

Inteligencia Artificial & Machine Learning

Applicaciones en movilidad

Dr. Iván S. Razo Zapata

Reglas de asociación

Algoritmo Apriori

Reglas de asociación

- Encontrar asociaciones o correlaciones entre los elementos u objetos de bases de datos transaccionales
- Las reglas de asociación tienen diversas aplicaciones como:
 - Análisis de información de ventas
 - Distribución de mercancías en tiendas
 - Segmentación de clientes con base en patrones de compra

Reglas de asociación - Market Basket Analysis / Análisis de Canasta de Mercado

 Encontrar asociaciones entre los productos adquiridos por los clientes, que pueden impactar a las estrategias de mercadotecnia

Reglas de asociación - Idea general

	i
id1	p1,p2,p5
id2	p2,p4
id3	p2,p3
id4	p1,p2,p4
id5	p1,p3
id6	p2,p3
id7	p1,p3
id8	p1,p2,p3,p5
id9	p1,p2,p3

Reglas de asociación - Idea general

	X X
id1	p1,p2,p5
id2	p2,p4
id3	p2,p3
id4	p1,p2,p4
id5	p1,p3
id6	p2,p3
id7	p1,p3
id8	p1,p2,p3,p5
id9	p1,p2,p3

Encontrar los itemsets más frecuentes

Reglas de asociación – Conceptos básicos

Conjunto de transacciones

Transacción	Elementos Comprados
1	A,B,C
2	A,C
3	A,D
4	B,E,F

$$C \Rightarrow A$$

Si C Entonces A

Reglas de asociación - Conceptos básicos

Transacción	Elementos Comprados
1	A,B,C
2	A,C
3	A,D
4	B,E,F

$$C \Rightarrow A$$

- Una regla de asociación es una expresión de la forma X ⇒
 Z
- El significado intuitivo:
 - Las transacciones de la base de datos que contienen X tienden a contener Z

Reglas de asociación – Soporte y confianza

•Soporte:

 A ⇒ C: Porcentaje de las transacciones en que aparece el conjunto {A,C}

Confianza:

- A ⇒ C: De las transacciones en las que aparece A, porcentaje en las que también aparece C
- C ⇒ A: De las transacciones en las que aparece C, porcentaje en las que también aparece A

Transacción	Elementos Comprados
1	A,B,C
2	A,C
3	A,D
4	B,E,F

$$A \Rightarrow C$$
 (50%, 66%)
 $C \Rightarrow A$ (50%, 100%)

soporte

confianza

Algoritmo Apriori

Notación

- X = {i₁, i₂, ..., i_m} : conjunto (universo) de items
- D: Conjunto de transacciones
- T: Transacción que consiste de un grupo de ítems, i.e. $T \subseteq X$
- k-itemset: Un conjunto de k ítems
- C_k: Conjunto de k-itemsets candidatos
- Lk: Conjunto de k-itemsets "finales"

Fast Algorithms for Mining Association Rules

Rakesh Agrawal

Ramakrishnan Srikant*

IBM Almaden Research Center 650 Harry Road, San Jose, CA 95120

Idea general

- 1. Genera los itemsets
 - Genera todos los itemsets con un elemento
 - Toma todos los que cumplen con el mínimo soporte
 - Usa esos itemsets para generar los de dos elementos,
 - Toma todos los que cumplen con el mínimo soporte
 - Usa los nuevos itemsets para generar los de tres elementos y así sucesivamente
- 2. Genera las **reglas** revisando que cumplan con el criterio **mínimo de confianza**

Ejemplo

ID	Items
T1	A, C, D
T2	B, C, E
T3	A, B, C, E
T4	B, E
T5 ,	A, C, E

$$X = \{???\}$$

 C_1

ID	Items
T1	A, C, D
T2	B, C, E
T3	A, B, C, E
T4	B, E
T5	A, C, E

Itemset	Soporte
{A}	3/5
{B}	3/5
{C}	4/5
{D}	1/5
{E}	4/5

 \mathcal{C}_1

D	Item	S
T1	A, C,	D
T2	В, С,	E
T3	А, В,	C, E
T4	B, E	
T5	А, С,	E

Itemset	Soporte
{A}	3/5
{B}	3/5
{C}	4/5
{D}	1/5
{E}	4/5

Itemset	Soporte
{A}	3/5
{B}	3/5
{C}	4/5
{E}	4/5

ID	Items
T1	A, C, D
T2	B, C, E
T3	A, B, C, E
T4	B, E
T5	A, C, E

 C_2

Itemset	Soporte
{A,B}	1/5
{A,C}	3/5
{A,E}	2/5
{B,C}	2/5
{B,E}	3/5
{C,E}	3/5

Itemset	Soporte
{A,C}	3/5
{A,E}	2/5
{B,C}	2/5
{B,E}	3/5
{C,E}	3/5

ID	Items
T1	A, C, D
T2	B, C, E
T3	A, B, C, E
T4	B, E
T5	A, C, E

 C_3

Itemset	Soporte
{A,B,C}	1/5
{A,B,E}	1/5
{A,C,E}	2/5
{B,C,E}	2/5

Itemset	Soporte
{A,C,E}	2/5
{B,C,E}	2/5

_		
1	\boldsymbol{m}	
1	1 11	
1	. ,,	
	. ,,	

ID	Items
T1	A, C, D
T2	B, C, E
T3	A, B, C, E
T4	B, E
T5	A, C, E

 C_4

Itemset	Soporte
{A,B,C,E}	1/5

Itemset	Soporte

ID	Items
T1	A, C, D
T2	B, C, E
T3	A, B, C, E
T4	B, E
T5	A, C, E

Itemset	Soporte
{A,C,E}	2/5
{B,C,E}	2/5

Ejemplo - Generación de reglas

- Para cada conjunto I de items, genera todos sus subconjuntos S
- Para cada subconjunto s ⊂ l, genera una regla: s ⇒ (l s)

$$\frac{soporte(l)}{soporte(s)} \ge nivel de confianza$$

• Todas las reglas satisfacen los niveles mínimos de soporte

Ejemplo - Generación de reglas

ID	Items
T1	A, C, D
T2	B, C, E
T3	A, B, C, E
T4	B, E
T5	A, C, E

 L_{final}

Itemset	Soporte
{A,C,E}	2/5
{B,C,E}	2/5

$$\frac{soporte(l)}{soporte(s)} \ge 60\%$$

Generación de reglas - primer itemset

ID	Items							
T1	A, C, D							
T2	B, C, E							
T3	A, B, C, E							
T4	В, Е							
T5	A, C, E							

Itemset	Subconjuntos
{A,C,E}	{A,C}, {A,E}, {C,E}, {A}, {C}, {E}

- Regla 1: {A,C} ⇒ ({A,C,E} {A,C})
 - $\{A,C\} \Rightarrow E$
 - Confianza = soporte (A,C,E) / soporte (A,C) = 2 / 3 = 66.66%
- Regla 2: {A,E} ⇒ ({A,C,E} {A,E})
 - $\{A,E\} \Rightarrow C$
 - Confianza = soporte (A,C,E) / soporte (A,E) = 2 / 2 = 100%
- Regla 3: {C,E} ⇒ ({A,C,E} {C,E})
 - {C,E} ⇒ A
 - Confianza = soporte (A,C,E) / soporte (C,E) = 2 / 3 = 66.66%

Generación de reglas - primer itemset

 \square

ID	Items
T1	A, C, D
T2	B, C, E
T3	A, B, C, E
T4	В, Е
T5	A, C, E

Itemset	Subconjuntos
{A,C,E}	{A,C}, {A,E}, {C,E}, {A}, {C}, {E}

- Regla 4: {A} ⇒ ({A,C,E} {A})
 - $\{A\} \Rightarrow \{C,E\}$
 - Confianza = soporte (A,C,E) / soporte (A) = 2 / 3 = 66.66%
- Regla 5: {C} ⇒ ({A,C,E} {C})
 - $\{C\} \Rightarrow \{A,E\}$
 - Confianza = soporte (A,C,E) / soporte (C) = 2 / 4 = 50%
- Regla 6: $\{E\} \Rightarrow (\{A,C,E\} \{E\})$
 - $\{E\} \Rightarrow \{A,C\}$
 - Confianza = soporte (A,C,E) / soporte (E) = 2 / 4 = 50%

Generación de reglas – segundo itemset

ID	Items						
T1	A, C, D						
T2	B, C, E						
T3	A, B, C, E						
T4	В, Е						
T5	A, C, E						

Itemset	Subconjuntos
{B,C,E}	{B,C}, {B,E}, {C,E}, {B}, {C}, {E}

- Regla 7: {B,C} ⇒ ({B,C,E} {B,C})
 - $\{B,C\} \Rightarrow E$
 - Confianza = soporte (B,C,E) / soporte (B,C) = 2 / 2 = 100%
- Regla 8: $\{B,E\} \Rightarrow (\{B,C,E\} \{B,E\})$
 - $\{B,E\} \Rightarrow C$
 - Confianza = soporte (B,C,E) / soporte (B,E) = 2 / 3 = 66.66%
- Regla 9: {C,E} ⇒ ({B,C,E} {C,E})
 - $\{C,E\} \Rightarrow B$
 - Confianza = soporte (B,C,E) / soporte (C,E) = 2 / 3 = 66.66%

Generación de reglas – segundo itemset

ID	Items						
T1	A, C, D						
T2	B, C, E						
T3	A, B, C, E						
T4	В, Е						
T5	A, C, E						

Itemset	Subconjuntos
{B,C,E}	{B,C}, {B,E}, {C,E}, {B}, {C}, {E}

- Regla 10: {B} ⇒ ({A,C,E} {B})
 - $\{B\} \Rightarrow \{C,E\}$
 - Confianza = soporte (B,C,E) / soporte (B) = 2 / 3 = 66.66%
- Regla 11: {C} ⇒ ({B,C,E} {C})
 - $\{C\} \Rightarrow \{B,E\}$
 - Confianza = soporte (B,C,E) / soporte (C) = 2 / 4 = 50%
- Regla 12: {E} ⇒ ({B,C,E} {E})
 - $\{E\} \Rightarrow \{B,C\}$
 - Confianza = soporte (B,C,E) / soporte (E) = 2 / 4 = 50%

Ejemplo - Python

```
import pandas as pd
from mlxtend.preprocessing import TransactionEncoder
from mlxtend.frequent_patterns import apriori, association_rules
```

```
# Genera los itemsets
items_frecuentes = apriori(df, min_support=0.4, use_colnames=True)

# Genera las reglas
reglas = association_rules(items_frecuentes, metric ="confidence", min_threshold = 0.6)
reglas = reglas.sort_values(['confidence'], ascending =[False])
reglas.head()
```

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
0	(A)	(C)	0.6	0.8	0.6	1.00	1.25	0.12	inf	0.500000
5	(B)	(E)	0.6	0.8	0.6	1.00	1.25	0.12	inf	0.500000
8	(E, A)	(C)	0.4	0.8	0.4	1.00	1.25	0.08	inf	0.333333
14	(B, C)	(E)	0.4	0.8	0.4	1.00	1.25	0.08	inf	0.333333
1	(C)	(A)	0.8	0.6	0.6	0.75	1.25	0.12	1.6	1.000000

Ejemplo - Python

items_frecuentes

100	support	itemsets
0	0.6	(A)
1	0.6	(B)
2	0.8	(C)
3	0.8	(E)
4	0.6	(A, C)
5	0.4	(E, A)
6	0.4	(B, C)
7	0.6	(E, B)
8	0.6	(E, C)
9	0.4	(E, A, C)
10	0.4	(E, B, C)

Ejemplo - Python

reglas

	antecedents	consequents	antecedent support	consequent support	support	confidence	lift	leverage	conviction	zhangs_metric
0	(A)	(C)	0.6	0.8	0.6	1.000000	1.250000	0.12	inf	0.500000
5	(B)	(E)	0.6	0.8	0.6	1.000000	1.250000	0.12	inf	0.500000
8	(E, A)	(C)	0.4	0.8	0.4	1.000000	1.250000	0.08	inf	0.333333
14	(B, C)	(E)	0.4	0.8	0.4	1.000000	1.250000	0.08	inf	0.333333
1	(C)	(A)	0.8	0.6	0.6	0.750000	1.250000	0.12	1.6	1.000000
4	(E)	(B)	0.8	0.6	0.6	0.750000	1.250000	0.12	1.6	1.000000
6	(E)	(C)	0.8	0.8	0.6	0.750000	0.937500	-0.04	0.8	-0.250000
7	(C)	(E)	0.8	0.8	0.6	0.750000	0.937500	-0.04	0.8	-0.250000
2	(A)	(E)	0.6	0.8	0.4	0.666667	0.833333	-0.08	0.6	-0.333333
3	(B)	(C)	0.6	0.8	0.4	0.666667	0.833333	-0.08	0.6	-0.333333
9	(E, C)	(A)	0.6	0.6	0.4	0.666667	1.111111	0.04	1.2	0.250000
10	(A, C)	(E)	0.6	0.8	0.4	0.666667	0.833333	-0.08	0.6	-0.333333
11	(A)	(E, C)	0.6	0.6	0.4	0.666667	1.111111	0.04	1.2	0.250000
12	(E, B)	(C)	0.6	0.8	0.4	0.666667	0.833333	-0.08	0.6	-0.333333
13	(E, C)	(B)	0.6	0.6	0.4	0.666667	1.111111	0.04	1.2	0.250000
15	(B)	(E, C)	0.6	0.6	0.4	0.666667	1.111111	0.04	1.2	0.250000

Lift

$$lift(X \to Y) = \frac{confianza(X \to Y)}{soporte(Y)}$$

- 1. Cuando lift es mayor a 1, Y tiene alta probabilidad de ser comprado cuando se adquiere X
- 2. Cuando lift es menor a 1, Y tiene poca probabilidad de ser comprado cuando se adquiere X
- 3. Cuando lift es igual a 1, Y y X son independientes

Algunas de las razones del porqué funciona Apriori

- Se enfoca en los (sub)conjuntos más frecuentes
 - Si un subconjunto es poco frecuente, los super-conjuntos de dicho subconjunto también serán poco frecuentes
- Las transacciones suelen seguir leyes de potencia
 - P.ej. Google, Amazon,
 - Regla 80 : 20
 - El 80% de tus clientes está interesado en el 20% de tus productos / servicios
 - "80% of sales come from 20% of clients"
 - "Microsoft noted that by fixing the top 20% of the most-reported bugs, 80% of the related errors and crashes in a given system would be eliminated"

Reglas de asociación - Wrap up

Transaction	Items
1	nappies
2	beer, crisps
3	apples, nappies
4	beer, crisps, nappies
5	apples
6	apples, beer, crisps, nappies
7	apples, crisps
8	crisps

Reglas de asociación - Wrap up

Engineering

Founded by the Royal Academy of Engineering and Lloyd's Register Foundation

GRACIAS

https://hubiq.mx/

MUBIORO HUBIO in HUBIORO