a).

Conclusion: there are no significant overall trends for both series.

Conclusion: the share series distribute approximately around 34%.

① For the series TOYOTA_SA:

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.262284	0.1853
Test critical values:	1% level	-3.457984	_
	5% level	-2.873596	
	10% level	-2.573270	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(TOYOTA_SA) Method: Least Squares

Date: 05/11/17 Time: 21:08 Sample (adjusted): 5 240

Included observations: 236 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
TOYOTA_SA(-1) D(TOYOTA_SA(-1)) D(TOYOTA_SA(-2)) D(TOYOTA_SA(-3)) C	-0.083219	0.036785	-2.262284	0.0246
	-0.562974	0.069879	-8.056450	0.0000
	-0.324306	0.074474	-4.354644	0.0000
	-0.063922	0.064993	-0.983522	0.3264
	19281.89	8430.410	2.287183	0.0231

Coefficient for y_{t-1} : -0.083219;

Standard error: 0.036785;

T-statistic: -2.262284>-2.873596, so y_t is non-stationary.

② For the series OTHER_SA:

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-2.105676	0.2427
Test critical values:	1% level	-3.457984	
	5% level	-2.873596	
	10% level	-2.573270	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation Dependent Variable: D(OTHER_SA) Method: Least Squares Date: 05/11/17 Time: 21:18 Sample (adjusted): 5 240 Included observations: 236 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
OTHER_SA(-1)	-0.069629	0.033067	-2.105676	0.0363
D(OTHER_SA(-1))	-0.511201	0.067529	-7.570088	
D(OTHER_SA(-2))	-0.361391	0.070328	-5.138674	0.0000
D(OTHER_SA(-3))	-0.102970	0.064515	-1.596055	0.1118
C	31540.36	14808.77	2.129844	0.0342

Coefficient for x_{t-1} : -0.069629;

Standard error: 0.033067;

T-statistic: -2.105676 > -2.873596, so x_t is non-stationary.

c).

$$y_t = 26786.43 + 0.45x_t + e_t$$

Generate e_t series and report ADF-test for e_t :

		t-Statistic	Prob.*
Augmented Dickey-Fuller test statistic		-4.305705	0.0005
Test critical values:	1% level	-3.457984	
	5% level	-2.873596	
	10% level	-2.573270	

^{*}MacKinnon (1996) one-sided p-values.

Augmented Dickey-Fuller Test Equation

Dependent Variable: D(ET) Method: Least Squares Date: 05/11/17 Time: 21:39 Sample (adjusted): 5 240

Included observations: 236 after adjustments

Variable	Coefficient	Std. Error	t-Statistic	Prob.
ET(-1)	-0.292972	0.068043	-4.305705	0.0000
D(ET(-1)) D(ET(-2))	-0.285835 -0.141649	0.078535 0.075368	-3.639592 -1.879447	0.0003 0.0614
D(ET(-3))	-0.095954	0.065689	-1.460736	0.1454
С	24.99171	847.8255	0.029477	0.9765

Coefficient for e_{t-1} : -0.292972;

Standard error: 0.068043; T-statistic: -4.305705<-3.4

So the two series are co-integrated.

d).

$$\frac{2}{\sqrt{n}} = \frac{2}{\sqrt{239}} = 0.13$$
, then an AR(3) model is suggested

Check the significance for an AR(12) model:

Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	210.7123	310.9685	0.677600	0.4988
AR(1)	-0.616186	0.066677	-9.241373	0.0000
AR(2)	-0.302303	0.078864	-3.833200	0.0002
AR(3)	-0.257939	0.079313	-3.252174	0.0013
AR(4)	-0.269779	0.081194	-3.322635	0.0010
AR(5)	-0.231531	0.083573	-2.770409	0.0061
AR(6)	-0.121424	0.084462	-1.437608	0.1520
AR(7)	-0.131161	0.084369	-1.554611	0.1215
AR(8)	0.044962	0.083311	0.539688	0.5900
AR(9)	0.035734	0.081863	0.436513	0.6629
AR(10)	-0.264654	0.079810	-3.316031	0.0011
AR(11)	-0.043273	0.078774	-0.549335	0.5833
AR(12)	0.219708	0.066243	3.316713	0.0011

Significant only for AR(1) to AR(5), AR(10) and AR(12).

Variable	Coefficient	Std. Error	t-Statistic	Prob.
C AR(1) AR(2) AR(3) AR(4) AR(5) AR(10) AR(12)	225.3147 -0.598336 -0.263441 -0.227296 -0.229657 -0.152029 -0.268302 0.246490	368.1762 0.061684 0.075962 0.074892 0.071902 0.060955 0.052360 0.054629	0.611975 -9.700089 -3.468040 -3.035000 -3.194017 -2.494113 -5.124203 4.512071	0.5412 0.0000 0.0006 0.0027 0.0016 0.0134 0.0000 0.0000
R-squared Adjusted R-squared S.E. of regression Sum squared resid Log likelihood F-statistic Prob(F-statistic)	0.444685 0.426935 13824.47 4.19E+10 -2482.289 25.05295 0.000000	Mean depend S.D. depende Akaike info cri Schwarz critei Hannan-Quin Durbin-Watso	lent var ent var iterion rion n criter.	145.6979 18261.93 21.94087 22.06158 21.98958 2.071775

Modified model:

$$\begin{split} \Delta y_t &= 225.32 - 0.60 \Delta y_{t-1} - 0.26 \Delta y_{t-2} - 0.23 \Delta y_{t-3} - 0.23 \Delta y_{t-4} - 0.15 \Delta y_{t-5} - 0.27 \Delta y_{t-10} \\ &\quad + 0.25 \Delta y_{t-12} + \epsilon_t \end{split}$$

e). ECM:

$$\begin{split} \Delta y_t &= 4728.01 - 0.15 \times (y_{t-1} - 0.45x_{t-1}) - 0.52\Delta y_{t-1} - 0.19\Delta y_{t-2} - 0.16\Delta y_{t-3} - 0.18\Delta y_{t-4} \\ &- 0.13\Delta y_{t-5} - 0.27\Delta y_{t-10} + 0.25\Delta y_{t-12} + \epsilon_t \end{split}$$

T-statistic for the EC term $(y_{t-1} - 0.45x_{t-1}) = -2.16$

As
$$-2.60(\alpha = 0.01) < -2.16 < -1.97(\alpha = 0.05)$$
,

the EC term is significant at 5% level, but not at 1% level.

f).

	AR	ECM
RMSE	16992	19205
MAE	14703	15556

ECM performs even worse than the AR model, so the error correction term does no help for out-of sample forcasting.