Homework 4 Syracuse University IST 772 Summer 2021

Question 7

```
# summarize plant growth data and explain the output
summary(PlantGrowth)
##
        weight
                     group
## Min.
           :3.590
                    ctrl:10
## 1st Qu.:4.550
                    trt1:10
## Median :5.155
                    trt2:10
## Mean
           :5.073
## 3rd Qu.:5.530
## Max.
           :6.310
# the summary shows the min, 1st quartile, median, mean, 3rd quartile,
# and max of the weight variable of the plant growth dataset. It also
# shows that there are 3 groups each with 10 observations.
# create a histogram of the control group
hist(PlantGrowth[which(PlantGrowth$group == 'ctrl'),
                 which(colnames(PlantGrowth) == 'weight')],
                 main = 'Histogram of Weight for ctrl Group',
                 xlab = 'Weight', ylab = 'Frequency', breaks = 10)
```

Histogram of Weight for ctrl Group

Histogram of Weight for trt1 Group

Histogram of Weight for trt2 Group


```
# the number of observations in the data set is very small, but based on # the data that is available and by looking at the histograms, the control # group weights are more clustered around the middle while the trt1 and # trt2 groups are more spread out.
```

Question 8

Boxplots of PlantGrowth Groups

It Looks like the trt1 group tends to have lower weight than the other groups,
the trt2 group tends to have higher weight than the other groups, and the
control group tends to have weight in the middle.

Question 9

```
# run a t test to compare the means of ctrl and trt1 groups
t.test(PlantGrowth$weight[PlantGrowth$group == 'ctrl'],
       PlantGrowth$weight[PlantGrowth$group == 'trt1'])
##
##
   Welch Two Sample t-test
##
## data: PlantGrowth$weight[PlantGrowth$group == "ctrl"] and
PlantGrowth$weight[PlantGrowth$group == "trt1"]
## t = 1.1913, df = 16.524, p-value = 0.2504
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.2875162 1.0295162
## sample estimates:
## mean of x mean of y
       5.032
                 4.661
# The confidence interval resulting from the t test is a mean difference of
# -0.29 to 1.03. This means that in 95 out of 100 trials, the population
# mean difference will fall into this confidence interval and in 5 out of 100
```

trials, the population mean difference will not be in this confidence interval.

Question 10

```
# run a t test to compare the means of ctrl and trt2 groups
t.test(PlantGrowth$weight[PlantGrowth$group == 'ctrl'],
      PlantGrowth$weight[PlantGrowth$group == 'trt2'])
##
## Welch Two Sample t-test
## data: PlantGrowth$weight[PlantGrowth$group == "ctrl"] and
PlantGrowth$weight[PlantGrowth$group == "trt2"]
## t = -2.134, df = 16.786, p-value = 0.0479
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.98287213 -0.00512787
## sample estimates:
## mean of x mean of y
                5.526
##
      5.032
# The confidence interval resulting from the t test is a mean difference of
# -0.98 to -0.01. This means that in 95 out of 100 trials, the population
# mean difference will fall into this confidence interval and in 5 out of 100
# trials, the population mean difference will not be in this confidence
interval.
```