Measurement of Particle Geometric Surface Area Using a Modified Weighted Sum Method with a Time Resolution of 1S

Lipeng Su, Qisheng Ou, Nanying (Leo) Cao, and David Y. H. Pui

Center for Filtration Research, University of Minnesota

Presented at 53rd CFR Review Meeting, Prior Lake, MN April 25th, 2018

Outline

- ☐ Background and objective
- Methodology
- **□** Experiments
- **□**Summary

Significance of surface area

Catalytic activity

Drug action

CFR

Surface area

Health effect

Gas absorption

Main methods for surface area: offline

Brunauer-Emmett-Teller (BET)

Character:

- Surface area including pores
- Gas adsorption, direct
- High detection limit
- Ex-situ
- Time consuming, bulky & costly

Electron microscopy (TEM and SEM)

Character:

- 2D projected area-morphological information
- Low accuracy
- Ex-situ
- Time consuming, bulky & costly

Main Methods for surface area: online

Scanning Mobility Particle Sizer

- In minutes
- Working fluid
- Bulky & costly

Electrical Low Pressure Impactor (+)

- Inertia separation
- Wide size stage
- Low accuracy
- costly

Nanoparticle Surface Area Monitor

- Only lung-deposited surface area
- Reasonable size and cost
- 1s resolution

Main Method for surface area: online 2

Based on NSAM, *Cao and Pui et al., (2017a, 2017b) developed a Geometric Surface Area Monitor (GSAM) and an weighted-sum method.

- However, GSAM Needs additional impactor even to spherical particle;
- Weighted-sum method Needs ten or more seconds of response time

So far, NO instrument measures the particle geometric surface area (GSA) with a time-resolution of 1s

Objective

A simple method measuring geometric surface area (GSA) concentration of aerosol nanoparticles in real time with 1s resolution

Features:

- GSA, 1s response time
- Cost effective and Transportation friendly
- no working fluid, no radiation source, high accuracy, and large range.

Outline

Deackground and objective

■ Methodology

Experiments

□Summary

Methodology

Single Channel (Cao and Pui)

Electrometer Ion trap + Mixing High **़**low over and over 2400V Charger

Time/s

CFR

Two Parallel Channels (This Work)

Outline

Nackground and objective

Methodology

□ Experiments

■Summary

1. Calibration (electrometer)

setup

Monodisperse Singly charged particle

CFR

Reference electrometer: Using electrometer TSI 3068B

1. Calibration (electrometers)

results

- Testing particle size: 40nm, 100nm, 150nm, 200nm, 250nm, 300nm
- Good accuracy could be found in both electrometers
- Reference electrometer: Using electrometer TSI 3068B

- Ion trap: low voltage
- High voltage: from 300V to 2400V

2. Selection of appropriate voltage (spheres)

- Low voltage: 20V (default voltage): only removing excess ions;
 covering the whole size range
- High voltage: Which voltage should we choose?

S: Sensitivity

I: Electric current from electrometer 2 (corresponds to high voltage)

C: Particle concentration from CPC

2. Selection of appropriate voltage (spheres)

- Low voltage: 20V (default voltage): only removing excess ions;
 covering the whole size range
- High voltage: Which voltage should we choose?

l1	12	Fitting equation	R ²
20V	2400	$S = 3.23 \times 10^7 I_2 - 5.4 \times 10^5 I_1$	0.9868
_20V	_1800_	$S = 2.45 \times 10^7 I_2 - 1.49 \times 10^6 I_1$	0.9903
20V	1200	$S = 1.84 \times 10^7 I_2 - 2.5 \times 10^6 I_1$	0.9901
20V	600	$S = 1.89 \times 10^7 I_2 - 7.04 \times 10^6 I_1$	0.9661
20V	300	$S = 2.53 \times 10^7 I_2 - 1.55 \times 10^7 I_1$	0.9642

1200V is selected, which is a **tradeoff** between:

- minimal sensitivity limit (enough signal-to-noise ratio)
- Goodness of fitting (under different high voltages)

3. Validation (New method vs. SMPS) setup

- High voltage:1200V, Ion trap: 20V
- Compared to SMPS (Polydisperse particles)

3. Validation A (New Method vs. SMPS)

Polydisperse KCl aerosol (salt)

3. Validation B (New Method vs. SMPS)

☐Polydisperse **DEHS** aerosol (oil)

The developed method can successfully measure the GSA of spherical particle in a polydisperse distribution with the

4. Setup diagram- Agglomerate

□ Furnace 1: 1200°C (generating silver spheres); Furnace 2: room temperature to 600°C (sintering to tune aggregates structure)^a

5. Results -Agglomerate

Effect of sintering temperature (Change of particle morphology)

- Increasing temperature, particle size distribution changes.
- Increasing temperature, the sensitivity decreases significantly
- Comparing to spheres, higher sensitivities were found for aggregates

Outline

Deackground and objective

Methodology

Experiments

□Summary

- The developed method (by combining one ion trap and one ESP) can successfully measure the Particle Geometric Surface Area of polydisperse aerosols with the following features:
 - With 1s time resolution
 - In a wide concentration range
 - Adapting to polydisperse particle distribution
 - Cost-effective
 - With simple setup

Future work

- Developing the method that can measure GSA of Agglomerate particles with 1s response time
- Adding APM (Aerosol Particle Mass Analyzer) to the set-up to offer more substantial and valuable information for agglomerates
- Investigating the effect of humidity on the GSA measurement by the developed method to apply it to different operating conditions

Thank you

Appendix 1-Practical model

Front side

Appendix-Calibration setup

- Monodisperse Particle loss calibration: The first NSAM charger and ion trap on while the second NSAM charger and ion trap off. Comparing results between two NSAMs.
- Polydisperse calibration is similar to Monodisperse calibration

CFR

Appendix 3-Loss calibration

first current-second current <5% first current

The developed method has a negligible particle loss in 40 to 300nm, confirming the feasibility of new set-up

