Gradient Descent

Brief review of most basic optimisation approach in ML

Optimisation formulations in ML

- Training = Fitting = Parameter estimation
- **Typical formulation**

70 bjective function WY1 destar $\widehat{\boldsymbol{\theta}} \in \operatorname{argmin} L(\operatorname{data}, \boldsymbol{\theta})$ $\theta \in \Theta \text{ for if no constrain } \Theta \text{ is a vertor } \theta \text{ is a vertor$

- argmin because we want a minimiser not the minimum
 - Note: argmin can return a set (minimiser not always unique!)
- Θ denotes a model family (including constraints)
- L denotes some objective function to be optimised
 - E.g. MLE: (conditional) likelihood log-likelihood for linear

E.g. Decision theory: (regularised) empirical risk

One we've seen: Log trick

optimize $L(\theta) = optimize \log L(\theta)$ • Instead of optimising $L(\theta)$, try convenient $\log L(\theta)$

- auizzes.
- Why are we allowed to do this? ans:
- y monotonic function: $a \ge b \Longrightarrow f(a) > f(\overline{b})$
 - **Example:** log function!

Two solution approaches

- Analytic (aka closed form) solution
 - Known only in limited number of cases
 - * Use 1st-order necessary condition for optimality*:

$$\frac{\partial L}{\partial \theta_1} = \dots = \frac{\partial L}{\partial \theta_p} = 0$$

Assuming unconstrained, differentiable *L*

- Approximate iterative solution
 - 1. Initialisation: choose starting guess $\hat{\boldsymbol{\theta}}^{(1)}$, set i=1
 - 2. Update: $\boldsymbol{\theta}^{(i+1)} \leftarrow \underline{SomeRule}[\boldsymbol{\theta}^{(i)}]$, set $i \leftarrow i+1$
 - 3. Termination: decide whether to Stop
 - 4. Go to Step 2
 - 5. Stop: return $\widehat{m{ heta}} pprox m{ heta}^{(i)}$

^{*} Note: to check for local minimum, need positive 2nd derivative (or Hessian positive definite); this assumes unconstrained – in general need to also check boundaries. See also Lagrangian techniques later in subject.

Reminder: The gradient

- Gradient at $\boldsymbol{\theta}$ defined as $\left[\frac{\partial L}{\partial \theta_1}, \dots, \frac{\partial L}{\partial \theta_p}\right]'$ evaluated at $\boldsymbol{\theta}$
- The gradient points to the direction of maximal change of $L(\theta)$ when departing from point θ
- Shorthand notation

*
$$\nabla L \stackrel{\text{def}}{=} \left[\frac{\partial L}{\partial \theta_1}, \dots, \frac{\partial L}{\partial \theta_p} \right]'$$
 computed at point $\boldsymbol{\theta}$

- * Here ∇ is the "nabla" symbol
- Hessian matrix $\nabla^2 L$ at θ : $(\nabla^2 L)_{ij} = \frac{\partial^2 L}{\partial \theta_i \partial \theta_j}$

Gradient descent and SGD

Choose $\boldsymbol{\theta}^{(1)}$ and some T

Assuming L is differentiable

Viewing L from above:

deeper

For i from 1 to T^*

1. $\theta^{(i+1)} = \theta^{(i)} - \eta \nabla L(\theta^{(i)}) - \gamma 2 \%$ Return $\hat{\theta} \approx \theta^{(i)}$

Note: η dynamically updated per step

Variants: Momentum, AdaGrad, ...

Stochastic gradient descent: two loops

Outer for loop: each loop (called epoch) 🐒 sweeps through all training data

Within each epoch, randomly shuffle training data; then for loop: do gradient steps only dn_ batches of data. Batch size might be 1 or few/ \

 $\boldsymbol{\theta}^{(0)}$ higher

*Other stopping criteria can be used

SGD=> batchest

10

Convex objective functions

-10-5 0 510

2e+0b5

- 'Bowl shaped' functions
- Informally: if line segment between any two points on graph of function lies above or on graph
- Formally* $f: D \to \mathbf{R}$ is convex if $\forall \boldsymbol{a}, \boldsymbol{b} \in D, t \in [0,1]$: $f(t\boldsymbol{a} + (1-t)\boldsymbol{b}) \leq tf(\boldsymbol{a}) + (1-t)f(\boldsymbol{b})$ Strictly convex if inequality is strict (<)
- Gradient descent on (strictly) convex function guaranteed to find a (unique) global minimum!

 W_2

stable

 W_1

^{*} Aside: Equivalently we can look to the second derivative. For f defined on scalars, it should be non-negative; for multivariate f, the Hessian matrix should be positive semi-definite (see linear algebra supplemental deck).

Newton-Raphson

A second-order method; Successive root finding in the objective's derivative.

Newton-Raphson: Derivation (1D)

- Critical points of $L(\theta) = \text{Zero-crossings of } L'(\theta)$
- Consider scalar θ . Starting at given/arbitrary θ_0 , iteratively:
 - 1. Fit tangent line to $L'(\theta)$ at θ_t
 - 2. Need to find $\theta_{t+1} = \theta_t + \Delta$ using linear approximation's zero crossing
 - 3. Tangent line given by derivative: rise/run = $-L''(\theta_t) = L'(\theta_t)/\Delta$
 - 4. Therefore iterate is $\theta_{t+1} = \theta_t L'(\theta_t)/L''(\theta_t)$ in The second of the secon

Newton-Raphson: General case

- Newton-Raphson summary
 - Finds $L'(\theta)$ zero-crossings
 - By successive linear approximations to $L'(\theta)$
 - Linear approximations involve derivative of $L'(\theta)$, ie. $L''(\theta)$
- Vector-valued θ :

How to fix scalar $\theta_{t+1} = \theta_t - L'(\theta_t)/L''(\theta_t)$???

- $L'(\theta)$ is $\nabla L(\theta)$
- $L''(\theta)$ is $\nabla^2 L(\theta)$

- Pro: May converge faster; fitting a quadratic with curvature information
- Con: Sometimes computationally expensive, unless approximating Hessian

Conclusion: 持有下路方法: \ -P1 GD
=P1 Newton

Logistic Regression Model

A workhorse linear, binary classifier; (A review for some of you; new to some.)

Binary classification: Example

- Example: given body mass index (BMI) does a patient have type 2 diabetes (T2D)?
- This is (supervised) binary classification
- One could use linear regression
 - Fit a line/hyperplane to data (find weights w)
 - * Denote $s \equiv x'w$
 - * Predict "Yes" if $s \ge 0.5$
 - * Predict "No" if s < 0.5

Why not linear regression

Logistic regression model

less affected

- Probabilistic approach to classification
 - * P(Y = 1|x) = f(x) = ?
 - * Use a linear function? E.g., s(x) = x'w
- Problem: the probability needs to be between 0 and 1.
- Logistic function $f(s) = \frac{1}{1 + \exp(-s)}$
- Logistic regression model

$$P(Y = 1|x) = \frac{1}{1 + \exp(-x'w)}$$

How is logistic regression *linear*?

Logistic regression model:

$$P(Y = 1|x) = \frac{1}{1 + \exp(-x'w)}$$

Classification rule:

if
$$\left(P(Y=1|x) > \frac{1}{2}\right)$$
 then class "1", else class "0"

• Decision boundary is the set of x's such that:

Pecision howhour: $\frac{1}{1 + \exp(-x'w)} = \frac{1}{2}$ Logistic Regression $\exp(-x'w) = 1$

$$x'w = 0$$

Logistic function

Linear vs. logistic probabilistic models

 Linear regression assumes a <u>Normal distribution</u> with a fixed variance and mean given by linear model

$$p(y|\mathbf{x}) = Normal(\mathbf{x}'\mathbf{w}, \sigma^2)$$

類別是 送

- Logistic regression assumes a Bernoulli distribution with parameter given by logistic transform of linear model $p(y|\mathbf{x}) = Bernoulli(\text{logistic}(\mathbf{x}'\mathbf{w}))$
- Recall that Bernoulli distribution is defined as

$$p(1) = \theta$$
 and $p(0) = 1 - \theta$ for $\theta \in [0,1]$

• Equivalently $p(y) = \theta^y (1 - \theta)^{(1-y)}$ for $y \in \{0,1\}$

Training as Max-Likelihood Estimation

Assuming independence, probability of data

$$p(y_1, ..., y_n | \mathbf{x}_1, ..., \mathbf{x}_n) = \prod_{i=1}^n p(y_i | \mathbf{x}_i)$$

Assuming Bernoulli distribution we have

$$p(y_i|\mathbf{x}_i) = (\theta(\mathbf{x}_i))^{y_i} (1 - \theta(\mathbf{x}_i))^{1-y_i}$$
where $\theta(\mathbf{x}_i) = \frac{1}{1 + \exp(-x_i'w)}$

Training: maximise this expression wrt weights w

Apply log trick, simplify

Instead of maximising likelihood, maximise its logarithm

$$\log\left(\prod_{i=1}^{n} p(y_{i}|\mathbf{x}_{i})\right) = \sum_{i=1}^{n} \log p(y_{i}|\mathbf{x}_{i})$$

$$= \sum_{i=1}^{n} \log\left(\left(\theta(\mathbf{x}_{i})\right)^{y_{i}} \left(1 - \theta(\mathbf{x}_{i})\right)^{1 - y_{i}}\right)$$

$$= \sum_{i=1}^{n} \left(y_{i} \log\left(\theta(\mathbf{x}_{i})\right) + \left(1 - y_{i}\right) \log\left(1 - \theta(\mathbf{x}_{i})\right)\right)$$

$$= \sum_{i=1}^{n} \left(\left(y_{i} - 1\right)\mathbf{x}_{i}^{\prime}\mathbf{w} - \log\left(1 + \exp(-\mathbf{x}_{i}^{\prime}\mathbf{w})\right)\right)$$

$$= \sum_{i=1}^{n} \left(\left(y_{i} - 1\right)\mathbf{x}_{i}^{\prime}\mathbf{w} - \log\left(1 + \exp(-\mathbf{x}_{i}^{\prime}\mathbf{w})\right)\right)$$

$$= \sum_{i=1}^{n} \left(\left(y_{i} - 1\right)\mathbf{x}_{i}^{\prime}\mathbf{w} - \log\left(1 + \exp(-\mathbf{x}_{i}^{\prime}\mathbf{w})\right)\right)$$

$$= \sum_{i=1}^{n} \left(\left(y_{i} - 1\right)\mathbf{x}_{i}^{\prime}\mathbf{w} - \log\left(1 + \exp(-\mathbf{x}_{i}^{\prime}\mathbf{w})\right)\right)$$

$$= \sum_{i=1}^{n} \left(\left(y_{i} - 1\right)\mathbf{x}_{i}^{\prime}\mathbf{w} - \log\left(1 + \exp(-\mathbf{x}_{i}^{\prime}\mathbf{w})\right)\right)$$

Training as Iterative Optimisation

- Training logistic regression: w maximising loglikelihood L(w) or cross-entropy loss
- Bad news: No closed form solution
- Good news: Problem is strictly convex, if no irrelevant features → convergence!

How does gradient descent work?

• simply take gradient of log-likelihood, i.e., $\nabla L(\mathbf{w}) = \sum_{i=1}^{n} (y_i - \theta(\mathbf{x}_i)) \mathbf{x}_i$

plug into favourite iterative optimiser
 GD/SGD/Adagrad/Adam/BFGS/...

Background: Cross entropy

- <u>Cross entropy</u> is an information-theoretic method for comparing two distributions L γε estimated Nist comparing two distributions L γε estimated Nist
- Cross entropy is a measure of a divergence between reference distribution $g_{ref}(a)$ and estimated distribution $g_{est}(a)$. For discrete distributions:

$$H(g_{ref}, g_{est}) = -\sum_{a \in A} g_{ref}(a) \log g_{est}(a)$$

A is support of the distributions, e.g., $A = \{0,1\}$

Training as cross-entropy minimisation

- Consider log-likelihood for a single data point $\log p(y_i|\mathbf{x_i}) = y_i \log(\theta(\mathbf{x_i})) + (1 y_i) \log(1 \theta(\mathbf{x_i}))$
- Cross entropy $H(g_{ref}, g_{est}) = -\sum_{a} g_{ref}(a) \log g_{est}(a)$
 - If reference (true) distribution is

$$g_{ref}(1) = y_i \text{ and } g_{ref}(0) = 1 - y_i$$

With logistic regression estimating this distribution as

$$g_{est}(1) = \theta(\mathbf{x}_i)$$
 and $g_{est}(0) = 1 - \theta(\mathbf{x}_i)$

It finds w that minimises sum of cross entropies per training point