# SEL 329 – CONVERSÃO ELETROMECÂNICA DE ENERGIA

# Aula 15

## Revisão: Eficiência de um Gerador Composto Curto



$$\eta = \frac{Psaida}{Pentrada} \times 100\%$$



A análise é semelhante para os outros tipos de geradores CC.

Um gerador composto de 100kW, 250V e 400A, com uma ligação em derivação longa, tem uma resistência de armadura (incluindo as escovas) de  $0,025\Omega$ , uma resistência de campo em série de  $0,005\Omega$  e a curva de magnetização mostrada a seguir. Há um campo em derivação com 1000 espiras/polo e um campo série de 3 espiras/polo. O campo em série é ligado de tal modo que uma corrente positiva na armadura produz uma força magnetomotriz no eixo direto que se soma à do campo em derivação.

Calcule a tensão terminal, para a corrente nominal do gerador, quando a corrente de campo em derivação é 4,7A e velocidade igual a 1150 rpm. Despreze os efeitos da reação de armadura.



#### Revisão: Solução do Exercício

# Gerador composto longo:



$$I_a = I_{sr} = I_f + I_t$$

Corrente de campo efetiva:

$$I_{f(RA)} = 0$$

$$I_{f(efet)} = I_f \pm \frac{N_{sr}}{N_f} I_{sr} - I_{f(RA)}$$

#### Revisão: Solução do Exercício

Dos dados do problema:

$$I_a = I_{sr} = 4.7 + 400 \cong 405 A$$

Os fluxos dos campos série e em derivação se somam (dado no problema). Logo:

$$I_{f(efet)} = I_f + \frac{N_{sr}}{N_f} I_{sr} = 4.7 + \left(\frac{3}{1000}\right) \cdot 405 = 5.90A$$

#### Revisão: Solução do Exercício

Com a corrente de campo efetiva de 5,90A, utiliza-se a curva de magnetização obtida em vazio para encontrar a tensão gerada *Ea*:

$$E_{a0} = 274 V$$

No entanto, a curva de magnetização foi obtida para 1200 rpm. Logo, é necessário corrigir o valor da tensão gerada:

$$E_a = \left(\frac{n}{n_0}\right) E_{a0} = \left(\frac{1150}{1200}\right) \cdot 274 = 263 \text{ V}$$

Podemos agora determinar a tensão terminal:

$$V_t = E_a - (R_a + R_{sr}) \cdot I_a = 263 - (0.025 + 0.005) \cdot 405 = 251 V$$

# Aula de Hoje

- Introdução aos Motores CC
- Motor CC com excitação paralela (shunt)
- Motor CC série
- Motor CC composto

#### **Motor CC**

As diferentes características de Torque x Velocidade são obtidas através de combinações de enrolamentos de campo série e paralelo e por diferentes formas de excitação dos enrolamentos:

Motor CC com excitação independente

Motor CC paralelo (shunt)

Motor CC série

Motor CC composto curto/longo (aditivo ou subtrativo)

As equações de torque e tensão de armadura são as mesmas válidas para a operação como gerador:

$$E_a = K_a \times \Phi \times \omega_m \rightarrow \text{tensão de velocidade (e = Blv)}$$

$$T = K_a \times \Phi \times I_a \longrightarrow \text{força de Lorentz} (f = Bil)$$

# Motor CC – Excitação Independente – Regime Permanente



As equações que descrevem o modelo de regime permanente ilustrado acima são:

$$\begin{split} &V_t = E_a + R_a \times I_a \\ &E_a = K_a \times \Phi \times \omega_m = V_t - R_a \times I_a \\ &T = K_a \times \Phi \times I_a \\ &V_f = R_f I_f \end{split}$$

# Motor CC – Excitação Shunt – Regime Permanente



As equações que descrevem o modelo de regime permanente ilustrado acima são:

$$V_t = E_a + R_a I_a$$

$$I_t = I_a + I_f$$

$$V_t = R_f I_f$$

# Motor CC – Eficiência





## **Motor CC – Regime Permanente. Exemplo 1**

- Uma máquina CC (12 kW, 100 V, 1000 rpm) é conectada a uma fonte CC de 100 V e operar como motor com excitação shunt. Operando em vazio (sem carga), o motor gira a 1000 rpm e exige 6 A de corrente de armadura. Tem-se  $R_a = 0.1\Omega$ ;  $R_{fw} = 80\Omega$ ; o enrolamento de campo tem 1200 espiras/polo.
  - Calcule o valor da resistência do reostato de controle do circuito de campo.
  - Encontre as perdas rotacionais a 1000 rpm.
  - Encontre a velocidade, o valor do torque eletromagnético e a eficiência do motor quando a corrente nominal flui na armadura, considerando o seguinte: (i) despreze a reação da armadura; (ii) considere que o fluxo magnético no entreferro é reduzindo em 5% devido à reação da armadura.
  - Encontre o torque de partida se a corrente de partida da armadura é limitada a 150% do seu valor nominal considerando o seguinte: (i) despreze a reação da armadura; (ii) a corrente de reação da armadura é igual a 0,16 A.

# **Motor CC – Regime Permanente. Exemplo 1**

Curva de magnetização da máquina CC do Exemplo 1:



- Em muitas aplicações, motores co são utilizados para acionar cargas mecânicas em situações que demandam uma das seguintes características:
  - Algumas aplicações requerem que a velocidade se mantenha constante à medida que a carga (torque mecânico) varia.
  - Algumas aplicações requerem variação de velocidade em uma ampla faixa de valores.
- Com isso, dependendo da aplicação, deve-se conhecer a relação entre torque e velocidade da máquina e determinar a forma de controle mais adequada.

Para um motor CC com excitação independente (ou shunt), podese escrever que:

$$E_a = K_a \times \Phi \times \omega_m = V_t - R_a \times I_a \tag{1}$$

$$T = K_a \times \Phi \times I_a \tag{2}$$

de (1), temos que :

$$\omega_m = \frac{V_t - R_a \times I_a}{K_a \times \Phi} \tag{3}$$

de (2) em (3), temos que :

$$\omega_m = \frac{V_t}{K_a \times \Phi} - \frac{R_a \times I_a}{K_a \times \Phi} = \frac{V_t}{K_a \times \Phi} - \frac{R_a}{(K_a \times \Phi)^2} \times T$$

$$\omega_m = \frac{V_t}{K_a \times \Phi} - \frac{R_a}{(K_a \times \Phi)^2} \times T$$

Se a tensão terminal  $V_t$  e o fluxo produzido pelo enrolamento de campo  $(\phi)$  permanecerem constantes, tem-se uma relação torque versus velocidade linear:

 $\omega_m = k_1 - k_2 T$  onde  $\frac{V_t}{K_a \times \Phi}$  é a velocidade da máquina a vazio  $k_2 = \frac{R_a}{\left(K_a \times \Phi\right)^2}$  é a inclinação da reta T x  $\omega_m$ 





- A queda de velocidade com o aumento do torque (da carga) é pequena visto que o valor de R<sub>a</sub> é pequeno, ou seja, o motor CC shunt ou independente, mesmo sem controle, tem boa regulação de velocidade.
- Além disso, em máquinas reais o fluxo φ diminui com o aumento de I<sub>a</sub> (reação de armadura), resultando em aumento da velocidade. Portanto, a reação de armadura melhora a regulação de velocidade de motores shunt e independente.

A partir da equação:

$$\omega_m = \frac{V_t}{K_a \times \Phi} - \frac{R_a}{(K_a \times \Phi)^2} \times T$$

conclui-se que a velocidade da máquina pode ser controla de três maneiras diferentes:

- 1. Controle de velocidade via tensão terminal (V<sub>t</sub>)
- 2. Controle de velocidade via corrente de campo ( $\phi \propto I_f$ )
- 3. Controle de velocidade via resistência de armadura (R<sub>a</sub>)

Obs: usualmente, a opção de controle via tensão terminal não é recomendada para o motor de cc com excitação paralela visto que a corrente de campo (e consequentemente o campo) varia com a tensão terminal. Isso exige controladores mais complexos (controle simultâneo da tensão terminal e da corrente de campo)

# Motor CC Shunt/Independente – Controle de velocidade via V<sub>t</sub>

Neste método de controle, a resistência de armadura  $R_a$  e a corrente de campo  $I_f$  permanecem constantes. Nesse caso, a velocidade aumenta com o aumento de  $V_t$ .

$$\omega_m = \frac{V_t}{K_a \times \Phi} - \frac{R_a}{(K_a \times \Phi)^2} \times T$$



# Motor CC Shunt/Independente – Controle de velocidade via V<sub>t</sub>

- $\triangleright$  Para torque constante, a velocidade varia linearmente com  $V_t$ .
- Se carga mecânica é variada, a velocidade pode ser ajustada para se manter constante através de V<sub>t</sub>.
- Para cada valor de torque fornecido para a carga há um ajuste correspondente da tensão terminal de forma a manter a velocidade constante.
- Para uma carga fixa pode-se conseguir variação suave de velocidade, desde zero até valor nominal, através do ajuste de V<sub>t</sub>. Porém, este método é caro, pois exige uma fonte de tensão CC variável para o circuito de armadura.

## Motor CC Shunt/Independente – Controle de velocidade via V<sub>+</sub>

 $\triangleright$  Se a corrente de armadura ( $I_a$ ) é admitida constante, temos que:

$$\mathbf{E}_{\mathbf{a}} \propto \mathbf{V}_{\mathbf{t}} \propto \boldsymbol{\omega}_{\mathbf{m}}$$

- $\triangleright$  E, portanto, a tensão terminal  $V_t$  aumenta linearmente com o aumento de  $\omega_m$ .
- Adicionalmente, se  $I_a$  é constante, então o torque T ( $K_a$   $\phi$   $I_a$ ) é constante, para um dado valor de corrente de campo.
- Com isso, a potência de entrada do motor  $(P = V_tI_a)$  também varia linearmente com a velocidade.



- Neste método de controle, a resistência de armadura R<sub>a</sub> e a tensão terminal V<sub>t</sub> permanecem constantes, e a velocidade é controlada variando-se a corrente de campo I<sub>f</sub>.
- Isto pode ser feito inserindo-se uma resistência variável ( $R_{fc}$ ) em série com o enrolamento de campo.
- Desprezando a saturação do núcleo (linearidade magnética) o fluxo produzido pelo enrolamento de campo é proporcional à corrente de campo. Portanto,

$$\Phi = k \times I_f$$

Com isso,

$$\omega_{m} = \frac{V_{t}}{K_{a} \times k \times I_{f}} - \frac{R_{a}}{(K_{a} \times k \times I_{f})^{2}} \times T$$

Supondo  $K_f = k \times K_a$ , temos que :

$$\omega_m = \frac{V_t}{K_f \times I_f} - \frac{R_a}{(K_f \times I_f)^2} \times T$$

A velocidade cresce com a diminuição da corrente de campo. Deve-se destacar que se a corrente de campo for muito baixa ( $I_f \rightarrow 0$ ), a velocidade pode atingir valores extremamente elevados.



$$\omega_m = \frac{V_t}{K_f \times I_f} - \frac{R_a}{(K_f \times I_f)^2} \times T$$

Para um dado valor de  $I_f$ , a relação  $\omega_m x T$  é dada por:

$$\omega_m = k_3 - k_4 T$$
onde  $k_3 = \frac{V_t}{K_f \times I_f}$  é a velocidade a vazio
$$k_4 = \frac{R_a}{(K_f \times I_f)^2}$$
 é a inclinação da reta T x  $\omega_m$ 



- Para um dado torque, a velocidade operação pode ser ajustada através da variação de  $R_{\rm fc}$  e, consequentemente, de  $I_{\rm f}$ .
- Para torque variável a velocidade pode ser mantida constante com o ajuste de  $R_{\rm fc}$ .
- Esse tipo de controle é mais simples e barato comparado com o controle da tensão terminal. Mas a resposta é mais lenta devido ao valor elevado da indutância do circuito de campo.

# Motor CC Shunt/Independente – Controle de velocidade via V<sub>t</sub> e I<sub>f</sub>

- Controle de velocidade de zero até o valor base (velocidade base se refere àquela atingida quando tensão terminal é nominal) é usualmente obtido através da variação da tensão terminal V<sub>t</sub>.
- Controle de velocidade além do valor base é obtido através da diminuição da corrente de campo I<sub>f</sub>.
- Se a corrente de armadura não exceder seu valor nominal, controle de velocidade além do valor base é restrito a aplicações que demandem potência constante.

Portanto, ao se aumentar a velocidade, a partir da diminuição da corrente de campo  $I_f$ , o torque diminui.



# Motor CC Shunt/Independente – Controle de velocidade via R<sub>a</sub>

- Neste método de controle, a tensão terminal  $V_t$  e a corrente de campo  $I_f$  ( $\phi$ ) permanecem constantes nos seus valores nominais, e a velocidade é controlada variando-se a resistência da armadura  $R_a$ .
- Para isso, insere-se uma resistência variável em série com a armadura, resultando em:

$$\omega_m = \frac{V_t}{K_a \times \Phi} - \frac{R_a + R_{ae}}{(K_a \times \Phi)^2} \times T$$

$$\omega_m = k_5 - k_6 \times T$$

$$k_5 = \frac{V_t}{K_a \times \Phi} \qquad \qquad k_6 = \frac{R_a + R_{ae}}{(K_a \times \Phi)^2}$$

Velocidade em vazio

# Motor CC Shunt/Independente – Controle de velocidade via R<sub>a</sub>

- Para torque fixo,  $R_{ae}$  pode ser ajustada de forma que o motor possa girar em diferentes velocidades. Quanto maior  $R_{ae}$ , menor a velocidade.
- Para torque variável, R<sub>ae</sub> pode ser ajustada para manter velocidade constante.



A velocidade pode ser variada de zero até o valor base, considerando torque constante, através da variação da resistência R<sub>ae</sub>.



Desvantagem: Controle discreto, baixa precisão e perdas adicionais em  $R_{ae}$ . Além disso, uma vez que  $R_{ae}$  é percorrida pela corrente de armadura, o seu custo é maior se comparado com a resistência externa do circuito de campo  $R_{fc}$ .

#### Motor CC Excitação Série

O modelo esquemático do motor CC série é mostrado abaixo. Deve-se notar a presença de uma resistência externa R<sub>ae</sub>, a qual tem a função de permitir o controle de velocidade.



As mesmas equações de regime permanente empregadas para o gerador CC série são válidas para o motor CC série.

$$E_a = K_a \times \Phi_{sr} \times \omega_m$$
$$T = K_a \times \Phi_{sr} \times I_a$$

O fluxo é produzido pela corrente de armadura que circula pelo enrolamento de campo série composto de N<sub>sr</sub> espiras.

#### Motor CC Excitação Série – Controle de Velocidade

Admitindo linearidade magnética, o fluxo é proporcional à corrente de armadura:

$$K_a \times \Phi_{sr} = K_{sr} \times I_a$$

Consequentemente, o torque mecânico desenvolvido pelo motor série será uma função quadrática da corrente de armadura, pois:

$$T = K_a \times \Phi \times I_a = (K_{sr} \times I_a) \times I_a$$

Portanto:

$$T = K_{sr} \times I_a^2$$

Do circuito equivalente, temos que:

$$E_a = V_t - (R_a + R_{ae} + R_{sr}) \times I_a$$

Como  $\omega_m = \frac{E_a}{K_{sr} \times I_a}$ , temos que :

$$\omega_m = \frac{V_t}{K_{sr} \times I_a} - \frac{R_a + R_{ae} + R_{sr}}{K_{sr}}$$

Substituindo 
$$I_a = \frac{\sqrt{T}}{\sqrt{K_{sr}}}$$
,

$$\omega_{m} = \frac{V_{t}}{\sqrt{K_{sr}} \times \sqrt{T}} - \frac{R_{a} + R_{ae} + R_{sr}}{K_{sr}}$$

## Motor CC Excitação Série – Controle de Velocidade

 $\triangleright$  O aumento da resistência externa da armadura  $R_{ae}$  desloca a curva  $T \times \omega_m$  para baixo.



 $\triangleright$  Com isso, uma carga com torque fixo pode operar em diferentes velocidades ou uma carga com torque variável pode operar com velocidade fixa através do ajuste de  $R_{ae}$ .

## Motor CC Excitação Série – Controle de Velocidade

- Vantagens:
  - 1. Permite uma larga faixa de variação de velocidade desde zero até o valor nominal.
  - 2. Tem alto torque de partida (metrôs, trens, motor de partida de automóveis, etc).
- A velocidade também pode ser variada através do ajuste de V<sub>t</sub>, o que demandaria uma fonte variável de tensão.
- Perde-se a opção de controle de velocidade via corrente de campo  $(I_f = I_a)$ .

## Motor CC Excitação Série – Motor Universal

O motor série pode funcionar com alimentação em CA visto que o enrolamento de campo (série) e de armadura são percorridos pela mesma corrente. Assim, quando a corrente inverte sua polaridade, no mesmo instante o campo também muda sua orientação produzindo torque sempre na mesma direção (unidirecional). Em outras palavras, o sentido do fluxo produzido pelo campo e o sentido da corrente de armadura mudam ao mesmo tempo, mantendo o sentido da força eletromagnética e, portanto do torque.



Os motores universais são adequados para acionamento em corrente alternada de vários eletrodomésticos (liquidificadores, aspiradores de pó, furadeiras etc).

#### **Motor CC Composto**

Pode-se conseguir diferentes características de T x  $\omega_m$  combinando os enrolamentos de campo série e shunt.



$$\begin{split} E_a &= K_a \times \Phi \times \omega_m = K_a \times \left(\Phi_{sh} \pm \Phi_{sr}\right) \times \omega_m \\ T &= K_a \times \Phi \times I_a = K_a \times \left(\Phi_{sh} \pm \Phi_{sr}\right) \times I_a \end{split}$$

$$\begin{split} E_a &= V_t - R_a \times I_a - R_{sr} \times I_t \text{ (composto curto, mas } I_t \approx I_a \text{ (I}_f << I_a \text{))} \\ E_a &= V_t - R_a \times I_a - R_{sr} \times I_a \text{ (composto longo)} \end{split}$$

$$\omega_m = \frac{V_t}{K_a \times (\Phi_{sh} \pm \Phi_{sr})} - \frac{R_a + R_{sr}}{K_a^2 \times (\Phi_{sh} \pm \Phi_{sr})^2} \times T$$

## **Motor CC Composto**

- **Composto subtrativo:** A desmagnetização fluxo ( $\phi_{sh}$   $\phi_{sr}$ ) provoca aumento de velocidade se comparada com a máquina com excitação shunt/independente.
- **Composto aditivo:** O aumento do fluxo  $(\phi_{sh} + \phi_{sr})$  provoca queda adicional de velocidade se comparada com a máquina com excitação shunt/independente.



# Próxima Aula

- Máquinas de corrente alternada
- > Campo Magnético Girante