2019 Spring Data Analytics

BADA

Budongsan Analytics Data Analytics

Kick Off

역세권의 실질적 범위와 프리미엄 정도 측정

201411180 정재민 201311167 이승윤 201411160 송용백 201514181 박영재 201611171 제갈용승

목차

- 1. 프로젝트 개요
- 2. 프로젝트 내용 및 방법
- 3. 예상결과 및 활용방안
- 4. 프로젝트 관리

1. 역세권

"역세권의 실질적 범위와 프리미엄 정도 측정"

역세권이란?

지하철역으로의 접근이 용이한 범위

역세권의 실질적 범위

법에서 명시하는 1차 역세권 250m와는 다른 의미 건물의 가격에 영향을 주는 범위를 의미

역세권의 프리미엄

역세권에 속함으로써 증가한 비용

2 불분명한 역세권 범위

1-3-2. "역세권" 이란 보행접근이 가능하고 대중교통이용이 편리한 지하철, 국철 및 경전철 등의 모든 개통된 역(사용승인시점에 개통 예정인 역을 포함한다)의 중심(각각 승강장 전체의 중심점 한곳)으로부터 반경 500m이내의 일단의 지역을 원칙으로 한다.

1차 역세권은 역 승강장 중심에서 반영 250m이내의 범위로 하고, 2차 역세권은 역 승강장 중심 반경 250m에서 500m 범위로 한다.

서울시 「역세권 장기전세주택 건립관련 지구단위계획 수립 및 운영기준」

2. 불분명한 역세권 범위

- ✓ 광고 속 역세권 건물의 도보 거리와 실제 도보 거리가 다른 경우가 상당히 많음
- ✓ 최근 역세권을 비롯한 숲세권, 직세권 등의 무분별한 프리미엄 광고가 빈번함

3. 현 상황 및 문제점

역세권 관련 이슈 및 분석 필요성

- ✓ 역세권은 직주근접과 대중교통 활성화 효과를 갖는 주거입지 공간인 동시에 도심 주택 공급을 위한 대안으로써 집중되고 있음 (2010.2, 김옥연)
- ✓ 역세권의 공간적 범위에 대한 명확한 근거의 제시가 없어 무계획적으로 범위를 설정하고 있음 (2012.8, 박성균, 이현석)
- ✓ 대중교통이 편리한 역세권에 대학생, 사회초년생, 신혼부부를 대상으로 시세보다 낮은 가격에 살기 좋은
 임대주택을 공급하는 민관협력의 혁신적인 청년주택사업 진행
- ✓ 주거 중심 역, 주거 및 상업 중심 역, 주거, 상업, 업무 등 역사의 유형화를 통한 역세권 분석 필요
- ✓ 자연적, 환경적, 경제적 건축물의 분포 등의 복수의 특성을 분석하여, 각 특성 별 역세권에 주는 영향을 파악 할 필요가 있음

3. 현 상황 및 문제점

역세권의 범위 및 결정요인 분석을 위한 선행연구

- ✓ 도시 철도 수요 추정을 위한 역세권 ZONE 세분화 방안 연구 (2010.2, 조항응, 이승용, 전공준)
- ✓ 서울시 지하철 역세권의 공간적 범위 설정과 특성 분석 (2011.12, 이연수, 추상호, 강준모)
- ✓ 주거용과 상업용 부동산의 가격 결정 요인 비교 (2012.8, 박성균, 이현석)

역세권 관련 현 상황의 문제점

- ✓ 거리 만으로는 역세권의 정확한 정의 및 기준 설정이 불가능
- ✓ 기존에 진행되었던 연구들은 소량의 데이터를 사용하였기 때문에 일반적 적용이 어려움
- ✓ 최근 역세권을 비롯한 숲세권, 직세권 등의 무분별한 프리미엄 광고가 빈번함
- ✓ 역세권의 범위가 불분명하여 정책 개발, 투자 등에 의사결정에 부정적인 영향을 미침

대량의 데이터를 과학적으로 분석함으로써

1) 역세권에 영향을 주는 주요 특징 파악

2) 역세권의 실질적인 범위 정의

1. 분석 프로세스

데이터 수집 및 전처리

역 정보 데이터 건물 정보 데이터 시설 데이터

지하철 역과 건물의 거리, 건물의 가격을 기반으로 역 별 프리미엄 정도 및 범위 파악

Python R Web scrapping

Nonlinear SVM을 기계 함용한 역세권

결정의 최적 Feature 결정

기계학습을 활용한 역세권 프리미엄 정도 예측

Keras scikit-learn

2. 분석 데이터

지하철 역 관련 데이터

- 각 호선 별 정보
- 환승 여부
- 역 이용량
- 역 주변 버스 노선 수

수집 방법 및 출처

- 공공데이터 포털
- 서울 열린 데이터 광장
- 네이버 API 및 Scrapper

건물 관련 데이터

- 아파트 / 오피스텔 가격
- 연립 / 다세대 주택 가격
- 1인 / 일반가구 비율

수집 방법 및 출처

- 국토교통부 실거래가 공개 시스템
- 공공데이터 포털

상권 및 공공기관 데이터

- 영화관, 백화점, 지하상가
- 스타벅스, 편의점
- 도서관, 장애인 복지센터
- 구청, 자치센터

수집 방법 및 출처

- 공공데이터 포털
- 서울 열린 데이터 광장
- Web Scrapping

1. 예상결과

D: 역세권의 실질적 범위

P: 해당 자치구의 평균 매매가

250m로 정의된 역세권 범위

🤵 분석을 통해 정의한 역세권의 실질적 범위

2 활용빙안

1) 실질적 역세권의 범위 및 프리미엄 정도 파악

- 정확한 역세권 범위 및 프리미엄 정도를 기반으로 정책 개발, 투자 등의 의사결정 지원
- 대학가, 상업지구 등의 다양한 역세권 유형별 분석

2) 역세권에 영향을 주는 주요한 Feature 식별

- 지역 이해관계자들의 사업 투자 지원 정보 제공
- 역세권 범위와 프리미엄 정도를 정의할 수 있는 표준 생성

3) 자치구・동의 특성에 따른 역세권 프리미엄의 정도 예측

- 신설 예정 지하철 역 주변의 프리미엄 증가 정도 예측
- 무분별한 역세권 프리미엄 광고 분별

1.팀구성

정재민

팀 리더 프로젝트 관리

이승윤

데이터 파이프라인 구축

송용백

아이디어 제너레이터

제갈용승

데이터 시각화 분석모델 구축

박영재

시장 분석 데이터 수집

2 프로젝트 일정

3월		4월				5월					6월
3주차	4주차	1주차	2주차	3주차	4주차	1주차	2주차	3주차	4주차	5주차	1주차
	주제 선정										
			데이트	수집 및	전처리						
						데이트	분석				
							기계	학습 모델	구축		
										모델	평가
						Kickoff		Interim			Final

THANK YOU

2019 Spring Data Analytics BADA