AIRCRAFT ACCIDENTS ANALYSIS

Analysis of Aircraft Safety Performance ANALYST: MOKAYA RICHARD KEOYE

OVERVIEW

• We are entering the aviation industry by acquiring aircraft for commercial and private operations. This analysis focuses on identifying the safest aircraft to minimize operational risks.

• The primary challenge in selecting an aircraft is evaluating its historical safety performance to minimize the risk of accidents.

BUSINESS UNDERSTANDING

Objective

• Minimize the risk of accidents through data-driven aircraft selection, ensuring operational safety and compliance with industry standards.

Stakeholders:

• Decision-makers in the aviation industry.

DATA UNDERSTANDING

Description of dataset

- The dataset has:
- 82,474 rows (entries)
- 31 columns, including:
 - ❖6 float variables
 - 26 object data types
- •Source of data:

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 88889 entries, 0 to 88888
Data columns (total 31 columns):
                            Non-Null Count Dtype
    Event.Id
                            88889 non-null
    Investigation.Type
                            88889 non-null
    Accident.Number
    Event.Date
                            88889 non-null
    Location
                            88837 non-null
                                            object
    Country
                            88663 non-null
    Latitude
                            34382 non-null
    Longitude
                            34373 non-null
                                            object
    Airport.Code
                            50249 non-null
                                            object
    Airport.Name
                            52790 non-null
                                            object
    Injury.Severity
                            87889 non-null
    Aircraft.damage
                            85695 non-null
    Aircraft.Category
                            32287 non-null
                                            object
    Registration.Number
    Make
                            88826 non-null
    Mode1
                            88797 non-null
    Amateur.Built
                            88787 non-null
                                            object
    Number.of.Engines
                            82805 non-null float64
    Engine.Type
                            81812 non-null object
    FAR.Description
                            32023 non-null object
    Report.Status
                            82508 non-null object
 30 Publication.Date
                            75118 non-null object
dtypes: float64(5), object(26)
```

https://www.kaggle.com/datasets/khsamaha/aviation-accident-database-synopses

DATA ANALYSIS

 Reciprocating engines are involved in most accidents

Investigation Types

 Most Investigation types are classified as accidents, indicating a focus area.

Number of Accidents by Aircraft Make

- CESSNA and PIPER are the most frequently involved in accidents.
- BOEING and BELL, while having fewer accidents compared to CESSNA and PIPER, still have significant numbers.

Number of Accidents by Aircraft Models

- 152 and 172 are the most frequently involved models in accidents, reflecting their high usage.
- PA-28-140 and 150 also show notable accident rates.

Number of Accidents by Weather conditions

 VMC weather conditions exhibit huge accidents as compared to IMC and other weather condition categories

Accidents by purpose of flight

 Aircrafts used for Personal reasons experienced a huge number of accidents i.e. 51,035 as compared to those used for business purpose which experienced 3,856 accidents

Accidents by number of engines

Aircrafts with 1
 engine experienced
 huge number of
 accidents i.e.,
 70,425 as compared
 with those with 2
 engines or more.

Trend of Aircraft Accidents over years

Trend Analysis of various injuries

Trend Analysis of injuries for the last 10 years

Heatmap

- Number of Engines and Total Uninjured (0.39)-Imply moderate +ve correlation i.e., Aircraft with more engines may provide better safety
- Total Serious Injuries and Total Minor Injuries (0.30)-accidents with a higher number of serious injuries tend to also involve more minor injuries
- Total Fatal Injuries with other injury categories, have weak positive correlations (close to 0) i.e. No relationship

Recommendations

- •Opt for Dual-Engine Aircraft: Choose aircraft with at least 2 engines, as they generally have lower accident rates due to engine redundancy.
- •Ensure Weather Adaptability: Select aircraft capable of operating in both VMC and IMC to enhance safety across diverse weather conditions.
- •Evaluate Regional Risk: Be cautious with aircraft operating in high-accident areas like Anchorage, Alaska. Consider alternative routes to mitigate risk.
- •Prioritize Business Aircraft: Favor aircraft used for business purposes over personal flights, as they typically adhere to stricter safety and operational standards.
- •Avoid High-Accident Makes: Consider aircraft from manufacturers with fewer accidents. For example, MOONEY and ROBINSON have lower accident rates compared to CESSNA and PIPER.
- •Select Safer Models: opt for aircraft models with fewer reported accidents. For instance, models like 150M have better safety records compared to the 152 and 172.
- •Choose Newer Aircraft: Prefer newer models or those with recent safety updates, as accident rates have generally decreased over time, reflecting improvements in aviation safety.

Next Steps

- Action Items: Review aircraft models, conduct further analysis.
- Further Research: Explore new technologies and safety improvements.

THANK YOU

```
***Questions ****
```

- Contacts: +254707751916
- Email: rmokaya1@gmail.com
- LinkedIn:

https://www.linkedin.com/in/mokaya-keoye