

Regularization and Optimization

Reminders/Comments

- Thought question due today
- Assignment 1 marks should be done today
 - Write your name on the assignment to make it easier for TAs
- Updated notes for I1-regularization, to clarify the algorithm
 - You will implement this for Assignment 2
- Appendix in notes has a discussion on second-order optimization

Bias-variance summary

$$\begin{aligned} \text{MSE}(\mathbf{w}, \boldsymbol{\omega}) &= \mathbb{E}[||\mathbf{w} - \boldsymbol{\omega}||_2^2] \\ &= \mathbb{E}[\sum_{j=1}^d (\mathbf{w}_j - \boldsymbol{\omega}_j)^2] \\ &= \sum_{j=1}^d \mathbb{E}[(\mathbf{w}_j - \boldsymbol{\omega}_j)^2] \\ &= \sum_{j=1}^d \text{Bias}(\mathbf{w}_j, \boldsymbol{\omega}_j)^2 + \text{Var}(\mathbf{w}_j) \\ \text{Bias}(\mathbf{w}_j, \boldsymbol{\omega}_j) &= \mathbb{E}[\mathbf{w}_j] - \boldsymbol{\omega}_j \end{aligned}$$

12 regularization trades off bias and variance

Regularization and bias

- We picked a Gaussian prior and obtained I2 regularization
- We discussed the bias of this regularization
 - no regularization was unbiased E[w] = true w
 - with regularization meant E[w] was not equal to the true w

$$\mathbb{E}[(w - w_{\text{true}})^2] = \text{Bias}(w , w_{\text{true}})^2 + \text{Variance}(w)$$

Bias-variance trade-off

Thought question

- How can we tell which model is a good model?
- We've discussed doing this empirically. But how?

Measuring error

- What if you train many different models on a batch of data, check their accuracy on that data, and pick the best one?
 - Imagine your are predicting how much energy your appliances will use today
 - You train your models on all previous data for energy use in your home
 - How well will this perform in the real world?
- What if the models you are testing are only different in terms of the regularization parameter lambda that they use? What will you find?

Simulating generalization error

Simulating generalization error

- Now we have one model, trained similarly to how it will be trained, and a measure of accuracy on new data (but distributed identically to trained data)
- What if we pick the model with the best test accuracy?

Exercise: Regularization and MAP

- Discussed that MAP and ML converge to same estimate
 - ML has lambda = 0
 - MAP has lambda > 0 indicating level of variance apriori assumed on the elements in w
- Does that happen here?

$$\mathbf{w} = (\mathbf{X}^{\top}\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

Regularization intuition

Figure 4.5: A comparison between Gaussian and Laplace priors. The Gaussian prior prefers the values to be near zero, whereas the Laplace prior more strongly prefers the values to equal zero.

11 regularization

Feature selection, as well as preventing large weight

How do we solve this optimization?

$$\min_{\mathbf{w} \in \mathbb{R}^d} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + \lambda \|\mathbf{w}\|_1$$

Why should you care about the solution strategies?

- Understanding the optimization approaches behind the algorithms makes you more effectively choose which algorithm to run
- Understanding the optimization approaches makes you formalize your problem more effectively
 - otherwise you might formalize a very hard optimization problem; sometimes with minor modifications, can significantly simplify for the solvers, without impacting properties of solution significantly
- When you want to do something outside the given packages or solvers (which is often true)
- …also its fun!

Where does gradient descent come from?

- Taylor series expansion with
 - First order for gradient second
 - Second order for Newton-Raphson method (also called second-order gradient descent)

Gradient descent

Algorithm 1: Batch Gradient Descent(Err, **X**, **y**)

```
1: // A non-optimized, basic implementation of batch gradient descent
```

```
2: \mathbf{w} \leftarrow \text{random vector in } \mathbb{R}^d
```

```
3: err \leftarrow \infty
```

4: tolerance
$$\leftarrow 10e^{-4}$$

5:
$$\alpha \leftarrow 0.1$$

6: while
$$|\text{Err}(\mathbf{w}) - \text{err}| > \text{tolerance do}$$

```
7: \operatorname{err} \leftarrow \operatorname{Err}(\mathbf{w})
```

8: // The step-size α should be chosen by line-search

9:
$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla \text{Err}(\mathbf{w}) = \mathbf{w} - \alpha \mathbf{X}^{\top} (\mathbf{X} \mathbf{w} - \mathbf{y})$$

10: return w

Recall: for error function $E(\mathbf{w})$ goal is to solve $\nabla E(\mathbf{w}) = \mathbf{0}$

Taylor series expansion

A function f(x) in the neighborhood of point x_0 , can be approximated using the Taylor series as

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n,$$

where $f^{(n)}(x_0)$ is the *n*-th derivative of function f(x) evaluated at point x_0 .

e.g.
$$f(x) \approx f(x_0) + (x - x_0)f'(x_0) + \frac{1}{2}(x - x_0)^2 f''(x_0)$$
.

Multivariate Taylor series

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot H_{f(\mathbf{x}_0)} \cdot (\mathbf{x} - \mathbf{x}_0),$$

$$\nabla f(\mathbf{x}) = \left(\frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_k}\right)$$

$$H_{f(\mathbf{x})} = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_k} \\ \frac{\partial^2 f}{\partial x_2 \partial x_1} & \frac{\partial^2 f}{\partial x_2^2} & & & \\ \vdots & & \ddots & & \\ \frac{\partial^2 f}{\partial x_k \partial x_1} & & \frac{\partial^2 f}{\partial x_k^2} & & \frac{\partial^2 f}{\partial x_k^2} \end{bmatrix}$$

First and Second Order

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot H_{f(\mathbf{x}_0)} \cdot (\mathbf{x} - \mathbf{x}_0),$$

- If we only have access to the function and the first derivate (gradient) and not the Hessian, then first-order
- If have Hessian, can use second-order techniques
 - Mostly removes the need for a step-size parameter, and/or makes the choice of this parameter much less sensitive
- For certain situations, computing the Hessian is too expensive (in space and computation) and so first-order methods are used OR quasi-second order (LBFGS)
 - e.g., huge number of features

Second-order: Newton-Raphson for single-variate setting

$$f(x) \approx f(x_0) + (x - x_0)f'(x_0) + \frac{1}{2}(x - x_0)^2 f''(x_0).$$
$$f'(x) \approx f'(x_0) + (x - x_0)f''(x_0) = 0.$$

Solving this equation for x gives us

Iterating gives us:

$$x = x_0 - \frac{f'(x_0)}{f''(x_0)}.$$

$$x^{(i+1)} = x^{(i)} - \frac{f'(x^{(i)})}{f''(x^{(i)})}.$$

Second-order: Newton-Raphson for multi-variate setting

$$f(\mathbf{x}) \approx f(\mathbf{x}_0) + \nabla f(\mathbf{x}_0)^T \cdot (\mathbf{x} - \mathbf{x}_0) + \frac{1}{2} (\mathbf{x} - \mathbf{x}_0)^T \cdot H_{f(\mathbf{x}_0)} \cdot (\mathbf{x} - \mathbf{x}_0),$$

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \left(H_{f(\mathbf{x}^{(i)})}\right)^{-1} \cdot \nabla f(\mathbf{x}^{(i)}),$$

Feb. 20

Python demo

- Code uses object-oriented programming
- Main script_regression.py runs algorithms on a dataset
 - loads data
 - splits data
 - gather errors from running algorithms
- regressionalgorithms.py contains algorithm code
 - parent class Regressor
 - all regression algorithms are child classes
- utils.py contains some useful additional functions

Thought exercise

- Why do we care about line search? What does it gain us?
- Why do we care about first-order gradient descent versus second-order gradient descent (Newton-Rhapson)?
- Additional possible questions you have
 - Why do we want to find an optimal point, w, with minimum loss(w)?
 - I don't understand why gradient descent converges to a point with gradient = 0, or I don't understand why we want that
 - Why do we use gradient descent? Can we search the space of values some other way (like a binary search)?
 - Does the amount of data influence whether we obtain local or global solutions?

Line search

Want step-size such that

$$\alpha = \arg\min_{\alpha} E(\mathbf{w} - \alpha \nabla E(\mathbf{w}))$$

Backtracking line search:

- 1. Start with relatively large α (say $\alpha = 1$)
- 2. Check if $E(\mathbf{w} \alpha \nabla E(\mathbf{w})) < E(\mathbf{w})$
- 3. If yes, use that α
- 4. Otherwise, decrease α (e.g., $\alpha = \alpha/2$), and check again

Intuition for first and second order

- Locally approximate function at current point
- For first order, locally approximate as linear and step in the direction of the minimum of that linear function
- For second order, locally approximate as quadratic and step in the direction of the minimum of that quadratic function
 - a quadratic approximation is more accurate
- What happens if the true function is quadratic?

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} - \left(H_{f(\mathbf{x}^{(i)})}\right)^{-1} \cdot \nabla f(\mathbf{x}^{(i)}),$$

Newton in red

Batch gradient descent

 We obtain a sample average of the true gradient using a batch of data

For batch error:
$$\hat{E}(\mathbf{w}) = \sum_{t=1}^{n} E_t(\mathbf{w})$$
 e.g., $E_t(\mathbf{w}) = (\mathbf{x}_t^{\top} \mathbf{w} - y_t)^2$

Unbiased gradient

$$\mathbb{E}\left[\frac{1}{n}\nabla\hat{E}(\mathbf{w})\right] = \frac{1}{n}\mathbb{E}\left[\sum_{i=1}^{n}\nabla E_{i}(\mathbf{w})\right]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[\nabla E_{i}(\mathbf{w})]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[\nabla E(\mathbf{w})]$$

$$= \frac{1}{n}\sum_{i=1}^{n}\nabla E(\mathbf{w})$$

$$= \nabla E(\mathbf{w})$$

Stochastic gradient descent

 Stochastic gradient descent (stochastic approximation) minimizes with only one instance, which still gives an unbiased sample of the gradient

$$\mathbb{E}[\nabla E_t(\mathbf{w})] = \nabla E(\mathbf{w})$$

Algorithm 2: Stochastic Gradient Descent $(E, \mathbf{X}, \mathbf{y})$

```
1: \mathbf{w} \leftarrow \text{random vector in } \mathbb{R}^d
```

2: **for** t = 1, ..., n **do**

3: // For some settings, we need the step-size α_t to decrease with time

4: $\mathbf{w} \leftarrow \mathbf{w} - \alpha_t \nabla E_t(\mathbf{w}) = \mathbf{w} - \alpha_t (\mathbf{x}_t^\top \mathbf{w} - y_t) \mathbf{x}_t$

5: end for

6: return w

Stochastic gradient descent

 Can also approximate gradient with more than one sample (e.g., mini-batch), as long as

$$\mathbb{E}[\nabla E_t(\mathbf{w})] = \nabla E(\mathbf{w})$$

- Proof of convergence and conditions on step-size: Robbins-Monro ("A Stochastic Approximation Method", Robbins and Monro, 1951)
- A big focus in recent years in the machine learning community; many new approaches for improving convergence rate, reducing variance, etc.
 - adadelta, adagrad, adam for neural networks