Feuille d'exercices 8 : Ensembles et applications

1 Ensembles

Exercice 1. Montrer que :

- 1. $\{x \in \mathbb{R}, \forall \epsilon > 0, x < \epsilon\} =]-\infty, 0]$
- 2. $\{x \in \mathbb{R}, \exists \epsilon > 0, x < \epsilon\} = \mathbb{R}$
- 3. $\{x \in \mathbb{R}, \forall \epsilon > 0, |x| < \epsilon\} = \{0\}$

Exercice 2. Soient A un ensemble et soient E et F des parties de A.

- 1. Montrer que : $E \subset F \iff \mathcal{P}(E) \subset \mathcal{P}(F)$
- 2. Montrer que : $\mathcal{P}(E \cap F) = \mathcal{P}(E) \cap \mathcal{P}(F)$
- 3. A t-on : $\mathcal{P}(E \cup F) = \mathcal{P}(E) \cup \mathcal{P}(F)$

Exercice 3. Soit E un ensemble et soient A et B des sous-ensembles de E. Montrer que :

$$A \cup B = A \cap B \iff A = B$$

Exercice 4. Soit E un ensemble et soient A, B et C des sous-ensembles de E. Montrer que :

- 1. $A \cup B = B \iff A \subset B$;
- $2. \ A \cap B = \emptyset \quad \Longleftrightarrow \quad A \subset C_E^B;$
- 3. $A \cup B = E \iff C_E^A \subset B$;

- 4. $(A \cap B = A \cap C \text{ et } A \cup B = A \cup C) \iff B = C;$
- 5. $(A \setminus B) \cup (A \setminus C) = A \setminus (B \cap C)$;

Exercice 5. Soit E un ensemble. Pour tout $A, B \in \mathcal{P}(E)$, on définit la différence symétrique de A et B par :

$$A\Delta B := (A \setminus B) \cup (B \setminus A).$$

- 1. Montrer que : $\forall A, B \in \mathcal{P}(E), A\Delta B = (A \cup B) \setminus (A \cap B)$
- 2. Montrer que : $\forall A, B \in \mathcal{P}(E), A\Delta B = C_E^A \Delta C_E^B$.
- 3. Montrer que : $\forall A, B, C \in \mathcal{P}(E), (A\Delta B = A\Delta C \iff B = C).$

Exercice 6. Soit E un ensemble, soient A, $B \in \mathcal{P}(E)$. Résoudre l'équation d'inconnue $X \in \mathcal{P}(E)$: $X \cup A = B$

Exercice 7. Soit E un ensemble, soient A, $B \in \mathcal{P}(E)$. Résoudre l'équation d'inconnue $X \in \mathcal{P}(E)$: $X \cap A = B$

2 Applications

Exercice 8. Soient E un ensemble et soient A et B des parties de E.

Montrer en utilisant les fonctions indicatrices, que :

$$A \cap B = A \cup B \iff A = B.$$

Exercice 9. Soient E un ensemble et soient A, B et C des sous-ensembles de E.

1. Montrer en utilisant les fonctions indicatrices, que :

$$A \cap B = A \cap C \text{ et } A \cup B = A \cup C \iff B = C.$$

2. Montrer en utilisant les fonctions indicatrices, que :

$$A \cap B \subset A \cap C$$
 et $A \cup B \subset A \cup C$ \iff $B \subset C$.

3 Image directe - Image réciproque

Exercice 10. On considère l'application $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^2$.

Déterminer $f^{-1}(\{1\})$, $f^{-1}([-1,4])$, f([-1,4]), $f(f^{-1}([-1,4]))$ et $f^{-1}(f([-1,4]))$.

Exercice 11. Soit E et F deux ensembles, soit $f \in \mathcal{F}(E,F)$.

1. Montrer que :

$$\forall A \in \mathcal{P}(E), \ A \subset f^{-1}(f(A)).$$

2. Montrer que :

$$\forall B \in \mathcal{P}(F), \ f(f^{-1}(B)) \subset B.$$

Exercice 12. Soient E et F deux ensembles et $f \in \mathcal{F}(E, F)$.

1. Soient $A, B \in \mathcal{P}(F)$. Montrer que :

$$\begin{split} A \subset B &\implies f^{-1}(A) \subset f^{-1}(B), \\ f^{-1}(A \cup B) &= f^{-1}(A) \cup f^{-1}(B), \\ f^{-1}(A \cap B) &= f^{-1}(A) \cap f^{-1}(B), \\ f^{-1}(C_F^A) &= C_E^{f^{-1}(A)}. \end{split}$$

2. Soient $A, B \in \mathcal{P}(E)$. Montrer que :

(a) Montrer que

$$A \subset B \implies f(A) \subset f(B),$$

 $f(A \cup B) = f(A) \cup f(B),$
 $f(A \cap B) \subset f(A) \cap f(B).$

(b) Montrer qu'en général :

$$f(A \cap B) \neq f(A) \cap f(B)$$
.

(c) Montrer qu'en général :

$$f(C_E^A) \neq C_F^{f(A)}$$

Injections - Surjections - Bijections 4

Exercice 13. Etudier l'injectivité, la surjectivité et la bijectivité des applications suivantes :

Exercice 14.

2. On pose

Exercice 15. On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}^2$ $(x,y) \mapsto (x,xy-y^3)$.

f est-elle injective? surjective?

Exercice 16. Soient E, F, G et H des ensembles.

1. Soient $f \in \mathcal{F}(E, F)$ et $g \in \mathcal{F}(F, G)$. Montrer que :

$$g \circ f$$
 injective \implies f injective,

$$g \circ f$$
 surjective \Longrightarrow g surjective,

2. Soient $f \in \mathcal{F}(E, F)$, $g \in \mathcal{F}(F, G)$ et $h \in \mathcal{F}(G, H)$. Montrer que si $g \circ f$ et $h \circ g$ sont bijectives, alors f, g et h le sont aussi. **Exercice 17.** Soit E et F deux ensembles, soit $f \in \mathcal{F}(E,F)$.

1. Montrer que :

$$f$$
 est injective $\iff \forall A \in \mathcal{P}(E), \ A = f^{-1}(f(A)).$

2. Montrer que:

$$f$$
 est surjective $\iff \forall B \in \mathcal{P}(F), \ B = f(f^{-1}(B)).$

Exercice 18. Soient E un ensemble et $f: E \to E$ bijective.

On pose:

$$\begin{array}{cccc} \Phi_f: & \mathcal{F}(E,E) & \to & \mathcal{F}(E,E) \\ & u & \mapsto & f \circ u \circ f^{-1} \end{array}.$$

- 1. Montrer que Φ_f est bijective et préciser sa réciproque.
- 2. Soient $f, g \in \mathcal{F}(E, E)$ bijectives, simplifier $\Phi_f \circ \Phi_g$.
- 3. On note \mathcal{I} (resp. \mathcal{S}) l'ensemble des injections (respectivement surjections) de E dans E. Montrer que $\Phi_f(\mathcal{I}) = \mathcal{I}$ et $\Phi_f(\mathcal{S}) = \mathcal{S}$.

Exercice 19. Soit E un ensemble et soient A et B des parties non vides de E. On considère l'application :

$$f: \mathcal{P}(E) \rightarrow \mathcal{P}(A) \times \mathcal{P}(B)$$

 $X \mapsto (X \cap A, X \cap B).$

- 1. Montrer que f est injective si et seulement si $A \cup B = E$
- 2. Montrer que f est surjective si et seulement si $A \cap B = \emptyset$
- 3. Dans le cas où f est bijective, expliciter f^{-1} .

Exercice 20. Soient I et J deux intervalles de \mathbb{R} et $f: I \to J$. Montrer que si f est strictement monotone alors f est injective.

5 Relations d'équivalence

Exercice 21. Soient E un ensemble et $A \in \mathcal{P}(E)$. Dans $\mathcal{P}(E)$, on définit la relation \sim par :

$$\forall X, Y \in \mathcal{P}(E), \ X \sim Y \iff X \cup A = Y \cup A.$$

- 1. Montrer que \sim est une relation d'équivalence.
- 2. Soit $X \in \mathcal{P}(E)$, déterminer la classe d'équivalence de X pour \sim ?

Exercice 22. On désigne par E l'ensemble des fonctions dérivables sur \mathbb{R} , et on considère la relation définie sur E par :

$$\forall f, g \in E, \ f \mathcal{R} g \iff f' = g'.$$

- 1. Démontrer que \mathcal{R} est une relation d'équivalence sur E.
- 2. Soit $f_0 \in E$, déterminer la classe d'équivalence de f_0 pour \mathcal{R} .

Exercice 23. Dans \mathbb{R} , on considère la relation \mathcal{R} définie par :

$$\forall x, y \in \mathbb{R}, \ x\mathcal{R}y \iff x^2 - y^2 = x - y.$$

- 1. Montrer que $\mathcal R$ est une relation d'équivalence.
- 2. Soit $x \in \mathbb{R}$, calculer $cl_{\mathcal{R}}(x)$.