

SÍLABO INTELIGENCIA ARTIFICIAL Y ROBÓTICA

ÁREA CURRICULAR: CIENCIAS DE LA COMPUTACIÓN

CICLO: VII SEMESTRE ACADÉMICO: 2017-II

I. CÓDIGO DEL CURSO : 09067106050

II. CRÉDITOS : 04

III.REQUISITOS : Programación I

IV.CONDICIÓN DEL CURSO : Obligatorio

V. SUMILLA

El curso es de naturaleza formación especializada; dirigido a que el estudiante adquiera los conceptos relacionados con la Inteligencia Artificial, sus técnicas y los procedimientos usados para resolver problemas de Ingeniería mediante agentes inteligentes de búsqueda; conocer fundamentos de Robótica.

Contenidos: Inteligencia artificial (Redes Neuronales, Lógica Difusa) – Robótica – Teoría de los Autómatas.

VI. FUENTES DE CONSULTA

- Haykin, S. (2008). Neural Networks: A Comprehensive Foundation, 3rd Edition, Macmillan college publishing company
- Harold W. Lewis, III, The foundations of Fuzzy Control. IFSR International Series on Systems Science and Engineering.
- David Coley. An Introduction to Genetic Algorithms for Scientists and Engineers. World Scientific Publishing Company, 2001.
- Laurenne Fausett. Fundamentals of Neural Networks: Architectures, Algorithms and applications. Prentice Hall,
- Toolbox Fuzzy Logic and Neural Network MATLAB, The MathWorks.

Otras fuentes bibliográficas

- García Serrano, A. (2012) Inteligencia Artificial. Fundamentos, práctica y aplicaciones. RC libros.
- Valera Valera A. (2012) Tecnologías de Inteligencia Artificial. EAE
- Russell, S. & Norving, P. (2006) Inteligencia Artificial un enfoque Moderno. 2 Ed. Edit. Prentice Hall.
- Prokhorov Danil, 2008. Computational Intelligence in Automotive Applications.
- Lin, Ch. (1996). Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, Prentice Hall.
- Ross, T. (2010). Fuzzy Logic with Engineering Applications Third Edition, Wiley.

- Pedrycz, W. (2007). Fuzzy Systems Engineering Toward Human-Centric Computing, John Wiley & Sons
- David Goldberg (1989) *Genetic Algorithms in Search, Optimization & Machine Learning*, Addison Wesley.
- J.Palma y R. Marín Inteligencia Artificial, Técnicas, métodos y Aplicaciones. McGraw Hill 2008.
- Freeman, J. Skapura, D. (2005). Redes Neuronales. Algoritmos, Aplicaciones y Técnicas de Programación. Addison-Wesley Publishing.

VII UNIDADES DE APRENDIZAJE

UNIDAD I. INTELIGENCIA ARTIFICIAL

OBJETIVOS DE APRENDIZAJE:

- Entender los conceptos básicos de Inteligencia Artificial.
- Resolver diversos problemas de computación utilizando redes neuronales y lógica difusa

PRIMERA SEMANA

Primera sesión

Introducción al curso. Lectura del sílabo. Organización del curso. Elección de delegados. Acceso virtual a material multimedia. Plataformas de programación.

Segunda sesión

Definiciones de IA. Inteligencia Natural e Inteligencia Artificial.

Road Map de Inteligencia Artificial. Visión de la inmensa cantidad de áreas de la inteligencia artificial.

Técnicas de IA.

SEGUNDA SEMANA

Primera sesión:

Introducción a las Redes Neuronales Artificiales (RNA).

Redes Neuronales Artificiales y Redes Neuronales Biológicas.

Definiciones. Nomenclatura.

Segunda sesión:

Aplicaciones de las Redes Neuronales en la Ingeniería Informática y de Sistemas. Procesamiento Digital de Señales DSP, en la Ingeniería de Control, etc...

TERCERA SEMANA

Primera sesión:

Arquitecturas típicas (capa simple, múltiple capa, etc.)

Funciones de activación. Codificación

Aplicaciones a puertas lógico digitales (AND, OR, XOR)

Implementación en computador de redes neuronales para mapear puertas lógicas digitales.

Segunda sesión:

Reconocimiento y clasificación de patrones. (Pattern Recognition and Classification)

Algoritmos de entrenamiento para asociación de patrones.

Regla de Hebb para asociación de patrones

Tutorial para Aplicaciones a la regresión lineal.

CUARTA SEMANA

Primera sesión:

Regla de aprendizaje de perceptrón

Tasa de aprendizaje

Regla de adaptación de pesos de la red neuronal

Segunda sesión:

Reconocimiento y clasificación de patrones a múltiples categorías. Codificación.

QUINTA SEMANA

Primera sesión:

Redes Neuronales basadas en Competencia.

Mapas Auto organizantes de Kohonen, Self Organizing Maps

Clustering y Auto Organización

K vecinos cercanos

Segunda sesión:

Implementación en computador de Mapas de auto organización para el mapeo de estructuras de datos bi dimensionales.

Tutorial de Clustering de funciones matemáticas

SEXTA SEMANA

Primera sesión:

Red Neuronal de Retro propagación. Retro propagación Standard

(Arquitectura, Algoritmos, Aplicaciones).

Regla Delta para asociación de patrones

Segunda sesión:

Variantes (Diseño de Red, ajuste de pesos, algoritmos de inicialización, número de capas escondidas, etc...).

SEPTIMA SEMANA

Primera sesión:

Red Neuronal de Retro propagación. Retro propagación Standard

(Arquitectura, Algoritmos, Aplicaciones).

Regla Delta para asociación de patrones

Segunda sesión:

Variantes (Diseño de Red, ajuste de pesos, algoritmos de inicialización,

número de capas escondidas, etc...).

Tutorial de Aproximación de funciones matemáticas con red neuronal de retro propagación)

OCTAVA SEMANA

Examen Parcial.

NOVENA SEMANA

Primera sesión:

Representación del conocimiento en la Inteligencia Artificial

Representaciones basadas en lógica

Introducción a la Lógica Difusa. Aplicaciones Generales.

Segunda sesión:

Sistemas Fuzzy. Conjuntos Fuzzy. Operadores de Zadeh.

DECIMA SEMANA

Primera sesión:

Sistemas Difusos. Fuzzyficación. Inferencia. Reglas. Defuzzyficación.

Segunda sesión:

Variables Lingüísticas, Relaciones Fuzzy.

Funciones de Membrecía (Fuzzy Membership Functions)

DECIMOPRIMERA SEMANA

Primera sesión:

Sistema de Inferencia Difuso FIS (Fuzzy Inference System)

Sistemas Fuzzy. Fuzzyficación. Inferencia. Reglas. Defuzzyficación.

Inferencia min-max.

Aplicaciones Generales.

Segunda sesión:

Experiencia en computador.

Tutorial sobre Control difuso de un péndulo invertido / Control de nivel de flujo de un tanque de aqua

UNIDAD II. AGENTES INTELIGENTES Y ROBÓTICA OBJETIVOS DE APRENDIZAJE:

- Saber elegir entre las diferentes técnicas para diferentes problemas y entornos
- Entender el concepto de agente inteligente y conocer sus ventajas y limitaciones
- Analizar diversas aplicaciones de la robótica.

DÉCIMO SEGUNDA SEMANA

Primera sesión

Conceptos y definiciones de robótica

Arquitecturas (software) Robóticas

Segunda sesión

Aplicaciones.

Percepción

Detección de imágenes

Tutorial en Modelamiento Inverso de un Manipulador de Robot utilizando una red neuro difusa (ANFIS)

UNIDAD III. TEORÍA DE LOS AUTÓMATAS OBJETIVOS DE APRENDIZAJE:

- Entender los conceptos básicos de la teoría de los autómatas
- Resolver diversos problemas de computación

DÉCITERCERA SEMANA

Primera sesión

Introducción a la teoría de los autómatas. Definiciones

Modelo matemático

Segunda sesión

Autómatas discretos, continuos e híbridos

DECIMOCUARTA SEMANA

Primera sesión

Autómatas finitos (Finite Automata)

Definiciones y representaciones de Autómatas Finitos Deterministas (AFD)

Minimización de AFD y teoremas

Segunda sesión

Definiciones de Autómatas Finitos no Deterministas

Equivalencias entre AFD y AFND

DECIMOQUINTA SEMANA

Primera sesión

Pushdown Autómata

Complejidad y Lenguajes Formales

Segunda sesión

Turing Machine y su relación con Lenguajes Formales

Métodos de Automátas en Natural Language Processing (NLP)

DECIMOSÉXTA SEMANA

Examen Final

Entrega de promedios finales y acta del curso.

Proyecto de Curso

Diseño e implementación de una Red Neuronal Múltiple Capa (Multiple perceptron layer MLP con el método de aprendizaje de la regla delta generalizada (backpropagation). Aplicación se definirá en las 2 primeras semanas de clase. Los alumnos se organizarán en equipos.

VIII. CONTRIBUCIÓN DEL CURSO AL COMPONENTE PROFESIONAL

a. Matemática y Ciencias Básicas
b. Tópicos de Ingeniería
c. Educación General
0

IX.PROCEDIMIENTOS DIDÁCTICOS

- Método Expositivo Interactivo. Comprende la exposición del docente y la interacción con el estudiante.
- **Método de Discusión Guiada**. Conducción del grupo para abordar situaciones y llegar a conclusiones y recomendaciones.
- **Método de Demostración Ejecución**. Se utiliza para ejecutar, demostrar, practicar y retroalimentar lo expuesto.

X. MEDIOS Y MATERIALES

- Equipos: Computadora, ecran y proyector multimedia.
- Materiales: Manual Universitario, material docente, prácticas dirigidas de laboratorio y textos bases (ver fuentes de consultas).
- **Software**: El alumno tendrá completa libertad para desarrollar la programación de sus aplicaciones en cualquier lenguaje de su elección (*Java Script, Ruby, Python, R Language,*
- C++, Matlab+Simulink).

XI. EVALUACIÓN

El promedio final de la asignatura se obtiene mediante la fórmula siguiente:

 $PF = 0.30^{\circ}PE + 0.30^{\circ}EP + 0.40^{\circ}EF$ PE = (P1 + P2 + P3 + P4) / 4

Donde: Donde:

PF = Promedio final **P1...P4** = Práctica Calificada

EP = Examen parcial **EF** = Examen final

PE = Promedio de evaluaciones

XII. APORTE DEL CURSO AL LOGRO DE RESULTADOS

El aporte del curso al logro de los resultados (Outcomes), para la Escuela Profesional de Ingeniería de Computación y Sistemas, se establece en la tabla siguiente:

K = clave **R** = relacionado **Recuadro vacío** = no aplica

a.	Habilidad para aplicar conocimientos de computación y matemáticas apropiadas para los resultados del estudiante y las disciplinas enseñadas.	R		
b.	Habilidad para analizar un problema e identificar y definir los requerimientos apropiados para su solución.			
C.	Habilidad para diseñar, implementar y evaluar un sistema basado en computadoras, procesos, componentes o programa que satisfagan las necesidades requeridas.			
d.	Habilidad para trabajar con efectividad en equipos para lograr una meta común.			
e.	Comprensión de los aspectos y las responsabilidades profesional, ética, legal, de seguridad y social.			
f.	Habilidad para comunicarse con efectividad con un rango de audiencias.			
g.	Habilidad para analizar el impacto local y global de la computación en los individuos, organizaciones y la sociedad.			
h.	Reconocer la necesidad y tener la habilidad para comprometerse a un continuo desarrollo profesional.			
i.	Habilidad para usar técnicas, destrezas, y herramientas modernas necesarias para la práctica de la computación.	K		
j	Comprensión de los procesos que soportan la entrega y la administración de los sistemas de información dentro de un entorno específico de aplicación.			

XIII. HORAS, SESIONES, DURACIÓN

Teoría	Práctica	Laboratorio
4	0	0

Horas de clase:

Sesiones por semana: Dos sesiones.

Duración: 4 horas académicas de 45 minutos

XIV. PROFESORES DEL CURSO

Jiménez Motte, Fernando, PhD (c) EE, MSEE, BSEE

XV. FECHA

La Molina, agosto de 2017.