

DEPARTMENT of ELECTRICAL and ELECTRONIC ENGINEERING EXAMINATIONS 2005

EEE/ISE PART III/IV: M.Eng., B.Eng. and ACGI

COMMUNICATION SYSTEMS

There are FOUR questions (Q1 to Q4)

Answer question ONE and TWO other questions.

Question 1 has 20 multiple choice questions, numbered 1 to 20, all carrying equal marks.

Questions 2, 3 and 4 have 6 multiple choice questions each, numbered 1 to 6, all carrying equal marks.

There is only one correct answer per question.

Distribution of marks

Question-1: 40 marks Question-2: 30 marks Question-3: 30 marks Question-4: 30 marks

The following are provided:

- A table of Fourier Transforms
- A "Gaussian Tail Function" graph

Examiner: Dr A. Manikas

- This question has 20 multiple choice questions numbered 1 to 20, all carrying equal marks.
- Circle the answers you think are correct on the paper itself.
- There is only one correct answer per question.

representative examples:

- 11) The first TDMA multiplexing level of a 30-channel PCM Telephone system uses
 - A) an AMI line code
 - B) a polar RZ line code
 - C) a Manchester line code
 - This indicates that D is the answer you think is correct an HDB3 line code
 - E) none of the above.
- 12) The CCITT standards 32kbits/second Differential PCM are
 - for speech signals with bandwidth 3.2 kHz.
 - B) for audio signals with bandwidth 7 kHz
 - C) specifying a sampling frequency 16 ksamples/second
 - D) specifying an 8 levels quantizer
 - E) none of the above

- This question has 6 multiple choice questions numbered 1 to 6, all carrying equal marks.
- Circle the answers you think are correct on the paper itself.
- There is only one correct answer per question.

representative example:

1) A digital communication system having an energy utilisation efficiency (EUE) equal to 30, operates in the presence of additive white Gaussian noise of double-sided power spectral density $PSD_n(f)=0.5\times 10^{-6}$ W/Hz. If the channel capacity C is 16 kbits/s and the channel bandwidth B is 4 kHz, then the data bit rate r_b is

A)	1.5 kbits/sec		. 1	1 6	7. 📦	410	OLA CUIOT
(B)	1.5 kbits/sec 2 kbits/sec	This	indicates	that (B)	15	THE	Golymori
C)	3.5 kbits/sec	You	think is	Correct			

- D) 4 kbits/sec
- E) none of the above.

- This question has 6 multiple choice questions numbered 1 to 6, all carrying equal marks.
- Circle the answers you think are correct on the paper itself.
- There is only one correct answer per question.
 - 2) A digital communication system having an energy utilisation efficiency (EUE) equal to 30, operates in the presence of additive white Gaussian noise of double-sided power spectral density $PSD_n(f)=0.5\times 10^{-6}$ W/Hz. If the channel capacity C is 16 kbits/s and the channel bandwidth B is 4 kHz, then the data bit rate r_b is

A) 1.5 kbits/sec

B) 2 kbits/sec

C) 3.5 kbits/sec

This indicates that D should be ignored

4 kbits/sec

E) none of the above.

- This question has 6 multiple choice questions numbered 1 to 6, all carrying equal marks.
- Circle the answers you think are correct on the paper itself.
- There is only one correct answer per question.
 - 3) A digital communication system having an energy utilisation efficiency (EUE) equal to 30, operates in the presence of additive white Gaussian noise of double-sided power spectral density $PSD_n(f)=0.5\times 10^{-6}$ W/Hz. If the channel capacity C is 16 kbits/s and the channel bandwidth B is 4 kHz, then the data bit rate r_b is

A) 1.5 kbits/sec B) 2 kbits/sec	In this case the correct answer B
C) 3.5 kbits/sec	The wrong answer D will be taken
D) 4 kbits/sec	
E) none of the above.	into account.