线性系统的频域分析法 频域稳定性判据

- 1 Nyquist 稳定性判据
 - 辐角原理
 - 辐角原理 (续):
 - 辐角原理的应用
 - 辐角原理的应用 (续)
 - 示意图
 - ●将 Γ 分为两段:
 - Nyquist 判据, 例 1:
 - Nyquist 图
 - 稳定性判断
 - 虚轴上有极点时
 - 示意图
 - 将 Γ 分为四段:
 - 穿越次数
 - Nyquist 图穿越次数
 - 例: $G_o(s) = \frac{10}{s(s+1)}$
- Bode 稳定性判据Bode 稳定性判据

- B_IGNOREHEADING:BMCOL BMCOL:B_BLOCK
 - BMCOL:B_BLOCK BMCOL:B_BLOCK
- B_IGNOREHEADING:BMCOL BMCOL:B BLOCK
 - BMCOL:B_BLOCK BMCOL:B_BLOCK

● Bode 图● 稳定性判断

BMCOL:B_IGNOREHEADING BMCOL:B_BLOCK

Topic

- 1 Nyquist 稳定性判据
 - 辐角原理← 左右原理 (は)
 - 辐角原理 (续):
 - 辐角原理的应用
 - 辐角原理的应用 (续)
 - 示意图
 - 将 Ⅰ 分为内段:
 - Nyquist 判据, 例 1:
 - Nyquist 图
 - 虚轴上有极点时
 - 业刊上/月/ - 示音图
 - ●将 Г 分为四段:
 - 穿越次数
 - Nyquist B
 - 9 穿越次数
 - 例: $G_o(s) = \frac{10}{s(s+1)}$
- 2 Bode 稳定性判据

B_IGNOREHEADING:BMCOL BMCOL:B BLOCK

> BMCOL:B_BLOCK BMCOL:B_BLOCK

B_IGNOREHEADING:BMCOL BMCOL:B BLOCK

> BMCOL:B_BLOCK BMCOL:B_BLOCK

• 设 s 为复变量, F(s) 为 s 的有理分式函数. 对于 s 平面上任意一点 s, 通过复变函数 F(s) 的映射关系, 可以确定 s 的象.

• 在 s 平面上任选一条闭合曲线 Γ , 且不通过 F(s) 任一零点和极点, s 沿闭合曲线 Γ 运动一周, 则相应地 F(s) 形成一条闭合曲线 Γ_F .

设 s 平面闭合曲线 Γ 包围 F(s) 的 Z 个零点和 P 个极点, 则 s 沿 Γ 顺时针运动一周时, 在 F(s) 平面上, F(s) 沿闭合曲线 Γ_F 逆时 针包围原点的圈数为 R=P-Z.

$$\Phi(s) = \frac{G(s)}{1 + G(s)H(s)}$$

$$= \frac{G(s)}{1 + G_o(s)}$$

$$= \frac{G(s)}{F(s)}$$

$$F(s) = 1 + G_o(s)$$

- F(s) 的极点是系统开环极点,
- F(s) 的零点是系统的闭环极点.

- Γ_1 : $s = j\omega, \omega \in [-\infty, \infty]$
- 可得对应的 $G_o(s)$ 曲线.
 - s 在 Γ_1 上时,与 Nyquist 图对应.($\omega \in [0,\infty]$)
 - s 在 Γ_1 上时, $F(s) = 1 + G_o(s) = 1 + \lim_{R \to \infty} Re^{i\theta} G_o(s) = 1$
- Nyquist 判規
 - 对于开环稳定系统 (P=0), 若 Nyquist 曲线不包含 (-1,0)

。 对于开环不稳定系统 (P>0), 若 Nyquist 曲线逆时针包围 (-1,0) 点的次数为 ♀ ,则系统稳定.

某负反馈开环传递函数为 $G_o(s)=\frac{10}{s-1}$, 用 Nyquist 判据判断系统稳定性.

$$P = 1$$

$$N = \frac{1}{2}$$

$$P - Z = 2N$$

$$Z = P - 2N$$

$$= 0$$

系统稳定.

- 零型系统 F(s) 沿 Γ 解析且不为 0.
- | 型及以上系统 F(s) 在 s=0 处不解析, 不满足辐角原理条件.

- Γ_1 : $s = j\omega, \omega \in [-\infty, 0^-]$
- Γ_2 : $s = j\omega, \omega \in [0^+, \infty]$
- $\Gamma_3: s = \lim_{R \to \infty} Re^{i\theta}, \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$

- Γ_0 : $s = \lim_{\epsilon \to 0} \epsilon e^{i\theta}, \theta \in [-\frac{\pi}{2}, \frac{\pi}{2}]$
- 对增补后的 Nyquist 图可使用 Nyquist 判据.

• 根据增补后的 Nyquist 曲线穿越 (-1,0) 点左侧的次数可得 Γ_F 包围原点的圈数

$$R = 2N$$
$$= 2(N_{+} - N_{-})$$

其中.

- N+ 为正穿越 (自上向下) 次数

Topic

- 辐角原理 (续):
- 辐角原理的应用 (续)

Bode 稳定性判据

- 截止频率 ω_c : $A(\omega_c) = 0$
- 穿越频率 ω_x : $\phi(\omega_x) = (2k+1)\pi$
- Bode 判据
 - 最小相位系统, 若在 $\omega < \omega_c$ 前 $N_+ N_- = 0$, 则系统稳定
 - 非最小相位系统, 若在 $\omega < \omega_c$ 前 $N_{\perp} N_{\perp} = \frac{P}{2}$, 则系统稳定