LISTING OF THE CLAIMS:

Claims 1-4 (Canceled)

Claim 5 (Currently Amended): An optical compensatory sheet comprising a transparent support and an optically anisotropic layer, wherein the optically anisotropic layer is formed from liquid crystal molecules and monomers having four or more double bonds, said monomers being polymerized to form a cross-linked polymer in the optically anisotropic layer, and wherein the liquid crystal molecules are discotic liquid crystal molecules, and wherein each of the discotic liquid crystal molecules has a double bond, said discotic liquid crystal molecules and the monomers being co-polymerized in the optically anisotropic layer.

Claim 6 (Canceled)

Claim 7 (Currently Amended): The An optical compensatory sheet comprising a transparent support and an optically anisotropic layer, wherein the optically anisotropic layer is formed from liquid crystal molecules and monomers having four or more double bonds, said monomers being polymerized to form a cross-linked polymer in the optically anisotropic layer, and as defined in claim 5, wherein an orientation layer is provided between the transparent support and the optically anisotropic layer.

Claim 8 (Original): The optical compensatory sheet as defined in claim 7, wherein the orientation layer comprises a polymer having double bonds at side chains, said polymer in the orientation layer and the monomers in the optically anisotropic layer being co-

polymerized along an interface between the orientation layer and the optically anisotropic

layer.

Claim 9 (Currently Amended): An optical compensatory sheet comprising a

transparent support and an optically anisotropic layer, wherein the optically anisotropic layer

is formed from liquid crystal molecules and monomers having four or more double bonds,

said monomers being polymerized to form a cross-linked polymer in the optically anisotropic

layer, and wherein the transparent support has a retardation value in plane in the range of 0 to

50 nm and a retardation value along a thickness direction in the range of 70 to 400 nm, and

wherein the transparent support is a cellulose acetate film comprising cellulose acetate having

an acetic acid content in the range of 59.0 to 61.5%.

Claim 10 (Canceled)

Claim 11 (Currently Amended): The optical compensatory sheet as defined in claim

[[10]] 9, wherein the cellulose acetate film contains an aromatic compound having two or

more aromatic rings in an amount of 0.01 to 20 weight parts based on 100 weight parts of

cellulose acetate.

Claim 12 (Currently Amended): The optical compensatory sheet as defined in claim

[[10]] 9, wherein the cellulose acetate film is formed by casting two or more cellulose acetate

solutions simultaneously.

Claim 13 (Currently Amended): The optical compensatory sheet as defined in claim [[10]] 9, wherein the cellulose acetate film is formed from a solution of cellulose acetate in a solvent selected from a group consisting of an ether having 2 to 12 carbon atoms, a ketone having 3 to 12 carbon atoms or an ester having 2 to 12 carbon atoms.

 Φ_{i}^{λ}

Claim 14 (Currently Amended): A liquid crystal display comprising two polarizing plates, a liquid crystal cell provided between the plates, and at least one optical compensatory sheet placed between the cell and at least one of the plates, said optical compensatory sheet comprising a transparent support and an optically anisotropic layer, wherein the optically anisotropic layer is formed from liquid crystal molecules and monomers having four or more double bonds, said monomers being polymerized to form a polymer in the optically anisotropic layer, wherein the liquid crystal molecules are discotic liquid crystal molecules, and wherein each of the discotic liquid crystal molecules has a double bond, said discotic liquid crystal molecules and the monomers being co-polymerized in the optically anisotropic layer.

Claim 15 (Previously Presented): The liquid crystal display as defined in claim 14, wherein the transparent support of the optical compensatory sheet functions as a transparent protective film of the polarizing plate.