Noname manuscript No.

(will be inserted by the editor)

Relaxations for QCQP

Chuwen Zhang

July 16, 2021

Contents

1	Rela	ations for General QCQP	1
	1.1	SDP Relaxation	2
		l.1.1 RLT	3
		1.1.2 Copositive	3
		1.1.3 Dual	3
	1.2	SOCP Relaxation	3

1 Relaxations for General QCQP

As a convention, we assume data matrices are symmetric, i.e., $Q, A_i \in S^n$ Recall homogeneous QCQP for $x \in \mathbb{R}^n$:

(HQCQP) Maximize
$$x^TQx$$

s.t. x^TA_ix (\leq , =, \geq) b_i , $\forall i=1,\ldots,m$ (1)
 $0 \leq x \leq 1$

And inhomogeneous QCQP,

(QCQP) Maximize
$$x^TQx + 2q^Tx$$

s.t. $x^TA_ix + 2a_i^Tx$ (\leq , =, \geq) b_i (2) $0 \leq x \leq 1$

We mark some of the trivial techniques below.

Address(es) of author(s) should be given

2 Chuwen Zhang

- One can always reformulate (2) into a homogeneous problem by increasing the dimension of variables by 1.

Maximize
$$x^{T}Qx + 2q^{T}x$$

$$= \begin{bmatrix} x^{T} & t \end{bmatrix} \begin{bmatrix} Q & q \\ q^{T} & o \end{bmatrix} \begin{bmatrix} x \\ t \end{bmatrix}$$
s.t. $-1 \le t \le 1$

- Also, a symmetrized version can be achieved by fact that $x^T A x = x^T A^T x$, let

$$\tilde{A} := \frac{A + A^T}{2} \tag{4}$$

1.1 SDP Relaxation

For $x \in \mathbb{R}^n$, we have: $x^T A_i x = A_i \cdot (xx^T)$ and $xx^T \in \mathcal{S}^n_+$, which results in following relaxation using semidefinite cones, also called *lifting* method or Shor relaxation,

(Shor-Basic) Maximize
$$Q \cdot Y + 2q^T x$$

s.t. $Y - xx^T \ge 0$ or $\begin{bmatrix} 1 & x^T \\ x & Y \end{bmatrix} \ge 0$
 $A_i \cdot Y + 2a_i^T x \ (\le, =, \ge) b_i, \forall i$
 $0 \le x \le 1$ (5)

Notice QCQP with matrix variables can also be reformulated into a SDP based problem, let $X \in \mathbb{R}^{n \times d}$, then $X^T A_i X = A_i \bullet (XX^T)$, similarly,

Maximize
$$Q \cdot Y$$

s.t. $Y - XX^T \ge 0$ or $\begin{bmatrix} I_d & X^T \\ X & Y \end{bmatrix} \ge 0$ (6)
 $A_i \cdot Y \ (\le, =, \ge) \ b_i, \forall i$

SDP relaxations (5) can be unbounded in some case. A simple improvement to (5) is to add bounds for the diagonal entries.

(Shor) Maximize
$$Q \cdot Y + 2q^T x$$

s.t. $Y - xx^T \ge 0$ or $\begin{bmatrix} 1 & x^T \\ x & Y \end{bmatrix} \ge 0$
 $A_i \cdot Y + 2a_i^T x \ (\le, =, \ge) b_i, \forall i$
 $0 \le x \le 1$
 $\operatorname{diag}(Y) \le x$ (7)

Relaxations for QCQP 3

1.1.1 RLT

There are many further enhancements to (7), see [?] for discussion on the strength of different relaxations. Here we discuss a few widely used methods using copositive cones and reformulation-linearization-techniques (RLT) cuts.

1.1.2 Copositive

1.1.3 Dual

Consider the dual of primal SDP relaxation.

$$L = \max_{x,X} Q \cdot X + q^T x + \sum_{i} \left(\lambda_i A_i \cdot X + \lambda_i a_i^T x - \lambda_i b_i \right) + \mu^T x - \mu^T e$$

$$- \begin{bmatrix} X & x \\ x^T & 1 \end{bmatrix} \cdot \begin{bmatrix} Y & y \\ y^T & 1 \end{bmatrix}$$

$$= \max_{x,X} -\lambda^T b - \mu^T e - 1 + X \cdot (Q + \sum_{i} \lambda_i A_i - Y) + x^T (q + \sum_{i} \lambda_i a_i + \mu - 2y)$$
(8)

And thus the dual,

$$\min_{\lambda,\mu,y,Y} \quad \lambda^T b + \mu^T e + 1$$
s.t.
$$Y = Q + \sum_i \lambda_i A_i$$

$$q + \sum_i \lambda_i a_i + \mu - 2y \le 0$$

$$Y \ge yy^T$$

$$\lambda, \mu \ge 0$$
(9)

1.2 SOCP Relaxation

We now consider another way of relaxing the original QCQP problem. Consider symmetric indefinite matrix $Q \in S^n$ and its spectral decomposition.

$$Q = V\Lambda V^{T} = \sum_{j}^{n} \lambda_{j} v_{j} v_{j}^{T}$$

$$\Lambda = \operatorname{diag}(\lambda)$$
(10)

Without loss of generality, we assume first r eigenvalues are positive, $\lambda_1, ..., \lambda_r \ge 0, r \le n$. The quadratic form $x^T Q x$ can also be partitioned into positive and negative parts:

$$x^{T}Qx = \sum_{j=1}^{r} \lambda_{j} x^{T} v_{j} v_{j}^{T} x + \sum_{j=r+1}^{n} \lambda_{j} x^{T} v_{j} v_{j}^{T} x$$
 (11)

4 Chuwen Zhang

By letting $s_j \ge z_j^2, z_j = v_j^T x, j = 1, \dots, n$, then (11) can be expressed by introducing n (2-d) quadratic cones, literally:

$$x^T Q x \le \sum_{j} s_j \cdot \lambda_j, \ (s_j, v_j^T x) \in Q^2$$
 (12)

This substitution uses a set of small quadratic cones instead of one semidefinite matrix of size n^2 . With some abuse of notation, suppose $\lambda_i, V_i, i = 0, \dots, m$ are eigenvalues and vectors for Q and $A_i, i = 1, \dots, m$, respectively. Following the same routine for each constraint, we describe the Many-Small-Cone (MSC) relaxation to QCQP, namely,

(MSC) Maximize:
$$y_0^T \lambda_0 + q^T x$$

s.t. $V_i z_i = x$ $i = 0, ..., m$
 $y_i^T \lambda_i + a_i^T x \le b_i$ $i = 1, ..., m$ (13)
 $y_i \ge z_i \circ z_i$ $i = 0, ..., m$
 $y_i^T e \le x^T e$ $i = 0, ..., m$

The last set of constraints are placed to resolve unboundedness for the fact that the similarity transformation by any orthogonal basis V_i , $\forall i$ preserves the value of **trace** operator, namely:

$$y_i^T e = \operatorname{trace}(V_i^T x x^T V_i) = \operatorname{trace}(x x^T) \le x^T e$$
 (14)

This method is closely related to D.C. and Convex SOCP relaxations to QCQP, see [?], [?], [?]. Recently, [?] mention a similar formulation, by defining $C_i = V_i \operatorname{diag}(\sqrt{|\lambda_i|})$. We list it below for convenience.

(MSC-Luo) Maximize:
$$y_0^T e + q^T x$$

s.t. $C_i z_i = x$ $i = 0, ..., m$
 $y_i^T \lambda_i + a_i^T x \le b_i$ $i = 1, ..., m$
 $y_i \ge z_i \circ z_i$ $i = 0, ..., m$

$$y^T \frac{1}{|\lambda|} \le x^T e$$
 $i = 0, ..., m$

In [?], box constraints for z_i can be calculated by its definition. For the case where $x \in [0, 1]$, we show bounds are redundant and the two formulations are equivalent.

Theorem 1 The relaxations (13), (15) are equivalent.

Proof We show the solution for any one of the relaxations can be derived from another

Suppose (x_0, z_0, y_0) is a feasible solution to (13), then $(x_0, \sqrt{\operatorname{diag}(|\lambda|)}z_0, \operatorname{diag}(|\lambda|) \cdot y_0)$ is feasible to (15). Conversely, if (x_0, z_0, y_0) is feasible to (15), then we can construct $(x_0, \frac{1}{\sqrt{\operatorname{diag}(|\lambda|)}}z_0, \frac{1}{\operatorname{diag}(|\lambda|)} \cdot y_0)$ that is also feasible to (13). \square