Aplikasi E-Zakat Penerimaan dan Penyaluran Menggunakan Fuzzy C-Means (Studi Kasus: LAZISMU Pekanbaru)

Rudi Julian Eka Putra¹, Nurliana Nasution², Yummastian³

^{1,2}Program Studi Teknik Informatika Fakultas Ilmu Komputer Universitas Lancang Kuning ³Program Studi Sistem Informasi Fakultas Ilmu Komputer Universitas Lancang Kuning Jl. Yos Sudarso KM. 8 Rumbai, Pekanbaru, Riau, telp. 0811 753 2015 e-mail: ¹rudijulian818@gmail.com, ²nurliana 2006@yahoo.com, ³yummastian@unilak.ac.id

Abstrak

Penyaluran zakat tepat sasaran adalah hal yang harus dilakukan. Salah satu cara yang dilakukan adalah membuat sebuah sistem penentuan kelayakan terkomputerisasi. Lazismu merupakan badan pengelola zakat yang akan diterapkan sistem tersebut dengan menggunakan metode Fuzzy C-Means sebagai pengelompokkan mustahik zakat. Ada lima indeks yang digunakan sebagai data masukan yaitu indeks keluarga; indeks keluarga II; indeks barang; indeks data keluarga; indeks keimanan. Setiap data masukan tersebut kemudian diolah menggunakan metode Fuzzy C-Means dengan langkah-langkah sebagai berikut identifikasi parameter; memperbaharui derajat keanggotaan; perhitungan fungsi objektif; memasukkan bobot penentu kelayakan. Hasil akurasi perhitungan terdapat 8 data yang benar dari 10 data uji coba atau 80%.

Kata kunci: Fuzzy C-Means, Zakat

Abstract

Targeted distribution of zakat is the thing to do. One way to do is to make an eligibility determination computerized system. Lazismu is the governing body of zakat to be applied such a system by using Fuzzy C-Means clustering mustahik as zakat. There are five indexes that are used as input data ie the index family; index family II; the index of goods; index family data; index faith. Each of the input data is then processed using Fuzzy C-Means method with the following steps parameter identification; renew the degree of membership; calculation of the objective function; determinant of eligibility to enter the weight. The accuracy of the results of the calculation are 8 correct data from 10 trials of data or 80%.

Keywords: Fuzzy C-Means, Zakat

1. Pendahuluan

Lembaga Lazismu kota Pekanbaru sebagai salah satu badan pengelola zakat saat ini secara aktif telah menerima dan menyalurkan zakat kepada mustahik zakat. Masalah yang dihadapi saat ini adalah penentuan kelayakan mustahik menerima zakat pada Lembaga Lazismu kota Pekanbaru masih dilakukan secara manual. Penentuan kelayakan manual memiliki tingkat kerumitan yang relative tinggi. Seorang karyawan akan mempertimbangkan banyaknya poinpoin yang memiliki kemungkinan akan muncul. Selama terjadi proses perhitungan secara otomatis membutuhkan ketelitian dari seorang karyawan pengelola zakat dan membutuhkan waktu yang relative lama untuk dihabiskan dalam proses penentuan kelayakan hingga didapatkan hasilnya.

Sebuah inovasi baru diperlukan agar penyaluran zakat benar-benar efektif dan mustahik yang menerima sesuai dengan kaidah dan ketentuan yang telah ditetapkan. Dirancanglah sebuah sistem penentuan kelayakan terkomputerisasi. Sistem tersebut diharapkan dapat membantu proses penentuan kelayakan seorang mustahik menerima zakat di Lembaga Lazismu kota Pekanbaru. Hasil dari penentuan ini akan menjadi acuan pedoman bagi pengguna. Diharapkan dengan adanya pengambilan keputusan menggunakan sistem terkomputerisasi, akan mendapatkan hasil yang lebih obyektif dan sesuai dengan kaidah mustahik.

Beberapa penelitian terkait yang pernah dilakukan antara lain [1] melakukan perbandingan algoritma Fuzzy C-Means dengan K-Means untuk mengelompokkan data kemiskinan. Peneliti [2] menggunakan Fuzzy C-Means untuk mengelompokkan orang-orang yang berhak mendapatkan Bantuan Langsung Masyarakat (BLM) di Kabupaten Pacitan. Peneliti [3] menerapkan Fuzzy C-Means dan Fuzzy Substractive Clustering untuk pengelompokkan kemiskinan di Kabupaten Jember. Peneliti [4] melakukan clustering untuk setiap provinsi yang ada di Indonesia dengan menggunakan Fuzzy C-Means dan Biplot sebagai peraga grafisnya. Hasil yang diperoleh bahwa Jawa Timur, Jawa Tengah dan Jawa Barat merupakan provinsi yang memiliki permasalahan sosial yang tinggi yaitu faktor kemiskinan. Peneliti [5] melakukan perbandingan antara Fuzzy C-Means dan Gath-Geva Clustering untuk studi kasus di Kabupaten Kutai Kartanegara.

2. Metode Penelitian

Metode yang digunakan dalam pembangunan sistem ini adalah metode Fuzzy C-Means. Metode ini dipilih karena sistem penentuan kelayakan yang akan dilakukan adalah dengan membagi calon mustahik dalam cluster. Adapun parameter yang akan menjadi acuan dalam penentuan kelayakan ini adalah Indeks kondisi Keluarga, Indeks kondisi Keluarga II, Indeks Kepemilikan Barang, Indeks data Keluarga dan Indeks Indikator Keimanan. Sistem ini kelayakan mustahik menerima zakat ini diberi nama "Sistem Kelayakan Mustahik Zakat" (SKMZ), sehingga untuk selanjutnya penyebutan untuk sistem ini adalah SKMZ.

SKMZ ini akan berjalan dalam bentuk pengclusteran mustahik sesuai dengan poin poin hasil survey yang dilakukan oleh pegawai terhadap calon mustahik. Seorang admin yang bertindak sebagai user yang menjalankan sistem memasukkan data hasil survey mustahik kedalam sistem berupa poin-poin yang telah memiliki nilai sebagaimana yang telah ditentukan. Setelah dimasukkan, sistem akan menyimpan data masukan kemudian user akan menjalankan sistem. Sistem akan mengolah data yang tersimpan setelah dieksekusi oleh user untuk menentukan kelayakan mustahik menerima zakat. Berikut pada gambar 1 merupakan gambaran umum sistem yang akan dibangun.

Gambar 1. Gambaran umum sistem

Gambar 1 menjelaskan gambaran umum dari sistem yang akan dibangun. Ada 4 bagian penting dalam proses penentuan kelayakan mustahik menerima zakat, berikut adalah poin-poin penting tersebut:

- 1. User merupakan orang yang mengoperasikan sistem. User akan menginput data sekaligus sebagai penerima hasil pengolahan data.
- Data hasil *survey* merupakan data yang masih bersifat mentah dan belum diketahui kelayakannya, data ini yang akan dimasukkan kedalam sistem dan kemudian diolah di dalam sistem.
- Sistem merupakan tempat pengolahan data, sistem akan melakukan pengolahan data masukan sesuai dengan metode yang diterapkan.

Data hasil pengolahan merupakan output dari sistem. Data ini merupakan hasil

pengukuran kelayakan dan dari data hasil pengolahan dapat diketahui layak atau tidaknya mustahik menerima zakat.

3. Hasil dan Pembahasan

Data masukan adalah kriteria-kriteria berdasarkan form penilaian mustahik yang terdapat di Lazismu kota Pekanbaru. Nilai dari masing-masing kriteria berupa angka 1 sampai 5, semakin kecil nilai kriteria, maka semakin kecil pula angka yang akan dimasukan kedalam sistem. Berikut kriteria yang akan dijadikan data masukan:

1. Indeks Keluarga

Indeks Keluarga adalah poin pertama yang diperhitungkan dalam penentuan kelayakan mustahik menerima zakat. Indeks keluarga terdiri dari beberapa kategori, yaitu:

- a. Penghasilan Kepala Keluarga; terdiri dari 0-Rp.500.000, Rp.500.000-1.000.000, Rp1.000.000-1.500.000, > Rp.1.500.000.
- b. Penghasilan Istri/Suami; terdiri dari 0-Rp.500.000, Rp.500.000-1.000.000, Rp.1000.000-1.500.000, > Rp.1.500.000.
- c. Pekerajaan Kepala Keluarga; terdiri dari Menganggur, Buruh / Serabutan, Karyawan rendahan, Pedagang kecil.
- d. Usia Mustahik; terdiri dari >50 atau <17 th, 40-49 th, 30-39 th, 17-24 th.
- e. Kondisi kepala keluarga; terdiri dari Sakit menahun, Sakit-sakitan, Manula, Sehat.
- f. Status Pernikahan Mustahik; terdiri dari Janda, Duda, Nikah, Bujang.
- g. Status Mustahik dalam Keluarga; terdiri dari Suami, Istri, Anak, Saudara.
- h. Pendidikan terakhir kepala keluarga; terdiri dari Tidak sekolah, SD, SMP, SMA

2. Indeks Keluarga II

Indeks Keluarga II merupakan poin kedua yang dipertimbangkan, indeks keluarga II terdiri dari beberapa kategori, yaitu :

- a. Kepemilikan rumah; terdiri dari Menumpang, Sewa, Keluarga, Milik.
- b. Luas Rumah dan Lantai; terdiri dari Sangat kecil, Kecil (3X3), Sedang (4X4), Besar (>16m²).
- c. Dinding Rumah; terdiri dari Bilik Bambu, Seng, Semi permanen, Tembok.
- d. Lantai; terdiri dari Tanah, Panggung, Semen, Keramik.
- e. Atap; terdiri dari Bumbung/Ijuk, Seng, Asbes, Genteng
- f. Dapur; terdiri dari Tungku (Kayu bakar), Kompor Minyak, Kompor gas 3Kg, Kompor Listrik.
- g. Kursi; terdiri dari lesehan, Balai bambu, Kursi Kayu, Sofa.
- h. Sumber Air; terdiri dari Tidak ada, Bersama, Sendiri.
- i. Penerangan; terdiri dari Tidak ada listrik, Listrik bersama, 450 watt, >450 watt.
- j. Ruangan dalam rumah; terdiri dari 1-2 Ruangan, 3-4 Ruangan, >4

3. Indeks Barang

Indeks Kepemilikan barang merupakan poin ketiga yang dipertimbangkan, indeks kepemilikan barang terdiri dari beberapa kategori, yaitu:

- a. Kendaraan; terdiri dari Tidak ada, Sepeda ontel, Sepeda motor th 2000.
- b. Elektronik; terdiri dari Tidak ada, Radio, Tv, Tv Radio, alat lainnya.
- c. Alat Komunikasi; terdiri dari Tidak ada, ada.
- d. Ternak; terdiri dari Tidak ada, Unggas, Kambing/Domba, Sapi/Kerbau.

4. Indeks Data Keluarga

Indeks data keluarga adalah poin keempat yang dipertimbangkan, indeks data keluarga terdiri dari beberapa kategori, yaitu :

a. Jumlah tanggungan keluarga; terdiri dari >7, 4-6, 2-3, 1, tidak ada.

- b. Jumlah anak yang sekolah; terdiri dari 4 anak, 3 anak, 2 anak, 1 anak, tidak ada.
- c. Ada yang putus sekolah; terdiri dari Ada, Tidak.
- d. Memiliki Balita; terdiri dari Ya, Tidak.
- e. Istri/Keluarga ada yang hamil; terdiri dari Ada, Tidak.

5. Indeks Keimanan

Indeks Indikator keimanan merupakan poin kelima yang dipertimbangkan dalam mengukur kelayakan dalam penelitian ini

- a. Kebiasaan Potologis; terdiri dari Tidak pernah, Kadang-kadang, Pernah.
- b. Pola Sholat; terdiri dari Selalu berjama'ah, teratur tapi tidak berjama'ah, jarang berjama'ah, jarang sholat.
- c. Rajin mengikuti pengajian; terdiri dari Menjadi pembicara, menjadi pengurus, aktif jadi anggota, jarang hadir.
- d. Istri dan anak perempuan menggunakan jilbab; terdiri dari Ya selalu, Ya jika keluar rumah, kadang-kadang, tidak pernah.
- f. Rata-rata nilai; terdiri dari 8.5-9, 8-8.4, 7.5-7.9, 7-7.4.

Berikut ini adalah contoh sederhana penerapan Fuzzy C-Means untuk penentuan kelayakan mustahik menerima zakat. Jumlah data sampel yang digunakan terdiri dari 10 data yang merupakan data hasil survey tahun 2014. Berikut data untuk indeks keluarga tabel 1 dengan bobot.

Tabel 1. Indeks keluarga yang telah diberi bobot

No	Nama	PKK	PS/I	PK	UM	KKK	SP	STK	PT
1	Syahid Abbas	3	5	2	4	2	3	5	1
2	Masni Harahap	5	4	5	5	2	3	4	4
3	Wendri Yusnita	5	3	3	4	2	3	4	1
4	Wiwin Andri	5	5	5	3	4	3	5	3
	winata								
5	Nelawati	3	4	3	4	2	3	4	1
6	Radi P Hendra	5	5	4	3	2	3	5	1
7	Zamzami	3	5	2	4	2	3	5	3
8	Maryanah	1	3	3	3	2	3	4	1
9	Yosi Miarti	5	4	5	3	2	3	4	1
10	Mardiani	1	5	2	5	2	5	4	4

PKK = Pekerjaan kepala keluarga, **PS/I** = Penghasilan Suami/Istri. **PK** = Pekerjaan Kepala keluarga, UM = Usia Mustahik, KKK = Kondisi Kepala Keluarga, SP = Status Pernikahan, STK = Status Mustahik dalam Keluarga, PT = Pendidikan Terakhir

Dari data di atas diterapkan kedalam bentuk tabel dan diberi bobot sesuai dengan nilai dari poin - poinnya. Berikut adalah langkah - langkah penyelesaian semua indeks menggunakan Fuzzy C-Means:

1. Identifikasi Parameter

a. Jumlah Cluster b. Pangkat = 2c. MaxIter = 10 $=10^{-2}$ d. Error Terkecil

Langkah awal adalah menentukan matriks secara random dimana barisnya terdiri dari jumlah data dan kolomnya terdiri dari jumlah cluster.

Pada kasus ini akan ditampilkan matriks dengan ukuran 10 x 3.

$$U = \begin{bmatrix} 0.2 & 0.4 & 0.4 \\ 0.3 & 0.3 & 0.4 \\ 0.4 & 0.4 & 0.2 \\ 0.3 & 0.2 & 0.5 \\ 0.2 & 0.3 & 0.5 \\ 0.3 & 0.4 & 0.3 \\ 0.4 & 0.4 & 0.2 \\ 0.4 & 0.3 & 0.3 \\ 0.4 & 0.2 & 0.4 \\ 0.2 & 0.2 & 0.6 \end{bmatrix}$$

Kemudian diperolehlah pusat cluster yang terlihat dalam matriks berikut

2. Langkah berikutnya adalah memperbaharui derajat keanggotaan U, berikut adalah langkah memperbaharui derajat keanggotaan untuk data yang pertama:

Tangkan memperoanatu derajat keanggotaan untuk data yang pertama :
$$L_1 = ((3\text{-}3.75728)^2 + (5\text{-}4.09709)^2 + (2\text{-}3.51456)^2 + (4\text{-}3.64078)^2 + (2\text{-}2.17476)^2 + (3\text{-}3.07767)^2 + (5\text{-}4.36893) + (1\text{-}1.86406)^2)^{-1} = \textbf{0.20028}.$$

$$L_2 = ((3\text{-}3.69903)^2 + (5\text{-}4.30097)^2 + (2\text{-}3.13592)^2 + (4\text{-}3.80583)^2 + (2\text{-}2.07767)^2 + (3\text{-}3.07767)^2 + (5\text{-}4.50485) + (1\text{-}1.76699^2)^{-1} = \textbf{0.31738}.$$

$$L_3 = ((3\text{-}3.31250)^2 + (5\text{-}4.48125)^2 + (2\text{-}3.41875)^2 + (4\text{-}3.95625)^2 + (2\text{-}3.45000)^2 + (5\text{-}4.33750) + (1\text{-}2.33750^2)^{-1} = \textbf{0.20369}.$$

$$L_T = 0.20028 + 0.31738 + 0.20369 = 0.72135$$

$$\pi_{i1} = L_1/L_T = 0.20028/0.72135 = \textbf{0.27764}.$$

$$\pi_{i2} = L_2/L_T = 0.31738/0.72135 = \textbf{0.43998}.$$

 $\pi_{i3} = L_3/L_T = 0.20369/0.72135 =$ **0.28237**.

selanjutnya dihitung data ke 2 sampai data ke-n sehingga didapatkan hasil perhitungan yang terlihat dalam tabel 2 berikut.

Tabel 2 Detail perhitungan derajat keanggotaan U Indeks keluarga

Data	T	T	T	L_{T}	π_{i1}	π_{i2}	π_{i3}
ke-	$\mathbf{L_1}$	L_2	L_3	$L_1 + L2 + L3$	L_1/L_T	$L2/L_T$	$L3/L_T$
1	0,20028	0,31738	0,20369	0,72134	0,27764	0,43998	0,28237
2	0,09669	0,08377	0,10155	0,28201	0,34285	0,29705	0,36010
3	0,24624	0,23275	0,13473	0,61373	0,40122	0,37924	0,21954
4	0,09997	0,08495	0,09561	0,28052	0,35637	0,30281	0,34081
5	0,52742	0,67086	0,36907	1,56735	0,33650	0,42802	0,23548
6	0,23882	0,22611	0,14499	0,60992	0,39156	0,37072	0,23772
7	0,18061	0,24493	0,28094	0,70648	0,25565	0,34669	0,39766
8	0,09615	0,09524	0,09230	0,28368	0,33892	0,33571	0,32536
9	0,19646	0,14788	0,11498	0,45931	0,42772	0,32195	0,25034
10	0,04766	0,05146	0,07094	0,17005	0,28024	0,30261	0,41714

 L_1 = Jumlah derajat keanggotaan data ke-I *cluster* 1, L_2 = Jumlah derajat keanggotaan data ke-I *cluster* 2, L₃ = Jumlah derajat keanggotaan data ke-I *cluster* 3

3. Setelah diketahui derajat keanggotaannya, maka dilanjutkan dengan perhitungan fungsi objektif.

```
L_4 = ((3-3.75728)^2 + (5-4.09709)^2 + (2-3.51456)^2 + (4-3.64078)^2 + (2-2.17476)^2 + (3-3.75728)^2 + (3-3.75728)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51456)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.51466)^2 + (3-3.
  (3.07767)^2 + (5-4.36893) + (1-1.86406)^2 = 4.99312.
  L_5 = ((3-3.69903)^2 + (5-4.30097)^2 + (2-3.13592)^2 + (4-3.80583)^2 + (2-2.07767)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.69903)^2 + (3-3.
  (3.07767)^2 + (5-4.50485) + (1-1.76699^2) = 3.15082.
  L_6 = ((3-3.31250)^2 + (5-4.48125)^2 + (2-3.41875)^2 + (4-3.95625)^2 + (2-2.31250)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.41875)^2 + (3-3.
  (3.45000)^2 + (5-4.33750) + (1-2.33750^2) = 4.90949.
  L_7 = L_4 * (\pi_{i1})^w = 0.19972
L_8 = L_5 * (\pi_{i2})^w = 0.50413
  L_9 = L_6 * (\pi_{i3})^w = 0.78552
  L_7 + L_8 + L_9 = 1.48937
```

Perhitungan dilanjutkan sampai data ke-n, dapat dilihat dalam tabel 3 berikut.

Tabel 3. Perhitungan fungsi objektif Indeks keluarga

Data ke-	$\mathbf{L_4}$	L_5	L_6	$L_4*(\pi_{i1})^w$	L_5 * $(\pi_{i2})^w$	L_6 * $(\pi_{i3})^w$	$L_7 + L_{8+L9}$
				\mathbf{L}_7	L_8	L_9	
1	4,99312	3,15082	4,90949	0,19972	0,50413	0,78552	1,48937
2	10,34263	11,93722	9,84699	0,93084	1,07435	1,57552	3,58071
3	4,06108	4,29645	7,42199	0,64977	0,68743	0,29688	1,63408
4	10,00283	11,77217	10,45949	0,90025	0,47089	2,61487	3,98601
5	1,89603	1,49062	2,70949	0,07584	0,13416	0,67737	0,88737
6	4,18729	4,42266	6,89699	0,37686	0,70763	0,62073	1,70521
7	5,53681	4,08285	3,55949	0,88589	0,65326	0,14238	1,68153
8	10,40089	10,50033	10,83449	1,66414	0,94503	0,97510	3,58428
9	5,09021	6,76247	8,69699	0,81443	0,27050	1,39152	2,47645
10	20,98341	19,43237	14,09699	0,83934	0,77729	5,07492	6,69155
_		1.1	Σ				27,71656

 $\overline{L_4}$ = Jumlah perhitungan fungsi objektif cluster 1, L_5 = Jumlah perhitungan fungsi objektif cluster 2, L_6 = Jumlah perhitungan fungsi objektif cluster 3. Σ ($L_7 + L_8 + L_9$) = Jumlah perhitungan data yang akan dicari selisih antar iterasi.

Karena |P1 - P0| = |27.71656 - 0| = 27.71656, berarti $|P1 - P0| > \xi$ dan $1 < \text{maxIter} < \xi$ 10 maka iterasi dilanjutkan dan diulangi dari langkah keempat. Proses perhitungan dihentikan pada iterasi ke- 10, karena telah memenuhi iterasi maksimal dengan hasil |P10 - P9| = -4,00348. Dari hasil iterasi pertama sampai ke iterasi yang ke-n, didapatkan elemen matriks dengan hasil sebagai berikut:

Dari hasil matrik dapat dilihat kecendrungan cluster seperti terlihat dalam tabel 4 berikut.

Tabel 4. Necchannigan charter macks kenanga	Tabel 4.	Kecendrungan	cluster	indeks	keluarga
---	----------	--------------	---------	--------	----------

Data ke- (i)	Cluster 1	Cluster 2	Cluster 3
1		*	
2	*		
3		*	
4	*		
5		*	
6	*		
7			*
8		*	
9	*		
10			*

1 = Kecendrungan data yang termasuk kedalam cluster 1 indeks keluarga, 2 = Kecendrungan data yang termasuk kedalam cluster 2 indeks keluarga, 3 = Kecendrungan data yang termasuk kedalam *cluster* 3 indeks keluarga 3.

(400 / 8) * 100 % = 50 %

4. Setelah didapatkan *cluster* maka dilanjutkan dengan memasukan bobot yang akan menentukan kelayakan, berikut adalah langkah – langkahnya :

1.	Penghasilan kepala keluarga	= 5 - 4
2.	Penghasilan Istri/Suami	= 5 - 4
3.	Pekerjaan kepala keluarga	= 5 - 4
4.	Usia mustahik	= 5 - 4
5.	Kondisi kepala keluarga	= 5 - 4
6.	Status pernikahan	= 5 - 4
7.	Status mustahik dalam keluarga	= 5 - 4
8.	Pendidikan terakhir	= 5 - 4
	Cluster 1	
	Berdasarkan penghasilan KK	= (4/4) * 100 = 100
	Berdasarkan Penghasilan Istri	= (3/4) * 100 = 75
	Berdasarkan pekerjaan KK	=(3/4)*100=75
	Berdasarkan usia	=(1/4)*100=25
	Berdasarkan kondisi KK	=(1/4)*100=25
	Berdasarkan Status pernikahan	= (0/4) * 100 = 0
	Berdasarkan Status Mustahik	= (4/4) * 100 = 100
	Berdasarkan pendidikan terakhir	=(0/4)*100=0
	_	

```
Cluster 2
Berdasarkan penghasilan KK
                                        = (0/4) * 100 = 0
Berdasarkan Penghasilan Istri
                                        = (3/4) * 100 = 75
Berdasarkan pekerjaan KK
                                        = (0/4) * 100 = 0
Berdasarkan usia
                                        = (3/4) * 100 = 75
Berdasarkan kondisi KK
                                        = (0/4) * 100 = 0
Berdasarkan Status pernikahan
                                        = (0/4) * 100 = 0
Berdasarkan Status Mustahik
                                        = (4/4) * 100 = 100
                                        = (0/4) * 100 = 0
Berdasarkan pendidikan terakhir
                                        (250 / 8) * 100 \% = 31,25 \%
Cluster 3
Berdasarkan penghasilan KK
                                        = (2/2) * 100 = 100
Berdasarkan Penghasilan Istri
                                        = (2/2) * 100 = 100
Berdasarkan pekerjaan KK
                                        = (1/2) * 100 = 50
Berdasarkan usia
                                        = (2/2) * 100 = 100
Berdasarkan kondisi KK
                                        = (0/2) * 100 = 0
                                        =(1/2)*100=50
Berdasarkan Status pernikahan
                                        = (2/2) * 100 = 100
Berdasarkan Status Mustahik
Berdasarkan pendidikan terakhir
                                        = (2/2) * 100 = 100
                                        (600 / 8) * 100 \% = 75 \%
```

Dari hitungan diatas, diambil nilai yang terbesar untuk mendapatkan kelayakan untuk kategori indeks keluarga. Sehingga yang termasuk ke dalam kategori layak untuk indeks keluarga adalah cluster 1 dan cluster 2, yaitu Masni harahap, Wiwin andriawinata, Radi hendra perdana, Zamzami, Yosi miarti, Mardiani. Selanjutnya akan dilakukan untuk indeks keluarga 2 didapatkan cluster pada tabel 5.

Tabel 5. Kecendrungan *Cluster* Indeks Keluarga II

Data ke- (i)	Cluster 1	Cluster 2	Cluster 3
1	*		
2			*
3		*	
4			*
5	*		
6		*	
7		*	
8	*		
9	*		
10			*

1 = Kecendrungan data yang termasuk kedalam cluster 1 indeks keluarga 2, 2 = Kecendrungan data yang termasuk kedalam cluster 2 indeks keluarga 2, 3 = Kecendrungan data yang termasuk kedalam cluster 3 indeks keluarga 2. Setelah didapatkan cluster maka dilanjutkan dengan memasukkan bobot yang akan menentukan kelayakan, berikut langkah – langkahnya:

1.	Kepemilikan rumah	= 4 - 5
2.	Luas rumah	= 4 - 5
3.	Dinding rumah	= 4 - 5
4.	Lantai	= 4 - 5
5.	Atap	= 4 - 5
6.	Dapur	= 4 - 5

```
7.
    Kursi
                             = 4 - 5
8.
    Sumber air
                                     = 4 - 5
9.
    MCK
                              = 4 - 5
10. Penerangan
                             = 4 - 5
11. Ruangan dalam rumah
                             = 3 - 5
    Cluster 1
    Berdasarkan kepemilikan rumah = (4/4) * 100 = 100
    Berdasarkan luas rumah
                                     = (1/4) * 100 = 25
    Berdasarkan dinding rumah
                                     = (0/4) * 100 = 0
    Berdasarkan lantai
                                     = (0/4) * 100 = 0
    Berdasarkan atap
                                     = (4/4) * 100 = 100
    Berdasarkan dapur
                                     = (0/4) * 100 = 0
    Berdasarkan kursi
                                     = (2/4) * 100 = 50
    Berdasarkan sumber air
                                     = (0/4) * 100 = 0
                                     = (0/4) * 100 = 0
    Berdasarkan MCK
    Berdasarkan penerangan
                                     = (0/4) * 100 = 0
    Berdasarkan ruangan rumah
                                     = (4/4) * 100 = 100
                                     (375 / 11) * 100 \% = 34,09 \%
    Cluster 2
    Berdasarkan kepemilikan rumah = (3/3) * 100 = 100
    Berdasarkan luas rumah
                                     = (3/3) * 100 = 100
    Berdasarkan dinding rumah
                                     = (0/3) * 100 = 0
    Berdasarkan lantai
                                     = (0/3) * 100 = 0
    Berdasarkan atap
                                     = (3/3) * 100 = 100
    Berdasarkan dapur
                                     = (0/3) * 100 = 0
    Berdasarkan kursi
                                     = (3/3) * 100 = 100
    Berdasarkan sumber air
                                     = (0/3) * 100 = 0
    Berdasarkan MCK
                                     = (0/3) * 100 = 0
                                     = (0/3) * 100 = 0
    Berdasarkan penerangan
    Berdasarkan ruangan rumah
                                     = (3/3) * 100 = 100
                                     (500 / 11) * 100 \% = 45,45 \%
    Cluster 3
    Berdasarkan kepemilikan rumah = (3/3) * 100 = 100
    Berdasarkan luas rumah
                                     = (3/3) * 100 = 100
    Berdasarkan dinding rumah
                                     = (3/3) * 100 = 100
                                     = (2/3) * 100 = 66.66
    Berdasarkan lantai
    Berdasarkan atap
                                     = (3/3) * 100 = 100
    Berdasarkan dapur
                                     = (2/3) * 100 = 66.66
    Berdasarkan kursi
                                     = (3/3) * 100 = 100
    Berdasarkan sumber air
                                     = (2/3) * 100 = 66.66
                                     = (2/3) * 100 = 66.66
    Berdasarkan MCK
    Berdasarkan penerangan
                                     = (2/3) * 100 = 66.66
    Berdasarkan ruangan rumah
                                     = (3/3) * 100 = 100
```

Dari hasil perhitungan cluster dan bobot, maka mustahik yang berhak menerima zaakt berdasarkan indeks keluarga 2 adalah yang termasuk kedalam cluster 2 dan cluster 3 yaitu : Masni harahap, Wendri yusnita, Wiwin andriawinata, Radi hendra perdana, Zamzami, Mardiani. Indeks Barang didapatkan *cluster* sebagai berikut pada tabel 6.

(933.3 / 11) * 100% = 84.84%

i abei 6.	Kecenarunga	n Cluster Inde	ks Barang
Data ke- (i)	Cluster 1	Cluster 2	Cluster 3
1	*		
2	*		
3	*		
4	*		
5	*		
6		*	
7	*		
8	*		
9	*		
10			*

Tabal (Vasandminaan Clinitan Indala Danan

1 = Kecendrungan data yang termasuk kedalam cluster 1 indeks barang, 2 = Kecendrungan data yang termasuk kedalam cluster 2 indeks barang, 3 = Kecendrungan data yang termasuk kedalam cluster 3 indeks barang.

Setelah didapatkan cluster maka dilanjutkan dengan memasukkan bobot yang akan menentukan kelayakan, berikut adalah langkah – langkahnya

me	nentukan kelayakan, berikut adalal	n langkah – langkahnya :
1.	Kendaraan	= 4 - 5
2.	Elektronik	= 4 - 5
3.	Alat komunikasi	= 5
4.	Ternak	=4-5
	Cluster 1	
	Berdasarkan Kendaraan	= (0/8) * 100 = 0
	Berdasarkan Elektronik	=(0/8)*100=0
	Berdasarkan Alat Komuniakasi	=(0/8)*100=0
	Berdasarkan Ternak	=(8/8)*100=100
		(100 / 4) * 100 0/ - 25 0/
	C_{i}	(100 / 4) * 100 % = 25 %
	Cluster 2	- (1/1) * 100 - 100
	Berdasarkan Kendaraan	= (1/1) * 100 = 100
	Berdasarkan Elektronik	= (1/1) * 100 = 100
	Berdasarkan Alat Komuniakasi	= (0/1) * 100 = 0
	Berdasarkan Ternak	= (1/1) * 100 = 100
		(300 / 4) * 100 % = 75 %
	Cluster 3	(2007.1) 10070 1070
	Berdasarkan Kendaraan	= (1/1) * 100 = 100
	Berdasarkan Elektronik	=(1/1)*100=100
	Berdasarkan Alat Komuniakasi	=(1/1)*100=100
	Berdasarkan Ternak	=(1/1)*100 = 100
		(400/4)*100% = 100%.
		(, 1) 100 /0.

Dari hasil perhitungan diketahui bahwa yang berhak adalah calon mustahik yang termasuk ke dalam cluster 2 dan cluster 3, yaitu : Radi hendra perdana, Mardiani. Indeks Data Keluarga didapatkan cluster sebagai berikut pada tabel 7.

Data ke- (i)	Cluster 1	Cluster 2	Cluster 3
1		*	
2			*
3			*
4			*
5			*
6	*		
7		*	
8			*
9		*	
10			*

Tabel 7. Kecendrungan *Cluster* Indeks Data Keluarga

1 = Kecendrungan data yang termasuk kedalam cluster 1 indeks data keluarga, 2 = Kecendrungan data yang termasuk kedalam cluster 2 indeks data keluarga, 3 = Kecendrungan data yang termasuk kedalam cluster 3 indeks data keluarga.

Setelah didapatkan cluster maka dilanjutkan dengan memasukkan bobot yang akan menentukan kelayakan, berikut adalah langkah – langkahnya.

```
Jumlah tanggungan
                                             = 4 - 5
                                             = 3 - 5
2.
    Jumlah anak yang sekolah
3.
    Ada yang putus sekolah
                                     = 5
4.
    Memiliki Balita
                                     = 5
    Istri / Keluarga ada yang Hamil
    Cluster 1
    Berdasarkan Tanggungan
                                     = (2/2) * 100 = 100
                                     =(1/2)*100=50
    Berdasarkan Sekolah
    Berdasarkan Putus sekolah
                                     = (0/2) * 100 = 0
                                     =(0/2)*100=0
    Berdasarkan Balita
    Berdasarkan yang Hamil
                                     = (0/2) * 100 = 0
                                     (150 / 5) * 100 \% = 30 \%
    Cluster 2
    Berdasarkan Tanggungan
                                     = (0/4) * 100 = 0
    Berdasarkan Sekolah
                                     = (3/4) * 100 = 75
    Berdasarkan Putus sekolah
                                     = (0/4) * 100 = 0
    Berdasarkan Balita
                                     = (4/4) * 100 = 100
    Berdasarkan yang Hamil
                                     = (0/4) * 100 = 0
                                     (175 / 5) * 100 \% = 35 \%
    Cluster 3
    Berdasarkan Tanggungan
                                     = (0/4) * 100 = 0
    Berdasarkan Sekolah
                                     = (1/4) * 100 = 25
                                     = (0/4) * 100 = 0
    Berdasarkan Putus sekolah
    Berdasarkan Balita
                                     = (0/4) * 100 = 0
                                     = (0/4) * 100 = 0
    Berdasarkan yang Hamil
```

(25/5) * 100 % = 5 %

Dari hasil perhitungan diketahui bahwa yang berhak adalah calon mustahik yang termasuk kedalam cluster 1 dan cluster 2, yaitu : Syahid Abbas, Masni Harahap, Radi Hendra Perdana, Zamzami, Yosi Miarti, Mardiani. Indeks keimanan didapatkan cluster sebagai berikut pada tabel 8.

Data ke- (i)	Cluster 1	Cluster 2	Cluster 3
1			*
2	*		
3		*	
4			*
5	*		
6	*		
7	*		
8	*		
9			*
10	*		

Tabel 8 Kecendrungan Cluster Indeks keimanan

1 = Kecendrungan data yang termasuk kedalam cluster 1 indeks keimanan, 2 = Kecendrungan data yang termasuk kedalam cluster 2 indeks keimanan, 3 = Kecendrungan data yang termasuk kedalam cluster 3 indeks keimanan.

Setelah didapatkan cluster maka dilanjutkan dengan memasukkan bobot yang akan menentukan kelayakan, berikut adalah langkah – langkahnya:

xcia	yakan, benkut adalah langkan – langkannya .	
1.	Patologis Keluarga	= 5
2.	Pola Sholat	= 3 - 5
3.	Rajin Mengikuti Pengajian	= 4 - 5
4.	Istri dan anak Perempuan mengenakan Jilbab	= 3 - 5
5.	Rata – rata Nilai	=4-5
	Cluster 1	
	Berdasarkan Potologis keluarga	= (6/6) * 100 = 100
	Berdasarkan Sholat	= (4/6) * 100 = 66.66
	Berdasarkan Pengajian	= (0/6) * 100 = 0
	Berdasarkan Jilbab	= (5/6) * 100 = 83.33
	Berdasarkan Nilai	= (1/6) * 100 = 16.66
		$\overline{(266.65 / 5) * 100 \% = 53.33\%}$
	Cluster 2	
	Berdasarkan Potologis keluarga	= (2/2) * 100 = 100
	Berdasarkan Sholat	=(1/2)*100=50
	Berdasarkan Pengajian	= (0/2) * 100 = 0
	Berdasarkan Jilbab	= (2/2) * 100 = 100
	Berdasarkan Nilai	=(1/2)*100=50
		${(300 / 5) * 100 \% = 60 \%}$
	Cluster 3	- (2/2) * 100 - 100
	Berdasarkan Potologis keluarga	= (2/2) * 100 = 100
	Berdasarkan Sholat	= (2/2) * 100 = 100
	Berdasarkan Pengajian	= (0/2) * 100 = 0
	Berdasarkan Jilbab	= (2/2) * 100 = 100
	Berdasarkan Nilai	=(1/2)*100=50
		$\overline{(350/5)*100\%} = 70\%.$

Setelah dilakukan perhitungan semua cluster, didapatkan beberapa mustahik yang mendapatkan zakat , maka mereka yang berhak mendapatkan zakat adalah, Syahid Abbas, Masni Harahap, Wendri Yusnita, Wiwin Andriawinata, Radi Hendra Perdana, Zamzami, Yosi Miarti, Mardiani.

4. Kesimpulan

Setelah melalui tahapan dan perancangan dan pengujian terhadap sistem pembayaran zakat dan penentuan kelayakan mustahik menerima zakat dapat diambil sebuah keputusan bahwa:

- 1. Sistem pembayaran zakat *online* berhasil dibangun untuk menghasilkan Aplikasi yang efisien.
- 2. Sistem penentuan kelayakan mustahik menerima zakat menggunakan metode *Fuzzy C-Means* berhasil dibangun untuk menghasilkan keputusan yang lebih efisien
- 3. Keputusan yang dihasilkan menggunakan metode *Fuzzy C-Means* mendekati hasil uji manual dalam menentukan kelayakan mustahik menerima zakat di Lembaga Lazismu kota Pekanbaru, secara umum hasil kelayakan mustahik dari 10 data uji, terdapat 8 data yang sesuai dengan perhitungan menggunakan simulasi excel (80%)

Saran yang disampaikan untuk pengembangan pada penelitian selanjutnya adalah :

- 1. Dapat dikembangkan menggunakan metode lainnya yang bersifat metode *cluster*ing data dengan bobot dan *cluster* yang sama, untuk melihat perbandingan hasil dari kedua penelitian.
- 2. Menggunakan data yang lebih banyak untuk melihat proses *cluster*ing serta hasil dari data dalam jumlah tersebut.

Daftar Pustaka

- [1] Aniq Noviciatie Ulfah. Analisis Kinerja Algoritma Fuzzy C-Means dan K-Means pada Data Kemiskinan. Skripsi. Yogyakarta: Teknik Informatika Fakultas Sains dan Teknologi Universitas Islam Negeri Sunan Kalijaga; 2014.
- [2] Aziz Ahmai dan Sri Hartati. Penentuan Fuzzy C-Means dalam Sistem Pendukung Keputusan untuk Penerimaan Bantuang Langsung Masyarakat (BLM) PNPM-MPd (Studi Kasus PNPM-MPd Kec. Ngadirojo Kab. Pacitan). *Berkala MIPA*. 2013; vol 23(no 3): 264-273.
- [3] Marsha Agnesya Sari Devi. Penerapan Fuzzy C-Means dan Fuzzy Substractive Clustering pada Desa dan Kelurahan di Kabupaten Jember Berdasarkan Indikator Kemiskinan. Skripsi. Jember: Jurusan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Jember: 2014.
- [4] Ubai Fadilah. Analisis Penyandang Masalah Kesejaheraan Sosial di Indonesia Menggunakan Metode Fuzzy C-Means Clustering dan BIPLOT. Skripsi. Jakarta: Program Studi Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Syarif Hidayatullah. 2011
- [5] Rudy Ramadani Syoer. Analisis Kelompok dengan Algoritma Fuzzy C-Means dan Gath Geva Clustering Studi Kasus Pengelompokan Desa/Kelurahan di Kabupaten Kutai Kartanegara. Tesis. Surabaya: Jurusan Statistika Fakultas Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh November. 2011.