AULAS 29 E 30: FIS271 - Física Computacional I

Neste Roteiro vamos introduzir o software de computação algébrica Maxima [1]. A maioria dos comandos a serem utilizados estão listados no **Guia Rápido**, porém os *sites* de ajuda também devem ser consultados [2,3].

Exercício 0. Familiarize-se com os comandos básicos do Maxima. Em particular, teste carregar e executar comandos tanto via linha de comando quando através da subrotina intrínseca do Maxima:

Todos os items dos exercícios deverão ser escritos em arquivos em diretórios separados para serem carregados no Maxima via batch. Resultados, comentários e discussões deverão ser apresentados no arquivo .pdf do Trabalho.

Exercício 1. Representações numéricas e simbólicas do Maxima.

- a) Definindo x:%pi e y:float(x), compare os resultados %pi/x, %pi/y, 1.0*%pi/x, 1.0*%pi/y, float(%pi)/x e float(%pi)/y.
- b) Definindo z:%e^(-1) e w:%e^(-1.0), compare os resultados %e*z, %e*w, float(%e)*z e float(%e)*w.
- c) Definindo a:411 e b:548, compare os resultados c:a/b, d1:float(a)/float(b) e d2:rationalize(d1). Comente pra que serve o comando rationalize faz.
- d) Definindo a:10 e b:100, compare os resultados c:a/b, d1:float(a)/float(b) e d2:rationalize(d1). Baseado no Roteiro 03, discuta por que d2 não é exatamente igual à c.
- e) Utilizando o comando limit e a representação para infinito inf, calcule os limites da função $f(x) = \sin(x)/x$ quando $x \to 0$ e da função $g(t) = 2.3e^{-2.3t}$ quando $t \to \infty$.
- f) Definindo a função polinomial $p(x) := -4+2*x+0.1*x^2$, utilize o comando derivative para obter a derivada simbólica q(x) = dp(x)/dx.

Exercício 2. Considere a equação de estado de um gás de van der Waals (como na Prova 1):

$$\left(p + \frac{N^2 a'}{V^2}\right)(V - Nb') = Nk_B T \quad ,$$

onde p, V, T e N são, respectivamente, a pressão (atm), o volume (L), a temperatura (K) e o número de moléculas do gás; k_B é conhecida como constante de Boltzmann e relaciona-se com a constante do gases ideais R e o número de Avogadro N_A como $R = k_B N_A = 8,3144598\,\mathrm{J.K^{-1}.mol^{-1}}$. Assumindo $n = N/N_A = 2\,\mathrm{mols}$ e as constantes $a = a'N_A^2 = 1.3373\,\mathrm{atm.L^2.mol^{-2}}$ e $b = b'N_A = 0.0320\,\mathrm{L.mol^{-1}}$, utilize o comando plot2d para fazer um ÚNICO gráfico da pressão p (em atm) em função do volume V (em L) que inclua curvas correspondentes à três temperaturas diferentes: $T = 0.9T_c$, $T = T_c$ e $T = 1.1T_c$, sendo $T_c = 8a'/(27k_Bb')$ (forneça os valores das temperaturas em Kelvin na legenda do seu gráfico).

Exercício 3. Derivadas e integrais simbólicas.

- a) Considere a função posição de uma partícula dada por $x(t) = A\cos(wt + q)$, onde a frequência angular w e fase q devem ser definidos por você. Faça o gráfico de x(t) utilizando a subrotina plot2d.
- b) Utilize o comando derivative para definir as funções velocidade v(t) e aceleração a(t) como sendo a primeira e a segunda derivada de x(t) em relação ao tempo, respectivamente. Inclua gráfico dessas funções e verifique se o comportamento é consistente com o esperado.
- c) Utilize o comando integrate para obter a função $u(t) = \int a(t')dt'$. Faça um gráfico das funções v(t) e u(t) juntas para comparar os resultados.
- c) Considerando a solução analítica $\bar{r}(t)$ do oscilador de Morse (Exercício 2 do Roteiro das Aulas 17 e 18), obtenha algebricamente as funções velocidade v(t) e força resultante F(t) = a(t)/m. Faça gráficos dessas quantidades considerando os valores numéricos dos parâmetros definidos no Roteiro das Aulas 17 e 18.

Exercício 4. Utilizando o comando integrate, refaça os items o Exercício 2 do Roteiro das Aulas 19 e 20.

Exercício 5. Raízes de funções.

- a) Utilizando os comandos solve e plot2d, refaça os items (a) e (b) do Exercício 1 do Roteiro das Aulas 9 e 10 sobre a função f(x).
- b) Utilizando o comando solve, refaça o item (a) do Exercício 1 do Roteiro das Aulas 13 e 14 e encontre as raízes dos polinômio característico $p(\lambda)$ definido pelo problema de auto-valores.

Exercício 6. Considere a equação diferencial ordinária (EDO) do modelo de Verhulst descrita no Exercício 2 do Roteiro Aulas 15 e 16. Utilize o comando ode2 para resolver a EDO e forneça a relação algébrica entre y e t comparando-a com a expressão exata $\bar{y}(t)$.

Exercício 7. Explore a notação vetorial e matricial do Maxima para resolver o item (a) do Exercício 1 do Roteiro das Aulas 11 e 12 correspondente ao circuito elétrico da ponte de Wheatstone. Forneça tanto o resultado algébrico quanto o resultado numérico assumindo os valores dados no item (c). Utilizando a matriz inversa \mathbf{R}^{-1} , obtenha o vetor corrente $\mathbf{i} = \mathbf{R}^{-1} \cdot \mathbf{V}$ e comente se a ponte está balanceada ou não.

Referências:

- [1] Maxima http://maxima.sourceforge.net/pt/index.html
- [2] Manual do Maxima http://maxima.sourceforge.net/docs/manual/maxima_toc.html
- [3] Tutorial: http://hostel.ufabc.edu.br/~daniel.miranda/maxima/index.html