

TALLER DE ALGORITMOS

ESTRUCTURA DE CONTROL SECUENCIAL

Abel García Nájera Karen Miranda Campos Saúl Zapotecas Martínez

Universidad Autónoma Metropolitana Unidad Cuajimalpa

26 de octubre de 2023

RESUMEN: DIAGRAMAS DE FLUJO

RESUMEN: PSEUDOCÓDIGO

Símbolo	Significado
Algoritmo nombre algoritmo	El nombre y el inicio del algoritmo
Fin nombre algoritmo	Fin del algoritmo
leer identificadores	Recibe los datos de entrada
escribir identificadores	Arroja los datos de salida

ESTRUCTURA DE CONTROL SECUENCIAL

Estructura secuencial

Es aquella en la que las instrucciones están una a continuación de la otra, siguiendo una secuencia única y sin bifurcaciones en el flujo de ejecución.

ESTRUCTURA DE CONTROL SECUENCIAL

Estructura secuencial

Es aquella en la que las instrucciones están una a continuación de la otra, siguiendo una **secuencia única** y sin bifurcaciones en el flujo de ejecución.

Las instrucciones se ejecutan de manera estrictamente secuencial y cada una de ellas se ejecuta exactamente una vez.

DIAGRAMA DE FLUJO

En un diagrama de flujo, esta estructura se representa mediante un rectángulo por cada instrucción que se debe realizar.

Pseudocódigo

La estructura secuencial en pseudocódigo muestra las instrucciones en una lista comenzado en la instrucción 1 hasta llegar a la *n*-ésima instrucción a realizar, como se muestra en el siguiente ejemplo:

Instrucción 1

Instrucción 2

. . .

Instrucción n

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo:

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero)

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia:

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

1. Convertir los minutos (min) y los segundos (seg) a horas y sumar.

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

- 1. Convertir los minutos (min) y los segundos (seg) a horas y sumar.
- 2. Convertir los metros (metros) a kilómetros.

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

- 1. Convertir los minutos (min) y los segundos (seg) a horas y sumar.
- 2. Convertir los metros (metros) a kilómetros.
- 3. Dividir la distancia (en kilómetos) entre el tiempo (en horas).

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

- 1. Convertir los minutos (min) y los segundos (seg) a horas y sumar.
- 2. Convertir los metros (metros) a kilómetros.
- 3. Dividir la distancia (en kilómetos) entre el tiempo (en horas).

Datos auxiliares y de salida

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

- 1. Convertir los minutos (min) y los segundos (seg) a horas y sumar.
- 2. Convertir los metros (metros) a kilómetros.
- 3. Dividir la distancia (en kilómetos) entre el tiempo (en horas).

Datos auxiliares y de salida

Auxiliares:

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

- 1. Convertir los minutos (min) y los segundos (seg) a horas y sumar.
- 2. Convertir los metros (metros) a kilómetros.
- 3. Dividir la distancia (en kilómetos) entre el tiempo (en horas).

Datos auxiliares y de salida

Auxiliares: horas (tiempo, tipo real)

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

- 1. Convertir los minutos (min) y los segundos (seg) a horas y sumar.
- 2. Convertir los metros (metros) a kilómetros.
- 3. Dividir la distancia (en kilómetos) entre el tiempo (en horas).

Datos auxiliares y de salida

Auxiliares: horas (tiempo, tipo real), kilómetros (distancia, tipo real)

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

- 1. Convertir los minutos (min) y los segundos (seg) a horas y sumar.
- 2. Convertir los metros (metros) a kilómetros.
- 3. Dividir la distancia (en kilómetos) entre el tiempo (en horas).

Datos auxiliares y de salida

Auxiliares: horas (tiempo, tipo real), kilómetros (distancia, tipo real)

Salida:

Problema

En una competencia atlética de velocidad, el tiempo se mide en minutos y segundos (con centésimas) y la distancia recorrida se mide en metros. Diseña un algoritmo para determinar la velocidad de un atleta en km/h.

Datos de entrada

Tiempo: minutos (min, tipo entero), segundos (seg, tipo real)

Distancia: metros (metros, tipo entero)

Solución

- 1. Convertir los minutos (min) y los segundos (seg) a horas y sumar.
- 2. Convertir los metros (metros) a kilómetros.
- 3. Dividir la distancia (en kilómetos) entre el tiempo (en horas).

Datos auxiliares y de salida

Auxiliares: horas (tiempo, tipo real), kilómetros (distancia, tipo real)

Salida: velocidad (vel. tipo real)

ì

Diagrama de flujo

Diagrama de flujo

Diagrama de flujo

Algoritmo VelocidadAtleta

Algoritmo VelocidadAtleta

1: **leer** min, seg, metros

Algoritmo VelocidadAtleta

- 1: **leer** min, seg, metros
- 2: tiempo ← min/60

Algoritmo VelocidadAtleta

- 1: **leer** min, seg, metros
- 2: tiempo ← min/60
- 3: tiempo ← tiempo + seg/3600

Diagrama de flujo Algoritmo VelocidadAtleta min, seg, metros $tiempo \leftarrow min / 60$ $tiempo \leftarrow tiempo + seg / 3600$ $distancia \leftarrow metros / 1000$ vel ← distancia / tiempo "La velocidad es" vel Fin VelocidadAtleta

Pseudocódigo

Algoritmo VelocidadAtleta

- 1: **leer** min, seg, metros
- 2: tiempo ← min/60
- 3: tiempo ← tiempo + seg/3600
- 4: distancia ← metros/1000

Diagrama de flujo Algoritmo VelocidadAtleta min, seg, metros $tiempo \leftarrow min / 60$ $tiempo \leftarrow tiempo + seg / 3600$ $distancia \leftarrow metros / 1000$ vel ← distancia / tiempo "La velocidad es" vel Fin VelocidadAtleta

Pseudocódigo

Algoritmo VelocidadAtleta

- 1: **leer** min, seg, metros
- 2: tiempo ← min/60
- 3: tiempo ← tiempo + seg/3600
- 4: distancia ← metros/1000
- 5: $vel \leftarrow distancia/tiempo$

Diagrama de flujo Algoritmo VelocidadAtleta min, seg, metros $tiempo \leftarrow min / 60$ $tiempo \leftarrow tiempo + seg / 3600$ $distancia \leftarrow metros / 1000$ vel ← distancia / tiempo "La velocidad es" vel Fin VelocidadAtleta

Pseudocódigo

Algoritmo VelocidadAtleta

- 1: **leer** min, seg, metros
- 2: tiempo ← min/60
- 3: tiempo ← tiempo + seg/3600
- 4: distancia ← metros/1000
- 5: vel ← distancia/tiempo
- 6: escribir "La velocidad es" vel

Algoritmo VelocidadAtleta

- 1: **leer** min, seg, metros
- 2: tiempo ← min/60
- 3: tiempo ← tiempo + seg/3600
- 4: distancia ← metros/1000
- 5: vel ← distancia/tiempo
- 6: escribir "La velocidad es" vel

Fin VelocidadAtleta

Problema

Escribe un algoritmo para hacer una llamada telefónica (tradicional) desde un teléfono inteligente.

Problema

Escribe un algoritmo para hacer una llamada telefónica (tradicional) desde un teléfono inteligente.

Datos de entrada

Número telefónico (número, tipo entero)

Problema

Escribe un algoritmo para hacer una llamada telefónica (tradicional) desde un teléfono inteligente.

Datos de entrada

Número telefónico (número, tipo entero)

Solución

Problema

Escribe un algoritmo para hacer una llamada telefónica (tradicional) desde un teléfono inteligente.

Datos de entrada

Número telefónico (número, tipo entero)

Soluciór

1. Sacar al teléfono del estado de inactividad y marcar la contraseña de acceso.

Problema

Escribe un algoritmo para hacer una llamada telefónica (tradicional) desde un teléfono inteligente.

Datos de entrada

Número telefónico (número, tipo entero)

Soluciór

- 1. Sacar al teléfono del estado de inactividad y marcar la contraseña de acceso.
- 2. Oprimir el ícono de la función de teléfono.

Problema

Escribe un algoritmo para hacer una llamada telefónica (tradicional) desde un teléfono inteligente.

Datos de entrada

Número telefónico (número, tipo entero)

Soluciór

- 1. Sacar al teléfono del estado de inactividad y marcar la contraseña de acceso.
- 2. Oprimir el ícono de la función de teléfono.
- 3. Marcar el número y oprimir el botón de llamar.

Problema

Escribe un algoritmo para hacer una llamada telefónica (tradicional) desde un teléfono inteligente.

Datos de entrada

Número telefónico (número, tipo entero)

Solución

- 1. Sacar al teléfono del estado de inactividad y marcar la contraseña de acceso.
- 2. Oprimir el ícono de la función de teléfono.
- 3. Marcar el número y oprimir el botón de llamar.

Salida

Problema

Escribe un algoritmo para hacer una llamada telefónica (tradicional) desde un teléfono inteligente.

Datos de entrada

Número telefónico (número, tipo entero)

Solución

- 1. Sacar al teléfono del estado de inactividad y marcar la contraseña de acceso.
- 2. Oprimir el ícono de la función de teléfono.
- 3. Marcar el número y oprimir el botón de llamar.

Salida

Haciendo la llamada.

Diagrama de flujo Algoritmo HacerLlamada número Activar teléfono Marcar contraseña Oprimir aplicación Teléfono Marcar número Oprimir botón de llamar "Llamando a" número Fin HacerLlamada

Pseudocódigo

Algoritmo HacerLlamada

- 1: **leer** número
- 2: Activar teléfono
- 3: Marcar contraseña
- 4: Oprimir aplicación Teléfono
- 5: Marcar número
- 6: Oprimir botón de llamar
- 7: escribir "Llamando a" número

Fin HacerLlamada

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Soluciór

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Solución

1. Dividir los segundos entre 3,600 para conocer las horas.

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Solución

- 1. Dividir los segundos entre 3,600 para conocer las horas.
- 2. Los segundos restantes, dividirlos entre 60 para conocer los minutos.

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Solución

- 1. Dividir los segundos entre 3, 600 para conocer las horas.
- 2. Los segundos restantes, dividirlos entre 60 para conocer los minutos.
- 3. Los segundos que queden serán los segundos.

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Soluciór

- 1. Dividir los segundos entre 3, 600 para conocer las horas.
- 2. Los segundos restantes, dividirlos entre 60 para conocer los minutos.
- 3. Los segundos que queden serán los segundos.

Datos auxiliares y de salida

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Solución

- 1. Dividir los segundos entre 3, 600 para conocer las horas.
- 2. Los segundos restantes, dividirlos entre 60 para conocer los minutos.
- 3. Los segundos que queden serán los segundos.

Datos auxiliares y de salida

Auxiliares:

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Solución

- 1. Dividir los segundos entre 3, 600 para conocer las horas.
- 2. Los segundos restantes, dividirlos entre 60 para conocer los minutos.
- 3. Los segundos que queden serán los segundos.

Datos auxiliares y de salida

Auxiliares: segundos restantes (seg_rest, tipo entero)

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Solución

- 1. Dividir los segundos entre 3,600 para conocer las horas.
- 2. Los segundos restantes, dividirlos entre 60 para conocer los minutos.
- 3. Los segundos que queden serán los segundos.

Datos auxiliares y de salida

Auxiliares: segundos restantes (seg_rest, tipo entero)

Salida:

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Solución

- 1. Dividir los segundos entre 3, 600 para conocer las horas.
- 2. Los segundos restantes, dividirlos entre 60 para conocer los minutos.
- 3. Los segundos que queden serán los segundos.

Datos auxiliares y de salida

Auxiliares: segundos restantes (seg_rest, tipo entero)

Salida: horas (horas, tipo entero)

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Solución

- 1. Dividir los segundos entre 3, 600 para conocer las horas.
- 2. Los segundos restantes, dividirlos entre 60 para conocer los minutos.
- 3. Los segundos que queden serán los segundos.

Datos auxiliares y de salida

Auxiliares: segundos restantes (seg_rest, tipo entero)

Salida: horas (horas, tipo entero), minutos (min, tipo entero)

Problema

Dada una cantidad de segundos, escribe un algoritmo para conocer su equivalente en horas, minutos y segundos.

Datos de entrada

Segundos (segundos, tipo entero)

Solución

- 1. Dividir los segundos entre 3, 600 para conocer las horas.
- 2. Los segundos restantes, dividirlos entre 60 para conocer los minutos.
- 3. Los segundos que queden serán los segundos.

Datos auxiliares y de salida

Auxiliares: segundos restantes (seg_rest, tipo entero)

Salida: horas (horas, tipo entero), minutos (min, tipo entero),

segundos (seg_rest, tipo entero)

ALGORITMO

Diagrama de flujo Algoritmo Equivalencia Segundos segundos horas ← segundos / 3600 $seg_rest \leftarrow segundos\ MOD\ 3600$ $min \leftarrow seg rest / 60$ $seg_rest \leftarrow seg_rest\ MOD\ 60$ "Equivalente" horas ":" min ":" seg_rest Fin EquivalenciaSegundos

Diagrama de flujo

Pseudocódigo

Algoritmo EquivalenciaSegundos

- 1: **leer** segundos
- 2: horas ← segundos/3600
- 3: seg_rest ← segundos MOD 3600
- 4: min ← seg_rest/60
- 5: $seg_rest \leftarrow seg_rest MOD 60$
- 6: **escribir** "Equivalente" horas ":" min ":" seg_rest

Fin EquivalenciaSegundos

EJERCICIO 1

Problema

Un club deportivo ofrece un descuento a sus miembros de acuerdo a la cantidad de planes contratados y a la antigüedad de su membresía. El descuento se otorga si se cumple alguna de las siguientes condiciones:

- 1. La membresía tiene más de cinco años.
- 2. La membresía tiene más de tres años y se tienen contratados dos planes o más.
- 3. La membresía tiene más de un año y se tienen contratados más de tres planes.

Si de una membresía se conoce su antigüedad y el número de planes que tiene contratados, ¿tiene derecho al descuento?

EJERCICIO 2

Problema

Dada la hora del día en horas, minutos y segundos, determinar cuánto tiempo falta, en horas, minutos y segundos, para que el día finalice.