ESE 504-542 : Statistics for Data Science Instructor: Hamed Hassani, Shirin Saeedi Spring 2019

Final Examination

NAME	
------	--

One two-sided note-sheet allowed.

	Grade (y/n)	Score	Max. Score
Problem 1			40
Problem 2			40
Problem 3			20
TOTAL			100

Problem 1 (40 points) [Simple Linear Regression.]

Consider the following simple linear regression problem with the data set $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$.

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i \tag{1}$$

Assume all assumptions for linear regression are met. Particularly, ϵ_i are i.i.d. random variables where $\epsilon_i \sim N(0, \sigma^2)$.

1. Derive the estimators $\hat{\beta}_1$ and $\hat{\beta}_0$ by minimizing the residual sum of squares i.e., by solving

$$\min_{\beta_0, \beta_1} \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2.$$

2. Derive the estimators $\hat{\beta}_1$ and $\hat{\beta}_0$ using maximum likelihood estimation i.e., by solving

$$\max_{\beta_0,\beta_1} \log \ell(\beta_0,\beta_1),$$

where

$$\ell(\beta_0, \beta_1) = \prod_{i=1}^n \Pr(y_i \mid \beta_0, \beta_1, x_i).$$

Note that $\Pr(y_i \mid \beta_0, \beta_1, x_i)$ is the probability of observing y_i given the values of β_0, β_1 and x_i . Compare the results with part 1.

 $3. \,$ Show that your estimates are unbiased i.e., show that

$$E\left[\hat{\beta}_{0}\right] = \beta_{0}, \qquad E\left[\hat{\beta}_{1}\right] = \beta_{1}.$$

4. Consider the case when heterosked asticity is present, i.e., $\epsilon_i \sim N(0, \sigma_i^2)$. Repeat part 2 under heterosked asticity.

Problem 2 (40 points) [Weighted K-Means Clustering.]

Consider data points $x_1, x_2, \dots, x_n \in \mathbb{R}^d$. For each data point x_i we have assigned a positive number $w_i \geq 0$ which indicates the importance of that data point. Our goal is to provide an algorithm for the following weighted K-Means clustering problem: Find K centers $c_1, c_2, \dots, c_K \in \mathbb{R}^d$ that minimize the objective

$$\sum_{i=1}^{n} w_i \times \min_{j \in \{1, \dots, K\}} ||x_i - c_j||^2.$$
 (2)

1. Assume that K = 1. Find the optimal centroid that minimizes (2).

2. For a given K, Extend the K-Means algorithm taught in class to the weighted setting. Explain precisely what the algorithm is and justify your answer

\mathbf{P}

roblem 3 (20 points)	[Basic Questions about Learning Theory.]
1. Give a precise definit	tion of "PAC Learnability".
2. Explain briefly why	finite hypothesis classes are PAC learnable.

3. What property should an infinite hypothesis class have in order to be

PAC learnable?