Problem Sheet 1, Design and Analysis of Algorithms, 2023^{1,2}

- 1. Prove: $5n^2 + 7n + 6 \in \theta(n^2)$.
- 2. Prove: $4n^2 + 6n 11 \in \theta(n^2)$.
- 3. Prove: $6n^3 + 3n^2 14n + 2 \in \theta(n^3)$.
- 4. Prove: $(2n^6 4n + 3)^2 \in \theta(n^{12})$.
- 5. Prove: $\log(3n^2 + n 5) \in \theta(\log n)$.
- 6. Prove: $n^{sinn} \in O(n)$. Can we prove $\Omega(n)$ for the same function?
- 7. Prove: $\sum_{i=1}^{n} = \theta(n^{3/2})$.
- 8. Prove: $\log(n!) = \theta(n \log n)$
- 9. Prove: $\sum_{i=1}^{i \log i} = \theta(n^2 \log n).$
- 10. Prove using induction that $T(n) = \theta(n)$ for the below recurrence.

$$T(n) = c, n = 1$$

$$T(n) = T(n-1) + d, n > 1$$

11. Prove using induction that $T(n) = \theta(n \log n)$ for the below recurence.

$$T(n) = c, n = 1$$

$$T(n) = T(n/2) + d, n > 1$$

12. Prove using induction that $T(n) = \theta(n \log n)$ for the below recurence.

$$T(n) = c, n = 1$$

$$T(n) = 2T(n/2), n > 1$$

13. Prove using induction that $T(n) = \theta(n^2)$ for the below recurence.

$$T(n) = c, n = 1$$

$$T(n) = T(n-1) + dn, n > 1$$

14. Prove that $T(n) = O(\log n)$ for T(n) = T(n/3) + T(2n/3) + n.

¹log means the base is 2

²Prepared by Pawan K. Mishra