

E220-900T22D 用户手册

868/915MHz 22dBm LoRa 无线模块

成都亿佰特电子科技有限公司

目录

第一章 概述	3
1.1 简介	
1.2 特点功能	
1.3 应用场景	
第二章	
2.1 极限参数	
2.2 工作参数	
第三章 机械尺寸与引脚定义	
第四章 推荐连线图	
第五章 功能详解	
5. 1 定点发射	
5.2 广播发射	
5.3 广播地址	
5.4 监听地址	
5.5 模块复位	
5.6 AUX 详解	
第六章 工作模式	
6.1 模式切换	
6.2 一般模式 (模式 0)	
6.3 WOR 发送模式(模式 1)	
6.4 WOR 接收模式(模式 2)	
6.5 深度休眠(配置)模式(模式 3)	
第七章 寄存器读写控制	
7.1 指令格式	
7.2 寄存器描述	
7.3 出厂默认参数	
第八章 上位机配置说明	
第九章 硬件设计	10
第十章 常见问题	17
10.1 传输距离不理想	
10.2 模块易损坏	
10.3 误码率太高	
第十一章 焊接作业指导	18
11.1 回流焊温度	
11.2 回流焊曲线图	
第十二章 相关型号	19
第十三章天线指南	20
13.1 天线推荐	
第十四章 批量包装方式	20
修订历史	2 1
关于我们	2.1

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。 文档"按现状"提供,不 负任何担保责任,包括对适销性、适用于特定用途或非侵 权性的任何担保,和任何提案、规格或样品 在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的 责任。本文档在此未以禁止反 言或其他方式授予任何知识产权使用许可,不管是明示许可还是暗示许 可。

文中所得测试数据均为亿佰特实验室测试所得,实际结果可能略有差异。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特此声明。

最终解释权归成都亿佰特电子科技有限公司所有。

注 意

由于产品版本升级或其他原因,本手册内容有可能变更。亿佰特电子科技有限公司保留在没有任何通 知或者提示的情况下对本手册的内容进行修改的权利。本手册仅作为使用指导,成都亿佰特电子科技有限 公司尽全力在本手册中提供准确的信息,但是成都亿佰特电子科技有限公司并不确保手册内容完全没有错 误,本手册中的所有陈述、信息和建议也不构成任何明示或暗示的担保。

第一章 概述

1.1 简介

E220-900T22D 采用全新一代的 LoRa 扩频技术,基于 LLCC68 芯片方案设计的无线 串口模块(UART)。具有多种传输方式,工作在(850.125~930.125MHz) 频段(默认 873.125MHz), TTL 电平输出, 兼容 3.3V 与 5V 的 IO 口电压。

E220-900T22D 采用全新一代 LoRa 扩频技术,支持空中唤醒、载波监听、通信密 钥等功能, 支持分包长度设定, 可提供定制开发服务。

1.2 特点功能

- 基于 LLCC68 开发的全新 LoRa 扩频调制技术,带来更远的通讯距离,抗干扰能力更强;
- 支持用户自行设定通信密钥,且无法被读取,极大提高了用户数据的保密性;
- 支持 LBT 功能,在发送前监听信道环境噪声,可极大的提高模块在恶劣环境下的通信成功率;
- 支持 RSSI 信号强度指示功能,用于评估信号质量、改善通信网络、测距;
- 支持空中唤醒,即超低功耗功能,适用于电池供电的应用方案;
- 支持定点传输、广播传输、信道监听;
- 支持深度休眠,该模式下整机功耗约 5uA;
- 模块内置 PA+LNA, 理想条件下通信距离可达 5km;
- 参数掉电保存,重新上电后模块会按照设置好的参数进行工作;
- 高效看门狗设计,一旦发生异常,模块将在自动重启,且能继续按照先前的参数设置继续工作;
- 支持 2.4k~62.5kbps 的数据传输速率;
- 支持 2.3~5.5V 供电, 大于 3.3V 供电均可保证最佳性能;
- 工业级标准设计,支持-40~+85℃下长时间使用;
- SMA 天线接口。

1.3 应用场景

- 家庭安防报警及远程无钥匙进入;
- 智能家居以及工业传感器等;
- 无线报警安全系统;
- 楼宇自动化解决方案;
- 无线工业级遥控器;
- 高级抄表架构(AMI);
- 汽车行业应用。

第二章 规格参数

2.1 极限参数

表 2-1 极限参数表

主要参数	性	能	备注
土安参数	最小值	最大值	一位
电源电压(V)	0	5. 5	超过最大值可能永久烧毁模块
阻塞功率 (dBm)	_	10	_
工作温度(℃)	-40	+85	工业级

2.2 工作参数

表 2-2 工作参数表

	主要参数		性能		A 74-	
	土安少蚁	最小值 典型值 最大值		最大值	备注	
	工作电压 (V)	2.3	5	5. 5	≥3.3V 可保证输出功率	
	通信电平 (V)	-	3. 3	_	使用 5V TTL 有风险烧毁	
	工作温度(℃)	-40	_	+85	工业级设计	
	工作频段(MHz)	850.125	_	930. 125	支持 ISM 频段	
T-h	发射电流 (mA)	-	110	_	瞬时功耗@30dBm	
- 功 - 耗	接收电流(mA)	-	16.8	-	5V 电压	
木七	休眠电流 (μ A)	-	5	-	软件关断	
	最大发射功率 (dBm)	21.5	22. 0	22. 5	-	
	接收灵敏度 (dBm)	-146	-147	-148	空中速率 2.4 kbps	
	空中速率(bps)	2. 4k	2.4k	62. 5k	用户编程控制	
	参考距离	5km			晴朗空旷,天线增益 5dBi,天线高度 2.5 米,	
	少		JKIII		空中速率 2. 4kbps	
	发射长度		200 Byte		可通过指令设置分包 32/64/128/200 字节发送	
缓存容量		400 Byte			-	
调制方式		LoRa			新一代 LoRa 调制技术	
通信接口		UART 串口			TTL 电平	
封装方式		插针式			-	
外形尺寸		21*36mm			-	
	射频接口		SMA-K		等效阻抗约 50 Ω	

第三章 机械尺寸与引脚定义

图 3-1 机械尺寸与引脚定义

表 3-1 引脚定义表

引脚 序号	引脚 名称	引脚方向	引脚用途
1	MO	输入(极弱上拉)	和 M1 配合,决定模块的 4 种工作模式(不可悬空,如不使用可接地)
2	M1	输入(极弱上拉)	和 MO 配合,决定模块的 4 种工作模式(不可悬空,如不使用可接地)
3	RXD	输入	TTL 串口输入,连接到外部 TXD 输出引脚;
4	TXD	输出	TTL 串口输出,连接到外部 RXD 输入引脚;
5	ALIV	松山	用于指示模块工作状态;用户唤醒外部 MCU,上电自检初始化期间输出低
o O	5 AUX 输出		电平; (可以悬空)
6	VCC	输入	模块电源正参考, 电压范围: 3.0~5.5V DC
7	GND	输入	模块地线
8	固定孔	_	固定孔
9	固定孔	_	固定孔
10	固定孔	_	固定孔

第四章 推荐连线图

图 4-1 推荐连线图

表 4-1 说明

序号	模块与单片机简要连接说明(上图以 STM8L 单片机为例)
1	无线串口模块为 TTL 电平, 请与 TTL 电平的 MCU 连接。
2	某些 5V 单片机,可能需要在模块的 TXD 和 AUX 脚加 4~10K 上拉电阻。

第五章 功能详解

5.1 定点发射

图 5-1 定点发射

5.2 广播发射

图 5-2 广播发射

5.3 广播地址

- 举例:将模块 A 地址设置为 OxFFFF,信道设置为 OxO4。
- 当模块 A 作为发射时(相同模式,透明传输方式),0x04 信道下所有的接收模块都可以收到数据,达到广播的目的。

5.4 监听地址

- 举例:将模块 A 地址设置为 0xFFFF,信道设置为 0x04。
- 当模块 A 作为接收时,可以接收到 0x04 信道下所有的数据,达到监听的目的。

5.5 模块复位

● 模块上电后,AUX 将立即输出低电平,并进行硬件自检,以及按照用户参数进行工作方式设置; 在此过程中,AUX 保持低电平,完毕后 AUX 输出高电平,并按照 M1、M0 组合而成的工作模式开始正常工作; 所以,用户需要等待 AUX 上升沿,作为模块正常工作的起点。

5.6 AUX 详解

- AUX 用于无线收发缓冲指示和自检指示。
- 它指示模块是否有数据尚未通过无线发射出去,或已经收到无线数据是否尚未通过串口全部发出,或模块正在初始化自 检过程中。

5.6.1 串口数据输出指示

● 用于唤醒休眠中的外部 MCU;

模块串口外发数据时, AUX引脚时序图

图 5-3 唤醒 MCU

5.6.2 无线发射指示

● 缓冲区空:内部 400 字节缓冲区的数据,都被写入到无线芯片(自动分包);

当 AUX=1 时用户连续发起小于 400 字节的数据,不会溢出;

当 AUX=0 时缓冲区不为空:内部 400 字节缓冲区的数据,尚未全部写入到无线芯片并开启发射,此时模块有可能在等待用户数据结束超时,或正在进行无线分包发射。

【注意】: AUX=1 时并不代表模块全部串口数据均通过无线发射完毕,也可能最后一包数据正在发射中。

分包发射:最后一包数据已 写入RF芯片并自动发射,用户 可以继续输入400字节。(实 质是缓冲区为空)

模块接收串口数据时, AUX引脚时序图

图 5-4 发射指示

5.6.3 模块正在配置过程中

● 仅在复位和退出休眠模式的时候;

自检期间,AUX引脚时序图

图 5-5 配置模式

5.6.4 注意事项

表 5-1 注意事项

序号	AUX 注意事项
1	上述功能 1 和功能 2,输出低电平优先,即:满足任何一个输出低电平条件,AUX 就输出低电平; 当所有低电平条件均不满足时,AUX 输出高电平。
2	当 AUX 输出低电平时,表示模块繁忙,此时不会进行工作模式检测; 当模块 AUX 输出高电平后 1ms 内,将完成模式切换工作。
3	用户切换到新的工作模式后,至少需要在 AUX 上升沿 2ms 后,模块才会真正进入该模式;如果 AUX 一直处于高电平,那么模式切换将立即生效。

- 4 用户从模式 3(休眠模式)进入到其他模式或在复位过程中,模块会重新设置用户参数,期间 AUX 输出低电平。 因 LoRa 调制方式的特点,信息传输时延相较于 FSK 要长很多,建议客户不要在低空速下进行大数据量传输,以免 5 因数据堆积造成数据丢失引发通信异常。
- 第六章 工作模式

模块有四种工作模式,由引脚 M1、M0 设置;详细情况如下表所示:

模式 (0-3)	M1	МО	模式介绍	备注
0 传输模式	0	0	串口打开,无线打开,透明传输	
1 WOR 发送模 式	0	1	WOR 发送方	
2 WOR 接收模 式	1	0	WOR 接收方	支持空中唤醒
3 深度休眠	1	1	模块进入休眠(配置参数时自动唤醒)	可配置参数

6.1 模式切换

表 6-1 模式切换

序号	备注
1	 ● 用户可以将 M1、M0 进行高低电平组合,确定模块工作模式。可使用 MCU 的 2 个 GPIO 来控制模式切换; ● 当改变 M1、M0 后: 若模块空闲,1ms 后,即可按照新的模式开始工作; ● 若模块有串口数据尚未通过无线发射完毕,则发射完毕后,才能进入新的工作模式; ● 若模块收到无线数据后并通过串口向外发出数据,则需要发完后才能进入新的工作模式; ● 所以模式切换只能在 AUX 输出 1 的时候有效,否则会延迟切换。
2	 例如:用户连续输入大量数据,并同时进行模式切换,此时的切换模式操作是无效的;模块会将所有用户数据处理完毕后,才进行新的模式检测; 所以一般建议为:检测 AUX 引脚输出状态,等待输出高电平后 2ms 再进行切换。
3	● 当模块从其他模式被切换到休眠模式时,如果有数据尚未处理完毕; ● 模块会将这些数据(包括收和发)处理完毕后,才能进入休眠模式。这个特征可以用于快速休眠,从而节省功 耗;例如:发射模块工作在模式 0,用户发起串口数据"12345",然后不必等待 AUX 引脚空闲(高电平),可 以直接切换到休眠模式,并将用户主 MCU 立即休眠,模块会自动将用户数据全部通过无线发出后,1ms 内自动进 入休眠; ● 从而节省 MCU 的工作时间,降低功耗。
4	 同理,任何模式切换,都可以利用这个特征,模块处理完当前模式事件后,在1ms内,会自动进入新的模式;从而省去了用户查询AUX的工作,且能达到快速切换的目的; 例如从发射模式切换到接收模式;用户MCU也可以在模式切换前提前进入休眠,使用外部中断功能来获取AUX变化,从而进行模式切换。

5

此操作方式是非常灵活而高效的,完全按照用户 MCU 的操作方便性而设计,并可以尽可能降低整个系统的工作 负荷,提高系统效率,降低功耗。

6.2 一般模式 (模式 0)

表 6-2 一般模式

类型	当 MO = 0, M1 = 0 时,模块工作在模式 0
发射	用户可以通过串口输入数据,模块会启动无线发射。
接收	模块无线接收功能打开,收到无线数据后会通过串口 TXD 引脚输出。

6.3 WOR 发送模式 (模式 1)

表 6-3 WOR 模式

类型	当 MO = 1, M1 = 0 时,模块工作在模式 1
发射	当定义为发射方时,发射前会自动增加一定时间的唤醒码
接收	可以正常接收数据,接收功能等同于模式 0

6.4 WOR 接收模式 (模式 2)

表 6-4 配置模式

类型	当 MO = 0, M1 = 1 时,模块工作在模式 2
发射	无线发射关闭
接收	仅可接收 WOR 发送模式(模式 1)下的数据

6.5 深度休眠(配置)模式(模式3)

表 6-5 休眠模式

类型	当 MO = 1, M1 = 1 时,模块工作在模式 3
发射	无法发射无线数据。
接收	无法接收无线数据。
注意	可以配置模块参数。当从休眠模式进入到其他模式,模块会重新配置参数,配置过程中,AUX 保持低电平; 完毕后输出高电平,所以建议用户检测 T_BUSY 上升沿。

第七章 寄存器读写控制

7.1 指令格式

配置模式(模式 3: M1=1, M0=1)下,支持的指令列表如下(**设置时,只支持 9600, 8N1 格式**): 表 7-1 指令格式

序号	指令格式	详细说明
1	设置寄存器	指令: C0+起始地址+长度+参数 响应: C1+起始地址+长度+参数 例 1: 配置信道为 0x09 指令 起始地址 长度 参数 发送: C0 04 01 09 返回: C1 04 01 09 例 2: 同时配置模块地址 (0x1234)、串口(9600 8N1)、空速(2.4K) 发送: C0 00 03 12 34 62 返回: C1 00 03 12 34 62
2	读取寄存器	指令: C1+起始地址+长度 响应: C1+起始地址+长度+参数 例 1: 读取信道 指令 起始地址 长度 参数 发送: C1 04 01 返回: C1 04 01 09 例 2: 同时读取模块地址、串口、空速 发送: C1 00 03 返回: C1 00 03 12 34 62
3	设置临时寄存器	指令: C2 +起始地址+长度+参数 响应: C1 +起始地址+长度+参数 例 1: 配置信道为 0x09 指令 起始地址 长度 参数 发送: C2 04 01 09 返回: C1 04 01 09

		例 2: 同时配置模块地址 (0x1234) 、串口(9600 8N1)、空速(2.4K) 发送: C2 00 03 12 34 62 返回: C1 00 03 12 34 62
4	格式错误	格式错误响应 FF FF FF

7.2 寄存器描述

表 7-2 寄存器描述

序号	读写	名称		描述		描述	备注	
ООН	读/写	ADDH	ADDH	(默认 ((默认 0)		模块地址高字节和低字节; 注意: 当模块地址等于 FFFF 时,可作为广播和	
0111	进/官	ADDI	ADDI	(4周)	1)		监听地址,即:此时模块将不进行地址过滤	
01H	读/写	ADDL	ADDL 7	(默认 C 6	5	UART 串口速率(bps)	血引起址, 即: 此时侯庆侍仆近行地址及德	
			0	0	0	串口波特率为 1200		
			0	0	_		相互通信的两个模块,串口波特率可以不同,	
			0		1	串口波特率为 2400 串口波特率为 4800	校验方式也可以不同;	
			-	1	0		当连续发射较大数据包时,用户需要考虑波特	
			0	1	1	串口波特率为9600(默认)	」率相同带来的数据阻塞,甚至可能丢失;	
			1	0	0	串口波特率为 19200	一般建议通信双方波特率相同。	
			1	0	1	串口波特率为 38400	-	
			1	1	0	串口波特率为 57600	_	
			1	1	1	串口波特率为 115200		
	读/写	卖/写 REGO	4	3		交验位 		
			0	0		默认)		
02Н			0	1 801			通信双方串口模式可以不同;	
			1	0	8E1			
			1	1	8N1 (等同 00)		
			2	1	0	无线空中速率 (bps)		
			0	0	0	空中速率 2.4k (默认)		
			0	0	1	空中速率 2.4k (默认)		
			0	1	0	空中速率 2.4k (默认)	 通信双方空中速率必须相同;	
			0	1	1	空中速率 4.8k		
				1	0	0	空中速率 9.6k	空中速率越高,延迟越小,传输距离越短。
			1	0	1	空中速率 19.2k		
			1	1	0	空中速率 38. 4k		
			1	1	1	空中速率 62. 5k		
			7	6	分包证		用户发送数据小于分包长度,接收端串口输出	
			0	0	200 字	空节 (默认)	呈现为不间断连续输出;	
03Н)+ /=	DE31	0	1	128 字	节		
	读/写	REG1	1	0	64 字	 节	包输出。	
			1	1	32 字	 节	1	
			5	RSSI	环境噪	声使能	启用指令(分包设定、发射功率为默认参数,	

			0	禁用	(默认)	 配置模式): CO O3 O1 2O;
			1	启用			启用后,可在传输模式或 WOR 发送模式发送指令 CO C1 C2 C3 指令 读取寄存器;寄存器 0x00 : 当前环境噪声 RSSI;寄存器 0X01 : 上一次接收数据时的 RSSI (当前信道噪声为: dBm = - (256 - RSSI));指令格式: CO C1 C2 C3+起始地址+读取长度;返回: C1 + 地址+读取长度+读取有效值;如:发送 CO C1 C2 C3 00 01 返回 C1 00 01 RSSI (地址只能从 00 开始)
			4	3	2	保留	
			1	0	发射	功率	14.5cm 4.5cm 4.5cm 4.5cm 4.5cm
			0	0	22dB	m (默认)	
			0	1	17dB	m	
			1	0	13dB		电流不会随功率降低而同比例降低。
			1 / 2 / 3 / 2	1 E制(CI	10dB	m	
04Н	读/写	REG2				81 个信道	实际频率= 850.125 + CH *1M
			7	启用I	RSSI 字	节	
			0	禁用	(默认)	出后,将跟随一个 RSSI 强度字节。
			1	启用			
			6	传输力	方式		定点传输时,模块会将串口数据的前三个字节
			0	透明传输(默认)			识别为: 地址高+地址低+信道,并将其作为无
			1	定点作	专输		线发射目标。
			5	保留			-
			4	LBT 使	能		启用后,无线数据发射前会进行监听,可以在 一定程度上避开干扰,但可能带来数据延迟;
			0			禁用 (默认)	是程度工题并下现,但可能市不数据是心;
05H	读/写	REG3	1			启用	LBT 最大停留时间 2 秒,达到两秒会强制发出。
	, , ,	REGO	3	保留			
			2	1	0	WOR 周期	
			0	0	0	500ms	仅针对模式1有效;
			0	0	1	1000ms	周期 T= (1+WOR) *500ms, 最大 4000ms, 最小
			0	1	0	1500ms	为 500ms;
			0	1	1	2000ms	
			1	0	0	2500ms	WOR 监听间隔周期时间越长,平均功耗越低,但 ——— 数据延迟越大;
			1	0	1	3000ms	
			1	1	0	3500ms	收发双方必须一致(非常重要) ———
			1	1	1	4000ms	
06Н	写	CRYPT_H	密钥高	高字节 ((默认)	0)	只写,读取返回 0; 用于加密,避免被同类模块截获空中无线数据; 模块内部将使用这两个字节作为计算因子对空
07Н	写	CRYPT_L	密钥值	(字节)	(默认)	0)	中无线信号进行变换加密处理。
08H	读	Version	版本号	号信息 1	个字章	节	版本号信息1个字节

7.3 出厂默认参数

表 7-3 默认参数

型号	出厂默认参数值: c0 00 00 62 00 17								
模块型号	频率	地址	信道	空中速率	波特率	串口格式	发射功率		
E22-900T22D	873.125MHz	0x0000	0x17	2.4kbps	9600	8N1	22dbm		

第八章 上位机配置说明

● 下图为 E220-900T30D 配置上位机显示界面,用户可通过 MO、M1 切换为命令模式,在上位机进行参数快速配置和读取。

● 在配置上位机中,模块地址、频率信道、网络 ID、密钥均为十进制显示模式; 其中各参数取值范围:

网络地址: 0~65535 频率信道: 0~83 密钥: 0~65535

第九章 硬件设计

● 推荐使用直流稳压电源对该模块进行供电,电源纹波系数尽量小,模块需可靠接地;

- 请注意电源正负极的正确连接,如反接可能会导致模块永久性损坏;
- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性, 电压不能大幅频繁波动;
- 在针对模块设计供电电路时,往往推荐保留30%以上余量,有整机利于长期稳定地工作;
- 模块应尽量远离电源、变压器、高频走线等电磁干扰较大的部分;
- 高频数字走线、高频模拟走线、电源走线必须避开模块下方,若实在需要经过模块下方,假设模块焊接在 Top Layer, 在模块接触部分的 Top Layer 铺地铜(全部铺铜并良好接地),必须靠近模块数字部分并走线在 Bottom Layer;
- 假设模块焊接或放置在 Top Layer, 在 Bottom Layer 或者其他层随意走线也是错误的, 会在不同程度影响模块的杂散以 及接收灵敏度:
- 假设模块周围有存在较大电磁干扰的器件也会极大影响模块的性能,跟据干扰的强度建议适当远离模块,若情况允许可 以做适当的隔离与屏蔽;
- 假设模块周围有存在较大电磁干扰的走线(高频数字、高频模拟、电源走线)也会极大影响模块的性能,跟据干扰的强 度建议适当远离模块,若情况允许可以做适当的隔离与屏蔽;
- 尽量远离部分物理层亦为 2.4GHz 的 TTL 协议, 例如: USB3.0;
- 天线安装结构对模块性能有较大影响, 务必保证天线外露且最好垂直向上;
- 当模块安装于机壳内部时,可使用优质的天线延长线,将天线延伸至机壳外部;
- 天线切不可安装于金属壳内部,将导致传输距离极大削弱。

第十章 常见问题

10.1 传输距离不理想

- 当存在直线通信障碍时,通信距离会相应的衰减;
- 温度、湿度,同频干扰,会导致通信丢包率提高:
- 地面吸收、反射无线电波,靠近地面测试效果较差;
- 海水具有极强的吸收无线电波能力, 故海边测试效果差;
- 天线附近有金属物体,或放置于金属壳内,信号衰减会非常严重;
- 功率寄存器设置错误、空中速率设置过高(空中速率越高,距离越近);
- 室温下电源低压低于推荐值, 电压越低发功率越小;
- 使用天线与模块匹配程度较差或天线本身品质问题。

10.2 模块易损坏

- 请检查供电电源,确保在推荐供电电压之间,如超过最大值会造成模块永久性损坏;
- 请检查电源稳定性,电压不能大幅频繁波动;
- 请确保安装使用过程防静电操作,高频器件静电敏感性;
- 请确保安装使用过程湿度不宜过高,部分元件为湿度敏感器件;
- 如果没有特殊需求不建议在过高、过低温度下使用。

10.3 误码率太高

- 附近有同频信号干扰,远离干扰源或者修改频率、信道避开干扰;
- 电源不理想也可能造成乱码,务必保证电源的可靠性;
- 延长线、馈线品质差或太长, 也会造成误码率偏高。

第十一章 焊接作业指导

11.1 回流焊温度

表 12-1 寄存器描述

Profile Feature	曲线特征	Sn-Pb Assembly	Pb-Free Assembly
Solder Paste	锡膏	Sn63/Pb37	Sn96. 5/Ag3/Cu0. 5
Preheat Temperature min (Tsmin)	最小预热温度	100℃	150℃
Preheat temperature max (Tsmax)	最大预热温度	150℃	200℃
Preheat Time (Tsmin to Tsmax)(ts)	预热时间	60-120 sec	60-120 sec
Average ramp-up rate(Tsmax to Tp)	平均上升速率	3℃/second max	3℃/second max
Liquidous Temperature (TL)	液相温度	183℃	217℃
Time (tL) Maintained Above (TL)	液相线以上的时间	60-90 sec	30-90 sec
Peak temperature (Tp)	峰值温度	220−235°C	230−250°C
Aveage ramp-down rate (Tp to Tsmax)	平均下降速率	6℃/second max	6℃/second max
Time 25℃ to peak temperature	25℃到峰值温度的时间	6 minutes max	8 minutes max

11.2 回流焊曲线图

第十二章 相关型号

产品型号	芯片方案	载波频率 Hz	发射功率 dBm	测试距离 km	封装形式	产品尺寸 mm	通信接口
E220-400T22S	LLCC68	433/470M	22	5	贴片	16*26	TTL
E220-400T30S	LLCC68	433/470M	30	10	贴片	20*40.5	TTL
E220-900T22S	LLCC68	868/915M	22	5	贴片	16*26	TTL
E220-900T30S	LLCC68	868/915M	30	10	贴片	20*40.5	TTL
E220-400T22D	LLCC68	433/470M	22	5	直插	21*36	TTL
E220-400T30D	LLCC68	433/470M	30	10	直插	24*43	TTL
E220-900T22D	LLCC68	868/915M	22	5	直插	21*36	TTL
E220-900T30D	LLCC68	868/915M	30	10	直插	24*43	TTL

第十三章天线指南

13.1 天线推荐

天线是通信过程中重要角色,往往劣质的天线会对通信系统造成极大的影响,故我司推荐部分天线作为配套我司无线模 块且性能较为优秀且价格合理的天线。

表 14-1 寄存器描述

产品型号	类型	频段	接口	增益	高度	馈线	功能特点
)加至す		Hz	坂中	dBi	mm	cm	יייי הוה הרים והיייים והייים והיי
TX868-JZ-5	胶棒天线	868M	SMA-J	2.0	52	ı	超短直式,全向天线
TX868-JK-20	胶棒天线	868M	SMA-J	3.0	210	-	可弯折胶棒,全向天线
TX868-XPL-100	吸盘天线	868M	SMA-J	3.5	290	100	小型吸盘天线,高性价比
<u>TX915-JZ-5</u>	胶棒天线	915M	SMA-J	2.0	52	-	超短直式,全向天线
TX915-JK-11	胶棒天线	915M	SMA-J	2.5	110	_	可弯折胶棒,全向天线
TX915-JK-20	胶棒天线	915M	SMA-J	3.0	210	_	可弯折胶棒,全向天线
TX915-XPL-100	吸盘天线	915M	SMA-J	3.5	290	100	小型吸盘天线,高性价比

第十四章 批量包装方式

Unit: mm Each Layer: 20 pcs Each Package: 5 layers

修订历史

版本	修订日期	修订说明	维护人
1.0	2020-8-28	初始版本	

关于我们

销售热线: 4000-330-990 公司电话: 028-61399028 技术支持: support@cdebyte.com 官方网站: www.ebyte.com

公司地址:四川省成都市高新西区西区大道 199 号 B5 栋

