The continuous contin			FORMULARIO DI FISICA Z	ARIO DI					· Moto ciclotrone Raggio		
The contract of the contract	Per segnalare errori scrivimi alla mail em	nanuele.urso	@studenti.unipd.it oppure correggi tu :	stesso us	ando il file sorgente in LaTe χ su GitHub cerca	ndo Baelish. Buona fortuna per l'esame	$P = VI = RI^2 = -$ $AP = I(\pi) \cdot \mathbf{E}(\pi) \cdot$	(94)		$W = \frac{(Bbv(t))^2}{R}$	(139)
Here we will be a second and the se	TOME:	•	Potenziale scalare V		Conduttori in equilibrio	· Campo elettrico E generato	$\mathbf{d} \mathbf{r} = \mathbf{J}(\mathbf{r}) \cdot \mathbf{E}(\mathbf{r}) \mathbf{d} \mathbf{\tau}$ · Resistori	(66)	Periodo	Forza magnetica sulla barra	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ATRICOLA:		$V(\mathbf{r}) = \frac{U(\mathbf{r})}{q_0}$	(28)	- il campo è mullo					$F = m \frac{\mathrm{d}v}{\mathrm{d}t} = -\frac{(Bb)^2 v(t)}{R}$	(140)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	■ FONDAMENTALI		$\int_{s}^{B} \mathbf{E} \cdot d\mathbf{r}$	(29)		· Momento torcente	$R_{eq} = \sum_{i=1} R_i$	(96)	Angolo deflessione elica $(v 2 \text{ dimensioni})$	ATTENZIONE: per tenere v co è necessaria una F esterna; altr	stante
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Teorema (divergenza)		¥.0	(30)	 il potenziale è costante 					essa è opposta a v e il moto è sn esponenzialmente	orzato
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\int_{\Sigma} \mathbf{F} \cdot d\mathbf{\Sigma} = \int_{\tau} \nabla \cdot \mathbf{F} d\tau$	(1)	Energia di E					(62)		•	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Teorema (Stokes)		$U = \frac{1}{2} \int_{\mathbb{R}^3} \rho(\mathbf{r}) V(\mathbf{r}) d\tau$	(31)	Le cariche si distribuiscono sempre su sunerfici mai all'interno					· Disco di Barlow Campo elettrico	
1. The property is the property of the prop	$\oint_{\gamma} \mathbf{F} \cdot d\mathbf{s} = \int_{\Sigma} \nabla \times \mathbf{F} d\Sigma$		$U = \frac{1}{-\varepsilon_{0}} \int \mathbf{E}^{2} d\tau$	(32)	Pressione elettrostatica	otarlo		(86)		$\mathbf{E} = \frac{\mathbf{F}}{2} = \mathbf{v} \times \mathbf{B} = \omega x B \mathbf{u}_x$	(141)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Teorema (Gradiente)	•	Formarione di Doisson	(20)			•		■ INDUZIONE	() For indotts	
1. 1. $V = V = V = V = V = V = V = V = V = V $	7 7 4 7	· (§	di Folsson	(00)		Se E uniforme	mon ranger		· Coefficienti mutua induzione	F.e.m. indotta $\frac{1}{1} = \frac{1}{2}$	1
1. F. V. of a particular derivation $\frac{1}{10} = \frac{1}{10} = \frac{1}{1$	$\phi_2 - \phi_1 = \int_{\gamma} \nabla \phi \cdot d\mathbf{s}$	(8)		(33)	Capacità			(66)	$\Phi_{2,1}=MI_2$	$\varepsilon = \frac{1}{2}\omega Br^2$	(142)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Flusso di un campo	•	E e V di particolari distribuzi	ioni		· Frequenza dipolo oscillante	Legge delle maglie		\cdot Flusso generato da 1 attraverso 2	Corrente in un circuito chiuso	
1 Second content and cont	$\Phi_{\Sigma}(\mathbf{E}) = \oint_{\Sigma} \mathbf{E} \cdot \mathrm{d}\mathbf{\Sigma}$	(4)	Carica puntilorine	(94)	Il più delle volte c'è induzione com-	e unitorine		(100)		$I = \frac{\omega B r^2}{2R}$	(143)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	· Equazioni di Maxwell		\mathbf{u}_r	(34)	pleta e C dipende dalla configurazione geometrica.				· Induttanza	Se nnon ci sono forze esterne il	noto è
(1) Since our cultimatements of the control of the	Nel vuoto:		$V = \frac{q}{4\pi\varepsilon_0 r}$	(35)	Condensatori	· Energia del dipolo	■ MAGNETOSTATICA · Forza di Lorentz		Φ autoflusso	smorzato Momento torcente frenante	
(8) $\frac{1}{100} \frac{1}{100} $	$ abla \cdot \mathbf{E} = \frac{ ho}{arepsilon_0}$	(2)	Sfera carica uniformemente					(101)		$\mathbf{M} = -\frac{\omega B r^4}{1 - \frac{\omega B r^4}{$	(144)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$	(9)	$\left(\frac{Qr}{4\pi\varepsilon_0 R^3} = \frac{\rho r}{3\varepsilon_0} \text{ se r < R}\right)$	(96)		· Forza agente sul dipolo	· Prima legge di Laplace		Solenoide ideale	$4R$ $ ilde{}_{ m Velocit}$ angolare	,
(1) $(\frac{(\frac{1}{2})^2}{4} - \frac{(\frac{1}{2})^2}{4} -$	$\nabla \cdot \mathbf{B} = 0$	(2)	$\mathbf{E}(r) = \begin{cases} \frac{Q}{Q} & \text{se } r \ge R \\ \frac{4\pi\varepsilon_0 R^2}{Q} & \text{se } r \ge R \end{cases}$	(90)	Sferico			(102)		101	į
(1) Care definition of a set of the contribution of the contribut	$\nabla \times \mathbf{B} = \mu_0 \mathbf{J} + \mu_0 \varepsilon_0 \frac{\partial \mathbf{E}}{\partial t}$	(8)				· Energia pot. tra due dipoli	$4\pi J r^2$	(100)	Toroide		(145)
(1) Green define our correspondence are $(x + 2)$ (1) $(x + 2) + (x + 2) + (y + 2) + $	$\oint_{\mathbf{E}} \mathbf{E} \cdot d\mathbf{\Sigma} = \frac{Q_{int}}{}$	(6)	960	(37)	Cilindrico			(103)		■ DIPOLO MAGNETICO	
[10] Correct elements and the control of the contr	$\int_{\Sigma} dz = \varepsilon_0$		$\left(\begin{array}{cc} \frac{\varphi}{4\pi\varepsilon_0 r} & \text{se r} \geq R \end{array}\right)$					(104)	. Rom outsindatts	· Momento di dipolo	
(1) $E(r) = \frac{1}{16} \frac{1}{16}$	$\oint_{\Gamma} \mathbf{E} \cdot d\mathbf{s} = -\frac{d\mathbf{v}(\mathbf{E})}{dt}$	(10)	Guscio sferico carico uniformemente		In serie	· Forza tra dipoli Dipoli concordi = F repulsiva	· Seconda legge di Laplace		maorea	$\mathrm{d}\mathbf{m} = I \mathrm{d} \Sigma \mathbf{u}_n$	(146)
(1) $V(r) = \frac{d^2r}{dr_0^2}$ (2) $V(r) = \frac{d^2r}{dr_0^2}$ (3) $V(r) = \frac{d^2r}{dr_0^2}$ (4) $V(r) = \frac{d^2r}{dr_0^2}$ (5) $V(r) = \frac{d^2r}{dr_0^2}$ (6) $V(r) = \frac{d^2r}{dr_0^2}$ (7) $V(r) = \frac{d^2r}{dr_0^2}$ (8) $V(r) = \frac{d^2r}{dr_0^2}$ (9) $V(r) = \frac{d^2r}{dr_0^2}$ (10) $V(r) = \frac{d^2r}{dr_0^2}$ (11) $V(r) = \frac{d^2r}{dr_0^2}$ (12) $V(r) = \frac{d^2r}{dr_0^2}$ (13) $V(r) = \frac{d^2r}{dr_0^2}$ (14) $V(r) = \frac{d^2r}{dr_0^2}$ (15) $V(r) = \frac{d^2r}{dr_0^2}$ (16) $V(r) = \frac{d^2r}{dr_0^2}$ (17) $V(r) = \frac{d^2r}{dr_0^2}$ (18) $V(r) = \frac{d^2r}{dr_0^2}$ (19) $V(r) = \frac$		(11)	ser< K	(38)			F =	(105)		· Potenziale del dipolo	
(1) $V(r) = \frac{1}{2\pi G} = w + c R$ (2) In panels the component of the comp		(12)				4ACOT	- B di corpi notevoli (ATTE	NZIONE:	· Fem indotta	$\mathbf{A} = \frac{\mu_0}{4\pi r^2} \left(\mathbf{m} \times \mathbf{u}_r \right)$	(147)
(i) $\frac{1}{10} \frac{1}{10} \frac{1}{10} = 0$ (ii) $\frac{1}{10} \frac{1}{10} = 0$ (iii) $\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} = 0$ (iii) $\frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10} = 0$ (iii) $\frac{1}{10} \frac{1}{10} \frac{1}$			$\frac{\varphi}{4\pi\varepsilon_0 R}$	(39)	In parallelo	Campo elettrico in un dielettrico	de dalla corrente I)	rso mben-		· Campo magnetico B generato	
(i) $E(r) = \frac{1}{2\pi c_0^2 - c}$ (ii) $E(r) = \frac{1}{2\pi c_0^2 - c}$ (iii) $E(r) = \frac{1}{2\pi c_0^2 - c}$ (iv) $E(r) = \frac{1}{2\pi c$	$\nabla \cdot \mathbf{D} = \rho_{libere}$	(13)	$\left(\begin{array}{cc} \frac{Q}{4\pi\varepsilon_0 r} & \text{se r} \ge R \end{array} \right)$			$\mathbf{E}_k = \frac{\mathbf{E}_0}{\mathbf{E}_0} \tag{81}$		(106)	· Corrente indotta	$\mathbf{B}(\mathbf{r}) = \frac{\mu_0}{4 - m_0^2} \left[3\mathbf{u}_r (\mathbf{m} \cdot \mathbf{u}_r) - \mathbf{m} \right]$	(148)
(i) $E(r) = \frac{1}{2\pi c_0^2 L} L^2$ (ii) $E(r) = \frac{1}{2\pi c_0^2 L} L^2$ (iii) $E(r) = \frac{1}{2\pi c_0^2 L} L^2$ (iii) $E(r) = \frac{1}{2\pi c_0^2 L} L^2$ (iii) $E(r) = \frac{1}{2\pi c_0^2 L} L^2$ (iv) $E(r) = $	$\nabla \times \mathbf{H} = \mathbf{J}_{C,tib} + \frac{\partial \mathbf{D}}{\partial t}$	(14)	Filo infinito con carica uniforme λ		Con dielettrico	P nolarizzazione		(001)		· Momento torcente	
99	$\oint_{\Sigma} \mathbf{D} \cdot \mathrm{d} \mathbf{\Sigma} = Q_{int,lib}$	(15)	$\mathbf{E}(r) = \frac{1}{2\pi\varepsilon_0 r} \mathbf{u}_r$	(40)				(102)	· Energia dell'induttanza	$M = m \times B$	(149)
17 E = $\frac{e^2}{2c_0}u_s$ 18 Figure 2 inflation on order uniforms and order order of the control of the	$\oint_{\Gamma} \mathbf{H} \cdot d\mathbf{s} = I_{conc,tib} + \frac{d\Phi_D}{dt}$	(16)		(41)	Energia interna del condensatore				Mutua (solo una volta ogni coppia):	· Forza agente sul dinolo	,
(13) $V(r) = \frac{L}{2a_0}a_{++}$ (24) Differential extension extens	Discontinuità dei campi		Piano Σ infinito con carica uniforme			1)压		(108)		$\mathbf{F} = \nabla (\mathbf{m} \cdot \mathbf{B})$	(150)
(2) $E(r) = \frac{\sigma}{2a_0}(r-z_0)$ (3) $RQ'(r) + \frac{Q(r)}{C} = V$ (4) Anole control contro	Generali A. B.	í		(42)	Differenziale circuito RC	$\mathbf{r} = \varepsilon_0 \chi \mathbf{E} \mathbf{E} k = \varepsilon_0 (k-1) \mathbf{E} k \tag{9}$,	Interna	. Energie del dinolo	,
(2) E(z) = $\frac{\lambda R}{2\pi \sqrt{z^2 + R^2} - 2}$ (4) $\frac{2\pi \sqrt{z^2 + R^2}}{2\pi \sqrt{z^2 + R^2} - 2}$ (5) $\frac{\lambda R}{2\pi \sqrt{z^2 + R^2} - 2}$ (6) $\frac{\rho_s = V \cdot u_s}{\rho_s = \sqrt{z}}$ (6) $\frac{\rho_s = V \cdot u_s}{\rho_s = \sqrt{z}}$ (7) $\frac{\rho_s}{2\pi \sqrt{z^2 + R^2} - 2}$ (8) $\frac{\rho_s = \sqrt{z}}{2\pi \sqrt{z^2 + R^2}}$ (8) $\frac{\rho_s = \sqrt{z}}{2\pi \sqrt{z^2 + R^2}}$ (7) $\frac{\rho_s}{2\pi \sqrt{z^2 + R^2}}$ (8) $\frac{\rho_s = \sqrt{z}}{2\pi \sqrt{z^2 + R^2}}$ (8) $\frac{\rho_s = \sqrt{z}}{2\pi \sqrt{z^2 + R^2}}$ (7) $\frac{\rho_s}{2\pi \sqrt{z^2 + R^2}}$ (8) $\frac{\rho_s}{2\pi \sqrt{z^2 + R^2}}$ (9) $\frac{\rho_s}{2\pi \sqrt{z^2 + R^2}}$ (11) $\frac{\rho_s}{2\pi \sqrt{z^2 + R^2}}$ (1	$\Delta B_{\perp} = 0$ $\Delta E_{\parallel} = 0$	(17)	$(x-x_0)$	(43)		. Dens. superficiale di q polarizzata $k-1$		(109)		. Emergia del dipolo $U = -\mathbf{m} \cdot \mathbf{B}$	(151)
(2) $E(x) = \frac{\lambda R E}{2c_0 \sqrt{x^2 + R}} = \frac{\lambda R}{2}$ (44) $Q(t) = Q_0 (1 - e^{-ix^2})$ (64) $P_0 = -e^{-ix} = \frac{1}{2} = \frac{1}{2}$	$\Delta D_{\perp} = \sigma_L$	(19)	Anello con carica uniforme (sull'asse)		Carica	$\sigma_p = \mathbf{F} \cdot \mathbf{u}_n = \frac{k}{k} \sigma_l \tag{84}$			In un circuito (conta una volta ogni	· Energia not. tra due dinoli	
(2) $V(x) = \frac{\lambda(x^2 + R)\gamma(x^2 - R)}{2\pi \sqrt{x^2 + R^2}}$ (45) $Q(t) = Q_{tt}e^{-\gamma P}$ (65) Sportaneuto elettrico (25) Disco carico uniformemente (26) Disco carico uniformemente (27) Disco carico uniformemente (28) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (29) Disco carico uniformemente (29) Disco carico uniformemente (29) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (29) Disco carico uniformemente (29) Disco carico uniformemente (29) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (29) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (29) Condensatore pieno (20) Disco carico uniformemente (20) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (20) Condensatore pieno (21) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (22) Disco carico uniformemente (23) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (24) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (25) Gusci cilindic uniformemente carico (26) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (27) Gusci cilindic uniformemente carico (27) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (28) $V(x) = \frac{a}{2\pi \sqrt{x^2 + R^2}}$ (29) $V(x) = \frac{a}{2\pi x^2 $	$\Delta E_{\perp} = \frac{\sigma}{\varepsilon_0}$	(20)	$\mathbf{E}(x) = \frac{\lambda Rx}{1 + \lambda Rx$	(44)		Dens. volumetrica di q polarizzata		(110)	mduttanza ed una ogni coppia)	$U = -\mathbf{m}_1 \cdot \mathbf{B}_2 = -\mathbf{m}_2 \cdot \mathbf{B}_1$	(152)
(23) Disco carrico miframemente ($r > R$) (46) Each R (46) Condensatore pieno (and resistore pieno (bentifico) Be $\frac{\rho R}{2\pi 0}$ (47) = $\frac{\rho R}{2\pi 0}$ (48) Condensatore riempilo di materiale di E $\rho > \frac{\rho}{2\pi 0}$ (48) Condensatore riempilo di materiale di E $\rho > \frac{\rho}{2\pi 0}$ (48) Condensatore riempilo di materiale di E $\rho > \frac{\rho}{2\pi 0}$ (48) Condensatore riempilo di materiale di E $\rho > \frac{\rho}{2\pi 0}$ (48) Condensatore riempilo di materiale di E $\rho > \frac{\rho}{2\pi 0}$ (48) Condensatore riempilo di materiale di E $\rho > \frac{\rho}{2\pi 0}$ (57) Condensatore riempilo di materiale di E $\rho > \frac{\rho}{2\pi 0}$ (58) $\frac{\rho}{2\pi 0}$ (58) $\frac{\rho}{2\pi 0}$ (57) Condensatore piano (ctrico miframemente $(r > R)$) (57) Condensatore piano (ctrico miframemente $(r > R)$) (57) Condensatore piano (ctrico miframemente carico miframemente carico miframemente carico miframemente carico (29) Condensatore piano (29)	$\Delta H_{\parallel} = \mathbf{K}_c imes \mathbf{u}_n $	(21)			Scarica		Piano infinito su xy,		$U = \frac{1}{2} \sum_{i=1}^{N} (L_i I_i^2 + \sum_{j=1}^{N} M_{i,j} I_i I_j) i \neq j$	B è il campo magnetico generato	dall'al-
(23) $V(x) = \frac{\sigma}{2\sigma_0} \left(\sqrt{1 + \frac{R^2}{L^2}} \right) u_x$ (46) $R = \frac{1}{2\sigma_0} u_x$ (47) $R = \frac{1}{2\sigma_0} u_x$ (48) $R = \frac{Q}{2\sigma_0} u_x$ (49) $R = \frac{Q}{2\sigma_0} u_x$ (40) $R = \frac{Q}{$	In ipotesi di linearità			(45)		Ē		(111)	(133)	tro dipolo	
(23) $V(x) = \frac{C}{2c_0} \left(1 - \frac{C}{1 + \frac{C}{1 $	$\frac{L_{1,\parallel}}{k_1} = \frac{L_{2,\parallel}}{k_2}$	(22)			Condensatore pieno Condensatore riempito di materiale di	$c_0 = c_0 = c_0$			· Legge di Felici	F(r) = $\frac{3\mu_0}{44}[(\mathbf{m_1} \cdot \mathbf{u_r})\mathbf{m_2} + (\mathbf{m_2} \cdot \mathbf{u})]$	\mathbf{p}_{1}
(24) Disco carico uniformemente $(x > R)$ (75) $= \frac{a}{2\pi_0} (\sqrt{x^2 + R^2} - x)$ (47) Forza fra le armature (24) Disco carico uniformemente $(x > R)$ (75) Conception of the following control of	Se $\sigma_L = 0$			(46)	resistività ρ	■ CORRENTI · Lavoro del generatore	b spessore sonda, b // B, b l I,	n car/vol		$4\pi r^{2}$ + $(\mathbf{m}_{1} \cdot \mathbf{m}_{2})\mathbf{u}_{r} - 5(\mathbf{m}_{1} \cdot \mathbf{u}_{r})(\mathbf{m}_{2} \cdot \mathbf{u}_{r})$	[-n(-
Disco cario uniformemente (x > R) Expressed from the following problem of the correction of the corr	$k_1 E_{1,1} = k_2 E_{2,1}$	(23)		(47)				(112)	· Circuito RL in DC		(153)
	Kifrazione linee di B $ an(heta_2)$ μ_2	(70)	$2\varepsilon_0$ Disco carico uniformemente $(x>>R)$		rmature	3	•	ş	L si oppone alle variazioni di I smorzan-dole	■ MAGNETISMO	
$V(x) = \frac{\sigma}{2\pi} \frac{R^2}{x}$ $V(x) = \frac{\sigma}{4\pi} \frac{\sigma}{4\pi}$	$\tan(\theta_1) = \frac{1}{\mu_1}$	(24)		(48)					Appena inizia a circolare corrente	· Campo magnetico nella materia	ia
$V(x) = \frac{\sigma_{1} I_{1}}{4 \pm \sigma_{1} x}$ $V(x) = \frac{\sigma_{1} I_{2}}{4 \pm \sigma_{1} x}$ $(25) Guscio clindrico uniformemente carico$ $E(x) = \begin{cases} 0.5 \\ 4 \\ 5 \\ 5 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6 \\ 6$	■ ELETTROSTATICA		٠		Condensatore piano		$F = \frac{1}{2\pi} \frac{d}{d}$	(611)		$\mathbf{B} = \mu_0(\mathbf{M} + \mathbf{H})$	(154)
(25) Guscio cilindrico uniformemente carico E(r) = $\frac{Q}{2\pi\epsilon_0 hr}$ se r > R (26) $\frac{Q}{2\pi\epsilon_0 hr}$ se r > R (27) $\frac{Q}{2\pi\epsilon_0 hr}$ (25) Guscio cilindrico uniformemente carico E(r) = $\frac{Q}{2\pi\epsilon_0 hr}$ (26) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (29) $\frac{P}{2\pi\epsilon_0 hr}$ (29) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (29) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (28) $\frac{P}{2\pi\epsilon_0 hr}$ (29) $\frac{P}{2\pi\epsilon_0 hr}$ (29) $\frac{P}{2\pi\epsilon_0 hr}$ (29) $\frac{P}{2\pi\epsilon_0 hr}$ (27) $\frac{P}{2\pi\epsilon_0 hr}$ (29) $\frac{P}{2\pi\epsilon_0 $	· Forza di Coulomb			(49)			. Potenziale vettore $\nabla \times \mathbf{A} = \mathbf{B}$	(114)	uito viene aperto	$\mathbf{B} = k_m \mathbf{B}_0 = (1 + \chi_m) \mathbf{B}_0$	(155)
$ E(r) = \begin{cases} C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Se } r \ge R \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Se } r \ge R \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Se } r \ge R \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Se } r \ge R \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Se } r \ge R \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Se } r \ge R \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Se } r \ge R \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente odition of inso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & \text{Corrente in un circuito chiuso} \\ C_{T} = \frac{Q}{2\pi\varepsilon_0 hr} & Corrente in un circuito c$	$\mathbf{F} = rac{4.192}{4\pi arepsilon_0 r^2} \mathbf{u}_{1,2}$	(25)	Guscio cilindrico uniformemente cari		DIPOLO ELETTRICO		$\mathbf{A}(\mathbf{r}_1) = \frac{\mu_0}{2}$	(115)		· Campo magnetizzazione M	
$ (26) (26) (28) (28) (27) \mathbf{P} = \mathbf{q} \mathbf{a} $ $ (26) V(r) = \begin{cases} 0 & \text{se } r < \mathbf{R} \\ 2\pi \varepsilon_0 h & \mathbf{h}(\frac{r}{R}) & \text{se } r \ge \mathbf{R} \end{cases} $ $ (37) \mathbf{E} = \rho \mathbf{J} $ $ (48) V(r) = \begin{cases} 0 & \text{se } r < \mathbf{R} \\ 2\pi \varepsilon_0 h & \mathbf{h}(\frac{r}{R}) & \text{se } r \ge \mathbf{R} \end{cases} $ $ (49) V(r) = \begin{cases} 0 & \text{se } r < \mathbf{R} \\ 2\pi \varepsilon_0 h & \mathbf{h}(\frac{r}{R}) & \text{se } r \ge \mathbf{R} \\ 2\pi \varepsilon_0 h & \mathbf{h}(\frac{r}{R}) & \text{se } r \ge \mathbf{R} \end{cases} $ $ (416) \mathbf{Gauge} \text{ discosting chiuso} $ $ (57) \mathbf{Gorronte in un circuito chiuso} $ $ (70) \rho = \frac{1}{L} $ $ (70) \rho = \frac{1}{L} $ $ (93) \nabla^2 \mathbf{A} = -\mu \mathbf{i} \mathbf{i} \mathbf{I} \end{cases} $ $ (117) \mathbf{Gorronte in un circuito chiuso} $ $ (118) I(t) = \frac{\mathbf{Bbv}(t)}{\mathbf{Bbv}(t)} $ $ (118) I(t) = \frac{\mathbf{Bbv}(t)}{\mathbf{Bbv}(t)} $	Definizione campo elettrico		$\frac{Q}{Q} \qquad \text{ser} \geq \mathbf{R}$		Momento di dipolo	i Ohm	Invarianza d	(GII)	 Circuiti con barra mobile (b lunghez- za barra) F ρ m indotta 	$\mathbf{M} = n\mathbf{m} = \frac{\mathbf{d}\mathbf{m}}{\mathrm{d}\tau}$	(156)
$V(r) = \begin{cases} V(r) = \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi \epsilon_0 h} \ln(\frac{r}{R}) & \text{se } r \ge R \\ \frac{Q}{2\pi$	$\mathbf{E} = \frac{\mathbf{F}(\mathbf{r}_0)}{q_0}$	(26)						(116)		$\mathbf{M} = \frac{\chi_m \mathbf{B}}{(\chi_m + 1)\mu_0}$	(157)
$(27) \qquad CONDITITIOR \qquad V(r) = \frac{q \cos \cos \theta}{r} = \frac{\mathbf{p} \cdot \mathbf{u}_r}{r} \qquad (70) \qquad \rho = \frac{1}{r} \qquad (70) \qquad \rho = \frac{1}{r} \qquad (118) \qquad I(t) = \frac{Bbv(t)}{r} \qquad (138)$	· En. potenziale due cariche		$\frac{Q}{2\pi\varepsilon_0 h} \ln\left(\frac{r}{R}\right) \text{se } r \ge R$		Potenziale del dipolo			(117)	circuito chiuso	· Campo magnetizzante H	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$U = \frac{q_1 q_2}{4\pi\varepsilon_0 r_{*,0}} + c$		■ CONDUTTORI		$V(r) = \frac{qa\cos\theta}{A\pi\cos^{-0.2}} = \frac{\mathbf{p} \cdot \mathbf{u}_r}{A\pi\cos^{-0.2}} \tag{70}$			(117)	$I(t) = \frac{Bbv(t)}{r} \tag{138}$	$H = \frac{B}{M} - M = \frac{B}{M} = \frac{B}{M} = \frac{M}{M}$	(158)

· Impedenza La somma delle impedenze in serie e parallelo segue le regole dei resistori

■ CIRCUITI RLC

(169)

 $|Z| = \sqrt{R^2 + \left(\omega L + \frac{1}{\omega C}\right)}$

(168)

 $Z = R + i \left(\omega L + \frac{1}{\omega C} \right)$

(170)

 $I''(t) + 2\gamma I'(t) + \omega_0 I(t) = 0$

$$\begin{split} \omega_0 &= \frac{1}{\sqrt{LC}} & \gamma = \frac{R}{2L} \\ \omega &= \sqrt{\omega_0^2 - \gamma^2} & \tau = \frac{1}{1} \\ \text{Smorz. DEBOLE } & \gamma^2 < \omega_0^2 \end{split}$$

· RLC serie in DC smorzato Equazione differenziale

(171)

Smorz. FORTE $\gamma^2 > \omega_0^2$

 $I(t) = I_0 e^{-\gamma t} \sin(\omega t + \varphi)$

(172)

(173)

Smorz. CRITICO $\gamma^2 = \omega_0^2$ $I(t) = e^{-\gamma t} (Ae^{\omega} + Be^{-\omega})$

 $I(t) = e^{-\gamma t} (A + Bt)$

A, B e φ si ricavano impostando le condizioni iniziali

RLC serie in AC forzato Forzante

(174)

(175)

(176)

 $I(t) = I_0(\Omega)\cos(\Omega t)$

Soluzione

Corrente massima

 $I_0(\Omega) = \frac{\varepsilon_0}{|Z|} = \frac{\varepsilon_0}{\sqrt{R^2 + (\omega L + \frac{1}{\omega C})^2}} \quad (177)$

 $I''(t) + 2\gamma I'(t) + \omega_0 I(t) = -\frac{\Omega \varepsilon_0}{L} \sin(\Omega t + \Phi)$

Equazione differenziale

 $\varepsilon(t) = \varepsilon_0 \cos(\Omega t + \Phi)$

(178)

 $\tan\Phi(\Omega) = \frac{L\Omega - \frac{1}{\Omega C}}{R}$

Sfasamento

NOTA: Lo sfasamento di Irispetto a ε è

–Ф Risonanza

(179)

 $Im(Z) = 0 \rightarrow \omega_0 = \frac{1}{\sqrt{LC}}$

· Dens. LINEARE di corrente sulla SUPERFICIE

(159)

 $K_m = M \times u_{\rm r}$

· Dens. SUPERFICIALE corrente
MAGNETIZZATA

 $\mathbf{M}=M\mathbf{u}_z \qquad \mathbf{K_m}=K_m\mathbf{u}_\phi$

(160)(161) (162)

 $\mathbf{j}_1 = \nabla \times \mathbf{H}$

 $\mathbf{j_1} \neq \mu_0 \mathbf{j}$

Dens. SUPERFICIALE corrente LIBERA

 $\oint \mathbf{M} \cdot \mathbf{d} \mathbf{l} = I_{m,c}$

 $\mathbf{j_m} = \nabla \times \mathbf{M}$

(164)

(165)

 $U_B = \frac{1}{2\mu_0} \int_{\mathbb{R}^3} \mathbf{B}^2 \mathrm{d}\tau$

· Energia di B $\oint \mathbf{H} \cdot \mathrm{d}\mathbf{l} = I_{l,c}$

(166)

 $U_B = \frac{1}{2} \int_{\mathbb{R}^3} \mathbf{j} \cdot \mathbf{A} \mathrm{d}\tau$ con N circuiti filiformi

(167)

 $U_B = \frac{1}{2} \sum_{i=1}^N I_i \Phi_i$

. D	y'	Sc)h	J & 1	y",	λ_1 as																																				
	(886)	(907)	(239)		(240)	(241)	ngolare	(242)		(243)			(244)		(245)	(246)		(247)		(248)	(249)		interre- lei due	6		(250)		(251)		(252)		(253)		(254)	(271)	()	(272)	(273)	(274)	1	x - (275)	(۳۰۰۰)
$\begin{aligned} \text{Massimi secondari} \\ m \in \mathbb{Z} - \{kN, kN - 1 \text{ con } k \in \mathbb{Z} \} \end{aligned}$	$\delta = \frac{2m+1}{\pi}$	$o = \frac{1}{2N} \pi \Rightarrow \sin \theta = \frac{1}{2N} \frac{d}{d}$	$I_{SEC} = \frac{I_0}{\left(\sin\frac{\pi d\sin\theta}{\lambda}\right)^2}$	Minimi $m \in \mathbb{Z} - \{kN\}$	$\delta = \frac{2m}{N}\pi \to \sin\theta = \frac{m\lambda}{Nd}$	$I_{MIN} = 0$	Separazione angolare (distanza angolare tra min. e max. adiacente)	$\Delta heta pprox rac{1}{N} rac{\lambda}{d\cos heta}$	Potere risolutore	$\frac{\delta\lambda}{\lambda} = \frac{1}{Nn}$	· Diffrazione Intensità	$\lim_{x \to \infty} \frac{1}{x} \left(\sin \left(\frac{\pi a \sin \theta}{x} \right) \right)^2$	$I(\theta) = I_0 \left(\frac{\frac{\lambda}{\pi a \sin \theta}}{\frac{\lambda}{\lambda}} \right)$	Massimo pincipale in $\theta = 0$	$I_{MAX} = I_0$ Massimi secondari $m \in \mathbb{Z} - \{-1, 0\}$	$\sin\theta = \frac{2m+1}{}\frac{\lambda}{}$	2 a L	$I_{SEC} = \frac{10}{\left(\frac{\pi(2m+1)}{2}\right)^2}$	Minimi $m \in \mathbb{Z} - \{0\}$	$\sin\theta = \frac{m\lambda}{\sigma}$	$I_{MIN} = 0$	· Reticolo di diffrazione	Sovrapposizione di diffrazione e interfe- renza, l'intensità è il prodotto dei due effetti	and the Marian San San San San San San San San San S	$I(\theta) = I_0 \left(\frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\frac{\pi a \sin \theta}{\lambda}} \right) \frac{\sin(\frac{\pi a \sin \theta}{\lambda})}{\sin(\frac{\pi a \sin \theta}{\lambda})} \right)^2$		Dispersione	$D = \frac{\mathrm{d}\theta}{\mathrm{d}\lambda} = \frac{m}{d\cos\theta_m}$	Fattore molt. di inclinazione	$f(\theta) = \frac{1 + \cos \theta}{2}$	· Filtro polarizzatore Luce NON polarizzata	$I = \frac{I_0}{2}$	Luce polarizzata (Legge di Malus)	$I = I_0 \cos^2(\theta)$	$\int \frac{1}{(x^2 + r^2)^{3/2}} \mathrm{d}x = \frac{x}{r^2 \sqrt{r^2 + x^2}}$		$\int \frac{dx}{\sqrt{x^2 + r^2}} dx = \sqrt{r^2 + x^2}$	$\int \frac{x}{(x^2 + r^2)^{3/2}} \mathrm{d}x = -\frac{1}{\sqrt{r^2 + x^2}}$	$\int \frac{1}{-\mathrm{d}x} \mathrm{d}x = \left \log \left(\frac{1 + \sin x}{1 + \sin x} \right) \right $	$\int \cos x dx$	$\int \sin^3 ax dx = -\frac{3a\cos ax}{4a} + \frac{\cos 3ax}{12}$	
	(220)		(221)		(222)	(223)		(224)		(225)	(226)		(227)			(228)		(229)			(230)	ttile	(231)		(232)		(233)		(234)		(235)		(236)	(237)		(267)		(268)			(269)	
· Interferenza generica Onda risultante	$f(\mathbf{r},t) = Ae^{i(kr_1 - \omega t + \alpha)}$	Ampiezza	$A = \sqrt{A_1^2 + A_2^2 + 2A_1 A_2 \cos \delta}$	Diff. cammino ottico	$\delta = \alpha_2 - \alpha_1 = \left(\Phi_2 - \Phi_1 + k \left(r_2 - r_1\right)\right)$ Intensità	$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$	Fase risultante α	$\tan \alpha = \frac{A_1 \sin \alpha_1 + A_2 \sin \alpha_2}{A_1 \cos \alpha_1 + A_2 \cos \alpha_2}$	Massimi	$\delta = 2n\pi$ Minimi	$\delta = (2n+1)\pi$	· Condizione di Fraunhofer	$\theta = \frac{\Delta y}{L}$	L grande tale che $\tan \theta \approx \theta$	· Interferenza in fase Diff. cammino ottico	$\delta = k(r_2 - r_1) = \frac{2\pi}{\lambda} d\sin\theta$		$r_2 - r_1 = n\lambda \to \sin\theta = n\frac{\lambda}{d} n \in \mathbb{Z}$	Distruttiva	$r_2 - r_1 = \frac{2n+1}{2}\lambda \rightarrow \sin\theta = \frac{2n+1}{2}\frac{\lambda}{d}$		· Interf. riflessione su lastra sottile (n indice rifr., t spessore lastra)	Diff. cannino ottico $\delta = \frac{2\pi}{\sqrt{-2nt}}$	$\lambda \cos \theta_t$ Massimi $m \in \mathbb{N}$	$t = \frac{2m+1}{4n}\lambda\cos\theta_t$	$\text{Minimi } m \in \mathbb{N}$	$t = \frac{m}{2n}\lambda\cos\theta_t$	· Interferenza N fenditure Diff. cammino ottico	$\delta = \frac{2\pi}{\sqrt{d}} d\sin\theta$	λ Intensità	$I(\theta) = I_0 \left(\frac{\sin(N\frac{\delta}{2})}{\sin\frac{\delta}{2}} \right)^2$	Massimi principali $m \in \mathbb{Z}$	$\delta = 2m\pi \to \sin\theta = \frac{m\lambda}{d}$	$I_{MAX} = N^2 I_0$	· Attrito viscoso Equazione differenziale	$v' + \frac{v}{-} = K$	Soluzione	$v(t) = k\tau(1 - e^{-\frac{t}{\tau}})$	■ ANALISI MATEMATICA	\cdot Integrali ricorrenti	$\int \frac{x}{x^2 + r^2} dx = \frac{1}{r} \arctan \frac{x}{r}$ $\int \frac{1}{r^2 - r^2} dx = \ln \sqrt{x^2 + r^2} + x$	$\int \sqrt{x^2 + r^2}$
	(198)		(199)		(200)	(201)		(202)	(203)	(204)		(205)	(206)	(207)	(208)	1)	(209)		(210)	(211)	(212)	sso non	(213)	(214)	(215)		(010)	(216)	(217)		(218)	(219)		-0124	(001)	(261)	(262)	(263)	(264)		(265)	(~~~)
· Indice di rifrazione	$n = - = \sqrt{k_e k_m}$	· Legge di Snell-Cartesio	$n_1\sin\theta_1=n_2\sin\theta_2$	· Coefficienti di Fresnel Definizione	$r = \frac{E_r}{E_i} \qquad R = \frac{P_r}{P_i} = \frac{I_r}{I_i}$	$t = rac{E_t}{E_i}$ $T = rac{P_t}{P_i} = rac{I_t}{I_i}$	Raggio RIFLESSO polarizzato	$r_{\sigma} = \frac{\sin(\theta_t - \theta_i)}{\sin(\theta_t + \theta_i)}$	$r_{\pi} = \frac{\tan(\theta_t - \theta_i)}{\cos(\theta_t - \theta_i)}$	$\tan(\theta_t + \theta_i)$ $R_{\sigma} = r_{\sigma}^2 \qquad R_{\pi} = r_{\pi}^2$	Raggio TRASMESSO polarizzato $2n_z\cos\theta.$	$t_{\sigma} = \frac{2n_t \cos \sigma_t}{n_t \cos \theta_t + n_t \cos \theta_t}$	$t_p i = \frac{2n_i \cos \theta_i}{n_t \cos \theta_t + n_t \cos \theta_i}$	$T_{\sigma} = 1 - R_{\sigma} \qquad T_{\pi} = 1 - R_{\pi}$	Luce NOIN polarizzata $B = \frac{1}{2}(B_{\sigma} + B_{\pi}) T = \frac{1}{2}(T_{\sigma} + T_{\pi})$	Incidenza normale $(\cos \theta_i ? \cos \theta_t = 1)$	$r = \frac{n_i - n_t}{n_t}$	$n_i + n_t$	$R = \left(\frac{n_i - n_t}{n_i + n_t}\right)$	$t = \frac{2n_i}{n_i + n_t}$	$T = \frac{4n_i n_t}{(n_i + n_x)^2}$	Angolo di Brewster (il raggio riflesso non	na potat. pataneta) $\theta_i + \theta_t = \frac{\pi}{2} \to \theta_B = \theta_i = \arctan \frac{n_t}{2}$	$R = \frac{1}{2}\cos^2(2\theta_i)$	T = 1 - R	· Pressione di radiazione	I_i	$p = \frac{-}{v}$ Superficie RIFLETTENTE	$p = \frac{I_i + I_t + I_r}{}$	v . Bannorto di nolarizzazione	$\beta_R = \frac{P_R^a - P_R^a}{P_Q^a + P_R^a}$	$\beta_T = \frac{P_T^{\sigma} - P_T^{\pi}}{\sum_{n=0}^{T} P_T^{\pi}}$	Pa + Pr PT + PT	NE	· Lavoro	F = abla W = - abla U . Moto circolara	. Moto circolare unit. accelerato $v=\omega r$	$a = \frac{v^2}{r} = \omega^2 r$	$\theta(t) = \theta(0) + \omega(0)t + \frac{1}{2}\alpha t^2$	· Moto armonico Equazione differenziale	$x'' + \omega^2 x = 0$ Soluzione $x(t) = A \sin(\omega t + \omega)$	(1) - trestation : T)
	(180)		(181)		(182)			(183)	(184)			(185)		(186)		(187)	a dı 2		(188)		(189)		(190)	(191)		(192)		(193)		(194)	(195)	(100)	(196)	(197)		(255)	(256)	(257)	(258)	(259)	(260)	()
\cdot Effetto Joule $_{V}$	$\langle P_R \rangle = \frac{V_0}{2R}$	· Potenza media totale	$\langle P \rangle = \frac{V_0 I_0}{2} \cos(\phi)$	· V e I efficace	$V_{eff} = \frac{\sqrt{2}}{2} V_0$ $I_{eff} = \frac{\sqrt{2}}{2} I_0$	■ CAMPO EM e OTTICA	· Campi in un'onda EM (Nel vuoto $v = c$)	$E(x,t) = E_0 \cos(kx - \omega t)$	$B(x,t) = \frac{E_0}{v} \cos(kx - \omega t)$	$\omega = kv k = \frac{2\pi}{\lambda} \lambda = \frac{v}{\nu}$	· Vettore di Poynting	$\mathbf{S} = \frac{1}{Ho} \mathbf{E} \times \mathbf{B}$	ر Intensità media onda	$I = \langle S \rangle = \langle E^2 \varepsilon v \rangle$	· Potenza	$P = I\Sigma$	L'intensita varia in base alla scelta di E. Fquazioni di continuità	Teorema di Poynting	$\nabla \cdot \mathbf{S} + \mathbf{E} \cdot \mathbf{j} + \frac{\partial u}{\partial t} = 0$	Conservazione della carica	$\nabla \cdot \mathbf{j} + \frac{\partial \rho}{\partial t} = 0$	\cdot Densità di en. campo EM	$u_{EM} = \frac{1}{2} (\mathbf{E} \cdot \mathbf{D} + \mathbf{B} \cdot \mathbf{H})$	$U_{EM} = \int_{\mathbb{R}^3} u_{EM} \mathrm{d}\tau$	· Densità di quantità di moto	$\mathbf{g} = \frac{1}{C^2} \mathbf{X}$	· Effetto Doppler	$\nu' = \nu \frac{v - v_{oss}}{v - v_{sorg}}$	· Oscillazione del dipolo	$I(r,\theta) = \frac{I_0}{r^2} \sin^2(\theta)$	$P = \int \int I(r,\theta) dr d\theta = \frac{8}{3}\pi I_0$	· Velocità dell'onda , 1	$v^{-} = \frac{k_e \varepsilon_0 k_m \mu_0}{1}$	$c^2 = \frac{1}{\varepsilon_0 \mu_0}$	■ UNITÀ DI MISURA $Wh \qquad _{}^{m^2k\sigma}$	$H = \frac{Wb}{A} = Tm^2 = \frac{m^2 \kappa g}{A^2 s^2}$	$\Omega = \frac{V}{A} = \frac{V^2}{W} = \frac{m^2 kg}{A^2 s^3}$	$T = \frac{N}{Am} = \frac{kg}{As^2}$	$V = \frac{J}{C} = \frac{W}{A} = \frac{m^2 kg}{s^3 A}$ $- C C^2 A^2 s^4$	$F = \frac{1}{V} = \frac{1}{J} = \frac{1}{m^2 kg}$	■ FISICA 1 · Momento torcente $M = \mathbf{r} \times \mathbf{F} = I \alpha$	AM - 4 : 4 - 4 :

. Differenziale di nrimo ordine	Soluzioni	in	. Ide	. Identità vettoriali		. Identità geometriche	
Forma generale		0 <		· · · · · · · · · · · · · · · · · · ·	(686)	0	
y'(t) + a(t)y(t) = b(t)	(276) $u(t) =$	$u(t) = c$, $e^{\lambda_1 t} + c$, $e^{\lambda_2 t}$) · ^	$V \cdot (V \times \mathbf{A}) = 0$	(787)	$\sin(\alpha \pm \beta) = \sin \alpha \cos \beta \pm \cos \alpha \sin \beta (288)$	β (288)
		-cle + c2e		$\nabla \times (\nabla f) = 0$	(283)		
Soluzione $a(t) = e^{-A(t)(c+\int b(t)e^{A(t)}dt)}$	Se $\Delta = 0$	0 =) · △	$\nabla \cdot (f\mathbf{A} = f\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla f$	(284)	$\cos(\alpha \pm \beta) = \cos\alpha \cos\beta \mp \sin\alpha \sin\beta (289)$	β (289)
g(x) = c Differentiale di secondo ordine omo-		$y(t) = c_1 e^{\lambda_1 t} + t c_2 e^{\lambda_2 t}$	$(280) \qquad \nabla(\mathbf{A}$	$\nabla(\mathbf{A}\cdot\mathbf{B}) = \mathbf{B}\cdot(\nabla\times\mathbf{A}) - \mathbf{A}\cdot(\nabla\times\mathbf{B})$		$\cos\frac{\alpha}{2} = \pm \sqrt{\frac{1 + \cos\alpha}{2}}$	(290)
geneo	Se $\Delta < 0$	0 >			(282)		
Forma generate $y'' + ay' + by = 0$ $a, b \in \mathbb{R}$	(278) $y(t) =$	$y(t) = c_1 e^{\alpha t} \cos(\beta t) + c_2 e^{\alpha t} \sin(\beta t) (281)$		$\nabla \times (\nabla \times \mathbf{A}) = \nabla (\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$	(286)	$\sin\frac{\alpha}{2} = \pm\sqrt{\frac{1-\cos\alpha}{2}}$	(291)
$\lambda_{1,2} \in \mathbb{C}$ sono le soluzioni dell'equazione associata		$\operatorname{con} \alpha = Re(\lambda) e \beta = Im(\lambda)$	A×	$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$	(287)	$\tan \frac{\alpha}{2} = \frac{1 - \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 + \cos \alpha}$	(292)
		Cartesiane	Sferiche	che	Cilindriche		
	Gradiente ($\nabla f =$)	$\frac{\partial f}{\partial x} \mathbf{x} + \frac{\partial f}{\partial y} \mathbf{y} + \frac{\partial f}{\partial z} \mathbf{z}$	$\frac{\partial \mathbf{f}}{\partial \mathbf{r}} + \frac{1}{r} \frac{\partial f}{\partial \theta} \theta + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \phi$	$\frac{1}{r\sin\theta}\frac{\partial f}{\partial \phi}\phi$	$\frac{\partial f}{\partial r}\mathbf{r} + \frac{1}{r}\frac{\partial f}{\partial \theta}\theta + \frac{\partial f}{\partial z}\mathbf{z}$	SZ.	
	Divergenza $(\nabla \cdot \mathbf{F} =)$	$\frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$	$\frac{1}{r^2} \frac{\partial r^2 F_r}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial F_\theta \sin \theta}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \phi}$	$\frac{\partial \sin \theta}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}$	$\frac{1}{r}\frac{\partial (rF_r)}{\partial r} + \frac{1}{r}\frac{\partial F_\theta}{\partial \theta} + \frac{\partial F_z}{\partial z}$	$\frac{\partial F_z}{\partial z}$	
	Rotore $(\nabla \times \mathbf{F} =)$	$ \begin{pmatrix} \partial F_z \\ \partial y \\ \partial y \\ \partial F_x \\ \frac{\partial F_x}{\partial x} \\ \frac{\partial F_z}{\partial x} \\ \frac{\partial F_y}{\partial x} \\ \end{pmatrix} $	$\left(\frac{1}{r\sin\theta}\left(\frac{\partial F_{\phi}\sin\theta}{\partial\theta} - \frac{\partial F_{\theta}}{\partial\phi}\right)\right)$ $\frac{1}{r}\left(\frac{1}{\sin\theta}\frac{\partial F_{r}}{\partial\phi} - \frac{\partial (rF_{\phi})}{\partial r}\right)$ $\frac{1}{r}\left(\frac{\partial (rF_{\theta})}{\partial r} - \frac{\partial F_{r}}{\partial\theta}\right)$	$\begin{pmatrix} \frac{\partial F_{\phi} \sin \theta}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \\ \frac{\partial \theta}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \end{pmatrix}$ $\frac{1}{r} \begin{pmatrix} \frac{\partial (F_{\theta})}{\partial r} \\ \frac{\partial (F_{\theta})}{\partial r} - \frac{\partial F_{r}}{\partial \theta} \end{pmatrix}$	$\begin{pmatrix} \frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_{\phi}}{\partial z} \\ \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \\ \frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \end{pmatrix}$		
		 laplaciano di un cam	Il laplaciano di un campo scalare Φ , in qualunque coordinata, è $\nabla \cdot \nabla \Phi$	nque coordinata, è ∇	ΦΔ.,		