Adaptive Equi-Energy Sampler : Convergence and Illustration

Amandine Schreck, Gersende Fort and Eric Moulines

Telecom Paristech

April 11th 2012

- Goal : sample a target distribution π known up to a multiplicative constant
- Example : motif sampling in biology
- Problem : for multimodal distributions, some algorithms remain trapped in one of the modes

Figure: Random walk Metropolis-Hastings for a mixture of Gaussian distributions

- The algorithm
 - Why interact?
 - The adaptive equi-energy sampler
 - Illustration on a toy example
- Motif sampling : an example taken from real life
 - The model
 - Results
- On the convergence of AEES
 - Intuition
 - Condition required
 - General results

Metropolis-Hastings algorithm:

- Sample X_0 under any initial distribution μ
- Knowing the current state X_n , sample Y_{n+1} under $Q(X_n, .)$
- Compute the acceptation-rejection probability :

$$\alpha(X_n, Y_{n+1}) = \min\left(1, \frac{\pi(Y_{n+1})q(Y_{n+1}, X_n)}{\pi(X_n)q(X_n, Y_{n+1})}\right)$$

• Set $X_{n+1} = Y_{n+1}$ with probability $\alpha(X_n, Y_{n+1})$ and $X_{n+1} = X_n$ with probability $1 - \alpha(X_n, Y_{n+1})$.

Figure: Actual density and a tempered version (T = 50)

- It seems easier to sample a tempered version $\pi^{1/T}$, T>1 of the target distribution.
- Idea: Sample a tempered version of the target distribution as an auxiliary process and allow the process of interest to "jump" on one of the auxiliary states after and acceptation/rejection step.
- Problem : The acceptation probability could be really low.

Equi-Energy Sampler:

- Sample X_0 under any initial distribution μ .
- We know n values Y_1, \ldots, Y_n of an auxiliary process. Knowing the current state X_n :
 - with probability 1ϵ , sample X_{n+1} with a symmetric random walk Metropolis-Hastings algorithm
 - with probability ϵ , choose an auxiliar value Y_i such that $\pi(Y_i)$ is "close" to $\pi(X_n)$, and set $X_{n+1} = Y_i$ or $X_{n+1} = X_n$ after an acceptation/rejection step

Fix a number of rings S. Consider a sequence of real number $\xi_0 = 0 < \xi_1 < \dots < \xi_S = +\infty$.

Two energies $\pi(x)$ and $\pi(y)$ are said to be close if there exists l, 1 < l < S such that $\xi_{l-1} < \pi(x), \pi(y) < \xi_l$.

On the choice of the ξ_i :

- Original equi-energy sampler: fixed by user
- Problem : crucial choice
- Adaptive equi-energy sampler : quantiles estimators
 - empirical quantiles
 - stochastic approximation estimator

Empirical quantiles associated to a distribution heta :

- Cumulative distribution function : $F_{\theta}(x) = \int \mathbf{1}_{\{\pi(y) < x\}} \theta(dy)$.
- Quantile function : $F_{\theta}^{-1}(p) = \inf\{x \geq 0, F_{\theta}(x) \geq p\}.$
- For any $\{p_l, 1 \leq l \leq S\}$ (for example $p_l = \frac{l}{S}$), the ring bouldaries are defined by $\hat{\xi}_{\theta,l} = F_{\theta}^{-1}(p_l)$.
- Rings : $A_{\theta,I} =]\hat{\xi}_{\theta,I-1}; \hat{\xi}_{\theta,I}]$.

For the adaptive EES : $\theta_n = n^{-1} \sum_{k=1}^n \delta_{Y_k}$.

- Selection function : $g_{\theta}(x,y) = \sum_{l=1}^{S} h_{\theta,l}(x) h_{\theta,l}(y)$,
- with : $h_{\theta,I}(x) = \left(1 \frac{d(\pi(x), A_{\theta,I})}{r}\right)_+$.
- Kernel for the EE move : $K_{\theta}(x, A) = \int_{A} \alpha_{\theta}(x, y) \frac{g_{\theta}(x, y)\theta(dy)}{\int g_{\theta}(x, z)\theta(dz)} + \mathbf{1}_{A}(x) \int \{1 \alpha_{\theta}(x, y)\} \frac{g_{\theta}(x, y)\theta(dy)}{\int g_{\theta}(x, z)\theta(dz)}$
- with : $\alpha_{\theta}(x,y) = 1 \wedge \left(\frac{\pi(y)}{\pi(x)} \frac{\pi^{1-\beta}(x) \int g_{\theta}(x,z)\theta(dz)}{\pi^{1-\beta}(y) \int g_{\theta}(y,z)\theta(dz)} \right)$.
- Kernel for the AEE sampler :

$$P_{\theta}(x,.) = (1 - \epsilon)P(x,.) + \epsilon K_{\theta}(x,.).$$

Figure: Equi-Energy Samplers for a mixture of Gaussian distributions

Figure: EES for a mixture of Gaussian distributions, T=60

Figure: T=7

Figure: T=1

Figure: Metropolis-Hastings

Figure: L1 error for EES and AEES

Figure: extreme case

Many parameters to choose:

- proposal distribution (could be adaptive)
- number of energy rings
- temperature of the processes
- proportion of equi-energy moves

Notations:

- L : length of the DNA sequence
- S: DNA sequence. $S = (s_1, s_2, ..., s_L)$ with $s_i \in \{1, 2, 3, 4\}$ (1 corresponding to A, 2 to C, 3 to G and 4 to T)
- w : length of a motif
- A : array giving the position of the motifs. $A = (a_1, \ldots, a_L)$, where a_i is equal to $j \in \{0, \ldots, w\}$ if the ith element of the sequence is the jth element of a motif
- ullet p_0 : probability for a sub-sequence of length w to be a motif

Distribution:

- \bullet Background sequence : Markov chain associated with the transition matrix denoted by θ_0
- Motif: multinomial distribution of parameter $\theta = (\theta_1, \dots, \theta_w)$

Knowing $a_1, \ldots, a_{k-1}, s_1, \ldots, s_{k-1}, \theta$ and p_0 , we have :

- If $a_{k-1} \in \{1, \dots, w-1\}$, $a_k = a_{k-1} + 1$, otherwise, a_k follows a Bernouilli distribution of parameter p_0
- If $a_k = 0$, s_k follows the distribution $\theta_0(s_{k-1},.)$, otherwise, s_k follows the distribution $\theta_{a_k}(.)$

Conditionnal distribution of A given S:

$$P(A|S) \propto \frac{\Gamma(N_{1} + a)\Gamma(N_{0} + b)}{\Gamma(N_{1} + N_{0} + a + b)} \prod_{i=1}^{w} \frac{\prod_{j=1}^{4} \Gamma(c_{i,j} + \beta_{i,j})}{\Gamma(\sum_{j=1}^{4} c_{i,j} + \beta_{i,j})}$$
$$\prod_{k=2}^{L} (\delta_{a_{k-1}+1}(a_{k}))^{\mathbf{1}_{a_{k-1}} \in \{1, \dots, w-1\}} \prod_{k=2}^{L} \theta_{0}^{1-\bar{A}_{k}}(s_{k-1}, s_{k}) \xi_{a_{1}}(s_{1})$$

Figure: Location of the motifs retrieved by AEES at each iteration

Figure: Average location of the motifs - comparison of 3 algorithms

- If g=1 and $\theta=\pi^{1-\beta}$, K_{θ} is a Metropolis-hastings kernel with π as stationary distribution.
- If θ_n converges toward $\pi^{1-\beta}$, we expect P_{θ_n} to converge toward $P_{\pi^{1-\beta}}$ and (X_n) to converge toward π , invariant distribution of $P_{\pi^{1-\beta}}$

A few notations:

- V-norm of a function $f:|f|_{V}=\sup_{x\in \mathbf{X}}\frac{|f(x)|}{V(x)}$
- V-norm of a signed measure $\mu: \|\mu\|_V = \sup_{f,|f|_V \le 1} |\mu(f)|$
- We define the V-variation between P_{θ} and $P_{\theta'}$ by $D_V(\theta, \theta') = \sup_{x \in \mathbf{X}} \left(\frac{\|P_{\theta}(x,.) P_{\theta'}(x,.)\|_V}{V(x)} \right)$
- Set $\mathcal{L}_V : \mathcal{L}_V = \{f : \mathbf{X} \to \mathbb{R}, ||f||_V < +\infty\}$
- Target density : π
- ullet Temperature of the auxiliary process $T=rac{1}{1-eta}$

The adaptive EE sampler generates a bivariate process (X_n, θ_n) (\mathcal{F}_n) -adapted for the filtration $(\mathcal{F}_n) = \sigma(Y_1, \ldots, Y_n, X_1, \ldots, X_n)$, and such that :

$$\mathbb{E}\left[f(X_{n+1})|\mathcal{F}_n\right] = P_{\theta_n}f(X_n)$$

Condition on π :

- (a) π is the density of a probability distribution on the measurable Polish space $(\mathbf{X}, \mathcal{X})$ and $\sup_{\mathbf{X}} \pi < \infty$.
- (b) π is continuous on X.

Condition on the proposal distribution P:

- (a) P is a ϕ -irreducible transition kernel which is Feller on $(\mathbf{X}, \mathcal{X})$ and such that $\pi P = \pi$.
- (b) (drift) There exist $\lambda \in (0,1)$, $b<+\infty$ and $\tau \in (0,1-\beta)$ such that $PW \leq \lambda W + b$ with

$$W(x) = \left(\frac{\pi(x)}{\sup_{\mathbf{X}} \pi}\right)^{-\tau} \quad . \tag{1}$$

(c) (small) For all $p \in (0, \sup_{\mathbf{X}} \pi)$, the sets $\{\pi \geq p\}$ are 1-small for P.

Condition on the auxiliary process

- (a) $\theta_{\star}(W) < +\infty$, and for all continuous function f in \mathcal{L}_{W} , $\theta_{n}(f) \to \theta_{\star}(f)$ a.s.
- (b) $\sup_{n} \mathbb{E}\left[W\left(Y_{n}\right)\right] < \infty$.

where θ_{\star} is the density proportionnal to $\pi^{1/T}$.

With these conditions, we prove the "convergence" of our adaptation (only for a 2-level algorithm for the moment):

- (a) For any $l \in \{1, \dots, S-1\}$, $\lim_n \left| \xi_{\theta_n, l} \xi_{\theta_*, l} \right| = 0$, w.p.1
- (b) There exists $\Gamma>0$ such that for any $k\in\{1,\ldots,K-1\}$, for any $l\in\{1,\ldots,S-1\}$, and any $\gamma<\Gamma$,

$$\limsup_{n} n^{\gamma} |\xi_{\theta_{n+1},I} - \xi_{\theta_{n},I}| < \infty , \mathbb{P} - a.s.$$

We also prove that:

- For all $n \in \mathbb{N}$, the kernel P_{θ_n} admits a finite stationnary distribution π_{θ_n}
- For all $n \in \mathbb{N}$, there exist some random variables C_{θ_n} and ρ_{θ_n} such that for all $x \in \mathbf{X}$:

$$||P_{\theta_n}^k(x,.) - \pi_{\theta_n}||_V \le C_{\theta_n} \rho_{\theta_n}^k V(x)$$

Finally, this allow to control the V-variation between P_{θ} and $P_{\theta'}$: on the set $\bigcap_i \{\theta_i \in \Theta_m\}$, where

Conclusion

$$\Theta_m = \left\{ \theta \in \Theta : \frac{1}{m} \leq \inf_{x} \int g_{\theta}(x, y) \theta(\mathrm{d}y) \right\} ,$$

there exists a constant C_m such that

$$\begin{split} &D_{V}(\theta_{k},\theta_{k-1}) \\ &\leq C_{m} \left(\sup_{l} \left| \xi_{\theta_{k},l} - \xi_{\theta_{k-1},l} \right| + \|\theta_{k} - \theta_{k-1}\|_{\text{TV}} \right) (\|\theta_{k}\|_{V} + \|\theta_{k-1}\|_{V}) \\ &+ C_{m} \|\theta_{k} - \theta_{k-1}\|_{V} \; . \end{split}$$

Convergence of the stationnary distributions :

$$\left| \pi_{\theta_{n}(x)}(f) - \pi_{\theta_{\star}(w)}(f) \right| \leq \left| \pi_{\theta_{n}(w)}(f) - P_{\theta_{n}(w)}^{k} f(x) \right|$$

$$+ \left| P_{\theta_{n}(w)}^{k} f(x) - P_{\theta_{\star}(w)}^{k} f(x) \right|$$

$$+ \left| P_{\theta_{\star}(w)}^{k} f(x) - \pi_{\theta_{\star}}(f) \right|$$

Control:

- Terms 1 and 3 : controlled with $\|P_{\theta}^{k}(x,.) \pi_{\theta}\|_{V} \leq C_{\theta} \rho_{\theta}^{k} V(x)$ P-ps
- Term 2 : weak convergence of the kernels P_{θ_n} toward $P_{\theta_{\star}}$, and equi-continuity of these kernels

Ergodicity:

$$|\mathbb{E}[f(X_n)] - \pi(f)| \leq \left| \mathbb{E}\left[f(X_n) - P_{\theta_{n-N}}^N f(X_{n-N})\right] \right| + \left| \mathbb{E}\left[P_{\theta_{n-N}}^N f(X_{n-N}) - \pi_{\theta_{n-N}}(f)\right] \right| + \left| \mathbb{E}\left[\pi_{\theta_{n-N}}(f) - \pi(f)\right] \right|$$

Control:

- Term 1 : sum of some $D_V(\theta_{n+j}, \theta_{n+j-1})$
- Term 2 : controlled with $\|P_{\theta}^k(x,.) \pi_{\theta}\|_{V} \leq C_{\theta} \rho_{\theta}^k V(x)$ P-ps
- Terme 3 : convergence of the stationnary distributions

Strong law of large numbers : The idea is to introduce the solution \hat{f}_{θ} of the Poisson equation

$$\hat{f}_{\theta} - P_{\theta} \hat{f}_{\theta} = f - \pi_{\theta}(f)$$

to isolate a martingale term.

$$\frac{1}{n} \sum_{k=0}^{n-1} f(X_k) - L = T_{1,n} + T_{2,n} + T_{3,n} + T_{4,n} + T_{5,n}$$

$$T_{1,n} = \frac{1}{n} \int_{k=1}^{n-1} {\{\hat{f}_{\theta_{k-1}}(X_k) - P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k-1})\}}$$

$$T_{3,n} = \frac{1}{n} \sum_{k=1}^{n-1} {\{P_{\theta_k}\hat{f}_{\theta_k}(X_k) - P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_k)\}}$$

$$T_{4,n} = \frac{1}{n} P_{\theta_0}\hat{f}_{\theta_0}(X_0) - \frac{1}{n} P_{\theta_{n-1}}\hat{f}_{\theta_{n-1}}(X_{n-1})$$

$$T_{5,n} = \frac{1}{n} \sum_{k=0}^{n-2} {\{\pi_{\theta_{k-1}}(f) - L\}}$$

Term $T_{2,n}$:

$$T_{2,n} = \frac{1}{n} \sum_{k=1}^{n-1} \{ \hat{f}_{\theta_{k-1}}(X_k) - P_{\theta_{k-1}} \hat{f}_{\theta_{k-1}}(X_{k-1}) \}$$

 $T_{2,n}$ is a sum of martingale increments. We control it by showing that there exists $\alpha > 1$ such that

$$\sum_{k=1}^{\infty} k^{-\alpha} \mathbb{E}\left[\left|\left\{\hat{f}_{\theta_{k-1}}(X_k) - P_{\theta_{k-1}}\hat{f}_{\theta_{k-1}}(X_{k-1})\right|^{\alpha} \middle| \mathcal{F}_{k-1}\right] < \infty \text{ as }$$

Term $T_{3,n}$:

$$T_{3,n} = \frac{1}{n} \sum_{k=1}^{n-1} \{ P_{\theta_k} \hat{f}_{\theta_k}(X_k) - P_{\theta_{k-1}} \hat{f}_{\theta_{k-1}}(X_k) \}$$

is caused by the adaptation. To control it, we show that $n^{-1}\sum_{k=1}^n D_V(\theta_k,\theta_{k-1})V(X_k) \to 0$ almost surely.

In practice:

- Far more efficient than Metropolis-Hastings (mix better)
- Does not require the user to choose the rings

But:

- A lot of parameters to choose
- Quite high computational cost

To go further:

- Extend results of convergence for the empirical quantiles
- Central limit theorem?
- Adaptive proposal