



# Tópicos de Matemática II - 2015/ 2016 2º Teste - Tópicos de resolução

#### Exercício 1

| a) |   | 1 | -3 | 1  | 0       | 4       |
|----|---|---|----|----|---------|---------|
|    | 2 |   | 2  | -2 | -2      | -4      |
| •  |   | 1 | -1 | -1 | -2      | 0=Resto |
|    | 2 |   | 2  | 2  | 2       |         |
| •  |   | 1 | 1  | 1  | 0=Resto | _       |

Logo: 
$$p(x) = (x-2)(x-2)(x^2+x+1)=(x-2)^2(x^2+x+1)$$

**b**) Cálculo auxiliar: 
$$x^2 + x + 1 = 0 \Leftrightarrow x = \frac{-1 \pm \sqrt{1 - 4}}{2} \Leftrightarrow x \in \phi$$

| X         | $-\infty$ | 2 | +8 |
|-----------|-----------|---|----|
| $(x-2)^2$ | +         | 0 | +  |
| $x^2+x+1$ | +         | + | +  |
| p(x)      | +         | 0 | +  |

$$C.S. = \left] -\infty, 2 \left[ \cup \right] 2, +\infty \right[$$

## Exercício 2

$$y = f(x) \Leftrightarrow y - 7 = 2e^{-3x} \Leftrightarrow e^{-3x} = \frac{y - 7}{2} \Leftrightarrow -3x = \ln\left(\frac{y - 7}{2}\right) \Leftrightarrow x = -\frac{1}{3}\ln\left(\frac{y - 7}{2}\right)$$

$$f^{-1}(x) = -\frac{1}{3}\ln\left(\frac{x-7}{2}\right); D_{f^{-1}} = D'_f = 7, +\infty[; D'_{f^{-1}} = D_f = IR]$$

$$f^{-1}: ]7, +\infty[$$
  $\rightarrow IR$ 

$$x \mapsto -\frac{1}{3} \ln\left(\frac{x-7}{2}\right)$$

## Exercício 3

a) Cálculo auxiliar:

|   | 1 | 0 | 0 | 0 | -1 |
|---|---|---|---|---|----|
| 1 |   | 1 | 1 | 1 | 1  |
|   | 1 | 1 | 1 | 1 | 0  |

$$\lim_{x \to 1} \frac{(x-1)(x^3 + x^2 + x + 1)}{(x-1)} = \lim_{x \to 1} (x^3 + x^2 + x + 1) = 1 + 1 + 1 + 1 = 4$$

**b)** 
$$\lim_{x \to 9} \frac{\left(\sqrt{x} - 3\right)\left(\sqrt{x} + 3\right)}{\left(x - 9\right)\left(\sqrt{x} + 3\right)} = \lim_{x \to 9} \frac{\left(\sqrt{x} - 3\right)\left(\sqrt{x} + 3\right)}{\left(x - 9\right)\left(\sqrt{x} + 3\right)} = \lim_{x \to 9} \frac{x - 9}{\left(x - 9\right)\left(\sqrt{x} + 3\right)} = \lim_{x \to 9} \frac{1}{\sqrt{x} + 3} = \frac{1}{3 + 3} = \frac{1}{6}$$

## Exercício 4

**a)** 
$$3^{-x-4} = (3^3)^{3x+5} \Leftrightarrow 3^{-x-4} = 3^{9x+15} \Leftrightarrow -x-4 = 9x+15 \Leftrightarrow -10x = 19 \Leftrightarrow x = -\frac{19}{10}$$

**b**) 
$$D = \{x \in IR: 2x > 0\} = [0, +\infty[$$

$$\log(2x) \le \log 7 \Leftrightarrow 2x \le 7 \land x \in ]0, +\infty[\Leftrightarrow x \le \frac{7}{2} \land x \in ]0, +\infty[\Leftrightarrow x \in ]0, \frac{7}{2}]$$

c) 
$$D = \{x \in IR: 3 - x > 0\} = [-\infty, 3]$$

$$\ln(3-x) \ge -1 \Leftrightarrow 3-x \ge e^{-1} \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \right] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \right] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \ge \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \right] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \right] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \right] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \right] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \right] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left[ \Leftrightarrow -x \le \frac{1}{e} -3 \land x \in \left[ \Leftrightarrow -x \le x \in \right] -\infty, 3\left[ \Leftrightarrow -x \le \frac{1}{e}$$

$$\Leftrightarrow x \le 3 - \frac{1}{e} \land x \in \left] - \infty, 3 \right[ \Leftrightarrow x \in \left] - \infty, 3 - \frac{1}{e} \right]$$

### Exercício 5

**a)** 
$$\lim_{x \to -\infty} \frac{x^2 \left(2 + \frac{6}{x} - \frac{20}{x^2}\right)}{x^2 \left(\frac{25}{x^2} - 1\right)} = \lim_{x \to -\infty} \frac{2 + \frac{6}{x} - \frac{20}{x^2}}{\frac{25}{x^2} - 1} = \frac{2 + 0 - 0}{0 - 1} = -2$$

**b)** 
$$\lim_{x \to 0^{-}} \frac{2x^2 + 6x - 20}{25 - x^2} = \frac{0 + 0 - 20}{25 - 0} = -\frac{20}{25} = -\frac{4}{5}$$

$$\lim_{x \to 0^+} \frac{2}{x+1} = \frac{2}{0+1} = 2$$

 $\lim_{x\to 0^-} h(x) \neq \lim_{x\to 0^+} h(x)$ . Logo, não existe  $\lim_{x\to 0} h(x)$ .

#### Exercício 6

Cálculo auxiliares:

$$x^{2} - 5x + 6 = 0$$

$$\Leftrightarrow x = \frac{5 \pm \sqrt{25 - 24}}{2}$$

$$\Leftrightarrow x = 2 \lor x = 3$$

$$2x^{2} - 7x + 3 = 0$$

$$\Leftrightarrow x = \frac{7 \pm \sqrt{49 - 24}}{4}$$

$$\Leftrightarrow x = \frac{1}{2} \lor x = 3$$

$$\frac{x^2 - 5x + 6}{2x^2 - 7x + 3} = 0 \Leftrightarrow x^2 - 5x + 6 = 0 \land 2x^2 - 7x + 3 \neq 0 \Leftrightarrow \left(x = 2 \lor x = 3\right) \land x \neq \frac{1}{2} \land x \neq 3 \Leftrightarrow x = 2$$

**d**) 1

# Exercício 7

a) 
$$+\infty$$
 b)  $-\infty$  c)  $+\infty$ 

### Exercício 8

a) 
$$y' = 2(3x^2 - x)(3x^2 - x)' = (6x^2 - 2x)(6x - 1) = 36x^3 - 18x^2 + 2x$$

**b)** 
$$y' = \frac{(x-1)'(x^2+1)-(x-1)(x^2+1)'}{(x^2+1)^2} = \frac{1(x^2+1)-(x-1)2x}{(x^2+1)^2} = \frac{-x^2+2x+1}{(x^2+1)^2}$$

### Exercício 9

$$\log_n \left(\log_n \sqrt[n]{n}\right) = \log_n \left(\log_n n^{1/n}\right) = \log_n \left(\frac{1}{n}\right) = \log_n n^{-1} = -1$$