Directions: This is Day 1 of the Individual Round portion of the 2015 Mission Math Tournament, and is used as a factor in determining our MSJ teams in future on-site competitions like the Stanford and Berkeley Math Tournaments. There are 12 short-answer problems to be solved in 35 minutes. *Only answers written on your answer sheet will be scored.* Good luck!

Problem 1: What is the greatest 9-digit number that is divisible by 9, all of whose digits are distinct?

Problem 2: What is the probability that the sum of 2 independent dice rolls is greater than 7?

Problem 3: TC can buy packs of playing cards in the following deals:

- 2 packs for \$10
- \blacksquare 3 packs for \$14
- 7 packs for \$29

What is the least amount of money TC needs to buy at least 22 packs of cards?

Problem 4: In right triangle $\triangle ABC$ with $\angle C = 90^{\circ}$, we have D, E, F on AB such that, in order, we have A, D, E, F, B and AD : DE : EF : FB = 1 : 2 : 3 : 4. Given that BC = 5 and AC = 12, find [DEC] + [FBC], where brackets indicate area.

Problem 5: Points A, B, and C lie on the parabola $y = x^2$. If the slope of AB is 4, the slope of BC is 8, and the slope of AC is 16, what are the possible **x-coordinates** of A?

Problem 6: A rectangle ABCD has AB = 2 and BC = 3. A circle with radius 1 is inscribed inside, externally tangent to DA, AB, and BC. Another circle ω is also inscribed inside, externally tangent to the first circle, BC, and CD. Find the radius r of ω .

Problem 7: A 5×5 grid of squares is randomly filled in with 0's and 1's. A square is *happy* if all of its edge-neighbors have the same value as itself. What is the expected number of *happy* squares in the 5×5 grid?

Problem 8: Triangle $\triangle ABC$ has D, E, F the midpoints of BC, CA, and AB, respectively. Also, let G be the intersection of AD and FE, let H be the intersection of BE and DF, and let I be the intersection of CF and DE. Given that [ABC] = 112, find [GHI], where brackets indicate area.

Problem 9: A sequence is given by $a_1 = 5$ and $a_n = 3a_{n-1} + 8$ for n > 1. Find a closed form for a_n (one without summations or references to previous terms in the sequence).

Problem 10: Find all real solutions x that satisfy the equation $x^4 - 8 = 2x(2x^2 - 3x + 2)$.

Problem 11: A rectangular piece of paper has length 2 and width 1. A dotted line is drawn from two opposite vertices. The paper is then folded flat along the dotted line to create a new shape. What is the area of this new shape?

Problem 12: A permutation σ is a function that maps a finite set to itself. How many permutations σ acting on the set $\{1,2,3,4,5,6,7\}$ are there such that $\sigma(\sigma(\{1,2,3,4,5,6,7\})) = \{1,2,3,4,5,6,7\}$? In other words, how many self-inverse permutations that act on a set of 7 distinct elements are there? For example, if our permutation were $\delta = (3,2,1)$, then $\delta(\delta(\{1,2,3\})) = \delta(\{3,2,1\}) = \{1,2,3\}$. Therefore $\delta = (3,2,1)$ is a self-inverse permutation that acts on a set of 3 distinct elements.