# CSC-4MI13 : Perles de programmation de structures de données et d'algorithmes

Couplages

Bertrand Meyer 18 septembre 2024

## Qui suis-je?

Bertrand MEYER — département Informatique et Réseau

Me contacter

Courriel: bertrand.meyer@telecom-paris.fr

Bureau: 4.D25

Mieux vaut prendre rendez-vous pour me voir.

Graphes & généralités

### Graphes

#### Définition

Un graphe non orienté est un couple G = (V, E) où

- V est un ensemble fini (de sommets)
- et  $E \subseteq \binom{V}{2}$  est un ensemble de paires de sommet (les arêtes).



## Couplages

#### Définition

Un couplage dans un graphe non orienté est un ensemble d'arêtes deux à deux non adjacentes (i.e. ayant des extrémités distinctes).



## Couplage maximal, couplage maximum

Soit  $\mathfrak{M}\subseteq 2^E$  l'ensemble des couplages d'un graphe G.

## Couplage maximal, couplage maximum

Soit  $\mathfrak{M}\subseteq 2^E$  l'ensemble des couplages d'un graphe G.

#### Définition

Un couplage M de G est dit maximal si M est un élément maximal de  $\mathfrak{M}$  pour la relation d'ordre « inclusion » dans  $2^E$ .

Autrement dit, M est maximal ss'il n'existe pas d'arête e telle que  $M' = M \cup \{e\}$  est un couplage.

## Couplage maximal, couplage maximum

Soit  $\mathfrak{M}\subseteq 2^E$  l'ensemble des couplages d'un graphe G.

#### Définition

Un couplage M de G est dit maximal si M est un élément maximal de  $\mathfrak{M}$  pour la relation d'ordre « inclusion » dans  $2^E$ .

Autrement dit, M est maximal ss'il n'existe pas d'arête e telle que  $M' = M \cup \{e\}$  est un couplage.

#### Définition

Un couplage est dit maximum s'il maximise la fonction cardinal  $\mathfrak{M} \to \mathbb{N}$ .

Autrement dit, M est maximum ss'il n'existe pas de couplage M' avec |M'|>|M|.

## Problème d'optimisation

Problème du Couplage Maximum :

**Données :** G = (V, E) graphe non orienté.

Tâche: Trouver un couplage de cardinal maximum.

















## Couverture des sommets par des arêtes

#### Définition

Un sommet  $v \in V$  d'un graphe non orienté G = (V, E) est dit couvert par un couplage M s'il existe une arête M incidente à v.



## Couverture des sommets par des arêtes

#### Définition

Un sommet  $v \in V$  d'un graphe non orienté G = (V, E) est dit couvert par un couplage M s'il existe une arête M incidente à v.

Le nombre de sommet non couvert par un couplage est

$$|V| - 2|M|$$
.

Maximiser le cardinal d'un couplage équivaut à minimiser le nombre de sommets non couverts.

## Couplage parfait

#### Définition

Un couplage est parfait si tous les sommets du graphe sont couverts.



#### Définition

Un couplage est presque parfait si tous les sommets du graphe sont couverts sauf un.



#### Définition

Un couplage est presque parfait si tous les sommets du graphe sont couverts sauf un.



#### Définition

Un couplage est presque parfait si tous les sommets du graphe sont couverts sauf un.



#### Définition

Un couplage est presque parfait si tous les sommets du graphe sont couverts sauf un.



Dans cet exemple, on parle de décomposition en oreilles de longueur impaire.

#### Une contrainte sur le nombre de sommets non couverts

Soit G = (V, E) un graphe et  $X \subseteq V$  un ensemble de sommets. Notons  $q_G(X)$  le nombre de composante connexes impaires du graphe  $G \setminus X$ .

#### Une contrainte sur le nombre de sommets non couverts

Soit G = (V, E) un graphe et  $X \subseteq V$  un ensemble de sommets. Notons  $q_G(X)$  le nombre de composante connexes impaires du graphe  $G \setminus X$ .

#### Lemme

Soit M un couplage de G, alors au moins  $q_G(X) - |X|$  sommets de V ne sont pas couverts par M :

$$q_G(X) - |X| \le |V| - 2|M|.$$

#### Une contrainte sur le nombre de sommets non couverts

Soit G = (V, E) un graphe et  $X \subseteq V$  un ensemble de sommets. Notons  $q_G(X)$  le nombre de composante connexes impaires du graphe  $G \setminus X$ .



William Tutte (1917†2002)

#### Lemme

Soit M un couplage de G, alors au moins  $q_G(X) - |X|$  sommets de V ne sont pas couverts par M :

$$q_G(X) - |X| \le |V| - 2|M|$$
.

### Corollaire (Tutte)

Si le graphe G = (V, E) possède un couplage parfait, alors, pour tout ensemble de sommet  $X \subseteq V$ , on a

$$q_G(X) \leq |X|$$

### Preuve du lemme

#### Démonstration.



## Théorème de Berge

1958



Claude Berge (1926+2002)

## Théorème (Berge)

Dans le cas où M est un couplage maximum, le nombre de sommets non couverts vérifie

$$|V|-2|M|=\max_{X\subseteq V}q_G(X)-|X|.$$

#### Chaîne alternante

#### Définition

Soit  $M \subseteq E$  un couplage d'un graphe G = (V, E).

Une chaîne  $P \subseteq E$  est M-alternée si  $P \setminus M$  est aussi un couplage.



## Chaîne augmentante

#### Définition

Soit  $M \subseteq E$  un couplage d'un graphe. Une chaîne M-augmentante est une chaîne M-alternée entre deux sommets non couverts par M.



## Remarque

Une chaîne augmentante est de longueur impaire.

## Incrémentation du cardinal d'un couplage

#### Définition

Soit  $M \subseteq E$  un couplage d'un graphe et P un chaîne M-augmentante.

Alors  $M' = M \triangle P$  est un couplage de cardinal |M| + 1.



## Rappel

Différence symétrique :  $A \triangle B = (A \setminus B) \cup (B \setminus A)$ . En logique : XOR.

## Lemme de Berge

#### Théorème

Un couplage est de cardinal maximum si et seulement s'il n'existe pas de chaîne augmentante.

## Lemme de Berge

#### Théorème

Un couplage est de cardinal maximum si et seulement s'il n'existe pas de chaîne augmentante.

#### Démonstration.

Soit *G* un graphe et *M* un couplage.

S'il existe une chaîne augmentante P, alors  $M' = M \triangle P$  est aussi un couplage de cardinal strictement supérieur. Donc M n'est pas maximum.

## Lemme de Berge

#### Théorème

Un couplage est de cardinal maximum si et seulement s'il n'existe pas de chaîne augmentante.

#### Démonstration.

Soit G un graphe et M un couplage.

S'il existe une chaîne augmentante P, alors  $M' = M \triangle P$  est aussi un couplage de cardinal strictement supérieur. Donc M n'est pas maximum.

S'il existe un couplage M' tel que |M'| > |M|, alors  $M \triangle M'$  est l'union d'une ou plusieurs chaînes et de cycles de longueur paire sommets-disjoints. Une des chaînes est M-augmentante.





Cas des graphes bipartis

#### Définition

Un graphe non orienté G=(V,E) est dit biparti s'il existe une partition de l'ensemble des sommets en deux parts  $V=V_0\sqcup V_1$  telle que l'ensemble des arêtes vérifie  $E\subseteq V_0\times V_1\cup V_1\times V_0$ .

#### Définition

Un graphe non orienté G = (V, E) est dit biparti s'il existe une partition de l'ensemble des sommets en deux parts  $V = V_0 \sqcup V_1$  telle que l'ensemble des arêtes vérifie  $E \subseteq V_0 \times V_1 \cup V_1 \times V_0$ .

#### Exemple



La bipartition se fait entre sommets à gauche et à droite.

#### Définition

Un graphe non orienté G = (V, E) est dit biparti s'il existe une partition de l'ensemble des sommets en deux parts  $V = V_0 \sqcup V_1$  telle que l'ensemble des arêtes vérifie  $E \subseteq V_0 \times V_1 \cup V_1 \times V_0$ .

### Exemple



#### Définition

Un graphe non orienté G = (V, E) est dit biparti s'il existe une partition de l'ensemble des sommets en deux parts  $V = V_0 \sqcup V_1$  telle que l'ensemble des arêtes vérifie  $E \subseteq V_0 \times V_1 \cup V_1 \times V_0$ .

#### Exemple



# Algorithme pour les graphes bipartis

#### Fait marquant

Dans le cas d'un graphe biparti, pour trouver un chemin augmentant, il suffit d'effectuer un parcours de graphe au départ des sommets non couverts!

### Exemple



#### Exemple



Initialement, l'algorithme nous fait ajoûter des arêtes de façon gloutonne. Est-ce optimal ?Déroulons la suite de l'algorithme plus soigneusement.

### Exemple



### Exemple



Lançons un parcours de graphe (ici un⁴BFS depuis le haut) depuis un sommet non apparié ● .

### Exemple



Lançons un parcours de graphe (ici un BFS depuis le haut) depuis un sommet non apparié ● . Les arêtes hors couplages peuvent être utilisée dans le sens ● vers ● .

#### Exemple



Lançons un parcours de graphe (ici un BFS depuis le haut) depuis un sommet non apparié ● . Les arêtes hors couplages peuvent être utilisée dans le sens ● vers ● . Les arêtes du couplages peuvent être utilisée dans le sens ● vers ● .

#### Exemple



Lançons un parcours de graphe (ici un BFS depuis le haut) depuis un sommet non apparié ● . Les arêtes hors couplages peuvent être utilisée dans le sens ● vers ● . Les arêtes du couplages peuvent être utilisée dans le sens ● vers ● .

#### Exemple



Lançons un parcours de graphe (ici un BFS depuis le haut) depuis un sommet non apparié ● . Les arêtes hors couplages peuvent être utilisée dans le sens ● vers ● . Les arêtes du couplages peuvent être utilisée dans le sens ● vers ● .

#### Exemple



Lançons un parcours de graphe (ici un BFS depuis le haut) depuis un sommet non apparié ● . Les arêtes hors couplages peuvent être utilisée dans le sens ● vers ● . Les arêtes du couplages peuvent être utilisée dans le sens ● vers ● .

#### Exemple



Lançons un parcours de graphe (ici un BFS depuis le haut) depuis un sommet non apparié • . Les arêtes hors couplages peuvent être utilisée dans le sens • vers • . Les arêtes du couplages peuvent être utilisée dans le sens • vers • . On a trouvé un chemin augmentant entre deux sommets non appariés : on peut mettre à jour le couplage!

21/39





















Lançons à nouveau un parcours de graphe. On a trouvé un chemin augmentant entre deux sommets non appariés : on peut mettre à jour le couplage!











23/39



Lançons à nouveau un parcours de graphe. On a trouvé un chemin augmentant entre deux sommets non appariés : on peut mettre à jour le couplage!













Lançons à nouveau un parcours de graphe. On a trouvé un chemin augmentant entre deux sommets non appariés : on peut mettre à jour le couplage!



























25/39

















Lançons à nouveau un parcours de graphe. On ne parvient plus à trouver de chemin augmentant entre des sommets non appariés.

# L'algorithme du couplage maximum d'Edmonds









## Contre exemple

Peut-on se contenter d'un parcours de graphe pour trouver un chemin M-augmentant comme dans le cas biparti?



Non, une recherche de chemin M-augmentant par parcours de graphe peut se fourvoyer

## Contre exemple

Peut-on se contenter d'un parcours de graphe pour trouver un chemin *M*-augmentant comme dans le cas biparti?



Non, une recherche de chemin M-augmentant par parcours de graphe peut se fourvoyer

$$v_0$$
  $v_1$   $v_2$   $v_3$   $v_4$   $v_5$   $v_6$ 

alors qu'il existe un chemin augmentant.

# Facteur critique

**Définition** Un graphe C = (W, F) est un facteur critique si, pour tout sommet  $v \in W$ , le graphe  $G \setminus v$  possède un couplage parfait.

# Facteur critique

### Définition

Un graphe C = (W, F) est un facteur critique si, pour tout sommet  $v \in W$ , le graphe  $G \setminus v$  possède un couplage parfait.

### Exemple

Le graphe suivant est un facteur critique.



## Facteur critique

### Définition

Un graphe C = (W, F) est un facteur critique si, pour tout sommet  $v \in W$ , le graphe  $G \setminus v$  possède un couplage parfait.

### Exemple

Le graphe suivant est un facteur critique.

(Ici, on repère un tour hamiltonien de longueur impaire.)



### Fleur

### Définition

Soit G = (V, E) un graphe et M un couplage. Une fleur par rapport à M est un sous-graphe C = (W, F) qui est un facteur critique de G et tel que

$$|M\cap F|=\frac{|W|-1}{2}.$$



Le sommet non couvert par  $M \cap F$  s'appelle la base de la fleur C.

### Réduction de fleurs

#### Lemme

Soit G un graphe, M un couplage de G et C = (W, F) une fleur par rapport à M. Notons G' le graphe obtenu en contractant W en un unique sommet et M' le couplage induit. Alors M est un couplage maximum de G si et seulement si M' est un couplage maximum de G'.



### Observation

On peut remonter un couplage de cardinal m' de G' en un couplage de cardinal m = m' + (|W| - 1)/2 dans G.

29/39

- Chercher un chemin alternant en partant d'un sommet non couvert.
- Si on obtient un cycle (forcément de longueur impaire), on a trouvé une fleur. On la contracte.

- Chercher un chemin alternant en partant d'un sommet non couvert.
- Si on obtient un cycle (forcément de longueur impaire), on a trouvé une fleur. On la contracte.



- Chercher un chemin alternant en partant d'un sommet non couvert.
- Si on obtient un cycle (forcément de longueur impaire), on a trouvé une fleur. On la contracte.



- Chercher un chemin alternant en partant d'un sommet non couvert.
- Si on obtient un cycle (forcément de longueur impaire), on a trouvé une fleur. On la contracte.



### Forêt M-alternée

#### Définition

Une forêt alternée par rapport à un couplage M dans un graphe G = (V, E) est une forêt (W, F), avec  $W \subseteq V$  et  $F \subseteq E$ , telle que

- 1. tout sommet de V non couvert par M est dans W
- 2. chaque composante connexe contient exactement un sommet non couvert par *M*, que l'on fixe comme racine
- 3. en appelant externe (interne) tout sommet à distance paire (impaire) de la racine, les sommets impairs sont de degrés 2 dans *F*.
- 4. tout chaîne élémentaire dans (*W*, *F*) issue d'une racine est alternée.

## Forêt M-alternée triviale associée à M

Un graphe G = (V, E) et un couplage M étant fixés, on peut construire la forêt M-alternée triviale où

- W est l'ensemble des sommets non couverts par M
- $F = \emptyset$ .

(Chaque sommet non couvert forme un arbre isolé; les sommets couverts sont tous hors forêt)

# Exemple de forêt M-alternée



On maintient un couplage M et une forêt M-alternée (W,F).

On maintient un couplage M et une forêt M-alternée (W,F).

**Répéter** Soit  $x \in W$  un sommet externe et  $y \in V$  un de ses voisins dans G.

On maintient un couplage M et une forêt M-alternée (W,F).

**Répéter** Soit  $x \in W$  un sommet externe et  $y \in V$  un de ses voisins dans G.

Cas 1: Si  $y \notin W$ : y est couvert par une arête  $yz \in M$ . GROSSIR LA FORÊT

On maintient un couplage M et une forêt M-alternée (W,F).

**Répéter** Soit  $x \in W$  un sommet externe et  $y \in V$  un de ses voisins dans G.

**Cas 1 :** Si  $y \notin W$  : y est couvert par une arête  $yz \in M$ . GROSSIR LA FORÊT

Cas 2 : Si  $y \in W$  est externe et dans un arbre distinct.

AUGMENTER LE COUPLAGE

On maintient un couplage M et une forêt M-alternée (W,F).

**Répéter** Soit  $x \in W$  un sommet externe et  $y \in V$  un de ses voisins dans G.

**Cas 1 :** Si  $y \notin W$  : y est couvert par une arête  $yz \in M$ . GROSSIR LA FORÊT

Cas 2 : Si  $y \in W$  est externe et dans un arbre distinct.

AUGMENTER LE COUPLAGE

Cas 3 : Si  $y \in W$  est externe et dans le même arbre CONTRACTER UNE FLEUR

On maintient un couplage M et une forêt M-alternée (W,F).

**Répéter** Soit  $x \in W$  un sommet externe et  $y \in V$  un de ses voisins dans G.

**Cas 1:** Si  $y \notin W$ : y est couvert par une arête  $yz \in M$ . GROSSIR LA FORÊT

Cas 2 : Si  $y \in W$  est externe et dans un arbre distinct.

AUGMENTER LE COUPLAGE

 ${\sf Cas\ 3: Si\ }y\in {\it W}$  est externe et dans le même arbre  ${\sf CONTRACTER\ }{\sf UNE\ }{\sf FLEUR}$ 

Cas restant Cas 1, 2 3 épuisés : les voisins de tout sommet externe sont tous internes.

ARRÊT DE L'ALGORITHME

### Cas 1: GROSSIR LA FORÊT

Cas 1 Le sommet  $x \in W$  est externe, son voisin y est hors W. Soi z tq y est couvert par l'arête  $yz \in M$ .



### Cas 1: GROSSIR LA FORÊT

Cas 1 Le sommet  $x \in W$  est externe, son voisin y est hors W. Soi z tq y est couvert par l'arête  $yz \in M$ .

Ajouter les sommets y, z à W; ajouter les arêtes xz yz à F.



#### Cas 2: AUGMENTER LE COUPLAGE

On note P(v) l'unique chaîne de v à la racine dans (W, F).

Cas 2 Le sommet  $x \in W$  est externe, son voisin y est externe dans un arbre distinct.



### Cas 2: AUGMENTER LE COUPLAGE

On note P(v) l'unique chaîne de v à la racine dans (W, F).

Cas 2 Le sommet  $x \in W$  est externe, son voisin y est externe dans un arbre distinct. Augmenter le couplage  $M' \leftarrow M \triangle (P(x) \cup \{xy\} \cup P(y))$ ; réinitialiser la forêt avec la forêt triviale.



#### Cas 3: Contracter une fleur

Cas 3 Le sommet  $x \in W$  est externe, son voisin y est externe dans le même arbre.



#### Cas 3: Contracter une fleur

Cas 3 Le sommet  $x \in W$  est externe, son voisin y est externe dans le même arbre. Soit z le plus proche ancêtre commun, qui est forcément externe.

$$C = P(x)_{[z,x]} \cup \{xy\} \cup P(y)_{[z,y]}$$

est un cycle de longueur impair, donc une fleur. On contracte C.



### Cas: ARRÊT

#### Lemme

Soit G un graphe, M un couplage et (W, F) une forêt M-alternée dans laquelle les voisins de tout sommet externe sont internes. Alors le couplage M est un couplage maximum de G.

#### Démonstration.

Soit  $X \subseteq W$  l'ensemble des sommets internes, s = |X| et  $t = |W \setminus X|$ . M laisse |V| - 2|M| = t - s sommets découverts.

Dans  $G \setminus X$ , les composantes connexes impaires sont les sommets externes isolées. Donc  $q_G(X) = t$ .

D'après la formule de Tutte-Berge, on a  $|V|-2|M_{\max}| \ge q_G(X)-|X|=t-s$ .

Cette inégalité est atteinte ici, ce qui prouve l'optimalité du cardinal du couplage *M*.

# Correction de l'algorithme d'Edmonds

 $\sim$ 1961



Jack Edmonds (1934)

### Théorème

L'algorithme d'Edmonds se termine et construit un couplage de cardinal maximum.

#### Démonstration.

La correction partielle provient du lemme.

La quantité  $(|V| - 2|M|, |V| - |W|, |V|) \in \mathbb{N}^3$  est un variant : l'algorithme d'Edmonds se termine.