CS343: Operating System

System Arch & OS Structure, Mode and Services

Lect03: 4th Aug 2023

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Storage Structure
- Caching DMA
- System Architecture: MP
- OS Structure
- OS Mode
- OS Services

Storage Structure

- Main memory only large storage media that the CPU can access directly
 - Random access, Typically volatile
- Secondary storage extension of main memory that provides large nonvolatile storage capacity
- Hard disks rigid metal or glass platters covered with magnetic recording material
 - Disk surface is logically divided into tracks, which are subdivided into sectors
 - The disk controller determines the logical interaction between the device and the computer
- Solid-state disks faster than hard disks, nonvolatile
 - Various technologies, Becoming more popular

Storage Hierarchy

- Storage systems organized in hierarchy
 - Speed, Cost, Volatility
- Caching copying information into faster storage system; main memory can be viewed as a cache for secondary storage
 - Locality of Reference
 - Locality Principle (Spatial and Temporal Locality)
- Device Driver for each device controller to manage I/O
 - Provides uniform interface between controller and kernel

Caching

- Important principle, performed at many levels in a computer (in hardware, operating system, software)
- Information in use copied
 - From slower to faster storage temporarily
- Faster storage (cache) checked first to determine if information is there
 - If it is, information used directly from the cache (fast)
 - If not, data copied to cache and used there
- Cache smaller than storage being cached
 - Cache management important design problem
 - Cache size and replacement policy

Direct Memory Access Structure

- DMA
- Used for high-speed I/O devices able to transmit information at close to memory speeds
- Device controller transfers blocks of data from buffer storage directly to main memory without CPU intervention
 - Taxi Wala to handle all Pickup and Drop of Conference
- Only one interrupt is generated per block, rather than the one interrupt per byte

I/O transfer in a Modern Computer

Computer-System Architecture

- Most systems use a general-purpose processor
 - Most systems have special-purpose processors as well
- Multiprocessors growing in use and importance
- Also known as parallel systems, tightly-coupled systems Advantages include:
 - Increased throughput, Economy of scale
 - Increased reliability graceful degradation or fault tolerance
- Asymmetric Multiprocessing each processor is assigned a specific task.
- Symmetric Multiprocessing each processor performs all tasks

Symmetric Multiprocessing Architecture

Asymmetric Architecture

Core i7 12th and Z690 ChipSet

Cores: 8 P-cores + 8 E-

cores, 24 threads

Max P-core freq: 5.1 GHz

Max E-core freq: 3.9 GHz

L3 Cache: 30MB

L2 Cache: 14MB

Number of Cores & Thread

- Intel Xeon Phi: 72 cores, 4T/C → 288 HTs
- AMD ThreadRipper: 128C → 256 HTs
- NetLogic MicroSystems XLP: 32 core, 128 threads
- Tilera TILE64: 64-core
- ClearSpeed CSX700: 192 cores
- GPUs Nvidia & AMD: Thousands of Tiny Cores

Multithreaded Architecture

- Core/Processor
- Each processor can be threaded
 - How many thread can be handled: 2,4,8
 - Hardware threading (Ex-Intel Hyper Threading)
- Example
 - Intel Core i7: 4 cores, 8 Threads
 - Intel PIV HT : 1 core, 2 Thread
 - Intel Xeon E5-2687: 8 cores, 16 threads
 - Intel Atom C2780: 8 cores, 8 threads

Processor Vs Micro-controller Vs SOC

- Processor : In a Single Chip
- Micro-controller: In a single chip
 - Processors + (USB, Disk,...) Controllers +Timers+GA
- SOC: System on Chip, All mobile Platforms
 - Microcontroller + Memory + Wireless Controller (Opt)

Qualcomm SD-Block Diagram

Clustered Systems

- Multiple systems working together
- Usually sharing storage via a storage-area network(SAN)
- Provides a high-availability service which survives failures
 - Asymmetric clustering has one machine in hot-standby mod
 - Symmetric clustering has multiple nodes running applications, monitoring each other
- Some clusters are for HPC
 - Applications must be written to use parallelization
- Some have distributed lock manager (DLM) to avoid conflicting operations

Clustered Systems

OS Structures Basics Multiprogramming & Multi Tasking

OS Structure: Multiprogramming

- Multiprogramming/Batch system
 - needed for efficiency
- Single user cannot keep CPU and I/O devices busy at all times
- Multiprogramming organizes jobs (code and data), so CPU always has one to execute
- A subset of total jobs in system is kept in memory
- One job selected and run via job scheduling
- When it has to wait (for I/O for example), OS switches to another job

Memory Layout for Multi-programmed System

OMB

Operating System Job 1 Job 2 Job 3 Job 4

1024MB

OS Structure: Time Sharing

- Timesharing (multitasking)
 - —Is logical extension
- CPU switches jobs so frequently
 - That users can interact with each job while it is running
 - -Creates an interactive computing

Time Sharing (Multitasking)

- Response time should be < 1 second
- Each user has at least one program executing in memory ⇒ process
- If several jobs ready to run at the same time
 ⇒ CPU scheduling
- If processes don't fit in memory, swapping moves them in and out to run
- Virtual memory allows execution of processes not completely in memory

OS Operation Mode Interrupt, Kernel Mode & User Mode

Operating-System Operations

- Interrupt driven (H/W and S/W)
 - H/W interrupt by one of the devices
 - -S/W interrupt (exception or trap):
 - Software error (e.g., division by zero)
 - Request for OS service
 - Other process problems include
 - infinite loop
 - processes modifying each other or the operating system

Operating-System Operations (cont.)

- Dual-mode operation allows OS to protect itself and other system components
 - User mode and kernel mode
 - Mode bit provided by hardware
 - Provides ability to distinguish when system is running user code or kernel code
 - Some instructions designated as privileged, only executable in kernel mode
 - System call changes mode to kernel, return from call resets it to user
- Increasingly CPUs support multi-mode operations
 - i.e. virtual machine manager (VMM) mode for guest
 VMs

Thanks