«Машинное обучение»

План

Задачи обучения без учителя

Понижение (сокращение) размерности / Вложение в поверхности (Manifold Learning)

SVD, PCA, kernel PCA

LLE (Locally Linear Embedding)

SNE (Stochastic Neighbor Embedding)

t-SNE (t-distributed Stochastic Neighbor Embedding)

IsoMap (Isometric Mapping)

MDS (MultiDimensional Scaling)

Maximum Variance Unfolding

Spectral Embedding / Laplacian Eigenmap

ICA

Локально линейные преобразования – Locally Linear Embedding (LLE)

Гипотеза – локальная линейность

любая поверхность в малой окрестности линейная

близкие точки в исходном пространстве остаются близкими в итоговом

Figure 1. Piece-wise local unfolding of manifold by LLE (in this example from two dimensions to one intrinsic dimension). This local unfolding is expected to totally unfold the manifold properly.

«Locally Linear Embedding and its Variants: Tutorial and Survey»https://arxiv.org/pdf/2011.10925.pdf

Локально линейные преобразования – Locally Linear Embedding (LLE)

Figure 2. Steps in LLE for embedding high dimensional data in a lower dimensional embedding space: (a) finding k-nearest neighbors, (b) linear reconstruction by the neighbors, and (c) linear embedding using the calculated weights. In this figure, it is assumed that k = 4, $x_{i,1} = x_2$, $x_{i,2} = x_3$, $x_{i,3} = x_7$, and $x_{i,4} = x_9$.

- + понятная геометрия (локальный РСА)
 - + есть кернализованные варианты

Локально линейные преобразования – Locally Linear Embedding (LLE)

1. Для каждой точки находим её k ближайших соседей

$$X_i \rightarrow X_{i1}, \dots, X_{ik}$$

2. Вычисляем матрицу реконструкции W

$$||w_{ij}|| = \underset{w_{ij}: \forall i}{\operatorname{arg\,min}} \sum_{i=1}^{m} ||x_i - \sum_{j=1}^{k} w_{ij} x_{ij}||_{2}^{2}$$

3. Вложение

$$\sum_{i=1}^m \left\| z_i - \sum_{j=1}^k w_{ij} z_{ij} \right\|_2^2 o \min_{\{z_i\}}$$
 при условии $rac{1}{m} \sum_{i=1}^m z_i z_i^{\mathrm{\tiny T}} = I, \sum_{i=1}^m z_i = 0$

те же веса, но в пространстве меньшей размерности

sklearn.manifold.LocallyLinearEmbedding

```
n_neighbors=5 - число соседей
n_component=2 - размерность итогового пространства
reg=1e-3 - регуляризация (multiplies the trace of the local covariance distance matrix)
eigen_solver - метод поиска с.в. {'auto', 'arpack', 'dense'}
tol - tolerance для сходимости при вычислении с.в.
max_iter=100 - ограничение на число итераций
method - метод
```

- standard обычный LLE
- hessian Hessian eigenmap method
- modified +регуляризация
- 1tsa -local tangent space alignment algorithm

```
hessian_tol=1e-12 - Tolerance для Hessian eigenmapping method modified_tol - Tolerance для modified LLE method neighbors_algorithm - для поиска БС {'auto', 'brute', 'kd_tree', 'ball_tree'} random_state n jobs
```

Locally Linear Embedding (LLE) на датасете «Digits»

-0.02

0.00

-0.04

первая компонента

method='modified'

n_neighbors=10 остальные модификации – хуже

-0.04

-0.06

-0.08

-0.06

SNE (Stochastic Neighbor Embedding)

1. Превращаем евклидово расстояние в

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / (2\sigma_i^2))}{\sum_{t \neq i} \exp(-\|x_i - x_t\|^2 / (2\sigma_i^2))}$$

2. Откуда взять σ_i^2 – своя для каждой точки, идея – она будет зависеть от плотности точек будем задаваться параметром «перплексия»

$$perplexity = 2^{-\sum_{j} p_{j|i} \log_2 p_{j|i}}$$

отсюда подбором решая равенство определяем σ_i^2

3. Отображаем $\{x_i\} \rightarrow \{z_i\}$ в пространство, в котором

$$q_{j|i} = \frac{\exp(-\|z_i - z_j\|^2 / (2\sigma_i^2))}{\sum_{t \neq i} \exp(-\|z_i - z_t\|^2 / (2\sigma_i^2))}$$

будем минимизировать $\mathrm{KL}(p_{\scriptscriptstyle \circ \mid \circ},q_{\scriptscriptstyle \circ \mid \circ})$

t-SNE (t-distributed Stochastic Neighbor Embedding)

$$p_{j|i} = \frac{\exp(-\|x_i - x_j\|^2 / (2\sigma_i^2))}{\sum_{t \neq i} \exp(-\|x_i - x_t\|^2 / (2\sigma_i^2))}$$

«сходство при фиксации соседней точки»

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2}$$

Считаем, что $p_{ii}=0$

Используем распределение Стьюдента (у него тяжелее хвосты)

$$q_{ij} = \frac{\frac{1}{1 + \|z_i - z_j\|^2}}{\sum_{t \neq i} \frac{1}{1 + \|z_i - z_t\|^2}}$$

$$KL(P \parallel Q) \rightarrow min$$

градиент аналитически вычисляется

Примеры использования t-SNE

запуски с разными (!) начальными инициализациями https://distill.pub/2016/misread-tsne/

Примеры использования t-SNE

Примеры использования t-SNE

Original

Perplexity: 2 Step: 5,000

Perplexity: 5 Step: 5,000

Perplexity: 30 Step: 5,000

Perplexity: 50 Step: 5,000

Perplexity: 100 Step: 5,000

можно видеть закономерности в шуме

Original

Perplexity: 2 Step: 5,000

Perplexity: 5 Step: 5,000

Perplexity: 30 Step: 5,000

Perplexity: 50 Step: 5,000

Perplexity: 100 Step: 5,000

t-SNE (t-distributed Stochastic Neighbor Embedding)

перплексия определяет кластеры какого масштаба доминируют не всегда сохраняет топологию лучше делать несколько визуализаций

- нет глобальной структуры хорошо инициализировать с помощью PCA
 - скорость
- стохастический (результат не определён однозначно)
 - не совсем ясная интерпретация
- нет понятия оптимальной размерности пространства
 - сложности с новыми данными

IsoMap (Isometric Mapping)

нелинейное сокращение размерности на спектральной теории, сохраняя геодезические расстояния

Вход: матрица данных Строим граф *k*-соседства или є-соседства Вычисляем геодезическое расстояние между парами всех точек (кратчайший путь) используем локальную информацию для восстановления глобальной (отличие от LLE)

Выполняем MDS (медленно!) - подробнее дальше

хорошо, если в данных «нет дырок» (т.е. более-менее плотные окрестности)

IsoMap (Isometric Mapping)

https://blog.paperspace.com/dimension-reduction-with-isomap/

Борьба с неадекватными «средними расстояниями»

http://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/slides/ManifoldLearning.pdf

Обучение без учителя

IsoMap (Isometric Mapping)

```
sklearn.manifold.Isomap
n neighborsint=5 - число соседей
n components=2 - размерность итогового пространства
eigen solver - соловер { 'auto', 'arpack', 'dense'}
tol - tolerance (контроль сходимости при вычислении с.в.)
max iterint - ограничение на число итераций при вычислении с.в.
path method - метод для поиска кратчайшего пути
neighbors algorithm - метод поиска БС { 'auto', 'brute', 'kd tree', 'ball tree'}
n jobs
metric="minkowski" - метрика
р - степень в расстоянии Минковского
metric params - параметры ф-ии расстояния
```

IsoMap (Isometric Mapping): датасет «Digits»

n_neighborsint=5

n_neighborsint=10

MDS (MultiDimensional Scaling)

классический алгоритм

ищем представление, в котором сохраняются расстояния

- 1. Пусть $D^{(2)} = \mid\mid d_{ii}^2\mid\mid_{m imes m}$ матрица квадратов эвклидовых расстояний
 - 2. Двойное центрирование

$$B = \frac{1}{2}CD^{(2)}C, \quad C = I - \frac{1}{n}E$$

есть вариант $B = XX^{\mathrm{T}}$ (предполагая центрированность данных)

3. Для матрицы B находим наибольших k с.з. $\lambda_1, \ldots, \lambda_k$ и их с.в. векторов v_1, \ldots, v_k

4. Новая признаковая матрица

$$VL^{1/2}$$
, $L = \text{diag}(\lambda_1, ..., \lambda_k)$, $V = [v_1, ..., v_k]_{m \times k}$

MDS (MultiDimensional Scaling)

в общем случае, если
$$d_{ij} = \mid\mid x_i - x_j \mid\mid_2$$
, $\delta_{ij} = \mid\mid z_i - z_j \mid\mid_2$

минимизиуруем

strain	$\frac{1}{N} \sum_{1 \le i < j \le m} w_{ij} (\delta_{ij}^2 - d_{ij}^2)^2$
stress	$\frac{1}{N} \sum_{1 \le i < j \le m} w_{ij} (\delta_{ij} - d_{ij})^2$
Sammon's stress	$\sum_{1 \leq i < j \leq m} \frac{(\delta_{ij} - d_{ij})^2}{\delta_{ij}} \sum_{1 \leq i < j \leq m} \delta_{ij}$

есть алгоритм SMACOF для минимизации взвешенного напряжения

sklearn.manifold.MDS

```
n_components=2 - размерность итогового пространства
metric=True - сохранять ли значения метрик или порядок (большие значения в большие)
n_init=4 - число запусков SMACOF-алгоритма с разными инициализациями (выбирается лучший ответ)
max_iter=300 - число итераций SMACOF
verbose=0 -verbosity
eps=1e-3 - tolerance
n jobs
```

- euclidean эвлидова метрика
- precomputed передаём в fit

random state

dissimilarity - **режим**

Maximum Variance Unfolding

Строим граф (V,E) соседства (kNN или ϵ) нужно по нему построить отображение

$$X_i \rightarrow Z_i$$

которое сохраняет расстояния соседей $(i,j) \in E$

$$||x_i - x_j||^2 = ||z_i - z_j||^2$$

и при этом максимизируем разброс

$$\frac{1}{m} \sum_{i} ||z_{i} - \overline{z}||^{2} \to \max$$

нет в sklearn

Maximum Variance Unfolding

Пусть (по другому ориентируем матрицы):

$$X = [x_1, ..., x_m] \in \mathbb{R}^{n \times m}, P = X^{\mathrm{T}}X$$

$$Z = [z_1, ..., z_m] \in \mathbb{R}^{k \times m}, Q = Z^{\mathrm{T}}Z$$

идея – найти Q и над ней РСА (поэтому + ограничение неотрицательной определённости)

из
$$||x_i - x_j||^2 = ||z_i - z_j||^2$$
 получаем $Q_{ii} - 2Q_{ij} + Q_{jj} = P_{ii} - 2P_{ij} + P_{jj}$ это ограничения в задаче

что максимизируем – разброс – можно записать как след матрицы $\frac{1}{m}ZZ^{{\scriptscriptstyle \mathrm{T}}}-\frac{1}{m^2}Z\tilde{1}\,\tilde{1}^{{\scriptscriptstyle \mathrm{T}}}Z^{{\scriptscriptstyle \mathrm{T}}}$

или
$$\frac{1}{m}\operatorname{tr}(ZZ^{\scriptscriptstyle\mathsf{T}}) - \frac{1}{m^2}\operatorname{tr}(Z\tilde{1}\tilde{1}^{\scriptscriptstyle\mathsf{T}}Z^{\scriptscriptstyle\mathsf{T}}) = \frac{1}{m}\operatorname{tr}(Q) - \frac{1}{m^2}\operatorname{tr}(Q\tilde{1}\tilde{1}^{\scriptscriptstyle\mathsf{T}})$$

Maximum Variance Unfolding

Итоговая задача

$$\frac{1}{m}\operatorname{tr}(Q) - \frac{1}{m^{2}}\operatorname{tr}(Q\tilde{1}\tilde{1}^{T}) \to \max$$

$$Q_{ii} - 2Q_{ij} + Q_{jj} = P_{ii} - 2P_{ij} + P_{jj}$$

$$Q \succeq 0$$

Spectral Embedding / Laplacian Eigenmap

1. Строим граф k-соседства

2. Назначаем веса

$$w_{ij} = \begin{cases} \exp\left(-\frac{1}{t} \|x_i - x_j\|^2\right), & (i, j) \in E, \\ 0, & (i, j) \notin E, \end{cases}$$

$$t o \infty \quad \Rightarrow \quad w_{ij} o 1$$
 при $(i,j) \in E$

Для каждой связной компоненты графа строим матрицу Лапласа

$$L = D - W$$

или для нормализованного случая $L=D^{1/2}(D-W)D^{1/2}$ находим r+1 с.в. (соотв. наименьшим с.з.), первая компонента константна точки отображаем в строки соотв. матрицы $U\in\mathbb{R}^{m\times r}$

Spectral Embedding / Laplacian Eigenmap

Manifold Learning

Manifold Learning

Independent component analysis (ICA)

Independent component analysis (ICA)

ищем такие проекции, на которых данные максимально «негауссовские» они не являются ортогональными в исходном пространстве но они ортогональны в «whitened feature space»

(по всем направлениям одинаковая дисперсия)

```
from sklearn.decomposition import FastICA
ica = FastICA(random_state=1)
X ica = ica.fit(X).transform(X)
```

ICA: метод FastICA

1. Центрируем признаки

$$mean(X_i) = 0$$

2. «Whitening» – делаем некоррелированные компоненты с дисперсией 1

если
$$X = ULV^{ \mathrm{\scriptscriptstyle T} }$$
 то $Z = XVL^{-1}$ подходящее пребразование и X «превращается» в U

3. Извлечение одной компоненты ишем Xw

Вводится система функций (есть разные варианты):

$$f = -\exp(-u^2/2), f' = u \exp(-u^2/2), f'' = (1-u^2)\exp(-u^2/2)$$

Повторяем до сходимости

3.1. Случайная инициализация $oldsymbol{w}$

3.2. Пересчёт
$$w \leftarrow \mathbf{E}[X^{\mathsf{T}}f'(Xw)] - \mathbf{E}[f''(Xw)]w$$

матожидание – усреднение (на след слайде понятнее)

3.3. Нормировка $w \leftarrow w/\parallel w \parallel$

ICA: метод FastICA

Для извлечения нескольких компонент добавляем ортогонализацию:

- 1. Цикл по компонентам t=1:n
 - **2.1** Инициализация W_t
- 2.2 Повторять до сходимости

$$w_{t} \leftarrow \frac{1}{m} X^{\mathsf{T}} f'(X w_{t}) - \frac{1}{m} (\tilde{1}_{m} f''(X w_{t})) w_{t}$$

$$w_{t} \leftarrow w_{t} - \sum_{j < t} (w_{t}^{\mathsf{T}} w_{j}) w_{j}$$

$$w_{t} \leftarrow w_{t} / \| w_{t} \|$$

Выход:

$$W = [w_1, \dots, w_n]$$
$$Z = XW$$

ICA: прикладная задача «Blind Signal Separation»

Итоги

USL – определение «природы» (структуры) неразмеченных данных

Часто удаётся найти «хорошее» маломерное пространство

Также нет идеальных методов

не забывать про нормировку признаков однородность пространства

интерактивная демка

http://colah.github.io/posts/2014-10-Visualizing-MNIST/

хорошая презентация по теме

https://sites.uclouvain.be/inma/reddot/slides/lee09.pdf