Statistique Bayésienne

Tests et régions de confiance

Anna Simoni²

²CREST - Ensae and CNRS

Outline

1 Tests

2 Comparaisons avec l'approche classique

3 Régions de confiance

Introduction

- H₀ et H₁ peuvent être considerées : (1) soit comme deux régions (i.e. une partition) de l'espace paramétrique d'un unique modèle d'échantillonage, (2) soit comme deux modèles d'échantillonage différents.
- Débats entre approches classiques (fondé sur P(données|\theta)) et approches bayésien (fondé sur P(\theta|données)). On peut considerer ces deux approches comme complémentaire plutôt qu'opposées.
- Deux points de vue :
 - Une statistique de test est un procédé statistique à valeurs dans un espace à deux points: "accepter" et "rejeter" une hypothèse.
 - les tests d'hypothèses peuvent aussi être considerés comme une façon pour les statisticien de gérer ses doutes relatifs à son modèle statistique.

Principes généraux des tests d'hypothèses. I

- Nous avons un espace de décisions avec deux points : D = {δ₀, δ₁} et une fonction de perte L(θ, δ).
- On peut partitionner en deux classes l'ensemble des états de la nature :

$$\Theta = \Theta_0 \cup \Theta_1$$

où Θ_0 et Θ_1 sont définis :

$$\Theta_0 = \{\theta; L(\theta, \delta_0) = 0\}$$

$$\Theta_1 = \{\theta; L(\theta, \delta_1) = 0\}.$$

• La specification de la fonction de perte est alors complétée comme suit :

$$L(\theta, \delta) = \begin{cases} L_1(\theta) & \text{si } \delta = \delta_1 \text{ et } \theta \in \Theta_0 \\ L_0(\theta) & \text{si } \delta = \delta_0 \text{ et } \theta \in \Theta_1, \end{cases}$$

c'est-à-dire
$$L(\theta, \delta_0) = \mathbb{1}_{\Theta_1}(\theta)L_0(\theta)$$
 et $L(\theta, \delta_1) = \mathbb{1}_{\Theta_0}(\theta)L_1(\theta)$.

Principes généraux des tests d'hypothèses. II

On obtient donc

	Θ_0	Θ_1
δ_0	0	$L_0(\theta)$
δ_1	$L_1(\theta)$	0

- Cas particulier : $L_j(\theta) = L_j$, j = 0, 1 (fonction de perte constante sur les éléments de la partition des états de la nature).
- Lorsque Θ devient l'espace paramétrique d'un modèle statistique, les éléments de la partition Θ = Θ₀ ∪ Θ₁ s'appelleront des hypothèses statistiques.
- Approche de Neyman et Pearson: H₀ est choisie de telle sorte que l'erreur de première espèce soit la plus grave.
- L'analyse Bayésienne ne requiert pas une telle spécification.

Principes généraux des tests d'hypothèses. III

- Soit $x^{(n)} := (x_1, \dots, x_n)$ l'observation d'un échantillon i.i.d. de $X \in \mathcal{X}$.
- La decision optimal a posteriori est définie par :

$$\begin{split} \delta^*(x^{(n)}) &= & \arg\min_{\delta \in \mathcal{D}} \mathbf{E}[L(\theta, \delta) | x^{(n)}] \\ &= & \arg\min_{\delta \in \mathcal{D}} \{\rho(\pi, \delta_0), \rho(\pi, \delta_1)\} \end{split}$$

where $\rho(\pi, \delta) := \mathbf{E}[L(\theta, \delta)|x^{(n)}]$ est le risque à posteriori de la décision δ .

• Dans le cas particulier $L_j(\theta) = L_j, j = 0, 1$, on définit :

$$\pi(\theta \in \Theta_0|x^{(n)}) = p(x^{(n)})$$
 et on peut alors écrire :

$$\mathbf{E}[L(\theta, \delta_0)|x^{(n)}] = L_0 \times (1 - p(x^{(n)}))$$

$$\mathbf{E}[L(\theta, \delta_1)|x^{(n)}] = L_1 \times p(x^{(n)}).$$

La règle optimale de decision devient :

$$\delta^*(x^{(n)}) = \delta_0 \qquad \Leftrightarrow \qquad L_0 \times (1 - p(x^{(n)})) < L_1 p(x^{(n)}).$$

On peut aussi écrire la règle optimale de décision en termes des *quotients d'enieux* (*odds ratio*) :

$$\delta^*(x^{(n)}) = \delta_0 \qquad \Leftrightarrow \qquad \frac{p(x^{(n)})}{1 - p(x^{(n)})} > \frac{L_0}{L_1}.$$

Principes généraux des tests d'hypothèses. IV

- Par exemple : si $L_1 = 19L_0$, alors $\delta^*(x^{(n)}) = \delta_1 \Leftrightarrow \frac{p(x^{(n)})}{1 p(x^{(n)})} < \frac{1}{19}$. Ceci est une façon de formaliser l'idée que l'erreur de type I est beaucoup plus grave que l'erreur de type II.
- En général donc, en analyse Bayésienne, on calcule tout simplement π(Θ₀|x⁽ⁿ⁾) et π(Θ₁|x⁽ⁿ⁾) et on decide en conséquence. Ces probabilités sont les probabilités subjectives des hypothèses au vu des données et de l'a priori.
- La règle de Bayes pour une perte 0 1 consiste à choisir l'hypothèses avec la probabilité a posteriori plus haute.
- Un autre outil utilisé dans des problèmes de test est le Facteur de Bayes :

Définition

Soit $\pi(\Theta_0|x^{(n)})/\pi(\Theta_1|x^{(n)})$ le odds ratio à posteriori et $\pi(\Theta_0)/\pi(\Theta_1)$ le odds ratio à priori. La quantité

$$B_{01} = \frac{posterior\ odds\ ratio}{prior\ odds\ ratio} = \frac{\pi(\Theta_0|x^{(n)})\pi(\Theta_1)}{\pi(\Theta_1|x^{(n)})\pi(\Theta_0)}$$

est appelée le facteur de Bayes en faveur de Θ_0 .

Principes généraux des tests d'hypothèses. IV

- Plus la valeur de BF_{01} est petite et plus forte est l'evidence contre H_0 .
- Lorsque les hypothèses en présence sont des hypothèses simples (i.e.
 Θ_j = {θ_j}, j = 0, 1) et donc Θ = {θ₀, θ₁}, le facteur de Bayes est exactement égal au quotient des vraisemblances et est donc indépendant de l'à priori.
- En général, B_{01} depend de l'a priori. De plus, $B_{10} = 1/B_{01}$.
- Problème avec cet approche : si l'a priori est impropre alors π(Θ₀) et π(Θ₁) peuvent être indéfinies.
- Si notre vue de H₀ est comme dans l'approche fréquentiste (i.e. H₀ ne devrait pas être rejetée sauf s'il y a suffisamment d'evidence pour le contraire) alors il est raisonable d'assigner plus de probabilité a priori à H₀ que à H₁. Un choix objectif serait d'assigner probabilités a priori égaux.
- Tout ça peut être mieux fait avec la specification de l'a priori suivante.

Principes généraux des tests d'hypothèses. V I

• Écrivons l'a priori comme :

$$\pi(\theta) = \begin{cases} \pi_0 g_0(\theta) & \text{if } \theta \in \Theta_0 \\ \pi_1 g_1(\theta) & \text{if } \theta \in \Theta_1 \end{cases}$$
 (1)

où $\pi_j = \pi(\Theta_j), j = 0, 1$ et g_0 et g_1 sont des densités propres. Donc,

$$\pi(\theta) = \pi_0 g_0 \mathbb{1}_{\Theta_0}(\theta) + (1 - \pi_0) g_1(\theta) \mathbb{1}_{\Theta_1}(\theta).$$

• Alors, on peut écrire le posterior odds ratio :

$$\frac{\pi(\Theta_{0}|x^{(n)})}{\pi(\Theta_{1}|x^{(n)})} = \frac{\int_{\Theta_{0}} \pi(\theta|x^{(n)})d\theta}{\int_{\Theta_{1}} \pi(\theta|x^{(n)})d\theta} = \frac{\int_{\Theta_{0}} f(x^{(n)}|\theta)\pi_{0}g_{0}(\theta)d\theta/m(x^{(n)})}{\int_{\Theta_{1}} f(x^{(n)}|\theta)\pi_{1}g_{1}(\theta)d\theta/m(x^{(n)})}$$
$$= \frac{\pi_{0} \int_{\Theta_{0}} f(x^{(n)}|\theta)g_{0}(\theta)d\theta}{\pi_{1} \int_{\Theta_{0}} f(x^{(n)}|\theta)g_{0}(\theta)d\theta}$$

et le facteur de Bayes :

Principes généraux des tests d'hypothèses. V II

$$B = \frac{\int_{\Theta_0} f(x^{(n)}|\theta) g_0(\theta) d\theta}{\int_{\Theta_0} f(x^{(n)}|\theta) g_0(\theta) d\theta}$$

qui est le ratio des vraisemblances ponderées (par g_0 et g_1) de Θ_0 et Θ_1 .

• On a que le posterior odds ratio est égale à :

$$\frac{\pi_0}{1-\pi_0}BF_{01}$$

et il devient égale à BF_{01} si $\pi_0 = 1/2$.

Exemple A I

- Consider a blood test conducted for determining the sugar level of a person with diabetes two hours after he had his breakfast.
- We want to see if his medication has controlled his blood sugar levels.
- Assume that the test result *X* is $\mathcal{N}(\theta, 100)$, where θ is the true level.
- In the appropriate population (diabetic but under this treatment), $\theta \sim \mathcal{N}(100, 900)$,
- Then, marginally $X \sim \mathcal{N}(100, 1000)$, and the posterior distribution is

$$\theta|X = x \sim \mathcal{N}(0.9x + 10, 90).$$

We want to test :

$$H_0: \theta \le 130$$

 $H_1: \theta > 130$.

• If the blood test shows a sugar level of 130, what can be concluded?

Exemple A II

• Given this test result, the posterior is $\mathcal{N}(127, 90)$. Consequently:

$$\pi(\theta \le 130|X = 130) = \Phi\left(\frac{130 - 127}{\sqrt{90}}\right) = \Phi(.316) = 0.624$$

 $\pi(\theta > 130|X = 130) = 0.376.$

Therefore, the posterior odds ratio is : 0.624/0.376 = 1.66.

• Because $\pi_0 = \Phi\left(\frac{130-100}{30}\right) = \Phi(1)$, the prior odds ratio is $\Phi(1)/(1-\Phi(1)) = 0.8413/0.1587 = 5.3$ and thus the Bayes factor is

$$BF_{01} = \frac{1.66}{5.3} = 0.313.$$

• It can also be noted here that in one-sided testing situations when a continuous prior π can be specified readily for the entire parameter space, there is no need to express it in the form of $\pi(\theta) = \pi_0 g_0 \mathbb{1}_{\Theta_0}(\theta) + (1 - \pi_0) g_1(\theta) \mathbb{1}_{\Theta_1}(\theta)$. However, the problem of testing a point null hypothesis turns out to be quite different.

Exemple B I

- Mister A is interested in determining his true weight from a variable bathroom scale.
- Assume the measurements are $X_i \sim \mathcal{N}(\mu, 9)$.
- Sample (measurements in pounds): 182, 172, 173, 176, 176, 180, 173, 174, 179, 175.
- μ =Mister A's true weight
- Suppose Mister A is interested in assessing if his true weight is more than 175 pounds. He wishes to test the hypotheses

$$H_0: \mu \le 175$$

 $H_1: \mu > 175$.

• Prior : $\mu \sim \mathcal{N}(170, 5)$.

• The prior odds of H_0 is given by

$$\frac{\pi_0}{\pi_1} = \frac{P(\mu \le 175)}{P(\mu > 175)}.$$

- > pmean=170; pvar=25
- > probH=pnorm(175,pmean,sqrt(pvar))
- > probA=1-probH
- > prior.odds=probH/probA
- > prior.odds
- [1] 5.302974
- So, a priori, H_0 is five times more likely than H_1 .
- We enter the ten weight measurements into R and compute the sample mean \bar{y} and the associated sampling variance σ^2/n :
 - > weights=c(182, 172, 173, 176, 176, 180, 173, 174, 179, 175)
 - > ybar=mean(weights)
 - $> sigma2 = 3^2/length (weights)$

Exemple B III

• The posterior precision of μ is the sum of the precisions of the data and the prior :

```
> post.precision=1/sigma2+1/pvar
> post.var=1/post.precision
```

• The posterior mean of μ is the weighted average of the sample mean and the prior mean, where the weights are proportional to the respective precisions:

```
> post.mean=(ybar/sigma2+pmean/pvar)/post.precision 
> c(post.mean,sqrt(post.var)) 
[1] 175.7915058 0.9320547
```

• The posterior density of μ is $\mathcal{N}(175.79, 0.93)$.

Exemple B IV

• Using this normal posterior density, we calculate the odds of H_0 :

```
> post.odds=pnorm(175,post.mean,sqrt(post.var))/
+ (1-pnorm(175,post.mean,sqrt(post.var)))
> post.odds
[1] 0.2467017
```

• So, the BF_{01} in support of H_0 is

```
> BF = post.odds/prior.odds
> BF
```

[1] 0.04652139

 From the prior probabilities and the Bayes factor, we can compute the posterior probability of H₀:

```
> postH=probH*BF/(probH*BF+probA)
> postH
[1] 0.1978835
```

 Based on this calculation, we can conclude that it is unlikely that Mister A's weight is at most 175 pounds.

Test d'une hypothèses nulle ponctuelle I

La loi a priori définie en (1) est utile si on veut tester une hypothèse nulle ponctuelle.

- Une hypothèse nulle ponctuelle $H_0: \theta = \theta_0$ (contre $H_1: \theta \neq \theta_0$)ne peut pas être testée sous une loi a priori continue.
- De plus, le facteur de Bayes n'est défini que lorsque π₀ ≠ 0 et π₁ ≠ 0. Cela implique que, si H₀ ou H₁ sont a priori impossibles, les observations ne vont pas modifier cette information absolue : des probabilités nulles a priori le restent a posteriori.

Cette modification de la loi a priori est surprenante, puisqu'elle revient à mettre un poids a priori sur un ensemble de mesure 0 :

- Une probabilité π₀ > 0 doit être assignée au point θ₀ et (1 − π₀) doit être répandue sur {θ ≠ θ₀} utilisant une densité g₁.
- g_0 est alors prise égale à un point masse sur θ_0 .

Test d'une hypothèses nulle ponctuelle II

• Alors on a que $\pi(\theta)$ a une partie continue et une parti discrète :

$$\pi(\theta) = \pi_0 \mathbb{1}_{\theta_0}(\theta) + (1 - \pi_0) g_1(\theta) \mathbb{1}_{\theta \neq \theta_0}(\theta).$$

• Puisque:

$$\pi(\theta_0|x^{(n)}) = \frac{\pi_0 f(x^{(n)}|\theta_0)}{\pi_0 f(x^{(n)}|\theta_0) + (1 - \pi_0) \underbrace{\int_{\theta \neq \theta_0} f(x^{(n)}|\theta) g_1(\theta) d\theta}_{=:m_1(x^{(n)})}}$$

$$= \left(1 + \frac{1 - \pi_0}{\pi_0} \frac{m_1(x^{(n)})}{f(x^{(n)}|\theta_0)}\right)^{-1}$$

le posterior odds ratio devient

$$\frac{\pi(\theta_0|x^{(n)})}{1-\pi(\theta_0|x^{(n)})} = \frac{\pi_0 f(x^{(n)}|\theta_0)}{(1-\pi_0)m_1(x^{(n)})}$$

Test d'une hypothèses nulle ponctuelle III

et le facteur de Bayes est :

$$B_{01} = \frac{f(x^{(n)}|\theta_0)}{m_1(x^{(n)})}.$$

Outline

1 Tests

2 Comparaisons avec l'approche classique

3 Régions de confiance

Tests UPP et UPPS. I

L'approche classique de la théorie des tests est la théorie de Neyman-Pearson (see e.g. Lehmann, 1986). Sous le coût 0-1, noté L ci-dessous, la notion fréquentiste d'optimalité est fondée sur la puissance d'un test, définie comme :

Définition

La puissance d'une procédure de test φ est la probabilité de rejeter H_0 sous l'hypothèse alternative : $1 - \beta(\theta) = 1 - \mathbf{E}_{\theta}[\varphi(x)]$ lorsque $\theta \in \Theta_1$. La quantité $\beta(\theta)$ est appelée erreur de deuxième espèce, tandis que l'erreur de première espèce est $\mathbf{E}_{\theta}[\varphi(x)]$ lorsque $\theta \in \Theta_0$.

Les tests fréquentistes optimaux sont ceux qui minimisent le risque $\mathbf{E}_{\theta}[L(\theta, \varphi(x))]$ sous H_1 seulement :

Définition

Si $\alpha \in (0,1)$ et \mathcal{C}_{α} est la classe des procédures φ satisfaisant la contrainte suivante sur l'erreur de première espèce :

$$\sup_{\theta \in \Theta_0} \mathbf{E}_{\theta}[L(\theta, \varphi(x))] = \sup_{\theta \in \Theta_0} P_{\theta}(\varphi(x) = 1) < \alpha, \tag{2}$$

une procédure de test φ est dite uniformément plus puissante (UPP) au niveau α si elle minimise dans \mathcal{C}_{α} le risque $\mathbf{E}_{\theta}[L(\theta, \varphi(x))]$ uniformément sur Θ_1 .

Tests UPP et UPPS. II

- Cette optimalité entraîne une asymétrie entre les hypothèses nulle et alternative.
- Elle implique la sélection d'un niveau de confiance α par le décideur, en plus du choix de la fonction de coût L, ce qui entraîne généralement le recours à des niveaux standard, comme 0.05 ou 0.01.
- Elle ne suggère pas nécessairement une réduction suffisante de la classe des procédures de test et ne permet pas toujours la sélection d'une procédure unique optimale.
- Si les hypothèses nulle et alternative sont ponctuelles, H₀: θ = θ₀ contre H₁: θ = θ₁, le lemme de Neyman-Person établit l'existence de procédures de test UPP, de la forme :

$$\varphi(x) = \begin{cases} 0 & \sin f(x|\theta_1) < kf(x|\theta_0) \\ 1 & \sin n, \end{cases}$$

k étant donné par le niveau de confiance choisi α .

• Soit T(x) une statistique.

Proposition

Soit $f(x|\theta)$ à rapport de vraisemblance monotone dans T(x). Pour $H_0: \theta \leq \theta_0$ et $H_1: \theta > \theta_0$ il existe un test UPP tel que

$$\varphi(x) = \begin{cases} 0 & \text{si } T(x) < c \\ \gamma & \text{si } T(x) = c \\ 1 & \text{sinon,} \end{cases}$$

 γ et c étant déterminés par la contrainte

$$\mathbf{E}_{\theta_0}[\varphi(x)] = \alpha$$

Cependant, il n'existe pas de test UPP correspondant au cas : H₀ : θ≤ θ ≤ θ₂.
 Ce paradoxe montre l'absence de symétrie du critère UPP et jette un doute sur la validité de l'analyse de Neyman-Pearson ou sur la pertinence d'un coût asymétrique comme le coût 0 − 1.

Lois a priori les moins favorables. I

Lorsque aucun test UPPS n'existe, il devient assez difficile de défendre et de construire une procédure de test dans un cadre fréquentiste.

Considérons le rapport de vraisemblance

$$\frac{\sup_{\theta \in \Theta_0} f(x|\theta)}{\sup_{\theta \in \Theta_1} f(x|\theta)}$$

- Ce rapport illustre un lien avec l'approche bayésienne, car il s'agit d'un facteur de Bayes pour une loi a priori π de support réduit aux points θ̂₀ et θ̂₁, estimateurs du maximum de vraisemblance de θ sur Θ₀ et Θ₁.
- Soient H₀: θ ∈ Θ₀, H₁: θ = θ₁ avec π une loi a priori sur Θ₀. D'un point de vue bayésien, ce problème de test peut être représenté comme le test de H_π: x ~ m_π contre H₁: x ~ f(x|θ₁), où m_π(x) = ∫_{Θ₀} f(x|θ)π(θ)dθ.
- Puisque H₀ et H₁ sont des hypothèses ponctuelles, le lemme de Neyman-Pearson assure l'existence d'un test UPP φ_π à un niveau de signification α et de puissance 1 – β_π = P_{θ1}(φ_π = 1) de la forme :

$$\varphi_{\pi}(x) = \begin{cases} 0 & \text{si } m_{\pi}(x) > kf(x|\theta_1) \\ 1 & \text{sinon,} \end{cases}$$

Lois a priori les moins favorables. II

Définition

Une loi la moins favorable est une loi a priori π qui maximise la puissance $1 - \beta_{\pi}$.

Théorème

Soit $H_0: \theta \in \Theta_0$ et $H_1: \theta = \theta_1$. Si le test UPP φ_{π} au niveau α pour H_{π} contre H_1 satisfait

$$\sup_{\theta \in \Theta_0} \mathbf{E}_{\theta}[L(\theta, \varphi_{\pi})] \le \alpha$$

alors

- (i) φ_{π} est UPP au niveau α ;
- (ii) si φ_{π} est le seul test de niveau α de H_{π} contre H_1 , φ_{π} est le seul test UPP au niveau α pour tester H_0 contre H_1 ; et
- (iii) π est une loi la moins favorable.

Outline

1 Tests

2 Comparaisons avec l'approche classique

3 Régions de confiance

Intervalles de crédibilité. I

L'équivalent Bayésien des intervalles de confiance fréquentist est l'intervalle de crédibilité.

Définition

Un ensemble $100(1-\alpha)\%$ *crédible pour* θ *est un sousensemble* $C_x \subset \Theta$ *tel que*

$$1 - \alpha \le \pi(C_x|x).$$

On peut donc parler de la probabilité que θ est dans C_x .

Définition

Une région $100(1-\alpha)\%$ crédible HPD (Highest Posterior Density) est un sousensemble $C_x \subset \Theta$ de la forme

$$C_x = \{\theta \in \Theta; \pi(\theta|x) \ge k(\alpha)\}$$

où k est la plus grande constante telle que

$$P(C|x) \ge 1 - \alpha$$
.