

Mark Scheme (Results)

October 2022

Pearson Edexcel International Advanced Level in Physics (WPH16) Paper 01 Practical Skills in Physics II

Question Number	Answer		Mark
1(a)	Any PAIR from:		
	There could be a short circuit (across the power supply) Use insulated wire	(1) (1)	
	Or		
	There is a risk of electrocution (from coil A) [Accept electric shock]	(1)	
	Use a low p.d.	(1)	
	Or		
	There is a risk of the wire overheating (if current is too high)	(1)	
	Use a low p.d. Or Use a (limiting) resistor	(1)	2
1(b)	Resolution of Vernier calipers is higher (than the metre ruler)		
	Or Resolution of Vernier calipers is 0.1 mm and resolution of metre rule is 1 mm	(1)	
	Use of half resolution to calculate %U Or U in Vernier calipers and ruler	(1)	
	Valid comparison of %U Or U	(1)	
	value companion of 700 Gr	(1)	3
	MP3 dependent on MP1 or MP2 [Accept converse]		
	Example of calculation		
	%U for Vernier calipers = $0.005/2 \times 100 = 0.25\%$		
	%U for metre rule = $0.05/2 \times 100 = 2.5\%$		
1(c)	Measure the amplitude of the trace in divisions		
	Or Measure the number of divisions between maximum and minimum and divide by two	(1)	
	Multiply by 100 mV (per division)	(1)	
	Repeat (the amplitude measurement) and calculate a mean	(1)	3
1(d)	Any TWO from		
	Inconsistent significant figures Or decimal places (for <i>E</i>)	(1)	
	Values of r not given to correct number of decimal places	(1)	
	Units of E are incorrect	(1)	
	No repeats are shown		
	Or Not enough readings shown	(1)	2

Question Number	Answer		Mark
2(a)	Any PAIR from:	(1)	
	$\ln V = \ln V_0 - bt$	(1)	2
	Is in the form $y = c + mx$ and the gradient is $-b$ which is constant		
	Or		
	$\ln V = -bt + \ln V_0$		
	Is in the form $y = mx + c$ and the gradient is $-b$ which is constant		
	MP2 dependent on MP1, allow reference to straight line		
2(b)	Open the tap and start recording time (simultaneously)	(1)	
	Record volumes at successive time intervals		
	Or Record the time taken to fall to specific volumes	(1)	
	Read to the bottom of the meniscus	(1)	
		, ,	
	Any ONE from:		
	Ensure transparent tube is vertical	(1)	
	Use a stopwatch Or laptimer to measure <i>t</i>	(1)	
	Keep stopwatch close to the tube	(1)	
	Refill to same initial volume and repeat to take a mean	(1)	
	Record many measurements of V and t	(1)	
	Open the tap to same position each time	(1)	4
2(c)	Any PAIR from		
	It may be difficult to measure V and t simultaneously	(1)	
	which will affect random error	(1)	
	Or		
	There is liquid below the scale	(1)	
	which will introduce systematic error	(1)	
	Or		
	Air may be trapped in the tap	(1)	
	which will affect <u>random</u> error	(1)	2
	MP2 dependent on MP1		
	Total for question 2		8

Question Number	Answer	Mark
3(a)(i)	Values of log <i>P</i> correct to 2 d.p. (1)	'
	Values of $\frac{1}{T}$ correct to 5 d.p.	
	Or	
	Values of $\frac{1}{T}$ correct to 2 d.p. if written in standard form (1)	
	Axes labelled: y as log (P / kPa) and x as $\frac{1}{T} / K^{-1}$ (1)	
	Most appropriate scales chosen (1)	
	Values plotted accurately (1)	
	Best fit line drawn (1)	6
3(a)(ii)	Calculation of gradient using large triangle shown (1)	
	Gradient = $(-) 2.2 \times 10^3$ (1)	
	Gradient given to 2 or 3 s.f. and negative (1)	3
	Example of calculation	
	gradient = $(2.34 - 1.00) / (2.60 - 3.20) \times 10^{-3} = 0.34 / -0.60 \times 10^{-3}$	
	= -2230	
3(a)(iii)	Use of gradient = $(-)\frac{X}{2.30k}$ (1)	1
	Correct value of X [e.c.f. (a)(ii)] (1)	
	X given to 2 or 3 s.f. (1)	3
	Example of calculation	
	$X = \text{gradient} \times (-2.30k) = -2230 \times (-2.30 \times 1.38 \times 10^{-23} \text{ J K}^{-1})$	
	$=7.08\times10^{-20}(J)$	
3 (b)	Value of $\frac{1}{-}$ interpolated from graph (1)	
- (-)	T interpolated from graph	
	Correct T calculated (1)	
	Conversion of T to °C, given to 2 or 3 s.f.	
	Example of calculation	
	$(\operatorname{Log} P = \log(100) = 2)$	
	$\frac{1}{T} = 2.75 \times 10^{-3} \text{ K}^{-1}$	
	$T = 1 / 2.75 \times 10^{-3} = 364 \text{ K}$	
	boiling point = $364 - 273 = 91$ (°C)	
	Total for question 3	15

P / kPa	T / K	$\frac{1}{T}$ / K ⁻¹	log (P / kPa)
7.8	308	0.00325	0.89
17.0	323	0.00310	1.23
34.6	338	0.00296	1.54
66.1	353	0.00283	1.82
120.1	368	0.00272	2.08
208.1	383	0.00261	2.32

Question Number	Answer		Mark
4(a)(i)	Either		
	Repeat at different orientations (along the wire) and calculate a mean	(1)	
	To reduce the effect of <u>random</u> errors	(1)	
	Or		
	Check and correct for zero error (on micrometer screw gauge)	(1)	
	To eliminate <u>systematic</u> error	(1)	2
	MP2 dependent on MP1		
	[Allow MP2 if MP1 partially correct]		
4(a)(ii)	Mean $d = 0.31$ (mm)	(1)	
	Calculation using half range shown		
	Or		
	Calculation of furthest from mean shown	(1)	_
	Uncertainty in $d = 0.02$ (mm) Decimal places consistent with the calculated mean	(1)	3
	carcarated mean		
	MP3 dependent on MP2		
	MF 3 dependent on MF 2		
	Example of calculation		
	Mean $d = (0.31 + 0.32 + 0.31 + 0.33 + 0.30) / 5 = 1.57 / 5$		
	= 0.314 = 0.31 (mm)		
	Uncertainty = $(0.33 - 0.30) / 2 = 0.03 / 2 = 0.015 = 0.02$ (mm)		
	Oncertainty = (0.55 0.56) / 2 = 0.05 / 2 = 0.015 = 0.02 (min)		
4(b)(i)	Use of $A = \pi d^2/4$ and $R = V/I$	(1)	
	Use of $R = \rho L/A$	(1)	
	$\rho = 4.6 \times 10^{-7} \ (\Omega \ \text{m})$	(1)	3
	Example of calculation		
	$A = \pi \times (0.22 \times 10^{-3} \text{ m})^2 / 4 = 3.80 \times 10^{-8} \text{ m}^2$		
	$R = V/I = 4.990 \text{ V} / 0.4570 \text{ A} = 10.9 \Omega$		
	$\rho = RA / L = 10.9 \ \Omega \times 3.80 \times 10^{-8} \ \text{m}^2 / 0.894 \ \text{m} = 4.6 \times 10^{-7} \ (\Omega \ \text{m})$		
	$p = KA / L = 10.5 22 \times 3.80 \times 10^{-111} / 0.854 \text{ m} = 4.0 \times 10^{-121} \text{ ($2 \text{ m})}$		

4(b)(ii)	Use of $2 \times \%$ U in d shown [Accept $2 \times \Delta d/d$ if converted to $\%$ U		
	Addition of %U for all variables shown	(1)	
	%U = 9.4 (%) [Accept answers that round to 9%]	(1)	
	Example of calculation		
	%U in $d = (0.01 / 0.22) \times 100 = 4.55 \%$		
	%U in $V = (0.005 / 4.990) \times 100 = 0.10$ %		
	%U in $L = (0.1 / 89.4) \times 100 = 0.11$ %		
	%U in $I = (0.0005 / 0.4570) \times 100 = 0.11$ %		
	%U in $\rho = (2 \times 4.55) + 0.10 + 0.11 + 0.11 = 9.42 = 9.4\%$		
	Or		
	Use of uncertainties to calculate maximum ρ		
	Use of uncertainties to calculate minimum ρ	(1)	
	Calculation of uncertainty in ρ using maximum and minimum ρ	(1)	_
	% $U = 9.3$ (%) [Accept answers that round to 9%]	(1)	3
	Example of calculation		
	$A_{\text{max}} = \pi \times (0.23 \times 10^{-3} \text{ m})^2 / 4 = 4.15 \times 10^{-8} \text{ m}^2$		
	$A_{\text{min}} = \pi \times (0.21 \times 10^{-3} \text{ m})^2 / 4 = 3.16 \times 10^{-8} \text{ m}^2$		
	$R_{\rm max} = V_{\rm max} / I_{\rm min} = 4.995 \ { m V} / 0.4565 \ { m A} = 10.9 \ { m \Omega}$		
	$R_{\min} = V_{\min} / I_{\max} = 4.985 \text{ V} / 0.4575 \text{ A} = 10.9 \Omega$		
	$ \rho_{\text{max}} = R_{\text{max}} A_{\text{max}} / L_{\text{min}} = 10.9 \ \Omega \times 4.15 \times 10^{-8} \ \text{m}^2 / 0.893 \ \text{m} $		
	$= 5.07 \times 10^{-7} \ (\Omega \ \mathrm{m})$		
	$ \rho_{\min} = R_{\min} A_{\min} / L_{\max} = 10.9 \Omega \times 3.46 \times 10^{-8} \mathrm{m}^2 / 0.895 \mathrm{m} $		
	$=4.21\times10^{-7}~(\Omega~{\rm m})$		
	U in $\rho = (5.07 \times 10^{-7} - 4.21 \times 10^{-7}) / 2 = 0.43 \times 10^{-7} (\Omega \text{ m})$		
	%U in $\rho = 0.43 \times 10^{-7} / 4.6 \times 10^{-7} \times 100 = 9.34 = 9.3 \%$		
4(c)	Use of an uncertainty of 0.05 Ω in value of R_1 or R_2	(1)	
	Use of $U = 2 \times (U \text{ in } R_2 + U \text{ in } R_1) \text{ shown}$		
	Or Use of maximum and minimum values shown	(1)	
	%U = 1.8 (%)	(1)	3
	Example of calculation		
	$U = 2 \times (0.05 + 0.05) = 2 \times 0.1 = 0.2$		
	$\%$ U = $(0.2 / 11.4) \times 100 = 1.8 \%$		

4 (d)	Upper limit of $\rho = 5.0 \ (\times \ 10^{-7} \ \Omega \ m)$	(1)	
	Lower limit of $R_L = 11.2 (\Omega)$	(1)	
	Conclusion based on comparison of limits	(1)	
	[MP3 dependent MP1 or MP2]		
	Example of calculation		
	Upper limit $\rho = 4.6 \times 10^{-7} \times (1 + 0.09) = 5.0 \times 10^{-7} \Omega \text{ m}$		
	Lower limit $R_L = 11.4 \times (1-0.02) = 11.2 \Omega$		
	Therefore both values fall in the range (confirming metal is constantan).		
	Or		
	%D for $\rho = 6.1$ %	(1)	
	%D for $R_L = 1.8\%$	(1)	
	Conclusion based on comparison of %D and %U	(1)	3
	[MP3 dependent MP1 or MP2]	(1)	3
	Example of calculation		
	%D for $\rho = (4.9 - 4.6) / 4.9 \times 100 = 6.1 \%$		
	%D for $R_L = (11.4 - 11.2) / 11.2 \times 100 = 1.8 \%$		
	Therefore both %D are less than %U (confirming metal is constantan).		
	Total for question 4		17