KCSE 2007 PHYSICS MARKING SCHEME PAPER 1

1.	0.562 - 0.012 = 0.550cm Or $5.62 - 0.12$	1 mk
	5.62 - 0.12 = 0.55 cm 5.5	
	5.5 mm	
2.	Density p= m/r	3 mks
	D = m/v = 1.75g formula - accept g/mm ³	
	$(0.550)^3$ cm substitution \Rightarrow	
	$= 10.5 \text{g/cm}^3$ answer - allow transfer of error	
	10500kg/m ³	
3.	V ₂ V ₄ V ₁ V ₃ (correct order)	1 mk
4.	Sucking air reduces pressure inside the tube; so that atmosphere pressure	1 mk
	forces the liquid up the tube	
5.	Look for symbols	3 mks
	$P_A gh_A = Pagh_B$ formula or correct	
	$P_{Ag} \times 24 = 1200 \text{ g} \times 16$ substitute substitution	
	$P_a = 800 \text{ kgm}^{-3}$ answer answer	
6.	Radiation	1 mk
7.	X_2 is made greater than X_1 / X_1 is made shon X_2	2 mks
	X_2 is made larger than X_1	
	Since B receives radiation at a higher rate, it must be moved	
	Further from sources for rates to be equal: since A receives radiation at a	
	lower rate than B.	
0	$F_1 d_1 = f_2 d_2$	21
8.	Taking moments and equating clockwise movements = anticlock movements	3 mks
	0.6 N x 7cm = mg N x 30cm; W = mg = 1.4 N:	
9.	Distance = area under curve between 0 and 3. 0 second;	
٦.	$= 120 \times 3 \times 0.2 = 72 \text{M}: \text{Trapezium Rule (3 trapeziua)}$	
	Mid – ordinateral = 70.5	
10.	Acceleration = slope of graph at $t = 4.0 \text{ s}$	2 mks
10.	Or $a = \Delta V$ or trapezium rule (6 trapezia)	2 IIIKS
	$\Delta t = 72m$	
	$= 16 \times 3 = 14.11 \text{ m/S}^2$	
	17 x 0.2	
	$(12-14.5) \text{ m/s}^2$ or trapezium (1) or 1 triangle = 76.5m	
11.	Pressure, impurities::	2 mks
12.	Kelvin (K) in words (one triangle used follow)	2 mks
13.	The pressure of a fixed mass of a gas is directly proportional to its absolute (1 mk
	Kelvin) temperature provided the volume is kept constant P & T volume	
	constant	
14.	Since the quantity of water A is smaller, heat produces grater change of	
	temperature in A; This causes greater expansion causing the cork of	
	temperature in A; this cause greater expansion causing the cork to sink	
	further.	
	Per unit volume/ greater decrease in density/ lower density in A	

Smoke particles Show the behavior or movement of air molecule Smoke particles are larger than air molecules/ visible and light enough to move when bombarded by air molecules Lens Focuses the light from the lamp on the smoke particle; causing them to be observable Microscope Enlarge the smoke particle So that they are visible/ magnifies smoke particles 2 mks	s)
Smoke particles are larger than air molecules/ visible and light enough to move when bombarded by air molecules Lens Focuses the light from the lamp on the smoke particle; causing them to be observable Microscope Enlarge the smoke particle	
move when bombarded by air molecules Lens Focuses the light from the lamp on the smoke particle; causing them to be observable Microscope Enlarge the smoke particle	
Lens Focuses the light from the lamp on the smoke particle; causing them to be observable Microscope Enlarge the smoke particle	
them to be observable Microscope Enlarge the smoke particle	
Microscope Enlarge the smoke particle	\mathbf{s})
So that they are visible/ magnifies smoke particles 2 mks	
2 miles	s)
(b) Smoke particle move randomly / zigzag / haphazardly 3 mks	3
Air molecules bombard the smoke particles/ knock, hit	
Air molecules are in random motion	
(c) The speed of motion of smoke particles will be observed to be higher 1 mk	
smocking particles move faster, speed increases, increased random motion	
16(a) A body at rest or motion at uniform velocity tends to stay in that state unless 1 mk	
acted on by an unbalanced force/ compelled by some external force to act	
otherwise.	
(b) (i) $S = \Delta u$	
Nd or 98. $75 - 0 \text{ (m/s)}^2$ 3 mks	3
16 - 0	
$= 6.17 \text{ms}^{-2}$	
ii $20k = s = 6.09$ depend on (i)	
K = 6.09	
20 2 mks	3
= 0. 304 iii Increase in roughness increases k and vice versa	
Uniform speed in a straight line – uniform velocity 1 mk (c) Applying equation 4 mks	,
(c) Applying equation 4 links	•
$V^2 - u^2 = 2as$	
$V^{2} - 0 = 2 \times 1.2 \times 400$	
Momentum p = mv	
$= 800 \times \boxed{2 \times 1.2 \times 400}$	
= 24787.07	
= 24790	
17.(a) Quantity of heat required to change completely into vapour 1 kg of a 1 mk	
substance as its normal boiling point without change of temperature;	
Quantity of heat required to change a unit mass of a substance from liquid to	
vapour without change in temp	
(b) (i) So that it vaporizes readily/ easily 1 mk	
(ii) In the freezing compartment the pressure in the volatile liquid lowered	
suddenly by increasing the diameter of the tube causing vaporization in the	
cooling finns, the pressure is increased by the compression pump and heat	
lost to the outside causing condensation.	
Acquires heat of the surrounding causing the liquid to vaporize	

mk mks
mks
mks
mks
mk
mk
5 mks
mks
mks
mk
mks
mk
mk
mks
mks
mks
1 1 1 1 1 1 1 1