

ក្រុស្ត១អម់រំ យុទ៥ល សិចក៏ស្បា

តលាំតទំនា

ិធីមួយចំនួនសម្រាប់
ដោះស្រាយលំបាាក់ ជាជំនួយដល់សិស្ស
ថ្នាក់ទី ១២
២០១៥,២០១៦

អាម្តេងខា

វិធីដោះស្រាយលំហាត់នេះគ្រាន់តែជាការបំពេញបន្ថែមទៅលើមេរៀនដែលអ្នកបានសិក្សា លើគ្រប់មូលដ្ឋានគ្រឹះនៃគណិតវិទ្យា។ ការលើកឡើងនូវវិធីមួយចំនួនក្នុងការដោះស្រាយលំហាត់ គឺគ្រាន់តែជាជំនួយដល់អ្នកសិក្សាដើម្បីមានលទ្ធភាពយល់បានលឿន និងបានច្រើនរបៀបបន្ថែម លើអ្វីដែលអ្នកបានជួបប្រទះហើយ។

ក្នុងការរៀបចំឯកសារនេះ យើងខ្ញុំបានចែកជាពីរផ្នែកគឺ ផ្នែកខាងឆ្វេងជាចម្លើយដោយ មានការបកស្រាយ ឯផ្នែកខាងស្ដាំគឺជាការលើកឡើងនូវវិធីសម្រាប់ដោះស្រាយលំហាត់នេះ។ បន្ដ ពីចម្លើយ និងការលើកឡើងនូវវិធីសម្រាប់ដោះស្រាយនៅខាងក្រោមយើងខ្ញុំបានរៀបចំជាលំហាត់ អនុវត្តន៍នៃវិធីដោះស្រាយនេះ។

សូមបញ្ជាក់ជូនថាអ្នកសិក្សាពិតជានឹងអាចរកឃើញវិធីប្លែកៗ និងល្អជាងការរៀបរៀង របស់យើងខ្ញុំ។

ដើម្បីឲ្យឯកសារនេះកាន់តែល្អប្រសើរ យើងខ្ញុំរង់ចាំទទួលនូវមតិរិះគន់ និងកែលម្អបន្ថែម អំពីលោកគ្រូ អ្នកគ្រូ និងអ្នកសិក្សាទាំងឡាយដោយក្ដីសោមនស្សរីករាយបំផុត។

ក្រុមអ្នករៀបរៀង

មាតិកា

វិធីដោះស្រាយលំហាត់តាមគោលការណ៍នៃវិចារអនុមានរួមគណិតវិទ្យា	2
វិធីកំណត់លីមីតនៃស្វ៊ីត	3
វិធីកំណត់លីមីតនៃស្វ៉ីតដោយធ្វើការប្រៀបធៀប	
វិធីកំណត់លីមីតដោយប្រើប្រមាណវិធី	
វិធីគណនាលីមីត	9
វិធីប្រើលក្ខណះពិជគណិតនៃអនុគមន៍អ៊ិចស៉្បូណង់ស្យែល	11
វិធីសិក្សាអនុគមន៍ដោយបញ្ចូលអនុគមន៍អ៊ិចស្ប៉ូណង់ស្យែល	
វិធីសិក្សាអនុគមន៍ប្រភេទ $f(x) = e^{u(x)}$	14
វិធីប្រើអនុគមន៍លោការីតនេពែដើម្បីដោះស្រាយសមីការ ឬ វិសមីការ	16
វិធីសិក្សាអនុគមន៍ដែលមានអនុគមន៍លោការីតនេពែ	19
វិធីកំណត់ព្រីមីទីវ	21
វិធីប្រើទម្រង់ពីជគណិតនៃចំនួនកុំផ្លិច	23
វិធីដោះស្រាយសមីការក្នុង C សំណុំចំនូនកុំផ្លិច	24

វិធីដោះស្រាយលំហាត់តាមគោលការណ៍នៃវិចារអនុមានរួមគណិតវិទ្យា

លំហាត់៖ គេមាន a ជាចំនួនពិតវិជ្ជមាន ។ ស្រាយបំភ្លឺដោយប្រើវិចារអនុមានរួមគណិតវិទ្យា ថាចំពោះគ្រប់ចំនូនគត់ធម្មជាតិ n , $(1+a)^n \ge 1+na$ ។ ចម្លើយ

ចំពោះគ្រប់ចំនូនគត់ធម្មជាតិ *n* យើងតាង *P(n)* លក្ខណះ " (1+a)ⁿ ≥1+na " ។ យើងចង់ស្រាយ បំភ្លឺដោយប្រើវិចារអនុមានរួមគណិតវិទ្យាថាចំពោះ គ្រប់ចំនួនគត់ធម្មជាតិ *n* , *P(n)* ពិត ។

- ផ្ដើម:ចំពោះ n=0 គេហ្ន (1+a)⁰=1 និង1+0×a=1។ ដូច្នេះ (1+a)⁰≥1+0×a។ លក្ខណះនេះពិតចំពោះ n=0
- បន្ត : យើងឧបមាថា P(n) ពិតចំពោះតម្លៃ $n \ge 0$ (យើងហៅថាសមតិកម្មនៃវិចារអនុ មានរួមគណិតវិទ្យា) ។ យើងស្រាយបញ្ហាក់ ថា P(n) ពិតនាំឲ្យ P(n+1) ពិត។ $P(n+1): (1+a)^{n+1} \ge 1 + (n+1)a$ ។ ពិត $(1+a)^{n+1} = (1+a)(1+a)^n$ និង តាមសមតិ កម្មនៃវិចារអនុមានរួមគណិតវិទ្យា $\left(1+a\right)^{n}\geq 1+na$ ។ ដោយគុណអង្គទាំងពីរ ដោយ (1+a) ដែលវិជ្ជមានដាច់ខាតយើង $\mathfrak{I} \mathfrak{I} \mathfrak{S} : (1+a)(1+a)^n \ge (1+a)(1+na)$ $\mathfrak{U} (1+a)^{n+1} \ge 1 + na + a + na^2$ $(1+a)^{n+1} \ge 1 + (n+1)a + na^2$ (1) តែ $na^2 \ge 0$ ដូច្នេះ $1 + (n+1)a + na^2 \ge 1 + (n+1)a$ (2)

តាមវិសមភាព (1) និង (2) យើងបាន

P(n+1) ពិត ។ ដូច្នេះ P(n) ចំពោះគ្រប់

 $(1+a)^{n+1} \ge 1+(n+1)a$ បានន័យហ

 $n \in \mathbb{N}$ 1

វិធីដោះស្រាយលំហាត់ដោយប្រើវិចារអនុមាន រួមគណិតវិទ្យា ៖

- ដើម្បីងាយយល់យើងតាងលក្ខណះ ដោយ P(n) , n ជាចំនូនគត់ធម្មជាតិ ។ ក្រោយពីតាងឲ្យ P(n) រួចស្វែងយល់តើ លក្ខណះ P(n) ពិតឬទេ?
- កំណត់សម្គាល់៖ កាលណាយើងប្រើសម្មតិ
 កម្មនៃវិចារអនុមានរួមយើងត្រូវតែយល់ថា

 P(n) ពិតចំពោះ n តែមួយមិនមែនចំពោះ
 គ្រប់ n នោះទេ ។ បើពុំនោះទេគឺយើងបាន
 អនុមតិរួចជាស្រេចនូវលក្ខណះដែលយើង
 ត្រូវស្រាយបំភ្លឺ ។
- យើងសរសេរ P(n+1) និងសាកល្បងធ្វើ
 ឲ្យឃើញលក្ខណះ P(n) ដែលយើងឧបមា
 ថាវាពិត ដើម្បីឲ្យយើងអាចប្រើសមតិកម្ម
 នៃវិចារអនុមានរួមគណិតវិទ្យា ។

លំហាត់អនុវត្តន៍វិធីដោះស្រាយលំហាត់តាមគោលការណ៍នៃវិចារអនុមានរួមគណិតវិទ្យា លំហាត់ទី១៖ ស្រាយបំភ្លឺថាចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ n≥1 ,

$$1^{2} + 2^{2} + \dots + n^{2} = \frac{n(n+1)(2n+1)}{6}$$

លំហាត់ទី២៖ ស្រាយបំភ្លឺដោយប្រើវិចារអនុមានរួមគណិតវិទ្យាថាចំពោះគ្រប់ចំនួនគត់ ធម្មជាតិ n , $2^{3n}-1$ ជាពហុគុណនៃ 7 ។

លំហាត់ទី៣៖ គេមានស្វីត u កំណត់ដោយ $u_0=1$ និងចំពោះគ្រប់ចំន្ទូនគត់ធម្មជាតិ n ,

$$u_{n+1} = u_n + 2n + 3$$
 1

ស្រាយបំភ្លឺថាចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ $n,u_n=\left(n+1\right)^2$ ។ លំហាត់ទី៤៖ ស្រាយបំភ្លឺតាមវិចារអនុមានរួមគណិតវិទ្យាថាចំពោះគ្រប់ចំន្ទូនគត់ធម្មជាតិ $n \geq 1$:

1.
$$1^3 + 2^3 + \dots + n^3 = \frac{n^2 (n+1)^2}{4}$$
 \gamma

2.
$$\frac{1}{1 \times 2 \times 3} + \frac{1}{2 \times 3 \times 4} + \dots + \frac{1}{n \times (n+1) \times (n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}$$

វិធីកំណត់លីមីតនៃស្វីត

លំហាត់៖ គេមានស្វ៊ីត u,v,w កំណត់លើ $\mathbb N$ ដោយ៖ $u_n=2n^2+3n+1$, $v_n=3n^3-4n+2$

និង
$$W_n = \frac{2n+3}{-n-5}$$
 ។

- កំណត់លីមីតនៃស្វ៊ីត u ។
 a.កំណត់លីមីតនៃស្វ៊ីត v ។ b.បញ្ជាក់ថាស្ទីត v ជាស្ទីតកើនចាប់ពី n=1 ។
- 3. កំណត់លីមីតនៃស្វីត w ។
- 1. $\lim_{n \to +\infty} 2n^2 = +\infty$, $\lim_{n \to +\infty} 3n = +\infty$; $\lim_{n \to +\infty} 1 = 1$ ដោយប្រើលទ្ធផលនៃផលប្ចុក យើងបាន៖

$$\lim_{n\to+\infty}u_n=+\infty$$

2.a.ដោយទម្រង់ដើមនៃ $v_{_n}$ មានរាងមិនកំណត់ ។ យើងត្រូវដាក់ជាកត្តារួមតូដែលមានដឺក្រេធំជាងគេ។ ចំពោះគ្រប់ចំនួន $n \neq 0$, $v_n = n^3 \times \left(\frac{3n^3}{n^3} - \frac{4n}{n^3} + \frac{2}{n^3}\right)$

$$v_n = n^3 \times \left(3 - \frac{4}{n^2} + \frac{2}{n^3}\right)$$

$$\lim_{n \to +\infty} n^3 = +\infty \ \, \hat{\mathbf{S}} \, \mathbf{1} \ \, \lim_{n \to +\infty} \left(3 - \frac{4}{n^2} + \frac{2}{n^3} \right) = 3$$

យើងប្រើលីមីតនៃផលគុណយើងបាន $\lim_{n \to +\infty} v_n = +\infty$

ь. ចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ n , $v_n = f(n)$

ដែល f ជាអនុគមន៍កំណត់លើ $\mathbb R$ ដោយ

$$f(x) = 3x^3 - 4x + 2$$
 និង f មានដេរីវេ

$$f'(x) = 9x^2 - 4$$
 ។ ចំពោះគ្រប់ចំនួនពិត $x \ge \frac{2}{3}$,

ដើម្បីកំណត់លីមីតនៃស្វីតមួយ

- កាលណាពុំមានរាងមិន កំណត់យើងធ្វើ ការសន្និដ្ឋានតាមទ្រឹស្តីបទនៃមេរៀន ។
- 2. យើងបម្លែងកន្សោមដើម្បីបំបាត់រាងមិន កំណត់ ។ ជាទូទៅយើងដាក់ជាកត្តារួម ត្វណាដែលគ្របសង្កត់គេនៅ +∞ ។

 $f'(x) \ge 0$; f ជាអនុគមន៍កើនលើចន្លោះ $\left[\frac{2}{3}; +\infty\right)$ ។ ដូច្នេះ v ជាស្វ៊ីតកើនចាប់ពី n=1 ឡើងទៅ ។ 3.ទម្រង់ដើមនៃ w_n មានរាងមិនកំណត់យើងដាក់ ជាកត្តាភាគយកនិងភាគបែងដោយកត្តាដែលមាន

ដឺក្រេធំជាងគេនិងយើងសម្រួលចំពោះ n ចំនួនគត់

ធម្មជាតិ $n \neq 0$, $w_n = \frac{n\left(\frac{2n}{n} + \frac{3}{n}\right)}{n\left(-\frac{n}{n} - \frac{5}{n}\right)} = \frac{2 + \frac{3}{n}}{-1 - \frac{5}{n}}$

 $\lim_{n\to +\infty} \left(2+\frac{3}{n}\right) = 2 \ \, \text{និង} \ \, \lim_{n\to +\infty} \left(-1-\frac{5}{n}\right) = -1 \ \, \text{ដោយប្រើ}$ លីមីតនៃដល់ខែក យើងហ៊ុន $\lim w_n = -2$ ។

លំហាត់អនុវត្តន៍វិធីកំណត់លីមីតនៃស្វ៊ីត លំហាត់ទី១៖ កំណត់លីមីតនៃស្វ៊ីតដែលមានតូទូទៅ $u_{\scriptscriptstyle n}$:

a.
$$u_n = (2n+1)^2$$

b.
$$u_n = \frac{3}{2\sqrt{n} + 5}$$

លំហាត់ទី២៖ កំណត់លីមីតនៃស្ទីតនៅអនន្តនៃស្ទីតដែលមានតូទូទៅ $u_{\scriptscriptstyle n}$:

a.
$$u_n = \frac{4n-1}{n+4}$$

b.
$$u_n = \frac{2n^2 - 5n + 3}{n + 4}$$

លំហាត់ទី៣៖ កំណត់លីមីតនៃស្ទីត u និង v ដែលមានតូទូទៅ :

a.
$$u_n = -4n + 6$$

b.
$$v_n = n^2 - 3n + 5$$

c.
$$u_n = n\sqrt{n}$$

d.
$$v_n = n^3 - n^2$$

e.
$$u_n = \frac{3}{2n+1}$$

f.
$$v_n = 5 - \frac{2}{n+1}$$

$$g. \ u_n = \frac{3n-5}{2n+1}$$

h.
$$v_n = \frac{n^2 - 2n}{3 + n}$$

i.
$$u_n = (-1)^n$$

$$j. \ v_n = \sqrt{n+1} - \sqrt{n}$$

k.
$$u_n = n^2 - \frac{1}{n+1}$$

1.
$$v_n = \frac{1}{n^2} - 2\sqrt{n}$$

m.
$$u_n = 2 + \frac{3}{n} - \frac{3}{n^2}$$

n.
$$v_n = \sqrt{n} - \frac{1}{\sqrt{n}}$$

o.
$$u_n = \frac{3n-1}{n^2}$$

p.
$$v_n = \frac{3n^2 + n + 1}{n^2 + 2n - 1}$$

q.
$$u_n = \frac{(n+1)(3-n)}{2n^2+1}$$

$$r. v_n = \left(n - \frac{1}{n}\right) \left(\frac{n+1}{2n^2}\right)$$

fou Tube /moeyscambodia

វិធីកំណត់លីមីតនៃស្វ៊ីតដោយធ្វើការប្រៀបធៀប

លំហាត់៖ កំណត់លីមីតនៃស្វីត u , v និង w ដែលគេឲ្យតូទូទៅរបស់វាខាងក្រោម ៖

a.
$$u_n = \frac{\left(-1\right)^n}{n+1}$$

a.
$$u_n = \frac{(-1)^n}{n+1}$$
 b. $v_n = \frac{n + \cos(n)}{n+3}$

c.
$$w_n = \frac{n^2 + (-1)^n}{n+5}$$

a.ចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ n , $-1 \leq \left(-1\right)^n \leq 1$ ដោយចែកដោយ (n+1) វិជ្ជមានដាច់ខាត

ដូច្នេះ
$$\lim_{n\to+\infty} \frac{\left(-1\right)^n}{n+1} = 0$$
 ។

b. ចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ n , −1≤cos(n)≤1 នោះ យើងបាន $n-1 \le n + \cos(n) \le n+1$ ដោយចែក នឹង n+3 (វិជ្ជមានដាច់ខាត) យើងបាន

$$\frac{n-1}{n+3} \le \frac{n+\cos(n)}{n+3} \le \frac{n+1}{n+3} \quad \text{if } \frac{n-1}{n+3} \le v_n \le \frac{n+1}{n+3}$$

ចំពោះគ្រប់
$$n > 0$$
 , $\frac{n-1}{n+3} = \frac{1-\frac{1}{n}}{1+\frac{3}{n}}$ និង $\frac{n+1}{n+3} = \frac{1+\frac{1}{n}}{1+\frac{3}{n}}$

IST:
$$\lim_{n \to +\infty} \frac{n-1}{n+3} = \lim_{n \to +\infty} \frac{n+1}{n+3} = 1$$

តាមវិធីអមយើងបានស្វីត v ទោទៅរក 1 ។

រ៉ូប៊្ហេះ
$$\lim_{n\to+\infty} v_n = 1$$
 ។

c. ចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ n , $-1 \le \left(-1\right)^n \le 1$ ឃើងហ៊ុន $n^2 - 1 \le n^2 + (-1)^n \le n^2 + 1$ ។ ដោយចែក នឹង n+5 (វិជ្ជមានដាច់ខាត) គេបាន ៖

$$\frac{n^2 - 1}{n + 5} \le w_n \le \frac{n^2 + 1}{n + 5}$$

ចំពោះគ្រប់
$$n > 0$$
 , $\frac{n^2 - 1}{n + 5} = \frac{n\left(1 - \frac{1}{n^2}\right)}{1 + \frac{5}{n}}$

នោះ
$$\lim_{n\to +\infty} \frac{n^2-1}{n+5} = +\infty$$
 ដោយតូតូចទោទៅរក $+\infty$

ដូច្នេះ
$$\lim_{n\to +\infty} w_n = +\infty$$
 ៗ

វិធីកំណត់លីមីតដោយធ្វើការរប្រៀបធៀប ឬ វិធីអម ៗ

- យើងប្រើវិធីប្រៀបធៀបងាយៗ ឧទាហរណ៍ចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ n:
 - $-1 \le \left(-1\right)^n \le 1$
 - $-1 \le \cos(n) \le 1$
 - $-1 \le \sin(n) \le 1$
- យើងដាក់ចំនូនអមឬប្រៀបធៀបទៅនឹង ចំនូនមួយដែលធំជាង ឬ ទៅនឹងចំនូនមួយ ដែលតូចជាងស្ទីតដែលយើងត្រូវរកលីមីត របស់វា ។
- រាល់ការសន្និដ្ឋានយើងប្រើទ្រឹស្តីបទ ធៀប នឹងចំនួនធំជាង ឬ តូចជាង ឬ អម ៗ

កំណត់សម្គាល់៖ វិសមភាព $w_n \leq \frac{n^2+1}{n+5}$ មិនអាច ឲ្យយើងសន្និដ្ឋានបានទេ ។

> លំហាត់អនុវត្តន៍វិធីកំណត់លីមីតនៃស្វីតដោយធ្វើការប្រៀបធៀប លំហាត់ទី១៖ កំណត់លីមីតនៃស្វ៊ីតខាងក្រោម ៖

a.
$$u_n = \frac{\sin(n)}{n}$$

a.
$$u_n = \frac{\sin(n)}{n}$$
 b. $v_n = \frac{n + \cos(n)}{n}$

លំហាត់ទី២៖ គេមានស្វ៊ីត u កំណត់លើ $\mathbb N$ ដោយ $u_n = \frac{n^2 - 3n + 5}{n + 3}$

1.a.ស្រាយបំភ្លឺថាចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ n , $u_n \geq n-6$ ។

b.ទាញយកលីមីតនៃស្វ៊ីត *u* ។

2.កំណត់លីមីតនៃស្វ៊ីត $\stackrel{'}{u}$ ដោយដាក់ជាកត្តាភាគយកនិងភាគបែងដោយ n ។ លំហាត់ទី៣៖ គេមានស្វ៊ីត u ។ ក្នុងករណីនីមួយៗខាងក្រោមកំណត់លីមីតនៃស្វ៊ីត u ។

a.
$$u_n = n^2 + (-1)^n n$$

b.
$$u_n = (\cos(n) - 2) \times n$$

លំហាត់ទី៤៖ គេមានស្វ៊ីត u កំណត់លើ \mathbb{N}^* ដោយ ៖

$$u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}} = 1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{1}{\sqrt{n}}$$
 \gamma

- 1. យកចំនូនគត់ $n \geq 1$ ។បញ្ជាក់ថាចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ $k, 1 \leq k \leq n$ គេហ្ន $\frac{1}{\sqrt{k}} \ge \frac{1}{\sqrt{n}}$ ។
- 2. ទាញបង្ហាញថាចំពោះគ្រប់ចំនួនគត់ $n \ge 1$, $u_n \ge \sqrt{n}$ ។
- 3. កំណត់លីមីតនៃស្វីត *u* ។

លំហាត់ទី៥៖ កំណត់លីមីតនៃស្វ៊ុត u និង v ខាងក្រោម ៖

a.
$$u_n = \frac{(-1)^n}{n+1}$$

a.
$$u_n = \frac{(-1)^n}{n+1}$$
 b. $v_n = \frac{\cos(n)}{n^2}$

លំហាត់ទី៦៖ គេមានស្វីត u កំណត់លើ \mathbb{N}^* ដោយ ៖

$$u_n = \sum_{k=1}^n \frac{1}{n+\sqrt{k}} = \frac{1}{n+1} + \frac{1}{n+\sqrt{2}} + \dots + \frac{1}{n+\sqrt{n}}$$

បង្ហាញថាចំពោះគ្រប់ចំនួនគត់ធម្មជាតិ n មិនសូន្យ :

$$\frac{n}{n+\sqrt{n}} \le u_n \le \frac{n}{n+1}$$

2. កំណត់លីមីតនៃស្វីត *u* ។

1.

2.

វិធីកំណត់លីមីតដោយប្រើប្រមាណវិធី

លំហាត់៖

- 1. គេមានអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ : $f(x) = x^2 2x$ ។ គណនាលីមីតនៃ f ត្រង់ $-\infty$ និងត្រង់ $+\infty$ ។
- 2. គេមានអនុគមន៍ g កំណត់ចំពោះគ្រប់ចំនួនពិត $x \neq 1$ ដោយ $g(x) = \frac{x-2}{x-1}$ ។
 - a. គណនាលីមីតនៃ g ត្រង់ $+\infty$ និង $-\infty$ ។
 - ь. គណនាលីមីតខាងស្ដាំ និង ខាងឆ្វេងនៃ g ត្រង់ 1 ។ ចម្លើយ
- គណនា $\lim_{x\to -\infty} \left(x^2-2x\right)$ សម្រាប់ អនុគមន៍ $f(x)=x^2-2x$ ពុំមានរាងមិន កំណត់ទេ ។ $\lim_{x\to -\infty} x^2=+\infty$ និង $\lim_{x\to -\infty} \left(-2x\right)=+\infty$ ។ ដូច្នេះ យើងប្រើផល បូកនៃពីរអនុគមន៍ យើងបាន $\lim_{x\to -\infty} f(x)=+\infty$
- គណនា $\lim_{x\to +\infty} \left(x^2-2x\right)$ យើងនៅ ចំពោះមុខនៃរាងមិនកំណត់ $\infty -\infty$ ។ យើង ដាក់ x^2 ជាកត្តា :

ចំពោះ $x \neq 0$, $f(x) = x^2 \left(1 - \frac{2}{x}\right)$ ដោយ $\lim_{x \to +\infty} \frac{2}{x} = 0$ គេហាន $\lim_{x \to +\infty} \left(1 - \frac{2}{x}\right) = 1$ តែ $\lim_{x \to +\infty} x^2 = +\infty$ ។ ដូច្នេះ ដោយប្រើផល គុណនៃពីរអនុគមន៍ $\lim_{x \to +\infty} f(x) = +\infty$ ។

• គណនា $\lim_{x\to\infty}g(x)$ និង $\lim_{x\to+\infty}g(x)$ យើងឃើញរាងមិនកំណត់ $\frac{\infty}{\infty}$ ។

ចំពោះ
$$x \neq 0$$
 , $g(x) = \frac{x\left(1 - \frac{2}{x}\right)}{x\left(1 - \frac{1}{x}\right)} = \frac{1 - \frac{2}{x}}{1 - \frac{1}{x}}$
$$\lim_{x \to -\infty} \left(1 - \frac{2}{x}\right) = 1 \ \text{sum} \lim_{x \to +\infty} \left(1 - \frac{1}{x}\right) = 1$$

$$\lim_{x \to +\infty} \left(1 - \frac{2}{x}\right) = 1 \ \text{sum} \lim_{x \to +\infty} \left(1 - \frac{1}{x}\right) = 1$$

$$\lim_{x \to +\infty} \left(1 - \frac{2}{x}\right) = 1 \ \text{sum} \lim_{x \to +\infty} \left(1 - \frac{1}{x}\right) = 1$$

វិធីកំណត់លីមីតដោយប្រើប្រមាណវិធី

- បើពុំមានរាងមិនកំណត់ទេយើងគណនា
 តាមប្រមាណវិធីលីមីតធម្មតាដូចករណី
 ត្រង់ -∞ យើងប្រើវិធីបូកលីមីត ។
- បើមានរាងមិនកំណត់ ∞-∞ គេដាក់ជា កត្តាតូណាដែលដឺក្រេធំជាងគេ ។
- បើមានរាងមិនកំណត់ $\frac{\infty}{\infty}$ គេដាក់កត្តាភាគ យកនិងភាគបែងតូដែលមានដឺក្រេធំរូច សម្រួល ។
- បើមានរាង $\frac{k}{0}$ ត្រូវសិក្សាសញ្ញានៃភាគបែង ដើម្បីធ្វើការសន្និដ្ឋាន ។ កាលណាកន្សោម មួយទោទៅរកសូន្យវាអាចពេលខ្លះវារក្សា តម្លៃវិជ្ជមាន(គេតាង 0⁺) ឬពេលខ្លះវារក្សា តម្លៃអវិជ្ជមាន(គេតាង 0⁻) ។ យើងសន្និដ្ឋាន ដោយប្រើក្បួនសញ្ញានៃផលចែក ។

ឃើងហ៊ុន $\lim_{x\to +\infty} g(x) = 1$

គណនា $\lim_{x \to \infty} g(x)$ គេបាន

$$\lim_{x \to 1} (x-2) = -1$$
 និង $\lim_{x \to 1} (x-1) = 0$

ដោយសិក្សាសញ្ញានៃ x-1

X	8	1		$+\infty$
x-1		- 0	+	

ដោយសញ្ញានៃ x-1 ដូរត្រង់ 1 ។ អនុគមន៍ gគ្មានលីមីតត្រង់ 1 តែយើងអាចសិក្សាលីមីតខាង ឆ្វេងនិង ខាងស្តាំវាបាន ។ ដោយ $\lim_{x o 1} (x-2) = -1$ (អវិជ្ជមាន) និង $\lim_{x\to 1} (x-1) = 0^+$ ជាផលចែក

$$\lim_{\substack{x \to 1 \\ x>1}} g(x) = -\infty \quad 1 \quad$$
្តីប្តីគ្នាដែរ
$$\lim_{\substack{x \to 1 \\ x<1}} (x-1) = 0^{-1}$$

រ៉ូវីដូ
$$\lim_{\substack{x \to 1 \ x < 1}} g(x) = +\infty$$
 ។

លំហាត់អនុវត្តន៍វិធីកំណត់ ឬគណនាលីមីតដោយប្រើប្រមាណវិធី

លំហាត់ទី១៖ គណនា
$$\lim_{x\to +\infty} \frac{x^3-x}{x+2}$$

លំហាត់ទី២៖ គណនា $\lim_{x \to +\infty} \left(x - \sqrt{x} \right)$

លំហាត់ទី៣៖ គណនាលីមីតខាងក្រោម ៖

a.
$$\lim_{x \to +\infty} x(x-3)$$

b.
$$\lim_{x \to -\infty} \left[-x^2 (x+2) + 1 \right]$$

លំហាត់ទី៤៖ កំណត់លីមីតនៃអនុគមន៍ខាងក្រោម ៖

a.
$$\lim_{x \to +\infty} \left[x^3 \left(1 - \frac{1}{x} + \frac{4}{x^3} \right) \right]$$
 b. $\lim_{x \to -\infty} \left[-3x \left(x + \frac{3}{x} \right) \right]$

b.
$$\lim_{x \to -\infty} \left[-3x \left(x + \frac{3}{x} \right) \right]$$

លំហាត់ទី៥៖ គណនាលីមីតនៃអនុគមន៍ខាងក្រោម ៖

1.
$$\lim_{x \to +\infty} (x^2 + 3) \left(\frac{1}{x} - 4 \right)$$
 2. $\lim_{x \to +\infty} \left[\frac{2}{x} (x + 5) \right]$

$$2. \lim_{x \to +\infty} \left[\frac{2}{x} (x+5) \right]$$

លំហាត់ទី៦៖ កំណត់លីមីតត្រង់ $-\infty$ និង ត្រង់ $+\infty$ នៃអនុគមន៍ f , g និង h ដែលកំណត់ លើ ℝ ដោយៗ

a.
$$f(x) = -x^3 + 2x^2 - 4$$

b.
$$g(x) = \frac{x}{2 + 3x^2}$$

a.
$$f(x) = -x^3 + 2x^2 - 4$$
 b. $g(x) = \frac{x}{2 + 3x^2}$ c. $h(x) = \frac{9x^3 + 1}{x^2 - 4x + 5}$

លំហាត់ទី៧៖ កំណត់លីមីតនៃអនុគមន៍ខាងក្រោម ៖

a.
$$\lim_{x \to 2} \frac{x}{4 - x^2}$$

b.
$$\lim_{\substack{x \to 2 \\ x > 2}} \frac{x}{4 - x^2}$$

c.
$$\lim_{x \to -2} \frac{x}{4 - x^2}$$

a.
$$\lim_{\substack{x \to 2 \\ x \neq 2}} \frac{x}{4 - x^2}$$
 b. $\lim_{\substack{x \to 2 \\ x \neq 2}} \frac{x}{4 - x^2}$ c. $\lim_{\substack{x \to -2 \\ x \neq -2}} \frac{x}{4 - x^2}$ d. $\lim_{\substack{x \to -2 \\ x \neq -2}} \frac{x}{4 - x^2}$ e. $\lim_{x \to +\infty} \frac{x}{4 - x^2}$

e.
$$\lim_{x \to +\infty} \frac{x}{4 - x^2}$$

វិធីគណនាលីមីត

លំហាត់៖ គណនាលីមីតនៃអនុគមន៍ខាងក្រោម ៖

1.
$$\lim_{\substack{x\to 0\\x>0}} \left(3 + \frac{2}{x} - \frac{5}{x^2}\right)$$

$$2. \lim_{x \to -\infty} \left(\sqrt{x^2 + x + 1} \right)$$

$$3. \lim_{x \to +\infty} (x + \sin x)$$

$$3. \lim_{x \to +\infty} \left(\sqrt{x+1} - \sqrt{x} \right)$$
 ចម្លើយ

1. យើងតាង $f(x) = 3 + \frac{2}{x} - \frac{5}{x^2}$ កាលណា x ខិតជិត0 ខាងស្តាំមានរាងមិនកំណត់ $\infty - \infty \text{ ពីព្រោះ } \lim_{\substack{x \to 0 \\ x > 0}} \frac{2}{x} = + \infty \text{ និង } \lim_{\substack{x \to 0 \\ x > 0}} \frac{5}{x^2} = + \infty$ យើងតម្រូវភាគបែង ។ យើងបានចំពោះ

គ្រប់
$$x \neq 0$$
 , $f(x) = \frac{3x^2 + 2x - 5}{x^2}$ គេបាន $\lim_{x \to 0} (3x^2 + 2x - 5) = -5$ (អវិជ្ជមាន)

និង $\lim_{\substack{x\to 0\\x>0}}x^2=0^+$ ។ ដូច្នេះដោយប្រើប្រមាណ

វិធីនៃលីមីត $\lim_{\substack{x\to 0\\x>0}} f(x) = -\infty$ ។

- 2. យើងតាង $g(x) = \sqrt{x^2 + x + 1}$ ដោយ $\lim_{x \to -\infty} \left(x^2 + x + 1 \right)$ $= \lim_{x \to -\infty} \left[x^2 \left(1 + \frac{1}{x} + \frac{1}{x^2} \right) \right] = +\infty$ និង $\lim_{x \to +\infty} \sqrt{X} = +\infty$ យើងមាន $\lim_{x \to -\infty} g(x) = +\infty$ ។
- 3. យើងតាង $h(x) = x + \sin x$ ចំពោះគ្រប់ចំនួនពិត x , $-1 \le \sin x \le 1$ ដូច្នេះគ្រប់ចំនួនពិត x , $x 1 \le x + \sin x \le x + 1$ ឬ $x 1 \le h(x) \le x + 1$ ដោយ $\lim_{x \to +\infty} (x 1) = +\infty$ គេទាញបានដោយ វិធីប្រៀបធៀប $\lim_{x \to +\infty} h(x) = +\infty$ ។
- 4. យើងតាង $k(x) = \sqrt{x+1} \sqrt{x}$ កាលណា $x \to +\infty$ វាមានរាងមិនកំណត់ $\infty \infty$ ។ ពីព្រោះ $\lim_{x \to +\infty} \sqrt{x+1} = +\infty$ និង $\lim_{x \to +\infty} \sqrt{x} = +\infty$ ដោយគុណនិងចែកដោយកន្សោមឆ្លាស់នៃ

វិធីគណនាលីមីត

- -យើងត្រូវចេះប្រើប្រមាណវិធីលើលីមីត ។
 -យើងបម្លែងកន្សោមនៃ f(x) ។
 -បើជួបរាងមិនកំណត់យើងមិនអាច
 សន្និដ្ឋានបានទេ ។ គេអាចប្រើវិធីផ្សេងៗ
 ទៅតាមទម្រង់នៃអនុគមន៍ ។
- 2. គេសាកល្បងសរសេរអនុគមន៍ជា បណ្ដាក់នៃពីរអនុគមន៍ គឺ អនុគមន៍ x²+x+1 និង អនុគមន៍ឬសការ៉េ រូចយើង អនុវត្តន៍ទ្រឹស្ដីបទ ។
- ប្រៀធៀបអនុគមន៍ទៅនឹងអនុគមន៍ គោលរួចអនុវត្តន៍ទ្រឹស្តីបទនៃការប្រៀប ធៀប ។
- 4. កន្សោមនៃអនុគមន៍មានឬសការ៉េត្រូវ គិតដល់ការគុណកន្សោមឆ្លាស់ ។

k(x) យើងបាន៖

$$\begin{split} k(x) &= \frac{\left(\sqrt{x+1} - \sqrt{x}\right)\left(\sqrt{x+1} + \sqrt{x}\right)}{\sqrt{x+1} + \sqrt{x}} \\ &= \frac{x+1-x}{\sqrt{x+1} + \sqrt{x}} = \frac{1}{\sqrt{x+1} + \sqrt{x}} \\ &\text{in } \lim_{x \to +\infty} \left(\sqrt{x+1} + \sqrt{x}\right) = +\infty \\ &\text{if } \lim_{x \to +\infty} k(x) = 0 \text{ 1} \end{split}$$

លំហាត់អនុវត្តន៍វិធីគណនាលីមីត

លំហាត់ទី១៖ គេមានអនុគមន៍ $f: x \mapsto \frac{\sqrt{x}}{x+1}$ ។

គណនា $\lim_{x\to +\infty} f(x)$

លំហាត់ទី២៖ រកលីមីត $\lim_{x\to +\infty} \left(3\cos\left(\frac{2}{x}\right) \right)$

លំហាត់ទី៣៖ កំណត់ $\lim_{x\to\infty} \left(x+\sqrt{2x^2-3}\right)$

លំហាត់ទី៤៖ គេមានអនុគមន៍ f កំណត់លើ $(1;+\infty)$ ដោយ $f(x) = \sqrt{\frac{x+1}{x-1}}$ ។

គណនាលីមីតនៃអនុគមន៍ f ត្រង់ +∞ និងត្រង់ 1 ។ លំហាត់ទី៥៖ កំណត់លីមីតខាងក្រោម ៖

a.
$$\lim_{x \to +\infty} \sqrt{\frac{x^2 + 5}{4x + 1}}$$

b.
$$\lim_{x \to +\infty} \sqrt{x^2 + x + 1}$$

c.
$$\lim_{x \to -\infty} \frac{3}{\sqrt{x^2 + 1}}$$

d.
$$\lim_{x \to +\infty} \frac{x}{\sqrt{x+1}}$$

លំហាត់ទី៦៖ គេមានអនុគមន៍កំណត់លើ $\mathbb R$ ដោយ $f(x) = \sqrt{x^2 + 4} - x$ ។

- $_{1.}$ កំណត់លីមីតនៃ $_{f}$ ត្រង់ $_{-\infty}$ ។
- 2. បង្ហាញថាចំពោះគ្រប់ចំនួនពិត x , $f(x) = \frac{4}{\sqrt{x^2 + 4} + x}$ ទាញយកលីមីតនៃអនុគមន៍ f ត្រង់ $+\infty$ ។

លំហាត់ទី៧៖ កំណត់លីមីតនៃ f ត្រង់ $+\infty$ ក្នុងករណីនីមួយៗខាងក្រោម ៖

a.
$$f(x) = (2 - \sin x) \times x^2$$

$$b. \quad f(x) = \frac{3x}{\cos x - 3}$$

លំហាត់ទី៨៖

- 1. បង្ហាញថាចំពោះគ្រប់ចំនួនពិត x, $\frac{1}{3} \le \frac{1}{2-\cos x} \le 1$
- 2. ទាញយកលីមីតខាងក្រោម

a.
$$\lim_{x \to +\infty} \frac{x}{2 - \cos x}$$
 b. $\lim_{x \to -\infty} \frac{x + \cos x}{2 - \cos x}$

b.
$$\lim_{x \to -\infty} \frac{x + \cos x}{2 - \cos x}$$

លំហាត់ទី៩៖

- 1. បង្ហាញថាចំពោះគ្រប់ចំនួនពិត $x \ge 1$ គេបាន $\frac{1}{2} \le \frac{x}{x+1} \le 1$
- 2. ទាញយកលីមីតខាងក្រោម ៖

$$\lim_{x \to +\infty} \frac{x\sqrt{x}}{x+1} \ \, \hat{\mathtt{S}} \, \mathbf{\mathring{h}} \ \, \lim_{x \to +\infty} \frac{x}{\sqrt{x}(x+1)}$$

វិធីប្រើលក្ខណះពិជគណិតនៃអនុគមន៍អ៊ិចស៉្បូណង់ស្យែល

លំហាត់៖

សម្រួលកន្សោមខាងក្រោមដែល x ជាចំនូនពិត ៖

$$A = \frac{e^{2x}}{e^{3x}} \qquad B = e^{x} \left(1 + 2e^{-x} \right) \qquad C = \frac{e^{x+2}}{e^{x+1}} \qquad D = \left(e^{x} + e^{-x} \right)^{2} \qquad E = \frac{e^{2x-1}}{\left(e^{x} \right)^{2}}$$

2. គេមានអនុគមន៍ f កំណត់លើ \mathbb{R} ដោយ $f(x) = \frac{e^x + e^{-x}}{2}$ ស្រាយបំភ្លឺថាចំពោះគ្រប់ចំនួនពិត x , $f(2x) = 2(f(x))^2 - 1$ ។ ចម្លើយ

1.
$$A = \frac{e^{2x}}{e^{3x}} = e^{2x-3x} = e^{-x}$$

$$B = e^{x} (1 + 2e^{-x}) = e^{x} + 2e^{x}e^{-x} = e^{x} + 2$$

$$C = \frac{e^{x+2}}{e^{x+1}} = e^{(x+2)-(x+1)} = e^{1} = e$$

$$D = (e^{x} + e^{-x})^{2} = (e^{x})^{2} + 2e^{x}e^{-x} + (e^{-x})^{2}$$

$$= e^{2x} + 2 + e^{-2x}$$

$$E = \frac{e^{2x-1}}{(e^{x})^{2}} = \frac{e^{2x-1}}{e^{2x}} = e^{2x-1-2x} = e^{-1} = \frac{1}{e}$$

2.
$$f(x) = \frac{e^{x} + e^{-x}}{2}$$
$$2(f(x))^{2} - 1 = 2\left(\frac{e^{x} + e^{-x}}{2}\right)^{2} - 1$$
$$= 2\left(\frac{e^{2x} + 2 + e^{-2x}}{4}\right) - 1$$
$$= \frac{e^{2x} + e^{-2x}}{2} = f(2x)$$

វិធីប្រើលក្ខណះពិជគណិតនៃអនុគមន៍អ៊ិច ស៉្បូណង់ស្យែល ។

1. A.គ្រប់ចំនួនពិត x , គ្រប់ចំនួនពិត y $\frac{e^x}{e^y} = e^{x-y}$ B.គ្រប់ចំនួនពិត x , $e^x e^{-x} = 1$ ។ C.ចំពោះគ្រប់ចំនួនពិត x , $e^{nx} = \left(e^x\right)^n$ ។ យើងប្រើរង្វង់ក្រចក :

$$(e^x)^2 = (e^x)(e^x) = e^{2x}$$

E.ចំពោះគ្រប់ចំនួនពិត x គេបាន $e^{-x} = \frac{1}{e^x}$

លំហាត់អនុវត្តន៍ វិធីប្រើលក្ខណះពិជគណិតនៃអនុគមន៍អ៊ិចស្ប៉ូណង់ស្យែល លំហាត់ទី១៖ សម្រួលកន្សោមខាងក្រោម ៖

a.
$$A = e^{2x} \times e^{-2x}$$

b.
$$B = e^{2x+1} \times e^{1-x}$$

a.
$$A = e^{2x} \times e^{-2x}$$
 b. $B = e^{2x+1} \times e^{1-x}$ c. $C = \frac{e^{x+2}}{e^{-x+2}}$ d. $D = \frac{e^{3x} + e^x}{e^{2x} + 1}$

d.
$$D = \frac{e^{3x} + e^x}{e^{2x} + 1}$$

លំហាត់ទី២៖ ស្រាយបំភ្លឺថាចំពោះគ្រប់ចំនួនពិត x គេបាន

1.
$$\frac{e^x - 1}{e^x + 1} = \frac{1 - e^{-x}}{1 + e^{-x}}$$

1.
$$\frac{e^x - 1}{e^x + 1} = \frac{1 - e^{-x}}{1 + e^{-x}}$$
 2. $\frac{e^x - 1}{e^{2x}} = e^{-x} - e^{-2x}$

លំហាត់ទី៣៖ ចូរឆ្លើយថាពិត ឬមួយមិនពិត ៖

a.
$$\left(\frac{1}{e^x}\right)^3 = e^{-3x}$$

a.
$$\left(\frac{1}{e^x}\right)^3 = e^{-3x}$$
 b. $\frac{\left(e^x\right)^2}{e} = e^{2x-1}$ c. $e^{x-1} \times e^{1-x} = 1$ d. $\frac{e^{3x}}{e^x} = e^3$

c.
$$e^{x-1} \times e^{1-x} = 1$$

$$d. \frac{e^{3x}}{e^x} = e$$

លំហាត់ទី៤៖ គេកំណត់លើ 🛭 អនុគមន៍ ៖

$$f(x) = \frac{e^x + e^{-x}}{2}$$
 និង $g(x) = \frac{e^x - e^{-x}}{2}$

បង្ហាញថាចំពោះគ្រប់ចំនួនពិត x ៖

a.
$$[f(x)]^2 - [g(x)]^2 = 1$$

b.
$$2[f(x)]^2 - 1 = f(2x)$$

c.
$$g(2x) = 2g(x) \times f(x)$$

លំហាត់ទី៥៖ សម្រួលកន្សោមខាងក្រោម ៖

a.
$$\frac{(e^2)^5}{e^9}$$

b.
$$\sqrt{e^2} \times \frac{1}{e^{-2}}$$

a.
$$\frac{(e^2)^5}{e^9}$$
 b. $\sqrt{e^2} \times \frac{1}{e^{-2}}$ c. $\frac{1}{1+e} - \frac{e^{-1}}{1+e^{-1}}$

លំហាត់ទី៦៖ សម្រួលកន្សោមខាងក្រោម ៖

a.
$$f(x) = (e^x + e^{-x})^2 - (e^x - e^{-x})^2$$

b.
$$g(x) = \frac{1 + e^{2x}}{1 - e^x} + \frac{e^{-x} + e^x}{1 - e^{-x}}$$

c.
$$h(x) = (e^x + 1)^2 - \sqrt{e^{4x}} - 1$$

វិធីសិក្សាអនុគមន៍ដោយបញ្ចូលអនុគមន៍អ៊ិចស្ប៉ូណង់ស្យែល

លំហាត់៖ គេមានអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x) = \frac{e^x - 1}{e^x + 1}$ ។ គេតាង (C) ខ្សែកោង តាឯអនុគមន៍ f ក្នុងតម្រុយ $\left(0, \vec{i}, \vec{j}\right)$ ។

- 1. គណនាលីមីតនៃអនុគមន៍ f ត្រង់ $-\infty$ ។ ទាញបង្ហាញថាខ្សែកោង (C) មានអាស៊ីម តូតត្រង់ −∞ ដែលគេបញ្ជាក់សមីការវា ។
- 2. គណនាលីមីតនៃ f ត្រង់ $+\infty$ ។ ទាញបង្ហាញថាខ្សែកោង (C) មានអាស៊ីមតូតត្រង់ +∞ ដែលគេបញ្ជាក់សមីការវា ។
- 3. ស្រាយបំភ្លឺថាចំពោះគ្រប់ចំនួនពិត x , f(-x) = -f(x) ។ តើគេអាចទាញបានយ៉ាង ណាចំពោះអនុគមន៍ f និងចំពោះខ្សែកោងរបស់វា ។
- 4. គណនាដេរីវេ f' នៃ f និង បញ្ជាក់សញ្ញារបស់វា ។ ទាញយកតារាងអថេរភាព នៃ *f* ។

- 1. $\lim_{x\to\infty}e^x=0$ ជូច្នេះ $\lim_{x\to\infty}f(x)=-1$ ។ យើង អាចសន្និដ្ឋានបានថា (C) មានអាស៊ីមតូត ត្រង់ $-\infty$ គឺបន្ទាត់ដែលមានសមីការ y=-1 (អាស៊ីមតូតដេក) ។
- 2. កន្សោម f(x) មានរាងមិនកំណត់ត្រង់ $+\infty$ ដូច្នេះគេសរសេរ

$$f(x) = \frac{e^{x} - 1}{e^{x} + 1} = \frac{e^{x} (1 - e^{-x})}{e^{x} (1 + e^{-x})} = \frac{1 - e^{-x}}{1 + e^{-x}}$$

 $\lim_{x\to +\infty} e^{-x} = \lim_{x\to +\infty} \frac{1}{e^x} = 0 \quad \text{figh: } \lim_{x\to +\infty} e^x = +\infty$

ដូច្នេះ $\lim_{x\to +\infty} f(x) = 1$ និង (C) មានត្រង់ $+\infty$ បន្ទាត់ដែលមានសមីការ y = 1 ជាអាស៊ីម តូតដេក ។

3.
$$f(-x) = \frac{e^{-x} - 1}{e^{-x} + 1} = \frac{\frac{1}{e^x} - 1}{\frac{1}{e^x} + 1} = \frac{e^x \left(\frac{1}{e^x} - 1\right)}{e^x \left(\frac{1}{e^x} + 1\right)}$$
$$= \frac{1 - e^x}{1 + e^x} = -f(x)$$

ដូច្នេះ ƒ ជាអនុគមន៍សេស ៗ ខ្សែកោង (C) តាង ƒ មាន O ជាផ្ទិតឆ្លុះ ។

4.
$$f'(x) = \frac{e^{x} (e^{x} + 1) - (e^{x} - 1) e^{x}}{(e^{x} + 1)^{2}}$$
$$= \frac{e^{2x} + e^{x} - e^{2x} + e^{x}}{(e^{x} + 1)^{2}} = \frac{2e^{x}}{(e^{x} + 1)^{2}}$$

ចំពោះគ្រប់ $x \in \mathbb{R}$, f'(x) > 0 1 f ជា អនុគមន៍កើនលើ \mathbb{R} 1

х		$+\infty$
f'(x)	+	
f(x)	-1	1

វិធីដែលយើងប្រើ

- 1. បើ $\lim_{x\to\infty} f(x) = a$ ដែល a ជាចំនួនពិតនោះ ខ្សែកោងតាងអនុគមន៍ f មាននៅ $-\infty$ អា ស៊ីមតូតដេកដែលមានសមីការ y = a ។
- 2. ត្រង់ +∞ យើងឃើញតូដែលគ្របដណ្ដប់គឺ e^x ទាំងនៅភាគយកនិងនៅភាគបែង ។ យើងត្រូវដាក់ e^x ជាកត្ដាទាំងភាគយកនិង ភាគបែង ។
- 3. បើចំពោះគ្រប់ចំនួនពិត x , f(-x) = -f(x) នោះ f ជាអនុគមន៍សេស ។
- 4. ចំពោះគ្រប់ចំនួនពិត x , $e^x > 0$ ។

លំហាត់អនុវត្តន៍វិធីសិក្សាអនុគមន៍ដោយបញ្ចូលអនុគមន៍អ៊ិចស្ប៉ូណង់ស្យែល លំហាត់ទី១៖ f ជាអនុគមន៍កំណត់លើ \mathbb{R} ដែាយ $f(x) = e^x + x - 1$ ។

កំណត់សមីការបង្រួមនៃបន្ទាត់ប៉ះទៅខ្សែកោងតាងអនុគមន៍ f ត្រង់ចំណុច ដែលមានអាប់ស៊ីស 1 ។

លំហាត់ទី២៖ គណនាលីមីតនៃអនុគមន៍ខាងក្រោម ៖

a.
$$\lim_{x \to +\infty} \left(e^{-x} - \sqrt{x} \right)$$

b.
$$\lim_{x \to -\infty} \frac{1}{1 - e^{-x}}$$

c.
$$\lim_{x \to +\infty} \frac{e^x + e^{-x}}{2}$$

a.
$$\lim_{x \to +\infty} \left(e^{-x} - \sqrt{x} \right)$$
 b. $\lim_{x \to -\infty} \frac{1}{1 - e^{-x}}$ c. $\lim_{x \to +\infty} \frac{e^x + e^{-x}}{2}$ d. $\lim_{x \to +\infty} \left(\frac{1 - x^2}{1 + x^2} \right) e^x$

លំហាត់ទី៣៖ គណនាលីមីតនៃអនុគមន៍ខាងក្រោម

a.
$$\lim_{x\to +\infty} e^{1-x}$$

b.
$$\lim_{x \to -\infty} e^{x^2 + x + 1}$$

a.
$$\lim_{x \to +\infty} e^{1-x}$$
 b. $\lim_{x \to -\infty} e^{x^2+x+1}$ c. $\lim_{x \to +\infty} \frac{e^{2x}+1}{e^x+2}$ d. $\lim_{x \to +\infty} e^{\frac{1}{x}}$

d.
$$\lim_{x\to +\infty} e^{\frac{1}{x}}$$

លំហាត់ទី៤៖ គេមានអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x) = 1 - e^{-x}$ ។

- a. ស្រាយបំភ្លឺថាចំពោះគ្រប់ចំនួនពិត x<0,f(x)<0 ។
- b. ស្រាយបំភ្លឺថាចំពោះគ្រប់ចំនួនពិត $x \ge 0, 0 \le f(x) < 1$ ។

លំហាត់ទី៥៖ គណនាលីមីតត្រង់ a កន្សោមខាងក្រោម ៖

a.
$$e^{x^2}$$
 öim: $a = -\infty$ 7

b.
$$\frac{e^{2x}-1}{e^{2x}+1}$$
 üim: $a=-\infty$ 7

c.
$$e^{\frac{1}{x^2}}$$
 c. $a = +\infty$ 7

d.
$$\frac{1}{1+e^x}$$
 $\ddot{\text{o}}$ in: $a = +\infty$ 7

លំហាត់ទី៦៖ គេមានអនុគមន៍ f កំណត់លើ [0;2] ដោយ $f(x)=x+3-e^x$ ។

- 1. សិក្សាសញ្ញាដេរីវេរបស់ f ។
- 2. សង់តារាងអថេរភាពនៃ f ។
- 3. ស្រាយបំភ្លឺថាសមីការ f(x) = 0 មានចម្លើយ lpha តែមួយគត់លើ [0;2] ។

វិធីសិក្សាអនុគមន៍ប្រភេទ $f(x) = e^{u(x)}$

លំហាត់៖ គេមានអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x) = e^{x^2 - 2x}$ ។ គេតាងដោយ (C)ខ្សែកោងរបស់វាក្នុងតម្រុយ $(o,ec{i}\,,ec{j})$ ៗ

- 1. គណនាលីមីតរបស់ f(x) ត្រង់ $-\infty$ និង $+\infty$ ។
- 2. គណនា f'(x) និង កំណត់សញ្ញារបស់វា ។
- 3. សង់តារាងអថេរភាពនៃ f ។
- 4. ដោះស្រាយសមីការ f(x) = 1 ។

1. -គណនា $\lim_{x\to +\infty} f(x)$

$$\lim_{x \to +\infty} \left(x^2 - 2x \right) = \lim_{x \to +\infty} x^2 \left(1 - \frac{2}{x} \right)$$

រឹត
$$\lim_{x \to +\infty} x^2 = +\infty$$
 និង $\lim_{x \to +\infty} \left(1 - \frac{2}{x} \right) = 1$

ដូច្នេះ
$$\lim_{x\to +\infty} (x^2 - 2x) = +\infty$$
 ។

ឃើងដឹងថា
$$\lim_{x\to +\infty}e^x=+\infty$$

ដូច្នេះ
$$\lim_{x \to +\infty} e^{x^2 - 2x} = +\infty$$
 ។

-គណនា
$$\lim_{x \to \infty} f(x)$$

$$\lim_{x \to \infty} (x^2 - 2x) = +\infty$$
(មិនមានរាងមិន

កំណត់ទេ) ។ វូប
$$\lim_{x\to +\infty} e^x = +\infty$$

រដ្ឋ្រ
$$\lim_{x\to -\infty} e^{x^2-2x} = +\infty$$
 ។

- 2. $f'(x) = (2x-2)e^{x^2-2x}$ យើងដឹងថាគ្រប់ចំនួន ពិត x , $e^{x^2-2x} > 0$ ដូច្នេះសញ្ញានៃ f'(x) គឺសញ្ញានៃ (2x-2) ។
- 3. សង់តារាងអថេរភាពនៃ f

$$f(1) = e^{1^2 - 2} = e^{-1} = \frac{1}{e}$$

X	8	1	$+\infty$
f'(x)	ı	þ	+
f(x)	+8	$\rightarrow \frac{1}{e}$	+∞

4.
$$f(x)=1 \Leftrightarrow e^{x^2-2x}=1$$
 $\Leftrightarrow e^{x^2-2x}=e^0 \Leftrightarrow x^2-2x=0$ សមីការ $x^2-2x=0$ មានចម្លើយ $x=0$ ឬ $x=2$ ។ ដូច្នេះសំណុំចម្លើយរបស់ សមីការ $S=\{0;2\}$ ។

វិធីសិក្សាអនុគមន៍ប្រភេទ $f(x) = e^{u(x)}$

- ដើម្បីបំបាត់រាងមិនកំណត់នៅអនន្តក្នុង
 ករណីពហុធាយើងទាញកត្តាដឺក្រេខ្ពស់
 ជាងគេដាក់ជាកត្តាដែលវាគ្រប់ដណ្ដប់លើ
 តូដទៃ ។
- $2. \quad \left(e^{u}\right)' = u' \times e^{u}$
- 3. $e^a = e^b \Leftrightarrow a = b$
- ដោះស្រាយសមីការ
 f(x)=1 គឺរកអាប់ស៊ីសនៃចំណុចដែល
 មានអរដោនេ 1 នៅលើខ្សែកោង ។

លំហាត់អនុវត្តន៍វិធីសិក្សាអនុគមន៍ប្រភេទ $f(x) = e^{u(x)}$ លំហាត់ទី១៖ គណនាដេវីវេនៃអនុគមន៍ f ក្នុងករណីនីមួយៗខាងក្រោម ៖

a. គ្រាប់
$$x \in \mathbb{R}$$
 , $f(x) = e^{1-2x}$

c. គ្រប់
$$x \in (0; +\infty)$$
 , $f(x) = e^{\sqrt{x}}$

b. គ្រប់
$$x \in \mathbb{R}$$
 , $f(x) = \frac{1}{2}e^{-x^2}$

d. គ្រប់
$$x \in \mathbb{R}$$
 , $f(x) = e^{\cos x}$

លំហាត់ទី២៖

- 1. សង់តារាងអថេរភាពនៃអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x) = e^{x^3 + x^2}$ ។
- 2. កំណត់សមីការបង្រមនៃបន្ទាត់ប៉ះទៅខ្សែកោងតាងអនុគមន៍នេះត្រង់ចំណុចដែល មានអាប់ស៊ីស –1 ។

លំហាត់ទី៣៖ គណនាលីមីតខាងក្រោម ៖

a.
$$\lim_{x \to +\infty} (e^x - x)$$

a.
$$\lim_{x \to +\infty} (e^x - x)$$
 b. $\lim_{x \to 0} \frac{e^{2x} - e^x}{x}$ c. $\lim_{x \to +\infty} e^{-x} (x+5)$ d. $\lim_{x \to -\infty} e^{1-\frac{1}{x}}$

c.
$$\lim_{x \to +\infty} e^{-x} (x+5)$$

d.
$$\lim_{x \to -\infty} e^{1-\frac{1}{x}}$$

លំហាត់ទី៤៖

- a. ស្រាយបំភ្លឺថាអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x) = e^{-3x}$ ជាអនុគមន៍ចុះលើ $\mathbb R$ ។
- b. ស្រាយបំភ្លឺថាអនុគមន៍ $f(x) = e^{\frac{-1}{x}}$ ជាអនុគមន៍កើនលើ $(0; +\infty)$ និង លើ $(-\infty; 0)$ ។
- c. ស្រាយបំភ្លឺថាអនុគមន៍ $f(x) = e^{\cos x}$ ជាអនុគមន៍ចុះលើ $[0;\pi]$ ។

លំហាត់ទី៥៖ តើពិត ឬមួយមិនពិត ? ក្នុងករណីនីមួយៗខាងក្រោមដែលគេឲ្យកន្សោមអនុគមន៍ f មានដេរីវេលើចន្លោះ I និង អនុគមន៍ដេរីវេ f' របស់វា ។ បញ្ជាក់តើកន្សោមនៃ f'(x)ត្រឹមត្រូវឬទេ ?

1.
$$f(x) = e^{3x-1}$$
 , $f'(x) = e^{3x-1}$, $I = \mathbb{R}$

2.
$$f(x) = e^{\sqrt{x}}$$
 , $f'(x) = \frac{e^{\sqrt{x}}}{2\sqrt{x}}$, $I = (0; +\infty)$

3.
$$f(x) = e^{\frac{1}{x}}$$
 , $f'(x) = -\frac{1}{x^2}e^{\frac{1}{x}}$, $I = (-\infty; 0)$

4.
$$f(x) = e^{\cos x}$$
 , $f'(x) = e^{\cos x} \sin x$, $I = \mathbb{R}$

វិធីប្រើអនុគមន៍លោការីតនេពែដើម្បីដោះស្រាយសមីការ ឬ វិសមីការ

លំហាត់៖ យើងមាន k ជាចំនួនពិតវិជ្ជមានដាច់ខាត ។ គេមានអនុគមន៍កំណត់លើ $[0;+\infty)$

ដោយ ៖
$$f_k(x) = e^x - kx$$
 ។

- 1. នៅក្នុងសំណូរនេះគេតាង k=2 ។ សិក្សាអថេរភាពនៃអនុគមន៍ $f_2(x)=e^x-2x$ នៅលើ [0;+∞) ។
- 2. ក្នុងករណីទូទៅ។
 - ${f a}$. បង្ហាញថាអនុគមន៍ $f_{\scriptscriptstyle k}$ មានអប្បបរមាលើ $igl[0;+\inftyigr)$ ត្រង់ចំនួនពិត $lpha_{\scriptscriptstyle k}$ ដែលគេ នឹងបញ្ជាក់ ។
 - b. គេតាង $u_k = f(\alpha_k)$ ។ គណនា u_k ជាអនុគមន៍នៃ k ។
 - c. កំណត់លីមីតនៃ u_k ត្រង់ $+\infty$ ។

យម្លីរប

 f_2 មានដេរីវេលើ $igl[0;+\inftyigr)$ និងគេបាន $f_2'(x) = e^x - 2$ ។ គេបាន $f_2'(x) = 0 \Leftrightarrow e^x = 2 \Leftrightarrow x = \ln 2$

វិធីប្រើអនុគមន៍លោការីតនេពែដើម្បីដោះ ស្រាយសមីការ ឬ វិសមីការ

គេក៏បាន $f_2'(x) > 0 \Leftrightarrow e^x > 2$

$$\Leftrightarrow e^x > e^{\ln 2} \Leftrightarrow x > \ln 2$$

 $f_2(\ln 2) = e^{\ln 2} - 2\ln 2 = 2 - 2\ln 2$

ដូច្នេះគេបានតារាងអថេរភាពខាងក្រោម ៖

<i>u</i>			
Х	0	lņ2	+∞
$f_2'(x)$	_	ø	+
$f_2(x)$	1	(2-2ln	2)

2. a. f_k មានដេរីវេលើ $[0;+\infty)$ និងគេហ្ន $f'_k(x) = e^x - k$ ។

$$f_k(x) = c$$
 k $f'(x) = 0 \Leftrightarrow e^x = k \Leftrightarrow$

ដូច្នេះ $f_k'(x) = 0 \Leftrightarrow e^x = k \Leftrightarrow x = \ln k$ គេបាន $f_k'(x) > 0 \Leftrightarrow e^x > k$

$$\Leftrightarrow e^x > e^{\ln k} \Leftrightarrow x > \ln k$$

យើងបានតារាងអថេរភាពខាងក្រោម ៖

		`	_
Х	0	lņ k	$+\infty$
$f_k'(x)$	_	ø	+
$f_k(x)$	$1 \longrightarrow f$	$(\ln k)$	/

ដូច្នេះ f_k មានអប្បបរមាមួយនៅលើ

 $\left[0;+\infty\right)$ ត្រង់ $\alpha_{\scriptscriptstyle k}=\ln k$ ។

b.យើងបាន

$$u_k = f(\ln k) = e^{\ln k} - k \ln k = k - k \ln k$$

c.
$$u_k = k (1 - \ln k)$$
 T in $\lim_{k \to +\infty} \ln k = +\infty$

 $ISI: \lim_{k \to +\infty} (-\ln k) = -\infty \quad I$

ដូច្នេះយើងបាន $\lim_{k\to +\infty} u_k = -\infty$

ដើម្បីដោះស្រាយសមីការរាង $e^x = a$

- បើ $a \le 0$ សមីការជាសមីការមិនអាច ។
- បើ a>0 យើងអនុវត្តន៍អនុគមន៍ \ln ទៅ អង្គទាំងពីររបស់សមីការដែលយើងបាន $\ln e^x = \ln a$ មានន័យថា $x = \ln a$ ។ ដើម្បីដោះស្រាយវិសមីការរាង $e^x > a$
- បើ a ≤ 0 នោះគ្រប់ចំនួនពិតជាចម្លើយ របស់វិសមីការ ។
- បើ a>0 យើឯអនុវត្តន៍អនុគមន៍ ln ដែល ជាអនុគមន៍កើនដាច់ខាត ទៅអង្គទាំងពីរ នៃវិសមីការយើងបាន $\ln e^x > \ln a$ ឬ $x > \ln a$ ។
- សម្រាប់ការគណនាលីមីតយើងប្រើ មេរៀនលើលីមីត ។

លំហាត់អនុវត្តន៍វិធីប្រើអនុគមន៍លោការីតនេពែដើម្បីដោះស្រាយសមីការឬវិសមីការ លំហាត់ទី១៖ ដោះស្រាយក្នុង R សមីការខាងក្រោម ៖

a. $e^x = 5$ b. $e^{x^2} = 4$ c. $e^{-x} = 2$

លំហាត់ទី២៖ ដោះស្រាយក្នុង $\mathbb R$ សមីការខាងក្រោម ៖

a. $\ln x = 5$ b. $\ln x = -4$ c. $\ln x = \ln(x+1)$ d. $\ln 2x = \ln(x-1)$

លំហាត់ទី៣៖ សិក្សាអថេរភាពនៃអនុគមន៍ f កំណត់លើ $\mathbb R$ ដោយ $f(x) = e^{x^2} - 2x^2$ ។

លំហាត់ទី៤៖ សិក្សាអថេរភាពនៃអនុគមន៍កំណត់លើ $\mathbb R$ ដោយ $f(x) = \frac{e^x}{e^{2x} + 2}$ ។

លំហាត់ទី៥៖ ឆ្លើយពិត ឬមួយមិនពិតចំពោះអំណះអំណាងខាងក្រោម ៖

- a. ចំពោះគ្រប់ចំនួនពិត x , $\ln(e^x) = x$
- b. ចំពោះគ្រប់ចំនួនពិត x , $e^{\ln x} = x$
- c. ចំពោះគ្រប់ចំនួនពិត x , $\ln(e^{-x}) \le 0$
- d. ចំពោះគ្រប់ចំនួនពិតវិជ្ជមានដាច់ខាត x , $e^{-\ln x} = -x$
- e. ចំពោះគ្រប់ចំនួនពិតវិជ្ជមានដាច់ខាត x , $e^{2\ln x}=2x$

លំហាត់ទី៦៖ គណនាចំនួនពិតខាងក្រោម ៖

a.
$$\ln(e^2)$$
 b. $\ln(e^{-3})$ c. $e^{\ln 5}$ d. $e^{-\ln 3}$ e. $e^{2\ln 7}$ f. $e^{-3\ln 2}$

b.
$$\ln(e^{-3})$$

c.
$$e^{\ln 5}$$

d.
$$e^{-\ln 3}$$

e.
$$e^{2\ln 7}$$

f.
$$e^{-3\ln 2}$$

លំហាត់ទី៧៖ ដោះស្រាយក្នុង $\mathbb R$ សមីការខាងក្រោម ៖

a.
$$\ln x = 3$$

b.
$$2 \ln x + 6 = 0$$

a.
$$\ln x = 3$$
 b. $2 \ln x + 6 = 0$ c. $1 - 4 \ln x = \ln x - 9$ d. $(\ln x)^2 = 1$

d.
$$(\ln x)^2 = 1$$

លំហាត់ទី៨៖ ដោះស្រាយក្នុង $\mathbb R$ សមីការខាងក្រោម ៖

a.
$$e^x = 4$$

b.
$$5e^{x} + 2 = 8$$

c.
$$e^{2x} - 2 = 0$$

d.
$$e^x - 3 = 2e^x - 1$$

លំហាត់ទី៩៖ ដោះស្រាយក្នុង $\mathbb R$ សមីការខាងក្រោមក្រោយពីរកដែនកំណត់របស់វា ៖

a.
$$\ln(x+2) = \ln 2$$
 b. $\ln(2x-5) = 1$ c. $4\ln(1-x) = 8$ d. $\ln(3x+8) = \ln x$

b.
$$\ln(2x-5)=1$$

c.
$$4\ln(1-x) = 8$$

d.
$$\ln(3x+8) = \ln x$$

លំហាត់ទី១០៖ ដោះស្រាយក្នុង $\mathbb R$ សមីការខាងក្រោមក្រោយពីរកដែនកំណត់របស់វា ៖

a.
$$\ln(x+1) + \ln x = 0$$

b.
$$\ln(x^2 + 1) = \ln x$$

c.
$$\ln(3-x) \times \ln(x+1) = 0$$
 d. $\ln(5x-6) - 2\ln x = 0$

d.
$$\ln(5x-6)-2\ln x=0$$

លំហាត់ទី១១៖ ដោះស្រាយក្នុង $\mathbb R$ សមីការខាងក្រោម ៖

a.
$$\ln(e^x + 1) = \ln 2$$
 b. $\ln(2e^x + 1) = 1$ c. $e^{1 + \ln x} = 2x - 1$ d. $e^{2\ln x - 3} = x$

b.
$$\ln(2e^x + 1) = 1$$

c.
$$e^{1+\ln x} = 2x - 1$$

d.
$$e^{2\ln x - 3} = x$$

លំហាត់ទី១២៖ ដោះស្រាយក្នុង $\mathbb R$ សមីការខាងក្រោម ៖

a.
$$e^{x+2} = 3$$

a.
$$e^{x+2} = 3$$
 b. $4e^{2x-1} = 1$ c. $24e^{2-x} = 10$

c.
$$24e^{2-x} = 10$$

លំហាត់ទី១៣៖

- 1. ដោះស្រាយក្នុង \mathbb{R} សមីការ $X^2 3X + 2 = 0$
- 2. ទាញយកចម្លើយក្នុង $\mathbb R$ របស់សមីការខាងក្រោម ៖

a.
$$(\ln x)^2 - 3\ln x + 2 = 0$$
 b. $e^{2x} - 3e^x + 2 = 0$

b.
$$e^{2x} - 3e^x + 2 = 0$$

លំហាត់ទី១៤៖

- 1. ដោះស្រាយក្នុង $\mathbb R$ សមីការ $X^2-6=0$
- 2. ទាញយកចម្លើយក្នុង $\mathbb R$ របស់សមីការខាងក្រោម ៖

a.
$$(\ln x)^2 - 6 = 0$$
 b. $e^{2x} - 6 = 0$

b.
$$e^{2x} - 6 = 0$$

វិធីសិក្សាអនុគមន៍ដែលមានអនុគមន៍លោការីតនេពែ

លំហាត់៖ គេមានអនុគមន៍ f កំណត់លើ $(0;+\infty)$ ដោយ $f(x) = \left(\ln x + 1\right)^2$ ។

- 1. កំណត់លីមីតនៃ f ត្រង់ 0 និង ត្រង់ $+\infty$ ។
- 2. បង្ហាញថាចំពោះគ្រប់ចំនួនពិត x នៃ $(0;+\infty)$, $f'(x) = \frac{2\ln x + 2}{x}$ ។
- 3. សិក្សាសញ្ញានៃដេរីវេរបស់អនុគមន៍ f ។ ចម្លើយ

- 2. $f'(x) = 2 \times \frac{1}{x} \times (\ln x + 1) = \frac{2 \ln x + 2}{x}$
- 3. គេដឹងថា x>0 ដូច្នេះ f'(x) មានសញ្ញាដូច $\left(2\ln x+2\right)$ ។ $2\ln x+2\geq 0 \Leftrightarrow 2\ln x\geq -2$

⇔ln x ≥ −1 ⇔ x ≥ e⁻¹ យើងបានតារាងអថេរភាពដ្លិចខាងក្រោម៖

X	0	e^{-1}		$+\infty$
f'(x)	_	Ø	+	
f(x)	+∞			▼ +∞

វិធីសិក្សាអនុគមន៍ដែលមានអនុគមន៍លោកា វីតនេពែ ។

- 1. ដើម្បីគណនាលីមីតគេប្រើបណ្ដាក់នៃ អនុគមន៍ដោយគត់សម្គាល់ថា f(x) មានតំណាក់កាលពីរបន្តបន្ទាប់ ៖ $x\mapsto (\ln x+1)\mapsto (\ln x+1)^2$ ។
- 2. យើឯអនុវត្តន៍រូបមន្តនៃដេរីវេ $\left(u^2\right)'=2u'u$ ។
- 3. ដើម្បីដោះស្រាយវិសមីការប្រភេទ lnx≥a គេត្រូវដឹងថាអនុគមន៍អ៊ិចស្បូណង់ស្យែល និង អនុគមន៍លោការីតនេពែជាអនុគមន៍ ច្រាស់ទៅវិញទៅមក និងអនុគមន៍អ៊ិចស្បូ ណង់ស្យែលជាអនុគមន៍កើនដាច់ខាត ។

$$\ln x \ge a \Leftrightarrow e^{\ln x} \ge e^a \Leftrightarrow x \ge e^a$$
 \forall

លំហាត់អនុវត្តន៍វិធីសិក្សាអនុគមន៍ដែលទាក់ទងអនុគមន៍លោការីតនៃពែ លំហាត់ទី១៖ គេមានអនុគមន៍ ƒ កំណត់លើ (0;+∞) ដោយ ƒ(x)=(lnx)² ។ a.កំណត់លីមីតនៃ ƒ ត្រង់ 0 និង +∞ ។ b.សិក្សាអថេរភាពនៃ ƒ ។ c.សង់តារាងអថេរភាពនៃ ƒ ។ លំហាត់ទី២៖ គេមានអនុគមន៍ ƒ កំណត់លើ (0;+∞) ដោយ ƒ(x)=lnx+(lnx)² ។ a.រកលីមីតនៃ ƒ ត្រង់ +∞ ។ b.គេកត់សម្គាល់ឃើញថាចំពោះគ្រប់ x>0 , ƒ(x)=(lnx)(1+lnx) ។ កំណត់លីមីតនៃ ƒ ត្រង់ 0 ។ c.សិក្សាអថេរភាពនៃ ƒ ។ លំហាត់ទី៣៖ គេមានអនុគមន៍ f កំណត់លើ $(0;+\infty)$ ដោយ $f(x)=rac{\ln x}{x}$ ។

a.កំណត់លីមីតនៃ f ត្រង់ 0 និង ត្រង់ $+\infty$ ។

b.សិក្សាអថេរភាពនៃ f ។

លំហាត់ទី៤៖ គេមានអនុគមន៍ f កំណត់លើ $(0;+\infty)$ ដោយ $f(x)=x-\ln x$ ៗ

a.កំណត់លីមីតនៃ f ត្រង់ 0 ។

b.គេកត់សម្គាល់ឃើញថាចំពោះគ្រប់ x > 0 , $f(x) = x \left(1 - \frac{\ln x}{r}\right)$ ។

កំណត់លីមីតនៃ f ត្រង់ $+\infty$ ។

c.សិក្សាអថេរភាពនៃ f ។

លំហាត់ទី៥៖ ក្នុងករណីនីមួយៗខាងក្រោមគេឧបមាថាគេសិក្សាអនុគមន៍ f នៅលើចន្លោះមួយ ដែល f មានដេរីវេ ។ ចូបញ្ជាក់ថាចម្លើយខាងក្រោមពិត ឬ មួយមិនពិត ។

a.
$$\vec{\mathbf{U}} f(x) = \ln(4x-1)$$
 $\vec{\mathbf{U}} f'(x) = \frac{4}{4x-1}$

c. ប៊ើ
$$f(x) = \ln(3x^2 + x + 1)$$
 នោះ $f'(x) = \frac{6x + 1}{\ln(3x^2 + x + 1)}$ ។

d.
$$\vec{U}$$
 $f(x) = \ln(x^3 + x^2)$ $f(x) = \frac{3x + 2}{x^2 + x}$

លំហាត់ទី៦៖ ចូរជ្រើសរើសចម្លើយដែលពិត

1.
$$f(x) = \ln(1 + x + x^2)$$

បីម្លើយ ៖ a.
$$f'(x) = \frac{1}{1+x+x^2}$$
 b. $f'(x) = \frac{1+2x}{1+x+x^2}$ c. $f'(x) = \frac{1}{1+2x}$

b.
$$f'(x) = \frac{1+2x}{1+x+x^2}$$

c.
$$f'(x) = \frac{1}{1+2x}$$

2.
$$f(x) = \ln(e^x + e^{-x})$$

បីម៉្លើយ ៖ a.
$$f'(x) = \frac{1}{e^x - e^{-x}}$$
 b. $f'(x) = \frac{e^x}{1 + e^x}$ c. $f'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$

b.
$$f'(x) = \frac{e^x}{1 + e^x}$$

c.
$$f'(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

លំហាត់ទី៧៖

1.ដោះស្រាយក្នុង $\mathbb R$ សមីការខាងក្រោម ៖

a.
$$(\ln x)^2 + \ln\left(\frac{1}{x}\right) = 1$$
 b. $(\ln x)^3 + 3\ln x = 0$

b.
$$(\ln x)^3 + 3\ln x = 0$$

2.បង្ហាញថាសមីការ $e^{2x}-5e^x+7=0$ គ្មានចម្លើយក្នុង $\mathbb R$ ។

លំហាត់ទី៨៖ គេមានអនុគមន៍ f កំណត់លើ $(0;+\infty)$ ដោយ $f(x) = \ln x - \left(\ln x\right)^2$ ។

1.កំណត់លីមីតនៃ f ត្រង់ 0 និង ត្រង់ $+\infty$ ។

2.គណនា f'(x) ។

3.a.ដោះស្រាយវិសមីការ $1-2\ln x \ge 0$

ь.ទាញយកសញ្ញានៃដេរីវេរបស់ f រួចសង់តារាងអថេរភាពនៃអនុគមន៍នេះ ។

4.សង់ខ្សែកោងតាងអនុគមន៍ f ក្នុងតម្រុយអរតូណរមេ ។

5.កំណត់ជាអនុគមន៍នៃចំនួនពិត $\stackrel{\cdot}{k}$ ចំនួននៃចម្លើយរបស់សមីការ f(x)=k ។

លំហាត់ទី៩៖ គេមានអនុគមន៍ f កំណត់លើ $(0;+\infty)$ ដោយ $f(x) = (\ln x)^2$ ។ 1.កំណត់លីមីតនៃ f ត្រង់ 0 និង ត្រង់ $+\infty$ ។ 2.គណនា f'(x) , សិក្សាសញ្ញារបស់វា រួចសង់តារាងអថេរភាពនៃ f ។ 3.ស្រាយបំភ្លឺថាចំពោះគ្រប់ចំនូនពិត k>0 , សមីការ f(x)=k មានចម្លើយពីរ ។ 4.ឲ្យជាអនុគមន៍នៃ k ចម្លើយរបស់សមីការនេះ ។

វិធីកំណត់ព្រីមីទីវ

លំហាត់៖ 1.ស្រាយបំភ្លឺថាអនុគមន៍ $F: x \mapsto xe^x - e^x + 2$ ជាព្រីមីទីវមួយនៅលើ $\mathbb R$ នៃអនុគមន៍ $f: x \mapsto xe^x$ ។

2.កំណត់ព្រីមីទីវនៃអនុគមន៍ខាងក្រោម ៖

a.
$$f(x) = 3x^3 - 2x$$
 នៅលើ \mathbb{R} ។

b.
$$g(x) = \sin 2x - \cos x$$
 នៅលើ \mathbb{R} ។

c.
$$h(x) = xe^{x^2} - 3x$$
 នៅលើ \mathbb{R} ។

d.
$$j(x) = \frac{2x}{(x^2 - 1)^3}$$
 នៅលើ $I = (-1; +1)$ ។

យម្លីរប

$$1.$$
 យើងប្រើរូបមន្តនៃដេរីវេយើងបានចំពោះ β ប៉ែ $x \in \mathbb{R}$, $F'(x) = xe^x + e^x - e^x$ $= xe^x = f(x)$ ដូច្នេះ $F(x)$ ជាព្រីមីទីវនៃ $f(x)$ លើ \mathbb{R} ។

2. a. យើងគិតដល់រូបមន្ត $(x^n)' = nx^{n-1}$ ចំពោះគ្រប់ចំនូនពិត x គេបាន $f(x) = \frac{3}{4}(4x^3) - 2x \, \, \mathrm{I} \,\, \mathrm{Ig} \, \mathrm{Eps} \,\, \mathrm{Eps} \,\, F(x)$ នៃ f(x) លើ $\mathbb R$ កំណត់ដោយ ៖ $F(x) = \frac{3}{4}x^4 - x^2 + k \,\, , \, k \,\, \mathrm{Im} \, \mathrm{Eps} \,\, \mathrm{Eps} \,\,$

b.យើងគិតដល់រូបមន្ត (cos2x) =−2sin2x ចំពោះគ្រប់ចំនូនពិត x គេបាន៖

$$g(x) = -\frac{1}{2}(-2\sin 2x) - \cos x$$
 ដូច្នេះព្រីមីទីវ

G(x) នៃ g(x) លើ $\mathbb R$ កំណត់ដោយ ៖

$$G(x) = -\frac{1}{2}\cos 2x - \sin x + k$$
 , k ជាចំនួនពិត
ណាមួយ ។

វិធីកំណត់ព្រីមីទីវ

1.ដើម្បីស្រាយបំភ្លឺថាអនុគមន៍ F(x) ជាព្រីមីទីវនៃ f(x) លើចន្លោះ I ណាមួយគេត្រូវបង្ហាញថា ចំពោះគ្រប់ $x \in I, F'(x) = f(x)$ ។ 2.a.គេត្រូវសាកល្បងធ្វើឲ្យឃើញរូបមន្តនៅលើ តារាងរូបមន្តនៃដេវីវេដែលយើងប្រើជាញឹកញាប់ ។ c.គេត្រូវសាកល្បងធ្វើឲ្យឃើញរូបមន្តដែលយើង បានសិក្សា ។

d.យើងនឹកដល់ $\frac{u^{n+1}}{n+1}$ ជាព្រឹមីទីវនៃ $u' \times u^n$ ដែល $n \in \mathbb{Z}$ និង $n \neq -1$ នៅលើចន្លោះដែល u មិនយក តម្លៃស្ងួន្យ ។

 $\overline{\text{c.iviuon}}$ នោះ $u'(x) = x^2$ នោះ u'(x) = 2xនិងគេអាចសរសេរចំពោះគ្រប់ចំនួនពិត x,

$$h(x) = \frac{1}{2}u'(x)e^{u(x)} - 3x$$
 ។ ដូច្នេះព្រឹមីទីវ

H(x) នៃ h(x) លើ $\mathbb R$ កំណត់ដោយ៖

$$H(x) = \frac{1}{2}e^{u(x)} - \frac{3}{2}x^2 + k$$
 \mathfrak{Y}

$$H(x) = \frac{1}{2}e^{x^2} - \frac{3}{2}x^2 + k$$
 ដែល k ជាចំនួន

ពិតណាមួយ ។

d. ហើងអាចសរសេរ $j(x) = 2x(x^2 - 1)^{-3}$ ។ ដោយតាង $u(x) = x^2 - 1$ គេបាន u'(x) = 2xនិង $j(x) = u'(x) \cdot (u(x))^{-3}$ ដែលវាមានរាង $u' \times u^n$ ដោយ n = -3 ដូច្នេះព្រឹមីទីវ J(x)នៃ j(x) លើ (-1;1) កំណត់ដោយ

$$J(x) = \frac{\left(u(x)\right)^{-2}}{-2} + k \quad \Im$$

ដូច្នេះ $J(x) = -\frac{1}{2(x^2-1)^2} + k$ ដែល k ជា

ចំនួនពិតណាមួយ ។

លំហាត់អនុវត្តន៍វិធីកំណត់ព្រីមីទីវ

លំហាត់ទី១៖ កំណត់ព្រីមីទីវលើចន្លោះ I នៃអនុគមន៍ខាងក្រោម ៖

b.
$$g(x) = x + 2 + \frac{1}{x^3}$$
 so $I = (0; +\infty)$ 1

c.
$$h(x) = \frac{3}{\sqrt{x}}$$
 In $I = (0; +\infty)$ 1

លំហាត់ទី២៖ កំណត់ព្រីមីទីវលើចន្លោះ I នៃអនុគមន៍ខាងក្រោម ៖

a.
$$f(x) = \frac{2x}{\sqrt{x^2 + 1}}$$
 for $I = \mathbb{R}$ 1

b.
$$g(x) = \frac{\ln x}{r}$$
 [N] $I = (0; +\infty)$ 7

លំហាត់ទី៣៖ រកព្រីមីទីវនៃអនុគមន៍ខាងក្រោមនៅលើចន្លោះដែលវាជាអនុគមន៍ជាប់ ។

a.
$$f(x) = x^3 - 2x + 2$$

a.
$$f(x) = x^3 - 2x + 2$$
 b. $f(x) = x + 2 + \frac{1}{x^3}$

c.
$$f(x) = 3e^x + 3x - 1$$

d.
$$f(x) = 4e^{3x} - 1$$

d.
$$f(x) = 4e^{3x} - 1$$
 e. $f(x) = \frac{3x^2 + 4x - 2}{x^4}$ f. $f(x) = \frac{2x}{(x^2 + 2)^2}$

f.
$$f(x) = \frac{2x}{(x^2 + 2)^2}$$

លំហាត់ទី៤៖ រកព្រីមីទីវ F នៃអនុគមន៍ f លើ $\mathbb R$ ដែលផ្ទៀងផ្ទាត់ល័ក្ខខ័ណ្ឌខាងក្រោម ៖

1.
$$f(x) = \frac{x}{4} - \cos x$$
 និង $F\left(\frac{\pi}{2}\right) = 0$

- 2. f(x) = 2x 5 និង F(0) = 1
- 3. $f(x) = e^x \$ \$\frac{1}{2} \text{1} \ F(2) = 0
- 4. $f(x) = 3x^2 + 2$ និងខ្សែកោងតាងអនុគមន៍ F កាត់តាមចំណុច A(-1;3) ។

វិធីប្រើទម្រង់ពីជគណិតនៃចំនួនកុំផ្លិច

លំហាត់៖ 1.ដោះស្រាយនៅក្នុងសំណុំចំនូនកុំផ្លិច $\mathbb C$ សមីការដែលមាន z ជាអញ្ញាតខាងក្រោម៖

a.
$$3z + 1 - i = 7 + 3i$$

b. $2z + i\overline{z} = 5 - 2i$

2.គេមានចំនួនកុំផ្លិច z=a+2i ដោយ $a\in\mathbb{R}$ ។ កំណត់ក្នុងករណីខាងក្រោម ៖

a.
$$z^2 \in i\mathbb{R}$$

b.
$$z + a\overline{z} \in \mathbb{R}$$
 បង្ហើយ

1. a. $3z+1-i=7+3i \Leftrightarrow 3z=7+3i-1+i$ $3z=6+4i \Leftrightarrow z=\frac{6+4i}{3}=2+\frac{4}{3}i$ ដូច្នេះសំណុំចម្លើយ $S=\left\{2+\frac{4}{3}i\right\}$ b. គេតាង z=x+iy ដែល x និង y ជា ចំនួនពិត ។

$$2z + i\overline{z} = 5 - 2i \Leftrightarrow 2(x + iy) + i(x - iy) = 5 - 2i$$

$$\Leftrightarrow$$
 $2x + 2iy + ix + y = 5 - 2i$

$$\Leftrightarrow$$
 $(2x+y)+(x+2y)i=5-2i$

ជាចំនូនពិត ។ យើងដោះស្រាយប្រព័ន្ធ សមីការតាមវិធីជំនួស

$$\begin{cases} 2x + y = 5 \\ x + 2y = -2 \end{cases} \Leftrightarrow \begin{cases} y = 5 - 2x \\ x + 2(5 - 2x) = -2 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 5 - 2x \\ -3x = -12 \end{cases} \Leftrightarrow \begin{cases} x = 4 \\ y = -3 \end{cases}$$
 នោះ $z = 4 - 3i$ ។

2. a. $z^2 = (a+2i)^2 = a^2 + 4ai - 4 = a^2 - 4 + 4ai$ ដោយ a ជាចំនួនពិត $(a^2 - 4)$ និង 4a ជា ចំនួនពិត និង $(a^2 - 4) + 4ai$ ជាទម្រង់ ពីជគណិត នៃ z^2 ។

- ដូចគ្នានឹងការដោះស្រាយសមីការក្នុង R
 យើងប្រើការគណនាចាំបាច់ដោយបំបែក អញ្ញាតឲ្យនៅក្នុងអង្គមួយនៃសមភាព ។
- ដើម្បីអាចប្រើចំនួនកុំផ្លិចឆ្លាស់គេត្រូវ ច្រើទម្រង់ពីជគណិតរបស់ z ។
- ចំនូនកុំផ្លិចពីរស្មើគ្នាលុះត្រាតែវាមាន
 ផ្នែកពិតដូចគ្នានិងផ្នែកនិមិត្តដូចគ្នា ។
- a.ចំនួនកុំផ្លិចមួយវានិមិត្តសុទ្ធលុះត្រាតែ
 ផ្នែកពិតរបស់វាស្មើសូន្យ ។
 b.ចំនួនកុំផ្លិចមួយវាពិតលុះត្រាតែផ្នែកនិមិត្ត
 របស់វាស្មើសូន្យ ។

$$z^2 \in i\mathbb{R} \iff a^2 - 4 = 0 \iff a = 2 \ \cup{y} \ a = -2$$

b.
$$z + a\overline{z} = a + 2i + a(a - 2i)$$

$$= a^2 + a + i(2-2a)$$

យើងបានទម្រង់ពីជគណិតនៃ $z+a\overline{z}$ ។

$$z + a\overline{z} \in \mathbb{R} \Leftrightarrow 2 - 2a = 0 \Leftrightarrow a = 1$$
 1

លំហាត់អនុវត្តន៍វិធីប្រើទម្រង់ពីជគណិតនៃចំនួនកុំផ្លិច លំហាត់ទី១៖ កំណត់ផ្នែកពិត ផ្នែកនិមិត្ត និងចម្លាស់នៃចំនូនកុំផ្លិចខាងក្រោម ៖

$$z_1 = -2i + 5$$

$$z_2 = 15$$

$$z_{2} = 3i$$

$$z_1 = -2i + 5$$
 ; $z_2 = 15$; $z_3 = 3i$; $z_4 = i(2 + 3i)$; $z_5 = (1 - 5i)^2$

$$z_5 = (1 - 5i)$$

លំហាត់ទី២៖ សរសេរជាទម្រង់ពីជគណិតចំនួនកុំផ្លិចខាងក្រោម ៖

$$z_1 = (2+5i)+(i+3)$$
 ; $z_2 = (3-11i)-(-8+9i)$; $z_3 = (7+5i)(-4+3i)$

$$z_4 = (1-5i)^2$$
; $z_5 = i(1-3i)^2$; $z_6 = 1+i+i^2$

លំហាត់ទី៣៖ ដោះស្រាយក្នុង C សមីការខាងក្រោម ៖

a. 2z+i=3+2i b. iz+3=-1+2i c. $z^2+2iz-1=0$ d. $z+i=2\overline{z}+1$

លំហាត់ទី៤៖ គេមាន z=x+iy ដោយ x និង y ជាចំនួនពិត ។ កំណត់ផ្នែកពិត និងផ្នែកនិមិត្ត នៃចំនួនកុំផ្លិចខាងក្រោម ៖

a.
$$5z-i$$

b.
$$(3-2i)z$$

c.
$$z^2$$
 d.

a.
$$5z-i$$
 b. $(3-2i)z$ c. z^2 d. $3\overline{z}-5z$ e. $(2+i)(2i-\overline{z})$ f. $(z-1)(\overline{z}-i)$

f.
$$(z-1)(\overline{z}-i)$$

លំហាត់ទី៥៖ ក្នុងករណីនីមួយៗខាងក្រោមកំណត់ផ្នែកពិតនិងផ្នែកនិមិត្តនៃចំនួនកុំផ្លិច z ។

1.
$$z = (3-i)^2$$

2.
$$z = (2i-1)(3+i)$$

2.
$$z = (2i-1)(3+i)$$
 3. $z = 3i(1+i)-5(2-3i)$

លំហាត់ទី៦៖ ដោះស្រាយនៅក្នុង $\mathbb C$ សមីការខាងក្រោម ៖

a.
$$3z + 2 - i = z + 5 + 4i$$

a.
$$3z+2-i=z+5+4i$$
 b. $(1+i)z=3-2i$ c. $-1-z^2=0$

c.
$$-1-z^2=0$$

d.
$$z^2 = \overline{z}$$

e.
$$2z + i = \overline{z} + 1$$

វិធីដោះស្រាយសមីការក្នុង $\mathbb C$ សំណុំចំនូនកុំផ្លិច

លំហាត់៖ ដោះស្រាយក្នុង $\mathbb C$ សមីការខាងក្រោមដោយផ្តល់ចម្លើយជាទម្រង់ពីជគណិត ៖

1.
$$(-1+2i)z = 3+i$$

2.
$$z^2 = -9$$

3.
$$4z^2 + 16z + 25 = 0$$

$$4. \ \frac{3z-2}{z+1} = z$$

យម្លីរប

1.
$$(-1+2i)z = 3+i \Leftrightarrow z = \frac{3+i}{-1+2i}$$
 យើងដាក់ចម្លើយជារាងពីជគណិត

$$z = \frac{(3+i)(-1-2i)}{(-1+2i)(-1-2i)} = \frac{-3-6i-i+2}{1+4}$$

វិធីដោះស្រាយសមីការនៅក្នុង C

1. គេគណនាទាល់តែ z មា[់]នទម្រង់ពីជ គណិត ។ គេគុណភាគយកនិងភាគបែង ដោយកន្សោមឆ្លាស់គឺ $z \cdot \overline{z} = x^2 + y^2$

$$=-\frac{1}{5}-\frac{7}{5}i$$

ដូច្នេះសំណុំចម្លើយ $S = \left\{-\frac{1}{5} - \frac{7}{5}i\right\}$ ។

- 2. $z^2 = -9 \iff z^2 = (3i)^2 \iff z^2 (3i)^2 = 0$ \Leftrightarrow $(z-3i)(z+3i) = 0 \Leftrightarrow z = 3i \text{ if } z = -3i$ ដូច្នេះសំណុំចម្លើយ $S = \{-3i; 3i\}$ ។
- 3. យើងមានសមីការ $4z^2 + 16z + 25 = 0$ សមីការនេះជាសមីការដឺក្រេទី២ដែលមាន មេគុណជាចំនួនពិត ។ វាមាន $\Delta = 16^2 - 4 \times 4 \times 25 = -144 = -12^2$ សមីការមានចម្លើយពីរនៅក្នុង $\mathbb C$ ។

$$z_1 = \frac{-16 - 12i}{8} = -2 - \frac{3}{2}i$$
 U

$$z_2 = \frac{-16 + 12i}{8} = -2 + \frac{3}{2}i$$

ដូច្នេះសំណុំចម្លើយ $S = \left\{ -2 - \frac{3}{2}i; -2 + \frac{3}{2}i \right\}$

4. ចំពោះចំនួនកុំផ្លិច $z \neq -1$:

$$\frac{3z-2}{z+1} = z \Leftrightarrow (3z-2) = z(z+1)$$

$$\Leftrightarrow -z^2 + 2z - 2 = 0$$

 $\Delta = 2^2 - 4 \times (-1) \times (-2) = -4 = -2^2$

ដូច្នេះសមីការមានចម្លើយពីរក្នុង C

$$z_1 = \frac{-2 - 2i}{-2} = 1 + i \quad \mathfrak{U} \quad z_2 = \frac{-2 + 2i}{-2} = 1 - i$$

សំណុំចម្លើយ $S = \{1 + i; 1 - i\}$ ។

- 2. –9 ជាការេនៃ 3i ។ ដូច្នេះគេអាចបំបែក ជាផលគុណកត្តាដោយប្រើឯកលក្ខណះ តាព $a^2 - b^2 = (a - b)(a + b)$ ។ ដូចនៅក្នុង $\mathbb R$ ដែរ ផលគុណកត្តាណាមួយ ស្មើសូន្យ ។
- 3. ឌីសគ្រីមីណង់ Δ ជាចំនួនអវិជ្ជមានសមីការ មានឬសពីរក្នុង $\mathbb{C}: \frac{-b-i\sqrt{-\Delta}}{2a}$ ឬ $\frac{-b+i\sqrt{-\Delta}}{2a}$
- 4. ដូចក្នុង $\mathbb R$ ដែរគេត្រ្ទវដកចេញតម្លៃដែល ធ្វើឲ្យភាគបែងយកតម្លៃសូន្យ ។

លំហាត់អនុវត្តន៍វិធីដោះស្រាយសមីការក្នុង 🧷 សំណុំចំនួនកុំផ្លិច លំហាត់ទី១៖ សរសេរជារាងពីជគណិត ចំនូនកុំផ្លិចខាងក្រោម ៖

$$z_1 = \frac{1}{i}$$

$$z_1 = \frac{1}{i}$$
 ; $z_2 = \frac{1}{2-i}$; $z_3 = \frac{1}{2i+1}$

$$z_3 = \frac{1}{2i + 1}$$

លំហាត់ទី២៖ ដោះស្រាយក្នុង C សមីការខាងក្រោមដោយផ្ដល់ចម្លើយជាទម្រង់ពីជគណិត ។

a. i(z-1)=1b. (2+i)z = 3z - i

លំហាត់ទី៣៖ z ជាចំនួនកុំផ្លិចមិនស្វន្យដែលមានរាង x+iy ។ កំណត់ផ្នែកពិត និងផ្នែកនិមិត្ត នៃចំនួនកុំផ្លិចខាងក្រោម ៖

a.
$$z_1 = \frac{\overline{z}}{z}$$

b.
$$z_2 = \frac{iz}{z}$$

លំហាត់ទី៤៖ ដោះស្រាយក្នុង $\mathbb C$ សមីការខាងក្រោមដោយមិនបាច់គណនាឌីសគ្រីមីណង់ ៖

a.
$$z^2 + 16 = 0$$

b.
$$z^2 - 5 = 0$$

c.
$$z^4 = 81$$

d.
$$z^2 + 2iz - 1 = 0$$

លំហាត់ទី៥៖ ដោះស្រាយក្នុង $\mathbb C$ សមីការខាងក្រោម ៖

1.
$$z^2 - 5z + 6 = 0$$

2.
$$z^2 - 5z - 6.5 = 0$$

3.
$$4z^2 - 4z + 17 = 0$$

$$4. -z^2 + 2z - 5 = 0$$

1. $z^2-5z+6=0$ 2. $z^2-5z-6.5=0$ 3. $4z^2-4z+17=0$ 4. $-z^2+2z-5=0$ លំហាត់ទី៦៖ ដោះស្រាយក្នុង $\mathbb C$ សមីការខាងក្រោម ៖

a.
$$\frac{z-i}{z+i} = z-i$$

a.
$$\frac{z-i}{z+i} = z-i$$
 b. $\frac{z+2}{z} = -\frac{z}{z+2}$

លំហាត់ទី៧៖ ដោះស្រាយក្នុង $\mathbb C$ សមីការខាងក្រោមដោយផ្តល់ចម្លើយជាទម្រង់ពីជគណិត ៖ 1. (2-i)z+1=(3+2i)z-i 2. z+2i=iz-1 3. (3+2i)(z-1)=i

1.
$$(2-i)z+1=(3+2i)z-i$$

2.
$$z + 2i = iz - 1$$

3.
$$(3+2i)(z-1)=i$$

លំហាត់ទី៨៖ សរសេរជាទម្រង់ពីជគណិតចំនួនកុំផ្លិចខាងក្រោម ៖

1.
$$z_1 = \frac{1 - 2i}{3 + i}$$

1.
$$z_1 = \frac{1-2i}{3+i}$$
 2. $z_2 = \frac{2}{1-\sqrt{3}i}$ 3. $z_3 = \frac{(1-i)^2}{2+2i}$

3.
$$z_3 = \frac{(1-i)^2}{2+2i}$$

លំហាត់ទី៩៖ ដោះស្រាយក្នុង $\mathbb C$ សមីការខាងក្រោម ៖ 1. $2z^2+6z+5=0$ 2. $z^2-6z+13=0$ 3. $4z^2-12z+9=0$ 4. $z^2-6z-7=0$ 5. $\frac{3z+2}{z+1}=z+3$ 6. $z^4=16$

1.
$$2z^2 + 6z + 5 = 0$$

2.
$$z^2 - 6z + 13 = 0$$

3.
$$4z^2 - 12z + 9 = 0$$

4.
$$z^2 - 6z - 7 = 0$$

5.
$$\frac{3z+2}{z+1} = z+3$$

6.
$$z^4 = 1$$