Standard Representations of Regular Languages

When we say: We are given a Regular Language L

We mean: Language L is in a standard representation

Elementary Questions

about

Regular Languages

ด้างการศึกษาสายการ์จรากป regular lamguay

Membership Question

Question: Given regular language L and string w how can we check if $w \in L$?

Answer: Take the DFA that accepts L and check if w is accepted?

Question: Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

Question: Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

L is infinite

L is finite

Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

2 ชางาเขาง ฆมทับกับฐนิท พันทั

Answer: Find if
$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$$

$$(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset / \emptyset$$

$$L_1 \cap \overline{L_2} = \emptyset$$

and

$$\overline{L_1} \cap L_2 = \emptyset$$

$$L_1 = L_2$$

$$(L_{1} \cap \overline{L_{2}}) \cup (\overline{L_{1}} \cap L_{2}) \neq \emptyset$$

$$\downarrow L_{1} \cap \overline{L_{2}} \neq \emptyset \quad \text{or} \quad \overline{L_{1}} \cap L_{2} \neq \emptyset$$

$$L_{1} \perp L_{2} \qquad L_{2} \perp L_{1}$$

$$\downarrow L_{1} \neq L_{2}$$

$$\downarrow L_{1} \neq L_{2}$$

$$\downarrow L_{1} \neq L_{2}$$

Non-regular languages

Non-regular languages

$$\{a^nb^n: n\geq 0\}$$

$$\{vv^R: v \in \{a,b\}^*\}$$

Regular languages

$$a*b$$
 $b*c+a$ $b+c(a+b)*$ $etc...$

How can we prove that a language L is not regular?

Prove that there is no DFA that accepts L

Problem: this is not easy to prove - 90) DFA Palis 6 Ny 90

Solution: the Pumping Lemma!!!

The Pigeonhole Principle

4 pigeons

3 pigeonholes

A pigeonhole must contain at least two pigeons

n pigeons

m pigeonholes

•••••

The Pigeonhole Principle

n pigeons

m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

DFA with 4 states

In walks of strings: aaaaab

no state is repeated

In walks of strings: aabb a state is repeated bbaa abbabb abbabb

state prosing abbbabbabb...

If string w has length $|w| \ge 4$:

Then the transitions of string w are more than the states of the DFA

Thus, a state must be repeated

In general, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w

In other words for a string w:

The Pumping Lemma

Take an infinite regular language L

finte Auregular soillé aa ac ab (4181) (10 1/2 240

There exists a DFA that accepts $\,L\,$

Take string w with $w \in L$

There is a walk with label w:

If string
$$w$$
 has length $|w| \ge m$ (number of states of DFA)

then, from the pigeonhole principle:

a state is repeated in the walk w

Let q be the first state repeated in the walk of w

Write
$$w = xyz$$

Observations: I length $|xy| \le m$ number of states $|y| \ge 1$ of DFA

San Jours

Observation: 3 The string x z is accepted is accepted

Observation:

The string is accepted

Observation: The string x y y y z is accepted

In General:

The string xy^iz^j pump massimal z^j is accepted i=0,1,2,...

In General:
$$x y^i z \in L$$

 $i = 0, 1, 2, \dots$

Language accepted by the DFA

In other words, we described:

The Pumping Lemma!!!

The Pumping Lemma: _ ontradiction pro • Given a infinite regular language L silis not legular prove L=> rot regular L=> regular prove P> trav

 \cdot there exists an integer m

L 12300 1282 (= begular -> 2000 state M

• for any string $w \in L$ with length $|w| \ge m$ Marson Will

• we can write w = x y z

$$w = x y z$$

$$|y| \ge 1$$

• such that:
$$x y^{i} z \in L$$

$$i = 0, 1, 2, \dots$$

151000000527 \$ L -> 18003 M 5 prove 15

Applications

Listor regular

Listor regular

of

the Pumping Lemma

KUNKUN-

Theorem: The language $L = \{a^n b^n : n \ge 0\}$

is not regular

Use the Pumping Lemma result exp, res grand of the Pumping Lemma Proof:

องเลิกใจในระบบสหาวานาสใช Letalon

(ग्रेमार्श्याय) १

$$L = \{a^n b^n : n \ge 0\}$$

Assume for contradiction that L is a regular language

Since L is infinite we can apply the Pumping Lemma

$$L = \{a^n b^n : n \ge 0\}$$

Let \dot{m} be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$ length $|w| \ge m$

We pick
$$w = a^m b^m$$
 The name of the pump with the pump

Write:
$$a^m b^m = x y z$$

From the Pumping Lemma it must be that length $|x y| \le m$, $|y| \ge 1$

$$xyz = a^m b^m = \underbrace{a...aa...aa...aa...ab...b}_{x \quad y \quad x}$$
Thus: $y = a^k$, $k \ge 1$

$$x y z = a^m b^m$$

$$y = a^k, \quad k \ge 1$$

From the Pumping Lemma:

$$xy^{i}z \in L$$

$$i = 0, 1, 2, \dots$$

Thus:
$$x y^2 z \in L$$

$$x y z = a^m b^m \qquad y = a^k, \quad k \ge 1$$

From the Pumping Lemma: $x y^2 z \in L$

$$xy^{2}z = a...aa...aa...aa...ab...b \in L$$

$$x \quad y \quad y \quad z$$

$$y \quad y \quad z$$
Thus: $a^{m+k}b^{m} \in L$

$$a^{m+k}b^m \in L$$

$$k \ge 1$$

BUT:
$$L = \{a^n b^n : n \ge 0\}$$

$$a^{m+k}b^m \notin L$$

CONTRADICTION!!!

L Is not reg

Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language

Non-regular languages $\{a^nb^n: n \ge 0\}$

