

- □ Bert概述
- □ Nvidia对于Bert的加速 训练
- □ Nvidia对于Bert的加速 推理

BERT概述 - 模型及其意义

□ BERT - Bidirectional Encoder Representations from Transformers, 双向Transformer的Encoder, 如左图

https://blog.csdn.net/triplemen

- □ BERT的"里程碑"意义:证明了一个非常深的模型(Transformer)可以显著提高NLP任务的准确率,而这个模型可以从无标记数据集中预训练得到
- □ 特点: 成熟模型 + 大数据量, Google 风格的暴力模型

BERT概述 - TRANSFORMER模型结构

Transformer模型结构:

- □ 用全Attention的结构代替了传统的LSTM
- □ 成熟模型:在翻译任务已经取得好成绩
- □ 可以多层叠加:
 - Google Base模型:12层, 用于微调
 - Google Large模型:24层,用于预训练

Google Bert训练数据集:

- □ BooksCorpus: 8 亿词量
- □ Wikipedia: 25 亿词量

BERT概述 - 应用场景

NLP任务

- □ 序列标注:分词/pos tag/语义标注...
- □ 分类任务:文本分类/情感计算...
- □ 句子关系判断: Entailment/QA/自然语言推理...
- □ 生成式任务: 机器翻译/文本摘要...

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.9	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	88.1	91.3	45.4	80.0	82.3	56.0	75.2
BERTBASE	84.6/83.4	71.2	90.1	93.5	52.1	85.8	88.9	66.4	79.6
BERT _{LARGE}	86.7/85.9	72.1	91.1	94.9	60.5	86.5	89.3	70.1	81.9

业务场景

- □ 搜索分词
- □ 文本/评论分类
- □ 情感识别
- □ 搜索/推荐中的特征判断
- □ 个性化推荐语
- □ 问答/人机对话 / 智能客服
- □ 机器翻译 / 语音合成

NVIDIA对于BERT的加速 - 训练

Base Line: ~7.81 samples/s

@BERT_LARGE, @Sequence Length=512, @bs=8, @V100 32GB

Using NVIDIA V100 Tensor Core GPUs:

- 1) Mixed precision training -> speedup of 2.3x;
- 2) Layer Norm in cuDNN BN primitive -> speedup of 1.09x;
- 3) Large BS(8->16) -> speed up of 1.18x;
- 4) XLA -> speed up of 1.34x.

TensorFlow version:

4x acceleration version on BERT training: https://github.com/google-research/bert/pull/255

70% extension on BERT training(Horovod): https://github.com/thorjohnsen/bert/tree/gpu_optimizations

PyTorch version: without XLA optimization

2.5x acceleration version on BERT training: https://github.com/huggingface/pytorch-pretrained-BERT/pull/116

NVIDIA对于BERT的加速 - 训练

https://ngc.nvidia.com/catalog/model-scripts/nvidia:bert_for_tensorflow/

NGC 19.03+ TensorFlow container

- 1. Mixed precision support with TensorFlow Automatic Mixed Precision (TF-AMP), which enables mixed precision training without any changes to the code-base by performing automatic graph rewrites and loss scaling controlled by an environmental variable.
- Scripts to download dataset for
 - Pretraining Wikipedia, BookCorpus
 - Fine Tuning SQuaD (Stanford Question Answering Dataset), Pretrained Weights from Google
- 3. Custom fused CUDA kernels for faster computations
- 4. Multi-GPU/Multi-Node support using Horovod
- 5. XLA support (experimental).

混合精度训练的基础 - TENSOR CORE

- ☐ Specialize for 4x4 matrix multiply and accumulate
- □ Total 640 tensor cores in NVIDIA Tesla V100 GPU, theoretical max performance: 125 TFLOPS
 - 8-12x speedup vs. FP32
 - 2-3x end-2-end speedup of training task
- More info about Tensor Core and NVIDIA Volta GPU, please refer to: https://devblogs.nvidia.com/inside-volta/

自动混合精度训练 - NVIDIA AMP

- □ Automatic Mixed Precision for Deep Learning: https://developer.nvidia.com/automatic-mixed-precision
- AMP for Tensorflow: https://devblogs.nvidia.com/nvidia-automatic-mixed-precision-tensorflow/
 - Graph optimization and automatic loss scaling
 - Only available in NVIDIA Tensorflow docker image currently:
 - Register at NVIDIA GPU CLOUD: http://ngc.nvidia.com
 - PULL the container: docker pull nvcr.io/nvidia/tensorflow:19.03-py3
- AMP for PyTorch with APEX: https://devblogs.nvidia.com/apex-pytorch-easy-mixed-precision-training/
 - Open source on github: https://github.com/NVIDIA/apex
- AMP for MXNet:
 - □ Work in Progress. PR: https://github.com/apache/incubator-mxnet/pull/14173

NVIDIA对BERT的加速 - 推理

- ☐ FP16
- ☐ TRT / TFTRT
- □ 深度优化op

batch_size=128
hidden_size=768
max_pos_embed=512
num_attention_heads=12
num_hidden_layers=12
max_seq_len=128
samples=1725
ngc:tf-19.01

NVIDIA对BERT的加速 - 推理

□ batch_size = 1, seq_len = 64, Base Model:

- Inference慢的原因分析:CPU频繁调用GPU kernel成为瓶颈
- □ op developed by Nvidia DevTech: 针对Transformer layer的加速
 - 适用场景: batch size 小(1/2/4/8/16),句子长度比较短(Seq.len = 16/3264/128),with FP32
 - 加速效果:50%+,具体依赖于Transformer层数、CPU性能、GPU型号

