Détection d'erreur de transmission

M. Combacau - combacau@laas.fr

Université Paul Sabatier LAAS-CNRS

14 novembre 2024

Correction

Travaux dirigés sur les codes détecteurs et correcteurs d'erreur

Exercices sur le bit de parité

Rappel
$$p = \bigoplus_{i=0}^{n-1} a_i$$
 (=1 ssi nbre impair de "1" dans A)

Parité paire : bit de parité paire correspondant à

1
$$A = [0110110010110110] \rightarrow 9 \text{ bits à "1" dans } A \Rightarrow p = 1$$

2
$$A = \begin{bmatrix} 01101111 \end{bmatrix} \rightarrow 6$$
 bits à "1" dans $A \Rightarrow p = 0$
Rappel $p = \bigoplus_{i=0}^{n-1} a_i$ (=1 ssi nbre pair de "1" dans A)

■ Parité impaire : bit de parité impaire correspondant à

1
$$A = [01101100] → 4$$
 bits à "1" dans $A ⇒ p = 1$

2
$$A = [01110110011] \rightarrow 7$$
 bits à "1" dans $A \Rightarrow p = 0$

Exercices sur le bit de parité

- Parité paire : une erreur existe-t-elle dans ce mot ?
 - [0110110110111] \rightarrow 9 bits à "1" \Rightarrow 2 \times k+1 erreur(s)
 - 2 $[01111110] \rightarrow 6$ bits à "1" $\Rightarrow 2 \times k$ erreur(s) (0 le + probable)
- Parité impaire : une erreur existe-t-elle dans ce mot ?
 - $\boxed{ \boxed{ [011100]} \rightarrow 3 \text{ bits à "1"} \Rightarrow 2 \times k \text{ erreur(s) (0 le + probable)} }$
 - [011100111] \rightarrow 6 bits à "1" \Rightarrow 2 \times k+1 erreur(s)

Calcul de parité croisée (1)

Soit à transmettre des trames constituées de 4 mots $(D_3 \dots D_0)$ de 7 bits avec le protocole de parité croisée paire.

$$D_3 = [0001101], D_2 = [1010111], D_1 = [1110001], D_0 = [0101111]$$

Combien de bits comporte la trame émise?

```
\left\{ \begin{array}{ll} \text{4 mot de 7 bits} &= 28 \text{ bits} \\ \text{4 mots} &= 4 \text{ bits de parité bits} \\ \text{mot de 7 bits} &= 7 \text{ bits de parité croisée} \end{array} \right. \Rightarrow 28 + 7 + 4 = \text{trame de 39 bits}
```

2 Calculer le mot de parité P et le mot de parité croisée

3 Donner la trame résultante en ordonnant les mots :[D3 . . . D₀ P Pc]

T = [000110110101111111000101011111111010000100]

Correction par parité croisée (2)

La trame $[D_2 \ D_1 \ D_0 \ P \ Pc] = [101001011101100111100010011]$ est reçue avec le protocole de parité croisée paire.

Calculer le contrôle de parité *Cp* et de parité croisée *Cc* et identifier le nombre d'éventuelles erreurs

3 mot à n bits et 27 bits dans la trame. $3n + n + 3 = 27 \Rightarrow n = 6$

2 Si nécessaire, corriger les mots de données

Cc = Cp = [0] pas d'erreur de transmission (ou 4 : très improbable)

Correction par parité croisée (3)

La trame $[D_3 \ D_2 \ D_1 \ D_0 \ P \ Pc] = [10011010011010011001101110011]$ est reçue avec le protocole de parité croisée paire.

Calculer le contrôle de parité Cp et de parité croisée Cc et identifier le nombre d'éventuelles erreurs

2 Si nécessaire, corriger les mots de données

Un bit à un dans chacun des mots Cc et Cp. Il y a donc une erreur, désignée dans le mot D_1 et pour le bit b_2 .

D'où les données corrigées :

 D_3 inchangée, D_2 inchangée, $D_1 = [10000]$, D_0 inchangée

Correction par parité croisée (4)

La trame $[D_2 \ D_1 \ D_0 \ P \ Pc] = [100010101001111001101001010111]$ est reçue avec le protocole de parité croisée paire.

Calculer le contrôle de parité *Cp* et de parité croisée *Cc* et identifier le nombre d'éventuelles erreurs

3 mot à n bits et 31 bits dans la trame. $3n + n + 3 = 31 \Rightarrow n = 7$

- 2 Si nécessaire, corriger les mots de données Deux situations différentes conduisant aux valeurs de Cc et Cp
 - 1. bits erronés : $d_{2,3}$ (bit de rang 3 du mot D_2) et p_0
 - 2. bits erronés : $d_{0,3}$ (bit de rang 3 du mot D_0) et p_2
 - ⇒ Impossibilité de corriger les erreurs

Correction par parité croisée (5)

La trame $[D_2 \ D_1 \ D_0 \ P \ Pc] = [1101011010101000110010001111100]$ est reçue avec le protocole de parité croisée paire.

Calculer le contrôle de parité *Cp* et de parité croisée *Cc* et identifier le nombre d'éventuelles erreurs

3 mot à n bits et 31 bits dans la trame. $3n + n + 3 = 31 \Rightarrow n = 7$

2 Si nécessaire, corriger les mots de données

Au moins, deux situations différentes conduisant aux valeurs de Cc et Cp

- 1. bits erronés : $d_{2,2}$, $d_{0,5}$ et p_1
- 2. bits erronés : $d_{2.5}$, $d_{1.2}$ et p_0
- ⇒ Impossibilité de corriger les erreurs

Le mot de données D = [1101101] doit être émise avec un CRC correspondant au polynôme $x^2 + x + 1$

Calculer la valeur du CRC

Dans l'anneau des polynômes de F2

Dans l'algèbre de Boole B2

d'où la trame émise $T_0 = [D, CRC] = [110110111]$

La trame $T_1 = [110110111]$ est reçue avec un CRC correspondant au polynôme $x^2 + x + 1$

1 Cette trame contient-elle une ou plusieurs erreurs (ex. précédent)?

Le reste est nul, ce qui se produit quand il n'y a aucune erreur de transmission. Heureusement! car il s'agit de la trame T_0 calculée sur la diapo précédente!

La trame $T_2 =$ [111111111] est reçue avec un CRC correspondant au polynôme $x^2 + x + 1$

1 Cette trame contient-elle une ou plusieurs erreurs (ex. précédent)?

Le reste est nul, ce qui se produit quand il n'y a aucune erreur de transmission.

Remarquons que la cette trame T_2 pourrait résulter de la transmission de la trame $T_1 = [110110111]$ entachée de deux erreurs (bits t_3 et t_6). Dans ce cas, (2 erreurs), le CRC n'assure pas la détection.

La trame $T_3 = \begin{bmatrix} 100011111 \end{bmatrix}$ est reçue avec un CRC correspondant au polynôme $x^2 + x + 1$

1 Cette trame contient-elle une ou plusieurs erreurs (ex. précédent)?

Le reste est nul, ce qui se produit quand il n'y a aucune erreur de transmission. Remarquons, ici encore, que la cette trame T_3 pourrait résulter de la transmission de la trame $T_1 = [110110111]$ entachée de trois erreurs (bits t_3 , t_5 et t_7). Dans ce cas, (3 $^{\circ}$ erreurs), le CRC n'assure pas la détection.

- Calculer $E_1 = T_1 \oplus T_2 = [110110111] \oplus [11111111] = [001001000]$ et $E_2 = T_1 \oplus T_3 = [110110111] \oplus [100011111] = [010101000]$ Remarque : E_1 et E_2 correspondent aux erreurs de transmission transformant respectivement T_1 en T_2 et T_1 en T_3
- 2 Vérifier que les polynômes $E_1(x)$ et $E_2(x)$ sont de la forme

$$\sum_{i=0}^{\deg[P(x)]} b_i imes x^i imes (x^2+x+1)$$
 (avec $b_i \in F_2$)

$$\begin{array}{ll} E_1(x) & = x^6 + x^3 = (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) = x^4 \times G(x) + x^3 \times G(x) & \text{ok} \\ E_2(x) & = x^7 + x^5 + x^3 = (x^7 + x^6 + x^5) + (x^6 + x^5 + x^4) + (x^5 + x^4 + x^3) \\ & = x^5 \times G(x) + x^4 \times G(x) + x^3 \times G(x) & \text{ok} \end{array}$$

3 Expliquer ce résultat analytiquement, puis le généraliser Dans F_2 , $T_2(x) = T_1(x) + E_1(x)$. dans le cas général, $T_{recue} = T_{emise} + E(x)$ On sait, par construction que $\frac{T_{emise}}{G(x)} \Rightarrow R(x) = 0$. Donc, le reste de $\frac{T_{recue}}{G(x)} = \frac{T_{emise}}{G(x)} + \frac{E(x)}{G(x)}$ est nul si et seulement si $\frac{E(x)}{G(x)} = 0$. La forme proposée $E(x) = \sum_{i=0}^{deg[P(x)]} b_i \times x^i \times (x^2 + x + 1)$ garantit que $\frac{E(x)}{G(x)} = 0$

Correction d'erreur par code de Hamming H(7,4)

Soit D = [1000] à transmettre en H(7,4) avec bit de parité globale.

1 Calculer les bits de contrôle c_2 c_1 c_0

$$\left\{ \begin{array}{lll} c_2 &= d_3 \oplus d_2 \oplus d_1 &= 1 \oplus 0 \oplus 0 &= 1 \\ c_1 &= d_3 \oplus d_2 \oplus d_0 &= 1 \oplus 0 \oplus 0 &= 1 \\ c_0 &= d_3 \oplus d_1 \oplus d_0 &= 1 \oplus 0 \oplus 0 &= 1 \end{array} \right.$$

Calculer la trame qui sera transmise

La trame est émise dans l'ordre $[d_3 \ d_2 \ d_1 \ c_2 \ d_0 \ c_1 \ c_0 \ p]$ Elle vaut donc [10010110]p = 0 pour avoir un nombre pair de "1" dans la trame

Correction d'erreur par code de Hamming H(7,4)

Calculer les codes des 16 valeurs de H(7,4)

d_3	d_2	d_1	d_0	c ₂	<i>c</i> ₁	c ₀	p	trame émise $\begin{bmatrix} d_3 & d_2 & d_1 & c_2 & d_0 & c_1 & c_0 & p \end{bmatrix}$
0	0	0	0	0	0	0	0	0000000
0	0	0	1	0	1	1	1	00001111
0	0	1	0	1	0	1	1	00110011
0	0	1	1	1	1	0	0	00111100
0	1	0	0	1	1	0	1	01010101
0	1	0	1	1	0	1	0	01011010
0	1	1	0	0	1	1	0	01100110
0	1	1	1	0	0	0	1	01101001
1	0	0	0	1	1	1	0	10010110
1	0	0	1	1	0	0	1	10011001
1	0	1	0	0	1	0	1	10100101
1	0	1	1	0	0	1	0	10101010
1	1	0	0	0	0	1	1	11000011
1	1	0	1	0	1	0	0	11001100
1	1	1	0	1	0	0	0	11110000
1	1	1 UNIVERS	, _{тέ} 1	1	1	1	1	11111111

[11000011] est reçue dans un transfert utilisant H(7,4)

Identifier le bit de parité p, le mot de contrôle C et le mot de données D

$$\left\{ \begin{array}{ll} p &= 1 \\ C &= 001 \\ D &= 1100 \end{array} \right. \ \, \text{(valeur correcte: 4 bits à 1)}$$

Quelle est la valeur du syndrome?

$$\left\{ \begin{array}{lll} s_2 &= c_2 \oplus d_3 \oplus d_2 \oplus d_1 &= 0 \oplus 1 \oplus 1 \oplus 0 &= 0 \\ s_1 &= c_1 \oplus d_3 \oplus d_2 \oplus d_0 &= 0 \oplus 1 \oplus 1 \oplus 0 &= 0 \\ s_0 &= c_0 \oplus d_3 \oplus d_1 \oplus d_0 &= 1 \oplus 1 \oplus 0 \oplus 0 &= 0 \end{array} \right. \text{ valeur de S=0}$$

3 Quelle était la valeur transmise par l'émetteur?

Le bit de parité est correct et le syndrome est nul. Situation la plus probable : pas d'erreur. D'où les données D = [1100]

[11001111] est reçue dans un transfert utilisant H(7,4)

Identifier le bit de parité p, le mot de contrôle C et le mot de données D

$$\left\{ \begin{array}{ll} p &= 1 \\ C &= 011 \\ D &= 1101 \end{array} \right. \mbox{ (valeur correcte: 6 bits à 1)}$$

Quelle est la valeur du syndrome?

$$\left\{ \begin{array}{lll} s_2 &= 0 \oplus 1 \oplus 1 \oplus 0 &= 0 \\ s_1 &= 1 \oplus 1 \oplus 1 \oplus 1 &= 0 \\ s_0 &= 1 \oplus 1 \oplus 0 \oplus 1 &= 1 \end{array} \right. \quad \text{valeur de S=1}$$

3 Quelle était la valeur transmise par l'émetteur?

Le bit de parité est correct et le syndrome est non nul. Ceci traduit un nombre pair (non nul) d'erreurs ⇒ correction impossible

[11000010] est reçue dans un transfert utilisant H(7,4)

Identifier le bit de parité p, le mot de contrôle C et le mot de données D

$$\begin{cases} p = 0 & \text{(valeur incorrecte : 3 bits à 1)} \\ C = 001 \\ D = 1100 \end{cases}$$

Quelle est la valeur du syndrome?

$$\left\{\begin{array}{lll} s_2 &= 0 \oplus 1 \oplus 1 \oplus 0 &= 0 \\ s_1 &= 0 \oplus 1 \oplus 1 \oplus 0 &= 0 \\ s_0 &= 1 \oplus 1 \oplus 0 \oplus 0 &= 0 \end{array}\right. \text{ valeur de S=0 : pas d'erreur dans [DC]}$$

3 Quelle était la valeur transmise par l'émetteur?

C'est le bit de parité qui est faux, ceci n'entraı̂ne aucune correction. Les bits de données sont $D = \lceil 1100 \rceil$

[11100011] est reçue dans un transfert utilisant H(7,4)

I Identifier le bit de parité p, le mot de contrôle C et le mot de données D

$$\left\{ \begin{array}{ll} p &= 1 \\ C &= 001 \\ D &= 1110 \end{array} \right. \mbox{ (valeur incorrecte : 5 bits à 1)}$$

Quelle est la valeur du syndrome?

$$\left\{ \begin{array}{lll} s_2 &= 0 \oplus 1 \oplus 1 \oplus 1 &= 1 \\ s_1 &= 0 \oplus 1 \oplus 1 \oplus 0 &= 0 \\ s_0 &= 1 \oplus 1 \oplus 1 \oplus 0 &= 1 \end{array} \right. \quad \text{valeur de S=5}$$

3 Quelle était la valeur transmise par l'émetteur?

C'est le bit t_5 de la trame qui doit être corrigé.

La trame corrigée est [11000011] et les bits de données sont D = [1100]

