Question #4: Taylor Series

Objective: Loop

The value of the hyperbolic sine function can be defined by the Taylor series expansion as follows:

$$\sinh(x) = x + \frac{x^3}{3!} + \frac{x^5}{5!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$$

We can approximate $\sinh(x)$ by computing the above series with a limited number of terms:

$$\sinh(x) \approx \sum_{n=0}^{k} \frac{x^{2n+1}}{(2n+1)!}$$

Write a program to approximate $\sinh(x)$ by summing terms until the term is less than a given threshold, $\mathbf{\mathcal{E}}$ is reached. For instance, x=1.0 and $\mathbf{\mathcal{E}}=0.001$, stop adding terms when a term has value smaller than $\mathbf{\mathcal{E}}$.

	n = 0	n = 1	n = 2	n = 3
sinh(1.0)	$\frac{1^0}{1!} = 1.0$	$\frac{1^3}{3!} = 0.16666666 \dots$	$\frac{1^5}{5!} = 0.00833333$	$\frac{1^7}{7!} = 0.000198$

With ε = 0.001, sinh(1) pprox 1.0 + 0.1666666... + 0.0088333... = 1.175

Stop when the term is less than ${\bf \epsilon}$ (in this example, ${\bf \epsilon}$ =0.001)

Hint: use math.factorial(n) to calculate the value of n!.

INPUT

A single line containing x and ε as real numbers, separated by a space.

OUTPUT

The value of sinh(x) obtained from the approximation method using the given threshold ε should be displayed with no more than 6 decimal places. Use the function round(value, 6) to round the computed sinh(x) value to 6 decimal places. (Note: use round() only when displaying the result, do not use it during calculation.)

EXAMPLES

Input (from keyboard)	Output (on-screen)
1.0 0.001	1.175
1.0 1e-8	1.175201
5.0 0.001	74.203044
5.0 1e-8	74.203211
0.5 1e-5	0.521094
0.5 1e-6	0.521095

Test Cases in Grader

Testcases quantity	Testcase characteristics
50%	$10^{-2} <= \mathbf{\varepsilon} < 10^{-8}$
50%	ε <= 10 ⁻⁸