Due 4/25 (Wednesday): All (turn in): Chapter 10, page 206, 14-18, 20, 24

Chapter 10

Recall:

A homomorphism ϕ from a group G to a group G' is a mapping from G into G' that preserves the group operation; that is, $\phi(ab) = \phi(a)\phi(b)$ for a, $b \in G$.

The kernel of a homomorphism ϕ from a group G to a group G' with identity e' is the set $\{x \in G : \phi(x) = e' \}$.

Exercise 14

Explain why the correspondence $x \longrightarrow 3x$ from Z_{12} to Z_{10} is not a homomorphism.

Because ϕ is not OP:

```
\phi(3*4) = \phi(12) = \phi(0) = (3*(0 \mod 12)) \mod 10 = e, and \phi(3)\phi(4) = (3*(3 \mod 12)*3*(4 \mod 12)) \mod 10 = (9*3*4) \mod 10 = (108) \mod 10 = 8
```

Exercise 15

Suppose that ϕ is a homomorphism from Z_{30} to Z_{30} and Ker $\phi = \{0, 10, 20\}$. If $\phi(23) = 9$, determine all elements that map to 9.

```
\begin{array}{l} \phi(ab \bmod 30) = \phi(a \bmod 30) \phi(b \bmod 30) \\ \phi(23) = 9. \\ \phi(0) = \phi(10) = \phi(20) = 0 \\ \text{It looks like it's } \phi(x) = 3x: \\ \phi(23) = 3 * 23 \bmod 30 = 69 \bmod 30 = 9. \\ \text{Thus,} \\ \phi(3), \, \phi(13), \, \text{and} \, \phi(23) \, \text{all map to 9.} \end{array}
```

Exercise 16

Prove that there is no homomorphism from $Z_8 \oplus Z_2$ onto $Z_4 \oplus Z_4$.

```
Suppose \exists \phi: \mathbb{Z}_8 \bigoplus \mathbb{Z}_2 \longrightarrow \mathbb{Z}_4 \bigoplus \mathbb{Z}_4, such that \phi is a homomorphism.
```

Because Z_8 is of order 8, and $|Z_2|$ divides 8, there is an element of order 8 in $Z_8 \bigoplus Z_2$, let's call it z_8 .

Thus, $z_8 \in Z_8 \bigoplus Z_2$.

Because ϕ is OP, $\exists z \in Z_4 \bigoplus Z_4$ such that $\phi(z_8) = z$ and |z| = 8.

However, there is no element of order 8 in $\mathbb{Z}_4 \oplus \mathbb{Z}_4$. A contradiction.

Hence, no homomorphism exists.

Exercise 17

Prove that there is no homomorphism from $Z_{16} \bigoplus Z_2$ onto $Z_4 \bigoplus Z_4$.

Suppose $\exists \phi: Z_{16} \bigoplus Z_2 \longrightarrow Z_4 \bigoplus Z_4$, such that ϕ is a homomorphism.

Because Z_{16} is of order 16, and $|Z_2|$ divides 8, there is an element of order 16 in $Z_{16} \bigoplus Z_2$, let's call it z_{16} . Thus, $z_{16} \in Z_{16} \bigoplus Z_2$.

Because ϕ is OP, $\exists z \in Z_4 \bigoplus Z_4$ such that $\phi(z_{16}) = z$ and |z| = 16.

However, there is no element of order 16 in $\mathbb{Z}_4 \oplus \mathbb{Z}_4$. A contradiction.

Hence, no homomorphism exists.

Exercise 18

Can there be a homomorphism from $Z_4 \bigoplus Z_4$ onto Z_8 ? Can there be a homomorphism from Z_{16} onto $Z_2 \bigoplus Z_2$? Explain your answers.

Exercise 20

How many homomorphisms are there from Z_{20} onto Z_8 ? How many are there to Z_8 ?

Exercise 24

Suppose that ϕ : $Z_{50} \longrightarrow Z_{15}$ is a group homomorphism with $\phi(7) = 6$.

- a. Determine $\phi(x)$.
- b. Determine the image of ϕ .
- c. Determine the kernel of ϕ .
- d. Determine $\phi^{-1}(3)$. That is, determine the set of all elements that map to 3.