CMPT385 Final Exam

Three Hours Closed Book. No calculators or computers. December 13, 2006, 2.00pm

Instructions:

Read each question before you answer it. Marks cannot be awarded if you answer some other question.

Indicate your answers clearly.

Please do not use a hard pencil.

Marks will be awarded for the style and clarity of your answer.

1. Graphics Pipeline

1.1. (6 marks) Identify three OpenGL state variables, and the commands used to change them.
1.2. (10 marks) Define in a contraction.

- Pipeline: depth calculation, lighting calculation, camera transformation, modelview calculation, scanline rendering. Then give the order that these operations are done.
- 1.3. (7 marks) Explain implementing realistic shadows is a problem in the OpenGL pipeline, and describe one simple way to implement approximate shadows in OpenGL.

2. Geometric Transformations

For the following, assume a two-dimensional graphics system, and that points are represented as column vectors. Thus, the modelview matrix is initially a 3x3 identity matrix, and calls to glTranslate() etc., result in a right multiplication of the modelview matrix by a transformation matrix.

(Assume access to a library to compute any of the usual math functions.)

- 2.1. (8 marks) The bottom row of the modelyiew matrix is initially (0, 0, 1). Do the values in this row ever change as a consequence of translate, rotate or scale operations? Show why.
- 2.2. (4 marks) An application of a translate operation to any modelview matrix representing a sequence of translate, rotate and scale operations affects how many entries of the modelview matrix? Show your work.
- 2.3. (4 marks) Show that any modelview matrix consisting of an arbitrary sequence of rotations and translations can be reduced to a single rotation and translation.

3. Lighting

- 3.1. (9 marks) OpenGL uses Gouraud lighting. Summarize this lighting model and explain why it is used in OpenGL.
- 3.2. (6 marks) Briefly describe some other lighting model (radiosity, photon mapping, Phong) and discuss the feasibility of implementing these in real time using an OpenGL-like implementation.

4. Depth Calculations

- 4.1. (4 marks) Explain the z-buffer algorithm.
- 4.2. (12 marks) Consider the following scene similar to the examples used in class.

The drawing represents a bird's eye view of several rectangles arranged in two triangular shapes which intersect. The rectangles are subdivided at the intersection points, and each rectangle is labeled with a letter. Adjacent to the letter is a +/- sign indicating that the equation of that rectangle's plane is +/- in the vicinity of the letter. Show the BSP tree that would result if the following rectangles are added in the following order:

FBCGAHD

- 4.3. (8 marks) Show the order the above rectangles would be rendered from viewpoints V and W respectively.
- 4.4. (Bonus) Why didn't I include K in the above list?

DO EITHER QUESTION 5 OR QUESTION 6

5. Halftoning (10 marks)

The following matrix could be used as a dither matrix for the halftoning assignment you did in this class. It is called a "line halftone" and creates the output shown beside the data:

The dither matrix above is very similar to the line halftone matrix used in your assignment. It is called a line matrix because there is an effect of lines crossing the image. Show how to create a line matrix that creates a diagonal line effect as follows:

DO EITHER QUESTION 5 OR QUESTION 6

6. Shaders

- 6.1. (3 marks) Explain the difference between surface shaders, bump maps, and displacement shaders.
- 6.2. (7 marks) Describe how you would use Perlin noise to write a surface shader to create a mottled surface, as on an orange. (If you can write the shader, do so. If not, sketch out an idea.

7. (12 marks) Short answer

- 7.1. Describe either particle systems or L-systems.
- 7.2. What is picking, and how does OpenGL help with this?
- 7.3. What is double buffering?
- 7.4. What is the purpose of glPushMatrix() and glPopMatrix()?
- 7.5. What is the difference between the modelview matrix and the projection matrix?
- 7.6. Distinguish between geometric and parametric continuity.

End of exam