(Camada física)

Prof. Dr. Luiz Arthur Feitosa dos Santos

luiz.arthur.feitosa.santos@gmail.com

https://luizsantos.github.io/

Modelo TCP/IP

Aplicação

Transporte

Inter-rede

Enlace

Física

Tipos de meios de transmissão:

- **Guiados** (com fio cabos);
- Não guiados (sem fio wireless).

Há basicamente dois tipos de par trançado:

STP (Shielded Twisted Pair)

(Unshielded Twisted Pair)

Hum, então o cabo STP tem proteção contra ruído e o UTP não?

Cancelamento: 1. O cabo deve ser trançado;

Cancelamento: 1. O cabo deve ser trançado;

Cancelamento: 1. Quanto mais trançado melhor;

Cancelamento: 1. Quanto mais trançado melhor, contudo mais caro;

Cancelamento: 3. A polaridade invertida cria um campo eletromagnético que ajuda repelir ruídos. Como a polaridade é invertida isso ajuda a reduzir Enviando o cross-talk. 1 (um)

Entendi... o cabo par trançado utiliza o cancelamento para se proteger contra interferências.

- O cabo UTP utiliza apenas o cancelamento...
- Já o STP utiliza o cancelamento e a blindagem!

Na computação o cabo par trançado normalmente possui 4 pares (oito fios), e na ponta do cabo são colocados conectores RJ-45:

Cabos UTP e STP:

Conector:

Alicate:

Placa de rede e concentradores:

A principio a ligação dos fios dos pares é pino a pino, ou seja, se ligar na mesma ordem de cores em uma extremidade e na outra, deve funcionar.

A principio a ligação dos fios dos pares é pino a pino, ou seja, se ligar na mesma ordem de cores em uma extremidade e na outra, deve <u>func</u>ionar.

A principio a ligação dos fios dos pares é pino a pino, ou seja, se ligar na mesma ordem de cores em uma extremidade e na outra, deve <u>func</u>ionar.

A principio a ligação dos fios dos pares é pino a pino, ou seja, se ligar na mesma ordem de cores em uma extremidade e na outra, deve funcionar.

A ligação dos pinos na placa de rede, historicamente segue o seguinte esquema para transmissão e recepção!

A ordem das cores é importante!

A ordem das cores é importante!

A ordem das cores é importante!

Hum... no exemplo anterior, só está ocorrendo cancelamento no transmissor, mas não no receptor...

Então, não posso usar qualquer sequência de cor...

Tenho que no mínimo verificar se está ocorrendo o cancelamento!

Na verdade é sempre melhor usar os padrões T568A ou T568B.

Padrão T568A

Na verdade é sempre melhor usar os padrões T568A ou T568B.

Na verdade é sempre melhor usar os padrões T568A ou T568B.

Padrão T568B

Na verdade é sempre melhor usar os padrões T568A ou T568B.

Entendi... para parecer profissional e ter certeza que estou utilizando o cancelamento corretamento é melhor utilizar o padrão internacional.

Assim, não corro risco de errar...

Ligando dispositivos...

Todavia ainda há outro problema!!!

Ligando dois computadores: Crossover.

Ligando dois computadores: **Crossover**.

Ligando dois computadores: **Crossover**.

Ué... então sempre eu vou precisar de cabo crossover?

Se usar hub ou switch não é necessário crossover...

Em alguns casos é necessário crossover...

Interligando hubs/switches com hubs/switches.

Rede

R+3

3 R+

Porta 1

R+

Porta 2

Rede

3 R+

R+3

Porta 2

Cabo Par Trançado

Porta 1

Já sei, então é necessário um *crossover*!

Interligando hubs/switches:

Alguns *hubs/switches* possuem a porta *uplink*, que não necessita de cabo *crossover* para interligar outros *hubs/switches*.

Algumas placas de rede modernas, bem como *switches*, conseguem fazer o *crossover* automático...

Características:

- Pode ser full-duplex;
- Tradicionalmente utiliza 4 pares;
- Cabo é flexível;
- Muito utilizado com o conceito de cabeamento estruturado;
- Distância máxima de 100 metros;
- Limite de dois dispositivos por cabo;
- O cabo é topologia barramento, mas em conjunto com switches forma a topologia estrela.

Categorias:

- Cat 1 somente voz (frequência 1Mhz);
- Cat 2 4Mbps (frequência 4Mhz);
- Cat 3 10Mbps (frequência 16Mhz);
- Cat 4 16Mbps (frequência 20Mhz);
- Cat 5 100Mbps (frequência 100Mhz 100BASE-TX 4 ou 8 condutores);
- Cat 5e 1000Mbps (frequência 100Mhz 1000BASE-TX 8 condutores);
- Cat 6 1000Mbps (frequência 250Mhz 10GBASE-TX (55 metros) 8 condutores);
- Cat 6a 1000Mbps (frequência 500Mhz 10GBASE-T (55 metros) 8 condutores);
- Cat 7 10Gbps (frequência 600Mhz 10GBASE-T);
- Cat 8 25/40Gbps (frequência 1600-2000Mhz 40GBASE-T);.

Conclusão:

Cabo muito utilizado em redes locais, relativamente barato, fácil de trabalhar, suporta altíssimas velocidades e deve ficar muito tempo no mercado...

Obrigado!!!

Prof. Dr. Luiz Arthur Feitosa dos Santos

luiz.arthur.feitosa.santos@gmail.com

https://luizsantos.github.io/

Links e referencias na descrição do vídeo