Sentiment Analysis

CHANTROUX G. NUZZO M. PIERRE J.

Plan

- I. Text Preprocessing
- II. Models
- III. Results
 - Simple Model
 - Attention Model

EDA

Histogram of the length of the sentences

Data Imbalance

Data preprocessing

Taking care of specific issues (misspelled words, name of places, ...) (Food was so goodd . ---> Food was good .) Dealing with contractions (I'd love to go back. ---> I would love to go back.) 3 Lower case letters (I would love to go back. --> i would love to go back) Stop words (exception for not, pronouns, ...) 4 5 Getting rid of non-alphabetical characters 6 Taking care of spaces

Word embeddings

Word2Vec

- Based on a neural network
- Predicts a word based on the context word or viceversa
- Each word is represented as a vector which contains semantic links between words

GloVe

- Based on the co-occurrence matrix which takes into account the context
- Considers the entire corpus's word global cooccurrence
- Captures both semantic and syntatic relationships betwenn words

FastText

- Introduces sub-word representation (wrt word2vec)
- Higher computational efficiency in words prediciton
- Suitable for out of vocabulary words

Models – Simple model

N: Number of batches

L: Length of the sequence

I: Input shape of the GRU

2xH: Output shape of GRU

C: Number of classes

Attention model

N: Number of batches

L: Length of the sequence

I: Input shape of the GRU

2xH: Output shape of GRU

C: Number of classes

Attention model

Hard to judge whether these sides were good because we were grossed out by the melted styrofoam and didn't want to eat it for fear of getting sick.

$$Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$$

Training

- ADAM optimizer (Ir=0.005) with weight decay
- Cross-entropy loss
- 100 epochs

Results – Simple model

Word2Vec

Accuracy: 83.3 %

GloVe

Accuracy: 82.5 %

FastText

Accuracy: 82.6%

10

Results – Attention model

Word2Vec

Accuracy: 87.05%

Before: 83.32 %

GloVe

Accuracy: 85.19%

Before: 82.5 %

FastText

Accuracy: 85.93%

Before: 82.6 %

Testing with more classes

Histogram of the length of the sentences

Financial data statements dataset

Data imbalance

Results – Simple model with FastText

Accuracy: 70.05%

References & Links

- Our github: https://github.com/Jepi1202/Web-and-Text-Analytics
- Attention is all you need: https://arxiv.org/pdf/1706.03762.pdf
- Datasets:
 - Restaurant Reviews https://www.kaggle.com/datasets/hj5992/restaurantreviews
 - Financial Sentiment Analysis https://www.kaggle.com/datasets/sbhatti/financial-sentiment-analysis

W2v ROC CURVE

GLOVE ROC CURVE

