Deep Learning 101

Convolutional Neural Network (CNN)

Schedule

week	Date	Topic	
9	10.27	Environment setup, python, Jupyter, PyCharm, TensorFlow, & regression	
10	11.03	Training and testing	
11	11.11	CNN	
12	11.18	RNN	
13	11.24	Autoencoder & GAN	

Today's Class

- Recap
- What is CNN?
 - What is convolution?
 - Stride
 - Padding
 - Max pooling
 - Dropout
- Confusion metrics
- Lab time

Recap – neural network

- Neural network as a function
 - y = f(x)
- Perceptron
 - Y = WX + b
 - Two inputs: x1, x2
 - One output: y
 - Linear regression
- XOR problem
 - Linear regression can't solve the XOR problem
 - Require multivariate regression

Recap - Training

- What it take to train a neural network:
 - Hypothesis: H = WX + b
 - Activation function: Sigmoid, tanh, ReLU, LeakyReLU, Softmax, etc.
 - Cost function: MSE, cross entropy, etc.
 - Gradient descent: backpropagation
- Training a neural network is basically the problem of minimizing the cost function: minimize cost(W, b)
- Gradient descent is the most popular optimizer.
- Training a neural network is NOT easy!
 - Finding hyperparameters, random initial weights, local minima, vanishing/exploding gradients, overfitting/underfitting, etc.

How does convolutions work?

^{*} Generative Deep Learning (David Foster)

What is involved in convolution

- Stride: step size
- Padding: putting zeroes around the outer edge of the input data.
 "same" means the output size will be the same as the input size when stride = 1.
- Kernel: the filter that extracts features
- Max pooling: means pooling the maximum value from the filtered feature map. The result is a down-sampling image (reduced dimensionality)
- Batch normalization: normalizing
- Dropout: regularization technique to prevent overfitting

Convolution in action

• stride = 1, padding = "same"

• What will happen if there is no padding?

Max pooling

Single depth slice

Max pooling with 2x2 filters with stride 2

What normalization means

Zero-centered normalized:

Batch normalization in Deep Learning (intuition)

Batch normalization

• To standardize the input: to mitigate the "covariate shift" problems

Batch normalization

Ensure the output statistics of a layer are fixed.

Batch normalization in action

```
Input: Values of x over a mini-batch: \mathcal{B} = \{x_{1...m}\};

Parameters to be learned: \gamma, \beta

Output: \{y_i = \mathrm{BN}_{\gamma,\beta}(x_i)\}

\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^m x_i \qquad \text{// mini-batch mean}
\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2 \qquad \text{// mini-batch variance}
\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}} \qquad \text{// normalize}
y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma,\beta}(x_i) \qquad \text{// scale and shift}
```

Algorithm 1: Batch Normalizing Transform, applied to activation x over a mini-batch.

- normalize the activations of the previous layer for each batch
- apply a transformation that maintains the mean activation close to 0 and the activation standard deviation close to 1.

https://www.jeremyjordan.me/batch-normalization/

Visualization Tools

- Convolution Visualizer
- **CNN Explainer**

Confusion matrix

		Actual		
		Positive	Negative	
cted	Positive	True Positive	False Positive	
Predicted	Negative	False Negative	True Negative	

• Are you confused?

Actual example: COVID-19

- Which is worse? False Negative or False Positive?
- What if the problem is different? e.g., spam filter.

How many selected items are relevant?

How many relevant items are selected?

Metrics: accuracy, precision, and recall

$$Precision = \frac{TruePositive}{TruePositive + FalsePositive}$$

$$Recall = \frac{TruePositive}{TruePositive + FalseNegative}$$

Metrics

- Problems with accuracy: imbalanced classification problems
- Precision: what proportion of positive predictions was actually correct?
 - (TP) / (TP+FP)
- Recall: what proportion of actual positives was predicted correctly?
 - (TP) / (TP+FN)

•

Lab time

- To clone: from your terminal
 - >git clone https://github.com/changsin/DeepLearning-101.git
- Or use google colab to point to the git hub repository
- Git is an open source version control system
 - Github is a host service using git.