Why Quantile Regression?

Quantile Regression

Session 4.1 Lecture Video Slides

Background

- Recall assumptions of Linear Regression.
 - 1. Y has a linear relationship with the Xs.
 - 2. Residuals has a Normal distribution.
 - 3. Residuals has constant variance independent of Xs.
- Checked via Diagnostic Plots in R with plot().
- What if one or more assumptions are not satisfied?
- Knowing only linear regression, we can try to do mathematical transformations of the variables and then try linear reg on transformed variables e.g. $sqrt(X_1)$, log(Y).
- Quantile Reg provide a natural alternative to Linear Reg if assumption 3 is not met.

Engel Dataset from Rpackage quantreg

- Dataset that records Family Expenditure on Food and Family Income in Belgium 1857.
- Used to show a limitation of Linear Regression and usefulness of Quantile Regression.
- Dataset is in quantreg Rpackage.

	income [‡]	foodexp
1	420.1577	255.8394
2	541.4117	310.9587
3	901.1575	485.6800
4	639.0802	402.9974
5	750.8756	495.5608
6	945.7989	633.7978
7	829.3979	630.7566
8	979.1648	700.4409
9	1309.8789	830.9586
10	1492.3987	815.3602

First 10 of 235 records in Engel Dataset.

Scatterplot of Food Expenditure vs Household Income

- What is the business purpose of analyzing this data?
- To study how an essential cost of living (food) varies as income varies.

Neumann Chew C.H.

Review of Linear Regression Model

and constant standard deviation.

Q: What does the straight line equation actually represent?

A: The mean value of Y, at the specified value of Xs.

Regressions on Engel Food Expenditure Data

P-value is very low => Income is a significant predictor of Food Expenditure

Diagnostic Plots Reveal Obvious Issues

Error Variance increases at higher predicted expenditures.

Influential outlier detected

Conclusion of Linear Regression Diagnostics

- Linear Regression Model Assumptions are not met.
- Still proceed with Linear Regression?
- Let's relook the data. What do you want to find out? (in the business/social sense, not mathematics/algorithms.)

Specific Business/Social Questions to be Answered?

How much does a typical family spend on Food?

Critical Thinking on the Business/Social Purpose

How much does a typical family spend on Food?

- What do you mean by typical family?
 - Family with mean income?
 - Is this the only kind of family that one is interested in analysing?

```
> summary(engel$income)
Min. 1st Qu. Median Mean 3rd Qu. Max.
377.1 638.9 884.0 982.5 1164.0 4957.8
```

- "Typical" Low Income family. e.g. \$500
- "Typical" Average Income family. e.g. \$1000
- "Typical" High Income family. e.g. \$2500

Linear Regression (Dotted Red Line) is Inadequate for answering questions about "typical" family expenditures.

Other Cases where Linear Regression is Inadequate

- If we aim to hit higher for target variable Y (e.g. productivity, profits,...), then need to find out and aim for the 95th or 99th percentile of Y.
- If we aim to hit lower for target variable Y (e.g. waiting time, losses,...), then need to find out and aim for the 5th or 1st percentile of Y.
- If Y is highly skewed, then a better measure of the "average" value of Y is the median of Y (50th percentile), instead of mean.

• i.e. Knowing the mean of Y is often inadequate in such cases.

Next Video

- Rpackage quantreg.
- Original Source from Prof. Roger Koenker.
 - Popularized Quantile Reg to different disciplines.
 - Wrote the Rcode.
 - Prepared the data.
- Python libraries.