IOI Training Camp 2018 Final Test 1

Circular Intervals

The integers 0 to M-1 have been arranged in a circular fashion. That is, 0, 1, 2, ..., M-1, are in that order and also, 0 and M-1 are next to each other. The distance between any two adjacent numbers on this circle is 1. You are given N intervals on this, such that no two intervals touch or intersect with each other. The i-th interval will be of the form $[L_i, R_i]$. This means that the i-th interval contains all the integers between L_i and R_i , both end points inclusive. You are supposed to mark exactly one number inside each interval, in such a way that the minimum distance between any two marked numbers is maximized.

More formally, we have $0 \le L_1 \le R_1 < L_2 \le R_2 < L_3 \ldots < L_N \le R_N \le M-1$. You are supposed to mark exactly N numbers: $A_1, A_2, \ldots A_N$, such that $L_i \le A_i \le R_i$ for all $1 \le i \le N$. And you want to do it in such a manner $\min_{i \ne j}$ (shortest distance between A_i and A_j), is maximized.

Input

First line of the input contains a pair of integers M and N.

The i-th of the next N lines contains two numbers L_i and R_i which denote the end points of the i-th interval.

Output

A single integer denoting the answer.

General Constraints

Unless otherwise mentioned, the following constraints are met throughout all subtasks:

- $1 < M < 10^{18}$
- $2 \le N \le 10^6$

Subtasks

Subtask 1 (10 Points):

- $1 \le M \le 10000$
- $2 \le N \le 100$

Subtask 2 (25 Points):

- $1 \le M \le 10^{18}$
- $\bullet \ 2 \leq N \leq 10^3$

Subtask 3 (65 Points):

• No further constraints.

Sample Input 1

- 9 3
- 0 2
- 3 4
- 5 7

Sample Output 1

3

Explanation

We can choose $A_1 = 0, A_2 = 3, A_3 = 6$. The distance between every adjacent marked pair of numbers is 3, and hence that is the minimum. You can check that you cannot do any better, and hence 3 is the answer.

Limits

Time: 4 seconds Memory: 512 MB