Some Useful Astronomical Definitions

(Ref: B&M S 2.3, Lena Ch. 2)

- Spectral Energy Distribution
- Flux, Flux Density, & Luminosity
- Magnitudes
- Measuring flux
- Color
- Absolute Magnitude
- Parsec
- An Example

Spectral Energy Distribution

- The energy emitted from a source as a function of wavelength/frequency
- The whole SED of a source is difficult to measure

Transmission of the Atmosphere

- Optical, some infrared (IR), and Radio are easily accessible
- Other wavelengths require satellites/planes
 - 1) Absorption scattering
 - 2) Airglow
 - 3) Thermal emission

Flux Density, Flux

- Flux density: f_{ν} or f_{λ} , measured in units of W m⁻² Hz⁻¹ or W m⁻² μ m⁻¹ (or the equivalent)
- Flux: measured in units of W m⁻² (or the equivalent). To convert flux density to flux,

$$f = \nu f_{\nu}$$
 or $f = \lambda f_{\lambda}$

Luminosity

 For a source at a distance R & measured flux f, the luminosity is,

$$L_{\nu} = 4\pi R^2 f$$

- Luminosity is measured in units of Watts (I.e., J/s) or ergs/s, & it is determined for whatever wavelength/frequency the flux is determined at.
- Bolometric Luminosity: the luminosity of an object measured over all wavelengths

Magnitude

- The magnitude is the standard unit for measuring the apparent brightness of astronomical objects
- If m_1 and m_2 = magnitudes of stars with fluxes f_1 and f_2 , then,

$$m_1 - m_2 = -2.5 \log(f_1/f_2)$$

Alternatively,

$$f_1/f_2 = 10^{-0.4(m_1 - m_2)}$$

Note that 1 mag corresponds to a flux ratio of 2.5 Note that 5 mag corresponds to a flux ratio of 100 The lower the value of the magnitude, the brighter the object

Measuring flux

 We don't directly measure the flux that reaches us from a source. We measure:

$$f = \int_0^\infty f_
u T_
u F_
u R_
u d
u$$

- Where $f_v = \text{flux of the astronomical source}$
- T_v = the transmission of the atmosphere ~ e^{-a} .

$$air mass = a/a_0 = hypotnuse/adjacent = secz$$
 $m(z) = ksecz + constant$

- $F_v =$ Transmission of the filter
- R_v = Telescope efficiency

Effects of extinction: make standard stars measurements are different *z*

Filter Parameters

Camera 3, Filter F212N

H₂ line

Also available in Camera 2.

Thermal background important.

Central wavelength (µm)	Mean wavelength (µm)	Peak wevelength (µm)	FWHM (µm)	Range	MaxTr %	Pixel fraction
2.1211	2.1213	2.1228	0.0206	1%	90.90	0.63

Figure 11.89: Camera 3, Filter F212N

- Effective wavelength ($\lambda_{\rm eff}$) = the central wavelength of the filter
- The FWHM transmission of the filter: the λ difference over which f_{ν} falls to half its peak value

Photometric System

Table 1. UBVRIJHKLM Filters

Band	$\lambda_{ ext{eff}} \ \mu ext{m}$	$_{\mu \mathrm{m}}^{\mathrm{FWHM}}$	$f_X(m_X = 0)^*$ Jy^{**}	
U	0.365	0.066	1780	ultraviolet
В	0.445	0.094	4000	blue
V	0.551	0.088	3600	visible
\mathbf{R}	0.658	0.138	3060	red
I	0.806	0.149	2420	
J	1.220	0.213	1570	\downarrow near-infrared \downarrow
Η	1.630	0.307	1020	
K	2.190	0.390	636	
${f L}$	3.450	0.473	281	
M	4.750	0.460	154	

 $^{^*}m_X = 0$ for a star with spectral type and luminosity A0 $^{
m V}$

- Johnson & Morgan UBV system expanded into the infrared
- These filters are commonly referred to as bands or wavebands
- Flux density, mag, or luminosity in a particular band $X = f_X$, m_X , and L_X

^{**}Note: $1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{ Hz}^{-1}$.

Filters (continue)

Table 1. UBVRIJHKLM Filters

Band	$\lambda_{ ext{eff}} \ \mu ext{m}$	$_{\mu \rm m}^{\rm FWHM}$	$f_X(m_X = 0)^*$ Jy^{**}	
	0.365	0.066	1780	ultraviolet
В	0.445	0.094	4000	blue
V	0.551	0.088	3600	visible
\mathbf{R}	0.658	0.138	3060	red
I	0.806	0.149	2420	
J	1.220	0.213	1570	\downarrow near-infrared \downarrow
\mathbf{H}	1.630	0.307	1020	
K	2.190	0.390	636	
${f L}$	3.450	0.473	281	
M	4.750	0.460	154	

 $^{^*}m_X=0$ for a star with spectral type and luminosity A0 V.

- $f_X(m_X = 0)$ = zero point flux density of X. I.e., the flux density of a zero magnitude star (the star Vega)
- If the flux density of wavelength X is measured, then the mag is,

$$m = -2.5 \log \frac{f_x(\text{source})}{f_x(m_x = 0)}$$

^{**}Note: 1 Jy = 10^{-26} W m⁻² Hz⁻¹.

Color

• Color: the difference in mags measured in 2 different wavebands

$$m_X - m_Y = \text{constant} - 2.5 \log(f_X/f_Y)$$

Typically, it is written as X-Y

Absolute Magnitude

 If the flux F of a source is measured at a distance D, then the flux f measured from the same source at a distance d is,

$$f = (D/d)^2 F$$

 Absolute Magnitude: M is the apparent magnitude a source would have were it at a standard distance D = 10 pc. Thus,

$$m - M = -2.5 \log(f/F) = 5 \log(d/D) = 5\log(d) - 5$$

where *d* is measured in parsecs (pc).

Parsec - a commonly used measure of distance in extragalactic astronomy

FIGURE 2.1 As the Earth moves around the Sun trom position A to position B, an observer with a powerful telescope will see the nearby star appear to move from position a to position b among the background stars. This proves that the Earth moves around the Sun.

 Method: Parallax – the apparent displacement of an object caused by the motion of the observer

$$\theta = \frac{\text{Earth} - \text{Sun Distance}}{\text{Distance to Star}}$$

A star with a parallax angle of 1" is at a distance of 1 pc = 3.1×10^{16} m (~ 3.25 light years). I.e.,

$$D_{star} = \frac{D_{1AU}}{\theta}$$

$$= \frac{1AU}{1"} \cdot \frac{3600"}{1^{\circ}} \cdot \frac{180^{\circ}}{\pi} = 3.1 \times 10^{16} \text{m} = 1 \text{ pc}$$

An Example

• The Sun's absolute B magnitude is $M_{\rm B}$ = 5.48. At 1 astronomical unit (AU = 4.87x10⁻⁶ pc), the sun's apparent B mag is,

$$m_B = 5 \log(4.87 \times 10^{-6} \text{ pc}) - 5 + 5.48 = -26 \text{ mags at B}$$

• For galaxies, $M_{\rm B}$ = -7 to -26. I.e., very luminous galaxies have $M_{\rm B}$ = $m_{\rm B}$ (sun). Comparing solar & luminous galaxy *B*-band luminosities,

$$\frac{L_B(\mathrm{gal})}{L_B(\odot)} = \frac{f_B(\mathrm{gal})4\pi D_{10 \mathrm{pc}}^2}{f_B(\odot)4\pi d_{1 \mathrm{AU}}^2} = 4.2 \times 10^{12}$$

• I.e., it would take 4.2x10¹² suns to make up the luminosity of a massive galaxy,

Example (cont)

• The flux density of the sun can be calculated using the zero-point B-band flux density of $f_{\rm B}$ ($m_{\rm B}$ = 0) = 4000x10⁻²⁶ W m⁻² Hz⁻¹. So,

$$m_B(\odot) = -2.5 \log[f_B(\odot)/f_B(m_B = 0)]$$

can be rewritten

$$f_B(\odot) = f_B(m_B = 0) \times 10^{-[m_B(\odot)/2.5]}$$

 $f_B(\odot) = 4000 \times 10^{-26} \times 10^{-(-26/2.5)}$
 $f_B(\odot) = 1.00 \times 10^{-12} \text{ W m}^{-2} \text{ Hz}^{-1}$

Example (cont')

• What is the amount of *B*-band energy the earth receives per second from the sun?

At B band, the frequency is simply,

$$\nu = c/\lambda = 2.9979 \times 10^8 \text{ m}/0.44 \times 10^{-6} \text{ m} = 6.81 \times 10^{14} \text{ Hz}$$

Thus, the energy received per second is,

$$\nu f_B(\odot) 2\pi R_{\text{earth}}^2$$

$$= (6.81 \times 10^{14} \text{m}) (1.00 \times 10^{-12} \text{ W m}^{-2} \text{ Hz}^{-1}) 2\pi (6.4 \times 10^6 \text{ m})^2$$

$$= 1.76 \times 10^{17} \text{W}$$

By comparison, the Sun's *B*-band & bolometric luminosities are,

$$L_B(\odot) = \nu f_B(\odot) 4\pi R_{1 \text{ AU}}^2 = 1.9 \times 10^{26} \text{W}$$

 $L_{\text{Bol}} = 3.9 \times 10^{26} \text{ W}$