Probability	Hypothesis			
	i = 1	i=2	i=3	
$p(H_i)$	0.40	0.35	0.25	
$p(E_1 H_i)$	0.3	0.8	0.5	
$p(E_2 H_i)$	0.9	0.0	0.7	
$p(E_3 H_i)$	0.6	0.7	0.9	

Assume that we first observe evidence E_3 . The expert system computes the posterior probabilities for all hypotheses as

$$p(H_i|E_3) = \frac{p(E_3|H_i) \times p(H_i)}{\sum_{k=1}^{3} p(E_3|H_i) \times p(H_k)}, \quad i = 1, 2, 3$$

$$\sum_{k=1}^{3} p(E_3|H_i) \times p(H_k)$$
Thus,
$$p(H_1|E_3) = \frac{0.6 \cdot 0.40}{0.6 \cdot 0.40 + 0.7 \cdot 0.35 + 0.9 \cdot 0.25} = 0.34$$

$$p(H_2|E_3) = \frac{0.7 \cdot 0.35}{0.6 \cdot 0.40 + 0.7 \cdot 0.35 + 0.9 \cdot 0.25} = 0.34$$

$$p(H_3|E_3) = \frac{0.9 \cdot 0.25}{0.6 \cdot 0.40 + 0.7 \cdot 0.35 + 0.9 \cdot 0.25} = 0.32$$

Suppose now that we observe evidence E_1 . The posterior probabilities are calculated as

$$p(H_{i}|E_{1}E_{3}) = \frac{p(E_{1}|H_{i}) \times p(E_{3}|H_{i}) \times p(H_{i})}{\sum_{k=1}^{3} p(E_{1}|H_{i}) \times p(E_{3}|H_{i}) \times p(H_{k})}, \qquad i = 1, 2, 3$$

Hence,

$$p(H_1|E_1E_3) = \frac{0.3 \cdot 0.6 \cdot 0.40}{0.3 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.9 \cdot 0.25} = 0.19$$

$$p(H_2|E_1E_3) = \frac{0.8 \cdot 0.7 \cdot 0.35}{0.3 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.9 \cdot 0.25} = 0.52$$

$$p(H_3|E_1E_3) = \frac{0.5 \cdot 0.9 \cdot 0.25}{0.3 \cdot 0.6 \cdot 0.40 + 0.8 \cdot 0.7 \cdot 0.35 + 0.5 \cdot 0.9 \cdot 0.25} = 0.29$$

Hypothesis H_2 has now become the most likely one.

Apply the depth first search algorithm on the following graph, where the start state is (A) and the desired goal state is (G)

Iteration	X	Open	Closed
0	-	[A]	[]
1	Α	[BCD]	[A]
2	В	[EFCD]	[BA]
3	E	[HIFCD]	[EBA]
4	Н	[IFCD]	[HEBA]
5	1	[FCD]	[IHEBA]
6	F	[JCD]	[FIHEBA]
7	J	[CD]	[JFIHEBA]
8	С	[GD]	[CJFIHEBA]
9	G	G is the goal	

Apply the Breadth first search algorithm on the following graph, where the start state is (A) and the desired goal state is (G)

Iteration	X	Open	Closed
0	-	[A]	[]
1	Α	[BCD]	[A]
2	В	[CDEF]	[BA]
3	С	[DEFG]	[CBA]
4	D	[EFG]	[DCBA]
5	Е	[FGHI]	[EDCBA]
6	F	[GHIJ]	[FEDCBA]
7	G	G is the goal	

Apply the BackTrack search algorithm on the following graph, where the start state is (A) and the desired goal state is (G)

الالجوزيم هنا ليه طريقين

أولا: ان Node ليها children فكدا هيضيفها في SL ويضيف ال children بتوعها في NSL وال DE زي ما هي هسيبها

ثانيا: ان Node دي ملهاش children فكدا هيكرر مجموعه من الخطوات تحت شرط ان CS تساوي اول عنصر في SL فكدا هضيف ال node وهخذف اول عنصر في SL وهاخد اول عنصر في NSL و اول عنصر في الحكمة في CS

Iteration	CS	SL	NSL	DE
0	Α	[A]	[A]	[]
1	В	[BA]	[BCDA]	[]
2	Е	[EBA]	[EFBCDA]	[]
3	Н	[HEBA]	[HIEFBCDA]	[]
	I	[EBA]	[IEFBCDA]	[H]
4	1	[IEBA]	[IEFBCDA]	[H]
	E	[EBA]	[EFBCDA]	[IH]
	F	[BA]	[FBCDA]	[EIH]
5	F	[FBA]	[FBCDA]	[EIH]
6	J	[JFBA]	[JFBCDA]	[EIH]
	F	[FBA]	[FBCDA]	[JEIH]
	В	[BA]	[BCDA]	[FJEIH]
	С	[A]	[CDA]	[BJEIH]
7	С	[CA]	[CDA]	[BJEIH]
8	G	[GCA]	[GCDA]	[BJEIH]
9	G is the goal, path = GCA			

