

National University of Computer & Emerging Sciences (KARACHI CAMPUS)

(KARACHI CAMPUN

Chapter: Graphs (EE117) Worksheet#1e. (Sec: ___)

The position of an object moving along the x axis varies with time as in Figure 2.7a. Graph the velocity versus time and the acceleration versus time for the object.

Solution The velocity at any instant is the slope of the tangent to the x-t graph at that instant. Between t = 0 and $t = t_A$, the slope of the x-t graph increases uniformly, and so the velocity increases linearly, as shown in Figure 2.7b. Between t_A and t_B , the slope of the x-t graph is constant, and so the velocity remains constant. At t_D , the slope of the x-t graph is zero, so the velocity is zero at that instant. Between t_D and t_E , the slope of the x-t graph and thus the velocity are negative and decrease uniformly in this interval. In the interval t_E to t_F , the slope of the x-t graph is still negative, and at t_F it goes to zero. Finally, after t_F , the slope of the x-t graph is zero, meaning that the object is at rest for $t > t_F$.

The acceleration at any instant is the slope of the tangent to the v_x -t graph at that instant. The graph of acceleration versus time for this object is shown in Figure 2.7c. The acceleration is constant and positive between 0 and t_A , where the slope of the v_x -t graph is positive. It is zero between t_A and t_B and for $t > t_F$ because the slope of the v_x -t graph is zero at these times. It is negative between t_B and t_B because the slope of the v_x -t graph is negative during this interval.

Note that the sudden changes in acceleration shown in Figure 2.7c are unphysical. Such instantaneous changes cannot occur in reality.

Figure 2.7 (Example 2.4) (a) Position–time graph for an object moving along the x axis. (b) The velocity–time graph for the object is obtained by measuring the slope of the position–time graph at each instant. (c) The acceleration–time graph for the object is obtained by measuring the slope of the velocity–time graph at each instant.

Quick Quiz In Figure 1, match each v_x -t graph on the left with the a_x -t graph on the right that best describes the motion.

Active Figure 1 Parts (a),

(b), and (c) are v_x -t graphs of objects in onedimensional motion. The possible accelerations of each object as a function of time are shown in scrambled order in (d), (e), and (f).