Shocks — Plots en Julia

Producción $Y_t = A_t K_t^\alpha L_t^{1-\alpha}$ $Y_t = A_t K_t^\alpha L_t^{1-\alpha}$ $Trabajo \qquad w_t = \gamma(L_t^s)^\sigma \qquad w_t = (1-\alpha)A_t K_t^\alpha (L_t^d)^{-\alpha}$ $Capital \qquad r + \delta = \alpha A_2 (K_2^d)^{\alpha-1} (L_2^d)^{1-\alpha}$ $Ahorro-Inversión \qquad S = \frac{\beta}{1+\beta} Y_1 - \frac{\beta}{(1+\beta)(1+r)} Y_2 \qquad I = K_2^d - (1-\delta)K_1$

Shocks a la productividad

1) Shock positivo productividad futura († A_2)

2) Shock negativo productividad futura $(\downarrow A_2)$

3) Shock positivo temporario a la productividad († A_1)

4) Shock negativo temporario a la productividad $(\downarrow A_1)$

5) Shock positivo permanente a la productividad († A_1,A_2)

6) Shock negativo permanente a la productividad ($\downarrow A_1, A_2$)

Shocks a los parámetros

1) Shock negativo al factor de descuento $(\downarrow \beta)$

2) Shock positivo a la depreciación († $\delta)$

3) Caída oferta de trabajo permanente $(\downarrow \gamma)$

