

PYTHON PROGRAMMING AND MACHINE LEARNING

CLUSTERING

Yunghans Irawan (yirawan@nus.edu.sg)

(

Objectives

- Understand the application of clustering algorithms in machine learning
- Understand the following clustering machine learning algorithms:
 - K-Means (centroid based)
 - Aggomerative Clustering (connectivity based/ hierarchical)
 - DBSCAN (density based)

Clustering Objective

- Given a set of data:
 - Find possible clusters (groupings) of the data
 - The aim is that the data should be grouped in such a way that points within a single cluster are very similar and points in a different cluster are different
 - There are multiple possible answers

- Goal: Data exploration / discover hidden structure in data
 - Often used to convert a unsupervised learning problem into supervised learning

Supervised vs. Unsupervised

 Supervised Learning: find known answers

 Unsupervised Learning: find unknown patterns

Clustering is unsupervised

Labels added based on clusters found

Clustering can have multiple outcomes

Compare metrics, manual inspection of clusters, ...

Finding Customer Segments

Finding Review Topics

K-MEANS CLUSTERING

K-means Clustering

- Hyperparameter: k (number of clusters)
- Randomly initialize k centroids from samples
- For each sample
 - Compute distances from each centroid
 - Assign cluster from closest centroid
- Update centroids to the mean of the member samples
- Repeat 2 and 3 until centroids stop moving

Interactive Demo

K-means Clustering

Hyperparameter: k (number of clusters)

- 1. Randomly initialize k centroids from samples
- 2. For each sample
 - a) Compute distances from each centroid
 - b) Assign cluster from closest centroid
- 3. Update centroids using mean of member Centroid samples
- 4. Repeat 2 and 3 until centroids stop moving

K-means Clustering

Hyperparameter: k (number of clusters)

- 1. Randomly initialize k centroids from samples
- 2. For each sample
 - a) Compute distances from each centroid
 - b) Assign cluster from closest centroid
- Update centroids using mean of member samples
- 4. Repeat 2 and 3 until centroids stop moving

Now closest to centroid 2 => updated to cluster 2

Selecting k for K-means

Empirical way

- Inertia: sum of squared distances of each sample to its closest centroid
- Inertia measures cluster compactness

Reasoning

- Fewer clusters is better
- Elbow is when inertia stops decreasing dramatically

Performing K-Means Clustering (1)

Feature 1	Feature 2
1	1
2	2
3	3
4	4
5	5

$$K = 2$$

First we randomly choose 2 centroids from the sample.

Centroid 1	1	1
Centroid 2	2	2

We calculate distance between each samples to the centroids. We use the Euclidean distance formula:

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Feature 1	Feature 2	Distance to Centroid 1	Distance to Centroid 2	Cluster
1	1	0	1.414213562	1
2	2	1.414213562	0	2
3	3	2.828427125	1.414213562	2
4	4	4.242640687	2.828427125	2
5	5	5.656854249	4.242640687	2

Performing K-Means Clustering (2)

Feature 1	Feature 2
1	1
2	2
3	3
4	4
5	5

We calculate the new centroids by taking the average from the members of the cluster.

Centroid 1	1	1
Centroid 2	3.5	3.5

We calculate distance between each samples to the centroids. We use the Euclidean distance formula:

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Feature 1	Feature 2	Distance to Centroid 1	Distance to Centroid 2	Cluster
1	1	0	3.535533906	1
2	2	1.414213562	2.121320344	1
3	3	2.828427125	0.707106781	2
4	4	4.242640687	0.707106781	2
5	5	5.656854249	2.121320344	2

Performing K-Means Clustering (3)

Feature 1	Feature 2
1	1
2	2
3	3
4	4
5	5

We calculate the new centroids by taking the average from the members of the cluster.

Centroid 1	1.5	1.5
Centroid 2	4	4

We calculate distance between each samples to the centroids. We use the Euclidean distance formula:

$$d = \sqrt{(\Delta x)^2 + (\Delta y)^2} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Feature 1	Feature 2	Distance to Centroid 1	Distance to Centroid 2	Cluster
1	1	0.707106781	4.242640687	1
2	2	0.707106781	2.828427125	1
3	3	2.121320344	1.414213562	2
4	4	3.535533906	0	2
5	5	4.949747468	1.414213562	2

As the cluster assignment remains the same, we stop the iteration with the final centroids

National University of Singapore

Assigning cluster for a new sample

 If we need to assign a new sample to the cluster we just assign the new sample to the closest centroid.

Centroid 1	1.5	1.5
Centroid 2	4	4

- Example:
 - (0,0) will be assigned to cluster 1
 - (4,5) will be assigned to cluster 2
 - (1.75, 1.75) can be assigned to cluster 1 or 2
 depending on how we write the program as
 the distance to centroid 1 and 2 are the same.

HIERARCHICAL CLUSTERING

Hierarchical Clustering

- Hierarchical clustering establish hierarchy between clusters.
- Two main approaches: top-down and bottom-up
- Top Down
 - Start with 1 cluster and split into more clusters
 - aka. Divisive Clustering
- Bottom Up
 - Start with N clusters (each node is a cluster) and merge into fewer clusters
 - aka. Agglomerative Clustering
 - "Agglomerative": to collect or gather into a cluster or mass.

Hierarchical Clustering

- Compute distances between samples
- Start with 1 sample in per cluster
 - Merge clusters by adjusting distance threshold

"per-sample" cluster (1 sample per cluster)

National University of Singapore

Hierarchical Clustering

- Compute distances between samples
- Start with each sample in its own cluster
 - Merge clusters by adjusting distance threshold

National University of Singapore

Hierarchical Clustering

- Compute distances between samples
- Start with each sample in its own cluster
 - Merge clusters by adjusting distance threshold

Clustering E. coli genomes

- Stands for "Density Based Spatial Clustering of Applications with Noise"
- Advantages:
 - does not require the user to set the number of clusters beforehand
 - can capture clusters of complex shapes
 - can identify points that are not part of any cluster (very useful as outliers detector)
 - works by identifying points that are in crowded regions of the feature space, where many data points are close together (dense regions in feature space)
 - Points that are within a dense region are called core samples (or core points)

- There are two parameters in DBSCAN: min_samples and eps
 - If there are at least min_samples many data points within a distance of eps to a given data point, that data point is classified as a core sample
 - core samples that are closer to each other than the distance eps are put into the same cluster by DBSCAN.

Red: Core Points

Yellow: Border points. Still part of the cluster because it's within epsilon of a core point, but not does not meet the min_points criteria

Blue: Noise point. Not assigned to a cluster

EVALUATION METRICS

Silhouette Coefficient

$$s=rac{b-a}{max(a,b)}$$
 $-1 < s < 1$
Bad clustering Good, dense clustering (a >> b) (b >> a)

a: The mean distance between a sample and others in the **same cluster** (intra cluster distance)

b: The mean distance between a sample and all others in the **next nearest cluster** (inter cluster distance)

Homogeneity, Completeness, V-measure

- Use when labels are available
- Homogeneity: each cluster only contains members of 1 class
- Completeness: all members in 1 class are assigned to the same cluster
- V-measure:

$$2\frac{H.C}{H+C}$$

 Wait, aren't labels unavailable for an unsupervised learning problem?

Adjusted Random Index

- Given the knowledge of the ground truth class and our clustering algorithm assignments, the adjusted Rand index is a function that measures the **similarity** of the two assignments, ignoring permutations and with chance normalization.
- Compare the actual classes vs. cluster assignment
 - Measure how good is the clustering to serve as classification

National University of Singapore

Normalized Mutual Information

- Given the knowledge of the ground truth class and our clustering algorithm assignments, mutual information is a function that measures the agreement of the two assignments, ignoring permutations
- NMI (normalized mutual information) is more often used, AMI (adjusted mutual information) is more recent and normalized against chance.

ARI vs NMI

- Similarity vs. agreement?
 - They have the same objective, but measured using different theory and different mathematical formula
 - For those who is more mathematically inclined: http://jmlr.csail.mit.edu/papers/volume17/15-627
 627/15-627
 compares the two
- Conclusion
 - Both measures are correlated
 - Use ARI when the ground truth clustering has large equal sized clusters
 - Use AMI/NMI when the ground truth clustering is unbalanced and there exist small clusters

Semi-supervised Clustering

- When only a subset of training data is labeled
- Use clustering to predict labels for the unlabeled data
 - Evaluate clustering metrics using labeled data
- Train a classifier on the combined (labeled) dataset

HANDS ON: CLUSTERING

National University of Singapore

Applications of Clustering

- 10 interesting use cases of the K-means algorithm
- Entertainment: <u>Song text mining and clustering</u>
- Health: <u>Clustering Medical Facilities</u>
- Retail: <u>Customer segmentation</u>
- Manufacturing: <u>Predicting failures in production lines</u>
- Financial: <u>Bank Marketing campaign analysis</u>

Further study: Other clustering algorithms

- Kmeans++
- Self-organizing maps (SOMs)
- Cash Crops Clustering in Nepal
- Sequence clustering (Bioinformatics)
- Comparison of Sequence Clustering methods
- Biopython toolkit for bioinformatics