平面几何三角形与四边形

珠海一中创美营 (数学)

2025年4月4日

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日 1/31

- 三角形的基本概念和性质
- ② 三角形的面积、边角间关系定理
- ③ 全等三角形
- 4 相似三角形
- 5 三角形中与比例线段有关的几个定理
- 6 三角形的四心

2/31

 珠海一中创美营
 三角形与四边形
 2025 年 4 月 4 日

- ① 三角形的基本概念和性质
- ② 三角形的面积、边角间关系定理
- ③ 全等三角形
- 4 相似三角形
- 5 三角形中与比例线段有关的几个定理
- ⑥ 三角形的四心

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日 3 / 31

三角形的基本概念和性质

- 边与边之间的关系:两边之和大于第三边,两边之差小于第三边.
- ② 角与角之间的关系: 三个内角的和等于 180° ,即在 $\triangle ABC$ 中有 $\angle A + \angle B + \angle C = 180^\circ$. 由此即知三角形的一个外角等于与它不相邻的两个内角之和.
- ◎ 边与角之间的关系:在同一三角形中,边长与对角成正比,即大边对大角,小边对小角.

4/31

 珠海一中创美营
 2025 年 4 月 4 日

三角形的基本概念和性质

- 三角形的角平分线: 三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.
- 三角形的中线: 在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.
- 三角形的高: 从三角形一个顶点向它的对边所在直线画垂线,顶点和垂足间的线段叫做三角形的高线,简称三角形的高.
- 三角形的中位线: 连结三角形两边中点的线段叫做三角形的中位线。中位线平行于第 三边且等于第三边的一半.
- 三角形的外角平分线: 三角形一个内角的邻补角的平分线与这个角的对边的延长线相交,这个角的顶点和交点之间的线段叫做三角形的外角平分线.

5/31

三角形的基本概念和性质

定理1

三角形顶角的平分线与底边上的高所夹的角等于两底角差的一半。

设 P 是边长为 1 的正三角形 ABC 内一点,求证:

$$\frac{3}{2} < PA + PB + PC < 2. \tag{1}$$

如图, AD 是 $\triangle ABC$ 的中线, E 是 AD 上的一点, 且 $AE = \frac{1}{3}AD$, CE 交 AB 于点 F. 若 AF = 1.2 cm. 求 AB 长。

在 $\triangle ABC$ 中,PQ 分别是边 AB 和 AC 上的点,中线 AM 与 PQ 交于 N. 若 AB:AP=5:2,AC:AQ=4:3,求 AM:AN.

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日 9 / 31

- ① 三角形的基本概念和性质
- ② 三角形的面积、边角间关系定理
- ③ 全等三角形
- 4 相似三角形
- ⑤ 三角形中与比例线段有关的几个定理
- 6 三角形的四心

10/31

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日

定理 4 (三角形的角平分线性质定理)

 $\triangle ABC$ 中,若 AP 是 $\angle A$ 的平分线,则

$$\frac{BP}{PC} = \frac{AB}{AC}$$

定理 5 (三角形的外角平分线性质定理)

 $\triangle ABC$ 中,若 AQ 是 $\angle A$ 的外角平分线,则

$$\frac{BQ}{QC} = \frac{AB}{AC}$$

(2-5)

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日 11/31

调和点列与调和线束

角平分线性质定理.ggb

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日 12 / 31

定理 6 (正弦定理)

在 $\triangle ABC$ 中,角 ABC 所对的边长分别为 abc,则

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = \frac{abc}{2S_{\triangle ABC}} = 2R.$$

其中 R 为的 $\triangle ABC$ 外接圆半径。

- 大边对大角
- 三角形面积公式 $S = \frac{1}{2}ab\sin C = \frac{1}{2}bc\sin A = \frac{1}{2}ca\sin B$

|ロト 4回ト 4 m ト 4 m ト 1 m 9 q 0 c

珠海一中创美营 2025 年 4 月 4 日 13 / 31

定理 7 (余弦定理)

在 $\triangle ABC$ 中,角 A, B, C 所对的边长分别为 a b c 则

$$c^{2} = a^{2} + b^{2} - 2ab \cdot \cos C,$$

$$b^{2} = c^{2} + a^{2} - 2ca \cdot \cos B$$

$$a^{2} = b^{2} + c^{2} - 2bc \cdot \cos A.$$
(2-7)

等面积法 - 余弦定理.ggb

推论 8 (勾股定理)

在 $\triangle ABC$ 中, $\angle C = 90^{\circ}$, 则

$$c^2 = a^2 + b^2$$

广勾股定理

对直角三角形 $\triangle ABC$ 而言, $\angle ADB = 90^{\circ}$,点 C 为直角边 BC 所在直线上一点,则有

$$AB^2 = CA^2 + CB^2 \mp 2CD \cdot CB.$$

珠海一中创美营 2025 年 4 月 4 日 15 / 31

定理 9 (张角定理)

设 P 为 $\triangle ABC$ 的边 BC 上一点, $\angle BAP = \alpha, \angle CAP = \beta$,则

$$\frac{\sin(\alpha+\beta)}{AP} = \frac{\sin\alpha}{AC} + \frac{\sin\beta}{AB}.$$

定理 10 (张角定理的逆定理)

设 BPC 依次是平面内从一点 A 所引三条射线 ABAPAC 上的点 (AP 在 ABAC 之间) , $\angle BAP=\alpha$, $\angle CAP=\beta$, 且 $\alpha+\beta<180^\circ$, 若有

$$\frac{\sin(\alpha+\beta)}{AP} = \frac{\sin\alpha}{AC} + \frac{\sin\beta}{AB},$$

则三点 B, P, C 在一条直线上.

珠海一中创美营 2025 年 4 月 4 日 17 / 31

定理 11 (斯特瓦尔特定理)

设 P 为 $\triangle ABC$ 的边 BC 上一点,则

$$AP^{2} = AB^{2} \cdot \frac{PC}{BC} + AC^{2} \cdot \frac{BP}{BC} - BC^{2} \cdot \frac{PC}{BC} \cdot \frac{BP}{BC}.$$

珠海一中创美营 2025 年 4 月 4 日 18/31

斯特瓦尔特定理的推论

特别地,当 AP 为三角形中的重要线段时,有以下结果。

(1) 当 AP 为边 BC 上的中线时,则

$$AP^{2} = \frac{1}{2}AB^{2} + \frac{1}{2}AC^{2} - \frac{1}{4}BC^{2}.$$

(2) 当 AP 为角 A 的平分线时,则

$$AP^2 = AB \cdot AC - BP \cdot PC$$

(3) 当 AP 为角 A 的外角平分线时,则

$$AP^2 = -AB \cdot AC + BP \cdot PC$$

(4) 当 $\triangle ABC$ 为等腰三角形,即 AB = AC 时,则

$$AP^2 = AB^2 - BP \cdot PC$$

(5) 若 P 分线段 BC 满足 $\frac{BP}{BC} = \lambda$ 时,则

$$AP^{2} = \lambda(\lambda - 1)BC^{2} + (1 - \lambda) \cdot AB^{2} + \lambda \cdot AC^{2}$$

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日 19 / 31

在 $\triangle ABC$ 中,已知 BD 和 CE 分别是两边上的中线,并且 $BD \perp CE, BD = 4, CE = 6$. 那么, $\triangle ABC$ 的面积等于: ()

A. 12 B. 14 C. 16 D. 18

20/31

如图,在 $\triangle ABC$ 中,EF//BC, $S_{\triangle AEF}=S_{\triangle BCE}$.若 $S_{\triangle ABC}=1$,则 $S_{\triangle CEF}$ 等于 () . A. $\frac{1}{4}$ B. $\frac{1}{5}$ C. $\sqrt{5}-2$ D. $\sqrt{3}-\frac{3}{2}$

A.
$$\frac{1}{4}$$
 B. $\frac{1}{5}$ C. $\sqrt{5} - 2$ D. $\sqrt{3} - \frac{5}{2}$

如图,在 $\triangle ABC$ 中,DE 分别是 ACBC 的中点, $BF = \frac{1}{3}AB, BD$ 与 FC 相交于 G, 连结 EG .

(1) 求证: GE//AC; (2) 求 $\frac{S_{\triangle BFG}}{S_{\triangle REG}}$ 的值。

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日 22 / 31

如图, $P \in \triangle ABC$ 内的一点, 连结 $AP \setminus BP$ CP 并延长, 分别与 $BC \land AC \land AB$ 交于 $D \in F$, 已知: AP = 6, BP = 9, PD = 6, PE = 3, CF = 20 . 求 $\triangle ABC$ 的面积。

如图,O 是凸五边形 ABCDE 内一点,且 $\angle 1 = \angle 2, \angle 3 = \angle 4, \angle 5 = \angle 6, \angle 7 = \angle 8$.求证: $\angle 9$ 与 $\angle 10$ 相等或互补。

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日 24 / 31

已知 AD AE 分别是 $\triangle ABC$ 的角 A 的内、外角平分线,点 D 在边 BC 上,点 E 在边 BC 的延长线上。求证: $\frac{1}{BE}+\frac{1}{CE}=\frac{2}{DE}$.

在 $\triangle ABC$ 中, $AB = 2\sqrt{2}$, $AC = \sqrt{2}$, BC = 2, 设 P 为边 BC 上任一点,则().

- A. $PA^2 < PB \cdot PC$
- B. $PA^2 = PB \cdot PC$
- C. $PA^2 > PB \cdot PC$
- D. PA^2 与 $PB \cdot PC$ 的大小关系不确定

26/31

珠海一中创美营 三角形与四边形 三角形与四边形 2025 年 4 月 4 日

在 $\triangle ABC$ 中, AB = AC = 2,边 BC 上有 100 个不同的点 $P_1 \setminus P_2, \dots, P_{100}$.记 $m_i = AP_i^2 + BP_i \cdot P_i C (i = 1, 2, \dots, 100)$,则 $m_1 + m_2 + \dots + m_{100} = ?$

27 / 31

- ① 三角形的基本概念和性质
- ② 三角形的面积、边角间关系定理
- ③ 全等三角形
- 4 相似三角形
- 5 三角形中与比例线段有关的几个定理
- 6 三角形的四心

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日 28 / 31

- ① 三角形的基本概念和性质
- ② 三角形的面积、边角间关系定理
- ③ 全等三角形
- 4 相似三角形
- 5 三角形中与比例线段有关的几个定理
- 6 三角形的四心

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

29/31

 珠海一中创美营
 三角形与四边形
 2025 年 4 月 4 日

- ① 三角形的基本概念和性质
- ② 三角形的面积、边角间关系定理
- ③ 全等三角形
- 4 相似三角形
- 5 三角形中与比例线段有关的几个定理
- 6 三角形的四心

珠海一中创美营 三角形与四边形 2025 年 4 月 4 日 30 / 31

- 1 三角形的基本概念和性质
- ② 三角形的面积、边角间关系定理
- ③ 全等三角形
- 4 相似三角形
- ⑤ 三角形中与比例线段有关的几个定理
- ⑥ 三角形的四心

31/31

珠海一中创美营 2025 年 4 月 4 日