂-C₄alkoxy, C_1 -C4alkylthio, C_1 -C4alkylsulfinyl, C_1 -C4alkylsulfonyl, amino, C_1 -C4alkylamino or di-C1-C4alkylamino; R_3 is the (iv) or (v) group; n is 0, 1, 2, 3 or 4; m is 0 or 1, the sum of m and n being 0, 1, 2, 3 or 4; q is 0, 1, 2 or 3; X_1 is oxygen, sulfur, -CH₂- or -N(R₇)-; the substituents R6 are each independently of one another C1-C4alkyl, halogen, C1-C4haloalkyl, C1-C4alkoxy, C1-C4haloalkoxy, nitro, cyano, C1-C4alkoxycarbonyl, amino, C1-C4alkylamino or di-C₁-C₄alkylamino; R₇ is hydrogen, C₁-C₄alkyl, formyl or C₁-C₄alkylcarbonyl; A and B are each independently of one another hydrogen, alkyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl or cycloalkyl, or substituted or unsubstituted aryl; or A and B, taken together, form the divalent radical of a saturated or unsaturated and unsubstituted or substituted mono-, bi-, trior polycyclic system; G is hydrogen or a group -CO-R₁₈ (a), (b), -SO₂-R₂₀ (c), (d), (e) or X (f); L and M are each independently of the other oxygen or sulfur; R18 is halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, polyalkoxyalkyl or cycloalkyl, which may contain hetero atoms; unsubstituted or substituted phenyl, unsubstituted or substituted phenylalkyl, substituted heteroaryl, substituted phenoxyalkyl, or substituted heteroaryloxyalkyl; R19 is

halogen-substituted alkyl, alkenyl, alkoxyalkyl or polyalkoxyalkyl, or unsubstituted or substituted phenyl or benzyl; R20, R21 and R22 are each independently of one another unsubstituted or halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, alkynylthio or cycloalkylthio, or unsubstituted or substituted phenyl, phenoxy or phenylthio; R23 and R24 are each independently of the other hydrogen, unsubstituted or halogen-substituted alkyl, alkenyl, alkoxy or alkoxyalkyl, unsubstituted or substituted phenyl or benzyl; or R23 and R24, taken together, form an alkenyl radical, which may contain oxygen as hetero atom; and X is a metal ion equivalent or an ammonium ion; as well as salts and diastereoisomers of the compounds of formula (I); and b) to antagonise the herbicide, an antidotally effective amount of either a quinoline derivative of formula (IIa), wherein R10 is hydrogen, C1-C8alkyl, or C1-C8alkyl which is substituted by C₁-C₆alkoxy or C₃-C₆alkenyloxy; and X₂ is hydrogen or chloro; of a 1-phenylazole-3-carboxylic acid derivative of formula (IIb), wherein E is nitrogen or methine; R11 is -CCl3 or unsubstituted or halogen-substituted phenyl; R12 and R13 are each independently of the other hydrogen or halogen; and R14 is C1-C4alkyl, are particularly suitable for controlling weeds in crops of cultivated plants, in particular maize and cereals.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	GB	United Kingdom	MR	Mauritania
ΑU	Australia	GB	Georgia	MW	Malawi
BB	Barbados	GN	Guinea	NE	Niger
BE	Belgium	GR	Greece	NL	Netherlands
BF	Burkina Faso	HU	Hungary	NO	Norway
BG	Bulgaria	IE	Ireland	NZ	New Zealand
BJ	Benin	IT	Italy	PL	Poland
BR	Brazil	JP.	Japan	PT	Portugal
BY	Belanus	KB	Kenya	RO	Romania
CA	Canada	KG	Kyrgystan	RU	Russian Federation
CF	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CG	Congo		of Korea	SE	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
a	Côte d'Ivoire	KZ	Kazakhetan	SK	Slovakia
CM	Cameroon	ü	Liechtenstein	SIN	Senegal
CN	China	LK	Sri Lanka	TD	Chad
cs	Czechoslovakia	LU	Luxembourg	TG	Togo
cz	Czech Republic	LV	Latvia	TJ	Tajikistan
DE	Germany	MC	Monaco	TT	Trinidad and Tobago
DK	Denmark	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	US	United States of America
FT	Finland	ML	Mali	UZ	Uzbekistan
FR	Prance	MN	Mongolia	VN	Viet Nam
GA	Gahon		-		

WO 96/11574 PCT/EP95/03935

- 1 -

Herbicidal compositions

The present invention relates to a selective herbicidal composition for controlling grasses and weeds in crops of cultivated plants, especially in crops of maize and cereals, which composition comprises a herbicide and a safener (antidote) and protects the cultivated plants, but not the weeds, from the phytotoxic action of the herbicide, and to the use of said composition for controlling weeds in crops of cultivated plants.

When applying herbicides, the cultivated plants may also suffer severe damage owing to factors that include the concentration of the herbicide and the mode of application, the cultivated plant itself, the nature of the soil, and the climatic conditions such as exposure to light, temperature and rainfall.

To counteract this problem and similar ones, the proposal has already been made to use different compounds as safeners which are able to antagonise the harmful action of the herbicide on the cultivated plant, i.e. to protect the cultivated plant while leaving the herbicidal action on the weeds to be controlled virtually unimpaired. It has, however, been found that the proposed safeners often have a very specific action, not only with respect to the cultivated plants but also to the herbicide, and in some cases also subject to the mode of application, i.e. a specific safener will often be suitable only for a specific cultivated plant and a specific class of herbicide or a specific herbicide. Thus, for example, EP-A-0 094 349 discloses quinoline derivatives that protect cultivated plants from the phytotoxic action of herbicides of specific substance classes including chloroacetanilides, phenoxypropioniate herbicides, ureas, triazines, carbamates or diphenyl ethers. EP-A-0 558 448 discloses 1,5-diphenylpyrazole-3-carboxylic acid derivatives for protecting cultivated plants from the phytotoxic action of sulfonyl ureas.

It has now been found that the safeners selected from the two compound classes of the quinoline derivatives and 1-phenylazole-3-carboxylic acid derivatives are suitable for protecting cultivated plants from the phytotoxic action of 3-hydroxy-4-aryl-5-oxopyrazoline derivatives.

Accordingly, the invention provides a selective herbicidal composition comprising, in addition to customary inert formulation assistants such as carriers, solvents and wetting agents, a mixture of

a) a herbicidally effective amount of a herbicide of formula I

wherein

$$R_1$$
 is the $(R_4)_n$, $(R_5)_m$ or $(R_4)_n$ group:

the substituents R_4 are each independently of one another halogen, nitro, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_1 0alkoxy, C_1 - C_4 haloalkoxy, C_3 - C_6 alkenyloxy, C_1 - C_4 alkoxy- C_2 - C_4 alkoxy, C_3 - C_6 alkynyloxy, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfinyl, amino, C_1 - C_4 alkylamino or di- C_1 - C_4 alkylamino;

$$R_5$$
 is the $-x_1$ or $-x_1$ (R_6) q group;

n is 0, 1, 2, 3 or 4;

m is 0 or 1, the sum of m and n being 0, 1, 2, 3 or 4;

q is 0, 1, 2 or 3;

 X_1 is oxygen, sulfur, -CH₂- or -N(R₇)-;

the substituents R_6 are each independently of one another C_1 - C_4 alkyl, halogen, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, nitro, cyano, C_1 - C_4 alkoxycarbonyl, amino, C_1 - C_4 alkylamino or di- C_1 - C_4 alkylamino;

R₇ is hydrogen, C₁-C₄alkyl, formyl or C₁-C₄alkylcarbonyl;

A and B are each independently of the other hydrogen, alkyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl or cycloalkyl, or substituted or unsubstituted aryl; or A and B, taken together, form the divalent radical of a saturated or unsaturated and unsubstituted or substituted mono-, bi-, tri- or polycyclic system;

G is hydrogen or a group -CO-R₁₈ (a),
$$R_{19}$$
 (b), -SO₂-R₂₀ (c), R_{22} (d)

$$C-N$$
 (e) or X (f);

L and M are each independently of the other oxygen or sulfur,

R₁₈ is halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, polyalkoxyalkyl or cycloalkyl, which may contain hetero atoms; unsubstituted or substituted phenyl, unsubstituted or substituted phenylalkyl, substituted heteroaryl, substituted phenoxyalkyl, or substituted heteroaryloxyalkyl;

R₁₉ is halogen-substituted alkyl, alkenyl, alkoxyalkyl or polyalkoxyalkyl, or unsubstituted or substituted phenyl or benzyl;

 R_{20} , R_{21} and R_{22} are each independently of one another unsubstituted or halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, alkynylthio or cycloalkylthio, or unsubstituted or substituted phenyl, phenoxy or phenylthio;

R₂₃ and R₂₄ are each independently of the other hydrogen, unsubstituted or halogen-substituted alkyl, alkenyl, alkoxy or alkoxyalkyl, unsubstituted or substituted phenyl or benzyl; or

 R_{23} and R_{24} , taken together, form an alkenyl radical, which may contain oxygen as hetero atom; and

X is a metal ion equivalent or an ammonium ion; as well as salts and diastereoisomers of the compounds of formula I; and

b) to antagonise the herbicide, an antidotally effective amount of either a quinoline derivative of formula IIa

PCT/EP95/03935 WO 96/11574

- 4 -

wherein

R₁₀ is hydrogen, C₁-C₈alkyl, or C₁-C₈alkyl which is substituted by C₁-C₆alkoxy or C3-C6alkenyloxy; and

X₂ is hydrogen or chloro;

of a 1-phenylazole-3-carboxylic acid derivative of formula IIb

COOR₁₄

$$R_{11}$$

$$R_{12}$$

$$R_{13}$$
(IIb),

wherein

E is nitrogen or methine;

R₁₁is -CCl₃ or unsubstituted or halogen-substituted phenyl; R_{12} and R_{13} are each independently of the other hydrogen or halogen; and R₁₄ is C₁-C₄alkyl; or of a compound of formula IIb₁

$$R_{67}OOC$$
 R_{68}
 R_{12}
 R_{13}
 R_{13}
 R_{13}
 R_{13}
 R_{14}

wherein R_{12} and R_{13} have the meanings given above, and R_{66} , R_{67} and R_{68} are each independently of one another C₁-C₄alkyl.

The alkyl, alkenyl and alkynyl groups contain, unless specifically mentioned, preferably 1 or 2 to 8 carbon atoms and may be straight-chain or branched, as also applies to the alkyl, alkenyl and alkynyl moiety of the haloalkyl, alkoxy, haloalkoxy, alkoxyalkyl, alkoxyalkoxy, alkenyloxy, alkynyloxy, alkylcarbonyl, alkoxycarbonyl, alkylthio,

alkenylthio, alkynylthio, alkylthioalkyl, alkylsulfinyl, alkylsulfonyl, alkylamino and dialkylamino groups.

The alkyl groups occurring in the substituent definitions are typically methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl or tert-butyl, as well as the isomeric pentyls, hexyls, heptyls and octyls. The alkyl groups by themselves or as moieties of other substituents preferably contain 1 to 8 carbon atoms.

In the above definitions halogen will be taken to mean fluoro, chloro, bromo and iodo. preferably fluoro, chloro and bromo.

Alkenyl will be typically vinyl, allyl, methallyl, 1-methylvinyl or but-2-en-1-yl. Alkenyl radicals containing 2 to 8 carbon atoms in the chain are preferred. The alkenyl radicals are preferably linked via a saturated carbon atom to a hetero atom.

Alkynyl will typically be propargyl, but-2-yn-1-yl, 2-methylbutyn-2-yl, but-3-yn-2-yl and pent-4-yn-1-yl. Alkynyl radicals containing 2 to 8 carbon atoms in the chain are preferred. The alkynyl radicals are preferably linked via a saturated carbon atom to a hetero atom.

Haloalkyl radicals preferably contain 1 to 8 carbon atoms in the chain. Haloalkyl is typically fluoromethyl, difluoromethyl, trifluoromethyl, chloromethyl, dichloromethyl, trichloromethyl, 2.2.2-trifluoroethyl, 2-fluoroethyl, 2-chloroethyl and 2,2,2-trichloroethyl, Trichloromethyl, difluorochloromethyl, difluoromethyl, trifluoromethyl and dichlorofluoromethyl are preferred.

Alkoxy radicals preferably contain 1 to 6 carbon atoms in the chain. Alkoxy is typically methoxy, ethoxy, propoxy, isopropoxy, n-butoxy, isobutoxy, sec-butoxy and tert-butoxy as well as the pentoxy and hexyloxy isomers. Methoxy and ethoxy are preferred.

Alkylcarbonyl is preferably acetyl and propionyl.

Alkoxycarbonyl is methoxycarbonyl, ethoxycarbonyl, propoxycarbonyl, isopropoxycarbonyl, n-butoxycarbonyl, isobutoxycarbonyl, sec-butoxycarbonyl and tert-butoxycarbonyl. Methoxycarbonyl and ethoxycarbonyl are preferred.

Haloalkoxy radicals preferably contain 1 to 8 carbon atoms in the chain. Haloalkoxy is typically fluoromethoxy, difluoromethoxy, trifluoromethoxy, 2,2,2-trifluoroethoxy,

1,1,2,2-tetrafluoroethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2-difluoroethoxy and 2,2,2-trichloroethoxy. Difluoromethoxy, 2-chloroethoxy and trifluoromethoxy are preferred.

Alkylthio radicals preferably contain 1 to 8 carbon atoms in the chain. Alkylthio is typically methylthio, ethylthio, propylthio, isopropylthio, n-butylthio, isobutylthio, sec-butylthio or tert-butylthio. Mmethylthio and ethylthio are preferred.

Alkylsulfinyl is methylsulfinyl, ethylsulfinyl, propylsulfinyl, isopropylsulfinyl, n-butylsulfinyl, isobutylsulfinyl, sec-butylsulfinyl, tert-butylsulfinyl. Methylsulfinyl and ethylsulfinyl are preferred.

Alkylsulfonyl is methylsulfonyl, ethylsulfonyl, propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, isobutylsulfonyl, sec-butylsulfonyl, tert-butylsulfonyl. Methylsulfonyl and ethylsulfonyl are preferred.

Alkoxyalkoxy radicals preferably contain 1 to 8 carbon atoms in the chain. Illustrative examples of alkoxyalkoxy are methoxymethoxy, methoxyethoxy, methoxypropoxy, ethoxymethoxy, propoxymethoxy and butoxybutoxy.

Alkylamino is typically methylamino, ethylamino, n-propylamino, isopropylamino and the isomeric butylamines.

Dialkylamino is typically dimethylamino, methylethylamino, diethylamino, n-propylmethylamino, dibutylamino and di-isopropylamino. Alkylamino radicals containing 1 to 8 carbon atoms in the chain are preferred.

Alkoxyalkyl radicals preferably contain 1 to 8 carbon atoms. Alkoxyalkyl is typically methoxymethyl, methoxyethyl, ethoxymethyl, ethoxyethyl, n-propoxymethyl, n-propoxymethyl, isopropoxymethyl and isopropoxyethyl.

Alkylthioalkyl radicals preferably contain 1 to 8 carbon atoms. Alkylthioalkyl is typically methylthiomethyl, methylthioethyl, ethylthiomethyl, ethylthioethyl, n-propylthiomethyl, n-propylthioethyl, isopropylthioethyl, butylthiomethyl, butylthioethyl or butylthiobutyl.

Cycloalkyl radicals preferably contain 3 to 8 ring carbon atoms, and are typically cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl and cyclooctyl. These cycloalkyl radicals may be interrupted by hetero atoms such as oxygen atoms and/or sulfur atoms and/or nitrogen atoms.

Phenyl, also as moiety of a substituent such as phenoxy, phenylthio, phenylalkyl, phenoxyalkyl, can generally be unsubstituted or substituted. The substituents may then be in ortho-, meta- and/or para-position. Preferred substituent positions are the ortho- and para-position to the ring linkage site. Preferred substituents are halogen, nitro, cyano, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 haloalkyl.

A and B defined as aryl are α -naphthyl or β -naphthyl, preferably phenyl, and these aromatic rings may carry one or more than one identical or different substituent, typically halogen, nitro, cyano, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, C_1 - C_4 alkyl and C_1 - C_4 haloalkyl.

Heteroaryl in the definition of the radical R₁₈ is preferably a five- or six-membered aromatic heterocyclic ring, typically 2-, 3- or 4-pyridyl, pyrimidyl, pyrazinyl, furanyl, thienyl, oxazolyl or isoxazolyl.

Illustrative examples of saturated or unsaturated and unsubstituted or substituted mono-, bi-, tri- or polycyclic systems which the substituents A and B, together with the two linking nitrogen atoms of the pyrazoline ring may form, are:

suitable substituents being halogen, unsubstituted or halogen-substituted C_1 - C_{16} alkyl, C_2 - C_{16} alkenyl, C_1 - C_{16} alkoxy- C_2 - C_6 alkyl, C_1 - C_6 polyalkoxy- C_2 - C_6 alkyl, or phenyl or benzyl which are unsubstituted or substituted by halogen, nitro, C_1 - C_4 alkyl, C_1 - C_3 alkoxy, C_1 - C_3 haloalkyl; and C_1 is halogen, or unsubstituted or halogen-substituted C_1 alkoxy or C_2 alkoxy.

Equivalent meanings may also be obtained for the substituents of composite radicals, typically alkoxycarbonyl, alkylcarbonyl, alkylsulfinyl, alkylsulfonyl, alkenyloxy, alkynyloxy, alkynylthio, cycloalkylthio and heteroaryloxyalkyl.

By reason of their chemical constitution, the compounds of formula I, wherein G is hydrogen, can be obtained in the tautomeric equilibrium forms $Ib \leftarrow Ic \leftarrow Id$:

The invention also embraces the salts which the compounds of formula I may form together with acids. Suitable salts for the formation of the acid addition salts are organic as well as inorganic acids. Examples of such acids are, inter alia, hydrochloric acid, hydrobromic acid, nitric acid, various phosphoric acids, sulfuric acid, acetic acid, propionic acid, butyric acid, valeric acid, oxalic acid, malonic acid, fumaric acid, lactic acid, tartaric acid and salicylic acid.

Furthermore, specific substituents R₁ to R₇, R₁₈ to R₂₄, A and B, singly or in conjunction

with each other or in conjunction with the basic structure to which they are linked, may have chirality. The invention embraces the racemate as well as the enriched and optically pure forms of the respective stereoisomers.

In the processes disclosed in this specification, the asymmetrically substituted compounds of formula I are usually obtained as racemates, unless chiral educts are used. The stereoisomers can then be isolated in accordance with per se known methods, such as fractionated crystallisation after salt formation with optically pure bases, acids or metal complexes, or chromatographic processes based on physicochemical properties.

The compounds of formula I, wherein A and B are alkyl, alkenyl or alkynyl radicals, are derivatives of the pyrazolidine-3,5-dione system. Where A and B are defined as a saturated or partially unsaturated C₄carbon bridge, formula I is based on the ring system of the 1H-pyrazolo[1,2-a]pyridazine, and, where R₂ and R₃ are defined as a saturated or partially unsaturated C₃carbon bridge, formula I is based on the ring system of the 1H,5H-pyrazolo[1,2-a]pyrazole. The individual ring positions are numbered in accordance with Chemical Abstracts:

1H-pyrazolo[1,2-a]pyridazine

1H,5H-рутаzolo[1,2-а]ругаzole

Compounds of formula I which are preferred for use in the novel composition are those wherein R_1 is the $(R_4)_n$ group. Among these compounds, those compounds

are particularly preferred wherein R_4 is C_1 - C_4 alkyl; n is 1, 2, 3 or 4; and m is 0.

Among these compounds, those compounds are also particularly preferred wherein R_5 is the $-x_1$ group.

Particularly important compositions are those wherein R_4 is C_1 - C_4 alkyl, trifluoromethyl, fluoro, chloro, bromo, C_1 - C_{10} alkoxy, allyloxy, propargyloxy, difluoromethoxy,

trifluoromethoxy, methoxyethylenoxy, cyano, nitro, di-C1alkylamino or di-C2alkylamino, acetyl, C1-C3alkoxycarbonyl, methylsulfonyl, methylsulfinyl or methylmercapto; R5 is the

$$-x_1$$
 or $-x_1$ group; X_1 is oxygen, sulfur, -CH₂-

or -N(CHO)-; R6 is fluoro, chloro or trifluoromethyl; n is 0, 1, 2 or 3; m is 0 or 1; and o is 0, 1 or 2, the sum of m and n being 0, 1, 2 or 3.

Furthermore, those compositions are particularly preferred, wherein R₁ is the

$$(R_4)_m$$
 group; R_4 is fluoro, chloro, methyl, nitro, trifluoromethyl or methylsulfonyl; n is 0.1 or 2; and m is 0.

methylsulfonyl; n is 0, 1 or 2; and m is 0.

Particularly important compositions are also those, wherein R₁ is the

Also preferred are those compositions comprising a safener of formula IIc

Likewise preferred are compositions comprising a safener of formula IId

WO 96/11574 PCT/EP95/03935

- 11 -

Further preferred compositions are those comprising a safener of formula IIe

The following non-limitative Examples illustrate the invention in more detail.

Example P1: Preparation of 2-(2,4,6-trimethylphenylacetyl)-1-ethoxycarbonyl hexahydropyridazine

With stirring, 13.8 g (70 mmol) of mesitylene acetyl chloride in 100 ml of diethyl ether are added dropwise at 20-25°C to a solution of 11.0 g (70 mmol) of 1-ethoxycarbonyl hexahydropyridazine and 10.8 ml (70 mmol) of triethylamine in 350 ml of diethyl ether. Stirring is continued for a further 3 hours at room temperature. The precipitated triethylamine hydrochloride is then removed by suction filtration, and the filtrate is concentrated under vacuum and the residue is chromatographed with ethyl acetate/hexane (1:1) over silica gel, giving 20.1 g (90,5 %) of the desired title compound.

WO 96/11574

Example P2: Preparation of 2-(2,4,6-trimethylphenyl)-5,6,7,8-tetrahydro-1H-pyrazolo[1,2-a]pyridazine-1,3(2H)dione

3.69 g (88 mmol) of a 60 % suspension of sodium hydride in white oil are added to 75 ml of toluene. To this mixture are then added dropwise 22.3 g (70 mmol) of a solution of 2-(2,4,6-trimethylphenylacetyl)-1-ethoxycarbonyl hexahydropyridazine (Example P1) in 75 ml of toluene at room temperature and the mixture is heated for 6 hours to the boil. While cooling with ice, 10 ml of ethanol are then added dropwise, the reaction mixture is concentrated to dryness under vacuum and the residue is dissolved in 200 ml of 1N NaOH. The product is precipitated from the resultant solution by addition of concentrated hydrochloric acid at O°C. The crude product is purified by recrystallisation from methanol to give 8.9 g of crystals of the desired title product, m.p. 244 - 246°C.

The compounds of Tables 1 to 15 and 19 can be prepared in general accordance with the above Examples and the procedures described therein.

Preferred compounds of formula I are listed in the following Tables 1-15 and 19 as compounds of formula Ia and Ie to Is.

Table 1: Compounds of formula Ia

$$\bigcap_{N} \bigcap_{(R_5)_m} (Ia)$$

	R ₄	R ₄	R ₄	R ₅	
1.001		Н			
1.002		2-CH ₃			
1.003		4-CH ₃			
1.004		2-CH ₃	4-CH ₃		
1.005		2-CH ₃	6-CH ₃		
1.006		2-CH ₃	5-CH ₃		
1.007		3-CH ₃	5-CH ₃		
1.008		2-CH ₃	3-CH ₃		
1.009		3-CH ₃	4-CH ₃		
1.010	2-CH ₃	4-CH ₃	6-CH ₃		
1.011	2-CH ₃	4-CH ₃	5-CH ₃		
1.012		2-Cl			
1.013		4-C1			
1.014		2-Cl	4-Cl		
1.015		2-C1	6-C1		
1.016		2-C1	6-F		
1.017		2-CH ₃	4-Cl		
1.018		2-CH ₃	4-F		
1.019		2-Cl	4-CH ₃		
1.020		2-C1	6-CH ₃		,
1.021		2-F	4-F		
1.022		2-F	6-F		
1.023		2-CH ₃	4-O-CH ₃		
1.024		2-CH ₃	6-O-CH ₃		
1.025		2-Cl	4-O-CH ₃		
1.026		2-Cl	6-O-CH ₃		

Cmpd R ₄	R ₄	R ₄	R ₅
1.027	3-OCH ₃	4-OCH ₃	
1.028	2-OCH ₃	5-OCH ₃	
1.029	2-OCH ₃	4-OCH ₃	
1.030	2-OCH ₃	6-OCH ₃	
1.031	2-CF ₃	6-CF ₃	
1.032	2-CF ₃	4-CF ₃	
1.033	3-CF ₃	5-CF ₃	
1.034	2-C1	4-CF ₃	
1.035	2-C1	6-CF ₃	
1.036	2-NO ₂	4-NO ₂	
1.037	2-Cl	4-NO ₂	
1.038	2-CH ₃	4-NO ₂	
1.039	2-O-CH ₃	4-NO ₂	
1.040	2-F	6-NO ₂	
1.041	2-Cl	6-NO ₂	
1.042	2-CH ₃	6-NO ₂	
1.043	2-O-CH ₃	6-NO ₂	
1.044	2-F	4-NO ₂	
1.045	2-CH ₃	$4-N(C_2H_5)_2$	
1.046	2-C1	4-SO ₂ -CH ₃	
1.047	2-Cl	4-SO-CH ₃	
1.048	2-C1	4-S-CH ₃	
1.049	2-Cl	6-SO ₂ -CH ₃	
1.050	2-Cl	6-SO-CH ₃	
1.051	2-Cl	6-S-CH ₃	
1.052	2-CH ₃	4-SO ₂ -CH ₃	
1.053	2-CH ₃	4-SO-CH ₃	
1.054	2-CH ₃	4-S-CH ₃	
1.055	2-CH ₃	6-SO ₂ -CH ₃	
1.056	2-CH ₃	6-SO-CH ₃	
1.057	2-CH ₃	6-S-CH₃	
1.058	2-O-CH ₃	6-SO ₂ -CH ₃	
1.059	2-O-CH ₃	6-SO-CH ₃	
1.060	2-O-CH ₃	6-S-CH ₃	
1.061	2-O-CH ₃	4-SO ₂ -CH ₃	
1.062	2-O-CH ₃	4-SO-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
1.063		2-O-CH₃	4-S-CH ₃	
1.064		2-CH ₃	$6-N(C_2H_5)_2$	
1.065		2-Cl	6-N(CH ₃) ₂	
1.066		2-Cl	4-N(CH ₃) ₂	
1.067		2-C1	4-CO ₂ CH ₃	
1.068		2-CH ₃	6-CO ₂ C ₂ H ₅	
1.069		2-CH ₃	4-CO ₂ C ₂ H ₅	
1.070		2-CH ₃	4-CN	
1.071		2-CH ₃	6-CN	
1.072		2-C1	4-CN	·
1.073		2-Cl	6-CN	
1.074		2-CI	4-CO-CH ₃	
1.075		2-O-CHF ₂	4-O-CHF ₂	
1.076		2-CH ₃	4-O-CHF ₂	
1.077		2-C1	4-O-CF ₃	
1.078		2-O-CF ₃	4-O-CH ₃	
1.079		2-O-CHF ₂	4-CI	
1.080		2-O-CHF ₂	6-CH ₃	
1.081		2-O-CHF ₂	6-CI	
1.082	2-O-CHF ₂	4-CH ₃	6-CH ₃	
1.083	2-CH ₃	$4-t-C_4H_9$	6-CH ₃	
1.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C ₃ H ₇	
1.085	2-CH ₃	4-O-CH ₃	6-CH ₃	
1.086	2-Cl	4-CF ₃	6-CI	
1.087	2-C1	4-CF ₃	6-F	
1.088	2-Cl	4-NO ₂	6-CI	
1.089	2-C1	4-Cl	6-C1	
1.090	2-F	4-F	6-F	
1.091	2-CH ₃	4-NO ₂	6-CH ₃	
1.092	2-Cl	4-Cl	6-CH ₃	
1.093	2-Cl	4-O-CH ₃	6-C1	
1.094	2-Cl	4-CI	6-O-CH ₃	
1.095	2-F	4-O-CH ₃	6-F	
1.096	_	4-CH ₃	6-O-CH ₃	
1.097	2-O-CH ₃		6-CH ₃	
1.098	2-O-CH ₃	4-O-CH ₃	6-O-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
1.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH ₃	
1.100	2-CH ₃	4-C1	6-CH ₃	
1.101	2-CH ₃	4-F	6-CH ₃	
1.102	2-CH ₃	4-CH ₃	6-O-CH ₃	
1.103	2-F	4-Cl	5-O-i-C ₃ H ₇	
1.104	2-Cl	4-CI	5-O-CH ₃	
1.105		4-CI	5-O-CH ₃	•
1.106	2-F	4-Cl	5-CO-O-CH ₃	
1.107	2-F	4-Cl	5-CO-O-C ₂ H ₅	
1.108		4-Cl	5-CO-O-CH ₃	
1.109	2-Cl	4-Cl	5-CO-O-i-C ₃ H ₇	
1.110				4 - 0
1.111				4 - 0 — CI
1.112				4 - 0 — F
1.113				4-0-CF ₃
1.114	2-CH ₃			4-0-
1.115				4 - 5 -
1.116				4 - S — CI
1.117				4 - CH ₂
1.118				4 -CH ₂ -CI
1.119				4-CH ₂ -F

Cmpd	R ₄	R ₄	R ₄	R ₅
1.120				4-CH ₂ -CF ₃
1.121				4 - N-CHO
1.122	2-F	4-Cl	5-O-CH ₂ -CH=CH ₂	
1.123	2-F	4-C1	5-O-CH ₂ -C≖CH	
1.124	2-Br			
1.125	2-CF ₃			
1.126	2-OCH ₃			_
1.127	2-CH ₃			4 .0 — CI
1.128	2-CH ₃			4-0-CF ₃
1.129	2-CH ₃			4 -0 — CI
1.130	2-CH ₃		6-CH ₃	4-0-
1.131	2-CH ₃		6-CH ₃	4-0-CF ₃
1.132	2-CH ₃		6-CH ₃	4 -0 — C1
1.133	2-CH ₃		6-CH ₃	4-0-CI
1.134	2-CH ₃	4-Br	6-CH ₃	u
1.135	2-CH ₃	6-C ₂ H ₅	•	
1.136	_			
1.137	2-CH ₃	4-OC ₂ H ₅	6-CH ₃	
1.138	_	4-O-i-C ₃ H ₇	6-CH ₃	
1.139	_	4-O-n-C ₃ H ₇	6-CH ₃	
1.140	2-CH ₃	4-O-n-C ₁₀ H ₂₁	6-CH ₃	
1.141	2-CH ₃	4-O-n-C ₃ H ₇		•

Cmpd	R ₄	R ₄	R ₄	R ₅
	2-CH ₃	4-O-(CH ₂) ₂ OCH ₃		
1.143	•	4-O-(CH ₂) ₂ OCH ₃	6-CH ₃	
1.144	_	4-O-(CH2)2OCH3		
1.145	2-CH ₃	4-O-n-C ₆ H ₁₃	6-CH ₃	
1.146	2-CH ₃			4-0-1
1.147	2-CH ₃		6-CH ₃	4-0-N-
1.148	2-CH ₃			4-0-CF ₃
1.149	2-CH ₃		6-CH₃	4-0-CF ₃
1.150	2-CH ₃			4- 0-\(\frac{N}{2}\)-CF3
1.151	2-CH₃		6-CH ₃	4 - 0 - CF ₃
1.152	2-CH ₃			5 - 0 - CF ₃
1.153	2-CH ₃			5-0-CF ₃
1.154	2-CH ₃		6-CH₃	4 - s —
1.155	2-CH ₃		6-CH₃	4 - s — a
1.156	2-C ₂ H ₅		6-CH ₃	4 -s —
1.157	2-C ₂ H ₅	4-C ₂ H ₅	6-C ₂ H ₅	
	2-C ₂ H ₅	· & J	- L - J	
1.159	2-CH(CH ₃) ₂			
/	(

Table 2: Compounds of formula Ie

$$\begin{array}{c|c}
 & O \\
 & N \\$$

Cmpd	R ₄	R ₄
2.001	3-Cl	
2.002	3-F	
2.003	3-CH ₃	
2.004	5-Cl	
2.005	5-CF ₃	
2.006	3-C1	5-Cl
2.007	3-C1	5-F
2.008	3-C1	5-CF ₃
2.009	3-C1	5-NO ₂
2.010	3-Cl	5-SO ₂ -CH ₃
2.011	3-F	5-F
2.012	3-F	5-Cl
2.013	3-F	5-CF ₃
2.014	3-NO ₂	5-NO ₂
2.015	3-NO ₂	5-Cl
2.016	3-NO ₂	5-CF ₃
2.017	3-CF ₃	5-Cl
2.018	3-CF ₃	5-CF ₃
2.019	3-CH ₃	5-CH ₃

Table 3: Compounds of formula If

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Cmpd	R ₄	R ₄	R ₄	R ₅	
3.001		н			
3.002		2-CH ₃			
3.003		4-CH ₃			
3.004		2-CH ₃	4-CH ₃		
3.005		2-CH ₃	6-CH ₃		
3.006		2-CH ₃	5-CH ₃		
3.007		3-CH ₃	5-CH ₃		
3.008		2-CH ₃	3-CH ₃		
3.009		3-CH ₃	4-CH ₃		
3.010	2-CH ₃	4-CH ₃	6-CH ₃		
3.011	2-CH ₃	4-CH ₃	5-CH ₃		
3.012		2-C1			
3.013		4-Cl			
3.014		2-Cl	4-Cl		
3.015		2-Cl	6-C1		
3.016		2-CI	6-F		
3.017		2-CH ₃	4-C1		
3.018		2-CH ₃	4-F		
3.019		2-CI	4-CH ₃		
3.020		2-C1	6-CH ₃		
3.021		2-F	4-F		
3.022		2-F	6-F		
3.023		2-CH ₃	4-O-CH ₃		
3.024		2-CH ₃	6-O-CH ₃		
3.025		2-Cl	4-O-CH ₃		
3.026		2-Cl	6-O-CH ₃		

Cmpd R ₄	R ₄	R ₄	R ₅	
3.027	3-OCH ₃	4-OCH ₃		
3.028	2-OCH ₃	5-OCH ₃		
3.029	2-OCH ₃	4-OCH ₃		
3.030	2-OCH ₃	6-OCH₃		
3.031	2-CF ₃	6-CF ₃		
3.032	2-CF ₃	4-CF ₃		
3.033	3-CF ₃	5-CF ₃		
3.034	2-Cl	4-CF ₃		
3.035	2-C1	6-CF ₃		
3.036	2-NO ₂	4-NO ₂		
3.037	2-C1	4-NO ₂		
3.038	2-CH ₃	4-NO ₂		
3.039	2-O-CH ₃	4-NO ₂		
3.040	2-F	6-NO ₂		
3.041	2-C1	6-NO ₂		
3.042	2-CH ₃	6-NO ₂		
3.043	2-O-CH ₃	6-NO ₂		
3.044	2-F	4-NO ₂		
3.045	2-CH ₃	$4-N(C_2H_5)_2$		
3.046	2-Cl	4-SO ₂ -CH ₃		
3.047	2-C1	4-SO-CH ₃		
3.048	2-C1	4-S-CH ₃		
3.049	2-C1	6-SO ₂ -CH ₃		
3.050	2-Cl	6-SO-CH ₃		
3.051	2-C1	6-S-CH ₃		
3.052	2-CH ₃	4-SO ₂ -CH ₃		
3.053	2-CH ₃	4-SO-CH ₃		
3.054	2-CH ₃	4-S-CH ₃		
3.055	2-CH ₃	6-SO ₂ -CH ₃		
3.056	2-CH ₃	6-SO-CH ₃		
3.057	2-CH ₃	6-S-CH ₃		
3.058	2-O-CH ₃	6-SO ₂ -CH ₃		
3.059	2-O-CH ₃	6-SO-CH ₃		
3.060	2-O-CH ₃	6-S-CH ₃		
3.061	2-O-CH ₃	4-SO ₂ -CH ₃		
3.062	2-O-CH ₃	4-SO-CH ₃		

Cmpd	R ₄	R ₄	R ₄	R ₅
3.063		2-O-CH ₃	4-S-CH ₃	
3.064		2-CH ₃	$6-N(C_2H_5)_2$	
3.065		2-Cl	6-N(CH ₃) ₂	
3.066		2-Cl	4-N(CH ₃) ₂	
3.067		2-Cl	4-CO ₂ CH ₃	
3.068		2-CH ₃	$6-CO_2C_2H_5$	
3.069		2-CH ₃	$4-CO_2C_2H_5$	
3.070		2-CH ₃	4-CN	
3.071		2-CH ₃	6-CN	
3.072		2-C1	4-CN	
3.073		2-Cl	6-CN	
3.074		2-Cl	4-CO-CH ₃	
3.075		2-O-CHF ₂	4-O-CHF ₂	
3.076		2-CH ₃	4-O-CHF ₂	
3.077		2-Cl	4-O-CF ₃	
3.078		2-O-CF ₃	4-O-CH ₃	
3.079		2-O-CHF ₂	4-CI	
3.080		2-O-CHF ₂	6-CH ₃	
3.081		2-O-CHF ₂	6-CI	
3.082	2-O-CHF ₂	4-CH ₃	6-CH ₃	
3.083	2-CH ₃	$4-t-C_4H_9$	6-CH ₃	
3.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C ₃ H ₇	
3.085	2-CH ₃	4-O-CH ₃	6-CH ₃	
3.086	2-Cl	4-CF ₃	6-C1	
3.087	2-C1	4-CF ₃	6-F	
3.088	2-Cl	4-NO ₂	6-C1	
3.089	2-C1	4-Cl	6-C1	
3.090	2-F	4-F	6-F	
3.091	2-CH ₃	4-NO ₂	6-CH ₃	
3.092	2-Cl	4-CI	6-CH ₃	
3.093	2-Cl	4-O-CH ₃	6-C1	
3.094	2-Cl	4-C1	6-O-CH ₃	
3.095	2-F	4-O-CH ₃	6-F	
3.096	2-O-CH ₃	4-CH ₃	6-O-CH ₃	
3.097	2-O-CH ₃	4-O-CH ₃	6-CH ₃	
3.098	2-O-CH ₃	4-O-CH ₃	6-O-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
3.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH ₃	
3.100	2-CH ₃	4-C1	6-CH ₃	
3.101	2-CH ₃	4-F	6-CH ₃	
3.102	2-CH ₃	4-CH ₃	6-O-CH ₃	
3.103	2-F	4-Cl	5-O-i-C ₃ H ₇	
3.104	2-Cl	4-Cl	5-O-CH ₃	
3.105		4-C1	5-O-CH ₃	
3.106	2-F	4-Cl	5-CO-O-CH ₃	
3.107	2-F	4-C1	5-CO-O-C ₂ H ₅	
3.108		4-Cl	5-CO-O-CH ₃	
3.109	2-Cl	4-C1	5-CO-O-i-C ₃ H ₇	
3.110				4-0-
3.111				4 - 0 — G
3.112				4 - 0 - F
3.113				4-0-CF ₃
3.114	2-CH ₃			4-0-
3.115				4-8-
3.116				4 - s — cı
3.117				4 - CH ₂
3.118				4- CH ₂ -CI
3.119				4 CH ₂ — F

Cmpd	R ₄	R ₄	R ₄	R ₅
3.120				4-CH ₂ - CF ₃
3.121				4 - N — CHO
3.122	2-F	4-C1	5-O-CH ₂ -CH=CH ₂	
3.123	2-F	4-Cl	5-O-CH ₂ -C≖CH	
3.124	2-Br			
3.125	2-CF ₃			
3.126	2-OCH ₃			
3.127	2-CH ₃			4 -0 -C1
3.128	2-CH ₃			4-0-CF3
3.129	2-CH ₃			4 -0 — CI
3.130	2-CH ₃		6-CH ₃	4-0-
3.131	2-CH ₃		6-CH ₃	4-0-CF ₃
3.132	2-CH ₃		6-CH ₃	4 -0 — CI
3.133	2-CH ₃		6-CH ₃	4 -0 — a
3.134 3.135 3.136	2-CH ₃ 2-CH ₃ 2-C ₂ H ₅	4-Br 6-C ₂ H ₅ 6-C ₂ H ₅	6-CH ₃	ā
3.137		4-OC ₂ H ₅	6-CH ₃	
3.138	_	4-O-i-C ₃ H ₇	6-CH ₃	
3.139	-	4-O-n-C ₃ H ₇	6-CH ₃	
3.140	2-CH ₃	4-O-n-C ₁₀ H ₂₁	6-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
3.141	2-CH ₃	4-O-n-C ₃ H ₇		
3.142	2-CH ₃	4-O-(CH ₂) ₂ OCH ₃		
3.143	2-CH ₃	4-O-(CH ₂) ₂ OCH ₃	6-CH ₃	
3.144	2-CH ₃	4-O-(CH ₂) ₂ OCH ₃		
3.145	2-CH ₃	4-O-n-C ₆ H ₁₃	6-CH ₃	N
3.146	2-CH ₃			4-0-
3.147	2-CH ₃		6-CH₃	4 -o — N
3.148	2-CH ₃			4 -0 - CF ₃
3.149	2-CH ₃		6-CH ₃	4 -0 - CF ₃
3.150	2-CH ₃			4-0-X-CF ₃
3.151	2-CH ₃		6-CH ₃	4-0-N-CF ₃
3.152	2-CH ₃			5-0-X-CF ₃
3.153	2-CH ₃			5-0-CF3
3.154	2-CH ₃		6-CH ₃	4 -s —
3.155	2-CH ₃		6-CH ₃	4 - s — C1
3.156	2-C ₂ H ₅		6-CH ₃	4 -s —

Table 4: Compounds of formula Ig

$$\begin{array}{c|c}
 & O \\
 & N \\
 & N \\
 & O \\$$

Cmpd	R ₄	R ₄	R ₄	R ₅
4.001		Н		
4.002		2-CH ₃		
4.003		4-CH₃		
4.004		2-CH ₃	4-CH ₃	
4.005		2-CH ₃	6-CH ₃	
4.006		2-CH ₃	5-CH ₃	
4.007		3-CH ₃	5-CH ₃	
4.008		2-CH ₃	3-CH ₃	
4.009		3-CH ₃	4-CH ₃	
4.010	2-CH ₃	4-CH ₃	6-CH ₃	
4.011	2-CH ₃	4-CH ₃	5-CH ₃	
4.012		2-C1		
4.013		4-C1		
4.014		2-C1	4-Cl	
4.015		2-CI	6-Cl	
4.016		2-CI	6-F	
4.017		2-CH ₃	4-Cl	
4.018		2-CH ₃	4-F	
4.019		2-Cl	4-CH ₃	
4.020		2-Cl	6-CH ₃	
4.021		2-F	4-F	
4.022		2-F	6-F	
4.023		2-CH ₃	4-O-CH ₃	
4.024		2-CH ₃	6-O-CH ₃	
4.025		2-Cl	4-O-CH ₃	
4.026		2-Cl	6-O-CH ₃	
4.027		3-OCH ₃	4-OCH ₃	

Cmpd R ₄	R ₄	R ₄	R ₅	
4.028	2-OCH ₃	5-OCH₃		
4.029	2-OCH ₃	4-OCH ₃		
4.030	2-OCH ₃	6-OCH ₃		
4.031	2-CF ₃	6-CF ₃		
4.032	2-CF ₃	4-CF ₃		
4.033	3-CF ₃	5-CF ₃		
4.034	2-C1	4-CF ₃		
4.035	2-C1	6-CF ₃		
4.036	2-NO ₂	4-NO ₂		
4.037	2-Cl	4-NO ₂		
4.038	2-CH ₃	4-NO ₂		
4.039	2-O-CH ₃	4-NO ₂		
4.040	2-F	6-NO ₂		
4.041	2-Cl	6-NO ₂		
4.042	2-CH ₃	6-NO ₂		
4.043	2-O-CH ₃	6-NO ₂		
4.044	2-F	4-NO ₂		
4.045	2-CH ₃	$4-N(C_2H_5)_2$		
4.046	2-C1	4-SO ₂ -CH ₃		
4.047	2-C1	4-SO-CH ₃		
4.048	2-C1	4-S-CH ₃		
4.049	2-C1	6-SO ₂ -CH ₃		
4.050	2-C1	6-SO-CH ₃		
4.051	2-C1	6-S-CH ₃		
4.052	2-CH ₃	4-SO ₂ -CH ₃		
4.053	2-CH ₃	4-SO-CH ₃		
4.054	2-CH ₃	4-S-CH ₃		
4.055	2-CH ₃	6-SO ₂ -CH ₃		
4.056	2-CH ₃	6-SO-CH ₃		
4.057	2-CH ₃	6-S-CH ₃		
4.058	2-O-CH ₃	6-SO ₂ -CH ₃		
4.059	2-O-CH ₃	6-SO-CH ₃		
4.060	2-O-CH ₃	6-S-CH ₃		
4.061	2-O-CH ₃	4-SO ₂ -CH ₃		
4.062	2-O-CH ₃	4-SO-CH ₃		
4.063	2-O-CH ₃	4-S-CH ₃		

Cmpd	R ₄	R ₄	R ₄	R ₅	
4.064		2-CH ₃	6-N(C ₂ H ₅) ₂		
4.065		2-Cl	6-N(CH ₃) ₂		
4.066		2-Cl	4-N(CH ₃) ₂		
4.067		2-C1	4-CO ₂ CH ₃		
4.068		2-CH ₃	6-CO ₂ C ₂ H ₅		
4.069		2-CH ₃	4-CO ₂ C ₂ H ₅		
4.070		2-CH ₃	4-CN		
4.071		2-CH ₃	6-CN		
4.072		2-C1	4-CN		
4.073		2-C1	6-CN		
4.074		2-C1	4-CO-CH ₃		
4.075		2-O-CHF ₂	4-O-CHF ₂		
4.076		2-CH ₃	4-O-CHF ₂		
4.077		2-Cl	4-O-CF ₃		
4.078		2-O-CF ₃	4-O-CH ₃		
4.079		2-O-CHF ₂	4-CI		
4.080		2-O-CHF ₂	6-CH ₃		
4.081		2-O-CHF ₂	6-CI		
4.082	2-O-CHF ₂	4-CH ₃	6-CH ₃		
4.083	2-CH ₃	$4-t-C_4H_9$	6-CH ₃		
4.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C ₃ H ₇		
4.085	2-CH ₃	4-O-CH ₃	6-CH ₃		
4.086	2-Cl	4-CF ₃	6-C1		
4.087	2-C1	4-CF ₃	6-F		
4.088	2-Cl	4-NO ₂	6-C1		
4.089	2-C1	4-C1	6-C1		
4.090	2-F	4-F	6-F		
4.091	2-CH ₃	4-NO ₂	6-CH ₃		
4.092	2-Cl	4-Cl	6-CH ₃		
4.093	2-C1	4-O-CH ₃	6-C1		
4.094	2-Cl	4-C1	6-O-CH ₃		
4.095	2-F	4-O-CH ₃	6-F		
4.096	2-O-CH ₃	4-CH ₃	6-O-CH ₃		
4.097	2-O-CH ₃	4-O-CH ₃	6-CH ₃		
4.098	2-O-CH ₃	4-O-CH ₃	6-O-CH ₃		
4.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH ₃		

Cmpd	R ₄	R ₄	R ₄	R ₅
4.100	2-CH ₃	4-Cl	6-CH ₃	
4.101	2-CH ₃	4-F	6-CH ₃	
4.102	2-CH ₃	4-CH ₃	6-O-CH ₃	
4.103	2-F	4-Cl	5-O-i-C ₃ H ₇	
4.104	2-C1	4-CI	5-O-CH ₃	
4.105		4-Cl	5-O-CH ₃	
4.106	2-F	4-Cl	5-CO-O-CH ₃	
4.107	2-F	4-Cl	5-CO-O-C ₂ H ₅	
4.108		4-C1	5-CO-O-CH ₃	
4.109	2-C1	4-Cl	5-CO-O-i-C ₃ H ₇	
4.110				4-0-
4.111				4 - 0 - CI
4.112				4 - 0 — F
4.113				4-0-CF3
4.114	2-CH ₃			4-0-
4.115				4 - S —
4.116				4 - S — CI
4.117				4 - CH ₂
4.118				4-CH ₂ —CI
4.119				4 -CH ₂ - F
4.120				4-CH ₂ -CF ₃

WO 96/11574

PCT/EP95/03935

- 30 -

Cmpd	R ₄	R ₄	R ₄	R ₅
4.121				4 - N-CHO
4.122	2-F	4-C1	5-O-CH ₂ -CH=CH ₂	
4.123	2-F	4-C1	5-O-CH ₂ -C=CH	

Table 5: Compounds of formula Ih

$$\bigcap_{CH_3}^{N} \bigcap_{O} (R_4)_n$$

$$(R_5)_m$$
(Ih)

Cpmd	R ₄	R ₄	R ₄	R ₅
5.001		Н		
5.002		2-CH ₃		
5.003		4-CH ₃		
5.004		2-CH ₃	4-CH ₃	
5.005		2-CH ₃	6-CH ₃	
5.006		2-CH ₃	5-CH ₃	
5.007		3-CH ₃	5-CH ₃	
5.008		2-CH ₃	3-CH ₃	
5.009		3-CH ₃	4-CH ₃	
5.010	2-CH ₃	4-CH ₃	6-CH ₃	
5.011	2-CH ₃	4-CH ₃	5-CH ₃	
5.012		2-Cl		
5.013		4-CI		
5.014		2-C1	4-C1	
5.015		2-C1	6-C1	
5.016		2-C1	6-F	
5.017		2-CH ₃	4-CI	
5.018		2-CH ₃	4-F	
5.019		2-C1	4-CH ₃	
5.020		2-C1	6-CH ₃	
5.021		2-F	4-F	
5.022		2-F	6-F	
5.023		2-CH ₃	4-O-CH ₃	
5.024		2-CH ₃	6-O-CH ₃	
5.025		2-CI	4-O-CH ₃	
5.026		2-Cl	6-O-CH ₃	

Cmpd R ₄	R ₄	R ₄	R ₅
5.027	3-OCH ₃	4-OCH₃	
5.028	2-OCH ₃	5-OCH ₃	
5.029	2-OCH ₃	4-OCH ₃	
5.030	2-OCH ₃	6-OCH ₃	
5.031	2-CF ₃	6-CF ₃	
5.032	2-CF ₃	4-CF ₃	
5.033	3-CF ₃	5-CF ₃	
5.034	2-Cl	4-CF ₃	
5.035	2-Cl	6-CF ₃	
5.036	2-NO ₂	4-NO ₂	
5.037	2-Cl	4-NO ₂	
5.038	2-CH ₃	4-NO ₂	
5.039	2-O-CH ₃	4-NO ₂	
5.040	2-F	6-NO ₂	
5.041	2-C1	6-NO ₂	
5.042	2-CH ₃	6-NO ₂	
5.043	2-O-CH ₃	6-NO ₂	
5.044	2-F	4-NO ₂	
5.045	2-CH ₃	$4-N(C_2H_5)_2$	
5.046	2-Cl	4-SO ₂ -CH ₃	
5.047	2-Cl	4-SO-CH ₃	
5.048	2-Cl	4-S-CH ₃	
5.049	2-Cl	6-SO ₂ -CH ₃	
5.050	2-C1	6-SO-CH ₃	
5.051	2-Cl	6-S-CH ₃	
5.052	2-CH ₃	$4-SO_2-CH_3$	
5.053	2-CH ₃	4-SO-CH ₃	
5.054	2-CH ₃	4-S-CH ₃	
5.055	2-CH ₃	$6-SO_2-CH_3$	
5.056	2-CH ₃	6-SO-CH ₃	
5.057	2-CH ₃	6-S-CH ₃	
5.058	2-O-CH ₃	6-SO ₂ -CH ₃	
5.059	2-O-CH ₃	6-SO-CH ₃	
5.060	2-O-CH ₃	6-S-CH ₃	
5.061	2-O-CH ₃	4-SO ₂ -CH ₃	
5.062	2-O-CH ₃	4-SO-CH ₃	

Cmpd	I R ₄	R ₄	R ₄	R ₅	
5.063		2-O-CH ₃	4-S-CH ₃		
5.064		2-CH ₃	6-N(C ₂ H ₅) ₂		
5.065		2-C1	6-N(CH ₃) ₂		
5.066		2-Cl	4-N(CH ₃) ₂		
5.067		2-C1	4-CO ₂ CH ₃		
5.068		2-CH ₃	6-CO ₂ C ₂ H ₅		
5.069		2-CH ₃	4-CO ₂ C ₂ H ₅		
5.070		2-CH ₃	4-CN		
5.071		2-CH ₃	6-CN	•	
5.072		2-C1	4-CN		
5.073		2-Cl	6-CN		
5.074		2-C1	4-CO-CH ₃		
5.075		2-O-CHF ₂	4-O-CHF ₂		
5.076		2-CH ₃	4-O-CHF ₂		
5.077		2-Cl	4-O-CF ₃		
5.078		2-O-CF ₃	4-O-CH ₃		
5.079		2-O-CHF ₂	4-CI		
5.080		2-O-CHF ₂	6-CH ₃		
5.081		2-O-CHF ₂	6-C1		
5.082	2-O-CHF ₂	4-CH ₃	6-CH ₃		
5.083	2-CH ₃	$4-t-C_4H_9$	6-CH ₃		
5.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C ₃ H ₇		
5.085	2-CH ₃	4-O-CH ₃	6-CH ₃		
5.086	2-Cl	4-CF ₃	6-C1		
5.087	2-Cl	4-CF ₃	6-F		
5.088	2-C1	4-NO ₂	6-CI		
5.089	2-Cl	4-C1	6-C1		
5.090	2-F	4-F	6-F		
5.091	2-CH ₃	4-NO ₂	6-CH ₃		
5.092	2-Cl	4-Cl	6-CH ₃		
5.093	2-Cl	4-O-CH ₃	6-Cl		
5.094	2-Cl	4-Cl	6-O-CH ₃		
5.095	2-F	4-O-CH ₃	6-F		
5.096 5.097	2-O-CH ₃	4-CH ₃	6-O-CH ₃		
5.098	2-O-CH ₃ 2-O-CH ₃	4-O-CH ₃ 4-O-CH ₃	S-CH ₃		
J.U70	2-0-013	4-U-LN3	5-O-CH ₃		

.....

Cmpd	R ₄	R ₄	-34 R ₄	R ₅
5.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH ₃	
5.100	2-CH ₃	4-C1	6-CH ₃	
5.101	2-CH ₃	4-F	6-CH ₃	
5.102	$2-CH_3$	4-CH ₃	6-O-CH ₃	
5.103	2-F	4-C1	5-O-i-C ₃ H ₇	
5.104	2-C1	4-CI	5-O-CH ₃	
5.105		4-C1	5-O-CH ₃	
5.106	2-F	4-C1	5-CO-O-CH ₃	
5.107	2-F	4-C1	5-CO-O-C ₂ H ₅	
5.108		4-C1	5-CO-O-CH ₃	
5.109	2-C1	4-Cl	5-CO-O-i-C ₃ H ₇	
5.110				4-0-
5.111				4-0-CI
5.112				4 - O — F
5.113				4-0-CF3
5.114	2-CH ₃			4-0-
5.115				4 - 8 -
5.116				4 - s — a
5.117				4 - CH ₂
5.118				4 -CH ₂ -CI
5.119				4 CH ₂ - F

- 35 -

Cmpd	R ₄	R ₄	R ₄	R ₅
5.120				4 CH ₂ - CF ₃
5.121				4 - N - CHO
5.122	2-F	4-Cl	5-O-CH ₂ -CH=CH ₂	
5.123	2-F	4-Cl	5-O-CH ₂ -C=CH	

Table 6: Compounds of formula Ii

(li)

Cmpd	R ₄	R ₄	R ₄	R ₅	
6.001		Н			
6.002		2-CH ₃			
6.003		4-CH ₃			
6.004		2-CH ₃	4-CH ₃		
6.005		2-CH ₃	6-CH ₃		
6.006		2-CH ₃	5-CH ₃		
6.007		3-CH ₃	5-CH ₃		
6.008		2-CH ₃	3-CH ₃		
6.009		3-CH ₃	4-CH ₃		
6.010	2-CH ₃	4-CH ₃	6-CH ₃		
6.011	2-CH ₃	4-CH ₃	5-CH ₃		
6.012		2-C1			
6.013		4-Cl			
6.014		2-CI	4-Cl		
6.015		2-C1	6-C1		
6.016		2-C1	6-F		
6.017		2-CH ₃	4-C1		
6.018		2-CH ₃	4-F		
6.019		2-C1	4-CH ₃		
6.020		2-C1	6-CH ₃		
6.021		2-F	4-F		
6.022		2-F	6-F		
6.023		2-CH ₃	4-O-CH ₃		
6.024		2-CH ₃	6-O-CH ₃		
6.025		2-C1	4-O-CH ₃		
6.026		2-C1	6-O-CH ₃		
6.027		3-OCH ₃	4-OCH ₃		

Cmpd R ₄	R ₄	R ₄	R ₅	
				_
6.028	2-OCH ₃	5-OCH ₃		
6.029	$2-OCH_3$	4-OCH ₃		
6.030	2-OCH ₃	6-OCH ₃		
6.031	2-CF ₃	6-CF ₃		
6.032	2-CF ₃	4-CF ₃		
6.033	3-CF ₃	5-CF ₃		
6.034	2-Cl	4-CF ₃		
6.035	2-Cl	6-CF ₃		
6.036	2-NO ₂	4-NO ₂		
6.037	2-C1	4-NO ₂		
6.038	2-CH ₃	4-NO ₂		
6.039	2-O-CH ₃	4-NO ₂		
6.040	2-F	6-NO ₂		
6.041	2-Cl	6-NO ₂		
6.042	2-CH ₃	6-NO ₂		
6.043	2-O-CH ₃	6-NO ₂		
6.044	2-F	4-NO ₂		
6.045	2-CH ₃	$4-N(C_2H_5)_2$		
6.046	2-C1	4-SO ₂ -CH ₃		
6.047	2-Cl	4-SO-CH ₃		
6.048	2-C1	4-S-CH ₃		
6.049	2-Cl	6-SO ₂ -CH ₃		
6.050	2-Cl	6-SO-CH ₃		
6.051	2-C1	6-S-CH ₃		
6.052	2-CH ₃	4-SO ₂ -CH ₃		
6.053	2-CH ₃	4-SO-CH ₃		
6.054	2-CH ₃	4-S-CH ₃		
6.055	2-CH ₃	6-SO ₂ -CH ₃		
6.056	2-CH ₃	6-SO-CH ₃		
6.057	2-CH ₃	6-S-CH ₃		
6.058	2-O-CH ₃	6-SO ₂ -CH ₃		
6.059	2-O-CH ₃	6-SO-CH ₃		
6.060	2-O-CH ₃	6-S-CH ₃		
6.061	2-O-CH ₃	4-SO ₂ -CH ₃		
6.062	2-O-CH ₃	4-SO-CH ₃		

Cmpd	R ₄	R ₄	R ₄	R ₅
6.063		2-O-CH ₃	4-S-CH ₃	
6.064		2-CH ₃	$6-N(C_2H_5)_2$	
6.065		2-Cl	6-N(CH ₃) ₂	
6.066		2-Cl	4-N(CH ₃) ₂	
6.067		2-Cl	4-CO ₂ CH ₃	
6.068		2-CH ₃	6-CO ₂ C ₂ H ₅	
6.069		2-CH ₃	4-CO ₂ C ₂ H ₅	
6.070		2-CH ₃	4-CN	
6.071		2-CH ₃	6-CN	
6.072		2-Cl	4-CN	
6.073		2-Cl	6-CN	
6.074		2-C1	4-CO-CH ₃	
6.075		2-O-CHF ₂	4-O-CHF ₂	
6.076		2-CH ₃	4-O-CHF ₂	
6.077		2-CI	4-O-CF ₃	
6.078		2-O-CF ₃	4-O-CH ₃	
6.079		2-O-CHF ₂	4-C1	
6.080		2-O-CHF ₂	6-CH ₃	
6.081		2-O-CHF ₂	6-C1	
6.082	2-O-CHF ₂	4-CH ₃	6-CH ₃	
6.083	2-CH ₃	4-t-C ₄ H ₉	6-CH ₃	
6.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C ₃ H ₇	
6.085	2-CH ₃	4-O-CH ₃	6-CH ₃	
6.086	2-C1	4-CF ₃	6-C1	
6.087	2-Cl	4-CF ₃	6-F	•
6.088	2-Cl	4-NO ₂	6-Cl	
6.089	2-Cl	4-Cl	6-C1	
6.090	2-F	4-F	6-F	
6.091	2-CH ₃	4-NO ₂	6-CH ₃	
6.092	2-Cl	4-CI	6-CH ₃	
6.093	2-C1	4-O-CH ₃	6-C1	
6.094	2-Cl	4-Cl	6-O-CH ₃	
6.095	2-F	4-O-CH ₃	6-F	
6.096	2-O-CH ₃	4-CH ₃	6-O-CH ₃	
6.097	2-O-CH ₃	4-O-CH ₃	6-CH ₃	
6.098	2-O-CH ₃	4-O-CH ₃	6-O-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
	<u>-</u>		-	
6.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH₃	
6.100	2-CH ₃	4-CI	6-CH ₃	
6.101	2-CH ₃	4-F	6-CH ₃	
6.102	2-CH ₃	4-CH ₃	6-O-CH ₃	
6.103	2-F	4-Cl	5-O-i-C ₃ H ₇	
6.104	2-C1	4-Cl	5-O-CH ₃	
6.105		4-Cl	5-O-CH ₃	
6.106	2-F	4-Cl	5-CO-O-CH ₃	
6.107	2-F	4-Cl	5-CO-O-C ₂ H ₅	
6.108	0.01	4-Cl	5-CO-O-CH ₃	
6.109	2-Cl	4-Cl	5-CO-O-i-C ₃ H ₇	
6.110				4-0-
6.111				4 - 0 — a
6.112				4.0-F
6.113				4-0-CF ₃
6.114	2-CH ₃			4-0-
6.115				4 - S - 📞
6.116				4 - \$ — CI
6.117				4 - CH ₂ -
6.118				4 -CH ₂ -CI
6.119				4 -CH ₂

Cmpd	R ₄	R ₄	R ₄	R ₅
6.120				4.CH ₂ - CF ₃
6.121				4 - N CHO
6.122	2-F	4-Cl	5-O-CH ₂ -CH=CH ₂	
6.123	2-F	4-Cl ·	5-O-CH ₂ -C=CH	
6.124	2-Br			
6.125	2-CF ₃			
6.126	2-OCH ₃			
				Cl
6.127	2-CH ₃			4 -0 — CI
6.128	2-CH ₃			4-0-CF ₃
6.129	2-CH ₃			4 -0 -CI
6.130	2-CH ₃		6-CH ₃	4-0-
6.131	2-CH ₃		6-CH ₃	4-0-CF ₃
6.132	2-CH ₃		6-CH ₃	4-0-C1
6.133	2-CH ₃		6-CH ₃	4 -0 - CI
				`CI
6.134	2-CH ₃	4-Br	6-CH ₃	
6.135	2-CH ₃	6-C ₂ H ₅		
6.136	$2-C_2H_5$			
6.137	_	4-OC ₂ H ₅	6-CH ₃	
6.138	2-CH ₃	4-O-i-C ₃ H ₇	6-CH ₃	
6.139	2-CH ₃	4-O-n-C ₃ H ₇	6-CH ₃	
6.140	2-CH ₃	4-O-n-C ₁₀ H ₂₁	6-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
6.141	2-CH ₃	4-O-n-C ₃ H ₇		
6.142	2-CH ₃	4-O-(CH ₂) ₂ OCH ₃		
6.143	2-CH ₃	4-O-(CH ₂) ₂ OCH ₃	6-CH ₃	
6.144	2-CH ₃	4-O-(CH ₂) ₂ OCH ₃		•
6.145	2-CH ₃	4-O-n-C ₆ H ₁₃	6-CH ₃	
6.146	2-CH ₃			4-0-
6.147	2-CH ₃		6-CH ₃	4-0-
6.148	2-CH ₃			4 -0 - CF ₃
6.149	2-CH ₃		6-CH ₃	4 -0 - CF ₃
6.150	2-CH ₃			4-0-CF ₃
6.151	2-CH ₃		6-CH ₃	4-0-KI
6.152	2-CH ₃			5-0-X-CF ₃
6.153	2-CH ₃			5-0-CF ₃
6.154	2-CH ₃		6-CH ₃	4 -s —
6.155	2-CH ₃		6-CH ₃	4-s—a
6.156	2-C ₂ H ₅		6-CH ₃	4 -s —

Table 7: Compounds of formula Ii

Cmpd R ₄	R ₄	R ₄	R ₅	
7.028	2-OCH ₃	5-OCH ₃		
7.029	2-OCH ₃	4-OCH ₃		
7.030	2-OCH ₃	6-OCH ₃		
7.031	2-CF ₃	6-CF ₃		
7.032	2-CF ₃	4-CF ₃		
7.033	3-CF ₃	5-CF ₃		•
7.034	2-CI	4-CF ₃		
7.035	2-C1	6-CF ₃		
7.036	2-NO ₂	4-NO ₂		
7.037	2-C1	4-NO ₂		
7.038	2-CH ₃	4-NO ₂		
7.039	2-O-CH ₃	4-NO ₂		
7.040	2-F	6-NO ₂		
7.041	2-Cl	6-NO ₂		
7.042	2-CH ₃	6-NO ₂		
7.043	2-O-CH ₃	6-NO ₂		
7.044	2-F	4-NO ₂		
7.045	2-CH ₃	$4-N(C_2H_5)_2$		
7.046	2-C1	4-SO ₂ -CH ₃		
7.047	2-C1	4-SO-CH ₃		
7.048	2-C1	4-S-CH ₃		
7.049	2-Cl	6-SO ₂ -CH ₃		
7.050	2-C1	6-SO-CH ₃		
7.051	2-C1	6-S-CH ₃		
7.052	2-CH ₃	4-SO ₂ -CH ₃		
7.053	2-CH ₃	4-SO-CH ₃		
7.054	2-CH ₃	4-S-CH ₃		
7.055	2-CH ₃	6-SO ₂ -CH ₃		
7.056	2-CH ₃	6-SO-CH ₃		
7.057	2-CH ₃	6-S-CH ₃		
7.058	2-O-CH ₃	6-SO ₂ -CH ₃		
7.059	2-O-CH ₃	6-SO-CH ₃		
7.060	2-O-CH ₃	6-S-CH ₃		
7.061	2-O-CH ₃	4-SO ₂ -CH ₃		
7.062	2-O-CH ₃	4-SO-CH ₃		

Cmpd	R ₄	R ₄	R ₄	R ₅
 7.063		2-O-CH ₃	4-S-CH ₃	
7.064		2-CH ₃	$6-N(C_2H_5)_2$	
7.065		2-C1	6-N(CH ₃) ₂	
7.066		2-Cl	4-N(CH ₃) ₂	
7.067		2-C1	4-CO ₂ CH ₃	
7.068		2-CH ₃	6-CO ₂ C ₂ H ₅	•
7.069		2-CH ₃	4-CO ₂ C ₂ H ₅	
7.070		2-CH ₃	4-CN	
7.071		2-CH ₃	6-CN	
7.072		2-Cl	4-CN	
7.073		2-Cl	6-CN	
7.074		2-Cl	4-CO-CH ₃	
7.075		2-O-CHF ₂	4-O-CHF ₂	
7.076		2-CH ₃	4-O-CHF ₂	
7.077		2-C1	4-O-CF ₃	
7.078		2-O-CF ₃	4-O-CH ₃	
7.079		2-O-CHF ₂	4-Cl	
7.080		2-O-CHF ₂	6-CH ₃	
7.081		2-O-CHF ₂	6-Cl	
7.082	2-O-CHF ₂	4-CH ₃	6-CH ₃	
7.083	2-CH ₃	4-t-C ₄ H ₉	6-CH ₃	
7.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C ₃ H ₇	
7.085	2-CH ₃	4-O-CH ₃	6-CH ₃	
7.086	2-C1	4-CF ₃	6-C1	
7.087	2-C1	4-CF ₃	6-F	
7.088	2-Cl	4-NO ₂	6-C1	
7.089	2-Cl	4-Cl	6-Cl	
7.090	2-F	4-F	6-F	
7.091	2-CH ₃	4-NO ₂	6-CH ₃	
7.092	2-Cl	4-Cl	6-CH ₃	
7.093	2-Cl	4-O-CH ₃	6-Cl	
7.094	2-C1	4-Cl	6-O-CH ₃	
7.095	2-F	4-O-CH ₃	6-F	
7.096	2-O-CH ₃	4-CH ₃	6-O-CH ₃	
7.097	2-O-CH ₃	4-O-CH ₃	6-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
7.098	2-O-CH ₃	4-O-CH ₃	6-O-CH ₃	
7.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH ₃	
7.100	2-CH ₃	4-C1	6-CH ₃	
7.101	2-CH ₃	4-F	6-CH ₃	
7.102	2-CH ₃	4-CH ₃	6-O-CH ₃	
7.103	2-F	4-Cl	5-O-i-C ₃ H ₇	
7.104	2-C1	4-C1	5-O-CH ₃	
7.105		4-C1	5-O-CH ₃	
7.106	2-F	4-Cl	5-CO-O-CH ₃	
7.107	2-F	4-C1	5-CO-O-C ₂ H ₅	
7.108		4-CI	5-CO-O-CH ₃	
7.109	2-C1	4-Cl	5-CO-O-i-C ₃ H ₇	
7.110				4-0-
7.111				4 - 0 — CI
7.112		·		4 - 0 - F
7.113				4 - 0 - CF ₃
7.114	2-CH ₃			4-0-
7.115				4-5-
7.116				4 - S — CI
7.117				4 - CH ₂
7.118				4 -CH ₂ -CI

- 46 -

Cmpd	R ₄	R ₄	R ₄	R ₅
7.119				4 -CH ₂
7.120				4 CH ₂ CF ₃
7.121				4 - N - CHO
7.122	2-F	4-Cl	5-O-CH ₂ -CH=CH ₂	
7.123	2-F	4-Cl	5-O-CH ₂ -C=CH	

Table 8: Compounds of formula Ik

Cmpd	R ₄	R ₄	R ₄	R ₅	
8.001		Н			
8.002		2-CH ₃			
8.003		4-CH ₃			
8.004		2-CH ₃	4-CH ₃		
8.005		2-CH ₃	6-CH ₃		
8.006		2-CH ₃	5-CH ₃		
8.007		3-CH ₃	5-CH ₃		
8.008		2-CH ₃	3-CH ₃		
8.009		3-CH ₃	4-CH ₃		
8.010	2-CH ₃	4-CH ₃	6-CH ₃		
8.011	2-CH ₃	4-CH ₃	5-CH ₃		
8.012		2-C1			
8.013		4-C1			
8.014		2-C1	4-C1		
8.015		2-CI	6-C1		
8.016		2-Cl	6-F		
8.017		2-CH ₃	4-C1		
8.018		2-CH ₃	4-F		
8.019		2-C1	4-CH ₃		
8.020		2-Cl	6-CH ₃		
8.021		2-F	4-F		
8.022		2-F	6-F		
8.023		2-CH ₃	4-O-CH ₃		
8.024		2-CH ₃	6-O-CH ₃		
8.025		2-C1	4-O-CH ₃		
8.026		2-Cl	6-O-CH ₃		

8.027	Cmpd	R ₄	R ₄	R ₄	R ₅
8.029	8.027		3-OCH ₃	4-OCH ₃	
8.030	8.028		2-OCH ₃	5-OCH ₃	
8.031 2-CF ₃ 6-CF ₃ 8.032 2-CF ₃ 4-CF ₃ 8.033 3-CF ₃ 5-CF ₃ 8.034 2-Cl 4-CF ₃ 8.035 2-Cl 6-CF ₃ 8.036 2-NO ₂ 4-NO ₂ 8.037 2-Cl 4-NO ₂ 8.038 2-CH ₃ 4-NO ₂ 8.039 2-O-CH ₃ 4-NO ₂ 8.040 2-F 6-NO ₂ 8.041 2-Cl 6-NO ₂ 8.042 2-CH ₃ 6-NO ₂ 8.043 2-O-CH ₃ 6-NO ₂ 8.044 2-F 4-NO ₂ 8.045 2-CH ₃ 6-NO ₂ 8.046 2-Cl 4-SO ₂ -CH ₃ 8.047 2-Cl 4-SO ₂ -CH ₃ 8.048 2-Cl 4-SO ₂ -CH ₃ 8.049 2-Cl 6-SO ₂ -CH ₃ 8.049 2-Cl 6-SO ₂ -CH ₃ 8.050 2-Cl 6-SO ₂ -CH ₃ 8.055 2-CH ₃ 4-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO ₂ -CH ₃ 8.057 2-CH ₃ 6-SO ₂ -CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.050 2-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.050 2-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.050 2-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.050 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.060 2-O-CH ₃ 6-SO ₂ -CH ₃	8.029		2-OCH ₃	4-OCH ₃	
8.032	8.030		2-OCH ₃	-	
8.033 3-CF ₃ 5-CF ₃ 8.034 2-Cl 4-CF ₃ 8.035 2-Cl 6-CF ₃ 8.036 2-NO ₂ 4-NO ₂ 8.037 2-Cl 4-NO ₂ 8.038 2-CH ₃ 4-NO ₂ 8.039 2-O-CH ₃ 4-NO ₂ 8.041 2-Cl 6-NO ₂ 8.042 2-CH ₃ 6-NO ₂ 8.043 2-O-CH ₃ 6-NO ₂ 8.044 2-F 4-NO ₂ 8.045 2-CH ₃ 4-N(C ₂ H ₃) ₂ 8.046 2-Cl 4-SO ₂ -CH ₃ 8.047 2-Cl 4-SO-CH ₃ 8.048 2-Cl 4-S-CH ₃ 8.050 2-Cl 6-SO-CH ₃ 8.050 2-Cl 6-S-CH ₃ 8.050 2-CH ₃ 4-SO ₂ -CH ₃ 8.050 2-CH ₃ 6-SO-CH ₃ 8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO ₂ -CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.050 2-O-CH ₃ 6-SO-CH ₃ 8.050 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.050 2-O-CH ₃ 6-SO-CH ₃	8.031		2-CF ₃	6-CF ₃	
8.034 2-Cl 4-CF ₃ 8.035 2-Cl 6-CF ₃ 8.036 2-NO ₂ 4-NO ₂ 8.037 2-Cl 4-NO ₂ 8.038 2-CH ₃ 4-NO ₂ 8.039 2-O-CH ₃ 4-NO ₂ 8.040 2-F 6-NO ₂ 8.041 2-Cl 6-NO ₂ 8.042 2-CH ₃ 6-NO ₂ 8.043 2-O-CH ₃ 6-NO ₂ 8.044 2-F 4-NO ₂ 8.045 2-Cl 4-SO ₂ CH ₃ 8.046 2-Cl 4-SO ₂ CH ₃ 8.047 2-Cl 4-SO-CH ₃ 8.048 2-Cl 6-SO ₂ CH ₃ 8.049 2-Cl 6-SO ₂ CH ₃ 8.050 2-Cl 6-SO ₂ CH ₃ 8.051 2-Cl 6-SO ₂ CH ₃ 8.055 2-CH ₃ 4-SO ₂ CH ₃ 8.055 2-CH ₃ 4-SO ₂ CH ₃ 8.056 2-CH ₃ 6-SO ₂ CH ₃ 8.057 2-CH ₃ 6-SO ₂ CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ CH ₃ 8.059 2-O-CH ₃ 6-SO ₂ CH ₃ 8.050 2-CH ₃ 6-SO ₂ CH ₃ 8.050 2-CH ₃ 6-SO ₂ CH ₃ 8.051 2-CH ₃ 6-SO ₂ CH ₃ 8.052 2-CH ₃ 6-SO ₂ CH ₃ 8.055 2-CH ₃ 6-SO ₂ CH ₃ 8.056 2-CH ₃ 6-SO ₂ CH ₃ 8.057 2-CH ₃ 6-SO ₂ CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ CH ₃ 8.059 2-O-CH ₃ 6-SO ₂ CH ₃ 8.050 2-O-CH ₃ 6-SO ₂ CH ₃ 8.060 2-O-CH ₃ 6-SO ₂ CH ₃	8.032		2-CF ₃	4-CF ₃	
8.035 2-Cl 6-CF ₃ 8.036 2-NO ₂ 4-NO ₂ 8.037 2-Cl 4-NO ₂ 8.038 2-CH ₃ 4-NO ₂ 8.039 2-O-CH ₃ 4-NO ₂ 8.040 2-F 6-NO ₂ 8.041 2-Cl 6-NO ₂ 8.042 2-CH ₃ 6-NO ₂ 8.043 2-O-CH ₃ 6-NO ₂ 8.044 2-F 4-NO ₂ 8.045 2-CH ₃ 4-N(C ₂ H ₃) ₂ 8.046 2-Cl 4-SO ₂ -CH ₃ 8.047 2-Cl 4-SO-CH ₃ 8.048 2-Cl 4-S-CH ₃ 8.049 2-Cl 6-SO ₂ -CH ₃ 8.050 2-Cl 6-SO-CH ₃ 8.051 2-Cl 6-SO-CH ₃ 8.055 2-CH ₃ 4-SO-CH ₃ 8.055 2-CH ₃ 4-SO-CH ₃ 8.056 2-CH ₃ 6-SO ₂ -CH ₃ 8.057 2-CH ₃ 6-SO ₂ -CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.050 2-CH ₃ 6-SO-CH ₃ 8.050 2-CH ₃ 6-SO-CH ₃ 8.051 2-CH ₃ 6-SO-CH ₃ 8.052 2-CH ₃ 6-SO-CH ₃ 8.055 2-CH ₃ 6-SO-CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.050 2-O-CH ₃ 6-SO-CH ₃	8.033		3-CF ₃	5-CF ₃	
8.036	8.034		2-C1	4-CF ₃	
8.037	8.035		2-C1	6-CF ₃	
8.038 2-CH ₃ 4-NO ₂ 8.039 2-O-CH ₃ 4-NO ₂ 8.040 2-F 6-NO ₂ 8.041 2-CI 6-NO ₂ 8.042 2-CH ₃ 6-NO ₂ 8.043 2-O-CH ₃ 6-NO ₂ 8.044 2-F 4-NO ₂ 8.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 8.046 2-CI 4-SO ₂ -CH ₃ 8.047 2-CI 4-SO-CH ₃ 8.048 2-CI 4-S-CH ₃ 8.049 2-CI 6-SO ₂ -CH ₃ 8.050 2-CI 6-SO-CH ₃ 8.051 2-CI 6-SO-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO ₂ -CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO ₂ -CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 6-S-CH ₃ 8.061	8.036		2-NO ₂	4-NO ₂	
8.039 2-O-CH ₃ 4-NO ₂ 8.040 2-F 6-NO ₂ 8.041 2-CI 6-NO ₂ 8.042 2-CH ₃ 6-NO ₂ 8.043 2-O-CH ₃ 6-NO ₂ 8.044 2-F 4-NO ₂ 8.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 8.046 2-CI 4-SO ₂ -CH ₃ 8.047 2-CI 4-SO-CH ₃ 8.048 2-CI 4-S-CH ₃ 8.049 2-CI 6-SO ₂ -CH ₃ 8.050 2-CI 6-SO-CH ₃ 8.051 2-CI 6-SO-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO ₂ -CH ₃ 8.055 2-CH ₃ 4-SO-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO ₂ -CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃ 8.061	8.037		2-CI	4-NO ₂	
8.040	8.038		2-CH ₃	4-NO ₂	
8.041 2-Cl 6-NO ₂ 8.042 2-CH ₃ 6-NO ₂ 8.043 2-O-CH ₃ 6-NO ₂ 8.044 2-F 4-NO ₂ 8.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 8.046 2-Cl 4-SO ₂ -CH ₃ 8.047 2-Cl 4-SO-CH ₃ 8.048 2-Cl 4-S-CH ₃ 8.049 2-Cl 6-SO ₂ -CH ₃ 8.050 2-Cl 6-SO-CH ₃ 8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO-CH ₃ 8.054 2-CH ₃ 4-SO-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO ₂ -CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 6-S-CH ₃	8.039		2-O-CH ₃	4-NO ₂	
8.042 2-CH ₃ 6-NO ₂ 8.043 2-O-CH ₃ 6-NO ₂ 8.044 2-F 4-NO ₂ 8.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 8.046 2-CI 4-SO ₂ -CH ₃ 8.047 2-CI 4-SO-CH ₃ 8.048 2-CI 4-S-CH ₃ 8.049 2-CI 6-SO ₂ -CH ₃ 8.050 2-CI 6-SO-CH ₃ 8.051 2-CI 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO ₂ -CH ₃ 8.054 2-CH ₃ 4-SO-CH ₃ 8.055 2-CH ₃ 6-SO-CH ₃ 8.056 2-CH ₃ 6-SO ₂ -CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.050 2-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-SO-CH ₃ 8.061 2-O-CH ₃ 6-SO-CH ₃ 8.060	8.040		2-F	6-NO ₂	
8.043 2-O-CH ₃ 6-NO ₂ 8.044 2-F 4-NO ₂ 8.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 8.046 2-Cl 4-SO ₂ -CH ₃ 8.047 2-Cl 4-SO-CH ₃ 8.048 2-Cl 4-S-CH ₃ 8.049 2-Cl 6-SO-CH ₃ 8.050 2-Cl 6-SO-CH ₃ 8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO-CH ₃ 8.054 2-CH ₃ 4-SO-CH ₃ 8.055 2-CH ₃ 6-SO-CH ₃ 8.055 2-CH ₃ 6-SO-CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061	8.041		2-Cl	6-NO ₂	
8.044 2-F 4-NO ₂ 8.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 8.046 2-Cl 4-SO ₂ -CH ₃ 8.047 2-Cl 4-SO-CH ₃ 8.048 2-Cl 4-S-CH ₃ 8.049 2-Cl 6-SO ₂ -CH ₃ 8.050 2-Cl 6-SO-CH ₃ 8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO ₂ -CH ₃ 8.054 2-CH ₃ 4-SO-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-SO-CH ₃ 8.061 2-O-CH ₃ 6-SO-CH ₃	8.042		2-CH ₃	6-NO ₂	
8.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 8.046 2-Cl 4-SO ₂ -CH ₃ 8.047 2-Cl 4-SO-CH ₃ 8.048 2-Cl 4-S-CH ₃ 8.049 2-Cl 6-SO ₂ -CH ₃ 8.050 2-Cl 6-SO-CH ₃ 8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO-CH ₃ 8.054 2-CH ₃ 4-S-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-SO-CH ₃ 8.061 2-O-CH ₃ 6-S-CH ₃	8.043		2-O-CH ₃	6-NO ₂	
8.046 2-Cl 4-SO ₂ -CH ₃ 8.047 2-Cl 4-SO-CH ₃ 8.048 2-Cl 4-S-CH ₃ 8.049 2-Cl 6-SO ₂ -CH ₃ 8.050 2-Cl 6-SO-CH ₃ 8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO ₂ -CH ₃ 8.054 2-CH ₃ 4-S-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO-CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃	8.044		2-F	4-NO ₂	
8.047 2-Cl 4-SO-CH ₃ 8.048 2-Cl 4-S-CH ₃ 8.049 2-Cl 6-SO ₂ -CH ₃ 8.050 2-Cl 6-SO-CH ₃ 8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO-CH ₃ 8.054 2-CH ₃ 4-S-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃	8.045		2-CH ₃	$4-N(C_2H_5)_2$	
8.048 2-Cl 4-S-CH ₃ 8.049 2-Cl 6-SO ₂ -CH ₃ 8.050 2-Cl 6-SO-CH ₃ 8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO-CH ₃ 8.054 2-CH ₃ 4-S-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 6-S-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃	8.046		2-C1	4-SO ₂ -CH ₃	
8.049 2-Cl 6-SO ₂ -CH ₃ 8.050 2-Cl 6-SO-CH ₃ 8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO-CH ₃ 8.054 2-CH ₃ 4-S-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 6-S-CH ₃	8.047		2-Cl	4-SO-CH ₃	
8.050 2-Cl 6-SO-CH ₃ 8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO-CH ₃ 8.054 2-CH ₃ 4-S-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-SO-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃	8.048		2-Cl	4-S-CH ₃	
8.051 2-Cl 6-S-CH ₃ 8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO-CH ₃ 8.054 2-CH ₃ 4-S-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-S-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-SO-CH ₃ 8.061 2-O-CH ₃ 6-S-CH ₃	8.049		2-C1	6-SO ₂ -CH ₃	
8.052 2-CH ₃ 4-SO ₂ -CH ₃ 8.053 2-CH ₃ 4-SO-CH ₃ 8.054 2-CH ₃ 4-S-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-S-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-SO-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃	8.050		2-C1	6-SO-CH ₃	
8.053 2-CH ₃ 4-SO-CH ₃ 8.054 2-CH ₃ 4-S-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-S-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃	8.051		2-C1	6-S-CH ₃	
8.054 2-CH ₃ 4-S-CH ₃ 8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-S-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃	8.052		2-CH ₃	4-SO ₂ -CH ₃	
8.055 2-CH ₃ 6-SO ₂ -CH ₃ 8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-S-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃	8.053		2-CH ₃	4-SO-CH ₃	
8.056 2-CH ₃ 6-SO-CH ₃ 8.057 2-CH ₃ 6-S-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃	8.054		2-CH ₃	4-S-CH ₃	
8.057 2-CH ₃ 6-S-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃	8.055		2-CH ₃	6-SO ₂ -CH ₃	
8.057 2-CH ₃ 6-S-CH ₃ 8.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-CH ₃	6-SO-CH ₃	
8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-CH ₃	6-S-CH ₃	
8.059 2-O-CH ₃ 6-SO-CH ₃ 8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃			-	6-SO ₂ -CH ₃	
8.060 2-O-CH ₃ 6-S-CH ₃ 8.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-O-CH ₃	6-SO-CH ₃	
8.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-O-CH ₃	6-S-CH ₃	
A 0.0 CT				4-SO ₂ -CH ₃	
	8.062		2-O-CH ₃	4-SO-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
8.063		2-O-CH ₃	4-S-CH ₃	
8.064		2-CH ₃	$6-N(C_2H_5)_2$	
8.065		2-Cl	6-N(CH ₃) ₂	
8.066		2-C1	4-N(CH ₃) ₂	
8.067		2-C1	4-CO ₂ CH ₃	
8.068		2-CH ₃	6-CO ₂ C ₂ H ₅	
8.069		2-CH ₃	4-CO ₂ C ₂ H ₅	
8.070		2-CH ₃	4-CN	
8.071		2-CH ₃	6-CN	
8.072		2-C1	4-CN	
8.073		2-Cl	6-CN	
8.074		2-CI	4-CO-CH ₃	
8.075		2-O-CHF ₂	4-O-CHF ₂	
8.076		2-CH ₃	4-O-CHF ₂	
8.077		2-Cl	4-O-CF ₃	
8.078		2-O-CF ₃	4-O-CH ₃	
8.079		2-O-CHF ₂	4-Cl	
8.080		2-O-CHF ₂	6-CH ₃	
8.081		2-O-CHF ₂	6-Cl	
8.082	2-O-CHF ₂	4-CH ₃	6-CH ₃	
8.083	2-CH ₃	4-t-C ₄ H ₉	6-CH ₃	
8.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C ₃ H ₇	
8.085	2-CH ₃	4-O-CH ₃	6-CH ₃	
8.086	2-Cl	4-CF ₃	6-Cl	
8.087	2-Cl	4-CF ₃	6-F	
8.088	2-C1	4-NO ₂	6-Cl	
8.089	2-C1	4-C1	6-C1	
8.090	2-F	4-F	6-F	
8.091	2-CH ₃	4-NO ₂	6-CH ₃	
8.092	2-Cl	4-C1	6-CH ₃	
8.093	2-Cl	4-O-CH ₃	6-CI	
8.094	2-Cl	4-C1	6-O-CH ₃	
8.095	2-F	4-O-CH ₃	6-F	
8.096	2-O-CH ₃	4-CH ₃	6-O-CH ₃	
8.097	-	4-O-CH ₃	6-CH ₃	
8.098	2-O-CH ₃	4-O-CH ₃	6-O-CH ₃	

.

Cmpd	R ₄	R ₄	R ₄	R ₅
8.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH₃	
8.100	2-CH ₃	4-Cl	6-CH ₃	
8.101	2-CH ₃	4-F	6-CH ₃	
8.102	2-CH ₃	4-CH ₃	6-O-CH ₃	
8.103	2-F	4-Cl	5-O-i-C ₃ H ₇	
8.104	2-C1	4-Cl	5-O-CH ₃	
8.105		4-Cl	5-O-CH ₃	
8.106	2-F	4-Cl	5-CO-O-CH ₃	
8.107	2-F	4-Cl	5-CO-O-C ₂ H ₅	
8.108		4-Cl	5-CO-O-CH ₃	
8.109	2-C1	4-Cl	5-CO-O-i-C ₃ H ₇	
8.110				4 - 0
8.111				4 - 0 — CI
8.112				4 - 0 — F
8.113				4-0-CF3
8.114	2-CH ₃			4-0-
8.115				4 - S - 📞
8.116				4 - s — CI
8.117				4 - CH ₂
8.118				4 -CH ₂ -CI
8.119				4 -CH ₂ - F

- 51 -

Cmpd	R ₄	R ₄	R ₄	R _s
8.120				4-CH ₂ -CF ₃
8.121				4 - N-CHO
8.122	2-F	4-Cl	5-O-CH ₂ -CH=CH ₂	
8.123	2-F	4-Cl	5-O-CH ₂ -CH=CH ₂ 5-O-CH ₂ -C=CH	

Table 9: Compounds of formula Il

$$\begin{array}{c|c}
 & O \\
 & N \\
 & N \\
 & O \\$$

Cmpd	R ₄	R ₄	R ₄	R ₅
9.001		Н		
9.002		2-CH ₃		
9.003		4-CH ₃		
9.004		2-CH ₃	4-CH ₃	
9.005		2-CH ₃	6-CH ₃	
9.006		2-CH ₃	5-CH ₃	
9.007		3-CH ₃	5-CH ₃	
9.008		2-CH ₃	3-CH ₃	
9.009		3-CH ₃	4-CH ₃	
9.010	2-CH ₃	4-CH ₃	6-CH ₃	
9.011	2-CH ₃	4-CH ₃	5-CH ₃	
9.012		2-C1		
9.013		4-Cl		
9.014		2-Cl	4-Cl	
9.015		2-C1	6-C1	
9.016		2-Cl	6-F	
9.017		2-CH ₃	4-Cl	
9.018		2-CH ₃	4-F	
9.019		2-C1	4-CH ₃	
9.020		2-Cl	6-CH ₃	
9.021		2-F	4-F	
9.022		2-F	6-F	
9.023		2-CH ₃	4-O-CH ₃	
9.024		2-CH ₃	6-O-CH ₃	
9.025		2-Cl	4-O-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
9.026		2-Cl	6-O-CH ₃	
9.027		3-OCH ₃	4-OCH ₃	
9.028		2-OCH ₃	5-OCH ₃	
9.029		2-OCH ₃	4-OCH ₃	
9.030		2-OCH ₃	6-OCH ₃	
9.031		2-CF ₃	6-CF ₃	
9.032		2-CF ₃	4-CF ₃	
9.033		3-CF ₃	5-CF ₃	
9.034		2-Cl	4-CF ₃	
9.035		2-Cl	6-CF ₃	
9.036		2-NO ₂	4-NO ₂	
9.037		2-C1	4-NO ₂	•
9.038		2-CH ₃	4-NO ₂	
9.039		2-O-CH ₃	4-NO ₂	
9.040		2-F	6-NO ₂	
9.041		2-C1	6-NO ₂	
9.042		2-CH ₃	6-NO ₂	
9.043		2-O-CH ₃	6-NO ₂	
9.044		2-F	4-NO ₂	
9.045		2-CH ₃	$4-N(C_2H_5)_2$	
9.046		2-C1	4-SO ₂ -CH ₃	
9.047		2-Cl	4-SO-CH ₃	
9.048		2-Cl	4-S-CH ₃	
9.049		2-Cl	6-SO ₂ -CH ₃	
9.050		2-CI	6-SO-CH ₃	
9.051		2-C1	6-S-CH ₃	
9.052		2-CH ₃	4-SO ₂ -CH ₃	
9.053		2-CH ₃	4-SO-CH ₃	
9.054		2-CH ₃	4-S-CH ₃	
9.055		2-CH ₃	6-SO ₂ -CH ₃	
9.056		2-CH ₃	6-SO-CH ₃	
9.057		2-CH ₃	6-S-CH ₃	
9.058		2-O-CH ₃	6-SO ₂ -CH ₃	
9.059		2-O-CH ₃	6-SO-CH ₃	
9.060		2-O-CH ₃	6-S-CH ₃	
9.061		2-O-CH ₃	4-SO ₂ -CH ₃	

			- 54 -		
Cmpd	R ₄ R ₄	!	R ₄	R ₅	
9.062		2-O-CH ₃	4-SO-CH₃		
9.063		2-O-CH ₃	4-S-CH ₃		
9.064		2-CH ₃	$6-N(C_2H_5)_2$		
9.065		2-C1	$6-N(CH_3)_2$		
9.066		2-C1	4-N(CH ₃) ₂		
9.067		2-Cl	4-CO ₂ CH ₃		
9.068		2-CH ₃	6-CO ₂ C ₂ H ₅		
9.069		2-CH ₃	4-CO ₂ C ₂ H ₅		
9.070		2-CH ₃	4-CN		
9.071		2-CH ₃	6-CN		
9.072		2-Cl	4-CN		
9.073		2-Cl	6-CN		
9.074		2-Cl	4-CO-CH ₃		
9.075		2-O-CHF ₂	4-0-CHF ₂		
9.076		2-CH ₃	4-O-CHF ₂		
9.077		2-C1	4-O-CF ₃		
9.078		2-O-CF ₃	4-O-CH ₃		
9.079		2-O-CHF ₂	4-Cl		
9.080		2-O-CHF ₂	6-CH ₃		
9.081		2-O-CHF ₂	6-C1		
9.082	2-O-CHF ₂	4-CH ₃	6-CH ₃		
9.083	2-CH ₃	4-t-C ₄ H ₉	6-CH ₃		
9.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C ₃ H ₇		
0.085	2-CH ₃	4-O-CH ₃	6-CH ₃		
9.086	2-Cl	4-CF ₃	6-C1		
0.087	2-Cl	4-CF ₃	6-F		
880.0	2-Cl	4-NO ₂	6-CI		
0.089	2-Cl	4-C1	6-Cl		
0.090	2-F	4-F	6-F		
.091	2-CH ₃	4-NO ₂	6-CH ₃		
.092	2-C1	4-CI	6-CH ₃		
.093	2-Cl	4-O-CH ₃	6-Cl		
.094	2-Cl	4-Cl	6-O-CH ₃		
.095	2-F	4-O-CH ₃	6-F		
.0 96	2-O-CH ₃	4-CH ₃	6-O-CH₃		
.097	2-O-CH ₃	4-O-CH ₃	6-CH ₃		
.098	2-O-CH ₃	4-O-CH ₃	6-O-CH ₃		

Cmpd	R ₄	R ₄	R ₄	R ₅
9.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH₃	
9.100	2-CH ₃	4-C1	6-CH ₃	
9.101	2-CH ₃	4-F	6-CH ₃	
9.102	2-CH ₃	4-CH ₃	6-O-CH ₃	
9.103	2-F	4-C1	5-O-i-C ₃ H ₇	
9.104	2-Cl	4-C1	5-O-CH ₃	
9.105		4-C1	5-O-CH ₃	
9.106	2-F	4-C1	5-CO-O-CH ₃	
9.107	2-F	4-C1	5-CO-O-C ₂ H ₅	
9.108		4-Cl	5-CO-O-CH ₃	
9.109	2-Cl	4-C1	5-CO-O-i-C ₃ H ₇	
9.110				4-0-
9.111				4 - 0 — a
9.112				4 - 0 — F
9.113				4-0-CF ₃
9.114	2-CH ₃			4-0-
9.115				4 - S —
9.116				4 - s — CI
9.117				4 - CH ₂
9.118				4 -CH ₂ -CI
9.119				4 CH ₂ - F

- 56 -

			50	
Cmpd	R ₄	R ₄	R ₄	R ₅
9.120				4 -CH ₂ -CF ₃
9.121				4 - N - CHO
9.122	2-F	4-CI	5-O-CH ₂ -CH=CH ₂	
9.123	2-F	4-C1	5-O-CH ₂ -C≡CH	

Table 10: Compounds of formula Im

Cmpd	R ₄	R ₄	R ₄	R ₅
10.001		Н		
10.002		2-CH ₃		
10.003		4-CH ₃		
10.004		2-CH ₃	4-CH ₃	
10.005		2-CH ₃	6-CH ₃	
10.006		2-CH ₃	5-CH ₃	
10.007		3-CH ₃	5-CH ₃	
10.008		2-CH ₃	3-CH ₃	
10.009		3-CH ₃	4-CH ₃	
10.010	2-CH ₃	4-CH ₃	6-CH ₃	
10.011	2-CH ₃	4-CH ₃	5-CH ₃	
10.012		2-Cl		
10.013		4-Cl		
10.014		2-C1	4-Cl	
10.015		2-C1	6-CI	
10.016		2-C1	6-F	
10.017		2-CH ₃	4-C1	
10.018		2-CH ₃	4-F	
10.019		2-Cl	4-CH ₃	
10.020		2-C1	6-CH ₃	
10.021		2-F	4-F	
10.022		2-F	6-F	
10.023		2-CH ₃	4-O-CH ₃	
10.024		2-CH ₃	6-O-CH ₃	
10.025		2-C1	4-O-CH ₃	
10.026		2-Cl	6-O-CH ₃	

-58-

Cmpd	R ₄	R ₄	R ₄	R ₅
10.027	·	3-OCH ₃	4-OCH ₃	
10.028		2-OCH ₃	5-OCH ₃	
10.029		2-OCH ₃	4-OCH ₃	
10.030		2-OCH ₃	6-OCH₃	
10.031		2-CF ₃	6-CF ₃	
10.032		2-CF ₃	4-CF ₃	
10.033		3-CF ₃	5-CF ₃	
10.034		2-Cl	4-CF ₃	
10.035		2-Cl	6-CF ₃	
10.036		2-NO ₂	4-NO ₂	
10.037		2-C1	4-NO ₂	
10.038		2-CH ₃	4-NO ₂	
10.039		2-O-CH ₃	4-NO ₂	
10.040		2-F	6-NO ₂	
10.041		2-C1	6-NO ₂	
10.042		2-CH ₃	6-NO ₂	
10.043		2-O-CH ₃	6-NO ₂	
10.044		2-F	4-NO ₂	
10.045		2-CH ₃	$4-N(C_2H_5)_2$	
10.046		2-Cl	4-SO ₂ -CH ₃	
10.047		2-C1	4-SO-CH ₃	
10.048		2-C1	4-S-CH ₃	
10.049		2-C1	6-SO ₂ -CH ₃	
10.050		2-C1	6-SO-CH ₃	
10.051		2-C1	6-S-CH ₃	
10.052		2-CH ₃	$4-SO_2-CH_3$	
10.053		2-CH ₃	4-SO-CH ₃	
10.054		2-CH ₃	4-S-CH ₃	
10.055		2-CH ₃	6-SO ₂ -CH ₃	
10.056		2-CH ₃	6-SO-CH₃	
10.057		2-CH ₃	6-S-CH ₃	
10.058		2-O-CH ₃	6-SO ₂ -CH ₃	
10.059		2-O-CH ₃	6-SO-CH ₃	
10.060		2-O-CH ₃	6-S-CH ₃	
10.061		2-O-CH ₃	4-SO ₂ -CH ₃	
10.062		2-O-CH ₃	4-SO-CH ₃	

-59-

Cmpd	R ₄	R ₄	R ₄	R ₅
10.063		2-O-CH ₃	4-S-CH ₃	
10.064		2-CH ₃	$6-N(C_2H_5)_2$	
10.065		2-Cl	$6-N(CH_3)_2$	
10.066		2-Cl	$4-N(CH_3)_2$	
10.067		2-Cl	4-CO ₂ CH ₃	
10.068		2-CH ₃	6-CO ₂ C ₂ H ₅	
10.069		2-CH ₃	$4-CO_2C_2H_5$	
10.070		2-CH ₃	4-CN	
10.071		2-CH ₃	6-CN	
10.072		2-Cl	4-CN	
10.073		2-Cl	6-CN	
10.074		2-Cl	4-CO-CH ₃	
10.075		2-O-CHF ₂	4-O-CHF ₂	
10.076		2-CH ₃	4-O-CHF ₂	
10.077		2-C1	4-O-CF ₃	
10.078		2-O-CF ₃	4-O-CH ₃	
10.079		2-O-CHF ₂	4-C1	
10.080		2-O-CHF ₂	6-CH₃	
10.081		2-O-CHF ₂	6-C1	
10.082	2-O-CHF ₂	4-CH ₃	6-CH ₃	
10.083	2-CH ₃	4-t-C ₄ H ₉	6-CH ₃	
10.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C ₃ H ₇	
10.085	2-CH ₃	4-O-CH ₃	6-CH ₃	
10.086	2-C1	4-CF ₃	6-C1	
10.087	2-C1	4-CF ₃	6-F	
10.088	2-C1	4-NO ₂	6-C1	
10.089	2-C1	4-C1	6-C1	
10.090	2-F	4-F	6-F	
10.091	2-CH ₃	4-NO ₂	6-CH ₃	
10.092	2-C1	4-C1	6-CH ₃	
10.093	2-C1	4-O-CH ₃	6-CI	
10.094	2-C1	4-C1	6-O-CH ₃	
10.095	2-F	4-O-CH ₃	6-F	
10.096	2-O-CH ₃	4-CH ₃	6-O-CH ₃	
10.097	2-O-CH ₃	4-O-CH ₃	6-CH ₃	
10.098	2-O-CH ₃	4-O-CH ₃	6-O-CH ₃	

.....

Cmpd	R ₄	R ₄	R ₄	R ₅
10.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH ₃	
10.100	2-CH ₃	4-Cl	6-CH ₃	
10.101	2-CH ₃	4-F	6-CH ₃	
10.102	2-CH ₃	4-CH ₃	6-O-CH ₃	
10.103	2-F	4-C1	5-O-i-C ₃ H ₇	
10.104	2-Cl	4-C1	5-O-CH ₃	
10.105		4-Cl	5-O-CH ₃	
10.106	2-F	4-CI	5-CO-O-CH ₃	
10.107	2-F	4-C1	5-CO-O-C ₂ H ₅	
10.108		4-C1	5-CO-O-CH ₃	
10.109	2-C1	4-Cl	5-CO-O-i-C ₃ H ₇	
10.110				4-0-
10.111				4 - 0 — CI
10.112				4 - 0 - F
10.113				4 O - CF ₃
10.114	2-CH ₃			4-0-
10.115				4.8-
10.116				4 - s — cı
10.117				4 - CH ₂
10.118				4 - CH ₂ - CI
10.119				4-CH ₂ -F

Cmpd	R ₄	R ₄	R ₄	R ₅
10.120				4 CH ₂ -CF ₃
10.121				4 - N-(CHO)
10.122	2-F	4-Cl	5-O-CH ₂ -CH=CH ₂	
10.123	2-F	4-Cl	5-O-CH ₂ -C=CH	
10.124	2-Br			
10.125	2-CF ₃			
10.126	2-OCH ₃			
10.127	2-CH ₃			4-0-CI
10.127	2-013			4 -0 -(-)
10.128	2-CH ₃			4-0-CF ₃
10.129	2-CH ₃			4 -0 - C1
10.130	2-CH ₃		6-CH ₃	4-0-
10.131	2-CH ₃		6-CH ₃	4 O - CF ₃
10.132	2-CH ₃		6-CH ₃	4 -0 — CI
10.133	2-CH ₃		6-CH ₃	4 -0 — CI
10.134	2-CH ₃	4-Br	6-CH ₃	Ġ.
10.135	2-CH ₃	6-C ₂ H ₅		
10.136	$2-C_2H_5$			
10.137	2-CH ₃	4-OC ₂ H ₅	6-CH ₃	
10.138	2-CH ₃	4-O-i-C ₃ H ₇	6-CH ₃	
10.139	2-CH ₃	4-O-n-C ₃ H ₇	6-CH ₃	
10.140	2-CH ₃	4-O-n-C ₁₀ H ₂₁	6-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
10.141 10.142 10.143	2-CH ₃ 2-CH ₃ 2-CH ₃	4-O-n-C ₃ H ₇ 4-O-(CH ₂) ₂ OCH ₃ 4-O-(CH ₂) ₂ OCH ₃	6-CH₃	
10.144 10.145	2-CH ₃ 2-CH ₃	4-O-(CH ₂) ₂ OCH ₃ 4-O-n-C ₆ H ₁₃	6-CH₃	
10.146	2-CH ₃			4 -o — N
10.147	2-CH ₃		6-CH ₃	4-0-
10.148	2-CH ₃			4 -0 - CF ₃
10.149	2-CH ₃		6-CH ₃	4 -0 -CF ₃
10.150	2-CH ₃			4-0-CF ₃
10.151	2-CH ₃		6-CH ₃	4-0-N-CF ₃
10.152	2-CH ₃			5-0-K-CF ₃
10.153	2-CH ₃			5-0-CF ₃
10.154	2-CH ₃		6-CH ₃	4 - s —
10.155	2-CH ₃		6-CH ₃	4 - s — C1
10.156 10.157	2-C ₂ H ₅ 2-C ₂ H ₅	4-C ₂ H ₅	6-CH ₃ 6-C ₂ H ₅	4 -s —
10.158	$2-C_2H_5$			

WO 96/11574

10.159 2-CH(CH₃)₂

Table 11: Compounds of formula In

$$\begin{array}{c}
CH_3 \\
N
\end{array}$$

$$\begin{array}{c}
(R_4)_{n} \\
(R_5)_{m}
\end{array}$$
(In)

Cmpd	R ₄	R ₄	R ₄	R ₅
11.001		Н		
11.002		2-CH ₃		
11.003		4-CH ₃		
11.004		2-CH ₃	4-CH ₃	
11.005		2-CH ₃	6-CH ₃	
11.006		2-CH ₃	5-CH ₃	
11.007		3-CH ₃	5-CH ₃	
11.008		2-CH ₃	3-CH ₃	
11.009		3-CH ₃	4-CH ₃	
11.010	2-CH ₃	4-CH ₃	6-CH ₃	
11.011	2-CH ₃	4-CH ₃	5-CH ₃	
11.012		2-Cl		
11.013		4-C1		
11.014		2-Cl	4-C1	
11.015		2-C1	6-C1	
11.016		2-Cl	6-F	
11.017		2-CH ₃	4-C1	
11.018		2-CH ₃	4-F	
11.019		2-C1	4-CH ₃	
11.020		2-Cl	6-CH ₃	
11.021		2-F	4-F	
11.022		2-F	6-F	
11.023		2-CH ₃	4-O-CH ₃	
11.024		2-CH ₃	6-O-CH ₃	
11.025		2-C1	4-O-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
11.026		2-Cl	6-O-CH ₃	
11.027		3-OCH ₃	4-OCH ₃	
11.028		2-OCH ₃	5-OCH ₃	
11.029		2-OCH ₃	4-OCH ₃	
11.030		2-OCH ₃	6-OCH ₃	
11.031		2-CF ₃	6-CF ₃	
11.032		2-CF ₃	4-CF ₃	
11.033		3-CF ₃	5-CF ₃	
11.034		2-Cl	4-CF ₃	
11.035		2-Cl	6-CF ₃	
11.036		2-NO ₂	4-NO ₂	
11.037		2-C1	4-NO ₂	
11.038		2-CH ₃	4-NO ₂	
11.039		2-O-CH ₃	4-NO ₂	
11.040		2-F	6-NO ₂	
11.041		2-Cl	6-NO ₂	
11.042		2-CH ₃	6-NO ₂	
11.043		2-O-CH ₃	6-NO ₂	
11.044		2-F	4-NO ₂	
11.045		2-CH ₃	$4-N(C_2H_5)_2$	
11.046		2-C1	4-SO ₂ -CH ₃	
11.047		2-Cl	4-SO-CH ₃	
11.048		2-Cl	4-S-CH ₃	
11.049		2-C1	6-SO ₂ -CH ₃	
11.050		2-C1	6-SO-CH ₃	
11.051		2-C1	6-S-CH ₃	
11.052		2-CH ₃	4-SO ₂ -CH ₃	
11.053		2-CH ₃	4-SO-CH ₃	
11.054		2-CH ₃	4-S-CH ₃	
11.055		2-CH ₃	6-SO ₂ -CH ₃	
11.056		2-CH ₃	6-SO-CH ₃	
11.057		2-CH ₃	6-S-CH ₃	
11.058		2-O-CH ₃	6-SO ₂ -CH ₃	
11.059		2-O-CH ₃	6-SO-CH ₃	
11.060		2-O-CH ₃	6-S-CH ₃	
11.061		2-O-CH ₃	4-SO ₂ -CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
11.062		2-O-CH ₃	4-SO-CH ₃	
11.063		2-O-CH ₃	4-S-CH ₃	
11.064		2-CH ₃	$6-N(C_2H_5)_2$	
11.065		2-Cl	6-N(CH ₃) ₂	
11.066		2-C1	4-N(CH ₃) ₂	
11.067		2-Cl	4-CO ₂ CH ₃	
11.068		2-CH ₃	6-CO ₂ C ₂ H ₅	
11.069		2-CH ₃	4-CO ₂ C ₂ H ₅	
11.070		2-CH ₃	4-CN	
11.071		2-CH ₃	6-CN	
11.072		2-Cl	4-CN	
11.073		2-C1	6-CN	
11.074		2-C1	4-CO-CH ₃	
11.075		2-O-CHF ₂	4-O-CHF ₂	
11.076		2-CH ₃	4-O-CHF ₂	
11.077		2-Cl	4-O-CF ₃	
11.078		2-O-CF ₃	4-O-CH ₃	
11.079		2-O-CHF ₂	4-C1	
11.080		2-O-CHF ₂	6-CH ₃	
11.081		2-O-CHF ₂	6-C1	
11.082	2-O-CHF ₂	4-CH ₃	6-CH ₃	
11.083	2-CH ₃	4-t-C ₄ H ₉	6-CH ₃	
11.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C ₃ H ₇	
11.085	2-CH ₃	4-O-CH ₃	6-CH ₃	
11.086	2-C1	4-CF ₃	6-C1	
11.087	2-C1	4-CF ₃	6-F	
11.088	2-C1	4-NO ₂	6-CI	
11.089	2-C1	4-C1	6-CI	
11.090	2-F	4-F	6-F	
11.091	2-CH ₃	4-NO ₂	6-CH ₃	
11.092	2-C1	4-CI	6-CH ₃	
11.093	2-C1	4-O-CH ₃	6-CI	
11.094	2-C1	4-C1	6-O-CH ₃	
11.095	2-F	4-O-CH ₃	6-F	
11.096	2-O-CH ₃		6-O-CH ₃	
11.097	2-O-CH ₃	4-O-CH ₃	6-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
11.098	2-O-CH ₃	4-O-CH ₃	6-O-CH ₃	
11.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH ₃	
11.100	2-CH ₃	4-CI	6-CH ₃	
11.101	2-CH ₃	4-F	6-CH ₃	
11.102	2-CH ₃	4-CH ₃	6-O-CH ₃	
11.103	2-F	4-C1	5-O-i-C ₃ H ₇	
11.104	2-C1	4-CI	5-O-CH ₃	
11.105		4-CI	5-O-CH ₃	
11.106	2-F	4-Cl	5-CO-O-CH ₃	
11.107	2-F	4-Cl	5-CO-O-C ₂ H ₅	
11.108		4-CI	5-CO-O-CH ₃	
11.109	2-C1	4-C1	5-CO-O-i-C ₃ H ₇	
11.110				4 - 0
11.111				4 - 0 — CI
11.112				4 - 0 — F
11.113				4-O-CF ₃
11.114	2-CH ₃			4-0-
11.115				4.5
11.116				4 - s — CI
11.117				4 - CH ₂
11.118				4 CH ₂ -CI
11.119				4 CH ₂ — F

Cmpd	R ₄	R ₄	R ₄	R ₅
11.120				4 -CH ₂ -CF ₃
11.121				4 - N-CHO
11.122	2-F	4-C1	5-O-CH ₂ -CH=CH ₂	
11.123	2-F	4-C1	5-O-CH ₂ -C=CH	
11.124	2-Br			
11.125	2-CF ₃			
11.126	2-OCH ₃			
				CI
11.127	2-CH ₃			4 -0 — CI
11.128	2-CH ₃			4-0-CF ₃
11.129	2-CH ₃			4 -0 — CI
11.130	2-CH ₃		6-CH ₃	4 -0 -
11.131	2-CH ₃		6-CH ₃	4 O - CF ₃
11.132	2-CH ₃		6-CH ₃	4 -0 — CI
11.133	2-CH ₃		6-CH ₃	4 -0 — CI
				a
11.134	2-CH ₃	4-Br	6-CH ₃	
11.135	2-CH ₃	6-C ₂ H ₅		
	$2-C_2H_5$			
	=	4-OC ₂ H ₅	6-CH ₃	
	2-CH ₃		6-CH ₃	
	2-CH ₃	4-O-n-C ₃ H ₇	6-CH ₃	
11.140	2-CH ₃	4-O-n-C ₁₀ H ₂₁	6-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
11.141	2-CH ₃	4-O-n-C ₃ H ₇		
11.142	2-CH ₃	4-O-(CH ₂) ₂ OCH ₃		
11.143	2-CH ₃	4-O-(CH ₂) ₂ OCH ₃	6-CH ₃	
11.144	2-CH ₃	4-O-(CH ₂) ₂ OCH ₃		
11.145	2-CH ₃	4-O-n-C ₆ H ₁₃	6-CH ₃	
11.146	2-CH ₃			4-0-N
11.147	2-CH ₃		6-CH ₃	4-0-
11.148	2-CH ₃			4.0-K-CF ₃
11.149	2-CH ₃		6-CH ₃	4.0 — CF ₃
11.150	2-CH ₃			4-0-X-CF ₃
11.151	2-CH ₃		6-CH ₃	Cí 4-0
11.152	2-CH ₃			5-0-N-CF ₃
11.153	2-CH ₃			5-0-K
11.154	2-CH ₃		6-CH ₃	4 - s —
11.155	2-CH ₃		6-CH ₃	4 - s — CI
11.156	2-C ₂ H ₅		6-CH ₃	4 - s —

Table 12: Compounds of formula Io

$$CH_3 \sim O \qquad (R_4)_n \qquad (Io)$$

$$CH_2 \sim C \sim O \qquad (R_5)_m \qquad (Io)$$

Cpmd	R ₄	R ₄	R ₄	R ₅	
12.001		Н			
12.002		2-CH ₃			
12.003		4-CH ₃			
12.004		2-CH ₃	4-CH ₃		
12.005		2-CH ₃	6-CH ₃		
12.006		2-CH ₃	5-CH ₃		
12.007		3-CH ₃	5-CH ₃		
12.008		2-CH ₃	3-CH ₃		
12.009		3-CH ₃	4-CH ₃		
12.010	2-CH ₃	4-CH ₃	6-CH ₃		
12.011	2-CH ₃	4-CH ₃	5-CH ₃		
12.012		2-C1			
12.013		4-C1			
12.014		2-C1	4-C1		
12.015		2-C1	6-C1		
12.016		2-C1	6-F		
12.017		2-CH ₃	4-C1		
12.018		2-CH ₃	4-F		
12.019		2-C1	4-CH ₃		
12.020		2-C1	6-CH ₃		
12.021		2-F	4-F		
12.022		2-F	6-F		
12.023		2-CH ₃	4-O-CH ₃		
12.024		2-CH ₃	6-O-CH ₃		
12.025		2-C1	4-O-CH ₃		
12.026		2-Cl	6-O-CH ₃		

12.027 3-OCH ₃ 4-OCH ₃ 12.028 2-OCH ₃ 5-OCH ₃ 12.029 2-OCH ₃ 4-OCH ₃ 12.030 2-OCH ₃ 6-OCH ₃ 12.031 2-CF ₃ 6-CF ₃ 12.032 2-CF ₃ 4-CF ₃ 12.033 3-CF ₃ 5-CF ₃ 12.034 2-Cl 4-CF ₃ 12.035 2-Cl 6-CF ₃ 12.036 2-NO ₂ 4-NO ₂ 12.037 2-Cl 4-NO ₂ 12.038 2-CH ₃ 4-NO ₂ 12.038 2-O-CH ₃ 4-NO ₂ 12.039 2-O-CH ₃ 4-NO ₂ 12.040 2-F 6-NO ₂ 12.041 2-Cl 6-NO ₂ 12.042 2-CH ₃ 6-NO ₂ 12.043 2-O-CH ₃ 6-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-NO ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO ₂ -CH ₃ 12.048 2-Cl 4-SO ₂ -CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.051 2-Cl 6-SO ₂ -CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO ₂ -CH ₃ 12.055 2-CH ₃ 4-SO ₂ -CH ₃ 12.056 2-Cl 6-SO ₂ -CH ₃ 12.057 2-Cl 6-SO ₂ -CH ₃ 12.058 2-CH ₃ 4-SO ₂ -CH ₃ 12.057 2-CH ₃ 6-SO ₂ -CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.050 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.050 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.057 2-CH ₃ 6-SO ₂ -CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.060 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.061 2-O-CH ₃ 6-SO ₂ -CH ₃	Cmpd	R ₄	R ₄	R ₄	R ₅
12.029 2-OCH ₃ 4-OCH ₃ 12.030 2-OCH ₃ 6-OCH ₃ 12.031 2-CF ₃ 6-CF ₃ 12.032 2-CF ₃ 4-CF ₃ 12.033 3-CF ₃ 5-CF ₃ 12.034 2-Cl 4-CF ₃ 12.035 2-Cl 6-CF ₃ 12.036 2-NO ₂ 4-NO ₂ 12.037 2-Cl 4-NO ₂ 12.038 2-CH ₃ 4-NO ₂ 12.039 2-O-CH ₃ 4-NO ₂ 12.040 2-F 6-NO ₂ 12.041 2-Cl 6-NO ₂ 12.042 2-CH ₃ 6-NO ₂ 12.042 2-CH ₃ 4-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-NC ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO ₂ -CH ₃ 12.048 2-Cl 4-SO ₂ -CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO ₂ -CH ₃ 12.051 2-Cl 6-SO ₂ -CH ₃ 12.055 2-CH ₃ 4-SO ₂ -CH ₃ 12.055 2-CH ₃ 4-SO ₂ -CH ₃ 12.055 2-CH ₃ 4-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO ₂ -CH ₃ 12.057 2-CH ₃ 6-SO ₂ -CH ₃ 12.058 2-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.050 12.050 3-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.050 12.050 3-C-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.050 12.O-CH ₃ 6-SO ₂ -CH ₃ 12.050 12.O-CH ₃ 6-SO ₂ -CH ₃ 12.050 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.050 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.050 12.O-CH ₃ 6-SO ₂ -CH ₃	12.027		3-OCH₃	4-OCH ₃	
12.030	12.028		2-OCH ₃	5-OCH ₃	
12.031	12.029		2-OCH ₃	4-OCH ₃	
12.032	12.030		2-OCH ₃	6-OCH ₃	
12.033 3-CF ₃ 5-CF ₃ 12.034 2-Cl 4-CF ₃ 12.035 2-Cl 6-CF ₃ 12.036 2-NO ₂ 4-NO ₂ 12.037 2-Cl 4-NO ₂ 12.038 2-CH ₃ 4-NO ₂ 12.039 2-O-CH ₃ 4-NO ₂ 12.040 2-F 6-NO ₂ 12.041 2-Cl 6-NO ₂ 12.042 2-CH ₃ 6-NO ₂ 12.043 2-O-CH ₃ 6-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-NC ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-SO-CH ₃ 12.049 2-Cl 6-SO-CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-SO-CH ₃ 12.052 2-CH ₃ 4-SO-CH ₃ 12.055 2-CH ₃ 4-SO-CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-CH ₃ 6-SO-CH ₃ 12.059 2-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.050 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.050 2-O-CH ₃ 6-SO-CH ₃ 12.050 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃	12.031		2-CF ₃	6-CF ₃	
12.034 2-Cl 4-CF ₃ 12.035 2-Cl 6-CF ₃ 12.036 2-NO ₂ 4-NO ₂ 12.037 2-Cl 4-NO ₂ 12.038 2-CH ₃ 4-NO ₂ 12.039 2-O-CH ₃ 4-NO ₂ 12.040 2-F 6-NO ₂ 12.041 2-Cl 6-NO ₂ 12.042 2-CH ₃ 6-NO ₂ 12.043 2-O-CH ₃ 6-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-N(C ₂ H ₃) ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-S-CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.055 2-CH ₃ 4-SO ₂ -CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO ₂ -CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.050 2-O-CH ₃ 6-SO-CH ₃ 12.055 2-O-CH ₃ 6-SO-CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-SO-CH ₃ 12.061 2-O-CH ₃ 4-SO-CH ₃	12.032		2-CF ₃	4-CF ₃	
12.035	12.033		3-CF ₃	5-CF ₃	
12.036 2-NO ₂ 4-NO ₂ 12.037 2-Cl 4-NO ₂ 12.038 2-CH ₃ 4-NO ₂ 12.039 2-O-CH ₃ 4-NO ₂ 12.040 2-F 6-NO ₂ 12.041 2-Cl 6-NO ₂ 12.042 2-CH ₃ 6-NO ₂ 12.043 2-O-CH ₃ 6-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-SO-CH ₃ 12.049 2-Cl 6-SO-CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-SO-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.055 2-CH ₃ 4-SO ₂ -CH ₃ 12.056 2-CH ₃ 4-SO-CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.050 2-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.050 2-CH ₃ 6-SO-CH ₃ 12.050 2-O-CH ₃ 6-SO-CH ₃ 12.055 2-O-CH ₃ 6-SO-CH ₃ 12.056 2-O-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-SO-CH ₃	12.034		2-Cl	4-CF ₃	
12.037	12.035		2-Cl	6-CF ₃	
12.038 2-CH ₃ 4-NO ₂ 12.039 2-O-CH ₃ 4-NO ₂ 12.040 2-F 6-NO ₂ 12.041 2-Cl 6-NO ₂ 12.042 2-CH ₃ 6-NO ₂ 12.043 2-O-CH ₃ 6-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO ₂ -CH ₃ 12.054 2-CH ₃ 4-SO-CH ₃ 12.055 2-CH ₃ 6-SO-CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 6-S-CH ₃	12.036		2-NO ₂	4-NO ₂	
12.039 2-O-CH ₃ 4-NO ₂ 12.040 2-F 6-NO ₂ 12.041 2-Cl 6-NO ₂ 12.042 2-CH ₃ 6-NO ₂ 12.043 2-O-CH ₃ 6-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-N(C ₂ H ₃) ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-SO-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-SO-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO ₂ -CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-SO-CH ₃ 12.060 12.06T 1-CH ₃ 6-SO-CH ₃ 12.06T	12.037		2-Cl	4-NO ₂	
12.040 2-F 6-NO ₂ 12.041 2-Cl 6-NO ₂ 12.042 2-CH ₃ 6-NO ₂ 12.043 2-O-CH ₃ 6-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-N(C ₂ H ₃) ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-SO-CH ₃ 12.052 2-CH ₃ 4-SO-CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-SO-CH ₃ 12.055 2-CH ₃ 4-SO-CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.050 12.050 2-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.050 12.060 2-O-CH ₃ 6-SO-CH ₃	12.038		2-CH ₃	4-NO ₂	
12.041 2-Cl 6-NO ₂ 12.042 2-CH ₃ 6-NO ₂ 12.043 2-O-CH ₃ 6-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-Cl 4-SO ₂ -CH ₃ 12.046 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO-CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO-CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-SO-CH ₃ 12.055 2-CH ₃ 6-SO-CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.050 12.050 2-CH ₃ 6-SO-CH ₃	12.039		2-O-CH ₃	4-NO ₂	
12.042 2-CH ₃ 6-NO ₂ 12.043 2-O-CH ₃ 6-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-SO-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-SO-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-SO-CH ₃ 12.060 1-O-CH ₃ 6-SO-CH ₃	12.040		2-F	6-NO ₂	
12.043 2-O-CH ₃ 6-NO ₂ 12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO ₂ -CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO ₂ -CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO ₂ -CH ₃ 12.054 2-CH ₃ 4-SO ₂ -CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO ₂ -CH ₃ 12.057 2-CH ₃ 6-SO ₂ -CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.060 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.060	12.041		2-Cl	6-NO ₂	
12.044 2-F 4-NO ₂ 12.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 6-S-CH ₃	12.042		2-CH ₃	6-NO ₂	
12.045 2-CH ₃ 4-N(C ₂ H ₅) ₂ 12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO ₂ -CH ₃ 12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃	12.043		2-O-CH ₃	6-NO ₂	
12.046 2-Cl 4-SO ₂ -CH ₃ 12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃	12.044		2-F	4-NO ₂	
12.047 2-Cl 4-SO-CH ₃ 12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO-CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃	12.045		2-CH ₃	$4-N(C_2H_5)_2$	
12.048 2-Cl 4-S-CH ₃ 12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃	12.046		2-Cl	4-SO ₂ -CH ₃	
12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-C1	4-SO-CH ₃	
12.049 2-Cl 6-SO ₂ -CH ₃ 12.050 2-Cl 6-SO-CH ₃ 12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-SO-CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃	12.048		2-C1	4-S-CH ₃	
12.051 2-Cl 6-S-CH ₃ 12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-S-CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-C1	6-SO ₂ -CH ₃	
12.052	12.050		2-C1	6-SO-CH ₃	
12.052 2-CH ₃ 4-SO ₂ -CH ₃ 12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-S-CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃	12.051		2-CI	6-S-CH ₃	
12.053 2-CH ₃ 4-SO-CH ₃ 12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-S-CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-SO-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-CH ₃	4-SO ₂ -CH ₃	
12.054 2-CH ₃ 4-S-CH ₃ 12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-S-CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-SO-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-CH ₃	4-SO-CH ₃	
12.055 2-CH ₃ 6-SO ₂ -CH ₃ 12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-S-CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-CH ₃	4-S-CH ₃	
12.056 2-CH ₃ 6-SO-CH ₃ 12.057 2-CH ₃ 6-S-CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-CH ₃	6-SO ₂ -CH ₃	
12.057 2-CH ₃ 6-S-CH ₃ 12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-CH ₃	6-SO-CH ₃	
12.058 2-O-CH ₃ 6-SO ₂ -CH ₃ 12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-CH ₃	6-S-CH ₃	
12.059 2-O-CH ₃ 6-SO-CH ₃ 12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-O-CH ₃	6-SO ₂ -CH ₃	
12.060 2-O-CH ₃ 6-S-CH ₃ 12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-O-CH ₃	6-SO-CH ₃	
12.061 2-O-CH ₃ 4-SO ₂ -CH ₃			2-O-CH ₃	6-S-CH ₃	
4.50.071			2-O-CH ₃	4-SO ₂ -CH ₃	
			2-O-CH ₃	4-SO-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
12.063		2-O-CH ₃	4-S-CH ₃	
12.064		2-CH ₃	$6-N(C_2H_5)_2$	
12.065		2-Cl	6-N(CH ₃) ₂	
12.066		2-C1	4-N(CH ₃) ₂	
12.067		2-Cl	4-CO ₂ CH ₃	
12.068		2-CH ₃	6-CO ₂ C ₂ H ₅	•
12.069		2-CH ₃	4-CO ₂ C ₂ H ₅	
12.070		2-CH ₃	4-CN	
12.071		2-CH ₃	6-CN	
12.072		2-Cl	4-CN	
12.073		2-C1	6-CN	
12.074		2-C1	4-CO-CH ₃	
12.075		2-O-CHF ₂	4-O-CHF ₂	
12.076		2-CH ₃	4-O-CHF ₂	
12.077		2-Cl	4-O-CF ₃	
12.078		2-O-CF ₃	4-O-CH ₃	
12.079		2-O-CHF ₂	4-C1	
12.080		2-O-CHF ₂	6-CH ₃	
12.081		2-O-CHF ₂	6-C1	
12.082	2-O-CHF ₂	4-CH ₃	6-CH ₃	
12.083	2-CH ₃	4-t-C ₄ H ₉	6-CH ₃	
12.084	2-i-C ₃ H ₇	4-i-C ₃ H ₇	6-i-C3H7	
12.085	2-CH ₃	4-O-CH ₃	6-CH ₃	
12.086	2-C1	4-CF ₃	6-C1	
12.087	2-C1	4-CF ₃	6-F	
12.088	2-C1	4-NO ₂	6-CI	
12.089	2-Cl	4-Cl	6-CI	
12.090	2-F	4-F	6-F	
12.091	2-CH ₃	4-NO ₂	6-CH ₃	
12.092	2-C1	4-C1	6-CH ₃	
12.093	2-Cl	4-O-CH ₃	6-C1	
12.094	2-C1	4-C1	6-O-CH ₃	
12.095	2-F	4-O-CH ₃	6-F	
12.096	2-O-CH ₃	4-CH ₃	6-O-CH ₃	
12.097	2-O-CH ₃	4-O-CH ₃	6-CH ₃	

Cmpd	R ₄	R ₄	R ₄	R ₅
12.098	2-O-CH ₃	4-O-CH ₃	6-O-CH ₃	
12.099	2-O-CH ₃	4-CO-O-CH ₃	6-O-CH ₃	
12.100	2-CH ₃	4-Cl	6-CH ₃	
12.101	2-CH ₃	4-F	6-CH ₃	
12.102	$2-CH_3$	4-CH ₃	6-O-CH ₃	
12.103	2-F	4-Cl	5-O-i-C ₃ H ₇	
12.104	2-C1	4-C1	5-O-CH ₃	•
12.105		4-C1	5-O-CH ₃	
12.106	2-F	4-CI	5-CO-O-CH ₃	
12.107	2-F	4-C1	5-CO-O-C ₂ H ₅	
12.108		4-C1	5-CO-O-CH ₃	
12.109	2-Cl	4-C1	5-CO-O-i-C ₃ H ₇	
12.110				4 - 0
12.111				4-0-Ca
12.112				4 - 0 — F
12.113				4-0-CF ₃
12.114	2-CH ₃			4-0-
12.115				4 - S -
12.116				4 - s — C1
12.117				4 - CH ₂
12.118			,	4-CH ₂ -CI
12.119				4 CH ₂ — F

- 73 -

Cmpd	R ₄	R_4	R ₄	R ₅
12.120				4-CH ₂ - CF ₃
12.121				4 - N (CHO)
12.122	2-F	4-Cl	5-O-CH ₂ -CH=CH ₂	
12.123	2-F	4-Cl	5-O-CH ₂ -C≖CH	

Table 13: Compounds of formula Ip

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

Cmpd	R ₄	
13.001	H 171-172	
13.002	2-CH ₃	
13.003	2-OCH ₃	
13.004	4-Cl	
13.005	4-F	
13.006	4-NO ₂	
13.007	6-NO ₂	
13.008	7-NO ₂	

- 75 -

Table 14: Compounds of formula Iq

Cmpd	R ₄	
14.001	Н	
14.002	2-CH ₃	
14.003	2-OCH ₃	
14.004	4-Cl	
14.005	4-F	
14.006	4-NO ₂	
14.007	6-NO ₂	
14.008	7-NO ₂	

Table 15: Compounds of formula Ir

Cmpd	G	A В
15.001	Н	-(CH ₂) ₄ -
15.002	H -C-CH ₂ -C(CH ₃) ₃	-(CH ₂) ₄ -
15.003	-CO-C(CH ₃) ₃	-(CH ₂) ₄ -
15.004	-COOCH(CH ₃) ₂	-(CH ₂) ₄ -
15.005	-COOC ₂ H ₅	-(CH ₂) ₄
15.006	Н	$H C_6H_5$
15.007	-C-N(CH ₃) ₂ S	-(CH ₂) ₄ -
15.008	OCH ₃	-(CH ₂) ₄ -
15.009	OCH ₃ C ₂ H ₅	-(CH ₂) ₄ -
15.010	-CO-C-C ₂ H ₅ CH ₃	-(CH ₂) ₄ -
15.011	-CO-CH(CH ₃) ₂	-(CH ₂) ₄ -

Cmpd	G	A B
15.012	OC ₂ H ₅ SCH-C ₂ H ₅ CH ₃	-(CH ₂) ₄ -
15.013	CH ₃ -COCCH ₂ CH ₂ CI CH ₃	-(CH ₂) ₄ -
15.014	н	-CH ₂ CF-CH ₂ - CH ₃
15.015	-COSC ₂ H ₅	-(CH ₂) ₄ -
15.016	-CON(CH ₃) ₂ CH ₃	-(CH ₂) ₄ -
15.017	-COC-C ₂ H ₅	-CH ₂ CF ₂ CH ₂ -
15.018	-COCH ₃	-CH ₂ CF-CH ₂ - CH ₃
15.019	-COC(CH ₃) ₃	-CH ₂ CF-CH ₂ - CH ₃
15.020	Н	-(CH ₂) ₃ -
15.021	-COOCH-CH ₃	-CH ₂ CF-CH ₂ -
	U CH2OC2H5	CH ₃
15.022	CH ₃ -COCH ₂ C-CH ₃ CH ₃	-CH ₂ CF-CH ₂ - CH ₃

Cmpd	G	А В
15.023	CH ₃ -COCH ₂ C-CH ₃ CH ₃	-(CH ₂) ₃ -
15.024	-COC-CH CH ₃ CH ₃	-(CH ₂) ₄ -
15.025	-CO-C(CH ₃) ₃	-(CH ₂) ₃ -
15.026	-CO-C(CH ₃) ₃	-CH ₂ CF ₂ CH ₂ -
15.027	-COCH ₃	H C ₆ H ₅
15.028	-COCH ₂ C(CH ₃) ₃	H C ₆ H ₅
15.029	-COC(CH ₃) ₃	H C ₆ H ₅
15.030	Н	CH ₂
15.031	Н	-CH ₂ CF ₂ CH ₂ -
15.032	CH ₃ -COCH ₂ C-CH ₃ CH ₃	-CH ₂ CF ₂ CH ₂ -
15.033	-COCH ₃	-CH ₂ CF ₂ CH ₂ -
15.034	-COOCH-CH ₂ O CH ₃ CH ₃	-CH ₂ CF ₂ CH ₂ -
15.035	-COC CH ₃ CH ₃ -CH ₃ CH ₃	-CH ₂ CF ₂ CH ₂ -
15.036	-SO ₂ CH ₃	-(CH ₂) ₄ -
15.037	Н	н — н

Cmpd	G	A B
15.038	-C-O-CH-CH ₂ -OC ₂ H ₅ O CH ₃	
15.039	-C-C(CH ₃) ₂ -CH(CH ₃) ₂ O	
15.040	-C-C(CH ₃) ₂ -C ₂ H ₅	
15.041	-C-CH₃ O	
15.042	-C-C(CH ₃) ₃	
15.043	-C-C(CH ₃) ₂ -CH(CH ₃) ₂ O	н (н)
15.044	-C-O-CH-CH ₂ -OC ₂ H ₅ O CH ₃	н Н
15.045	-C-C(CH ₃) ₂ -C ₂ H ₅	н Н
15.046	Н	-(CH ₂) ₅ -
15.047	H	-CH ₂ -C(CH ₃) ₂ -CH ₂ -
15.048	-C-CH ₂ -C(CH ₃) ₃	-CH ₂ -C(CH ₃) ₂ -CH ₂ -
15.049	-C-C(CH ₃) ₂ -C ₂ H ₅	-(CH ₂) ₅ -
15.050	-C-CH ₃	-(CH ₂) ₅ -
15.051	н	-CH(CH ₃)-CH ₂ -CH(CH ₃)-

Cmpd	G	A	В
4.5.050		•	
15.052	H	H	CH₃
15.053	-C-C(CH ₃) ₃	Н	CH ₃
15.054	-C-C(CH ₃) ₂ -C ₂ H ₅ O	Н	CH ₃
15.055	-C-CH ₂ -C(CH ₃) ₃ O	Н	CH ₃
15.056	-C-CH₃ O	H	CH ₃
15.057	-C-C(CH ₃) ₃	-CH(CH ₃)-CH ₂ -CH(CH ₃)-
15.058	-C-CH₃ O	-CH(CH ₃)-CH ₂ -CH(CH ₃)-
15.059	-C-C(CH ₃) ₂ -CH(CH ₃) ₂ O	-CH(CH ₃)-CH ₂ -CH(CH ₃)-
15.060	-C-CH ₂ -C(CH ₃) ₃ O	-CH(CH ₃)-CH ₂ -CH(CH ₃)-
15.061	-C-C(CH ₃) ₂ -C ₂ H ₅ 0	-CH(CH ₃)-CH ₂ -CH(CH ₃)-
15.062	-C-C(CH ₃) ₃ O	-CH	2-C(C ₃ H ₇)-CH ₂ - CH ₃
15.063	-C-C(CH ₃) ₂ -CH(CH ₃) ₂ O	-CH	2-C(C ₃ H ₇)-CH ₂ - CH ₃
15.064	-C-C(CH ₃) ₃	-CH ₂	2-CH ₂ -CH- CH ₃

Cmpd	G	А В
15.065	-C-C(CH ₃) ₂ -CH(CH ₃) ₂ O	-CH ₂ -CH ₂ -CH- CH ₃
15.066	-C-CH₃ O	-CH ₂ -C(C ₃ H ₇)-CH ₂ -CH ₃
15.067	– CC(CH₃)₃ Ö	CH ₃ CH ₃
15.068	– CCH₂C(CH₃)₃ Ö	CH ₃ CH ₃
15.069	H	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -
15.070	– CC(CH₃)₃ Ö	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -
15.071	– ccH₂c(cH₃)₃ Ö	-(CH ₂) ₂ CH(CH ₃)(CH ₂) ₂ -
15.072	– СС(СН₃)₃ Ö	-CH ₂ C(CH ₃) ₂ CH ₂ -
15.073	– СС(СН₃)₃ Ö	-CH ₂ CH(CH ₃)CH ₂ CH ₂ -
15.074	- СС(СН ₃) ₃ Ö	-CH ₃ -C ₂ H ₅
15.075	– cc(ch₃)₃ Ö	-CH(CH ₃)(CH ₂) ₃ -
15.076	– CC(CH₃)₃ Ö	-CH ₂ CH(CH ₃)CH(CH ₃)CH ₂ -

Preferred compounds of formula IIa are listed in the following Table 16.

Table 16: Compounds of formula IIa:

Cmpd	X_2	R ₁₀
16.01	Cl	-CH(CH ₃)-C ₅ H ₁₁ -n
16.02	Cl	-CH(CH ₃)-CH ₂ OCH ₂ CH=CH ₂
16.03	Cl	H
16.04	Cl	C ₄ H ₉ -n

Preferred compounds of formula IIb and IIb₁ are listed in the following Tables 17 and 18.

Table 17: Compounds of formula IIb:

$$\begin{array}{c|c}
E & COOR_{14} \\
 & N \\
 & R_{12}
\end{array}$$

$$\begin{array}{c}
R_{12} & (IIb)
\end{array}$$

Cmpd	R ₁₄	R ₁₁	R ₁₂	R ₁₃	E
17.01	CH ₃	phenyl	2-Cl	Н	CH
17.02	CH ₃	phenyl	2-C1	4-C1	CH
17.03	CH ₃	phenyl	2-F	H	CH
17.04	CH ₃	2-chlorophenyl	2-F	H	CH
17.05	C ₂ H ₅	CCl ₃	2-C1	4-C1	N
17.06	CH ₃	phenyl	2-Cl	4-CF ₃	N

- 83 -

PCT/EP95/03935

Cmpd	R ₁₄		R ₁₁	R ₁₂	R ₁₃	E	
17.07		CH ₃	phenyl		2-C1	4-CF ₃	N

Table 18: Compound of formula IIb₁:

$$\begin{array}{c} \text{COOR}_{66} \\ \text{R}_{67}\text{OOC} \\ \text{N} \\ \text{N} \\ \text{R}_{12} \\ \text{R}_{13} \end{array} \tag{IIb}_{1})$$

Cmpd	R ₆₈	R ₆₇	R ₆₆	R ₁₂	R ₁₃	
18.01	CH ₃	CH ₃	CH ₃	2-CI	4-CI	
18.02	CH ₃	C_2H_5	CH ₃	2-C1	4-CI	
18.03	CH ₃	C_2H_5	C_2H_5	2-C1	4-CI	

Table 19: Compounds of formula Is

$$\begin{array}{c|c}
A & O-G & R_A \\
\hline
N & O-G & R_A
\end{array}$$

$$\begin{array}{c|c}
R_A & (Is)
\end{array}$$

Cmpd	R ₄	R ₄	R ₄	G	A	В
19.01	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	— CCH ₂ C(CH ₃) ₃ Ⅱ O		-(CH ₂) ₄ -
19.02	C_2H_5	C ₂ H ₅	C ₂ H ₅	- CC(CH ₃) ₃	CH ₃	CH ₃
19.03	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	— CC(CH ₃) ₃ II O		-(CH ₂) ₄ -

Cmpd	R ₄	R ₄	R ₄	G	A	В			
19.04	Cl	н	F	-CC(CH ₃) ₃ ∥ O	CH ₃	CH ₃			
19.05	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	−CCH ₃ II O	-(CH ₂) ₄ -				
19.06	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	-COC ₂ H ₅	-(CH ₂)	4-			
19.07	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	-CC ₂ H ₅ II O	-(CH ₂)	4-			
19.08	C ₂ H ₅	C ₂ H ₅	C ₂ H ₅	- CCH(CH ₃) ₂	-(CH ₂)	4-			

The compounds of formula I are disclosed in WO 92/16510 and EP-A-0 508 126 as insecticides, acaricides and herbicides.

The quinoline derivatives falling under the scope of formula IIa and the preparation thereof are known or can be prepared according to known processes, such as disclosed, inter alia, in EP-A-0 094 349.

The 1-phenylazole-3-carboxylic acid derivatives falling under the scope of formula IIb are known and are disclosed, inter alia, in EP-A-0 268 554 and EP-A-0 174 562.

The compounds of formula IIb₁ are disclosed in WO 91/07874 as safener.

The invention also relates to a method of selectively controlling weeds in crops of cultivated plants, which comprises treating said cultivated plants, the seeds or seedlings or the crop area thereof, concurrently or separately, with a herbicidally effective amount of the herbicide of formula I and, to antagonise the herbicide, an antidotally effective amount of the safener of formula IIa, IIb or IIb₁.

Suitable cultivated plants which can be protected by the safener of formula IIa, IIb and IIb₁ against the harmful action of the aforementioned herbicides are preferably maize and cereals.

The weeds to be controlled can be monocot as well as dicot weeds.

Crop areas will be understood as meaning the areas already under cultivation with the cultivated plants or seeds thereof, as well as the areas intended for cropping with said cultivated plants.

Depending on the end use, a safener of formula IIa, IIb and IIb₁ can be used for pretreating seeds of the crop plants (dressing of seeds of seedlings) or it can be incorporated in the soil before or after sowing. It can, however, also be applied by itself alone or together with the herbicide postemergence. Treatment of the plant or the seeds with the safener can therefore in principle be carried out irrespective of the time of application of the herbicide. Treatment can, however, also be carried out by simultaneous application of the phytotoxic chemical and safener (e.g. as tank mixture).

The concentration of safener with respect to the herbicide will depend substantially on the mode of application. Where a field treatment is carried out either by using a tank mixture with a combination of safener and herbicide or by separate application of safener and herbicide, the ratio of safener to herbicide will usually be from 100:1 to 1:10, preferably from 20:1 to 1:1.

In field treatment it is usual to apply 0.001 to 5.0 kg/ha, preferably 0.001 to 0.5 kg/ha, of safener.

The concentration of herbicide is usually in the range from 0.001 to 2 kg/ha, but will preferably be from 0.005 to 1 kg/ha.

The compositions of this invention are suitable for all methods of application commonly used in agriculture, including preemergence application, postemergence application and seed dressing.

For seed dressing, 0.001 to 10 g of safener/kg of seeds, preferably 0.05 to 2 g of safener/kg of seeds, is usually applied. If the safener is used in liquid form shortly before sowing to effect soaking, then it is preferred to use safener solutions that contain the active ingredient in a concentration of 1 to 10 000 ppm, preferably of 100 to 1000 ppm.

For application, it is preferred to process the safeners of formula IIa, IIb or IIb₁, or mixtures of these safeners nd the herbicides tof formula I together with the assistants

- 86 -

conventionally employed in formulation technology to emulsifiable concentrates, coatable pastes, directly sprayable or dilutable solutions, dilute emulsions, wettable powders, soluble powders, dusts, granulates or microcapsules. The formulations are prepared in known manner, conveniently by homogeneously mixing or grinding, or mixing and grinding, the active ingredients with liquid or solid formulation assistants, typically solvents or solid carriers. Surface-active compounds (surfactants) may additionally be used for preparing the formulations.

Suitable solvents may typically be: aromatic hydrocarbons, preferably the fractions containing 8 to 12 carbon atoms such as xylene mixtures or substituted naphthalenes; phthalates such as dibutyl or dioctyl phthalate; aliphatic hydrocarbons such as cyclohexane or paraffins; alcohols and glycols and their ethers and esters such as ethanol, diethylene glycol, 2-methoxyethanol or 2-ethoxyethanol; ketones such as cyclohexanone; strongly polar solvents such as N-methyl-2-pyrrolidone, dimethyl sulfoxide or dimethyl formamide; as well as vegetable oils or epoxidised vegetable oils such as epoxidised coconut oil or soybean oil; or water.

The solid carriers typically used for dusts and dispersible powders are usually natural mineral fillers such as calcite, talcum, kaolin, montmorillonite or attapulgite. To improve the physical properties it is also possible to add highly dispersed silicic acid or highly dispersed absorbent polymers. Suitable granulated adsorptive carriers are porous types, including pumice, broken brick, sepiolite or bentonite; and suitable nonsorbent carriers are materials such as calcite or sand. In addition, innumerable pregranulated materials of inorganic or organic origin may be used, especially dolomite or pulverised plant residues.

Depending on the safener, and usually also on the herbicide, suitable surface-active compounds are nonionic, cationic and/or anionic surfactants having good emulsifying, dispersing and wetting properties. Surfactants will also be understood as comprising mixtures of surfactants.

Suitable anionic surfactants may be water-soluble soaps as well as water-soluble synthetic surface-active compounds.

Suitable soaps are the alkali metal salts, alkaline earth metal salts, ammonium salts or substituted ammonium salts of higher fatty acids $(C_{10}-C_{22})$, e.g. the sodium or potassium salts of oleic or stearic acid, or of natural fatty acid mixtures which can be obtained, inter

- 87 -

alia from coconut oil or tallow oil. Further suitable soaps are also the fatty acid methyl taurin salts.

More often, however, so-called synthetic surfactants are used, especially fatty sulfonates, fatty sulfates, sulfonated benzimidazole derivatives or alkylarylsulfonates.

The fatty alcohol sulfonates or sulfates are usually in the form of alkali metal salts, alkaline earth metal salts, ammonium salts or substituted ammonium salts, and they contain a C_8 - C_{22} alkyl radical which also includes the alkyl moiety of acyl radicals, e.g. the sodium or calcium salt of ligninsulfonic acid, of dodecylsulfate, or of a mixture of fatty alcohol sulfates obtained from natural fatty acids. These compounds also comprise the salts of sulfated and sulfonated fatty alcohol/ethylene oxide adducts. The sulfonated benzimidazole derivatives preferably contain two sulfonic acid groups and one fatty acid radical containing 8 to 22 carbon atoms. Illustrative examples of alkylarylsulfonates are the sodium, calcium or triethanolamine salts of dodecylbenzenesulfonic acid, dibutylnaphthalenesulfonic acid, or of a condensate of naphthalenesulfonic acid and formaldehyde.

Corresponding phosphates, typically salts of the phosphoric acid ester of an adduct of p-nonylphenol with 4 to 14 mol of ethylene oxide, or phospholipids, are also suitable.

Nonionic surfactants are preferably polyglycol ether derivatives of aliphatic or cycloaliphatic alcohols or of saturated or unsaturated fatty acids and alkylphenols, said derivatives containing 3 to 30 glycol ether groups and 8 to 20 carbon atoms in the (aliphatic) hydrocarbon moiety and 6 to 18 carbon atoms in the alkyl moiety of the alkylphenols.

Further suitable nonionic surfactants are the water-soluble polyadducts of polyethylene oxide with polypropylene glycol, ethylenediaminopolypropylene glycol and alkylpolypropylene glycol containing 1 to 10 carbon atoms in the alkyl chain, which polyadducts contain 20 to 250 ethylene glycol ether groups and 10 to 100 propylene glycol ether groups. These compounds usually contain 1 to 5 ethylene glycol units per propylene glycol unit.

Illustrative examples of nonionic surfactants are nonylphenol polyethoxylates, polyethoxylated castor oil, polyadducts of polypropylene and polyethylene oxide, tributylphenol polyethoxylate, polyethylene glycol and octylphenol polyethoxylate.

Fatty acid esters of polyoxyethylene sorbitan are also suitable nonionic surfactants, typically polyoxyethylene sorbitan trioleate.

Cationic surfactants are preferably quaternary ammonium salts carrying, as N-substituent, at least one C_8 - C_{22} alkyl radical and, as further substituents, unsubstituted or halogenated lower alkyl, benzyl or hydroxy-lower alkyl radicals. The salts are preferably in the form of halides, methyl sulfates or ethyl sulfates, for example stearyl trimethylammonium chloride or benzyl bis(2-chloroethyl)ethylammonium bromide.

The surfactants customarily employed in the art of formulation are described, inter alia, in "Mc Cutcheon's Detergents and Emulsifiers Annual", Mc Publishing Corp., Glen Rock, New Jersey, 1988, H. Stache, "Tensid-Taschenbuch" (Handbook of Surfactants), Carl Hanser Verlag, Munich/Vienna 1981, and M. and J. Ash, "Encyclopedia of Surfactants", Vol I-III, Chemical Publishing Co., New York, 1980-81.

The agrochemical compositions will usually contain from 0.1 to 99 % by weight, preferably from 0.1 to 95 % by weight, of safener or mixture of safener and herbicide, from 1 to 99.9 % by weight, preferably from 5 to 99.8 % by weight, of a solid or liquid formulation assistant, and from 0 to 25 % by weight, preferably from 0.1 to 25 % by weight, of a surfactant.

Whereas it is preferred to formulate commercial products as concentrates, the end user will normally use dilute formulations.

The compositions may also contain further ingredients such as stabilisers, antifoams, viscosity regulators, binders, tackifiers, as well as fertilisers or other chemical agents.

Different methods and techniques may suitably be used for applying the safeners of formula II or compositions containing them for protecting cultivated plants from the harmful effects of herbicides of formula I, conveniently the following:

i) Seed dressing

a) Dressing the seeds with a wettable powder formulation of the compound of formula IIa, IIb or IIb₁ by shaking in a vessel until the safener is uniformly distributed on the surface of the seeds (dry treatment), using up to c. 1 to 500 g of compound of formula IIa, IIb or IIb₁

- 89 -

(4 g to 2 g of wettable powder) per 100 kg of seeds.

- b) Dressing seeds with an emulsifiable concentrate of the compound of formula Πa , Πb , Πb_1 by method a) (wet treatment).
- c) Dressing by immersing the seeds in a mixture containing 100-1000 ppm of compound of formula IIa, IIb or IIb₁ for 1 to 72 hours, leaving them wet or subsequently drying them (seed soaking).

Seed dressing or treatment of the germinated seedlings are naturally the preferred methods of application, as the safener treatment is fully concentrated on the target crop. Usually 1 to 1000 g, preferably 5 to 250 g, of safener is used per 100 kg of seeds. However, depending on the method employed, which also permits the use of other chemical agents or micronutrients, plus or minus deviations from the indicated limiting concentrations are possible (repeat dressing).

ii) Application as a tank mixture

A liquid formulation of a mixture of safener and herbicide (reciprocal ratio from 10:1 to 1:100) is used, the concentration of herbicide being from 0.005 to 5.0 kg/ha. This tank mixture is applied before or after sowing.

iii) Application in the furrow

The safener formulated as emulsifiable concentrate, wettable powder or granulate is applied to the open furrow in which the seeds have been sown. After covering the furrow, the herbicide is applied pre-emergence in conventional manner.

iv) Controlled release of safener

A solution of the compound of formula IIa, IIb or IIb₁ is applied to mineral granulate substrates or polymerised granulates (urea/formaldehyde) and allowed to dry. A coating may additionally be applied (coated granulates) which permits controlled release of the safener over a specific period of time.

The invention is illustrated in more detail by the following non-limitative Examples.

- 90 -

Formulation Examples for mixtures of formula I and safeners of formula IIa, IIb or IIb₁ (throughout, percentages are by weight)

F1. Emulsifiable concentrates	a)	b)	c)	d)
compound mixture	5 %	10 %	25 %	50 %
calcium dodecylbenzenesulfonate	6 %	8 %	6 %	8 %
polyethoxylated castor oil	4 %	-	4 %	4 %
(36 mol EO)				
octylphenol polyethoxylate	-	4 %	-	2 %
(7-8 mol EO)				
cyclohexanone	-	-	10%	20 %
mixture of aromatic hydrocarbons	85 %	78 %	55 %	16%
C ₉ -C ₁₂				

Emulsions of any desired concentration can be prepared by diluting such concentrates with water.

F2. Solutions	a)	b)	c)	d)
compound mixture	5 %	10 %	50 %	90 %
1-methoxy-3-(3-methoxypropoxy)-	-	20 %	20 %	-
propane				
polyethylene glycol 400	20 %	10 ₺	-	-
N-methyl-2-pyrrolidone	-	-	30 %	10 %
mixture of aromatic hydrocarbons	75 %	60 %	-	-
C ₉ -C ₁₂				

The solutions are suitable for use as microdrops.

F3. Wettable powders	a)		b)		c)		d)	
compound mixture	5	8	25	ક	50	용	80	8
sodium ligninsulfonate	4	용	-		3	용	-	
sodium laurylsulfate	2	용	3	윰	-		4	f
sodium diisobutylnaphthalene								

- 91 -

sulfonate	-		6	ક	. 5	윰	6 ₺	
octylphenol polyethoxylate	-		1	용	2	ક	_	
(7-8 mol EO)								
highly dispersed silica	1	ક	3	8	5	ક	10	용
kaolin	88	&	62	B	35	8	-	

The compound mixture is throughly mixed with the adjuvants and this mixture is ground in a suitable mill to give wettable powders which can be diluted with water to give suspensions of any desired concentration.

F4. Coated granulates	a)		b)		c)		
compound mixture	0.1	용	5	ક	15	용	
highly dispersed silica	0.9	용	2	8	2	용	
inorganic carrier	99.0	용	93	윰	83	ક	
(Ø 0.1-1 mm)							
e.g. CaCO ₃ or SiO ₂							

The compound mixture is dissolved in methylene chloride, the solution is sprayed on to the carrier, and the solvent is removed under vacuum.

F5. Coated granulates	a)		b)		C)		
compound mixture	0.1	ક	5	8	15	f	
polyethylene glycol 200	1.0	ક	2	ક	3	ક	
highly dispersed silica	0.9	8	1	8	2	8	
inorganic carrier	98.0	용	92	용	80	8	
(Ø 0.1 - 1 mm)							
e.g. CaCO ₃ or SiO ₂							

The finely ground compound mixture is uniformly applied in a mixer to the kaolin moistened with polyethylene glycol. Non-dusty coated granulates are obtained in this manner.

F6. Extruder granulates	a)	b)	c)		d)	
compound mixture	0.1	& :	3 %	5	윰	15	ક
sodium ligninsulfonate	1.5	8 2	2 %	3	용	4	ક
carboxymethyl cellulose	1.4	8	2 ₺	2	용	2	8
kaolin	97.0	% 9:	3 %	90	용	79	용

The compound mixture is mixed with the adjuvants and the mixture is moistened with water. This mixture is extruded and then dried in a stream of air.

F7. Dusts	a)		b)		c)	
compound mixture	0.1	용	1	8	5	ક
talcum	39.9	ક	49	용	35	윰
kaolin	60.0	ક	50	ક	60	윰

Ready for use dusts are obtained by mixing the the active ingredient with the carriers on a suitable mill.

F8. Suspension concentrates	a)	b)	c)	d)
compound mixture	3 %	10 %	25 %	50 %
ethylene glycol	5 %	5 %	5 %	5 %
nonylphenol polyethoxylate	-	1 %	2 %	-
(15 mol EO)				
sodium ligninsulfonate	3 %	3 %	4 %	5 %
carboxymethyl cellulose	1 %	1 %	1 %	1 %
37% aqueous formaldehyde	0.2	% 0.2	% 0.2 ₹	0.2 %
solution				
silicone oil emulsion	0.8	₹ 0.8	8 0.8 %	8 0.8
water	87 %	79 %	62 %	38 %

The finely ground compound mixture is intimately mixed with the adjuvants to give a suspension concentrate from which suspensions of any desired concentration can be prepared by dilution with water.

- 93 -

The following Examples illustrate the ability of the safeners of formula IIa, IIb or IIb₁ to protect cultivated plants from the phytotoxic action of herbicides of formula I.

Biological Examples

Examples B1 to B6: The test plants are raised under greenhouse conditions in plastic pots to the 2- to 3-leaf stage. The growth substrate is standard soil. To the test plants are applied at this stage on the one hand the herbicidal composition by itself and, on the other hand, the mixtures of the herbicidal composition with the substances to be tested as safeners. Application is made with an aqueous suspension of the test substances, prepared from a 25% wettable powder formulation (Example F3, b)) in 500 l of water/ha, with a standard spray nozzle. The rates of application are governed by the optimum rates determined according to field and greenhouse conditions. 3 weeks after application, the phytotoxic action of the herbicidal composition on the cultivated plants, e.g. maize and cereals, is evaluated on a percentage scale. 100 % = plant withered, 0 % = no phytotoxic action.

The results obtained in this test show that the damage caused by the herbicidal composition of formula I can be markedly reduced with the compounds of formula IIa, IIb and IIb₁. The following Examples demonstrate this effect in cereals and maize.

PCT/EP95/03935

Table B1: Phytotoxic action of herbicide 1.010 singly and in admixture with safener 16.01 in cereals; postemergence application.

	Phytotoxic action:					
	herbicide	1.010	herbicide	herbicide 1.010		
	AS [g/ha]				
			safener 1	6.01		
			AS [g/ha]	l _o		
	250	125	250	125		
			+	+		
test plants:			125	60		
winter barley	80	50	30	5		
summer wheat	60	30	0	0		
winter wheat	0	0	0	0		
Apera	90	80	95	90		
Alopecurus	80	40	50	30		
Avena	90	70	95	60		
Bromus	95	70	40	10		
Lolium	98	98	100	100		

Table B2: Phytotoxic action of herbicide 1.157, singly and in admixture with safener 16.01 in cereals; postemergence application.

	Phytotoxic action:				
	herbicide 1.157		herbicide 1.157		
	AS (g/ha)		+		
			safener 1	6.01	
			AS [g/ha]		
	250	125	250	125	
			+	+	
test plants:			125	60	
winter barley	80	70	30	10	
summer wheat	70	70	40	30	

		- 95 -		
winter wheat	60	50	15	15
Apera	95	90	95	90
Alopecurus	98	98	98	98
Avena	100	98	100	98
Bromus	90	90	70	30
Lolium	98	98	100	100

<u>Table B3:</u> Phytotoxic action of herbicide 15.067, singly and in admixture with safener 16.01 in cereals; postemergence application.

	Phytotoxic action:					
	herbicide 15.067		herbicide 15.067			
	AS [g/ha]		+		
			safener 1	6.01		
			AS [g/ha	1		
	250	125	250	125		
			+	+		
test plants:			125	60		
winter barley	10	0	10	5		
summer wheat	30	15	0	0		
winter wheat	0	0	0	0		
Apera	90	80	80	60		
Alopecurus	60	30	30	10		
Avena	90	90	40	30		
Bromus	70	70	0	0		
Lolium	98	95	95	90		

- 96 -

<u>Table B4:</u> Phytotoxic action of herbicide 1.010, singly and in admixture with safener 16.01 in maize; postemergence application.

	Phytotox herbicide AS [g/ha		herbicide 1.010		
			safener 16.01 AS [g/ha]		
	250	125	250 +	125 +	
test plants:			250	125	
maize	75	70	30	20	
Digitaria	100	95	100	98	
Echinochloa	100	90	100	90	
Panicum	100	100	100	100	
Setaria	90	70	90	75	

<u>Table B5:</u> Phytotoxic action of herbicide 1.157, singly and in admixture with safener 16.01 in maize; postemergence application.

	Phytotoxi herbicide AS [g/ha]	1.157	herbicide 1.157		
			safener 16.01 AS [g/ha]		
	125	60	125	60	
test plants: maize	95	90	125 45	10	
Digitaria Echinochloa	100 100	90 100	100 100	90 100	

- 97 -

Panicum	100	100	100	100
Setaria	75	40	30	20

<u>Table B6:</u> Phytotoxic action of herbicide 15.067, singly and in admixture with safener 16.01 in maize; postemergence application.

	Phytotoxic action:					
	herbicid	e 15.067	herbicide	herbicide 15.067		
	AS [g/ha	ı]	+			
			safener 1	6.01		
			AS [g/ha)		
	125	60	125	60		
			+	+		
test plants:			125	60		
maize	75	35	10	0		
Digitaria	95	90	90	60		
Echinochloa	90	70	90	70		
Panicum	100	90	100	80		
Setaria	80	50	85	40		

The same results are obtained by formulating the mixtures in accordance with Examples F1, F2 and F4 to F8.

What is claimed is:

- 1. A selective herbicidal composition comprising, in addition to customary inert formulation assistants, a mixture of
- a) a herbicidally effective amount of a herbicide of formula I

$$\begin{array}{c}
A \\
& 2 \\
N \\
& 4 \\
& R_1
\end{array}$$
(I),

wherein

$$R_1$$
 is the $(R_4)_n$, $(R_5)_m$ or $(R_4)_n$ group

the substituents R_4 are each independently of one another halogen, nitro, cyano, C_1 - C_4 alkyl, C_1 - C_4 haloalkyl, C_1 - C_1 0alkoxy, C_1 - C_4 haloalkoxy, C_3 - C_6 alkenyloxy, C_1 - C_4 alkoxy- C_2 - C_4 alkoxy, C_3 - C_6 alkynyloxy, C_1 - C_4 alkylcarbonyl, C_1 - C_4 alkylthio, C_1 - C_4 alkylsulfinyl, C_1 - C_4 alkylsulfonyl, amino, C_1 - C_4 alkylamino or di- C_1 - C_4 alkylamino;

$$R_5$$
 is the $-x_1$ or $-x_1$ $\stackrel{(R_6)}{\longrightarrow}$ q group;

n is 0, 1, 2, 3 or 4;

m is 0 or 1, the sum of m and n being 0, 1, 2, 3 or 4;

q is 0, 1, 2 or 3;

 X_1 is oxygen, sulfur, -CH₂- or -N(R₇)-;

the substituents R_6 are each independently of one another C_1 - C_4 alkyl, halogen, C_1 - C_4 haloalkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkoxy, nitro, cyano, C_1 - C_4 alkoxycarbonyl, amino, C_1 - C_4 alkylamino or di- C_1 - C_4 alkylamino;

R₇ is hydrogen, C₁-C₄alkyl, formyl or C₁-C₄alkylcarbonyl;

A and B are each independently of the other hydrogen, alkyl, alkenyl, alkynyl, alkoxyalkyl, alkylthioalkyl or cycloalkyl, or substituted or unsubstituted aryl; or A and B, taken together, form the divalent radical of a saturated or unsaturated and unsubstituted or substituted mono-, bi-, tri- or polycyclic system;

- 99 -

G is hydrogen or a group -CO-
$$R_{18}$$
 (a), R_{19} (b), -SO₂- R_{20} (c), R_{21} (d),

$$R_{24}$$
 (e) or X (f);

L and M are each independently of the other oxygen or sulfur,

R₁₈ is halogen-substituted alkyl, alkenyl, alkoxyalkyl, alkylthioalkyl, polyalkoxyalkyl or cycloalkyl, which may contain hetero atoms; unsubstituted or substituted phenyl, unsubstituted or substituted phenylalkyl, substituted heteroaryl, substituted phenoxyalkyl, or substituted heteroaryloxyalkyl;

R₁₉ is halogen-substituted alkyl, alkenyl, alkoxyalkyl or polyalkoxyalkyl, or unsubstituted or substituted phenyl or benzyl;

 R_{20} , R_{21} and R_{22} are each independently of one another unsubstituted or halogen-substituted alkyl, alkoxy, alkylamino, dialkylamino, alkylthio, alkenylthio, alkynylthio or cycloalkylthio, or unsubstituted or substituted phenyl, phenoxy or phenylthio;

R₂₃ and R₂₄ are each independently of the other hydrogen, unsubstituted or halogen-substituted alkyl, alkenyl, alkoxy or alkoxyalkyl, unsubstituted or substituted phenyl or benzyl; or

R₂₃ and R₂₄, taken together, form an alkenyl radical, which may contain oxygen as hetero atom; and

X is a metal ion equivalent or an ammonium ion;

as well as salts and diastereoisomers of the compounds of formula I; and

b) to antagonise the herbicide, an antidotally effective amount of either a quinoline derivative of formula IIa

wherein

 $\rm R_{10}$ is hydrogen, C1-C8alkyl, or C1-C8alkyl which is substituted by C1-C6alkoxy or C3-C6alkenyloxy; and

X₂ is hydrogen or chloro;

of a 1-phenylazole-3-carboxylic acid derivative of formula IIb

$$R_{11}$$
 R_{12}
 R_{13}
 R_{13}
 R_{14}
 R_{12}

wherein

E is nitrogen or methine;

R₁₁is -CCl₃ or unsubstituted or halogen-substituted phenyl;

 R_{12} and R_{13} are each independently of the other hydrogen or halogen; and

R₁₄ is C₁-C₄alkyl; or

of a compound of formula IIbi

$$R_{67}OOC$$
 R_{68}
 R_{12}
 R_{13}
 R_{13}
 R_{13}
 R_{13}
 R_{14}
 R_{15}

wherein R_{12} and R_{13} have the meanings given above, and R_{66} , R_{67} and R_{68} are each independently of one another C_1 - C_4 alkyl.

2. A composition according to claim 1, wherein R_1 is the $\binom{(R_4)_n}{(R_5)_m}$ group.

- 3. A composition according to claim 2, wherein R_4 is C_1 - C_4 alkyl; n is 1, 2, 3 or 4; and m is 0.
- 4. A composition according to claim 2, wherein R_5 is the X_1 group.
- 5. A composition according to claim 2, wherein R_4 is C_1 - C_4 alkyl, trifluoromethyl, fluoro, chloro, bromo, C_1 - C_{10} alkoxy, allyloxy, propargyloxy, difluoromethoxy, trifluoromethoxy, methoxyethylenoxy, cyano, nitro, di- C_1 alkylamino or di- C_2 alkylamino, acetyl, C_1 - C_3 alkoxycarbonyl, methylsulfonyl, methylsulfinyl or methylmercapto; R_5 is the $\begin{pmatrix} R_6 \end{pmatrix}_q$ or $\begin{pmatrix} R_6 \end{pmatrix}_q$ group; X_1 is oxygen, sulfur, - CH_2 -

or -N(CHO)-; R_6 is fluoro, chloro or trifluoromethyl; n is 0, 1, 2 or 3; m is 0 or 1; and o is 0, 1 or 2, the sum of m and n being 0, 1, 2 or 3.

- 6. A composition according to claim 1, wherein R_1 is the $(R_4)_n$ group; R_4 is fluoro, chloro, methyl, nitro, trifluoromethyl or methylsulfonyl; n is 0, 1 or 2; and m is 0.
- 7. A composition according to claim 1, wherein R_1 is the $(R_4)_n$ group; R_4 is methyl, methoxy, fluoro, chloro or nitro; and n is 0 or 1.
- 8. A composition according to claim 1, wherein the safener is a compound of formula IIc

9. A composition according to claim 1, wherein the safener is a compound of formula IId

10. A composition according to claim 1, wherein the safener is a compound of formula IIe

- 11. A method of selectively controlling weeds and grasses in crops of cultivated plants, the seeds or the locus thereof, concurrently or separately, with an effective amount of a herbicide of formula I as claimed in claim 1 and, to antagonise said herbicide, an antidotally effective amount of a safener of formula IIa, IIb or IIb₁ as claimed in claim 1.
- 12. A method according to claim 11, which comprises treating crops of cultivated plants or areas intended for cropping with cultivated plants, with 0.001 to 2 kg/ha of a herbicide of formula I and an amount of 0.001 to 0,5 kg/ha of a safener of formula IIa, IIb or IIb₁.
- 13. A method according to claim 11, wherein the cultivated plants are maize and cereals.

INTERNATIONAL SEARCH REPORT

PC., EP 95/03935

A. CLASSI IPC 6	FICATION OF SUBJECT MATTER A01N43/90 A01N43/56 A01N25/3	2
According to	o International Patent Classification (IPC) or to both national classifi	cation and IPC
	SEARCHED	
Minimum de IPC 6	ocumentation searched (classification system followed by classificate AOIN	in symbols)
Documentat	non searched other than minimum documentation to the extent that st	ich documents are included in the fields searched
Electronic d	ata base consulted during the international search (name of data base	and, where practical, search terms used)
C. DOCUM	IENTS CONSIDERED TO BE RELEVANT	
Category *	Citation of document, with indication, where appropriate, of the re-	evant passages Relevant to claim No.
A	WO,A,92 16510 (CIBA-GEIGY) 1 Octo	ber 1992
A	EP,A,O 508 126 (BAYER) 14 October cited in the application	1992
A	EP,A,O 094 349 (CIBA-GEIGY) 16 No 1983 cited in the application	vember
	•	
	·	
Fur	ther documents are listed in the continuation of box C.	X Patent family members are listed in annex.
•	ategories of cited documents:	T later document published after the international filing date or priority date and not in conflict with the application but
conne	nent defining the general state of the art which is not dered to be of particular relevance of the international consument but published on or after the international	cited to understand the principle or theory underlying the invention "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to
which	date n thich may throw doubts on priority claim(s) or n is cated to establish the publication date of another on or other special reason (as specified)	involve an inventive step when the document is taken atoms 'Y' document of particular relevance; the chained invention 'Y' have an inventive step when the
O' docum	ment referring to an oral disclosure, use, exhibition or means	document is combined with one or more other such doctor ments, such combination being obvious to a person skilled in the art.
later	nent published prior to the international filing date but than the priority date claimed e actual completion of the international search	'&' document member of the same patent family Date of mailing of the international search report
	29 January 1996	09, 02.96
	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized officer
	NL - 2280 HV Riswik Td. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax (+31-70) 340-3016	Decorte, D

1

INTERNATIONAL SEARCH REPORT

Interr hal Application No
PC 17 EP 95/03935

Patent document cited in search report	Publication date	Patent i memb		Publication date
WO-A-9216510	01-10-92	AU-B-	1343192	21-10-92
5223333		BR-A-	9205752	08-11-94
		CN-A-	1064862	30-09-92
		EP-A-	0577629	12-01-94
		JP-T-	6506201	14-07-94
		NZ-A-	241996	25-11-94
		SI-A-	9210249	30-04-95
		TR-A-	25475	01-05-93
EP-A-0508126	14-10-92	DE-A-	4109208	24-09-92
		JP-A-	5117240	14-05-93
		US-A-	5474974	12-12-95
		US-A-	5332720	26-07-94
		US-A-	5358924	25-10-94
EP-A-0094349	16-11-83	AU-B-	575777	11-08-88
		AU-B-	1432983	10-11-83
		CA-A-	1218994	10-03-87
		DE-D-	3382743	11-05-94
		GB-A,B	2120661	07-12-83
		JP-B -	7053642	07 -06-9 5
		JP-A-	60006603	14-01-85
		JP-C-	1703469	14-10-92
		JP-B-	3068862	30-10-91
		JP-A-	58203967	28-11-83
		SU-A-	1658807	23-06-91
		US-A-	5023333	11-06-91
		US-A-	5102445	07-04-92
		US-A-	4902340	20-02-90