Some Ring Theory Class Notes Class March 12

Conventions regarding 1 (multiplicative unity):

- 1. Every ring R has a multiplicature unity denoted by 1 or 1_R such that $1*a = a*1 \,\forall a \in R$. Note: 1 = 0 in $R \Leftrightarrow R = \{0\}$ because $\forall a \in R$: a = a*1 = a*0 = 0.
- 2. Any subring S of R must contain 1_R . For subring, check
 - (a) $1_R \in S$
 - (b) $a \in S \implies -a \in S$
 - (c) $a, b \in S \implies a + b \in S$
 - (d) $a, b \in S \implies ab \in S$

Note: An ideal I of R is a subring if and only if I = R $(1 \in I \implies a = a * 1 \in I \forall a \in R)$.

Example 0.1. $R \times \{0\} = \{(a,0) \mid a \in R\}$ is not a subring of $R \times R$ if $R \neq \{0\}$ since $(1,1) \notin R \times \{0\}$. But $\{(a,a) \mid a \in R\}$ is a subring of $R \times R$.

- 3. For any ring homomorphism $\varphi: R \to S$ we require $\varphi(1_R) = 1_S$. Note that this is not a consequence of the other ring homomorphism properties:
 - (a) $\varphi(a+b) = \varphi(a) + \varphi(b) \ \forall a, b \in R$
 - (b) $\varphi(ab) = \varphi(a)\varphi(b) \ \forall \ a, b \in R$
 - $\varphi(0) = 0$ is a consequence of (a): $\varphi(0) = \varphi(0+0) = \varphi(0)+\varphi(0) \Longrightarrow 0 = \varphi(0)$. For multiplication, $\varphi(1) = \varphi(1*1) = \varphi(1)*\varphi(1)$ does not necessarily imply $1 = \varphi(1)$ since $\varphi(1)$ need not have a multiplicative inverse in S.

Example 0.2. $\varphi: R \to R \times R$ which maps $a \to (a,0)$ is NOT a ring homomorphism since $\varphi(1_R) = (1_R, 0) \neq 1_{R \times R}$ if $R \neq \{0\}$

Example 0.3. $\psi: R \to R \times R$ which maps $a \to (a, a)$ is a ring homomorphism.

- 4. For an integral domain R (commutative without zero divisors) we also require $1 \neq 0 \Leftrightarrow R \neq \{0\}$ (neither integral domain nor a field)
 - **Example 0.4.** (a) of fields: \mathbb{R}, \mathbb{Z}_p (p prime), \mathbb{Q}, \mathbb{C} . $\mathbb{Q}(\sqrt{2}) := \{a + b\sqrt{2} \mid a, b \in \mathbb{Q}\}$ subfield of \mathbb{R} . Check: $0 \neq x \in \mathbb{Q}(\sqrt{2}) \implies x^{-1} \in \mathbb{Q}(\sqrt{2})$ (need $\sqrt{2} \notin \mathbb{Q}$).
 - (b) of integral domains which are no fields: \mathbb{Z} , when n is a prime $\Longrightarrow \mathbb{Z}_n$ is an integral domain, but also a field. When n is not a prime $\Longrightarrow \mathbb{Z}_n$ has zero divisors and isn't an integral domain. Specifically $\exists l, m \in \mathbb{N}, 1 < l, m < n$ such that $n = lm \leadsto (\text{modulo } n)$. [0] = [n] = [lm] = [l][m] in \mathbb{Z}_n (such that $[l] \neq [0]$ and $[m] \neq [0]$.
 - (c) $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\}$ subring of \mathbb{C} ; $\mathbb{Z}[\sqrt{2}]$ is a subring of \mathbb{R} .
 - (d) commutative rings which are not integral domains. \mathbb{Z}_n , n is not prime. $\mathbb{Z} \times \mathbb{Z}$ has zero divisors e.g. (1,0)*(0,1)=(0,0).
 - (e) of non-commutative rings:
 - i. $M(n,R), n \ge 2$ and R any ring $\ne \{0\}$. $\exists A, B \in M(n,R)$ such that $AB \ne BA$
 - ii. Hamilton's quaternions $\mathbb{H} = \{a + bi + cj + dk \mid a, b, c, d \in \mathbb{R}\}$ ($\cong \mathbb{R}^4$ as abelian group). Multiplication is induced by that \mathbb{Q} and distributive laws \rightsquigarrow example of skew field or division ring.