- 8.4.1. Equilibris de complexació estabilitat dels complexos
 - 8.4.1.1. Formació de complexos. Constants d'estabilitat i formació
 - 8.4.1.2. Càlcul de les concentracions de les espècies involucrades
- 8.4.2. Solubilitat i producte de solubilitat (en vermell: treball autònom)
 - 8.4.2.1. Producte de solubilitat K_{ps} del solut
 - 8.4.2.2. Predicció de la precipitació
 - 8.4.2.3. Concepte de solubilitat
 - 8.4.2.4. Relació entre solubilitat i producte de solubilitat
 - 8.4.2.5. Factors que afecten la solubilitat

8.4 Complexació i solubilitat

• Equilibris de formació de complexos.

Definició de complex o compost de coordinació:

Compost o ió format per un metall de transició unit a ions o molècules mitjançant enllaços de coordinació

$$\begin{array}{c} \text{M(n+)} & \longleftarrow \\ \text{ } & \longleftarrow \\ \text{ } & \longleftarrow \\ \text{ } & \vdash \\$$

1. Àcids de Lewis: metalls de transició amb orbitals d o f incomplets, al menys en algun estat d'oxidació

$$Nb(0) \ \ 4\underline{d^4} \ 5s^1 \ ---- \ \ d^5 \qquad Cu(0) \ \ 3\underline{d^{10}} \ 4s^1 \qquad Cu(II) \ d^9$$

2.- Bases de Lewis: Iligands amb parells electrònics no compartits

UdG	Exemples		MI.
2	$[Ag(NH_3)_2]^+$, $[CuCl_2]^-$	31) 32 31	SII)
3	[HgI ₃] ⁻	Linear	Square planar
4	$[Zn(NH_3)_4]^{2+}$, $[Ni(CN)_4]^{2-}$		
5	$[Ni(CN)_5]^{3-}$, $Fe(CO)_5$		
6	$[Cr(H_2O)_6]^{3+}$, $[Fe(CN)_6]^{3-}$		// 🔪
7	$[ZrF_7]^{3-}$	7	
8	$[Mo(CN)_8]^{4-}$		
IC		Tetrahedral	Octahedral
		15 to mire Off at	Section of the sectio

Índex de Coordinació:

Depèn del número d'orbitals lliures que tingui l'àtom central metàl.lic i coincideix amb el número d'enllaços coordinats que es capaç de fixar el lligand.

• Equilibris de formació de complexos. Constants d'estabilitat i de formació.

$$\begin{split} \mathbf{M} + \mathbf{L} &= \mathbf{M} \mathbf{L} & \qquad \mathbf{K}_1 = \frac{[\mathbf{M} \mathbf{L}]}{[\mathbf{M}][\mathbf{L}]} & \qquad \mathbf{M} + \mathbf{L} &= \mathbf{M} \mathbf{L} & \qquad \beta_1 = \frac{[\mathbf{M} \mathbf{L}]}{[\mathbf{M}][\mathbf{L}]} \\ \mathbf{M} \mathbf{L} + \mathbf{L} &= \mathbf{M} \mathbf{L}_2 & \qquad \mathbf{K}_2 = \frac{[\mathbf{M} \mathbf{L}_2]}{[\mathbf{M} \mathbf{L}][\mathbf{L}]} & \qquad \mathbf{M} + 2 \mathbf{L} &= \mathbf{M} \mathbf{L}_2 & \qquad \beta_2 = \frac{[\mathbf{M} \mathbf{L}_2]}{[\mathbf{M}][\mathbf{L}]^2} \\ \\ \mathbf{M} \mathbf{L}_{n-1} + \mathbf{L} &= \mathbf{M} \mathbf{L}_n & \qquad \mathbf{K}_n = \frac{[\mathbf{M} \mathbf{L}_n]}{[\mathbf{M} \mathbf{L}_{n-1}][\mathbf{L}]} & \qquad \mathbf{M} + n \mathbf{L} &= \mathbf{M} \mathbf{L}_n & \qquad \beta_n = \frac{[\mathbf{M} \mathbf{L}_n]}{[\mathbf{M}][\mathbf{L}]^n} \end{split}$$

K_i cts de formació parcials o esgraonades

β_i cts d'estabilitat totals

Estàn relacionades per: $\beta_k = K_1 K_2 ... K_k$

8.4 Complexació i solubilitat

• Equilibris de formació de complexos. Constants d'inestabilitat.

Trencament del complex produint l'ió metàl·lic i els lligands

$$ML_n \iff M + n L$$

$$K_i = 1/\beta_n = [M][L]^n / [ML_n]$$

Si els complexos són estables els valors de les K_i són molt baixos

Exercici 8.42. Les constants d'estabilitat successives per a la formació d'alguns complexos de Ni²⁺ es mostren a continuació:

	K ₁	K ₂	K ₃	K ₄	K ₅	K ₆
NH ₃	500	130	40	12	4	0.8
en	2x10 ⁷	1.2x10 ⁶	1.6x10 ⁴			

en = etilendiamina

Calculeu les constants d'estabilitat globals pels complexos $[Ni(NH_3)_4]^{2+}$, i $[Ni(en)_3]^{2+}$. Calculeu la constant d'inestabilitat pel complex $[Ni(NH_3)_6]^{2+}$. Quin dels dos complexos $[Ni(NH_3)_6]^{2+}$ o $[Ni(en)_3]^{2+}$ és més estable?

$$\begin{split} [\text{Ni}(\text{NH}_3)_4]^{2^+}, \quad \beta &= \text{K}_1.\text{K}_2.\text{K}_3.\text{K}_4 = 500\text{x}130\text{x}40\text{x}12 \ = 3,12.10^7 \\ [\text{Ni}(\text{en})_3]^{2^+}, \ \beta &= \text{K}_1.\text{K}_2.\text{K}_3 \ = (2.10^7) \ (1.2\text{x}10^6) \ (1.6\text{x}10^4) = 3,84.10^{17} \\ [\text{Ni}(\text{NH}_3)_6]^{2^+} \quad \text{K}_i \ = 1/\beta = 1/(9,98.10^7) = 1.10^{-8} \\ & \text{ \'es m\'es estable el complex } \ [\text{Ni}(\text{en})_3]^{2^+} \end{split}$$

8.4 Complexació i solubilitat

- Equilibris de complexació. Estabilitat dels complexos
 - •Càlcul de les concentracions de les espècies involucrades

$$M + n L \iff ML_n$$

$$C_0 - x \quad C_0 - nx \quad x$$

$$\beta_n = \frac{[ML_n]}{[M][L]^n}$$

$$ML_n \iff M + n L$$

$$C_0 - x \quad x \quad nx$$

$$K_i = \frac{[M][L]^n}{[ML_n]}$$

Exercici 8.44. Calculeu la concentració de l'ió $S_2O_3^{2-}$ i de Ag^+ en una dissolució 0.2 M de $[Ag(S_2O_3)_2]^{3-}$ en què la K_i ($[Ag(S_2O_3)_2]^{3-}$) = $3.5 \cdot 10^{-14}$.

$$[Ag(S_2O_3)_2]^{3-} \leftrightarrows 2 S_2O_3^{2-} + Ag^+$$

$$0,2-x \qquad 2x \qquad x \qquad K_i = 3,5 \cdot 10^{-14} = \frac{x (2x)^2}{(0,2-x)} = 4x^3 / 0,2$$

$$X = \sqrt[3]{1,75.10^{-15}} = 1,20.10^{-5} = [Ag^+] \quad ; \quad [S_2O_3^{2-}] = 2,40.10^{-5} M$$

Exercici 8.45. En una dissolució aquosa 0,1 M de $K_3[Cu(CN)_4]$ la concentració de Cu^+ és $4,55\cdot 10^{-7}$ M. Calculeu la constant d'inestabilitat del complex.

$$K_3[Cu(CN)_4] \rightarrow 3 \text{ K}^+ + [Cu(CN)_4]^{3-}$$

$$[Cu(CN)_4]^{3-} \leftrightarrows Cu^+ + 4 \text{ CN}^-$$

$$0,1-x \qquad x \qquad 4x \qquad x=[Cu^+] = 4,55\cdot 10^{-7} \text{ M}$$

$$K_i = \frac{(4,55.10^{-7})(4.4,55.10^{-7})^4}{(0,1-4,55.10^{-7})} = 4,99.10^{-29}$$

8.4 Complexació i solubilitat

Exercici 2. Tercera prova. Curs 2011-2012.

R-2) (10 punts) L'ió cianur és tòxic perquè forma complexos estables amb el ferro de determinades proteïnes. Per a estudiar l'efecte tòxic del cianur, un bioquímic barreja 25 mL de l'ió hexaaquaferro(III) de concentració 3.1·10⁻² M amb 35 mL de cianur sòdic 1.5 M. Calcular la concentració d'ió hexaaquaferro(III) a l'equilibri. Se sap que la constant de formació de l'anió hexacianoferrat (III) a partir del hexaaquaferro (III) i de ions cianur és 4·10⁴³.

$$\begin{split} & [\text{Fe}(\text{H}_2\text{O})_6]^{3^+} + 6 \; \text{CN}^- \leftrightarrow [\text{Fe}(\text{CN})_6]^{3^-} + 6 \; \text{H}_2\text{O} \\ & \text{K}_f = 4 \cdot 10^{43} = [\; \text{Fe}(\text{CN})_6^{3^-}] \; / \; [\text{Fe}(\text{H}_2\text{O})_6^{3^+}] \; / \; [\text{CN}^-]^6 \\ & [\text{Fe}(\text{H}_2\text{O})_6^{3^+}] \; \text{inicial} = 25 \cdot 10^{-3} \cdot 3.1 \cdot 10^{-2} \; / \; (25 + 35) \cdot 10^{-3} = 0.0129 \; \text{M} \\ & [\text{CN-}] \; \text{inicial} = 35 \cdot 10 \cdot 3 \cdot 1.5 \; / \; (25 + 35) \cdot 10^{-3} = 0.875 \; \text{M} \\ & \text{Balanç de Fe: } \; 0.0129 \text{M} = [\text{Fe}(\text{H}_2\text{O})_6^{3^+}] \; + [\text{Fe}(\text{CN})_6]^{3^-} \\ & [\text{Fe}(\text{CN})_6]^{3^-} \approx 0.0129 \; \text{M} \\ & \text{Balanç de CN}^- : \; 0.875 = [\text{CN}^-] \; + 6 \; [\text{Fe}(\text{CN})_6]^{3^-} = [\text{CN}^-] \; + 6 \cdot 0.0129 \qquad [\text{CN}^-] = 0.7976 \; \text{M} \\ & \text{K}_f = 4 \cdot 10^{43} = [\; \text{Fe}(\text{CN})_6^{3^-}] \; / \; ([\text{Fe}(\text{H}_2\text{O})_6^{3^+}] \; [\text{CN}^-]^6 \;) = 0.0129 \; / \; ([\text{Fe}(\text{H}_2\text{O})_6^{3^+}] \; (0.7976)^6 \;) \\ & [\text{Fe}(\text{H}_2\text{O})_6^{3^+}] = 1.25 \cdot 10^{-45} \; \text{M} \end{split}$$

- 8.4.1. Equilibris de complexació estabilitat dels complexos
 - 8.4.1.1. Formació de complexos. Constants d'estabilitat i formació
 - 8.4.1.2. Càlcul de les concentracions de les espècies involucrades
- 8.4.2. Solubilitat i producte de solubilitat
 - 8.4.2.1. Producte de solubilitat $K_{\rm ps}$ del solut
 - 8.4.2.2. Predicció de la precipitació
 - 8.4.2.3. Concepte de solubilitat
 - 8.4.2.4. Relació entre solubilitat i producte de solubilitat
 - 8.4.2.5. Factors que afecten la solubilitat

8.4 Complexació i solubilitat

Solubilitat i producte de solubilitat

$$A_x B_{y(s)} \stackrel{\leftarrow}{\longrightarrow} x A^{-q} + y B^{+p}$$

$$K_{ps} = [A^{-q}]^x \cdot [B^{+p}]^y$$

IMPORTANT: per dissolucions saturades

• Predicció de la precipitació

 $Q_{ps} < K_{ps}$ no precipita $Q_{ps} > K_{ps}$ precipita $Q_{ps} = K_{ps}$ punt de saturació

• Equilibri de solubilitat. Predicció de la precipitació

Exercici 8.46. S'afegeixen tres gotes (considereu que una gota equival a 0,05 mL) de KI 0,20 M a 100 mL d'una dissolució d' $AgNO_3$ 0,010 M. Es formarà precipitat de iodur de plata (Kps = 8,5x10⁻¹⁷)?

 $[I^{-}] = (0.15 \text{ mL}.0.20 \text{ M}) / 100.15 \text{ mL} = 2.99.10^{-4} \text{ M}$

 $[Ag^{+}] = (100 \text{ mL } .0,010\text{M})/100,15 \text{ mL} = 9,98.10^{-3} \text{ M}$

Producte iònic, $PI=[I^{-}]$. $[Ag^{+}] = 2,98.10^{-6}$ comparar amb Kps = $8,5x10^{-17}$

PI > Kps precipita AgI

8.4 Complexació i solubilitat

- Solubilitat i producte de solubilitat
 - Concepte de solubilitat

La concentració de la dissolució saturada (en quantitat de compost dissolt), expressada en mols/L o g/100 mL, a una temperatura determinada.

• Relació entre la solubilitat i el productes de solubilitat

$$A_{x}B_{y(s)} \iff x A^{-q} + y B^{+p}$$

$$x S \qquad y S$$

$$K_{ps} = [A^{-q}]^{x} \cdot [B^{+p}]^{y}$$

$$K_{ps} = [xS]^{x} \cdot [yS]^{y}$$

$$S = (x + y) \sqrt{\frac{K_{ps}}{x^{x}y^{y}}}$$

• Solubilitat i producte de solubilitat

Exercici 8.47. El producte de solubilitat del sulfat de plata, Ag₂SO₄, és1,4•10⁻⁵. Estimeu la solubilitat molar de la sal.

Exercici 8.48.

- a) El producte de solubilitat del AgCl és $K_{ps}(AgCl) = 1,8\cdot 10^{-10} i$ el del AgBr és $K_{ps}(AgBr) = 5,0\cdot 10^{-13}$. Quina de les dues sals és més soluble en aigua?
- b) El producte de solubilitat del Ag_2CrO_4 és $K_{ps}(Ag_2CrO_4) = 1,1\cdot 10^{-12}$. És aquesta sal menys soluble que el AgCl?
- a) S (AgCl) = $\sqrt{1.8 \cdot 10^{-10}}$ = 1,34.10⁻⁵ M; S (AgBr) = $\sqrt{5.0 \cdot 10^{-13}}$ = 7,07.10⁻⁷ M més soluble AgCl
- b) $1,1\cdot 10^{-12} = (2s)^2 s = 4s^3$; S= 6,50.10⁻⁵ M és més soluble el Ag₂CrO₄

Exercici 8.49. La solubilitat molar del iodat de plom(II), Pb(IO $_3$) $_2$, a 25 °C és 4,0·10-5 mol L-1. Determineu el valor de K_{ps} per al iodat de plom(II).

$$Pb(IO_3)_{2 (s)} \leftrightarrows Pb^{2+} + 2 IO_3^{-}$$

s 2 s

$$K_{ps} = s (2s)^2 = 4 s^3 = 4x (4,0.10^{-5})^3 = 2,56.10^{-13}$$

Substància	Fòrmula	K _{ps} (25° C)
Hidròxid d'alumini	AI(OH) ₃	2,0.10 ⁻³²
Carbonat de bari	BaCO ₃	5,1.10 ⁻⁹
Cromat de bari	BaCrO ₄	1,2.10 ⁻¹⁰
lodat de bari	Ba(IO ₃) ₂	1,57.10 ⁻⁹
Oxalat de bari	BaC ₂ O ₄	2,3.10-8
Sulfat de bari	BaSO ₄	1,3.10 ⁻¹⁰
Carbonat de cadmi	CdCO ₃	2,5.10-14
Hidròxid de cadmi	Cd(OH) ₂	5,9.10 ⁻¹⁵
Sulfur de cadmi	CdS	2,0.10-28
Carbonat de calci	CaCO ₃	4,8.10 ⁻⁹
Sulfat de calci	CaSO ₃	2,6.10-5
Hidròxid de Zenc	Zn(OH) ₂	1,2.10-17
Sulfur de Zenc	ZnS	4,5.10-24
Bromur de coure (I)	CuBr	4,2.10-9
Clorur de coure (I)	CuCl	1,2.10 ⁻⁶
lodur de coure (I)	Cul	1,1.10 ⁻¹²
Hidròxid de coure (II)	Cu(OH) ₂	1,6.10 ⁻¹⁹
Sulfur de coure (II)	CuS	1,57.10 ⁻⁹
Hidròxid de ferro (II)	Fe(OH) ₂	1,3.10-10

Substància	Fòrmula	K _{ps} (25° C)
Sulfur de ferro (II)	FeS	2,5.10 ⁻¹⁴
Hidròxid de ferro (III)	Fe(OH) ₃	5,9.10 ⁻¹⁵
Carbonat de magnesi	MgCO ₃	9,0.10-8
Hidròxid de magnesi	Mg(OH) ₂	2,0.10-28
Hidròxid de manganès (II)	Mn(OH) ₂	4,9.10 ⁻¹¹
Sulfur de manganès (II)	MnS	2,3.10-9
Bromur de mercuri (I)	HgBr	2,6.10-5
Clorur de mercuri (I)	HgCl	1,2.10 ⁻¹⁷
lodur de mercuri (I)	Hgl	7,5.10-9
Bromur de plata	AgBr	4,2.10 ⁻⁹
Carbonat de plata	AgCO ₃	8,1.10 ⁻¹²
Clorur de plata	AgCl	1,8.10 ⁻¹⁰
Cromat de plata	Ag ₂ CrO ₄	1,1.10 ⁻¹²
Sulfur de plata	Ag ₂ S	6,0.10-50
lodur de plata	AgI	8,3.10 ⁻¹⁷
Carbonat de plom	PbCO ₃	3,3.10 ⁻¹⁴
Clorur de plom	PbCl ₂	1,6.10-5
Hidròxid de plom	Pb(OH) ₂	2,5.10 ⁻¹⁶
Sulfur de plom	PbS	7,0.10-28

8.4 Complexació i solubilitat

• Factors que afecten la solubilitat

1. Temperatura

Afecta a K_{ps}, atès que és una constant d'equilibri

Com? ⇒ Equació de van't Hoff

$$AB_{(s)} \leftrightarrow A^{+}_{(aq)} + B^{-}_{(aq)} \quad \Delta H^{o}_{dis} = ?$$

• Si $\Delta H^{o}_{dis} > 0$ (endotèrmica) $\uparrow T : K_{PS} \uparrow s \uparrow$

Si ΔH^{o}_{dis} < 0 (exotèrmica)

 $\uparrow T: \; K_{PS} \downarrow \; s \downarrow$

· Factors que afecten la solubilitat

2. ló comú

La solubilitat d'un compost iònic poc soluble disminueix en presència d'un segon solut que proporcioni un ió comú

$$PbI_{2}(s) \leftrightarrow Pb^{2+}(aq) + 2 I^{-}(aq)$$

$$KI(s) \rightarrow K^{+}(aq) + (I^{-}(aq))$$

ló comú

s (PbI₂ en aigua) =
$$1,2\cdot10^{-3}$$
 M
s (PbI₂ en 0,1 M de KI) = $7,1\cdot10^{-7}$ M

Exercici 8.50. Quina és la solubilitat molar aproximada del carbonat de calci ($K_{DS} = 8.7 \cdot 10^{-9}$) en $CaCl_2(aq) 0.20 M?$

$$CaCO_{3(s)} \leftrightarrows Ca^{2+} + CO_3^{2-}$$

0,2 + s s

CaCO_{3 (s)}
$$\leftrightarrows$$
 Ca²⁺ + CO₃²⁻ $K_{ps} = 8.7 \cdot 10^{-9} = (0.2 + s) s = 0.2s + s^2 0.2 + s s $s = 4.35.10^{-8} M$$

8.4 Complexació i solubilitat

- · Factors que afecten la solubilitat
- 3. lons no comuns (efecte salí)

La solubilitat d'un compost iònic poc soluble augmenta en presència d'ions no comuns (efecte salí)

Dades:

Concentració efectiva = Concentració real * y

$$a_x = \gamma \ c \ / \ c^0 \qquad \qquad 0 \le \gamma \le 1$$

Exercici 8.51 Calculeu la solubilitat del clorur de plata (Kps = 1,1•10⁻¹⁰) en aquests dos casos: a) en aigua pura i b) en una solució de nitrat potàssic 0,1 M.

$$I = \frac{1}{2} \sum_{i} c_i z_i^2 \qquad \log \gamma_i = \frac{-0.51 z_i^2 \sqrt{I}}{1 + \alpha_i \sqrt{I} / 305}$$

$$\alpha_{Aa+} = 250 \text{ pm} \qquad \alpha_{CT} = 300 \text{ pm}$$

I = 0.1 Maplicant la fórmula $\gamma_{Ag} = 0.745$ $\gamma_{CI} = 0.753$ a) s (AgCl) = $\sqrt{1,1.10^{-10}}$ = 1,05.10⁻⁵ M

b)
$$1,1 \cdot 10^{-10} = (s.0,745) (s.0,753)$$
 ; $s = 1,40.10^{-5} M$

- · Factors que afecten la solubilitat
 - 4. pH
 - a) Hidròxids poc solubles: un canvi en el pH afecta directament la [OH-]

$$M(OH)_n (s) \iff M^{+n} + n OH^- \qquad K_{ps} = [M^{+n}] \cdot [OH^-]^n$$

- Si hi addicionem un hidròxid soluble (base forta) tindrem un simple efecte de ió comú que disminuirà la solubilitat.
- Si hi addicionem una base feble, disminuirà la solubilitat també però caldrà considerar dos equilibris simultanis.
- Si hi addicionem una substància àcida, augmentarà la solubilitat perquè eliminarem ions hidroxil del medi mitjançant una reacció de neutralització (suspensió Mg(OH)₂ en aigua és un antiàcid anomenat llet de magnèsia)

8.4 Complexació i solubilitat

- · Factors que afecten la solubilitat
 - 4. pH
 - b) Compost on **l'anió o el catió tenen propietats àcid-base** (principalment que involucren l'anió):

$$A_x B_y$$
 (s) $\leftrightarrows x A^{-q} + y B^{+p}$ $K_{ps} = [A^{-q}]^x \cdot [B^{+p}]^y$
 $A^{-q} + H^+ \leftrightarrows HA^{-q+1}$ $K = 1 / K_a$

Exemple resolt pàgina 81 Ilibret pdf. El producte de solubilitat del BaCrO₄ és $2,0\cdot10^{-10}$. Si l'àcid cròmic és fort en la seva primera dissociació i té una K_a = $3,2\cdot10^{-7}$ per la segona, a) calculeu la solubilitat del BaCrO₄ en aigua i b) la solubilitat en una solució d'àcid clorhídric 3,0 M.

Exemple: La primera ionització del H_2SO_4 és completa . La K_{a2} del H_2SO_4 és 1,1.10⁻² i el K_{PS} del $BaSO_4$ és 1,0.10⁻¹⁰. Quants mols de $BaSO_4$ es solubilitzen a pH =2?

1)
$$H_2SO_4 + H_2O \rightarrow HSO_4^- + H_3O^+$$
 2) $HSO_4^- + H_2O \leftrightarrows SO_4^{2-} + H_3O^+$ $x-y$ y $x+y=10^{-2}$ 1,1.10⁻² = 10⁻² .y / (x-y) = 10⁻² .y/ (10⁻² -2y)
$$y = 3,43.10^{-3} M = [SO_4^{2-}]$$
 3) $BaSO_{4(s)} \leftrightarrows Ba^{2+} + SO_4^{2-}$ $K_{PS} = 1,0.10^{-10} = [Ba^{2+}][SO_4^{2-}]$

 $[Ba^{2+}] = 1.0.10^{-10} / 3.43.10^{-3} = 3.20.10^{-8} M$

8.4 Complexació i solubilitat

- · Factors que afecten la solubilitat
 - 4. pH
 - c) En el cas de tenir una solució reguladora (tampó):

Exercici 8.52. Determineu la solubilitat molar del Mg(OH)₂ ($K_{ps} = 1.8 \cdot 10^{-11}$) en una dissolució que és alhora 0,25 M en NH₃ i 0,10 M en NH₄Cl. Se sap que $K_h(NH_3) = 1.8 \cdot 10^{-5}$.

Exercici 2. Tercera prova. Curs 2010-2011.

R-2) (5 punts) A 25 °C el K_{ps} del cromat de bari (BaCrO₄) és $2 \cdot 10^{-10}$. Una solució aquosa a 25 °C és 10^{-5} M en aquesta sal. Calcular (en unitats de mol L^{-1}) quanta sal encara es pot afegir a aquesta temperatura fins arribar al punt de saturació (sense que precipiti).

a) De manera sistemàtica, plantejant l'equilibri i l'equació corresponent:

BaCrO_{4(s)}
$$\leftrightarrows$$
 Ba²⁺(aq) + CrO₄²⁻(aq)
C_i x 10⁻⁵ 10⁻⁵
C_{eq} - x+10⁻⁵ x+10⁻⁵
(x+10⁻⁵)²=K_{ps}=2·10⁻¹⁰ x=4·10⁻⁶ M

b) Per la via alternativa

s= $\sqrt{(2\cdot10^{-10})}$ =1.4·10⁻⁵ M. És a dir, igual a 1·10⁻⁵ M + 0.4·10⁻⁵ M. Atès que la solució ja és 1·10⁻⁵ M, li falta encara 0.4·10⁻⁵ M per assolir el punt de saturació. Consegüentment es poden afegir encara 4·10⁻⁶ mols L⁻¹.

8.4 Solubilitat i complexació

Exercici 7. Recuperació. Curs 2011-2012.

7) (10 punts) A 25°C el producte de solubilitat (K_{ps}) del sulfat d'estronci (SrSO₄) és de $7.6 \cdot 10^{-7}$. A aquesta mateixa temperatura el producte de solubilitat (K_{ps}) del fluorur d'estronci (SrF₂) és igual a $7.9 \cdot 10^{-10}$. Respon de manera breu i raonada a les qüestions que segueixen:

- a) Quina és la solubilitat molar del sulfat d'estronci en aigua pura a 25°C?
- b) Si s'addiciona una solució aquosa de Sr(NO₃)₂ lentament sobre 1L de solució que conté alhora 0.01 mols d'anions F⁻ i 0.50 mols d'anions SO₄²⁻, quina sal precipitarà primer?

Nota: El Sr(NO₃)₂ és completament soluble i podeu assumir que no hi ha canvi en el volum de la solució en realitzar la seva addició.

a)
$$SrSO_{4(s)}$$
 \leftrightarrows $Sr^{2+(aq)} + SO_4^{2-(aq)}$ $\ref{Sr}^{2+(aq)} + SO_4^{2-(aq)} = S^2$ $\ref{Sr}^{2+(aq)} + SO_4^{2-(aq)} = S^2$ $\ref{Sr}^{2+(aq)} + SO_4^{2-(aq)} = SO_4^{2-(aq)}$ $\ref{Sr}^{2+(aq)} + SO_4^{2-(aq)} = SO_4^$

8.4 Solubilitat i complexació

• Factors que afecten la solubilitat: formació de complexos.

$$A_xB_y$$
 (s) \leftrightarrow x A^{-q} + y B^{+p} $K_{ps} = [A^{-q}]^x \cdot [B^{+p}]^y$

$$B + n \ L \leftrightarrow [BL_n]$$
 $\beta_n = [ML_n] / [M][L]^n$

4. Formació d'ions complexos.

$$AgCl(s) \leftrightarrows Ag^{+}(aq) + Cl^{-}(aq)$$
 $K_{ps} = [Ag^{+}][Cl^{-}]$

Si addicionem un lligand que pot formar un complex amb l'ió metàl·lic:

$$Ag^{+}(aq) + 2 NH_3(aq) \leftrightarrows Ag(NH_3)_2^{+}$$

L'equilibri de solubilitat es desplaça a la dreta incrementant-se la solubilitat del AgCl.

$$\label{eq:AgCl(s)} \mbox{AgCl(s)} \leftrightarrows \mbox{Ag}^{+}(aq) + \mbox{Cl}^{-}(aq) \qquad \mbox{K_{ps}} = [\mbox{Ag}^{+}][\mbox{Cl}^{-}] = 1,6 \ x \ 10^{-10}$$

Ag⁺(aq) + 2 NH₃(aq)
$$\leftrightarrows$$
 Ag(NH₃)₂⁺ $K_f = \frac{[Ag(NH_3)_2^+]}{[Ag^+][NH_3]^2} = 1,6x10^7$

$$AgCl(s) + 2 NH_3(aq) \leftrightarrows Ag(NH_3)_2^+ + Cl^-(aq)$$

$$K = K_{ps}x K_f = 2.6x10^{-3}$$

8.4 Solubilitat i complexació

• Factors que afecten la solubilitat: formació de complexos.

Exercici: Calculeu la solubilitat molar del AgCl (K_{ps} = 1,6·10⁻¹⁰) en una solució d'amoníac 0,10 M, sabent que β ([Ag(NH $_3$) $_2$] $^+$) = 1,6·10 7 .

Exercici: Calculeu el nombre de mols d'amoníac que cal addicionar a 1L d'aigua per a dissoldre 0,01 mols de AgCl. $K_{ps} = 1,6\cdot 10^{-10}; \beta ([Ag(NH_3)_2]^+) = 1,6\cdot 10^7.$

[Cl-]= [Ag+] = 0.01 M [Ag+]_{tot} = 0.01 M = [Ag+] + [Ag(NH₃)₂]+ [Ag(NH₃)₂+] ~ 0.01 M

$$K_{ps} = [Ag+][Cl-] = 1.6 \times 10^{-10}; [Ag+] = 1.6.10^{-10} / 0.01 = 1.6.10^{-8} M$$

$$K_{f} = \frac{[Ag(NH_{3})_{2}^{+}]}{[Ag+][NH_{3}]^{2}} = 1.6x10^{7} = 0.01 / (1.6.10^{-8} [NH_{3}]^{2}); [NH_{3}] = 0.19 M$$

$$[NH_{3}]_{tot} = [NH_{3}] + 2 [Ag(NH_{3})_{2}^{+}] = 0.19 + 2 (0.01) = 0.21 M$$

8.4 Solubilitat i complexació

Factors que afecten la solubilitat: formació de complexos.

Exercici: Calculeu la solubilitat molar de l'hidròxid de ferro(III) (K_{ps} = $4\cdot10^{-38}$) en una dissolució d'oxalat sòdic ($Na_2C_2O_4$) 0,10 M, sabent que β ($[Fe(C_2O_4)_3]^{3-}$) = $2\cdot10^{20}$. *Resposta:* 4,15·10⁻⁶ mol L⁻¹