	Notation/Formula	Comments
C1: Sample Variance	$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n - 1} = \frac{S_{xx}}{n - 1}$	Because of df, degrees of freedom
Sample standard deviation	$s = \sqrt{s^2}$	
Population variance	$\sigma^2 = \sum_{i=1}^N (x_i - \mu)^2 / N$	
Population variance	$S_{xx} = \sum (x_i - \overline{x})^2 = \sum x_i^2 - \frac{(\sum x_i)^2}{n}$	Easier
C2: Permutations	$P_{k,n}=\frac{n!}{(n-k)!}$	Ordered subset
Combination	$\binom{n}{k} = \frac{P_{k,n}}{k!} = \frac{n!}{k!(n-k)!}$	Unordered subset
Conditional Probability	$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	
Bayes' Theorem	$P(A_{j} B) = \frac{P(A_{j} \cap B)}{P(B)} = \frac{P(B A_{j})P(A_{j})}{\sum_{i=1}^{k} P(B A_{i}) \cdot P(A_{i})} j = 1, \dots, k$	Prior probabilities -> Posterior probability
C3: CDF	$P(a \le X \le b) = F(b) - F(a-)$	

Expected Value	$E(X) = \mu_X = \sum_{x \in D} x \cdot p(x)$	
	$E[h(X)] = \sum_{D} h(x) \cdot p(x)$	
	$E(aX + b) = a \cdot E(X) + b$	Special: b = 0 or a = 1
	$E(aX) = a \cdot E(X)$, $E(X + b) = E(X) + b$	Special: b = 0 or a = 1
Variance	$V(X) = \sum_{D} (x - \mu)^2 \cdot p(x) = E[(X - \mu)^2]$	Always positive
	$V(X) = \sigma^2 = \left[\sum_{D} x^2 \cdot p(x)\right] - \mu^2 = E(X^2) - [E(X)]^2$	Shortcut
	$V(aX + b) = \sigma_{aX+b}^2 = a^2 \cdot \sigma_X^2$	
	$\sigma_X = \sqrt{\sigma_X^2}$	SD, standard deviation
	$\sigma_{aX+b} = a \cdot \sigma_{x}$	
	$\sigma_{aX} = a \cdot \sigma_{X}, \sigma_{X+b} = \sigma_{X}$	Special: b = 0 or a = 1

Bernoulli	$p(x) = \begin{cases} p(1-p)^{x-1} & x = 1, 2, 3, \dots \\ 0 & \text{otherwise} \end{cases}$	Experiment result: 0 and 1
Binomial	$b(x; n, p) = \begin{cases} \binom{n}{x} p^{x} (1 - p)^{n-x} & x = 0, 1, 2,, n \\ 0 & \text{otherwise} \end{cases}$	n is fixed 2 outcome, S and F independents p is constant Big N, small n (5%), w/o replacement => consider as binomial
	If $X \sim \text{Bin}(n, p)$, then $E(X) = np$, $V(X) = np(1 - p) = npq$, and $\sigma_X = \sqrt{npq}$ (where $q = 1 - p$).	
Hypergeometric	$P(X = x) = h(x; n, M, N) = \frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	N is finite S and F, with M of successes, N-M of F sample of n, without replacement
	$\max (0, n - N + M) \le x \le \min (n, M).$	
	$E(X) = n \cdot \frac{M}{N}$ $V(X) = \left(\frac{N-n}{N-1}\right) \cdot n \cdot \frac{M}{N} \cdot \left(1 - \frac{M}{N}\right)$	
	$E(X) = np$ $V(X) = \left(\frac{N-n}{N-1}\right) \cdot np(1-p)$	p = M / N

Negative	$nb(x; r, p) = {x + r - 1 \choose r - 1} p^{r}(1 - p)^{x} x = 0, 1, 2, \dots$	2 outcome, S and F independents p is constant x fail, until a total of r success
	$P(X \le 10) = \sum_{x=0}^{10} nb(x; 5, .2)$	
	$E(X) = \frac{r(1-p)}{p}$ $V(X) = \frac{r(1-p)}{p^2}$	
Geometric		nb(x; 1, p)
Poisson	$p(x; \mu) = \frac{e^{-\mu} \cdot \mu^x}{x!}$ $x = 0, 1, 2, 3,$	$\begin{array}{l} \mu>0 \\ \text{binomial pff b(x; n, p), } n\to\infty, p\to0 \\ np\to\mu>0 \end{array}$
	$b(x; n, p) \approx p(x; \mu)$	n is large and p is small
	$E(X) = V(X) = \mu.$	
	$P_k(t) = e^{-\alpha t} \cdot (\alpha t)^k / k!, \mu = \alpha t.$	Poisson process α : expected number during a unit time
C4: Uniform	$f(x; A, B) = \begin{cases} \frac{1}{B - A} & A \le x \le B \\ 0 & \text{otherwise} \end{cases}$	
	$P(a \le X \le b) = P(a < X < b) = P(a < X \le b) = P(a \le X < b)$	

	$F(x) = \begin{cases} 0 & x < A \\ \frac{x - A}{B - A} & A \le x < B \\ 1 & x \ge B \end{cases}$	
	F'(x) = f(x)	
Percentiles	$p = F(\eta(p)) = \int_{-\infty}^{\eta(p)} f(y) dy$	P147 $ \text{Median: } 0.5 = F(\tilde{\mu}) $
Expected Value	$\mu_X = E(X) = \int_{-\infty}^{\infty} x \cdot f(x) dx$	Mean value
	$E[h(X)] = \mu_{h(X)} = \int_{-\infty}^{\infty} h(x) \cdot f(x) \ dx$	
Variance	$\sigma_X^2 = V(X) = \int_{-\infty}^{\infty} (x - \mu)^2 \cdot f(x) dx = E[(X - \mu)^2]$	
	$V(X) = E(X^2) - [E(X)]^2$	

Normal Distribution	$f(x; \mu, \sigma) = \frac{1}{\sqrt{2\pi}\sigma} e^{-(x-\mu)^2/(2\sigma^2)} -\infty < x < \infty$	$X \sim N(\mu, \sigma^2)$. σ : inflection points
	$f(z; 0, 1) = \frac{1}{\sqrt{2\pi}} e^{-z^2/2} - \infty < z < \infty$	Standard Normal Distribution CDF: $\Phi(z)$
	$Z = \frac{X - \mu}{\sigma}$ standardized variable is $(X - \mu)/\sigma$.	1 SD: 68% 2 SD: 95% 3 SD: 99.7%
	$P(X \le a) = \Phi\left(\frac{a-\mu}{\sigma}\right)$	
	$P(X \le x) = B(x, n, p) \approx \begin{pmatrix} \text{area under the normal curve} \\ \text{to the left of } x + .5 \end{pmatrix}$ $= \Phi\left(\frac{x + .5 - np}{\sqrt{npq}}\right)$	Binomial rv based on n trails with p $np \geq 10, \text{and} nq \geq 10$ Prefer BINOM.DIST If computer can not handle then use this estimation
Exponential	$f(x; \lambda) = \begin{cases} \lambda e^{-\lambda x} & x \ge 0 \\ 0 & \text{otherwise} \end{cases} E(X) = \int_0^\infty x \lambda e^{-\lambda x} dx$	Poisson: α the rate of event per 1 unit time exponential $\lambda=\alpha$
	$F(x; \lambda) = \begin{cases} 0 & x < 0 \\ 1 - e^{-\lambda x} & x \ge 0 \end{cases}$	
	$\mu = \frac{1}{\lambda} \qquad \sigma^2 = \frac{1}{\lambda^2}$	

Gamma Function	$\Gamma(\alpha) = \int_0^\infty x^{\alpha - 1} e^{-x} dx$	
	1. For any $\alpha > 1$, $\Gamma(\alpha) = (\alpha - 1) \cdot \Gamma(\alpha - 1)$ 2. For any positive integer, n , $\Gamma(n) = (n - 1)!$ 3. $\Gamma(\frac{1}{2}) = \sqrt{\pi}$	
Gamma Distribution	$f(x; \alpha, \beta) = \begin{cases} \frac{1}{\beta^{\alpha} \Gamma(\alpha)} x^{\alpha - 1} e^{-x/\beta} & x \ge 0\\ 0 & \text{otherwise} \end{cases}$	$\alpha \leq 1$: Strictly decrease $\alpha > 1$: Raise and then decrease β is scale parameter
	$F(x; \alpha) = \int_0^x \frac{y^{\alpha - 1} e^{-y}}{\Gamma(\alpha)} dy \qquad x > 0$	
	$P(X \le x) = F(x; \alpha, \beta) = F\left(\frac{x}{\beta}; \alpha\right)$	
	$E(X) = \mu = \alpha\beta$ $V(X) = \sigma^2 = \alpha\beta^2$	
Chi-Squared		P170
Weibull	$f(x; \alpha, \beta) = \begin{cases} \frac{\alpha}{\beta^{\alpha}} x^{\alpha - 1} e^{-(x/\beta)^{\alpha}} & x \ge 0\\ 0 & x < 0 \end{cases}$	$(\alpha > 0, \beta > 0)$ $\alpha = 1$: Exponential distribution, $\lambda = 1/\beta$
	$\mu = \beta \Gamma \left(1 + \frac{1}{\alpha} \right) \qquad \sigma^2 = \beta^2 \left\{ \Gamma \left(1 + \frac{2}{\alpha} \right) - \left[\Gamma \left(1 + \frac{1}{\alpha} \right) \right]^2 \right\}$	

	$F(x; \alpha, \beta) = \begin{cases} 0 & x < 0 \\ 1 - e^{-(x/\beta)^{\alpha}} & x \ge 0 \end{cases}$	
Lognormal		= ln(X) grane on $ln(X)$
	$F(x; \mu, \sigma) = P(X \le x) = P[\ln(X) \le \ln(x)]$ $= P\left(Z \le \frac{\ln(x) - \mu}{\sigma}\right) = \Phi\left(\frac{\ln(x) - \mu}{\sigma}\right) x \ge 0$	
	$E(X) = e^{\mu + \sigma^2/2}$ $V(X) = e^{2\mu + \sigma^2} \cdot (e^{\sigma^2} - 1)$	
Beta	$f(x; \alpha, \beta, A, B) = \begin{cases} \frac{1}{B - A} \cdot \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \left(\frac{x - A}{B - A}\right)^{\alpha - 1} \left(\frac{B - x}{B - A}\right)^{\beta - 1} & A \le x \le B \\ 0 & \text{otherwise} \end{cases}$	
	$\mu = A + (B - A) \cdot \frac{\alpha}{\alpha + \beta} \qquad \sigma^2 = \frac{(B - A)^2 \alpha \beta}{(\alpha + \beta)^2 (\alpha + \beta + 1)}$	
C5: Marginal	$p_{X}(x) = \sum_{y: p(x, y) > 0} p(x, y) \qquad f_{X}(x) = \int_{-\infty}^{\infty} f(x, y) dy$	
Multinominal	$p(x_{1},, x_{r})$ $= \begin{cases} n! & p_{1}^{x_{1}}$	

Expected Value	$E[h(X, Y)] = \begin{cases} \sum_{x} \sum_{y} h(x, y) \cdot p(x, y) & \text{if } X \text{ and } Y \text{ are discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x, y) \cdot f(x, y) dx dy & \text{if } X \text{ and } Y \text{ are continuous} \end{cases}$	
Covariance	$Cov(X, Y) = E[(X - \mu_X)(Y - \mu_Y)]$ $= \begin{cases} \sum_{x = y} \sum_{y = 0} (x - \mu_X)(y - \mu_Y)p(x, y) & X, Y \text{ discrete} \\ \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_X)(y - \mu_Y)f(x, y) dx dy & X, Y \text{ continuous} \end{cases}$	$Cov(X, X) = E[(X - \mu_X)^2] = V(X).$
	$Cov(X, Y) = E(XY) - \mu_X \cdot \mu_Y$	
Correlation	$\rho_{X, Y} = \frac{\text{Cov}(X, Y)}{\sigma_X \cdot \sigma_Y}$	Standardized covariance $-1 \leq Corr(X, Y) \leq 1$.
	Corr(aX + b, cY + d) = Corr(X, Y)	ho=0 does not imply independence. Maybe non-linear relation
Distribution of sample mean	$E(\overline{X}) = \mu_{\overline{X}} = \mu$ $V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma^2/n \text{ and } \sigma_{\overline{X}} = \sigma/\sqrt{n}$ $E(T_o) = n\mu, V(T_o) = n\sigma^2, \text{ and } \sigma_{T_o} = \sqrt{n}\sigma.$	Central Limit Theorem, CLT N > 30 $np \geq 10, nq \geq 10$

Linear combination	$E(a_{1}X_{1} + a_{2}X_{2} + \dots + a_{n}X_{n}) = a_{1}E(X_{1}) + a_{2}E(X_{2}) + \dots + a_{n}E(X_{n})$ $= a_{1}\mu_{1} + \dots + a_{n}\mu_{n} \qquad (5.8)$ $V(a_{1}X_{1} + a_{2}X_{2} + \dots + a_{n}X_{n}) = a_{1}^{2}V(X_{1}) + a_{2}^{2}V(X_{2}) + \dots + a_{n}^{2}V(X_{n})$ $= a_{1}^{2}\sigma_{1}^{2} + \dots + a_{n}^{2}\sigma_{n}^{2} \qquad (5.9)$ $\sigma_{a_{1}X_{1} + \dots + a_{n}X_{n}} = \sqrt{a_{1}^{2}\sigma_{1}^{2} + \dots + a_{n}^{2}\sigma_{n}^{2}}$	Independent
	$V(a_1X_1 + \cdots + a_nX_n) = \sum_{i=1}^n \sum_{j=1}^n a_i a_j Cov(X_i, X_j)$	For any X
2 RV	$E(X_1 - X_2) = E(X_1) - E(X_2)$ for any two rv's X_1 and X_2 . $V(X_1 - X_2) = V(X_1) + V(X_2)$ if X_1 and X_2 are independent rv's.	
C6 - Point Estimation		Good guess of the true value of the parameter
	expected or mean square error MSE = $E[(\hat{\theta} - \theta)^2]$.	Typically no possible to fin estimator with smallest MSE
Unbiased Estimator	$E(\hat{\theta}) = \theta$	Prefer
Bias	$E(\hat{\theta}) - \theta$	
	$\hat{\sigma}^2 = S^2 = \frac{\sum (X_i - \overline{X})^2}{n-1}$	Unbiased
MVUE	Minimum variance unbiased estimator	
Binomial rv	$E(\hat{p}) = E\left(\frac{X}{n}\right) = \frac{1}{n} E(X) = \frac{1}{n} (np) = p$	

Uniform	$\hat{\theta}_2 = \frac{n+1}{n} \cdot \max(X_1, \dots, X_n)$	
Normal Distribution	$\hat{\mu} = \overline{X}$ is the MVUE for μ .	
The method of Moments	$E(X) = \mu \qquad \sum X_i/n = \overline{X}.$	kth population moment, solve equation
	$m = 2$, $E(X)$ and $E(X^2)$ will be functions of θ_1 and θ_2 .	$E(X^2) = V(X) + [E(X)]^2$
Maximum Likelihood Estimation	Normal distribution: $f(x_1,\ldots,x_n;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x_1-\mu)^2/(2\sigma^2)}\cdot \cdots \cdot \frac{1}{\sqrt{2\pi\sigma^2}}e^{-(x_n-\mu)^2/(2\sigma^2)}$ $= \left(\frac{1}{2\pi\sigma^2}\right)^{n/2}e^{-\Sigma(x_i-\mu)^2/(2\sigma^2)}$ $\ln[f(x_1,\ldots,x_n;\mu,\sigma^2)] = -\frac{n}{2}\ln(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum(x_i-\mu)^2$ $\hat{\mu} = \overline{X} \qquad \hat{\sigma}^2 = \frac{\sum(X_i-\overline{X})^2}{n}$	i.i.d if n is large, MLE approximately unbiased, or approximately the MVUE
	$\alpha = \left[\frac{\sum x_i^{\alpha} \cdot \ln(x_i)}{\sum x_i^{\alpha}} - \frac{\sum \ln(x_i)}{n}\right]^{-1} \qquad \beta = \left(\frac{\sum x_i^{\alpha}}{n}\right)^{1/\alpha}$	Weibull , solved by iterative numerical procedure
The invariance Principle	The MLE of any function is the function of the MLE's	