2.2: Agent Decision Making

Al6125 : Multi-Agent System

Assoc Prof Zhang Jie

Overview

- Make Simple Decisions
- Make Complex Decisions
 - Sequential decision making
 - Agent's utility depends on a sequence of decisions
 - Based on Chapters 16 & 17 in reference book: "Artificial Intelligence: A Modern Approach" by S. Russell and P. Norvig. Prentice-Hall, third edition, 2010

Making Simple Decisions

- Utility Theory
- Multi-Attribute Utility Functions
- Decision Networks
- The Value of Information

Beliefs and Uncertainty

Maximum Expected Utility

Expected Utility

$$EU(A \mid E) = \sum_{i} P(Result_{i}(A) \mid E, Do(A))U(Result_{i}(A))$$

- Principle of Maximum Expected Utility
 - $lue{}$ Choose action A with highest $EU(A \mid E)$

Example

Robot

Turn Right
$$\checkmark$$
 Hits wall (P = 0.1; U = 0)
Finds target (P = 0.9; U = 10)

Choose action "Turn Right"

- Rational preference
 - □ Preference of rational agent ⇒ obey constraints
 - Behavior describable as maximization of expected utility
- Notation
 - □ Lottery(L): a complex decision making scenario
 - Different outcomes are determined by chance
 - L = [p, A; 1-p, B]
 - \Box $A \succ B$: A is preferred to B
 - \Box $A \sim B$: indifference between A and B
 - \Box $A \succeq B$: B is not preferred to A

- Constraints
 - Orderability

$$(A \succ B) \lor (B \succ A) \lor (A \sim B)$$

Transitivity

$$(A \succ B) \land (B \succ C) \Longrightarrow (A \succ C)$$

Continuity

$$A \succ B \succ C \Rightarrow \exists p[p, A; 1-p, C] \sim B$$

- Constraints (cont.)
 - Substitutability

$$A \sim B \Rightarrow [p, A; 1-p, C] \sim [p, B; 1-p, C]$$

Monotonicity

$$A \succ B \Rightarrow (p \ge q \Leftrightarrow [p, A; 1-p, B] \succeq [q, A; 1-q, B]$$

Decomposability

$$[p, A; 1-p, [q, B; 1-q, C]]$$

$$\sim [p, A; (1-p)q, B; (1-p)(1-q), C]$$

Utility Principle

$$U(A) > U(B) \Leftrightarrow A \succ B$$

Maximum Expected Utility principle

$$U([p_1, S_1; ...; p_n, S_n]) = \sum_i p_i U(S_i)$$

- Utility Function
 - Represents that the agent's actions are trying to achieve
 - Can be constructed by observing agent's preferences

Utility Functions

- Utility
 - Mapping state to real numbers
 - Approach
 - ullet Compare ${\cal A}$ to standard lottery L_p
 - \square u^{\perp} : best possible prize with prob. p
 - \square u_{\perp} : worst possible catastrophe with prob. 1-p
 - Adjust p until $A \sim L_p$

\$30 ~
$$L \stackrel{0.9}{\longleftrightarrow}$$
 continue death

Utility Functions

- Utility Scales
 - Positive linear transform

$$U'(x) = k_1 U(x) + k_2$$
 where $k_1 > 0$

Normalized utility

$$u^{-} = 1.0, u_{-} = 0.0$$

- Micromort
 - one-millionth chance of death
 - russian roulette, insurance
- QALY
 quality-adjusted life years

Utility Functions

- Money: does NOT behave as a utility function
 - Given a lottery L
 - □ risk-averse

$$U(S_L) < U(S_{EMV(L)})$$

risk-seeking

- Multi-Attribute Utility Theory (MAUT)
 - Outcomes are characterized by 2 or more attributes.
 - Site a new airport
 - disruption by construction, cost of land, noise,....
- Approach
 - Identify regularities in the preference behavior

Notation

Attributes

$$X_1, X_2, X_3, ...$$

Attribute value vector

$$X = < x_1, x_2, >$$

Utility Fn. (function)

$$U(x_1,...,x_n) = f[f_1(x_1),...,f_n(x_n)]$$

- Dominance
 - Certain (strict dominance, Fig.1)
 - airport site S1 cost less, less noise, safer than S2:
 strict dominance of S1 over S2
 - Uncertain(Fig. 2)

- Dominance(cont.)
 - Stochastic dominance
 - In real world problem
 - S1: avg \$3.7billion, standard deviation: \$0.4billion
 - **\$2**: avg \$4.0billion,
 - standard deviation: \$0.35billion
 - □ S1 stochastically dominates S2

Dominance(cont.)

- Preferences without Uncertainty
 - Preferences between concrete outcome values.
 - Preference structure
 - X1 & X2 *preferentially independent* of X3 iff Preference between $\langle x_1, x_2, x_3 \rangle \& \langle x'_1, x'_2, x_3 \rangle$ Does not depend on x_3
 - Airport site: <Noise, Cost, Safety>
 <20,000 suffer, \$4.6billion, 0.06deaths/mpm>
 vs. <70,000 suffer, \$4.2billion, 0.06deaths/mpm>

- Preferences without Uncertainty (cont.)
 - Mutual preferential independence (MPI)
 - Every pair of attributes is P.I of its complements.
 - Airport site : <Noise, Cost, Safety>
 - Noise & Cost P.I Safety
 - □ Noise & Safety P.I Cost
 - □ Cost & Safety **P.I** Noise
 - : <Noise,Cost,Safety> exhibits MPI
 - Agent's preference behavior

$$\max[V(S) = \sum_{i} V_i(X_i(S))] \leftarrow \text{things}$$

- Preferences with Uncertainty
 - Preferences btw. Lotteries' utility
 - Utility Independence (UI)
 - X is utility-independent of Y iff preferences over lotteries' attribute set X do not depend on particular values of a set of attribute Y.
 - Mutual U.I(MUI)
 - Each subset of attributes is U.I of the remaining attributes
 - agent's behavior (for 3 attributes): multiplicative UtilityFunction

$$U = k_1 U_1 + k_2 U_2 + k_3 U_3 + k_1 k_2 U_1 U_2 + k_2 k_3 U_2 U_3 + k_3 k_1 U_3 U_1 + k_3 k_1 U_3 U_1$$

Decision Networks

- Simple formalism for expressing & solving decision problem
- Belief networks + decision & utility nodes
- Nodes
 - Chance nodes
 - Decision nodes
 - Utility nodes

A Simple Decision Network

A Simplified Representation

Umbrella Network

Evaluating Decision Networks

- Set the evidence variables for current state
- For each possible value of the decision node:
 - Set decision node to that value
 - Calculate the posterior probability of the parent nodes of the utility node, using BN inference
 - Calculate the resulting utility for action
- return the action with the highest utility

Umbrella Network

Umbrella Network

umb	rain	P(umb, rain take)
O	0	P# 0.5 0
O).	0.4 0
1	O	0.6
	1	0.4

take/don't take

P(rain) = 0.4

rain

EUltake)= 60-40-10

=-10

Take Umbrella

umbrella

P(umb|take) = 1.0 $P(\sim umb|\sim take) = 1.0$ #1

umb	rain	P(umb,rain ~take)
0	0	D. b
0	1	סיף
1	0	ก
1	1	, and the second

 $U(\sim umb, \sim rain) = 100$

happiness

 $U(\sim umb, rain) = -100$

 $U(umb, \sim rain) = 0$

U(umb,rain) = -25

#2: EU(~take) = 20

Value of Information (VOI)

 Suppose agent's current knowledge is E. The value of the current best action α is

$$EU(\alpha \mid E) = \max_{A} \sum_{i} U(Result_{i}(A))P(Result_{i}(A) \mid E, Do(A))$$

The value of the new best action (after new evidence E' is obtained):

$$EU(\alpha' \mid E, E') = \max_{A} \sum_{i} U(Result_{i}(A))P(Result_{i}(A) \mid E, E', Do(A))$$

the value of information for E' is:

$$VOI(E') = \sum_{k} P(e_k \mid E)EU(\alpha_{ek} \mid e_k, E) - EU(\alpha \mid E)$$

Umbrella Network

VOI

```
• VOI(forecast)=
P(rainy)EU(\alpha_{rainy}) + \\P(\sim rainy)EU(\alpha_{\sim rainy}) - \\EU(\alpha)
```

Umbrella Network

P(F=r	ainy) =	0.4
- 1		-	,	•

	•	• ,
F	R	P(R F)
0	0	0.8
0	1	0.2
1	0	0.3
1	1	0.7

take/don't take

P(rain) = 0.4

rain

 R
 F
 P(F|R)

 0
 0
 0.8

 0
 1
 0.2

 1
 0
 0.3

1

forecast

0.7

U(~umb, ~rain) = 100 U(~umb, rain) = -100 U(umb,~rain) = 0 U(umb,rain) = -25

umb	rain	P(umb,rain take, rainy)
0	0	
0	1	
1	0	
1	1	

umb	rain	P(umb,rain take, ~rainy)
0	0	
0	1	
1	0	
1	1	

#1: EU(take|rainy)

#3: EU(take|~rainy)

umb	rain	P(umb,rain ~take, rainy)
0	0	
0	1	
1	0	
1	1	

umb	rain	P(umb,rain ~take, ~rainy)
0	0	
0	1	
1	0	
1	1	

#2: EU(~take|rainy)

#4: EU(~take|~rainy)

Making Complex Decisions simple: one decision.

- Make a sequence of decisions
 - Agent's utility depends on a sequence of decisions
 - Sequential Decision Making
- Markov Property
 - Transition properties depend only on the current state, not on previous history (how that state was reached)
 - Markov Decision Processes

Markov Decision Processes

- Components:
 - States s, beginning with initial state s₀
 - Actions a
 - Each state s has actions A(s) available from it
 - Transition model P(s' | s, a)
 - Markov assumption: the probability of going to s' from s
 depends only on s and a and not on any other past actions
 or states
 - Reward function R(s)
- Policy $\pi(s)$: the action that an agent takes in any given state
 - The "solution" to an MDP optimal polity.

Game Show

- A series of questions with increasing level of difficulty and increasing payoff
- Decision: at each step, take your earnings and quit, or go for the next question
 - If you answer wrong, you lose everything

Game Show

- Consider \$50,000 question
 - Probability of guessing correctly: 1/10
 - Quit or go for the question?
- What is the expected payoff for continuing?

$$0.1 * 61,100 + 0.9 * 0 = 6,110$$

What is the optimal decision?

Game Show

- What should we do in Q3?
 - Payoff for quitting: \$1,100
 - Payoff for continuing: 0.5 * \$11,100 = \$5,550
- What about Q2?
 - \$100 for quitting vs. \$4,162 for continuing
- What about Q1?

R(s) = -0.04 for every non-terminal state

Transition model:

Goal: Policy

Transition model:

R(s) = -0.04 for every non-terminal state

Optimal policy when R(s) = -0.04 for every non-terminal state

Optimal policies for other values of R(s):

$$R(s) < -1.6284$$

$$-0.4278 < R(s) < -0.0850$$

$$-0.0221 < R(s) < 0$$

Solving MDPs

- MDP components:
 - States s
 - Actions a
 - Transition model P(s' | s, a)
 - Reward function R(s)
- The solution:
 - \neg **Policy** $\pi(s)$: mapping from states to actions
 - How to find the optimal policy?

Maximizing Expected Utility

The optimal policy should maximize the expected utility over all possible state sequences produced by following that policy:

$$\sum_{\substack{P \text{ (sequence)} U \text{ (sequence)} \\ \text{state sequences} \\ \text{starting from } s_0}} P(\text{sequence}) U(\text{sequence})$$

- How to define the utility of a state sequence?
 - Sum of rewards of individual states
 - Problem: infinite state sequences

Utilities of State Sequences

- Normally, we would define the utility of a state sequence as the sum of the rewards of the individual states
- Problem: infinite state sequences
- Solution: discount the individual state rewards by a factor γ between 0 and 1:

$$U([s_0, s_1, s_2, \dots]) = R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$$

$$= \sum_{t=0}^{\infty} \gamma^t R(s_t) \le \frac{R_{\text{max}}}{1 - \gamma} \qquad (0 < \gamma < 1)$$

- Sooner rewards count more than later rewards
- Makes sure the total utility stays bounded
- Helps algorithms converge

Utilities of States

Expected utility obtained by policy π starting in state s:

$$U^{\pi}(s) = \sum_{\substack{\text{state sequences} \\ \text{starting from s}}} P(\text{sequence}) U(\text{sequence})$$

- The "true" utility of a state, denoted U(s), is the expected sum of discounted rewards if the agent executes an optimal policy starting in state s
- Reminiscent of minimax values of states...

Finding the Utilities of States

What is the expected utility of taking action a in state s?

37 P×V 相加

$$\sum_{s'} P(s'|s,a)U(s')$$

How do we choose the optimal action?

$$\pi^*(s) = \underset{a \in A(s)}{\operatorname{arg\,max}} \sum_{s'} P(s'|s, a) U(s')$$

What is the recursive expression for U(s) in terms of the utilities of its successor states?

reward + discounted future rewards
$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} P(s'|s,a)U(s')$$

The Bellman Equation

Recursive relationship between the utilities of successive states:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

End up here with P(s' | s, a)Get utility U(s')(discounted by γ)

The Bellman Equation

Recursive relationship between the utilities of successive states:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U(s')$$

- For N states, we get N equations in N unknowns
 - Solving them solves the MDP
 - We could try to solve them through expectimax search, but that would run into trouble with infinite sequences
 - Instead, we solve them algebraically
 - Two methods: value iteration and policy iteration

Method 1: Value Iteration

- Start out with every U(s) = 0
- Iterate until convergence
 - During the *i*th iteration, update the utility of each state according to this rule:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

- In the limit of infinitely many iterations, guaranteed to find the correct utility values
 - In practice, don't need an infinite number of iterations...

Value Iteration

What effect does the update have?

$$U_{i+1}(s) \leftarrow R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s, a) U_i(s')$$

Method 2: Policy Iteration

- Start with some initial policy π_0 and alternate between the following steps:
 - □ **Policy evaluation:** calculate $U^{\pi_i}(s)$ for every state s
 - □ **Policy improvement:** calculate a new policy π_{i+1} based on the updated utilities

$$\pi^{i+1}(s) = \underset{a \in A(s)}{\operatorname{arg\,max}} \sum_{s'} P(s'|s,a) U^{\pi_i}(s')$$

Policy Evaluation

- Given a fixed policy π , calculate $U^{\pi}(s)$ for every state s
- The Bellman equation for the optimal policy:

$$U(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a)U(s')$$

How does it need to change if our policy is fixed?

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} P(s'|s, \pi(s)) U^{\pi}(s')$$

- Can solve a linear system to get all the utilities!
- Alternatively, can apply the following update:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \sum_{s'} P(s'|s, \pi_i(s)) U_i(s')$$

Summary

- Decision theory combines probability and utility theory
- A rational agent chooses the action with maximum expected utility
- Multi-attribute utility theory deals with utilities that depend on several attributes
- Decision networks extend BBN with additional nodes
- Making complex decisions a sequence of decisions
- Markov decision processes assume Markov property
- Two methods for computing optimal policy
 - Value iteration
 - Policy iteration