

# Arquitetura e Organização de Computadores

**Professor**: Janier Arias Garcia – DELT - Bloco I - sala 2601 - Tel: 3409-3460

**E-mail**: janier-arias@ufmg.br

**Página da disciplina**: minhaufmg.br (ambiente moodle)

Carga horária: 60 h/aula.

Sala de aula: Escola de Engenharia – sala 1163, segunda-feira das 19h00 a 20h40 e quarta-

feira das 20h55 a 22h35.

#### **Ementa:**

Arquitetura de microprocessadores: unidade de controle, memória, entrada e saída. Programação de microprocessadores: tipos e formatos de instruções, modos de endereçamento, linguagens Assembly e C. Dispositivos periféricos, interrupção, acesso direto à memória. Barramentos-padrão. Ferramentas para análise, desenvolvimento e depuração. Microprocessadores comerciais. Projetos de aplicações com microprocessadores e interfaces de E/S. Multiprocessamento.

## **Objetivos:**

- Capacitar o aluno ao entendimento do funcionamento de um processador, suas partes, como as mesmas se integram e se comunicam para realizar as funções para as quais foi projetado.
- Capacitar o aluno a compreender as diferentes alternativas para organização de um computador e sua arquitetura.
- Capacitar o aluno à compreensão dos elementos necessários para desenvolver um projeto de hardware de um processador.
- Saber identificar e caracterizar um periférico, sua forma de comunicação com processadores e seus modos de operação.

#### Programação das Aulas:

| 8    | 5     |                               |                                                            |
|------|-------|-------------------------------|------------------------------------------------------------|
| Aula | Data  | Assuntos                      | Referencias                                                |
| 1    | 28/03 | Apresentação da disciplina.   | Material apresentado em aula.                              |
|      |       | Dinâmica em grupo.            | Apresentações usadas na sala de aula: apresentação.ppt     |
| 2    | 30/03 | Conceitos iniciais:           | [2] Capítulo 1.                                            |
|      |       | processador, instrução,       | Apresentações usadas na sala de aula: cap1.pptx (1-30)     |
|      |       | conjunto de instruções, ciclo |                                                            |
|      |       | de máquina. Lei de Moore.     |                                                            |
|      |       | Microcontroladores.           |                                                            |
| 3    | 04/04 | Conceitos iniciais:           | [2] Capítulo 1.                                            |
|      |       | Arquitetura e organização     | Apresentações usadas na sala de aula: cap1.pptx (31-42)    |
|      |       | (microarquitetura).           | [1] Capítulo 6. Página 417 a 425                           |
|      |       | Arquiteturas RISC e CISC.     | Apresentações usadas na sala de aula: DDCA_Ch6.pptx (1-17) |
|      |       | Multiprocessadores.           |                                                            |
|      |       | Conjuntos de Instruções:      |                                                            |
|      |       | linguagem de máquina;         |                                                            |

Prof. Janier Arias Garcia Telefone: +55 (31) 3409-3460 E-mail: janier-arias@ufmg.br



|    |       | RAL DE MINAS GERAIS                                                                                                                                                                                                                |                                                                                                                                                                     |
|----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |       | Instruções Básicas do MIPS:<br>Linguagem Assembly;<br>Instruções Aritméticas;<br>Instruções somente com<br>Registradores; Exercícios.                                                                                              |                                                                                                                                                                     |
| 4  | 06/04 | Instruções com Memória; Endianness (extremidade); Instruções Imediatas; Representação de Instruções; Exercícios.                                                                                                                   | [1] Capítulo 6. Página 425 a 438<br>Apresentações usadas na sala de aula: DDCA_Ch6.pptx (18-40)                                                                     |
| 5  | 11/04 | Conceito de Programa Armazenado. Conjuntos de Instruções: Instruções Lógicas. Instruções de deslocamento (shift e rotate). Instruções para geração de constantes. Exercícios.                                                      | [1] Capítulo 6. Página 439 a 444<br>Apresentações usadas na sala de aula: DDCA_Ch6.pptx (41-54)                                                                     |
| 6  | 13/04 | Tradução e montagem de programas na memória de linguagem de alto nível em linguagem de máquina. Organização de programas na memória (memory layout).  Compilador C para o MIPS (www).                                              | [1] Capítulo 6. Página 479 a 488 Apresentações usadas na sala de aula: DDCA_Ch6.pptx (55-64) https://godbolt.org/                                                   |
| 7  | 18/04 | Conjuntos de Instruções: Instruções de desvio condicional e incondicional. Estruturas de Dados de linguagem de alto nível usando instruções de desvio condicional e incondicional do MIPS. Exercícios.                             | [1] Capítulo 6. Página 445 a 455 Apresentações usadas na sala de aula: DDCA_Ch6.pptx (65-83)                                                                        |
| 8  | 20/04 | MARS (Mips Assembly and Runtime Simulator): apresentação, recursos, forma de uso e demonstrações de programas simples.  Apresentação do Cartão MIPS.                                                                               | http://courses.missouristate.edu/KenVollmar/MARS/download.htm<br>https://www.d.umn.edu/~gshute/mips/Mars/Mars.xhtml                                                 |
| 9  | 25/04 | Arrays: Vetores e matrizes. Multiplicação e Divisão. Operações envolvendo caracteres (byte and half-word operations). Exercícios. MARS: instruções para E/S (syscall).                                                             | [1] Capítulo 6. Página 456 a 462 Apresentações usadas na sala de aula: DDCA_Ch6.pptx (84-92) http://courses.missouristate.edu/kenvollmar/mars/help/syscallhelp.html |
| 10 | 27/04 | Modos de Endereçamento. Pseudoinstruções em assembly. Prefixos do Sistema Internacional de Medidas. Representação de números em Ponto Fixo. Instruções de Comparação com e sem sinal (slt, slti, sltu) Operações com Aritmética de | [1] Capítulo 6. Página 476 a 479 e da página 489 a 494 Apresentações usadas na sala de aula: DDCA_Ch6.pptx (115-121) [2] cap3.ppt (1-25)                            |



|    |       | D ( E' ~                                                                                                                                                                       |                                                                                                                                                             |
|----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |       | Ponto Fixo que geram e não geram exceções.                                                                                                                                     |                                                                                                                                                             |
| 11 | 02/05 | Avaliação 1 (30 pontos)                                                                                                                                                        | Toda a matéria vista nas aulas de 01 a 10                                                                                                                   |
| 12 | 04/05 | Instruções para                                                                                                                                                                | [1] Capítulo 6. Página 463 a 475                                                                                                                            |
|    |       | Procedimentos e subprogramas. Conversão de funções e procedimentos (não recursivos e recursivos) em C para assembly do MIPS.                                                   | Apresentações usadas na sala de aula: DDCA_Ch6.pptx (93-114)                                                                                                |
|    |       | Exercícios.                                                                                                                                                                    |                                                                                                                                                             |
| 13 | 09/05 | MARS: demonstrações de execução de procedimentos não recursivos e recursivos.                                                                                                  | fatorial_rescursivo e fatorial_interativo                                                                                                                   |
| 14 | 11/05 | Operações e Hardware de<br>Multiplicação e Divisão em<br>Ponto Fixo.<br>Instruções de Multiplicação e<br>Divisão em Ponto Fixo no<br>MIPS.                                     | [2] cap3.ppt (20-70)                                                                                                                                        |
| 15 | 16/05 | Representação de números em Ponto Flutuante IEEE-754. Faixa de representação e Precisão em Ponto Flutuante MARS: Floating Point Representation Tool demonstrações. Exercícios. | [1] Capítulo 5. Página 362 a 367 Apresentações usadas na sala de aula: cap3.ppt (71-101) https://physics.nist.gov/cuu/Units/binary.html                     |
| 16 | 18/05 | Somador em Ponto Flutuante.  Multiplicador em Ponto Flutuante. Instruções de Ponto Flutuante no MIPS.  Exemplo de código em ponto flutuante do MIPS.                           | [1] Capítulo 5. Página 362 a 367 [1] Capítulo 6. Página 494 a 496 Apresentações usadas na sala de aula: chapter3modif.pptx (1-10) e DDCA_Ch6.pptx (131-134) |
| 17 | 23/05 | Implementação do<br>Processador MIPS no modo<br>Ciclo Único.                                                                                                                   | [1] Capítulo 7. Página 529 a 554<br>Apresentações usadas na sala de aula: DDCA_Ch7.pptx (1-38)                                                              |
| 18 | 25/05 | Implementação do<br>Processador MIPS no modo<br>Multiciclo.                                                                                                                    | [1] Capítulo 7. Página 554 a 579<br>Apresentações usadas na sala de aula: DDCA_Ch7.pptx (39-52)                                                             |
| 19 | 30/05 | Controle da Implementação<br>Multiciclo. Implementação do<br>Processador MIPS no modo<br>Pipeline.                                                                             | [1] Capítulo 7. Página 579 a 600<br>Apresentações usadas na sala de aula: DDCA_Ch7.pptx (52-86)                                                             |
| 20 | 01/06 | Conflitos no Pipeline: definições e formas de resolução. Performance de Microarquitetura <i>Pipeline</i> . Exceções.                                                           | [1] Capítulo 7. Página 600 a 604 e 621 a 624<br>Apresentações usadas na sala de aula: DDCA_Ch7.pptx (87-114)                                                |
| 21 | 06/06 | Microarquiteturas avançadas. Processadores Multicore. Multithreading. Clusters. Exercícios.                                                                                    | [1] Capítulo 7. Página 625 a 644<br>Apresentações usadas na sala de aula: DDCA_Ch7.pptx (115-136)                                                           |
| 22 | 08/06 | Microarquiteturas SIMD, VLIW<br>e GPUs.<br>MARS: demonstrações MIPS<br>X-Ray Tool. Exercícios.                                                                                 | [1] Capítulo 7. Página 625 a 644 Apresentações usadas na sala de aula: GPU_CAQA_ch4.pptx (1-30) http://mi.eng.cam.ac.uk/~ahg/MIPS-Datapath/                 |



|    |       | MIPS <i>Datapath Simulator</i> :<br>Demonstração Execução de<br>Programa na Microarquitetura                                                                                                                                              |                                                                                                           |
|----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| 22 | 10/06 | Pipeline. Exercício.                                                                                                                                                                                                                      | Toda a material distribution and a decided a 22                                                           |
| 23 | 13/06 | Avaliação 2 (35 pontos)                                                                                                                                                                                                                   | Toda a matéria vista nas aulas de 11 a 22                                                                 |
| 24 | 15/06 | Tecnologias de Fabricação de<br>Memórias. Princípio da<br>Localidade.<br>Memórias cache: Definição,<br>Organização, Associatividade.                                                                                                      | [1] Capítulo 8. Página 667 a 695<br>Apresentações usadas na sala de aula: DDCA_Ch8.pptx (1-42)            |
| 25 | 20/06 | MARS <i>Data Cache Simulator</i> :<br>demonstrações. Exercícios<br>sobre memórias cache.                                                                                                                                                  |                                                                                                           |
| 26 | 22/06 | Memória Virtual. Tabelas de<br>Páginas e TLBs.                                                                                                                                                                                            | [1] Capítulo 8. Página 695 a 710<br>Apresentações usadas na sala de aula: DDCA_Ch8.pptx (43-67)           |
| 27 | 27/06 | Exercícios sobre Memória Virtual. Tabelas de Páginas e TLBs. Ferramenta Paracache Knowledge Base                                                                                                                                          | http://www.ntu.edu.sg/home/smitha/ParaCache/Paracache/vm.html<br>paracache_kb.pdf                         |
| 28 | 29/06 | Periféricos de E/S: composição, categorias, funções. Técnicas de E/S: programada, por interrupção e DMA (Acesso Direto a Memória). Comandos e Instruções de E/S. Formas de identificação de Dispositivos de E/S. Barramentos. Exercícios. | [3] Capítulo 7. Página 176 a 198.  Apresentações usadas na sala de aula: CH07_stallings.pptx (1-38)       |
| 29 | 04/07 | E/S mapeada em memória: hardware e programação. Periféricos e Sistemas de E/S em microcontroladores. Sistemas de E/S em PCs. Exercícios.                                                                                                  | [1] Capítulo 8. Página 710 a 747 e 793 a 799. Apresentações usadas na sala de aula: DDCA_Ch8.pptx (68-84) |
| 30 | 06/07 | Avaliação 3 (35 pontos)                                                                                                                                                                                                                   | Toda a matéria vista nas aulas de 24 a 29                                                                 |

## Forma de Avaliação:

3 (três) provas parciais objetivas e/ou dissertativas; Avaliação 1 (30 Pontos), Avaliação 2 (35 Pontos) e Avaliação 3 (35 Pontos).

## Observações:

- O prazo limite para revisão de prova é de uma semana após a data de divulgação no *Moodle* da nota da prova.
- Não haverá provas de segunda chamada.
- Eu não arredondo notas. Não insista!



Exame Especial: dia 13/07/2022 – no horário da aula; na sala de aula. Matéria toda. Para quem atender os requisitos para solicitar o exame especial deverá realizar o pedido mediante preenchimento de formulário e encaminhado à secretária do Departamento de Engenharia Eletrônica (DELT). Lembrem-se, o exame especial é computado junto com a nota obtida durante o semestre que deve ser igual ou superior a 40 pontos.

ATENÇÃO: A matéria tratada em cada aula se encontra na tabela deste plano de aulas. Os slides são utilizados para abordar o assunto em cada aula, mas não é material para basear seu estudo, isso deve ser feito consultando os livros de referência.

### **Referencias principais:**

- [1] David Money Harris & Sarah L. Harris. *Digital Design and Computer Architecture* Morgan Kaufman 2nd Ed. 2012 Versão em português no *Moodle*: Projeto Digital e Arquitetura de Computadores by David Money Harris & Sarah L. Harris 2016.
- [2] David A. Patterson, John L. Hennessy. Organização e Projeto de Computadores A Interface Hardware/ Software. 3ª. Edição. Editora Campus, 2012.
- [3] William Stallings Arquitetura e Organização de Computadores 10ª Edição Pearson Prentice Hall 2017.

Telefone: +55 (31) 3409-3460

E-mail: janier-arias@ufmg.br