2023 北京房山初三二模

数学

本试卷共8页,共100分,考试时长120分钟。考生务必将答案答在答题卡上,在试卷上作答无效。 考试结束后,将答题卡交回,试卷自行保存。

一、选择题(共16分,每题2分)

第1-8题均有四个选项,符合题意的选项只有一个.

1. 下列几何体的主视图和俯视图完全相同的是()

- 2. 2022 年我国的进出口总额超过了 6 万亿美元,实际使用外资 1891.3 亿美元,规模再创历史新高. 将 189 130 000 000 用科学记数法表示应为

 - (A) 1.8913×10^7 (B) 18913×10^7
 - (C) 0.18913×10^{12}
- (D) 1.8913×10^{11}
- 3. 如图,用量角器测量 ZAOB,可读出 ZAOB 的度数为()
 - $(A) 65^{\circ}$
- (B) 110°
- (C) 115°
- (D) 120°

4. 实数 a, b 在数轴上的对应点的位置如图所示,表示实数 c 的点在原点右侧,且|c|<|a|,下列结论中正 确的是()

5. 下列图形中,点 O 是该图形的对称中心的是()

6. 不透明的盒子中有三张卡片,上面分别写有数字"1,2,3",除数字外三张卡片无其他差别.从中随机 取出一张卡片,记录其数字,放回并摇匀,再从中随机取出一张卡片,记录其数字,两次取出卡片上 的数字的乘积是偶数的概率是

- (A) $\frac{1}{2}$
- (B) $\frac{2}{3}$ (C) $\frac{4}{9}$ (D) $\frac{5}{9}$

7. 已知 $26^2 = 676$, $27^2 = 729$, $28^2 = 784$, $29^2 = 841$. 若 n 为整数,且 $n-1 < \sqrt{795} < n$,则 n 的值是()

- (B) 27
- (C) 28

8. 如图 8-1,在△ABC中,AB=BC,∠ABC=120°,D,E分别是边AB,BC的中点,点F为线段AC上 的一个动点,连接 FD, FB, FE. 设 AF = x, 图 8-1 中某条线段长为 y, 若表示 y 与 x 的函数关系的图象 大致如图 8-2 所示,则这条线段可能是()

图 8-1

图 8-2

- (A) FD
- (B) FB
- (C) FE
- (D) FC

二、填空题(共16分,每题2分)

9. 若代数式 $\frac{3}{r-7}$ 在实数范围内有意义,则实数 x 的取值范围是_____.

10. 分解因式: $am^2 - 4a =$ ____.

11. $f_{r}^{2} = \frac{7}{r+2}$ 的解为_____.

12. 在平面直角坐标系 xOy 中,若反比例函数 $y = \frac{k}{x} (k \neq 0)$ 的图象经过点 A (3, -2) 和点 B (2, m),则 m的值为 .

13. 若关于x的一元二次方程 $x^2 + 6x + m = 0$ 有两个实数根,则实数m的取值范围是

14. 如图, 点 A, B, C 在 \odot O 上, 若 \angle CAB = 60°, CB = 6, 则 \odot O 的半径为

15. 某公司销售部在出售一批柑橘前需要先进行"柑橘损坏率"统计,去掉损坏的柑橘后,再确定柑橘的

售价. 下表是销售部随机取样得到的"柑橘损坏率"统计表的一部分:

柑橘总质量 n/kg	250	300	350	400	450	500	550	600
损坏的柑橘质量 m/kg	24.75	30.93	35.12	39.97	44.54	51.07	55.13	61.98
柑橘损坏的频率 $\frac{m}{n}$	0.099	0.103	0.100	0.099	0.099	0.102	0.100	0.103

估计这批柑橘完好的概率为_____(结果精确到 0.1).

16. 甲、乙、丙三位同学进行象棋比赛训练,两人先比,若分出胜负,则由第三个人与胜者比赛;若是和棋,则这两个人继续下一局比赛,直到分出胜负. 如此进行·······比赛若干局后,甲胜 4 局,负 2 局;

乙胜3局,负3局;若丙负3局,那么丙胜了

局,三位同学至少进行了 局比赛.

三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第 25题5分,第26题6分,第27-28题,每题7分)

解答应写出文字说明、演算步骤或证明过程.

17. 计算:
$$(\frac{1}{3})^{-1} + \sqrt{18} + \left| -\sqrt{2} \right| - 4\cos 45^{\circ}$$
.

18. 解不等式组:
$$\begin{cases} 2x - 1 < 5 - x \\ \frac{3 + 5x}{3} > 2x. \end{cases}$$

- 19. 己知 $x^2 x 1 = 0$, 求代数式 (x+3)(x-3) + x(x-2) 的值.
- 20. 下面是晓彤在证明"平行四边形的对角相等"这个性质定理时使用的三种添加辅助线的方法,请你选择其中一种,完成证明.

平行四边形性质定理: 平行四边形的对角相等.

已知:如图, □ABCD.

求证: $\angle BAD = \angle BCD$, $\angle ABC = \angle ADC$.

方法一:

证明: 如图, 连接 AC.

方法二:

证明:如图,延长 BC 至点

E .

方法三:

证明: 如图, 连接 AC、

BD, AC与BD交于点O.

- 21. 如图,点 O为 \Box ABCD 的对角线 AC 的中点,直线 l绕点 O旋转,当 $l \bot$ AC 时,与边 AB,CD 分别交 于点 E,F,连接 AF,CE.
 - (1) 求证: 四边形 AECF 是菱形;
 - (2) 若 $\angle BAC = 15^{\circ}$, BE = 1, EC = 2, 求 $\Box ABCD$ 的面积.

- 22. 在平面直角坐标系 xOy 中,函数 y=kx+b $(k\neq 0)$ 的图象经过点 A (2,-1),且与函数 y=x 的图象交 于点 B (1,a).
 - (1) 求 a 的值及函数 $y = kx + b (k \neq 0)$ 的表达式;
 - (2) 当 $x \le 0$ 时,对于 x 的每一个值,函数 y = x + m 的值小于函数 y = kx + b $(k \ne 0)$ 的值,直接写出 m 的取值范围.
- 23. 如图, A, B, C三点在 $\odot O$ 上, 直径 BD 平分 $\angle ABC$, 过点 D 作 DE // AB 交弦 BC 于点 E, 在 BC 的延长线上取一点 F, 使得 $\angle BFD = \angle ADB$.
 - (1) 求证: *DF* 是⊙*O* 的切线;
 - (2) 若 AD = 4, DE = 5, 求 DF 的长.

- 24. 青少年的健康素质是全民族健康素质的基础. 某校为了解学生寒假参加体育锻炼的情况,从七、八、九年级学生中各随机抽取了该年级学生人数的 5%,调查了他们平均每周参加体育锻炼的时长,并对这些数据进行整理、描述和分析,下面给出部分信息.
 - a. 七、八年级学生平均每周参加体育锻炼时长数据的折线图如下:

b. 九年级学生平均每周参加体育锻炼的时长:

7, 8, 8, 11, 9, 7, 6, 8

c. 七、八、九年级学生平均每周参加体育锻炼时长的平均数、中位数、众数:

年级	平均数	中位数	众数
七年级	7.1	7	6, 10
八年级	7	m	n
九年级	p	8	8

根据所给信息,回答下列问题:

- (2) 设七、八、九三个年级学生参加体育锻炼时长的方差分别是 s_1^2 , s_2^2 , s_3^2 ,直接写出 s_1^2 , s_2^2 , s_3^2 之间的大小关系_____ (用 "<"连接);
- 25. 排球场的长度为 18m,球网在场地中央且高度为 2.24m. 排球出手后的运动路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,排球运动过程中的竖直高度 y (单位:m) 与水平距离 x (单位:m) 近似满足函数关系 $y = a(x-h)^2 + k(a < 0)$.

(1) 某运动员第一次发球时,测得水平距离x与竖直高度y的几组数据如下:

水平距离 x/m	0	2	4	6	11	12
竖直高度 y/m	2.48	2.72	2.8	2.72	1.82	1.52

- ①根据上述数据,求这些数据满足的函数关系 $y = a(x-h)^2 + k(a < 0)$;
- ②判断该运动员第一次发球能否过网____(填"能"或"不能").
- (2) 该运动员第二次发球时,排球运动过程中的竖直高度 y (单位: m) 与水平距离 x (单位: m) 近似满足函数关系 $y = -0.02(x-4)^2 + 2.88$,请问该运动员此次发球是否出界,并说明理由.

- 26. 平面直角坐标系 xOy 中,抛物线 $y = ax^2 4x + 3a$ 的对称轴为直线 x = n.
 - (1) 若抛物线经过点 (1, 0), 求 a 和 n 的值;
 - (2) 若抛物线上存在两点 $A(x_1, m)$ 和 $B(x_2, m+1)$, $x_1 = n$.
 - ①判断抛物线的开口方向,并说明理由;
 - ②若 $|x_2 x_1| \le 1$,求 a 的取值范围.
- 27. 如图, $\angle BAC = 90^\circ$,AB = AC,点 D 是 BA 延长线上一点,连接 DC,点 E 和点 B 关于直线 DC 对称,连接 BE 交 AC 于点 F,连接 EC,ED,DF.
 - (1) 依题意补全图形, 并求 ∠DEC 的度数;
 - (2) 用等式表示线段 EC, ED 和 CF 之间的数量关系, 并证明.

- 28. 在平面直角坐标系 xOy 中,有图形 W和点 P,我们规定:若图形 W上存在点 M、N(点 M和 N可以 重合),满足 PM=P'N,其中点 P' 是点 P关于 x 轴的对称点,则称点 P 是图形 W的 "对称平衡点".
 - (1) 如图 28-1 所示,已知,点A (0, 2),点B (3, 2).

①在点 P_1 (0, 1), P_2 (1, -1), P_3 (4, 1) 中,是线段 AB 的"对称平衡点" 的是

②线段 AB 上是否存在线段 AB 的"对称平衡点"?若存在,请求出符合要求的"对称平衡点"的横坐标的范围,若不存在,请说明理由;

(2) 如图 28-2,以点 A (0, 2) 为圆心,1 为半径作 $\odot A$. 坐标系内的点 C满足 AC = 2,再以点 C 为圆心,1 为半径作 $\odot C$,若 $\odot C$ 上存在 $\odot A$ 的"对称平衡点",直接写出 C点纵坐标 y_c 的取值范围.

房山区 2023 年九年级数学模拟测试(二)

参考答案

一、选择题(共16分,每题2分)

题号	1	2	3	4	5	6	7	8
答案	A	D	С	В	В	D	D	С

二、填空题(共16分,每题2分)

9.
$$x \neq 7$$
;

10.
$$a(m+2)(m-2)$$
 11. $x = 5$

11.
$$x = 5$$

12.
$$-3$$

14.
$$2\sqrt{3}$$

三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第 25 题 5 分, 第 26 题 6 分, 第 27-28 题, 每题 7 分)

17.
$$\[\[\] \] = 3 + 3\sqrt{2} + \sqrt{2} - 4 \times \frac{\sqrt{2}}{2}$$

$$= 3 + 4\sqrt{2} - 2\sqrt{2}$$

$$= 3 + 2\sqrt{2}$$

$$=3+2\sqrt{2}$$

18.
$$\begin{cases} 2x - 1 < 5 - x, & \text{(1)} \\ \frac{3 + 5x}{3} > 2x. & \text{(2)} \end{cases}$$

19. 原式 =
$$x^2 - 9 + x^2 - 2x$$

$$=2x^2-2x-9$$

$$\therefore x^2 - x - 1 = 0$$

$$\therefore 2x^2 - 2x = 2$$

20. 方法一: 证明: ∵ □ABCD, ∴ AD // BC, AB // CD, ∴ ∠DAC=∠ACB, ∠BAC; ∴ ∠DAC+∠BAC=∠ACB+ 即 ∠BAD=∠BCD, 在△ACD 与△CAB中		B C D
$\therefore \triangle ACD \cong \triangle CAB$ $\therefore \angle D = \angle B$	5分	
方法二: 证明: $\Box ABCD$, $\therefore AD // BC$, $AB // CD$, $\therefore \angle D = \angle DCE$, $\angle B = \angle DC$ $\therefore \angle B = \angle D$, $\bigcirc \Box \angle D + \angle BCD = 180^\circ$, $\therefore \angle A = \angle BCD$	3分	B C E
方法三: 证明: $\Box ABCD$, $\therefore AD//BC$, $AB//CD$ $\therefore \angle DAC = \angle ACB$, $\angle ADB = \angle ACB = \angle ACD$, $\angle ABD = \angle ACB = \angle ACB = \angle ACB = \angle ADB = \angle ADB = \angle BDC = \angle DBC = \angle ABC = \angle ADB = \angle BCD$, $\angle ABC = \angle ACD$, $\angle ABC$, $\angle $	∠BDC, 2分 ∠ACD, ∠ABD 4分	B C
21. (1) ∵ □ ABCD ∴ AB // DC ∴ ∠EAO= ∠FCO, ∠AEO= ∠CFO ∵ O 为 AC 的中点 ∴ OA=OC ∴ △AOE≌ △COF ∴ OE=OF ∴ 四边形 AECF 是平行四边形 ∵ I ⊥ AC ∴ 四边形 AECF 是菱形		F C C

- ::四边形 AECF 是菱形
- AE=EC=2, $\angle BAC=\angle ACE=15^{\circ}$,
- \therefore \angle HEC= \angle BAC+ \angle ACE=30°
- ∴*CH*=1 5 ½
- *∵BE*=1
- ∴*AB*=3

$$a=1$$
,

...... 1分

∴B (1, 1)

把点A (2, -1), B (1, 1) 代入y=kx+b ($k\neq 0$) 中,

$$\begin{cases} k+b=1, \\ 2k+b=-1. \end{cases}$$

..... 2分

解得
$$\begin{cases} k = -2 \\ b = 3. \end{cases}$$

:. 一次函数的表达式为
$$y = -2x + 3$$
. 3分

(2)
$$m < 3$$

...... 5分

23. (1) 证明: ∵ *BD* 平分∠*ABC*,

- ∴ ∠1=∠2.
- ∵ *BD* 是 ⊙ *O* 的直径,
- ∴ ∠*A*=90°.
- ∴ ∠1+∠ADB=90° ························· 分
- $\therefore \angle F = \angle ADB, \ \angle 1 = \angle 2.$
- \therefore $\angle 2+\angle F=90^{\circ}$.
- ∴ ∠*FDB*=90°.
- \therefore OD \perp DF.
- *∵OD* 是半径,
- ∴ DF 是⊙O 的切线. ······2 分

0

(2) 连接 DC

- : *BD* 是⊙*O* 的直径,
- *∴* ∠*DCB*=90°.
- ∵ BD 平分∠ABC, AD = 4
- ∴DC=DA=4 ······3 分
- $\therefore DE = 5$

$$\therefore CE = \sqrt{DE^2 - DC^2} = 3, \quad \cdots \qquad 4 \text{ ft}$$

- : DE//AB,
- ∴ ∠1=∠3.
- **∵** ∠1=∠2
- ∴ ∠3=∠2
- \therefore EB=DE=5
- ∴ CB=3+5=8 ·····5 5

$$\mathbb{Z} \angle FDB = \angle DCB = 90^{\circ}, \angle 2 = \angle 2$$

 $\therefore \triangle FDB \hookrightarrow \triangle DCB$

$$\therefore \frac{DF}{DC} = \frac{DB}{CB}$$

$$\mathbb{BI} \quad \frac{DF}{4} = \frac{4\sqrt{5}}{8}$$

$$\therefore DF = 2\sqrt{5} \qquad \cdots 6 \ \%$$

(其他解法酌情给分)

$$(2) S_3^2 < S_2^2 < S_1^2$$

25. (1) ①由表中数据可得顶点(4, 2.8)	
说 $y = a(x-4)^2 + 2.8 (a < 0)$	1分
把(0, 2.48)代入得 a=-0.02	
∴所求函数关系为 $y = -0.02(x-4)^2 + 2.8$	2分
② 能.	3分
(2) 判断:没有出界.	4分
令 $y=0$, 解得 $x_1 = -8$ (舍), $x_2 = 16$	
$x_2 = 16 < 18$	
:.没有出界. (其他解法酌情给分)	5 分
26. (1) 把 (1, 0) 代入 y=ax²- 4x+3a 得 a=1,	1 分
<i>n</i> =2	2分
(2) ①开口向上	3分
$x_1=n$,又对称轴为 $x=n$	
$\therefore A$ (n, m) 是抛物线的顶点	
$\therefore B (x_2, m+1), \exists m+1>m,$	
∴点 B 在顶点 A 的上方	4分
: 抛物线开口向上	
② 设 $ x_2-x_1 =1$,	
$\therefore x_1=n$ $\therefore x_2=n+1$	
将抛物线平移,使其顶点 $A(n, m)$ 落在坐标原点	,
平移 a 的值不变,平移后抛物线表达式为 $y=ax^2$,	
此时 $A(0, 0)$, $\therefore B(1, 1)$ 或 $B(-1, 1)$	
将 B (1, 1) 代入 $y=ax^2$ 得 $a=1$	
∵ x2-x1 ≤1, 结合图象	
$\therefore a$ 的取值范围为 $a \ge 1$.	6 分
(其他解法酌情给分)	

27. (1) 补全图形

·······1 分

连接 CB,

$$\therefore \angle BAC = 90^{\circ}, AB = AC$$

::点 E 和点 B 关于直线 DC 对称

$$\therefore EC = BC, ED = BD$$

$$DC = DC$$

$$\therefore \triangle EDC \cong \triangle BDC \text{ (SSS)}$$

:点 $E \setminus B$ 关于直线 CD 对称

 $\therefore EB \perp CD$, 设垂足为 H

则
$$\angle CHF = 90^{\circ} = \angle BAC$$

$$\therefore \angle HFC = \angle AFB$$

$$AC=AB$$
, $\angle DAC=\angle FAB=90^{\circ}$

 $\therefore \triangle DAC \cong \triangle FAB$ (ASA)

$$AD=AF$$

$$\therefore$$
 ED=BD=AD+AB=AF+AC=AC-CF+AC=2AC-CF

$$\therefore AC = \frac{\sqrt{2}}{2}BC = \frac{\sqrt{2}}{2}EC$$

$$\therefore ED = 2 \times \frac{\sqrt{2}}{2} EC - CF = \sqrt{2}EC - CF$$

$$\mathbb{E}D + CF = \sqrt{2}EC$$

------5 分

.....6 分

·····7 分

(其他证法酌情给分)

28.	(1) $(1)P_1, P_3;$		•••••••••••••••••••••••••••••••••••••••	1分
中的	②不存在. 设 <i>P</i> 为线段 <i>AB</i> 上任意 的较大值;显然 <i>PA</i> ≤3,	一点,则它与线段 <i>AB</i> 上. <i>PB</i> ≤3;	 点的距离最小值为 0,	
点 <i>P</i>	P关于 x 轴的对称点为 P	',它到线段 AB 上任意一	·点的距离≥4	
即若	fM,N是线段 AB 上的任	E意两点, <i>PM</i> ≤3, <i>P'N</i> ≥	4,不存在 <i>PM=P'N</i>	
: .线	說段AB上不存在线段AB	3的"对称平衡点".		3 分
(2)	$0 \leqslant y_C \leqslant 2$			7分