Общие требования:

- методичка (CUDA) черновик.pdf
- реализация СРU и GPU
 - CPU эталон (качество кода не существенно)
 - ∘ GPU (обязательный вариант 2)
 - вариант 1 без разделяемой памяти
 - вариант 2 с разделяемой памятью
 - 1 задание = 1 ядро
- сравнение времени работы в едином формате
 - о формат: микро-, миллисекунды и т.п.
 - измерение времени на GPU **через события** в CUDA
- полное сравнение результатов работы, т.е. никаких проверок на подобии:
 - через сумму элементов массива
 - о вывод фрагмента на экран и т.п.
- допускается отличие результатов CPU/GPU на единицу
- входное изображение:
 - 5 л.р. в градациях серого (1 пиксель = 1 байт)
 - 6 л.р. RGB без альфа канала (1 пиксель = 3 байта)
 - о размер изображения: от 3000х3000
- тип данных: unsigned char
- использование дополнительных массивов запрещено
- использование текстурной памяти запрещено
- рекомендации:
 - входной/выходной формат: PGM/PPM
 - читает/пишет IrfanView
 - о допускается использование helper image.h:
 - bool __loadPPM(const char *file, unsigned char **data, unsigned int *w, unsigned int *h, unsigned int *channels)
 - bool __savePPM(const char *file, unsigned char *data, unsigned int w, unsigned int h, unsigned int channels)
 - OpenGL опционально
 - о на ЦП увеличить границы изображения

Не Допускается:

- работать с квадратным изображением
- работать с изображением кратным размеру grid и block

Балл от 0 до 0,5. Меняется линейно согласно следующим требованиям:

- работать с изображениями разного размера 0,1 баллов
- оптимизация кода до 0,1 балла:
 - о разделяемая память + корректное обращение по банкам памяти
 - формирование транзакций
 - о обоснование, почему невозможно достигнуть 100% выполнения условия

- оптимизация доступа через регистры до 0,1 балла
- обработать изображение больше 300 MPx 0,2 балла

Низкочастотный фильтр:

$$H_1 = \frac{1}{9} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad H_2 = \frac{1}{10} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \quad H_3 = \frac{1}{16} \begin{pmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{pmatrix}$$

Высокочастотный фильтр:

$$H_1 = \begin{pmatrix} -1 & -1 & -1 \\ -1 & 9 & -1 \\ -1 & -1 & -1 \end{pmatrix}, \quad H_2 = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{pmatrix}, \quad H_3 = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 5 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$

Оператор Собеля(не выбираем):

$$H_1 = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1 \end{pmatrix}, \qquad H_2 = \begin{pmatrix} -1 & -2 & -1 \\ 0 & 0 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

$$S = \sqrt{P^2 + Q^2}$$

где P и Q – отклик ядер H1 и H2 (не желательно, т.к. корень)

Оператор Превитта:

$$H_1 = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & -1 \\ 1 & 0 & -1 \end{pmatrix}, \qquad \qquad H_2 = \begin{pmatrix} -1 & -1 & -1 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix}$$

max{P, Q}, где P и Q – отклик ядер H1 и H2.

Оператор Лапласа:

$$H_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \qquad H_2 = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -8 & 1 \\ 1 & 1 & 1 \end{pmatrix}, \qquad H_3 = \begin{pmatrix} 1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1 \end{pmatrix}$$

Min-фильтр:

В процессе фильтрации значение текущего пикселя заменяется на минимальное значение соседних пикселей

Мах-фильтр:

В процессе фильтрации значение текущего пикселя заменяется на максимальное значение соседних пикселей

Min-Max-фильтр:

В процессе фильтрации значение текущего пикселя изображения сначала заменяется на минимальное значение соседних пикселей, а при повторном проходе на максимальное

Медианный фильтр:

Усредненное фильтрование использует значения элементов, содержащихся в области примыкания, для определения нового значения. Фильтр располагает элементы области примыкания в отсортированном порядке и отбирает среднее значение. Размер матрицы:

- 1. 3x3
- 2. 5x5

Эффект тиснения:

$$H = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & 0 \end{pmatrix}$$