Localização simples de objetos, pirâmides de imagens e interpolação

PROF. CESAR HENRIQUE COMIN

Suponha que temos uma imagem de um carro, e queremos encontrar esse carro em uma outra imagem (uma cena).

Para encontrar o carro, podemos "deslizar" a imagem do carro ao longo da imagem maior, e calcular a diferença quadrática entre os pixels da imagem do carro e a imagem maior.

Imagem qualquer:

Imagem do objeto:

Objeto está aqui!

Seja I_o a imagem do carro, de tamanho $R \times C$, e I_g a imagem a ser analisada, a diferença quadrática entre os pixels das imagens I_o e I_g na posição (r,c) é dada por

$$d(r,c) = \sum_{s=0}^{R-1} \sum_{t=0}^{C-1} [I_g(r+s-R/2,c+t-C/2) - I_o(s,t)]^2$$

Seja I_o a imagem do carro, de tamanho $R \times C$, e I_g a imagem a ser analisada, a diferença quadrática entre os pixels das imagens I_o e I_g na posição (r,c) é dada por

$$d(r,c) = \sum_{s=0}^{R-1} \sum_{t=0}^{C-1} [I_g(r+s-R/2,c+t-C/2) - I_o(s,t)]^2$$

Exemplo

Imagem

5	2	0	1	4
2	4	1	3	2
3	2	3	2	4
0	2	3	4	5
2	1	0	2	3

Imagem objeto

2	3	2
2	3	4
1	0	2

Exemplo

Imagem

5	2	0	1	4
2	4	1	3	2
3	2	3	2	4
0	2	3	4	5
2	1	0	2	3

Imagem diferença

Imagem objeto

2	თ	2
2	3	4
1	0	2

Para o pixel (1,2):

$$d(1,2) = (2-2)^2 + (0-3)^2 + (1-2)^2 + (4-2)^2 + (1-3)^2 + (3-4)^2 + (2-1)^2 + (3-0)^2 + (2-2)^2$$

Exemplo

Imagem

5	2	0	1	4
2	4	1	თ	2
3	2	3	2	4
0	2	3	4	5
2	1	0	2	3

Imagem diferença

		-	
	29		

Imagem objeto

2	3	2
2	3	4
1	0	2

Para o pixel (1,2):

$$d(1,2) = (2-2)^2 + (0-3)^2 + (1-2)^2 + (4-2)^2 + (1-3)^2 + (3-4)^2 + (2-1)^2 + (3-0)^2 + (2-2)^2$$

$$d(1,2) = 29$$

Exemplo

Imagem

5	2	0	1	4
2	4	1	თ	2
3	2	3	2	4
0	2	3	4	5
2	1	0	2	3

Imagem diferença

38	61	46	34	47
23	33	29	29	45
18	11	27	32	61
27	15	0	15	43
32	31	23	22	33

Imagem objeto

2	3	2
2	3	4
1	0	2

Exemplo

Imagem

5	2	0	1	4
2	4	1	3	2
3	2	3	2	4
0	2	3	4	5
2	1	0	2	3

Imagem objeto

2	3	2
2	3	4
1	0	2

Imagem diferença

38	61	46	34	47
23	33	29	29	45
18	11	27	32	61
27	15	0	15	43
32	31	23	22	33

Menor valor de diferença

Seja I_o a imagem do carro, de tamanho $R \times C$, e I_g a imagem a ser analisada, a diferença quadrática entre I_o e I_g na posição (r,c) é dada por

$$d(r,c) = \sum_{s=0}^{R-1} \sum_{t=0}^{C-1} [I_g(r+s-R/2,c+t-C/2) - I_o(s,t)]^2$$

- O pixel (r,c) para o qual d(r,c) é mínimo indica a posição do objeto na imagem.
- Essa técnica é chamada de template matching.

A diferença quadrática pode ser calculada utilizando correlação-cruzada!

$$d(r,c) = \sum_{s=0}^{R-1} \sum_{t=0}^{C-1} [I_g(r+s-R/2,c+t-C/2) - I_o(s,t)]^2$$

A diferença quadrática pode ser calculada utilizando correlação-cruzada!

$$d(r,c) = \sum_{s=0}^{R-1} \sum_{t=0}^{C-1} [I_g(r+s-R/2,c+t-C/2) - I_o(s,t)]^2$$

$$d(r,c) = \sum_{s=0}^{R-1} \sum_{t=0}^{C-1} I_g(r+s-R/2,c+t-C/2)^2 + I_o(s,t)^2 -2I_g(r+s-R/2,c+t-C/2)I_o(s,t)$$

$$d(r,c) = I_g(r,c)^2 \circ w + S_{I_o} - 2I_g(r,c) \circ I_o$$

Onde w é um filtro de mesmo tamanho que o objeto, possuindo valor 1 em todas as posições e S_{I_o} o quadrado da soma dos valores do objeto.

Notebook "Localização de objeto"

Mas o que ocorre se a imagem do objeto for menor do que o objeto presente na imagem maior?

Objeto:

Imagem:

Está aqui? Não

Está aqui? Não

Está aqui? Não

Está aqui? Também não! A imagem do objeto é menor que o objeto contido na cena

- Pirâmides de imagens é uma forma de analisarmos imagens em diferentes escalas.
- É construída uma pirâmide da imagem, cada nível possui uma fração do tamanho do nível anterior.
- É muito comum considerar que cada nível possui metade do tamanho do anterior

Exemplo:

No nosso caso:

Se buscarmos o objeto em cada imagem (da menor para a maior) encontramos ele em uma das imagens.

- Como diminuímos o tamanho da imagem?
- A abordagem mais simples é eliminarmos algumas linhas e colunas da imagem.
- Por exemplo, se queremos uma imagem com 1/3 do tamanho, eliminamos as linhas e colunas de índice [1, 2, 4, 5, 7, 8, ...]
 - Em outras palavras, mantemos apenas as linhas e colunas de índice [0, 3, 6, 9, ...]

- Como diminuímos o tamanho da imagem?
- A abordagem mais simples é eliminarmos algumas linhas e colunas da imagem.
- Por exemplo, se queremos uma imagem com 1/3 do tamanho, eliminamos as linhas e colunas de índice [1, 2, 4, 5, 7, 8, ...]
 - Em outras palavras, mantemos apenas as linhas e colunas de índice [0, 3, 6, 9, ...]

O problema dessa abordagem é que a imagem amostrada terá uma taxa de amostragem menor que a da imagem original, o que leva a aliasing.

1/2

1/4

- A solução é suavizar a imagem antes de diminuir a resolução (downsampling).
- Lembrete: suavização elimina altas frequências.
- Uma abordagem muito comum é a aplicação de suavização gaussiana utilizando um valor de σ adequado. Nesse caso, obtemos uma pirâmide gaussiana.

Pirâmides de imagens

Gaussiana 1/4

Pirâmide gaussiana

- No caso da pirâmide gaussiana, é muito comum reduzir o tamanho da imagem pela metade para cada nível da pirâmide.
- O seguinte filtro (kernel) é utilizado para suavizar a imagem antes da reamostragem:

1 256×	1	4	6	4	1
	4	16	24	16	4
	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

Pirâmide gaussiana – Construção do nível 2

Filtro gaussiano:

$\frac{1}{256} \times$	1	4	6	4	1
	4	16	24	16	4
	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

Pirâmide gaussiana – Construção do nível 3

Filtro gaussiano:

$\frac{1}{256} \times$	1	4	6	4	1
	4	16	24	16	4
	6	24	36	24	6
	4	16	24	16	4
	1	4	6	4	1

Pirâmide gaussiana

Notebook "Pirâmide gaussiana"

Pirâmide gaussiana

Vimos como reduzir o tamanho de uma imagem. Será que podemos também aumentar o seu tamanho?

Interpolação de imagens

Sim! O procedimento utilizado para aumentar a resolução de uma imagem (ou de um sinal qualquer) é chamado de **interpolação**.

Interpolação de um sinal 1D

Vamos supor que temos o seguinte sinal

Interpolação de um sinal 1D

• Conhecemos o valor desse sinal nos pontos x=5, x=6, x=7, x=8, x=9, x=10 e x=11. Ou seja, temos um intervalo de amostragem $\Delta x=1$

Interpolação de um sinal 1D

- Conhecemos o valor desse sinal nos pontos x=5, x=6, x=7, x=8, x=9, x=10 e x=11. Ou seja, temos um intervalo de amostragem $\Delta x=1$
- Nosso objetivo é diminuir o intervalo de amostragem para $\Delta x = 0.5$
- Para isso, precisamos estimar os valores do sinal nos pontos x=5.5, x=6.5, x=7.5, x=8.5, x=9.5 e x=10.5

- A interpolação mais simples que podemos fazer é a de vizinho mais próximo
- Nesse caso, associamos ao ponto desconhecido o valor mais próximo que conhecemos do sinal
- Caso haja dois pontos mais próximos, escolhemos apenas um dos pontos

- A interpolação mais simples que podemos fazer é a de vizinho mais próximo
- Nesse caso, associamos ao ponto desconhecido o valor mais próximo que conhecemos do sinal
- Caso haja dois pontos mais próximos, escolhemos apenas um dos pontos

- A interpolação mais simples que podemos fazer é a de vizinho mais próximo
- Nesse caso, associamos ao ponto desconhecido o valor mais próximo que conhecemos do sinal
- Caso haja dois pontos mais próximos, escolhemos apenas um dos pontos
- Dizemos que essa interpolação possui ordem 0

• Na interpolação linear, para cada ponto desconhecido x_0 utilizamos o ponto conhecido à esquerda de x_0 , que chamaremos de x_e , e o ponto conhecido à direita de x, que chamaremos de x_d .

- Na interpolação linear, para cada ponto desconhecido x_0 utilizamos o ponto conhecido à esquerda de x_0 , que chamaremos de x_e , e o ponto conhecido à direita de x, que chamaremos de x_d .
- Definimos uma reta passando pelos pontos x_e e x_d , e utilizamos a equação dessa reta para encontrar o valor do sinal no ponto x

$$y_0 = y_e + \frac{y_d - y_e}{x_d - x_e} (x_0 - x_d)$$

- Na interpolação linear, para cada ponto desconhecido x_0 utilizamos o ponto conhecido à esquerda de x_0 , que chamaremos de x_e , e o ponto conhecido à direita de x, que chamaremos de x_d .
- Definimos uma reta passando pelos pontos x_e e x_d , e utilizamos a equação dessa reta para encontrar o valor do sinal no ponto x
- Essa interpolação possui ordem 1, pois ela é formada por retas e garante a continuidade do sinal (o que não ocorre na interpolação de ordem 0)

$$y_0 = y_e + \frac{y_d - y_e}{x_d - x_e} (x_0 - x_e)$$

Interpolação cúbica

- Provavelmente o tipo de interpolação mais utilizado.
- Possui diferentes definições
- Tipicamente, os dois vizinhos à esquerda e à direita do ponto desconhecido são utilizados (4 pontos no total)

Interpolação cúbica

- Provavelmente o tipo de interpolação mais utilizado.
- Possui diferentes definições
- Tipicamente, os dois vizinhos à esquerda e à direita do ponto desconhecido são utilizados (4 pontos no total)
- Essa interpolação possui ordem 3, pois é formada por polinômios de grau 3 e garante a continuidade do sinal e de sua primeira e segunda derivada
- O sinal resultante é mais suave do que no caso da interpolação linear
- Veremos mais adiante como calcular essa interpolação

Interpolação por convolução

Os procedimentos de interpolação que acabamos de ver podem ser definidos utilizando correlação-cruzada ou convolução.

• Lembrando do nosso objetivo, encontrar os valores desconhecidos do sinal superamostrado (com maior resolução que o original)

Vamos definir o seguinte filtro caixa

$$W = [0, 0, 1, 1, 0, 0, 0]$$

Vamos definir o seguinte filtro caixa

$$W = [0, 0, 1, 1, 0, 0, 0]$$

 Vamos agora definir um novo array, possuindo os valores do sinal original intercalados pelo valor 0

• Se calcularmos a correlação-cruzada entre f(x) e w, obtemos exatamente a interpolação por vizinho mais próximo!

W = [0, 0, 1, 1, 0, 0, 0]

Vamos agora definir um novo filtro w_2 , calculado pela correlação-cruzada de dois filtros caixa e normalizado por 2

$$w_2 = \frac{w \circ w}{2}$$

$$w_2 = [0, 0, 0.5, 1, 0.5, 0, 0]$$

Esse filtro é uma função triângulo

A correlação-cruzada do sinal com o filtro w_2 é equivalente a fazermos uma interpolação linear.

w = [0, 0, 0.5, 1, 0.5, 0, 0]

Podemos também definir o filtro w_3 , calculado pela correlação-cruzada de dois filtros w_3 e normalizado por 2

$$w_3 = \frac{w_2 \circ w_2}{2}$$

$$w_3 = [0, 0.125, 0.5, 0.75, 0.5, 0.125, 0]$$

Esse filtro é **aproximadamente** uma interpolação cúbica. Não temos realmente uma interpolação cúbica porque o filtro altera os valores conhecidos do sinal.

Interpolação cúbica por correlaçãocruzada

Para aplicarmos a interpolação cúbica (ordem 3) exata, utilizamos o seguinte filtro

 $W_c = [-0.0625, 0, 0.5625, 1, 0.5625, 0, -0.0625]$

Interpolação por correlação-cruzada

Definição geral de interpolação por convolução:

- Dado um sinal f_n possuindo intervalo de amostragem Δx , a interpolação exata de ordem 0 ou 1, ou a interpolação aproximada de ordem 3 desse sinal pode ser feita utilizando correlação-cruzada.
- Se queremos interpolar o sinal com um intervalo de amostragem igual a $\Delta x/r$, onde r é um número inteiro maior que 1, utilizamos o seguinte procedimento:

Interpolação por correlação-cruzada

Definição geral de interpolação por convolução:

- Dado um sinal f_n possuindo intervalo de amostragem Δx , a interpolação exata de ordem 0 ou 1, ou a interpolação aproximada de ordem 3 desse sinal pode ser feita utilizando correlação-cruzada.
- Se queremos interpolar o sinal com um intervalo de amostragem igual a $\Delta x/r$, onde r é um número inteiro maior que 1, utilizamos o seguinte procedimento:
- 1. Gere um novo sinal \tilde{f}_n , definido da seguinte forma:

$$\tilde{f}_n = \begin{cases} f_n, & \text{se } n \text{ divisível por } r \\ 0, & \text{caso contrário} \end{cases}$$

- 2. Defina um filtro caixa w de altura 1 e largura r
- 3. Para interpolação de ordem 0, 1, ou 3, utilize o respectivo filtro $w_0=w$, $w_1=w\circ w$ ou w_c
- 4. Calcule a correlação-cruzada entre $ilde{f_n}$ e o filtro gerado

Caso r não seja inteiro, a interpolação é feita pelos procedimentos que vimos anteriormente (sem usar convolução)

Interpolação de sinais

Notebook "Interpolação 1D"

- Usualmente implementadas em conjunto com pirâmides gaussianas.
- Cada nível da pirâmide é dado pela diferença entre a interpolação do nível i da pirâmide gaussiana e o nível i+1 da mesma.

Imagem original

Suavização e subamostragem

Imagem subamostrada

Superamostragem e interpolação

Imagem diferença

/ Subtração

Imagem interpolada

 Note que podemos recuperar exatamente a imagem original se tivermos a imagem subamostrada e a imagem diferença

Imagem subamostrada

Imagem diferença

Imagem subamostrada

Superamostragem e interpolação

Imagem diferença

Imagem original

Imagem diferença

Imagem subamostrada

Superamostragem e interpolação

Soma

- Se armazenarmos apenas a imagem do topo da pirâmide gaussiana e as imagens da pirâmide laplaciana, podemos reconstruir exatamente a imagem original.
- Algoritmos de compressão conseguem reduzir bastante o espaço necessário para armazenar a pirâmide laplaciana, pois esta possui muitos valores iguais ou próximos a zero.

Pirâmides de imagens

Pirâmides laplacianas também podem ser utilizadas para misturar duas imagens

Projeto 2

- Não utilizar funções prontas para implementar o principal conceito associado ao tema. Na dúvida, pergunte que funções/bibliotecas podem ser utilizadas no projeto.
- Entregáveis:
 - Código produzido (a organização do código também será avaliada!)
 - O Um artigo escrito em Latex (\sim 6 páginas em coluna dupla ou \sim 10 em coluna única) contendo:
 - Resumo
 - Introdução
 - Motivação do uso do método (porque usar? Em que situações ele é importante?)
 - Objetivos
 - O que será analisado sobre o método?
 - Metodologia
 - Explicação sobre a teoria do método
 - Explicação sobre a parte mais importante do código
 - Resultados
 - Conclusões
- Data de entrega: 07/02

- 1. Análise experimental de complexidade da convolução espacial e por FFT
- 2. Filtro passa baixa e passa-alta butterworth
- 3. Template matching por correlação de Pearson
- 4. Template matching com variação de luminosidade
- 5. Construção da pirâmide laplaciana
- 6. Template matching com variação de escala

- Análise experimental de complexidade da convolução espacial e por FFT
- Meça experimentalmente o tempo necessário para calcular a convolução entre um sinal 1D e um filtro 1D em dois casos:
 - Convolução espacial
 - Convolução utilizando a FFT
- Considere diferentes tamanhos para o sinal e para o filtro
- A partir de qual tamanho de sinal e de filtro a FFT passa a ser mais vantajosa?
- Faça o mesmo procedimento para imagens
- Para calcular as convoluções, utilize as funções

Convolução espacial: convolve(signal, filter, method='direct') Convolução por FFT: convolve(signal, filter, method='fft')

Faça gráficos com as medidas de tempo

 Para medir o tempo, utilize o módulo time import time
 current time = time.time() Tempo ↑

- Implemente a filtragem passa-baixa e passa-alta utilizando o filtro Butterworth
- Dois parâmetros: D_0 e n
- Faça uma análise exploratória (com figuras) da influência dos diferentes valores de n e D_0 no resultado
- Qual um possível critério para selecionar o melhor n?

Passa-baixa

$$H(\mu, \nu) = \frac{1}{1 + \left(\frac{D(\mu, \nu)}{D_0}\right)^{2n}}$$

$$D(\mu, \nu) = \sqrt{\mu^2 + \nu^2}$$

Passa-alta

$$H(\mu, \nu) = \frac{1}{1 + \left(\frac{D_0}{D(\mu, \nu)}\right)^{2n}}$$

• Template matching utilizando correlação de Pearson

$$d(r,c) = \frac{\sum_{s=0}^{R-1} \sum_{t=0}^{C-1} (I_g(r+s-R/2,c+t-C/2) - \mu_{rc})(I_o(s,t) - \mu_{I_o})}{\sqrt{\sigma_{rc}^2 \sigma_{I_o}^2}}$$

Seja \tilde{I}_g a região da imagem I_g que está sob o template I_o quando este está na posição (r,c). As quantias que aparecem na equação são dadas por:

 μ_{rc} : Média dos valores de $ilde{I}_g$

 μ_{I_o} : Média dos valores da imagem template I_o

 σ_{rc} : Desvio padrão dos valores de $ilde{I}_g$

 σ_{I_o} : Desvio padrão dos valores da imagem template I_o

A média e desvio padrão de uma imagem I podem ser calculadas, respectivamente, pelas funções numpy.mean(I) e numpy.std(I).

Template matching com variação de iluminação

- Na técnica de template matching, podemos ter uma imagem de template com iluminação diferente da cena global
- Implemente uma técnica de template matching com variação de luminosidade utilizando a transformação pontual de lei de potência.
- A ideia é aplicar o template matching entre a imagem global (imagem maior) e diferentes versões da imagem template I_o , cada uma gerada através da transformação de potência da imagem template com respectivo expoente γ :

$$I_o(\gamma) = (I_o)^{\gamma}$$

O procedimento é o seguinte:

- 1. Gere uma imagem de diferenças quadráticas entre a imagem global e o template transformado $I_o(\gamma)$
- 2. Calcule a menor diferença $D_{min}(\gamma)$
- 3. Repita 1 e 2 para diferentes valores de γ
- 4. Calcule o valor de γ que leva ao menor valor de $D_{min}(\gamma)$. Esse é o valor ideal de γ para transformar o template
- 5. Retorne a posição da menor diferença quadrática encontrada para o γ ideal

Imagem global

Template

Transformação lei de potência

Template transformado

Construção da pirâmide Laplaciana

- Faça um programa que constrói a pirâmide Laplaciana da forma especificada na aula 7 (alguns slides acima)
- Verifique o que acontece com a reconstrução se alguns níveis específicos da pirâmide forem apagados (associar valor 0 a todos os pixels).
- Verifique o que acontece se as pirâmides de duas imagens forem misturadas (a imagem no topo de uma pirâmide ser usada com as imagens diferenças de outra pirâmide)

- Implemente a técnica de template matching na pirâmide gaussiana
- O programa calcula as diferenças quadráticas entre cada nível da pirâmide e a imagem template. O resultado para cada nível é plotado.
- O programa então identifica o menor valor de diferença entre todos os níveis da pirâmide.
- Importante plotar a diferença em função da escala:

