ANALOG INTEGRATED CIRCUITS [15ES4GCAIC] SELF STUDY

in

ELECTRONICS AND COMMUNICATION ENGINEERING

by

A. Vipula

Akshit Bhalla

Amrutha M.

[1BM16EC007]

[1BM16EC015]

[1BM16EC018]

Under the supervision of

Dr. D. Seshachalam

February 28th, 2018

Department of Electronics and Communication Engineering

B.M.S COLLEGE OF ENGINEERING, Basavanagudi Bangalore-560019, India

Plot the frequency response curve for any practical circuit using 741 op-amp and verify the following equation:

$$(Bandwidth * Gain)_{openloop} = (Bandwidth * Gain)_{closedloop}$$

Solution

For Open Loop configuration, the $Bandwidth * Gain = 5 \times 2 \times 10^5 = 1 MHz$

Gain is represented in decibels. $Gain_{dB} = 20 \log_{10} Gain$ We have used Bode plot to represent the plot of $|Gain| \ vs. \ Frequency$ The circuit shown is an inverting amplifier. From the graph, in Closed Loop configuration:

- Bandwidth = 96.619kHz
- $Gain = 10^{22.973/20} = 14.081$
- $\therefore (Bandwidth*Gain)_{closedloop} = 1.36MHz \approx (Bandwidth*Gain)_{openloop}$

Figure 1: Circuit Diagram

Figure 2: Graph

Calculate various DC and AC electrical parameters for a given OPAMP and verify the same with various datasheet.

Solution

The Operational Amplifier used is LM358NS. Bias Point Analysis was performed in order to obtain the DC parameters of the circuit. Current and Voltage readings in every branch have been found.

- Input Bias Current $I_B = \frac{-48.23nA 41.70nA}{2} = -44.965nA$
- Input Offset Current $I_{OS} = -41.70nA (-48.23nA) = 6.53nA$
- Input Offset Voltage $V_{OS} = 3mV, V_{Output} = 962.2 \mu V \approx 0V$

The values obtained are verified as per the datasheet given below.

л эросі	fied free-air temperature, \	Vee - 5 V (am	033 0010144	I III		LM158					
PARAMETER		TEST CONDITIONS(1)		T _A (2)	LM258			LM358			UNIT
					MIN	TYP(t)	MAX	MIN	TYP(t)	MAX	
V _{IO}	Input offset voltage	$V_{CC} = 5 \text{ V to MAX},$ $V_{IC} = V_{ICR(min)},$ $V_{O} = 1.4 \text{ V}$		25°C		3	5		3	7	m∨
V _{IO}				Full range			7			9	
αV _{IO}	Average temperature coefficient of input offset voltage			Full range		7			7		μV/°C
L _o	Input offset current	V _o = 1.4 V		25°C		2	30		2	50	nA
40				Full range			100			150	
al _{iO}	Average temperature coefficient of input offset current			Full range		10			10		pA/°C
l _o	Input bias current	Vo = 1.4 V		25°C		-20	-150		-20	-250	nA
		-0		Full range			-300			-500	
V _{IOR}	Common-mode input voltage range	V _{OC} = 5 V to MAX		25°C	0 to V ₀₀ – 1.5			0 to V ₀₀ – 1.5			~
				Full range	0 to V _{cc} – 2			0 to V _{cc} – 2			
V _{OH}	High-level output voltage	R _c ≥ 2 kΩ		25°C	V ₀₀ - 1.5			V ₀₀ - 1.5			
		R _L ≥ 10 kΩ		25°C							
		V ₀₀ = MAX	$R_L = 2 k\Omega$	Full range	26			26			
			$R_L \ge 10 \text{ k}\Omega$	Full range	27	28		27	28		
Vol	Low-level output voltage	$R_L \le 10 \text{ k}\Omega$		Full range		5	20		5	20	mV
A _{vD}	Large-signal differential voltage amplification	$V_{cc} = 15 \text{ V}$ $V_0 = 1 \text{ V to } 11 \text{ V},$ $R_c \approx 2 \text{ k}\Omega$		25°C	50	100		25	100		V/mV
				Full range	25			15			
CMRR	Common-mode rejection ratio	V _{CC} = 5 V to MAX, V _{IC} = V _{ICR(M41)}		25°C	70	80		65	80		dB
k _{e∨m}	Supply-voltage rejection ratio $(\Delta V_{DD} / \Delta V_{ID})$	V _{cc} = 5 V to MAX		25°C	65	100		65	100		dB
Vo ₁ /V _{o2}	Crosstalk attenuation	f = 1 kHz to 20 kHz		25*C		120			120		dB
ь	Output current	V _{DD} = 15 V, V _{ID} = 1 V, V _O = 0	Source	25°C	-20	-30		-20	-30		mA
				Full range	-10			-10			
		V ₀₀ = 15 V, V ₁₀ = -1 V, V ₀ = 15 V	Sink	25°C	10	20		10	20		
				Full range	5			5			
		V _{ID} = -1 V, V _O = 200 mV		25°C	12	30		12	30		μА
l _{oe}	Short-circuit output current	V ₀₀ at 5 V, GND at -5 V, V ₀ = 0		25°C		±40	±60		±40	±60	mA

Figure 3: Datasheet of LM358 Operational Amplifier

Figure 4: Circuit Diagram with Current Markers

Figure 5: Circuit Diagram with Voltage Markers

Design and simulate working of an Instrumentation amplifier for measuring temp change using wheat-stone bridge and instrumentation amplifier.

Solution

- \bullet R_4 is the Resistor which is the parameter under consideration.
- The resistance parameter is varied by graphical conditions. The resistor is analogue to the temperature.
- Assume, $R_1, R_2, R_3 = 100\Omega$ Initially $R_4 = 50\Omega$ Assume $Gain(G) = 10 : R_G = 49.4k/(G-1) = 5.488k\Omega$
- Due to supply voltage limiting factor the output of instrumentation saturates for $R_4 < 72\Omega$

Figure 6: Circuit Diagram

Figure 7: Graph

Design and Simulate a V to I converter with grounded load for an application. Measure sensitivity of the circuit.

Solution

- The Operational Amplifier used is LM741 and the application specified in this circuit is an LED Tester.
- The LED and the Load Resistance are connected in parallel to each other.
- The Op-Amp is sensing the input voltage thereby producing the output voltage which in turn produces a current flowing through the load. where, $I_L = V_i/R_f$
- The LED glows when required amount of current flows through it. The current flowing through the LED is $0.849 \, mA$.

Figure 8: Circuit Diagram

Figure 9: Circuit Diagram with Current Markers

Figure 10: Simulation Settings

Figure 11: Output File

Design and Simulate an experiment to Plot transfer characteristics of any practical amp.

Solution

Inverting Open Loop Configuration

- The practical Operational Amplifier LM101A was used for this simulation experiment
- An input voltage of 0.7 V is provided to the inverting terminal. The non-inverting terminal is grounded.
- The circuit was constructed as show in Figure 12.

Figure 12: Circuit Diagram

Figure 13: Transfer Characteristics

Open Loop Configuration with Inverting and Non-Inverting Inputs - 1

- The practical Operational Amplifier LM101A was used for this simulation experiment
- An input voltage of 0.7 V is provided to the inverting terminal and 0.3 V to the non-inverting terminal. $V_{inv} > V_{non-inv}$
- The circuit was constructed as show in Figure 14.

Figure 14: Circuit Diagram

Figure 15: Transfer Characteristics

Open Loop Configuration with Inverting and Non-Inverting Inputs - 2

- The practical Operational Amplifier LM101A was used for this simulation experiment
- An input voltage of 0.3 V is provided to the inverting terminal and 0.7 V to the non-inverting terminal. $V_{inv} < V_{non-inv}$
- The circuit was constructed as show in Figure 16.

Figure 16: Circuit Diagram

Figure 17: Transfer Characteristics

Conclusion

- Graphs for open loop gain and closed loop gain could not be merged together on the same graph.
- The Op-Amp could not be modeled internally to change the pre-defined parameters.
- The 3 Op-Amp instrumentation amplifier could not be simulated since the maximum number of nodes in the circuit should be ≈ 75 . Instead a built-in instrumentation amplifier was used.