Machine Learning Methods **P160B124**

Support Vector methods

assoc. prof. dr. Tomas lešmantas tomas.iesmantas@ktu.lt Room 319

Hyperplane as a decision boundary

- A decision boundaries for logistic and LDA classifiers are linear, i.e. hyperplanes.
- Support vector classifier seeks such a decision boundary as well, but by a different route.
- Support vector machine also constructs a linear decision boundary but in some other high dimensional space (possibly even in infinite dimensional space).
- When talking about SVC or SVM, classes are assumed to be positive and negative, i.e. $y_i \in \{-1, +1\}$ (this is only a notational convenience).

Hyperplane as a decision boundary

• In general, a *linear classifier f* can be summarized by the following rule:

If
$$f(x) \ge 0 \Rightarrow y = +1$$
, otherwise $y = -1$

If f(x) is very large, then x is very far away from the boundary – and we are confident in the prediction.

SVM and decision boundary

• SV method seeks the "best" linear decision boundary out of all. What is "best"?

Linear separability

Linear non-separability

Linear classifier

• It's general form is this:

$$f(x) = w_0 + x^T w = 0$$

• For example: $1 - 0.4x_1 + 3x_2 = 0$, $w_0 = 1$, $w = \begin{pmatrix} -0.4 \\ 3 \end{pmatrix}$

$$y = +1$$
 if

$$1 - 0.4x_1 + 3x_2 \ge 0$$

• Training data is used to find unknown parameters w_0 and w.

Linear classifier

• There is an infinite number of possibilities.

Margin of a hyperplane

- Margin is a distance from the hyperplane to the closest data point.
- The maximal margin hyperplane is the separating hyperplane for which the margin is largest. Distance to the closest training points of both classes is maximal.

Support Vectors

- Support vectors are training data points which are on boundary of the margins.
- They "support" the maximal margin hyperplane in the sense that if these points were moved slightly then the maximal margin hyperplane would move as well.

- If we move the denoted vector to some direction, will the maximum margin hyperplane, once it is found, move as well?
 - a) Yes;
 - b) No

- A maximum margin classifier is the classifier for which maximum margin hyperplane is the decision boundary. The task is simple: find maximum margin!
- If the classes are separable, then

$$w_0 + w^T x_i \ge M \text{ if } y_i = +1$$

$$w_0 + w^T x_i \le -M \text{ if } y_i = +1$$

$$\int_{x_0}^{x_0} f(x) = \sum_{i=1}^{n} \alpha_i y_i(x_i^T x_i) + b$$
Support vectors

• If the classes are separable, then

$$w_0 + w^T x_i \ge M \text{ if } y_i = +1$$

 $w_0 + w^T x_i \le -M \text{ if } y_i = -1$

Or equivalently (with a slight abuse of notation)

$$w_0 + w^T x_i \ge +1 \text{ if } y_i = +1$$

 $w_0 + w^T x_i \le -1 \text{ if } y_i = -1$

Data points x_{+1} and x_{-1} satisfying equality conditions lie on the hyperplanes

$$H_{+1}: w_0 + w^T x_{+1} + 1 = 0$$

$$H_{-1}: w_0 + w^T x_{-1} - 1 = 0$$

These points are support vectors.

- In general, distance between two hyperplanes $w^T x + b_1 = 0$ and $w^T x + b_2 = 0$ is $\frac{|b_1 b_2|}{||w||}$
- Thus, in our case margin size is $d = \frac{2}{||w||}$.

• What is the margin for a maximum margin hyperplane $1 - 0.4x_1 + 3x_2 = 0$

- a) 0.66
- b) 0.62
- c) 0.60

$$d = \frac{2}{||w||}$$

Conditions

$$w_0 + w^T x_i \ge +1 \text{ if } y_i = +1$$

 $w_0 + w^T x_i \le -1 \text{ if } y_i = -1$

can be written as

$$y_i(w_0 + w^T x_i) \ge +1.$$

Thus, the task is

to minimize
$$\frac{2}{||w||}$$

subject $y_i(w_0 + w^T x_i) \ge +1$.

• Or, equivalently

$$minimize \frac{1}{2} ||w||^2,$$

$$subject to y_i(w_0 + w^T x_i) \ge 1, \forall i.$$

- This is a convex optimization problem: minimize a quadratic function subject to linear inequality constraints.
- Convexity ensures that we have a global minimum without local minima.
- The resulting optimal separating hyperplane is called the maximal (or hard) margin classifier.

Nonlinear optimization with constraints

Suppose a problem

optimize
$$f(w)$$
,
subject to $g_i(w) \ge 0$, $\forall i$.

Form a Lagrangian:

$$L(w,\lambda) = f(w) - \sum_{i=1}^{N} \lambda_i \cdot g_i(w).$$

Here $\lambda_i \geq 0$ – Lagrange multipliers.

- (KKT Karush-Kuhn-Tucker theorem) If (w^*, λ^*) is a saddle point of $L(w, \lambda)$, then it is a solution the above optimization problem.
- About saddle points:
 https://en.wikipedia.org/wiki/Saddle_point

• The solution of this problem involves only a handful of support vectors:

$$w = \sum_{i \in \mathcal{S}\mathcal{V}} \alpha_i y_i x_i$$

and

$$w_0 = \frac{1}{|sv|} \sum_{k \in sv} \left(\frac{1 - w^T x_k y_k}{y_k} \right)$$

• Consider the dataset:

X1	X2	α
1	1	1
1	2	0
2	0	1
2	-1	0

Find value of

$$w = \sum_{i \in sv} \alpha_i y_i x_i$$

- a) (-1,1);
- b) (1,1);
- c) (1,-1);
- (0,1)

• Consider the dataset:

X1	X2	α
1	1	1
1	2	0
2	0	1
2	-1	0

Find value of

$$w_0 = \frac{1}{|sv|} \sum_{k \in sv} \left(\frac{1 - w^T x_k y_k}{y_k} \right)$$

- a) -1;
- b) 0;
- c) 1:
- d) 2

• Consider the dataset:

X1	X2	α
1	1	1
1	2	0
2	0	1
2	-1	0

• Find equation for a separating hyperplane

$$f(x) = w_0 + w^T x = 0$$

- a) x2=x1+1;
- b) x2=x1-1;
- c) x2=x1;
- d) x2=x1+2

• Consider the dataset:

X1	X2	α
1	1	1
1	2	0
2	0	1
2	-1	0

• Find equation for a separating hyperplane

$$f(x) = w_0 + w^T x = 0$$

- a) x2=x1+1;
- b) x2=x1-1;
- c) x2=x1;
- d) x2=x1+2

- But this requires that classes would be separable. This is never true in the real life \otimes
- What if we have this data?

• Sacrifices must be made.

- But this requires that classes would be separable. This is never true in the real life \odot
- Hard margin SVC may be possible but is it always desirable?

- Allow few misclassifications in order to do a better job in classifying the remaining observations.
- The support vector classifier, sometimes called a soft margin classifier, does exactly this.

• Hard margin optimization problem can be formally stated in terms of the loss function:

$$\sum_{i=1}^{N} E_{\infty}(y_i f(x_i) - 1) + \frac{1}{2} ||w||^2$$

where $E_{\infty}(z)$ is 0 if $z \ge 0$ and ∞ otherwise.

- In case of overlapping classes, we might instead use a less strict error function to allow crossing of the margins.
- For this, we introduce a slack variables $\zeta_i \ge 0$ for each training data point.

• Slack variables are 0 for datapoints which are on the correct side of the margin boundary and

$$\zeta_i = |y_i - f(x_i)|$$

- The slack variable ζ_i tells us where x_i is located relative to the hyperplane and the margin:
 - a) If $\zeta_i = 0$, then the observation is on the correct side of the margin;
 - b) If $\zeta_i > 0$, then the observation is on the wrong side of the margin;
 - c) If $\zeta_i > 1$, then the observation is on the wrong side of the hyperplane

Slack variables

The constraints now become

$$y_i(w_0 + x_i^T w) \ge 1 - \zeta_i, \zeta_i \ge 0$$

• The goal is thus to maximize the margin while softly penalizing points that lie on the wrong side of the margin boundary:

$$C\sum_{i=1}^{N} \zeta_i + \frac{1}{2} ||w||^2$$

where C > 0 controls the tradeoff between the slack variable penalty and the margin. (In R or in Python it is called cost)

• Increasing C, more and more importance is given to the penalty term, thus one can expect narrowing margins.

• Interestingly - the solution has the same form as before:

$$w = \sum_{i \in SV} \alpha_i y_i x_i$$

and

$$w_0 = \frac{1}{|sv|} \sum_{k \in sv} \left(\frac{1 - w^T x_k y_k}{y_k} \right).$$

Equation for the optimal hyperplane:

$$f(x) = w_0 + w^T x = w_0 + \sum_{i \in SV} \alpha_i y_i(x^T x_i)$$

- Given the dataset below and slack variables, how many points violated the margin but not the hyperplane and how many points were misclassified by the hyperplane? x_1
- a) 9 and 5;
- b) 4 and 5;
- c) 3 and 2;
- d) 9 and 2.
- If $\zeta_i = 0$, then the observation is on the correct side of the margin;

0

0.9

-5 0.5

0 1.1

7 1.9

0

8

0.8

8

- If $\zeta_i > 0$, then the observation is on the wrong side of the margin;
- If $\zeta_i > 1$, then the observation is on the wrong side of the hyperplane

The C parameter

- Which is true?
 - a) Increasing C, decreases model bias and increases variance;
 - b) Increasing C, increases model bias and decreases variance;

How about this data set?

SVM: non-linearly separable data

Consider this very simple dataset:

Feature value	Class	
-3		
-2		
-1		
0		
1		
2		
3		

SVM: non-linearly separable data

Let's make the transformation $x \to (x, x^2)$. This makes classes separable in \mathbb{R}^2 .

SVM: non-linearly separable data

SVM: data transformation

https://www.youtube.com/watch?v=9NrALgHFwTo&feature=emb_logo

SVM: data transformation

Consider a dataset and a transformation $\phi(x) = (x_1^2, x_1 x_2)^T$

x_1	x_2	Class
-2	-2	A
-2	-1	A
1	2	A
2	1	A
-2	2	В
0	2	В
0	-1	В
2	-1	В

x1^2

SVM: data transformation

Hard margin solution:

$$x_2' = 1.25 - 0.5x_1'$$

Solution in original space

- Using transformations Φ and going back to the original space is highly inefficient, because we would have to calculate in very high dimensional spaces (possibly infinite dimensional).
- A kernel is a very special function which produces the same effect but without going back and forth between original space and those high dimensional spaces.
- A function K(x,x') is called **a kernel** if there exists a transform ϕ such that $K(x,x') = \phi^T(x)\phi(x')$.
- Why kernel is important?

• Lagrangian functional (in case of hard margin as well as soft margin problems) is only a function of features through the dot product:

$$x_i^T x_j$$

• If we transform features with $\phi(x)$, the Lagrangian is still only a function of a dot product:

$$\phi^T(x_i)\phi(x_j)$$

• Then let's exchange transformation process (and an inverse calculation) with the kernel

$$K(x_i, x_i) = \phi^T(x_i)\phi(x_i)$$

Hard margin SVC solution:

$$f(x) = w_0 + \sum_{i \in sv} \alpha_i y_i(x^T x_i)$$

It depends on so called scalar product $x^T x_i$ of vectors in the original space.

• Hard margin SVC solution with transformation ϕ :

$$f(x) = w_0 + \sum_{i \in sv} \alpha_i y_i(\phi(x^T)\phi(x_i))$$

• What if we could find another function, which has the same value as scalar product, but without explicit transformation to higher dimensional space?

•
$$\phi \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} x_1^2 \\ \sqrt{2}x_1x_2 \\ x_2^2 \end{pmatrix}$$
; $\phi^T(x)\Phi(x') = (x_1x_1' + x_2x_2')^2$

- So, instead of explicitly transforming the data into another space with ϕ and calculating scalar product, we can just stay in the original space and use $K(x, x') = (x_1x_1' + x_2x_2')^2$ function instead.
- We can completely abandon the notion of transformation to other spaces and simply use kernels all the time.
- The final solution of kernel SVM optimization problem is

$$f(x) = w_0 + \sum_{i \in Sv} \alpha_i y_i K(x, x_i)$$

Kernels

Inhomogeneous polynomial kernel of degree d

$$K(x, x') = (\langle x, x' \rangle + c)^d.$$

• Consider m = 2 and d = 2.

$$K(x, x') = (\langle x, x' \rangle + c)^{2} =$$

$$(x_{1}x'_{1} + x_{2}x'_{2} + c)^{2} =$$

$$\phi^{T}(x)\phi(x').$$

$$\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2c}x_1, \sqrt{2c}x_2, c)^T.$$

Thus, the feature space, equivalent to the action of the kernel, is 6 dimensional.

- Assume that data points are images of size 16x16.
 - If d=2 then we have 33670 dimensional feature space
 - If d = 4, we get 186 043 585 dimensions.

Kernels

Inhomogeneous polynomial kernel of degree d

$$K(x, x') = (\langle x, x' \rangle + c)^d.$$

A corresponding transformation

$$\phi(x) = (x_1^2, x_2^2, \sqrt{2}x_1 x_2, \sqrt{2c}x_1, \sqrt{2c}x_2, c)^T.$$

- Let $x = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, $x' = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$, c = 2, d = 2.
- Corresponding transformations are:

$$\phi(x) = (1,0,0,2,0,2)^T$$
$$\phi(x') = (0,1,0,0,-2,2)^T$$

- Scalar product: $\langle \phi(x), \phi(x') \rangle = 0 + 0 + 0 + 0 + 0 + 4 = 4$
- Kernel function value: $K(x, x') = ((0+0)+2)^2 = 4$

Kernels

• A very popular Gaussian radial basis function

$$K(x, x') = exp\left\{-\frac{\|x - x'\|^2}{2\sigma^2}\right\}$$

corresponds to the infinite dimensional feature space!

• Let $x \in R^1$ and $\frac{1}{2\sigma^2} = 1$, then

$$\phi(x) = e^{-x^2} \left[1, \sqrt{\frac{2}{1!}} x, \sqrt{\frac{2^2}{2!}} x^2, \sqrt{\frac{2^3}{3!}} x^3, \dots \right]^T$$

...which is an infinite-dimensional transformation!

- All kernels have additional hyperparameters.
- So, controlling SVM involves adjustment of *C* and kernel hyperparameters.
- Often the search for best combination of these parameters involves 10-fold CV.

```
- Detailed performance results cost error dispersion
1 0.01 0.55 0.4377975
2 0.03 0.45 0.3689324
3 0.05 0.30 0.2581989
4 0.10 0.05 0.1581139
5 0.30 0.10 0.2108185
6 0.50 0.10 0.2108185
7 1.00 0.15 0.2415229
8 3.00 0.10 0.2108185
```


Polynomial kernel of degree 3

Radial kernel

SVM: Radial kernel

Kernel:
$$K(x, y) = exp\left\{-\frac{\|x - y\|^2}{2\sigma^2}\right\}$$

Small values of σ increases the fit to the training data

Decreasing σ (= $\frac{1}{gamma}$, as 'gamma' is used in R)

Which case is better?

SVM: More than one class

- One vs. one. A separate SVM is fitted to each combination of class pairs. The prediction is obtained by majority vote.
- Say, we have 3 classes. Then we have to construct three different SVMs':

$$\{1,2\},\{1,3\},\{2,3\}$$

• Prediction for x_0 is carried out by the majority rule.

Support vector methods: summary

- Hard margin classifier: when classes are linearly separable;
- Soft margin classifier or Support Vector Classifier: When classes are not linearly separable, but still a linear boundary is reasonable;
- Support Vector Machines: When classes are not linearly separable and a linear boundary is not a reasonable choice;

Note: SVC is a case of SVM with linear kernel.

Vocabulary

- Linear separability tiesinis atskiriamumas (separabilumas);
- Support vectors atraminiai vektoriai;
- Margin paraštė;
- **Hard margin** kieta paraštė;
- **Soft margin** minkšta paraštė.
- Kernel branduolys;
- slack variable laisvumo parametras.