Exercise 10. Let G be an abelian simple group. Then G is cyclic and has prime order.

Dimostrazione. G is abelian, therefore every subgroup is normal. Then, since G is simple by hypothesis, $\{1\}$ and G are its only subgroups. G is cyclic because otherwise there would exist an element $x \in G$ such that $\langle x \rangle \neq \{1\}$ is a proper subgroup of G. Let's consider a generator g. Furthermore, the order must be finite, since otherwise $\langle g^2 \rangle$ would be a proper subgroup of $\langle g \rangle = G$. Finally, suppose towards a contradiction that G has order n = pn with p prime. Then $\langle g^p \rangle$ would be a proper subgroup of $\langle g \rangle$.

Exercise 11. Let M be an R-module and $R_M = \{\lambda \cdot id_M \mid \lambda \in R\} \subseteq \operatorname{End}_R(M)$. Then $R_M \cong R / \operatorname{Ann}_R(M)$.

Dimostrazione. Consider $\varphi: R_M \to R/\operatorname{Ann}_R(M), \lambda \cdot \operatorname{id}_M \mapsto [\lambda]$. φ is trivially an epimorphism and it's also injective since

$$[\lambda_1] = [\lambda_2] \Rightarrow \lambda_1 = \lambda_2 + r \Rightarrow \lambda_1 \cdot \mathrm{id}_M = (\lambda_2 + r) \cdot \mathrm{id}_M = \lambda_2 \cdot \mathrm{id}_M + r \cdot \mathrm{id}_M = \lambda_2 \cdot \mathrm{id}_M$$

Exercise 12. Let M be an R-module.

- 1. M is simple iff M = Rx for all $0 \neq x \in M$. (Observation: this means that every simple module is cyclic.)
- 2. Give an example of a cyclic module which is not simple.
- 3. If M is simple, then $\operatorname{End}_R(M)$ is a division ring.

Dimostrazione.

- 1. Trivial.
- 2. $M = \mathbb{Z}$ is a cyclic \mathbb{Z} -module but $2\mathbb{Z}$ is a proper submodule.
- 3. Thanks to the first point, if $0 \neq x \in M$ then Rx = M. Therefore, if $0 \not\equiv f \in \operatorname{End}_R(M)$ we have Rf(x) = M, i.e.

$$\forall x \in M \exists \lambda_x \in R[\lambda_x f(x) = x].$$

Defining $g(x) := \lambda_x \operatorname{id}_M$ we obtain $g \circ f = f \circ g = \operatorname{id}_M$.

Exercise 13. Let $n \in \mathbb{N}$.

- 1. $\operatorname{End}_R(R^n) \cong \mathcal{M}_n(R)$.
- 2. $p \in \mathbb{N}$ prime $\Rightarrow \operatorname{End}_{\mathbb{Z}}((\mathbb{Z}/p\mathbb{Z})^n) \cong \mathcal{M}_n(\mathbb{Z}/p\mathbb{Z}).$
- 3. $\operatorname{End}_R(M^n) \cong \mathcal{M}_n(\operatorname{End}_R(M))$.

Dimostrazione.

- 1. Consider $\varphi : \operatorname{End}_R(R^n) \to \mathcal{M}_n(R)$, $f \mapsto (a_{i,j})_{i,j}$ where $a_{i,j} = (\pi_i \circ f)(e_j)$. It is immediate to check that φ is a morphism. Consider now $\psi : \mathcal{M}_n(R) \to \operatorname{End}_R(R^n)$, $(a_{i,j})_{i,j} \mapsto f$ where $f(\lambda_1 e_1 + \ldots + \lambda_n e_n)_i = \lambda_1 a_{i,1} + \ldots + \lambda_n a_{i,n}$. It's easy to check that $\psi = \varphi^{-1}$.
- 2. Follows immediatly from the last point and the following trivial observation:

$$\operatorname{End}_{\mathbb{Z}}((\mathbb{Z}/p\mathbb{Z})^n) \cong \operatorname{End}_{\mathbb{Z}/p\mathbb{Z}}((\mathbb{Z}/p\mathbb{Z})^n)$$

3. Consider $\varphi : \operatorname{End}_R(M^n) \to \mathcal{M}_n(\operatorname{End}_R(M)), f \mapsto (f_{i,j})_{i,j}$ where $f_{i,j} : M \to M,$ $x \mapsto \pi_i(f(0e_0 + 0e_1, ..., +xe_j, ..., 0e_n)).$

Exercise 14. Let $I_1, ..., I_n \triangleleft R$ be ideals of R and let M be an R-module. TFAE:

- (a) $M \cong R/I_1 \oplus ... \oplus R/I_n$.
- (b) There exist cyclic submodules $C_1, ... C_n \subseteq M$ s.t. $\operatorname{Ann}_R(C_j) = I_j$ and $M = \bigoplus_{j=1}^n C_j$.

Dimostrazione.

(a) \Rightarrow (b): R/I_j is a submodule of M. We want to show that $Ann(R/I_j) = I_j$. The inclusion \supseteq is immediate. For the other inclusion, observe that

$$\forall [x](\lambda[x] = [0]) \Rightarrow \lambda[1] = [0] \Rightarrow [\lambda] = [0] \Rightarrow \lambda \in I_j.$$

Finally, $R/I_j = \{[\lambda] \mid \lambda \in R\} = \{\lambda[1] \mid \lambda \in R\} = \langle [1] \rangle$, i.e. is cyclic. Therefore defining $C_j := R/I_j$ we are done.

(b) \Rightarrow (a): Let $g_j \in C_j$ be a generator of C_j . Consider $\varphi : C_j \to R$, $\lambda g_j \mapsto \lambda$. φ is clearly an epimorphism. If we can prove $\ker \varphi = \operatorname{Ann}_R(C_j) = I_j$, we obtain $C_j \cong R/I_j$ and so we are done. Thus observe

$$\lambda \in \operatorname{Ann}_R(C_i) \Rightarrow \lambda g_i$$

and viceversa

 $\lambda g_j = 0 \land c_j \in C_j \Rightarrow \lambda g_j = 0 \land c_j = \mu g_j \Rightarrow \lambda c_j = \lambda(\mu g_j) = \mu(\lambda g_j) = 0 \Rightarrow \lambda \in \operatorname{Ann}_R(C_j).$

Exercise 15. Let M be an R-module, \sim a congruence relation on M and $N = [0]_{\sim}$. Then there is a uniquely determined R-modulo structure on M/N such that $\pi: M \to M/N$ is a R-epimorphism. We have that the scalar multiplication $R \times M/N \to M/N$ is given by $(\lambda, [a]) \mapsto [\lambda a]$.

Dimostrazione. Let $\alpha, \beta \in M/N$. We can write them as $\alpha = [a]$ and $\beta = [b]$ for some $a, b \in M$. By definition we have that $\pi(a+b) = [a+b]$ and by hypothesis we need to have $\pi(a+b) = \pi(a) + \pi(b) = [a] + [b]$. So [a] + [b] = [a+b]. Similarly, by definition $\pi(\lambda a) = [\lambda a]$, and by hypothesis $\pi(\lambda a) = \lambda \pi(a) = \lambda [a]$, so $\lambda [a] = [\lambda a]$. \square