		Test n° 7	$(dur\acute{e}e:30 mn)$
NOM:			

Questions de cours

Soit (E,d) un espace métrique. Quand dit-on que E est connexe?

Exercices

1) Soient (X, || ||) un \mathbb{R} -espace vectoriel normé, $a \in X$ et r > 0. On note $B = \{x \in X \mid ||x - a|| < r\}$. Démontrer soigneusement que cette boule ouverte B de centre a et de rayon r est connexe par arcs.

- 2) Soit $E = \mathscr{C}^1([0,1],\mathbb{R})$ le \mathbb{R} -espace vectoriel formé des $f \colon [0,1] \to \mathbb{R}$ dérivables à dérivée continue. On sait qu'on obtient une norme $\| \ \|_{\infty}$ sur E en posant : $\| f \|_{\infty} = \sup_{x \in [0,1]} |f(x)|$ pour $f \in E$.
 - a) Démontrer qu'on définit une norme N sur E en posant :

$$N(f) = |f(0)| + \sup_{x \in [0,1]} |f'(x)|$$
 pour $f \in E$.

b) Montrer que les normes $\|\ \|_{\infty}$ et N ne sont pas équivalentes.