

1. FULLY SECURE MESSAGE TRANSMISSION OVER NON-SECURE CHANNELS
2. WITHOUT CRYPTOGRAPHIC KEY EXCHANGE

5. BACKGROUND OF THE INVENTION

7. 1. Field of the Invention

9. The present invention relates generally to cryptography and, more particularly, to the
10. secure transmission of messages between parties using non-secure communication
11. channels.

13. 2. Description of the Prior Art

15. Cryptographic systems are widely used to ensure the privacy of messages communicated
16. over insecure channels. Such systems prevent the extraction of information by
17. unauthorized parties from messages transmitted over insecure channels, thus assuring the
18. sender that a transmitted message is being read only by the intended recipient.

20. Two distinct classes of cryptographic methods and protocols are widely used, symmetric-
21. key cryptography and public-key cryptography. In symmetric-key techniques, the same
22. key and cryptographic method are used by both the encoding party for sending the
23. message and by the receiving party for decoding the message. The security of
24. symmetric-key protocols is based on the secrecy of the required key and the strength of
25. the cryptographic method. The message can be properly decoded by the receiving party
26. only if the transmitting party and the receiving party possess the identical key used for
27. encoding the message.

29. For conventional public-key key techniques such as those pioneered by Diffie and
30. Hellman, there are two keys, a public key to which anyone can gain access and with
31. which a plaintext message is encrypted, and a private key that only the recipient
32. possesses and with which the encrypted message is decrypted. The security of public key
33. protocols relies on the considerable difficulty of determining the private key by analyzing
34. the public key. Such computational difficulty is essentially inherent in most public key
35. processes making them considerably slower than symmetric-key protocols even for the
36. recipient who possesses the private key. Chang has devised protocols for the exchange
37. (or simultaneous creation) of cryptographic keys similar to the broadcast-and-response
38. processes of public-key techniques. These key exchange techniques appear to be fully
39. secure but simply create cryptographic keys for subsequent use by other cryptographic
40. systems; they do not allow for the direct transmission of agent-created messages.

42. Mechanical systems exist which are analogous to symmetric-key and public-key systems.
43. For the symmetrical-key process, the mechanical analogy is a locked box carried between
44. the two parties where each party has previously obtained a copy of the key that opens the
45. box. The first, transmitting party unlocks and opens the box, places the message inside,
46. relocks the box and sends it to the second, receiving party who then unlocks the box and

1 removes the message. The public-key process resembles an unlocked box and open lock
2 with a special locking-only key left in a public place. The locking-only key is available
3 for public inspection and analysis. Any interested, transmitting party may place a
4 message in the box, close the lock, and secure the lock with the locking-only key; only
5 the box's recipient owner will be able to unlock the lock with a different unlocking-only
6 key, open the box, and remove the message.

7
8 A third mechanical analogy demonstrates the processes of the claimed invention. In it, a
9 first party places a message in a box, locks it, and sends it to the intended recipient. The
10 recipient places a second lock on the box and returns it to the original sender. The first
11 party then removes the first lock from the doubly locked box and sends the still singly
12 locked box to the intended recipient a final time. The recipient then removes the second
13 lock, opens the box, and retrieves the message. This is the essence of the so-called three-
14 pass protocol. Neither party shares a key to the box, differentiating this process from the
15 symmetric-key process, and the keys to the box are never available for public inspection
16 and analysis, differentiating this process from the public-key processes. This three-pass
17 protocol as utilized in the claimed invention represents a third distinct class of encryption
18 techniques that could best be described as independent-key processes, since neither party
19 possesses nor shares a key with the other party.
20

21 In the context of modern cryptography, Schneier describes the three-pass process as a
22 public-key system and attributes the protocol to Shamir. A primary limitation of the
23 three-pass protocol has been the ability of an eavesdropping third party to use the three
24 transmitted encrypted messages to "crack the code" and derive the original plaintext
25 message. Schneier demonstrates that even otherwise secure symmetric key protocols
26 such as one-time pads are not secure in a three-pass process. Shamir (concurrently with
27 Omura) devised an encryption algorithm for the three-pass protocol using an RSA-like
28 factoring algorithm as the key mechanism. Others have used the three-pass protocol as
29 well; for example, Massey devised a key mechanism based on GF(2^m) finite fields. Both
30 implementations use key processes that are computationally difficult – like conventional
31 public-key methods – but not fully secure.
32

33 The claimed invention uses the three-pass protocol and creates cryptographic processes
34 that are fully secure while requiring no cryptographic key exchange. The processes of
35 the invention are differentiated from the previous, public-key-like, three-pass protocols.
36 The technique of the invention is designated as an independent-key process.
37
38

39 SUMMARY AND OBJECTS OF THE INVENTION 40

41 One object of the invention is to provide a fully secure cryptographic technique for
42 maintaining privacy of messages conveyed or transmitted over non-secure channels while
43 requiring no exchange of any cryptographic keys, either public or private.
44

1 Accordingly, it is another object of this invention to allow two parties to the
2 communication of a message to exchange the message privately even though another
3 party (an eavesdropper) intercepts all of their communications.

4
5 Another object of this invention is to provide for the fully secure exchange of messages –
6 including cryptographic keys – between two parties even when the communication is
7 transmitted over non-secure channels.

8
9 Another object of this invention is to provide for a message exchange protocol that is
10 fully secure against all but a brute force cryptanalysis attack.

11
12 Another object of this invention is to provide for a fully secure message exchange
13 protocol that is faster than most; if not all, present protocols that do not require each party
14 to share identical encryption/decryption keys.

15
16 Briefly, for two parties desiring the private communication of a plaintext message (P) –
17 the first, transmitting party (T) and the second, receiving party (R) – three encrypted
18 messages (C_1 , C_2 , and C_3) are created and communicated between the parties to generate
19 the fully secure transmission of the initial message P.

20
21 The first party T chooses two distinct transformation processes (α and β) and key
22 elements for those processes with characteristics such that the plaintext message P may
23 be embodied in the output of the transformation process α , the transformation process β
24 can be readily reversed, and the composite transformation of the operation of the
25 transformation process β on the output of the process α embodying message P cannot be
26 reversed. The first encrypted message C_1 is created as the output of the operation of the
27 transformation process β on the output of the process α embodying P and is transmitted
28 by the first party T over a non-secure channel to the second party R.
29 The steps taken by the first party T in creating the first encrypted message C_1 are
30 represented as follows:

31	$\alpha(P)$	The result of the transformation α embodies P
32	β' exists	The transformation β can be reversed where β' 33 represents the reverse transformation of β
34	$\beta(\alpha(P))'$ does not exist	The composite process of the transformation β 35 acted on the transformation α can not be reversed
36	$C_1 \Leftarrow \beta(\alpha(P))$	The encrypted message C_1 is assigned the 37 composite result of the transformation β acted 38 on the transformation α

40
41 Reversal of a transformation is taken to mean that given the specific characteristics of the
42 transformation and a specific output of that transformation, the corresponding inputs to
43 the transformation can be derived. Transformations that cannot be reversed are those for
44 which even when given the specific characteristics of the transformation and a specific
45 output of that transformation, the corresponding inputs to the transformation cannot be
46 derived. For the purpose of the invention, transformations may include but are not

1 limited to mathematical functions and their equivalents. For transformations consisting
2 of mathematical functions, the process of reversing the transformations is known as
3 inverting the functions. In general, the transformations referenced herein may exhibit a
4 more limited or more expansive set of properties than those distinctly attributed to
5 mathematical functions.

6
7 Upon receipt of the first encrypted message C_1 , the second party R chooses a distinct
8 transformation processes (γ) and key elements for that process with characteristics such
9 that the transformation process γ can be readily reversed and the composite
10 transformation of the operation of the transformation process γ on the received encrypted
11 message C_1 cannot be reversed. The second encrypted message C_2 is created as the
12 output of the operation of the transformation process γ on the received encrypted message
13 C_1 and is transmitted by the second party R over a non-secure channel back to the first
14 party T. The steps taken by the second party R in creating the second encrypted message
15 C_2 are represented as follows:

16
17 γ' exists

The transformation γ can be reversed where γ'
represents the reverse transformation of γ

18
19 $\gamma(C_1)'$ does not exist

The composite result of the transformation γ
acted on the first encrypted message C_1
cannot be reversed

20
21 $C_2 \Leftarrow \gamma(C_1)$

The encrypted message C_2 is assigned the
composite result of the transformation γ acted
on the first encrypted message C_1

22
23
24
25
26
27
28 Upon receipt of the second encrypted message C_2 , the first party T reverses the second of
29 the first two transformation processes β using the reversal process that is known to exist
30 according to the initial choice of that transformation. The third and final encrypted
31 message C_3 is created as the output of the operation of the reverse transformation process
32 β' on the received encrypted message C_2 and is transmitted by the first party T over a
33 non-secure channel back to the second party R. The steps taken by the first party T in
34 creating the third encrypted message C_3 are represented as follows:

35
36 $C_3 \Leftarrow \beta'(C_2)$

The encrypted message C_3 is assigned the
composite result of the reverse transformation
 β' acted on the second encrypted message C_2

37
38
39
40
41 Following the reversal transformation β' , the third encrypted message C_3 represents the
42 composite output of the operation of the transformation process γ on the output of the
43 process α embodying message P.

1 A key characteristic of the transformation processes β and γ for the protocol is the
2 requirement of viable reverse transformations that are independent of the order of the
3 reversal operations. That is, the composite result of the second encrypted message C_2 is
4 the culmination of all three transformation processes α , β , and γ , and it must be the case
5 that the transformations β and γ can be reversed and applied to C_2 – in any order – to
6 yield the sole result of the first transformation α alone. For mathematical functions, this
7 condition is essentially equivalent to the commutative property. This key characteristic
8 allows the operation of β on α in creating C_1 to be reversed as β' in the creation of C_3
9 even though the intervening transformation of γ has been applied. The invention
10 identifies and applies transformations that make such order-independent reversal
11 possible.

12 Another constraint of the choice of the transformation process γ is that the composite
13 transformation that is the result of the operation of the transformation process γ remaining
14 in the output C_3 after the reversal of β has been applied to C_2 cannot be reversed.
15

16 Upon receipt of the third encrypted message C_3 , the second party R reverses the
17 transformation processes γ using the reversal process that is known to exist according to
18 the initial choice of that transformation. Following that reverse transformation, the result
19 is simply the output of the process α embodying message P. That is,
20

21 $\alpha(P) \Leftarrow \gamma'(C_3),$
22

23 except that this copy of $\alpha(P)$ is now in the possession of the second party R rather than in
24 that of the initial party T. The second party R removes the plaintext message P from its
25 embodiment in the output of the transformation process α to yield possession of the
26 original message created by T. The invention identifies and applies means of embodying
27 the message P in the output of transformation process α in a manner such that the second
28 party R can remove the message P from that embodiment.
29

30 The processes of the invention are distinctly different from previous implementations of
31 three-pass protocols that used complex, public-key-like computational methods to
32 implement the encryption components of each pass. The processes of the invention are
33 straightforward transformation methods that are fully secure and yet computationally
34 efficient. Because the invention doesn't require either party to possess or gain any
35 information about the other's primary encryption process, the technique of the invention
36 is designated as an independent-key process.
37

38 An advantage of the present invention is that it is technically impossible for an
39 eavesdropper, even knowing the transmitted quantities C_1 , C_2 , and C_3 and the general
40 properties and processes of the transformations α , β , and γ , to directly determine the
41 plaintext message P because no reverse transformations can be applied to the transmitted
42 quantities to make that determination.
43

44
45

1 BRIEF DESCRIPTION OF THE DRAWINGS
2

3 Figure 1 is a block diagram depicting a cryptographic system that may be employed for
4 fully secure transmission of a message over non-secure channels without the prior
5 exchange of cryptographic keys, according to the invention claimed herein.

6 Figure 2 is a block diagram depicting a general example of a possible embodiment of
7 such a cryptographic system that may be employed for fully secure transmission of a
8 message over non-secure channels without the prior exchange of cryptographic keys,
9 according to the invention claimed herein.

10 Figure 3 is a block diagram depicting a specific example of a possible embodiment of
11 such a cryptographic system that may be employed for fully secure transmission of a
12 message over non-secure channels without the prior exchange of cryptographic keys,
13 according to the invention claimed herein.

14
15
16
17
18 DESCRIPTION OF THE PREFERRED EMBODIMENT
19

20 Referring to FIG. 1, a cryptographic system is shown in which all communication takes
21 place over a non-secure channel 21. The non-secure channel 21 may include a telephone
22 line, a radio connection, a cellular telephone connection, a fiber optic line, a microwave
23 connection, a coaxial line, an infrared optical link, or any other communication
24 technology that permits the transmission of information from a first location to a second
25 location. Two-way communication is exchanged on the non-secure channel 21 between
26 the initial converser 11 referred to as the transmitting party T and the second converser
27 31 referred to as the receiving party R using transceivers 22 and 23, for example digital
28 cellular telephones, modems, or any other mechanism for converting information into the
29 structure necessary for transmission by the non-secure channel 21. The transmitting
30 party 11 possesses a plaintext message P 10 to be communicated to the receiving party
31.

32 Both the transmitting party T 11 and the receiving party R 31 use cryptographic devices
33 12 and 32 respectively, for encrypting and decrypting information under the action of the
34 processes of this invention. Each cryptographic device 12 and 32 receives the output of
35 transformation generators 13 and 33 respectively. The first transformation generator 13
36 creates the transformations α 14, β 15 and β' 16 which are provided to the cryptographic
37 device 12. The transformation β' 16 is the reverse transformation or inversion of process
38 β 15. The second transformation generator 33 creates the transformations γ 34 and γ' 35
39 which are provided to the cryptographic device 32. The transformation γ' 35 is the
40 reverse transformation of γ 34.

41 The transmitting party T's 11 cryptographic device 12 encrypts the plaintext message P10
42 into the first cryptographic message C₁ 24 by transforming message P 10 through the
43 transformations α 14 and β 15 so that no reverse transformation is possible for the
44 resulting output C₁ 24. The first cryptographic message C₁ 24 is then transmitted through

1 the first transceiver 22, over the non-secure channel 21, and through the second
2 transceiver 23 to the receiving party R 31.

3
4 The receiving party R's 31 cryptographic device 32 further encrypts the received first
5 cryptographic message C₁ 24 into the second cryptographic message C₂ 25 by
6 transforming C₁ 24 through the transformation γ 34 so that no reverse transformation is
7 possible for the resulting output C₂ 25. The second cryptographic message C₂ 25 is then
8 transmitted through the second transceiver 23, back over the non-secure channel 21, and
9 through the first transceiver 22 to the transmitting party T 11.

10
11 The transmitting party T's 11 cryptographic device 12 partially decrypts the received
12 second cryptographic message C₂ 25 into the third cryptographic message C₃ 26 by
13 transforming C₂ 25 through the reverse transformation β' 16 so that no reverse
14 transformation is possible for the resulting output C₃ 26. The third cryptographic
15 message C₃ 26 is then transmitted through the first transceiver 22, over the non-secure
16 channel 21, and through the second transceiver 23 to the receiving party R 31.

17
18 The receiving party R's 31 cryptographic device 32 device further decrypts the received
19 third cryptographic message C₃ 26 by transforming C₃ 26 through the reverse
20 transformation γ' 35. The result now in the possession of the receiving party R 31 is the
21 output of the process α 14 embodying P 10. The receiving party R 31 removes the
22 plaintext message P 10 from its embodiment in the output of the transformation process α
23 14 to yield possession of the original message created by T 11. The receiving party R 31
24 does not know nor need to know the transmitting party T's 11 transformation process β
25 15 nor does the transmitting party T 11 know nor need to know the receiving party R's 31
26 transformation process γ 34. Both T 11 and R 31 know and utilize the transformation
27 process α 14, but α 14 can be publicly known or transmitted from T 11 to R 31 without
28 fear of interception, since the message P 10 cannot be decoded by an eavesdropper 41
29 who knows only transformation process α 14. Because the invention doesn't require
30 either party to possess or gain any information about the other's primary encryption
31 processes, the technique of the invention is designated as an independent-key process.
32

33 The cryptographic system of the invention includes a non-secure communications
34 channel 21, making it possible for an eavesdropper 41 that is not included in the
35 cryptographic system to receive all of the communications between the transmitting party
36 T 11 and the receiving party R 31. The eavesdropper 41 may possess a cryptographic
37 device 42 that includes the same processing capabilities and knowledge of the
38 transformation processes as the cryptographic devices 12 and 32 available to the
39 transmitting party T 11 and the receiving party R 31, and a transformation generator 43
40 that includes the same capabilities and available transformation processes as the
41 transformation generators 13 and 33 available to the transmitting party T 11 and the
42 receiving party R 31. However, even given the full content of the encrypted messages C₁
43 24, C₂ 25, and C₃ 26, the eavesdropper 41 cannot directly determine or otherwise deduce
44 the transformations α 14, β 15, or γ 34 to determine the original plaintext message P 10.
45 The best that the eavesdropper 41 can do with the information from the messages C₁ 24,
46 C₂ 25, and C₃ 26 is to establish some limited relationships between some of the

1 components of the messages. However, knowledge of those relationships alone is not
2 very informative or substantially useful to the eavesdropper 41 since the eavesdropper 41
3 would still have to guess the values of many specific components of the transformations.
4 Refining that relationship information would require an amount of effort by the
5 eavesdropper 41 no less than that required for a brute-force break of the cryptographic
6 system. Therefore, the cryptographic system is fully secure, being no more susceptible to
7 cryptanalytic attack than to a brute-force attack

8
9 As merely a general example of a possible embodiment of the processes of this invention,
10 the basic techniques of matrix algebra may be applied to create transformations that
11 satisfy the requirements of the invention. This example is demonstrated in FIG. 2. As
12 shown in FIG. 2, the transmitting party T 11 has a plaintext message P 10 to be
13 transmitted over a non-secure channel 21 to the receiving party R 31. The transmitting
14 party T 11 uses a transformation generator 13 to generate two transformations α 14 and β
15 such that β 15 can be reversed, but the combined transformation (α 14) (β 15) cannot
16 be reversed. The transformation α 14 for this example is the creation of a singular (i.e.,
17 non-invertible) matrix [A] 14 where the plaintext message P 10 is embodied in the upper
18 left block of the matrix and the remaining three blocks of the matrix are established by
19 the transformation process to be random or quasi-random elements which exhibit
20 characteristics such that the matrix [A] 14 cannot be inverted. The second transformation
21 β 15 is taken to be that of post-multiplying the matrix [A] 14 by an invertible matrix [B]
22 15 composed of random or quasi-random elements to create the first encrypted message
23 [AB] 24. The first encrypted message [AB] 24 which is created by the cryptographic
24 device 12 is singular or non-invertible because one of its key components – [A] 14
25 (which embodies P 10) – is singular. The transmitting party T 11 transmits the matrix of
26 elements in [AB] 24 to the receiving party R 31 over a non-secure channel 21. Upon
27 receipt of [AB] 24, the receiving party R 31 uses the transformation generator 33 to
28 generate the transformation γ 34 such that γ 34 can be reversed. For this example, the
29 transformation γ 34 is taken to be the process of pre-multiplying the matrix [AB] 24 by
30 an invertible matrix [C] 34 composed of random or quasi-random elements. Once the
31 cryptographic device 32 is used to apply the transformation γ 34 to matrix [AB] 24, the
32 resulting second encrypted message [CAB] 25 is also singular or non-invertible because
33 [A] 14, a key component of that result, is singular. The receiving party R 31 transmits
34 the matrix of elements in [CAB] 25 to the transmitting party T 11 over a non-secure
35 channel 21. Upon receipt of [CAB] 25, the transmitting party T further transforms
36 [CAB] 25 by post-multiplying the matrix [CAB] 25 by the inverse of the matrix [B] 15,
37 which is $[B]^{-1}$ 16. That post-multiplication effectively reverses the transformation β that
38 was the process of post-multiplying [A] 14 by [B] 15. The resulting third encrypted
39 message [CA] 26 is also singular or non-invertible because [A] 14 is still a component of
40 the result and is singular. The transmitting party T 11 transmits the matrix of elements in
41 [CA] 26 to the receiving party R 31 over a non-secure channel 21. Upon receipt of [CA]
42 26, the receiving party R 31 further transforms [CA] 26 by pre-multiplying the matrix
43 [CA] 26 by the inverse of the matrix [C] 34, which is $[C]^{-1}$ 35. That pre-multiplication
44 effectively reverses the transformation γ 34 that was the process of pre-multiplying [AB]
45 24 by [C] 34. The final result of these combined transformations (implemented in this
46 example as matrix multiplications) is the matrix [A] 14, which embodies the plaintext

1 message P 10 in its upper left block. That result is now in the possession of the receiving
2 party R 31. The receiving party R 31 does not know nor need to know the transmitting
3 party T's 11 transformation matrix [B] 15 nor does the transmitting party T 11 know nor
4 need to know the receiving party R's 31 transformation matrix [C] 34. Because the
5 invention doesn't require either party to possess or gain any information about the other's
6 primary encryption processes, the technique of the invention is designated as an
7 independent-key process.

8 A specific example of an embodiment of the processes of this invention using the basic
9 techniques of matrix algebra is shown in FIG. 3. As shown in FIG. 3, the transmitting
10 party T 11 has a plaintext message P 10 of the phrase "HI" to be transmitted over a non-
11 secure channel 21 to the receiving party R 31. The phrase "HI" is converted to a numeric
12 equivalent of "8, 9" using the conversion of "A" to "1", "B" to "2", etc. Other numeric
13 conversions of characters, such as for the standard ASCII character set, could be used.
14 The transmitting party T 11 generates two transformations α 14 and β 15 such that β 15
15 can be reversed, but the combined transformation (α 14) (β 15) cannot be reversed. The
16 transformation α 14 for this example is taken to be the creation of a singular (i.e., non-
17 invertible) matrix [A] 14 where the plaintext message P 10 is embodied in the upper left
18 area of the matrix and the remaining elements of the matrix are established by the
19 transformation process to be random or quasi-random elements which exhibit
20 characteristics such that the matrix [A] 14 cannot be inverted. The numeric equivalent
21 "8, 9" of the message "HI" is loaded in the upper left block of [A] 14 and the remaining
22 elements are chosen for this example to be "7, 5, 6, 3, 1, 0, 5" so that [A] 14 is non-
23 invertible. Thus, the transformation α 14 in this example converts the message "HI" to
24 the non-invertible matrix [A] 14. The second transformation β 15 is taken to be that of
25 post-multiplying the matrix [A] 14 by an invertible matrix [B] 15 composed of random or
26 quasi-random elements to create the first encrypted message [AB] 24. The matrix [B] 15
27 is chosen for this example to contain the elements "3, 4, 6, 2, 1, 1, 5, 8, 4" so the
28 transformation β 15 yields the resulting elements of [AB] 24 as "77, 97, 85, 42, 50, 48,
29 28, 44, 26". This first encrypted message [AB] 24 is singular or non-invertible. The
30 transmitting party T 11 transmits the matrix of elements in [AB] 24 to the receiving party
31 R 31 over a non-secure channel 21. Upon receipt of [AB] 24, the receiving party R 31
32 generates the transformation γ 34 such that γ 34 can be reversed. For this example, the
33 transformation γ 34 is taken to be the process of pre-multiplying the matrix [AB] 24 by
34 an invertible matrix [C] 34 composed of random or quasi-random elements. The matrix
35 [C] 34 is chosen for this example to contain the elements "5, 7, 1, 2, 3, 6, 4, 9, 0" so the
36 transformation γ 34 yields the resulting elements of [CAB] 25 as "707, 879, 787, 448,
37 608, 470, 686, 838, 772". The resulting second encrypted message [CAB] 25 also is
38 singular. The receiving party R 31 transmits the matrix of elements in [CAB] 25 to the
39 transmitting party T 11 over a non-secure channel 21. Upon receipt of [CAB] 25, the
40 transmitting party T further transforms [CAB] 25 by post-multiplying the matrix [CAB]
41 25 by the inverse of the matrix [B] 15, which is $[B]^{-1}$ 16. That post-multiplication
42 effectively reverses the transformation β that was the process of post-multiplying [A] 14
43 by [B] 15. The resulting third encrypted message [CA] 26 contains the elements "76, 87,
44 61, 37, 36, 53, 77, 90, 55" and also is singular or non-invertible because [A] 14 is still a
45 component of the result and is singular. The transmitting party T 11 transmits the matrix
46

1 of elements in [CA] 26 to the receiving party R 31 over a non-secure channel 21. Upon
2 receipt of [CA] 26, the receiving party R 31 further transforms [CA] 26 by pre-
3 multiplying the matrix [CA] 26 by the inverse of the matrix [C] 34, which is $[C]^{-1}$ 35.
4 That pre-multiplication effectively reverses the transformation γ 34 that was the process
5 of pre-multiplying [AB] 24 by [C] 34. The final result of these combined transformations
6 (implemented in this example as matrix multiplication) is the original matrix [A] 14 with
7 the elements "8, 9, 7, 5, 6, 3, 1, 0, 5"; which embodies the plaintext message P 10 entered
8 as "8, 9" in its upper left block. That result is now in the possession of the receiving
9 party R 31. The receiving party R 31 does not know nor need to know the transmitting
10 party T's 11 transformation matrix [B] 15 nor does the transmitting party T 11 know nor
11 need to know the receiving party R's 31 transformation matrix [C] 34 in order for the
12 plaintext message P 10 to be securely transmitted between the two.

13
14 The elements of the transformation matrices [B] 15 and [C] 34 and the non-message
15 elements of the matrix [A] 14 can be considered "key" elements and in conjunction with
16 the transformation processes could be labeled the "keys" to the cryptographic system of
17 this invention.

18
19 Because the cryptographic system of the invention includes a non-secure communications
20 channel 21, an eavesdropper 41 that is not included in the cryptographic system may
21 receive all of the communications between the transmitting party T 11 and the receiving
22 party R 31. The eavesdropper 41 may possess a cryptographic device 42 that includes the
23 same processing capabilities (matrix multiplication in the case of this example) and
24 knowledge of the transformation processes (matrix operations in the case of this example)
25 as the cryptographic devices 12 and 32 available to the transmitting party T 11 and the
26 receiving party R 31, and a transformation generator 43 that includes the same
27 capabilities and available transformation processes (matrix operations in the case of this
28 example) as the transformation generators 13 and 33 available to the transmitting party T
29 11 and the receiving party R 31. However, even given the full content of the encrypted
30 messages [AB] 24, [CAB] 25, and [CA] 26, the eavesdropper 41 cannot directly
31 determine or otherwise deduce the matrices [A] 14, [B] 15, or [C] 34 to determine the
32 original plaintext message P 10 because the observed matrices [AB] 24, [CAB] 25, and
33 [CA] 26 are not invertible. The best that the eavesdropper 41 can do with the information
34 from the messages [AB] 24, [CAB] 25, and [CA] 26 is to establish some limited linear
35 relationships between some of the elements of the message matrices. However,
36 knowledge of those linear relationships alone is not very informative or substantially
37 useful to the eavesdropper 41 since the eavesdropper 41 would still have to guess the
38 values of many specific elements in the matrices. Refining that linear relationship
39 information would require an amount of effort by the eavesdropper 41 no less than that
40 required for a brute-force break of the cryptographic system. Therefore, the
41 cryptographic system is fully secure, being no more susceptible to cryptanalytic attack
42 than to a brute-force attack.

43
44 The precise encrypted messages transmitted 24, 25, 26 between transmitting party T 11
45 and the receiving party R 31 depend on the plaintext message P 10 and the transformation
46 processes 14, 15, 34. The options for choices of the transformation processes 14, 15, 34

1 make possible nearly any observable combination of encrypted messages 24, 25, 26
2 regardless of the initial plaintext message P 10. The magnitude of the alternatives for
3 observable combinations of encrypted messages is so large as to frustrate any attempt by
4 an eavesdropper 41 to develop cryptanalytic approaches to attack the cryptographic
5 system.

6
7 Although the present invention has been described in terms of the presently preferred
8 embodiment, it is to be understood that such disclosure is purely illustrative and is not to
9 be interpreted as limiting. Consequently, without departing from the spirit and scope of
10 the invention, various alterations, modifications, and/or alternative applications of the
11 invention will, no doubt, be suggested to those skilled in the art after having read the
12 preceding disclosure. Accordingly, it is intended that the following claims be interpreted
13 as encompassing all alterations, modifications, or alternative applications as fall within
14 the true spirit and scope of the invention.
15