

Machine Learning Algorithms Linear and Logistic Regression

Raghu Prasad K S

Introduction

- Raghu Prasad BE, MS
- Total of 29 years of experience
- 7 years as a lecturer in an Engineering College
- 22 Years into IT
- Worked with companies like CISCO, CSC, ICICI, First Apex NTT Data
- Currently into Corporate training and consultancy
- Worked with corporates and public sector
- Technologies Java, Python, Web technologies, Java Script technologies (MEAN stack), IOT, Test Automation, Machine Learning, Artificial Intelligence, ERP, NET

Topics

- Supervised machine learning
 - Linear Regression
 - Logistic Regression

Supervised Machine Learning

- Supervised Learning
- <u>How it works:</u> This algorithm consist of a target / outcome variable (or dependent variable) which is to be predicted from a given set of predictors (independent variables). Using these set of variables, we generate a function that map inputs to desired outputs. The training process continues until the model achieves a desired level of accuracy on the training data.
- Examples of Supervised Learning: Regression, <u>Decision</u>
 <u>Tree</u>, <u>Random Forest</u>, KNN, Logistic Regression etc.

Prediction of home price

Prediction of home price

Home prices in Monroe Twp, NJ (USA)

area	prio	ce
260	00	550000
300	00	565000
320	00	610000
360	00	680000
400	00	725000

Bestfit line

Bestfit line

Bestfit line

Linear Regression – Multiple Variable

Home price

Home prices in Monroe Township, NJ (USA)

area	bedrooms	age	price		
2600	3	20	550000		
3000	4	15	565000		
3200		18	610000		
3600	3	30	595000		
4000	5	8	760000		

price

Dummy Variables – One Hot Encoding

Using Pandas – get_dummies

Using sklearn – OneHotEncoding

	town	area	price	town	area	
How should we handle text data in numeric model?	monroe township	2600	550000	1	2600	
	monroe township	3000	565000	1	3000	
	monroe township	3200	610000			
	monroe township	3600	680000	1	3200	
	monroe township	4000	725000	1	3600	
	west windsor	2600	585000	1	4000	
	west windsor	2800	615000	2	2600	
	west windsor	3300	650000			
	west windsor	3600	710000	2	2800	
	robbinsville	2600	575000	2	3300	
	robbinsville	2900	600000	2	3600	
	robbinsville	3100	620000	3	2600	
	111 111	2/22	(05000			

Dummy Variables – One Hot Encoding

- Using Pandas get_dummies
- Using sklearn OneHotEncoding

	town	area	price	town	area	price i
	monroe township	2600	550000	1	2600	550000
	monroe township	3000	565000	1	3000	565000
	monroe township	3200	610000			
	monroe township	3600	680000	1	3200	610000
How should we handle text data in numeric model?	monroe township	4000	725000	1	3600	680000
	west windsor	2600	585000	1	4000	725000
	west windsor	2800	615000	2	2600	585000
	west windsor	3300	650000	2	2000	41E000
	west windsor	3600	710000	2	2800	615000
	robbinsville	2600	575000	2	3300	650000
	robbinsville	2900	600000	2	3600	710000
	robbinsville	3100	620000	3	2600	575000
		0/00	(05000			

Dummy Variables – One Hot Encoding

- Using Pandas get_dummies
- Using sklearn OneHotEncoding

Logistic Regression – Binary Classification

Linear Regression

- 1. Home prices
- 2. Weather
- 3. Stock price

Predicted value is continuous

Classification

- I. Email is spam or not
- 2. Will customer buy life insurance?
- 3. Which party a person is going to vote for?
 - 1. Democratic
 - 2. Republican
 - 3. Independent

Predicted value is categorical

Classification Types

Will customer buy life insurance?

1. Yes

2. No

Which party a person is going to vote for?

- 1. Democratic
- 2. Republican
- 3. Independent

Binary Classification

Multiclass Classification

Logistic Regression – Binary Classification

Logistic Regression – Binary Classification

$$sigmoid(z) = \frac{1}{1 + e^{-z}}$$

e = Euler's number ~ 2.71828

Sigmoid function converts input into range 0 to 1

Logistic Regression – Binary Classification

$$y = m * x + b$$

$$y = \frac{1}{1 + e^{-(m*x+b)}}$$

Logistic Regression – Multiclass Classification

Identify hand written digits recognition

Mean Squared Error

$$ms\varepsilon = \frac{1}{n} \sum_{i=1}^{n} (y_i - y_{predicted})^2$$

- An algorithm to minimize a function by optimizing parameters
- Example Maths test max marks 50
- Guess marks 40. Its too much
- Guess marks 30 .lts too less
- Guess marks 35 .. Correct
- New Value = Old Value step size
- Step size = Learing rate* slope

- 1. Confusion Matrix
- 2. False Positive Rate FPR (Type 1 Error)
- 3. False Negative Rate FNR (Type 2 Error)
- 4. Recall (TPR, Sensitivity)
- 5. Precision (+ve Prod Val)
- 6. Accuracy
- 7. F1 Score (F Beta)
- 8. Cohen Kappa
- 9. RoC Curve, AUC Score
- 10. PR Curve

True Positive = 4

False Positive = 3

True Negative = 1

False Negative = 2

How many we got right? \rightarrow 5

Accuracy $\rightarrow 5/10 \rightarrow 0.5$

True Positive = 4

False Positive = 3

Precision is out of all dog predictions how many you got it right?

D

Precision = 4 / 7 = 0.57

Precision = TP / (TP + FP)

Recall is out of all dog truth how many you got it right?

Total Dog truth samples = 6

True Positive = 4

Recall = 4 / 6 = 0.67

D

Recall = TP / (TP + FN)

For precision, think about predictions as your base

For recall, think about truth as your base

Precision = 1/3 = 0.33

Recall = 1/4 = 0.25

F1 Score

F1=2*(Precision*Recall)/(precision+recall)

Hands-on session

- Linear Regression
- Logistic Regression

References

- https://www.skillbasics.com/
- 3Blue1BrownSeries
- https://www.youtube.com/watch?v=IHZwWFHW a-w

