Laboratorio_5.R

Gabino Gonzalez

2021-04-25

```
# Laboratorio.5
# Gabino.Gonzalez.Garcia
# 1922575
# 26,04,2021
# Ejercicio.1 ------
#Importar datos
anscombe <- read.csv("Anscombe.csv")</pre>
summary(anscombe)
##
        x1
                     у1
                                   x2
                                                  y2
x3
## Min. : 4.0 Min. : 4.260 Min. : 4.0
                                            Min. :3.100
                                                          Min.
: 4.0
## 1st Qu.: 6.5 1st Qu.: 6.315 1st Qu.: 6.5
                                            1st Qu.:6.695
                                                           1st
Ou.: 6.5
## Median : 9.0 Median : 7.580 Median : 9.0
                                            Median :8.140
                                                          Median
: 9.0
## Mean : 9.0 Mean : 7.501 Mean : 9.0
                                            Mean :7.501
                                                           Mean
: 9.0
## 3rd Qu.:11.5 3rd Qu.: 8.570 3rd Qu.:11.5
                                            3rd Qu.:8.950
                                                           3rd
Ou.:11.5
## Max. :14.0
                Max. :10.840
                              Max.
                                     :14.0
                                            Max. :9.260
                                                           Max.
:14.0
       у3
##
                      x4
                                  y4
## Min. : 5.39 Min. : 8 Min. : 5.250
## 1st Qu.: 6.25 1st Qu.: 8 1st Qu.: 6.170
## Median : 7.11 Median : 8 Median : 7.040
                 Mean : 9 Mean : 7.493
## Mean : 7.50
## 3rd Qu.: 7.98
                 3rd Qu.: 8
                             3rd Qu.: 8.190
## Max. :12.74
                 Max. :19
                             Max. :12.500
#Para establecer si tenemos una hipotesis nula nuestro p-value será
#mayor a 0.05 y si es alternativa será menor a 0.05.
cor.test(anscombe$x1, anscombe$y1)
```

```
##
## Pearson's product-moment correlation
##
## data: anscombe$x1 and anscombe$y1
## t = 4.2415, df = 9, p-value = 0.00217
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4243912 0.9506933
## sample estimates:
## cor
## 0.8164205

plot(anscombe$x1, anscombe$y1, pch=20)
```



```
#grados de libertad = 9
#relación lineal positiva
#Correlación = 0.81
#p=0.002
#hay significancia por lo que se acepta la hipotesis alternativa

cor.test(anscombe$x2, anscombe$y2)
##
## Pearson's product-moment correlation
##
## data: anscombe$x2 and anscombe$y2
## t = 4.2386, df = 9, p-value = 0.002179
```

```
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4239389 0.9506402
## sample estimates:
## cor
## 0.8162365
plot(anscombe$x2, anscombe$y2, pch=20)
```



```
#grados de libertad = 9
#Existe una relación pero no es lineal
#Correlación = 0.81
#p=0.002
#hay significancia por lo que se acepta la hipotesis alternativa
cor.test(anscombe$x3, anscombe$y3)
##
    Pearson's product-moment correlation
##
##
## data: anscombe$x3 and anscombe$y3
## t = 4.2394, df = 9, p-value = 0.002176
## alternative hypothesis: true correlation is not equal to \theta
## 95 percent confidence interval:
## 0.4240623 0.9506547
## sample estimates:
```

```
## cor
## 0.8162867
plot(anscombe$x3, anscombe$y3, pch=20)
```



```
#grados de libertad = 9
#Existe una relación lineal con diferente regresión
#Correlación = 0.81
\#p=0.002
#hay significancia por lo que se acepta la hipotesis alternativa
cor.test(anscombe$x4, anscombe$y4)
##
   Pearson's product-moment correlation
##
##
## data: anscombe$x4 and anscombe$y4
## t = 4.2458, df = 9, p-value = 0.002156
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.4250704 0.9507729
## sample estimates:
##
         cor
## 0.8166967
plot(anscombe$x4, anscombe$y4, pch=20)
```



```
#grados de libertad = 9
#No existe ninguna relación
#Correlación = 0.81
#p=0.002
#hay significancia por lo que se acepta la hipotesis alternativa

# Graficar en un cuadro de 2x2
op = par(mfrow = c(2, 2), mar = c(4.5, 4, 1, 1))
plot(anscombe$x1, anscombe$y1, pch = 20)
plot(anscombe$x2, anscombe$y2, pch = 20)
plot(anscombe$x3, anscombe$y3, pch = 20)
plot(anscombe$x4, anscombe$y4, pch = 20)
```


par(op)

los cuatro pares de las variables xy tienen básicamente la misma correlación

de 0.816. Pero no todos tienen diagramas de dispersión en los que los puntos

se agrupan alrededor de una línea