Maximum Likelihood & Bayes Rule

Topics

- Review Maximum Likelihood Concept
- Consider Prior Beliefs
- Continuous valued Random Variables
- Posterior probability and Maximum Likelihood

Click-Through Rates in Online Advertizing

Example from Xueri Wang et al

Results

Model:

X = Number of click-throughs in 200 views $<math>X \sim Binomial(200, p)$

In 200 views, 25 click-throughs occurred

Let's estimate p using the likelihood approach

Maximum Likelihood

Consider the chance of 25 successes if p=0.01

 $P(X = 25 | p=0.01) = C(200,25) 0.01^{25}0.99^{200-25}$ = 7.7e-20

Let's consider other possible values for p,

Maximum Likelihood

If p=0.05, then P(X = 25 | p=0.05) = 1.7e-05If p=0.10, then P(X = 25 | p=0.10) = 0.04if p=0.15, then P(X = 25 | p=0.10) = 0.05

Let's place these values on a plot

Maximum Likelihood

If p=0.05, then P(X = 25 | p=0.05) = 1.7e-05If p=0.10, then P(X = 25 | p=0.10) = 0.04if p=0.15, then P(X = 25 | p=0.10) = 0.05

Maximum Likelihood

If p=0.05, then P(X = 25 | p=0.05) = 1.7e-05If p=0.10, then P(X = 25 | p=0.10) = 0.04if p=0.15, then P(X = 25 | p=0.10) = 0.05

Likelihood

 These likelihoods can be viewed as a function of p given the data

$$L(p) = C(200,25) p^{25} (1-p)^{200-25}$$

Find the *p* that maximizes the likelihood for our data and use it to estimate *p*.

Likelihood

 $L(p) = C(200,25) p^{25}(1-p)^{200-25}$ here C(200,25) is the factorial

It is often easier to maximize the log of the likelihood function:

log(L(p)) = C(200,25) + 25log(p) + (200-25)log(1-p)

We can differentiate the log-likelihood and set to 0 to solve for p to get 0.125 as our estimate

Practice Problem

Geometric(p)

- X = number of failures until first success
- Trials are independent with the same probability of success
- P(k) = P(k failures followed by a success)= $p(1-p)^k$ for k = 0, 1, 2, ...

Suppose you observe the geometric n times, and record $k_1, ..., k_n$ Which value of p maximizes the likelihood of our data?

Find the Likelihood

$$\begin{split} &P(X_1 \!\!=\!\! k_1,\, X_2 \!\!=\!\! k_2,\, ...,\, X_n = k_n) \\ &= P(X_1 \!\!=\!\! k_1) P(X_2 \!\!=\!\! k_2) \cdots P(X_n = k_n) \quad \text{independence} \\ &= p(1 \!\!-\!\! p)^{k1} \, x \, p(1 \!\!-\!\! p)^{k2} \, x \, ... \, x \, p(1 \!\!-\!\! p)^{kn} \quad \text{geometric(p)} \end{split}$$

= $p^n(1-p)^{k1+k2+...+kn}$ The likelihood function

Let's maximize the log likelihood

$$Log(L(p)) = nlog(p) + (k_1 + ... + k_n)log(1-p)$$

Differentiate wrt p

$$n/p - (k_1 + ... + k_n)/(1-p)$$

Set to 0 and solve for p

$$0 = n/p - (k_1 + ... + k_n)/(1-p)$$

$$0 = (1-p)n - p(k_1 + ... + k_n)$$

 $p_hat = n/(n+k_1+...+k_n) = 1/(1 + avg)$

number of successes / number of trials

Return to our click-through example

- Suppose that you were certain that p was either 0.01, 0.02, ..., 0.20
- You figure it might be any one of these values
- And you think of them as equally likely values for p
- This is similar to the vitamin problem where you reach into a barrel of coins that have different chances of success and pick one to flip

Given the data: 25 click-throughs on 200 visits, how would you update your pmf for p?

For example, what is

 $P(p = 0.01 \mid data = 25)$?

P(p = 0.01 | data = 25)

Let's apply the conditional probability rule

= P(p = 0.01 and data = 25) / P(data)

Let's apply the rule again to the numerator

- = P(p = 0.01) P(data = 25 | p = 0.01) / P(data)
- = $0.05 \text{ C}(200,25) 0.01^{25} 0.99^{200-25} / \text{P(data)}$

Bayes Rule

P(A|B) = P(A and B)/P(B)

P(B|A) = P(A and B)/P(A)

So P(A and B) = P(A)P(B|A)
Plug this into the numerator above

Bayes RULE: P(A|B) = P(A)P(B|A)/P(B)

Bayes Rule

- We just used Bayes rule
 P(A|B) = P(A)P(B|A)/P(B)
- $A = \{p = 0.1\}$
- B = {data = 25}

 $P(p = 0.01 \mid data = 25) =$

P(p = 0.01) P(data = 25 | p = 0.01) / P(data = 25)

The denominator is the average over all possible values for p.

$P(p \mid data = 25)$

We can compute $P(p = x \mid data = 25)$ for all possible values of p.

In general, for x = 0.01, 0.02, ..., 0.20,

 $P(p = x \mid data = 25) =$

= P(p = x) P(data = 25 | p = x) / P(data)

= $0.05 \text{ C}(200,25) \text{ x}^{25} (1-\text{x})^{200-25} / \text{P(data)}$

What happens if we change our initial (prior) probabilities on p to be discrete uniform on 0.001, 0.002, ..., 0.200?

This posterior distribution for p places the highest probability on 0.125, but the small values between 0 and 0.05 still have a chance (a small chance) of being the true p.

We can use this posterior distribution to estimate p (choose the one with the highest chance).
We can provide credible regions for p, e.g., interval with a 95% posterior probability.

This pmf is so dense that we wonder, can we just say that p can be equally likely to be any value in (0, 1)?

Continuous Random Variables

Continuous Uniform Distribution

- Uniform(0, 1) distribution
- We say the random variable X has a Uniform(0, 1) distribution, if

$$P(a < X < b) = (b-a)$$
 for any a & b in (0,1)
For example,

$$P(1/4 < X < \frac{1}{2}) = P(1/8 < X < \frac{3}{8})$$

= $P(3/4 < X < 1)$
= $\frac{1}{4}$

We compute probabilities on intervals, rather than exact values

We find probabilities by integration

This integral doesn't have a closed form solution so we need the computer to approximate the area.

Another Continuous Distribution

The Beta (α, β)

The Family of Beta Distributions

Beta (α, β)

- The Beta distribution is for random variables in (0, 1)
- The Beta(1,1) is the Uniform(0,1) distribution
- The Beta includes symmetric, skewed, Ushaped distributions
- The probability density function is $f(p)=B(\alpha,\beta)\;p^{\alpha-1}(1\text{-}p)^{\beta-1}\;\text{for}\;p\;\text{in}\;(0,\,1)$

Beta (α,β)

- Let's return to our click-through example
- Let's consider another prior distribution for p, such as the Beta(2, 10)
- The Beta(2, 10) probability density function is $f(p) = B(\alpha,\beta) \ p^{2-1}(1-p)^{10-1} \ for \ p \ in \ (0,\ 1)$

Posterior for p given the data

Recall that we used Bayes rule to compute the

 $P(p = 0.01 \mid data = 25) =$

P(p = 0.01) P(data = 25 | p = 0.01) / P(data = 25)

We use it again with the Beta density giving us the probability P(p in dp) = f(p) dp

Posterior for p given the data

If we have a continuous distribution for the possible values of p, then

P(p in dp | data = 25)

- = P(p in dp) P(data = 25 | p in dp) / P(data = 25)
- = $B(\alpha,\beta) p(1-p)^9 C(200,25) p^{25} (1-p)^{175}$
- = $B(\alpha,\beta) C(200,25) p^{25+1} (1-p)^{175+9}$

This is the Beta(26, 184) distribution for p

Using the prior to provide a single point estimate for p

- Our posterior distribution for p is B(26,184)
- If we want to provide an estimate for p, then we could provide the p with the highest posterior probability, i.e., we would maximize $B(\alpha,\beta) \ C(200,25) \ p^{25+1}(1-p)^{175+9}$
- We know this is p_hat = (25+1)/(200+10)

Laplace Smoothing

- p_hat = (25+1)/(200+10)
- Notice that we have taken the MLE of 25/200 and added a small bit to the numerator and a small bit to the denominator
- This is especially useful for rare events, i.e., when p is small
- We can re-express p_hat as a weighted average of the MLE and the Ev of the prior:

 $\frac{200}{210} \frac{25}{200} + \frac{10}{210} \frac{1}{10}$

Step Back

- Real world phenomena can often be modeled with a probability distribution
- Many probability distributions can be expressed as probability mass (or density) functions that depend on parameter(s)
- We can use Maximum Likelihood to estimate these parameters, i.e., to find the parameters that are most likely to have produced our data
- We may have prior information about the parameters
- This prior information can be expressed as a probability distribution on the parameter values
- We can use Bayes rule to find the posterior distribution of our parameters given our data
- Sometimes the prior fits nicely with the data distribution, e.g., the Beta and Binomial
- Other times we use computational methods to compute the posterior

Spam Detection

Spam

- Spam appears in our email, comments on blogs, reviews on Yelp, etc.
- We can develop detectors to help us programmatically identify spam
- In the case of email, Spam Assassin provided 9000 email messages that are hand-classified as spam or ham

Email Corpus

- Later in the semester we will discuss how to build classifiers
- We look at a simple example today
- From the 9000 email messages we determined
 - whether or not the subject line starts Re:
 - the percentage of capital letters in the email

Re: in the subject line of the email | Re: 2400 300 2700 | | No Re: 3600 2700 6300 | | 6000 3000 9000 | | A new email arrives, it has an Re: in its subject line. | | What is the chance it is spam? | | Is the presence of Re: a useful indicator of ham?

A new email arrives.
It has an Re: in the subject line and fewer than 20% of the letters are capitalized
What is the chance it is spam?
Can we answer this question?

In practice

- We have many features X₁, X₂, ..., X_m
- We observe x₁, x₂, ..., x_m
- We want P(spam $| x_1, x_2, ..., x_m$)
- · Building a probability model is quite complex
- We don't have enough data to estimate the joint distribution of m random variables

P(spam $| x_1, x_2, ..., x_m \rangle$ = P(spam and $x_1, x_2, ..., x_m \rangle / P(x_1, x_2, ..., x_m \rangle$ Why? Definition of conditional probability

= P(spam)P(x₁, x₂, ..., x_m|spam) / P(x₁, x₂, ..., x_m) Why?

Bayes Rule P(A|B) = P(A)P(B|A)/P(B)

Naively assume independence

P(spam|x₁, x₂, ..., x_m) = P(spam)P(x₁, x₂, ..., x_m|spam) / P(x₁, x₂, ..., x_m) = P(spam)P(x₁|spam) *...*P(x_m|spam) / P(x₁, x₂, ..., x_m)

Naïve Bayes Estimation of P(spam $| x_1, x_2, ..., x_m$)

Computational Considerations

Take log to turn product of small probabilities into sums $Log(P(spam)) = log(P(spam)) + \Sigma log(P(x_i | spam))$

- $log(P(x_1, x_2, ..., x_m))$

approx $log(3/9) + \Sigma log(\#x_i in spam)/\#spam) - C$ approx $log(3/9) + \Sigma log(\#x_i in spam + 1)/(\#spam + 1)) - C$

Examine the likelihood ratio, Log(P(spam)/P(ham))

We don't need to compute $P(x_1, x_2, ..., x_m)$ Values above 0 indicate P(spam) > P(ham)

Take Aways

- In practice,
 - We might not have a named probability distribution so we resort to estimating probabilities with proportions
 - We might not have enough data so we smooth our proportions and make naïve assumptions
 - Computational considerations can be important for accuracy and efficiency