4) Знакозмінні числові ряди. Теорема Лейбніца, наслідок. Абсолютно та умовно збіжні числові ряди та їх властивості. Теорема Рімана.

Ряд називають знакозмінним, якщо серед його членів є як від'ємні, так і додатні. Знакопочережний ряд є окремим випадком знакозмінного ряду.

Розгляньмо разом із знакозмінним рядом

$$\sum_{n=1}^{\infty} a_n$$

ряд, утворений з модулів його членів

$$\sum_{n=1}^{\infty} |a_n|.$$

Зауважимо, що існують збіжні ряди, що ряди, утворені з модулів їх членів розбігаються:

ряд
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$$
 збігається, а ряд $\sum_{n=1}^{\infty} \frac{1}{n}$ — розбігається.

Теорема 3.1 (ознака Лейбніца). Знакопочережний ряд $\Sigma (-1)^{n-1}a_n$ $a_n>0,$ збігається, якщо виконано умови: $1)\lim_{n\to\infty}a_n=0;$ $2)\ a_{n+1}< a_n\quad\forall n\in\mathbb{N}.$ При цьому сума ряду S справджує нерівність

$$0 < S < a_1$$
.

Наслідок. Абсолютна похибка від заміни суми збіжного знакопочережного ряду $\Sigma (-1)^{n-1}a_n$ його частковою сумою не перевищує модуля першого з відкинутих членів ряду, тобто

$$\left|S - S_n\right| = \left|R_n\right| \le a_{n+1}.$$

Означення 3.1 (абсолютної і умовної збіжності). Знакозмінний ряд Σa_n називають aбсолютно збіжним, якщо ряд $\Sigma \left| a_n \right|$, утворений з модулів його членів, збігається.

Якщо ряд Σa_n збіжний, а ряд $\Sigma \left|a_n\right|$ розбігається, то ряд Σa_n називають умовно збіжним.

Властивості абсолютно й умовно збіжних рядів

Властивість 1 (теорема Діріхле). Абсолютно збіжний ряд $\sum a_n$ після будь-якого переставлення його членів залишається абсолютно збіжним і його сума не міняється.

Властивість 2. Якщо ряди Σa_n та Σb_n збігаються абсолютно до сум S та T, то ряд $\Sigma(\alpha a_n + \beta b_n)$ збігається абсолютно до суми $\alpha S + \beta T$.

Властивість 3. Якщо ряд Σa_n збігається умовно, то обидва ряди, утворені лише з додатних і лише з від'ємних членів ряду, розбігаються.

Властивість 4 (теорема Рімана). Якщо ряд збігається умовно, то для будь-якого числа A, можна так переставити члени цього ряду, що перетворений ряд збігатиметься до A.

Зауважимо, що члени умовно збіжного ряду можна переставити так, що одержаний ряд буде розбіжним.