Laplacian Score for Feature Selection Xiafei He, Deng Cai, Partha Niyogi, 2005

Jérémie Dentan and Gonzague de Carpentier Professors: Laurent Oudre and Charles Truong

March 2023

- Introduction
- 2 Method
- O Data
- 4 Results

- Introduction
- 2 Method
- 3 Data
- 4 Results

Introduction: Feature selection

Paper under review: Laplacian Score for Feature Selection [5].

- Why do we want to select features? [4]
 - Better predictive performances
 - Computational efficiency
 - Need to measure fewer features
 - Interpretability
- What kind of method exist for that?
 - Wrapper methods: Feature selection wrapped around task learning.
 - Filter methods: Feature selection prior to task.
 - Supervised: use labels
 - Unsupervised: without labels

The **Laplacian Score** is an unsupervised filter method.

Idea: Preserve the structure of the nearest neighbors graph.

- Introduction
- 2 Method
- 3 Data
- 4 Results

Laplacian Score

① Compute the nearest neighbor graph *G*:

$$G_{i,j} := egin{cases} 1 & ext{if } x_i ext{ is among the } k ext{ nearest neighbors of } x_j ext{ or reciprocally} \\ 0 & ext{otherwise} \end{cases}$$

2 Compute the weighted adjacency matrix *S*:

$$S := G \odot \exp\left(-\frac{1}{\sigma^2}M^2\right) \in \mathbb{R}^{m \times m}$$

- **3** Compute the degree matrix $D: D := diag(S1) \in \mathbb{R}^{m \times m}$
- **①** Compute the centered features \tilde{f} : $\tilde{f}_r = f_r \frac{f_r^T D 1}{1^T D 1} \mathbb{1}$
- **1** Compute the laplacian scores L_r :

$$L_r := \frac{\hat{f}_r^T L \hat{f}_r}{\tilde{f}_r^T D \tilde{f}_r} \in [0, 1] \qquad L := D - S$$

Select the features having the highest Laplacian scores.

Our experiments

What will we do?

- ullet Evaluate the impact of the **hyperparameters** σ and k
- Evaluate the impact of using DTW or the euclidian distance
- Compare the method to classical feature selection methods: (1) a simple variance threshold (unsupervized) and (2) filtering on the ANOVA score [7] (supersized).

How do we measure the performance?

- sklearn's SVC with default parameters
- Measure the accuracy for binary classification based on the same set of features

- Introduction
- 2 Method
- Oata
- 4 Results

Data

Three datasets from https://timeseriesclassification.com:

- Earthquakes [1]:
 - Data: readings from Northern California Earthquake Data Center
 - Labels: major earthquake event or not
- Wafer [6]:
 - Data: process control measurements during the processing of silicon wafers
 - Labels: normal or abnormal
- WormsTwoClass [3]:
 - Data: projection of the motion of worms on a particular dimension, second-long intervals
 - Labels: wild-type or mutant

Data visualization

Figure: Visualization of the three datasets. For each dataset, we plot the average time series, the standard deviation at each timestamp and an example sampled randomly from the dataset.

Autocovariance functions

Figure: Average autocovariance functions for the three datasets.

Then, we used TSFEL [2] to extract the features.

- Introduction
- 2 Method
- 3 Data
- 4 Results

Distribution of the Laplacian Scores

3 regimes:

- σ small: $S \to 0$, scores concentrated around 0
- Transition phase
- σ huge: $S \to G$, so the scores also converge

Figure: Histograms of the value of the Laplacian score for several values of σ/\overline{M}

Influence of σ

- For some datasets, the task is either too simple or too difficult
- Good heuristic: take σ quite small

Figure: Evolution of the classification accuracy against the value of σ .

Influence of the number of nearest neighbors

Figure: Evolution of the classification accuracy against the value of sigma.

 \Rightarrow Good heuristic: take σ/\overline{M} small, around 10^{-4} , and k medium, of the order of ten.

Comparison with other selection methods

Figure: Evolution of the classification accuracy against the number of features.

- Similar, but slightly lower performance
- DTW is not better than euclidian distances here

NED = Normalized Euclidian Distance

Conclusion

- Advantage: unsupervised method
- Drawback: 2 hyperparameters to tune. Not very stable.
- Interesting method but perforance on tested datasets and task is not overwhelming.

References

- [1] Anthony Bagnall. Earthquakes dataset.
- [2] Marília Barandas et al. "TSFEL: Time Series Feature Extraction Library". Jan. 2020.
- [3] Andre Brown and Anthony Bagnall. WormTwoClass dataset.
- [4] Isabelle Guyon and André Elisseeff. "An introduction to variable and feature selection". Mar. 2003.
- [5] Xiaofei He et al. "Laplacian Score for Feature Selection". 2005.
- [6] Robert Thomas Olszewski. Wafer dataset.
- [7] Henry Scheffé. The Analysis of Variance. Mar. 1999.