AGH	Akademia Górniczo-Hutnicza Wydział Fizyki i Informatyki Stosowanej Fizyka Techniczna Metody Obliczeniowe Fizyki i Techniki 1		Zrealizował: Ryś Przemysław
Rok akademicki: 2022/2023		Semestr VI	Grupa projektowa nr 1
Temat projektu: Lab 2: Dynamika punktu materialnego			
Data wykonania ćwiczenia 19.04.2023		Data oddania sprawozdania 20.04.2023	Ocena

1 Wstęp

Tematem projektu było rozwiązanie równań ruchu dla punktu materialnego o masie $m=1[\mathrm{kg}]$, poruszającego się w potencjale:

$$V(x) = -e^{(-x^2)} - 1.2e^{(-(x-2)^2)} [J]$$
(1)

W chwili początkowej ciało znajdowało się w spoczynku v=0 w punkcie $x=2.8 [\mathrm{m}].$

Projekt realizowałem z wykorzystaniem środowiska Jupyter opartego na kernelu Python 3. Przydatna w realizacji tego projektu była biblioteka sympy, która umożliwiała obliczanie pochodnej symbolicznie, bez niepotrzebnych błędów przybliżeń.

2 Wyniki symulacji

2.1 1. Całkowanie równań ruchu jawnym schematem Eulera.

Rys. 1: Wykres położenia x punktu od czasu, dla kroku czasowego dt1 = 0.01 oraz dt2 = 0.002.

Rys. 2: Wykres prędkości vpunktu od czasu, dla kroku czasowego $dt1=0.01~\mathrm{oraz}~dt2=0.002.$

Rys. 3: Wykres energii kinetycznej E_k punktu od czasu, dla kroku czasowego dt1=0.01 oraz dt2=0.002.

Rys. 4: Wykres energii całkowitej $E_k + U$ punktu od czasu, dla kroku czasowego dt1 = 0.01 oraz dt2 = 0.002.

2.2 2. Całkowanie równań z oporami ruchu.

Rys. 5: Wykres położenia x punktu od czasu, dla kroku czasowego dt1=0.01 oraz trzema różnymi parametrami tłumienia.

Rys. 6: Wykres prędkości v punktu od czasu, dla kroku czasowego dt1=0.01 oraz trzema różnymi parametrami tłumienia.

Rys. 7: Wykres energii kinetycznej E_k punktu od czasu, dla kroku czasowego dt1=0.01 oraz trzema różnymi parametrami tłumienia.

Rys. 8: Wykres energii całkowitej $E_k + U$ punktu od czasu, dla kroku czasowego dt1 = 0.01 oraz trzema różnymi parametrami tłumienia.

2.3 3. Iteracja we wzorze trapezów.

```
Warość początkowa x i v: 1 1

x i v: [2.79975141] [-0.02942378] z różnicą dx i dv [-1.79975141] [1.02942378]

x i v: [2.79979706] [-0.02029383] z różnicą dx i dv [-4.56497143e-05] [-0.00912994]

x i v: [2.79979706] [-0.02029397] z różnicą dx i dv [6.93928682e-10] [1.38785777e-07]

x i v: [2.79979706] [-0.02029453] z różnicą dx i dv [2.7712013e-09] [5.54240218e-07]
```

Rys. 9: Pierwszy krok czasowy generowany wzorem trapezów dla $\alpha=0$ oraz $\Delta t=0.01$.

2.4 4. Całkowanie równań ruchu metodą trapezów.

