

F I G. 1

F I G. 2

F I G. 3

Edge portions of the substrate correspond to A-D in the square substrate.

F I G. 4

FIG. 5A

FIG. 5B

FIG. 5C

FIG. 5D

FIG. 5E

FIG. 5F

FIG. 6A

FIG. 6B

FIG. 6C

FIG. 6D

FIG. 6E

FIG. 7A DEPOSITION OF AMORPHOUS SILICON FILM/PREPROCESS/ADDITION OF NI ELEMENT SOLUTION
ADDITION OF NI ELEMENT SOLUTION

FIG. 7B DEHYDROGENATION/ TERMAL CRYSTALLIZATION(HEAT TREATMENT/IN THE ELECTROTHERMAL
FURNACE+LASER IRRADIATION TREATMENT)

FIG. 8A FORMATION OF SEMICONDUCTOR FILMS

FIG. 8B DEPOSITING THE GATE INSULATING FILM/DEPOSITING THE GATE ELECTRODE

FIG. 9A FORMATION OF RESIST PATTERNS FOR GATE ELECTRODES/DRY ETCHING/FIRST ION DOPING PROCESS(FORMATION OF N-REGIONS)

FIG. 9B REMOVAL OF MASKS/FORMATION OF RESIST PATTERNS FOR N+ REGIONS/SECOND ION DOPING (FORMATION OF N+ REGIONS)

FIG. 10A REMOVAL OF MASKS(FORMATION OF RESIST PATTERNS FOR P+REGIONS/THIRD ION DOPING/
FORMATION OF P+REGIONS)

FIG. 10B REMOVAL OF RESIST/DEPOSITION OF FIRST INTERLAYER INSULATING FILM/ THERMAL ACTIVATION

FIG. 11A DEPOSITION OF THE SECOND INTERLAYER INSULATING FILM /FORMATION OF CONTACT HOLES

FIG. 11B FORMATION OF METAL WIRINGS /FORMATION OF TRANSPARENT CONDUCTIVE FILM

FIG. 12A

FIG. 12B

FIG. 12C

FIG. 12D

FIG. 12E

FIG. 12F

FIG. 13A

FIG. 13B

FIG. 13C

FIG. 13D

FIG. 14A

FIG. 14B

FIG. 14C

Ni concentration ratio between a center portion of the substrate
and an edge portion of the substrate, with the concentration at the
center portion as one

F I G. 15

F I G. 16

the relationship between substrate size and rotational acceleration speed.