

Chapter 1 – Introduction to FLAT

Sample - Multiple Choice Question

- 1. Which one the following is a invalid string over $\Sigma = \{0,1,2\}$
 - a) 012,000,001
 - b) 210,102,100
 - c) 200,203,222
 - d) None of these
- 2. Which one of the following describe correctly to regular language and Context sensitive language respectively
 - a) Type 0 language and Type 1 language
 - b) Type 3 language and Type 1 language
 - c) Type 3 language and Type 2 language
 - d) Type 1 language and Type 2 language
- 3. The expressive power of Finite Automata is
 - a) 1
 - b) 2
 - c) No expressive power
 - d) Infinite
- 4. What is true about $L = \{a^n b^n \mid n \ge 0 \}$
 - a) L is an natural language
 - b) L is a formal language
 - c) Cannot say
 - d) none of the above
- 5. Every finite language is

- a) Regular Language
- b) Context free language
- c) Recursive enumerable language
- d) All of the above
- 6. The length of a empty string is always
 - a) 0
 - b) 1
 - c) 2
 - d) cannot say depends on alphabet set
 - 7. Consider a string w = FLAT over $\sum = \{F, L, A, T\}$ then the number of prefix and total no of substring for w respectively are
 - a) 5, 11
 - b) 4, 11
 - c) 11, 4
 - d) 11, 5
- 8. Consider a set of alphabet $\Sigma = \{T, O, C\}$ then the number of three length string that can be generated over Σ are
 - a) 8
 - b) 9
 - c) 1
 - d) 3

- 9. Which one of the following represents correct relation between kleen closure(\sum^*) and positive closure(\sum^+)
 - a) $\sum^* \subseteq \sum^*$

- b) $\sum^{+} \subseteq \sum^{*}$
- c) No relation
- d) None of the mentioned
- 10. The number of tuples in grammar G are
 - a) 3
 - b) 7
 - c) 5
 - d) 4

12)if r = (a+b)* then which of the following is true

- a) $(a^* + b^*)^*$
- b) (a*. b*)*
- c) $(a^* + b)^*$
- d) All of the above

13) Which of the following is true?

- a) (01)*0 = 0(10)*
- b) (0+1)*0(0+1)*1(0+1) = (0+1)*01(0+1)*
- c) (0+1)*01(0+1)*+1*0* = (0+1)*
- d) All of the mentioned

٠

- 1. Define Chomsky classification for Formal languages.
- 2. What is language? Define different types of languages.
- 3. What is left linear and right linear grammar?
- 4. Explain pumping lemma for regular languages.
- 5) Draw DFA to accept strings of a's and b's starting with the string ab.
- 6)DFAs to accept strings of a's and b's having exactly one a.

- 5. Use Pumping Lemma to show that following language is not regular. L = { ww^R / w ϵ {0,1}* }
- 6. Prove that the language $L = \{0^n : n \text{ is a prime number}\}\$ is not regular.
- 7. Minimize the following DFAs

