Zadanie 7

Weźmy dowolną macierz A : n x n. Pokażę, że (1) dla dowolnej kolumny j zachodzi wzór Laplace'a: $det(A) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$ oraz (2) dla dowolnego wiersza i: $det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$.

1. Weźmy dowolną kolumnę z macierzy A o indeksie j
, $1 \le j \le n$. Niech B będzie macierzą A z przesuniętą kolumną j o (j-1) kolumn
 w lewo, tzn:

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots \\ a_{21} & a_{22} & \dots & a_{2j} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ a_{(n-1)1} & a_{(n-1)2} & \dots & a_{(n-1)j} & \dots \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots \end{pmatrix} \mathbf{B} = \begin{pmatrix} a_{1j} & a_{11} & \dots & a_{1(j-1)} & \dots \\ a_{2j} & a_{21} & \dots & a_{2(j-1)} & \dots \\ \vdots & \vdots & \ddots & \vdots & \ddots \\ a_{(n-1)j} & a_{(n-1)1} & \dots & a_{(n-1)(j-1)} & \dots \\ a_{nj} & a_{n1} & \dots & a_{n(j-1)} & \dots \end{pmatrix}$$

Każda zmiana kolumny zmienia znak wyznacznika (6.1 Wyznacznik), zatem $det(A) = (-1)^{j-1} det(B)$. Z dowiedzionego na wykładzie rozwinięcia Laplace'a dla pierwszej kolumny mamy (przy fakcie 6.6):

$$det(B) = \sum_{i=1}^{n} (-1)^{i+1} b_{i1} det(B_{i1})$$

Zauważmy, że dla każdego i , $1 \le i \le n$ $b_{i1} = a_{ij}$ oraz $det(A_{ij}) = det(B_{i1})$ (zarówno w A_{ij} jak i B_{i1} skreślamy tę samą kolumnę, a to co zostaje to ta sama macierz bez wiersza i), zatem możemy napisać:

$$\sum_{i=1}^{n} (-1)^{i+1} b_{i1} det(B_{i1}) = \sum_{i=1}^{n} (-1)^{i+1} a_{ij} det(A_{ij})$$

Ponieważ $det(B) = \frac{det(A)}{(-1)^{j-1}}$ to:

$$det(A) = (-1)^{j-1} \sum_{i=1}^{n} (-1)^{i+1} a_{ij} det(A_{ij}) = \sum_{i=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$

2. Niech A^T będzie transpozycją A. Z definicji macierzy transponowanej dla każdych i,j $1 \le i, j \le n$ $a_{ij} = (a^T)_{ji}$ oraz A_{ij} . Zauważmy, że $(A_{ij})^T = (A^T)_{ji}$ (usunięcie wiersza i i kolumny j z macierzy A i przetransponowanie jej, to to samo co usunięcie wiersza j i kolumny i z transpozycji A) oraz $det(A_{ij}) = det((A_{ij})^T) = det((A^T)_{ji})$ (Fakt.1 lista5). Z (1) wiemy, że:

$$det(A^{T}) = \sum_{j=1}^{n} (-1)^{i+j} (a^{T})_{ji} det((A^{T})_{ji})$$

Ponieważ $a_{ij} = (a^T)_{ji}$, $det(A_{ij}) = det((A^T)_{ji} \text{ oraz } det(A^T) = det(A) \text{ mamy:}$

$$det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} det(A_{ij})$$