

Massive Data Computing Lab @ HIT

大数据算法

第五讲 外存直线结构

哈尔滨工业大学 王宏志 wangzh@hit.edu.cn

本讲内容

5.1 B树

5.2 KD树

B-树

• BFS-块自然对应于扇出为Θ(B)的树

- B-树通过允许节点度变化来保持平衡
 - 再平衡通过分裂和合并结点实现

B-树上的查询

• 假定

(a,b)-树

- T 是一个(a,b)-树 $(a \ge 2 \ \exists b \ge 2a-1)$
 - 所有的叶子在同一层上并且包括*a* 到 *b*个元素
 - 除了根结点,所有的结点的度在a 到b之间

- 根结点的度在2到b之间
- (a,b)-树使用线性空间,并且高度为 O(log_a N)
 ⇒
 选择 a,b = Θ(B)每个结点/叶子保存在一个磁盘块中
 →
 O(N/B)空间和 O(log_B N+T/B)查询

(a,b)-树的插入

• 插入:

在叶子v上搜索和插入元素 DO v有b+1个元素/儿子 拆分v:

创建结点v'和v",分别有 $\begin{vmatrix} b+1 \\ 2 \end{vmatrix} \le b$ 和 $\begin{vmatrix} b+1 \\ 2 \end{vmatrix} \ge a$ 个元素 将元素或指针插入parent(v) (如有必要则创建新结点) v=parent(v)

• 插入涉及O(log_a N) 个结点

(2,4)-树的插入

(a,b)-树的删除

• 删除:

从叶子v搜索和删除元素 DO v有a-1个元素/儿子 将v和兄弟v'合并: 将v'的儿子移到v 从parent(v)中删除元素/引用 (如果需要则删除根) If v有>b(且≤a+b-1<2b)个儿子 分裂v v = parent(v)

• 删除涉及 $O(\log_a N)$ 个结点

(2,4)-Tree Delete

(a,b)-树

- (a,b)-树属性:

- 如果 b≥2a, 更新仅会引起O(1)次再平衡操作
- 如果 b>2a ,只需要 $O(\frac{1}{\frac{1}{2}-a})=O(\frac{1}{a})$ 次再平衡操作,平 推分析起来都有一些困难
- 如果 b=4a ,很容易去证明更新会引起 $O(\frac{1}{a}\log_a N)$ 次再平衡操作来平摊
 - · 分裂之后,插入一个叶子的时候包含≅ 4a/2=2a 个元素
 - 融合之后,删除一个叶子的时候包含 \cong 2a 个到 \cong 5a 个之间的元素 (如果超过3a继续分裂 \Rightarrow 在3/2a 到 5/2a之间)

摘要/结论: B-树

- B-树: (a,b)-树 其中 $a,b = \Theta(B)$
 - O(N/B) 空间
 - O(log_B N+T/B) 查询
 - O(log_B N) 更新
- 元素都在叶子中的B-树有时被称为B+-树

- 建立需要 $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ 次I/O
 - 排列元素和创建叶子
- 从底向上一层层的建树

摘要/结论: B-树

- B-树具有分支参数 b 和叶子参数 k (b,k≥8)
 - 所有的叶子在同一层上,并且包括1/4k到k个元素
 - 除了根结点,所有的结点的度为1/4b到 b
 - 根结点的度为2到b
- B-树具有叶子参数 $k = \Omega(B)$
 - O(N/B) 空间
 - 高度 $O(\log_b \frac{N}{R})$
 - 平摊 O(½)次叶子再平衡的操作
 - 平摊 $O(\frac{1}{b \cdot k} \log_b \frac{N}{B})$ 次内部结点再平衡操作
- B-树具有分支参数 B^c, 0<c≤1, 和叶子参数 B
 - 空间 O(N/B), 更新代价 $O(\log_B N)$, 查询代价 $O(\log_B N + T/B)$

本讲内容

5.1 B树

5.2 KD树

kd-树

- kd-树:
 - 使用垂直/水平线把点集递归分割成两部分
 - 在偶数层使用水平线, 奇数层使用垂直线
 - 每个叶子为一个点

线性结构和对数高度

kd-树: 查询

• 查询

- 递归访问结点响应的交叉查询的区域
- -报告在树/结点中且在查询中完全包含的点

• 查询分析

- 水平线相交 $Q(N) = 2+2Q(N/4) = O(\sqrt{N})$ 个区域
- 查询覆盖T个区域
- ⇒最坏的情况 I/O为 $O(\sqrt{N}+T)$

kdB-树

- kdB-树:
 - 当叶子包含B/2 到 B 个点时停止分割
 - 内部结点的BFS-块
- 像以前一样查询
 - 像以前一样分析但是每个区域现在包含 $\Theta(B)$ 个点

$$O(\sqrt{N/B} + T/B)$$
次 I/O的查询

kdB-树的构建

- 简单的 $O(\frac{N}{B}\log_2 \frac{N}{B})$ 算法
 - 找到 y-坐标的中间 (构造根)
 - 基于中值来分布点
 - 递归构建子树
 - 从顶到下构建BFS-块
- 改进 $O(\frac{N}{B}\log_{M_B}\frac{N}{B})$ 算法的思想
 - 使用*O(N/B)* I/Os 一次构建 log√M/B 层

kdB-树的构建

- 使用 $O(\frac{N}{B}\log_{M_B}\frac{N}{B})$ 次 I/O(根据x- 和 y-坐标 对N个点排序)
- 建立 $\log \sqrt{M/B}$ 层 $(\sqrt{M/B})$ 个结点):O(N/B) 次I/O
 - 1.使用每个板中的 $\sqrt[N]{M/B}$ 个点构建 $\sqrt{M/B}$ X $\sqrt{M/B}$ 的网格
 - 2. 计算每个网格中的点的个数, 并且存储在内存中
 - 3. 利用x-坐标中点找到板s
 - 4. 扫描板s 来找到x-坐标中点,并且构建结点
 - 5. 分裂包含x-坐标中点的板并且更新计数
 - 6. 使用网格在x-坐标中点的每侧进行递归(步骤3)
- \Rightarrow 在算法过程中,网格增长到 $M_B + \sqrt{M_B} \cdot \sqrt{M_B} = \Theta(M_B)$
- ⇒ 每个结点的构建代价: $O(N/(\sqrt{M/B} \cdot B))$ 次I/O

kdB-树

• kdB-树:

- 线性空间
- 查询: $O(\sqrt{N/B} + T/B)$ 次I/O
- -构造: $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ 次I/O
- 点搜索 $O(\log_B N)$ 次I/O
- 动态?
 - 删除相对容易: $O(\log_B^2 N)$ 次I/O (部分重构)

kdB-树使用对数方法插入

• 把点集S 分成子集 S_0 , S_1 , ... $S_{log N}$, $|S_i| = 2^i$ 或者 $|S_i| = 0$

• 在*S*,上建立kdB-树 *D*,

- 查询: 每个查询 $D_i \Rightarrow \sum_{i=0}^{\log N} O(\sqrt{2^i/_B} + \sqrt{T_i/_B}) = O(\sqrt{N/_B} + \sqrt{T/_B})$ 插入: 找到第一个空的 D_i 并且构造 D_i 使用 $1 + \sum_{j=0}^{i-1} 2^j = 2^i$
- 个 $S_0, S_1, ... S_{i-1}$ 中的元素
 - $-O(\frac{2^i}{B}\log_{M/B}\frac{2^i}{B})$ 次I/O \Rightarrow 每个被移动的点 $O(\frac{1}{B}\log_{M/B}\frac{N}{B})$
 - 点被移动O(log N) 次
 - ⇒ 平摊I/O代价: $O(\frac{1}{R}\log_{M/R}\frac{N}{R}\log N) = O(\log_R^2 N)$

kdB-树的插入和删除

- 插入: 使用对数的方法忽略删除
- 删除: 简单的从相关D_i中删除点p
 - 因为p已经被插入,i能够在#插入的基础上被计算
 - #插入通过存储在分开的B-树中每个点插入的数字来计算

 $O(\log_B N$ 额外的更新代价 \bigwedge_{2^0} \bigwedge_{2^1} \bigvee_{2^2} $\bigvee_{2^{\log N}}$

- 为了获得O(log N) 结构 D_i
 - 在每个 $\Theta(N)$ 更新之后执行全局重构

 $\downarrow \downarrow$

额外的更新代价: $O(\frac{1}{B}\log_{M/B}\frac{N}{B}) = O(\log_B N)$

总结:kdB-树

- 在O(N/B)空间内二维范围搜索q4
 - 查询: $O(\sqrt{N/B} + T/B)$ 次I/O
 - 构造: $O(\frac{N}{B}\log_{M/B}\frac{N}{B})$ 次I/O
 - 更新: $O(\log_B^2 N)$ 次I/O

• 最优查询为线性空间结构

致谢

• 本讲义部分内容来自于Lars Arge的讲义

