Sometimes data require more complex storage than simple vectors, and thankfully R provides a host of data structures. The most common are the data.frame, matrix and list, followed by the array.

— Jared P. Lander (Lander, 2017)

Data Science for Operational Researchers using R

04 – Data Frames and Tibbles

https://github.com/JimDuggan/Data-Science-for-OR

The data frame

- A data frame is based on a list, where the elements of that list containing equal length vectors
- The list elements then become columns in the data frame
- Created with the function data.frame()
- The data frame, with its row and column structure, will be familiar to anyone who has used a spreadsheet, where each column is a variable, and every row is an observation
- It can also be operated on using matrix notation (a 2-dimensional vector)

```
summary(d)
       Number
                                      Flag
                   Letter
   Min. :1
                Length:5
                                   Mode : logical
   1st Qu.:2
                Class :character
                                   FALSE: 2
               Mode :character
                                   TRUE :2
    Median :3
    Mean
                                   NA's :1
   3rd Qu.:4
   Max.
```

Subset examples

Adding columns (with \$)

Adding columns using transform()

The subset() function

subset(x, subset,select) returns subsets
of vectors, matrices or data frames
which meet specified conditions.

The main arguments provided to this function when using with data frames are:

- x, the object to be subsetted
- subset, a logical expression indicating which rows should be kept
- select, which indicates the columns to be selected from the data frame. If this is not present, all columns are returned.

Challenge 4.1

 Using the subset function to list all cars with an mpg greater than the mean from the data frame mtcars

```
disp hp drat
               mpg cyl
                                         wt qsec vs am gear carb
Mazda RX4
              21.0
                     6 160.0 110 3.90 2.620 16.46
Mazda RX4 Wag
              21.0
                     6 160.0 110 3.90 2.875 17.02
              22.8
Datsun 710
                     4 108.0 93 3.85 2.320 18.61
Hornet 4 Drive 21.4
                     6 258.0 110 3.08 3.215 19.44
                     4 146.7 62 3.69 3.190 20.00
Merc 240D
              24.4
Merc 230
              22.8
                     4 140.8 95 3.92 3.150 22.90
Fiat 128
              32.4
                     4 78.7 66 4.08 2.200 19.47
                              52 4.93 1.615 18.52
Honda Civic
               30.4
Toyota Corolla 33.9
                        71.1 65 4.22 1.835 19.90
Toyota Corona
                              97 3.70 2.465 20.01
              21.5
                     4 120.1
Fiat X1-9
              27.3
                     4 79.0 66 4.08 1.935 18.90
                              91 4.43 2.140 16.70
Porsche 914-2
              26.0
Lotus Europa
               30.4
                     4 95.1 113 3.77 1.513 16.90
Volvo 142E
              21.4
                     4 121.0 109 4.11 2.780 18.60
```

Challenge 4.2

 Add a new column to mtcars (using \$) that converts mpg to kpg. Assume a constant 1.6 for the transformation.

> head(mtcars)

```
wt gsec vs am gear carb
                 mpg cyl disp hp drat
                                                                kpg
                21.0
                      6 160 110 3.90 2.620 16.46 0 1
                                                            4 33.60
Mazda RX4
                21.0
                                                            4 33.60
Mazda RX4 Waa
                      6 160 110 3.90 2.875 17.02 0 1
            22.8
Datsun 710
                         108 93 3.85 2.320 18.61 1 1
                                                            1 36.48
Hornet 4 Drive
                21.4
                      6 258 110 3.08 3.215 19.44 1 0 3
                                                            1 34.24
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3
                                                            2 29.92
Valiant
                18.1
                         225 105 2.76 3.460 20.22 1 0
                                                            1 28.96
```

Introducing tibbles

Tibbles are data frames, however they alter some data frame behaviours to make working with packages in the tidyverse a little easier

- Printing, where tibbles by default only show the first 10 rows, and limit the visible columns to those than fit on the screen
- Subsetting, where a tibble is always returned, and also partial matching is not supported

```
library(tibble)
```

```
d1 <- tibble(Number=1:5,</pre>
             Letter=LETTERS[1:5],
             Flag=c(T,F,T,F,NA))
d1
\# > \# A \ tibble: 5 \times 3
     Number Letter Flag
      <int> <chr> <lql>
          1 A
                   TRUF
         2 B
                   FALSE
#> 3
         3 C
                   TRUE
          4 D
                   FALSE
#> 5
          5 E
                   NA
```

Moving between both

```
str(as_tibble(d))
\# tibble [5 x 3] (S3: tbl_df/tbl/data.frame)
#> $ Number: int [1:5] 1 2 3 4 5
#> $ Letter: chr [1:5] "A" "B" "C" "D" ...
#> $ Flag : logi [1:5] TRUE FALSE TRUE FALSE NA
str(as.data.frame(d1))
#> 'data.frame': 5 obs. of 3 variables:
#> $ Number: int 1 2 3 4 5
#> $ Letter: chr "A" "B" "C" "D" ...
#> $ Flag : logi TRUE FALSE TRUE FALSE NA
```

Using data frames in a pipeline

```
mtcars_1 <- mtcars |>
                                         # the original data frame
          subset(select=c("mpg","disp")) |> # select 2 columns
                               # Add first column
          transform(kpg=mpg*1.6,
                   dm_ratio=disp/mpg) |> # Add second column
          head()
                                         # Subset 1st 6 records
mtcars_1
                 mpg disp kpg dm_ratio
#>
#> Mazda RX4 21.0 160 33.60 7.619
#> Mazda RX4 Wag 21.0 160 33.60 7.619
#> Datsun 710 22.8 108 36.48 4.737
#> Hornet 4 Drive 21.4 258 34.24 12.056
#> Hornet Sportabout 18.7 360 29.92 19.251
#> Valiant 18.1 225 28.96 12.431
```

Challenge 4.3

Use the subset() function to generate the following tibbles from the tibble ggplot2::mpg. Use the R pipe operator (|>) where necessary.

```
# All 2seater cars, with selected columns
two_seater
#> # A tibble: 5 x 6
    class manufacturer model
                                displ year
                                             hwy
    <chr> <chr>
                                <dbl> <int> <int>
                        <chr>
#> 1 2seater chevrolet
                      corvette 5.7 1999
                                              26
#> 2 2seater chevrolet corvette
                                5.7 1999
                                              23
#> 3 2seater chevrolet
                      corvette
                                6.2 2008
                                              26
#> 4 2seater chevrolet
                      corvette
                                6.2 2008
                                              25
#> 5 2seater chevrolet
                      corvette
                                       2008
                                              24
```