Foundations of modern finance cheatsheet by Oleg L., Page 1 of 2

1 Foundations of Modern Finance I

Present value of annuities and perpetuities

Perpetuity: $\frac{CF}{r}$.

Growing perpetuity: $\frac{CF}{r-g}$.

Annuity: $\frac{CF}{r} \cdot \left(1 - \frac{1}{(1+r)^n}\right)$

Annuity with growth:

$$\frac{CF}{r-g} \cdot \left(1 - \frac{(1+g)^n}{(1+r)^n}\right)$$

where *r* rate of return, *g* growth rate, *n* compounding periods

Arrow-Debrew securities. State-space model

 $\phi_1 \dots \phi_n$ state prices $p_1 \dots p_n$ state probabilities,

where $\sum p_i = 1$

 $X_1 \dots X_n$ state payouts $P = \sum \phi_i \cdot X_i = \frac{E(P)}{(1+\overline{r})},$

 $E(P) = \sum_{i=1}^{r} p_i \cdot X_i = \vec{P} \cdot (1 + \overline{r}),$

where \overline{P} is price, $E(\overline{P})$ is expected payout, \overline{r} is expected return.

Discounted cash flow and rate of return

r is rate of return, r_f is risk-free rate of return, $r-r_f$

is excess return $r = \frac{D_1 + P_1 - P_0}{P_0} = \frac{D_1 + P_1}{P_0} - 1,$ $P_0 = \frac{D_1 + P_1}{1 + r}$ With g as growth rate,

 $P = \frac{D}{r - g}, g = \frac{D_1}{D_0} - 1$

 $\overline{r} = E(r)$, expected return, $\pi = \overline{r} - r_f$ is risk premium

Relation between real and nominal cash flows

 $r_{real} = \frac{1 + r_{nominal}}{1 + inflation} - 1$

For nominal flow, $CF \cdot (1 + r_{real}) \cdot (1 + inflation)$ For real flow,

 $CF \cdot (1 + r_{real})$

Accounting

 $I_t = EPS_t \times b$, where b - plowback rate $EPS_{t+1} = EPS_t + I_t \times ROI_t$ $BVPS_{t+1} = BVPS_t + I_{t+1}$ $D_t = EPS_t \times (1 - b_t)$

With growth $P_0 = \frac{D}{r - g}$

Without growth $P_0^{nogrowth} = \frac{D}{r}$, where g = 0 and $\Delta P = -P \times MD \times \Delta y$

b = 0Growth opportunity $PVGO = P_0 - P_0^{nogrowth}$

Horizon value estimation:

PV(Freecashflow) + P/E ratio or P/B ratio or DCF

Expected utility $E[u(x)] = \sum p_i \cdot u(P_i),$

where p_i is probability, P_i is payout Expected payoff

 $E(P) = \sum p_i \cdot P_i$

Relative risk aversion $RRA(W) = -\frac{W \cdot u''(W)}{u'(W)}$

Certainty equivalent $CE = u^{-1}(E(u(x)))$ π - sure loss, risk premium, W is investment

 $E(u(W \cdot (1+x))) = u(W \cdot (1-\pi))$

 $CE = W \cdot (1 - \pi), \pi = 1 - \frac{CE}{W}$

$$\begin{cases} +x\%, p_1 \\ -x\%, p_2 \end{cases}$$

$$E(u(W \cdot (1+x))) = \sum p_i \cdot u(W \cdot (1+x))$$
Interest rate conversion FAP/APP

Interest rate conversion EAR/APR

T - compounding interval, fraction yearly: T = 1

monthly: $T = \frac{1}{12}$ daily: $T = \frac{1}{365}$

P - principal n - number of payment periods, so period payment M is

 $M = P \cdot \frac{APR \cdot (1 + APR \cdot T)^n}{(1 + APR \cdot T)^n - 1}$

 $\lim_{T\to 0} 1 + EAR = e^{APR}$, so APR = In(1 + EAR)

 $APR = \frac{(1 + EAR)^T - 1}{T}$ $1 + EAR = (1 + T \cdot APR)^{\frac{1}{T}}$

Duration

Discount bond price $B_t = (1+y)^{-t}$, discounted bond

duration is t, so modified duration is $MD = \frac{\iota}{1 + v}$

Macaulay duration is

 $D = \frac{1}{B} \cdot \sum_{t} \frac{CF_t}{(1+v)^t} \cdot t$

Modified duration is $MD = \frac{D}{1+v}$

Modified duration for perpetuity is $MD = \frac{1}{y}$, so Macaulay duration is $D = MD \cdot (1 + y) = \frac{1 + y}{v}$

Duration based approximations

 Δy is the change in the interest rate, P is the asset price.

Convexity CX is

 $CX = \frac{1}{2} \cdot \frac{1}{P} \cdot \frac{1}{(1+v)^2} \cdot \sum_{t} PV(CF_t) \cdot t \cdot (t+1), \text{ convexity}$

based approximation is

$$\Delta P = P \times (-MD \cdot \Delta y + CX \cdot \Delta y^2)$$

Statistic

Excel functions:

Sample mean AVG()

Standard deviation *STDEV.S(*) Covariance:

 $cov = \frac{1}{T-1} \cdot \sum (r_A - \overline{r}_A) \cdot (r_B - \overline{r}_B)$

Corellation: $corr = \frac{cov}{SD(A) \cdot SD(B)}$

Portfolio variance: $Var[P_{AB}] = \sum w_i^2 \cdot SD_i^2 + \sum_{i \neq j} 2w_i w_j \cdot SD_i SD_j \cdot corr_{ij},$

 $Var[P] = \frac{1}{n} \cdot SD^2 + \left(1 - \frac{1}{n}\right) \cdot corr \cdot SD \cdot SD,$

where SD is an average standard deviation

APT

For well diversified portfolios: $\widetilde{r}_P = \overline{r}_P + \sum b_i \cdot f_i$, where \overline{r}_P is expected return $\overline{r}_P - r_f = \lambda \cdot \beta_P$, where r_f is risk free rate, λ is risk price and β_P is factor loading for single factor portfolio. Same $\overline{r}_P - r_f = \sum_i \lambda_i \cdot \beta_i$ for *i* factors portfolio

Return variance: $Var(r) = \sum_{i} \beta_{i}^{2} \cdot Var(f_{i}) + Var(\epsilon)$

Covariance: $cov(A, B) = \sum_{i} \beta_{i,A} \beta_{i,B} \cdot Var(f_i)$

APT in Excel

 $r_i - r_f = \alpha + \beta_1(r_1 - r_f) + \beta_2(r_2 - r_f) + \epsilon_i$ To estimate β_1 , β_2 and α (in this order): = $LINEST(\alpha, \beta_2, \beta_1)$ (reverse order)

Capital investment

CF = OpRev - OpEx - Tax - CapEx OpProfit = OpRev - OpEx $Tax = \tau \cdot OpProfit - \tau \cdot Depreciation$ $CF = (1 - \tau) \cdot OpProfit - CapEx + \tau \cdot Depreciation$ Work capital: WC = Inventory + A/R - A/P, where A/R accounts receivable, A/P accounts payable $CF = (1 - \tau) \cdot OpProfit + \tau \cdot Depreciation - CapEx \Delta WC$

Alternatives to NPV

Payback period

Choose *S* so PB = S, $\sum_{i=1}^{S} CF_i \ge -CF_0$ Discounted payback period:

DPB = S, $\sum_{i=1}^{S} \frac{CF_i}{(1+r)^i} \ge -CF_0$ Internal rate of re-

turn (IRR) must satisfy:

 $0 = CF_0 + \sum_i \frac{CF_i}{(1 + IRR)^i}$

Payback Interval:

2 Foundations of Modern Finance II

Forward rates

Forward interest rate between time t-1 and t:

$$f_t = \frac{B_{t-1}}{B_t} - 1 = \frac{(1+r_t)^t}{(1+r_{t-1})^{t-1}} - 1$$

Expectation hypotesis (forward rates at time 0 are predictors of future spot rates, which is not true):

$$E_0[\tilde{r}_1(t)] = \frac{(1 + r_{t+1}(0))^{t+1}}{(1 + r_t(0))^t} - 1 = f_{t+1}$$

Forward pricing

Current spot price: S_0

Spot price at maturity (random): \tilde{S}_T Forward price (fixed at time 0): F_T

Forward payoff is $\hat{S}_T - F_T$

 $PV_0(\tilde{S}_T) = e^{-yT}S_0$, where y is dividend yield

 $F_T = e^{(r-y)T} S_0$, so dividend yield

Currency forward price is:

$$F_T = X_0 \cdot e^{(r_{USD} - r_{CHF}) \cdot T}$$

Futures pricing

Storage cost $Cost_t = c \cdot S_t$. Net convenience yield $\hat{y} = y - c$, so

 $H_T \approx F_T = e^{(r-\hat{y})T} S_0$ Backwardation in terms of convenience yield vs interest rate: $\hat{y} - r = y - c - r > 0$

Contango: $H_T > S_0 e^{rT}$

Backwardation: $H_T < S_0 e^{rT}$

Interest rate swaps

Fixed leg is paid at fixed rate r_S .

Floating leg at the end of each period t is paid as spot risk-free rate $\tilde{r}_1(t-1)$

Forward rate to future spot rate:

 $PV_0[\tilde{r}_1(T) \text{ at } T+1] = PV_0[f_{T+1} \text{ at } T+1]$

Present value of the fixed leg: $r_S \times \sum_{u=1}^{T} B_u$ Present value of the floating leg of the swap:

 $\sum_{t=1}^T PV_0[\tilde{r}_1(t-1)\ at\ t]$ Swap rate: $r_S = \frac{\sum_{t=1}^T B_t \cdot f_t}{\sum_{u=1}^T B_u} = \sum_{t=1}^T w_t \times f_t$, where weights w_t are: $w_t = \frac{B_t}{\sum_{u=1}^T B_u}$ Alternative formula: $r_S = \frac{1 - B_T}{\sum_{u=1}^T B_U}$

Options

S underlying asset price (at time 0). S_T underlying asset price (at time T).

B price of discount bond of par \$1 and maturity T $(B \leq 1)$

K strike (excercise) price.

T maturity (expriration) date.

C price of call with strike K and maturity T.

P price of put with strike K and maturity T. European call option payoff: $CF_T = max[0, S_T - K]$ Foundations of modern finance cheatsheet by Oleg L., Page 2 of 2

The net payoff is: $max[S_T - K, 0] - C(1 + r)^T$ Excercise value of a call is S - K.

Excercise value of a put is K - S.

Price bounds are: $max[S - KB, 0] \le C \le S$

Put-Call parity: C + BK = P + S, where B is e^{-rT} if continious compounding is used.

Corporate securities as options

Equity (E): A call option on firm's assets (A) with K equal to its bond's redemption value.

Debt (D): A portfolio of firm's assets (A) and a short position in the call with K equial to bond's face value F.

Warrant: Call option on firm's stock, with stock dilution as a result of excercise.

Convertible bond: A portfolio of straight bonds and a call on the firm's stock with *K* related to the conversion ratio.

Callable bond: A portfolio combining straight bonds and a short position in a call on these bonds. A = D + E => D = A - E

$$E \equiv max[0, A - F]$$

$$D = A - E = A - max[0, A - F]$$

Binomial pricing: single period

r is the interest rate Stock price change:

Riskless bond price change:

Need to solve system of gauations:

$$S_u \cdot a + (1+r) \cdot \dot{b} = C_u$$

$$S_d \cdot a + (1+r) \cdot b = C_d$$

where a amount of stock shares (option's delta), b dollars invested into riskless bond B, C_u is payoff in up state, C_d is payoff in down state, so current market value of the call option is: $C_0 = S_0 \cdot a + b$. **Option Greeks** Alternative notation:

$$\delta u S_0 + b(1+r) = C_u$$

 $\delta dS_0 + b(1+r) = C_d$ where unique solutions is:

$$\delta = \frac{C_u - C_d}{(u - d)S_0}, \ b = \frac{1}{1 + r} \cdot \frac{uC_d - dC_u}{(u - d)}, \text{ so}$$

$$C_0 = \delta S_0 + b = \frac{C_u - C_d}{u - d} + \frac{1}{1 + r} \cdot \frac{uC_d - dC_u}{(u - d)}$$

Risk-neutral probability

$$\begin{aligned} q_u &= \frac{(1+r)-d}{u-d}, \ q_d &= \frac{u-(1+r)}{u-d} \\ C_0 &= \frac{q_u C_u + q_d C_d}{1+r} &= \frac{E^{\mathbb{Q}}[C_T]}{1+r}, \end{aligned}$$

where $E^{Q}[\cdot]$ is expectation under risk-neutral probability Q = (q, 1 - q).

State prices

$$\phi_u = \frac{q}{1+r}, \ \phi_d = \frac{1-q}{1+r}$$

Black-Scholes-Merton formula

$$C_0 = C(S_0, K, T, r, \sigma) = S_0 N(x) - K e^{-rT} N(x - \sigma \sqrt{T}),$$
where x is: $x = \frac{ln\left(\frac{S_0}{K e^{-rT}}\right)}{\sigma \sqrt{T}} + \frac{1}{2}\sigma \sqrt{T}$

So option delta (δ) becomes $N(x) = \frac{\partial C}{\partial S}$. $S_0 \cdot N(x)$ is the dollar mount invested into stock. $Ke^{-rT}N(x-\sigma\sqrt{T})$ is the dollar amount borrowed.

Put-Call parity with BSM formula

$$\begin{array}{l} C + BK = P + S => P = C + e^{-rT}K - S \\ P = S \cdot N(x) - Ke^{-rT}N(x - \sigma\sqrt{T}) + e^{-rT}K - S \\ P = -S(1 - N(x)) + Ke^{-rT}(1 - N(x - \sigma\sqrt{T})) \end{array}$$

Delta:
$$\delta = \frac{\partial C}{\partial S}$$

Omega: $\Omega = \frac{\partial C}{\partial S} \frac{S}{C}$
Gamma: $\Gamma = \frac{\partial \delta}{\partial S} = \frac{\partial^2 C}{\partial S^2}$
Theta: $\Theta = \frac{\partial C}{\partial T}$
Vega: $v = \frac{\partial C}{\partial \sigma}$