### **TITLE:** Conductors and Non-conductors

The purpose of this lab is

- Observe conductivity in a variety of substances
- Observe the difference of conductivity in strong, weak, and non-electrolytes using an LED lightbulb and battery
- Observe the reactivity of compounds with different conductivities.
- Observe how different states of matter effect the conductivity of ionic compounds

#### **Reference:**

(1) Kateley, L. J., *Introduction to Chemistry in the Laboratory*, 20<sup>th</sup> Ed., Lake Forest College, **2021**, Experiment 3.

#### **Observations and Data:**

## **Demo One: Melting Salt KClO3**

- ❖ KClO<sub>4</sub> potassium chlorate
  - Conductivity as a solid salt: non-conductive. Ions not mobile.
  - Conductivity as a molten salt: conductive. Ions mobile K+.....
- ❖ Orange flame due to burning potassium chlorate



Figure 1. Apparatus for melting KClO<sub>4</sub>

Conclusion: Mobile ions are needed for conductivity. Liquid ionic salts conduct while ionic solids do not.

## Demo Two: Reaction of H<sub>2</sub>SO<sub>4</sub>(aq) and Ba(OH)<sub>2</sub>(aq)

- ❖ H<sub>2</sub>SO<sub>4</sub>(aq) -sulfuric acid strong acid
- ❖ Ba(OH)<sub>2</sub>(aq) barium hydroxide strong base
- ❖ Mixture turned a dark pink and cloudy precipitate forming
- Over time the conductivity decreased
- \* Mixture turned fully white

- ❖ Conductivity climbs back up as mixture becomes acidic
- Neutralization of the acid with a base



Figure 2. Graph of conductivity of reaction of H<sub>2</sub>SO<sub>4</sub>(aq) and Ba(OH)<sub>2</sub>(aq)



Figure 3. Apparatus for reaction of H<sub>2</sub>SO<sub>4</sub>(aq) and Ba(OH)<sub>2</sub>(aq)

**Conclusion:** Insoluble salts are not conductive even if the reactant that create them are.

## **Experiment Three: Ionic and Covalent Substances**

| Substance/Solution | Observations | Strong, weak, or non- | Covalent/Ionic and |
|--------------------|--------------|-----------------------|--------------------|
|                    |              | conductor             | ionization         |

| Deionized water   | Weak light      | Non-conductor    | Covalent and not ionized                              |
|-------------------|-----------------|------------------|-------------------------------------------------------|
|                   | (contamination) |                  | (H <sub>2</sub> O)                                    |
| 0.5M acetic acid  | Weak acid       | Weak conductor   | Covalent and slightly                                 |
|                   | Weak light      |                  | ionized                                               |
|                   | Ü               |                  | $(CH_3COO^- + H^+)$                                   |
| 17.4M acetic acid | No light        | Non-conductor    | Covalent and no ionized                               |
|                   |                 |                  | (CH <sub>3</sub> COOH)                                |
| 6M HCl            | Strong acid     | Strong conductor | Covalent and 100%                                     |
|                   | Strong light    |                  | ionized                                               |
|                   |                 |                  | $(H^+Cl^-H_2O)$                                       |
| Aqueous NaCl      | Strong light    | Strong conductor | Ionic and soluble                                     |
| -                 |                 |                  | (Na+Cl-H <sub>2</sub> O)                              |
| 95% ethyl alcohol | No light        | Non-conductor    | Covalent and not ionized                              |
| (ethanol)         | -               |                  | (H <sub>2</sub> O CH <sub>3</sub> CH <sub>2</sub> OH) |

❖ 17.4M acetic acid is less acidic than 0.5M acetic acid because it is oversaturated. Not enough water to break it apart into ions.

# **Experiment Four: Conductivity and Reactivity of Strong and Weak Acids**H2CO3=H2O CO2

| 12003 | = H2O CO2                                                                                  |
|-------|--------------------------------------------------------------------------------------------|
|       | Marble chips of CaCO <sub>3</sub> are white stone.                                         |
|       | ☐ Gas started forming immediately after adding HCl.                                        |
|       | □ No reaction with acetic acid                                                             |
|       | Mossy zinc is a streaky grey metallic solid.                                               |
|       | ☐ Gas started forming immediately after adding HCl. More bubbling than reaction of HCl and |
|       | $CaCO_3$                                                                                   |
|       | □ No reaction to acetic acid                                                               |

| Acid                                     | Reactant          | Conductivity of acid  | Reactivity       | Reaction equation                                                                  |
|------------------------------------------|-------------------|-----------------------|------------------|------------------------------------------------------------------------------------|
| 6M HCl                                   | CaCO <sub>3</sub> | Yes, strong conductor | Yes, gas bubbles | $2HCl(aq) + \\ CaCO3(s) -> H2CO3 \\ + CaCl2$                                       |
| 6M HCl                                   | Zn                | Yes, strong conductor | Yes, gas bubbles | $\begin{array}{c} 2HCl(aq) + Zn(s) \rightarrow \\ H_2(g) + ZnCl_2(aq) \end{array}$ |
| 17.4M acetic acid (CH <sub>3</sub> COOH) | CaCO <sub>3</sub> | No, non-conductor     | No               | N/A                                                                                |
| 17.4M acetic acid (CH <sub>3</sub> COOH) | Zn                | No, non-conductor     | No               | N/A                                                                                |



Figure 4. Reactions

Conclusion: Conductors react with metals while non-conductors do not. There is a correlation between the conductivity of a solution and its reactivity.

**Experiment Five: Conductivity and Ionic Reactions** 

| Experiment | Solution/Mixture                                   | Observation  | Conductivity | Reaction Equations                                                                                                                                                                                                                                                                                                                                                                         |
|------------|----------------------------------------------------|--------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5a         | 0.1M HCl                                           | Strong light | High         | $H^+(aq) + Cl^-(aq)$                                                                                                                                                                                                                                                                                                                                                                       |
|            | 0.1M NaOH                                          | Strong light | High         | $Na^+(aq) + OH^-(aq)$                                                                                                                                                                                                                                                                                                                                                                      |
|            | 0.1M HCl +<br>0.1M NaOH                            | Strong light | High         | $\begin{split} & \text{Molecular:} \\ & \text{HCl}(aq) + \text{NaOH}(aq) -> \text{H}_2\text{O}(l) + \\ & \text{NaCl}(aq) \\ & \text{Ionic:} \\ & \text{H}^+(aq) + \text{Cl}^-(aq) + \text{Na}^+(aq) + \text{OH}^-(aq) -> \\ & \text{Cl}^-(aq) + \text{Na}^+(aq) + \text{H}_2\text{O}(l) \\ & \text{Net Ionic:} \\ & \text{H}^+(aq) + \text{OH}^-(aq) -> \text{H}_2\text{O}(l) \end{split}$ |
| 5b         | 0.1M CH <sub>3</sub> COOH                          | Weak light   | Low          | CH <sub>3</sub> COO <sup>-</sup> + H <sup>+</sup>                                                                                                                                                                                                                                                                                                                                          |
|            | 0.1M NH <sub>3</sub>                               | Weak light   | Low          | $N^{-3} + 3H^{+}$                                                                                                                                                                                                                                                                                                                                                                          |
|            | 0.1 CH <sub>3</sub> COOH +<br>0.1M NH <sub>3</sub> | Strong Light | High         | Molecular: CH <sub>3</sub> COOH(aq) + NH <sub>3</sub> (aq) -> NH <sub>4</sub> CH <sub>3</sub> OO(aq) Ionic: CH <sub>3</sub> COO (aq) + H (aq) + (aq) -> NH <sub>4</sub> +(aq) + CH <sub>3</sub> OO (aq)  Net Ionic: Same as ionic, no spectator ions                                                                                                                                       |

Conclusion: The conductivity of reactants does not correlate with the conductivity of the products. Weak conductor reactants can create a strong conductor product, the conductivity could remain unchanged, etc.