4-5. 데이터베이스설계

ER 다이어그램, 정규화

- 데이터베이스에 저장되는 엔티티의 구조를 모델링한 다이어그램으로, 엔티티, 속성, 관계 등을 도식화
- 대표적인 표기 방식: 피터 첸 표기법, IE 표기법

피터 첸 표기법

• 전통적인 형태의 ERD 표기법으로, 엔티티와 관계를 다이어그램으로 표현

IE 표기법 (새 발 표기법, 까마귀 발 표기법)

• 정보 엔지니어링 표기법으로, 테이블 간의 관계를 직관적으로 표현

IE 표기법 (새 발 표기법, 까마귀 발 표기법)

식별 관계 vs 비식별 관계

- 외래 키를 사용하여 테이블 간 관계를 정립해 줄 때 사용하는 전략 2가지
- 식별 관계: 자식은 부모 없이 단독으로 존재할 수 없다.
- 비식별 관계: 자식은 부모 없이 단독으로 존재할 수 있다.

정규화

• 데이터베이스 설계 과정에서 테이블의 데이터 중복을 최소화하고, 일관성을 유지하기 위해 테이블을 분해하는 과정

정규화 제1 정규형

• 모든 속성이 원자 값을 가진다.

학생 테이블

학생이름	나이	수강과목
철수	19	수학, 과학
영희	22	국어
ПОН	21	국어

학생 테이블

학생이름	나이	수강과목
철수	19	수학
철수	19	과학
영희	22	국어
□ О∦	21	국어

정규화 제2 정규형

• 기본 키가 아닌 모든 필드들이 모든 기본 키에 완전히 종속될 것

• 부분 함수 종속성 제거

학생 테이블

학생이름	나이	수강과목
철수	19	수학
철수	19	과학
영희	22	국어
□ 0	21	국어

학생 테이블

학생이름	나이
철수	19
영희	22
ПОН	21

과목 테이블

학생이름	수강과목
철수	수학
철수	과학
영희	국어
ПОН	국어

정규화 제3 정규형

X -> Y, Y -> Z 일 때, X -> Z

- 기본 키가 아닌 모든 필드들이 기본 키에 이행적 종속성이 없는 상태
- 이행 함수 종속성 제거

고객 정보 테이블

고객 번호	이름	등급	할인율
1	철수	GOLD	20%
2	영희	VIP	30%
3	□loH	BRONZE	10%

등급 테이블

등급	할인율
GOLD	20%
VIP	30%
BRONZE	10%

고객 정보 테이블

고객 번호	이름	등급
1	철수	GOLD
2	영희	VIP
3	ПОН	BRONZE

정규화

보이스/코드 정규형

- 모든 결정자가 후보 키여야 한다.
 - 결정자: 어떤 속성이 다른 속성을 유일하게 결정 가능한 경우
 - 후보 키: 테이블에서 각 튜플을 유일하게 식별할 수 있는 최소 속성 집합
- 후보 키 아닌 결정자 제거

* 특정 직원은 하나의 상품만 관리한다.

고객 번호	<u>구매한 상품</u>	담당 직원 번호
1	LG 울트라 노트북	1
2	LG 그램 노트북	2
3	LG 울트라 노트북	1

이렇게 위 릴레이션을 아래처럼 두 개의 릴레이션으로 분해하면 돼.

고객 번호	담당 직원 번호
1	1
2	2
3	1

<u>담당 직원 번호</u>	담당 상품
1	LG 울트라 노트북
2	LG 그램 노트북

참고자료

- https://m.blog.naver.com/gongtong/150135598792
- https://csnote.net/
- https://deveric.tistory.com/108
- https://blog.naver.com/war2i7i7/220824041724
- https://mjn5027.tistory.com/46

감사합니다

• 샤라웃 투 쉬운코드님.. 시간 되면 정규화 강의 영상 한번 보세요!!

bank_name	account_num	account_id	class	ratio	empl_id	empl_name	card_id
Woori	010-9231-1121	a11	BRONZE	0.1	e1	Sony	c101
Woori	102-992-180125	a12	SILVER	0.2	e1	Sony	c102
Kookmin	010-9231-1121	a13	LOYAL	0.7	e1	Sony	c103
Kookmin	010-1221-1732	a21	LOYAL	1	e2	Messi	c201 c202

以.49-1 DB 정규화(normalization)는 DB를 설계하는 공식적인 방법이죠~ 1부에서는 정규화 개념과 정규화 과정의 앞 부분인 1NF, 2NF를 설명합니다