

# Parameter Estimation of a Gravitational Wave Source

By: Aasim Z Jan

## What are Gravitational Waves?



- Gravitational waves are disturbances in the curvature of spacetime
- As a gravitational wave passes an observer, that observer will find spacetime distorted by the effects of strain.

### **Gravitational Wave Sources**

- Every moving object with mass produces gravitational waves.
- We can only detect Binary Black Hole (BBH) or Binary Neutron Star (BNS) systems using current equipment.
- The first gravitational wave **GW150914** detected in 2015 was produced by a Binary Black Hole system.

## What do we mean by Parameter Estimation?

- A binary system has 8 intrinsic parameters and 9 extrinsic parameters.
- 8 Intrinsic parameters are mass  $m_1$ ,  $m_2$ ,  $s_{1x}$ ,  $s_{1y}$ ,  $s_{1z}$ ,  $s_{2x}$ ,  $s_{2y}$ ,  $s_{2z}$ .
- 9 extrinsic parameters are due to position relative to the Binary system such as the distance and are usually not important.
- We study the gravitational wave to recover these parameters and this is called parameter estimation.

## How do we model Gravitational Waves?

#### 1. Post-Newtonian Theory

Post-Newtonian (PN) formalism is an approximation to GR in slow-motion, weak field regime.

#### 2. Numerical Relativity

Solving Einstein's equations numerically to study the dynamics of the binary system and hence the gravitational wave. Most accurate but computationally expensive.

#### 3. Effective-One-Body

Approximation to GR. Binary system is reduced to a test particle with the reduced mass  $\mu$  moving in an effective Kerr (Rotating blackhole) background spacetime.

$$R_{\mu\nu} - \frac{1}{2} R \; g_{\mu\nu} + \Lambda \; g_{\mu\nu} = \frac{8\pi G}{c^4} \, T_{\mu\nu}$$

#### Einstein's Field Equation

10 non linear partial differential equations solved over multiple times. Not an easy task!

#### 4. Phenomenological Waveforms

Instead of focusing on the dynamics of gravitational wave source, we model the gravitational wave directly.

#### 5. Numerical Relativity Surrogates

Interpolate between the different Numerical Relativity solutions. Most accurate after the Numerical Relativity solutions.

## My Approach

- Post Newtonian Theory.
- Others computationally expensive and wouldn't be possible to do on one tiny laptop.
- Even in Post Newtonian Theory one lower orders taken.
- Using Synthetic data

## Approach contd

- 3 Assumptions:
- 1. Weak field: Leads to linearized field equations.

$$g_{ab} = n_{ab} + h_{ab}$$

# Approach contd

• 2. Can only use inspiral phase to infer parameters.



• 3. No spin

$$\overline{S_1} = 0$$
,  $\overline{S_2} = 0$ 

# My Model

The strain (h) produced by the gravitational wave is given by:

$$h = {\mu M \over rR}$$

M= m1+m2  $\mu$ = m1\*m2/(m1+m2) r = distance at which the wave is detected R = orbital separation

Eq 1

The distance R between the two objects changes according to this equation:

$$\frac{dR}{dt} = \mu M^2 / R^3$$
 Eq 2

The noise is Gaussian of zero mean:

Noise = N(0, sigma)

## Code

#### Likelihood function

$$L = \frac{1}{\sqrt{2\pi\sigma^2}} exp^{-\frac{1}{2}(\frac{data-model}{\sigma})^2}$$
 Eq 3

#### Monte Carlo Markov Chain algorithm

$$If(r>=1)$$
 
$$x_t=y$$
 
$$If(r<1)$$
 
$$x_t=y \quad \text{if} \quad U(0,1)<=r \quad \text{OR} \quad x_t=x_t \quad \text{if} \quad U(0,1)>r$$
 Here, 
$$r=\frac{likelihood(model,y)}{likelihood(model,x_t)}$$

### Data





**Expected data** 

Synthetic data

Negative h values omitted

Synthetic Data is for a Binary Black Hole system with  $m_1$ =35  $M_{sun}$  and  $m_2$  =30  $M_{sun}$  Error =  $N(0,10^{-7})$  (sigma is 0.1 times the value of smallest h)

## Results

```
The initial values were m_1= 40 M_{sun}, m_2 =40 M_{sun} Sigma =2*10-7 (kept fixed) Number of iterations= 1000
```

the value of parameters is [35.262679199930616, 29.744067538466243, 2e-07]
In [84]:



The plot shows the different values my MCMC went through. The blue lines represent the inferred value of parameters

## Potential Improvement

- Make MCMC faster by reducing the number of times it checks the likelihood ratio.
- Add priors
- Increase the number of iterations.

# Thank you