BALTIC ASTRONOMY

An international journal

Volume 20 Number 1 2011

Property of USNO Library

RECEIVED JUN 0 6 2011

Contents

J. Zdanavičius, F. J. Vrba, K. Zdanavičius, V. Straižys, R. P. Boyle. CCD photometry of the open cluster Tombaugh 5 in the Vilnius system S. Bartašiūtė, R. Janusz, R. P. Boyle, A. G. D. Philip. Vilnius multicolor CCD photometry of the open cluster NGC 752 2 G. Barisevičius, G. Tautvaišienė, S. Berdyugina, Y. Chorniy, I. Ilyin. Chemical composition of the RS CVn-type star 33 Piscium		
S. Bartašiūtė, R. Janusz, R. P. Boyle, A. G. D. Philip. Vilnius multicolor CCD photometry of the open cluster NGC 752	J. Zdanavičius, F. J. Vrba, K. Zdanavičius, V. Straižys, R. P. Boyle. CCD photometry of the open cluster Tombaugh 5 in the Vilnius system	
G. Barisevičius, G. Tautvaišienė, S. Berdyugina, Y. Chorniy, I. Ilyin. Chemical composition of the RS CVn-type star 33 Piscium	TO DO I. A C D Philip	
Y. Chorniy, I. Hyin. Chemical composition of the Ro Grand Star 33 Piscium	Vilnius multicolor CCD photometry of the open classes 100	
T. Kipper. On the optical spectrum of 89 Her	T Their I hamical composition of the Composition of	.5
E. E. Zotos. Disks controlling chaos in a 3D dynamical model for elliptical galaxies	The residence of the optical spectrum of 89 Her	6
v. Malyuto, T. Shvelidze. Determination of homogenized effective temperatures from stellar catalogs9	1. Kipper. On the optical spectrum of the control o	
V. Malyuto, T. Shvelidze. Determination of homogenized effective temperatures from stellar catalogs9	elliptical galaxies	. 7
Instructions to authors	V. Malyuto, T. Shvelidze. Determination of homogenized effective temperatures from stellar catalogs	. 9
	Instructions to authors	ΙÜ

VILNIUS, LITHUANIA

Baltic Astronomy, vol. 20, 1-25, 2011

CCD PHOTOMETRY OF THE OPEN CLUSTER TOMBAUGH 5 IN THE VILNIUS SYSTEM

- J. Zdanavičius¹, F. J. Vrba², K. Zdanavičius¹, V. Straižys¹ and R. P. Boyle³
- ¹ Institute of Theoretical Physics and Astronomy, Vilnius University, Goštauto 12, Vilnius, LT-01108, Lithuania
- ² U.S. Naval Observatory Flagstaff Station, P.O. Box 1149, Flagstaff, AZ 86002, U.S.A.
- ³ Vatican Observatory Research Group, Steward Observatory, Tucson, AZ 85721, U.S.A.

Received 2010 November 23; accepted 2010 December 11

Abstract. We present the results of eight-color CCD photometry of 674 stars in the direction of the open cluster Tombaugh 5 in Camelopardalis. The stars are observed in the Vilnius system supplemented by the broad-band I filter; the field is of 22' diameter, the limiting magnitude is V = 17.7 mag. The catalog contains the coordinates, V magnitudes, seven color indices, two-dimensional spectral types determined from photometric parameters, interstellar extinctions and distances. The color-magnitude diagram plotted for 480 individually dereddened stars is used to identify cluster members and to determine the distance (1.74 kpc) and age (200-250 Myr) of the cluster. The faintest cluster stars classified are of spectral class Go. The cluster contains two blue stragglers of spectral classes B2-B4, both of them seem to be visual binaries. The extinction A_V for the cluster stars is non-uniform, being spread between 2 and 3 mag, with a mean value of 2.42 mag. The extinction vs. distance dependence can be modeled by the Parenago exponential curve with two dust concentrations in the Camelopardalis dark clouds at about 150 pc and the Cam OB1 association clouds at 0.9-1.0 kpc.

Key words: stars: fundamental parameters – Galaxy: open clusters: individual (Tombaugh 5)

1. INTRODUCTION

Several years ago we started a program of multicolor photometry of open clusters and star-forming regions applying a CCD version of the *Vilnius* seven-color system, supplemented with the broad I passband. Observational data were obtained with the Ritchey telescope of the U.S. Naval Observatory at Flagstaff. The following objects were investigated: open clusters M67 (Laugalys et al. 2004), NGC 6997 (Laugalys et al. 2006a), Collinder 428 (Laugalys et al. 2007) and IC 361 (Zdanavičius et al. 2010), and four areas in the dark cloud LDN 935 at the North America and Pelican nebulae (Laugalys et al. 2006b). The present paper gives the results of photometry and classification of stars in the direction of a little investigated open cluster Tombaugh 5 in Camelopardalis (RA = $3^{\rm h}47.8^{\rm m}$, DEC = $+59^{\circ}03.22'$, $\ell=143.94^{\circ}$, $b=3.58^{\circ}$; the coordinates are from Lata et al. 2004).

The cluster was discovered by Tombaugh (1941) who described it as a large

including suggestions for reducing	completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	arters Services, Directorate for Info	ormation Operations and Reports	s, 1215 Jefferson Davis	Highway, Suite 1204, Arlington
1. REPORT DATE 03 AUG 2011		2. REPORT TYPE		3. DATES COVE	RED
4. TITLE AND SUBTITLE		_		5a. CONTRACT	NUMBER
CCD Photometry (System	Of The Open Cluste	r Tombaugh 5 In T	he Vilnius	5b. GRANT NUM	ИBER
System				5c. PROGRAM E	LEMENT NUMBER
6. AUTHOR(S)				5d. PROJECT NU	JMBER
				5e. TASK NUMB	BER
				5f. WORK UNIT	NUMBER
	ZATION NAME(S) AND AI vatory Flagstaff Stat 86002	` '		8. PERFORMING REPORT NUMB	G ORGANIZATION ER
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	AND ADDRESS(ES)		10. SPONSOR/M	ONITOR'S ACRONYM(S)
				11. SPONSOR/M NUMBER(S)	ONITOR'S REPORT
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distribut	ion unlimited.			
13. SUPPLEMENTARY NO	OTES				
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFIC	CATION OF:		17. LIMITATION OF	18. NUMBER	19a. NAME OF
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	ABSTRACT	OF PAGES 14	RESPONSIBLE PERSON

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and

Report Documentation Page

Form Approved OMB No. 0704-0188

3

and easily seen. Tombaugh counted in the cluster about 80 stars between magnitudes 14 and 16. The color-magnitude diagram of the cluster was first plotted by Reddish (1954) in a photographic version of the B,V system, down to a limiting V magnitude of about 15. The diagram was found to be similar to that of the Praesepe cluster, with a few yellow giants. The estimates of the extinction and distance, $A_V=1.05$ mag and d=1.8 kpc, were based on magnitudes and colors of the yellow giants.

Lata et al. (2004) obtained much deeper CCD photometry of the cluster in the UBVRI system and plotted its color-magnitude diagram down to $V\approx 21$ mag. Since there was no possibility to identify cluster members, the diagram is contaminated by field stars. For the identification of cluster members, only the radial distance from the center was used. By comparing with the isochrones from Girardi et al. (2002), the following parameters of the cluster were obtained: $E_{B-V}=0.80$ mag, d=1.75 kpc and the age 200 Myr.

Another deep (down to V=19 mag) photometric investigation of Tombaugh 5 was done by Maciejewski & Niedzielski (2007) in the BV system. They redetermined the coordinates of the cluster center and, from the radial density profile, estimated the limiting radius (11.8'). The color-magnitude diagram of the cluster was decontaminated from field stars statistically by comparing with an area outside the cluster. By comparison with the isochrones from Bertelli et al. (1994), the following parameters of the cluster were obtained: $E_{B-V}=0.80$ mag, d=1.33 kpc and the age 251 Myr.

Majaess et al. (2008) investigated the cluster using the $J_1H_1K_8$ data from the 2MASS survey. By fitting the isochrones from Bonatto et al. (2004) they obtained $E_{J-H}=0.22$ mag (or $E_{B-V}=0.81$), d=1.66 kpc and the age 224×10^6 yr. The cepheid GSC 03729-01127 was found to be a probable member of Tombaugh 5. However, it is located at 21.9' from the center, i.e., in the corona of the cluster. The paper also provides a table of six likely evolved B-type members of the cluster.¹

However, all the quoted investigations of the cluster suffer from contamination by field stars. In the present paper, we investigate the cluster in the seven-color Vilnius photometric system supplemented by the broad-band I magnitude. This system allows us to determine spectral and luminosity classes and interstellar reddening for all stars down to V=17.2 mag. This makes it possible to plot the intrinsic color-magnitude diagram and to estimate membership of stars in the cluster individually. In this way, we can obtain more confident estimates of the distance and age.

Figure 1 gives the location of Tombaugh 5 in the Galactic coordinates with respect to the dust clouds from the Dobashi et al. (2005) atlas and other surrounding objects. In Figure 2 we present a map of the investigated area, based on a copy from the DSS2 Red survey.

In Section 2 we describe observations in the field of Tombaugh 5 and data reductions. The results of photometry and classification of stars are provided in Section 3. In Section 4 we investigate the interstellar extinction in the area. In Section 5 we identify cluster members and determine the cluster parameters. Section 6 gives a summary of the results.

Fig. 1. The position of the Tombaugh 5 cluster with respect to the surrounding objects in the $12^{\circ} \times 12^{\circ}$ area. The chart is based on the Dobashi et al. (2005) atlas of dark clouds (TGU numbers) and shows the positions of the nebulae Sh2-202, Sh2-205, vdB 14 and vdB 15, the open clusters King 6, NGC 1502, IC 361, NGC 1444 and NGC 1496, the association Cam OB3, the dark clouds TGU 937, TGU 942 and TGU 994, and the high-mass YSO AFGL 490. BA 14 is the area investigated by Zdanavičius et al. (2005a,b).

2. OBSERVATIONS AND REDUCTIONS

The cluster area was observed in seven filters of the Vilnius photometric system $U,P,X,Y,Z,\ V$ and S, supplemented by the broad-band I filter, in December of 1999 with a $2K\times 2K$ CCD camera on the 1 m Ritchey telescope at the USNO Flagstaff Station (Arizona), which gives the 22' diameter field (Figure 2). The list of exposures is given in Table 1. The mean wavelengths of the response functions are listed in Column 2.

 $^{^1}$ According to our classification (see Table 3), all these stars are cluster members of spectral types $B9.5\,V$ – $A0\,V.$

Fig. 2. Field of Tombaugh 5 ($25' \times 25'$) with the center at RA = 03:47:48, DEC = +59:06 (J2000) shown on the DSS2 Red map from SkyView. The circle with the 22' diameter delineates the area investigated in the present paper.

Processing of the CCD frames was done with the IRAF² data reduction software using the point spread function (PSF) method. Flat-field corrections were obtained from the twilight and dome exposures. On each frame, up to 100 uncrowded stars were selected by multi-aperture photometry to obtain the best fit parameters of the PSF profile. Then this PSF was fitted to all stars in the corresponding frames.

Table 1. Exposures of the cluster Tombaugh 5 taken with the 1 m telescope at the USNO Flagstaff Station.

Filter	λ_0 (nm)	Exposures (s)
\overline{U}	345	1800, 300
P	374	1800, 300
X	405	1800, 300
Y	466	360, 60
Z	516	360, 60
V	544	360, 60
s	656	360, 60
I	700	180, 30

Table 2. Internal accuracy of the photometric catalog.

V interval	N_V	σ_V	συ-v	σ_{P-V}	σ_{X-V}	σ_{Y-V}	σ_{Z-V}	σ_{V-S}	σ_{V-I}
8.00 - 14.00	77	0.010	0.015	0.016	0.013	0.013	0.014	0.016	0.023
14.00 - 16.00	210	0.012	0.030	0.024	0.016	0.018	0.015	0.016	0.015
16.00 - 17.00	190	0.022	0.059	0.045	0.030	0.037	0.027	0.028	0.024
17.00 - 18.00	197	0.036	0.090	0.069	0.047	0.066	0.043	0.044	0.037

The equations for the transformation of instrumental magnitudes and color indices to the standard Vilnius system were taken from Zdanavičius et al. (2010). For fixing zero-points of magnitudes and color indices, photoelectric data of nine stars from Zdanavičius & Zdanavičius (2002a) were used. By definition, all color indices of the Vilnius system are normalized to zero for unreddened O-type stars. The transformation equation from the instrumental to the standard I magnitude was determined using 557 stars common to our catalog and the IPHAS survey (Drew et al. 2005). The normalization of V-I is the same as of the Vilnius color indices.

Figure 3 shows the distribution of the measured stars in V magnitude. Table 2 gives the magnitude-dependence of the mean rms errors in the V magnitude and color indices. The single-measurement errors of V magnitudes for individual stars are shown in Figure 4.

3. THE CATALOG OF PHOTOMETRIC DATA AND SPECTRAL TYPES

In Table 3 we give the catalog of V magnitudes and color indices in the Vilnius system, and V-I color indices, for 674 stars down to $V\sim 17.7$ mag. Only the stars having $X,\ Y,\ Z$ and V magnitudes measured are included. A colon following the magnitude or color index indicates that its rms error is larger than 0.05 mag.

The catalog also contains two-dimensional spectral types (spectral and luminosity classes) for about 480 stars down to $V=17.2\,\mathrm{mag}$, determined by photometric methods. For the photometric classification, a few different codes described by Zdanavičius et al. (2010) were used. For the calculation of reddening-free Q-parameters, the normal interstellar reddening law was used. In the absence of color indices containing the ultraviolet U and P magnitudes, the accuracy of luminosity class determination for B to early G subclasses is too low, therefore for such stars only one-dimensional spectral classes are given. A few tens of stars were suspected

 $^{^2}$ IRAF package (http://iraf.noao.edu) is distributed by the National Optical Astronomy Observatory, USA.

Fig. 3. Star counts in the magnitude V bins.

Fig. 4. Single-measurement errors of the magnitude V.

to be Am or Ap stars, subdwarfs (sd) or metal-deficient giants (mdg). Some stars can belong to unrecognized types or unresolved binaries, since for them we could not find close photometric analogues among about 13 000 stars in the comparison catalog. For the classification of some stars, additional information from the J-H vs. $H-K_s$ diagram of 2MASS (Skrutskie et al. 2006) was important. In Table 3, spectral classes are given in the lower-case letters to indicate that they are determined from multicolor photometric data.

For the bright stars of the area ($V \sim 9-12$, measured by Zdanavičius & Zdanavičius (2002a, [ZZ2002] in Simbad) photoelectrically, Table 3 lists their magnitudes and colors from CCD measurements. The star [ZZ2002] 205 (B8.5 V:) with asymmetric image (possible VB) was not included. The star [ZZ2002] 200 = HDE 237180 = WDS 03480+5857 (K giant) in the catalog [ZZ2002] has correct photometry but wrong coordinates; it is also absent in Table 3.

4. INTERSTELLAR EXTINCTION

The derived spectral and luminosity classes for the stars were used to determine their intrinsic color indices; the calibrations were taken from Straižys (1992). Then, interstellar reddenings (color excesses), interstellar extinctions A_V and distances

Fig. 5. Distribution of the extinction A_V with distance for 510 stars down to V = 17.2.

d to the stars were calculated (for more details see Zdanavičius et al. 2009). The values of A_V and d are given in Table 3. Typical errors of A_V , arising from the observational errors of color indices, are ± 0.1 mag. Typical errors of distances d are between 0.8 d and 1.26 d, corresponding to the error in absolute magnitude $\Delta M_V = \pm 0.5$ mag. The unresolved and unrecognized in the classification process main-sequence binaries have negative distance errors from zero (if the secondary is much fainter) up to 0.71 d (if both components are identical).

The plot of the extinction vs. distance for the whole field is shown in Figure 5. The lower broken curve shows the run of extinction according to the exponential Parenago (1945) law, accepting the extinction in the Galactic plane $a_0=1.25$ mag/kpc. The Parenago curve corresponds to the diffuse component of interstellar dust, and we expect it should coincide with the lower envelope of the distribution of reddened stars. However, most of the stars between 200–700 pc lie above the curve; this can be explained by a sudden rise in extinction up to $A_V=0.7$ mag in the Gould Belt Camelopardalis clouds, discovered and investigated in our earlier papers (Zdanavičius et al. 1996, 2001, 2002a,b, 2005a,b) and located at about 140 pc from the Sun. Probably, these clouds are the extension of the Taurus clouds to the opposite side of the Galactic equator. The second jump in extinction, of about 2 mag, is seen at 900 pc, and it can be related to the dust layer, which includes

8

Fig. 6. The observed color-magnitude diagram for all stars of Table 3.

the Cam OB1 association (Straižys & Laugalys 2007a,b, 2008). At distances d>1 kpc, the extinction does not increase but remains uneven, with the scatter in A_V between 2 and 4 mag.

The broken curve in the upper right part of Figure 5 corresponds to the limiting magnitude V=17.2 and the absolute magnitude of A0V stars, $M_V=1.0$. Above this curve, stars with large extinctions are not present due to the limiting magnitude of our catalog.

The Tombaugh 5 area is at an angular distance of only $\sim 2^\circ$ from the Cam OB3 area investigated by Zdanavičius et al. (2005b) and of $\sim 4^\circ$ from the cluster IC 361 area investigated by Zdanavičius et al. (2010). The extinction vs. distance plots in the Cam OB3 and Tombaugh 5 directions show an evident similarity. However, the extinction in the Tombaugh 5 area reaches larger values, what can be related to a fainter limiting magnitude. The Tombaugh 5 area exhibits also a higher density of 100 μ m dust emission (Schlegel et al. 1998) and CO molecules (Dame et al. 2001). The atlas of dark clouds by Dobashi et al. (2005) also shows a larger extinction in the vicinity of Tombaugh 5 (see Figure 1). The cluster IC 361 is at higher Galactic latitude (b=+5.7), and the extinction in this direction is lower – at d>2 kpc it reaches 2–2.5 mag. However, even in the IC 361 area, a jump of the extinction of about 1 mag at d<200 pc seems to be present.

Fig. 7. Intrinsic color-magnitude diagram with the cluster members, possible members and non-members indicated by different symbols. The star-like symbols denote seven red giants, possible cluster members. The ZAMS line and two isochrones fitted to the distance modulus $V-M_V=11.2$ are also plotted.

5. PARAMETERS OF TOMBAUGH 5

In Figure 6 we present the plot V vs. Y-V for all 674 stars in the area taking the magnitudes V and color indices Y-V from Table 3. These stars are affected by different amounts of extinction and reddening. In Figure 7 we plot the intrinsic diagram V_0 vs. $(Y-V)_0$ for the 480 stars for which spectral and luminosity classes have been determined. Magnitudes and color indices for each of these stars are corrected subtracting their individual extinctions and reddenings: $V_0 = V - A_V$ and $(Y-V)_0 = Y-V - E_{Y-V}$. It is obvious that the intrinsic color-magnitude diagram is much more relevant for determining the distance and age of the cluster since it is free of the effect of differential extinction and reddening among the cluster members. In Figure 7, stars are plotted by four different symbols: dots designate the selected cluster members, open circles designate possible members, crosses designate non-members and star-like symbols denote seven red giants, possible cluster members. The cluster membership was determined in the following way.

1. In the V_0 vs. $(Y-V)_0$ diagram, the isochrones of solar metallicity and different ages, calculated by Bressan & Tautvaišienė (1996), were fitted to the lower envelope of the main sequence in the color range $(Y-V)_0 = 0.2-0.4$, where

the main sequence of the cluster is most distinct. We accepted for the cluster a solar metallicity, since analogues of the potential cluster members in the F-G spectral range, found from photometric classification, all were of solar composition. The isochrones for 200 and 250 Myr, shown in Figure 7, fit the observed cluster sequence best. Well matched are not only B-type stars on the deviating main sequence but also the positions of seven G-K giants.

- 2. The next step consisted in selecting stars which lie within a typical width of the main sequence up to 1 mag above ZAMS (see Meynet et al. 1993). Among stars with upward deviations from the ZAMS, unresolved binaries composed from main-sequence stars should constitute a significant fraction. If both components are of the same spectral type, the binary system is brightened by 0.75 mag. Some stars, lying below the ZAMS, were also assumed to be the cluster members, taking into account their photometric errors and cosmic dispersion around the ZAMS. The location of the selected stars in the diagrams X_0 vs. $(X-S)_0$ and S_0 vs. $(V-S)_0$ was also checked. Some stars, deviating from the main-sequence belt too much, were attributed to possible members.
- 3. The selected stars were then examined to see if their positions in the A_V vs. d diagram do not deviate more than the distance error box (between 0.8d and 1.26d; this corresponds to 1.39 kpc and 2.19 kpc). Since in the direction of the cluster the extinction is non-uniform, the expected A_V range for the cluster members is between 2.1 and 3.0 mag. The stars surrounding the clump of cluster members and spanning the distance range 1.2 to 2.7 kpc and the extinction range 2.0 to 3.2 mag were accepted as possible members.

Figure 8 shows the surface distribution of the selected 130 cluster members, 85 possible members and 290 non-members in the RA vs. DEC plane. The investigated area is outlined by a circle. As it was expected, the selected members exhibit a concentration toward the cluster center. The non-members in panel (c) also show the crowding in some directions, which can be due to the differences in extinction.

The ZAMS and the two isochrones fit to the lower envelope of the cluster members yields its distance modulus $V-M_V=11.2$ mag, or d=1.74 kpc. This distance is in agreement with the largest concentration of stars in the A_V vs. d plot (Figure 5). As pointed out above, the age of the cluster is between 200 and 250 Myr. It is difficult to assign a single value of the age since the observed sequence and the theoretical isochrones have a somewhat different form in the turn-off region.

Figure 7 shows that two B-type stars of early subclasses, Nos. 277 and 324 in Table 3, lie close to the ZAMS, but well above the turn-off point of the cluster stars. Both stars are located at the cluster center. The star No. 324 is known as an emission-line OB star (Stephenson & Sanduleak 1977; Coyne & MacConnell 1983; Kohoutek & Wehmeyer 1997). McCuskey (1956) gave its spectral class B3. Its images in DSS2 Red and IR are slightly asymmetric, i.e., the star can be a visual binary. The star No. 277 is located only at 2' from No. 324 and is known as binary WDS 03477+5907, with a separation of about 4.5"and $\Delta m = 1.6$. According to McCuskey (1956), its spectral class is B3 (see also the note at the end of Table 3). In Table 3 both components are given separately (Nos. 277 and 281).

Our photometric classification gives B4 III-IV for the star No. 277 and B2 IV-V for the star No. 324. If both stars are at the distance of Tombaugh 5, they should be blue stragglers. Their evolutionary status could be explained by a

Fig. 8. Surface distribution of the cluster members (panel a), possible members (panel b) and non-members (panel c) in the investigated area (broken circle).

recently repeated cycle of massive star formation. However, the cluster does not exhibit remains of gas and dust which could be still present in the central region of the cluster. Thus, a possible scenario of interacting binaries with mass transfer between the components seems to be more appropriate.

The seven G–K giants, lying close to the two isochrones, also deserve a special discussion. Their numbers in Table 3 are 192, 221, 300, 318, 509, 571 and 643, in Figures 7 and 8 they are plotted by star-like symbols. These stars can be cluster members in the hydrogen- and helium-burning stages. The first three are located within 4' from the cluster center. If these seven stars are cluster members, their M_V should be from -0.4 to -1.5 mag, i.e., they should be absolutely brighter than giants in the solar vicinity. This is partly confirmed by our photometric classification, but its accuracy is relatively low since G–K stars of luminosity classes II and

II-III are not sufficiently represented in our catalog of comparison stars. Due to this ambiguity in luminosity classes, in Table 3 we do not give for these stars their distances. However, their intrinsic color indices do not depend strongly on luminosity, hence their color excesses and extinctions A_V should be reliable. In any case, these G-K giants should be considered only as possible cluster members until their membership status is verified by other methods.

Table 3 also contains two stars of spectral classes K5III and M0III (Nos. 378 and 674), which in Figure 7 lie close to the isochrones representing the asymptotic giant branch. If these two stars are the cluster members, their M_V should be -2.7 and -2.9, or luminosity class II. However, our photometric classification gives luminosity classes III, and this can be an argument that these two stars are field giants.

6. CONCLUSIONS

Using eight-color CCD photometry in the direction of the open cluster Tombaugh 5, we derived photometric spectral and luminosity classes for about 480 stars down to $V=17.2\,\mathrm{mag}$. In the color-magnitude diagram, plotted for the intrinsic colors and magnitudes, we identified 129 members and 85 possible members of the cluster. Among the classified stars, the faintest cluster members are of spectral class G0 V. The zero-age main sequence and isochrone fit to the lower envelope of the dereddened main sequence yields a distance to the cluster of 1.74 kpc, and an age of 200–250 Myr. Both the age and the distance are in good agreement with the Lata et al. (2004) and Majaess et al. (2008) results.

The cluster may contain two blue stragglers of early B subclasses and seven G–K giants. The membership of these stars seems to be confirmed by their proper motions. The location on the ZAMS of blue stragglers may indicate a repeated star-forming cycle in the cluster. However, this is hardly possible as the cluster does not contain any observable remains of interstellar matter and is located between the Local and Perseus arms, far from the regions of recent star formation. It is more reasonable that these stars once were interacting binaries with mass transfer between the components.

The interstellar extinction A_V vs. distance diagram plotted for all classified stars in the area has revealed jumps in extinction at distances of the Gould Belt dust clouds at 100–200 pc and the Cam OB1 association clouds at 0.9 kpc. The extinction in front of the cluster is likely to be non-uniform, showing the spread in A_V between 2.1 and 3.0 mag, with a mean value of 2.42 mag for the cluster members. Behind the cluster the extinction ranges from 1.8 to 3.6 mag.

ACKNOWLEDGMENTS. The use of the Simbad, IPHAS, SkyView and IRSA's Gator databases is acknowledged. The authors are thankful to Daniel Majaess for providing us the spectra of some stars, and to Edmundas Meištas and Stanislava Bartašiūtė for their help in preparing the paper.

Note at the proof. In April of 2011 Daniel Majaess provided us the low-resolution spectra (~ 1 Å/pixel) of four stars of the cluster, exposed with the 1.8 m telescope at DAO. Spectral classification of these stars confirms our photometric spectral types; the results are given in Notes to Table 3.

REFERENCES

Bertelli G., Bressan A., Chiosi C. et al. 1994, A&AS, 106, 275

Bonatto C., Bica E., Girardi L. 2004, A&A, 415, 571

Bressan A., Tautvaišienė G. 1996, Baltic Astronomy, 5, 239

Coyne G. V., MacConnell D. J. 1983, Publ. Vatican Obs., 2, 73

Dame T. M., Hartmann D., Thaddeus P. 2001, ApJ, 547, 792

Dobashi K., Uehara H., Kandori R., Sakurai T., Kaiden M., Umemoto T., Sato F. 2005, PASJ, 57, S1

Drew J. E., Greimel R., Irwin M. J. et al. 2005, MNRAS, 362, 753

Girardi L., Bertelli G., Bressan A. et al. 2002, A&A, 391, 195

Kohoutek L., Wehmeyer R. 1997, Astron. Abh. Hamburg Sternw., 11, 1 = CDS Catalog III/205

Lata S., Mohan V., Pandey A. K., Sagar R. 2004, BASI, 32, 59

Laugalys V., Kazlauskas A., Boyle R. P., Vrba F. J., Philip A. G. D., Straižys V. 2004, Baltic Astronomy, 13, 1

Laugalys V., Straižys V., Vrba F. J., Boyle R. P., Philip A. G. D., Kazlauskas A. 2006a, Baltic Astronomy, 15, 327

Laugalys V., Straižys V., Vrba F. J., Boyle R. P., Philip A. G. D., Kazlauskas A. 2006b, Baltic Astronomy, 15, 483

Laugalys V., Straižys V., Vrba F. J., Černis K., Kazlauskas A., Boyle R. P., Philip A. G. D. 2007, Baltic Astronomy, 16, 349

Maciejewski G., Niedzielski A. 2007, A&A, 467, 1065, 2007

Majaess D. J. 2011, personal communication

Majaess D. J., Turner D. G., Lane D. J. 2008, MNRAS, 390, 1539

McCuskey S. W. 1956, ApJS, 2, 298

Meynet G., Mermilliod J.-C., Maeder A. 1993, A&AS, 98, 477

Parenago P. P. 1945, AZh, 22, 129

Reddish V. C. 1954, MNRAS, 114, 583

Schlegel D. J., Finkbeiner D. P., Davis M. 1998, ApJ, 500, 525

Skrutskie M. F., Cutri R. M., Stiening R. et al. 2006, AJ, 131, 1163

Stephenson C. B., Sanduleak N. 1977, ApJS, 33, 459

Straižys V. 1992, Multicolor Stellar Photometry, Pachart Publishing House, Tucson, Arizona; available in pdf format from

http://www.itpa.lt/MulticolorStellarPhotometry/

Straižys V., Laugalys V. 2007a, Baltic Astronomy, 16, 167

Straižys V., Laugalys V. 2007b, Baltic Astronomy, 16, 327

Straižys V., Laugalys V. 2008, Young Stars and Clouds in Camelopardalis, in Handbook of Star Forming Regions, vol. 1. The Northern Sky, ed. B. Reipurth, ASP, p. 294

Tombaugh C. W. 1941, PASP, 53, 219

Zdanavičius J. Bartašiūtė S., Boyle R. P., Vrba F. J., Zdanavičius K. 2010, Baltic Astronomy, 19, 63

Zdanavičius J., Černis K., Zdanavičius K., Straižys V. 2001, Baltic Astronomy, 10, 349

Zdanavičius J., Zdanavičius K. 2002a, Baltic Astronomy, 11, 75; [ZZ2002] in Simbad

Zdanavičius J., Zdanavičius K. 2002b, Baltic Astronomy, 11, 441

Zdanavičius J., Zdanavičius K. 2005a, Baltic Astronomy, 14, 1

Zdanavičius J., Zdanavičius K., Straižys V. 2005b, Baltic Astronomy, 14, 31

Zdanavičius K., Zdanavičius J., Kazlauskas A. 1996, Baltic Astronomy, 5, 563

Zdanavičius K., Zdanavičius J., Straižys V., Maskoliūnas M. 2009, Baltic Astronomy, 18, 33

Table 3. Photometry, spectral and luminosity classes, interstellar extinctions, distances and cluster membership for stars in the Tombough 5 area. The numbers of stars having notes at the end of the table are marked by asterisks.

No.	RA(2000)	DEC(2000)	V U – V	P– V	<i>X-V</i>	Y-V	Z-V	V-S	V-I	Photom.	A_V	d	Memb.
		0 1 11											
1	3 46 30.3	+59 05 50 +59 02 16 +59 02 41 +59 05 45 +59 08 58	15.07 3.58	2.74	1.70	0.84	0.31	0.64	1.03	a5 V	2.33	1540	m
$\tilde{2}$	3 46 30.5	+59 02 16	15.68 3.49	2.83	2.02	0.92	0.38	0.85	1.29	g1 IV	1.55	1800	
3	3 46 31.9	+59 02 41	16.69 3.67	2.79	1.85	0.87	0.34	0.80	1.24	a8 V	2.51	2300	
4	3 46 32.5	+59 05 45	16.48 4.28	3.75	2.58	1.03	0.56	0.95	1.34	k3.5 V	1.11	530	
5	3 46 32.7	+59 08 58	15.65 3.58	2.73	1.75	0.86	0.32	0.65	1.05	a6 V	2.33	1830	m
6	3 46 34.8	+59 04 00 +59 09 54 +59 02 36	17.30		2.32	1.13	0.51	0.94	1.48	g			
7	3 46 35.2	+59 09 54	15.66 3.77	2.92	1.88	0.92	0.33	0.74	1.16	a5 V	2.72	1690	m
8	3 46 35.3	+59 02 36	13.38 2.79	2.20	1.46	0.70	0.27	0.60	0.85	f3 V	1.08	670	
9-	3 46 36.1	+59 03 15 +59.07 23 +59 08 01	17.35		2.03	0.98	0.38	0.88	1.43	f			
10	3 46 36.1	+59.07 23	17.78	2.85	2.20	1.11	0.43	0.92	1.41	f		5 400	
11	3 46 36.2	+59~08~01	16.59		2.93	1.32	0.51	1.15	1.79	g9.5 III	2.17	5480	
12	3 46 36.2	+59 05 14	15.99 3.66	2.68	1.56	0.82	0.31	0.64	1.00	al.5 V	2.55	2930	
13	3 46 36.7	+59.07 23 +59 08 01 +59 05 14 +59 04 34	15.47 3.51	2.68	1.63	0.82	0.29	0.66	1.03	a5 V	2.23	1940	m:
14	3 46 37.1	+59 OS 25	16.10		2.95	1.38	0.48	1.22	1.00	g-k, mug:		4190	
15	3 46 37.5	+59 07 57	16.91 3.63	2.83	1.73	0.89	0.30	0.75	1.15	ao iv	2.49		
16	3 46 38.0	+59 02 34	17.57		2.64	1.01	0.46	1.11	1.63	K	0.01		
	3 46 38.1	+59 02 34 +59 01 31 +59 07 03	11.94 3.36	2.29	1.32	0.73	0.24	0.02	1.00	au III:	2.31	1.400	m:
18	3 46 38.4	+59 07 03	15.01 4.14	3.01	1.92	1.03	0.37	0.89	1.57	10 111	2.04	1420	
19	3 46 39.0	+59 04 15	17.67		2.57	1.11	0.49	0.76	1.00	K ng V	0.69	1750	m
20	3 46 39.1	+59 04 15 +59 01 54 +59 00 11 +59 11 58	15.72 3.70	2.84	1.76	0.90	0.33	0.10	1.10	80 V	2.03	1240	111
21	3 46 39.2	+59 00 11	16.98	2.84	2.05	1.09	0.30	0.92	1.40	14 V	2.11	1040	m
22	3 46 39.3	+59 11 58 +59 07 29	17.27		2.86	1.18	0.03	1.11	1.74	m -0.V	2 20	0660	
23	3 46 39.4	+59 07 29	16.72 3.72	2.89	1.94	1.03	0.30	0.90	1.00	82 V	3.39	2000	
24	3 46 39.6	+58 59 31 +59 06 13 +59 06 09 +59 00 55	17.78:		1.01:	0.85:	0.31:	0.60:	1.03	: [
25	3 46 40.1	+59 06 13	17.42		2.23	1.13	0.40	1.01	1.40	1			
26	3 46 40.3	+59 06 09	17.50		2.33	0.01	0.49	0.90	1.40	či.			
27	3 46 40.4	+59 00 55 +59 10 20 +59 10 27 +59 11 32 +58 59 58	17.37	0.61	1.92	0.91	0.33	0.74	1.22	8 9 W	2.46	2170	m:
28	3 46 40.5	+59 10 20	10.14 3.73	2.81	1.00	0.94	0.33	1.00	1.20	-0 K 111	2.40	1830	111,
29	3 46 40.8	+59 10 27	14.60 5.25	2.70	0.70	1.07	0.51	1.23	1.00	g9.5 III	3 14	1946	
30	3 46 40.9	+59 11 32	10.54	3.19	2.19	1.00	0.30	0.06	1.04	t go rv	0.14	12-10	
31	3 46 41.1	+58 59 58	15.00 4.09	9 19	2.10	1.01	0.00	1.01	1.51	64 137	2 01	1200	
32	3 46 41.2	150 09 91	16.04	3.10	2.20	1.05	0.43	1.00	1 41	σ5 V	2.02	930	
33	3 46 42.1	+09 03 31	10.34	2.20	2.30	1.00	0.40	0.80	1.30	63.17/	2 37	1640	
34 35*	3 46 42.5	+09 04 22	10.74 3.71	2.90	1 49-	0.80	n 37-	0.54	0.85		20-01	1040	
		+09 U4 14	15.00.2.51	2.20.	1 99	0.00.	N 31	0.76	1 11	m V	2.10	2370	
36 37	3 46 43.0 3 46 43.0	7-05 01 10	16.50 3.31	4.00	3 10	1 43	0.60	1.25	2.08	kn.7 IV	2.76	1370	
38	3 46 44.4	#50 15 10 #50 11 10	16 18 3 09	2 08	1.96	0.94	0.34	0.85	1.32	87 V	2.89	1650	m
39	3 46 44.5	+58 59 58 +59 10 24 +59 03 31 +59 04 22 +59 07 10 +59 13 16 +59 13 19 +59 04 58 +59 04 58 +59 05 42 +59 05 42 +59 05 42 +59 05 42	17 16	3 18	2.35	1.05	0.42	0.00	1.41	78 V	1.83	920	•••
40	3 46 44.7	±50 04 40	17.55	0.10	2.41	1.12	0.47	0.91	1.38	E .	_,,00	J - U	
41	3 46 44.8	±50 13 91	16.62	2.97	1.93	0.97	0.37	0.77	1.29	a5 V	2.89	2430	
42	3 46 44.9	±59 00 15	17.71	2.01	1.89	0.91	0.29	0.90	1.33	f	_,,	_ 100	
43	3 46 45.0	±59 05 42	17.63		2.32	1.08	0.42	1.02	1.50	e e			
44		150 08 26	16.26 3.56	2 71	1.90	0.93	0.34	0.86	1.25	์ก เม	1.70	3250	
*4*1	0 40 40,0	700 00 20	10.00 0.00		2.00	3,00	J 4	2.00	1.20		0	,_,,	

Table 3. Continued

			COIL				71 17	D 1/	V 1/	V. 1/	7.17	17. C	1/ 「	Photom	A	ď	Memb
INO.														Photom. sp. type			Memo
	17 111					mag	mag	mog				6	6	ор. «у р»		Ъ.	
45	3 46	45.3	+59	02	55	17.53			2.09	1.10	0.33	1.01	1.44	f		000	
46	3 46	45.4	+59	04	20	14.94	3.33	2.62	1.88	0.93	0.33	0.82	1.20	f4 V f6 V a4 V a5 V	1.93	1420	
47	3 46	45.9	+59	02	34	16.58	3.55	2.80	2.01	0.95	0.37	0.92	1.34	10 V	2.13	453D	m:
48 49	3 40	40.2	-1-59	12	41	17.25	2.70	2.10	1.03	0.00	0.29	0.00	1.00	24 V	2.00	1830	m
50	2 46	46.5	+59	10	09	17.44	3.10	2.02	2.70	3.02	0.41	0.00	1 39	f	2.40	1000	111
51		47.3	150	04	41	16.07		#.02	3.14	1.40	0.52	1.29	1.96	g8.5 III g6 III a6 III f9.5 V	2.87	3070	
52		47.4	4.59	00	01	16.15		4.15	2.85	1.32	0.50	1.21	1.86	g6 III	2.62	3400	
53		47.7	+59	09	00	14.73	4.05	2.99	1.93	0.94	0.35	0.77	1.19	a6 III	2.87	1600	
54		47.9	+-59	07	24	14.42	2.94	2.38	1.68	0.77	0.31	0.72	0.94	f9.5 V	0.97	700	
55		47.9	+59	13	38	17.73 16.78			2.26	1.15	0.49	0.98	1.54	f			
56		49.0	+59	00	50	16.78		3.10	2.27	1.08	0.41	1.03	1.54	1 g1.5 V a2 V a0 HI g	2.21	1020	
57	3 46	49.1	+59	05	46	15.70	3.54	2.60	1.55	0.76	0.29	0.62	0.92	a2 V	2.35	2680	
58	3 46	49.4	+59	06	51	12.98	3.13	2.20	1.27	0.68	0.24	0.57	0.78	a0 III	2.12	1630	m
59	3 46	49.5	+59	08	03	17.54		2.94	2.18	1.00	0.41	0.91	1.37	g g0 IV			
60	3 46	49.6	+59	05	15	16.96	3.46	2.92	2.02	0.98	0.39	0.89	1.30	g0 IV	1.73	3060	
61	3 46	50.4	+59	11	04	17.05		2.95	2.24	1.04	0.43	0.87	1.41	g			
62	3 46	50.6	+59	00	56	17.05 17.55 16.53 16.77			2.14	1.14	0.41	1.00	1.49	1	0.00	1 150	
63	3 46	50.8	+-58	59	16	16.53			2.93	1.35	0.51	1.19	1.84	g9.5 IV			
64	3 46	52.0	+59	04	15	16.77	3.71	2.90	2.00	1.15	0.40:	0.76:	1.33	. B.	0.10	4000	
65	3 46	52.5	+59	Uti	41	16.47	3.07	2.73	1.72	0.82	0.28	0.10	1.09	a8 III a9 V a4 V a1.5 V f1 V a0 V f	2.19	1550	
66 67	3 40	52.5	+59	04	09	10.10	3.42	2.73	1.09	0.92	0.30	0.70	1.10	25 V	2.59	1670	m
	3 40	53.1	7-09	no no	11	14.00	2 14	2.(1	1.11	0.65	0.31	0.70	0.70	915 V	1.84	1790	
68 69	2 46	59.1	150	00	ue rr	19.56	0.14	2.34	1.34	0.63	0.25	0.57	0.75	กV	1.04	550	
70	3 46	53.1	4.50	04	33	13 33	3.06	2.16	1 21	0.64	0.23	0.53	0.75	an V	1.91	1670	
71	3 46	53.3	-1-50	00	33	17.10	0.00	2.84	2.11	1.06	0.46	0.90	1.34	f	*		
72	3 46	54.3	+59	05	33	13.97	3.10	2.26	1.27	0.65	0.24	0.53	0.75	al V f6 IV	1.83	1690	
73	3 46	56.4	+59	04	50	12.85	2.60	2.05	1.34	0.61	0.23	0.58	0.72	f6 IV	0.56	880	
74*	3 46	57.2															
75		57.3	+59	09	43	17.57			2.05	1.13	0.33	0.95	1.47	k1.2 III a ef g f9 V g			
76		57.5	+59	07	05	17.61	:	2.87:	2.03:	1.03:	0.36:	0.96:	1.43	f			
77	3 46	57.6	+59	14	39	17.59			2.32	1.10:	0.46:	0.97:	1.54	g			
78	3 46	57.7	+59	01	34	17.24			2.31	1.13	0.41	1.05	1.58	f9 V	2.54	1290	m
79		58.4	+59	12	39	17.45			2.20	1.01	0.38	0.91	1.42	g			
80		58.7	+58	59	58	17.75			1.98	1.12	0.46	0.81	1.26				
81	3 46	59.1	+59	05	55	16.79			2.89	1.41	0.53	1.24	1.94	f-g			
82	3 46	59.4	+59	O1	55	10.37	3.03	2.70	1.99	0.99	0.07	0.00	1.30	11 V	2.25	2180	m:
83	3 40	59.5			EIIJ	17.77			2.29	1.00	U.4U	0.95.	1.43	Z.			
84	3 46	59.6	+59	01	13	16.15	3.99	3.00	1.92	0.92	0.34	0.83	1.29	a6 V	2.88	3050	
85	3 46	59.9	+59	12	19	17.20	0.01	3.07	2.10	0.95	0.33	0.89	1.44	t-g	0.74	gggn	***
86	3 46	59.9	+59	01	33	16.66	3.81	2.98	2.02	0.98	0.30	0.92	1.39	as v	2.74	2520	m:
87	3 47	0.00	+-59	13	93	17.39	9.00	0.01	2.00	1.00	0.30	0.91	1.09	a-1 n5 V	9.70	1210	
88 89	3 47	00.5	+59	UQ.	97	14.93	2.50	2.91	2.02	1.09	0.33	0.70	1.10	f-g a9 V a-f a5 V f4 V a1 V k1 III k3 V	2.12	1630	m
90	3 47	00.0	4.58	04	40	14.07	2 22	2.10	1 37	1.02	0.33	0.52	0.81	at V	2.23	2300	111
91	3 47	00.7	T-25	50	U.0.	16.62	J. J.	2.00	3.20	1.42	0.55	1.31	2.60	kl III	2.60	4750	
92	3 47	0.00	150	19	36	14 00	3.64	3.20	2.20	0.82	0.44	0.85	1.09	k3 V	0.44	257	
93	3 47	02.0	+50	07	32	17.60	V.04	J.20	2.96	1.04	0.67	1.13	1.52	k5			
94		02.3	+59	00	25	16.39			3,34	1,54	0.58	1,40	2.20	k5 g9.5 III	3.22	3080	
95		03.0	+58	59	10	17.60 16.39 17.59											
96		03.0	+58	59	41	16.34	4.08	3.07	1.99	1.01	0.35	0.87	1.36	a5 V a4 V a9 V	3.09	2460	
97		03.8	+59	11	59	14.78	3.43	2.58	1.52	0.74	0.27	0.57	0.85	a4 V	2.07	1670	m;
98		04.1	+58	59	52	16.64	3.86	3.02	2.03	1.01	0.34	0.91	1.40	a9 V	2.88	1710	m
99		04.9	4-59	Uί	au	11.19			4.41	1.00	Ų,4Q	U.SS.	1.07	K.			
100		05.0	+59	03	17	15.45			4.56	1.89	0.78	1.76	2.89	m0 III	3.24	3820	
101	3 47	05.1	+59	11	56	15.45 17.48											
102	3 47	05.6	∔58	57	46	15.43	3.92	2.80	1.69	0.89	0.31	0.71	1.12	a2 V	2.91	2910	
103	3 47	06.2	+59	04	69	14.17	3.46	2.50	1.46	0.75	0.26	0.64	0.94	al V	2.32	2130	m:
104	3 47	06.6	+59	08	38	17.01		3.43	2.42	1.00	0.50	0.92	1.26	k2 V	1.19	750	
105	3 47	06.8	+59	01	40	17.22		3.08	2.24	1.11	0.41	1.01	1.53	a2 V a1 V k2 V f6 V k2 V	2.65	1510	m
106	3 47	07.0	+59	00	41	16.52	4.01	3.48	2.38	1.01	0.47	0.92	1.24	k2 V	1.24	600	
107	3 47	07.2	+59	11	07	16.44	3.66	2.76	1.82	0.94	0.31	0.84	1.27	a-I			

Table 3. Continued

	abı	Θ,	ə.	Com	,lil	uea												
No.	RA	(20	000)	DEC	2(2	000)	V	U-V	PV	X-V	Y-V	Z -V	V-S	V-I	Photom.	A_V	d	Memb.
	h i			0	`,	"	mag	mag	mag	mag	mag	mag	mag	mag	sp. type	mag	рс	
108	2 4	7 (07.0	, 50	07	ne	16.97	2.54	2 70	1.02	1.01	0.34	0.87	1 28	f4 V	2 15	2780	
109			37.3	1 50	67	67	17.50			1 25	0.02	0.31	0.72	1 15	n_f			
110			07.9	+59	06	18	14.73	3.96	3.49	2.40	0.90	0.50	0.97	1.27	k3.5 V	0.71	284	
111			08.1	+58	59	09	17.62			2.09	1.12	0.40	0.83	1.41	f a5 V a1.5 V			
112	3 4	7 (3.80	+58	56	40	15.76	3.80	2.92	1.81	0.88	0.34	0.70	1.17	a5 V	2.64	1840	m
113			08.4	+59	05	39	14.73	3.38	2.52	1.47	0.72	0.26	0.58	0.85	a1.5 V	2.22	1910	\mathbf{m} ;
114			08.7	+59	01	18	17.54		0.70	2.22	1.07	0.40	0.98	1.49	f-g g8.5 V a0 III a6 V a3 IV a1.5 V f9 IV-V f4 V k3.7 V b9 III a4 V g0 IV f-g, mdg:	0.70	970	
115 116			09.6 09.9	+-59	10	23	14.19	3.26	2.75	1.87	0.78	0.32	0.11	0.97	go.o v	2.10	1380	m:
117			10.0	1.50	na na	30	15.46	3.52	2.52	1.66	0.72	0.28	0.68	1.01	a6 V	2.22	1770	m
118			10.2	+59	0.7	D1	14.24	3.55	2.62	1.56	0.77	0.25	0.67	0.98	a3 IV	2.31	1620	
119			10.3	+59	05	23	14.53	3.47	2.54	1.47	0.74	0.25	0.62	0.89	al.5 V	2.25	1980	m:
120			10.7	+59	05	12	16.94	3.75	3.10	2.22	1.06	0.35	1.00	1.51	f9 IV-V	2.27	1885	m
121	3 4	7 1	10.7	+59	01	57	16.95	3.73	2.94	2.11	1.06	0.36	0.96	1.43	f4 V	2.55	1640	m
122			10.8	+59	15	56	13.86	3.64	3.27	2.20	0.82	0.54	0.77	1.09	k3.7 V	0.11	243	
123			11.0	+59	12	19	12.37	3.03	2.16	1.30	0.69	0.25	0.59	0.79	b9 III	2.21	1350	m:
124			11.0	+59	14	44	15.27	3.62	2.73	1.66	0.83	0.30	0.68	0.06	84 V	0.60	1000	m
125			11.0	+59	10	28	16.17	2.82	2.31	2.00	1.48	0.29	1.30	2.00	f-g, mdg:	0.60	1020	
126 127			$\frac{11.2}{11.3}$,	٠.										, 0,			
128			11.6	+59	09	26	16.88		3.08	2.25	1.12	0.41	1.01	1.53	f6 V k4 V f-g f0 IV a4 V g9 III a0 III	2.67	1280	m:
129			12.1	+59	12	51	17.02	•	3.82	2.49	0.97	0.56	0.98	1.29	k4 V	0.81	730	
130			12.1	+59	11	57	17.04		2.79	2.04	1.07	0.39	0.92	1.36	f-g			
131	3 4	7]	12.2	+59	09	11	16.94		3.31	2.32	1.21	0.44	1.03	1.55	fo IV	3.62	1750	
132			12.2	+59	11	05	16.31	3.72	2.86	1.76	0.86	0.31	0.69	1.11	a4 V	2.62	2620	
133			13.1	+59	03	27	17.24			3.17	1.43	0.55	1.26	1.97	g9 III	2.95	4990	
134*				+59	13	05	12.76	3.36	2.37	2.02	0.77	0.27	0.03	0.91	80 111	2.30	1240	m:
135			13.3	100		05	17.43	2 22	0.14	1.34	0.60	0.40	0.61	0.82	a a1 V a8 V f7 V f6 IV	2 22	2070	m:
136 137			$13.4 \\ 13.4$	+58		3/1	16.51	3.86	2.00	1.09	0.03	0.28	0.83	1.33	aS V	2.83	1820	m
138			13.4	+59		17	17.05	0.00	2.84	2.06	1.00	0.36	0.91	1.36	67 V	2.10	1670	m
139			13.5	+59		14	14.49	3.51	2.77	1.97	0.93	0.34	0.85	1.21	f6 IV	2.01	960	
140	3 4			1.50	0.0													
141	3 4	7 1	13.9	+59	11	29	14.56	3.58	2.61	1.58	0.79	0.27	0.66	0.97	a3 IV	2.52	1850	m
142			14.2	-1-60	0.7	na	16 77	272	777	1 69	0.83	0.76	n asu	1 (15	2.7			
143			14.4	+59	09	50	14.44	3.59	2.70	1.66	0.82	0.29	0.71	1.06	a5 V k4.5 V	2.32	1160	
144			14.4	+58	59	01	14.76	4.06	3.62	2.48	1.10	0.55	0.97	1.30	K4.5 V	0.45	282	
145 146			14.6 14.9	+59			17.36	3.07	2 24	1 31	0.68	0.40	0.51	0.78	195 IV-V	2 17	1790	m
147			15.8	+59			15.00	3.50	2.73	1.90	0.92	0.32	0.86	1.26	b9.5 IV-V f2 V	2.24	1010	***
148			15.8	+59	0.3	30	17.11	3.75	2.94	2.07	1.08	0.35	0.92	1.39	f			
149			15.9	+59	14	44	14.29	5.17	4.27	3.06	1.40	0.52	1.23	1.88	g8.5 III	2.69	1460	
150	3 4	7]	15.9	+59	04	50	17.09	3.60	2.85	2.03	1.08	0.37	0.89	1.31	a-f			
151			16.0	+59	12	12	17.55			2.42	0.96	0.45	1.04	1.44	k			
152			16.0	+59	03										k1.2 V			
153			16.3	+58		42	16.82		2.98	2.14	1.17	0.40	0.89	1.43	f-g	1.00	1970	
154				+59 +59		91	15.14	3.00	2.00	2.U1 2.00	1.06	0.30	0.03	1.40	f-g f8 IV f2 IV a4 V a1.5 V g8 III b9.5 IV-V	2.53	1710	
155 156			16.4 16.5	+59		24	15.55	3.50	2.33	1.62	0.80	0.27	0.67	1.01	a4 V	2.42	2280	m:
157			16.5	+59		27	14.49	3.43	2.51	1,45	0.73	0.25	0.61	0.90	a1.5 V	2.20	1990	m:
158			16.6	+59		05	16.11		4.14	3.02	1.46	0.52	1.31	2.02	g8 III	3.03	2890	
159			17.6	+59		34	10.00	4,00		1.20								
160	3 4	7 1	17.7	+59	05	21	14.09	3.28	2.41	1.37	0.70	0.24	0.57	0.83	al.5 V	2.07	1840	m:
161			17.7	+59	09	53	17.69		2.61	1.59	0.79	0.29	0.75	1.09	a			
162			17.8	+59	13	42	17.14			3.19	1.37	0.54	1.38	2.12	kl III	2.33	6640	
163			17.8	+58	59	49	15.61	4.24	3.41	2.51	1.21	0.44	1.17	1.76	g2 IV	2.61	1040	
164			18.9	+59	05	26	10.98	4.00	2.51	2.05	1.06	0.34	0.91	1.34	14 V:	3 16	1880	 .
165 166			$19.1 \\ 19.2$	+59	111	12 51	14.54	3.62	3.01	3.08	0.90 0.08	0.34	0.79	1.23	66 IV	3.10	7000	m:
167			19.3	4.00	56	34	16.74	3.03	2.00	2.08	1.05	0.38	0.97	1.45	f2 V	2.71	1600	m
168			19.7	+50	00	23	16.03	3,91	2.97	2.01	0.96	0.35	0.82	1.23	a8 V:	2.84	1460	m:
169			19.7	+58	59	28	16.59	4.36	3.23	2.11	1.05	0.37	0.91	1.41	a k1 III g2 IV f4 V: a2 IV f6 IV f2 V a8 V: a3 V:	3.34	3010	
170			19.8	+59	11	48	17.32		2.90	2.07	0.96	0.34	1.00	1.43	g			

Table 3. Continued

	anie o.	Consinueu											
No.	RA(2000)	DEC(2000)	V U-	/ P-V	X-V	Y-V	Z-V	V-S	V-I	Photom.	A_V	đ	Memb.
	hm s	0 1 11		mag	mag	mag	mag	mag	mag	sp. type	mag	pc	
177	2 47 00 0	150 50 40	17.20		2.34	1.22	0.44	1.08	1 67	~ 1:			
171 172	3 47 20.0 3 47 20.1	+58 56 46 +59 08 01	17.09		2.25		0.40						
173	3 47 20.1	+59 08 01 +59 07 32 +59 01 11 +59 09 20	16.79	3.59	2.51					k3.5 V	0.96	650	
174	3 47 20.6	+59 01 11	17.02		3.13		0.52						
175	3 47 20.6	+59 09 20	17.77:		2.40	1.12							
176	3 47 20.7	+58 56 57	16.16 3.8	3.24	2.21					k0 V	1.04	650	
177	3 47 21.7	+59 01 17	17.57	0.07	2.45	1.11	0.40	1.17	1.72	k			
178 179	3 47 21.8 3 47 21.9	+59 01 17 +59 06 34 +59 05 23 +58 56 39 +59 13 56	17.44	3.02	2.13	1.17	0.33	0.90	1.51	f			
180	3 47 22.0	+58 56 39	17.57	3.30	2.45	1.13	0.45	1.10:	1.73	e e			
181	3 47 22.2	+59 13 56											
182	3 47 22.4	+59 14 40	16.91	3.22	2.35	1.14	0.45	0.97	1.48	g4 V a8 V	2.32	2230	
183	3 47 22.4	+59 10 27	15.88 3.69	2.82	1.83	0.92	0.34	0.77	1.13	a8 V	2.51	1580	m
184	3 47 22.4	+59 10 53	14.56 3.39	2.53	1.49	0.73	0.25	0.60	0.86	a4 V	2.02	1550	m:
185	3 47 22.5	+59 10 53 +59 05 19 +59 06 58 +59 14 03 +59 06 41 +59 14 47 +59 07 40	15.42	4.96	3.50	1.48	0.57	0.07	2.09	k2 111	2.72	1000	m
186 187	3 47 22.5 3 47 22.9	+59 00 58	15.50 2 1	2.04	1.24	0.80	0.34	0.54	1.00	77 V	0.68	820	111
188	3 47 23.1	+59 14 03 +59 06 41	14.98 3.5	2.66	1.59	0.79	0.28	0.61	0.93	a4 V	2.23	1700	m
189	3 47 23.2	+59 14 47	15.71 3.94	3.10	2.27	1.14	0.40	1.01	1.53	f5 V	2.85	740	
190	3 47 23.6	+59 07 40	17.12 3.53	2.81	2.02	1.01	0.32	0.97	1.39	f6 V	2.20	1840	m
191	3 47 23.7	+00 10 00	12.00 3.10	2.43	1.07	Q.11	U.24	0.02	0.00	09.0 111	2.01	1380	m:
192	3 47 23.7	+59 03 18	13.61 4.93	4.02	2.90	1.34	0.48	1.22	1.82	g5.5 II-III	2.80		
193	3 47 24.1	+59 10 25	17.32			1.30					2.10	1.400	
194	3 47 24.9	+59 06 29 +58 58 49				1.36					2.10	1450	m:
195 196	3 47 25.3 3 47 25.5	±50 08 19			2.10	1.07	0.37	0.93	1.37	f4 V	2.49	1280	
197	3 47 25.7	+59 07 46	15.56 3.40	2.50	1.52	0.78	0.28	0.63	0.94	a0 V	2.52	2950	
198	3 47 25.9	+59 05 18	16.84 3.6	2.73	1.78	0.91	0.30	0.78	1.14	f4 V a0 V a8 IV	2.35	3520	
199	3 47 26.0	+58 59 25	15.97 4.13	3.12	1.92	0.97	0.34	0.83	1.31	a2 IV, ap:	3.35	2320	
200	3 47 26.3	+59 14 16	17.45		2.45	1.28	0.49	1.02	1.59				
201	3 47 26.4	+59 15 24	16.00 3.79	2.89	1.91	0.94	0.33	0.79	1.21	a8 V k5.5 V	2.66	1560	m
202 203	3 47 27.1 3 47 27.2	+58 57 45	15.55 4.5	4.09	1.82	0.99	0.04	0.70	1.40	a9 IV-V	2.37	1680	m
203	3 47 27.7	4450 A3 11	17 70	2 00	2 25	1 23	0.38	1.00	1.47				
205	3 47 27.8	+58 58 41 +59 00 53 +59 02 45 +59 08 05 +59 06 05	16.58	3.30	2.20	1.11	0.44	0.87	1.43	a4 III	3.65	3000	
206	3 47 27.9	+59 00 53	16.87 3.99	2.97	2.16	1.05	0.40	0.97	1.41	f3 V	2.28	3300	
207	3 47 28.0	+59 02 45	16.43 3.67	2.92	2.07	0.99	0.37	0.91	1.36	f3 V	2.27	2090	\mathbf{m} :
208	3 47 28.0	+59 08 05	16.29 3.70	2.92	2.05	1.03	0.37	0.90	1.32	f1 IV	2.49	1930	m
209	3 47 28.1	+59 06 05	15.36 3.53	2.63	1.60	0.78	0.27	0.69	1.03	a5 V	2.18	2370	
210	3 47 28.6	+59 13 09	17.31	0.70	3.03	1.18	0.08	1.32	1.55	k-m			
211 212	3 47 28.6 3 47 29.6	+59 09 55	17.00	2.79	2.21	1.05	0.34	0.00	1.46	CO V	2 16	1410	m
213	3 47 29.6	#59 15 22 #59 04 98	13 71 2 93	2.31	1.37	0.69	0.26	0.60	0.83	a5 V	1.84	1030	
214	3 47 29.7	+59 13 06	15.28 3.69	2.75	1.69	0.86	0.30	0.66	1.00	a4 V	2.47	1740	m
215	3 47 29.8	+59 09 55 +59 13 22 +59 04 28 +59 13 06 +59 00 16	14.72 3.85	2.76	1.67	0.86	0.31	0.76	1.13	a2 V	2.94	2170	m:
216	3 47 30.0	+59 07 20	14.99 3.53	2.65	1.56	0.74	0.26	0.62	0.94	a4 v, am:	2.20	1730	m
217	3 47 30.0	+59 09 27	15.27 3.64	2.77	1.78	0.87	0.29	0.78	1.15	a7 V	2.46	1320	m:
218	3 47 30.1	+59 09 27 +59 11 56 +59 08 56 +58 55 51 +59 02 51	16.33	4.19	2.96	1.36	0.53	1.23	1.85	kU IV	2.69	1280	
219 220	3 47 30.2 3 47 30.3	+59 08 56	14.25 3.74	2.53	1.66	0.90	0.32	0.80	1.10	ay 1V	2.47	1000	
220	3 47 30.3	+59 02 51	12.02.5.30	4.55	3.21	1.40	0.52	1.24	1.83	k2 III	2.08	1000	
222	3 47 31.0	+59 07 00		2.89	2.09	1.09	0.34	0.95	1.40	f:			
223	3 47 31.3	+59 12 58	16.50 3.61	3.08	2.15	0.86	0.47	0.88	1.16	k2.2 V	0.62		
224	3 47 31.3	+59 09 38	15.46 3.64	2.74	1.71	0.82	0.29	0.68	1.03	a5 V, am:			m
225	3 47 31.6									f2 IV-V	2.55	1965	m
226	3 47 31.9	+59 03 52	17.67	2.93	2.25	1.20	0.48	1.01	1.44	-1.137	0.00	1000	_
227	3 47 32.1	+59 02 17 +58 58 47	14.29 3.39	2.47	1.46	0.74	0.26	0.63	0.91	#I IA	2.38		m
228 229	3 47 32.5	+58 58 47	10.94	9 91	3.00	1.42	0.55	0.60	2.U7 ∩ 9F	g8 IV b9.5 III-IV	3.02		m
230	3 47 32.6 3 47 32.6	+59 01 40		2.51		1.07					2.02	1000	111
230	3 47 33.1			2.33						g0 V	18.0	880	
232	3 47 33.5	+59 11 22	13.99 3.27	2.40	1.46	0.76	0.27	0.64	0.93	69.5 IV-V	2.51	1770	m
233	3 47 33.6	+59 04 25									2.68		

Table 3. Continued

13	able	3.	Cont	m	ıea												
No.	RAC	2000)	DEC	(20	0001	V	U-V	P-V	X-V	YV	Z_rV	V-S	V– I	Photom.	A_V	d	Memb.
	h m		0		'n		mag	mag	mag	mag	mag	mag	mag	sp. type	mag	р¢	
									0.10		A 20	0.00	1.40				
234		33.7	+59 +59			17.43 15.52		2.95			0.38				2.74	2410	
235 236		7 33.8 7 34.1	+59			17.34		4.01	2.20	1.09				D			
237		7 34.4	+59			17.13		3.00			0.36			-			
238		7 34.9	+59			17.02		2.93	2.15	0.99	0.38	0.95	1.37				
239		7 35.0	+59			17.70			1.96								
240*	3 47	7 35.1	+59			12.07								ь9.5 III		1480	
241		7 35.1	+59			15.38					0.37			16 V	1.98	880	
242		7 35.2	+59			17.53 15.07		2.97			0.25			f2 V	2.61	780	
243 244		7 35.6 7 35.9	+59 +59			15.00								a1.5 V		1910	m
244		7 36.0				13.69				0.72	0.25	0.60	0.83	b9.5 IV-V			m
246*		7 36.0				11.19		1.94						a5 V	0.69		
247		7 36.3				16.55		2.32	1.56	0.84	0.32	0.71	1.03	a-f			
248	3 4	7 36.4	+59	13	30	17.12		3.33			0.47	1.02	1.51	g0 V	2.87		
249		7 36.6				14.13				0.67				f9.5 V		740	
250		7 37.0					4.09			0.98	0.36	0.81	1.27	a2 V f2 IV		2410 1610	
251		7 37.2					3.73 3.88			1.00	0.35	0.85	1.29	a9 V		2400	m:
252		7 37.3					3.79			0.86	0.34	0.52	1.12	a1.5 V		1760	
253 254		7 37.3 7 37.5				16.76		£.00	3.51					kl III		4280	
255		7 37.5				16.96		3.02		1.14							
256		7 37.9				13.77								a6 V, am:	2.19	830	
257		7 38.1	+59			14.56	3.54	2.62	1.56	0.80	0.28	0.64	0.94	al V	2.52	1620	m
258	3 4	7 38.2				17.73			1.90	0.95	0.37	0.74:	1.19	a			
259		7 38.2				16.50	4.01	3.12	2.01	1.02	0.38	0.90	1.41	a7 V a5 V		1750	
260		7 38.3				15.41	3.58	2.72	1.70	0.85	0.31	0.69	1.03	a5 V	2.35	1790	m
261_		7 38.8				17.33				1.19							
262		7 38.9				16.48	2.01	3.03	2.01	1.45	0.50	1 24	1.04	ኑስ ፣፣፣	2.67	4020	
263		7 39.2 7 39.2				15.39	3.44	2 75	1 05	8 94	0.34	0.91	1.28	k0 III f6 V	2.01	1020	
264 265		, 39.2 7 39.3				17.45	0.44	2.93	2.10	0.92	0.38	0.95	1.34	g			
266		7 39.6				15 51	4 99	4 16	2 99	1.38	0.50	1.25	1.89	26 III	2.89	2240	
267		7 39.7				13.43	3.23	2.35	1.42	0.73	0.26	0.61	0.87	69.5 IV f2 V	2.39	1510	
268	3 4	7 40.4				16.73	3.71	2.91	2.03	0.99	0.36	0.93	1.36	f2 V	2.02	3490	
269		7 41.1				15.59	3.55	4.15	1.41	0.82	0.29	0.70	1.03	ao v	2.34	1780	m
270		7 41.2					3.65	2.90			0.42						
271		7 41.3				17.46		0.00	2.72		0.45			g-к g8 III-IV			
272		7 41.8				17.08			2.37					al.5 V	2.25	1510	
273 274		7 42.1 7 42.2					4.30							a4 V		1620	
275		7 42.5				15.51	3.94	2.93	1.81					a3 V		2220	
276		7 42.8							1.78					g9 V	0.28	432	
277*		7 42.8				11.38	2.33	1.79	1.18	0.66	0.22	0.58	0.73	b4 III-IV	2.41		m:
278		7 42.8				13.57	3.22	2.35	1.43	0.75	0.26	0.61	0.90	b9.5 IV-V	2.42	1500	m
279		7 43.1				14.42	3.37	2.48	1.44	0.75	0.25	0.59	0.87	a2 V		1660	
280		7 43.2				15.59	3.79	2.89	1.82	0.87	0.31	0.74	1.12	a5 V, am:		1690 1070	
281*		7 43.3							1.42					a1 V a5 V, am:			
282		7 43.5				15.33			1.63 1.72					a2 IV		4720	
283 284		7 43.5 7 43.5				16.01		2.71	3.63					k0 III		2130	
284		1 43.5 7 43.7				15.98	4.59	3.79	2.70							1450	
286		7 44.1				15.47	5.67	4.70	3.36	1.52	0.55	1.42	2.16	g9 IV g9 III g3 V: f4 IV	3.22	2010	
287		7 44.2				16.71	3.62	3.05	2.21	0.99	0.35	1.00	1.43	g3 V:		1030	
288		7 44.2				14.58	3.61	2.81								940	
289	3 4	7 44.7				17.16			2.27					f5 V	2.74	1530	m
290		7 44.9				17.29			2.12		0.39				1.00	1170	
291		7 45.0							2.06					f9.5 IV		1170 890	
292		7 45.0					3.51				0.34			f9 V	1.97	090	
293		7 45.0				17.44 15.85			2.09					a-1 g, mdg:			
294 295		7 45.1 7 45.3	TE0	0.0										a0 IV-V	2.74	1725	m
295 296		7 45.5				16.74		2.99	2.11	1.12	0.37	0.92	1.38	·			
200	0 %	, 40.0	100			10.17											

Table 3. Continued

										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
No.	RA(2000)	DEC(2000)	V U-V	P-V	X-V	Y-V	Z-V	V-S	V-I	Photom.	A_V	d	Memb
	hm s	0 / //	mag mag	mag	mag	mag	mag	mag	mag	sp. type	mag	рс	
			15.05.1.05	5.64		0.00	0.00	0.00	1.07	-0.17	2.00	0200	
297 298	3 47 45.6 3 47 46.3		15.87 4.05 17.25	3.04	2.45				1.62	a3 V	3.00	2380	
299 299	3 47 46.5		16.10 3.90	3.05		1.05	0.38	0.96	1.44	f3 III	2.62	2270	
300	3 47 46.8		11.93 5.09			1.33	0.48	1.18	1.72	k0 III	2.24		
301	3 47 46.8		15.34 3.61			0.81					2.38	1870	m
302	3 47,46.9		14.15 2.73		1.51	0.69			0.84		0.77	750	
303	3 47 47.0		16.02 3.66		1.82	0.91	0.31	0.82	1.18	a9 V		2140	m:
304	3 47 47.3		15.55 3.64		1.70					a5 V		1870	m
305	3 47 47.5		15.36 3.75							a2 V, ap:		1980 1740	
306 307	3 47 47.7 3 47 47.7		15.89 3.55 17.59	2.73	2.00	0.85		0.75		ao v	2.02	1740	m
308	3 47 47.8	+59 13 56	15.69 3.64	2.75			0.39	0.67	1.00	a4 V	2 43	2150	m:
309	3 47 48.0		16.62 3.55		2.01	1.02	0.38	0.87	1.26	a4 V f3 V f1 V		2420	
310	3 47 48.0		14.97 3.57				0.34	0.86	1.26	fi V		840	
311	3 47 48.0	+59 03 51	17.65		2.20	1 11	0.24	1 09	2 45	£			
312	3 47 48.5	+59 02 10	16.05 3.58	2.79	1.92	0.95	0.34	0.86	1.27	fl V al V	2.39	1450	m
313	3 47 48.6		16.88		1.84	0.97	0.37	0.75	1.17	al V	3.16 2.74 2.45 2.64	3490	
314	3 47 48.7		16.59 3.75		1.72	0.79			1.08	a	a - .		
315	3 47 49.1		13.10 3.56		1.58					a0 III	2.74	1290	m:
316	3 47 49.2	+59 08 27	13.61 3.15		1.42					b8.5 V	2.40	1710	m m
317	3 47 49.2 3 47 49.9		16.81 3.76 12.76 4.47							f2 V g2 III	2.04	1710	111
318 319	3 47 49.9		15.19 3.60							a4 V	2.35	1770	m
320	3 47 50.3		16.36 3.91							f3 V	2.35 2.97	1110	•••
321	3 47 50.4		17.60	0.20	2.15		0.46	0.94:	1.52				
322	3 47 50.4		14.40	5.83	4.13	1.69	0.73	1.59	2.47	k4.2 III	2.98	1640	
323	3 47 50.4	+58 56 33	17.52		2.36	1.25	0.51	1.11	1.68				
324*	3 47 50.7		11.31 2.13			0.67				b2 IV-V	2.77		m:
325	3 47 50.7		16.40 3.75			1.09	0.41	0.97	1.43	f6 V	2.52	1100	
326	3 47 50.9		16.43 3.69	2.77		0.89	0.26	0.75	1.13	ab IV	2.43	3230	
327	3 47 50.9		16.41 4.01		1.78	1.16	0.46	0.00	1.57	a6 IV g0 IV a9 V	2.53	1000	m:
328 329	3 47 51.2 3 47 51.2		15.86 3.59 17.50		2.17	1 10	0.33	0.00	1.46	as v	2.21	2010	111.
330	3 47 51.4		17.23	0.00	2.95	1 20	0.51	1 22	1.00	~			
331	3 47 51.5		15.27 3.92	2.83		0.89	0.31	0.78	1.17	a2 V a4 V k7 V	3.01	2590	
332	3 47 51.6		15.41 3.81			0.86	0.32	0.71	1.09	a4 V	2.67	1690	m
333	3 47 51.7		16.57		2.92	1.09	0.69	1.17	1.63	k7 V	0.56	400	
334	3 47 51.9		17.70	2.99	2.13	1.12	0.38	0.99	1.46				
335	3 47 51.9		15.17 3.63		1.76	0.88	0.31	0.71	1.10	a5 V	2.40	1830	m
336	3 47 51.9		17.48		2.15	1.01					0.00	005	
337	3 47 51.9		13.12 3.03			0.75	0.31	0.74	0.95	g5 V a3 V		295	
338	3 47 52.0		15.00 3.63 13.27 4.04		2.35	0.80	0.29	0.00	1.17	a3 V		1730 144	m
339 340	3 47 52.0 3 47 52.4		14.71 3.38	2.52	1.46					a3 V		1780	m:
341	3 47 52.5		13.68 3.19		1.33					a0 IV		1690	m
342	3 47 52.7		13.22 3.31		1.38					a0 III		1650	m
343	3 47 52.7		17.61		1.90	0.95	0.36	0.76	1.19	a			
344	3 47 53.0		16.39 4.02			1.24	0.39	1.12	1.66		2.84	760	
345	3 47 53.2	+58 59 00	16.26 3.60	3.03	2.06	0.83	0.38	0.86	1.14	k0 V	0.77	770	
346	3 47 53.5		17.04 3.62			0.83	0.29	0.70	1.05	a			
347	3 47 53.6		16.39 3.77										m
348	3 47 53.6		17.38 3.54			1.05	0.38	0.93	1.36	g al V al.5 V a4 V	0.70	1670	
349	3 47 53.7		14.22 3.29	2.40	1.37	0.72	0.25	0.00	0.80	al V al.5 V	2.12	7010	m:
350	3 47 53.8		14.76 3.59 14.87 3.52		1.57 1.58	0.80	0.27	0.02	0.81	a1.5 V a4 V	2.04	1610	m
351 352	3 47 53.9 3 47 53.9		15.95 4.57	3.92		1.28	0.40	1 14	1 71	a4 V g8.5 IV a5 V A0 V	2.47	1190	111
352 353	3 47 53.9		13.86 3.41			0.76	0.27	0.64	0.94	a5 V	1.99	1300	
354	3 47 54.1		17.08	3.01		1.09	0.38	0.90	1.36	A0 V	3.84	3010	
355	3 47 54.3		17.24	2.91	1 75	0.82	0.28	0.77	1.19	a			
356	3 47 54.3		13.05 3.28		1.42	0.73	0.26	0.61	0.90	a0 V g1 V	2.30	1020	
357	3 47 54.4		17.20		2.55	1.24	0.45	1.14	1.63	g1 V	2.88	910	
358	3 47 54.5	+59 05 15	17.70		1.92	1.03	0.34	0.84	1.28				
359	3 47 54.6	+59 06 52	15.50 3.63	2.76	1.68	0.83	0.26	0.68	1.04	a4 V	2.45	1950	m

Table 3. Continued

13	able	3.	Con	um	uea												
No.	RA(2000)	DE	C(2)	000)	V	U-V	P-V	X-V	Y-V	Z_rV	V-S	V-I	Photom.	A_{V}	d	Memb.
*.0.	hп				ıı'		mag	mag	mag	mag	mag	mag	mag	sp. type	mag	рc	
					45	17.05	2 57	201	0.00	1.00	0.40	0.01	1 21	f6 V	2 22	1710	m
360 361		7 54.6 7 55.0			45	17.31		2.04	2.53		0.40				2.22	1.10	***
362		7 55.1			11	16.04		2.88		1.00	0.33	0.80	1.22	b9.5 V	3.45	2570	
363		7 55.3				17.58			2.14	1 05	0.27	0.00	1 50	ŧ			
364	3 4	7 56.0				13.65				0.75	0.30	0.73	0.96	g5.5 V a5 V a6 V a1.5 V a3 V a1 V	0.58	396	
365		7 56.2					3.69			0.86	0.34	0.71	1.09	a5 V	2.49	1360	\mathbf{m} :
366		7 56.2				16.50		3.09		1.02	0.39	0.89	1.37	a0 V	2.32	1210	m
367		7 56.3 7 56.3				15.42	3.48		1.50 1.65	0.75	0.21	0.03	1 04	a3 V	2.53	1990	m
368 369		7 56.5					3.52		1.53	0.78	0.28	0.65	0.96	al V	2.46	1560	m
370*		7 56.5			42	12.45			1.47	0.79	0.28	0.65	0.96	a3			
371		7 56.6			17	17.75			1.89	0.88	0.32	0.80	1.25	a			
372*	3 4	7 56.8			39	13.42				0.74	0.25	0.60	0.88	a0 V	2.27	1230	m:
373		7 56.8			10	17.35		2.98			0.37						
374		7 56.8			44	17.51 17.03		2.01	2.36	1.19 1.07	0.43	1.09	1.02	f8 V	2.34	1370	m:
375 376		7 56.9 7 57.0			41	17.65			1.81	0.86	0.30	0.82	1.27		2.0.1	1010	••••
377		7 57.1			41	17.64		3.17		1 10	0.30	3 02	1 50	£			
378*		7 57.5			56	9.41				1.32	0.62	1.21		k5: III k4.5 V	1.04	430	:
379		7 57.6				16.92		3.90	2.68	1.02	0.60	1.04	1.41	k4.5 V	0.96	610	
380		7 57.7				16.61			2.69	1.23	Ų.49	1.10	1.14	g, sa:			
381		7 57.7					3.69							a4 V	2.52 2.72		m m
382		7 57.8				17.21	3.28	3.04	2.20	1.09	0.38	0.91	0.86	f5 V	2.12	1250	m:
383 384		7 57.9 7 57.9				16.54		2.20	3.66	1.57	0.20	1.50	2.30	b9.5 III k2 III f1 V b9.5 V	2.77	4470	1111
385		7 58.0			59		3.71	2.85	1.97	0.96	0.36	0.90	1.31	fl V	2.09	2830	
386		7 58.2					3.74		1.82	0.95	0.28	0.80	1.22	b9.5 V	2.68	2590	
387_		7 58.2	+59	05	39	17.63		3.07	2.29	1.22	0.45	0.99	1.46	a-f			
388		7 58.7			22	15.48			1.86	0.92	0.33	0.80	1.22	a6 III f9 V g2 V	2.50	2340	m:
389		7 58.7			41		2.82		1.60	0.75	0.30	0.74	0.99	19 V	0.86	200	
390		7 58.9			05		3.08 3.67		1.64								
391 392		7 58.9 7 59.0			04	17.06		2.89	2.11	1.08	0.36	0.99	1.43	f5 V	2.46	1660	m
393		7 59.4				17.05				1.46	0.51	1.32	1.98	k			
394		7 59.4			03	16.01		2.90		0.95	0.37	0.74	1.17	a5 V	2.78	1930	m
395		7 59.8					4.02			0.91	0.49	0.92	1.22	k3.5 V	0.71	296	
396		8 00.1			04		3.63	2.79		0.84	0.28	0.69	1.05	a4 V	2.49		
397		8 00.4			25	16.56		2 02	2.90	1.38	0.48	1.30	1.94	g2.5 III f2 IV	2.56	1000	m
398		8 00.6 8 00.7	+5) 14) 00	1 28	15.20	3.84	2.02	1.82					a3 V	2.56 2.85 2.36	2140	m:
399 400		8 00.7			5 52	16.90		3.04		1.08				19 V	2.36	1200	m:
401		8 00.8			10	17.16		2.91	0.00		0.00	0.00	1 40	. <i>E</i>			
402		8 00.9			10	17.54			2.38	1.14	0.43	1.09	1.58	g			
403		8 01.0	+59	9 03	13		3.73		2.23	1.06	0.42	1.01	1.46	g1.5 V	2.13	920	
404		8 01.5			06	16.54			1.92	0.97	0.34	0.89	1.32	a7 V	2.78	2700	
405		8 01.5			39	16.02		2.94	2.02	1.03	0.34	1.91	1.36	g1.5 V a7 V fit V k0 IV a2 IV fit V g9.5 III fit V g9.5 III fit V a1 V a1 V a1 IV-V a2 V g7 III	2.07	1200	m:
406		8 01.7			04	16.70	3.72	2 72	3.13	0.82	0.00	1.31	1.06	a2 IV	2.65	1540	m
407 408		$\begin{array}{c} 8 & 01.8 \\ 8 & 02.2 \end{array}$			47	17.22		2.96	2.17	1.09	0.43	0.91	1.39	f6 V	2.41	1690	•••
409		8 02.2				15.74			1.78	0.92	0.31	0.75	1.12	a7 V	2.47	1640	m
410		8 02.2			23	17.04			2.16	1.11	0.41	0.95	1.40	f4 V	2.65	1925	m
411		8 02.5	+59	10	49	16.90		3.11	2.21	1.10	0.41	0.95	1.43	fl V	2.83	2190	m:
412		8 02.5			48	15.93			3.25	1.46	0.55	1.33	2.06	g9.5 III	2.95	2810	_
413		8 02.8			43	15.97			1.93	0.95	0.36	0.87	1.27	12 V	2.33	1340	m:
414		8 02.8			11	14.00			1.47	1.00	0.27	0.62	0.93	81 V	2.32	1300	m:
415		8 03.1 8 03.2			50	16.61 14.28			1.50	0.77	0.30	0.50	0.92	a1.5 V	2.41	1800	m
416 417		8 03.2 8 03.2			05	14.04			1.37	0.70	0.26	0.57	0.84	al IV-V	2.07	1650	m:
418		8 03.3			05	15.27			1.71	0.87	0.31	0.73	1.12	a2 V	2.81	2150	m:
419		8 03.6			21	10 02			2.91	1.41	0.47	1.28	1.99	g7 III	2.98	4210	
420	3 4	8 03.7	+58	3 56	18	17.72 16.95			2.16	1.01	0.36	1.07	1.56	g			
421		8 03.8			25	16.95			2.91	1.31	0.56	1.19	1.84	k0 IV	2.29	2050	
422	3 4	8 03.9	+59	9 00	16	17.52		2.69	1.61	0.81	0.25	∪.74	1.21	a			

Table 3. Continued

												_
No.	RA(2000)	DEC(2000)	V = U-V	' PV	' X-V	Y-V	z-v	V-S	V-I Photo	m. A_V	ď	Memb
	hm s								mag sp. ty			
123	3 48 04.0		16.28						2.68 k5-m0	III		
124	3 48 04.0	+59 02 53	17.03						2.01 k0 IV	2.86 2.41 0.45	1640	
125	3 48 04.1		14.93 3.64	2.72					1.05 a4 V	2.41	1530	m
126	3 48 04.1	+59 06 12			2.85				2.28 m2 V:	0.45	212	
127	3 48 04.2	+58 56 22	17.48 17.07		2.51	1.16	0.52	1.07	1.56 g-k 1.38 g7 V			
128	3 48 04.5	+59 14 40	17.07	3.10		1.00	0.40	0.96	1.38 g7 V	1.69	1020	
129	3 48 04.6	+59 07 14	17.41 17.31	0.00	3.19				2.01 g 1.54 g			
430 431	3 48 05.2 3 48 05.7	+59 02 24	19 55 9 91	2.80					0.89 b9.5 I	11 2/10	1180	m:
132	3 48 05.7	+59 14 27	14.04						2.65 k7 III		1480	111.
133	3 48 05.7								1.30 f9 V	2.00		
	3 48 05.7		11.55 2.76							0.40		
135	3 48 06.0	+58 57 20										
136	3 48 06.2	+59 10 36							0.98 a4 V	2.32	1740	m
37	3 48 06.6	+59 05 59	17.35	2.97	2.17	1.08	0.36	0.97	1.42 f			
138	3 48 06.6	+59 04 26	16.80 3.64	2.83	1.95	0.95	0.35	0.89	1.33 f1 V 1.44 f2 V	2.48	1970	
139	3 48 06.8	+59 08 01	16.56 3.68	3.02	2.08	1.05	0.33	0.99	1.44 f2 V	2.70	1490	m
40	3 48 06.8	$+59\ 10\ 28$	16.93						1.55 f:			
41	3 48 06.8								0.92 a0 IV			m
42	3 48 06.9	+59 10 06	13.74 3.23	2.37	1.41	0.70	0.28	0.63	0.89 a5 IV,	ap 1.73	1390	
43	3 48 07.0	+59 13 13	17.20 3.69	2.99	2.18	1.04	0.40	1.00	1.44 g0 V 0.83 a1 V	2.19	1430	m:
44	3 48 07.1	+59 06 47	14.44 3.25	2.44	1.39	0.71	0.26	0.56	0.83 al V	2.11	1850	m:
45 46	3 48 07.2 3 48 07.2	+59 01 44 +59 09 59	10.91 4.20	2.90	1.01	0.99	0.50	0.04	1.00 &			
47	3 48 07.2								0.93 a1 IV	2.50	1620	m
48	3 48 07.3	459 01 04 459 01 04	16 63 3 87	3.02	2.05	1.02	0.23	0.03	1.38 f0 V	2.85	1640	m
49	3 48 07.6	+59 12 12	16.31 4.18	3.76	2.58	0.94	0.57	1.02	1.36 k4.5 V	0.70	520	•••
50	3 48 07.7	+59 13 01	16.90						1.69 g9.5 IV		2180	
51	3 48 07.8			2.59					0.99 al V		1560	m
52	3 48 07.9	+59 03 41	14.75 3.15	2.47	1.70	0.84	0.31	0.74	1.05 f3 V	1.65	970	
53	3 48 08.1	+59 02 39	14.78 3.57	3.10	2.10	0.82	0.41	0.83	1.06 k2 V	0.57	363	
54	3 48 08.5	+59 02 56		2.79	2.06	0.90	0.41	0.98	1.40 g-k			
55	3 48 08.5	+59 05 51 +59 04 19	16.25	3.02	2.08	1.03	0.35	1.01	1.51 ft IV-	V 2.51	1730	m
56	3 48 08.6	+59 04 19	17.13	2.80	1.88	0.90	0.33	0.90	1.30 t	0.15	1050	
57	3 48 08.7 3 48 08.7		17.27						0.92 a4 V	2.15	1990	m:
58 59	3 48 08.8		17.26		1.64				1.63 f			
.60	3 48 08.9	+59 03 57							1.32 g5.5 V	1.56	010	
61	3 48 09.0								1.26 a9 V			m
62	3 48 09.3	±59 00 31	13.84 3.36	2.44	1.48	0.79	0.27	0.65	0.96 59.5 1	/ 2.66	1720	m
63	3 48 09.5	+59 05 13	15.36 3.99	3.03	2.09	1.05	0.38	0.95	1.43 f3 III	2.55	1620	•••
64	3 48 09.5	+59 00 24	15.95 4.03	2.92	1.82	0.92	0.32	0.81	0.96 b9.5 IV 1.43 f3 III 1.24 a2 V	3.10	3230	
65	3 48 09.5	+59 12 52	17.40		3.04	1.20	0.70	1.23	1.74 m			
66	3 48 09.7	+59 07 32	17.11	3.08	2.18	1.12	0.44	0.87	1.35 f			
67	3 48 09.9	+59 01 41	14.24 3.59	2.62	1.57	0.82	0.29	0.68	1.02 al IV 1.46 f3 V	2.69	1550	m
68	3 48 10.1	+58 59 50	16.43 3.79	3.01	2.13	1.06	0.40	0.96	1.46 f3 V	2.70	1290	m:
69	3 48 10.2	+59 10 14	16.56		2.84	1.35	0.50	1.19	1.79 g			
70	3 48 10.4	+08 01 01	11.12		2.01	1.00	0.37	0.98:	1.45 f			
71	3 48 11.1								0.84 g1.5 V			
72	3 48 11.2								1.78 g3 III		1870	
73 74	3 48 11.6								1.67 f-g, mo	lg: 0.71	910	
	3 48 11.9 3 48 12.1	+59 12 45							0.82 19 IV 0.40 a5 V, a			
76	3 48 12.1	+59 05 08	15.84 3.79		1.02	0.44	0.10	0.30	1 16 of V	9 50	1780	m
77	3 48 12.2	+59 05 05			1.65	0.83	0.31	0.67	1.16 a6 V 1.02 a5 V	2.28		m
78	3 48 12.4	+59 10 51	17.66	2.97	2.06	1.08	0.37	0.98	1.46 f			
79	3 48 12.4	+59 01 25	13.37 3.33	2.46	1.50	0.77	0.28	0.64	0.96 b9.5 V	2.59	1110	m:
80	3 48 12.5	+59 12 34	17.36	3.02		1.15	0.37	1.00	1.48			
81	3 48 12.6	+59 09 04		4.30		1.29	0.53	1.18	1.73 k1 IV	2.03	1630	
	3 48 12.7		16.85 3.78		2.17	1.05	0.41	0.95	1.73 k1 IV 1.43 f6 V	2.29	2350	
							0.00	1 00	1 50 0			
82 83	3 48 12.9		17.07						1.59 a-f			
82			16.43 3.63		2.07	1.06	0.41	0.94	1.43 f5 IV-V			m

Table 3. Continued

(T)	able 3. (Jontinued											
No	B V (5000)	DEC(2000)	V U-V	P-V	X-V	Y-V	Z V	V-S	$V \neg I$	Photom.	A_V	d	Memb.
110.	h m s	0 / //	mag mag	mag	mag	mag	mag	mag	mag	sp. type	mag	pc	
				0.70		1.00	0.00	0.00	1 10	Ed V		1710	m
486	3 48 13.5	+59 04 35	16.77 3.56 15.45 3.71 16.38 3.58 15.12	2.75	1.65	1.00	0.00	0.90	1.04	a3 V	2.53		m
487 488	3 48 13.6 3 48 13.7	+58 59 33 +59 07 21	16 38 3 58	2.79	1.89	0.97	0.34	0.84	1.25	f1 V	2.37	1710	m
489	3 48 14.0	+59 04 27	16.38 3.58 15.12 14.22 2.85 16.09 3.69	5.02	3.49	1.50	0.61	1.32	1.96	k2.2 III	2.59	2450	
490	3 48 14.0	+59 13 38	14.22 2.85	2.33	1.61	0.71	0.29	0.69	0.85	g2 V	0.60	640	
491	3 48 14.2	+59 12 16	16.09 3.69	2.84	1.92	0.95	0.34	0.85	1.26	f0 V	2.54	1480	m
492	3 48 14.3	103 02 02	10120	3.80						r-g			
493	3 48 14.4	+58 57 31	17.12	0.40	2.21	1.22	0.47	0.92	1.44	1-2.7 ∀	0.08	530	
494	3 48 14.5	+59 12 14	16.16 3.99	3.43	2.30	1.05	0.47	0.95	1.13	f3 V	2.57	2010	m
495	3 48 14.6	+59 05 37 +59 02 07	17.12 16.16 3.99 17.25 3.70 16.92 15.13 3.55	2.94	1 94	0.98	0.39	0.77	1.25	a3 V	2.90	2780	
496 497	3 48 15.0 3 48 15.0	+59 03 36	15.13 3.55	2.67	1.62	0.80	0.29	0.67	1.00	a5 V	2.24	1650	m
498	3 48 15.0	+59 11 28	15.13 3.55 17.23 14.23 3.28 16.11 3.67 14.69:3.86		2.77	1.37	0.51	1.21	1.79	g2 V:			
499	3 48 15.1	+59 03 59	14.23 3.28	2.41	1.40	0.73	0.26	0.58	0.86	a0 V	2.29	1770	m
500	3 48 15.1	+59 15 27	16.11 3.67	2.77	1.88	0.94	0.33	0.84	1.23	f0 V	2.32	2080	m:
501	3 48 15.1	+59 00 32	14.69:3.86	2.87	1.79	0.96	0.40;	0.65	1.11:	:al V:	0.59	171	
502	3 48 15.5	+59 05 33	16.85		3.03	1.20	0.11	1,72	1.1	m2 V: g5 IV	3.07	1380	
503	3 48 15.5	+59 04 03	16.85 16.78 16.20							g5 III:	0.01		
504	3 48 16.1				1.20	0.67	0.23	0.57	0.72	b8 V	2.26	2690	
505 506	3 48 16.5 3 48 16.5	±50 05 99	13 61 3 10	2.26	1.33	0.70	0.26	0.58	0.82		2 22	1470	m:
507	3 48 16.8	$\pm 59.01.30$	13.06 3.33	2.34	1.39	0.73	0.26	0.63	0.90	au III	2.33	1530	m
508	3 48 17.4	458 KG R1	16 84 3 84	3.02	2.05	1.08	0.37	0.95	1.44	10 7	2,00	*,00	***
509	3 48 17.5	+59 11 20	12.18 4.82 16.54 3.50 15.28 3.50 17.09 15.12 4.11 17.00 17.04 16.76 16.28 3.92	3.97	2.79	1.28	0.47	1.15	1.69	g5 III:		~~~	
510	3 48 17.6	+59 03 10	16.54 3.50	2.65	1.90	0.95	0.34	0.85	1.21	13 V	2.04	2590	
511	3 48 18.0	+59 08 59	15.28 3.50	2.70	1.71	0.82	0.31	0.69	1.02	a7 V, am:	2.24	1470	m:
512	3 48 18.4	+59 12 20	17.09	2.92	2.13	0.01	0.34	0.05	1.00	ka V	0.66	324	
-513	3 48 18.5	+58 59 50	15.12 4.11	2.02	2.40	1.04	0.37	0.50	1.35	f2 V	2.61	1900	m
514	3 48 18.7 3 48 18.8	+59 11 12	17.00	2.91	2.00	1.05	0.36	0.95	1.46	f2 V	2.65	1890	m
515 516	3 48 18.8	±59 13 57	17.04	2.00	2.37	1.13	0.42	1.02	1.50	f-g			
517	3 48 18.9	+59 10 35	16.76		2.95	1.38	0.48	1.28	1.94	g-k, mdg:			
518	3 48 19.1	+59 07 39	16.28 3.92	3.41	2.29	0.96	0.48	0.99	1.40	k2.5 V	1.01	570	
519													
520		+59 00 33	15.60 3.86	2.85	1.76	0.85	0.31	0.70	1.09	a4 V, am	2.04	7 157(m m
521		+59 05 22	15.85 3.54	2.71	1.76	0.87	0.31	0.70	1.11	. as v : f3 V	2.40	1400	m
522		+58 58 18	15.60 3.86 15.85 3.54 15.86 3.60 16.08 3.53 15.44 15.59 3.62	2.00	2.00	0.99	0.34	0.92	1.33	65 V	2.20	1190)
523		+59 00 15	15.00 5.00	4.69	3.31	1.44	0.57	1.30	1.96	ki III	2.56	2750)
524 525		+59 05 55	15.59 3.62	2.74	1.70	0.84	0.30	0.68	1.03	a5 V	2.38	3 1920) m
526		+59 02 21	17.38	3.UU	2.11	1.10	บ.วร	0.91	1,40	,			
527		+59 02 24				0.98	0.36	0.93	1.34	1 f5 V	2.2	1510) m:
528		+59 06 01	17.50	3.27	2.42	1.11	0.43	1.09	1.61	l g	200	2 2040	,
′ 529		+58 57 06	14.25 3.89	2.82	1.75	0.94	0.37	0.85	1.30	N EN U	2.20	1020	, } m
530		+59 06 59	16.98 3.59	2.83	2.00	0.06	0.33	0.92	1.09	as V	2.40	3510)
531		+59 10 23	16.08 3.92	2.91	1.93	0.90	0.93	0.83	1.22	o fo V	2.23	2380	j i
532		+59 00 20	10.32 3.30	2.18	1.28	0.69	0.25	0.57	0.79	a0 III	2.1	3 135) m:
533 534		±59 08 11	16.76 3.74	3.05	2.16	1.06	0.40	0.89	1,31	lg4V	2.0	2450)
535		+59 01 46	17.37		2.50	1.20	0.43	1.19	1.78	5 g0 V:			
536		+59 05 04	16.98 3.59 16.68 3.92 16.32 3.58 12.61 3.07 16.76 3.74 17.37		2.62	1.41	0.47	1.11	1.69	a-f	_		_
537		+59 04 17	14.00 3.00	2.58	2.10	V.10	0.00	0.10	, 0.00	. 6	0.73	2 57)
538	3 48 22.9	+58 58 11			2.66		0.49						
539		+59 05 12	17.77	2.98	1.83	0.98	0.33	0.73	6: 1.12 : 1.04	2 B. 1 an IV	2.5	9 1676) m
540		+58 59 58	13.94 3.42	2.47	1.48	0.79	0.27	U.ot) 1.U(1 20 1 V 7 12 7 V	1.95	3 56	
541		+58 59 10		9.64	2.04	1.02	0.00	0.60	1.09	3 a6 V	2,1	8 133	
542		+59 03 02 +59 06 04	14.80 3.47	2.04	2.00	1.00	0.40	0.96	1.43	3 f			
543		150 11 38	17.44 3.09	2.97	2.23	1.07	0.39	1.01	1.48	8 f7 V	2.4	5 151) m
544 545		459 08 01	15.96 3.34	2.55	1.71	0.83	0.31	0.74	1.07	7 f0 V	2.0	179) m:
546		+59 10 08	15.48 3.76	2.79	1.71	0.86	0.32	0.66	1.03	2 a4 V	2.5	4 185	0 m
547		+59 08 30	17.44 3.69 17.19 15.96 3.34 15.48 3.76 15.43 3.49 16.23 3.54	2.67	1.66	0.80	0.31	0.64	0.9	5 a6 V	2.1	9 177	0 m'
548		+59 10 09	16.23 3.54	2.61	1.60	0.81	0.30	0.61	7 1.0	1 a0.5 V	2.6	3 355°	U

Table 3. Continued

No.	RA(2000) h m s	DEC(2000)	V U-V	P-V	X-V mag	Y-V mag	Z-V mag	V-S mag	V-I mag	Photom.	A_V mag	d pc	Memb
549	3 48 25.0												
550	3 48 25.3	+59 08 14 +59 11 04 +59 09 56	17.19	3.08	2.22	1.12	0.38	1.01	1.47	f5 V	2.82	2440	m:
551	3 48 25.9	+59 11 04 +59 09 56 +59 08 09 +59 02 10 +59 01 07 +59 04 57 +59 02 00 +59 09 25 +59 00 28 +59 05 38 +59 10 32 +59 10 08	14.78	4.94	3.52	1.53	0.61	1.36	2.08	k1.5 III	2.91	1750	
552	3 48 25.9	+59 08 09	17.35	2.50	1.43	0.66	0.22	0.66	0.97	a			
553	3 48 25.9	+59 02 10	17.58	2.96	2.08	0.97	0.37	0.98	1.40	g			
554	3 48 26.2	+59 01 07	17.52		2.14	1.01	0.38	0.99	1.46	g0 V:			
555	3 48 26.2	+59 04 57	17.44		2.57	1.18	0.41	1.13	1.65	g			
556	3 48 27.0	+59 02 00	17.25		2.32	1.10	0.45	0.99	1.42	g2 V	2.25	1200	
557	3 48 27.2	+59 09 25	15.94		3.80	1.61	0.63	1.48	2.29	k3 []]	2.64	3760	
558	3 48 27.2	+59 00 28	15.99 3.93	2.91	1.88	0.95	0.32	0.83	1.26	00 V	2.07	2910	
559	3 48 27.6	+59 05 38	16.80 3.05	2.85	2.01	1.02	0.38	0.90	1.31	12 V	2.00	2490	
560 561	3 48 27.8 3 48 27.9	+59 10 08	17.50	2.92	2.00	1.27	0.54	3.01	1.58	11. 1	2.05	3420	
562	3 48 27.9	+59 10 08 +59 05 03 +58 57 59 +59 09 41 +59 04 35 +59 07 48 +59 07 29 +59 02 06 +59 05 46 +59 05 37	16 23 3 52	2 71	1 74	1.00	0.33	0.95	1.44	b8 V	3.57	3410	
563	3 48 28.1	±58 57 50	16.42 4.06	3.10	2.04	1.04	0.41	0.87	1.35	27 V	3.10	1670	m:
564	3 48 28.3	459 09 41	13.35 3.06	2.25	1.40	0.75	0.29	0.65	0.92	b8.5 IV	2.54	1710	m
565	3 48 28.4	+59 04 35	15.05 3.92	3.45	2.37	0.89	0.49	0.94	1.25	k3.2 V	0.79	328	
566	3 48 28.5	+59 07 48	15.47 3.57	2.73	1.72	0.81	0.29	0.71	1.04	a6 V	2.33	1690	m
567	3 48 28.7	+59 04 06	15.82 3.60	2.78	1.77	0.86	0.33	0.72	1.07	a7 V	2.41	1750	m
568	3 48 28.7	+59 07 29	17,68		2.03	1.00	0.36	0.98	1.51	f			
569	3 48 29.0	+59 02 06	15.58 2.90	2.43	1.70	0.75	0.29	0.76	0.99	g2 V	0.82	1040	
570	3 48 29.1	+59 05 46	14.28 3.43	2.51	1.46	0.77	0.27	0.63	0.92	al IV-V	2.36	1660	m
571	3 48 29.2	+59 00 37 +59 08 09 +59 00 57	12.74 4.77	3.96	2.80	1.23	0.47	1.14	1.65	g8.5 III	2.09		
572	3 48 29.3	+59 08 09	16.72 3.91	2.96	2.04	1.02	0.37	0.88	1.31	HIV	2.66	2200	m;
573	3 48 30.0	+59 00 57	12.91 3.40	2.42	1.45	0.79	0.28	0.68	0.98	b9.5 III	2.64	1330	m: m:
574	3 48 30.1	+58 58 23	15.35 3.81	2.64	1.71	ບ.ຮາ	บ.ชบ	0.13	1.12	a1.5 v	2.82	2220	m:
575	3 48 30.4	+58 58 10	17.27			1.37 1.08			1 00	1031			
576 577	3 48 31.4 3 48 31.6	+58 58 10 +59 08 16 +59 09 21 +59 04 54 +59 13 44 +59 03 58 +59 13 25 +59 01 48 +59 03 35	16 27 3 83	2.84	1 80	1.00	0.00	0.88	1.00	88 IV	2.63	2330	m:
578	3 48 31.6	T20 00 21	16 55 3 41	2.04	1 94	0.55	0.35	0.88	1.28	f6 V	1.98	1520	****
579	3 48 31.8	±59 13 44	15 45 3.45	2.44	1.56	0.89	0.30	0.74	1.06	b9 III	3.12	3680	
580	3 48 32.0	±59 03 58	17.02 3.47	2.82	1.97	1.07	0.37	0.89	1.31	a-f			
581	3 48 32.1	+59 13 25	16.85 3.88	2.90	1.95	0.98	0.32	0.92	1.37	a9 V	2.77	1960	m
582*	3 48 32.4	+59 01 48	11.38 2.63	2.10	1.41	0.64	0.25	0.62	0.76	f6 IV	0.67	425	
583	3 48 32.6	+59 03 35	17.67 3.48										
584	3 48 32.9	+59 04 14	17.10	2.77	1.74	0.92	0.31	0.85	1.25	a-f			
585	3 48 33.1	+59 04 14 +59 08 57 +59 14 14	15.85 3.80	2.83	1.84	0.93	0.34	0.79	1.19	a6 IV	2.55	2290	m:
586	3 48 33.4	+59 14 14	13.78 3.22	2.76	1.85	0.77	0.35	0.74	0.95	g9 V	0.57	317	
587	3 48 33.8	+59 03 36	14.88 3.37	2.51	1.46	0.70	0.25	0.58	0.84	a4 V, am	1.96	1830	
588	3 48 34.3	+59 03 36 +59 09 51 +58 58 02 +59 10 05	16.68 3.61	2.82	1.97	0.96	0.31	0.95	1.39	12 V	2.44	1770	m
589	3 48 34.3	+58 58 02	16.21	0.00	3.41	1.59	0.63	1.38	2.10	KU IV	3.70	760	
590	3 48 34.7	+59 10 05	17.78	2.99	1.89	0.91	0.33	0.173	1.40	e v	2 22	1690	m
591 592	3 48 35.2 3 48 35.2	+98 00 31	16.94	3.02	2 2 D	1.14	0.40	1 13	1.93	48 IV	2.02	1780	***
592 593	3 48 35.2	158 50 97	16.92		3.49	1.56	0.43	1.42	2.22	k1 III	3.08	2870	
594	3 48 36.0	+58 58 02 +59 10 05 +59 06 37 +59 08 00 +58 59 37 +59 07 07	16.45		2.89	0.99	0.65	1.18	1.55	k7 V	0.46	394	
595	3 48 36.2	X 59 7X	14.40 3.69	Z. D.4	L.bz	U.AA	17.31	0.71	£.09	MI III-IV	2.91	TOBO	111
596	3 48 36.3	±58 59 10	17.46		2.48	1.12	0.41	1.08	1.57	Œ			
597	3 48 36.3	+58 59 10 +59 02 02 +59 13 02 +59 05 09 +59 14 01 +59 04 18 +59 06 56	17.10		2.68	0.99	0.55	1.07	1.47	k4 V	1.05	660	
598	3 48 37.1	+59 13 02	16.02 3.96	2.99	1.87	0.92	0.32	0.79	1.22	a4 V	2.94	1980	m:
599	3 48 37.2	+59 05 09	16.69 3.51	2.63	1.50	0.77	0.28	0.64	0.94	a1.5 V	2.42	4310	
600	3 48 37.3	+59 14 01	14.49 3.43	2.55	1.51	0.81	0.32	0.59	0.94	al V	2.37	1670	
601	3 48 37.5	+59 04 18	17.20 3.48	2.78	2.00	0.98	0.34	0.95	1.33	f6 V	2.12	1910	m:
602	3 48 37.6	+59 06 56	14.53 4.24	3.13	2.19	1.09	0.39	1.02	1.51	f3 III	2.83	970	
603	3 48 37.7	+59 02 24	17.71		1.86	0.82	0.35	0.79:	1.16	g			
604	3 48 37.8	+59 05 59	15.51 3.54	2.88	2.07	0.94	0.37	0.90	1.23	g4 V	1.57	650	
605	3 48 38.1	+58 59 44	17.47		2.31	1.09	0.40	1.01	1.58	g	0.00	0100	
606	3 48 38.5	+59 04 51	16.87 3.49	2.78	1.88	0.95	0.34	0.85	1.25	II V	2.32	2180	
607	3 48 38.9	+59 09 15	16.66		2.95	1.40	0.47	1.32	2.00	go III	3.32	2970	
608	3 48 39.0	+58 59 44 +59 04 51 +59 09 15 +59 09 56 +59 06 28 +59 10 00 +59 12 47	17.11		2.89	1.04	0.67	1.14	1.53	KD V	1.19	550	
			JK II		3.34	r-on	U.50	1.31	z.IU	RR G GR	3.15	4190	
609 610	3 48 39.1 3 48 39.3	150 10 20	10 47 9 90	2.04	2 25	1.10	0.40	1 05	1.50	FE 37	9.76	1100	m:

Table 3. Continued

L	able 3.	Contini	ueu												
No.	RA(2000)	DEC(20	000)	V	U-V	P-V	X-V	Y-V	$Z_{-}V$	V-S	V-I	Photom.	A_V	d	Memb.
	h m s	0 /	"									sp. type			
612	3 48 39.8	+59 05	22	16.91		2.74	1.88	0.98	0.36	0.82	1.25				
613	3 48 40.0	+59 06	37	14.18	3.57	2.80	1.99	0.95	0.35	0.89	1.25	f-g			
614	3 48 40.2	±50 no	50	16.73		3 13	2.27	1.08	0.39	1.06	1.59	σ0 V	2.39	1020	
615	3 48 40.4											a0 II-III			m:
616	3 48 40.7	+59 10	22	17.54			2.41	1.08	0.37	1.18	1.72	g-k 16 V g6 IV g a1 V	0.05	05.10	
617	3 48 41.0	+59 01	56	15.84	3.61	2.90	2.07	1.02	0.40	0.91	1.55	10 V	2.25	1010	
618 619	3 48 41.2 3 48 41.3	+59 UZ	26	17.53	4.41	3.09	2.00	1.24	0.41	1.10	1.65	gorv	2.03	1010	
620	3 48 41.4	±59 04	18	14.08	3.25	2.38	1.34	0.69	0.25	0.58	0.82	al V	2.05	1600	m:
621	3 48 41.7														
622	3 48 41.7	+59 03	05	14.64	5.26	4.43	3.11	1.38	0.55	1.23	1.83	f kI IV g0 V k3 V	2.58	620	
623	3 48 42.1	+59 04	57	17.18		2.94	2.16	1.03	0.38	0.97	1.38	g0 V	2.07	1450	m:
624	3 48 42.2	+59 03	20	15.86	3.77	3.28	2.26	0.85	0.46	0.88	1.14	k3 V	0.61	540	
625	3 48 42.4	+59 04	04	17.78		^ F.	1.96	0.95	0.33	0.96	1.40	a			
626	3 48 42.7	+59 05	06	17.46	2 50	2.55	1.51	0.75	0.29	0.66	0.94	a n4 V	2 21	1700	m
627 628	3 48 43.5 3 48 43.6	+59 00	44	16.52	3.00	2.09	2.01	1.14	0.29	0.00	1.51	a4 V f1 V a4 V	2.01	1730	111
629	3 48 43.7	459 05	38	14.99	3 49	2.58	1.55	0.75	0.27	0.66	0.94	a4 V	2.16	2220	
630	3 48 44.3	+59 12	ดก	17.38	0.40	2.00	2.41	1.26	0.42	1.10	1.64	f .			
631	3 48 44.4		24	16.93		3.13									
632	3 48 44.7	+59 04	39	17.17		2.78	2.02	1.01	0.40	0.86	1.25	f5 V a1.5 V	2.18	3140	
633	3 48 45.4	4.59 O.5	10	16.46	3.59	2.69	1.61	0.83	0.29	0.71	1.04	a1.5 V	2.62	3540	
634	3 48 45.7 3 48 45.8 3 48 45.9 3 48 45.9	+59 00	37	16.76	3.79	2.95	1.99	1.11	0.35	0.92	1.39	a-f			
635	3 48 45.8	+59 02	57	16.53	3.52	2.76	1.96	0.98	0.37	0.88	1.26	13 V	2.26	1660	m
636	3 48 45.9	+59 03	06	16.17	3.64	2.74	1.78	0.90	0.35	0.73	1.10	28 V	2.39	4140	m
637	3 48 45.9	+59 05	13	10.40	3.52	2.07	2.29	1.07	0.29	1.01	1.00	a4 1 v	2.21	4140	
638		1.50.01	22	17.00			2 1 2	1.90	0.33	0.05	1 41	n.f			
640	3 48 46.1 3 48 46.2	+59 O5	17	14.81	5.01	4.22	3.00	1.36	0.54	1.22	1.80	k0 IV	2.48	700	
641	3 48 46.6	4.59 O3	03	17.07	3.52	2.83	2.06	1.08	0.42	0.89	1.32	k0 IV f			
642	3 48 46.8	+59 03	24	12.74	3.30	2.26	1.27	0.69	0.25	0.61	0.82	au III	2.16	1430	m
643	3.48 47.4	+5902	28	12.24	4.74	3.97	2.78	1.22	0.48	1.12	1.59	k0 III-IV			
644	3 48 47.8	+59 05	04	17.61			2.98	1.39	0.63	1.19	1.83	k			
645	3 48 47.9	+59 10	57	15.85	4.08	3.08	2.00	0.97	0.34	0.87	1.31	a6 V b9 III a-f f	3.07	1430	m:
646	3 48 48.2	+59 11	26	13.67	3.36	2.47	1.55	0.86	0.28	0.74	1.04	pa 111	3.00	1710	m
647 648	3 48 48.2 3 48 49.8	+59 09	07	17.40			2.10	1.23	0.40	1.04	1.10	6-1 f			
649															
650	3 48 50.1	+59 10	08	16.11	4.22	3.19	2.04	1.07	0.35	0.90	1.37	a3 IV	3.52	2180	
651	3 48 50.7	+59 05	21	14.73	3.46	2.58	1.50	0.75	0.29	0.63	0.90	a1.5 V	2.35	1800	m
652	3 48 51.4	+59 06	11	14.37	4.11	3.44	2.43	1.10	0.45	1.03	1.45	g9 IV	1.63	850	
653	3 48 51.9	+59 06	13	15.13	3.63	2.73	1.63	0.80	0.28	0.68	0.99	a4 V	2.39	1690	m
654	3 48 51.9	+59 05	39	16.04		4.08	2.94	1.30	0.48	1.24	1.83	g8 III	2.51	3520	
655	3 48 50.1 3 48 50.1 3 48 51.4 3 48 51.9 3 48 51.9 3 48 52.1 3 48 53.4 4 53.6 3 48 53.9	+59 02	57	17.53		0.00	2.15	1.06	0.41	0.89	1.37	a-f	0.71	1040	
656	3 48 53.4	+59 07	31	15.40	3.91	2.98	2.06	1.04	0.35	0.93	1.37	11 IV	0.76	1240 40#	
657* 658	3 48 53.6 3 48 53.9	+59 04	10	17.00	2.54	2.57	1.23	0.50	N 29	0.00	1.12	f V	0.10	400	
659	3 48 54 4	450 B7	27	15.93	3.64	2.79	1.77	0.89	0.31	0.72	1.11	a6 V	2,46	1420	m:
660	3 48 54.5	+59 08	59	17.07	J.U.T	3.08	1.97	1.03	0.33	0.92	1.35	a6 V a5 IV f2 V	3.14	3370	••••
661	3 48 55.1	+59 05	00	16.16	3.60	2.84	1.98	0.99	0.30	0.93	1.33	f2 V	2.44	1390	m:
662	3 48 55.2	+59 02	UЗ	13.87	5.11	4.36	3.04	1.33	0.52	1.23	1.79	KO 111-1 V			
663	3 48 56.8	+59 06	36	15.64	3.33	2.87	1.99	0.85	0.34	0.83	1.08	g8.5 V	0.91	670	
664	3 48 57.8	1 #0 00	ÔΕ	17 16			2 20	1 12	0.44	A 05	1 43	n_f			
665	3 48 57.9	+59 05	32	16.24	3.48	3.05	2.08	0.92	0.41	0.85	1.16	g9 V	1.11	770	
666	3 48 58.1	+59 04	41	17.53		A ==	1.91	0.91	0.36	0.79	1.25	1 20 17	1.05	000	
667	3 48 59.4	+59 08	21	14.87	3.23	2.57	1.79	0.90	0.35	0.84	1.19	13 V	2.87	930	
668	3 48 59.9	+59 04	36	15.67	3.04	2.52	1.75	0.80 0.76	0.35	0.72	1.08	f3 V a5 V a1.5 V f6 V f	2.48	1600	m
669 670	3 49 00.2 3 49 00.5	4-99-09	20 57	16.00	3.65	2 00	2.10	1.04	0.49	0.04	1 41	66 V	2.34	1000	111
		+59 02	39	17.46	0.00		1.94	0.94	0.36	0.85	1.36	f	2.04	1000	
672	3 49 01.2	459 DR	09	15.86			3.88	1.61	0.69	1.47	2.31	k4 III	2.64	3610	
673*	3 49 00.7 3 49 01.2 3 49 01.4 3 49 03.6	+59 04	58	12.13	2.76	2.31	1.57	0.70	0.32	0.68	0.85	g0 V	0.71	265	
												<u> </u>			

Notes.

- 17: if the star is cluster member, its luminosity class should be II.
- 35: 2MASS J03464290+5902134, the star is a close visual binary ($\sim 2''$) with a complicated profile which prevents the determination of precise magnitudes by PSF.
- 74: HD 23278; BD+58 650; [ZZ2002] 193.
- 134: if the star is cluster member, its luminosity class should be II-III.
- 240: if the star is cluster member, its luminosity class should be II.
- 246: [ZZ2002] 197; A5 from the Majaess (2011) spectrum.
- 277: [ZZ2002] 199; Tycho Double Star Catalogue (TDSC) 8089; WDS 03477+5907A, $\Delta m=1.6$, sep. 4.5"; B3 (McCuskey 1956); B2-B3 from the Majaess (2011) spectrum; possible blue straggler.
- 281: WDS 03477+5907B.
- 324: [ZZ2002] 201; emission-line star (see the text); B3 (McCuskey 1956); B2-B3 with central emission in H β in the Majaess (2011) spectrum; possible blue straggler.
- 370: WDS 03479+5907A, $\Delta m = 0.4$, sep. 4"; A3 from the Majaess (2011) spectrum.
- 372: WDS 03479+5907B.
- 378: HD 237180; BD+58 652, WDS 03480+5857, $\Delta m = 3.4$, sep. 11.7".
- 434: [ZZ2002] 203.
- 475: [ZZ2002] 204.
- 582: [ZZ2002] 207.
- 657: [ZZ2002] 209.
- 673: [ZZ2002] 211.