§ 0.1 Measure Theory

Definition 0.1.1 (Lower and Upper Sums). We define the *upper* and *lower Riemann sums* as follows.

Let f(x) be a function, then

$$\begin{cases} \mathcal{U}(f,x) := \sum_{i=1}^{n} \sup_{t \in [x_{k}, x_{k+1}]} (f(t)) \\ \mathcal{L}(f,x) := \sum_{i=1}^{n} \inf_{t \in [x_{k}, x_{k+1}]} (f(t)) \end{cases}$$
(1)

A function is said to be Riemann integrable if $\lim_{n\to\infty} (\mathcal{L}(f,x) - \mathcal{U}(f,x)) = 0$

Definition 0.1.2 (Set Function). Let A be a set. We define the following function $\mathbb{1}_A(x)$ as follows

$$\mathbb{1}_A(x) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases} \tag{2}$$

Theorem 0.1. The function $\mathbb{1}_{\mathbb{Q}}$ is not integrable over the set [0,1] with the usual definition of the integral (Riemann sums)

Proof. Indicating the integral I as usual

$$I = \int_0^1 \mathbb{1}_{\mathbb{Q}}(x) \, \mathrm{d}x$$

We see immediately that

$$\mathcal{U}(\mathbb{1}_{\mathbb{Q}}, x) = 1$$
$$\mathcal{L}(\mathbb{1}_{\mathbb{Q}}, x) = 0$$

Therefore $\mathbb{1}_{\mathbb{O}}(x)$ is not integrable in [0,1] (with the Riemann integral)

Definition 0.1.3 (Measure). Let $A \subset X$ be a subset of a metric space. We define the measure of the set A, $\mu(A)$ as follows

$$\mu(A) = \int_X \mathbb{1}_A(x) \, \mathrm{d}x \tag{3}$$

Basically, what we did before, was demonstrating that the set $\mathbb{Q} \cap [0,1]$ is not measurable in the Riemann integration theory. This is commonly indicated with saying that the set $\mathbb{Q} \cap [0,1]$ is not Jordan measurable.

For clarity, let K be some measure theory. We will say that a set is K-measurable if the following calculation exists

$$\mu_K(A) = \int_X \mathbb{1}_A(x) \, \mathrm{d}x \tag{4}$$

Definition 0.1.4 (Algebra). Let $X \neq \{\}$ be a set. An algebra \mathcal{A} over X is a collection of subsets of X such that

1.
$$\{\} \in A$$

- $2. X \in \mathcal{A}$
- 3. $A \in \mathcal{A} \implies A^{c} \in \mathcal{A}$

4.
$$A_1, \dots, A_n \in \mathcal{A} \implies \bigcup_{i=1}^n A_i, \bigcap_{i=1}^n A_i \in \mathcal{A}$$

Example 0.1.1 (Simple Set Algebra). Let $X = \mathbb{R}^2$ and call R the set of all rectangles $I_i \subset \mathbb{R}^* \times \mathbb{R}^*$, where $\mathbb{R}^* = \mathbb{R} \cup \{\pm \infty\}$. It's easy to see that this is not an algebra, since, by taking $[0,1] \in R$, we have that $[0,1]^c \notin R$, hence it cannot be an algebra.

But, taken S as follows

$$S := \left\{ A \subset \mathbb{R}^2 \middle| A = \bigcup_{i=1}^n I_i \quad I_i \in R \right\}$$

We can see easily, using De Morgan law, that S is an algebra.

§§ 0.1.1 Jordan Measure

Definition 0.1.5 (Disjoint Union). Taken two sets A, B, we define their *disjoint union* the binary operation $A \sqcup B$ as follows

$$A \sqcup B := A \cup B \setminus A \cap B \tag{5}$$

Definition 0.1.6 (Simple Set). A set A is a *simple set* iff, for some $R_i \in \mathcal{S}$, we have

$$A = \bigsqcup_{i=1}^{n} R_i$$

Definition 0.1.7 (Measure of a Simple Set). Let A be a simple set, the *Jordan measure* of a simple set is given by the sum of the measure of the rectangles, i.e. the "area" of A is given by the sum of the area of each rectangle R_i

$$\mu_J(A) = \sum_{i=1}^n \mu_J(R_i)$$
 (6)

Definition 0.1.8 (External and Internal Measure). We define the external measure $\overline{\mu}_J$ and the internal measure μ_J as follows.

Taken a limited set B and a simple set A we have

$$\overline{\mu}_J(B) = \inf\{\mu_J(A) | B \subset A\}$$

$$\underline{\mu}_J(B) = \sup\{\mu_J(A) | A \subset B\}$$
(7)

A set is said to be Jordan measurable iff

$$\overline{\mu}_J(B) = \underline{\mu}_J(B) = \mu_J(B)$$

Remark (A Non Measurable Set). A good example for showing that the Jordan measure is the set we were trying to measure, the set $\mathbb{Q} \cap [0,1]$. We can easily see that

$$\overline{\mu}_J(\mathbb{Q} \cap [0,1]) = 1$$
$$\mu_J(\mathbb{Q} \cap [0,1]) = 0$$

Therefore it's not Jordan measurable.

From this we can jump to a new definition of measure, which is the *Lebesgue measure* where instead of covering $\mathbb{Q} \cap [0,1]$ with a *finite* number of simple sets, we use sets which are formed from the union of *countable infinite* simple sets.

We can define

$$\mathbb{Q} \cap [0,1] := \{q_1, q_2, \cdots\}$$

We then take $\epsilon > 0$ and define the following set

$$A = \bigcup_{n=1}^{\infty} \left[q_n - \frac{\epsilon}{2^n}, q_n + \frac{\epsilon}{2^n} \right]$$

We have that

$$\mu(A) \le \sum_{n=1}^{\infty} \frac{\epsilon}{2^{n-1}} = 2\epsilon$$

But $\overline{\mu}(\mathbb{Q} \cap [0,1]) \leq \mu(A) \leq 2\epsilon \to 0$, therefore $\mathbb{Q} \cap [0,1]$ is measurable with $\mu(\mathbb{Q} \cap [0,1]) = 0$

§§ 0.1.2 Lebesgue Measure

Definition 0.1.9 (σ -Algebras and Borel Spaces). Given a non empty set X a σ -algebra on X is a collection of subsets \mathcal{F} such that

- 1. $\forall A \in \mathcal{F}, A \subset X$
- 2. Let $A_i \in \mathcal{F}, i \in \mathcal{I} : |\mathcal{I}| = \aleph_0$ then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$

The couple (X, \mathcal{F}) is called a Borel space or also a measurable space

Definition 0.1.10 (Measure). Given a Borel space (X, \mathcal{F}) , we can define an application

$$\mu: \mathcal{F} \longrightarrow [0, \infty] = \mathbb{R}_{+}^{\star} \tag{8}$$

Which satisfies the following properties

1. σ -additivity, given $A_i \in \mathcal{F}$ with $i \in I \subset \mathbb{N}$, $|I| \leq \aleph_0$, such that $A_n \cap A_k = \{\}$ for $n \neq k$

$$\mu\left(\bigsqcup_{i\in I} A_i\right) = \sum_{i\in I} \mu(A_i)$$

2. If $Y_j \subset X$, with $j \in J \subseteq \mathbb{N}, \ \mu(Y_j) < \infty$ then $X = \bigcup_{j=1}^{\infty} Y_j$

Definition 0.1.11 (Measure Space). A measure space is a triplet (X, \mathcal{F}, μ) with \mathcal{F} a σ -algebra and μ a measure.

Remark. The empty set has null measure.

Proof. Due to σ -additivity we have that

$$\mu(\{\}) = \mu(\{\} \cup \{\}) = \mu(\{\}) + \mu(\{\})$$

Therefore, $\mu(\{\}) = 0$ necessarily.

Definition 0.1.12 (Lebesgue Measure). Consider again $X = \mathbb{R}^2$ and \mathcal{S} the algebra of simple sets. The external Lebesgue measure of a set $B \subset \mathbb{R}^2$ is then defined as follows

$$\overline{\mu}_L(B) := \inf \left\{ \sum_{i=1}^{\infty} \operatorname{Area}(R_i) \middle| R_i \in \mathcal{S}, \ B \subset \bigcup_{i=1}^{\infty} R_i \right\}$$
(9)

The set B is said to be Lebesgue measurable iff, $\forall C \subset \mathbb{R}^2$

$$\overline{\mu}_L(C) = \overline{\mu}_L(C \cap B) + \overline{\mu}_L(C \setminus B) \tag{10}$$

If it's measurable, then, $\overline{\mu}_L(B) = \mu_L(B)$ and it's called the *Lebesgue measure* of the set. In other words $\exists \epsilon > 0 : \exists \overline{A}, C \subset \mathbb{R}^2$, with $A = A^{\circ}$, $C = \overline{C}$ such that

$$C \subset B \subset A \vee \overline{\mu}_L(A \setminus C) < \epsilon \tag{11}$$

Definition 0.1.13 (Borel Algebra). Let R be the set of all rectangles. The smallest σ -algebra containing R is called the Borel algebra and it's indicated as \mathcal{B}

Definition 0.1.14 (Lebesgue Algebra). The set of (Lebesgue) measurable sets is a σ -algebra, which we will indicate as \mathcal{L} . In particular, we have that, if I is a rectangle, $I \in \mathcal{L}$.

If we add the fact that in \mathcal{B} there are null measure sets which have subsets which aren't part of \mathcal{B} , we end up with the conclusion that $\mathcal{B} \subset \mathcal{L}$

Definition 0.1.15 (Null Measure Sets). A set with null measure is a set $X \subset \mathcal{F}$ such that

$$\mu(X) = 0 \tag{12}$$

Where μ is a measure function.

It's obvious that sets formed by a single point have null measure.

I.e take a set $A = \{a\}$, then it can be seen as a rectangle with 0 area, and therefore

$$\mu\left(\left\{a\right\}\right) = 0\tag{13}$$

Theorem 0.2. Every set such that $|A| = \aleph_0$ has null measure

Corollary 0.1.1. Every line in \mathbb{R}^2 has null measure

Proof. Take the set $A = \{a_1, a_2, a_3, \dots\}$. Then, due to σ -additivity, we have

$$\mu(\{a_1, a_2, a_3, \dots\}) = \mu\left(\bigsqcup_{k=1}^{\infty} \{a_k\}\right) = \sum_{k=1}^{\infty} \mu(\{a_k\}) = 0$$
(14)

For the corollary, it's obvious if the line is thought as a rectangle in \mathbb{R}^2 with null area

§ 0.2 Integration

Definition 0.2.1 (Measurable Function). Given a Borel space (X, \mathcal{F}) a measurable function is a function $f: X \longrightarrow \mathbb{F}$ such that, $\forall k \in \mathbb{F}$ the following set is measurable

$$I_f := \{ k \in \mathbb{F} | f(x) < k \} \tag{15}$$

Or, in other words $I_f \in \mathcal{F}$, with \mathcal{F} the given σ -algebra of the Borel space.

The space of all measurable functions on X will be identified as $\mathcal{M}(X)$

0.2. INTEGRATION 5

Theorem 0.3. Given a set $A \in \mathcal{F}$ with \mathcal{F} a σ -algebra, the function $\mathbb{1}_A(x)$ is measurable

Proof. We have that

$$I_{\mathbb{1}_A} = \begin{cases} A & k > 1 \\ \{\} & t \le 1 \end{cases}$$

Therefore $I_{\mathbb{1}_A} \in \mathcal{F}$ and $\mathbb{1}_A(x)$ is measurable

Definition 0.2.2 (Simple Measurable Function). Given a Borel space (X, \mathcal{F}) , a *simple measurable function* is a function $f: X \longrightarrow \mathbb{F}$ which can be written as follows

$$f(x) = \sum_{k=1}^{n} c_k \mathbb{1}_{A_k}(x)$$
 (16)

Where $A_k \in \mathcal{F}, c_k \in \mathbb{F} \quad 0 \le k \le n$

Definition 0.2.3 (Integral). Given a measure space (X, \mathcal{F}, μ) and a simple function f(x), we can define the *integral* of the function f with respect to the measure μ over the set X as follows

$$\int_{X} f(x)\mu(\mathrm{d}x) = \sum_{k=1}^{n} c_{k}\mu(A_{k})$$
(17)

For non negative functions we define the integral as follows

$$\int_{X} f(x)\mu(dx) = \sup\left\{ \int_{X} g(x)\mu(dx) \right\}$$
(18)

Where g(x) is a simple measurable function such that $0 \le g \le f$. If f assumes both negative and positive values we can write

$$f = f^{+} - f^{-} \tag{19}$$

Where

$$\begin{cases} f^+ = \max f, 0\\ f^- = \max -f, 0 \end{cases} \tag{20}$$

The integral, due to linearity, then will be

$$\int_{X} f(x)\mu(dx) = \int_{X} f^{+}(x)\mu(dx) - \int_{X} f^{-}(x)\mu(dx)$$
 (21)

With the only constraint that the function f(x) must be misurable in the σ -algebra \mathcal{F}

§§ 0.2.1 Lebesgue Spaces

Definition 0.2.4 (\mathcal{L}^p spaces). With the previous definitions, we can define an *infinite dimensional* function space with the following properties

Given a measure space (X, \mathcal{F}, μ) we have the following definition

$$\mathcal{L}^{p}\left(X,\mathcal{F},\mu\right) = \mathcal{L}^{p}(\mu) := \left\{ f: X \longrightarrow \mathbb{F} | I_{f} \in \mathcal{F} \land \int_{X} \left| f \right|^{p} \mu\left(\mathrm{d}x\right) < \infty \right\}$$
(22)

Defining the integral as an operator $\hat{K}_{\mu}[f]$ we can see easily that this is a vector spaces due to the properties of \hat{K}_{μ} .

It's easy to note that if the chosen σ -algebra and measure are the Lebesgue ones, then this integral is simply an extension of the usual Riemann integral.

It's important to note that a norm in $\mathcal{L}^p(\mu)$ can't be defined as an usual integral p-norm, since there are nonzero functions which have actually measure zero.

Definition 0.2.5 (Almost Everywhere Equality). Taken two functions $f, g \in \mathcal{L}^p(\mu)$ we say that these two function are almost everywhere equal if, given a set $A := \{x \in X | f(x) \neq g(x)\}$ has null measure. Therefore

$$f \sim g \iff \mu(A) = 0$$
 (23)

This equivalence relation creates equivalence classes of functions compatible with the vector space properties of $\mathcal{L}^p(\mu)$.

Definition 0.2.6 (L^p -Spaces). With the definition of the almost everywhere equality we can then define a quotient space as follows

$$L^p(\mu) = \mathcal{L}^p(\mu) \setminus \sim \tag{24}$$

This is a vector space, obviously, where the elements are the equivalence classes of functions $f \in \mathcal{L}^p(\mu)$, indicated as [f].

If we define our σ -algebra and measure as the Lebesgue ones, this space is called the *Lebesgue space* $L^p(X)$, where an integral p-norm can be defined.

§§ 0.2.2 Lebesgue Integration

Note:

In this section the differential dx will actually indicate the Lebesgue measure $\mu(dx)$ used previously, unless stated otherwise.

Theorem 0.4. Let $f: E \longrightarrow \mathbb{F}$ be a measurable function over E. Given

$$F_{+\infty} = x \in E | f(x) = +\infty \land F_{-\infty} = x \in E | f(x) = -\infty$$

Assuming $E \subset X$, with (X, \mathcal{L}, μ) a Lebesgue measure space, we have that

$$\mu\left(F_{+\infty}\right) = \mu\left(F_{-\infty}\right) = 0$$

Proof. We can immediately say that

$$F_{+\infty} = \bigcap_{k>0} F_k \in \mathcal{L}$$

Letting r > 0 we will indicate with $\mathbb{1}_r(x)$ the set function of the set $F_{+\infty} \cap B_r(0)$, therefore we have that

$$f^+(x) \ge k \mathbb{1}_r(x) \quad \forall k \in \mathbb{N}$$

Therefore

$$\mu(F_{+\infty} \cap B_r(0)) = \int \mathbb{1}_r(x) \, \mathrm{d}x \le \frac{1}{k} \int_E f^+(x) \, \mathrm{d}x \longrightarrow 0$$

The proof is analogous for $F_{-\infty}$

0.2. INTEGRATION 7

Theorem 0.5. Let (X, \mathcal{L}, μ) be a measure space, where \mathcal{L} is the Lebesgue σ -algebra and μ is the Lebesgue measure. Given a function $f \in L^1(X)$ we have that

$$\int_{X} f(x) \, \mathrm{d}x = 0 \iff f \sim 0 \tag{25}$$

Proof. Let $F_0 = x \in X | f(x) > 0 = \bigcap_{k \ge 0} F_{1/k}$. Since f(x) > 1/k, $\forall x \in F_{1/k}$, we have that, $\forall k \in \mathbb{N}$

$$\mu(F_{1/k}) \le \int_X f(x) \, \mathrm{d}x = 0$$

Through induction, we obtain that $\mu(F_0) = 0$

Theorem 0.6 (Monotone Convergence (B. Levi)). Let $(f)_k$ be a sequence of measurable functions over a Borel space E, such that

$$0 \le f_1(x) \le \dots \le f_k(x) \le \dots \quad \forall x \in F \subset E, \ \mu(F) = 0$$

If $f_k(x) \to f(x)$, we have that

$$\int_{E} f(x) dx = \lim_{k \to \infty} \int_{E} f_{k}(x) dx$$
 (26)

Or, in another notation

$$\int_{E} f_k(x) \, \mathrm{d}x \to \int_{E} f(x) \, \mathrm{d}x \tag{27}$$

Proof. Let $F_{0k} = 0 < y < f_k(x)$ and $F_0 = 0 < y < f(x)$ be two sets defined as seen. They are all measurable since $f_k(x)$, f(x) are measurable, and due to the monotony of $f_k(x)$ we have that

$$F_{01} \subset F_{02} \subset \cdots \subset F_{0k} \subset \cdots \land F_0 = \bigsqcup_{k=1}^{\infty} F_{0k}$$

Due to σ -additivity of the measure function, we have that F_0 is measurable, and that

$$\mu(F_0) = \sum_{k=1}^{\infty} \mu(F_{0k}) \quad \therefore \mu(F_0) = \lim_{k \to \infty} \mu(F_{0k})$$

Notation (For Almost All). We now introduce a new (unconventional) symbol in order to avoid writing too much, which would complicate the already difficult to understand theorems.

In order to indicate that we're picking almost all elements of a set we will use a new quantifier, which means that we're picking all elements of a null measure subset of the set in question. The quantifier in question will be the following

$$\forall^{\dagger}$$
 (28)

Corollary 0.2.1. Let $f_k(x)$ be a sequence of non-negative measurable functions over a measurable set E, then $\forall^{\dagger} x \in E$

$$\int_{E} \sum_{k>0} f_k(x) \, \mathrm{d}x = \sum_{k>0} \int_{E} f_k(x) \, \mathrm{d}x \tag{29}$$

Theorem 0.7 (Fatou). Let $f_k(x)$ be a sequence of measurable functions over a measurable set E, such that $\forall^{\dagger} x \in E \ \exists \Phi(x) \ measurable : f_k(x) > \Phi(x)$, then

$$\int_{E} \liminf_{k \to \infty} f_k(x) \, \mathrm{d}x \le \liminf_{k \to \infty} \int_{E} f_k(x) \, \mathrm{d}x$$

Analogously happens with the lim sup of the sequence

Proof. Let $h_k(x) = f_k(x) - \Phi(x) \ge 0 \ \forall^{\dagger} x \in E \text{ and } g_j(x) = \inf_{k > k} h_k(x)$, then $\forall k \ge j$ we have

$$\int_{E} g_j(x) \, \mathrm{d}x \le \int_{E} h_k(x) \, \mathrm{d}x$$

It's also (obviously) true taking the lim sup of the RHS, and for the theorem on the monotone convergence, we have that

$$\int_{E} \lim_{j \to \infty} g_j(x) \, \mathrm{d}x = \lim_{j \to \infty} \int_{E} g_j(x) \, \mathrm{d}x \le \int_{E} h_k(x) \, \mathrm{d}x$$
$$\therefore \lim_{j \to \infty} g_j(x) = \sup_{j} g_j(x) = \sup_{j} \inf_{k \ge j} h_k(x) = \liminf_{k \to \infty} h_k(x)$$

Theorem 0.8 (Dominated Convergence (Lebesgue)). Let $h(x) \ge 0$ be a measurable function on the measurable set E such that for a sequence of measurable functions $f_k(x)$ we have that

$$|f_k(x)| \le h(x) \quad \forall^{\dagger} x \in E$$

And

$$f(x) = \lim_{k \to \infty} f_k(x) \quad \forall^{\dagger} x \in E$$

Then

$$\int_{E} f(x) \, \mathrm{d}x = \lim_{k \to \infty} \int_{E} f_k(x) \, \mathrm{d}x$$

Proof. By definition we have that $-h(x) \leq f_k(x) \leq h(x) \ \forall^{\dagger} x \in E$, and we can apply Fatou's theorem

$$\int_E f(x) \, \mathrm{d}x \leq \liminf_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x \leq \limsup_{k \to \infty} \int_E f_k(x) \, \mathrm{d}x \leq \int_E f(x) \, \mathrm{d}x$$

Corollary 0.2.2. Let E be a measurable set such that $\mu(E) < \infty$ and let $f_k(x)$ be a sequence of functions in E such that $|f_k(x)| \le M \ \forall^{\dagger} x \in E$ and $f_k(x) \to f(x), \ \forall^{\dagger} x \in E$. Then the theorem (0.8) is valid.

Example 0.2.1. Take the sequence of functions $f_k(x) = kxe^{-kx}$ over E = [0,1]. We already know that $f_k(x) \longrightarrow f(x) = 0$ for $x \in E$, but $f_k(x) \not \rightrightarrows f(x)$ in E. We have that

$$\sup_{E} f_k(x) = e^{-1} = h(x) \neq f(x)$$

We have that h(x) is measurable in E and we can apply the theorem (0.8)

0.2. INTEGRATION 9

Definition 0.2.7 (Carathéodory Function). Let (X, \mathcal{L}, μ) be a measure space and $A \subset \mathbb{R}^n$. $f: X \times A \longrightarrow \mathbb{R}$ is a Carathéodory function iff $f(x^{\mu}, a^{\nu}) \in C(A) \ \forall a^{\nu} \in A$ and $f(x^{\mu}, a^{\nu}) \in \mathcal{M}(X) \ \forall^{\dagger} \ x^{\mu} \in X$

Definition 0.2.8 (Locally Uniformly Integrably Bounded). Let $f: X \times A \longrightarrow \mathbb{R}$ be a Carathéodory function. It's said to be *locally uniformly integrably bounded* if $\forall a^{\nu} \in A \ \exists h_{a^{\nu}}: X \longrightarrow \mathbb{R}$ measurable, and $\exists B_{\epsilon}(a^{\nu}) \subset A$, such that

$$\forall y^{\nu} \in B_{\epsilon}(x^{\mu}) |f(x^{\mu}, y^{\nu})| \le h_{a^{\nu}}(x^{\mu})$$

Note that if μ is a finite measure, then f bounded $\implies f$ locally uniformly integrably bounded or LUIB.

Theorem 0.9 (Leibniz's Derivation Rule). Let (X, \mathcal{F}, μ) be a measure space and $A \subset \mathbb{R}^n$ an open set. If $f: X \times A \longrightarrow \mathbb{R}$ is a LUIB Carathéodory function we can define

$$g(a^{\mu}) = \int_X f(x^{\nu}, a^{\mu}) \,\mathrm{d}\mu \,(x^{\sigma}) \in C(A)$$

Then

$$\partial_{x^{\mu}} f(x^{\nu}, a^{\sigma}) \in C(A)$$

Is LUIB, and therefore

$$g(a^{\mu}) \in C^1(A)$$

And

$$\partial_{\mu}g = \int_{X} \partial_{a^{\mu}} f(a^{\nu}, x^{\sigma}) \, \mathrm{d}\mu (x^{\gamma})$$

In other terms

$$\partial_{a^{\mu}} \int_{X} f(a^{\nu}, x^{\sigma}) \,\mathrm{d}\mu(x^{\gamma}) = \int_{X} \partial_{a^{\mu}} f(a^{\nu}, x^{\sigma}) \,\mathrm{d}\mu(x^{\gamma}) \tag{30}$$

Proof. Since f is a LUIB Carathéodory function we have that $\exists h_{a^{\mu}}(x^{\nu}): X \longrightarrow \mathbb{R}$ and $B_{\epsilon}(a^{\mu}) \subset A: \forall y^{\mu} \in B_{\epsilon}(a^{\nu})$

$$|f(y^{\mu}, x^{\nu})| < h_{a^{\mu}}(x^{\nu})$$

Therefore

$$|g(a^{\mu})| \le \int_X h_{a^{\mu}}(x^{\nu}) \,\mathrm{d}\mu(x^{\sigma}) < \infty$$

Now take a sequence $(a^{\mu})_n:(a^{\mu})_n\to a^{\mu}$, then $f\in C(A)\implies f(a_n^{\mu},x^{\nu})\to f(a^{\mu},x^{\nu})$ $\forall^{\dagger}x^{\mu}\in X, \forall a_n^{\mu}\in B_{\epsilon}(a^{\mu})$

$$\therefore \exists N \in \mathbb{N} : \forall n \geq N |f(a_n^{\mu}, x^{\nu})| \leq h_{a^{\mu}}(x^{\nu})$$

Then

$$g(a_n^{\mu}) = \int_X f(a_n^{\mu}, x^{\nu}) \,\mathrm{d}\mu(x^{\sigma}) \to \int_X f(a^{\mu}, x^{\nu}) \,\mathrm{d}\mu(x^{\sigma}) = g(a^{\mu})$$

Since f is differentiable and its derivative is measurable, we have for the mean value theorem

$$f(a^{\mu} + te^{\mu}, x^{\nu}) - f(a^{\mu}, x^{\nu}) = t\partial_{\mu} f(\xi^{\nu}(t, x^{\sigma}), x^{\gamma})$$

If $\xi^{\mu}(t, x^{\nu}) \in B_{\epsilon}(a^{\mu})$ we have that

$$|t\partial_{\mu}f(\xi^{\nu}(t,x^{\sigma}),x^{\gamma})| \leq h_{a^{\mu}}(x^{\nu})$$

And therefore

$$\frac{g(a^{\mu} + te^{\mu}) - g(a^{\mu})}{t} = \frac{1}{t} \int_{X} t \partial_{\mu} f(\xi^{\nu}(t, x^{\sigma}), x^{\gamma}) \, d\mu(x^{\delta})$$

For $t \to 0$ $\partial_{\mu} f(\xi^{\nu}, x^{\sigma}) \to \partial_{\mu} f(a^{\nu}, x^{\sigma})$, and the LHS is simply the gradient of g. Therefore for theorem (0.8)

 $\partial_{\mu}g(a^{\nu}) = \frac{\partial}{\partial a^{\mu}} \int_{X} f(a^{\nu}, x^{\sigma}) \, \mathrm{d}\mu(x^{\gamma}) = \int_{X} \partial_{\mu}f(a^{\nu}, x^{\sigma}) \, \mathrm{d}\mu(x^{\gamma})$

§ 0.3 Calculus of Integrals in \mathbb{R}^2 and \mathbb{R}^3

§§ 0.3.1 Double Integration

Theorem 0.10. Let $E \subset \mathbb{R}^2$ and $F \subset \mathbb{R}^3$. Define $E_x := \{ y \in \mathbb{R} | (x,y) \in E \}$ the sections of E parallel to the y axis, then

$$\mu(E) = \int_{\mathbb{R}} \mu_1(E_x) \, \mathrm{d}y \tag{31}$$

Where with μ_i we indicate the i-dimensional measure on \mathbb{R}^n . Analogously, we define $F_z := \{(x,y) \in \mathbb{R}^2 | (x,y,z) \in F\}$ then

$$\mu(F) = \int_{\mathbb{P}} \mu_2(F_z) \, \mathrm{d}z \tag{32}$$

If we define $F_{xy} := \{z \in \mathbb{R} | (x, y, z) \in F\}$ we have

$$\mu(F) = \iint_{\mathbb{R}^2} \mu_1(F_{xy}) \, \mathrm{d}x \, \mathrm{d}y \tag{33}$$

Proof. Let $A \subset \mathbb{R}^2$ open, and let $Y_k \subset \mathbb{R}^2$ be rectangles such that

$$Y_1 \subset Y_2 \subset Y_3 \subset \cdots$$
$$A = \bigsqcup_{k=1}^{\infty} Y_k$$

Then, due to σ -additivity, we have

$$\mu_2(A) = \lim_{k \to \infty} \mu_2(Y_k) = \lim_{k \to \infty} \int_{\mathbb{D}} \mu_1(Y_{kx}) dx$$

But

$$Y_{1x} \subset Y_{2x} \subset \cdots$$
$$A_x = \bigsqcup_{k=1}^{\infty} Y_{kx}$$

Due to σ -additivity and the Beppo-Levi theorem we have that

$$\int_{\mathbb{R}} \mu_1(A_x) \, \mathrm{d}x = \lim_{k \to \infty} \int_{\mathbb{R}} \mu_1(Y_{kx}) \, \mathrm{d}x$$

Let $E \subset \mathbb{R}^2$ be a measurable set. Define a sequence of compact sets K_i and a sequence of open sets A_i such that

$$K_1 \subset \cdots \subset K_i \subset E \subset A_i \subset \cdots \subset A_1$$

We have that $\lim_{j\to\infty} \mu_2(A_j) = \lim_{j\to\infty} \mu_2(K_j) = \mu_2(E)$ and that $K_{jx} \subset E \subset A_{jx}$. From the previous derivation we can write that

$$\lim_{j \to \infty} \int_{\mathbb{D}} \left(\mu_1(A_{jx}) - \mu_1(K_{jx}) \right) \mathrm{d}x = 0$$

Building a sequence of non-negative functions $f_j(x) = \mu_1(A_{jx}) - \mu_1(K_{jx})$ we have that $f_j(x) \le f_{j-1}(x)$ and due to Beppo-Levi we have that

$$\lim_{j \to \infty} \int_{\mathbb{R}} f_j(x) \, \mathrm{d}x = \int_{\mathbb{R}} \lim_{j \to \infty} f_j(x) \, \mathrm{d}x$$

And therefore $\mu_1(K_{jx}) = \mu_1(A_{jx})$, and

$$\forall^{\dagger} x \in \mathbb{R} \quad \mu_2(K_j) = \int_{\mathbb{R}} \mu_1(K_{jx}) \, \mathrm{d}x \le \int_{\mathbb{R}} \overline{\mu_1}(E_x) \, \mathrm{d}x \le \int_{\mathbb{R}} \mu_1(A_{jx}) = \mu_2(A_j)$$

Theorem 0.11 (Fubini). Let f(x,y) be a measurable function in \mathbb{R}^2 , then

1. $\forall^{\dagger} x \in \mathbb{R} \quad y \mapsto f(x,y) \text{ is measurable in } \mathbb{R}$

2. $g(x) = \int_{\mathbb{R}} f(x, y) dy$ is measurable in \mathbb{R}

3. $\iint_{\mathbb{R}^2} f(x, y) dx dy = \iint_{\mathbb{R}} f(x, y) dx dy$

Proof. Let $f(x,y) \ge 0$. Defining $F_0 := \{(x,y) \in E \times \mathbb{R} | 0 < z < f(x,y)\} \subset \mathbb{R}^3$, we have that F_0 is measurable, and

$$\mu_3(F_0) = \iint_{\mathbb{D}^2} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

But F_{0x} is also measurable $\forall^{\dagger} x \in \mathbb{R}$ and therefore

$$\mu_3(F_0) = \int_{\mathbb{R}} \mu_2(F_{0x}) \, \mathrm{d}x = \int_{\mathbb{R}} \int_{\mathbb{R}} f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

Theorem 0.12 (Tonelli). Let f(x,y) be a measurable function and $E \subset \mathbb{R}^2$ be a measurable set. If one of these integrals exists, the others also exist and have the same value

$$\iint_{\mathbb{R}^2} f(x, y) \, dx \, dy \quad \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) \, dx \right) dy \quad \int_{\mathbb{R}} \left(\int_{\mathbb{R}} f(x, y) \, dy \right) dx$$

Theorem 0.13 (Integration Over Rectangles). Let $R = [a, b] \times [c, d] \subset \mathbb{R}^2$ be a rectangle, and f(x, y) a measurable function over R. Then

1. If $\forall^{\dagger} x \in [a,b] \exists G(x) = \int_{c}^{d} f(x,y) \, dy$, the function G(x) is measurable in [a,b] and

$$\iint_R f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_a^b G(x) \, \mathrm{d}x = \int_a^b \int_c^d f(x,y) \, \mathrm{d}y \, \mathrm{d}x$$

2. If $\forall^{\dagger} y \in [c,d] \exists F(y) = \int_a^b f(x,y) dx$, the function F(y) is measurable in [c,d] and

$$\int_{\mathbb{R}^2} f(x, y) \, \mathrm{d}x \, \mathrm{d}y = \int_c^d F(y) \, \mathrm{d}y = \int_c^d \int_a^b f(x, y) \, \mathrm{d}x \, \mathrm{d}y$$

If both are true, then

$$\int_{R} f(x,y) dx dy = \int_{a}^{b} dx \int_{c}^{d} f(x,y) dy = \int_{c}^{d} dy \int_{a}^{b} f(x,y) dx$$
(34)

Definition 0.3.1 (Normal Set). A set $E \subset \mathbb{R}^2$ is said to be *normal* with respect to the x axis if

$$E = \{ (x, y) \in \mathbb{R}^2 | a \le x \le b \ \alpha(x) \le y \le \beta(x) \}$$

The definition is analogous for the other axes.

Theorem 0.14 (Integration over Normal Sets). Let $E \subset \mathbb{R}^2$ be a normal set with respect to the x axis, and f(x,y) is a measurable function over E. Then

$$\int_{E} f(x,y) dx dy = \int_{a}^{b} dx \int_{\alpha(x)}^{\beta(x)} f(x,y) dy$$
(35)

Theorem 0.15 (Dirichlet Inversion Formula). Take the triangle $T := \{(x, y) \in \mathbb{R}^2 | a \le y \le x \le b\}$. It can be considered normal with respect to both axes, and we can use the inversion formula

$$\iint_T f(x,y) \, \mathrm{d}x \, \mathrm{d}y = \int_a^b \mathrm{d}x \int_a^x f(x,y) \, \mathrm{d}y = \int_a^b \mathrm{d}y \int_y^b f(x,y) \, \mathrm{d}x \tag{36}$$

§§ 0.3.2 Triple Integration

Theorem 0.16 (Wire Integration). Let $E \subset \mathbb{R}^3$ be a normal set with respect to the z axis. If f(x,y,z) is measurable in E we have

$$\iiint_E f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \iint_D \mathrm{d}x \, \mathrm{d}y \int_{h(x, y)}^{g(x, y)} f(x, y, z) \, \mathrm{d}z \tag{37}$$

This is called the wire integration formula

Theorem 0.17 (Section Integration). Let $F \subset \mathbb{R}^3$ be a measurable set bounded by the planes z = a and z = b with a < b. Taken $z \in [a, b]$ we can define F_z and we have

$$\iiint_F f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \, \mathrm{d}z = \int_a^b \mathrm{d}z \iint_{F_z} f(x, y, z) \, \mathrm{d}x \, \mathrm{d}y \tag{38}$$

This is called the section integration formula

Theorem 0.18 (Center of Mass). Take a plane $E \subseteq \mathbb{R}^2$ with surface density $\rho(x,y) > 0$. We define the total mass M as follows

$$M = \iint_{E} \rho(x, y) \, \mathrm{d}x \, \mathrm{d}y \tag{39}$$

The coordinates of the center of mass will be the following

$$x_G = \frac{1}{M} \iint_E \rho(x, y) x \, dx \, dy$$

$$y_G = \frac{1}{M} \iint_E \rho(x, y) y \, dx \, dy$$
(40)

Theorem 0.19 (Moment of Inertia). Taken the same plane E, we define the moment of inertia with respect to a line r as the following integral

$$I_r = \iint_E \rho(x, y) (d(p^{\mu}, r))^2 dx dy$$
 (41)

Where $d(p^{\mu}, r)$ is the distance function between the point (x, y) and the rotation axis r. Both formulas are easily generalizable in \mathbb{R}^3

§§ 0.3.3 Change of Variables

Definition 0.3.2 (Diffeomorphism). Let $M, N \subset X$ be two subsets of a metric space X. The two sets are said to be diffeomorphic if $\exists f: M \xrightarrow{\sim} N$ an isomorphism such that $f \in C^1(M)$ and $f^{-1} \in C^1(N)$. The application f is called a diffeomorphism.

Two diffeomorphic sets are indicated as follows

$$M \simeq N$$

Theorem 0.20. Let $A, B \subset \mathbb{R}^n$ be two open sets and $\varphi^{\mu} : A \xrightarrow{\sim} B$ a diffeomorphism, such that

$$\varphi^{\mu}(E) = F$$

If $f: E \subset B \longrightarrow \mathbb{R}$ is measurable, we have that

$$\int_{E} f(y^{\mu}) dy^{\mu} = \int_{\varphi^{-1}(E)} f(\varphi^{\mu}(x^{\nu})) \left| \det_{\mu\nu} \partial_{\mu} \varphi^{\nu} \right| dx^{\mu} = \int_{F} f(\varphi^{\mu}) \left| \det_{\mu\nu} \partial_{\mu} \varphi^{\nu} \right| dx^{\mu}$$

Theorem 0.21 (Change of Variables). Let $\varphi^{\mu}: \mathbb{R}^n \xrightarrow{\sim} \mathbb{R}^n$ be a diffeomorphism such that

$$\varphi^{\mu}(x^{\nu}) = x^{\mu} \quad \forall \|x^{\mu}\|_{\mu} > 1$$

And $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ a function such that supp $f = K \subset \mathbb{R}^n$ is a compact set. If f is measurable, we have that

$$\int_{\mathbb{R}^n} f(y^{\mu}) \, \mathrm{d}y^{\mu} = \int_{\mathbb{R}^n} f(\varphi^{\mu}(x^{\nu})) \left| \det_{\mu\nu} \partial_{\mu} \varphi^{\nu} \right| \, \mathrm{d}x^{\mu} \tag{42}$$

Proof. Take n=2 without loss of generality. We can immediately write that

$$g(y^1, y^2) = \int_{-\infty}^{y^1} f(\eta, y^2) d\eta$$

Then, for the fundamental theorem of integral calculus

$$\partial_1 g(y^1, y^2) = f(y^1, y^2)$$

Taken $c \in \mathbb{R}, \ c > 1$: $K \subset Q = [-c, c] \times [-c, c]$, we have that $\varphi^{\mu}(x^{\nu}) = \delta^{\mu}_{\nu} \ \forall \|x^{\mu}\|_{\mu} > 1 \ \land \ f(x^{\mu}) = 0 \ \forall x^{\mu} \notin Q$.

Therefore $f(\varphi^{\mu}) = 0$ also and we have

$$\int_{\mathbb{R}^n} f(\varphi^\mu) \det_{\mu\nu} \partial_\mu \varphi^\nu \, \mathrm{d} x^\gamma = \int_Q f(\varphi^\mu) \det_{\mu\nu} \partial_\mu \varphi^\nu \, \mathrm{d} x^\gamma = \int_Q \partial_1 g(\varphi^\mu) \det_{\mu\nu} \partial_\mu \varphi^\nu \, \mathrm{d} x^\gamma$$

But we have that

$$g(y^{\mu}) = 0 \quad \forall |y^1| \ge c \lor |y^1| < -c$$

Define the following matrix $H_{\mu\nu}$

$$H_{\mu\nu} = \begin{pmatrix} \partial_{\mu}g(\phi^{\gamma}) \\ \partial_{\mu}\varphi^{2} \end{pmatrix}$$

Then we have that

$$\det_{\mu\nu} H_{\mu\nu} = \partial_1 g(\varphi^{\mu}) \det_{\mu\nu} \partial_{\mu} \varphi^{\nu}$$

Writing $g(\varphi^{\mu}) = G(x^{\mu})$ we have

$$\det_{\mu\nu} H_{\mu\nu} = \partial_1 G \partial_2 \varphi^2 - \partial_2 G \partial_1 \varphi^2$$

Thanks to the integration formula (34) we can then write

$$\int_{C} \det H_{\mu\nu} \, \mathrm{d}x^{\gamma} = \int_{-c}^{c} \mathrm{d}x^{2} \int_{-c}^{c} \partial_{1}G \partial_{2}\varphi^{2} \, \mathrm{d}x^{\nu}$$

Integrating by parts we get

$$\int_{Q} \det H_{\mu\nu} \, dx^{\gamma} = G \partial_{2} \varphi^{2} \Big|_{-c}^{c} - \int_{-c}^{c} G \partial_{21}^{2} \varphi^{2} \, dx^{1} - G \partial_{1} \varphi^{2} \Big|_{-c}^{c} - \int_{-c}^{c} G \partial_{12}^{2} \varphi^{2} \, dx^{2}$$

But $\forall x^{\mu} \in \partial Q \quad \varphi^{\mu}(x^{\nu}) = x^{\mu} \implies G(-c, x^2) = g(-c, x^2) = 0 \land G(c, x^2) = g(c, x^2)$

$$\therefore \int_{Q} \det_{\mu\nu} H_{\mu\nu} \, \mathrm{d}x^{\gamma} = \int_{Q} f(x^{\mu}) \, \mathrm{d}x^{\gamma}$$

Theorem 0.22 (Common Coordinate Transformation in \mathbb{R}^2 and \mathbb{R}^3). 1. Polar Coordinates

$$\varphi^{\mu}(x^{\nu}) = \begin{cases} x(\rho, \theta) = \rho \cos \theta & \rho \in \mathbb{R}^+ \\ y(\rho, \theta) = \rho \sin \theta & \theta \in [0, 2\pi) \end{cases}$$
(43a)

$$\partial_{\mu}\varphi^{\nu} = \begin{pmatrix} \cos\theta & -\rho\sin\theta\\ \sin\theta & \rho\cos\theta \end{pmatrix}$$

$$\det_{\mu\nu}\partial_{\mu}\varphi^{\nu} = \rho$$
(43b)

2. Spherical Coordinates

$$\varphi^{\mu}(x^{\nu}) = \begin{cases} x(\rho, \theta, \phi) = \rho \sin \phi \cos \theta & \rho \in \mathbb{R}^{+} \\ y(\rho, \theta, \phi) = \rho \sin \phi \sin \theta & \theta \in [0, 2\pi) \\ z(\rho, \theta, \phi) = \rho \cos \phi & \phi \in [0, \pi] \end{cases}$$
(44a)

$$\partial_{\mu}\varphi^{\nu} = \begin{pmatrix} \sin\phi\cos\theta & -\rho\sin\phi\sin\theta & \rho\cos\phi\cos\theta\\ \sin\phi\sin\theta & \rho\sin\phi\cos\theta & \rho\cos\phi\sin\theta\\ \cos\phi & 0 & -\rho\sin\phi \end{pmatrix}$$

$$\det \partial_{\mu}\varphi^{\nu} = \rho^{2}\sin\phi$$
(44b)

3. Cylindrical Coordinates

$$\varphi^{\mu}(x^{\nu}) = \begin{cases} x(\rho, \theta, z) = \rho \cos \theta & \rho \in \mathbb{R}^+ \\ y(\rho, \theta, z) = \rho \sin \theta & \theta \in [0, 2\pi) \\ z(\rho, \theta, z) = z & z \in \mathbb{R} \end{cases}$$
(45a)

$$\det_{\mu\nu} \partial_{\mu} \varphi^{\nu} = \rho \tag{45b}$$

Definition 0.3.3 (Rotation Solids). Let $D \subset \mathbb{R}^2$ be a bounded measurable set contained in the half-plane y = 0, x > 0. Suppose we let D "pop up" into \mathbb{R}^3 through a rotation by an angle θ_0 around the z axis. What has been obtained is a rotation solid $E \subset \mathbb{R}^3$. We have that

$$\mu(E) = \iiint_E \mathrm{d}x \,\mathrm{d}y \,\mathrm{d}z = \iint_D \int_0^{\theta_0} \rho \,\mathrm{d}\rho \,\mathrm{d}\theta \,\mathrm{d}z = \theta_0 \iint_D \rho \,\mathrm{d}\rho \,\mathrm{d}z = \theta_0 \iint_D x \,\mathrm{d}x \,\mathrm{d}y \tag{46}$$

Or

$$\mu(E) = \theta_0 x_G \mu_2(D)$$

Theorem 0.23 (Guldino). The measure of a rotation solid is given by the measure of the rotated figure times the circumference described by the center of mass of the solid. This is exactly the previous formula.

§§ 0.3.4 Line Integrals

Definition 0.3.4 (Line Integral of the First Kind). Given a scalar field $f: A \subset \mathbb{R}^3 \longrightarrow \mathbb{R}$ and a smooth curve $\{\gamma\} \subset \mathbb{R}^3$, we define the *line integral of the first kind* as follows

$$\int_{\gamma} f \, \mathrm{d}s = \int_{a}^{b} f(\gamma^{\mu}) \left\| \frac{\mathrm{d}\gamma^{\mu}}{\mathrm{d}t} \right\|_{\mu} \mathrm{d}t \tag{47}$$

Theorem 0.24 (Center of Mass of a Curve). Given a curve $\gamma^{\mu}:[a,b] \longrightarrow \mathbb{R}^3$ with linear mass density $m:\{\gamma\} \longrightarrow \mathbb{R}$, we define the total mass of γ as follows

$$M = \int_{\gamma} m \, \mathrm{d}s = \int_{a}^{b} m(\gamma^{\mu}) \left\| \frac{\mathrm{d}\gamma^{\mu}}{\mathrm{d}t} \right\|_{\mu} \mathrm{d}t \tag{48}$$

The center of mass is then defined as follows

$$x_G^{\mu} = \frac{1}{M} \int_{\gamma} x^{\mu} m(x^{\nu}) \, \mathrm{d}s$$
 (49)

Definition 0.3.5 (Line Integral of the Second Kind). Given a vector field $f^{\mu}: A \longrightarrow \mathbb{R}^3$ and a smooth curve $\gamma^{\mu}: [a,b] \longrightarrow A \subset \mathbb{R}^3$ we define the *line integral of the second kind* as follows

$$\int_{\gamma} f^{\mu} T_{\mu} \, \mathrm{d}s = \int_{a}^{b} f^{\mu} (\gamma^{\nu}) \frac{\mathrm{d}\gamma_{\mu}}{\mathrm{d}t} \, \mathrm{d}t \tag{50}$$

Defining a differential form $\omega = f^{\mu} dx_{\mu}$ we can also see this integral as follows

$$\int_{\gamma} \omega = \int_{\gamma} f^{\mu} T_{\mu} \, \mathrm{d}s \tag{51}$$

Where T^{μ} is the tangent vector of the curve

Definition 0.3.6 (Conservative Field). Let $f^{\mu}: A \longrightarrow \mathbb{R}^3$ be a vector field such that $f^{\mu} \in C^1(A)$ and A is open and connected. This field is said to be *conservative*, if $\forall x^{\mu} \in A$

$$\exists U(x^{\mu}) \in C^2(A) : f^{\mu} = -\partial^{\mu}U \tag{52}$$

The function $U(x^{\mu})$ is called the *potential* of the field.

Theorem 0.25 (Line Integral of a Conservative Field). Given a conservative field $f^{\mu}: A \longrightarrow \mathbb{R}^3$ and a smooth curve $\{\gamma\} \subset A, \ \gamma^{\mu}: [a,b] \longrightarrow \mathbb{R}^3$ with A open and connected, we have that

$$\int_{\gamma} f^{\mu} T_{\mu} \, \mathrm{d}s = U(\gamma(a)) - U(\gamma(b)) \tag{53}$$

Where $U(x^{\mu})$ is the potential of the vector field.

Definition 0.3.7 (Rotor). Given a vector field $f^{\mu}: A \longrightarrow \mathbb{R}^3$ with $f^{\mu} \in C^1(A)$, we define the rotor of the vector field as follows

$$rot(f^{\mu}) = \epsilon^{\mu}_{\nu\gamma} \partial^{\nu} f^{\gamma} \tag{54}$$

Theorem 0.26. Given f^{μ} a conservative vector field on an open connected set A, we have that

$$\epsilon^{\mu}_{\nu\gamma}\partial^{\nu}f^{\gamma} = 0 \tag{55}$$

Alternatively, if $\gamma^{\mu}:[a,b]\longrightarrow\mathbb{R}^3$ is the parameterization of a smooth closed curve, we have that

$$\oint_{\gamma} f^{\mu} T_{\mu} \, \mathrm{d}s = 0 \tag{56}$$

§§ 0.3.5 Surface Integrals

Definition 0.3.8 (Area of a Surface). Given $r^{\mu}: K \subset \mathbb{R}^2 \longrightarrow \Sigma \subset \mathbb{R}^3$ a smooth surface, we have that given its metric tensor $g_{\mu\nu}(u,v)$ we have that

$$\mu(\Sigma) = \int_{\Sigma} d\sigma = \iint_{K} \sqrt{\det g_{\mu\nu}} \, du \, dv = \iint_{K} \sqrt{EG - F^{2}} \, du \, dv$$
 (57)

For a cartesian surface S we have that

$$\mu(S) = \int_{S} ds = \iint_{K} \sqrt{1 + \left(\left\| \partial_{\mu} f \right\|_{\mu} \right)^{2}} dx dy$$
 (58)

Definition 0.3.9 (Rotation Surface). Given a smooth curve $\gamma^{\mu} : [a, b] \longrightarrow \mathbb{R}^3$, the rotation of this curve around the z-axis generates a smooth surface Σ with the following parameterization

$$r^{\mu}(t,\theta) = \begin{cases} \gamma^{1}(t)\cos\theta \\ \gamma^{2}(t)\sin\theta & (t,\theta) \in [a,b] \times [0,\theta_{0}] \\ \gamma^{3}(t) \end{cases}$$
 (59)

The area of a rotation surface is calculated as follows

$$\mu\left(\Sigma\right) = \theta_0 \int_a^b \gamma^1(t) \sqrt{\left(\frac{\mathrm{d}\gamma^1}{\mathrm{d}t}\right)^2 + \left(\frac{\mathrm{d}\gamma^2}{\mathrm{d}t}\right)^2} \,\mathrm{d}t \tag{60}$$

Theorem 0.27 (Guldino II). Given Σ a smooth rotation surface defined as before, we have that its area will be

$$\mu(\Sigma) = \theta_0 \int_{\gamma} x^1 \, \mathrm{d}s = \theta_0 x_G^1 L_{\gamma} \tag{61}$$

Where x_G^1 is the first coordinate of the center of mass of the curve, calculated as follows

$$x_G^1 = \frac{1}{L_\gamma} \int_\gamma x^1 \, \mathrm{d}s$$

Definition 0.3.10 (Surface Integral). Given a smooth surface $\Sigma \subset \mathbb{R}^3$ with parameterization $r^{\mu}: K \longrightarrow \Sigma$ and a scalar field $h: \mathbb{R}^3 \longrightarrow \mathbb{R}$, we define the *surface integral* of h as follows

$$\int_{\Sigma} h(x^{\mu}) d\sigma = \iint_{K} h(r^{\mu}) \sqrt{\det_{\mu\nu} g_{\mu\nu}} du dv$$
(62)

If Σ is a cartesian surface, we have

$$\int_{\Sigma} h(x^{\mu}) d\sigma = \iint_{K} h(x^{1}, x^{2}, f) \sqrt{1 + (\|\partial_{\mu} f\|^{\mu})^{2}} dx dy$$
 (63)

Definition 0.3.11 (Center of Mass of a Surface). Given a smooth surface Σ with parameterization $r^{\mu}(u, v)$ and mass density δ , we define its total mass as follows

$$M = \int_{\Sigma} \delta \, \mathrm{d}\sigma \tag{64}$$

Its center of mass x_G^{μ} will be calculated as follows

$$x_G^{\mu} = \frac{1}{M} \int_{\Sigma} x^{\mu} \delta(x^{\nu}) \,\mathrm{d}\sigma \tag{65}$$

Definition 0.3.12 (Moment of Inertia of a Surface). Given a smooth surface Σ with parameterization $r^{\mu}(u,v)$ and mass density δ we define its moment of inertia around an axis r, I, as the following integral

$$I = \int_{\Sigma} \delta(x^{\mu}) \left(d(p^{\mu}, r) \right)^{2} d\sigma \quad p^{\mu} \in \Sigma$$
 (66)

Definition 0.3.13 (Orientable Surface). A smooth surface with parameterization $r^{\mu}: K \subset \mathbb{R}^2 \longrightarrow \Sigma \subset \mathbb{R}^3$ is said to be *orientable* if $\forall \gamma: [a,b] \longrightarrow \Sigma$ smooth closed curve, we have, given n^{μ} the normal vector of the surface

$$n^{\mu}(\gamma^{\nu}(a)) = n^{\mu}(\gamma^{\nu}(b)) \tag{67}$$

Another way of formulating it is

$$n^{\mu}(x^{\nu}) \in C(K) \tag{68}$$

Definition 0.3.14 (Boundary of a Surface). Given a smooth surface as before, we define the boundary $\partial \Sigma$ as follows

$$\partial \Sigma = \overline{\Sigma} \setminus \Sigma \tag{69}$$

Note how, given the parameterization r^{μ} , we have $r^{\mu}(\partial K) = \partial \Sigma$

Definition 0.3.15 (Closed Surface). A surface $\Sigma \subset \mathbb{R}^3$ is said to be *closed* iff $\partial \Sigma = \{\}$

Definition 0.3.16 (Flux). Given a vector field $f^{\mu}: A \subset \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ and a smooth orientable surface $\Sigma \subset A$, we define the *flux* of the vector field f^{μ} on the surface as follows

$$\Phi_{\Sigma}(f^{\mu}) = \int_{\Sigma} f^{\mu} n_{\mu} \, d\sigma = \iint_{K} f^{\mu}(r^{\nu}) \epsilon_{\mu\gamma\sigma} \partial_{1} r^{\gamma} \partial_{2} r^{\sigma} \, du \, dv \tag{70}$$

\S 0.4 Integration in $\mathbb C$

Definition 0.4.1 (Piecewise Continuous Function). Let $\gamma:[a,b] \longrightarrow \mathbb{C}$ be a piecewise continuous curve such that $\{\gamma\} \subset D \subset \mathbb{C}$, and $f:D \longrightarrow \mathbb{C}$, $f \in C(D)$. Then the function $(f \circ \gamma)\gamma'(t):[a,b] \longrightarrow \mathbb{C}$ is a piecewise continuous function

Definition 0.4.2 (Line Integral in \mathbb{C}). Let $\gamma:[a,b]\longrightarrow D\subset\mathbb{C}$ be a piecewise continuous curve and $f:D\longrightarrow\mathbb{C}$ a measurable function $f\in C(D)$.

We define the line integral over γ the result of the application of the integral operator $\hat{K}_{\gamma}[f]$, where

$$\hat{K}_{\gamma}[f] = \int_{\gamma} f(z) \, \mathrm{d}z = \int_{a}^{b} (f \circ \gamma) \, \gamma'(t) \, \mathrm{d}t \tag{71}$$

Where $\forall^{\dagger} z \in \{\gamma\}$ f(z) is defined

Theorem 0.28 (Properties of the Line Integral). Let $z, w, t \in \mathbb{C}$, $f, g \in \mathcal{M}(\mathbb{C})$ and $\{\gamma\}, \{\eta\}, \{\kappa\}$ three smooth curves, then

1.
$$\hat{K}_{\gamma}[zf + wg] = z\hat{K}_{\gamma}[f] + w\hat{K}_{\gamma}[g]$$

2.
$$\gamma \sim \eta \implies \hat{K}_{\gamma}[f] = \hat{K}_{\eta}[f]$$

3.
$$\gamma = \eta + \kappa \implies \hat{K}_{\gamma}[f] = \hat{K}_{\eta+\kappa}[f] = \hat{K}_{\eta}[f] + \hat{K}_{\kappa}[f]$$

4.
$$\hat{K}_{\gamma+w}[f(z)] = \hat{K}_{\gamma}[f(z+w)]$$

Notation. If a measurable function f(z) has the same value of the integral for different curves between two points $z_1, z_2 \in \mathbb{C}$, we will write directly

$$\int_{\gamma} f(z) \, \mathrm{d}z = \int_{z_1}^{z_2} f(z) \, \mathrm{d}z$$

Theorem 0.29 (Darboux Inequality). Let $f: D \longrightarrow \mathbb{C}$ be a measurable function and $\gamma: [a, b] \longrightarrow \{\gamma\} \subset D \subseteq \mathbb{C}$ piecewise smooth. Then

$$\left\| \int_{\gamma} f(z) \, \mathrm{d}z \right\| \le L_{\gamma} \sup_{z \in \{\gamma\}} \|f(z)\|$$

Proof. The proof is quite straightforward using the definition given for the line integral

$$\left\| \int_{\gamma} f(z) \, \mathrm{d}z \right\| = \left\| \int_{a}^{b} (f \circ \gamma) \, \gamma'(t) \, \mathrm{d}t \right\| \le \int_{a}^{b} \left\| (f \circ \gamma) \, \gamma'(t) \right\| \, \mathrm{d}t \le$$

$$\le \sup_{z \in \{\gamma\}} \left\| f(z) \right\| \int_{a}^{b} \left\| \gamma'(t) \right\| \, \mathrm{d}t = L_{\gamma} \sup_{z \in \{\gamma\}} \left\| f(z) \right\|$$

$\S\S$ 0.4.1 Integration of Holomorphic Functions

Definition 0.4.3 (Primitive). Let $f: D \longrightarrow \mathbb{C}$ and $F: D \longrightarrow \mathbb{C}$ be two functions and $D \subset \mathbb{C}$ an open and connected set. F(z) is said to be the *primitive function* or *antiderivative* of f in D if

$$\frac{\mathrm{d}F}{\mathrm{d}z} = f(z) \quad \forall z \in D \tag{72}$$

Notation. Given a closed curve γ and a measurable function f(z) we define the following notation

$$\int_{\gamma} f(z) \, \mathrm{d}z = \oint_{\gamma} f(z) \, \mathrm{d}z$$

Theorem 0.30 (Existence of the Primitive Function). Let $f: D \longrightarrow \mathbb{C}$ $f \in C(D)$ with $D \subset \mathbb{C}$ open and connected. Then these statements are equivalent

1.
$$\exists F: D \longrightarrow \mathbb{C}: F'(z) = f(z)$$

2.
$$\forall z_1, z_2 \in D, \ \forall \{\gamma\} \subset D \ piecewise \ smooth \ \int_{\gamma} f(z) \, \mathrm{d}z = \int_{z_1}^{z_2} f(z) \, \mathrm{d}z$$

3.
$$\forall \gamma: [a,b] \longrightarrow \{\gamma\} \subset D$$
 closed piecewise smooth $\oint_{\gamma} f(z) \, \mathrm{d}z = 0$

Proof. 1 \Longrightarrow 2. As with the hypothesis we have that $\exists F: D \longrightarrow \mathbb{C}: F'(z) = f(z) \ \forall z \in D$. Given two points $z_1, z_2 \in D$ and taken a smooth curve $\gamma: [a, b] \longrightarrow D: \gamma(a) = z_1 \land \gamma(b) = z_2$. Therefore

$$\int_{\gamma} f(z) dz = \int_{a}^{b} (f \circ \gamma) \gamma'(t) dt = \int_{a}^{b} (F' \circ \gamma) \gamma'(t) dt$$

The result of the integral is obviously $F(z_2) - F(z_1)$, therefore we can immediately write that, if

$$\exists F: D \longrightarrow \mathbb{C}: F'(z) = f(z) \implies \int_{\gamma} f(z) dz = \int_{z_1}^{z_2} f(z) dz$$

 $2 \implies 1$ Taken a point $z_0 \in D$, any point $z \in D$ can be connected with a polygonal to z_0 since D is connected. The integral of f over this polygonal is obviously path-independent, hence we can define the following function

$$F(z) = \int_{z_0}^{z} f(w) \, \mathrm{d}w$$

Since D is open we can define $\delta_z \in \mathbb{R}, \ \delta_z > 0 \ \land \ \exists B_{\delta_1}(z) \subset D$. Taken $\Delta z \in \mathbb{C} : \|\Delta z\| < \delta_1$ we have that

$$F(z + \Delta z) - F(z) = \int_{z}^{z + \Delta z} f(w) \, \mathrm{d}w$$

Dividing by Δz and taking the limit as $\Delta z \to 0$ we have that using the Darboux inequality we get that

$$\left\| \frac{F(z + \Delta z) - F(z)}{\Delta z} - f(z) \right\| = \frac{1}{\|\Delta z\|} \left\| \int_{z}^{z + \Delta z} f(w) \, \mathrm{d}w \right\| \le \epsilon$$

2 \Longrightarrow 3. Taken an arbitrary piecewise smooth curve γ and $z_1 \neq z_2 \in {\gamma}$. We can now find two curves such that $\gamma(t) = \gamma_1(t) - \gamma_2(t)$. Since the integral of f is path independent, we get

$$\int_{\gamma} f(z) dz = \int_{\gamma_1} f(z) dz - \int_{\gamma_2} f(z) dz = 0$$

 $3 \implies 2$ is exactly as before but with the opposite reasoning.

Example 0.4.1. Let's calculate the integral of functions $f_n(x) = z^{-n}$ $n \in \mathbb{N}$ for a closed simple piecewise smooth curve γ such that $0 \notin \{\gamma\}$.

For n > 1 we have that $f \in C(D)$ where $D = \mathbb{C} \setminus \{0\}$, and we have that

$$\int \frac{1}{z^n} \, \mathrm{d}z = -\frac{z^{-(n-1)}}{n-1} + w \quad w \in \mathbb{C}$$

Therefore, for every closed simple piecewise smooth curve $\gamma: 0 \notin \{\gamma\}$ we have

$$\oint_{\gamma} \frac{1}{z^n} \, \mathrm{d}z = 0$$

For n = 1 we still have that $f \in C(D)$ but $\nexists F(z) : D \longrightarrow \mathbb{C}$ primitive of $f_1(z)$, but there exists one in the domain G of holomorphy of the logarithm.

Although we have that $G \subset D$, and we can take a curve $\gamma : 0 \in \text{extr } \gamma$, and therefore $\{\gamma\} \subset G$ and we have that

$$\oint_{\gamma} \frac{1}{z} \, \mathrm{d}z = 0$$

If we otherwise have $0 \in \gamma^{\circ}$ the integral is non-zero.

Take a branch of the logarithm σ and a curve η has only one point of intersection with such branch at $z_i = u_0 e^{i\alpha}$. Taken $\eta(a) = \eta(b) = u_0 e^{i\alpha}$, we define $\eta_{\epsilon} : [a + \epsilon, b + \epsilon] \longrightarrow \mathbb{C}$ with $\epsilon > 0 : \eta_{\epsilon}(t) = \eta(t) \ \forall t \in [a + \epsilon, b + \epsilon]$, then

$$\oint_{\eta} \frac{1}{z} \, \mathrm{d}z = \lim_{\epsilon \to 0} \oint_{\eta_{\epsilon}} \frac{1}{z} \, \mathrm{d}z$$

Therefore, $\forall z \in \mathbb{C} \setminus \{\sigma\}$ we have that

$$\frac{\mathrm{d}\log z}{\mathrm{d}z} = \frac{1}{z}$$

And therefore

$$\oint_{\eta_{\epsilon}} \frac{1}{z} dz = \log (\eta(b - \epsilon)) - \log (\eta(a + \epsilon))$$

For $\epsilon \to 0$ we have

$$\int_{n} \frac{1}{z} dz = (\log(u_0) + i(\alpha + 2\pi)) - (\log(u_0) + i\alpha) = 2\pi i$$

Example 0.4.2. Let's calculate the integral of $f(z) = \sqrt{z}$ along a closed simple piecewise smooth curve $\gamma: [a,b] \longrightarrow \mathbb{C}: 0 \in \gamma^{\circ}$ and it intersects the line $\sigma_{\alpha} = u_0 e^{i\alpha}$, where

$$\sqrt{z} = \sqrt{r}e^{i\frac{\theta}{2}} \quad r \in \mathbb{R}^+, \ \theta \in (\alpha, \alpha + 2\pi], \ \alpha \in \mathbb{R}$$

Taken a parametrization $\gamma(t): \gamma(a) = \gamma(b) = u_0 e^{i\alpha}$ we have that $f(z) \in H(D)$ where $D = \mathbb{C} \setminus \{\sigma_\alpha\}$. Proceeding as before, we have

$$\oint_{\gamma} \sqrt{z} \, \mathrm{d}z = \lim_{\epsilon \to 0} \oint_{\gamma_{\epsilon}} \sqrt{z} \, \mathrm{d}z$$

Since it has a primitive in D we can write

$$\lim_{\epsilon \to 0} \oint_{\gamma_\epsilon} \sqrt{z} \, \mathrm{d}z = \frac{2}{3} \lim_{\epsilon \to 0} z \sqrt{z} \Big|_{\gamma_\epsilon(a+\epsilon)}^{\gamma_\epsilon(b-\epsilon)} = \frac{2}{3} u_0 \sqrt{u_0} e^{\frac{3}{2}i(\alpha+2\pi)} - \frac{2}{3} u_0 \sqrt{u_0} e^{\frac{3}{2}i\alpha} = -\frac{4}{3} u_0 \sqrt{u_0} e^{\frac{3}{2}i\alpha}$$

Lemma 0.4.1. Taken a closed simple pointwise smooth curve $\gamma:[a,b] \longrightarrow \mathbb{C}$ and taken $D = \{\gamma\}^{\circ} \cup \gamma = \{\gamma\}^{\circ}$ and a function $f \in H(D)$, for a finite cover of D, \mathcal{Q} composed by squares $Q_j \in \mathcal{Q} \ \forall j \in [1,N] \subset \mathbb{N}$, we have that

$$\exists z_j \in Q_j \cap \overline{\{\gamma\}^{\circ}} : \left\| \frac{f(z) - f(z_j)}{z - z_j} - \frac{\mathrm{d}f}{\mathrm{d}z} \right|_{z_j} \right\| < \epsilon \ \forall z \in Q_j \cap \overline{\{\gamma\}^{\circ}} \setminus \{z_j\}$$

Proof. Going by contradiction, let's say that

$$\exists \epsilon > 0 : \nexists z_j \in Q_j \cap \overline{\{\gamma\}^\circ}$$

Taken a finite subcover \mathcal{Q}_n where $\operatorname{diam}(Q_j^n) = \frac{d}{2^n} \ \forall Q_j \in \mathcal{Q}$ we can define for some $k \in K \subset \mathbb{N}$

$$A_n = \bigcup_{k \in K} Q_k^n \cap \overline{\{\gamma\}^\circ} \quad \forall n \in \mathbb{N}$$

We have that $A_{n+1} \subset A_n$, and taking a sequence $(w)_n \in \overline{\{\gamma\}^\circ}$ we have due to the compactness of $\overline{\{\gamma\}^\circ}$ that $\exists (w)_{n_j} \to w \in \overline{\{\gamma\}^\circ}$. Since $f \in H(\overline{\{\gamma\}^\circ})$ we have that f is holomorphic in w, therefore

$$\forall \epsilon > 0 \ \exists \delta_{\epsilon} > 0 : \left\| \frac{f(z) - f(w)}{z - w} - \frac{\mathrm{d}f}{\mathrm{d}z} \right|_{w} \right\| < \epsilon \ \forall z \in B_{\delta_{\epsilon}}(w) \setminus \{w\}$$

Taken an \tilde{n} such that $\operatorname{diam}(Q_j^{\tilde{n}}) = \frac{\sqrt{2}}{2^{\tilde{n}}}d < \delta$ we have that still $w \in A_n \ \forall n \in \mathbb{N}$, and due to its closedness we can also say

$$\exists N_j \in \mathbb{N} : \forall n_j > N_j \ (w)_{n_j} \in A_n$$

Therefore

Theorem 0.31 (Cauchy-Goursat). Taken $\gamma : [a,b] \longrightarrow \mathbb{C}$ a closed simple piecewise smooth curve and $D = \{\gamma\} \cup \{\gamma\}^{\circ}$ and a function $f \in H(D)$, we have

$$\oint_{\gamma} f(z) \, \mathrm{d}z = 0 \tag{73}$$

Proof. Using the previous lemma we can say that for a finite cover $\{\gamma\}$, $Q_j \in \mathcal{Q} \exists z_j \in Q_j \cap \overline{\{\gamma\}^\circ}$ and a function

$$\delta_j(z) = \begin{cases} \frac{f(z) - f(z_j)}{z - z_j} - f'(z_j) & z \neq z_j \\ 0 & z = z_j \end{cases}$$

Which is countinuous and $\delta_j(z) < \epsilon \ \forall z \in Q_j \cap \overline{\{\gamma\}^{\circ}}$.

Taken a curve $\{\eta_j\} = \partial \left(Q_j \cap \overline{\{\gamma\}^\circ}\right)$, and the expansion of f(z) in the region, we have that

$$f(z) = f(z_j) + f'(z_j)(z - z_j) + \delta_j(z)(z - z_j)$$

$$\oint_{\eta_j} f(z) dz = (f(z_j) - z_j f'(z_j)) \oint_{\eta_j} dz + f'(z_j) \oint_{\eta_j} z dz + \oint_{\eta_j} \delta_j(z)(z - z_j) dz$$

The first two integrals on the second line are null, and we have therefore

$$\oint_{\eta_j} f(z) dz = \oint_{\eta_j} \delta_j(z)(z - z_j) dz$$

By definition $\{\gamma\} = \bigcup_{j=1}^{N} \{\eta_j\}$ and therefore

$$\oint_{\gamma} f(z) dz = \sum_{j=1}^{N} \oint_{\eta_j} \delta_j(z)(z - z_j) dz$$

Using the Darboux inequality we have immediately that

$$\left\| \oint_{\gamma} f(z) \, \mathrm{d}z \right\| \le \sum_{j=1}^{N} \left\| \oint_{\eta_{j}} \delta_{j}(z)(z - z_{j}) \, \mathrm{d}z \right\| \le \sum_{j=1}^{N} \epsilon \sqrt{2} d(4d + L_{j})$$

Using the theorem on the Jordan curve, we have that $\exists Q_n \in \mathcal{Q}$ such that $\{\gamma\} \subset Q_n$. Taken $\operatorname{diam}(Q_n) = D$

$$\left\| \oint_{\gamma} f(z) \, \mathrm{d}z \right\| \le \sum_{j=1}^{N} \epsilon \sqrt{2} D(4D + L) \to 0$$

Definition 0.4.4 (Simple Connected Set). An open set $G \subset X$ with X some metric space, is said to be *simply connected* iff $\forall \{\gamma_j\} \subset G$ simple curves we have that $\gamma_j \sim 0$. $\gamma \sim 0$ implies that the curve is homotopic to a point

Theorem 0.32 (Cauchy-Goursat II). Let $G \subset \mathbb{C}$ open and simply connected. Then, $\forall f \in H(G), \{\gamma\} \subset G$ with γ simple closed and smooth

$$\oint_{\gamma} f(z) \, \mathrm{d}z = 0$$

Proof. 1. The curve γ doesn't intersect itself.

$$\oint_{\gamma} f(z) \, \mathrm{d}z = \oint_{0} f(z) \, \mathrm{d}z = 0$$

2. The curve γ intersects itself n-1 times. Then $\{\gamma\} = \bigcup_{k=1}^{n} \{\gamma_k\}$ with γ_k simple smooth non intersecting curves. Since $\{\gamma_k\} \subset G \ \forall k = 1, \dots, n, \ \{\gamma_k\} \sim 0$, we have

$$\oint_{\gamma} f(z) dz = \sum_{k=1}^{n} \oint_{\gamma_k} f(z) dz = 0$$

Theorem 0.33. Let $G \subset \mathbb{C}$ be a simply connected open set. If $f \in H(G)$, then there exists a primitive for f(z)

§§ 0.4.2 Integral Representation of Holomorphic Functions

Definition 0.4.5 (Positively Oriented Curve). The parametrization of a curve in \mathbb{C} is said to be *positively oriented* if its parametrization is taken such the path taken results counterclockwise.

Notation. The integral over a closed positively oriented parametrization of a curve γ is indicated as follows

Theorem 0.34 (Cauchy Integral Representation). Taken a positively oriented closed simple piecewise smooth curve $\gamma:[a,b]\longrightarrow \mathbb{C}$ and a function $f:G\subset \mathbb{C}\longrightarrow \mathbb{C}$ such that if $D=\{\gamma\}\cup\{\gamma\}^\circ\subset G,\ f\in H(D),\ we have that$

$$f(z) = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(w)}{w - z} \, \mathrm{d}w \quad \forall w \in \{\gamma\}^{\circ}$$
 (74)

Proof. Taken $\gamma_{\rho}(\theta) = z + \rho e^{i\theta}$ such that $\gamma_{\rho} \sim \gamma$, $\{\gamma_{\rho}\} \subset \{\gamma\}^{\circ}$ is a simple curve, we have

$$\oint_{\gamma} \frac{f(w)}{w - z} \, \mathrm{d}w = \oint_{\gamma_0} \frac{f(w)}{w - z} \, \mathrm{d}w$$

Then, using that

$$\oint_{\gamma} \frac{1}{w - z} \, \mathrm{d}w = 2\pi i$$

We get

$$\oint_{\gamma} \frac{f(z)}{w-z} \, \mathrm{d}w - 2\pi i f(z) = \oint_{\gamma_0} \frac{f(w) - f(z)}{w-z} \, \mathrm{d}w$$

Since $f \in H(\{\gamma\}^{\circ})$ we have that

$$\forall \epsilon > 0 \ \exists \delta_{\epsilon} > 0 : \|z - w\| < \delta_{\epsilon} \implies \|f(z) - f(w)\| < \epsilon$$

Taken $\rho < \delta_{\epsilon}$ we get, using the Darboux inequality

$$\left\| \oint_{\gamma_{\rho}} \frac{f(w) - f(z)}{w - z} \, \mathrm{d}w \right\| \le 2\pi\epsilon \implies \oint_{\gamma} \frac{f(w) - f(z)}{w - z} \, \mathrm{d}w = 0$$

Theorem 0.35 (Derivatives of a Holomorphic Function). Let $D \subset \mathbb{C}$ be an open set and $f: D \longrightarrow \mathbb{C}$ a function $f \in H(D)$, then $f \in C^{\infty}(D)$ and

$$\frac{\mathrm{d}^n f}{\mathrm{d}z^n} = \frac{n!}{2\pi i} \oint_{\gamma} \frac{f(w)}{(w-z)^{n+1}} \,\mathrm{d}w \tag{75}$$

Where γ is a closed simple piecewise smooth curve such that $z \in \{\gamma\}^{\circ}$ and $\overline{\{\gamma\}} \subset D$

Corollary 0.4.1. Let $f \in H(D)$, then

$$\forall n \in \mathbb{N} \quad \frac{\mathrm{d}^n f}{\mathrm{d}z^n} \in H(D)$$

Theorem 0.36 (Morera). Let $D \subset \mathbb{C}$ be an open and connected set. Take $f: D \longrightarrow \mathbb{C}: f \in C(D)$. Then, if $\forall \{\gamma\} \subset D$ closed piecewise smooth

$$\oint_{\gamma} f(z) \, \mathrm{d}z = 0 \implies f \in H(D) \tag{76}$$

Proof. Since $f \in C(D) \exists F(z) \in C^1(D) : f(z) = F'(z)$. Since $C^1(\mathbb{C}) \simeq H(\mathbb{C})$ we have that, due to the previous corollary

$$\frac{\mathrm{d}F}{\mathrm{d}z} = f(z) \in H(D)$$

Theorem 0.37 (Cauchy Inequality). Let $f \in H(B_R(z_0))$ with $z_0 \in \mathbb{C}$. If $||f(z)|| \leq M \ \forall z \in B_R(z_0)$

$$\left\| \frac{\mathrm{d}f}{\mathrm{d}z} \right|_{z_0} \le \frac{n!M}{R^n} \tag{77}$$

Proof. Take $\gamma_r(\theta) = z_0 + re^{i\theta}$ with $\theta \in [0, 2\pi]$, r > R, then the derivative $\frac{\mathrm{d}^n f}{\mathrm{d}z^n}\Big|_{z_0}$ can be written using the Cauchy integral representation, since $f \in H(B_r(z_0))$

$$\frac{\mathrm{d}^n f}{\mathrm{d}z^n}\Big|_{z_0} = \frac{n!}{2\pi i} \oint_{\gamma_r} \frac{f(w)}{(w - z_0)^{n+1}} \,\mathrm{d}w$$

Using the Darboux inequality we have then

$$\left\| \left| \frac{\mathrm{d}^n f}{\mathrm{d} z^n} \right|_{z_0} \right\| \leq \frac{n!}{r^n} \sup_{z \in \{\gamma_r\}} \|f(z)\| \leq \frac{n! M}{r^n}$$

Since r < R we therefore have

$$\left\| \left| \frac{\mathrm{d}^n f}{\mathrm{d} z^n} \right|_{z_0} \right\| \le \frac{n! M}{R^n}$$

Theorem 0.38 (Liouville). Let $f: \mathbb{C} \longrightarrow \mathbb{C}$ a function such that $f \in H(\mathbb{C})$, i.e. whole. If $\exists M > 0 : ||f(z)|| \leq M \ \forall z \in \mathbb{C}$ the function f(z) is constant

Proof. $f \in H(\mathbb{C}), \|f(z)\| \leq M$ and we can write, taken $\gamma_R(\theta) = z + Re^{i\theta}$ with $\theta \in [0, 2\pi]$

$$f'(z) = \frac{1}{2\pi i} \oint_{\gamma_R} \frac{f(w)}{(w-z)^2} \,\mathrm{d}z$$

For Darboux

$$||f'(z)|| \le \frac{1}{2\pi} \left| \oint_{\gamma_R} \frac{f(w)}{(w-z)^2} \right| dz \le \frac{\sup_{z \in \{\gamma_R\}} ||f(z)||}{R} \le \frac{M}{R}$$

Since R > 0 is arbitrary, we can say directly that ||f'(z)|| = 0 and therefore f(z) is constant $\forall z \in \mathbb{C}$.

Theorem 0.39 (Fundamental Theorem of Algebra). Take a polynomial $P_n(z) \in \mathbb{C}_n[z]$, where $\mathbb{C}_n[z]$ is the space of complex polynomials with variable z and degree n. If we have

$$P_n(z) = \sum_{k=0}^n a_k z^k, \quad z, a_k \in \mathbb{C}, \ a_n \neq 0$$

We can say that $\exists z_0 \in \mathbb{C} : P_n(z_0) = 0$

Proof. As an absurd, say that $\forall z \in \mathbb{C}$, $P_n(z) \neq 0$. Then $f(z) = 1/P_n(z) \in H(\mathbb{C})$. Since $\lim_{z \to \infty} P_n(z) = \infty$, we have that $\|f(z)\| \leq M \ \forall z \in \mathbb{C}$, and $\lim_{z \to \infty} f(z) = 0$. Therefore $\exists R > 0 : \forall \|z\| > R$, $\|f(z)\| < 1$. Since $f \in H(\mathbb{C})$, we have that $f \in C(\overline{B}_R(z))$. Due to the Liouville theorem we have that f(z) is constant f(z).

§ 0.5 Integral Theorems in \mathbb{R}^2 and \mathbb{R}^3

Theorem 0.40 (Gauss-Green). Given $D \subset \mathbb{R}^2$ a set with a piecewise smooth parameterization of ∂D and two functions $\alpha, \beta: A \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}$ and $\overline{D} \subset A$

$$\iint_{D} \partial_{x} \beta \, dx \, dy = \int_{\partial^{+} D} \beta(x, y) \, dy, \quad \iint_{D} \partial_{y} \alpha \, dx \, dy = -\int_{\partial^{D}} \alpha(x, y) \, dx \, dy$$
 (78)

Theorem 0.41 (Stokes). Given $D \subset \mathbb{R}^2$ an open set with ∂D piecewise smooth and a vector field $f^{\mu}: A \longrightarrow \mathbb{R}^2$ with $D \subset A$

$$\int_{D} \epsilon_{3\mu\nu} \partial^{\mu} f^{\nu} \, \mathrm{d}x \, \mathrm{d}y = \int_{\partial^{+} D} f^{\mu} t_{\mu} \, \mathrm{d}s \tag{79}$$

Where t^{μ} is the vector tangent to $\partial^{+}D$

Theorem 0.42 (Gauss 1). Given $D \subset \mathbb{R}^n$ open set with ∂D piecewise smooth and a vector field $f^{\mu}: A \longrightarrow \mathbb{R}^n$ with $D \subset A$

$$\iint_{D} \partial_{\mu} f^{\mu} \, \mathrm{d}x \, \mathrm{d}y = \int_{\partial^{+} D} f^{\mu} n_{\mu} \, \mathrm{d}s \tag{80}$$

Where n^{μ} is the normal vector to $\partial^{+}D$

Theorem 0.43 (Stokes for Surfaces). Given a smooth surface $\Sigma \subset \mathbb{R}^3$ with parameterization r^{μ} and a vector field $f^{\mu}: A \longrightarrow \mathbb{R}^3$ with $\Sigma \subseteq A$

$$\int_{\Sigma} n^{\mu} \epsilon_{\mu\nu\gamma} \partial^{\nu} f^{\gamma} d\sigma = \int_{\partial^{+}\Sigma} f^{\mu} t_{\mu} ds$$
 (81)

Where t^{μ} is the tangent vector to the border of the surface

Theorem 0.44 (Useful Identities). Given $u, v \in C^2(\Omega)$ and a vector field $f^{\mu} \in C^2(\Omega, \mathbb{R}^3)$

$$\int_{\Omega} \partial_{\mu} \partial^{\mu} v \, dx \, dy \, dz = \int_{\partial \Omega} n^{\mu} \partial_{\mu} v \, d\sigma$$

$$\int_{\Omega} u \partial_{\mu} f^{\mu} \, dx \, dy \, dz = -\int_{\Omega} f^{\mu} \partial_{\mu} w \, dx \, dy \, dz + \int_{\partial \Omega} u f^{\mu} n_{\mu} \, d\sigma$$

$$\int_{\Omega} u \partial_{\mu} \partial^{\mu} v \, dx \, dy \, dz = -\int_{\Omega} \partial_{\mu} u \partial^{\mu} v \, dx \, dy \, dz + \int_{\partial \Omega} u n^{\mu} \partial_{\mu} v \, d\sigma$$

$$\int_{\Omega} (u \partial_{\mu} \partial^{\mu} v - w \partial_{\mu} \partial^{\mu} u) \, dx \, dy \, dz = \int_{\partial \Omega} (u n^{\mu} \partial_{\mu} v - w n^{\mu} \partial_{\mu} u) \, d\sigma$$
(82)

We can analogously write these theorems in the language of differential forms and manifolds, after giving a couple of definitions

Definition 0.5.1 (Volume Element). Given a k-dimensional compact oriented manifold M with boundary and $\omega \in \Lambda^k(M)$ a k-differential form on M, we define the *volume* of M as follows

$$V(M) = \int_{M} dV = \int_{M} \omega \tag{83}$$

Where dV is the volume element of the manifold, given by the unique $\omega \in \Lambda^k(M)$, defined as follows

$$\omega = f \, \mathrm{d}x^{\mu_1} \wedge \dots \wedge \mathrm{d}x^{\mu_k} \tag{84}$$

With f an unique function.

For $M \subset \mathbb{R}^3$ with n^{μ} as outer normal and $\omega \in \Lambda^2(M)$ we can write immediately, by definition

$$\omega_{\mu\nu}v^{\mu}w^{\nu} = n^{\mu}\epsilon_{\mu\nu\gamma}v^{\nu}w^{\gamma} = dA$$

Therefore

$$dA = \|\epsilon_{\mu\nu\gamma}v^{\nu}w^{\gamma}\|^{\mu} \tag{85}$$

Which is the already known formula.

For a 2-manifold we can write immediately the following formulas

$$dA = n^{1} dy \wedge dz + n^{2} dz \wedge dx + n^{3} dx \wedge dy$$
(86)

And, on M

$$\begin{cases} n^{1} dA = dy \wedge dz \\ n^{2} dA = dz \wedge dx \\ n^{3} dA = dx \wedge dy \end{cases}$$
(87)

Theorem 0.45 (Gauss-Green-Stokes-Ostogradskij). Given M a smooth manifold with boundary, c a p-cube in M and $\omega \in \Lambda(M)$ we have

$$\int_{c} d\omega = \int_{[0,1]^{p}} c^{*} d\omega = \int_{\partial c} \omega$$
 (88)

In general, we can write

$$\int_{M} d\omega = \int_{\partial M} \omega \tag{89}$$

Definition 0.5.2 (Gauss-Green, Differential Forms). Given $M \subset \mathbb{R}^2$ a compact 2-manifold with boundary and two functions $\alpha, \beta : M \longrightarrow \mathbb{R}$ with $\alpha, \beta \in C^1(M)$ defining

$$\omega = \alpha \, \mathrm{d}x + \beta \, \mathrm{d}y \tag{90}$$

We have

$$\int_{\partial M} \alpha \, \mathrm{d}x + \beta \, \mathrm{d}y = \int_{\partial M} \omega = \int_{M} \mathrm{d}\omega = \iint_{M} \left(\frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial y} \right) \mathrm{d}x \wedge \mathrm{d}y \tag{91}$$

Proof. Take $\omega = \alpha dx + \beta dy$, then

$$d\omega = d(\alpha dx + \beta dy) = \left(\frac{\partial \beta}{\partial x} - \frac{\partial \alpha}{\partial y}\right) dx \wedge dy$$

Theorem 0.46 (Gauss, Differential Forms). Given M a 3-manifold smooth with boundary and compact with outer normal n^{μ} and a vector field $f^{\mu} \in C^{1}(M)$, we have

$$\int_{M} \partial_{\mu} f^{\mu} \, \mathrm{d}V = \int_{\partial M} f^{\mu} n_{\mu} \, \mathrm{d}A \tag{92}$$

Proof. Taken the following differential form

$$\omega = f^1 dy \wedge dz + f^2 dz \wedge dx + f^3 dx \wedge dy$$

We have, using the formulas (87)

$$\omega = f^{\mu} n_{\mu} \, \mathrm{d}A$$

And

$$d\omega = \partial_{\mu} f^{\mu} \, dV$$

Therefore

$$\int_{M} \partial_{\mu} f^{\mu} \, dV = \int_{M} d\omega = \int_{\partial M} \omega = \int_{\partial M} f^{\mu} n_{\mu} \, dA$$

Theorem 0.47 (Stokes, Differential Forms). Given $M \subset \mathbb{R}^3$ a compact oriented smooth 2-manifold with boundary with n^{μ} as outer normal and t^{μ} as tangent vector in ∂M , given a vector field $f^{\mu} \in C^1(A)$ where $M \subset A$, we have

$$\int_{M} n^{\mu} \epsilon_{\mu\nu\gamma} \partial^{\nu} f^{\gamma} \, dA = \int_{\partial M} f^{\mu} t_{\mu} \, ds \tag{93}$$

Proof. Taking the following differential form

$$\omega = f^{\mu} \, \mathrm{d}x_{\mu}$$

We have that

$$d\omega = (\partial_2 f^3 - \partial_3 f^2) dy \wedge dz + (\partial_3 f^1 - \partial_1 f^3) dz \wedge dx + (\partial_1 f^2 - \partial_2 f^1) dx \wedge dy$$

Using the formulas (87) we have

$$d\omega = n^{\mu} \epsilon_{\mu\nu\gamma} \partial^{\nu} f^{\gamma} dA$$

Since in \mathbb{R}^2 we have $t^{\mu} ds = dx^{\mu}$ we therefore have

$$f^{\mu}t_{\mu}\,\mathrm{d}s = f^{\mu}\,\mathrm{d}x_{\mu} = \omega$$

And therefore

$$\int_{M} n^{\mu} \epsilon_{\mu\nu\gamma} \partial^{\nu} f^{\gamma} \, \mathrm{d}A = \int_{M} \mathrm{d}\omega = \int_{\partial M} \omega = \int_{\partial M} f^{\mu} t_{\mu} \, \mathrm{d}s$$

These last formulas are a good example on how they can be generalized through the use of differential forms, bringing an easy way of calculus in \mathbb{R}^n of the various integral theorems, all condensed in one formula, the Gauss-Green-Stokes-Ostogradskij theorem