

Population Generation via Resampling

Curtis K. Johnston

Confidential

Dad, where do populations come from?

Dad, where do populations come from?

Well, when a research question and a clinically relevant need love each other, very much......

A population is defined by the question being asked and the clinical need being addressed.

Our selection on these criteria are what defines the population.

(Study Exclusion/inclusion) (PMR)...

These and "other" covariates form a conditional multivariate constellation.

Comorbidities Age Disease severity Organ impairment Concomitant medications

This distribution seems complicated...

These and "other" covariates form a conditional multivariate constellation.

Comorbidities

Age

Disease severity

Organ impairment

Concomitant medications

This distribution seems complicated...

IT IS!

Luckily, we don't need to know the data-generating distribution in order to create a population that follows the distribution!

Resampling allows us to generate a population that maintains the underlying distribution

ID	SEX	WT	DX	FPG	СМ	AGE	ZS	ORF
1	1	75	1	72	1	37	S	Mod
2	0	98	2	87	0	45	Т	Mild

ID	SEX	WT	DX	FPG	
X1	1	75	1	72	
X2	0	98	2	87	

How are populations made de novo?

In most instances resampling from you analysis population should suffice, but when won't it?

- If the population of interest is not well represented in your analysis dataset
 - 50-70 per category of interest would be ideal, but even these rules are not well defined (Dosne 2016)
 - Sometimes this is all you have and you just acknowledge the limitation
- If the population of interest is not represented (at all) in your analysis dataset
 - Use publicly available research datasets (NHANES)

What is NHANES?

National Health and Nutrition Examination Survey (NHANES)

- Survey research program that collect longitudinal data on medical data and physiological measurements (lab data)
 - Surveys have been conducted annually since 1999 (first conducted in 1971)
- Survey results are publicly available; either directly from the NCHS website or via convenient R packages.
 - https://www.cdc.gov/nchs/nhanes/index.htm
 - nhanesA (R package)

What do you need to do before diving in?

First, we must define our question!!!

Ideally, this helps you define your sampling criteria...

What do you need to do before diving in?

First, we must define our question!!!

Ideally, this helps you define your sampling criteria...

Let's imagine an example!

- You have conducted a PopPK analysis...
 - 2-CMT model, first-order absorption...
 - Allometrically scaled weight on CL/F and V/F parameters
 - Covariate effects for eGFR, AGE, and ALB

$$CL/F_{i} = e^{(\theta_{3} + \text{CL/F}_{WT} + \text{CL/F}_{eGFR} + \text{CL/F}_{AGE} + \text{CL/F}_{ALB} + \eta_{3i})}$$

$$CL/F_{WT} = 0.75 \cdot l \, n(\text{WT}_{i} / 70)$$

$$CL/F_{eGFR} = \theta_{6} \cdot l \, n(\text{eGFR}_{i} / 90)$$

$$CL/F_{AGE} = \theta_{7} \cdot l \, n(\text{AGE}_{i} / 35)$$

$$CL/F_{ALB} = \theta_{8} \cdot l \, n(\text{ALB}_{i} / 4.5)$$

$$(16)$$

- "May" be a signal for eGFR on CL/F...
 - Development team wants to know if dose adjustment is warranted....
 - So....what's the question?

- Do I need to adjust the dose in clinically identifiable sub-populations?
 - **KDIGO** subgroups
 - Want to assess of the causal effect of dose in these subpopulations, not the causal effects of covariates.
- How are you defining your margins (efficacy/safety)?
 - Not addressing here, but relevant in real world examples

- We want to conduct population-level simulations for each subgroup of interest and contrast exposures at available dose levels.
- We can normalize to a reference, if desired, otherwise, just contrast exposure ranges

Simulation map

	Model Parameters, Measurable & Uncontrollable Factors	Design	N
Uncertainty (u)	θ (CL, V, V2, Q, KA, Cov) , Ω (Ka, V, CL)	Bootstrap	1000
Population/Trial (p)	Clinically relevant sub-population (θ_i:1000)	NHANES	6
Individual (i)	Weight (kg), Age (y), eGFR (CKDEPI), Alb (g/dL) (η_Ka, η_V, η_CL)	10 and 25 mg @ SS	1000
Occasion (k)			
Observation (t)	AUC_{SS} = (Dose/CL_i)	Median 90 % CI	1000 (x6)

Go to hands on example and walkthrough code

- pk-sim-renal.R
 - Script that generates the virtual populations of interest using NHANES
 - Simulates exposures for them according to the simulation map
 - Summarizes the exposures
 - Generates summary plots

References

- Dosne AG, Niebecker R, Karlsson MO. dOFV distributions: a new diagnostic for the adequacy of parameter uncertainty in nonlinear mixed-effects models applied to the bootstrap. J Pharmacokinet Pharmacodyn. 2016 Dec;43(6):597-608. doi: 10.1007/s10928-016-9496-7. Epub 2016 Oct 11. PMID: 27730481; PMCID: PMC5110608.
- NHANES: https://www.cdc.gov/nchs/nhanes/index.htm

