ТЕОРЕТИЧЕСКИЕ ДОМАШНИЕ ЗАДАНИЯ

Математическая логика, ИТМО, М3235-М3239, весна 2022 года

Задание №1. Знакомство с классическим исчислением высказываний.

1. Будем говорить, что высказывание α выводится из гипотез $\gamma_1, \gamma_2, \ldots, \gamma_n$ (и записывать это как $\gamma_1, \gamma_2, \ldots, \gamma_n \vdash \alpha$), если существует такой вывод $\delta_1, \delta_2, \ldots, \delta_n$, что $\alpha \equiv \delta_n$, и каждый из δ_i есть либо гипотеза, либо аксиома, либо получается из каких-то предыдущих высказываний по правилу Modus Ponens. Несколько гипотез мы можем обозначить какой-нибудь большой буквой середины греческого алфавита $(\Gamma, \Delta, \Pi, \Sigma, \Xi)$: например, $\Gamma, \alpha, \beta \vdash \sigma$; здесь Γ обозначает какое-то множество гипотез.

Докажите:

(a) $\vdash (A \rightarrow A \rightarrow B) \rightarrow (A \rightarrow B)$

(b) $\vdash A \& B \rightarrow B \& A$

(c) $\vdash A \& B \rightarrow A \lor B$

(d) $\vdash A \rightarrow \neg \neg A$

(e) $A \& \neg A \vdash B$

(f) $\vdash \neg (A \& \neg A)$

2. Известна теорема о дедукции: $\Gamma, \alpha \vdash \beta$ тогда и только тогда, когда $\Gamma \vdash \alpha \to \beta$. Теорема доказывается конструктивно, то есть она даёт метод для перестроения одного вывода в другой. В рамках данного задания разрешается результат её применения вписать как часть другого вывода как «чёрный ящик» (как макроподстановку). Докажите с её использованием:

(a) $\neg A, B \vdash \neg (A \& B)$

(b) $A, \neg B \vdash \neg (A \& B)$

(c) $\neg A, \neg B \vdash \neg (A \& B)$

(d) $\neg A, \neg B \vdash \neg (A \lor B)$

(e) $A, \neg B \vdash \neg (A \rightarrow B)$

(f) $\neg A, B \vdash A \rightarrow B$

(g) $\neg A, \neg B \vdash A \rightarrow B$

 $(h) \vdash A \& (B \& B) \to A \& B$

(i) $\vdash (A \rightarrow B) \rightarrow (B \rightarrow C) \rightarrow (A \rightarrow C)$

 $(j) \vdash (A \to B) \to (\neg B \to \neg A)$ (закон контрапозиции)

 $(k) \vdash A \& B \rightarrow \neg (\neg A \lor \neg B)$ (правило де Моргана)

(1) $\vdash \neg(\neg A \& \neg B) \rightarrow A \lor B$ (правило де Моргана)

 $(m) \vdash A \& (B \lor C) \rightarrow (A \& B) \lor (A \& C)$ (дистрибутивность 1)

(n) $\vdash A \lor (B \& C) \rightarrow (A \lor B) \& (A \lor C)$ (дистрибутивность 2)

3. Существует несколько аналогов схемы аксиом 10 (аксиомы снятия двойного отрицания). Докажите при любых высказываниях α и β :

(a) $\vdash \alpha \lor \neg \alpha$ (правило исключённого третьего)

(b) $\vdash ((\alpha \rightarrow \beta) \rightarrow \alpha) \rightarrow \alpha \ (\textit{закон Пирса})$

(c) Предположим, 10 схема аксиом заменена на две другие схемы аксиом: $((\alpha \to \beta) \to \alpha) \to \alpha$ и $\alpha \to \neg \alpha \to \beta$. В этих условиях покажите $\neg \neg \alpha \to \alpha$.

(d) Предположим, 10 схема аксиом заменена на две другие схемы аксиом: $\alpha \vee \neg \alpha$ и $\alpha \to \neg \alpha \to \beta$. В этих условиях покажите $\neg \neg \alpha \to \alpha$.

4. Докажите следующие «странные» формулы:

(а) $\vdash (A \to B) \lor (B \to A)$. В самом деле, получается, что из любых двух наугад взятых фактов либо первый следует из второго, либо второй из первого. Например «выполнено как минимум одно из утверждений: (а) если сегодня пасмурно, то курс матлогики все сдадут на A; (б) наоборот, если все сдадут курс матлогики на A, то сегодня пасмурно».

- (b) Обобщение предыдущего пункта: при любом $n \geqslant 1$ и любых $\alpha_1, \ldots, \alpha_n$ выполнено $\vdash (\alpha_1 \rightarrow \alpha_2) \lor (\alpha_2 \rightarrow \alpha_3) \lor \cdots \lor (\alpha_{n-1} \rightarrow \alpha_n) \lor (\alpha_n \rightarrow \alpha_1)$
- 5. В рамках данного задания неравными высказываниями будем называть высказывания α и β , у которых нет такого переименования переменных, чтобы их таблицы истинности совпали. Например, A и B & B равные высказывания, ведь высказывания E и E & E имеют одну и ту же таблицу истинности:

$$\begin{array}{c|c}
E & E \& E \\
\hline
\Pi & \Pi \\
\hline
\Pi & \Pi
\end{array}$$

Однако, высказывания A и $A \rightarrow A$ не равны.

Даны высказывания α и β , причём $\vdash \alpha \to \beta$ и $\alpha \neq \beta$. Укажите способ построения высказывания γ , такого, что $\vdash \alpha \to \gamma$ и $\vdash \gamma \to \beta$, причём $\alpha \neq \gamma$ и $\beta \neq \gamma$.

6. Покажите, что если $\alpha \vdash \beta$ и $\neg \alpha \vdash \beta$, то $\vdash \beta$.

Задание №2. Теоремы о корректности и полноте классического исчисления высказываний. Интуиционистская логика.

- 1. Теоремы о корректности и полноте классического исчисления высказываний.
 - (a) Заполните пробел в доказательстве корректности исчисления высказываний: покажите, что если $\vdash \alpha$ и в доказательстве высказывание δ_n получено с помощью Modus Ponens из δ_j и $\delta_k \equiv \delta_j \to \delta_n$, то $\models \delta_n$.
 - (b) Покажите, что если $\Gamma \vdash \alpha$, то $\Gamma \models \alpha$.
 - (c) Покажите, что если $\Gamma \models \alpha$, то $\Gamma \vdash \alpha$.
- 2. Предложите топологические пространства и оценку для пропозициональных переменных, опровергающие следующие выскзывания:
 - (a) $A \vee \neg A$ (на лекции приводился пример в \mathbb{R} ; в данном же задании предложите оценку в каком-то другом пространстве, например в \mathbb{R}^2)
 - (b) $(((A \rightarrow B) \rightarrow A) \rightarrow A)$
 - (c) $\neg \neg A \rightarrow A$
 - (d) $(A \rightarrow (B \lor \neg B)) \lor (\neg A \rightarrow (B \lor \neg B))$
 - (e) $(A \to B) \lor (B \to C) \lor (C \to A)$
 - (f) $\bigvee_{i=1}^{n} ((A_i \to A_{(i \mod n)+1}) \& (A_{(i \mod n)+1} \to A_i))$
- 3. Доказуемы ли следующие высказывания в интуиционистской логике?
 - (a) $\neg \neg \neg \neg A \rightarrow \neg \neg A$
 - (b) $\neg A \lor \neg \neg A \lor \neg \neg \neg A$
 - (c) $A \vee B \rightarrow \neg (\neg A \& \neg B)$
 - (d) $\neg(\neg A \lor \neg B) \to A \& B$
 - (e) $(A \rightarrow B) \rightarrow (\neg A \lor B)$
 - (f) $(\neg A \lor B) \to (A \to B)$
- 4. Известно, что в классической логике любая связка может быть *выражена* как композиция конъюнкций и отрицаний: существует схема высказываний, использующая только конъюнкции и отрицания, задающая высказывание, логически эквивалентное исходной связке. Например, для импликации можно взять $\neg(\alpha \& \neg \beta)$, ведь $\alpha \to \beta \vdash \neg(\alpha \& \neg \beta)$ и $\neg(\alpha \& \neg \beta) \vdash \alpha \to \beta$. Возможно ли в интуиционистской логике выразить через остальные связки:
 - (а) конъюнкцию?
 - (b) дизъюнкцию?
 - (с) импликацию?

(d) отрицание?

Если да, предложите формулу и два вывода. Если нет — докажите это (например, предложив соответствующую модель).

- 5. *Теорема Гливенко*. Обозначим доказуемость высказывания α в классической логике как $\vdash_{\kappa} \alpha$, а в интуиционистской как $\vdash_{\mathsf{u}} \alpha$. Оказывается возможным показать, что какое бы ни было α , если $\vdash_{\kappa} \alpha$, то $\vdash_{\mathsf{u}} \neg \neg \alpha$. А именно, покажите, что:
 - (a) Если α аксиома, полученная из схем 1–9 исчисления высказываний, то $\vdash_{\mathbf{u}} \neg \neg \alpha$.
 - (b) $\vdash_{\mathbf{n}} \neg \neg (\neg \neg \alpha \to \alpha)$
 - (c) $\neg \neg \alpha, \neg \neg (\alpha \rightarrow \beta) \vdash_{\mathbf{H}} \neg \neg \beta$
 - (d) Докажите утверждение теоремы ($\vdash_{\kappa} \alpha$ влечёт $\vdash_{\mathbf{u}} \neg \neg \alpha$), опираясь на предыдущие пункты, и покажите, что классическое исчисление высказываний противоречиво тогда и только тогда, когда противоречиво интуиционистское.
- 6. Возможно ли предложить такой набор множеств S из \mathbb{R} (формально: $S \subseteq \mathcal{P}(\mathbb{R})$), чтобы при выборе его в качестве истинностного множества \mathbb{V} , при сохранении правил вычисления значений связок для интуиционистской логики, получилась бы полная и корректная модель для классического исчисления высказываний?
- 7. Пусть S некоторое множество. Рассмотрим $\mathbb{V} = \mathcal{P}(S)$, определим связки так:

Также, будем считать, что $\models \alpha$, если $\llbracket \alpha \rrbracket = S$.

Покажите, что получившееся:

- (a) корректная модель классического исчисления высказываний. Для уменьшения рутинной работы достаточно показать выполнение схем аксиом 5,9,10 и правила Modus Ponens.
- (b) полная модель классического исчисления высказываний.