Intermediate Microeconomics

Imperfect Competition I: Monopoly

Instructor: Xiaokuai Shao shaoxiaokuai@bfsu.edu.cn

Perfectly Competitive Market v.s. Imperfect Competition

The "competitive market" gives the first-best (socially efficient) outcome.

- Each participant is a price-taker
- First theorem of welfare economics: Walrasian equilibrium is socially optimal

"Imperfect market" and market failure

- Market power (市场势力): Imperfect competition (不完全竞争):
 monopoly (垄断), oligopoly (寡头)
 - Industrial organization
- Incomplete information (不完全信息) and strategic behavior (策略性行为)
 - Game theory; Contract theory; Mechanism design
- Externalities (外部性) and public goods (公共物品)
 - Public economics

Outline: Monopoly

- Single pricing
 - monopoly v.s. perfect competition
 - welfare
- Price discrimination
 - first-degree (privacy)
 - second-degree (two-part tariffs)
 - third-degree (separate markets)

Profit Maximization: A Comparison

- Perfect competition:
 - "Many" firms.
 - ullet Each individual firm cannot affect price p
 - Each firm solves $\max_q pq C(q)$, where p is given as a constant.
 - F.O.C: $p=C^{\prime}(q)=MC$, i.e., supply curve in a competitive market.
- Monopoly
 - A single firm faces the entire market demand p(q): a downward sloping curve.
 - The monopolist can alter the market price by adjusting quantities.
 - The monopolist solves $\max_q p(q)q C(q)$, where p(q) is decreasing in q.
 - Will price be higher/lower than, or equal to marginal cost?

Profit Maximization of a Monopolist

Formally, a monopolist solves

$$\max_{q} p(q)q - C(q)$$

Let R(q) = p(q)q be its revenue (总收益). Hence the marginal revenue (边际收益) is the amount earned by producing/selling an additional unit of output:

$$MR(q) = R'(q) = p'(q)q + p(q)$$

The first-order condition of profit maximization gives

$$\underbrace{p(q^m) + p'(q^m)q^m}_{=MR(q^m)} - C'(q^m) = 0 \Rightarrow MR(q^m) = MC(q^m)$$

Perfect Competition v.s. Monopoly

 Recall that for the perfectly competitive market, each individual firm solves:

$$\max_{q} pq - C(q) \Rightarrow p = C'(q^{FB}).$$

• Starting from the equilibrium decision q^{FB} set at the competitive level, now suppose that all suppliers are replaced by a single monopolist. Consider whether the monopolist has an incentive to produce an additional unit of output: the derivative of profit p(q)q - C(q) with respect to q, evaluated at q^{FB} , is

$$\left. \frac{d\pi^m}{dq} \right|_{q=q^{FB}} = p(q^{FB}) + p'(q^{FB})q^{FB} - \underbrace{C'(q^{FB})}_{=p} = p'(q^{FB})q^{FB} < 0.$$

Therefore, the monopolist will not increase but decrease the output.

 The quantity produced by a monopolist is lower than the level determined by a competitive market:

Diagram: Monopoly and Perfect Competition

Monopolistic outcome (p^m, q^m) v.s. Perfect competition (p^{FB}, q^{FB})

Decomposition of Marginal Revenue*

The profit-maximization quantity produced by a monopolist satisfies

$$\underbrace{p(q^m)}_{\text{marginal}} + \underbrace{p'(q^m)q^m}_{\text{infra-marginal}} - \underbrace{C'(q^m)}_{\text{marginal cost}} = 0 \Leftrightarrow MR(q^m) = MC(q^m).$$

- The effect of selling an additional unit:
 - Marginal effect: selling an additional unit brings about p > 0.
 - Infra-marginal effect: a lower price
 ⇔ a greater quantity
 ⇒ since all consumers pay the same price, each unit will be sold at a lower price: p'(q)q < 0.
 - Marginal cost: producing an additional unit incurs -C'(q) < 0.
- If the gains outweigh the losses, then the monopoly continue to produce; otherwise, the monopolist reduces output. At optimum, the marginal benefit is equal to the marginal loss, i.e., $MR(q^m) = MC(q^m)$.

FOC and SOC

 The profit-maximization output of a monopolist is derived by the first-order condition (with respect to q):

$$\pi(q) = p(q)q - C(q)$$

$$\frac{d\pi}{dq} = p(q) + p'(q)q - C'(q) = 0$$

 The second-order condition for such a maximization problem requires a negative second-order derivative:

$$\frac{d^2\pi}{dq^2} = p'(q) + p''(q)q + p'(q) - C''(q)$$
$$= p''(q)q + 2p'(q) - C''(q) < 0.$$

Comparative Statics

- Assume constant marginal cost (e.g., CES technology with $\gamma=1$): MC=c. The monopoly's problem is $\max_q p(q)q-cq$.
- The optimal choice of q satisfies (from FOC)

$$p'(q^m)q^m + p(q^m) - c = 0$$

The second order condition requires that

$$p''(q^m)q^m + 2p'(q^m) < 0.$$

 What is the effect due to a higher cost c? Differentiate the FOC w.r.t. c gives

$$p''(q^m)\frac{dq^m}{dc}q^m + p'(q^m)\frac{dq^m}{dc} + p'(q^m)\frac{dq^m}{dc} - 1 = 0$$

$$\Rightarrow \left[p''(q^m)q^m + 2p'(q^m)\right]\frac{dq^m}{dc} = 1 \Rightarrow \frac{dq^m}{dc} < 0.$$

Practice: compute $\frac{d\pi(q^m)}{dc}$ and $\frac{dp(q^m)}{dc}$.

Measuring Market Power: Lerner's Formula

- Under perfect competition: p-MC=0
- Under monopoly: $p + p'(q)q MC = 0 \Rightarrow p MC > 0$
- The degree of market power (市场势力) is captured by p-MC, i.e., price markup (价格加成)
- Recall the definition of demand elasticity: $\varepsilon_D = \frac{dq}{dp} \frac{p}{q}$.
- The monopoly's outcome can be expressed in terms of price markup, and elasticity:

$$p - MC = -p'(q)q \Leftrightarrow \frac{p - MC}{p} = -\frac{\frac{dp}{dq}q}{p} = \frac{1}{-\frac{dq}{dp}\frac{p}{q}} = \frac{1}{\varepsilon_D}$$

- Lerner's formula/index (勒纳指数): $\frac{p-MC}{p}=\frac{1}{\varepsilon_D}$.
 - A higher index ⇔ a higher markup ⇔ more market power.
 - A higher markup ⇔ demand is relatively inelastic

Monopoly and Welfare

- Total surplus, as a measure for social welfare, is the sum of consumer surplus and producer surplus.
- Assume that the equilibrium price is quantity is $p(q^*)$ and q^* , respectively.
- Consumer surplus is the sum of the willingness to pay, minus price:

$$CS = \int_0^{q^*} \left[\underbrace{p(q)}_{\text{demand curve}} - \underbrace{p(q^*)}_{\text{price}} \right] dq.$$

 Producer surplus is the sum of the amount of money received, minus production costs:

$$PS = \int_0^{q^*} \left[\underbrace{p(q^*)}_{\text{price}} - \underbrace{C'(q^*)}_{\text{marginal cost}} \right] dq.$$

Then, total surplus is

$$W = CS + PS = \int_0^{q^*} [p(q) - C'(q)] dq.$$

Monopoly and Deadweight Loss (净损失)

• Under monopoly, $p'(q^m)q^m + p(q^m) - C'(q^m) = 0$. Total surplus is

$$W^{m} = \int_{0}^{q^{m}} [p(q) - C'(q)] dq.$$

• Under perfect competition, $p=C^{\prime}(q^{FB}).$ Total surplus is

$$W^{FB} = \int_0^{q^{FB}} [p(q) - C'(q)] dq.$$

• Suppose that the monopolist firm is taken over by a benevolent authority, who produces q^{opt} to maximize total surplus W.

$$\max_{q} \int_{0}^{q} \left[p(t) - C'(t) \right] dt$$

$$\Rightarrow \frac{dW}{dq} = p(q) - C'(q) = 0 \Rightarrow p(q^{opt}) = C'(q^{opt}) \Rightarrow q^{opt} = q^{FB}$$

$$\Rightarrow W^{opt} = W^{FB} = \int_{0}^{q^{FB}} \left[p(q) - C'(q) \right] dq.$$

- Perfect competition = Socially optimal.
- We have shown that $q^m < q^{FB} = q^{opt}$, hence

$$W^{m} = \int_{0}^{q^{m}} \left[p(q) - C'(q) \right] dq < \int_{0}^{q^{FB}} \left[p(q) - C'(q) \right] dq = W^{FB}.$$

• Compared with the first-best outcome, the monopoly produces too little, and the price is too high, such that $W^m < W^{FB}$, incurring a deadweight loss (DWL) of $W^{FB} - W^m$.

Two Types of DWL: Monopoly and Tax

Since monopoly generates DWL, consider whether taxing the monopoly can be welfare-improving. The authority imposes ad valorem tax of rate τ . The monopolist pays the tax.

- Assume quasi-linear utility: $u_i(x_i)$. For each consumer: $u_i'(x_i^*)=p$. Assume there are n consumers.
- For the monopolist: $\max_q (1-\tau)p(q)q C(q)$

• FOC:
$$(1-\tau)[p'(q^m)q + p(q^m)] - C'(q^m) = 0$$

• SOC:
$$(1-\tau)[p''(q^m)q^m + 2p'(q^m)] - C''(q^m) < 0$$

• At equilibrium, $\sum_{i=1}^{n} x_i^* = q^m$. Note that, x_i^* and q^m are functions of τ .

•
$$\sum_{i=1}^{n} x_i^* = q^m \Rightarrow \frac{dq^m}{d\tau} = \frac{d\sum x_i^*}{d\tau}$$
.

• Differentiate the FOC with respect to τ : $-\left[p'(q)q+p(q)\right]+(1-\tau)\left[p''(q)q\frac{dq}{d\tau}+2p'(q)\frac{dq}{d\tau}\right]=C''(q)\frac{dq}{d\tau}, \text{ hence } \frac{dq}{d\tau}=\frac{p'(q)q+p(q)}{(1-\tau)\left[p''(q)q+2p'(q)\right]-C''(q)}<0.$

Total surplus at equilibrium is

$$W(\tau) = \sum_{i=1}^{n} u_i(x_i^*) - C(q^m)$$

The first order effect of tax is

$$W'(\tau) = \sum_{i=1}^{n} \underbrace{u'_i(x_i^*)}_{=p} \frac{dx_i^*}{d\tau} - C'(q^m) \frac{dq^m}{d\tau}$$

$$=p\sum_{i=1}^{n}\frac{dx_{i}^{*}}{d\tau}-\underbrace{C'(q^{m})}_{=(1-\tau)(p'q+p)}\frac{dq^{m}}{d\tau}=\left[p-(1-\tau)\left(p'(q^{m})q^{m}+p\right)\right]\frac{dq^{m}}{d\tau}$$

$$= \left| -p'(q^m)q^m + \tau \underbrace{\left(p'(q^m)q^m + p \right)}_{= \frac{C'}{1 - \tau}} \right| \frac{dq^m}{d\tau} = \left[-p'(q^m)q^m + \frac{\tau}{1 - \tau}C'(q^m) \right] \frac{dq}{d\tau} < 0$$

- Monopoly is worse than perfect competition.
- Taxing monopoly is even worse.

Linear Demand

- Some textbooks assume that demand curve is linear, i.e., p=a-bq. Where does it come from?
 - A simple way is the "unit-demand" (单位需求) paradigm.
 - A unit mass of consumers. Each consumer has the valuation θ that is drawn from the support $[\underline{\theta},\overline{\theta}]$ according to $F(\cdot)$.

measure of consumers whose
$$\theta>p=\int_p^{\bar{\theta}}f(\theta)d\theta=1-F(p).$$

- Unit demand (i.e., each buys at most one unit): given price p, buying the product gives $\theta-p$; otherwise, the outside option gives zero.
- If we assume $\underline{\theta}=0$, $\overline{\theta}=1$ and uniform distribution $F'(\theta)=f(\theta)=1$, then the market demand is $q=\Pr(\theta>p)=\int_p^1 1\cdot d\theta=1-p$, or p=1-q.

Example: Linear Demand and Monopoly Pricing

- The monopolist solves $\max_q p(q)q cq$, where p(q) = 1 q, and assume c .
- First-order condition implies $q^m = \frac{1-c}{2} \Rightarrow p^m = \frac{1+c}{2} > c$.
- Consumer surplus can be computed by two ways:
 - by integrating the region below the demand curve and above price:

$$CS = \int_0^{q^m} (p(q) - p^m) dq = \frac{(1 - c)^2}{8}$$

• or by integrating the utilities of consumers

$$CS = \int_{p^m}^{1} (\theta - p^m) d\theta = \frac{(1-c)^2}{8}$$

- Producer surplus is $PS = \frac{(1-c)^2}{4}$.
- Total surplus is $W^m = CS + PS = \frac{3(1-c)^2}{8}$.

For market demand p=1-q, if the market is perfectly competitive:

- $p^{FB} = MC = c$, and hence $q^{FB} = 1 c$
- Consumer surplus is $\int_0^{1-c} \left(p(q) c \right) dq = \frac{(1-c)^2}{2}$.
- Producer surplus is $p^{FB}q cq = (p c)q = 0$
- Total surplus is $W^{FB}=CS+PS=CS+0=\frac{(1-c)^2}{2}$.
- Compared to the welfare under monopoly, $W^{FB}=\frac{(1-c)^2}{2}>\frac{3(1-c)^2}{8}=W^m.$

In the above examples, we assume that the monopolist charges a single price that applies to all consumers. Because the monopolist has market power, the seller is able to use price discrimination.

Price Discrimination (价格歧视/区别定价)

A monopoly engages in price discrimination if it is able to sell otherwise identical units of output at different prices.

- First-degree or perfect price discrimination: If each buyer can be separately identified by a monopolist, then it may be possible to charge each the maximum price he or she would willingly pay for the good.
- Second-degree price discrimination through two-part tariffs (两部定价):
 - ullet Single two-part tariff: a fixed entry-fee + per-unit price
 - Non-linear two-part tariff: different two-part tariffs (menu: 套餐) designed for different consumers
- Third-degree price discrimination through market separation: the monopoly can separate its buyers into relatively few identifiable markets (such as "rural-urban," "domestic-foreign," or "prime-time-offprime") and pursue a separate monopoly pricing policy in each market.

First-Degree: Perfect Discrimination

Claim

Total surplus under first-degree price discrimination is equivalent to the first-best outcome.

- Linear demand example: p = 1 q and C(q) = cq.
 - $p = \theta$ for any $\theta \in [0, 1]$.
 - CS = 0 because $\theta p = 0$.
 - q = 1 c and $PS = \int_0^{1-c} (p(q) c) dq = \frac{(1-c)^2}{2}$.
- The monopolist exacts all consumer surplus.
- Total surplus is maximized, and is equal to the socially optimal level.
- First-best outcome.

First-Degree Price Discrimination

However, in reality, it's pretty difficult for the firm to acquire the information about "the willingness to pay of a particular consumer."

Using Privacy to Implement First-Degree Price Discrimination (隐私定价)

For simplicity, assume c = 0.

- If the monopolist charges a single price for all consumers, the firm solves $\max_p p(q)q cq$, where $q = \Pr(\theta > p) = \int_p^1 d\theta = 1 p$. Hence $p^m = \frac{1}{2}$ and $q^m = \frac{1}{2}$.
 - $CS^m = \int_{p^m}^1 (\theta p^m) d\theta = \frac{1}{8}$; $PS^m = p^m (1 p^m) = \frac{1}{4}$,
 - Total surplus is $W^m = \frac{3}{8}$.
 - Those whose valuation $\dot{\theta} < \frac{1}{2}$ are not served.
- Now suppose the firm is able to acquire each consumer's demand information by voluntary disclosure: i.e., each consumer can choose to or not to "tell" the firm about his/her valuation. And the firm will offer a customized price for each consumer who discloses his/her information.
 - For those who choose not to disclose their private information, the monopolist charges a single price p^m.
 - "History/Behavior Based Price Discrimination (BBPD):" e.g., 大数 据杀熟 (browse histories, cookies)

Privacy and First-Degree Price Discrimination

Assume the monopolist announces p^{ND} for those who do not disclose; and charges a customized price $p^D=\theta-\epsilon$ where ϵ is an infinitely small but positive number, for a consumer who discloses his/her valuation/privacy θ .

- Who is willing to disclose his/her privacy?
 - Those whose valuations are below p^{ND} will: buying gives $\theta-p^D=\theta-(\theta-\epsilon)=\epsilon$, which better than not buying.
- What is the profit-maximizing p^{ND} ?
 - Given p^{ND} , those whose $\theta > p^{ND}$ will not disclose.
 - The profit from selling a unit to a buyer with $\theta>p^{ND}$ who does not disclose is p^{ND} ; The firm can earn more by setting $p^{ND}=\theta-\epsilon$.
 - \bullet Similarly, the firm will increase p^{ND} to 1, and all consumers will be served by customized prices.
- Therefore, the monopolist charges customized prices for all consumers. The profit is $\int_0^1 (\theta \epsilon) d\theta = \frac{1}{2} \epsilon$. Every consumer will buy with a surplus ϵ , and total consumer surplus is $\int_0^1 \epsilon d\theta = \epsilon$.

• Under privacy pricing: a threat $p^{ND}=1$ with customized prices

$$p^D = \theta - \epsilon$$

•
$$CS = \int_0^1 (\theta - p^D) d\theta = \epsilon$$

•
$$PS = \int_0^1 (\theta - \epsilon) d\theta = \frac{1}{2} - \epsilon$$

•
$$W^D = CS + PS = \frac{1}{2}$$

• Under single-pricing, $p^m = \frac{1}{2}$, $q^m = \frac{1}{2}$ and

•
$$CS^m = \frac{1}{8} > 0$$

•
$$PS^m = \frac{1}{4} < \frac{1}{2}$$

•
$$W^m = \frac{3}{8} < \frac{1}{2}$$

• Under perfect competition: $p^{FB} = MC = 0$:

•
$$CS^{FB} = \int_{p^{FB}}^{1} \theta d\theta = \frac{1}{2}$$

$$PS^{FB} = 0$$

•
$$W^{FB} = \frac{1}{2}$$
.

- Therefore, total surplus under price discrimination is equivalent to the socially optimal level.
- Reason behind: all consumers are covered with customized pricing; whereby only 50% of consumers are covered without discrimination (incurring deadweight losses).

Third-Degree through Market Separation

Consider two "segmented" markets, A and B.

- What does "segmentation" mean?
 - Consumers in market A cannot "imitate" those who in market B.
- The inverse demand for the two markets is $p_A(q)$ and $p_B(q)$, respectively.
- A and B are isolated \Rightarrow the firm maximizes profits in each market.
- For an additional output to be produced, the firm incurs C'(q).
 - Sell it at market A gives MR_A ; sell it at B gives MR_B .
 - If MR_A > MR_B, the current unit will be supplied to A; otherwise, supply to B.
 - When an additional unit gives equally profitable profit between A and B, that unit is the last unit to be produced.
- Therefore, $MR_A = MR_B = MC$.

Third-degree price discrimination for n segmented markets:

$$MR_A = MR_B = .. = MR_n = MC$$

- For market A, the firm solves $\max_q p_A(q)q C(q) \Rightarrow \frac{p_A MC}{p_A} = \frac{1}{\varepsilon_A}$;
- For market B, the firm solves $\max_q p_B(q)q C(q) \Rightarrow \frac{p_B MC}{p_B} = \frac{1}{\varepsilon_B};$
- The above two equations give

$$MC = p_A - p_A \frac{1}{\varepsilon_A} = p_B - p_B \frac{1}{\varepsilon_B}$$

$$\Rightarrow \frac{p_A}{p_B} = \frac{1 - \frac{1}{\varepsilon_B}}{1 - \frac{1}{\varepsilon_A}}$$

A higher price for less elastic market (lower $\varepsilon_A \to \text{higher } p_A$).

Example: Third-Degree Price Discrimination

- Two isolated markets: $q_L = 8 p_L$ and $q_H = 10 p_H$. MC = 2.
- $p_L = 8 q_L \Rightarrow MR_L = 8 2q_L$; $p_H = 10 q_B \Rightarrow MR_H = 10 2q_H$.
- $MR_L = MR_H = MC = 2 \Rightarrow$ $8 - 2q_L = 10 - 2q_H = 2 \Rightarrow q_L = 3, \ q_H = 4.$
- $p_L = 5$ and $p_H = 6$.
- Profit is $\pi_L + \pi_H = (p_L q_L 2q_L) + (p_H q_H 2q_H) = 25$.
- If the monopolist charges a single price to all markets, then total demand is (horizontal aggregation evaluated at a particular p):

$$Q = q_L + q_H = 18 - 2p$$
. Inverse demand is $p = 9 - Q/2$.

$$MR = 9 - Q = MC = 2 \Rightarrow Q = 7$$
, $p = 11/2$ and $\pi = pQ - 2Q = 49/2 < 25$.

Second-Degree through Price Schedule: Homogeneous (同质的) Consumers

Now, let's focus on one market only. If the firm charges a single price, the consumer surplus is positive. How to extract the surplus through a single price?

- Assume that the demand curve is derived from UMP of a representative consumer with quasi-linear utility, i.e., u(q).
- The monopolist uses two-part tariff:
 - f 1 The consumer has to pay an "entry fee" T to get access to the market.
 - **2** The per-unit price is p.
- Utility of the consumer: u(q)-pq-T. The outside option is normalized to be zero.
 - $\max_q u(q) pq T \Rightarrow u'(q) = p$.
 - If $u(q)-pq-T\geq 0$, he/she buys; otherwise, he/she does not buy.
- For the monopolist: $\max_{q,T} T + pq C(q)$
 - The monopolist can raises T such that each consumer's surplus approaches to zero: u(q)-pq-T=0
 - Plug T=u(q)-pq into the objective: $\max_q u(q)-C(q)$

Two-Part Tariffs: Homogeneous Consumers

- The monopolist solves $\max_q u(q) C(q) \Rightarrow u'(q) = C'(q)$. Combining u'(q) = p, the monopolist should set u'(q) = p = C'(q).
- That is, p = MC. The fixed fee is equal to "consumer surplus."
- The first-best outcome is achieved.

Example: Two-Part Tariffs with Homogeneous Consumers

- One consumer with demand curve: q=8-p
- Marginal cost is MC = 2.
- The profit-maximizing two-part tariff:
 - Per-unit price: p = MC = 2, hence q = 8 2 = 6.
 - Entry fee: $T = \int_0^q (8 q 2) dq = \frac{1}{2} (8 p)^2 = 18$.
- The profit of the monopoly: T + pq 2q = T = 18.

Two-Part Tariffs: Heterogeneous (异质性) Consumers

Now consider two heterogeneous consumers with demand curves $q_L = 8 - p$ and $q_H = 10 - p$.

- Assume that the monopolist uses two-part tariffs (T,p) to serve both consumers, by setting p=MC=2.
- The entry fee is equal to the consumer surplus of the low-demand type: $T=\frac{1}{2}(8-p)^2=18$.
- At p = MC = 2, the per-unit profit from each consumer is zero: $pq_L 2q_L = pq_H 2q_H = 0$.
- Profit of the monopolist is 2T = 36.

The monopolist uses two-part tariffs (T,p) where p=MC to sell to heterogeneous consumers. The profit is 36.

Can the monopolist do better?

Two-Part Tariffs: Heterogeneous Consumers

In addition to set an entry fee T, the monopolist chooses a per-unit price p that may not necessarily be equal to marginal cost. Then, the entry fee T becomes a function of p.

Two-Part Tariffs: Heterogeneous Consumers

Still, one single fixed fee T and one single price p for all consumers. Now, p is not necessarily equal to MC, but let p be a choice variable.

- The entry fee for the low-type consumer: $T(p) = \int_0^{q_L} \left(8 q p\right) dq$.
- The low-type buys $q_L = 8 p$ units at price p. Hence $T(p) = \frac{1}{2}(8 p)^2$.
- The high-type also pays the entry fee $T(p) = \frac{1}{2}(8-p)^2$.
- The high-type buys $q_H = 10 p$ units at price p.
- The profit of the monopolist is $\pi=2T(p)+(p-MC)q_L+(p-MC)q_H=(8-p)^2+(p-2)(8-p)+(p-2)(10-p), \text{ i.e., a function of } p.$
- FOC w.r.t. p gives p = 3, then T = 25/2 and $\pi = 25 + 5 + 7 = 37 > 36$.

Practice: $q_A = A - p$ and $q_B = B - p$, assuming A > B > c > 0, where c is constant marginal cost. Provide solutions for first/second/third-degree price schedules. (A challenging issue: for the single two-part tariff, is it possible that type-B will not be served?)

Comparing Two-Part Tariff and Single-Pricing

By using a single price, the monopolist charges p^m such that MR = MC. Using two-part tariff, the per-unit price is denoted by p^{STP} . We would like to compare: p^m , p^{STP} and $p^{FB} = c$ (assuming marginal cost is c); and profits generated by the three types of pricing scheme.

- Clearly, for profit, $\pi^{STP} \geq \pi^m > 0$. Because compared with single monopoly price p^m , T is the additional choice under two-part tariff: you can choose to set T=0 to make p^{STP} and p^m equivalent.
- Still, consider two different consumers: $\theta_H u(q) pq T$ and $\theta_L u(q) pq T$. $\theta_H > \theta_L$ and $u'(\cdot) > 0$, $u''(\cdot) < 0$.
- The low-type buys q_L and the high-type buys q_H . The market demand is $Q=q_L+q_H$.
- The optimal single-pricing p^m satisfies $MR = MC \Rightarrow p'(Q)Q + p c = 0$. Hence $p^m > c = p^{FB}$.
- The per-unit price for two-part tariffs is p^{STP} .

- Under two-part tariffs: for each consumer, $\theta_i u'(q_i^*) = p, \ i = H, L.$
- The entry fee: $T = \theta_L u(q_L^*) pq_L^*$.
- The profit under two-part tariff: $\pi^{STP} = 2T(p) + (p-c)(q_H^*(p) + q)$

$$\pi^{STP} = 2T(p) + (p - c)(q_H^*(p) + q_L^*(p)) = 2\left[\theta_L u(q_L^*(p)) - pq_L^*(p)\right] + (p - c)(q_H^*(p) + q_L^*(p)).$$

First-order derivative with respect to p:

$$\frac{d\pi^{STP}}{dp} = 2\underbrace{\theta_L u'(q_L^*)}_{=p} \frac{dq_L^*}{dp} - 2q_L^* - 2p\frac{dq_L^*}{dp} + \underbrace{q_L^* + q_L^*}_{=Q^*} + (p-c)\underbrace{\left(\frac{dq_H^*}{dp} + \frac{dq_L^*}{dp}\right)}_{=\frac{dQ^*}{dp}}$$

$$= -2q_L^* + Q^* + (p-c)\frac{dQ^*}{dp}.$$

- The optimal single-pricing p^m satisfies: $p'(Q)Q p c = 0 \Rightarrow (p^m c) = -\frac{dp^m}{dQ}Q^m$.
- If the monopolist replaces the per-unit price under two-part tariff by p^m : $\frac{d\pi^{STP}}{dp}\big|_{p=p^m} = -2q_L < 0, \text{ i.e., the optimal per-unit price } p^{STP} \text{ under two-part tariff is lower than the monopoly single price } p^m$: $p^{STP} < p^m$

- Under perfect competition: $p^{FB} = c$.
- Under two-part tariffs, the first-order derivative with respect to p:

$$\frac{d\pi^{STP}}{dp} = 2\underbrace{\theta_L u'(q_L^*)}_{=p} \underbrace{\frac{dq_L^*}{dp} - 2q_L^* - 2p\frac{dq_L^*}{dp}}_{=Q} + \underbrace{\frac{q_L^* + q_L^*}{q_L^* + q_L^*}}_{=Q^*} + (p-c)\underbrace{\left(\frac{dq_H^*}{dp} + \frac{dq_L^*}{dp}\right)}_{=\frac{dQ^*}{dp}}$$

• If the monopolist replace the per-unit price by $p^{{\it F}{\it B}}=c$, then

$$\left. \frac{d\pi^{STP}}{dp} \right|_{p=p^{FB}} = q_H^* - q_L^*$$

- Because $\theta_H u'(q_H^*) = p^{STP} = \theta_L u'(q_L^*)$ and $u''(\cdot) < 0$, then $q_H^* > q_L^*$.
- Therefore, $\left.\frac{d\pi^{STP}}{dp}\right|_{p=p^{FB}}>0$, i.e., the optimal per-unit price p^{STP} under two-part tariff is higher than $p^{FB}\colon p^{STP}>p^{FB}$
- $p^m > p^{STP} > p^{FB} = c$.

- In this course, we assume that the monopolist uses "single" two-part tariffs, i.e., the same T and p for different consumers.
- In practice, the monopolist frequently designs different menus $(T_1, q_1), ..., (T_n, q_n)$, and let the consumers to choose.
 - The monopolist cannot distinguish the types of different consumers.
 - Type i cannot "imitate" type j: type i will voluntarily choose the menu (T_i, q_i) designed for him/her, instead of another menu (T_j, q_j) .
- Non-linear two-part tariffs:
 - Business class v.s. economy class
 - "Standard version" v.s. "premium version"
 - Labor contracts
- Those topics will be covered in the game theory course in the spring semester.