1. Textbook problem 5.1. The graph has two minimum spanning trees, of cost 19. There are several different orders in which Kruskal might potentially add the edges, for instance:

Edge	one side of cut
A-E	$\{A\}$
E - F	$\{A, E\}$
B - F	$\{A, E, F\}$
F - G	$\{A, B, E, F\}$
G-H	$\{H\}$
C-G	$\{C\}$
D-G	$\{D\}$

2. Textbook problem 5.4.

Claim. A graph G with k connected components has at least |V| - k edges.

Proof. Take any such G = (V, E) and run an iterative trimming procedure on it: "while there is a cycle, remove an edge from the cycle". The result is a forest of k trees; say they contain n_1, n_2, \ldots, n_k nodes respectively (where $n_1 + \cdots + n_k = |V|$). Then they must contain $n_1 - 1, \ldots, n_k - 1$ edges respectively, for a total of |V| - k. Therefore G must originally have had at least this many edges. \square

3. Another characterization of trees.

Claim. Let G be any undirected graph with n nodes, n-1 edges, and no cycles. Then G is a tree.

Proof. Suppose G has k connected components, containing n_1, n_2, \ldots, n_k nodes, respectively, where $n_1 + \cdots + n_k = n$. Each component is acyclic and connected and is therefore a tree; hence the component with n_i nodes must have $n_i - 1$ edges, implying that the total number of edges in G is exactly $(n_1 - 1) + (n_2 - 1) + \cdots + (n_k - 1) = n - k$. But we know there are n - 1 edges; thus k = 1, so G is connected and therefore a tree.

- 4. Another greedy approach to MST.
 - (a) Claim. Pick any cycle in a graph, and let e be the heaviest edge in that cycle. Then there is a minimum spanning tree that does not contain e.

Proof. Call the cycle C. We'll show that for any spanning tree T that contains e, there is another spanning tree T' which doesn't contain e and whose weight is at most that of T.

Remove e from T; this splits T into two subtrees, T_1 and T_2 . Since e crosses the cut (T_1, T_2) , the cycle C must contain at least one other edge e' across this cut. Let T' = T - e + e'. T' is connected and has |V| - 1 edges; therefore it is a spanning tree. And since $w(e) \ge w(e')$, the weight of T' is at most that of T.

- (b) Let G_t be what remains of the graph after t iterations of the loop. Part (a) tells us that for any t, we have $\mathrm{MST}(G_{t+1}) = \mathrm{MST}(G_t)$, where $\mathrm{MST}(\cdot)$ denotes the cost of the minimum spanning tree. By induction, we therefore have $\mathrm{MST}(G_T) = \mathrm{MST}(G)$, where G_T is the final graph. This G_T has no remaining cycles and is therefore a spanning tree, whereby it must be a minimum spanning tree of G.
- (c) G has a cycle containing $e = \{u, v\}$ if and only if there is a path from u to v in G e.
 - $\operatorname{explore}(G e, u)$.
 - return visited[v].

- (d) Sorting takes $O(|E|\log|E|)$ and there are |E| iterations of the loop, each of which takes time O(|V|+|E|). Since we're assuming the graph is initially connected, we have $|V| \leq |E|+1$, so the total time is $O((|V|+|E|)|E|) = O(|E|^2)$.
- 5. Updating an MST when an edge weight is increased. For graph G=(V,E) with edge weights $w(\cdot)$, you already have a minimum spanning tree T=(V,E'). Then the weight of an edge e increases. How should T be updated?

Case 1: $e \notin E'$. Nothing to do.

Case 2: $e \in E'$. In this case, remove e from T; this divides the tree in two, with vertices V_1 on one side and $V_2 = V - V_1$ on the other. Find the lightest edge (in E) between V_1 and V_2 and add it in. The total time taken is O(|V| + |E|).