

DATABASE DESIGN I - 1DL300

Spring 2012

An Introductory Course on Database Systems

http://www.it.uu.se/edu/course/homepage/dbastekn/vt12/

Erik Zeitler Uppsala Database Laboratory Department of Information Technology, Uppsala University, Uppsala, Sweden

Normalization Example

Elmasri/Navathe ch 14 Padron-McCarthy/Risch ch 11

Silvia Stefanova

Department of Information Technology Uppsala University, Uppsala, Sweden

Outline

- 1. Normalization Summary
 - Good database design ???
 - Redundancy, Update anomalies, NULL values, spurious tuples
 - Functional dependency (FD), Full functional dependency (FFD)
 - 1 NF
 - 2 NF
 - 3 NF
 - **BCNF**
- Car_sale database example
- Teach database, Street database BCNF normalize
- More exercises on normalization

Normalization –Summary

- "Good" database design ???
- Redundancy, Update anomalies, NULL values, spurious tuples
- Functional dependency (FD), Full functional dependency (FFD)
- 1 NF
- 2 NF
- 3 NF
- **BCNF**

Outline

- 1. Normalization Summary
 - Good database design ???
 - Redundancy, Update anomalies, NULL values, spurious tuples
 - Functional dependency (FD), Full functional dependency (FFD)
 - 1 NF
 - 2 NF
 - 3 NF
 - BCNF
- Car_sale database example
- Teach database, Street database BCNF normalize
- More exercises on normalization

The Database Car sale

Is *Car_sale* in 1NF, 2NF or 3NF? Why or why not? How would you normalize it?

- A car may be sold by multiple salesmen.
- One salesman can sale only one car per day.
- The commission (in %) depends on who you buy a car from, i.e. the salesman.
- The discount (in %) varies from date to date.

Car_sale

Car	<u>Salesman</u>	Date_sold	Commission	Discount
Saab 9-3	Erik P	2012-01-15	15	5
Saab 9-3	Mia F	2012-01-20	20	8
Saab 9-5	Nina O	2012-01-20	10	8
Volvo C30	Mia F	2012-01-21	20	3
Volvo S80	Erik P	2012-01-15	15	5

Normalization to BCNF

Is *Teach* in BCNF? Why or why not? How would you normalize it?

Teach

department	<u>course</u>	teacher
Informational Technology	Database 1	Sara S
Informational Technology	Database 2	Sara S
Engineering	Signals and Systems	Peter E
Engineering	Database 1	Sven P
	\uparrow	

Normalization to BCNF

Is *Street* in BCNF? Why or why not? How would you normalize it?

Street

street	city	length	zipcode
Rydsvägen	Linköping	19	58248
Mårdtorpsgatan	Linköping	0.7	58248
Storgatan	Linköping	1.5	58223
Storgatan	Gnesta	0.014	64631
	lack		

The Database Order

Apply a natural join on the relations. What will be the key of the resulting relation? Is it in 2NF? Is it in 3 NF? Normalize if needed!

Order

<u>order</u>	<u>customer</u>	o_date	total_amount
1000	Joy	2012-01-15	15
1002	Joy	2012-01-20	20
1050	Spec	2012-01-20	10

Order_item

<u>order</u>	<u>item</u>	price	discount
1000	shirt	400	2
1000	dress	1000	5
1002	shirt	400	7
1050	trousers	600	1

- Each *item* has different discount
- *Price* refers to one item
- *Odate* is the date on which the order was placed
- *Total_amount* is the amount of the order

Summary

- Normalization
- Redundancy
- Functional dependency (FD)
- Full functional dependency (FFD)
- 1 NF
- 2 NF
- 3 NF
- BCNF
- Spurious tuples