Section 2.6 – Differentiability

$$\lim_{x \to 4} f(x) = \%$$

f(4) 2

f is hot continuous at x = 4.

$$\lim_{x \to 4} f(x) = \%$$

$$f(4) = 8$$

f _____ continuous at x = 4.

 $\lim_{x \to 4} g(x) = \%$

g(4) undefined

g (5 \sim 0 \downarrow continuous at x = 4.

 $\lim_{x\to 4} g(x)$ undefined

$$g(4) = 12$$

g \uparrow ς ς ς ς ς ς continuous at s = 4.

Theorem. The function f is continuous at x = c if f is defined at x = c and if

$$\lim_{x \to c} f(x) = \underline{\qquad f(c)}$$

1. Which of the following functions are continuous at x = 0?

2. Consider the function f(x) given below.

(a) At what values of x is f not continuous?

(b) At what values of x is f not differentiable?

Section 2.6 – Differentiability

1. A magnetic field, B, is given as a function of the distance, r, from the center of a wire as follows:

$$B = \begin{cases} \frac{r}{r_0} B_0 & \text{for } r \le r_0 \\ \frac{r_0}{r} B_0 & \text{for } r > r_0 \end{cases}$$

(a) Is B continuous at r_0 ? Explain.

(b) Is B differentiable at r_0 ? Explain.

- 2. Sketch the graph of y = f(x) if f has the following properties:
 - f(x) is continuous everywhere except at 3
 - f(x) has a vertical tangent line at 2
 - f(x) is not differentiable at 3
 - f''(x) > 0 wherever it is defined

3. Find the intersection point of the tangent line to $y = x^x$ at 1.1 and the x-axis. Using the colculator's derivative function

for the graph
$$y'(l,1) = 1.216$$

2 forgent | me

 $y-1.111 = 1.216(x-1.11)$

1.0 | 1.1 | 1.2 | -1.111 = 1.216x-1.

$$y(0.1) = 1.216$$
 $y(0.1) = 1.216$
 $y(0.1) = 1$

$$X = 0.197$$