WARTHOG 2018, Lecture I-4

Main Exercise 1. We work in the standard setup, with $G = Sp_4$.

- (a) Compute the character table of W (it is a dihedral group of order 8).
- (b) Give the list of the principal series unipotent characters.
- (c) For each $\chi \in \operatorname{Irr} W$ we assume the following:
 - dim ρ_{χ} is a polynomial in $\mathbb{Q}[q]$ dividing $|\mathrm{Sp}_4(q)|$,
 - $\rho_{1_W} = 1_{\mathrm{Sp}_4(q)}$ and $\rho_{\mathrm{sgn}} = \mathrm{St}_{\mathrm{Sp}_4(q)}$, a character of dimension q^4 .
 - $\bullet \ \dim \rho_{\chi|_{q=1}} = \chi(1),$
 - the degree of the polynomial dim ρ_{χ} for $\chi \neq 1$, sgn is 3.

Compute the dimension of each ρ_{χ} . (Note: dim ρ_{χ} need not be in $\mathbb{Z}[q]$, just in $\mathbb{Q}[q]$.)

- (d) Other method:
 - (i) Find the four 1-dimensional characters of the Hecke algebra $\mathcal{H}_q(W)$.
 - (ii) Show that

$$h_s \mapsto \begin{bmatrix} -1 & 0 \\ -q & q \end{bmatrix}$$
 and $h_t \mapsto \begin{bmatrix} q & -2 \\ 0 & -1 \end{bmatrix}$

defines a 2-dimensional representation of $\mathcal{H}_q(W)$.

(iii) Using the fact that $\operatorname{Trace}(h_w \mid \mathbb{C}G/B) = 0$ if $w \neq 1$ compute $\dim \rho_{\chi}$ for all $\chi \in \operatorname{Irr} W$.

WARTHOG 2018, Lecture I-4 supplementary exercises

Exercise 1. We consider the Hecke algebra $\mathcal{H} := \mathcal{H}_q(W)$ with equal parameters.

(a) We define $\tau: \mathcal{H} \to \mathbb{C}$ by $\tau(h_w) = \delta_{e,w}$. Show that

$$\begin{array}{ccc} \mathcal{H} & \longrightarrow & \mathcal{H}^{\vee} \\ h & \longmapsto & (h' \mapsto \tau(hh')) \end{array}$$

induces an isomorphism of $(\mathcal{H}, \mathcal{H})$ -bimodules. We say that \mathcal{H} is a *symmetric algebra* and that τ is a *symmetrizing form*.

Given $\phi \in \mathcal{H}^{\vee}$, we denote by ϕ^{\vee} the unique element of \mathcal{H} whose image under the previous isomorphism is ϕ .

We now assume that \mathcal{H} is split semisimple. Recall that every irreducible character χ of W yields an irreducible character χ_q of \mathcal{H} .

(b) Given χ an irreducible character of W, show that χ_q^{\vee} is a central element of \mathcal{H} and that $\chi_q^{\vee} = \chi_q^{\vee} e_{\chi_q}$ where e_{χ_q} is the central idempotent attached to χ_q .

We define the Schur element S_{χ} to be the scalar on which χ_q^{\vee} acts on the simple representation associated to χ_q . More precisely

$$S_{\chi} = \omega_{\chi_q}(\chi_q^{\vee})$$

where ω_{χ_q} is the central character associated to χ_q .

- (c) Show that $\chi_q^{\vee} = S_{\chi} e_{\chi_q}$ (Hint: write how a central element decomposes on the basis of primitive central idempotents).
- (d) Using the decomposition of $1_{\mathcal{H}}$ into central idempotents, show that

$$\tau = \sum_{\chi \in \operatorname{Irr} W} \frac{1}{S_{\chi}} \chi_{q}.$$

- (e) Compute the Schur elements when $W = \mathfrak{S}_n$ with n = 2, 3.
- (f) We assume that we are in the generic setup. Show that

$$\dim \rho_{\chi} = \frac{1}{S_{\chi}} \sum_{w \in W} q^{\ell(w)}.$$

(g) Application: compute the degrees of the principal series representations of $GL_3(q)$.

Exercise 2. Assume M is a $\mathbb{K}G$ -module and let us denote by E the opposite endomorphism algebra $\operatorname{End}_{\mathbb{K}G}(M)^{\operatorname{opp}}$ of M. Let us set

- (a) $\mathfrak{F}_M(V) = \operatorname{Hom}_{\mathbb{K}G}(M, V)$ for any $V \in \mathbb{K}G\text{-}\mathbf{mod}$,
- (b) $\mathfrak{F}_M(\varphi) = (f \mapsto \varphi \circ f)$ for any $\varphi \in \operatorname{Hom}_{\mathbb{K}G}(V, V')$.

Check that this defines a functor $\mathfrak{F}_M : \mathbb{K}G\text{-}\mathbf{mod} \to E\text{-}\mathbf{mod}$.

Exercise 3 (The Fitting Correspondence). Keep the notation of Exercise 2 and let us assume that M is semisimple. We denote by $\operatorname{Irr}(G \mid M)$ the set of simple $\mathbb{K}G$ -modules, up to isomorphism, which occur as composition factors of M. More explicitly, let $M = M_1 \oplus \cdots \oplus M_k$ be a decomposition such that each M_j is a simple submodule. Let $I \subseteq \{1, ..., k\}$ be a subset such that each M_j is isomorphic to exactly one M_i with $i \in I$. Then $\operatorname{Irr}(G \mid M) = \{M_i \mid i \in I\}$. Prove that the following hold.

2

- (a) E is a semisimple algebra
- (b) $M_i \cong M_j$ as $\mathbb{K}G$ -modules if and only if $\mathfrak{F}_M(M_i) \cong \mathfrak{F}_M(M_j)$ as E-modules for any $1 \leq i, j \leq k$.
- (c) \mathfrak{F}_M induces a bijection $\mathfrak{F}_M : \operatorname{Irr}(G \mid M) \to \operatorname{Irr}(E)$.

Deduce that, at the level of characters, we have a decomposition

$$\chi_M = \sum_{S \in \operatorname{Irr}(E)} \dim(S) \chi_{M,S},$$

where $\chi_{M,S} \in Irr(G)$ is a character corresponding to S under (c). (Remark: the assumption that M is semisimple is satisfied if $char(\mathbb{K}) = 0$. Also, the statements in (b) and (c) hold under much weaker assumptions on M.)