Fifa practice

L'objetiu d'aquesta pràctica es predir el valor dels jugadors emprant informació dels jugadors

Autor: Carles Serrano Rueda

Any: 2020-2021

Link Github: https://github.com/ca7les/PracticaMLUIB

Importam llibraries

Primer de tot importam totes les llibreries que emprarem

```
import os

from sklearn.model_selection import train_test_split
from sklearn import linear_model
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score

import pandas as pd
import numpy as np
import warnings
warnings.filterwarnings('ignore')
import matplotlib.pyplot as plt
```

Primer carregam les dades

Emprarem la llibraria pandas i una funció de la llibraria os

```
df = pd.read_csv(os.path.join("..", "in", "/content/fifa.csv"))
df
```

In [1]:

In [2]:

	Unnamed:	ID	Name	Age	Photo	Nationality	Flag	Overall	P
0	0	158023	L. Messi	31	https://cdn.sofifa.org/players/4/19/158023.png	Argentina	https://cdn.sofifa.org/flags/52.png	94	
1	1	20801	Cristiano Ronaldo	33	https://cdn.sofifa.org/players/4/19/20801.png	Portugal	https://cdn.sofifa.org/flags/38.png	94	
2	2	190871	Neymar Jr	26	https://cdn.sofifa.org/players/4/19/190871.png	Brazil	https://cdn.sofifa.org/flags/54.png	92	
3	3	193080	De Gea	27	https://cdn.sofifa.org/players/4/19/193080.png	Spain	https://cdn.sofifa.org/flags/45.png	91	
4	4	192985	K. De Bruyne	27	https://cdn.sofifa.org/players/4/19/192985.png	Belgium	https://cdn.sofifa.org/flags/7.png	91	
18202	18202	238813	J. Lundstram	19	https://cdn.sofifa.org/players/4/19/238813.png	England	https://cdn.sofifa.org/flags/14.png	47	
18203	18203	243165	N. Christoffersson	19	https://cdn.sofifa.org/players/4/19/243165.png	Sweden	https://cdn.sofifa.org/flags/46.png	47	
18204	18204	241638	B. Worman	16	https://cdn.sofifa.org/players/4/19/241638.png	England	https://cdn.sofifa.org/flags/14.png	47	
18205	18205	246268	D. Walker-Rice	17	https://cdn.sofifa.org/players/4/19/246268.png	England	https://cdn.sofifa.org/flags/14.png	47	
18206	18206	246269	G. Nugent	16	https://cdn.sofifa.org/players/4/19/246269.png	England	https://cdn.sofifa.org/flags/14.png	46	
18207 (rows × 89	columns							

Anàlisi de les dades

En primer lloc, volem saber què està ocorrent amb les dades. Per fer-ho incrementem el nombre de columnes a mostrar. Després d'això utilitzarem una instrucció que ens mostrarà l'estructura de dades.

pd.set_option('display.max_columns', None)

In [4]:

In [3]:

df.head()

Out[4]:

	Unnamed:	ID	Name	Age	Photo	Nationality	Flag	Overall	Potential	
0	0	158023	L. Messi	31	https://cdn.sofifa.org/players/4/19/158023.png	Argentina	https://cdn.sofifa.org/flags/52.png	94	94	
1	1	20801	Cristiano Ronaldo	33	https://cdn.sofifa.org/players/4/19/20801.png	Portugal	https://cdn.sofifa.org/flags/38.png	94	94	
2	2	190871	Neymar Jr	26	https://cdn.sofifa.org/players/4/19/190871.png	Brazil	https://cdn.sofifa.org/flags/54.png	92	93	F
3	3	193080	De Gea	27	https://cdn.sofifa.org/players/4/19/193080.png	Spain	https://cdn.sofifa.org/flags/45.png	91	93	١
4	4	192985	K. De Bruyne	27	https://cdn.sofifa.org/players/4/19/192985.png	Belgium	https://cdn.sofifa.org/flags/7.png	91	92	١
4									<u> </u>	▶

	Unnamed: 0	ID	Age	Overall	Potential	Special	International Reputation	Weak Foot	Skill Moves	
count	18207.000000	18207.000000	18207.000000	18207.000000	18207.000000	18207.000000	18159.000000	18159.000000	18159.000000	1
mean	9103.000000	214298.338606	25.122206	66.238699	71.307299	1597.809908	1.113222	2.947299	2.361308	
std	5256.052511	29965.244204	4.669943	6.908930	6.136496	272.586016	0.394031	0.660456	0.756164	
min	0.000000	16.000000	16.000000	46.000000	48.000000	731.000000	1.000000	1.000000	1.000000	
25%	4551.500000	200315.500000	21.000000	62.000000	67.000000	1457.000000	1.000000	3.000000	2.000000	
50%	9103.000000	221759.000000	25.000000	66.000000	71.000000	1635.000000	1.000000	3.000000	2.000000	
75%	13654.500000	236529.500000	28.000000	71.000000	75.000000	1787.000000	1.000000	3.000000	3.000000	
max	18206.000000	246620.000000	45.000000	94.000000	95.000000	2346.000000	5.000000	5.000000	5.000000	
41		100000000								. 1

Com veim hi ha columnes que les hem d'eliminar ja que no aporten informació útil per poder entrenar el model.

Columnes:

- Unnamed: 0 -> Es un index que no significa res sobre el jugador que es troba en aquella fila
- ID -> Es un identificador que nomes serveix per identificarlo únicament dedins tot el conjunt, per tant no ens interessa.
- Name -> Pel mateix motiu que la columna ID no ens interessa saber el nom de un jugador només les seves característiques
- Photo, Flag, Club Logo -> No ens interessen les imatges
- Special -> Es la suma de totes les columnes que indiquen la qualitat que te un jugador amb una característica, per tant com emprarem aquelles característiques per separat no es necessari tenir la suma, ja que es redundant.
- Work rate -> Es una dada molt subjectiva ja que alt o baix no se pot quantificar ni saber quant pot afectar, també depen de es dia que tengui el jugador, per tant la eliminam. Dos jugadors poden tenir alt a la columna de rendiment alt en atac i alomillor un ho fa molt millor que l'altre i segons aquesta variable son iguals en aquesta característica.
- Real Face -> Si el jugador te o no la seva cara real al videojoc no ens interessa
- Joined -> El dia que va entrar a competir tampoc es una dada que influeixi en el valor del jugador ja que hi ha jugadors que poden dur 1 any jugant i tenen més valor que un jugador que duu 5 anys. I en el cas a la inversa també passa, hi ha jugadors que duen 3 anys que son joves i un jugador que duu 10 anys te major valor. Per tant aquesta caracterísitca no aporta informació per predir el valor del jugador.
- Contract Valid Until -> L'any que s'acabarà el contracte amb el club no ens interessa ja que no te res a veure amb valor del jugador. Els jugadors que tenen contracte amb un club solen tenir una clàusula si algun club els vol fixar abans de que acabi el contracte. Pero aquest contracte depen de molt de factors i cada contracte es diferent. Que un contracte duri 5 anys o 1 any no te res a veure amb el valor del jugador. Només ens interessaria quan el jugador ha acabat amb el contracte pero pot passar que el valor del jugador aumenti o disminueixi, així que per facilitar les coses, llevam aquesta columna.
- LS, ST, RS, LW, LF, CF, RF, RW, LAM, CAM, RAM, LM, LCM, CM, RCM, RM, LWB, LDM, CDM, RDM, RWB, LB, LCB, CB, RCB, RB -> Son els valors que te un jugador a cada posició del camp, no es una característica que influeixi molt al valor d'un jugador perque si fixes a un extrem dret te serà iqual quina puntuació te de porter o de defensa central. (Farem una comprovació de si això es així)

In [6]:

df = df.drop(columns = ["Unnamed: 0","ID","Name","Photo","Flag","Club Logo","Special","Work Rate","Real F
In [7]:

df.head()

	Age	Nationality	Overall	Potential	Club	Value	Wage	Preferred	International	Weak	Skill	Body	Position	Jersey	Out[7]:
	5	, , , , , ,						Foot	Reputation	Foot	Moves	Type		Number	From
0	31	Argentina	94	94	FC Barcelona	€110.5M	€565K	Left	5.0	4.0	4.0	Messi	RF	10.0	NaN
1	33	Portugal	94	94	Juventus	€77M	€405K	Right	5.0	4.0	5.0	C. Ronaldo	ST	7.0	NaN
2	26	Brazil	92	93	Paris Saint- Germain	€118.5M	€290K	Right	5.0	5.0	5.0	Neymar	LW	10.0	NaN
3	27	Spain	91	93	Manchester United	€72M	€260K	Right	4.0	3.0	1.0	Lean	GK	1.0	NaN
4	27	Belgium	91	92	Manchester City	€102M	€355K	Right	4.0	5.0	4.0	Normal	RCM	7.0	NaN
4															Þ

Una vegada ja tenim les columnes amb les que farem feina, les hem de tractar i estudiar. Podem començar mirant les columnes que tenen

df.columns[df.isna().any()].tolist()

'Release Clause']
Podem veure que hi ha moltes columnes que tenen NaN

In [9]:

'Curve', 'FKAccuracy', 'LongPassing', 'BallControl', 'Acceleration', 'SprintSpeed', 'Agility', 'Reactions', 'Balance', 'ShotPower', 'Jumping', 'Stamina', 'Strength', 'LongShots', 'Aggression', 'Interceptions', 'Positioning', 'Vision', 'Penalties', 'Composure', 'Marking', 'StandingTackle', 'SlidingTackle', 'GKDiving', 'GKHandling', 'GKKicking', 'GKPositioning', 'GKReflexes',

														Οι	ıt[9]:
	Age	Nationality	Overall	Potential	Club	Value	Wage	Preferred Foot	International Reputation		Skill Moves	Body Type	Position	Jersey Number	Loar Fr
0	31	Argentina	94	94	FC Barcelona	€110.5M	€565K	Left	5.0	4.0	4.0	Messi	RF	10.0	٨
1	33	Portugal	94	94	Juventus	€77M	€405K	Right	5.0	4.0	5.0	C. Ronaldo	ST	7.0	٨
2	26	Brazil	92	93	Paris Saint- Germain	€118.5M	€290K	Right	5.0	5.0	5.0	Neymar	LW	10.0	١
3	27	Spain	91	93	Manchester United	€72M	€260K	Right	4.0	3.0	1.0	Lean	GK	1.0	Ν
4	27	Belgium	91	92	Manchester City	€102M	€355K	Right	4.0	5.0	4.0	Normal	RCM	7.0	٨
18202	19	England	47	65	Crewe Alexandra	€60K	€1K	Right	1.0	2.0	2.0	Lean	СМ	22.0	Ν
18203	19	Sweden	47	63	Trelleborgs FF	€60K	€1K	Right	1.0	2.0	2.0	Normal	ST	21.0	Ν
18204	16	England	47	67	Cambridge United	€60K	€1K	Right	1.0	3.0	2.0	Normal	ST	33.0	Ν
18205	17	England	47	66	Tranmere Rovers	€60K	€1K	Right	1.0	3.0	2.0	Lean	RW	34.0	٨
18206	16	England	46	66	Tranmere Rovers	€60K	€1K	Right	1.0	3.0	2.0	Lean	СМ	33.0	٨
18207 r	ows	× 78 columr	ıs												

Tractament Loaned From i Club

Primer de tot tractarem la columna Loaned From ja que podem veure que te molts de valors amb NaN. Aquesta columna està molt relacionada amb Club. Ja que un jugador pot pertànyer a un club pero jugar per un altre club perquè està cedit. Que un jugador estigui cedit influeix en el valor perque no es el mateix que jugui pel club principal que que jugui cedit a un altre club. Pero tampoc podem posar que sigui jugador del club on està cedit perque un jugador per exemple que sigui del Barça i estigui cedit al Mallorca, té més valor que si fos un jugador del Mallorca simplement. Per tant el que farem serà canviar el club actual ja que la columna Club té el club on està jugant i la columna Loaned from te el club de on ve cedit. Per tant el que farem serà posar el club de on ve cedit com a club i el valor de Loaned From serà 1 si està cedit. D'aquesta manera podrem saber que pertany a un club pero que està cedit, per tant el seu valor no serà tan gran com si realment formes part de la plantilla del club on te contracte.

Primer mirarem quants de NaN te la columna Club

In [10]:

Þ

df.loc[df.Club != df.Club]

Out[10]:

	Age	Nationality	Overall	Potential	Club	Value	Wage	Preferred Foot	International Reputation	Weak Foot	Skill Moves	Body Type	Position	Jersey Number	Loaned From	Heigh
452	24	Argentina	80	85	NaN	€0	€0	Right	2.0	4.0	4.0	Normal	CM	5.0	NaN	5'1
538	33	Sweden	80	80	NaN	€0	€0	Right	2.0	4.0	2.0	Normal	LCB	4.0	NaN	6'4
568	26	Russia	79	81	NaN	€0	€0	Right	1.0	3.0	1.0	Normal	GK	12.0	NaN	6'.
677	29	Russia	79	79	NaN	€0	€0	Right	2.0	3.0	3.0	Lean	RB	2.0	NaN	5'10
874	29	Russia	78	78	NaN	€0	€0	Right	2.0	3.0	3.0	Stocky	ST	22.0	NaN	6'!
17197	21	India	55	64	NaN	€0	€0	Right	1.0	2.0	1.0	Normal	GK	1.0	NaN	6'
17215	26	Finland	55	57	NaN	€0	€0	Right	1.0	3.0	2.0	Normal	RB	3.0	NaN	6'4
17339	23	India	54	63	NaN	€0	€0	Right	1.0	3.0	2.0	Normal	NaN	NaN	NaN	5'!
17436	20	India	54	67	NaN	€0	€0	Right	1.0	3.0	2.0	Normal	NaN	NaN	NaN	6'
17539	21	India	53	62	NaN	€0	€0	Right	1.0	3.0	2.0	Lean	NaN	NaN	NaN	6".

241 rows × 78 columns

Committee de 241 insulant au se trans de la contrata de 10207 insulant au de determinant au de se contrata de si de

Son un total de 241 jugadors que no tenen club per tant com veim de 18207 jugadors que te el dataframe no suposa una gran pérduda si els llevam

In [11]:

Þ

df = df.dropna(subset = ['Club'])
df

Out[11]:

	Age	Nationality	Overall	Potential	Club	Value	Wage	Preferred Foot	International Reputation		Skill Moves	Body Type	Position	Jersey Number	Loar Fr
0	31	Argentina	94	94	FC Barcelona	€110.5M	€565K	Left	5.0	4.0	4.0	Messi	RF	10.0	٨
1	33	Portugal	94	94	Juventus	€77M	€405K	Right	5.0	4.0	5.0	C. Ronaldo	ST	7.0	١
2	26	Brazil	92	93	Paris Saint- Germain	€118.5M	€290K	Right	5.0	5.0	5.0	Neymar	LW	10.0	٨
3	27	Spain	91	93	Manchester United	€72M	€260K	Right	4.0	3.0	1.0	Lean	GK	1.0	١
4	27	Belgium	91	92	Manchester City	€102M	€355K	Right	4.0	5.0	4.0	Normal	RCM	7.0	١
18202	19	England	47	65	Crewe Alexandra	€60K	€1K	Right	1.0	2.0	2.0	Lean	СМ	22.0	١
18203	19	Sweden	47	63	Trelleborgs FF	€60K	€1K	Right	1.0	2.0	2.0	Normal	ST	21.0	١
18204	16	England	47	67	Cambridge United	€60K	€1K	Right	1.0	3.0	2.0	Normal	ST	33.0	١
18205	17	England	47	66	Tranmere Rovers	€60K	€1K	Right	1.0	3.0	2.0	Lean	RW	34.0	١
18206	16	England	46	66	Tranmere Rovers	€60K	€1K	Right	1.0	3.0	2.0	Lean	СМ	33.0	١

17966 rows × 78 columns

Miram quants de jugadors tenim que estiguin cedits

In [12]:

df[df.isna()["Loaned From"]==False]

Out[12]:

In [14]:

Out[14]:

In [15]:

In [16]:

In [17]:

Out[17]:

In [18]:

														0	ut[12]:
	Age	Nationality	Overall	Potential	Club	Value	Wage	Preferred Foot	International Reputation		Skill Moves	Body Type	Position	Jersey Number	Loar Fr
28	26	Colombia	88	89	FC Bayern München	€69.5M	€315K	Left	4.0	3.0	4.0	Normal	LAM	10.0	R Mac
38	30	Argentina	88	88	Milan	€57M	€245K	Right	4.0	4.0	3.0	Normal	LS	9.0	Juven
91	29	Brazil	85	85	Guangzhou Evergrande Taobao FC	€37M	€235K	Right	3.0	3.0	3.0	Lean	LDM	9.0	Barcelo
166	24	Brazil	83	90	Guangzhou Evergrande Taobao FC	€36.5M	€18K	Left	2.0	4.0	4.0	Normal	CAM	24.0	Beni
176	24	Croatia	83	89	Chelsea	€35M	€165K	Right	3.0	4.0	4.0	Normal	LCM	17.0	R Mac
17978	21	England	51	57	Hamilton Academical FC	€50K	€3K	Right	1.0	2.0	2.0	Lean	ST	16.0	Norw (
17979	21	China PR	51	60	Guizhou Hengfeng FC	€60K	€2K	Right	1.0	2.0	2.0	Normal	СМ	8.0	Tia Quan
18026	21	China PR	50	59	Guizhou Hengfeng FC	€50K	€2K	Right	1.0	2.0	2.0	Lean	LM	29.0	Jian _e Sun
18031	20	China PR	50	61	Stabæk Fotball	€40K	€2K	Right	1.0	3.0	2.0	Normal	RB	98.0	Beij Sinc Guoan
18056	19	Italy	50	65	Ascoli	€60K	€3K	Left	1.0	3.0	2.0	Lean	CM	27.0	Ro
1264 rc	ws ×	78 columns	;												
◆ Podem	veure	per exemplo	 e el juga	dor 28											F
. 0		F =	- 21,1090											ı	n [13]:
df.il	oc [2	8]["Club'	']												
IEC D	, tro er	Münahan	,											0	ut[13]:

En aquest cas hauriem de canviar el valor de FC Bayern München per Real Madrid i la columna Loaned From posar un 1

df['Club'] = np.where(df['Loaned From'] != 0, df['Loaned From'], df["Club"])

'FC Bayern München'

'Real Madrid'

Ara canviam el clubs

df.iloc[28]["Club"]

'Real Madrid'

df.iloc[28]["Loaned From"]

Pero abans de fer això posarem tots els NaN a 0

Com podem veure s'han canviat els clubs

df.iloc[28]["Loaned From"]

df["Loaned From"].fillna(0,inplace = True)

```
Out[18]:
'Real Madrid'
Ara hem de posar a 1 totes les files que tenguin un club a la columna de Loaned From.
                                                                                                                            In [19]:
df["Loaned From"] = df["Loaned From"].apply(lambda x: 1 if x!=0 else 0)
I canviam el nom de Loaned From a Loaned ja que ara només te sentit si es Loaned o no.
                                                                                                                            In [20]:
df = df.rename(columns={'Loaned From': 'Loaned'})
Per comprovar que tot s'haqui fet correctament comprovarem amb el jugador que hem estat mirant
                                                                                                                            In [21]:
df.iloc[28]["Club"]
                                                                                                                           Out[21]:
'Real Madrid'
                                                                                                                            In [22]:
df.iloc[28]["Loaned"]
                                                                                                                           Out[22]:
Com podem veure ara el jugador te com a club Real Madrid i la columna de cedits (Loaned) té un 1, que com hem dit abans era el resultat que
```

esperavem

Pero encara no hem acabat amb la columna Club ja que no podem tractar strings, per tant haurem de crear una columna per cada Club de la següent manera:

Out[24]:

	Age	Nationality	Overall	Potential	Value	Wage	Preferred Foot	International Reputation		Skill Moves	Body Type	Position	Jersey Number	Loaned	Height	Wei
0	31	Argentina	94	94	€110.5M	€565K	Left	5.0	4.0	4.0	Messi	RF	10.0	0	5'7	159
1	33	Portugal	94	94	€77M	€405K	Right	5.0	4.0	5.0	C. Ronaldo	ST	7.0	0	6'2	183
2	26	Brazil	92	93	€118.5M	€290K	Right	5.0	5.0	5.0	Neymar	LW	10.0	0	5'9	150
3	27	Spain	91	93	€72M	€260K	Right	4.0	3.0	1.0	Lean	GK	1.0	0	6'4	168
4	27	Belgium	91	92	€102M	€355K	Right	4.0	5.0	4.0	Normal	RCM	7.0	0	5'11	154
4	1															·

Tractament Nationality

df.head()

Com veim la Nacionalitat té el mateix problema que tenia Club, són strings i l'hem de fer que siguin diferentes columnes. La nacionalitat d'un país si que influeix en el valor d'un jugador perquè per exemple els jugadors de Brasil són més valusos que un jugador de Canadà

```
In [25]:
nat = df.pop("Nationality")
df = pd.concat([df.reset_index(drop=True), pd.get_dummies(nat, prefix='nat').reset_index(drop=True)], axi
In [26]:
```

In [32]:

	Age	Overall	Potential	Value	Wage	Preferred Foot	International Reputation		Skill Moves	Body Type	Position	Jersey Number	Loaned	Height	Weight	LS	
0	31	94	94	€110.5M	€565K	Left	5.0	4.0	4.0	Messi	RF	10.0	0	5'7	159lbs	88+2	1
1	33	94	94	€77M	€405K	Right	5.0	4.0	5.0	C. Ronaldo	ST	7.0	0	6'2	183lbs	91+3	!
2	26	92	93	€118.5M	€290K	Right	5.0	5.0	5.0	Neymar	LW	10.0	0	5'9	150lbs	84+3	;
3	27	91	93	€72M	€260K	Right	4.0	3.0	1.0	Lean	GK	1.0	0	6'4	168lbs	NaN	
4	27	91	92	€102M	€355K	Right	4.0	5.0	4.0	Normal	RCM	7.0	0	5'11	154lbs	82+3	ï
4	1																·

Tractament Value, Wage i Release Clause

1323

Amb aquestes columnes tenim un problema de format. Hem d'eliminar el simbol de € i les lletres K i M tracatarles com mils i millons.

Abans de començar pero estudiarem els casos de NaN a les respectives columnes

```
In [27]:

df.isna()["Value"].sum()

Out[27]:

Podem veure que la columna Value no té NaN

In [28]:

df.isna()["Wage"].sum()

Out[28]:

OPodem veure que la columna Wage no té NaN

In [29]:

df.isna()["Release Clause"].sum()
```

Amb la columna Release Clause veim que tenim 1323 valors que son NaN, per tant tractarem aquests jugadors com si no tenguessin clausula, per tant canviarem els NaN per 0. Els podem tractar com si no tenguessin clàusula ja que pot passar que un jugador no tengui clàusula, perquè vol dir que ha acabat el contracte. El problema es que el model podria pensar que si és 0 vol dir que no té valor o que es dolent i això no es vera perquè per exemple en Messi pot no tenir clàusula i no es dolent. Pero si li possèsim la mitjana als jugadors que no tenen clàusula podria no ser adient al jugador ja que a ne'n Messi podria tenir una clàusula de 100k€ quan realment és de millons.

```
In [30]:

df ["Release Clause"].fillna("€0",inplace = True)

Comprovam que no hagi hagut errors:

In [31]:

df.isna()["Release Clause"].sum()

Out[31]:
```

Una vegada hem tractat els NaN, definirem una funció que s'encarregui de modificar el format

```
def value_to_float(x):
    x = x.replace('€', '')
    ret_val = 0.0

if type(x) == float or type(x) == int:
        ret_val = x

if 'K' in x:
    if len(x) > 1:
        ret_val = float(x.replace('K', ''))
        ret_val = ret_val *1000

if 'M' in x:
    if len(x) > 1:
        ret_val = float(x.replace('M', ''))
```

```
ret_val = ret_val * 1000000.0
return ret_val
```

I ara aplicam aquesta funció a cada valor de cada columna

```
df["Value"] = df["Value"].apply(value_to_float)
df["Wage"] = df["Wage"].apply(value_to_float)
df["Release Clause"] = df["Release Clause"].apply(value_to_float)
```

Ara tenim aquestes tres columnes amb un format útil per el model

In [34]:

In [33]:

df.head()

Out[34]:

	Age	Overall	Potential	Value	Wage	Preferred Foot	International Reputation		Skill Moves	Body Type	Position	Jersey Number	Loaned	Height	Weight	
0	31	94	94	110500000.0	565000.0	Left	5.0	4.0	4.0	Messi	RF	10.0	0	5'7	159lbs	{
1	33	94	94	77000000.0	405000.0	Right	5.0	4.0	5.0	C. Ronaldo	ST	7.0	0	6'2	183lbs	į
2	26	92	93	118500000.0	290000.0	Right	5.0	5.0	5.0	Neymar	LW	10.0	0	5'9	150lbs	{
3	27	91	93	72000000.0	260000.0	Right	4.0	3.0	1.0	Lean	GK	1.0	0	6'4	168lbs	
4	27	91	92	102000000.0	355000.0	Right	4.0	5.0	4.0	Normal	RCM	7.0	0	5'11	154lbs	{
4															1	Þ

Tractament Preferred Foot

 $Aquesta\ columna\ en\ un\ primer\ moment\ la\ podriem\ transformar\ en\ 0\ o\ 1\ (dreta\ o\ esquerra),\ pero\ anam\ a\ veure\ quins\ valors\ se\ poden\ obtenir$

In [35]:

```
df["Preferred Foot"].unique()
```

```
array(['Left', 'Right', nan], dtype=object)
```

Com veim només pot tenir com a valors esquerra o dreta, pero primer hem de tractar es NaN.

In [36]:

Out[35]:

df.isna()["Preferred Foot"].sum()

Out[36]:

Com veim son 48 persones que no tenen valor a n'aquesta columna per tant el que farem serà eliminarlos ja que no es una gran quantitat del dataframe

In [37]:

df = df.dropna(subset = ['Preferred Foot'])

Comprovam que hagui anat bé

In [38]:

df.isna()["Preferred Foot"].sum()

Out[38]:

Ara el que farem serà definir una funció que si es dreta retornarà 0 i si es esquerra retornarà 1

In [39]:

```
def peuPreferit(x):
    if x == "Right":
        return 0
    return 1
```

Per acabar aplicam aquesta funció a Preferred Foot

In [40]:

```
df["Preferred Foot"] = df["Preferred Foot"].apply(peuPreferit)
```

df.head()

Out[41]:

	Age	Overall	Potential	Value	Wage	Preferred Foot	International Reputation		Skill Moves	Body Type	Position	Jersey Number	Loaned	Height	Weight	
0	31	94	94	110500000.0	565000.0	1	5.0	4.0	4.0	Messi	RF	10.0	0	5'7	159lbs	{
1	33	94	94	77000000.0	405000.0	0	5.0	4.0	5.0	C. Ronaldo	ST	7.0	0	6'2	183lbs	į
2	26	92	93	118500000.0	290000.0	0	5.0	5.0	5.0	Neymar	LW	10.0	0	5'9	150lbs	{
3	27	91	93	72000000.0	260000.0	0	4.0	3.0	1.0	Lean	GK	1.0	0	6'4	168lbs	
4	27	91	92	102000000.0	355000.0	0	4.0	5.0	4.0	Normal	RCM	7.0	0	5'11	154lbs	{
4	1															• 1

Tractament Body Type

Body Type es una columna que representa el tipus de cos que te el jugador, pero anam a veure quins valors diferents hi ha

In [42]:

Podem distingir 3 tipus de cos generals que són: Lean, Normal i Stocky i després diferents tipus de cos que fan referencia a jugadors individuals. Comprovarem si es tracta així

In [43]:

```
df["Body Type"].value counts()
```

Out[43]:

```
Normal 10436
Lean 6351
Stocky 1124
Shaqiri 1
Neymar 1
Courtois 1
Messi 1
PLAYER_BODY_TYPE_25 1
Akinfenwa 1
C. Ronaldo 1
Name: Body Type, dtype: int64
```

Podem veure que existeixen 6 tipus de cos individuals, per exemple n'Akinfenwa té un cos molt gran ja que medeix 1.85 i pesa 102kg o en Shaqiri que medeix 1.65 i pesa 72kg. Però tot i ser coses especials els posarem a normal per simplificar el tractament ja que no influiran molt tenir-los per separat o juntar-los amb "Normal" que es el valor que més freqüència té.

In [44]:

```
def tipoDeCos(x):
    if x == "Normal":
        return "Normal"
    if x == "Lean":
        return "Lean"
    if x == "Stocky":
        return "Stocky"
    return "Normal"
```

In [45]:

```
df["Body Type"] = df["Body Type"].apply(tipoDeCos)
```

Comprovam si s'ha fet correctament

In [46]:

```
df["Body Type"].unique()
```

```
Out[46]:
array(['Normal', 'Lean', 'Stocky'], dtype=object)

Ara que ja només tenim aquests tres valors haurem de crear una columna per cada valor

In [47]:
body = df.pop("Body Type")
df = pd.concat([df.reset_index(drop=True), pd.get_dummies(body, prefix='body').reset_index(drop=True)], a

In [48]:
df.head()
```

	Age	Overall	Potential	Value	Wage	Preferred Foot	International Reputation			Position	Jersey Number	Loaned	Height	Weight	LS	!
0	31	94	94	110500000.0	565000.0	1	5.0	4.0	4.0	RF	10.0	0	5'7	159lbs	88+2	88-
1	33	94	94	77000000.0	405000.0	0	5.0	4.0	5.0	ST	7.0	0	6'2	183lbs	91+3	91-
2	26	92	93	118500000.0	290000.0	0	5.0	5.0	5.0	LW	10.0	0	5'9	150lbs	84+3	84-
3	27	91	93	72000000.0	260000.0	0	4.0	3.0	1.0	GK	1.0	0	6'4	168lbs	NaN	Ni
4	27	91	92	102000000.0	355000.0	0	4.0	5.0	4.0	RCM	7.0	0	5'11	154lbs	82+3	82-
4	1															Þ

Tractament Position

Aquesta columna té el mateix problema que el Club i la Nacionalitat. La posició on juga un jugador és molt important a l'hora de determinar el seu valor per tant farem una columna per cada posició

Pero abans comprovarem que no hi hagui NaN

16 ione () [UDocitionUl cum()

df.isna()["Position"].sum()

Out[49]:

Com veim no tenim NaN per tant ja podem crear les columnes

pos = df.pop("Position")
df = pd.concat([df.reset_index(drop=True), pd.get_dummies(pos, prefix='pos').reset_index(drop=True)], axi

In [51]:

df.head()

Out[51]:

	Age	Overall	Potential	Value	Wage	Preferred Foot	International Reputation			,	Loaned	Height	Weight	LS	ST	RS
0	31	94	94	110500000.0	565000.0	1	5.0	4.0	4.0	10.0	0	5'7	159lbs	88+2	88+2	88+2
1	33	94	94	77000000.0	405000.0	0	5.0	4.0	5.0	7.0	0	6'2	183lbs	91+3	91+3	91+3
2	26	92	93	118500000.0	290000.0	0	5.0	5.0	5.0	10.0	0	5'9	150lbs	84+3	84+3	84+3
3	27	91	93	72000000.0	260000.0	0	4.0	3.0	1.0	1.0	0	6'4	168lbs	NaN	NaN	NaN
4	27	91	92	102000000.0	355000.0	0	4.0	5.0	4.0	7.0	0	5'11	154lbs	82+3	82+3	82+3
4																· ·

Tractament Height

Height té un problema de format ja que te un apòstrof per representar els decimals, per tant hem de canviar-ho per un punt Primer de tot mirarem si te NaN

In [52]:

Out[48]:

In [49]:

In [50]:

Out[52]:

Veim que no tenim NaN, per tant ja podem canviar es format per tal de que sigui útil pel model

def convertHeight(x):
 x.split("'")
 return float(x[0]+"."+x[2])

df["Height"] = df["Height"].apply(convertHeight)

df.head()

Out[55]:

In [53]:

In [54]:

In [55]:

	Age	Overall	Potential	Value	Wage	Preferred Foot	International Reputation		Skill Moves	Jersey Number	Loaned	Height	Weight	LS	ST	RS
0	31	94	94	110500000.0	565000.0	1	5.0	4.0	4.0	10.0	0	5.7	159lbs	88+2	88+2	88+2
1	33	94	94	77000000.0	405000.0	0	5.0	4.0	5.0	7.0	0	6.2	183lbs	91+3	91+3	91+3
2	26	92	93	118500000.0	290000.0	0	5.0	5.0	5.0	10.0	0	5.9	150lbs	84+3	84+3	84+3
3	27	91	93	72000000.0	260000.0	0	4.0	3.0	1.0	1.0	0	6.4	168lbs	NaN	NaN	NaN
4	27	91	92	102000000.0	355000.0	0	4.0	5.0	4.0	7.0	0	5.1	154lbs	82+3	82+3	82+3
4	1															Þ

Tractament Weight

Weight igual que Height té un problema de format ja que no mos interessa les unitats en que estigui agafat un valor, sempre i quan tots els valors estiguin amb les mateixes unitats. Per tant el que hem de fer es eliminar "lbs".

Primer de tot mirarem els NaN

In [56]:

df.isna()["Weight"].sum()

Out[56]:

No tenim cap NaN, per tant ja li podem aplicar el format

In [57]:

def valueLibras(x):
 x=x.rstrip("lbs")
 return float(x)

In [58]:

df["Weight"] = df["Weight"].apply(valueLibras)

In [59]:

df.head()

4

Out[59]:

Þ

	Age	Overall	Potential	Value	Wage	Preferred Foot	International Reputation			Jersey Number	Loaned	Height	Weight	LS	ST	RS
0	31	94	94	110500000.0	565000.0	1	5.0	4.0	4.0	10.0	0	5.7	159.0	88+2	88+2	88+2
1	33	94	94	77000000.0	405000.0	0	5.0	4.0	5.0	7.0	0	6.2	183.0	91+3	91+3	91+3
2	26	92	93	118500000.0	290000.0	0	5.0	5.0	5.0	10.0	0	5.9	150.0	84+3	84+3	84+3
3	27	91	93	72000000.0	260000.0	0	4.0	3.0	1.0	1.0	0	6.4	168.0	NaN	NaN	NaN
4	27	91	92	102000000.0	355000.0	0	4.0	5.0	4.0	7.0	0	5.1	154.0	82+3	82+3	82+3

Preparació per la segon prova

```
In [60]:
df ColumnesPos = df.iloc[:,13:39]
                                                          In [61]:
df ColumnesPos
                                                          Out[61]:
             LW
                                                          RDM R
                LE
                   CF
                        RW
                           LAM
                             CAM
                                RAM
                                    LM
                                      LCM
                                          CM
                                            RCM
                                               RM
                                                 LWB
                                                    LDM
                                                       CDM
  89+3
              90+3 90+3
                    90+3 89+3
                          88+3
                             88+3
                                88+3
                                   88+3 81+3 81+3 81+3 88+3 65+3 61+3 61+3
                          89+3
                             89+3
                                   88+3
                                      81+3 81+3 81+3 88+3 65+3
                                                    60 + 3
                                                       60 + 3
            89+3
               89+3
                 89+3
                    89+3
                       89+3
                                89 + 3
      NaN
         NaN
            NaN
               NaN
                  NaN
                     NaN
                        NaN
                           NaN
                              NaN
                                NaN
                                   NaN
                                      NaN
                                         NaN
                                            NaN
                                               NaN
                                                  NaN
                                                     NaN
                                                        NaN
                                                          NaN
   82+3 82+3 82+3 87+3 87+3 87+3 87+3 88+3 88+3
                                17918 rows × 26 columns
                                                          In [62]:
df.drop(columns = ["LS","ST","RS","LW","LF","CF","RF","RW","LAM","CAM","RAM","LM","LCM","CM","RCM","RM","
Abans de passar a fer la part de predicció, comprovarem que no ens hem deixat cap columna amb NaN
                                                          In [63]:
df.columns[df.isna().any()].tolist()
                                                          Out[63]:
[]
Ens guardarem una mostra del dataframe per poder fer una segona prova
                                                          In [64]:
df 2 = df.copy(deep=True)
Predicció
```

Una vegada ha hem fet tot el tractament de les dades, el que voleu es predir la columna de **value**

In [65]:

```
val = df.pop("Value")
df
```

	Age	Overall	Potential	Wage	Preferred Foot	International Reputation		Skill Moves	Jersey Number	Loaned	Height	Weight	Crossing	Finishing	Heading#
0	31	94	94	565000.0	1	5.0	4.0	4.0	10.0	0	5.7	159.0	84.0	95.0	
1	33	94	94	405000.0	0	5.0	4.0	5.0	7.0	0	6.2	183.0	84.0	94.0	
2	26	92	93	290000.0	0	5.0	5.0	5.0	10.0	0	5.9	150.0	79.0	87.0	
3	27	91	93	260000.0	0	4.0	3.0	1.0	1.0	0	6.4	168.0	17.0	13.0	
4	27	91	92	355000.0	0	4.0	5.0	4.0	7.0	0	5.1	154.0	93.0	82.0	
17913	19	47	65	1000.0	0	1.0	2.0	2.0	22.0	0	5.9	134.0	34.0	38.0	
17914	19	47	63	1000.0	0	1.0	2.0	2.0	21.0	0	6.3	170.0	23.0	52.0	
17915	16	47	67	1000.0	0	1.0	3.0	2.0	33.0	0	5.8	148.0	25.0	40.0	
17916	17	47	66	1000.0	0	1.0	3.0	2.0	34.0	0	5.1	154.0	44.0	50.0	
17917	16	46	66	1000.0	0	1.0	3.0	2.0	33.0	0	5.1	176.0	41.0	34.0	

17918 rows × 892 columns

4

Ara ja tenim separada les dades amb la columna que volem predir. El que hem de fer ara es separar les dades amb dades que emprarem per entrenar el model i dades que emprarem per evaluar. Agafarem un 67% de les dades per entrenar un model i un 33% per evaluar-lo

In [66]:

Þ

```
X_train, X_test, y_train, y_test = train_test_split(df, val, test_size=0.33, random_state=42)
```

Ara passam a fer la normalització. Agafarem totes aquelles columnes que el valors no siguin 1 o 0. De les columnes que normalitzarem agafarem aquelles columnes on la seva desviació estadard no sigui 0.

In [67]:

```
for i in X_test.columns:
   if i == "Loaned" or i == "Preferred Foot":
     pass
   elif i == "clb_ SSV Jahn Regensburg":
     break
   else:
     if (X_train[i].std()!=0):
        X_test[i] = (X_test[i]-X_train[i].mean())/X_train[i].std()
        X_train[i] = (X_train[i]-X_train[i].mean())/X_train[i].std()
   else:
        X_train.pop(i)
        X_test.pop(i)
```

In [68]:

```
y_test = (y_test-y_train.mean())/y_train.std()
```

In [69]:

```
y_train = (y_train-y_train.mean())/y_train.std()
```

Ara entrenam un model de regressió lineal amb les dades que hem separat abans per entrenar.

In [70]:

```
reg = linear_model.LinearRegression().fit(X_train, y_train)
```

Finalment agafam la mètrica de R2 per la regressió. Empram la implementació de la llibreria sickit-learn. Empram R^2 ja que es tracta de una regressió linial i volem predir valors. R2 el que fa es emprar el coeficient de correlació de Pearson i l'eleva al quadrat. R2 pot agafar valors entre 0 i 1(tot i que hi ha casos que pot agafar valors negatius), de manera que quan més s'aproxima a 1 millor ha estat la generalització i més encertada serà la predicció

In [71]:

```
preds = reg.predict(X_test)
```

In [72]:

```
r2_score(preds, y_test)
```

Ens surt un resultat molt dolent. Pot ser que sigui perquè no s'ha normalitzat bé. Miram amem si hi ha qualque errada

In [73]:

X_test

Out[73]:

	Age	Overall	Potential	Wage	Preferred Foot	International Reputation	Weak Foot	Skill Moves	Jersey Number	Loaned	Height	Weight	Crossing
12491	1.488645	0.463036	1.366741	0.361748	1	-0.285658	0.078287	- 0.488667	1.038409	0	0.457922	- 1.142576	0.607804
7988	0.632663	0.112284	0.714593	0.361748	0	-0.285658	0.078287	- 0.488667	3.052964	0	0.902818	0.841547	- 0.593558
13940	1.293295	0.750696	0.426667	0.408015	1	-0.285658	1.430282	- 0.488667	0.883296	0	0.457922	0.521527	0.975809
2616	2.558622	0.975265	0.263630	0.130409	0	2.235906	0.078287	0.839184	0.356514	0	0.235474	- 1.270584	1.426915
3194	0.223318	0.831435	1.241853	1.627764	0	-0.285658	0.078287	- 0.488667	0.263391	1	0.680370	0.841547	0.156699
10753	0.009323	0.175376	0.551556	0.269212	0	-0.285658	0.078287	- 0.488667	0.201401	0	0.680370	0.438533	0.717019
15553	0.437314	1.038356	1.203704	0.408015	0	-0.285658	1.430282	- 0.488667	0.914428	0	0.457922	1.545591	0.061731
1041	0.009323	1.550585	1.404890	3.247134	0	2.235906	1.586857	0.839184	1.069268	0	0.680370	0.054509	1.426915
5996	0.418668	0.399945	0.388519	0.222945	0	-0.285658	0.078287	- 0.488667	0.077420	0	1.544110	- 0.886561	0.771626
13461	0.632663	0.606866	- 1.529779	0.408015	0	-0.285658	0.078287	- 0.488667	0.356514	0	0.209422	- 1.718612	0.334768

5913 rows × 892 columns

The continue the constitute by

Tot pareix que s'ha normalitzat bé, anam a veure y_test

In [74]:

Out[74]:

 y_test

47

12491 -0.402950 7988 -0.295376 13940 -0.362610 2616 -0.205732 3194 0.224561

10753 -0.340199 15553 -0.406535 1041 1.533369 5996 -0.281930 13461 -0.395778

Name: Value, Length: 5913, dtype: float64

No sembla que sigui un problema de la normalització per tant provarem d'eliminar columnes ja que com hem vist al implementar one hot encoding, se'ns ha generat una gran quantitat de columnes, sobretot amb els clubs, per tant el que podem fer es eliminar tots els clubs que no tenen molta gent i que per tant no aporten molta informació.

Crearem un dataframe amb les columnes del club per tractarles

In [75]:

df.columns.get_loc("clb_ SSV Jahn Regensburg")

Out[75]:

In [76]:

df.columns.get loc("clb Śląsk Wrocław")

```
698
                                                                                                                          In [77]:
df columnesClub = df.iloc[:,47:699]
                                                                                                                          In [78]:
len(df columnesClub.columns)
                                                                                                                         Out[78]:
Tenim 652 columnes que són clubs, com veim són moltes columnes que alomillor no aporten molta informació al model i encanvi ocupen
columnes que el model haurà de mirar.
Mirarem de clubs grans quina es la quantitat de jugadors que tenen
                                                                                                                          In [79]:
df_columnesClub["clb_FC Barcelona"].value_counts()
                                                                                                                         Out[79]:
      17877
0
1
          41
Name: clb FC Barcelona, dtype: int64
                                                                                                                          In [80]:
df columnesClub["clb Chelsea"].value counts()
                                                                                                                         Out[80]:
      17874
         44
Name: clb_Chelsea, dtype: int64
Podem veure que més o menys en tenen 40. Anam a veure un club de segona divisió
                                                                                                                          In [81]:
df columnesClub["clb RCD Mallorca"].value counts()
                                                                                                                         Out[81]:
0
      17892
          26
Name: clb RCD Mallorca, dtype: int64
Com veim s'ha reduït a 26 jugadors per tant mirarem quants de clubs tindrem si agafam els que tenguin 26 jugadors
Una reducció bona sense perdre molta informació i sense que tenguem un excès de columnes hauria de variar entre 350-450 clubs
                                                                                                                          In [82]:
llistaClubs =[]
for c in df columnesClub.columns:
   if df columnesClub[c].sum() < 26:</pre>
      llistaClubs.append(c)
Anam a veure quants de clubs hem llevat
                                                                                                                          In [83]:
len(llistaClubs)
                                                                                                                         Out[83]:
Llevam dels dataframes els clubs que s'han seleccionat
                                                                                                                          In [84]:
for c in llistaClubs:
   df.pop(c)
   {\tt df\_2.pop(c)\#ens\ servir\`a\ per\ fer\ la\ segona\ prova\ amb\ les\ columnes\ i\ les\ posicions}
                                                                                                                          In [85]:
len(df columnesClub.columns) -len(llistaClubs)
                                                                                                                         Out[85]:
429
Com veim de 652 clubs que teniem ens hem quedat amb 429. Hem reduit el dataset de manera que han quedat els més significatius.
Anam a fer el mateix amb les nacionalitats ja que també hi ha països on només hi ha un jugador i tenim una columna només per aquests
```

Out[76]:

In [86]:

													Out[86]:
Age Overall	Potential	Wage	Preferred Foot	International Reputation			Jersey Number	Loaned	Height	Weight	Crossing	Finishing	HeadingAccur
0 31 94	94	565000.0	1	5.0	4.0	4.0	10.0	0	5.7	159.0	84.0	95.0	7
4													▶ In [87]:
df.columns.	get_loc("nat_Afo	ghanistar	n")									
476													Out[87]:
df.columns.	get loc("nat 7ir	mhahwe")										In [88]:
di.columns.	get_100(nac_zm	iibabwe)										Out[88]:
638 Com amb els clu	ıbs cream ι	ın datafrar	ne amb les	nacionalitats	per tra	ctarles							
16 1	N 16		476 6201										In [89]:
df_columnes	nat = di	.1100[:,	.4/6:639]										In [90]:
df_columnes	Nat												
													Out[90]:
nat_Afgl	hanistan n	at_Albania	nat_Algeri	a nat_Andorr	a nat_	Angola	nat_Antio		.Argentin	a nat_A	rmenia na	t_Australia	nat_Austria

	nat_Afghanistan	nat_Albania	nat_Algeria	nat_Andorra	nat_Angola	nat_Antigua & Barbuda	nat_Argentina	nat_Armenia	nat_Australia	nat_Austria
0	0	0	0	0	0	0	1	0	0	0
1	0	0	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	0	0
3	0	0	0	0	0	0	0	0	0	0
4	0	0	0	0	0	0	0	0	0	0
17913	0	0	0	0	0	0	0	0	0	0
17914	0	0	0	0	0	0	0	0	0	0
17915	0	0	0	0	0	0	0	0	0	0
17916	0	0	0	0	0	0	0	0	0	0
17917	0	0	0	0	0	0	0	0	0	0

17918 rows × 163 columns

```
Cercam les nacionalitats on només hi ha un jugador i les llevam dels dataframes

In [91]:

llistaNat = []

for c in df_columnesNat.columns:

if df_columnesNat[c].sum() < 2:

llistaNat.append(c)

df.pop(c)

df_2.pop(c) #ens servirà per fer la segona prova amb les columnes i les posicions

In [92]:

len (llistaNat)
```

Out[92]:

2.5

Veim que podem llevar unes altres 25 columnes, dels països on només hi ha una persona.

df

Out[93]:

Þ

Foot Reputation Foot Moves Number	
0 31 94 94 565000.0 1 5.0 4.0 4.0 10.0 0 5.7 159.0 84.0 9)
1 33 94 94 405000.0 0 5.0 4.0 5.0 7.0 0 6.2 183.0 84.0 9)
2 26 92 93 290000.0 0 5.0 5.0 5.0 10.0 0 5.9 150.0 79.0 8)
3 27 91 93 260000.0 0 4.0 3.0 1.0 1.0 0 6.4 168.0 17.0 1)
4 27 91 92 355000.0 0 4.0 5.0 4.0 7.0 0 5.1 154.0 93.0 8)
	
17913 19 47 65 1000.0 0 1.0 2.0 2.0 22.0 0 5.9 134.0 34.0 3)
17914 19 47 63 1000.0 0 1.0 2.0 2.0 21.0 0 6.3 170.0 23.0 5)
17915 16 47 67 1000.0 0 1.0 3.0 2.0 33.0 0 5.8 148.0 25.0 4)
17916 17 47 66 1000.0 0 1.0 3.0 2.0 34.0 0 5.1 154.0 44.0 5)
17917 16 46 66 1000.0 0 1.0 3.0 2.0 33.0 0 5.1 176.0 41.0 3)

17918 rows × 644 columns

4

```
Predicció
Ara provarem si amb l'eliminació d'aquestes columnes, el resultat de la predicció del model millora
                                                                                                             In [94]:
X train, X test, y train, y test = train test split(df, val, test size=0.33, random state=42)
                                                                                                             In [95]:
for i in X_test.columns:
  if i == "Loaned" or i == "Preferred Foot":
   elif i == "clb_1. FC Heidenheim 1846":
     break
   else:
     if (X_train[i].std()!=0):
       X_test[i] = (X_test[i]-X_train[i].mean())/X train[i].std()
       X_train[i] = (X_train[i]-X_train[i].mean())/X_train[i].std()
     else:
       X train.pop(i)
       X_test.pop(i)
                                                                                                             In [96]:
y_test = (y_test-y_train.mean())/y_train.std()
                                                                                                             In [97]:
```

reg = linear model.LinearRegression().fit(X train, y train) In [99]: preds = reg.predict(X_test)

resultatProval =r2 score(preds, y test)

y_train = (y_train-y_train.mean())/y_train.std()

In [101]:

In [100]:

In [98]:

resultatProva1

Podem veure que després de reduir el número de columnes dins el dataframe ja ens surt un resultat bo, ja que s'aproxima a 1.

Segona prova

Anam a fer una segona prova on emprarem les columnes de la puntuació que té un jugador a cada posició

El que farem serà agafar les columnes que hem guardat anteriorment a df_ColumnesPos i fer un estudi de quin tractament necessita

In [102]:

Out[102]:

df_ColumnesPos

																			,	Juli	-1.
	LS	ST	RS	LW	LF	CF	RF	RW	LAM	CAM	RAM	LM	LCM	СМ	RCM	RM	LWB	LDM	CDM	RDM	R
0	88+2	88+2	88+2	92+2	93+2	93+2	93+2	92+2	93+2	93+2	93+2	91+2	84+2	84+2	84+2	91+2	64+2	61+2	61+2	61+2	6,
1	91+3	91+3	91+3	89+3	90+3	90+3	90+3	89+3	88+3	88+3	88+3	88+3	81+3	81+3	81+3	88+3	65+3	61+3	61+3	61+3	6
2	84+3	84+3	84+3	89+3	89+3	89+3	89+3	89+3	89+3	89+3	89+3	88+3	81+3	81+3	81+3	88+3	65+3	60+3	60+3	60+3	6
3	NaN	1																			
4	82+3	82+3	82+3	87+3	87+3	87+3	87+3	87+3	88+3	88+3	88+3	88+3	87+3	87+3	87+3	88+3	77+3	77+3	77+3	77+3	7
17913	42+2	42+2	42+2	44+2	44+2	44+2	44+2	44+2	45+2	45+2	45+2	44+2	45+2	45+2	45+2	44+2	44+2	45+2	45+2	45+2	4.
17914	45+2	45+2	45+2	39+2	42+2	42+2	42+2	39+2	40+2	40+2	40+2	38+2	35+2	35+2	35+2	38+2	30+2	31+2	31+2	31+2	31
17915	45+2	45+2	45+2	45+2	46+2	46+2	46+2	45+2	44+2	44+2	44+2	44+2	38+2	38+2	38+2	44+2	34+2	30+2	30+2	30+2	3,
17916	47+2	47+2	47+2	47+2	46+2	46+2	46+2	47+2	45+2	45+2	45+2	46+2	39+2	39+2	39+2	46+2	36+2	32+2	32+2	32+2	31
17917	43+2	43+2	43+2	45+2	44+2	44+2	44+2	45+2	45+2	45+2	45+2	46+2	45+2	45+2	45+2	46+2	46+2	46+2	46+2	46+2	4

17918 rows × 26 columns

Veim que tenim hi ha un problema amb el format ja que es un string. El que farem es agafar es els dos nombres i sumar-los

Com veim per tenim jugadors que tenen valors NaN, són els jugadors que ocupen la posició de porter. El que podem fer es calcular la mitjana de tots es jugadors a cada posició i posarli als porters.

Per poder calcular la mitjana primer hem de llevar tots els porters del dataframe. (Amb una posició basta per detectar els porters ja que tenen NaN a totes les posicions)

In [103]:

Þ

 $\label{local_def_noPorters} \mbox{ = } \mbox{ df_ColumnesPos.isna() ["LS"] == False]}$

In [104]:

 ${\tt df_noPorters}$

```
Out[104]:
         LS
                                                            CAM
                                                                  RAM
                                                                             LCM
                                                                                         RCM
                                                                                                           LDM
                                                                                                                      RDM
    0 88+2 88+2 88+2
                        92+2
                             93+2 93+2 93+2 92+2
                                                     93+2
                                                           93+2
                                                                 93+2 91+2
                                                                             84+2 84+2
                                                                                        84+2 91+2 64+2
                                                                                                          61+2
                                    90+3
                                                89+3
                                                     88+3
                                                           88+3
                                                                 88+3
                                                                       88+3 81+3
                                                                                  81+3 81+3
                                                                                              88+3
                                          90+3
                                                                                                    65+3
                        89+3
                              89+3
                                    89+3
                                          89+3
                                                89+3
                                                     89+3
                                                           89+3
                                                                 89+3
                                                                       88+3
                                                                             81+3
                                                                                  81+3
                                                                                        81+3
                                                                                              88+3
                                                                                                          60+3
                                                                                                                60+3
                                                                                                    65+3
                                                                                   87+3
                                          87+3
                                                87+3
                                                      88+3
                                                           88+3
                                                                 88+3
                                                                       88+3
                                                                             87+3
                                                                                         87+3
                                                                                              88+3
                                                89+3
                                                     89+3
                                                           89+3
                                                                 89+3
                                                                       89+3
                                                                             82+3
                                                                                   82+3
                                                                                         82+3
                                                                                              89+3
                        89+3
                              88+3
                                    88+3
                                          88+3
                                                                                                          63 + 3
17913
      42+2
            42+2
                  42+2
                        44+2
                             44+2
                                   44+2
                                         44+2
                                               44+2
                                                     45+2
                                                           45+2
                                                                 45+2
                                                                       44+2
                                                                             45+2
                                                                                  45+2
                                                                                        45+2
                                                                                              44+2
                                                                                                    44+2
                                                                                                          45+2
                                                                                                               45+2
                                                                                                                      45+2 4
            45+2
                  45+2
                        39+2
                             42+2 42+2 42+2 39+2
                                                     40+2
                                                           40+2
                                                                 40+2 38+2 35+2
                                                                                  35+2
                                                                                        35+2
                                                                                              38+2 30+2
                                                                                                          31+2
                                                                                                               31+2
                        45+2
                              46+2 46+2 46+2 45+2
                                                     44+2 44+2
                                                                 44+2
                                                                       44+2
                                                                             38+2
                                                                                  38+2
                                                                                        38+2
                                                                                              44+2 34+2
                                                                                                          30+2
17916 47+2 47+2 47+2
                             46+2 46+2 46+2 47+2 45+2 45+2 45+2 46+2 39+2 39+2 39+2 36+2 32+2 32+2
15926 rows × 26 columns
Ara cream una funció que llevi el signe de suma i sumarem els dos números
                                                                                                                     In [105]:
def valorPosicions(v):
     v=v.split('+')
     return float(v[0]) + float(v[1])
                                                                                                                     In [106]:
for columna in df noPorters.columns:
   df noPorters[columna] = df noPorters[columna].apply(valorPosicions)
                                                                                                                     In [107]:
df noPorters
                                                                                                                    Out[107]:
        LS
             ST
                  RS
                       LW
                             LF
                                  CF
                                       RF
                                           RW
                                                LAM
                                                     CAM
                                                          RAM
                                                                 LM
                                                                    LCM
                                                                           CM
                                                                               RCM
                                                                                     RM
                                                                                         LWB
                                                                                               LDM
                                                                                                    CDM
                                                                                                          RDM
                                                                                                               RWB
                                                                                                                      LB
                                                                                                                         LCE
            90.0
                90.0
                      94.0
                           95.0
                                95.0
                                     95.0
                                          94.0
                                               95.0
                                                     95.0
                                                          95.0
                                                                93.0
                                                                     86.0
                                                                          86.0
                                                                               86.0
                                                                                    93.0
                                                                                          66.0
                                                                                               63.0
                                                                                                    63.0
                                                                                                          63.0
                                                                                                                66.0
                                                                                                                    61.0
                                                                                                                         49.0
                      92.0
                           93.0
                                93.0
                                     93.0
                                           92.0
                                                91.0
                                                     91.0
                                                          91.0
                                                                91.0
                                                                     84.0
                                                                          84.0
                                                                               84.0
                                                                                    91.0
                                                                                          68.0
                                                                                               64.0
                                                                                                    64.0
                                                                                                          64.0
                                                                                                                68.0
                                                                                                                         56.0
    1 94.0
            94.0
                 94.0
                                                                                                                     64.0
                                92.0
                                     92.0
                                                92.0
                                                     92.0
    2 87.0
            87.0
                87.0
                      92.0
                           92.0
                                           92.0
                                                          92.0
                                                                91.0
                                                                     84.0
                                                                          84.0
                                                                               84.0
                                                                                    91.0
                                                                                          68.0
                                                                                               63.0
                                                                                                     63.0
                                                                                                          63.0
                                                                                                                68.0
                                                                                                                    63.0
                                                                                                                         50.0
                      90.0
                           90.0
                                90.0
                                     90.0
                                           90.0
                                                91.0
                                                     91.0
                                                          91.0
                                                                91.0
                                                                     90.0
                                                                          90.0
                                                                               90.0
                                                                                    91.0
                                                                                          0.08
                                                                                               80.0
                                                                                                     80.0
                                                                                                          80.0
                                                                                                                80.0
                                                                                                                     76.0
    4 85.0
            85.0
                 85.0
                                                                                                                         69.0
                                                     92.0
      86.0
            86.0
                 86.0
                      92.0
                           91.0
                                91.0
                                     91.0
                                           92.0
                                                92.0
                                                          92.0
                                                                92.0
                                                                     85.0
                                                                          85.0
                                                                               85.0
                                                                                    92.0
                                                                                          69.0
                                                                                               66.0
                                                                                                     66.0
                                                                                                          66.0
                                                                                                                69.0
                                                                                                                    63.0
                                                                                                                         52.0
17913 44.0
            44.0
                44.0
                      46.0
                           46.0
                                46.0
                                     46.0
                                          46.0
                                               47.0
                                                     47.0
                                                          47.0
                                                                46.0
                                                                     47.0
                                                                          47.0
                                                                               47.0
                                                                                    46.0
                                                                                          46.0
                                                                                               47.0
                                                                                                     47.0
                                                                                                          47.0
                                                                                                                46.0
                                                                                                                    47.0
                                                                                                                         47.0
            47.0
                47.0
                      41.0
                           44.0
                                44.0
                                     44.0
                                           41.0
                                                42.0
                                                     42.0
                                                          42.0
                                                                40.0
                                                                     37.0
                                                                          37.0
                                                                               37.0
                                                                                    40.0
                                                                                          32.0
                                                                                               33.0
                                                                                                     33.0
                                                                                                          33.0
                                                                                                                32.0
                                                                                                                    31.0
                                                                                                                         34.0
            47.0
                47.0
                      47.0
                           48.0
                                48.0
                                     48.0
                                          47.0
                                               46.0
                                                     46.0
                                                           46.0
                                                                46.0
                                                                     40.0
                                                                          40.0
                                                                               40.0
                                                                                    46.0
                                                                                          36.0
                                                                                               32.0
                                                                                                     32.0
                                                                                                          32.0
                                                                                                                36.0
                                                                                                                    35.0
                                                                                                                         30.0
17916 49.0
                49.0
                      49.0
                           48.0
                                48.0
                                     48.0
                                           49.0
                                               47.0
                                                     47.0
                                                          47.0
                                                                48.0
                                                                     41.0
                                                                         41.0
                                                                               41.0
                                                                                    48.0
                                                                                          38.0
                                                                                               34.0
                                                                                                     34.0
                                                                                                          34.0
                                                                                                                38.0
                                                                                                                    37.0
            49.0
                                                                                                                         33.0
17917 45.0 45.0 45.0 47.0 46.0 46.0
                                     46.0 47.0 47.0
                                                     47.0
                                                          47.0 48.0
                                                                    47.0 47.0
                                                                               47.0 48.0
                                                                                          48.0
                                                                                               48.0
                                                                                                     48.0
                                                                                                          48.0
                                                                                                                48.0
                                                                                                                    48 0 49 0
15926 rows × 26 columns
```

Ara ja podem calcular la mitjana de cada columna i després li aplicarem als porters

In [108]:

Þ

 $\verb|df_ColumnesPos[df_ColumnesPos.isna()["LS"] == \verb|True||$

```
Out[108]:
                      LS
                                  ST
                                               RS
                                                                          LF
                                                                                                    RF
                                                                                                               RW
                                                                                                                          LAM
                                                                                                                                      CAM
                                                                                                                                                      RAM
                                                                                                                                                                      LM LCM
                                                                                                                                                                                                CM
                                                                                                                                                                                                          RCM
                                                                                                                                                                                                                                      LWB
                                                                                                                                                                                                                                                  LDM
                                                                                                                                                                                                                                                                  CDM
                                                                                                                                                                                                                                                                                 RDM
                                                                                                                                                                                                                                                                                               RWB
                                                                                                                                                                                                                                                                                                                 LB
                                                                                                                                                                                                                                                                                                                          LCB
           3 NaN
                               NaN
                                           NaN
                                                       NaN NaN NaN
                                                                                               NaN
                                                                                                             NaN
                                                                                                                           NaN
                                                                                                                                          NaN
                                                                                                                                                       NaN NaN
                                                                                                                                                                                 NaN
                                                                                                                                                                                             NaN
                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                        NaN
                                                                                                                                                                                                                                       NaN
                                                                                                                                                                                                                                                     NaN
                                                                                                                                                                                                                                                                    NaN
                                                                                                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                                                                                                NaN
                                                                                                                                                                                                                                                                                                             NaN NaN
                                NaN
                                            NaN
                                                         NaN
                                                                      NaN
                                                                                   NaN
                                                                                                NaN
                                                                                                             NaN
                                                                                                                           NaN
                                                                                                                                          NaN
                                                                                                                                                       NaN
                                                                                                                                                                   NaN
                                                                                                                                                                                 NaN
                                                                                                                                                                                              NaN
                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                         NaN
                                                                                                                                                                                                                                       NaN
                                                                                                                                                                                                                                                     NaN
                                                                                                                                                                                                                                                                    NaN
                                                                                                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                                                                                                NaN
                                                                                                                                                                                                                                                                                                             NaN NaN
                                                                                                                                                                                                                         NaN
                  NaN
                                NaN
                                            NaN
                                                         NaN
                                                                       NaN
                                                                                   NaN
                                                                                               NaN
                                                                                                             NaN
                                                                                                                           NaN
                                                                                                                                          NaN
                                                                                                                                                       NaN
                                                                                                                                                                   NaN
                                                                                                                                                                                 NaN
                                                                                                                                                                                              NaN
                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                                       NaN
                                                                                                                                                                                                                                                     NaN
                                                                                                                                                                                                                                                                    NaN
                                                                                                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                                                                                                NaN
                                                                                                                                                                                                                                                                                                             NaN
                                                                                                                                                                                                                                                                                                                          NaN
                                NaN
                                                          NaN
                                                                       NaN
                                                                                                 NaN
                                                                                                                                          NaN
                                                                                                                                                       NaN
                                                                                                                                                                    NaN
                                                                                                                                                                                              NaN
                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                                                                                                 NaN
                                                                                                                                                                                                                                                                                                             NaN
                                            NaN
                                                                                   NaN
                                                                                                              NaN
                                                                                                                           NaN
                                                                                                                                                                                 NaN
                                                                                                                                                                                                                          NaN
                                                                                                                                                                                                                                       NaN
                                                                                                                                                                                                                                                      NaN
                                                                                                                                                                                                                                                                    NaN
                                                                                                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                                                                                                                           NaN
                                NaN
                                                         NaN
                                                                                                                                                       NaN
                                                                                                 NaN
                                                                                                                           NaN
                                                                                                                                          NaN
                                                                                                                                                                                              NaN
                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                                        NaN
                                                                                                                                                                                                                                                      NaN
                                                                                                                                                                                                                                                                    NaN
                                                                                                                                                                                                                                                                                                 NaN
                                                                                                                                                                                                                                                                                                             NaN
                                                                                                                                                                                                                                                                                                                          NaN
                                                                                    NaN
                                                                                                                                                                                 NaN
                                                                                                                                                                                                                          NaN
                                                                                                                                                                                                                                                                                  NaN
 17889
                  NaN
                                NaN
                                            NaN
                                                         NaN
                                                                      NaN
                                                                                   NaN
                                                                                                NaN
                                                                                                             NaN
                                                                                                                           NaN
                                                                                                                                          NaN
                                                                                                                                                       NaN
                                                                                                                                                                    NaN
                                                                                                                                                                                 NaN
                                                                                                                                                                                              NaN
                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                         NaN
                                                                                                                                                                                                                                       NaN
                                                                                                                                                                                                                                                     NaN
                                                                                                                                                                                                                                                                    NaN
                                                                                                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                                                                                                NaN
                                                                                                                                                                                                                                                                                                             NaN
                                                                                                                                                                                                                                                                                                                          NaN
 17891 NaN
                                NaN
                                            NaN
                                                          NaN
                                                                      NaN
                                                                                   NaN
                                                                                                 NaN
                                                                                                             NaN
                                                                                                                           NaN
                                                                                                                                          NaN
                                                                                                                                                       NaN
                                                                                                                                                                   NaN
                                                                                                                                                                                 NaN
                                                                                                                                                                                              NaN
                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                          NaN
                                                                                                                                                                                                                                       NaN
                                                                                                                                                                                                                                                     NaN
                                                                                                                                                                                                                                                                    NaN
                                                                                                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                                                                                                NaN
                                                                                                                                                                                                                                                                                                             NaN
                                                                                                                                                                                                                                                                                                                           NaN
  17894 NaN
                                NaN
                                            NaN
                                                          NaN
                                                                       NaN
                                                                                   NaN
                                                                                                 NaN
                                                                                                              NaN
                                                                                                                           NaN
                                                                                                                                          NaN
                                                                                                                                                       NaN
                                                                                                                                                                    NaN
                                                                                                                                                                                 NaN
                                                                                                                                                                                              NaN
                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                          NaN
                                                                                                                                                                                                                                       NaN
                                                                                                                                                                                                                                                     NaN
                                                                                                                                                                                                                                                                    NaN
                                                                                                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                                                                                                NaN
                                                                                                                                                                                                                                                                                                             NaN
                                                                                                                                                                                                                                                                                                                           NaN
 17905 NaN
                                NaN
                                            NaN
                                                          NaN
                                                                       NaN
                                                                                   NaN
                                                                                                 NaN
                                                                                                              NaN
                                                                                                                           NaN
                                                                                                                                          NaN
                                                                                                                                                       NaN
                                                                                                                                                                    NaN
                                                                                                                                                                                 NaN
                                                                                                                                                                                              NaN
                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                          NaN
                                                                                                                                                                                                                                       NaN
                                                                                                                                                                                                                                                     NaN
                                                                                                                                                                                                                                                                    NaN
                                                                                                                                                                                                                                                                                  NaN
                                                                                                                                                                                                                                                                                                 NaN
                                                                                                                                                                                                                                                                                                             NaN
                                                                                                                                                                                                                                                                                                                           NaN
 17909 NaN
                                NaN
                                                        NaN
                                                                       NaN
                                                                                                NaN
                                                                                                                           NaN
                                                                                                                                          NaN
                                                                                                                                                                    NaN
                                                                                                                                                                                                            NaN
                                                                                                                                                                                                                                        NaN
                                                                                                                                                                                                                                                                                                 NaN
                                                                                                                                                                                                                                                                                                             NaN
1992 rows × 26 columns
                                                                                                                                                                                                                                                                                                                   In [109]:
 for column in df noPorters.columns:
            df\_ColumnesPos[df\_ColumnesPos.isna()["LS"] == True] = str(df\_noPorters.mean()[column].mean()) + "+0" = str(df\_noPorters.mean()[column].mean()] + "+0" = str(df\_noPorters.mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mean()[column].mea
```

Per poder aplicar la funció de valorPosicions he hagut d'emplenar els NaN amb "+0"

In [110]:

df_ColumnesPos

						Out[110]:
	LS	ST	RS	LW	LF	CF
0	88+2	88+2	88+2	92+2	93+2	93+2
1	91+3	91+3	91+3	89+3	90+3	90+3
2	84+3	84+3	84+3	89+3	89+3	89+3
3	59.84264724350119+0	59.84264724350119+0	59.84264724350119+0	59.84264724350119+0	59.84264724350119+0	59.84264724350119+0
4	82+3	82+3	82+3	87+3	87+3	87+3
17913	42+2	42+2	42+2	44+2	44+2	44+2
17914	45+2	45+2	45+2	39+2	42+2	42+2
17915	45+2	45+2	45+2	45+2	46+2	46+2
17916	47+2	47+2	47+2	47+2	46+2	46+2
17917	43+2	43+2	43+2	45+2	44+2	44+2

17918 rows × 26 columns

In [111]:

for columna in df ColumnesPos.columns:

df ColumnesPos[columna] = df ColumnesPos[columna].apply(valorPosicions)

In [112]:

df ColumnesPos

												Out[112]:
	LS	ST	RS	LW	LF	CF	RF	RW	LAM	CAM	RAM	LM
0	90.000000	90.000000	90.000000	94.000000	95.000000	95.000000	95.000000	94.000000	95.000000	95.000000	95.000000	93.000000
1	94.000000	94.000000	94.000000	92.000000	93.000000	93.000000	93.000000	92.000000	91.000000	91.000000	91.000000	91.000000
2	87.000000	87.000000	87.000000	92.000000	92.000000	92.000000	92.000000	92.000000	92.000000	92.000000	92.000000	91.000000
3	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647
4	85.000000	85.000000	85.000000	90.000000	90.000000	90.000000	90.000000	90.000000	91.000000	91.000000	91.000000	91.000000
17913	44.000000	44.000000	44.000000	46.000000	46.000000	46.000000	46.000000	46.000000	47.000000	47.000000	47.000000	46.000000
17914	47.000000	47.000000	47.000000	41.000000	44.000000	44.000000	44.000000	41.000000	42.000000	42.000000	42.000000	40.000000
17915	47.000000	47.000000	47.000000	47.000000	48.000000	48.000000	48.000000	47.000000	46.000000	46.000000	46.000000	46.000000
17916	49.000000	49.000000	49.000000	49.000000	48.000000	48.000000	48.000000	49.000000	47.000000	47.000000	47.000000	48.000000
17917	45.000000	45.000000	45.000000	47.000000	46.000000	46.000000	46.000000	47.000000	47.000000	47.000000	47.000000	48.000000
17918 :	rows × 26 c	olumns										

Juntar dataframes

Una vegada hem tractat les columnes que voliem incorporar ja ho podem juntar amb la resta

In [113]:

df_2

Out[113]:

	Age	Overall	Potential	Value	Wage	Preferred Foot	International Reputation		Skill Moves	Jersey Number	Loaned	Height	Weight	Crossing	Finisl
0	31	94	94	110500000.0	565000.0	1	5.0	4.0	4.0	10.0	0	5.7	159.0	84.0	(
1	33	94	94	77000000.0	405000.0	0	5.0	4.0	5.0	7.0	0	6.2	183.0	84.0	Ç
2	26	92	93	118500000.0	290000.0	0	5.0	5.0	5.0	10.0	0	5.9	150.0	79.0	1
3	27	91	93	72000000.0	260000.0	0	4.0	3.0	1.0	1.0	0	6.4	168.0	17.0	:
4	27	91	92	102000000.0	355000.0	0	4.0	5.0	4.0	7.0	0	5.1	154.0	93.0	{
17913	19	47	65	60000.0	1000.0	0	1.0	2.0	2.0	22.0	0	5.9	134.0	34.0	1
17914	19	47	63	60000.0	1000.0	0	1.0	2.0	2.0	21.0	0	6.3	170.0	23.0	į
17915	16	47	67	60000.0	1000.0	0	1.0	3.0	2.0	33.0	0	5.8	148.0	25.0	4
17916	17	47	66	60000.0	1000.0	0	1.0	3.0	2.0	34.0	0	5.1	154.0	44.0	í
17917	16	46	66	60000.0	1000.0	0	1.0	3.0	2.0	33.0	0	5.1	176.0	41.0	:

17918 rows × 645 columns

In [114]:

df_ColumnesPos

												Out[114]:
	LS	ST	RS	LW	LF	CF	RF	RW	LAM	CAM	RAM	LM
0	90.000000	90.000000	90.000000	94.000000	95.000000	95.000000	95.000000	94.000000	95.000000	95.000000	95.000000	93.000000
1	94.000000	94.000000	94.000000	92.000000	93.000000	93.000000	93.000000	92.000000	91.000000	91.000000	91.000000	91.000000
2	87.000000	87.000000	87.000000	92.000000	92.000000	92.000000	92.000000	92.000000	92.000000	92.000000	92.000000	91.000000
3	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647	59.842647
4	85.000000	85.000000	85.000000	90.000000	90.000000	90.000000	90.000000	90.000000	91.000000	91.000000	91.000000	91.000000
17913	44.000000	44.000000	44.000000	46.000000	46.000000	46.000000	46.000000	46.000000	47.000000	47.000000	47.000000	46.000000
17914	47.000000	47.000000	47.000000	41.000000	44.000000	44.000000	44.000000	41.000000	42.000000	42.000000	42.000000	40.000000
17915	47.000000	47.000000	47.000000	47.000000	48.000000	48.000000	48.000000	47.000000	46.000000	46.000000	46.000000	46.000000
17916	49.000000	49.000000	49.000000	49.000000	48.000000	48.000000	48.000000	49.000000	47.000000	47.000000	47.000000	48.000000
17917	45.000000	45.000000	45.000000	47.000000	46.000000	46.000000	46.000000	47.000000	47.000000	47.000000	47.000000	48.000000
17918	rows × 26 d	columns										
4												Þ
												In [115]:
df_2	= pd.con	cat([df_2	2, df_Col	umnesPos]	, axis=1	, sort =F	alse)					
												In [116]:
df_2												

Out[116]:

	Age	Overall	Potential	Value	Wage	Preferred Foot	International Reputation		Skill Moves	Jersey Number	Loaned	Height	Weight	Crossing	Finisl
0	31	94	94	110500000.0	565000.0	1	5.0	4.0	4.0	10.0	0	5.7	159.0	84.0	į
1	33	94	94	77000000.0	405000.0	0	5.0	4.0	5.0	7.0	0	6.2	183.0	84.0	ć
2	26	92	93	118500000.0	290000.0	0	5.0	5.0	5.0	10.0	0	5.9	150.0	79.0	{
3	27	91	93	72000000.0	260000.0	0	4.0	3.0	1.0	1.0	0	6.4	168.0	17.0	:
4	27	91	92	102000000.0	355000.0	0	4.0	5.0	4.0	7.0	0	5.1	154.0	93.0	{
17913	19	47	65	60000.0	1000.0	0	1.0	2.0	2.0	22.0	0	5.9	134.0	34.0	:
17914	19	47	63	60000.0	1000.0	0	1.0	2.0	2.0	21.0	0	6.3	170.0	23.0	į
17915	16	47	67	60000.0	1000.0	0	1.0	3.0	2.0	33.0	0	5.8	148.0	25.0	4
17916	17	47	66	60000.0	1000.0	0	1.0	3.0	2.0	34.0	0	5.1	154.0	44.0	į
17917	16	46	66	60000.0	1000.0	0	1.0	3.0	2.0	33.0	0	5.1	176.0	41.0	:

17918 rows × 671 columns

Segona predicció

val = df_2.pop("Value")

Ara passam a fer la predicció d'aquesta prova per veure amem si els resultats han millorat

In [117]:

In [118]:

In [119]:

```
X_train, X_test, y_train, y_test = train_test_split(df_2, val, test_size=0.33, random_state=42)
```

```
for i in X_test.columns:
   if i == "Loaned" or i == "Preferred Foot":
     pass
```

```
elif i == "clb 1. FC Heidenheim 1846":
     break
   else:
     if (X train[i].std()!=0):
       X_{\text{test}[i]} = (X_{\text{test}[i]} - X_{\text{train}[i]}.mean())/X_{\text{train}[i]}.std()
       X train[i] = (X train[i]-X train[i].mean())/X train[i].std()
     else:
       X train.pop(i)
       X test.pop(i)
                                                                                                                         In [120]:
for i in df ColumnesPos.columns:
   if (X train[i].std()!=0):
     X_{\text{test}[i]} = (X_{\text{test}[i]} - X_{\text{train}[i]}.mean())/X_{\text{train}[i]}.std()
     X train[i] = (X_train[i]-X_train[i].mean())/X_train[i].std()
     X train.pop(i)
     X test.pop(i)
                                                                                                                         In [121]:
X test
                                                                                                                        Out[121]:
                                                                     Weak
                                            Preferred
                                                     International
                                                                               Skill
                                                                                       Jersey
                                     Wage
                  Overall Potential
           Age
                                                                                             Loaned
                                                                                                       Height
                                                                                                                Weight Crossing
                                                Foot
                                                       Reputation
                                                                             Moves
                                                                                     Number
                                                                     Foot
                                                        -0.285658 0.078287
                                                                                                  0 0.457922
12491 1.488645
                                                                                                                       0.607804
                                                   1
                0.463036 1.366741 0.361748
                                                                           0.488667 1.038409
                                                                                                              1.142576
       0.632663 0.112284
                                                   0
                                                        -0.285658 0.078287
                                                                                    3.052964
                                                                                                     0.902818  0.841547
                         0.714593 0.361748
                                                                           0.488667
                                                                                                                        0.593558
                         0.426667
                                                                                    0.883296
                                                        -0.285658
                                                                                                    0.457922 0.521527
13940
                                                   1
       1.293295 0.750696
                                  0.408015
                                                                  1.430282 0.488667
                                                                                                                        0.975809
      2.558622 0.975265 0.263630
                                                   0
                                                        2.235906 0.078287 0.839184
                                                                                                     0.235474
                                                                                                                        1.426915
                                                                                                              1.270584
                                  0.130409
                                                                                    0.356514
                0.831435 1.241853 1.627764
                                                        -0.285658 0.078287
                                                                                                  1 0.680370 0.841547
 3194
                                                   0
                                                                                    0.263391
       0.223318
                                                                           0.488667
                                                                                                                       0.156699
                                                                                                    0.680370 0.438533
                                                        -0.285658 0.078287
                                                   0
                                                                                    0.201401
                                                                                                                       0.717019
       0.488667
                                                   0
                                                                                                    0.457922 1.545591 0.061731
       0.437314 1.038356 1.203704 0.408015
                                                                  1.430282 0.488667 0.914428
               1.550585 1.404890 3.247134
                                                   0
                                                        2.235906 1.586857 0.839184 1.069268
                                                                                                     0.680370
                                                                                                                       1.426915
 1041
       0.009323
                                                                                                              0.054509
 5996 0.418668 0.399945
                                                   0
                                                        -0.285658 0.078287
                                                                                    0.077420
                                                                                                                        0.771626
                         0.388519 0.222945
                                                                           0.488667
                                                                                                     1.544110 0.886561
13461 0.632663
                                                        -0.285658 0.078287
                                                                                                                        0.334768
                0.606866 1.529779 0.408015
                                                                                                     0.209422 1.718612
                                                                           0.488667 0.356514
5913 rows × 670 columns
4
                                                                                                                         In [122]:
reg = linear model.LinearRegression().fit(X train, y train)
                                                                                                                         In [123]:
preds = reg.predict(X_test)
                                                                                                                         In [124]:
resultatProva2=r2 score(preds, y test)
                                                                                                                         In [125]:
```

resultatProva2

Out[125]: 0.9705504757867881 In [126]: resultatProva1 Out[126]: 0.9705253876991475 In [127]: resultatProva2-resultatProva1

2.5088087640567913e-05

Out[127]:

Com veim la millora no ha estat molt significativa per tant això indica que les columnes de les posicions no aporten molta informació a l'hora de determinar el valor d'un jugador Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js