Math 138 Reference

Definition 1 Riemann Sum Given a bounded function f on [a, b], a partition P

$$a = t_0 < t_1 < t_2 < \ldots < t_{i-1} < t_i < \ldots < t_{n-1} < t_n = b$$

of [a,b], and a set $\{c_1,c_2,...,c_n\}$ where $c_i \in [t_{i-1},t_i]$, then a Riemann sum for f with respect to P is a sum of the form

$$S = \sum_{i=1}^{n} f(c_i) \triangle t_i$$

Definition 2 Regular n-Partition Given an interval [a,b] and an $n \in \mathbb{N}$, the regular n-partition of [a,b] is the partition $P^{(n)}$ with

$$a = t_0 < t_1 < t_2 < \ldots < t_{i-1} < t_i < \ldots < t_{n-1} < t_n = b$$

of [a,b] where each subinterval has the same length $\triangle t_i = \frac{b-a}{n}$

Definition 3 Right-hand Riemann Sum The right-hand Riemann sum for f with respect to the partition P is the Riemann Sum R obtained from P by choosing c_i to be t_i , the right-hand endpoint of $[t_{i-1}, t_i]$. That is

$$R = \sum_{i=1}^{n} f(t_i) \triangle t_i$$

If $P^{(n)}$ is the regular n-partition, we denote the right-hand Riemann sum by

$$R_n = \sum_{i=1}^n f(t_i) \triangle t_i = \sum_{i=1}^n f(t_i) \frac{b-a}{n} = \sum_{i=1}^n f(a+i(\frac{b-a}{n}))(\frac{b-a}{n})$$

Definition 4 Left-hand Riemann Sum The left-hand Riemann sum for f with respect to the partition P is the Riemann Sum L obtained from P by choosing c_i to be t_{i-1} , the left-hand endpoint of $[t_{i-1}, t_i]$. That is

$$L = \sum_{i=1}^{n} f(t_{i-1}) \triangle t_i$$

If $P^{(n)}$ is the regular n-partition, we denote the left-hand Riemann sum by

$$L_n = \sum_{i=1}^n f(t_{i-1}) \triangle t_i = \sum_{i=1}^n f(t_{i-1}) \frac{b-a}{n} = \sum_{i=1}^n f(a+(i-1)(\frac{b-a}{n}))(\frac{b-a}{n})$$

Definition 5 Definite Integral We say that a bounded function f is integrable on [a,b] if there exists a unique number $I \in \mathbb{R}$ such that if whenever $\{P_n\}$ is a sequence of partitions with $\lim_{n\to\infty} ||P_n|| = 0$ and $\{S_n\}$ is any sequence of Riemann sums associated with the P_n 's, we have

$$\lim_{n\to\infty} S_n = I$$

In this case, we call I the integral of f over [a, b] and denote it by

$$\int_{a}^{b} f(t)dt$$

The points a and b are called the limits of integration and the function f(t) is called the integrand. The variable t is called the variable of integration.

Theorem 1 Integrability Theorem for Continuous Functions Let f be continuous on [a,b]. Then f is integrable on [a,b]. Moreover,

$$\int_{a}^{b} f(t)dt = \lim_{n \to \infty} S_n$$

where

$$S_n = \sum_{i=1}^n f(c_i) \triangle t_i$$

is any Riemann sum associated with the regular n-partitions. In particular,

$$\int_{a}^{b} f(t)dt = \lim_{n \to \infty} R_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_i) \frac{b-a}{n}$$

$$\int_{a}^{b} f(t)dt = \lim_{n \to \infty} L_n = \lim_{n \to \infty} \sum_{i=1}^{n} f(t_{i-1}) \frac{b-a}{n}$$

Theorem 2 Properties of Integrals Assume that f and g are integrable on the interval [a, b]. Then:

- 1. For any $c \in \mathbb{R}$, $\int_a^b cf(t)dt = c \int_a^b f(t)dt$
- 2. $\int_{a}^{b} (f+g)(t)dt = \int_{a}^{b} f(t)dt + \int_{a}^{b} g(t)dt$
- 3. If $m \le f(t) \le M$ for all $t \in [a,b]$, then $m(b-a) \le \int_a^b f(t)dt \le M(b-a)$
- 4. If $0 \le f(t)$ for all $t \in [a, b]$, then $0 \le \int_a^b f(t)dt$
- 5. If $g(t) \le f(t)$ for all $t \in [a, b]$, then $\int_a^b g(t)dt \le \int_a^b f(t)dt$
- 6. The function |f| is integrable on [a,b] and $|\int_a^b f(t)dt| \le \int_a^b |f(t)|dt$

Definition 6 Identical Limits of Integration Let f(t) be defined at t = a. Then we define

$$\int_{a}^{a} f(t)dt = 0$$

Definition 7 Switching the Limits of Integration Let f be integrable on the interval [a, b] where a < b. Then we define

$$\int_{b}^{a} f(t)dt = -\int_{a}^{b} f(t)dt$$

Theorem 3 Integrals over Subintervals Assume that f is integrable on an interval I containing a, b, and c. Then

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt$$

Definition 8 Average Value of f If f is continuous on [a,b], the average value of f on [a,b] is defined as

$$\frac{1}{b-a}\int_a^b f(t)dt$$

Theorem 4 Average Value Theorem (MVT for Integrals) Assume that f is continuous on [a,b]. Then there exists $a \le c \le b$ such that

$$f(c) = \frac{1}{b-a} \int_{a}^{b} f(t)dt$$

Theorem 5 Fundamental Theorem of Calculus (Part 1) Assume that f is continuous on an open interval I containing point a. Let

$$G(x) = \int_{a}^{x} f(t)dt$$

Then G(x) is differentiable at each $x \in I$ and G'(x) = f(x). Equivalently,

$$G'(x) = \frac{d}{dx} \int_{a}^{x} f(t)dt = f(x)$$

Theorem 6 Extended Fundamental Theorem of Calculus Assume that f is continuous and that g and h are differentiable. Let

$$H(x) = \int_{q(x)}^{h(x)} f(t)dt$$

Then H(x) is differentiable and

$$H'(x) = f(h(x))h'(x) - f(g(x))g'(x)$$

Definition 9 Antiderivative Given a function f, an antiderivative is a function F such that F'(x) = f(x). If for an interval I, $\forall x \in I, F'(x) = f(x)$, then we say F is an antiderivative for f on I.

Theorem 7 Power Rule for Antiderivatives If $\alpha \neq 1$, then

$$\int x^{\alpha} dx = \frac{x^{\alpha+1}}{\alpha+1} + C$$

Theorem 8 Fundamental Theorem of Calculus (Part 2) Assume that f is continuous and that F is any antiderivative of f. Then

$$\int_{a}^{b} f(t)dt = F(b) - F(a)$$

Theorem 9 Change of Variables Assume that g'(x) is continuous on [a,b] and f(u) is continuous on g([a,b]). Then

$$\int_{x=a}^{x=b} f(g(x))g'(x)dx = \int_{u=g(a)}^{u=g(b)} f(u)du$$