Assignment 2

Wang Dingrui

October 10, 2023

1 EXERCISE 1: THE PARTIAL TRACE

We saw in the lectures that given a multi-partite state, we obtain the state of a subsystem by applying the partial trace to the other systems.

- 1. Compute the trace of the following states by applying the trace formula $Tr(A) = \sum_i \langle i | A | i \rangle$ T r(A) from the lectures:
 - (a) $\xi = \frac{1}{2}(|0\rangle \langle 0| i |0\rangle \langle 1| + i |1\rangle \langle 0| + |1\rangle \langle 1|)$
 - (b) $\Lambda = \frac{I}{3}I + \frac{1}{6}(|0\rangle\langle 1| + |1\rangle\langle 0|)$ (here, *I* is the identity matrix). Which of the states is normalized correctly? (*) (4 points)

Answer:
$$\xi = \frac{1}{2}(|0\rangle \langle 0| - i |0\rangle \langle 1| + i |1\rangle \langle 0| + |1\rangle \langle 1|)$$

$$= \frac{1}{2}(\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} - i \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} + i \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix})$$

$$= \frac{1}{2}(\begin{bmatrix} 1 & -i \\ i & 1 \end{bmatrix})$$

$$= \begin{bmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

$$Tr(\xi) = |0\rangle \xi \langle 0| + |1\rangle \xi \langle 1|$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{i}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} \\ \frac{1}{2} \end{bmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} -\frac{i}{2} \\ \frac{1}{2} \end{bmatrix}$$

$$= \frac{1}{2} + \frac{1}{2}$$

$$= 1$$

$$\Lambda = \frac{I}{3}I + \frac{1}{6}(|0\rangle\langle 1| + |1\rangle\langle 0|)$$

$$= \frac{I}{3} + \frac{1}{6}([1 \quad 0] \begin{bmatrix} 0 \\ 1 \end{bmatrix} + \begin{bmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \\ = \frac{I}{3} + \frac{1}{6}(\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix})$$

$$= \frac{I}{3} + \frac{1}{6}(\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{6} \\ \frac{1}{3} & 0 \end{bmatrix} + \begin{bmatrix} 0 & \frac{1}{6} \\ \frac{1}{6} & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{3} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{3} \end{bmatrix} Tr(\Lambda) = |0\rangle \Lambda \langle 0| + |1\rangle \Lambda \langle 1|$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & \frac{1}{6} \\ \frac{1}{6} & \frac{1}{3} \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{3} \\ \frac{1}{6} \end{bmatrix} + \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{6} \\ \frac{1}{3} \end{bmatrix}$$

$$= \frac{1}{3} + \frac{1}{3} \\ = \frac{2}{3}$$

So ξ is normalized correctly.

2. In the last assignment we found the probability to find a state $|\gamma\rangle$ in another state $|\delta\rangle$ to be $p = |\langle\gamma|\delta\rangle|^2$. Show here that this expression coincides with $\text{Tr}(\gamma\delta)$, for $\gamma = |\gamma\rangle\langle\gamma|$ and $\delta = |\delta\rangle\langle\delta|$. Hint: Apply the trace formula $\text{Tr}(A) = \sum_i \langle i|A|i\rangle$ from the lectures. Use a suitable basis of your choice. (4 points)

3. Consider the bipartite state $|\phi\rangle_{AB}=\frac{1}{\sqrt{3}}(|00\rangle_{AB}+i\,|01\rangle_{AB}-|11\rangle_{AB})$. Write the density operator $\rho_{AB}=|\phi\rangle_{AB}\,\langle\phi|_{AB}$ explicitly in matrix form. (*) (4 points)