Raymond Smullyan's Tableaux Propositional Logic

Courtesy of Chiara Ghedini (FBK, Trento)

Outline of this lecture

- An introduction to Automated Reasoning with Analytic Tableaux;
- Today we will be looking into tableau methods for classical propositional logic (well discuss first-order tableaux later).
- Analytic Tableaux are a a family of mechanical proof methods, developed for a variety of different logics. Tableaux are nice, because they are both easy to grasp for *humans* and easy to implement on *machines*.

How does it work?

The tableau method is a method for proving, in a mechanical manner, that a given set of formulas is not satisfiable. In particular, this allows us to perform automated *deduction*:

Given: set of premises Γ and conclusion ϕ

Task: prove $\Gamma = \phi$

How? show $\Gamma \cup \neg \phi$ is not satisfiable (which is equivalent),

i.e. add the complement of the conclusion to the premises

and derive a contradiction (refutation procedure)

Reduce Logical Consequence to (un)Satisfiability

Theorem

 $\Gamma \models \phi$ if and only if $\Gamma \cup \{\neg \phi\}$ is unsatisfiable

Proof.

- \Rightarrow Suppose that $\Gamma \models \phi$, this means that every interpretation \mathcal{I} that satisfies Γ , it does satisfy ϕ , and therefore $\mathcal{I} \not\models \neg \phi$. This implies that there is no interpretations that satisfies together Γ and $\neg \phi$.
- \leftarrow Suppose that $\mathcal{I} \models \Gamma$, let us prove that $\mathcal{I} \models \phi$, Since $\Gamma \cup \{\neg \phi\}$ is not satisfiable, then $\mathcal{I} \not\models \neg \phi$ and therefore $\mathcal{I} \models \phi$.

Constructing Tableau Proofs

- Data structure: a proof is represented as a tableaua binary tree, the nodes of which are labelled with formulas.
- **Start**: we start by putting the premises and the negated conclusion into the root of an otherwise empty tableau.
- **Expansion**: we apply expansion rules to the formulas on the tree, thereby adding new formulas and splitting branches.
- Closure: we close branches that are obviously contradictory.
- Success: a proof is successful iff we can close all branches.

An example

Expansion Rules of Propositional Tableau

$$\alpha$$
 rules

¬¬-Elimination

$$\begin{array}{c|cccc} \hline \phi \wedge \psi & \neg(\phi \vee \psi) & \neg(\phi \supset \psi) \\ \hline \phi & \neg \phi & \phi & \hline \phi \\ \psi & \neg \psi & \neg \psi & \end{array}$$

 β rules

Branch Closure

$$\frac{\phi \lor \psi}{\phi \mid \psi} \quad \frac{\neg(\phi \land \psi)}{\neg \phi \mid \neg \psi} \quad \frac{\phi \supset \psi}{\neg \phi \mid \psi} \qquad \frac{\phi}{\neg \phi}$$

Note: These are the standard ("Smullyan-style") tableau rules.

We omit the rules for \equiv . We rewrite $\phi \equiv \psi$ as $(\phi \supset \psi) \land (\psi \supset \phi)$

Smullyans Uniform Notation

Two types of formulas: conjunctive (α) and disjunctive (β) :

We can now state α and β rules as follows:

$$\begin{array}{c|c} \alpha & \beta \\ \hline \alpha_1 & \beta_1 & \beta_2 \\ \hline \alpha_2 & \end{array}$$

Note: α rules are also called deterministic rules. β rules are also called splitting rules.

Some definition for tableaux

Definition (Closed branch)

A closed branch is a branch which contains a formula and its negation.

Definition (Open branch)

An open branch is a branch which is not closed

Definition (Closed tableaux)

A tableaux is closed if all its branches are closed.

Definition

Let ϕ and Γ be a propositional formula and a finite set of propositional formulae, respectively. We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \phi\}$

Exercises

Exercise

Show that the following are valid arguments:

$$\bullet \models ((P \supset Q) \supset P) \supset P$$

•
$$P \supset (Q \land R), \neg Q \lor \neg R \models \neg P$$

$$\neg(((P \supset Q) \supset P) \supset P)$$

$$|$$

$$(P \supset Q) \supset P$$

$$\neg P$$

$$\neg(P \supset Q) \qquad P$$

$$|$$

$$P \qquad X$$

$$\neg Q$$

$$|$$

$$X$$

Solutions

Note: different orderings of expansion rules are possible! But all lead to unsatisfiability.

Exercises

Exercise

Check whether the formula $\neg((P\supset Q)\land (P\land Q\supset R)\supset (P\supset R))$ is satisfiable

Solution

$$\neg((P \supset Q) \land (P \land Q \supset R) \supset (P \supset R))$$

$$| \qquad \qquad | \qquad | \qquad | \qquad | \qquad | \qquad \qquad$$

The tableau is closed and the formula is not satisfiable.

Satisfiability: An example

Exercise

Check whether the formula $\neg(P \lor Q \supset P \land Q)$ is satisfiable

Solution

Two open branches. The formula is satisfiable.

The tableau shows us all the possible interpretations $(\{P\}, \{Q\})$ that satisfy the formula.

Using the tableau to build interpretations.

For each open branch in the tableau, and for each propositional atom p in the formula we define

$$\mathcal{I}(p) = \begin{cases} \text{True} & \text{if } p \text{ belongs to the branch,} \\ \text{False} & \text{if } \neg p \text{ belongs to the branch.} \end{cases}$$

If neither p nor $\neg p$ belong to the branch we can define $\mathcal{I}(p)$ in an arbitrary way.

Models for $\neg(P \lor Q \supset P \land Q)$

Two models:

- $\mathcal{I}(P) = \mathsf{True}, \mathcal{I}(Q) = \mathsf{False}$
- $\mathcal{I}(P) = \mathsf{False}, \mathcal{I}(Q) = \mathsf{True}$

Double-check with the truth tables!

Р	Q	$P \lor Q$	$P \wedge Q$	$P \lor Q \supset P \land Q$	$\neg (P \lor Q \supset P \land Q)$
_	T	<u>-</u>	T	T	F
F	F	F	F	$\mid \hspace{0.5cm} \mathcal{T} \hspace{0.5cm} \mid$	F
T	F	T	F	T	T
F	T	T	F	F	T

Homeworks!

Exercise

Show unsatisfiability of each of the following formulae using tableaux:

Show satisfiability of each of the following formulae using tableaux:

Show *validity* of each of the following formulae using tableaux:

For each of the following formulae, describe all models of this formula using tableaux:

Establish the equivalences between the following pairs of formulae using tableaux:

Termination

Assuming we analyse each formula at most once, we have:

Theorem (Termination)

For any propositional tableau, after a finite number of steps no more expansion rules will be applicable.

Hint for proof: This must be so, because each rule results in ever shorter formulas.

Note: Importantly, termination will not hold in the first-order case.

Soundness and Completeness

To actually believe that the tableau method is a valid decision procedure we have to prove:

Theorem (Soundness)

If $\Gamma \vdash \phi$ *then* $\Gamma \models \phi$

Theorem (Completeness)

If $\Gamma \models \phi$ *then* $\Gamma \vdash \phi$

Remember: We write $\Gamma \vdash \phi$ to say that there exists a closed tableau for $\Gamma \cup \{\neg \phi\}$.

Decidability

The proof of Soundness and Completeness confirms the decidability of propositional logic:

Theorem (Decidability)

The tableau method is a decision procedure for classical propositional logic.

Proof. To check validity of ϕ , develop a tableau for $\neg \phi$. Because of termination, we will eventually get a tableau that is either (1) closed or (2) that has a branch that cannot be closed.

- In case (1), the formula ϕ must be valid (soundness).
- In case (2), the branch that cannot be closed shows that $\neg \phi$ is satisfiable (see completeness proof), i.e. ϕ cannot be valid.

This terminates the proof.

Exercise

Exercise

Build a tableau for $\{(a \lor b) \land c, \neg b \lor \neg c, \neg a\}$

