Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

✓ Congr	atulations! You passed!	Next Item
4 Cong.	atarations. Fou passeu.	Nextitem
✓	1 / 1 points	
	n notation would you use to denote the 3rd layer's activ put is the 7th example from the 8th minibatch?	ations when
	$a^{[8]\{7\}(3)}$	
	$a^{[3]\{7\}(8)}$	
0	$a^{[3]\{8\}(7)}$	
Corr	rect	
	$a^{[8]\{3\}(7)}$	
~	1 / 1 points	
2. Which agree	n of these statements about mini-batch gradient descer with?	nt do you
	You should implement mini-batch gradient descent we explicit for-loop over different mini-batches, so that the algorithm processes all mini-batches at the same time (vectorization).	the
	Training one epoch (one pass through the training semini-batch gradient descent is faster than training or using batch gradient descent.	_

One iteration of mini-batch gradient descent (computing on a single mini-batch) is faster than one iteration of batch gradient Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Corre	ect
~	1 / 1 points
-	the best mini-batch size usually not 1 and not m, but instead ning in-between?
	If the mini-batch size is 1, you lose the benefits of vectorization across examples in the mini-batch.
Corre	ect
Corre	If the mini-batch size is m, you end up with batch gradient descent, which has to process the whole training set before making progress.
Un-se	If the mini-batch size is 1, you end up having to process the entire training set before making any progress.
Un-se	If the mini-batch size is m, you end up with stochastic gradient descent, which is usually slower than mini-batch gradient descent.

1/1 points

Suppose your learning algorithm's cost J, plotted as a function of the number of iterations, looks like this:

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

Which of the following do you agree with?

- Whether you're using batch gradient descent or mini-batch gradient descent, something is wrong.
- If you're using mini-batch gradient descent, this looks acceptable. But if you're using batch gradient descent, something is wrong.

Correct

- If you're using mini-batch gradient descent, something is wrong. But if you're using batch gradient descent, this looks acceptable.
- Whether you're using batch gradient descent or mini-batch gradient descent, this looks acceptable.

1/1 points

5.

Suppose the temperature in Casablanca over the first three days of January are the same:

Optimization algorithms

Quiz, 10 questions

Jan 1st:
$$\theta_1 = 10^{\circ} C$$

Jan 2nd: $\theta_2 10^o C$

(We used Fahrenheit in lecture, so will use Celsius here in honor of the metric world.)

Say you use an exponentially weighted average with $\beta=0.5$ to track the temperature: $v_0=0$, $v_t=\beta v_{t-1}+(1-\beta)\theta_t$. If v_2 is the value computed after day 2 without bias correction, and $v_2^{corrected}$ is the value you compute with bias correction. What are these values? (You might be able to do this without a calculator, but you don't actually need one. Remember what is bias correction doing.)

$$v_2 = 10, v_2^{corrected} = 7.5$$

$$v_2 = 7.5, v_2^{corrected} = 10$$

Correct

$$v_2 = 10, v_2^{corrected} = 10$$

$$v_2 = 7.5, v_2^{corrected} = 7.5$$

1/1 points

6.

Which of these is NOT a good learning rate decay scheme? Here, t is the epoch number.

$$\alpha = 0.95^t \alpha_0$$

$$\bigcap \quad \alpha = e^t \alpha_0$$

Correct

10/10 points (100%)

1/

Optimization algorithms

10/10 points (100%)

Quiz, 10 questions

7.

You use an exponentially weighted average on the London temperature dataset. You use the following to track the temperature: $v_t = \beta v_{t-1} + (1-\beta)\theta_t.$ The red line below was computed using $\beta = 0.9$. What would happen to your red curve as you vary β ? (Check the two that apply)

Decreasing eta will shift the red line slightly to the right.

Un-selected is correct

Increasing eta will shift the red line slightly to the right.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a green line \$\$\beta=0.98\$) that is slightly shifted to the right.

Decreasing eta will create more oscillation within the red line.

Correct

True, remember that the red line corresponds to $\beta=0.9$. In lecture we had a yellow line \$\$\beta=0.98\$ that had a lot of oscillations.

Increasing β will create more oscillations within the red line.

Optimization algorithms Un-selected is correct

Quiz, 10 questions

10/10 points (100%)

points

8. Consider this figure:

These plots were generated with gradient descent; with gradient descent with momentum (β = 0.5) and gradient descent with momentum (β = 0.9). Which curve corresponds to which algorithm?

(1) is gradient descent. (2) is gradient descent with momentum (small β). (3) is gradient descent with momentum (large β)

Correct

- (1) is gradient descent with momentum (small β), (2) is gradient descent with momentum (small β), (3) is gradient descent
- (1) is gradient descent. (2) is gradient descent with momentum (large β) . (3) is gradient descent with momentum (small β)
- (1) is gradient descent with momentum (small β). (2) is gradient descent. (3) is gradient descent with momentum (large β)

1/1 points

9.

Suppose batch gradient descent in a deep network is taking excessively long to find a value of the parameters that achieves a small value for the $\begin{array}{lll} \textbf{Optimization} & \textbf{10/10 points (100\%)} \\ \textbf{Quiz, 10 questions} & \textbf{Check all that apply)} \end{array}$

J? (Ch	neck all that apply)
	Try initializing all the weights to zero
Un-s	elected is correct
	Try mini-batch gradient descent
Corr	rect
	Try tuning the learning rate $lpha$
Corr	ect
	Try using Adam
Corr	ect
	Try better random initialization for the weights
Corr	ect
✓	1 / 1 points
10.	
Which	of the following statements about Adam is False?
0	Adam should be used with batch gradient computations, not with mini-batches.
Corr	ect

We usually use "default" values for the hyperparameters β_1,β_2 and ε in Adam ($\beta_1=0.9,\beta_2=0.999,\varepsilon=10^{-8}$)

\sim	. •	•	. •	1	1	• . 1		
1	ntin	117	ation	1	$1 \alpha \alpha_1$	rıtl	hm	\mathbf{c}
	. <i>,</i> , , , , , ,	11/.0	111011	4	וטאו			
\sim	P		across	ч.	- D C -			_

10/10 points (100%)

Quiz, 10 questions The learning rate hyperparameter α in Adam usually needs to be tuned.

Adam combines the advantages of RMSProp and momentum

ß

