CHEM202 Organic Chemistry

Nick Green

nick.green@otago.ac.nz, 3n11

Module 1: Spectroscopy and Characterisation

Lecture 9: 13C NMR Spectroscopy

¹³C NMR

¹³C - spin 1/2 nuclei, low sensitivity compared to ¹H (1.76 x 10⁻⁴, see prev. Table of NMR active isotopes) due to;

- low natural abundance, 1.11 %
- inherent low sensitivity ie $\gamma_H/\gamma_C = 4$
- ¹³C nuclei can have long relaxation times

¹³C NMR relaxation

What do the long relaxation time carbons have in common?

Attachment to protons allows more rapid relaxation (nOe) Quaternary carbons usually have the longest relaxation times.

Integration is rarely useful on a 13C spectrum

Carbon peaks are usually measured as narrow singlets so their **intensity is a proxy for their integral**

Peaks with long relaxation times will not receive a full 90 degree pulse upon repeated excitation, unless the delay between experiments is extended.

The integral/intensity thus varies considerably and cannot normally be used in the same way as in 1H NMR.

Features of ¹³C NMR Spectra Differences to ¹H spectra

- the chemical shift range is much wider, δ 0-230 ppm
- no homo-nuclear, ¹³C -¹³C, coupling is observed. This is a consequence of the **low natural abundance** of ¹³C nuclei ie it is very unlikely to find two neighbouring ¹³C nuclei.
- hetero-nuclear, ¹³C ¹H, coupling is observed and yields the number of H's attached to each C ie the carbon type: methyl, methylene, methine or quaternary carbon.
- Whether a carbon is C, CH, CH2 or CH3 is often referred to as its multiplicity.
- the spectrum can be obtained with hetero-nuclear decoupling ie all the ¹³C signals will appear as singlet, irrespective of C–H coupling. Referred to as broad band decoupling, helps with sensitivity (why?)

C-H coupling

Works the same as proton coupling, but now we consider one bond (C-H) coupling.

¹J_{C-H} ranges between 120 − 250 Hz

Varies strongly with hybridisation,

e.g.
$$sp3 = 125 Hz$$
, $sp2 = 155 Hz$, $sp = 250 Hz$

Also affected by substituents

e.g.
$$F_{-13}C_{-H}$$
; $^{1}J_{C_{-H}} = 150 \text{ Hz}$

e.g. alkyl
$$-^{13}$$
C $-$ H; 1 J $_{C-H}$ = 125 Hz

Decreases with distance, $^2J_{C-H} \sim -10 - 20 \text{ Hz}$

³J_{C-H} for unsaturated systems ∼5 − 15 Hz

Most 13C spetra are broadband decoupled, so you won't see these splittings!

Similarities to ¹H spectra

- The number of signals from the proton decoupled spectrum gives the number of different carbon environments.
- The chemical shift gives information on the hybridisation of the carbon and the chemical environment.
- The factors that influenced the chemical shift of 1 H also affect the δ of 13 C eg shielding and deshielding effects.

¹³C chemical shift range

Typical ¹³C shift ranges for various chemical environments.

¹³C chemical shift range

similar relative positions to 1H

(1H chemical shift)

Inductive Effects

 $XC^{1}H_{2}C^{2}H_{2}C^{3}H_{3}$

X	C ¹ H ₂	C ² H ₂	C³H₃
Et	34	22	14
HOOC	36	18	14
SH	27	27	13
NH_2	44	27	11
Phe	39	25	15
Br	36	26	13
CI	47	26	12
OH	64	26	10
NO ₂	77	21	11

The influence of electronegative substituents on ¹³C chemical shifts

Mesomeric effects

The influence of mesomeric effects on ¹³C chemical shifts

Example 13C spectrum

(H-decoupled)

Bonus question:

 Why does CDCl₃ appear as a triplet in H-decoupled 13C spectra?

 Hint: Deuterium is not affected by broadband H decoupling

Broad band decoupled ¹³C {¹H}

Which is which?

How has the multiplicity of the peaks in these spectra been determined??

Single frequency off resonance decoupling (SFORD)

DEPT (**D**istortionless Enhancement by Polarisation Transfer) and **APT** (**A**ttached **P**roton **T**est) experiments

- Either of these two experiments can be used to detect protonated carbons and determine carbon-type ie methyl, methylene or methine (carbon multiplicity)
- Energy (polarisation) is transferred from one nuclei (¹H) to the other (¹³C)
- The degree of transfer is dependent on experimental constraints and the carbon-type and impacts significantly on the relative intensity (and phase) of the carbon signals

DEPT carbon-13 NMR spectrum of citronellal.

CH and CH₃ positive while CH₂ and quaternary C are negative

APT provides the same information based on phase (positive or negative)

CH and CH₃ positive while CH₂ and quaternary C are negative

HETCOR (Heteronuclear correlation spectroscopy)

- Spectrum is a 2D plot of ¹H frequency vs ¹³C frequency (cf COSY)
- HSQC correlates proton signals to the carbon to which the protons are attached (specific to one-bond C-H coupling)
- By checking cross peaks for every carbon signal, we can assign carbon multiplicity

HSQC spectrum of 2-methyl-3-pentanone.

Heteronuclear
Single
Quantum
Coherence

(Single = 1 bond)

HSQC is powerful

The APT or DEPT would help deconvolute 13C spectrum
But HSQC also gives us the (mutual) information about the 1H signals
Blue = CH2, Red = CH/CH3, quaternary signals have no cross peak

End of Module!

"Therefore, we can draw the conclusion that long-term exposure to high magnetic fields has no known harmful physical effect."

Use the websites

NMR tutorial next week

Practical NMR experience will also come from labs