1. بارگذاری دادهها

- دادههای ورودی:
- فایل fer2013.csv شامل تصاویر چهره با وضوح 48×48 به همراه بر چسبهای استفاده (Training, PrivateTest, PublicTest) است.
- هر تصویر به صورت یک آرایه از مقادیر پیکسل ذخیره شده است.
 - پیشیردازش دادهها:
 - دادهها به سه مجموعه برای آموزش (Training)، اعتبارسنجی (Validation)، و آزمون (Testing) تقسیم میشوند.
- تصاویر از آرایههای پیکسل بازسازی شده، به ابعاد 128×128 تغییر اندازه داده شده و نویزنمک و فلفل به آنها اضافه می شود.

2. پیشپردازش تصویر

- بازسازی تصویر:
- تصاویر از فرمت تککاناله (grayscale) به تصاویر سهکاناله (RGB) تبدیل میشوند.
 - تمام مقادیر پیکسلها به بازه [0, 1] نرمالسازی میشوند.
 - افزودن نویز:
- نویز "نمک و فلفل" با نسبتهای مشخص به تصاویر افزوده میشود.

3. معماری مدلها

3.1. مولد (Generator)

- معماری U-Net با بخشهای زیر پیادهسازی شده است:
 - بخش کدگذار (Encoder):
- شامل لايههاى Conv2D، LeakyReLU، و

BatchNorm2D است.

- تصاویر ورودی را به نمایشهای سطح پایینتر فشرده
- مىكند.
- بخش دیکدگذار (Decoder):

- از لایههای ConvTranspose2D برای بازسازی ابعاد اصلی تصاویر استفاده می کند.
- اتصالات مستقیم (Skip Connections) بین انکودر وجود دارد تا اطلاعات مکانی حفظ شود.
 - لايه خروجي:
- یک لایه کانولوشنی برای تولید تصویر سه کاناله با مقادیر نرمال شده به بازه [0, 1].

3.2. متمايز كننده (Discriminator)

- شبکهای با معماری کانولوشنی شامل:
- چندین لایه Conv2D با کاهش ابعاد تدریجی (stride=2).
 - فعالسازىهاى LeakyReLU براى معرفى غيرخطيت.
 - BatchNorm2D برای پایدارسازی یادگیری.
- وظیفه این شبکه، طبقهبندی تصاویر ورودی به دو دسته "واقعی" و "جعلی" است.

4. فرآيند آموزش

- تابع هزینه:
- از MSELoss برای آموزش مولد استفاده شده است.
 - بهینهساز:
- Adam Optimizer با نرخ یادگیری 0.001 برای بهینهسازی پارامترهای

شبكه.

- فرآیند آموزش:
- در هر ایپوک:
- 1. تصاویر نویزی به مدل داده شده و خروجی بازسازی شده

محاسبه میشود.

2. خطای بازسازی بین تصاویر تمیز و بازسازی شده

محاسبه و مدل بهروزرسانی میشود.

• بهترین مدل ذخیره میشود.

5. معیارهای ارزیابی

- PSNR (نسبت سیگنال به نویز پیک):
- محاسبه میزان شباهت بین تصاویر تمیز و بازسازی شده.
 - رسیدن به مقدار 37.19
 - SSIM (اندازهگیری ساختاری شباهت):
 - ارزیابی شباهت ساختاری بین تصاویر.
 - رسیدن به مقدار 0.9774
 - MSE (میانگین مربع خطا):
- محاسبه خطای میانگین پیکسلها بین تصاویر تمیز و بازسازی شده.
 - رسیدن به مقدار 0.000193