

SEQUENCE LISTING

<110> Astra Aktiebolag

<120> Vaccine Delivery System and Method of Production

<130> 1103326-0560

<140> 09/308,435

<141> 1999-05-19

<150> PCT/SE99/00582

<151> 1999-04-09

<150> SE 9801288-3

<151> 1998-04-14

<160> 25

<170> PatentIn Ver. 2.1

<210> 1

<211> 1670

<212> DNA

<213> Helicobacter pylori

<220>

<221> CDS

<222> (793)..(1572)

<400> 1

gatcctatcg cgccaaaggt ggtattagga ataagagctt gattataat ctccctggta 60 agtccaaaaa gtattagag atgcttagag gcggttttc cagcgattcc ttattgcgtg 120 gatttgattt tagggaatta catgcaagtg aatgaaaaaa acattcaagc gtttgccccc 180 aaacaataag gtaaaaaatg ccactcactc atttgaatga agaaaatcaa cctaaaatgg 240 tggatatagg ggataaagaa accactgaaa gaatcgctct agcaagcggt cgtatcagca 300 tgaataaaga ggcttatgac gctattatca atcatggcgt caaaaagggt ccggtattac 360 aaactgctat tattgctggg attatgggg ctaaaaagac aagcgaactc attcccatgt 420 gccatccaat catgctcaat ggggtggata ttgatattt agaagaaaaa gagacttgta 480 gttttaaact ctatgcgaga gtcaaaactc aagctaaaac gggcgtagaa atggaagcgc 540

taa	tgagi	tgt (gagc	gtag	gg ct	ttt	aacca	a tti	tatga	acat	ggt	gaaa	gcc (attga	ataaga	600
gca	tgaca	aat 1	tagc	ggtg	tg at	gct	ggaat	t ata	aaaa	gtgg	agg	caaa	agt (gggg	attata	660
acg	ctaaa	aaa a	ataga	aaaa	ag ad	ctgat	caato	c taa	aagat	tatt	agg	gtaa	aat	aacat	tttga	720
caa	caaa	agc (gtgti	tggti	tg ct	tcg	gatti	t gti	tgtta	atag	aag	tcta	aaa	tatta	acaatc	780
aag	gataq	gaa (-	-	-						_	sp Pl	-		gg aaa rp Lys	831
			tta Leu						_					_	-	879
_			att Ile	_			-	_	-	_		-				927
	-	-	gag Glu		_				-	-	_		-			975
			ttc Phe 65											_		1023
		-	aat Asn					_	_	_	_		-			1071
			aag Lys								_		_	_	ttt Phe	1119
		-	caa Gln			_			_		-	-	-			1167
_		_	tta Leu	_		- ,						_				1215
			tta Leu 145						_	_		-	-		_	1263

Leu Ile Pro Ala Gly Phe Ile Lys Val Thr Ile Leu Glu Pro Met Ser 160 165 170	1311
ggg gaa tot ttg gat tot ttt acg atg gat ttg agc gag ttg gac att Gly Glu Ser Leu Asp Ser Phe Thr Met Asp Leu Ser Glu Leu Asp Ile 175 180 185	1359
caa gaa aaa ttc tta aaa acc acc cat tca agc cat agc ggg ggg tta Gln Glu Lys Phe Leu Lys Thr Thr His Ser Ser His Ser Gly Gly Leu 190 195 200 205	1407
gtt agc act atg gtt aag gga acg gat aat tot aat gac gcg atc aag Val Ser Thr Met Val Lys Gly Thr Asp Asn Ser Asn Asp Ala Ile Lys 210 215 220	1455
agc gct ttg aat aag att ttt gca aat atc atg caa gaa ata gac aaa Ser Ala Leu Asn Lys Ile Phe Ala Asn Ile Met Gln Glu Ile Asp Lys 225 230 235	1503
aaa ctc act caa aag aat tta gaa tct tat caa aaa gac gcc aaa gaa Lys Leu Thr Gln Lys Asn Leu Glu Ser Tyr Gln Lys Asp Ala Lys Glu 240 245 250	1551
tta aaa ggc aaa aga aac cga taaaaacaaa taacgcataa gaaaagaacg Leu Lys Gly Lys Arg Asn Arg 255 260	1602
Leu Lys Gly Lys Arg Asn Arg	
Leu Lys Gly Lys Arg Asn Arg 255 260	
Leu Lys Gly Lys Arg Asn Arg 255 260 Cttgaataaa ctgcttaaaa agggttttt agcgttcttt ttgagcgtgt atttaagggc	1662
Leu Lys Gly Lys Arg Asn Arg 255 260 cttgaataaa ctgcttaaaa agggttttt agcgttcttt ttgagcgtgt atttaagggc tgatgatc <210> 2 <211> 260 <212> PRT	1662
Leu Lys Gly Lys Arg Asn Arg 255 260 cttgaataaa ctgcttaaaa agggttttt agcgttcttt ttgagcgtgt atttaagggc tgatgatc <210> 2 <211> 260 <212> PRT <213> Helicobacter pylori <400> 2 Met Arg Ala Asn Asn His Phe Lys Asp Phe Ala Trp Lys Lys Cys Leu	1662

Glu Lys Val Gln Ala Leu Asp Glu Lys Ile Leu Leu Arg Pro Ala 50 55 60

Phe Gln Tyr Ser Asp Asn Ile Ala Lys Glu Tyr Glu Asn Lys Phe Lys 65 70 75 80

Asn Gln Thr Ala Leu Lys Val Glu Gln Ile Leu Gln Asn Gln Gly Tyr 85 90 95

Lys Val Ile Ser Val Asp Ser Ser Asp Lys Asp Asp Phe Ser Phe Ala 100 105 110

Gln Lys Lys Glu Gly Tyr Leu Ala Val Ala Met Asn Gly Glu Ile Val 115 120 125

Lèu Arg Pro Asp Pro Lys Arg Thr Ile Gln Lys Lys Ser Glu Pro Gly 130 135 140

Ala Gly Phe Ile Lys Val Thr Ile Leu Glu Pro Met Ser Gly Glu Ser 165 170 175

Leu Asp Ser Phe Thr Met Asp Leu Ser Glu Leu Asp Ile Gln Glu Lys
180 185 190

Phe Leu Lys Thr Thr His Ser Ser His Ser Gly Gly Leu Val Ser Thr 195 200 205

Met Val Lys Gly Thr Asp Asn Ser Asn Asp Ala Ile Lys Ser Ala Leu 210 215 220

Asn Lys Ile Phe Ala Asn Ile Met Gln Glu Ile Asp Lys Lys Leu Thr 225 230 235 240

Gln Lys Asn Leu Glu Ser Tyr Gln Lys Asp Ala Lys Glu Leu Lys Gly
245 250 255

Lys Arg Asn Arg 260

<210> 3 <211> 1670 <212> DNA <213> Helicobacter pylori

<220>

<221> CDS

<222> (793)..(1572)

<400> 3

gatcctatcg cgccaaaggt ggtattagga ataagagctt gattattaat ctccctggta 60 agtccaaaaa gtattagaga atgcttagag gcggtttttc cagcgattcc ttattgcgtg 120 gatttgattt tagggaatta catgcaagtg aatgaaaaaa acattcaagc gtttgccccc 180 aaacaataag gtaaaaaatg ccactcactc atttgaatga agaaaatcaa cctaaaatgg 240 tggatatagg ggataaagaa accactgaaa gaatcgctct agcaagcggt cgtatcagca 300 tgaataaaga ggcttatgac gctattatca atcatggcgt caaaaagggt ccggtattac 360 aaactgctat tattgctggg attatggggg ctaaaaagac aagcgaactc attcccatgt 420 gccatccaat catgctcaat ggggtggata ttgatatttt agaagaaaaa gagacttgta 480 gttttaaact ctatgcgaga gtcaaaactc aagctaaaac gggcgtagaa atggaagcgc 540 taatgagtgt gagcgtaggg cttttaacca tttatgacat ggtgaaagcc attgataaga 600 gcatgacaat tagcggtgtg atgctggaat ataaaagtgg aggcaaaagt ggggattata 660 acgctaaaaa atagaaaaag actgataatc taaagatatt agggtaaaat aacattttga 720 caacaaaagc gtgttggttg cttcggattt gttgttatag aagtctaaaa tattacaatc 780 aaggatagaa cg atg aga gca aat aat cat ttt aaa gat ttt gca tgg aaa 831 Met Arg Ala Asn Asn His Phe Lys Asp Phe Ala Trp Lys 1 5 10 aaa tgc ctt tta ggc gcg agc gtg gtg gct tta tta gtg gga tgc agc 879 Lys Cys Leu Leu Gly Ala Ser Val Val Ala Leu Leu Val Gly Cys Ser 15 20 ccg cat att att gaa acc aat gaa gtc gct ttg aaa ttg aat tac cat 927 Pro His Ile Ile Glu Thr Asn Glu Val Ala Leu Lys Leu Asn Tyr His 30 35 40 45

50

cca gct agc gag aaa gtt caa gcg tta gat gaa aag att ttg ctt tta

Pro Ala Ser Glu Lys Val Gln Ala Leu Asp Glu Lys Ile Leu Leu Leu

55

975

		-				-	-	aat Asn 70		_		-		_		1023
		_						aag Lys	-	-	_		_			1071
			_	_		_	_	gat Asp	_	-	-		-	_		1119
								tat Tyr								1167
-		_		-		_		aaa Lys				-				1215
								ggt Gly 150	_	-		_	_		_	1263
		_	_				_	gtt Val						-	_	1311
								atg Met					_	_		1359
								cat His								1407
_	-		_	-	_		_	gat Asp				-			_	1455
_	-	_		_			-	aat Asn 230		_		-		-		1503
								tct Ser				_	-		_	1551

				aga Arg		-	taaa	aaac	aaa	taac	gcata	aa ga	aaaa	gaac	a	1602
ctt	gaata	aaa (ctgc	ttaaa	aa aq	gggti	tttt	t age	cgtt	cttt	ttga	agcgi	tgt :	attta	aagggc	1662
tga	tgato	2														1670
<21 <21	0> 4 1> 20 2> PI 3> He	RT	obac	ter 1	oylo	ri										
	0> 4 Arg	Ala	Asn	Asn 5	His	Phe	Lys	Asp	Phe	Ala	Trp	Lys	Lys	Cys 15	Leu	
Leu	Gly	Ala	Ser 20	Val	Val	Ala	Leu	Leu 25	Val	Gly	Cys	Ser	Pro 30	His	Ile	
Ile	Glu	Thr 35	Asn	Glu	Val	Ala	Leu 40	Lys	Leu	Asn	Tyr	His 45	Pro	Ala	Ser	
Glu	Lys 50	Val	Gln	Ala	Leu	Asp 55	Glu	Lys	Ile	Leu	Leu 60	Leu	Arg	Pro	Ala	
Phe 65	Gln	Tyr	Ser	Asp	Asn 70	Ile	Ala	Lys	Glu	туr 75	Glu	Asn	Lys	Phe	Lys 80	
Asn	Gln	Thr	Ala	Leu 85	Lys	Val	Glu	Gln	Ile 90	Leu	Gln	Asn	Gln	Gly 95	Tyr	
Lys	Val	Ile	Ser 100	Val	Asp	Ser	Ser	Asp 105	Lys	Asp	Asp	Phe	Ser 110	Phe	Ala	
Gln	Lys	Lys 115	Glu	Gly	Туr	Leu	Ala 120	Val	Ala	Met	Asn	Gly 125	Glu	Ile	Val	
Leu	Arg 130	Pro	Asp	Pro	Lys	Arg 135	Thr	Ile	Gln	Lys	Lys 140	Ser	Glu	Pro	Gly	
Leu 145	Leu	Phe	Ser	Thr	Gly 150	Leu	Asp	Lys	Met	Glu 155	Gly	Val	Leu	Ile	Pro 160	
Ala	Gly	Phe	Ile	Lys 165	Val	Thr	Ile	Leu	Glu 170	Pro	Met	Ser	Gly	Glu 175	Ser	

Leu Asp Ser Phe Thr Met Asp Leu Ser Glu Leu Asp Ile Gln Glu Lys 180 185 Phe Leu Lys Thr Thr His Ser Ser His Ser Gly Gly Leu Val Ser Thr 200 Met Val Lys Gly Thr Asp Asn Ser Asn Asp Ala Ile Lys Arg Ala Leu 215 220 Asn Lys Ile Phe Ala Asn Ile Met Gln Glu Ile Asp Lys Leu Thr 225 230 Gln Lys Asn Leu Glu Ser Tyr Gln Lys Asp Ala Lys Glu Leu Lys Gly 245 250 Lys Arg Asn Arg 260 <210> 5 <211> 60 <212> PRT <213> Helicobacter pylori Met Lys Thr Asn Gly His Phe Lys Asp Phe Ala Trp Lys Lys Cys Leu 5 10 15 Leu Gly Thr Ser Val Val Ala Leu Leu Val Gly Cys Ser Pro His Ile 20 25 30 Ile Glu Thr Asn Glu Val Ala Leu Lys Leu Asn Tyr His Pro Ala Ser 35 40 Glu Lys Val Gln Ala Leu Asp Glu Lys Ile Leu Leu 50 55 60 <210> 6 <211> 60 <212> PRT <213> Helicobacter pylori <400> 6

Met Lys Thr Asn Gly His Phe Lys Asp Phe Ala Trp Lys Lys Cys Phe

10

Leu Gly Ala Ser Val Val Ala Leu Leu Val Gly Cys Ser Pro His Ile 20 25 Ile Glu Thr Asn Glu Val Ala Leu Lys Leu Asn Tyr His Pro Ala Ser Glu Lys Val Gln Ala Leu Asp Glu Lys Ile Leu Leu 55 60 <210> 7 <211> 60 <212> PRT <213> Helicobacter pylori <400> 7 Met Lys Thr Asn Gly His Phe Lys Asp Phe Ala Trp Lys Lys Cys Leu 5 10 Leu Gly Ala Ser Val Gly Ala Leu Leu Val Gly Cys Ser Pro His Ile 20 25 30 Ile Glu Thr Asn Glu Val Ala Leu Lys Leu Asn Tyr His Pro Ala Ser 40 35 45 Glu Lys Val Gln Ala Leu Asp Glu Lys Ile Leu Leu . 55 <210> 8 <211> 60 <212> PRT <213> Helicobacter pylori Met Arg Ala Asn Asn His Phe Lys Asp Phe Ala Trp Lys Lys Cys Leu 1 5 10 15 Leu Gly Ala Ser Val Val Ala Leu Leu Val Gly Cys Ser Pro His Ile 20 25 30 Ile Glu Thr Asn Glu Val Ala Leu Lys Leu Asn Tyr His Pro Ala Ser 35 40 45 Glu Lys Val Gln Ala Leu Asp Glu Lys Ile Leu Leu

60

55

<212> PRT <213> Helicobacter pylori <400> 9 Met Lys Ala Asn Asn His Phe Lys Asp Phe Ala Trp Lys Lys Cys Leu 5 10 Leu Gly Ala Ser Val Val Ala Leu Leu Val Gly Cys Ser Pro His Ile 20 Ile Glu Thr Asn Glu Val Ala Leu Lys Leu Asn Tyr His Pro Ala Ser 35 40 45 Glu Lys Val Gln Ala Leu Asp Glu Lys Ile Leu Leu 50 55 <210> 10 <211> 60 <212> PRT <213> Helicobacter pylori <400> 10 Leu Lys Pro Ala Phe Gln Tyr Ser Asp Asn Ile Ala Lys Glu Tyr Glu Asn Lys Phe Lys Asn Gln Thr Thr Leu Lys Val Glu Glu Ile Leu Gln 20 25 Asn Gln Gly Tyr Lys Val Ile Asn Val Asp Ser Ser Asp Lys Asp Asp Phe Ser Phe Ala Gln Lys Lys Glu Gly Tyr Leu Ala 50 55 <210> 11 <211> 60 <212> PRT <213> Helicobacter pylori <400> 11 Leu Arg Pro Ala Phe Gln Tyr Ser Asp Asn Ile Ala Lys Glu Tyr Glu 1 5 10 15

<210> 9 <211> 60

Asn Lys Phe Lys Asn Gln Thr Thr Leu Lys Val Glu Glu Ile Leu Gln 20 25 Asn Gln Gly Tyr Lys Val Ile Asn Val Asp Ser Ser Asp Lys Asp Asp 35 40 Phe Ser Phe Ala Gln Lys Lys Glu Gly Tyr Leu Ala 55 <210> 12 <211> 60 <212> PRT <213> Helicobacter pylori <400> 12 Leu Arg Pro Ala Phe Gln Tyr Ser Asp Asn Ile Ala Lys Glu Tyr Glu 5 1 10 Asn Lys Phe Lys Asn Gln Thr Val Leu Lys Val Glu Gln Ile Leu Gln 20 25 Asn Gln Gly Tyr Lys Val Ile Asn Val Asp Ser Ser Asp Lys Asp 35 40 45 Phe Ser Phe Ala Gln Lys Lys Glu Gly Tyr Leu Ala 55 <210> 13 <211> 60 <212> PRT <213> Helicobacter pylori

<400> 13

Leu Arg Pro Ala Phe Gln Tyr Ser Asp Asn Ile Ala Lys Glu Tyr Glu

1 5 10 15

Asn Lys Phe Lys Asn Gln Thr Ala Leu Lys Val Glu Gln Ile Leu Gln 20 25 30

Asn Gln Gly Tyr Lys Val Ile Ser Val Asp Ser Ser Asp Lys Asp Asp 35 40 45

Phe Ser Phe Ala Gln Lys Lys Glu Gly Tyr Leu Ala 50 55 60

```
<211> 60
<212> PRT
<213> Helicobacter pylori
<400> 14
Leu Arg Pro Ala Phe Gln Tyr Ser Asp Asn Ile Ala Lys Glu Tyr Glu
                                      10
Asn Lys Phe Lys Asn Gln Thr Ala Leu Lys Val Glu Gln Ile Leu Gln
             20
                                  25
Asn Gln Gly Tyr Lys Val Ile Ser Val Asp Ser Ser Asp Lys Asp Asp
                              40
Leu Ser Phe Ser Gln Lys Lys Glu Gly Tyr Leu Ala
     50
                          55
<210> 15
<211> 60
<212> PRT
<213> Helicobacter pylori
<400> 15
Val Ala Met Ile Gly Glu Ile Val Leu Arg Pro Asp Pro Lys Arg Thr
                  5
                                                           15
Ile Gln Lys Lys Ser Glu Pro Gly Leu Leu Phe Ser Thr Gly Leu Asp
             20
                                  25
                                                       30
Lys Met Glu Gly Val Leu Ile Pro Ala Gly Phe Val Lys Val Thr Ile
         35
                              40
                                                  45
Leu Glu Pro Met Ser Gly Glu Ser Leu Asp Ser Phe
     50
                          55
                                              60
<210> 16
<211> 60
<212> PRT
<213> Helicobacter pylori
<400> 16
Val Ala Met Asn Gly Glu Ile Val Leu Arg Pro Asp Pro Lys Arg Thr
                  5
                                                           15
```

<210> 14

Ile Gln Lys Lys Ser Glu Pro Gly Leu Leu Phe Ser Thr Gly Leu Asp

20 25 30

Lys Met Glu Gly Val Leu Ile Pro Ala Gly Phe Val Lys Val Thr Ile
. 35 40 45

Leu Glu Pro Met Ser Gly Glu Ser Leu Asp Ser Phe 50 55 60

<210> 17

<211> 60

<212> PRT

<213> Helicobacter pylori

<400> 17

Val Ala Met Asn Gly Glu Ile Val Leu Arg Pro Asp Pro Lys Arg Thr 1 5 10 15

Ile Gln Lys Lys Ser Glu Pro Gly Leu Leu Phe Ser Thr Gly Leu Asp 20 25 30

Lys Met Glu Gly Val Leu Ile Pro Ala Gly Phe Ile Lys Val Thr Ile
 35
 40
 45

Leu Glu Pro Met Ser Gly Glu Ser Leu Asp Ser Phe 50 55 60

<210> 18

<211> 60

<212> PRT

<213> Helicobacter pylori

<400> 18

Thr Met Asp Leu Ser Glu Leu Asp Ile Gln Glu Lys Phe Leu Lys Thr
1 5 10 15

Thr His Ser Ser His Ser Gly Gly Leu Val Ser Thr Met Val Lys Gly
20 25 30

Thr Asp Asn Ser Asn Asp Ala Ile Lys Ser Ala Leu Asn Lys Ile Phe 35 40 45

Ala Ser Ile Met Gln Glu Met Asp Lys Lys Leu Thr 50 55 60

<210> 19

```
<213> Helicobacter pylori
<400> 19
<210> 20
<211> 60
<212> PRT
<213> Helicobacter pylori
<400> 20
Thr Met Asp Leu Ser Glu Leu Asp Ile Gln Glu Lys Phe Leu Lys Thr
                  5
                                      10
Thr His Ser Ser His Ser Gly Gly Leu Val Ser Thr Met Val Lys Gly
             20
                                  25
                                                      30
Thr Asp Asn Ser Asn Asp Ala Ile Lys Ser Ala Leu Asn Lys Ile Phe
         35
                             40
Ala Asn Ile Met Gln Glu Ile Asp Lys Lys Leu Thr
     50
                         55
<210> 21
<211> 20
<212> PRT
<213> Helicobacter pylori
<400> 21
Gln Arg Asn Leu Glu Ser Tyr Gln Lys Asp Ala Lys Glu Leu Lys Asn
Lys Arg Asn Arg
             20
<210> 22
<211> 20
<212> PRT
<213> Helicobacter pylori
<400> 22
Gln Lys Asn Leu Glu Ser Tyr Gln Lys Asp Ala Lys Glu Leu Lys Gly
                  5
                                      10
                                                          15
```

<212> PRT

Lys Arg Asn Arg

20

<210> 23

<211> 31

<212> PRT

<213> Helicobacter pylori

<400> 23

Met Arg Ala Asn Asn His Phe Lys Asp Phe Ala Trp Lys Lys Cys Leu 1 5 10 15

Leu Gly Ala Ser Val Val Ala Leu Leu Val Gly Leu Ala Gly Cys
20 . 25 . 30

<210> 24

<211> 31

<212> PRT

<213> Helicobacter pylori

<220>

<221> MOD RES

<222> (31)

<223> n-propyl alcohol attached to sulfhydryl group of cysteine residue at position 31

<400> 24

Met Arg Ala Asn Asn His Phe Lys Asp Phe Ala Trp Lys Lys Cys Leu

1 5 10 15

Leu Gly Ala Ser Val Val Ala Leu Leu Val Gly Leu Ala Gly Cys
20 25 30

<210> 25

<211> 31

<212> PRT

<213> Helicobacter pylori

<220>

<221> MOD RES

<222> (31)

<223> lipid chains a and b attached respectively at positions 3 and 2 of propyl group attached to sulfhydryl of cysteine residue at position 31

<400> 25

Met Arg Ala Asn Asn His Phe Lys Asp Phe Ala Trp Lys Lys Cys Leu 1 5 10 15

Leu Gly Ala Ser Val Val Ala Leu Leu Val Gly Leu Ala Gly Cys
20 25 30

(1993) J. Bacteriol. 175, 674-683. Reference is also made to P W Toole et al, Bacteriology Vol. 177, No. 21, Nov. 1995; and Jones, A.C., Logan, R.P., Foynes, S., Cockayne, A., Wren, B.W. and Penn, C.W., J. Bacteriol. 179 (17), 5643-5647 (1997) which concern HpaA proteins.

The Hpa A protein is expressed by all *H. pylori* strains tested, and antibodies created towards this protein do not cross-react with common endogenous human bacteria of other species or with selected human tissues including the gastric mucosa. Thus being a well conserved putative adhesin with immunogenic properties, the HpaA protein is useful both for the detection of *H. pylori* infections as well as for the manufacture of vaccine compositions. Table 1 shows a comparison of HpaA amino acid sequences derived from 4 different strains of *H. Pylori*. It can be seen from the table that the sequence is highly conserved amongst different strains.

Table 1

	Evans (8826)	MKTNGHFKDFAWKKCLLGTSVVALLVGCSPHIIETNEVALKLNYHPASEKVQALDEKILL (SEQ ID NO:5)
	GTC (J99)	MKTNGHFKDFAWKKCFLGASVVALLVGCSPHIIETNEVALKLNYHPASEKVQALDEKILL (SEQ ID NO:6)
	Trust (17874)	MKTNGHFKDFAWKKCLLGASVGALLVGCSPHIIETNEVALKLNYHPASEKVQALDEKILL (SEQ ID NO:7)
20	Penn (11637)	MRANNHFKDFAWKKCLLGASVVALLVGCSPHIIETNEVALKLNYHPASEKVQALDEKILL (SEQ ID NO:8)
	TIGR (26695)	MKANNHEKDFAWKKCLLGASVVALLVGCSPHIIETNEVALKLNYHPASEKVQALDEKILL (SEQ ID NO:9)
		•::*:********
	Evans (8826)	LKPAFQYSDNIAKEYENKFKNQTTLKVEEILQNQGYKVINVDSSDKDDFSFAQKKEGYLA (SEQ ID NO:10)
25	GTC (J99)	LRPAFQYSDNIAKEYENKFKNQTTLKVEEILQNQGYKVINVDSSDKDDFSFAQKKEGYLA (SEQ ID NO:11)
	Trust (17874)	LRPAFQYSDNIAKEYENKFKNQTVLKVEQILQNQGYKVINVDSSDKDDFSFAQKKEGYLA (SEQ ID NO:12)
	Penn (11637)	LRPAFQYSDNIAKEYENKFKNQTALKVEQILQNQGYKVISVDSSDKDDFSFAQKKEGYLA (SEQ ID NO:13)
	TIGR (26695)	LRPAFQYSDNIAKEYENKFKNQTALKVEQILQNQGYKVISVDSSDKDDLSFSQKKEGYLA (SEQ ID NO:14)
	11011 (20070)	
		•;••••••••••

Evans (8826)	VAMIGEIVLRPD?KRTIQKKSEPGLLFSTGLDKMEGVLIPAGFVKVTILEPMSGESLDSF	(SEQ	TD	NO:13)
Evallo (erra)	VAMNGEIVLRPDPKRTIQKKSEPGLLFSTGLDKMEGVLIPAGFVKVTILEPMSGESLDSF	(SEQ	ID	NO:16)
	VAMNGEIVLRPDPKRTIQKKSEPGLLFSTGLDKMEGVLIPAGFVKVTILEPMSGESLDSF	(SEQ	ID	NO:16)
	VAMNGEIVLRPDPKRTIQKKSEPGLLFSTGLDKMEGVLIPAGFIKVTILEPMSGESLDSF			
Penn (11637)	VAMNGEIVLRPDPKKTIQKKSEFGLLFSTGLDKALEGVBTTAGTTKVTTTT	\\		

	TIGR (26695)	VAMNGEIVLRPDPKRTIQKKSEPGLLFSTGLDKMEGVLIPAGFVKVTILEPMSGESLDSF (SEQ ID NO:16)
		*** *********************************
	Evans (8826)	TMDLSELDIQEKFLKTTHSSHSGGLVSTMVKGTDNSNDAIKSALNKIFASIMQEMDKKLT (SEQ ID NO:18)
5	GTC (J99)	TMDLSELDIQEKFLKTTHSSHSGGLVSTMVKGTDNSNDAIKSALNKIFASIMQEMDKKLT (SEQ ID NO:18)
	Trust (17874)	TMDLSELDIQEKFLKTTHSSHSGGLVSTMVKGTDNSNDAIKSALNKIFGSIMQEIDKKLT (SEQ ID NO:19)
	Penn (11637)	TMDLSELDIQEKFLKTTHSSHSGGLVSTMVKGTDNSNDAIKSALNKIFANIMQEIDKKLT (SEQ ID NO:20)
	TIGR (26695)	TMDLSELDIQEKFLKTTHSSHSGGLVSTMVKGTDNSNDAIKSALNKIFANIMQEIDKKLT (SEQ ID NO:20)

10		
	Evans (8826)	QRNLESYQKDAKELKNKRNR (SEQ ID NO:21)
	GTC (J99)	QRNLESYQKDAKELKNKRNR (SEQ ID NO:21)
	Trust (17874)	QKNLESYQKDAKELKGKRNR (SEQ ID NO:22)
	Penn (11637)	QKNLESYQKDAKELKGKRNR (SEQ ID NO:22)
15	TIGR (26695)	QKNLESYQKDAKELKGKRNR (SEQ ID NO:22)
		*

"*" at a certain position denotes an identical amino acid in all sequences

"." at a certain position denotes conserved amino acids (eg, amino acids of the same charge type such as lysine or arginine at a certain position).

Penn (11637)	DNA sequence deposited in Genbank under Accession No. X92502
Trust (17874)	DNA sequence deposited in Genbank under Accession No.U35455
Evans (8826)	DNA sequence deposited in Genbank under Accession No.X61574
TIGR (26695)	DNA sequence deposited under Accession No. AE000591
GTC (J99)	DNA sequence obtained in-house.

The strain names are indicated in brackets, strain 8826 being obtained from SWISS-PROT accession Q48264.

25

III

5

H (Lipid Chain a)
H (Lipid Chain b)

٧

5

10

15

(1993) J. Bacteriol. 175, 674-683. Reference is also made to P W Toole et al, Bacteriology Vol. 177, No. 21, Nov. 1995; and Jones, A.C., Logan, R.P., Foynes, S., Cockayne, A., Wren, B.W. and Penn, C.W., J. Bacteriol. 179 (17), 5643-5647 (1997) which concern HpaA proteins.

The Hpa A protein is expressed by all *H. pylori* strains tested, and antibodies created towards this protein do not cross-react with common endogenous human bacteria of other species or with selected human tissues including the gastric mucosa. Thus being a well conserved putative adhesin with immunogenic properties, the HpaA protein is useful both for the detection of *H. pylori* infections as well as for the manufacture of vaccine compositions. Table 1 shows a comparison of HpaA amino acid sequences derived from 4 different strains of *H. Pylori*. It can be seen from the table that the sequence is highly conserved amongst different strains.

Table 1

		/mm-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-
	Evans (8826)	MKTNGHFKDFAWKKCLLGISVVALLVGCSPHIIETNEVALKLNYHPASEKVQALDEKILL (SEQ ID NO:5)
	GTC (J99)	MKTNGHFKDFAWKKCFLGASVVALLVGCSPHIIETNEVALKLNYHPASEKVQALDEKILL (SEQ ID NO:6)
	Trust (17874)	MKTNGHFKDFAWKKCLLGASVGALLVGCSPHIIETNEVALKLNYHPASEKVQALDEKILL (SEQ ID NO:7)
20	Penn (11637)	MRANNHFKOFAWKKCLLGASVVALLVGCSPHIIETNEVALKLNYHPASEKVQALDEKILL (SEQ_ID_NO:8)
	TIGR (26695)	MKANNHFKDFAWKKCLLGASVVALLVGCSPHIIETNEVALKLNYHPASEKVQALDEKILL (SEQ ID NO:9)
		:::********
	Evans (8826)	LKPAFQYSDNIAKEYENKFKNQTTLKVEEILQNQGYKVINVDSSDKDDFSFAQKKEGYLA (SEQ ID NO:10)
25	GTC (J99)	LRPAFQYSDNIAKEYENKFKNQTTLKVEEILQNQGYKVINVDSSDKDDFSFAQKKEGYLA (SEQ ID NO:11)
25	GTC (J99) Trust (17874)	
25		LRPAFQYSDNĮAKEYENKFKNQTTLKVEEILQNQGYKVINVDSSDKDDFSFAQKKEGYLA (SEQ ID NO:11)
25	Trust (17874)	LRPAFQYSDNIAKEYENKFKNQTTLKVEEILQNQGYKVINVDSSDKDDFSFAQKKEGYLA (SEQ ID NO:11) LRPAFQYSDNIAKEYENKFKNQTVLKVEQILQNQGYKVINVDSSDKDDFSFAQKKEGYLA (SEQ ID NO:12)

Evans (8826)	VAMIGEIVLRPD?KRTIQKKSEPGLLFSTGLDKMEGVLIPAGFVKVTILEPMSGESLDSF	(SEQ ID NO:13)
Evallo (ecc.)	VAMNGEIVLRPDPKRTIQKKSEPGLLFSTGLDKMEGVLIPAGFVKVTILEPMSGESLDSF	(SEQ ID NO:16)
	VAMNGEIVLRPDPKRTIQKKSEPGLLFSTGLDKMEGVLIPAGFVKVTILEPMSGESLDSF	(SEQ ID NO:16)
I Luge (2	VAMNGEIVLRPDPKRTIQKKSEPGLLFSTGLDKMEGVLIPAGFIKVTILEPMSGESLDSF	
Pann (11637)	VAMNGETVLRPDPRRITORNSDEGGDESTGESTGESTGESTGESTGESTGESTGESTGESTGESTG	

	TIGR (26695)	VAMNGEIVLRPDPKRTIQKKSEPGLLFSTGLDKMEGVLIPAGFVKVTILEPMSGESLDSF (SEQ ID NO:16)
		*** ***********************************
	Evans (8826)	TMDLSELDIQEKFLKTTHSSHSGGLVSTMVKGTDNSNDAIKSALNKIFASIMQEMDKKLT (SEQ ID NO:18)
5	GTC (J99)	TMDLSELDIQEKFLKTTHSSHSGGLVSTMVKGTDNSNDAIKSALNKIFASIMQEMDKKLT (SEQ_ID_NO:18)
	Trust (17874)	TMDLSELDIQEKFLKTTHSSHSGGLVSTMVKGTDNSNDAIKSALNKIFGSIMQEIDKKLT (SEQ_ID_NO:19)
	Penn (11637)	TMDLSELDIQEKFLKTTHSSHSGGLVSTMVKGTDNSNDAIKSALNKIFANIMQEIDKKLT (SEQ ID NO:20)
	TIGR (26695)	TMDLSELDIQEKFLKTTHSSHSGGLVSTMVKGTDNSNDAIKSALNKIFANIMQEIDKKLT (SEQ_ID_NO:20)

10		·
	Evans (8826)	QRNLESYQKDAKELKNKRNR (SEQ ID NO:21)
	GTC (J99)	QRNLESYQKDAKELKNKRNR (<u>SEQ_ID_NO:21</u>)
	Trust (17874)	QKNLESYQKDAKELKGKRNR (SEQ ID NO:22)
	Penn (11637)	QKNLESYQKDAKELKGKRNR (SEQ ID NO:22)
15	TIGR (26695)	QKNLESYQKDAKELKGKRNR (SEQ ID NO:22)
		*;************

"*" at a certain position denotes an identical amino acid in all sequences

"." at a certain position denotes conserved amino acids (eg, amino acids of the same charge type such as lysine or arginine at a certain position).

Penn (11637)	DNA sequence deposited in Genbank under Accession No. X92502
Trust (17874)	DNA sequence deposited in Genbank under Accession No.U35455
Evans (8826)	DNA sequence deposited in Genbank under Accession No.X61574
TIGR (26695)	DNA sequence deposited under Accession No. AE000591
GTC (J99)	DNA sequence obtained in-house.

The strain names are indicated in brackets, strain 8826 being obtained from SWISS-PROT accession Q48264.

25

III

5

10 IV

V