Homework 2

Tim Vigers

September 15, 2020

1 BD 1.1.1

- 1. Example (a)
 - (a) Here let X be a R.V. indicating the diameter of a pebble and Y = log(X). The logarithm of the diameter is normally distributed, so:

$$P_Y(Y) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{y-\mu}{\sigma})^2}$$

To find the distribution of X, we can do a simple transformation using $\frac{d}{dx}Y = \frac{1}{X}$ and see that

$$P_X(X) = \frac{1}{x\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{\log(x)-\mu}{\sigma})^2}$$

- (b) Pebble diameters must be X > 0, so $log(X) \in \mathbb{R}$. Because we are assuming $log(X) \sim \mathcal{N}(\mu, \sigma^2)$, $\mu \in \mathbb{R}$ and $\sigma > 0$.
- (c) This is a parametric model because we are assuming a specific distribution for the pebble diameters.
- 2. Example (b)
 - (a) For this example we have the model $X_i = \mu + \epsilon_i$, for $1 \le i \le n$ and $\epsilon \sim \mathcal{N}(0.1, \sigma^2)$. Therefore

$$X_i \sim \mathcal{N}(\mu + 0.1, \sigma^2)$$

and

$$P_X(X) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu+0.1}{\sigma})^2}$$

(b) In this case the variance of the errors is known, so the parameter space is $\mu \in \mathbb{R}$.

(c) This is also a parametric model because we are assuming a distribution for the errors.

3. Example (c)

(a) This is similar to the model above, but this time $X_i = \mu + \epsilon_i$, for $1 \le i \le n$ and $\epsilon \sim \mathcal{N}(\theta, \sigma^2)$. Therefore

$$X_i \sim \mathcal{N}(\mu + \theta, \sigma^2)$$

and

$$P_X(X) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2}(\frac{x-\mu+\theta}{\sigma})^2}$$

- (b) The variance of the errors is still known, but this time we are only able to estimate the parameter $\mu + \theta \in \mathbb{R}$ as the model is unindentifiable for μ or θ alone.
- (c) This is still a parametic model because we assume a distribution of the errors.

4. Example (d)

(a) Let X= the number of eggs laid by an insect, which follows a Poisson distribution:

$$P_X(X) = \frac{e^{-\lambda}\lambda^x}{x!}$$

for x=0,1,... and $\lambda>0$. If Y= the number of eggs that hatch assuming each egg hatches with probability p, then Y follows a binomial distribution given the number of eggs laid:

$$P_Y(Y|n=x) = {x \choose y} p^y (1-p)^{x-y}$$

(b)

$$\lambda > 0$$

$$Y = 0, 1, \dots$$

$$0$$

(c) This is also a parametric model because we are assuming distributions for X and Y|X.

1.1 BD 1.1.2

- 1. Problem 1.1.1(c): It is possible to estimate the parameter $\mu + \theta$, but it is not possible to estimate μ or θ separately because there are many possible values of μ and θ that would produce the same $\mu + \theta$. For example, $(\mu = 2, \theta = 2)$ and $(\mu = 3, \theta = 1)$.
- 2. The parameterization of 1.1.1(d) is indentifiable because the entomologist is collecting the number of eggs laid by each insect, which allows for estimation of λ . They are also collecting the number of eggs hatching, which makes it possible to estimate p.
- 3. Unlike the case above, if the entomologist is only collecting data on the number of eggs hatched, the model would be unindentifiable. The current parameterization assumes that n is known, so that if the entomologist records for example 6 eggs hatching out of a total of 36 eggs laid, they can estimate $\hat{p} = \frac{1}{6}$. However, if the number of eggs is unknown, then 6 hatchings could imply that $\hat{p}_1 = \frac{6}{10}$, $\hat{p}_1 = \frac{6}{6}$, etc. because the denominator is unknown. Therefore, $P_{\theta_1} = P_{\theta_2}$ does not imply $\theta_1 = \theta_2$.

1.2 BD 1.2.7

Example 1.1.1: Let X represent the number of defective items in a random sampling inspection where X(k) = k for k = 0, 1, ..., n. If θ represents the number of defective items in the population, then

$$p(X = k) = \frac{\binom{\theta}{k} \binom{N-\theta}{n-k}}{\binom{N}{n}}$$

Assume θ has a $\mathcal{B}(N, \pi_0)$ distribution:

$$\pi(\theta) = \binom{N}{\theta} \pi_0^{\theta} (1 - \pi_0)^{N - \theta}$$

Then we have that the posterior distribution of θ given X = k:

$$\pi(\theta|X=k) = \frac{\pi(\theta)p(x|\theta)}{c} \propto \binom{N}{\theta} \pi_0^{\theta} (1-\pi_0)^{N-\theta} \frac{\binom{\theta}{k} \binom{N-\theta}{n-k}}{\binom{N}{n}}$$

Where

$$c = \sum_{t=0}^{n} \pi(t)p(x|t) =$$

Blah blah blah, figure this part out...

$$\binom{N}{\theta} \pi_0^{\theta} (1 - \pi_0)^{N - \theta} \frac{\binom{\theta}{k} \binom{N - \theta}{n - k}}{\binom{N}{n}}$$

Which equals:

$$\frac{N!}{\theta!(N-\theta)!} \frac{(N-\theta)!}{(n-k)!(N-\theta-(n-k))!} \frac{N!}{\theta!(N-\theta)!} \frac{n!(N-n)!}{N!} \frac{\theta!}{k!(t-k)!} \pi_0^{\theta} (1-\pi_0)^{N-\theta}$$

Several terms cancel, leaving us with:

$$\frac{n!(N-n)!}{k!(n-k)!(\theta-k)!(N-n-(\theta-k))!}\pi_0^{\theta}(1-\pi_0)^{N-\theta}$$

This can be written as:

$$\binom{n}{k} \binom{N-n}{\theta-k} \pi_0^{\theta} (1-\pi_0)^{N-\theta}$$

Multiplying this by $\frac{\pi_0^k(1-\pi_0)^{n-k}}{\pi_0^k(1-\pi_0)^{n-k}}$ yields a constant $\binom{n}{k}\pi_0^k(1-\pi_0)^{n-k}$ and the kernal of a $\mathcal{B}(N-n,\theta-k)$:

$$\binom{N-n}{\theta-k} \pi_0^{\theta-k} (1-\pi_0)^{N-n-(\theta-k)}$$

1.3 BD 1.2.12

1. Given $X_1, ..., X_n$ iid $\mathcal{N}(\mu_0, \frac{1}{\theta})$ variables, the joint density $p(x|\theta)$ is:

$$\prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \theta^{\frac{1}{2}} e^{-\frac{1}{2}\theta(x_i - \mu_0)^2} = \sqrt{2\pi}^{-n} \theta^{\frac{1}{2}n} e^{-\frac{n\theta}{2} \sum_{i=1}^{n} (x_i - \mu_0)^2}$$

Letting $t = \sum_{i=1}^{n} (x_i - \mu_0)^2$, this density is proportional to:

$$\theta^{\frac{1}{2}n}e^{-\frac{1}{2}\theta t}$$

2. If $\pi(\theta) \propto \theta^{\frac{1}{2}(\lambda-2)} e^{-\frac{1}{2}\nu\theta}$, then the posterior distribution

$$\pi(\theta|x) \propto \theta^{\frac{1}{2}(\lambda-2)} e^{-\frac{1}{2}\nu\theta} \theta^{\frac{1}{2}n} e^{-\frac{1}{2}\theta t}$$

by 1.2.10. This can be simplified to

$$\theta^{\frac{1}{2}(n+\lambda-2)}e^{-\frac{1}{2}\theta(\nu+t)}=\theta^{\frac{n+\lambda}{2}-1}e^{-\frac{\theta(\nu+t)}{2}}$$

n is an integer, so provided λ is also an integer, we can set $p = \lambda + n$ and see that this contains the kernel of a χ_p^2 density:

$$\pi(\theta|x) \propto \theta^{\frac{p}{2}-1} e^{-\frac{\theta(\nu+t)}{2}}$$

also provided that ν and t are known.

3. We can find the distribution of σ by plugging it into the $\chi^2_{\lambda+n}$ density for $\theta(\nu+t)$:

$$p(\theta(\nu+t)|x) = \frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}}\theta(\nu+t)^{\frac{p}{2}-1}e^{-\frac{\theta(\nu+t)}{2}}$$

We know $\theta = \frac{1}{\sigma^2}$, so $\frac{d}{d\sigma}\theta = \frac{-2}{\sigma^3}$ and we can plug this into the above density using CB theorem 2.1.5:

$$p(\sigma|x) = \frac{1}{\Gamma(\frac{p}{2})2^{\frac{p}{2}}} (\frac{(\nu+t)}{\sigma^2})^{\frac{p}{2}-1} e^{-\frac{\nu+t}{2\sigma^2}} \frac{2}{\sigma^3}$$

1.4 BD 1.3.8

1. To show that s^2 is an unbiased estimator, we find its expected expected value:

$$E[s^2] = E\left[\frac{1}{n-1} \sum_{i=1}^{n} (X_i^2 - n\bar{X}^2)\right] = \frac{1}{n-1} (nE[X_1^2] - nE[\bar{X}^2])$$

because the X_i are sampled from the same population.

$$\frac{1}{n-1}(nE[X_1^2] - nE[\bar{X}^2]) = \frac{1}{n-1}(n(\sigma^2 + \mu^2) - n(\frac{\sigma^2}{n} + \mu^2)) = \frac{1}{n-1}(n\sigma^2 - \sigma^2)$$

This shows that $E[s^2] = \sigma^2$ and it is therefore an unbiased estimator.