

CSI 436/536 (Spring 2025) Machine Learning

Lecture 10: Regularization

Chong Liu

Department of Computer Science

Feb 26, 2025

Announcement

Homework 2 is due next Mon, Mar 3!

- Midterm exam on Mon Mar 10.
 - TA will lead the homework 1 and 2 review next Wednesday.
 - Come to our office hours!

- Midterm presentations on Wed Mar 12.
 - I'll give a quick tutorial on presentations today.

Recap: Two problems of supervised learning

	Classif	Regression		
	Binary classification	Multi-class classification		
Feature space	\mathbb{R}^d	\mathbb{R}^d	\mathbb{R}^d	
Label space	{-1, 1}	{1, 2, 3,, K}	\mathbb{R}	
Performance metric	Classification error (0-1 loss) for test data	Classification error (0-1 loss) for test data	Mean Square Error	
Popular surrogate loss (for training)	Logistic loss / exponential loss / square loss	Multiclass logistic loss (Cross-Entropy loss)	Square loss	

Today

- SGD for linear regression
- Linear regression in curve fitting
- Problem of overfitting
- Regularization prevents overfitting
- Quick tutorial on course project presentation

The objective function for learning linear regression under square loss

•
$$\widehat{w} = \operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} (x_i^T w - y_i)^2 = \operatorname{argmin}_{w} ||Xw - y||_2^2$$

aka: Ordinary Least Square (OLS)

Direct solver: setting gradient to 0.

Derive the SGD algorithm

- Problem:
- $\widehat{w} = \operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} (x_i^T w y_i)^2 = \operatorname{argmin}_{w} ||Xw y||_2^2$
- Step 1: Calculate the gradient of the square loss

• Step 2: Write the SGD update rule

Checkpoint: How to solve linear regression?

- Challenges:
 - We don't have access to future data for prediction!
 - We also don't have access to ground truth
- By solving an optimization problem that minimizes the loss function on the **training data**, and hope that it generalizes.
 - We can verify if it generalizes or not using hold-out / cross-validation ...
- The least square optimization problem using square loss function:

$$\min_{f \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^{n} (f(x_i) - y_i)^2$$

Checkpoint: Linear regression

- Stochastic Gradient Descent (SGD)
 - Using a stochastic approximation of the gradient:

$$\theta_{t+1} = \theta_t - \eta_t \hat{\nabla} f(\theta_t)$$

- Calculated by one data point randomly sampled from dataset
- Linear regression
 - $\hat{w} = \operatorname{argmin}_{w} \frac{1}{n} \sum_{i=1}^{n} (x_i^T w y_i)^2 = \operatorname{argmin}_{w} ||Xw y||_2^2$
 - Direct solver: $\widehat{w} = (X^T X)^{-1} X^T y$
 - GD: $w \leftarrow w 2\eta X^T(Xw y)$
 - SGD: $w \leftarrow w 2\eta x_i^T (x_i^T w y_i)$

Checkpoint: Time complexity

- Direct solver
 - $O(nd^2 + d^3)$
- GD:
 - O(ndT)
- SGD:
 - O(dT)
- $T = n_{iterations}$

Example of regression - Curve fitting: How to train a function fitting blue dots?

• Input:

$$x \in \mathcal{X} = [0, 1] \subset \mathbb{R}$$

• Output:

$$y \in \mathcal{Y} = \mathbb{R}$$

• Data:

$$(x_1, y_1), ..., (x_n, y_n)$$

• Ground truth:

$$f_0(x) = \sin(2\pi x)$$

• Hypothesis (model)

$$f(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

Polynomial regression under square loss

Problem of overfitting!

Recap: The problem of Overfitting

The green line represents an overfitted model.

- 1. Best follows the training data
- 2. Too dependent on training data
- 3. More likely to fail (higher error rate) than black line on new unseen test data

Discussion: examples of overfitting in our learning as human beings?

Regularization prevents overfitting!

• Same model:

$$f(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_M x^M$$

How does regularization work?

- Regularization controls the parameter complexity (norms of parameter).
 - p-norm regularized least square

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} ||X\theta - y||_2^2 + \lambda ||\theta||_p^p$$

- In-class exercise:
 - Find L-2 norm of x = [2, -1, -3, 1] and x' = [1, -0.5, -1.5, 0.5]
 - Plot $f(x) = 2 x 3x^2 + x^3$ and $g(x) = 1 0.5x 1.5x^2 + 0.5x^3$ in [-2,4]

Different choices of regularization

p-norm regularized least square

$$\hat{\theta} = \arg\min_{\theta} \frac{1}{n} ||X\theta - y||_2^2 + \lambda ||\theta||_p^p$$

- when p=2, this is called "Ridge Regression"
- when p=1, this is called "Lasso"

Direct solver for Ridge Regression in HW2.

Fitted curve as L-2 regularization weight increases

The mean square errors as we adjust the L2 regularization weight

• Discussion:

- Why training error increases with regularization weight?
- Why is test error in a U-shaped curve?

Case study: Housing price dataset

Example data

	MedInc	HouseAge	AveRooms	AveBedrms	Population	AveOccup	Latitude	Longitude	Target
0	8.3252	41.0	6.984127	1.023810	322.0	2.555556	37.88	-122.23	4.526
1	8.3014	21.0	6.238137	0.971880	2401.0	2.109842	37.86	-122.22	3.585
2	7.2574	52.0	8.288136	1.073446	496.0	2.802260	37.85	-122.24	3.521
3	5.6431	52.0	5.817352	1.073059	558.0	2.547945	37.85	-122.25	3.413
4	3.8462	52.0	6.281853	1.081081	565.0	2.181467	37.85	-122.25	3.422

- Questions one can ask:
 - How well can one use the 8 features to predict house price (i.e., Target)?
 - Which feature is more predictive with house price?
 - What is the effect of regularization?

The MSE vs regularization weight

The "Regularization path" for L2-regularization

How to interpret the fitted coefficients?

• The "sign" indicates positive or negative correlation with the label

The "magnitude" indicates how strongly correlated.

Summary

- Linear regression
 - Solving the Least Square problem {with GD, SGD and direct solver}
- Regularization
 - Controls the parameter complexity of the fitted function
 - Prevents overfitting!
 - Different regularization: L-2 (most popular) and L-1
- Case study: Predict Housing Price
 - Effect of regularization on training test and test error
 - Regularization path (Effect of regularization on coefficients)

Midterm course project presentations

- Each group has 4 min
 - 4 min limit is strictly enforced to ensure all groups can present
- Contents:
 - Background, Problem setup, Challenges, Current progress, Plans
- Clarity:
 - Figure (most preferred), tables, bullet points, words, sentences (least preferred)
 - Figure: x-axis and y-axis need to be defined
 - Table: row and column need to be defined