Inversa de la matriz

¿Qué es la inversa de una matriz?

- A es una matriz cuadrada
- Existe una matriz B tal que AB = BA = I
- B se le llama la inversa de A y se denota como A^{-1}

Existencia de la inversa

- Depende del determinante de la matriz
- Si det $A \neq 0$, entonces A tiene una inversa
- Matriz no singular
- Matriz invertible
- Si det A = 0 , no tiene una inversa
 - o matriz singular
 - o Matriz no invertible
- Matrices mal condicionadas

¿Qué matrices no son invertibles?

Sea A una matriz y a1, ..., an sus filas

- Si algún ai = 0 entonces det(A) = 0
- Si se intercambian dos filas el signo de determinante se invierte
- det([a1, ..., c * ai, ..., an]) = c det([a1, ..., ai, ..., an])
- det([a1, ..., ai, ..., an]) = det([a1, ..., ai + baj, ..., an])
- Si A es trianguar entonces det(A) = prod(diag(A))

Calcular la inversa

Sea $An \times n$ invertible e $In \times n$ la identidad

- Método Gauss-Jordan
- Creamos [A|I]
- Resolvemos lado izquierdo por GJ
- Obtenemos [I|B]
- B es la inversa

Propiedades de la inversa

Si A, B son matrices invertibles

- A^{-1} es única.
- $(A^{-1})^{-1} = A$
- AB es invertible y $(AB)^{-1}=B^{-1}A^{-1}$
- $(A^T)^{-1} = (A^{-1})^{-T}$
- $(cA)^{-1} = \frac{1}{c}A^{-1}$

Usos de la inversa

Sistemas de ecuaciones lineales: si Ax = b entonces $x = bA^{-1}$

• Regresión lineal b = $(X^TX)^{-1}X^Ty$

- $\det(A) = \frac{1}{\det(A^{-1})}$
- A representa una transformación lineal, A^{-1} representa la transformación inversa

Calculo multivariable

¿Cálculo?

- Estudia las variaciones en funciones f(x) = y
- Límites
- Derivadas
- Integrales

Límites

¿Qué pasa cuando $x = \infty$?

- f(x)=1 (constante se queda en 1)
- $f(x) = x \frac{\text{(lineal /)}}{x}$
- f(x) = x 1 (lineal /)
- f(x) = 1/x (inversa)
- $f(x) = x/x^2$ (racional)
- $f(x) = \log(x) \frac{\log(x)}{\log(x)}$
- f(x) = sen x (senoidal)

¿Qué pasa cuando x se acerca mucho a 0?

- f(x)=1 (constante se queda en 1)
- $f(x) = x \frac{\text{(lineal /)}}{\text{(lineal /)}}$
- f(x) = x 1 (lineal /)
- f(x) = 1/x (inversa)
- $f(x) = x/x^2$ (racional)
- $f(x) = \log(x) \frac{\log(x)}{\log(x)}$
- f(x) = sen x (senoidal)

Derivada

- Cuál es el cambio instantáneo de la función en cierto punto
 - o Ejemplo:

Si a las 6:15:12 vas a 64.46 Km/h y a las 6:15:42 vas a 65.54 Km/h

¿Cuál fue el cambio de velocidad? ¿Es instantáneo?

Integral

¿Métodos Numéricos?

- Funciones en mundo real
 - o No se pueden calcular
 - No existe
 - o Es muy costoso calcularla
 - Las variables y restricciones son muy complicadas

Cálculo multivariable

¿Función Multivariable?

Depende de 2 más variables

• $f(x, y) = x^2 + y^2$

•
$$f(x, y, z) = x^2 + y^2 + z^2$$

•
$$f(x, y) = (x^2 + y^2)$$

- Diferencias finitas
 - Adelante
 - Atrás
 - Centrales
- Integración numérica
 - o Trapecio
 - Simpson
 - o Integración adaptativa

Cambio del cálculo a multivariable

- Derivadas parciales/direccionales
- Integración múltiple

Gráfico de $f(x, y) = x^2 + y^2$

Campos vectoriales

• Ecuaciones diferenciales

Diferencias finitas

Diferencias primer grado

Por definición la derivada está dada por

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

En diferencias finitas podemos verla como

$$f'(x) \approx \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$
 donde $x_0 < x < x_1$

A esto se le llama primera diferencia dividida y se denota

$$f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$$

Diferencias de orden superior

La diferencia de orden 2 es

$$f[x_0, x_1, x_2] = \frac{f[x_1, x_2] - f[x_0, x_1]}{x_2 - x_0}$$
La diferencia de orden 3 es

$$f[x_0, x_1, x_2, x_3] = \frac{f[x_1, x_2, x_3] - f[x_0, x_1, x_2]}{x_3 - x_0}$$

Puntos equidistantes

- Si tenemos una seria de puntos equidistantes $x_0, x_1, x_2, \dots, x_n$
- Para la diferencia finita en x_1 necesitamos x_1 y x_2
- Para la diferencia finita en x_2 necesitamos x_2 y x_3
- ¿No importa el valor de x_1 ? ¿Debería? Diferencias hacia adelante

Diferencias hacia atrás

En x_1 tenemos dos valores de diferencias finitas

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} \neq \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

Promedio de diferencias hacia adelante y atrás

$$\left(\frac{f(x_1) - f(x_0)}{x_1 - x_0} + \frac{f(x_2) - f(x_1)}{x_2 - x_1}\right) / 2$$

Suponemos distancia entre puntos es igual $x_1 - x_0 = x_2 - x_1 = h$

$$\left(\frac{f(x_1) - f(x_0) + f(x_2) - f(x_1)}{h}\right) / 2$$

Diferencias centrales

$$\frac{f(x_2) - f(x_0)}{2h}$$

Diferencias multivariable

Funciones multivariables

Si tenemos f(x, y)

Derivadas parciales

$$\frac{\partial f(x,y)}{\partial x} = \lim_{x \to x_0} \frac{f(x,y) - f(x_0,y)}{x - x_0}$$

• En diferencias finitas

$$\frac{\partial f(x,y)}{\partial y} = \lim_{y \to y_0} \frac{f(x,y) - f(x,y_0)}{y - y_0}$$

· diferencias finitas direccionales

$$\frac{\partial f(x,y)}{\partial y} = \lim_{y \to y_0} \frac{f(x,y) - f(x,y_0)}{y - y_0}$$

Descenso de Gradiente

• Imagina la función f $(x) = x^2$ entonces f '(x) = 2x

• f tiene su mínimo en 0

• f'(0) = 0

• f'<0 para x<0

• f' > 0 para x > 0

• Para encontrar el mínimo

 $\circ x_{i+1} = x_i - hf'(x_i)$

o Donde h es el tamaño de paso

Descenso de gradiente multivariable

• Para cada variable podemos saber hacia donde crece/decrece

• Podemos unirlas en un vector: Gradiente

$$\nabla f(x_1,x_1,\dots,x_n) = \left[\frac{\partial f(x_1,x_1,\dots,x_n)}{\partial x_1}, \frac{\partial f(x_1,x_1,\dots,x_n)}{\partial x_2}, \dots, \frac{\partial f(x_1,x_1,\dots,x_n)}{\partial x_n}\right]$$

• Para encontrar el mínimo entonces

$$X_{i+1} = X_i - h \nabla f$$

Integrales de superficie

¿Qué es una integral?

• Integral de Riemann

• f(x) una función

• Intervalo [a, b]

• Serie de intervalos Δx_k que parten a [a,b]

• Cada x_k^* pertenece Δx_k

$$\int_{a}^{b} f(x)dx = \lim_{\Delta x_k \to 0} \sum_{k=1}^{n} f(x_k^*) \, \Delta x_k$$

Métodos de integración

• Integración simple

• Punto medio

Trapecio

Simpson

Cuadratura de gauss

Monte Carlo

Integral numérica

• No podemos $\lim_{\Lambda \times k \to 0}$

• Nos aproximamos a Δx_k muy pequeño

o ¿Qué tan pequeño?

Como seleccionamos x_k*

o Borde izquierdo

o Borde derecho

o Centro

o Aleatorio

Integración Simple

- Serie de puntos $a = x_0 \dots x_n = b$ $\int_a^b f(x) dx \approx \sum_{k=0}^n f(x_{k-1}) * (x_k x_{k-1})$
- Simple de implementar
- Simple de calcular
- Poco precisa

Punto medio

• Serie de puntos $a = x_0 \dots x_n = b$

$$\int_{a}^{b} f(x)dx \approx \sum_{k=1}^{n} f\left(\frac{x_{k-1} + x_{k}}{2}\right) * (x_{k} - x_{k-1})$$

- Menos simple de implementar
- Menos simple de calcular
- Un poco más precisa

Trapezoide

• Serie de puntos a = $x_0 \dots x_n = b$

$$\int_{a}^{b} f(x)dx \approx \sum_{k=1}^{n} \left(\frac{f(x_{k-1}) + f(x_{k})}{2} \right) * (x_{k} - x_{k-1})$$

- Simple de implementar
- Menos simple de calcular
- ¿más precisa?

Cuadratura de Gauss

- Se elige la formula
 - Se eligen los pesos
- Se calcula la suma

$$\sum_{k=1}^{n} w_i f(x_i)$$

Múltiples dimensiones

- $f(x) \rightarrow f(x,y)$
- $[a,b] \rightarrow [ax,bx] y [ay,by]$
- $ax = x_0 ... x_n = bx$ y $ay = y_0 ... y_n = by$

Integración simple

• $\sum_{k=1}^{n} f(x_{k-1}) * (x_k - x_{k-1}) \to \sum_{k=1}^{n} f(x_{k-1}, y_{k-1}) * (x_k - x_{k-1})(y_k - y_{k-1})$

Monte Carlo

- Evalúa la ecuación en puntos aleatorios
- No es determinística
- Pasos
 - Se generan puntos aleatorios en el dominio
 - o Se evalúa la función en estos puntos
 - o Aproxima la integral

$$\int_{a}^{b} f(x)dx \approx (b-a)\frac{1}{n}\sum_{k=1}^{n} f(x_{k})$$

Simpson

- Interpola los puntos
- Interpolación cuadrática
- Integra la interpolación
- Regla 1/3 de Simpson

$$\int_{a}^{b} f(x)dx \approx \frac{(b-a)}{6} \left[f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right]$$

Cuadratura de Gauss

 Utiliza puntos y pesos óptimos para minimizar el error

$$\int_{-1}^{1} f(x) \approx \sum_{k=1}^{n} w_{i} f(x_{i})$$

• Se transforma el intervalo [a,b] a [-1,1]

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} f\left(\frac{b-a}{2}z + \frac{b+a}{2}\right) \frac{b-a}{2}dz$$

# Puntos	Puntos	Pesos
1	0	2
2	$\pm \frac{1}{\sqrt{3}}$	1
3	0	8 9 5 9
	$\pm \frac{3}{\sqrt{5}}$	<u>5</u> 9
4	$\pm\sqrt{\frac{3}{7}-\frac{3}{7}\sqrt{\frac{6}{5}}}$	$\frac{18+\sqrt{30}}{36}$
	$\pm \sqrt{\frac{3}{7} + \frac{3}{7}} \sqrt{\frac{6}{5}}$	$\frac{18-\sqrt{30}}{36}$

$$\sum_{k=1}^{n} f\left(\frac{x_{k-1} + x_k}{2}\right) * (x_k - x_{k-1}) \rightarrow \sum_{k=1}^{n} f\left(\frac{x_{k-1} + x_k}{2}, \frac{y_{k-1} + y_k}{2}\right) * (x_k - x_{k-1}) (y_k - y_{k-1})$$

Trapezoide

$$\sum_{k=1}^{n} \left(\frac{f(x_{k-1}) + f(x_k)}{2} \right) * (x_k - x_{k-1}) \rightarrow$$

$$\sum_{k=1}^{n} \left(\frac{f(x_{k-1}, y_{k-1}) + f(x_k, y_{k-1}) + f(x_{k-1}, y_k) + f(x_k, y_k)}{4} \right) * (x_k - x_{k-1}) (y_k - y_{k-1})$$

Monte Carlo

$$(b-a)\frac{1}{N}\sum_{k=1}^{n}f(x_k) \to (bx-ax)(by-ay)\frac{1}{n}\sum_{k=1}^{n}f(x_k,y_k)$$