# Test-Time Domain Adaptation by Learning Domain-Aware Batch Normalization

Yanan Wu<sup>\*</sup> Zhixiang Chi<sup>\*</sup> Yang Wang Konstantinos N. Plataniotis Songhe Feng







#### Problem setting for Test-Time Domain Adaptation (TT-DA)







- (-) Require huge amount of unlabeled target data
- (-) Large-scale repetitive training
- (+) One model to tackle all domains(-) Fail to exploit domain specific information in target domains
- (+) Exploit domain specific information in *unseen* target domains



(+) For each target domain, only adapt **once** using **few unlabeled data** 

Assumption: few unlabeled data convey the underlying distribution of that domain.

#### **Challenges in TT-DA**

We seek a simple yet effective solution for CNN-based networks

To update from few-shot unlabeled data:

- 1. Which parameters to update?
- 2. How to determine the supervision?
- 3. Effective training strategy?

# **Knowledge Disentanglement**



- Intuition for TT-DA:
  - ❖ All domains share the label space.
    - Share semantic information.
  - Every data in a domain is drawn from the same distribution. (e.g., same style of drawing)
    - \* Require domain-specific knowledge.



- > Keep the well-acquired label knowledge undisturbed
- ➤ Maximize domain-specific knowledge extraction

# Learning Domain-specific Knowledge

**Input:** Values of x over a mini-batch:  $\mathcal{B} = \{x_{1...m}\};$ 

Parameters to be learned:  $\gamma$ ,  $\beta$ 

Output:  $\{y_i = BN_{\gamma,\beta}(x_i)\}$ 

$$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$$
 // mini-batch mean

$$\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^{m} (x_i - \mu_{\mathcal{B}})^2$$
 // mini-batch variance

$$\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$$
 // normalize

$$y_i \leftarrow \gamma \hat{x}_i + \beta \equiv \text{BN}_{\gamma,\beta}(x_i)$$
 // scale and shift

- **\*** Batch normalization:
  - 1. Normalization

Unstable on few-shot data.

2. Affine transformation (learnable)



- ❖ Directly adopt normalization statistics from source data.
- **Use affine parameters for correction.**

#### **Supervision?**

#### Recap:

- > Unlabeled data
- > Extract domain information only



Class-independent self-supervised loss



Auxiliary branch

Misalignment

Primary branch

- ❖ Formulate the learning pipeline as multi-task learning
- ❖ Network updated via auxiliary branch benefits the main branch

#### **Domain-centric Learning to Adapt**

#### Goal:

- Focus on the domain-level rather than the dataset/instance level.
- Enforce to learn the domain-specific knowledge
- Learning objective alignment (bi-level optimization)

```
Algorithm 1 Domain-centric learning (framework)

Require: \{\mathcal{D}_{\mathcal{S}}^i\}_{i=1}^N: data of source domains; \theta: learnable parameters

1: Initialize: \theta

2: while not converged do

3: Sample a meta batch of B source domains \{\mathcal{D}_{\mathcal{S}}^b\}^B

4: // Inner loop: independently adapt to each domain

5: for each \mathcal{D}_{\mathcal{S}}^b do

6: Adapt \theta to domain \mathcal{D}_{\mathcal{S}}^b and evaluate

7: Accumulate adaptation loss

8: end for

9: // Outer loop: meta update regarding adaptation results

10: Update \theta for the current meta batch:

11: \theta \leftarrow \theta - \beta \nabla_{\theta} loss

12: end while
```



<sup>\*</sup>Methods and setting-dependent

## Learning to Adapt (second stage)

\* Task formulation: adapting to every domain using a few unlabeled data





## Learning to Adapt (second stage)

Meta-objective: evaluate the adapted affine parameters on a disjoint set in the task.



# **Learning to Adapt (second stage)**

```
1: Initialize weight matrix \theta and affine params (\gamma, \beta)
                                                              2: // Learning label representation on mixed source data
                                                              3: (\theta, \gamma, \beta) \leftarrow (\theta, \gamma, \beta) - \eta \nabla_{(\theta, \gamma, \beta)} \mathcal{L}_{Joint}(\mathcal{D}_S; \theta; (\gamma, \beta))
                                                              4: while not converged do
                                                              5: // Learning to adapt to domain-specific knowledge
                                                              7: Sample a meta batch of B source domains: \{\mathcal{D}_S^i\}_{i=1}^B
                                                              8: Reset the loss of current meta batch: \mathcal{L}_B = 0
                                                              9: for each \mathcal{D}_S^i in \{\mathcal{D}_S^i\}_{i=1}^B do
                                                              10: Sample support and query set: (S^i, Q^i) \sim \mathcal{D}_S^i
Training and evaluation
                                                              11: // Perform adaptation via self-supervised loss
                                                              12: (\tilde{\gamma}, \tilde{\beta}) = (\gamma, \beta) - \alpha \nabla_{(\gamma, \beta)} \mathcal{L}_{SSL}(\mathcal{S}; \theta; (\gamma, \beta))
                                                              14: // Evaluate the adapted (\tilde{\gamma}, \tilde{\beta}) using Q and
                                                              15: // accumulate the loss
16: \mathcal{L}_B = \mathcal{L}_B + \mathcal{L}_{Joint}(\mathcal{Q}; \theta; (\tilde{\gamma}, \tilde{\beta})^{S,A}) Learning objective alignment
                                                                     end for
                                                                     // Update (\gamma, \beta) for current meta batch
                                                              19: (\gamma, \beta) \leftarrow (\gamma, \beta) - \delta \nabla_{(\gamma, \beta)} \mathcal{L}_B
                                                              21: end while
```

Algorithm 1: Meta-auxiliary training of MABN

**Require:**  $\{\mathcal{D}_S^i\}_{i=1}^M$ : data of source domains

**Require:**  $\alpha$ ,  $\delta$ ,  $\eta$ : learning rates; B: meta batch size

protocol alignment via simulation

#### Test-time Domain Adaptation on Unseen Domains

❖ Acquire domain-specific knowledge via auxiliary branch followed by inference



$$(\tilde{\gamma}, \tilde{\beta}) = (\gamma, \beta) - \alpha \nabla_{(\gamma, \beta)} \mathcal{L}_{SSL}(\mathcal{S}^i; \theta, (\gamma, \beta))$$



## Results: comparison with the state-of-the-art

| Methods        | iWildCam       |                | Camelyon17     | RxRx1          | FMoW            |                 | PovertyMap        |                   |
|----------------|----------------|----------------|----------------|----------------|-----------------|-----------------|-------------------|-------------------|
| Methous        | Acc            | Macro F1       | Acc            | Acc            | WC Acc          | Avg Acc         | WC Pearson r      | Pearson r         |
| ERM            | $71.6 \pm 2.5$ | $31.0 \pm 1.3$ | $70.3 \pm 6.4$ | $29.9 \pm 0.4$ | $32.3\pm1.25$   | $53.0 \pm 0.55$ | $0.45 \pm 0.06$   | $0.78 \pm 0.04$   |
| CORAL          | $73.3 \pm 4.3$ | $32.8 \pm 0.1$ | 59.5±7.7       | $28.4 \pm 0.3$ | $31.7 \pm 1.24$ | $50.5 \pm 0.36$ | $0.44 \pm 0.06$   | $0.78 \pm 0.05$   |
| Group DRO      | $72.7\pm2.1$   | $23.9 \pm 2.0$ | $68.4 \pm 7.3$ | $23.0\pm0.3$   | $30.8 \pm 0.81$ | $52.1 \pm 0.5$  | $0.39 \pm 0.06$   | $0.75 \pm 0.07$   |
| IRM            | $59.8 \pm 3.7$ | $15.1 \pm 4.9$ | $64.2 \pm 8.1$ | $8.2 \pm 1.1$  | $30.0\pm1.37$   | $50.8 \pm 0.13$ | $0.43 \pm 0.07$   | $0.77 \pm 0.05$   |
| <b>ARM-CML</b> | $70.5 \pm 0.6$ | $28.6 \pm 0.1$ | $84.2 \pm 1.4$ | $17.3 \pm 1.8$ | $27.2 \pm 0.38$ | $45.7 \pm 0.28$ | $0.37 \pm 0.08$   | $0.75 \pm 0.04$   |
| ARM-BN         | $70.3\pm2.4$   | $23.7 \pm 2.7$ | $87.2 \pm 0.9$ | $31.2 \pm 0.1$ | $24.6 \pm 0.04$ | $42.0 \pm 0.21$ | $0.49 \pm 0.21$   | $0.84 {\pm} 0.05$ |
| ARM-LL         | $71.4 \pm 0.6$ | $27.4 \pm 0.8$ | $84.2 \pm 2.6$ | $24.3 \pm 0.3$ | $22.1\pm0.46$   | $42.7 \pm 0.71$ | $0.41 {\pm} 0.04$ | $0.76 \pm 0.04$   |
| Meta-DMoE      | $77.2 \pm 0.3$ | $34.0 \pm 0.6$ | $91.4 \pm 1.5$ | $29.8 \pm 0.4$ | $35.4\pm0.58$   | $52.5 \pm 0.18$ | $0.51 \pm 0.04$   | $0.80 \pm 0.03$   |
| PAIR           | $74.9 \pm 1.1$ | $27.9 \pm 0.9$ | $74.0 \pm 7.2$ | $28.8 \pm 0.0$ | $35.4\pm1.30$   | -               | $0.47 \pm 0.09$   | -                 |
| MABN (ours)    | 78.4±0.6       | 38.3±1.2       | 92.4±1.9       | 32.7±0.2       | 36.6±0.41       | 53.2±0.52       | $0.56{\pm}0.05$   | $0.84 \pm 0.04$   |

#### **WILDS** benchmark:

- Large number of unseen target domains.
- Data imbalance at both domain- and class-level.

| Method    | clip      | info      | paint     | quick     | real      | sketch    | avg  |
|-----------|-----------|-----------|-----------|-----------|-----------|-----------|------|
| ARM       | 49.7(0.3) | 16.3(0.5) | 40.9(1.1) | 9.4(0.1)  | 53.4(0.4) | 43.5(0.4) | 35.5 |
| Meta-DMoE | 63.5(0.2) | 21.4(0.3) | 51.3(0.4) | 14.3(0.3) | 62.3(1.0) | 52.4(0.2) | 44.2 |
| Ours      | 64.2(0.3) | 23.6(0.4) | 51.5(0.2) | 15.2(0.3) | 64.6(0.5) | 54.1(0.4) | 45.5 |

Table 6: Comparison on the DomainNet with std across 3 random seeds.

# **Evaluation on Domain-specific Knowledge**

#### iWildCam benchmark:

• 48 OOD unseen target domains.

| <b>Adapted</b> $(\tilde{\gamma}, \tilde{\beta})$ | No adapt | Not-matched | Matched |
|--------------------------------------------------|----------|-------------|---------|
| Accuracy                                         | 74.69    | 72.39       | 78.40   |
| Macro-F1                                         | 36.77    | 33.32       | 38.27   |

- Compute adapted Affine Parameters for each domain.
- Random shuffle them

#### Visualizations: representation of target domain partial-classes from iWildCam



Left: feature distribution before adaptation

**Right:** feature distribution after adaptation

#### Integration with other TTA Method

| Method               | Up    | date BN  | <b>Update Affine</b> |          |  |
|----------------------|-------|----------|----------------------|----------|--|
| Method               | Acc   | Macro F1 | Acc                  | Macro F1 |  |
| TENT (min. entropy)  | 33.27 | 0.77     | 75.92                | 36.40    |  |
| Our (min. auxiliary) | 75.86 | 36.76    | 78.40                | 38.27    |  |
| Our+TENT             | 75.84 | 31.93    | 79.68                | 38.85    |  |

- Adapt to domain first.
- Further improvement with instance-based TTA

#### **Ablation**

| Index | SSL          | Param. | TS    | Adapt        | iWildCam |      |
|-------|--------------|--------|-------|--------------|----------|------|
| Index |              |        |       |              | Acc      | F1   |
| 1     | X            | All    | CE    | X            | 68.7     | 31.3 |
| 2     | $\checkmark$ | All    | Joint | X            | 70.5     | 33.2 |
| 3     | ✓            | BN     | Joint | $\checkmark$ | 68.2     | 30.5 |
| 4     | ✓            | Aff    | Joint | $\checkmark$ | 71.1     | 33.9 |
| 5     | ✓            | All    | Meta  | $\checkmark$ | 72.0     | 29.4 |
| 6     | ✓            | Aff    | Meta  | X            | 74.7     | 36.8 |
| 7     | ✓            | Aff    | Meta  | $\checkmark$ | 78.4     | 38.3 |

| Self-supervised            | Backbone  | Training | iWildCam |      |
|----------------------------|-----------|----------|----------|------|
| Sen-super vised            | Dackbulle | Training | Acc      | F1   |
| None (baseline)            | ResNet50  | CE       | 68.7     | 31.3 |
| Rotation (Sun et al. 2020) | ResNet50  | Joint    | 69.2     | 31.5 |
| Rotation (Sun et al. 2020) | ResNet50  | Meta     | 72.8     | 33.0 |
| MAE (He et al. 2022)       | ViT-Base  | Joint    | 71.7     | 33.8 |
| MAE (He et al. 2022)       | ViT-Base  | Meta     | 74.9     | 35.1 |
| Ours (BYOL)                | ResNet50  | Joint    | 70.5     | 33.2 |
| Ours (BYOL)                | ResNet50  | Meta     | 78.4     | 38.3 |

**<sup>\*</sup>** Evaluation on each component.

Evaluation on SSL methods.

#### Thanks!

#### **Poster #386**



Test-Time Domain Adaptation by Learning Domain-Aware Batch Normalization

Webpage: https://chi-chi-zx.github.io/MABN\_project

Code: https://github.com/ynanwu/MABN