Using ACS Estimates and Margins of Error

April 6, 2016

Sirius Fuller
Decennial Statistical Studies Division
U.S. Census Bureau

Outline

- What is the Margin of Error (MOE)
- Why do MOEs Matter
- Statistical Testing Using the MOE
- Approximating the MOE
- Resources and References
- Questions

What is the Margin of Error

What is the Margin of Error?

ACS is a sample and different samples would yield different estimates of the actual population value

The MOE is a measure of the possible variation of the estimate around the population value

Data users can be certain at a given confidence level that the estimate and the actual population value differ by no more than the value of the MOE

Measures of Sampling Variability

Variance

Standard Error (SE) = $\sqrt{\text{Variance}}$

 $MOE = 1.645 \times SE$

(90 percent Confidence Level)

(Census Bureau standard is 90 percent confidence level)

Alternate Confidence Levels

Confidence Level	Margin of Error (MOE)
90%	1.645 x SE
95%	1.96 x SE
99%	2.58 x SE

Can convert MOE to different confidence level

$$MOE_{95\% \text{ confidence level}} = \frac{1.96}{1.645} \times MOE_{90\% \text{ confidence level}}$$

Why Do MOEs Matter

Geography	Median Household Income (\$)	MOE
Block Group 1	37,284	20,922

- Lower Bound = 37,284 20,922 = 16,362
- Upper Bound = 37,284 + 20,922 = 58,206
- Confidence Interval (\$16,362, \$58,206)
 (90% Confidence Level)

Why Do MOEs Matter

Geography	Median Household Income (\$)	MOE
Block Group 1	37,284	
Block Group 2	42,750	
Block Group 3	56,875	
Block Group 4	66,750	
Block Group 5	76,833	

Why Do MOEs Matter

Geography	Median Household Income (\$)	MOE
Block Group 1	37,284	20,922
Block Group 2	42,750	21,302
Block Group 3	56,875	20,956
Block Group 4	66,750	32,130
Block Group 5	76,833	47,268

Testing for Statistical Significance

Definition

A test to determine if a difference is unlikely to occur by chance

To be "statistically different" means there is statistical evidence that there is a difference

ACS Comparison Profile Year to Year Change

ACS Ranking Tables

S0201 SELECTED POPULATION PROF 2011 American Community Surv		0		
			United States	
	Total po	Asian alone or in combination with one or more oth Total population 299) or (300, A01-Z99) or (400		
Subject	Estimate	Margin of Error	Estimate	Margin of Error
TOTAL NUMBER OF RACES REPORTED				
Total population	311,591,919	*****	17,673,522	+/-25,721
One race	97.2%	+/-0.1	85.0%	+/-0.2
Two races	2.6%	+/-0.1	12.9%	+/-0.2
Three races	0.2%	+/-0.1	1.9%	+/-0.1
Four or more races	0.0%	+/-0.1	0.3%	+/-0.1
SEX AND AGE				
Total population	311,591,919	*****	17,673,522	+/-25,721
Male	49.2%	+/-0.1	47.9%	+/-0.1
Female	50.8%	+/-0.1	52.1%	+/-0.1
Under 5 years	6.4%	+/-0.1	7.4%	+/-0.1
5 to 17 years	17.3%	+/-0.1	18.2%	+/-0.1
18 to 24 years	10.0%	+/-0.1	10.6%	+/-0.1
25 to 34 years	13.3%	+/-0.1	16.2%	+/-0.1
35 to 44 years	13.1%	+/-0.1	15.9%	+/-0.1
45 to 54 years	14.3%	+/-0.1	12.9%	+/-0.1
55 to 64 years	12.2%	+/-0.1	9.9%	+/-0.1
65 to 74 years	7.2%	+/-0.1	5.3%	+/-0.1
75 years and over	6.1%	+/-0.1	3.6%	+/-0.1
Median age (years)	37.3	+/-0.1	33.5	+/-0.2
18 years and over	76.3%	+/-0.1	74.4%	+/-0.1
21 years and over	71.8%	+/-0.1	69.9%	+/-0.1
62 years and over	16.7%	+/-0.1	11.5%	+/-0.1
65 years and over	13.3%	+/-0.1	9.0%	+/-0.1

Generic formula:

$$\frac{|Est_1 - Est_2|}{\sqrt{MOE_{est1}^2 + MOE_{est2}^2}}$$

Median Age:

Asian alone or in combo: 33.5 +/- 0.2

■ Total Population: 37.3 +/- 0.1

STEP	Process	Result
1	Take the difference of the estimates	33.5 – 37.3 = -3.8
2	Take the absolute value of step 1	-3.8 = abs(-3.8) = 3.8
3	Square the MOEs	$0.2^2 = 0.04$ $0.1^2 = 0.01$
4	Add the squared MOEs together	0.04 + 0.01 = 0.05

STEP	Process	Result
5	Take the square root of step 4	$\sqrt{0.05} \approx 0.224$
6	Divide step 2 by step 5	3.8 / 0.224 = 16.99
7	Compare to 1.0	16.99 > 1.0

• If step 7 is greater than 1.0 then the estimates are significant different.

Generic formula:

$$\frac{|Est_1 - Est_2|}{\sqrt{MOE_{est1}^2 + MOE_{est2}^2}}$$

Example:

$$\frac{|33.5 - 37.3|}{\sqrt{(0.2)^2 + (0.1)^2}} = 16.99$$

This method is used for:

- Any type of estimate (count, percent, median, rate, etc.)
- Between years
- Between non-overlapping multi-year periods
- Across geographic areas
- Between surveys (e.g. ACS vs Census)
 - Provided the ACS estimate is comparable to the Census

https://www.census.gov/programs-surveys/acs/guidance/comparing-acs-data.html

Statistical Testing Tool

Special CaseControlled Estimates

- Controlled estimates:
 - -MOE = ****** (5 asterisks)
 - Set MOE = 0 for statistical testing

B01001 SEX BY AGE Universe: Total population 2013 American Community Survey 1-Year Estimates				
United States				
	Estimate	Margin of Error		
Total:	316,128,839	****		
Male:	155,627,698	+/-26,501		
Under 5 years	10,109,150	+/-17,055		
5 to 9 years	10,516,217	+/-41,359		
10 to 14 years	10,622,312	+/-38,115		
15 to 17 years	6,402,435	+/-12,852		

Special Case Zero Estimate MOEs

- Zero estimates will have an MOE
- MOEs for zero estimates are model-based

B01001E

SEX BY AGE (NATIVE HAWAIIAN AND OTHER PACIFIC ISLANDER ALONE) Universe: People who are Native Hawaiian and Other Pacific Islander alone

0

2009-2013 American Community Survey 5-Year Estimates

	D	elaware	District of Columbia		Maryland		Virginia	
	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error	Estimate	Margin of Error
Total:	567	+/-337	233	+/-94	2,570	+/-367	5,633	+/-541
Male:	261	+/-159	134	+/-90	1,271	+/-263	2,697	+/-336
Under 5 years	36	+/-56	0	+/-29	29	+/-23	132	+/-62
5 to 9 years	0	+/-27	0	+/-29	110	+/-93	82	+/-47
10 to 14 years	0	+/-27	34	+/-48	55	+/-50	324	+/-117
15 to 17 years	0	+/-27	0	+/-29	78	+/-82	141	+/-97
18 and 19 years	3	+/-8	0	+/-29	20	+/-25	144	+/-89
20 to 24 years	2	+/-4	0	+/-29	363	+/-314	340	+/-186
25 to 29 years	2	+/-6	0	+/-29	131	+/-99	419	+/-170

Special Case Medians and Aggregates

- Median and Aggregates with too few observations:
 - Estimate = "-", MOE = "**"
- Medians in upper or lower category:
 - Median income in the past 12 months
 - Estimate = "\$2,500-", MOE = "***"
- NO statistical testing possible

Deriving New Estimates Must approximate the MOE

Approximating the MOE

Wish to calculate total number of children under the age of 5 years old

- Sum the estimates for males and females
- Approximate MOE:

$$MOE_{Aggreg} = \sqrt{MOE_{est1}^2 + MOE_{est2}^2} \dots$$

Approximating the MOE

Characteristics	Estimate	MOE	MOE Squared
Under 5 years, Males	10,247,162	+/-4,089	16,719,921
Under 5 years, Females	9,804,950	+/-3,460	11,971,600

Total, Under 5 Years Old = 10,247,162 + 9,804,950 = 20,052,112

$$MOE_{Total} = \sqrt{4,089^2 + 3,460^2} \approx 5,356.4$$

Approximating the MOE

Characteristics (Native Hawaiians)	Estimate	MOE
Under 5 years old (Delaware)	36	56
5 to 9 years old (Delaware)	0	27
Under 5 years old (Washington, D.C.)	0	29
5 to 9 years old (Washington, D.C.)	0	29
TOTAL	36	63.06

- MOE for zero estimates are based on a model
- When approximating a sum, use only the largest zero estimate MOE, once

$$MOE(Total) \approx \sqrt{56^2 + 29^2} \approx 63.06$$

Estimates with Large MOEs

Estimates with Large MOEs

- Some estimates have MOEs larger than the estimate
- This may occur for small geographies or small populations
- If this occurs
 - Use a larger geography
 - Combine estimates across characteristics, geographies or both

Collapsed Tables

Detailed Table

Collapsed Table

C01	C01001B SEX BY AGE (BLACK OR AFRICAN AMERICAN ALONE) Universe: People who are Black or African American alone 2013 American Community Survey 1-Year Estimates			
~		Unite	ed States	
1		Estimate	Margin of Error	
9	Total:	39,919,371	+/-55,395	
of 9	Male [.]	19,055,640	+/-33,146	
~	Under 18 years	5,322,156	+/-21,007	
*	18 to 64 years	12,188,424	+/-25,229	
	65 years and over	1,545,060	+/-7,099	
	Female:	20,863,731	+/-39,109	
	Under 18 years	5,139,441	+/-24,134	
	18 to 64 years	13,394,099	+/-23,559	
	65 years and over	2,330,191	+/-8,186	

Resources

http://www.census.gov/programs-surveys/acs/technical-documentation/code-lists.html

Compass Handbooks

American Community Survey (ACS)

About the Survey

Respond to the Survey

News & Updates

Data

Guidance for Data Users

Subjects Included in the Survey

Which Data Tool Should I Use?

When to Use 1-year, 3-year, or 5-year Estimates

Handbooks

Comparing ACS Data

Training Presentations

Geography & ACS

Technical Documentation

Methodology

Library

Operations and Administration

Handbooks for Data Users

You can use American Community Survey (ACS) data in different ways and for different reasons. Each one of our downloadable PDF Compass handbooks helps a particular group with specific how-to instructions and/or case studies.

For an introduction to ACS data, we recommend the compass handbook for General Data Users.

What Congress Needs to Know

November 2008

This handbook helps congressional staff use ACS data to respond to constituent inquiries, draft floor/press statements, conduct legislative research, and more.

What Federal Agencies Need to Know

December 200

This handbook helps federal agencies use ACS data for eligibility determinations, allocation of funds, program parameters, and more

What General Data Users Need to Know

October 200

This handbook helps general data users learn how to access and use ACS data and provide concrete examples of how ACS data can answer real-world questions.

http://www.census.gov/programs-surveys/acs/guidance/handbooks.html

Training Presentations

American Community Survey (ACS)

About the Survey

Respond to the Survey

News & Updates

Data

Guidance for Data Users

Subjects Included in the Survey

Which Data Tool Should I Use?

When to Use 1-year, 3-year, or 5-year Estimates

Handbooks

Comparing ACS Data

Training Presentations

Geography & ACS

Technical Documentation

Methodology

Library

Operations and Administration

Training Presentations

Want to learn more about American Community Survey (ACS) data and data products? Need to train others how to understand the data? These compass presentations can help.

An Overview of the American Community Survey

February 2013

Basics of the American Community Survey program and website, with information on content, survey methodology, and data products.

Data Products from the American Community Survey

February 201

Examples and suggestions for using data profiles, tables, and Public Use Microdata Sample (PUMS) Files.

Things that May Affect Estimates from the American Community Survey

February 2013

Because the American Community Survey is a sample survey, sampling error is inevitable.

http://www.census.gov/programs-surveys/acs/guidance/training-presentations.html

Crosswalk

http://www.census.gov/acs/www/guidance/comparing-acs-data/acscensus-table-lookup

Design and Methodology

http://www.census.gov/programs-surveys/acs/methodology/design-and-methodology.html

Source Us!

U.S. Census Bureau's [YYYY-YYYY] American Community Survey [1/3/5]-year [estimates/statistics/data release]

College Destinations: How We Rank Them
American Institute for Economic Research - Apr 7, 2014
Sources: U.S. Census Bureau; American Community Survey, 2011
American Community Survey 1-Year Estimates, Table B01003;
using ...

NMSU Valencia County Extension providing youth develo...
New Mexico State University NewsCenter - Apr 14, 2015
... Mexico and \$53,046 for the United States, according to the U.S.
Census Bureau's 2009-2013 American Community Survey 5-Year Estimate.

Census Estimates Show Progress Toward ACA Coverag... Health Affairs (blog) - Sep 28, 2015 Source: U.S. Census Bureau, 2013 and 2014 American Community Survey 1-year estimates from Table S2701 in American Fact Finder.

Continue the Conversation #ACSdata

Sign up for and manage alerts at https://public.govdelivery.com/accounts/USCENSUS/subscriber/new

facebook.com/uscensusbureau

More information on the American Community Survey: http://www.census.gov/acs

twitter.com/uscensusbureau

youtube.com/user/uscensusbureau

(800) 923-8282 or (301) 763-1405

instagram.com/uscensusbureau

acso.users.support@census.gov

pinterest.com/uscensusbureau

Purpose:

- Improve understanding of the value and utility of ACS data.
- Promote information sharing among data users about key ACS data issues and applications
- Membership is free and open to all interested ACS data users
- Webinars and special sessions at professional meetings planned
- Users group website and online community

http://www.acsdatausers.org/

Need Local Stats?

Assistance Near You!

Our regional data staff can help you access local statistics from the ACS or offer training to help build your skills.

Contact us at: clmso.ddb.questions@ census.gov

Questions?

Please fill out the evaluation for this presentation

Bonus Slide: Finding Your Geographies

Bonus Slide: How to Determine if you are in a Survey

http://www.census.gov/programs-surveys/are-you-in-a-survey.html

Bonus Slide: Why We Ask the Questions on the ACS

http://www.census.gov/acs/www/about/why-we-ask-each-question/

Bonus Slide: Explanation of Detailed Table Code

B01001APR

- B is for Detailed Table, C is for Collapsed
- 01 is a 2-digit code for the subject (https://ask.census.gov/faq.php?id=5000&faqId=1687)
 (New series: B28 for Computers and Internet)
- 001 is the table number
- A is if the table is a race/Hispanic iterated table
 (A is white alone non-Hispanic, iterations are A through I)
- PR appears only if the table is published exclusively for Puerto Rico