Hausaufgaben zum 7. 12. 2012

Tronje Krabbe 6435002, The-Vinh Jackie Huynh 6388888, Arne Struck 6326505

25. Dezember 2012

1.

a)

$$f(x) = (x_3 \vee \overline{x_2}) \wedge (x_2 \vee \overline{x_1})$$

x_1	x_2	$ x_3 $	$\int f(x)$
0	0	0	1
0	0	1	1
0	1	0	0
1	0	0	0
0	1	1	1
1	1	0	0
1	0	1	0
1	1	$\mid 1 \mid$	1

- \Rightarrow **KNF:** $(x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor x_3) \land (\overline{x_1} \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3})$
- \Rightarrow **DNF:** $(\overline{x_1} \land \overline{x_2} \land \overline{x_3}) \lor (\overline{x_1} \land \overline{x_2} \land x_3) \lor (\overline{x_1} \land x_2 \land x_3) \lor (x_1 \land x_2 \land x_3)$
- \Rightarrow **RMF:** $1 \oplus x_2 \oplus x_1 \oplus x_3x_2 \oplus x_2x_1$

b)

$$g(x) = \overline{x_3} \oplus \overline{x_1}$$

x_1	$ x_2 $	$ x_3 $	f(x)
0	0	0	0
0	0	1	1
0	1	0	0
1	0	0	1
0	1	1	1
1	1	0	1
1	0	1	0
1	1	$\mid 1 \mid$	0

$$\Rightarrow$$
 KNF: $(x_1 \lor x_2 \lor x_3) \land (x_1 \lor \overline{x_2} \lor x_3) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3})$

$$\Rightarrow$$
 DNF: $(\overline{x_1} \wedge \overline{x_2} \wedge x_3) \vee (x_1 \wedge \overline{x_2} \wedge \overline{x_3}) \vee (\overline{x_1} \wedge x_2 \wedge x_3) \vee (x_1 \wedge x_2 \wedge x_3)$

2.

a)

Sei $\overline{\wedge}$ die Schreibweise für NAND:

$$\begin{array}{c|c|c|c} x & \overline{x} & x \wedge x & x \overline{\wedge} x \\ \hline 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ \end{array} \Rightarrow \overline{x} = x \overline{\wedge} x$$

x	y	$x \wedge y$	$x \overline{\wedge} y$	$(x \overline{\wedge} y) \overline{\wedge} (x \overline{\wedge} y)$	
0	0	0	1	0	
0	1	0	1	0	$\Rightarrow x \land y = (x \overline{\land} y) \overline{\land} (x \overline{\land} y) \stackrel{*}{=}$
1	0	0 0	1	0	
1	1	1	0	1	

^{*} Da die Negation bereits gezeigt wurde, ist dieser Umformungsschritt legitim.

\boldsymbol{x}	y	$x \vee y$	$x \overline{\wedge} x$	$y \overline{\wedge} y$	$(x \overline{\wedge} x) \overline{\wedge} (y \overline{\wedge} y)$	
0	0	0	1	1	0	
0	1	1	1	0	1	$\Rightarrow x \vee y = (x \overline{\wedge} x) \overline{\wedge} (y \overline{\wedge} y)$
1	0	1	0	1	1	
1	1	0 1 1 1	0	0	1	

 $[\]Rightarrow$ **RMF:** $x_3 \oplus x_1$

b)

$$f(x_3, x_2, x_1) = (\overline{x_3} \wedge (\overline{x_2} \vee x_1)) \vee (x_1 \wedge (\overline{x_2} \vee x_1))$$

$$= (\overline{x_2} \vee x_1) \wedge (\overline{x_3} \vee x_1)$$

$$= x_1 \wedge (\overline{x_2} \vee \overline{x_3})$$

$$= x_1 \wedge (x_2 \overline{\wedge} x_3)$$

$$= (x_1 \overline{\wedge} (x_2 \overline{\wedge} x_3)) \overline{\wedge} (x_1 \overline{\wedge} (x_2 \overline{\wedge} x_3))$$

3.

a)

	$ x_3 $	$ x_2 $	$ x_1 $	x_0	A	В
0	0	0	0	0	1	1
1	0	0	0	1	0	1
$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$	0	0	1	0	1	1
3	0	0	1	1	1	1
4	0	1	0	0	0	1
5	0	1	0	1	1	0
6	0	1	1	0	1	0
7	0	1	1	1	1	1
8	1	0	0	0	1	1
9	1	0	0	1	1	1

В

b)

$$A(x) = x_3 \lor x_1 \lor (x_2 \land x_0) \lor (\overline{x_2} \land \overline{x_0})$$

$$B(x) = \overline{x_2} \lor (\overline{x_1} \land \overline{x_0}) \lor (x_1 \land x_0)$$

4.

a)

	1				1
	x_3	x_2	x_1	x_0	y
0	0	0	0	0	0
1	0	0	0	1	0
2	0	0	1	0	0
2 3 4 5	0	0	1		0
4	0	1	0	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0
5	0	1	0	1	1
6	0	1	1	0	0
6 7 8 9	0	1	1 1 0 0 1 1 0 0	1	1
8	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0	1 0	0
9	1	0	0	1	0
10	1	0	1	$\begin{vmatrix} 1 \\ 0 \end{vmatrix}$	0
11	1	0	$\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$	1	0
12	1	1	0	0	1
13	1	1	0	1	1
14	1	1	1	$\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$	1
15	1	1	1	1	1

b)& c)

$$y = (x_3 \land x_2) \lor (x_0 \land x_2)$$

d)

