

Rechte-Hand-Regel:

Zeigt der Daumen der rechten Hand in die technische Stromrichtung, so geben die Finger die Richtung der magnetischen Feldlinien an.

dwu-Unterrichtsmaterialien.de pem003f © 2001

Stellt man sich die magnetischen Feldinien als Gummibänder vor, so kann man die Richtung der Bewegung bzw. die Kraftrichtung vorhersagen. Man ermittelt nach der Rechte-Hand-Regel, an welcher Seite das Gummiband um den Leiter führt.

Die Bewegungsrichtung (Kraftrichtung) ergibt sich dann aus der Straffung dieses Gummibandes.

Die Feldlinien verlaufen

Die techn. Stromrichtung verläuft

Alle drei Raumrichtungen sind jetzt erforderlich:

Beispiel a):

- magn.Feldlinien
- techn. Stromrichtung
- Bewegung

Beispiel b):

- magn.Feldlinien
- techn. Stromrichtung
- Bewegung

1. die Rechte-Hand-Regel:

Zeigt der Daumen der rechten Hand in die technische Stromrichtung (von + nach -), so geben die Finger die Richtung der magnetischen Feldlinien an.

2. Magnetfeld eines Stabmagneten und einer Spule:

Das Magnetfeld einer stromdurchflossenen Spule ist ähnlich zum Magnetfeld eines Stabmagneten. Die Pole liegen an den gegenüberliegenden Spulenöffnungen.

N

Die stromlose Spule hat kein Magnetfeld.

Beginnt der el. Strom zu fließen, so baut sich von innen her das Magnetfeld der Spule auf. Es bilden sich dabei die Magnetpole N und S an den Spulenöffnungen. Das Magnetfeld wird solange ständig größer, bis die Stromstärke nicht

Der Aufbau des Magnetfeldes verläuft gebremst, weil die Spule diesen Vorgang selbst behindert.

> Beim Ausschalten der Spule ergibt sich ein **Hochspannungsstoß** an den Anschlüssen, weil das Magnetfeld schlagartig in sich zusammenfällt. Die eigenen Feldlinien schneiden dabei die Spulenwindungen sehr rasch und in umgekehrter Richtung.

Drehspule und Kommutator: | dwu-Unterrichts materialien.de | pem103f | © 2001

