UNIT 8A: Infectious disease

1 Introduction

Infectious disease

- Extremely common
- Huge impacts on ecological interactions
- A form of exploitation, but doesn't fit well into our previous modeling framework
 - How many people are there?
 - How many influenza viruses are there?
 - How do they find each other?

Disease agents

- Poll: Name an infectious agent that causes disease in humans.
- Disease agents vary tremendously:
 - Most viruses have just a handful of genes that allow them to hijack a cell and get it to make virus copies
 - * Answer: influenza virus, Ebola virus, HIV, measles
 - Bacteria are independent, free-living cells with hundreds or thousands of chemical pathways
 - * Answer: Tuberculosis, anthrax, pertussis
 - **Eukaryotic** pathogens are nucleated cells who are more closely related to you than they are to bacteria
 - * Answer: Malaria, various worms

Microparasites

- For infections with small pathogens (viruses and bacteria), we don't attempt to count pathogens, but instead divide disease into stages
 - Latently infected
 - Productively infected
 - Recovered

Microparasite models

- We model microparasites by counting the number of hosts in various states:
 - Susceptible individuals can become infected
 - **Infectious** individuals are infected and can infect others
 - Resistant individuals are not infected and cannot become infected
- More complicated models might include other states, such as latently infected hosts who are infected with the pathogen but cannot yet infect others

Models as tools

- Models are the tools that we use to connect scales:
 - individuals to populations
 - single actions to trends through time

2 Rate of spread

- \bullet Poll: For many diseases, especially new diseases, we can observe and estimate r.
 - Answer: Instantaneous rate of increase (per capita)
 - * **Answer:** Units of 1/t
 - * **Answer:** Gives the exponential rate of spread
- Poll: Want to know what factors contribute to that, and how it relates to \mathcal{R} .
 - Answer: number of new cases per case
 - **Answer:** Unitless

Basic reproductive number

- People in the disease field love to talk specifically about \mathcal{R}_0
- But they don't always mean the same thing when they say \mathcal{R}_0 :
 - Actual value of \mathcal{R} before an epidemic
 - Hypothetical value assuming no immunity
 - Hypothetical value assuming no immunity and no control efforts whatsoever
- Often easier to talk simply about \mathcal{R} .

Example: the West African Ebola epidemic

Scales

- Which scale should we look at?
 - Answer: Log scale is better for looking at trends

Date

- Answer: Linear scale is better for looking at impacts

Population biology

• What quantities do we want to look at?

- Answer: Speed of exponential growth r

- **Answer:** Finite rate of increase λ

* $\underline{\mathbf{Answer}}$: Skipped this year

- <u>Answer</u>: Lifetime reproduction

Instantaneous rate of growth r

• What are the components?

- **Answer:** Birth rate

* Answer: Instantaneous rate of a case producing new cases

* Answer: $[case/(case \cdot time]]$

- **Answer:** Death rate

* Answer: Virus-centered!

* Answer: Rate of death, recovery, or effective quarantine

• How do you think we estimate?

- Answer: We estimate r from the population-level increase in disease

* **Answer:** Then we use that to estimate b = d + r

- **Answer:** Models go both directions!

* Individuals \leftrightarrow Populations

Reproductive number \mathcal{R}

- What is it?
 - <u>Answer</u>: Expected number of new cases per case over the lifetime of a case
- Why do we want this?
 - Answer: An important measure of how hard the epidemic will be to stop
- How do we calculate it?
 - Answer: $\mathcal{R} = b/d$; if we can estimate those

Example

- $r \approx 0.14/\text{day}$
- What is our estimate of \mathcal{R} ?
 - When average length of infection $L = 5 \,\mathrm{day}$?
 - $* d = 1/(5 \, \text{day}) = 0.2/ \, \text{day}$
 - $* b = 0.14 \, \text{day} + 0.2 \, \text{day} = 0.34 / \, \text{day}$
 - * $\mathcal{R} = 0.34/0.2 = 1.7$
 - When average length of infection $L = 10 \,\mathrm{day}$?
 - $* d = 1/(10 \,\mathrm{day}) = 0.1/\,\mathrm{day}$
 - $* b = 0.14 \, \text{day} + 0.1 \, \text{day} = 0.24 / \, \text{day}$
 - * $\mathcal{R} = 0.24/0.1 = 2.4$

Generation intervals

- Researchers try to estimate the *proportion* of transmission that happens for different ages of infection
- How long from the time you are *infected* to the time you *infect someone else*?
- Analogous to a life table
- The effective generation time \hat{G} has units of time
 - <u>Comment</u>: \hat{G} is fairly deep; we'll skip the details

Generation intervals

Approximate generation intervals

Density Generation interval (days)

Approximate generation intervals

Speed and risk

- Which is more dangerous, a fast disease, or a slow disease?
 - How are we measuring speed?
 - How are we measuring danger?
 - What do we already know?

Generation time and risk

- If we know \mathcal{R} , what does the generation time tell us about r?
 - <u>Answer:</u> The faster the generations (small \hat{G}), the faster the exponential growth (large r)
- If we know r, what does the generation time tell us about \mathbb{R} ?
 - <u>Answer</u>: The faster the generations (small \hat{G}), the *smaller* the strength of the epidemic (small reproductive number \mathcal{R})
- $\mathcal{R} = \exp(r\hat{G})$

Generation time and risk

Generation time and risk

- $\mathcal{R} = \exp(r\hat{G})$
- An intuitive view:
 - Epidemic speed = Generation strength \times Generation speed

- Comment: Mathematically: $r = \log(\mathcal{R}) * (1/\hat{G})$
- If we know generation speed, then a faster epidemic speed means:
 - Answer: More strength required (greater \mathcal{R})
- If we know epidemic speed, a faster generation speed means
 - **Answer:** Less strength required (smaller \mathcal{R})

3 Single-epidemic model

- Susceptible \rightarrow Infectious \rightarrow Recovered
- \bullet We also use N to mean the total population

Transition rates

- What factors govern movement through the boxes?
 - People get better independently
 - People get infected by infectious people

Conceptual modeling

- Poll: What happens in the long term if we introduce an infectious individual?
 - Answer: There may be an epidemic an outbreak of disease
 - **Answer:** Disease burns out
 - Answer: Everyone winds up recovered
 - * Answer: ... or susceptible
 - Answer: Or, there may not be an outbreak

Interpreting

- Why might there not be an epidemic?
 - Answer: If the disease can't spread well enough in the population
 - * Answer: Could depend on season, or immunity ...
 - <u>Answer:</u> Demographic stochasticity: if we only start with one individual, we expect an element of chance
- Why doesn't everyone get infected?
 - Answer postponed:

Implementing the model

• The simplest way to implement this conceptual model is with differential equations:

$$\frac{dS}{dt} = -\beta \frac{SI}{N}$$

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I$$

$$\frac{dR}{dt} = \gamma I$$

$$N = S + I + R$$

Quantities

State variables

• S, I, R, N: [people] or [people/ha]

Parameters

• Susceptible people have **potentially effective** contacts at rate β (units [1/time])

8

- These are contacts that would lead to infection if the person contacted is infectious
- Total infection rate is $\beta I/N$, because I/N is the proportion of the population infectious
- \bullet Infectious people recover at per~capita rate γ (units [1/time])
 - Total recovery rate is γI
 - Mean time infectious is $D = 1/\gamma$ (units [time])

Simulating the model

Basic reproductive number

- Poll: What *unitless* parameter can you make from the model above?
 - <u>Answer</u>: $\mathcal{R}_0 = \beta D = \beta/\gamma$ is the basic reproductive number
 - <u>Answer:</u> The *potential* number of infections caused by an average infectious individual
 - * Answer: That is: the number they would cause on average if everyone else were susceptible
 - Answer: The product of the rate β (units [1/t]) and the duration D ([t])

Basic reproductive number implications

- Poll: What happens early in the epidemic if $\mathcal{R}_0 > 1$?
 - <u>Answer</u>: Number of infected individuals grows exponentially
- What happens early in the epidemic if $\mathcal{R}_0 < 1$?
 - Answer: Number of infected individuals does not grow (disease cannot invade)

Effective reproductive number

- The effective reproductive number gives the number of new infections per infectious individual in a partially susceptible population:
 - Answer: $\mathcal{R}_{\text{eff}} = \mathcal{R}_0 S/N$
- Is the disease increasing or decreasing?

- <u>Answer</u>: It will increase when $\mathcal{R}_{eff} > 1$ (more than one case per case)
- Answer: This happens when $S/N > 1/\mathcal{R}_0$
- Why doesn't everyone get infected?
 - Answer: When susceptibles are low enough $\mathcal{R}_{eff} < 1$
 - <u>Answer</u>: When $\mathcal{R}_{\text{eff}} < 1$, the disease dies out on its own (less than one case per case)

3.1 Epidemic size

- In this model, the epidemic always burns out
 - No source of new susceptibles
- Epidemic size is determined by:
 - Answer: \mathcal{R}_0 : larger \mathcal{R}_0 leads to a bigger epidemic
 - **Answer:** The number of susceptibles at the beginning of the epidemic
 - * **Answer:** More susceptibles leads to a bigger epidemic
 - * **Answer:** ... and *fewer* susceptibles at the end
 - **Answer:** The number of infected individuals at the beginning of the epidemic
 - * Answer: Usually relatively small (and a relatively small effect)

Overshoot

- Why does more susceptibles at the beginning mean fewer susceptibles at the end?
 - Answer: More susceptibles \Longrightarrow
 - Answer: Faster initial growth \Longrightarrow
 - **Answer:** Bigger epidemic \Longrightarrow
 - **Answer:** More infections at peak (same number of susceptibles) \Longrightarrow
 - Answer: More generations needed for disease to fade out \implies
 - **Answer:** More infections after peak ...

Ebola example

- In September, the US CDC predicted "as many as" 1.5 million Ebola cases in Liberia by January
- In fact, their model predicted many more cases than that by April
- What happened?

What limits epidemics?

• Poll: What limits epidemics in our simple models?

- <u>Answer</u>: Depletion of susceptibles

• Poll: What else limits epidemics in real life?

- **Answer:** Interventions

- **Answer**: Behaviour change

- **Answer:** Heterogeneity (differences between hosts, locations, etc.)

4 Recurrent epidemic models

• Poll: If epidemics tend to burn out, why do we often see repeated epidemics?

- <u>Answer</u>: People might lose immunity

- **Answer:** Births and deaths; newborns are susceptible

Recurrent epidemics

Measles reports from England and Wales

Closing the circle

• **Answer:** Loss of immunity

Closing the circle

- **Answer:** Births and deaths
 - $\underline{\mathbf{Answer}} \boldsymbol{\cdot}$ Effect on dynamics is similar to loss of immunity

Births and deaths

•

$$\frac{dS}{dt} = bN - \beta \frac{SI}{N} - dS$$

•

$$\frac{dI}{dt} = \beta \frac{SI}{N} - \gamma I - dI$$

$$\frac{dR}{dt} = \gamma I - dR$$

- We often assume b = d
 - \implies population is constant

4.1 Dynamics

Equilibrium

- At equilibrium, we know that $\mathcal{R}_{eff} = 1$
 - One case per case
 - Number of susceptibles at equilibrium determined by the number required to keep infection in balance

*
$$S/N = 1/R_0$$

- What does this remind you of?
 - <u>Answer</u>: Reciprocal control!
- Number of infectious individuals determined by number required to keep susceptibles in balance.
- As susceptibles go up, what happens?
 - Per capita replenishment goes down
 - Infections required goes down

Reciprocal control

- \bullet What happens to equilibrium if we protect susceptibles (move them to R class)?
 - <u>Answer</u>: Equation for dI/dt does not change
 - <u>Answer</u>: Number of susceptibles at equilibrium does not change
 - Answer: Fewer susceptibles removed by infection (some are removed by us)
 - **Answer:** Less disease
- What else could happen?
 - <u>Answer</u>: If we remove susceptibles fast enough, infection could go extinct
 - **Answer:** If we keep increasing the rate . . .
 - * Answer: Number of susceptibles goes down

Reciprocal control

- Poll: What happens if we remove infectious individuals at a constant rate (find them and cure them or isolate them)?
 - Answer: We need more susceptibles to balance dI/dt
 - Answer: If we have more susceptibles, then per capita replenishment goes down
 - * Answer: So the number of infectious individuals required for balance goes down
 - Answer: If we remove infectious individuals fast enough, the infection could go extinct

Tendency to oscillate

Tendency to oscillate

- "Closed-loop" SIR models (ie., with births or loss of immunity):
 - Tend to oscillate
 - Oscillations tend to be damped
 - * System reaches an **endemic** equilibrium disease persists

Source of oscillations

- Similar to predator-prey systems
- What happens if we start with too many susceptibles?
 - Answer: There will be a big epidemic

- <u>Answer</u>: ...then a very low number of susceptibles

- Answer: ...then a very low level of disease

- Answer: ... then an increase in the number of susceptibles

Persistent oscillations

• Poll: If oscillations tend to be damped in simple models, why do they persist in real life?

- **Answer:** Weather

* Answer: Seasonality

* **Answer:** Environmental stochasticity

- **Answer:** School terms

- <u>Answer</u>: Demographic stochasticity

- <u>Answer</u>: Changes in Behaviour

* Answer: People are more careful when disease levels are high

5 Reproductive numbers and risk

• At equilibrium, the proportion of people who are susceptible to disease should be approximately $S/N = 1/\mathcal{R}_0$

 $\bullet\,$ Proportion "affected" (infectious or immune) should be approximately $V/N=1-1/\mathcal{R}_0$

• If you have a single, fast epidemic, the size is also predicted by \mathcal{R}_0 .

Examples

- Ronald Ross predicted 100 years ago that reducing mosquito densities by a factor of 5 or so would *eliminate* malaria
- Gradual disappearance of polio, typhoid, etc., without risk factors going to zero
- Eradication of smallpox!

Threshold for elimination

- What proportion of the population should be vaccinated to eliminate a disease?
 - <u>Answer</u>: Transmission should be reduced by a factor of \mathcal{R} , so at least fraction $1 1/\mathcal{R}$ should be vaccinated

Examples:

- Polio has an \mathcal{R}_0 of about 5.
- Poll: What proportion of the population should be vaccinated to eliminate polio?
 - **Answer:** At least 1-1/5 = 80%
- Measles has an \mathcal{R}_0 of about 20. What proportion of the population should be vaccinated to eliminate measles?
 - **Answer:** At least 1-1/20 = 95%
- If gonorrhea has an \mathcal{R}_0 of about 2, what proportion of unprotected sexual encounters should be protected to eliminate gonorrhea?
 - **Answer:** At least 1-1/2 = 50%
 - Answer: Does not actually work ...

Persistence of infectious disease

- Why have infectious diseases persisted?
 - The pathogens evolve
 - Human populations are heterogeneous
 - * People differ in: nutrition, exposure, access to care
 - Information and misinformation
 - * Vaccine scares, trust in health care in general

Heterogeneity and persistence

- Heterogeneity increases \mathcal{R}_0
 - When disease is rare, it is concentrated in the most vulnerable populations
 - * Cases per case is high
 - * Elimination is harder
- Marginal populations
 - Heterogeneity could make it easier to concentrate on the most vulnerable populations and eliminate disease
 - Humans rarely do this, however: the populations that need the most support typically have the least access