Activation Functions

Activation function

Activation functions apply a non-linear transformation and decide whether a neuron should be activated or not.

Why?

Why?

Without activation functions our network is basically just a stacked linear regression model

Why?

- —> With non-linear transformations our network can learn better and perform more complex tasks!
- -> After each layer we typically use an activation function!

Most popular activation functions

- 1. Step function
- 2. Sigmoid
- 3. TanH
- 4. ReLU
- 5. Leaky ReLU
- 6. Softmax

Step Function

$$f(x) = \begin{cases} 1 & \text{if } x \ge \theta \\ 0 & \text{otherwise} \end{cases}$$

-> Not used in practice

Sigmoid Function

$$f(x) = \frac{1}{1 + e^{-x}}$$

-> Typically in the last layer of a binary classification problem

TanH Function

$$f(x) = \frac{2}{1 + e^{-2x}} - 1$$

-> Hidden layers

ReLU Function

$$f(x) = max(0, x)$$

-> If you don't know what to use, just use a ReLU for hidden layers

Leaky ReLU Function

$$f(x) = \begin{cases} x & \text{if } x \ge 0 \\ a \cdot x & \text{otherwise} \end{cases}$$

-> Improved version of ReLU. Tries to solve the vanishing gradient problem

Softmax

$$S(y_i) = \frac{e^{y_i}}{\sum e^{y_j}}$$

-> Good in last layer in multi class classification problems