- An LIF Neuron with an 'autapse'. An autapse is a synapse formed by a neuron connecting its own axon back to its own dendrites (i.e. a self (auto) synapse). In this problem, you will study the emergence of self-sustained spiking in an 'autaptically'-coupled neuron.
 - Current is applied to a neuron u self-coupled by an autapse until it spikes at $u_{\rm th}=1{\rm mV}$. After this, its voltage is reset to rest $u_{\rm rest}=0{\rm mVs}$, the current is shut off, and a burst of neurotransmitter is released which rapidly initiates a synaptic current. Assuming membrane time constant is τ_m (ms), neurotransmitter decay time constant τ_x (ms), fast synaptic current time constant ($\tau_s \to 0{\rm ms}$), membrane resistance $R=1\Omega$, excitatory neurotransmitter release concentration x_0 , and unit current conversion, the equations for neuron voltage u and neurotransmitter x after the first spike and prior to any other spikes are

$$\tau_m \frac{du}{dt} = -u + x, \qquad u(0) = 0,$$

$$\tau_x \frac{dx}{dt} = -x, \qquad x(0) = x_0.$$

- (a) If $\tau_x > \tau_m$ and $x_0 = 2$, show it is possible for the neuron to spike a second time if τ_x is large enough as long as the spike threshold $u_{\rm th} < 2$ mV. To do this, solve for x and then for u. Determine the maximum value of u as a function of time t (assuming first u stays subthreshold). This formula should depend on τ_m and τ_x . Argue the resulting formula can be made arbitrarily close to 2 by increasing τ_x .
- (b) Now, assume $\tau_x = \tau_m \equiv \tau$, so the membrane and synapse have the same timescale. Again, determine the maximum value u_{\max} of u(t) as a function of time t when $x_0 = 2$. Is there any value of τ that will lead to u reaching above a threshold value of $u_{\rm th} = 1 {\rm mV}$? Hint: Determining the maximum of u_{\max} as a function of τ , optimize this, and compare this to $1 {\rm mV}$. Does it go above?
- (c) Lastly, determine the critical value of x_0 for the τ -optimized u_{max} value to exactly reach 1.

a)
$$T_{x} \frac{dx}{dt} = -x$$
, $X(0) = X_{0}$
 $x' + \frac{x}{C_{x}} = 0$
 $x' + \frac{x}$

=7
$$U = \frac{x \cdot \tau_{r}}{\tau_{x} \cdot \tau_{m}} \left(e^{-\frac{t}{\tau_{x}}} - e^{-\frac{t}{\tau_{m}}} \right)$$

Find maximum of U :

 $U' = \frac{x_{o}}{\tau_{x}} \cdot \tau_{m} \left(\frac{e^{-\frac{t}{\tau_{m}}}}{\tau_{m}} - e^{-\frac{t}{\tau_{x}}} \right)$
 $O = \frac{x_{o}}{\tau_{x}} \cdot \tau_{m} \left(\frac{e^{-\frac{t}{\tau_{m}}}}{\tau_{m}} - e^{-\frac{t}{\tau_{x}}} \right)$
 $O = \frac{x_{o}}{\tau_{x}} \cdot \tau_{m} \left(\frac{\tau_{e}}{\tau_{m}} - e^{-\frac{t}{\tau_{x}}} \right)$
 $O = \frac{x_{o}}{\tau_{x}} \cdot \tau_{m} \left(\frac{\tau_{e}}{\tau_{m}} - e^{-\frac{t}{\tau_{x}}} \right)$
 $O = \frac{x_{o}}{\tau_{x}} \cdot \tau_{m} - e^{-\frac{t}{\tau_{x}}}$
 $O = \frac{t_{o}}{\tau_{m}} \cdot \tau_{m} - e^{-\frac{t}{\tau_{x}}}$
 $O = t_{o} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} - t_{o} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m} \cdot \tau_{m}$
 $O = t_{o} \cdot \tau_{m} \cdot \tau$

The max value of U is when $t = \ln\left(\frac{T_{x}}{T_{m}}\right)T_{x}T_{m}$ because $T_{x} > T_{m}$ we can see that as T_{x} increase we can make the formula wibitrary close to 2.

b)
$$T_x = T_m = T$$
 and $X_0 = 2$
 $T_x' = -x$, $x(0) = x_0$
 $x = x_0 e^{-\frac{x}{2}}$
 $T_x' = -u + x_0 e^{-\frac{x}{2}}$, $u(0) = 0$
 $u = \frac{x_0 + e^{-\frac{x}{2}}}{T}$

Find max:

$$\frac{du}{dt} = \frac{x_o}{T} \left(-\frac{(t-\tau)e^{\frac{t}{\tau}}}{T} \right)$$

$$0 = -\frac{(t-\tau)e^{-\frac{t}{\tau}}}{T}$$

$$0 = -t + T$$

$$t = T$$

Umax =
$$\frac{K_0}{e} = \frac{2}{e} = 2$$

C) Yes for U to reach above threshold make
$$T = e^{-\frac{\xi}{2}}$$
 So:
$$U = \frac{X_0 + e^{-\frac{\xi}{2}}}{e^{\frac{\xi}{2}}} = X_0 + 2\xi$$

$$U = \frac{\chi_{o} + e^{-\frac{\zeta}{2}}}{e^{\frac{\zeta}{2}}} = \chi_{o} + 2\xi \times 1$$

$$for \ \xi > 0$$