DNA in chromatin:

how to extract structural, dynamical and functional information from the analysis of genomic sequences using spacescale wavelet techniques

Alain Arneodo

Laboratoire de Physique, Ecole Normale Supérieure de Lyon 46 allée d'Italie, 69364 Lyon Cedex 07, FRANCE

Françoise Argoul

Benjamin Audit

Samuel Nicolay

ENS de Lyon, France

Edward-Benedict Brodie of Brodie

Cédric Vaillant

EPF Lausanne, Switzerland

Marie Touchon

Yves d'Aubenton-Carafa

CGM, Gif-sur-Yvette, France

Claude Thermes

maintaining the data needed, and c including suggestions for reducing	nection of minimation is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate mation Operations and Reports	or any other aspect of th , 1215 Jefferson Davis l	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE 07 JAN 2005		2. REPORT TYPE N/A		3. DATES COVE	RED	
4. TITLE AND SUBTITLE		5a. CONTRACT	NUMBER			
	:how to extract stru he analysis of genor		5b. GRANT NUMBER			
wavelet techniques				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
		5e. TASK NUMBER				
			5f. WORK UNIT NUMBER			
Laboratoire de Phy	ZATION NAME(S) AND AE ysique,EcoleNormal n Cedex 07, FRANC	8. PERFORMING ORGANIZATION REPORT NUMBER				
9. SPONSORING/MONITO		10. SPONSOR/MONITOR'S ACRONYM(S)				
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)				
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited				
	OTES 50, Wavelets and M nent contains color i	•	(WAMA) Works	hop held on 1	19-31 July 2004.,	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT UU	OF PAGES 60	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

DESOXYRIBONUCLEIC ACID A FEW HISTORICAL LANDMARKS

- 1869 Miescher isolates DNA
- 1944 DNA carries the genetic information (Avery)
- 1953 The double helix structure of DNA is discovered by Watson and Crick ATGC
 - ightarrow a simple model for the transmission of the genetic information
- 1966 Niremberg, Ochoa and Khorana elucidate the genetic code
 - → DNA codes for proteins

DeoxyriboNucleic Acid

- Double helix macromolecule
- Each strand consists of an oriented sequence of four possible nucleotides:
 - Adenine, Thymine, Guanine & Cytosine
- Complementary strands:
 [A]=[T] & [G]=[C] over the sum of both strands

ORGANIZATION OF THE HUMAN GENOME

Sequencing projects result in 4 letter texts:

gtcagtttcctgaggcgggtcgggacccaggcgtgagactggagtctgcc caggggcccagctgagccagcctcctcgtcagctgcttgggccgccagga cgccgccggggtgcgccgcgcttccctggatggggtgccccactcccc tcggagccccagggagaccccccgaactcagctcctctcaggggtgccag $\tt ggggacccctcaaactccactccccgcaggttcctggggagacgcccct$ $\verb"gctcgattcccctcagggtcccagggagaccccctaattcagctcctctc"$ aggggtactgggggacctctcgagctccactcccatcagggtcccaggga gacccccaactatgctcaggggtcccagggagatgccagcaccccaact ccgcttccctggggccccccttcccttacagctcaacttccctcgagagt ctggggctggggctccgttcagttcttgagtccccttccctcggggtgtc ccggggccgccaccccacactgtctgtgattccccaaggcgcgggtct cgggccgcagcctgttccacgttctgctgctcgttcttttctggctcctt gctttcgaaggagagagggccttcgtttccagtctttttgccttttc taatggagccctgcttttccttccgtgtcccttcaggctacttctgccag gtttctatttttcattctttattatgacttcgcccaaaatattcttgact tctattgagaaggattcgggggtctatttcttattcggaggcgtgtgcttaagttccaaacagatgaggattttccagttaatccttctggggtgactta ttgcttaatgccaccatagccagaaaatggactctcagtgtccgaaactg cattcggctctgaagtgtctgtccttgtcacctcttgcaatgtttcgcgg cgggaagcctgcactcgccgacgctgacgtaactgtttctgtctttcagg tctacagcctcctgtgggtgggcgatattgacatatactttatttctata tatgttatgaactcaatatttcttgcagcgggtctgctgataataagata ${\tt tgcctactctgcgagtctggaagccatcttaagcttaccctgtatgtgcc}$ ccatgcatctcttccgttacacggctcctgagttgacacctgtgtgataa actggtaatagcaagtaaactgttttcttgtgctctgtaagctgctctag caaattatctaggaggaggtggtcttggaaacccctgatttataagcggg cagtcagcagtacacgtggcccagaatcgtgattggcatttgaagtgggg gcagtagggtgggactgagcccttcacctgtggggtctgccctgctcaag gcagtgtcagaattgaagtgaaatgttggacggtcggtgtccagagagtt ggagaactggtttgtgtgtaaaaactnacatatttagggtcagaagtatg

. . .

HIERARCHICAL STRUCTURE OF EUCARYOTIC DNA

NET RESULT: EACH DNA MOLECULE HAS BEEN PACKAGED INTO A MITOTIC CHROMOSOME THAT IS 50.000x SHORTER THAN ITS EXTENDED LENGTH

DIFFERENT WAYS TO READ THE TEXT

I. "Classical" reading

- Looking for patterns
 - Genes, introns, exons detection
 - Splicing sites, promoters, replication origins recognition
- Characterizing repetitions
 - Tandem, interspersed repeats
 - Oligonucleotide usage
- Using methods such as
 - Hidden Markov chains
 - Fourier transform
 - Dot-plot matrices and recurrence plots

INVARIANCE UNDER TRANSLATION

II. The physicist reading

Hypothesis: The DNA text results from a stochastic process:

ACGTTCGAT?

- Question: The choice of the next nucleotide :
 - i. Depends on a finite number (l_o) of the previous trials
 - → Short range correlations and exponential decay of the correlation function:

$$C(l) \propto \exp(-l/l_o)$$

ii. Depends on all the previous nucleotides
 → Long range correlations and power law decay
 of the correlation function:

INVARIANCE UNDER DILATATION

DNA WALK REPRESENTATION (PENG et al. 92)

1. Each nucleotide is associated to a numerical value (A to a, T to t, G to g and C to c).

purine-pyrimidine :
$$a=g=1$$
 and $t=c=-1$ weak-strong : $a=t=1$ and $g=c=-1$ amino-keto : $a=c=1$ and $t=g=-1$ A-non A : $a=1$ and $t=g=c=-1/3$ T-non T : $t=1$ and $a=g=c=-1/3$ G-non G : $g=1$ and $a=t=c=-1/3$ C-non C : $c=1$ and $a=t=g=-1/3$

2. Suppose you have a walker on the line. The value associated to the i^{th} nucleotide defines the i^{th} step S(i) of the walker

Example using the purine (\uparrow) pyrimidine (\downarrow) distinction :

Most of the physicist works amount to characterizing the roughness of a DNA walk landscape

Most of the physicist works amount to characterizing the roughness of a DNA walk landscape

FRACTAL SIGNALS

days

ROUGHNESS EXPONENT

Root-mean square of the height fluctuations :

$$W(L) = \sqrt{\langle f^2(x) \rangle - \langle f(x) \rangle^2} \sim L^H$$

H = roughness exponent D_f = 2 - H

- Random walk
 - 0.5 < H < 1 LONG RANGE CORRELATIONS (LRC)
 - H = 0.5 UNCORRELATED
 - 0 < H < 0.5 ANTI-CORRELATIONS
- Power spectrum

$$S_f(k) \sim k^{-(2H+1)}$$

Correlation function

$$C_f(I) = \langle f(x) f(x+I) \rangle - \langle f(x) \rangle^2 \sim I^{2H}$$

Are the observed LRC a bias in the measurement?

Is the mosaic structure of DNA enough to account for the observed misleading LRC in DNA sequences ?

Karlin and Brendel 93:

A specific analysing tool is needed to avoid confusing a biased uncorrelated random walk with an unbiased correlated random walk

WAVELET ANALYSIS OF FRACTAL SIGNALS

$$T_g(a,b) = \frac{1}{a} \int g^* \left(\frac{x-b}{a}\right) f(x) dx$$

Mathematical microscope

"Singularity scanner"

The wavelet transform allows us to **LOCATE** (b) the singularities of f and to **ESTIMATE** (a) their strength h(x) (Hölder exponent)

CONTINUOUS WAVELET TRANSFORM OF THE TRIADIC DEVIL'S STAIRCASE

F(x) is continuous but non differentiable. F'(x)=0 almost everywhere. Its continuous variation occurs over a set of Lebesgue measure = 0 and dimension $D_F = \log 2 / \log 3$

Fractal measures

- Invariant measures associated with the strange attractors of discrete dynamical systems
- Turbulent energy dissipation

TRIADIC CANTOR SET

Fractal signals

- Weierstrass functions
- Fractional Brownian motions

F(x) is continuous but non differentiable. F'(x)=0 almost everywhere. Its continuous variation occurs over a set of Lebesgue measure = 0 and dimension $D_F = \log 2 / \log 3$

Wavelet analysis of the DNA sequence of the bacteriophage λ

SYNTHETIC DNA SEQUENCES

Uncorrelated

random sequence

w = 32bp

512bp W

Long range correlated

random sequence

32bp w =

512bp

SYNTHETIC DNA WALKS

Fractional Brownian motions: B_H

A UNIQUE WAY TO DISPLAY RESULTS

- 1. Straight line ⇔ scale invariance properties
- The slope of a linear behavior gives the roughness exponent H

$$\begin{cases} H = 0.5 & \text{No LRC} \\ H > 0.5 & \text{LRC} \end{cases}$$

A UNIQUE WAY TO DISPLAY RESULTS

- 1. Straight line ⇔ scale invariance properties
- The slope of a linear behavior gives the roughness exponent H

$$\begin{cases} H = 0.5 & \text{No LRC} \\ H > 0.5 & \text{LRC} \end{cases}$$

LRC AND THE ISOCHORE STRUCTURE OF WARM BLOODED VERTEBRATES

LRC increase with the G + C content of isochores

This result remains valid for genomes that don't possess an isochore structure!

Which biological mecanisms can account for LRC in DNA sequences

Genomes dynamics and plasticity

Point mutation

Insertion, deletion

Transposition

Duplication of exons, genes or chromosomes

Recombinaison

Generalized Lévy walk model (Buldyrev et al. 93)

Length distribution of protein coding segments (Herzel and Große 97)

Compaction constraints - Accession to information

Nucleosome

Chromatine fiber

Higher order folding up to the metaphase chromosome

Fractal model of chromosomes (Takahashi 89)

Crumpled globule model (Grosberg et al. 93)

HIERARCHICAL STRUCTURE OF EUCARYOTIC DNA

STATISTICAL ANALYSIS OF THE EUKARYOTIC GENOME OF Saccharomyces cerevisiae

Universality between the 16 chromosomes of yeast Universality between the 4 mononucleotidic codings $n_c \sim$ 200bp is a characteristic length scale

Gaussian statistics at small scales ($n \le 200$ bp)

Non Gaussian (fat tails) statistics at large scale ($n \ge 200$ bp)

STATISTICAL ANALYSIS OF THE BACTERIAL GENOME OF *Escherichia coli*

Universality between the 4 mononucleotidic codings and with the eukaryotic genome of yeast

 $n_c \sim 200$ bp is a characteristic length scale

Gaussian statistics at small scales ($n \le 200$ bp): H = 0.5

Non Gaussian (fat tails) statistics at large scale ($n \ge 200$ bp): H = 0.75

DNA WALKS THAT REFLECT THE STRUCTURE OF THE DNA POLYMER

2 trinucleotide codings based on experiments :

Trinucleotide		
	PNuc	DNase I
AAA/TTT	0.0	0.1
AAC/GTT	3.7	1.6
AAG/CTT	5.2	4.2
AAT/ATT	0.7	0.0
ACA/TGT	5.2	5.8
ACC/GGT	5.4	5.2
ACG/CGT	5.4	5.2
ACT/AGT	5.8	2.0
AGA/TCT	3.3	6.5
AGC/GCT	7.5	6.3
AGG/CCT	5.4	4.7
ATA/TAT	2.8	9.7
ATC/GAT	5.3	3.6
ATG/CAT	6.7	8.7
CAA/TTG	3.3	6.2
CAC/GTG	6.5	6.8

Trinucleotide		
	PNuc	DNase I
CAG/CTG	4.2	9.6
CCA/TGG	5.4	0.7
CCC/GGG	6.0	5.7
CCG/CGG	4.7	3.0
CGA/TCG	8.3	5.8
CGC/GCG	7.5	4.3
CTA/TAG	2.2	7.8
CTC/GAG	5.4	6.6
GAA/TTC	3.0	5.1
GAC/GTC	5.4	5.6
GCA/TGC	6.0	7.5
GCC/GGC	10.0	8.2
GGA/TCC	3.8	6.2
GTA/TAC	3.7	6.4
TAA/TTA	2.0	7.3
TCA/TGA	5.4	10.0

1. Nucleosome positioning model (PNuc)

related to curvature?

DNase I digestion data related to bending propensity

<u>Hypothesis</u>: LRC in the small scales regime is the signature of of the nucleosomal structure

Nucleosomes No nucleosomes

SMALL SCALES LRC ARE RELATED TO NUCLEOSOME LIKE STRUCTURES

Pox virus don't display LRC in the small scale regime

Archaebacteria display LRC in the small scale regime

AFM visualisation of a reconstituted chromatin fiber

Pierre-Louis Porté, Emeline Fontaine, Cendrine Moskalenko

Images obtained in 'Tapping Mode' in air

Linear DNA (2500 bp) positioning nucleosomes

Image obtained in 'Tapping Mode' in air

Linear DNA (2500 bp) positioning nucleosomes

Image obtained in 'Tapping Mode' in air

Plasmid DNA (3200 bp) + nucleosomes

Images obtained in 'Tapping Mode' in air

Plasmid DNA (3200 bp) + nucleosomes

Images obtained in 'Tapping Mode' in air

1. Nucleosome positioning model (PNuc)

related to curvature?

DNase I digestion data related to bending propensity

<u>Hypothesis</u>: LRC in the small scales regime is the signature of of the nucleosomal structure

HIERARCHICAL STRUCTURE OF EUCARYOTIC DNA

LARGE SCALE REPRESENTATION OF GENOMIC SEQUENCES

Space-Scale Representation of the GC Content with a Smoothing Gaussian Filter

Chromosome 22 (Human)

Filtering scales: $a_1^* = 40 \text{kb}$, $a_2^* = 160 \text{kb}$

Space-scale content: $S(a) = \sum_{n} |T_{\psi_M}(n, a)|$, where ψ_M is the Morlet wavelet

Transcription

Replication

Opening of the double helix with a different environment for each strand => asymmetrical process

Symmetrical properties of the strands: "Parity Rule type 2"

Deviations from this property estimated by the compositional skews

$$S_{cg} = \frac{[C] - [G]}{[C] + [G]}$$

$$S_{AT} = \frac{[A] - [T]}{[A] + [T]}$$

Compositional skew due to local biases in a strand in the course of biological mechanisms

Strand Compositional Asymmetry

-sense genes
-anti-sense genes
-non-coding sequences

Filtering scales: $a_1^* = 40 \text{kb}, a_2^* = 160 \text{kb}$

A wavelet based methodology to detect gene clusters

Chromosome 22 (Human)

Analyzing wavelet:
$$g^{(n)}(x) = \frac{1}{\sqrt{2\pi}} \frac{d^n e^{-x^2/2}}{dx^n}$$

$$T_{g^{(n)}}(b,a) = \frac{1}{a} \int f(x) \ g^{(n)}(\frac{x-b}{a}) \ dx = \frac{d^n}{db^n} T_{g^{(0)}}(b,a)$$

A wavelet based methodology to detect replication origins

Experimentaly observed replication origin in the human genome

Globin: 4008 kb Chromosome 11

Predicted RO: 4009 kb

Skew:
$$\frac{A-T}{A+T} + \frac{C-G}{C+G}$$

A wavelet based methodology to detect replication origins

Experimentaly observed replication origin in the human genome

Lamin B2: 2368 kb

Chromosome 19

Predicted RO: 2365 kb

Skew:
$$\frac{A-T}{A+T} + \frac{C-G}{C+G}$$

Transcription bias

Transcription bias

Detecting discontinuities using the wavelet transform

Application to a known human replication origin

First evidence of a replication bias in human DNA

Application to a known human replication origin

First evidence of a replication bias in human DNA

Application to a known human replication origin

First evidence of a replication bias in human DNA

Our model: well defined replication origins, separated by diffuse terminuses

Profile detection using an analyzing wavelet adapted to the shape of replicons

Profile detection using an analyzing wavelet adapted to the shape of replicons

Deterministic Chaos in DNA Sequences

Human Chromosome ■ 22 ■ 11

Shil'nikov chaotic oscillator

$$\ddot{x} + \ddot{x} + \mu_1 \dot{x} + \mu_0 x = -x^3$$
 $\mu_0 = -5.5, \mu_1 = 3.5$

Uncorrelated random walk

SHIL'NIKOV HOMOCLINIC CHAOS

Phase portrait Homoclinic orbit (a) (b) $heta_-^* imes$ Poincaré map 1D map (c) (d) $Z_{
m n}$ Y_n W_n

LYAPUNOV EXPONENTS

 $S_{AT}-S_{GC}$ skew profiles smoothed at scale 160 kb

	d					
	3	4	5	6	7	
Chromosome 11 (24Mb) (NT_033899.3)	12.6	8.9	6.1	6.9	7.9	
Chromosome 14 (68Mb)	15.0	10.2	8.8	8.7	10.4	
(NT_026437.9) Chromosome 21 (29Mb) (NT_011512.7)	12.2	8.7	7.4	8.6	11.3	
Chromosome 22 (23Mb)	12.5	8.1	6.3	5.8	7.2	
(NT_011520.8) Shil'nikov strange attractor (30Mb)	4.2	5.6	6.5	7.3	7.1	

Computation of the largest Lyapunov exponent ($\times 10^3$) using the TISEAN package for a time delay $\tau = 60$ kb and an embedding dimension d.

Equation of non-linear oscillator which displays homoclinic chaos of Shil'nikov's type:

$$\ddot{\theta} + \mu_2 \ddot{\theta} + \mu_1 \dot{\theta} + \mu_0 \theta + k \theta^3 = 0$$

 θ and t were rescaled so that the chaotic trajectory displays similar amplitude and characteristic frequencies as the skew oscillatory profiles.

Strand Compositional Asymmetry

-sense genes-anti-sense genes-non-coding sequences

Filtering scales: $a_1^* = 40$ kb, $a_2^* = 160$ kb

Phase Portrait Representation of AT+CG skew

Filtering scale: $a_2^* = 160 \text{kb}$

REFERENCES

Transcription-coupled and splicing-coupled strand asymmetries in eukaryotic genomes.

M. TOUCHON, A. ARNEODO, Y. D'AUBENTON-CARAFA & C. THERMES, Nucleic Acids Res. (2004), to appear

Low Frequency rhythms in human DNA sequences : a key to the organization of gene location and orientation?

S. NICOLAY, F. ARGOUL, M. TOUCHON, Y. D'AUBENTON-CARAFA, C. THERMES & A. ARNEODO, Phys. Rev. Lett. (2004), to appear

From scale invariance to deterministic chaos in DNA sequences: towards a deterministic description of gene organization in the human genome

S. NICOLAY, E.B. BRODIE OF BRODIE, M. TOUCHON, Y. D'AUBENTON-CARAFA, C. THERMES & A. ARNEODO, Physica A (2004), to appear

Transcription-coupled TA and GC strand asymmetries in the human genome.

M. TOUCHON, S. NICOLAY, A. ARNEODO, Y. D'AUBENTON-CARAFA & C. THERMES, FEBS Letters **555**, 579 (2003)

Long-range correlations between DNA bending sites: relation to the structure and dynamics of nucleosomes.

B. AUDIT, C.VAILLANT, A. ARNEODO, Y. D'AUBENTON-CARAFA & C. THERMES, J. Mol. Biol. **316**, 903 (2002)

Long-range correlations in genomic DNA : a signature of the nucleosomal structure.

B. AUDIT, C. THERMES, C. VAILLANT, Y. D'AUBENTON-CARAFA, J.F. MUZY & A. ARNEODO, Phys. Rev. Lett. **86**, 2471 (2001)

Nucleotide composition effects on the long-range correlations in human genes.

A. ARNEODO, Y. D'AUBENTON-CARAFA, B. AUDIT, E. BACRY, J.F. MUZY & C. THERMES, Eur. Phys. J. **B1**, 259 (1998)

Wavelet based fractal analysis of DNA sequences.

A. ARNEODO, Y. D'AUBENTON-CARAFA, E. BACRY, P.V. GRAVES, J.F. MUZY & C. THERMES, Physica **96 D**, 291 (1996)

Characterizing long-range correlations in DNA sequences from wavelet analysis.

A. ARNEODO, E. BACRY, P.V. GRAVES & J.F. MUZY, Phys. Rev. Lett. 74, 3293 (1995)