2018 APMO #5

Tristan Shin

17 Apr 2018

Find all polynomials P(x) with integer coefficients such that for all real numbers s and t, if P(s) and P(t) are both integers, then P(st) is also an integer.

Let $P(x) = \sum_{i=0}^{n} a_i x^i$ for some coefficients a_i . Fix a real number t such that P(t) is an integer. Then P(kt) is an integer for all integers k. Consider the system of equations

$$a_{0} = P(0)$$

$$a_{0} + a_{1}t + a_{2}t^{2} + \dots + a_{n}t^{n} = P(t)$$

$$a_{0} + 2a_{1}t + 4a_{2}t^{2} + \dots + 2^{n}a_{n}t^{n} = P(2t)$$

$$a_{0} + 3a_{1}t + 9a_{2}t^{2} + \dots + 3^{n}a_{n}t^{n} = P(3t)$$

$$\vdots$$

$$a_{0} + na_{1}t + n^{2}a_{2}t^{2} + \dots + n^{n}a_{n}t^{n} = P(nt)$$

in variables $a_0, a_1t, a_2t^2, \ldots, a_nt^n$. The coefficient matrix is the Vandermonde matrix on $0, 1, 2, \ldots, n$, which has non-zero determinant, so there is a unique solution. By Cramer's Rule, each of the a_it^i are rational. Let d be the greatest common factor of all i for which a_i is non-zero. Then t^d is rational.

Let $P(x) = Q(x^d)$ for some integer polynomial Q, so Q(t) being an integer implies that $P(\sqrt[d]{t})$ is an integer, so t is rational. By the Rational Root Theorem, Q(x) - Q(t) = 0 has a rational solution only if the denominator of the solution is a factor of a_n . So the denominator of all values of t for which Q(t) is an integer is a factor of a_n , so there cannot be s, t with $|s - t| < \frac{1}{|a_n|}$ for which Q(s) and Q(t) are integers. But this is a contradiction if $\deg Q > 1$ because the slope approaches infinity, so $\deg Q \leq 1$.

If Q is a constant, then P is a constant, and clearly this works. Otherwise assume $Q(x) = a_n x + a_0$, then $P(x) = a_n x^n + a_0$, with P(x) being an integer if and only if $a_n x^n$ is one. For the assertion to be true, we would need $a_n s^n$ and $a_n t^n$ being integers to imply that $a_n s^n t^n$ to be an integer. If $|a_n| \neq 1$, then pick $s = t = \sqrt[n]{\frac{1}{a_n}}$ for this to be false. So then $a_n = \pm 1$, and the assertion is clearly true.

So our solutions are constants and $\pm x^n + b$.