# 260年以外技术训览系言

360容器技术解密与实践



## 自我介绍

董永彬: 360 netops 部门网络开发工程师,从事奇虎网络自动化开发和基于DPDK相关项目的开发。目前专注研究基于dpdk高性能snat和抗DDoS防护。



## 360在容器网络部署的实践

- 一、容器网络方案的选取
- 二、360网络架构优化满足容器网络的需求
- 三、360容器网络部署自动化
- 四、360容器网络配置优化



#### 1、容器网络简介

随着容器技术的发展,给传统的网络提出了一些新的挑战,Docker本身的网络方案比较简单,所以围绕Docker产生了很多不同的网络解决方案,下面对比一下当前比较流行的三种方案。

|        | Calico       | Flannel         | Weave          |
|--------|--------------|-----------------|----------------|
| 组网模型   | 纯L3 路由方案     | Vxlan or UDP 封装 | Vxlan or UDP封装 |
| 协议支持   | TCP,UDP,ICMP | 所有协议            | 所有协议           |
| 分布式存储  | Etcd分布式存储    | Etcd分布式存储       | 不需要(Rumor协议)   |
| 时延测试   | 最小           | 次之              | 最大             |
| BPS测试  | 最高           | 次之              | 最小             |
| CPU使用率 | 最小           | 次之              | 最大             |



#### 2、flannel 网络介绍

flannel是CoreOS提出用于解决Dokcer集群跨主机通讯的覆盖网络工具。





#### 3、Calico 网络介绍

Calico 是一个三层的数据中心网络方案,能够为容器之间提供高效可控通信。





Calico的核心组件图

容器跨主机通信图



#### calico网络的部署方案

Calico部署方式分为L2 Fabric和L3 Fabric部署,在 L2中node间都是二层可达,node不需要把交换机当做下一跳;如果是L3 Fabric,物理交换机要存容器的32位路由,会给交换机带来压力,下面介绍一下Calico官网给

中的其子I2和I2的部罗方安 Key Spine Sw Eth connection **BGP Peer Endpoint** Tor Sw1 Tor Sw2 AS A node2 node1



L2 层部署calico网络

L3层部署calico网络



Calico 优化: "Downward Default model" 减少需要记录的路由

在上面的L3网络的组网方式中,所有的Node、Tor交换机和Spine交换机都需要记录全网路由。

#### "Downward Default model"模式中:

- 1、每个Node向上Tor交换机通告所有路由信息,而Tor向Node只通告一条默认路由
- 2、每个Tor交换机向上Spine交换机通告所有路由,Spine交换机向Tor交换机只通告一条 默认路由

这种模式减少了Tor交换机和node上的路由数量,但缺点是,Node发送的无效IP的流量必须到达Spine交换机以后,才能被确定为无效。



## 1、BGP机房改造方案



#### ● 服务器与内网接入建立EBGP邻居

- 1、服务器发网段路由给内网接入
- 2、内网接入给服务器发默认路由
- 内网核心与内网接入建立IBGP邻居
  - 1、内网接入发网段路由给内网核心
  - 2、内网核心给内网接入反默认路出



### 2、OSPF机房原始结构



OSPF机房结构图

#### ● 内网接入在ospf的stub区域

1、Stub区域是ospf特定的区域,该区域只能将ospf的 路由传递到本区域,不会引入自治系统外部路

由。

2、这样当服务器与内网接入建立EBGP的话,容器的

网段路由是不能发到内网核心的,因此,必须对 网络结构进行改造。





### 3、OSPF机房改造方案一



OSPF机房改造图一

#### ● 服务器与内网接入建立EBGP邻居

- 1、服务器发网段路由给内网接入
- 2、内网接入给服务器发默认路由
- FRR分别与内网核心和内网接入建立IBGP邻居
  - 1、FRR配成RR,这样内网接入和内网核心就

学习到了容器全网的路由



微信扫码收听演讲音频

4、OSPF机房改造方案二



●FRR与服务器建立EBGP邻居

1、服务器给FRR发送网段路由

● FRR分别与内网核心和内网接入 建立IBGP邻居

1、FRR配成RR,把从服务器收到的网段路由发

OSPF机房改造图二

送到内网接入和内网核心



## 三、360容器网络部署自动化

#### 1、面临的问题

当业务部门想在某台服务器上开启Calico BGP时,必须发邮件告知我们部门, 收到邮件之后,在该服务器所连接的内网接入交换机上人为添加相应的配置。

- (1) 没有数据库记录,带来后期维护的复杂性
- (2) 人员排查的网络问题较多,来不及及时处理
- (3) 配置的标准化问题以及 double check 时间



## 三、360容器网络部署自动化

### 2、NOSA自动化平台

NOSA (network operation standard API): 网络操作标准接口,主要对内或对外提供开放的HTTPS接口操作网络设备,最终目标是实现奇虎网络设备配置的自动化。





## 三、360容器网络部署自动化

#### 3、Calico BGP API介绍

- (1) 在网络设备上创建bgp邻居:

  curl -XPOST -d '{"idc":"bjdt", "ip": host\_ip, "mac": mac}' https://hostname/nosa/docker\_bgp\_peer/
- (2) 查询网络设备上bgp邻居信 息Eurl -XGET -d '{"idc":"bjdt", "ip": host\_ip, "mac": mac}' https://hostname/nosa/docker\_bgp\_peer/
- (3) 删除网络设备上的bgp邻居信息:
  curl -XDELETE -d '{"idc":"bjdt", "ip": host\_ip, "mac": mac}' https://hostname/nosa/docker\_bgp\_peer/



## 四、360容器网络配置优化

#### 1、Calico线上遇到的问题

Calico需要更新和维护,当restart Calico时,不同node之间的容器互访不通,主要因为BGP邻居关闭,到达对方的路由消失;为了使不同node容器能够互通,保证原通告的路由信息不被清除,我们对BGP的配置进行了优化,加入了 BGP

#### Graceful Restart 配置。 2、Graceful Restart简介

BGP GR(Graceful Restart,平滑重启)是一种在主备倒换或BGP协议重启时保证转发业务不中断的机制,GR是BGP协议的一个特性,BGP 邻居之间必须同时配置GR,BGP GR服务才能生效。



## 四、360容器网络配置优化

#### 3、BGP GR 配置

```
交换机端配置:
router bgp 65999
bgp router-id 1.1.1.1
bgp graceful-restart restart-time 120
bgp graceful-restart stalepath-time 360
bgp graceful-restart
neighbor 1.1.1.12 remote-as 65998
address-family ipv4
neighbor 1.1.1.12 activate
```

#### Calico端配置:

```
protocol bgp {
    description "1.1.1.1";
    local as 65998;
    neighbor 1.1.1.1 as 65999;
    multihop;
```



# 谢谢



HULK一线技术杂谈



360技术

