Introduction To Louvain Method

Hsiu-Hsuan Yeh 2024-05-28

Resources

• Leskovec (2021)

Outline

Modularity

What Is Modularity?

Hypothetical Model: Expected Edge Weight

Alogrithm

Revision Of Modularity Formula

Modularity Gain For Moving Into c'

Modularity Gain For Moving Out of c

The intuition for Positive Modularity Gain Movement

Pros and Cons

References

Modularity

Overview

Clauset et al. (2004) states that modularity measures when the division is a good one, in the sense that there are many edges within communities and only a few between them.

Modularity-based method including Blondel et al. (2008) evaluates the division by considering a hypothetical model. Given the division C, if the density of the connection within each community is higher than the hypothetical model, then C is somehow a relatively good division.

Overview

Formula

$$Q(C) = \frac{1}{2m} \sum_{i,j} (A_{ij} - \frac{k_i k_j}{2m}) \delta(c_i, c_j)$$

- *C*: the structure of the division, communities
- $A_{i,j}$: edge weight, can be a binary or real number
- k_i : $\sum_i A_{i,j}$, the total edge weight of a node i
- 2m: $\sum_{i,j} A_{i,j}$, the total edge weight of a graph
- δ : indicating wheter the node i and j are in the same community

Hypothetical Model: Expected Edge Weight

$$Q(C) = \frac{1}{2m} \sum_{i,j} (A_{ij} - \frac{k_i k_j}{2m}) \delta(c_i, c_j)$$

- $\frac{k_i k_j}{2m}$ is the expected edge weight for both node i and j
- assume each node remains its edge weight and the connection between nodes is random
 - view 2m as the number of all "available ports"
 - for node i, the edge weight assoicated to node j follows the binomial distribution, Binomial $(k_i, \frac{k_j}{2m})$
 - the expected edge weight, $E(\text{edge weight}_{i,j}) = k_i \frac{k_j}{2m}$

Hypothetical Model: Expected Edge Weight

Alogrithm

Algorithm

Algorithm

Modularity Optimization

- initialize each node in its own community
- for each node $i \in V$, compute the gain(ΔQ) in modularity by moving i to the community of each of its neighbors
- the node i will then be placed in the coummunity which has the hightest positive modularity $gain(\Delta Q)$

$$\Delta Q = \left[\frac{\sum_{in} + k_{i,in}}{2m} - \left(\frac{\sum_{tot} + k_i}{2m}\right)^2\right] - \left[\frac{\sum_{in}}{2m} - \left(\frac{\sum_{tot}}{2m}\right)^2 - \left(\frac{k_i}{2m}\right)^2\right]$$

Notice taht this is the change in Q when moving node i to a community. The change in Q when moving i out of a coummunity is similar.

ç

Revision Of Modularity Formula

$$Q(C) = \frac{1}{2m} \sum_{i,j} (A_{i,j} - \frac{k_i k_j}{2m}) \delta(c_i, c_j)$$

$$= \sum_{c \in C} \frac{\sum_{i,j \in c} A_{i,j}}{2m} - \frac{\sum_{i \in c} k_i \sum_{j \in c} k_j}{4m^2}$$

$$= \sum_{c \in C} \frac{\sum_{in,c}}{2m} - \frac{\sum_{tot,c} \sum_{tot,c}}{4m^2}$$

$$= \sum_{c \in C} \frac{\sum_{in,c}}{2m} - (\frac{\sum_{tot,c}}{2m})^2$$
edge weight within c total edge weight of c

Some Notations

•
$$\Sigma_{in,c} = \Sigma_{i,j \in c} A_{i,j}$$

More Notaions

Considering a node i moving from community c to c', there are two types of edge weights related to i.

- $k_i = k_{i,c'} + k_{i,c}$
- associated to community c': $k_{i,c'}$
- associated to community c: $k_{i,c}$

What we want to know is the change in modularity, $\Delta Q(C)$ for node i moving from c to c'. It consists of two components: moving into c' and moving out of c.

$$\Delta Q(C) = \Delta Q(c') + \Delta Q(c)$$

Change In Modularity

Moving Into c'

- $\Delta Q(c') = Q_{i \to c'}(c') (Q(c') + Q(i))$
- Q(c'): modularity of c' before merging with node i

$$= \frac{\Sigma_{in,c'}}{2m} - \left(\frac{\Sigma_{tot,c'}}{2m}\right)^2$$

• Q(i): modularity of a community with a unique member i

$$- (\frac{k_i}{2m})^2 = -(\frac{k_i}{2m})^2$$

• $Q_{i \to c'}(c')$: modularity of c' after merging with node i

$$= \frac{\sum_{in,c'} + 2k_{i,c'}}{2m} - \left(\frac{\sum_{tot,c'} + k_i}{2m}\right)^2$$

Moving Into c'

$$\Delta Q(c') = Q_{i \to c'}(c') - (Q(c') + Q(i))$$

$$= \underbrace{\frac{\sum_{in,c'} + 2k_{i,c'}}{2m} - (\frac{\sum_{tot,c'} + k_i}{2m})^2}_{Q_{i \to c'(c')}}$$

$$- \underbrace{[\frac{\sum_{in,c'} - (\frac{\sum_{tot,c'}}{2m})^2 - (\frac{k_i}{2m})^2]}_{Q(i)}}_{Q(c)}$$

$$= \frac{2k_{i,c'}}{2m} - \frac{2k_i \sum_{tot,c'}}{4m^2}$$

Moving Out of *c*

• Q(c): modularity of c before node i moving out

• $Q_{c \rightarrow i}(c)$: modularity of c after node i moving out

$$\frac{\sum_{in,c}-2k_{i,c}}{2m}-\left(\frac{\sum_{tot,c}-k_i}{2m}\right)^2$$

Moving Out of *c*

$$\Delta Q(c) = (Q_{c \to i}(c) + Q(i)) - Q(c)$$

$$= [\underbrace{\frac{\sum_{in,c} - 2k_{i,c}}{2m} - (\frac{\sum_{tot,c} - k_{i}}{2m})^{2}}_{Q_{c \to i(c)}} \underbrace{-(\frac{k_{i}}{2m})^{2}}_{Q(i)}]$$

$$- [\underbrace{\frac{\sum_{in,c} - (\frac{\sum_{tot,c}}{2m})^{2}}_{Q(c)}]}_{Q(c)}$$

$$= \frac{-2k_{i,c}}{2m} + \frac{2k_{i}\sum_{tot,c}}{4m^{2}} - 2(\frac{k_{i}}{2m})^{2}$$

Modularity Gain

$$\begin{split} \Delta Q(C) &= \Delta Q(c') + \Delta Q(c) \\ &= \underbrace{\frac{2k_{i,c'}}{2m} - \frac{2k_{i}\Sigma_{tot,c'}}{4m^{2}}}_{\Delta Q(c')} + \underbrace{\frac{-2k_{i,c}}{2m} + \frac{2k_{i}\Sigma_{tot,c}}{4m^{2}} - 2(\frac{k_{i}}{2m})^{2}}_{\Delta Q(c)} \\ &= \underbrace{\frac{2(k_{i,c'} - k_{i,c})}{2m} + \frac{2k_{i}((\Sigma_{tot,c} - k_{i}) - \Sigma_{tot,c'})}{4m^{2}}}_{\Delta Q(c)} \end{split}$$

The intuition for positive modularity gain movement:

- for node i, there are more connection in community c' comapred to c, $k_{i,c'} > k_{i,c}$
- the size of c' is smaller than c, $\Sigma_{tot,c} k_i > \Sigma_{tot,c'}$

Pros and Cons

Pros

- comprehensive
- efficient the height of dendrogram is usually short

Cons

- high extra-space complexity: $O(|V|^2)$
- local optimization
- potential instability the order of nodes for modularity optimization matters

Application to large networks

	Karate	Arxiv	Internet	Web nd.edu	Phone	Web uk- 2005	Web WebBase 20
Nodes/links	34/77	9k/24k	70k/351k	325k/1M	$2.6 { m M}/6.3 { m M}$	39M/783M	118M/1B
CNM	.38/0s	.772/3.6s	.692/799s	.927/5034s	-/-	-/-	-/-
PL	.42/0s	.757/3.3s	.729/575s	.895/6666s	-/-	-/-	-/-
WT	.42/0s	.761/0.7s	.667/62s	.898/248s	.56/464s	-/-	-/-
Our algorithm	.42/0s	.813/0s	.781/1s	.935/3s	.769/134s	.979/738s	.984/152mn

References

- Blondel, Vincent D, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre, "Fast unfolding of communities in large networks," *Journal of statistical mechanics: theory and experiment*, 2008, 2008 (10), P10008.
- Clauset, Aaron, Mark EJ Newman, and Cristopher Moore, "Finding community structure in very large networks," *Physical review E*, 2004, 70 (6), 066111.
- Leskovec, Jure, "CS224W: Community Structure in Networks," https://snap.stanford.edu/class/cs224w-2021/slides/14-communities.pdf 2021. Accessed: 2024-05-23.