COMP 445 Data Communications & Computer networks Winter 2022

Network Layer – Data plane

- ✓ Network layer: services and overview
- ✓ Routers
- ✓ Internet protocol
- ✓ Generalized forwarding and SDN

Network Layer: Internet

host, router network layer functions:

IP Datagram format

IP protocol version number - header length(bytes)

"type" of service:

- diffserv (0:5)
- ECN (6:7)

TTL: remaining max hops (decremented at each router)

upper layer protocol (e.g., TCP or UDP)

overhead

- 20 bytes of TCP
- 20 bytes of IP
- = 40 bytes + app layer overhead for TCP+IP

IPv4 Fragmentation

IP addressing: introduction

- IP address: 32-bit identifier associated with each host or router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

dotted-decimal IP address notation:

2727272727272

IP addressing: introduction

- IP address: 32-bit identifier associated with each host or router interface
- interface: connection between host/router and physical link
 - router's typically have multiple interfaces
 - host typically has one or two interfaces (e.g., wired Ethernet, wireless 802.11)

IP addressing: introduction

Q: how are interfaces actually connected?

A: we'll learn about that in chapters 6, 7

A: wired
Ethernet interfaces
connected by
Ethernet switches

For now: don't need to worry about how one interface is connected to another (with no intervening router)

A: wireless WiFi interfaces connected by WiFi base station

Subnets

- What's a subnet ?
 - device interfaces that can physically reach each other without passing through an intervening router
- IP addresses have structure:
 - subnet part: devices in same subnet have common high order bits
 - host part: remaining low order bits

network consisting of 3 subnets

Subnets

Recipe for defining subnets:

- detach each interface from its host or router, creating "islands" of isolated networks
- each isolated network is called a *subnet*

subnet mask: /24

(high-order 24 bits: subnet part of IP address)

Subnets

- where are the subnets?
- what are the /24 subnet addresses?

IP addressing: before CIDR (classful)

IP addressing: CIDR

CIDR: Classless InterDomain Routing (pronounced "cider")

- subnet portion of address of arbitrary length
- address format: a.b.c.d/x, where x is # bits in subnet portion of address

IP addresses: how to get one?

That's actually two questions:

- 1. Q: How does a *host* get IP address within its network (host part of address)?
- 2. Q: How does a *network* get IP address for itself (network part of address)

How does host get IP address?

- hard-coded by sysadmin in config file (e.g., /etc/rc.config in UNIX)
- DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server
 - "plug-and-play"

DHCP: Dynamic Host Configuration Protocol

goal: host dynamically obtains IP address from network server when it "joins" network

- can renew its lease on address in use
- allows reuse of addresses (only hold address while connected/on)
- support for mobile users who join/leave network

DHCP overview:

- host broadcasts DHCP discover msg [optional]
- DHCP server responds with DHCP offer msg [optional]
- host requests IP address: DHCP request msg
- DHCP server sends address: DHCP ack msg

DHCP client-server scenario

DHCP client-server scenario

DHCP: more than IP addresses

DHCP can return more than just allocated IP address on subnet:

- address of first-hop router for client
- name and IP address of DNS sever
- network mask (indicating network versus host portion of address)

DHCP: example

- Connecting laptop will use DHCP to get IP address, address of firsthop router, address of DNS server.
- DHCP REQUEST message encapsulated in UDP, encapsulated in IP, encapsulated in Ethernet
- Ethernet demux'ed to IP demux'ed,
 UDP demux'ed to DHCP

DHCP: example

- DCP server formulates DHCP ACK containing client's IP address, IP address of first-hop router for client, name & IP address of DNS server
- encapsulated DHCP server reply forwarded to client, demuxing up to DHCP at client
- client now knows its IP address, name and IP address of DNS server, IP address of its first-hop router

IP addresses: how to get one?

27+26+27+272

Q: how does network get subnet part of IP address?

A: gets allocated portion of its provider ISP's address space

ISP's block <u>11001000 00010111 0001</u>0000 00000000

200.23.16,0/20

ISP can then allocate out its address space in 8 blocks:

Organization 7 11001000 00010111 00011110 00000000 200.23.30.0/23

000010006

Network Address	Class	*CIDR	Subnet Mask	#Subnets	# Hosts/ Subnet
128.123.0.0	В	/30	255.255.255.252	16384	2
135.45.0.0		/25			
193.10.10.0		/28			
211.123.83.0		/26			
10.0.0.0		/13			
32.0.0.0		/20			
204.204.5.0		/28			
		/27			
156.35.0.0		/21			
116.0.0.0		/14			
145.23.0.0		/29			
199.12.1.0		/30			
15.0.0.0		/29			

^{*}CIDR = Classless Inter-Domain Routing

Hierarchical addressing: route aggregation

hierarchical addressing allows efficient advertisement of routing information:

Hierarchical addressing: more specific routes

- Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
- ISPs-R-Us now advertises a more specific route to Organization 1

Hierarchical addressing: more specific routes

- Organization 1 moves from Fly-By-Night-ISP to ISPs-R-Us
- ISPs-R-Us now advertises a more specific route to Organization 1

IP addressing: last words ...

- Q: how does an ISP get block of addresses?
- A: ICANN: Internet Corporation for Assigned Names and Numbers http://www.icann.org/
 - allocates IP addresses, through 5
 regional registries (RRs) (who may
 then allocate to local registries)
 - manages DNS root zone, including delegation of individual TLD (.com, .edu, ...) management

- Q: are there enough 32-bit IP addresses?
- ICANN allocated last chunk of IPv4 addresses to RRs in 2011
- NAT (next) helps IPv4 address space exhaustion
- IPv6 has 128-bit address space

"Who the hell knew how much address space we needed?" Vint Cerf (reflecting on decision to make IPv4 address 32 bits long)

NAT: all devices in local network share just one IPv4 address as far as outside world is concerned

all datagrams leaving local network have same source NAT IP address: 138.76.29.7, but different source port numbers

datagrams with source or destination in this network have 10.0.0/24 address for source, destination (as usual)

- all devices in local network have 32-bit addresses in a "private" IP address space (10/8, 172.16/12, 192.168/16 prefixes) that can only be used in local network
- advantages:
 - just one IP address needed from provider ISP for all devices
 - can change addresses of host in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - security: devices inside local net not directly addressable, visible by outside world

implementation: NAT router must (transparently):

- outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #)
 - remote clients/servers will respond using (NAT IP address, new port
 #) as destination address
- remember (in NAT translation table) every (source IP address, port #)
 to (NAT IP address, new port #) translation pair
- incoming datagrams: replace (NAT IP address, new port #) in destination fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

- NAT has been controversial:
 - routers "should" only process up to layer 3
 - address "shortage" should be solved by IPv6
 - violates end-to-end argument (port # manipulation by network-layer device)
 - NAT traversal: what if client wants to connect to server behind NAT?
- but NAT is here to stay:
 - extensively used in home and institutional nets, 4G/5G cellular nets

IPv6: motivation

- initial motivation: 32-bit IPv4 address space would be completely allocated
- additional motivation:
 - speed processing/forwarding: 40-byte fixed length header
 - enable different network-layer treatment of "flows"

IPv6 datagram format

flow label: identify datagrams in same "flow." (concept of "flow" not well defined).

What's missing (compared with IPv4):

- no checksum (to speed processing at routers)
- no fragmentation/reassembly
- no options (available as upper-layer, next-header protocol at router)

Transition from IPv4 to IPv6

- not all routers can be upgraded simultaneously
 - no "flag days"
 - how will network operate with mixed IPv4 and IPv6 routers?
- tunneling: IPv6 datagram carried as payload in IPv4 datagram among IPv4 routers ("packet within a packet")
 - tunneling used extensively in other contexts (4G/5G)

Tunneling and encapsulation

Ethernet connecting two IPv6 routers:

IPv4 network connecting two IPv6 routers

Tunneling and encapsulation

Ethernet connecting two IPv6 routers:

IPv4 tunnel connecting two IPv6 routers

Tunneling

IPv6: adoption

- Google¹: ~ 30% of clients access services via IPv6
- NIST: 1/3 of all US government domains are IPv6 capable

IPv6 Adoption

We are continuously measuring the availability of IPv6 connectivity among Google users. The graph shows the percentage of users that access Google over IPv6.

https://www.google.com/intl/en/ipv6/statistics.html

IPv6: adoption

- Google¹: ~ 30% of clients access services via IPv6
- NIST: 1/3 of all US government domains are IPv6 capable
- Long (long!) time for deployment, use
 - 25 years and counting!
 - think of application-level changes in last 25 years: WWW, social media, streaming media, gaming, telepresence, ...
 - Why?

¹ https://www.google.com/intl/en/ipv6/statistics.html

Network Layer – Data plane

- ✓ Network layer: services and overview
- ✓ Routers
- ✓ Internet protocol
- ✓ Generalized forwarding and SDN

Generalized forwarding: match plus action

Review: each router contains a forwarding table (aka: flow table)

- "match plus action" abstraction: match bits in arriving packet, take action
 - destination-based forwarding: forward based on dest. IP address
 - generalized for warding
 - many header fields can determine action
 - many action possible: drop/copy/modify/log packet

Flow table abstraction

- flow: defined by header field values (in link-, network-, transport-layer fields)
- generalized forwarding: simple packet-handling rules
 - match: pattern values in packet header fields
 - actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - priority: disambiguate overlapping patterns
 - counters: #bytes and #packets

Flow table abstraction

- flow: defined by header fields
- generalized forwarding: simple packet-handling rules
 - match: pattern values in packet header fields
 - actions: for matched packet: drop, forward, modify, matched packet or send matched packet to controller
 - priority: disambiguate overlapping patterns
 - counters: #bytes and #packets

OpenFlow: flow table entries

OpenFlow: examples

Destination-based forwarding:

					VLAN Pri		IP Dst	IP Prot	IP ToS	TCP s-port	TCP d-port	Action
*	*	*	*	*	*	*	51.6.0.8	*	*	*	*	port6

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:

Block (do not forward) all datagrams destined to TCP port 22 (ssh port #)

Block (do not forward) all datagrams sent by host 128.119.1.1

OpenFlow: examples

Layer 2 destination-based forwarding:

Switch	MAC	MAC	Eth	VLAN	VLAN	IP	IP	IP	IP	TCP	TCP	Action
Port	src	dst	type	ID	Pri	Src	Dst	Prot	ToS	s-port	d-port	
*	*	22:A7:23: 11:E1:02	*	*	*	*	*	*	*	*	*	port3

layer 2 frames with destination MAC address 22:A7:23:11:E1:02 should be forwarded to output port 3

OpenFlow abstraction

match+action: abstraction unifies different kinds of devices

Router

- match: longest destination IP prefix
- action: forward out a link

Switch

- match: destination MAC address
- action: forward or flood

Firewall

- match: IP addresses and TCP/UDP port numbers
- action: permit or deny

NAT

- match: IP address and port
- action: rewrite address and port

OpenFlow example

OpenFlow example

Generalized forwarding: summary

- "match plus action" abstraction: match bits in arriving packet header(s) in any layers, take action
 - matching over many fields (link-, network-, transport-layer)
 - local actions: drop, forward, modify, or send matched packet to controller
 - "program" network-wide behaviors
- simple form of "network programmability"
 - programmable, per-packet "processing"
 - historical roots: active networking
 - *today:* more generalized programming: P4 (see p4.org).

References

Figures and slides are taken/adapted from:

- Jim Kurose, Keith Ross, "Computer Networking: A Top-Down Approach", 7th ed. Addison-Wesley, 2012. All material copyright 1996-2016 J.F Kurose and K.W. Ross, All Rights Reserved
- Jim Kurose, Keith Ross, "Computer Networking: A Top-Down Approach", 8th ed. Pearson, 2020. All material copyright 1996-2020 J.F Kurose and K.W. Ross, All Rights Reserved