Uvod

V prvem letniku smo spoznali, kako lahko zveznost funkcije v neki točki karakteriziramo z zaporedji. Funkcija $f: \mathbb{R} \to \mathbb{R}$ je zvezna v točki $a \in \mathbb{R}$ natanko tedaj, ko za vsako zaporedje (a_n) , ki konvergira proti a, zaporedje $(f(a_n))$ konvergira proti f(a). Podobno lahko z zaporedji karakteriziramo funkcijsko limito: število $L \in \mathbb{R}$ je limita funkcije $f: \mathbb{R} \to \mathbb{R}$ v točki $a \in \mathbb{R}$ natanko tedaj, ko za vsako zaporedje (a_n) s členi različnimi od a, ki konvergira proti a, zaporedje $(f(a_n))$ konvergira proti a. Po definiciji funkcija a0 devedljiva v a0, če obstaja limita

$$\lim_{x \to a} \frac{f(x) - f(a)}{x - a},$$

v tem primeru tej limiti pravimo odvod funkcije f v točki a. Ker funkcijsko limito znamo opisati z zaporedji, lahko rečemo, da je f odvedljiva v a, natanko tedaj, ko obstaja število $L \in \mathbb{R}$, da za vsako zaporedje (a_n) s členi različnimi od a, ki konvergira proti a, zaporedje $(\frac{f(x)-f(a_n)}{x-a_n})$ konvergira proti L. Sedaj smo uspeli pojma zveznosti in odvedljivosti funkcije opisati samo s pojmom konvergence zaporedja. Če bi znali tudi kako drugače definirati, kdaj dano zaporedje konvergira, bi dobili drugačni definiciji zveznosti in odvedljivosti. Točno s tem se bomo ukvarjali v tej predstavitvi. Najprej se bomo naučili, kaj je to Cesaro konvergenca zaporedja, s pomočjo tega bomo dobili novi definiciji zveznosti in odvedljivosti, nato pa bomo ugotovili katere funkcije so zvezne oziroma odvedljive po tej novi definiciji.

1 Cesaro konvergenca

Naj bo (a_n) realno zaporedje. Temu zaporedju lahko priredimo novo zaporedje, katerega n-ti člen je enak $\overline{a}_n = \frac{a_1 + a_2 + \ldots + a_n}{n}$. Temu novemu zaporedju bomo rekli zaporedje aritmetičnih sredin zaporedja (a_n) in ga označili z (\overline{a}_n) .

Definicija 1. Realno zaporedje (a_n) Cesaro konvergira, če konvergira njeno zaporedje aritmetičnih sredin (\overline{a}_n) .

Oznaka $a_n \to a$ naj pomeni, da zaporedje (a_n) konvergira proti a, oznaka $a_n \leadsto a$ pa, da zaporedje Cesaro konvergira proti a.

V prvem letniku smo se pri analizi naučili, da iz $a_n \to a$ sledi $a_n \leadsto a$. Obratno seveda ne velja, saj zaporedje $(-1)^n$ Cesaro konvergira proti 0, ne konvergira pa v običajnem smislu. Ker je pojem Cezaro konvergence zelo pomemben za nadaljevanje, si oglejmo še nekaj primerov.

1.1 Primeri

- 1. Poiščimo primer omejenega zaporedja, ki ni Cesaro konvergentno. Prvi člen naj bo enak 2. Naslednjih nekaj členov bo enakih −2. Takih členov mora biti dovolj, da bo aritmetična sredina padla pod −1. Nato spet dodajmo dovolj členov enakih 2, da bo aritmetična sredina narasla nad 1. S ponavljanjem take kostrukcije dobimo omejeno zaporedje, ki ni Cesaro konvergentno, saj zaporedje aritmetičnih sredin nekako oscilira med −1 in 1.
- 2. Naj bo $m \in \mathbb{N}$ in $a_1, a_2, \ldots, a_m \in \mathbb{R}$. Zanima nas, kdaj zaporedje $a_1, a_2, \ldots, a_m, a_1, a_2, \ldots$ Cesaro konvergira proti 0. Naj bo $A := a_1 + a_2 + \ldots + a_m$. Ker za vse $k \in \mathbb{N}$ velja $\overline{a}_{km} = A$, je enakost A = 0 potreben pogoj za $a_n \leadsto 0$. Naj bo torej A = 0. Zaporedje delnih vsot zaporedja (a_n) je potem periodično, zato je omejeno. Sledi, da zaporedje aritmetičnih sredin konvergira proti 0. Torej (a_n) konvergira proti 0 natanko tedaj, ko velja A = 0.

2 Cesaro zveznost

Sedaj se lahko končno lotimo Cesaro zveznosti.

Definicija 2. Funkcija $f : \mathbb{R} \to \mathbb{R}$ je Cesaro zvezna v točki $a \in \mathbb{R}$, če za vsako zaporedje (a_n) , ki Cesaro konvergira proti a, zaporedje $(f(a_n))$ Cesaro konvergira proti f(a). Pravimo, da je f zvezna, če je zvezna v vsaki točki $a \in \mathbb{R}$.

Izrek 1. Naj bo $f : \mathbb{R} \to \mathbb{R}$ funkcija. Naslednje trditve so ekvivalentne.

- 1. Funkcija f je Cesaro zvezna v točki 0.
- 2. Funkcija f je Cesaro zvezna.
- 3. Funkcija f je oblike f(x) = Ax + B za neki realni števili $A, B \in \mathbb{R}$.

Dokaz. (1) \to (3) : Naj bo funkcija $g: \mathbb{R} \to \mathbb{R}$ definirana s predpisom g(x) = f(x) - f(0). Potem je g Cesaro zvezna v točki 0 in velja g(0) = 0. Naj bo $a \in \mathbb{R}$ poljubno realno število. Ker zaporedje $a, -a, a, -a, a, \ldots$ Cesaro konvergira proti 0 in je g Cesaro zvezna v 0, zaporedje $g(a), g(-a), g(a), g(-a), \ldots$ Cesaro konvergira proti g(0) = 0. Potem mora veljati g(a) + g(-a) = 0 oziroma g(-a) = -g(a). Naj bosta zdaj $b, c \in \mathbb{R}$ poljubni realni števili. Spet zaporedje $b, c, -(b+c), b, c, -(b+c), \ldots$ Cesaro konvergira k 0, zato zaporedje $g(b), g(c), g(-(b+c)), g(b), \ldots$ Cesaro konvergira proti g(0) = 0. Sledi ()

3 Cesaro odvedljivost