Экзамен «Множества. Основные понятия»

Летняя многопрофильная школа при МЦНМО, кафедра математики, 2011

Для сдачи экзамена необходимо уметь решать все задачи из приведенного списка.

- 1. Могут ли старейший шахматист среди математиков и старейший математик среди шахматистов быть разными людьми? А лучший шахматист среди математиков и лучший математик среди шахматистов?
- **2.** Какие из следующих равенств верны для произвольных множеств A, B, C?
 - 1) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$;
 - 2) $(A \cup B) \cap C = (A \cap C) \cup (B \cap C)$;
 - 3) $A \cap (B \setminus C) \vee (A \cap B) \setminus C \vee (A \setminus C) \cap B$;
 - 4) $(A \backslash B) \cup (B \backslash A) = (A \cup B) \backslash (A \cap B)$;
 - 5) $(A\triangle B)\triangle C = A\triangle (B\triangle C)$;
 - 6) $(A \cup B) \setminus C = (A \setminus C) \cup B$.
- **3.** Найдите количество всех подмножеств конечного множества A, состоящего из n элементов.
- **4.** Какие из следующих отображений являются инъекциями, сюръекциями, биекциями (если не указано противное, то предполагается, что $f: \mathbb{R} \to \mathbb{R}$)? 1) $f(x) = x^2$; 2) $f(x) = x^3$; 3) f(x) = 2x 3; 4) $f(x) = e^x$;
- 5) f: {множество всех людей} \rightarrow {множество всех людей}, f сопоставляет каждому человеку отца этого человека;
 - 6) $f \colon \mathbb{R}^2 \to \mathbb{R}$, каждой точке f сопоставляет ее ординату.
- **5.** По нарисованному от руки графику функции найдите ее множество определения и множество значений. Определите, является ли эта функция инъекцией, сюръекций, биекцией.
- 6. Какие функции будут обратны к следующим:
 - 1) f(x) = ax + b
 - 2) $f(x) = \frac{ax+b}{cx+d}$
- **7.** Какие из следующих утверждений верны для любой функции $f: X \to Y$ и любых множеств $A, B \subset X$ и $C, D \subset Y$?
 - 1) $f(A) = \emptyset \Leftrightarrow A = \emptyset$;
 - 2) $f^{-1}(C) = \emptyset \Leftrightarrow C = \emptyset$;
 - 3) $f(A) = Y \Leftrightarrow A = X$;
 - 4) $f^{-1}(C) = X \Leftrightarrow C = Y$;
 - 5) $A \subset B \Leftrightarrow f(A) \subset f(B)$;
 - 6) $C \subset D \Leftrightarrow f^{-1}(C) \subset f^{-1}(D)$;
 - 7) $f(A \cap B) = f(A) \cap f(B)$;
 - 8) $f(A \cup B) = f(A) \cup f(B)$.
- 8. Приведите пример функций f и g, для которых $f \circ g \neq g \circ f$.