Computer-Aided Design for VLSI Design

Homework3(Student ID: ntust_B10832019 | Name: 林琛琛)

1. Provide a simple explanation of your code.

```
process(present state, complete)
       begin
                case present state is
                        when green1 =>
                                g_light <= '1';
                                y_light <= '0';
                                r_light <= '0';
                                reset <= '1';
                                next state <= green2;
                        when green2 =>
                                g_light <= '1';
                                y_light <= '0';
                                r_light <= '0';
                                reset <= '0';
                                enable <= '1';
                                if complete = '1' then
                                        next state <= yellow1;</pre>
                                else
                                        next_state <= green2;</pre>
                                end if;
                        when red1 =>
                                g_light <= '0';
                                y_light <= '0';
                                r_light <= '1';
                                reset <= '1';
                                next_state <= red2;
                        when red2 =>
                                g_light <= '0';
                                y_light <= '0';
                                r_light <= '1';
                                reset <= '0';
                                enable <= '1';
                                if complete = '1' then
                                        next_state <= yellow2;
                                else
                                        next_state <= red2;
                                end if;
                        when yellow1 =>
                                g_light <= '0';
                                y light <= '1';
                                r light <= '0';
                                enable <= '0';
                                next_state <= red1;</pre>
                        when yellow2 =>
                                g_light <= '0';
                                y light <= '1';
                                r light <= '0';
                                enable <= '0';
```

```
next_state <= green1;
end case;
end process;
```

這個 process 用來處理 state 之間的轉變,以及依照題目要求設定哪個燈亮、reset 與 enable 的設定。

```
process
begin
   wait until clk'event and clk = 'l';
   present_state <= next_state;
   if reset = 'l' then
        counter <= 0;
   elsif enable = 'l' then
        counter <= counter + 1;
   end if;
end process;</pre>
```

這個 process 用來更新 state、如果在 rising edge 時有需要 reset 或 enable 的話, 就做相對應的處理。

```
process(counter)
begin
    if counter = 3 then
        complete <= 'l';
    else
        complete <= '0';
    end if;
end process;</pre>
```

complete 的部分, 每當 counter 數值有變化時, 都會檢查當下是否 complete 並變更 complete 的值。我的程式設定 counter 的最大值是 3。

2. Waveform diagram here (Simulation Results)

3. Reflections and discussions

心得:

這次的作業類似於講義中 counter 加上紅綠燈複雜版的結合。撰寫程式的時候,卡最久的部分是要怎麼切割一個 process 中的內容。譬如檢查 complete 的部分,一開始有想過寫進更新 state 的那個 process。

另外是寫的過程中, 發現關於 reset 與 enable, 作業說明只有說哪個 state 的時候要把它們設 1, 但沒說什麼時候設回 0, 因此也有思考說設回 0 的時機點, 應該是要在下一個 state, 還是要在 rising edge 判斷的那個 process 直接改。

最後檢查 state machine 的狀態圖, 也與作業說明相同。

討論:

討論的部分主要是嘗試講義第七章的內容,以作業的程式來做比較。

• Family = FLEX10K

Flow Status Successful - Sun May 14 18:46:56 2023

Quartus II Version 9.0 Build 235 06/17/2009 SP 2 SJ Web Edition

 Revision Name
 HW3

 Top-level Entity Name
 HW3

 Family
 FLEX10K

 Device
 EPF10K10LC84-3

Timing Models Final Met timing requirements No

 Total logic elements
 15 / 576 (3 %)

 Total pins
 4 / 59 (7 %)

 Total memory bits
 0 / 6,144 (0 %)

將 family 設為 FLEX10K、device 設為 EPF10K10LC, 得到上面的圖。在 Area Performance 上, 我的程式使用了 15 個 logic element。

Info: Clock "clk" has Internal fmax of 101.01 MHz between source register "enable" and destination register "counter[0]" (period= 9.9 ns)
Warning: Circuit may not operate. Detected 2 non-operational path(s) clocked by clock "clk" with clock skew larger than data delay. See Compilation Report for detai
Info: Found hold time violation between source pin or register "present_state.yellow2" and destination pin or register "enable" for clock "clk" (Hold time is 1.2 n
Info: too from clock "clk" to destination pin "r_light" through register "present_state.redl" is 12.500 ns
Info: Quartus II Classic Timing Analyzer was successful. 0 errors, 6 warnings

其中 fmax = 101.01 MHz、worst-case tco = 12.5 ns。

N	260,0 ns	270 _, 0 ns	280 _; 0 ns	290 _i 0 ns	300 _, 0 ns
Name					
clk					
g_light					
y_light r_light					
46/11					
		1 1 1 2 1 2 2 1 2	約 275 ns	約 287.44 ns	

從 clock 敲下去到紅綠燈值變化的時間差, 確實在 worst-case tco 的範圍內。

Family = Straix

Flow Status	Successful - Sun May 14 19:09:29 2023
Quartus II Version	9.0 Build 235 06/17/2009 SP 2 SJ Web Edition
Revision Name	HW3
Top-level Entity Name	HW3
Family	Stratix
Device	EP1S10B672C6
Timing Models	Final
Met timing requirements	No
Total logic elements	14 / 10,570 (< 1 %)
Total pins	4/346(1%)
Total virtual pins	0
Total memory bits	0/920,448(0%)
DSP block 9-bit elements	0/48(0%)
Total PLLs	0/6(0%)
Total DLLs	0/2(0%)

將 family 設為 Straix, 得到上面的圖, 使用了 14 個 logic element。

Info: Clock "clk" Internal fmax is restricted to 422.12 MHz between source register "enable" and destination register "counter[1]"
Warning: Circuit may not operate. Detected 1 non-operational path(s) clocked by clock "clk" with clock skew larger than data delay. See Compilation Report for details.
Info: Found hold time violation between source pin or register "present_state.yellow2" and destination pin or register "enable" for clock "clk" (Hold time is 96 ps)
Info: tco from clock "clk" to destination pin "y_light" through register "present_state.yellow1" is 7.704 ns

其中 fmax = 422.12 MHz、tco = 7.704ns

相比之下 worst-case tco 比較 family 為 FLEX10K 的時候小, 從波型圖看來也是如此。

再來討論 fmax 與 clock rate 的關係。 clock rate 必須小於 fmax, 不然模擬出來的波型結果會有錯誤。原本的波型週期是 50 ns, 相當於 clock rate = 20 MHz, 模擬的結果正確。

當 clock period = 25 ns, 也就是 clock rate = 40 MHz 時, 模擬的結果也是正確的。

當 clock period = 2 ns, 也就是 clock rate = 500 MHz 時, 很明顯看到紅綠燈的變化情形有誤, clk 經過太多次 rising edge 之後才開始變燈, 跟程式寫的 counter max value = 3 不符。

最後是比較選擇 fitter effort 中不同方法的影響。

Standard Fit

fmax = 422 MHz, tco = .12 7.704 ns

Info: Clock "clk" Internal fmax is restricted to 422.12 MHz between source register "enable" and destination register "counter[1]"
Warning: Circuit may not operate. Detected 1 non-operational path(s) clocked by clock "clk" with clock skew larger than data delay. See Compilation Report for details.
Info: Found hold time violation between source pin or register "present_state.yellow2" and destination pin or register "enable" for clock "clk" (Hold time is 96 ps)
Info: tco from clock "clk" to destination pin "y_light" through register "present_state.yellow1" is 7.704 ns

Fast Fit

fmax = 402.85, tco = 9.471

Info: Clock "clk" has Internal fmax of 402.74 MHz between source register "reset" and destination register "counter[1]" (period= 2.483 ns)
Warning: Circuit may not operate. Detected 2 non-operational path(s) clocked by clock "clk" with clock skew larger than data delay. See Compilation Report f
Info: Found hold time violation between source pin or register "present_state.red2" and destination pin or register "reset" for clock "clk" (Hold time is 4
Info: too from clock "clk" to destination pin "g light" through register "present state.green2" is 9.471 ns

fast fit 是三種選項中, 在 fitter 階段耗費時間最少的一個, 並且 fmax 也因此受影響變小。

Auto Fit

fmax = 404.2 MHz, tco = 9.246 ns

Info: Clock "clk" has Internal fmax of 404.2 MHz between source register "reset" and destination register "counter[0]" (period= 2.474 ns)
Warning: Circuit may not operate. Detected 2 non-operational path(s) clocked by clock "clk" with clock skew larger than data delay. See Compilation Report for details.
Info: Found hold time violation between source pin or register "present_state.green2" and destination pin or register "reset" for clock "clk" (Hold time is 450 ps)
Info: too from clock "clk" to destination pin "y light" through register "present_state.yellow2" is 9.246 ns

Flow: Co	mpilation				
Task ∀		Time 🐧			
√ ∈	Compile Design	00:00:17			
✓	掛 🕨 Analysis & Synthesis	00:00:03			
✓	⊕ ► Fitter (Place & Route)	00:00:08			
✓	► Assembler (Generate programming files)	00:00:04			
✓	掛 🕨 Classic Timing Analysis	00:00:02			
	± EDA Netlist Writer				
	Program Device (Open Programmer)				

auto fit 的 fitter 階段耗時是三種選項最長的, 也符合 quartus 介面寫的 "reduce fitter effort after meeting time requirements"

雖然調整不同 fitter effort 的選項確實讓 compilation 各階段的秒數有所不同, 但可能是城市的規模不大, 或者不夠複雜, 因此影響的程度有限。