

UNIVERSITY OF SANTO TOMAS

Faculty of Engineering

ELECTRONICS ENGINEERING DEPARTMENT

First Term, AY 2021 - 2022

EE2315 Lab: Industrial Electronics

Experiment 4: Unijunction Transistor (UJT) Relaxation Oscillator Part 2

Intended Learning Outcomes

- 1. Be able to determine the frequency of oscillation of a relaxation oscillator.
- 2. Be able to determine the effect of a change in supply voltage, timing components, and temperature on the frequency of oscillation in a UJT relaxation oscillator

Discussion

Applications of UJT include non-sinusoidal oscillators, sawtooth generators, phase control, and timing circuits. Figure 4.1 shows a UJT relaxation oscillator as an example of one application. The operation is as follows. When dc power is applied, the capacitor C charges exponentially through until it reaches the peak-point voltage V_p . At this point, the PN junction becomes forward biased, and the emitter characteristic goes into the negative resistance region. The capacitor then quickly discharges through the forward-biased junction and R_2 . When the capacitor voltage decreases to the valley-point voltage the UJT turns off, the capacitor begins to charge again, and the cycle will repeat.

Fig. 4.1 UJT oscillator circuit and the corresponding waveforms of V_E and V_{R_2}

Materials

LTSpice Simulator

Experiment Proper

Part A.

1. Construct the circuit shown in Fig. 4.2.

2. Set-up a **10ms** transient analysis using the .tran command. To ensure that the initial voltage across the capacitor is zero, include the directive:

- 3. Run the simulation and plot $V_{\mathbb{F}}$.
- 4. Measure and record V_{ν} , and V_{ρ} .
- 5. Measure and record t_{ON} by placing two cursors in between V_V and V_P .
- 6. Measure and record t_{OFF} by placing two cursors in between V_p and V_V .
- 7. Compute for the oscillation period, T, by adding the measured t_{ON} and t_{OFF} , compute for the frequency of oscillation, and record the computed values on Table 4.1.
- 8. Compute for the theoretical oscillation period, T, using the following and record it on Table 4.1:

$$T = R_E C_E \ln \left(\frac{V_{BB} - V_V}{V_{BB} - V_D} \right);$$

9. Compute for the theoretical frequency of oscillation and record it on table 4.1.

Guide Question: What may be the cause of deviation in the measured and calculated oscillation frequency?

Fig. 4.2 The UJT relaxation oscillator circuit

Part B.

- 1. Change the supply voltage (VBB) of the circuit to 10V and re-run the transient simulation.
- 2. Using different plot panes, plot V_E , V_{B1} , and V_{B2} .
- 3. Measure and record the oscillation period and frequency on Table 4.2.
- 4. Repeat steps 1 to 3 for VBB=15V.

Guide Question: What is the effect of the supply voltage in the oscillation frequency?

Part C

- 1. After finishing part B, revert the supply voltage back VBB to 12V.
- 2. Change R_E to $100\text{k}\Omega$ and re-run the transient simulation (change the final time if necessary).
- 3. Using different plot panes, plot V_E , V_{B1} , and V_{B2} .
- 4. Measure and record both the oscillation period and frequency on Table 4.3.
- 5. Repeat steps 2 to 4 using the components indicated in Table 4.3.

Guide Question: What is the effect of R_E and C_E to the oscillation frequency?

Part D:

- 1. After finishing part C, revert R_E and C_E back to $10k\Omega$ and $0.22\mu\text{F}$, respectively.
- 2. Change the temperature to 0°C and re-run the transient simulation. Use the command: .temp <desired temperature>
- 3. Using different plot panes, plot V_E , V_{B1} , and V_{B2} .
- 4. Measure and record both the oscillation period and frequency on Table 4.4.
- 5. Repeat steps 2 to 4 using the temperature indicated in Table 4.4.
- 6. Using Excel (or MATLAB®), plot the measured frequency versus the temperature.
- 7. Compute and record the temperature coefficient (the unit of TC is in ppm or parts per million) of the oscillation frequency using the formula:

$$TC = \frac{2 \cdot (f_{max} - f_{min})}{(f_{max} + f_{min}) \cdot (T_{max} - T_{min})} \times 10^{6}$$

Comment on the temperature coefficient of the oscillator. (Hint: Search for the TC of other types of oscillator and compare it to the calculated TC)

• End of Experiment 4 •

Experiment Number 4 Group Report					
Group No.: Group Members:					
Part A: Plot of Part A Simulations (Step 3):					
	<insert here="" plot=""></insert>				
Table 4.1					
	Measured	Calculated			
Oscillation Period					
Oscillation Frequency					
Answer to the Guide Question:					
	<insert answer="" here=""></insert>				
Part B: Plot of Part B Simulations (Step 2):					
When $V_{BB} = 10V$:					
	<insert here="" plot=""></insert>				
When $V_{BB} = 15V$:					
	<insert here="" plot=""></insert>				

Table 4.2

	Time Period	Frequency
V1 = 10V		
V1 = 15V		

Answer to the Guide Question:

<Insert Answer Here>

Part C:

Plot of Part C Simulations (Step 3):

Case 1:

<Insert Plot Here>

Case 2:

<Insert Plot Here>

Case 3:

<Insert Plot Here>

Table 4.3

	RE	CE	Oscillation Period	Oscillation Frequency
Case 1	100ΚΩ	0.22uF		
Case 2	1ΜΩ	0.22uF		
Case 3	10ΚΩ	0.05uF		

Answer to the Guide Question:

<Insert Answer Here>

Part D: Plot of Part D Simulations (Step	3):	
Temperature = 0°		
	<insert here="" plot=""></insert>	
Temperature = 25°		
	<insert here="" plot=""></insert>	
Temperature = 50°		
	<insert here="" plot=""></insert>	
Temperature = 70°		
-	<insert here="" plot=""></insert>	
Temperature = 100°		
Temperature = 100		
	<insert here="" plot=""></insert>	
Table 4.4		
Temperature	Oscillation Period	Oscillation Frequency
0° <i>C</i>		
25°C		
50° <i>C</i>		
75° <i>C</i>		
100°C		
Temperature Coefficient		
Plot of Frequency versus Temper	rature:	
	<insert here="" plot=""></insert>	
Comment:		
	<insert comment="" here=""></insert>	
Conclusion:		
	<inset conclusion="" here=""></inset>	