ECE 310 DIGITAL SIGNAL PROCESSING

Homework 5

Prof. Zhi-Pei Liang Due: March 19, 2021

1. Evaluate the following integrals:

(a)
$$\int_{-\infty}^{\infty} (t^2 + 5t - 1)\delta(t)dt =$$

(b)
$$\int_{1}^{\infty} (t^2 + 5t - 1)\delta(t)dt =$$

(c)
$$[e^{-t}u(t)] * \delta(5t-15) =$$
, where $u(t)$ is a unit step function.

- 2. Determine the Fourier transform of the following functions:
 - (a) $\delta(2t 3)$
 - (b) $\sin(\Omega_0 t + \phi_0)$, where Ω_0 and ϕ_0 are known real numbers.
 - (c) u(t) u(t T), where T is a constant.
- 3. Compute the discrete-time Fourier transform (DTFT) of the following sequence. $x[n] = \alpha^n \sin(\omega_0 n) u[n]$, where α and ω_0 are real constants with $|\alpha| < 1$.
- 4. Let $X_d(\omega)$ denote the DTFT of the complex valued signal x[n], where the real and imaginary parts of x[n] are given below. Perform the following calculations **without** explicitly evaluating $X_d(\omega)$.
 - a) Evaluate $X_d(0)$
 - b) Evaluate $X_d(\pi)$
 - c) Evaluate $\int_{-\pi}^{\pi} X_d(\omega) d\omega$
 - d) Determine and sketch the signal whose DTFT is $X_d^*(-\omega)$

- 5. Let x[n] be an arbitrary sequence, not necessarily real-valued, with DTFT $X_d(\omega)$. Express the DTFT of the following sequences in terms of $X_d(\omega)$
 - a) $x^*[n]$
 - b) $x^*[-n]$
- 6. Consider the complex sequence x[n] = (u[n] u[n N])/N.
 - a) Find closed-form expressions for $|X_d(\omega)|$ and $\angle X_d(\omega)$.
 - b) For N=5, plot $|X_d(\omega)|$; How will the shape of $|X_d(\omega)|$ change if N increases.
 - c) For N=5, plot $\angle X_d(\omega)$; How will the shape of $\angle X_d(\omega)$ change if N increases.