Question1:

Dataset Used: STL-10

Procedure: Extracted features from last FC layer of Resnet50. Use these extracted feature embeddings to train Multiclass SVM classifier as One-Vs-Rest classifier.

Observations:

(a)

1. Test Accuracy: 83.65 %

2. Confusion Matrix:

Actual

	U	1	2	3	4	5	O	/	O	9
0	679	12	12	0	4	1	2	2	69	19
1	10	709	1	24	12	6	3	32	2	1
2	9	0	719	0	3	1	1	1	3	63
3	3	15	3	586	60	62	11	49	5	6
4	4	21	0	34	663	20	42	13	2	1
5	5	20	2	38	23	624	62	21	4	1
6	8	3	5	7	48	36	669	14	3	7
7	1	23	3	34	41	14	15	664	4	1
8	38	1	3	2	0	0	3	0	710	43
9	20	0	39	3	2	1	7	7	52	669

Predicted

3. ROC Curve:

(b) I. Before Fine-tuning Resnet50

Procedure: Predicted the STL-10 classes from Resent50 trained on Imagenet, by taking the STL-10 classes in use and kept other classes which are in Imagenet and not in STL-10 as 'other' class name. So there will be 11 classes ['airplane', 'bird', 'car', 'cat', 'deer', 'dog', 'horse', 'monkey', 'ship', 'truck', 'other']

1. Test Accuracy: 20.75%

2. Confusion Matrix:

Actual

5

10

	0	-	_	3	-	3	U	•	U	9	10
0	156	0	1	0	0	0	0	0	4	0	639
1	0	33	0	2	0	0	0	2	0	0	763
2	2	0	177	0	0	0	0	0	0	56	565
3	0	0	0	237	0	1	0	2	0	0	560
4	0	1	0	1	0	1	1	1	0	0	795
5	1	0	0	5	11	19	1	1	0	0	762
6	0	1	0	0	0	4	182	0	0	2	611
7	0	0	0	3	0	1	0	259	0	0	537
8	1	0	0	0	0	0	0	0	233	1	565
9	1	0	5	0	0	0	4	0	53	364	373
10	0	0	0	0	0	0	0	0	0	0	0

Predicted

3. Class-wise Accuracy:

Class	Airplane	Bird	Car	Cat	Deer	Dog	Horse	Monkey	Ship	Truck
	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Accuracy	96.89%	94.28%	96.72%	95.56%	0.0%	73.07%	96.80%	97.73%	80.34%	86.05%

II. After Fine-tuning Resnet50

Procedure: Fine-tuned Resnet50 with STL-10 classes by freezing some of the layers of Resnet50 and changing last FC layer neurons to 50 neurons.

1. Test Accuracy: 91.55%

2. Confusion Matrix:

Actual

Predicted

	0	1	2	3	4	5	6	7	8	9
0	737	5	5	0	0	0	0	1	37	15
1	2	755	0	18	3	4	2	16	0	0
2	4	0	750	0	0	0	1	0	2	43
3	1	6	0	682	32	41	3	34	1	0
4	0	12	0	22	735	11	17	3	0	0
5	1	3	0	45	16	673	33	28	1	0
6	1	3	0	4	33	37	710	7	1	4
7	0	9	0	10	13	9	3	755	1	0
8	9	0	0	0	0	0	0	0	769	22
9	5	0	17	0	0	0	0	1	19	758

3.

3. Class-wise Accuracy:

Class	Airplane	Bird	Car	Cat	Deer	Dog	Horse	Monkey	Ship	Truck
	(0)	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Accuracy	96.97%	95.20%	97.15%	87.32%	88.34%	86.83%	92.32%	89.34%	92.53%	90.02%

Conclusion:

➤ On the basis of Comparison of above models we can say that Fine-tuned Resnet50 performs better than before fine-tuned resnet50 and trained SVM.

Question2:

Dataset Used: Tiny Imagenet

Procedure: Used first 50 classes of Tiny imagenet out of 200 classes to Fine-tune Resnet18 with various loss functions.

I. Fine-tuning using Triplet loss:

1. Loss = Categorical Cross-Entropy loss + 1.0 x Triplet loss

2. Learning rate: 0.0001

3. Epochs: 11

4. Test Accuracy: 61.67%

5. Confusion Matrix:

6. Classification Report:

4334441444144	precision	recall:	fl-score	support
4	0.84	8.87	6.85	150
1	0.92	0.75	0.82	150
2	0.65	0.43	0.52	150
1	0.61	0.43	0.42	150
4	0.67	0.55	0.60	150
3				
	9.69	9.37	8.48	150
6	8.68	0.85	8.75	158
. 7	0.47	0.50	0.49	150
8	0.69	8.85	0.76	150
9	0.49	0.59	0.54	150
10	0.72	0.55	0.61	158
	0.66	0.65	9.66	156
12	0.92	0.72	0.81	150
13	0.81	0.73	0.77	150
14	0.72	0.79	0.75	158
15	8.49	0.55	8.51	158
16	0.44	0.43	0.43	150
17	0.51	0.79	0.62	150
18	0.82	9.56	9.67	150
19	0.64	0.68	9.56	156
29	0.65	0.79	0.72	156
21	0.91	9.68	0.75	156
22	0.71	8.81	0.76	150
23	0.87	0.01	0.89	150
		8.55		
24	0.44		8.49	150
-25	0.64	0.71	0.27	150
20	0.61	0.56	0.59	150
27	0.45	0.43	0.44	156
28	0.48	0.65	8,55	156
29	0.47	0.55	0.51	156
39	0.51	0.56	0.54	156
31	0.66	0.69	0.68	150
32	0.54	6.38	9.45	150
33	0.59	0.46	0.52	150
-34	0.72	6.58	0.59	.150
35	0.47	0.83	0.60	150
36	0.92	9.68	9.78	156
37	0.59	8.54	0.56	156
38	0.71	8.63	0.67	156
39	0.56	0.52	0.54	150
40	0.54	0.76	9.63	150
41	0.46	0.41	0.44	150
42	0.57	0.58	0.57	150
43	9.54	0.53	0.54	156
44	0.92	0.91	0.91	150
45	0.81	0.77	0.79	156
46	0.74	8.58	0.65	156
47	8.81	8.59	8.68	158
48				150
40	0.32 8.59	0.46	0.38 0.55	
49	0.59	0.51	0.55	150
accuracy			8.63	7586
macro avq	9.64	0.63	0.63	7588
weighted avg	0.64	0.63	0.63	7586

II. Fine-tuning using Categorical-Cross Entropy loss:

1. Loss = Categorical Cross-Entropy loss

2. Learning rate: 0.00001

3. Epochs: 12

4. Test Accuracy: 73.67 %

5. Confusion Matrix:

6. Classification Report:

Classification		2000	44	01101-0010
	precision	recall	fl-score	support
8	0.87	8.92	6.89	58
1	0.88	88.8	0.88	58
2	0.76	0.82	0.79	58
3	0.70	0.60	0.65	58
4	0.67	0.80	0.73	59
5	0.70	0.79	0.79	50
6	0.82	0.92	9.87	59
7	0.71	8.64	8.67	58
8	0.88	0.88	88.8	58
9	0.69	0.58	0.63	58
10	0.80	0.82	0.81	58
11	0.89	0.84	0.87	58
12	9.81	0.92	9.86	58
13	9.89	9.84	9.87	58
14	9.90	0.98	8.99	58
15	9.76	8.58	8.66	58
16	0.64	8.54	8.64	58
17	8.71	8.88	8.75	58
18	0.75	0.88	0.78	58
19	0.83	0.76	0.76	58
20	0.88		0.87	58
		0.86		
23	0.95	0.74	0.83	50
22	0.82	0.84	9.83	59
23	0.84	0.92	0.88	58
24	0.79	0.52	0.63	58
25	0.79	0.90	0.84	58
26	0.78	0.72	0.75	50
27	0.76	0.58	0.66	50
28	0.87	9.68	8.76	59
29	0.75	9.88	8.78	58
30	9.67	0.66	8.67	58
31	0.71	0.80	0.75	59
32	0.60	0.58	0.59	59
33	0.73	0.74	0.73	58
34	0.77	0.80	0.78	50
35	0.67	0.92	0.77	50
36	0.90	0.88	0.89	59
37	9.74	9.62	9.67	59
38	0.75	9.84	9.79	58
39	0.59	0.74	8.65	59
48	0.63	0.76	8.69	59
41	0.65	0.56	0.60	50
42	0.72	0.66	0.69	58
43	0.79	0.66	0.72	50
44	0.98	0.90	8.94	58
45	9.88	8.98	8.89	58
46	9.69	8.82	8.75	58
47	9.76	8.76	8.76	58
48	8.68	8.78	8.65	58
49	0.54	0.72	0.68	58
accuracy		975.97	0.76	2500
macro avg weighted avg	0.77	0.76	0.76	2500
	0.77	9.76	9.76	2599

III. Fine-tuning using Center loss:

1. Loss = Categorical Cross-Entropy loss + 0.1 x Center loss

2. Learning rate: 0.00001

3. Epochs: 11

4. Test Accuracy: 72.61 %

5. Confusion Matrix:

6. Classification Report:

Classificatio	precision	recall	fl-score	support
	8.89	0.96	9.92	56
1	0.98	0.88	0.88	56
2	8.70	0.78	0.70	56
3	0.65	0.52	0.58	50
4	9.66	9.82	9.73	56
5	0.65	0.60	0.63	50
6	0.79	0.90	0.84	50
7	0.70	0.64	0.67	50
8	0.05	0.88	0.86	50
9	0.74	0.62	0.67	56
10	0.81	0.84	9.82	56
11	0.88	0.90	0.89	56
12	0.84	0.86	0.85	56
13	0.90	8.86	0.88	56
14	0.85	0.00	88.0	56
15	0.69	0.66	0.67	56
16	0.68	0.64	0.66	56
17	9.67	0.84	9.74	56
18	9.74	0.78	0.76	56
19	9.77	0.68	9.72	56
29	9.82	0.92	0.87	36
21	9.97	0.74	0.84	56
22	9.94	0.88	0.91	36
23	0.81	0.94	9.87	56
24	9.63	0.58	0.68	56
25	0.80	0.86	0.83	54
26	0.79	0.76	0.78	56
27	0.78	0.56	0.65	50
28	0.87	0.66	0.75	56
29	0.74	0.78	0.72	56
30	0.59	0.72	0.65	54
31	0.70	8.76	0.73	56
32	0.56	8.44	0.49	56
33	8.78	0.78	0.74	56
34	8.76	8.76	0.76	56
35	8.64	8.88	0.74	56
36	9.96	8.98	0.98	56
37	8.78	8.55	0.68	56
38	9.72	8.76	0.74	56
39	8.57	8.66	0.61	56
40	9.62	8.72	0.67	56
41	9.64	0.68	0.62	56
42	B.65	8.62	0.63	56
43	9.73	0.64	9.68	56
44	9.96	8.98	0.93	56
45	9.84	0.92	9.88	56
46	0.65	0.72	9.69	56
47	0.83	0.76	0.79	56
48	0.57	0.52	0.54	56
49	0.63	0.74	0.68	50
accuracy			0.75	2500
macro avg	0.75	0.75	0.75	2500
weighted avg	0.75	8.75	0.75	2500

Conclusion:

- ➤ On Comparing models on the basis of various metrices we can say that the model trained with Categorical Cross-Entropy loss has better performance for Test data as compared to model trained with Triplet loss and Center loss for classification task.
- > But we can see some interesting part above that model trained with Center loss performs significantly similar to model trained with Categorical Cross-Entropy loss.

Question3:

Dataset Used: Dogs Vs Cats

Train-Test Split: 70:30

(a) i. Vanilla SGD

1. Batch size: 1

Test Accuracy: 43.24 %
 Learning rate: 0.001

4. Epochs: 5

ii. Mini Batch SGD

1. Batch size: 64

Test Accuracy: 63.94 %
 Learning rate: 0.0001

4. **Epochs:** 5

iii. Mini Batch with momentum SGD

Batch size: 64
 Momentum: 0.9

3. Test Accuracy: 75.79 %4. Learning rate: 0.0001

5. Epochs: 5

iv. Mini Batch Adam

1. Batch size: 64

Test Accuracy: 82.33%
 Learning rate: 0.0001

4. Epochs: 12

Conclusion:

On Comparing Test Accuracies we can say that the model trained with Adam optimizer is more efficient than model trained with other optimizers. **(b)** As we get best Test Accuracy with above model trained with Adam, so tried for various mini batches for this model only.

Mini-Batch Size	Test Accuracy	Gradient update plot
16	82.85 %	dradients areight conv3. weight br1. weight conv3. weight br2. weight linesr2. weight linesr2. weight linesr2. weight linesr2. weight linesr2. weight linesr3.
32	81.89 %	drament thom the weight of the series of the
64	82.33 %	Gradient flow O35 O30 O30 O30 O30 O30 O30 O30

Conclusion:

As we observe from above table that there is good gradient flow even in the starting layer (conv layers) too in any of the batch size taken. But for comparison basis from the above table we can observe that we achieve comparitively good Test Accuracy with model having batch size 16 followed by 64 batch size and the 32 batch size.

Also the reason for above point can be that in the model with batch size 16 has good gradient flow while backpropagating derivate towards initial layers also (conv layer).

(c) Advantage of shuffling and partitioning the mini batches

- > Shuffling the dataloader has major advantage that shuffling leads to disrupt the model from learning the sequence of input coming. For example if we pass data in the form like first all cat images are given as input then all dog images as input. Then model may learn the sequence of coming of data and can perform poorly while testing. So model needs to see shuffled data of all classes during its learning/training phase.
- Partitioning the dataset into mini-batches also has a major advantage that during training time weight updation happens after every batch instead of the brute force training where weight updation happens after the whose dataset is passed once(i.e. after every epoch). Training model with mini-batches can improve the learning of the model by learning features by doing weight updation after every batch.
- (d) Tries with various beta (β 1, β 2) values for Adam optimizer, As betas are used for computing running averages of gradient and its square.

β1: used to decay running average of gradient.

 $\beta 2\text{:}\ used to\ decay\ running}\ average\ of\ square\ of\ gradient.$

Mini-Batch Size	Test Accuracy	Gradient update plot
eta 1 = 0.0 , $eta 2 = 0.0$	79.13 %	gradient flow 25 20 21 22 22 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25

Conclusion:

- As we observe from above table that there is good gradient flow even in the starting layer (conv layers) too in any of the model with various beta values taken. But for comparison basis from the above table we can observe that we achieve comparitively good Test Accuracy with model having $\beta 1 = 0.9$, $\beta 2 = 0.999$.
- Also the reason for above point can be that in the model with $\beta 1 = 0.9$, $\beta 2 = 0.999$ has good gradient flow while backpropagating derivate towards initial layers also (convlayer).

(e) Advantages of using Adam over other optimization methods

- Yes there are some advantages of using Adam over other optimizers. But sometimes we can see in some situations Mini-batchSGD with momentum performs better than Adam optimizer.
- > For this dataset we can observe on the basis of Test Accuracy reported in part(a) tells that Adam performs better than any other optimizer because Adam refers to Adaptive moment estimation as it takes the advantage of combination of best parts introduced in

RMSprop and SGD with momentum for variable learning rate, which helps in speeding the convergence rate and getting out if stuck in local minima. But for general purpose we can't say Adam always outperforms other optimizers as SGD with momentum can do slower convergence speed but can also do better convergence than Adam in some situations.