EPITAXIAL AVALANCHE DIODES

Glass passivated rectifier diodes in hermetically sealed axial-leaded ID* envelopes. They feature low forward voltage drop, very fast recovery, very low stored charge, non-snap-off switching characteristics and are capable of absorbing reverse transient energy (e.g. during flashover in a picture tube). These properties make the diodes very suitable for use in switched-mode power supplies and in general high-frequency circuits, where low conduction and switching losses are essential.

QUICK REFERENCE DATA

		BDY74A	В	С	D	E	F	G	
Repetitive peak reverse voltage	v_{RRM}	max. 50	100	150	200	250	300	400	٧
Continuous reverse voltage	٧R	max, 50	100	150	200	250	300	400	٧
Average forward current	lF(AV)	max. 2,4	2,4	2,4	2,4	2,15	2,15	2,15	Α
Non-repetitive peak forward current	^I FSM	max. 50	50	50	50	50	50	50	Α
Non-repetitive peak reverse energy	ERSM	max. 40	40	40	40	40	40	40	mJ
Reverse recovery time	" t _{rr}	< 25	25	25	25	50	50	50	ns

MECHANICAL DATA

Fig. 1 SOD-84.

Dimensions in mm

The marking band indicates the cathode.

^{*} Implosion diode.

BYD74 SERIES

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

		BY	D74A	В	С	D	E	F	G		
Repetitive peak reverse voltage	v_{RRM}	max.	50	100	150	200	250	300	400	V	
Continuous reverse voltage	٧R	max.	50	100	150	200	250	300	400	٧	
Average forward current square wave; $\delta = 0.5$ $T_{tp} = 55 ^{\circ}\text{C}$; lead length = 10 mm $T_{amb} = 60 ^{\circ}\text{C}$; Fig. 2	IF(AV)		2,4 1,35	2,4 1,35	2,4 1,35	2,4 1,35	2,15 1,2	2,15 1,2	2,15 1,2		
Repetitive peak forward current T _{tp} = 55 °C; see Figs 11 and 13 T _{amb} = 60 °C; see Figs 12 and 14	IFRM	max.	21	21 13	21	21 13	21	21	21	Α	
Non-repetitive peak forward current (t = 10 ms; half sine-wave) $T_j = T_{j \text{ max}}$ prior to surge; with reapplied V_{RRM}	FSM	max.		1	•	50		•	'	A	
Non-repetitive peak reverse avalanche energy; with inductive load switched-off: I _R = 820 mA at T _j = 25 °C											
prior to surge	ERSM	max.				40				mJ	

max.

max.

Junction temperature THERMAL RESISTANCE

prior to surge

Storage temperature

 $I_R = 580 \text{ mA}$ at $T_i = T_{i \text{ max}}$

Influence of mounting method

1. Thermal resistance from junction to tie-point at a lead length of 10 mm

2. Thermal resistance from junction to ambient when mounted on a 1,5 mm thick epoxy-glass printed-circuit

(see "Thermal model")

board; Cu-thickness ≥ 40 μm

50

 $R_{th j-a} =$

ERSM

Tsta

 T_i

Rth j-tp =

50

105

20

175

-65 to +175

K/W

K/W

mJ ٥С

o_C

Fig. 2 Mounted on a printed-circuit board.

CHARACTERISTICS

Epitaxial avalanche diodes

T_i = 25 °C unless otherwise specified

		BYD74A		В	C	D	E	F	G	
Reverse avalanche breakdown voltage										
$I_R = 0.1 \text{ mA}$	V _{(BR)R}	>	55	110	165	220	275	330	440	٧
Forward voltage*				1						
$I_F = 2 A; T_j = T_{j max}$	V_{F}	<	0,72	0,72	0,72	0,72	0,82	0,82	0,82	٧
I _F = 2 A	٧F	<	0,94	0,94	0,94	0,94	1,05	1,05	1,05	٧
Reverse current										
$V_R = V_{RRMmax}$; $T_i = 25$ °C	I _R	<	1	1	1	1	1	1	1	μΑ
$V_R = V_{RRMmax}$; $T_j = 165 {}^{\circ}C$	I _R	<	150	150	150	150	150	150	150	μΑ
Reverse recovery time when switched from $I_F = 0.5$ A to $I_R = 1$ A; measured at $I_R = 0.25$ A. For										
definition see Figs 3 and 4	t _{rr}	<	25	25	25	25	50	50	50	ns

Input impedance oscilloscope 1 M Ω ; 22 pF. Rise time \leq 7 ns. Source impedance 50 Ω . Rise time \leq 15 ns.

Fig. 4 Reverse recovery time characteristic.

^{*} Measured under pulse conditions to avoid excessive dissipation.

N AMER PHILIPS/DISCRETE BYD74 SERIES ||

69E D ■ 6653931 0026623 358 ■ APX

Fig. 5 BYD74A; B; C; D. Forward voltage; $---- T_j = 25 \text{ °C}; ---- T_j = T_j \text{ max}.$

state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.

Fig. 6 BYD74A; B; C; D. Maximum values steady

 $a = I_F(RMS)/I_F(AV)$; $V_R = V_{RRMmax}$, $\delta = 0.5$.

Fig. 7 BYD74A; B; C; D. Maximum average forward current as a function of temperature; the curves include losses due to reverse leakage. The graph is for switched-mode application.

V_R = V_{RRMmax}, δ = 0,5; a = 1,42.

--- = ambient temperature and device mounted as shown in Fig. 2

= tie-point temperature

69E D

6653931 0026624 294 ■APX **BYD74 SERIES**

Epitaxial avalanche diodes

Fig. 8 BYD74E; F; G. Forward voltage; $T_i = 25 \, ^{\circ}C; --- T_i = T_i \, _{max}.$

Fig. 9 BYD74E; F; G. Maximum values steady state power dissipation (forward plus leakage current) excluding switching losses as a function of the average forward current.

The graph is for switched-mode application.

 $a = I_{F(RMS)}/I_{F(AV)}$; $V_{R} = V_{RRMmax}$, $\delta = 0.5$.

Fig. 10 BYD74E; F; G. Maximum average forward current as a function of temperature; the curves include losses due to reverse leakage.

The graph is for switched-mode application.

 $V_R = V_{RRMmax}$, $\delta = 0.5$; a = 1.42.

— — = ambient temperature and device mounted as shown in Fig. 2

= tie-point temperature

Fig. 11 BYD74A; B; C; D. Maximum repetitive peak forward current as a function of the pulse time (square pulse) and duty-factor δ at $T_{tie-point}$ = 55 °C; $R_{th\ j-tp}$ = 50 K/W; V_{RRM} during 1 $-\delta$; the curves include derating for $T_{j\ max}$ at V_{RRM} = 200 V.

Fig. 12 BYD74A; B; C; D. Maximum repetitive peak forward current as a function of the pulse time (square pulse) and duty factor δ at T_{amb} = 60 o C; R_{th} $_{j-a}$ = 105 K/W; V_{RRM} during 1 $-\delta$; the curves include derating for T_{j} $_{max}$ at V_{RRM} = 200 V.

Fig. 13 BYD74E; F; G. Maximum repetitive peak forward current as a function of the pulse time (square pulse) and duty-factor δ at $T_{tie-point}$ = 55 °C; $R_{th\ j-tp}$ = 50 K/W; V_{RRM} during 1 $-\delta$; the curves include derating for $T_{j\ max}$ at V_{RRM} = 400 V.

Fig. 14 BYD74E; F; G. Maximum repetitive peak forward current as a function of the pulse time (square pulse) and duty-factor δ at T_{amb} = 60 °C; $R_{th\ j-a}$ = 105 K/W; V_{RRM} during 1 $-\delta$; the curves include derating for $T_{j\ max}$ at V_{RRM} = 400 V.

Fig. 15 Maximum values reverse current as a function of junction temperature; V_R = V_{RRMmax}.

Fig. 16 Capacitance as a function of reverse voltage; f = 1 MHz; $T_j = 25 \text{ °C}$; typical values.