Gradient Boosting

Jian Li

李建

Xgboost

• Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more.

https://github.com/dmlc/xgboost

• 基于论文

XGBoost: A Scalable Tree Boosting System

regression tree

• CART (Classification And Regression Trees)

Input: age, gender, occupation, ... Does the person like computer games

Ensemble of regression tree

Prediction of is sum of scores predicted by each of the tree 预测的分数是每个树的预测分数的和

主要用于Gradient Boosting和random forest

Ensemble of regression tree

• Suppose there are k trees 假设有K个树, f_k 是第k个树定义的函数

$$\hat{y}_i = \sum_{k=1}^K f_k(x_i), \quad f_k \in \mathcal{F}$$

Space of functions containing all Regression trees

所有regression tree定义的函数的集合

如何学习一棵树

- Example:
 - Consider regression tree on single input t (time)
 - I want to predict whether I like romantic music at time t

The model is regression tree that splits on time

t < 2011/03/01 Y N Equivalently 0.2 1.2

Piecewise step function over time

如何学习一棵树

• 用分段函数近似原函数

Objective for single variable regression tree(step functions) 目标函数

- Training Loss: How will the function fit on the points? 训练的损失函数
- Regularization: How do we define complexity of the function?正则项
 - Number of splitting points, l2 norm of the height in each segment?

Model: assuming we have K trees

$$\hat{y}_i = \sum_{k=1}^K f_k(x_i), \quad f_k \in \mathcal{F}$$

Objective

日标函数
$$Obj = \sum_{i=1}^n l(y_i, \hat{y}_i) + \sum_{k=1}^K \Omega(f_k)$$
 Training loss Complexity of the Trees

训练损失函数

正则项:树的复杂度 一般我们对树的深度,或者数的叶 子数量有限制

希望找到一组(K个)树,使得目标函数最小

Loss function 损失函数

- Using Square loss $l(y_i, \hat{y}_i) = (y_i \hat{y}_i)^2$
 - Will results in common gradient boosted machine
- Using Logistic loss $l(y_i, \hat{y}_i) = y_i \ln(1 + e^{-\hat{y}_i}) + (1 y_i) \ln(1 + e^{\hat{y}_i})$
 - Will results in LogitBoost

Regularization 正则项:树的复杂度

Define complexity as (this is not the only possible definition)

$$\Omega(f_t) = \gamma T + rac{1}{2} \lambda \sum_{j=1}^T w_j^2$$
 Number of leaves L2 norm of leaf scores 叶子数量 叶子上的分数的平方和

Additive Training

- Solution: Additive Training (Boosting)
 - Start from constant prediction, add a new function each time

$$\hat{y}_i^{(0)} = 0$$
 $\hat{y}_i^{(1)} = f_1(x_i) = \hat{y}_i^{(0)} + f_1(x_i)$
 $\hat{y}_i^{(2)} = f_1(x_i) + f_2(x_i) = \hat{y}_i^{(1)} + f_2(x_i)$
 \dots
 $\hat{y}_i^{(t)} = \sum_{k=1}^t f_k(x_i) = \hat{y}_i^{(t-1)} + f_t(x_i)$ New function

Model at training round t

Keep functions added in previous round

第t轮的模型

第t轮以前得到的模型

Additive Training

- How to choose f_t 如何确定第t轮的 f_t ()
 - The prediction at round t is $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$

This is what we need to decide in round t

$$Obj^{(t)} = \sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t)}) + \sum_{i=1}^{t} \Omega(f_i)$$

= $\sum_{i=1}^{n} l(y_i, \hat{y}_i^{(t-1)}) + f_t(x_i) + \Omega(f_t) + constant$

Goal: find f_t to minimize this

Consider square loss

$$Obj^{(t)} = \sum_{i=1}^{n} \left(y_i - (\hat{y}_i^{(t-1)} + f_t(x_i)) \right)^2 + \Omega(f_t) + const$$

= $\sum_{i=1}^{n} \left[2(\hat{y}_i^{(t-1)} - y_i) f_t(x_i) + f_t(x_i)^2 \right] + \Omega(f_t) + const$

This is usually called residual from previous round 残差项

Additive Training

• 一般情况

• Goal
$$Obj^{(t)} = \sum_{i=1}^{n} l\left(y_i, \hat{y}_i^{(t-1)} + f_t(x_i)\right) + \Omega(f_t) + constant$$

- Take Taylor expansion of the objective 泰勒展开目标函数
 - Recall $f(x+\Delta x)\simeq f(x)+f'(x)\Delta x+\frac{1}{2}f''(x)\Delta x^2$
 - Define $g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[l(y_i, \hat{y}_i^{(t-1)}) + g_i f_t(x_i) + \frac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t) + constant$$

原来的的Gradient Boosting展开到1阶,xgboost展开到2阶

学习第t个树 f_t ()的目标函数

学习第t个树 $f_t()$

•去掉和 f_t ()无关的项,得到如下目标函数

$$\begin{split} \sum_{i=1}^n \left[g_i f_t(x_i) + \tfrac{1}{2} h_i f_t^2(x_i) \right] + \Omega(f_t) \\ \text{where} \quad g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)}) \end{split}$$

$$Obj^{(t)} \simeq \sum_{i=1}^{n} \left[g_{i} f_{t}(x_{i}) + \frac{1}{2} h_{i} f_{t}^{2}(x_{i}) \right] + \Omega(f_{t})$$

$$= \sum_{i=1}^{n} \left[g_{i} w_{q(x_{i})} + \frac{1}{2} h_{i} w_{q(x_{i})}^{2} \right] + \gamma T + \lambda \frac{1}{2} \sum_{j=1}^{T} w_{j}^{2}$$

$$= \sum_{j=1}^{T} \left[\left(\sum_{i \in I_{j}} g_{i} \right) w_{j} + \frac{1}{2} \left(\sum_{i \in I_{j}} h_{i} + \lambda \right) w_{j}^{2} \right] + \gamma T \quad \text{每个叶子-个二次函数}$$
共T个叶子

$$I_j = \{i | q(x_i) = j\}$$

Simplify the objective 简化目标函数

• Let us define $G_j = \sum_{i \in I_j} g_i \ H_j = \sum_{i \in I_j} h_i$

$$Obj^{(t)} = \sum_{j=1}^{T} \left[(\sum_{i \in I_j} g_i) w_j + \frac{1}{2} (\sum_{i \in I_j} h_i + \lambda) w_j^2 \right] + \gamma T$$

= $\sum_{j=1}^{T} \left[G_j w_j + \frac{1}{2} (H_j + \lambda) w_j^2 \right] + \gamma T$

对二次函数,最优的权重取值为:

$$w_j^* = -\frac{G_j}{H_j + \lambda}$$
 $Obj = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$

$$argmin_x Gx + \frac{1}{2}Hx^2 = -\frac{G}{H}, \ H > 0 \quad \min_x Gx + \frac{1}{2}Hx^2 = -\frac{1}{2}\frac{G^2}{H}$$

g1, h1

2

g2, h2

3

g3, h3

g4, h4

5

g5, h5

$$Obj = -\sum_{j} \frac{G_{j}^{2}}{H_{j} + \lambda} + 3\gamma$$

The smaller the score is, the better the structure is

Greedily grow the tree 贪心算法建树

- Start with the root 从根节点开始
- Split a leaf 每次对叶子节点进行split
- The gain for a split 一个split对目标函数的贡献

贪心算法建树

• Choose best split 选择最好的split

• Stop if gain<0 如果gain是负数就停止

Review 回顾整个算法

- Add a new tree in each iteration 每个循环建立一个树
- Beginning of each iteration, calculate 每个循环初始,计算下列数据

$$g_i = \partial_{\hat{y}^{(t-1)}} l(y_i, \hat{y}^{(t-1)}), \quad h_i = \partial_{\hat{y}^{(t-1)}}^2 l(y_i, \hat{y}^{(t-1)})$$

• Use the statistics to greedily grow a tree $f_t(x)$ 用贪心算法构建树t

$$Obj = -\frac{1}{2} \sum_{j=1}^{T} \frac{G_j^2}{H_j + \lambda} + \gamma T$$

- Add $f_t(x)$ to the model $\hat{y}_i^{(t)} = \hat{y}_i^{(t-1)} + f_t(x_i)$ 将 $f_t(x)$ 为为人模型
 - Usually, instead we do $y^{(t)} = y^{(t-1)} + \epsilon f_t(x_i)$

实践中会选取一个步长 ϵ , 0.1左右,对防止过拟合有帮助

- ullet is called step-size or shrinkage, usually set around 0.1
- This means we do not do full optimization in each step and reserve chance for future rounds, it helps prevent overfitting

Optimization

Histogram

Too many split points, very expensive Need to reduce the number of potential split points

- (1) Sampling
- (2) Use simple quantiles
- (3) Xgb used a more involved quantiles Typically, less than 256 bins are enough

Optimization

Gradient Base One Side Sampling (GOSS) (used in LightGBM) (analogue to minibatch-SGD)

 a sampling strategy to speedup the training. strategy samples data points according to the magnitudes of gradients before each iteration.

```
Algorithm 2: Gradient-based One-Side Sampling
Input: I: training data, d: iterations
Input: a: sampling ratio of large gradient data
Input: b: sampling ratio of small gradient data
Input: loss: loss function, L: weak learner
models \leftarrow \{\}, fact \leftarrow \frac{1-a}{b}
topN \leftarrow a \times len(I), randN \leftarrow b \times len(I)
for i = 1 to d do
    preds \leftarrow models.predict(I)
                                                                                   TopN data pts with largest loss (a*100%)
    g \leftarrow loss(I, preds), w \leftarrow \{1,1,...\}
    sorted \leftarrow GetSortedIndices(abs(g))
    topSet \leftarrow sorted[1:topN]
                                                                                     A random subset from remaining data (b*100%)
    randSet \leftarrow RandomPick(sorted[topN:len(I)],
    randN)
    usedSet \leftarrow topSet + randSet
                                                                                                 Combine two subsets
    w[randSet] \times = fact \triangleright Assign weight fact to the
    small gradient data.
    newModel \leftarrow L(I[usedSet], - g[usedSet],
                                                                             After that, GOSS amplifies the sampled data with small gradients
    w[usedSet])
    models.append(newModel)
                                                                             by a constant (1-a)/b when calculating the information gain
```

Python example 例子

```
import xgboost as xgb
# read in data
dtrain = xgb.DMatrix('demo/data/agaricus.txt.train')
                                                          Data: https://github.com/dmlc/xgboost/tree/master/demo/data
dtest = xgb.DMatrix('demo/data/agaricus.txt.test')
# specify parameters via map
param = {'max_depth':2, 'eta':1, 'silent':1, 'objective':'binary:logistic' }
num round = 2
bst = xgb.train(param, dtrain, num_round)
                                                                     eta [default=0.3, alias: learning rate]step
                                                                     size shrinkage used in update to prevents
# make prediction
```

参数解释:

preds = bst.predict(dtest)

https://xgboost.readthedocs.io/en/latest//parameter.html#general-parameters

- overfitting.
- silent [default=0]0 means printing running messages, 1 means silent mode.
- objective [default=reg:linear] "reg:linear" linear regression
 - "reg:logistic" –logistic regression
 - "binary:logistic" –logistic regression for binary classification, output probability

数据解释

https://github.com/dmlc/xgboost/blob/master/demo/data/agaricus.txt.train

- 13:1 10:1 11:1 21:1 30:1 34:1 36:1 40:1 41:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1 0 3:1 10:1 20:1 21:1 23:1 34:1 36:1 39:1 41:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 120:1
- 0 1:1 10:1 19:1 21:1 24:1 34:1 36:1 39:1 42:1 53:1 56:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 106:1 116:1 122:1 1 3:1 9:1 19:1 21:1 30:1 34:1 36:1 40:1 42:1 53:1 58:1 65:1 69:1 77:1 86:1 88:1 92:1 95:1 102:1 105:1 117:1 124:1

•

• libsvm的输入数据格式。每行一个数据点。每个数据点包括label和特征,第一个是label,之后的每个含有:的pair是特征的值。 之前表示特征编号,:之后是特征值。(稀疏表示)

备注

- 很多用xgboost的例子 https://github.com/dmlc/xgboost/tree/master/demo#basicexamples-by-tasks
- LightGBM : https://github.com/Microsoft/LightGBM
- Slides主要基于Chen Tianqi的slides修改而成