Math 4573: Number Theory

Lecturer: Profesor James Cogdell

Notes by: Farhan Sadeek

Spring 2025

1 January 8, 2025

Dr. Cogdell explained the logistics of the class and also took attendance. This class will be no exams and graded based on only homeworks.

1.1 Conjectures in Number Theory

- A number is divisible by 3 if the sum of its digits is divisible by 3.
- **Fermat's Last Theorem**: There are no three positive integers a, b, and c that satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than 2.
- There are infinitely many primes.
- $\sqrt{2}$ is irrational.
- π is irrational.
- Every number can be written as the sum of four squares (Lagrange's Four Square Theorem). For example, $1000 = 10^2 + 30^2 + 0^2 + 0^2$ and $999 = 30^2 + 9^2 + 3^2 + 3^2$.
- The polynomial $n^2 n + 41$ produces prime numbers for n = 0, 1, 2, ..., 40, but not for n = 41.
- Euler conjectured that no n^{th} power can be written as the sum of two n^{th} powers for n > 2. This was proven false by the counterexample $144^5 = 27^5 + 84^5 + 110^5 + 133^5$.
- Goldbach's Conjecture: Every even integer greater than 2 can be written as the sum of two primes. For example, 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, 12 = 5 + 7, 14 = 7 + 7, 16 = 3 + 13, 18 = 7 + 11. This has been verified for numbers up to 100,000 but remains unproven.

Number theory is related to **Abstract Algebra**, but also intersects with other domains such as **Combinatorics**, **Analysis**, and **Topology**. We will accept a few fundamental facts about **Number Theory**.

Fact 1

If S is a non-empty set of positive integers, then S contains a smallest element. This is known as the Well-Ordering Principle.

1.2 Divisibility

This concept has been known since the time of Euclid.

Definition 2

An integer b is divisible by an integer $a \neq 0$ if there is an integer x such that b = ax. We write this as $a \mid b$. If b is not divisible by a, we write $a \nmid b$.

There are two derivative notions:

- If 0 < a < b, then a is called a **proper divisor** of b.
- If $a^k \mid\mid b$, it means $a^k \mid b$ and $a^{k+1} \nmid b$.

Theorem 3

Let a, b, and c be integers. Then the following are true:

- If *a* | *b*, then *a* | *bc*.
- If $a \mid b$, then $a \mid b + c$.
- If $a \mid b$ and $a \mid c$, then $a \mid b + c$.
- If $a \mid b$ and $b \mid a$, then a = b or a = -b.
- If $a \mid b$ and a > 0 and b > 0, then $a \le b$.
- If $m \neq 0$ and $a \mid b$, then $am \mid bm$.
- If $a \mid b_1, a \mid b_2, \ldots, a \mid b_n$, then $a \mid \sum_{i=1}^n b_i x_i$ for any integers x_i .

Theorem 4 (The Division Algorithm)

Given integers a and b with a > 0, there exist unique integers q and r such that

$$b = qa + r$$
, $0 \le r < a$.

If $a \nmid b$, then r satisfies the stronger inequality

$$0 < r < a$$
.

Proof. Consider the arithmetic progression . . . , b-3a, b-2a, b-a, b, b+a, b+2a, b+3a, In this sequence, select the smallest non-negative member. This defines r and satisfies the inequalities of the theorem. Since r is in the sequence, it can be written as b-qa. To prove the uniqueness of q and r, suppose there is another pair q_1 and r_1 that satisfies the same conditions. We first prove that $r=r_1$. If not, assume $r< r_1$, so $0< r_1-r< a$. But $r_1-r=a(q-q_1)$, meaning $a\mid (r_1-r)$, which contradicts the fact that $0< r_1-r< a$. Thus, $r=r_1$ and $q=q_1$.

Fact 5

If $a \mid b$, then r satisfies the stronger inequality $0 \le r < a$.

Fact 6

The Division Algorithm can be stated without the assumption a > 0. Given integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, and a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, there exist integers a and b with $a \ne 0$, and a and b with a and a are exist integers a and a and

Definition 7 (Common Divisor)

The integer a is a **common divisor** of b and c if $a \mid b$ and $a \mid c$. Since there is only a finite number of divisors of any non-zero integer, there is only a finite number of common divisors of b and c except in the case b = c = 0.

If at least one of b and c is not 0, the **greatest common divisor** is called the **gcd** gcd(b, c) (*greatest common divisor of* b *and* c), and is denoted by (b, c). Similarly, we have the greatest common divisor g of the integers b_1, b_2, \ldots, b_n (not all 0) denoted by (b_1, b_2, \ldots, b_n) .

Theorem 8

If g is the **gcd** of b and c, then there exist integers x_0 and y_0 such that

$$g = bx_0 + cy_0$$

2 January 10, 2025

Dr. Cogdell takes attendance so I will have to be in class every single day.

Definition 9 (Common Divisor)

The integer a is a common divisor of b and c if $a \mid b$ and $a \mid c$. Since there is only a finite number of divisors of any nonzero integer, there is only a finite number of common divisors of b and c, except in the case b = c = 0. If at least one of b and c is not 0, the greatest among their common divisors is called the greatest common divisor of b and c and is denoted by (b, c). Similarly, we denote the greatest common divisor g of the integers b_1, b_2, \ldots, b_n , not all zero, by (b_1, b_2, \ldots, b_n) .

Theorem 10

If g is the greatest common divisor of b and c, then there exist integers x_0 and y_0 such that $g = (b, c) = bx_0 + cy_0$.

Fact 11

Another fundamental way to to state this is that the linear combination of b and c is with integgral multipliers x_0 and y_0 . This assertion of holds for any finite collection.

Proof. Consider the following linear combinations $\{bx + cy\}$ where x and y are all integers. Note this also contains x = y = 0. Choose $bx_0 + cy_0$ is the least positive integer l in the set.

We need to prove that $l \mid b$ and $l \mid c$. We will do this via indirect proof. If we assume that $l \nmid b$, we will obtain a contradiction. From $l \nmid b$, there are integers q and r such that b = lq + r where 0 < r < l. Since l is the least positive integer in the set, we can write $r = bx_1 + cy_1$ for some integers x_1 and y_1 . So we have

$$r = b - Iq = b - q(bx_0 - cy_0) = b(1 - qx_0) + c(-qy_0)$$

and this r is in the set bx + cy. This contradicts the fact that l is the least positive integer in the set $\{bx + cy\}$. Thus, we have shown that $l \mid b$.

Since g is the greatest common divisor of b and c, we may write $l = bx_0 + cy_0 = g(Bx_0 + Cy_0)$. Then, $g \mid l$ and we have shown $g \leq l$. Now, g < l is impossible since, g is the greatest common divisor, so $g = l = bx_0 + cy_0$.

Theorem 12

The greatest common divisor g of b and c can be characterized in the following two ways:

- It is the least positive value of bx + cy where x and y range over all integers.
- It is the positive common divisor of b and c that is divisible by every common divisor.

Proof. Part 1 follows from the proof of Theorem 1.3. To prove part 2, we observe that if d is any common divisor of b and c, then $d \mid g$ by part 3 of Theorem 1.1. Moreover, there cannot be two distinct integers with property 2, because of Theorem 1.1, part 4.

Remark 13. If an integer d is expressible in the form d = bx + cy, then d is not necessarily the gcd(b, c). However, it does follow from such an equation that (b, c) is a divisor of d. In particular, if bx + cy = 1 for some integers x and y, then (b, c) = 1.

Theorem 14

Given any integers b_1, b_2, \ldots, b_n not all zero, with greatest common divisor g, there exist integers x_1, x_2, \ldots, x_n such that

$$g = (b_1, b_2, \ldots, b_n) = \sum_{j=1}^{n} b_j x_j.$$

Furthermore, g is the least positive value of the linear form $\sum_{j=1}^{n} b_j y_j$ where the y_j range over all integers; also g is the positive common divisor of b_1, b_2, \ldots, b_n that is divisible by every common divisor.

Proof. Consider the set $S = \left\{ \sum_{j=1}^n b_j y_j \mid y_j \in \mathbb{Z} \right\}$. Since not all b_j are zero, there exists a non-zero integer in S. Let g be the smallest positive integer in S. Then g can be written as $g = \sum_{j=1}^n b_j x_j$ for some integers x_j .

We claim that g is the greatest common divisor of b_1, b_2, \ldots, b_n . First, we show that g is a common divisor of b_1, b_2, \ldots, b_n . For each b_i , we have

$$b_i = \sum_{j=1}^n b_j \delta_{ij},$$

where δ_{ij} is the Kronecker delta. Since g divides each term on the right-hand side, it follows that $g \mid b_i$ for all i.

Next, we show that g is the greatest common divisor. Let d be any common divisor of b_1, b_2, \ldots, b_n . Then $d \mid \sum_{j=1}^n b_j x_j$, so $d \mid g$. Therefore, g is the greatest common divisor of b_1, b_2, \ldots, b_n .

Finally, we show that g is the least positive value of the linear form $\sum_{j=1}^{n} b_j y_j$. Suppose there exists a positive integer h such that $h = \sum_{j=1}^{n} b_j z_j$ and h < g. Then h is in S, which contradicts the minimality of g. Therefore, g is the least positive value of the linear form.

Thus, we have shown that $g=(b_1,b_2,\ldots,b_n)=\sum_{j=1}^n b_jx_j$ and g is the least positive value of the linear form $\sum_{j=1}^n b_jy_j$ where the y_j range over all integers. Also, g is the positive common divisor of b_1,b_2,\ldots,b_n that is divisible by every common divisor.

Theorem 15

For any positive integerm we have

$$(ma, mb) = m(a, b)$$

Proof. By Theorem 1.4 we have

$$(ma, mb)$$
 = least positive value of $max + mby$
= $m \cdot \{ least positive value of $ax + by \}$
= $m(a, b)$.$

Theorem 16

If $d \mid a$ and $d \mid b$, d > 0, then

$$\left(\frac{a}{b}, \frac{b}{d}\right) = \frac{1}{d}(a, b)$$

If (a, b) = g, then

$$(\frac{a}{q}, \frac{b}{q}) = 1$$

Proof. The second assertion is the special case of the first obtained by using the greatest common divisor g of a and b in the role of d. The first assertion in turn is a direct consequence of Theorem 1.6 obtained by replacing m, a, b in that theorem by d, $\frac{a}{d}$, $\frac{b}{d}$ respectively.

Theorem 17

If
$$(a, m) = (b, m) = 1$$
, then $(ab, m) = 1$

Proof. By Theorem 1.3, there exist integers x_0 , y_0 , x_1 , y_1 such that

$$1 = ax_0 + my_0 = bx_1 + my_1$$
.

Thus, we may write

$$ax_0 - bx_1 = m(y_1 - y_0).$$

Let $y_2 = y_1 - y_0$. Then we have

$$ax_0 - bx_1 = my_2.$$

From the equation $ax_0 - bx_1 = my_2$, we note, by part 3 of Theorem 1.1, that any common divisor of a and b is a divisor of m. Hence, (a, b, m) = 1.

3 January 13, 2025

3.1 Euclidean Algorithm

Given two integers b and c, now we can generate the greatest common divisor. There is no algorithm to this problem, but there is an algorithm.

Question 18. Given a set of integers (bx + cy) how to find the greatest common divisor?

Consider the case b=963 and c=657. If we divide c into b, we get the quotient q=1 and the remainder r=306. We can write this as b=qc+r or r=b-cq. In particular, $306=963-1\cdot657$. Now (b,c)=(b-cq,c) by replacing a and x by c and -q in Theorem 1.9, so we see that

$$(963,657) = (963 - 1.657,657) = (306,657).$$

The integer 963 has been replaced by the smaller integer 306, and this suggests that the procedure be repeated. So we divide 306 into 657 to get a quotient 2 and a remainder 45, and

$$(306, 657) = (306, 657 - 2 \cdot 306) = (306, 45).$$

Next, 45 is divided into 306 with quotient 6 and remainder 36, then 36 is divided into 45 with quotient 1 and remainder 9. We conclude that

$$(963, 657) = (306, 657) = (306, 45) = (45, 36) = (36, 9).$$

Thus (963, 657) = 9, and we can express 9 as a linear combination of 963 and 657 by sequentially writing

each remainder as a linear combination of the two original numbers:

$$306 = 963 - 657$$
,
 $45 = 657 - 2 \cdot 306 = 657 - 2 \cdot (963 - 657) = 3 \cdot 657 - 2 \cdot 963$,
 $36 = 306 - 6 \cdot 45 = (963 - 657) - 6 \cdot (3 \cdot 657 - 2 \cdot 963) = 13 \cdot 963 - 19 \cdot 657$,
 $9 = 45 - 36 = 3 \cdot 657 - 2 \cdot 963 - (13 \cdot 963 - 19 \cdot 657) = 22 \cdot 657 - 15 \cdot 963$.

In terms of Theorem 1.3, where $g = (b, c) = bx_0 + cy_0$, beginning with b = 963 and c = 657 we have used a procedure called the Euclidean algorithm to find g = 9, $x_0 = -15$, $y_0 = 22$. Of course, these values for x_0 and y_0 are not unique: -15 + 657k and 22 - 963k will do where k is any integer.

To find the greatest common divisor (b, c) of any two integers b and c, we now generalize what is done in the special case above. The process will also give integers x_0 and y_0 satisfying the equation $bx_0 + cy_0 = (b, c)$. The case c = 0 is special: (b, 0) = |b|. For $c \neq 0$, we observe that (b, c) = (b, -c) by Theorem 1.9, and hence, we may presume that c is positive.

Theorem 19 (The Euclidean Algorithm)

Given integers b and c > 0, we make a repeated application of the division algorithm, Theorem 1.2, to obtain a series of equations:

$$b = cq_1 + r_1, \quad 0 < r_1 < c,$$

$$c = r_1q_2 + r_2, \quad 0 < r_2 < r_1,$$

$$r_1 = r_2q_3 + r_3, \quad 0 < r_3 < r_2,$$

$$\vdots \qquad \vdots$$

$$r_{j-2} = r_{j-1}q_j + r_j, \quad 0 < r_j < r_{j-1},$$

$$r_{j-1} = r_jq_{j+1}.$$

The greatest common divisor (b, c) of b and c is r_j , the last nonzero remainder in the division process. Values of x_0 and y_0 in $(b, c) = bx_0 + cy_0$ can be obtained by writing each r_i as a linear combination of b and c.

Proof. The chain of equations is obtained by dividing c into b, r_1 into c, r_2 into r_1 , and so on, until r_j into r_{j-1} . The process stops when the division is exact, that is, when the remainder is zero. Thus, in our application of Theorem 1.2, we have written the inequalities for the remainder without an equality sign. For example, $0 < r_1 < c$ instead of $0 \le r_1 < c$, because if r_1 were equal to zero, the chain would stop at the first equation $b = c q_1$, in which case the greatest common divisor of b and c would be c.

We now prove that r_j is the greatest common divisor g of b and c. By Theorem 1.9, we observe that

$$(b,c)=(c,r_1)=(r_1,r_2)=\cdots=(r_{i-1},r_i)=(r_i,0)=r_i.$$

To see that r_j is a linear combination of b and c, we argue by induction that each r_i is a linear combination of b and c. Clearly, r_1 is such a linear combination, and likewise r_2 . In general, r_i is a linear combination of r_{i-1} and r_{i-2} . By the inductive hypothesis, we may suppose that these latter two numbers are linear combinations of b and c, and it follows that r_i is also a linear combination of b and c.

4 January 15, 2025

Example 20

We will find the g.c.d of 42823 and 6409.

Solution. We apply the Euclidean algorithm to divide c into b, where b=42823 and c=6409. We obtain a quotient $q_1=6$ and a remainder $r_1=4369$. Continuing, if we divide 4369 into 6409, we get a quotient $q_2=1$ and a remainder $r_2=2040$. Dividing 2040 into 4369 gives $q_3=2$ and $q_3=289$. Dividing 289 into 2040 gives $q_4=7$ and $q_4=17$. Since 17 is an exact divisor of 289, the solution is that the g.c.d. is 17.

We can write this in tabular form:

$$42823 = 6 \cdot 6409 + 4369,$$

$$6409 = 1 \cdot 4369 + 2040,$$

$$4369 = 2 \cdot 2040 + 289,$$

$$2040 = 7 \cdot 289 + 17,$$

$$289 = 17 \cdot 17.$$

Thus, (42823, 6409) = (6409, 4369) = (4369, 2040) = (2040, 289) = (289, 17) = 17.

Example 21

Find integers x and y such that 42823x + 6409y = 17.

Solution. We find integers x and y such that 42823x + 6409y = 17.

Here it is natural to consider i = 1, 2, ..., but to initiate the process we also consider i = 0 and i = -1. We put $r_{-1} = 42823$, and write

$$42823 \cdot 1 + 6409 \cdot 0 = 42823$$
.

Similarly, we put $r_0 = 6409$, and write

$$42823 \cdot 0 + 6409 \cdot 1 = 6409$$
.

We multiply the second of these equations by $q_1 = 6$, and subtract the result from the first equation, to obtain

$$42823 \cdot 1 + 6409 \cdot (-6) = 4369$$
.

We multiply this equation by $q_2 = 1$, and subtract it from the preceding equation to find that

$$42823 \cdot (-1) + 6409 \cdot 7 = 2040$$
.

We multiply this by $q_3 = 2$, and subtract the result from the preceding equation to find that

$$42823 \cdot 3 + 6409 \cdot (-20) = 289.$$

Next we multiply this by $q_4 = 7$, and subtract the result from the preceding equation to find that

$$42823 \cdot (-22) + 6409 \cdot 147 = 17.$$

On dividing 17 into 289, we find that $q_5 = 17$ and that $289 = 17 \cdot 17$. Thus r_4 is the last positive remainder, so that g = 17, and we may take x = -22, y = 147. These values of x and y are not the only ones possible. In Section 5.1, an analysis of all solutions of a linear equation is given.

Remark 22. Section 5.1 on Analysis

Definition 23

The integers a_1, a_2, \ldots, a_n all different from zero, have a common b if $a_i \mid b$ for $i = 1, 2, \ldots, n$. The least positive multiple is called **least common multiple** and it's denoted $[a_1, a_2, \ldots, a_n]$

Theorem 24

If b is any common multiple of a_1, a_2, \ldots, a_n , then $[a_1, a_2, \ldots, a_n] \mid b$. This is the same as saying that if h denotes $[a_1, a_2, \ldots, a_n]$, then $0, \pm h, \pm 2h, \pm 3, \ldots$ comprise all the common multiples of a_1, a_2, \ldots, a_n .

Proof. Let m be any common multiple and divide m by h. By Division Algorithm, there is a quotient q and a remainder r such that m = qh + r, where $0 \le r < h$. We must prove that r = 0. If $r \ne -$, we argue as follows. For each $i = 1, 2, \ldots, n$, we know that $a_i \mid h$ and $a_i \mid m$, so that $a_i \mid r$. Thus r is a positive common multiple of a_1, a_2, \ldots, a_n contrary to the fact that h is the least of all common positive multiple. \square

Theorem 25

If m > 0 [ma, mb] = m[a, b]. Also, $[a, b] \cdot (a, b) = |ab|$

Proof. Let H = [ma, mb] and h = [a, b]. Then mh is a multiple of ma and mb, so that $mh \mid H$. Also, H is a multiple of both ma and mb, so H/m is a multiple of a and b. Thus, $H/m \mid h$, from which it follows that mh = H, and this establishes the first part of the theorem.

It will suffice to prove the second part for positive integers a and b, since [a, -b] = [a, b]. We begin with the special case where (a, b) = 1. Now [a, b] is a multiple of a, say ma. Then $b \mid ma$ and (a, b) = 1, so by Theorem 1.10 we conclude that $b \mid m$. Hence $b \mid m$, $ba \mid ma$. But ba, being a positive common multiple of b and a, cannot be less than the least common multiple, so ba = ma = [a, b].

Turning to the general case where (a, b) = g > 1, we have (a/g, b/g) = 1 by Theorem 1.7. Applying the result of the preceding paragraph, we obtain

$$\left[\frac{a}{g}, \frac{b}{g}\right] = \frac{ab}{g^2}.$$

Multiplying by g^2 and using Theorem 1.6 as well as the first part of the present theorem, we get a, b = ab.

5 January 17, 2025

Definition 26

An integer p > 1 is called a **prime number** or **prime** in case there is no divisor of d of p satisfying 1 < d < p. An integer a > 1 is not a prime, it is called **composite number**.

Example 27

2, 3, 5, 7 are primes, but 4, 6, 8, 9 are composite.

Theorem 28

Every integer n greater than 1 can be expressed as a product of primes.

Proof. If the integer n is a prime, then the integer itself stands as a 'product' with a single factor. Otherwise, n it can be factored into say n_1 , n_2 , where $1 < n_1 < n$ and $1 < n_2 < n$. If n_1 is prime then let it stand. Otherwise, it will factor into say n_3 , n_4 where $1 < n_3 < n$ and $1 < n_4 < n$. Similarly, for n_2 . The process of writing each composite number that arises as a product of factors must termiate because the factors are smaller than the composite itself, yet each factor is an integer greater than 1. Thus we can conclude n as a product of q primes, and since the prime factors are not necessarily so the result can be written in the form

$$n=p_1^{\alpha_1}p_2^{\alpha_2}p_3^{\alpha_3}\dots p_n^{\alpha_n}$$

where the $p_1, p_2, p_3, \ldots, p_n$ are distinct primes and $\alpha_1, \alpha_2, \ldots, \alpha_n$ are positive

Fact 29

This representation of n as a product of primes is called the canonical factoring of n into prime numbers. It turns out that the representation is unique in the sense that, for a fixed n any other representation is merely a reordering, or a perumtation of factors, nevertheles it requires proof.

Theorem 30

If $p \mid ab, p$ being a prime, then $p \mid a$ or $p \mid b$. More generally, if $p \mid a_1a_2$, then p at least one factor of a_1 .

Proof. If $p \nmid b$, since (a, p) = 1, by a previous theorem, $p \mid b$. We may regard as a proof of the general cae of the statement mathematical induction. So we assume that the property holds when n divides a factor with fewer than n primes. Now, if $p \mid a_1 a_2 \dots a_n$, that is $p \mid ac$, where $c = a_1 a_2 \dots a_n$, then $p \mid a_1$ or $p \mid c$. If $p \mid c$, we apply the induction hypthesis to conclude that $p \mid i$, for some subscript $i = 1, 2, \dots, n$.

Theorem 31 (The Fundamental Theorem of Arithmetic or the Unique Factorization Theorem)

The facoring of n > 1 into primes is unique and apart from the order of the primes.

Proof. Suppose there is an integer n with two different factorizations. Dividing out any primes common to the two representations, we would have an equality of the form

$$p_1p_2\cdots p_k=q_1q_2\cdots q_s$$

where the factors p_i and q_i are primes, not necessarily all distinct, but where no prime on the left side occurs on the right side. But this is impossible because $p_1 \mid q_1 q_2 \cdots q_s$, so by Theorem 1.15, p_1 is a divisor of at least one of the q_i . That is, p_1 must be identical with at least one of the q_i . This contradicts our assumption that no prime on the left side occurs on the right side. Therefore, the factorization of n into primes is unique.

In the applications of the fundamental theorem, we frequently write the integer $a > \leq 1$, in the form,

$$a = \prod_{i=1}^{n} p_i^{\alpha_i}$$

where $\alpha(p)$ is a non-negative integer for all sufficiently large primes, p. If a=1, then $\alpha(p)=0$, for all primes, p and the product may be considered to be empty. We may write $a = \prod p^{\alpha}$

It $a = \prod_p p^{\alpha(p)}$, $b = \prod_p p^{\beta(p)}$, $c = \prod_p p^{\beta(p)}$ and a = b = c then $\alpha(p) + \beta(p) = \gamma(p)$ for all p. So, $a \mid c$, we must note that $\alpha(p) \leqslant \gamma(p)$ for all p that we may define an integer $b = \prod_{p} p^{\beta(p)}$ with $\beta = \gamma(p) - \alpha(p)$. So $a \mid c$. Note that the greatest common divisor and least common multiple can be written as

$$(a, b) = \prod_{p} p^{\min(\alpha(p), \beta(p))}$$
$$[a, b] = \prod_{p} p^{\min(\alpha(p), \beta(p))}$$

$$[a, b] = \prod_{p} p^{\min(\alpha(p), \beta(p))}$$

Example 32

a = 108, b = 225, then $a = 2^2 \cdot 3^3 \cdot 5^0$ and $b = 2^0 \cdot 3^2 \cdot 5^2$. So $(a, b) = 2^0 \cdot 3^2 \cdot 5^0 = 9$, and $[a, b] = 2^2 \cdot 3^3 \cdot 5^2 = 2700.$

Definition 33

a is a square (or perfect square) if it can be written as n^2

Remark 34. a is aware free if 1 is the largest square dividing a. So $\alpha(p)$ is square free if the only numbers are 0 and 1.

Theorem 35 (Euclid)

THenumber of primes is inifite. i.e. there is no end to the sequence of primes.

Proof. Suppose that p_1, p_2, \ldots, p_n are the first r primes. Then form the number

$$n = 1 + p_1 p_2 \dots p_r$$

Note that n is not divisible by p_1 or p_2 or ..., or p_r Hence, any prime divisor is distinct from p_1, p_2, \ldots, p_r . Since n is neither a prime or has a prime factor factor p. This impl

6 January 22, 2025

Theorem 36

There are arbitrarily large gapes in the series of primes stated otherwise, given any k, there exit k consequetive composite integers.

Proof. Consider the integers

$$(k+1)! + 2, (k+1)! + 3..., (k+1)! + k, (k+1)! + k + 1$$

Every one of these composite because j divides (k + 1)! and $j \leq k$.

The primes are spaced rather irregularly, as the last theorem suggests. If we denote the number of pirmes that do not exceed x by $\pi(x)$, but we may ask about the nature of this function. Because of this irregular occurrence of primes, we cannnot expect a simple formula for $\pi(x)$, but we may week to estimate the rate of it's growth.

Theorem 37

For any real number $y \ge 2$, we have

$$\sum_{p \le y} \frac{1}{p} \log \log y - 1$$

Fact 38

From this, it follows that the infinite series \sum_{1}^{p} diverges, which is a second proof for our theorem 35.

6.1 The Binomial Theorem

We first define the binomial coefficients and describe them combinatorially.

Definition 39

Let α be any real number, and let k be a non-negative integer. Then the binomial coefficient $\binom{\alpha}{k}$ is given by the formula:

$$\binom{\alpha}{k} = \frac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-k+1)}{k!}$$

Suppose that n and k are both integers. From the formula, we see that if $0 \le k \le n$, then

$$\binom{n}{k} = \frac{n!}{k!(n-k)!},$$

whereas if n < k, then

$$\binom{n}{k} = 0.$$

Here we employ the convention 0! = 1.

Theorem 40

Let \mathbb{S} be a set containing exactly n elements. For any non-negative integer k, the number of subsets \mathbb{S} containing precisely k elements $\binom{n}{k}$.

Proof. Let \mathbb{S} be a set containing exactly n elements. For any non-negative integer k, the number of subsets \mathbb{S} containing precisely k elements is $\binom{n}{k}$.

Suppose that $\mathbb{S} = \{1, 2, ..., n\}$. These numbers may be listed in various orders, called permutations, here denoted by π . There are n! of these permutations π , because the first term may be any one of the n numbers, the second term any one of the n-1 remaining numbers, the third term any one of the still remaining n-2 numbers, and so on.

We count the permutations in a way that involves the number X of subsets containing precisely k elements. Let N be a specific subset of $\mathbb S$ with k elements. There are k! permutations of the elements of N, each permutation having k terms. Similarly, there are (n-k)! permutations of the n-k elements not in N. If we attach any one of these (n-k)! permutations to the right end of any one of the k! previous permutations, the ordered sequence of n elements thus obtained is one of the permutations π of $\mathbb S$. Thus we can generate k!(n-k)! of the permutations π in this way. To get all the permutations π of $\mathbb S$, we repeat this procedure with N replaced by each of the subsets in question. Let X denote the number of these subsets. Then there are k!(n-k)!X permutations π , and equating this to n! we find that

$$X = \frac{n!}{k!(n-k)!}.$$

We now see that the quotient $\frac{n!}{k!(n-k)!}$ is an integer, because it represents the number of ways of doing something. In this way, combinatorial interpretations can be useful in number theory.

Theorem 41

The product of any k consecutive integers is divisible by k!

Proof. Let's write the product as $n(n-1)\cdots(n-k+1)$. If $n\geq k$, then we write this in the form $\binom{n}{k}\cdot k!$ and note that $\binom{n}{k}$ is an integer, by Theorem 1.20. If $0\leq n< k$, then one of the factors of our product is 0, so the product vanishes, and is therefore a multiple of k! in this case also. Finally, if n<0, we note that the product may be written as

$$(-1)^k(-n)(-n+1)\cdots(-n+k-1)=(-1)^k\binom{-n+k-1}{k}k!.$$

Note that in this case the upper member -n + k - 1 is at least k, so that by Theorem 1.20 the binomial coefficient is an integer.

In the formula for the binomial coefficients we note a symmetry:

$$\binom{n}{k} = \binom{n}{n-k}.$$

Theorem 42 (The Binomial Theorem)

For any integer $n \ge 1$, and any real numbers x and y, we have

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}.$$

Proof. We first consider the product and obtain

$$\prod_{i=1}^{n} (x_i + y_i)$$

On multiplying this out, we obtain 2^n monomial terms of the form

$$\prod_{i\in\mathbb{A}}x_i\prod_{j\in\mathbb{A}}y_j$$

where \mathbb{A} is any subset of $\{1, 2, ..., n\}$. For each fixed $k, 0 \le k \le n$, we consider the monomial terms obtained from those subsets of \mathbb{A} of $\{1, 2, 3, ..., n\}$ having exactly k elements. The number of such subsets is $\binom{n}{k}$, and the set $x_i = x$ and $y_i = y$ for all i and note that such a monomial has a value of $x^k y^{n-k}$ for the subsets in question. Since there are $\binom{n}{k}$