Olimpiada Națională de Matematică 2007 Etapa județeană și a Municipiului București 3 martie 2007

CLASA A IX-A, SOLUTII SI BAREMURI

Subiectul 1. Varianta generalizată Fie $k \in \mathbb{N}^*$. Spunem că o funcție $f: \mathbb{N} \to \mathbb{N}$ are proprietatea (\mathcal{P}) dacă pentru orice $y \in \mathbb{N}$ ecuația f(x) = y are exact k soluții.

- a) Să se arate că există o infinitate de funcții cu proprietatea (\mathcal{P}) ;
- b) Să se determine funcțiile monotone cu proprietatea (\mathcal{P}) ;
- c) Să se determine dacă pentru k > 1 există funcții monotone $f : \mathbb{Q} \to \mathbb{Q}$ cu proprietatea (\mathcal{P}) .

Soluție. a) Fie $\sigma : \mathbb{N} \to \mathbb{N}$ bijectivă, și fie $f_{\sigma} : \mathbb{N} \to \mathbb{N}$ definită prin $f_{\sigma}(x) = \sigma(\lfloor \frac{x}{k} \rfloor)$. Este clar că funcțiile f_{σ} au proprietatea (\mathcal{P}) , iar mulțimea lor este infinită (chiar nenumărabilă).

- b) Dacă f este descrescătoare, şirul $(f(n))_{n\geq 0}$ devine staționar, contrazicând (\mathcal{P}) . Deci căutăm f crescătoare. Dar atunci primele k valori ale şirului $(f(n))_{n\geq 0}$ trebuie să fie 0, următoarele k trebuie să fie 1, ş.a.m.d. Atunci singura posibilitate rămâne $f(x) = f_{id}(x) = \lfloor \frac{x}{k} \rfloor$.
- c) Dacă $f(x_1) = f(x_2) = y$, $x_1 \neq x_2$, cum între x_1 și x_2 există o infinitate de numere raționale x (de exemplu luând medii aritmetice), și f este monotonă, rezultă f(x) = y pentru toate aceste valori x, contrazicând (\mathcal{P}), deci nu există astfel de funcții.

Subiectul 2. Fie triunghiul ABC și punctele $M \in (AB), N \in (BC), P \in (CA), R \in (MN), S \in (NP), T \in (PM), astfel încât$

$$\frac{AM}{MB} = \frac{BN}{NC} = \frac{CP}{PA} = \lambda, \quad \frac{MR}{RN} = \frac{NS}{SP} = \frac{PT}{TM} = 1 - \lambda, \quad \lambda \in (0, 1).$$

a) Să se demonstreze că triunghiul STR este asemenea cu triunghiul ABC;

b) Să se determine valoarea parametrului λ astfel încât aria triunghiului STR să fie minimă.

Soluție. a) Notând cu litere grase vectorii determinați de segmente

$$\mathbf{RT} = \mathbf{RM} + \mathbf{MT} = \frac{1-\lambda}{2-\lambda}\mathbf{NM} + \frac{1}{2-\lambda}\mathbf{MP}$$
, deci

$$\mathbf{RT} = \frac{1-\lambda}{2-\lambda}(\mathbf{NB} + \mathbf{BM}) + \frac{1}{2-\lambda}(\mathbf{MA} + \mathbf{AP}).$$

Efectuând calculele de rigoare, $\mathbf{RT} = \rho \mathbf{BC}$, $\mathbf{TS} = \rho \mathbf{AB}$, $\mathbf{SR} = \rho \mathbf{CA}$, deci \mathbf{RT} , \mathbf{TS} , \mathbf{SR} sunt paralele respectiv cu \mathbf{BC} , \mathbf{AB} , \mathbf{CA} , triunghiurile STR şi ABC sunt asemenea, şi raportul de asemănare este $\rho = \frac{1-\lambda+\lambda^2}{2+\lambda-\lambda^2} > 0$ pentru $\lambda \in (0,1)$.

Subiectul 3. Să se determine funcțiile $f: \mathbb{N}^* \to \mathbb{N}^*$ pentru care

$$x^2 + f(y)$$
 divide $f(x)^2 + y$

pentru orice $x, y \in \mathbb{N}^*$.

Soluție. Pentru x = y = 1 obținem

$$\frac{f(1)^2 + 1}{1 + f(1)} = f(1) - 1 + \frac{2}{1 + f(1)} \in \mathbb{N}^*,$$

deci f(1) = 1. Acum, deoarece $x^2 + f(y)$ divide $f(x)^2 + y$, rezultă că

$$x^2 + f(y) \le f(x)^2 + y.$$

Pentru $y=1, \ f(x)^2-x^2\geq f(1)-1=0,$ aşadar, pentru orice $x\in\mathbb{N}^*,$ $f(x)\geq x.$

Pentru x=1, obţinem $1+y\geq 1+f(y)$, aşadar, pentru orice $y\in\mathbb{N}^*$, $f(y)\leq y.$

Pentru relația $f(x) \ge x$
Subiectul 4. Fie trei vectori coplanari $\mathbf{u}, \mathbf{v}, \mathbf{w}$, fiecare de modúl 1. a) Să se demonstreze că putem alege semnele $+, -,$ astfel încât să avem $ \pm \mathbf{u} \pm \mathbf{v} \pm \mathbf{w} \leq 1$;
b) Să se dea un exemplu de trei vectori $\mathbf{u}, \mathbf{v}, \mathbf{w}$, pentru care oricum am alege semnele $+, -,$ să avem $ \pm \mathbf{u} \pm \mathbf{v} \pm \mathbf{w} \ge 1$.
Soluție. Considerăm toți vectorii $legați$ în originea O a unui sistem de coordonate.
a) Dacă pentru oricare doi dintre vectorii dați, fie ei \mathbf{x}, \mathbf{y} avem $\mathbf{x} = \pm \mathbf{y}$, concluzia este clară. Putem deci presupune, în cele ce urmează, contrariul acestui fapt.
Soluția 1. Vârfurile vectorilor $\mathbf{u} + \mathbf{v}, \mathbf{u} - \mathbf{v}, -\mathbf{u} - \mathbf{v}$ și $-\mathbf{u} + \mathbf{v}$ formează un romb de latură 2. Discurile de rază 1 centrate în aceste vârfuri acoperă în mod evident circumferința cercului de rază 1 centrat în O , deci vârful
vectorului w este la distanță cel mult 1 de unul din aceste vârfuri. Soluția 2. Dacă vârfurile vectorilor dați nu formează un triunghi ascuțitunghic, ele vor fi conținute pe un semicerc al cercului de rază 1 centrat în O , și
atunci, considerând vectorul opus celui cu vârful situat între celelalte două, vârful său va forma cu cele două un triunghi ascuţitunghic. Fie atunci $\mathbf{x}, \mathbf{y}, \mathbf{z}$
reprezentând $\mathbf{u}, \mathbf{v}, \mathbf{w}$, respectiv $-\mathbf{u}, \mathbf{v}, \mathbf{w}$ sau $\mathbf{u}, -\mathbf{v}, \mathbf{w}$ sau $\mathbf{u}, \mathbf{v}, -\mathbf{w}$, astfel încât vârfurile lor formează un triunghi ascuţitunghic XYZ . Să considerăm vectorul $\mathbf{h} = \mathbf{x} + \mathbf{y} + \mathbf{z}$. Avem
$<{\bf h}-{\bf x},{\bf y}-{\bf z}>=<{\bf y}+{\bf z},{\bf y}-{\bf z}>= {\bf y} ^2- {\bf z} ^2=0$
și celelalte două relații similare, deci \mathbf{h} corespunde ortocentrului H al tri- unghiului XYZ . Dar atunci $H \in \Delta XYZ$ și deci $OH = \mathbf{h} \leq 1$. \square Finalmente, o soluție pur vectorială (fără justificări geometrice) poate fi dată, dar va trebui să conțină considerații precise și detaliate, pentru a
suplini lipsa argumentului geometric. \Box b) Un exemplu îl constituie $\mathbf{u}=(1,0), \mathbf{v}=(0,1), \mathbf{w}=(0,-1).$ \Box
Pentru analiza sumelor algebrice a doi vectori2p.
Pentru argumentarea corectă a alegerii semnelor4p.
Pentru un exemplu la punctul b)