自发过程的判据:

• 可以用无序度或混乱度的增加来判断自发过程的方向。

5.7.1 熵的定义

熵(S): 体系混乱度(或有序度)的量度

- 是一种热力学状态函数。
- 混乱度与体系中可能存在的微观状态数目 (Ω) 有关,即有:

$$S = f(\Omega)$$

体系中可能存在的微观状态数越多,体系的外在表现就越混乱,熵也就越大。

$$S = k \ln \Omega$$

式中k是Boltzmann常数,且 $k = R/N_A$ 。

Ludwig Boltzmann (1844-1906),奥地利物理学家

微观状态

状态(宏观): 由一系列表征体系性质的物理量所确定下来的存在形式。如能量、压力、体积 热力学平衡时,这些物理量不随时间变化

微观状态:某一时刻,每个微观粒子的状态(位置、动量)即使在热力学平衡状态,微观状态也在时刻改变

由状态I变成状态II,混乱度增加

固体、液体、气体以及溶液熵的比较

5.7.2 热力学第三定律

热力学第三定律: 在绝对零度时,完整晶体的纯物质,其熵值规定为零

$$S_0 = 0$$

5.7.3 标准熵

标准熵 (绝对熵): 1 mol物质在标准态所计 算出的熵值叫标准熵

- 符号: S_m^{Ω} (或简写为 S^{Ω})
- 单位: J·mol⁻¹⋅K⁻¹。
- 各种物质在热力学标准状态的熵可以根据实验数据,按一定规律计算。也可以按统计力学方法计算。

5.7.4 熵的物理意义

熵是体系混乱度的量度,体系越混乱,熵值越大。

熵变的宏观热力学定义: Clausius (1854)

$$dS = \delta Q_r / T$$
 \vec{g} $\delta Q_r = T dS$

- ▶ 体系的熵变等于该可逆过程所吸收的热除以温度
- $> \delta Q_{\rm r}$ 为可逆过程所吸收的热量

Entropy as a Function of Temperature

常见物质的标准熵 (298K)

固体		液体	S _m ^θ J·mol ⁻¹ ·K ⁻¹	气 体	S _m θ J·mol ⁻¹ ·K ⁻¹
C(金刚石)	2.38	Hg	176.0	He	126.04
C(石墨)	5.74	Br ₂	152.23	Ar	154.73
Si	18.8	H ₂ O	69.94	H_2	130.57
Fe	27.3	H_2O_2	110	N ₂	191.5
Fe ₂ O ₃ (赤铁矿)	87.40	СН ₃ ОН	127	O_2	205.03
Na	51.21	C ₂ H ₅ OH	191	$\mathbf{F_2}$	202.7
NaCl	72.13	НСООН	129.0	Cl ₂	222.96
KCL	82.59	CH ₃ COOH	160	NO	210.65
CaO	39.75	C ₆ H ₆	172.8	NO ₂	240.0
CaSO ₄	107	n-C ₈ H ₁₈	357.7	N_2O_4	304.2
CuSO ₄	109	CH ₂ Cl ₂	178	CO	197.56
CuSO ₄ •5H ₂ O	300	CCl ₄	216.4	CO ₂	213.6

物质	H ₂ O	Br ₂	Na	$\mathbf{I_2}$
S _m θ J·mol ⁻¹ ·K ⁻¹	188.7(g)	245.4(g)	57.9(g)	260.6(g)
	69.9(l)	152.2(l)	51.2(s)	116.1(s)

同一物质气态的标准熵总是大于其液态的标准熵,液态的总是大于固态的。

$$S_{\mathbf{m}^{\theta}(\mathbf{g})} > S_{\mathbf{m}^{\theta}(\mathbf{l})} > S_{\mathbf{m}^{\theta}(\mathbf{s})}$$

> 微粒的运动自由度是气态大于液态,液态大于固态的

物质	$F_2(g)$	Cl ₂ (g)	Br ₂ (g)	I ₂ (g)
$M/g \cdot mol^{-1}$ $S_m^{\theta}/J \cdot mol^{-1} \cdot K^{-1}$	38.0	70.9	160.8	253.8
	203	223	245	261
物质	$\mathbf{CH_4}$	C_2H_6	C ₃ H ₈	C_4H_{10}
$M/g \cdot mol^{-1}$ $S_m^{\theta}/J \cdot mol^{-1} \cdot K^{-1}$	16.0	30.0	44.0	58.0
	186	230	270	310

- 同类物质摩尔质量M越大,标准熵值越大
- 原子数、电子数越多,微观状态数目也越多

物质	О	\mathbf{O}_2	O_3
$S_{\mathbf{m}}^{\theta}$ $\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$	161	205	238
物质	N	NO	NO_2
$S_{\mathbf{m}}^{\theta}$ $\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}$	153	210	240

- 气态多原子分子的标准熵值比单原子大
- 原子数越多, 微观状态数目也就越多

摩尔质量相同的不同物质,结构越复杂, S_m e值越大。

例如, 乙醇和二甲醚是同分异构体, 乙醇的对称性不如二甲醚, 所以具有更大的标准熵。

- 同一种物质熵值随着温度的升高增大。
- 压力对固态、液态物质的熵值的影响较小,
- 压力对气态物质熵值的影响较大。

5.7.5 化学反应的熵变

- 熵是状态函数,具有容量性质,
- 热化学定律的计算方法同样适用于熵变计算

$$\Delta_{\rm r} S_{\rm m}^{\rm e} = \sum \nu_{\rm i} S_{\rm m}^{\rm e}$$

化学反应的熵变

气体计量系数增加的反应,熵增; 气体计量系数减小的反应,熵减; 气体计量系数不变的反应,熵变值很小。

化学反应	$\frac{\mathbf{A} \mathbf{v} \mathbf{S}_{-}^{\mathbf{c}}}{\mathbf{J} \cdot \mathbf{mol}^{-1} \cdot \mathbf{K}^{-1}}$	$\Delta n_{\tilde{\gamma}}$	∆n _ë
$2\text{Fe}_2\text{O}_3(s) + 3\text{C}(s) \rightarrow 4\text{Fe}(s) + 3\text{CO}_2(g)$	+558	+3	
$Fe_2O_3(s)+3CO(g) \rightarrow 2Fe(s)+3CO_2(g)$	+15	0	
$CaO(s)+SO_3(g) \rightarrow CaSO_4(s)$	-189	-1	
$N_2(g)+3H_2(g) \rightarrow 2NH_3(g)$	-198	-2	
$N_2(g)+O_2(g) \rightarrow 2NO(g)$	+25	0	
$N_2O_4(g) \rightarrow 2NO_2(g)$	+176	+1	
$PbI_2(s) \rightarrow Pb(s)+I_2(s)$	+5		+1
$NH_4Cl(s) \rightarrow NH_4^+(aq)+Cl^-(aq)$	+75		+1
$CuSO_4 \cdot 5H_2O(s) \rightarrow CuSO_4(s) + 5H_2O(l)$	+159		+5

化学反应的熵变

凡涉及气体计量系数变化的反应,压力对熵变有 明显影响,所以压力条件必须强调。

温度对化学反应熵变的影响不大。

5.7.6 自发过程的熵判据与热力学第二定律

熵判据:

热力学第二定律: 孤立体系的自发过程, 熵永远增加。

$$\Delta S_{$$
孤立 $} \geq 0$

孤立体系

- $\Delta S > 0$,反应自发进行;
- $\Delta S < 0$,反应不自发,或逆反应自发;
- $\Delta S = 0$,反应达平衡。

问题: -10 ℃ 水的自发凝固,水的熵如何变化?

孤立体系的总熵变是自发性的判据。

若 $\Delta S_{\stackrel{.}{\otimes}} > 0$

则过程自发。

 ΔS_{tx} 往往与体系的 ΔH 有关。

$$\Delta S_{\stackrel{.}{\bowtie}} = \Delta S_{\stackrel{.}{\bowtie}} + \Delta S_{\stackrel{.}{\bowtie}}$$

5.8 Gibbs自由能

- Gibbs自由能的定义
- Gibbs自由能的计算
- 自由能判据
- 标准Gibbs自由能
- Gibbs自由能与温度、压力的关系

5.8.1 自由能判据

(以封闭体系、等压条件为例)

假定一个扩大的孤立体系,即封闭体系的体系+环境,

自发过程 $\Delta S_{\text{th}} + \Delta S_{\text{th}} > 0$ 体系放热全部被环境吸收,即: $-Q_{\text{th}} = Q_{\text{th}}$

在等压条件下, $Q_P = \Delta H_{\phi}$ 。

假设环境很大,因此与体系交换能量后环境的温度近似不变:

$$\Delta S_{\text{FF}} = \frac{Q_r}{T} = -\frac{\Delta H_{\text{ff}}}{T}$$

合并体系和环境的熵变:

自发过程
$$\Delta S_{4} - \frac{\Delta H_{4}}{T} > 0$$
 $\Delta H - T\Delta S < 0$

自发过程
$$\Delta H - T\Delta S < 0$$

分别代入
$$H_2 - H_1 = \Delta H$$
, $S_2 - S_1 = \Delta S$, 则有:
$$(H_2 - H_1) - T(S_2 - S_1) < 0$$

$$(H_2 - TS_2) - (H_1 - TS_1) < 0$$

引入Gibbs自由能和Gibbs自由能变化:

$$G = H - TS$$

$$\Delta G = \Delta H - T\Delta S$$
(等温变化过程)

因此,封闭体系,等温等压条件的自发过程的判据: $\Delta G < 0$

5.8.2 Gibbs-Helmholtz方程

$$\Delta G = \Delta H - T \Delta S$$

自由能判据(封闭体系、等压、等温条件)

- ▶ 反应自发: $\Delta G_{\mathrm{T}}^{\mathrm{p}} < 0$
- ▶ 反应不自发: $\Delta G_{\mathrm{T}}^{\mathrm{p}} > 0$
- \triangleright 反应平衡: $\Delta G_{\mathrm{T}}^{\mathrm{p}} = \mathbf{0}$

5.8.3 标准Gibbs生成自由能

自由能变化ΔGP的计算

- 状态函数,广度量
- 热化学定律也都适用

$$\Delta G_{\perp}^{\alpha} = \Delta G_1^{\alpha}(T) + \Delta G_2^{\alpha}(T) + \dots$$

标准Gibbs生成自由能 $\Delta_f G_{\mathrm{m}}^{\alpha}(T)$

· 由指定单质生成1 mol某种物质(化合物 或其他形式的物种)时的Gibbs自由能变

$$\Delta_{\mathbf{r}}\mathbf{G}_{\mathbf{m}}^{\mathbf{o}} = \mathbf{\Sigma}\boldsymbol{\nu}_{i}\Delta_{f}\mathbf{G}_{\mathbf{m}}^{\mathbf{o}}$$

- 状态函数
- 广度量

物质	$\frac{\Delta_{\rm f} H_{\rm m}^{\rm e}}{\rm kJ \cdot mol^{-1}}$	$\frac{\Delta_{\mathrm{f}}G_{\mathrm{m}}^{\Theta}}{\mathrm{kJ}\cdot\mathrm{mol}^{-1}}$	$\frac{S_{\mathrm{m}}^{\Theta}}{J \cdot K^{-1} \cdot mol^{-1}}$
MgO(cr)	-601.6	-569.3	27.0
Mg(OH) _z (cr)	-924.5	-833.5	63. 2
MgCO ₃ (cr)	-1095.8	-1012.1	65. 7
MgSO ₄ (cr)	-1284.9	-1170.6	91.6
Mn(cr)	0.0	0.0	32, 0
Mn ²⁺ (aq)	-220.8	-228, 1	-73.6
MnO _z (cr)	-520.0	-465.1	53. 1
MnO ₄ (aq)	-541.4	-447.2	191.2
MnCl ₂ (cr)	-481.3	-440.5	118. 2
N ₂ (g)	0.0	0.0	191.6
NH ₃ (g)	-45, 9	-16.4	192.8
NH ₃ (aq) *	-80,29	-26,6	111.3
NH3·H2O(aq,非电离)*	-361.2	-254.0	165.5
NH ₄ (aq)	-132,5	-79.3	113.4
NH ₄ Cl(cr)	-314.4	-202.9	94.6
NH ₄ NO ₃ (cr)	-365.6	-183.9	151.1
(NH ₄) ₂ SO ₄ (cr)	-1180.9	-910.7	220.1
N ₂ H ₄ (g)	95.4	159.4	238. 5
N ₂ H ₄ (1)	50.6	149.3	121.2
NO(g)	91.3	87.6	210.8
	34. 2	52, 3	240. 1
$NO_2(g)$ $N_2O(g)$	81; 6	103. 7	220.0
	11, 1	99.8	304.4
N ₂ O ₄ (g)	-19.5	97.5	209. 2
$N_2 O_4 (1)$ $NO_2^- (89)$	-207.4	-111.3	146. 4

5.8.4 化学反应自由能变的计算

1. 利用各种物质的标准Gibbs生成自由能值可以计算化学反应的 $\Delta_r G_m^{\Theta}$ (简写 ΔG^{Θ}):

$$\Delta_{\rm r}G_{\rm m}^{\rm e} = \Sigma \nu_{\rm i} \Delta_{\rm f}G_{\rm m}^{\rm e}$$

例如,对于甲烷燃烧的化学反应:

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(1)$$

在标态和298K下,

$$\Delta G^{\theta} = \Delta G_{f^{\theta}CO2(g)} + 2\Delta G_{f^{\theta}H2O(l)} - \left[\Delta G_{f^{\theta}CH4(g)} + 2\Delta G_{f^{\theta}O2(g)}\right]$$
$$= -818.0 \text{ kJ} \cdot \text{mol}^{-1}$$

ΔG^{o} 与温度的关系

2. 利用各种物质的标准生成焓 $\Delta_f H_m^2$ 和标准 熵 S_m^α 分别计算反应的标准反应焓 $\Delta_r H_m^2$ 和标准 准熵变化 $\Delta_r S_m^\alpha$,再由两者计算计算化学反应的 $\Delta_r G_m^\alpha$ (简写 ΔG^{Θ}):

$$\Delta_{\rm r}G_{\rm m}^{\rm o} = \Delta_{\rm r}H_{\rm m}^{\rm o} - T\Delta_{\rm r}S_{\rm m}^{\rm o}$$

ΔG^{o} 与温度的关系

例如,对于碳酸钙的分解:

$$CaCO_3(s) \rightarrow CaO(s) + CO_2(g)$$

在标态下,

$$\Delta H^{\Theta} = \Delta H_f^{\Theta}(CaO, s) + \Delta H_f^{\Theta}(CO_2, g) - \Delta H_f^{\Theta}(CaCO_3, s) = +179 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta S^{\Theta} = S^{\Theta}(CaO, s) + S^{\Theta}(CO_2, g) - S^{\Theta}(CaCO_3, s) = +0.16 \text{ kJ} \cdot \text{mol}^{-1}$$

$$\Delta G^{\Theta} = \Delta H^{\Theta} - T\Delta S^{\Theta} = 179 - 0.160T$$

当 $T = 1.12 \times 10^3 K$ 时, $\Delta G^{\Theta} < 0$

ΔG 与压力的关系

表 5 4	反应 CaCO. (s)	\rightarrow CaO(s) \pm CO.	(0) 65	AG 随温度与压力的变化
DE 3. 4	DCDY CACO3 (S)	CaO(S) TCO2	(E) By	AU则温度可压力的变化

ΔG $kJ \cdot mol^{-1}$ 温度 T/K	д	p/kPa				
	1×10²	1	1×10 ⁻²	1×10-4		
298	+132	+121	+109	+98		
473	+104	+86	+67	+50		
673	+72	+47	+20	5		
873	+40	+8	27	-60		
1073	+8	-32	-75	-114		
1273	24	-71	-122	-169		

- 同一温度下,压力下降, ΔG 减少
- 压力下降, $\Delta G=0$ 的温度下降

5.8.5 Gibbs自由能和Helmholtz自由能

• Gibbs自由能G

$$G = H - TS$$

• Helmholtz自由能A

$$A = U - TS$$

• A和G的差异

5.8.6 △G的物理意义

等温等压的可逆过程,体系所能做的最大其它功(W')

$$\Delta G_T^p = W'$$

证明:

$$\Delta U = Q_{rp} + W = Q_{rp} - p\Delta V + W'$$
 $Q_{rp} = \Delta U + p\Delta V - W' = \Delta H - W'$
 $T\Delta S = \Delta H - W'$ (引入等温条件)
 $W' = (\Delta H - T\Delta S)$
 $\Delta G = W'$

ΔG 的物理意义

Gibbs自由能降低的物理意义

- 等温等压条件下,体系在可逆过程中所做最大其它功。
- W < 0, 体系对环境做功, ΔG 为负值, 反应能自发进行;
- W>0, 环境对体系做功, ΔG 为正值,反应不能自发进行。

可逆过程:

如果体系对环境做功,则做最大功; 如果环境对体系做功,只需做最小功。

5.9 Gibbs-Helmholtz方程的应用

$$G = H - TS$$
$$\Delta G = \Delta H - T\Delta S$$

- 焓变与化学键的断开和生成有关。焓降表示断开了弱键, 生成了强键,有利于自发。
- 熵变与混乱度有关, 熵增表示混乱度增加, 有利于自发。
- Gibbs自由能变 ΔG 综合了 ΔH 和 ΔS 的总效应。在等温等压条件下,可以作为化学反应方向性的判据。

Gibbs-Helmholtz方程的应用

例如, 在298K时,

NO (g) + CO(g)
$$\rightarrow$$
 1/2N₂ (g) + CO₂ (g) $\Delta G^{\Theta} = -344 \text{ kJ} \cdot \text{mol}^{-1}$
2CO (g) \rightarrow 2C (s) + O₂ (g) $\Delta G^{\Theta} = +274 \text{ kJ} \cdot \text{mol}^{-1}$

前者 ΔG° < 0, 所以在298K和标态条件下有毒气体CO和NO能自发起反应变成无害的CO₂和N₂,而后者则在同一条件下不可能自发进行。

各种反应的自发性判断

$$\Delta G = \Delta H - T \Delta S$$

ΔΗ	ΔS	ΔG	判断
_	+	-	永远自发
+	-	+	永不自发
-	-	+ (高温)	不能自发
a - .	-	- (低温)	自发
+	+	- (高温)	自发
+	+	+ (低温)	不能自发

转变温度(T_{ij}): ΔH 和 ΔS 符号相同时

在转变温度处, $\Delta G_T^{\Omega} = 0$

$$\Delta H^{\alpha} = T_{\mbox{\scriptsize \pm}} \Delta S^{\alpha} \implies T_{\mbox{\scriptsize \pm}} = \frac{\Delta H^{\alpha}}{\Delta S^{\alpha}}$$

'++型'反应

例: $CaCO_3(s) = CaO(s) + CO_2(g)$ $\Delta H^{\circ} = +178 \text{ kJ/mol}$ $\Delta S^{\circ} = +0.160 \text{ kJ/mol}$

298K时: $\Delta G^{\alpha} = 178 - 298 \times 0.160$ = 130 kJ/mol > 0 正向非自发

1273K时: $\Delta G^{\alpha} = 178 - 1273 \times 0.160$ = -25.7 kJ/mol < 0正向自发

 $\Delta G^{\circ} = \Delta H^{\circ} - T_{ij} \Delta S^{\circ} = 0$ (平衡态)

$$T_{\frac{1}{2}} = \frac{\Delta H^{\circ}}{\Delta S^{\circ}}$$

 $T_{\mbox{\em psi}} = 178/0.161 = 1.11 \times 10^3 \, \mathrm{K}$

'--型'反应

例:
$$N_2(g)+3H_2(g)=2NH_3(g)$$

$$\Delta H^\theta = -92.4 \text{ kJ/mol}$$

$$\Delta S^\theta = -0.198 \text{ kJ/mol}$$

500K时:
$$\Delta G^0 = -92.4 - 500 \times (-0.198)$$

= +6.6 kJ/mol > 0 正向非自发

400K时:
$$\Delta G^{\theta} = -92.4 - 400 \times (-0.198)$$

= -13.2 kJ/mol < 0 正向自发

$$T_{\ddagger} = (-92.4)/(-0.198) = 467 \text{ K}$$

对于合成氨反应: $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

$$\Delta H^{\Theta} = -92.2 \text{ kJ} \cdot \text{mol}^{-1}; \quad \Delta S^{\Theta} = -0.199 \text{ kJ} \cdot \text{mol}^{-1} \cdot \text{K}^{-1};$$

 $\Delta G^{\Theta}_{\text{T}} = -92.2 + 0.199 T$

热力学因素:

- 低温下 ΔG_{T} 为负值,而在高温时为正值:合成氨反应不易在高温进行。
- ΔG_{T} 由负值转变为正值的温度 $T = \Delta H_{\text{T}}/\Delta S_{\text{T}} = 463 \text{ K (标态)}$
- 实际合成塔压力一般是30MPa。反应温度高于463 K,反应还能自发进行 ,常用温度为500°C。

动力学因素:

• 低温化学反应速度慢,高温化学反应速度快

NOTE:

- 1) 热力学数据提供一般原则,具体条件的确定仍需实验。
- 2) ΔG 是等温等压反应自发性的正确判据。而 ΔH 判别自发性是有局限性的。由于 ΔH 一般是几十或几百kJ·mol⁻¹,而 ΔS 则是几十或几百J·mol⁻¹·K⁻¹。相比之下, ΔH 项一般总比 $T\Delta S$ 项对 ΔG 的贡献大些,所以用 ΔH 判别反应自发性也有相当的可行性。但不全面,有时须考虑 $T\Delta S$ 的贡。

习题5.18 求下列反应的 ΔH° 、 ΔG° 和 ΔS° ,并利用这些数据讨论利用 此反应净化汽车尾气中NO和CO的可能性。

$$CO(g) + NO(g) \rightarrow CO_2(g) + \frac{1}{2}N_2(g)$$

解:
$$\Delta H^{\alpha} = \Delta H_{f}^{\alpha}(CO_{2}, g) + \frac{1}{2}\Delta H_{f}^{\alpha}(N_{2}, g) - \Delta H_{f}^{\alpha}(Co, g) - \Delta H_{f}^{\alpha}(NO, g)$$

 $= -374.3 \text{ kJ} \cdot \text{mol}^{-1}$
 $\Delta S^{\alpha} = S^{\alpha}(CO_{2}, g) + \frac{1}{2}S^{\alpha}(N_{2}, g) - S^{\alpha}(Co, g) - S^{\alpha}(NO, g)$
 $= -0.989 \text{ kJ} \cdot \text{mol}^{-1}$
 $\Delta G^{\alpha}(298 \text{ K}) = \Delta G_{f}^{\alpha}(CO_{2}, g) + \frac{1}{2}\Delta G_{f}^{\alpha}(N_{2}, g) - \Delta G_{f}^{\alpha}(Co, g) - \Delta G_{f}^{\alpha}(NO, g)$
 $= -344.8 \text{ kJ} \cdot \text{mol}^{-1}$

$$T_{\frac{4}{7}} = \frac{\Delta H^{\alpha}}{\Delta S^{\alpha}} = 3.78 \times 10^3 \, K$$

该反应室温下 $\Delta G^{\Theta}(298 K)$ 为较大的负值,

是(-, -)型反应,标态下温度低于 T_{ξ} 反应都可自发进行有害的NO和CO可转化为无害的 N_2 和CO₂

小结

- 体系、环境及其分类
- 过程、途径及状态函数
- 四种热力学函数定义及其隐含条件
- 热化学方程式的书写及相关定律
- 热力学第一、二、三定律
- 非标准状态下热力学函数的计算(第6章)

- 如何从热力学的角度理解溶液蒸气压下降?
- 如何从热力学的角度理解溶液沸点上升和凝固点下降?
- 如何从热力学的角度理解液体过冷?