Edge Detection

Most of the slides in this lecture are either from or adapted from Dr. Mubarak Shah's slides (Uni. Of Central Florida)

Contents

- Gradient operators
 - Prewit
 - Sobel
- Laplacian of Gaussian (Marr-Hildreth)
- Gradient of Gaussian (Canny)

This lecture

Next lecture

Edge detection

- Goal: Identify sudden changes (discontinuities) in an image
 - Intuitively, most semantic and shape information from the image can be encoded in the edges
 - More compact than pixels
- Ideal: artist's line drawing (but artist is also using object-level knowledge)

Edge Detection in Images

At edges intensity or color changes

Origin of Edges

Edges are caused by a variety of factors

45 years of boundary detection

Results of Method (RM)

Results of Method (RM)

Ground Truth (GT)

Results of Method (RM)

Ground Truth (GT)

Results of Method (RM)

True Positives (TP)

Ground Truth (GT)

Results of Method (RM)

True Positives (TP)

True Negatives (TN)

Evaluation Metrics

Ground Truth (GT)

Results of Method (RM)

True Positives (TP)

True Negatives (TN)

False Positives (FP)

Evaluation Metrics

Ground Truth (GT)

Results of Method (RM)

True Positives (TP)

True Negatives (TN)

False Negatives (FN)

False Positives (FP)

Evaluation Metrics

$$precision = \frac{GT \bigcap RM}{RM} = \frac{TP}{RM}$$

$$recall = \frac{GT \bigcap RM}{GT} = \frac{TP}{GT}$$

Ground Truth (GT)

Results of Method (RM)

True Positives (TP)

True Negatives (TN)

False Negatives (FN)

False Positives (FP)

Slide Credit: James Hays

For more:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/bench/html/108082-color.html

Results

Slide Credit: James Hays

Slide Credit: James Hays

What is an Edge?

- Discontinuity of intensities in the image
- Edge models
 - Step
 - Roof
 - Ramp
 - Spike

 An edge is a place of rapid change in the image intensity function

 An edge is a place of rapid change in the image intensity function

 An edge is a place of rapid change in the image intensity function

An edge is a place of rapid change in the image intensity function

Intensity profile

Intensity Function along horizontal line

Intensity profile

Intensity Profile of a little noisy image

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Effects of noise

- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal

Where is the edge?

• To find edges, look for peaks in $\frac{d}{dx}(f*g)$

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Derivative theorem of convolution

- Differentiation is convolution, and convolution is associative: $\frac{d}{dx}(f*g) = f*\frac{d}{dx}g$
- This saves us one operation:

Image derivatives

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon) - f(x)}{\varepsilon} \right) \longrightarrow \frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}) - f(x)}{\partial x}$$

Convolve image with derivative filters

Image derivatives

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon) - f(x)}{\varepsilon} \right) \longrightarrow \frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}) - f(x)}{\partial x}$$

Convolve image with derivative filters

Backward difference [-1 1]

Image derivatives

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon) - f(x)}{\varepsilon} \right) \longrightarrow \frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}) - f(x)}{\partial x}$$

Convolve image with derivative filters

Backward difference [-1 1]

Forward difference [1 -1]

Image derivatives

$$\frac{\partial f}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon) - f(x)}{\varepsilon} \right) \longrightarrow \frac{\partial f}{\partial x} \approx \frac{f(x_{n+1}) - f(x)}{\partial x}$$

Convolve image with derivative filters

Backward difference [-1 1]

Forward difference [1 -1]

Central difference [-1 0 1]

Definition

Definition

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon} \right)$$

Definition

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon} \right) \qquad \frac{\partial f(x,y)}{\partial y} = \lim_{\varepsilon \to 0} \left(\frac{f(x,y+\varepsilon) - f(x,y)}{\varepsilon} \right)$$

$$\frac{\partial f(x, y)}{\partial y} = \lim_{\varepsilon \to 0} \left(\frac{f(x, y + \varepsilon) - f(x, y)}{\varepsilon} \right)$$

Definition

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon} \right) \qquad \frac{\partial f(x,y)}{\partial y} = \lim_{\varepsilon \to 0} \left(\frac{f(x,y+\varepsilon) - f(x,y)}{\varepsilon} \right)$$

$$\frac{\partial f(x, y)}{\partial y} = \lim_{\varepsilon \to 0} \left(\frac{f(x, y + \varepsilon) - f(x, y)}{\varepsilon} \right)$$

$$f_x = \begin{bmatrix} 1 & -1 \end{bmatrix}$$

Definition

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \left(\frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon} \right) \qquad \frac{\partial f(x,y)}{\partial y} = \lim_{\varepsilon \to 0} \left(\frac{f(x,y+\varepsilon) - f(x,y)}{\varepsilon} \right)$$

$$\frac{\partial f(x, y)}{\partial y} = \lim_{\varepsilon \to 0} \left(\frac{f(x, y + \varepsilon) - f(x, y)}{\varepsilon} \right)$$

$$f_x = \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$f_{y} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Image I

$$I_{x} = I * \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$I_{y} = I * \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Image I

$$I_x = I * \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$I_{y} = I * \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Image I

$$I_{x} = I * \begin{bmatrix} 1 & -1 \end{bmatrix}$$

$$I_{y} = I * \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Image I

 $I_x = I * \begin{bmatrix} 1 & -1 \end{bmatrix}$

$$I_{y} = I * \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$

Edge Detectors

Edge Detectors

- Gradient operators
 - Prewit
 - Sobel
- Laplacian of Gaussian (Marr-Hildreth)
- Gradient of Gaussian (Canny)

- Compute derivatives
 - In x and y directions

- Compute derivatives
 - In x and y directions
- Find gradient magnitude

- Compute derivatives
 - In x and y directions
- Find gradient magnitude
- Threshold gradient magnitude

image

image average smoothing in x

image

image

image average smoothing in x

image

