命题符号化

命题逻辑

School of Computer Wuhan University

2018

内容

命题符号化

- 命题符号化
 - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义
- ② 永真公式
 - 公式的分类
 - 逻辑等价
 - 永真蕴涵
 - 恒等变换和不等变换
 - 对偶性
- ③ 范式
 - 析取范式和合取范式
 - 主析取范式
 - 联结词的扩充和归约
- 4 推理和证明方法
 - 有效结论
 - 形式证明
 - 证明方法

命题符号化

■ 命题符号化

- 命题
 - 符号化
 - 合式公式的形式文法
- 合式公式的形式语义
- 2 永真公式
 - 公式的分类
 - 逻辑等价
 - 永真蕴涵
 - 恒等变换和不等变换
 - 对偶性
- 3 范式
 - 析取范式和合取范式
 - 主析取范式
 - 联结词的扩充和归约
- 4 推理和证明方法
 - 有效结论
 - 形式证明
 - 证明方法

Drawing hands

True or False

- 左手画右手, 右手画左手;
- paradox

Drawing hands

True or False

- 左手画右手, 右手画左手;
- paradox

逻辑

logic

- 自然语言是对客观世界的描述、因此有"真"有"假";
- 逻辑学是研究"真假"的普遍规律的学科:
- 形式逻辑是用符号化的方法研究逻辑、也称符号逻辑、是数

范式

• 数理逻辑的主要研究内容: 公理集合论、证明论、模型论、

逻辑

logic

- 自然语言是对客观世界的描述、因此有"真"有"假";
- 逻辑学是研究"真假"的普遍规律的学科;
- 形式逻辑是用符号化的方法研究逻辑、也称符号逻辑、是数

范式

• 数理逻辑的主要研究内容: 公理集合论、证明论、模型论、

逻辑

logic

- 自然语言是对客观世界的描述、因此有"真"有"假";
- 逻辑学是研究"真假"的普遍规律的学科;
- 形式逻辑是用符号化的方法研究逻辑、也称符号逻辑、是数 理逻辑的基础;

范式

• 数理逻辑的主要研究内容: 公理集合论、证明论、模型论、

00000000000000000

logic

- 自然语言是对客观世界的描述、因此有"真"有"假";
- 逻辑学是研究"真假"的普遍规律的学科;
- 形式逻辑是用符号化的方法研究逻辑, 也称符号逻辑, 是数 理逻辑的基础;
- 数理逻辑的主要研究内容:公理集合论、证明论、模型论、 递归论。

命题(Proposition)

推理和证明

- 数学中的重要问题是"推理"、即构造正确的论证(证明).
- 数理逻辑用符号化的方法的方法,来研究推理.
- 推理的基本要素即为命题.

Definition命题

命题(Proposition)

推理和证明

- 数学中的重要问题是"推理",即构造正确的论证(证明).
- 数理逻辑用符号化的方法的方法,来研究推理.
- 推理的基本要素即为命题.

Definition命题

命题(Proposition)

推理和证明

- 数学中的重要问题是"推理",即构造正确的论证(证明).
- 数理逻辑用符号化的方法的方法、来研究推理.
- 推理的基本要素即为命题.

Definition命题

推理和证明

- 数学中的重要问题是"推理",即构造正确的论证(证明).
- 数理逻辑用符号化的方法的方法、来研究推理.
- 推理的基本要素即为命题.

Definition命题

Example

- 糖是碳水化合物; (简单命题)
- 武汉大学是最美丽的大学; (简单命题)
- 如果不下雨, 就开运动会; (复合命题)

Example-非命题

- 现在几点? (疑问句)
- 请不要讲话! (祈使句)
- $\bullet x + y \leq 4$

Example—Paradox

Example

- 糖是碳水化合物; (简单命题)
- 武汉大学是最美丽的大学; (简单命题)
- 如果不下雨, 就开运动会; (复合命题)

Example-非命题

- 现在几点? (疑问句)
- 请不要讲话! (祈使句)
- $\bullet x + y \leq 4$

Example—Paradox

Example

- 糖是碳水化合物; (简单命题)
- 武汉大学是最美丽的大学; (简单命题)
- 如果不下雨, 就开运动会; (复合命题)

Example-非命题

- 现在几点? (疑问句)
- 请不要讲话! (祈使句)
- \bullet $x + y \leq 4$

Example-Paradox

Example

- 糖是碳水化合物; (简单命题)
- 武汉大学是最美丽的大学; (简单命题)
- 如果不下雨、就开运动会; (复合命题)

Example-非命题

- 现在几点? (疑问句)
- 请不要讲话! (祈使句)
- $\bullet x + y \leq 4$

Example—Paradox

Example

- 糖是碳水化合物; (简单命题)
- 武汉大学是最美丽的大学; (简单命题)
- 如果不下雨、就开运动会; (复合命题)

Example-非命题

- 现在几点? (疑问句)
- 请不要讲话! (祈使句)
- $\bullet x + y \leq 4$

Example—Paradox

范式

Examples

Example

- 糖是碳水化合物; (简单命题)
- 武汉大学是最美丽的大学; (简单命题)
- 如果不下雨, 就开运动会; (复合命题)

Example-非命题

- 现在几点? (疑问句)
- 请不要讲话! (祈使句)
- \bullet $x + y \leq 4$

Example-Paradox

范式

Example

- 糖是碳水化合物; (简单命题)
- 武汉大学是最美丽的大学; (简单命题)
- 如果不下雨, 就开运动会; (复合命题)

Example-非命题

- 现在几点? (疑问句)
- 请不要讲话! (祈使句)
- $\bullet x + y \leq 4$

Example-Paradox

命题符号化

- 每个具体命题有惟一真假值, 称为命题的真值.
- 对于真命题、称命题真值为"真": 假命题、称其真值为 "假"

- 但符号化只关心命题的真假,不关心其具体含义.
- 将不能再分的最小命题单位称为原子 (atom), 用英文字母 表示:
- 原子通过联结词 (connectives) 按照一定的规则组成复合

命题符号化

- 每个具体命题有惟一真假值、称为命题的真值.
- 对于真命题、称命题真值为"真"; 假命题、称其真值为 "假".
- 但符号化只关心命题的真假,不关心其具体含义.
- 将不能再分的最小命题单位称为原子 (atom), 用英文字母 表示:
- 原子通过联结词 (connectives) 按照一定的规则组成复合

命题符号化

- 每个具体命题有惟一真假值、称为命题的真值.
- 对于真命题、称命题真值为"真"; 假命题、称其真值为 "假".

- 但符号化只关心命题的真假, 不关心其具体含义.
- 将不能再分的最小命题单位称为原子 (atom), 用英文字母 表示:
- 原子通过联结词 (connectives) 按照一定的规则组成复合

命题符号化

- 每个具体命题有惟一真假值、称为命题的真值.
- 对于真命题、称命题真值为"真"; 假命题、称其真值为 "假".

- 但符号化只关心命题的真假, 不关心其具体含义.
- 将不能再分的最小命题单位称为原子 (atom), 用英文字母 表示:
 - 命题常元-真命题: T、假命题: F;
 - 命题变元-可以代表真命题或假命题、常用大写字母表示:
- 原子通过联结词 (connectives) 按照一定的规则组成复合

命题符号化

- 每个具体命题有惟一真假值, 称为命题的真值.
- 对于真命题,称命题真值为"真";假命题,称其真值为 "假".

- 但符号化只关心命题的真假,不关心其具体含义.
- 将不能再分的最小命题单位称为原子 (atom), 用英文字母表示:
 - ◆ 命题常元-真命题: T, 假命题: F;
 - 命题变元-可以代表真命题或假命题,常用大写字母表示: P,Q,R,...
- 原子通过联结词 (connectives) 按照一定的规则组成复合命题。

命题符号化

- 每个具体命题有惟一真假值, 称为命题的真值.
- 对于真命题,称命题真值为"真";假命题,称其真值为 "假".

- 但符号化只关心命题的真假,不关心其具体含义.
- 将不能再分的最小命题单位称为原子 (atom), 用英文字母表示:
 - 命题常元-真命题: Ⅱ, 假命题: ⊮;
 - 命题变元-可以代表真命题或假命题,常用大写字母表示:P,Q,R,...
- 原子通过联结词 (connectives) 按照一定的规则组成复合命题。

命题符号化

- 每个具体命题有惟一真假值, 称为命题的真值.
- 对于真命题,称命题真值为"真";假命题,称其真值为 "假".

- 但符号化只关心命题的真假, 不关心其具体含义.
- 将不能再分的最小命题单位称为原子 (atom),用英文字母表示:
 - 命题常元-真命题: T, 假命题: F;
 - 命题变元-可以代表真命题或假命题,常用大写字母表示:P,Q,R,...
- 原子通过联结词 (connectives) 按照一定的规则组成复合命题.

逻辑联结词

Table: 常用的逻辑联结词

名称	英文	符号	解释		
否定词	negation	$\neg P$	非P, 否定P		
析取词	disjunction	$P \lor Q$	P或者Q (兼或)		
合取词	conjunction	$P \wedge Q$	P并且Q		
蕴涵词	implication	$P \rightarrow Q$	如果P,则Q		
			P是Q的充分条件		
			Q是P的必要条件		
			P是前提,Q是结论		
			当P,则Q(仅当Q,有P)		
等值词	bicondition	$P \leftrightarrow Q$	P等值于Q		
			P是Q的充分必要条件		
			P当且仅当Q		

逻辑联结词

联结词含义

● 原子命题的真值有"真"和"假",由原子和联结词组成的 复合命题也有"真"和"假".

范式

• 复合命题的真值由其中的原子和联结词的含义决定.

Table: 逻辑联结词的含义

P	Q	$\neg P$	$P \lor Q$	$P \wedge Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

逻辑联结词

联结词含义

● 原子命题的真值有"真"和"假",由原子和联结词组成的 复合命题也有"真"和"假".

范式

• 复合命题的真值由其中的原子和联结词的含义决定.

Table: 逻辑联结词的含义

P	Q	$\neg P$	$P \lor Q$	$P \wedge Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

● 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

范式

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真, 后件为假, 则该蕴涵式不成立, 即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

范式

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真, 后件为假, 则该蕴涵式不成立, 即为假;
- 若前件为假、后件为真或假、都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

范式

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真、后件为假、则该蕴涵式不成立、即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

范式

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真,后件为假,则该蕴涵式不成立,即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

范式

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真,后件为假,则该蕴涵式不成立,即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时,剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真,后件为假,则该蕴涵式不成立,即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

范式

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真,后件为假,则该蕴涵式不成立,即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for Thursday)

命题

你可以上网,仅当你是计算机专业的学生或者你不是一年级的学 生。

苑,式,

符号化命题中的原子

- A: 你可以上网:
- C: 你是计算机专业的学生:
- F: 你是一年级的学生.

- 你不是一年级的学生: ¬F
- 你是计算机专业的学生或者你不是一年级的学生: C∨¬F
- 原命题: A → (C ∨ ¬F)

命题

你可以上网、仅当你是计算机专业的学生或者你不是一年级的学 生。

苑,式,

符号化命题中的原子

- A: 你可以上网;
- C: 你是计算机专业的学生;
- F: 你是一年级的学生.

- 你不是一年级的学生: ¬F
- 你是计算机专业的学生或者你不是一年级的学生: C∨¬F
- 原命题: A → (C ∨ ¬F)

命题

你可以上网、仅当你是计算机专业的学生或者你不是一年级的学 生。

苑,式,

符号化命题中的原子

- A: 你可以上网;
- C: 你是计算机专业的学生;
- F: 你是一年级的学生.

- 你不是一年级的学生: ¬F
- 你是计算机专业的学生或者你不是一年级的学生: C∨¬F
- 原命题: A → (C ∨ ¬F)

命题

你可以上网、仅当你是计算机专业的学生或者你不是一年级的学 生。

苑,式,

符号化命题中的原子

- A: 你可以上网;
- C: 你是计算机专业的学生;
- F: 你是一年级的学生.

- 你不是一年级的学生: ¬F
- 你是计算机专业的学生或者你不是一年级的学生: C∨¬F
- 原命题: A → (C ∨ ¬F)

命题

你可以上网、仅当你是计算机专业的学生或者你不是一年级的学 生。

范式

符号化命题中的原子

- A: 你可以上网:
- C: 你是计算机专业的学生;
- F: 你是一年级的学生.

- 你不是一年级的学生: ¬F
- 你是计算机专业的学生或者你不是一年级的学生: C∨¬F
- 原命题: A → (C ∨ ¬F)

命题

你可以上网、仅当你是计算机专业的学生或者你不是一年级的学 生。

范式

符号化命题中的原子

- A: 你可以上网:
- C: 你是计算机专业的学生;
- F: 你是一年级的学生.

- 你不是一年级的学生: ¬F
- 你是计算机专业的学生或者你不是一年级的学生: C∨¬F
- 原命题: A → (C ∨ ¬F)

合式公式 (Well-Formed Formulas, WFFs)

Remark

命题符号化的结果是合式公式,是命题"语言"中的"句子".

字母表

- 常元: T, F
- 变元: P. Q. R....
- 联结词: ¬, ∨, ∧, →, ↔
- 辅助符号: (.)

- ① 递归基础:常元和变元是WFFs;

命题符号化的结果是合式公式,是命题"语言"中的"句子".

字母表

- 常元: T、F
- 変元: P, Q, R, ...
- 联结词: ¬, ∨, ∧, →, ↔
- 辅助符号: (.)

- ① 递归基础:常元和变元是WFFs;

00000000000

命题符号化的结果是合式公式,是命题"语言"中的"句子".

字母表

- 常元: T、F
- 変元: P, Q, R, ...
- 联结词: ¬, ∨, ∧, →, ↔
- 辅助符号: (.)

- ① 递归基础:常元和变元是WFFs;

合式公式 (Well-Formed Formulas, WFFs)

Remark

00000000000

命题符号化的结果是合式公式,是命题"语言"中的"句子".

字母表

- 常元: T、F
- 变元: P, Q, R, ...
- 联结词: ¬, ∨, ∧, →, ↔
- 辅助符号: (,)

- ① 递归基础:常元和变元是WFFs;

00000000000

命题符号化的结果是合式公式,是命题"语言"中的"句子".

字母表

- 常元: T、F
- 变元: P, Q, R, ...
- 联结词: ¬, ∨, ∧, →, ↔
- 辅助符号: (,)

- 递归基础:常元和变元是WFFs;

00**00**0000000

命题符号化的结果是合式公式,是命题"语言"中的"句子".

字母表

- 常元: T, F
- 変元: P, Q, R, ...
- 联结词: ¬, ∨, ∧, →, ↔
- 辅助符号: (,)

- 递归基础:常元和变元是WFFs;
- ② 递归规则: 若A, B是WFFs, 则 $(\neg A), (A \lor B), (A \land B), (A \to B), (A \leftrightarrow B)$ **EWFFs**;

00**00**0000000

命题符号化的结果是合式公式,是命题"语言"中的"句子".

字母表

- 常元: T, F
- 変元: P, Q, R, ...
- 联结词: ¬, ∨, ∧, →, ↔
- 辅助符号: (.)

- 递归基础:常元和变元是WFFs;
- ② 递归规则:若A,B是WFFs,则 $(\neg A), (A \lor B), (A \land B), (A \to B), (A \leftrightarrow B)$ **EWFFs**;
- 极小性条款:由以上规则在有限步生成的都是WFFs.

Example

• $(A \to (C \lor (\neg F)))$ 是公式.

Proof.

- A. C. F. 是公式、根据规则①:
- ③ (C∨(¬F)), 根据①和规则②;
- $(A \rightarrow (C \lor (\neg F)))$ 是公式,根据 $(A \rightarrow (C \lor (\neg F)))$

- $(→ (C \lor \neg F))$ 不是公式、因为没有生成(→ A) 的规则;
- $(A \Rightarrow (C \lor \neg F))$ 不是公式,因为⇒不是联结词.

Example

• $(A \to (C \lor (\neg F)))$ 是公式.

Proof.

- **●** *A*, *C*, *F*, 是公式, 根据规则①;
- ③ (C∨(¬F)), 根据①和规则②;
- $(A \rightarrow (C \lor (\neg F)))$ 是公式,根据(B)1000和规则②.

- $(→ (C \lor \neg F))$ 不是公式、因为没有生成(→ A) 的规则;
- $(A \Rightarrow (C \lor \neg F))$ 不是公式,因为⇒不是联结词.

Example

• $(A \to (C \lor (\neg F)))$ 是公式.

Proof.

- **●** A, C, F, 是公式, 根据规则①;
- ② (¬F)是公式,根据❶和规则②;
- ③ (C∨(¬F)), 根据①和规则②;
- $(A \rightarrow (C \lor (\neg F)))$ 是公式,根据 $(A \rightarrow (C \lor (\neg F)))$

- $(→ (C \lor \neg F))$ 不是公式、因为没有生成(→ A) 的规则;
- $(A \Rightarrow (C \lor \neg F))$ 不是公式,因为⇒不是联结词.

Example

• $(A \to (C \lor (\neg F)))$ 是公式.

Proof.

- **●** A, C, F, 是公式, 根据规则①;
- ② (¬F)是公式,根据①和规则②;
- **③** (C∨(¬F)),根据❶和规则②;
- $(A \rightarrow (C \lor (\neg F)))$ 是公式,根据 $(A \rightarrow (C \lor (\neg F)))$

- $(→ (C \lor \neg F))$ 不是公式、因为没有生成(→ A) 的规则;
- $(A \Rightarrow (C \lor \neg F))$ 不是公式,因为⇒不是联结词.

Example

• $(A \to (C \lor (\neg F)))$ 是公式.

Proof.

- **●** A, C, F, 是公式, 根据规则①;
- ② (¬F)是公式,根据①和规则②;
- 3 (C∨(¬F)), 根据①和规则②;
- \bullet $(A \rightarrow (C \lor (\neg F)))$ 是公式、根据 $\bullet \bullet$ 和规则②.

- $(→ (C \lor \neg F))$ 不是公式、因为没有生成(→ A) 的规则;
- $(A \Rightarrow (C \lor \neg F))$ 不是公式,因为 \Rightarrow 不是联结词.

Example

• $(A \to (C \lor (\neg F)))$ 是公式.

Proof.

- **●** A, C, F, 是公式, 根据规则①;
- ② (¬F)是公式,根据①和规则②;
- 3 (C∨(¬F)), 根据①和规则②;
- $(A \rightarrow (C \lor (\neg F)))$ 是公式、根据 $(A \rightarrow (C \lor (\neg F)))$ 是公式、根据 $(A \rightarrow (C \lor (\neg F)))$ 是公式、根据 $(A \rightarrow (C \lor (\neg F)))$

- $(\rightarrow (C \lor \neg F))$ 不是公式,因为没有生成 $(\rightarrow A)$ 的规则;
- $(A \Rightarrow (C \lor \neg F))$ 不是公式、因为 \Rightarrow 不是联结词.

Example

• $(A \to (C \lor (\neg F)))$ 是公式.

Proof.

- **●** A, C, F, 是公式, 根据规则①;
- ② (¬F)是公式,根据①和规则②;
- **③** (C∨(¬F)),根据❶和规则②;
- $(A \rightarrow (C \lor (\neg F)))$ 是公式、根据 $(A \rightarrow (C \lor (\neg F)))$ 是公式、根据 $(A \rightarrow (C \lor (\neg F)))$ 是公式、根据 $(A \rightarrow (C \lor (\neg F)))$

- $(\rightarrow (C \lor \neg F))$ 不是公式,因为没有生成 $(\rightarrow A)$ 的规则;
- $(A \Rightarrow (C \lor \neg F))$ 不是公式,因为⇒不是联结词.

0000000000000

- 最外层的括号可以省略;
- 运算的优先级别由高到低:括号、¬, ∧, ∨, →, ↔;
- 同一二元运算符号从左到右进行结合.
- (A→(C∨(¬F)))可以简化为: A→C∨¬F
- ((P ∨ Q) ∨ R)可以简化为: P ∨ Q ∨ R

- $P \lor Q \land R \equiv P \lor (Q \land R) \neq (P \lor Q) \land R$
- $P \rightarrow Q \rightarrow R \equiv (P \rightarrow Q) \rightarrow R \neq P \rightarrow (Q \rightarrow R)$

- 最外层的括号可以省略;
- 运算的优先级别由高到低:括号, ¬, ∧, ∨, →, ↔;

苑,式,

- 同一二元运算符号从左到右进行结合.
- $(A \rightarrow (C \lor (\neg F)))$ 可以简化为: $A \rightarrow C \lor \neg F$
- ((P∨Q)∨R)可以简化为: P∨Q∨R

- $P \lor Q \land R \equiv P \lor (Q \land R) \neq (P \lor Q) \land R$
- $P \rightarrow Q \rightarrow R \equiv (P \rightarrow Q) \rightarrow R \neq P \rightarrow (Q \rightarrow R)$

- 最外层的括号可以省略;
- 运算的优先级别由高到低:括号、¬,∧,∨,→,↔;

苑,式,

- 同一二元运算符号从左到右进行结合.
- $(A \rightarrow (C \lor (\neg F)))$ 可以简化为: $A \rightarrow C \lor \neg F$
- ((P ∨ Q) ∨ R)可以简化为: P ∨ Q ∨ R

- $P \lor Q \land R \equiv P \lor (Q \land R) \neq (P \lor Q) \land R$
- $P \rightarrow Q \rightarrow R \equiv (P \rightarrow Q) \rightarrow R \neq P \rightarrow (Q \rightarrow R)$

- 最外层的括号可以省略;
- 运算的优先级别由高到低:括号、¬,∧,∨,→,↔;

苑,式,

- 同一二元运算符号从左到右进行结合.
- (A→(C∨(¬F)))可以简化为: A→C∨¬F
- ((P∨Q)∨R)可以简化为: P∨Q∨R

- $P \lor Q \land R \equiv P \lor (Q \land R) \neq (P \lor Q) \land R$
- $P \rightarrow Q \rightarrow R \equiv (P \rightarrow Q) \rightarrow R \neq P \rightarrow (Q \rightarrow R)$

- 最外层的括号可以省略;
- 运算的优先级别由高到低:括号、¬,∧,∨,→,↔;

苑,式,

- 同一二元运算符号从左到右进行结合.
- (A→(C∨(¬F)))可以简化为: A→C∨¬F
- ((P∨Q)∨R)可以简化为: P∨Q∨R

- $P \lor Q \land R \equiv P \lor (Q \land R) \neq (P \lor Q) \land R$
- $P \rightarrow Q \rightarrow R \equiv (P \rightarrow Q) \rightarrow R \neq P \rightarrow (Q \rightarrow R)$

- 最外层的括号可以省略;
- 运算的优先级别由高到低:括号、¬,∧,∨,→,↔;
- 同一二元运算符号从左到右进行结合.
- (A→(C∨(¬F)))可以简化为: A→C∨¬F
- ((P∨Q)∨R)可以简化为: P∨Q∨R

- $P \lor Q \land R \equiv P \lor (Q \land R) \neq (P \lor Q) \land R$
- $P \rightarrow Q \rightarrow R \equiv (P \rightarrow Q) \rightarrow R \neq P \rightarrow (Q \rightarrow R)$

- 最外层的括号可以省略;
- 运算的优先级别由高到低:括号、¬,∧,∨,→,↔;
- 同一二元运算符号从左到右进行结合.
- (A→(C∨(¬F)))可以简化为: A→C∨¬F
- ((P∨Q)∨R)可以简化为: P∨Q∨R

- $P \lor Q \land R \equiv P \lor (Q \land R) \neq (P \lor Q) \land R$
- $P \rightarrow Q \rightarrow R \equiv (P \rightarrow Q) \rightarrow R \neq P \rightarrow (Q \rightarrow R)$

• 每个命题都可以符号化为一个公式;

• 每个命题中的原子的真假一旦确定、则该命题的真假也惟一 确定,即对应公式的真假值也惟一确定.

表示公式中原子的真假和公式真假值之间关系.为方便书写、用 0表示假值, 1表示真值.

P	Q	$P \lor Q$	$P \wedge Q$	$P \rightarrow Q$	$P\leftrightarrow Q$

逻辑运算的基本法则

- 每个命题都可以符号化为一个公式;
- 每个命题中的原子的真假一旦确定、则该命题的真假也惟一 确定,即对应公式的真假值也惟一确定.

表示公式中原子的真假和公式真假值之间关系.为方便书写,用 0表示假值, 1表示真值.

P	Q	$P \lor Q$	$P \wedge Q$	$P \rightarrow Q$	$P\leftrightarrow Q$

- 每个命题都可以符号化为一个公式;
- 每个命题中的原子的真假一旦确定、则该命题的真假也惟一 确定,即对应公式的真假值也惟一确定.

范式

表示公式中原子的真假和公式真假值之间关系.为方便书写,用 0表示假值, 1表示真值.

P	Q	$P \lor Q$	$P \wedge Q$	$P \rightarrow Q$	$P\leftrightarrow Q$

- 每个命题都可以符号化为一个公式;
- 每个命题中的原子的真假一旦确定、则该命题的真假也惟一 确定,即对应公式的真假值也惟一确定.

Definition真值表

表示公式中原子的真假和公式真假值之间关系.为方便书写、用 0表示假值,1表示真值.

Table: 逻辑联结词的含义

P	Q	$\neg P$	$P \lor Q$	$P \wedge Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

蕴涵式

● 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真, 后件为假, 则该蕴涵式不成立, 即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

蕴涵式

0000000000000

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

范式

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真, 后件为假, 则该蕴涵式不成立, 即为假;
- 若前件为假、后件为真或假、都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

蕴涵式

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

范式

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真、后件为假、则该蕴涵式不成立、即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

00000000000

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真,后件为假,则该蕴涵式不成立,即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

蕴涵式

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真,后件为假,则该蕴涵式不成立,即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时,剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

蕴涵式

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

范式

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真,后件为假,则该蕴涵式不成立,即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for

蕴涵式

• 蕴涵式仅在条件为真结论为假时取假值,其余情况为真值。

Example

- 如果上天再给一次重来机会, 我一定要...
- 若前件为真,后件为假,则该蕴涵式不成立,即为假;
- 若前件为假,后件为真或假,都为真。
- 由于简单命题在符号化为原子时、剥离了原子之间可能存在 的语义关系、蕴涵式的真假仅与条件和结论的真假有关、而 与条件和结论是否有语义关联无关。

- If today is Thursday, then 2+3=5. (True)
- If today is Thursday, then 2+3=6. (True, except for Thursday)

一般公式的语义

记号

• 记含n个原子 P_1, P_2, \ldots, P_n 的公式G为: $G(P_1, P_2, \ldots, P_n)$.

范式

定义

设 $G(P_1, P_2, \ldots, P_n)$ 是一公式: 对 P_1, P_2, \ldots, P_n 的一次取值 $\langle x_1, x_2, \dots, x_n \rangle, x_i \in \{0, 1\},$ 称为一个指派(assignment). 记 $P_1, P_2, ..., P_n$ 的指派 $I = \langle x_1, x_2, ..., x_n \rangle$ 为: $I = x_1 x_2 ... x_n$

Property

- $G(P,Q) = \neg((P \lor Q) \land P)$ 的4个指派是:
- 指派的下标与对应指派间的关系。

记号

0000000000000

• 记含n个原子 P_1, P_2, \ldots, P_n 的公式G为: $G(P_1, P_2, \ldots, P_n)$.

定义

设 $G(P_1, P_2, \ldots, P_n)$ 是一公式: 对 P_1, P_2, \ldots, P_n 的一次取值 $\langle x_1, x_2, \dots, x_n \rangle, x_i \in \{0, 1\},$ 称为一个指派(assignment). 记 $P_1, P_2, ..., P_n$ 的指派 $I = \langle x_1, x_2, ..., x_n \rangle$ 为: $I = x_1 x_2 ... x_n$

Property

• 公式 $G(P_1, P_2, \ldots, P_n)$ 一共有 2^n 种不同的指派.

- $G(P,Q) = \neg((P \lor Q) \land P)$ 的4个指派是:
- 指派的下标与对应指派间的关系。

一般公式的语义

记号

• 记含n个原子 P_1, P_2, \ldots, P_n 的公式G为: $G(P_1, P_2, \ldots, P_n)$.

范式

定义

设 $G(P_1, P_2, \ldots, P_n)$ 是一公式: 对 P_1, P_2, \ldots, P_n 的一次取值 $\langle x_1, x_2, \dots, x_n \rangle, x_i \in \{0, 1\},$ 称为一个指派(assignment). 记 $P_1, P_2, ..., P_n$ 的指派 $I = \langle x_1, x_2, ..., x_n \rangle$ 为: $I = x_1 x_2 ... x_n$

Property

• 公式 $G(P_1, P_2, \ldots, P_n)$ 一共有 2^n 种不同的指派.

- $G(P,Q) = \neg((P \lor Q) \land P)$ 的4个指派是: $I_0 = 00, I_1 = 01, I_2 = 10, I_3 = 11.$
- 指派的下标与对应指派间的关系。

范式

一般公式的语义

记号

• 记含n个原子 P_1, P_2, \ldots, P_n 的公式G为: $G(P_1, P_2, \ldots, P_n)$.

定义

设 $G(P_1, P_2, \ldots, P_n)$ 是一公式: 对 P_1, P_2, \ldots, P_n 的一次取值 $\langle x_1, x_2, \dots, x_n \rangle, x_i \in \{0, 1\},$ 称为一个指派(assignment). 记 $P_1, P_2, ..., P_n$ 的指派 $I = \langle x_1, x_2, ..., x_n \rangle$ 为: $I = x_1 x_2 ... x_n$

Property

• 公式 $G(P_1, P_2, \ldots, P_n)$ 一共有 2^n 种不同的指派.

- G(P, Q) = ¬((P ∨ Q) ∧ P)的4个指派是: $I_0 = 00, I_1 = 01, I_2 = 10, I_3 = 11.$
- 指派的下标与对应指派间的关系。

定义

设 $I = x_1 x_2 \dots x_n$ 为公式 $G(P_1, P_2, \dots, P_n)$ 的一个指派,则公式G在指派/下的值记为: I(G), 其递归定义如下:

•
$$I(\mathbb{T}) = 1$$
, $I(\mathbb{F}) = 0$;

•
$$I(G) = x_i$$
, if $G \equiv P_i$;

$$I(G) = \begin{cases} \neg I(A), & \text{if} \quad G = \neg A \\ I(A) \land I(B), & \text{if} \quad G = A \land B \\ I(A) \lor I(B), & \text{if} \quad G = A \lor B \\ I(A) \to I(B), & \text{if} \quad G = A \to B \\ I(A) \leftrightarrow I(B), & \text{if} \quad G = A \leftrightarrow B \end{cases}$$

定义

设 $I = x_1 x_2 \dots x_n$ 为公式 $G(P_1, P_2, \dots, P_n)$ 的一个指派,则公式G在指派/下的值记为: I(G), 其递归定义如下:

•
$$I(\mathbb{T}) = 1$$
, $I(\mathbb{F}) = 0$;

•
$$I(G) = x_i$$
, if $G \equiv P_i$;

$$I(G) = \begin{cases} \neg I(A), & \text{if} \quad G = \neg A \\ I(A) \land I(B), & \text{if} \quad G = A \land B \\ I(A) \lor I(B), & \text{if} \quad G = A \lor B \\ I(A) \to I(B), & \text{if} \quad G = A \to B \\ I(A) \leftrightarrow I(B), & \text{if} \quad G = A \leftrightarrow B \end{cases}$$

定义

设 $I = x_1 x_2 \dots x_n$ 为公式 $G(P_1, P_2, \dots, P_n)$ 的一个指派,则公式G在指派/下的值记为: I(G), 其递归定义如下:

•
$$I(\mathbb{T}) = 1$$
, $I(\mathbb{F}) = 0$;

•
$$I(G) = x_i$$
, if $G \equiv P_i$;

•

$$I(G) = \begin{cases} \neg I(A), & \text{if} \quad G = \neg A \\ I(A) \land I(B), & \text{if} \quad G = A \land B \\ I(A) \lor I(B), & \text{if} \quad G = A \lor B \\ I(A) \rightarrow I(B), & \text{if} \quad G = A \rightarrow B \\ I(A) \leftrightarrow I(B), & \text{if} \quad G = A \leftrightarrow B \end{cases}$$

Definition

• 公式 $G(P_1, P_2, \ldots, P_n)$ 在 2^n 的指派下的值所构成的表称为公 式G的真值表。

公式 $G = \neg((P \lor Q) \land P)$ 的真值表

指派	P	Q	$P \lor Q$	$(P \lor Q) \land P$	G
$I_0 = 00$	0	0	0	0	1
$I_1 = 01$	0	1	1	0	1
$I_2 = 10$	1	0	1	1	0
$I_3 = 11$	1	1	1	1	0

Remarks (1/2)

• 公式 $G(P_1, P_2, ..., P_n)$ 的语义解释实际上是一个函数:

$$\underbrace{\{0,1\}\times\{0,1\}\times\ldots\times\{0,1\}}_{n\c k}\rightarrow\{0,1\}$$

$$\langle x_1, x_2, \ldots, x_n \rangle \mapsto G(x_1, x_2, \ldots, x_n)$$

- 这样的函数称为布尔函数(Boolean Function);
- 真值表的指派排列次序最好按二进制数从小到大的次序;
- 形式系统的构成:"形式结构+语义"
- 逻辑问题转化为"计算问题"。

• 公式 $G(P_1, P_2, ..., P_n)$ 的语义解释实际上是一个函数:

$$\underbrace{\{0,1\}\times\{0,1\}\times\ldots\times\{0,1\}}_{n \not \mathbf{x}} \to \{0,1\}$$

$$\langle x_1, x_2, \ldots, x_n \rangle \mapsto G(x_1, x_2, \ldots, x_n)$$

- 这样的函数称为布尔函数(Boolean Function);
- 真值表的指派排列次序最好按二进制数从小到大的次序:
- 形式系统的构成:"形式结构+语义"
- 逻辑问题转化为"计算问题"。

公式G(P₁, P₂,..., P_n)的语义解释实际上是一个函数:

$$\underbrace{\{0,1\}\times\{0,1\}\times\ldots\times\{0,1\}}_{n \not \mathbf{x}} \to \{0,1\}$$

$$\langle x_1, x_2, \ldots, x_n \rangle \mapsto G(x_1, x_2, \ldots, x_n)$$

- 这样的函数称为布尔函数(Boolean Function);
- 真值表的指派排列次序最好按二进制数从小到大的次序:
- 形式系统的构成:"形式结构+语义"
- 逻辑问题转化为"计算问题"。

公式G(P₁, P₂,..., P_n)的语义解释实际上是一个函数:

$$\underbrace{\{0,1\}\times\{0,1\}\times\ldots\times\{0,1\}}_{n \not \mathbf{x}} \to \{0,1\}$$

$$\langle x_1, x_2, \ldots, x_n \rangle \mapsto G(x_1, x_2, \ldots, x_n)$$

- 这样的函数称为布尔函数(Boolean Function);
- 真值表的指派排列次序最好按二进制数从小到大的次序:
- 形式系统的构成:"形式结构+语义"
- 逻辑问题转化为"计算问题"。

• 公式 $G(P_1, P_2, \ldots, P_n)$ 的语义解释实际上是一个函数:

$$\underbrace{\{0,1\}\times\{0,1\}\times\ldots\times\{0,1\}}_{n \not \mathbf{X}} \to \{0,1\}$$

$$\langle x_1, x_2, \ldots, x_n \rangle \mapsto G(x_1, x_2, \ldots, x_n)$$

- 这样的函数称为布尔函数(Boolean Function);
- 真值表的指派排列次序最好按二进制数从小到大的次序;
- 形式系统的构成:"形式结构+语义"
- 逻辑问题转化为"计算问题"。

Remarks (2/2)

计算问题

- 计算一个n个原子的真值表需要2n次计算;
- 计算能力为 $1T(2^{40})$ Flops、计算100个原子的公式的真值表

$$2^{100}$$
(次) = $2^{100} \div 2^{40} = 2^{60}$ (秒)
= $2^{60} \div (365 * 24 * 3600) = 3.6558901 \times 10^{10}$ (年)

Boolean Satisfiability problem (SAT): NP-complete

Remarks (2/2)

计算问题

- 计算一个n个原子的真值表需要2n次计算;
- 计算能力为 $1T(2^{40})$ Flops, 计算100个原子的公式的真值表 所用的时间是:

$$2^{100}$$
(次) = $2^{100} \div 2^{40} = 2^{60}$ (秒)
= $2^{60} \div (365 * 24 * 3600) = 3.6558901 \times 10^{10}$ (年)

Boolean Satisfiability problem (SAT): NP-complete

计算问题

- 计算一个n个原子的真值表需要2n次计算;
- 计算能力为 $1T(2^{40})$ Flops, 计算100个原子的公式的真值表所用的时间是:

$$2^{100}$$
(次) = $2^{100} \div 2^{40} = 2^{60}$ (秒)
= $2^{60} \div (365 * 24 * 3600) = 3.6558901 \times 10^{10}$ (年)

 Boolean Satisfiability problem (SAT): NP-complete problem. 命题符号化

■ 命题符号化

- 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义

② 永真公式

- 公式的分类
- 逻辑等价
- 永真蕴涵
- 恒等变换和不等变换
- 对偶性

3 范式

- 析取范式和合取范式
- 主析取范式
- 联结词的扩充和归约

4 推理和证明方法

- 有效结论
- 形式证明
- 证明方法

定义

设G是公式:

- 如果对G的任意一个解释I,都有I(G) = 1,称G为重言式。
- 如果存在G的一个解释I, 有I(G) = 1, 称G为可满足式。
- 如果对G的任意一个解释I,都有I(G) = 0,称G为矛盾式。

Example

指派	Q	$P \lor Q$	$(P \lor Q) \land P$	$\neg (P \lor Q) \land P$	

范式

重言式(Tautology, 永真式)

定义

设G是公式:

- 如果对G的任意一个解释I,都有I(G) = 1,称G为重言式。
- 如果存在G的一个解释I, 有I(G) = 1, 称G为可满足式。
- 如果对G的任意一个解释I、都有I(G) = 0、称G为矛盾式。

指派	Q	$P \lor Q$	$(P \lor Q) \land P$	$\neg (P \lor Q) \land P$	

重言式(Tautology, 永真式)

定义

命颗符号化

设G是公式:

• 如果对G的任意一个解释I,都有I(G) = 1,称G为重言式。

范式

- 如果存在G的一个解释I, 有I(G) = 1, 称G为可满足式。
- 如果对G的任意一个解释I、都有I(G) = 0、称G为矛盾式。

指派	Q	$P \lor Q$	$(P \lor Q) \land P$	$\neg (P \lor Q) \land P$	

重言式(Tautology, 永真式)

定义

设G是公式:

- 如果对G的任意一个解释I,都有I(G) = 1,称G为重言式。
- 如果存在G的一个解释I, 有I(G) = 1, 称G为可满足式。
- 如果对G的任意一个解释I,都有I(G) = 0,称G为矛盾式。

指	派	Q	$P \lor Q$	$(P \lor Q) \land P$	$\neg (P \lor Q) \land P$	

重言式(Tautology, 永真式)

定义

设G是公式:

- 如果对G的任意一个解释I,都有I(G) = 1,称G为重言式。
- 如果存在G的一个解释I, 有I(G) = 1, 称G为可满足式。
- 如果对G的任意一个解释I,都有I(G) = 0,称G为矛盾式。

公式
$$G = \neg((P \lor Q) \land P) \leftrightarrow \neg P$$
为重言式

指派	P	Q	$P \lor Q$	$(P \lor Q) \land P$	$\neg (P \lor Q) \land P$	$\neg P$	G
$I_0 = 00$	0	0	0	0	1	1	1
$I_1 = 01$	0	1	1	0	1	1	1
$I_2 = 10$	1	0	1	1	0	0	1
$I_3 = 11$	1	1	1	1	0	0	1

定义

命题符号化

称公式F和G逻辑等价, iff, 公式(F) ↔ (G)是重言式, 记为: $F \Leftrightarrow G$

定义

称公式F和G逻辑等价, iff, 公式(F) ↔ (G)是重言式, 记为: $F \Leftrightarrow G$

范式

Example

- $\triangle \exists G = \neg((P \lor Q) \land P) \leftrightarrow \neg P \land \varpi \equiv \exists \exists;$
- \mathbb{Q} , $\neg((P \vee Q) \wedge P) \Leftrightarrow \neg P$

- \bullet $A \Leftrightarrow A$
- if $A \Leftrightarrow B$, then $B \Leftrightarrow A$
- if $A \Leftrightarrow B$ and $B \Leftrightarrow C$, then $A \Leftrightarrow C$

定义

称公式F和G逻辑等价, iff, 公式(F) ↔ (G)是重言式, 记为: $F \Leftrightarrow G$

范式

Example

- 公式 $G = \neg((P \lor Q) \land P) \leftrightarrow \neg P$ 为重言式;
- \mathbb{N} . $\neg((P \lor Q) \land P) \Leftrightarrow \neg P$

- \bullet $A \Leftrightarrow A$
- if $A \Leftrightarrow B$, then $B \Leftrightarrow A$
- if $A \Leftrightarrow B$ and $B \Leftrightarrow C$, then $A \Leftrightarrow C$

定义

称公式F和G逻辑等价, iff, 公式(F) ↔ (G)是重言式, 记为: $F \Leftrightarrow G$

范式

Example

- 公式 $G = \neg((P \lor Q) \land P) \leftrightarrow \neg P$ 为重言式;
- \mathbb{Q} , $\neg((P \vee Q) \wedge P) \Leftrightarrow \neg P$

- \bullet $A \Leftrightarrow A$
- if $A \Leftrightarrow B$, then $B \Leftrightarrow A$
- if $A \Leftrightarrow B$ and $B \Leftrightarrow C$, then $A \Leftrightarrow C$

定义

称公式F和G逻辑等价, iff, 公式(F) ↔ (G)是重言式, 记为: $F \Leftrightarrow G$

范式

Example

- 公式 $G = \neg((P \lor Q) \land P) \leftrightarrow \neg P$ 为重言式;
- \mathbb{Q} , $\neg((P \vee Q) \wedge P) \Leftrightarrow \neg P$

- \bullet $A \Leftrightarrow A$
- if $A \Leftrightarrow B$, then $B \Leftrightarrow A$
- if $A \Leftrightarrow B$ and $B \Leftrightarrow C$, then $A \Leftrightarrow C$

定义

称公式F和G逻辑等价, iff, 公式(F) ↔ (G)是重言式, 记为: $F \Leftrightarrow G$

范式

Example

- 公式 $G = \neg((P \lor Q) \land P) \leftrightarrow \neg P$ 为重言式;
- \mathbb{Q} , $\neg((P \vee Q) \wedge P) \Leftrightarrow \neg P$

- \bullet $A \Leftrightarrow A$
- if $A \Leftrightarrow B$, then $B \Leftrightarrow A$
- if $A \Leftrightarrow B$ and $B \Leftrightarrow C$, then $A \Leftrightarrow C$

$\neg\neg P \Leftrightarrow P$	双重否定律
$P \wedge P \Leftrightarrow P$	幂等律
$P \lor P \Leftrightarrow P$	
$P \wedge Q \Leftrightarrow Q \wedge P$	交换律
$P \lor Q \Leftrightarrow Q \lor P$	
$(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$	结合律
$(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$	
$(P \land Q) \lor P \Leftrightarrow P$	吸收律
$(P \lor Q) \land P \Leftrightarrow P$	
$P \rightarrow Q \Leftrightarrow \neg P \lor Q$	蕴涵等值式
$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$	De Morgan律
$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$	
$(P \to Q) \land (P \to \neg Q) \Leftrightarrow \neg P$	归谬律
$(P \vee \neg P) \Leftrightarrow \mathbb{T}$	排中律

定义

- 称公式F永真蕴涵公式G, iff, 公式 $(F) \rightarrow (G)$ 是重言式, 记为: $F \Rightarrow G$.
- 例如, $P \wedge (P \rightarrow Q) \Rightarrow Q$

Remarks

• 对F和G中原子的所有指派I,都有 $I(F) \leq I(G)$,即F为真时G一定为真,相当于代数中的不等式。

- \bullet $A \Rightarrow A$
- if $A \Rightarrow B$ and $B \Rightarrow A$, then $A \Leftrightarrow B$
- if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$
- if $A \Rightarrow B$, then $\neg B \Rightarrow \neg A$

永真蕴涵关系(Logical Implication)

定义

- 称公式F永真蕴涵公式G, iff, 公式 $(F) \rightarrow (G)$ 是重言式, 记 为: $F \Rightarrow G$.
- 例如、 $P \wedge (P \rightarrow Q) \Rightarrow Q$

Remarks

• 对F和G中原子的所有指派I,都有 $I(F) \leq I(G)$,即F为真时 G一定为真,相当于代数中的不等式。

- $\bullet A \Rightarrow A$
- if $A \Rightarrow B$ and $B \Rightarrow A$, then $A \Leftrightarrow B$
- if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$
- if $A \Rightarrow B$, then $\neg B \Rightarrow \neg A$

永真蕴涵关系(Logical Implication)

定义

- 称公式F永真蕴涵公式G, iff, 公式 $(F) \rightarrow (G)$ 是重言式, 记 为: $F \Rightarrow G$.
- 例如、 $P \wedge (P \rightarrow Q) \Rightarrow Q$

Remarks

• 对F和G中原子的所有指派I、都有 $I(F) \leq I(G)$ 、即F为真时 G一定为真,相当于代数中的不等式。

- $\bullet A \Rightarrow A$
- if $A \Rightarrow B$ and $B \Rightarrow A$, then $A \Leftrightarrow B$
- if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$
- if $A \Rightarrow B$, then $\neg B \Rightarrow \neg A$

永真蕴涵关系(Logical Implication)

定义

- 称公式F永真蕴涵公式G, iff, 公式 $(F) \rightarrow (G)$ 是重言式, 记 为: $F \Rightarrow G$.
- 例如、 $P \wedge (P \rightarrow Q) \Rightarrow Q$

Remarks

• 对F和G中原子的所有指派I,都有 $I(F) \leq I(G)$,即F为真时 G一定为真, 相当于代数中的不等式。

- \bullet $A \Rightarrow A$
- if $A \Rightarrow B$ and $B \Rightarrow A$, then $A \Leftrightarrow B$
- if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$
- if $A \Rightarrow B$, then $\neg B \Rightarrow \neg A$

定义

- 称公式F永真蕴涵公式G, iff, 公式 $(F) \rightarrow (G)$ 是重言式, 记 为: $F \Rightarrow G$.
- 例如、 $P \wedge (P \rightarrow Q) \Rightarrow Q$

Remarks

• 对F和G中原子的所有指派I,都有 $I(F) \leq I(G)$,即F为真时 G一定为真, 相当于代数中的不等式。

性质

- $\bullet A \Rightarrow A$
- if $A \Rightarrow B$ and $B \Rightarrow A$, then $A \Leftrightarrow B$
- if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$
- if $A \Rightarrow B$, then $\neg B \Rightarrow \neg A$

定义

- 称公式F永真蕴涵公式G, iff, 公式 $(F) \rightarrow (G)$ 是重言式, 记 为: $F \Rightarrow G$.
- 例如、 $P \wedge (P \rightarrow Q) \Rightarrow Q$

Remarks

• 对F和G中原子的所有指派I,都有 $I(F) \leq I(G)$,即F为真时 G一定为真、相当于代数中的不等式。

性质

- $\bullet A \Rightarrow A$
- if $A \Rightarrow B$ and $B \Rightarrow A$, then $A \Leftrightarrow B$
- if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$
- if $A \Rightarrow B$, then $\neg B \Rightarrow \neg A$

永真蕴涵关系(Logical Implication)

定义

- 称公式F永真蕴涵公式G, iff, 公式 $(F) \rightarrow (G)$ 是重言式, 记 为: $F \Rightarrow G$.
- 例如、 $P \wedge (P \rightarrow Q) \Rightarrow Q$

Remarks

• 对F和G中原子的所有指派I,都有 $I(F) \leq I(G)$,即F为真时 G一定为真、相当于代数中的不等式。

性质

- $\bullet A \Rightarrow A$
- if $A \Rightarrow B$ and $B \Rightarrow A$, then $A \Leftrightarrow B$
- if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$
- if $A \Rightarrow B$, then $\neg B \Rightarrow \neg A$

$P \Rightarrow P \lor Q$	加法式
$P \wedge Q \Rightarrow P$	简化式
$(P \to Q) \land P \Rightarrow Q$	假言推理
$(P \to Q) \land \neg Q \Rightarrow \neg p$	拒取式
$(P \lor Q) \land \neg P \Rightarrow Q$	析取三段论
$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$	前提三段论
$(P \to Q) \Rightarrow (Q \to R) \to (P \to R)$	
$(P \to Q) \land (R \to S) \Rightarrow (P \land R) \to (Q \land S)$	

范式

命题符号化

- 命题符号化
 - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义
- 2 永真公式
 - 公式的分类
 - 逻辑等价
 - 永真蕴涵
 - 恒等变换和不等变换
 - 对偶性
- ③ 范式
 - 析取范式和合取范式
 - 主析取范式
 - 联结词的扩充和归约
- 4 推理和证明方法
 - 有效结论
 - 形式证明
 - 证明方法

逻辑恒等的公式

逻辑恒等

- A ⇔ B, 即,公式A等价于B,A和B逻辑恒等。
- e. g. : $P \rightarrow Q \Leftrightarrow \neg P \lor Q \Leftrightarrow ...$
- e. g.: $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q) \Leftrightarrow ...$
- 为了便于讨论,有必要将公式的形式规范化,即将公式转换

逻辑恒等的公式

逻辑恒等

- A ⇔ B, 即,公式A等价于B,A和B逻辑恒等。
- e.g.: $P \rightarrow Q \Leftrightarrow \neg P \lor Q \Leftrightarrow ...$
- e. g. : $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q) \Leftrightarrow ...$
- 为了便于讨论,有必要将公式的形式规范化,即将公式转换

苑.武.

逻辑恒等

- A ⇔ B, 即,公式A等价于B,A和B逻辑恒等。
- e.g.: $P \rightarrow Q \Leftrightarrow \neg P \lor Q \Leftrightarrow ...$
- e. g.: $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q) \Leftrightarrow ...$
- 为了便于讨论,有必要将公式的形式规范化,即将公式转换

逻辑恒等的公式

逻辑恒等

- A ⇔ B, 即,公式A等价于B,A和B逻辑恒等。
- e.g.: $P \rightarrow Q \Leftrightarrow \neg P \lor Q \Leftrightarrow ...$
- e. g.: $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q) \Leftrightarrow ...$
- 为了便于讨论,有必要将公式的形式规范化,即将公式转换 为与其等价的标准形式。

苑.武.

析取范式和合取范式

Definition基本积、基本和

- 基本积 是合式公式中的变元或变元的否定的合取;
- 基本和 是合式公式中的变元或变元的否定的析取;

- 基本积: P, ¬P∧Q, Q∧¬P, P∧¬P, Q∧P∧¬P
- 基本和: P. ¬P∨Q. Q∨¬P. P∨¬P. Q∨P∨¬P

Definition基本积、基本和

- 基本积 是合式公式中的变元或变元的否定的合取;
- 基本和 是合式公式中的变元或变元的否定的析取;

- 基本积: P, ¬P∧Q, Q∧¬P, P∧¬P, Q∧P∧¬P
- 基本和: P. ¬P∨Q. Q∨¬P. P∨¬P. Q∨P∨¬P

Definition基本积、基本和

- 基本积 是合式公式中的变元或变元的否定的合取;
- 基本和 是合式公式中的变元或变元的否定的析取;

- 基本积: P, ¬P∧Q, Q∧¬P, P∧¬P, Q∧P∧¬P
- 基本和: P. ¬P∨Q. Q∨¬P. P∨¬P. Q∨P∨¬P

析取范式和合取范式

Definition基本积、基本和

- 基本积 是合式公式中的变元或变元的否定的合取;
- 基本和 是合式公式中的变元或变元的否定的析取;

- 基本积: $P, \neg P \land Q, Q \land \neg P, P \land \neg P, Q \land P \land \neg P$
- 基本和: P. ¬P∨Q, Q∨¬P, P∨¬P, Q∨P∨¬P

Definition析取范式

一个形为基本积的析取的公式,若与命题公式A等价,则称 其为公式A的析取范式, 记为: $A \Leftrightarrow A_1 \vee A_2 \vee ... \vee A_n, (n \geq 1, A_i \in \mathbb{A} \setminus A_i)$

苑.武.

Example析取范式

- \bullet $P \rightarrow Q \Leftrightarrow \neg P \lor Q$
- \bullet $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$

注意

析取范式中只含有联结词¬. ∧. ∨.

Definition析取范式

一个形为基本积的析取的公式,若与命题公式A等价,则称 其为公式A的析取范式, 记为: $A \Leftrightarrow A_1 \vee A_2 \vee ... \vee A_n, (n \geq 1, A_i \in \mathbb{A} \setminus A_i)$

苑.武.

Example析取范式

- \bullet $P \rightarrow Q \Leftrightarrow \neg P \lor Q$
- \bullet $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$

注意

析取范式中只含有联结词¬. ∧. ∨.

Definition析取范式

一个形为基本积的析取的公式,若与命题公式A等价,则称 其为公式A的析取范式, 记为: $A \Leftrightarrow A_1 \vee A_2 \vee ... \vee A_n$, $(n \geq 1, A_i \in \mathbb{Z} \setminus A_n)$

苑.武.

Example析取范式

- \bullet $P \rightarrow Q \Leftrightarrow \neg P \lor Q$
- $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$

注意

析取范式中只含有联结词¬. ∧. ∨.

Definition析取范式

一个形为基本积的析取的公式,若与命题公式A等价,则称 其为公式A的析取范式, 记为: $A \Leftrightarrow A_1 \vee A_2 \vee ... \vee A_n$, $(n \geq 1, A_i \in \mathbb{Z} \setminus A_n)$

苑.武.

Example析取范式

- \bullet $P \rightarrow Q \Leftrightarrow \neg P \lor Q$
- $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$

注意

析取范式中只含有联结词¬、∧、∨.

求解方法: 公式恒等变换

- 1 消去联结词→, ↔;
- ② 利用DeMorgen律将联结词 移至变元前、并消去双重否定;

苑.武.

③ 利用分配律、结合律等将公式化为析取范式。

Example求解析取范式

• $\mathcal{X} \triangle \mathcal{A} P \wedge (P \rightarrow Q)$ 的析取范式:

$$P \land (P \rightarrow Q) \Leftrightarrow P \land (\neg P \lor Q)$$
$$\Leftrightarrow (P \land \neg P) \lor (P \land Q)$$
$$\Leftrightarrow (P \land Q)$$

求解方法: 公式恒等变换

- **①** 消去联结词→, ↔;
- ② 利用DeMorgen律将联结词 移至变元前,并消去双重否定;

苑.武.

③ 利用分配律、结合律等将公式化为析取范式。

Example求解析取范式

• $\mathcal{X} \triangle \mathcal{A} P \wedge (P \rightarrow Q)$ 的析取范式:

$$P \land (P \rightarrow Q) \Leftrightarrow P \land (\neg P \lor Q)$$
$$\Leftrightarrow (P \land \neg P) \lor (P \land Q)$$
$$\Leftrightarrow (P \land Q)$$

求解方法: 公式恒等变换

- 1 消去联结词→, ↔;
- ② 利用DeMorgen律将联结词¬移至变元前、并消去双重否定;

苑.武.

000

利用分配律、结合律等将公式化为析取范式。

Example求解析取范式

• $\mathcal{X} \triangle \mathcal{A} P \wedge (P \rightarrow Q)$ 的析取范式:

$$P \land (P \rightarrow Q) \Leftrightarrow P \land (\neg P \lor Q)$$
$$\Leftrightarrow (P \land \neg P) \lor (P \land Q)$$
$$\Leftrightarrow (P \land Q)$$

求解方法: 公式恒等变换

- 1 消去联结词→, ↔;
- ② 利用DeMorgen律将联结词¬移至变元前、并消去双重否定;

苑.武.

00000000000000000

利用分配律、结合律等将公式化为析取范式。

Example求解析取范式

求公式P∧(P→Q)的析取范式:

$$P \land (P \to Q) \Leftrightarrow P \land (\neg P \lor Q)$$
$$\Leftrightarrow (P \land \neg P) \lor (P \land Q)$$
$$\Leftrightarrow (P \land Q)$$

Definition极小项

 对于共有n个命题变元P₁, P₂,..., P_n的基本积、称之为极小 项当且仅当,每个变元与其否定不同时出现,且二者之一出 现且仅出现一次。

苑.武.

- 变元P, Q: 则P∧¬Q, P∧Q是极小项:
- 変元P₁, P₂, P₃: 则P₁ ∧¬P₂ ∧¬P₃, ¬P₁ ∧¬P₂ ∧ P₃是极小项
- 问题:对于给定的n个变元,一共有多少个不同的极小项?

Definition极小项

 对于共有n个命题变元P₁, P₂,..., P_n的基本积、称之为极小 项当且仅当,每个变元与其否定不同时出现,且二者之一出 现且仅出现一次。

- 变元P,Q:则P∧¬Q,P∧Q是极小项;
- 変元P₁, P₂, P₃: 则P₁ ∧¬P₂ ∧¬P₃, ¬P₁ ∧¬P₂ ∧ P₃是极小项
- 问题:对于给定的n个变元,一共有多少个不同的极小项?

Definition极小项

 对于共有n个命题变元P₁, P₂,..., P_n的基本积、称之为极小 项当且仅当、每个变元与其否定不同时出现、且二者之一出 现且仅出现一次。

- 变元P,Q:则P∧¬Q,P∧Q是极小项;
- • 変元P₁, P₂, P₃: 则P₁ ∧ ¬P₂ ∧ ¬P₃, ¬P₁ ∧ ¬P₂ ∧ P₃是极小项
- 问题:对于给定的n个变元。一共有多少个不同的极小项?

Definition极小项

 对于共有n个命题变元P₁, P₂,..., P_n的基本积、称之为极小 项当且仅当,每个变元与其否定不同时出现,且二者之一出 现且仅出现一次。

苑.武.

- 变元P,Q:则P∧¬Q,P∧Q是极小项;
- • 変元P₁, P₂, P₃: 则P₁ ∧ ¬P₂ ∧ ¬P₃, ¬P₁ ∧ ¬P₂ ∧ P₃是极小项
- 问题:对于给定的n个变元,一共有多少个不同的极小项?

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

范式

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;
- 对于每个极小项,有且仅有一个指派使之真值为真。

范式

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;
- 对于每个极小项,有且仅有一个指派使之真值为真。
- 标记法: 用使极小项为真的指派对应的数字作为它的下标。

范式

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;
- 对于每个极小项,有且仅有一个指派使之真值为真。
- 标记法: 用使极小项为真的指派对应的数字作为它的下标。

范式

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;
- 对于每个极小项,有且仅有一个指派使之真值为真。
- 标记法: 用使极小项为真的指派对应的数字作为它的下标。

范式

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;
- 对于每个极小项、有且仅有一个指派使之真值为真。
- 标记法: 用使极小项为真的指派对应的数字作为它的下标。

范式

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;
- 对于每个极小项、有且仅有一个指派使之真值为真。
- 标记法: 用使极小项为真的指派对应的数字作为它的下标。

范式

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;
- 对于每个极小项、有且仅有一个指派使之真值为真。
- 标记法: 用使极小项为真的指派对应的数字作为它的下标。

范式

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;
- 对于每个极小项、有且仅有一个指派使之真值为真。
- 标记法: 用使极小项为真的指派对应的数字作为它的下标。

范式

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;
- 对于每个极小项、有且仅有一个指派使之真值为真。
- 标记法: 用使极小项为真的指派对应的数字作为它的下标。

范式

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

3个变元极小项

- 对于3个命题变元P, Q, R, 共有2³ = 8个极小项;
- 对于每个极小项、有且仅有一个指派使之真值为真。
- 标记法: 用使极小项为真的指派对应的数字作为它的下标。

范式

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

n个变元P₁, P₂,..., P_n的极小项共2ⁿ项:

极小项性质

n个变元P₁, P₂, ..., P_n的极小项共2ⁿ项:

 $m_0: \neg P_1 \wedge \neg P_2 \wedge ... \wedge \neg P_n$

极小项性质

n个变元P₁, P₂, ..., P_n的极小项共2ⁿ项:

 $m_0: \neg P_1 \wedge \neg P_2 \wedge ... \wedge \neg P_n$

 $m_1: \neg P_1 \wedge \neg P_2 \wedge ... \wedge P_n$

极小项性质

n个变元P₁, P₂, ..., P_n的极小项共2ⁿ项:

 $m_0: \neg P_1 \wedge \neg P_2 \wedge ... \wedge \neg P_n$

 $m_1: \neg P_1 \wedge \neg P_2 \wedge ... \wedge P_n$

极小项性质

n个变元P₁, P₂, ..., P_n的极小项共2ⁿ项:

 $m_0: \neg P_1 \wedge \neg P_2 \wedge ... \wedge \neg P_n$

 $m_1: \neg P_1 \wedge \neg P_2 \wedge ... \wedge P_n$

 $m_{2^n-1}: P_1 \wedge P_2 \wedge ... \wedge P_n$

极小项性质

n个变元的极小项

n个变元P₁, P₂, ..., P_n的极小项共2ⁿ项:

$$m_0: \neg P_1 \wedge \neg P_2 \wedge ... \wedge \neg P_n$$

$$m_1: \neg P_1 \wedge \neg P_2 \wedge ... \wedge P_n$$

$$m_{2^n-1}: P_1 \wedge P_2 \wedge ... \wedge P_n$$

极小项性质

Definition主析取范式

• 一个公式称之为公式A的主析取范式, 当且仅当, 其与公式 A逻辑恒等,且由极小项之和组成。

Example

● 公式P ↔ Q的主析取范式:

Definition主析取范式

• 一个公式称之为公式A的主析取范式, 当且仅当, 其与公式 A逻辑恒等,且由极小项之和组成。

Example

公式P ↔ Q的主析取范式:

$$P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$$
$$\Leftrightarrow m_3 \lor m_0$$
$$\Leftrightarrow \Sigma(0, 3)$$

Definition主析取范式

• 一个公式称之为公式A的主析取范式, 当且仅当, 其与公式 A逻辑恒等,且由极小项之和组成。

Example

公式P ↔ Q的主析取范式:

$$P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$$
$$\Leftrightarrow m_3 \lor m_0$$
$$\Leftrightarrow \Sigma(0, 3)$$

- 恒等变换法: A ⇔析取范式⇔主析取范式
 - □ 去掉析取范式中的永假的基本积;
 - ② 合并相同的变元 (变元的否定) 和基本积;
 - ③ 对每个基本积补入未出现的命题变元、再展开化简至主析取
- 真值表法

- 恒等变换法: A ⇔析取范式⇔主析取范式
 - 去掉析取范式中的永假的基本积;
 - ② 合并相同的变元(变元的否定)和基本积;
 - ③ 对每个基本积补入未出现的命题变元,再展开化简至主析取
- 真值表法

命题符号化

- 恒等变换法: A ⇔析取范式⇔主析取范式
 - 去掉析取范式中的永假的基本积;
 - ② 合并相同的变元 (变元的否定) 和基本积;
 - ③ 对每个基本积补入未出现的命题变元,再展开化简至主析取 范式。
- 真值表法

主析取范式的求解

命题符号化

- 恒等变换法: A ⇔析取范式⇔主析取范式
 - 去掉析取范式中的永假的基本积;
 - 合并相同的变元(变元的否定)和基本积;
 - 对每个基本积补入未出现的命题变元、再展开化简至主析取 范式。
- 真值表法

主析取范式的求解

- 恒等变换法: A ⇔析取范式⇔主析取范式
 - 去掉析取范式中的永假的基本积;
 - 合并相同的变元(变元的否定)和基本积;
 - 对每个基本积补入未出现的命题变元、再展开化简至主析取 范式。
- 真值表法

- 用恒等变换法求公式A的主析取范式
- $A \Leftrightarrow P \land Q \lor R$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$
 (展刊

$$\Leftrightarrow m_7 \vee m_6 \vee m_7 \vee m_5 \vee m_3 \vee m_1 \qquad \qquad \textbf{(极小项标记)}$$

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7 \tag{化简}$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

主析取范式求解-例题

恒等变换法

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R \tag{\texttt{\textit{R}}}$$

$$\Leftrightarrow m_7 \vee m_6 \vee m_7 \vee m_5 \vee m_3 \vee m_1 \qquad \qquad (极小项标记)$$

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7 \tag{化简}$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

主析取范式求解-例题

恒等变换法

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land \underline{(R \lor \neg R)} \lor \underline{(P \lor \neg P)} \land \underline{(Q \lor \neg Q)} \land R \qquad (\mathring{A} \land)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land \underline{(R \lor \neg R)} \lor \underline{(P \lor \neg P) \land (Q \lor \neg Q)} \land R \qquad (\mathring{\land} \land \land)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\forall F \land \neg Q \land \Lambda \lor \neg F \land \neg Q \land \Lambda$$

$$\Leftrightarrow m_7 \vee m_6 \vee m_7 \vee m_5 \vee m_3 \vee m_1$$

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

主析取范式求解-例题

恒等变换法

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\forall P \land \neg Q \land R \lor \neg P \land \neg Q \land R$$
 (展升)

$$\Leftrightarrow m_7 \vee m_6 \vee m_7 \vee m_5 \vee m_3 \vee m_1$$

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land \underline{(R \lor \neg R)} \lor \underline{(P \lor \neg P) \land (Q \lor \neg Q)} \land R \qquad (\ref{h} \land)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$
$$\lor P \land \neg Q \land R \lor \neg P \land \neg Q \land R$$
 (展升)

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$

$$\Leftrightarrow m_7 \vee m_6 \vee m_7 \vee m_5 \vee m_3 \vee m_1$$

(极小项标记)

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

(展开)

主析取范式求解-例题

恒等变换法

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land \underline{(R \lor \neg R)} \lor \underline{(P \lor \neg P) \land (Q \lor \neg Q)} \land R \qquad (\land \land \land)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$

$$\Leftrightarrow m_7 \lor m_6 \lor m_7 \lor m_5 \lor m_3 \lor m_1$$
 (极小项标记)

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7 \tag{化简}$$

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

(展开)

恒等变换法

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land \underline{(R \lor \neg R)} \lor \underline{(P \lor \neg P) \land (Q \lor \neg Q)} \land R \qquad (\ref{h} \land \ref{h})$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$

$$\Leftrightarrow m_7 \lor m_6 \lor m_7 \lor m_5 \lor m_3 \lor m_1$$
 (极小项标记)

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7 \tag{化简}$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land \underline{(R \lor \neg R)} \lor \underline{(P \lor \neg P) \land (Q \lor \neg Q)} \land R \qquad (\ref{h} \land)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$

(展开)

$$\Leftrightarrow m_7 \vee m_6 \vee m_7 \vee m_5 \vee m_3 \vee m_1$$

(极小项标记)

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$$

(化简)

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

001仅使m1为真 011仅使m3为真 101 110 111

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land \underline{(R \lor \neg R)} \lor \underline{(P \lor \neg P) \land (Q \lor \neg Q)} \land R \qquad (\land \land \land)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$

$$\Leftrightarrow m_7 \lor m_6 \lor m_7 \lor m_5 \lor m_3 \lor m_1$$
 (极小项标记)

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7 \tag{化简}$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

(展开)

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land \underline{(R \lor \neg R)} \lor \underline{(P \lor \neg P) \land (Q \lor \neg Q)} \land R \qquad (\ref{h} \land)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$

(展开) (极小项标记)

$$\Leftrightarrow m_7 \vee m_6 \vee m_7 \vee m_5 \vee m_3 \vee m_1$$

 $\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$

(化简)

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

- 用恒等变换法求公式A的主析取范式
- $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land \underline{(R \lor \neg R)} \lor \underline{(P \lor \neg P) \land (Q \lor \neg Q)} \land R \qquad (\land \land \land)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$

(展开)

$$\Leftrightarrow \textit{m}_{7} \lor \textit{m}_{6} \lor \textit{m}_{7} \lor \textit{m}_{5} \lor \textit{m}_{3} \lor \textit{m}_{1}$$

(极小项标记)

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$$

(化简)

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

001仅使m₁为真 □ 011仅使m₃为真 □ 101 □ 110 □ 111 □

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

- 用恒等变换法求公式A的主析取范式
- \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land \underline{(R \lor \neg R)} \lor \underline{(P \lor \neg P)} \land \underline{(Q \lor \neg Q)} \land R \qquad (补入)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\lor P \land \neg Q \land R \lor \neg P \land \neg Q \land R \qquad (展 \pi)$$

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7 \tag{化简}$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

思考: 求出的主析取范式是否是惟一的? (考虑极小项的性质)

- 主析取范式是否是惟一的?(考虑极小项的性质)
- 极小项的性质:有且仅有一个指派使得某个极小项真值为1。
- 公式A的主析取范式中,出现的极小项的下标对应的二进制 编码、就是使得公式真值为1的指派:未出现的极小项的下 标对应于使公式真值为()的指派。
- 结论: 公式的主析取范式是惟一的。

- 主析取范式是否是惟一的?(考虑极小项的性质)
- 极小项的性质:有且仅有一个指派使得某个极小项真值为1。
- 公式A的主析取范式中,出现的极小项的下标对应的二进制 编码、就是使得公式真值为1的指派:未出现的极小项的下 标对应于使公式真值为()的指派。
- 结论: 公式的主析取范式是惟一的。

主析取范式的惟一性

- 主析取范式是否是惟一的?(考虑极小项的性质)
- 极小项的性质:有且仅有一个指派使得某个极小项真值为1。
- 公式A的主析取范式中、出现的极小项的下标对应的二进制 编码、就是使得公式真值为1的指派;未出现的极小项的下 标对应于使公式真值为0的指派。

主析取范式的惟一性

- 主析取范式是否是惟一的?(考虑极小项的性质)
- 极小项的性质:有且仅有一个指派使得某个极小项真值为1。
- 公式A的主析取范式中、出现的极小项的下标对应的二进制 编码、就是使得公式真值为1的指派;未出现的极小项的下 标对应于使公式真值为0的指派。
- 结论:公式的主析取范式是惟一的。

真值表法求公式的主析取范式

● 用真值表法求公式A ⇔ P ∧ Q ∨ R的主析取范式。

	P	Q	R	$P \wedge Q \vee R$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

真值表法 • A ⇔ P ∧ Q ∨ R ⇔ Σ(1,3,5,6,7) • 使得公式真值为1的指派,对应于公式A的主新取范式中的某个极小

真值表法求公式的主析取范式

用真值表法求公式A ⇔ P ∧ Q ∨ R的主析取范式。

	P	Q	R	$P \wedge Q \vee R$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

• $A \Leftrightarrow P \land Q \lor R$

主析取范式求解-例题(二)

真值表法求公式的主析取范式

• 用真值表法求公式 $A \Leftrightarrow P \land Q \lor R$ 的主析取范式。

	P	Q	R	$P \wedge Q \vee R$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

真值表法

- $A \Leftrightarrow P \land Q \lor R$ $\Leftrightarrow \Sigma(1,3,5,6,7)$
- 使得公式真值为1的指派,对应于公式A的主 析取范式中的某个极小项的下标。

主析取范式求解-例题(二)

真值表法求公式的主析取范式

用真值表法求公式A ⇔ P ∧ Q ∨ R的主析取范式。

	P	Q	R	$P \wedge Q \vee R$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

真值表法

- $A \Leftrightarrow P \land Q \lor R$ $\Leftrightarrow \Sigma(1,3,5,6,7)$
- 使得公式真值为1的指 派、对应于公式A的主 析取范式中的某个极小 项的下标。

问题

n个变元的命题公式可以有无限多个,但一共有多少个不同 的主析取范式呢?

分析

- 已知对于n个变元,有2ⁿ个极小项;
- 对任一个主析取范式,可能含有的某个极小项,或者不含有 某个极小项:
- 所以,一共可构造 2 个主析取范式。

主析取范式个数

问题

n个变元的命题公式可以有无限多个,但一共有多少个不同 的主析取范式呢?

- 已知对于n个变元,有2ⁿ个极小项;
- 对任一个主析取范式,可能含有的某个极小项,或者不含有 某个极小项:
- 所以,一共可构造 2 个主析取范式。

主析取范式个数

问题

命题符号化

n个变元的命题公式可以有无限多个、但一共有多少个不同 的主析取范式呢?

- 已知对于n个变元,有2ⁿ个极小项;
- 对任一个主析取范式,可能含有的某个极小项,或者不含有 某个极小项:
- 所以,一共可构造 个主析取范式。

主析取范式个数

问题

n个变元的命题公式可以有无限多个、但一共有多少个不同 的主析取范式呢?

范式

- 已知对于n个变元,有2ⁿ个极小项;
- 对任一个主析取范式,可能含有的某个极小项,或者不含有 某个极小项:
- 所以,一共可构造 22" 个主析取范式。

问题

命题符号化

n个变元的命题公式可以有无限多个、但一共有多少个不同 的主析取范式呢?

- 已知对于n个变元,有2ⁿ个极小项;
- 对任一个主析取范式,可能含有的某个极小项,或者不含有 某个极小项;
- 所以,一共可构造 22" 个主析取范式。

- n = 1 一个变元的主析取范式, 共有 $2^{2^1} = 4$ 个:

- n = 2含两个变元的主析取范式、共有2²² = 16个:
- n=3含三个变元的主析取范式, 共有223 = 256个:

- n = 1 一个变元的主析取范式, 共有 $2^{2^1} = 4$ 个:
 - $\bullet \quad \Sigma(\emptyset) \Leftrightarrow \mathbb{F}$

- n = 2含两个变元的主析取范式、共有2²² = 16个:
- n=3含三个变元的主析取范式, 共有223 = 256个:

- n = 1 一个变元的主析取范式, 共有 $2^{2^1} = 4$ 个:
 - $\bullet \quad \Sigma(\emptyset) \Leftrightarrow \mathbb{F}$

- 2 $\Sigma(0) \Leftrightarrow \neg P$

- n = 2含两个变元的主析取范式、共有2²² = 16个:
- n = 3含三个变元的主析取范式、共有2^{2³} = 256个;

- n=1一个变元的主析取范式,共有2²¹ = 4个:
 - $\bullet \quad \Sigma(\emptyset) \Leftrightarrow \mathbb{F}$
 - 2 $\Sigma(0) \Leftrightarrow \neg P$
 - \bullet $\Sigma(1) \Leftrightarrow P$

- n = 2含两个变元的主析取范式、共有2²² = 16个:
- n = 3含三个变元的主析取范式、共有2^{2³} = 256个;

- n = 1一个变元的主析取范式, 共有2²¹ = 4个:
 - $\bullet \quad \Sigma(\emptyset) \Leftrightarrow \mathbb{F}$
 - 2 $\Sigma(0) \Leftrightarrow \neg P$
 - \bullet $\Sigma(1) \Leftrightarrow P$

(含所有极小项)

- n = 2含两个变元的主析取范式、共有2²² = 16个:
- n = 3含三个变元的主析取范式、共有2^{2³} = 256个;

- n = 1一个变元的主析取范式、共有2²¹ = 4个:
 - $\bullet \quad \Sigma(\emptyset) \Leftrightarrow \mathbb{F}$
 - 2 $\Sigma(0) \Leftrightarrow \neg P$
 - \bullet $\Sigma(1) \Leftrightarrow P$

(含所有极小项)

- n = 2含两个变元的主析取范式, 共有2^{2²} = 16个:
- n=3含三个变元的主析取范式, 共有223 = 256个:

n = 1一个变元的主析取范式、共有2²¹ = 4个:

 $\bullet \quad \Sigma(\emptyset) \Leftrightarrow \mathbb{F}$

(不含任何极小项)

2 $\Sigma(0) \Leftrightarrow \neg P$

 \bullet $\Sigma(1) \Leftrightarrow P$

(含所有极小项)

- n = 2含两个变元的主析取范式, 共有2^{2²} = 16个:
- n = 3含三个变元的主析取范式、共有 $2^{2^3} = 256$ 个;

主析取范式和主合取范式-对偶性

Canonical Forms

- 主析取范式-Canonical Disjunctive Normal Form (CDNF)
- 主合取范式-Canonical Conjunctive Normal Form (CCNF)

主析取范式	主合取范式
基本积	基本和
析取范式(基本积之和)	合取范式(基本和之积)
极小项	极大项
n个变元有2 ⁿ 个极小项	n个变元有2 ⁿ 个极大项
其下标使该极小项为真	其下标使该极大项为假
主析取范式是极小项的和	主合取范式是极大项的积
求主析取范式的方法	求主合取范式的方法
其中的所有的极小项的下标	其中的所有的极大项的下标
对应使该公式为真的解释	对应使该公式为假的解释

主析取范式和主合取范式-对偶性

Canonical Forms

- 主析取范式-Canonical Disjunctive Normal Form (CDNF)
- 主合取范式-Canonical Conjunctive Normal Form (CCNF)

主析取范式	主合取范式
基本积	基本和
析取范式(基本积之和)	合取范式(基本和之积)
极小项	极大项
n个变元有2 ⁿ 个极小项	n个变元有2 ⁿ 个极大项
其下标使该极小项为真	其下标使该极大项为假
主析取范式是极小项的和	主合取范式是极大项的积
求主析取范式的方法	求主合取范式的方法
其中的所有的极小项的下标	其中的所有的极大项的下标
对应使该公式为真的解释	对应使该公式为假的解释

- n个变元可以构成2ⁿ个极小 项;
- 每个极小项其下标编码对应 的指派,惟一使得其真值为
- 任意两个极小项的合取式真
- 全体极小项的析取式真值永

- n个变元可以构成2ⁿ个极大
- 每个极大项其下标编码对应 的指派, 惟一使得其真值为
- 任意两个极大项的析取式真
- 全体极大项的合取式真值永

- n个变元可以构成2ⁿ个极小 项;
- 每个极小项其下标编码对应 的指派、惟一使得其真值为 1:
- 任意两个极小项的合取式真
- 全体极小项的析取式真值永

- n个变元可以构成2ⁿ个极大
- 每个极大项其下标编码对应 的指派, 惟一使得其真值为
- 任意两个极大项的析取式真
- 全体极大项的合取式真值永

极小项、极大项性质

极小项

- n个变元可以构成2ⁿ个极小 项;
- 每个极小项其下标编码对应 的指派、惟一使得其真值为 1:
- 任意两个极小项的合取式真 值永为0:
- 全体极小项的析取式真值永

极大项

苑.武.

- n个变元可以构成2ⁿ个极大
- 每个极大项其下标编码对应 的指派, 惟一使得其真值为
- 任意两个极大项的析取式真
- 全体极大项的合取式真值永

极小项、极大项性质

极小项

- n个变元可以构成2ⁿ个极小 项;
- 每个极小项其下标编码对应 的指派、惟一使得其真值为 1:
- 任意两个极小项的合取式真 值永为0:
- 全体极小项的析取式真值永 为1。

极大项

苑.武.

- n个变元可以构成2ⁿ个极大
- 每个极大项其下标编码对应 的指派、惟一使得其真值为
- 任意两个极大项的析取式真
- 全体极大项的合取式真值永

极小项、极大项性质

极小项

- n个变元可以构成2ⁿ个极小 项;
- 每个极小项其下标编码对应 的指派,惟一使得其真值为 1;
- 任意两个极小项的合取式真值永为0;
- 全体极小项的析取式真值永 为1。

- n个变元可以构成2ⁿ个极大 项;
- 每个极大项其下标编码对应 的指派,惟一使得其真值为 ();
- 任意两个极大项的析取式真值永为1;
- 全体极大项的合取式真值永 为0。

命颗符号化

- n个变元可以构成2ⁿ个极小 项;
- 每个极小项其下标编码对应 的指派,惟一使得其真值为 1;
- 任意两个极小项的合取式真值永为0;
- 全体极小项的析取式真值永 为1。

- n个变元可以构成2ⁿ个极大 项;
- 每个极大项其下标编码对应 的指派,惟一使得其真值为 0;
- 任意两个极大项的析取式真值永为1;
- 全体极大项的合取式真值永 为0。

命颗符号化

- n个变元可以构成2ⁿ个极小 项;
- 每个极小项其下标编码对应 的指派、惟一使得其真值为 1:
- 任意两个极小项的合取式真 值永为0:
- 全体极小项的析取式真值永 为1。

- n个变元可以构成2n个极大 项;
- 每个极大项其下标编码对应 的指派、惟一使得其真值为 0:
- 任意两个极大项的析取式真 值永为1:
- 全体极大项的合取式真值永

命颗符号化

- n个变元可以构成2ⁿ个极小 项;
- 每个极小项其下标编码对应 的指派、惟一使得其真值为 1:
- 任意两个极小项的合取式真 值永为0:
- 全体极小项的析取式真值永 为1。

- n个变元可以构成2n个极大 项;
- 每个极大项其下标编码对应 的指派、惟一使得其真值为 0:
- 任意两个极大项的析取式真 值永为1:
- 全体极大项的合取式真值永 为()。

恒等变换法求CDNF

 \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R \qquad (\raiseta) \land (\raiseta) \raiset$$

$$\Rightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R \tag{&\#\mathcal{H}}$$

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7 \tag{化简}$$

$$\Leftrightarrow \Sigma(1,3,5,6,7)$$

恒等变换法求CCNF

•
$$A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$$

$$\Leftrightarrow (P \lor R \lor (Q \land \neg Q)) \land (Q \lor R \lor (P \land \neg P))$$

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$$
 (展开化简

$$\Leftrightarrow M_0 \vee M_2 \vee M_4 \Leftrightarrow \Pi(0,2,4)$$

恒等变换法求CDNF

- \bullet $A \Leftrightarrow P \land Q \lor R$
 - $\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R$ (补入)

恒等变换法求CCNF

• $A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$

- $\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$ (展开化简)

恒等变换法求CDNF

- \bullet $A \Leftrightarrow P \land Q \lor R$
 - $\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R$ (补入)
 - $\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R \tag{\textit{\textit{\textbf{E}}} \textit{\textit{\textbf{\textit{\textbf{F}}}}}$$

恒等变换法求CCNF

 \bullet $A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$

- $\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$ (展开化简)

- \bullet $A \Leftrightarrow P \land Q \lor R$
 - $\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R$ (补入)
 - $\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$

(展开)

恒等变换法求CCNF

 \bullet $A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$

 $\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$ (展开化简)

- \bullet $A \Leftrightarrow P \land Q \lor R$
 - $\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R$ (补入)
 - $\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$

(展开)

 $\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$

(化简)

恒等变换法求CCNF

• $A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$

- $\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$ (展开化简)

- \bullet $A \Leftrightarrow P \land Q \lor R$
 - $\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R$ (补入)
 - $\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R \tag{E.T}$$

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$$

(化简)

 $\Leftrightarrow \Sigma(1,3,5,6,7)$

恒等变换法求CCNF

 \bullet $A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$

- $\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$ (展开化简)

- \bullet $A \Leftrightarrow P \land Q \lor R$
 - $\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R$ (补入)
 - $\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R$$

(展开)

 $\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$

(化简)

 $\Leftrightarrow \Sigma(1,3,5,6,7)$

恒等变换法求CCNF

• $A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$

- (合取范式)

- $\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$ (展开化简)

- \bullet $A \Leftrightarrow P \land Q \lor R$
 - $\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R$ (补入)
 - $\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R \tag{E.f.}$$

 $\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$

(化简)

 $\Leftrightarrow \Sigma(1,3,5,6,7)$

恒等变换法求CCNF

• $A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$

- (合取范式)
- $\Leftrightarrow (P \lor R \lor (Q \land \neg Q)) \land (Q \lor R \lor (P \land \neg P))$

- (补入)

恒等变换法求CDNF

 \bullet $A \Leftrightarrow P \land Q \lor R$

$$\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R \qquad (\raise)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R \tag{E.T}$$

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$$

(化简)

 $\Leftrightarrow \Sigma(1,3,5,6,7)$

恒等变换法求CCNF

$$\bullet \ A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$$

(合取范式)

$$\Leftrightarrow (P \lor R \lor (Q \land \neg Q)) \land (Q \lor R \lor (P \land \neg P))$$

(补入)

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$$
 (展开化简)

$$\Leftrightarrow M_0 \vee M_2 \vee M_4 \Leftrightarrow \Pi(0,2,4)$$

恒等变换法求CDNF

•
$$A \Leftrightarrow P \land Q \lor R$$

$$\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R \qquad (\land \land \land)$$

$$\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$$

$$\vee P \wedge \neg Q \wedge R \vee \neg P \wedge \neg Q \wedge R \tag{E.T}$$

$$\Leftrightarrow m_1 \vee m_3 \vee m_5 \vee m_6 \vee m_7$$

(化简)

 $\Leftrightarrow \Sigma(1,3,5,6,7)$

恒等变换法求CCNF

$$\bullet \ A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$$

(合取范式)

$$\Leftrightarrow (P \lor R \lor (Q \land \neg Q)) \land (Q \lor R \lor (P \land \neg P))$$

(补入)

$$\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$$
 (展开化简)

$$\Leftrightarrow M_0 \vee M_2 \vee M_4 \Leftrightarrow \Pi(0,2,4)$$

(标记)

范式

推理和证明方法

推理和证明方法 ●○○ **范式** 0000

00000000000

推理和证明方法 ○●○

苑式 0000 推理和证明方法 ○○●