Probability and Counting Lesson 4: Permutations and Combinations

12/8

Finding the Number of Ways to Order n Things

Let's say that we have a set A with n elements. Let's say we're trying find the set S of possible ways to order the n elements

$$S = \{x : x \text{ is an ordering } (a_1, \dots, a_n) \text{ (with each } a_n \text{ distinct) of the } n \text{ elements of } A\}$$

To order it, we look at S as an n-staged experiment with each sample space having one less element than the last (because we're ordering a set by picking an element, noting the order, without replacement). What we get is, using the mulplication principle:

$$n(S) = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot 2 \cdot 1 = n!$$

(remember that n! is multiplying the succession of n and n-1 all the way down to 1)

So that's how we do that, and that opens the door to permutations and combinations.

Permutations

Example 4.3 (page 87)

A four letter ID code made from the following set of letters:

where no letter can be used more than once. How many ID codes can be formed?

The way to think about this is slots. We have four flows

Each slot represents a stage in the 4 stage experiment we use to determine the ID code by picking a letter, putting it in the first slot, then repeating the process three more times.

This gives us sample spaces S_1 , S_2 , S_3 , S_4 each one less number of possibilities than the last, and we have

$$n(S_1) = 7$$
, $n(S_2) = 6$, $n(S_3) = 5$, $n(S_4) = 3$

Using the multiplication principle, we get

$$n(S) = 7 \cdot 6 \cdot 5 \cdot 4 = 840$$
 different codes.

This kind of calculation can be generalized to when we have an arbitrary number n of objects when we start selecting, and some number r between 1 and n ($1 \le r \le n$) of selections.

When we select r objects from a collection of n objects in order without replacement, we call that an (n, r)-permutation. And we refer to this sequence simply as a **permutation** when the context of n and r is known.

We often want to find n(n, r)-permutations) and we use notation P(n, r) to talk about that number, so

$$P(n,r) := n((n,r)\text{-permutations})$$

Then we end up doing a similar multiplication principle calculation to the previous example, each stage with one less outcome than the last, and we get the following formula:

Permutation Formula:

$$P(n,r) = n \cdot (n-1) \cdot (n-2) \cdot \cdots \cdot (n-r+1) = \frac{n!}{(n-r)!}$$

Combinations

With permutations, we cared a lot about the order in which objects were selected, in other words, "order matters".

With combinations, we disregard the order, and look at the selections as a set where "order doesn't matter".

A (n, r)-combination for $1 \le r \le n$ is a subset of a set with n elements that has r elements:

$$\{a_1, \ldots, a_r\} \subset \{b_1, \ldots, b_n\}$$

with a_1, \ldots, a_r are distinct from each other
and $b_1, \ldots b_n$ are distinct from each other

We use the term **combination** when the context of n and r is clear.

Example 5.2. (page 97)

List all the different strings of letters of the set $\{A, B, C, D\}$

First, we'll find all the possibilities by hand and count them.

Combinations Vs. Permutations

{ <i>A</i> , <i>B</i> , <i>C</i> }	ABC, ACB, BCA, BAC, CAB, CBA
$\{A,B,D\}$	ABD, ADB, BAD, BDA, DAB, DBA
$\{B,C,D\}$	BCD,BDC,CBD,CDB,DBC, DCB
$\{A,C,D\}$	<i>ACD, ADC, CAD, CDA, DAC, DCA</i>

The point is, there are four combinations, every combination can be ordered 6 different ways to form a permutation. The fact that there is a uniform number of permutations for every combination is no coincidence.

Let's generalize the above to an n element set, and finding the number of possible subsets with r elements. We have r! ways to make any given combination into a permutation because (as mentioned before) there's r! ways to order a combination. So we get

$$P(n,r) = r! \cdot n((n,r)$$
-combinations)

We use C(n,r) as shorthand for n(n,r)-combinations (i.e.

C(n,r) := n((n,r)-combinations), and using the formula for P(n,r), we get the following formula:

Formula for Combinations:

$$C(n,r) = \frac{P(n,r)}{r!} = \frac{n!}{(n-r)!r!} = \frac{n \cdot (n-1) \cdot \cdots \cdot (n-r+1)}{r \cdot (r-1) \cdot \cdots \cdot 1}.$$

Example.

How many 4-element subsets can be selected from a set containing 7 elements?

The question is asking how many (7,4)-combinations, so to do that, we use the formula

$$C(7,4) = \frac{7!}{(7-4)!4!} = \frac{7!}{3!4!} = \frac{7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{(3 \cdot 2 \cdot 1) \cdot (4 \cdot 3 \cdot 2 \cdot 1)} = \frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} = \frac{7 \cdot 6 \cdot 5}{6} = 7 \cdot 5 = 35.$$

Telling the Difference Between Permutations and Combinations

Example.

There are 9 books on a shelf, including the new Twighlight book, in how many ways can you select 4 out of the 9 books to take with you on vacation?

Is it permutations or combinations?

Order doesn't matter, so we do combinations.

What type of combinations do we have?

We are selecting 4 books out 9 books so we're trying to find a 4 element subset of a 9 element subset

S = (9,4)-combinations

$$n(S) = C(9,4) = \frac{9!}{(9-5)!4!} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{4 \cdot 3 \cdot 2 \cdot 1} = \frac{9 \cdot 8 \cdot 7 \cdot 6}{8 \cdot 3} = 9 \cdot 7 \cdot 2 = 126$$

Example.

There are seven track runners in the finals of the 100 meter dash. Let's say the top five score points, so in how many ways can

a. there be a top 5?

Permutations or combinations? Combinations, because we're talking about the subset of the top five

What type of combinations? (7,5)-combinations

$$n(S) = C(7,5) = \frac{7!}{(7-5)!5!} = \frac{7 \cdot 6}{2 \cdot 1} = 21$$

b. The number of possible scoring arrangements.

Permutations or combinations? Permutations What type of Permutation? (7, 5)-permutations

$$n(S) = P(7,5) = \frac{7!}{(7-5)!} = 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 = 42 \cdot 60 = 2520$$

NOTE: I ended the lecture at this point, but I want to provide notes for examples where you calculate the probability of an event using permutations and combinations

(AFTER 12/8 LECTURE)

Computing Probabilities with Permutations and Combinations

We often compute probabilties by using permutations and combinations by using the formula Pr[E] = n(E)/n(S) and using permutations and combinations to count n(E) and n(S). Here are some examples where we do this:

Example 5.7 a. (page 103)

Compute the Probability of selecting the Ace of hearts, king of hearts, and queen of hearts.

NOTE: We don't care about the order, so we use (52,3)-combinations as our sample space (which are equally likely)

n(E) = n (selecting the Ace, king, and queen of hearts) = 1

$$Pr[E] = \frac{n(E)}{n(S)} = \frac{1}{C(52.3)}.$$

Let's tweek the wording as follows:

Compute the probability of selecting the Ace of hearts, THEN the king of hearts, THEN the queen of hearts.

Now order matters, and we use *permutations*, and to cut to the chase, we get

$$Pr[E] = \frac{n(E)}{n \text{(permutations)}} = \frac{n\Big(\Big\{ \text{(ace of hearts, kings of hearts, queen of hearts)} \Big\} \Big)}{n \text{(permutations)}} = \frac{1}{P(52,3)}.$$

Example.

Let's say we select a red ball, 2 blue balls, 2 green balls, and 3 orange balls. Let's select 3 balls

a. What is the probability that you select 3 orange balls?

S = (8,3)-combinations, because we don't care about the order we select the balls (and we're finding 3 items from a collection 8)

E = (3,3)-combinations, because we're selecting three orange balls out of three orange balls

$$n(S) = C(8,3) = \frac{8!}{5!3!} = \frac{8 \cdot 7 \cdot 6 \cdot 5!}{5!3!} = \frac{8 \cdot 7 \cdot 6}{3 \cdot 2 \cdot 1} = 8 \cdot 7 = 56$$

$$n(E) = C(3,3) = \frac{3!}{(3-3)!3!} = \frac{3!}{0!3!} = \frac{3!}{1 \cdot 3!} = 1$$

$$Pr[E] = n(E)/n(S) = 1/56$$

b. Probability that a primary color is selected?

The event E is the possible blue and red balls selected (remember that there are 1 red and 1 2 blue), so there are three such balls total, so

E = (3,3)-combinations

$$n(E) = C(3,3) = 1$$

$$Pr[E] = n(E) / n(S) = 1/56$$