

Course > Unit 1: ... > Proble... > 2. Set o...

## 2. Set operations and probabilities

Problem Set due Feb 5, 2020 05:29 IST Completed

Problem 2. Set operations and probabilities

3/3 points (graded)

Find the value of  $\mathbf{P}(A \cup (B^c \cup C^c)^c)$  for each of the following cases:

1. The events A, B, C are disjoint events and  ${f P}(A)=2/5$ .

$$\mathbf{P}\left(A\cup(B^c\cup C^c)^c
ight)= \boxed{\hspace{0.2cm}}$$
 2/5

2. The events A and C are disjoint, and  $\mathbf{P}\left(A\right)=1/2$  and  $\mathbf{P}\left(B\cap C\right)=1/4$ .

$$\mathbf{P}\left(A\cup(B^c\cup C^c)^c
ight)= \boxed{$$
 3/4

3.  $\mathbf{P}(A^c \cap (B^c \cup C^c)) = 0.7$ .

## **Solution:**

1. Using de Morgan's law, we have  $(B^c \cup C^c)^c = B \cap C = \emptyset$  so that

$$\mathbf{P}\left(A\cup\left(B^{c}\cup C^{c}
ight)^{c}
ight)=\mathbf{P}\left(A\cup\emptyset
ight)=\mathbf{P}\left(A
ight)=\boxed{2/5}.$$

2. Note that A and  $B\cap C$  are disjoint. Therefore, using de Morgan's law again, together with the additivity axiom for two disjoint events, we have

$$\mathbf{P}\left(A \cup (B^c \cup C^c)^c\right) = \mathbf{P}\left(A \cup (B \cap C)\right) = \mathbf{P}\left(A\right) + \mathbf{P}\left(B \cap C\right) = \boxed{3/4}.$$

3. De Morgan's law implies that  $(A^c\cap (B^c\cup C^c))^c=A\cup (B^c\cup C^c)^c$ , which is the event of interest. Therefore,

$$\mathbf{P}\left(A\cup(B^c\cup C^c)^c
ight)=1-\mathbf{P}\left(A^c\cap(B^c\cup C^c)
ight)=\boxed{0.3}.$$

Submit

You have used 1 of 3 attempts

**1** Answers are displayed within the problem

## Discussion

**Hide Discussion** 

**Topic:** Unit 1: Probability models and axioms:Problem Set 1 / 2. Set operations and probabilities

| Show all posts                             | by                                                                                                                                                                        | y recent activity 💙 |
|--------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| -                                          | lo you know A and B is disjoint?  A and B intersection C are to be disjoint. I think we should know that A and B disjoint                                                 | also. Ho            |
| ✓ <u>Question 1</u><br><u>Hi, Could so</u> | <u>1</u><br>omeone explain why B∩C=Ø?                                                                                                                                     | 3                   |
| •                                          | ere a no "Show answers" option after we submit all 3 times? way to check the answer after submission to check if our logic was correct, why is this                       | <u>3</u>            |
|                                            | utton is not working the answers but submit button is not responding                                                                                                      | 3                   |
|                                            | d with this question<br>struggling with this question for over a day now, which videos would you suggest I re                                                             | 2<br>eview?         |
|                                            | ion 3, not sure if the parameters set in section 2 are still applying in quest<br>eters in question 2 must apply to question 3 as well, yes? Otherwise, it seems that the | 9 new_              |
| _                                          | et the solution<br>d question #3, would like to be able to have the correct (step by step) procedure/answ                                                                 | ver. tha.           |

| Question 3 In question 3, since it is referring to an intersection, I cannot apply the additivity axiom. Therefore, how                                | 2       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| ? <u>U/n notation</u> How do you type U and the upside down U (denoting intersection) in the answer boxes?                                             | 2       |
| ? Any clues on solving part 1?  I have tried to use all the properties/axioms. Not sure what am I missing. I am now stuck with an interse              | 2       |
| ? <u>decimal separator?.or</u> ,<br><u>Hello, on question 2, sub question 3 (value of P(AU(BcuCc)c)). I was wondering if they might be a trick bet</u> | 2       |
| ? Ok, I missed something. Where was this discussed in the lectures? Lecture 1, section 10 'Simple properties of probabilities' seems                   | 6       |
| 4                                                                                                                                                      | <b></b> |

© All Rights Reserved

