MSFT

Evan Day

2023-05-08

MSFT

Read Text file and Text Cleanning

The following table shows the tweet number per hour with a barplot.

paste all the text together group by hour, the following table shows an example of the text dataframe.

A tibble: 6 x 3
Groups: date [1]

```
##
     date
                time
                                    text
##
                <chr>
                                    <chr>
     <date>
## 1 2021-03-27 2021-03-27 16:00:00 " Grab a comfy seat a favorite bev and tune in~
## 2 2021-03-27 2021-03-27 17:00:00 " Kindly enter your newly created Microsoft em~
## 3 2021-03-27 2021-03-27 18:00:00 " This spring clean out your MicrosoftTeams ch~
## 4 2021-03-27 2021-03-27 19:00:00 " Make MicrosoftSearch uniquely yours with new~
## 5 2021-03-27 2021-03-27 20:00:00 " Those ears I have a small dividend portfol~
## 6 2021-03-27 2021-03-27 21:00:00 " We understand how important your account and~
## [1] "there are total 276 observation"
```

Sentiment Data frame with bing, afinn, and nrc

We start with the bing data frame

```
## # A tibble: 6 x 3
## # Groups:
               date [1]
##
     date
                time
                                     sentiment
##
     <date>
                <chr>>
                                         <dbl>
## 1 2021-03-27 2021-03-27 16:00:00
                                            21
## 2 2021-03-27 2021-03-27 17:00:00
                                             14
## 3 2021-03-27 2021-03-27 18:00:00
                                             66
## 4 2021-03-27 2021-03-27 19:00:00
                                            62
## 5 2021-03-27 2021-03-27 20:00:00
                                             19
## 6 2021-03-27 2021-03-27 21:00:00
                                             16
```

then, we normalize the sentiment, normalized data has mean = 0 // aother way is rescale to c(-3,3)

```
## # A tibble: 6 x 3
## # Groups:
               date [1]
##
     date
                time
                                     sentiment
##
     <date>
                <chr>
                                         <dbl>
## 1 2021-03-27 2021-03-27 16:00:00
                                        -0.403
## 2 2021-03-27 2021-03-27 17:00:00
                                        -0.581
## 3 2021-03-27 2021-03-27 18:00:00
                                         0.739
## 4 2021-03-27 2021-03-27 19:00:00
                                         0.637
## 5 2021-03-27 2021-03-27 20:00:00
                                        -0.454
## 6 2021-03-27 2021-03-27 21:00:00
                                        -0.530
```

and then, we plot the normalized sentiment against the time.

And then, we deal with the afinn sentiment dataframe

```
## # A tibble: 6 x 3
## # Groups:
               date [1]
                time
     date
                                    sentiment
     <date>
                <chr>
                                         <dbl>
##
## 1 2021-03-27 2021-03-27 16:00:00
                                       -0.235
## 2 2021-03-27 2021-03-27 17:00:00
                                       -0.235
## 3 2021-03-27 2021-03-27 18:00:00
                                        0.240
## 4 2021-03-27 2021-03-27 19:00:00
                                        0.128
## 5 2021-03-27 2021-03-27 20:00:00
                                       -0.590
## 6 2021-03-27 2021-03-27 21:00:00
                                       -0.515
```

and then, we plot the normalized sentiment against the time. // Aother method is rescale to c(-3,3)

AFINN

we compare the two sentiment plot together

using t-test to check the whether there is a difference between bing lexicon and afinn lexicon, however the distribution must be similar. (this is meaningless, because we have already normalize the data, the distributio will be almost the same

Warning: Missing null value, set to 0

```
## Response variable: numerical
## Explanatory variable: categorical (2 levels)
## n_afinn = 276, y_bar_afinn = 0, s_afinn = 1
## n_bing = 276, y_bar_bing = 0, s_bing = 1
## HO: mu_afinn = mu_bing
## HA: mu_afinn != mu_bing
## t = 0, df = 275
## p_value = 1
```


we should use the KS-test to check the distribution: as a result, reject the null h0, the distribution are different.

```
## Warning in ks.test(bing_afinn$bing, bing_afinn$afinn, alternative =
## "two.sided"): p-value will be approximate in the presence of ties
##
## Two-sample Kolmogorov-Smirnov test
##
## data: bing_afinn$bing and bing_afinn$afinn
## D = 0.097826, p-value = 0.1425
## alternative hypothesis: two-sided
```

Then, here is the method with nrc lexicon

```
## # A tibble: 6 x 12
## # Groups: date [1]
```

```
##
     date
                 time
                            anger anticipation disgust fear
                                                                  joy negative positive
##
     <date>
                 <chr>
                            <dbl>
                                          <dbl>
                                                   <dbl> <dbl> <dbl>
                                                                         <dbl>
                                                                                   <dbl>
## 1 2021-03-27 2021-03-2~
                                32
                                             96
                                                      15
                                                            40
                                                                   53
                                                                            62
                                                                                     239
## 2 2021-03-27 2021-03-2~
                                             99
                                                                           106
                                                                                     294
                                45
                                                      10
                                                            36
                                                                   77
## 3 2021-03-27 2021-03-2~
                                37
                                             85
                                                      14
                                                            27
                                                                   55
                                                                            73
                                                                                     252
## 4 2021-03-27 2021-03-2~
                                             94
                                                      16
                                                            35
                                                                            82
                                                                                     235
                                54
                                                                   71
## 5 2021-03-27 2021-03-2~
                                36
                                             56
                                                      19
                                                            36
                                                                   42
                                                                            59
                                                                                     156
## 6 2021-03-27 2021-03-2~
                                             47
                                23
                                                      12
                                                            21
                                                                   35
                                                                             47
                                                                                     136
## # ... with 3 more variables: sadness <dbl>, surprise <dbl>, trust <dbl>
##
## Attaching package: 'reshape2'
## The following object is masked from 'package:tidyr':
##
##
       smiths
```

No id variables; using all as measure variables

BING

MSFT

Stock Information

A tibble: 6 x 2

normalize the price data:

```
## # A tibble: 6 x 2

## time price

## $\( \cdot \text{chr} \rightarrow \cdot \text{dbl} \rightarrow

## 1 2021-03-26 03:00:00 -1.19

## 2 2021-03-26 04:00:00 -1.25

## 3 2021-03-26 05:00:00 -1.24

## 4 2021-03-26 06:00:00 -1.44

## 5 2021-03-26 07:00:00 -1.40

## 6 2021-03-26 08:00:00 -1.39
```

AFINN

2. Build the model dataframe:

```
## Joining, by = c("datetime", "date")
```

Here we need to deal with several questions: 1. Stock maket open at 9 am and close at 4 pm 2. At the open time, stock market record the XX:30, which is not consistent with sentimenat XX::00 3. At close time, stock market also record some stock price

Separate the dataframe into close data_frame and open data_frame

```
## # A tibble: 6 x 15
##
     datetime
                           price date
                                            time_stock anger anticipation disgust
##
     <dttm>
                           <dbl> <date>
                                            <chr>
                                                        <dbl>
                                                                     <dbl>
                                                                              <dbl>
## 1 2021-03-29 03:00:00 -0.884 2021-03-29 03:00
                                                            9
                                                                         38
                                                                                  1
## 2 2021-03-29 04:00:00 -0.892 2021-03-29 04:00
                                                           10
                                                                         52
                                                                                  3
                                                                                  3
## 3 2021-03-29 05:00:00 -0.892 2021-03-29 05:00
                                                           10
                                                                         48
## 4 2021-03-29 06:00:00 -0.781 2021-03-29 06:00
                                                           18
                                                                         39
                                                                                  7
## 5 2021-03-29 07:00:00 -0.873 2021-03-29 07:00
                                                           18
                                                                         32
                                                                                  4
## 6 2021-03-29 08:00:00 -0.724 2021-03-29 08:00
                                                           22
                                                                        51
                                                                                  7
## # ... with 8 more variables: fear <dbl>, joy <dbl>, negative <dbl>,
       positive <dbl>, sadness <dbl>, surprise <dbl>, trust <dbl>, state <chr>
## # A tibble: 6 x 15
##
     datetime
                           price date
                                            time_stock anger anticipation disgust
##
     <dttm>
                           <dbl> <date>
                                             <chr>
                                                        <dbl>
                                                                     <dbl>
                                                                              <dbl>
## 1 2021-03-29 09:00:00 -1.33
                                 2021-03-29 09:00
                                                           18
                                                                                  7
                                                                         54
## 2 2021-03-29 10:00:00 -1.12
                                 2021-03-29 10:00
                                                           27
                                                                         48
                                                                                  7
                                                                                  7
## 3 2021-03-29 11:00:00 -1.15 2021-03-29 11:00
                                                           23
                                                                         51
## 4 2021-03-29 12:00:00 -0.945 2021-03-29 12:00
                                                           22
                                                                         83
                                                                                  5
## 5 2021-03-29 13:00:00 -1.00 2021-03-29 13:00
                                                           35
                                                                         89
                                                                                 18
## 6 2021-03-29 14:00:00 -0.997 2021-03-29 14:00
                                                           49
                                                                         97
                                                                                 22
## # ... with 8 more variables: fear <dbl>, joy <dbl>, negative <dbl>,
       positive <dbl>, sadness <dbl>, surprise <dbl>, trust <dbl>, state <chr>
```

MSFT NRC Regression Model result

1. this is the model for total recording

```
##
## Call:
## lm(formula = price ~ anger + anticipation + disgust + fear +
##
       joy + negative + positive + sadness + surprise + trust, data = full_nrc)
##
## Residuals:
##
        Min
                   1Q
                        Median
                                      3Q
                                              Max
  -1.75620 -0.78035 -0.02109
                               0.76402
##
## Coefficients:
                 Estimate Std. Error t value Pr(>|t|)
##
                 0.120402
                             0.073823
## (Intercept)
                                         1.631
                                                 0.1051
## anger
                -0.141165
                             0.222939
                                       -0.633
                                                 0.5276
## anticipation 0.130523
                                                 0.5880
                             0.240377
                                         0.543
## disgust
                -0.023810
                             0.143664
                                       -0.166
                                                 0.8686
## fear
                 0.037835
                             0.207755
                                        0.182
                                                 0.8558
                 0.302331
                             0.249167
                                         1.213
                                                 0.2270
## joy
```

```
## negative
                0.610149
                            0.262925
                                      2.321
                                               0.0217 *
## positive
                -1.297312
                            0.306793 -4.229 4.21e-05 ***
                            0.165507
                                       1.383
## sadness
                 0.228880
                                               0.1689
## surprise
                 0.006483
                            0.178847
                                               0.9711
                                       0.036
## trust
                 0.311527
                            0.301079
                                       1.035
                                               0.3026
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.9102 on 141 degrees of freedom
## Multiple R-squared: 0.1958, Adjusted R-squared: 0.1388
## F-statistic: 3.433 on 10 and 141 DF, p-value: 0.0004712
## randomForest 4.7-1
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:gridExtra':
##
##
       combine
## The following object is masked from 'package:ggplot2':
##
##
      margin
## The following object is masked from 'package:dplyr':
##
##
       combine
##
## Attaching package: 'xgboost'
## The following object is masked from 'package:dplyr':
##
##
      slice
## [1] train-rmse:0.892824
## [2]
       train-rmse:0.735617
## [3]
       train-rmse: 0.627907
## [4]
       train-rmse: 0.556777
## [5]
       train-rmse: 0.507627
## [6]
       train-rmse:0.422059
## [7]
       train-rmse: 0.363159
## [8]
       train-rmse:0.314978
## [9]
       train-rmse:0.289112
## [10] train-rmse:0.266354
## [11] train-rmse:0.253880
## [12] train-rmse:0.230102
## [13] train-rmse:0.208537
## [14] train-rmse:0.185056
```

```
## [15] train-rmse:0.169309
  [16] train-rmse:0.159939
## [17] train-rmse:0.145049
## [18] train-rmse:0.126138
## [19] train-rmse:0.121070
## [20] train-rmse:0.103143
## [21] train-rmse:0.097552
## [22] train-rmse:0.086827
## [23] train-rmse:0.074241
  [24] train-rmse:0.065481
  [25] train-rmse:0.057157
## [26] train-rmse:0.051839
  [27] train-rmse:0.047281
## [28] train-rmse:0.044471
## [29] train-rmse:0.040884
## [30] train-rmse:0.036178
  [31] train-rmse:0.030739
  [32] train-rmse:0.026856
  [33] train-rmse:0.023000
  [34] train-rmse:0.019931
## [35] train-rmse:0.017271
## [36] train-rmse:0.015440
## [37] train-rmse:0.014278
  [38] train-rmse:0.013525
## [39] train-rmse:0.011691
  [40] train-rmse:0.010412
## [41] train-rmse:0.009492
## [42] train-rmse:0.008052
## [43] train-rmse:0.007238
## [44] train-rmse:0.006594
## [45] train-rmse:0.005940
  [46] train-rmse:0.005122
## [47] train-rmse:0.004736
## [48] train-rmse:0.004022
## [49] train-rmse:0.003486
## [50] train-rmse:0.003056
## [51] train-rmse:0.002720
## [52] train-rmse:0.002506
  [53] train-rmse:0.002249
  [54] train-rmse:0.002008
  [55] train-rmse:0.001870
  [56] train-rmse:0.001711
   [57] train-rmse:0.001635
## [58] train-rmse:0.001479
## [59] train-rmse:0.001325
## [60] train-rmse:0.001270
  [61] train-rmse:0.001152
  [62] train-rmse:0.001084
  [63] train-rmse:0.001031
## [64] train-rmse:0.001026
## [65] train-rmse:0.001026
## [66] train-rmse:0.001026
## [67] train-rmse:0.001026
## [68] train-rmse:0.001026
```

```
## [69] train-rmse:0.001026
## [70] train-rmse:0.001026
## [71] train-rmse:0.001026
## [72] train-rmse:0.001026
## [73] train-rmse:0.001026
## [74] train-rmse:0.001026
## [75] train-rmse:0.001026
## [76] train-rmse:0.001026
## [77] train-rmse:0.001026
## [78] train-rmse:0.001026
## [79] train-rmse:0.001026
## [80] train-rmse:0.001026
## [81] train-rmse:0.001026
## [82] train-rmse:0.001026
## [83] train-rmse:0.001026
## [84] train-rmse:0.001026
## [85] train-rmse:0.001026
## [86] train-rmse:0.001026
## [87] train-rmse:0.001026
## [88] train-rmse:0.001026
## [89] train-rmse:0.001026
## [90] train-rmse:0.001026
## [91] train-rmse:0.001026
## [92] train-rmse:0.001026
## [93] train-rmse:0.001026
## [94] train-rmse:0.001026
## [95] train-rmse:0.001026
## [96] train-rmse:0.001026
## [97] train-rmse:0.001026
## [98] train-rmse:0.001026
## [99] train-rmse:0.001026
## [100]
            train-rmse: 0.001026
```

2. this is the model for close recording

```
## Call:
  lm(formula = price ~ anger + anticipation + disgust + fear +
       joy + negative + positive + sadness + surprise + trust, data = full_nrc[which(full_nrc$state ==
##
       "close"), ])
##
##
## Residuals:
##
        Min
                  1Q
                       Median
  -1.49019 -0.74842 -0.04595 0.74792 1.58978
##
##
  Coefficients:
                Estimate Std. Error t value Pr(>|t|)
                 0.11662
                             0.10519
                                       1.109
                                               0.2715
## (Intercept)
                             0.37572
                                       0.269
                                               0.7889
## anger
                 0.10097
                                               0.5054
## anticipation -0.28169
                             0.42069
                                      -0.670
## disgust
                -0.46481
                                      -1.852
                                               0.0683 .
                             0.25100
## fear
                 0.12785
                             0.32057
                                       0.399
                                               0.6913
                                       1.172
                                               0.2452
## joy
                 0.51476
                             0.43917
                                       2.129
                                               0.0369 *
## negative
                 1.17796
                             0.55340
```

```
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.907 on 69 degrees of freedom
## Multiple R-squared: 0.2273, Adjusted R-squared: 0.1153
## F-statistic: 2.03 on 10 and 69 DF, p-value: 0.04304
  3. this is the model for open recording
##
## Call:
## lm(formula = price ~ anger + anticipation + disgust + fear +
       joy + negative + positive + sadness + surprise + trust, data = full_nrc[which(full_nrc$state ==
##
##
       "open"), ])
##
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -1.9377 -0.6536 0.1289 0.6586
                                  1.7734
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                0.14433
                           0.11237
                                     1.284 0.20387
               -0.52111
                           0.30809 -1.691 0.09586
## anger
## anticipation -0.01701
                           0.40638 -0.042 0.96675
## disgust
                0.12961
                           0.19529
                                    0.664 0.50941
## fear
                0.08222
                           0.31145
                                    0.264 0.79267
## joy
                0.33457
                           0.33460
                                    1.000 0.32131
## negative
                0.53520
                           0.37315
                                    1.434 0.15660
                           0.44945 -3.665 0.00052 ***
## positive
               -1.64718
                0.11202
## sadness
                           0.25242
                                   0.444 0.65876
## surprise
                0.10674
                           0.36051
                                   0.296 0.76817
## trust
                1.02171
                           0.56379 1.812 0.07487 .
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.92 on 61 degrees of freedom
## Multiple R-squared: 0.2745, Adjusted R-squared: 0.1555
## F-statistic: 2.308 on 10 and 61 DF, p-value: 0.02252
```

0.0116 *

0.1272

0.9095

0.8468

the most relative variable is the trust sentiment, plotting its plot and stock price

positive

surprise

sadness

trust

-1.35224

0.40891

0.02495

-0.08397

0.52122 - 2.594

0.43294 -0.194

1.544

0.114

0.26486

0.21870

NRC Decision Tree

maximum Tree


```
##
##
             Reference
  Prediction 0 1
##
            0 42 15
##
            1 29 66
##
##
##
                  Accuracy: 0.7105
                    95% CI : (0.6315, 0.7811)
##
##
       No Information Rate: 0.5329
       P-Value [Acc > NIR] : 5.776e-06
##
##
                     Kappa : 0.4114
##
##
    Mcnemar's Test P-Value : 0.05002
##
##
               Sensitivity: 0.5915
##
               Specificity: 0.8148
##
            Pos Pred Value: 0.7368
##
##
            Neg Pred Value: 0.6947
##
                Prevalence: 0.4671
            Detection Rate: 0.2763
##
      Detection Prevalence: 0.3750
##
##
         Balanced Accuracy: 0.7032
```

##

```
##
          'Positive' Class: 0
##
   [1]
        train-logloss:0.657048
##
   [2]
        train-logloss:0.622814
   [3]
        train-logloss:0.596351
##
   [4]
       train-logloss:0.570412
   [5]
        train-logloss:0.556099
   [6]
##
        train-logloss:0.547227
   [7]
        train-logloss:0.534710
   [8]
        train-logloss:0.527844
  [9]
        train-logloss:0.517701
  [10] train-logloss:0.509808
  [11] train-logloss:0.501983
  [12] train-logloss:0.494455
  [13] train-logloss:0.489532
  [14] train-logloss:0.485628
  [15] train-logloss:0.482740
  [16] train-logloss:0.480852
  [17] train-logloss:0.478051
   [18] train-logloss:0.476617
  [19] train-logloss:0.475370
  [20] train-logloss:0.472805
  [21] train-logloss:0.470710
## [22] train-logloss:0.469828
## [23] train-logloss:0.467960
  [24] train-logloss:0.465971
## [25] train-logloss:0.464123
  [26] train-logloss:0.462438
  [27] train-logloss:0.461512
  [28] train-logloss:0.460131
  [29] train-logloss:0.458885
  [30] train-logloss:0.458073
  [31] train-logloss:0.457518
  [32] train-logloss:0.456721
   [33] train-logloss:0.456067
   [34] train-logloss:0.455298
   [35] train-logloss:0.454496
   [36] train-logloss:0.453956
   [37] train-logloss:0.453466
  [38] train-logloss:0.452781
  [39] train-logloss:0.452387
## [40] train-logloss:0.451886
  [41] train-logloss:0.451267
## [42] train-logloss:0.450680
  [43] train-logloss:0.450268
  [44] train-logloss:0.450043
  [45] train-logloss:0.449804
## [46] train-logloss:0.449519
  [47] train-logloss:0.449350
  [48] train-logloss:0.449087
  [49] train-logloss:0.448723
## [50] train-logloss:0.448432
## [51] train-logloss:0.448224
```

```
## [52] train-logloss:0.447956
  [53] train-logloss:0.447608
  [54] train-logloss:0.447299
  [55] train-logloss:0.447151
   [56] train-logloss:0.447044
   [57] train-logloss:0.446865
  [58] train-logloss:0.446690
  [59] train-logloss:0.446490
   [60] train-logloss:0.446387
   [61] train-logloss:0.446257
   [62] train-logloss:0.446058
   [63] train-logloss:0.445964
   [64] train-logloss:0.445836
   [65] train-logloss:0.445626
   [66] train-logloss:0.445544
   [67] train-logloss:0.445418
   [68] train-logloss:0.445352
   [69] train-logloss:0.445274
  [70] train-logloss:0.445214
  [71] train-logloss:0.445125
  [72] train-logloss:0.445037
  [73] train-logloss:0.444921
  [74] train-logloss:0.444810
   [75] train-logloss:0.444744
   [76] train-logloss:0.444651
  [77] train-logloss:0.444577
  [78] train-logloss:0.444500
   [79] train-logloss:0.444407
  [80] train-logloss:0.444361
  [81] train-logloss:0.444296
   [82] train-logloss:0.444208
   [83] train-logloss:0.444131
   [84] train-logloss:0.444073
   [85] train-logloss:0.444037
   [86] train-logloss:0.443993
   [87] train-logloss:0.443903
  [88] train-logloss:0.443841
  [89] train-logloss:0.443791
   [90] train-logloss:0.443718
  [91] train-logloss:0.443672
  [92] train-logloss:0.443628
  [93] train-logloss:0.443591
   [94] train-logloss:0.443547
   [95] train-logloss:0.443489
  [96] train-logloss:0.443445
  [97] train-logloss:0.443414
   [98] train-logloss:0.443376
   [99] train-logloss:0.443328
## [100]
            train-logloss:0.443296
```

bing and Afinn regression

```
## Joining, by = "word"
```

```
## Joining, by = c("datetime", "date")
## Warning in log(price): NaNs produced
##
## Call:
## lm(formula = log(price) ~ negative + positive, data = full_bing)
##
## Residuals:
##
       Min
                 1Q
                      Median
                                   3Q
                                           Max
## -0.51978 -0.23892 -0.04478 0.28628 0.59593
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.1365357 0.0712993 -1.915 0.05931 .
## negative
               0.0056398 0.0014364 3.926 0.00019 ***
              -0.0021790 0.0009213 -2.365 0.02061 *
## positive
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.2946 on 75 degrees of freedom
     (74 observations deleted due to missingness)
## Multiple R-squared: 0.1736, Adjusted R-squared: 0.1515
## F-statistic: 7.877 on 2 and 75 DF, p-value: 0.0007852
##
## lm(formula = price ~ negative + positive, data = full_bing_close)
##
## Residuals:
##
       Min
                  1Q
                     Median
                                   3Q
                                           Max
## -1.58386 -0.89985 -0.03086 0.78201 1.45848
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0306825 0.1754229 -0.175
                                               0.862
## negative
               0.0021425 0.0045473
                                      0.471
                                               0.639
## positive
              -0.0001274 0.0022167 -0.057
                                               0.954
##
## Residual standard error: 0.9738 on 77 degrees of freedom
                                   Adjusted R-squared:
## Multiple R-squared: 0.005971,
## F-statistic: 0.2313 on 2 and 77 DF, p-value: 0.7941
##
## Call:
## lm(formula = price ~ negative + positive, data = full_bing_open)
## Residuals:
                 1Q
                     Median
                                   3Q
## -1.58279 -0.71705 0.05908 0.65101 2.57366
##
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
```

```
## (Intercept) 0.041514
                         0.249994 0.166 0.86859
             ## negative
                         0.003088 3.350 0.00131 **
## positive
              0.010344
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.9345 on 69 degrees of freedom
## Multiple R-squared: 0.1532, Adjusted R-squared: 0.1286
## F-statistic: 6.241 on 2 and 69 DF, p-value: 0.003225
## Joining, by = c("datetime", "date")
## Warning in log(price): NaNs produced
##
## Call:
## lm(formula = log(price) ~ sentiment, data = full_afinn)
## Residuals:
               1Q Median
                              3Q
      Min
                                     Max
## -0.5069 -0.3059 -0.0430 0.2671 0.5517
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) -0.05403
                         0.03657 -1.478
                                            0.144
## sentiment -0.04576
                         0.05490 -0.834
                                            0.407
## Residual standard error: 0.3205 on 76 degrees of freedom
## (74 observations deleted due to missingness)
## Multiple R-squared: 0.00906,
                                 Adjusted R-squared: -0.003979
## F-statistic: 0.6948 on 1 and 76 DF, p-value: 0.4071
##
## Call:
## lm(formula = price ~ sentiment, data = full_afinn_close)
##
## Residuals:
##
       Min
                 1Q
                    Median
                                  3Q
                                          Max
## -1.43726 -0.95765 -0.08377 0.82857 1.55570
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.06110
                         0.10848
                                  0.563
                                            0.575
## sentiment -0.02427
                         0.07100 -0.342
                                            0.733
##
## Residual standard error: 0.9697 on 78 degrees of freedom
                                 Adjusted R-squared:
## Multiple R-squared: 0.001495,
## F-statistic: 0.1168 on 1 and 78 DF, p-value: 0.7334
##
## Call:
## lm(formula = price ~ sentiment, data = full_afinn_open)
##
```

```
## Residuals:
##
       Min
                1Q Median
                                30
                                       Max
## -1.6983 -0.9832 0.1375 0.7999 1.5900
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                 0.1680
                            0.1142
                                     1.471
                                     2.480
                                             0.0156 *
## sentiment
                 0.4033
                            0.1626
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 0.9667 on 70 degrees of freedom
## Multiple R-squared: 0.08076,
                                    Adjusted R-squared:
## F-statistic: 6.149 on 1 and 70 DF, p-value: 0.01555
Predict the following days
## # A tibble: 6 x 3
## # Groups:
               date [1]
##
    date
                time
                                    text
     <date>
                <chr>
                                    <chr>
## 1 2021-04-12 2021-04-12 13:00:00 " Thats the thing They are all unopened packag~
## 2 2021-04-12 2021-04-12 14:00:00 " GAFAM GOOG AMZN FB AAPL MSFT
                                                                      testing
## 3 2021-04-12 2021-04-12 15:00:00 " GAFAM GOOG AMZN FB AAPL MSFT
## 4 2021-04-12 2021-04-12 16:00:00 " And the pricing was invented by take two and~
## 5 2021-04-12 2021-04-12 17:00:00 " GAFAM GOOG AMZN FB AAPL MSFT
                                                                      I can only ho~
## 6 2021-04-12 2021-04-12 18:00:00 " Mid Day Market Update Crude Oil Rises iRhyth~
## [1] "there are total 111 observation"
## Joining, by = "word"
## Joining, by = "word"
## 'summarise()' has grouped output by 'date'. You can override using the
## '.groups' argument.
## Joining, by = "word"
## 'summarise()' has grouped output by 'date'. You can override using the
## '.groups' argument.
## Joining, by = "word"
## Joining, by = c("datetime", "date")
## # A tibble: 6 x 15
##
    datetime
                           price date
                                            time_stock anger anticipation disgust
                           <dbl> <date>
                                                        <dbl>
                                                                             <dbl>
##
     <dttm>
                                            <chr>>
                                                                     <dbl>
## 1 2021-04-12 17:00:00 -0.0762 2021-04-12 17:00
                                                                       161
## 2 2021-04-12 18:00:00 -0.0866 2021-04-12 18:00
                                                           40
                                                                       136
                                                                                13
## 3 2021-04-12 19:00:00 -0.107 2021-04-12 19:00
                                                           37
                                                                       141
                                                                                24
## 4 2021-04-13 03:00:00 0.155 2021-04-13 03:00
                                                           44
                                                                        74
                                                                                42
## 5 2021-04-13 04:00:00 0.0653 2021-04-13 04:00
                                                           25
                                                                        60
                                                                                 9
## 6 2021-04-13 05:00:00 -0.0590 2021-04-13 05:00
                                                           59
                                                                       101
                                                                                40
## # ... with 8 more variables: fear <dbl>, joy <dbl>, negative <dbl>,
      positive <dbl>, sadness <dbl>, surprise <dbl>, trust <dbl>, state <chr>>
```

A tibble: 6 x 15

```
##
     datetime
                           price date
                                            time_stock anger anticipation disgust
##
     <dttm>
                           <dbl> <date>
                                             <chr>>
                                                        <dbl>
                                                                     <dbl>
                                                                              <dbl>
## 1 2021-04-12 13:00:00 0.0636 2021-04-12 13:00
                                                           54
                                                                       205
                                                                                 36
## 2 2021-04-12 14:00:00 -0.182 2021-04-12 14:00
                                                           43
                                                                       205
                                                                                 25
## 3 2021-04-12 15:00:00 -0.107
                                 2021-04-12 15:00
                                                           44
                                                                       209
                                                                                 30
## 4 2021-04-12 16:00:00 -0.0935 2021-04-12 16:00
                                                           57
                                                                       197
                                                                                 17
## 5 2021-04-13 09:00:00 0.455 2021-04-13 09:00
                                                           10
                                                                        31
                                                                                 9
## 6 2021-04-13 10:00:00 0.455 2021-04-13 10:00
                                                           23
                                                                        63
                                                                                 9
## # ... with 8 more variables: fear <dbl>, joy <dbl>, negative <dbl>,
    positive <dbl>, sadness <dbl>, surprise <dbl>, trust <dbl>, state <chr>
## Joining, by = "word"
## Joining, by = c("datetime", "date")
## Joining, by = c("datetime", "date")
```

MSFT


```
## Confusion Matrix and Statistics
##
             Reference
##
  Prediction 0 1
##
##
            0 3 1
            1 7 6
##
##
##
                  Accuracy : 0.5294
##
                    95% CI: (0.2781, 0.7702)
##
       No Information Rate: 0.5882
##
       P-Value [Acc > NIR] : 0.7716
##
##
                     Kappa: 0.1392
##
```

```
Mcnemar's Test P-Value: 0.0771
##
               Sensitivity: 0.3000
##
##
               Specificity: 0.8571
            Pos Pred Value: 0.7500
##
##
            Neg Pred Value: 0.4615
##
                Prevalence: 0.5882
            Detection Rate: 0.1765
##
##
      Detection Prevalence: 0.2353
##
         Balanced Accuracy: 0.5786
##
##
          'Positive' Class : 0
##
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
            0 3 1
##
            1 7 6
##
##
##
                  Accuracy : 0.5294
##
                    95% CI : (0.2781, 0.7702)
##
       No Information Rate: 0.5882
       P-Value [Acc > NIR] : 0.7716
##
##
##
                     Kappa: 0.1392
##
##
    Mcnemar's Test P-Value : 0.0771
##
##
               Sensitivity: 0.3000
##
               Specificity: 0.8571
##
            Pos Pred Value: 0.7500
##
            Neg Pred Value: 0.4615
                Prevalence: 0.5882
##
##
            Detection Rate: 0.1765
##
      Detection Prevalence: 0.2353
##
         Balanced Accuracy: 0.5786
##
##
          'Positive' Class : 0
##
```

MSFT - Random Forest


```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
            0 6 4
##
##
            1 4 3
##
##
                  Accuracy : 0.5294
                    95% CI: (0.2781, 0.7702)
##
##
       No Information Rate: 0.5882
       P-Value [Acc > NIR] : 0.7716
##
##
##
                     Kappa: 0.0286
##
    Mcnemar's Test P-Value: 1.0000
##
##
               Sensitivity: 0.6000
##
               Specificity: 0.4286
##
            Pos Pred Value: 0.6000
##
            Neg Pred Value: 0.4286
##
                Prevalence: 0.5882
##
##
            Detection Rate: 0.3529
##
      Detection Prevalence: 0.5882
         Balanced Accuracy: 0.5143
##
##
          'Positive' Class : 0
##
##
```

MSFT - XG Boosting


```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction 0 1
            0 4 2
##
##
            1 6 5
##
##
                  Accuracy : 0.5294
                    95% CI: (0.2781, 0.7702)
##
##
       No Information Rate: 0.5882
       P-Value [Acc > NIR] : 0.7716
##
##
##
                     Kappa : 0.1053
##
    Mcnemar's Test P-Value: 0.2888
##
##
               Sensitivity: 0.4000
##
               Specificity: 0.7143
##
            Pos Pred Value: 0.6667
##
##
            Neg Pred Value: 0.4545
                Prevalence: 0.5882
##
##
            Detection Rate: 0.2353
##
      Detection Prevalence: 0.3529
         Balanced Accuracy: 0.5571
##
##
          'Positive' Class : 0
##
##
```