Higher dimensional anomalies

Itsuki Miyane

Last modified: April 24, 2024

Abstract

This is a note for quantum anomalies.

Contents

1	1 Introduction														2								
2	Revi	iew on anomalies																					3
	2.1	Chiral anomalies																				 	3

1 Introduction

2 Review on anomalies

In this section, I will review the typical anomalies in 4d theories.

2.1 Chiral anomalies

Let us consider the simplest case first, the Quantum Electrodynamics case (QED)

$$\mathcal{L} = \bar{\psi}i\not\!\!D\psi - m\bar{\psi}\psi - \frac{1}{4}F^{\mu\nu}F_{\mu\nu}$$
 (2.1)

where $D\!\!\!/ \equiv \gamma^\mu D_\mu = \gamma^\mu (\partial_\mu - ieA_\mu)$ is a Feynman slashed symbol of the covariant derivative .

References

[ACG01] N. Arkani-Hamed, A. G. Cohen, and H. Georgi, *Anomalies on Orbifolds*, Physics Letters B **516** (2001) 395–402, arxiv:hep-th/0103135.