Historic, Archive Document

Do not assume content reflects current scientific knowledge, policies, or practices.

2TC423

ted States
Department of
Agriculture

Soil Conservation Service National Engineering Handbook

1998 NOV 19 P 3: 12

AUGZSFRIALS BRALLOL

Section 4

Hydrology

NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

Contents

Chapter 1 - Introduction

Chapter 2 - Procedures
Chapter 3 - Preliminary investigations

Chapter 4 - Storm rainfall data

Chapter 5 - Streamflow data

Chapter 6 - Stream reaches and hydrologic units

Chapter 7 - Hydrologic soil groups

Chapter 8 - Land use and treatment classes Chapter 9 - Hyrologic soil-cover complexes

Chapter 10 - Estimation of direct runoff from storm rainfall

Chapter 11 - Estimation of direct runoff from snowmelt Chapter 12 - Hydrologic effects of land use and treatment

Chapter 13 - Stage-inundation relationships Chapter 14 - Stage-discharge relationships

Chapter 15 - Travel time, time of concentration, and lag

Chapter 16 - Hydrographs Chapter 17 - Flood routing

Chapter 18 - Selected statistical methods

Chapter 19 - Transmission losses

Chapter 20 - Watershed yield Chapter 21 - Design hydrographs

Chapter 22 - Glossary

Table of conversion factors

NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 1. INTRODUCTION

Ъу

Victor Mockus Hydraulic Engineer

1964

Reprinted with minor revisions, 1969

SCS NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 1--INTRODUCTION

CONTENTS	Page
Scope	1.1
Duties and responsibilities of SCS hydrologists	1.2
Other technical guides	1.2

SOIL CONSERVATION SERVICE

National Engineering Handbook

Section 4

HYDROLOGY

CHAPTER 1. INTRODUCTION

The SCS National Engineering Handbook (NEH) is intended primarily for Soil Conservation Service (SCS) engineers and technicians. It presents material needed to carry out SCS responsibilities in soil and water conservation and flood prevention. Section 4, HYDROLOGY, contains methods and examples for studying the hydrology of watersheds, for solving special hydrologic problems that arise in planning watershed-protection and flood-prevention projects, for preparing working tools needed to plan or design structures for water use, control, and disposal, and for training personnel newly assigned to activities that include hydrologic studies.

SCOPE. Section 4 contains some new techniques that were developed by SCS personnel to meet specific needs of SCS. Well-known techniques from other sources are included where necessary to illustrate special applications to watershed-project planning, evaluation, and design. Hydrologic theory is held to the minimum necessary to show the development of methods not readily available elsewhere. References to hydrologic literature are given if they provide additional theory, data, discussion, or details of a method.

Each major kind of hydrologic problem is discussed, and where possible, alternative solutions are given and their relative merits are briefly considered. Descriptive material is kept to a minimum. All equations and examples are numbered for ease of reference. The

section is so arranged that each principal subject is discussed in a separate chapter, and cross-references to other chapters are made as needed. The table of contents is a reference to specific topics, methods, and examples; the glossary (chap. 22) is a reference to specific terms.

DUTTES AND RESPONSIBILITIES OF SCS HYDROLOGISTS

Memorandums from the director of the SCS Engineering Division define the technical duties and responsibilities of SCS hydrologists. Among the more important responsibilities is that of choosing the most suitable hydrologic method to use for a given problem. SCS engineering projects that require some application of hydrology may range in construction cost from a few hundred dollars to several million dollars. A hydrologic method suitable at one end of this range is usually unsuitable at the other. Two projects of about the same cost may require widely different methods because of differences in available data or location of benefits or topography. The chosen method in each case must be adequate to arrive at sound conclusions in terms of conditions, objectives, and functions of the project. The advice of the Engineering and Watershed Planning Unit hydrologist should be sought if there is doubt about the suitability of a method. For studies in which the choice of method is limited by available survey time or funds, the results must be regarded as tentative pending an investigation of sufficient scope.

Because the watershed work plan party works as a team, the hydrologist must be familiar with the work and needs of the economist, geologist, design engineer, and others who will use the results of a hydrologic study. To familiarize others with his own work and needs, the hydrologist must be able to describe the theories and working details of his methods, to say what data are required, what calculations are made and how they are made, and to give the approximate number of man-days of work needed to complete a job.

OTHER TECHNICAL GUIDES. SCS hydrologists should have and be familiar with other national guides and handbooks used in SCS. Publications of special interest are:

- 1. Watershed Protection Handbook
- 2. Economic Guide for Watershed Protection and Flood Prevention
- 3. SCS National Engineering Handbook:

Section 5 - Hydraulics

Section 15 - Irrigation

Section 16 - Drainage

- 4. Technical releases
- 5. Handbooks issued by State offices of SCS.

It is also necessary to be familiar with handbooks, manuals, and other in-service publications of the other agencies in a cooperative study. It may be necessary to use both SCS methods and those of a cooperating agency in order to meet, as nearly as possible, the requirements of both agencies. But SCS methods must be used for SCS projects unless approval to use other methods is obtained from the director of the SCS Engineering Division.

SCS hydrologists are expected to keep up-to-date on new developments in hydrology by reading technical papers in transactions, proceedings, or journals of organizations such as the American Society of Agricultural Engineers, American Society of Civil Engineers, Society of American Foresters, American Geophysical Union, Soil Conservation Society of America, and Soil Science Society of America. The solution of hydrologic problems requires a knowledge of several interrelated sciences, and hydrologists must accept every opportunity to increase their knowledge of the geology, soils, plant life, climatic variations, and agricultural practices of their assigned areas.

* * * *

NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 2. PROCEDURES

by

Victor Mockus Hydraulic Engineer

1964

Reprinted with minor revisions, 1972

NEH Notice 4-102, August 1972

SCS NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 2--PROCEDURES

C	CONTENTS	Page
Data collection Computations Analyses		2.1 2.1 2.2
Electronic computer progra	ms	2.2
Flow charts		2.3
Regional analysis method		2.3
Concordant flow method		2.4
Design hydrology		2.5
Figures 2.1 General process hyd	rology of watershed project	
evaluation	had analystica with an atmosp	2.6
flow or rainfall d	hed evaluation with no stream ata available	2.7
2.3 Design hydrology fo floodwater retardi	r storage and spillways in ng structures	2.8

CHAPTER 2. PROCEDURES

Hydrology for the evaluation of watershed-protection and flood-prevention projects is one of the major concerns of this handbook. The evaluation is a detailed investigation of present (no project) and future (with project) conditions of a watershed to determine whether given objectives will be met, and it is the basis on which recommendations for or against the project are founded. A summary of the evaluation is included in a work plan, which is the official document for carrying out, maintaining, and operating the project. The hydrology is not difficult, but it is complex. The procedures discussed in this chapter serve both as a guide to the hydrology and as a unifying introduction to succeeding chapters of Section 4, Part I.

A project evaluation begins with a preliminary investigation (PI), which is a brief study of a potential project in order to estimate whether a detailed investigation is justified (chap. 3). If it is, information from the PI is used in writing a work outline that gives the desired scope, intensity, and schedule of the planning study, its estimated cost, the personnel needed, and the completion date for a work plan. An important part of the planning study is the hydrologic evaluation, in which data collection, computation, and analysis are equally important divisions of work. Availability governs the collection of data. Size or cost of project influences the choice of computational and analytical methods (chap. 1). SCS policy determines the number and kind of analyses. Nevertheless the basic procedure of the evaluation does not vary. It is flexible, since some tasks can be done simultaneously or in a preferred sequence and nearly all tasks can be done by a preferred method, but the general plan is invariable. The work outline schedule follows the plan in principal. The plan, schedule, and chapters in Section 4, Part I, are related as follows:

Data collection. Base maps (chap. 3) and rainfall (chap. 4) and runoff (chap. 5) data are collected early in the study. Field surveys provide stream cross sections and profiles (chap. 6) and damsite maps. Interviews with local SCS personnel provide data on hydrologic soil-cover complexes (chaps. 7, 8, and 9).

Computations. Storm runoffs (chap. 10), snowmelt runoffs (chap. 11), special effects of land use and treatment (chap. 12), and the relations of stream stages to inundation (chap. 13) and discharge (chap. 14) are computed early in this phase of the study. Travel times

and lags (chap. 15) are computed for use in hydrograph construction (chap. 16) and flood routing (chap. 17). Runoff or peak discharge frequencies (chap. 18), transmission losses (chap. 19), and watershed yield (chap. 20) are computed only if they are required in the study.

Analyses. Three conditions of a watershed are studied in accordance with SCS policy. In order of study they are:

- 1. Present. Condition of the watershed at the time of the survey; and the base to which the proposed project is added.
- 2. With future land use and treatment (LU&T) measures. Proposed LU&T measures are added to the first condition. The measures are described in the Watershed Protection Handbook.
- 3. With future LU&T measures and structures. Watershed-protection and flood-prevention structures are added to the second condition. The structures are described in the Watershed Protection Handbook.

This order makes the analysis fall into a natural sequence in which measures that are first to affect runoff are first to be evaluated. Flood routings for the present condition give the discharges from which present flood damages are computed in the economic evaluation. The routings are modified (chap. 12) to give discharges for determining the effects of LU&T. New routings or further modifications (chap. 17) are made for the third condition to give discharges for determining the effects of structures. Generally it is the third condition that is studied at great length because an optimum number and location of structures is desired. Final design of individual structures is made late in the investigation or after the work plan is approved. The hydrology and SCS hydrologic criteria for design are given in chapter 21.

ELECTRONIC COMPUTER PROGRAMS. Work in the computational phase is reduced by use of an electronic computer program for determining watersurface profiles from which stage-inundation and stage-discharge relations are obtained. In both the computational and analytical phases work is reduced by use of a program that computes runoff, constructs hydrographs, routes hydrographs through reservoirs and stream channels, and combines routed or unrouted hydrographs. The print-out consists of stages, peak discharges, and detailed hydrographs, as desired, for natural or design storms and for any combination of structures. This program is described in SCS Technical Release 20.

FLOW CHARTS

The sequence of work in the hydrologic evaluation is shown in figure 2.1. The forms of maps, graphs, and tables are simplified representations of the various standard forms used in the different States. The PI, which precedes the evaluation, is discussed in chapter 3. The design hydrology, which comes latest, is shown in figure 2.3; details are given in chapter 21.

After evaluation for the first condition is completed it is not necessary to repeat some of the early steps for the remaining evaluations. The second evaluation starts with hydrologic soil-cover complexes, the third with unit hydrographs for "with structures", then the evaluations proceed in the same way as the first except for obvious omissions.

Of the basic data needed in the evaluation only the historic rainfall and streamflow data are likely to be unavailable; the rest are obtainable from field surveys. Lacking rainfall and runoff data, the procedure goes as shown in figure 2.2. The rainfall-frequency data shown in the figure are from U.S. Weather Bureau publications (chap. 4). Direct checks on runoff cannot be made, but indirect checks can be made if nearby watersheds are gaged (see table 5.2).

Some steps in the procedures of figures 2.1 and 2.2 are taken in an entirely different way in the two methods for <u>regional analysis</u> and concordant flow.

REGIONAL ANALYSIS METHOD. This method is for estimating the magnitudes and frequencies of peak discharges or runoff volumes for ungaged watersheds by use of relationships for nearby gaged watersheds. Some of the hydraulic work, construction of hydrographs, and flood routing are reduced or eliminated from the evaluation but not from the design hydrology. The method in its simplest form is as follows:

- 1. Select nearby gaged watersheds that are climatically and physically similar to the ungaged watershed. These watersheds and nearby areas like them comprise the region that gives the method its name.
- 2. Construct frequency lines (chap. 18) for peak discharges or runoff volumes of the gaged watersheds.
- 3. Plot peak discharges or runoff volumes for selected frequencies (only the 2- and 100-year frequencies if the frequency lines are straight) of each gaged watershed against its drainage area size, using log paper for the plotting and making straight-line relationships for each frequency.

- 4. Construct the frequency line for the ungaged watershed (or any of its subdivisions) by entering the plot with drainage area, finding the magnitudes at each line of relationship, plotting the magnitudes at their proper places on probability paper, and drawing the frequency line through the points.
- 5. Apply the frequency lines of step 4 in the procedure for present conditions. Discharges or volumes for with-project conditions are obtained by use of auxiliary relationships described in chapters 12 and 17.

In practice the method is more complex but usually only in step 3: variables in addition to drainage area are related to the peaks or volumes. The variables are one or more of the following, alone or in combinations, directly or by means of index numbers: type of climate, mean annual precipitation or rainfall or snowfall, mean seasonal precipitation or rainfall or snowfall, maximum or minimum average monthly rainfall, storm pattern, storm direction, x-year frequency y-hour duration rainfall, mean number of days with rainfall greater than x inches, mean annual number of thunderstorm days, mean annual or seasonal or monthly temperature, maximum or minimum average monthly temperature, orographic effects, aspect, stream density, stream pattern, length of watershed, length to "center of gravity" of watershed, length of main channel, average watershed width, altitude, watershed rise, main channel slope, land slope, depth or top width of main channel near outlet for x-year frequency discharge, time of concentration, lag, time to peak, percentage of area in lakes or ponds, extent or depth of shallow soils, extent of major cover, hydrologic soil-cover complex, geologic region, infiltration rate, mean base flow, mean annual runoff, and still others. Combinations of these variables are used as single variables in the analysis, one such combination being the product of watershed length and length to center of gravity divided by the square root of the main channel slope. Index numbers (chap. 18) are used for variables (such as geologic region) not ordinarily defined by numerical values.

The use of multiple regression methods (chap. 18) is a necessity if more than one variable appears in the relationship. There is only one adequate measure of the accuracy of the relationship (therefore of the regional analysis) and this is the standard error of estimate in arithmetic units. Computation of the error is illustrated in chapter 18.

CONCORDANT FLOW METHOD. This method can be applied only if storm rainfall and high-water mark (HWM) data are available for a large general storm and flood over the watershed. In States where the method is regularly used the data are obtained after such a flood on any watershed with a potential for a project and stored until needed. When the project evaluation is to be made the stored data are supplemented by data from the usual field surveys (chap. 6).

In the concordant flow method the isohyetal map (chap. 4) for the storm producing the large general flood supplies the average rainfall depth for the drainage area above the cross section at each HWM. The average hydrologic soil-cover complex (chaps. 9 and 10) above each section and the rainfall give the direct runoff (chap. 10). The flood discharge at each HWM is computed (chap. 14), reduced to the discharge for one inch of runoff, and plotted on log paper against the drainage area. The slope of a straight line fitting the plotting gives the exponent used later in the concordant flow routing equation (chap. 17). It is this plotting that gives the method its name (the flows on the line are "concordant"). The Manning's n (chap. 14) for a discharge plotting far from the line is adjusted to make the point fall more nearly on the line. The adjusted n is used in computing the stage-discharge curve (chap. 14) at the section.

Runoffs for a historical series of storms are used with the discharge-area plotting to give peak discharges for the present condition. Runoffs are modified (chap. 12) to give the effects of LU&T and get the discharges for the second condition. The concordant flow equation (chap. 17) is used to get discharges for the third condition.

Limitations on the method are those that apply to any method using watershed averages: storm rainfalls must be approximately uniform over the drainage areas, structural measures must be uniformly distributed (chap. 17), and effects of channel improvements must be minor in comparison with effects from structures.

Design Hydrology

The storages and spillway capacities of floodwater-retarding structures are determined as shown by the flow chart in figure 2.3. Chapter 21 gives details of the various steps and provides the SCS criteria of the design hydrology. That chapter also contains design hydrology in outline form for channel improvement, levees, and minor project or on-farm structures.

* * * *

FIGURE 2.1-General process hydrology of watershed project evaluation.

FIGURE 2.2-Hydrology of watershed evaluation with no stream flow or rainfall data available.

FIGURE 2.3-Design hydrology for storage and spillways in floodwater retarding structures.

NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 3. PRELIMINARY INVESTIGATIONS

bу

R. G. Andrews Hydraulic Engineer

1964

Reprinted with minor revisions, 1969

SCS NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 3--PRELIMINARY INVESTIGATIONS

CONTENTS	Page
Making the preliminary investigations Examination of available reports and data Reconnaissance Evaluation Discussion Example Report	3.1 3.2 3.2 3.4 3.4 3.5
Figures	
3.1 Typical relationship for estimating the minimum amount of area it is necessary to control by floodwater retarding structures	3.6
3.2 Typical relationship for estimating the average annual cost of a system of floodwater retarding structures	3.6
3.3 Typical relationship for estimating the total cost of a system of floodwater retarding structures	3.7
3.4 Typical relationship for estimating the amount of floodplain area in a watershed	3.7
3.5 Typical relationship for estimating the average annual direct damage	3.8
3.6 Typical relationship for estimating present average annual flood damages	3.8
3.7 Typical relationship for estimating the reduction in average annual flood damages	3.9

CHAPTER 3. PRELIMINARY INVESTIGATIONS

A preliminary investigation (PI) is a brief study ____ potential project in order to estimate whether a detailed investigation is justified. For a watershed-protection and flood-prevention project, the PI is mainly concerned with flood problems and their solutions. A work plan party makes a PI by examining available reports and data for a watershed, making a field reconnaissance, briefly evaluating their findings, and writing a concise report. SCS policy assigns the responsibility for selecting the degree of intensity of a PI to the State Conservationist. Once this degree is selected, the party modifies its procedures accordingly and makes the study. The hydrologist can make a valuable contribution to the study by supplying appropriate reports and data, by using suitable techniques on the problems, and by developing new techniques as the need arises.

Making the Preliminary Investigation

During a PI the hydrologist may be required to work in fields other than hydrology, therefore the following discussion covers the general conduct of a PI without undue emphasis on the hydrologic duties.

EXAMINATION OF AVAILABLE REPORTS AND DATA

The work plan party examines earlier reports made for the area in which the watershed is located. Such reports may contain material that will be useful in evaluating a potential project or in preparing the PI report. Bureau of Reclamation, Corps of Engineers, and State engineer reports may give applicable information or data. U.S. Weather Bureau, U.S. Geological Survey, and State university publications may provide appropriate data on rainfall and runoff. SCS soil-survey reports will provide soils and generalized cover information; the local SCS work unit conservationist should be consulted on the use of these reports because he can readily evaluate a wide range of information regarding a specific watershed in his area.

RECONNAISSANCE

A field reconnaissance gives the work plan party an opportunity to become familiar with the physical characteristics of the watershed, this familiarity being necessary to avoid making gross mistakes in evaluating the available information or in writing the report. Before making the reconnaissance the party obtains aerial photographs or available maps of the watershed. Suitable maps are detailed maps prepared by the SCS Cartographic Unit, SCS soil-survey maps, U.S. Geological Survey topographic sheets, or other similar maps. In addition to their use as direction-finders, the photographs or maps are used in the field for recording possible sites of floodwater-retarding structures or other measures, for designating areas of major flood-water or sediment damages, and for indicating areas requiring intensive study in a detailed investigation.

During the reconnaissance the hydrologist obtains estimates of Manning's n (chap. 14) and hydrologic soil-cover complexes (chaps. 7, 8, and 9) if such estimates are needed in the evaluation or report.

EVALUATION

The PI report is concerned with a potential project and its economic justification, so that magnitudes of rains or floods and similar data are introductory material of minor interest and the quantities of measures, damages, benefits, and costs are of major interest. The required quantities can generally be estimated by use of relationships developed from work plans or other studies already completed for the physiographic region in which the watershed lies. Some typical relationships are shown in figures 3.1 through 3.7. Relationships of this kind are used because the PI evaluation must be made in a relatively short time.

Figures 3.1 through 3.7 are not for general application to all water-sheds because they were developed for particular areas and are valid only for these areas. But they illustrate principles that can be applied in developing relationships for other areas. All such relationships are empirical; this means that the lines of relation should not be extended very far beyond the range of data used in their construction. An example of the use of some of the relationships is given later in this chapter.

Figure 3.1 shows a relationship developed from data in work plans for projects containing floodwater-retarding structures but few channel improvements. The line of relation shows the minimum amount of water-shed area that must be controlled by the structures in order for a project to be economically justified. For other areas the line of relation may be curved or have a different slope.

Figure 3.2 shows the average annual cost of a system of floodwater-retarding structures in relation to watershed area and percent of control for projects having few channel improvements. In this and other figures that show costs, the costs are valid only for the economic period for which they were originally applicable. An adjustment must be made for later periods.

Figure 3.3 shows another cost relationship, this one being for total cost of individual structures. The cost is related to the drainage area above a structure and to the land-resource area in which it lies.

Figure 3.4 shows the amount of flood-plain area in a watershed in relation to the product of total watershed area and average annual rainfall. Such a relationship is most effective for regions where the annual rainfall does not vary abruptly over the region.

Figure 3.5 shows the average annual direct damage for "present" conditions in relation to flood-plain area size and percent of cultivation. This figure was developed by means of a multiple-regression analysis (chap. 18). Similar relationships for other areas may be developed either by such an analysis or by a graphical method in which the data are plotted on log paper and a family of curves or straight lines is fitted by eye. Parameters other than "percent cultivated" may also be suitable. In relationships using damages in dollars, the damage estimates are valid only for the economic period in which they were originally applicable. An adjustment must be made for later periods.

Figure 3.6 shows another damage relationship for "present" conditions. This relationship applies within a region for which flood-frequency lines of the watersheds will have about the same slope when plotted on lognormal probability paper. For other regions the line of relation may have a different curvature. Figure 3.6 is used with a historical flood for which the frequency and total damage are known. For example, if a watershed in this region has had a flood with a lO-year frequency, then the curve gives a multiplier of 0.41; and if the total damage for that flood was \$80,000, then the estimated average annual damage for the watershed is 0.41(\$80,000) = \$32,800.

Figure 3.7 shows the average-annual-damage reduction due to use of a system of floodwater-retarding structures, in relation to the percent of the watershed controlled by the system. Lines of relation for different land-resource areas in a particular region are given. The reason for the variations by area is not specified in the original source of the figure but they may be due to one or more influences such as topography, soils, rainfall, or type of economy.

<u>DISCUSSION</u>. The chief requirement for such relationships is that they be conservatively developed. The lines of relation should be drawn in such a way that the estimates will be conservative; that is, the lines should tend to over-estimate costs and under-estimate benefits. If this is done, these relationships and other of a similar nature will be valuable working tools not only for PI's but also for river basin studies.

EXAMPLE. In this example it is assumed that figures 3.1, 3.2, 3.4, 3.5, and 3.7 apply to the land-resource area in which the problem-watershed lies. For this watershed it is necessary to estimate the benefit-cost ratio of a potential system of floodwater-retarding structures in order to state in the PI report whether further investigation of the project is worthwhile. The required data are as follows: the watershed is in land-resource area 4; the drainage area is 150 square miles, the average annual rainfall 24 inches, and the flood plain 60 percent cultivated. The following steps are taken to use the figures in estimating the ratio (all numerical estimates will be carried with as many digits as can be read from the figures and the rounding will be in the last step):

- l. Estimate the minimum area that must be controlled to have an economically justified project. Enter figure 3.1 with the drainage area of 150 square miles and read an "area-controlled" of 80 square miles. In practice, the reconnaissance may show that more control can be obtained; if so, use the higher degree of control in the remaining steps.
 - 2. Compute the percent controlled: 100(80/150) = 53 percent.
- 3. Estimate the average annual cost of the system. Enter figure 3.2 with the drainage area of 150 square miles and for 53-percent control read by interpolation an average annual cost of \$36,000.
- 4. Estimate the amount of flood-plain area. First compute the product of drainage area and average annual rainfall: 150(24) = 3,600. Next enter figure 3.4 with this product and read a flood-plain area of 5,200 acres.
- 5. Estimate the average annual direct damages. Enter figure 3.5 with the flood-plain area of 5,200 acres and at the line for 60-percent cultivated read damages of \$75,000.
- 6. Estimate the reduction in average annual direct damages. Enter figure 3.7 with the percent controlled from step 2 and at the line for land-resource area 4 read a reduction of 73 percent.
- 7. Compute the estimated benefits. Use the average annual direct damages in step 5 and the percent reduction in step 6: (73/100)(\$75,000) = \$54,750.

8. Compute the estimated benefit-cost ratio. Use the benefit in step 7 and the cost in step 3. The ratio is \$54,750/\$36,000 = 1.52. Round to 1.5, which is the required estimate for this example.

In this example the benefit-cost ratio is favorable and a recommendation can be made in the PI report that further investigation is justified. If the ratio happens to turn out slightly unfavorable, it may still be desirable to recommend further investigation because the short-cut procedure is conservative and a detailed investigation may show that the project is economically feasible. But if the ratio is very unfavorable it is not likely that a detailed investigation can improve it, and alternative project measures need to be considered instead.

Report

The general format of a PI report will not be discussed here because each State establishes its own pattern. Usually the hydrology in the report is merely descriptive but, if it is necessary to show hydrographs of present and future (with project) flows in the report, the hydrologist can find short-cut methods of estimating runoff amounts in chapter 10 and of constructing hydrographs in chapters 16 and 17.

* * * *

Figure 3.1.--Typical relationship for estimating the minimum amount of area it is necessary to control by floodwater-retarding structures.

Figure 3.2.--Typical relationship for estimating the average annual cost of a system of floodwater-retarding structures.

Figure 3.3.--Typical relationship for estimating the total cost of a system of floodwater retarding structures.

Figure 3.4.--Typical relationship for estimating the amount of flood-plain area in a watershed.

Figure 3.5.--Typical relationship for estimating the average annual direct damage.

Figure 3.6.--Typical relationship for estimating present average annual flood damages.

Figure 3.7.--Typical relationship for estimating the reduction in average annual flood damages.

NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 4. STORM RAINFALL DATA

Ъу

Victor Mockus Hydraulic Engineer

1964

Reprinted with minor revisions, 1969

SCS NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 4--STORM RAINFALL DATA

CONTENTS	Page
Sources of data Published data Unpublished data Published rainfall-data analyses	4.1 4.1 4.2 4.2
Watershed rainfall Methods of estimating average depths Use of one gage Isohyetal method Thiessen method	4.3 4.3 4.4 4.5
Accuracy Use of published analyses Orographic influences	4.5 4.9 4.9
Antecedent rainfall Antecedent moisture condition	4.10 4.10
Storm duration Natural storms Effective duration (D_e)	4.11 4.11 4.12
Figures 4.1 Errors due to use of catches at one gage as estimates of watershed average rainfall 4.2 Steps in construction of an isohyetal map 4.3 Steps in the determination of Thiessen weights 4.4 Graph for estimating the upper (positive) increment of error in transposed rainfall amounts	4.15 4.16 4.17
4.5 Applications of figure 4.4 4.6 Network chart for estimating the error in water- shed average rainfall amounts	4.19
4.7 Typical rain gage networks 4.8 Orographic influences 4.9 Graph for estimating antecedent moisture condition	4.2
4.10 Effect of hydrologic soil-cover complex on duration of effective rainfall 4.11 Graph for estimating effective duration	4.22

CONTENTS--Cont'd.

	Page
Tables	
4.1 Watershed rainfall depth by the Thiessen method	4.6
4.2 Seasonal rainfall limits for AMC	4.12
4.3 Duration of daily rainfalls at St. Louis, Mo.	
for period March 1920 through December 1929	4.13

CHAPTER 4. STORM RAINFALL DATA

This chapter gives a brief account of the sources, variability, and preparation of rainfall data used for estimating storm runoff (chapter 10) and for designing floodwater-retarding structures (chapter 21). The account also applies to monthly and annual rainfall. Probable maximum precipitation is discussed in chapter 21.

Sources of Data

The storm rainfall data used in this handbook are daily total amounts or storm totals as measured at rain gages, or total amounts for specified durations as found in statistical studies made by the U. S. Weather Bureau. The choice of data is due to their availability on a national basis, and it was for use of such data that the runoff estimation method of chapter 10 was developed.

A comprehensive account and bibliography of rain gage designs, installations, and measurement research is given in "Precipitation Measurements Study" by John C. Kurtyka, Report of Investigation No. 20, 178 pp, Illinois State Water Survey Division, Urbana, Ill., 1953. Gages used in the U. S. Weather Bureau network are described in "Instructions for Climatological Observers," U. S. Weather Bureau Circular B, pp 76, 11th edition, 1962; U. S. Government Printing Office, Washington, D. C. 20042, price \$0.50.

PUBLISHED DATA

Daily amounts of rainfall measured at gages in their official network are published by the U. S. Weather Bureau in monthly issues of "Climatological Data" for each State. The times of daily measurement vary,

as indicated by footnotes in the publications. Storm totals and durations can be obtained from the Weather Bureau's "Hourly Precipitation Data" for each State. Other Federal and State agencies and universities publish rainfall data at irregular intervals, often in a special storm report or a research paper.

UNPUBLISHED DATA

Various Federal and State agencies will sometimes make field surveys after an unusually large storm to collect "bucket-survey" data, which are measurements of rainfall caught in buckets, watering troughs, bottles, and similar containers. Ordinarily these data are used to give more detail to rainfall maps based on standard-gage data. Generally when the catch of a "bucket gage" exceeds the catch of the nearest standard gage by more than about 25 percent, the bucket gage catch should be carefully evaluated. Data from bucket surveys are generally not published but are available in the offices of the gathering agency.

Narrow-bore tubes of the kind used by many farmers and ranchers have been shown to give results almost equal to those from standard gages. Tube gages must be properly exposed and serviced to obtain such results. Most farmers and ranchers keep a daily or storm record of catches.

Many newspaper offices, banks, water-treatment plants, and other municipal offices collect measurements at their own gages and keep daily records.

PUBLISHED RAINFALL-DATA ANALYSES

In many kinds of hydrologic work it is unnecessary to use actual rainfall data since published analyses of data provide the required information in more usable form. The following published rainfall-data analyses were made by the U.S. Weather Bureau in cooperation with SCS:

- 1. "Rainfall Frequency Atlas of the United States", U.S. Weather Bureau Technical Paper No. 40; 115 pages; price \$1.75. Includes all States except Alaska and Hawaii.
- 2. "Generalized Estimates of Probable Maximum Precipitation and Rainfall-Frequency Data for Puerto Rico and Virgin Islands," U. S. Weather Bureau Technical Paper No. 42, 94 pages, price \$0.50.
- 3. "Rainfall-Frequency Atlas of the Hawaiian Islands," U. S. Weather Bureau Technical Paper No. 43, 60 pages, price \$0.40.

4. "Probable Maximum Precipitation and Rainfall-Frequency Data for Alaska", U. S. Weather Bureau Technical Paper No. 47, 69 pages, price \$1.00.

These publications are available from the U. S. Government Printing Office, Washington, D. C. 20042, at the prices shown.

Watershed Rainfall

In watershed work it is often necessary to know the average depth of storm rainfall over an area. The average depth may be found in various ways, depending on the kind of data being used. If the rainfall amount is taken from one of the USWB Technical Papers it is for a point at a specific locality, and the point-area relationship given in the Paper is used to estimate the average depth over an area in that locality. Examples in the Papers illustrate the procedure. It is more difficult to obtain an average depth from data of one or more rain gages because the results are influenced by the number and locations of gages and the storm size. Methods of using such data are given in this section.

METHODS OF ESTIMATING AVERAGE DEPTHS

Use of One Gage

How well the rainfall measured at one gage will represent the average depth over an area depends on (i) Distance from the gage to the center of the area, (ii) Size of the area, (iii) Kind of rainfall amounts being used, (iv) Topography of the locality, and (v) Characteristic storm pattern of the locality. The effects of the first three influences will be illustrated here by means of figure 4.1, the fourth will be discussed in Orographic Influences, and the fifth in connection with figure 18.--, though it is implied in the relationships in figure 4.11 and whenever a comparison is made between storms in different localities.

The effect of distance is seen in (a) and (b) of figure 4.1. In (a) a single gage is located near the center of a 0.75-square-mile water-shed and the storm rainfall catches at the gage are seen to be quite

close to those of the watershed averages, which were determined using a dense network of gages. But in (b), where the gage is located 4 miles from the watershed boundary, the storm rainfall catches at the gage often differ significantly (in the statistical sense) from the watershed averages. A similar effect is found when the area of application is increased as in (c), where the gage is near the outlet of a 5.4-squaremile watershed.

There is a close correspondence of gage catches and area averages when the rainfall amounts being used are sums of catches, such as monthly or annual rainfalls, because the errors for single storms tend to offset each other. The gage and watershed of (c) are used in (d) where annual rainfalls are plotted. The differences between gage and watershed amounts are seen to be relatively smaller than in (c). There will also be a close correspondence of gage and area amounts if the storm rainfalls are used with the methods of chapter 18 to construct frequency lines for gage and area. The correspondence occurring then is for amounts having the same frequency.

These examples show that the use of one gage brings up the question of how much error is permissible in the area estimate. This subject is discussed further under Accuracy.

Isohyetal Method

The spacing of gages in a network over an area is seldom uniform enough for taking an average of the gage catches as the area average. Isohyetal maps are used, with networks of any configuration, to get area averages or for studies of rainfall distributions. An isohyet is a line connecting points of equal rainfall depth and the map is made by drawing the lines in the same manner that contour lines are drawn on topographic maps, using the gage locations as data points. The isohyetal method can be used for hilly or mountainous areas when supplementary graphs, like that of figure 4.8, are available for the locality.

Figure 4.2 shows a simple application of the isohyetal method to a research watershed in Nebraska. The watershed average depth can be obtained as follows: If the isohyetal pattern is fairly even across the watershed as in (c), a point at the center of the area gives the average depth. The estimate made using point A in (c) is 1.59 inches. If the isohyetal pattern is not even, divide the watershed into parts for which the pattern is sufficiently uniform, make an estimate for each part, and get the watershed average by weighting or averaging the amounts for the parts.

A denser network gives the more complicated isohyetal map shown in (d), where the regular network on this research watershed is used for the storm also shown in (c). There is an important change in depth on parts of the watershed but the watershed average is 1.61 inches, not a significant improvement in accuracy over the estimate in (c). A particular network may therefore be excessively close for one kind of estimate at the same time it is too open for another kind. The relative error of an area average obtained through use of a network can be estimated as shown under Accuracy.

Thiessen Method

Another method of using a rain gage network for estimating watershed average depths is the Thiessen method, especially suitable for electronic computer routines. In the Thiessen method the watershed area is divided in subareas, using rain gages as hubs of polygons. The subareas are used to determine ratios which are multiplied by the subarea rainfall and summed to get the watershed average depth. The polygonic diagram is constructed as shown in figure 4.3 (a) and (b), and the Thiessen weights are computed. These weights are the ratio of the gage's polygon area divided by the area of the entire watershed as in (c). Watershed average depths are computed as shown in table 4.1 in which the storm of figure 4.2 is used. If a gage is added or removed from the network, a new diagram is drawn and new weights are computed.

The Thiessen method is not used to estimate rainfall depths of mountainous watersheds since elevation is also a strong factor influencing the areal distribution (see Orographic Influences).

Accuracy

Regardless of the method used the accuracy of the resulting rainfall estimate depends mainly on the distance between a gage and the point of application of the estimate. In mountainous areas the vertical distance may be more important than the horizontal, but for flat or rolling country only the horizontal distance matters. For a network both distance and arrangement of gages affect the accuracy. It is generally assumed that the catches at gages are exact measurements. This is seldom true because wind or splash effects can occur even when the gage is properly located, and there is always the possibility of error in reading the catch. But unless special studies at a gage site have been made the measurement errors are generally ignored.

Figure 4.4 is a diagram used for estimating the range of error likely

Table 4.1. -- Watershed rainfall depth by the Thiessen method.

Rain gage	Measured rainfall	Thiessen weight	Weighted rainfall
	Inches		Inches
A B C	1.40 1.54 1.94	0.407 .156 .437	0.570 .240 <u>.848</u> Sum: 1.658

Watershed weighted rainfall depth is 1.658 inches, which is rounded off to 1.66 inches.

to occur nine times out of ten when the catch at a single gage is used as a depth for a location some distance away. It is modified from information in "Rainfall Relations on Small Areas in Illinois", by F. A. Huff and J. C. Neill, Bulletin 44, Illinois State Water Survey, Urbana, Illinois, 1957. Equation 5 on page 31 of this reference was modified to give results on a 10-percent level of significance. Horizontal distance is used, so that the diagram does not apply in mountainous areas. The following examples show how the diagram can be used.

Example 4.1.--The storm rainfall depth at a gage is 3.5 inches. What rainfall depth is likely to have occurred, with a probability of 0.9 (nine chances out of ten), at a point 5 miles away from the gage?

- 1. Enter figure 4.4 with the distance of 5 miles and at the intersection of the 3.5-inch line (by interpolation), read a "plus error" of 2.1 inches.
- 2. Compute a minus error as one-half of the plus error. This gives 2.1/2 = 1.05 inches. Round off to 1.1 inches.
- 3. Compute the range of rainfall likely to have occurred, nine chances out of ten. The limits are: 3.5 + 2.1 = 5.6 inches, and 3.5 1.1 = 2.4 inches. Therefore, when the gage has a catch of 3.5 inches there is a probability of 0.9 (nine chances out of ten) that the rainfall depth at a point 5 miles away from the gage is between 5.6 and 2.4 inches.

In step 2 of Example 4.1 the minus error is taken as one-half the plus error. This is an approximation, but it will be seen in the next example,

and the discussion following, that the approximation generally applies. The graphs of figure 4.5 will be used. The plottings on this figure show the variation to be expected when data at one gage are used to estimate the rainfall depth at a distant point.

Example 4.2.--Rain gages B28R and G42R, on the Agricultural Research Service watershed in Webster County, Nebr., are 4.3 miles apart. Given any storm rainfall of 0 to 4 inches depth at G42R, compute the range of error to be expected if the rainfall at B28R is to be estimated from that at G42R. Use figure 4.4. Compare the computed range with the plotting of actual data for the two gages.

- 1. Plot a line of equal values, which is the middle line on figure 4.5 (a).
- 2. Select three magnitudes on the G42R depth scale, these magnitudes to be used with figure 4.4. For this example the selected magnitudes are 1, 2, and 4 inches.
- 3. Enter figure 4.4 with the distance of 4.3 miles and at the intersections of the 1-, 2-, and 4-inch rainfall lines read plus errors of 1.15, 1.50, and 2.15 inches respectively.
- 4. Compute the minus errors. These are 0.58, 0.75, and 1.08 inches.
- 5. Plot the plus-error and minus-error lines as shown on figure 4.5 (a). The plotted points that are shown are for actual measurements at the gages. Three points of the gaged data fall outside the error range, so that the expected error for this pair of gages is somewhat less than predicted by figure 4.4.

One advantage in using figure 4.4 is that when a rainfall estimate is to be made for some distant point, the error lines can be drawn in advance to give an idea of the value of the estimate. Note that the percent error decreases as the rainfall amount increases. Error lines have also been drawn for (b), (c), and (d) of figure 4.5, using the method of Example 4.2, as a further check on figure 4.4. In each of the plottings a different number of points falls outside the error lines but on the average only 10 percent should be outside. This is confirmed by the following computation:

Figure 4.5:	(a)	(b)	(c)	(d)	Total
Number of Points:	91	35	7	20	153
Number outside lines:	3	10	0	3	16
Percent outside lines:	3.3	28.6	0	15.0	10.46

Figure 4.6 serves the same purpose for an area that figure 4.4 serves for a point. In using figure 4.6 it will be necessary to determine the number of gages on the watershed. The number is seldom clearly evident, as the typical examples of figure 4.7 show. In (a) of this figure the gage network ABC would be used for an isohyetal map or in computing Thiessen weights. The watershed average rainfall depth estimated from an isohyetal map based on the use of ABC would be more accurate than if based on BC. Therefore it would not be correct to say there are only two gages "on" the watershed when figure 4.6 is used. In (b), however, although all six gages of the network DEFGHI are physically within the watershed, gages DEFG are much too close together (by comparison with the remaining gages) to be considered as individual gages. In (c) where gages JKLMNP have varying distances between adjacent gages, it is still more difficult to say how many gages are "in" the watershed. With the case shown in (d), where the network QRST is completely outside the watershed (but still usable for construction of an isohyetal map) any decision on number of gages "in" the watershed would be arbitrary.

Therefore, figure 4.6 should be used without spending much time on deciding how many gages are applicable. The examples that follow will illustrate what can be done even with the extreme cases of figure 4.7. Note that figure 4.6 gives an average error that is of the same magnitude plus and minus, in this respect differing from figure 4.4.

Example 4.3.--Assuming that the watershed of figure 4.7(a) has a drainage area of 200 square miles and an average annual rainfall of 35 inches, find the average error of estimate when the watershed average depth is 4.5 inches.

Figure 4.6 is used first with a network of two, then of three gages, and the results are compared. The figure shows that a 2-gage network gives an error of about 13 percent, and a 3-gage network an error of about 8 percent. In either case the error is relatively small.

Example 4.4.--The standard error in percent (see chapter 18) can be estimated, if it is needed, by taking 1.5 times the average error. For example 4.3 the computations are:

2-gage network, standard error = 1.5(13) = 19.5 %3-gage network, standard error = 1.5(8) = 12.0 %

Example 4.5.--The size of the watershed itself can have no bearing on the watershed average rainfall depth when the network is that of figure 4.7(d). In such cases the area of the polygon formed by the network QRST is used in figure 4.6. If the watershed average annual rainfall is 35 inches and the network polygon area is 375 square miles then, for a 5-inch rain, figure 4.6 gives an estimate of about 8 percent error. This is for the area of the polygon and,

presumably, for any watershed within it. It is reasonable to expect that the smaller the watershed the larger the error will be, but there is no way to determine this on the basis of present information.

It should be evident that figure 4.6 must be used with some imagination and that it gives only rough approximations. And for cases like the networks in (b) and (c) of figure 4.7 neither the number of gages to be used nor the area of applicability is easy to define. Despite these limitations, figure 4.6 has the worthwhile function of keeping the hydrologist aware of the range of error possible in his calculations.

Use of Published Analyses

Methods of using the rainfall information in the USWB Technical Papers are given in the papers themselves and additional examples will be found in chapter 21. Figures 4.4 and 4.6 do not apply to rainfall information from these papers. A discussion of the errors involved in use of the depth-duration-frequency maps of those papers will be found on Pages 4 and 5 of USWB Technical Paper 40, where the following statement is made:

"Evaluation.--In general, the standard error of estimate ranges from a minimum of about 10%, where a point value can be used directly as taken from a flat region of one of the 2-year maps, to 50% where a 100-year value of short-duration rainfall must be estimated for an appreciable area in a more rugged region."

OROGRAPHIC INFLUENCES

In hilly or mountainous country, rainfall catches are influenced by physiographic variables, both local and distant. Some of these are (1) elevation or altitude, (2) local slope, (3) orientation of the slope, (4) distance from the moisture source, (5) topographic barriers to incoming moisture, and (6) degree of exposure, which is defined as "The sum of those sectors of a circle of 20-mile radius centered at the station, containing no barrier 1,000 feet or more above station elevation, expressed in degrees of arc of circle (azimuth)," (from "The Analysis of Precipitation Data", by W. E. Hiatt; Vol. IV, The Physical and Economic Foundation of Natural Resources Series.).

In the ordinary watershed study it is seldom possible to determine the influences of all these variables. When a special study is needed for a project, the SCS hydrologist can apply to the Chief, Hydrology Branch, who can make arrangements for a cooperative study by the Weather Bureau.

When extreme accuracy is not required, the effects of elevation can be estimated from elevation and rainfall data alone, if other influences can be held constant within zones. The area or watershed is divided into zones for which influences other than elevation are believed to be fairly constant, and a graphical relation of elevation versus rainfall is developed for each zone. The relation for a zone is used with elevations in that zone to locate isohyetals on an isohyetal map, with measured catches being firm data. Figure 4.8 is an example where orientation (coast side, desert side) is used to define zones. The relation for "coast side" is seen to be satisfactory, but the one for "desert side" appears to be affected by the influences that were ignored. A somewhat different example using orientation is given in Weather Bureau Technical Paper 47.

Antecedent Rainfall

Rainfalls in antecedent periods of 5 to 30 or more days prior to a storm are commonly used as indexes of watershed wetness. An increase in an index means an increase in the runoff potential. Such indexes are only rough approximations because they do not include the effects of evapotranspiration and infiltration on watershed wetness. Therefore, it is not worthwhile to try for great accuracy in computing the index described below.

ANTECEDENT MOISTURE CONDITION

The index of watershed wetness used with the runoff estimation method of chapter 10 is Antecedent Moisture Condition (AMC). Three levels of AMC are used:

- AMC-I. Lowest runoff potential. The watershed soils are dry enough for satisfactory plowing or cultivation to take place.
 - AMC-II. The average condition.
- AMC-III. Highest runoff potential. The watershed is practically saturated from antecedent rains.

The AMC can be estimated from 5-day antecedent rainfall by the use of table 4.2, which gives the rainfall limits by season categories. The

table is adapted from material developed by the Fort Worth EWP Unit. The rainfall limits are plotted as boundary points for the AMC groups in figure 4.9, which illustrates the linear character of the index. No upper limit is intended for AMC-III, as table 4.2 shows. The limits for "dormant season" apply when the soils are not frozen and there is no snow on the ground.

The 5-day rainfall amount used with table 4.2 or figure 4.9 is a simple total. For example, if the AMC for a watershed is to be estimated for the date of June 8, which is in the growing season, and if the rain for the preceding five days is:

June 3	June 4	June 5	June 6	June 7
0.10	0	0.35	0.15	0.72

then the total rainfall of 1.32 inches, used with the "growing season" column of table 4.2, shows the appropriate moisture group to be AMC-I. Additional examples of the use of table 4.2 are given in chapter 10.

Storm Duration

The total duration of a storm is used in estimating a peak rate of runoff or in developing a hydrograph. The duration is always known for a design storm, but for natural storms, such as those used in some methods of watershed evaluation, the duration may be difficult to determine. Methods of estimating the duration of natural storms will be briefly discussed.

NATURAL STORMS

Durations of specific actual storms can generally be estimated to the nearest hour by use of Weather Bureau publications of hourly precipitation data. With these data, or even with instrument charts from a recording gage, it is often difficult to decide on the beginning or ending times of a storm. Furthermore, if there are periods of no rain within the storm, the duration may need to be arbitrarily defined. The problem of hydrograph construction is simplified by using storm increments and, in general, this is the best way of using natural storms (for hydrograph construction in this manner, see chapter 16).

Table 4.2. -- Seasonal rainfall limits for AMC.

AMC group	Total 5-day antecedent rainfall		
AMC group	Dormant season	Growing season	
	<u>Inches</u>	<u>Inches</u>	
II III	Less than 0.5 0.5 to 1.1 Over 1.1	Less than 1.4 1.4 to 2.1 Over 2.1	

Figure 4.10 illustrates a typical natural storm for which the storm duration must be arbitrarily defined. The figure shows the accumulated runoff occurring when the runoff curve numbers of 100, 80, and 70 are applicable. Note that the duration of excessive rainfall, which is the rainfall producing the runoff, is always less than the storm duration except when runoff is 100 percent. Since the duration of excessive rainfall is the correct duration to use with peak rate equations, such equations will be more successful with natural storms that are brief and intense. The hydrologic design methods of chapter 21 have been developed to account for the initial abstraction, so that duration of excessive rainfall is used:

Effective Duration (De)

When standard gage data are used in a watershed project evaluation, the storm durations will usually be unknown. An approximate duration for use with all the storms can be estimated using figure 4.11, which shows the relation between average annual rainfall and an "effective duration". The gage rainfalls are used as if they had fallen in $D_{\rm e}$ hours. The plotted points on figure 4.11 were obtained by different methods. The method used in obtaining the St. Louis, Mo. point will be described, since it best illustrates the significance of $D_{\rm e}$.

The hourly records of precipitation at St. Louis, Mo. were used to estimate, to the nearest hour, the duration of each rain in the period March 1920 through December 1929. The form shown in table 4.3 was used to tally the durations. If there was no rain for one or more hours, the duration was decreased by the same number of hours. The preponderant number of rains was continuous. After completing the tabulation, the number of tallies was accumulated as shown in column 4. The median number of items is 162.5 (the grand total is an even number, and the median is obtained

Table 4.3.--Duration of daily rainfalls at St. Louis, Mo. for the period March 1920 through December 1929.

Duration	Tallies	No. of tallies	Accumulated tallies
Hours 1 2 3 4 5		15 26 30 28 22	15 41 71 99 121
6 7 8 9 10	### ### ### ### ### ### [### ### ###-### ### \$## ###-### ### ### ### ###- ###	24 22 25 25 18	145 167* 192 217 235
11 12 13 14 15	+H+ H++ H++ +++ +++ +++	16 9 7 7 5	251 260 267 274 279
16 17 18 19 20	1+1+ (1+1+ 1+1+ 1 1 1 11	6 5 5 3 4	285 290 295 298 302
21 22 23 24	 - -	3 5 4 10	305 310 314 324

^{*} Median is within this group.

by averaging the two numbers adjacent to it). The duration D_{e} was found by interpolating as follows:

$$De = 6 + (7 - 6) \frac{162.5 - 145}{167 - 145} = 6.8 \text{ hours}$$

The average annual precipitation at St. Louis for this period was 38.45 inches. This amount is plotted versus the D_e as shown in figure 4.11. In using this D_e , the daily catches at St. Louis are assumed to have fallen in 6.8 hours. Ratios obtained from Weather Bureau Technical Paper 40 do not apply to a D_e because the tabulations used for TP-40 were of another kind.

* * * *

Addendum Regarding Figures 4.4 and 4.6.—These charts can be applied to rainfall data in mountainous areas in this way: in those areas the error will always be <u>larger</u> than that shown by either chart.

* * * *

WATERSHED AREA IS 0.75 SQUARE
MILES AND GAGE IS NEAR THE
CENTER.

(b) WATERSHED AREA IS 0.75 SQUARE
MILES AND GAGE IS 4 MILES OUTSIDE THE WATERSHED BOUNDARY.

(d) WATERSHED AREA IS 5.45 SQUARE MILES AND THE GAGE IS ON THE BOUNDARY.

Figure 4.1.--Errors due to use of catches at one gage as estimates of watershed average rainfall.

Figure 4.2.--Steps in construction of an isohyetal map. Circles used as decimal points also denote rain gages. The two lower maps illustrate the variations due to use of different networks of gages.

STEP I-DRAW LINES CONNECT- STEP 2-DRAW PERPENDI-ING RAIN GAGE LOCATIONS. CULAR BISECTORS.

Figure 4.3.--Steps in the determination of Thiessen weights. The two lower maps illustrate the variations in polygons due to use of different networks of gages.

Figure 4.4.--Graph for estimating the upper (positive) increment of error in transposed rainfall amounts. The 10-percent level of significance applies to this increment. The lower (negative) increment is taken as 1/2 the upper. The graph does not apply to rainfalls in mountainous areas.

Figure 4.5.--Applications of figure 4.4. The dashed lines show the range in rainfall to be expected, 90 percent of the time, at a distant location (ordinate) when the rainfall amount at a gage (abscissa) is transposed. The plotted points are actual measurements at the distant and gage locations.

Figure 4.7.--Typical rain gage networks.

Figure 4.8.--Orographic influences. Points denote rain gage catches.

Figure 4.9.--Graph for estimating antecedent moisture condition.

(RAINFALL DATA FROM U.S. WEATHER BUREAU'S "HOURLY PRECIPITATION DATA" FOR MARYLAND AND DELAWARE)

Figure 4.10.--Effect of hydrologic soil-cover complex on duration of effective rainfall.

Figure 4.11.--Graph for estimating effective duration.

NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 5. STREAMFLOW DATA

bу

Victor Mockus Hydraulic Engineer

1964

Reprinted with minor revisions, 1969

SCS NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 5--STREAMFLOW DATA

CONTENTS	Page
Sources U.S. Geological Survey (USGS) U.S. Soil Conservation Service (SCS) U.S. Forest Service U.S. Agricultural Research Service (ARS) Related publications Temporary streamflow-station installations	5.1 5.1 5.1 5.2 5.2 5.2
Some uses of streamflow data Mean daily discharges Transposition of streamflow records Determination of hydrologic soil-cover complex numbers (CN)	5.3 5.3 5.5
<pre>5.1 Construction details of a crest staff gage 5.2 Sample page from the U.S. Geological Survey's Surface Water-Supply Papers 5.3 A sample page from U.S. Geological Survey Water-Supply Paper 1305, "Compilation of Records of Surface Waters of the United States through September 1950" 5.4 Two methods of plotting daily flow records 5.5 A sample page from a compilation by the U.S. Geological Survey for SCS-Project No. 1 5.6 Use of streamflow records for determination of (a) an average runoff curve number, and (b) a specific runoff curve number</pre>	5.10 5.10 5.11 5.12
Tables 5.1 Mean daily discharges, annual flood period 5.2 Factors affecting the correlation of data: a guide to the transposition of streamflow records	5.4 5.6

U.S. Agricultural Research Service (ARS). The Soil and Water Conservation Research Division published its most recent compilation of small watershed data as "Hydrologic Data for Experimental Agricultural Watersheds in the United States, 1956-59," U.S. Dept. of Agric. Misc. Pub. 945, 674 pages, 1963. It is available from U.S. Government Printing Office, Washington, D. C. 20402, price \$5.00. This book lists earlier publications of ARS compilations, which include data from watersheds formerly operated by SCS.

RELATED PUBLICATIONS. A list of streamflow stations having drainage areas of 400 square miles or less is given in "List of Selected Gaging Stations in the United States," by C. R. Gamble, U.S. Geological Survey, 91 pages, 1961. The listed stations are those for which USGS has compiled annual-flood and other data in SCS Projects 1 and 2. Copies of Gamble's report and of the project data were distributed to SCS State engineers and no additional copies are available. The project data will appear in a forthcoming WSP.

Descriptions of streamflow installations, methods of gaging, and other facts about USGS gaging practices are given in "Stream-Gaging Procedure," by Don M. Corbett and others, U.S. Geological Survey Water-Supply Paper 888, 245 pages, 1945; available from U.S. Government Printing Office, Washington, D. C. 20402, price \$0.75. Similar information regarding Forest Service practices is in "Stream-Gaging Stations for Research on Small Watersheds," by Kenneth G. Reinhart and Robert S. Pierce, Agricultural Handbook 268, 37 pages, 1964; available from U.S. Government Printing Office, Washington, D. C. 20402, price \$0.30. ARS practices are described in "Field Manual for Research in Agricultural Hydrology," Agricultural Handbook 224, 215 pages, 1962; available on request from U.S. Agricultural Research Service, Beltsville, Maryland 20705.

TEMPORARY STREAMFLOW-STATION INSTALLATIONS. The SCS cooperates with the USGS in the installation and operation of streamflow stations needed by SCS. This cooperation is on a formal administrative basis and the Chief, Hydrology Branch, can advise on the administrative procedure.

Sometimes a streamflow installation is needed for a brief period on a small stream, irrigation ditch, gully, or reservoir, and the circumstances do not justify the installation of a USGS station. If the flow to be measured is small, use can be made of measuring devices described in NEH-15:9, Measurement of Irrigation Water. If only the maximum stage or peak rate of flow is needed, a "crest staff gage" can be used at a culvert or other existing structure. Figure 5.1 shows a typical inexpensive staff gage. The pipe of the gage contains a

loose material (usually powdered cork) that floats and leaves a high-water mark or maximum stage. The stage is used with a rating curve (chap. 14) to estimate the peak rate of flow.

Some Uses of Streamflow Data

MEAN DATLY DISCHARGES

Records of mean daily discharges (or "mean dailies") are generally published in the form shown in figure 5.2, which is a typical page from a surface-water WSP. Summaries of discharge records appear in various forms; a typical page from a WSP containing summaries is shown in figure 5.3.

When using daily flow records it is often desirable to plot discharge against time in one of the two ways shown in figure 5.4. In a the mean dailies are plotted as point values at midday, with a logarithmic scale for discharge and an arithmetic scale for time. In b both scales are arithmetic. A plotting like a is used in studying low flows or recession curves and one like b in studying high flows or for showing discharges in their true proportions or for determining runoff amounts by measurement of areas. If a watershed has a lag of about 20 hours or more, mean dailies are suitable for plotting flood hydrographs because there is little chance that more than one peak occurs in any one day. But watersheds with shorter lags have flows that vary more widely during a day, so that a hydrograph of mean dailies may conceal important fluctuations; a continuous record of flow is used instead.

An important use of mean dailies is in computing storm runoff amounts including base flow (ex. 5.1) or excluding it (ex. 5.2).

Example 5.1.--Using data in figure 5.2, determine total runoff (including base flow) for the annual flood.

- 1. Determine the annual flood, the largest peak rate in the year. In figure 5.2 under "Extremes" read "Maximum discharge during year, 4,360 cfs Mar 4...."
- 2. Find the low point of mean daily discharge occurring before the rise of the annual flood. This point occurs on March 2 (table 5.1, an excerpt from figure 5.2).

Table 5.1 Mean	daily	discharges,	annual	flood	period
----------------	-------	-------------	--------	-------	--------

Date	Mean daily discharge	Remarks
	<u>cfs</u>	
Feb. 27 28 Mar. 1 2 3 4 5 6 7 8 9	156 136 126 105 * 222 * 3,630 * 1,730 * 558 * 320 * 191 * 146 206	Flow from previous rise. Same. Same. Low point of flow. Rise of annual flood begins. Date of peak rate. Flood receding. Same. Same. Same. End of flood period. New rise begins

- 3. Find the date on the receding side of the flood when the flow is about equal to the low point of March 2. This second low occurs on March 9.
- 4. Add the mean daily discharges for the flood period from March 3 through March 9 (the starred discharges in table 5.1). The sum, which is the total runoff, is 6,797 cfs-days.

Runoff in cfs-days can be converted to another unit by use of an appropriate conversion factor (a table of factors follows chapter 22). For instance, to convert the result in example 5.1 to inches, use the conversion factor 0.03719, the sum of step 4, and the watershed drainage area in square miles (from fig. 5.2): 0.03719(6797)/258 = 0.9796 inches. Round to 0.98 inches.

If the flow on the receding side does not come down far enough, the usual practice is to make a "standard" recession curve out of well-defined recessions of several floods, fit this standard curve to the appropriate part of the plotted record, and estimate the mean dailies as far down as necessary.

If only the direct runoff (chap. 10) is needed, the base flow can be removed by any one of several methods. A simple method, accurate enough for most problems, is used in the next example.

Example 5.2.--Determine the direct runoff in inches for the annual flood of example 5.1.

- 1. Determine the total runoff in cfs-days (ex. 5.1).
- 2. Determine the average base flow for the flood period. This is an average of the flows on March 2 and March 9: (105 + 146)/2 = 125.5 cfs. Round to 126 cfs.
- 3. Compute the volume of base flow. Table 5.1 shows the flood period (starred discharges) to be 7 days; the volume of base flow is 7(126) = 882 cfs-days.
- 4. Subtract total base flow from total runoff to get total direct runoff: 6797 882 = 5915 cfs-days.
- 5. Convert to inches. Use the conversion factor 0.03719 (from the table following chapter 22), the total direct runoff in cfs-days from step 4, and the watershed drainage area in square miles (from the source of data, table 5.2): 0.03719(5915)/258 = 0.8527 inches. Round to 0.85 inches.

TRANSPOSITION OF STREAMFLOW RECORDS

Transposition of streamflow records is the use of records from a gaged watershed to represent the records of an ungaged watershed in the same climatic and physiographic region. Table 5.2 lists some of the kinds of data usually transposed and the factors affecting the correlations between data for the gaged and ungaged watersheds. The symbol \underline{A} means that a considerable amount of analysis may be required before a transposition is justified.

Data are transposed with or without changes in magnitude, depending on the kind and the parameters influencing them. Runoff volumes of individual storms, for instance, are transposed without change in magnitude if the gaged and ungaged watersheds are alike in all respects. But if the hydrologic soil-cover complexes (CN) differ, it is necessary to use figure 10.1 as shown in the following example.

Example 5.3.--A gaged watershed with CN = 74 had a direct runoff of 1.60 inches. What is the comparable runoff for a nearby ungaged watershed with CN = 83?

1. Enter figure 10.1 with the runoff of 1.60 inches, go across to CN 74, go upward to CN 83, and at the runoff scale read a runoff of 2.29 inches.

Transposition of flood dates and number of floods per year is discussed in chapter 18; transposition of total and average annual runoff is discussed in chapter 20.

Table 5.2.--Factors affecting the correlation of data: a guide to the transposition of streamflow records

	Snowmelt Difference runoff in hydrolog- on one ic soil-cover only complexes	दिवद्यद
·S.	Snowme, runoff on one only	यय यय यय
	Large difference in sizes of drainage area	दसससस
Factors:	Runoff from small-area thunder-storms	पि य य य य
	Large difference in sizes of lag	4 4 4
	Large distance between watersheds	A A
	Kind of data	Flood dates Number of floods per year Individual flood, peak rate Individual flood, volume Total annual runoff Average annual runoff

means adverse effect on the correlation; if no \underline{A} , the adverse effect is minor. ۷1

DETERMINATION OF HYDROLOGIC SOIL-COVER COMPLEX NUMBERS (CN)

Storm rainfall and streamflow data for annual floods are the best means by which CN can be established (chap. 9), and such CN are superior to those made by other means. The method of the following example is used; it applies only for antecedent moisture condition II (AMC-II), which is discussed in chapters 4, 9, and 10.

Example 5.4.--Given the rainfall and runoff data of columns 5 and 6 of figure 5.5 (a typical page from SCS Project 1), find the CN for AMC-II.

- 1. Fasten an overlay sheet over figure 10.1. The sheet must be transparent enough for the runoff curves to show through.
- 2. Plot runoff from column 5 against rainfall from column 6, as shown in figure 5.6(a).
- 3. Find which curve of figure 10.1 divides the plotting into two equal numbers of points. It may be necessary to interpolate between two curves; this can be done by penciling a curve on the overlay sheet. The CN for the selected curve is the CN for the watershed, in this example 65.

Figure 5.6(a) also shows the runoff curves for AMC-I and AMC-III (chap. 10). These were found by the relationship given in table 10.1, and no method comparable to that of example 5.4 is needed. But CN for specific antecedent conditions can be estimated by other methods, one of which is given in example 5.5 where antecedent base flow is used.

Example 5.5.--Use the data of figure 5.5 to determine the relation between antecedent base flow and the CN for a subsequent storm runoff.

- 1. Enter figure 10.1 with each storm rainfall (col. 6, fig. 5.5) and its runoff (col. 5) and find the CN for each storm.
- 2. Find the S value for each CN, using columns 1 and 4 of table 10.1.
- 3. Plot each antecedent base flow versus its associated S, using log paper as shown in figure 5.6(b), and draw the line of relation. Unless there is a strong indication of another slope, use a slope of -l and locate the line so that an equal number of points falls on each side. Scales of CN on the margins make the graph easier to use.

Tests of the significance of such relationship and methods for using additional variables are discussed in chapter 18.

* * * *

Figure 5.1.--Construction details of a crest staff gage.

Wabash River near New Corydon, Ind.

Location. --Lat 40°33'50", long. 84°48'10", in SEt sec. 3, T. 24 M., R. 15 E., first principal meridian near center of span on downstream side of bridge on indiana-Onio State line road, 2 miles cast of New Corydon and 2f miles downstream from Beaver Creek.

Drainage area .-- 258 sq mi.

Records available .-- April 1951 to September 1953.

Gare.--Water-stage recorder. Datum of gage is 830.10 ft above mean sea lavel, datum of 1929. Prior to June 23, 1953, wire-weight gage et same site and datum.

Extremes. -- Maximum discharge during year, 4,360 cfs Mar. 4 (gage height, 17.30 ft); mini-mum, 6.4 cfs Sept. 11, 28; minimum gage height, 5.75 ft Sept. 11. 1951-53: Maximum dacharge, 4,390 cfs Mar. 11, 1952 (gage height, 17.59 ft); minimum, 1.3 cfs Aug. 18, 1951 (gage height, 5.40 ft).

Remarks . -- Records good except those for periods of no gage-height record, which are feir. Revisons .-- WSP 1235: Drainage area.

Mating tables, water year 1952-53, except periods of ice effect (gag height, in feet, and discharge, in ouble feet per ascond) (Smirting-centrol sethod used Oct. 1 to Nov. 23, Sept. 13-30)

	Discharge, in cubic fe8t per second, water year Octuber 1952 to September 1963											
Day	Oct.	Nov.	Dec.	Jan.	Jeb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1 2 3 4 5	19 *80 19 18 18	15 14 13 14	•110 1.340 270 600	39 36 941 945 980	191 141 135 131 124	129 105 227 3,630 1,730	348 *246 171 156 141	44 40 52 29 31	89 93 80 77 71	30 26 24 21 24	3868	12 12 12 13 18
9 7 9 9	19 20 20 18 17	*14 14 18 19 ale	240 117 82 78 879	962 56 79 271 404	123 117 104 •108 106	558 320 191 165 208	123 60 48 43 279	47 110 264 146 61	75 36 37 37 186	69 35 22 •19 19	17 19 38 20 17	9.9 9.9 8.9 8.2
11 12 13 14 15	19 24 20 19 18	a 19 19 19 19 19	800 460 108 79 87	770 355 262 629 814	240 684 348 206 179	355 265 302 432 915	117 79 80 64 38	43 55 44 34 97	914 106 90 59 46	19 17 15 19	19 15 16 14	9.9 11 11 11 13
19 17 19 19 20	19 18 18 18 17	19 17 18 17 28	54 50 40 41 54	419 252 1,080 488 292	156 148 5135 156 217	572 382 1,150 1,200 830	371 176 107 66 71	124 1,170 1,340 525 318	40 36 34 51 30	19 19 19 24 35	14 13 18 17 13	10 9.9 9.2 9.2 8.9
21 22 25 24 25	19 18 18 18 18	18 29 58 6130 6300	al00 al80 al30 eggg 126	922 9186 179 474 460	1.550 372 240 191 178	446 579 348 306 306	81 54 50 41 62	119 467 2,730 1,120 800	28 24 22 21 21	26 19 20 18 18	12 12 12 11 11	9.8 9.9 7.9 7.9 7.8
29 27 29 29 30 31	16 15 16 14 15 15	a240 a150 a95 a85 a35	92 65 47 45 43 41	217 186 191 156 141 179	*156 156 136	292 279 279 265 265 256 256	48 49 47 43 •46	379 *198 181 125 105 98	21 20 18 18 20	13 14 14 15 •18	12 12 12 12 12 12	0.2 7.0 7.2 7.8 7.0
Total Rean Cfam In.	\$29 17.0 -	1,431 47.7	7,294 238 -	9,760 283	9,901 246 -	19,938 546 -	3,254 109	10,765 347 -	2,103 73.1	861 21.5	514 19.9	296.7 8.00
Calen	der yeer yeer 18	1962: 1 62-63: 1	10. 3,81 10. 3,83		in 18	He e		Cree	:	In.		

Pack discharge (base, 2,000 sfs), --Peb. 21 (9 a.m.) 2,330 cfs (15.40 ft) Mar. 4 (2 p.m.) 4,340 cfs (17.30 ft); Mar. 5 (7 p.m.) 2,330 cfs (15.30 ft); May 19 (5 a.m.) 2,000 afs (15.10 ft); May 23 (6 a.m.) 2,000 afs (15.10 ft); May 23 (6 a.m.) 2,000 afs (15.10 ft); May 23 a.m.) 2 (15.10 ft); May 24 (6 a.m.) 2,000 afs (15.10 ft); May 25 a.m.) 2 (15.10 ft); May 25 (15.10 ft); May 25 a.m.) 2 (15.10 ft

FIGURE 5.2 - A sample page from the U. S. Geological Survey's Surface Water-Supply Papers.

MUSKINGUM RIVER BASIN

Location. "-Lat 40°07'57", long. 82°08'53", in Shè sec. 13, 7, 3 H., R. 9 M., 2 miles northwest of Frazeysburg, 2 miles dometream from Piveolla Run, and 89 miles upstream from Black Run.

Drainage area .-- 140 sq mi.

Gage.-Water-stage recorder. Datum of gage is 748.12 ft above mean sea level, adjustment of 1912. Prior to Oct. 31, 1936, staff gage at same site unit fatum. Average discharge. -- 14 yeers (1936-50), 158 cfs.

Extreme: --1936-50: Maximum discharge: 10,200 cfs Jan. 25, 1937 (gage height, 11.27 ft), from rating curve satended above 6,600 cfs on basis of valocity-ares study; minimum, 3.1 cfs Aug. 12-14, 1944 (gage height, 1.20 ft).

Pour	Ost.	Hov.	Dec.	Jan.	Pob.	Har.	Apr.	Ray	3000	July	Aug.	Sopt.	The year
1936				-						-	_	14.3	
	-: -			L				1		l - . .			
1937	77.5	196	93.4	1,219	205	114	236	186	492	94.4	29.2	11.4	247
1930	22.4	50.9	136	121	305	661	464	143	70.4	23.0	108	63.3	191
1937	22.3	55.9	50.4	159	479	252	574	33.9	154	41.3	19.9	9.22	136
1940	25.1	17.3	32.9	34 . 6	236	427	654	163	555	105	92.5	45.1	172
1341	19.8	120	206	136	122	75.1	47.9	21.7	129	102	74.7	19.2	90.7
1942	45.8	107	105	80.5	271	225	234	108	127	35.5	19.1	12.9	113
1943	23.7	101	329	209	212	533	106	215		140	186	14.3	191
1944	14.7	20.9	15.9	22.1		460	422	102	42.9	9.48	22.0	19.7	103
1945	10.5	11.1	19.0	92.3	320	804	277	310	80.4	34.5	12.7		199
1949	113	173	143	110	329	260	70.4	219	270	49.7	49.Z	9.47	146
1947	20.9	57.5	117	365	133	97.4	319	7430	514	hos .	79.9	79.9	179
1948	24.9	66.2	68.0	191	367	384	496	133	55.2		10.1		158
1949	22.7	58.9	122	491	349	298	199	129		h 99	42.9	34.9	191
1950	24.0	26.6		607	426	252	310	151		76.9		32.4	191

					bonthly	and yes	rly rus	off, ir	inches				
Jear Par	Oct.	Nov.	Dec.	Jan.	Pob.	Har.	Apr.	Ray	June	July	Aug.	Sopt.	The year
1936	-	-		-	-	-			-	-	-	0.11	
1957	0.64	1.57	0.77	10.04	1.52	0.94	1.90	1.33	3.92	0.79	0.24	.09	25.94
1936	.19	. 24	1.50	1.00	2.23	3.93	3.99	1.19	. 54	.19	.89	.50	15.9
1939	.18	.45	. 42	1.31	3.54	2.08	2.98	.44	1.25	.34	.19	.05	13.1
1940	.21	.14	.27	.47	1.82	5.52	5.21	1.34	1.77	.86	.79	.37	19.7
1941	.14	.99	1.70	1.29	.91	. 92	.36	.19	1.03	.94	.92	.15 .10	8.9
1942	.30	. 85	.86	.99	2.02	1.86	1.86	. 89	1.01	.29	.13	.10	10.9
1345	.19	.80	2.70	2.34	1.57	4.39	1.49	1.75	.42	1.15	1.54	.11	19.4
944	. 12	.17	.13	.19	.50	3.79	3.34	. 94	.50	.00	.18	.15	10.0
1945	.09	.09	.19	.51	2.30	9.92	2.21	2.33	.70	.29	.10	.33	19.0
1949	. 93	1.34	1.19	. 91	2.43	2.14	.36	1.80	2.15	.39	.40	.08	14.3
1947	.17	.49	.96	3.01	.99	.72	2.33	3.54	2.50	.89	. 95	.64	17.0
1949	. 20	. 53	.34	1.33	2.83	3.19	3.97	1.29	.44	.33	.08	.10	14.7
1949	.19	. 47	1.00	3.79	2.57	2.46	1.57	1.05	.47	1.40	. 35	.31	15.9
1350	.20	.21	.84	6.64	3.17	2.08	2.53	1.24	.50	63	.14		18.5

			Mater	year ending	3mmt. 50			Calendar year		
Year	W.3.P. no.	Moment	ery maximum	Minime	Pren	Per	Runoff	Fren	Runoff	
			Discharge	Date	day		e110	Inchee		Inches
1936	823			- 1		-	-		-	
1937	923	10,200	Jan. 25, 1937	9.9	247	1.79	25.94	234	22.00	
1936	853	4.070	Apr. 7, 1936	9.2	191	1.15	15.91	154	14.94	
1939	973		Jan. 50, 1939	3.2	136	. 971	13.19	131	12.75	
1940	883	9,940	Apr. 20, 1940	5.9	172	1.23	19.74	198	18.9	
1941	923	1,480	July 19, 1941	9.9	90.7	.648	9.91	63.5	9.10	
1942	953	2,220	Apr. 10, 1942	5.4	113	.807	10.91	129	12.5	
1943	973	7.380	Mar. 20, 1943	7.0	191	1.34	18.48	157	15.2	
1944	1003		Mar. 7, 1944	3.1	103	. 734	10.01	102	9.9	
1945	1033		Mar. 9, 1945	5.5	195	1.19	19.02	198	19.1	
1949	1053	2.420	June 19, 1949	7.1	149	1.08	14.35	128	12.45	
1947	1083	2.560	June 8, 1347	9.5	179	1.29	17.08	173	19.7	
1949	1113		Peb. 14. 1949	5.1	152	1.09	14.79	134	15.1	
1949	1143		Jan. 28, 1949	12	191	1.15	15.43	157	15.21	
1950	1173		Jan. 6, 1950	8.9	191	1.34	18,52			

FIGURE 5.3 - A sample page from U. S. Geological Water-Supply Paper 1305, "Compilation of Records of Surface Waters of the United States through September 1950."

Figure 5.4.--Two methods of plotting daily flow records. In (a) the discharge scale is logarithmic; in (b) the scale is arithmetic.

14. Amicalola Creek near Dawsonville, Ga. (2B-3900) Lat 34°26', long 84°13'; drainage area, 84.7 sg mi: mean annual precipitation, 57.41.

		D.	ata relative	to annu	al peak discha	rges				
Water	Date	Peak discharge	Antecedent base discharge	Direct runoff	precipitation		Antec precipi (in	Annual runoff		
		(cfs)	(cfs)	(in)	(in)	(days)	5-day	30-day	(in)	
1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951	Aug. 13 July 5 Feb. 17 Dec. 29 Mar. 19 Feb. 13 Feb. 10 Jan. 20 Aug. 4 Nov. 28 Mar. 13 Mar. 29 Mar. 11	2,500 5,200 7,450 2,680 3,460 1,130 5,050 4,770 5,650 5,500 3,460 2,380 5,960	81 188 143 232 305 160 408 452 130 204 276 189 280	0.81 1.40 1.74 1.65 1.16 2.33 1.59 1.36 1.85 1.15 1.33	4.99 5.72 5.24 4.31 3.80 1.95 5.39 4.05 5.69 5.59 3.77 4.71 3.83	1 2 2 2 3 2 2 2	0.30 1.54 .20 1.36 .10 .18 1.11 2.62 .40 1.48 1.22 .16	2.67 4.99 4.93 6.63 8.75 3.63 6.32 8.66 8.46 9.53 4.74 5.57 5.18	22.37 21.80 30.94 39.12 37.05 25.44 57.50 30.31 34.98 48.93 37.91 27.69	

FIGURE 5.5 - A sample page from a compilation by the U.S. Geological Survey for SCS-Project No. 1.

Figure 5.6.--Use of streamflow records for determination of (a) an average runoff curve number, and (b) a specific runoff curve number.

NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 6. STREAM REACHES AND HYDROLOGIC UNITS

bу

Victor Mockus Hydraulic Engineer

1964

Reprinted with minor revisions, 1969

SCS NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 6--STREAM REACHES AND HYDROLOGIC UNITS

CONTENTS	Page
Reaches Location Measurement Length Profile Hydraulic roughness Reach data for a computer program	6.1 6.3 6.4 6.4 6.4 6.5
Alluvial fans	6.5
Hydrologic units	6.6
Figures 6.1 Hydrologic unit having detail for use as a sample watershed	6.7
Tables 6.1 Reach and cross section data	6.2

CHAPTER 6. STREAM REACHES AND HYDROLOGIC UNITS

The stream system of a watershed is divided into reaches, and the watershed into hydrologic units, for the convenience of work during project formulation. This chapter gives some details on the selection of reaches for hydrologic or economic studies, presents alternative means for studies of alluvial fans, and briefly describes a hydrologic unit and its use in a project study.

Reaches

A reach is a length of stream or valley used as a unit of study in project formulation. It contains a specified feature that is either fairly uniform throughout (as hydraulic characteristics or flood damages) or requires special attention in the study (as a bridge). Reaches are shorter for hydraulic than for economic studies so that it is best to consider hydraulic needs first when selecting reaches, afterward combining the hydraulic reaches into longer ones for the economic study.

Reaches are physically defined at each end by cross sections that usually extend across the valley. A cross section is either straight and at a right angle to the major path of flow in the valley, or it is a connected series of segments that are at right angles to flows in their vicinity. The "head" and "foot" of a reach are the upstream and downstream ends respectively. "Right bank" and "left bank" are designated looking downstream. For reference, reaches and cross sections are numbered in any simple and consistent way such as the one in figure 6.1 and table 6.1. But if an electronic computer program (chap. 2) will be used, the numbering must follow the system specified in the program.

The purpose of a reach determines which relationships of the reach must be developed from field surveys. For a hydrologic study the required relationships include those of stage and discharge (chap. 14), stage and end-area (chaps. 14 and 17), and, if manual flood routings will be made, discharge and velocity (chap. 14). For an economic study they are stage and discharge (chap. 14), stage and area-inundated (chap. 13), and stage and damage (Economics Guide, chap. 3).

Reach and cross-section data Table 6.1.

No. 4						
complex	Future		78		78	
Soil-cover complex No. 4	Present		80		80	
Accumulated drainage area		Square miles		7.0.4 4.0.0 7.4 7.4		7.5 8.8 8.8 8.9 7/
Travel time $\frac{5}{2}$		Hours	09.0		1.50	
Length of reach $2/$		Feet	7500		15600	
Cross-section stationing				2231 + 00 2192 + 00 2160 + 00		2138 + 00 2100 + 00 2054 + 00 2016 + 00 2012 + 00
Cross- section	No.			FR-1 BB AA		FF DD CC BB AA
Reach No. 1/	l		‡		9	

Reach No. is same as subdivision No.

Channel length of reach.

They were Soil-cover complex Nos. for the total area above the foot of the reach. obtained by weighting (chap. 10). Travel time of a 2-year frequency flow through the reach

Drainage area at the head of the reach. The drainage area at this cross section was estimated.

Drainage area at the foot of the reach.

LOCATION

The head or foot of a reach is at or near one of the following places on a stream:

- 1. Boundary of an agricultural area having flood damages.
- 2. Boundary where agricultural damages change significantly.
- 3. Boundary of an urban area, oil-storage field, or any other area of high potential flood damage for which levees or other local protective works may be proposed.
 - 4. Junction of a major tributary and the main stream.
 - 5. Station where streamflow is gaged.
- 6. Installation controlling streamflow, such as a weir or a culvert in a high road fill.
 - 7. Installation restricting streamflow, such as a bridge.
 - 8. Site proposed for a floodwater-retarding or other structure.
- 9. Section where shape or hydraulic characteristics of the channel or valley change greatly.
- 10. Section where channel control creates large storage upstream.

In selecting reaches it must be kept in mind that the method of computing water-surface profiles may specify a maximum permissible length of reach. Some electronic-computer programs have a built-in routine for transposing or interspersing auxiliary cross sections to avoid stopping the machine when an excessive length of reach is encountered in the data. Even these programs have limitations that must be observed.

Locations for reaches are selected by the hydrologist and others in the work plan party. Tentative locations are made during the preliminary investigation of a watershed (chap. 3) and shown on a base map or aerial photograph. Low-altitude aerial reconnaissance may be necessary for locating reaches in watersheds without access roads or where timber, brush, or cultivated crops obstruct vision at the ground level. If flood damage studies will be made, flood-plain areas with potentially high damage are also located and shown. The map or photograph is later used for identifying the reaches that need most attention in the studies. Once the relative

importance of the reaches is known, the hydrologist selects the locations of cross sections and determines the intensities of work to be done by the field survey crew.

MEASUREMENT

The measurements made during a field survey are usually those necessary to define the changes in ground elevation in the line of a cross section and the horizontal distances between sections. At this same time it is necessary to estimate Manning's n for hydraulic computations (chap. 14). The value of n must represent roughness conditions for the full length of the reach. If a cross section is divided into segments, the n for each segment applies to a strip through the reach.

Length

The length of a reach is the distance between cross sections at the head and foot, measured along the sinuous path of flow in the channel or valley. The channel is nearly always longer than the valley so that two lengths may be applied in a study: the channel length when the flow is low (within banks of the channel) and the valley length when the flow is over the flood plain. This means that as a flood rises the reach becomes shorter, a change that must be taken into account when computing water-surface profiles (chap. 14) and flood damages (chap. 13). Réach lengths are generally determined by use of an aerial photograph or a detailed topographic map because the paths of flow are often complex and not easy to determine in the field.

Profile

Elevations of cross sections are related to a common datum if profiles of the valley or channel are needed for computation of water-surface profiles by the Leach, Escoffier, or Doubt methods (chap. 14).

Hydraulic Roughness

Estimates of hydraulic roughness (Manning's n) are made by the procedure given in NEH-5, Supplement B, or an equivalent procedure. Chapter 14 contains a discussion of Manning's n and its variations in natural channels.

REACH DATA FOR A COMPUTER PROGRAM

If water-surface profile or similar computations will be made by an electronic computer, the computer-program description should be examined for limitations on the input data such as length of reach and number of elements in a cross section. These limitations must be kept in mind when working instructions are given to the survey crew. Typical limitations are given in SCS Technical Release 14, "Computations of Water Surface Profiles and Related Parameters by the IBM 650 Computer."

Alluvial Fans

Alluvial fans, also called debris slopes or debris fans, are sediment deposits formed where the grade of a mountain stream is abruptly reduced as the stream enters an area of gentler slope, such as the valley of another stream. Large fans may be inhabited or have agricultural use. The paths of flood flows shift from one side to another of a fan so that reaches are useless and a special method for project evaluation must be adopted. In this method the floodwater damages on alluvial fans are related to actual or estimated runoff volumes that are referenced to an upstream cross section above the fan, such as a stream gage or other control section. The evaluation of flood damages follows this order:

- 1. Information about the monetary value of damages for each known flood on the fan is obtained by interviews or from historical sources.
- 2. The volume of flood runoff for each flood is determined from streamflow records or estimated by use of rainfall and watershed data and the methods shown in chapter 10.
- 3. The relation between flood runoffs and damages is developed (see the Economics Guide).
- 4. The frequencies of flood-runoff amounts are estimated (chap. 18).
 - 5. A damage-frequency curve is developed (chap. 18).
 - 6. The average annual damage is determined (chap. 18).
- 7. The effects of a proposed upstream project on the amounts of runoff are determined. The amounts (and therefore the flood

damages) decrease when changes in land use and treatment decrease the hydrologic soil-cover complex number (chap. 10) or when storage structures reduce flood flows (chap. 17).

- 8. The runoff-damage relation of step 3 is used with the reduced runoffs of step 7 to estimate damages still remaining.
- 9. A modified damage-frequency curve is developed and plotted on the graph used in step 5.
- 10. The difference between present and future damage-frequency curves is obtained as shown in chapter 18 to estimate the project benefits.

Hydrologic Units

When a large watershed or a river basin is studied it is desirable to divide the watershed or basin into subareas or subwatersheds called hydrologic units (HU) and to make the study in terms of these units. By so doing, the work is more easily handled and the study takes less time. An HU may also be used as a sample watershed; that is, project costs and benefits within a selected HU are evaluated in detail and afterward applied to other similar HU's for which no internal evaluation is made. The small watershed in figure 6.1 has enough detail for a sample watershed.

Each HU is the drainage area of a minor tributary flowing into the main stream or a major tributary. Areas between minor tributaries are combined and also used as HU's. Cross sections and reaches are needed only when an HU is a sample watershed. Storms in the historical or frequency series (chap. 18) are developed on an HU basis, as are runoff curve-numbers and hydrographs. Hydrographs for present and with land use and treatment conditions are developed for an entire HU with reference to the HU outlet (chap. 16).

If an HU contains structural measures that affect the rates of a hydrograph, the changes are determined by short-cut methods of routing (chap. 17) and the modified hydrograph, like the others, is referenced to the HU outlet. The watershed or basin flood routing is carried out on the major tributaries and main stream, with the HU's supplying the starting and local inflow hydrographs.

* * * *

FIGURE 6.1-HYDROLOGIC UNIT HAVING DETAIL FOR USE AS A SAMPLE WATERSHED

NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 7. HYDROLOGIC SOIL GROUPS

by

Victor Mockus Hydraulic Engineer

1964

Reprinted with minor revisions, 1972

NEH Notice 4-102, August 1972

SCS NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 7--HYDROLOGIC SOIL GROUP

CONTENTS	Page
Watershed-soils classification Definitions	7.1 7.1
The Soil list Use of the soil group Determining areal extents Number of soil groups to be used Subgroups Reclassification of a soil	7.2 7.3 7.3 7.4 7.4
Figures 7.1 Steps in determining percentages of soil groups 7.2 Type of plotting used in estimating runoff curve numbers for soil subgroups	7.39 7.40
Tables 7.1 Soil names and hydrologic classifications	7.7

CHAPTER 7. HYDROLOGIC SOIL GROUPS

This chapter gives definitions of four soil groups that are used in determining hydrologic soil-cover complexes (chap. 9), which are used in a method for estimating runoff from rainfall (chap. 10). A table gives the group-classifications of more than 4,000 soils in the United States and Puerto Rico. Methods of making and using the classifications are briefly discussed.

Watershed-Soils Classification

Soil properties influence the process of generation of runoff from rainfall and they must be considered, even if only indirectly, in methods of runoff estimation. When runoff from individual storms is the major concern, as in flood prevention work, the properties can be represented by a hydrologic parameter: the minimum rate of infiltration obtained for a bare soil after prolonged wetting. The influences of both the surface and the horizons of a soil are thereby included. The influence of ground cover is treated independently, as discussed in chapters 8, 9, and 10.

The parameter, which indicates the runoff potential of a soil, is the qualitative basis of the classification in this chapter of all soils into four groups. The classification is broad but the groups can be divided into subgroups, as shown in example 7.1, whenever such a refinement is justified. Chapter 9 describes how the groups are given quantitative significance in the runoff-estimation method of chapter 10.

DEFINITIONS

In the definitions to follow, the <u>infiltration rate</u> is the rate at which water enters the soil at the surface and which is controlled by surface conditions, and the <u>transmission rate</u> is the rate at which the water moves in the soil and which is controlled by the horizons. The hydrologic soil groups, as defined by SCS soil scientists, are:

- A. (Low runoff potential). Soils having high infiltration rates even when thoroughly wetted and consisting chiefly of deep, well to excessively drained sands or gravels. These soils have a high rate of water transmission.
- B. Soils having moderate infiltration rates when thoroughly wetted and consisting chiefly of moderately deep to deep, moderately well to well drained soils with moderately fine to moderately coarse textures. These soils have a moderate rate of water transmission.
- C. Soils having slow infiltration rates when thoroughly wetted and consisting chiefly of soils with a layer that impedes downward movement of water, or soils with moderately fine to fine texture. These soils have a slow rate of water transmission.
- D. (High runoff potential). Soils having very slow infiltration rates when thoroughly wetted and consisting chiefly of clay soils with a high swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at or near the surface, and shallow soils over nearly impervious material. These soils have a very slow rate of water transmission.

The Soil List

The list at the end of this chapter contains the names of more than 4,000 soils in the United States and Puerto Rico. The capital letter following a name designates the hydrologic soil group classification.

The original classifications were based on the use of rainfall-runoff data from small watersheds or infiltrometer plots, but the majority are based on the judgments of soil scientists and correlators who used physical properties of the soil in making their decisions. They classified a soil in a particular group by comparing its profile with profiles of soils already classified. They assumed that the soil surfaces were bare, maximum swelling had taken place, and rainfall rates exceeded surface intake rates. Thus, most of the classifications are based on the premise that similar soils (similar in depth, organic-matter content, structure, and degree of swelling when saturated) will respond in an essentially similar manner during a rainstorm having excessive intensities.

The classification of a soil in the list can be checked by using the procedure of example 5.4. The soil in question must be the only one

on the watershed and rainfall-runoff data for bare-soil periods must be available. Checks that have been made so far have not caused any changes in the present classification.

USE OF THE SOIL GROUPS

To use the soil list it is necessary to know only the names of the soils on the watershed being studied. To use the classification in estimating runoff (chap. 10) it is also necessary to know the area of each soil and, if the watershed is large, its location by hydrologic units (chap. 6). The SCS hydrologist usually consults a State soil scientist when soils of a watershed are to be classified. If there is no soil survey for the watershed the consultant can usually get adequate information from work unit personnel. Making a soil survey solely for hydrologic purposes is seldom justifiable. It should take less than a day to classify the soils on a 400-square-mile watershed. Often, when working with a watershed in familiar territory, the hydrologist needs little more than a check on his own estimates of the groupings.

Determining Areal Extents

Precise measurement of soil-group areas, such as by planimetering soil areas on maps or weighing map cuttings, is seldom necessary for hydrologic purposes. The maximum detail should not go beyond that illustrated in figure 7.1: in <u>a</u> the individual soils in a hydrologic unit are shown on a sketch map; in <u>b</u> the soils are classified into groups; in <u>c</u> a grid (or "dot counter") is placed over the map and the number of grid intersections falling on each group is counted and tabulated; in <u>d</u> is shown the tabulation and a typical computation of a group percentage. Simplified versions of this procedure are generally used in practice.

Number of Soil Groups to be Used

Often one or two soil groups predominate in a watershed, others covering only a small part. Whether the small groups should be combined with the predominate ones depends on their classifications. For example, a hydrologic unit with 90 percent of its soils in the A group and 10 percent in the D will have most of its storm runoff coming from the D soils and putting all soils into the A groups will cause a serious under-estimation of runoff. If the groups are more nearly alike (A and B, B and C, or C and D) the under- or over-estimation may not be as serious but a test may be necessary to show this. Rather than test each case, follow the

rule that two groups are combined only if one of them covers less than about 3 percent of the hydrologic unit. Impervious surfaces should always be handled separately because they produce runoff even if there is none from D soils.

Subgroups

If subgroups are used, the runoff curve numbers (CN) for them can be determined by linear interpolation on table 9.1 or, more elaborately, by the method of the following example.

Example 7.1.--A soil is to be classified in a subgroup falling midway between groups B and C. The land uses are "Row crops, straight-row, good rotation" and "Legumes, straight-row, good rotation" (see table 9.1). Determine the CN for the subgroup.

1. Use table 9.1 to find the CN for each of the four soil groups and two land uses. The results are:

Land uses	Soi			
	A	В	C	D
Row crops, straight-row, good rotation	67	78	86	89
Legumes, straight-row, good rotation	58	72	81	85

- 2. Plot the four CN for each land use as shown in figure 7.2, using each CN as the midpoint of a soil group, and draw a curve through the points. Each land use has its own curve.
- 3. Interpolate on the group scale and find the CN for each land use. For this example the subgroup is midway between the B and C groups so that the CN is 82 for the row crop and 77 for the legume. Linear interpolation on table 9.1 gives 81.5 and 76.5, respectively, which are rounded to 82 and 76.

The subgroup in example 7.1 can be designated the B- or C+ subgroup. More elaborate classifications $(B_1,\ B_2,\ B_3,\ \text{etc.})$ are not justified unless the soil classifications were made using rainfall-runoff data.

Reclassification of a Soil

Some of the soils in table 7.1 are in the D group because of a high water table that creates a drainage problem. Once these soils are

effectively drained they can be placed in an alphabetically higher group. They can be classified locally on a case by case basis.

When there is a need to reclassify a soil on the basis of additional data, the SCS State soil scientist should submit the case for consideration to the soil correlator for that area.

* * * *

TABLE 7.1--HYDROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

ABAB	0 1	ADKINS. HARDPAN	B	ALBEE	-	ALPOWA	B		C
ABERG	DI	SUBSTRATUM	!	ALBENARLE	B		CI	ANDERS	C
ASTAD	9	ADKINS. GRAVELLY	В	ALBERTVILLE	c i	ALSCO	В	ANDERSON	В
AZDAHL	8 I	SUBSTRATUM ADLER	c	ALBINAS ALBION	8 I	ALSPAUGH ALSTAD	C I	ANDOK ANDOVER	B
BAC BAJO	ci	ADNAN	0 1	ALBRIGHTS	c		В	ANDRADA	D
BARCA	8 1	ADOLPH		ALBUS	8	ALSUP	ci	ANDREESON	c
BBOTT	Di	ADOS	CI	ALCESTER	8 1	ALTANONT	D	ANDREGG	В
BBOTTSTOWN	c i	ADRIAN	A/DI	ALCOA	8	ALTAVISTA	c 1	ANDRES	В
BCAL	D	ADVOKAY	DI	ALCONA	В	ALTDORF	DI	ANDREWS	C
BEGG	8	AECET	c i	ALCORN	8 1	ALTHOUSE	8	ANDRY	D
BELA	B	AENEAS	В		AI	ALTICREST	BI	ANED ANETH	D B
BELL BERDEEN	B I	AFTADEN AFTON	0 C/DI	ALCOVA	c	ALTMAR ALTO	CI	ANGELICA	B/0
BERONE	8 1	AGAIPAH	0 1	ALDA. SALINE	-	ALTOGA	c	ANGELINA	D
BERT	8 1	AGAN	0 1	ALDA CHANNELED		ALTON	Ā	ANGELO	c
BES	Di	AGAR	B		D	ALTOONA	c i	ANGELUS	В
BGESE	8 1	AGASSIZ	0 1	ALDEN	D	ALTURAS	c 1	ANGIE	D
BILENE	c i	AGATE	DI	ALDER	c i	ALTUS	B	ANGLE	A
BIQUA	c i	AGATHA	8	ALDERHAND .	В	ALTVAN	В	ANGLEN	C
80	c I	AGAVAN	В	ALDERWOOD	C I	ALUF	A	ANGOLA	В
BOR Bra	0 1	AGENCY AGER	C	ALDINE	0 [D 1	ALUN ALUSA	BI	ANGORA ANGOSTURA	В
BRA. BEDROCK	В	AGET	В	ALDING	D	ALVARADO	В	ANHALT	D
SUBSTRATUM	i	AGNAL	0	ALDINO		ALVIN	В	ANIAK	0
BRA. DRY	ві	AGNESTON	В	ALEDO	c i	ALVIRA	ci	ANIMAS	c
BRAHAN	В	AGNESTON. COBBLY	c i	ALEGROS	c i	ALVISO	0 1	ANINTO	٥
BRAZO	0 1	SUBSTRATUM	1	ALEKNAGIK	C	ALVOR	0	ANITA	D
BRAZO. GRAVELLY	c I	AGNEY	c I	ALEMEDA	C	ALVOR. DRAINED	c I	ANKENY	В
BRAZO. COBBLY	0	AGNOS	0 1	· · · ·		ALWILDA	В	ANKLAH	0
BREU	B	AGUA DIE CE	BI	ALEXANDER	C I	ALZADA	DI	ANKONA ANNABELLA	D B
BSAROKEE BSCOTA	C I	AGUA DULCE AGUA FRIA	B 1	ALEXANDRIA ALFIR	C	ALZOLA AMADOR	D I	ANNABELLA	C
BSHER	D I	AGUA PRIA	A	ALFORD	8	AMAGON	0	ANNAW	В
BSTED	ci	AGUALT	B	ALGANSEE	В		В	ANNEMAINE	c
BSTON	ςi	AGUEDA	В	ALGARROBO	A	ANALU	0 1	ANNIS	č
CACID	8	AGUILARES	B	ALGERITA	8	AMANA	B 1	ANNIS. SALINE	В
CADENY	C	AGUILITA	B	ALGIERS	C/DI	AMANDA	c I	ANNIS.	C
CADIA	0 1	AGUIRRE	0	ALGOA	c I	ANARILLO	8	SALINE-ALKALI	
CANA	D I	AGUSTIN	В			ANASA	В	ANNIS. DRAINED	В
CANDO CASCO	C I	AHL AHLSTROM	C	ALHAMBRA ALHARK	B	ANBER Anbia	BI	ANNISQUAM ANNISTON	В
CEITUNAS	B 1	AHREEK	ci	ALICE	8	ANBOAT	ci	ANNONA	0
CEL	ci	AHOLT	D	ALICEL	6		c i	ANDCON	č
CKER	8 1	AHREN	В	ALICIA	В	AMBRANT	В	ANDKA	В
CKERNAN	A/DI	AHRNKLIN	c i	ALIDA	B 1	ANBRAW	B/DI	ANDNES	C
CKERVILLE	C I	AHTANUM	D	ALIKCHI	8	AMELIA	B [ANSARI	D
CKETT	0	AHTANUM. DRAINED	c I	ALINE	*	ANENIA	В	ANSEL	В
CKLEY	8	AHWAHNEE	В	ALKO	DI	ANENSON	DI	ANSELHO	В
CKNORE	В	AIBONITO AIDO	C	ALLAGASH ALLAMORE	B I		A I	ANSELMO. BEDROCK SUBSTRATUM	A
CKWATER	D	AIKEN	В	ALLANTON		AMES	-	ANSGAR	B/0
CHE	c i	AIKMAN	ō i	ALLARD	_	ANESHA	В	ANSPING	В
CO	8 1	AIKMAN. STONY	c i	ALLEGHENY	B	AMESHONT	c i	ANT FLAT	C
COMA	CI	AILEY	B	ALLEMANDS	D		D	ANTEL	C
CORD	c I	AIMELIIK	В	ALLEN	0 1	ANISTAD	DI	ANTELOPE SPRINGS	C
COVE	c i	AINAKEA	B 1		В	AMITY		ANTERD	C
CREDALE CREE	0 C	AINSLEY AINSWORTH	BI	ALLENS PARK ALLENTINE		ANNON		ANTHO	B
CRELANE	či	AIRPORT	D			ANOR		ANTIGO	В
CTON	8 1	AITS	Ві		В			ANTILON	В
CUFF	B	AJO	c i		0			ANTIOCH	D
CUNA	c i	AKAKA	A	ALLIANCE		ANPAD		ANTLER	С
CY	c i	AKAN	•	ALLIGATOR	D 1			ANTOINE	В
DA	c i	AKASKA		ALLIS		ANSDEN		ANTONITO	C
DAIR	c i	AKELA	DI			ANSTERDAN	- •	ANTOSA	D
DAMS Damson	A I	AKERCAN AKERUE	BI	ALLITRAL		ANTOFT ANWELL		ANTROBUS ANTWERP	В
DANSVILLE	c	AKLER	D 1	ALLOUEZ		AMY	- •	ANTY	В
~~~~ * * * * * * * * * * * * * * * * *	0	ALADDIN	В			AMY ANACAPA		ANUNDE	8
DATOM	•	ALADSHI	В			ANACOCO		ANVIK	В
	C I					ANACONDA	B	ANWAY	В
DAVEN	CI	ALAE	A	ALMENA				ADWA	В
DAVEN DDICKS	•	ALAE ALAELOA	A I			ANAHEIM	c	AUTA	
DAYEN DDICKS DDIELOU DE	D I B I	ALAELDA ALAGA	BI	ALNIRANTE ALMO	B	ANAHUAC	ρi	APACHE	D
DAYEN DDICKS DDIELOU DE DEL	D I B I B I	ALAELDA ALAEA ALAKAI	B I	ALNIRANTE ALMO ALNONT	B   D	ANAHUAC ANAMITE	D I	APACHE APAKUIE	A
DAYEN DDICKS DDIELOU DE DEL DEL DELAIDE	D   B   A   B   D	ALAELDA ALAGA ALAKAI ALAMA	B   A   D   B	ALNIRANTE ALMO ALNONT ALMOTA	B   D   C	ANAHUAC ANAMITE ANAPRA	D I	APACHE APAKUIE APALACHEE	A
DAYEN DDICKS DDIELOU DE DEL DELAIDE DELANTO	D   B   B   B   B   B   B   B   B   B	ALAELDA ALAGA ALAKAI ALAMA ALAMANCE	B   A   D   B   B	ALNIRANTE ALMO ALNONT ALMOTA ALMY	B   D   D   C   B	ANAHUAC   ANAMITE   ANAPRA   ANASAZI	D I B I C I	APACHE APAKUIE APALACHEE APALO	A D B
DAYEN DDICKS DDIELOU DE DEL DEL DELAIDE DELANTO DELINO	D   B   B   B   B   B   B   B   B   B	ALAELDA ALAGA ALAKAI ALAMA ALAMANCE ALANO	B   D   B   D	ALNIRANTE ALMO ALMOTA ALMOTA ALMY ALMITE	B   D   D   D   D   D   D   D   D   D	ANAHUAC ANAMITE ANAPRA ANASAZI ANASAZI, NONSTONY	D I D I D I D I D I D I D I D I D I D I	APACHE APAKUIE APALACHEE APALO APELDORN	A D B
DAYEN DDICKS DDIELOU DE DEL DELAIDE DELANTO DELINO DELINO	D   B   B   B   B   B   B   B   B   B	ALAELDA ALAGA ALAKAI ALAMA ALAMANCE ALAMO ALAMOGORDO	B   A   D   B   B	ALNIRANTE ALMO ALMOTA ALMOTA ALMY ALMITE ALO	B   D   D   D   D   D   D   D   D   D	ANAHUAC   ANAMITE   ANAPRA   ANASAZI   ANASAZI NONSTONY   ANASAZI DRY	D   D   B   C   B   B   B   B   B   B   B   B	APACHE APAKUIE APALACHEE APALO APELDORN APISHAPA	A D B A
DAYEN DDICKS DDIELOU DE DEL DELAIDE DELANTO DELINO DELINO SALINE-ALKALI	D   B   B   B   B   B   B   B   B   B	ALAELDA ALAGA ALAKAI ALAMA ALAMANCE ALANO	B   A   D   B   B   B   B   B   B   B   B   B	ALNIRANTE ALMO ALMOTA ALMOTA ALMY ALMITE	B   D   D   D   D   D   D   D   D   D	ANAHUAC ANAMITE ANAPRA ANASAZI ANASAZI ANASAZI ANASAZI ANASAZI ANASAZI ANASAZI	D   D   B   C   B   B   D	APACHE APAKUIE APALACHEE APALO APELDORN	A D B
ADAYEN ADDICKS ADDICKS ADDICKS ADEL ADEL ADEL ADELAIDE ADELINO ADELINO SALINE-ALKALI ADELPHIA	D   B   B   B   C	ALAELDA ALAGA ALAKAI ALAMA ALAMANCE ALAMO ALAMOGORDO ALAMOSA	B   A   D   B   D   B   D   D	ALNIRANTE ALMO ALMONT ALMOTA ALMY ALMITE ALO ALOMA ALOMAX	B   D   D   D   C	ANAHUAC ANAMITE ANAPRA ANASAZI ANASAZI, NONSTONY ANASAZI, DRY ANATONE ANAVEROE	D   D   D   D   D   D   D   D   D   D	APACHE APAKUIE APALO APELOGRN APISHAPA APISON APMAT APMAY	A D B A C B
DAYEN DDICKS DDICKS DDICKS DDICKS DEL DEL DELAIDE DELAIDE DELINO DELINO DELINO SALINE-ALKALI DELPHIA DDEMA	D   B   B   B   C   C	ALAELDA ALAGA ALAKAI ALAMA ALAMANCE ALANO ALAMOGORDO ALANOSA ALANOS ALAPAHA ALAPAI	B   A   D   B   B   D   B   B   D   B   B   B	ALNIRANTE ALMO ALNONT ALMOTA ALMY ALNITE ALO ALOMA ALOMAX	8   D   C   D   D   B	ANAHUAC ANAMITE ANAPRA ANASAZI ANASAZI, NONSTONY ANASAZI, DRY ANATONE ANAYEROE	D   D   D   D   D   D   D   D   D   D	APACHE APAKUIE APALO APELOGRN APISHAPA APISON APMAT APMAY	A D B A C B B D B
ADAYEN ADDICKS ADDICKS ADDICKS ADDICKS ADDICKS ADEL ADEL ADEL ADEL ADEL ADEL ADEL ADEL	D   B   B   C   C   D   B	ALAELDA ALAGA ALAKAI ALAMA ALAMANCE ALAMO ALAMOGORDO ALAMOSA ALANOS ALAPAHA ALAPAI ALAZAN	B   D   B   D   B   D   B   B   B   B	ALNIRANTE ALMO ALNONT ALMOTA ALMY ALNITE ALO ALOHA ALOMAX ALONA ALONSO ALOVAR	8   D   C   D   D   B	ANAHUAC ANAMITE ANAPRA ANASAZI ANASAZI. NONSTONY ANASAZI. DRY ANATONE ANAVEROE ANAVEROE ANAWALT ANCHO ANCHO POINT	D	APACHE APAKUIE APALACHEE APALO APELDORN APISHAPA APISON APMAT APMAY APOLLO APOPKA	A D B A C B B D B A
ADELPHIA ADENA ADGER ADILIS ADJUNTAS	D   B   B   C   C   C   C   C   C   C   C	ALAELDA ALAGA ALAKAI ALAMA ALAMACE ALAMOGORDO ALAMOGORDO ALAMOSA ALAMOS ALAPAHA ALAPAI ALAZAN ALAZAN	B   D   B   D   B   D   B   B   B   B	ALNIRANTE ALMO ALMONT ALMOTA ALMY ALNITE ALO ALOMA ALOMA ALOMA ALONSO ALDVAR ALPENA	8 D D D D D D D D D D D D D D D D D D D	ANAHUAC ANAMITE ANAPRA ANASAZI ANASAZI ANASAZI ANASAZI ANASAZI ANATONE ANAVERDE ANAVERDE ANAVERDE ANCHO ANCHOR ANCHOR	D   D   B   D   B   D   B   D   B   D   D	APACHE APAKUIE APALOMEE APALO APELDORN APISHAPA APISON APMAT APMAY APOLLO APOPKA APPANOOSE	A D B A C B B D B A D
ADAYEN ADDICKS ADDICKS ADDICKS ADDICKS ADEL ADEL ADELANTO ADELINO ADELINO SALINE-ALKALI ADELPHIA ADEMA ADEMA ADILIS	D   B   B   C   C   D   B	ALAELDA ALAGA ALAKAI ALAMA ALAMANCE ALANO ALAMOGORDO ALANOS ALANOS ALAPAHA ALAPAI ALAZAN ALBAN ALBAN	B   D   B   D   B   D   B   B   B   B	ALNIRANTE ALMO ALNONT ALMOTA ALMY ALNITE ALO ALOMA ALOMAX ALONA ALONSO ALOVAR ALPHA	B D D D D D D D D D D D D D D D D D D D	ANAHUAC ANAMITE ANAPRA ANASAZI ANASAZI ANASAZI ANASAZI ANATONE ANAVEROE	D   D   D   D   D   D   D   D   D   D	APACHE APAKUIE APALACHEE APALO APELDORN APISHAPA APISON APMAT APMAY APOLLO APOPKA	A D B A C B B D B A

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.

MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUN. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

APPIAN. SALINE-ALKALI	8 1	ARNAGH ARNCO	D 1	ATCO ATENCID	B	AZTEC	c I	BARABDD BARAGA	8 C
APPIAN. VET	ci	ARNELLS	8 1	ATEPIC	D 1	AZVELL		BARATARI	A/D
APPIAN. CLAY	8 1	ARMENIA	o i	ATHELVOLD		BAAHISH		BARBAROSA	D
SUBSTRATUM		ARNESA	8 1	ATHENA	, B	DADO		DARDARY	o
APPIAN. RECLAIMED	c i	ARMIESBURG	B	ATHERTON	8/01		0 1	BARBERT	0
APPLEBUSH	8 1	ARNIJO	DI	ATHOL	D	BASELTHUAP	B	BARBOUR	B
APPLETON	ci	ARMINGTON	DI	ATKINS	0 1	BACA	c I	BARBOURVILLE	В
APPLING	8	ARNISTEAD	c i	ATKINSON	8	BACH	8/01	BARCAVE	В
APRON	8 1	ARMITAGE	c 1	ATLAS	0 1	BACHUS	C	BARCLAY	C
APT	C	ARND	B	ATLEE	C	BACKBAY	D	BARCO.	B
APTAKISIC	B	ARMONA	0 1	ATLDW	0	BACKBONE	B	BARCUS	A
APTDS	CI	ARHOUR	D I	ATMORE	8/0		B	BARD	0
AQUILLA	A	ARMSTER	c I	ATOKA	C I	BADAXE		BARDEN	C
AQUINAS	C	ARMSTRONG	c i	ATDNIC	B [	BADENAUGH	B	BARDLEY	C
ARADA	B	ARMUCHEE	c i	ATRAC	B	BADGE	B	BARELA	C
ARAGON	c i	ARMEGARD	В	ATRING	B	BADGERTON	8	BARFIELD	D
ARAMBURU	CI	ARNHEIM	DI	ATRYPA	D	BADIN	c I	BARFUSS	B C
ARANSAS	D	ARNO	DI	ATSIDN	8/0		C I	BARGE	
ARAPAHOE ARAPIEN	B/DI	ARNOLD	B I	ATSION. TIDE FLOODED	D I	BADD	C/01	BARIO Barishman	B C
ARATA	ci	AROL	D 1	ATTER	_ A	BAGARD	B	BARKCAMP	В
ARAVA IPA	ci	AROSA	c i	ATTERBERRY	â	BAGDAD	8	BARKERVILLE	Č
ARAVE	0 1	ARP	ζi	ATTEVAN	A	BAGGDTT	9 1	BARKLEY	č
ARAVETON		ARRADA		ATTEVAN.	B	BAGLEY	В	BARKDF	Ď
ARBELA	c i	ARRASTRE	Bi	MODERATELY SLOW	- i	BAHEN		BARLING	č
ARBIDGE	c i	ARREDONDO	Āİ	PERM	i	BAILE	Di	BARNABE	D
ARBOLES	c i	ARRIBA	Ĉί	ATTEVAN. VET	0	BAILEGAP	8 1	BARNARD	C
ARBONE	B	ARRINGTON	B	ATTICA	8	BAILING	c i	BARNES	8
ARBOR	8	ARRIOLA	D	ATTOYAC	8	BAINVILLE	ci	BARNESTON	A
ARBUCKLE	8 1	ARRDLINE	c i	ATWATER	В	BAIRD HOLLOW	CI	BARNESTON. STONY	A
ARBUCKLE. CLAYEY	B	ARRON	o i	ATVELL	D	BAJURA	DI	BARNESTON.	В
SUBSTRATUM	- 1	ARROWHEAD	C I	ATWDDD	B	BAKEDVEN	D	· NDNGRAVELLY	
ARBUCKLE. WET	CI	ARRDYADA	DI	AU GRES	8	BAKER	C I	BARNEY	D
ARBUCKLE. GRAVELLY	- •	ARROYD SECD	B	AUBARQUE	D	BAKERSVILLE	0 1	BARNHARDT	В
ARBURUA		ARSITE	D I	AUBBEENAUBBEE	B	BALAAN	8	BARNHOT	0
ARBUS	8	ARTA	c i	AUBERRY	8	BALCON	B	BARNSDALL	В
ARCETTE	B	ARTESIA	D I	AUBREY	C	BALD	c i	BARNUM	В
ARCH	B	ARTESIAN	D I	AUBURN	D	BALDER	0 1	BARDDA	D
ARCHABAL	B	ARTHOC	8 1	AUBURNDALE	B/D!		В	BAROID	A
ARCHER ARCHERDALE	CI	ARTOIS	C I	AUFCD AUGGIE	D I	BALDNDUNTAIN	BI	BARDID, WET BARRADA	0
ARCHES	D 1	ARUNDEL	Ĉ i	AUGSBURG	B/DI		ci	BARRE	D .
ARCHIN	9 1	ARVADA	5 1	AUGUSTA	C	SUBSTRATUM	- 1	BARRETT	ő
ARCHULETA	Ď i	ARVANA	ci	AUGUSTINE	Bi	DRAINED	i	BARRIER	ŏ
ARCIA	c i	ARVESON	B/DI	AULD	ō i	BALDDCK . ORA INED	c i	BARRINGTON	
ARCD	č i	ARVILLA	A	AURA	Ві	BALDWIN	Ďi	BARRON	В
ARCD. DRAINED	BI	ARVIN	B 1	AURELIUS	B/D	BALDY	B 1	BARRONETT	8/0
ARD	CI	ARZD	Dİ	AURORA	c i	BALE	CI	BARRY	8/0
ARDENMONT	B	ASA	B	AUSTIN	C	BALE. WET	DI	BARSAC	C
ARDENVOIR	8 1	ASCALON	B	AUSTWELL	0	BALLAHACK	0 1	BARSHAAD	0
ARDILLA	C	ASCAR	CI	AUT	C	BALLARD	B	BART	8
AROIVEY	8	ASCHOFF	8 1	AUTDMBA	B	BALLER	D	BARTINE	C
ARDNAS	B	ASH SPRINGS	B/CI	AUTRYVILLE	A	BALLINGER	D	BARTLE	0
	B	ASHBON	D	AUXVASSE	D	BALLTDWN	D	BARTLEY	C
ARECIBO	A	ASHCRDFT	B	AUZQUI	В	BALLY	CI	BARTO	0
AREOALE	8		B (	AVA	8 1	BALM	D I	BARTOME	0
AREMA	D	ASHDOWN		AVA	c i	BALMAN	c i	BARTON	В
ARENA DRAINED	c I		B	AVALDN	В	BALMAN. DRAINEO	0 1	BARTONFLAT	В
ARENALES ARENDISVILLE	A	ASHER ASHFORD	c I	AVAR AVAWATZ	0	BALMORHEA	c i	BARVDN	В
ARENDSA	A		D I	AVENAL	A I	BALTIC SALTIC	BI	BASCO	B C
ARENZVILLE	8	ASHGROVE	Ď i	AVILLA	6 1	BALTIMORE	8	BASCOM	В
ARGENT	D 1	ASHIPPUN	c i	AVIS	A	BAMA	6	BASCDYY	D
ARGENTA	ci	ASHKUM		AVDCA	B	BAMBER	8	BASEHOR	0
ARGONAUT	Di	ASHLAR	B 1	AVDM	ci		č i	BASHAW	0
ARGYLE	8 1	ASHLEY	8 1	AVDMBURG	0 1	BANTUSH	8 1	BASHER	B
ARIEL	ci	ASHLD	B	AVDNDA		BANBURY	ō i	BASILE	D
ARIKARA	B	ASHTON	8 i	AVONDALE	8 1		či	BASIM	c
ARIMO	B 1	ASHUE	B	AVDNVILLE	B 1	BANCRDFT	8 i	BASINGER	8/0
AR IPEKA	ci	ASHUELDT	DI	AVTABLE	0 1	BANCY	DI	BASKET	B
ARIS	0	ASHWOOD	c i	AWBRIG	D 1	BANDAG	8 1	BASSEL	B
ARISPE	C	ASKEW	c I	AXIS	D	BANDERA	B	BASSETT	8
ARIZD	A	ASOTIN	CI	AXTELL	0 1	BANDID	B	BASSFIELD	B
ARKABUTLA	CI	ASPARAS	B	AYAR	D 1	BANDON	c 1	BASTIAN	C
ARKANA	C	ASPEN	B	A A COCK	8	BANE	A	BASTON	C
ARKAQUA	CI	ASPERMONT	B	AYDELOTTE	0 1	BANGD	8	BASTROP	В
ARKONA	8 1	ASPERSON	c i	AYERSVILLE	B	BANGOR	8	BASTSIL	B
ARKPOR T	8	ASSININS	8 1	AYLNER	A	BANGSTON	A	BATA	В
ARKSON	8 1	ASSINNIBDINE	B	AYNOR		BANIDA	D	BATAN	В
	CI	ASSUMPTION	B	AYON	8	BANKARD	A	BATAVIA	В
ARKTON	<b>D</b>		0 1	AYR	8	BANKS	A	BATENAN	c
ARLAND						BANLIC	CI		В
ARLAND ARLE	CI		A 1	AYRES	0 1		-	BATES	
ARLAND ARLE ARLINGTON	C	ASTOR	D 1	AYRSHIRE	c i	BANNEL	8	BATESVILLE	C
ARLAND ARLE ARLINGTON ARLINGTON. THICK	-	ASTOR ASTORIA	D I	AYRSHIRE AYSEES	C I	BANNEL BANNER	BI	BATESVILLE BATH	c
ARLAND ARLE ARLINGTON	C	ASTOR ASTORIA ATASCO	D 1	AYRSHIRE	c i	BANNEL	8	BATESVILLE	C

NOTES: TWO MYOROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAIMED SITUATION.
MODIFIERS SHOWN. E.G.. BEOROCK SUBSTRATUM. REFER.TD A SPECIFIC SOIL SERIES PHASE FOUND IN SDIL MAP LEGEND.

TABLE 7.1 -- HYDROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

									•
BAUDETTE	B	BEHANIN	8 1		D	BINGHAMPTON	B		C
BAUER BAUNGARD	C J	BEHEMOTOSH BEHRING	C I	BERNALDO BERNARD	BI	BINGHAMVILLE BINNA	BI	BLANDING BLANEY	8
BAUSCHER	В	BEISIGL	A	BERNARDINO	c i	BINNSVILLE	Ď i	BLANKET	c
BAXENDALE	8	BEJE	o i	BERNARDSTON	c i	BINS	B	BLANTON	A
BAXTER	8	BEJUCOS	B	BERNHILL		BINTON	c	BLANYON	C
BAXTERVILLE	В	BELAIN	c i	BERNICE	A	BIOYA	B	BLASDELL	A
BAYAMON	В	BELATE	BI	BERNING BERNOW	c I	BIPPUS	8	BLASE BLASINGAME	C C
BAYARD BAYBORO	B I	BELCHER BELDEN	c	BERRYLAND	B/DI	BIRCHBAY BIRCHWOOD	c	BLAYDEN	0
BAYERTON	c	BELDING	В	BERRYMAN	C	BIRDOW	8 1	BLAZON	Ď
BAYFIELD	č i	BELEN	Di	BERSON	В	BIRDS	C/DI		c
BAYFIELD. WET	D	BELFAST	B	BERTAG	CI	BIRDSALL	DI	BLEDSOE	C
BAYLIS	B	BELFIELD	c i	BERTELSON	В	BIRDSBORO	8	BLEIBLERVILLE	D
BAYMEADE	A !	BELFORE	В	BERTHOUD	В	BIRDSLEY	0	BLENCOE	D
BAYOU	D I	BELGRADE	BI	BERTIE	B	BIRDSVIEW	AI	BLENDON	D B
BAYSHORE .	В	BELHAVEN BELINDA	0 1	BERTOLOTTI BERTRAM	BI	BIRMINGHAM	B	BLETHEN	В
MODERATELY WET	ĭ	BELJICA	В	BERTRAND	В		B 1	BLEVINS	В
BAYTOWN	В	BELK	DI	BERVILLE	B/D	BIROME	ci	BLEVINTON	8
BAYUCOS	DI	BELKNAP	c	BERWOLF	8	BISBEE	A I	BLEWETT	D
BAYVI	D I	BELLAVISTA	c i	BERZATIC	D	BISCAY	B/DI		D
BAYVIEW	D I	BELLE	В	BESEMAN		BISGANI	C	BLINN	C B/D
BAYWOOD BAZETTE	A I	BELLECHESTER BELLEVILLE	A B/DI	BESNER BESSEMER	B I	BISHOP BISOODI	D I	BLOMFORD BLOOM	D
BAZILE	В	BELLEVILLE PONDED	D	BESSIE	0 1	BISPING	BI	BLOOMFIELD	A
BEACH	0 1	BELLEVIELE	В	BESTROM	c	BISSELL	В	BLOOMING	B
BEAD	c i	BELLICUM	В	BETHANY	č į	BISSONNET	Di	BLOOMSDALE	В
BEADLE	c i	BELLINGHAM	Di	BETHERA	D	BIT	ci	BLOOR	C
BEALES	В	BELLINGHAM. PONDED	D	BETHESDA	ci	BITTER	B	BLOOR. NONFLOODED	С
BEANTON	c i	BELL INGHAM.	ci	BETIS	A	BITTER SPRING	B	BLOOR. GRAVELLY	D
BEANFLAT	c i	DRAINED	. !	BETTERAVIA	c i	BITTERROOT	c I	SUBSTRATUM	_
BEANO Bear Basin	D I	BELLPASS BELLPINE	D I	BETTS BEULAH	BI	BITTERWATER BITTON	BI	BLOUNT BLOWERS	В
BEAR CREEK	BI	BELLPINE	0 1	BEVENT	AI	BIVANS	D	BLUCHER	Č
BEAR LAKE	0 1	BELMILL	В	BEVERIDGE	Ĝ	BIXBY	В	BLUE EARTH	B/D
BEAR PRAIRIE	Ві	BELMONT	В	BEVERLY	Ā	BIXLER	c i	BLUE EARTH	8/0
BEARDALL	ci	BELMORE	В	BEW	c i	BJORK	c i	BLUE EARTH.	D
BEARDEN	c i	BELPRE	C	BEWLEYVILLE	B	BLACHLY	c i	SLOPING	
BEARDSLEY	C I	BELTED	D I	BEXAR	DI	BLACK BUTTE	8	BLUE LAKE	A
BEARDSTOWN	C I	BELTON	c i	BEZZANT	В	BLACK CANYON	0	BLUE STAR	В
BEARMOUTH	A !	BELTRAMI	В	BIBB	c i	BLACK CANYON.	c	BLUEBELL	В
BEARPAW BEARSKIN	C I	BELTSVILLE	C I	BICE BICKERDYKE	BI	DRAINED BLACK RIDGE		BLUEBELL. COOL BLUECHIEF	В
BEARTRAP	В	BELVOIR	ci	BICKLETON	В	BLACKA	ci	BLUECREEK	c
BEARVILLE	c i		c i	BICKMORE	ci	BLACKBURN	B	BLUEDOME	Č
BEARWALLOW	B	BEN LOMOND	B	BICONDOA	D	BLACKETT	B	BLUEFLAT	C
BEASLEY	c	BENCLARE	c	BICONDOA - LOAMY	D	BLACKFOOT	c	BLUEGROVE	C
BEASON	C I	BENCO	В	SUBSTRATUM	1	BLACKFOOT.	B [	BLUEHILL	C
BEATRICE	DI	BENEVOLA	c i	BICONDOA . DRAINED	c i	FREQUENTLY	!	BLUEHON	В
BEAUCOUP BEAUFORD	B/D	BENEVAH BENFIELD	D	BIDDEFORD BIDDLEMAN	D I	FLOODED BLACKFOOT. DRAINED		BLUEHON, WARM BLUEJOINT	СВ
BEAUNONT	0 1	BENGAL	c	BIDMAN	c i	BLACKHALL	D	BLUENOSE	8
BEAUREGARD	ci	BENGE	В	BIDWELL	В	BLACKHAMMER	В	BLUEPOINT	A
BEAUSITE	B 1	BENHAM	В	BIEBER	o i	BLACKHAWK	o i	BLUERIM	Ĉ
BEAUVAIS	В	BENIN	D	BIEDELL	D	BLACKHOOF	D	BLUESLIDE	D
BEAVERCREEK	B	BENITO	D	BIENVILLE	A i	BLACKLEED	B	BLUESPRIN	C
BEAVERDAM	c i		D		D I	BLACKLEG	c !		D
BEAVERELL	В		c i	BIG HORN	c I		0		A
BEAVERLAND BEAVERTON	B	BENMAN BENNDALE	C I	BIG TIMBER BIGBEE	D	BLACKMAN	C	BLUFF	D C
BECKER	B	BENNINGTON	B	BIGBROWN	A I	BLACKMOUNT	BI		C/D
BECKET	Ĉ i		В		В			BLUFORD	c
BECKLEY	Āİ		В		В	BLACKPIPE	C		č
BECKLEY. STONY	В	BENSON		BIGFORK	c i	BLACKROCK	B		В
BECKMAN	D			BIGNELL		BLACKSPAR	D	BLYBURG	В
BECKS	c i		D	BIGRIVER	c i	BLACKSTON	8	BLYTHE	D
BECKTON	D I		D		0		D	BOARDMAN	0
BECKWOURTH	D		B	BIGWIN BIJOU		BLACKWATER	DI	BOARDTREE BOASH	C
BECREEK	В		B	BILBO	B I		DI		C
BEDELL	В		В	BILGER		BLAG	ום	BOBBITT	c
BEDEN	0		В			BLAGO	Ď		Ā
BEDFORD	c	BERDA	В	BILLINGS		BLAINE	c i	808S	D
BEDINGTON	В		c i	BILLINGS.	8	BLAIR	ci	BOSTAIL	С
BEDKE	B		В	MODERATELY SLOW		BLAIRTON	c I	BOBTOWN	8
BEDNER	c i	BERGLAND	0	PERM		BLAKABIN	C	BOCA	B/D
BEDSTEAD	C I			BILLINGS.	-	BLAKE	8		
BEDWYR BEE	D [		В	SALINE-ALKALI		BLAKELAND	A	BOCA TIDAL	D B/D
BEEBE	B	BERGSVIK   BERIND	D	BILLYCREEK BILLYHAW		BLAKENEY	C I	BOCA. SLOUGH	8/0
BEECHER	ĉ		D	BILTHORE		BLANER		BOCKER	D
BEEK	c	BERKS	C			BLANCA		BOCKSTON	В
BEEKMAN	c	BERKSHIRE	В	BINCO		BLANCHARD		BODE	8
BEELINE	D	BERLAKE	8			BLANCHE	B		D
BEENOM	D	BERLIN	C	BINFORD	8	BLANCHESTER		BODEN	C
BEETVILLE	8	BERMESA	C	BINGER		BLANCHO		BODENBURG	В
BEGAY	B	BERMUDIAN		BINGHAM	8 1	BLANCOT	B. 1	BODINE	В

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

8000	C I	BORDEAUX	B	BRAHAN BRAILSFORD	BI		0 1	BUCAN. STONY	C
BODORUMPE	Ä	BORDEN	8 1	BRAINERD	c	BRISTOW BRITTO	0 1	BUCAN. GRAVELLY	C D
BOEL. OVERWASH	ĉi	BORGES	0	BRALLIER	0	BRITWATER	В	BUCHANAN	c
BOELUS	Āİ	BORIANA	0 1	BRAN	ci	BROAD	c i	BUCHEL	Ď
BDERNE	B	BORKY	C	BRAMARO	8	BROAD CANYON	В	BUCHENAU	С
BOESEL	B	BORNSTEDT	C I	BRAMLETT	0	BROADALBIN	C I	BUCHENAU. SALINE	C
BOETTCHER	c I	BORO	D I	BRANWELL	c I	BROADAX	B	BUCHENAU. THICK	В
BOGAN	c i	BOROBEY	c i	BRANCH	B	BROADBROOK	C I	SOLUN	_
BOGART	BI	BORREGO BORTH	0 1	BRAND BRANDENBURG	DI	BROADHEAD	CI	BUCKCREEK	C
BOGGS	ċi	BORUP	8/0		6	BROADHURST BROADMOOR	c	BUCKHALL	B
BOGRAP	В	BORVANT	0 1	BRANDYWINE	ci	BROADUS	В	BUCKHOUSE	В
BOGUE	, i	BOSANKO	0	BRANFORD	B 1	BROADWELL	В	BUCKLAND	c
BOGUS	č i	BOSCO	В	BRANHAN	c i	BROCK	ō i	BUCKLE	В
BOHANNON	c i	BOSKET	8	BRANTFORO	B	BROCKET	ci	BUCKLEBAR	В
BOHENIAN	B 1	BOSLER	B	BRANTLEY	CI	BROCKLISS	B	BUCKLEY	0
BOHICKET	0 1	BOSQUE	B	BRANYON	0	BROCKNAN	c 1	BUCKLEY. DRAINED	C
BOHNA	BI	BOSSBURG	0 1	BRASHEAR	CI	BROCKO	В	BUCKLICK	C
BOHNLY	0 1	BOSSBURG. DRAINED	c i	BRASSFIELO	В	BROCKPORT	0 1	BUCKLON	0
BDHNSACK	В	BOSTON	c i	BRATTON	В	BROCKROAD	C I	BUCKNELL	0
BO ISTFORT BOJAC	BI	BOSTRUM BOSTWICK	C I	BRAVANE	BI	BROCKSBURG BROCKTON	B I	BUCKNEY	8 8
9070	0 1	BOSVILLE	0	BRAXTON	ci	BROCKWAY	8	BUCKS	В
BOLAN	Ві	BOSWELL	o i	BRAY	òi	BROCKWELL	В	BUCKSKIN	c
BOLAR	c i	BOSWORTH	Ď	BRAYTON	c i	BRODALE	c i	BUCKTON	В
BDLO	В	BOTELLA	В	BRAZITO	A	BROOY	c i	BUOE	c
BOLES	c i	BOTHWELL	8 1	BRAZON	CI	BROGAN	В	BUOIHOL	D
BOLFAR	C	BOTTINEAU	C I	BRAZDRIA	DI	BROGOON	B	BUELL	В
BOLIO	0 1	BOTTLE	c I	BRECKENRIDGE	B/DI	BROLLIAR	0 1	BUENA VISTA	В
BOLIVAR	В	BOTTLEROCK	C	BRECKNOCK	8	BRONER	C I	BUFFARAN	0
BOLLING	C I	BOUFLAT	c i	BRECKSVILLE	c i	BRONIDE	В	BUFFINGTON	В
BOLSA	c I	BOULDER	В	BREECE	B	BRONO	В	BUFFMEYER	В
BOLTON BOLTUS	B	BOULOER LAKE BOULOER POINT	DI	BREGAR BREMER	0 1	BRONAUGH BRONCHO	В	BUFFORK	C C
BONAR	ci	BOULDIN	В	BREMER SANDY	ВІ	BRONSON	BI	BUFTON BUHRIG	c
BONBAO IL	0 1	BOULFLAT	ci	SUBSTRATUM	- 1	BRONTE	c	BUICK	c
BOMBAY	Ві	BOUNDARY	8	BRENO	c i	BROOKE	ا م	BUIST	В
BON	Ві	BOURBON	8	BRENS	A	BROOKFIELD	Ві	BUKO	В
BONAIR	o i	BOURNE	ci	BRENDA	c i	BROOK INGS	В	BUKO. WET	C
BONANZA	B	BOUSIC	0 1	BRENHAN	CI	BROOKLYN	C/01	BUKREEK	В
BONAPARTE	A I	BOW	C	BRENNAN	B	BROOKNAN	0 1	BULAKE	0
BOND	D	BOWBAC	C I	BRENNER	0	BROOKSHIRE	C	BULKLEY	C
BONOFARM	0	BOWBELLS	B	BRENT	0 1	BROOKSIOE	c i	BULL RUN	В
BONONAN	0	BOWDISH	c i	BRENTON	B	BROOKSTON	B/D		С
BONDRANCH	D I	BOWDISH. DRY	В	BRENTWOOD	B	BROOK STON .	B/D I	SUBSTRATUM	
BONDUEL	0 1	BONDOIN	BI	BRESSA BRESSER	C I	OVERWASH BROOKSTON. STONY		BULL TRAIL BULLARDS	B B
BONEEK	В	BOWORE	ci	BREVARO	B	BROOKSVILLE	0 1	BULLION	0
BONFIELO	В	BOVEN	В	BREVORT	B/DI		В	BULLNEL	c
BONFRI	c i	BOWERS	ci	BREW	ci	BROPHY	- •	BULLOCK	Ď
BONG	A İ	BOWES	В	BREVER	c i	BROSE	0 1	BULLREY	8
BONHAN	c 1	BOWIE	B	BREWSTER	D	BROSELEY	B	BULLUMP	В
BONIFAY	A I	BOWMAN	C I	BREWTON	C	BROSS	C I	BULLWINKLE	D
BONILLA	В	BOWMANSVILLE	BID		D	BROUGHTON	0	BULLY	В
BONITA	0	BOWNS	c I	BRICKEL	C	BROWARO	c I	BULOW	A
BONN	0 1	BOWSTRING	A/DI		c I	BROWER	В	BUNCONBE	A
BONNEAU	A I	BOXFORO BOXVILLE	CI	BRICO BRIDGE	C I	BROWNOELL	D I	BUNDD BUNDORF	8
BONNER	8 1	BOXVELL	ċ	BRIDGECREEK	ci	BROWNFIELD	A	BUNDY	c
BONNET	Ві	BDY	8 1	BRIDGEHANPTON	В	BROWNLEE	e i	BUNDYNAN	č
BONNEVILLE	Āİ	BOYCE	B/DI		B	BROWNRIGG	o i	BUNEJUG	Č
BONNIE	C/01	BOYD	DI	BRIDGER	8	BROWNSCONBE	c i	BUNGAY	C/D
BONNYOOON	0 1	BOYER	B	BRIDGESON	DI	BROWNSTO	B	BUNKER	8
BONO	DI	BOYKIN	B	BRIDGESON. DRAINED	CI	BROWNSVILLE	C I		0
BONSALL	D I	BOYLE	0 1	BRIDGET	B	BROWNTON	•	BUNKY	C
BONTA	В	BOYSAG	0 1	BRIEOWELL	B	BROXON	В	BUNNELL	В
BONTI	c I	BDYSEN	0	BRIEF	B	BROYLES	В	BUNTINGVILLE	C
BONWIER - GRADED	C I	BOZE BOZENAN	8	BRIGGS BRIGGSOALE	A I	BRUBECK	0 1	BUNYAN BURBANK	B
BOOFORO	ci	BRACE	8 1	BRIGGSVILLE	ci	BRUFFY	B	BURCH	B
BOOKCLIFF	В	BRACEVILLE	ci	BRIGHTON		BRUIN	8 1	BURCHAN	В
BOOKER	o i	BRACKETT	c i	BR IGHTWOOD	B	BRUNCAN	ا م	BURCHARD	В
BOOKOUT	c i	BRAO	o i	BRILEY	B	BRUNDAGE	0	BURDETT	C
BOOKWOOO	8 1	BRADODCK	8	BRILL	B	BRUNEEL	0 1	BUREN	C
BOOMER	B	BRADEN	B	BRILLIANT	B	BRUNO	A	BURGESS	C
BOONTOWN	0 1	BRADENTON	0	BRIMFIELO		BRUNSWICK	B	BURGI	В
BOONE	A 1	BRADENTON.	8/01		B	BRUNZELL	В	BURKE	C
BOONESBORD	8	LINESTONE	ļ	BRINSTONE	0	BRUSSETT	В	BURKETOWN	C
BOONTON	C I	SUBSTRATUN EL CODEO	, !	BRINEGAR	8	BRYAN	A	BURKEVILLE	0
BOOTHBAY	6 1	BRADENTON: FLOODED BRADER	0	BRINKERT BRINKERTON	CI	BRYARLY	BI	BURKHARDT BURLEIGH	A/D
BOOTJACK	0 1	BRADSHAW	B 1	BRINNUN	9 1	BRYCAN	ВІ	BURLESON	0
BOOTS	- •	BRADSON	B	BRINNUN. DRAINED	c	BRYCE	0 1	BURLEWASH	0
BOQUILLAS	ci	BRADWAY	0	BRIONES	B	BRYNAN	В	BURLINGTON	Ā
BORACHO	c i	BRADY	B	BRIOS	A	BRYSTAL	В	BURNAH	Ô
BORAH		_							
BORDA	CI	BRADYVILLE BRAGG	CI	BRISCOT DRAINED	DI	BUBUS	BI	BURNAC	0

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUN. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL NAP LEGENO.

		TABLE TOT THOM		C UNDOFF OF THE SE		GALLES STATES			
BURNEL	c i	CALCROSS	c I	CANISTED. SANDY	B/D	CARSITAS. CDBBLY		CATTCREEK	В
BURNETTE	c I	CALD	c I	SUBSTRATUM		CARSITAS.	A !	•	D C
BURNHAM BURNSIDE	D I	CALDER	D I	CANLON	D I	NDNGRAVELLY CARSON	b	CAUDLE	c
BURNSVILLE	Ві	CALDWELL DRAINED	B	CANNING	ві	CARSTAIRS	Ă	CAUSEY	В
BURNT LAKE	A	CALE	8	CANNON	В	CARSTUMP	c i	CAVAL	В
BURR	Dİ	CALEAST	c I	CANGE	B	CART	B	CAVANAUGH	C
BURRITA	D	CALEB	B	CANDVA	-	CARTAGENA	D	CAVE	D
BURROWSVILLE	C I	CALEDONIA	B	CANTALA	В	CARTECAY	CI	CAVELT	0
BURSON	c I	CALENDAR	c I	CANTEY	DI	CARTER	DI	CAVENDISH	В
BURT BURTON	D I	CALHI CALHOUN	AI	CANTON BEND	B I	CARTERET CARTHAGE	BI	CAVDDE	O C
BURWELL	ci	CALICD	c i	CANTRIL	В	CARUSD	ci	CAYDUR	ō
BUSBY	Ві	CALICOTT	Ā	CANTUA	В	CARUTHERSVILLE	В	CAYA	ō
BUSE	B	CALIFON	c i	CANTUCHE	DI	CARVER	A	CAYAGUA	С
BUSHER	B	CALINUS	B	CANUTID	B	CARWILE	DI	CAYUGA	С
BUSHMAN	B	CALITA	B	CANYDN	DI	CARYTOWN	DI	CAYUSE	В
BUSHNELL	c I	CALIZA	В		c I	CARYVILLE	B	CAZADERD	С
BUSHVALLEY	0   B	CALKINS CALLABO	CI	CAPAY CAPE	D I	CASA GRANDE CASABONNE	C	CAZENOVIA CEBDLIA	8 C
BUSSY	či	CALLAHAN	0 1	CAPE FEAR	0 1	CASAGA	ci	CEBDNE	č
BUSTER	В	CALLAN	či	CAPEHORN	οi	CASCADE	c i	CEBOYA	č
BUTCHE	DI	CALLEGUAS	Di	CAPERS	ρi	CASCAJD	A	CECIL	В
BUTLER	0	CALLINGS	0	CAPERTON	DI	CASCILLA	B	CEDA	8
BUTLERTOWN	c I	CALLISBURG		CAPHDR	c I	CASCD	B	CEDAR BUTTE	D
BUTTERFIELD	c i	CALLDWAY	c i	CAPILLD	c i	CASE	В	CEDAR MOUNTAIN	D
BUTTERS BUTTON	B	CALMAR CALODO	BI	CAPISTRAND CAPITAN	BI	CASEY	D I	CEDARAN CEDARBLUFF	D C
BUTTONWILLOW	D I	CALOUSE	BI	CAPJAC	c i	CASHION	D 1	CEDARGAP	В
BUXIN	ŏ	CALPAC	В	CAPLES	ا ہ	CASHNERE	В	CEDARHILL	В
BUXTON	c i	CALPINE	B	CAPLES. DRAINED	c i	CASHMONT	B	CEDARPASS	В
BYARS	0	CALROY	B	CAPDNA	c i	CASITO	DI	CEDONIA	8
BYBEE	0	CALVERTON	C	CAPPS	B	CASMDS		CELACY	С
BYLER	c i	CALVIN	c	CAPSHAW	c i	CASPAR	B	CELESTE	0
BYLD Bynum	B   C	CALVISTA CALWDODS	0 1	CAPTINA CAPTIVA	C	CASPIANA CASS	BI	CELINA	D C
BYRAM	ċi	CAMAGUEY	<u> </u>	CAPULIN	B	CASSIA	ci	CELID	D
BYRNIE	òi	CAMARGD	В	CARACOLES	D	CASSIA. MDDERATELY		CELLAR	D
CABALLO	В	CAMARILLO	c i	CARADAN	Di	WELL DRAINED	i	CELSDSPRINGS	c
CABARTON	DI	CAMARILLO, DRAINED	B	CARALAMPI	B	CASSIRD	c I	CEMBER	С
CABBA	D	CAMARILLD, FLOODED	c	CARBENGLE	B	CASSDLARY	c I	CENCOVE	8
CABBART	DI	CAMAS	A !	CARBD	c I	CASTAIC	c I	CENIZA	В
CABEZON CABIN	B	CAMATTA CAMBARGE	D   B	CARBOL CARBONDALE	D	CASTALIA CASTANA	C I	CENTENARY CENTER	8 C
CABINET	c i	CAMBERN	ci	CARCITY	DI	CASTELL	ci	CENTER CREEK	c
CABLE	B/DI		čί	CARDIFF	В	CASTELLEIA	Bi	CENTERFIELD	В
CABD ROJO	c i	CAMBETH	č i	CARDIGAN	Ві	CASTELLO	Ві	CENTERVILLE	D
CABDOSE	B	CAMBRIDGE	c I	CARDINGTON	c i	CASTEPHEN	c I	CENTISSIMA	В
CABDT	0 1	CAMDEN	B	CARDON	DI	CASTILE	B	CENTRAL PDINT	В
CABSTON	c I	CAMELBACK	B	CAREFREE	DI	CASTIND	c I	CENTRALIA	В
CACIQUE	0	CAMERON CAMILLUS	D I	CAREY LAKE	BI	CASTIND. NONSTONY	DI	CERBAT CERESCD	D B
CACTUSFLAT	ċi	CAMIND	c		c i	CASTLEVALE	0 1	CERLIN	Č
CADDD	οi	CAMPBELL. HUCK	c i	CARIBEL	ві	CASTNER	ō i	CERRILLDS	В
CADEVILLE	DI	SUBSTRATUM	i	CARIBDU	В	CASTD	c i	CERRD	С
CADILLAC	A	CAMPBELL. DRAINED	B	CARIOCA	B	CASTON	B	CESTNIK	С
CADIZ		CAMPBELLTON		CARJO		CASTRD		CETRACK	В
CADHUS		CAMPIA	-	CARLIN		CASTROVILLE		CHACON	0
CADOMA CAGEY	C I	CAMPO CAMPONE		CARLINTON CARLISLE	- •	CASUSE	D I	CHAD CHAFFEE	c c
CAGEY. DRAINED	ci	CAMPSPASS	- •	CARLITO		CATALINA	-	CHAGRIN	В
CAGLE	ċi	CAMPUS		CARLDS		CATALPA		CHAIRES	B/D
CAGUABO	0 1	CAMRODEN		CARLDW		CATAMOUNT	•	CHAIX	В
CAGWIN	B	CANA		CARLSBAD	c i		A I	CHALCO	D
CAHABA	B	CANAAN	C			CATARACT	B	CHALFONT	c
CAHONA	В	CANADIAN	-	CARLSON	-	CATARINA	•	CHALMERS	8/0
CAID CAINHDY	B	CANADICE CANALOU	D   B	CARLSTROM CARLTON		CATASKA	D I	CHAMA CHAMATE	B 8
CAIRO	ô	CANALUU		CARMACK		CATCHELL		CHAMBERIND	Č
CAJALCD	c i	CANASERAGA	- •	CARMEL	- •	CATELLI	В	CHAMISE	Ď
CAJETE	Ā	CANAVERAL		CARMI		CATER		CHANDKANE	В
CAJON. DVERWASH	Ā	CANBURN		CARMDDY	-	CATH		CHAMPAGNE	В
CAJON. LDANY	A I	CANDELERO		CARNAGE	DI	CATHARPIN	c į	CHAMPION	В
SUBSTRATUM	1	CANDERLY		CARNASAW	•	CATHAY	•	CHANAC	8
CAJON, SILTY	В	CANOLER	•	CARNEGIE		CATHCART	В	CHANCE	0
SUBSTRATUM Cajon.	8	CANDOR CANE		CARNERO		CATHEDRAL	•	CHANCELLOR	C
SALINE-ALKALI	9	CANEADEA	C I	CARNEY		CATHERINE		CHANDLER CHANEY	B
CAJON. GRAVELLY	A	CANEEK		CAROLLD		CATHEARE		CHANNAHON	0
CAJON, COOL	Â	CANELO	0	CARON	- •	CATILLA	B	CHANNING	8
CAJDN, WARM	A	CANEST	- •	CARPENTER		CATLA	Di		В
CALABASAS	8	CANEYVILLE		CARR	-	CATLETT		CHANTIER	0
CALAMINE	0	•	B	CARRACAS	•	CATLIN	-	CHAPERTON	С
CALAPODYA	C	CANFIELD		CARRIZALES	•	CATMAN		CHAPIN	С
CALAVERAS CALAWAH	B	CANISTED PONDED		CARRIZD CARRYBACK		CATNIP CATOCTIN	D	CHAPMAN CHAPDT	B
CALCO		CANISTED, STONY	DI		A		ВІ	CHAPPELL	A
CALCOUSTA	8/01			CARSITAS. WET		CATPDINT	A		8
					- '				

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
HODIFIERS SHOWN, E.G., BEOROCK SUBSTRATUM, REFER TO A SPECIFIC SDIL SERIES PHASE FOUND IN SDIL MAP LEGEND.

CHARD	B (	_	7	CINEBAR	8 !		c i	CDLHOR	В
CHARDOTON	C		c I	CINNAMON	8	CLOUGH	0 1	COLO NAPC25	B/D
CHARETTE	0 1	CHILI   CHILHOWIE	C I	CINTRONA CIPRIAND	C	CLOVELLY CLDVER SPRINGS	В		B/D B
CHARITON	ci		ві	CIRCLEBACK	Ā	CLOVERDALE	, i		В
CHARLEBDIS	8 1		D	CIRCLEBAR	ĉi	CLOVIS	8		A
CHARLEBOIS. WET	c i	CHILLUM	В	CIRCLEVILLE	č i	CLDWERS	B	COLDMBO	В
CHARLES	c į	CHILMARK	CI	CISCD	В	CLDWERS. WET	c I	COLONA	С
CHARLESTON	c I	CHILDQUIN	B		D	CLOWFIN	8	COLDNIE	A
CHARLEVDIX	8	CHILSON	D	CISPUS	A I	CLUFF	c i	COLONVILLE	C
CHARLDS	8		В	CITADEL	c I	CLUNIE	D	CDLDRADO	В
CHARLOS. WET		CHIMAYD	DI	CITICO	В	CLUROE	В	CDLOROCK	D
CHARLDITE	8 I	CHINE CHIMENEA	c i	CLACKAMAS CLAIBORNE	D I	CLURD CLYDE	B B		B
CHARLTON CHASE	c i	CHIMENEA. STONY	_	CLAIRE	A	CLYMER	B	CDLOSSE	A
CHASEBURG	8 1		Ď i		ê	CDACHELLA	8 1		ĉ
CHASEVILLE	Āi	CHINIAK	A	CLALLAM	c i	CDACHELLA. WET	c i		В
CHASKA	B/DI	CHIND	c į	CLAM GULCH	D	COAHUILA	8	CDLTER	В
CHASTAIN	D	CHINO: SALINE	C	CLANO	C/0	CDALBANK	B	CDLTHORP	D
CHATBURN	8		c i	CLANA	A .	CDALDRAW	0		A
CHATCOLET	8 1		_ !	CLANALPINE	C I	COALMONT	c i	COLTS NECK	В
CHATEAU	D J	CHIND. DRAINED CHINDDK	8 1	CLANTON CLAPPER	C   B	CDANO	CI	CDLUMBIA.	C
CHATFIELD CHATHAM	8 1	CHIPETA	D 1	CLAPPER	Ď	COARSEGOLD CDATSBURG	٠ i	COLUMBIA. FLOODED	В
CHATSWORTH	D 1	CHIPLEY	c i	CLARENCE	D	COBB	B 1	CDLUMBIA. CLAY	c
CHATT	č i	CHIPNAN	Ď	CLARENDON	c i	CDBBSFORK	D	SUBSTRATUM	_
CHATUGE	D	CHIPOLA	A İ	CLARESON	c i	CDBEN	D	COLUMBIA.	8
CHAUMDNT	0 1	CHIPPENY	DI	CLAREVILLE	c	COBEA	8	PROTECTEO	
CHAUNCEY	c 1	CHIPPEWA	D I	CLARINDA	D I	CDBURG	C [	COLUMBINE	A
CHAVIES	8	CHIREND	D	CLARIDN	B	COCHETOPA	c I		C
CHAWANAKEE	c i	CHIRICAHUA	D I	CLARITA	D I	CDCHINA	DI	COLUSA	C
CHAYSON	c I	CHISCA	D	CLARK	8 1	CDCHITI	c i	CDLVARD	B
CHAZDS CHEADLE	C I	CHISNDRE CHISDLM	DI	CLARK FORK CLARKRANGE	A I	CDCDA CDCDLALLA	A I	CDLVILLE DRAINED	c
CHEAHA	0 1	CHISPA	B	CLARKSBURG	ċ	COCOLALLA. DRAINEO	- •		C/D
CHECKETT	D		c i	CLARKSDALE	či	CDODRUS	či	CDLVIN. SALINE	c
CHEDEHAP	8 1	CHITTUM	D I	CLARKSVILLE	8 1	CDE	Āİ	COLVIN. PONDED	C/D
CHEDSEY	c i	CHI TWDOD	c i	CLARNO	В	CDERDCK	0 1		B/D
CHEEBE	D	CHIVATO	DI	CLATO	В	COFF	c i	CDLY	В
CHEEKTDWAGA	D	CHIWAWA	8	CLATSOP	D I	COFFEEN	8		D
CHEESEMAN	В	CHLORIDE	DI	CLAVERACK	c i	CDGGDN	8	CDNAD	A
CHEHALEM	c i	CHD	C I	CLAVICON	C I	COGNA	В	CDMAR	В
CHEHALIS	8	CHOREE		CLAWSON	C	COESWELL	C		8
CHEHULPUN CHELAN	C I	CHDCCDLDCCD	BI	CLAYBURN CLAYSPRINGS	B	CDHAGEN COHASSET	D I	CONBS CDNER	8
CHELSEA	A	CHDCORUA	0 1	CLAYTON	8	COHOCTAH	B/DI		۵
CHEMAWA	ê	CHOICE	D	CLE ELUM	c i	CDHOE	В	COMFORT	D
CHEN	Di	CHODP	DI	CLEAR LAKE	0 1	COILS	c i	COMFREY	B/D
CHENA	A	CHDPTIE	DI	CLEARBROOK	D I	CDIT	D	CONITAS	A
CHENANGO	A I		8	CLEARFIELD	c i	COKEDALE	c i		C
CHENAULT	В	CHDSKA	8	CLEARFORK	D I	CDKEL	B	CONMERCE	c
CHENEGA	A	CHDTEAU	c I	CLEARWATER	0 1		0		A D
CHENEY CHENNEBY	BI	CHRIS CHRISNAN	C	CLEAVAGE	1 0 1 a	CDKESBURY CDKEVILLE	D I	CDMOBABI CDMODDRE	D.
CHENDWETH	8 1	CHRISTIAN	č i	CLEBIT	D	COLAND		CONDRO	В
CHEQUEST	c i	CHRISTIANA	c i	CLEGG	8 1	COLBAR	c i	CDNPASS	В
CHERIONI	0 1	CHRISTIANBURG	c i	CLENAN	В	CDLBERT	D	CONPTCHE	8
CHERDKEE	0 1	CHRISTINE	DI	CLEMS	8	CDLBURN	c i	CONSTOCK	C
CHERRY	c 1	CHRISTY	C I	CLENVILLE	8	COLBY	8	CDNUS	B
CHERRY SPRING	C		c I	CLENDENEN	0 1	COLDCREEK	B	-	C
CHERRYHILL	8 1	CHRYSLER	c I	CLEDRA	B	COLE	c i		B/D
CHERUM CHESAW	BI	CHUALAR CHUBBS	B   C	CLERF CLERGERN	C	COLE. NDDERATELY	c i	CONALB	B C
CHESHIRE	8 1		8 1	CLERMONT	0 1		в		c
CHESHNINA	c i	CHUCKAWALLA	8 1	CLEVELAND	či	COLENAN	c i		Ď
CHESTATEE	В	CHUCKLES	8 i	CLEVERLY	В	COLENANTOWN		CDNBOY	D
CHESTER	8	CHUGCREEK	c i	CLEVES	8	COLESTINE	c i	CDNCEPCIDN	D
CHESTERTON	0 1	CHUGTER	8	CLICK	A I	COLFAX	c	CONCHAS	C
CHESTONIA	0		8 1	CLIFFDELL	8	COLIBRD	-	CDNCHO	C
CHESUNCOOK	c i	CHUNSTICK	C I	CLIFFDOWN	8 1	COLINAS	8		В
CHETCD	D I		C I	CLIFFHOUSE	c I	COLITA	0		D
CHETWYND	8 J		0 1	CLIFFDRD CLIFTERSDN	C I	COLLANER	C J	CONDA	8
CHEVELON	ci	CHURCHVILLE	o i	CLIFTON	8	COLLBRAN	0 1		D
CHEVIOT	8 1	CHURN	8 1	CLIFTY	8 1	COLLBRAN. COBBLY	č i	CONDON	č
CHEVACLA	ci		Di		ō i		či	CONE	Ā
CHEVELAH	c i	CHUTE	A	CLIMAX	o i	COLLEGIATE	DI	CONEJO	В
CHEYENNE	8		D	CLIME	c i	COLLEGIATE.	ci	CONEJD. BEDROCK	В
CHIA	•	CIBEQUE	8 1	CLINT	c I	FLDDDEO	I	SUBSTRATUN	
CHIARA	0		0 1	CLINTON	8 1			CONEJD. GRAVELLY	С
CHICANE		CIBOLA	B	CLODINE	DI		c I	SUBSTRATUN	
CHICKASHA	-	CIENEBA	C I	CLONTARF CLOQUALLUN	B   C	COLLIER CDLLINGTON	AI	CONESTOGA CONESUS	8
CHICKREEK		CIENO	6 1	CLOQUATO	B	COLLINGION	C	CONETOE	A
CHIEFLAND	8		c i	CLOQUET	8 1	COLLINSTON	B 1	CONGAREE	B
CHIGLEY	ci	CINCINNATI	c i	CLOUD PEAK	c i	COLLINSVILLE	c i	CONGER	c
CHIKAMIN	C I	CINCO	A	CLOUD RIM	8	COLLINVOOO	c i	CONGER. CDBBLY	0
CHILAD	c 1	CINDERHURST	0 1	CLOUDCROFT	0 1	COLNA	8	SUBSTRATUN	

NDTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SDIL NAP LEGEND.

TABLE 7.1 -- HYDROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

	CONGLE CONI	BI	CORRALITOS. SILTY SUBSTRATUM	B	COYATA	C	CROSSTELL CROSSVILLE	D I	CUTHBERT. STONY CUTHBERT. GRADED	C
,	CONIC	c i	CORRECD	c i	COZAD	B	CROSWELL	A I	CUTOFF	C
	CONKLIN	B	CORRIGAN	DI	COZBERG	B	CROT	0	CUTSHIN	В
	CONLEN	B	CORSON	c	COZTUR	D	CROTON	0 [	CUTZ	0
	CONLEY	c 1	CORTA	DI	CRABTREE	B [	CROUCH	В	CUYON	A
	CONNEAUT	CI	CORTADA	B	CRADDOCK	В	CROW	c I	CYAN	8
	CONNEL	B	CORTEZ	0 1	CRADLEBAUGH	0	CROW CREEK	B	CYCLONE	8/0
	CONNERTON	B	CORTINA	B	CRAFT	8	CROW HILL	c i	CYLINDER	В
	CONOSTA	c i	CORTINA, STONY	A !	CRAFTON	C	CROWCAMP	0	CYMRIC	D
	CONOTTON	B	CORTINA. FLOODED	A I		0	CROWFLATS	8 1	CYNTHIANA	0
	CONOVER	C I	CORTINA. THIN	A !	CRAGO	B	CROWFOOT CROWHEART	B I	CYPHER	Đ
	CONDWINGO CONRAD	A/DI			CRAGOLA CRAGOSEN	0 1	CROWLEY	0 1	CZAR	8 8
	CONROE	B	CORUNNA		CRAIG	В	CROWNEST	0 1	DABNEY	Ā
	CONSEJO	c i	CORVIN	B	CRAIGMILE	B/D		Ві	DASDS	B
	CONSER	òi	CORWITH	B	CRAIGSVILLE	В	CROYDON	Ві	DACKER	č
	CONSTABLE	Āİ	CORY	c i		0		c i	DACONO	Č
	CONSTANCIA	0 1	CORYDON	o i	CRAMONT	c i	CRUCES	ρi	DACORE	В
	CONSUMO	B	COSAD	CI	CRANE	B	CRUCKTON	8	DACOSTA	0
	CONTEE	0 1	COSEY	8	CRANECREEK	C	CRUICKSHANK	A/DI	DADE	A
	CONTIDE	B [	COSH	c	CRANFILL	B [	CRUISER	B	DAGAN	В
	CONTINE	c	COSHOCTON	c	CRANNLER	B [	CRUMARINE	В 1	DAGFLAT	C
	CONTINENTAL	c i	COSKI	B	CRANSTON	В	CRUME	B	DAGLUM	0
	CONTO	B	COSTILLA	A I	CRARY	C I	CRUMP	B/D		В
	CONTRA COSTA	CI	CDSUMNES	c i	CRASH	B	CRUMP. ORAINED	c I	DAGUAD	С
	CONVENT	c i	COTACD	c i	CRATER LAKE	B	CRUNKER	B	DAGUEY	В
	CODERS	B	COTANT	0	CRATERMO	C	CRUTCH	c i	DAHLQUIST	B
	COOKPORT	0	COTATI	c 1	CRAVEN	c 1	CRUTCHER	c I	DAIGLE	C
	COOLBRITH	C I	COTEAU	ci	CREAL	0	CRYSTAL LAKE	BI		A
	COOLINGE	Ві	COTITO	B	CREASEY		CRYSTALBUTTE	ВІ	DAINT	B
	COOLAILLE	Ĉ i	COTO	8	CREDO	В	CUBA	В	DAKOTA	В
	COOMBS	ві	COTOPAXI	A	CREED	c	CUBERANT	ВІ	DALBO	В
	COONEY	Ві	COTT	B	CREEDMOOR	ci	CUCHILLAS	c i	DALBY	D
	COOPER	Ві	COTTER	В	CREEMON	В	CUDAHY	ōi	DALCAN	Č
	COOSAW	D i	COTTERAL	B	CREIGHTON	B	CUDAHY. ORAINED	c i	DALCO	Ō
	COOSBAY	B	COTTONEVA	CI	CRELDON	C	CUDAHY. VERY	0 1	DALE	8
	COOTER	c i	COTTONTHONAS	8	CREN	B	POORLY DRAINED	i	DALEVILLE	D
	COPAKE	B	COTTONWOOD	C 1	CRESBARD	C	CUDDEBACK	C	DALHART	В
	COPALIS	B	COTTRELL	C 1	CRESCO	C I	CUERO	B	DALIAN	В
	COPASTON	0 1	COTULLA	0 1	CRESKEN	B	CUESTA	c	DALIG	8
	COPELAND	8/01		0 1	CRESPIN	C	CUEVA	0 [	DALKENA	8
у.	COPELAND.	0 1	COUGARBAY	0 1	CREST	C I	CUEVITAS	0 [	DALLAN	В
4	DEPRESSIONAL	_ !	COUGHANOUR	c I	CRESTLINE	B	CUEVOLAND	B	DALLARDSVILLE	С
	COPEMAN	8	COULSTONE	B	CRESTMAN	0 1	CULBERTSON	B	DALLESPORT	В
	COPENHAGEN COPITA	D I	COULTER	B	CRESTVALE	C	CULDESAC	BI	DALTON	В
	COPPER RIVER	p 1	COUNCIL	8	CREVA	0 1	CULLEN	c i	DALZELL	Č
	COPPEREID	0 1	COUNTRYMAN	ci	CREVASSE	A	CULLEDKA	ВІ	DAMASCUS	B/D
	COPPERTON	В	COUNTS	6	CREWS	î i	CULP	c	DANEWOOD	C
	COPPOCK	ві	COUPEE	B 1	CRIDER	В	CULPEPER	č i	DAMLUIS	č
	COPSEY	Pi	COUPEYILLE	c i	CRIMS	0	CULTUS	вi	DAMON	Ď
	COQUILLE	D I	COURT	B	CRINKER	c i	CULYING	c i		В
	CORA	o i	COURTHOUSE	Di	CRIPPIN	В	CUMBERLAND	Ві	DANCY	B/D
	CDRAL	c i	COURTLAND	B	CRISFIELD	В	CUMBRES	c i	DANCY. STONY	0
	CORBETT	8	COURTNEY	0 1	CRISTO	c i	CUMLEY	C 1	DANDREA	C
	CORBIN	8 1	COURTROCK	8 1	CRISTOBAL	B	CUMMINGS	0 1	DANORIOGE	D
	CORCEGA	c I	COUSE	CI	CRITCHELL	B	CUNDICK	0 1	DANGBERG	0
	CORDELL	D	COUSHATTA	8 1	CRITTENDEN	8	CUNDIYO	B	DANIA	B/D
	CORDES	В	COUTIS	8	CROATAN	D	CUNNINGHAM	c i	DANJER	D
	CORDESTON	B	CDVE	0 1		A	CUPCO	c i	DANKO	D
	CORDOVA	C/DI		CI	CROCKETT	0	CUPOLA	В	DANLEY	С
	CORDY	B	COVELLO	c i	CROESUS	C		BI	DANNEMORA	D
	CORIFF CORINTH	E I	COVERT	A I	CROFTON CRDGHAN	B	CUPPLES CURABITH	C I	DANSKIN DANT	0
	CORKSTONE	0 1	CDVILLE	8 1	CROMVELL		CURANT	BI	DANVERS	c
	CORLENA	Ă	COVING	či	CRONKHITE	A I	CURDLI	Ĉ i	DANVILLE	Č
	CORLETT	Â	COVINGTON	6	CRONKS	c	CURECANTI	В		č
	CORLEY	B/DI		A	CROOKED	c	CURHOLLOW	D I	DARBY	В
	CORMANT	A/DI		c i	CROOKED CREEK	0	CURRAN	c i		A
	CORNELIA	A İ	COWCO	B	CROOKED CREEK.	c i	CURRIER	A	DARDANELLE	В
	CORNEL IUS	c i	COVDEN	0 1	DRAINED	i	CURRITUCK	DI	DARDEN	A
	CORNHILL	B	COWDREY	CI	CROOKED CREEK.	D	CURTIN	D	DARDOOW	В
	CORNICK	0 1	COWEENAN	ci	RARELY FLOODED	i	CURTIS CREEK	o i	DARE	D
	CORNING	0 1	COWERS	8 1	CROOKED CREEK.	D	CURTIS SIDING	A I	DARFUR	8/0
	CDRNISH	c I	COWETA	C	VERY POORLY		CURTISTOWN	8	DARGOL	D
	CORNUTT	c I	COMEIL	B	DRAINED		CUSHENBURY	B [	DARIEN	С
	CORNVILLE	B	COWHORN	8 1	CROOKED CREEK. LDW	0	0	B	DARKBULL	В
	COROLLA	0	COWICHE	8 !	PRECIPITATION		CUSHMAN	c i	DARL	С
	CDRONA	В	COMOOD	0	CROOKSTON	B		C I	DARLAND	В
	CORONACA	8	COMSLY	CI	CROOM	_	CUSICK	c i	DARLING	В
	COROZAL	c I	CONTON	C	CROPLEY	0	CUSTED	В	DARMSTADT	0
		A I	COX	0 1	CROQUIB	0	CUSTER	0	DARNELL	С
	COROZO		COVETLLE		COOCEY	_	CHETER ARTELE		DADMEN	
	CORPENING	D	COXVILLE	0 1	CROSBY	C	CUSTER. DRAINED	C I	DARNEN	В
)			COXAETT COXAITTE	0 1	CROSBY CROSIER CROSS	C	CUSTER. DRAINED CUTAWAY CUTHAND	BI	DARNEN DAROW DARR	B C B

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.

NODIFIERS SHOWN. E.G., BEDROCK SUBSTRATUM, REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL HAP LEGEND.

DARROCH	c i			DENVER		DILLAAN	A !		C
DARROCH. TILL	- I	DEGARMD	D			DILMAN	c I	DDNICA	A
SUBSTRATUM	_ !	DEGNER	C I	: -:		DILTON	0 1	DDNIPHAN	В
DARROCH. BEDROCK	c i		В	DEPCDR	_	DILTS	D	DDNKEHILL	D
SUBSTRATUM	_ !	DEGRAND	В	DEPDRT	D	DIMAL	c i	DONLONTON	C
DARROUZETT	c i		D	DEPUTY	C	DIMNICK	D I	DDNNA	D
DARSIL	c I	DEHANA	B	DERA	В	DIND	В	DDNNAN	C
DARST	c I		В	DERALLO		DIHYAM	c i	DDNNARDD	В
DART	A	DEHLINGER	В	DERB	С	DINA	c i	DDNNEL	В
DARVEY	В	DEJARNET	В	DERECHD	C		В	DDNNELLY	A
DARWIN	DI	DEKALB	c i	DERINDA	C :	DINEAD	В	DDNNER	C
DASHER	D	DEKDVEN	DI	DERLY	D	DINGLE	C I	DDNNYBRDDK	D
DASSEL	B/DI		CI	DERDUX	C		D	DODDLELINK	В
DAST	В	DELA	BI	DERRICK DES MOINES	8	DINKELMAN	B	DDDNE	C
DATELAND	В	DELANCD	- •		-	DINKELS			В
DATEMAN	C I	DELAND	A !	DES MOINES. DRY	B	DINNEN	B	DDDR	8 6/D
DATIL	BI	DELANEY	A I			DINSDALE Dinuba	c	DORA	
DATINO	В	DELAND DELASSUS	BI	DESART DESATDYA	C	DINVOODY	8	DDRAN DDRB	C
DATING. STONY	c i		0 1		C		8 1	DDRCHESTER	В
DATWYLER	0 1		D I		-		8		8
DAULTON		DELDOTA	c	DESCHELL	В	DIDXICE DIPMAN	D 1	DDRERTON	Č
DAVEA			0 1	DESCHUTES	C B		В	DDRMDNT	В
DAVIDELL	B   B		ci		c	DIPSEA Dique	8 1	DDROSHIN	D.
DAVIDS ON DAVIS	8 1		c		c		D 1	DORDTHEA	c .
DAVISON	8 1		В	DESERET DESHA			0 1	DDRDVAN	6
	8 1		_	DESHLER			8 1	DDRRANCE	A
DAYTONE			DI	DESKAMP			8 1	DDRS	B
DAWES DAWHOO	C   B/DI	DELGADD	A	DESKAMP	В	DISCD DISHNER	D I	DDRSET	8
DAWSON		DELICIAS	â		8	<u> </u>	c		6
DAWTONIA	8 1	DELKS		DESTAZO	8	DISTERHEFF Diston	c	DOSPALDS	6
DAXIA	8 1	DELL	COL		8		c	DOSPALUS	C
DAY	Ď	DELLEKER	В	DETER	č	DITHOD	c	DDSSMAN	В
DAYBELL	Ă	DELLO. SALINE	ΐ	DETDUR	-	DITNEY	c i	DDTARD	8
DAYSCHOOL	â	DELLD. GRAVELLY	6			DIVERS	8 1	DOTEN	Ď
DAYTON	D 1	SUBSTRATUM. WET		DETRITAL		DIVIDE	8	DDTHAN	В
DAYTONA	8 1		_ i	DETROIT	_	DIVIDE	c	DOTLAKE	D
DAYVILLE	c	SALINE-ALKALI	A 1	DEUNAH		DIX	Āi	DDTSERD	8
DAZE	0 1	DELLD. MODERATELY	c		_	DIXALETA	D I	DOTTA	В
DE BACA	8 1	WET	- 1	DEVADA		DIXBORD	В	DOTY	В
DE MASTERS	8 1	DELLO. CLAY	В			DIXIE	c i	DDUCETTE	8
DE PERE	Ĉ i			DEVILS	_	DIXMONT	ċi	DDUDLE	8
DEACON	В		в		c	DIXONVILLE	ċi	DDUDS	В
DEADMAN	8	DELLS	c	DEVISADERD	_	DIYOU	c	DOUGAL	D
DEADWOOD	D		c i	DEADE		DOAK	В	DDUGAN	В
DEAMA	D 1	DELNITA	ċi	DEVDIGNES	D	DDAK. MODERATELY	ci	DOUGCLIFF	D
DEAN	8 1		8			ALKALI	•	DDUGHERTY	A
DEANDALE	D 1	DELNORTE	ci	DEVDRE	8	DOBBINS	c	DOUGHTY	В
DEARBORN	8 1	DELORO	c i	DEADA	D	DOBBS	8 1	DOUGLAS	В
DEARYTON	ci	DELOSS	-	DEVRIES		DOBEL	D	DDUGVILLE	8
DEATMAN	c i	DELP	A	DEVAR	Ď	DOBENT	c		D
DEAVER	c i	DELPHI	8 1	DEWEY	_	DOBROW	B/DI		В
DEBENGER	c i	DELPHILL	c i	DEMEAAIFFE	D	DDBY	D I	DOVER	В
DEBONE	ō i	DELPIEDRA	Ď i	DEWVILLE	8	DDCAS	8	DDVRAY	C/D
DEBORAH	D I	DELPLAIN	Di	DEXTER	8	DDCDEE	Di	DDA	В
DEBUTE	ci	DELPDINT	ci	DIA	c	DDCENA	ci	DDWAGIAC	В
DECAN	c i	DELRADORE	Ďi	DIA. WET. SALINE	D	DDCKERY	č i	DDWDE	8
DECANTEL	D			DIA. SALINE	_	DOCT	či	DOWELLTON	D
DECATHON	ci		D			DDDES	В		D
DECATUR	В	DEPRESSIONAL	i	DIA. FLODDED	С	DODGE	8 1	DOWNER	8
DECCA	8 1	DELRAY. FLOODED	B/DI	DIABLD	D	DDDGEVILLE	В	DDWNEY	B
DECHEL	D		В			DODSON	c i	DDANEAAIFFE	D
DECKER	ci	DELSON	c i			DOGER	A	DDWNS	В
DECKERVILLE	DI	DELTON	B	DIAMOND SPRINGS	C	DOGUE	c i	DOYCE	8
DECKERVILLE.	ci	DELAIN	A	DIAMONDVILLE	C	DDLAND	8 1	DOYCE. LDAMY	С
DRAINED	i	DELYNDIA	A		C	DOLBEE	ci	SUBSTRATUM	
DECLO	0 1	DEMAR	DI	DIANOLA	D	DOLEKEI	8	DOYCE. MODERATELY	C
DECOLNEY	B	DEMAST	B	DIATEE	B	DDLEN	8	WET	
DECORDOVA	B	DEMENT	C	DIBBLE	C	DDLES	C	DDYLESTOWN	D
DECRAN	C	DENING	8	DIBOLL	C	DDLLAR	C	DDYN	D
DECRDS S	8 1	DEMKY	DI	DICK	A	DOLLARD	c 1	DRA	C
DECY	C I	DEMNER	B	DICKERSON	D	DDLLARHIDE	D	DRAGE	В
DEE	CI	DEMONA	C I	DICKEY	8	DOLLYCLARK	C	DRAGODN	В
DEEFAN	D	DEMONTREVILLE	8	DICKINSON	8	DOLPH	C I	DRAGSTON	C
DEEMER	B	DEMOPOLIS	c I	DICKINSON. MAP<25	B	DDME	8	DRAKE	8
DEEPEEK	DI		0	DICKINSON. TILL	A	DOMELL	8	DRALL	В
DEEPWATER	8 1	DEMPSEY	В	SUBSTRATUM		DOMERIE	В	DRANYDN	В
DEER CREEK	c I	DEMPSTER	В		A		c I	DRAPER	C
DEER PARK	A	DENAY	В		С	DOMINIC	B	DRAX	В
		DENHAVKEN	D		C		c I	DRAX. WET	C
DEERFIELD	8		_		C	DOMINSON	A 1	DREDGE	В
DEERFIELD DEERFORD	D	DENMAN	C						
DEERFIELD DEERFORD DEERHORN	DI	DENMAN DENMARK	DI	DIEBA	8	DOMO	8	DRESDEN	В
DEERFIELD DEERFORD DEERHORN DEERLODGE	CI	DENMAN DENMARK DENNIS	D I	DIGBY DIGGER	8 C	DOMO DONA ANA	B	DRESDEN DRESSLER	B
DEERFIELD DEERFORD DEERHORN DEERLODGE DEERTON	D I C I C I	DENMAN DENMARK DENNIS DENNOT	D I	DIGBY DIGGER DIGHTON	B C B	DOMO DOMA AMA DOMAHUE	B   B   C	DRESDEN DRESSLER DREWING	B C D
DEERFIELD DEERFORD DEERHORN DEERLODGE DEERTON DEERTRAIL	D   C   C   C	DENMAN DENMARK DENNIS DENNOT DENNY	D I B I D I	DIGBY DIGGER DIGHTON DIGIORGIO	8 C 8	DOMO DONA ANA DONAHUE DONALD	B   B   C   C   C   C   C   C   C   C	DRESDEN DRESSLER DREWING DREWS	B C D
DEERFIELD DEERFORD DEERHORN DEERLODGE DEERTON DEERTRAIL DEERWOOD	D   C   C   B   D	DEMMAN DEMMARK DEMMIS DEMNOT DEMNY DEMROCK	D   B   D   D	DIGBY DIGGER DIGHTON DIGIORGIO DILL	8 C 8 B	DOMO DONA ANA DONAHUE DONALD DONALDSON	B   B   C   C   B	DRESDEN DRESSLER DREWING DREWS DREXEL	8 C D B
DEERFIELD DEERFORD DEERHORN DEERLODGE DEERTON DEERTRAIL	D   C   C   C	DEMMAN DEMMARK DEMMIS DEMNOT DEMNY DEMROCK DEMTON	D	DIGBY DIGGER DIGHTON DIGIORGIO DILL	8 8 8 8	DOMO DONA ANA DONAHUE DONALD	B   B   C   C   C   C   C   C   C   C	DRESDEN DRESSLER DREWING DREWS DREWS DREXEL DRIFTWOOD	B C D

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SDIL NAP LEGEND.

DRISCOLL	c i	DURKEE	c i	EDMUNDSTON	В		0 1		c
DRIT DRIVER	B I	DUROC DURRSTEIN	BI	EDNA EDNEYTOWN	D   B	ELLIBER ELLICOTT	AI	ENDERSBY ENDICOTT	В
DROEM	c i	DURST	c i	EDNEYVILLE	В	ELLINGTON	B	ENDLICH	8
DRUM	c i	DUSLER	ci	EDOM	c i	ELLIDTT	ci	ENDSAW	č
DRUMMER	B/DI	DUSTON	A	EDRDY	D	ELLIDITSVILLE	B	ENERGY	В
DRUMMOND	D I	DUTCHESS	В	EDSON	C I	ELLIS	D	ENET	В
DRURY	В	DUTEK	A !	EDWARDS	B/D		В	ENFIELD	В
DRY CREEK	C I	DUTTON	D I	EEL	BI	ELLISVILLE ELLOAN	8 J	ENGELHARD ENGLE	8/D
DRYADINE DRYBURG	ВІ	DUYAL	A	EFFIE	ci	ELLSWORTH	c	ENGLEWOOD	č
DRYDEN	В	DUZEL	ĉi	EFFINGTON	0 1	ELLUN	c	ENKD	č
DRYN	c i	DVIGHT	Ďi	EGAN	ci	ELLZEY	B/DI		D
DU PAGE	В	DWDRSHAK	В	EGAN	В	ELN LAKE	A/DI	ENNING	D
DUANE	8 1	DWYER	A I	EGAS	D	ELNDALE	B	ENNIS	В
DUART	c I	DYE	DI	EGBERT	D	ELNENDORF	DI	ENDCH	С
DUBAKELLA	c i	DYKE	В	EGBERT. MODERATELY	C I		c i	ENDCHVILLE	D
DUBBS	В	DYRENG	0	VET	. !	ELNIRA	A !	ENOCHVILLE.	c
DUBLON	В	EACHUS	В	EGBERT - DRAINED	c i		BI	DRAINED ENDN	_
DUBDIS DUBUQUE	C I	EACHUSTON EAGAR	A/DI B	EGBERT - SANDY SUBSTRATUM	c i	ELNORE   ELNRIDGE	c	ENDREE	C D
DUCHESNE	В	EAGLECONE	В	EGELAND	В		В	ENDS	č
DUCKHILL	D	EAGLEVILLE	D	EGINBENCH	c i	ELMWOOD	c i	ENDSBURG	D
DUCKREE	В	EAKIN	Ві	EGYPT	D	ELNIDD	c i	ENSENADA	В
DUCKSTON	A/DI	EALY	B	EICKS	c i	ELNDRA	В	ENSIGN	D
DUCD	D	EAPA	B	EIGHTLAR	D	ELO	B	ENSLEY	B/C
DUDA	A I	EARCREE	B	EIGHTMILE	D	ELDCHDNAN	B	ENSTRON	В
DUDLEY	D	EARLE	DI	EILERTSEN	В	ELDIKA	B	ENTENTE	В
DUEL	A I	EARLHONT	0	EITZEN	В	ELOMA	c i	ENTERPRISE	В
DUELM	A	EARLMONT, DRAINED	C I	EKAH	C I	ELPAN	D I	ENTIAT ENTMODT	D C
DUFF	A I	EARSNAN	DI	EKALAKA EKRUB	D	ELPEDRD   ELRED	B/DI		c
DUFFAU	8 1	EASLEY	č i	EL DARA	В	ELRIN	8 1	EPHRAIM	č
DUFFER	B/D		c i	EL PECD	c i		D	EPHRATA	В
DUFFER. DRAINED	c i		Āİ	EL RANCHD	В	ELRDSE	В	EPIKON	D
DUFFER. FLOODED	8/01	EASTABLE	B	EL SDLYO	c i	ELS	A I	EPLEY	c
DUFFIELD	8 1	EASTCAN	8	ELANDCD	8	ELSAH	B	EPOKE	В
DUFFSON	B	EASTGATE	B	ELBA	C I	ELSINBORD	В	EPOUFETTE	B/D
DUFORT	В	EASTLAND	B	ELBAVILLE	B	ELSNERE	A	EPPING	D
DUFUR	В	EASTON	DI	ELBERT	D		B [	EPSIE	D
DUGGINS	c I	EASTONVILLE	В	ELBETH	В	ELTREE	В	ERA	В
DUGOUT	D I	EASTPORT EASTWELL	A I	ELBON ELBURN	B	ELTSAC ELVADA	D I	ERAN ERAMOSH	C D
DUKES	Ā	EATON	D 1	ELBUTTE	D	ELVE	В	ERBER	č
DULAC	ĉi	EAUGALLIE	- •	ELCD	в	ELVEDERE	c	ERCAN	В
DULCE	o i	EAUPLEINE	В	ELD	В	ELVERS	B/D		D
DULUTH	8	EBA	c i	ELDEAN	В	ELVIRA	B/DI	ERICSDN	В
DUMAS	B	EBAL	B	ELDER	B	ELWELL	C	ERIE	C
DUMONT	B	EBBERT	C/DI		A	ELWHA	C I	ERIN	В
DUN GLEN	В	EBIC	c i	SUBSTRATUM.	!	ELWDOD	C I	ERNEN	D
DUNBAR	D	EBDDA EBON	ВІ	FLOODED ELDER. FLOODED		ELY	BI	ERNEST ERNO	C B
DUNBARTON DUNBRIDGE	ВІ	EBRD	C I	ELDER. GRAVELLY	BI	ELYSIAN   ELZINGA	В	ERRANDUSPE	Č
DUNCAN	D	ECCLES	В	ELDER. GRAVELLY	Ā	ENBAL	В	ERVIDE	č
DUNCANNON	В	ECHARD	Di	SUBSTRATUN		ENBARGD	c i	ESCABDSA	C
DUNCKLEY	8	ECHAW	B	ELDER HOLLDW	D	ENBDEN	B	ESCALANTE	В
DUNCON	D	ECHEMOOR	C I	ELDERON	B	ENBERTON	c I	ESCANBIA	С
DUNDAS		ECKERT	DI	ELDERON. STONY	A	EMBLEM	8 1		С
DUNDAY	A	ECKLEY	B	ELDGIN	В	EMBRY	В	ESCONDIDO	С
DUNDEE	C I		В		В	ENBUDO	В	ESHANY	В
DUNELLEN DUNFDRD	B I	ECKRANT ECKVOLL	D I		B [	ENDENT   ENDENT  BEDROCK	D I	ESMERALDA ESMOND	B B
DUNGENESS	В		- •	ELECTRA	ci	SUBSTRATUM.		ESPELIE	B/D
DUNKIRK	В	ECONFINA	Ā	ELEROY	В	DRAINED		ESPIL	.0
DUNLATOP	В		ô		В	EMDENT. BEDROCK	D	ESPINAL	A
DUNMORE	B	EDALGO	c i	ELFRIDA	8	SUBSTRATUM	I	ESPINOSA	В
DUNN	A I	EDDINGS	В	ELGEE	A	EMDENT. DRAINED	C I	ESPLIN	D
DUNNING	D I	EDDS	В		c 1		В	ESPY	c
DUNNVILLE DUNDIR	В	EDDY	c I	ELINDIO	C	ENERALDA	D	ESQUATZEL ESRD	B D
DUNDIR	В	EDENBOVER		ELIDAK		EMERSON	В	ESS	В
DUNPHY . DRAINED	C I	EDENTON	D I	ELIZA	D [	ENIGRANT   EMIGRATION	C I		В
DUNTON	ci	EDFRD	D 1		В		В		Č
DUNUL	A	EDGAR	В		В		c	ESSEX	č
DUPEE	c i			ELKADER	В		A		A/D
DUPLIN	c i	EDGELEY	-	ELKCREEK	ci	EMNET	В	ESTACADO	В
DUPD	C I	EDGEMONT	B		B	ENDRY	В		8
DUPONT	0	EDGEWATER		ELKHORN	В		В	ESTATE	C
DUPREE	0 1	EDGEWICK		ELKINS	D I	ENPEDRADD	В	ESTELLINE	В
DURADOS	A !	EDGINGTON		ELKINSVILLE		ENPEYVILLE	c I		D
DURALDE DURAND	C [	EDINA EDINBURG	D I		D [	ENPIRE   ENPORIA	B [	ESTERD ESTHERVILLE	D 8
DURANGD	BI	EDISTO	C 1	ELKOL		EMPICK	В	ESTIVE	В
DURANT	D I	EDLOE	ВІ		C	ENBAR	8	ESTO	В
DURBIN	D	EDMINSTER	D			ENCANPHENT	В		В
DURELLE	В	EDMONDS	D	ELLABELLE	D	ENCIERRO		ETACH	В
DURFEE	c i	EDMORE	D		c	ENCINA	В		С
DURHAM	B	EDNUND	D	ELLEN	8	ENDCAY	C	ETELKA	С

NOTES: TWO HYDROLDGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.

MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SDIL SERIES PHASE FOUND IN SDIL MAP LEGEND.

ETHAN	8	FAIRWAY	C I	FENWOOD	8	FLOER	D	FOXWORTH	A
ETHELMAN	8	FAIRYDELL		FERA	c i	FLOKE	D		8
ETHETE	B	FAJAROO	c i	FERDELFORO	c i	FLOM		FRAILEY	В
ETHETE. SALINE	CI		0 [	FEROINAND	c i	FLOMATON		FRAILTON	D
ETHRIDGE	c i	FALBA	D		8	FLOMOT		FRAM	8
ETIL	A	FALCON	D		8	FLORALA	C		A
ETOE	8	FALFA	c [	FERNANDO	8	FLORENCE	C	FRANCITAS	D
ETOILE	D	FALFURRIAS	A	FERNHAVEN	B	FLORESVILLE	C (	FRANDSEN	8
ETOWAH	8	FALK	C	FERNLEY	c	FLORIDANA	B/D	FRANKFORT	C
ETOWN	CI	FALKIRK	B	FERNPOINT	8 1	FLORIN	C	FRANKIRK	С
ETSEL	0 i	FALKNER	C I	FERNWOOD	8 1	FLORISSANT	C	FRANKLIN	В
ETTA	8 1	FALLBROOK	B	FERRELO	В	FLORITA	В	FRANKSTOWN	8
ETTER	8 1	FALLCREEK	c i	FERRIS	0	FLOTAG	В	FRANKTOWN	D
=		FALLERT	8	FERROBURRO		FLOVELL			
ETTRICK					D				8
EUBANKS	8	FALLON	C 1	FERRON	0	FLOWEREE	В	FRATERNIDAD	D
ENCTIO	c I	FALLSAM	D		DI	FLOYD	B	FRAVAL	C
EUDORA	8 1	FALLSINGTON	B/D	FERTEG	8	FLUETSCH	8	FRAZER	C
EUER	8	FALOMA	B/D	FEST INA	8	FLUGLE	B	FRAZERTON	В
EUFAULA	A	FALULA	D	FETT	D	FLUVANNA	C [	FRED	С
EUHARLEE	c I	FANAL	8	FETTIC	D	FLYBOW	D	FREDENSBORG	С
EULONIA	C 1	FANDANGLE	C 1	FETZER	c 1	FLYGARE	B 1	FREDERICK	8
EUNOLA	c i	FANDOW	D I	FIANDER	Ď	FOARD	D 1	FRECON	C
EUREKA	ρi	FANG	8 1	FIANGER. DRAINED	c i	FOEHLIN	В	FREDONIA	č
EUSBIO	c i	FANNIN	B	FIOALGO	c i		В	FREDONYER	č
EUSTIS	Āi	FANNO	c i		ċ	FOLDAHL	В	FREEBURG	Č
	ô	FANTZ	-				D		
EUTAW			C	FIDOLETOWN	В	FOLEY		FREECE	D
EVADALE	0 1	FANU	В	FIDDYMENT	D	FOLLET	D	FREEDOM	C
EVANGELINE	C I		DI		B	FOMSENG	c 1		В
EVANS	8 (	FARB	D	FIELDING	B	FONDA	D	FREEMAN	C
EVANSTON	8	FARBER	8	FIELDON	B/DI	FONDIS	C	FREEMANVILLE	8
EVANSVILLE	8/01	FARGO	DI	FIFER	D 1	FONNER	8	FREEDN	В
EVANT	DI	FARISITA	D I	FILDERT	c i	FONTANA	8 1	FREER	C
EVARD	BI		B 1		D I		В	FREEST	c
EVARO	BI	FARLOW	c i	FILLMORE	0 1	FOPIANO	D	FREESTONE	č
EVART	ői	FARMINGTON	či		c			FREETOWN	Ď
	-		-						В
EVENDALE	c I	FARMSWORTH	D		c I	FORAKER		FREEWATER	
EVERETT	A	FARMTON	D	FINCHFORD	A 1	FORBES	c i	FREEZENER	С
EVERETT. STONY	A 1		B [	FINDOUT	D		0	FREEZEOUT	С
EVERETT. HARO	8	FARNHAMTON	c	FINGAL	CI	FORD	D	FRELSBURG	D
SUBSTRATUM	1	FARNUF	B	FINGEROCK	D	FOROICE	В	FREMONT	C
EVERGLADES	8/01	FARNUF. WET	CI	FINLEY	B 1	FORONEY	A 1	FREN	В
EVERLY	8 1	FARNUF. GRAVELLY	8 1	FINNERTY	DI	FORDTRAN	C 1	FRENCH	С
EVERMAN	c i	SUBSTRATUM	i	FINOL	c i	FORDUM	D I	FRENCHCREEK	8
EVERSON	D i	FARNUM	8 1	FINROD	c i	FORDVILLE	8 1	FRENCHTOWN	D
EVERWHITE	c i		c i		c i		8	FRESHWATER	D
EVESBORO	Ā	FARRAR	8 1	FIREBALL	8	FORELLE	В	FRESNO.	D
EVA	Ĝ		В	FIREBOX	8 1	_	8		U
	-		8 1			FORESMAN		SALINE-ALKALI	c
EWA. BEDROCK	c i	FARRENBURG	- •	FIRESTEEL	B	FORESTBURG	A	FRESNO. THICK	C
SUBSTRATUM	. !	FARROT	c i		c i	FORESTDALE	D	SOLUM	_
EWALL	A	FARVA	c j	FIRMAGE	B	FORESTER	C	FREWA	В
EXCELSIOR	8	FASHING	0	FIRO	D	FORESTON	C I	FREZNIK	0
EXCHEQUER	0	FASKIN	B	FIROKE	B	FORK	c I	FRIANA	D
EXEL	c 1	FATHOM	A	FIRTH	CI	FORKWOOD	B	FRIANT	D
EXETER	C	FATIMA	8	FIRTH. DRAINED	8 1	FORMADER	c 1	FRIOLO	С
EXETER. THICK	B 1	FATTIG	c i	FISHHOOK	Di	FORMAN	8	FRIENOS	D
SOLUM	i	FAUQUIER	c i	FISHLAKE	o i	FORMDALE	8 1	FRIENDSHIP	A
EXETTE	8 1	FAUSSE	D I	FISHPOT	c i	FORNEY	D I	FRIES	D
EXIRA	8 1						_ ;	FRIESLAND	В
EXLINE		FAVIN		FITCHVILLE		FORSEER		FRIJOLES	8
EXPRESS	- •	FAX	-	FITZGERALO		FORSEY		FRINDLE	č
	- •							FRIO	
EXRAY		FAXON		FITZHUGH	•	FORSGREN			В
EXUM	c i		-	FIVENILE		FORSYTH		FRIONA	C
EYAK	c i			FIVEMILE. SALINE	-	FORT COLLINS		FRIOTON	C
EYERBOW	-	FAYWOOD		FIVEOH	•	FORT MEADE		FRIPP	A
EYLAU	CI		0	FIVES	8	FORT MOTT		FRISCO	8
EYOTA	A	FEATHERLEGS	В	FLAGG	8	FORTANK		FRIZZELL	C
EYRE	0	FEDJI	A	FLAGLER	8	FORTESCUE	C/DI	FROBERG	0
FABIUS	8	FEOORA	8/01	FLAGSTAFF	0	FORTUNA	D	FRODO	D
FACEVILLE	8 1	FELAN	8 1	FLAK	c i	FORTWINGATE	CI	FROHMAN	С
FACEY	8 1	FELDA	B/DI	FLAMING	A	FORVIC	c i	FROLIC	В
FACTORY		FELOA.		FLANAGAN		FORWARD		FROLIC.	c
FACTORY. MOIST	8 1		· i	FLANDREAU		FOSS	Bi	ELEVATION<8000	_
FADDIN		FELDA. FLOQUEO	B / 0 i	FLANE	_	FOSSILON		FROLIC. FLOODED	8
FAGAN		FELICITY				FOSSUM	- •	FRONDORF	8
FAGASA		FELIPE		FLASHER					В
			D		_	FOSTER		FRONTENAC	0
FAHEY		FELKER		FLATHORN		FOSTORIA		FRONTON	
FAIM	•	FELLOWSHIP	_	FLAT IRONS		FOUNTAIN		FROST	D
FA IRBANKS		FELOR		FLATNOSE	_	FOUR STAR	- :	FRUITA	В
FAIRCHILD		FELT	8			FOUR STAR. DRAINED			С
FAIRDALE	B	FELTA	c i	FLATTOP	D	FOURCHE	B	FRUITLAND	В
FAIRFAX	8	FELTHAM	8	FLAXTON		FOURLOG	D	FRUITLAND. WET	C
FAIRFIELO		FELTNER		FLEAK	_	FOURMILE	•	FRUITLAND . COOL	В
FAIRHAVEN		FELTON	- •	FLEER	- •	FOX	В		c
FAIRLIE		FELTONIA		FLEISCHMANN		FOXCREEK	c i		В
FAIRMOUNT	- •	FENCE	- •	FLEMING	-	FOXHOME		FT. DRUM	c
		1 61466	- •	I CEMTIAR	- 1			I I DRUM	
	- •	EENOAL I		EL EMTHICTON		EOVMOUNT		ET. CDEEN	
FAIRPLAY	B		c		D		C	FT. GREEN	D
FAIRPLAY FAIRPOINT	BI	FENN	DI	FLETCHER	В	FOXOL	0 1	FUBBLE	0
FAIRPLAY	BI		DI		В		0 1		

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G., BEDROCK SUBSTRATUM, REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGENO.

FUERA	c I	GARDELLA	D 1	GERRARD	c I	GLENDDRA	A/DI	GOOSE LAKE	D
FUGAVEE	8 1	GARDENA	В	GERST	0 1	GLENEOEN	D	GDDSMUS	В
FUGHES	C I	GARDINER	AI	GESSIE	B	GLENELG	B	GORDANE	C
FULCHER	C I	GARDNER'S FORK	8	GESSNER	8/01		C I	GORDD	В
FULDA	C/DI		CI	GESTRIN GETCHELL	BI	GLENGARY	D I	GDRE GDREEN	D
FULLER TON	BI	GAREY GARFIELD	c i	GETTYS	ċi	GLENHAM	8 1	GDRGAS	D
FULMER. DRAINED	či	GARIPER	c i	GETZVILLE	0 1	GLENMAN	9 1	GORGONID	A
FULSHEAR	c i	GARITA	8 1	GEYSEN	c i	GLENMORA	c i	GORHAN	B/0
FULSTONE	DI	GARLAND	B	GIBBLER	c I	GLENNALLEN	c I	GORIN	С
FULTON	D I	GARLET	A	GIBBON	В	GLENDNA	B	GORING	C
FULTS .	D I	GARLOCK	В	GIDEON	B/DI		A !	GDRMAN	C
FUNTER FUQUAY	DI	GARMON GARMORE	C I	GIFFORD GIGGER	D I	GLENRID GLENROSE	D I	GDRSKEL GDRST	0
FURNISS	Ď i	GARNER	9 1	GILA	В	GLENROSS	0 1	GDRUS	В
FURY	ċi	GARNES	Ві	GILBERT	0 1	GLENSTED	D	GDRZELL	В
FUSULINA	DI	GARO	0	CILBY	8	GLENTON	8	GOSA	В
GAASTRA	c	GARR	DI	GILCHRIST	A	GLENTON.	8	GDSHEN	В
GABALDON	B	GARRETSON	9	GILCO	В	NODERATELY VET	. !	GDSHUTE	D
SABBUALLY	0	GARRETT	В	GILCREST	8	GLENTON. WET	c i	GOSINTA	C B
GABEL Gabica	C I	GARRISON . GARROCHALES	B	GILEAO GILES	C I	GLENTON. NONFLODDED	В	GOSLIN	D
SABINO	6	GARSID	či	GILFORD	8/9		8	GDSPER	В
GACEY	D 1	GARTON	c i	GILFORD.	0 1	GLENTOSH	B 1	GDSPORT	c
SACHADO	Di	GARVESON	B	STRATIFIED	i	GLENVIEW	BI	GOSS	8
GACIBA	D	GARVIN	D	SUBSTRATUN	1	GLENVILLE	C	GOSUMI	C
GADDES	c i	GARVIN	B/DI	GILFORD. BEDROCK	8/01		c i	GOTEBD	В
GADDY	A !	GARZA	B	SUBSTRATUM	!	GLORIA	D I	GDTHAN	A
GADSDEN GAGEBY	0   B	GAS CREEK GASCDNADE	A/DI	GILFORD. GRAVELLY SUBSTRATUM	8/01	GLOUCESTER GLOVER	A I	GOTHARD GOTHENBURG	C D
GAGETOWN	В	GASIL	ВІ	GILISPIE	D I	GLYNODN	B	GOTHIC	c
GAGIL		GASQUET	В	GILLANO	ζi	GLYNN	ci	GDTHD	č
SAHEE	B	GASSVILLE	ci	GILLIAM	c i	GL YNWDDO	ci	GOULDING	D
GAIB	DI	GATES	B	GILLIGAN	B	GLYPHS	8	GDVE	В
GA INES	c I	GATESON	C I	GILLS	c i	GOBERNADOR	0 1	GOWEN	В
GAINESVILLE	A I	GATEVIEW	В	GILLSBURG	c I	GOBINE	B	GDWKER	C
GALATA GALBRETH	DI	GATEVOOD	c I	GILMAN	B	GOBLE	c I	GOWTON	B
GALCHUTT	D	GATLIN	C I	GILNDRE	C I	GOCHEA	BI	GRABLE	В
GALE	B	GATOR	0 1	GILPIN	c i	GDODARD		GRACEMONT	Č
GALEN	B	GATTON	В	GILRDY	č i	GODOE	o i	GRACEMORE	Č
GALEPPI	B	GAVILAN	c i	GILSTON	B	GDDECKE	0 1	GRACEVILLE	В
GALESTOWN	A	GAVINS	D	GILT EDGE	DI	GODFREY	D	GRADON	C
GALEY	B .!	GAVIDTA	0	GINAT	DI	CODAIN	D I	GRADY	D
GALILEE	c I	GAY		GINI	В	GOENNER	CI	GRAFEN	B
GALISTEO Galisteo.	C I	GAYLESVILLE GAYLORO	D I	GINLAND GINNIS	D I	GDESLING GDESSEL	0 1	GRAHAM GRAIL	C
SALINE-ALKALI	Ĭ	GAYNOR	c i	GINSER	ċi	COCEBIC		GRAINDLA	ò
GALLAND	o i	GAYNDR. WET	o i	GIRARO	ρi	COL	c i	GRALEY	D
GALLATIN	ci	GAYVILLE	DI	GIRARDOT	DI	GOLCDNOA	c i	GRALIC	8
GALLEGOS	B	GAZELLE	0 1	GIRD	CI	GDLD CREEK	DI	GRAN	D
GALLEN	В	GAZOS	C I	GIST	D	GDLOBERG	0 1	GRANATH	В
GALLIA	B	GEARHART	A	GITAKUP	c I	GOLOENOALE	В	GRANBY	A/D
GALLIME GALLION	8 1	GEARY GEE	B I	GITAN	D I	GOLOFINCH	D I	GRANDE RONDE GRANDFIELD	D
GALLNAN	8	GEEBURG	c i	GLACIERCREEK	À	GOLDNAN	ċ	GRANDPON	В
GALLUP	В	GEER	6	GLADDEN	Bi	GOLONIRE	c i	GRANDY I EW	č
GALOO		GEERTSEN	В	GLADEL	D	GDLORIDGE	B	GRANER	В
GALVA	B 1	GEFO	A İ	GLADEVILLE	D	GOLDRUN	A I	GRANGEMONT	C
GALVESTON	A I	GEISEL	BI	GLADEWATER	DI		8	GRANGEVILLE.	В
GALVEZ	c I	GELKIE	В	GLADVIN	A	GOLDSTON	c i	DRAINED. SLOPING	_
GALVIN GALVAY	0   B	GEM GENIO	C I	GLANN	DI	GOLDSTREAM	0	GRANGEVILLE. SALINE-ALKALI	В
GAMBLER	A	GEMSON	ВІ	GLASGDY GLASSNER	C I	GOLDUST	C J	GRANGEVILLE.	В
GAMBOA	8	GENAV	0 1		8 1	GDLOVEIN	ci	MODERATELY WET	
GANGEE	c i	GENESEE	Ві	GLEASON	B	GOLDYKE	c i	GRANGEVILLE. WET	c
GANCE	c i	GENEVA	. i	GLEN	B	GDLETA	B	GRANGEVILLE.	В
GANDO	0 j	GENDA	DI	GLENBAR	B	GOLIAO	c i	DRAINEO	
GANIS	0	GENDLA	8	GLENBERG	B	GOLSUN	c l	GRANGEVILLE.	В
GANNETT	0	GENTILLY	0	GLENBROOK	D	GDLTRY	A	OCCASIONALLY	
GANSNER	0	GENTRY	D	GLENCARD. WET.	c i	GOLVA	B	FLOODED	_
GAPCOT GAPO	DI	GEDHROCK GEORGETDWN	B	SALINE GLENCARB. SALINE	_ !	GOMERY	B	GRANILE GRANO	B
GAPO. DRAINED	ci	GEORGEVILLE	ВІ	GLENCARB . HARDPAN	8 I	CONFICK	B 1	GRANT	В
GAPPHAYER	Ві	GEDRGIA	В	SUBSTRATUM	,	GDOCH	.0	GRANTFORK	0
GARA	c i	GEOROCK	8 i	GLENCARD . DRY	ві		c i	GRANTHAM	D
GARBER	D	GEPFORD	D i	GLENCARD.	ci	GODDINGTON	c i	GRANTSBURG	c
GARBO	B	GEPP	Ві	OCCASIONALLY	i	GOODLAND	В	GRANTSDALE	В
GARBUTT	B	GEPPERT	C I	FLODDED	I	CODOLON	B	GRANVILLE	В
GARCENO	c I	GERALD	•	GLENCOE		GOODMAN	В	GRANYDN	В
GARCES	D	GERBER	D I	GLENCOE. PONOEO	D I	GDOONIGHT	A I	GRANZAN	В
GARCES, NODERATELY	0	GERDRUM	c i		8	GOODPASTER	DI	GRAPEVINE	В
GARCES. HARD	c	GERING GERLACH	BI	GLENDALE.	В	GOODSPRINGS	B I	GRASHERE GRASSNA	B
SUBSTRATUM	_	GERLACH	BI	SALINE-ALKALI GLENDALE. VET	c		BI	GRASSVAL	D
GARCIA		GERLE	BI	GLENDALE . FLDDDED	6 1	CDODAIN	8	GRASSVALLEY	0
GARCITAS	ci	GERNANTOWN	В		8 1	GDDSE CREEK	8	GRASSY BUTTE	A

NOTES: TWO HYDROLDGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
NODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SDIL NAP LEGEND.

COAT	D 1	GRIVER. DRAINED	c I	HAGEN		HANSEL	c I	HATERTON	D
GRAT Grattan	A		6 1		A I			HATHAWAY	В
GRAUFELS	ĉi		Ĭ	HAGER	D	=		HATLEY	c
GRAVDEN	D. 1		ві	HAGERMAN	c i		i	HATLIFF	c
GRAVEL TON	B/DI	GRDBUTTE	B	HAGERSTOWN	c		8 1	HATMAKER	c
GRAYBERT	8		8	HAGGA	B/D	HANTHO	8	HATPEAK	C
GRAYCALM	A I	GRDOM	C	HAGGA.	D	HANTZ	DI	HATTIE	C
GRAYFORD	В		c I	SAL INE-ALKAL I	1	HANTZ, SALINE	D		С
GRAYLAND	0		C		8		c i		С
GRAYLAND. DRAINED	c i		A		В		8	HAUBSTADT	C
GRAYLING	A !	GROTTO	A I	HAGUE	A		В	HAUG	B/D
GRAYLOCK	A I	GROUSEVILLE GROVE	CI		B I	HAPJACK Hapney	D I	HAUGAN HAULINGS	B
GRAYLOCK. STONY GRAYPOINT	8 1			HAIKU	8		0 1	HAUNCHEE	D
GRAYPOINT. WET	c	GROVER	-	HAILMAN	8		c i	HAUZ	Č
GRAYRDCK	ċ	GROVETON	8 1		c			HAVALA	В
GRAYS	В	GROWDEN	В		c i		8 1	HAVANA	В
GREAT BEND	Ві	GROWLER	В		Ď	HARBORD	В		B/D
GREEN BLUFF	Bi		В		-	HARCANY	В		В
GREEN CANYON	B	GRUBBS	D	HALBERT	D	HARCD	8	HAVERDAD	В
GREEN RIVER	C I	GRUBSTAKE	B	HALDER	C	HARCDT	B/D	HAVERHILL	D
GREEN RIVER.	B	GRUENE	DI	HALE	D [	HARDEMAN	8	HAVERLY	C
STRONGLY SALINE	1	GRULLA	D	HALE. DRAINED	C [	HARDESTY	8	HAVERSON	В
GREEN RIVER.	В	GRUMMIT	D		c (	,	D I	HAVILLAH	8
FLOODED	. !	GRUNDY	c I		8		В	HAVINGDON	C
GREEN RIVER. COOL	c i	2	C		8		D		8
GREENBRAE	CI	GRYGLA		HALF MDDN	8		В	HAVRE. SALINE	C
GREENCREEK	8 I	40 WD WE OF E	BI		D [		BI	COOL	В
GREENDALE	8 1		ВІ	*****	8 1		D 1	HAVRE. FLDODED	В
GREENE GREENFIELD	8 1		8 1	· -	В		c	HAVRE. COOL	В
GREENFIELD.	c i	GUANAJIBD	c		C		В	HAVRE, PE>31	В
HARDPAN		GUAYABOTA	D			HARKNESS	c	HAVRELON	В
SUBSTRATUM	i	GUAYAMA	D	HALLANDALE. TIDAL	D	HARLAN	ві	HAW	8
GREENFIELD.	ві		c i	HALLANDALE . SLOUGH	- ,		c i	HAWI	В
GRAVELLY	i	GUBEN	B	HALLORAN	C	HARLESTON	c i	HAWICK	A
GREENFIELD. CDDL	B	GUCKEEN	c i	HALSEY	C/D	HARLINGEN	D	HAWKEYE	A
GREENHALGH	8	GUDGREY	B	HAMACER	A	HARMEHL	c i	HAWKINS	C
GREENHORN	DI	GUELPH	B	HAMAKUAPOKO	8	HARMONY	c 1	HAWKSBILL	В
GREENLEAF	B	GUEMES	8	HAMAR		HARNEY	B	HAWKSPRINGS	B
GREENMAN	c I	GUENOC	•	HAMBLEN	<b>c</b> (	_	- •	HANTEA	В
GREENOUGH	В	GUENTHER	8		8		D I		A
GREENSON	c I			HAMBRIGHT	D			HAXTUN	8
GREENTON	c I	GUERRERD	A		8 [		•	HAYBDURNE	В
GREENVILLE	8	,		HAMBY	C I			HAYCRIK	С
GREENVINE	DI		D		8 (		8 1	HAYDEN	В
GREENWATER GREENWAY	A I	GUGUAK GUÍLDER	D I	HAMEL HAMERLY	C I	HARQUA   Harriet	C I	HAYESTON HAYESVILLE	B
GREENWOOD	- ,	GULER	CI	HAMILTON	В	HARRIMAN	8 1	HAYESVILLE. STDNY	č
GREHALEM	8 1	GULF		HAMLET	В			HAYFIELD	В
GRELL	D 1	GUMBLE	DI	HAMLIN	8		0 1		č
GRELLTON	Bi		Ď	=	8		č i	HAYHOOK	В
GRENADA	c i	GUMBODT. DRAINED	- •	HAMMONTON	_	HARRISON	Č i	HAYMARKET	D
GRENADIER	B 1	GUNBARREL. SALÍNE	c i	HAMPSHIRE	c	HARRISVILLE	c i	HAYMOND	В
GRENVILLE	8	GUNBARREL. DRAINED	A İ	HAMPSON	ci	HARROUN	D	HAYNESS	В
GRESHAM	c 1	GUND	c I	HANRE	C/D	HARSAN	В	HAYNIE	8
GRETDIVID	B	<b>GUNDY</b>	c I	HAMTAH	C	HARSHA	B	HAYPRESS	A
GREWINGK	D	GUNN	B	HAMTAH. NDNSTONY	8 (	HARSTINE	C	HAYSPUR	D
GREYBACK	B		D	HAMTAH. CDDL	В	HARSTON	В		В
GREYBO	B	GUNSIGHT	В			HART	- •	HAYTI	D
GREYBULL	c I	GUNSONE	DI	HANAKER	c i		c i	HAYWIRE HAYWDDD	СВ
GREYEAGLE GREYS	BI	GUNTER GUP	BI		C i	HARTFORD HARTIG		HAZEL	Č
GR IBBLE	ci	GURDON	ċi	HANAMAULU HANCEVILLE		HARTILL	_ •	HAZELAIR	0
GRIDELL	0			HAND		HARTLAND		HAZEN	В
GRIDGE	0 1		č i	HANDRAN	A	HARTLETON	В		c
GRIDLEY	ci	GUSTSPRING		HANDSBORD		HARTNIT	•	HAZLETON	В
GRIETA	В	GUTHRIE	ρi		c i	HARTSBURG	B/01	HAZTON	D
GRIEVES	B	GUY -	8 1	HANDY. STDNY	D	HARTSELLS	B	HEADQUARTERS	В
GRIFFITH	0 1	GUYTON	DI	HANDY. NONFLOODED	C	HARTSHDRN	B	HEAKE	D
GR IFFY	B	GWENA	D 1	HANEY	8 (	HARTVILLE	c 1	HEALDTON	D
GRIFTON	0 1	GMIN	DI	HANFORD	8 (	HARTWELL	D		В
GRIGSBY	8			HANGAARD	D	HARVARD	8	HEARNE	C
GRIGSTON		GWINNETT		HANGDO	8 (		- •	HEATH	C
GRIMM	A		c I		В	HARVEY	В	HEATLY	A
GRIMM. STONY	8		A		c l	HARVEY. BEDROCK	c i		B
GRIMSLEY	8	GYPNEYEE	B		C [		_ !	HEBBRONVILLE	8
GRIMSTAD GRIMSTONE	8 I		C	HANKS	8		CI	HEBERT	C
GR INA	BI		D	HANKSVILLE HANKSVILLE	0	HASKILL   HASKINS	Ĉ I	_	0
GR INDBROOK	ci			NDNFLDODED	`	HASSEE		HEBRON	В
GRINDSTONE	č i		8 1		8	HASSELL	0		В
GRINK	či		- •	HANLY	A		В		8/0
GRISDALE	B	HACKWODD	В		B		či	HECHTMAN	D
GRISWOLO	B		B		В		D	HECKER	В
GRITNEY	c i	HADES	B		8		D	HECLA	A
GRIVER	D	HADLEY	8 1	HANOVER	c i	HATCHET	C I	HECTOR	D
GRIVER. WET	DI	HAFLINGER	A	HANS	c I	HATERMUS	D I	HEDDES	C

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SMOWN. E.G.. BEDROCK SUBSTRATUM, REFER TO A SPECIFIC SDIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

	RICK	C   B	HEYDER HEYDLAUFF	B   B	HOBOG HOBONNY HOBBON	D	HONOMANU HONONEGAH HONOULIULI	AI	HOYPUS HOYTVILLE HUALAPAI	A C/0 C
HEF	VILLE	8 1	HEYTOU HEZEL	8 1	HDCAR		HONTAS	8	HUB	В
	LIN	8 1	HI VISTA	c	HOCHHEIM	В	HONTOON	8/0		<u> </u>
	LAR	8	HIARC	c i	HDCK INSON	ō i	HONUAULU	A	HUBBARDTON	Ĉ
HEG		Di	HIBAR	ci	HOCK INSON .	ci	HOOD	BI	HUBBELL	В
HEI	DEL	B	HIBBING	ci	MODERATELY WET	i	HOODLE	9 1	HUBERLY	D
	DEN	D	HIBERNIA	c i	HOCKINSON . DRAINED	8	H00000	D	HUBERT	8
	OTNAN	c i	***************************************	B	HOCKLEY	C	HOODSPORT	c i	HUBLERSBURG	8
	GHTS	8/01		C I	HOCKLEY. GRADED	D	HOOGDAL	c 1	HUCKLEBERRY	C
HEI	-	0	HICKS	B	HODA	c i	HOOKS	B	HUDSON	C
	NDAL	0	HICOTA	В	HODEOO	C	HOOLEHUA	B	HUECO	c
	NSAW SETON	C	HIDALGO HIDATSA	B	HODENPYL	A	HOOPAL	C I	HUEL	Ĉ
	SETON. STONY	či	HIDEAWAY	o i	HODGINS	â i	HOOPER	D 1	HUENEME . DRAINED	В
_	SETON.	ċi	HIDEMOOD	ci	HODGSON	č	HOOPESTON	8 1	HUERFANO	6
	LINE-ALKALI	i	HIERRO	ă i	HOFFLAND	ŏi	HODSAN	Ві	HUEY	D
HEI	SETON. DRAINED	B	HIGGINS	0 1	HOFF MANY ILLE	c i	HOOSIC	A İ	HUFFINE	В
HEI	SETON. FLOODED	8	HIGGINSVILLE	C	HOFFSTADT	8	HOOSIERVILLE	C	HUFFHAN	8
	SLER	8	HIGH GAP	c I	HOGADERO	8	HOOT	DI	HUFFTON	В
HEI		B	HIGHANS	0	HOGANSBURG	В	HOOTEN	D	HUGGINS	C
HEI		c I	HIGHBANK	c i	HOGG	C I	норсо	c I	HUGHES	8
	ZER	0	HIGHCANP	0	HOGHALAT	0	HOPORAW	A	HUGHESVILLE	c
HEL	DT Enano	C   B	HIGHFIELD HIGHMORE	8   8	HOGRIS HOH	BI	HOPEKA HOPKINS	D I	HUGO	B D
HEL		c	HIGHPOINT	0	HOHMANN	c	HOPLAND	8	HUICHICA	Č
	ENDALE	8	HIGHTOWER	ci	HOKAH	Bi	HOPLEY	В	HUICHICA. PONDED	D
	LMAN	či	HIGHWOOD	ċi	HOKO	В	HOPSONVILLE	c	HUIKAU	A
	MER	či	HIHINANU	В	HOLBROOK	B	HOQUIAN	В	HUKILL	В
	HICK	0 1	HIIBNER	c i	HOLCOMB	0	HORD	8	HULETT	В
	TER	B	HIKO PEAK	B	HOLDAWAY	D	HOREB	c i	HULLS	C
	VETIA	C I	HIKO SPRINGS	B	HOLDER	8	HORES . GRAVELLY	B	HULLT	В
HEL		c i	HILAIRE	B	HOLDERNAN	c i	SUBSTRATUM		HULUA	D
HEM		B	HILDEBRECHT	c i	HOLDERNESS	c i	HORNELL	D	HUM	В
HEN	INGFORD	8/01	HILORETH HILEA	0 1	HOLD INGFORD	C I	HORNING HORNITOS	BI	HUMACAD HUMATAS	8 C
	DERSON	B	HILES	ВІ	HOLILLIPAH	A	HORNSBY	CI	HUMBARGER	В
	DRICKS	8	HILGER	8 1	HOLLAND	â	HORNSVILLE	ċi	HUMBIG	Č
HEN		c i	HILGRAVE	В	HOLLANDLAKE	č i	HORROCKS	B	HUNBIRD	В
HEN	EFER	c i	HILLBRICK	Di	HOLLENBECK	Ď	HORSECANP	D	HUMBOLDT	D
HEN	HOLT	B	HILLCO	8	HOLLINGER	8	HORSESHOE	8	HUMBOLDT.	8
	KIN	8 1	HILLENANN	CI	HOLLIS	C/DI		B	HODERATELY WET.	
HEN		c i	HILLERY	0	HOLLISTER	0	HORSLEY	0	SALINE-ALKALI	
	LINE	c i	HILLET	B/DI		c i	HORTONVILLE	В	HUNBOLDT.	В
HEN	MEKE	C	HILLFIELD HILLGATE	BI	HOLLOWEX	8	HOSKIN HOSKINNINI	CI	MODERATELY WET.	
	NEPIN	В	HILLIARD	В	HOLLY	8/01		9 1	HUNBOLDT. SALINE	D
	NESSY	8	HILLIARD.	c	HOLLY . PONDED	0 1	HOSMER	c i	HUNBOLDT.	В
	NINGSEN	č i	MODERATELY WELL	i	HOLLY SPRINGS	ŏ i	HOSPAL	6	NODERATELY WET	•
HEN	RIETTA	8/01		i	HOLLYWELL	8	HOSSICK	B	HUMBOLDT. DRAINED	В
HEN	RIEVILLE	8	HILLON	c i	HOLLYWOOD	0	HOSTAGE	8	HUNDUN	В
HEN		0 1	HILLSBORO	8	HOLMAN	A	HOT LAKE	c	HUMESTON	C/D
	ISHA W	CI	HILLSDALE	9	HOLMDEL	C	HOTAY	c i	HUMMINGTON	С
	SLEY	0	HILLTO	8	HOLMES	9	HOTCREEK	D	HUMPHREYS	В
	LER PSIE	C I	HILLWOOD HILMAR	BI	HOLDMUA	8	HOTEL	B	HUNPTULIPS	В
	AKLE	0		В	HOLOPAW HOLSINE	B/0	HOTSPRINGS HOUDEK	8 1	HUNSKEL	В
	BERT	8	HILMOE	c i	HOLSTEIN	8 1	HOUGH	B	HUNCHBACK	Ď
	BMAN	Di	HILD	Ā	HOLSTON	9 1	HOUGHTON	AZDI		8
HER		c i	HILOLO	Ď į	HOLT	0 1	HDUGHTON. NAAT>50	A/DI		c
	EFORD	B	HILT	8	HOLTER	8	HOUGHTON . PONDED	D	HUNNTON	C
	KINER	B	HILTON	B	HOLTLE	B	HOUGHTON.	A/DI	HUNTERS	В
HER		C	HINCKLEY	A	HOLTON	c i	FREQUENTLY	ı	HUNTINER	C
	MERING MISTON	8	HINDES	c l	HOLTVILLE	C	FLOODEO	. !	HUNTING	C
	MON		HINESBURG HINKER	C I	HOLYOKE	CVD	HOUGHTONVILLE	c i	HUNTINGTON	
-	NANDEZ	8 1	HINKLE	6 1	HOME CAMP	CI	HOULA	C I	HUNTSBURG	
	NDON	В	HINMAN	c	HOMELAKE	8	HOULKA	D 1	HUNTSVILLE	8
HER		. i	HIRSCHOALE	c i	HOMELAND	c	HOURGLASS	8 .	HUPP	8
HER	00	0	HISEGA	č i	HONER	8 1	HOUSE NOUNTAIN	D I	HURDS	B
HER	RICK	8 1	HISER	B	HOMESTAKE	C	HOUSER	D	HURLBUT	C
HER		8	HISLE	0 1	HOMESTEAD	8	HOUSTAKE	C	HURLEY	D
	SHAL	D	HITILO	A	HONNE	C	HOUSTON	DI	HURRICANE	C
HER		D I	HITT	8	HOMME . NODERATELY	8	HOUSTON BLACK	0	HURST	D
HES	ICH IPER	B	HIVAL	0	WET	. !	HOVDE	c i	HUSE	0
	PERIA	- •		D I	HOMOSASSA	0	HOVEN	D	HUSSA. CLAYEY	D
	PERUS	8 1	HIWASSEE HIWOOD	BI	HONGUT	A	HOVENWEEP	CI	SUBSTRATUN HUSSA: SALINE	D
	SEL		HIXTON	6	HONOALE	0	HOVEY	C	HUSSA. MODERATELY	c
	SELBERG	0 1	HOADLY	c i	HONDOHO	8	HOVARD	A	WET	•
	SELTINE	B	HOBACKER	8	HONEDYE	8	HOWCAN	ê i	HUSSA. DRAINED	В
	SING	B		8 1	HONEYGROVE	c i	HOWE	čί	HUSSA. BANDY	D
	SLAN	c i	HOBBS	8	HONEYVILLE	c i	HOWELL	c i	SUBSTRATUM	
-	SON	C		0	HONN	8	HOWLAND	C	HUSSMAN	D
	ERWA	C I	HOSE	A I	AISONOH	C	HOYSON	c i	HUSUM	В .
	TINGER	C/DI	HOBERG	C	HONOKAA	A I	HOYE	8	HUTCHINSON	C
HEX	T	B	HOSIT	C 1	HONOLUA	B 1	HOYLETON	CI	HUTSON	В

MÔTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

		INDUCT TOTAL TO	DUCCOOL	c exceps or the sea	L3 Ur	THE UNITED STATES			
HUTT	D	INSKIP	c I	JACOBSEN	0 (	JOBPEAK	D	KACHEMAK	В
HUTTON	C	INSULA	0 1	JACOBY	C 1		B	KACHESS	В
HUXLEY	D	INTERIOR	B	JACOT	B (	JOCKD	B	KADE	C
HUYSINK	B		B	JACQUES .		JODERO	B		В
HYANNIS	B	INVERNESS	B	JACQUITH	C	JOEL	8 (		В
HYAS	В		c i	JACRATZ	0		D		0
HYATTVILLE	C I		В	JACVIN	В	JOES	В	KAFING	В
HYDE	B/D		B	JADIS	В	JOHNNIE	C I		D
HYDER	D		c i	JAGUEYES		JDHNS	C		В
HYDRO	C I	IONA Ionia	B	JAL	В	JDHNSBURG	В	KAHANUI KAHLER	В
HYE	BI		B	JALNAR	A (		D 1		B
HYNAS	D 1		B	JANES JANES CANYON	0 (	NOT 2MHOL I	В		В
HYRUN	B 1		B 1	JANES CANYON.	-	JOICE	D 1		D
HYSHAN	D 1	IPAGE	Ãi	ORAINED		JOINER	В	KAIDERS	В
IAO	- •	IPANO	ĉi	JANESTON	C/0	JOKDDOWSKI	ا م		Ā
IBERIA	D		Bi	JANISE	C		0		Ā
ICARIA	-	IPISH	c i	JANISE . OVERBLOWN .		•	D		Ā
ICENE	•	IPSON	B 1	DRAINED		JDNALE	В		В
I CHBOD	Di	IPSWICH	D I	JANISE. DRAINED	c	JONAS	В		A
ICHETUCKNEE	Di	IRA	ci	JANISE. OVERBLOWN	c i		В	KALAE	В
IC ICLE	B	IRAAN	B	JANSEN	В	JONCA	c i	KALALDCH	В
IOA	B	IREDELL	C/DI	JANUDE	В	JONDA	B	KALANA	C
IOABEL	B	IRELAND	c 1	JANUDE. CLAY	C	JONES	B	KALANAZOO	В
IOANONT	B	IRETEBA	B	SUBSTRATUN	- 1	JONESVILLE	B	KALAPA	В
IOEE	C 1	IRIGUL	D	JARAB	D	JOPLIN	C 1	KALAUPAPA	0
IOLEAILD	D	IRIN	c I	JAREALES	D	JOPPA	B	KALIFONSKY	D
IOLEWILD. DRAINED	C		B . [	JARITA	C		D 1	KALIGA	B/D
IONON	В	IROCK	c I	JARNILLO	В	JORGE	B	KALIHI	D
IGDELL	C	IRON BLOSSON	c 1	JAROLA	D	JORY	C 1		В
IGERT	C I	IRON MOUNTAIN	D I	JAROSD	C		C I	KALKASKA	A
IGNACIO	C I	IRON RIVER	B	JARRE	В	JOSEPHINE	В		C
IGO	D		BI	JARRON	D		c I		B/D
IGUALDAO	DI	IRONDALE	C I	JASCO	0		B		В
IHLEN	BI		c	JASON	D I	JOSLIN	В		D
IJAN	DI			JASPER	В		В		С
ILACHETONEL	D		c I	JAUCAS	A	JONEC	D		D
ILOEFONSO	В		c I		В		В		В
ILES	C 1	• · · · · · · · · · · · · · · · · · · ·	0 1	JAVBONE	0		В		В
ILIFF			C	JAY	C	JUANA DIAZ Jubilee	BI		B
ILIILI ILION	D		D 1	JAYAR . JAYBEE	C (	JUBILEE CLAYEY	D 1		В
ILLABOT	В		B 1	JAYEL	0		D		В
ILLER	В		- •	JAYEN	В	JUBILEE DRAINED	В		D
ILTON	-	ISANTI		JAYNES	_	JUBILEE. FLOODED	D		č
ILWACO	В		BI	JEAN	A	JUBILEE - GRAVELLY	D 1		В
INA	В		c i	JEAN LAKE	8	JUDA	В		c
IMBLER	Ві		AI	JEANERETTE	ō		c i	KANRAR	В
INLAY	DI	ISKNAT	c i	JEBO	В	JUDELL	В	KANAKA	В
IMNIG	c i	ISLAND	B	JEDD	C	JUDICE	D	KANAPAHA	B/D
INNOKALEE	B/DI	ISLOTE	B	JEDDO	C/D	JUDITH	B	KANARANZI	В
INNDKALEE.	D	ISOLDE	A 1	JEFFERS	8/0	JUDITH. BEDROCK	C/DI	KANARRA	0
DEPRESSIONAL	- 1	ISON	B	JEFFERSON	B [	SUBSTRATUN	1	KANAWHA	В
INNOKALEE.	8/01	ISTER	c 1	JEFFREY	B (	JUDITH. GRAVELLY	В	KANDALY	A
LINESTONE	- 1			JEKLEY	C (	JUDITH. COBBLY	В		В
SUBSTRATUN		ITANO	c i	JEMEZ	C	JUOKINS	C I	KANE	8
INOGENE		ITASCA	B	JENA		JUDSON		KANEBREAK	C
INONIL		ITAT	В	JENKINS		JUDY		KANEOHE	В
INPACT		ITCA	DI	JENK INSON	0	JUG	A !		В
INPERIAL INAVALE		ITHACA ITSWDOT	-	JENNESS		JUGET	D I	KANER KANGAS	A
INCELL	•	IUKA	B   C	JENNINGS JENNY	C [	JUGHANOLE Jugson	- •	KANID	â
INCHAU	•	IAV		JERAG		JULES		KANIKSU	В
INCY	•	IVAN	Ві	JERAULD	0	JULESBURG	A		c
INDART	•	IVANELL	-	JER I CHO	-	JULIN	o i		В
INDIAHOMA		IVER	Ві	JEROME		JUMBO	- •	KANLEE	c
INDIAN CREEK	_	IVES	-	JERRY		JUNPE	В	KANONA	D
INDIANO		IVES. WET	o i	JERRYSLU	č i	JUNPER		KANOSH	c
INDIANGLA		IVES. FLOODED		JERU	8	JUMPOFF	c i	KANTISHNA	D
INDIO	B	IVINS	ci	JESSE CANP	B 1	JUNCAL	ci	KANUTCHAN	0
INDUS	DI	IYRES	o i	JESSUP	C	JUNCOS	D	KANZA	D
INEZ	D	IZAGORA	c i	JETSTER	C	JUNCTION	B	KAPAA	8
INGALLS	B	IZEE	c	JETT	8	JUNEAU	B	KAPAPALA	В
INGENIO		IZO	A 1	JEWETT	B	JUNG	D	KAPAPALA. BEDROCK	C
INGERSOLL	В		B	JIGGS	B (		A		
INGRAN		JABU	B	JILSON	0 1	JUNIPERO		KAPIN	C
INKLER	В		- •	JIM	C	SUINUL	•	KAPOD	В
INKON DOATHED	D		0 1	JINBO	В			KAPOWSIN	D
INKOM, DRAINEO INKOSR	CI	JACEE		JIMEK		JUNO		KAPTURE	B
INKS		JACINTO JACK CREEK	8		C	JUNQUITOS JUPITER		KAPUHIKANI KARANIN	В
INKSTER	В			JIMLAKE JINSAGE				KARANKAWA	Ö
INMACHUK	DI		8 1	JINSAGE	B I			KARCAL	0
IMMAN	ci		- •	JIPPER	B 1	JUSTESEN		KAROE	8
INNO	Ā		o i	JIVAS	8		В		c
INNINGER	ĉi	JACKS		JOACHEN		JUVA		KARLIN	Ā
INPENDENCE	В	JACKSON	8 1	JOB		JUAN	_	KARLO	D
INSAK	Di	JACOB		JOBOS		KAALUALU		KARLSBURG	В
	•		•				•		

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE ORAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUN. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL NAP LEGEND.

TABLE 7-1--HYDROLOGIC GROUPS OF THE SOILS DE THE UNITED STATES

KARLSTAD Karluk	A	KENAI KENANSVILLE	CI	KILLPACK KILMANAGH	CI	KITTSDN KIVA	CI	KONERT. DRAINED KONNER	C
KARMA	8	KENDAIA	ë i	KILMER	c i	KIWANIS	8	KONNER. DRAINED	c
ARNAK	DI	KENDALL	8 1	KILMERQUE	C	KIZHUYAK	8	KONOCTI	8
ARNES	8	KENDALLVILLE	B	KILN	0 1	KJAR	0	KONSIL	0
ARRO	В	KENDRICK	A I	KILOA	A !	KLABER	0	KOOLAU	C
ARS ARSHNER	AI	KENESAV KENMOOR	B	KILOHANA KILOWAN	A I	KLABER . DRAINED KLADNICK	CI	KOONICH KOONTZ	A
ARTAR	В	KENN	8 1	KILWINNING	0	KLAMATH	6	KOOSHAREN	
ASEBERG	0 1	KENNAN	Bi	KIM	В	KLAUS	8	KOOSKIA	c
ASHVITNA	8 1	KENNEBEC	8 1	KIM.	8	KLAWASI	D	KOOTENAI	8
ASILOF	B	KENNER	DI	ELEVATION>6500	İ	KLAWATTI	C I	KOPIE	D
ASKI	B	KENNEWICK	8 1	KIM. SALINE	C	KLAWHDP	B !	KOPPERL	8
ASDTA	C I	KENNEY	A	KIM. COOL	В	KLAYENT	C	KOPPES	8
ASSLER ASSON	A I	KENNEY LAKE	CI	KIMAMA KIMBALL	BI	KLEINBUSH KLEJ	8 1	KORCHEA KORENT	8
ATAMA	B	KENONA	ŏi	KIMBERLINA	8		ci	KORNMAN	
ATENCY	c i	KENSAL	Ві	KINBERLY	B	KLICKITAT	8 1	KOROBAGD	C
ATHER	c i	KENSETT	B	KIMBROUGH	0 1	KLICKSON	8	KORONIS	8
A TO	B/D		8	KIMMERLING	D	KLINE. COBBLY	8	KORTTY	8
ATSEANES	0 1	KENT	D I	KINO	c i	KLINE. PROTECTED	A	KOSCIUSKO	8
ATULA	c i	KENUSKY	0 1	KINA	0	KLINESVILLE	CVD		8
ATY	0 I	KENYDN KED	B	KINCHELDE	DI	KLINGER KLONE	8	KDSSE KOSSUTH	8
AUFNAN	6 1	KEOKUK	В	KINDER	ĉ	KLOOCHMAN	c	KOSZTA	8
AUKAUNA	či	KEONAH	Ĉ i	KINDIG	В	KLOOTCH	c	KDTO	0
AUPO	Ā	KEOTA	В	KINDY	ci	KLOOTCHIE	8 1	KOTZMAN	В
AUPPI	B.		8/0		B	KLOTEN	0	KOVICH	D
AVETT	0 1	KEPLER	c i	KINGFISHER	B	KLUG	0 1	KOYEN	8
AWAIHAE	C I	KERBER	B	KINGHORN	0	KLUM	B	KOYNIK	D
AWAIHAPAI	B	KERBY	B	KINGILE	C	KLUMP	0	KOYUKUK	B
AWBAWGAM	c I	KERMIT	A I	K ING INGHAN	C	KLUTINA .	B	KRADE	В
AWICH	_ ^ !	KERNAN	c i	KINGMAN	0	KNAPKE	8 1	KRAKON	0
awkawlin Ayo	C I	KERRICK KERSHAW	BI	KINGMONT KINGS	BI	KNAPPA KNAPPTON	B	KRAM Kranski	В
EAAU	ő	KERSICK	âi	K INGSBURY	ا م	KNEELAND	ċi	KRANZBURG	8
EAHUA	B	KERSTON	A/DI		В	KNIFFIN	č i	KRATKA	8/
EALAKEKUA	Ā	KERT	c i	KINGSLAND	A/DI		8/0		В
EALIA	DI	KESSLER	c i	KINGSLEY	8	KNIK	8	KREAMER	C
EARL	CI	KESSON	0 1	KINGSTON	B	KNIKLIK	8	KREBS	8
EARNS	B	KESTERSON	D	KINGSVILLE	AZDI		C I	KREM	A
EARSARGE	В	KESWICK	c I	KINGTAIN	В	KNOB HILL	8	KREMLIN	8
EATING	c i	KETCHLY	BI	KINKEAD	c i	KNOBTOP	CI	KRESSON	C
EAUKAHA EAWAKAPU	0 1	KETCHUN KETONA	B	KINKEL KINKEL. GRAVELLY	C I	KNDCO KNDKE	8/0	KREYENHAGEN KRIER	D
EBLER	8	KETTENBACH	či	KINKORA	0	KNOLLE	8	KRIEST	8
ECH	o i	KETTLE	8	KINMAN	ci	KNOTT	0 1	KRONEN	8
ECKD	В	KETTLEMAN	Bi	KINNEAR	8 1		8	KRUEGER	8
ECKSROAD	c i	KETTNER	ci	KINNEY	B	KNOX	B	KRUM	0
EDA	BI	KEUTERVILLE	8	KINROSS	AZDI	KNULL	0 (	KRUSE	8
EDRON	C I	KEVANTON	0 1	KINSTON	B/DI		8	KUBE	B
EECHELUS	c i	KEVIN	c i	KINTA	D	KDBAR	C I	KUBLER	C
EECHI EEFERS	CI	KEAEENVA	CI	KINTON Kinzel	CI	KOBEH KOBEL	BI	KUBLI KUCERA	0
EEI	0 1	KEYA	â	KIOMATIA	A	KOCH	0	KUCK	Č
EEKEE	8	KEYES	6	KIONA	â	KOCH. DRAINED	C	KUDLAC	۵
EEL	c i	KEYMER	Ďi	KIOWA		KODAK	ě	KUHL	Ď
EELDAR	B		c i		B	KODIAK	0 1	KUKATAU	A
EELE	B	KEYSTONE	A	KIPLING	o i	KODRA	c i	KUKATAU. BEDROCK	C
EENE	c I		0		A	KOEHLER	C I	SUBSTRATUM	
EENO	c i	KEZAR	B	KIPSON	D I	KOELE	В	KULA	В
EESE	0 1	KIAKUS KIAMICHI	c i	KIRBY	A !	KOEPKE	B !	KULLIT	В
EESEHA EEWATIN	CI	KIAWICHI	D   B/D	KIRBYVILLE KIRK	B	KOERLING KDERTH	B	KULSHAN Kuna	C
EG	8 1	KIBBIE	8 1	KIRKENDALL	B 1	KOETHER	0 1	KUNATON	0
EGEL	c	KIBESILLAH	8	KIRKHAN	c		0	KUNAYDSH	A
EGEL. DRAINED	òi	KICKAPOO	8	KIRKLAND	0	KDGISH	0	KUNIA	8
EGONSA	. i	KICKERVILLE	8	KIRKSEY	c i			KUNUWEIA	8
EHENA	c i	KIDD	DI	KIRKVILLE	c i	KOKAN	A I	KUNZ	8
EHOE	8	KIDDER	8	KIRLEY	C I	KDKEE	B	KUPREANOF	A
EIGLEY	B	KIDMAN	0	KIRTLEY	c i	KOKERNOT	C	KUREB	A
EISER	8	KIEHL	A !	KIRVIN	C I	KOKO	8	KURO	D
EITH EITHVILLE	B	KIESEL KIETZKE	C	KIRVIN. GRADED KISATCHIE	D I	KOKOKAHI	D	KURTZ Kuskokwim	C
EKAHA	8 1	KIEV	B 1	KISHONA	BI		D		9
EKAKE	B	KIKONI	8	KISHONA ALKALI	C	KOLBERG	C	KUTCH	C
ELK	č	KILAGA	c	KISRING	ċ	KOLEKOLE	c	KUTLER	c
ELLER	c i	KILARC	òi	KISRING. WET	0		c		A
ELLY	ŏi	KILAUEA	8	KIBSICK	c i	KOLLS	Ď	KVICHAK	•
ELSO	c i	KILBURN	8	KISTIRN	8	KOLLUTUK	Ď i		A
ELTNER	0	KILCHIS	ci	KITCHELL	8	KOLOA		KYBURZ	8
ELTYS	0	KILDOR	C I	KITCHEN CREEK	0	KOLOB	C [		D
ELVIN	c I		c i		D	KOLOKOLO	В		D
EMAN	0	KILGORE	D	KITSAP	C I	KOLOMOKI	В		D
EMMERER EMOO	C I	KILKENNY	B	KITTERLL	DI	KONO		LA BRIER	D
ENP	B	KILLBUCK		KITTITAS DRAINED	D I	KONAWA		LA FARGE	8
- FSF	- 1	KILLEY	8	KITTITAS, DRAINED		KONERT		LA FUNDA LA GRANDE	0

NDTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES. THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN, E.G., BEDROCK SUBSTRATUM, REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL NAP LEGEND.

TABLE 7.1--HYDROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

LA HOGUE	8 (	LANAWA	8	LARRY. DRAINED	C 1	LEATHAN	C	LETHENT	D
LA LANDE	8 1	LANBERT	8 1	LARSON	D (	LEATHERNAN	D	LETNEY	A
LA PALMA	C [	LAMBETH	c 1	LARTON	A [	LEAVENWORTH	8	LETON	D
LA POSTA	8 [	LAMBNAN	0 1	LARUE	A 1	LEAVITT	B	LETORT	В
LA PRAIRIE	8 (	LANBRING	8	LARUSH	B	LEAVITTVILLE	8 1	LETRI	8/0
LA ROSE	8	LANEDEER	B	LARVIE	D	LEBAN	8	LETTIA	В
LABENZO	B	LAMINGTON	D	LAS	C	LEBANON	C	LEVASY	C
LABETTE	C I	LANKIN	8	LAS ANINAS	C (	LEBEAU	D 1	LEVELTON	D
LABISH	D	LAND	C 1	LAS FLORES	D	LEBEC	B	LEVERETT	C
LABISKI	B	LAMOILLE	8 1	LAS LUCAS	C	LEBO	8	LEVIATHAN	В
LABOU	D	LAMONDI	B	LAS POSAS	C	LEBSACK	CI	LEVY	D
LABOUNTY	0 1	LANONI	CI	LAS VEGAS	D	LECK KILL	B	LEW	В
LABRE	8 1	LAMONT	B 1	LASA	A 1	LEDFORO	B 1	LEWIS	D
LABSHAFT	D	LANONTA	0 1	LASALLE	D	LEDGEFORK	A	LEWISBERRY	8
LABU	D	LAMOTTE	B	LASAUSES	0 (	LEDNOUNT	D 1	LEWISBURG	C
LABUCK	8 1	LANOURE	C 1	LASIL	0 [	LEDDW	A 1	LEWISTON	С
LACAMAS	D	LANPHIER	B	LASSEL	C i	LEDRU	0 1	LEWISVILLE	В
LACAMAS. DRAINED	C	LAMPSHIRE	0 1	LASSEN	0 1	LEOUB	B	LEWKALB	C
LACERDA	D 1	LANSON	8/01	LASSITER	8 1	LEDUCK	C 1	LEX	8
LACHAPELLA	D	LANARK	8	LASTANCE	B (	LEDWITH	8/01	LEXINGTON	В
LACITA	8	LANCASTER	B	LATAH	C	LEE	D 1	LEXTON	В
LACKAWANNA	c i	LANCE	B 1	LATAHCO	C	LEEBENCH	0 1	LEYBA	в
LACLEDE	B 1	LAND	C 1	LATANIER	D [	LEEDS	C	LEYDEN	C
LACONNER	c	LAND. WET	0 1	LATCH	A 1	LEEFIELD	CI	LIBBINGS	D
LACOUCHEE	D	LANO. DRAINED	B 1	LATENE	В	LEELANAU	A I	LIBEG	в
LACOSTE	c i	LANDCO	CI	LATES	C	LEENONT	0 1	LIBERAL	D
LACOTA	8/0	LANDER	8 1	LATHAN	D [	LEEPER	0	LIBORY	A
LACRESCENT	8 1	LANDES	8 1	LATHER	D	LEERAY	0 1	LIBRARY	D
LACY	D. i	LANDLOW	c i	LATHROP	В	LEESBURG	B 1	LIBUSE	C
LADD	В	LANDHAN	8			LEETONIA		LICK	В
LADELLE	8	LANE	C I	LATIUM	D		DI	LICKOALE	D
LADNER	Di	LANEY	8 1		D			LICKING '	C
LADOGA	Bi	LANG. CLAYEY	c i	LATONIA	В	LEGAULT	D	LICKSKILLET	D
LADUE	Bi	SUBSTRATUN	i	LATOUCHE	D		8 1	LICKSKILLET. STONY	D
LADYSNITH	D I	LANG. MODERATELY	B 1		8	LEGORE	8 1	LICKSKILLET.	c
LAFE	D I	WET	i	LATTAS		LEHEN	ci	NONSTONY	
LAFITTE	D 1	LANGFORD	c i	LATTY	0	LEHIGH	c i	LIDOELL	8/0
LAG	8 1	LANGHEI	8 1	LAUDEROALE	Ď		0 1		В
LAGLORIA	8	LANGLADE	В		_	LEHR		LIDY	В
LAGNAF		LANGLOIS	D 1	LAUGENOUR	В	LEICESTER		LIEN	D
LA GOND A	či	LANGOLA	8 1		- •	LEIDL		LIGGET	В
LAGRANGE	0	LANGRELL	8 1			LEIGHCAN	8 1	LIGHTNING	0
LAGROSS	A	LANGSPRING	8 1		0		B i		c
LAGUNITA	Ā	LANGSTON	В		В			LIGON	D
LAGUNITA	Āİ	LANGTRY	D	LAUREN		LELA	Ď	LIGURTA	8
LAGUNITA. STRONGLY			Ā		В		-	LIHEN	A
SALINE		LANIGER	ê	LAVACREEK	8		-	LIHUE	B
LAGUNITA. WET	c		В		В		ĉi		A
LAHAINA	8		ci	LAVATE	8	LENERT	_	LILAH	Ā
LAHONTAN	0 1	LANKTREE	ċi	LAVEEN	В	LENETA	o i		Â
LAHRITY	c	LANDAK	8 1	LAVERKIN		LENING	- •	LILBOURN	В
LAIDIG	c i	LANSOALE	В		В	LENN	8	LILLINGTON	В
LAIDLAW	6	LANSDOWNE	ci		9	LENOND	- •	LILY	В
LAIL	c i	LANSING	8 1	LAVAI	В	LENONEX		LINA	В
LAIRO		LANTERN	8 1	LAWET	B/D		c i	LINBER	В
LAIRDSVILLE	9 1		В	LAVLER	8			LIMERICK	c
LAJARA	9			LAVNDALE	8	_		LINON	c
LAJITAS		LANTONIA		FYANADOD		LENAPAH		LINON. WET	ò
LAKE	Ă		8		C			LIMON. NONFLOODED	č
LAKE CHARLES	ôi		0 1		c	LENAVEE . PONDED	•	LINONES	В
LAKE CREEK	c	LANVER		LAWRENCEVICLE	0 1	LENBERG		LINDIA	Č
LAKE JANEE	8	LANYON		LAWSON	c	LENNEP	či		В
LAKEHELEN	c		-	LAWTHER	0			LINCOLN	A
LAKEHURST	Ā	LAPARITA	- •	LAWTON	c	LENZ	- •	LINDAAS	C/0
LAKELAND	Â	LAPDUN	В		В	LENZ. STONY	- •	LINDALE	c
LAKENONT	ō i	LAPED	0		c	LENZBURG		LINDELL	č
LAKEPORT	8 1	LAPEER		LAXAL	8	LEO		LINDEN	В
LAKESHORE	9 1	LAPHAN	A		ci		-	LINDER	В
LAKESIDE	c	LAPINE	Â	LAYCOCK	8	LEON	_	LINDLEY	c
LAKESOL	8 1	LAPLATTA	ĉ		A	LEON. OCCASIONALLY			В
LAKETON	8 1	LAPON	0	FYAMIEA	5	FLOODED	-	LINDSIDE	c
LAKEVIEW	či	LAPORTE	0 1	LAZEAR	D			LINDSTROM	8
LAKEVIN	8	LAPOSA	c i		8	LEONARDO		LINDY	c
LAKEWOOD	A	LARAND	В	LE SUEUR	8	LEGNAROTOWN	_	LINE	В
LAKI	6		8 1		c			LINEVILLE	c
LAKIN	A	LARDELL	c	LEADER	8	LERDAL		LINGANORE	8
LAKOA	â		В		8			LINHART	A
LAKOMA	0		c	LEADVALE		LEROY		LININGER	ĉ
LAKRIDGE	c		-		8 1	LERROW		LINKER	В
LALAAU	A	LARIAT					-	LINKVILLE	8
LALINDA	â	LARIM	B	LEAFU LEAFU	c		_	LINNE	Č
LALLIE	9 1		8	LEAGUEVILLE		LESLIE	- •	LINNET	č
LAN	9 1	LARKIN				LESON		LINNEUS	В
LANA	CI	LARKIN	BI	LEAKSVILLE	8 1			LIND	В
- TAN	-				- •				_
LAMANGA	C 1	LADMINE	6 .	I EALAMOTO	n			1 IMOVED	
LA MANGA LA MAR	C	LARMINE	DI	LEALANDIC	D I	LESWILL		LINOYER	B
LAMAR	8	LAROQUE	B	LEANNA	D	LETA	c i	LINROSE	C
				LEANNA LEANTD	D I		0 1		

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL NAP LEGEND.

#### TABLE 7-1--HYOROLOGIC GROUPS OF THE SDILS OF THE UNITED STATES

LINTON	8 1	LOLEKAA	8 1	LOUSCOT	8 1	LYFORD	c I	MAKAPILI	В
LINVELDT	8	LOLO	В	LOUYIERS	0 1	LYKEMS	c i	MAKAWAO	8
LINVILLE	B	LOLON	B	LOVEJOY	C I			MAKAWELI	8
LINVELL	C I	LDMA	c i	LOVELACE	В		CVD		В
LINWOOD LIPAN	0 1	LOMAKI	BI	LOYELL	C [	LYMANSON Lyme	C I	MAKI MAKIKI	c
LIPKE	0 1	LOMART	BI	FOAFFF	- •	LYNCH	, i	MAKLAK	B
LIPPINCOTT	8/0		8 1	LOYELDCK. SALINE	B	LYNCHBURG	ci	MAKOTI	â
LIPPITT	c i	LONETA	c i	LOYELOCK.	B	LYNDEM	A I	MAL	C
LIRIOS	8	LOMIRA	8	SALINE-ALKALI	ı	LYMN HAVEN	8/01	MALA	8
LISADE	B	LDMITAS	DI	LOYELDCK.	8	LYNNE	8/01	MALABAR	8/0
LISAM	DI	LONOINE	0	MODERATELY WET	. !	LYNMVILLE	c I	MALABOM	C
LISBON LISCD	B I	LONDNO LONPICD	BI	TOAF AETT	B   C	LYNNWDOD	A I	MALACHY MALAGA	B
LISCOMB	8 1	LONCAN	c i	LOWELL	c		ci	MALAMA	Â
LISK	В	LONDO	ci	LDWERCREEK	A	LYDMS	ō i	MALARGO	8
LISMAS	0 1	LONDONDERRY	C/DI	LOWLEIM	В	LYDMSVILLE	B	HALAYA	D
LISMORE	8	LDME	c i	LOANDES	В		D	MALBIS	В
LITCHFIELD	A I	LONE ROCK	A I	LDWRY	В		B	MALCOLM	В
LITHEON	c I	LOMEPINE	В	LOWS		LYSTAIR	8 I	MALDEN	^
LITIMSER LITLE	BI	LOMERIDGE COOL	C I	TOX TOAAITTE	B [	LYTELL	8 1	MALEZA MALHEUR	B C
LITRO	, i	LOMESTAR	В	LOXLEY		MABAMK	0 1	MALIBU	ŏ
LITTLE HORN	c i	LONETREE	A	LDYAL	В		c i	MALIN	Ď
LITTLE POLE	DI	LONEYDOD	В	LOYALTON	D	MABI	DI	MALJAMAR	В
LITTLE WOOD	8	LONGCREEK	D	LDYSVILLE	D	MABRAY	D	MALM	C
LITTLEBEAR	8 1	LONGODE	1	LOZA	DI	MACADD	0	MALD	В
LITTLEJOHN	c I	LONGFORD	c I	LOZANO	В	MACAR	ВІ	MALOTERRE	D
LITTLETON	BI	LONGJIN	DI	LDZIER LUALUALEI	DI	MACAREEMD	C I	MALDY	В
LITTSAN LITZ	c i	LDNGL01S LDNGNARE	8   D	LUALUALEI	D I	MACE MACEDDMIA	8 I	MALPAIS MALSTROM	8
LIV	0 1	LONGNONT	c	LUBBOCK	8 1	MACFARLAME	B	MALVERN	Č
LIVENGOOD	В	LDMGRIE	В	LUBRECHT	c	MACHETE	ci	MAMALA	Ď
LIVERMORE	B	LONGVAL	8	LUCAS	D	MACHIAS	8 1	MAMOU	c
LIVIA	0 1	FONCALEA	c i	LUCEDALE	B	MACHUELO	DI	MANAHAA	C
LIVINGSTON	DI	LONIGAN	B	LUCERNE	8	MACK	c 1	MAMAHAWKIM	0
LIVONA	B	LONJON	B	LUCERD	В	MACKEM	Di	MAMAMA	C
LIZZANT	В	LONNA	В	LUCIEN	c i	MACKEY	c i	MAMARD	C
LLANOS LOARC	C I	LONOKE	BI	LUCILE	A I	MACKINAC MACKSBURG	B	MANASSA MANASSAS	C 8
LOBOELL	8	LOOKINGGLASS	ci	LUCKIAMUTE	0 1	MACMEAL	8	MAMATEE	ő
LDBELVILLE	c	LOOKDUT	c i	LUCKY	ci	MACDMB	8 1	MANAVA	č
LOBERG	c i	LOOMER	ρi	LUCKY STAR	В	MACOMBER	c i	MANBURM	Ď
LOSERT	B	LOOMIS	DI	LUCKYRICH	B	MACDM	B	MANCELONA	A
LDBITDS	c I	LOPER	C I	LUCY	A	MADALIN	D 1	MANCHESTER	A
LOBO	D I	LOPEZ	0	LUDDEN	D	MADAWASKA	В	MANDAN	В
LOBURN	DI	LOPWASH	B	LUDINGTON	В		c I	MANDARIM	8/0
LOCANE	D I	LORACK LORADALE	BI	LUDLOW	C I	MADDOCK Madelia	A   B/DI	MANDERFIELD MANDEVILLE	8
LOCHLOOSA	ċi	LORADALE		LUFKIN	0 1	MADELINE	0 1	MANET	8
LOCHSA	8 1	LORAN	BI	LUGERT	8 1	MADERA	o i	MANFRED	ō
LDCKE	8	LOROSTOWN	c i	LUHON	B	MADGE	8	MANGUN	0
LDCKERBY	c I	LOREAUVILLE	C I	LUKE	C	MADILL	B	MANHATTAN	A
LDCKHART	-8	LORELLA	DI	LULA	В	MADISON	8 1	MANHEIM	C
LOCKMAN LOCKPORT	B	LORENA LORENZO	В	LULING	DI	MADDNNA	c I	MANI	c
LOCKTON	8 1	LORETTO	8   8	LULUDE	B	MADRAK MADRAS	CI	MAMILA MANISTEE	A
FOCKADOD	8 1	LORING	c i	LUMMI	DI		В	MANITA	ĉ
LOCKWOOD. WET	či	LORMAN	òi	LUMMI. DRAINED	č	MADROME	c i	MAMITOWISH	В
LDCO	c i	LOS ALAMOS	B	LUNA	c i	MADUREZ	B	MANLEY	8
LDCODA	DI	LOS BANOS	c i	LUNCH	c į	MAES	c i	MANLIUS	C
LDCUST	c I	LDS GATOS	c I	LUNDER	0	MAGALLOM	A !	MANN	8/0
LODALLEY	D	LOS GATOS.	B	LUNDS	c I	MAGENS MAGGIE	BI	MANNING MANDGUE	8
LODI	8 1	LDS GUINEDS	c	LUNDY	D I	MAGGIN	CI	MANOR	8
L000	6	LOS OSOS	c i	LUPE	В	MAGHILLS	В	MANSELO	8
LOFFTUS	ci	LOS ROBLES	8	LUPINTD	В	MAGIC	0 1	MANSFIELD	ŏ
LOFTON	0 i	LDS TANOS	ci	LUPINTD. SALINE	c i	MAGINNIS	o i	MANSIC	В
LOGAN	0 1	LOSEE	8 1	LUPOYOMA	8	MAGNA	D I	MANSKER	8
LDGDELL	B	LOSTINE	B	LUPPIND	D	MAGNOR	c I	MANTACHIE	C
LDGGERT	A !	LOSTVALLY	CI	LUPTON		MAGNUS	c I	MANTECA	C
LDGHOUSE LDGY	B	LOSTWELLS	BI	LURA		MAGDISU	0 1	MAMTEO MAMTER	C/0
LOHLER	c i	LOSTWELLS. WET	D I	LURAY LURNICK	CAL	MAHALASVILLE MAHANA	8 1	MANU	B C
LDHMILLER	c i	LOTT	ċi	LUTE	0 1	MAHASKA	В	MANVEL	8
LOHNES	Āİ	LOUDERBACK	c i	LUTH	ci		0 1	MANYEL . SALIME	č
LOHSMAN	Di	LOUDON	c i	LUTHER	В	MAHTDMEDI	A İ	MANZAMITA	c
LDIRE	B	LOUDONVILLE	c į	LUTIE	В	MAHTDWA	C/0		8
LOKEN	8	LOUELLA	B	LUTDN	D I		8		C
LOKERN	c i	LDUGHBORO	c I	LUTTERLOH	C I	MAIA	B	MAPLE MOUNTAIN	8
LDKERM. SALINE-ALKALI.	P	LOUIE	BI	LUTZKE LUYERNE	B I		CI	MAPLETON	C/0
AEL SAFTHE AFFAFT		FDOIE	D 1	LUXERNE	C I	MAILE Mainstay	D	MARAGLADE MARAGUEZ	C
LDKERM.	- i	LOUISA	В	LUZENA	0 1		ВІ	MARATHON	8
SALINE-ALKALI		LOUISBURG	8 1	LYBRDOK	D	MAJADA	В	MARBLE	A
LOKOSEE	B/D	LOUP	Di	LYDA	o i		8 i	MARBLEMOUNT	В
LOLAK	DI	LOUPLOUP	8	LYDICK	8		8	MARCELINAS	0
LOLALITA	B 1	LOURDES	CI	LYERLY	DI	MAKALAPA	D I	MARCELLON	C

MOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.

MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SDIL MAP LEGENO.

		1,000 110 111		c enders of the so		1112 0111120 0111120			
MARCETTA	B (	MARVYN	B	MAYODAN	в (	MCLAIN	C	MENDON	В
MARCIAL	D [	MARY	CI	MAYOWORTH	C	MCLAURIN	В	MENDOTA	8
MARCOLA	C I	MARYSLAND	B/DI	MAYQUEEN	A	MCLEOD	В	MENEFEE	D
MARCONI	C	MASADA	c I	MAYSOORF	В	MCLOUGHLIN	В	MENFRO	В
MARCOTT	C	MASARDIS	A	MAYTOWN	B (	MCMEEN	C	MENLO	D
MARCUM	C	MASARYK	A		В	MCMULLIN		MENO	C
MARCUS	B/D		0 1	MAYWOOD	В	MCMULLIN. WARM	D	MENOKEN	C
MARCUS. ALKALI.	0 [	MASCARENAS	c i	MAZASKA	C/D		C	MENOMINEE	A
WET	. !	MASCHETAH	•	MAZUMA	В	MCMURRAY	D	MENTO	C
MARCUSE	D	MASCOTTE		MC BETH	0	MCMURRAY, DRAINED	C	MENTOR	8
MARCY	C		8	MC CORT	В	MCNARY	D B	MENZEL	В
MARDIN	C/DI	DEPRESSIONAL MASCOTTE.	8401	MCAFEE MCALLEN	C (	MCNEAL MCNULL		MEQUON I MER ROUGE	СВ
MARENGO Maresua	В	OCCASIONALLY	5,01	MCALLISTER	c	MCNULTY	В	I MERCED	0
MARGATE	B/D			MCALPIN	ċ	MCPAUL	8	MERCEDES	D
MARGERUM	В	MASET	ві	MCBEE	c	MCPHIE	_	I MERCER	c
MARGO	B	MASHAM	D	MCBEE. LOAMY	В	MCQUARRIE	Ď	I MERCEY	c
MARIA. DRAINED	В	MASHEL	c i	SUBSTRATUM		MCQUEEN	_	MERDEN	0
MARIA. FLOODED	В			MCB IGGAM	c i	MCRAE	В	MEREDITH	В
MARIA. CLAY	c i	MASKELL	B	MCBRIDE	В	MCRAVEN	Č	MERETA	č
SUBSTRATUM		MASON	8 1	MCCAFFERY	A	MCVEGAS	D	MERGEL	В
MARIANA	c i	MASONFORT	DI	MCCAIN	c i	MCVICKERS	С	MERIDIAN	8
MARIAS	D	MASSANETTA	B	MCCALEB	В	MEAD	D	MERINO	D
MARIAVILLE	0	MASSBACH	B	MCCALL	B	MEADIN	A	MERKEL	8
MARICAD	B	MASSENA	C I	MCCALLY	0 (	MEADLAND	C	MERLIN	D
MARICOPA	8	MASSIE	DI	MCCAMMON	C I	MEADOWCREEK	C	MERMILL	B/0
MARIETTA	C	MASTERSON	B	MCCANN	8	MEADDWLAKE	С	MERNA	В
MARILLA	C I	MATAGORDA	D I	MCCAREY	C	MENDOMAILLE	В	MEROS	A
MARIMEL	C	MATAMOROS	C	MCCARRAN	В	MECAN	8	MERRICK	В
MARIMEL. DRAINED	B	MATANUSKA	В	MCCARTHY	В	MECHANICSBURG	C	MERRILL	C
MARINA	В	MATANZAS	В	MCCASH	В	MECKESVILLE	c	MERRILLAN	C
MARINE	c i	MATAPEAKE	В	MCCLAVE	c I	MECKLENBURG	C	MERRIMAC	A
MARION	DI		c i	MCCLEARY	D		A	MERRITT	В
MARIPOSA	CI	MATCHER	A	MCCLELLAN	В	MEDA MEDANO	B C	MERSHON	8
MARISCAL MARISSA	C	MATFIELD MATHERS	C I	MCCLOUD	C I		D	MERTON   Mertz	В
MARKES	0 1	MATHERTON	8 1	MCCLURE MCCOIN	0 1	MEDANO, FLODDED MEDARY	C	MERVIN	C A/D
MARKESAN	B 1		В	MCCOLL	0 1	MEDBURN		I MESA	B
MARKET	0		В	MCCOLLUM	В	MEDCO	D	I MESABA	Č
MARKEY	A/DI		c i	MCCONNEL	В	MEDFORD	8	I MESCAL	c
MARKHAM	c i	MATHISTON	či	MCCOOK	В	MEDERA	Ď	MESCALERO	c
MARKLAND	c i	MATHON	Ві	MCCORT	В	MEDICINE	8	MESEI	D
MARKTON	č i		c i	MCCOY	c i	MEDLEY	В	MESPUN	A
MARLA	0 1	MATTAMUSKEET	DI	MCCOYSBURG	В	MEDLIN	D	MESSER	С
MARLAKE	D	MATTAPEX	c i	MCCREE	В	MEDOMAK	D	MET	В
MARLBORO	B	MATTAPONI	CI	MCCRORY	0 1	MEDORA	9	METAMORA	8
MARLEAN	B	MATUNUCK	D	MCCROSKET	B	MEGMAY	В	METCALF	D
MARLETTE	B		c 1	MCCULLOUGH	B	MEEGERO	В	METEA	8
MARLDW	c 1	MAUDE	B	MCCULLY	C I	MEEHAN	8	METH	C
MARLTON	c i	MAUGHAN	C I	MCCUMBER	В	MEEKS	В	METIGOSHE	В
MARMARTH	В	MAUKEY	C	MCCUNE	D I	MEETEETSE	D	METOLIUS	8
MARNA Marosa	0	MAULDIN	D	MCDANIEL	В		D	METRE	D
MARPA	B I	MAUMEE	A/DI		B I	MEGGETT	C	METZ   METZ• SILTY	A B
MARQUETTE		MAUPIN	D I	MCOONALD MCDONALDSVILLE		MEGDNDT Meguin	В	SUBSTRATUM	0
MARQUEZ	CI	MAUREPAS	0 1	MCDUFF	c i	MEHLHORN	Č	METZ. FLDDOED	A
MARR		MAURICE	-	MCELROY		MEIKLE		METZ. GRAVELLY	A
MARRIOTT		MAURY		NCEMEN		MEISS	D	SUBSTRATUM	U
MARSDEN		MAUSER	8 1		Ві			MEXICD	D
MARSEILLES		MAUVAIS	- •	MCFAIN		MELBOURNE		MEXISPRING	D
MARSELL	•	MAYCO		MCFARLAND	8		C	MEYSTRE	В
MARSHALL		MAVERICK		MCFAUL		MELD		MHOON	D
MARSHAN	B/DI	MAVIE	B/DI	MCGAFFEY	B	MELDER	8	MIANI	В
MARSHDALE		MAWAE		MCGARR		MELGA	D	MIAMIAN	C
MARSHDALE	DI	MAWER	B	MCGARY	C	MELHOMES		MICANOPY	C
MARSHDALE. DRAINEO			_	NCGEHEE		MELITA		MICCO	B/D
MARSHOALE . CODL	D			MCGILVERY		MELLENTHIN		MICHELSON	В
MARSHFIELD		MAXEY		MCGINNIS		MELLOR		MICHIGAMME	В
MARSING	B			MCGINTY		MELLOR. WET	-	MICHIGAMME.	C
MART	В	MAXTON		MCGIRK	- •	MELLOR. DRY		MODERATELY WET	_
MARTEL MARTELLA	D			MCGIRK. LOW		MELLOTT		MICHIGANME. COBBLY	D
MARTIN	BI		D I	PRECIPITATION		MELOCHE		MICKEY   MIDAS	В
MARTIN PENA		MAY DAY		MCGOWAN MCGRATH		MELOLAND MELON	-	MIDCO	A
MARTINECK	0 1		- 0	MCGREW	B			MIDDLE	ĉ
MARTINEZ	D 1		•	MCGUIRE		MELTON		MIDDLEBURY	В
MARTINI	В			MCHENRY		MELVILLE		MIDOLETOWN	В
MARTINSBURG	- •	MAYDOL	_	MCILWAINE		MELVIN		MIODLEWOOD	D
MARTINSDALE	B	· -		MCINTOSH		MEMALOOSE	-	MIDELIGHT	č
MARTINSON	ci			MCINTYRE		MEMPHIS		MIDESSA	В
MARTINSVILLE		MAYFIELD		MCKAMIE		MENAHGA		MIDFORK	В
MARTINTON	c i	_	c i	MCKAY		MENARD	В	MIDLAND	D
MARTIS	B	MAYGER	c i			MENASHA	D	MIDMONT	C
MARTISCO	B/DI	MAYHEW	DI	MCKENNA. DRAINED	C I	MENBD		MIDNIGHT	D
MARTY		MAYMEAD		MCKENZIE		MEMDEBOURE		MIDO	A
MARVAN	D		0	MCKINLEY		MENDENHALL		MIDRAW	D
MARVELL	B		A I			MENDI		HIDVALE	C
MARVIN	c 1	MAYO	В	MCKNIGHT	В	MENDOCIND	В	MIDWAY	D

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SDIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

MIERHILL	C . I	MIRABAL	c I	MONDEY	c I	MORRISON	8 1	MULTORPOR	A
MIESEN	DI	MIRACLE	8	MONDOVI	B	MORRISTOWN	c i	MUNDAL	C
MIESEN. ORAINED	c i	MIRAGE	c	MONEE	DI	MORROW	ci	MUNDELEIN	В
MIFFLIN	B	MIRAND	0	MONICO	c i	MORSE	0 i	MUNDEN	В
HI GUEL	o i	MIRANDA	0	MONIDA	c i	MORSET	B 1	MUNDOS	В
MIKE	D i	MIRES	В	MONIERCO	Di		ci	MUNDT	c
MIKESELL	č i	MIRKWOOD	D	MONITEAU		MORTON	8 1	MUNI	D
MIKIM	8	MIRROR	В	MONITOR	ci		В	MUNISING	В
MIKKALO	c i	MIRROR LAKE	A	MONJEAU	Ďi		c i	NUNJOR	В
MILAN	В	MISAO	â	MONOGRAM	8	MOSCA	В	MUNK .	c
			8						
MILBURY	- •	MISENHEIMER		MONONA	- •		c I	MUNSET	D
MILCAN	c i	MISHAK	c i	MONONGAHELA	c I	MOSEL	c I	MUNSON	D
MILES	8	MISSION	D	MONROE	8	MOSHANNON	B	MUNUSCONG	B/0
MILFORO	B/D		A I	MONROEVILLE		MOSHEIM	D	MURAD	С
MILHAM	B	MISSLER	8	MONSERATE	c i	MOSHER	D	MURDO	8
MILITARY	8	MISSOULA	D	MONSERATE. THIN	DI	MOSHERVILLE	c	MURDOCK	C
MILL HOLLOW	8	MITCH	8	SURFACE	1	MOSIDA	B	MUREN	В
MILLAOORE	CI	MITCHELL	В	MONSON	C/DI	MOSINEE	B	MURNEN	В
MILLBORO	D 1	MITIWANGA	C I	MONTAGUE	DI	MOSLANDER	D	MUROC	D
MILLBROOK	B	MITRE	C I	MONTALTO	C	MOSO	B	MURPHY	C
MILLBURNE	В	MITTEN	B 1	MONTARA	Di	MOSOMO	A 1	MURRIETA	D
MILLER	Di	MIVIOA	8 1	MONTAUK	ci	MOSQUET	Di	MURRILL	В
MILLERLAKE	Ві	MIZEL	0	MONTBORNE	8 1	MOSSYROCK	ві	MURVILLE	A/D
MILLERLUX	o i	MOAG	D		A		B	MUSCATINE	В
MILLERTON	Ďi	MOANO	D	MONTE	8 1	MOTEN	c	MUSE	č
MILLERVILLE	A/DI	-	c	MONTECITO	8 1		В		В
MILLETT	8	MOAULA	Ä	MONTEGRANDE	0 1		DI		В
									-
MILLGROVE	B/01		D I	MONTELL	DI		В	MUSINIA	В
MILLHEIM	C I	MOBEETIE	В	MONTELLO	c i	MOTTLAND	В	MUSKEGO	A/D
MILLHOPPER	A	MOBERG	В	MONTEOCHA	D	MOTTO	D	MUSKEGO	D
MILLICH	D	MOBRIDGE	8	MONTEOLA	D		A I	MUSKEGO. OVERWASH	A/D
HILLICOMA	C	MOCA	0	MONTEROSA	D	MOULTON	CI	MUSKINGUM	C
MILLIGAN	C	MOCAREY	0 1	MONTESA	c	MOULTRIE	D	MUSKOGEE	С
MILLING	0	MOCHO	B	MONTEVALLO	DI	MOUND	c 1	MUSQUI Z	С
MILLINGTON	B/DI	MOCKLER	8	MONTEZ	B	MOUNDPRAIRIE	B/DI	MUSSEL	B
MILLIS	c i	MOCMONT	B 1	MONTGOMERY	DI	MOUNOPRAIRIE.	D	MUSSELSHELL	В
MILLPAW	c i	MOCTILEME	- D I	MONT ICELLO	ві	PONDED	i	MUSSEY	B/D
MILLPOT	ві	MODA	D	MONT LETH	В	MOUNDVILLE	A i	MUSTANG	A/0
MILLROCK	A	MODALE	ci	MONTLID	ci	MOUNT HOME	B	MUTNALA	В
MILLSAP	D	MODENA	8	MONTMORENCI	В	MOUNT LUCAS	c i	MUZZLER	D
MILLSDALE	B/DI		c		8		0 1	MYAKKA	B/D
	0 1		8	MONTOSO	_	MOUNTA INBOY			
MILLSHOLM	-	MODJESKA		MONTOUR	DI	MOUNTAINBURG	D	MYAKKA.	D
MILLSITE	B	MODKIN	c I	MONTOYA	D	MOUNTAINEER	c I	OEPRESSIONAL	0.40
MILLVILLE	В	MODOC	c I	MONTOYA. OVERWASH	C I	MOUNTAINVIEW	c I	MYAKKA. SHELL	B/D
MILLAGOD	DI	MODYON	c I	MONTOYA. FLOODED	D I	MOUNTAINVILLE	В	SUBSTRATUM	
MILNER	В	MOE	c i	MONTPELLIER	c i		8	MYAKKA. TIDAL	D
MILPITAS	D 4	MOEN	c i	MONTROSS	C I	MOVILLE	c I	MYATT	0
MILREN	c I	MOENKOPIE	0 1	MONTVALE	DI		D	MYERS	0
MILTON	C	MOEPITZ	B	MONTVEROE	B/D	MOWERA	8	MYERSVILLE	В
MIMBRES	В	MOFFAT	B	MONTWEL	B	MOWER	c	MYFORD	D
MIMOSA	C 1	MOGG	0 1	MONUE	8	MOMICH	c 1	MYLREA	C
MINALOOSA	8	MOGLIA	C I	MOODY	8	MOXEE	0	MYOMA	A
MINAT	B	MOGOLLON		MOOHOO	B	MOYERS	C	MYOMA. WET	B
	_ ,		В			MOYERSON	D I	MYRICK	С
MINATARE	Di	MOGOTE	B C	MOOLACK	A	MUTEKSON			
MINATARE MINCHEY		MOGOTE Mohall		MOOLACK MOONLIGHT	A   B	MOYINA	D	MYRTLE	В
	DI		c i			MOYINA	_ •		B
MINCHEY	D I	MOHALL	C	MOONLIGHT MOONSHINE	8	MOYINA Mrow	D	MYSTEN	
MINCHEY MINCO	D   8   8   8	MOHAVE MOHAVK	C B B	MOONLIGHT MOONSHINE MOONSTONE	B I D I C I	MOYINA MROW MT. AIRY	D I	MYSTEN MYSTIC	A C
MINCHEY MINCO MINOEN	D   B   B	MOHALL MOHAVE MOHAVK MOINGONA	С В В	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE	B   D   C   B	MOYINA Mrow Mt. Airy Mt. Carroll	D I C I A I B I	MYSTEN MYSTIC Naalehu	A C B
MINCHEY MINCO MINDEN MINE	D   B   B   B	MOHAVE MOHAVK	C   8   9   8   8	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE	B I D I C I	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON	D I	MYSTEN MYSTIC	A C
MINCHEY MINCO MINDEN MINE MINER MINERAL	D   B   B   D   C	MOHALL MOHAVE MOHAVK MOINGONA MOKELUMNE MOKENA	C   B   B   B   C	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER	B   D   C   B   C   D	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA	D   C   B   C   D	MYSTEN MYSTIC NAALEHU NAALEHU. BEDROCK SUBSTRATUM	A C B C
MINCHEY MINCO MINOEN MINE MINE	D   B   B   B   D   C   C   C	MOHALL MOHAVE MOHAVK MOINGONA MOKELUMNE MOKENA MOKIAK	C   B   B   B   C   C   B	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE	B   D   C   B   C   D   A/D	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE	D   C   A   B   C   D   D   D	MYSTEN MYSTIC NAALEHU NAALEHU. BEDROCK SUBSTRATUM NABESNA	A C B C
MINCHEY MINCO MINOEN MINE MINE MINER MINER MINERAL MINERAL	D   B   B   B   C   C   C   C	MOHALL MOHAVE MOHAWK MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS	C   B   B   B   C   C   B   D	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE	B   D   C   B   C   D   A/D   C	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUO SPRINGS	D   C   D   D   C	MYSTEN MYSTIC NAALEHU NAALEHU SUBSTRATUM NABESNA NACHES	A C B C
MINCHEY MINCO MINOEN MINE MINE MINER MINERAL MINERAL MINERAL MINGO MINGO MINGUS	D   B   B   B   C   C   C   D	MOHALL MOHAWE MOHAWK MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKIO	C   B   B   C   C   B   D   D	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOS ILAUKE MOPANG	B I C I B I A/DI C I B I	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY	D   C   D   D   C   D   D   D   D   D	MYSTEN MYSTIC NAALEHU NAALEHU• BEDROCK SUBSTRATUM NABESNA NACHES NACHUSA	A C B C D B B B
MINCHEY MINCO MINCEN MINEE MINE MINER MINERAL MINERAL MINERAL MINGUS MINGUS MINIOOKA	D   B   B   B   B   C   C   C   C   C   C	MOHALL MOHAWE MOHAWK MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA	C   B   B   B   C   B   C   B   D   B   B   B   B   B   B   B   B	MOONLIGHT MOONSTONE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH	B   D   C   B   C   D   C   B   B   B	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUO SPRINGS MUDRAY MUDSOCK	D   C   D   D   C   D   B   D   D   D   D   D   D   D   D	MYSTEN MYSTIC NAALEHU NAALEHU SUBSTRATUM NABESNA NACHES NACHUSA NACIMIENTO	A C B C D B B C
MINCHEY MINCO MINDEN MINEE MINER MINERAL MINERAL MINERAL MINGO MINGUS MINIOUKA MINKLER	D   B   B   B   B   C   C   C   C   C   C	MOHALL MOHAVE MOHAVK MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA	C   B   B   C   B   C   B   D   D   B   B   B   B   B   B   B	MOONLIGHT MOONSTONE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA	B   D   C   B   C   B   B   C   C   B   C   C	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES	D   C   D   D   C   D   B   C   C   C   C   C   C   C   C   C	MYSTEN MYSTIC NAALEHU NAALEHU SUBSTRATUM NABESNA NACHES NACHUSA NACHUSA NACIMIENTO NACLINA	A C B C D B B C D
MINCHEY MINCO MINOEN MINE MINER MINERAL MINERAL MINERAL MINGO MINGUS MINGUS MINIOOKA MINKLER MINKLER	D   B   B   B   B   C   C   C   C   C   C	MOHALL MOHAVE MOHAVK MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLANO	C B B C C B D D B B B B B B B B B B B B	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO	B   D   C   B   C   B   B   C   C   C   C   C	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDRAY MUES MUFF	D   C   D   D   D   C   D   D   C   D   D	MYSTEN MYSTIC NAALEHU NAALEHU BEDROCK SUBSTRATUM NABESNA NACHES NACHUSA NACIMIENTO NACLINA NACOGDOCHES	A C B C D B B C D B
MINCHEY MINCO MINDEN MINE MINER MINERAL MINERAL MINERAL MINGO MINGUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS	D   B   B   B   B   C   C   C   C   C   C	MOHALL MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKULEIA MOLALLA MOLALA MOLAS	C   B   B   B   B   B   B   B   B   B	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSELAKE MOPANG MOPANG MOPANG MORAN	B   D   C   D   A/D   C   B   B   C   C   B   B   C   C   B   B	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS	D   C   D   D   D   D   C   D   C   D   C   C	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABSTRATUM NABESNA NACHES NACHUSA NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA	A C B C D B B C D B D
MINCHEY MINCO MINCEN MINEE MINER MINERAL MINERAL MINGUS MINGUS MINIOUSA MINKLER MINKLER MINKLER MINLITH MINNEHA MINNEISKA	D   B   B   B   B   C   C   C   C   C   C	MOHALL MOHAWE MOHAWK MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLALLA MOLALS MOLCAL	C   B   B   B   C   C   B   C   B   B	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORADO MORAN	B   C   B   C   B   C   B   C   C   B   C   C	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE	D   C   D   D   C   D   C   C   C   C	MYSTEN MYSTIC NAALEHU NAALEHU NABESNA NACHES NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU	A C B C D B B C D B D B
MINCHEY MINCO MINDEN MINEE MINER MINERAL MINERAL MINGUS MINIOUKA MINKLER MINKLER MINLITH MINNELSKA MINNELSKA MINNELSKA MINNELSKA	D   B   B   B   C   C   C   C   C   C   C	MOHALL MOHAWE MOHAWK MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLANO MOLAS MOLCAL MOLENA	C   B   B   B   C   B   B   B   B   B	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOPANG MOPANG MORAN MORAN MORAN MORAN MORAN MORAU	B   D   C   B   C   D   B   C   C   C   C   C   C   C   C   C	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUO SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGGINS MUGHOUSE MUGHUT	D   C   D   D   C   D   C   C   C   C	MYSTEN MYSTIC NAALEHU NAALEHU NABESNA NACHES NACHUSA NACHUSA NACHUSA NACLINA NACOGDOCHES NACOGDOCHES NADA NADA NADA NADA NADA	A C B C D B B D B D B D
MINCHEY MINCO MINDEN MINEE MINER MINERAL MINERAL MOUNTAIN MINGO MINGUS MINIOOKA MINKLER MINKLER MINLITH MINNEHA MINNEISKA MINNEOSA	D   B   B   B   C   C   C   C   C   C   C	MOHALL MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLANO MOLAS MOLCAL MOLENA MOLION	C B B C C B D D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B B D B B D B B B D B B B D B B B D B B B D B B D B B B D B B D B B B D B B D B B D B B B D B B D B B D B B D B B D B D B B D B D B B D B D B D B D B D B D B D B D B D B D B D B D B D B D B D B D B D B D D B D D B D D B D D B D D B D D B D D B D D B D D D D D D D D D D D D D D D D D D D D	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOPANG MORAN MORAN MORAN MORAN MORD MOREAU MOREHEAD	B   D   C   D   D   B   D   C   D   D   D   C   D   D   C   D   D	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR	D     C     B   C     D     C   C   C   C   B   B	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NABESNA NACHES NACHUSA NACHUSA NACHUINA NACOGDOCHES NADA NADA NADEAU NADEAU NADINA NADRA	A C B C D B B D D D D
MINCHEY MINCO MINCEN MINE MINER MINERAL MINERAL MINERAL MINGO MINGUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINNEUS MINNEUS MINNEOSA MINNEOSA MINNEOUA	D	MOHALL MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKULEIA MOLALLA MOLALLA MOLALLA MOLACAL MOLENA MOLION MOLLICY	C   B   B   B   B   B   B   B   B   B	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSELAKE MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORD MOREHEAD MOREHEAD	B   D   C   D   C   D   C   D   C   D   D	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHUT MUIR MUIRKIRK	D     C     B   O   C   C   C   B   B   B	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADRA NABGELIN	A C B C D B B D D D D D
MINCHEY MINCO MINOEN MINEE MINER MINERAL MINERAL MINERAL MINGO MINGUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINIOUS MINNEISKA MINNEOSA MINNEOSA MINNEOUA MINNEOUA	D   B   B   B   C   C   C   C   C   C   C	MOHALL MOHAWE MOHAWE MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLALLA MOLALLA MOLALLA MOLCAL MOLENA MOLION MOLLICY MOLLMAN	C   B   B   B   C   B   B   B   B   B	MOONLIGHT MOONSTONE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORD MOREAU MOREHOUSE MOREHOUSE	B   D   C   D   C   B   C   D   C   C   D   C   C   D   C   C	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO	D	MYSTEN MYSTIC NAALEHU BEDROCK SUBSTRATUM NABESNA NACHES NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADRA NADRA NAGELIN NAFF	A C B C D B D D D D D B
MINCHEY MINCO MINCO MINCEN MINEE MINERAL MINERAL MINERAL MINGUS MINIOUKA MINKLER MINKLER MINLITH MINNEHA MINNEISKA MINNEOPA MINNEOVA MINNEOVA MINNEOVA MINNETONKA MINNEVAUKAN	D   B   B   B   C   C   C   C   C   C   C	MOHALL MOHAWE MOHAWK MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLALLA MOLAND MOLAS MOLCAL MOLENA MOLION MOLLICY MOLLICY MOLLICY MOLLUMAN MOLLVILLE	C   B   B   B   C   B   B   B   B   B	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSELAKE MOOSILAUKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORADO MORAN MORD MOREAU MOREHOUSE MOREHOUSE MORENO	B   D   C   D   D   C   D   D   C   D   D	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO. PONOED	D	MYSTEN MYSTIC NAALEHU NAALEHU NABESNA NACHES NACHUSA NACHUSA NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADA NADA NADA NADA NADRA NAGELIN NAFF NAGITSY	A C B C D B D D D D B C C
MINCHEY MINCO MINOEN MINEE MINER MINERAL MINERAL MINERAL MINGUS MINIODKA MINKLER MINLITH MINNELSKA MINNEISKA MINNEOPA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA	D   B   B   B   C   C   C   C   C   C   C	MOHALL MOHAWE MOHAWK MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLALLA MOLANO MOLAS MOLCAL MOLENA MOLION MOLLICY MOLLMAN MOLLYILLE MOLLY	C B B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B C C B C C B C C B C C B C C B C C B C C C B C C C C C C C C C C C C C C C C C C C C	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAKE MOOSILAKE MOORAN MORADO MORAN MORADO MORAN MORAD MOREAU MOREHOUSE MOREHOUSE MOREHOUSE MOREHO MORET	B   D   C   D   D   C   D   D   D   D   D	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO. DONOED MUKILTEO. DRAINED	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHES NACHUSA NACHUSA NACHIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADRA NADRA NAEGELIN NAFF NAGITSY NAGLE	A C B C D B B D D D B C B
MINCHEY MINCO MINCEN MINE MINE MINERAL MINERAL MINERAL MINGO MINGUS MINIODKA MINKLER MINKLER MINNELSKA MINNELSKA MINNEOPA MINNEOPA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA	D   B   B   B   C   C   C   C   C   C   C	MOHALL MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKIAK MOKULEIA MOLALLA MOLALLA MOLANO MOLAS MOLCAL MOLENA MOLION MOLLICY MOLLMAN MOLLVILLE MOLLVILLE MOLLVILLE	C B B B B B B B B B B B B B B B B B B B	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSELAKE MOOSILAUKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORADO MORAN MORD MOREAU MOREHOUSE MOREHOUSE MORENO	B   D   C   D   C   D   C   D   C   D   C   D   C   D   C   D   C   D   C   D   C   D   D	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO DRAINED MULAT	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NABESNA NACHES NACHUSA NACHUSA NACHIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADEAU NADINA NAGEGELIN NAFF NAGITSY NAGLE NAGROM	A C B C D B B C D B C B C B C
MINCHEY MINCO MINCO MINCO MINEN MINER MINERAL MINERAL MINGO MINGUS MINIOUKA MINKLER MINIOUKA MINKLER MINNEHA MINNEHA MINNEOPA MINNEOPA MINNEOSA MINNEOUKA MINNEWAUKAN MINNEWAUKAN MINNIECE MINNIEPEAK MINNIEPEAK MINNIENAUO	D   B   B   B   C   C   C   C   C   C   C	MOHALL MOHAWE MOHAWK MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLALLA MOLANO MOLAS MOLCAL MOLENA MOLION MOLLICY MOLLMAN MOLLYILLE MOLLY	C B B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B B C C B C C B C C B C C B C C B C C B C C B C C C B C C C C C C C C C C C C C C C C C C C C	MOONLIGHT MOONSHINE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAKE MOOSILAKE MOORAN MORADO MORAN MORADO MORAN MORAD MOREAU MOREHOUSE MOREHOUSE MOREHOUSE MOREHO MORET	B   D   C   D   D   C   D   D   D   D   D	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO. DONOED MUKILTEO. DRAINED	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHES NACHUSA NACHUSA NACHIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADRA NADRA NAEGELIN NAFF NAGITSY NAGLE	A C B C D B B D D D B C B
MINCHEY MINCO MINCEN MINE MINE MINERAL MINERAL MINERAL MINGO MINGUS MINIODKA MINKLER MINKLER MINNELSKA MINNELSKA MINNEOPA MINNEOPA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA	D   B   B   B   C   C   C   C   C   C   C	MOHALL MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKIAK MOKULEIA MOLALLA MOLALLA MOLANO MOLAS MOLCAL MOLENA MOLION MOLLICY MOLLMAN MOLLVILLE MOLLVILLE MOLLVILLE	C B B B B B B B B B B B B B B B B B B B	MOONLIGHT MOONSHINE MOONSTONE MOONSTONE MOONVILLE MOOREVILLE MOOSELAKE MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORD MOREAU MOREHEAD MOREHOUSE MOREHOUSE MOREHOUSE MORET MOREY	B   D   C   D   C   D   C   D   C   D   C   D   C   D   C   D   C   D   C   D   C   D   D	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO DRAINED MULAT	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NABESNA NACHES NACHUSA NACHUSA NACHIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADEAU NADINA NAGEGELIN NAFF NAGITSY NAGLE NAGROM	A C B C D B B C D B C B C B C
MINCHEY MINCO MINCO MINCO MINEN MINER MINERAL MINERAL MINGO MINGUS MINIOUKA MINKLER MINIOUKA MINKLER MINNEHA MINNEHA MINNEOPA MINNEOPA MINNEOSA MINNEOUKA MINNEWAUKAN MINNEWAUKAN MINNIECE MINNIEPEAK MINNIEPEAK MINNIENAUO	D   B   B   B   B   C   C   C   C   C   C	MOHALL MOHAWE MOHAWE MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLALLA MOLALLA MOLALLA MOLENA MOLION MOLLICY MOLLWILLE MOLLY MOLLY MOLLY MOLLY MOLSON	C B B B B B B B B B B B B B B B B B B B	MOONLIGHT MOONSTONE MOONSTONE MOONSTONE MOONVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORD MOREAU MOREHOUSE MOREHOUSE MOREHO MORET MOREY MOREY MOREY MOREY MOREY MORGALA MORGANFIELD	B   D   C   D   C   D   C   D   C   D   C   D   C   D   C   C	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO MUKILTEO MUKILTEO MUKILTEO MULAT MULDOON MULDROW	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADRA NAEGELIN NAFF NAGITSY NAGLE NAGROM NAHATCHE	A C B C D B B C D B C C B C C C
MINCHEY MINCO MINOEN MINEE MINER MINERAL MINERAL MINERAL MINGO MINGUS MINIOOKA MINKLER MINIOHA MINNELSKA MINNEHA MINNEOPA MINNEOPA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE	D   B   B   B   B   C   C   C   C   C   C	MOHALL MOHAWE MOHAWE MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLALLA MOLALLA MOLALLA MOLENA MOLION MOLICY MOLLICY MOLLY MOLLY MOLLY MOLSON MOLYNEUX	B B B B B B B B B	MOONLIGHT MOONSTONE MOONSTONE MOONSTONE MOONVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORD MOREAU MOREHOUSE MOREHOUSE MOREHO MORET MOREY MOREY MOREY MOREY MOREY MORGALA MORGANFIELD	B   D   C   D   D   D   D   D   D   D   D	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO MUKILTEO MUKILTEO MUKILTEO MULAT MULDOON MULDROW	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACHUSA NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADRA NAEGELIN NAFF NAGITSY NAGLE NAGROM NAHATCHE	A C B C D B B C D B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C C B C C C B C C C B C C C B C C C B C C C C C C C C C C C C C C C C C C C C
MINCHEY MINCO MINCO MINCO MINCE MINE MINER MINERAL MINERAL MINERAL MINGO MINGO MINGUS MINIOOKA MINKLER MINNEISKA MINNEISKA MINNEOPA MINNEOPA MINNEOPA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNICCE MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNICO MINNI	D   B   B   B   B   C   C   C   B   B   B	MOHALL MOHAVE MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLALLA MOLALLA MOLALLA MOLALLO MOLENA MOLICAL MOLENA MOLICY MOLLMAN MOLLICY MOLLWAN MOLLYILE MOLLY MOLOKAI MOLSON MOLYNEUX MOMOLI	C B B B C C B B B B B B B B B B B B B B	MOONLIGHT MOONSHINE MOONSTONE MOONSTONE MOONVILLE MOOREVILLE MOOSELAKE MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORD MOREHEAD MOREHEAD MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE	B   D   C   D   D   C   D   D   C   D   D	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUO SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO MUKILTEO MUKILTEO MULAT MULOOON MULDOON MULDROW MULETT	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHES NACHUSA NACHUSA NACHIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADRA NAEGELIN NAFF NAGITSY NAGLE NAGROH NAHATCHE NAHAA NAHON	A C B C D B B C D D B C C B C C D D B C C B C C D D D D
MINCHEY MINCO MINOEN MINE MINE MINERAL MINERAL MINERAL MINGO MINGUS MINIODKA MINKLER MINKLER MINNEISKA MINNEOPA MINNEOPA MINNEOPA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNIECE MINNIEPEAK MINNIEPEAK MINNIEN MINNIE MINNIE MINNYE MINOA	D   B   B   B   B   C   C   C   B   B   B	MOHALL MOHAVE MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKIAK MOKULEIA MOLALLA MOLALLA MOLANO MOLAS MOLCAL MOLENA MOLION MOLLICY MOLLMAN MOLLYILLE MOLLYILLE MOLSON MOLYNEUX MOMOLI MONA	C B B B B B B B B B B B B B B B B B B B	MOONLIGHT MOONSHINE MOONSTONE MOONSTONE MOONVILLE MOOREVILLE MOOSELAKE MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORD MOREHEAD MOREHEAD MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE	B   D   C   D   C   D   C   D   C   D   C   D   C   D   C   C	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO. DRAINED MULDROW MULDROW MULDROW MULDROW MULDROW MULGON	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADRA NABESLIN NAFF NAGITSY NAGLE NAGLE NAGLE NAGROM NAHATCHE NAHMA NAHON NAHRUB	A C B C D B B C D B C C B D D D D D D D D
MINCHEY MINCO MINDEN MINEE MINER MINERAL MINERAL MINGO MINGUS MINIOUKA MINKLER MINIOUKA MINKLER MINNEHA MINNEHA MINNEOPA MINNEOPA MINNEOPA MINNEOVA MINNEWAUKAN MINNEWAUKAN MINNIECE MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK MINNIEPEAK	D   B   B   B   B   C   C   C   C   C   C	MOHALL MOHAVE MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKION MOKULEIA MOLALLA MOLALLA MOLALLA MOLANO MOLAS MOLCAL MOLENA MOLION MOLLICY MOLLWILLE MOLLY MOLLVILLE MOLLY MOLSON MOLYNEUX MOMOLI MONA MONACAN	C B B B B B B B B B B B B B B B B B B B	MOONLIGHT MOONSHINE MOONSTONE MOONSTONE MOONVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MOREAU MOREHOUSE MOREHOUSE MOREHOUSE MOREY MOREY MOREY MOREY MORGALA MORGANFIELD MORIARTY MORICAL MORICAL MORLEY MORLING	B   D   C   D   D   D   D   D   D   D   D	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO MUKILTEO MUKILTEO MUKILTEO MULAT MULOOON MULDROW MULETT MULGON MULKEY MULLICA	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADEAU NADINA NAEGELIN NAFF NAGITSY NAGLE NAGROM NAHATCHE NAHNA NAHON NAHRUB NAHUNTA NAIWA	A C B C D B B C D D D D C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C B C C C C B C C C C B C C C C B C C C C C C C C C C C C C C C C C C C C
MINCHEY MINCO MINOEN MINEE MINER MINERAL MINERAL MINERAL MINGO MINGUS MINIOOKA MINKLER MINIOOKA MINKLER MINNEISKA MINNEISKA MINNEOPA MINNEOPA MINNEOPA MINNEOVA MINNEVAUKAN MINNEVAUKAN MINNEVAUKAN MINNEVAUKAN MINNICCE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINNICPE MINOCOUL MINOCOUL	D   B   B   B   C   C   C   C   C   C   C	MOHALL MOHAVE MOHAVE MOHAVE MONOROMA MOKELUMNE MOKENA MOKIAK MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLALLA MOLALLA MOLALLA MOLALLA MOLENA MOLICAL MOLENA MOLICY MOLLWAN MOLLVILLE MOLLY MOLOKAI MOLSON MOLYNEUX MOMOLI MONA MONACAN MONACAN MONACHE MONACAN	C B B B C B B B B B B B B B B B B B B B	MOONLIGHT MOONSHINE MOONSTONE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORADO MOREAU MOREHEAD MOREHEAD MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREY MOREY MORICAL MORICAL MORICAL MORLING MORMON MESA	B   D   C   D   D   D   D   D   D   D   D	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO MUKILTEO MUKILTEO MUKILTEO MULAT MULOON MULDROW MULETT MULGON MULLICA MULLICA	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADRA NAEGELIN NAFF NAGITSY NAGLE NAGROM NAHATCHE NAHMA NAHON NAHRUB NAHUNTA NAIVA NAKAI	A C B C D B B C D B C C B C C B D D C C B B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C B C C C B C C B C C C B C C C B C C C B C C C B C C C B C C C C B C C C C C B C C C C C C C C C C C C C C C C C C C C
MINCHEY MINCO MINCEN MINE MINE MINER MINERAL MINERAL MINGO MINGUS MINIOOKA MINKLER MINKLER MINNELSKA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE M	D   B   B   B   B   B   C   C   C   C   C	MOHALL MOHAVE MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKIAK MOKULEIA MOLALLA MOLALLA MOLANO MOLAS MOLCAL MOLENA MOLION MOLLICY MOLLMAN MOLLVILLE MOLLVA MOLOKAI MOLSON MOLYNEUX MOMOLI MONACAN MONACHE MONAD MONADNOCK	C B B B C B B B B B B B B B B B B B B B	MOONLIGHT MOONSHINE MOONSTONE MOONSTONE MOONVILLE MOOREVILLE MOOSELAKE MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORADO MOREHEAD MOREHEAD MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MORGALA MORGANFIELD MORIGALA MORGANFIELD MORICAL MORLING MORNON MESA MOROCCO	B   D   C   D   D   C   D   D   C   D   D	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO. DRAINED MULDROW MULDROW MULDROW MULDROW MULLICA MULLICA MULLICA MULLICA MULLICA MULLICA MULLICA MULLINS	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADRA NABESLIN NAFF NAGITSY NAGLE NAGROM NAHATCHE NAHMA NAHON NAHRUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHAL NAKAI NAKARNA	A C B C D B B C D B C C B D D C C B B B B
MINCHEY MINCO MINDEN MINE MINER MINERAL MINERAL MINERAL MINGO MINGUS MINIOOKA MINKLER MINIOOKA MINKLER MINNEHA MINNEISKA MINNEOPA MINNEOPA MINNEOPA MINNEOVA MINNEOVA MINNEVAUKAN MINNEVAUKAN MINNIECE MINNIECE MINNIECE MINNIECE MINNIECE MINNIENE MINNIENE MINNIENE MINNIENE MINNIENE MINNIENE MINNIENE MINNIENE MINNIENE MINNIENE MINNIENE MINNIENE MINNIENE MINNIE MINOA MINOCOUA MINTO MINU MINVALE	D   B   B   B   B   C   C   C   C   C   C	MOHALL MOHAVE MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKIO MOKULEIA MOLALLA MOLALLA MOLALLA MOLALLA MOLALLA MOLENA MOLICY MOLLICY MOLLWAN MOLLYILLE MOLLY MOLDY MOLYMEUX MOMOLI MONA MONACAN MONACAN MONACHE MONADMOCK MONAMANS	C B B B B B B B B B B B B B B B B B B B	MOONLIGHT MOONSHINE MOONSTONE MOONSTONE MOONVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOGUAH MORA MORADO MORAN MORADO MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MORET MOREY MORGALA MORGANFIELD MORGALA MORGANFIELD MORICAL MORICAL MORICAL MORICAL MORICAL MORICAL MORICAL MORICAL MORICAL MORONI MORONI	B   D   D   D   D   D   D   D   D   D	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUGHOUSE MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO. PONDEO MUKILTEO. DRAINED MULDROW MULDROW MULDROW MULETT MULGON MULLICA MULLICA MULLICA MULLINS MULLINS MULLYON	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADEAU NAFF NAGITSY NAGLE NAGROM NAHATCHE NAHMA NAHON NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAHUB NAH	A C B C D B B C D B C C B D D C B B B D D D D
MINCHEY MINCO MINOEN MINE MINE MINERAL MINERAL MINERAL MINERAL MINGO MINGUS MINIOOKA MINKLER MINIOOKA MINKLER MINNEISKA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIER MINNOO MINTER MINTO MINU MINVALE MINVALE	D   B   B   B   B   B   B   B   B   B	MOHALL MOHAWE MOHAWE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKULEIA MOLALLA MOLALLA MOLALLA MOLENA MOLENA MOLION MOLLICY MOLLWAN MOLLYILLE MOLLY MOLLY MOLOKAI MOLSON MOLYNEUX MOMOLI MONA MONACAN MONACAN MONACHE MONAD MONADNOCK MONAPDA	C 8 8 8 0 C 8 8 8 8 C 8 8 8 8 8 8 8 8 8	MOONLIGHT MOONSTONE MOONSTONE MOONSTONE MOONVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORADO MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MORET MOREY MORGALA MORGANFIELD MORIARTY MORICAL MORICAL MORICEY MORICAL MORICEY MORICAL MORICO MORONI MOROP	B   D   C   D   D   D   D   D   D   D   D	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO. PONOED MUKILTEO. DRAINED MULAT MULOOON MULDROW MULETT MULGON MULETCA MULLICA MULLICA MULLICA MULLICA MULLINS MULLYON MULSHOE	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADEAU NADINA NAGEELIN NAFF NAGITSY NAGLE NAGROM NAHATCHE NAHMA NAHON NAHRUB NAHUNTA NAIWA NAKAI NAKARNA NAKARNA NAKNEK NALAKI	A C B C D B B C D D D D D D C B B B D D C C B C C D D C C B C C D D C C B C C C D D C C B C C C D C C C C
MINCHEY MINCO MINCO MINCO MINCO MINE MINE MINERAL MINERAL MINERAL MINGO MINGO MINGUS MINIOOKA MINKLER MINICOKA MINKLER MINNEISKA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNEOVA MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINNICCE MINUCE MINVENO MINVELLS	D   B   B   B   B   B   B   B   B   B	MOHALL MOHAVE MOHAVE MOHAVE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKINS MOKO MOKULEIA MOLALLA MOLALLA MOLALLA MOLALLA MOLENA MOLION MOLLY MOLLWAN MOLLYILE MOLLY MOLOKAI MOLSON MOLYNEUX MOMOLI MONA MONACAN MONACHE MONAD MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONADA MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE MONACHE M	C 8 8 8 8 0 C 8 D 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	MOONLIGHT MOONSHINE MOONSTONE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOS ILAUKE MOPANG MOQUAH MORA MORADO MORAN MORADO MOREAU MOREHEAD MOREHEAD MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MOREHOUSE MORELAND MOREOUSE MORELAND MOREOUSE MORELAND MORENO MORET MOREY MORGALA MORGANFIELD MORIARTY MORICAL MORLEY MORICAL MORLEY MORLING MORMON MESA MOROCCO MORONI MOROP MORPH	B   D   C   D   D   C   D   D   C   D   D	MOYINA MROW MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO MUKILTEO MUKILTEO MUKILTEO MULDROW MULDROW MULDROW MULETT MULGON MULLICA MULLIG MULLICA MULLIG MULLINS MULLYON MULSHOE MULSTAY	D C B C D C C C B B D D B C C B D D C C C C	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACHUSA NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADEAU NADINA NAFF NAGITSY NAGLE NAGROM NAHATCHE NAHMA NAHON NAHRUB NAHUNTA NAIWA NAKAI NAKARNA NAKARNA NAKAEK NALAKI NALOO	A C B C D B B C D B C C B D D C B B B D C B
MINCHEY MINCO MINOEN MINE MINE MINERAL MINERAL MINERAL MINERAL MINGUS MINIOUKA MINGUS MINIOUKA MINNEUKA MINNEISKA MINNEISKA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNEOPA MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIEPE MINNIER MINNIE MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA MINOCOUA	D   B   B   B   B   B   B   B   B   B	MOHALL MOHAWE MOHAWE MOINGONA MOKELUMNE MOKENA MOKIAK MOKIAK MOKULEIA MOLALLA MOLALLA MOLALLA MOLENA MOLENA MOLION MOLLICY MOLLWAN MOLLYILLE MOLLY MOLLY MOLOKAI MOLSON MOLYNEUX MOMOLI MONA MONACAN MONACAN MONACHE MONAD MONADNOCK MONAPDA	C 8 8 8 0 C 8 8 8 8 C 8 8 8 8 8 8 8 8 8	MOONLIGHT MOONSHINE MOONSTONE MOONSTONE MOONVILLE MOOREVILLE MOOSE RIVER MOOSELAKE MOOSILAUKE MOPANG MOQUAH MORA MORADO MORAN MORAD MOREHEAD MOREHEAD MOREHOUSE MOREHOUSE MOREHOUSE MOREIT MOREY MORGALA MORGANFIELD MORIARTY MORICAL MORLEY MORLING MORONO MOROCCO MORONI MOROPH MORRILL	B   D   C   D   D   D   D   D   D   D   D	MOYINA MROW  MT. AIRY MT. CARROLL MT. VERNON MUCARA MUCKALEE MUD SPRINGS MUDRAY MUDSOCK MUES MUFF MUGGINS MUGHOUSE MUGHUT MUIR MUIRKIRK MUKILTEO. PONOED MUKILTEO. DRAINED MULAT MULOOON MULDROW MULETT MULGON MULETCA MULLICA MULLICA MULLICA MULLICA MULLINS MULLYON MULSHOE	D	MYSTEN MYSTIC NAALEHU NAALEHU NAALEHU NABESNA NACHES NACHUSA NACIMIENTO NACLINA NACOGDOCHES NADA NADEAU NADINA NADEAU NADINA NAGEELIN NAFF NAGITSY NAGLE NAGROM NAHATCHE NAHMA NAHON NAHRUB NAHUNTA NAIWA NAKAI NAKARNA NAKARNA NAKNEK NALAKI	A C B C D B B C D D D D C B B B D C C B C C D D C C B C C C C

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN, E.G., BEDROCK SUBSTRATUM, REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

NAMEOKI	0 1	NEENAH	c I	NEWCOMB	A	TOWIN	c I	NDVACAN	D
NANON	c i	NEER	В	NEWDALE	B	NIXA	c i	NOVARK	8
NAMUR	Ď	NEESOPAH	В	NEWELL	В	NIXON	В	NOVARY	B/D
NANAMKIN	A	NEETO	B	NEWELLTON	D	NIXONTON	B	OTAVON	D
NANCY	B	NEFF	C	NEWFLAT	D	NIZINA	A	NOVINA	8
NANIAK	0 1	NEGLEY	В	NEWFORK	0	NDARK	В	NOWATA	В
NANKIN	C	NEHALEN NEHAR	B	NEWFOUND	C	NOBE NOBLE	D I	NOVEN NOVER	8/0
NANNY NANNYTON	В	NEHAR . STONY	c	NEWGLARUS NEWHAN	A	NOBLETON	c i	NOYES	C/D
NANSEMOND	C	NEIBER	ċ	NEWHOUSE	8	NOBSCOT	Ā	NOYO	c
NANSENE	8 1	NEICE	В	NEWKIRK	0	NOCKEN	c i	NDYSDN	Č
NANSEPSEP	c i	NEILTON	A	NEWLANDS	c	NODAWAY	B	NUBY	D
NANTUCKET	c I	NEKIA	C I	NEWLIN	B	NODEN	8	NUBY. DRAINED	С
NAPA	DI	NEKKEN	8 [	NEWNAN	C	NODINE	В	NUC	C
NAPIER	В	NEKOMA	В	NEWNATA	C	NOELKE	D I	NUCKOLLS	8
NAPLENE NAPOLEON	B I	NELLA	D [	NEWPASS NEWPORT	C I	NOGAL NOHILI	D 1	NUECES	Č
NA PPANEE	0 1	NELLIS	В	NEWRY	В	NOKASIPPI	B/D		č
NAPTOWNE	В	NELMAN	c	NEWSKAH	8	NOKAY	CI	NUGENT	Ă
NARANJITO	ci	NELSCOTT	В	NEWSON		NOKHU	c i	NUKRUM	D
NARANJO	c I	NELSON	В	NEWSROCK	В	NOLAN	B [	NULEY	8
NARCISSE	B	NEMADJI	B	NEWSTEAD	C	NOLICHUCKY	B	NULLIGAN	8
NARCOOSSEE	c I	NENAH	D	NEWTON	AZD		В	NUMA	В
NARO	B	NENAH. ORAINED	c i	NEWTONIA	В	NOLO	D I	NUNDA	С
NAREL	B	NEMICO	D I	NEWTOWN	C	NOLTEN	0	NUNEMAKER	.D
NARGAR NARK	B I	NENOTE NENOURS	A [	NEWULN NEWVILLE	B	NOMARA Nome	C I	NUNICA	C C
NARLON	0 1	NENANA	В	NEVAILLE	0	NONDALTON	BI	NURKEY	В
NARON	В	NENNO	c	NEZ PERCE	c	NONOPAHU	0	NUSS	D
NARRAGANSETT	B	NEOTOMA	B	NGARDHAU	В	NONPARE IL	0	NUTIVOLI	Ā
NARROUS	D	NEPALTO	A	NGARDOK	В	NOOK	c i	NUTLEY	c
NARTA	0	NEPESTA	В	NGATPANG	c	NOOKACHANPS	DI	NUTRAS	С
NARU	c į	NEPHI	c I	NGEDEBUS	A	NDOKACHAMPS.	C I	NUTRIOSO	В
NASER	B	NEPONSET	c i	NGERSUUL	C	DRAINED	. !	NUVALDE	В
NASH	B	NEPPEL	В	NGERUNGOR	D	NOOKSACK	c I	NYALA	В
NASHOBA NASHVILLE	C I	NEPTUNE NERESON	A I	NIAGARA NIARADA	C	NOONAN Nora	D	NYCON	A B
NASHWAUK	c	NESBITT	В	NIART	В	NORAD	B	NYJACK	Č
NASON	c i	NESOA	В	NIBLEY	c	NORBERT	Di	NYNORE	Ā
NASS	ŏi	NESHAMINY	В	NIBSON	0	NORBORNE	Bi	NYSSA	Ĉ
NASSAU	c i	NESHOBA	c i	NICANOR	D	NORCAN	c i	NYSSATON	B
NASSET	B	NESIKA	В	NICASIO	D	NORD	B	O'BRIEN	В
NATAL	D	NESKAHI	В	NICHOLFLAT	D	NORDBY	B [	O*LEARY	В
NATCHEZ	В	NESKOWIN	c i	NICHOLIA	D	NORDEN	B	O°LENO	D
NATCHITOCHES	0	NESPELEN	В	NICHOLS	B [	NORDIC	B [	O. WEILL	В
NA THROP	B	NESPELEM. ALKALI	c I	NICHOLSON	c i	NORDICOL	B [	DAHE	8
NATI NATIONAL	В	NESS NESSEL	D   B	NICHOLVILLE	C [	NORDNESS NORFOLK	B	DAK GLEN DAK GROVE	B C
NATKIN	8	NESTER	c	NICKIN	8	NORFORK	6	DAKALLA	8
NATROY	ō i	NESTUCCA	či	NICODEMUS	В	NORGE	Ві	DAKBORO	č
NATURITA	B	NET	ci	NICODENUS. FLOODED	c	NORGO	Di	DAKDEN	D
NAUMBURG	c i	NETARTS	В	NICOLLET	В	NORKA	B [	DAKES	8
NAUYOO	B	NETCONG	B	NIDO	C [	NORLAND	B	DAKLAND	C
NAVACA	0	NETO	B	NIELSEN	0	NORMA	0 1	DAKLET	C
NAVACITY NAVAJO	8 1	NETRAC NETTLES	A I	NIGHTHAWK	B (	NORMA: DRAINED	B	OAKLINETER	C
NAVAN	0 1	NETTLETON	ci	NIKEY	В	SUBSTRATUM	ן ע	OWKADOD	A
NAVO	0 1	NEUBERT	В	NIKFUL	0	NORMANGEE	o i	DANAPUKA	8
NAWNEY	0 1	NEUNS	ci	NIKISHKA	Ā	NORMANIA	В		В
NAWT	Ď	NEURALIA	ci	NIKLASON	В	NOROS	c i	DATUU	D
NAXING	8	NEUSKE	B	NIKOLAI	0	NORREST	c i	OBAN	C
NAYE	c I	NEVADOR	В	NILAND	c I	NORRIE	B	OBANION	C
NAYPED	c l	NEVARC	c l	NILER	D I	NORRIS	0	OBARO	8
NAYRIB NAZ	D	NEVAT NEVEE	BI	NINBRO NIMND	B	NORRISTON NORTE	A I	OBEN OBISPO	C
NAZATON	8 1	WEATTLE	В	NIMROD	c	NORTH POWDER	ċi	OBRAST	D
NEADSCO	c i	NEVILLE. WET	c i	NINUE	в	NORTHBORO	č i	DBRAY	D
NEBAGO	Č į	NEVIN	B	NINEKAR	ō i	NORTHCASTLE	Bi	OBURN	D
NEBEKER	c i	NEVINE	B	NINENILE	0	NORTHODTE	C/DI	OCALA	C
NEDGEN	0 1	NEVKA	c I	NINEVEH	B		C I	OCAMBEE	C
NEBISH	B	NEVOYER	0	NINIGRET	В	NORTHFIELD	DI	OCANA	8
NEBONA	0 1	NEVTAH	C I	NIDBELL	c i		c i	OCCOQUAN	В
NECANICUM	8	NEW CAMBRIA	c I	NIOTA	0	NORTHWATER	В	OCCUM	8
NECESSITY NECHE	C I	NEWALBIN		NIDTAZE	c i	NORTON NORTONVILLE	C	OCEANET OCEANO	D
NECTAR	c	NEWALBIN. MUCK SUBSTRATUN	P	NIPE NIPINTUCK	B		ċi	OCHEYEDAN	A
NEOA	c i	NEWALBIN. PONDED	, l	NIPPT		NORWELL	c	OCHLOCKONEE	B
NEDERLAND	В	NEWANNA	c i	NIPSUM	ci	NORWICH	òi	OCHO	D
NEEDLE	0 1	NEWARK	c i	NIRA	В	NORWOOD	В	DCHOCO	c
NEEDLE PEAK	ci	NEWARK. PONDED	0	NISENE	В		В	OCIE	c
NEEDLE PEAK.	B	NEWAUKUM	В	NISHNA		NOTAL	D		C
OCCASIONALLY	1	NEWAYGO	В	NISHON	P		B !	DCKLEY	В
FLOODED		NEWBELL	В	NISQUALLY	A	NOTI	D I	OCOEE	B/D
NEEDLEYE NEEDMORE	C I	NEWBERG	В	NISULA NITTAW	B	NOTTAWA NOTTER	BI	OCONEE OCONTO	C 8
MEETEA	8 1	NEWBERN NEWBERRY	C I		BI	NOTUS	C	OCOSTA	D
NEEN	c i	NEWBON	ВІ	NIULII	C	NOTUS DRAINED	В	OCOSTA. DRAINED	Č
NEEN+ DRAINED	8 1	NEACO	D		В	NOUQUE	Ď	DCQUEOC	Ā
			•				·		

NOTES: TWO MYOROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEOROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL NAP LEGEND.

TABLE 7-1--HYDROLOGIC GROUPS OF THE SDILS OF THE UNITED STATES

OCQUEOC.	8	OLOMPALI	0 1	ORDVADA	В	DXLEY	c I	PALDS VERDES	0
MODERATELY WET	i	OLOT	Bi	DRPARK	c	OXWALL	o i	PALDUSE	8
OCRAIG	0	DLDTANIA	A I	DRPHANT	D I		B	PALSGROVE	8
DCTAGON	B   B	DLPE	c I	DRR COAMELLY	B [	OZAMIS   OZAN	D	PALUXY	В
OCTAVIA ODAS	o i	OLSON OLTON	D I	ORR, GRAVELLY SUBSTRATUM		DZAUKEE	c	PAMLICO PAMOA	D B
ODELL	8	DLUSTEE	8/01		c i	OZETTE	c i	PANSOEL	c
ODEM	A	DLUSTEE. THICK	B	ORSA	A		8	PAMUNKEY	В
ODENSON	0 1	SURFACE	. !	ORSA. GRAVELLY	8 1	PAALOA Paauhau	BI	PANA	B
DOERMOTT STONY	C   B	DLYMPIC	B I	ORSET ORSINO	A	PABLO	ô	PANAEWA	В
DDESSA	0 1	DMADI	e i	DRTEGA	Ā	PACHAPPA	8 1	PANAMINT	В
ODIN	c i	DNEGA	A I	ORTELLO	8	PACHECD	c i	PANASOFFKEE	C/0
DONE	D	OMENA	B	ORTING	C I	PACHECD. DRAINED	В	PANCHERI	В
000	8 1	DMID	В	ORTIZ	C	PACIFICO	c I		8
DELOP DEST	8 I	DMNI DMRD	D I	DRTDN ORWET	B [	PACK PACKARD	C J	PANDOAH PANDORA	C B/O
DESTERLE	c i	OMSTOTT	č i		В		В		0
OFU	B	DMULGA	c i	ORW000	8	PACKHAM	B 1	PANE	8
DGARTY	C I	ONA	B/0		D	PACKTRAIL	C	PANGBORN	D
DGEECHEE	8/0		BI	OSAKIS	B [	PACKWODD PACD	0	PANGUI TCH	В
DGEMAW DGILVIE	C/D  8/0		ВІ	OSBORN DSCAR	ا ه	PACDLET	8 1	PANIN PANIDGUE	8
DGLALA	B	DNASON	o i	OSCURA	c	PACTOLA	B 1	PANIDGUE. WET	č
DGLE	В	DNAWA	0	DSGDDD	A	PACTOLUS '	AZCI	PANITCHEN	В
OGRAL	B	ONAWAY	8 1	OSHA	В	PADDUCK	•	PANKY	C
OHACO OHANA	C I	OND A WA ONE CD	B   B	DSHAWA DSHKOSH	C/DI	PADEN   PADILLA	CI	PANMOO PANOCHE	C B
DHIA	Ā	DNEIL	c	OSHONE	c i	PADINA	ВІ	PANDCHE .	Č
DIDEM	A	DNITA	c i	DSHTEMO	В	PADUCAH	B	SALINE-ALKALI.	•
DJATA	0	DNITE	8 1	OSIER	,	PADUS	B	WET	
OJIBWAY	c I	ONOTA	ВІ	OSITO	C	PAESL	В	PANDCHE.	В
DJITO OKANOGAN	C I	ONSLOW ONTARIO	BI	OSKA DSMUNO	C I	PAGEBRODK   Paget	D	SALINE-ALKALI PANDLA	0
OKATON	0 1	ONTKO	o i	OSD	C		ci	PANSEY	0
DKAW	0 j	ONTONAGON	DI	OSD88	D	PAGDSA	c i	PANTANO	0
DKAY	В	DNYX	8	OSORIDGE	D	PAHOKEE	B/D		8/0
OKEE	8	ODKALA	A !		D I	PAHRANAGAT	c i		В
OKEECHOBEE DKEELANTA	8/0  8/0		A I	OSSIAN DSSIPEE	B/D	PAHRANAGAT.	c 1	PANTHER PANTON	D 0
OKEELANTA.	D	DPELIKA	o i	DST	В	PAHRANAGAT. SALINE	c i	PAOLA	Ā
OEPRESS I ONAL	i	OPEQUON	c i	OSTLER	C	PAHRANAGAT.	В	PAOLI	В
OKEELANTA. TIDAL	0	OPHIR	c i	DSTRANDER	B	DRAINED	1	PAPAA	0
OKEETEE OKEMAH	0 I	OPIHIKAD	D I	OSWALD	0 1	PAHRANGE	c i	PAPAC	c
OKIOTA	0 1	OPLIN DPPIO	C	OTEEN OTERD	C (	PAHREAH   PAHRDC	D	PAPAGUA PAPAI	C
OKLARED	B	DQUAGA	c i	OTHELLO	C/D		c i	PAPALOTE	Ĉ
OKLAWAHA	8/01		c i	OTISCD	A	PAHSIMERDI	B	PAPINEAU	C
OKO	0	ORACLE	D I	OTISVILLE	A !	PAIA	B	PARA	8
DKOBOJI OKOLONA	B/01	ORAIO ORAN	A I	DTOMO	B	PAICE   Painesville	0 1	PARACHUTE PARADISE	B C
OKREEK	0 1	DRANGE	0 1	OTOOLE	c	PAINT	òi	PARANAT	c
OKTIBBEHA	0 j	DRANGEBURG	В	OTTER		PAISLEY	o i	PARASOL	8
OLA	c l	ORCAP	c	OTTERHOLT	В	PAIT	B	PARCELAS	0
OLAA OLAC	A I	ORCAS DRAINED	0 1	OTTERSON OTTOKEE	_ ^ !	PAJARA Pajarito	C I	PARCHIN PARDALOE	D B
OLAND	8 1	DRCHARD	В	OTTOSEN	B	PAJUELA	8	PAROEE	D
OLANTA	B	DRCKY		DTWAY	0		В		В
OLASHES	8	ORO	В		C I		8	PAREHAT	С
OLBUT OLO CAMP	0 1	ORDNANCE	0		c i	PAKINI	B	PARENT	B/D
OLOHAM	0 1	ORDWAY OREJAS	0 1	OUARO DUPICO	0 I	PALAFOX Palanush	CI	PARISIAN PARKAY	D B
OLOS	D	ORELIA	ō i		8		В		В
OLOSMAR	8/01	ORELLA	0 1	OUSLEY	c i	PALATINE	B	PARKE	8
OLELO	BI	ORFORO	c I		C I		8		В
OLENTANGY OLEQUA	B I	ORICTO ORICIA	8	OUTLOOK ORAINED	0 1	PALAZZO	C	PARKFIELO PARKHILL	C
OLETE	c i	ORIDIA ORAINED	0 I		C [	PALINOR   PALISADE	C I	PARKINSON	8/D
OLEX	В	ORIF	Ă İ	OVERGAARD	ci	PALIX	Bi	PARKVIEW	B
DLGA	c 1	ORIGO	B	OVERLAND	C I	PALLS	C . 1	PARKVILLE	C
OLIAGA	8 1	ORINOCO	c i		C I	PALM BEACH	A !	PARKWOOD	8/0
OLIN	C I	ORIO ORION	C I	OVERTON OVIATT	0   B	PALMA   Palmarejo	BI	PARLEYS PARL IN	B C
OLINDA	8 1	ORITA	8 1	OVID	c	PALMAS ALTAS	òi	PARLD	8
OLIPHANT	8	ORIZABA	0 1		В	PALMER CANYON	B	PARMELE	С
OLIVENHAIN	0	ORIZABA. WET	0		0	PALMEROALE	8		С
DLIVIER OLJETO	C I	ORIZABA. ORAINEO	CI		C I	PALMETTO		PARMENTER	8
	AI	ORLA ORLANO	B   B		D I	PALMETTO.   DEPRESSIONAL	0	PARNELL PARQUAT	C/0 8
OLLEI	öi	ORLANDO	A		0		В	PARR	В
OLLEI OLMITO			o i		B 1			PARRAN	ō
OLMITO OLMITZ	8	ORLEANS		U					
OLMITO OLMITZ OLMOS	B	ORLIE	c i	OWOSSO	8	PALMYRA	8	PARRISH	C
OLMITO OLMITZ OLMOS OLMSTEO	8   C   B/D	ORLIE ORNAS	C I	OWOSSO OWSEL	B	PALOOURO	8	PARRITA	0
OLMITO OLMITZ OLMOS	B	ORLIE ORMAS ORMSBY	C I	OWOSSO OWSEL OWYHEE	B	PALODURO PALOMARIN	8 I	PARRITA PARSHALL	0 B
OLMITO OLMITZ OLMOS OLMSTED OLMES OLNES OLNEY OLOAVA	B C B/D B	ORLIE ORNAS	C I	OWOSSO OWSEL OWYHEE	8 i	PALODURO PALOMARIN	8 I	PARRITA PARSHALL	0
OLMITO OLMITZ OLMOS OLMSTED OLMES OLNES	B   B/D   B	ORLIE Ormas Ormsby Ornbaun	C   B   C   C	OWOSSO OWSEL OWYHEE DXBOW OXCOREL OXER INE	B   B   C   C   C	PALODURO PALOMARIN PALOMAS	8 I 8 I	PARRITA PARSHALL PARSIPPANY PARSONS PARTLOW	0 B C/D

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

TABLE 7.1--HYDROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

PASCO								_		
PASCO   DAINED     PERMAN       PERMYTLE	PARTRI	C I	PEGLEG	C	PERRY					C
PASC 18CO   PERMY   C   PERMY   C   PERMY   C   PILOT PERC   D   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C   PASTETED   C		- •		-				_		
PASS SECO		- •		- •		•				A
PASOURTII	PASCO. DRAINED	C	PEKAY	c l	PERSANTI	c I	PILOT PEAK	D	PLAINFIELD	A
PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASSISTIC   PASS	PASO SECO	D	PEKIN	c	PERSAYO	DI	PILOT ROCK	c I	PLAISTED	С
NODERTIELY NET	PASQUETTI	DI	PELAN	8 1	PERSHING	C 1	PILTDOWN	B	PLANK	D
PASSUDITIS DAIREC   PELHAM   970   PENU   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE   C   PINUE	PASQUETTI.	C/DI	PELEE	В	PERSIS	B	PILTZ	C 1	PLANKINTON	D
PASSUCITI: ORAINEC   PELHAM   970   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU   0   PERU	MODERATELY WET	i	PELELIU	Di	PERT	D I	PIMA	В	PLANO	В
PASSIGNATION   PASS   PELLO   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS   PASS		oci					= 111			_
PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASSANTON   PASS										
PASSER  C   PELLIARA		•						•		-
PASTICK 0   PELLÁ 00   PESCRO 0   PASTICK 0   PASTICK 0   PELLÁGES 0   PESCRO 0   PELLÁGES 0   PESCRO 0   PELLÁGES 0   PESCRO 0   PELLÁGES 0   PESCRO 0   PELLÁGES 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRIS 0   PELCÉRI		_ •				-		•	_	_
PASTON   D   PELLEJAS   D   PESENO   D   PINATES   A   PLATO   C   PASTON   D   PELLEJAS   D   PESHASTIN   D   PINATES   A   PLATO   C   PASTON   D   PELLEJAS   D   PESHASTIN   D   PINATES   D   PATON   C   PATON   D   PELLEJAS   D   PESHASTIN   D   PINCHOT   D   PATON   C   PATON   D   PELTIER   C   PESHASTIN   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINCHOT   D   PINC						- •				
PASTURA 0   PELLICER 0   PESMASTIN B   PINST B   PASTORO 0   PASTURA 0   PELNCELLO 0   PESMERCE 0   PINCHES C   PINCHES C   PATE						-				
PATURA   D   PELDOCILLO   D   PÉSMECE   D   PINCHER   C   PLATE   D				- •				•		
PATE   C   PENDETON   D   PETTER   C   PESO   C   PINCHOT   D   PIATE, VETT   C   PINCHE   D   PATE   C   PENDETON   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PATE   C   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCHE   D   PINCH	_	_ •				_ ,	_	_		_
PATE								•		_
PATHENT   C	PATCHIN	-	PELTIER	c I		•	PINCHOT	- •		D
PATHLAD	PATE		PEMBERTON	8	PETACA	D	PINCKNEY	c I	PLATTE . CHANNELED	D
PATILLAS   0   PENAPON	PATENT		PEMBROKE	8		C	PINCONNING	B/D	PLATTVILLE	В
PATIO	PATHEAD	c I	PEMENE	8	PETAN	D	PINE FLAT	В [	PLAYCO	8
PATIO   C   PRINSCO   D   PTERSON   D   PINÉDA   D   DILATA   C	PATILLAS	В (	PENA	9	PETEETNEET	DI	PINEAL	D	PLAYER	D
PATITI CREEK    PATROS   PENDO MERILE   S   PETERSON   D   DEPERSIONAL   D   DEASANT PORDED CO	PATILO	B	PENAPON	В [	PETERMAN	D	PINEBUTTE	в (	PLAYMOOR	C/D
PATITI CREEK    PATROS   PENDO MERILE   S   PETERSON   D   DEPERSIONAL   D   DEASANT PORDED CO	PATIO	C	PENASCO	D	PETERS	D	PINEDA	B/DI	PLAZA	C
PATON	PATIT CREEK	B	PENCE	8	PETERSON			0 1	PLEASANT	С
PATOS C   PENDER B   PETSOS D   SUBSTATUM   PLEASANT GROVE B   PATRICIA C   PENDER C   PETSPRING D   PIETRICIA B   PLEASANT VALE B   PATRICIA B   PENDERGRASS D   PETTICREW B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PIECEST B   PIECEST B   PATRICIA C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN	PATHOS	c i	PEND OREILLE	8 1	PETRIE	DI	DEPRESSIONAL	i	PLEASANT. PONDED	D
PATOS C   PENDER B   PETSOS D   SUBSTATUM   PLEASANT GROVE B   PATRICIA C   PENDER C   PETSPRING D   PIETRICIA B   PLEASANT VALE B   PATRICIA B   PENDERGRASS D   PETTICREW B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PLEASANT VALE B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PETTICREW B   PIECEST B   PATRICIA C   PENDERGRASS D   PIECEST B   PIECEST B   PATRICIA C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PENDERGRASS D   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PAUL SILVEN C   PIECEST B   PIECEST B   PIECEST B   PAUL SILVEN	PATNA	8 1	PENDARVIS	c i	PETROLIA	B/DI	PINEDA. LIMESTONE	B/D	PLEASANT. FLOODED	C
PATOLIVILLE   PENDER										
PATRICIA				- •				В		
PATRICK										
PATROLE C   PENGILLY 9/0   PETTY B   PINELLAS 9/0   PLEDER D PATTANI O   PENGRA O   PETTY B   PINELLAS 8/0   PLEDER O D PATTER B   PENGRA O   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PETTOR B   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   PINELLAS C   P		- •								_
PATTEE 8   PENISOLA C   PEYTON 8   PINETOP C   PLETOF C   PATTERUNG 8   PENISOLA C   PEYTON 8   PINETOP C   PLETOF C   PATTERUNG 8   PENISTAJA C   PEYTON 8   PINETOP C   PLETOT C   PATTERSON 8   PENISTAJA 8   PESTER 8   PINETUCKY 8   PLETOT C   PATTERSON 8   PENISTAJA 8   PESTER 8   PINETUCKY 8   PLETOT C   PATTERSON 8   PENISTAJA 0   PENISTAJA 0   PATTERSON 8   PENISTAJA 0   PENISTAJA 0   PATTERSON 8   PENISTAJA 0   PENISTAJA 0   PATTERSON 8   PENISTAJA 0   PENISTAJA 0   PATTERSON 8   PENISTAJA 0   PENISTAJA 0   PATTERSON 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENISTAJA 0   PAUL 8   PENISTAJA 0   PENI				_ •						
PATTENUMG  B   PEMISSULA   C   PETTON   B   PINETOP   C   PLETOV   C   PATTERSON   C   PEMISSULA   B   PFEIFFER   B   PINETUCY   B   PLETO   C   PATTERSON   C   DEMLAY   C   PHALAMX   B   PINETUCY   B   PLETO   C   PATTERSON   C   DEMLAY   C   PHALAMX   B   PINETUCY   B   PLETO   C   PATTERSON   C   DEMLAY   C   PHALAMX   B   PINETUCY   B   PLETON   C   PATTERSON   C   DEMLAY   C   PHALAMX   B   PINETUCY   B   PLETON   C   PAUL NA		- •						•		
PATTER 8   PENISTAJA 8   PFEIFFER 8   PINEVICKY 8   PLEVAN 0   PATTERSON C   DENLAN C   PHALANX 8   PINEVZ 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PINEVAL 8   PIN		- •		- •				- •		_
PATTERSON C   PENAW C   PHAGE 8   PINEVAL 8   PLEVMA D PATTERSON C   PENAW C   PHAGE 8   PINEVAL 8   PLEVMA D PATTERSON C   PENAW C   PHAGE 8   PINEVAL 8   PLEVMA D PATTON 8/0   PENME C   PHAMTON C   PINEGEE D   PLOWER B PATTON 8/0   PENMELL C   PHAMTON C   PINEGEE D   PLOWER C   PAULDING B   PENMELL C   PHAGE 8   PINHOOD B   PLOWER C   PAULDING B   PENMELL C   PHAGE 8   PINHOOD B   PLOWER C   PAULDING B   PENMELL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENMERL C   PENM				- •		-				
PATTERSON 8/0 PENNAW  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAULDING  PAUL		-								
PATION 8/0 PENN C   PHANTOM C   PHANTOM C   PHANTOM B   PLOME B   PANUL B   PENNEKAMP A   PHANCO B   PINNOCO B / D   PLOWER C C   PAULDING D   PENNEKLH D   PHANCO B   PINNOCO B / D   PLOWER C C   PAULDING D   PENNEKLH D   PHANCO B   PHANCO B   PLOKE C C   PAULDING D   PENNEKLH D   PENNOCO D   PHANCO B   PHANCO B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B   PLOKE B										
PAUL   D	PATTERSON	c I			PHALANX	-	PINEZ	В		_
PAULIDING	PATTON	8/01	PENN	c I	PHANTOM	C 1	PINGREE	D	PLOME	8
PAULINA  D   PENNICHUCK  B   PHENA  C   PINKEL  C   PINKEL  C   PINKEL  C   PINKEN  B   PAULSON  B   PENNSUCO  D   PHENA  D   PENNY  D   PENNY  D   PHENA  D   PINKSTON  B   PLUTOS  B   PAUNALU  B   PENNY  D   PHENO  C   PHENS  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON  B   PINKSTON	PAUL	B	PENNEKAMP	A	PHARO	8	PINHOOK	B/D	PLOVER	C
PAULY   B   PENNSUCO   D   PHEENEY   C   PINKHAM   B   PLUSH   B   PAULY   D   PHELAM   D   PHENSTON   B   PLUTOS   B   PAULY   D   PHELAM   D   PHENSTON   B   PLUTOS   B   PAUNSAUUT   D   PENDVER   B   PHENSON   B   PINMACLES   C   PLYNOUTH   A   PAUNSAUT   D   PENDVER   B   PHENSON   B   PINMACLES   C   PLYNOUTH   A   PAUNSAUT   D   PENDVER   D   PHIFERSON   B   PIND   C   POGACH   B   PAUNSAUT   D   PENDVER   D   PHIFERSON   B   PIND   C   POGACH   B   PAUNSAUT   D   PENDVER   D   PHIFERSON   B   PIND   C   POGACH   B   PAUNSAUT   D   PENDVER   D   PHILIPSON   D   PINDLE   D   POCALLA   A   PAUNSAUT   D   PENDVER   D   PHILIPSON   D   POCALLA   A   PAUNSAUT   D   PENDVEL   A   PHILIPSON   D   POCATSET   B   POCATELLO   B   PAVON   D   PENDVER   D   PHILIPSON   D   POCATSET   D   PAUNSAUT   D   PENDVER   D   PHILIPSON   D   POCATSET   D   PAUNSAUT   D   PAUNSAUT   D   PENDVER   D   PHILIPSON   D   PINTUA   D   POCATSET   D   PAUNSAUT   D   PENDVER   D   POCATSET   D   PAUNSAUT   D   PENDVER   D   POCATSET   D   POCATSET   D   PAUNSAUT   D   PENDVER   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET   D   POCATSET	PAULDING	0 1	PENNELL	0 1	PHARR	B	PINICON	В (	PLUCK	C
PAULYILLE 8   PENNY	PAULINA	DI	PENNI CHUCK	B	PHEBA	C	PINKEL	C	PLUMMER	8/0
PAULYILLE 8   PENNY	PAULSON	B 1	PENNSUCD	D i	PHEENEY	c i	PINKHAH	В	PLUSH	8
PAUNALUGINT D   PENDVER B   PHERSON B   PINNACLES C   PLYMOUTH A PAUNSANGUMT D   PENDVER B   PHERSON B   PINNACLES C   PLYMOUTH A PAUNSANT B   PENROSE D   PHIFERSON B   PINNO C   POBER C C PAUNELLA B   PENROSE D   PHIFERSON B   PINNO C   POBER C C PAUNELLA B   PENROSE D   PHIFERSON B   PINNO C   POBER C C PAUNELLA B   PENROSE D   POLACLIA A PAVANT D   PENTY D   PHILIPSON D   PINNON D   POCALIA A PAVANT D   PENTY D   PHILIPSON D   PINNON D   POCALIA A PAVANT D   PENTY D   PHILIPSON D   PINNON D   POCALIA A PAVANT D   PENTY D   PHILIPSON D   PINNON D   POCALIA A PAVANT D   PENTY D   PHILIPSON D   PINNON D   POCALIA A   POLACTY D   PAVON D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA D   POCALIA	PAULVILLE	Ві		D i		•	PINKSTON	B 1	PLUTOS	8
PAUNSAUGUNT D   PENOTER B   PHERSON B   PINNEBOG A/D POARCH B PAUSANT B   PENNSOE D   PHIFERSON D   PHIRESON C   POBER C   PAUVAIA1 C   PENHSORE D   PHILBON D   PINON D   POCALLA A   PAVAIA1 C   PENHSORE D   PHILBON D   PINON D   POCAN B   PAVAIA1 C   PENHSORE D   PHILBON D   PINON D   POCAN B   PAVAIA1 C   PENHSORE D   PHILBON D   PINON D   POCAN B   PAVAIA1 C   PENHSON D   PENTZ D   PHILIPSONG B   PINON D   POCANSET B   PAVAIA D   PAVAIA D   PENHSON D   PENHSON D   POCANSET B   PAVAIA D   PAVAIA D   PENHSON D   PEDHSON D   PHILIPSONG B   PINAS B   POCATELL D B   PAVAIA D   PEDHSON D   PEDHSON D   PHILIPSONG B   PINTAS B   POCATEL D B   PAVAIA D   PEDHSON D   PEDHSON D   PHILIPSONG D   PINTAS B   POCATEL D B   PAVAIA D   PEDHSON D   PEDHSON D   PHILIPSONG D   PINTAS B   POCATEL D B   PAVAIA D   PEDHSON D   PEDHSON D   PHILIPSONG D   PINTAS B   POCATE D   PAVAIA D   PEDHSON D   PEDHSON D   PHILIPSONG D   PINTAS B   POCATE D   POCAN D   PAVAIA D   PEDHSON D   PEDHSON D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG D   PHILIPSONG		-		c i						
PAUSEANT B   PERROSE D   PHIFERSON B   PINO C   POBER C   PAUVELA B   PENSORE D   PHILBON D   PINOLE B   POCALLA A   PAVAIAI C   PENTHOUSE D   PHILDER D   PINOLE B   POCALLA A   PAVAIAT D   PENTZ D   PHILDER D   PINONES D   POCAN B   PAVALON B   PENWELL A   PHILIPSBURG B   PINTAS B   POCATELLO B   PAVALON B   PENWELL A   PHILIPSBURG B   PINTAS B   POCATELLO B   PAVALON B   PENWELL A   PHILIPSBURG B   PINTAS B   POCATELLO B   PAVO B   PENWELL A   PHILIPSBURG B   PINTAS B   POCATELLO B   PAVO B   PENWELL A   PHILIPSBURG B   PINTAS B   POCATELO B   PAVO B   PEDGA C   PHILIPS C   PINTURA A   PAVORTOR C   PEDGA C   PHILIPSBURG B   PINTO C   POCASE B   PAVORTOR C   PEDGA C   PHILIPSBURG B   PINTO C   POCASE B   PANTASKA D   PEDHO PRAINED C   PHINGE D   PINTURA A   POCATE B   PANTASKA D   PEDHO PRAINED C   PHORES B   PINTO C   POCASE B   PANTASKA D   PEDHO PRAINED C   PHORES B   PINTO C   POCASE B   PANTASKA D   PEDHO PRAINED C   PHORES B   PINTO C   PAXTON C   PEGRIA D   PHORES B   POCATE B   PANTASTER D   PEGRIA B   PINTO C   POCASE B   PANTASTER B   PEPON D   PINTO C   PINTURA B   PAYMASTER B   PEPON D   PISSA D   PIRO D   PAYME C   PEPPER D   PICAMO C   PIRO D   PAYME C   PEPPER D   PICAMO C   PIRO D   PAYME C   PEPPER D   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PEPAL B   PICAMO C   PIRO D   PAYAGE B   PICAMO C   PIRO D   PAYAGE B   PICAMO		- •		- •						
PAUNICIA				- •		-		- •	_	_
PAVAIAT	_	-		-						
PAYANT		- •								-
PAYNULIDN         PENWELL				-		- •				
PAVONDO								- •		
PAYORROD     PEGGA   C   PHILD   B   PINTO   C   POCKER   D		_								_
PAMHUSKA   D   PEDH   ORAINED   D   PHILDMATH   D   PINTURA   D   POCOMAKE   B/D		- •		•			· · · - · · · · · · · · · · · · · ·			_
PAMILING				c l		- •				
PANTING		- •	PEDH	DI	PHILDMATH	D	PINTURA			_
PAMMEE	PAWHUSKA	- ,	PEDH. DRAINED	c I	PHING	- •	PINTWATER	D	POCOMDIKE	8/0
PAXTON C PEOTIA D PHOENIX D PIPER C PODWOR C PAYTILE 8/D PEOTONE 8/D PHYS B PIPESTONE 8 PODWOR C PAYETTE 8 PEDIONE 8/D PHYS B PIPESTONE 8 PODWOR D PAYETTE 8 PEPDAL 8 PIASA D PIRO 8 PODWOK 8 PAYMASTER 8 PEPDAN D PISLER D PIRO A POE C PAYMASTER 8 PEPDAN D PISLER D PIRO A POE C PAYMECREEK C PEPPER D PICAGRO C PIROUETTE D POGAL C PAYMECREEK B PEGUARING A PICAGRO C PIROUETTE D POGANEAB CLAYEY D PAYSON D PEGUEA B PICAGRO C PIROUETTE D POGANEAB CLAYEY D PAZAR 8 PERCATON B PICAGRO C PIROUETTE D POGANEAB CLAYEY D PAZAR 8 PERCATON B PICAGRO C PIROUETTE D POGANEAB CLAYEY D PAZAR 8 PERCATON B PICAGRO D PICAGRO D PISSON D PEGARBA CLAYEY D PAZAR 8 PERCATON B PICAGRO C PISSON D PEGARBA CLAYEY D PAZAR 8 PERCATON B PICAGRO D PICAGRO D POGANEAB SALINE C PEARL B PERCATON D PERCIVAL C PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PERCUN C PERCUN C PERCUN C PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PICKERS D PIC		B	PEDNE	0 1	PHIPPS	c I	PIDPOLIS	C/D	POCONO	В
PAYTILE	PANNEE	0 1	PEONE. DRAINED	c I	PHOEBE	8	PIPELINE	D	PODEN	B
PAYMASTER 8   PEPOLN   S   PIASA   D   PIRO   B   PODUNK   B   PAYMASTER 8   PEPON   D   PIGLER   D   PIRO   A   POE   C   PAYNE   C   PEPPER   D   PIGLABO   C   PIROUETTE   D   POGAL   C   PAYNECREEK   B   PEBUANING   A   PIGLANTE   D   PISGAH   C   PAYNECREEK   B   PEBUANING   A   PIGLANTE   D   PISGAH   C   PAYSON   D   PEBUEA   B   PIGLANTE   D   PISGAH   C   POGANEAB   CLAYEY   D   PAZAR   B   PERCETON   B   PIGLANTE   B   PISHKUN   B   SUBSTRATUM   PEARL   B   PERCETON   B   PIGLANCE   C   PISMO   D   POGANEAB   CLAYEY   D   PEARL   B   PERCHAS   D   PICKEMS   C   PIT   D   ORAINED   PEARL   B   PERCHAS   D   PICKEMS   D   PITCHER   B   POGANEAB   SALINE   D   PEARL   B   PERCILLA   D   PICKEMS   D   PITCHER   B   POGANEAB   SALINE   D   PEARSOLL   D   PERCIUN   C   PICKETT   C   PITO   D   ORAINED   PEARL   D   PERCOUN   C   PICKETT   C   PITO   D   POGANEAB   SALINE   D   PEARL   D   PERCOUN   C   PICKETT   C   PITO   D   POGANEAB   SALINE   D   PEARL   D   PERCOUN   C   PICKETT   C   PITO   D   POGANEAB   STRONGLY   D   PEARL   D   PERCOUN   C   PICKETT   C   PITO   D   POGANEAB   STRONGLY   D   PEARL   D   PERCOUN   C   PICKETT   C   PITO   D   PITONE   C   POGANEAB   PEARL   D   PERCOUN   C   PICKETT   C   PITO   D   PITONE   C   PEARL   D   PERCOUN   C   PICKETT   D   PITTSTOWN   C   POGANEAB   STRONGLY   D   PEARL   D   PERCON   D   PERCON   D   PITTSTOWN   C   POGANEAB   D   PECATONICA   B   PERCON   B   PICON   A   PITTSTOWN   C   POGANEAB   SANDY   C   PECATONICA   B   PERCON   B   PICON   A   PITTSTOWN   C   POGANEAB   SANDY   C   PECON   D   PERMAN   B   PICON   B   PIUTO   A   POGANEAB   SANDY   C   PECON   D   PERMAN   B   PICON   B   PIUTO   A   POGANEAB   SANDY   C   PECON   D   PERKINS   C   PIERRE   D   PILACENTIA   D   POINSETT   B   PEDDIC   D   PERKINS   C   PIERRE   D   PILACENTIA   D   POINSETT   B   PEDDIC   D   PERMAN   B   PIECON   B   PILONEE   D   PILONEE   D   PEDDIC   D   PERN   B   PIECON   B   PILONEE   D   PILONEE   D   PEELER   B   PERNTY   D   PIKE   B   PILONEC   C   PE	PAXTON	C	PEORIA	D	PHOENIX	DI	PIPER	C I	PODMOR	C
PAYMASTER 8   PEPOON O   PIBLER D   PIRO A   PDE C   PAYMECREEK B   PEGUAMING A   PICACHO C   PIRUM B   POGAMEAB CLAYEY D   PAYMECREEK B   PEGUAMING A   PICACHO C   PIRUM B   POGAMEAB CLAYEY D   PAYSON D   PEGUEA B   PICANTE D   PISCAH C   POGAMEAB CLAYEY D   PAZAR B   PERAZZO B   PICAYUNE B   PISKUN B   SUBSTRATUM   PEACHAM D   PERCETON B   PICEANCE C   PISNO D   POGAMEAB SALINE C   PERAZZO B   PICKAWAY C   PIT D   ORAINED D   PERCHAS D   PICKAWAY C   PIT D   ORAINED D   PEARL B   PERCHAS D   PICKAWAY C   PIT D   ORAINED D   PEARL D   PERCIUAL C   PICKETT C   PITCO D   POGAMEAB SALINE D   PEARSOLL D   PERCIUAL C   PICKETT C   PITCO D   POGAMEAB SALINE D   PEARSOLL D   PERCOUN C   PICKETT C   PITCO D   POGAMEAB STRONGLY D   PEARL D   PERCOUN C   PICKETT C   PITCO D   POGAMEAB STRONGLY D   PEARL D   PERCOUN C   PICKETL D   PITTSFIELD B   SALINE D   PEARL D   PERCOUN C   PICKETL D   PITTSFIELD B   SALINE D   PERCOUN C   PICKETL D   PITTSFIELD B   SALINE D   PECATONICA B   PERELLA BOD PICKOP D   PITTSFIELD B   SALINE D   PECATONICA B   PERELLA BOD PICKOP D   PITTSFIELD B   SALINE D   PECATONICA B   PERELLA BOD PICKOP D   PITZER C   SALINE ALALI D   PITZER C   SALINE ALALI D   PITZER C   SALINE ALALI D   PITZER C   SALINE ALALI D   PECATONICA B   PERICO B   PICOS D   PERNAM B   PICOS B   PIUTO A   POGAMEAB SANOY C   PECOS D   PERRIAM B   PICOS B   PIUTO A   POGAMEAB SANOY C   PECOS D   PERRIAM B   PICOS B   PIUTO A   POGAMEAB SANOY C   PECOS D   PERRIAS C   PIERRB D   PIZENE B   POGAMEAB SANOY C   PEODIC B   PICOS B   PIUTO A   POGAMEAB SANOY C   PEODIC B   PICOS B   PIUTO A   POGAMEAB SANOY C   PEODIC B   PICOS B   PIUTO A   POGAMEAB SANOY C   PEODIC B   PICCARE D D   PICKETOS B   PIUTO B   POGAMEAB SANOY C   PICCARE D D   PICKETOS B   PIUTO B   POGAMEAB SANOY C   PICCARE D D   PICKETOS B   PIUTO B   PICONTE B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO B   PIUTO	PAXVILLE	8/01	PEOTONE	8/01	PHYS	8	PIPESTONE	8	P000	D
PAYNE C   PEPPER   D   PICABD   C   PIRQUETTE   D   POGAL   C   PAYNECREK   B   PEQUIMING   A   PICACHO   C   PIRUM   B   POGANEAB   C   PAYSON   D   PEQUEA   B   PICANTE   D   PISGAH   C   POGANEAB   C   PAYSON   D   PEQUEA   B   PICANTE   D   PISGAH   C   POGANEAB   C   C   PAYADR   C   POGANEAB   C   C   PISMO   D   POGANEAB   C   C   PISMO   D   POGANEAB   C   C   PISMO   D   POGANEAB   C   C   PISMO   D   POGANEAB   C   C   PISMO   D   POGANEAB   C   C   PISMO   D   POGANEAB   C   C   PISMO   D   POGANEAB   C   C   PISMO   D   POGANEAB   C   C   PISMO   D   POGANEAB   C   C   PISMO   D   PITCHER   D   POGANEAB   C   C   PISMO   D   PITCHER   D   POGANEAB   C   C   PISMO   D   PITCHER   D   POGANEAB   C   C   PISMO   D   PITCHER   D   POGANEAB   C   C   PISMO   D   PITCHER   D   POGANEAB   C   C   PISMO   D   PITCHER   D   POGANEAB   C   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   C   PISMO   D   PITCHER   D   POGANEAB   D   PISMO   D   PITCHER   D   POGANEAB   D   PISMO   D   PITCHER   D   POGANEAB   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PISMO   D   PI	PAYETTE		PEPAL	8 1	PIASA	D	PIRD	8 (	PODUNK	8
PAYNECREEK B   PEGUMING   PICAME   C   PICAME   C   POGANEAB   C   PAYSON   D   PEGUEA   B   PICAME   D   PISGAH   C   POGANEAB   C   PAYSON   D   PEGUEA   B   PICAME   B   PISHKUN   B   SUBSTRATUM   PEARL   B   PERCHAS   D   PICKAMAY   C   PIT   D   DRAINED   PEARL   B   PERCHAS   D   PICKAMAY   C   PIT   D   DRAINED   PEARL   ARBOR   D   PERCILLA   D   PICKENS   D   PITCHER   B   POGANEAB   SALINE   D   PEARSOLL   D   PERCIVAL   C   PICKETS   C   PITCO   D   POGANEAB   SALINE   D   PEARSOLL   D   PERCIVAL   C   PICKETS   D   PITCHER   B   POGANEAB   SALINE   D   PEARSOLL   D   PERCON   C   PICKETS   D   PITCHER   B   POGANEAB   SALINE   D   PEARSOLL   D   PITCO   D   POGANEAB   SALINE   D   PEARSOLL   D   PITCO   D   PITCO   D   POGANEAB   STRONGLY   D   PEARSOLL   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITC	PAYMASTER	0	PEPOON	0 1	PIBLER	DI	PIRO	A	POE	С
PAYNECREEK B   PEGUMING   PICAME   C   PICAME   C   POGANEAB   C   PAYSON   D   PEGUEA   B   PICAME   D   PISGAH   C   POGANEAB   C   PAYSON   D   PEGUEA   B   PICAME   B   PISHKUN   B   SUBSTRATUM   PEARL   B   PERCHAS   D   PICKAMAY   C   PIT   D   DRAINED   PEARL   B   PERCHAS   D   PICKAMAY   C   PIT   D   DRAINED   PEARL   ARBOR   D   PERCILLA   D   PICKENS   D   PITCHER   B   POGANEAB   SALINE   D   PEARSOLL   D   PERCIVAL   C   PICKETS   C   PITCO   D   POGANEAB   SALINE   D   PEARSOLL   D   PERCIVAL   C   PICKETS   D   PITCHER   B   POGANEAB   SALINE   D   PEARSOLL   D   PERCON   C   PICKETS   D   PITCHER   B   POGANEAB   SALINE   D   PEARSOLL   D   PITCO   D   POGANEAB   SALINE   D   PEARSOLL   D   PITCO   D   PITCO   D   POGANEAB   STRONGLY   D   PEARSOLL   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITCO   D   PITC	PAYNE	c i	PEPPER	D 1	PICABO	c i	PIRDUETTE	D 1	POGAL	C
PASON D   PEGUEA B   PICANTE O   PISGAH C   POGANEAB. CLAYEY O PAZAR B   PERAZZO B   PICAYUNE B   PISHKUN B   SUBSTRATUM   PEACHAM D   PERCETON B   PICAYUNE C   PISHO D   POGANEAB. SALINE. C   PEARL B   PERCHAS D   PICKAMAY C   PIT D   ORAINED   PEARL HARBOR O   PERCILLA D   PICKENS D   PITCHER B   POGANEAB. SALINE D   PEARSOLL D   PERCIVAL C   PICKETT C   PITCO D   POGANEAB. HIGH D   PEASLEY D   PERCOUN C   PICKETT C   PITCO D   POGANEAB. HIGH D   PEANICK D   PERCOUN C   PICKETT D   PITTHAM C   POGANEAB. STRONGLY D   PEAMICK D   PERCON D   PICKELL D   PITTSTIELD B   SALINE D   PEABLEPDINT C   PERCLA B   PICKUP D   PITTSTOWN C   POGANEAB. STRONGLY D   PECATONICA B   PERELLA B   PICKUP D   PITTSTOWN C   POGANEAB. DAINED C   PECATONICA B   PERELLA B   PICKUP D   PITTSTOWN C   POGANEAB. STRONGLY D   PECATONICA B   PERELLA B   PICKUP D   PITTSTOWN C   POGANEAB. STRONGLY D   PECTURE B   PERCOD B   PICKUP D   PITTSTOWN C   POGANEAB. STRONGLY D   PECTURE B   PERCOD B   PICKUP D   PITTSTOWN C   POGANEAB. STRONGLY D   PECTURE B   PERCOD B   PICKUP D   PITTSTOWN C   POGANEAB. STRONGLY D   PECTURE B   PERCOD B   PICKUP D   PITTSTOWN C   POGANEAB. STRONGLY D   PECTURE B   PERCOD B   PICKUP D   PITTSTOWN C   POGANEAB. STRONGLY D   PECTURE B   PERCOD B   PICKUP D   PITTSTOWN C   POGANEAB. STRONGLY D   PEOLETOR C   PERRITSA C   PIERE D   PILEE B   POGGUE B   PEOLETORD C   PERRITSA C   PIERE D   PILEE B   POGGUE B   PEOLETORD C   PERRITS C   PIERE D   PILEENTON B   POLACENTIOS. B   POINDEXTER B   PEODLI B   PERRLA C   PIERE D   SALINE-ALKALI   POINT ISABEL C   PEEBLES C   PERNITS C   PIERE D   PICKETIOS. B   POINDEXTER B   PEODLI B   PERRLA C   PIERE B   POGGUE B   PEOLETORD C   PERRITY D   PIKE B   POGANEAB. B   PECLER B   POGGE D   PICKETTON B   POLACENTOS. B   POINDEXTER B   PEOLE C   PERRITY D   PIKE B   POGANEAB. B   PECLER B   POGANEAB. STRONGE D   PECLER B   POGANEAB. STRONGE D   PECLER B   POGANEAB. STRONGE D   PECLER B   POGANEAB. STRONGE D   PECLETOR D   PIERTON B   PILCETON B   POLACETIOS. B   POINDEXTER B   PECLET	PA YNE CREEK		PEQUANING	A 1	PICACHO	ci	PIRUM	В	POGANEAB	C
PAZAR    Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Perceton   Pe										-
PEACHAM  D   PERCETON B   PICEANCE C   PISMO D   POGANEAB. SALINE. C   PEARL B   PERCHAS D   PICKAWAY C   PIT D   DRAINED   PEARL HARBOR D   PERCILLA D   PICKENS D   PITCHER B   POGANEAB. SALINE D   PEARSOLL D   PERCIVAL C   PICKETT C   PITCO D   POGANEAB. SALINE D   PEARSOLL D   PERCOUN C   PICKETT C   PITCO D   POGANEAB. HIGH D   PEANLEY D   PERCOUN C   PICKETT C   PITCO D   POGANEAB. HIGH D   PEANLEY D   PERCOUN C   PICKETT C   PITCO D   POGANEAB. HIGH D   PEANLEX D   PERCOUN C   PICKET D   PITTSFIELD B   SALINE D   PEANLEX D   PERDIN C   PICKELL D   PITTSFIELD B   SALINE D   PEANLEX D   PERCOUN C   PICKELL D   PITTSFIELD B   SALINE D   PECATONICA B   PERCLA. B   PICKUP D   PITTSFOUN C   POGANEAB. D   PECATONICA B   PERCLA. B   PICKUP D   PITZER C   SALINE-ALKALI D   PECOS D   PERNAM B   PICOS B   PIVOT A   POGANEAB. SANDY C   PECTURE B   PERIOD B   PICOSA C   PIXLEY C   SUBSTRATUM   PEODE C   PERIOSE B   PIDINEEN D   PIZENE B   POGUE B   PEDIGO B   PERKINS C   PIE CREEK D   PLACEDO D   POMAKUPU B   PEDIGO B   PERKINS C   PIERIAN B   PLACENTIA D   POINDEXTER B   PEDOLI B   PERKA B   PIERDONT C   PLACETITOS. B   POINDEXTER B   PEDDLI B   PERKA B   PIERDONT C   PLACETITOS. B   POINDEXTER B   PEDDLO C   PERNITAS C   PIERRE D   SALINE-ALKALI   POINT ISABEL C   PEEDLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POINDEXTER D   PEDLEFORD C   PERRITAS C   PIIHDNUA A   PLACERITOS. B   POINDIXETE B   PEEDLES C   PERRITAS C   PIIHDNUA A   PLACERITOS. B   POINDIXET C   PEELLE B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGEMA B   PEELLE B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGEMA B   PEETZ A   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEGEMA C   PEETZ A   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEGEMA C   PEETZ A   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEGEMA C				-			_			
PEARL MARBOR D   PERCHAS D   PICKAMAY C   PIT D   DAINED   PEARL HARBOR D   PERCILLA D   PICKENS D   PITCHER B   POGANEAB. SALINE D   PEASLEY D   PERCOUN C   PICKETT C   PITCO D   POGANEAB. HIGH D   PEASLEY D   PERCOUN C   PICKFORD D   PITNEY C   RAINFALL   PEAVINE C   PERCY B / D   PICKNEY A / D   PITNEY C   RAINFALL   PEAVINE C   PERCY B / D   PICKNEY A / D   PITNEY C   POGANEAB. STRONGLY D   PEAVINE C   PERCY B / D   PICKNEY A / D   PITNEY C   POGANEAB. STRONGLY D   PEAVINE C   PERCH B   PICKNEY A / D   PITNEY I D   POGANEAB. STRONGLY D   PEAVINE C   PERCH B   PICKNEY A / D   PITNEY I D   POGANEAB. D   PECATONICA B   PERCH B   PICKNEY B   PITNEY D   POGANEAB. D   PECATONICA B   PERCH B   PICKNICK B   PITNEY D   POGANEAB. D   PECKNISH D   MODERATELY WET   PICKWICK B   PITNEY D   POGANEAB. D   PECTURE B   PERMA B   PICO B   PITNEY D   POGANEAB. D   PECTURE B   PERMA B   PICO B   PITNEY D   POGANEAB. D   PEDER C   PERITSA C   PIECKEK D   PLACED D   POHAKUPU B   PEDERNALES C   PERITSA C   PIECKEK D   PLACED D   POHAKUPU B   PEDIGO B   PERKIN C   PIERRE D   SALINE. DRAINED   POINSETT B   PEDICK B   PERMA B   PIERDONT C   PLACERITOS. B   POINDEXTER B   PEDICK B   PERMA B   PIERDONT C   PLACERITOS. B   POINSETT B   PEDRICK B   PERNA B   PIERDONT A   PLACERITOS. B   POINSETT B   PEDRICK B   PERNA B   PIERDONT A   PLACERITOS. B   POINSETT B   PEDRICK B   PERNA B   PIERDONT A   PLACERITOS. B   POINSETT B   PEDRICK B   PERNA B   PIERDONT A   PLACERITOS. B   POINSETT B   PEDRICK B   PERNA B   PIERDONT A   PLACERITOS. B   POINSETT B   PEDRICK B   PERNA B   PIERDONT A   PLACERITOS. B   POINSETT B   PEELL C   PERNTY D   PIKE B   NODERATELY WET POJJOAQUE B   PEELLER B   PERGUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEMAN C   PEELER C   PERRIN B   PILCHUCK C   PLACERITOS. WET C   POKEMAN C   PEELER C   PERRIN B   PILCHUCK C   PLACERITOS. WET C   POKEMAN C   PEELER C   PERRIN B   PILCHUCK C   PLACERITOS. WET C   POKEMAN C   PEELER C   PERRIN B   PILCHUCK C   PLACERITOS. WET C   POKEMAN C   PEELER C   PERRIN B   PILCHUCK				- ,		- •		_ ,		C
PEARL MARBOR  D   PERCILLA  D   PERCILLA  D   PERCIVAL  C   PICKETT  C   PITCO  D   POGANEAB, SALINE  D   PEASOLLEY  D   PERCOUN  C   PICKETOR  D   PITNEY  C   RAINFALL  PEAVINE  C   PERCY  B/O   PICKNEY  A/O   PITTMAN  C   POGANEAB, STRONGLY  D   PEAVINE  D   PERCY  B/O   PICKNEY  A/O   PITTMAN  C   POGANEAB, STRONGLY  D   PEAVINE  D   PERCY  B/O   PICKNEY  A/O   PITTMAN  C   POGANEAB, STRONGLY  D   PEAVINC  D   PERCILA  B   PICKNEY  D   PITTSTOWN  C   POGANEAB, OR OR OR OR OR OR OR OR OR OR OR OR OR		- •		-						
PEARSOLL  D PERCIVAL  C   PICKETT  C   PITCO  D   POGANEAB. HIGH  D PEASLEY  D   PERCOUN  C   PICKETD  D   PITNEY  C   RAINFALL  PEAVINE  C   PERCY  B   PICKNEY  A   PITTMAN  C   POGANEAB. STRONGLY  D   POGANEAB. STRONGLY  D   POGANEAB. STRONGLY  D   POGANEAB. STRONGLY  D   POGANEAB. STRONGLY  D   PITTSFIELD  B   SALINE  PEBBLEPDINT  C   PERELLA  B   PICKUP  D   PITTSTOWN  C   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   POGANEAB.  D   P		-								D
PEASLEY  D PERCOUN  C PICKFORD  D PITNEY  C PAINFALL  PEAVINE  C PERCY  B/D PICKNEY  A/D PITTMAN  C POGANEAB. STRONGLY D  PEBBLEPDINT  C PERELLA  B/D PICKNEY  A/D PITTSFIELD  B SALINE  PEGATONICA  B PERELLA  B PICKUP  D PITZER  C SALINE-ALKALI  PECKISM  D MODERATELY WET  PICKUP  PECTURE  B PERICO  B PICO  B PIVOT  A POGANEAB. DRAINED  C PECTURE  B PERICO  B PICO  B PIVOT  A POGANEAB. SANOY  C PECTURE  B PERICO  B PICO  B PIVOT  A POGANEAB. SANOY  C PECTURE  B PEDERNALES  C PERITSA  C PIE CREEK  D PLACEDO  D POHAKUPU  B PEDLEFORD  C PERKS  A PIERPONT  C PLACERITOS.  B POINDEXTER  B PEDRICK  B PERMA  B PICREE  C PERNA  B PICRO  B PICOS  B PICOS  B POINDEXTER  B PEDRICK  B PERMA  B PICOS  B PICOS  B PICOS  C PERNS  A PIERPONT  C PLACERITOS.  B POINDEXTER  B PEDRICK  B PERMA  B PIERSONTE  A PLACERITOS.  C POINT  C PEDRO  C PERNITAS  C PIIDDNUA  A PLACERITOS.  B POINOEXER  B POINOEXER  B POINOEXER  B POINOEXER  B POINOEXER  B POINOEXER  B PEBLES  C PERNITAS  C PIIDDNUA  A PLACERITOS.  B POINOICREEK  D PEBLE  C PERNITAS  C PIIDDNUA  A PLACERITOS.  B POINOICREEK  D PEEL  C PERNITAS  C PIIDDNUA  A PLACERITOS.  B POINOICREEK  D PEEL  C PERRIN  B PILCOULK  C PLACERITOS.  B POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREEK  D POINOICREER  C POREGEMA  B POINOICREEK  D POINOICREER  D POINOICREER  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMAN  C POKEMA		- •				- •				_
PEAVINE    Peavine   C   Percy   B/D   Pickney   A/D   Pittman   C   Poganeab   Strongly   D								- •		
PEAWICK  PEBBLEPDINT  C   PERDIN  C   PICKTON  A   PITTSTOWN  C   POGANEAB.  D   PECATONICA  B   PERELLA.  B   PICKUP  PECATONICA  B   PERELLA.  B   PICKUP  PECATONICA  B   PERELLA.  B   PICKUP  PECATONICA  B   PICKUP  PECATONICA  PECOS  D   MODERATELY WET  PECOS  D   PERMAM  B   PICO  B   PIVOT  A   POGANEAB. ORAINED C  PECTURE  B   PERICD  B   PICO  B   PIVOT  A   POGANEAB. SANDY C  PECTURE  PEDEE  C   PERIDGE  B   PIDINEEN  D   PIZENE  B   POGANEAB. SANDY C  PECTURE  B   POGANEAB. SANDY C  PECTURE  PEDEE  C   PERIDGE  B   PIDINEEN  D   PIZENE  B   POGANEAB. SANDY C  PECTURE  B   POGANEAB. SANDY C  PECTURE  B   POGANEAB. SANDY C  PECTURE  B   POGANEAB. SANDY C  PECTURE  B   POGANEAB. SANDY C  PECTURE  B   POGANEAB. SANDY C  PETITSA  C   PIECREK  D   PIZENE  B   POGANEAB. ORAINED  D   POHAKUPU  B   POLACENTIOS.  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  B   POINOEXTER  C   POINT   C  PEDRD  C   PERNITAS  C   PIHDNUA  A   PLACERITOS.  B   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONCREEK  D   POISONC		- ,				- •				
PEBBLEPDINT C   PERELLA BOD PICKTON A   PITTSTOWN C   POGANEAB. D   PECATONICA B   PERELLA. B   PICKUP D   PITZER C   SALINE-ALKALI   PECKISH D   MODERATELY WET   PICKWICK B   PIUTE D   POGANEAB. ORAINED C   PECTURE B   PERICD B   PICO B   PIVOT A   POGANEAB. SANDY C   PECTURE B   PERICD B   PICOSA C   PIXLEY C   SUBSTRATUM   PEDEE C   PERIDGE B   PIDINEEN D   PIZENE B   POGUE B   PEDERNALES C   PERITSA C   PIE CREEK D   PLACEDO D D   POHAKUPU B   PEDLEFORD B   PERKINS C   PIERIAN B   PLACENTIA D   POIN D   PEDLEFORD C   PERKS A   PIERPONT C   PLACERITOS. B   POINDEXTER B   PEDRICK B   PERMA B   PIERSONTE A   PLACERITOS. C   PDINT C   PEDRO C   PERN B   PIETOWN B   SALINE-ALKALI   POINT ISABEL C   PEBBLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POISONCREEK D   PEEL C   PERNITAS C   PIKE B   MODERATELY WET   POJOAQUE B   PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. B   POKEMAN C   PEEVER C   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILCHUCK C   PLACERITOS. B   POKEMAN C		- •								_
PECATONICA  B   PERELLA.  B   PICKUP  D   PITZER  C   SALINE-ALKALI  PECKISH  D   MODERATELY WET  PICKWICK  B   PIUTE  D   POGANEAB. DRAINED C  PECOS  D   PERMAM  B   PICO  B   PIVOT  A   POGANEAB. SANDY  C   PIXLEY  C   SUBSTRATUM  PEDEE  C   PERIOGE  B   PIODSA  C   PIXLEY  C   SUBSTRATUM  PEDEE  C   PERIOGE  B   PIDINEEN  D   PIZENE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGUE  B   POGNEAB. SANDY  C   SALINE-ALKALI  D   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POINT  C   POI		- ,						- •		0
PECKISH  D   MODERATELY WET   PICKWICK   B   PIUTE   D   POGANEAB. DRAINED   C   PECOS   D   PERMAM   B   PICO   B   PIVOT   A   POGANEAB. SANDY   C   PECTURE   B   PERICO   B   PICOSA   C   PIXLEY   C   SUBSTRATUM   PEDEE   C   PERIOGE   B   PIDINEEN   D   PIZENE   B   POGUE   B   PECOS   B   PIDINEEN   D   PIZENE   B   POGUE   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   POINDEXTER   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   B   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   B   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PECOS   C   PE						•				_
PECDS  D   PERMAM		- "		5 !						
PECTURE B   PERICO B   PICOSA C   PIXLEY C   SUBSTRATUM   PEDEE C   PERIDGE B   PIDINEEN D   PIZENE B   POGUE B   PEDERNALES C   PERITSA C   PIE CREEK D   PLACEDO D   POHAKUPU B   PEDIGO B   PERKINS C   PIERTAN B   PLACENTIA D   POIN D   PEDLEFORD C   PERKS A   PIERPONT C   PLACERITOS. B   POINDEXTER B   PEDULI B   PERLA C   PIERRE D   SALINE. DRAINED   POINSETT B   PEDRICK B   PERNA B   PIERSONTE A   PLACERITOS. C   PDINT C   PEDRD C   PERN B   PIETOWN B   SALINE-ALKALI   POINT ISABEL C   PEEBLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POISONCREEK D   PEEL C   PERNITY D   PIKE B   MODERATELY WET   POJOAQUE B   PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGMA B   PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKERAN C   PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C				_ !		- •				
PEDEE C   PERIDGE B   PIDIMEN D   PIZENE B   POGUE B   PEDERNALES C   PERITSA C   PIE CREEK D   PLACEDO D   POHAKUPU B   PEDIGO B   PERKINS C   PIERIAN B   PLACENTIA D   POIN D   PEDLEFORD C   PERKS A   PIERPONT C   PLACERITOS. B   POINDEXTER B   PEDRICK B   PERMA B   PIERSONTE A   PLACERITOS. C   POINT C   PEDRO C   PERM B   PIERSONTE A   PLACERITOS. C   POINT C   PEDRO C   PERN B   PIERONTE A   PLACERITOS. C   POINT   SABEL C   PEBLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POISONCREEK D   PEEL C   PERNITAS C   PIERE B   MODERATELY WET   POJOAQUE B   PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGEMA B   PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKERAN C   PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C		- •				- •				-
PEDERNALES C   PERITSA C   PIE CREEK D   PLACEDO D   POHAKUPU B PEDIGO B   PERKINS C   PIERIAN B   PLACENTIA D   POIN D PEDLEFORD C   PERKS A   PIERPONT C   PLACERITOS. B   POINDEXTER B PEDDLI B   PERLA C   PIERRE D   SALINE. DRAINED   POINSETT B PEDRICK B   PERMA B   PIERSONTE A   PLACERITOS. C   PDINT C PEDRD C   PERN B   PIETDWN B   SALINE-ALKALI   POINT ISABEL C PEBLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POISONCREEK D PEEL C   PERNITY D   PIKE B   MODERATELY WET   POJOAQUE B PEELER B   PERGUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGEMA B PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKERMA C C   PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C		•		•		•				
PEDIGO B   PERKINS C   PIERIAN B   PLACENTIA D   POIN D   PEDLEFORD C   PERKS A   PIERPONT C   PLACERITOS. B   POINDEXTER B   PEDDLI B   PERLA C   PIERRE D   SALINE. DRAINED   POINSTT B   PEDRICK B   PERNA B   PIERSONTE A   PLACERITOS. C   PDINT C   PEDRD C   PERN B   PIETDWN B   SALINE.ALKALI   POINT ISABEL C   PEBLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POISONCREEK D   PEEL C   PERNITY D   PIKE B   MODERATELY WET   POJOAQUE B   PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGMA B   PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C				- •						
PEDLEFORD C   PERKS A   PIERPONT C   PLACERITOS. B   POINDEXTER B   PEDDLI B   PERLA C   PIERRE D   SALINE. DRAINED   POINSETT B   PEDRICK B   PERMA B   PIERSONTE A   PLACERITOS. C   PDINT C   PEDRD C   PERN B   PIETOWN B   SALINE-ALKALI   POINT ISABEL C   PEBLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POISONCREEK D   PEEL C   PERNITY D   PIKE B   MODERATELY WET   POJOAQUE B   PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGEMA B   PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C		*		- •		- •		- '		_
PEDOLI B   PERLA C   PIERRE D   SALINE DRAINED   POINSETT B PEDRICK B   PERMA B   PIERSONTE A   PLACERITOS C   PDINT C PEDRO C   PERN B   PIETOWN B   SALINE ALKALI   POINT ISABEL C PEBLES C   PERNITAS C   PIIHONUA A   PLACERITOS B   POISONCREEK D PEEL C   PERNITY D   PIKE B   MODERATELY WET   POJOAQUE B PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS WET C   POKEGEMA B PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS B   POKEMAN C PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C		-		CI	PIERIAN	- •		- •		
PEDRICK B   PERMA B   PIERSONTE A   PLACERITOS. C   PDINT C   PEDRO C   PERN B   PIETOWN B   SALINE-ALKALI   POINT ISABEL C   PEEBLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POISONCREEK D   PEEL C   PERNTY D   PIKE B   MODERATELY WET   POJOAQUE B   PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGEMA B   PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C	PEDLEFORD	CI	PERKS	A I	PIERPONT	C I	PLACER I TOS.	8	POINDEXTER	B
PEDRICK B   PERMA B   PIERSDNTE A   PLACERITOS. C   PDINT C   PEDRO C   PERN B   PIETOWN B   SALINE-ALKALI   POINT ISABEL C   PEEBLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POISONCREEK D   PEEL C   PERNTY D   PIKE B   MODERATELY WET   POJOAQUE B   PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGEMA B   PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C	PEDOLI	BI	PERLA	c i	PIERRE	DI	SALINE. DRAINED	ł	POINSETT	
PEDRO C   PERN B   PIETOWN B   SALINE-ALKALI   POINT ISABEL C PEBLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POISONCREEK D PEEL C   PERNY D   PIKE B   MODERATELY WET   POJOAQUE B PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGEMA B PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C	PEDRICK	0	PERMA	8 1	PIERSONTE	A I	PLACERITOS.	C I	PDINT	C
PEEBLES C   PERNITAS C   PIIHDNUA A   PLACERITOS. B   POISONCREEK D PEEL C   PERNTY D   PIKE B   MODERATELY WET   POJOAQUE B PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGMA B PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C	PEDRD	CI	PERN	8 1		-	SALINE-ALKALI	i	POINT ISABEL	C
PEEL C   PERNTY D   PIKE B   MODERATELY WET   POJOAQUE B PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGEMA B PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C		-		- 0		•		В		D
PEELER B   PERQUIMANS D   PIKEVILLE B   PLACERITOS. WET C   POKEGEMA B   PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C   PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C	=			- •				i		
PEETZ A   PERRIN B   PILCHUCK C   PLACERITOS. B   POKEMAN C PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C				- •		- •		c		_
PEEVER C   PERRINE D   PILEUP B   DRAINED   POKER C										
				- •						
		- •		•	_			8/0		
		- 1	- SUMERION	- 1	- TETINE	0 1	- CACIO	3701		•

NOTES: TWO HYDROLDGIC SDIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G., BEDROCK SUBSTRATUM, REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

TABLE 7.1 -- HYDROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

POLALLIE	c I	POTH	c I	PUGSLEY	C I	QUINLAN	c I	RANDSBURG	D
POLAR	8	POTLATCH	C I	PUHI	В	QUINN	B/D		C
POLATIS	C I	POTOMAC	A	PUHIMAU	0	QUINNEY	c I	RANRUFF	D
POLAVANA	A/DI		A	PULA	C	QUINTANA	В	RANSLO	D
POLECREEK	D	POTRATZ	c i	PULASKI PULCAN	8	QUINTON	C I	RANSOM	8 8
POLELINE POLEPATCH	B	POTSDAM POTTER	C I	PULEHU	C	QUITMAN	ci	RANSTEIN RANTOUL	D
POLERUN	ŝ	POTTINGER	6 1	PULEXAS	В	QUDNSET	Ā	RAPATEE	o
POLEY	ci	POTTS	8 1	PULLMAN	D	QUOSATANA	c i	RAPELJE	8
POLICH	c i	POTTSBURG	8/01	PULPIT	c	RABBITEX	В	RAPH	В
POLKING	D i	POUDRE	CI	PULS	0	RABER	ci	RAPHD	В
POLLARD	c i	PDULSBO	c i	PULS IPHER	0	RABIDEUX	B	RAPIDAN	В
POLLUX	c i	POUNCEY	DI	PULTNEY	C	RABUN	8	RAPLEE	С
POLLY	8	POVERTY	D I	PUMEL	D	RACE	В	RAPPAHANNOCK	9
POLO. MODERATELY	c I	POVEY	8	PUMPER	8	RACHERT	0	RAPSON	B
SLOW PERM	!	POWDER	8	PUNA	A I	RACINE	В	RARDEN	C
POLO. MODERATE	9	POWDERHORN	c i	PUNALUU	0 [	RACKER	A	RARICK	C
PERMEABILITY	. !	POWER	C I	PUNCHBOWL PUNDIP	0	RACDMBES RACOON	B	RARITAN RASBAND	C B
POLDNID POLSON	8 1	POWLEY	0 1	PUNG	c	RAO	BI	RASILLE	8
POHAT	ci	PDY	0 1	PUNGO	0	RAD, ALKALI	В	RASSER	8
POMELLO	ċi	POYGAN	o i	PUNDHU	A	RAD. LACUSTRINE	В	RASSET	В
POMFRET	Ăi	POYNDR	8 i	PURCELLA	8	SUBSTRATUM	i	RATAKE	D
POHO	8 j	POZO	c i	PURCHES	C	RAD. FLODDED	ci	RATHBUN	C
POMONA	8/01	POZO BLANCO	B	PURDAM	C	RADDLE	B	RATHDRUM	8
POMONA.	0	PRAG	c I	PUROY	0	RADER	0 1	RATLIFF	8
DEPRESSIONAL	1	PRAIRIEVILLE	B	PURETT	8	RADERSBURG	B	RATON	0
POMPANO	A/DI	PRATHER	c I	PURGATORY	C	RAOFORD	B	RATSDW	C
POMPAND.	A/DI		c I	PURNER	D I	RAOLEY	В	RATTLER	D
DEPRESSIONAL	. !	PRATT	A !	PURSLEY	В	RADNOR	c I	RATTO	c
POMPANO, FLOODED POMPTON	D I	PREACHER PREAKNESS	B   B/01	PURVES PUSHMATAHA	C	RAFAEL Rafton	D	RATTD. STONY RAUB	D C
POMPTON	c	PREATORSON	BI	PUSTOI	8	RAGLAN	В	RAUGHT	В
PONCA	В	PREBISH	C/DI		0	RAGNAR	A 1	RAUVILLE	D
PONCENA	D 1	PREBLE	c i	PUTNEY	8	RAGD	ĉi	RAUZI	В
PONCHA	A	PRELO	8 1	PUTT	c	RAGSDALE	B/D		D
POND	Di	PREMIER	8	PUU 00	A	RAGTOWN	CI	RAVEN	A
POND CREEK	8	PRENTISS	c I	PUU OPAE	8	RAHAL	c 1	RAVENDALE	D
PONOER	DI	PRESA	8	PUU PA	A	RAHM	C	RAVENELL	D
PONIL	DI	PRESHER	8	PUU PA. NONSTONY	8	RAHWORTH	8	RAVENNA	C
PONINA	DI	PRESTO	В	PUUKALA	0	RAIL	C/DI		C
PONTO	BI	PRESTON	B	PUVALLUP	В	RAILCITY	C	RAVIA	C B
PONTOTOC PONZER	D	PREWITT	Ĉ i	PYLE	c	RAINBDW	c	RAWAH	Č
POOKU	8 1	PRICE	8 1	PYLON	0	RAINIER	c i	RAWE	č
POOLER	D 1	PRIDA	ci	PYOTE	A	RAINO	o i	RAWLES	8
POOLEVILLE	c i	PRICHAM	οi	PYRANID	0	RAINS	B/D		В
POORCAL	B	PRIESTLAKE	8 1	PYRMONT	0	RAINSBORD	c I	RAYBURN	D
POORMA	8	PRIETA	0	PYWELL	D	RAIRDENT	8	RAYEX	D
POOSE	D	PRIM	0 [	QUAFENO	C	RAISIO	C I	RAYFORD	C
POOTATUCK	•	PRIMEAUX	c i	QUAKER	C	RAKE	0	RAYMONDVILLE	D
POPASH	D	PRIMEN	0	QUAKERTOWN	C	RAKIED	c I	RAYNE	B
POPE POPLE	B	PRINGHAR PRINCETON	8 I	QUAMON	B/D		0 1	RAYNESFORD RAYNHAM	č
POPLIMENTO	C	PRINEVILLE	ci	QUANAH	8	RALLOD   Ralls	8 1	RAYNDLDSON	В
POPPLETON	Ā	PRING	8 1	QUANDER	8	RALPH	8	RAYPOL	č
POQUITA	B	PRINGLE	c i	QUANTICO	8	RALPHSTON	В	RAZITO	A
POQUONOCK	ci	PRITCHETT	c i	QUARLES	D	RAMADERO	B	RAZOR	C
PORFIRIO	C I	PRDCHASKA	A/DI	QUARTZBURG	C	RAMBLA	C I	RAZORBA	B
PORRETT	DI	PROCTOR	8 I	QUARTZVILLE	8	RAMELLI	D	RAZORT	В
PORT	В	PROGRESSO	c i	QUARZ	C	RAMIRES	C I		8
PORT BYRON	8	PROMISE	0	QUATAMA	C	RAMIRES. COBBLY	c i	READINGTON	C B
PORTAGE PORTAGEVILLE	0 1	PROMD PROMG	D I	QUAY QUAZO	8	SUBSTRATUM	c	READLYN REAGAN	8
PORTALES		PROSPECT		QUEALMAN	8	RAMIRES.	0 1	REAKOR	8
PORTALTO	8 1	PROSPER	В	QUEALY	0	NONGRAVELLY	, i	REAL	D
PORTERFIELO	c i	PROSSER	c i	QUEBRADA	c	RAMMEL	c i	REAP	D
PORTERS	8	PROTIVIN	c i	QUEENY	0	RAMO	c I	REARDAN	C
PORTERVILLE	DI	PROUT	c I	QUEETS	8	RAMONA	8	REAVILLE	С
PORTHILL	DI	PROUTY	c i	QUEMADO	C	RAHOMA. GRAVELLY.	8	REBA	C
PORTIA	C I	PROVIDENCE	c i	QUENZER	0	CDOL	- !	REBEL	0
PORTINO	c I	PROVD	0	QUERC	C	RAHONA - CDDL	В	RED BAY	B C
PORTLANO PORTMOUNT	D I	PROVO BAY	D I	QUETICO	8	RAMDNA, HARD	C	RED BLUFF RED BUTTE	8
PORTNEUF	8 1	PRUE	8 1	QUICKSELL	C	RAMPART	в	RED HODK	č
PORTOLA	9 1	PRUITTON				RAMPARTER	В	RED ROCK	8
PORTSMOUTH	B/D		0		c	RAMPS	8	REO SPUR	8
PORUM	D		c i	QUICLEY	8	RAMROD	c i	REDBANK	8
POSANT	c i	PTARMIGAN	c i		C	RAMSDELL	c i	REDBELL	8
POSEY	8	PUAPUA	D	QUILCENE	C	RAMSEY	D	REDBY	В
POSEYVILLE	c i	PUAULU	A I	QUILLAYUTE	В	RAMSHORN	В	REDCAN	D
POSITAS	DI	PUCHYAN	<b>D</b>	QUILOTOSA	0	RANCE	c I	REDCHIEF	C
POSKIN POSOS	C I	PUERCO PUERTA	0 1	QUILT	0	RANDADO	C I	REDCLIFF REDCLOUD	СВ
POST	0 1	PUERTA	0 1	QUINCY	B	RANDALL   RANDCORE	D	REDCLOUD	D
		PUFFER	, o	QUINCY. WET	8	RANDMAN	0	REDCO	0
POTCHUB	C	PUTTER							
POTCHUB POTEET	C	PUGET	0 1	QUINCY. GRAVELLY	A	RANDOLPH	c	REDOICK	8/0

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE ORAINED/UNDRAINED SITUATION.

NOOIFIERS SHOWN, E.G., BEDROCK SUBSTRATUM, REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

TABLE 7-1--HYDROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

RECORDING 0   REMPSIAL B   RIDECPORT   B   RODOZO   C   ROSE VALLEY   C   RECORDING   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY   C   ROSE VALLEY										
REDUIGO . ST. C   RESSELABN   FO   RIDGETILLE   B   ROSSON   C   ROSEBLOM   D   REDUIGO   R   RESEARCHANN   L   REDUIGO   C   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO   REDUIGO	REDFEATHER	0 (	RENSHAW	B	RIDGEPORT	B	ROBOZO		ROSE VALLEY	С
REDNIS 0   REMSELAR, TILL   R.O.   RIDOTT   C   ROSE   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   C   ROSESUO 0   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDANG   RECORDA	REOFIELD			B	RIDGEVIEW			-		-
REDLAMS 0   RESPERACIO   BOOT   C   ROCK, GRAVELLY   D   ROSEQUING   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON   BOTTON						-				
REDLANDS 0   REMSELARIA   B/D   RICHEL   C   BOCK-GAVELLY D   BOSSONU B/D   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BOCKDATUM   B   BO		- '		B/DI						-
RÉCOLAGE D   SEGNOCK   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RICTORN   RIC										-
REDNAM C C   REMSELARS AND C C   RICKELL C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C   ROCKETTE C		-		B/D						
REDNIED     REDNIELARS SAMPY   D.   RETRIBUTE   C   ROCKETTER   A   ROCKETTER   A   REDNIEL   A   REDNIEL   A   REDNIEL   A   REDNIEL   A   REDNIEL   A   REDNIEL   A   REDNIELAR   B   RECOMA   B   RETRIBUTE   B   REGES   D   ROCK STURR   B   REDNIELAR   B   RECOMA   B   RETRIBUTE   B   REGES   D   ROCK STURR   B   REDNIELAR   B   RECOMA   B   RETRIBUTE   B   REGES   D   ROCK STURR   B   REDNIELAR   B   RECOMA   B   RETRIBUTE   B   REGES   D   ROCK STURR   B   REDNIELAR   B   RECOMA   B   RETRIBUTE   B   REGES   D   ROCK STURR   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RETRIBUTE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE   B   RECOMBANCE				!						
REDNIE 0   SUSTRATUM C   RIFLE   A.70   ROCIO C   ROSEL-MO   RECOMBAN C   RIFLE   A.70   ROCIO C   RESELLAD   A.70   RECOMBAN C   RIFLE   A.70   ROCIO C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RECOMBAN C   RIFLE   A.70   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN C   RECOMBAN		-		0.40		- •				
REDOLAM  C   REWSELLARD, CLAY  C   REMSELLARD, CLAY  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C   RECORD  C				67 U I						_
RECORDA 0   LOAM SUSTRATUM   RISCHES D   ROCK SIVES S   ROSELMS O   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C   ROCKOAN C										
RECONDA 8   RETTLU				٠ :						
RECORDOR     RENTON   DAINED   C   RIGLETE   D   ROCKERS   D   ROSTILLE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVENUE   D   AVE										
RÉCORDITÉ D   RÉTION. D'ALHED C   RISCUETTE C   ROCCASILE O   ROSEWOOD AFO D' RECORDITÉS D   RETIALE O   RISCUETTE C   ROCCASILE O   ROSEWOOD AFO D' RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS   RECORDINGS		-		- •		- •				
REDNOS D   REVITAL   D   RILEY   D   ROCKOALE   A   ROSEMOD   NT   D   REDNOM D   REVITAL   D   RILLA   D   ROCKOALE   A   ROSEMOD   REDNOM D   REPART   D   RILLA   D   ROCKEAS   C   ROCK   REDNOM D   REPART   D   RILLA   D   ROCKEAS   C   ROCK   REDNOM D   REPART   D   RILLA   D   ROCKEAS   C   ROCK   REDNOM D   REPART   D   RILLA   D   ROCKEAS   C   ROCK   RECOSTDE   D   REPART   D   RILLA   D   ROCKEAS   D   ROCKEAS   RECOSTDE   D   REPART   D   RILLA   D   ROCKEAS   D   ROCKEAS   REDNOM D   RESERT   D   RILLA   D   ROCKEAS   D   ROCKEAS   REDNOM D   RESERT   D   RILLA   D   ROCKEAS   REDNOM D   RESERT   D   RILLA   D   ROCKEAS   REDNOM D   RESERT   D   RILLA   D   ROCKEAS   REDNOM D   RESERT   D   RILLA   D   ROCKEAS   REDNOM D   RESULT   D   RILLA   D   ROCKEAS   REDNOM D   RESULT   D   RILLA   D   ROCKEAS   REDNOM D   RESULT   D   RILLA   D   ROCKEAS   REDNOM D   RESULT   D   RILLA   D   ROCKEAS   RECONDOM D   RESTRICT   D   RILLA   RECONDOM D   RESTRICT   D   RILLA   RECONDOM D   RESTRICT   D   RILLA   REED   RESULT   D   ROCKEAS   RECONDOM D   RESTRICT   D   RILLA   REED   RESULT   D   RILLA   REED   RESULT   D   RESTRICT   REED   RESULT   D   RESTRICT   REED   RESULT   D   RESTRICT   REED   RESULT   D   RESTRICT   REED   RESULT   D   RESTRICT   REED   RESULT   D   RESTRICT   REED   RESULT   D   RESTRICT   REED   RESULT   D   RESTRICT   REED   RESULT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   REED   RESTRICT   D   RESTRICT   RESTRICT   D   RESTRI				- •						-
REDOND 0   RENTZEL C   SILLA 6   ROCKESS C   ROSHE SPRINGS D   REDARDADA B   REPARADA D   RILLINO B   ROCKESVILLE 8   ROSHE SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SPRINGS C   REDONES SP				- •						
REDSPAINGS GRACE D   REPARADA D   RILLITO B   ROCKEPVILLE B   ROSHESPRINGS C   REDSPAINGS GRACE D   REPARAT D   RILLITO C   ROCKEL C   REDSTORE						-				-
REDSTDE 8   REPPART D   RILLITO 5   ROCEFOOD 8   ROSATMED D   REDSTDE 8   REPPART D   RILLER C   ROCEFOOD 8   ROSATMED D   REDSTDE 8   RESURE D   RESURE D   RILLITO C   ROCEFOOD 8   ROSATMED D   RESURE D   RILLITO C   ROCEFOOD 8   RESURE D   RILLITO C   ROCEFOOD 8   RESURE D   RILLITO C   ROCEFOOD 8   RESURE D   RILLITO C   ROCEFOOD 8   RESURE D   RILLITO C   ROCEFOOD 8   RESURE D   RILLITO C   ROCEFOOD 8   RESURE D   RILLITO C   ROCEFOOD 8   RESURE D   RILLITO C   ROCEFOOD 8   RESURE D   RILLITO C   ROCEFOOD 8   RESURE D   RILLITO C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROSATMED C   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD 8   ROCEFOOD				-						-
REDSTORE A   REPUALIC S   RIVER C   ROCKHOUSE A   ROSHEAST UP DEPOSTORE A   REPUALIC S   RIVERS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF STRINGS OF		. D i		- •						•
REDINATIVE B   RESCUE D   RINNOCK O   ROCKLIN O   ROCK SPRINGS, D   REDINATIVE B   RESCUE D   RINNOCK O   ROCKLIN O   ROCK SPRINGS, D   REDINATIVE B   RESCUE D   RINNOCK O   ROCKLIN O   REDINATIVE C   RECTION D   RESCUE D   RESCUE D   RINNOCK O   ROCK SPRINGS   REDINATIVE C   RECTION D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D   RESCUE D										D
REDITION 0   RESCRICE   D   RINGOCK   D   ROCKLIN   D   ROSNES PRINCS, D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D   ROCKLIN   D		Ā		- •		- •				
REDVALE C I RESORT O I RITCOM REDVILE C I RESORT O I RITCOM O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I ROCKTON O I RO				- •						D
REDVILE   B   RESORT   D   RIN   B   ROCKOA   B   DATHED   REDVIEW   B   RESORT   C   RESORT   C   ROCKOA   C   ROCKOA   REDVIEW   B   RESORT   C   RESORT   C   ROCKOA   REDVIEW   B   RESORT   C   RESORT   C   ROCKOA   REDVIEW   B   RESORT   C   RESORT   C   ROCKOA   REDVIEW   B   RETRIEVER   C   RINDGE   DATHED   REED   C   RETRIEVER   C   RINDGE   DATHED   REED   C   ROCKOA   REED   C   RETRIEVER   C   RINGGE   DATHED   REED   C   ROCKOA   REED   C   REVEND   C   RINGGE   DATHED   REED   C   ROCKOA   REED   C   REVEND   C   RINGGE   REED   C   REVEND   C   REVEND   REED   C   REVEND   C   REVEND   REED   C   REVEND   C   REVEND   REED   C   REVEND   C   REVEND   REED   C   RESORT   C   REVEND   REED   C   RESORT   C   REVEND   REED   C   RESORT   C   REVEND   REED   C   RESORT   C   REVEND   REED   C   RESORT   C   REVEND   REED   C   RESORT   C   REVEND   REED   C   RESORT   C   REVEND   REED   C   RESORT   C   RESORT   REED   C   RESORT   C   RESORT   REED   C   RESORT   C   RESORT   REED   C   RESORT   C   RESORT   REED   C   RESORT   C   RESORT   REED   C   RESORT   C   RESORT   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   ROCKOA   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED   C   REVEND   REED				-						•
REDUM S	REDVALE	C	RESORT	0 1	RIN	В	ROCKOA	В	DRAINEO	
RECORDING  RESIDENCE  B   RETRIEVER  B   RETRIEVER  B   RETRIEVER  B   RETRIEVER  B   RETRIEVER  B   RETRIEVER  C   RIMAGE ORAINEO  C   ROCKYFORD  B   ROSITAS, MET C  C   RIMAGE ORAINEO  C   ROCKYFORD  B   ROSITAS, MARYLL A  REEDO RECORD  C   REVEL  C   RIMAGE ORAINEO  C   ROCKYFORD  B   ROSITAS, MARYLL A  REEDO RECORD  C   REVEL  C   RIMAGE ORAINEO  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD  C   ROCKYFORD	REDVIEW	В	RESOTA	A 1	RINCON	C I	ROCKTON	В	ROSHOLT	В
REEDER   D.   RETROUPER   D.   RIMCAGE OBAINEO   C.   ROCKYPARD   B.   ROSITAS, GARVELLY   A REED   RETROUPER   D.   RETROUPER   D.   RETROUPER   D.   RETROUPER   D.   REVENTION   B.   RIMCAGE   D.   ROSCHARM   B.   ROSITAS, LOANY   A REED   REDER   REVENTION   B.   RIMCAGE   D.   ROSCHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   RIMCAGE   D.   ROSSHARM   REEDER   D.   REVENTION   B.   RIMCAGE   D.   ROSSHARM   REEDER   D.   REVENTION   B.   RIMCAGE   D.   ROSSHARM   B.   RIMCAGE   D.   ROSSHARM   B.   ROSSHARM   B.   RIMCAGE   D.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROSSHARM   B.   ROS	REDVIEW. WET	C i	RESTON	c i	RINDA	D	ROCKWELL	8/0	ROSITAS	A
REED	REDWASH	0	RET	0	RINDGE	D	ROCKWOOD	C	RDSITAS. WET	C
REED DRAINED C   REVAL O   RIMEY	REE	8	RETRIEVER	0 1	RINDGE . DRAINED	C I	ROCKY FORD	8	ROSITAS. GRAVELLY	A
REEDER B   REVENTON B   RINGL	REEBOK	D	RETROP	c i	RINEARSON	8 1	ROCKYBAR	В	ROSITAS. LOAMY	A
REEDE DRAINED C   REVERT   C   RING C   RODES O   ROSMAN   B   REEDER   B   REVENTION   B   RINGLE   B   RODES   O   ROSMEY   B   REEDER   C   REVERTE   B   REVENTION   B   RINGLE   B   RODES   C   ROSSENT   C   REVERTE   B   RINGLE   B   RODES   C   ROSSENT   C   REVERTE   B   REEDER   C   REVERTE   C   ROSMEY   C   ROSSENT   C   ROSSENT   C   RESERVING   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RESERVENT   C   RES		D				_ •			ROSLYN	В
RECOSPORT C   REVERE B/D   RINGLING A   RODAM A   ROSS   B   RECOSPORT C   REVEARD B   RINGO D   ROSEURG B   B   RECOSPORT C   REVEARD B   RINGODO D   ROSEURG B   RECOSPORT C   REVEARD B   RINGODO D   ROSEURG B   RECOSPORT C   REVEARD B   RINGODO D   ROSEURG C   ROSSOUNGE C   RECOSPORT C   REVEARD C   ROSEURG B   RECOSPORT C   REVEARD C   ROSEURG B   ROCERT C   ROSSOUNGE C   REVEARD C   ROSEURG B   ROSEURG C   ROSSOUNGE C   REVEARD C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C   ROSEURG C	REED. DRAINED	C	REVEL	C	RING	C I	RODEO	0	ROSMAN	В
REEDPORT C   REMADURG B   RINGOD D   ROEBUCK O   ROSSBURG B   REEDY D   REMADURG B   RINGODO B   ROELLEN O   ROSSFIELD B   REEPIDGE D   REMADURG B   RINGODO B   ROELLEN O   ROSSFIELD B   REEPIDGE C   REMADURT D   RINGER C   ROEMER C   ROSSSIOTHE C   ROESTIELD B   REEMADURG C   ROEMER C   ROSSSIOTHE C   ROESTIELD B   REEMADURG C   ROEMER C   ROSSSIOTHE C   ROEMER C   ROSSSIOTHE C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   REEMADURG C   ROEMER C   ROEMER C   REEMADURG C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER C   ROEMER	REEDER	B	REVENTON	B	RINGLE	8 (	RODESSA	0	ROSNEY	В
REEPAY	REEDSBURG	C	REVERE	B/DI	RINGLING	A 1	ROOMAN	A [	ROSS	8
REEFRIDGE D   REFORD C   RINKER C   ROSENDYNE C   ROSENDYNE C   REELFOOT C   RETARD D   RETOR D   RETOR D   RETOR D   RESERVILLE C   RETARD B   RID OLARD C   ROCKAN B   ROSEY B   REESS   C   RETARD B   RID OLARD C   ROCKAN B   ROSY B   ROSEY B   REESS   REESS   C   RETARD B   RID OLARD C   ROCKAN B   ROTAMER B   ROSY B   REESS   REESS   REESS   ROSEY B   REESS   REESS   REESS   ROSEY B   ROSEY B   REESS   REESS   REESS   REESS   REESS   REESS   ROSEY B   ROSEY B   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   REESS   R	REEDSPORT	C	REWARD	B	RINGO	DI	ROEBUCK	0	ROSSBURG	В
REESE C   REXORT A RIO ARRIBA D   ROSTEX O   ROSSELL A REESE C   REXOR A   RIO ARRIBA D   ROSTEX B   ROSTY B   REESTILLE C   REYAB B   RIO IABLO C   ROGAND B   ROSTAMER B   REEVES B   RETYES O   RIO GRAMPE B   ROCERSON D   ROTAMER B   REEVES B   RETYES O   RIO GRAMPE B   ROCERSON D   ROTAMER B   REEVES B   RETYES O   RIO GRAMPE B   ROCERSON D   ROTAMER B   REEVES D   RIO GRAMPE B   ROCERSON D   ROTAMER B   REEVES D   RIO GRAMPE B   ROCERSON D   ROTAMER B   REEVES D   RIO GRAMPE B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROTAMER B   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSON D   ROCERSO	REEDY	D	REXBURG	8	RINGWODO	В	ROELLEN	0 (	ROSSFIELD	В
REESYLLE C   REYAD	REEFRIDGE	D	REXFORD	C	RINKER	C	ROEMER	C [	ROSSHOYNE	C
REEYS B   REYES O   RIO OIABLO C   ROGAN B   ROTAMER B   REYES O   RIO OIABLO C   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE B   ROGANDE	REELFOOT		REXMONT	D	RIO	D	ROETEX	0 (	RDSWELL	A
REFLECTION 8   REYMSS 8   RID GRANDE 8   ROGERSON 0   ROTHEMAY CREATED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT COMMISSION CONTINUED NOT CONTINUED NOT CONTINUED NOT CONTINUED NOT CONTINUED NOT CONTINUED NOT CONTINUED NOT CONTINUED NOT CONTINUED NOT CONTINUED NOT CONTINUED NOT CONTINUED NOT CON	REESE		REXOR	A	RIO ARRIBA	D	ROFISS	B (	ROSY	В
REFLECTION  B   REYNOSA   B   RIO LAJAS   A   ROGERT   D   ROTHIEMAY   B   REFLUGE   C   REYNAT   D   RIO DIEGRAS   B   ROGUE   B   ROTHIEMAY   STONY   C   REGAL   B/D   REZAVE   D   RIOCONCHO   C   ROHMERVILLE   B   ROTHIEMAY   STONY   C   REGAL   B/D   REZAVE   D   RIOCONCHO   C   ROHMERVILLE   B   ROTHIEMAY   STONY   C   REGAL   B/D   RHAME   B   RIDON   B   ROHMERVILLE   B   ROTHIEMAY   STONY   C   REGEGAD   A   RHIMERCK   D   RIPON   B   ROHERVILLE   B   ROTHIEMAY   B   REGEGAD   A   RHIMERCK   D   RIPON   B   ROHERVILLE   C   ROTHING   B   REGEGAD   A   RHIMERCK   D   RIPON   B   ROHERVILLE   C   ROTHING   B   REGEGAD   A   RHIMERCK   D   RIPON   B   ROHERVILLE   C   ROTHING   B   REGEGAD   A   RHIMERCK   D   RIPON   B   ROHERVILLE   C   ROTHING   B   REGEGAD   A   RHIMERCK   D   RIPON   B   ROHERVILLE   C   ROTHING   B   REGEGAD   A   RHIMERCK   D   RIPON   B   ROHERVILLE   C   ROTHING   B   REGEGAD   A   RHIMERCK   D   RIPON   B   ROHERVILLE   C   ROTHING   C   REWETELD   C   ROHAMETT   C   RIPON   B   ROHERVILLE   C   ROUGH   C   REWETELD   D   ROHAMETT   C   RIPON   C   ROHEN   C   REWETELD   D   ROHAMETT   C   RIPON   C   ROHEN   C   RELIAC   B   RIBERA   C   RISUE   D   ROHERVILLE   C   ROHEN   C   RELIAC   B   RIBERA   C   RISUE   D   ROHERVILLE   C   ROHAM   C   RELIAC   B   RICCENT   B   RITTA   D   ROHERC   D   ROHAM   C   RELIAC   B   RICCENT   B   RITTA   D   ROHERC   D   ROHAM   C   RELIAC   B   RICCENT   B   RITTO   B   ROHEN   C   ROHAM   C   RELIAC   B   RICCH   C   RITTE   D   ROHAM   C   ROHAM   C   RELIAC   C   RICCENT   C   RITTE   D   ROHAM   C   ROHAM   C   RELIAC   C   RICCENT   C   RITTE   D   ROHAM   C   ROHAM   C   RELIAC   C   RICCENT   C   RITTE   D   ROHAM   C   ROHAM   C   RELIAC   C   RICCENT   C   RITTE   C   ROHAM   C   ROHAM   C   RELIAC   C   RICCENT   C   RITTE   C   ROHAM   C   ROHAM   C   RELIAC   C   RICCENT   C   RITTE   C   ROHAM   C   ROHAM   C   RELIAC   C   RICCENT   C   RITTE   C   ROHAM   C   ROHAM   C   RELIAC   C   RICCENT   C   RITTE   C   ROHAM   C   ROHAM	REESVILLE		REYAB	B			ROGAN			_
REFUSE  REGAL  BPD REZAVE  D   RAID PICORAS  B   ROGUE  B   ROTHIENAY, STONY C  REGAN  BPD REZAVE  D   RICONCHO  REGAN  BPD REAVE  B   ROTHIENAY, STONY C  REGAN  BPD REAVE  D   RICONCHO  B   ROHNERSTILLE  D   ROTHSAY  B   ROTHIENAY, STONY C  REGERN  C   RHEA  B   RIPLEY  B   ROID  REGERN  C   RHEA  B   RIPLEY  B   ROID  REGERN  C   RHEA  B   RIPLEY  B   ROID  REGERN  C   RHEA  B   RIPLEY  B   ROID  REGERN  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTTULE  C   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTTULE  C   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO  B   ROTO			REYES	- •	RID GRANDE	B	ROGERSON		ROTAN	-
REGAL B/D RETAVE D   RIDCOMCHO C   ROHMERYILLE B   ROTHIEMAY, WET O REGENT REGENT C   RHEA B   RIDN B   ROTHIEMAY, WET O REGENT C   RHEA B   RIDN B   ROTHIEMAY B   REGENT C   ROTHON B   ROGERT C   ROTHON B   ROGERT C   ROTHON B   ROGERT C   ROTHON B   ROGERT C   ROTHON B   ROGERT C   ROTHON B   ROGERT C   ROTHON B   ROGERT C   ROTHON B   ROGERT C   ROTHON B   ROGERT C   ROTHON B   ROGERT C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   ROTHON C   R		-			RID LAJAS		ROGERT		ROTHIEMAY	
REGENT C   RHAME				_ •						
REGENT C   RIMEA   B   RIDLEY   B   ROLC   D   ROTINOM   B   REGEGAR   A   RHIMEBECK   D   RIPON   B   ROLETTE   C   ROTO   B   REGEGAR   C   RIMADES   D   RIPON   B   ROLETTE   C   ROTO   B   REGEGAR   C   RIMADES   D   RIPON   B   ROLETTE   C   ROTO   B   ROLETTE   C   ROTO   B   ROLETTE   C   ROTO   B   ROLETTE   C   ROTO   B   ROLETTE   C   ROTO   B   ROLETTE   C   ROTO   B   ROLETTE   C   ROLE   C   REMBURG   C   ROLEMAN   C   ROLES   B   ROLLA   C   ROUGH   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C   ROLEGARE   C				-						
REGGEAD REGGEAD REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEAR REGGEA	. —					- •				
REGGEAR  C   RHOADES   D   RIPPLE   B   ROLFE   C   ROTTULEE   C   REHBURG   C   RHOAME   C   RIPPCAM   C   ROLISS   B/O   ROUBIDEAU   C   REHBURG   C   RHOAMET   C   RIRIE   B   ROLLA   C   ROUBEN   C   REHFIELD   B   RHOME   B   RISBECK   B   ROLLINGSTONE   C   ROUBENCREEK   D   REHM   C   RIB   B/O   RISLEY   D   ROLOC   D   ROUBHBOUNT   C   REICHEL   B   RIBERA   C   RISUE   D   ROLOFF   C   ROUMB DUTTE   O   REICHEL   B   RIBERA   C   RISUE   D   ROLOFF   C   ROUMB DUTTE   O   REILTY   A   RICCO   D   RITCHEY   D   ROMBERG   B   ROUNDOR   C   REILLY   A   RICCO   D   RITCHEY   D   ROMBO   C   ROUNDOR   C   REILLY   A   RICCO   D   RITCHEY   D   ROMBO   C   ROUNDOR   C   REILAG   C   RITCHEY   D   ROMEO   O   ROUNDOP   C   REINACH   B   RICETON   B   RITTER   B   ROMEO   O   ROUNDOP   C   REINACH   B   RICETON   B   RITTER   B   ROMEO   O   ROUNDOP   C   REINACH   B   RICCHIN   C   RITTAN   C   ROMEO   O   ROUNDOP   C   REINACH   B   RICH   C   RITTAN   C   ROMEO   O   ROUNDOP   C   REINACH   B   RICH   C   RITTAN   C   ROMEO   O   ROUNDOP   C   REINACH   B   RICH   C   RITTAN   C   ROMEO   O   ROUNDOP   C   REINACH   B   ROUNDOP   C   REINACH   C   RITTAN   C   ROMEO   O   ROUNDOP   C   REINACH   C   RITTAN   C   ROMEO   O   ROUNDOP   C   REINACH   C   RITTAN   C   ROMEO   O   ROUNDOP   C   REINACH   C   RITTAN   C   ROMEO   O   ROUNDOP   C   REINACH   C   RITTAN   C   ROMEON   C   ROUNDON   C   REINACH   C   RITTAN   C   ROMEON   C   ROUNDON   C   REINACH   C   RITTAN   C   ROMEON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON   C   ROUNDON						-				-
REMPIELD C RHOAME C RIPPOWAN C ROLISS B/O ROUBIDEAU C REWFIELD C RHOME S RISBECK B ROLLA C ROUEN C C REWFIELD B RHOME B RISBECK B ROLLA C ROUEN C C REWFIELD B RHOME B RISBECK B ROLLANGION C D ROUGHCREEK D REWFIELD B RIBERA C RISWE D ROLOC D ROUGHCREEK D REWFIELD B RIBERA C RISWE D ROLOC D ROUGHCREEK D REWFIELD B RIBERA C RISWE D ROLOC D ROUGHCREEK D REWFIELD ROLOC D ROUGHCREEK D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROUGHCREEK D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D ROLOC D R										
REMPIELD C   RHOAMETT C   RIBIE B   ROLLA C   ROUEN C   REHFIELD B   RISBECK B   ROLLANSTONE C   ROUGHORDER D   REHM C   RIB B   RISBECK B   ROLLANSTONE C   ROUGHORDER D   REHM C   RIB B   RISBECK B   ROLLANSTONE C   ROUGHORDER C   REICHEL B   RIBBERA C   RISUE D   ROLOFF C   ROUND BUTTE D   REIFF B   RIBBERA C   RISUE D   ROLOFF C   ROUND BUTTE D   REIFF B   RIBBERA C   RISUE D   ROUBER G B   ROUNDOR C   REILLY A   RICCO D   RITCHEY D   ROMBO C   ROUNDOR C   REILLY A   RICCED D   RITCHEY D   ROMBO C   ROUNDOR C   REILAN D   RICCEST B   RITD B   ROMED D   ROUNDOY C   REIMACH B   RICCEST B   RITD B   ROMED D   ROUNDOY C   REIMER B   RICCEST B   RITTER B   ROMED D   ROUNDOY C   REILAN B   RICCEST B   RITTER B   ROMED D   ROUNDOY D   RELAM B   RICCH C   RITZ   RAINED C   ROMEA D   ROUTON D   RELLAM B   RICCH C   RITZ   RAINED C   ROWIN B   ROUTON D   RELLAM B   RICCH C   RITZ   RAINED C   ROWIN B   ROUTON D   RELLET D   RICCHES C   RITZVILLE B   ROMINELL B   ROWDOY B   RELLET D   RICCHES C   RITZVILLE B   ROMEN D   ROWE D   RELLET B   RICCH C   RICCHES D   RICCHES D   RELLET B   RICCHES D   RICCHES D   ROWOY B   RELLET B   RICCHES D   RICCHES D   ROWN D   ROWE D   RELLET B   RICCHES D   RICCHES D   ROWN D   ROWE D   RELUCTIAN D   RICCHES D   RICCHES D   ROWN D   ROWE D   RELUCTIAN D   RICCHES D   RICCHES D   ROWN D   ROWE D   REMINER D   RICCHES D   RICCHES D   ROWN D   ROWN D   REMINER D   RICCHES D   RICCHES D   ROWN D   ROWN D   REMINER D   RICCHES D   RICCHES D   ROWN D   ROWN D   REMINER D   RICCHES D   ROWN D   ROWN D   ROWN D   REMINER D   RICCHES D   ROWN D   ROWN D   ROWN D   REMINER D   RICCHES D   ROWN D   ROWN D   ROWN D   REMINER D   RICCHES D   ROWN D   ROWN D   ROWN D   REMINER D   RICCHES D   ROWN D   ROWN D   ROWN D   REMINER D   RICCHES D   ROWN D   ROWN D   ROWN D   REMINER D   RICCHES D   ROWN D   ROWN D   ROWN D   REMINER D   RICCHES D   ROWN D   ROWN D   ROWN D   REMINER D   RICCHES D   ROWN D   ROWN D   ROWN D   REMINER D   RICCES D   ROWN D   ROWN D   ROWN D   REMINER D   ROWN D   ROWN D				- •						
REHEM C C   RIS				- •						
REIM C   RIBERA C   RISUE D   ROLOF D   ROLOHMDUNT C REICHEL B   RIBERA C   RISUE D   ROLOFF C   ROUND BUTTE O   REIFF B   RIBHILL B   RITA O   ROLOFF C   ROUND BUTTE O   REIFF B   RIBHILL B   RITA O   ROMBO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C   ROUNDO C										
REIGHEL 8   RIBERA C   RISUE D   ROLOFF C   ROUND SUTTE O   REIFF		- •				- •				_
REILY A   RICCD D   RITCHEY O   ROMBERG						-				
REILLY A   RICCD D   RITCHEY O   ROMBO C   ROUNDIDP C REINACH B   RICCD RITNER C   ROME B   ROUNDUP C C REINACH B   RICCED RD				- •						
REINACH B   RICEBT B   RITTER C   ROME B   ROUNDUP C   REINACH B   RICERT B   RITTER B   ROWED O   ROUNDUP C   REINER B   RICETON B   RITTER B   ROWED O   ROUNDUY C   REINER B   RICETON B   RITTER B   ROWED O   ROUNDUY C   REINER B   ROWED O   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   ROWED   RELAW B   RICH KET O   RITZ DRAINED C   ROWINE B   ROVAL O   ROWED   RELAW B   RICHARDSON B   RITZAL B   ROWNIELL C   ROWDEN C   RELIZ D   RICHARDSON B   RITZAL B   ROWNIELL B   ROWNULL B   ROWED   ROWED   RELIZ D   RICHARDSON B   RITZAL B   ROWNIELL B   ROWNOUN B   RELIZ D   RICHARDSON B   RITZAL B   ROWNIELL B   ROWNOUN B   ROWED D   RELIZ D   ROWED D   ROWED D   RELIZ D   RICHARD B   RIVERNOL B   ROWNOUN B   ROWED D   ROWED D   RELIZ D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROWED D   ROW								- •		
REIMER B   RICETON B   RITTER B   ROMEO O   ROUNDY C   REIMER B   RICETON B   RITTER B   ROMERO O   ROUSSEAU A   REKOP O   RICEVILLE C   RITTMAN C   ROMGAN C   ROUTON O   RELAW B   RICH C   RITZ DA   ROMEO O   ROUTON O   RELAW B   RICH E   O   RITZ DA   ROMEO   O   ROWIA B   ROUTON O   RELAW B   RICH E   O   RITZ DA   ROWINE   B   ROUTON O   RELAW   B   RICH E   O   RITZ DA   ROWINE   B   ROUTON O   RELAW   D   RICHMENS   C   RITZULLE B   ROMINELL C   ROWDEN C   RELIZ D   RICHMENS   C   RITZULLE B   ROMELL C   ROWDEN C   RELIZ D   RICHMENS   C   RITZULLE B   ROMELL B/D   ROWDEN   B   RELEVE B   ROWAN O   ROWE D   ROWE D   ROWDEN   RELEVE B   ROWAN O   ROWE D   ROWDEN   C   REMEDER T   O   RICHMEND B   RIVERSIDE A   ROWO C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C   ROWDEN   C						- •				
REIDER READD D RELAN READD D RECEVILLE C RITTMAN C ROMGAN C ROUTON O RELAN B RICH C RICH RELAN B RICH C RITZ D ROMIA B RICH C RITZ D ROMIA B ROUTT C ROMDA  RELAN B ROUTT C ROMDA RELAN B ROUTT C ROMDA RELAN B ROUTT C ROMDA RELAN B ROUTT C ROMDA C ROMDA RELIZ D RICHARDSON B RITZCAL B ROMNINELL C ROWDEN C RELIZ D RICHENS C RITZVILLE B ROMNELL B ROWDE D RELLS D ROWDE D RELLS D RELLEY B RICHEY C RIVEROALE B ROWN C REMEL D RELLOTAN C RICHFIELD B RIVERMEAD B RIVERMEAD B RIVERSIDE A ROWN C REMELAP C REMELAP C REMERT D REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELAP C REMELA B RIVERY B RIVERY B RIVERY B RIVERY C REMELA C REMET  B RIVERY B ROWSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON C REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B REMOSON B					.,					
RELAN B   RICH C   RITTMAN C   ROMGAN C   ROUTON O RELAN B   RICH C   RITZ DRAINEO C   ROMIA B   ROUTT C   RELAY B   RICH, WET O   RITZ, DRAINEO C   ROMINE B   ROVAL O   RELIANCE C   RICHARDSON B   RITZCAL B   ROMINELL C   ROWDEN C   RELIZ D   RICHENS C   RITYVILLE B   ROMNELL B   ROWOY B   RELET B   ROMELL B   ROWDEN C   ROWDEN C   RITYVILLE B   ROMNELL B   ROWDE D   ROWE D   ROWE D   RELET B   ROWNEL C   ROWDE D   ROWE D   ROWE D   ROWDE D   ROWE D   ROWE D   ROWE D   ROWNEL C   ROWDE D   ROWNEL C   ROWDE D   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C   ROWNEL C		-								_
RELAM B   RICH, WET   C   RITZ   D   ROMIA   B   ROUTT   C   RELAM   B   RICH, WET   O   RITZ, DRAINEO   C   ROMINE   B   ROVAL   O   RELAM   C   RICHARDSON   B   RITZCAL   B   ROMNELL   C   ROWDEN   C   RELIZ   D   RICMENS   C   RITZYILLE   B   ROMNELL   BJD   ROWOY   B   RICKELEY   C   RIVEROALE   A   ROMULUS   O   ROWE   D   RELSOB   B   RICMFIELD   B   RIVERHEAD   B   ROMAN   O   ROWE   D   RELSOB   B   RICMFIELD   B   RIVERSIDE   A   ROMO   C   ROWEN   C   RIVERSIDE   A   ROMO   C   ROWEN   C   RICMFORD   A   RIVERSIDE   A   ROMO   C   ROWENA   C   RICMFORD   A   RIVERSIDE   B   ROMNEBY   C   ROWLANO   C   ROWENA   C   RICMFORD   D   RIVERVIEW   B   ROMNEBY   C   ROWLANO   C   ROWLANO   C   ROWLANO   C   ROWLAND   C   RICMFORD   D   RIVERVIEW   B   ROMNEBY   C   ROWLAND   C   ROWLAND   C   RICMFORD   C   RIVERNA   C   D   ROMSON   B   ROXAN   D   RICMFORD   C   ROWLAND   C   ROWLAND   C   RICMFORD   B   RIVERNA   D   ROMSON   B   ROXANA   B   ROWNEB   C   ROWLAND   C   RICMFORD   B   RIVER   C   RIVER   A   ROOSET   B   ROXANA   B   ROWNEB   ROWLAND   C   RICMFORD   B   RIXIE   C   ROWT   B   ROWLAND   C   RICKER   D   RIZ   D   ROWSON   B   ROXER   B   ROWLAND   C   RICKER   D   RIZ   D   ROWTON   D   RICMFORD   C   ROWLAND   C   ROWLAND   C   RICKER   D   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND   C   ROWLAND										
RELAY  RELIANCE  C  RICHARDSON  RITZ, DRAINEO  C  ROMINE  RELIZ  D  RICHARDSON  RITZYLLE  B  ROMNELL  B/D ROWDY  B  RELLEY  RELIZ  D  RICHEY  C  RIVEROBLE  A  ROMULUS  O  ROWE  D  RELUCTAN  C  RICHFORD  A  RIVERSIDE  A  ROND  C  RELUCTAN  C  RICHFORD  A  RIVERSIDE  A  ROND  C  ROWEN  C  ROWEN  C  REMERT  O  RICHFORD  A  RIVERSIDE  A  ROND  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY  C  ROWLEY										
RELIZ D RICHEMS C RITYVILLE B ROMMELL B/D ROWDY B RELLEY B RICHEY C RIVERDALE A RONULUS O ROWE D RELLEY B RICHEFIELD B RIVERDALE A RONULUS O ROWE D RELUCTAN C RICHEDRO A RIVERSIOE A RONNA O ROWEL O RELUCTAN C RICHEDRO A RIVERSIOE A RONNO C ROWEL O REMBERT O RICHEDRO B RIVERDO B RONNA O ROWEL O REMBERT O RICHEDRO B RIVERDO B RONNEBY C ROWLAND C REMBERT O RICHMOND D RIVERVIEW B RONNEBY C ROWLEY C REMLIK A RICHTER B RIVIERA C/DI ROMSEL B ROXAL O REMBERT B RICHVALE B RIVIERA C/DI ROMSEL B ROXAL O REMBER B ROXANA B REMOTE B RICHVILLE C RIVERA A ROOMEY D ROXBURY B REMOTE B RICHVILLE C RIVERA A ROOMEY D ROXBURY B REMSEN D RICHWOOD B RIXIE C ROOME B ROXAL B ROWLER B RICKWAL C RIVERA A ROOMEY D ROXBURY B REMBER D RICKWAN C RIZOZO D ROPER B/O ROXIDN D REMUS B RICKMAN C RIZOZO D ROPER B/O ROYAL B REMBER D RICKMAN C RIZOZO D ROPER B/O ROYAL B REMBER D RICKMAN C RIZOZO D ROPER B/O ROYAL B REMBER D RICKMAN C RIZOZO D ROPER B/O ROYAL B REMBER D RICKMAN C RIZOZO D ROPER B/O ROYAL B REMBER C ROMENTAL D RONNING D ROMING C ROYAL B REMBER D RICKMAN C RIZOZO D ROSANDO B ROYAL B ROYOSA A REMCOT D RICKS A RONNOKE D ROSANDON C ROYSTOE B ROYOSA A REMCOT D RICKS A ROBROY C ROSANDON C ROYSTOE B ROSECT D ROSANDON C ROMENTE D RODBES D ROBBER B ROSER B ROSECT C ROYAL B REMISE D RIDDE S ROBBER B ROSANDO C ROZELE C REMINE D RIDDEBURY C ROBBERS D ROBBER B ROSECT C ROZELE C REMINE D RIDDEBURY C ROBERTSVILLE D ROSCOE D RUBBICON A REMOUL C ROBERTSVILLE D ROSCOE D RUBBICON A REMOUL C ROBERTSVILLE D ROSCOE D RUBBICON A REMOUL C ROBBERS C ROBERS D ROBBER B ROSEC ROEEK C RUBBON B ROBBIN B ROSE CREEK C RUBBON B	RELAY	B			RITZ. DRAINED	C	RONINE			
RELIZ D RICHEMS C RITYYILLE B ROMMELL B/D ROWDY B RELLEY B RICHEY C RIVERDALE A RONULUS O ROWE D RELLEY B RICHEFIELD B RIVERDALE A RONULUS O ROWE D RELUCTAN C RICHEDRO A RIVERSIOE A RONNA O ROWEL O RELUCTAN C RICHEDRO A RIVERSIOE A RONNA O ROWEL O REMBERT O RICHEDRO B RIVERDO B RONNA O ROWEL O REMBERT O RICHEDRO B RIVERDO B RONNEBY C ROWLAND C REMBERT O RICHMOND D RIVERVIEW B RONNEBY C ROWLEY C REMLIK A RICHTER B RIVERDA O ROWNEBY C ROWLEY C REMLIK A RICHTER B RIVERDA O ROWNEBY C ROWLEY C REMNIT B RICHVALE B RIVIERA C/D RONSON B ROXANA B REMOTE B RICHVILLE C RIVERA A ROOMEY D ROXANA B REMOTE B RICHVILLE C RIVERA A ROOMEY D ROXANA B ROWNEB D RICHVILLE C RIVERA A ROOMEY D ROXANA B ROWNEB D RICHVILLE C RIVERA A ROOMEY D ROXAND D REMUNDA C RICHWOOD B RIXIE C ROOT B/O ROXTON D REMUNDA C RICKER O RIZOZO D ROOTEL C ROY B REMBAC D RICKMAN C RIZOZO D ROPER B/O ROYAL B REMBAC D RICKMAN C RIZOZO D ROPER B/O ROYAL B REMBAC D RICKMAN C RIZOZO D ROOME B ROYOL B ROWNED C ROWNEB D ROYAL B REMBAC D RICKMAN C ROANNE C ROSANDO C ROYST C REMFROW O RICKED C ROANNE C ROSANDO C ROYST C REMICK D RICKES A RODANNE D ROSANDO B ROYSTONE B REMICK D RICKES B ROBBN B SALINE-ALKALI ROYSTONE B REMISM C RICCOT C ROBANA B SALINE-ALKALI ROYSTONE B REMISM C RICCOT C ROBANA B SALINE-ALKALI ROYSTONE B ROBBN D ROSANDO C ROZELE C REMINIE D RIDDEB B ROBBN D ROSANDO C ROZELE C REMINIE D RIDDEB B ROBBN D ROBBN C C ROSANKY C ROZELE C REMINIE D RIDDEBURY C ROBBRITO C ROBANNO A/O RUBIO C/O REMOL C RIDGECREST C ROBERTSVILLE D ROSCOE O RUBICON A/O RUBIO C/O REMOL C RIDGECREST C ROBERTSVILLE D ROSCOE O RUBICON A/O RUBIO C/O REMOL C RIDDED B/O ROBINETTE B ROSE CREEK C I RUBSON B ROBBN B ROBEN B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBEN B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER B ROBER				-				-		
RELLEY  B   RICMEY   C   RIVEROALE   A   RONULUS   O   ROWE   D   RELSOB   B   RICMFIELD   B   RIVERMEAD   B   RONAN   O   ROWEL   O   REMERT   C   RICMFORD   A   RIVERSIDE   A   ROND   C   ROWELAND   C   REMBERT   O   RICMLAND   B   RIVERTON   B   RONDEAU   A/D   ROWLAND   C   REMLAP   C   RICMMOND   D   RIVERVIEW   B   RONNEBY   C   ROWLEY   C   REMLIK   A   RICHTER   B   RIVIERA   C/D   RONSEL   B   ROXAL   O   REMNIT   B   RICHVALE   B   RIVIERA   C/D   RONSEL   B   ROXAN   B   REMNOTE   B   RICHVILLE   C   RIVRA   A   ROOSET   B   ROXANA   B   REMOTE   B   RICHVILLE   C   RIVRA   A   ROOSET   B   ROXER   B   REMSEN   D   RICHWOOD   B   RIXIE   C   ROOT   B/D   ROXTON   D   REMNIS   B   RICKMAN   C   RIZOZO   D   ROPER   B/D   ROYAL   B   REMSS   B   RICKMAN   C   RIZOZO   D   ROPER   B/D   ROYAL   B   REMSS   B   RICKMAN   C   RIZOZO   D   ROPER   B/D   ROYAL   B   REMSOT   D   RICKMERAL   D   ROANNIDE   C   ROSANDO   B   ROYOSA   A   REMCOT   D   RICKS   A   ROANOKE   D   ROSANDO   C   ROYST   C   REMCOT   D   RICKS   A   ROANOKE   D   ROSANDO   C   ROYST   C   REMISM   C   RIDD   C   ROBRING   B   SALINE-ALKALI   ROYSTONE   B   REMISE   B   RIDDLES   B   ROBBROY   C   ROSANDO   C   ROZEL VILLE   B   REMINIE   D   RICREST   B   ROB ROY   C   ROSANDO   C   ROZEL VILLE   B   REMINIE   D   RIDGEBURY   C   ROBERTSDALE   C   ROSANKY   C   ROZELTTA   B   REMONILL   C   RIDGECREST   C   ROBERTSDALE   C   ROSANKY   C   ROZELTTA   B   REMONILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMON   A/O   RUBIO   C/O   REMONILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMON   A/O   RUBIO   C/O   REMONILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMON   A/O   RUBIO   C/O   REMONILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMON   A/O   RUBIO   C/O   REMONILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMON   A/O   RUBIO   C/O   REMONILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMON   A/O   RUBIO   C/O   REMONILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMON   A/O   RUBIO   C/O   REMONILL   C   R			RICHENS			В				
RELUCTAN  C   RICMFORD   A   RIVERSIDE   A   ROND   C   RDWENA   C   RREMBERT   D   RICMLAND   B   RIVERTDN   B   RONDEAU   A/DI ROMLAND   C   REMALAP   C   RICMMOND   D   RIVERYIEW   B   RONNEBY   C   ROMLEY   C   ROMLEY   C   ROMLEY   C   ROMLEY   C   ROMLEY   C   ROMLEY   C   ROMLEY   C   ROMLEY   C   ROMLEY   C   ROMLEY   C   ROMLEY   D   ROXALL   D   REMNIT   B   RICHVALE   B   RIVIERA   D   RONSON   B   ROXANA   B   REMOTE   B   RICHVILLE   C   RIVERA   A   ROOSEY   D   ROXBURY   B   REMSEN   D   RICMWOOD   B   RIXIE   C   ROOT   B/DI ROXTON   D   REMUNDA   C   RICKER   D   RIXIE   C   ROOT   B/DI ROXTON   D   REMUNDA   C   RICKER   D   RIZOZO   D   ROPER   B/DI ROXALL   B   ROYOLA   B   REMUS   B   RICKNAN   C   RIZOZO   D   ROPER   B/DI ROYAL   B   REMOTE   C   ROXALIE   B   ROYOLA   B   REMOTE   C   ROXALIE   B   ROYOLA   B   REMOTE   C   ROXALIE   B   ROYOLA   B   REMOTE   C   ROXALIE   B   ROYOLA   A   REMOTE   C   ROXALIE   B   ROYOLA   C   REMOTE   C   ROXALIE   B   ROYOLA   A   ROXIE   C   ROXALIE   B   ROYOLA   C   ROXALIE   C   ROXALIE   B   ROYOLA   A   ROXIE   C   ROXALIE   B   ROYOLA   A   ROXIE   C   ROXALIE   B   ROYOLA   A   ROXIE   C   ROXALIE   B   ROYOLA   A   ROXIE   C   ROXALIE   B   ROYOLA   A   ROXIE   C   ROXALIE   B   ROYOLA   A   ROXIE   C   ROXALIE   B   ROYOLA   A   ROXIE   C   ROXALIE   C   ROXALIE   B   ROYOLA   C   ROXIE   C   ROXALIE   C   ROXALIE   B   ROYOLA   C   ROXIE   C   ROXALIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXIE   C   ROXALIE   B   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C   ROXALIE   C	RELLEY	8		C	RIVERDALE	A I	RONULUS	0	ROWE	
REMBERT O BRICHLAND BRIVERTDN BRONDEAU A/DROWLAND CREMALAP C RICHMOND D RIVERVIEW BRONNEBY C ROWLEY C REMALK A RICHTER BRIVERA C/DRONSEL BRONNEBY C ROWLEY C REMAIT BRONNET BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BRONNESL BR	RELSOB	B		B	RIVERHEAD	8	RONAN	0 [		_
REMLAP  C   RICHMOND  D   RIVERVIEW  B   RONNEBY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C   ROWLEY  C		C	RICHFDRD	A	RIVERSIDE	A	RONO	C (	RDWENA	C
REMITY B   RICHTER B   RIVIERA   C/D   RONSEL B   ROXAL   O   REMMIT   B   RICHVALE   B   RIVIERA   O   RONSON   B   ROXANA   B   REMNOY   D   RICHVIEW   C   DEPRESSIONAL   ROONEY   D   ROXBURY   B   REMOTE   B   RICHVILLE   C   RIVRA   A   RODSET   B   ROXER   B   ROXER   B   REMSEN   D   RICHMOOD   B   RIXIE   C   ROOT   B/O   ROXTON   D   REMINDA   C   RICKER   O   RIZ   D   ROOTEL   C   ROY   B   REMNUS   B   RICKNAN   C   RIZOZO   D   ROPER   B/O   ROYAL   B   REMBAC   D   RICKNAN   C   RIZOZO   D   ROPER   B/O   ROYAL   B   REMBAC   D   RICKNAN   C   RIZOZO   D   ROPER   B/O   ROYAL   B   REMOGLE   C   ROSANONO   B   ROYOSA   A   ROANOKE   D   ROSANONO   B   ROYOSA   A   ROANOKE   D   ROSANONO   C   ROYST   C   ROSANONO   C   ROYST   C   ROSANONO   C   ROYST   C   ROSANONO   C   ROYST   C   ROSANONO   C   ROYST   C   ROBANA   B   SUBSTRATUM   ROZELLVILLE   B   ROWSTONE   B   ROBROY   C   ROSANONO   SANOY   C   ROZA   C   ROSANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   C   ROZANONO   ROZANONO   C   ROZANONO   ROZANONO   ROZANONO   C   ROZANONO   C   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   ROZANONO   R						-				
REMNOT D RICHVILE B RIVIERA. O RODNEY D ROXANA B REMNOT D RICHVILE C DEPRESSIONAL ROOMEY D ROXBURY B REMOTE B RICHVILLE C RIVRA A ROOSET B ROXANA B REMSEN D RICHWOOD B RIXIE C ROOT B/O ROXTON D REMUNDA C RICKER D RIZ D ROOTEL C ROY B REMUNDA C RICKMAN C RIZOZO D ROPER B/O ROYAL B REMUS B RICKMAN C RIZOZO D ROPER B/O ROYAL B REMOTE C ROXALIE B ROYOSA A REMCALSON C RICKMORE C ROANHIDE C ROSALIE B ROYOSA A REMCOT D RICKS A ROANOKÉ D ROSAMONO B ROYOSA A REMCOT D RICKS A ROANOKÉ D ROSAMONO C ROYST C REMFROW D RICCT C ROANHIDE C ROSAMONO C ROYST C REMISH C RODE B SUBSTRATUM ROYSTONE B ROYOSA C RENISH C RIDD C ROBAMA B SUBSTRATUM ROZELLVILLE B REMNER B RIDDLES B ROBBS D ROSAMONO C ROZETTA B ROMNIE D RICCS B ROBBS D ROSAMONO C ROZETTA B ROMNIE D RICCS B ROBBS D ROSAMONO C ROZETTA B ROMNIE D RICCS B ROBBS D ROSAMONO C ROZETTA B ROMNIE D RICCS B ROBBS D ROSAMONO C ROZETTA B ROMNIE D RICCS B ROBBS D ROSAMONO C ROZETTA B ROMNIE D RICCS B ROBBS D ROSAMONO C ROZETTA B ROBBILE D RICCS B ROBBIN B ROSARIO C ROLARK B/D RENO D RICCERST C ROBERTSDALE C ROSAMONO A A/O RUBIO C/O RENOHILL C RIGGEREST C ROBERTSVILLE D ROSCOMONO A/O RUBIO C/O RENOHILL C RIGGEREST C ROBERTSVILLE D ROSCOMONO A/O RUBIO C/O RENOHUL B RICCSCOMON B RICCEEK. B RUBSON B RODE RENOWA B RICCELAND B/D ROBINETTE B ROSE CREEK. B RUBSON B				-						
REMNDY  REMOTE  B   RICHVILLE   C   RIVRA   A   ROOSET   B   RDXER   B   REMSEN   D   RICHWOOD   B   RIXIE   C   ROOT   B/O  ROXTON   D   REMUNDA   C   RICKER   D   RICKWAN   C   RIZZ   D   ROOTEL   C   ROOY   B   REMUS   B   RICKWAN   C   RIZZOO   D   ROPER   B/O  ROYAL   B   REMBAC   D   RICKWAN   C   RIZZOO   D   ROPER   B/O  ROYAL   B   REMBAC   D   RICKWAN   C   ROANHIDE   C   ROSALIE   B   ROYCE   C   ROMAN   C   RICKREALL   D   ROANHIDE   C   ROSAMONO   B   ROYOSA   A   REMCOT   D   RICKS   A   ROANOKE   D   ROSAMONO   C   ROYST   C   REMFROW   D   RICREST   B   ROB ROY   C   RDSAMONO   SANDY   C   ROYSTONE   B   ROWSTONE   B   ROWSTONE   B   ROWSTONE   B   ROWSTONE   B   ROBER   REMNER   B   RIDDLES   B   ROBBS   D   ROSANONO   SANDY   C   ROZELLVILLE   B   REMNER   B   RIDDLES   B   ROBBS   D   ROSANE   B/O  ROZELLVILLE   B   REMNIE   D   RIDGEBURY   C   ROBERTSDALE   C   ROSANE   B/O  ROZELE   C   ROMAN   B   ROSANED   C   ROZANE   B/O  ROMON   A   RENOMILL   C   RIDGECREST   C   ROBERTSDALE   C   ROSCODE   D   RUBICON   A   RENOMILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMMON   A/O  RUBIO   C/O   RENOMILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMMON   A/O  RUBIO   C/O   RENOMILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMMON   A/O  RUBIO   C/O   RENOMILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMMON   A/O  RUBIO   C/O   RENOMILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMMON   A/O  RUBIO   C/O   RENOMILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMMON   A/O  RUBIO   C/O   RENOMILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMMON   A/O  RUBIO   C/O   RENOMILL   C   RIDGECREST   C   ROBERTSVILLE   D   ROSCOMMON   A/O  RUBIO   C/O   RUBION   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   ROBER   B   RO				-		C/D				
REMOTE B   RICHVILLE C   RIVRA A   RODSET B   RDXER B   REMSEN D   RICHMOOD B   RIXIE C   ROOT B/O   ROXTON D   REMUNDA C   RICKER O   RIZ D D   RODTEL C   ROY B   REMUNDA C   RICKER O   RIZ D D   RODTEL C   ROY B   REMUNDA B   RICKNAN C   RIZOZO D D   ROPER B/O   ROYAL B   REMBAC D   RICKMORE C   RODANE C   ROSALIE B   ROYCE C   REMCALSON C   RICKERALL D   ROANHIDE C   ROSAMONO B   ROYOSA A   REMCOT D   RICKS A   ROANOKE D   ROSAMONO C   ROYST C   ROSAMONO C   ROYST C   REMINDER D   RICCKS A   ROANOKE D   ROSAMONO SANDY C   ROYST C   REMISER D   RICCEST B   ROB ROY C   RDSAMONO SANDY C   ROZA C   REMISER C   RIDD C   ROBANA B   SUBSTRATUM   ROZELLVILLE B   RENNER B   RIDDLES B   ROBBS O   ROSANE B/O   ROZETTA B   ROMILE D   RIDDLES B   ROBBS O   ROSANE B/O   ROZETTA B   ROMILE D   RIDGEBURY C   ROBERTSDALE C   ROSANKY C   ROZETTA B   ROMILE D   RIDGEBURY C   ROBERTSDALE C   ROSANE C   RUBRICON A   RENOLL C   RIDGECREST C   ROBERTSDALE C   ROSCOE O   RUBRICON A   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON B   RUBY B   ROSE CREEK C   RUBSON B   RENOLL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON B   RUBY B   ROSE CREEK C   RUBSON B   RUBY B   ROSE CREEK C   RUBSON B   RUBY B   ROSE CREEK C   RUBSON B   RUBY B   RUBY B   RUBY B   RUBY B						0				-
REMSEN D   RICHWOOD B   RIXIE C   RODT B/O  ROXTON D   REMUNDA C   RICKER O   RIZ D   RODTEL C   ROY B   REMUNDA C   RICKER O   RIZ D   RODTEL C   ROY B   REMUNDA C   RICKER C   RIZOZO D   ROPER B/O  ROYAL B   REMBAC D   RICKINDRE C   RODANE C   ROSALIE B   ROYCE C   REMCALSON C   RICKEALL D   ROANHIDE C   ROSAMONO B   ROYOSA A   REMCOT D   RICKS A   ROANOKE D   ROSAMONO C   ROYST C   ROSAMONO C   ROYST C   ROSAMONO C   ROYST C   ROSAMONO C   ROYST C   ROSAMONO C   ROYST C   ROSAMONO C   ROYST C   ROSAMONO C   ROYST C   ROSAMONO C   ROSAMONO C   ROYST C   ROSAMONO C   ROSAMONO C   ROYST C   ROSAMONO C   ROSAMONO C   ROYST C   ROSAMONO C   ROSAMONO C   ROYST C   ROMING C   ROSAMONO C   ROYST C   ROSAMONO C   ROSAMONO C   ROYSTOME C   ROSAMONO C   ROSAMONO C   ROYSTOME C   ROMING C   ROSAMONO C   ROSAMONO C   ROZELLVILLE C   ROMING C   ROSAMONO C   ROZELLVILLE C   ROMING C   ROSAMONO C   ROSAMONO C   ROZELLVILLE C   ROMING C   ROSAMONO C   ROSAMONO C   ROZELLVILLE C   ROMING C   ROSAMONO C   ROSAMONO C   ROZELL C   ROMING C   ROSAMONO C   ROZELL C   ROSAMONO C   ROZELL C   ROMING C   ROSAMONO C   ROZELL C   ROMING C   ROSAMONO C   ROZELL C   ROSAMONO C   ROZELL C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING C   ROMING						:				
REMUNDA C   RICKER O   RIZ D   RODTEL C   ROY B REMUS B   RICKNAN C   RIZOZO D   ROPER B/O  ROYAL B REMBAC D   RICKMARE C   RDANE C   ROSALIE B   ROYCE C   RENGALSON C   RICKREALL D   ROANHIDE C   ROSAMONO B   ROYOSA A RENCOT D   RICKS A   ROANOKE D   ROSAMONO C   ROYST C   RENFROW O   RICCT C   ROARING B   SALINE-ALKALI   ROYSTONE B   RENICK D   RICREST B   ROB ROY C   ROSAMONO SANDY C   ROZA C   RENISH C   RIDDLES B   ROB ROY C   ROSAMONO SANDY C   ROZA C   RENNER B   RIDDLES B   ROBBS O   ROSANE B   ROZELLVILLE B   RENNIE D   RIDDLES B   ROBBS O   ROSANE B   ROZELLVILLE B   RENNIE D   RIDGEBURY C   ROBERT B   ROSARIO C   ROZALE C   ROMANK B   ROBER B   ROSARIO C   ROZALE C   ROMANK B   ROBER B   ROSARIO C   ROZALE C   ROMANK B   RENOBLL C   ROBERTSDALE C   ROSCOE O   RUBICON A   RENOMILL C   RIDGECREST C   ROBERTSDALE C   ROSCOE O   RUBICON A   RENOMILL C   RIDGECREST C   ROBERTSDALE C   ROSCOE O   RUBICON A   RENOMILL C   RIDGECREST C   ROBERTSDALE C   ROSCOE O   RUBICON A   RENOMILL C   RIDGECREST C   ROBERTSDALE C   ROSCOE O   RUBICON A   RENOMILL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O  RUBIO C/O   RENOML C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O  RUBIO C/O   RENOML C   RIDGECLAND B/D  ROBINETTE B   ROSE CREEK C   RUBSON B   RENDVA B   RIDGELAND B/D  ROBINETTE B   ROSE CREEK C   RUBSON B   RENDVA								-		
REMUS B   RICKNAN C   RIZOZO D   ROPER B/O   ROYAL B   REMBAC D   RICKMORE C   RDANE C   ROSALIE B   ROYCE C   REMACLSON C   RICKREALL D   ROANHIDE C   ROSAMONO B   ROYOSA A   REMCOT D   RICKS A   ROANOKE D   ROSAMONO C   ROYST C   REMFROW O   RICOT C   ROARING B   SALINE-ALKALI   ROYSTONE B   REMICK D   RICREST B   ROB ROY C   RDSAMONO SANDY C   RDZA C   REMISH C   RIDD C   ROBANA B   SUBSTRATUM   ROZELLVILLE B   REMNER B   RIDDLES B   ROBBS O   ROSANE B   ROZELLVILLE B   REMNIE D   RIDENBAUGH D   ROBCO C   ROSANKY C   ROZELTA B   REMNIE D   RIDENBAUGH D   ROBCO C   ROSANKY C   ROZELE C   REMNIE D   RIDGEBURY C   ROBERTSDALE C   ROSCOE O   RUBICON A   REMOHILL C   RIDGECREST C   ROBERTSDALE C   ROSCOE O   RUBICON A   REMOHILL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O   RUBIO C/O   REMOL C   RIDGECLAND B/D   ROBINETTE B   ROSE CREEK C   RUBSON B   RENDVA B   RIDGELAND B/D   ROBINETTE B   ROSE CREEK C   RUBSON B   RENDVA B   RIDGELAND B/D   ROBINETTE B   ROSE CREEK C   RUBSON B   RENDVA B   RIDGELAND B/D   ROBINETTE B   ROSE CREEK C   RUBSON B   RENDVA B   RIDGELAND B/D   ROBINETTE B   ROSE CREEK B   RUBY B										
REMBAC D   RICKMORE C   RDANE C   ROSALIE B   ROYCE C   RENCALSON C   RICKREALL D   ROANHIDE C   ROSAMONO B   ROYOSA A   RENCOT D   RICKS A   ROANOKE D   ROSAMONO C   ROYST C   ROSAMONO C   ROYST C   RENFRDW O   RICOT C   ROANING B   SALINE-ALKALI   ROYSTONE B   RENICK D   RICREST B   ROB ROY C   RDSANONO SANDY C   RDZA C   RENISH C   RIDD C   ROBANA B   SUBSTRATUM   ROZELLVILLE B   RENNER B   RIDDLES B   ROBBS O   ROSANE B   ROZELTA B   RENNIE D   RIDENBAUGH D   ROBCO C   ROSANKY C   ROZETTA B   RENNIE D   RIDENBAUGH D   ROBCO C   ROSANKY C   ROZETTA B   RENNIE D   RIDGE B   ROBER B   ROSARIO C   RUARK B   RENO D   RIDGE B   ROBER B   ROSARIO C   RUARK B   RENO D   RIDGE B   ROBER B   ROSARIO C   RUARK B   RENO D   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A   RUBICON A   RENOL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A   RUBIO C   RUBIO C   RENOL C   RIDGECLAND B   ROBINETTE B   ROSE CREEK C   RUBSON B   RENDVA B   RIDGELAND B   ROBINETTE B   ROSE CREEK B   RUBY B				- •						
RENCALSON C   RICKEALL D   ROANHIDE C   ROSAMONO B   ROYOSA A RENCOT D   RICKS A   ROANOKE D   ROSAMONO, C   ROYST C   RENFRDW O   RICOT C   ROARING B   SALINE-ALKALI   ROYSTONE B   RENICK D   RICCEST B   ROB RDY C   RDSANONO, SANDY C   RDZA C   RENISH C   RIDD C   ROBANA B   SUBSTRATUM   ROZELLVILLE B   RENNER B   RIDDLES B   ROBBS O   ROSANE B/O ROZETTA B   RENNIE D   RIDENBAUGH D   ROBCO C   ROSANE B/O ROZETTA B   RENNIE D   RIDENBAUGH D   ROBER B   ROSARIO C   ROZLEE C   ROSANE B/O RENNIE D   RIDGEBURY C   ROBERTSDALE C   ROSCOE D   RUBICON A   RENOHILL C   RIDGECREST C   ROBERTSDALE C   ROSCOE D   RUBICON A   RENOHILL C   RIDGECREST C   ROBERTSVILLE D   ROSCOHMON A/O RUBIO C/O RENOHLL C   RIDGECALE B   ROBIN B   ROSE CREEK C   RUBSON B   RENDVA B   RIDGELAND B/O ROBINETTE B   ROSE CREEK C   RUBSON B		-								
RENCOT D RICKS A ROANOKE D ROSAMONO. C ROYST C RENFRDW O RICCT C ROARING B SALINE-ALKALI ROYSTONE B RENICK D RICCEST B ROB ROY C ROSAMONO. SANDY C ROZA C RENISH C ROBANA B SUBSTRATUM ROZELLVILLE B RENNER B RIDDLES B ROBBS O ROSANE B/O ROZETTA B RENNIE D RIDENBAUGH D ROBCO C ROSANEY C ROZLEE C RENNIE. DRAINED C ROBER B ROBER B ROSARIO C RUARK B/D RENO D RIDGEBURY C ROBERTSDALE C ROSCOE O RUBICON A RENOHILL C RIDGECEST C ROBERTSVILLE D ROSCOMMON A/O RUBIO C/O RENOL C RIDGECAND B/D ROBINETTE B ROSE CREEK C RUBSON B RENDVA B RIDGELAND B/D ROBINETTE B ROSE CREEK. B RUBY B		- •		-						
RENFRDW O RICOT C ROARING B SALINE-ALKALI ROYSTONE B RENICK D RICREST B ROB ROY C ROSANONO. SANDY C ROZA C RENISH C RICOT C ROBANA B SUBSTRATUM ROZELLVILLE B RENNER B RIDDLES B ROBBS O ROSANE B/O ROZETIA B RENNIE D RIDENBAUGH D ROBCO C ROSANEY C ROZLEE C RENNIE. DRAINED C RIDGE B ROBER B ROSARIO C RUARK B/D RENO D RIDGEBURY C ROBERTSDALE C ROSCOE O RUBICON A RENOHILL C RIDGECREST C ROBERTSVILLE D ROSCOMMON A/O RUBIO C/O RENOL C RIDGECREST C ROBERTSVILLE D ROSCOMMON A/O RUBIO C/O RENOL C RIDGECAND B/D ROBINETTE B ROSE CREEK C RUBSON B RENDVA B RIDGELAND B/D ROBINETTE B ROSE CREEK. B RUBY B								- •		
RENICK D RICREST B ROB ROY C RDSANONO. SANDY C RDZA C RENISH C RIDD C ROBANA B SUBSTRATUM ROZELLVILLE B RENNER B RIDDLES B ROBBS O ROSANE B/O ROZETTA B RENNIE D RIDDLES B ROBBS O ROSANE C ROZETTA B RENNIE D RIDDLES B ROBER B ROSANIO C ROZETTA B ROBER B ROSANIO C ROZETTA B ROBERO D ROSANE C ROZETTA B ROBERO C ROBERTSDALE C ROSANIO C RUBICON A RENO D RIDGEBURY C ROBERTSDALE C ROSCOE O RUBICON A RENOHILL C ROGERTSVILLE D ROSCOMMON A/O RUBICO C/O RENOL C ROBERTSVILLE D ROSCOMMON A/O RUBICO C/O RENOL C ROBERTSVILLE D ROSCOMMON B ROSE CREEK C RUBSDN B RENDVA B ROGELAND B/O ROBINETTE B ROSE CREEK B RUBY B								٠ !		
RENISH C   RIDD C   ROBANA B   SUBSTRATUM   ROZELLVILLE B RENNER B   RIDDLES B   ROBBS O   ROSANE B/O  ROZETTA B RENNIE D   RIDENBAUGH D   ROBCO C   ROSANKY C   ROZLEE C RENNIE DRAINED C   RIDGE B   ROBER B   ROSARIO C   RUARK B/D RENO D   RIDGEBURY C   ROBERTSDALE C   ROSCOE O   RUBICON A RENOHILL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O  RUBIO C/O RENOL C   RIDGEDALE B   ROBIN B   ROSE CREEK C   RUBSDN B RENDVA B   RIDGELAND B/D  ROBINETTE B   ROSE CREEK B   RUBY B		- •		-						
RENNER B   RIDDLES B   RDBBS O   ROSANE B/O  ROZETTA B RENNIE D   RIDENBAUGH D   RDBCO C   ROSANKY C   ROZLEE C RENNIE DRAINED C   RIDGE B   ROBER B   ROSARIO C   RUARK B/D RENO D   RIDGEBURY C   ROBERTSDALE C   ROSCOE D   RUBICON A RENOHILL C   RIDGECREST C   ROBERTSVILLE D   ROSCOHNON A/O  RUBIO C/O RENOL C   RIDGEDALE B   RDBIN B   ROSE CREEK C   RUBSDN B RENDVA B   RIDGELAND B/D  ROBINETTE B   ROSE CREEK B   RUBY B						-				
RENNIE D RIDENBAUGH D ROBCO C ROSANKY C ROZLEE C RENNIE DRAINED C RIDGE B ROBER B ROSARIO C RUARK B/D RENO D RIDGEBURY C ROBERTSDALE C ROSCOE D RUBICON A RENOHILL C RIDGECREST C ROBERTSVILLE D ROSCOHON A/O RUBIO C/O RENOL C RIDGEDALE B ROBIN B ROSE CREEK C RUBSON B RENDVA B RIDGELAND B/D ROBINETTE B ROSE CREEK B RUBY B										
RENNIE DRAINED C RIDGE B ROBER B ROSARIO C RUARK B/D RENO D RIDGEBURY C ROBERTSDALE C ROSCOE D RUBICON A RENOHILL C RIDGECREST C ROBERTSVILLE D ROSCOMMON A/O RUBIO C/O RENOL C RIDGEDALE B ROBIN B ROSE CREEK C RUBSDN B RENDVA B RIDGELAND B/D ROBINETTE B ROSE CREEK B RUBY B				- •		- •				
RENO D   RIDGEBURY C   ROBERTSDALE C   ROSCOE O   RUBICON A RENOMILL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O  RUBIO C/O RENOL C   RIDGEDALE B   ROBIN B   ROSE CREEK C   RUBSDN B RENDVA B   RIDGELAND B/O  ROBINETTE B   ROSE CREEK, B   RUBY B				-						_
RENOMILL C   RIDGECREST C   ROBERTSVILLE D   ROSCOMMON A/O  RUBIO C/O RENOL C   RIDGEDALE B   ROBIN B   ROSE CREEK C   RUBSDN B RENDVA B   RIDGELAND B/D  ROBINETTE B   ROSE CREEK, B   RUBY B				-						
RENOL C   RIDGEDALE B   ROBIN B   ROSE CREEK C   RUBSDN B RENDVA B   RIDGELAND B/D  ROBINETTE B   ROSE CREEK, B   RUBY B				-						
RENDVA B   RIDGELAND B/D ROBINETTE B   ROSE CREEK. B   RUBY B				-						
the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s	RENDVA	-								
	RENDX	B (	RIDGELAWN	B (	ROBINSONVILLE	B	DRAINED	1	RUBYHILL	C

NOTES: TWD HYDROLDGIC SDIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
NODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUN. REFER TO A SPECIFIC SOIL SERIES PHASE FDUND IN SDIL NAP LEGEND.

TABLE 7-1--HYDROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

RUCH	8	SAGERTON	c I	SANGER	D	SAWBUCK		SEANAN	В
RUCKER	BI		CI	SANGO SANHEDRIN	C	SAWCREEK SAWNILL	C   B/OI		В
RUCLICK	č	SAGOUSPE	ci	SANIBEL		SAWTELL	C	SEARING	В
RUDD	ō	SAGUACHE	B	SANILAC	B	SAWTELPEAK	ŏi	SEARLA	8
RUDOLEY	DI	SAL	0	SANJE	B	SAWYER	c i	SEARLES	C
RUCEEN	c į	SALADAR	0	SANLOREN	B	SAXBY	0	SEARSPORT	D
RUOYARD	0 1	SALADON	0	SANPETE	8	SAXON	B	SEARSVILLE	0
RUELLA	BI	SALAL	C	SANPITCH SANSARC	C I	SAY Saybrook	B	SEASTRAND SEATON	D B
RUFUS RUGLES	ВІ	SALANDER	В	SANTA	0 1	SAYDAB	ċi	SEATTLE	0
RUHE	D 1	SALAS	ci	SANTA CLARA	či	SAYERS	Ā	SEATTLE . DRAINED	č
RUIDOSO	ci	SALCHAKET	B	SANTA FE	o i	SAYLES	0	SEAVERSON	D
RUKO	DI	SALCO	8	SANTA LUCIA	c i	SAYLESVILLE	c i	SEAVILLOW	В
RULE	B	SALEN	B	SANTA MARTA	c į	SAYNER	A	SEBAGO	D
RUMBLECREEK	_ !	SALERATUS	C	SANTA YNEZ	0	SCALA	B	SEBASTIAN	D
RUNBO	C I	SALERNO SALGA	CI	SANTANA SANTANELA	0 1	SCALLEY SCAMMAN	BI	SEBASTOPOL SEBEWA	C B/D
RUNFORO RUNNEY	c	SALIDA	A	SANTAROSA	8	SCANDARO	ci	SEBREE	0
RUNPLE	c i	SALINAS	âi	SANTEE	0 1	SCANTIC	òi	SEBRING	B/D
RUNUNG	c i	SALISBURY	o i	SANTIAGO	В	SCAPONIA	Bi	SEBUO	В
RUNE	c i	SALIX	B	SANTIAN	c I	SCAR	B	SECCA	С
RUNEBERG	C/DI	SALKUM	c I	SANTO	B	SCARBORO	0	SECESH	В
RUNGE	В	SALLISAW	B	SANTO TONAS	8	SCATLAKE	D	SECRET CREEK	В
RUNN	0 [	SALLYANN	c I	SANTONI	D I	SCAVE	c I	SEDALE	0
RUPLEY	A I	SALNO SALNON	BI	SAPELO SAPINERO	D I	SCHAFFENAKER SCHANBER	AI	SEDGEFIELD SEDGWICK	C B
RUSCO PONDEO	0 1	SALONIE	<b>D</b> I	SAPKIN	c	SCHAND	ĉ	SEOILLO	В
RUSE	9 1		A	SAPPHIRE	8 1	SCHAPVILLE	ċi	SEDMAR	0
RUSH	8	SALT LAKE	ôi	SAPPINGTON	8	SCHAWANA	0 1	SEDWELL	c
RUSHFORD	8 1	SALTAIR	Di	SARA	0 1	SCHENCO	o i	SEEDSKADEE	D
RUSHNORE	B/01	SALTER	B	SARAGOSA	B	SCHERRARO	DI	SEELEZ	В
RUSHTOWN	A 1	SALTERY	D	SARALEGUI	B	SCHLEY	B	SEELOVERS	C
RUSHVILLE	0	SALTESE	DI	SARANAC		SCHMUTZ	В	SEELYEVILLE	A/D
RUSO	8 1	SALTESE. DRAINED	C	SARANAC, GRAVELLY SUBSTRATUM	c i	SCHNEBLY	DI	SEELYEVILLE.	D
RUSON RUSSELL	C I	SALTINE	C I	SARATON	c	SCHNEIDER SCHNIPPER	BI	SLOPING SEEPRIO	В
RUSSIAN	ВІ	SALUDA	ci	SARBEN	В	SCHNOORSON	c i	SEES	Č
RUSSLER	č i	SALVISA	c i	SARDINIA	c	SCHNORBUSH	В	SEEVEE	В
RUSTICO	В	SALZER	ρi	SARDIS	či	SCHOOSON	ci	SEGIDAL	D
RUSTIGATE	c I	SALZER. DRAINED	c i	SARGEANT	D	SCHOFIELO	c i	SEGNO	C
RUSTON	B	SAMBA	0	SARITA	A	SCHOHARIE	c	SEGUIN	В
RUSTY	B	SAMBRITO	B	SARKAR	0	SCHOLLE	B	SEGURA	0
RUTAB	B	SANISH	0	SARNOSA	В	SCHOODIC	0	SEHONE	С
RUTHERFORD RUTLAND	C I	SANISH. DRAINED	C I	SARONA SARPY	8	SCHOOLCRAFT SCHOOLEY	B	SEHORN SEIS	0 C
RUTLEGE		SANNAMISH. DRAINED	- •	SARTELL	AI	SCHOOLEY. ORAINED	ci	SEITZ	c
RYAN	0 1	SAMPSEL	òi	SASKA	8	SCHOOLHOUSE	ōi	SEJITA	D
RYAN. PARK	8 1	SANPSON	B	SASPAMCO	B	SCHOONER	0 1	SEKIL	В
RYARK	A I	SAMSIL	0	SASSAFRAS	8	SCHRADER	c 1	SEKIU	D
RYDE	c i	SAMSULA		SASSER	8	SCHRAP	0	SELAH	C
RYDER	c I	SAN ANDREAS	BI	SATANKA	c I	SCHRIER	В	SELOEN	C D
RYOOLPH RYEGATE	C I	SAN ANTON SAN ANTONIO	C	SATANTA SATATTON	BI	SCHROCK SCHULINE	BI	SELEVIN SELFRIDGE	В
RYELL	8	SAN ARCACIO	BI	SATELLITE	A	SCHUMACHER	В	SELIA	Č
RYEPATCH	o i	SAN ARCACIO.	ci	SATILLA	ō i	SCHUSTER	В	SELIGMAN	0
RYER	c 1	SALINE	- 1	SATIN	c 1	SCHUYLER	8	SELKIRK	C
RYKER	B		B		8		B		В
RYORP	c i	SAN EMIGDIO	В	SATTLEY	8	T T T T T T T T T T T T T T T T T T T	c I		B/0
RYPOO RYUS	B   B	SAN GERMAN SAN ISABEL	0	SATTRE	8	SCISN SCITICO	C	SELMAC	B/D D
SAAR	c i	SAN JOAQUIN	•	SATURN	В		ci	7.75	U
SABANA	ōi	SAN JON	c i	SAUCEL	o i		9	SELWAY	-в
SABANA SECA	0	SAN JOSE	B	SAUCIER	c i		c i		D
SABE	В	SAN JUAN	A I	SAUDE	B	SCOGGIN	0	SEMIAHMOD. ORAINED	C C
SABENYO	B	SAN LUIS	C I	SAUGATUCK	c	SCOON	0	SENINOLE	D
SABINA	C I	SAN NATED	c i	SAUGUS	8		B		В
SABLE	B	SAN NIGUEL SAN SABA	0 1	SAUK SAULICH	BI	SCORUP SCOTCO	CI	SENCHERT SENECAVILLE	C B
SACHEEN	A	SAN SEBASTIAN	BI	SAUM	c	SCOTIA	B	SENSABAUGH	В
SACHETT	ĉi	SAN SINEON	0 1	SAUNDERS	o i	SCOTT	0	SEQUATCHIE	В
SACO	D I		В			SCOTT LAKE	В	SEQUIM	A
SACRAMENTO	0 1	SAN TIMOTEO.	c I	SAUVIE	C/DI	SCOTTIES	B	SEQUOIA	C
SACUL	c I	GRAVELLY	1	SAUVIE . MODERATELY	C I	SCOUT	B	SERDEN	A
SADDLE	c i	SAN YSIDRO	D	WET	ا	SCRABBLERS	A	SERENE	C
SADER	0 1	SANCHEZ	0	SAUVIE. PROTECTED		SCRANTON		SEROCO	A D
SADIE SADLER	C I	SANDALL SANDERSON	C   B	SAUVOLA	C I	SCRAVO SCRIBA	8   C		В
SAFFELL	ВІ		BI		CI	SCRIBA	ВІ		8
SAG	8	SANDIA	BI		١	SCROGGIN	c	SERPOD	č
SAGANING	- •	SANDOVAL	0 1		ci		či		Ď
SAGASER	В	SANDOVAL. DRY	В	SAVANNAH	ci	SCUPPERNONG	DI	SERVILLETA	D
SAGE	0	SANDRIDGE	A	SAVENAC	c i	SEABROOK	c i	SESANE	C
SAGECREEK	В	SANDUN	B		c I		B		C
		SANDWASH	c 1	SAVOIA	BI	SEAFORTH	В	SESSIONS	C
SAGEDALE	C I								
	BI		8	SAVONIA SAWABE	B	SEAGATE		SESSUM SET	0

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE ORALNEO/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL NAP LEGEND.

TABLE 7-1--HYDROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

SETTERS	C I	SHELBURNE	c I	SHOWALTER.	D	SIDUX		SMYRNA	A/O
SETTLEMENT	D	SHELBY	В	GRAVELLY	_ !	SIPPLE	В	SNAG	В
SETTLEMEYER	0	SHELBYVILLE	В	SHOWLOW	C		A		В
SETTLEMEYER.	D		В	SHREE	В		BI	SNAKE HOLLOW	C
SALINE-ALKALI		SHELL ABARGER	B	SHREWDER	B	SIROCO SIRRETTA	ċ	SNAKELUN	B B
SETTLEMEYER.	0 !		8	SHRINE	В	SISKIYOU	8	SNAPP	C
MODERATELY WET	_ !	SHELLBLUFF	A		0 1	SISSETON	8 1		0
SETTLEMEYER.	0	SHELLORAKE SHELLROCK	Â	SHROUTS SHUBUTA	c		B	SNEFFELS	C
DRAINED		SHELMADINE	â	SHUE	c	SISTERS	A		c
SETTLEMEYER. FLOODED	٠ !	SHELDCTA	В	SHUKASH	- ,	SITES	ĉi	SNELLING	В
	<b>D</b>	SHELTON	c	SHUKSAN	ĉ	SIWELL	ċi	SNIOER	Č
SETTLEMEYER. COOL	ci	SHENA	0 1	SHULE	c	SIXBEACON	8		0
RARELY FLOODED	٠,	SHENANDOAH	0 1	SHULLSBURG	c	SIXMILE	c	SNOHOWISH - DRAINED	_
SEVENMILE		SHENKS	B/DI		c		8	SNONO	c
SEVERN	В		В	SHUMWAY		SKAGGS	ci		0
SEVILLE	0 1	SHEP	В	SHUPERT	c	SKAGIT	6	SNOGUALMIE	Ā
SEVY	Ві		c i	SHURLEY	Ā	SKAHA	A		6
SEVANCE	В	SHEPPARO	Ā	SHUSTER	c	SKALAN	ĉ	SNDWLIN	6
SEVARD	Ві	SHERANDO	B	SI	či	SKAMANIA	B 1	SNOWHORE	č
SEXTON	- •	SHERAR	c i	SIBELIA	, i	SKAMO	c i	SNOWSHOE	B
SEYHOUR	D I	SHERBURNE	c i	SIBLEY		SKANEE	c i	SNOWSLIDE	В
SHAAK	c i	SHERIDAN	B i	SIBLEYVILLE	В	SKANID	0 1	SNOWSTORM	0
SHABLISS	DI	SHERLESS	8 1	SICKLES	8/0		B	SNOWVILLE	D
SHACK	8	SHERLOCK	8	SICKLESTEETS	8	SKEDADDLE	0	SNUFFUL	С
SHADELAND	C I	SHERM	0	SIDELL	8	SKELLOCK	B	SOAKPAK	8
SHADOW	B	SHERMORE	B	SIDLAKE	C	SKELON	C I	SOBAY	0
SHADYGROVE	c I	SHERRY	8/01	SIOON	C	SKERRY	c 1	SOBEGA	C
SHAFFTON	8	SHERRY. STONY	0 1	SIEBEN	8	SKIDMORE	B	SOBOBA	A
SHAGNASTY	C I	SHERRYL	8	SIEBERT	A [	SKIPANDN	8	SOBOL	C
SHAKAMAK	C I	SHERWOOD	8	SIECHE	C	SKIPOPA	0	SOBRANTE	C
SHAKER	C I	SHEVLIN	C I		C	SKIYOU	8	SOCORRO	C
SHAKESPEARE	C I	SHIOLER	0	SIEROCLIFF	C	SKOKONISH	D I	SODA	В
SHAKOPEE	c i	SHIELOS	c I	SIERRA	B (	SKOKOMISH. ORAINED	C		В
SHALAKE	CI	SHIFFER	c I		8 (	SKOLY	8	SODERVILLE	A
SHALAKO	0	SHILOH		SIESTA	D	SKOOKUM	c į	SODHOUSE	D
SHALBA	0	SHIMA	c i	SIFTON		SKORO	8		C
SHALCAR	0 [	SHIMMON	c i	SIGNAL	C	SKOWHEGAN	8	SOELBERG	В
SHALCAR + DRAINED	c i		0	SIGURD	В		c I		C
SHALET	0	SHINBARA	0	SIKESTON		SKUMPAH	D	SOFIA	C/D
SHALDNA	B		c i	SILAS	B (	SKUTUM	c i	SOFTSCRABBLE .	c
SHAM	0	SHINER	c I	SILAS. WET	C [	SKYBERG	c I	SOGI	C
SHAMBO	В	SHINGLE	0	SILAS. FLOODED	B [	SKYHAVEN	c i	SOGN	D
SHAMEL	В		c i		3 .		c i	SOGO	В
SHAMOCK	c I	SHINKEE	c i	SILER	В	SKYKONISH	A !	SOGZIE	8
SHANAHAN	B	SHINROCK	c i		В		B		0
SHANDEP	B/0		c i	SILI	C [	SKYLINE	0		0
SHANE SHANKLER	0	SHIPLEY	B   B	SILSTIO	A	SKYMOR	0	SOLOATNA	В
SHAND	AI	SHIPLEY. STRATIFIED	В	SILVA	C I	SKYVILLAGE	D	SOLDIER	СВ
SHANTA	8 1	SUBSTRATUM		SILVER CREEK	0		8		8
SHARATIN	8 1	SHIPLEY.	c	SILVERADO	8	SLAGLE	ci	SOLIER	D
SHARKEY	0	SALINE-ALKALI	`	SILVERBOW	0	SLAUGHTER	c	SOLIS	č
SHARLAND	В	SHIPLEY.	ві	SILVERCHIEF	c		ċi	SOLLEKS	č
SHARON	8 1	NONFLOODED	- :	SILVERCLIFF	В	SLAW	c i	SOLLER	0
SHARPS	c	SHIPLEY. RARELY	ві	SILVERDALE	A		6	SOLOMON	6
SHARPSBURG	ě i	FLODOED		SILVERN	Ā	SLEEPER	č i		Č
SHARROTT	ō i	SHIPLEY. GRAVELLY	ві		ĉ	SLEETH	č	SOMBORDORD	ō
SHARVANA	ci	SUBSTRATUM		SILVIES		SLICKROCK	8	SOMERS	В
SHASER	8	SHIPROCK	B	SIMAS	c i		DI	SOMERVELL	В
SHASKIT	8	SHIPS	o i			SLIGHTS	c i		č
SHASTA	B	SHIPSHE	В			SLIGTING	č i	SONAHNPIL	В
SHATRUCE	c i	SHIRK	c i	SIMEROI	В		D	SONDCAN	.c
SHATTA	c i	SHIVELY	B	SIMMONT	ci	SLIMBUTTE	8	SONDITA	В
SHATTUCK	B	SHOALS	c i		c i	SLINGER	B		C
SHAVANO	8	SHOAT	0	SIMON. GRAVELLY	8	SLIPMAN	B	SONOMA. MODERATELY	C
SHAVASH	C I	SHDEPEG	c i	SUBSTRATUM	- 1	SLDAN	BIDI		
SHAVER	В	SHOESTRING	В		0 [		-	SONOMA. SALINE.	В
SHAWA	B	SHOKEN	0	SIMONTON		SLUICE	B	ORAINED	
SHAWANO	A		•	SIMPARK		SLY	B		c
SHAWMUT	В	SHOOFLIN	C I		8		B	FLOODEO	
SHAY	0	SHOOFLY	0	SIMPSON	C I		DI	SONOMA. SALINE	c
SHAYLA	0		c i	SIMS		SMARTS	В	SONOMA. MODERATELY	C
SHEAR SHEAVILLE	c I	SHOOKER	c i	SINAI	c [		B	WET CONTROL	
	0	SHOREEK		SINAMOX		SMEDLEY	D	SONOMA - ORAINEO	В
SHEBANG SHEBEON	0   C	SHOREWOOD	CI	SINCLAIR	- •	SMELTER	C	SONOMA FLOODED	C
SHEDEUN	CI	SHORIM SHORT CREEK	CI		D I			SONOMA. NONFLOODED	C B
SHEDD	c 1		CI			SMILEYVILLE	0	SONORA	8
SHEDHORN	0 1	SHORT COT	- :	SINGLETREE	- •	SMILD	C	SONAHBE	8
SHEEGE	0 1	SHOSHONE	0		B (	SMITHBORO SMITHDALE	D I	SOUNANDE	C
SHEEP CREEK	či	SHOTGUN	- ,	SINLOC	0 1		B		c
SHEEPCAN	В	SHOTWELL	0 1	SINLOC. DRAINED		SMITHTON	D 1	SOQUEL	В
SHEEPHEAD	c i	SHOUNS	ві		Ā		В		В
SHEEPROCK	Ā	SHOWALTER	0 1	SINNIGAM	ô		0	SORF	Č
SHEEPSCOT	B	SHOWALTER. MOIST	ŏi		В	SMOCREEK	či	SORRENTO	В
SHEETIRON	B	SHOWALTER. STONY	В		- •	SMOKEY	c i	SORTER	D
SHEFFIELD	0			SION		SMOLAN	ci	SORUM	0
						-			

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM, REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

TABLE 7.1--HYDROLDGIC GROUPS OF THE SOILS OF THE UNITED STATES

SOTIN	В [	SPRUCEDALE	D I	STEINBECK	8	STRINGTOWN	8	SURGEN	c
SOUGHE	D		C	STEINSBURG	C I	STRINGTOWN. GRADED			В
SOULAJULE	c i	SPUKWUSH	В	STEIVER	C I	STROLE	c i	SURPRISE	В
SOUTHACE	B I	SPUR	BI	STELLAR STENILT	C I	STROM Stromal	CI	SURRENCY	0 C
SOUTHAN SOUTHFORK	ום	SPURGER SPURLDCK	B	STENLEY	c	STRONGHURST	B	SURVEYORS	В
SOUTHGATE	0 1	SQUALICUN	В	STEMPLE	В	STROUPE	c	SURVYA	c
SOUTHPORT	В	SQUALLY	B	STENDAL	c i	STRYKER	c i	SUSANNA	C/D
SOUTHRIDGE	Ві	SQUAW	B	STEPHEN	c i		c i	SUSIE CREEK	C
SOUTHWICK	c i	SQUAWCREEK	DI	STEPHENVILLE	8 1	STUCKY	8	SUSITNA	В
SOWCAN	B	SQUAWROCK	C	STEPROCK	8	STUKEL	DI	SUSQUEHANNA	D
SPAA	D	SQUIRES	c I		8	STUMBLE		SUTA	В
SPACE CITY	A I	SRIADA	D	STERLING	B	STUMPP	DI	SUTCLIFF	В
SPACE	B		B	STERL INGTON	В		B		C
SPADRA	В	ST. ANTHONY	B	STERRETT	D	STUNTZ	C	SUTHERLIN	C
SPAGER	0 1	ST. AUGUSTINE ST. AUGUSTINE.	C I	STETSON STETTER	B	STURGEDN STURKIE	BI	SUTKIN	B B
SPALDING Spana	D 1	DRGANIC	- 1	STEUBEN	В	STUTTGART	D 1	SUTPHEN	D
SPANAWAY	8 1	SUBSTRATUM	i	STEUBER	8 1		c i	SUTRD	c
SPANEL	D	ST. AUGUSTINE.	ci	STEVENS	В	STUTZNAN. WET	D	SUTTLER	В
SPANG	B	CLAYEY SUBSTRATUM		STEVENSON	8	STUTZVILLE	C	SUTTON	В
SPANGLER	c I	ST. CHARLES	B	STEWART	D	STYX	B	SUVER	D
SPARANK	DI	ST. CLAIR	D		.D	SUBACO	D		В
SPARHAM	D		A	D. 1. G. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	c I			SVENSEN	В
SPARKHULE	0	ST. GEDRGE SALINE	B	STIDHAM	8 I	SUBLIGNA	B	SVERDRUP	B C
SPARNO SPARR	B   C	ST. GEDRGE. WET	CI	STIEN STIGLER	D 1	SUCHES	BI	SWAGER SWAKANE	D
SPARTA	A 1	ST. IGNACE	b 1	STILGAR	BI	SUDDUTH	CI	SWALER	D
SPARTA, SILTY CLA				STILL	В	SUDWDRTH	8	SWANBOY	D
LOAM SUBSTRATUM		ST. JDHNS.	0 1	STILLMAN	В	SUEPERT	c i	SWANDAD	В
SPARTA. LDAMY	A i	DEPRESSIONAL	i	STILLWATER	D		В	SWANLAKE	В
SUBSTRATUM	i	ST. LUCIE	A	STILSKIN	C	SUFFIELO	C	SWANNER	D
SPARTA. BEOROCK	A	ST. MARTIN	c I	STILSON	В	SUFFOLK	В	SWANSEA	D
SUBSTRATUM	. !	ST. MARYS		STINSON	D I	SUGARBOYL	В	SWANSON	C
SPASPREY	c I		B	STINGAL	В	SUGARDEE	B	SWANTON	C/D
SPEAKER SPEARFISH	C	ST. PAUL ST. THOMAS	B	STINGDDRN STIPE	D	SUGARLDAF SUGLO	BI	SWANTOWN SWANVILLE	c c
SPEARHEAD	В	ST. HELENS	BI	STIRK	0	SUISUN	0 1	SWANWICK	0
SPEARMAN	8 1		8 1		В		В	SWAPPS	c
SPEARVILLE	c i	STADY	В	STIRUM		SULLIVAN	В	SWARTSWOOD	c
SPECK	D	STAFFORD	ci	STIRUM . PONDED	D	SULLY	B	SWARTZ	D
SPEELYAI	D	STAGECDACH	8	STISSING	C 1	SULOAF	B	SWASEY	D
SPEER	8	STAHL	C 1	STIVERSVILLE	В	SULPHURA	D I		C
SPEIGLE	В		C	STOCKADE		SULSAVAR	В	SWAUK	D
SPENARD	DI	STALEY	В	STOCKBRIDGE	c i	SULTAN	c I	SWEATHAN	C
SPENCER SPENLD	8 I	STALLINGS STAMBAUGH	C I	STOCKEL STOCKLAND	C I	SUMAN SUMAS	9/01	SWEDE SWEEN	B C
SPENS	A	STANFORD	D	STOCKPEN	D 1	SUMAS. DRAINED	В	SWEENEY	В
SPERRY	c/pi		0		D	SUMATRA	В	SWEET	c
SPEXARTH	8	STAMPEGE	D	STODA	В	SUNINE	В	SWEETAPPLE	В
SPHINX	0 1	STAN	8	STODICK	0	SUMMERFIELD	D	SWEETGRASS	В
SPICER	B/0	STANDLEY	c 1	STDHLMAN	DI	SUNNERS	B	SWEETWATER	D
SPICERTON	DI	STANDUP	B	STOKES	0	SUMMERTON	B	SWEM	C
SPICEWOOD	c I	STANEY	D	STOKLY	8	SUNNERVILLE	0		В
SPILLCO	В	STANFIELD	c I	STOMAR	C I	SUMMIT	c i	SWIFT	В
SPILLYILLE SPINEKOP	B	STANISLAUS STAPALDDP	D	STONEBERGER	D	SUMMITVILLE	c I	SWIFT CREEK	В
SPINEKOP SALINE	B I		8 1	STONEBURG STONEHAM	8 1	SUMPF SUMTER	D	SWIFTON SWINLEY	C
SPINEKDP.	č		c	STONEHEAD	c			SWIMS	В
HOGERATELY WET	i		D	STONELICK	В	SUN	D	SWINGLER	D
SPINKS	A		B	STONER	В	SUNAPEE	B		8
SPINLIN	C I		D	STONEVILLE	8		B		D
SPIRES	D		0			SUNBURST	c I		
SPIRIT SPIRD	C I	STARKEY STARKS	C	STONYFORD STOOKEY	D	SUNBURY	B	SWINK SWINDHISH	D C
SPIKO	B		D		В		- ,	SWINDWISH	В
SPLENDORA	c i		0		В	SUNDANCE	B		D
SPLITED	D		c		В	SUNDAY	Ā	SWISSHELM	В
SPLITTOP	c i	STASER	B	STOTT	C	SUNDELL	B	SWITCHBACK	C
SPOFFORD	D		B	STOUGH	C (	SUNEY	B	SWITZERLAND	В
SPDKANE	В		B		D		-	SWOPE	С
SPOKEL	В		D	STOVHO	c (	SUNLIGHT	- ,	SWDRMVILLE	C
SPONSELLER SPOOL	BI		DI	STOWELL	C (	SUNNYHAY Sunnyside	D   B	SWYGERT SYBLON	C
SPOONER		STEARNS	0		C	SUNRAY		SYCAMORE. ORAINED	В
SPOTSYLVANIA	c		c			SUNSET	B		c
SPOTTSWOOD	В	STEED	Ā		8	SUNSHINE	ci	SYCAMORE. CLAY	B
SPRAY	В	STEEDMAN	C	STRAIGHT	C	SUNSWEET	c i	SUBSTRATUM	
SPRECKELS	C I		D			SUNUP	D	SYCAN	A
SPRING	C I		c i		В	SUDMI	C I		В
SPRINGDALE	A !		C		В			SYENITE	C
	В	STEENS	C	STRATTON STRAW	В	SUPAN SUPERIDR	BI	SYLACAUGA SYLCD	D C
SPR INGER		STEEDI AM			0 1	SWEERAUK	_		_
SPRINGER SPRINGERVILLE	D I	- · · · <del>-</del>					A i		8
SPR INGER	D D	STEEVER	B	STRAWN	B	SUPERSTITION	A I	SYLVAN SYLVESTER	B B
SPRINGER SPRINGERVILLE SPRINGFIELD	D	STEEVER STEFF	8		B			SYLVAN	
SPRINGER SPRINGERVILLE SPRINGFIELD SPRINGMEYER	D B	STEEVER STEFF STEGALL	B	STRAWN STREAT OR	B /D   B   B	SUPERSTITION SUPERVISOR SUPPLEE	C I B I	SYLVAN SYLVESTER	В

NOTES: TWD HYDROLOGIC SDIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SDIL SERIES PHASE FOUND IN SDIL MAP LEGEND.

TABLE 7-1--HYOROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

SYNAREP		TARLOC	B			THREEMILE	-	TISWORTH	C
SYRACUSE		TARPLEY	D I			THROCK		TITUS	B/D
SYRENE		TARR	A		C	THULEPAH	C I		C
SYRETT		TARRANT TARRETE	0 1	TENPIN TENRAG		THUMBERLANO THUNDERBIRD	B		A C
TABECHED ING TABERNASH	- •	TARRYALL	c			THURBER		TOA	В
TABLE MOUNTAIN	8 1		c i	TENSED		THURLDNI	c i	TOBICO	A/D
TABLER	ői		Bi	TENSLEEP		THURLOW	B	TOBIN	В
TABOR		TASSEL	ō i	TENSNO IR		THURMAN	Ā	TOBISH	c
TACAN	8 1		ρi	TENYDRRD	0 1	THURMONT	В	TOBLER	В
TACOMA	o i	TASSO	В	TEOCULLI	B	TIAGDS	В	TDBDSA	0
TACONA. ORAINED		TATE	B	TEPETE		TIAK	c i	TDBY	8
TACONIC	C/01	TATIVEE	CI	TEQUESTA	8/01	TIBAN	8	TOCAL	С
TACOOSH	8/01	TATLUM	0 1	TERADA	8	TIBBITTS	B	TOCALONA	C
TADLOCK	B	TATOUCHE	B	TERBIES	B	TIBS	C	TOCAN	C
TAFDYA	c	TATTON	0	TERENCE	_	TIBURONES	0 1		В
TAFT	c I		C I		•	TICA	0 1	7561	С
TAFUNA	•	TAUNTON	C I	TERINO		TICE	В		8/0
TAGGART		TAVARES	A	TERLCO	-	TICELL	0	TOOOLER	В
TAGLAKE	-	TAWAH	В	TERLINGUA		TICHNOR	0		D
TAHKENITCH	- •	TAWAS	A/0]		- •	TICINO	c I		В
TAHOMA	-	TAWCAW	c i	TERMO	•	TICKASDN	В	TODDS	C
TAHOULA		TAYLOR COSEY	CI	TERDMOTE	-	TIOINGS	B		C
TAHQUATS	B	TAYLOR CREEK TAYLORSFLAT	8 1	TEROUGE TERRA CEIA	•	TIOWELL TIERRA	0 1	TOEJA NONGRAVELLY	В
TAINTOR	c l	TAYLORSFLAT.	c i	TERRA CEIA. TIDAL		TIETON	В		Č
TAJD TAKEUCHI	ci	SALINE-ALKALI		TERRA CEIA.		TIFFANY	-	TOGNONI	0
TAKILMA	8 1		c i	FREQUENTLY	-	TIFTON	B		В
TAKOTNA		TAZLINA	Ăi	FLDODED		TIGER CREEK	В	TOGUS	0
TALAG	-	TEAGULF	ĉ i	TERRAD	c i	TIGERON	В		c
TALANTE		TEAKEAN	В	TERRETON		TIGIT	В		В
TALAPUS	B	TEALSON	Ď i	TERR IL	B		ві	TOISNOT	B/0
TALBOTT	_	TEALWHIT	Ďi	TERRY		TIGON	0 1		0
TALCOT	-	TEANAWAY	8 1	TERWILLIGER	- •	TIGUA	0 1		A
TALIHINA	0 1		c i	TERWILLIGER. STONY	-	TIJERAS	Ві		C
TALKEETNA	c i	TEASDALE	B	TESAJD		TIKI		TOKLAT	ō
TALLA	c i	TEBO	B	TESSFIVE	-	TILFER	8/01	TOKUL	C
TALLAC	B	TECHICK	B [	TETHRICK	BI	TILFORD	В	TOLANY	В
TALLAGEGA	ci	TECO	0 1	TETON	CI	TILLEDA	В	TDLBY	В
TALLAPDOSA	C I	TECOLO TE	8	TETONIA	B	TILLICUM	B	TOLEOO	0
TALLEYVILLE	B	TECOPA	DI	TETONKA	C/01	TILLMAN	c 1	TOLEX	D
TALLS	B	TEOROW	B	TETONVIEW	0 1	TILLOU	c	TOLKE	В
TALLULA	B	TEEL	B	TETONVILLE	CI	TILMA	C	TOLL	A
TALLY	B	TEELER	BI	TETOTUM	C	TILSIT	c	TOLLGATE	В
TALMAGE	A I	TEEMAT	B [	TEVIS	B	TILTON	В	TOLLHOUSE	0
TALMO	A	TEETERS	C/01		CI	TIMBALIER	0 1	TOLMAN	0
TALMOON		TEEWINOT		TEX	-	TIMBERG	C I		8
TALOKA	0		CI		0	TIMBERHEAD	B [	TOLO	В
TALPA	0		DI			TIMBERVILLE	В		В
TALQUIN		TEHACHAPI	C I			TIMENTVA	В		В
TAMA	В	TEHAMA	C I		c i	TIMHILL	D	TOLSONA	0
TAMAHA	D I		A !	THACKER		TIMKEN	D		0
TAMALCO	-	TEIGEN	0 I		B	TIMMERMAN	A I	TOLTEC	C
TAMALPAIS		TEJA TEJABE	D	THADEP		TIMPAHUTE	0		B
TAMANEEN TAMBA	D 1	TEJANA	В	THAGE THATCHER	BI	TIMPANDGOS TIMPER	B	TDLVAR TDNAH	8
TANELY		TEKENINK	В	THATUNA	_	TIMULA	В		Ā
TAMFORO	-	TEKISON	ci	THAYNE		TINA	- •	TOMALES	ô
TAMMANY CREEK		TEKLANIKA	Ā	THEBES		TINAJA		TOMAST	č
TAMP		TEKOA	ĉi	THEBO		TINOAHAY		TOMBAR	č
TAMPICO		TELA	Ві		-	TINE	-	TOME	В
TANAK	_	TELCHER	Bi		-	TINEMAN		TOMEL	D
TANAMA	•	TELEFONO	ci			TINEMAN. WET	c i		D
TANANA	DI	TELEPHONE	D I	THEDN	DI	TINGEY	B 1	TONICHI	A
TANBARK	o i	TELESCOPE	A	THERESA	-	TINKER	c i	TOHOKA	B/0
TANDY	C	TELFER	A I	THERIOT	D	TINN	0 1	TOMOTLEY	B/0
TANEUM		TELFERNER	DI	THERMOPOLIS	DI	TINNIN	A I	TONSHERRY	C
TANEY	C	TELL	B	THESS	8	TINSLEY	A I	TOMTY	D
TANGAIR	C	TELLER	B	THETFORO	A	TINTON	A I	TDNASKET	В
TANNA	C	TELLICO	B	THETIS	8	TINYTOWN	8 [	TDNATA	D
TANNAHILL		TELLMAN	B		_	TIOCAND	0 1		В
TANNER		TELLURA		THIEL		TIDGA	B	TONEY	D
TANOB	•	TELOS	C I		_	TIPPAH	C I		C
TANSEM	-	TELSTAD		THISTLEDEW	-	TIPPECANOE	В		В
TANTALUS	•	TEMBLOR	D I			TIPPER	c i		C/0
TANTILE		TEMESCAL	DI	THOMAS		TIPPERARY	A !	TONKAWA	A
TANWAX	-	TEMO E	C I	THOMS	0	TIPPERARY. ALKALI		TONKEY	8/0
TANWAX. DRAINED	_	TEMPLE	c I			TIPPERARY. DRY	A		В
TANYARD TAPCO		TEMPLETON	BI	THORNOALE		TIPPO	c !	TONKIN. MODERATELY	
TAPIA		TEMVIK TENABO	BI	***************************************		TIPTON	B	VET	c
TAPICITOES		TENAHA	D I			TIPTONVILLE TIPTOP	B		A
TAPPAN	•	TENAS	c	THORNION THOROUGHF ARE		TIRO	- •	TONOR	ĉ
TARA	8		0 1	THORP		TISBURY	В	TONOWEK	В
TARBORO		TENDOY	0 1	THOUT		TISCH	D		В
TARGHEE	•	TENEX	В	THOW	В		ci	TONSINA	8
TARKIO		TENINO	c i	THRASH		TISHAR	ci		c
TARKLIN	-	TENNILE	či			TISONIA		TDNUCO	D
			- '		- '		- 1		

NOTES: TWO HYDROLDGIC SOIL GROUPS SUCH AS B/C INDICATES THE ORAINED/UNORAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGENO.

TABLE 7-1-- HYDROLDGIC GROUPS OF THE SDILS OF THE UNITED STATES

		11000 101 11101							
TOOMES	D I	TREATY	8/01	TUBAC	c I	TWISSELMAN	CI	UPSPRING	D
TDDNE	č i		BI	TUCANNON	c	TWISSELMAN.	DI	UPTMDR	C
TOP	c i	TREBLDC	DI	TUCKAHOE	8	SALINE-ALKALI.	i	UPTON	C
TDPEKI	D i	TREBOR	ci	TUCKER	C	WET	i	URACCA	8
TOPENAN	D I	TREEKDR	o i	TUCKERMAN	D	TWISSELMAN.	Di	URBANA	C
TOPIA	Di	TREGD	ci	TUCSON	8	SALINE-ALKALI	i	URBD	D
TOPLIFF	В	TREHARNE	c i	TUCUMCARI	c i	TWDMILE	C/DI	UREAL	D
TOPONCE	ci	TRELK	8	TUFFIT	c	TWDTDP	DI	URICH	C/D
TOPPENISH	D	TRELDNA	DI	TUGHILL	DI	TYEE	0 1	URIPNES	C
TOPPENISH . DRAINED	c i	TREMANT	B	TUJUNGA	A I	TYGART	DI	URLAND	C
TDPSEY	c i	TREMBLES	BI	TUKEY	C	TYGH	B	URNE	В
TDQUERVILLE	D	TREMONA	CI	TUKWILA	D	TYLER	DI	URNESS	8/0
TOQUI	D	TREMPE	AI	TUKWILA. DRAINED	C	TYNDALL	c 1	URSA	C
TDQUDP	Āİ	TREPREALEAU	BI	TULA .	c i	TYNER	A İ	URSINE	D
TORBDY	A I	TRENARY	B	TULANA. DRAINED	C/DI	TYRE	A/DI	URTAH	C
TORCHLIGHT	c i	TRENT	8 1	TULANA. NONFLOODED	c i	TYRDNE	c i	USAL	8
TORDIA	Ď	TRENTON	Di	TULARE	D i	TYSON	c i	USHAR	8
TDREX	Āİ	=	Di	TULARGD	8	UBANK		USK	С
TORHUNTA	c i	TREP	BI	TULARDSA	8	UBAR	DI	UTABA	A
TDRNEY	Di	TRES HERMANDS	B	TULASE	8	UBIK	B	UTALINE	8
TDRNILLO	B	TRESAND	BI	TULIA	8	UBLY	8 1	UTE	C/D
TORNING	B	TRESED	c i	TULIK	8	UCHEE	A I	UTICA	В
TDRDDA	B		a i	TULLAHASSEE	c i	UCDLD	Di		В
TDRDNTD	c i	TREVIND	Di	TULLER	D	UCDPIA	Bi	UTSO	В
TORPEDO LAKE	ρi		a i	TULLOCK	ci	UDAHD	8 1	UTUADD	В
TDRREDN	č i	TREY	Āİ	TULLY	c i	UDEL	Di	UVADA	D
TDRRES	Ăi	TRIANGLE	Di	TULOSD	D i	UDELDPE	p i	UVALDE	8
TORRD		TRIBBEY	č i	TUMAC	В	UDDLPHO	B/DI		8
TDRRY		TRICON	ςi	TUNALD	c	UFFENS	DI	UWALA	a
TORSIDD	C		В	TUNWATER	c	UFFENS.	8	VABEM	D
TORTUGAS	ō i	TRIDELL	В	TUNBRIDGE	č	ELEVATION>5500		VABUS	c
TDSCA	В	TRIGGER	D i	TUNICA	Ď	UGAK	p i	VACHERIE	c
TOSTON	_ ,	TRIGO	D i	TUNIS	0	UHALDI	Ві		В
TOTAVI	Ā	TRIMAD	В	TUNKHANNOCK	A	UHL	8	VADNAIS	c
TOTELAKE	ê i		8 1	TUDMI	8	UHLAND	B	VADD	В
TOTEM	В	TRIMMER	c i	TUPELD	0	UHLIG	8	VAEDA	D
TOTIER	ci	TRINITY	0 1	TUPUKNUK	0	UHLDRN	c i	VAIDEN	D
TOTO		TRID	0 1	TUQUE	8	UINTA	B	VAILTON	В
TOTTEN		TRIDMAS	В	TURBEVILLE	c	UKIAH	Ď i	VAIVA	6
TOUCHET	B		ċi	TURBOTVILLE	c	ULA	c i	VALBY	Č
TDUHEY	8	TRIPLEN	В	TURBYFILL	В	ULEN	В	VALCD	č
TOULON	8 1	TRIPOLI	-	TURK	c	ULIDA	D	VALCREST	c
					-		ci		6
TOURNGUIST		TRIPP	8   8	TURKEYSPR INGS	C	ULM   ULRIC	c	VALDEZ, CLAYEY SUBSTRATUM	U
TOURS	8 1	TRISTAN	- •	TURLEY					С
TOUTLE	8	TRITON	DI	TURLIN	В	ULRICHER	8	VALDEZ. DRAINED	A
TOUTLE . FLDODED	B	TRIX	В	TURLDCK	D	ULTRA	DI	VALDOSTA	B
TOUTLE. PROTECTED		TROCKEN	BI	TURNBULL	D	ULUPALAKUA	8	VALE	8
TDVAR	c i		BI	TURNER	8		B	VALENCIA	
TOWAVE	8	TRDMP	c i	TURNERVILLE	В	ULYSSES	В	VALENT	•
TOWHEE TOWNER	0	TRONSEN	8	TURNEY	В	UMA	A !	VALENTINE	^
	B	TROOK	B	TURRAH	D	UMAPINE	0	VALERA	C A
TOWNLEY	c i	TROOK. SALINE	c i	TURRET	8	UMAPINE - DRAINED	c i	VALHALLA	B/D
TOWNSEND	c i	TRDDK. GRAVELLY	В	TURRIA	C	UMATILLA	8	VALKARIA	
TDWDSAHGY	B	SUBSTRATUM	_ !	TURSON	C	UMBARG	B	VALLAN	D
TDXAWAY	B/U	TROPAL	D I	TUSAYAN	C	UMBERLAND	c i	VALLE	B
TDY	ן ט	TROPIC	В	TUSCAN	D	UMBERLAND . PONDED	DI	VALLECITOS	,
TDYAH		TROSI		TUSCARAWAS	C	UMBERLAND PLOUDED		VALLEOND	
TOYUSKA		TROSKY		TUSCAWILLA TUSCOLA		UNIAT		VALLERS	C
TOZE		TRDUGHS			8	UNIKDA	- ,	VALLEYCITY	
TRABUCD		TRDUP		TUSCOSSO	-	UNIL	-	VALMAR VALMONT	c
TRACHUTE		TROUT CREEK		TUSCUMBIA	- '	UMPA			
TRACK DRAINED	-	TROUT RIVER		TUSEL	8	UMPCDDS	- •	VALMY	B C
		TROUTDALE	-	TUSK		UMPUMP	- •		В
TRACOSA TRACY		TROUTER		TUSKAHOMA		UNA UNADILLA		VALDIS	C
				TUSKEEGO				VALSETZ	D
TRADEDOLLAR		TROXEL	_	TUSLER		UNAKA		VALTD	_
TRAER		TRUCE	-	TUSQUITEE	-	UNAKWIK		VALTON	C
TRAG		TRUCHDT	•	TUSSY	- '	UNAWEEP		VALVERDE	В
TRAG. DRY	8	TRUCKEE		TUSTIN		UNCAS	-	VAMER	D
TRAG. CDDL		TRUCKEE. SALINE		TUSTUMENA		UNCOMPAHERE		VAMDNT	D
TRAHAM	C I	TRUCKEE. DRAINED		TUTE		UNDERHILL		VAMP	C
TRAIL		TRUCKEE, SANDY		TUTHILL		UNDERWOOD	B		9
TRAMPAS	-	SUBSTRATUM		TUTNI		UNDUSK		VAN HORN	8
TRANKAY	8	TRUCKEE. GRAVELLY		TUTWILER		UNGERS		VAN NOSTERN	C
TRANGUILAR	c i	SUBSTRATUM		TUWEEP		UNICDI		VAN WAGDNER	D
TRANSYLVANIA		TRUCKTON		TWEBA		UNION		DLANAV	0
TRAPPER		TRUDAU		TWEBA.	8/0	UNIDATOWA		VANANDA	D
TRAPPIST		TRUDE	B			UNIONVILLE		VANCE	C
TRAPPS	В	TRUEFISSURE		TWEBA. MODERATELY		UNISDN	8	VANDA	D
TRASK		TRUESDALE		WET		UNIUS		VANDALIA	D
TRAVELERS		TRULON		TWEEDY		UNLIC		VANDAMME	C
TRAVER		TRUMAN		TWICK	D	UNSEL		VANDAMDRE	8
TRAVERTINE		TRUMBULL		TWIG	D .	UMSON		VANDERGRIFT	C
TRAVESSILLA		TRUMP		TWILIGHT		UPDIKE	- •	VANDERHOFF	C
TRAVIS		TRUNK		TWIN CREEK		UPSATA		VANOERLIP	A
TRAWICK	B	TRYDN		TWINING	C	UPSHUR	DI	VANEPPS	C
TRAY	C	TSCHICOMA		TWINLAKE	C	UPSON		VANET	0
TREADWAY	D	TUB	CI	TWINSI	C	UPSON. STONY	CI	VANG	

NOTES: TWD HYDROLDGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
NODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

TABLE 7-1--HYDROLDGIC GROUPS OF THE SOILS OF THE UNITED STATES

VANGUARD VANMETER	D	VERNDNIA VERO		VIRTUE VISTA	C	WAINEE Wainola	B	WARM SPRINGS. VERY PODRLY DRAINED	V D
ANNI	В			VITALE	ci	· - · · - ·	c	WARMAN	B/0
ANNDY	c i	VERDNA. DRAINED	Bi		Ď i	WAISKA	Ві	WARMAN. GRAVELLY	A/D
ANOCKER	B	VERONA. FLDODED	В		В		В	SUBSOIL	
ANDSS	8 1	VERDNA. CLAY	c i	VIVI	B	WAKE	0 1	WARNEKE	0
ANPETTEN	B 1	SUBSTRATUM	1	VLASATY	c i	WAKEEN	8	WARNERS	C/0
ANSON	B	VERSHIRE	c 1	VOATS	8	WAKEFIELD	B	WARRENTON	0
ANSTEL	B 1	VERSON	c I	VDCA	c I	WAKELAND	c I	WARSAW	В
NWYPER	-	VERTEL	DI	VDDERMA IER	B	WAKITA	1	WARSING	В
NZANDT		VERTREES	В	VD IGHT	B	WAKDNDA	c I	WARWICK	A
AQUERD		VES	В		B	WAKULLA	A		D
ARCO		VESEY	В	VDLASH	В		В		В
ARELUM	B		0 1	VDLBORG	D	WALDBILLIG	В		8/0
ARELUM. CLAY LDAM		VESSER	c I		D		c I		В
SUBSTRATUM	_ !		DI	VOLENTE	c I		0		0
ARICK	0 1		B	VOLINIA	В		D		B C
ARINA		VESTABURG	D I	VOLKMAR	B	WALDORF	A I	WASHINGTON, WET SUBSTRATUM	C
ARNA ARNE Y	- •	VESTON VETA	В	VDLNE Y VDLPER IE	CI	WALDPORT WALDRON	Ď 1	WASHINGTON. STONY	В
ARRO	B		В	VOLTA	òi	WALDROUP	D	WASHINGTON.	В
ARYSBURG		VETEADD	c i		D 1		В		В
ASA		VEYO	o i	VDLTAIRE.	o i	WALES. WARM	В		В
SHTI	ci		Ві	SALINE-ALKALI	~ ;	WALES. OVERBLOWN	ci		В
ASQUEZ		VIAN	В	VDLTAIRE. WET	D i	WALFORD		WASHTENAV	C/0
ASSALBORO	-	VIBLE	Āi	VOLTAIRE . DRAINED	č i	WALHALLA	В		c
ASSAR	- •	AIBO	Bi	VOLTAIRE. FLODDED	ō		ci		В
STINE	c i		0 1	VOLTAIRE . GRAVELLY		WALKNOLLS	0 1		0
UCLUSE		VIBORG	ві	SUBSTRATUM	- 1	WALKON	ŏ i		c
UGHAN		VICEE	В	VOLUSIA	ci	WALL	В	WASPO	Ď
UGHNSVILLE	ci		c i		В	WALLA WALLA	В	WASSAIC	В
Y	В		c i	VOORHIES	c	WALLACE	В		c
YAS	Di		В	VDRE	В		8	· · · · · · · · · · · · · · · · · · ·	č
AL	B 1	VICKING. HIGH	Ві	VOSBURG	Bi			WATAUGA	В
ATCH	B 1		i		Ві	WALLINGTON	c i	WATCHABOB	c
EATCH. STONY	•	VICKING. DRY	o i		A		•	WATCHAUG	В
AZIE	Bi		Ві	VULCAN	ĉi		c i		ō
BAR	B 1	VICTINE	D i	VYLACH	o i	WALLSBURG	Di	WATERBURY	D
CONT		VICTOR	Ві	WAAS	B		В		В
EDUM	o i		D i		D i		ві		В
ET	В		ві		o i		c i		D
EGA	c i	VICTORY	Bİ	WABASSD	B/D	WALONG	В	WATERTOWN	A
EGA ALTA	В	VICU	c i	WABBASEKA	0 1	WALPOLE	c i	WATKINS	В
EGA BAJA		VIDA	8 1		Ā		ві		В
EKOL	DI	VIDAURI	DI	WABEN	В	WALSH	В		8
EKDL. CDOL	c 1	VIDRINE	DI	WABUSKA	C	WALSTEAD	B	WATONGA	D
ELASCO	DI	VIEJA	DI	WACA	B	WALTERS	B	WATROUS	В
ELOA	B	VIENNA	В	WACAHDDTA	0 1	WALTI	c i	WATSEKA	В
ELDKAMP	B	VIEQUES	B	WACDTA	B	WALUM	B	WATSON	C
ELMA	B	VIGAR	C I	WACDUSTA	B/DI	WALVAN	B	WATSONIA	Ď
ELOW	8 1	VIGIA	D 1	WADANS	8 1	WALVILLE	8	WATSDNVILLE	D
ELVA	B	VIGO	DI	WADDDUPS	8	WAMBA	0 1	WATT	D
ENA	'C	VIGUS	B	WADELL	B	WAMBA. DRAINED	B	WATTON	C
ENABLE	B/DI	VIKING	D	WADENA	B	WAMIC	8	WATUSI	C
ENABLE. STONY	c 1	VIL	DI	WADENILL	B	WAMPDD	DI	WAUBAY	В
ENANGD	c 1	VILAS	A 1	WADER	C	WAMPSVILLE	B	WAUBEEK	В
ENATOR	c 1		B	WADESPRING	B		DI		D
ENETA		VILLA GROVE	B	WADMALAW	D		A 1	WAUBONSIE	В
NEZIA		VILLEGREEN	c	WADSWORTH	C	WANETTA	B	WAUCHULA	B/0
NICE		VILLY	В	WAGES	B	WANILLA	c i		D
ENLO	-	VILLY.	DI		D	WANN	B		
NTRIS	D		1	WAGONBOX	D	WANDGA	B		D
NTURE		VILLY. DRAINED	B			WANSER	DI		В
NUM		VILOT	C I			WANSER. DRAINED	B	WAUCDNDA	B
ENUS		AIMAIFFE	D 1	WAHA	c		A	WAUKEE	B
ERBOORT	DI	VINA	B	WAHATOYA	c I	WAPATO	DI	WAUKEGAN	В
ERDE	c 1	VINCENNES	C/DI	WAHEE	D	WAPELLO	В	WAUKENA	D
ERDEL	- •	VINCENT	c 1	WAHIAWA	B		0 1		В
ERDICO	0 1		c 1			WAPINITIA	8 1	AAULD	В
RDIGRIS	-	VINEVARD	c 1		B		8	WAUMBEK	В
ERDUN		VINGO	B		B		B	WAUNA	D
ERGAS		AINING	c 1		D		В	WAUNA. PROTECTED	C
ERGENNES		VININI	D I	WAHPETON	c 1		В	WAUPACA	8/0
ERHALEN		ATINIA	c I		c i		c I		В
RICK		VINLAND	-	WAHT IGUP		WARBA	В		D
ERLDT	c i		CI		D		A	WAUSEDN	8/0
ERMEJO	-	VINSON	В		D		c I		8/0
ERMILAC		VINT		WATAKDA		WARDEN	В		B/0
ERMILLON		VINTAS	A 1		D	WARDENOT	A	WAVERLY	8/0
ERMISA		VINTON		WATALUA	B		c I	WAWASEE	В
ERNAL	В		c I	WAIAWA		WARE	В	MAMINA	A
ERNALIS		VIRATON	c i		D		c I	WAX	C
ERNALIS.		VIRDEN	B/D1	WAIKALOA	B	WARM SPRINGS	C I	WAYBE	D
SALINE-ALKALI		VIRGELLE	c 1		B	WARM SPRINGS.	c I	MAYCUP	8
	CI	VIRGIL	B 1	WAIKAPU	B	ALKALI	- 1	WAYDEN	D
ERNALIS. WET ERNIA ERNIG <b>o</b> r	A I	VIRGIN PEAK VIRGIN RIVER	0 1	WAIKDMO	D I	WARM SPRINGS. WET WARM SPRINGS. CLAY	D I	WAYLAND WAYNDR	C/0

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SDIL MAP LEGEND.

TABLE 7-1-+HYDRDLOGIC GROUPS OF THE SOILS DE THE UNITED STATES

	A YNE SBORD	в	WESTBURY	c į	WHDBREY	D I		8		c
	VA YNE TOWN	C	WESTBUTTE	c i	WHOLAN	8		B	WOLLENT	D
	VEA VEASH	BI	WESTCAMP WESTCREEK	C I	WIBAUX WICHITA	BI	WINETTI	C	WOLDT WDLVERINE	B
	EATHERFORD	В	WESTERVILLE	В	WICHUP	D 1	WINEVADA	ci	ADD ADD ADD ADD ADD ADD ADD ADD ADD ADD	B
	EAVER	c i	VESTHAVEN	c i	WICKAHDNEY	Ď i	VINFALL	В	VDO. OVERWASH	c
	EBB	c i	WESTLAKE	οi	WICKENBURG	D	WINFIELD	В	WDO. WET	c
1	VEBBR IDGE	B	WESTLAND	B/DI	WICKERSHAM	B	WING	DI	WDD. GRAVELLY	8
	PEBBTOWN	ć i	WESTMORE	c i	WICKETT	c i	WINGATE	В	SUBSTRATUM	
	EBER	В	WESTHDRELAND	В	WICKHAM	В	WINGER	BID		D
	IEBILE IEBSTER	C   B/DI	WESTON WESTOVER	BI	WICKIUP WICKSBURG	C I	AINCAILLE	DI	WDODBECK WDODBINE	8
	EDEKIND	DI	WESTPHALIA	В	WIDEMAN	A	WINIFRED	c i	WDDDBRIDGE	c
	EDERTZ	ві	WESTPLAIN	č i	VIDEN	ĉi	WINK	B 1	WDDDBURN	č
	EDGE	A	WESTPORT	В	WIDTSDE	В	WINKEL	D	WDODBURY	D
	FEDLAR	CI	WESTVACO	c	WIEHL	C	WINKLEMAN	C I	WDODCDCK	В
	EDDAEE	0 1	WESTVIEW	В	WIELAND	c i	WINKLEMAN. SALINE	c I	WODDFORD	D
	EED	B	WESTVILLE	В	WIERGATE	D	WINKLEMAN. WET	D	WOODGULCH	A
	MEEDING MEEDMARK	DI	WESTWEGO WESWOOD	DI	WIGGLETON WIGTON	BI	WINKLER WINLER	BI	WOODHALL WOODHURST	C
	EEKIWACHEE	D 1	WETA	D 1	WILAHA	B	WINLO	6 1	WDODIN	В
	EEKS	c i	WETHERSFIELD	c i	WILBANKS	ō i	WINN	c i	WOODINGTON	8/0
ſ	EEKSVILLE	B/DI	WETHEY	c i	WILBRAHAM	c i	WINNEBAGO	0 1	WOODINVILLE	D
	IEENA	0	WETHEY. DRAINED	A	WILBUR	8	WINNECONNE	c I	WDODINVILLE.	C
	EEPAH	CI	WETMORE	0	WILBURTON	В	WINNECOOK	c i	DRAINED	
	EESATCHE	0	WETSAW	c I	WILCO	c i	WINNEMUCCA	B	MDODLAWN	В
	IEGA IEHADKEE	B	WETTERHORN WETZEL	D 1	WILCOX WILCOXSON	DI	WINNESHIEK WINNETT	BI	WOODLYN	B D
	EIGANG	či	VEVELA	ěi	WILDALE	c	WINNSBORO	, i	WDODLYN	Ď
	EIGLE	ōi	WEWOKA	c i	WILDCAT	0 1	WINDNA	ō i	WOODLYN. DRAINED	Č
	EIKERT	C/DI		B	WILDERNESS	c i	WINOOSKI	0 1	WOODLYN. DRAINED	D
1	EIMER	DI	WHAKANA	В (	WILDHORSE	A	WINOPEE	8 1	WOODMANSIE	В
	EINBACH	C	WHALAN	В	WILDORS	c i	WINRIDGE	c i	WDODMERE	В
	EINGART	0	WHALEY	D	WILDWOOD	D	WINSHIP	c i	WOODNDNT	В
	ÆINGARTEN ÆIR	CI	WHATCOM	C I	VILEY	C I	WINSPECT   WINSTON	8 1	WDODPASS WOODROCK	C
	EIRMAN	Ă	WHATELY	D 1		В	WINTERFIELD	A/D		В
	EIRMAN. VET	p i	WHEATLEY	- •	WILKES	c i	WINTERHAVEN	0 1	WDODROW.	c
	EIRMAN.	A	WHEATRIDGE	В	WILKESON	8	WINTERIDGE	B	SALINE-ALKALI	
	NONFLODDED	i	WHEATVILLE	8 1	VILKINS	D	WINTERS	c i	WDDDS CROSS	D
	E I SBURG	C	WHEELER	В	WILL	B/D		c I	WODDSEYE	D
	EISER	0 1	WHEELERVILLE	В		c i	WINTERSET	c i	WDODSFIELD	c
	VEISHAUPT VEITCHPEC	0 1	WHEELON	BI	WILLACY	B I	WINTHROP WINTON	A	WDODSIDE WDODSDN	A D
	ELAKA	Ä	WHETROCK	či	VILLAMAR	В	WINTONER	В	WDDDSTDCK	C/D
	ELBY	В	WHETSTONE	č i	WILLAMETTE	Bi		c i	WDODSTOWN	C
ſ	FLCH	DI	WHICHMAN	B	WILLAMETTE. WET	C	WIDTA	B	WDODTELL	D
	FELCH. DRAINED	В	MHIDBEA	C I	WILLAMETTE.	B	WIRT	B	AOODAIFFE	D
	PELCHLAND	B	WHIPPANY	C I	GRAVELLY	!	AISCDA	DI	WDDDWARD	В
	ELD	c !	WHIPSTOCK	c I	SUBSTRATUM	_ !	WISE	c I	WDOLPER	C B
	IELDA Ieller	CI	WHIRLO WHISPERING	B I	WILLANCH WILLAPA	C I	WISEMAN WISENDR	A I	WDOLSEY WOOLSTALF	8
	ELLINGTON	ò i	WHISTLE	8 1	WILLARD	В		, i	WDOLSTED	В
	FELLMAN	8 1	WHIT	Ві	WILLETTE	- ,	WISHARD	B/DI		В
ſ	ELLS	B	WHITAKER	ci	WILLHILL	c i	WISHBONE	B	WDOSLEY	С
	FLLSBDRO	c I	WHITE HOUSE	C I	WILLIAMS	B	WISHEYLU	c I	WOOSTER	С
	ELLSED	c i	WHITE STORE	•	WILLIAMSBURG	8		DI		С
	ELLSTON	В	WHITE SWAN	c i	WILLIAMSON	c i		c i	WORF	D
	FELLSVILLE FELLTON	BI	WHITECAP	D I	WILLIAMSTOWN WILLIAMSWILLE	c I	WISKAN   Wisher	C	WORFKA WDRFMAN	D D
	ELOY	c	WHITECOM	8 1	WILLIMAN		WISTER	CI		c
	ELRING	ò i	WHITEFISH	ві			WITBECK		WDRL	В
ſ	ELTER	DI	WHITEFORD	B	WILLISTON	c i	WITEFELS	9 1	WDRLAND	С
	PEMPLE	8 1	WHITEHALL	B		В	WITHAM	DI		C
	MENAS	D	WHITEHILLS	C I	AILLOADYLE	B		C I	WDRMSER	D
	ENAS. DRAINED	c i	WHITEHORN	DI		- •	WITHERBEE		WORDCK	В
	IENATCHEE IENDANE	c	WHITEHDRSE		AILTADOD AILTOA2		WITHERELL   WITHERS	D I	WDRSHAM WORTH	D C
	MENDANE, DRAINED	C I	WHITEKNOB WHITELAKE	- •	WILLWOOD	A I	WITT	В		В
	ENDOVER	D 1	WHITEMAN	-	WILMONTON		WITTEN	D 1	WORTHING	D
	ENDTE	Di	WHITEPEAK	D i		Di		8 1	WORTMAN	D
1	ENONA	ci	WHITEROCK	DI	WILSHIRE	A	WITZEL	DI	WDVDKA	D
	ENTWORTH	8 1	WHITESBORD	C I			MIX	c I	WRANGD	A
	ENZEL	C	WHITESBURG	c i			WIXDM	В		В
	EDGUFKA	c !	WHITESON	D		B	WOCKLEY	C	WRENCDE	D C
	FERLDG. Saline-Alkali	c	WHITEWATER WHITEWOLF	DI	WILTON WINADA	B I	WODEN	8 I	WRENMAN WRENTHAM	c
	VERLOG. FLODDED	c	AHI LEMOOD		WINBERRY	ci	WOHLY	8	WRIGHT	č
	ERLDG. NONFLOODED	8	WHITEWRIGHT	- •	WINCHESTER	Ā		c i		č
	ERLOG. CDOL	c i	WHITLEY		WINCHUCK	ĉi	WOLCOTT		WRIGHTSBORD	c
	VERNER	D	WHI TLOCK	В	WIND RIVER	В	WOLDALE	D		D
	VERNOCK	В	WHITMAN	D		B/D		c i	WRIGHTWDOD	В
	VESCONNETT	D	WHITNEY	c i	WINDHAM	В	WOLF	В	WUKDKI	В
		ו מ	WHI TORE	BI	WINDMILL	B 1	WOLF POINT	CI	WUKSI	A
	VESKA	- ,		- •		_		-		
1	VESLEY	B	WHITSDL	B	WINDSOR	A	WOLFESDN	CI	WULFERT	D
1		_		- •	WINDSOR WINDTHORST	_		C I	WULFERT	D B D

NDTES: TWD HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G., BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SDIL SERIES PHASE FOUND IN SOIL MAP LEGEND.

TABLE 7.1 -- HYDROLOGIC GROUPS OF THE SOILS OF THE UNITED STATES

		12055 144 1110	NOE001	C GROOPS OF THE SOL	LS OF THE ONLINES STATES
WURSTEN	в (	YEOMAN	c I	ZAZA	D
WURTSBORD	c i	YEOPIM	B	ZEALE	8
WYALUSING	D	YERINGTON	A I	ZEB	B
WYANDOTTE	0 1	YERMO	•	ZECANYON	c
WYARD	В	YESO	D	ZEEBAR	В
WYARNO		YESUM	1	ZEEKA	c i
WYATT	c i	YETTEN	В	ZEESIX	<u>c                                     </u>
WYE	В	YETULL	B	ZEGRO	C I I
WYEAST	C I	YIPOR	c	ZEIBRIGHT	8 1
WYETH	c	YDCHUM		ZEN	ci
WYKOFF	8	YOCKEY	c i	ZENDA	či
WYMAN	В	YODER		ZENI	č i i
WYMORE	D	YODY	c i	ZENIA	C I I
WYNDMERE	B	YOHURT	D 1	ZENIFF	B
WYNN	B	YOKAYO	D	ZENITH	B
MANNAIFFE	c I	YOKOHL	DI	ZENKER	В
WYNONA	- •	YOLLABOLLY	-	ZENOD	В
WYNOOSE		YOLO	В	ZENOR	В
WYOCENA	В	YOLOGO	D	ZEONA	A
WYOMING	B	YOMBA		ZEORELY ZEPHAN	
WYRENE WYSOCK ING		YONCALLA		ZEPHYR	
XAVIER	В	YONGES	D 1	ZERKER	В
XENIA	В	YONNA	-	ZIEGENFUSS	o i
XERTA		YORBA		ZIEGLER	ciii
XINE	c i	YORK	c i	ZIGWEID	B
XMAN	0	YORKTOWN	D	ZILABOY	D
YACOLT	В	YORKTREE	C I	ZILLAH	0
YAGD	c I		D	ZILLAH. DRAINED	c i i
YAHARA	c I	YOST	D	ZILLION	B
YAHNE	c I	YOST. DRAINED	C I	ZILLMAN	В
YAHOLA	В	YOUD	D	ZIMMERMAN	<u>^                                    </u>
YAINAX YAKI	В	YOUGA	BI	ZINEB	B
YAKIMA	0 I	YDUJAY	c	Z ING Z INZER	BI
YAKUS	0	YOUNGSTON	В	ZINZER. MODERATELY	- :
YAKUTAT	Ā	YOUNGS TON.	В	SLOW PERM	
YALELAKE	8 1	ELEVATION>5200		ZINZER. SALINE	ci
YALESVILLE	c i	YOUNGSTON.	ві	ZINZER. HIGH	Bİ
YALLANI	B	MODERATELY WET	i	RAINFALL	i i
YALMER	8	YOUNGSTON. WET	D	ZION	c l i
YAMAC	B	YOUNGSTON. DRY	B	ZIPP	D
YAMHILL	c i	YOUNGSTON.	В	ZIRAM	c i
YAMSAY	C/0		!	ZITA	B
YANA	В	FLOODED	. !	ZITTAU	c i i
YANCY	DI	YOURAME	В	ZOAR	c
YANKEE YANKTON	0   B	YOUTLKUE	DI	ZOATE Zoe	
YANUSH	В		ci	ZOESTA	či
YAP	В	YRIBARREN	0 1	ZOHNER	
YAPOAH	В	YSIODRA		ZOLA	c i i
YAQUINA	0 1	YTUR8 IDE	Āİ	ZOLFO	c i i
YARCO	0	YTURRIA	A	ZOLTAY	c i i
YARDLEY	c I	YUBA	DI	ZOOK	C/01 1
YARTS	B	YUKO	D I	ZORRA	0
YATAHONEY	c I	YUKON	-	ZORRAVISTA	A ! !
YATES		YULEE		ZUBER	c i i
YAUCD YAUHANNAH		YUNES		ZUFELT	c ! !
YAWDIM		YUNQUE		ZUKAN ZUMAN	0
YAWHEE		YUVAS		ZUMBRO	A
YAWKEY	- •	ZAAR		ZUMWALT	ĉi
YAXON	-	ZABA		ZUNDELL	c i
YEARY	ci	ZACA		ZUNHALL	c i i
YEATES HOLLOW	8 [	ZACHARIAS	B	ZUNI	D
YEATES HOLLOW.		ZACHARY	c I	ZURICH	B
LOAMY SUBSTRATUM		ZADOG		ZWIEFEL	c į t
STONY		ZAFRA		ZWINGLE	0
YEATES HOLLOW.		ZAGG	- •	ZYGORE	В
LOAMY SUBSTRATUM YEATES HOLLOW.		ZAHILL		ZYME	
STONY		ZATOY		ZYMER ZYNBAR	8 1
YEATES HOLLOW.	•	ZAKME		ZYZYL	B 1
NONSTONY		ZALCO		ZYZZI	Di
YECROSS		ZALOA	Ď 1		
YEDLICK		ZALLA	A		i
YEGEN	B	ZAMORA	B		i
YELJACK		ZAMSCAN	B		i i
VELLOWBAY		ZANE	В		į i
YELLOWHOUND		ZANEIS	В		!
YELLOWROCK YELLOWSTONE		ZANESVILLE ZANGO	CI		
YELM	- •	ZANGU	0 1		
YEMASSEE		ZAU	c		1
YENCE		ZAVALA	В		
YENLO	c i		- •		

NOTES: TWO HYDROLOGIC SOIL GROUPS SUCH AS B/C INDICATES THE DRAINED/UNDRAINED SITUATION.
MODIFIERS SHOWN. E.G.. BEDROCK SUBSTRATUM. REFER TO A SPECIFIC SOIL SERIES PHASE FOUND IN SOIL MAP LEGEND.





Figure 7.1.--Steps in determining percentages of soil groups.



Figure 7.2.--Type of plotting used in estimating runoff curve-numbers for soil subgroups. Dashed lines show results for example 7.1.

## NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 8. LAND USE AND TREATMENT CLASSES

by

Victor Mockus Hydraulic Engineer

1964

Reprinted with minor revisions, 1969



## SCS NATIONAL ENGINEERING HANDBOOK

# SECTION 4

## HYDROLOGY

## CHAPTER 8--LAND USE AND TREATMENT CLASSES

CONTENTS	Page
Classification of land use and treatment Classes Cultivated land Fallow Row crop Small grain Close-seeded legumes or rotation meadow Rotations Straight row Contoured Grassland Meadow Woods and forest	8.1 8.1 8.2 8.2 8.2 8.2 8.3 8.4 8.4
Determination of classes	8.5
Tables 8.1 Classification of native pasture or range 8.2 Air-dry weight classification of native pasture or range	8.4
8.3 Classification of woods	8.6



### CHAPTER 8. LAND USE AND TREATMENT CLASSES

The land use and treatment classes ordinarily evaluated in watershed studies are briefly described. These classes are used in determining hydrologic soil-cover complexes (chap. 9), which are used in a method for estimating runoff from rainfall (chap. 10).

#### Classification of Land Use and Treatment

In the SCS method of runoff estimation the effects of the surface conditions of a watershed are evaluated by means of land use and treatment classes. Land use is the watershed cover and it includes every kind of vegetation, litter and mulch, and fallow (bare soil, to which the classification of chapter 7 also applies) as well as nonagricultural uses such as water surfaces (lakes, swamps, etc.) and impervious surfaces (roads, roofs, etc.). Land treatment applies mainly to agricultural land uses and it includes mechanical practices such as contouring or terracing and management practices such as grazing control or rotation of crops. The classes consist of use and treatment combinations actually to be found on watersheds.

Land use and treatment classes are readily obtained either by observation or by measurement of plant and litter density and extent on sample areas.

### CLASSES

The land use and treatment classes discussed here are listed in table 9.1, which also shows the runoff curve numbers (CN) for hydrologic soil-cover complexes in which the classes are used. Agricultural terms not defined here are defined in the glossary (chap. 22).

## Cultivated Land

Fallow listed in table 9.1 is the agricultural land use and

treatment with the highest potential for runoff because the land is kept as bare as possible to conserve moisture for use by a succeeding crop. The loss due to runoff is offset by the gain due to reduced transpiration. Other kinds of fallow, such as stubble-mulch, are not listed but they can be evaluated by comparing their field condition with those for classes that are listed.

Row crop is any field crop (maize, sorghum, soybeans, sugar beets, tomatoes, tulips) planted in rows far enough apart that most of the soil surface is exposed to rainfall impact throughout the growing season. At planting time it is equivalent to fallow and may be so again after harvest. In most evaluations average seasonal condition is assumed but special conditions can be evaluated as shown in chapter 10. Row crops are planted either in straight rows or on the contour and they are in either a poor or good rotation. These land treatments are discussed later in this chapter.

<u>Small grain</u> (wheat, oats, barley, flax, etc.) is planted in rows close enough that the soil surface is not exposed except during planting and shortly thereafter. Land treatments are those used with row crops.

<u>Close-seeded legumes or rotation meadow</u> (alfalfa, sweetclover, timothy, etc. and combinations) are either planted in close rows or broadcast. This cover may be allowed to remain for more than a year so that year-round protection is given to the soil. The land treatments used with row crops are also used with this cover, except for row treatments if the seed is broadcast.

Rotations are planned sequences of crops, and their purpose is to maintain soil fertility or reduce erosion or provide an annual supply of a particular crop. Hydrologically, rotations range from "poor" to "good" in proportion to the amount of dense vegetation in the rotation, and they are evaluated in terms of hydrologic effects. Poor rotations are generally one-crop land uses such as continuous corn (maize) or continuous wheat or combinations of row crops, small grains, and fallow. Good rotations generally contain alfalfa or other close-seeded legume or grass to improve tilth and increase infiltration. Their hydrologic effects may carry over into succeeding years after the crop is removed though normally the effects are minor after the second year. The carry-over effect is not considered in table 9:1.

Straight-row fields are those farmed in straight rows either up and down the hill or across the slope. Where land slopes are less than about 2 percent, farming across the slope in straight rows is equivalent to contouring and should be so considered when using table 9.1. Contoured fields are those farmed as nearly as possible on the contour. The hydrologic effect of contouring is due to the surface storage provided by the furrows because the storage prolongs the time during which infiltration can take place. The magnitude of storage depends not only on the dimensions of the furrows but also on the land slope, crop, and manner of planting and cultivation. Planting small

grains or legumes on the contour makes small furrows that disappear because of climatic action during the growing season. The contour furrows used with row crops are either large when the crop is planted and made smaller by cultivation or small after planting and made larger by cultivation, depending on the type of farming. Average conditions for the growing season are used in table 9.1. The relative effects of contouring for all croplands shown in the table are based on data from experimental watersheds having slopes from 3 to 8 percent. Stripcropping is a land use and treatment not specifically shown in table 9.1 because it is a composite of uses and treatments. It is evaluated by the method of example 10.5. The terraced entries in table 9.1 refer to systems containing open-end level or graded terraces, grassedwaterway outlets, and contour furrows between the terraces. The hydrologic effects are due to the replacement of a low-infiltration land use by grassed waterways and to the increased opportunity for infiltration in the furrows and terraces. Closed-end level terraces, not shown in table 9.1, are evaluated by the methods in chapter 12.

### Grassland

Grassland in watersheds can be evaluated by means of the three hydrologic conditions of <u>native pasture or range</u> shown in table 8.1, which are based on cover effectiveness, not forage production. The percent of area covered (or density) and the intensity of grazing are visually estimated. In making the estimates keep in mind that grazing on any but dry soils will result in lowering of infiltration rates due to compaction of the soil by hooves, an effect that may carry over for a year or more even without further grazing.

An alternative system of evaluation is shown in table 8.2, in which density and air-dry weights of grasses and litter are used. The air-dry weights are determined by sampling. The field work can be kept to a minimum by sampling a small number of representative sites rather than a large number of random sites. In the table the classes with plus signs are midway between adjacent classes, so that the CN for these classes must be obtained by interpolation in table 9.1 or by the method shown in example 7.1.

Contour furrows on native pasture or range are longer lasting than those on cultivated land, their length of life being dependent on the soil, intensity of grazing, and on the density of cover. The dimensions and spacings of furrows vary with climate and topography. The CN in table 9.1 are based on data from contoured grassland watersheds in the central and southern Great Plains. Terraces are seldom used on grassland. When they are, the construction methods

Table 8.1.--Classification of native pasture or range

Vegetative condition	Hydrologic condition
Heavily grazed. Has no mulch or has plant cover on less than 1/2 of the area.	Poor
Not heavily grazed. Has plant cover on 1/2 to 3/4 of the area.	<u>P</u> Fair
Lightly grazed. Has plant cover on more the 3/4 of the area.	nan Good

Table 8.2.--Air-dry weight classification of native pasture or range

Cover density (percent)	Plant and litter Less than 0.5	_	ht (tons per acre): More than 1.5
Less than 50	Poor	Poor +	Fair
50 to 75	Poor +	Fair	Fair +
More than 75	Fair	Fair +	Good

expose bare soils and for 2 or 3 years the terraced grassland is more like terraced cropland in its effect on surface runoff.

Meadow is a field on which grass is continuously grown, protected from grazing, and generally moved for hay. Drained meadows (those having low water tables) have little or no surface runoff except during storms that have high rainfall intensities. Undrained meadows (those having high water tables) may be so wet as to be the equivalent of water surfaces in the runoff computations of chapter 10. If a wet meadow is drained, its soil-group classification as well as its land use and treatment class may change (see chapter 7 regarding the change in soil classification).

## Woods and Forest

Woods are usually small isolated groves of trees being raised for farm

or ranch use. The woods can be evaluated as shown in table 8.3, which is based on cover effectiveness, not on timber production. The hydrologic condition is visually estimated.

In areas where <u>National or commercial forest</u> covers a large part of a watershed, the SCS hydrologist is guided by the memorandum of understanding between the Forest Service and the SCS. The Forest Service procedure for determining forest hydrologic conditions is given in chapter 4 of "Forest and Range Hydrology Handbook" U.S. Forest Service, Washington, D. C., April 1959. Excerpts from that handbook are given in chapter 9.

### Determinations of Classes

The land use and treatment classes on a watershed can be determined at the same time the soils are classified (chap. 7). As with soils, the classes are determined for hydrologic units (chap. 6). Locations of the classes within the units are ignored. A work sheet with classes shown in the order given in table 9.1 is convenient for tabulating percentages or acreages and is useful later in computing weighted CN as shown in chapter 10. It should take less than a day to classify the cover on a watershed of 400 square miles.

_i/ For an analytical study of the effects of location of cover in a watershed on the shapes of outflow hydrographs, see the chapter by Merrill Bernard in "Headwaters Control and Use," U.S. Dept. of Agric., April 1937. Bernard's study shows that the percentage of area in high runoff producing crops has more influence on the hydrographs than does the location of these crops within the watershed. The effect of location is significant, however, when corn and grass are concentrated in equal-sized areas.

Table 8.3.--Classification of woods

Vegetative condition	Hydrologic condition
Heavily grazed or regularly burned. Litter, small trees, and brush are destroyed.	Poor
Grazed but not burned. There may be some litter but these woods are not protected.	Fair
Protected from grazing. Litter and shrubs cover the soil.	Good

* * * *

## NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 9. HYDROLOGIC SOIL-COVER COMPLEXES

Ъy

Victor Mockus Hydraulic Engineer

1964

Reprinted with minor revisions, 1969



## SCS NATIONAL ENGINEERING HANDBOOK

## SECTION 4

# HYDROLOGY

# CHAPTER 9--HYDROLOGIC SOIL-COVER COMPLEXES

## CONTENTS

		rage
Agri	nation of complexes and CN cultural land Assignment of CN to complexes Use of Table 9.1	9.1 9.1 9.1 9.3
Nati	onal and Commercial forest: forest-range Forest in Eastern United States	9.3 9.3
	Determination of CN for present hydrologic condition Determination of CN for future hydrologic condition Forest-range in Western United States Supplementary tables of CN	9.4 9.4 9.7 9.7
Figures		
9.1	Present hydrologic condition of forest and woodland	9.10
9.2		9.10
9.3		9.10
9.4	1 1 - F	9.10
9.5	Graph for estimating runoff curve numbers of forest-range complexes in Western United States: herbaceous and	
9.6	oak-aspen complexes Graph for estimating runoff curve numbers of forest-range complexes in Western United States: juniper-grass and	9.11
	sage-grass complexes	9.11
Tables		
9.1 9.1A	Runoff curve numbers for hydrologic soil-cover complexes	9.2
	for conservation tillage and residue management	9.2a
9.2	Physiographic factors and forest hydrologic-condition- improvement potential indexes	9.5
9.3	Runoff curve numbers for hydrologic soil-cover complexes in Puerto Rico	9.8
9.4	Runoff curve numbers for hydrologic soil-cover complexes of a typical watershed in Contra Costa County, California	9.8
9.5	Runoff curve numbers; tentative estimates for sugarcane hydrologic soil-cover complexes in Hawaii	9.9



## CHAPTER 9. HYDROLOGIC SOIL-COVER COMPLEXES

A combination of a hydrologic soil group (soil) and a land use and treatment class (cover) is a hydrologic soil-cover complex. This chapter gives tables and graphs of runoff curve numbers (CN) assigned to such complexes. Its CN indicates the runoff potential of a complex during periods when the soil is not frozen, the higher a CN the higher a potential, and specifies which runoff curve of figure 10.1 is to be used in estimating runoff for the complex (chap. 10). Applications and further discussions of CN are given in chapters 10, ll, and 12.

## Determinations of Complexes and CN

#### AGRICULTURAL LAND

Complexes and assigned CN for combinations of soil groups of chapter 7 and land use and treatment classes of chapter 8 are given in table 9.1. Also given are some complexes that make applications of the table more direct. Impervious and water surfaces, which are not listed, are always assigned a CN of 100.

ASSIGNMENT OF CN TO COMPLEXES. Table 9.1 was developed as follows. The data literature was searched for watersheds in single complexes (one soil group and one cover); watersheds were found for most of the listed complexes. An average CN for each watershed was obtained by the method of example 5.4, using rainfall-runoff data for storms producing the annual floods (chap. 18). The watersheds were generally less than 1 square mile in size, the number of watersheds for a complex varied, and the storms were of 1 day or less duration. The CN of watersheds in the same complex were averaged, all CN for a cover were plotted as shown in figure 7.2, a curve for each cover was drawn with greater weight given to CN based on data from more than one watershed, and each curve was extended as far as necessary to provide CN for ungaged complexes. All but the last three lines of

Table 9.1.--Runoff curve numbers for hydrologic soil-cover complexes (Antecedent moisture condition II, and  $I_a$  = 0.2 S)

	Cover			<del></del>		
Land use	Treatment	Hydrologic	Hydrol	ogic s	oil g	roup
	or practice	condition	A	В	C	D
Fallow	Straight row		77	86	91	94
Row crops	Contoured "and terraced" ""	Poor Good Poor Good Poor Good	72 67 70 65 66 62	81 78 79 75 74 71	88 85 84 82 80 78	91 89 88 86 82 81
Small grain	Straight row Contoured "and terraced	Poor Good Poor Good I Poor Good	65 63 61 61 59	76 75 74 73 72 70	84 83 82 81 79 78	88 87 85 84 82 81
Close-seeded legumes <u>l</u> / or rotation meadow	Straight row " Contoured " "and terraced "and terraced		66 58 64 55 63 51	77 72 75 69 73 67	85 81 83 78 80 76	89 85 85 83 83
Pasture or range	Contoured	Poor Fair Good Poor Fair Good	68 49 39 47 25 6	79 69 61 67 59 35	86 79 74 81 75 70	89 84 80 88 83 79
Meadow		Good	30	58	71	78
Woods		Poor Fair Good	45 36 25	66 60 55	77 73 70	83 79 77
Farmsteads			59	74	82	86
Roads (dirt) (hard s	<u>2</u> / surface) <u>2</u> /		72 74	82 84	87 90	89 92

^{1/} Close-drilled or broadcast. 2/ Including right-of-way.

Table 9.1A.--Runoff curve numbers for hydrologic soil-cover complexes for conservation tillage and residue management

(Antecedent moisture condition II, and  $I_a = 0.2S$ )

	Cover					
	Treatment	Hydrologic,	Hydr	ologic	soil	group
Land use	or practice	condition1/	A	В	С	D
Fallow	Conservation tillage	poor	76	85	90	93
	Conservation tillage	good	74	83	88	90
Row crops	Conservation tillage	poor	71	80	87	90
	Conservation tillage	good	64	75	82	85
	Contoured + conservation	poor	69	78	83	87
	tillage	good	64	74	`81	85
	Contoured + terraces	poor	65	73	79	81
	+ conservation tillage	good	61	70	77	80
Small grain	Conservation tillage	poor	64	75	83	86
, and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second	Conservation tillage	good	60	72	80	84
	Contoured + conservation	poor	62	73	81	84
	tillage	good	60	72	80	83
	Contoured + terraces	poor	60	71	78	81
	+ conservation tillage	good	58	69	77	80

^{1/} For conservation tillage poor hydrologic condition, 5 to 20 percent of the surface is covered with residue (less than 750 #/acre row crops or 300 #/acre small grain).

For conservation tillage good hydrologic condition, more than 20 percent of the surface is covered with residue (greater than 750 #/acre row crops or 300 #/acre small grain).

NOTE: Percent cover should be estimated at the time of year storms occur.



CN entries in table 9.1 are taken from these curves. For the arbitrary complexes in the last three lines the proportions of different covers were estimated and CN computed from previously derived CN.

Table 9.1 has not been significantly changed since its construction in 1954 but supplementary tables for special regions have been developed. These tables are given later in this chapter.

<u>USE OF TABLE 9.1.</u> Chapters 7 and 8 describe how soils and cover of a watershed or other land area are classified in the field. After the classification is completed, CN are read from table 9.1 and applied as described in chapter 10. Because the principal use of CN is for estimating runoff from rainfall, the examples of applications are given in chapter 10.

### NATIONAL AND COMMERCIAL FOREST: FOREST-RANGE

Chapter 4 of "Forest and Range Hydrology Handbook," U.S. Forest Service, Washington, D. C., 1959, describes how CN are determined for national and commercial forests in the eastern United States. Section 1 of "Handbook on Methods of Hydrologic Analysis," U.S. Forest Service, Washington, D. C., 1959, describes how CN are determined for forest-range regions in the Western United States. Selections from these handbooks are given here to show the differences from SCS procedure; the handbooks should be consulted for details and examples.

## Forest in Eastern United States

In the humid forest regions of the eastern United States, soil group, humus type, and humus depth are the principal factors used in the Forest Service method of determining CN. The undecomposed leaves or needles, twigs, bark, and other vegetative debris on the forest floor form the litter from which humus is derived. Litter protects humus from oxidation and therefore indirectly enters into the determination; if the depth of litter is less than 1/2 inch the humus is considered unprotected and the hydrologic condition class (fig. 9.1) is reduced by 0.5.

Humus is the organic layer immediately below the litter layer from which it is derived. It may consist of <u>mull</u>, which is an intimate mixture of organic matter and mineral soil, or of <u>mor</u>, which is practically pure organic matter unrecognizable as to origin from material lying on the forest floor. Humus depth increases with age

of forest stand until an equilibrium is reached between the processes that build up humus and those that break it down. As much as 12 inches of humus may be produced under favorable conditions, but a depth of 5 or 6 inches is considered the maximum attainable under average conditions. Under good management practices (proper use, protection, and improvement), humus is porous and has high infiltration and storage capacities. Under poor management practices (burning, overcutting, or overgrazing), humus is compact enough to impede the absorption of water.

Humus is evaluated by means of degrees of compaction, which are:

- 1. Compact. Mulls are firm; mors are felty.
- 2. Moderately compact. A transition stage.
- 3. Loose or friable. Mulls are not firm; mors are not felty.

Frost in compact humus is the concrete form, which inhibits infiltration, and in loose humus it is the granular or stalactite form, which does not. Because of the correlation between humus type and frost, a separate determination of the effects of frost is unnecessary.

The <u>hydrologic condition</u> of a forest area is the runoff-producing potential. The condition class is indicated by a number ranging from 1 to 6, the lower the number the higher the potential. The relation between classes and humus type and depth is shown in figure 9.1.

DETERMINATION OF CN FOR PRESENT HYDROLOGIC CONDITION. The CN for the present hydrologic condition of a forest area is determined as follows: sample plots are located in the area; soil group, litter depth, humus type, and humus depth are determined by means of shallow soil wells dug in the plots; the nomograph, figure 9.1, gives the hydrologic condition class of the plot; the network chart, figure 9.2, gives the CN. An average or weighted CN is obtained as described in chapter 10.

<u>DETERMINATION OF CN FOR FUTURE HYDROLOGIC CONDITION</u>. The CN for the future hydrologic condition of a forest area is determined from the improvement potential of the area, which is estimated by means of table 9.2. Definitions of terms used in the table are:

Improvement potential. The potential for improvement of the hydrologic condition of a site by proper use and treatment in the future. Physiography of the site enters into the determination of potential. The symbols for classes of potential are H = high, M = moderate, and L = low. A high potential means the most rapid rate of improvement, a low potential the slowest.

Table 9.2. -- Physiographic factors and forest hydrologic-condition-improvement potential indexes

Aspect	Soil	Soil					SIC	Slope position	ition					
	class	depth	Lower (street to one distar slope)	slc amba e-fc oce	pe unk urth up	One-four one-half tance up		th to dis- slope	One-half three-for distance slope	for for	to irths up	Upper (three distar	1 2 2 6 .	lope fourths te to slope)
			Slope 0-20 21	be percent 21-40 41+	ent 41+	Slope 0-20 21	De percent 21-40 41+	th 7-	Slope 0-20 21	per 40	cent 41+	Slope 0-20 21		percent -40 41+
		(inches)												
North to east	Clay	13-24 25+	нн	нн	ΣН	нн	ΜН	МΉ	MH	ΣН	Z E	ВΉ	ηΣ	ηΣ
	Loam	13-24 25+	нн	ΗН	нн	ΗН	нн	MH	нн	ΣН	MH	ЖΗ	ЖH	ηΣ
	Sand	15+	Ħ	×	×	M	×	н	M	ы	니	Ы	IJ	Н
South to west	Clay	13-24 25+	ΣН	ΣΣ	ıΣ	MM	ıΣ	ㅂㅂ	I M	니니	ηн	그그	그그	그니
	Loam	13-24 25+	нн	ΜН	МН	MH	H	I M	MM	IJΣ	ηM	ηΣ	ηΣ	그그
	Sand	13+	M	ij	H	ij	니	IJ	ıı	Ц	H	니	ı	ı
Northwest and southwest	Clay	13-24 25+	ΗН	ΣH	цн	МΗ	ZZ	ηΣ	МΉ	ıΣ	디디	ıΣ	IJΣ	그그
	Loam	13-24 25+	ΗН	ΗН	МН	нн	H	Σн	МΉ	ΣН	ηΣ	МН	그 Σ	ΙΣ
	Sand	13+	M	ī	П	M	ij	T	T	ij	T	ы	I.	Ţ

This is table 4.1 in U.S. Forest Service "Forest and Range Hydrology Handbook."

Aspect. A compass reading to the nearest octant, taken from the center of the sample plot and looking downslope on a line at right angles to the contours.

Soil class. Texture of the mineral soil immediately below the humus layer if any. Note that these classes differ from the soil groups of chapter 7 because the classes are concerned with forest growth, the groups with runoff.

Soil depth. A determination made in the sample plot. Rock outcrops or soils less than 13 inches deep are put in the 13- to 24-inch class.

Slope. A percentage reading of land slope, taken at the center of the plot.

Slope position. A forest growth class based on the vertical position of the plot relative to a stream (fig. 9.3).

Once the improvement potential is known, the time period for achieving the potential is estimated on the basis of use and treatment to be given the area; consideration is given to measures for protection from fire, overgrazing, overcutting, damaging logging, and epidemics of insects or diseases, to tree planting in open fields or woods openings, and to stand improvement. The CN for the area is estimated using figure 9.4, as illustrated in the following example.

Example 9.1.--A forest area has a present hydrologic condition class of 1.3 and soils in the A group. The improvement potential is high and it is estimated that a 50-year period is necessary to bring the area to this level. Determine the future CN for the area.

- 1. Determine the present CN. Enter figure 9.2 with the hydrologic condition class of 1.3 and at the line for soil group A read a CN of 54.
- 2. Determine the future hydrologic condition class. Enter figure 9.4 with the present class of 1.3, go across to the curve for high potential, and read 6 years on the time scale. To this value add one-half the improvement period: 6 + (50/2) = 31 years, follow the "high" curve to its intersection with 31 years on the time scale, and read a future class of 3.4. This estimate is based on 100 percent accomplishment of recommended use and treatment; if less accomplishment is expected, the condition class is proportionately reduced.
- 3. Determine the future CN. Enter figure 9.2 with the future class of 3.4 and at the line for soil group A read a CN of 37.

## Forest-Range in Western United States

In the forest-range regions of the western United States, soil group, cover type, and cover density are the principal factors used in estimating CN. Figures 9.5 and 9.6 show the relationships between these factors and CN for soil-cover complexes used to date. The figures are based on information in table 2.1, part 2, of the Forest Service "Handbook on Methods of Hydrologic Analysis." The covers are defined as follows:

Herbaceous.--Grass-weed-brush mixtures with brush the minor
element.

Oak-Aspen. -- Mountain brush mixtures of oak, aspen, mountain mahogany, bitter brush, maple, and other brush.

Juniper-Grass . -- Juniper or pinon with an understory of grass.

Sage-Grass. -- Sage with an understory of grass.

The amount of litter is taken into account when estimating the density of cover.

Present hydrologic conditions are determined from existing surveys or by reconnaissance, and future conditions from the estimate of cover and density changes due to proper use and treatment.

#### SUPPLEMENTARY TABLES OF CN

Tables 9.3, 9.4, and 9.5 are supplements to table 9.1 and are used in the same way.

Table 9.3 gives CN for selected covers in Puerto Rico. The CN were obtained using a relation between storm and annual data and the annual rainfall-runoff data for experimental plots at Mayaguez.

Table 9.4 gives CN for complexes in a typical watershed in Contra Costa County, California. The CN were obtained by the Contra Costa County Flood Control District and SCS, using streamflow data from the watershed and a trial-and-error process. The range in CN for a particular cover and soil group indicates the variation for soil subgroups.

Table 9.5 gives CN for sugarcane complexes in Hawaii. The CN are tentative estimates now undergoing study. Degrees of cover in the table are defined as follows:

Table 9.3.--Runoff curve numbers for hydrologic soil-cover complexes in Puerto Rico (antecedent moisture condition II, and  $I_a = 0.2 \text{ S}$ ).

Cover and condition	Hydro	logic	soil g	roup
	A	В	С	D
Fallow Grass (bunch grass, or poor stand of sod) Coffee (no ground cover, no terraces) Coffee (with ground cover and terraces) Minor crops (garden or truck crops) Tropical kudzu Sugarcane (trash burned; straight-row) Sugarcane (trash mulch; straight row) Sugarcane (in holes; on contour) Sugarcane (in furrows; on contour)	77 51 48 22 45 19 45 45 24 32	86 70 68 52 66 50 65 66 53 58	91 80 79 68 77 67 77 77 72	93 84 83 75 83 74 82 83 76

Table 9.4.--Runoff curve numbers for hydrologic soil-cover complexes of a typical watershed in Contra Costa County, California (antecedent moisture condition II, and  $I_a$  = 0.2 S).

_	_	Hydr	ologic	soil gr	oup
Cover	Condition	A	В	С	D
Scrub (native brush)		25 - 30	41-46	57 <b>-</b> 63	66
Grass-oak (native oaks with understory of forbs and annual grasses)	Good	29-33	43-48	59-65	67
Irrigated pasture	Good	32 <b>-</b> 37	46-51	62 <i>-</i> 68	70
Orchard (winter period with understory of cover crop)	Good	37-41	50-55	64-69	71
Range (annual grass)	Fair	46-49	57-60	68-72	74
Small grain (contoured)	Good		69-71		
Truck crops (straight-row)	Good	67 <b>-</b> 69	74-76	80-83	84
Urban areas:					
Low density (15 to 18 per- cent impervious surfaces)		69-71	75 <b>-</b> 78	82-84	86
Medium density (21 to 27 pe cent impervious surfaces)	er-	71-73	77-80	84-86	88
High density (50 to 75 percimpervious surfaces)	cent	73 <b>-</b> 75	79-82	86-88	90

Table 9.5.--Runoff curve numbers; tentative estimates for sugarcane hydrologic soil-cover complexes in Hawaii (antecedent moisture condition II, and  $I_a$  = 0.2 S).

	Hydro	logic	soil g	roup
Cover and treatment	A	В	C	D
Sugarcane:  Limited cover, straight row Partial cover, straight row Complete cover, straight row Limited cover, contoured Partial cover, contoured Complete cover, contoured	67 49 39 65 25 6	78 69 61 75 59 35	85 79 74 82 75 70	89 84 80 86 83 79

<u>Limited cover.--</u>Cane newly planted, or ratooned cane with a limited root system; canopy over less than 1/2 the field area.

Partial cover. -- Cane in the transition period between limited and complete cover; canopy over 1/2 to nearly the entire field area.

<u>Complete cover.--</u>Cane from the stage of growth when full canopy is provided to the stage at harvest.

Straight-row planting is up and down hill or cross-slope on slopes greater than 2 percent. Contoured planting is the usual contouring or cross-slope planting on slopes less than 2 percent.

* * * *



FIGURE 9.1 PRESENT HYDROLOGIC CONDITION OF FOREST AND WOODLAND



FIGURE 9.2 CURVE NUMBERS BY HYDROLOGIC SOIL GROUP AND FOREST HYDROLOGIC CONDITION CLASSES



A. - TRIBUTARY STREAM IN RELATION TO MAIN STREAM, MOUNTAINOUS



8. - PLATEAUS AND FOOTHILLS



C. - PRAIRIES, COASTAL PLAIN

- a LOWER SLOPE b 1/4 TO 1/2 DISTANCE UP SLOPE c 1/2 TO 3/4 DISTANCE UP SLOPE d UPPER SLOPE

FIGURE 9.3 - EXAMPLES OF SLOPE POSITION



FIGURE 9.4 RATE OF IMPROVEMENT OF FOREST HYDROLOGIC CONDITION UNDER MANAGEMENT. STARTING CONDITION - BARE SOIL



Figure 9.5.--Graph for estimating runoff curve numbers of forest-range complexes in western United States: herbaceous and oak-aspen complexes.



Figure 9.6.--Graph for estimating runoff curve numbers of forest-range complexes in western United States: junipergrass and sage-grass complexes.



## NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 10. ESTIMATION OF DIRECT RUNOFF FROM STORM RAINFALL

by

Victor Mockus Hydraulic Engineer

1964

Reprinted with minor revisions, 1972

NEH Notice 4-102, August 1972



# SCS NATIONAL ENGINEERING HANDBOOK

# SECTION 4

# HYDROLOGY

# CHAPTER 10--ESTIMATION OF DIRECT RUNOFF FROM STORM RAINFALL

CONTENTS	Page
Introduction Channel runoff Surface runoff Subsurface flow Base flow	10.1 10.1 10.2 10.2
The rainfall-runoff relationship Development Retention parameters Relation of $I_a$ to $S$ Graphs and tables for the solution of equation 10.10 Use of $S$ and $CN$	10.3 10.3 10.5 10.6 10.6a
Applications Single storms	10.8
Alternate methods of estimation for multiple complexes Multiple-day storms and storm series Seasonal or annual variations Variation of runoff during a storm Runoff from urban areas Applications to river basins or other large area Indexes for multiple regression analyses Accuracy	10.10 10.11 10.14 10.15 10.17 10.17
Figures 10.1 ES-1001 (Solution of runoff equation)	
Sheet 1 of 2 Sheet 2 of 2 10.2 Relationship of I _a and S 10.3 Expected minimum runoff (dashed line) and actual runoff (plotted points) for an	10.21 10.22 10.23
urbanized watershed	10.23
10.4 Comparisons of computed with actual runoff on a frequency basis	10.24

CONTENTS Cont'd.	Page
Tables	
10.1 Curve numbers (CN) and constants for the	
case $I_a = 0.2S$	10.7
10.2 Working table for a storm series	10.13
10.3 Incremental runoff for a storm of long duration	10.16

### CHAPTER 10. ESTIMATION OF DIRECT RUNOFF FROM STORM RAINFALL

The SCS method of estimating direct runoff from storm rainfall is described in this chapter. The rainfall-runoff relation of the method is developed, parameters in the relation are discussed, and applications of the method are illustrated by examples.

#### Introduction

The SCS method of estimating direct runoff from storm rainfall is based on methods developed by SCS hydrologists in the last three decades, and it is in effect a consolidation of these earlier methods. The hydrologic principles of the method are not new, but they are put to new uses. Because most SCS work is with ungaged watersheds (not gaged for runoff) the method was made to be usable with rainfall and watershed data that are ordinarily available or easily obtainable for such watersheds. If runoff data are also available the method is adaptable to their use as illustrated in chapter 5.

The principal application of the method is in estimating quantities of runoff in flood hydrographs or in relation to flood peak rates (chap. 16). These quantities consist of one or more types of runoff. An understanding of the types is necessary to apply the method properly in different climatic regions. The classification of types used in this handbook is based on the time from the beginning of a storm to the time of the appearance of a type in the hydrograph. Four types are distinguished:

Channel runoff occurs when rain falls on a flowing stream or on the impervious surfaces of a streamflow-measuring installation. It appears in the hydrograph at the start of the storm and continues throughout it, varying with the rainfall intensity. It is generally a negligible quantity in flood hydrographs, and no attention is given to it except in special studies (see the discussion concerning the relationship of I to S in figure 10.2).

Surface runoff occurs only when the rainfall rate is greater than the infiltration rate. The runoff flows on the watershed surface to the point of reference. This type appears in the hydrograph after the initial demands of interception, infiltration, and surface storage have been satisfied. It varies during the storm and ends during or soon after it. Surface runoff flowing down dry channels of watersheds in arid, semiarid, or subhumid climates is reduced by transmission losses (chap. 19), which may be large enough to eliminate the runoff entirely.

Subsurface flow occurs when infiltrated rainfall meets an underground zone of low transmission, travels above the zone to the soil surface downhill, and appears as a seep or spring. This type is often called "quick return flow" because it appears in the hydrograph during or soon after the storm.

Base flow occurs when there is a fairly steady flow from natural storage. The flow comes from lakes or swamps, or from an aquifer replenished by infiltrated rainfall or surface runoff, or from "bank storage", which is supplied by infiltration into channel banks as the stream water level rises and which drains back into the stream as the water level falls. This type seldom appears soon enough after a storm to have any influence on the rates of the hydrograph for that storm, but base flow from a previous storm will increase the rates. Base flow must be taken into account in the design of the principal spillway of a floodwater-retarding structure (chap. 21).

All types do not regularly appear on all watersheds. Climate is one indicator of the probability of the types. In arid regions the flow on smaller watersheds is nearly always surface runoff, but in humid regions it is generally more of the subsurface type. But a long succession of storms produces subsurface or base flow even in dry climates although the probability of this occurring is less in dry climates than in wet climates.

In flood hydrology it is customary to deal separately with base flow and to combine all other types into <u>direct runoff</u>, which consists of channel runoff, surface runoff, and <u>subsurface flow</u> in unknown proportions. The SCS method estimates direct runoff, but the proportions of surface runoff and subsurface flow (channel runoff is ignored) can be appraised by means of the runoff curve number (CN), which is another indicator of the probability of flow types: the larger the CN the more likely that the estimate is of surface runoff. This principle

is also employed for estimating watershed lag as shown in figure 15.3. The rainfall-runoff relation of the SCS method can be made to operate with a particular type of flow; it was linked with direct runoff, as described in chapter 9, for the convenience of applications.

### The Rainfall-Runoff Relation

The most generally available rainfall data in the United States are the amounts measured at nonrecording rain gages, and it was for the use of such data or their equivalent that the rainfall-runoff relation was developed. The data are totals for one or more storms occurring in a calendar day, and nothing is known about the time distributions. The relation therefore excludes time as a variable; this means that rainfall intensity is ignored. If everything but storm duration or intensity is the same for two storms, the estimate of runoff is the same for both storms. Runoff amounts for specified time increments of a storm can be estimated as shown in example 10.6, but even in this process the effect of rainfall intensity is ignored.

#### DEVELOPMENT

If records of natural rainfall and runoff for a large storm over a small area are used, plotting of accumulated runoff versus accumulated rainfall will show that runoff starts after some rain accumulates (there is an "initial abstraction" of rainfall) and that the double-mass line curves, becoming asymptotic to a straight line. On arithmetic graph paper and with equal scales, the straight line has a 45-degree slope. The relation between rainfall and runoff can be developed from this plotting, but a better explanation of the relation is given by first studying a storm in which rainfall and runoff begin simultaneously (initial abstraction is zero). For the simpler storm the relation between rainfall, runoff, and retention (the rain not converted to runoff) at any point on the mass curve can be expressed as:

$$\frac{F}{S} = \frac{Q}{P} \tag{10.1}$$

where:

F = actual retention after runoff begins

 $S = potential maximum retention after runoff begins <math>(S \ge F)$ 

Q = actual runoff

P = rainfall (P > Q)

Equation 10.1 applies to on-site runoff; for large watersheds there is a lag in the appearance of the runoff at the stream gage, and the double-mass curve produces a different relation. But if storm totals for P and Q are used equation 10.1 does apply even for large watersheds because the effects of the lag are removed.

The retention, S, is a constant for a particular storm because it is the maximum that can occur under the existing conditions if the storm continues without limit. The retention F varies because it is the difference between P and Q at any point on the mass curve, or:

$$F = P - Q \tag{10.2}$$

Equation 10.1 can therefore be rewritten:

$$\frac{P - Q}{S} = \frac{Q}{P} \tag{10.3}$$

Solving for Q produces the equation:

$$Q = \frac{P^2}{P + S}$$
 (10.4)

which is a rainfall-rumoff relation in which the initial abstraction is zero.

If an initial abstraction ( $I_a$ ) greater than zero is considered, the amount of rainfall available for runoff is  $P-I_a$  instead of P. By substituting  $P-I_a$  for P in equations 10.1 through 10.4 the following equations result. The equivalent of equation 10.1 becomes:

$$\frac{F}{S} = \frac{Q}{P - I_a} \tag{10.5}$$

where F  $\leq$  S, and Q  $\leq$  (P - I $_a$ ). The total retention for a storm consists of I $_a$  and F. The total potential maximum retention (as P gets very large) consists of I $_a$  and S.

Equation 10.2 becomes:

$$F = (P - I_a) - Q$$
 (10.6)

equation 10.3 becomes:

$$\frac{(P - I_a) - Q}{S} = \frac{Q}{(P - I_a)}$$
 (10.7)

and equation 10.4 becomes:

$$Q = \frac{(P - I_a)^2}{(P - I_a) + S}$$
 (10.8)

which is the rainfall-runoff relation with the initial abstraction taken into account.

The initial abstraction consists mainly of interception, infiltration, and surface storage, all of which occur before runoff begins. The insert on figure 10.1 shows the position of  $I_a$  in a typical storm. To remove the necessity for estimating these variables in equation 10.8, the relation between  $I_a$  and S (which includes  $I_a$ ) was developed by means of rainfall and runoff data from experimental small watersheds. The relation is discussed later in connection with figure 10.2. The empirical relationship is:

$$I_a = 0.2 S$$
 (10.9)

Substituting 10.9 in 10.8 gives:

$$Q = \frac{(P - 0.2 \text{ S})^2}{P + 0.8 \text{ S}}$$
 (10.10)

which is the rainfall-runoff relation used in the SCS method of estimating direct runoff from storm rainfall.

### Retention Parameters

Using the equation 10.9 relationship, the total maximum retention can be expressed as 1.2 S. I, as previously stated, consists mainly of interception, infiltration, and surface storage occurring before runoff begins. S is mainly the infiltration occurring after runoff begins. later infiltration is controlled by the rate of infiltration at the soil surface or by the rate of transmission in the soil profile or by the water-storage capacity of the profile, whichever is the limiting factor. A succession of storms, such as one a day for a week, reduces the magnitude of S each day because the limiting factor does not have the opportunity to completely recover its rate or capacity through weathering, evapotranspiration, or drainage. But there is enough recovery, depending on the soil-cover complex, to limit the reduction. During such a storm period the magnitude of S remains virtually the same after the second or third day even if the rains are large so that there is, from a practical viewpoint, a lower limit to S for a given soil-cover complex. Similarly, there is a practical upper limit to S, again depending on the soil-cover complex, beyond which the recovery cannot take S unless the complex is altered.

In the SCS method, the change in S (actually in CN) is based on an antecedent moisture condition (AMC) determined by the total rainfall in the 5-day period preceding a storm. Three levels of AMC are used: AMC-I is the lower limit of moisture or the upper limit of S, AMC-II is the average for which the CN of table 9.1 apply, and AMC-III is the upper limit of moisture or the lower limit of S. The CN in table 9.1 were determined by means of rainfall-runoff plottings as described in chapter 9. The same plottings served for getting CN for AMC-I and AMC-III. That is, the curves of figure 10.1, when superimposed on a plotting, also showed which curves best fit the highest (AMC-III) and lowest (AMC-I) thirds of the plotting. The CN for high and low moisture levels were empirically related to the CN of table 9.1; the results are shown in columns 1, 2, and 3 of table 10.1, which also gives values of S and I for the CN in column 1. The rainfall amounts on which the selection of AMC is based are given in table 4.2; the discussion in chapter 2 concerns the value of rainfall alone as a criterion for AMC. Use of tables 4.2 and 10.1 is demonstrated later in this chapter. In the section on comparisons of computed and actual runoffs, an example shows that for certain problems the extreme AMC can be ignored and the average CN of table 9.1 alone applied.

RELATION OF I TO S. Equation 10.9 is based on the results shown in figure 10.2 which is a plotting of  $I_a$  versus S for individual storms. data were derived from records of natural rainfall and runoff from watersheds less than 10 acres in size. The large amount of scatter in the plotting is due mainly to errors in the estimates of I2. The magnitudes of S were estimated by plotting total storm rainfall and runoff on figure 10.1, determining the CN, and determining the S from table 10.1. The magnitudes of  $I_a$  were estimated by taking the accumulated rainfall from the beginning of a storm to the time when runoff started. Errors in S were due to determinations of average watershed rainfall totals; these errors were very small. Errors in I were due to one or more of the following: (i) difficulty of determining the time when rainfall began, because of storm travel and lack of instrumentation, (ii) difficulty of determining the time when runoff began, owing to the effects of rain on the measuring installations (channel runoff) and to the lag of runoff from the watersheds, and (iii) impossibility of determining how much interception prior to runoff later made its way to the soil surface and contributed to runoff; the signs and magnitudes of these errors are not known. Only enough points are plotted in figure 10.2 to show the variability of the data. The line of relationship cuts the plotting into two equal numbers of points, and the slope of the line is 1:1 because the data do not indicate otherwise. A significant statistical correlation (chap. 18) between I and S can be made by adding more points and increasing the "degrees of freedom," but the standard error of estimate will remain large owing to the deficiencies in the data.

## Graphs and Tables for the Solution of Equation 10.10

Sheets 1 and 2 of figure 10.1 contain graphs for the rapid solution of equation 10.10. The parameter CN (runoff curve number or hydrologic soil-cover complex number) is a transformation of S, and it is used to make interpolating, averaging, and weighting operations more nearly linear. The transformation is:

$$CN = \frac{1000}{S + 10} \tag{10.11}$$

or

$$S = \frac{1000}{CN} - 10 \tag{10.12}$$

Tables for the solution of equation 10.10 are given in SCS Technical Release 16 for P from zero to 40.9 inches by steps of 0.1-inch and for all whole-numbered CN in the range from 55 through 98.

USE OF S AND CN. It is more convenient to use CN on figure 10.1, but it will generally be necessary to use S for other applications such as the analysis of runoff data or the development of supplementary runoff relationships. Example 5.5 and figure 5.6(b) illustrate a typical use of S. The relationship is developed using S, but a scale for CN is added later to the graph for ease of application.



Table 10.1. Curve numbers (CN) and constants for the case  $I_a = 0.2 S$ 

_	11	2	3	4	5	 11	2	3	4 4	5
	CN for condi- tion II		N for ditions III	S values*	Curve* starts where P =	CN for condi- tion II		for lition III	S s values*	Curve* . starts where P =
_			(	(inches)	(inches)	 			( <u>inches</u> )	(inches)
	100 98 97 97 97 97 97 97 97 97 97 97 97 97 97	107419753108653208766665555555544444444 4144444444444444444	100 100 100 100 100 100 100 100 100 100	0 •101 •204 •309 •417 •635 •870 •11 •124 •136 •137 •136 •137 •138 •137 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138 •138	0 •02 •04 •06 •08 •13 •17 •22 •25 •27 •33 •35 •44 •47 •53 •63 •67 •74 •88 •94 •98 •98 •98 •11 •12 •13 •14 •15 •16 •17 •17 •18 •18 •18 •18 •18 •18 •18 •18	60 598 776 554 555 554 44 44 44 44 44 44 45 45 45	40 33 33 33 33 33 33 33 33 33 3	77765777777766666666666665555555555643210 4370230	6.67 6.95 7.24 7.54 7.86 8.18 8.52 8.87 9.61 10.0 10.4 10.8 11.7 12.2 12.7 13.8 14.4 15.6 16.3 17.0 17.8 18.6 19.4 20.2 23.3 30.0 19.0 infinity	1.33 1.39 1.45 1.57 1.64 1.77 1.85 1.90 2.08 2.22 2.44 2.64 2.64 2.22 2.33 3.44 4.66 6.00 118.00 38.00 38.00
				6.39	1.28					

^{*}For CN in column 1.

## Applications

The examples in this part mainly illustrate the use of tables 4.2, 9.1, and 10.1 and figure 10.1. Records from gaged watersheds are used in some examples to compare computed with actual runoffs. The errors in a runoff estimate are due to one or more of the following: empiricisms of table 4.2 or figure 4.9, or table 9.1 and similar tables in chapter 9, of the relation between AMC (columns 1, 2, and 3 of table 10.1), and of equation 10.9; and errors in determinations of average watershed rainfall (chap. 4), soil groups, (chap. 7), land use and treatment (chap. 8), and related computations. Consequently it is impossible to state a standard error of estimate for equation 10.10; comparisons of computed and actual runoffs indicate only the algebraic sums of errors from various sources.

SINGLE STORMS. The first example is a typical routine application of the estimation method when there is no question regarding the accuracy of rainfall, land use and treatment, and soil group determinations.

Example 10.1.- During a storm an average depth of 4.3 inches of rain fell over a watershed with a cover of good pasture, soils in the C group; and an AMC-II. Estimate the direct runoff.

- 1. Determine the CN. In table 9.1 at "Pasture, good" and under soil group C read a CN of 74, which is for AMC-II.
- 2. Estimate the runoff. Enter figure 10.1 with the rainfall of 4.3 inches and at CN = 74 (by interpolation) find Q = 1.83 inches.

In practice the estimate of Q is carried to two decimal places to avoid confusing different estimates. Except for such needs the estimate should generally be rounded to one decimal place; in example 10.1 the rounded estimate is 1.8 inches. If the storm rainfall amount is not accurately known the estimate is rounded even further or the range of the estimate is given as in the following example.

Example 10.2.--During a thunderstorm a rain of 6.0 inches was measured at a rain gage 5.0 miles from the center of a watershed that had a flood from this storm. The drainage area of the watershed is 840 acres, cover is fair pasture, soils are in the D group, and AMC-II applies. Estimate the direct runoff.

- 1. Determine the average watershed rainfall. Enter figure 4.4 with the distance of 5.0 miles and at line for a rain of 6.0 inches read a plus-error of 2.8 inches. The minus-error is half this, or 1.4 inches. The watershed is small enough that no "areal correction" of rainfall is necessary (see figure 21.-- and related discussion in chapter 21), therefore the average watershed rainfall ranges from 8.8 to 4.6 inches.
- 2. Determine the CN. In table 9.1 the CN is 84 for fair pasture in the D soil group.
- 3. Estimate the direct runoff. Enter figure 10.1 with the rainfall of 8.8 inches and at CN = 84 (by interpolation) read an estimated runoff of 6.87 inches; also enter with the rainfall of 4.6 inches and read a runoff of 2.91 inches. After rounding, the estimate of direct runoff is given as being between 2.9 and 6.9 inches or, better yet, between 3 and 7 inches. The probability level of figure 4.4 can also be used with the runoff estimate.

Table 10.1 is used when it is necessary to estimate runoff for a watershed in a dry or wet condition before a storm:

Example 10.3.--For the watershed of example 10.1, estimate the direct runoff for AMC-I and AMC-III and compare with the estimate for AMC-II.

- 1. Determine the CN for AMC-II. This is done in step 1 of example 10.1; the CN is 74.
- 2. Determine CN for other AMC. Enter table 10.1 at  $CN = 7^4$  in column 1 and in columns 2 and 3 read CN = 55 for AMC-I and CN = 88 for AMC-III.
- 3. Estimate the runoffs. Enter figure 10.1 with the rainfall of 4.3 inches (from ex. 10.1) and at CN = 55, 74, and 88 read (by interpolation as necessary) that Q = 0.65, 1.83, and 3.00 inches, respectively. The comparison in terms of AMC-II runoff is as follows:

AMC	CN		Direct runof	f, Q
		Inches	As percent	As percent of
			of rainfall	Q for AMC-II
I	55	0.65	15.1	35.6
II	74	1.83	42.5	100
III	88	3.00	<b>69.</b> 8	164

Note that the runoff in inches or percents is not simply proportional to the CN so that the procedure does not allow for a short cut.

ALTERNATE METHODS OF ESTIMATION FOR MULTIPLE COMPLEXES. The direct runoff for watersheds having more than one hydrologic soil-cover complex can be estimated in either of two ways: in example 10.4 the runoff is estimated for each complex and weighted to get the watershed estimate; in example 10.5 the CN are weighted to get a watershed CN and the runoff is estimated using it.

Example 10.4.--A watershed of 630 acres has 400 acres in "Row crop, contoured, good rotation" and 230 acres in "Rotation meadow, contoured, good rotation." All soils are in the B group. Find the direct runoff for a rain of 5.1 inches when the watershed is in AMC-II.

- 1. Determine the CN. Table 9.1 shows that the CN are 75 for the row crop and 69 for the meadow.
- 2. Estimate runoff for each complex. Enter figure 10.1 with the rain of 5.1 inches and at CN of 75 and 69 read Q's of 2.52 and 2.03 inches respectively.
- 3. Compute the weighted runoff. The following table shows the work.

Hydrologic soil-cover complex	Acres	Q(inches)	Acres X Q
Row crop etc. Meadow etc.	400 230	2.52 2.03	1,008 <u>467</u>
Totals:	630		1,475

The weighted Q is 1475/630 = 2.34 inches.

Example 10.5.--Use the watershed and rain data of example 10.4 and make the runoff estimate using a weighted CN.

- 1. Determine the CN. Table 9.1 shows that the CN are 75 for the row crop and 69 for the meadow.
- 2. Compute the weighted CN. The following table shows the work.

Hydrologic soil-cover complex	Acres	$\underline{\mathtt{CN}}$	Acres X CN
Row crop etc. Meadow etc.	400 230	75 69	30,000 15,870
Totals:	630		45,870

The weighted CN is 45,870/630 = 72.8. Use 73.

3. Estimate the runoff. Enter figure 10.1 with the rain of 5.1 inches and at CN = 73 (by interpolation) read Q = 2.36 inches. (Note: Q is 2.34 inches just as in example 10.4 if the unrounded CN is used.)

Without the rounding in step 2 of example 10.5, both methods of weighting give the same Q to three significant figures, and there appears to be no reason for choosing one method over the other. But each method has its advantages and disadvantages. The method of weighted-Q always gives the correct result (in terms of the given data) but it required more work than the weighted-CN method especially when a watershed has many complexes. The method of weighted-CN is easier to use with many complexes or with a series of storms, but when there are large differences in CN for a watershed this method will under- or over-estimate Q, depending on the size of the storm rainfall. For example an urban watershed with 20 acres of impervious area (CN = 100) and 175 acres of lawn classed as good pasture on a B soil (CN = 61) will have the following Q's by the two methods (all entries in inches):

Storm rainfall:	1	2	<del>)</del> †	8	16	32
Q (weighted-Q method): Q (weighted-CN method):	0.10	0.27	1.14	3.91 3.89	10.85	26.10

This comparison shows that the method of weighted-Q is preferable when small rainfalls are used and there are two or more widely differing CN on a watershed. For conditions other than these the method of weighted-CN is less time-consuming and almost as accurate.

MULTIPLE-DAY STORMS AND STORM SERIES. Data from a gaged small watershed will be used in the following example to illustrate (i) an application of the method of estimation to a storm series such as used in evaluation of a floodwater-retarding project, (ii) treatment of multiple-day storms, which differs from that of design storms in chapter 21, and (iii) the amount of error generally to be expected from use of the method. The data to be used are taken from:

Reference 1. "The Agriculture, Soils, Geology, and Topography of the Blacklands Experimental Watershed, Waco, Texas," Hydrologic Bulletin 5, U.S. Soil Conservation Service, 1942.

Reference 2. "Summary of Rainfall and Runoff, 1940-1951, at Blacklands Experimental Watershed, Waco, Texas," U.S. Soil Conservation Service, 1952.

The watershed is W-1 with an area of 176 acres, average annual rainfall of 34.95 inches for the period 1940-1952 inclusive, and average

storm rainfall depths determined from amounts at four gages on or very near the watershed. According to figure 4.6 (its scales must be extended for so small a watershed) the storm rainfall amounts will have a negligible error. With this exception the data to be used are equivalent to those ordinarily obtained for ungaged watersheds.

Example 10.6.--Estimate the runoff amounts from storms that produced the maximum annual peak rates of flow at watershed W-1, Waco, Texas, for the period 1940-1952 inclusive.

- 1. Determine the soil groups. Reference 1 shows that the soils are Houston Black Clay or equivalents. Table 7.1 in chapter 7 shows these soils are in the D group.
- 2. Determine the average land use and treatment for the period 1940-1952. Reference 2 gives information from which the average land use and treatment is determined to be:

Land use and treatment	Percent of area
Row crop, straight row, poor rotation	58
Small grain, straight row, poor rotation	25
Pasture (including hay), fair condition	15
Farmsteads and roads	2

- 3. Tabulate the storm dates, total rainfall for each date, and the 5-day antecedent rainfall. Reference 2 gives the information shown in columns 1 through 5 of table 10.2.
- 4. Determine the CN for AMC-I, -II, and -III. Table 9.1 gives the CN for each complex; the computation of the weighted CN for AMC-II is:

Hydrologic soil-cover complex	Percent/100	CN	Product
Row crop etc. Small grain etc. Pasture etc. Farmsteads etc.	0.58 .25 .15 .02	91 88 84 94	52.7 22.0 12.6 1.9
Totals	1.00		89.2

No division of the product is necessary because "percent/100" is used. The CN is rounded to 89. CN for the other two AMC are obtained from table 10.1 and are:

AMC: I II III CN: 76 89 96

Table 10.2. -- Working table for a storm series.

Differences By Storm days totals	(in.) (in.)	0	.25	.22	.13 - 0.16	60 60.	1.30	68.	.02 2.17	1	.11	90.	1.02	<i>Σ</i> η· - 09·	.23	.0831	.35	.25 .10	1	1	ı	54. 54.	•
		O	ı		-	1			1	1	1		1		1			1	ا ا			•	•
1 runoff Storm totals	(in.				5.99	2,0,5			2.83	.51				10.76		2.38		2.95	æ.	1.1	1.0	1.09	Į.
Actual By days	(in.)	2.32	2.02	1.39	.26	2.05	.35	20.2	94.	.51	1.56	2.15	6.92	.13	.23	2.15	2.11	₫	æ.	1.17	1.07	1.09	•19
totals	(in.)				5.83	1.96			5.00	.22				10.29		2.07		3.05	.29	1.08	.92	1.52	t/L.
Estimated By days	(in.)	2.32	1.77	1.61	.13	1.96	1.65	2.91	<b>†</b> †	. 22	1.45	2.21	5.8	.73	0	2.07	2.46	.59	.29	1.08	.92	1.52	t/2·
CN		92	%	%	%	%	92	%	%	92	92	%	%	%	92	%	%	%	92	92	92	%	8
AMC		н	III	III	III	III	н	III	III	Н	Н	III	III	III	Н	III	III	III	Н	Н	Н	III	Ħ
Antecedent rainfall	(in.)	0.18				1.38	.22			60°	0				.41		1.08		0	•05	•05	1.08	1.28
Storm	(in.)	4.74	2.20	2.03	.38	2.39	3.89	3.36	.78	1.58	3.63	5 <b>.</b> 64	6.37	1.10	.77	2.50	2.90	.95	1.74	3.10	2.86	1. 2.	1.64
Day		22	23	57	25	10	_	Φ	6	Ŋ	29	30		a	a	7	12	13	18	25	<b></b>	12	16
Month		Nov.				$\mathbf{J}$ nne	Sept.			<b>1</b> une	April		May		March		May		March	April	July	Feb.	June
Year		1940				1941	1942			1943	1944				1945		1946		1947	1948	1949	1950	1951

- 5. Determine which AMC applies for each rain in column 4, table 10.2. The AMC for the first day of a multiple-day storm is obtained by use of dates in columns 2 and 3 (to get the season), antecedent rainfall in column 5, and figure 4.9. The AMC for succeeding days in a multiple-day storm is similarly obtained but with the previous day's rain (from column 4) added to the antecedent rainfall. The results are shown in column 6. The CN for the AMC are shown in column 7.
- 6. Estimate the runoff for each day. Enter figure 10.1 with the rainfall in column 4 and the CN in column 7 and estimate the runoff. The results are tabulated in column 8.
- 7. Add the daily runoffs in a storm period to get the storm total. The totals are shown in column 9. This step completes the example.

Actual runoffs for W-1, taken from reference 2, are given in columns 10 and 11 for comparison with the estimates in columns 8 and 9. Differences between computed and actual runoffs are shown in columns 12 and 13. For some estimates the differences (or estimation errors) are fairly large; the errors may be due to one or more of several causes, of which the most obvious is applying an average land use and treatment to all years and all seasons in a year. The quality of land use and treatment varies (that is, the CN varies from the average) from year to year because of rainfall and temperature excesses or deficiencies and during the seasons of a year because of stages in crop growth as well. In practice the magnitudes of the variations are generally unknown so that the method of this example is usually followed; if they are known, the CN are increased or decreased on the basis of the hydrologic condition as described in the next section. A comparison made later in this chapter illustrates that errors of estimate, even when fairly large, do not adversely affect frequency lines constructed from the estimates as long as the errors are not all of one type.

SEASONAL OR ANNUAL VARIATIONS. The average CN in table 9.1 apply to average crop conditions for a growing season. If seasonal variations in the CN are desired, the stages of growth of the particular crop in the complex indicate how much and when to modify the average CN.

For cultivated crops in a normal growing season the CN at plowing or planting time is the same as the CN for fallow in the same soil group of table 9.1; midway between planting and harvest or cutting times the CN is the average in table 9.1; and at the time of normal peak growth or height (usually before harvest) the CN is:

Thus, if the average CN is 85 and the fallow CN is 91, the normal peak growth CN is 79. After harvest the CN varies between those for fallow and normal peak growth, depending on the effectiveness of the plant residues as ground cover. In general, if 2/3 of the soil surface is exposed, the fallow CN applies; if 1/3 is exposed, the average CN applies; and if practically none is exposed the normal peak growth CN applies.

For pasture, range, and meadow, the seasonal variation of CN can be estimated by means of tables 8.1 and 8.2; for woods or forest, the Forest Service method in chapter 9 is applicable.

Changes in CN because of above- or below-normal rainfall or temperature occur not only from year to year but also within a year. They are more difficult to evaluate than changes from normal crop growth because detailed soil and crop histories are necessary but seldom available; climate records are a poor substitute even for estimating gross departures from normal. Runoff records from a nearby streamflow station are a better substitute because they provide a means of relating CN to a runoff parameter (for an example see figure 5.6(a)) and approximating the variations of CN.

The CN of table 9.1 do not apply for that portion of the year when snowmelt contributes to runoff. The methods of chapter 11 apply for melt periods. Chapter 12 contains a discussion of snow or freezing in relation to land use and treatment.

<u>VARIATION OF RUNOFF DURING A STORM</u>. The variation of runoff during the progress of a storm is found by the method of the following example. This method is also used for design storms in chapter 21.

Example 10.7.--Estimate the hourly pattern of runoff for a watershed having a CN of 80 and condition AMC-II before a storm of 20 hours' duration, using rainfall amounts recorded at a rain gage.

- 1. Tabulate the accumulated rainfalls at the accumulated times. Accumulated times are shown in column 1, rainfalls in column 2, of table 10.3
- 2. Estimate the accumulated runoff at each accumulated time. Use the CN and the rainfalls of column 2 to estimate the runoffs by means of figure 10.1. The runoffs are given in column 3.
- 3. Compute the increments of runoff. The increments are the differences given in column 4. Plotting these increments shows the pattern of runoff (the plotting is not given).

Table 10.3.--Incremental runoffs for a storm of long duration

Time	Accumulated rainfall	Accumulated runoff	ΔQ
	(inches)	(inches)	(inches)
1:00 a.m.	0	0	0
2:00	•15	0	0
3:00	•30	0	0
4:00	.62	0	
5:00	1.01	.08	.08
6:00	1.27	.18	.10
7:00	1.36	.22	.04
8:00	1.36	•22	0
9:00	1.38	•23	.01
10:00	1.38	•23	0
11:00	1.55	•32	•09
12:00 noon	1.87	.48	.16
1:00 p.m.	2.25	•72	.24
2:00	2.61	•97	•25
3:00	2.66	1.00	.03
4:00	2.68	1.01	.01
5 <b>:</b> 00	3.22	1.42	.41
6:00	4.17	2.18	.76
7:00	4.82	2 <b>.</b> 74	•56
8:00	4.93	2.83	•09
9:00	5.00	2.89	•06

RUNOFF FROM URBAN AREAS. Whether a conversion of farmlands to urban area causes larger amounts of storm runoff than before depends on the soil-cover complexes existing before and after the conversion; determination of the "before" and "after" CN is sufficient for a decision. A comparison of runoffs, using real or assumed rainfalls, gives a quantitative answer. Impervious surfaces of an urban area cause runoff when the remainder of the area does not so that the method of example 10.4 is best used. But these surfaces may not contribute runoff in direct ratio to their proportion in the area as the following case illustrates.

Figure 10.3 shows storm rainfall amounts plotted versus runoff amounts for Red Run, a fully urbanized watershed of 36.5 square miles' drainage area, near Royal Oak, Michigan. The data are from "Some Aspects of the Effect of Urban and Suburban Development upon Runoff" by S. W. Wiitla; open-file report, U.S. Geological Survey, Lansing, Michigan; August 1961. This watershed has 25 percent of its area in impervious surfaces and presumably runoff amounts should never be less than those shown by the 25-percent line on the figure. But the data show that the surfaces are only about half effective in generating runoff. The report does not state why this deficiency occurs but does state that "Flood peaks on the urban basin were found to be about three times the magnitude of those for natural basins of comparable size." Determination of the effects of urbanization may therefore require as much use of the methods in chapters 16 and 17 as of those in this chapter.

APPLICATIONS TO RIVER BASINS OR OTHER LARGE AREA. The runoff-estimation method is not restricted to use for small watersheds. It applies equally well to river basins or other large areas providing the geographical variations of storm rainfall and soil-cover complex are taken into account; this is best accomplished by working with hydrologic units (chap. 6) of the basin. After runoff is estimated for each unit the average runoff at any river location is found by the area-runoff weighting method of example 10.4.

INDEXES FOR MULTIPLE REGRESSION ANALYSES. The parameter CN is not a desirable index of watershed characteristics in a multiple regression analysis (chap. 18) because there is generally insufficient variation in the CN to provide a statistically significant result. The parameter S is the preferred index. It is used without change if it is an independent variable in a regression equation with the final form of:

$$Y = a + b X_1 + c X_2 \dots (10.14)$$

where Y is the dependent variable; a, b, c, etc. are constants; and the subscripted  $X^{\bullet}$ s are the independent variables. But if the final form is

$$Y = a X_1^b X_2^c \dots$$
 (10.15)

it is necessary to use (S + 1) instead of S to avoid the possibility of division or multiplication by zero. The equation for lag used to develop figure 15-3 uses (S + 1) for this reason; otherwise the graph would give a lag of zero time for an impervious surface (because S is zero when CN is 100) no matter how large an area it might be.

ACCURACY. Major sources of error in the runoff-estimation method are the determinations of rainfall and CN. Chapter 4 provides graphs for estimating the errors in rainfall. There is no comparable means of estimating the errors in CN of ungaged watersheds; only comparisons of estimated and actual runoffs indicate how well estimates of CN are being made. But comparisons for gaged watersheds, though not directly applicable to ungaged watersheds, are useful as guides to judgment in estimating CN and as sources of methodology for reducing estimation errors.

A comparison of storm totals in example 10.6 shows that estimated amounts are fairly close to recorded amounts in 7 out of 12 years, despite the use of a CN for average land use and treatment. On the whole, this is acceptable estimation in view of the limitation on the CN. But the results are better if the storm totals are used as data in a frequency analysis (chap. 18). Figure 10.4(a) shows data from columns 9 and 11, table 10.2, arranged in order of magnitude in their respective groups, and plotted versus their sample percent-chance values. Solid or broken lines connecting the points identify the groups. It is evident from the plotting that one frequency line serves equally well for either group. Thus the estimation errors, though large for some estimates, do not preclude the construction of an adequate frequency relationship. The reason is that the errors are random, being neither all plus or all minus nor all confined to a particular range of magnitudes.

The example of W-l at Waco demonstrates that estimation errors should be kept random. One way of accomplishing this is to apply the CN for AMC-II to all storms in a series. A second example illustrates this.

Storm runoffs and rainfalls for Amicalola creek, Georgia, are given in columns 5 and 6 of figure 5.5. The CN is 65 for AMC-II, as determined in example 5.4. This CN and the rainfalls give the following estimates of runoff (actual runoffs are shown for comparison):

	Runoff	(in.)		Runoff (in.)		
Year	Estimated	Actual	Year	Estimated	Actual	
1940 1941 1942 1943 1944 1945 1946	1.64 2.15 1.81 1.22 .91 .12	0.81 1.40 1.74 1.65 1.16 .36 2.33	1947 1948 1949 1950 1951 1952	1.06 2.13 2.06 .89 1.46	1.59 1.36 1.85 1.15 1.33 2.01	

In a plotting of estimated versus actual runoff the scatter of points indicates a moderately low degree of correlation, but the scatter also indicates that the errors are randomly distributed, which means that a reasonably good result on probability paper can be expected. Figure 10.4(b) substantiates this: again a single frequency line will do for either group. The curvature of the plottings signifies only that 13 years of record on this watershed are insufficient for an adequate frequency line (chap. 18); discrepancies in the lower half of the plotting come from this insufficiency.

In practice the CN for an ungaged watershed cannot be estimated by means of runoff data, as the CN for Amicalola Creek was, but it can be estimated from watershed data at least as well as that for W-l at Waco. It will take correct identification of soil-cover complexes, especially if there are few complexes in a watershed or they differ little from each other or one of them dominates the area. But if there are many complexes of about equal area and in a wide range of CN, it is likely that misjudgment of several will not adversely affect the estimate of the average CN. Using complexes that are properly identified and rainfall data that are adequate, runoff estimates are made accurately enough for practical purposes.

* * * *





Figure - 10.1 (1 of 2)



Figure 10.1 (2 of 2)



Figure 10.2.--Relationship of  ${\rm I_a}$  and S. Plotted points are derived from experimental watershed data.



Figure 10.3.--Expected minimum runoff (dashed line) and actual runoff (plotted points) for an urbanized watershed.



Figure 10.4.--Comparisons of computed with actual runoff on a frequency basis.

SECTION 4

## HYDROLOGY

# CHAPTER 11. ESTIMATION OF DIRECT RUNOFF FROM SNOWMELT

by

Victor Mockus Hydraulic Engineer

1956

Reprinted with minor revisions, 1971



# SECTION 4

# HYDROLOGY

# CHAPTER 11. ESTIMATION OF DIRECT RUNOFF FROM SNOWMELT

# Contents

	Page
Significance of snowmelt floods  Methods of estimation  Regional analysis  Degree-day method, ungaged watersheds  Degree-day method, gaged watershed  Adjustment of temperatures for altitude  K factors  Concordant flow method  Other methods	11-2 11-2 11-5 11-5 11-6 11-7
<u>Tables</u>	
<u>Table</u>	Page
11.1.—Estimation of snowmelt by degree—day method. One melt period	11-3
mittent melt period	



### SECTION 4

## HYDROLOGY

#### CHAPTER 11. ESTIMATION OF DIRECT RUNOFF FROM SNOWMELT

This chapter gives methods for estimating snowmelt runoff volumes for flood damage evaluations. Methods of snowmelt forecasting, for irrigation and similar purposes, are described in the Snow Survey Handbook of the Service.

Details of the thermodynamics of snowmelt are omitted from this chapter because of their limited value in the methods presented here. Some standard references are:

Clyde, George D. - Snow-melting characteristics. Technical Bulletin 231, August 1931. Utah Agricultural Experiment Station, Logan, Utah.

<u>Light, Phillip</u> - Analysis of high rates of snowmelting. Pages 195-205, Transactions of the American Geophysical Union, 1941.

Wilson, W. T. An outline of the thermodynamics of snowmelt. Pages 182-195, Transactions of the American Geophysical Union, 1941.

### Significance of Snowmelt Floods

Bankfull capacities in csm are normally greater for small watersheds than for large ones. Since snowmelt rates are relatively low in csm there may be flooding on large watersheds when streams on small watersheds are flowing less than bankfull.

The hydrologist acquainted with an area will know the relative importance of snowmelt as a source of flooding in that are. In doubtful cases the data normally gathered by interview for an historical flood series will usually define the character of flood flows. In other instances, the runoff records will show how important snowmelt flooding is. It is seldom necessary to make detailed hydrologic investigations into the matter.

### Methods of Estimation

Regional analysis

This method is one of the most useful for snowmelt floods. See Chapter 2 for details of the method.

Degree-day method, ungaged watersheds

This method is widely used because of its adaptability to usual data conditions. Similar methods going into more detail are available but seldom applicable because of lack of required data.

The degree-day method uses the equation:

 $M = K D \tag{11-1}$ 

where M = the watershed snowmelt in inches per day.

K = a constant that varies with watershed and climatic conditions.

D = the number of degree-days for a given day.

A <u>degree-day</u> is a day with an average temperature one degree above 32° F. Maximum and minimum temperatures, as found in "Climatological Data," are averaged to get the daily average temperature. A day with an average of 40° F. gives eight degree-days; with an average of 51° F., nineteen degree days. The general form of the method is given below. A working arrangement of the data is shown on table 11-1. In most cases the table can be condensed. The steps in the method are:

- 1. Using precipitation stations or snow survey data, show either (a) the total available water equivalent at the beginning of the melt season (table ll-l) or (b) the precipitation and the water equivalent by days (table ll-2). The first procedure is used where there is generally only one melt period per year; the second, where melt periods occur intermittently through the winter and spring. Water equivalent is the depth of water, in inches, that results from melting a given depth of snow, and it is dependent on both depth and density of snow. Snow surveys give field determinations of water equivalents. Where such surveys are not made, it is customary to use one-tenth of the snow depth as the depth of water equivalent.
- 2. For temperature stations in the watershed, tabulate average temperatures for the melt periods. (Note: maximum and minimum values as given in "Climatological Data" can be averaged mentally to avoid tabulation of averages below 33° F.)

Table 11-1. Estimation of snowmelt by degree-day method. One melt period

Dates	Watershed average temperature of. 1	Degree- days	Estimated snowmelt 2/	Total available water equivalent
			Inches	Inches
April 5	32	0	0	4.50
6	35	3	.18	4.32
7	34	2	.12	4.20
8	36	4	•24	3.96
9	48	16	.96	3.00
10	43	11	.66	2.34
etc.	etc.	etc.	etc.	etc.

 $[\]underline{1}$ / Average of two stations; adjusted for altitude.

²/ Using K = 0.06 in equation 11-1.

Table 11-2. Estimation of snowmelt by degree-day method. Intermittent melt period.

				Snown	nelt	
Dates	Precipi- tation	Water equiv- alent 1	Degree- days	Potential 2/	Estimated	Remaining water equivalent
	Inches	Inches		Inches	Inches	Inches
Nov 3 Nov 4-18 Nov 19	0.85	0.08	5	0.30	0.08	0.08 .08 0
Nov 20-29 Nov 30	3.80	.38				.38
Dec 1-24 Dec 25 Dec 26- Jan 18	4.15	.42				.38 .80 .80
Jan 19 Jan 20-	•52	.05				.85
Feb.2						.85
Feb 3-20 Feb 21-	6.92	.69				1.54
Mar 14						1.54
Mar 15 Mar 16-28 Mar 29	14.24	1.42	3	.18	.18	2.96 2.96 2.78
Mar 30 Mar 31			11 22	.66 1.32	.66 1.32	2.12 .80
Apr 1-9 Apr 10 Apr 11			7 32	.42 1.92	.42 .38	.80 .38 0

 $[\]frac{1}{2}$  One-tenth of snow depth. 2 Using K = 0.06 in equation 11-1.

- 3. Adjust the average temperatures to the average watershed elevation, using the method given below in <u>Adjustment of temperatures for altitude</u>. This step is omitted when elevation data are crude or otherwise unreliable.
- 4. Compute the watershed average daily temperatures by averaging the station averages (adjusted for altitude, if desirable).
- 5. Subtract 32° F. from each watershed average daily temperature to get the degree-days per day.
- 6. Use equation 11-1 to get an estimate of the potential snowmelt for each day. See  $\underline{K}$  factors below for selection of  $\underline{K}$ .
- 7. Where the daily potential is not greater than the water equivalent remaining on the watershed, it is shown as an estimate of snowmelt.

Once the estimates of snowmelt are obtained, they are used to obtain hydrographs as described in Chapter 16.

Some hydrologists suggest that the effects of infiltration be subtracted from the estimated snowmelt. However, the K factors as generally developed already include the effects of infiltration. The effects of measures such as contour furrows are obtained as described in Chapter 12. The effects of reservoirs, levees, etc. are obtained as usual.

Refinements in the degree—day method are best made by first improving the accuracy of determinations of snow depth and areal distribution on the watershed. When these are known within small limits of error, then water equivalents should be refined, since the 1/10 ratio is a rough approximation. Refinements in K factors should come last.

Degree-day method, gaged watershed

The degree-day method has a very limited use, if any at all, for flood evaluations on gaged watersheds. When gaging station data are available, those data should be used to estimate flood peaks and volumes on other portions of the watershed.

Adjustment of temperatures for altitude
In general, air temperatures decrease about 3° to 5° for every 1,000 feet of rise in altitude. Other factors influence this "lapse rate," so that refinements are not justified, and an average decrease of 4° F. per 1,000 feet rise should be used.

Example 11-1-A watershed with an average elevation of 4,600 feet had temperature station readings of 38° F. at a 5600-foot elevation, and 48° F. at a 3000-foot elevation. The average temperature for the watershed is then:

$$(38) - \frac{4}{1000} (4600 - 5600) = 42.0$$

$$(48) - \frac{4}{1000} (4600 - 3000) = 41.6$$
Sum: 83.6

Average: 41.8

Round off to: 42

While further refinements, such as weighting, can be made, they are seldom justified.

#### K factors

The constant K in equation 11-1 is known to vary not only from watershed to watershed, but also from day to day on a given watershed. It is seldom possible to do more than make a broad estimate of K. An average value of 0.06 can be used. The following table may be of assistance in special cases:

Table 11-3. K factors

Condition	K
Extremely low runoff potential	0.02
Average heavily-forested areas; north-facing slopes of open country	.0406 1/
Average	.06
South-facing slopes of forested areas; average open country	.0608 1/
Extremely high runoff potential	.30

^{1/} Recommended by A. L. Sharp.

Concordant flow method

The method of Chapter 2 can be simplified to estimate both peaks and volumes of snowmelt runoff, when at least one streamflow record is available. The method is very similar to the <u>Regional analysis</u> method mentioned above and in Chapter 2.

The volume of snowmelt for an ungaged subwatershed is the same as that for the gaged watershed, assuming equal coverage of snow over both areas. Where it is possible to estimate the amounts or degrees of snow coverage, the snowmelt volumes in inches may be taken as directly proportional to snow depth or degree of coverage. For example, if there is a 3.2" snowmelt runoff from a gaged watershed of 82 square miles with 76 percent of the watershed having snow cover, then a subwatershed of 12 square miles and 100 percent snow cover will have an estimated runoff of:

$$3.2 \frac{(100)}{(76)} = 4.2 \text{ inches.}$$

Note that area in square miles is not used in the computation unless acre-feet are needed. If instead of the percents the gaged watershed is known to have an average of 16.2 inches of snow-depth and the ungaged subwatershed 20.4 inches, then the runoff for the subwatershed is:

$$3.2 \frac{(20.4)}{(16.2)} = 4.0 \text{ inches.}$$

Other factors can be brought in, but here again refinement is not justified.

Peaks of snowmelt runoff can be obtained as described in Chapter 16.

#### Other methods

Where intensive study has been or can be made of a watershed, more detailed and more accurate methods of estimating snowmelt runoff can be used.



SECTION 4

HYDROLOGY

# CHAPTER 12. HYDROLOGIC EFFECTS OF LAND USE AND TREATMENT

bу

Victor Mockus Hydraulic Engineer

1956

Reprinted with minor revisions, 1971



# SECTION 4

# HYDROLOGY

# CHAPTER 12. HYDROLOGIC EFFECTS OF LAND USE AND TREATMENT

# Contents

	Page
Lag effects	12-1 12-2 12-4 12-4 12-5 12-6 12-8
<u>Figures</u>	
<u>Figure</u>	<u>Page</u>
12.2Volume effects of land use and treatment	12-3 12-3 12-7
<u>Tables</u>	
<u>Table</u>	Page
12.1.—Principal effects of land use and treatment measures on direct runoff	12 <b>-</b> 4



SECTION 4

#### HYDROLOGY

#### CHAPTER 12. HYDROLOGIC EFFECTS OF LAND USE AND TREATMENT

The effects that are discussed here are (a) changes in volumes of direct runoff and (b) changes in lag, which affect peak rates of direct runoff.

### Volume Effects

Land use and treatment measures reduce the volume of direct runoff during individual storms by either (1) increasing infiltration rates, or (2) increasing surface storage, or both. Other factors influencing runoff volume are usually of minor importance. Interception increases, for instance, are appreciable only under certain climatic and vegetative conditions and generally need not be considered in Service watershed studies.

The unit hydrograph principle states that with other things constant, the peak rate of flow varies directly with the volume of flow. This principle is the basis for proportionate reductions in peaks when volumes are reduced (see Chapter 16). Figure 12-1 shows a typical peak vs. volume relation. The straight line is drawn so that some points are on the line, if possible, with half of the remaining points on one side of the line and the other half on the other side. Drawing a curve is not justified, since other important relations must be accounted for (see Chapter 16) if greater accuracy is required. The figure shows that a 30 percent reduction in volume gives a 30 percent reduction in the peak rate, and so on.

Table 12-1 shows the principal effects of land use and treatment measures on direct runoff. The degree of effect of any single measure generally depends on the quantity that can be installed. Contour furrows, however, can be made to have a small or large effect by changing the dimensions of the furrows. The effect of a land use change depends on the change in cover. A change from spring oats to spring wheat would ordinarily be hardly noticeable, while a change from oats to a permanent meadow could have a large effect. Graded terraces with grass outlets to some extent will increase both over-all infiltration and over-all storage. These effects are also confused with a <u>lag</u> effect. It should be noted that lime and fertilizers, by increasing plant or root density, can indirectly reduce direct runoff volumes.

Table 12-1. Principal effects of land use and treatment measures on direct runoff.

Measure	Reduction in direct runoff volume is due to:			
	Increasing infiltration rates <u>1</u> /	Increasing surface storage		
Land use change to increases plant or root density. 2/				
2. Increasing mulch litter	or X			
3. Contouring		X		
. Contour furrowing		X		
. Level terracing		X		
Graded terracing		X		

^{1/} Assuming soils not frozen.

## Lag Effects

Lag, as used here, means the delay between the production of direct runoff on upland areas and its appearance at a given cross section in a stream channel. Another discussion of lag is given in Chapter 15.

Land use and treatment measures can produce lag effects by (1) increasing infiltration (reducing surface runoff) and causing the increased infiltration to appear some time later as subsurface flow, or (2) by causing a delay in the arrival of surface runoff by increasing the distance or reducing the velocity of flow.

Either effect is best studied by the methods of Chapters 15 and 16. Table 12-2 shows the relative effects of land use and treatment measures on the two types of lag. The subdivisions of <a href="mailto:small">small</a> and <a href="mailto:large">large</a> watersheds do not depend solely on size in square miles. The methods of Chapters 15 and 16 are necessary in quantitative studies of lag.

^{2/} Example: Row crop to grass for hay. Poor pasture to good pasture.



Figure 12-1 Typical peak-volume relationship.



Figure 12-2 Volume effects of land use and treatment.

Table 12-2. Relative effects of land use and treatment measures on types of lag.

Measure	Effect on subsurface flow <u>1</u> /		Effect of increasing surface flow distance or decreasing velocity	
	Small watersheds	Large watersheds	Small watersheds	Large watersheds
1. Land use changes that increase plant or root density. 2/	Can be large.	Can be large.	Not usually	considered.
2. Increasing mulch or litter.	Can be large.	Can be large.	Not usually	considered
3. Contouring.	Can be large	Usually negligible.	Can be large.	Negligible.
4. Contour furrow-ing.	Can be large.	Can be large.	Not usually	considered.
5. Level terracing.	Can be large.	Can be large.	Not usually	considered.
6. Graded terracing.	•	Usually negligible.	Can be large.	Negligible.

^{1/} Assuming soils not frozen.

## Determination of Effects

## Determination of effects on volume

The same procedure used in determining the present hydrologic conditions of a watershed is used to estimate future hydrologic conditions. The future effects of land use and treatment changes can be estimated with relatively little additional work. Assuming that present conditions have been studied, the steps are:

1. Determine the hydrologic soil-cover complex number, antecedent moisture condition (AMC) II, for future land use and treatment conditions. (Chapters 7, 8 and 9.)

^{2/} Examples: Row crop to grass; poor pasture to good pasture.

- 2. Obtain complex numbers for AMC I and III (table 10-1).
- 3. Prepare a working table similar to table 12-3.
- 4. Plot the corresponding present and future values as shown on figure 12-2. For example, plot 0.23 vs. 0.02; 0.60 vs. 0.18; and 1.10 vs. 0.43, and draw in the curve for AMC I. Similarly for the other conditions.
- 5. Enter figure 12-2 with the present volume and condition for a storm or flood in the evaluation series and find future volume on the appropriate curve.

Determination of effects on lag

Increased infiltration appearing some time later as subsurface flow is seldom easy to evaluate quantitatively. Fortunately, however, in most flood prevention surveys the changes in the hydrograph due to this lag effect can generally be neglected. Where it cannot, special studies are needed to determine the source areas (which may vary with infiltrated volumes) and watershed retention. The techniques for these special studies have not been fully developed, however, and the results are likely to be controversial.

Table 12-3. Sample working table. Estimation of effects of future land use and treatment on direct runoff volumes.

Selected	Direct runoff, in inches, for selected values of "P", from figure 10-1							
values of "P"	AMO	)* I		O* II	AMO	AMC* III		
	Present	Future	Present	Future	Present	Future		
0.5	0	0	0	0	0.08	0		
1	0	0	.02	0	•35	.12		
2	0	0	.38	.11	1.15	.70		
3	.23	.02	•97	•50	2.05	1.45		
4	.60	.18	1.68	1.03	3.00	2.30		
5	1.10	•43	2.46	1.65	3.95	3.20		
Curve numbers:	57	45	75	65	91	83		

^{*}AMC is antecedent moisture condition.

Quite often this first type of lag can be assumed to take place in the manner of the second type of lag, and the technique given below can be used to estimate expected changes in hydrograph quantities.

The effect of causing a delay in the arrival of surface runoff by increasing the distance of flow is easily computed when it must be considered. Figure 12-3 shows hydrographs for adjacent treated and untreated watersheds. (For additional data see "Runoff from conservation and non-conservation watersheds" by J. A. Allis, Agricultural Engineering, Vol. 34, No. 11, Nov. 1953.) Two effects are evident. Some of the reduction in peak rate is due to the lesser amount of runoff from the treated watershed. Given the data as shown, the expected peak for the treated watershed would be:

1.74 
$$\frac{(1.35)}{(1.68)}$$
 = 1.40 in./hr., since  $\frac{q_1}{Q_1} = \frac{q_2}{Q_2}$  when runoff is

uniformly (or nearly so) distributed on each watershed, but the actual value for W-5 is 0.87 in./hr. The difference is due primarily to a lag caused by graded terraces and open-end level terraces (which tend to grade).

Following the methods of Chapters 15 and 16, the additional lag can be computed from data on figure 12-3. The time to peak  $(T_p)$  for W-3 is about 0.72 hour, and for W-5, about 1.05 hour. The increase in lag (since storm D is essentially identical for both hydrographs) is:

$$1.05 - 0.72 = 0.33$$
 hour

Since  $T_p$  consists of storm duration and time of concentration (see Chapter 16), the changes in either (or both) factors can be studied in a graph like that of figure 12-4. The graph shows that, for this case, the second type of lag effect becomes relatively insignificant at about  $T_p = 5$  hours.

Ordinarily, in practice, the second type of lag effect is neglected. The technique given above can be used when the second type must be evaluated and, quite often, for evaluations of the first type of lag effect. The altered hydrographs can be reproduced by the methods of Chapter 16.

#### Determination of effects on snowmelt runoff

The effects of land treatment on snowmelt runoff may vary considerably from the effects on runoff from rainfall. The principal changes in effects are due partly to changes in the measures themselves, and partly to frost action.



Figure 12-3 Effects of land use and treatment on lag.



Figure 12-4 Percent peak reduction by increasing lag 0.33 hours and the corresponding increase in  $T_{\rm p}$ .

..

By the time of arrival of the snow season, cultivation and weathering have usually eliminated the mechanical distinction between straight row and contour farming on cultivated lands. Other effects of contouring are usually small enough to be overshadowed by variations in areal distribution of precipitation and are usually neglected. Graded terracing effects would be confined to the second type of lag and determined by the method shown. Closed-end level terraces and contour furrows are usually dependent on storage, not infiltration, for their effect, which is therefore calculable. The effect of land use or cover on cultivated land and pastures is small enough to be obscured by the effects of topography, fences, roads, and nearby trees and shrubs on the distribution of snow on the ground. The effect of crop rotation is similarly obscured.

In order for land treatment measures to be effective through the snow season, they must either (1) maintain high infiltration rates on soils that have a large water storage potential; or (2) maintain surface storage; but seldom both at once. High infiltration rates are maintained by vegetation that provides heavy litter or large depths of humus. Ordinary practices on cultivated lands and pastures seldom provide sufficient residues and such areas need not be considered. Permanent meadows usually provide enough litter and humus to prevent mild frost action, but not enough to be effective against heavy freezes. Commercial forest and woodland, with the exception of areas like swamps and spruce flats, are effective maintainers of infiltration, and when located on a soil with sufficient internal storage capacity, are very effective in reducing flood runoff from snowmelt. The Forest Service procedure given in Chapter 9 (see figure 9-1) covers the evaluation of commercial forest and woodland.

Surface storage in closed-end level terraces, and in contour furrows, may be effective in reducing snowmelt runoff as described below. Generally, on field-size watersheds, the storage has to be quite large in order to control the additional volumes of snowmelt from snow drifting from adjacent smooth fields and caught by the earthwork.

#### Determination of surface storage effects

Storage in closed-end level terraces and contour furrows can be evaluated on a watershed or subwatershed basis using the equation:

$$Q_{s} = \frac{A_{s} (Q_{o} - S_{s}) + A_{o}Q_{o}}{A_{s} + A_{o}}$$
(12-1)

where Q_s = runoff in inches with storage in effect

As = square miles of area draining into storage and including storage pond area

 $S_s = storage in inches$ 

 $Q_0^{\circ}$  = runoff in inches with no storage  $A_0^{\circ}$  = square miles of area not draining into storage

When  $S_s$  exceeds  $Q_o$ , then only the storage equal to  $Q_o$  is effective. For example, if  $S_s = 3.0$  inches and  $Q_o = 1.2$  inches, then 1.8 inches of storage have not been used, and the effective storage is 1.2 inches, i.e., when  $S_o = Q_o$ , use  $A_s = Q_o = Q_o$ .

(Note: Equation 12-1 and subsequent equations 12-2, 12-4, 12-5a, and 12-5b, are for use when runoff and storage volumes are distributed uniformly (or nearly so) on a watershed. When the distribution is not uniform, the watershed is divided into subwatersheds on which the distribution may be considered uniform. See remarks accompanying equations 12-5a and 12-5b.)

Infiltration in the storage area, including that due to increased head, is generally assumed to offset storm rainfall on the storage pond area. When this infiltration is significantly large or small, it can be accounted for on a volumetric basis by changing equation 12-1 to read:

$$Q_{s} = \frac{A_{p} (P - F) + (A_{s} - A_{p}) (Q_{o} - S_{s}) + A_{o}Q_{o}}{A_{s} + A_{o}}$$
(12-2)

where  $A_p$  is the average pond surface area in square miles; P is the storm rainfall, in inches; and F is the total infiltration, in inches, on the area occupied by the pond. If P is less than F, use (P-F) equal to zero. When other data are lacking, and the average depth of the pond is less than about 3 feet, F may be approximated using the following equation:

$$F = D f_c (1.5 h + 1)$$
 (12-3)

where F = total infiltration in inches on the pond area

D = storm duration in hours for equation 12-2, or snowmelt duration in hours for equation 12-4

f_c = minimum infiltration rate in inches per hour
h = average depth of pond in feet during time D

Acres or square feet may be used instead of square miles in equations 12-1 and 12-2, but whichever unit is chosen must be used for all the areas in a particular computation.

The effect of storage on snowmelt runoff is generally computed by equation 12-1 since the increase in infiltration due to head in the pond area is usually negligible because of the temperature. When this infiltration is important, equation 12-2 becomes:

$$Q_{s} = \frac{(A_{s} - A_{p}) (Q_{o} - S_{s}) + A_{o} Q_{o} - A_{p}(Q_{o} - F)}{A_{s} + A_{o}}$$
(12-4)

unless there is rainfall on the pond surface during the melt period, in which case equation 12-2 is used. The effect of the earthwork in increasing the average depth of snow on an area (by catching drifting snow) is important only on very small areas, and is usually ignored.

According to unit hydrograph theory, the effect of surface storage on peak rate of flow is proportional to the effect on volume of flow when both the storage and runoff are about equally distributed over the watershed:

$$\frac{q_s}{q_0} = Q_s \tag{12-5a}$$

 $q_{o} = q_{o}$   $q_{s} = q_{o} = \frac{Q_{s}}{Q_{o}}$ or(12-5b)

where qs is the reduced peak, qo is the original peak, and the other symbols are as before. Equation 12-5b is adequate for many watersheds. However, when the distribution of  $Q_O$  and  $S_S$  is not sufficiently uniform, or when a watershed has a complex drainage pattern, or is unusually shaped, or has channel improvements, it is necessary to determine the storage effects on a subwatershed basis, prepare hydrographs on a subwatershed basis, and route floods, in order to determine qs. It is usually necessary to follow this routing procedure for large watersheds, since the distribution of  $Q_O$  and  $S_S$  is nearly always nonuniform on large watersheds.

SECTION 4

HYDROLOGY

# CHAPTER 13. STAGE-INUNDATION RELATIONSHIPS

bу

Victor Moekus Hydraulic Engineer

1956

Reprinted with minor revisions, 1971



# SECTION 4

## HYDROLOGY

# CHAPTER 13. STAGE-INUNDATION RELATIONSHIPS

# Contents

		Pag	<u>'e</u>
Complex cases	us area inundated method	13- 13- 13-	1 7 8
	<u>Figures</u>		
<u>Figure</u>		Pag	<u>:e</u>
13.1(a)Area flooded at 13.1(b)Flood damage rea			.4
cross sections.			.4
	<u>Tables</u>		
<u>Table</u>		Pag	<u>'e</u>
	of stage versus area impone representative cross		.2
13.2.—Sample computation		undated at	
13.3.—Sample computation		undated with	<u>ر</u>
drainage areas not 13.4Sample computation	significantly different of stage versus area im	13- undated with	.5
	in the reach (head and f the sections vary signifi of stage versus area in	icantly 13-	6
three cross section	ns in the reach and drain t significantly different	nage areas	8



SECTION 4

HYDROLOGY

#### CHAPTER 13. STAGE-INUNDATION RELATIONSHIPS

The economist requires data or curves showing the relation between the area inundated and (1) stage, (2) discharge, (3) flood volume, or (4) frequency. The hydrologist generally provides information on these relations, using data obtained in field surveys by both survey engineers and economists. The party leader chooses one of the above relations according to the problem at hand. The hydrologist, therefore, should learn the specific needs of the economist before determining areainundated relations.

#### Stage Versus Area Inundated Methods

Simple cases

This method relates the flooded acres in a stream reach to the stage at either end (or middle) of the reach, usually the downstream end, except when the concordant flow method is used (see Chapter 2). As given to the economist, the stage-inundation relation shows the number of acres flooded at depths selected by the economist.

The simplest case occurs when one cross section is used to represent conditions in a reach. Table 13-1 shows a typical computation of a stage versus total-area-inundated relation for this case.

The acres inundated at selected depths of flooding are computed as shown in table 13-2. Figure 13-la shows the results as generally given to the economist. Note that the curves of acres flooded at given depth increments can also be obtained directly from the "total acres" curve by use of an engineer's scale.

Complex cases

The computation of this relation becomes more laborious when more than one cross section per reach is used, the labor increasing about in proportion to the number of cross sections to be averaged. The computation also becomes complex if a variable length of reach is used, but this procedure is seldom followed for determining acres flooded. The number of acres flooded at various depths is sometimes obtained by planimetering the areas between flow lines plotted on a map of the floodplain.

Table 13-1. Sample computation of stage versus area inundated, for a simple case using one representative cross section in the reach.

Stage	Cross section top width	Width minus channel width	Inundated area in reach	Remarks
Feet	<u>Feet</u>	Feet	Acres	
4	24	0	0	Bankfull stage
6	92	68	13.5	
8	367	343	68.2	
10	608	584	116.0	
12	786	762	151.2	
14	872	848	168.2	

Column 4 is computed using Column 3 and the valley length of the reach. In this case the reach is 8640 feet long. To get acres, the formula is:

$$\frac{8640}{43560}$$
 (Col. 3) = 0.1984 (Col. 3) = (Col. 4)

Slide rule computations.

Table 13-2. Sample computation of stage versus area inundated at selected depths of flooding.

		Acres	inundate	ed at given	depths
Stage (Feet)	Total area inundated (Acres)	0-2 (Feet)	2-4 (Feet)	4-6 (Feet)	Over 6 1/ (Feet)
4	0	0	0	0	0
6	13.5	13.5	0	0	0
8	68.2	54.7	13.5	0	0
10	116.0	47.8	54.7	13.5	0
12	151.2	35.2	47.8	54.7	13.5
14	168.2	17.0	35.2	47.8	68.2

Values in columns 3, 4, 5, and 6 can also be obtained graphically. See figure 13-la, and text.

1/ Values in last column are those of Column 2 shifted downward three lines.

When two cross sections per reach are used, and the drainage areas at the sections are not significantly different in size, the sections may be averaged as shown in table 13-3. Determination of acres flooded for given depth increments follows the procedure of table 13-2. When the two cross sections have significantly different sizes of drainage areas, the sections may be averaged as shown in table 13-4, with the procedure of table 13-2 used to get flooding by depth increments. In this case, the inundated acreage has been related to the foot of the reach. The footnote on table 13-3 tells how the acreage may be related to the middle of the reach for that method. The method given in table 13-4 is probably at its best when acreage is related to the foot of the reach, as shown.

In table 13-4, column 3, the corresponding discharges at the upstream cross section have been proportioned using the ratio of the bankfull discharges. This method is applicable when the channels are not excessively eroded or silted. The method of taking the same discharge in csm is sometimes used, but this method ignores the fact that the upstream bankfull discharge in csm is normally greater (for natural channels in noncohesive materials and in an equilibrium condition or nearly so) than the downstream bankfull discharge in csm. In these cases the exact discharges that should be used are those of the same



Figure 13-1(a) Area flooded at given depth of flooding increments.



Lengths a,b,c,etc. are measured along the path of flow. Length of reach = L = a + b + c + d + e + f + g. Cross section A has the weight  $\frac{a}{L}$ ; while B has the weight  $\frac{b}{L}$ ; and so on.

Figure 13-1(b) Flood damage reach showing weighting of area between cross sections.

Table 13-3. Sample computation of stage versus area inundated with two cross sections in the reach (head and foot) and drainage areas not significantly different.

Foot of	reach	Head of	reach	Areas n	elated t	o foot of	reach 1
Cross s	ection 1	Cross se	ection 2	Stage	Average top	Average top	Inun- dated
Stage	Top width	Stage 1	op width		width	width a	
(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)
103/	41	73/	30	103/	35.5	0	0
12	168	9	125	12	146.5	111.0	10.7
14	646	11	478	14	562.0	526.5	51.0
16	1070	13	786	16	928.0	892.5	86.5

^{1/} If related to middle of reach, the stages (col. 5) are 8.5, 10.5, 12.5, and 14.5.

$$\frac{4230}{43560}$$
 (col. 7) = (col. 8)

3/ Bankfull stage.

²/ Length of valley in reach is 4230 feet, and

Table 13-4. Sample computation of stage versus area inundated with two cross sections in the reach (head and foot), and drainage areas at the sections vary significantly.

Foot	section of reac :36.0 sq	<u>h</u>	Cross section (D.A.=24.0	reach	8	s related to sta t foot of reach Cross section A	
	Dis- charge	Top width	Discharge	Top width	Average top width	Average top width minus channel width	Inundated area in reach
(Feet)	(cfs)	(Feet)	(cfs)	(Feet)	(Feet)	(Feet)	(Acres)
10	720 ¹ /	41	6801/	32	36.5	0	0
12	1510	168	14302/	141	154.5	118.0	11.1
14	3060	646	28902/	362	504.0	467.5	43.7
16	5030	1070	4750 ² /	858	964.0	927.5	87.0

^{1/} Bankfull discharge.

$$\frac{680}{720}$$
 (1510) = 1430 cfs

Length of reach 4080 feet.

^{2/} Proportioned by the bankfull discharge ratio 680/720. For example,

frequency. For example, the top width for the 2-year frequency discharge at the upper section is averaged with the top width for the 2-year frequency discharge at the lower section, and so on. When this frequency method is not used and the channel sections vary widely, much accuracy in the averaging should not be expected.

With more than two cross sections, a system of weighting must be used. Figure 13-1b shows a typical reach with seven cross sections on it. The weight for section A is a/L, for section B it is b/L, and so on. Table 13-5 shows a computation using three cross sections. The method of table 13-2 is used to complete the work.

#### Planimetering method

This procedure can be used either to develop a stage vs. area-inundated relation or to check such a relation developed by other methods.

- 1. Locate the limits of a selected large recent flood at each cross section on aerial photographs (4-inch to the mile preferred).
- 2. Using a stereoscope, outline the flood plain for this flood.
- 3. Lay out and match the photographs, and make a tracing of the floodplain outline. Show the cross section locations and details of land use.
- 4. Planimeter the area flooded in each reach.
- 5. Compute the area flooded by using the water surface width at each cross section, for each reach, and multiplying by:

# reach length in feet 43560

6. Compare the planimetered area with the computed area.

# $C_f = \frac{planimetered area}{computed area}$

7. Compute the area for various other floods, using widths as in Step 5, and assuming the flood plain outline increases and decreases parallel to the outline of the selected recent large flood. Use the correction factor of Step 6, if required.

Table 13-5. Sample computation of stage versus area inundated with three cross sections in the reach and drainage areas at the sections not significantly different.

Cross section Cross section		Cross section						
1		2		3		Related t	co cross s	section 1
Weight	= 0.22	Weight	= 0.47	Weight	= 0.31	Weighted	Weighted	Inundated
						top	top width	n area
						width	minus	in
	qoT		Top		Top	W2Q011	channel	reach
<b>a</b> .	•	<b>~</b> .	-		-			reacii
Stage	width	Stage	width	Stage	width		width	
$({ t Feet})$	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Feet)	(Acres)
1/		1/		7 <u>1</u> /		2/	/	
ھے	42	10=/	44	7=/	32	39.8 ² /	0	0
10	154	12	250	9	140	194.8	155.0	30.7
10	- )~	_~	~)0	,	140	1)4.0	1))•0	J • • 1
10	700	٦,	510	7.7	602	<i>r</i> 0 <i>r</i> 0	<i></i> ,	100.0
12	702	14	540	11	603	595.2	555.4	109.9
14	1100	16	832	13	948	926.9	887.1	175.5

^{1/} Bankfull stage. Widths at this stage are channel widths.

Length of reach = 8620 ft.

- 8. Plot area flooded versus stage at the selected cross section.
- 9. Determine areas flooded at required depth increments (table 13-2).

Other methods involving planimetering are sometimes useful. For example, flood lines for each of several floods may be used to define inundated areas on aerial photos, which are planimetered and related to stage or runoff or frequency. Generally, lack of data on the location of the flood lines of historic floods limits the application of this and similar methods.

#### Flood Peak or Volume Versus Area Inundated Method

This method is generally used with alluvial fan floods, although it can also be used instead of the stage methods described above.

1. Make field interviews (the economist usually does this) to determine the areas flooded, for as many floods as possible.

^{2/39.8 = 0.22(42) + 0.47(44) + 0.31(32)}. The weights are in proportion to total reach length as shown on figure 13-1b.

- 2. Determine actual or estimated flood peak or volume for each flood, using a cross section or gage upstream from the fan as a reference point.
- 3. Plot the flooded area, in acres, versus the flood peak or volume for each flood, using arithmetic paper. Draw the relation between area and peak or volume.

Once the relation is determined, the effects of upstream projects can be computed in terms of runoff. A reduced runoff means a reduced area flooded. When a channel system within the fan is proposed for reducing flooding, hydrographs are prepared at the upstream section or gage and routed downstream.

## Frequency Versus Area Inundated Method

This method is sometimes used instead of the methods described above. It is applicable to both stream reaches and alluvial fans.

- 1. Determine the area flooded for all known floods by field interview. The earliest known flood determines the <u>length of record</u>, y.
- 2. Array the "area flooded" values in order of size, the largest first.
- 3. Refer to Chapter 18 to get frequency plotting positions and tabulate these next to the array for convenience in plotting.
- 4. Arrange arithmetic graph paper with convenient scales for "area flooded" on the vertical axis and plotting positions on the horizontal axis.
- 5. Plot the "area flooded" values versus their plotting positions. The point for zero area is determined by field studies.
- 6. Draw the frequency versus area curve. The area under the curve divided by y gives the average area flooded.

A major objection to this method is that the dollar damage per acre may vary greatly from flood to flood. In such cases, it is more accurate to use a damage-frequency curve.



SECTION 4

HYDROLOGY

### CHAPTER 14. STAGE-DISCHARGE RELATIONSHIPS

by
Robert Pasley
Dean Snider
Hydraulic Engineers

1971

Revisions by

Owen P. Lee Edward G. Riekert Hydraulic Engineers

1972

revised and reprinted, 1972



## SECTION 4

## HYDROLOGY

# CHAPTER 14. STAGE-DISCHARGE RELATIONSHIPS

	<u>Contents</u> <u>P</u>	age
Development of stage-discharge of Direct measurement	curves	4-2 4-2 4-5 4-5 4-6
Selecting reach lengths		4-10
Example 14-2		4-15
Example 14-4		.4 <b>-</b> 16 .4 <b>-</b> 22
Bridges  Example 14-7  Example 14-8  Full bridge flow  Overtopping of bridge embankm  Example 14-9  Multiple bridge openings  Culverts	1	14-32 14-31 14-35 14-41 14-45 14-45 14-50

NEH Notice 4-102, August 1972

## Contents--cont'd.

Page

	Types of inlets	•	•	•	14-54 14-56 14-61 14-61 14-63 14-63
	Figures				
Figure					Page
14-1 14-2	Velocity head rod for measuring stream flow High water mark profile and cross sections,	•	•	•	14-3
14-3	Concho River near San Angelo, Texas, Example 14-1. Reach length vs. elevation, Little Nemaha	•	•	•	14-7
14-4	Section 35	•	•	•	14-13
	and 14-6	•		•	14-17
14 <b>-</b> 5	Cross section M-1, Examples 14-4 and 14-5	•	•	•	14-17
14-6	Conveyance values Section M-1, Example 14-4			•	14-20
14-7	Stage discharge Section M-1, Example 14-4				14-21
14 <b>-</b> 8	Conveyance values Section M-2, Example 14-6				14-25
14-9	Stage discharge Section M-2, Example 14-6				14-28
14-10	Conveyance values Section T-1, Example 14-6				14-30
14-11	•				14-3
	Stage discharge Section T-1, Example 14-6	•	•	•	14-31
14-12a	Water surface profile without constriction				-1 00
, .	Example 14-8	•	•	•	14-36
14-12b	Water surface profile with constriction				
	Example 14-8	•	•	•	14-36
14-12c	Cross section of road, at Section M-4, Example 14-8	•	•		14-36
14-13	Stage discharge without embankment overflow				
	Section M=5. Example 14-8				14-38
14-14					14-40
14-15	M values for bridge, Example 14-8	•	Ť	•	14-43
14-16	J values for bridge, Example 14-8				14-42
14-17	Stage discharge with embankment overflow,	•	•	•	14-42
14 <b>-</b> 1 (					14-49
a 1. a 0	Section M-5, Example 14-9				-
14-18	Approach section for a bridge opening				14-51
	Unsubmerged inlet				14-53
	Submerged inlet				14-53
	Submerged outlet				14-53
14-19d	Outlet flowing full	•	•		14-53
	Pipe full part way				14-53
	Open flow through pipe				14-53
14-20					14-55
14-21	• +				14-57
	TIOMOTOP OF CATACLO LICH	•	•	•	T )

# Figures--cont'd.

<u>Figure</u>	Page
14-22a Cross section T-3	. 14-59 . 14-59
Example 14-10	. 14-60
14-24a Rating curves cross section T-4, assuming no roadway in place, Example 14-10	. 14-65
14-24b Rating curves cross section T-4, inlet control, Example 14-10	. 14-65
14-24c Rating curves cross section T-4, outlet control, Example 14-10	. 14-65
14-24d Rating curves cross section T-4, improved channel-outlet control, Example 14-10	. 14-65
<u>Tables</u>	
<u>Table</u>	Page
14-1 Computation of discharge using Velocity Head Rod (VHR) measurements	14-4
14-2a Data for computing discharge from modified	• 14 <b>-</b> 4
slope-area measurements; cross section A at station 4+20. Example 14-1	. 14-9
14-3 Hydraulic parameters for cross section M-1, Example 14-4	. 14-19
14-4 Stage discharge for Section M-1 with meander correction, Example 14-5	. 14-23
14-5a Water surface profiles from cross section M-1	
to M-2, Example 14-6	
14-7 Stage discharge over roadway at cross section M-4, without submergence, Example 14-9	. 14-48
14-8 Headwater computations for eight 16' x 8' concrete box culverts, headwalls parallel to	
embankment (no wingwalls) square edged on three sides, Example 14-10	. 14-62
14-9 Stage discharge over roadway at cross section T-3,	
Figure 14-4, Example 14-10	. 14-61
Exhibits	
Exhibit	Page
14-1 K values for converting CSM to CFS	
14-3 Estimate of M for use in BPR equation	. 14-69

#### Exhibits -- cont'd.

Exhib:	<u>it</u>						Page
14-5	Incremental backwater coefficient for the more common types of columns, piers and pile bents	•	•	•			14-71
14-6	Headwater depth for box culverts with inlet control					•	14-72
14-7	Headwater depth for concrete pipe culverts with inlet control						14-73
14-8	Headwater depth for oval concrete pipe	•	•	•	•	•	5
14-9	culverts long axis horizontal with inlet control Headwater depth for C. M. pipe culverts	•	•	•	•	•	14-74
14-10	with inlet control	•	•	•	•	•	14-75
	with inlet control		•	•	•	•	14-76
	Head for concrete box culverts flowing full n = 0.012		•	•		•	14-77
14-12	Head for concrete pipe culverts flowing full n = 0.012		•	•		•	14-78
14-13	Head for oval concrete pipe culverts long axis horizontal or vertical flowing full n = 0.012.						14-79
14-14	Head for standard C. M. pipe culverts flowing	•	•	•	•	•	
14-15	full n = 0.024	•	•	•	•	•	14-80
21. 26	flowing full $n = 0.024$					•	14-81
	Critical depths-rectangular section					•	14 <b>-</b> 82
	Critical depth. Circular pipe Critical depth. Oval concrete pipe. Long	•	•	•	•	•	_
	<pre>axis horizontal</pre>	-	-	-		•	14-84 14-85
14-20	Critical depth. Structural plate. C. M. pipe-						14-86
14-21	Entrance loss coefficients		•	•		•	14-87

SECTION 4

HYDROLOGY

#### CHAPTER 14. STAGE DISCHARGE RELATIONS

#### Introduction

In planning and evaluating the structural measures of watershed protection, it is necessary for SCS engineers and hydrologists to develop stage discharge curves at selected locations on natural streams.

Many hydraulics textbooks and handbooks, as well as NEH-5, contain methods for developing stage discharge curves assuming non-uniform steady flow. Some of these methods are elaborate and time consuming. The type of available field data and the use to be made of these stage discharge curves should dictate the method used in developing the curve.

This chapter presents alternate methods of developing these curves at selected points on a natural stream.

Manning's formula has been used to develop stage discharge curves for natural streams assuming the water surface to be parallel to the slope of the channel bottom. This can lead to large errors, since this condition can only exist in long reaches having the same bed slope without a change in cross section shape or retardance.

This condition does not exist in natural streams.

The rate of change of discharge for a given portion of the stage discharge curves differs between the rising and falling sides of a hydrograph. Some streams occupy relatively small channels during low flows, but overflow onto wide flood plains during high discharges. On the rising stage the flow away from the stream causes a steeper slope than that for a constant discharge and produces a highly variable discharge with distance along the channel. After passage of the flood crest, the water re-enters the stream and again causes an unsteady flow, together with a stream slope less than that for a constant discharge. The effect on the stage-discharge relation is to produce what is called a loop rating for each flood. Generally in the work performed by the SCS the maximum stage the water reached is of primary interest. Therefore, the stage discharge curve used for routing purposes is a plot for the maximum elevation obtained during the passage of flood hydrographs of varying magnitudes. This results in the plot being a single line.

 $[\]frac{1}{2}$  Handbook of Applied Hydrology, Ven Te Chow, page 15-37.

## Development of Stage Discharge Curves

#### Direct Measurement

The most direct method of developing stage discharge curves for natural streams is to obtain velocities at selected points through a cross section. The most popular method is to use a current meter though other methods include the use of the dynamometer, the float, the Pitot tube and chemical and electrical methods. From these velocities and associated cross sectional areas, the discharge is computed for various stages on the rising and falling side of a flood flow and a stage discharge curve developed.

The current meter method is described in detail in USGS Water Supply Paper 888, "Stream Gaging Procedure", and in "Handbook of Hydraulics," by King and Brater, McGraw-Hill, 1963, Fifth edition (generally referred to as King's Handbook).

The velocity head rod (Figure 14-1) may be used to measure flows in small streams or baseflow in larger streams. In making a measurement with a velocity head rod, a tape is stretched across the flowing stream, and both depth and velocity head readings are taken at selected points that represent the cross section of the channel. Table 14-1 is an example of a discharge determined by the velocity head rod. The data is tabulated as shown in columns 1, 2 and 3 of the table and the computation made as shown.

The total area of flow in the section is shown in column 9 and the total discharge in column 10. The average velocity is 45.19/15.00 or 3.01 ft/sec.

#### Indirect Measurements

Indirectly, discharge is measured by methods such as slope-area, contracted-opening, flow over dam, flow through culvert, and critical depth. These methods, which are described in "Techniques of Water Resources Investigations of the United States Geological Survey," Book 3, Chaps. 3-7, utilize information on the water-surface profile for a specific flood peak and the hydraulic characteristics of the channel to determine the peak discharge.

It should be remembered that no indirect method of discharge determination can be of an accuracy equal to a meter measurement.

Fairly accurate discharges may be computed from measurements made of flows over different types of weirs by using the appropriate formula and coefficients selected from King's "Handbook of Hydraulics," Sections 4 and 5. Overfall dams or broad-crested weirs provide an excellent location to determine discharges. Details on procedures for broad-crested weirs may be found in King's Handbook or USGS Water Supply Paper No. 200, entitled "Weir Experiments, Coefficients, and Formulas" by R. E. Horton.



The rod is first placed in the water with its foot on the bottom and the sharp edge facing directly upstream. The stream depth at this point is indicated by the water elevation at the sharp edge, neglecting the slight ripple or bow wave. If the rod is now revolved 180 degrees, so that the flat edge is turned upstream a hydraulic jump will be formed by the obstruction to the flow of the stream. After the depth or first reading has been subtracted from the second reading, the net height of the jump equals the actual velocity head at that point. Velocity can then be computed by the standard formula,

The average discharge for the stream is obtained by taking a number of measurements of depth and velocity throughout its cross section. Q = AV. in which Q = AV discharge cfs; A = CV cross sectional area, sq. ft. V = V velocity, ft. per sec.

VELOCITY FOR DIFFERENT VALUES OF "h"
v = 8.02 \( \sqrt{h} \)

h, Velocity Head in Ft.	Velocity, Ft. per sec.
•05	1.8
.10	2.5
.15	3.1
.20	3.6
.25	4.0
•30	4.4
•35	4.8
•40	5.1
•45	5.4
•50	5.7

f" Brass Shoe
Trailing 26 Gage Sheet Copper
Cutting Edge
1" 2"-
SECTION A A
3" - \$" Radius
-1"
SECTION B B
VELOCITY HEAD ROB
Developed at San Dimas
Experimental Forest

Figure 14-1. Velocity head rod for measuring stream flow.

NEH Notice 4-102, August 1972

Table 14-1. Computation of discharge using Velocity Head Rod (VHR) measurements.

	Discharge (Col 9 x Col 6)	(cfs)	(10)	0.61	1.76	7	7.6	18.39	24.4	9.75	.56		45.19
	Area (Col 7 x Col 8)	(ft. ² )	(6)	0.68	0.82	C	06.2	4.54	1.30	4.14	.62		15.00
	Width (from Coll)	(ft.)	(8)	1.00	0,40		00.1	1.50	.50	2.80	1.60		Totals
Mean	depth (from Col 2)	(ft.)	(7)	0.68	2.05		06.2	3.03	2.60	1.48	•39		
Velocity	Average for section	(fps)	(9)	0.9	2.15	, ц	3.37	4.05	3.40	2.35	06.	,	
Vel	At point1/	(fps)	(5)	0	1.8	2.5	4.2	0		V. 7	1.8	0	
	Δh Col 3 - Col 2		(†)		.05	.10	.27	1(0	† () •	CT.	.05		
of w VHR	Flatedge	(ft.)	(3)	0	1.40	2.85	3.32	3 20 2	) i	Z•3T	. 83	0	
Depths of flow using VHR	Cut- ting edge	(ft.) (ft.)	(5)	0	1.35	2.75	3.05	٠,	7 0	0 T • V	.78	0	
	Distance along Section	(ft.)	(1)	3.5	4.5	4.9	5.9	7	t C		10.7	12.3	

 $\frac{1}{2}$  Column 5 is read from Figure 14-1 using the  $\Delta h$  in column 4.

Slope-Area Estimates

Field measurements taken after a flood are used to determine one or more points on the stage-discharge curve at a selected location. The peak discharge of the flood is estimated using high water marks to determine the slope.

Three or four cross sections are usually surveyed so that two or more independent estimates of discharge, based on pairs of cross sections, can be made and averaged. Additional field work required for slopearea estimates consists of selecting the stream reach, estimating "n" values and surveying the channel profile and high water profile at selected cross sections. The work is guided by the following:

- 1. The selected reach is as uniform in channel alignment, slope, size and shape of cross section, and factors affecting the roughness coefficient "n" as is practicable to obtain. The selected reach should not contain sudden breaks in channel bottom grade, such as shallow drops or rock ledges.
- 2. Elevations of selected high water marks are determined on both ends of each cross section.
- 3. The three or more cross sections are located to represent as closely as possible the hydraulic characteristics of the reach. Distances between sections must be long enough to keep small the errors in estimating stage or elevation.

The flow in a channel reach is computed by one of the open-channel for-mulas. The most commonly used formula in the slope area method is the Manning equation

$$Q = \frac{1.49}{n} AR^{2/3}S^{1/2}$$
 (Eq. 14-1)

Where Q is the discharge, n is the coefficient of roughness, A is the cross sectional area, R is the hydraulic radius, and S is the slope of the energy gradient. Rearranging Eq. 14-1 gives

$$\frac{Q}{S^{1}/2} = \frac{1.49}{n}$$
 AR^{2/3} (Eq. 14-2)

The right side of Eq. 14-2 contains only the physical characteristics of the cross section and is referred to as the conveyance factor Kd. The slope is determined from the elevations of the highwater mark and the distances between the high water marks along the direction of flow.

Modified Slope Area Method

The following equations based on Bernoulli's theorem are discussed fully in NEH-5, Supplement A.

$$\frac{q^2}{2g} = \frac{E_1 - E_2}{U_2^2 - U_1^2}$$
 (Eq. 14-3)

where

q = discharge, in cfs

E, = elevation of the water surface at the upstream section

 $E_2^1$  = elevation of the water surface at the downstream section

 $U_2^{\frac{1}{2}}$  = and  $U_1^{-}$  = symbols used by Doubt for certain computed values; (See NEH-5, page A.14)

The working equation is derived from equation 14-1,

$$q = \left(\frac{2g(E_1 - E_2)}{U_2^{\dagger} - U_1^{-}}\right)^{1/2}$$
 (Eq. 14-4)

Also from NEH-5 -

$$U_2^+ = \frac{1}{a_2^2} + \frac{\lg s_0}{q_n^2, d_2}$$
 (Eq. 14-5)

and:

$$U_1 = \frac{1}{a_1^2} - \frac{\lg s_0}{\lg q_0^2, d_1}$$
 (Eq. 14-6)

where  $\ell$  is the length of the reach between sections 1 and 2, and the other symbols are as defined in NEH-5. The nomographs shown in NEH-5, Supplement A as standard drawings ES-75, 76, and 77 are expedient working tools used to solve Equations 14-4, 14-5 and 14-6.

The following example illustrates the modified slope area method and the use of Eq. 14-2. The example is based on data taken from USGS Water Supply Paper 816 (Major Texas Floods of 1936).

Example 14-1 - Using data for the Concho River near San Angelo, Texas, for the September 17, 1936, flood compute the peak discharge that occurred. Figure 14-2 shows Section A and B with the high water mark profile along the stream reach between the two sections.

- 1. Draw a water surface through the average of the high water mark. From Figure 14-2 the elevation of the water surface at the lower cross section B is 55.98 designated in the example as E₂. The elevation of the water surface at cross section A is 56.50 designated as E₁.
- 2. Compute the length of reach between the two sections. From Figure 14-2 the length of reach is 680 feet.
- 3. Divide each cross section into segments as needed due to different "n" values as shown in Figure 14-2.

In computing the hydraulic parameters of a cross section on a natural stream when flood plain flow exists, it is desirable to divide the cross section into segments. The number of segments will depend on the irregularity of the cross section and



NEH Notice 4-102, August 1972

the variation in "n" values assigned to the different portions. NEH-5, supplement B, gives a method of determining "n" values for use in computing stage discharge curves.

- 4. Compute the cross sectional area and wetted perimeter for each segment of each cross section. Tabulate in columns 2 and 3 of Table 14-2(a) for cross section A and Table 14-2(b) for cross section B.
- 5. Compute  $F = 1.486 \text{ AR}^{2/3}$  for each segment. Using standard drawing ES-76 (NEH-5), compute F and tabulate in column 4, Table 14-2(a) and 14-2(b).
- 6. Compute  $Q/S^{1/2} = 1.486 \ AR^{2/3}$ . Tabulate the "n" value assigned to each segment in column 5 of Table 14-2(a) and 14-2(b). Column 6 is  $A/S^{1/2}$  and is computed by dividing column 4 by column 5 or by using ES-77 (NEH-5). This is commonly called the flow factor of conveyance and is generally designated as Kd.
- 7. Compute the total area and the total Kd. Sum columns 2 and 6 of Table 14-2(a) and 14-2(b).
- 8. Compute U⁻. Using Eq. 14-6 or ES-77 compute U⁻ for the down-stream cross section A using data from Table 14-2(a).

From Eq. 14-6: 
$$U^- = \frac{1}{a_1^2} - \frac{1gs}{q_1^2}$$

$$\frac{1}{a_1^2} = \frac{1}{(34729)^2} = 8.29 \times 10^{-10}$$

$$\frac{s}{q_1^2} = \frac{1}{(91.88 \times 10^5)^2} = 1.18 \times 10^{-14}$$

$$\lg \left(\frac{s}{q_1^2}\right) = (680) (32.2) (1.18 \times 10^{-14}) = 2.58 \times 10^{-10}$$

$$U^- = (8.29 \times 10^{-10}) - (2.58 \times 10^{-10}) = 5.71 \times 10^{-10}$$

9. Compute U+ Using Eq. 14-5 or ES-77 compute U+ for upstream cross section B using data in Table 14-2(b).

$$\frac{1}{a_2^2} = \frac{1}{(32771)^2} = 9.31 \times 10^{-10}$$

$$\frac{s}{q_2^2} = \frac{1}{(87.11 \times 10^5)^2} = 1.32 \times 10^{-14}$$

Table 14-2(a) Data for computing discharge from modified slope-area measurements; Cross Section A at Station 4+20. Example 14-1

Segment	Area	Wetted Perimeter	F	'n	g 80 ¹⁷²	
(1)	(2)	(3)	(4)	(5)	(6)	
					(0)	
1	2354	252	1.55 x 10 ⁴	0.080	1.94 x 10 ⁵	
2	12691	735	12.60 x 10 ⁴	.030	42.00 x 10 ⁵	
3	5862	231	$7.50 \times 10^4$	.050	15.00 x 10 ⁵	
4	5385	167	$8.1 \times 10^4$	.035	23.14 x 10 ⁵	
5	2523	135	$2.64 \times 10^4$	.100	2.64 x 10 ⁵	
6	2498	350	$1.38 \times 10^4$	.050	2.76 x 10 ⁵	
7	3416	645	$1.54 \times 10^4$	.035	4.40 x 10 ⁵	
	34729				91.88 x 10 ⁵	

Table 14-2(b) Data for computing discharge from modified slope-area measurements; Cross Section B at Station 11+100. Example 14-1

Segment	Area	Wetted Perimeter	F	n	q so ^{1/2}	
(1)	(5)	(3)	(4)	(5)	(6)	
1	1598	236	0.85 x 10 ⁴	0.080	1.06 x 10 ⁵	
2	11750	725	11.18 x 10 ⁴	.030	37.27 x 10 ⁵	
3	4750	227	5.37 x 10 ⁴	.045	11.93 x 10 ⁵	
4	2486	78	3.71 x 10 ⁴	.055	$6.75 \times 10^5$	
5	4944	153	7.43 x 104	.035	21.23 x 10 ⁵	
6	3455	134	4.47 x 10 ⁴	.100	4.47 x 10 ⁵	
7	2270	273	1.38 x 10 ⁴	.045	$3.07 \times 10^5$	
8	1518	513	0.465 x 10 ⁴	.035	1.33 x 10 ⁵	
	32771				87.11 x 10 ⁵	

$$\lg\left(\frac{s}{q_2^2}\right) = (680) (32.2) (1.32 \times 10^{-14}) = 2.89 \times 10^{-10}$$

$$U^+ = (9.31 \times 10^{-10} + 2.89 \times 10^{-10}) = 12.20 \times 10^{-10}$$

10. Compute q. Using Eq. 14-4. 
$$q = \left(\frac{2g (E_1 - E_2)}{U_2^+ - U_1^-}\right)^{1/2}$$

$$q = \sqrt{\frac{(2) (32.2) (56.50 - 55.98)}{(12.20 - 5.71) \times 10^{-10}}} = 10^5 \times \sqrt{\frac{33.3}{6.49}}$$

 $q = 2.265 \times 10^5$  or q = 226,500. This compares with the discharge of 230,000 cfs computed by USGS in Water Supply Paper 816.

Synthetic methods

There are various methods which depend entirely on data which may be gathered at any time. These methods establish a water surface slope based entirely on the physical elements present such as channel size and shape, flood plain size and shape and the roughness coefficient. The method generally used by the SCS is the modified step method.

This method bases the rate of friction loss in the reach on the elements of the upstream cross section. Manning's equation is applied to these elements and the difference in elevation of the water surface plus the difference in velocity head between the two cross sections is assumed to be equal to the total energy loss in the reach. This method, ignoring the changes in velocity head, is illustrated in Example 14-6.

#### Selecting Reach Lengths

The flow distance between one section and the next has an important bearing on the friction losses between sections. For flows which are entirely within the channel the channel distance should be used. On a meandering stream the overbank portion of the flow may have a flow distance less than the channel distance. This distance approaches but does not equal the floodplain distance due to the effect of the channel on the flow.

From a practical standpoint the water surface is considered level across a cross section. Thus the elevation difference between two cross sections is considered equal for both the channel flow portion and the overbank portion.

It has been common practice to compute the conveyance for the total section then compute the discharge by using a given slope with this conveyance, where the slope used is an average slope between the slope of the channel portion and the overbank portion. The average slope is computed by the formula:

$$S_a = \frac{H}{L_a} \qquad (Eq. 14-7)$$

 $S_a$  = average slope of energy gradient in reach

H = elevation difference of the energy level between sections

La = average reach length

The reach length La can be computed as follows:

$$q_c = Kd_c \times S_c^{1/2}$$
 (Eq. 14-8)

$$q_f = Kd_f \times S_f^{1/2}$$
 (Eq. 14-9)

$$q_t = Kd_t \times S_a^{1/2}$$
 (Eq. 14-10)

qc = discharge in channel portion where

Kdc = conveyance in channel portion

 $S_c$  = energy gradient in channel portion  $q_f$  = discharge in floodplain portion  $Kd_f$  = conveyance in floodplain portion

 $S_f$  = energy gradient in floodplain portion  $q_t$  = total discharge

Kdt = total conveyance

Sa = average slope of energy gradient

The total discharge in a reach is equal to the flow in channel plus the flow in the overbank.

Then 
$$q_t = q_c + q_f$$
 (Eq. 14-11)

Substituting from Equations 14-8, 14-9 and 14-10

$$Kd_t \times S_a^{1/2} = Kd_c \times S_c^{1/2} + Kd_f \times S_f^{1/2}$$
 (Eq. 14-12)

Let 
$$S = \frac{H}{L}$$

where H = elev. of reach head - elev. of reach foot

L = length of reach

Then substituting into Eq. 14-12 using the proper subscripts

$$Kd_t \times \left(\frac{H}{L_a}\right)^{1/2} = Kd_c \times \left(\frac{H}{L_c}\right)^{1/2} + Kd_f \times \left(\frac{H}{L_f}\right)^{1/2}$$

Divide both sides by H1/2

$$\frac{\text{Kd}_{t}}{\text{La}^{1}/2} = \frac{\text{Kd}_{c}}{\text{Lc}^{1}/2} + \frac{\text{Kd}_{f}}{\text{Lf}^{1}/2}$$

$$L_{a} = \left(\frac{\text{Kdt}}{\text{Kdc/Lc}^{1/2} + \text{Kdf/Lf}^{1/2}}\right)^{2}$$
 (Eq. 14-13)

If the average reach length is plotted vs. elevation for a section then it is possible to read the reach length directly to use with the Kd for any desired elevation. The data will plot in a form as shown in Figure 14-3.

This procedure is somewhat difficult to use as each time a new elevation is selected for use a new reach length must also be used.

The procedure can be modified slightly and a constant reach length used in all computations.

Multiply both sides of Equation 14-9 by  $\left(\frac{S_c}{S_c}\right)^{1/2}$ 

This gives:

$$q_f \left(\frac{S_c}{S_c}\right)^{1/2} = (Kd_f)(S_c^{1/2}) \left(\frac{S_f}{S_c}\right)^{1/2}$$
 (Eq. 14-14)

The  $\left(\frac{S_c}{S_c}\right)^{1/2}$  on the left hand side drops out with a value of 1 giving

$$q_f = (Kd_f)(S_c)^{1/2} \left(\frac{S_f}{S_c}\right)^{1/2}$$
 (Eq. 14-15)

Sf and Sc can be represented as follows

$$S_f = \frac{H}{L_f}$$
 or  $(S_f)^{1/2} = \left(\frac{H}{L_f}\right)^{1/2}$  (Eq. 14-16)

$$S_{c} = \frac{H}{L_{c}}$$
 or  $(S_{c})^{1/2} = \left(\frac{H}{L_{f}}\right)^{1/2}$  (Eq. 14-17)

Divide Equation 14-16 by Equation 14-17

$$\left(\frac{S_{f}}{S_{c}}\right)^{1/2} = \frac{\left(\frac{H}{L_{f}}\right)^{1/2}}{\left(\frac{H}{L_{c}}\right)^{1/2}} = \left(\frac{L_{c}}{L_{f}}\right)^{1/2}$$
 (Eq. 14-18)

Equation 14-15 becomes by substitution:

$$q_f = (Kd_f)(S_c)^{1/2} \left(\frac{L_c}{L_f}\right)^{1/2}$$
 (Eq. 14-19)

The term  $\left(\frac{L_c}{L_f}\right)$  is commonly referred to as the meander factor.

Then substituting Equation 14-19 and 14-8 into Equation 14-11 we get

$$q_t = (Kd_c)(S_c)^{1/2} + (Kd_f)(S_c)^{1/2} \left(\frac{L_c}{L_f}\right)^{1/2}$$

Rearranging we get

$$q_t = \left( Kd_c + (Kd_f) \left( \frac{L_c}{L_f} \right)^{1/2} \right) (S_c)^{1/2}$$
 (Eq. 14-20)



Figure 14-3. Reach length vs. elevation, Little Nemaha Section 35.

NEH Notice 4-102, August 1972

Equation 14-20 can be used to compute the total stage discharge at a section by using the channel reach length rather than a variable reach length. Example 14-5 illustrates the use of modifying the flood plain conveyance by the square root of the meander factor in developing a stage discharge curve.

### Discharge vs. Drainage Area

It is desirable for the water surface profile to represent a flow which has the same occurrence interval throughout the watershed. The CSM (cubic feet per second per square mile) values for most floods vary within a channel system having a smaller value for larger drainage areas. Thus when running a profile the 50 CSM of the outlet, the actual CSM rate will increase as the profile progresses up the watershed.

The rate of discharge at any point in the watershed is based on the formula  $\frac{1}{2}$ 

$$Q = 46C A^{(\frac{.894}{A.048} - 1)}$$
 (Eq. 14-21)

where Q is discharge in CSM

A is the drainage area

and C is a coefficient depending on the characteristics of the watershed

Assuming that C remains constant for any point in the watershed, then the discharge at any point in the watershed may be related to the discharge of any other point in the watershed by the formula

$$\frac{Q_1}{Q_2} = K = \frac{A_1}{A_1 \cdot 0 + 8 - 1}$$

$$\frac{(\frac{.894}{A_1 \cdot 0 + 8} - 1)}{A_2 \cdot 0 + 8 - 1}$$
(Eq. 14-22)

where  $Q_1$  and  $A_1$  represent the discharge rate in CSM and drainage area of one point in the watershed and  $Q_2$  and  $A_2$  represent the CSM and drainage area at another.

In practice  $Q_2$  and  $A_2$  usually represent the outlet of the watershed and remain constant and  $A_1$  is varied to obtain  $Q_1$  at other points of interest.

Equation 14-22 is plotted in Exhibit 14-1 for the case where  $A_2$  is 400 square miles. This curve may be used directly to obtain the CSM

^{1/} Engineering For Dams, Vol. 1 page 125, Creager, Justin & Hines.

discharge of the outlet if the outlet is at 400 square miles as shown in Example 14-2. Example 14-3 shows how to use Exhibit 14-1 if the drainage area at the outlet is not 400 square miles.

## Example 14-2

Find the CSM value to be used for a reach with a drainage area of 50 square miles when the CSM at the outlet is 80 CSM. The drainage area at the outlet is 400 square miles.

- 1. Determine K for a drainage area of 50 square miles. From Exhibit 14-1 with a drainage area of 50 square miles read K = 2.61.
- 2. Determine CSM rate for 50 square miles. Multiply CSM at the outlet by K computed in step 1.
  - (80) (2.61) = 209 CSM @ 50 square miles.

## Example 14-3

Find the CSM rate to be used at a reach with a drainage area of 20 square miles if the drainage area at the outlet is 50 square miles. The CSM rate at the outlet is 60 CSM.

- 1. Determine K for a drainage area of 20 square miles.
  From Exhibit 14-1 for a drainage area of 20 square miles read K = 3.66.
- 2. Determine K for a drainage area of 50 square miles.

  From Exhibit 14-1 for a drainage area of 50 square miles read K = 2.61.
- 3. Compute a new K value for a drainage area of 20 square miles. Divide step 1 by step 2.

$$\frac{3.66}{2.61} = 1.40$$

4. Determine CSM rate for the 20 square mile drainage area. Multiply K obtained in step 3 by the CSM at the outlet.

$$(1.40)(60) = 84 \text{ CSM}$$

#### Computing Profiles

When using water surface profiles to develop stage discharge curves for flows at more than critical depth, it is necessary to have a stage discharge curve for a starting point at the lower end of a reach. This starting point may be a stage discharge curve developed by current meter measurements or one computed from a control section where the flow passes through critical discharge; or it may be one computed from the elements

of the cross section and an estimate of the slope. The latter case is the most commonly used by SCS since the more accurate stage discharge curves are not generally available on small watersheds. In most cases it is advisable to locate three or four cross sections close together in order to eliminate part of the error in estimating the slope used in developing the stage discharge curve at the lower or first cross section on a watershed.

## Example 14-4

Develop the starting stage discharge curve for cross section M-1 (Figure 14-4) shown as the first cross section at the outlet end of the watershed, assuming an energy gradient of .001 ft/ft.

- 1. Plot the surveyed cross section. From field survey notes, plot the cross section, Figure 14-5(a) noting the points where there is an apparent change in the "n" value.
- 2. Divide the cross section into segments. An abrupt change in shape or a change in "n" is the main factor to be considered in determining extent and number of segments required for a particular cross section. Compute the "n" value for each segment using NEH-5, Supplement B, or the "n" may be based on other data or publications.
- 3. Plot the channel segment on an enlarged scale. Figure 14-5(b), for use in computing the area and measuring the wetted perimeter at selected elevations in the channel. The length of the segment at selected elevations is used as the wetted perimeter for the flood plain segments. The division line between each segment is not considered as wetted perimeter.
- 4. Tabulate elevations to be used in making computations.

  Starting at an elevation equal to or above any flood of record, tabulate in column 1 of Table 14-3 the elevations that will be required to define the hydraulic elements of each segment.
- 5. Compute the wetted perimeter at each elevation listed in step 4. Using an engineer's scale and starting at the lowest elevation in column 1, measure the wetted perimeter of each segment at each elevation and tabulate in columns 3, 7, 11, and 15 of Table 14-3. Note that the maximum wetted perimeter for the channel segment is 62 at elevation 94.
- 6. Compute the cross sectional area for each elevation listed in step 4. Starting at the lowest elevation, compute the accumulated cross sectional area for each segment at each elevation in column 1 and tabulate in columns 2, 6, 10, and 14 of Table 14-3.
- 7. Compute F factor.  $F = 1.486AR^{2/3}$  for each elevation. Using standard drawing ES-76, compute the F factor for each segment



Figure 14-4. Schematic of Watershed for Examples 14-4, 14-5, and 14-6.

NEH Notice 4-102, August 1972



Figure 14-5. Cross section M-1, Examples 14-4 and 14-5.

Hydraulic parameters for starting cross section M-1, Example  $1^{\mu-\mu}$ . Table 14-3.

	2 Area	(19)	31691	22796	16996	11294	5819	3217	927	101	315	231	155	87	0
	2 qnd/So1/2	(18)	4.78 x 106	2.81 x 106	1.79 x 10 ⁶	9.47 x 10 ⁵	3.61 x 10 ⁵	1.72 x 10 ⁵	7.10 x 10 ⁴	5.61 x 10 ⁴	3.92 x 10 ⁴	2.51 x 10 ⁴	1.40 x 104	5.90 x 10 ³	
nt 4	quq/80/pup	(11)	2.49 x 106	1.44 x 106	9.06 x 10 ⁵	4.60 x 105	1.56 x 10 ⁵	5.78 x 104	6.32 x 10 ³	0					
.045 Segment h	(ha	(91)	1120002/	00059	1,0800	20800	7040	2600	284	0					
n = u	WP	(15)	1460	1440	1400	1380	1300	1275	1050	0					
	A	(17)	15555 1460	27111	8325	5523	2833	1543	378	0					
Segment 3	4 So Va	(13)	2.38 x 10 ⁵	1.82 x 10 ⁵	1.48 x 105	1.17 x 10 ⁵	8.9 x 10 ⁴	7.6 x 10 ⁴	6.4 x 104	5.61 x 10 ⁴	3.92 x 10 ⁴	2.51 x 10 ⁴	1.40 x 104	5.90 x 103	0
.040 S	Day.	(12)	) <del>1</del> 0956	7300	9465	η·700	3560	3040	2560	2250	1560	1080	260	236	0
ı ı	d ₃	(11)	62	62	62	62	62	62	62	58	52	917	1,1	35	56
	<	(11) (01)	1006	856	756	959	929	905	1,56	1,007	315	231	155	87	0
Segment 2	Zh ^o S/pub	(6)	1.67 x 106	9.83 x 105	6.20 x 105	3.20 x 105	1.05 x 105	3.59 x 104	6.67 x 10 ²	0					
045 Seg	Dz.	(8)	75500	1,4700	27900	14400	0474	1615	30	0					
H	£	(7)	925	925	925	925	925	925	925	0					
п	A	(9)	10268	7493	5643	3793	1943	1018	93	0					
1	zh ^o S/pub	(5)	3.80 x 10 ⁵	2.12 x 10 ⁵	1.17 x 10 ⁵	4.96 x 104	1.07 x 10 ⁴	1.75 x 10 ³	0						
Segment	Œ,	(†)	30600	17000	9350	3970	960	140	0						
86.	Q.	(3)	550	510	1490	091	375	300	0						
n n	Area	થ	1,862	3272	2272	1322	184	150	0						
	Elev	ਰ	105	102	100	98	96	98	₹6	93	16	68.	87	85	82

NEH Notice 4-102, August 1972

1/To solve this on ES-77 divide F by 2, then double results read from Sheet 3, ES-77.
2/In order to solve this on ES-76 it is necessary to divide both area and WP by 2 and then double the F factor read from Sheet 3, ES-76.

NOTE:  $q_{\rm nd}/S_{\rm o}$  is the same as Kd or commonly referred to as the conveyance factor.



Figure 14-6. Conveyance values section M-1, Example 14-4.



NEH Notice 4-102, August 1972

at each elevation in column 1 and tabulate in columns 4, 8, 12, and 16, Table 14-3.

- 8. Compute the conveyance factor  $q_{\rm nd}/S_0^{1/2}$  for each elevation. Using standard drawing ES-77 and the assigned "n" value for each segment compute  $q_{\rm nd}/S_0^{1/2}$  for each segment at each elevation in column 1 and tabulate in columns 5, 9, 13, and 17 of Table 14-3. This can also be done by dividing F by n using a slide rule or desk calculator.
- 9. Sum columns 5, 9, 13, and 17 and tabulate in column 18. A plot of column 18 on log-log paper is shown on Figure 14-6. The elevation scale is selected based on feet above the channel bottom.
- 10. Compute the discharge for each elevation. Using the average slope at cross section M-1, S = .001, develop stage discharge for cross section M-1,  $q = S^{1/2} \times q_{nd}/S_0^{1/2}$ , or  $q = S^{1/2} \times Kd$ . The stage discharge curve for cross section M-1 is shown on Figure 14-7.

The next example shows the effect of a meandering channel in a flood-plain on the elevation discharge relationship. Equation  $1^{4}$ -20 will be used to determine the discharge.

## Example 14-5

Develop the stage discharge curve for cross section M-1 (Figure 14-4) if M-1 represents a reach having a channel length of 2700 feet and a floodplain length of 2000 feet. The energy gradient of the channel portion is 0.001 ft./ft.

- 1. Compute the total floodplain conveyance Kd_f.

  Figure 14-5 shows segments 1, 2 and 4 of section M-1 are floodplain segments. Table 14-3 of Example 14-4 was used to develop the hydraulic parameters for section M-1 for each segment. From Table 14-3 add the Qnd/So^{1/2} values for each elevation from columns 5, 9, and 17 and tabulate as Kd_f in column 2 of Table 14-4.
- 2. Determine the meander factor  $L_c/L_f$ . For the channel length of 2700 feet and the floodplain length of 2000 feet the meander factor is:

$$\frac{2700}{2000}$$
 = 1.35

3. Determine  $L_c/L_f^{1/2}$ .  $(1.35)^{1/2} = 1.16$ 

Table  $1^{4}-4$ . Stage discharge for Section M-1 with meander correction, Example  $1^{4}-5$ 

Elevation	Floodplain Kd _f	$\mathrm{Kd}_{\mathbf{f}}\left(\frac{\mathrm{Ic}}{\mathrm{Lf}}\right)^{1/2}$	Channel Kd _C	Col. 3 + Col. 4	Discharge Qt
	(2)	(3)	(†)	(5)	(9)
105	4.54 X 106	5.27 X 106	2.38 X 10 ⁵	5.51 X 106	174000
102	2.64 X 106	3.06 X 106	1.82 X 10 ⁵	3.24 X 106	102000
100	1.64 X 10 ⁶	1.90 X 106	1.48 X 105	2.05 X 106	64800
98	8.30 X 105	9.63 X 10 ⁵	1.17 X 10 ⁵	1.08 Y 106	34100
96	2.72 X 10 ⁵	3.16 X 105	8.9 X 10 ⁴	4.05 X 10 ⁵	12800
95	9.55 X 10 ⁴	1.11 X 10 ⁵	7.6 X 10 ⁴	1.87 X 10 ⁵	5910
<b>η</b> 6	6.99 X 10 ³	8.11 X 103	6.4 X 104	7.21 X 10 ⁴	2280
	·	0.	5.61 X 10 ⁴	5.61 X 10 ⁴	1.7.70
	0.	0.	3.92 X 10 ⁴	3.92 X 10 ⁴	1240

4. Compute  $(Kd_f)$   $(L_c/L_f)^{1/2}$ . For each elevation in column 1 of Table 14-4 multiply column 2 by  $(L_c/L_f)^{1/2}$  and tabulate in column 3.

$$(4.54 \times 10^6) (1.16) = 5.27 \times 10^6$$

- 5. Compute the channel conveyance Kd. From Figure 14-4 the channel is segment 3 and the conveyance has been calculated in column 13 of Table 14-3. Tabulate Kdc in column 4 of Table 14-4.
- 6. Compute  $Kd_c + (Kd_f) (L_c/L_f)^{1/2}$ . From Table 14-4 add columns 3 and 4 and tabulate in column 5.
- 7. Compute the discharge for each elevation. Use  $S_c = .001$  and Equation 14-20. Multiply columns by  $S_c^{1/2}$  and tabulate in column 6.

$$Q_{t} = (Kd_{c} + (Kd_{f}) (L_{c}/L_{f})^{1/2}) (S_{c})^{1/2}$$

$$Q_{t} = (5.51 \times 10^{6}) (3.16 \times 10^{-2}) = 1.74 \times 10^{5} = 174,000 \text{ cfs.}$$

The next example will show the use of the modified step method in computing water surface profiles. It is a trial and error procedure based on estimating the elevation at the upstream section, determining the conveyance, Kd, for the estimated elevation and computing  $\mathrm{S}^{1/2}$  by using

Mannings equation in the form  $S^{1/2}=\frac{Q}{Kd}$  where  $Kd=\frac{1.486}{n}~AR^{2/3}$ . S is the head loss per foot (neglecting velocity head) from the downstream to the upstream section. This head loss added to the downstream water surface elevation should equal the estimated upstream elevation.

# Example 14-6

Using the rating curve developed in Example 14-4 for cross section M-1 and parameters plotted on Figures 14-8 and 14-10 for cross sections M-2 and T-1, compute the water surface profiles required to develop stage discharge curves for cross sections M-2 and T-1. The changes in velocity head will be ignored for these computations. The drainage area at section M-1 is 400 sq. mi., at M-2 is 398 sq. mi. and at T-1 is 48 sq. mi. The reach length between M-1 and M-2 is 2150 feet and between M-2 and T-1 is 1150 feet. Assume the meander factor for this example is 1.0.

- Determine the range of csm needed to define the stage discharge curve. One or more of the csm's selected should be contained within the channel. Tabulate in column 1, Table 14-5(a).
- 2. Compute the discharge in cfs for each csm at the two cross sections M-l and M-2. At section M-l the drainage area is 400 sq. mi. Using Exhibit 14-l the K factor is 1.0 and the cfs for 2 csm is 2 x 400 x 1.0 = 800 cfs. At section M-2 the drainage

Figure  $1^{4}$ -8. Conveyance values section M-2, Example  $1^{4}$ -6.



NEH Notice 4-102, August 1972

Table 14-5(a). Water Surface profiles from cross section M-1 to M-2, Example  $1^4-6$ .

	Discharge in cfs M-1	M-2	$\mathcal{O}_{\mathcal{V}}$	Elev. @ M-1	Assumed elev. @ M-2	KdM-2	$\left(\frac{q_{M-2}}{K^{d}_{M-2}}\right)^2 = S_{\mathbf{f}}$	Sfxl	Col 5 + Col 9 estimate elev @ M-2	Computed elev. @ M-2
	(5)	(3)	(†)	(5)	(9)	(7)	(8)	(6)	(01)	(11)
	$2 \times 400 \times 1.000 = 800$ $2 \times 398 \times 1.002 \text{L/=}$	798	21502/	89.22	0.06	3.70 x 10 ⁴	94000.	66.	90.21	
					90.2 90.1	3.89 x 10 ⁴ 3.75 x 10 ⁴	.0004 44000.	.95 79.	90.17 ⁻ 90.19 ⁺	90.5
	$10 \times 400 \times 1.000 = 4000$					ı				
	10 x 398 x 1.002 =	3990	2150	99.46	95.2 95.6	1.20 x 10 ⁵ 1.60 x 10 ⁵	.00107	2.30 1.34	96.96 ⁺ 96.00 ⁺	95.7
					95.8	1.90 x 10 ⁵	ሳሳ000・	.95	95.61	
	$20 \times 400 \times 1.000 = 8000$									
	20 x 398 x 1.002 =	7980	2150	95.52	7.96	3.50 x 10 ⁵	.00052	1.12	-59.96	2.90
					9.96	3.30 x 10 ⁵	65000.	1.26	-8L.96	
	50 x 400 x 1.000 = 20000									
	50 x 398 x 1.002 =	19950	2150	97.12	98.3	7.80 x 10 ⁵	39000.	1.40	98.52+	
					4.86	8.00 x 105	.00062	1.34	98.46	98.4
					98.5	8.20 x 10 ⁵	65000.	1.27	98.39-	
	$100 \times 400 \times 1.000 = 40000$									
<u> </u>	100 x 398 x 1.002 =	39900	2150	98.96	100.3	1.60 × 10 ⁶	.00062	1.33	100.29	100.3
ณ	$200 \times 400 \times 1.000 = 80000$									
Ć.	200 x 398 x 1.002 =	79800	.2150	101.68	103.2	3.20 x 10 ⁶	.00062	1.33	103.01-	103.1
					103.1	3.00 x 10 ⁶	.00071	1.52	103.20+	

Computed from equation shown on Exhibit 14-1. Where the channel length is different from the flood plain length is different from the flood plain length, Kd values for flood plain portion of section are modified so channel length may be used in all calculations. الولا [

area is 398 sq. mi. and from Exhibit 14-1 the K factor is 1.002. For 2 csm the discharge at M-2 is 2 x 398 x 1.002 = 798 cfs. Tabulate the discharges at M-1 and M-2 on Table 14-5(a), columns 2 and 3 of Table 14-5(a).

- 3. Tabulate the reach length between the two cross sections in column 4. The reach length between section M-1 and M-2 is 2150 feet.
- 4. Determine the water surface elevation at M-1. For the discharge listed in column 2 read the elevation from Figure 14-7 and tabulate in column 5 of Table 14-5(a).
- 5. Assume a water elevation at section M-2. For the smallest discharge of 798 cfs assume an elevation of 90.0 at M-2 and tabulate in column 6 of Table 14-5(a).
- 6. Determine Kd for assumed elevation. Read Qnd/So $^{1/2}$  or Kd $_{\rm M-2}$  of 3.70 x 10 4  at elevation 90.0 from Figure 14-8 and tabulate in column 7 of Table 14-5(a).
- 7. Determine  $S_f$ .  $S_f = \frac{(Q_{M-2})^2}{(\overline{Kd}_{M-2})}$ . Divide column 3 by column 7 and square the results  $(798/37000)^2 = .00046$  and tabulate in column 8 of Table 14-5(a).
- 8. Determine  $S_f \times l$ . Multiply column 8 by column 4, .00046 x 2150 = .99, and tabulate in column 9 of Table 14-5(a).
- 9. Compute elevation at M-2. Add column 9 ( $S_f$ ) to column 5 (elevation at M-1) and tabulate in column 10 of Table 14-5(a).
- 10. Compare computed elevation with assumed elevation. Compare column 10 with column 6 and adjust column 6 up if column 10 is greater and down if it is less. For 2 csm discharge the computed elevation is 90.12 and the estimated elevation is 90.0. Since column 10 is greater a revision in the estimated elevation at M-2 in column 6 must be made.

Repeat steps 5 through 10 until a reasonable balance between column 10 and 6 is obtained. A tolerance of 0.1 foot was used in this example.

- 11. Repeat steps 5 through 10 for each csm value selected.
- 12. Plot stage discharge curve, columns 3 and 11 as shown on Figure 14-9.



NEH Notice 4-102, August 1972

Table 14.5(b). Water surface profiles from cross section M-2 to T-1. Example 14-6.

_																								
	Computed elev. $\theta$	(11)			4.46				97.5				98.2				7.66				101.3		6	104.0
	Col 5 + Col 9 estimate elev @ T-1	(10)	+	96.8	94.2	94.6		102.75	96.29-	97.57		99.01	97.59-	98.21+		99.34	99.85	-59.66		101.77	101.5+	101.29	1	104.05
	S x x	(6)	(	6.70	₹.02	7.42		7.05	.59	1.87		2.36	₹6.	1.56		.89	1.40	1.20		1.47	1.2	66.		.90
	$\left(\frac{q_{T-1}}{Kd_{T-1}}\right)^2 = S_{\mathbf{f}}$	(8)	1000	.0058	.0035	.0038		.0062	.00051	.00163		.00205	.00082	.00135		77000.	.00122	40100.		.00128	ήοτοο.	98000.		.00078
	Kd <u>r</u> −1	(1)		3.4 x 10 ³	4.4 × 10 ³	4.2 x 10 ³		1.65 x 10 ⁴	5.7 × 10 ⁴	3.2 x 10 ⁴		5.7 x 10 ⁴	9.0 x 104	7.0 x 10 ⁴		2.32 x 10 ⁵	1.85 x 10 ⁵	2.00 × 10 ⁵		3.6′ × 10 ⁵	4.0 x 10 ⁵	4.4 × 105		9.2 x 10 ⁵
	Assumed elev. @ T-1	(9)	0	94.0	94.5	4.46		97.0	98.0	97.5		98.0	98.5	98.2		100.0	99.5	99.65		101.0	101.2	101.3	-	104.0
	Elev. 0 M-2	(5)	5	7.00				95.70				96.65				98.45				100.3				103.15
	၁	(†)	0311	₹				1150				1150				1150				1150			1	1150
	T-1	(٤)	096					1290				2580				9450				12900				25800
	Discharge in cfs M-2	(5)	2 x 398 x 1.002 = 798				10 x 398 x 1.002 = 3990	10 x 48 x 2.68 =			$20 \times 398 \times 1.002 = 7980$	20 x 48 x 2.68 =			50 x 398 x 1.002 = 19950	50 x 48 x 2.68 =			100 x 398 x 1.002 = 39900	100 x 48 x 2.68 =			8	200 x 48 x 2.68 =
	CSM	(1)	N				01				20				50				100				200	

Maken from Exhibit 14-1.



NEH Notice 4-102, August 1972

Figure 14-10. Conveyance values section T-1, Example 14-6.



NEH Notice 4-102, August 1972

Table 14-5(b) shows computations similar to step 1 through step 11 computing water surface profiles between cross section M-2 on the main stem and T-1 the first cross section on a tributary. Kd values are shown on Figure 14-10. Figure 14-11 was plotted from Table 14-5(b).

### Road Crossings

### Bridges

In developing the hydraulics of natural streams, bridges of all types and sizes are encountered. These bridges may or may not have a significant effect on the stage discharge relationship in the reach above the bridge. Many of the older bridges were designed without regard to their effect on flooding in the reach upstream from the road crossing.

The Bureau of Public Roads (BPR) in cooperation with Colorado State University in 1954 which culminated in the investigation of several features of the bridge problem. Included in these investigations was a study of bridge backwater. The laboratory studies, in which hydraulic models served as the principal research tool, have been completed and since then considerable progress has been made in the collection of field data by the U.S. Geological Survey to substantiate the model results and extend the range of application. The procedure developed is explained in the publication "Hydraulics of Bridge Waterways," U. S. Department of Transportation, Federal Highway Administration, Bureau of Public Roads, 1970. This is one method which is recommended by the Soil Conservation Service for use in computing effects of bridges in natural channels and floodplains.

The FHWA document may be obtained from the Superintendent of Documents, U. S. Government Printing Office, Washington, D. C. and it should be included in the working files of any engineer concerned with the effect of bridges on stream hydraulics.

The Bureau of Public Roads (BPR) Method has been formulated by applying the principle of conservation of energy between the point of maximum backwater upstream from the bridge and a point downstream from the bridge at which normal stage has been re-established. The general expression for the computation of backwater upstream from a bridge constricting the flow is:

$$h_1^* = K^* \frac{\alpha_2 V_{n2}^2}{2g} + \left(\frac{\alpha_4 V_4^2}{2g} - \frac{\alpha_1 V_1^2}{2g}\right)$$
 (Eq. 14-23)

where  $h_1^*$  = total backwater, in feet

K* = total backwater coefficient

 $\alpha_1$ ,  $\alpha_2$ ,  $\alpha_4$  = velocity head energy coefficients at the upstream, constriction, and downstream section.

 $V_{n2}$  = average velocity in constriction or  $\frac{Q}{A}$  in feet per second.

V₄ = average velocity at section ¹4 downstream in feet per second.

 $V_1$  = average velocity at section 1 upstream in feet per second.

(For a more detailed explanation of each term and the development of the equation refer to "Hydraulics of Bridge Waterways.")

Equation 14-23 is reasonably valid if the channel in the vicinity of the bridge is essentially straight, the cross sectional area of the stream is fairly uniform, the gradient of the bottom is approximately constant between sections 1 and 4, the flow is free to expand and contract, there is no appreciable scour of the bed in the constriction and the flow is in the subcritical range.

This procedure relates the total backwater effect to the velocity head caused by the constriction times the total backwater coefficient. The total backwater coefficient is comprised of the effect of constriction as measured by the bridge opening coefficient, M, type of bridge abutments, size, shape and orientation of piers, and eccentricity and skew of bridge.

For a detailed discussion of the backwater coefficient and the effect of constriction, abutments, piers, eccentricity and skew of bridges refer to "Hydraulics of Bridge Waterways."

A preliminary analysis may be made to determine the maximum backwater effect of a bridge. If the analysis shows a significant bridge effect then a more detailed procedure should be used. If the analysis shows only a minor effect then the bridge may be eliminated from the backwater computation.

The examples shown in this chapter are based on the approximate equation to compute bridge head losses taken from the BPR report:

$$h^* = K^* \frac{V^2}{2g}$$
 (Eq. 14-24)

where: h* = total backwater, in feet

K* = total backwater coefficient

 $V = average velocity in constriction \frac{Q}{A}$ 

A = gross water area in constriction measured below normal stage.

The following data are the minimum needed for estimating the maximum backwater effect of a bridge using Equation 14-24.

- 1. Total area of bridge opening.
- 2. Length of bridge opening.

- 3. Cross section upstream from the bridge a distance approximately equal to the length of the bridge opening.
- 4. Area of approach section at elevation of the bottom of bridge stringers or at the low point in the road embankment.
- 5. Width of flood plain in approach section.
- 6. Estimate of the velocity of unrestricted flow at the elevation of the bottom of the bridge stringers or at the low point in the road embankment.

A preliminary analysis to determine an estimate of the maximum backwater effect of a bridge is shown in Example 14-7. Exhibits 14-2 and 14-3 were developed only for use in making preliminary estimates and should not be used in a more detailed analysis.

Example 14-7.

Estimate the backwater effect of a bridge with 45° wingwalls given the following data: area of bridge = 4100 sq. ft., length of bridge = 400 ft., area of approach = 11850 sq. ft., width of flood plain = 2650 ft., estimated velocity in the natural stream = 2.5 ft./sec.

- 1. Compute the ratio of the area of the bridge to the area of approach section. From the given data: 4100/11850 = .346
- 2. Compute the ratio of length of bridge to the width of the flood plain. From the given data: 400/2650 = .151
- 3. Determine the change in velocity head. Using the results of step 1 (.346) and the estimated velocity in the natural stream (2.5 ft/sec), read the velocity head, h, from Exhibit 14-2. This is the velocity head,  $\frac{V^2}{2g}$  in Equation 14-24 and (from Exhibit 14-2) is 0.8 ft.
- 4. Estimate the constriction ratio, M. Using the results from step 1 (.346) and step 2 (.151) read M = .67 from Exhibit 14-3.
- 5. Estimate the total backwater coefficient. Using M = .67 from step 4 read from Exhibit 14-4 curve 1, Kb = .6. Kb is the BPR base curve backwater coefficient and for estimating purposes is considered to be the total backwater coefficient, K*, in Eq. 14-24.
- 6. Compute the estimated total change in water surface, h*. From Equation 14-24 the total change in water surface is h* = K*  $V^2 = (.6)(.8) = .48$  ft.

If the estimate shows a change in water surface that would have an appreciable effect on the evaluation or level of protection of a plan or the design and construction of proposed structural measures, a more detailed survey and calculation should be made for the bridge and flood in question.

Example 14-8 shows a more detailed solution to the backwater loss using Equation 14-24. In order to use the BPR method it is necessary to develop stage discharge curves for an exit and an approach section assuming no constriction between the two cross sections.

The exit section should be located downstream from the bridge a distance approximately twice the length of the bridge. The approach section should be located upstream from the upper edge of the bridge a distance approximately equal to the length of the bridge.

If the elevation difference between the water surface at the exit section and the approach section prior to computing head loss is relatively small the bridge tailwater may be taken as the elevation of the exit section and the bridge head loss simply added to the water elevation of the approach section. However, if this difference is not small the bridge tailwater should be computed by interpolation of the water elevation at the approach section and exit section and the friction loss from the bridge to the approach section recomputed after the bridge headwater is obtained.

In Example 14-8 it is assumed that all preliminary calculations have been made. The profiles are shown on Figure 14-12a and the stage discharge curve for cross section M-5 is shown on Figure 14-13, Natural Condition.

### Example 14-8

Develop stage discharge curves for each of four bridges located at cross section M-4 (Figure 14-4), 300, 400, 500, and 700 feet long (Figure 12c) with 45° wingwalls. The elevation of the bottom of the bridge stringer is 10³ for each trial bridge length. The main span is 100 feet with the remaining portion of the bridge supported by 24" H-columns on 25 foot centers. Assume the fill is sufficiently high to prevent over topping for the maximum discharge (70000 cfs) studied. It is assumed that water surface profiles have been run for present conditions through section M-5 and that this information is available for use in analyzing the effects of bridge losses.

- 1. Select a range of discharges that will define the rating curve. For this problem select a range of discharges from 5000 to 70000 cfs for each bridge length and tabulate in column 1 of Table 14-6.
- 2. Determine present condition elevation for each discharge at the bridge section M-4. For this example water surface profiles have been computed from section M-3 to M-5 without the bridge in place. The results are plotted in Figure 14-12a. From Figure 14-12a read the normal elevation for each discharge at cross section M-4 and tabulate in column 2 of Table 14-6.
- 3. Compute the elevation vs. gross bridge opening area. The gross area of the bridge is the total area of the bridge opening at a given elevation without regard to the area of



Figure 14-12a. Water surface profile without constriction. Example 14-8.



Figure 14-12b. Water surface profile with constriction. Example 14-8.



Figure 14-12c. Cross section of road at section M-4, Example 14-8.

NEH Notice 4-102, August 1972

Table 14-6. Backwater computations through bridges, Example 14-8.

Elev. with 24" H. col. 25' on cen.	(13)	97.99 100.27 104.53 108.78 113.09 117.29 124.45	97.78 99.78 102.93 105.86 108.54 111.29 115.78	97.88 99.44 101.81 104.17 106.26 108.33 111.56	97.55 99.02 100.95 104.11 105.47 110.03
p*	(12)	.64 1.72 4.53 7.63 10.99 20.70	.43 1.23 2.93 4.71 6.44 8.29 12.03	.33 1.81 3.02 4.16 5.33 7.81	.20 .1.48 1.48 2.01 2.51 3.73
$\frac{v_{n_2}^2}{2g}$	(11)	. 495 . 947 2.10 3.29 4.54 5.74 7.90	.365 .718 1.45 2.17 2.86 3.56 4.89	.288 .557 .955 1.50 2.00 2.49 3.41	.192 .330 .570 .839 1.10 1.34 1.83
K*1/	(10)	1.30 2.16 2.16 2.42 2.49 2.62 2.62	1.19 1.71 2.02 2.17 2.25 2.33 2.46	1.16 1.59 1.90 2.01 2.14 2.29 2.43	1.03 1.41 1.67 1.76 1.83 2.04 2.04
ΔK _p 1/	(6)	90.0888999	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.		61. 12.12.12. 13. 14.
<u>/11</u>	(8)	.020 .028 .035 .040 .041	.027 .043 .048 .048 .049	.032 .049 .049 .052 .055	.040 .050 .056 .058 .059 .060
κ _{0.1} /	(1)	1.24 1.74 2.08 2.24 2.34 2.54 2.54 2.54	1.09 1.59 1.90 2.05 2.21 2.21 2.49	1.03 1.44 1.74 1.92 1.92 2.15	0.84 1.20 1.46 1.55 1.62 1.67 1.87 2.04
M1/	(9)	.470 .350 .276 .243 .222 .208 .183	.510 .385 .315 .282 .265 .250 .250	.525 .420 .350 .325 .310 .298 .262	.580 .480 .415 .394 .377 .367 .325 .285
Normal el. @ x-sec M-5	(5)	97.35 98.55 100.00 101.15 102.10 103.00 103.75	97.35 98.59 100.00 101.15 102.10 103.00 103.75	97.35 98.55 100.00 101.15 102.10 103.00 103.75	97.35 98.55 100.00 101.15 102.10 103.75 104.50
Velocity through bridge openings	(4)	5.65 11.63 14.56 17.10 19.23 22.56	4.85 6.80 9.66 11.81 13.56 15.15 17.72	4,31 5,99 7,84 9,84 11,36 12,66 14,81	3.52 4.61 6.06 7.35 8.42 9.29 10.87 12.68
Restricted area Anz	(٤)	885 1280 1720 2060 2340 2660 2660	2540 2950 2950 2950 3380 3380	1160 1670 2550 3050 3520 3950 4050	1420 2170 3300 4080 4750 5380 5520
Normal el. @ x-sec M-4	(2)	97.20 98.25 99.82 100.95 101.90 102.80 103.55	97.20 98.25 99.82 100.95 101.90 102.80 103.55	97.20 98.25 99.82 100.95 101.90 102.80 103.55	97.20 98.25 99.82 100.95 101.90 102.80 103.55 104.25
Discharge in 1000 cfs	(1)	10 10 10 10 10 10 10 10 10 10 10 10 10 1	10 2 10 2 10 2 10 2 10 2 10 2 10 2 10 2	26656	2 <b>8</b> 25865
		300' Bridge →	too' Bridge + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wingwalls + to wi	+ 500' Bridge +	↑ 700' Bridge ↑ 45° Wingwalls

1/ These letters and symbols are the same as used in Hydraulics of Bridge Waterways, U. S. Dept. of Transportation, Bureau of Public Roads, 1970. This publication is for sale by Superintendent of Documents.



Figure 14-13. Stage discharge without embankment overflow. Section M-5, Example 14-8.

NEH Notice 4-102, August 1972

piers. The channel area is  $600 \text{ ft.}^2$  and for the 300 ft. long bridge the gross bridge area is:

Elevation	Bridge Area
96	600
97	900
99	1500
103	2700

Plot the elevation vs. gross bridge opening area as shown in Figure 14-14.

- 4. Determine the gross area of the bridge opening at each water surface elevation. Using Figure 14-14 read the gross area at each elevation tabulated in column 2 and tabulate in column 3 of Table 14-6.
- 5. Compute the average velocity through the bridge opening.
  Divide column 1 by column 3 and tabulate in column 4 of Table 14-5. For the 300 ft. long bridge:

$$V = \frac{Q}{A} = \frac{5000}{885} = 5.65 \text{ ft./sec.}$$

- 6. Compute the velocity head  $(V^2)/2g$ . Using the velocities from column 4 compute the velocity head for each discharge and tabulate in column 11 of Table 14-6. For a discharge of 5000 cfs and a bridge length of 300 feet the velocity head is  $\frac{(5.65)^2}{(2)(32.2)}$
- 7. Determine the elevation for each discharge at section M-5 under natural conditions. Using Figure 14-12a or Figure 14-13 (natural condition curve) read the elevation for each discharge at cross section M-5 and tabulate in column 5 of Table 14-6.
- 8. Compute M vs. elevation for each bridge size. M is computed as outlined in "Hydraulics of Bridge Waterways." It is computed as the ratio of that portion of the discharge at the upstream section computed for a width equal to the length of the bridge to the total discharge of the channel system. If  $Q_b$  is the discharge at the upstream section computed for a flood plain or channel width equal to the length of the bridge and  $Q_a$  and  $Q_c$  is the remaining discharge on either side of  $Q_b$  then  $M = \frac{Q_b}{Q_a + Q_b + Q_c} = \frac{Q_b}{Q_b}.$

The bridge opening ratio, M, is most easily explained in terms of discharges, but it is usually determined from conveyance relations. Since conveyance (Kd) is proportional to discharge, assuming all subsections to have the same slope, M can be expressed also as:



NEH Notice 4-102, August 1972



NEH Notice 4-102, August 1972



Figure 14-16. J values for bridge, Example 14-8.

NEH Notice 4-102, August 1972

$$M = \frac{Kd_b}{Kd_a + Kd_b + Kd_c} = \frac{Kd_b}{Kd}$$

The approach section information is not shown for this example.

Plot M vs. elevation for each bridge size as shown in Figure 14-15.

- 9. Read M for each elevation. Using Figure 14-15 prepared in step 8 read M for each elevation in column 2 and tabulate in column 6 of Table 14-6.
- 10. Determine the base backwater coefficient Kb. Using M from step 9, read Kb Exhibit 14-4 for bridges having 45° wingwalls and tabulate in column 7 of Table 14-6.
- 11. Compute the area of pier/area of bridge vs. elevation.

$$\frac{\text{area of piers}}{\text{area of bridge}} = \frac{\text{Ap}}{\text{A}_{\text{n2}}} = \text{J}$$

For the 300' bridge the piers are located in an area 200' wide. (300' - 100' clear span = 200'). The piers are on 25 foot centers and are 2 feet wide. Within the 200 foot width the piers will occupy  $\frac{(200)}{(25)}$  (2) = 16 feet.

At an elevation of 103 the piers will occupy an area 25 feet wide by 7 feet deep (103-96 = 7 feet). From Figure 14-14 the gross area of the bridge opening is 2700 feet.

Then: 
$$\frac{Ap}{A_{n_2}} = \frac{(16)(7)}{2700} = .41$$

Compute and plot  ${\rm Ap/A_{n_2}}$  vs. elevation for each bridge length as shown in Figure 14-16.

- 12. Determine J for each elevation. Read J from Figure 16-16 for each elevation in column 2 and tabulate in column 8 of Table 14-6.
- 13. Determine the incremental backwater coefficient  $\Delta K_{\mathbf{p}}$ .

Using J from step 12 read  $\Delta K$  from the appropriate curve (for this example curve 1) from Exhibit 14-5a. Using M from step 9 read  $\sigma$  from the appropriate curve (curve 1) from Exhibit 14-5b. Multiply  $\Delta K$  by  $\sigma$  and tabulate as  $\Delta K_p$  in column 9 of Table 14-6.

for 5000 cfs and a 300' bridge:

$$\Delta K = .105$$
  $\sigma = .59$   $\Delta K_D = \Delta K \sigma = (.105) (.59) = .06$ 

- 14. Determine the total backwater coefficient K*. Add columns 7 and 9 and tabulate as K* in column 10. This is the total backwater coefficient for the bridge that will be considered for this example. If there are other losses that appear to be significant, the user should follow the procedure shown in the BPR report for computing their effects.
- 15. Determine the total change in water surface h*. Multiply column 10 by column 11 and tabulate in column 12. From Eq. 14-24:

$$h^* = K^* \frac{V^2}{2g}$$

for 5000 cfs and a 300 foot bridge with piers:

$$h* = (1.30) (.495) = .64$$
 feet

If the example did not include piers or if the effect of eliminating the piers are desired the h* could be determined by multiplying column 7 by column 11.

for 5000 cfs and a 300 foot bridge without piers:

$$h* = (1.24) (.495) = .61$$
 feet

16. Determine the elevation with bridge losses. Add column 5 and column 12 and tabulate in column 13. Column 13 is plotted on Figure 14-13 which shows the stage discharge curve for cross section M-5, assuming the fill to be high enough to force all of the 70,000 cfs discharge through the bridge opening.

### Full bridge flow

The analysis of flood flows past existing bridges involves flows which submerge all or a part of the bridge girders. When this condition occurs the computation of the head loss through the bridge must allow for the losses imposed by the girders. This may be accomplished in several ways.

One method is to continue using the BPR method but hold the bridge flow area and Kd constant for all elevations above the bridge girder. Example 14-8 uses this procedure. (See Figure 14-14).

Another approach commonly taken is to compute the flow through the bridge opening by the orifice flow equation.

$$q = CA \sqrt{2g\Delta h}$$
 (Eq. 14-25)

NEH Notice 4-102, August 1972

where q = discharge, in cfs

 $\Delta h$  = the difference in water surface elevation between headwater and tailwater, in feet

A = flow area of bridge opening, in square feet

g = acceleration of gravity
C = coefficient of discharge

In estimating C, if conditions are such that flow approaches the bridge opening with relatively low turbulence, the appropriate value of C is about 0.90. In the majority of cases C probably is in the 0.70 to 0.90 range. For very poor conditions (much turbulence), it may be as low as 0.40 to 0.50. In judging a given case, consider the following.

- (1) Whether the abutments are square-cornered or shaped so as to reduce turbulence
  - (2) the number and shape of piers
  - (3) the degree of skew
- (4) the number and spacing of pile bents since closely-spaced bents increase turbulence
- (5) the existence of trees, drift, or other types of obstruction at the bridge or in the approach reach.

Using a C value of 0.8 has given approximately the same results as the BPR method for Example 14-7. However, the corresponding C value varied with discharge.

### Overtopping of bridge embankment

When the fill of a bridge is overtopped the total discharge at the bridge section is equal to the discharge through the bridge opening plus the discharge over the embankment. A reliable estimate of the effect of the bridge constriction on stages upstream under these conditions is difficult to obtain.

A generally accepted procedure to use in analyzing flows over embankments is to consider the embankment as acting as a broad crested weir. The broad crested weir equation is:

$$Q = CLH_e^{3/2}$$
 (Eq. 14-26)

where

L = length of weir, in feet

 ${\rm H_e}$  = energy head which is comprised of the velocity head at the upstream section plus the depth of flow over the weir, in feet

C = a coefficient

The following approximate ranges of C values for flows over embankments are recommended for use in Eq. 14-26. For road and highway fills, C = 2.5 to 2.8; for single-track railroad fills, C = 2.2 to 2.5; for double-track railroad fills, C = 1.9 to 2.2.

Equation 14-26 was developed for use in rectangular weir sections. Since road profiles encountered in the field seldom represent rectangular sections

it becomes difficult to determine the weir length to use. Many approaches have been formulated to approximate this length. One approach suggests measuring the top width at the maximum depth of flow over the road and computing  $H_{e} = d_{c} + \frac{A}{2T} \quad \text{for each depth.}$ 

Another method suggests measuring the weir length from the cross section at an elevation equal to 5/6 of h above the low point on the embankment.

A method suggested for use in this chapter substitutes the flow area A for the weir length and flow depth over the weir in Eq. 14-26.

Then:  $Q = C'Ah^{1/2}$  (Eq. 14-27)

where: A = flow area over the embankment at a given depth, h, in square feet

> h = flow depth measured from the low point on the embankment, in feet

The coefficient C' can be computed by equating Equations 14-26 and 14-27 and solving for C'.

$$C' = C \frac{1}{\frac{\text{depth}}{\text{depth+velocity head}}} \frac{3}{2}$$
 (Eq. 14-28)

In Eq. 14-28 the depth is measured from the low point on the embankment of the bridge section and the velocity head is computed at the upstream section for the same elevation water is flowing over the embankment. The approach velocity may be approximated by V = Q/A where Q is the total discharge and A is the total flow area at the upstream section for the given elevation. In cases where the approach velocity is sufficiently small C' will equal C and no correction for velocity head will be needed to use Equation 14-27.

The free discharge over the road computed using Eq. 14-27 must be modified when the tailwater elevation downstream is great enough to submerge the embankment of the bridge section. The modification to the free discharge,  $Q_f$ , is made by computing a submergence ratio,  $H_2/H_1$ , where  $H_2$  and  $H_1$  are the depths of water downstream and upstream, respectively, above the low point on the embankment. A submergence factor, R, is read from Figure 3-4, NEH-11, Drop Spillways, and the submerged discharge is computed as  $Q_S = RQ_f$ . Then the total discharge at the bridge section is equal to the discharge through the bridge opening plus the submerged discharge over the embankment.

Example 14-9 shows the use of Eq. 14-27 and Eq. 14-28 in computing flows over embankments using a trial and error procedure to determine C'.

Example 14-9.

Develop a stage discharge curve for the overflow section of the highway analyzed in Example 14-8 (see Figure 14-12c) for the bridge opening of 300 feet. The top of embankment is at elevation 107. Assume a C value of 2.7.

- 1. Select a range of elevations that will define the rating curve over the road. Tabulate in column 1 of Table 14-7. The low point on the road is at elevation 107.
- 2. Compute the depth of flow, h, over the road. For each elevation listed in column 1 compute h and list in column 2 of Table 14-7.
- 3. Compute  $h^{1/2}$ . Tabulate in column 3 of Table 14-7.
- 4. Compute the flow area, A, over the road. For each elevation listed in column 1 compute the area over the road and tabulate in column 4 of Table 14-7.

Steps 5 through 11 are used to calculate the modified coefficient, C' to account for the approach velocity head. If it is determined that no modification to the coefficient C is required these steps may be omitted.

- 5. Compute the flow area at the upstream section. For each elevation listed in column 1 compute the total area at the upstream section and tabulate in column 5 of Table 14-7. The flow area can be obtained from the Kd computations at the upstream section or computed directly from the surveyed cross section.
- 6. Determine the discharge through the bridge. For the elevation in column 1 read the discharge through the bridge opening previously computed using bridge loss equations and tabulate in column 6 of Table 14-7.
- 7. Estimate the discharge over the road. Tabulate in column 7 of Table 14-7.
- 8. List the total estimated discharge going past the bridge section. Sum columns 6 and 7 and tabulate in column 8 of Table 14-7.
- 9. Compute the average velocity at the upstream section. The velocity can be estimated by using the total upstream area from column 5 and the estimated discharge from column 8 for the elevations listed in column 1 in the equation V = Q/A. For example for elevation 107.5:

$$V = \frac{28250 \text{ ft}^3/\text{sec}}{26700 \text{ ft}^2} = 1.06 \text{ ft/sec.}$$

Tabulate the velocity in column 9 of Table 14-7.

37900. 45900. 28300 32200 26000 00069 Q total (13)cfs Example 14-9. 15600 36200 36200 4200 0 1300 4200 8500 (12)Q over road cfs 2.76 2.85 2.79 2.76 2.79 0 (11)ວ Stage discharge over roadway at cross section M-4 without submergence. .0175 910. .030 .035 .066 (10).021 .027 .021  $\frac{\sqrt{2}}{2g}$ ft/sec 1.15 1.38 2.06 1.02 1.06 1.30 6) 32300 32200 26000 42000 45900 67800 69000 28300 37800 est. total cfs (8) est.over 4300. 4200. 8500. 1300 12000 15600 35000 road cfs 0 (7) 36200 Q through bridge 26000. 27000. 29300. 28000. 30300. 32800. cfs (9) stream ft² 25500. 26700. 29200. 30400. 28000. 32800. A up-(2) road7500. A (†) 0 2525. 4000. 625 1500  $h^{1/2}$ 1.730 1.000 1.225 (3) .707 1.414 0 1.5 1.0 2.0 3.0 (2) Ч  $\mathbf{t}_{\mathbf{t}}$ 0 Table 14-7. Elevation 108.5 107.0 107.5 108.0 109.0 110.0 (1)



NEH Notice 4-102, August 1972

- 10. Compute the velocity head. Using the velocity from column 9 compute  $V^2/2g$  and tabulate in column 10 of Table 14-7.
- 11. Compute C'. Using equation 14-28 and data from Table 14-7 compute C'. For example at elevation 107.5:

C' = 2.7 
$$\frac{1}{(\frac{.5}{.5+.0175})^{3/2}} = \frac{2.7}{(.966)^{3/2}} = 2.85$$

List C' in column 11 in Table 14-7.

12. Compute discharge over the road. Using equation 14-27 and data from Table 14-7 compute the discharge over the road. For example at elevation 107.5:

$$Q = C'Ah^{1/2} = 2.85(625)(.707) = 1260 cfs$$

Round to 1300 cfs and list in column 12. Compare this discharge value to the estimated discharge listed in column 7. If the computed discharge is less than or greater than the estimated discharge modify the estimated discharge in column 7 and recompute C' following steps 8 through 12.

- 13. List the total discharge going past the bridge section. Sum columns 6 and 12 and Tabulate in column 13 of Table 14-7.
- 14. Plot the stage discharge curve. Using the computations shown in columns 1 and 13 of Table 14-7 plot the elevation versus discharge. The portion of the discharge flowing over the road (column 12) and the total discharge curve is shown in Figure 14-17 for the 300 foot bridge. This is the total stage discharge curve for the approach section (M-5).

### Multiple bridge openings

Multiple openings in roads occur quite often and must be considered differently from single openings. The M ratio in the BPR procedure is defined as:

When multiple openings are present the proper ratio must be assigned to each opening and then the capacity computed accordingly. If the flow is divided on the approach, the porblem is then one of divided flow with single openings in each channel. In many cases the flow is not divided



When water elevation is at A approaches act as directed by the physical division point. When water elevation is at B approaches act according to the ratio of KD's of openings.

Figure 14-18. Approach section for a bridge opening.

for overbank flows. In these cases the headwater elevation must be considered to be the same elevation for each opening and the solution becomes trial and error until the head losses are equal for each opening and the sum of the flows equals the desired total.

The approaches are divided as shown in Figure 14-18. When the headwater is below the physical dividing point as illustrated by Level A then the M ratio is computed as in a single opening.

When the headwater is above the physical dividing point cross flow can occur. When this occurs the approach used to compute the M ratio and J is as follows:

- 1. Compute the Kd value for each bridge opening.
- 2. Compute the Kd value for the total approach section.
- 3. Proportion the approach Kd value for each opening by the relationship:

- 4. Compute M as before using the Kd value computed in step 3 for the approach.
- 5. Compute the approach area contributing to this opening by the relationship:

Area 
$$appr_x = \frac{Kd_{bridge_x}}{Kd_{bridge_1} \cdots + Kd_{bridge_2} \cdots Kd_{bridge_n}}$$
 x total approach area

6. Compute J as before using the area computed in step 5 for the approach area.

### Culverts

Culverts of all types and sizes are encountered when computing stage discharge curves in natural streams. These culverts may or may not have a significant effect on the development of a watershed work plan. However, in many cases they present a problem in evaluating a plan and must be analyzed to determine if an acceptable plan can be installed without enlarging or replacing the existing culvert.

The Bureau of Public Roads has developed procedures based on research data for use in designing culverts. This document, Hydraulic Charts for the Selection of Highway Culverts, Hydraulic Engineering Circular No. 5, December 1965, is available from the Superintendent of Documents, Washington, D. C.



NEH Notice 4-102, August 1972

Culverts of various types, installed under different conditions, were studied in order to develop procedures to determine the backwater effect for the two flow conditions: 1) culverts flowing with inlet control; 2) culverts flowing with outlet control.

## Inlet Control

Inlet control means that the capacity of the culvert is controlled at the culvert entrance by the depth of headwater ( $HW_{\rm I}$ ) and the entrance geometry of the culvert including the barrel shape and cross sectional area and the type of inlet edge, shape of headwall, and other losses. With inlet control the entrance acts as an orifice and the barrel of the culvert is not subjected to pressure flow. Figure 14.19a and 14.19b show sketches of two types of inlet controlled flow.

The nomographs shown on Exhibits 14-6 through 14-10 were developed from research data by the Division of Hydraulic Research, Bureau of Public Roads research data. They have been checked against actual measurements made by USGS with favorable results.

Types of Inlets. - The following descriptions are taken from "Electronic Computer Program for Hydraulic Analysis of Circular Culverts" Bureau of Public Roads, February 1969. Some of the types of inlets are illustrated in Figure 14-20.

- a. Tapered This inlet is a type of improved entrance with can be made of concrete or metal. Shapes are shown in Figure 14-20a.
- b. Bevel A and Bevel B These bevels, a type of improved entrance, can be formed of concrete or metal.
- c. Angled wingwall Similar to headwall but at an angle with culvert.
- d. Projecting The culvert barrel extends from the embankment. The transverse section at the inlet is perpendicular to the longitudinal axis of the culvert.
- e. Headwall A headwall is a concrete or metal structure placed around the entrance of the culvert. Headwalls considered are those giving a flush or square edge with the outside edge of the culvert barrel. No distinction is made for wingwalls with skewed alignment.
- f. Mitered The end of the culvert barrel is on a miter or slope to conform with the fill slope. All degrees of miter are treated alike since research data on this type of inlet are limited. Headwater is measured from the culvert invert midway into the mitered section.
- g. End section This section is the common prefabricated end made of either concrete or metal and placed on the inlet or outlet ends of a culvert. The closed portion of the section, if present, is not tapered. (Not illustrated)



Figure 14-20. Types of culvert inlets.

NEH Notice 4-102, August 1972

h. Grooved edge - The bell or socket end of a standard concrete pipe is an example of this entrance. (Not illustrated)

### Outlet Control

Culverts flowing with outlet control can flow with the culvert barrel full or part full for part of the barrel length or for all of it. Figures 14-19c, 14-19d, 14-19e, and 14-19f show the various types of outlet control flow. The equation and graphs for solving the equation give accurate results for the first three conditions. For the fourth condition shown in Figure 14-19f, the accuracy decreases as the head decreases. The head H, Figure 14-19c and 14-19d, or the energy required to pass a given discharge through the culvert flowing in outlet control with the barrel flowing full throughout its length consists of three major parts: 1) velocity head  $H_{\rm V}$ , 2) entrance loss  $H_{\rm e}$ , and 3) friction loss  $H_{\rm f}$ , all expressed in feet. From Figure 14-21a:

$$H = H_v + H_e + H_f$$
 (Eq. 14-29)

 $H_V = \frac{V^2}{2g}$  when V is the average velocity in the culvert barrel.

 $H_{\rm e}$  = entrance loss which depends on the geometry of the inlet. The loss is expressed as a coefficient  $K_{\rm e}$  (Exhibit 14-21) times the barrel velocity head.

$$H_e = K_e \frac{V^2}{2g}$$
 (Eq. 14-30)

 $H_f$  = friction loss in barrel

$$H_{f} = \frac{29n^{2} L}{R^{1.33}} \times \frac{V^{2}}{2g}$$
 (Eq. 14-31)

n = Mannings friction factor

L = length of culvert barrel (ft)

V = velocity in culvert barrel (ft/sec)

g = acceleration of gravity (ft/sec²)

R = hydraulic radius (ft)

Substituting in Equation 14-23:

$$H = (1 + K_e + \frac{29n^2 L}{R^{1.33}}) \frac{V^2}{2g}$$
 (Eq. 14-32)

Figure 14-21a shows the terms of Eq. 14-29, the hydraulic gradeline, the energy gradeline, and the headwater depth  $HW_0$ .

The expression for H is derived by equating the total energy upstream from the culvert to the energy just inside the culvert outlet.

$$H = d_1 + \frac{V_1^2}{2g} + LS_0 - d_2 = H_v + H_e + H_f$$
 (Eq. 14-33)







Figure 14-21. Elements of culvert flow.

NEH Notice 4-102, August 1972

From Figure 14-21a:

$$HW_O = H + d_2 - LS_O$$
 (Eq. 14-34)

If the velocity head in the approach section  $(\frac{V_1^2}{2g})$  is low it can be ignored and HW_O is considered to be the difference between the water surface and the invert of the culvert inlet.

The depth,  $d_2$ , for culverts flowing full is equal to the culvert height Figure 14-19d, or the tailwater depth (TW) whichever is greater, Figure 14-21b.

The hydraulic gradeline for culverts flowing with the barrel part full for part of the barrel length passes through a point where the water breaks with the top of the culvert and if extended as a straight line will pass through the plane of the outlet end of the culvert at a point above the critical depth. This point is approximately halfway between  $d_{\rm c}$  and the crown of the culvert, or equal to  $\underline{d_{\rm c}+{\rm D}}$ . The depth  $d_2$  or  $h_{\rm o}$ 

(see Figure 14-21c) for this type of flow is equal to  $d_c + D$  or TW whichever is greater.

With the above definition of  $d_2$  which will be designated as  $h_0$ , an equation common to all outlet control conditions can be written:

$$HW_0 = H + h_0 - LS_0$$
 (Eq. 14-35)

This equation was used to develop the nomographs shown on Exhibits 14-11 through 14-15 which can be used to develop stage discharge curves for the approach section to culverts flowing with outlet control.

Exhibit 14-16 shows  $d_c$  for discharge per foot of width for rectangular sections. Exhibits 14-17 to 14-20 show  $d_c$  for discharges for various non-rectangular culvert sections.

# Example 14-10

Develop a stage discharge curve for cross section T-4 (Figure 14-4) showing the backwater effect of eight 16' x 8' concrete box culverts for each of three conditions: 1) inlet control, 2) outlet control, present channel, and 3) outlet control, improved channel. Figure 14-22a shows a cross section along the centerline of the roadway at cross section T-3. Figure 14-22b shows a section through the roadway with water surface profiles prior to and after the construction of the culverts and roadway embankment.

The culvert headwalls are parallel to the embankment with no wingwalls, and the entrance is square on three edges.

The following are given in this example: a stage discharge curve for cross section T-2, present condition and with proposed channel improvement



Figure 14-22a. Cross section T-3.



Figure 14-22b. Profile through culvert, Example 14-10.



NEH Notice 4-102, August 1972

(Figure 14-23, curves A and B). Also given is a stage discharge curve for cross section T-4 disregarding the effect of the culverts and road-way fill (Figure 14-24a).

# Condition 1--Inlet Control

- 1. Select a range of discharges sufficient to define the new stage discharge curve. Tabulate in column 1 of Table 14-8.
- 2. Determine the discharge for each culvert. Divide the discharges in column 1 by the number of culverts (8) and tabulate in column 2 of Table 14-8.
- 3. Determine the discharge per foot of width. Divide the discharges in column 2 by the width of each culvert (16 feet) and tabulate in column 3 of Table 14-8.
- 4. Compute  $\frac{HW}{D}$ . Using the nomograph,

  Exhibit 14-6, read HW/D for each discharge per foot of width in column 3 and tabulate in column 4 of Table 14-8. Referring to Exhibit 14-6 project a line from the depth of culvert (8 feet) through the discharge per foot of width (line q/B) to the first HW/D line, then horizontal to line (3), which is the HW/D for the type of culvert in this example.
- 5. Compute HW. Multiply column 4 by the depth of the culvert (8 feet) and tabulate in column 5 of Table 14-8.
- 6. Add the invert elevation at the entrance to the culvert (elev. 95.33) to column 5. Tabulate in column 6 of Table 14-8.
- 7. Plot the stage discharge curve assuming inlet control. Plot column 1 and column 6 of Table 14-8 as the stage discharge curves for cross section T-4 (see Figure 14-24b curve A). This assumes inlet control with the road sufficiently high to prevent over topping.

Condition 2--Outlet Control, Present Channel

- 1. Compute the entrance loss coefficient, Ke. Read Ke = 0.5 from

  Exhibit 14-21 for the type of headwall and entrance to box culvert and tabulate in column 7 of Table 14-8.
- 2. Compute the head loss, H, for the concrete box culvert flowing full. Using the nomograph on Exhibit  $1^{\frac{1}{4}}$ - $1^{\frac{1}{4}}$ , draw a line from L = 130 feet on the  $K_e = 0.5$  scale to the cross sectional area scale,  $16' \times 8' = 128$  square feet, and establish a point on the turning line. Draw a line from the discharge (q) line for each of the discharges shown in column 2, through the turning point to the head (H) line. Tabulate H in column 8 of Table  $1^{\frac{1}{4}}$ -8.

parallel to embankment (no wingwalls), square edged on three sides, Example 14-10. Headwater computations for eight 16' x 8' concrete box culverts, headwalls Table 14-8.

Total	Diacharge	Discharge		Inlet Control				Outlet	Outlet Control, Present Channel	Present	Channel			Outlet	Outlet Control,
Discharge	for Each Culv.	per foot of Width	HM		1	Ke	Н	đ _c	dc + D	h _o 2/ Elev.	TW Elev.	LSo	HW _o 3/ Elev.	TW Elev.	TW HWP Elev. Elev.
(1)	(2)	(3)	(†)	(5)	(9)	(1)	(8)	(6)	(10)	(11)	(12)	(13)	(14)	(15)	(16)
3000	375	23.5	0.55	04.4	्री *	0.5	0.22	2.6	5.30	100.30	101.4	0,33	ने। *	100.7	₹ *
2000	625	39.1	0.77	6.15	/ग *	0.5	0.602/	3.6	5.80	100.80	102.3	0.33	102.57	9.101	101.87
8000	1000	62.5	1.08	8.65	103.986/	0.5	1.55	6.4	6.45	101.45	103.0	0.33	104.226/	102.6	103.826/
00001	1250	78.0	1.31	10.46	105.79	0.5	2.50	5.7	6.85	101.85	103.5	0.33	105.67	103.0	105.17
12500	1565	98.0	19.1	12,88	108.21	0.5	3.90	6.7	7.35	102.35	104.0	0.33	107.57	103.6	107.17
15000	1875	117.0	2.017/	16.08	111.41	0.5	5.60	7.5	7.75	102.75	104.5	0.33	109.77	104.0	109.27
20000	2500	156.3	ı	l	i	0.5	10.00	9.0g/	گون.8	103.00	105.5	0.33	115.77	104.8	114,41

 $h_0 = \frac{d_c + D}{2} + 95.00$  (invert elevation at outlet end of culvert = 95.00). HWI = HW + 95.33 (invert elevation at entrance end of culvert = 95.33).

 $HW_0$  = H + TW - LS₀ or H + h₀ - LS₀, whichever is greater.

Tailwater elevation is higher than the computed elevation and open channel flow exists. ने शं ले में जे जे

See example on Exhibit 14-11.

Note: with channel improvement the control switches from outlet to inlet between 5000 and 8000 cfs.

See example on Exhibit 14-6.

If  $d_c \ge D$ , the outlet always controls. cannot exceed D. d_c + D 19 19 19

NEH Notice 4-102, August 1972

- 3. Compute the critical depth, dc, for each discharge per foot of width. Using Exhibit 14-16, read dc for each discharge per foot of width shown in column 3 and tabulate in column 9 of Table 14-8.
- 4. Compute  $\frac{d_c + D}{2}$ . Tabulate in column 10 of Table 14-8

  Note:  $\frac{d_c + D}{2}$  cannot exceed D.
- 5. Compute  $h_0$ . Add the invert elevation of the outlet end of the culvert (elev. 95.00) to  $d_c + D$  and tabulate as  $h_0$  in column 11 of Table 14-8.
- 6. Compute the TW elevation for each discharge in column 1. Using Figure 14-23, curve A, read the elevation for each discharge in column 1 and tabulate as TW elevation in column 12 of Table 14-8.
- 7. Compute the difference in elevation of the inlet and outlet inverts of the culverts. Multiply L x  $S_0 = 130 \times .0025 = 0.33$  and tabulate in column 13 of Table 14-8.
- 8. Compute the water surface elevation, HW_o, assuming outlet control.

  Add values in column 8 to the larger of column 11 or column 12 minus column 13 and tabulate as HW_o in column 14 of Table 14-8.
- 9. Plot the stage discharge curve assuming outlet control. Plot column 1 and column 14 on Figure 14-24c curve A assuming outlet control with the roadway sufficiently high to prevent over topping.

Condition 3-- Outlet Control, Improved Channel.

- 1. Compute the tailwater elevation at the culvert for the improved channel condition.

  Using Figure 14-23, curve B, read the elevation for each discharge in column 1 and tabulate as TW elevation in column 15 of Table 14-8.
- 2. Compute the elevation assuming outlet control, improved channel.
  Add column 8 plus the layer of column 15 or column 15 minus
  column 13 and tabulate in column 16 of Table 14-8.
- 3. Plot the stage discharge curve assuming outlet control with improved channel. Plot column 1 and column 16 on Figure 14-24d, curve A, as the stage discharge curve for cross section T-4 assuming outlet control with improved channel and the roadway sufficiently high to prevent over topping.

Condition for flow over roadway.

Assume the approach velocity head for this example is negligable and the coefficient C will equal C¹ used in Eq. 14-26. If the velocity head is significant and a correction to the coefficient C is desired by using Eq. 14-27 follow steps 5 through 9 of Example 14-9.

- 1. Select a range of elevations that will define the rating curve over the road. Tabulate in column 1 of Table 14-9. The low point on the road is at elevation 106.
- 2. Compute the depth of flow, H, over the road. For each elevation in column 1 compute H and list in column 2 of Table 14-9.
- 3. Compute  $H^{1/2}$ . Tabulate in column 3 of Table 14-9.
- 4. Compute the flow area, A, over the road. For each elevation listed in column 1 compute the area over the road and tabulate in column 4 of Table 14-9.
- 5. Determine coefficient, C. Assume C = 2.7 for this example and assume  $C = C^1$ . Tabulate  $C^1$  in column 5 of Table 14-9.
- 6. Compute the discharge over the roadway using Eq. 14-26.
- 7. Plot the stage discharge curve. Using the computations shown in Table 14-9 plot column 1 and column 6 shown on Figure 14-24b, c, and d as curve B.
- 8. Graphically combine curves A and B on Figures 14-24b, c and d to form the stage discharge curve for the culverts and weir flow over the roadway.

Table 14-9. Stage discharge over roadway at cross section T-3, Figure 14-4. Example 14-10.

Elevation	H	H ^{1/2}	А	C 1	q
(1)	(2)	(3)	(4)	(5)	(6)
106.	0.	0.	0	2.7	0
106.5	• 5	.707	340	2.7	650
107.	1.0	1.	750	2.7	2020
107.5	1.5	1.225	1230	2.7	4070
108	2.0	1.414	1790	2.7	6830

Each of the 3 flow conditions were computed independent of each other. The flow condition that actually controls is that which requires the greater upstream elevation for the discharge being considered. By comparing elevations for the same discharge for the 3 conditions tabulated on Table 14-8 and plotted on Figure 14-24 b, c and d the type of control at any given discharge can be determined. It may be advantageous to plot all the curves on one graph to better define points of intersection.



Figure 14-24. Rating curves cross section T-4, Example 14-10.

NEH Notice 4-102, August 1972

Under the old channel conditions it can be determined that open channel flow conditions exist for discharges less than about 4000 cfs, outlet control governs between about 4000 and 9000 cfs and inlet control governs for discharges greater than 9000 cfs.

Under new channel conditions open channel flow exists for discharges less than 3800 cfs, outlet control governs for discharges between 3800 and 7300 cfs and inlet control governs for discharges greater than 7300 cfs. Also, in both cases, discharges greater than 10,200 cfs flow will occur over the road embankment.

If the actual profile for discharges occurring under open channel flow conditions is desired water surface profiles should be run through the culverts.

It can also be seen from Figure 14-24a and 14-24b that by constructing the highway with 8 - 16' x 8' concrete box culverts elevations upstream will increase over present conditions for discharges greater than 5000 cfs. for improved outlet conditions upstream elevations will not be increased above present conditions until a discharge of 7200 cfs occurs.



NEH Notice 4-102, August 1972



Exhibit 14-2. Estimate of head loss in bridges.

Estimate of M for use in BPR equation.

Exhibit 14-3.



NEH Notice 4-102, August 1972



Exhibit  $1^{h-h}$ . BPR base curve for bridges  $(K_{\rm b})$ .

NEH Notice 4-102, August 1972



Exhibit 14-5. Incremental backwater coefficient for the more common types of columns, piers and pile bents.

NEH Notice 4-102, August 1972



Exhibit 14-6. Headwater depth for box culverts with inlet control.

NEH Notice 4-102, August 1972



Exhibit 14-7. Headwater depth for concrete pipe culverts with inlet control.

NEH Notice 4-102, August 1972



Exhibit 14-8. Headwater depth for oval concrete pipe culverts long axis horizontal with inlet control.



Exhibit 14-9. Headwater depth for C. M. pipe culverts with inlet control.

NEH Notice 4-102, August 1972



Exhibit 14-10. Headwater depth for C.M. pipe-arch culverts with inlet control.

NEH Notice 4-102, August 1972



Exhibit 14-11. Head for concrete box culverts flowing full n = 0.012. NEH Notice 4-102, August 1972



Exhibit 14-12. Head for concrete pipe culverts flowing full n = 0.012.

NEH Notice 4-102, August 1972



Exhibit 14-13. Head for oval concrete pipe culverts long axis horizontal or vertical flowing full n = 0.012.



Exhibit 14-14. Head for standard C. M. pipe culverts flowing full n = 0.024.

NEH Notice 4-102, August 1972



Exhibit 14-15. Head for standard C. M. pipe-arch culverts flowing full n = 0.024.



Exhibit 14-16. Critical depths-rectangular section.



Exhibit 14-17. Critical depth. Circular pipe
NEH Notice 4-102, August 1972



Exhibit 14-18. Critical depth. Oval concrete pipe. Long axis horizontal.

NEH Notice 4-102, August 1972



Exhibit 14-19. Critical depth. Standard C.M. pipe-arch.

NEH Notice 4-102, August 1972



BUREAU OF PUBLIC ROADS

JAN. 1964

Exhibit 14-20. Critical depth. Structural plate. C.M. pipe-arch. NEH Notice 4-102, August 1972

## Exhibit 14-21. Entrance loss coefficients.

Coefficient  $k_e$  to apply to velocity head  $\frac{\mathbf{v}^2}{2g}$  for determination of head loss at entrance to a structure, such as a culvert or conduit, operating full or partly full with control at the outlet.

Entrance head loss  $H_e = k_e \frac{v^2}{2g}$ 

Type of Structure and Design of Entrance	Coeff	icient k _e
Pipe, Concrete		
Projecting from fill, socket end (groove-end) Projecting from fill, sq. cut end		0.2
Socket end of pipe (groove-end)		0.2
Square-edge		0.2 0.7 0.5
Pipe, or Pipe-Arch, Corrugated Metal		
Projecting from fill (no headwall)	• •	0.9
Square-edge		0.5
End-Section conforming to fill slope		0.5
Box, Reinforced Concrete		
Headwall parallel to embankment (no wingwalls)  Square-edged on 3 edges	• •	0.5
dimension	• •	0.2
Square-edged at crown	• •	0.4
dimension	• •	0.2
Square-edged at crown	• •	0.5
Wingwalls parallel (extension of sides)  Square-edged at crown	•	0.7



SECTION 4

HYDROLOGY

CHAPTER 15. TRAVEL TIME, TIME OF CONCENTRATION AND LAG

by

Kenneth M. Kent Hydraulic Engineer

Reprinted with minor revisions, 1972

NEH Notice 4-102, August 1972



# SECTION 4

# HYDROLOGY

# CHAPTER 15. TRAVEL TIME, TIME OF CONCENTRATION AND LAG

# Contents

	Page
Introduction  Types of flow  Measurement of flow  Travel time, lag and time of concentration  Travel time  Lag.  Time of concentration  Estimating T _C , T _t and L  Field observations  Intensity of investigations  Stream hydraulics for estimating travel time and T _C Upland method  Curve number method  Variations in lag and T _C due to urbanization	. 15-1 . 15-2 . 15-2 . 15-2 . 15-3 . 15-4 . 15-5 . 15-5 . 15-5 . 15-6 . 15-7
Travel time through reservoirs, lakes, and swamps Examples	. 15-11
<u>Figures</u>	
<u>Figure</u>	Page
15.1.—Types of flow	. 15 <b>-</b> 8 . 15 <b>-</b> 10
<u>Tables</u>	
<u>Table</u>	Page
15.1.—Percent of imperviousness for various densities of urban occupancy	. 15 <b>-</b> 11 . 15 <b>-</b> 12



SECTION 4

HYDROLOGY

### CHAPTER 15. TRAVEL TIME, TIME OF CONCENTRATION AND LAG

## Introduction

There is a delay in time, after a brief heavy rain over a watershed, before the runoff reaches its maximum peak. This delay is a watershed characteristic called lag. It must be known before computing a peak flow time and rate for an ungaged watershed. Lag is related to time of concentration and may be estimated from it. Both lag and time of concentration are made up of travel times, which are also used in flood routings and hydrograph construction. This chapter contains methods for estimating travel time, lag, and time of concentration.

# Types of Flow

Figure 15.1 shows four types of flow that may occur singly or in combination on a watershed.



Figure 15. 1 .-- Types of flow

Surface Flow. - - Travel from point 1 to point 2 in figure 15.1 is along the surface of the watershed. This is surface runoff (also see Chapter 10). The flow takes place as overland flow or channel flow. This type is commonly discussed in hydrograph analysis but it seldom occurs in its ideal form.

Surface Flow with Transmission Losses. - - Water traveling toward the watershed outlet is infiltrated into the soil or channel material. This type is common in arid, semiarid, and subhumid climates. When the infiltration takes place in a channel, it is called a transmission loss (see Chapter 19). The distance from point 3 to point 4 in figure 15.1 will depend on the amount of runoff, the moisture characteristics of the soil and on hydraulic features of the flow.

Interflow or Quick Return Flow. - - Water infiltrated at point 5, figure 15.1, eventually returns to the surface at point 6, continuing as surface flow to point 7. This flow reappears rapidly in comparison to base flow and is generally much in excess of normal base flow. Springs or seeps that add to flood flows are of this type. It is common in humid climates and in watersheds with soils of high infiltration capacities and moderate to steep slopes.

Base Flow. - - Rainfall entering at point 8, figure 15.1, goes directly to the ground water table, eventually entering a stream at point 9. This type of flow has little effect on flood peaks in small watersheds. However, if it is a factor, it is usually added to the hydrograph as a constant discharge.

#### Measurement of flow

On figure 15.1, flows from points 1 to 2, 3 to 4, and 6 to 7 can be measured directly (see Chapter 14). Flows from points 5 to 6 and 8 to 9 are usually determined indirectly by storm and hydrograph analyses or by field observation of rainfall and runoff. The distance from point 3 to 4 in figure 15.1 will depend on the amount and rate of runoff, moisture condition in the soil and the hydraulic features of the flow. Such water cannot be measured except indirectly by analyses of precipitation, soil moisture movements, and evapotranspiration.

## Travel Time, Lag and Time of Concentration

#### Travel time

Travel time  $(T_t)$  is the time it takes water to travel from one location in a watershed to another location downstream. The travel may occur on the surface of the ground or below it or in a combination of the two.  $T_t$  is affected by hydraulic factors and storage. It is a component part of lag (L) and time of concentration  $(T_c)$ . It can be estimated by equation 15.1.

Where  $T_{t}$  = travel time in hours

i = hydraulic length in feet
 V = velocity in feet per second

Lag
The lag (L) of a watershed may be thought of as a weighted time of concentration. If for a given storm the watershed is divided into increments, and the travel times from the centers of the increments to the main watershed outlet are determined, then the lag is:

$$L = \frac{\sum (a_x Q_x T_{t_x})}{A Q_a}$$

$$L = \frac{\sum (a_x Q_x T_{t_x})}{\sum (a_x Q_x)}$$

$$Eq. 15.2a$$

$$Eq. 15.2b$$

where L = lag in hours

 $a_{x}$  = the x-th increment of watershed area in square miles

 $Q_X$  = runoff in inches from area  $a_X$ 

 $T_{t_x}$  = travel time in hours from the center of  $a_x$  to the point of reference

A = total area of the watershed above the point of reference

 $\rm Q_{a}$  = average runoff in inches from the total area (A), or  $\rm \Sigma(a_{x}~Q_{x})/A$ 

Equation 15.2 will give the watershed lag for all the types of flow shown in figure 15.1. However, the difficulties of obtaining accurate estimates of underground flow rates and paths limits the use of the equation. Instead, the approach in general practice is to develop a hydrograph for each of the subareas  $(A_X)$  in equation 15.2 and route the hydrographs downstream to the point of reference. The subareas are usually a subdivision of a hydrologic unit as described in Chapter 6. A lag time (L) or time of concentration  $(T_{\rm c})$  is usually estimated for each hydrologic unit by one of the methods in this Chapter. Hydrographs are then developed for each by a method of Chapter 16 and routed to the point of reference by a method of Chapter 17.

In simple hydrograph analysis, lag is the time from the center of mass of excessive rainfall to the peak rate of runoff (see Chapter 16). When combinations of flow occur together, a compound hydrograph with more than one peak and lag time may result. Ideally the various types of flow should be separated for lag analysis and combined at the end of the study. Water exists in a watershed system as a shapeless mass occurring in varying combinations of surface runoff, interflow and ground water flow. These components are characterized by the path the water takes from where it is generated to the point of reference, downstream. The velocity distribution varies both horizontally and vertically and lacks constant boundaries, thus the flow pattern cannot be evaluated by simple hydraulic analysis. In practice, lag is usually determined only for the direct runoff portion of flow.

The role of channel and valley storage are important in the development and translation of a flood wave and the estimation of lag. Both the hydraulics and storage may change from storm to storm, so that an average lag may have a large error. The problem of evaluating lag is sufficiently complex that theoretical hydraulic analysis must be complemented with a hydrologic appraisal of the relative effect of basin characteristics in order to make the best estimate.

#### Time of concentration

This is the time it takes for runoff to travel from the hydraulically most distant part of the storm area to the watershed outlet or other point of reference downstream. In hydrograph analysis, T_c is the time from the end of excessive rainfall to the point on the falling limb of the hydrograph (point of inflection) where the recession curve begins (see Chapter 16). T_c is generally understood as applying to surface runoff.

The implication in the definitions of L and  $T_{\rm c}$ , that the time factor is only a case of calculating a theoretical velocity of a segment of water moving through a hydraulic system, is an over-simplification. As with lag,  $T_{\rm c}$  may vary because of changes in hydraulic and storage conditions.

# Estimating $T_c$ , $T_t$ and L

Each method presented here is in effect a short-cut from which one or more watershed characteristics have been omitted. It is a good practice to consider more than one method, choosing the one that best fits the characteristics of a given watershed. It is not worthwhile averaging estimates made using two or three methods. Instead, the method that appears most applicable because of field and data conditions should be used.

Field observations

At the time field surveys to obtain channel data are made, there is a need to observe the channel system and note items that may affect channel efficiency. Observations such as the type of soil materials in the banks and bottoms of the channel; an estimate of Manning's roughness coefficient; the apparent stability or lack of stability of channel; indications of debris flows as evidenced by deposition of coarse sediments adjacent to channels, size of deposited materials, etc., may be significant.

Indications of channel stability can sometimes be used to bracket the range of velocities that normally occur in the stream channels. Because high sediment concentrations frequently affect both channel velocities and peak rates of runoff, it is important to note when this potential exists.

Intensity of investigations

The purpose for which a study is made is a guide to the amount of work that should be done in securing data to serve as a basis for estimating  $T_{\rm C}$  (Chapter 6). Where the hydrograph is to be the basis for design or for an important conclusion in planning, sufficient surveys should be made to serve as a basis for (a) dividing the main drainage course into reaches that are approximately uniform as to channel sizes, slopes and characteristics and (b) determining average cross sections, roughness coefficients and slopes for each reach. Where the hydrograph is to be the basis for preliminary conclusions,  $T_{\rm C}$  may be estimated by taking the travel distance from maps or aerial photographs and estimating average velocity from general knowledge of the approximate sizes and characteristics of channels in the area under consideration.

Many natural streams have considerable sinuosity, meander, etc. as well as overfalls and eddies. Tendencies are therefore, to underestimate the length of channels and overestimate average velocities through reaches.

Stream hydraulics for estimating travel time and  $T_{\rm c}$  This method is recommended for the usual case where no usable hydrographs are available. This procedure is most applicable for areas where surface runoff predominates. It can result in too short of  $T_{\rm c}$  for areas where interflow and ground water flow are a major part of runoff.

Stream or valley lengths and flow velocities are used, being taken from field survey data. It is assumed the stream has been divided into reaches.

1. Estimate the 2-year frequency discharge in the stream. When this cannot be done, use the approximate bankfull discharge of the low flow channel.

- 2. Compute the average velocity. In watersheds with narrow flood plains where the depth of overbank flow may be 10 to 20 feet during a major flood event, it may be desirable to use correspondingly higher velocities for frequencies of 10 to 100 years or greater.
- 3. Use the average velocity and the <u>valley length</u> of the reach to compute the travel time through the reach by equation 15.1.
- 4. Add the travel times of step 3 to get the  $T_{\rm C}$  for the watershed. Use of the low flow channel bankfull discharges with valley lengths is a compromise that gives a  $T_{\rm C}$  for average floods. For special cases (channel design, for instance) use whatever average velocities and lengths are appropriate.

In most cases the hydraulic data do not extend upstream to the watershed ridge. The remaining time (to add in step 4) can be estimated by adding the time obtained by the <u>upland method</u> or the  $T_{\rm c}$  obtained by the <u>curve number method</u>. See figures 15.2 and 15.3 respectively. Use the one most applicable to the upper watershed characteristics.

Lag may be estimated in terms of Tc using the empirical relation:

$$L = 0.6 T_{e} \dots Eq. 15.3$$

This is for average natural watershed conditions and for an approximately uniform distribution of runoff on the watershed. When runoff is not uniformly distributed the watershed can be subdivided into areas within which the runoff is nearly uniform, enough so that equation 15.3 can be applied.

#### Upland method

Types of flow considered in the upland method are: overland; through grassed waterways; over paved areas; and through small upland gullies. Upland flow employed in this method can be a combination of these various surface runoff conditions. The velocity is determined using figure 15.2.

The most remote segment of runoff that becomes part of the total time of concentration may occur in wide sheets overland rather than in defined channels. This type of flow is of practical importance only in very small watersheds because runoff is usually concentrated into small gullies or terrace channels within less than a thousand feet of its origin. The velocity of overland flow varies greatly with the surface cover and tillage as demonstrated in figure 15.2.

Surface runoff along terrace channels is another type of upland flow. The velocity and distance of flow that relate to time of concentration is based on the terrace gradient and length. A velocity of 1.5 feet per second can be assumed for the average terrace channel. Runoff soon

concentrates from sheet flow into small gullies. Their path of flow and location may change from one flood to the next. Ordinary tillage operations may obliterate them after each period of runoff. Still larger gullies are formed which under a good conservation practice are transformed into permanent grassed waterways.

The travel time  $(T_t)$  for each type of upland flow can be computed using equation 15.1. The summation of these travel times will equal the  $T_c$  in the upland or subwatershed, to the watershed outlet, or down to the point where hydraulic cross sections have been made for the stream hydraulics method.

In a small watershed the elapsed time for overland flow in figure 15.2 may be a substantial percent of the total watershed time of concentration. Conversely, it is a much smaller portion of the total time of concentration in larger watersheds. In watersheds larger than 2000 acres, it can usually be ignored by extrapolating the average measured velocity over the entire hydraulic distance as previously described.

The upland method should be limited to small watersheds (2000 acres or less) and to the sub-watershed portions of larger watersheds above and beyond the point where it is impractical to survey cross sections and make other detailed hydraulic measurements. This upstream limit is usually selected where natural reach storage ceases to be an important element in shaping a unit hydrograph for the watershed in question.

#### Curve number method

This method was developed for areas of less than 2000 acres.

Equation 15.4 was developed from research watershed data:

Where L = lag in hours

1 = hydraulic length of watershed in feet

S = 1000 - 10 where  $CN' \cong hydrologic soil cover complex number (CN) in Chapter 9.$ 

Y = average watershed land slope in percent

The curve number method was developed to span a broad set of conditions ranging from heavily forested watersheds with steep channels and a high percent of the runoff resulting from subsurface or inter-flow and meadows providing a high retardance to surface runoff, to smooth land surfaces and large paved parking areas. The CN' is a measure of the



Figure 15.2.—Velocities for upland method of estimating  $T_{\mbox{\scriptsize c}}$ 

retardance of surface conditions on the rate at which runoff concentrates at some point in question. This retardance factor (CN') is approximately the same as the CN in Chapter 9. A thick mulch in a forest is associated with a low CN in Chapter 9 and reflects a high degree of retardance as well as a high infiltration rate. A hay meadow has a relative low CN, other factors being equal, and like a thick mulch in a forest provides a high degree of retardance to overland flow in small watersheds. Conversely, bare surfaces with very little retardance to overland flow are represented by a high CN'. Runoff curve number tables in Chapter 9 can be used for approximating the CN' for the "S" in equation 15.4. A CN' of less than 50 or greater than 95 should not be used in the solution of equation 15.4.

The slope (Y) in percent is the average land slope of the watershed. Theoretically, it would be as if slopes were obtained for each corner of a grid system placed over the watershed, and then averaged.

Figure 15.3 provides a quick solution to equation 15.4.

## Variations in Lag and Tc Due to Urbanization

Investigations have indicated that a significant increase in peak discharge can result from urbanization of a watershed. Such increases in the peak discharge are generally attributed to the construction of collection systems that are more efficient in a hydraulic sense than those provided in nature. These systems increase conveyance velocities so that greater amounts of discharge tend to reach points of concentration concurrently. Where flow once prevailed over a rough terrain and along field gullies and stream channels, urbanization provides hydraulically smooth concrete gutters, streets, storm drains and open channel floodways that convey runoff rapidly to downstream points.

The amount of imperviousness due to urbanization in a watershed varies from about 20 percent in the case of low density residential areas to about 90 percent where business and commercial land use predominates.

Table 15.1 illustrates the degree of imperviousness with land use for typical urban development.



Figure 15.3.—Curve number method for estimating lag (L)

Table 15.1.—Percent of imperviousness for various densities of urban occupancy.

Land Use	% Imperviousness 1/
Low Density Residential	20 - 30
Medium Density Residential	25 - 35
High Density Residential	30 <b>–</b> 40
Business - Commercial	40 - 90
Light Industrial	45 <b>-</b> 65
Heavy Industrial	50 - 70

^{1/} Effects of Urbanization on Storm Runoff - Cudworth and Bottorf - South Pacific Division - Corps of Engineers. Presented to Water Management Subcommittee, PSIAC, March 1969.

A CN' of 90 or 95 can be used to estimate the impervious portion. CN for lawns, parks, etc. can be selected from one of the curve number tables in Chapter 9.

## Travel Time Through Reservoirs, Lakes, and Swamps

It is sometimes necessary to compute a  $T_{\rm C}$  for a watershed having a relatively large body of water in the flow path. In such cases,  $T_{\rm C}$  is computed by one of the above methods to the upstream end of the lake or reservoir, and for the body of water the travel time is computed using the equation:

$$V_w = \sqrt{gD_m}$$
 .... Eq. 15.5

Where  $V_{vv}$  = the wave velocity, in fps, across the water

g = 32.2 feet/sec/sec

 $D_m$  = mean depth of lake or reservoir in feet

Generally, Vw will be high, as shown in table 15.2.

One must not overlook the fact that equation 15.5 only provides for estimating travel time across the lake and for the inflow hydrograph to the lake's outlet. It does not account for the travel time involved with the passage of the inflow hydrograph through spillway storage and the reservoir or lake's outlet. This time is generally much longer than and is added to the travel time across the lake. The travel time through lake storage and its outlet can be determined by one of the storage routing procedures in Chapter 17.

For additional discussion of equation 15.5 see King's "Handbook of Hydraulics," fourth edition, page 8-50, or "Elementary Mechanics of Fluids" by Hunter Rouse, John Wiley and Sons, Inc., 1946, page 142.

Equation 15.5 can be used for swamps with much open water, but where the vegetation or debris is relatively thick (less than about 25 percent open water), Manning's equation is more appropriate.

Table 15.2.—Wave velocities on lakes and reservoirs

es, V _W (mph)	Wave veloc (fps)	Mean depth, D _m (feet)
(mpn)	(1 bs)	(1660)
5.45	8.0	2
7.70	11.3	4
10.9	16.0	8
15.5	22.7	16
21.9	32.1	32

#### Examples

The following examples illustrate the use of the methods previously described to estimate travel time  $(T_t)$ , time of concentration  $(T_c)$  and lag (L). The sample watershed of Chapter 6 showing the subdivision of a hydrologic unit is repeated here as figure 15.4 for the examples that follow.

Example 15.1, Upland Method.—Subdivision (1) in figure 15.4 has a diversion terrace below a short grass pasture outletting into a grassed waterway down to a road crossing. The overland flow length across the pasture down to the diversion terrace is 900 feet.

The length of the longer diversion terrace is 2100 feet. The average slope of the pasture is 8 percent. The grassed waterway is 2400 feet long with an average slope of 4 percent. A raw gully extends from the road crossing where the grassed waterway terminates, down to the point where a grade stabilization structure is planned. The length of the gully is 2700 feet with a 3 percent grade.

1. Read the following velocities from figure 15.2:

Short grass pasture @ 8 percent	•	•	•	•	•	•	•	•	•	2 ft./sec.
Grassed waterway @ 4 percent .		•		•	•		•	•	•	3 ft./sec.
Gully @ 3 percent			•							3.5 ft./sec.



FIGURE 15.4-HYDROLOGIC UNIT HAVING DETAIL FOR USE AS A SAMPLE WATERSHED

- 2. The average velocity for terraces is 1.5 ft./sec.
- 3. Substituting velocity and length in equation 15.1:

```
T_t (pasture) = (900/3600) ÷ 2 = 0.125 hr.

T_t (terrace) = (2100/3600) ÷ 1.5 = 0.390 hr.

T_t (waterway) = (2400/3600) ÷ 3 = 0.222 hr.

T_t (gully) = (2700/3600) ÷ 3.5 = 0.215 hr.
```

4.  $T_c = \Sigma T_t = 0.125 + 0.390 + 0.222 + 0.215 = 0.952 \text{ hr.}$ Round to 1.0 hr (to the nearest tenth hour).

Example 15.2, Curve Number Method.—Subdivision (5) in figure 15.4 is a wooded area with soils primarily in hydrologic group B. The hydrologic condition is good, having a heavy cover of litter. The slopes are steep, averaging about 16 percent. The hydraulic length according to map measurement is 16,000 feet.

- 1. The soil cover number from table 9-1 (Chapter 9) for this subdivision would be 55.  $CN \cong CN^{\dagger} = 55$
- 2. Using figure 15.3, L = 1.4 hrs.
- 3. Use equation 15.3 to convert lag to  $T_c$ :

$$T_c = 1.4/0.6 = 2.3 \text{ hrs.}$$

Example 15.3, Stream Hydraulics Method. -- It can be assumed that back water curves (or water surface profiles) have been computed by methods in Chapter 14 from the river outlet of the sample watershed in figure 15.4 up stream to the proposed floodwater retarding structure sites FR-1 and FR-2. Example 15.2 provided the Tc for developing inflow hydrographs to the proposed FR-2 site and example 15.1 provided the Tc for inflow hydrographs to the proposed grade stabilization structure, GS-1 site. A flood hydrograph for present conditions (without structures) is desired at the junction below subdivisions (4) and (5). Therefore a simple flood hydrograph is needed at the outlet of subdivision (4) to combine with the hydrograph at the proposed FR-2 site and outlet of subdivision (5). To develop a simple hydrograph at the lower end of subdivision (4), the travel time (Tt) is needed for reaches R-2 and R-4 and each added to the Tc for the GS-1 site. There floodplain lengths are:

GS-1 to FR-1	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	60001
FR-1 to B-B	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	24001
B-B to A-A	•	•	•	•	•	•	•	•	•	•	۰	•	•	•	•	•	•	•	•	•	•	28001
A-A to junction	•	•	•	•	•	•	•	•	•	•		•	•		•	•		•		•		9001

The bankfull discharge and cross sectional area obtained from the W.S. profile rating curves at surveyed sections A-A and B-B give a mean velocity of 3.6 and 3.8 feet per second respectively. Similarly, the velocity obtained from the water surface profile at the FR-1 site is 6.1 feet per second. A surveyed cross section was available at the GS-1 site but other than that surveyed cross sections were not made beyond the upstream point of site FR-1. They were not considered necessary for the sole purpose of estimating travel time in this upper reach. Instead, handlevel channel cross sections were made at four intermediate locations in reach R-2 and an overall gradient estimated. These data appear in the following steps.

1. A table is made showing the field data obtained in R-2 and the estimated mean velocities for each section therein computed from Manning's formula,  $V = \frac{1.486}{D} r^{2/3} S^{1/2}$ 

X-Secti	Bankfull on area (a)	Wetted Perimeter (P)	Hydraulic Radius (r)	r ² /	/3 n	S 1/2	V
	ft	ft	ft			ft/ft	ft/sec
GS-1 hde-1 hde-2 hde-3 hde-4 FR-1	48 55 55 50 56 (obtain from	22 35 39 26 28 water surfa	2.18 1.57 1.42 1.92 2.00 ce profile	1.68 1.35 1.26 1.55 1.59 rating	0.040 0.055 0.055 0.040 0.040	0.10 0.10 0.10 0.10 0.10	6.2 3.7 3.4 5.8 5.9 6.1

^{2.} Since the handlevel sections were taken at approximately equal intervals, the velocities are averaged without weighting them with respect to length. The average velocity for reach R-2 is 5.2 ft/sec.

3. Applying equation 15.1:

$$T_t = (6000/3600) \div 5.2 = 0.32 \text{ hrs.}$$

4. Obtain T_t for R-4 by equation 15.2:

From	То	Distance (d)	Velocity (V)	T _t (hr)
FR-1 Midway between	Midway to B-B Midway between	1200	6.1	0.051
FR-1 & B-B Midway between	B-B & A-A junction	2600	3.8	0.190
B-B & A-A	June oron	2300	3.6 Total	0.181

5.  $T_c$  for subdivisions (1), (2), (3) and (4):

$T_{c}$	for	sub	liv	vi	sic	on	(]	L)	f	roi	n e	exe	amj	ole	e :	15.	.1	•	•	•	•	•	0.95
																							0.32
$T_{+}$	for	R-4	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• _	0.42
$T_{c}$	(tot	tal)	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1.69
_																			Ro	ow	$\mathbf{p}$	to	1.7 hrs.

A hydrograph developed at the junction by combining the two tributary areas and using the longer  $T_{\rm c}$  of 2.3 hours would be less accurate than by estimating the  $T_{\rm c}$  for each tributary, as was done in the examples above, and then combining the two hydrographs developed for each.

SECTION 4

HYDROLOGY

CHAPTER 16. HYDROGRAPHS

by

Dean Snider Hydraulic Engineer

Reprinted with minor revisions, 1972

NEH Notice 4-102, August 1972



# SECTION 4

# HYDROLOGY

# CHAPTER 16. HYDROGRAPHS

	Concents								<u>+ upu</u>
Develor Type Unit Per App Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Example Exam	ppment of hydrograph relations  pes of hydrographs  t hydrograph  Elements of a unit hydrograph  k rate equation  clication of unit hydrograph  ample 1  ample 2  ample 3  k discharge determination  ample 4	•		•	•	•	•	•	16.1 16.2 16.5 16.6 16.8 16.10 16.17 16.19
Refere	ences	•	•	•	•	•	•	•	16.26
	<u>Figures</u>								
Figur	<u>e</u>								Page
16.1 16.2	Dimensionless curvilinear unit hydrograph								
16.3	and equivalent triangular hydrograph The effect of watershed shape on the peaks	•	•	•	•	•	•	•	16.5
16.4	of unit hydrographs	•	•	•	•	•	•	•	16.9
16.5	taken from a recording rain gage Unit hydrograph from example 1		•	•	•	•	•	•	16.11
16.6	Composit flood hydrograph from example 1	•	•	•	•	•	•	•	16.16
16.7 16.8	Composit flood hydrograph from example 2	•	•	•	•	•	•	•	16.18
16.9	showing effect when $\Delta D$ is too large Part of triangular unit hydrograph that								
	contributes to the peak when $\Delta D = 0.2T_p$ .	•	•	•	•	•	•	•	16.22

# Tables

<u>Table</u>	Page
16.1 Ratios for dimensionless unit hydrograph	
and mass curve	. 16.4
16.2 Computation of coordinates for unit	
hydrograph for use in Example 1	. 16.12
16.3 Computation of a flood hydrograph	
(example 1)	. 16.14
16.4 Rainfall tabulated in 0.3 hour increments	
from plot of rain gage chart, Figure 16.4a	. 16.15
16.5 Rainfall tabulated in 1.5 hour increments	
from plot of rain gage chart, Figure 16.4a	. 16.19
16.6 Rainfall tabulated in 0.2 hour increments from	
plot of rain gage chart, Figure 16.4b	. 16.23
16.7 Peak discharge determination for example 4	. 16.24

SECTION 4

HYDROLOGY

CHAPTER 16. HYDROGRAPHS

#### Purpose

Hydrographs, or some elements of them such as peak rates, are used in the planning and design of water control structures. They are also used to show the hydrologic effects of existing or proposed watershed projects.

#### Development of Hydrograph Relations

Runoff occurring on the uplands flows downstream in various patterns of flow which are affected by many factors such as spatial and temporal distribution of rainfall, rate of snowmelt, hydraulics of streams, watershed and channel storage, and others that are difficult to define. The graph of flow (rate versus time) at a stream section is the hydrograph, of which no two are exactly alike. There is no satisfactory mathematical analysis of flood hydrographs, and empirical relations have been developed, starting with the "Rational Method" in the 19th century, progressing to the Unit Hydrograph in the 1930's, and to more recent use of Dimensionless or Index Hydrographs. The empirical relations are simple elements from which as complex a hydrograph may be made as needed.

Present-day difficulties with hydrograph development lie in the precise estimation of runoff from rainfall (chapter 10) and determination of paths of flow (chapter 15).

#### Types of Hydrographs

This classification is a partial list, suitable for use in watershed work.

- 1. Natural hydrographs. Obtained directly from the flow records of a gaged stream.
- 2. Synthetic hydrographs. Obtained by using watershed parameters and storm characteristics to simulate a natural hydrograph.
- 3. Unit hydrograph. A natural or synthetic hydrograph for one inch of direct runoff. The runoff occurs uniformly over the watershed in a specified time.

4. Dimensionless hydrograph. Made to represent many unit hydrographs by using the time to peak and the peak rates as basic units and plotting the hydrographs in ratios of these units. Also called Index hydrograph.

## Unit Hydrograph

In 1932, L.K. Sherman advanced the theory of the unit hydrograph, or unit graph. The unit hydrograph procedure assumes that discharge at any time is proportional to the volume of runoff and that time factors affecting hydrograph shape are constant.

Both field data and laboratory tests have shown that the assumption of a linear relationship between watershed components is not strictly true. The non-linear relationships have not been investigated sufficiently to ascertain their effects on a synthetic hydrograph. Until more information is available the procedures of this chapter will be based on the unit hydrograph theory.

The fundamental principles of invariance and superposition make the unit graph an extremely flexible tool for developing synthetic hydrographs:

1) the hydrograph of surface runoff from a watershed due to a given pattern of rainfall is invariable, and 2) the hydrograph resulting from a given pattern of rainfall excess can be built up by superimposing the unit hydrograph due to the separate amounts of rainfall excess occurring in each unit period. This includes the principle of proportionality by which the ordinates of the hydrograph are proportional to the volume of rainfall excess.

The unit time or "unit hydrograph duration" is the optimum duration for occurrence of precipitation excess. In general, this unit time is approximately 20 percent of the time interval between the beginning of runoff from a short high-intensity storm and the peak discharge of the corresponding runoff.

The "storm duration" is the actual duration of the precipitation excess. The duration varies with actual storms. The dimensionless unit hydrograph used by SCS (figure 16.1) was developed by Victor Mockus. It was derived from a large number of natural unit hydrographs from watersheds varying widely in size and geographical locations. This dimensionless curvilinear hydrograph, also shown in table 16.1, has its ordinate values expressed in a dimensionless ratio q/qp or Qa/Q and its abscissa values as t/Tp. This unit hydrograph has a point of inflection approximately 1.70 times the time-to-peak (Tp) and the time-to-peak 0.2 of the time-of-base (Tb).

¹ See References at end of chapter.



Figure 16.1 Dimensionless unit hydrograph and mass curve

Table 16.1 Ratios for dimensionless unit hydrograph and mass curve.

Time Ratios	Discharge Ratios $(q/q_p)$	Mass Curve Ratios (Qa/Q)
0	.000	.000
.1	.030	.001
.2 .3 .4	.100	.006
•3	.190	.017
• 4	.310	.035
•5 •6	.470	.065
.6	.660	.107
•7	.820	.163
.8	.930	.228
.9	.990	.300
1.0	1.000	.375
1.1	.990	.450
1.2	.930	.522
1.3 1.4	.860	.589
	.780 .680	<b>.</b> 650
1.5 1.6	.560	•705
1.7	.460	.751 700
1.8	.390	.790 .822
1.9	.330	.849
2.0	.280	.871
2.2	.207	.908
2.4	.147	.934
2.6	.107	•953
2.8	.077	.967
3.0	.055	•977
3.2	.040	.984
3.4	.029	.989
3.6	.021	•993
3.8	.015	•995
4.0	.011	•997
4.5	.005	•999
5.0	.000	1.000

Elements of a Unit Hydrograph

The dimensionless curvilinear unit hydrograph (figure 16.1) has 37.5% of the total volume in the rising side, which is represented by one unit of time and one unit of discharge. This dimensionless unit hydrograph also can be represented by an equivalent triangular hydrograph having the same units of time and discharge, thus having the same percent of volume in the rising side of the triangle (figure 16.2).



Figure 16.2 Dimensionless curvilinear unit hydrograph and equivalent triangular hydrograph

This allows the base of the triangle to be solved in relation to the time to peak using the geometry of triangles. Solving for the base length of the triangle, if one unit of time  $T_{\rm p}$  equals .375 of volume:

$$T_b = \frac{1.00}{.375} = 2.67$$
 units of time,

$$T_r = T_b - T_p = 1.67$$
 units of time or 1.67  $T_p$ .

These relationships are useful in developing the peak rate equation for use with the dimensionless unit hydrograph.

### Peak Rate Equation

From figure 16.2 the total volume under the triangular unit hydrograph is:

$$Q = \frac{q_p T_p}{2} + \frac{q_p T_r}{2} = \frac{q_p}{2} (T_p + T_r)$$
 (Eq. 16.1)

With Q in inches and T in hours, solve for peak rate  $q_p$  in inches per hour:

$$q_p = \frac{2Q}{T_p + T_r}$$
 (Eq. 16.2)

Let 
$$K = \frac{2}{1 + \frac{T_r}{T_D}}$$
 (Eq. 16.3)

Therefore 
$$q_p = \frac{KQ}{T_p}$$
 (Eq. 16.4)

In making the conversion from inches per hour to cubic feet per second and putting the equation in terms ordinarily used, including drainage area "A" in square miles, and time "T" in hours, equation 16.4 becomes the general equation:

$$q_p = \frac{645.33 \times K \times A \times Q}{T_p}$$
 (Eq. 16.5)

Where  $q_p$  is peak discharge in cubic feet per second (cfs) and the conversion factor 645.33 is the rate required to discharge one inch from one square mile in one hour.

The relationship of the triangular unit hydrograph,  $T_r = 1.67 T_p$ , gives K = 0.75. Then substituting into equation 16.5 gives:

$$q_p = \frac{484 \text{ A Q}}{T_p}$$
 (Eq. 16.6)

Since the volume under the rising side of the triangular unit hydrograph is equal to the volume under the rising side of the curvilinear dimensionless unit hydrograph in figure 16.2, the constant 484, or peak rate factor, is valid for the dimensionless unit hydrograph in figure 16.1.

Any change in the dimensionless unit hydrograph reflecting a change in the percent of volume under the rising side would cause a corresponding change in the shape factor associated with the triangular hydrograph and therefore a change in the constant 484. This constant has been known to vary from about 600 in steep terrain to 300 in very flat swampy country. The E&WP Unit hydrologist should concur in the use of a dimensionless unit hydrograph other than figure 16.2. If for some reason it becomes necessary to vary the dimensionless shape of the hydrograph to perform a special job, the ratio of the percent of total volume in the rising side of the unit hydrograph to the rising side of a triangle is a useful tool in arriving at the peak rate factor.

Figure 16.2 shows that:

$$T_{p} = \frac{\Delta D}{2} + L$$
 (Eq. 16.7)

where  $\Delta D$  is the duration of unit excess rainfall and L is the watershed lag in hours. The lag (L) of a watershed is defined (chapter 15) as the time from the center of mass of excess rainfall ( $\Delta D$ ) to the time to peak ( $T_p$ ) of a unit hydrograph. From equation 16.6:

$$q_p = \frac{484 \text{ A Q}}{\frac{\Delta D}{2} + L}$$
 (Eq. 16.8)

The average relationship of lag (L) to time of concentration ( $T_c$ ) is L = 0.6  $T_c$  (chapter 15).

Substituting in equation 16.8, the peak rate equation becomes:

$$q_{p} = \frac{484 \text{ A Q}}{\frac{\Delta D}{2} + 0.6 \text{ T}_{c}}$$
 (Eq. 16.9)

The time of concentration is defined in two ways in chapter 15: 1) the time for runoff to travel from the furthermost point in the watershed to one point in question, and 2) the time from the end of excess rainfall to the point of inflection of the unit hydrograph.

These two relationships are important since  $T_c$  is computed under the first definition and  $\Delta D$ , the unit storm duration, is used to compute the time to peak  $(T_p)$  of the unit hydrograph. This in turn is applied to all of the points on the abscissa of the dimensionless unit hydrograph using the ratio  $t/T_p$  as shown in table 16.1.

The dimensionless unit hydrograph shown in figure 16.2 has a time to peak at one unit of time and point of inflection at approximately 1.7 units of time. Using the relationships Lag =  $0.6~T_{\rm c}$  and the point of

inflection = 1.7  $T_p$ ,  $\Delta D$  will be .2  $T_p$ . A small variation in  $\Delta D$  is permissible, however, it should be no greater than .25  $T_p$ . See example 1.

Using the relationship shown on the dimensionless unit hydrograph, figure 16.2 to compute the relationship of  $\Delta D$  to  $T_c$ :

$$T_c + \Delta D = 1.7 T_p$$
 (Eq. 16.10)

$$\frac{\Delta D}{2} + .6 T_{c} = T_{p}$$
 (Eq. 16.11)

Solving these two equations:

$$T_c + \Delta D = 1.7 \left(\frac{\Delta D}{2} + .6 T_c\right)$$
  
.15  $\Delta D = .02 T_c$   
 $\Delta D = .133 T_c$  (Eq. 16.12)

## Application of Unit Hydrograph

The unit hydrograph can be constructed for any location on a uniformly shaped watershed, once the values of  $q_p$  and  $T_p$  are defined (figure 16.3, areas A and B).

Area C in figure 16.3 is an irregularly shaped watershed having two uniformly shaped areas (C2 and C1) with a big difference in their time of concentration. This watershed requires the development of two unit hydrographs which may be added together forming one irregularly shaped unit hydrograph. This irregularly shaped unit hydrograph may be used to develop a flood hydrograph in the same way as the unit hydrograph developed from the dimensionless form (figure 16.1) is used to develop the flood hydrograph. See example 1 for area shown in figure 16.3. Also, each of the two unit hydrographs developed for areas C2 and C1 in figure 16.3 may be used to develop a flood hydrograph for its respective C2 and C1 areas. The flood hydrographs from each area are then combined to form the hydrograph at the outlet of area C.

There are many variables integrated into the shape of a unit hydrograph. Since a dimensionless unit hydrograph is used and the only parameters readily available from field data are drainage area and time of concentration, consideration should be given to dividing the watershed into hydrologic units of uniformly shaped areas. These divisions, if at all possible, should be no greater than 20 square miles in area and should have a homogeneous drainage pattern.

The "storm duration" is the actual time duration of precipitation excess. This time duration varies with actual storms and should not be confused with the unit time or unit hydrograph duration.



Figure 16.3 The effect of watershed shape on the peaks of unit hydrographs

#### Example 1

Develop a composite flood hydrograph using the runoff produced by the rainfall taken from a recording rain gage (figure 16.4(a)) on watershed (Area A) shown on figure 16.3.

Given the following information:

Drainage Area - 4.6 square miles

Time of Concentration - 2.3 hours

CN-85

Moisture Condition II

Storm Duration - 6 hours

Step 1. Develop and plot unit hydrograph.

Using equation 16.12, compute  $\Delta D$ :

$$\Delta D = .133 \times 2.3 = .306$$
 use .30 hours

Using equation 16.7, compute  $T_p$ :

$$T_p = \frac{.30}{2} + (.6 \times 2.3) = 1.53 \text{ hours}$$

Using equation 16.6, compute q for volume of runoff equal to one inch:

$$q_p = \frac{484 \times 4.6 \times 1}{1.53} = 1450 \text{ cfs}$$

The coordinates of the curvilinear unit hydrograph are shown in table 16.2 and the plotted hydrograph on figure 16.5.

- Step 2. Tabulate the ordinates of the unit hydrograph from figure 16.5 in 0.3 hour increments (table 16.3a, column 2).
- Step 3. Check the volume under unit hydrograph by summing the ordinates (table 16.3a, column 2) and multiplying by  $\Delta D$ :

$$9898 \times 0.3 = 2969.4$$
 cfs-hours

Compare this figure with computed volume under unit hydrograph:

$$645.33 \times 4.6 = 2968 \text{ cfs-hours}$$

If these fail to check, re-read the coordinates from figure 16.5 and adjust if necessary until a reasonable balance in volume is attained.

Step 4. Tabulate the accumulated rainfall in .3 hour increments (table 16.4, column 2).



Figure 16.4 Accumulated rainfall and runoff for CN-85 taken from a recording rain gage.

NEH Notice 4-102, August 1972

Table 16.2. Computation of coordinates for unit hydrograph for use in Example 1.

1	2	3	4
Time Ratios (table 16.1)	Time (col 1 x 1.53)	Discharge Ratios (table 16.1)	Discharges (col 3 x 1450)
(t/T _p )	(hours)	(q/q _p )	(cfs)
.0 .1 .2 .4 .5 .6 .7 .8 .9 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	0 .15 .46 .61 .76 .92 1.07 1.22 1.38 1.68 1.84 1.99 2.45 2.45 2.45 2.45 2.96 3.67 3.67 3.98 4.59 4.59 5.51 6.89 7.65 6.89 7.65	0 .030 .100 .190 .310 .470 .660 .820 .930 .990 1.000 .990 .930 .860 .780 .680 .560 .460 .390 .330 .280 .207 .147 .107 .077 .055 .040 .029 .021 .015 .011 .005	0 44 145 276 450 682 957 1189 1349 1435 1450 1435 1349 1247 1131 986 812 667 565 479 406 300 213 155 112 80 58 42 30 22 16 7 0



Figure 16.5 Unit hydrograph from example 1

	Table 16.3. Computation of a flood hydrograph (example 1).														
		e 16.3 (a)			Table	e 16.3 (b)			Tabi	e 16,3(c)			Table	16.3 (d)	
(1) Time	.09 .19 .24 .31 .42 .36 .25 .11 .05 .01 .0	(2) Unit Hyd.	(3) Flood Hyd.	(1) Time	.09 .19 .24 .31 .42 .36 .25 .11 .05 .01	(2) Unit Hyd.	(3) Flood Hyd.	(1)		(2) Unit Hyd.	(3) Flood Hyd.	(1) Time		(2) Unit Hyd.	(3) Flood Hyd.
0	.33 .27 .12 .0 —	0 140 420 960 1330 1450 1370 1140 860 610 440 320 170 120 85 70 70 23 20 15 10 7 4 2	0 0 17	0 .36 .99 1.25 1.8 2.1 2.4 2.7 3.3 3.6 9.2 5.4 4.5 8 5.1 4.5 8 5.7 7.5 8 8.4 7 9.3 6 6.6 9.2 7.5 8 8.4 7 9.3 6 9.9 2 10.5 8 11.1 11.7 12.3 6 9.9 10.5 11.1 11.7 12.3 6 11.1 11.7 12.3 12.5 13.7	. 26 . 33 . 27 . 12 . 0	0 140 420 960 1370 1140 860 610 440 320 170 120 85 70 70 120 70 70 120 0	0 0 17 88	0 .36.9 1.55.1 2.14 2.77 3.36 3.36 4.58 5.14 5.60 6.69 7.25 7.58 8.47 9.93 10.58 11.14 11.77 12.03 12.69 13.25 13.57	.09 .19 .21 .31 .42 .36 .25 .11 .05 .0 .0 .06 .12 .18 .26 .33 .27 .12 .0 -	0 140 420 960 1370 11450 1370 1140 8610 440 320 230 170 120 855 10 20 255 10 0	0 0 17 88 275 594 984 1337 1566 1300 1050 838 726 765 988 1359 1787 2143 2342 2350	0 .36 .9 .2 .58 .1 .1 .2 .4 .7 .0 .3 .3 .3 .9 .2 .5 .8 .1 .4 .7 .0 .3 .6 .6 .9 .2 .5 .8 .1 .4 .7 .0 .3 .6 .6 .9 .2 .5 .8 .1 .4 .7 .0 .3 .6 .9 .9 .9 .9 .9 .1 .1 .1 .1 .2 .2 .5 .5 .7 .7 .8 .8 .8 .7 .9 .9 .9 .9 .1 .1 .1 .1 .1 .2 .2 .2 .2 .2 .3 .3 .7 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1	.09 .19 .24 .31 .42 .36 .25 .11 .05 .01 .0 .06 .12 .18 .26 .33 .27 .12	0 140 420 960 1330 1140 860 610 440 320 230 170 120 85 70 55 40 20 25 10 7 7 4 2 0	0 0 0 17 88 275 594 984 1337 1620 1516 1300 1050 838 726 765 988 1359 1787 2143 2350 2170 1854 1488 1138 840 608 438 318 2312 2350 2170 1854 1488 1138 840 608 438 172 128 128 172 172 173 174 175 177 188 177 178 178 178 178 178 178 178

Total 9898

Total 33359

Table 16.4	Rainfall ta	bulated ir 0.3	3 hour	increments	from
	plot of Rai	n Gage Chart,	Figure	16.4a	

1	2	3	4	5 Reversed
	Accum.	Accum. 1	Incremental	Incremental
Time	Rainfall	Runoff	Runoff	Runoff
0	0			
•3	•37	.00	00	.09
.6	.87	.12	.12	.19
•9	1.40	•39	.27	.24
1.2	1.89	.72	•33	.31
1.5	2.24	.98	.26	. 42
1.8	2.48	1.16	.18	.36
2.1	2.63	1.28	.12	.25
2.4	2.70	1.34	.06	.11
2.7	2.70	1.34	.00	.05
3.0	2.70	1.34	.00	.00
3.3	2.71	1.35	.01	.00
3.6	2.77	1.40	.05	.00
3.9	2.91	1.51	.11	.06
4.2	3.20	1.76	.25	.12
4.5	3.62	2.12	.36	.18
4.8	4.08	2.54	.42	.26
5.1	4.43	2.85	.31	• 33
5.4	4.70	3.09	.24	. 27.
5.7	4.90	3.28	.19	.12
6.0	5.00	3.37	.09	.00

¹Runoff computed using CN 85 moisture condition II.

- Step 5. Compute the accumulated runoff (table 16.4, column 3) using CN-85, condition II.
- Step 6. Tabulate the incremental runoff (table 16.4, column 4).
- Step 7. Tabulate the incremental runoff in reverse order (table 16.4, column 5) and/or tabulate it on a strip of paper having the same line spacing as the paper used in step 2.
- Step 8. Place the strip of paper between column 1 and column 2 of table 16.3(a) and slide down until the first increment of runoff (0.12) on the strip of paper is opposite the first discharge (140) on the unit hydrograph (column 2). Multiplying 0.12 x 140 = 16.8 (round to 17). Tabulate in column 3 opposite the arrow on the strip of paper.



Figure 16.6 Composite flood hydrograph from example 1

Step 9. Move the strip of paper down one line (table 16.3(b)) and compute (0.12 x 420) + (.27 x 140) = 88.2 (round to 88). Tabulate in column 3 opposite the arrow on the strip of paper.

Continue moving the strip of paper containing the runoff down one line at a time and accumulatively multiply each runoff increment by the unit hydrograph discharge opposite the increment.

Table 16.3(c) shows the position of the strip of paper containing the runoff when the peak discharge of the flood hydrograph (2350 cfs) is reached. If only the peak discharge of the flood hydrograph is desired, it can be found by making only a few computations, placing the larger increments of runoff near the peak discharge of the unit hydrograph.

Figure 16.3(d) shows the position of the strip of paper containing the runoff at the completion of the flood hydrograph. The complete flood hydrograph is shown in column 3. These discharges are plotted at their proper time sequence on figure 16.6 which is the complete flood hydrograph for example 1.

Step 10. Check the volume under the flood hydrograph by summing the ordinates (table 16.3(d), column 3) and multiplying by  $\Delta D$ . 33359 x .3 = 10007.7 cfs-hours, compared to computed volume, 645.33 x 4.6 x 3.37 = 10003.9 cfs-hours.

### Example 2

Using the same data given in example 1, graphically develop a composite flood hydrograph using a triangle for the unit hydrograph.

- Step 1. Plot the triangular unit hydrograph (dashed line) on figure 16.7:  $T_D = 1.53$  hours,  $T_D = 4.08$  hours.
- Step 2. Compute the peak discharge for the first incremental triangular hydrograph by multiplying the first increment of runoff shown in table 16.4, column 4, by the peak discharge for one inch of runoff (1450). The peak of the first incremental triangular hydrograph is 1450 x .12 = 174. Since the storm did not produce runoff for the first increment of time and the zero point of the first incremental triangular hydrograph is plotted at 0.3 hours. The peak discharge of 174 cfs is plotted at 1.83 hours and end of the base is 4.38 hours. Continue developing and plotting incremental triangular hydrographs for each increment of runoff shown in table 16.4, column 4. Each incremental hydrograph is plotted one ΔD (0.3) hour later in time.



Figure 16.7 Composite flood hydrograph from example 2

- Step 3. Sum the ordinates of each incremental triangular hydrograph at enough locations to make it possible to draw the completed flood hydrograph (figure 16.7). The composite peak is 2230 cfs.
- Step 4. Check the area under the completed hydrograph and convert to cfs/hours, which is 40 sq. inches x 250 cfs-hours/sq. inch = 10,000 cfs-hours compared to the computed volume 645.33 x 4.6 x 3.37 = 10,003.9 cfs-hours. (Note: figure 16.7 has been reduced.)

### Example 3

Using the same data given in example 1, but using a  $\Delta D$  of 1.5 hours rather than 0.3 hour, graphically develop a composite flood hydrograph produced by the runoff from the rainfall shown on figure 16.4(a) and tabulated in table 16.5, column 4. This example will illustrate the effect of using a  $\Delta D$  which is too large.

$$T_p = \frac{1.5}{2} + (.6 \times 2.3) = 2.13 \text{ hours}$$

$$T_b = 2.13 \times 2.67 = 5.68 \text{ hours}$$

$$q_p = \frac{484 \times 4.6 \times 1}{2.13} = 1043 \text{ cfs}$$

Following the same procedure outlined in example 2 of computing, plotting, and summing the ordinates of the incremental triangular hydrographs, a composite flood hydrograph is developed as shown in figure 16.8.

Table 16.5 Rainfall tabulated in 1.5 hour increments from plot of Rain Gage Chart, Figure 16.4a

Time	Accum.	Accum. 1	Incremental
	Rainfall	Runoff	Runoff
0 1.5 3.0 4.5 6.0	0 2.24 2.70 3.62 5.00	.98 1.34 <b>2.</b> 12 3.37	.98 .36 .78 1.25

Runoff computed using CN-85 moisture condition II.

The area under the composite flood hydrograph should be determined and the volume checked against the computed volume.



Figure 16.8 Composite flood hydrograph from example 3 showing effect when  $\Delta D$  is too large

Examples 1 and 2 show that there is very little difference in the flood hydrograph developed using either a curvilinear unit hydrograph or a triangular unit hydrograph providing the unit of time ( $\Delta D$ ) is approximately 0.2 the time to peak of the unit hydrograph. This is the time defined by Mitchell, 1948, as the optimum time of a unit storm. Example 3 shows the effect of increasing the time increment to 1.5 hours which is approximately equal to the time to peak of the unit hydrograph when the optimum time increment is used.

## Peak Discharge Determination

In using the triangular unit hydrograph to develop composite flood hydrographs, the peak of each triangular unit hydrograph is determined by multiplying the peak for one inch of runoff by the amount of runoff in each  $\Delta D$  time. Assuming uniform runoff for an indefinite period of time and using  $\Delta D$  as 0.2 of the time to peak of the unit hydrograph, figure 16.9 shows that 13 increments of runoff is the maximum number that will add to the peak discharge of the flood hydrograph. It also shows the percent of the peak of each incremental hydrograph that contributes to the peak of the composite flood hydrograph.

Table 16.7, column 2, shows a tabulation of these percentages in decimal form. This tabulation is used to compute the peak discharge and time to peak for any duration or pattern of rainfall.

## Example 4

Compute the peak discharge and time to peak produced by the runoff from the rainfall shown in figure 16.4(b) and Table 16.6 for two locations on a homogeneous watershed. Given the following information:

Location 1 - Drainage Area, 2 square miles;  $T_c$  - 1.5 hours; CN-85.

Eocation 2 - Drainage Area, 20 square miles;  $T_c$  - 6 hours; CN-85; storm duration - 12 hours.

For Location 1:

Step 1. Compute the time increment  $\Delta D$ . From equation 16.12:  $\Delta D$  = .133 x 1.5 = .2 hour

Step 2. Compute qp the peak discharge for the unit hydrograph.

From equation 16.9:

 $q_p = \frac{484 \times 2 \times 1}{\frac{.2}{2} + .9} = 968 \text{ cfs}$ 

Step 3. Knowing that 13  $\Delta D$ 's is the maximum number of runoff increments that will contribute to the peak of the flood hydrograph, compute the maximum length of excess rainfall or runoff that will

NEH Notice 4-102, August 1972



Figure 16.9 Part of triangular unit hydrograph that contributes to the peak when  $\Delta D$  = 0.2 T_p

Table 16.6 Rainfall tabulated in 0.2 hour increments from plot of Rain Gage Chart, Figure 16.4(b)

					<del></del>		
	Accum.	Accum.1/			Accum.	Accum. $\underline{1}$ /	
Time	Rainfall		ΔQ	Time	Rainfall		ΔQ
(hours)	(in.)	(in.)	(in.)	(hours)	(in.)		(in.)
(1)	(2)	(3)	(4)	(1)	(2)	(3)	(4)
0	0	0	0	6.2	5.00	3.37	.41
.2	.02	0	0	6.4	5.35	3.70	.33
. 4	.05	0	0	6.6	5.52	3.86	.16
.6	.08	0	0	6.8	5.68	4.01	.15
.8	.13	0	0	7.0	5.83	4.15	.14
1.0	.20	0	0	7.2	6.00	4.31	.16
1.2	.27	0	0	7.4	6.15	4.45	.14
1.4	.36	0	0	7.6	6.30	4.59	.14
1.6	.48	0	0	7.8	6.42	4.71	.12
1.8	.60	.03	.03	8.0	6.54	4.82	.11
2.0	.80	.09	.06	8.2	6.66	4.93	.11
2.2	•95	.15	.06	8.4	6.80	5.06	.13
2.4	1.18	.27	.12	8.6	6.90	5.16	.10
2.6	1.45	.42	.15	8.8	7.02	5.28	.12
2.8	1.68	.58	.16	9.0	7.12	5.37	.09
3.0	2.00	.80	.22	9.2	7.21	5.46	.09
3.2	2.22	.96	.16	9.4	7.30	5.55	.09
3.4	2.42	1.12	.16	9.6	7.40	5.64	.09
3.6	2.62	1.27	.15	9.8	7.50	5.74	.10
3.8	2.82	1.43	.16	10.0	7.60	5.84	.10
4.0	3.00	1.59	.16	10.2	7.70	5.93	.09
4.2	3.10	1.68	.09	10.4	7.80	6.03	.10
4.4	3.18	1.74	.06	10.4	7.86	6.09	.06
4.6	3.20	1.76	.02	10.8	7.90	6.12	.03
4.8	3.20	1.76	.00	11.0	7.92	6.14	.02
					7.94	6.16	.02
5.0	3.21	1.77	.01	11.2		6.18	.02
5.2	3.23	1.79	.02	11.4	7.96	6.20	.02
5.4	3.38	1.91	.12	11.6	7.98	•	
5.6	3.60	2.11	.20	11.8	7.99	6.21	.01
5.8	3.83	2.31	.20	12.0	8.00	6.22	.01
6.0	4.55	2.96	.65				

 $[\]frac{1}{R}$ Runoff computed using CN = 85 moisture condition II

Table 16.7 Peak discharge determined for example  $^{\rm h}.$ 

21	4																
	2 ours	Col 2 x col 10	(11)			9520.	.2760	.3276	.1088	.2660	1.3992	.6100	.4080	.2760	.1440	.0780	3.9692
	Location 2 AD = 0.8 hours Trial 2	Runoff (inches)	(10)		0.	.27	69.	.63	.17	.35	1.59	.61	.51	94.	.36	.39	
		Time (hours)	(6)		Φ.	1.6	2.4	3.2	•	8.4	5.6	6.42/	7.2	8.0	•	9.6	
	•	Col 2 x col 7	(8)				.1080	.3588	.4032	.1292	.3080	1.5900	.4880	.3060	.1840	.0720	3.9472
	Location 2 AD. = 0.8 hour Trial 1	Runoff (inches)	(1)		0.	0.	.27	69.	.63	.17	.35	1.59	.61	.51	94.	.36	
	Ι ΔΙ	Time (hours)	(9)		0.	Φ.	1.6	2.4	3.2	٥٠١	, 8° †	5.62/	4.9	7.2	8.0	8.8	
		Col 2 x col 4	(2)	4200.	.0032	0000.	0400.	4010.	.0768	.1520	.1760	.6500	.3280	.1980	0490.	.0300	1.6948
	Location 1 AD = 0.2 hour	Runoff (inches)	(†)	90.	.02	00.	.01	.02	.12	.20	.20	.65	.41	.33	.16	.15	
	[\Delta]	Time (hours)	(3)	4.2	<b>т.</b> т	9.4	4.8	5.0		5.4	5.6			6.2			
		$\sqrt{1}$	(5)	t0.	.16	.28	o₁.	.52	49.	92.	88.	1.00	8.	9.	야.	.20	
		Triangle Number	(1)	П	Ŋ	٣	†1	2	9	7	8	6	10	11	12	13	

The time to peak of the flood hydrograph is the time of beginning of incremental runoff opposite triangle number 9 plus the time to peak of the unit hydrograph. See figure 16.9 for definition of Y. ति हो

contribute to the peak of a composite flood hydrograph at location 1 (0.2 x 13 = 2.6 hours). From table 16.6 note the maximum runoff for one  $\Delta D$  (0.2 hour) is 0.65 inches, which occurs during the period from 5.8 to 6.0 hours from the beginning of rainfall.

- Step 4. Tabulate the runoff in  $\Delta D$  time increments each way from the maximum  $\Delta D$  of runoff. There should be at least eight increments of runoff ahead of and four increments of runoff after the maximum increment as shown in table 16.7, column 4, where the  $\Delta D$  increments of runoff are tabulated opposite the elapsed time after rainfall begins on the watershed.
- Step 5. Multiply column 2 by column 4 and tabulate in column 5 of table 16.7.
- Step 6. Compute the peak discharge and time to peak of the flood hydrograph at location 1 by multiplying the total of column 5 by the peak discharge of the unit hydrograph.

$$q_p = 1.695 \times 968 = 1640 \text{ cfs}$$

$$T_p = 5.8 + 1 = 6.8 \text{ hours (from beginning of rainfall)}$$

For Location 2:

- Step 1. Compute the time increment,  $\Delta D$ . From equation 16.12,  $\Delta D$  = .133 x 6 = .8 hour
- Step 2. Compute qp the peak discharge for the unit hydrograph. From equation 16.9:

$$q_p = \frac{484 \times 20 \times 1}{.8 + 3.6} = 2420 \text{ cfs}$$

- Step 3. Compute the maximum length of excess rainfall or runoff that adds to the peak of the composite flood hydrograph at location 2 (.8 x 13 = 10.4 hours). From table 16.6 the maximum runoff for one  $\Delta D$  (.8 hour) is 1.59 inches and occurs during the period from 5.6 to 6.4 hours after the beginning of rainfall.
- Step 4. Tabulate the runoff in  $\Delta D$  time increments each way from the maximum  $\Delta D$  of runoff. This tabulation is shown in table 16.7, column 7.
- Step 5. Multiply column 2 by column 7 and tabulate in column 8.
- Step 6. Compute the peak discharge and time to peak as shown in step 6 of example at location 1:

$$q_p = 3.947 \times 2420 = 9550 \text{ cfs}$$
 $T_p = 5.6 + 4.0 = 9.6 \text{ hours (from beginning of rainfall)}$ 

Generally, the peak of the composite flood hydrograph can be computed by placing the largest increment of runoff opposite triangle number 9 as shown in table 16.7, column 1 and 4. However, if runoff is irregular, more than one computation may be required before determining the peak of the composite flood hydrograph. Trial 2 also is shown in table 16.7. In this case, the largest increment of runoff is placed opposite triangle number 8. Using the same procedure as in trial 1, the results are:

$$q_p = 3.969 \times 2420 = 9600 \text{ cfs}$$
 $T_p = 6.4 + 4.0 = 10.4 \text{ hours (from beginning of rainfall)}$ 

Trial 2 shows that the peak discharge is greater when the largest increment of runoff is placed opposite triangle number 8. Other patterns of runoff may require several computations before the peak discharge is determined.

## References

Mitchell, W. D., Unit Hydrographs in Illinois, State of Illinois, Division of Waterways, Springfield, Ill., 1948

Sherman, L. K., The Hydraulics of Surface Runoff, Civil Eng. 10:165-166, 1940

## NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 17. FLOOD ROUTING

bу

Victor Mockus Hydraulic Engineer

1967

Revisions by

Wendell Styner

1972

Revised and reprinted, 1972



# NATIONAL ENGINEERING HANDBOOK

# SECTION 4

# HYDROLOGY

# CHAPTER 17. FLOOD ROUTING

Introduction	<u>Contents</u>	Page
SCS electronic computer program   17-2     References   17-2     Summary of chapter contents   17-3     Elevation-storage and Elevation-discharge relationships   17-3     Elevation-discharge relationships for reservoirs   17-7     Elevation-discharge relationships for reservoirs   17-7     Storage-discharge relationships for reservoirs   17-7     Elevation, stage, storage, discharge relationships   17-12     For streams   17-7     Feservoir Routing Methods   17-11     Methods and examples   17-12     Mass curve method: numerical version   17-12     Example 17-1   17-13     Example 17-2   17-16     Mass curve method: direct version   17-17     Mass curve method: graphical version   17-19     Example 17-3   17-19     Storage indication method   17-22     Example 17-5   17-24     Example 17-5   17-25     Storage indication method as used in the SCS   electronic computer program   17-31     Example 17-6   17-31     Culp's method   17-32     Channel Routing Methods   17-46     Theory of the convex method   17-36     Channel Routing Methods   17-46     Discussion   17-56     Determination of K   17-56     Determination of C   17-51     Determination of At   17-51     Procedure for routing through any reach length   17-51     Procedure for routing through any reach length   17-51     Total	Introduction	17-1
References		-
Summary of chapter contents		-
Elevation-storage and Elevation-discharge relationships Elevation-storage relationships for reservoirs. Elevation-discharge relationships for reservoirs Elevation-discharge relationships for reservoirs T-7 Storage-discharge relationships for reservoirs Elevation, stage, storage, discharge relationships for streams T-7  Reservoir Routing Methods The continuity equation Methods and examples Mass curve method: numerical version Example 17-1 Example 17-2 Mass curve method: direct version Mass curve method: direct version T-12 Example 17-2 Mass curve method: graphical version T-13 Example 17-3 Storage indication method Example 17-4 Example 17-5 Storage indication method as used in the SCS electronic computer program Culp's method Example 17-6 Short cuts for reservoir routings  Channel Routing Methods Theory of the convex method Discussion Some useful realtionships and procedures Determination of K Determination of C Determination of At Procedure for routing through any reach length 17-51 Procedure for routing through any reach length 17-51	_	-
Elevation-storage relationships for reservoirs 17-3 Elevation-discharge relationships for reservoirs 17-7 Storage-discharge relationships for reservoirs 17-7 Elevation, stage, storage, discharge relationships for streams 17-7 Elevation, stage, storage, discharge relationships for streams 17-7  Reservoir Routing Methods 17-11 The continuity equation 17-12 Methods and examples 17-12 Mass curve method: numerical version 17-12 Example 17-1 17-13 Example 17-2 17-16 Mass curve method: direct version 17-19 Mass curve method: graphical version 17-19 Example 17-3 17-19 Storage indication method 17-22 Example 17-4 17-23 Example 17-5 Storage indication method as used in the SCS electronic computer program 17-31 Culp's method 17-31 Example 17-6 17-33 Short cuts for reservoir routings 17-36  Channel Routing Methods 17-48 Theory of the convex method 17-50 Determination of K 17-50 Determination of C 17-51 Determination of At 17-51 Procedure for routing through any reach length 17-51		21 3
Elevation-discharge relationships for reservoirs 17-7 Storage-discharge relationships for reservoirs 17-7 Elevation, stage, storage, discharge relationships for streams 17-7  Reservoir Routing Methods 17-11 The continuity equation 17-11 Methods and examples 17-12 Mass curve method: numerical version 17-12 Example 17-1 17-13 Example 17-2 17-16 Mass curve method: direct version 17-17 Mass curve method: graphical version 17-19 Example 17-3 17-19 Storage indication method 17-22 Example 17-5 Storage indication method as used in the SCS electronic computer program 17-31 Culp's method 17-32 Short cuts for reservoir routings 17-36 Channel Routing Methods 17-36 Theory of the convex method 17-36 Determination of C 17-50 Determination of C 17-51 Determination of At 17-51 Procedure for routing through any reach length 17-51	Elevation-storage and Elevation-discharge relationships	17-3
Elevation-discharge relationships for reservoirs 17-7 Storage-discharge relationships for reservoirs 17-7 Elevation, stage, storage, discharge relationships for streams 17-7  Reservoir Routing Methods 17-11 The continuity equation 17-11 Methods and examples 17-12 Mass curve method: numerical version 17-12 Example 17-1 17-13 Example 17-2 17-16 Mass curve method: direct version 17-17 Mass curve method: graphical version 17-19 Example 17-3 17-19 Storage indication method 17-22 Example 17-5 Storage indication method as used in the SCS electronic computer program 17-31 Culp's method 17-32 Example 17-6 17-31 Short cuts for reservoir routings 17-36  Channel Routing Methods 17-48 Discussion 17-50 Determination of C 17-50 Determination of C 17-51 Determination of At 17-51 Procedure for routing through any reach length 17-51	Elevation-storage relationships for reservoirs	17-3
Storage-discharge relationships for reservoirs   17-7	Elevation-discharge relationships for reservoirs	17-7
Elevation, stage, storage, discharge relationships for streams		
Reservoir Routing Methods		
Reservoir Routing Methods   17-18   The continuity equation   17-19   Methods and examples   17-12   Mass curve method: numerical version   17-12   Example 17-1   17-13   Example 17-2   17-16   Mass curve method: direct version   17-17   Mass curve method: graphical version   17-19   Example 17-3   17-19   Storage indication method   17-22   Example 17-5   17-24   Example 17-5   17-24   Storage indication method as used in the SCS   electronic computer program   17-31   Culp's method   17-31   Example 17-6   17-31   Short cuts for reservoir routings   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36		17-7
The continuity equation   17-11     Methods and examples   17-12     Mass curve method: numerical version   17-12     Example 17-1   17-13     Example 17-2   17-16     Mass curve method: direct version   17-17     Mass curve method: graphical version   17-19     Example 17-3   17-19     Storage indication method   17-22     Example 17-4   17-23     Example 17-5   17-24     Storage indication method as used in the SCS     electronic computer program   17-31     Culp's method   17-31     Example 17-6   17-31     Short cuts for reservoir routings   17-36     Channel Routing Methods   17-48     Discussion   17-50     Some useful realtionships and procedures   17-50     Determination of K   17-51     Determination of C   17-51     Determination of At   17-51     Procedure for routing through any reach length   17-51     Procedure for routing through any reach length   17-51     Total curve method   17-51     Procedure for routing through any reach length   17-51     Total curve method   17-51     Total curve method   17-51     Determination of C   17-51     Procedure for routing through any reach length   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-18     Total curve method   17-19     Total curve method   17-19     Total curve method   17-19     Total curve meth		
The continuity equation   17-11     Methods and examples   17-12     Mass curve method: numerical version   17-12     Example 17-1   17-13     Example 17-2   17-16     Mass curve method: direct version   17-17     Mass curve method: graphical version   17-19     Example 17-3   17-19     Storage indication method   17-22     Example 17-4   17-23     Example 17-5   17-24     Storage indication method as used in the SCS     electronic computer program   17-31     Culp's method   17-31     Example 17-6   17-31     Short cuts for reservoir routings   17-36     Channel Routing Methods   17-48     Discussion   17-50     Some useful realtionships and procedures   17-50     Determination of K   17-51     Determination of C   17-51     Determination of At   17-51     Procedure for routing through any reach length   17-51     Procedure for routing through any reach length   17-51     Total curve method   17-51     Procedure for routing through any reach length   17-51     Total curve method   17-51     Total curve method   17-51     Determination of C   17-51     Procedure for routing through any reach length   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-51     Total curve method   17-18     Total curve method   17-19     Total curve method   17-19     Total curve method   17-19     Total curve meth	Reservoir Routing Methods	17-11
Methods and examples       17-12         Mass curve method: numerical version       17-12         Example 17-1       17-13         Example 17-2       17-16         Mass curve method: direct version       17-17         Mass curve method: graphical version       17-19         Example 17-3       17-19         Storage indication method       17-22         Example 17-4       17-23         Example 17-5       17-24         Storage indication method as used in the SCS       electronic computer program       17-31         Culp's method       17-31         Example 17-6       17-31         Short cuts for reservoir routings       17-48         Theory of the convex method       17-48         Discussion       17-50         Some useful realtionships and procedures       17-50         Determination of K       17-50         Determination of C       17-51         Determination of At       17-51         Procedure for routing through any reach length       17-51	The continuity equation	17-11
Mass curve method: numerical version       17-12         Example 17-1       17-13         Example 17-2       17-16         Mass curve method: direct version       17-17         Mass curve method: graphical version       17-19         Example 17-3       17-19         Storage indication method       17-22         Example 17-4       17-23         Example 17-5       17-24         Storage indication method as used in the SCS       electronic computer program       17-31         Culp's method       17-31         Example 17-6       17-31         Short cuts for reservoir routings       17-48         Theory of the convex method       17-48         Discussion       17-50         Some useful realtionships and procedures       17-50         Determination of K       17-50         Determination of C       17-51         Procedure for routing through any reach length       17-51	Methods and examples	17-12
Example 17-1		17-12
Example 17-2       17-16         Mass curve method: direct version       17-17         Mass curve method: graphical version       17-19         Example 17-3       17-19         Storage indication method       17-22         Example 17-4       17-23         Example 17-5       17-24         Storage indication method as used in the SCS       electronic computer program       17-31         Culp's method       17-31         Example 17-6       17-31         Short cuts for reservoir routings       17-36         Channel Routing Methods       17-48         Theory of the convex method       17-48         Discussion       17-50         Some useful realtionships and procedures       17-50         Determination of K       17-51         Determination of C       17-51         Procedure for routing through any reach length       17-51	· · · · · · · · · · · · · · · · · · ·	17-13
Mass curve method: direct version       17-17         Mass curve method: graphical version       17-19         Example 17-3       17-19         Storage indication method       17-22         Example 17-4       17-23         Example 17-5       17-24         Storage indication method as used in the SCS       electronic computer program       17-31         Culp's method       17-31         Example 17-6       17-31         Short cuts for reservoir routings       17-36         Channel Routing Methods       17-48         Theory of the convex method       17-48         Discussion       17-50         Some useful realtionships and procedures       17-50         Determination of K       17-51         Determination of C       17-51         Determination of At       17-51         Procedure for routing through any reach length       17-51		17-16
Mass curve method: graphical version       17-19         Example 17-3       17-19         Storage indication method       17-22         Example 17-4       17-23         Example 17-5       17-24         Storage indication method as used in the SCS       17-31         electronic computer program       17-31         Culp's method       17-31         Example 17-6       17-31         Short cuts for reservoir routings       17-36         Channel Routing Methods       17-48         Theory of the convex method       17-48         Discussion       17-50         Some useful realtionships and procedures       17-50         Determination of K       17-51         Determination of C       17-51         Procedure for routing through any reach length       17-51	Mass curve method: direct version	
Example 17-3   17-19   Storage indication method   17-22   Example 17-4   17-23   17-24   Example 17-5   17-24   Example 17-5   17-24   Example 17-5   17-24   Example 17-6   17-31   Example 17-6   17-31   Short cuts for reservoir routings   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17-36   17	Mass curve method: graphical version	
Storage indication method  Example 17-4  Example 17-5  Storage indication method as used in the SCS  electronic computer program  Culp's method  Example 17-6  Short cuts for reservoir routings  Channel Routing Methods  Theory of the convex method  Discussion  Some useful realtionships and procedures  Determination of K  Determination of C  Determination of At  Procedure for routing through any reach length  17-51  17-22  17-23  17-24  17-24  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31  17-31		
Example 17-4 Example 17-5 Example 17-5 Storage indication method as used in the SCS electronic computer program Culp's method Example 17-6 Short cuts for reservoir routings  Channel Routing Methods Theory of the convex method Discussion Some useful realtionships and procedures Determination of K Determination of C Determination of Δt Procedure for routing through any reach length  17-51 17-24 17-24 17-24 17-24 17-24 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31 17-31	Storage indication method	
Example 17-5		
Storage indication method as used in the SCS electronic computer program		
electronic computer program		_, _
Culp's method Example 17-6 Short cuts for reservoir routings  Channel Routing Methods Theory of the convex method Discussion Some useful realtionships and procedures Determination of K Determination of C Determination of C Determination of At Procedure for routing through any reach length  17-31 17-31 17-31 17-31 17-32 17-48 17-48 17-50 17-50 17-50 17-50 17-50 17-51		17-31
Example 17-6	Culp's method	
Short cuts for reservoir routings 17-36  Channel Routing Methods 17-48 Theory of the convex method 17-48 Discussion 17-50 Some useful realtionships and procedures 17-50 Determination of K 17-50 Determination of C 17-51 Procedure for routing through any reach length 17-51	Example 17-6	•
Channel Routing Methods Theory of the convex method Discussion Some useful realtionships and procedures Determination of K Determination of C Determination of C Determination of At Procedure for routing through any reach length  17-51 17-51	Short cuts for reservoir routings	
Theory of the convex method Discussion Some useful realtionships and procedures Determination of K Determination of C Determination of C Determination of At Procedure for routing through any reach length  17-48 17-48 17-48 17-48 17-48 17-50 17-50 17-50 17-50 17-51		_, _,
Theory of the convex method  Discussion  Some useful realtionships and procedures  Determination of K  Determination of C  Determination of At  Procedure for routing through any reach length  17-51  17-51	Channel Routing Methods	17-48
Discussion Some useful realtionships and procedures  Determination of K  Determination of C  Determination of Δt  Procedure for routing through any reach length  17-50  17-51  17-51	Theory of the convex method	17-48
Some useful realtionships and procedures  Determination of K	Discussion	17-50
Determination of K	Some useful realtionships and procedures	17-50
Determination of C	Determination of K	17-50
Determination of Δt	Determination of C	
Procedure for routing through any reach length 17-51	Determination of At	
Variability of routing parameters selection of velocity V 17-52	Variability of routing parameters, selection of velocity V .	17-52

# CONTENTS cont'd.

					Page
	Effect	les: Convex routing methods  Example 17-7			17-54 17-56 17-57 17-59 17-61 17-66
					_,
Un	Basic Effect Elimin Workin Exampl Use Use	rograph Routing Methods equations ts of storm duration and time of concentration nation of Tp  ng equations for special cases les e of equation 17-40 Example 17-12 of equation 17-43 Example 17-13 of equation 17-43 on large watersheds e of equations 17-48, 17-50, and 17-52 Example 17-14 Example 17-15 Example 17-16			17-82 17-83 17-84 17-86 17-86 17-86 17-86 17-86 17-89 17-89
	Discus	Example 17-17			
	DIBCU		•	•	エトーンエ
Fi	gures				
	17 <b>-</b> 1	Elevation, storage, discharge relationship for a reservoir	•	•	17-39
		inflow curve for a reservoir	•	•	17-38
	17-4	for Example 17-2	•	•	17-39
	17 <b>-</b> 5 17 <b>-</b> 6	reservoir routing for Example 17-3			17-40 17-41
		reservoir routing for Example 17-4			
		hydrograph for Example 17-5	•	•	17-44
	17-10 17-11 17-12	of reservoir routing for Example 17-5	•	•	17-46 17-47 17-72

## CONTENTS cont'd.

						Page
Fis	gures					
8	-	ES-1025 rev.				
		eet 1 of 2				17-74
		eet 2 of 2				17-75
		Inflow and routed outflow hydrograph				-1 12
	エーエノ	for Example 17-7				17-76
	17_16	Inflow and routed outflow hydrograph for	•	•	•	
	T1-T0	Example 17-8				17-77
	17 17	Outflow and routed inflow hydrograph for	•	•	•	±1 11
	T   -T	Example 17-9				17-78
	17_18	Mass inflow, mass outflow and rate hydrograph	•	•	•	1-10
	±1-±0	for Example 17-10				17-79
	17 10	Inflow hydrograph and routed outflow	•	•	•	<b>1</b>  -
	<u> </u>					17-80
	17-20	hydrographs for Example 17-11, Method 1 and 2	•	•	•	11-00
	±1 <del>-</del> 20	Typical schematic diagram for routing through				17-81
	17 01	a system of channels				17-93
	T1-21	$q_{\rm p}/{\rm Q}$ versus A for a typical physiographic area	•	•	•	11-93
πоλ	oles					
±a.	17 <b>-</b> 1	Fauntiana for convergion of units				17-5
		Equations for conversion of units	•	•	•	11 <b>-</b> 0
	17-2					17-6
	17-3	reservoir	•	•	•	T1-0
	T1-2					17-8
	77 ).	2-stage principal spillway	•	•	•	11-0
	17-4	Working table for a storage-discharge				17-10
	17 E	relationship	•	•	•	T 1 - TO
	17-5	•				17-15
	17-6	method of routing for Example 17-1	•	•	•	T1-T2
	T!-0	<u> </u>				17-18
	177	after 10 days of drawdown for Example 17-2.	•	•	•	T1-T0
	T (- (	Working table for the graphical version of				17 01
	17 0	the mass-curve method for Example 17-3	•	•	•	17-21
	T1-0	Working table for preparation of the working				17 OF
	17 0	curve for Example 17-4	•	•	•	17-25
	11-9	Operations table for the S-I method for				17-26
	17 10	Example 17-4	•	•	•	11-20
	T1-T0	rrocedure for routing by the storage-indication				17 07
	17.11	method for Example 17-4	•	•	•	17-27
	T ! - TT	working table for preparation of the working				17-29
	17 10	curves for Example 17-5	•	•	•	17-30
	17 12	Warrian table for Example 1(-)	•	•	•	T1-20
	T1-T2	Working table for Culp method, step 13 of				17-35
	7771	Example 17-6	•	•	•	
		Basic operations in the Convex routing method .				17 <b>-</b> 55
		Operations table for Example 17-8				17-58
		Operations table for Example 17-9				17-60
		Operations table for Example 17-10				17-62
	T(-T8	Operations table for Example 17-11 Method 1	•	•	•	17-64

# CONTENTS cont'd.

			Page
Гa	bles		
	17-19	Operation table for Example 17-11 Method 2	17-67
	17-20	Portion of a typical operations table for	
		routing through a stream system	17-71
	17-21	Data and working table for use of Equation	
		17-43 on a large watershed	17-88
	17-22	Area and storage data for Example 17-17	17-92

#### NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

#### CHAPTER 17. FLOOD ROUTING

#### Introduction

In the American Society of Civil Engineers' manual, "Nomenclature for Hydraulics," flood routing is variously defined as follows:

- routing (hydraulics).--(1) The derivation of an outflow hydrograph of a stream from known values of upstream inflow.

  The procedure utilizes wave velocity and the storage equation; sometimes both. (2) Computing the flood at a downstream point from the flood inflow at an upstream point, and taking channel storage into account.
- routing, flood. -- The process of determining progressively the timing and shape of a flood wave at successive points along a river.
- routing, streamflow. -- The procedure used to derive a downstream hydrograph from an upstream hydrograph, or tributary hydrographs, and from considerations of local inflow by solving the storage equation.

Routing is also done with mass curves of runoff or with merely peak rates or peak stages of runoff, as well as hydrographs. The routing need not be only downstream because the process can be reversed for upstream routing, which is often done to determine upstream hydrographs from hydrographs gaged downstream. Nor is routing confined to streams and rivers; it is regularly used in obtaining inflow or outflow hydrographs, mass curves, or peak rates in reservoirs, farm ponds, tanks, swamps, and lakes. And low flows are routed, as well as floods. The term "flood routing" covers all of these practices.

The purpose of flood routing in most engineering work is to learn what stages or rates of flow occur, without actually measuring them, at specific locations in streams or structures during passages of floods. The stages or rates are used in evaluating or designing a water-control structure or project. Differences in stages or rates from routings made with and without the structure or project in place show its effects on the flood flows. In evaluations, the differences are translated into monetary terms to show benefits on an easily comparable basis; in design, the differences are used directly in developing or modifying the structure or project characteristics.

The routing process is based on one of the following approaches:

- 1. Solution of simultaneous partial differential equations of motion and continuity. Simplified versions of the equations are generally used in electronic computer routings; even the simplifications are too laborious for manual routings.
- 2. Solution of the continuity equation alone. A simplified form of the equation is the basis for many routing methods.
- 3. Use of inflow-outflow hydrograph relationships.
- 4. Use of unit hydrograph theory.
- 5. Use of empirical relationships between inflow and outflow peak stages or rates. Mostly used for large rivers.
- 6. Use of hydraulic models.

Methods based on the second, third, and fourth approaches are presented in this chapter. The routing operations in the methods can be made . numerically by means of an electronic computer, desk calculator, slide rule, nomograph, network chart, or by mental calculations; or graphically by means of an analog machine, special chart, or by successive geometrical drawings. Methods specifically intended for electronic computers or analog machines are neither presented nor discussed.

All methods presented in this chapter are accurate enough for practical work if they are applied as they are meant to be and if data needed for their proper application are used. Advantages and disadvantages of particular methods are mentioned and situations that lead to greater or lesser accuracy of a method are pointed out, but there is no presentation of tests for accuracy or of comparisons between routed and gaged hydrographs.

#### SCS electronic computer program

The electronic computer program now being used in SCS watershed evaluations contains two methods of flood routing. The Storage-Indication method is used for routing through reservoirs and the Convex method for routing through stream channels. Manual versions of both methods are described in this chapter.

#### References

Each of the following references contains general material on flood routing and descriptions of two or more methods. References whose main subject is not flood routing but which contain a useful example of routing are cited in the chapter as necessary.

- 1. Thomas, H. A., 1937, The hydraulics of flood movements in rivers: Pittsburg, Carnegie Inst. Tech., Eng. Bull. Out of print but it can be found in most libraries having collections of engineering literature.
- 2. Gilcrest, B. R., 1950, Flood routing: Engineering Hydraulics (H. Rouse, ed.), New York, John Wiley and Sons, Chapter 10, pp. 635-710.

- 3. U.S. Department of the Army, Corps of Engineers, 1960, Routing of floods through river channels: Eng. Manual EM 1110-2-1408.
- 4. Carter, R.W., and R. G. Godfrey, 1960, Storage and flood routing: U.S. Geol. Survey Water-Supply Paper 1543-B.
- 5. Yevdjevich, Vujica M., 1964, <u>Bibliography and discussion of flood-routing methods and unsteady flow in channels</u>: U.S. Geol. Survey Water-Supply Paper 1690. Prepared in cooperation with the Soil Conservation Service.
- 6. Lawler, Edward A., 1964, <u>Flood routing</u>: Handbook of Applied Hydrology (V.T. Chow, ed.), New York, McGraw-Hill Book Co., section 25-II, pp. 34-59.

#### Summary of chapter contents

The remainder of this chapter is divided into four parts: elevation—storage and elevation—discharge relationships, reservoir routing methods, channel routing methods, and unit—hydrograph routing methods. In the first part, some relationships used in reservoir or channel routing are discussed and exhibits of typical results are given; in the second, the continuity equation is discussed and methods of using it in reservoir routings are shown in examples of typical applications; in the third, the theory of the Convex method is presented and examples of typical applications in channel routings are given; and in the fourth, the unit hydrograph theory is discussed and methods of applying it in systems analysis are shown in examples using systems of floodwater—retarding structures.

#### Elevation-Storage and Elevation-Discharge Relationships

In the examples of routing through reservoirs and stream channels it will be necessary to use elevation-storage or elevation-discharge curves (or both) in making a routing or as a preliminary to routing. Preparation of such curves is not emphasized in the examples because their construction is described in other SCS publications. The relationships are briefly discussed here as preliminary material; exhibits of tables and curves used in routings are given here and in some of the examples. Conversion equations used in preparing the tables and curves are given in Table 17-1.

### Elevation storage relationships for reservoirs

Table 17-2 is a working table that shows data and computed results for an elevation-storage relationship to be used in some of the examples given later. Columns 1 and 7 or 1 and 8 give the relationship in different units of storage.

The relationship is developed from a contour map (or equivalent) of the reservoir area and the table is a record of the computations that were made. Once the map is available, the work goes as follows: (1) select contours close enough to define the topography with reasonable accuracy and tabulate the contour elevations in column 1; (2) determine the

reservoir surface area at each elevation; for this table the areas were determined in square feet as shown in column 2 and converted to acres as shown in column 3; (3) compute average surface areas as shown in column 4; (4) tabulate the increments of depth in column 5; (5) compute the increments of storage for column 6 by multiplying an average area in column 4 by its appropriate depth increment in column 5; (6) accumulate the storage increments of column 6 to get accumulated storage in column 7 for each elevation of column 1; (7) convert storages of column 7 to storages in another unit, if required, and show them in the next column. The relationship of data in columns 1 and 8 is plotted in figure 17.1 as an elevation-storage curve.

Table 17-1. Equations for conversions of units

Table 1 -1.	Equations for convers	10115 01 411105					
Conve	ersion E	quation No.					
cfs-hours	= 12.1 (AF)	(Eq. 17.1)					
cfs-days	= 0.504 (AF)	(Eq. 17-2)					
inches	= (AF)/53.3 A	(Eq. 17-3)					
q _{id}	= q _{cfs} /26.9 A	(Eq. 17-4)					
q _{ih}	= $q_{cfs}/645$ A	(Eq. 17-5)					
qad	= 1.98 q _{cfs}	(Eq. 17-6)					
qah	= 0.0821 q _{cfs}	(Eq. 17-7)					
$s_x$	$= L (A_X)/3600$	(Eq. 17-8)					
s'x	$= L (A_X)/297$	(Eq. 17-9)					
where A	= drainage area in squ	are miles					
$\mathtt{A}_{\mathbf{x}}$	= cross section end-ar feet for discharge x						
AF	= âcre-feet						
L	= reach length in feet						
q _{ad}	= discharge in acre-fe	et per day					
q _{ah}	= discharge in acre-fe	et per hour					
q _{efs}	= discharge in cfs						
qid	= discharge in inches	per day					
q _{ih}	= discharge in inches	per hour					

= reach storage in cfs-hours for

= reach storage in acre-feet for a

a given discharge x

given discharge x

 $s_x$ 

S'x

Table 17-2. Elevation-storage relationship for a reservoir.

Ele- vation	Surface area	Surface area	Average surface	Δ depth	Δ storage	Storage	Storage
(feet)	(sq.ft.)	(acres)	area (acres)	(feet)	(AF)	(AF)	(inches)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
570	0	0	4.82	0.00	0 ()	0	0
572	420,000	9.64		2.00	9.64	9.64	.022
574	1,180,000	27.09	18.36	2.00	36.72	46.36	•109
576	2,374,000	54.50	38.34	2.00	76.68	123.04	.288
580	3,866,000	88.75	71.62	4.00	286.49	409.53	.960
585	5,427,000	124.59	106.67	5.00	533.35	942.88	2.210
590	7,954,000	182.60	153.60	5.00	768.00	1710.88	4.010
595	9,961,000	228.67	205.64	5.00	1028.20	2739.08	6.420
600	11,820,000	271.35	250.01	5.00	1250.05	3989.13	9.351
		-11.07					7.571

#### Elevation-discharge relationships for reservoirs

The elevation-discharge relationship for a reservoir is made using elevations of the reservoir and discharges of the spillways to be used in a routing. A typical relationship for a 2-stage principal spillway is given by columns 1 and 6 of Table 17-3 for discharges in cfs, and in columns 1 and 7 for discharges in in./day. The procedure for developing the relationship will not be given here because sufficient charts, equations, and examples for principal spillways are given in NEH-5 and in ES-150 through 153, and for emergency spillways in ES-98 and ES-124. Table 17-3 illustrates a useful way of keeping the work in order: by tabulating the data for different types of flow in separate columns, and by keeping the two stages separate, the total discharges are more easily summed. Note that the totals in cfs are not merely sums of all cfs in a row; the operation of the spillway must be understood when selecting the discharges to be included in the sum. To combine the principal spillway flow with emergency spillway flow a column for the emergency spillway discharges is added between columns 5 and 6, and totals in column 6 must include those discharges where appropriate. Column 7 gives discharges converted from those in column 6; it is shown because this table is used in examples given later and that particular unit of flow is required (see Figure 17-1).

## Storage-discharge relationships for reservoirs

If the elevation-storage and elevation-discharge relationships are to be used for many routings it is more convenient to use them as a storage-discharge relationship. The relationships are combined by plotting a graph of storage and elevation, another of discharge and elevation, and, while referring to the first two graphs, making a third by plotting storage for a selected elevation against discharge for that elevation; for a typical curve see Figure 17-2. The storage-discharge curve can also be modified for ease of operations with a particular routing method; for a typical modification see Figure 17-6 and step 4 of Example 17-4.

Elevation, stage, storage, discharge relationships for streams. It is common practice to divide a stream channel into reaches (see Chapter 6) and to develop storage or discharge relationships for individual reaches rather than the stream as a whole. A stream elevation— or stage—discharge curve is for a particular cross section. If a reach has several cross sections within it they are all used in developing the working tools for routing. Some routing methods require the use of separate discharge curves for the head and foot of a reach; such methods are not presented in this chapter.

Elevation— or stage—discharge curves for cross sections or reaches are prepared as shown in Chapter 14. They will not be discussed here.

Elevation— or stage—storage curves for a reach can be prepared using the procedure for reservoirs but ordinarily a modified approach is used and the storage—discharge curve prepared directly. Table 17-4 is a working table for developing such a curve. The work is based on the assumption that steady flow occurs in the reach at all stages of flow. The reach used in Table 17-4 has four cross sections so that a weighting method

Table 17-3 Elevation-discharge relationship for a 2-stage principal spillway.

			Discha	arge			
Elevation (feet)	First Weir (cfs)	stage: Orifice (cfs)	Second Weir (cfs)	stage: Pipe (cfs)	Total (cfs)	Total (in./day)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	
580.2 580.7 581.2 581.7 582.2 582.7 583.7 584.2 585.0 587.5 587.5 588.5 589.5 589.5 589.5 589.5 590.0 590.0 591.0 592.0 600.0	0 4.1 11.6 21.3 32.8 45.8 60.3 75.3 92.8 130 162 206	0 89.5 101 120 133 149 159 163 170 176 182	0 44.6 126 232 357 499 656 722	0 343 347 353 357 361 365 367 374 382 401 432	0 4.1 11.6 21.3 32.8 45.8 60.3 75.3 92.8 120 133 149 204 289 353 357 361 365 367 374 382 401 432	0 .019 .054 .099 .153 .213 .281 .350 .432 .559 .620 .694 .950 1.346 1.644 1.663 1.680 1.697 1.707 1.740 1.778 1.863 2.003	

is needed; with only one or two sections the weighting is eliminated but the reach storage is less well defined. Development of the storage-discharge curve goes as follows: (1) select a series of discharges from zero to a discharge greater than any to be routed and tabulate them in column 1; (2) enter the stage-discharge curve for each cross section with a discharge from column 1 and find the stage; (3) enter the stage-end-area curve for that section with the stage from step 2 and find the area at that stage, tabulating areas for all sections as shown in columns 2, 3, 4, and 5; (4) determine the distances between cross sections and compute the weights as follows:

From cross section	To cross section	Distance (feet)	Weight
1 2 3	2 3 4	1000 6000 <u>3000</u>	0.10 .60 .30
	Su	m: 10000	

with the weight for sub-reach 1-2 being 1000/10000 = 0.10, and so on; (5) compute weighted end areas for columns 6, 7, and 8; for example, at a discharge of 3,500 cfs cross section 1 has an end area of 2,500 square feet and section 2 has 640 square feet, and the weighted end area is 0.10(2500 + 640)/2 = 157 square feet; (6) sum the weighted areas of columns 6, 7, and 8 for each discharge, tabulating the sums in column 9; (7) compute storages in column 10 by use of Equation 17-8 or 17-9, whichever is required; for example, at a discharge of 3,500 cfs the storage in cfs-hrs is 83500 = 10000(1189)/3600 = 3300 cfs-hrs, by a slide-rule computation. The storage-discharge curve is plotted using data from columns 1 and 10. Data of those columns can be used in preparing the working curve for routing. How this is done depends on the routing method to be used. For the Storage-Indication method the working curve is prepared as shown in Example 17-4.

Table 17-4 Working table for a storage-discharge relationship

Out-	Cr	Cross secti	section end-areas	eas	Wei	Weighted end-areas	-areas	Avg.	Stor-
flow	Н	2	Ж	7	1-2	2-3	3-4	end-	986 0
(cfs)	(sq.ft)	(sq.ft)	(sq.ft)	(sq.ft)	(sq.ft)	(sq.ft)	(sq.ft)	(sq.ft)	(cfs-hrs)
(1)	(2)	(3)	(7)	(5)	(9)	(1)	(8)	(6)	(10)
0	0	0	0	0	0	0	0	0	Ö
50	04	27	27	33	m	17	8	25	70
150	90	†† †	44	<del>1</del> 79	7	56	16	64	164
300	150	83	83	100	12	50	27	89	248
800	0.4	180	220	325	32	120	82	234	651
1500	950	310	7460	700	63	231	174	168	1302
3500	2500	049	1200	2000	157	552	7480	1189	3300
5000	3250	860	1700	2700	205	768	099	1633	1240
7000	0044	1050	2050	3400	272	930	819	2021	5620
10000	5800	1300	2550	7+500	355	11.55	1055	2565	7130

### Reservoir Routing Methods

Reservoirs have the characteristic that their storage is closely related to their outflow rate. In reservoir routing methods the storagedischarge relation is used for repeatedly solving the continuity equation, each solution being a step in delineating the outflow hydrograph. A reservoir method is suited for channel routings if the channel has the reservoir characteristic. Suitable channels are those with swamps or other flat areas in the routing reach and with a constriction or similar control at the foot of the reach. There is an exception to this: a reservoir method is also suitable for routing through any stream reach if the inflow hydrograph rises and falls so slowly that nearly steady flow occurs and makes storage in the reach closely related to the outflow rate. Examples in this part show the use of reservoir methods for both reservoirs and stream channels.

## The Continuity Equation

The continuity equation used in reservoir routing methods is concerned with conservation of mass: For a given time interval, the volume of inflow minus the volume of outflow equals the change in volume of storage. The equation is often written in the simple form:

$$\Delta t (\overline{I} - \overline{O}) = \Delta S$$
 (Eq. 17-10)

where  $\Delta t = a$  time interval

 $\overline{I}$  = average rate of inflow during the time interval

 $\overline{0}$  = average rate of outflow during the time interval

 $\Delta S$  = change in volume of storage during the time interval

In most applications of the continuity equation the flow and storage variables are expanded as follows:

$$\overline{I} = \frac{I_1 + I_2}{2}$$
;  $\overline{O} = \frac{O_1 + O_2}{2}$ ;  $\Delta S = S_2 - S_1$ 

so that Equation 17-10 becomes:

$$\frac{\Delta t}{2} (I_1 + I_2) - \frac{\Delta t}{2} (O_1 + O_2) = S_2 - S_1$$
 (Eq. 17-11)

where  $\Delta t = t_2 - t_1 = \text{time interval}$ ;  $t_1$  is the time at the beginning of the interval and  $t_2$  the time at the end of the interval

 $I_1 = inflow rate at t_1$ 

 $I_2 = inflow rate at t_2$ 

 $0_1$  = outflow rate at  $t_1$ 

 $0_2$  = outflow rate at t2

 $S_1$  = storage volume at  $t_1$ 

 $S_2$  = storage volume at  $t_2$ 

When routing with Equation 17-10 the usual objective is to find  $\overline{0}$ , with Equation 17-11 find  $0_2$ ; this means that the equations must be rearranged in some more convenient working form. It is also necessary to use the relationship of outflow to storage in making a solution. Most reservoir routing methods now in use differ only in their arrangement of the routing equation and in their form of the storage-outflow relationship.

It is necessary to use consistent units with any routing equation. Some commonly used sets of units are:

Time	Rat	es	Volumes			
	Inflow	Outflow	Inflow	Outflow	Storage	
Hours days days hours days	cfs cfs AF/day in./hr in./day	cfs cfs AF/day in./hr in./day	cfs-hrs cfs-days AF inches inches	cfs-hrs cfs-days AF inches inches	cfs-hrs cfs-days AF inches inches	

#### Methods and Examples

Two methods of reservoir routing based on the continuity equation are presented in this section, a mass-curve method and the Storage-Indication method. The mass-curve method is given because it is one of the most versatile of all reservoir methods. It can be applied numerically or graphically; examples of both versions are given. The Storage-Indication method is given because it is the method used at the present time in the SCS electronic computer program for watershed evaluations and because it is a widely used method for both reservoir and channel routings. Examples of reservoir and channel routing are given.

Mass-Curve Method: Numerical Version - According to item 52 in reference 5, a mass-curve method of routing through reservoirs was already in use in 1883. Many other mass-curve methods have since been developed. The method described here is similar to a method given in King's "Handbook of Hydraulics," 3rd edition, 1939, pages 522-527; another resembling it is given in "Design of Small Dams," U. S. Bureau of Reclamation, 1960, pages 250-252.

The method requires the use of elevation-storage and elevation-discharge relationships either separately or in combination. The input is the mass (or accumulated) inflow; the output is the mass outflow, outflow hydrograph, and reservoir storage. The routing operation is a trial-and-error process when performed numerically, but it is simple and easily done. Each operation is a solution of Equation 17-10 rewritten in the form:

$$MI_2 - (MO_1 + \overline{O} \Delta t) = S_2$$
 (Eq. 17-12)

where  $MI_2$  = mass inflow at time 2

 $MO_1$  = mass outflow at time 1

= average discharge during the routing interval

 $\Delta t$  = routing interval = time 2 minus time 1

 $S_2$  = storage at time 2

The routing interval can be either variable or constant. Usually it is more convenient to use a variable interval, making it small for a large change in mass inflow and large for a small change. The PSMC of Chapter 21 are tabulated in intervals especially suited for this method of routing.

The following example shows the application of the method in determining minimum required storage for a floodwater-retarding structure by use of a PSMC from Chapter 21.

Example 17-1.--Determine the minimum required storage, by SCS criteria, for a floodwater-retarding structure having the drainage area use in Example 21-2 of Chapter 21. Use the data and results of that example for this structure. Work with volumes in inches and rates in inches per day; round off all results to the nearest 0.01 inch.

- 1. Develop an elevation-discharge curve for the structure. A curve for the principal spillway discharges is needed for this routing. Columns 1 and 7 of Table 17-3 will be used for this structure. The elevation-discharge curve is plotted in Figure 17-1.
- 2. Develop an elevation-storage curve for the structure. Columns 1 and 8 of Table 17-2 will be used for this structure. The elevation-storage curve is plotted in Figure 17-1.

(Note: The curves of steps 1 and 2 can be combined into a storage-discharge curve as shown by the inset of Figure 17-2. This curve is a time-saver if more than one routing is made.)

- 3. Develop and plot the curve of mass inflow (PSMC). The PSMC developed in Example 21-2, and given by columns 1 and 7 of Table 21-7, will be used for this example. The plotted mass inflow is shown in Figure 17-2. The plotting is used as a guide in the routing and later used to show the results but it is not essential to the method.
- 4. Prepare an operations table for the routing.
  Suitable headings and arrangement for an operations table are shown in Table 17-5.

- 5. Determine the reservoir storage for the start of the routing. If the routing is to begin with some storage already occupied then either the amount in storage is entered in the first line or column 5 of the operations table (as done in Example 17-2) or the elevation-storage curve is modified to give a zero storage for the first line. In this example the sediment or dead storage, which is not to be used in the routing, occupies the reservoir to elevation 580.2 feet as shown in Figure 17-1. Storage at that elevation is 1.00 inches and because this is a whole scale unit the storage curve for routing is easily obtained by shifting the point of origin as shown in Figure 17-1. Ordinarily, if the Sediment or dead storage is some fractional quantity it is better to re-plot the curve to show zero storage at the elevation where the routing begins.
- 6. Determine the spillway discharge at the start of the routing. If the spillway is flowing at the start of the routing the discharge rate is entered in the first line of column 7 of Table 17-5 (see Example 17-2). For this example the starting rate is zero.

## 7. Do the routing.

The trial-and-error procedure goes as follows:

- <u>a.</u> Select a time and tabulate it in column 1, Table 17-5. For this example the times used will be those given for the PSMC in Table 21-7, except for occasional omissions unimportant for this routing.
- $\underline{b}$ . Compute  $\Delta t$  and enter the result in column 2.
- <u>c</u>. Tabulate in column 3 the mass inflow for the time in column 1. The entries for this example come from column 7 of Table 21-7.
- d. Assume a mass outflow amount and enter it in column 4.
- e. Compute the reservoir storage, which is the inflow of column 3 minus the outflow of column 4, and enter it in column 5.
- f. Determine the instantaneous discharge rate of the spillway. Using the elevation-storage curve of Figure 17-1, find the elevation for the storage of column 5; with that elevation enter the elevation-discharge curve and find the discharge, tabulating it in column 6. If a storage-discharge curve is being used, simply enter the curve with the storage and find the corresponding discharge.
- g. Compute the average discharge for  $\Delta t$ . The average is always the arithmetic mean of the rate determined in step  $\underline{f}$  and the rate for the previous time. For the time  $\underline{0.5}$  days the rate in column 6 is 0.03 in./day; for the previous time the rate is zero; the average rate is (0 + 0.03)/2 = 0.015, which

Table 17-5. Operations table for the mass-curve method of routing for Example 17-1.

	Spillway							
Acc.	me Δt	Acc. inflow	Assumed acc.	Res. volume	disch Inst.		Outflow for $\Delta t$	Acc. outflow
(days)	(days)	(in.)	outflow (in.)	(in.)	(in./day)	(in./day	7)(in.)	(in.)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
0		0	0	0	0		0	0
. •5	0.5	.13	.01	.12	.03	0.02	.01	.01
1.0	•5	.30	.04	.26	.08	.06	.03	.04
2.0	1.0	.69	.15 .17	•54 •52	.21 .19	.14	.14 .14	.18 .18
3.0	1.0	1.14	.40	• 72 • 74	.31	.25	.25	.43
J.0	1.0	_,	.42	.72	.29	.24	.24	.42
3.5	•5	1.42	.60	.82	.36	.32	.16	.58
			•59	.83	•37	•33	:16	.58
4.0	•5	1.76	• 75	1.01	.46	.42	.21	•79
1 1	,		.78	.98	. 44	.40	.20	.78
4.4	4	2.11	1.02	1.09	.52	.48	.19	•97
4.8	. 4	2.62	.98 1.20	1.13 1.42	.53 .61	.48	.19 .23	•97 1 <b>.</b> 20
5.0	.2	3.38	1.35	2.03	1.00	.80	.16	1.36
5.1	.1	4.07	1.45	2.62	1.66	1.33	.13	1.49
		•	1.48	2.59	1.65	1.32	.13	1.49
5.2	.1	4.43	1.70	2.73	1.68	1.66	.17	1.66
			1.67	2.76	1.68	1.66	.17	1.66
5.3	.1	4.66	1.85	2.81	1.69	1.68	.17	1.83
5.4	.1	4.81	1.84	2.82	1.69	1.68	.17	1.83
J•4		4.01	2.10	2.71 2.80	1.67 1.68	1.68 1.68	.17 .17	2.00 2.00
5.6	.2	5.05	2.30	2.75	1.67	1.68	.34	2.34
,		,,,,	2.33	2.72	1.67	1.68	.34	2.34
6.0	. 4	5.38	2.80	2.58		1.66	.66	3.00
			2.95	2.43	1.64	1.66	.66	3.00
<i>-</i>	_		3.00	2.38	1.60	1.64	.66	3.00
6.5	• 5	5.70	3.80	1.90	.80	1.20	.60	3.60
			3.70 3.65	2.00 2.05	.94 1.04	1.27	.64 .66	3.64 3.66
7.0	•5	5.98	4.10	1.88	.70	.89	.44	4.10
8.0	1.0	6.43	4.80	1.63	.66	.68	.68	4.79
etc.	etc.	etc.	etc.	etc.	etc.	etc.	etc.	etc.

Mass outflow is plotted using entries in column 4 or column 9. The outflow hydrograph is plotted using column 6, which gives instantaneous rates at the accumulated times shown in column 1.

is rounded to 0.02 in./day. For the time 1.0 days the average is (0.03 + 0.08)/2 = 0.055, which is rounded to 0.06 in./day; and so on.

- $\underline{h}$ . Compute the outflow for  $\Delta t$ . Multiply the  $\Delta t$  of column 2 by the average rate of column 7 and get the increment of outflow for column 8.
- i. Add the outflow increment of column 8 to the total of column 9 for the previous time and tabulate the sum in column 9.
- <u>j</u>. Compare the mass outflow of column 9 with the assumed mass outflow of column 4. If the two entries agree within the specified degree of accuracy (0.01 inch, in this routing) then this routing operation is complete and a new one is begun with step <u>a</u>. If the two entries do not agree well enough then assume another mass outflow for column 4 and repeat steps <u>e</u> through <u>j</u>.
- 8. Determine the minimum required storage.

  Examine the entries in column 5 and find the largest entry, which is 2.82 inches at 5.3 days. This is the minimum required storage.

The routing gives the reservoir storages in column 5, outflow hydrograph in column 6, and mass outflow in column 9, for the times of column 1. Unless the results are to be used in a report or exhibit, the routing is usually carried only far enough past the time of maximum storage to ensure that no larger storage will occur. The mass inflow and outflow for this example are plotted in Figure 17-2, with outflow shown only to 8.0 days. If the mass outflow plotting is made during the routing the trend of the curve indicates the best assumption for the next step in column 4.

The next example shows how the routing proceeds when it must start with the reservoir containing live storage and the spillway discharging.

Example 17-2.—For the same reservoir used in Example 17-1, determine the elevation and amount of storage remaining in the reservoir after 10 days of drawdown from the minimum level allowed by SCS criteria. The base flow used in developing the PSMC (see Example 21-2) is assumed to continue at the same rate throughout the routing. Round all work to the nearest 0.01 inch.

1. Determine the storage volume in the reservoir and the spillway discharge for the start of the routing.

SCS criteria permit the drawdown routing to start with storage at the maximum elevation attained in the routing of the PSH or PSMC used in determining the minimum required storage, even though the structure may be designed to contain more than the minimum storage. For this example the starting storage of 2.82 inches is found in column 5, and the associated discharge of 1.69 in./day in column 6, of Table 17-5 in the line for 5.3 days.

2. Prepare an operations table for the routing.
Ordinarily the suitable headings and arrangement are those of Table 17-5, but if base flow, snowmelt, or upstream releases must be included (base flow in this routing) then one or more additional columns are needed. Table 17-6 shows headings and arrangement suitable for this example.

3. Do the routing.

The procedure of step 7, Example 17-1, is slightly modified for this routing. The first line of data in the operations table must contain the initial reservoir volume in column 4 and the initial spillway discharge in column 7. Accumulated base flow is added to the initial value of column 4 to give the "accumulated inflow" of that column. In all other respects the routing procedure is that of step 7, Example 17-1.

4. Determine the storage remaining after 10 days of drawdown. The entry in column 6 at day 10 shows that the remaining storage is 0.20 inches, which is at elevation 581.1 feet.

The routing for this example has been carried to 14 days to show that when the inflow rate is steady, as it is in this case (0.045 in./day), then the outflow rate eventually also becomes steady at the same rate. The larger the steady rate of inflow the sooner the outflow becomes steady. Note that if the routing had been done with an accuracy to the nearest 0.001 inch, the outflow rate would be 0.045 in./day, the base flow rate.

The mass inflow, storage, and mass outflow curves for this example are shown in Figure 17-3. Note that the work is accurate to the nearest 0.01 inch, therefore the curves must follow the plotted points within that limit. Slight irregularities in the smooth curves are due to slope changes in the storage-discharge curve.

Mass-Curve Method: Direct Version. It is easy enough to eliminate the trial-and-error process of the mass-curve method but the resulting "direct version" is much more laborious than the trial-and-error version. To get a direct version the working equation is obtained from Equation 17-12 as follows.

The average discharge  $\overline{0}$  in Equation 17-12 is  $(0_1 + 0_2)/2$  so that the equation can be written:

$$MI_2 - MO_1 - \frac{\Delta t}{2} (O_1 + O_2) = S_2$$
 (Eq. 17-13)

Because  $0_2$  as well as  $S_2$  is unknown it is necessary to make combinations of S and O to get direct solutions in the routing operation. At any time, mass outflow is equal to mass inflow minus storage, or:

$$MO_1 = MI_1 - S_1$$
 (Eq. 17-14)

Table 17-6 Operations table for determining storage after 10 days of drawdown for Example 17-2.

Acc.	ime Δt	Acc. base flow*	Acc. in- flow	As- sumed acc. outflo	vol-	Spil. disc Inst.	lway narge Avg.	Out- flow for $\Delta t$	Acc. out- flow
days)	(days)	(in.)	(in.)	(in.)	(in:)	(in./day)	(in./day		(in.)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
0		0	2.82		2.82	1.69			0
.2	0.2	.01	2.83	0.34	2.49	1.66	1.67	0.33	•33
.4	.2	.02	2.84	.64	2.20	1.35	1.50	.30	.63
.6	.2	.03	2.85	.92	1.93	.87	1.11	.22	.85
				.86	1.99	.98	1.16	.23	.86
1.0	• 4	.04	2.86	1.20	1.66	.66	.82	•33	1.19
1.5	•5	.07	2.89	1.50	1.39	.60	.63	.32	1.51
2.0	•5	.09	2.91	1.80	1.11	•53	.56	.28	1.79
2.5	•5	.11	2.93	2.03	.90	•37	.45	.22	2.01
				2.01	•92	•38	.46	.23	2.02
3.0	•5	.14	2.96	2.23	•73	.27	•32	.16	2.18
				2.19	.77	. 29	.34	.17	2.19
3.5	•5	.16	2.98	3.30	.68	.24	•26	.13	2.32
				2.32	.66	.23	•26	.13	2.32
4.0	•5	.18	3.00	2.42	<b>.5</b> 8	. 20	.22	.11	2.43
4.5	•5	.20	3.02	2.52	•50	.17	.18	.09	2.52
5.0	•5	.22	3.04	2.59	.45	.15	.16	.08	2.60
6.0	1.0	.27	3.09	2.73	•36	.12	.14	.14	2.74
7.0	1.0	.32	3.14	2.85	.29	.09	.10	.10	2.84
8.0	1.0	. 36	3.18	2.94	.24	.07	.08	.08	2.92
				2.93	.25	.08	.08	.08	2.92
9.0	1.0	.40	3.22	3.00	.22	.07	.08	.08	3.00
10.0	1.0	.45	3.27	3.07	.20	.07	.07	.07	3.07
11.0	1.0	.50	3.32	3.13	.19	.06	.06	.06	3.13
12.0	1.0	• 54	3.36	3.19	.17	.05	.06	.06	3.19
13.0	1.0	<b>.5</b> 8	3.40	3.25	.15	.04	.04	.04	3.23
				3.24	.16	.05	.05	•05	3.24
14.0	1.0	.63	3.45	3.29	.16	.05	.05	.05	3.29
etc.	etc.	etc.	etc.	etc.	etc.	etc.	etc.	etc.	etc.

^{*} At a rate of 0.045 inches per day.

Substituting  $MI_1 - S_1$  for  $MO_1$  in Equation 17-13 and rearranging gives:

$$MI_2 - MI_1 + (S_1 - \frac{\Delta t}{2} O_1) = S_2 + \frac{\Delta t}{2} O_2$$
 (Eq. 17-15)

which is the working equation for the direct version. Working curves of 0₁ and (S₁ - ( $\Delta$ t 0₁)/2) and of 0₂ and (S₂ + ( $\Delta$ t 0₂)/2) are needed for routing.

Other arrangements of working equations can also be obtained from Equation 17-12. Equation 17-15 is the mass-curve version of the Storage-Indication method, which is described later in this part. Routing by use of Equation 17-15 takes about twice as much work as routing by the Storage-Indication method.

Examples of direct versions of the mass-curve method are not given in this chapter because the trial-and-error version is more efficient in every respect.

Mass-Curve Method: Graphical Version. The graphical version of the mass-curve method is in a sense a direct version because there is no trial-and-error involved. The graphical version is usually faster than the trial-and-error version if the routing job is simple. For complex jobs the trial-and-error version is more efficient and its results more easily reviewed. For any routing it gives mass outflow, storage, and the outflow hydrograph; the graphical version gives only the mass outflow and storage. The following example shows the use of the graphical version with the data and problem of Example 17-1.

Example 17-3.--Use the graphical version of the mass-curve method to determine the minimum required storage for the structure used in Example 17-1. Use the data of that example.

- 1. Develop an elevation-discharge curve for the structure. The curve used in Example 17-1 will be used here.
- 2. Develop an elevation-storage curve for the structure. The curve used in Example 17-1 will be used here.
- 3. Prepare a working table for the routing.
  Using the curves of steps 1 and 2, select enough discharges on the discharge curve to define the curve accurately and tabulate them in column 2, Table 17-7. Tabulate the associated elevations in column 1 and storages at those elevations in column 4. Compute average discharges from column 2 for column 3. The designations in column 5 show which line is associated with each pair of storages shown on Figure 17-4. Thus, line A applies when the storage is between 0 and 0.18 inches; line B when it is between 0.18 and 0.40 inches; and so on.
- 4. Plot the mass inflow.

  The PSMC used in Example 17-1 is used here. It is plotted in Figure 17-4.

5. Do the routing.
The work is done on the graph of mass inflow, Figure 17-4. Table 17-7 is used during the work. The procedure goes as follows:

<u>a.</u> Draw line A with its origin at the beginning of mass inflow and with its slope equal to the associated average discharge (column 3 of Table 17-7), which is 0.025 in./day. This is the first portion of the mass outflow curve.

(Note: Every part of the line of mass outflow must fall on or below the mass inflow curve. If some part is above the inflow, determine the slope and storage limits for a line with a flatter slope and use it instead.)

- <u>b</u>. Determine the time at which the difference between mass inflow and line A is equal to the larger of the storage limits for line A, in this case 0.18 inches, which occurs at 0.65 days. This is the point of origin for line B.
- <u>c</u>. Draw line B with its origin at the point found in step  $\underline{b}$  and with a slope of 0.09 in./day.
- <u>d</u>. Determine the time at which the difference between mass inflow and line B is equal to the larger of the storage limits for line B, in this case 0.40 inches, which occurs at 1.50 days. This is the point of origin for line C.
- e. Repeat the procedure of steps c and d with lines C, D, E, etc., until the storage being used is so large it exceeds the possible difference between mass inflow and mass outflow. For this example this occurs with line H. The parallel line above it shows that the associated storage of 3.44 inches falls above the mass inflow line. When this step is reached the required storage is obtained by taking the maximum difference between line H and the mass inflow curve. The difference occurs at the point on the mass inflow curve where a line parallel to line H is tangent to the inflow curve. For this example it is 2.80 inches at 5.33 days. This step completes the routing.

The graphical method can also be used for routings starting with some storage occupied and with the spillway discharging. For the problem used in Example 17-2 the graphical method starts with line H and continues with lines G, F, E, D, C, B, and A in that order. The results are shown in Figure 17-5. The storage after 10 days of drawdown is 0.18 inches, which is nearly the same as found in Example 17-2. Differences between results of the two methods are due mainly to the use of small-scale graphs for working curves; larger scales increase the accuracy. Note that line A in Figure 17-5 is flatter than the line of accumulated base flow. This indicates that the flow becomes steady at or near 10 days and that the dashed line (parallel to mass inflow) is the actual outflow.

Table 17-7 Working table for the graphical version of the mass-curve method for Example 17-3.

Elevation	Spillway o	discharge Avg.	Storage	Designation on Fig. 17-4
(feet)	(in./day)	(in./day)	(inches)	
(1)	(2)	(3)	(4)	(5)
580.2	0		0	<b>.</b>
581.0	.05	0.025	.18	line A
582.0	.13	.09	.40	line B
583.5	•33	.23	.80	line C
584.6	.52	.42	1.09	line D
587.0	.70	.61	1.86	line E
587.8	1:20	•95	2.16	line F
588.4	1.64	1.42	2.38	line G
591.0	1.74	1.69	3.44	line H
		1.77		line I
592.5	1.80		4.15	

Storage-Indication Method. - Reservoir routing methods that are also used for stream routings are generally discharge, not mass, methods because it is usually only the discharge hydrograph that is wanted. The Storage-Indication method, which has been widely used for channel and reservoir routings, has discharge rates as input and output. The method was given in the 1955 edition of NEH-4, Supplement A. Example 17-4, below is the same example used in that publication except for minor changes.

The Storage-Indication method uses Equation 17-11 in the form:

$$\overline{I} + \frac{S_1}{\Delta t} - \frac{O_1}{2} = \frac{S_2}{\Delta t} + \frac{O_2}{2}$$
 (Eq. 17-16)

where  $\overline{I} = (I_1 + I_2)/2$ . The values of  $\overline{I}$  are either taken from midpoints of routing intervals of plotted inflow hydrographs or computed from inflows tabulated at regular intervals. A working curve of  $0_2$  plotted against  $(S_2/\Delta t) + (0_2/2)$  is necessary for solving the equation.

In channel routing the Storage-Indication method has the defect that outflow begins at the same time inflow begins so that presumably the inflow at the head of the reach passes instantaneously through the reach regardless of its length. This defect is not serious if the ratio  $T_t/T_p$  is about 1/2 or less, where  $T_p$  is the inflow hydrograph time to peak and  $T_t$  is a travel time defined as:

$$T_t = \frac{L A}{3600 q} = \frac{L}{3600 V}$$
 (Eq. 17-17)

where

 $T_t$  = reach travel time in hours; the time it takes a selected steady-flow discharge to pass through the reach

L = reach length in feet

A = average end-area for discharge q in square feet

q = selected steady-flow discharge is cfs

V = q/A = average velocity of discharge q in fps

In determining T_t the discharge q is usually the bank-full discharge under steady flow conditions (see Chapter 15).

Another defect of the Storage-Indication method, for both channel and reservoir routing, is that there is no rule for selecting the proper size of routing interval. Trial routings show that negative outflows will occur during recession periods of outflow whenever  $\Delta t$  is greater than  $2 \, \text{S}_2/\text{O}_2$  (or whenever  $\text{O}_2/2$  is greater than  $\text{S}_2/\Delta t$ ). This also means that rising portions of hydrographs are being distorted. In practice, to avoid these possibilities, the working curve can be plotted as shown in Figure 17-6; if any part of the working curve falls above the line of equal values then the entire curve should be discarded and a new one made using a smaller value of  $\Delta t$ . For channel routing the possibility of negative outflows is usually excluded by taking  $\Delta t$  less than  $T_t$ .

The following example shows the use of the Storage-Indication method in channel routing. The example is the one used in the 1955 edition of NEH-4, Supplement A, with some minor changes.

Example 17-4.—Use the Storage-Indication method of reservoir routing to route the inflow hydrograph of Figure 17-7 through the stream reach of Table 17-4.

- 1. Prepare the storage-discharge relationship for the reach. This is done in Table 17-4 and the text accompanying it.
- 2. Determine the reach travel time. This is done using Equation 17-17. Table 17-4 and the accompanying text supply the following data: L = 10,000 feet and for a bankfull discharge of 800 cfs as q the end-area A = 234 square feet. Then by Equation 17-17,  $T_t = 10000(234)/3600(800) = 0.813$  hours.
- 3. Select the routing interval.

  The routing interval for this example will be 0.5 hours, which is less than the travel time of step 2 and which is a convenient size for the given inflow hydrograph. (See the discussion in the text accompanying Equation 17-30 for further information on the selection of reach routing intervals.)
- 4. Prepare the working curve.
  Use the storage-discharge relationship of step 1, which is given in columns 1 and 10 of Table 17-4. These two columns are reproduced as columns 1 and 3 of Table 17-8, the working table; columns 2, 4, and 5 of the table are self-explanatory. The working curve is plotted using columns 1 and 5. The finished curve is shown in Figure 17-6.
- 5. Prepare the operations table. Suitable headings and arrangement for an operations table are shown in Table 17-9.
- 6. Enter times and inflows in the operations table.

  Accumulated time in steps of the routing interval is shown in column 1 of Table 17-9. I values read from midintervals on the inflow hydrograph of Figure 17-7 are shown in column 2.
- 7. Do the routing.
  The procedure is shown in Table 17-10. The routing results are shown in columns 3 and 4 of Table 17-9. The outflow hydrograph given in column 4 is plotted in Figure 17-7.

In routing through channels it is generally necessary to add local inflow to the routed outflow. The method of doing this is described later in the part on channel routing methods.

The Storage-Indication procedure for reservoir routing is identical with that for channel routing except that there is no need to determine a travel time. The following example shows the reservoir procedure. The problem and data of Example 17-1 are used in order to allow a comparison of procedures and results.

Example 17-5.--Use the Storage-Indication method to determine the minimum required storage for the structure used in Example 17-1. Use the data of that example where applicable. Make the routing with discharges in cfs.

- 1. Develop an elevation-discharge curve for the structure. The curve used in Example 17-1 will be used here. That curve is for discharges in in./hr. Ordinarily when cfs are to be used the curve is developed in that unit. The conversion to cfs will be made in step 5.
- 2. Develop an elevation-storage curve for the structure. The curve used in Example 17-1 will be used here. That curve is for storage in inches. The conversion to cfs-days will be made in step 5.
- 3. Develop and plot the inflow hydrograph.

  Because of the type of problem the inflow hydrograph must be a Principal Spillway Hydrograph (PSH) taken from Chapter 21. The PSH corresponding to the PSMC of Example 17-1 is given in columns 1 and 4 of Table 21-7. The PSH is plotted in Figure 17-8.
- 4. Select the routing interval. Examination of the PSH in Figure 17-8 shows that two routing intervals will be needed, one of 0.5 days for small changes in rates and one of 0.1 days for large changes.
- 5. Prepare the working curves. Data and computations for the working curves are shown in Table 17-11. Two curves are needed because two routing intervals will be used. The elevations of column 1 and discharges of column 2 are taken from the curve of step 1 with the discharges being converted from in./hr. to cfs in the process. The discharges are selected so that they adequately define the elevation-discharge relationship. Column 3 of Table 17-11 gives the corresponding storages from the curve of step 2, converted from inches to cfs-hrs during the tabulation. The remaining columns contain self-explanatory computations. Columns 2 and 6 give the first working curve and columns 2 and 8 the second; they are plotted in Figure 17-9. Note that "lines of equal values" if drawn would be well above the working curves, therefore the routing intervals are adequately small. Also note that the second curve is shown only for the higher discharges in order to use a larger scale; ordinarily the entire curve is plotted.

Table 17-8 Working table for preparation of the working curve for Example 17-4.

0 ₂ (cfs)	0 ₂ 2 (cfs)	S ₂ (cfs-hrs)	S ₂ Δt (cfs)	$\frac{S_2}{\Delta t} + \frac{O_2}{2}$ (cfs)
(1)	(2)	(3)	(4)	(5)
0 50 150 300 800 1500 3500 5000 7000	0 25 75 150 400 750 1750 2500 3500 5000	0 70 164 248 651 1302 3300 4540 5620 7130	0 140 328 496 1302 2604 6600 9080 11240 14260	0 165 403 646 1702 3354 8350 11580 14740 19260

Table 17-9 Operations table for the S-I method for Example 17-4.

Time	Ī	$\frac{s_2}{\Delta t} + \frac{o_2}{2}$	0
(hrs)	(cfs)	(cfs)	(cfs)
(1)	(2)	(3)	(4)
0 1.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.5 7.0 7.5 8.0 etc.	0 625* 1875 3125 4375 4615 3865 3125 2375 1635 900 265 0** 0	0 625 2215 4310 6805 8540 8795 8210 7135 5720 4180 2635 1425 795 420 260 178 etc.	0 285 1030 1880 2880 3610 3710 3450 3050 2440 1810 1210 630 375 160 82 53 etc.

^{* 625} cfs is the average discharge for the time from 0 to 0.5 hours, 1875 cfs the average discharge from 0.5 to 1.0 hours, and so on.

^{**} Inflow ceases at 5.33 hours.

Table 17-10 Procedure for routing by the Storage-Indication method for Example 17-4.

Time	Ī	$\frac{s_2}{\Delta t} + \frac{o_2}{2}$	0	Remarks
(hrs)	(cfs)	(cfs)	(cfs)	
(1)	(2)	(3)	(4)	(5)
0	0	0	0	Given
•5	625			Given
		625		0 - 0 + 625 = 625
			285	From Figure 17-6
1.0	1875			Given
		2215		625 - 285 + 1875 = 2215
			1030	From Figure 17-6
1.5	3125			Given
		4310		2215 - 1030 + 3125 = 4310
			1880	From Figure 17-6
2.0	4375			Given
		6805		4310 - 1880 + 4375 = 6805
			2880	From Figure 17-6
etc.	etc.	etc.	etc.	etc.

- 6. Prepare the operations table.
- Suitable headings and arrangement are shown in Table 17-12. Note that there is a column for instantaneous rates of inflow. These rates will be used for getting I values because it is difficult to select I values accurately enough from some portions of the plotted hydrograph.
- 7. Tabulate times and rates of inflow and compute  $\overline{I}$  values. Accumulated times are shown in column 1 of Table 17-12 at intervals of  $\Delta t$  = 0.5 days for the initial slow-rising portion of the PSH, at  $\Delta t$  = 0.1 days for the fast-rising and -falling portion, and again at  $\Delta t$  = 0.5 days for the slow recession. Instantaneous rates of inflow for those times are taken from the PSH of Figure 17-8 (or from column 4 of Table 21-7 if they are for the selected times) and shown in column 2. The  $\overline{I}$  values of column 3 are arithmetic averages of entries in column 2.
- 8. Do the routing.
- The procedure is the same as that given in Table 17-10 except when a change is made from one working curve to another. The changes are made as follows. At time 4.5 days the routing interval changes, therefore, the working curve must be changed. The outflow rate at that time is 116 cfs. Entering the second working curve with this rate gives 2,640 cfs as the value of  $(S_2/\Delta t) + (O_2/2)$  in column 4 for the same time. Once this value is entered the routing continues with use of the second working curve. At time 6.0 days the routing interval changes back to the first one and therefore the first working curve must again be used. The outflow rate at that time is 357 cfs. Entering the first working curve with this rate gives 1,270 cfs as the value of  $(S_2/\Delta t) + (O_2/2)$  in column 4 for that time. After entering this value the routing continues with use of the first working curve.
- 9. Determine the maximum storage attained in the routing. The maximum storage attained in a reservoir during the routing of a single-peaked hydrograph occurs at the time when outflow equals inflow. The plotting in Figure 17-8 shows that this occurs at 5.33 days. For this time, Table 17-12 shows that  $0_2 = 364$  cfs and  $(S_2/\Delta t) + (0_2/2) = 6.480$  cfs. Solving for  $S_2$  gives  $S_2 = \Delta t$  6480  $(0_2/2)$ . With  $\Delta t = 0.1$  days and  $0_2 = 364$  cfs,  $S_2 = 0.1$  6480 (364/2) = 629.8 cfs-days, the maximum storage. To convert to AF use Equation 17-2, which gives 629.8/0.504 = 1.247 AF as the maximum storage in AF. To convert AF to inches use Equation 17-3 and the given drainage area of 8.0 square miles (see Example 17-1), which give 1247/53.3(8.0) = 2.93 inches as the maximum storage in inches. (Note: The storage can also be found by use of a storage-discharge curve or elevation-discharge and elevation-storage curves but with the Storage-Indication method it is generally best to use the above method.)

A comparison of peak rates of outflow shows that the mass-curve method of Example 17-1 gave a peak rate of 1.69 in./day, which converts to 363

Table 17-11 Working table for preparation of the working curves for Example 17-5.

			F	'or Δt =	0.5 days	For $\Delta t$	= 0.1 days
Eleva- tion	Dis- charge (0 ₂ )	Storage (S ₂ )	02	$\frac{s_2}{\Delta t}$	$\frac{s_2}{\Delta t} + \frac{o_2}{2}$	$\frac{s_2}{\Delta t}$	$\frac{s_2}{\Delta t} + \frac{o_2}{2}$
(feet)	(cfs)	(cfs-days)	(cfs)	(cfs)	(cfs)	(cfs)	(cfs)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
580.2 581.2 582.2 583.3 584.6 586.0 587.0 587.5 588.0 588.5 590.0 592.0 595.0	0 11.6 32.8 60.3 108 133 149 204 289 353 365 382 401	0 47.0 96.5 165 236 324 393 431 471 512 643 832 1165	0 6 16 30 54 66 75 102 144 176 182 191 200	0 94 193 330 472 648 786 862 942 1024 1286 1664 2330	0 100 209 360 526 714 861 964 1086 1200 1468 1855 2530	0 470 965 1650 2360 3240 3930 4310 4710 5120 6430 8320 11650	0 476 981 1680 2414 3306 4005 4412 4854 5296 6612 8511 11850

Table 17-12 Operations table for Example 17-5.

Time	Inflow	Ī	$\frac{s_2}{\Delta t} + \frac{o_2}{2}$	Out- flow
(days)	(cfs)	(cfs)	(cfs)	(cfs)
(1)	(2)	(3)	(4)	(5)
0 .5 1.0 1.5 2.0 2.5 3.0 3.5 4.0	0 70 79 84 88 99 110 128 156 245	0 35 74 82 86 94 104 119 142 200	0 35 106 176 234 290 346 408 478 584* 2640**	0 3 12 28 38 48 57 72 94 116
4.6 4.8 4.9 5.1 5.2 5.4 5.6 7 8 9 0	269 308 380 522 2002 1049 577 393 312 267 217 200 184 174 164	257 288 344 451 1262 1526 813 485 352 290 242 208 192 179 169	2781 2950 3171 3493 4618 5904 6358 6480 6468 6394 6273 6119 5950 5769 5580**	119 123 129 137 240 359 363 364 364 363 362 361 360 358 357
6.5 7.0 7.5 8.0	138 118 106 94	146 128 112 100	1270* 1059 921 858 810	357 266 175 148 142
etc.	etc.	etc.	etc.	etc.

^{*} From first working curve.

^{**}From second working curve.

cfs, and the Storage-Indication method gave 364 cfs, which is excellent agreement. But a comparison of maximum storage in inches shows that the mass-curve method of Example 17-1 gave 2.82 inches, the graphical mass-curve method of Example 17-3 gave 2.80 inches, and the Storage-Indication method gave 2.93 inches. The discrepancy is for the most part due to use of small-scale graphs for the working curves. Larger graphs would reduce the discrepancy.

Storage-Indication Method as Used in the SCS Electronic Computer Program.-SCS electronic computer program for watershed evaluations uses the Storage-Indication method only for reservoir routings. The chief difference between the manual procedure of Example 17-5 and the electroniccomputer procedure is that in the latter no working curves are used. Instead, the working equation is solved during a process in which interpolations are made in the elevation-discharge and elevation-storage data stored in the computer. The process is repeated during the routing just as the working curve is repeatedly used in manual routing. The machine routing has a numerical accuracy greater than that of the manual routing, but the machine cannot improve the accuracy of the input data. Details of the machine routing process are given in pages A-61 through A-66 of the report titled "Computer Program for Project Formulation - Hydrology," by C-E-I-R, Inc. Arlington, Va., January 1964, which was prepared for SCS. Copies of this report are available from the Washington, D. C. office of SCS.

<u>Culp's Method</u>. Some routing methods are developed for solving special problems, for which they have a high efficiency. One such method is described next.

In the design of an emergency spillway of a dam it is SCS practice to base the design on the results from a routing of an Emergency Spillway Hydrograph. Because all of the spillway dimensions cannot be known in advance, it is necessary to route the hydrograph through three or four different spillways with assumed dimensions before the spillway with the proper dimensions can be found. M. M. Culp's routing method eliminates much of that work by giving the routed peak discharge without the use of spillway dimensions. The following example shows an application of the method to the structure used in previous examples. The example is lengthy because many details are given; after the method is understood it will be seen to be fast and easy to apply.

Example 17-6.--Find the routed peak discharge to be used in design of an emergency spillway for the structure of Example 17-1. The required difference in elevation between the crest of the spillway and the reservoir water surface,  $\rm H_p$ , is 4.0 feet during the peak discharge. Watershed and structure data are given in examples 17-1 and 17-2.

1. Prepare the elevation-discharge curve for the principal spill-way.

This curve was prepared for Example 17-1 with the discharges in inches per hour. It will be used here as shown in Figure 17-10(a) with discharges in cfs.

- 2. Prepare the elevation-storage curve for the structure. This curve was prepared for Example 17-1. Only the portion above the sediment storage will be used here; it is shown in figure 17-10(a).
- 3. Determine the elevation of the emergency spillway crest. According to SCS criteria, the elevation of the emergency spillway crest can be at or above the maximum water-surface elevation attained in the reservoir during the routing of the Principal Spillway Hydrograph (PSH) or its mass curve (PSMC). The water-surface elevation found in Example 17-1 will be used here as the crest elevation. This elevation is 589.5 feet with floodwater storage of 2.82 inches.
- 4. Determine the water-surface elevation of the floodwater remaining in the reservoir after 10 days of drawdown from storage at the water-surface elevation attained in routing the PSH or PSMC. This step is required by SCS criteria. The determination is made in Example 17-2 and those results will be used here. The water-surface elevation after 10 days of drawdown is 581.1 feet with floodwater storage at 0.20 inches.
- 5. Prepare the Emergency Spillway Hydrograph (ESH) and its mass curve (ESMC).

The ESH for this example was prepared using the method of Example 21-5 and the following data: drainage area = 8.0 square miles, time of concentration = 2.0 hours, runoff curve number = 75, design storm rainfall = 9.1 inches, storm duration = 6.0 hours, runoff = 6.04 inches, hydrograph family = 2,  $T_0$  = 5.05 hours, initial  $T_p$  = 1.4 hours,  $T_0/T_p$  = 3.61, selected  $T_0/T_p$  = 4, revised  $T_p$  = 1.26 hours,  $q_p$  = 3,073 cfs, and  $Q(q_p)$  = 18,560 cfs. The ESMC was prepared using Table 21-17 and the following data: hydrograph family = 2,  $T_0/T_p$  = 4,  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.26 hours, and  $T_p$  = 1.27 hours, and  $T_p$  = 1.28 hours, and  $T_p$  = 1.29 hours, and  $T_p$  = 1.29 hours, and  $T_p$  = 1.20 hours, and  $T_p$  = 1.20 hours, and  $T_p$  = 1.20 hours, and  $T_p$  = 1.20 hours, and  $T_p$  = 1.20 hours, and  $T_p$  = 1.20 hours, and  $T_p$  = 1.20 hours, and  $T_p$  = 1.20 hours, and  $T_p$  = 1.20 hours, and an  $T_p$  = 1.20 hours, and an  $T_p$  = 1.20 hours, an  $T_p$  = 1.20 hours, an  $T_p$  = 1.20 hours, an  $T_p$  = 1.20 hours, an  $T_p$  = 1.20 hours, an  $T_p$  = 1.20 hours, an  $T_p$  = 1.20 hour

(Note: The above steps are taken, in much the same way, regardless of which manual method of routing is used for this kind of problem. The following steps apply to the Culp method.)

6. Determine the time at which the emergency spillway begins to flow during passage of the ESH or ESMC.

For this example the time was found by routing the ESMC of step 5 by the method of Example 17-1, using the curves of Figure 17-10(a) as working curves. The routing was started with 0.20 inches of floodwater in the reservoir (SCS criteria require the ESH or ESMC routing to start at the elevation for the floodwater remaining after the 10-day drawdown period; see step 4). The emergency spill-way began to flow at 2.9 hours, at which time the mass outflow was 0.06 inches. The time and outflow are indicated by point cl on Figure 17-10(c)

- 7. Determine the average discharge of the principal spillway during passage of the ESH or ESMC through the emergency spillway. The principal spillway average discharge is for the period during which the reservoir storage rises from the elevation of the emergency spillway crest to the crest elevation plus  $H_{\rm p}$ . Use the elevation-discharge curve of Figure 17-10(a) to find the discharges at the two elevations. These discharges are 361 and 392 cfs respectively; their average is 376 cfs.
- 8. Locate a reference point in the ESH for use in later steps. The reference point, shown as point bl in Figure 17-10(b), is located at the time determined in step 6 and at the average discharge determined in step 7. A second point, not actually necessary in the work, is shown as b2 on the recession side. A straight line connecting points bl and b2 represents the principal spillway outflow rate during the period used in step 7.

# 9. Compute the slope of the principal spillway mass outflow line for use on the mass inflow graph.

The mass outflow to be used is for the period considered in step 7. Full pipe flow occurs and the mass outflow is adequately represented by a straight line. The slope of the line for this example must be in inches per hour because the mass inflow scales are for inches and hours. To get the slope, convert the average discharge of step 7 by use of Equation 17-5, which gives 376/645(8.0) = 0.073 inches per hour.

10. Plot a reference line and a working line of principal spillway mass outflow on the graph for mass inflow.

The lines are for the period considered in step 7 but for working convenience they are extended beyond the limits of the period. To plot the reference line, first locate point c2 on the mass inflow curve of Figure 17-10(c) at the time determined in step 6, then through c2 draw a straight line having the slope determined in step 9; this gives line A as shown. To plot the working line, first determine the storage associated with  $H_{\rm p}$ , which is 1.84 inches as shown in Figure 17-10(a), then draw line B parallel to line A and 1.84 inches of runoff above it as shown in Figure 17-10(c).

11. Find the period within which the emergency spillway peak discharge will occur.

Point c3 is at the intersection of the mass inflow curve and line B in Figure 17-10(c). Locate point b3 on the ESH of Figure 17-10(b) at the time found for c3. Points b3 and b2 are the end points for the period within which the emergency spillway peak discharge will occur.

12. Select several working discharges between points b3 and b2. Four selected working discharges are indicated by points b4, b5, b6, and b7 in Figure 17-10(b); the discharges are 4,750, 3,500, 2,200, and 920 cfs respectively. These discharges represent the peak discharges of outflow hydrographs.

(Note: After some experience with this method, it may be found easier to select only two working discharges in this step, to work through steps 13 to 15, and if the results are unsatisfactory to return to step 12 again by selecting a third working discharge, working through steps 13 through 15 for that discharge, and so on.)

13. Compute a volume-to-peak for each working discharge of step 12. In the Culp method the rising side of the outflow hydrograph for a trapezoidal spillway is taken as being nearly parabolic so that the volume from the beginning of rise to the peak rate, or the volume-to-peak, is:

$$Qe = 0.62 (qe - qps) Te$$
 (Eq. 17-18)

where Qe is the volume in cfs-hrs, qe is the working discharge of step 12 in cfs, qps is the principal spillway rate of step 7 in cfs, and Te is the time in hours from point bl to the peak time. The volume Qe must be converted to a unit usable with the mass inflow curve, in this case, inches. The summary of work for this step is given in Table 17-13. In the columns for points b4 through b7, the items in line 1 are from step 12; items in line 2 are from step 7; items in line 3 are obtained by subtracting qps from qe; items in line 4 are obtained by inspection of Figure 17-10(b); items in line 5 are products of  $(qe - qps) \times Te$ ; items in line 6 are products of  $(Qe/0.62) \times 0.62$ ; items in line 7 are Qe's of line 6 divided by the drainage area of 8.0 square miles; items of line 8 are Qe's of line 7 divided by 645. Each Qe of line 8 applies only at the time indicated by its point on the ESH.

14. Plot a curve of mass inflow minus mass outflow.

This is a working curve, not the complete curve of inflow minus outflow. Subtract each Qe of line 8, Table 17-13, from the inflow amount at the identical time on the mass inflow curve of Figure 17-10(c) and plot the result as shown for points c4, c5, c6, and c7. Connect the points with a curve, line C.

15. Determine the time and rate for the emergency spillway peak discharge.

The intersection of lines B and C, at point c8 in Figure 17-10(c), gives the time at which the emergency spillway peak discharge occurs The total discharge rate at that time is 3,050 cfs as shown by the corresponding point b8 on the ESH of Figure 17-10(b). The emergency spillway discharge rate is 3050-376=2,674 cfs, which occurs when the reservoir water surface is at the given elevation of 593.5 feet (crest elevation plus  $\rm H_p$ ). This step completes the routing. Design of the emergency spillway now follows with use of ES-98, ES-124, and spillway criteria.

If  ${\rm H_p}$  is not known in advance, the Culp method can be used with assumed values of  ${\rm H_p}$  to get associated discharges from which the suitable combination of  ${\rm H_p}$  and discharge can be selected. For earth spillways  ${\rm H_p}$  can be closely approximated from permissible velocities and the appropriate

Table 17-13 Working table for Culp method step 13 of Example 17-6.

			Point:					
Line	Item	Unit	ъ4	ъ5	ъ6	ъ7		
1 2 3 4 5 6 7 8	qe qps qe - qps Te Qe/0.62 Qe Qe Qe	cfs cfs cfs hrs cfs-hrs cfs-hrs csm-hrs	4750 376 4374 2.1 9180 5680 710 1.102	3500 376 3124 2.8 8750 5420 677 1.050	2200 376 1824 3.4 6200 3840 480 0.745	920 376 544 4.1 2230 1380 173 0.268		

length and chosen profile of the inlet channel. A close approximation of the emergency spillway discharge rate can be obtained in this way for an  $H_p$  value near the middle of the desired range to get a "C curve" (line C on Figure 17-10(c)). The average discharge in the conventional drop inlet under full pipe flow conditions varies only slightly as  $H_p$  varies relatively greatly, thus the discharge through the emergency spillway can be closely approximated from such an average C curve. If refinement is justified, then trial adjustments on the slope of line B will give the required accuracy. The correction process converges rapidly. For preliminary layouts or comparative cost studies such refinement is seldom justified.

Short-Cuts for Reservoir Routings. - Various equations and charts have been developed for quickly estimating the required storage in a reservoir or the required capacity of a spillway, such estimates being used in preliminary studies of structures or projects. The equations and charts are usually based on the results of routings so that using the equation or chart is in effect a form of routing.

A typical short-cut is the graph, Figure 17-11. The curve through the circled points is based on information in table 2 on page 39 of "Low Dams," a design manual prepared by the Subcommittee on Small Water Storage Projects, National Resources Committee, Washington, D. C., 1938 (the manual is out of print and no longer available for purchase). Relationships of this kind are developed from routings made through a particular type of spillway and they apply only to that type. The form of standard inflow hydrograph used for routing also affects the relationship and the same form must be applicable when the short-cut is used. With such a relationship if any three of the four variables are known the fourth can be estimated. Usually either the reservoir storage or the reservoir discharge rate is the unknown.

The triangular point on Figure 17-11 is for the routing made in Example 17-6. For that example the outflow/inflow ratio is 3050/10200 = 0.30 and the storage/inflow-volume ratio is 2.82/(2.62 + 1.84) = 0.63. Note that the emergency spillway "surcharge" storage is included when computing the volume ratio. The cross points, for "miscellaneous routings", are for routings of several kinds of hydrographs through emergency spillways of the SCS type. The "Low Dams" curve appears to be an enveloping curve for the points. As such it can be used for making conservative estimates. Thus, if the inflow volume is 8.15 inches of runoff and the total available storage is 5.7 inches then the storage ratio is 0.7; at that ratio the discharge ratio is 0.4, which means that the peak outflow rate will be not more than 0.4 of the peak inflow. Such estimates are often useful in preliminary work.



Figure 17-1. Elevation, storage, discharge relationship for a reservoir.



Figure 17-2. Storage, discharge relationship and plotted mass inflow curve for a reservoir.



Figure 17-3. Mass inflow, storage, and mass outflow curves for Example 17-2.



Figure 17-4. Graphical version of Mass Curve method of reservoir routing for Example 17-3.



Figure 17-5. Graphical version for Example 17-2, Step 4.



Figure 17-6. Working curve for Storage-Indication method of reservoir routing for Example 17-4.



Figure 17-7. Inflow and outflow hydrograph for Example 17-14.



Figure 17-8. Principal spillway hydrograph and outflow hydrograph for Example 17-5.

NEH Notice 4-102, August 1972



Working curves for Storage-Indication method of reservoir routing for Example 17-5. Figure 17-9.



Figure 17-10. Culp's method of reservoir routing for Example 17-6.



Figure 17-11. Typical shortcut method of reservoir flood routing.

## Channel Routing Methods

The Convex method of routing through stream channels is presented in this part. The method is derived from inflow-outflow hydrograph relationships and, because of this, the method has some features not possessed by channel routing methods derived from consideration of the continuity equation. The Storage-Indication method of channel routing, presented in Example 17-4, will not be discussed here, but discussions of procedures for adding local inflows, deducting transmission losses, and routing through stream systems also apply to that method.

#### Theory of the Convex Method

The Convex method is based on the following principle: When a natural flood flow passes through a natural stream channel having negligible local inflows or transmission losses, there is a reach length L and a time interval  $\Delta t$  such that  $0_2$  is not more than the larger nor less than the smaller of the two flows  $I_1$  and  $0_1$ .  $\Delta t$  is considered as both the travel time of the flood wave through the reach measured at the beginning of the rising portion of the hydrograph at both ends of the reach; and the required routing time interval.

The principle requires that:

If 
$$I_1 \ge 0_1$$
, then  $I_1 \ge 0_2 \ge 0_1$  (Eq. 17-19)

If 
$$I_1 \le O_1$$
, then  $I_1 \le O_2 \le O_1$  (Eq. 17-20)

In general, inequality Equation 17-19 applies to rising portions of hydrographs and Equation 17-20 to falling portions. Note that  $I_2$  does not enter into the principle; this makes the Convex method a forecasting method (see under "Discussion").

The routing principle can be extended to include local inflows and transmission losses but this unnecessarily complicates the working equation. It is common practice to add local inflows to the routed outflow hydrographs to get the total outflows, and this practice will be followed here. There may be situations, however, in which the local inflow is added to the inflow hydrograph and then routed. Small transmission losses are generally deducted after the routing, large ones during the routing; for a discussion of transmission losses see the heading "Effects of transmission losses on routed flows."

The routing or working equation is formed after examination of typical inflow and outflow hydrographs such as those in Figure 17-12. Typical flood wave combinations of  $I_1$ ,  $O_1$  and  $O_2$  are shown on the rising and falling sides of the hydrographs. The routing principle states that for a properly selected reach length L, hence  $\Delta t$ ,  $O_2$  will fall somewhere on or between  $I_1$  and  $O_1$  in magnitude but not above or below them. This is evident on Figure 17-12 despite the displacement of  $O_2$  in time; it is the magnitudes that are of concern here.

The next step is to recognize that  $I_1$ ,  $0_1$  and  $0_2$  are members of a Convex set $\frac{1}{2}$ . For such a set, if points A and B are in the set then all points on a straight line connecting A and B are also in the set. Because the concern is with magnitudes and not with time it is not necessary for  $0_2$  to be physically on the line between  $I_1$  and  $0_1$ . The routing equation can now be written based on the theory of convex sets. For the situation just described, and using proportions as shown on the inset of Figure 17-12, the routing or working equation is:

$$0_2 = (1-C)0_1 + C I_1$$
 (Eq. 17-21)

where C is a parameter with the range:

zero 
$$\leq$$
 C  $\leq$  one (Eq. 17-22)

Given Equation 17-22, Equation 17-21 meets the requirements of Equations 17-19 and 17-20 and therefore of the routing principle.

The routing method based on Equation 17-21 is called the Convex method to call attention to the equation's background.

It follows from Equation 17-21 that:

$$C = \frac{0_2 - 0_1}{I_1 - 0_1}$$
 (Eq. 17-23)

In the inset of Figure 17-12 the relationships between  $I_1$ ,  $0_1$ , and  $0_2$  make similar triangles, so that:

$$\frac{O_2 - O_1}{At} = \frac{I_1 - O_1}{K}$$
 (Eq. 17-24)

where K is considered the reach travel time for a selected steady flow discharge of a water particle through the given reach. From Equation 17-24 it follows that:

$$\frac{\Delta t}{K} = \frac{O_2 - O_1}{I_1 - O_1}$$
 (Eq. 17-25)

Combining Equations 17-23 and 17-25 gives:

$$C = \frac{\Delta t}{K}$$
 (Eq. 17-26)

Enough of the theory of convex sets for the purposes of this chapter is given in pages 41-42 of "An Introduction to Linear Programming," by A. Charnes, W. W. Cooper, and A. Henderson; John Wiley and Sons, Inc., New York, 1953.

from which comes the equation that defines  $\Delta t$ , the wave travel time and also the required routing interval:

 $\Delta t = C K \qquad (Eq. 17-27)$ 

#### Discussion

This much of the theory is enough for making a workable routing method. The emphasis in this chapter is on working examples, not on theory, therefore the additional results from the theory are summarized in the next section without giving derivations or proofs. Further work can be done on some aspects of the Convex routing method but even in its present state the method is highly useful for most types of problems of routing flood flows through stream channels.

The theory as given so far can be used for exploratory routings by assuming magnitudes for any two of the variables in Equation 17-27 computing the third, and using Equation 17-21 with various inflow hydrographs. Such routings show the features of the Convex method. In Figure 17-12, for example, note that outflow begins at one routing interval,  $\Delta t$ , after inflow begins, which is to be expected for a stream reach because it takes water waves time to travel through the reach. It is chiefly this characteristic that distinguishes the Convex method from channel methods based on the continuity equation. In Convex routing the peak rate of the outflow hydrograph does not fall on the recession limb of the inflow hydrograph, as in reservoir methods. But, as in all routing methods, the maximum storage in the reach is attained when outflow equals inflow (at point A in Figure 17-12). The maximum storage is represented by the area under the inflow hydrograph to the left of point A minus the area of the outflow hydrograph to the left of point A. Also note that inflow I2 does not appear in the working equation though it does appear in equations for other channel methods. This feature makes the Convex method a forecasting method. For example, if the routing interval is one day, today's inflow and outflow are known and local inflow is known or negligible, then tomorrow's outflow can be predicted accurately without knowing tomorrow's inflow. The predictive feature is more important for large rivers than for small streams because the routing interval for reaches of such streams is usually short.

#### Some Useful Relationships and Procedures

Of the equations so far given, only Equations 17-21 and 17-27 are needed in practical applications of the Convex method. The first is the working equation and the second an auxiliary equation used once before a routing begins. Several other relationships and procedures also useful in applications follow.

Determination of K. - K is the reach travel time for a selected steady-flow discharge and can be computed using Equation 17-7 substituting K for  $T_t$ . Example 17-8 shows a preferred method for selecting the discharge. The K used in the Muskingum routing method (refs. 2 and 3) may also be used as the K for the Convex method.

Determination of C. - From Equations 17-17 and 17-26 the parameter or routing coefficient C can be derived as the ratio of two velocities: that is, C = V/U, where V is the steady-flow water velocity related to the reach travel time for steady flow discharge, K, and U is considered the wave velocity related to the travel time of the wave through the reach,  $\Delta t$ . For practical purposes C may be estimated from an empirical relationship between C and V shown in Figure 17-13. The dashed line in the Figure is represented by the equation:

$$C = \frac{V}{V + 1.7}$$
 (Eq. 17-28)

In some applications it is more convenient to use Equation 17-28 than Figure 17-13. The "x" used in the Muskingum routing method (refs. 2 and 3) may also be used to approximate C. The approximation is:

$$C \approx 2 x$$
 (Eq. 17-29)

In the Muskingum procedure the x is sometimes determined only to the nearest tenth; if this is done then C is approximated to the nearest two tenths and accurate routing results should not be expected.

Determination of  $\Delta t$ . - If C and K are known, from Equation 17-27, there is only one permissible routing interval. This permissible interval may be an inconvenient magnitude because it is either an unwieldy fraction of an hour or does not fit the given hydrograph. In selecting a suitable routing interval keep in mind that too large an interval will not accurately define the inflow hydrograph and that too small an interval will needlessly increase the effort required for the routing. A generally suitable rule of thumb to follow is that the selected routing time interval,  $\Delta t^*$ , should be no greater than 1/5 of the time from the beginning of rise to the time of the peak discharge of the inflow hydrograph, or:

$$\Delta t^* \le \frac{Tp}{5} \tag{Eq. 17-30}$$

where  $T_p$  is the time to peak (Chapter 16). If the hydrograph has more than one peak the interval should be selected using the  $T_p$  for the shortest of the rise periods of the important peaks. It is important that an end-point of a time interval fall at or near the inflow peak time and any other large change in rate.

Procedure for routing through any reach length.— The relationship of K, C, and  $\Delta t$  is valid for one and only one routing reach length for a given time interval and inflow hydrograph. If  $\Delta t$  is to be changed to  $\Delta t^*$  (desired routing time interval) it follows from Equation 17-27 that either (1) C or K must be changed (Method 1) or, (2) routing through a series of subreaches, L*, (Equation 17-32) must be made until the sum of the travel time of the  $\Delta t$ 's for each subreach, L*, equal the desired travel time,  $\Delta t^*$ , for the total reach, L (Method 2). Selection of either method

depends on the manner of computation and the consistency of the answers desired. Method 1 may be used when rough approximations of the routing effect are desired and manual computation is used. Method 2 is used when consistency of the routing is important or a computer is used. Consistency, as used here, refers to the changes in the outflow hydrograph (Tp and qp) caused by varying  $\Delta t^*$ . If there is little change in the hydrograph when  $\Delta t^*$  is changed the routing is considered consistent.

In Method 1, the reach length is fixed, hence, K is fixed (Equation 17-17) and C must be modified by the empirical relationship:

$$C^* = 1 - (1 - C) \frac{(\frac{\Delta t^* + .5\Delta t}{1.5\Delta t})}{(Eq. 17-31)}$$

where C* is the modified routing coefficient required for use with  $\Delta t^*$ , C is the coefficient determined from Figure 17-13 or computed by Equation 17-28,  $\Delta t^*$  is the desired routing interval, and  $\Delta t$  is the routing interval determined from Equation 17-27. After selecting  $\Delta t^*$  the coefficient C* is found by using either Equation 17-31 or Figure 17-14 (ES-1025 rev.)

Method 2 assumes that C and the desired routing interval  $\Delta t^*$  are fixed and the routing is made for a reach length  $L^*$ . From Equation 17-27, the desired travel time is:

$$K^* = \frac{\Delta t^*}{C}$$
 (Eq. 17-32)

From Equation 17-17 the proper routing reach length to match C and  $\Delta t^*$  is then:

$$L^* = (3600)(V)(K^*)$$
 (Eq. 17-33)

If L* is less than the given reach length, L, the inflow hydrograph is repetitively routed until the difference between the sum of the L*'s and L becomes less than the next L*. The last routing in the reach is a fractional routing using C* computed by Equation 17-31. The  $\Delta t$  used in Equation 17-31 is the time interval for routing through the fractional length increment of L, L**. (See Example 17-11 Method 2).

If L* is greater than the given reach length, L, the inflow hydrograph is routed once using Method 1. Example 17-11 illustrates the use of Methods 1 and 2.

Variability of routing parameters; selection of velocity, V. As shown by preceding relationships, the magnitudes of the routing parameters C and K (and therefore of  $\Delta t$ ) depend on the magnitude of the velocity V. For steady flow in natural streams this velocity varies with stage but the variation is not the same for all seasons of a year or for all reaches of a stream, nor does the velocity consistently increase or decrease with stage. For unsteady flow, velocity varies not only with stage but also with the rate of change of the stream flow.

These facts would appear to require a change in routing parameters for each operational step in a routing. But exploratory routings with the Convex method show that constant parameters must be used to conserve mass, that is, to make total outflow equal total inflow. The necessity for the use of constant parameters is a characteristic of coefficient routing equations, including not only Equation 17-21 but also with the Muskingum routing equation (refs. 2 and 3) and the Storage-Indication equations. Therefore all of the examples in this part show a use of constant parameters. In practice the parameters need not be constant for all steps of a routing but the more often they are changed the more likely that the total outflow will not equal total inflow.

The average, dominant, and peak velocities of one inflow hydrograph will nearly always differ from the corresponding velocities of another hydrograph. Even though a single value of V is used to get the constant values of C, K, and  $\Delta t$  for a routing, this V will nearly always be different for different inflow hydrographs to a reach. Each inflow hydrograph will need its own routing parameters determined from its own selected velocity. There are various methods of selecting the velocity.

One method, useful when a computer is used, computes the velocity as the average of velocities for all given discharges of the inflow hydrograph  $\geq$  50 percent of the peak discharge.

A manual method with the same objective as the machine method will be used in this chapter to make manual routings comparable to machine routings. In this method the dominant velocity of the inflow hydrograph is used to determine the parameters to be used in the routing. If the inflow hydrograph has a single peak the velocity is for a discharge equal to 3/4 of the peak inflow rate. If the inflow hydrograph has two or more peaks the velocity is for the discharge with the largest value of Tq, where:

 $Tq = (3/4-discharge) \times (duration of 3/4-discharge)$  (Eq. 17-34)

The use of Equation 17-34 is illustrated in Example 17-8. Some additional remarks concerning the selected velocity are given in the paragraph preceding Example 17-7.

Examples. The Convex method is generally used for routing hydrographs through stream reaches. It can also be used, without any change in procedure for routing mass curves through reaches. Examples of both uses will be given. The method can be used for routing through reservoirs but for this it is not as efficient as the mass-curve method of Example 17-1; therefore no examples of reservoir routing are given in this part. Examples are given showing various aspects of Convex routing.

Example 17-7 - Basic routine using assumed parameters.

Example 17-8 - Routing with parameters determined from reach data and with local inflow added at bottom of reach.

Example 17-9 - "Reverse Routing" or determining the inflow hydrograph for a given outflow hydrograph.

Example 17-10 - Routing of Mass Curve and method of getting the outflow hydrograph.

Example 17-11 - Routing any hydrograph through any reach.

Method 1 and Method 2 are compared.

For the following examples it is assumed that stage-discharge and stage-end-area curves are available for the routing reach. These curves are used for determining the velocity, V, after the dominant discharge of the inflow hydrograph is obtained. In preliminary work such curves may not be available, in which case the velocity can be estimated during a field trip to the stream area, or a suitable velocity assumed, and the routing made as a tentative study; such routings need verification by routings based on reach data before making firm decisions about a project.

In the first example the values of C and  $\Delta t$  are assumed; therefore the reach length and K do not directly enter into the work:

Example 17-7.--Route the triangular inflow hydrograph of Figure 17-15 by the Convex computational method. Use assumed values of C=0.4 and  $\Delta t=0.3$  hours. There is no local inflow into the reach.

## 1. Prepare the operations table.

Suitable headings and arrangement are shown for the first three columns in Table 17-14. The "remarks" column is used here to explain the steps; it is not needed in routine work.

# 2. Tabulate the inflow rates at accumulated times, using intervals of $\Delta t$ .

The accumulated times at intervals of  $\Delta t = 0.3$  hours are shown in column 1 of Table 17-14. The inflow rates at these times are taken from the inflow hydrograph of Figure 17-15 and shown in column 2.

### 3. Prepare the working equation.

Since C = 0.4 then (1 - C) = 0.6 and the working equation is  $0_2 = (1 - C) 0_1 + C I_1 = 0.6 0_1 + 0.4 I_1$ . When inflow ceases the working equation is  $0_2 = 0.6 0_1$ .

#### 4. Do the routing.

Follow the steps shown in the remarks column of Table 17-14.

The computational work in step 4 can usually be done on most desk-calculators by using a system of making the two multiplications and the addition in one machine operation.

The outflow hydrograph of Table 17-14 is plotted on Figure 17-15. The circled points are the outflow discharges obtained in the routing. Discharges between the points are found by connecting the points with a smooth curve. Sometimes the routing points do not define the peak region

Table 17-14 Basic operations in the Convex routing method.

Time (hrs)	Inflow, I (cfs)	Outflow, O (cfs)	Remarks
(1)	(2)	(3)	
0	0	0	Given.
•3	800	01/	$0_2 = 0.6(0) + 0.4(0) = zero$
.6	1600	320	$0_2 = 0.6(0) + 0.4(800) = 320$
.9	2400	832	$0_2 = 0.6(320) + 0.4(1600) = 832$
1.2	3200	1459	$0_2 = 0.6(832) + 0.4(2400) = 1459$
1.5	4000	2155	$0_2 = 0.6(1459) + 0.4(3200) = 2155$
1.8	3520	2893	$0_2 = 0.6(2155) + 0.4(4000) = 2893$
2.1	3040	3144	$0_2 = 0.6(2893) + 0.4(3520) = 3144$
2.4	2560	3102	$0_2 = 0.6(3144) + 0.4(3040) = 3102$
2.7	2080	2885	$0_2 = 0.6(3102) + 0.4(2560) = 2885$
3.0	1600	2563	$0_2 = 0.6(2885) + 0.4(2080) = 2563$
3.3	1120	2178	$0_2 = 0.6(2563) + 0.4(1600) = 2178$
3.6	640	1755	$0_2 = 0.6(2178) + 0.4(1120) = 1755$
3.9	160	1309	$0_2 = 0.6(1755) + 0.4(640) = 1309$
4.2	02/	849	$0_2 = 0.6(1309) + 0.4(160) = 849$
4.5	0	509	$0_2 = 0.6(849) = 509$ I ₁ = zero.
4.8	0	305	0 ₂ = 0.6(509) = 305 " " "
5.2	0	183	0 ₂ = 0.6(305) = 183 " " "
5.5	0	110	0 ₂ = 0.6(183) = 110 " " "
etc.	etc.	etc.	etc.

 $[\]underline{1}$ / Outflow starts at  $\Delta t$  = 0.3 hrs.

²/ Inflow ceases at 4.0 hrs.

well enough; this usually happens when the routing interval is large. In such cases the peak is estimated by use of a smooth curve or the routing is repeated using smaller intervals (see Example 17-11 for use of  $\Delta t^*$ ).

The recession curve or tail of the outflow hydrograph continues to infinity, the discharges getting smaller with every step but never becoming zero. This is a characteristic of most routing methods. In practice the recession curve is either arbitrarily brought to zero at some convenient low discharge or the routing is stopped at some low discharge as shown in Figure 17-15.

The next example is typical of the routine used in practice. Routing parameters are obtained from reach data and local inflow is added in the conventional manner. Local inflow is the (usually) small flow from the contributing area between the head and foot of a reach. Local inflow and the inflow into the head of the reach together make up the total flow from the drainage area above the foot of the reach. The local inflow is generally given as a hydrograph made with reference to the foot of the routing reach. When it is added to the routed outflow the sum is the total outflow hydrograph.

Example 17-8.—The inflow hydrograph in Figure 17-16 is to be routed through a reach having a low-flow channel length of 14,900 feet and a valley length of 12,400 feet. Stage-discharge and stage-end-area curves for the reach are available (not illustrated). A hydrograph of local inflow is given in Figure 17-16. Obtain the total outflow hydrograph for the reach.

1. Determine the discharge to be used for getting the velocity V. The inflow hydrograph has two peaks and it is not readily apparent which peak is the dominant one, therefore the rule expressed by Equation 17-34 will be used. The 3/4-discharge for the first peak is 3,750 cfs with a duration of 2.63 hours; for the second, 2,680 cfs with a duration of 5.35 hours. Then Tq = 3750(2.63) = 9,850 cfs-hrs for the first peak and Tq = 2680(5.35) = 14,320 cfs-hrs for the second, therefore the second discharge will be used.

2. Determine the velocity, V.

Enter the stage-discharge curve for the reach with the selected 3/4-discharge from step 1 and find the stage for that flow. Then enter the stage-end-area curve with that stage and get the end-area in square feet. The velocity is the discharge divided by the end area. For this example V will be taken as 3.0 fps.

#### 3. Determine K.

The reach has two lengths, one for the low-flow channel, the other for the valley. From an examination of the stage-discharge curve and the inflow hydrograph it is evident that most of the flow will exceed the capacity of the low-flow channel, therefore use the valley length. This is given as 12,400 feet. By Equation 17-17, using  $T_t = K$ , the value of K = 12400/3600(3.0) = 1.15 hours by a slide-rule computation.

4. Determine C.

Enter Figure 17-13 with V = 3.0 fps and find C = 0.65.

5. Compute Δt.

Using results from steps 3 and 4, and by Equation 17-27,  $\Delta t = 0.65$  (1.15) = 0.745 hours. Round to 0.75 hours.

- 6. Prepare an operations table for the routing.
  Suitable headings and arrangement are shown in Table 17-15.
- 7. Tabulate accumulated time at intervals of  $\Delta t$  and the discharges for inflow and local inflow at those times.

The times are given in column 1 of Table 17-15, inflows in column 2, and local inflows in column 4. Inflows and local inflows are taken from the given hydrographs, which are shown in Figure 17-16.

- 8. Prepare the working equation. From step 4, C = 0.65 so that (1 C) = 0.35. The working equation is  $O_2 = 0.35$   $O_1 + 0.65$   $I_1$ .
- 9. Do the routing.

Follow the routine used in Table 17-14 to get the outflows for column 3 of Table 17-15.

10. Get the total outflow hydrograph.

Add the local inflows of column 4, Table 17-15, to the routed outflows of column 3 to get the total outflows for column 5. This step completes the example. The total outflow hydrograph is shown in Figure 17-16.

Note in Figure 17-16 that the routed outflow peaks are not much smaller than the inflow peaks. The first routed outflow peak is 93.0 percent of its respective inflow peak, and the second 97.7 percent of its inflow peak. The reach has relatively small storage when compared with the inflow volumes; the first inflow peak has less volume associated with it than the second and it is reduced more than the second.

The next example illustrates a routine sometimes needed to get the upstream hydrograph when the downstream one is given. The working equation for this routine is a rearranged form of Equation 17-21:

$$I_1 = \frac{1}{C} O_2 - \frac{(1 - C)}{C} O_1$$
 (Eq. 17-35)

Example 17-9.--Obtain the inflow hydrograph of a reach from the total outflow hydrograph by use of reverse routing. The total outflow hydrograph and local inflow are given in Table 17-16.

1. Determine the routing coefficient C and the routing interval  $\Delta t$ .

Follow the procedure of steps 1 through 5 of Example 17-8. For this example C = 0.44 and  $\Delta t = 0.5$  hrs.

Table 17-15 Operations table for Example 17-8.

Time (hrs.)	Inflow (cfs)	Outflow (cfs)	Local Inflow (cfs)	Total Outflow (cfs)
(1)	(2)	(3)	(4)	(5)
0	0	0,/	0	0
•75	380	01/	110	110
1.50	1400	247	430	677
2.25	3000	996	830	1826
3.00	4450 5000	2299 3697	1000	3299
3. <b>7</b> 5 4.50	4600	4544	890 650	4587 5194
5.25	3750	4580	460	5040
6.00	2800	4040	320	4360
6.75	2100	3234	2200	3454
7.50	1600	2497	180	2677
8.25	1280	1914	170	2084
9.00	1150	1502	210	1712
9.75	1210	1273	310	1583
10.50	1480	1232	470	1702
11.25	1880	1393	650	2043
12.00	2360	1710	830	2540
12.75	2880	2132	950	3082
13.50	3250	2618	1000	3618
14.25	3500 3580	3029	970	3999
15.00 15.75	3480	3335 3494	880 780	4215 4274
16.50	3240	3485	650	4214
17.25	2930	3326	550	3876
18.00	2600	3069	470	3539
18.75	2280	2764	400	3164
19.50	1980	2449	330	2779
20.25	1730	2144	280	2424
21.00	1480	1875	230	2105
21.75	1280	1618	190	1808
27.50	1130	1398	150	1548
23.25	980	1224	120	1344
24.00	850	1065	100	1165
24.75	720	925	90	1015
25.50 26.25	620 530	792	80	872
26.25 27.00	530	680 583	70	750
27.00 27.75	450 400	582 496	60 50	642 546
28.50	350	496	50 40	546 474
29.25	310	353	30	383
			20	345
30.00	270	325	<b>/</b> ()	- <u>4</u> μη

 $[\]underline{1}$ / Outflow starts at  $\Delta t = 0.75$  hrs.

- 2. Prepare the operations table for the routing. Suitable headings and arrangements are shown in Table 17-16.
- 3. Tabulate accumulated time at intervals of  $\Delta t$  and the discharges for total outflow and local inflow at those times. The times are given in column 1 of Table 17-16, total outflows in column 2, and local inflows in column 3. The total outflow (but not the local inflow) is shown in Figure 17-17.
- 4. Determine the outflows to be routed upstream.

  A value in column 2, Table 17-16, minus the corresponding value in column 3 gives the outflow for column 4, which contains the outflows to be routed upstream.
- 5. Prepare the working equation. C is given in step 1 as 0.44. By Equation 17-35,  $I_1 = 2.27 \, O_2 1.27 \, O_1$ .
- 6. Do the routing. The routine is slightly different from that in Table 17-14. Using values from Table 17-16, the sequence is: for outflow time 0.5 hrs,  $I_1 = 2.27(0) 1.27(0) = 0$ , which is recorded for inflow time zero; at outflow time 1.0 hrs,  $I_1 = 2.27(163) 1.27(0) = 370$ , recorded for inflow time 0.5 hrs; for outflow 1.5,  $I_1 = 2.27(163) 1.27(163) = 878$ , recorded for inflow time 1.0 hrs; and so on. The work is easily done by accumulative positive and negative multiplication on a desk calculator. The inflow hydrograph to time 7.5 hours is plotted on Figure 17-17.

It will sometimes happen in reverse routing that the working equation gives negative values for the inflow. This occurs when the total outflow hydrograph or the local inflow is in error.

The next example shows the downstream routing of a mass curve of inflow. The routine is the same as that for Example 17-7. The outflow hydrograph can be obtained from the mass outflow curve by a series of simple calculations; these outflows must be plotted at midpoints of time increments, not at end points.

Example 17-10.—Route the mass curve of inflow of Figure 17-18 by the Convex method. There is no local inflow.

1. Determine the routing coefficient C and the routing interval  $\Delta t$ .

Follow the procedure of steps 1 through 5 of Example 17-8. For this example C = 0.40 and  $\Delta t = 0.3$  hrs.

2. Prepare the operations table for the routing. Suitable headings and arrangement are shown in Table 17-17.

Table 17-16 Operations table for Example 17-9

Time (hrs)	Total Outflow (cfs)	Local Inflow (cfs)	Outflow to be routed (cfs)	Inflow (cfs)
(1)	(2)	(3)	(4)	(5)
0 .5 1.0 1.5 2.0 2.5 3.0 5.0 5.0 5.0 5.0 6.5 7.0 7.5 8.0 etc.	0 120 310 680 1250 1850 2490 3030 3440 3700 3900 3940 3840 3500 3000 2485 1960 etc.	0 120 147 202 318 325 325 322 318 280 269 226 203 156 85 61 31 etc.	01/ 163 478 932 1525 2165 2708 3122 3420 3631 3714 3637 3344 2915 2424 1929 etc.	0 370 878 1508 2278 2978 3398 3648 3793 3899 3819 3539 2972 2370 1800 1300 etc.

^{1/} Outflow starts at  $\Delta t = 0.5$  hours.

3. Tabulate accumulated time at intervals of  $\Delta t$  and the mass inflows at those times.

The times are given in column 1 of Table 17-17 and mass inflows in column 2.

- 4. Prepare the working equation. C is given in step 1 as 0.40. By Equation 17-21,  $0_2 = 0.6 0_1 + 0.4 I_1$ .
- 5. Do the routing. The routine is exactly the same as that in Table 17-14. For example, at inflow time 2.7 hrs,  $0_2$  is computed using inflow and outflow for the previous time or  $0_2 = 0.6(3707) + 0.4(5952) = 4605$  cfshrs.

(Note: If only the mass outflow is needed the work stops with step 5. If the outflow hydrograph is also needed, the following steps are also taken.)

- 6. Compute increments of outflow.
  These are the differences shown in column 4, Table 17-17.
- 7. Compute average rates of outflow. Dividing the increment of outflow of column 4, Table 17-17, by the increment of time (in this case, 0.3 hrs) gives the average rate of outflow for the time increment. For example, between 1.8 and 2.1 hours in Table 17-17, the time increment is 0.3 hrs and the outflow increment is 906 cfs-hrs; then the average rate is 906/0.3 = 3,020 cfs. The average rates must be plotted as midpoints between the two accumulated times involved; for this case, 3020 cfs is plotted at a time of (1.8 + 2.1)/2 = 1.95 hours.

The mass inflow, mass outflow, and rate hydrograph are plotted in Figure 17-18.

The next example shows how to route any hydrograph through any reach length. Methods 1 and 2 are compared.

Example 17-11.--Route the inflow hydrograph of Figure 17-19 through a reach 30,000 feet long. Assume no local inflow.

## Method 1

- 1. Determine desired routing time interval,  $\Delta t^*$ . Following the rule expressed in Equation 17-30,  $\Delta t^*$  will be 0.4 hrs.
- 2. Determine routing coefficient, C, and routing interval  $\Delta t$ . If a stage-discharge-velocity table for a typical section in the reach is used, the average velocity V is determined using the method from page 17-54, and C is computed using Equation 17-28. If a rating table is not used the C or V must be assumed; in this case, let C = 0.72. Rearranging Eq. 17-28 gives V = 1.7C/(1-C) =

Table 17-17 Operations table for Example 17-10.

Time (hrs.)	Mass Inflow (cfs-hrs)	Mass Outflow (cfs-hrs)	Incre- ment of Outflow (cfs-hrs)	Outflow Rate (cfs)
(1)	(2)	(3)	(4)	(5)
0	0	0	0	0
•3	120	0 <u>1</u> /	48	160
.6	480	48	173	577
•9	1080	221	344	1146
1.2	1920	565	542	1806
1.5	,3000	1107	757	2523
1.8	4128	1864	906	3020
2.1	5112	2770	937	3123
2.4	5952	3707	898	2993
2.7	6648	4605	817	2723
3.0	7200	5422	711	2370
3.3	7608	6133	590	1966
3.6	7872	6723	460	1533
4.2	7992	7183	324	1080
4.5	7992	7507	194	647
4.8	7992	7701	116	387
5.2	7992	7817	70	233
5.5	7992	7887	etc.	etc.
etc.	etc.	etc.		600.

 $[\]underline{1}$ / Outflow starts at  $\Delta t$  = 0.3 hours

(1.7)(.72)/0.28 = 4.37 fps. Combining Equations 17-17 and 17-27,  $K = \frac{L}{3600V} = \frac{\Delta t}{C}$  or  $\Delta t = \frac{CL}{3600V} = (.72)(30000)/(3600)(4.37) =$ 

1.37 hrs. Use 1.4 hrs.  $\Delta t$  is also the wave travel time through the entire reach.

3. Determine C* Using Equation 17-31 with  $\Delta t = 1.4$  hrs,  $\Delta t^* = 0.4$  hrs, and C = 0.72  $C^* = 1 - (1-.72)$   $C^* = 1-(.28)$   $C^* = 1-(.28)$   $C^* = 1-(.28)$ 

- 4. Prepare an operations table for the routing.
  Suitable headings and arrangement are shown in Table 17-18.
- 5. Tabulate accumulated time intervals of  $\Delta t^*$  and the inflow discharges for those times. The times are given in column 1 Table 17-18, the inflows taken from Figure 17-19 in column 2.
- 6. Prepare the working equation. From step 3,  $C^* = 0.49$ . Using Equation 17-21  $O_2 = (1 C^*) O_1 + C^*I_1$  or  $O_2 = 0.51 O_1 + 0.49 I_1$ . Solutions of this equation can easily be made by accumulative multiplication or a desk calculator.
- 7. Do the routing. Follow the routine of Table 17-14. The outflows are shown in column 3 of Table 17-18.
- 8. Determine the times for the outflow. Outflow begins at the end of the first  $\Delta t$  (not  $\Delta t^*$ ) interval.

With  $\Delta t$  = 1.4 hrs, show this time in column 4 of Table 17-18 in the row where outflow begins. Get succeeding times by adding  $\Delta t^*$  intervals, 0.4 hours in this case, as shown in column 4. In plotting or otherwise displaying the inflow and outflow hydrographs they are put in their proper time order, using columns 1 and 4, as shown in figure 17-19.

#### Method 2

- 1. Determine desired routing time interval,  $\Delta t^*$ . Same as Method 1,  $\Delta t^* = 0.4$  hr.
- 2. Determine routing coefficient C. The routing coefficient C for each subreach is computed from the outflow hydrograph of the preceding subreach as done in Step 2, Method 1. A constant C may be used for the entire reach but the resultant hydrograph will vary from one produced by recomputing C for each subreach. For simplicity in this example, a constant C = 0.72 is assumed. C = 0.72 is assumed.

Table 17-18 Operations table for Example 17-11 Method 1.

(1) (2) (3) (4)  0 0 0 0 0 1.4 .8 260 0½/ 1.4 .8 980 127 1.8 1.2 2100 545 2.2 1.6 3120 1307 2.6 2.0 3500 2195 3.0 2.4 3220 2834 3.4 2.8 2630 3023 3.8 3.2 1960 2830 4.2 3.6 1470 2404 4.6 4.0 1120 1946 5.0 4.4 840 1541 5.4 4.8 630 1198 5.8 5.2 455 920 6.2 5.6 345 692 6.6 6.0 265 522 7.0 6.4 180 396 7.4 6.8 130 290 7.8 7.2 100 212 8.2 7.6 75 157 8.6 8.0 60 117 9.0 8.4 45 89 9.4 8.8 35 67 9.8 9.2 20 51 10.2 9.6 10 36 10.6 10.0 0 23 11.0 etc. etc.	Time Inflow (hrs)	Inflow (cfs)	Outflow (cfs)	Time Outflow (hrs)
.\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\( \) .\	(1)	(2)	(3)	(4)
	.4 .8 1.6 2.4 2.8 3.6 4.4 4.8 2.6 6.4 4.8 5.6 6.4 8.2 6.0 4.8 9.6 10.0	260 980 2100 3120 3500 3220 2630 1960 1470 1120 840 630 455 345 265 180 130 100 75 60 45 35 20	127 545 1307 2195 2834 3023 2830 2404 1946 1541 1198 920 692 522 396 290 212 157 117 89 67 51 36 23 12 6 3 2	1.8 2.6 3.4 3.8 4.6 5.4 5.4 5.6 6.0 7.8 8.6 9.4 8.0 9.8 10.6 11.8 12.6 13.0

1/ Outflow starts at  $\Delta t = 1.4$  hours

3. Determine length of subreach L*.

This is the length of reach required to satisfy the relationship of Equation 17-26 with C = 0.72 and  $\Delta t^*$  = 0.4 hrs. Combining Equations 17-26 and 17-17 (let K =  $T_t$ ) we have L* =  $(\Delta t)(V)(3600)/C = (0.4)(4.37)(3600)/0.72 = 8740 ft$ .

4. Compare the total of subreach lengths,  $\Sigma L^*$  with the given reach length, L.

For ΣL*≤L go to step 5

For  $\Sigma L^*>L$  go to step 7

In this example  $\Sigma L^*_{n=1} = 8740$ 

 $\Sigma L^*_{n=2} = 17480$ 

 $\Sigma L_{n=3}^* = 26220$ 

 $\Sigma L_{n=1}^* = 34960$ 

Therefore, the first three routings are made by going to step 5 and the last routing by going to step 7.

- 5. Prepare working equation and do the routing. Using Equation 17-21 and the routing coefficient computed in step 2,  $0_2 = (1 C)0_1 + CI_1 = 0.28 0_1 + 0.72I_1$ . The outflows for each subreach are shown in Table 17-19.
- 6. Go to step 2.
- 7. Determine the length of the remaining subreach to be routed. Subtract the  $\Sigma L^*$  of the 3 completed routings, i.e., 26220 ft from the total reach length to get the remaining reach length to be routed.  $L^{**} = 30000 26220 = 3780$  ft.
- 8. Determine the  $\Delta t$  time interval for the remaining subreach. The time interval used here is the same as the wave travel time through the remaining subreach. Combining Equations 17-17 and 17-27 as in step 2 Method 1  $\Delta t^{**} = \frac{CL^{**}}{3600V} = (0.72)(3780)/(3600)(4.37) = 0.173 \text{ hrs.}$
- 9. Determine the modified routing coefficient C*. Using Equation 17-31 with  $\Delta t^{**} = 0.173$ ,  $\Delta t^{*} = 0.4$  and C = 0.72,

$$C^* = 1 - (1 - C) \begin{pmatrix} \frac{\Delta t * 0.5 \Delta t * *}{1.5 \Delta t * *} \end{pmatrix} = 1 - (1 - .72) \begin{pmatrix} \frac{0.4 + 0.5(.173)}{1.5(.173)} \end{pmatrix}$$

$$(.28)^{(.4865)}$$
 1-(.28)^{1.89} = 1 - .090 = .91

10. Prepare working equation. Following Method 1  $0_2 = (1-C^*)0_1 + C^*I_1 = (1 - .91) 0_1 + 0.91I_1 = .09 0_1 + 0.91 I_1.$ 

11. Do the routing.
The outflow for the fractional routing are shown in column 6
Table 17-19.

12. Determine the time for the routing.

The hydrograph for each subreach routing is set back one  $\Delta t$  time interval. In this example the first three routings are set back 0.4 hrs each and the last (fractional) routing is set back 0.173 hrs (round to 0.2 hrs). See column 7 Table 17-19 and Figure 17-19.

When C* and  $\Delta t*$  are used and local inflow is to be added, the local inflow must be used in its actual time position regardless of  $\Delta t$  and  $\Delta t*$ . That is, the local inflow is not shifted back or forth because it is not affected by the use of C* and  $\Delta t*$ .

Effects of transmission losses on routed flows

A flood hydrograph is altered by transmission losses occurring during passage of the flow through a reach. The amount of loss depends on the percolation rate of the channel, the wetted perimeter of channel during flow, and the duration of flow for a particular wetted perimeter (Chapter 19). Transmission loss varies with the amount of flow in the channel which means that the most accurate method of deducting the transmission loss from the routed flow will be on an incremental flow basis. It is seldom worthwhile to handle it in this manner unless the transmission loss is very large.

An acceptable practice for handling transmission losses is to route the inflow hydrograph in the usual manner and afterwards deduct a suitable quantity of flow from the outflow hydrograph (mainly from the rising limb). If that outflow is to be routed downstream again, the manner of flow deduction will not be critical. In some cases it may be reasonable to assume that local inflow will be completely absorbed by transmission losses, thus no local inflow is added to the unmodified outflow hydrograph. In other cases local rainfall may completely satisfy transmission losses, requiring unmodified local inflow to be added to the unmodified outflow hydrograph. The use of detailed procedures outlined in Chapter 19, "Transmission Losses", may be necessary for more complex situations.

Routing through a system of channels

The methods of channel routing given in Examples 17-7 through 17-11 are used for individual reaches of a stream. Ordinarily a routing progresses from reach through reach until the stages, rates, or amounts of flow are known for selected points in the entire stream system of a watershed. The method of progression will be illustrated using a schematic diagram or "tree graph" of a stream system. A typical graph is given in Figure 17-20. It does not need to be drawn to scale. The main purpose of the graph is to show the reaches in their proper relationship to each other, but various kinds of data can be written down at their respective points of application to make the graph a complete reference during the routing.

Routing through a stream system begins at the head of the uppermost reach. If there is more than one possible starting place, as in Figure 17-20, the most convenient should be chosen.

Table 17-19 Operation table for Example 17-11 Method 2

Time Inflow (hrs)	Inflow (cfs)	Outflow ΣL*=8740 (cfs)	Outflow ΣL*=17480 (cfs)	Outflow ΣL*=26220 (cfs)	Outflow ΣL*=30000 (cfs)	Outflow Time (hrs)
(1)	(2)	(3)	(4)	(5)	(6)	(7)
0 .8 26 0 4 8 26 0 4 8 26 0 4 8 2 6 0 c e t e t e t e t e t e t e t e t e t e	0 260 980 2100 3120 3500 3220 2630 1960 1120 840 630 455 345 265 180 100 75 60 45 35 20 10 0 etc.	0½/ 187 758 1724 2729 3284 3238 2800 2195 1673 1275 962 723 530 397 302 214 115 86 67 51 40 25 14 1 0 etc.	0 135 584 1405 2358 3025 3178 2906 2394 1875 1442 1096 827 613 457 345 251 181 133 99 76 58 45 31 99 76 58 45 199 65 199 65 199 65 199 65 199 65 199 65 199 65 65 65 65 65 65 65 65 65 65 65 65 65	0 97 447 1137 2016 2743 3056 2948 2549 2064 1617 1242 944 706 527 396 292 212 155 115 87 66 51 36 24 13 6 21 21 21 21 21 21 21 21 21 21 21 21 21	02/ 88 415 1072 1931 2670 3021 2955 2586 2111 1661 1280 974 730 545 409 303 220 161 119 90 68 53 38 25 14 7 2	1.4 1.8 2.6 3.4 3.8 4.6 5.4 5.8 6.6 7.4 7.8 8.6 9.4 9.8 10.6 10.0 11.8 12.6 13.0

 $[\]underline{1}$ / Outflow from subreach 1, 2, & 3 starts  $\Delta t^* = 0.4$  hours after inflow starts into each subreach.

²/ Outflow from subreach 4 starts  $\Delta t = 0.2$  hours (rounded from 0.17 hours) after inflow starts into subreach 4.

The first major step in routing through a stream system is to develop the routing parameters, C and  $\Delta t$ , for each reach. Many times it is necessary to use  $\Delta t^*$  to make the routing interval uniform through the stream system; these parameters should be obtained before the routing begins. The method of developing the parameters C, K, and  $\Delta t$  is given in steps 1 through 5 of Example 17-8. The method of determining C* and  $\Delta t^*$  is given in steps 1 through 3 of Example 17-11.

The second major step is the development of the inflow hydrographs at heads of uppermost reaches and of local inflow hydrographs for all reaches. The methods of Chapter 16 are used.

The third major step is the routing. For routing any particular flood on the stream system pictured in Figure 17-23 a suitable sequence is as follows:

- 1. Route the inflow hydrograph at (a) through reach (a,b).
- 2. Add local inflow of reach (a,b) to the routed outflow to get the total outflow hydrograph, which becomes the inflow hydrograph for reach (b,c). It should be noted here that local inflow for a reach is usually added at the foot of the reach. These may be circumstances, however, in which the local inflow should be added at the beginning of the reach. The proper sequence for adding local inflow can be determined only by evaluating each reach.
  - 3. Route the total outflow from reach (a,b) through reach (b,c).
- 4. Add local inflow of reach (b,c) to the routed outflow to get the total outflow hydrograph for that tributary.
  - 5. Route the inflow hydrograph at (d) through reach (d,c).
- 6. Add local inflow of reach (d,c) to the routed outflow to get the total outflow hydrograph at point (c).
- 7. Add the total outflow hydrographs from reaches (b,c) and (d,c), steps 4 and 6, to get the total outflow hydrograph at point (c).
  - 8. Route the total hydrograph at point (c) through reach (c,f).
- 9. Add local inflow of reach (c,f) to the routed outflow to get the total outflow hydrograph at point (f).
  - 10. Route the inflow hydrograph at point (e) through reach (e,f).
- 11. Add local inflow of reach (e,f) to the routed outflow to get the total outflow hydrograph for that tributary.
  - 12. Route the inflow hydrograph at point (g) through reach (g,f).
- 13. Add local inflow of reach (g,f) to the routed outflow to get the total outflow for that tributary at point (f).

- 14. Add the total outflow hydrographs from reaches (c,f), (e,f), and (g,f), steps 9, 11, and 13 to get the total outflow hydrograph at point (f).
  - 15. Route the total hydrograph at point (f) through reach (f,h).
- 16. Add local inflow of reach (f,h) to the routed outflow to get the total outflow hydrograph for reach (f,h).
  - 17. Route the total hydrograph at point (h) through reach (h,i).
- 18. Add local inflow of reach (h,i) to the routed outflow to get the total outflow hydrograph for reach (h,i).
  - 19. Route the inflow hydrograph at point (j) through reach (j,k).
- 20. Add local inflow of reach (j,k) to the routed outflow to get the total outflow hydrograph for reach (j,k).
  - 21. Route the hydrograph at point (k) through reach (k,i).
- 22. Add local inflow of reach (k,i) to the routed outflow to get the total outflow hydrograph for this tributary.
- 23. Add the total outflow hydrographs from reaches (h,i) and (k,i), steps 18 and 22, to get the total outflow hydrograph for point (i).
  - 24. Route the hydrograph at point (i) through reach (i, l).
- 25. Add local inflow of reach (i, l) to the routed outflow to get the total outflow hydrograph at point (l). This completes the routing for a particular flood on this stream system.

When manual computations are used, an operations table with times, inflow hydrographs and local inflows tabulated in their proper sequence is useful. Blank columns are left for the routed outflows and total outflows, which are tabulated as routing progresses. Above the appropriate columns the required data and routing parameters are tabulated so that the table becomes a complete reference for the routing. A sample operations table for routing by Method 2 is shown as Table 17-20. After the inflow hydrograph and local inflows are tabulated the sequence of the work is as follows:

Tabulate the reach numbers in the order in which the routing will progress; perform the routings as shown in Example 17-11 and continue in this manner through the stream system. Note the routed outflow at 1.17 hrs which is rounded to 1.0 hrs. Theoretically, the outflow hydrograph should be interpolated on a multiple of  $\Delta t$  to properly position the hydrograph in relation to time. The linear interpolation equation is:

$$q_i = q_i + (q_{i+i} - q_i) \times \frac{\Delta t^* - \Delta t}{\Delta t^*}$$
 (Eq. 17-36)

where:  $q_i$  and  $q_{i+i}$  are consecutive discharges,  $\Delta t^*$  is the desired time interval and  $\Delta t$  is the required time interval of the partial routing. When using Method 2,  $\Delta t$  is always less than  $\Delta t^*$ .

If the interpolation step is omitted and the starting times rounded as in Table 17-20 it is recognized an error is introduced, the magnitude of which depends on the relative values of  $\Delta t$  and  $\Delta t^*$ .

Outflow begins at 1.00 hrs., rounded from 1.17 hrs. Outflow begins at 0.00 hrs., rounded from 0.17 hrs. Outflow begins at 2.00 hrs., rounded from 2.12 hrs.

13 15 1-

		Total Outflow	80 80 80 697 1248	2061 2970 4087 5107 5668	5605 5043 4253 3445 2720	2117
		Local Inflow	80 80 80 600 850	690 410 200 100 80	8 8 8 8 80 0 0 0	80
		Outflow	0 <u>3</u> / 97 1,98	1371 2560 3887 5007 5588	5525 4963 4173 3365 2640	2037
	2028. .12 .998	Outflow Subrch2 @34972.'	0 74 1498	1371 2560 3887 5007 5588	5525 4963 4173 3365 2640	2034
.65		Outflow Subrchl @17436.'	0 150 715 1844	3202 4605 5612 5901 5490	4660 3745 2928 2249 1707	1279
14 37000. 3.2 .65 1.00		Total Outflow	0 230 1020 2451 3933	5360 6155 6057 5268 4213	3253 2488 1883 1416 1048	779
		Local Inflow s)	0 40 140 300 445	500 460 380 280 210	160 120 90 65 50	35
		tal Outflow L flow I Discharges in cfs)-	02/ 190 980 2151 3488	4860 5695 5677 4988 4003	3093 2368 1793 1351 998	794
15 4000. 4.8 .74	4000. .17 1.00	Total Outflow (All Discha	0 190 980 2151 3488	4860 5695 5677 4988 4003	3093 2368 1793 1351 998	744 etc.
		Local Inflow	0 190 700 1000 810	520 315 205 120 75	45 25 15 10 8	5 etc.
		Outflow	280 1151 2678	4340 5380 5472 4868 3928	3048 2343 1778 1341	739 etc.
.63	2759. .17 .986	Outflow Subrchl @16540.'	0 284 1173 2698	4363 5394 5473 4860 3915	3036 2333 1770 1335 986	735 etc.
16 19300. 2.9 .63 1.00	(ft) 16541. (hrs)	Inflow	0 1680 3600 5340	6000 5520 4500 3360 2520	1920 1440 1080 780 580	450 etc.
cH t) ps) (hrs)	L* (ft)  At (hrs)  C*	Time hrs	0 T 0 R 7	08767	10 11 13 14	15 etc.

NEH Notice 4-102, August 1972



Figure 17-12. Relationships for Convex method of channel routing.



Figure 17-13. Convex routing coefficient versus velocity.



Figure 17-14. ES-1025 rev. sheet 1 of 2.



Figure 17-14. ES-1025 rev. sheet 2 of 2.



Figure 17-15. Inflow and routed outflow hydrograph for Example 17-7.



Figure 17-16. Inflow and routed outflow hydrograph for Example 17-8.

NEH Notice 4-102, August 1972



Figure 17-17. Outflow and routed inflow hydrograph for Example 17-9.



Figure 17-18. Mass inflow, mass outflow and rate hydrograph for Example 17-10.



Figure 17-19. Inflow hydrograph and routed outflow hydrographs for Example 17-11, Method 1 and 2.

NEH Notice 4-102, August 1972



Figure 17-20. Typical Schematic diagram for routing through a system of channels.

## Unit-Hydrograph Routing Methods

Principles of the unit hydrograph theory are given in Chapter 16. They apply to single-peaked hydrographs originating from uniform runoff on the contributing area but they can be extended to apply to more complex runoff conditions. Despite the limitations of the theory it has features that can be used in determining peak rates in stream reaches not only when the watershed is in a "present" unreservoired condition but also when it is controlled by many reservoirs. It is the ease with which complex systems of control structures are evaluated that has made the unit-hydrograph type of routing a popular method for many years. If suitable data are used the results are usually as good as those obtained by more detailed methods of routing.

In this part of the chapter the basic equations for unit-hydrograph routing will be given and discussed and some of their uses explained by means of examples. The unit-hydrograph method of routing gives only the peak rates of runoff. The peak-producing hydrograph, if it is needed, must be obtained in some other way.

## Basic Equations

All of the unit-hydrograph working equations are derived from the relationship for the peak rate of a unit hydrograph:

$$q_p = \frac{K A Q}{T_p}$$
 (Eq. 17-37)

where

 $q_p$  = peak rate in cfs

K = a constant (not the routing parameter used in the Convex method)

A = drainage area contributing runoff; in square miles

Q = average depth of runoff, in inches, from the contributing area

 $T_p$  = time to peak, in hours

By letting  $q_p$ , K, A, Q, and  $T_p$  stand for a watershed in one condition and using primed symbols  $q_p$ , K', A', Q', and  $T_p$  for the same watershed in a condition being studied, then by use of Equation 17-37 it is evident that:

$$q_p = q_p \frac{A' Q' T_p}{A Q T_p'}$$
 (Eq. 17-38)

which is a typical working equation of the unit hydrograph method. It can be used, for example, in determining the peak rates after establishment of land use and treatment measures on a watershed. In such work the present peaks, areas, runoff amounts, and peak times are known and it is only a matter of finding the change in runoff by use of Chapter 10 methods. The areas and peak times are assumed to remain constant.

When a floodwater retarding structure, or other structure controlling a part of the watershed, is being used in the "future" condition then the value of A' is reduced. And if there are releases from the structure then they must also be taken into account. For a project having structures controlling a total of A* square miles and having an average release rate of q* csm, the peak rate equation becomes:

$$q_p^{\dagger} = q_p \frac{(A' - A^*) Q' T_p}{A Q T_p^{\dagger}} + q^* (A^*)$$
 (Eq. 17-39)

When using Equation 17-39 to find the reduced peak rate the major assumption is that the structures are about uniformly distributed over the watershed. Another assumption is that all structures contribute to q*, but this is sometimes too conservative an assumption (see the section titled "Use of Equation 17-43 on large watersheds").

When A' = A and  $T'_p = T_p$ , which is the usual case when evaluating land use and treatment effects, Equation 17-38 becomes:

$$q_{p}^{*} = q_{p} \frac{Q^{*}}{Q}$$
 (Eq. 17-40)

which is one of the basic expressions of the unit hydrograph theory. If the same simplification applies when evaluating structures then Equation 17-39 becomes:

$$q_p' = q_p \frac{A - A^*}{A} + q^* (A^*)$$
 (Eq. 17-41)

Equation 17-41 can be further simplified by using:

$$r = \frac{A^*}{A}$$
 (Eq. 17-42)

where r is the fraction of drainage area under control or the percent of control divided by 100. Using Equation 17-42 in Equation 17-41 gives:

$$q_p' = q_p (1 - r) + q*(A*)$$
 (Eq. 17-43)

## Effects of storm duration and time of concentration

When the effects of a change in either the storm duration or the time of concentration must be taken into account, one way to do it is to use the following relation from Chapter 16:

$$T_p = a(D) + b(T_c)$$
 (Eq. 17-44)

where

 $T_D$  = time to peak, in hours

a = a constant

D = storm duration, in hours, during which runoff is generated; it is usually less than the total storm duration.

b = a constant

 $T_c$  = time of concentration, in hours

As shown in Chapter 16, the constants a and b can be taken as 0.5 and 0.6 respectively, for most problems, in which case Equation 17-44 becomes:

$$T_p = 0.5 D + 0.6 T_c$$
 (Eq. 17-45)

Using Equation 17-45 in equations 17-37, 17-38, and 17-39 produces working equations in which either the storm duration or the time of concentration can be changed and the effect of the change determined. Such equations are not often used because the main comparison is usually between present and future conditions in which only runoff amount and drainage area will change. In special problems where storm duration must be taken into account there are other approaches that are more applicable (see the section titled "Use of Equation 17-43 on large watersheds").

## Elimination of $T_p$

In many physiographic areas there is a consistent relation between  $T_p$  and A because there is a typical storm condition or pattern. The relationship is usually expressed as:

$$T_p = c A^d$$
 (Eq. 17-46)

where c is a constant multiplier and d is a constant exponent. Substituting  $cA^d$  for  $T_{\text{p}}$  in Equation 17-37 gives:

$$q_p = k A (1 - d) Q$$
 (Eq. 17-47)

where k = K/c. Letting (1 - d) = h, Equation 17-47 becomes:

$$q_D = k A^h Q$$
 (Eq. 17-48)

which is the working equation in practice. The parameters k and h are obtained from data for a large storm over the watershed or region being studied. Values of  $q_p$  at several locations are obtained either from streamflow stations or by means of slope-area measurements (Chapter 14): values of Q associated with each  $q_p$  are obtained from the station data or by use of rainfall and watershed data and methods of chapter 10; and drainage areas at each location are determined. A plotting of  $q_p/Q$  against A is made on log paper and a line of best fit is drawn through the plotting. The multiplier k is the intercept of the line where A = 1 square mile and the exponent h is the slope of the line. See the section titled "Use of Equations 17-48, 17-50, and 17-52" for an application of this procedure.

After h is known, the equivalent of Equation 17-38 is:

$$q_p' = q_p \left(\frac{A}{A}\right)^h \frac{Q'}{Q} \qquad (Eq. 17-49)$$

The k's cancel out in making this change.

In the "Concordant Flow" method of peak determination, Equation 17-48 is modified to take into account the effects of control structures and their release rates, with the working equation being:

$$q_p' = k A^h Q (1 - r) + q*(A*)$$
 (Eq. 17-50)

or: 
$$q_p' = q_p (1 - r) + q *(A*)$$
 (Eq. 17-51)

which is the same as Equation 17-43 in form but where  $q_p$  is now determined from Equation 17-48.

Equations 17-39, 17-41, 17-43, 17-50, and 17-51 should be used only when the storm runoff volume does not exceed the storage capacity of the structure with the smallest capacity. If the runoff does exceed that capacity these equations must be modified further. Equation 17-50, for example, becomes:

$$q_p' = k A^h (Q - r Qs) + q*(A*)$$
 (Eq. 17-52)

where Qs is the average storage capacity of the structures. It is shown in Example 17-20 how Equation 17-51 and similar equations can be used even when the capacity varies from structure to structure.

## Working equations for special cases

Additional equations can be developed from those given if a special problem arises in watershed evaluation. For an example, suppose that Equation 17-43 is to be used for determining the effects of a proposed system of floodwater retarding structures in a watershed, and that the evaluation reaches are so long that the percent of area reservoired varies significantly from the head to the foot of the reach. To modify Equation 17-43 for this case, let  $A^*$  be the area reservoired, A the total area, and  $r = A^*/A$  for the head of the reach; and let  $B^*$  be the total area reservoired (including  $A^*$ ), B the total area (including A), and  $r'' = B^*/B$  for the foot of the reach. For evaluations to be made at the foot of the reach, Equation 17-43 then becomes:

$$q_p' = q_p \left( \frac{2 - r - r''}{2} \right) + q* \left( \frac{A^* + B^*}{2} \right)$$
 (Eq. 17-53)

After first computing (2 - r - r'')/2 = C' and (A* + B*)/2 = C'' for the reach, the working equation becomes:

$$q_p' = q_p C' + q* C''$$
 (Eq. 17-54)

where C' and C" are the computed coefficients. Each evaluation reach requires its own set of coefficients.

#### Examples

The problems in the following examples range from the very simple to the complex, the latter being given to show that unit-hydrograph methods have wide application. For some complex problems, however, it will generally be more efficient to use the SCS electronic-computer evaluation program.

Use of Equation 17-40. - This basic expression of the unit hydrograph theory has many uses. The major limitation in its use is that Q and Q' must be about uniformly distributed over the watershed being studied. The following is a typical but simple problem.

Example 17-12.--A watershed has a peak discharge of 46,300 cfs from a storm that produced 2.54 inches of runoff. What would the peak rate have been for a runoff of 1.68 inches?

1. Apply Equation 17-40. For this problem  $q_p = 46,300$  cfs, Q = 2.54 inches, and Q' = 1.68 inches. By Equation 17-40  $q_p' = 46300(1.68/2.54) = 30,604$  cfs, which is rounded to 30,600 cfs.

Use of Equation 17-43 - The major limitations in the use of this equation are that both the runoffs and the structures must be about uniformly distributed over the watershed and that the stream travel times for the "future" condition must be about the same as for the "present." The following is a typical but simple problem.

Example 17-13.--A watershed of 183 square miles has a flood peak of 37,800 cfs. If 42 square miles of this watershed were controlled by floodwater retarding structures having an average release rate of 15 csm, what would the reduced peak be?

1. Compute r. By Equation 17-42 r = 42/183 = 0.230 because  $A^* = 42$  and A = 183 square miles.

2. Apply Equation 17-43. For this problem,  $q_p = 37,800$  cfs, r = 0.230 from step 1,  $q^* = 15$  csm, and  $A^* = 42$  square miles. By Equation 17-43  $q_p^* = 37800(1 - 0.230) + 15(42) = 29,736$  cfs, which is rounded to 29,700 cfs. This is the reduced peak.

Use of Equation 17-43 on large watersheds.— If Equation 17-43 is used for evaluating the effects of structures in a large watershed or river basin the releases from structures far upstream may not add to the peak rates in the lower reaches of the main stem. And if releases from certain upstream structures do not affect peaks far downstream then those structures also are not reducing the peak rates, therefore their drainage areas should not be used in the equation.

In problems of this kind the approach to be taken is relatively simple though there are supplementary computations to be made before the equation is used. The key step in the approach is finding the  $T_{\rm p}$  for an evaluation flood and using only those areas and structures close enough to the sub-basin outlet to affect the peak rate of that flood. How this is done will be illustrated using the data and computations of Table 17-21. The data are for a sub-basin of 620 square miles, with a time of concentration of 48 hours. Storm durations for the floods to be evaluated will vary from 1 to over 72 hours, which means that the sub-basin  $T_{\rm p}$  will also vary considerably.

Table 17-21 is developed as follows:

Column 1 lists the travel times on the sub-basin main stem from the outlet point to selected points upstream, which are mainly junctions with major tributaries. The first entry is for the outlet point.

Column 2 gives the total drainage area above each selected point.

Column 3 gives the increments of area.

Column 4 gives the accumulated areas, going upstream. These are the contributing areas when the flood's  $T_p$  is within the limits shown in column 1. For example, when  $T_p$  is between 3.5 and 9.1 hours, the contributing drainage area is 74 square miles.  $T_p$  must be at least 48 hours before the entire watershed contributes to the peak rate.

 $\underline{\text{Column 5}}$  shows the total areas controlled by structures.

Column 6 gives the increments of controlled area.

Column 7 gives the accumulated controlled areas, going upstream.

 $\underline{\text{Column 8}}$  gives values of r, which are computed using entries of columns 7 and 4.

Column 9 gives values of (1 - r), which are computed using entries of column 8.

Column 10 gives the total average release rate in cfs for the controlled areas of column 7. For this table the average release rate  $q^*$  is 7 csm. Therefore the  $q^*(A^*)$  entry for a particular row is the column 7 area of that row multiplied by the average rate in csm.

Only columns 1, 9, and 10 are used in the remaining work. To determine the effect of the structures the  $q_p$  and  $T_p$  of the evaluation flood must be known, the proper entries taken from the table, and Equation 17-43 applied. For example, if  $q_p=87,000$  cfs and  $T_p=24$  hours for a particular flood, first enter column 1 with  $T_p=24$  hours and find the row to be used, in this case it is between  $T_t$  values of 21.1 and 28.0 hours; next select (1-r)=0.459 from column 9 of that row and  $q^*(A^*)=1,491$  cfs from column 10; finally, use Equation 17-43 which gives  $q_p^*=87000$  (0.459)+1491=41,424 cfs, which is rounded to 41,400 cfs.

Table 17-21 Data and working table for use of Equation 17-43 on a large watershed

s) (s	74	A* ∆A*	Ą;*	۲	(1-r)	$/ \pm (4*)^{\pm}$
(2) 620 612 606 546 456 1 226, 1	(sq.mi.) (	(sq.mi.) (sq.mi	.) (sq.mi.)			(cfs)
620 612 606 546 456 376 1	(†)	(5) (6)	(4)	(8)	(6)	(10)
612 606 546 456 376 1	c	359	,			
606 546 456 376 1 226.	0	359	0	0	1,000	0
546 456 376 1 226.	14	356	m	.214	.786	21
740 456 376 1 226,	477	270 24	27	.365	.635	189
456 376 226.	164	556 43	70	.426	.574	064
376 226.	1,1,0	289	701	-	0	. 00
226.	† †	233	750	١٠٢٠ (	. 463	882
l (	394	146	213	.541	.459	1491
31.U 125	495	1.1	290	.586	414.	2030
	593	λη 21	338	.570	.430	2366
748.0 0 27	620	21	359	.580	.420	2513

1/ Using an average rate of  $q^* = 7$  csm.

If any other point in the sub-basin is also to be used for evaluation of structure effects then a separate table is needed for that point.

Use of Equations 17-48, 17-50, and 17-52. When streamflow data or slope-area measurements and Q estimates are available for a watershed and its vicinity, the information can be used to construct a graph of  $q_p/Q$  and A as shown in Figure 17-21. This is the graphical form of Equation 17-48. If a line with an intercept of 484 cfs/in. and slope of 0.4 can be reasonably well fitted to the data, as in this case, it means that the hydrograph shapes of these watersheds closely resemble the shape of the unit hydrograph of Figure 16-1 (see Chapter 16). Usually the slope will be 0.4 for other shapes of hydrographs (the reason for this is discussed in Chapter 15) but the intercept will vary. For the line of Figure 17-21, Equation 17-48 can be written:

$$q_p = 484 A^{0.4} Q$$
 (Eq. 17-55)

The following examples show some typical uses of the graph or its equation.

Example 17-14.--For a watershed in the region to which Figure 17-21 applies, A = 234 square miles and Q = 3.15 inches for a storm event. What is  $q_n$ ?

## 1. Find $q_p/Q$ for the given A.

Enter the graph with A = 234 square miles and at the line of relation find  $q_p/Q = 4,290$  cfs/in.

## 2. Compute qp.

Multiplying  $q_p/Q$  by Q gives  $q_p$ , therefore,  $q_p = 3.15(4290) = 13,500$  cfs by a slide-rule computation.

If part of a watershed is controlled by floodwater retarding structures the graph can be used together with equation 17-50, as follows:

Example 17-15.--A watershed of 234 square miles has a system of flood-water retarding structures on it controlling a total of 103 square miles. Each structure has a storage capacity of 4.5 inches before discharge begins through the emergency spillway. Each structure has an average release rate of 15 csm. When the storm runoff Q is 4.1 inches what is the peak rate with (a) structures not in place, and (b) structure in place?

# 1. Determine the flood peak for the watershed with structures not in place.

Use the method of Example 17-14. Enter Figure 17-21 with A =  $23^{4}$  square miles and find  $q_{p}/Q = 4,290$  cfs/in. Multiplying that result by Q = 4.1 inches gives  $q_{p} = 4.1(4290) = 17,600$  cfs by a sliderule computation. This discharge is (k  $A^{h}$  Q) in Equation 17-50.

- 2. Determine (1 r). From Equation 17-42 r = A*/A = 103/234 = 0.440. Then (1 - r) = 1 - 0.440 = 0.560.
- 3. Determine the flood peak for the watershed with structures in place.

Use Equation 17-50 with the results of steps 1 and 2 and the given data for controlled area and release rate:  $q_p^* = 17600(0.560) + 15(103) = 11,410$  cfs, using a slide-rule for the multiplications. Round the discharge to 11,400 cfs.

If the storm runoff exceeds the storage capacities of the structures but the capacities are the same for all structures then Equation 17-52 can be applied as shown in the following example.

Example 17-16.--For the same watershed and structures used in Example 17-18 find the peak rates without and with structures in place when the storm runoff is 6.21 inches.

1. Determine the flood peak for the watershed with structures not in place.

Use the method of Example 17-14. Enter Figure 17-21 with A = 234 square miles and find  $q_p/Q$  = 4,290 cfs/in. This is (k Ah) in Equation 17-52. Multiplying that result by Q = 6.21 inches gives  $q_p$  = 6.21 (4290) = 26,700 cfs by a slide-rule computation. This is the peak rate without structures in place.

- 2. Determine r. From Equation 17-42 r = A*/A = 103/234 = 0.440
- 3. Determine the flood peak for the watershed with structures in place. Use Equation 17-52 with (k  $A^h$ ) = 4,290 cfs/in. from step 1; Q =

6.21 inches, as given; r = 0.440, from step 2; and Qs = 4.5 inches,  $q^* = 15$  csm, and  $A^* = 103$  square miles as given in Example 17-17. Then  $q_p^* = 4290(6.21 - 0.440(4.5)) + 15(103) = 18160 + 1540 = 19,700 cfs.$ 

Note that the effect of the release rate on reducing the storm runoff amount is not taken into account in this example. This means that the peak of 19,700 cfs is slightly too large and that this approach gives a conservatively high answer.

If the storage capacities of the structures vary then Equation 17-52 is used with (Q - r Qs) computed by a more detailed method, as shown in the following example.

Example 17-17.--A watershed of 311 square miles has a system of flood-water retarding structures controlling a total of 187 square miles and having average release rates of 8 csm. Storage capacities of the structures are shown in column 3 of Table 17-22; these are the capacities before emergency spillway discharge begins. When the storm runoff is

uniformly 7.5 inches over the watershed, what is the peak rate of flow with (a) no structures in place and (b) structures in place?

1. Determine the flood peak for the watershed with structures not in place.

Use the method of Example 17-14. Enter Figure 17-21 with A = 311 square miles and find  $q_p/Q=4,800$  cfs/in. This is  $(k\ A^h)$  in Equation 17-52. Multiplying that result by Q = 7.5 inches gives  $q_p=36,000$  cfs by a slide-rule computation. This is the peak rate without structures in place.

2. Compute the equivalent of (r Qs) in Equation 17-52. The factor (r Qs) can also be expressed as:

$$(r Qs) = \frac{\Sigma(A_X \times Qs_X)}{A}$$
 (Eq. 17-56)

where  $A_{\rm X}$  is the drainage area in square miles of the x-th structure and  $Q_{\rm SX}$  is the reservoir capacity in inches for that structure. In Table 17-22 each drainage area of column 2 is multiplied by the respective storage of column 3 to get the entry for column 4. But note that when the storage exceeds the storm runoff it is the storm runoff amount, in this case 7.5 inches, which is used to get the entry for column 4. Equation 17-56 is solved for (r Qs) by dividing the sum of column 4 by the total watershed area:

$$(r Qs) = \frac{967.26}{311} = 3.11 inches$$

(Note: Column 4 is not needed if the calculations are made by accumulative multiplication on a desk-calculator.)

3. Determine the flood peak for the watershed with structures in place.

Use Equation 17-52 with (k  $A^h$ ) = 4,800 cfs/in. from step 1; Q = 7.5 inches, as given; (r Qs) = 3.11 inches as computed in step 2; and  $q^*$  = 8 csm and  $A^*$  = 187 square miles, as given. This gives:  $q_p^*$  = 4800(7.5 - 3.11) + 8(187) = 21100 + 1495 = 22,595 cfs, which is rounded to 22,600 cfs. This is the peak rate with structures in place.

<u>DISCUSSION</u>. These examples are a sample of the many ways in which the unit-hydrograph method of routing can be used. Accuracy of the method depends on what has been ignored, such as variable release rate, surcharge storage, and so on. In general, the method gives conservative results—that is, the effects of structures, for example, are usually underestimated so that the peak rate is slightly too high.

The examples also show that as the problem contains more details the procedure gets more complex. It is easily possible to make this "short-cut" method so complicated it becomes difficult to get the solution. For this reason, and for reasons of accuracy, it is better to use the SCS electronic-computer program for complex routing problems.

Table 17-22 Area and storage data for Example 17-17.

Floodwater retarding structure	Contributing drainage area	Storage	$\mathtt{A}_{\mathbf{X}}$ x $\mathtt{Qs}_{\mathbf{X}}$
structure	(sq. mi.)	(in.)	(sq. mi. x in.)
(1)	(2)	(3)	(4),
1	14.2	6.1	86.62
2	8.3	6.8	56.44
3	3.7	9.2	21.75*
4	9.4	5.5	51.70
5	17.1	4.5	76.95
6	25.2	3.7	93.24
7	12.9	5.1	65.79
8	6.0	7.5	45.00
9	3.2	10.0	24.00*
10	5.5	8.0	41.25*
11	21.0	4.0	84.00
12	16.4	4.3	70.52
13	9.3	6.5	60.45
14	11.6	5.5	63.80
15	12.5	5.3	66.25
16	10.7	5.0	53.50
		$\Sigma(A_X \times Qs_X) =$	967.26

^{*} This is (drainage area) x (storm runoff of 7.5 inches) because the storage greater than the runoff is ineffective and should not be used in the computation.



Figure 17-21.  $q_p/Q$  versus A for a typical physiographic area.

NEH Notice 4-102, August 1972



# National Engineering Handbook Section 4 Hydrology Chapter 18. Selected Statistical Methods

Prepared by

Roger Cronshey Jerry Edwards Wendell Styner Charles Wilson Don Woodward



## Contents

Introduction         18-1           Basic data requirements         18-1           Basic concepts         18-1           Types of data         18-2           Data errors         18-3           Types of series         18-3           Data transformation         18-5           Distribution parameters and moments         18-5           Distribution parameters and moments         18-5           Frequency analysis         18-6           Basic concepts         18-6           Plotting positions and probability paper         18-6           Plotting positions and probability paper         18-6           Probability distribution functions         18-7           Normal         18-7           Two-parameter gamma         18-7           Extreme value         18-8           Binomial         18-8           Cumulative distribution curve and TR-38         18-8           Mixed distributions         18-8           Incomplete record and zero flow years         18-9           Historic data         18-10           Frequency analysis reliability         18-10           Effects of watershed modification         18-11           Outline of frequency analysis procedures         18-21<		Page
Basic concepts         181           Types of data         182           Data errors         183           Types of series         183           Distribution parameters and moments         185           Distribution parameters and moments         185           Frequency analysis         186           Basic concepts         186           Plotting positions and probability paper         186           Plotting positions and probability paper         186           Probability distribution functions         187           Normal         187           Pearson III         187           Two-parameter gamma         187           Extreme value         188           Binomial         188           Cumulative distribution curve and TR-38         188           Outliers         188           Outliers         188           Mixed distributions         188           Incomplete record and zero flow years         181           Historic data         1810           Frequency analysis reliability         1810           Effects of watershed modification         1811           Outline of frequency analysis procedures         1826           Correlation anal	Introduction	18-1
Types of data         182           Data errors         183           Types of series         183           Data transformation         185           Distribution parameters and moments         185           Frequency analysis         186           Basic concepts         186           Plotting positions and probability paper         186           Plotting positions and probability paper         186           Probability distribution functions         187           Normal         187           Two parameter gamma         187           Extreme value         188           Binomial         188           Cumulative distribution curve and TR-38         188           Outliers         188           Mixed distributions urve and TR-38         188           Mixed distributions         189           Incomplete record and zero flow years         181           Historic data         18-10           Frequency analysis reliability         18-10           Effects of watershed modification         18-11           Outline of frequency analysis procedures         18-11           Correlation and regression         18-26           Correlation and regression equations         18-	Basic data requirements	18-1
Data errors         183           Types of series         183           Data transformation         185           Distribution parameters and moments         185           Frequency analysis         186           Basic concepts         186           Plotting positions and probability paper         186           Probability distribution functions         187           Normal         187           Pearson III         187           Two-parameter gamma         187           Extreme value         188           Binomial         188           Cumulative distribution curve and TR-38         188           Data considerations in analysis         188           Outliers         188           Mixed distributions         189           Incomplete record and zero flow years         18-10           Historic data         18-10           Frequency analysis reliability         18-10           Effects of watershed modification         18-11           Outline of frequency analysis procedures         18-11           Flow duration         18-26           Correlation analysis         18-26           Regression         18-28           Evaluating regression	Basic concepts	18-1
Types of series         18-3           Data transformation         18-5           Distribution parameters and moments         18-5           Frequency analysis         18-6           Basic concepts         18-6           Plotting positions and probability paper         18-6           Probability distribution functions         18-7           Normal         18-7           Pearson III         18-7           Two-parameter gamma         18-7           Extreme value         18-8           Binomial         18-8           Cumulative distribution curve and TR-38         18-8           Data considerations in analysis         18-8           Outliers         18-8           Mixed distributions         18-8           Incomplete record and zero flow years         18-10           Historic data         18-10           Frequency analysis reliability         18-10           Effects of watershed modification         18-11           Outline of frequency analysis procedures         18-11           Correlation and regression         18-26           Correlation analysis         18-26           Regression         18-26           Correlation on analysis         18-28	Types of data	18-2
Data transformation         18-5           Distribution parameters and moments         18-5           Frequency analysis         18-6           Basic concepts         18-6           Plotting positions and probability paper         18-6           Plotting positions and probability paper         18-6           Normal         18-7           Normal         18-7           Tearson III         18-7           Two parameter gamma         18-8           Extreme value         18-8           Binomial         18-8           Cumulative distribution curve and TR-38         18-8           Outliers         18-8           Mixed distributions in analysis         18-8           Incomplete record and zero flow years         18-9           Incomplete record and zero flow years         18-10           Historic data         18-10           Frequency analysis reliability         18-10           Outline of frequency analysis procedures         18-11           Outline of prequency analysis procedures         18-11           Correlation and regression         18-26           Correlation and regression equations         18-26           Correlation and regression equations         18-28           <	Data errors	18-3
Distribution parameters and moments         18-5           Frequency analysis         18-6           Basic concepts         18-6           Plotting positions and probability paper         18-6           Probability distribution functions         18-7           Normal         18-7           Pearson III         18-7           Two parameter gamma         18-7           Extreme value         18-8           Binomial         18-8           Cumulative distribution curve and TR-38         18-8           Data considerations in analysis         18-8           Outliers         18-8           Mixed distributions         18-9           Incomplete record and zero flow years         18-10           Historic data         18-10           Frequency analysis reliability         18-10           Effects of watershed modification         18-11           Outline of frequency analysis procedures         18-11           Correlation and regression         18-26           Correlation analysis         18-26           Regression         18-28           Regression         18-28           Correlation analysis         18-29           Outline of procedures         18-31	Types of series	18-3
Frequency analysis         186           Basic concepts         186           Plotting positions and probability paper         186           Probability distribution functions         187           Normal         187           Pearson III         187           Two-parameter gamma         187           Extreme value         188           Binomial         188           Cumulative distribution curve and TR-38         188           Data considerations in analysis         188           Outliers         188           Mixed distributions         189           Incomplete record and zero flow years         18-10           Historic data         18-10           Frequency analysis reliability         18-10           Effects of watershed modification         18-11           Outline of frequency analysis procedures         18-11           Flow duration         18-26           Correlation analysis         18-26           Regression         18-26           Correlation analysis         18-26           Regression equations         18-28           Outline of procedures         18-31           Evaluating regression equations         18-26           O	Data transformation	18-5
Basic concepts         186           Plotting positions and probability paper         186           Probability distribution functions         187           Normal         187           Pearson III         187           Two-parameter gamma         187           Extreme value         188           Binomial         188           Cumulative distribution curve and TR-38         188           Data considerations in analysis         188           Outliers         188           Mixed distributions         189           Incomplete record and zero flow years         181           Historic data         18-10           Frequency analysis reliability         18-10           Effects of watershed modification         18-11           Outline of frequency analysis procedures         18-11           Correlation and regression         18-26           Correlation analysis         18-26           Regression         18-28           Evaluating regression equations         18-28           Outline of procedures         18-31           Correlation         18-31           Regression         18-32           Correlation negroinalization         18-37           <	Distribution parameters and moments	18-5
Plotting positions and probability paper   18-6     Probability distribution functions   18-7     Normal   18-7     Pearson III   18-7     Two-parameter gamma   18-7     Extreme value   18-8     Binomial   18-8     Cumulative distribution curve and TR-38   18-8     Outliers   18-8     Outliers   18-8     Mixed distributions   18-9     Incomplete record and zero flow years   18-10     Historic data   18-10     Frequency analysis reliability   18-11     Frequency analysis reliability   18-11     Outline of frequency analysis procedures   18-11     Outline of frequency analysis procedures   18-11     Correlation and regression   18-26     Correlation and regression equations   18-26     Regression   18-28     Regression   18-28     Regression equations   18-31     Correlation in the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream of the stream	Frequency analysis	18-6
Probability distribution functions         187           Normal         187           Pearson III         187           Two-parameter gamma         187           Extreme value         188           Binomial         188           Cumulative distribution curve and TR-38         188           Data considerations in analysis         188           Outliers         188           Mixed distributions         189           Incomplete record and zero flow years         18-10           Historic data         18-10           Frequency analysis reliability         18-10           Effects of watershed modification         18-11           Outline of frequency analysis procedures         18-11           Correlation and regression         18-26           Correlation analysis         18-26           Correlation analysis         18-26           Correlation procedures         18-28           Evaluating regression equations         18-28           Correlation         18-32           Correlation         18-32           Correlation         18-32           Correlation         18-37           Direct estimation         18-37           Indirect estimation <td></td> <td>18-6</td>		18-6
Probability distribution functions         187           Normal         187           Pearson III         187           Two-parameter gamma         187           Extreme value         188           Binomial         188           Cumulative distribution curve and TR-38         188           Data considerations in analysis         188           Outliers         188           Mixed distributions         189           Incomplete record and zero flow years         18-10           Historic data         18-10           Frequency analysis reliability         18-10           Effects of watershed modification         18-11           Outline of frequency analysis procedures         18-11           Correlation and regression         18-26           Correlation analysis         18-26           Correlation analysis         18-26           Correlation procedures         18-28           Evaluating regression equations         18-28           Correlation         18-32           Correlation         18-32           Correlation         18-32           Correlation         18-37           Direct estimation         18-37           Indirect estimation <td>Plotting positions and probability paper</td> <td>18-6</td>	Plotting positions and probability paper	18-6
Pears on III       18-7         Two-parameter gamma       18-7         Extreme value       18-8         Binomial       18-8         Cumulative distribution curve and TR-38       18-8         Data considerations in analysis       18-8         Outliers       18-8         Mixed distributions       18-9         Incomplete record and zero flow years       18-10         Historic data       18-10         Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-28         Outline of procedures       18-31         Regression       18-32         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-37         Indirect estimation       18-40         Risk       18-41         Miscussion       18-49         Bibliography       18-51 <td>Probability distribution functions</td> <td>18-7</td>	Probability distribution functions	18-7
Two-parameter gamma       18-7         Extreme value       18-8         Binomial       18-8         Cumulative distribution curve and TR-38       18-8         Data considerations in analysis       18-8         Outliers       18-8         Mixed distributions       18-9         Incomplete record and zero flow years       18-10         Historic data       18-10         Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Correlation analysis       18-26         Correlation of procedures       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Ourtline of procedures       18-31         Correlation       18-37         Direct estimation       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Metric conversion factors	Normal	18-7
Extreme value       188         Binomial       188         Cumulative distribution curve and TR-38       188         Data considerations in analysis       188         Outliers       188         Mixed distributions       189         Incomplete record and zero flow years       18-10         Historic data       18-10         Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Correlation and regression       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-41         Metric conversion factors       18-49         Bibliography       18	Pearson III	18-7
Binomial       188         Cumulative distribution curve and TR-38       188         Data considerations in analysis       188         Outliers       188         Mixed distributions       189         Incomplete record and zero flow years       18-10         Historic data       18-10         Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-26         Regression equations       18-26         Outline of procedures       18-27         Correlation       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-40         Discussion       18-40         Discussion       18-40         Discussion factors       18-49         Bibliography       18-51	Two-parameter gamma	18-7
Cumulative distribution curve and TR-38       188         Data considerations in analysis       188         Outliers       188         Mixed distributions       189         Incomplete record and zero flow years       18-10         Historic data       18-10         Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-26         Evaluating regression equations       18-26         Outline of procedures       18-31         Correlation       18-31         Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-40         Discussion       18-40         Discussion       18-40         Discussion factors	Extreme value	18-8
Cumulative distribution curve and TR-38       188         Data considerations in analysis       188         Outliers       188         Mixed distributions       189         Incomplete record and zero flow years       18-10         Historic data       18-10         Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-26         Evaluating regression equations       18-26         Outline of procedures       18-31         Correlation       18-31         Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-40         Discussion       18-40         Discussion       18-40         Discussion factors	Binomial	18-8
Data considerations in analysis       188         Outliers       188         Mixed distributions       189         Incomplete record and zero flow years       1810         Historic data       18-10         Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-26         Regression equations       18-26         Outline of procedures       18-31         Correlation       18-31         Regression       18-31         Regression       18-31         Direct estimation       18-37         Direct estimation       18-37         Discussion       18-40         Discussion       18-40         Misk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-8
Outliers       188         Mixed distributions       189         Incomplete record and zero flow years       18-10         Historic data       18-10         Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-28         Outline of procedures       18-31         Correlation       18-31         Regression       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-40         Metric conversion factors       18-49         Bibliography       18-51		18-8
Incomplete record and zero flow years       18-10         Historic data       18-10         Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-28         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-8
Incomplete record and zero flow years       18-10         Historic data       18-10         Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-28         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51	Mixed distributions	18-9
Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-31         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-10
Frequency analysis reliability       18-10         Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-31         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51	Historic data	18-10
Effects of watershed modification       18-11         Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-31         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-10
Outline of frequency analysis procedures       18-11         Flow duration       18-26         Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51	Effects of watershed modification	18-11
Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-11
Correlation and regression       18-26         Correlation analysis       18-26         Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51	Flow duration	18-26
Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-26
Regression       18-28         Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51	Correlation analysis	18-26
Evaluating regression equations       18-29         Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-28
Outline of procedures       18-31         Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-29
Correlation       18-31         Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-31
Regression       18-32         Analysis based on regionalization       18-37         Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-31
Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-32
Purpose       18-37         Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51	Analysis based on regionalization	18-37
Direct estimation       18-37         Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-37
Indirect estimation       18-40         Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-37
Discussion       18-40         Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		18-40
Risk       18-47         Metric conversion factors       18-49         Bibliography       18-51		
Metric conversion factors 18-49 Bibliography 18-51		
Bibliography		

## Tables

	Page
18-1. — Sources of basic hydrologic data collected by federal agencies	18-3
18-2. —Flood peaks for East Fork Big Creek near Bethany, Mo. (06897000)	18-4
18-3. — Basic statistics data for example 18-1	18-1
	18-1
	18-1
18-6. — Solution of frequency curve for example 18-2	18-1
18-7. — Annual peak discharge data for example 18-3	18-1'
	18-19
· · ·	18-22
	18-2
	18-23
•	18-33
18-13.—Residual data for example 18-4	18-35
18-14.—Basic data for example 18-5	18-38
18-15. — Correlation matrix of logarithms for example 18-5	18-38
	18-39
18-17.—Regression equation evaluation data for example 18-5	18-39
18-18.—Residuals for example 18-5	18-40
18-19.—Frequency curve solutions for example 18-6	18-47
Figures	
18-1. — Data and frequency curves for example 18-1	Page 18-13
·	18-16
	18-18
·	18-20
	18-21
·	18-24
	18-25
	18-27
	18-30
18-10.— Variable plot for example 18-4	
•	18-36
	18-41
	18-42
	18-43
· ·	18-44
	18-45
18-17. — Fifteen-day mean flow and standard deviation for example 18-6	18-46

## Examples

	Page
18-1. —Development of a log-normal and log-Pearson III frequency curves	18-11
18-2. — Development of a two-parameter gamma frequency curve	18-15
18-3. — Development of a mixed distribution frequency curve by two methods	18-17
18-4. —Development of a multiple regression equation	18-32
18-5. —Development of a direct probability estimate by use of stepwise regression	18-37
18-6. —Development of indirect probability estimates	18-40
18-7. —Risk of future nonoccurrence	18-47
18-8. —Risk of multiple occurrence	18-47
18-9. —Risk of a selected exceedance probability	18-48
18-10.—Exceedance probability of a selected risk	18-48
Exhibits	
18-1. — Five-percent, two-sided critical values for outlier detection	18-53
18-2. — Expected values of normal order statistics	18-54



## Chapter 18 Selected Statistical Methods

#### Introduction

Chapter 18 is a guide for applying selected statistical methods to solve hydrologic problems. The chapter includes a review of basic statistical concepts, a discussion of selected statistical procedures, and references to procedures in other available documents. Examples illustrate how statistical procedures apply to typical problems in hydrology.

In project evaluation and design, the hydrologist or engineer must estimate the frequency of individual hydrologic events. This is necessary when making economic evaluations of flood protection projects; determining floodways; and designing irrigation systems, reservoirs, and channels. Frequency studies are based on past records and, where records are insufficient, on simulated data.

Meaningful relationships sometimes exist between hydrologic and other types of data. The ability to generalize about these relationships may allow data to be transferred from one location to another. Some procedures used to perform such transfers, called regionalization, are covered in this chapter.

The examples in this chapter contain many computergenerated tables. Some table values (especially logarithmic transformations) may not be as accurate as values calculated by other methods. Numerical accuracy is a function of the number of significant digits and the algorithms used in data processing, so some slight differences in numbers may be found if examples are checked by other means.

## **Basic Data Requirements**

## **Basic Concepts**

To analyze hydrologic data statistically, the user must know basic definitions and understand the intent and limitations of statistical analysis. Because collection of all data (entire population) from a physical system is usually not feasible and recorded data from the system may be limited, observations must be based on a sample that is representative of the population.

Statistical methods are based on the assumption of randomness, which implies an event cannot be predicted with certainty. By definition, *probability* is an indicator of the likelihood of the occurrence of an event and is measured on a scale from 0 to 1, with 0 indicating no chance of occurrence and 1 indicating certainty of occurrence.

Events or values that do not occur with certainty are often called random variables. There are two types of random variables, discrete and continuous. A discrete random variable is one that can only take on values that are whole numbers. For example, the outcome of a toss of a die is a discrete random variable because it can only take on the integer values 1 to 6. The concept of risk as it is applied in frequency analysis is also based on a discrete probability distribution. A continuous random variable can take on values defined over a continuum; for example, peak discharge takes on values other than discrete integers.

A function that defines the probability that a random value will occur is called a probability distribution function. For example, the log-Pearson Type III distribution, often used in frequency analyses, is a probability distribution function. A probability mass function is used for discrete random variables while a density function is used for continuous random variables. If values of a distribution function are added (discrete) or integrated (continuous), then a cumulative distribution function is formed. Usually, hydrologic data that are analyzed by frequency analysis are presented as a cumulative distribution function.

## Types of Data

The application of statistical methods in hydrologic studies requires measurement of physical phenomena. The user should understand how the data are collected and processed before they are published. This knowledge helps the user assess the accuracy of the data. Some types of data used in hydrologic studies include rainfall, snowmelt, stage, streamflow, temperature, evaporation, and watershed characteristics.

Rainfall is usually measured as an accumulated depth over a period of time. Measurements represent the amount caught by the gage opening and are valid only for the gage location. The amount collected may be affected by gage location and physical factors near the gage. Application over large areas requires a study of adjacent gages and determinations of a weighted rainfall amount. More complete discussions of rainfall collection and evaluation procedures are found in Chapter 4 of this handbook section.

Snowfall is measured as depth or as water equivalent on the ground. As with rainfall, the measurement represents only the depth at the measurement point. The specific gravity of the snow times the depth of the snow determines the water equivalent of the snowpack, which is the depth of water that would result from melting the snow. To use snow information for such things as predicting water yield, the user should thoroughly know snowfall, its physical characteristics, and its measurement. National Engineering Handbook, Section 22, "Snow Survey and Water Supply Forecasting" (1972) further discusses these subjects.

Stages are measurements of the elevation of the water surface as related to an established datum, either the channel bottom or mean sea level, called National Geodetic Vertical Datum (NGVD). Peak stages

are measured by nonrecording gages, crest-stage gages, or recording gages. Peak stages from nonrecording gages may be missed because continuous visual observations are not available. Crest-stage gages record only the maximum gage height and recording gages provide a continuous chart or record of stage.

Streamflow or discharge rates are extensions of the stage measurements that have been converted through the use of rating curves. Discharge rates indicate the runoff from the drainage area above the gaging station and are expressed in cubic feet per second (cfs). Volume of flow past a gage, expressed as a mean daily or hourly flow (cfs-days or cfs-hours), can be calculated if the record is continuous. Accuracy of streamflow data depends largely on physical features at the gaging site, frequency of observation, and the type and adequacy of the equipment used. Flows can be affected by upstream diversion and storage. U.S. Geological Survey Water Supply Paper 888 (Corbett 1962) further discusses streamflow data collection.

Daily temperature data are usually available, with readings published as maximum, minimum, and mean measurements for the day. Temperatures are recorded in degrees Fahrenheit or degrees Celsius. National Weather Service, Observing Handbook No. 2, Substation Observations (1972), describes techniques used to collect meteorological data.

Evaporation data are usually published as pan evaporation in inches per month. Pan evaporation is often adjusted to estimate gross lake evaporation. The National Weather Service has published pan evaporation values in "Evaporation Atlas for the Continguous 48 United States" (Farnsworth, Thompson, and Peck 1982).

Watershed characteristics used in hydrologic studies include drainage area, channel slope, geology, type and condition of vegetation, and other features. Maps, field surveys, and studies are used to obtain this information. Often data on these physical factors are not published, but the U.S. Geological Survey maintains a file on watershed characteristics for most streamgage sites. Many federal and state agencies collect and publish hydrometeorological data (table 18-1). Many other organizations collect hydrologic data that are not published but may be available upon request.

Table 18-1. - Sources of basic hydrologic data collected by federal agencies

			Da	ta		
Agency	Rainfall	Snow	Stream- flow	Evapo- ration	Air temp.	Water stage
Agricultural Research Service	X	X	X	X	X	X
Corps of Engineers	X	X	Х	х		х
Forest Service	X	X	X		X	X
U.S. Geological Survey (WAT- STORE)		X	X	X	X	
International Boundary & Water Commission	X		X	X	X	X
River Basin Commissions	X		X			х
Bureau of Reclamation	Х	Х	Х	Х	х	Х
Soil Conservation Service	X	X	X		х	X
Tennessee Valley Authority	X		X	X	Х	X
National Climatic Data Center, NOAA	X	x		x	x	X

### **Data Errors**

The possibility of instrumental and human error is inherent in data collection and publication for hydrologic studies. Instrumental errors are caused by the type of equipment used, its location, and conditions at the time measurements are taken. Instrumental errors can be accidental if they are not constant or do not create a trend, but they may also be systematic if they occur regularly and introduce a bias into the record. Human errors by the observer or by others who process or publish the information can also be accidental or systematic. Examples of human errors in-

clude improper operation or observation of equipment, misinterpretation of data, and errors in transcribing and publishing.

The user of the hydrologic data should be aware of the possibility of errors in observations and should recognize observations that are outside the expected range of values. Knowledge of the procedures used in collecting the data is helpful in recognizing and resolving any questionable observations, but the user should consult the collection agency when data seem to be in error.

## Types of Series

Hydrologic data are usually presented in chronological order. If all the data for a certain increment of observation (for example, daily readings) are presented for the entire period of record, this is a complete-duration series. Many of these data do not have significance and can be excluded from hydrologic studies. The complete-duration series is only used for duration curves or mass curves. From the complete-duration series two types of series are selected, the partial-duration series and the extreme-event series.

The partial-duration series includes all events in the complete-duration series with a magnitude above a selected base for high events or below a selected base for low events. Unfortunately, independence of events that occur in a short period is hard to establish because long-lasting watershed effects from one event can influence the magnitude of succeeding events. Also, in many areas the extreme events occur during a relatively short period during the year. Partial-duration frequency curves are developed either by graphically fitting the plotted sample data or by using empirical coefficients to convert the partial-duration series to another series.

The extreme-event series includes the largest (or smallest) values from the complete-duration series, with each value selected from an equal time interval in the period of record. If the time interval is taken as 1 year, then the series is an annual series, for example, a tabulation of the largest peak flows in each year through the period of record as an annual peak flow series at the location. Several high peak flows may occur within the same year, but the annual peak series includes only the largest peak flow per year. Table 18-2 illustrates both a partial-duration and annual peak flow series.

Table 18-2.—Flood peaks for East Fork Big Creek near Bethany, Mo. (06897000)¹

Year	Peaks above base (cfs)	Year	Peaks above base (cfs)	Year	Peaks above base (cfs)	Year	Peaks above base (cfs)
1 car		1 641	(018)	1 car	(CIS)		(CIS)
1940	1,780*	1947	2,240	1958	1,780*	1967	1,640
	1,120		8,120*		1,780		3,350*
			2,970				1,640
1941	2,770		3,700	1959	3,800		
	2,950*		4,920		3,000	1968	3,150*
					1,500		
1942	<b>1,19</b> 0	1948	1,260		2,660	1969	2,990
	1,400		2,310*		5,100*		3,110*
	925				3,660		1,730
	925	1949	2,000*		2,280		2,910
	1,330		_,		1,890		2,270
	1,330	1950	1,160		_,557		2,060
	5,320		1,300*	1960	2,280		_,
	6,600*		2,000		4,650	1970	2,090
	0,000	1951	1,090		1,960	20.0	3,070*
1943	958	1001	2,920*		1,680		2,060
1010	1,680		1,090		4,740*		2,000
	2,000		1,720		2,040	1971	2,000*
	3,110*		2,030		2,010	2012	2,000
	925		1,060	1961	1,760	1972	3,190*
	2,470		1,000	1001	1,520	1015	0,100
	1,330		1,000		3,100		
	1,190	1952	1,440		5,700*		
	2,240	1002	1,610		2,300		
	3,070		1,090		2,000		
	0,010		1,230	1962	2,630		
1944	1,120		2,970*	1302	2,750		
1044	3,210*		2,280		1,760		
	2,620		2,200		1,820		
	2,170	1953	925*		3,880*		
	2,110	1900	320		0,000		
1945	3,490	1954	1,330*	1963	2,100*		
1040	4,120*	1304	1,000	1300	2,100		
	2,310	1955	1,500	1964	1,880		
	2,350	1900	2,240*	1504	1,910*		
	4,000		1,500		1,310		
1946	4,400		1,000	1965	1,730		
1340	1,520	1956	1,560	1909	3,480*		
	1,520 1,720	1990			0,40U"		
	1,720 6,770*		2,500*	1966	2,430*		
	1,960	1957	1,620*	1900	∠,430"		

¹ Partial-duration base is 925 cfs, the lowest annual flood for this series. Annual series values are starred (*). Data from USGS Water Supply Papers.

Some data indicate seasonal variation, monthly variation, or causative variation. Major storms or floods may occur consistently during the same season of the year or may be caused by more than one factor, for example, by rainfall and snowmelt. Such data may require the development of a series based on a separation by causative factors or a particular time frame.

### **Data Transformation**

In many instances, complex data relationships require that variables be transformed to approximate linear relationships or other relationships with known shapes. Types of data transformation include:

- 1. Linear transformation, which involves addition, subtraction, multiplication, or division by a constant.
- 2. Inverted transformation by use of the reciprocal of the data variables.
- 3. Logarithmic transformation by use of the logarithms of the data variables.
- 4. Exponential transformation, which includes raising the data variables to a power.
  - 5. Any combination of the above.

The appropriate transformation may be based on a physical system or may be entirely empirical. All data transformations have limitations. For example, the reciprocal of data greater than +1 yields values between 0 and +1. And logarithms, which are commonly used in hydrologic data, can only be derived from positive data.

#### Distribution Parameters and Moments

A probability distribution function, as previously defined, is represented by a mathematical formula that includes one or more of the following parameters: *location*, which provides reference values for the random variable; *scale*, which characterizes the relative dispersion of the distribution; and *shape*, which describes the outline or form of a distribution.

A parameter is *unbiased* if the average of estimates taken from repeated samples of the same size converges to the population value. A parameter is *biased* if the average estimate does not converge to the population value.

A probability density function can be characterized by its moments, which are also used in characterizing data samples. In hydrology, three moments of special interest are mean, variance, and skew.

The first moment about the origin is the mean, a

location parameter that measures the central tendency of the data and is computed by:

$$\overline{X} = \frac{1}{N} \left( \sum_{i=1}^{N} X_i \right)$$
 (18-1)

where  $\overline{X}$  is the sample arithmetic mean having N observations and  $X_i$  is the  $i^{th}$  observation of the sample data.

The remaining two moments of interest are taken about the mean instead of the origin. The first moment about the mean is always zero.

The variance, a scale parameter and the second moment about the mean, measures the dispersion of the sample elements about the mean. The unbiased estimate of the variance (S²) is given by:

$$S^{2} = \left[ \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - \overline{X})^{2} \right]$$
 (18-2)

A biased estimate of the variance results when the divisor (N-1) is replaced by N. An alternative form for computing the unbiased sample variance is given by:

$$S^{2} = \frac{1}{N-1} \left[ \sum_{i=1}^{N} X_{i}^{2} - \frac{1}{N} \left( \sum_{i=1}^{N} X_{i} \right)^{2} \right]$$
 (18-3)

This equation is often used for computer application because it does not require prior computation of the mean. But, because of the sensitivity of equation 3 to the number of significant digits carried through the computation, equation 2 is often preferred.

The standard deviation (S) is the square root of the variance and is used more frequently than the variance because its units are the same as those of the mean.

The *skew*, a shape parameter and the third moment about the mean, measures the symmetry of a distribution. The sample skew (G) can be computed by:

$$G = \frac{N}{(N-1)(N-2)S^3} \left[ \sum_{i=1}^{N} (X_i - \overline{X})^3 \right]$$
 (18-4)

Although the range of the skew is theoretically unlimited, there is a mathematical limit, based on sample size, that limits the possible skew (Kirby 1974). A skew of zero indicates a symmetrical distribution. Another equation for computing skew that does not require prior computation of the mean, is:

## Frequency Analysis

$$G = \frac{N^{2} \left(\sum_{i=1}^{N} X_{i}^{3}\right) - 3N \left(\sum_{i=1}^{N} X_{i}\right) \left(\sum_{i=1}^{N} X_{i}^{2}\right) + 2 \left(\sum_{i=1}^{N} X_{i}\right)^{3}}{N(N-1)(N-2)S^{3}}$$
 (18-5)

This equation is extremely sensitive to the number of significant digits used during computation and may not give an accurate estimate of the sample skew.

## **Basic Concepts**

Frequency analysis is a statistical method commonly used to analyze a single random variable. Even when the population distribution is known, uncertainty is associated with the occurrence of the random variable. When the population is unknown, there are two sources of uncertainty: randomness of future events and accuracy of estimation of the relative frequency of occurrence. The cumulative density function is estimated by fitting a frequency distribution to the sample data. A frequency distribution is a generalized cumulative density function of known shape and range of values.

The probability scale of the frequency distribution differs from the probability scale of the cumulative density function by the relation (1 - p) where:

$$p + q = 1 \tag{18-6}$$

The variables p and q represent the accumulation of the density function for all values less than and greater than, respectively, the value of the random variable. The accumulation is made from the right end of the probability density function curve when one considers high values such as peak discharge. U.S. Department of Agriculture, Soil Conservation Service, Technical Release 38 (1976) presents the accumulation of the Pearson III density function for both p and q for a range of skew values.

When minimum values (p) such as low flows are considered, the accumulation of the probability density function is from the left end of the curve. The resulting curve represents values *less than* the random variable.

## Plotting Positions and Probability Paper

Statistical computations of frequency curves are independent of how the sample data are plotted, so the data should be plotted along with the calculated frequency curve to verify that the general trend of the data reasonably agrees with the frequency distribution curve.

Various plotting formulas are used and many are of the general form:

$$PP = \frac{100(M - a)}{N - a - b + 1}$$
 (18-7)

where PP is the plotting position for a value in percent chance; M is the ordered data (largest to smallest for

maximum values and smallest to largest for minimum values); N is the size of the data sample; and a and b are constants. Constants of some commonly used plotting position formulas are:

Name	a	b	
Weibull	0	0	
Hazen	-M+1	-N+M	
California	0	1	
Blom	⁸ / ₈	3/ ₈	

The Weibull plotting position is used to plot the sample data in the chapter examples:

$$PP = \frac{100(M)}{N+1} \tag{18-8}$$

Each probability distribution has its own probability paper for plotting. The probability scale is defined by transferring a linear scale of standard deviates (K values) into probabilities for that distribution. The frequency curve for a distribution will be a straight line on paper specifically designed for that distribution.

Probability paper for logarithmic normal and extreme value distributions is readily available. Distributions with a varying shape statistic (i.e., log-Pearson III and gamma) require paper with a different probability scale for each value of the shape statistic. For these distributions a special plotting paper is not practical. The log-Pearson III and gamma distributions are usually plotted on logarithmic normal probability paper. The plotted frequency line may be curved, but this is more desirable than developing a new probability scale each time these distributions are plotted.

## **Probability Distribution Functions**

## Normal

The normal distribution, used to evaluate continuous random variables, is symmetrical and bell-shaped. The range of the random variable is  $-\infty$  to  $+\infty$ . Two parameters (location and scale) are required to fit the distribution. These parameters are approximated by the sample mean and standard deviation. The normal distribution is the basis for much of statistical theory, but generally does not fit hydrologic data.

The log-normal distribution (normal distribution with logarithmically transformed data) is often used in hydrology to fit high or low discharge data or in

regionalization analysis. Its range is 0 to +∞. Example 18-1 illustrates the development of a log-normal distribution curve.

#### Pearson III

Karl Pearson developed a system of 12 distributions that can approximate all forms of single-peak statistical distributions. The system includes three main distributions and nine transition distributions, all of which were developed from a single differential equation. The distributions are continuous but can be fitted to various forms of discrete data sets (Chisman 1968).

The type III (negative exponential) is the distribution frequently used in hydrologic analysis. It is non-symmetrical and is used with continuous random variables. The probability density function can take on many shapes. Depending on the shape parameter, the random variable range can be limited on the lower end, the upper end, or both. Three parameters are required to fit the Pearson type III distribution. The location and scale parameters (mean and standard deviation) are the same as the normal distribution. The shape (or third) parameter is approximated by the sample skew.

When a logarithmic transformation is used, a lower bound of zero exists for all shape parameters. The log-Pearson type III is used to fit high and low discharge values, snow, and volume duration data. Example 18-1 illustrates the development of a log-Pearson type III distribution curve.

## Two-Parameter Gamma

The two-parameter gamma distribution is nonsymmetrical and is used with continuous random variables to fit high- and low-volume duration, stage, and discharge data. Its probability density function has a lower limit of 0 and a defined upper limit of ∞. Two parameters are required to fit the distribution:  $\beta$ , a scale parameter, and  $\gamma$ , a shape parameter. A detailed description of how to fit the distribution with the two parameters and incomplete gamma function tables can be found in TP-148 (Sammons 1966). As a glose approximation of this solution, a three-parameter Pearson type III fit can be made and TR-38 tables used. The mean and  $\gamma$  must be computed and converted to standard deviation and skewness parameters. Greenwood and Durand (1960) provide a method to calculate an approximation for  $\gamma$  that is a function of the relationship (R) between the arithmetic mean and geometric mean (G_m) of the sample data:

$$G_m = [X_1(X_2)(X_3)...(X_N)]^{1/N}$$
 (18-9)

$$R = \ln \left[ \frac{\overline{X}}{G_m} \right]$$
 (18-10)

where ln is the natural logarithm.

a) If 
$$0 \le R \le 0.5772$$
 
$$\gamma = R^{-1} (0.5000876 + 0.1648852R - 0.0544274R^2)$$
 (18-11)

b) If 
$$0.5772 \le R \le 17.0$$

$$\gamma = \frac{8.898919 + 9.059950R + 0.9775373R^2}{R (17.79728 + 11.968477R + R^2)} (18-12)$$

c) If R > 17.0 the shape approaches a log-normal distribution, and a log-normal solution may be used.

The standard deviation and skewness can now be computed from  $\gamma$  and the mean:

$$S = \frac{\overline{X}}{\sqrt{\gamma}}$$
 (18-13)

$$G = \frac{2}{\sqrt{\gamma}} \tag{18-14}$$

#### **Extreme Value**

The extreme value distribution, another nonsymmetrical distribution used with continuous random variables, has three main types. Type I is unbounded; type II is bounded on the lower end; and type III is bounded on the upper end. The type I (Fisher-Tippett) is used by the National Weather Service in precipitation analysis. Other federal, state, local, and private organizations also have publications based on extreme value theory.

#### **Binomial**

The binomial distribution, used with discrete random variables, is based on four assumptions:

- 1. The random variable may have only one of two responses (for example, yes or no, successful or unsuccesful, flood or no flood).
  - 2. There will be n trials in the sample.
  - 3. Each trial will be independent.
- 4. The probability of a response will be constant from one trial to the next.

The binomial distribution is used in assessing risk, which is discussed later in the chapter.

### Cumulative Distribution Curve and TR-38

Selected percentage points on the cumulative distribution curve for normal, Pearson III, or gamma distributions can be computed with the sample mean, standard deviation, and skewness. TR-38 contains standard deviate  $(K_p)$  values for various values of skewness and probabilities. The equation used to compute points along the cumulative distribution curve is:

$$Q = \overline{X} + K_pS$$
 (18-15)

where Q is the random variable value at a selected exceedance probability,  $\overline{X}$  is the sample mean, and S is the sample standard deviation. If a logarithmic transformation has been applied to the data, then the equation becomes:

$$\log Q = \overline{X} + K_n S \qquad (18-16)$$

where  $\overline{X}$  and S are based on the moments of the logarithmically transformed sample data. With the mean, standard deviation, and skew computed, a combination of TR-38 and either equation 15 or 16 is used to calculate specified points along the cumulative distribution curve.

## Data Considerations in Analysis

#### **Outliers**

If the population model is correct, outliers are population elements that occur but are highly unlikely to occur in a sample of a given size. Therefore, outliers can be due to sampling variation or to the use of the incorrect probability model. After the most likely probability model is selected, outlier tests can be performed for evaluating extreme events.

Outliers can be detected by use of test criteria in exhibit 18-1. Critical standard deviates ( $K_n$  values) for the normal distribution can be taken from the exhibit. Critical K values for other distributions are computed from the probability levels listed in the exhibit 18-1. Critical K values are used in either equation 15 or 16, along with sample mean and standard deviation, to determine an allowable range of sample element values.

The detection process is iterative: (1) use sample statistics,  $\overline{X}$  and S, and K, with equation 15 or 16 to

detect a single outlier; (2) delete detected outliers from the sample; (3) recompute sample statistics without the outliers; and (4) begin again at step (1). Continue the process until no outliers are detected. High and low outliers can exist in a sample data set.

Two extreme values of about the same magnitude are not likely to be detected by this outlier detection procedure. In these cases, delete one value and check to see if the remaining value is an outlier. If the remaining value is an outlier, then both values should be called outliers or neither value should be called an outlier.

The detection process depends on the distribution of the data. A positive skewness indicates the possibility of high outliers, and a negative skewness indicates the possibility of low outliers. Thus, samples with a positive skew should be tested first for high outliers, and samples with negative skew should be tested first for low outliers.

If one or more outliers are detected, another frequency distribution should be considered. If a frequency distribution is found that appears to have fewer outliers, repeat the outlier detection process. If no better model is found, treat the outliers in the following order of preference:

- 1. Reduce their weight or impact on the frequency curve.
  - 2. Eliminate the outliers from the sample.
  - 3. Retain the outliers in the sample.

When historic data are available, high outlier weighting can be reduced by use of Appendix 6, Water Resources Council (WRC) Bulletin #17B (1981). If such data are not available, you must decide whether to retain or delete the high outliers. This decision involves judgment concerning the impact of the outliers on the frequency curve and its intended use. Low outliers can be given reduced weighting by treating them as missing data as outlined in Appendix 5, WRC Bulletin #17B.

Although WRC Bulletin #17B was developed for peak flow frequency analysis, many of the methods are applicable to other types of data.

#### **Mixed Distributions**

A mixed distribution occurs when at least two events in the population are due to different causes. In flow frequency analysis, a sample of annual peak discharges at a given site can be drawn from a single distribution or mixture of distributions. A mixture occurs when the series of peak discharges are caused by various types of runoff-producing events such as

generalized rainfall, local thunderstorms, hurricanes, snowmelt, or any combination of these.

Previously discussed frequency analysis techniques may be valid for mixed distributions. If the mixture is due to a single or small group of values, these values may appear as outliers. After these values are identified as outliers, the sample can then be analyzed. However, if the number of values departing from the trend of the data becomes significant, a second trend may be evident. Two or more trends may be evident when the data are plotted on probability paper.

Populations with multiple trends will cause problems in analysis. The skewness of the entire sample will be greater than the skewness of samples that are separated by cause. The larger skewness will cause the computed frequency curve to differ from the sample data plot in the region common to both trends.

The two methods that can be used to develop a mixed distribution frequency curve are illustrated in example 18-3. The preferred method (method 1) involves separating the sample data by cause, analyzing the separated data, and combining the frequency curves. The detailed procedure is as follows:

- 1. Determine the cause for each annual event. If a specific cause cannot be found for each event, method 1 cannot be used.
- 2. Separate the data into individual series for each cause found in step 1. Some events may be common to more than one series and, therefore, belong to more than one series. For example, snowmelt and generalized rainfall could form an event that would belong to both series.
- 3. Collect the data that are necessary to form an annual series for each cause. Some series will not have an event for each year—for example, a hurricane series in an area where hurricanes occur about once every 10 years. If insufficient data for any series are a problem, then the method will need a truncated series with conditional probability adjustment. See Appendix 5, WRC Bulletin #17B.
- 4. Compute the statistics and frequency curve for each annual series separately.
- 5. Use the addition rule of probability to combine the computed frequency curves.

$$P\{A \cup B\} = P\{A\} + P\{B\} - [P\{A\} \times P\{B\}]$$
 (18-17)

where  $P\{A \cup B\}$  is the probability of an event of given magnitude occurring from either or both series,  $P\{A\}$  and  $P\{B\}$  are the probabilities of an event of given magnitude occurring from each series, and  $[P\{A\} \times$ 

P{B}] is the probability of an event from each series occurring in a single year.

An alternative method (method 2) that requires only the sample data may be useful in estimating the frequency curve for  $q \leq 0.5$ . This method is less reliable than method 1 and requires that at least the upper one-half of the data be generally normal or log normal if log-transformed data are used. A straight line is fitted to at least the upper half of the frequency range of the series. The standard deviation and mean are developed by use of the expected values of normal order statistics. The equations are:

$$S = \left[ \frac{\left( \sum_{i=1}^{N} X_{i}^{2} \right) - \left( \sum_{i=1}^{N} X_{i} \right) / n}{\left( \sum_{i=1}^{N} K_{i} \right) - \left( \sum_{i=1}^{N} K_{i} \right) / n} \right]^{0.5}$$
(18-18)

$$\overline{\overline{X}} = \left(\sum_{i=1}^{N} X_{i}\right) - S\left(\sum_{i=1}^{N} K_{i}\right)_{n}^{2}$$
 (18-19)

where n is the number of elements in the truncated series and  $K_i$  is the expected value of normal order statistics for the ith element of the complete sample. Expected values of normal order statistics are shown in exhibit 18-2.

### Incomplete Record and Zero Flow Years

An incomplete record refers to a sample in which some data are missing either because they were too low or too high to record or because the measuring device was out of operation. In most instances the agency collecting the data provides estimates for missing high flows. When the missing high values are estimated by someone other than the collecting agency, it should be documented, and the data collection agency advised. Most agencies do not routinely provide estimates of low flow values. The procedure that accounts for missing low values is a conditional probability adjustment explained in Appendix 5 of WRC Bulletin #17B.

Data sets containing zero values present a problem when one uses logarithmic transformations. The logarithm of zero is undefined and cannot be included. When a logarithmic transformation is desired, zeros should be treated as missing low data.

#### Historic Data

At many locations there is information about major hydrologic occurrences either before or after the period of systematic data collection. Such information, called historic data, can be used to adjust the frequency curve. The historic data define an extended time period during which rare events, either recorded or historic, have occurred. Historic data may be obtained from other agencies, from newspapers, or by interviews. A procedure for incorporating historic data into the frequency analysis can be found in Appendix 6 of WRC Bulletin #17B.

### Frequency Analysis Reliability

The following discussion, which originally appeared in U.S. Corps of Engineers, Hydrologic Engineering Methods, Volume 3, Hydrologic Frequency Analysis (1975), concisely covers the main points of frequency reliability, including examples based on flood frequencies.

The reliability of frequency estimates is influenced by:

- a) The amount of information available.
- b) The variability of the events.
- c) The accuracy with which the data were measured.

In general with regard to item a, errors of estimate are inversely proportional to the square root of the number of independent items contained in the frequency array. Therefore, errors of estimates based on 40 years of record would normally be half as large as errors of estimates based on 10 years of record, other conditions being the same.

The variability of events in a record (item b) is usually the most important factor affecting the reliability of frequency estimates. For example, the ratio of the largest to the smallest annual flood of record on the Mississippi River at Red River Landing, Louisiana, is about 2.7, whereas the ratio of the largest to the smallest annual flood of record on the Kings River at Piedra, California, is about 100, or 35 times as great. Statistical studies show that as a consequence of this factor, a flow corresponding to a given frequency that can be estimated within 10 percent on the Mississippi River, can be estimated only within 40 percent on the Kings River.

The accuracy of data measurement (item c) normally has relatively small influence on the realiability of a frequency estimate, because such errors ordinarily are not systematic and tend to cancel, and because the influence of chance events is great in comparison with that of measurement errors. For this reason, it is usually better to include an estimated magnitude for a major flood; for example, that was not recorded because of gage failure, rather than to omit it from the frequency array, even though its magnitude can only be estimated approximately. However, it is advisable always to use the most reliable sources of data and, in particular, to guard against systematic errors such as result from using an unreliable rating curve.

It should be remembered that the possible errors in estimating flood frequencies are very large, principally because

of the chance of having a nonrepresentative sample. Sometimes the ocurrence of one or two abnormal floods can change the apparent exceedance frequency of a given magnitude from once in 1,000 years to once in 200 years. Nevertheless, the frequency-curve technique is considerably better than any other tool available for some purposes and represents a substantial improvement over using an array restricted to observed flows only.

### **Effects of Watershed Modification**

The analysis of streamflow data is complicated by the fact that watershed conditions are rarely constant during the period of record. Fire, floods, changing land use, channel modification, reservoir construction, and land treatment all contribute to changes in the hydrologic responses of a watershed. If the changes are significant, then standard statistical procedures cannot be used to develop the frequency curve.

## **Outline of Frequency Analysis Procedures**

- A. Obtain site information, historic data, and systematic data.
- 1. Examine record period for changes in physical conditions. Use only data that are from periods of constant physical conditions (homogeneous).
- 2. Estimate missing high data. The effort expended in estimating data depends on the use of the final frequency analysis.
  - 3. Obtain historic information.
- B. Plot sample data.
- 1. Use normal (logarithmic normal) probability paper.
  - 2. Observe general trend of plotted data.
- 3a. For single-trend data, select the distribution that best defines the population from which the sample is drawn.
- 3b. For multiple-trend data, use one of the mixed distribution techniques.
- C. Compute frequency curve.
- 1. Use sample statistics and distribution tables (such as TR-38).
  - 2. Plot curve on the paper with sample data.
- 3. Compare general shape of curve with sample data. If the computed curve does not fit the data, check for outliers or for another distribution that may fit the population.
- D. Detect outliers.
- 1. Check for outliers according to the value of skewness, high first for positive skewness and low first for negative skewness.
  - 2. Delete outliers and recompute sample statistics.

- 3. Continue the process until no outliers remain in sample.
- E. Treat outliers and missing, low, and zero data.
  - 1. Check another frequency distribution model.
  - 2. For high outliers,
- a. if historical data are available, use Appendix 6 WRC Bulletin #17B.
- b. if historic data are not available, decide whether outliers should be retained in the sample.
- 3. For low outliers and missing, low, and zero data, use Appendix 5, WRC Bulletin #17B.
- F. Check reliability of results.
- 1. Frequency curve estimates are based on prior experience and should be used with caution.
- 2. Uncertainty of estimates increases as estimated values depart from the mean.

Example 18-1.—Development of log-normal and log-Pearson III frequency curves.

Annual peak discharge data for East Fork San Juan River near Pagosa Springs, Colo. (Station 09340000), are analyzed. Table 18-3 contains the water year (column 1) and annual peak values (column 2). Other columns in the table will be referenced by number in parentheses in the following steps:

- 1. Plot the data. Before plotting the data, arrange them in descending order (column 6). Compute Weibull plotting positions, based on a sample size of 44, from equation 8 (column 7), and then plot the data on logarithmic normal probability paper (fig. 18-1).
- 2. Examine the trend of plotted data. The plotted data follow a single trend that is nearly a straight line, so a log-normal distribution should provide an adequate fit. The log-Pearson type III distribution will also be included because it is computational, like the log normal.
- 3. Compute the required statistics. Use common logarithms to transform the data (column 3). Compute the sample mean by using the summation of sample data logarithms and equation 1:

$$\overline{X} = \frac{130.1245}{44} = 2.957376$$

Table 18-3.—Basic statistics data for example 18-1 (Station 09340000 E. Fork San Juan River near Pagosa Springs, Colo. Drainage area = 86.9 sq.mi. Elevation = 7,597.63 feet)

Water year (1)	Peak (cfs) (2)	X = Log(peak) (3)	$(\overline{X} - X)^2$	(X − X)³ (5)	Ordered peak (cfs) (6)	Weibull plot position 100 M/(N+1) (7)
1935	1480.0	3.170260	0.0453200	0.0096479	2460.0	2.2
1936	931.0	2.968948	0.0001339	0.0000015	2070.0	4.4
1937	1120.0	3.049216	0.0084347	0.0007747	1850.0	6.7
1938	1670.0	3.222715	0.0704052	0.0186813	1670.0	8.9
1939	580.0	2.763427	0.0376161	-0.0072956	1550.0	11.1
1940	606.0	2.782472	0.0305914	-0.0053505	1510.0	13.3
1941	2070.0	3.315969	0.1285889	0.0461111	1480.0	15.6
1942	1330.0	3.123850	0.0277137	0.0046136	1410.0	17.8
1943	830.0	2.919077	0.0014668	-0.0000562	1340.0	20.0
1944	1410.0	3.149218	0.0368034	0.0070604	1330.0	22.2
1945	1140.0	3.056904	0.0099059	0.0009859	1320.0	24.4
1946	590.0	2.770850	0.0347917	-0.0064895	1270.0	26.7
1947	724.0	2.859737	0.0095332	-0.0009308	1270.0	28.9
1948	1510.0	3.178975	0.0491064	0.0108819	1170.0	31.1
1949	1270.0	3.103803	0.0214409	0.0031395	1140.0	33.3
1950	463.0	2.665580	0.0851447	-0.0248449	1120.0	35.6
1951	709.0	2.850645	0.0113914	-0.0012158	1070.0	37.8
1952	1850.0	3.267170	0.0959725	0.0297318	1050.0	40.0
1953	1050.0	3.021188	0.0040720	0.0002598	1030.0	42.2
1954	550.0	2.740361	0.0470952	-0.0102203	934.0	44.4
1955	557.0	2.745853	0.0447416	-0.0102203 $-0.0094638$	931.0	46.7
1956	1170.0	3.068185	0.0122787	0.0013606	923.0	48.9
1957	1550.0	3.190331	0.0542680	0.0126420	880.0	51.1
1958	1030.0	3.012836		0.0126420	865.0	51.1 53.3
		2.588830	0.0030758		856.0	55.6
1959 1960	388.0		0.1358257	-0.0500580		
1961	865.0	2.937015	0.0004146	-0.0000084	856.0 830.0	57.8
1962	610.0	2.785329	0.0296001	-0.0050926		60.0
	880.0	2.944481	0.0001663	-0.0000021	820.0	62.2
1963	490.0	2.690195	0.0713854	-0.0190728	776.0	64.4
1964	820.0	2.913813	0.0018977	-0.0000827	724.0	66.7
1965	1270.0	3.103803	0.0214409	0.0031395	709.0	68.9
1966	856.0	2.932472	0.0006202	-0.0000154	610.0	71.1
1967	1070.0	3.029383	0.0051850	0.0003734	606.0	73.3
1968	934.0	2.970345	0.0001682	0.0000022	600.0	75.6
1969	856.0	2.932472	0.0006202	-0.0000154	590.0	77.8
1970	2460.0	3.390934	0.1879728	0.0814972	580.0	80.0
1971	515.0	2.711805	0.0603047	-0.0148090	557.0	82.2
1972	422.0	2.625311	0.1102667	-0.0366157	550.0	84.4
1973	1340.0	3.127104	0.0288077	0.0048895	515.0	86.7
1974	490.0	2.690195	0.0713854	-0.0190728	490.0	88.9
1975	1320.0	3.120572	0.0266331	0.0043464	490.0	91.1
1976	923.0	2.965200	0.0000612	0.0000005	463.0	93.3
1977	600.0	2.778150	0.0321219	-0.0057571	422.0	95.6
1978	776.0	2.889860	0.0045583	-0.0003078	388.0	97.8
	Summat	tion 130.1245	1.659318	0.023534		



Figure 18-1.—Data and frequency curves for example 18-1. Solid line indicates log-normal distribution, and broken line indicates log-Pearson III. Arrows show values for outlier check.

Then compute differences between each sample logarithm and the mean logarithm, and use the sum of the squares and cubes of the differences (columns 4 and 5) in computing the standard deviation and skew.

Compute the standard deviation of logarithms by using the sum of squares of the differences and equation 2:

$$S = \left[ \begin{array}{c} 1.659318 \\ \hline (44 - 1) \end{array} \right]^{0.5} = 0.1964403$$

Compute the skew by using the sum of cubes of the differences (column 5) and equation 4:

$$G = \frac{44}{(44-1)(44-2)(0.1964403)^3} \times 0.023534 = 0.0756$$

For ease of use in next step, round skew value to the nearest tenth (G = 0.1).

4. Use SCS TR-38 to obtain K values for required skew at sufficient exceedance probabilities to define the frequency curve. Use the mean, standard deviation, skew, and equation 16 to compute discharges at the selected exceedance probabilities. The TR-38 K values and discharge computations are shown in table 18-4.

Plot the frequency curves on the same graph as the sample data (fig. 18-1). A comparison between the plotted frequency curve and the sample data verifies the selection of the distributions. Other distributions can be tested the same way.

5. Check the sample for outliers.  $K_n$  values, based on sample size, are obtained from exhibit 18-1. The  $K_n$  value for a sample of 44 is 2.945. Compute the lognormal high outlier criteria from the mean, the standard deviation, the outlier K value, and equation 16:

$$\log Q_{\rm HI} = 2.957376 + (2.945)(0.1964403)$$
  
= 3.5359  
 $Q_{\rm HI} \doteq 3,435 \ {\rm cfs}$ 

Use the negative of the outlier  $K_n$  value in equation 16 to compute the low outlier criteria:

$$\log Q_{LO} = 2.957376 + (-2.945)(0.1964403)$$

$$= 2.37886$$

$$Q_{LO} = 239 \text{ cfs}$$

Table 18-4.—Frequency curve solutions for example 18-1

E	Exceed. prob. (q)	TR-38 K value (G=0.0)	$\frac{\text{Log Q} =}{\overline{X} + \text{KS}}$	Log- normal discharges (cfs)	TR-38 K value (G=0.1)	$ Log Q = \overline{X} + KS $	Log- Pearson III discharges (cfs)
	0.999	-3.09023	2.35033	224	-2.94834	2.37820	239
	.998	-2.87816	2.39199	247	-2.75706	2.41578	260
	.995	-2.57583	2.45138	283	-2.48187	2.46984	295
	.99	-2.32635	2.50039	317	-2.25258	2.51488	327
	.98	-2.05375	2.55394	358	-1.99973	2.56455	367
	.96	-1.75069	2.61347	411	-1.71580	2.62032	417
	.90	-1.28155	2.70563	508	-1.27037	2.70782	510
	.80	-0.84162	2.79205	620	-0.84611	2.79117	618
	.70	-0.52440	2.85436	715	-0.53624	2.85204	711
	.60	-0.25335	2.90761	808	-0.26882	2.90457	803
	.50	0.0	2.95738	907	-0.01662	2.95411	900
	.40	0.25335	3.00714	1,017	0.23763	3.00406	1,009
	.30	0.52440	3.06039	1,149	0.51207	3.05797	1,143
	.20	0.84162	3.12270	1,326	0.83639	3.12168	1,323
	.10	1.28155	3.20912	1,619	1.29178	3.21113	1,626
	.04	1.75069	3.30128	2,001	1.78462	3.30795	2,032
	.02	2.05375	3.36082	2,295	2.10697	3.37127	2,351
	.01	2.32635	3.41436	2,596	2.39961	3.42876	2,684
	.005	2.57583	3.46337	2,907	2.66965	3.48180	3,033
	.002	2.87816	3.52276	3,332	2.99978	3.54665	3,521
	.001	3.09023	3.56442	3,668	3.23322	3.59251	3,913

Because all of the sample data are between  $\mathbf{Q}_{HI}$  and  $\mathbf{Q}_{LO}$ , there are no outliers for the log-normal distribution.

High and low outlier criteria values for skewed distributions can be found by use of the high and low probability levels from exhibit 18-1. Read discharge values from the plotted log-Pearson III frequency curve at the probability levels listed for the sample size, in this case, 44. The high and low outlier criteria values are 3,700 and 250 cfs. Because all sample data are between these values, there are no outliers for the log-Pearson III distribution.

Example 18-2.—Development of a two-parameter gamma frequency curve.

Table 18-5 contains 7-day mean low flow data for the Patapsco River at Hollifield, Md. (Station 01589000), including the water year (column 1) and 7-day mean low-flow values (column 2). The remaining columns will be referenced in the following steps.

- 1. Plot the data. Before plotting, arrange the data in ascending order (column 3). Weibull plotting positions are computed based on the sample size of 34 from equation 8 (column 4). Ordered data are plotted at the computed plotting positions on logarithmic-normal probability paper (fig. 18-2).
- 2. Examine the trends of the plotted data. The data plot as a single trend with a slightly concave downward shape.
- 3. Compute the required statistics. Compute the gamma shape parameter,  $\gamma$ , from the sample data (column 3), equations 1, 9, and 10, and either equation 11 or 12.

$$\overline{X} = \frac{1876}{34} = 55.17647$$

$$G_{\rm m} = (3.308266 \times 10^{55})^{1/34} = 42.94666$$

$$R = \ln \left[ \frac{55.17647}{42.9466} \right] = 0.25058$$

Because R < 0.5772 use equation 11 to compute  $\gamma$ .

$$\gamma = (1/0.25058) \{0.5000876 + (0.1648852) (0.25058) - (0.0544274)(0.25058)^2\}$$

$$\gamma = 2.14697$$

Using the mean and  $\gamma$ , compute the standard deviation and skew from equations 13 and 14:

$$S = \frac{55.17647}{\sqrt{2.14697}} = 37.65658$$

$$G = \frac{2}{\sqrt{2.14697}} = 1.36495$$

For ease of use in next step, round skew value to the nearest tenth (G = 1.4).

Table 18-5. - Basic statistics data for example 18-2

Water	7-Day mean low	Ordered data	Weibull plot position
year	flow (cfs)	(cfs)	100 M/(N+1
(1)	(2)	(3)	(4)
1946	107	11	2.9
1947	127	15	5.7
1948	79	16	8.6
1949	145	17	11.4
1950	110	19	14.3
1951	98	20	17.1
1952	99	22	20.0
1953	168	23	22.9
1954	60	23	25.7
1955	20	25	28.6
1956	23	25	31.4
1957	51	25	34.3
1958	17	27	37.1
1959	52	32	40.0
1960	25	40	42.9
1961	43	43	45.7
1962	27	44	48.6
1963	16	47	51.4
1964	11	48	54.3
1965	19	50	57.1
1966	22	51	60.0
1967	15	52	62.9
1968	47	59	65.7
1969	32	60	68.6
1970	25	69	71.4
1971	25	79	74.3
1972	59	80	77.1
1973	69	98	80.0
1974	50	99	82.9
1975	44	107	85.7
1976	80	110	88.6
1977	40	127	91.4
1978	23	145	94.3
1979	48	168	97.1
Sum		1,876	
Product		3.308266 ×	1055

4. Compute the frequency curve. Use TR-38 to obtain K values for the required skew at sufficient probability levels to define the frequency curve. Compute discharges at the selected probability levels (p) by equation 15. The TR-38 K values and computed

discharges are shown in table 18-6. Then plot the frequency curve on the same graph as the sample data (fig. 18-2). Compare the plotted data and the frequency curve to verify the selection of the two-parameter gamma distribution.



Figure 18-2. - Data and frequency curve for example 18-2.

Prob.	TR-38 K value (G=1.4)	$\overline{X}^{Q} = \overline{X} + KS$	
 0.999	5.09505	247.0	
.998	4.55304	227.	
.995	3.82798	199.	
.99	3.27134	178.	
.98	2.70556	157.	
.96	2.12768	135.	
.90	1.33665	106.	
.80	0.70512	82.	
.70	0.31307	67.	
.60	0.01824	56.	
.50	-0.22535	47.	
.40	-0.43949	39.	
.30	-0.63779	31.	
.20	-0.83223	24.	
.10	-1.04144	16.	
.04	-1.19842	10.	
.02	-1.26999	7.4	
.01	-1.31815	5.5	
.005	-1.35114	4.3	
.002	-1.37981	3.2	
.001	-1.39408	2.7	

- 5. Check the sample for outliers. Obtain outlier probability levels from exhibit 18-1 for a sample size of 34. The probability levels are 0.9977863 and 0.0022137. From figure 18-2 read the discharge rates associated with these probability levels. The outlier criteria values are 220 and 3.3 cfs. Because all sample data are between these values, there are no outliers.
- 6. Use the frequency curve to estimate discharges at desired probability levels.

Example 18-3.—Development of a mixed distribution frequency curve by separating the data by cause (method 1) and by using at least the upper half of the data (method 2).

Method 1: The Causative Factor Method.—Annual peak discharge data for Carson River near Carson City, Nev., (Station 10311000) are given in table 18-7. Column 1 contains the water year, and column 2 contains annual peak discharge. The other columns will be referenced in the following steps:

- 1. Plot the data. Before plotting, order the data from high to low (column 3). Compute plotting positions, using sample size of 37 and equation 8 (column 4). Then plot ordered data at the computed plotting positions on logarithmic-normal probability paper (fig. 18-3).
- 2. Examine the plotted data. The data plot in an S-shape with a major trend break at 20-percent chance.

	Annual		
	peak	Ordered	Weibull
	dis-	annual	plotting
Water	charge	peaks	position
year	(cfs)	(cfs)	M/(N+1)
(1)	(2)	(3)	(4)
1939	541	30,000	0.026
1940	2,300	21,900	.053
1941	2,430	15,500	.079
1942	5,300	8,740	.105
1943	8,500	8,500	.132
1944	1,530	5,300	.158
1945	3,860	4,430	.184
1946	1,930	4,190	.211
1947	1,950	3,860	.237
1948	1,870	3,750	.263
1949	2,420	3,480	.289
1950	2,160	3,480	.316
1951	15,500	3,330	.342
1952	3,750	3,180	.368
1953	1,900	3,100	.395
1954	1,970	2,430	.421
1955	1,410	2,420	.447
1956	30,000	2,300	.474
1957	1,900	2,260	.500
1958	3,100	2,160	.526
1959	1,690	1,990	.553
1960	1,100	1,970	.579
1961	808	1,950	.605
1 <b>9</b> 62	1,950	1,950	.632
1963	21,900	1,930	.658
1964	1,160	1,900	.684
1965	8,740	1,870	.711
1966	1,280	1,690	.737
1967	4,430	1,530	.763
1968	1,390	1,410	.789
1969	4,190	1,390	.816
1970	3,480	1,330	.842
1971	2,260	1,280	.868
1972	1,330	1,160	.895
1973	3,330	1,100	.921
1974	3,180	808	.947
1975	3,480	541	.974

- 3. Determine what caused the peak discharge. Based on streamgage and weather records, two causative factors were rainfall and snowmelt. Annual peak discharge series for each cause are tabulated in table 18-8.
- 4. Plot each annual series. As in step 1, arrange the data in descending order (rainfall, column 4; snowmelt, column 5) and compute plotting positions (column 6). Rainfall data are plotted in figure 18-4, and snowmelt data are plotted in figure 18-5.



Figure 18-3.—Annual peak discharge data for example 18-3.

Table 18-8. — Annual rainfall/snowmelt peak discharge for example 18-3

	Annual	Annual	Ordered	Ordered	
	rainfall	snowmelt	rainfall	Snowmelt	Weibull
	peak	peak	peak	peak	plot
Water	discharge	discharge	discharge	discharge	position
year	(cfs)	(cfs)	(cfs)	(cfs)	M/(N+1
(1)	(2)	(3)	(4)	(5)	(6)
1939	541	355	30,000	4,290	0.026
1940	1,770	2,300	21,900	4,190	.053
1941	1,015	2,434	15,500	3,480	.079
1942	5,298	2,536	8,740	3,330	.105
1943	8,500	2,340	8,500	3,220	.132
1944	995	1,530	5,298	3,100	.158
1945	3,860	1,420	4,430	2,980	.184
1946	1,257	1,930	3,860	2,759	.211
1947	1,950	1,680	3,750	2,536	.237
1948	755	1,870	3,560	2,460	.263
1949	2,420	1,600	3,480	2,434	.289
1950	1,760	2,158	2,172	2,417	.316
1951	15,500	1,750	2,946	2,340	.342
1952	3,750	2,980	2,590	2,300	.368
1953	1,990	972	2,420	2,158	.395
1954	1,970	1,640	2,260	2,010	.421
1955	1,410	1,360	2,120	1,930	.447
1956	30,000	3,220	1,990	1,900	.474
1957	1,860	1,900	1,970	1,900	.500
1958	2,120	3,100	1,950	1,870	.526
1959	1,690	698	1,950	1,750	.553
1960	1,090	895	1,860	1,680	.579
1961	814	620	1,770	1,680	.605
1962	1,950	1,900	1,760	1,640	.632
1963	21,900	2,417	1,690	1,530	.658
1964	1,160	800	1,410	1,420	.684
1965	8,740	2,460	1,257	1,360	.711
1966	920	1,280	1,160	1,360	.737
1967	4,430	4,290	1,090	1,309	.763
1968	936	1,360	1,015	1,280	.789
1969	3,560	4,190	995	972	.816
1970	3,480	2,010	975	895	.842
1971	2,260	837	936	837	.868
1972	975	1,309	920	800	.895
1973	2,946	3,330	814	698	.921
1974	3,172	2,759	755	620	.947
1975	2,590	3,480	541	355	.974



Figure 18-4. — Data and frequency curve for example 18-3.



Figure 18-5-Data and frequency curve for example 18-3.

5. Compute the required statistics. Using the procedure in step 3 of example 18-1, compute the sample mean, standard deviation, and skewness for each series. The results of these computations follow:

Series	$\overline{X}$	S	$\boldsymbol{G}$	Use G
Rainfall	3.37611	0.40385	1.03	1.0
Snowmelt	3.24241	0.24176	-0.77	- 0.8

6. Compute the log-Pearson III frequency curve for each series. The frequency curve solution for each series, as computed in step 4 of example 18-1, is listed in table 18-9. Log-Pearson frequency curves are plotted as for the rainfall and the snowmelt series in figures 18-4 and 18-5, respectively.

7. Check each sample for outliers. Read high and low outlier criterion values from the frequency curve plots (figures 18-4 and 18-5) at the probability levels given in exhibit 18-1 for the sample size of 37. The high and

low probability levels from exhibit 18-1 are 0.9980116 (99.8 percent) and 0.0019884 (0.2 percent). The outlier criterion values read from the plots are:

Series	High Outlier Criterion	Low Outlier Criterion
Rainfall	106,000 cfs	470 cfs
Snowmelt	5,200 cfs	200 cfs

All of the rainfall and snowmelt data are between the outlier criterion values, so there are no outliers.

8. Combine the rainfall and snowmelt series frequency curves. For selected discharge values, read the rainfall and snowmelt frequency curve probability levels from figures 18-4 and 18-5. Using equation 17, combine the probabilities for the two series. Table 18-10 contains the individual and combined probabilities of selected discharges. The snowmelt frequency curve approaches an upper bound of 5,400 cfs; therefore, only the rainfall curve is used above this value.

Table 18-9.—Frequency curve solutions for example 18-3

		Rainfall			Snowmelt	
Exceed. prob. (q)	TR-38 K value (G = 1.0)	$\begin{array}{c} \text{Log Q} = \\ \overline{X} + \overline{KS} \end{array}$	Log- Pearson III discharges (cfs)	TR-38 K value $(G = -0.8)$	$\frac{\text{Log Q}}{\overline{X}} + KS$	Log- Pearson III discharges (cfs)
0.999	-1.78572	2.65495	452	-4.24439	2.21629	165
.998	-1.74062	2.67316	471	-3.84981	2.31168	205
.995	-1.66390	2.70414	506	-3.31243	2.44160	276
.99	-1.53838	2.73464	543	-2.89101	2.54348	350
.98	-1.49188	2.77361	594	-2.45298	2.64938	446
.96	-1.36584	2.82452	668	-1.99311	2.76056	576
.90	-1.12762	2.92072	833	-1.33640	2.91932	830
.80	-0.85161	3.03219	1,077	-0.77986	3.05387	1,132
.70	-0.61815	3.12816	1,343	-0.41309	3.14254	1,388
.60	-0.39434	3.21686	1,648	-0.12199	3.21292	1,633
.50	-0.16397	3.30989	2,041	0.13199	3.27432	1,881
.40	0.08763	3.41150	2,579	0.36889	3.33159	2,146
.30	0.38111	3.53002	3,389	0.60412	3.38846	2,446
.20	0.75752	3.68203	4,809	0.85607	3.44937	2,814
.10	1.34039	3.91743	8,268	1.16574	3.52424	3,344
.04	2.04269	4.20105	15,887	1.44813	3.59251	3,913
.02	2.54206	4.40272	25,277	1.60604	3.63069	4,273
.01	3.02256	4.59677	39,516	1.73271	3.66131	4,585
.005	3.48874	4.78504	60,959	1.83660	3.68643	4,858
.002	4.08802	5.02706	106,428	1.94806	3.71337	5,169
.001	4.53112	5.20600	160,695	2.01739	3.73013	5,372

Table 18-10.—Combination of frequency curves for example 18-3

Peak			P =
discharge (cfs)	$P_R = P \text{ (rain)}$	$P_S = P \text{ (snow)}$	$\begin{array}{c} P_R + P_S \\ - P_R P_S \end{array}$
600	0.98	0.955	0.999
830	.90	.90	.990
<b>1,64</b> 0	<b>.6</b> 0	.60	.840
2,450	.34	.30	.538
3,360	.30	.10	.370
4,840	.20	.005	.204
8,180	.10	_1	.100
16,030	.04	_	.040
41,360	.01	_	.010
180,560	.001	_	.001

¹ Probability is too small to be considered.

9. Figure 18-6 shows the combined and annual frequency curves plotted on the same sheet as the annual series. The combined series frequency curve will not necessarily fit the annual series, as additional data were used to develop it, but the curve does represent the combined effect of the two causes.

Method 2: Truncated series.—An alternative method of mixed distribution analysis is to fit a log-normal distribution to only part of the data. At least the upper half of the data must be included and must be basically log-normal (i.e., approximate a straight line when plotted on logarithmic-normal paper). Steps 1 and 2, method 1, help to determine that the data are mixed and that the major trend break occurs at 20 percent. While the upper half of the data will include data from both major trends, a log-normal fit will be used as an illustration of the procedure.

1 and 2. See method 1.

3. Select the normal K values for a sample size of 37 from exhibit 18-2. A tabulation of these values along with the ordered annual peaks and their logarithms is in table 18-11.

4. Plot the data. Plot the ordered annual peaks at the normal K values tabulated in table 18-11. These are plotted in figure 18-7. For plotting the data, use the normal K-value scale at the top of the figure.

5. Compute the statistics based on the upper half of data. Use equation 18 and 19 to compute the mean and standard deviation from the sums given in table 18-11.

$$S = \frac{260.757 - (70.11699)^2/19}{17.25002 - (14.44423)^2/19} = 0.56475$$

$$\overline{X} = \frac{170.11699 - (0.56475)(14.44423)}{19} = 3.26103$$

6. Compute the log-normal frequency curve for the data. Use the same procedure as explained in step 4 of example 18-1. As a log-normal curve is to be fit and it will be a straight line on logarithmic-normal paper, solution of only two points is required.

Table 18-11. - Data and normal K values for example 18-3

Ordered		Expected	Expected
annual	Logarithm	normal	normal
peaks	of ordered	K	K
(cfs)	peak	value	value
(1)	(2)	(3)	(4)
30,000	4.47712	2.12928	
21,900	4.34044	1.71659	
15,500	4.19033	1.47676	
8,740	3.94151	1.30016	
8,500	3.92942	1.15677	
5,300	3.72428	1.03390	
4,430	3.64640	0.92496	
4,190	3.62221	0.82605	
3,860	3.58659	0.73465	
3,750	3.57403	0.64902	
3,480	3.54158	0.56793	
3,480	3.54158	0.49042	
3,330	3.52244	0.41576	
3,180	3.50243	0.34336	
3,100	3.49136	0.27272	
2,430	3.38561	0.20342	
2,420	3.38382	0.13509	
2,300	3.36173	0.06739	
2,260	3.35411	0.00000	0.00=00
2,160			-0.06739
1,990			-0.13509
1,970			-0.20342
1,950			-0.27272
1,950			-0.34336
1,930			-0.41576
1,900			-0.49042
1,870			-0.56793
1,690			-0.64902
1,530			-0.73465
1,410			-0.82605
1,390			-0.92496
1,330			-1.03390
1,280			-1.15677
1,160			-1.30016
1,100 808			-1.47676 $-1.71659$
541			-1.71659 $-2.12928$
Sum			-2.12320
(values)	70.11699	14.44423	
Sum	10.11033	14.44460	
(values²)	260.75700	17.25002	



Figure 18-6. — Annual and rain-snow frequency curves for example 18-3.

Probability	$\boldsymbol{K}$	Log Q =	Q
level	normal	$\overline{X} + KS$	(cfs)
0.50	0.0	3.26103	1,824
0.01	2.32635	4.57484	37,570

7. Plot the computed frequency curve. The curve is plotted on the same page as the sample data, figure 18-7.



Figure 18-7. - Data and top half frequency curve for example 18-3.

A flow duration curve indicates the percentage of time a streamflow was greater than or less than a specific discharge during a period of record. A flow duration curve does not show the chronological sequence of flows. Because daily flows are nonrandom and nonhomogeneous, a flow duration curve cannot be considered a frequency or probability curve. Duration curves are normally constructed from mean daily flows.

Although a flow duration curve indicates only the distribution of mean daily flows that have been recorded, it can be used as an estimate of the flow duration distribution expected. Flow duration curves help determine availability of streamflow for beneficial uses.

USGS Water Supply Paper 1542-A (Searcy 1959) gives procedures for preparing and using flow duration curves. Many flow duration curves are available in USGS publications. Unpublished curves may be available at USGS District Offices.

## **Correlation Analysis**

Correlation is an index that measures the linear variation between variables. While several correlation coefficients exist, the most frequently used is the Pearson product-moment correlation coefficient (r):

$$r = \frac{\sum_{i=1}^{N} (X_i - \overline{X})(Y_i - \overline{Y})}{\left[\sum_{i=1}^{N} (X_i - \overline{X})^2 \sum_{i=1}^{N} (Y_i - \overline{Y})^2\right]^{0.5}}$$
 (18-20)

where  $X_i$  and  $Y_i$  are values of the  $i^{th}$  observation of the two variables X and Y, respectively;  $\overline{X}$  and  $\overline{Y}$  are the means of the two samples; and N is the number of common elements in the samples. Equation 20 is used to measure the relationship between two variables. As an example, one may be interested in examining whether or not there is a significant linear relationship between the T-year peak discharge (Y) and the fraction of the drainage area in impervious land cover (X). To examine this relationship, one would need to obtain values for X and Y from N watersheds with widely different values of the X variable, and use equation 20 to determine a quantitative index of the relationship.

Values of r range between +1 and -1. A correlation of +1 indicates a perfect direct relationship between variables X and Y, while a correlation of -1 indicates a perfect inverse relationship. Zero correlation indicates no linear relationship between the variables. Correlation values between 0 and  $\pm 1$  indicate the degree of relationship between the variables. Figure 18-8 illustrates various linear correlation values between two variables.

Because correlation coefficient values can be misleading at times, the sample data should be plotted and examined. Some situations that may cause low correlation values are:

- 1. No relationship exists between variables—random variation.
- 2. A relationship exists but is nonlinear, such as a parabolic or circular relationship.
- 3. Data values can depart significantly from the linear trend of the remaining data. The extreme values not only can change the correlation coefficient, but also can change the sign of the correlation coefficient.





Figure 18-8. - Linear correlation values.

High correlation can be attributed to:

- 1. Significant relationship between variables.
- 2. Small sample size—for example, two points defining a straight line will result in a correlation coefficient of r = 1 or -1. Other small samples are influenced by this effect and may also have high correlation values.
- 3. Data clustering—two data clusters, each with low correlation, can exhibit high correlation values. Each cluster acting as a unit value may act as a small sample size.

The correlation between two variables will change if either of the variables is transformed nonlinearly. A new correlation coefficient should be developed for the transformed variables and will apply only to the variables in their transformed state.

#### Regression

Regression is a method of developing a relationship between a criterion variable (Y) and one or more predictor variables (X), with the objective of predicting the criterion variable for given values of the predictor variables.

Correlation analysis is quite different from regression analysis, although they are frequently used together. Regression is a predictive technique that distinguishes between the predictor and criterion variables. A regression equation that is developed to predict Y should not be transformed to predict the X variable for a given value of Y. Regression is based on an assumption that no error exists in the independent variable; errors occur only in the dependent variable. Thus, regression is directional. Correlation is not directional in that the correlation between Y and X is the same as that between X and Y. Also, correlation is different from regression in that correlation is only a standardized index of the degree of a linear relationship.

Wang and Huber (1967) list additional assumptions that form the basis for regression as:

- 1. The predictor variables are statistically independent.
- 2. The variance of the criterion variable does not change with changes in magnitude of the predictor variables.
- 3. The observed values of the criterion variable are uncorrelated events.
- 4. The population of the criterion variable is normally distributed about the regression line for any fixed level of the predictor variables under consideration.

Generally, hydrologic data do not meet all of the assumptions of regression analysis, but regression is still used because it provides an easy method for analyzing many factors simultaneously. The error caused by failure to meet all of the assumptions is generally minor.

There are several forms of regression analysis, including linear bivariate, linear multiple, and curvilinear. The *linear bivariate regression* relates a criterion variable (Y) and a single predictor variable (X) by using:

$$Y = a + bX \tag{18-21}$$

where a and b are the intercept and slope regression coefficients, respectively. Linear multiple regression relates a criterion variable (Y) and p predictor variables  $(X_i$  where  $j = 1, 2, \ldots, p)$ :

$$Y = b_0 + b_1 X_1 + b_2 X_2 \dots + b_p X_p$$
 (18-22)

where  $b_j(j = 0, 1, ..., p)$  are the partial regression coefficients. The *curvilinear regression* technique is used when powers of the predictor variable(s) are included in the equation. For a single variable the following regression equation can be used:

$$Y = b_0 + b_1 X + b_2 X^2 + ... + b_q X^q$$
 (18-23)

where q is the order of the polynomial. This equation can be expanded to include other predictor variables.

More than one regression equation can be derived to fit data, so some technique must be selected to evaluate the "best fit" line. The *method of least squares* is usually used because it minimizes the sum of the square of the differences between the sample criterion values and the estimated criterion values.

A cause-and-effect relationship is implied between the predictor and the criterion variables. If there is no physical relationship between a predictor and the criterion, do not use the predictor. Always carefully examine the sign of the coefficients for rationality. Do not use any equation outside the range of the sample data that were used to derive the coefficients.

A detailed procedure of how to develop regression equations is not given in this chapter. Regression analysis is usually performed by use of programmed procedures on a calculator or computer. The following discussion highlights the basic concepts and terminology of regression analysis.

## **Evaluating Regression Equations**

After the regression coefficients are developed, it is necessary to examine the quality of a regression equation. The following means of evaluating the quality are discussed:

- 1. Analysis of the residuals.
- 2. The standard error of estimate.
- 3. The coefficient of determination.
- 4. Analysis of the rationality of the sign and magnitude of the regression coefficients.
- 5. Analysis of the relative importance of the predictor variables, as measured by the standardized partial regression coefficients.

A residual is the difference between the value predicted with the regression equation and the criterion variable. Residuals measure the amount of criterion variation left unexplained by the regression equation. The least squares concept assumes that the residuals should exhibit the following properties:

- 1. Their mean value equals zero.
- 2. They are independent of criterion and predictor variables.
  - 3. Their variance is constant.
  - 4. They have a normal distribution.

The mean of zero is easily verified by simply summing the residuals; a nonzero mean may result if not enough digits are used in the partial regression coefficients. Their independence and constant variance can be checked by plotting the residuals against the criterion and each predictor. Such plots should not exhibit any noticeable trends. Figure 18-9 illustrates some general trends that might occur when residuals are plotted. Nonconstant variance usually indicates an incorrect model form.

In theory the residuals are normally distributed. The distribution can often be identified by use of a frequency analysis. However, if the sample is small, it is difficult to make conclusive statements about the distribution of the residuals. Frequently, the model can be improved if a cause for a residual or trends in residuals are found.

Just as the individual residuals are of interest, the moments of the residuals are also worth examining. While the mean of the residuals is 0, the standard deviation of the residuals is called the *standard error* of estimate, which is denoted by S_e and is computed by:

$$S_{e} = \left[ \frac{\sum_{i=1}^{N} (\hat{Y}_{i} - Y_{i})^{2}}{d_{f}} \right]^{0.5}$$
 (18-24)

where  $\hat{Y}_i$  is the predicted value and  $Y_i$  the observed value of the ith observation on the criterion variable, and  $d_f$  is the degrees of freedom. The degrees of freedom equal the number of independent pieces of information required to form the estimate. For a regression equation this equals the number of observations in the data sample minus the number of unknowns estimated from the data. A regression equation with p predictor variables and an intercept coefficient would have N-p-1 degrees of freedom.

Compare  $S_e$  with the standard deviation of the criterion variable  $(S_y)$  as a measure of the quality of a regression equation. Both  $S_e$  and  $S_y$  have the same units as the criterion variable. If the regression equation does not provide a good fit to the observed values of the criterion variable, then  $S_e$  should approach  $S_y$ , with allowance being made for the differences in degrees of freedom  $(S_e$  has N-p-1 while  $S_y$  has N-1). However, if the regression provides a good fit,  $S_e$  will approach zero. Thus,  $S_e$  can be compared with the two extremes, 0 and  $S_y$  to assess the quality of the regression.

It is important to consider the portion of the total variation in the criterion variable that is explained by the regression equation. The explained portion is called the *coefficient of determination* and can be computed by:

$$\mathbf{r}^{2} = \frac{\sum_{i=1}^{N} (\widehat{\mathbf{Y}}_{i} - \overline{\mathbf{Y}})^{2}}{\sum_{i=1}^{N} (\mathbf{Y}_{i} - \overline{\mathbf{Y}})^{2}}$$
(18-25)

The value of r² ranges from 0 to 1, with a value of 0 indicating no relationship between the criterion and predictor variables and a value of 1 indicating a perfect fit of the sample data to the regression line. The value of r² is a decimal percentage of the variation in Y explained by the regression equation.

There is an inverse relationship between  $r^2$  and  $S_e$ . Some texts gives the relationship as:

$$S_{e} = S \sqrt{1 - r^{2}}$$
 (18-26)





a. Constant Variance

b. Increasing Variance



R E S I D U A L

c. Linear Dependence

d. Nonlinear Dependence

Figure 18-9.—Sample plots of residuals.

While this relationship may be acceptable for large samples, it should not be used for small samples because  $S_e$  is based on N-p-1 degrees of freedom, while  $S_e$  is based on N-1 degrees of freedom and  $r^2$  is based on N degrees of freedom. Therefore, equation 24 and 25 should be used to compute  $S_e$  and  $r^2$ .

A regression equation describes the relationship that exists between the variables, with a partial regression coefficient reflecting the effect of the corresponding predictor variable on the criterion variable. As such, the magnitude and sign of each coefficient should be checked for rationality. While it is sometimes difficult to assess the rationality of the magnitude of a coefficient, it is usually easy to assess the rationality of the sign of the coefficient. Irrationality of either sign or magnitude often results from significant correlations between predictor variables. Thus, the use of highly correlated predictor variables should be avoided. The potential accuracy of estimates is rarely increased significantly by including a predictor variable that is highly correlated with one or more other predictor variables in the equation.

Regression equations can be developed for any number of predictor variables, but selecting the proper number is important. Having too few predictor variables may reduce the accuracy of the criterion estimate. Having too many predictor variables makes the equation more complex than necessary and wastes time and money in collecting and processing unneeded data that do not significantly improve accuracy.

Step-type regressions can be used to evaluate the importance (significance) of individual predictor variables in a regression equation. A step consists of adding or deleting a predictor variable from the regression equation and measuring the increase or decrease in the ability of the equation to predict the criterion variable.

The significance of predictor variables and the total equation are evaluated by using F-tests. Two F-tests are used, the partial F-test  $(F_p)$  checks the significance of predictor variables that are added or deleted from a regression equation while the  $total\ F$ -test  $(F_t)$  checks the significance of the entire regression equation. The partial F-test  $(F_p)$  is computed by:

$$F_{p} = \frac{(r_{p}^{2} - r_{p-1}^{2})}{(1 - r_{p}^{2})/(N - p - 1)}$$
(18-27)

where  $r_p$  and  $r_{p-1}$  are the coefficients of determination for the p and p - 1 predictor models.

The equation is significant if the computed F is greater than the value found in an F distribution table. The degrees of freedom needed for use of the F table are  $1(d_{\rm f1})$  and N - p -  $1(d_{\rm f2})$ . F distribution tables for 0.05 and 0.01 levels of significance can be found in most standard statistics texts. The 0.05 probability table is generally used.

F_t is computed by:

$$F_{t} = \frac{r_{p}^{2}/p}{(1 - r_{p}^{2})/(N - p - 1)}$$
 (18-28)

where p is the number of predictors in the equation and  $r_p^2$  is the coefficient of determination for the p predictor equation. The degrees of freedom required to use the tables are  $p(d_{f1})$  and  $N-p-1(d_{f2})$ .

Step backward regression starts with all predictors in the regression equation. The least important predictor is deleted and the  $F_p$  computed. If the predictor is not significant, the next least important of the remaining predictors is deleted and the process repeated. When a significant predictor is found, the previous equation that includes that predictor should be used.

Step forward regression starts with the most important predictor as the only variable in the equation. The most important of the remaining predictors is added and the  $\mathbf{F}_{\mathbf{p}}$  computed. If this predictor is significant, the next most important of the remaining predictors is added and the process repeated. When a nonsignificant predictor is found, the previous equation that does not include that predictor should be used.

Stepwise regression combines features of both step backward and step forward regression. Stepwise is basically a step forward regression with a step backward partial F test of all predictors in the equation after each step. When predictors are added to an equation, two or more may combine their prediction ability to make previously included predictors insignificant. As these "older" predictors are no longer needed in the equation, they are deleted.

#### **Outline of Procedures**

#### Correlation

- 1. Determine that a cause-and-effect relationship exists for all variable pairs to be tested.
- 2. Plot every combination of one variable vs. another to examine data trends.
- 3. (Optional.) make adjustments such as transformation of data if required.

4. Compute linear correlation coefficients between each pair of variables.

#### Regression

- 1. Compile a list of predictor variables that are related to the criterion variable by some physical relationship and for which data are available.
- 2. Plot each predictor variable versus the criterion variable.
- 3. Determine the form of the desired equation, i.e., linear or curvilinear.
- 4. Compute the correlation matrix, i.e., the correlation coefficient between each pair of variables.
- 5. Compute the regression coefficients for the predictor variable(s) that have high correlation coefficients with the criterion variable and low correlation coefficients with any other included predictor variables.
- 6. Compute standard error of estimate,  $S_e$ ; standard deviation of the criterion variable,  $S_y$ ; and the coefficient of determination,  $r^2$ .
- 7. Evaluate the regression equation by the following methods:
  - a. Standard error of estimate has the bounds  $0 \le S_e \le S_y$ ; as  $S_e \to 0$  more of the variance is explained by the regression.
  - b. Coefficient of determination has the bounds  $0 \le r^2 \le 1$ ; as  $r^2 1$  the better the "fit" is of the regression line to the data.
  - c. Partial and total F-tests are used to evaluate each predictor and total equation significance.
  - d. The sign of each regression coefficient should be compared to the correlation coefficient for the appropriate predictor criterion. The signs should be the same.
  - e. Examine the residuals to identify deficiencies in the regression equation and check the assumptions of the model.
- 8. If regression equation accuracy is not acceptable, reformulate the regression equation or transform some of the variables. A satisfactory solution is not always possible from data available.

Example 18-4.—Development of a multiple regression equation.

Peak flow data for watershed W-11, Hastings, Nebr., are used. Table 18-12 contains basic data for peak flow

and three other variables. Use the following steps to develop the regression equation:

- 1. Plot one variable vs. another to establish that a linear or nonlinear data trend exists. Figure 18-10 is a plot of peak flow (Y) vs. maximum average 1-day flow  $(X_1)$ . Similar plots are done for all combinations of variable pairs. The plot indicates a linear trend exists between peak flow and maximum average 1-day flow.
- 2. Determine the linear correlation coefficients between each pair of variables. Table 18-12 contains the product of differences required for the computation. Use equation 20 to compute the linear correlation. The array of the computed linear correlations follows:

Linear Correlation Matrix

	q = Y	$Q = X_1$	$Q_m = X_2$	$P_m = X_s$
$egin{array}{c} Y \\ X_1 \\ X_2 \\ X_3 \end{array}$	1.0000	0.9230 1.0000	0.7973 0.9148 1.0000	0.5748 0.7442 0.8611 1.0000

3. Develop a multiple regression equation based on maximum 1-day flow  $(X_1)$  and maximum monthly rainfall  $(X_3)$ . Maximum monthly runoff  $(X_2)$  is not included as a predictor because it is highly correlated (0.9148) with maximum average 1-day flow  $(X_1)$ . Predictor variables should be correlated with the criterion but not highly correlated with the other predictors. Two highly correlated predictors will explain basically the same part of the criterion variation. The predictor with the highest criterion correlation is retained. High correlation between predictor variables may cause irrational regression coefficients.

The following regression coefficients were developed from a locally available multiple linear regression computer program (Dixon 1975):

$$b_0 = 0.0569$$
  
 $b_1 = 0.1867$ 

 $b_2 = -0.0140$ 

The regression equation is:

$$Y = 0.0569 + 0.1867X_1 - 0.0140X_3$$

Table 18-12. - Basic correlation data for example 18-4 (Linear correlation coefficient computation)

							1							
	>	X ₁ =	X ₂ =	X ₃ =		- X)	X ) for			A.	Product of differences for	ferences fo	L	
Water	r = Peak	Max. avg. 1-day	max. month.	max. month.	*	×	X,	x,	Y,X,	Y,X2	Y,X,	X,,X2	X,,X,	X ₂ ,X ₃
year	flow	flow	runoff	rainfall										
	(in/hr)	(ii)	(in)	(ii)										
1939	0.0100	0.0800	0.1200	3.5700	-0.1141	0.7393	-1.1852	- 2,5583	0.0844	0.1352	0.2919	0.8762	1.8913	3.0321
1940	0.0	0.0	0.0200	2.0000	-0.1241	-0.8193	-1.2852	-4.1283	0.1017	0.1595	0.5123	1.0530	3.3823	5.3057
1941	0.0400	0.5600	1.4100	8.3100	-0.0841	-0.2593	0.1048	2.1817	0.0218	8800.0-	-0.1835	-0.0272	-0.5657	0.2286
1942	0.0500	0.5500	2.3100	8.3900	-0.0741	-0.2693	1.0048	2.2617	0.0200	-0.0745	-0.1676	-0.2706	-0.6091	2.2726
1943	0.0800	0.5700	1.5800	5.9500	-0.0441	-0.2493	0.2748	-0.1783	0.0110	-0.0121	0.0079	-0.0685	0.0445	-0.0490
1944	0.1100	1.0500	1.7400	8.1400	-0.0141	0.2307	0.4348	2.0117	-0.0033	1	-0.0284	0.1003	0.4641	0.8747
1945	0.0900	0.6600	0.6700	3.8200	-0.0341	-0.1593	-0.6352	-2.3083	0.0054	0.0217	0.0787	0.1012	0.3677	1.4662
1946	0.0200	0.3100	0.8300	5.3400	-0.1041	-0.5093	-0.4752	-0.7883	0.0530		0.0821	0.2420	0.4015	0.3746
1947	0.0400	0.3100	0.7500	5.4600	0.0841	0.5093	-0.5552	-0.6683	0.0428	3 0.0467	0.0562	0.2828	0.3404	0.3710
1948	0.0200	0.1700	0.3300	4.3800	-0.1041	-0.6493	-0.9752	-1.7483	0.0676	3 0.1015	0.1820	0.6332	1.1352	1.7049
1949	0.1100	0.8600	1.6000	7.2100	-0.0141		0.2948	1.0817	-0.000	1	-0.0153	0.0120	0.0440	0.3189
1950	0.2100	1.3300	1.3700	2.6900	0.0859		0.0648	-0.4383	0.0439	0.0056	-0.0376	0.0331	-0.2238	-0.0284
1951	0.3300	1.8300	3.0400	10.2700	0.2059	1.0107	1.7348	4.1417	0.2081	0.3572	0.8528	1.7534	4.1860	7.1850
1952	0.3000	1.1700	1.5900	5.7600	0.1759	0.3507	0.2848	- 0.3683	0.0617	0.0501	-0.0648	0.0999	-0.1292	-0.1049
1953	.0.1900	0.8400	0.8500	3.2800	0.0659	0.0207	-0.4552	-2.8483	0.0014	00000- 1	-0.1877	-0.0094	-0.0590	1.2965
1954	0.2800	1.0700	1.5500	6.3500	0.1559		0.2448	0.2217	0.0391	0.0382	0.0346	0.0614	0.0556	0.0543
1955	0.0500	0.4300	0.9000	5.1800	-0.0741	-0.3893	-0.4052	-0.9483	0.0288	3 0.0300	0.0703	0.1577	0.3692	0.3843
1956	0.0300	0.2300	0.3900	3.6100	-0.0941	1	-0.9152	-2.5183	0.0555	0.0861	0.2370	0.5393	1.4840	2.3047
1957	0.4100	3.2700	5.2200	11.7700	0.2859	2.4507	3.9148	5.6417	0.7007	1.1192	1.6130	9.5940	13.8261	22.0861
1958	0.0300	0.3300	0.3800	4.8000	-0.0941	-0.4893	-0.9252	- 1.3283	0.0460	0.0871	0.1250	0.4527	0.6499	1.2289
1959	0.2400	1.2500	1.2600	6.4900	0.1159		0.0452	0.3617	0.0499	0.0052	0.0419	-0.0195	0.1558	-0.0163
1960	0.2300	1.0300	1.7300	5.7000	0.1059		0.4248	-0.4283	0.0223		-0.0454	0.0895	- 0.0902	-0.1819
1961	0.1000	0.9200	0.8600	7.0900	-0.0241	0.1007	-0.4452	0.9617	-0.0024		-0.0232	- 0.0448	0.0968	-0.4281
1962	0.0700	0.7000	0.8100	5.1000	-0.0541	-0.1193	-0.4952	-1.0283	0.0065		0.0556	0.0591	0.1227	0.5092
1963	0.0400	0.6100	1.0800	8.9300	-0.0841	-0.2093	-0.2252	2.8017	0.0176	0.0189	-0.2356	0.0471	-0.5864	-0.6309
1964	0.0500	0.4200	0.9300	5.7600	-0.0741	-0.3993	-0.3752	-0.3683	0.0296	0.0278	0.0273	0.1498	0.1471	0.1382
1965	0.4500	2.7200	3.3300	9.3800	0.2959	1.9007	2.0248	3.2517	0.5624	0.5991	0.9622	3.8485	6.1805	6.5840
1966	0.0100	0.1300	0.2400	3.8600	-0.1141	-0.6893	-1.0652	-2.2683	0.0786	0.1215	0.2588	0.7342	1.5635	2.4162
1961	0.0400	0.3600	0.9600	6.1300	-0.0841	-0.4593	-0.3452	0.0017	0.0386	0.0290	-0.0001	0.1586	- 0.0008	900000-
Sum	3.6000	23.7600	37.8500	177.7200					2.3921	3.0255	4.5004	20.6390	34.6440	9969.89
Mean	0.1241	0.8193	1 3052	6 1283										
Mean	1471.0	0.0100	70001	0.170										
				Squa	Squared Sum 0.4359	15.4095	33.0335	140.6424						



Figure 18-10. - Variable plot for example 18-4.

In the equation, peak flow varies directly with the maximum average 1-day flow and inversely with maximum monthly rainfall. The inverse relationship between Y and  $X_3$  is not rational and should be included only if the increased significance is meaningful.

4. Analyze the residuals. Compute the standard deviation of the criterion variable (square root of equation 2), standard error of estimate (eq. 24), and coefficient of determination (eq. 25). Table 18-13 contains the data needed for this step:

$$d_f = 29 - 2 - 1 = 26$$

$$S_y = \left[\frac{\sum (Y_i - \overline{Y})^2}{N-1}\right]^{0.5} = [0.4343/28]^{0.5} = 0.1245$$

$$S_e = \left[\frac{\sum (\hat{Y}_i - Y_i)^2}{d_f}\right]^{0.5} = [0.0508/26]^{0.5} = 0.044$$

$$r^2 = \frac{\sum (\hat{Y}_i - \overline{Y}_i)^2}{\sum (Y_i - \overline{Y})^2} = 0.3822/0.4343 = 0.880$$

The regression equation is a good predictor of the peak flow. The equation explains 88 percent of the variation in Y, and the standard error of estimate is much smaller than the standard deviation of the criterion variable,  $S_v$ .

Maximum monthly rainfall is not really needed in the equation but is included to illustrate a multiple predictor model. The correlation coefficient between peak flow and maximum 1-day flow, from the correlation matrix, indicates that the maximum 1-day flow will explain 85 percent of the variation in peak flow, i.e.,  $\mathbf{r}^2 = (0.9230)^2 = 0.85$ .

The sum of residuals from table 18-13 is -0.0020. The number of significant digits was not sufficient to produce truly accurate regression coefficients. More significant digits would improve the accuracy of the coefficients.

5. Plot the residuals as shown in figure 18-11. Similar plots can be made for the predictor variables and residuals. The greatest amount of underprediction (negative residual) occurs near a peak flow of 0.3 cfs. Two data points (1952 and 1954) in the region account for 46 percent of the sum of residuals squared. The greatest amount of overprediction (positive residuals) occurs at the maximum peak flow value. Large residual values (positive or negative) may be a problem when the regression equation is used in the upper range of peak flow values.

Table 18-13.—Residual data for example 18-4 (analysis of residuals for  $\hat{Y} = 0.0569 + 0.1867X_1 - 0.0140X_3$ )

Water year	Y = Peak flow (in/hr)	$X_1 = Max. avg.$ 1-day flow (in)	$X_3 = Max.$ month. rainfall (in)	Ŷ	(Ŷ – Y)	(Ŷ – YP	$(\widehat{Y} - \overline{Y})^2$	$(Y - \overline{Y})^2$
1939	0.0100	0.0800	3.5700	0.0219	0.0119	0.0001	0.0104	0.0130
1940	0.0	0.0	2.0000	0.0289	0.0289	0.0008	0.0090	0.0154
1941	0.0400	0.5600	8.3100	0.0451	0.0051	0.0	0.0062	0.0070
1942	0.0500	0.5500	8.3900	0.0421	-0.0079	0.0	0.0067	0.0054
1943	0.0800	0.5700	5.9500	0.0800	-0.0000	0.0	0.0019	0.0019
1944	0.1100	1.0500	8.1400	0.1390	0.0290	0.0008	0.0002	0.0001
1945	0.0900	0.6600	3.8200	0.1266	0.0366	0.0013	0.0	0.0011
1946	0.0200	0.3100	5.3400	0.0400	0.0200	0.0003	0.0070	0.0108
1947	0.0400	0.3100	5.4600	0.0383	-0.0017	0.0	0.0073	0.0070
1948	0.0200	0.1700	4.3800	0.0273	0.0073	0.0	0.0093	0.0108
1949	0.1100	0.8600	7.2100	0.1165	0.0065	0.0	0.0	0.0001
1950	0.2100	1.3300	5.6900	0.2256	0.0156	0.0002	0.0103	0.0073
1951	0.3300	1.8300	10.2700	0.2548	-0.0752	0.0056	0.0170	0.0423
1952	0.3000	1.1700	5.7600	0.1947	-0.1053	0.0110	0.0049	0.0309
1953	0.1900	0.8400	3.2800	0.1678	-0.0222	0.0004	0.0019	0.0043
1954	0.2800	1.0700	6.3500	0.1678	-0.1122	0.0125	0.0019	0.0243
1955	0.0500	0.4300	5.1800	0.0647	0.0147	0.0002	0.0035	0.0054
1956	0.0300	0.2300	3.6100	0.0493	0.0193	0.0003	0.0055	0.0088
1957	0.4100	3.2700	11.7700	0.5026	0.0926	0.0085	0.1432	0.0817
1958	0.0300	0.3300	4.8000	0.0513	0.0213	0.0004	0.0052	0.0088
1959	0.2400	1.2500	6.4900	0.1994	-0.0406	0.0016	0.0056	0.0134
1960	0.2300	1.0300	5.7000	0.1694	-0.0606	0.0036	0.0020	0.0112
1961	0.1000	0.9200	7.0900	0.1294	0.0294	0.0008	0.0	0.0005
1962	0.0700	0.7000	5.1000	0.1162	0.0462	0.0021	0.0	0.0029
1963	0.0400	0.6100	8.9300	0.0458	0.0058	0.0	0.0061	0.0070
1964	0.0500	0.4200	5.7600	0.0547	0.0047	0.0	0.0048	0.0054
1965	0.4200	2.7200	9.3800	0.4334	0.0134	0.0001	0.0956	0.0875
1966	0.0100	0.1300	3.8600	0.0271	0.0171	0.0002	0.0094	0.0130
1967	0.0400	0.3600	6.1300	0.0383	-0.0017	0.0	0.0073	0.0070
Sum					-0.0020	0.0508	0.3822	0.4343



Figure 18-11. — Residual plot for example 18-4.

### **Purpose**

Many watersheds analyzed by SCS are in locations for which few data are available, so techniques have been developed to transfer or regionalize available data to other locations.

One purpose of regionalization is to synthesize a frequency curve at an ungaged location or at a location where data are inadequate for developing a frequency curve by using the methods in the Frequency Analysis section. The most common forms of regionalization use watershed and hydrometeorological characteristics as predictor variables. Data may be regionalized by either direct or indirect estimation.

## **Direct Estimation**

The most commonly used technique is to relate selected values at various exceedance frequencies to the physical characteristics of the watershed. For example, the 10-year, 7-day mean flow may be related to drainage area and percentage of forest cover. The predictor variables can include both physical and hydrometeorological characteristics.

Previous studies have included the following as predictors: drainage area, mean watershed slope, mean basin elevation, length and slope of the main watercourse, the weighted runoff curve number, percentage of watershed in lakes or various cover types, and geological characteristics. Meteorological characteristics include: mean annual precipitation, mean annual snowfall, mean annual temperature, mean monthly temperature, mean monthly precipitation, and the 24-hour duration precipitation for various frequencies. Latitude, longitude, and watershed orientation have been included as location parameters. This list of various predictor variables is not complete but has been included to give some concept of the characteristics that can be used.

Example 18-5.—Development of a direct probability estimate by use of stepwise regression.

A sample power form prediction equation is:

$$\hat{Y} = b_0 X_1^{b_1} X_2^{b_2} X_3^{b_3} \dots X_n^{b_n}$$

where  $\hat{Y}$  is the estimated criterion variable;  $X_1$ ,  $X_2$ ,  $X_3 \dots X_n$  are the predictor variables; and  $b_0$ ,  $b_1$ ,  $b_2 \dots b_n$  are the regression coefficients.

The regression coefficients are developed from a multiple linear regression of the logarithms of the data. When the variables are transformed back to original units, the regression coefficients become powers.

Table 18-14 contains 9 variables for 18 North Coastal California Watersheds used to develop a power equation for estimating the 1-percent maximum 7-day mean runoff ( $V_{0.01}$ ). A locally available stepwise regression computer program (Dixon 1975) is used in the analysis.

The correlation matrix of the logarithms of the data is in table 18-15. The highest correlations of logarithms between runoff volume and the other variables are between channel length (-0.62) and drainage area (-0.53). These two variables are highly correlated (0.96) themselves, so only one would be expected to be used in the final equation. Rainfall intensity (0.48) and annual precipitation (0.45) are the variables with the next highest correlations to  $V_{0.01}$ . One or both of these variables may appear in the final regression equation.

The results of the stepwise regression analysis are in tables 18-16 and 18-17. Table 18-16 contains the regression coefficients for each step of the regression. Table 18-17 contains the regression equation data for each step. Equation 5 was selected as the best because the regression coefficents are rational, and including additional variables does not significantly decrease the standard error of estimate. All equations are significant based on the total F test at the 1-percent level. The least significant variable is slope (S) based on a 1-percent level F with 4 and 13 degrees of freedom. From a standard F table, for these degrees of freedom,  $F_{0.01} = 3.18$ . The partial F value required to enter the "slope" variable is 5.3. Equation 5 explains 83.6 percent of the variation (r2) in the logarithm of V_{0.01}, and addition of all remaining variables will only raise this to 87.3 percent.

Examine the residuals to evaluate the quality of the selected regression equation. Table 18-18 contains the predicted and observed  $V_{0.01}$  logarithms as well as the residuals and their sum. A plot of the residuals with the predicted values in figure 18-12 shows no correlation between  $V_{0.01}$  logarithms and the residuals. The residual variation is also constant over the range of the  $V_{0.01}$  logarithms.

The final power equation is:

$$V_{0.01} \ = \ 10^{(0.6752)} \, L^{(-0.4650)} \, P^{(0.6735)} \, F^{(0.1432)} \\ S^{(-0.1608)}$$

For data from station 11372000 (table 18-14), the

estimated  $V_{0.01}$  is:

 $\begin{array}{lll} V_{0.01} & = & (4.7337) \; (48.7)^{(-0.4650)} \; (56)^{(0.6735)} \\ & & (99)^{(0.1432)} \; (63)^{(-0.1608)} \end{array}$ 

 $V_{0.01} = 11.60$  watershed inches.

Table 18-14. - Basic data for example 18-5

Similar procedures can be used to develop regression equations for 0.50, 0.20, 0.10, 0.04, and 0.02 exceedance probabilities. Because each equation may not contain the same predictor variables, inconsistencies may develop from one exceedance probability to another. A method of eliminating in-

Station no.	Drain- age area (A)	Mean annual precipitation (P)	Two-year, 24-hr rainfall intensity (I)	Evapora- tion (E)	Channel slope (S)	Channel length (L)	Altitude (Al)	Percent forest (F)	Runoff volume (V _{0.01} )
	$mi^2$		inches		ft/mi	mi	1,000 ft	% + 1	inches
11372000	228.0	56	3.5	48	63	48.7	2.1	99	11.1966
11374400	249.0	41	2.8	48	58	43.5	1.6	53	7.6804
11379500	92.9	36	2.8	51	170	19.6	2.0	92	10.3144
11380500	126.0	28	2.7	51	93	42.7	1.8	84	6.6278
11382000	194.0	35	2.8	49	126	36.5	2.7	98	11.5990
11448500	6.36	41	4.5	46	374	4.2	2.1	95	18.9540
11448900	11.9	37	4.0	45	125	5.3	1.9	85	20.8693
11451500	197.0	39	3.0	52	40	34.0	1.7	96	10.1729
11451720	100.0	30	3.8	51	17	38.0	1.3	90	8.8838
11453500	113.0	52	3.5	49	55	21.6	1.4	89	18.8469
11453600	78.3	35	4.0	49	30	18.0	0.8	60	17.7086
11456000	81.4	48	3.3	49	46	19.4	0.5	79	16.2089
11456500	52.1	35	3.3	49	140	14.3	1.0	87	11.1178
11457000	17.4	35	3.3	49	72	10.8	1.2	29	13.1009
11458200	9.79	30	2.4	45	258	8.9	1.1	98	14.6669
11458500	58.4	35	3.0	46	82	17.3	0.3	72	15.9474
11459000	30.9	28	3.0	43	95	10.3	0.4	1	7.3099
11460000	18.1	42	3.0	42	125	7.5	0.5	50	19.0027

Table 18-15. - Correlation matrix of logarithms for example 18-5

Variable	Drain- age area (A)	Mean annual precipitation (P)	Two-year, 24-hr rainfall intensity (I)	Evapora- tion (E)	Channel slope (S)	Channel length (L)	Altitude (Al)	Percent forest (F)	Runoff volume (V _{0.01} )
	$mi^2$		inches	************	ft/mi	mi	1,000 ft.	% + 1	inches
Area	1.00								
Precipitation	0.23	1.00							
Intensity	-0.25	0.32	1.00						
Evaporation	0.63	0.01	-0.03	1.00					
Slope	-0.60	-0.10	-0.19	-0.44	1.00				
Length	0.96	0.11	-0.32	0.68	-0.61	1.00			
Altitude	0.22	0.14	0.11	0.50	0.16	0.27	1.00		
Forest Runoff	0.19	0.36	0.11	0.49	0.01	0.22	0.49	1.00	
volume	-0.53	0.45	0.48	-0.37	0.22	-0.62	-0.17	0.34	1.00

constencies is to smooth estimated values over the range of exceedance probabilities. Figure 18-13 illustrates the smoothing for station 11372000.

Table 18-16.—Stepwise regression coefficients for example 18-5

Equation no.	Constant	L	P	F	S	Al	A	E	I
1	1.0997								
2	1.4745	-0.3010							
3	-0.0022	-0.3281	0.9615						
4	0.1739	-0.3605	0.7380	0.1210					
5	0.6752	-0.4650	0.6735	0.1432	-0.1608				
6	0.5178	-0.4257	0.6731	0.1675	-0.1231	-0.1046			
7	0.6604	-0.5722	0.5803	0.1756	-0.1242	-0.1012	0.0985		
8	2.6010	-0.5796	0.4824	0.1980	-0.1509	-0.0681	0.1233	-1.0785	
9	2.6392	-0.5971	0.4949	0.1983	-0.1623	-0.0608	0.1257	-1.0705	-0.0637

Table 18-17. - Regression equation evaluation data for example 18-5

Equa- tion no.	Predictor variables	r²	$\Delta \mathbf{r^2}$	S _e	SS/df Reg	SS/df Res	F _t Ratio	F _p Ratio
1	•••			0.1566*				
2	L	0.390	0.390	0.1260	0.1627/1	0.2542/16	10.2	10.2
3	L,P	0.661	0.271	0.0971	0.2754/2	0.1415/15	14.6	11.9
4	L,P,F	0.769	0.108	0.0830	0.3204/3	0.0964/14	15.5	6.5
5	L,P,F,S	0.836	0.067	0.0725	0.3485/4	0.0684/13	16.6	5.3
6	L,P,F,S,Al	0.858	0.022	0.0703	0.3575/5	0.0593/12	14.5	1.8
7	L,P,F,S,Al,A	0.864	0.006	0.0718	0.3601/6	0.0567/11	11.6	0.5
8	L,P,F,S,Al,A,E	0.873	0.009	0.0728	0.3639/7	0.0530/10	9.8	0.7
9	L,P,F,S,Al,A,E,I	0.873	0.000	0.0766	0.3640/8	0.0529/9	7.7	0.2

r² - Coefficient of determination

SS/df - Sum of squares to degrees of freedom ratio for regression (Reg)

 $[\]Delta r^2$  - Change in  $r^2$ 

 $S_e$  - Standard error of estimate

or residuals (Res)

F_t - Total F test value

Fp - Partial F test value

^{*}S_y of criterion variable, V_{0.01}

Table 18-18. - Residuals for example 18-5

	Predicted runoff	Observed runoff	
Staion	volume	volume	
no.	(logs)	(logs)	Residual
11372000	1.0646	1.0491	-0.0155
11374400	0.9631	0.8854	-0.0777
11379500	1.0453	1.0137	-0.0316
11380500	0.8510	0.8214	-0.0296
11382000	0.9363	1.0644	0.1281
11448500	1.3413	1.2777	-0.0636
11448900	1.3339	1.3195	-0.0144
11451500	1.0611	1.0074	-0.0537
11451720	1.0177	0.9486	-0.0691
11453500	1.2099	1.2752	0.0653
11453600	1.1487	1.2482	0.0995
11456000	1.2133	1.2098	-0.0035
11456500	1.1108	1.0460	-0.0648
11457000	1.1455	1.1173	-0.0282
11458200	1.1261	1.1663	0.0402
11458500	1.0979	1.2027	0.1048
11459000	0.8610	0.8639	0.0029
11460000	1.2679	1.2788	0.0109
		Sum	0.0000

The U.S. Geological Survey uses stepwise multiple regression to develop predictive equations for selected flow values. The results are published in open file reports that generally include predictive equations for major river basins, physiographic regions, or states. Meteorological and physical characteristics listed in the reports can be used to develop applicable predictive equations for SCS hydrologic studies.

#### **Indirect Estimation**

The second technique is to use regression equations to relate the statistical characteristics of selected values to various basin characteristics. The probability level estimates are then derived from the frequency curve, based on the predicted statistical characteristics.

Example 18-6. — Development of indirect probability estimates.

In the north coastal region of California, the mean and standard deviation of the 1-day and 15-day high flow frequency curves were related to basin characteristics. Twenty-five stations were used in the relationships shown in figures 18-14 through 18-17. The relationships of drainage area, mean an-

nual precipitation, 1-day and 15-day high flow means and standard deviations were developed by regression. The predictor variables were selected because of availability of data. Tests were performed on each regression equation to verify that the mean of residuals is zero, the residuals are independent of each variable, the variance is constant, and that  $S_e$  is smaller than  $S_y$ , the standard deviation of the criterion.

Develop 1- and 15-day high flow frequency curves for a 50-square-mile drainage area in the north coastal region of California with a mean annual precipitation of 60 inches.

$$S_1 = 1,400 \text{ cfs}$$
 from fig. 18-15  $\gamma_1 = (\overline{X})^2/S^2$  solution of eq. 13 for  $\gamma$   $\gamma_1 = \frac{(3,100)^2}{(1,400)^2} = 4.9$   $\gamma_1 = \frac{(3,100)^2}{(1,400)^2} = 4.9$  from eq. 14  $\overline{X}_{15} = 900\text{-cfs}$  days from fig. 18-16  $S_{15} = 340 \text{ cfs}$  from fig. 18-17  $\gamma_{15} = \frac{(900)^2}{(340)^2} = 7.0$   $S_{15} = 2/\sqrt{7.0}$  use 0.8

Using equation 15 as shown in table 18-19, determine the 1-day and 15-day high flow values for selected exceedance frequencies.

where: 
$$\overline{X}_1 = 3,100 \ \overline{X}_{15} = 900 \ S_1 = 1,400 \ S_{15} = 340$$

#### Discussion

The basic uses of regionalization are to transfer data either from gaged watersheds to ungaged watersheds or to locations within gaged watersheds, and to calibrate water resource models. But in using regionalization, one must understand certain basic limitations.



Figure 18-12. - Residual plot for example 18-5.

The prediction equation generally should be used only within the range of the predictor variables used to develop the equation. The prediction equation represents the "average" condition for the data. If the ungaged watershed varies significantly from the average condition, then the variation must be explained by one or more of the variables in the prediction equation. If the variation is not explained, the equation should not be used.

When the prediction equation is used to calibrate a watershed model, values estimated by the regression equation should deviate from the values computed by the model. The magnitude of this deviation is a function of how much the ungaged watershed differs from the "average" condition. For example, if most of the watersheds used to develop the prediction equation are flat and long and the ungaged watershed is steep and short, the peak



Figure 18-13. - Estimate smoothing for example 18-5.

flow computed with the watershed model could differ significantly from that estimated by the prediction equation. The prediction equation should not be used when the watershed characteristics are outside the range of those used to develop the equation. The coefficients of the prediction equation must be rational. For example, peak flow is inversely proportional to the length of the main watercourse, if all other variables are constant. This means that when a logarithmic transformation is used, the power of the length variable should be negative. If



Figure 18-14. — Drainage area and mean annual precipitation for 1-day mean flow for example 18-6.

a predictor variable has an irrational relationship in the equation, the correlation coefficients of all the predictor variables should be examined before the equation is used. A high correlation coefficient between two predictor variables means that one of the variables can be used to explain how the criterion variable varies with both predictor variables. The accuracy of the prediction equation is not improved by adding the second predictor variable; the equation merely becomes more complicated.



Figure 18-15.-One-day mean flow and standard deviation for example 18-6.



Figure 18-16. — Drainage area and mean annual precipitation for 15-day mean flow for example 18-6.



Figure 18-17.—Fifteen-day mean flow and standard deviation for example 18-6.

Table 18-19. - Frequency curve solutions for example 18-6

D 1	WD 00		/DD 00	
Exceed	TR-38		TR-38	
prob.	K value	$V_1 =$	K value	$-V_{15} =$
(q)	(G = 0.9)	$\overline{X}_1 + KS_1$	(G = 0.8)	$\overline{X}_{15} + KS_{15}$
99	-1.66001	776	-1.73271	311
95	-1.35299	1206	-1.38855	428
80	-0.85426	1904	-0.85607	609
50	-0.14807	2893	-0.13199	855
20	0.76902	4177	0.77986	1165
10	1.33889	4974	1.33640	1354
4	2.01848	5926	1.99311	1578
2	2.49811	6597	2.45298	1734
1	2.95735	7240	2.89101	1883

Flood frequency analysis identifies the population from a sample of data. The population cannot be identified exactly when only a sample is available, and this represents one important element of uncertainty. A second source of uncertainty exists also; even if the population were known exactly, there is a finite chance that an event of a certain size will be exceeded.

The measurement of such uncertainty is called risk. Typical questions include: (1) A channel is designed with a capacity of a 0.02 exceedance probability. Is it unreasonable to expect its capacity will be exceeded once or more in the next 10 years? (2) What is the risk that an emergency spillway designed to pass a 2-percent chance flow will experience this flow twice or more in the next 10 years? (3) Throughout the United States the Soil Conservation Service has built many flood-control structures. What percent will experience a 1-percent chance flood in the next 5 years? The next 10 years?

These problems can be solved by means of the binomial distribution. Basic assumptions in the use of the binomial distribution are given in the general discussion on distributions. These assumptions are usually valid for assessing risk in hydrology. The binomial expression for risk is:

$$R_{I} = \frac{N!}{I! (N - I)!} q^{I} (1 - q)^{(N - I)}$$
 (18-29)

where  $\mathbf{R}_{\mathbf{I}}$  is the estimated risk of obtaining in N time periods exactly I number of events with an exceedance probability q.

Example 18-7.—Risk of future nonoccurrence.

What is the probability that a 10-percent chance flood (q = 0.10) will not be exceeded in the next 5 years?

From equation 29, for N = 5, q = 0.10, and I = 0,

$$R_0 = \frac{(5)!}{0!(5)!} 0.10^0 (1 - 0.10)^{(5 - 0)}$$

The probability of nonoccurrence is 0.59 or 59 percent; the probability of occurrence is  $1 - R_0$  or 0.41.

Example 18-8.—Risk of multiple occurrence.

What is the probability that a 2-percent chance peak flow (q = 0.02) will be exceeded *twice or more* in the next 10 years?

For nonexceedance of the 2-percent chance event,

$$N = 10, q = 0.02, I = 0$$

$$R_0 = \frac{(10)!}{0!(10)!} (0.02)^0 (1 - 0.02)^{10}$$
$$= 0.817$$

For only one exceedance of the 2-percent chance event,

$$N = 10, q = 0.02, I = 1$$

$$R_1 = \frac{(10)!}{(1)!(9)!} (0.02)^1 (1 - 0.02)^9$$

$$= 0.167$$

For 2 or more exceedances of the 2-percent chance event,

$$R_{(2 \text{ or more})} = 1 - (R_0 + R_1)$$

$$R_{(2 \text{ or more})} = 1 - (0.817 + 0.167)$$
  
= 0.016

In other words, there is a 1.6-percent chance of experiencing two or more peaks equal to or greater than the 2-percent chance peak flow within any 10-year period. If flood events are not related, it is likely that within the next 10 years no more than 16 locations in a thousand will, on the average, experience two or more floods equal to or greater than the 2-percent chance flood.

Example 18-9.—Risk of a selected exceedance probability.

There is a 20-year record on a small creek. What is the probability that the greatest flood of record is not a 5-percent chance event (q = 0.05)?

For nonoccurrence of the 5-percent chance event,

$$N = 20, q = 0.05, I = 0$$

$$R_0 = \frac{20!}{0!20!} (0.05)^0 (1 - 0.05)^{20}$$
$$= 0.358$$

Therefore, there is a 36-percent chance of the 5-percent chance event not occurring and, conversely, a 64-percent chance that one or more will occur.

Example 18-10. - Exceedance probability of a selected risk.

What exceedance probability has a 50-percent chance of occurrence in a 20-year period?

For 50-percent occurrence in 20 years,

$$N = 20, q = ?, I = 0, R_0 = 0.5$$

$$0.5 = \frac{(20)!}{0!20!} (q)^0 (1 - q)^{(20 - 0)}$$

$$0.5 = (1 - q)^{20}$$

$$1 - q = (0.5)^{1/20} = 0.966$$

$$q = 0.034$$

or there is a 50-percent chance that a 3-percent chance event will occur within the 20-year period.

## **Metric Conversion Factors**

The English system of units is used in this report. To convert to the International System of units (metric), use the following factors:

To convert English units	To metric units	Multiply by	
acres (acre)	hectares (ha)	0.405	
square miles (sq. mi)	square kilometers (km²)	2.59	
cubic feet per second (cfs) ¹	cubic meters per second (m³/sec)	0.0283	
cubic feet per second-days (cfs-days)	cubic meters (m³)	2,450	
inches (in)	millimeters (mm)	25.4	

¹ In converting stream discharge values, which are recorded in English units with only three significant digits, be careful that you do not imply a greater precision than is present.



# Bibliography

- Beard, Leo R., and A. J. Fredrich. 1975. Hydrologic frequency analysis. Vol. 3, Hydrologic engineering methods for water resources development. U.S. Army Corps of Engineers, Davis, Calif. 134 p.
- Benson, M. A. 1965. Spurious correlation in hydraulics and hydrology. Am. Soc. Civ. Engr. J. Hyd. Div. 91(HY4):35-42.
- Chisman, James A. 1968. The Pearson generalized statistical distribution. Bull. III. Eng. Exp. Stn., Coll. Eng. Clemson Univ., S.C.
- Chow, V. T. 1964. Statistical and probability analysis of hydrologic data. *In* Handbook of applied hydrology. Section 8 (V. T. Chow, ed.) McGraw-Hill, Inc., N.Y.
- Corbett, D. M., and others. 1962. Streamgaging procedure—A manual describing methods and practices of the Geological Survey. U.S. Geol. Surv., Water Supply Pap. 888, 245 p.
- Crippin, V. A. 1978. Composite log-Pearson Type III frequency magnitude curve of annual floods. U.S. Geol. Surv. Open File Rep. 78-352. 5p.
- Dixon, W. J. 1975. BMDP biomedical computer programs. Univ. Calif. Press, Berkeley, Calif. 791 p.
- Draper, N. R., and H. Smith. 1966. Applied regression analysis. John Wiley & Sons, Inc., N.Y. 407 p.
- Elderton, W. P. 1953. Frequency curves and correlation, 4th ed. Harren Press, Washington, D.C. 272 p.
- Elderton, W. P., and N. L. Johnson. 1969. Systems of frequency curves. Cambridge Univ. Press, N.Y. 216 p.
- Farnsworth, R. K., E. S. Thompson, and E. L. Peck. 1982. Evaporation Atlas for the Continguous 48 United States. Natl. Weather Serv. Tech. Rep. NWS 33, 26 p.
- Greenwood, J. A., and D. Durand. 1960. Aids for fitting the gamma distribution by maximum likelihood. Technometrics 2(1):55-65.
- Grubbs, F. E. 1950. Sample criteria for testing outlying observations. An. Math. Statis. 1(21): 27-58.
- Gumbel, E. J. 1958. Statistics of extremes. Columbia Univ. Press, N.Y. 375 p.
- Haan, C. T. 1977. Statistical methods in hydrology. Iowa State Univ. Press., Ames, Iowa. 378 p.
- Harter, H. L. 1969. Order statistics and their use in testing and estimation. Vol. 2, Aerospace Res. Lab. (USAF). 805 p.
- Hastings, N. A. J., and J. B. Peacock 1975.Statistical distribution. John Wiley & Sons, Inc., N.Y. 130 p.
- Hayslett, H. T., Jr. 1968. Statistics made simple. Doubleday & Co., N.Y. 192 p.

- Hoel, P. G. 1971. Introduction to mathematical statistics. 4th ed. John Wiley & Sons, Inc., N.Y. 409 p.
- Kirby, William. 1974. Algebraic boundedness of sample statistics. Water Resour. Res. 10(2):220-222.
- Kite, G. W. 1977. Frequency and risk analysis in hydrology. Water Resour. Publ. Fort Collins, Colo. 224 p.
- Markowitz, M. 1971. The chance a flood will be exceeded in a period of years. Water Resour. Bull. 7(1):40-53.
- National Research Council of Canada. 1967. Statistical methods in hydrology. Proc. Hydrol. Symp. #5, McGill Univ., Ottawa, Canada. 315 p.
- National Weather Service. 1972. Observing handbook No. 2, substation observations. 77 p.
- Pacific Southwest Inter-Agency Committee. 1966.
  Limitation in hydrologic data as applied to studies of water control and water management.
  San Francisco, Calif. 129 p.
- Riggs, H. C. 1968a. Some statistical tools in hydrology. *In* Techniques of water resources investigations of the U.S. Geol. Survey. Chap. A1, Book 4, 39 p.
- Riggs, H. C. 1968b. Frequency curves. Techniques of water resources investigations of the U.S. Geol. Survey. Chap. A2, Book 4, 15 p.
- Riggs, H. C. 1973. Regional analyses of streamflow characteristics. *In* Techniques of water resources investigations of the U.S. Geol. Survey. Chap. B, Book 4, 14 p.
- Sammons, W. H. 1966. Hydrology study—A multipurpose program for selected cumulative probability distribution analyses. U.S. Dep Agric., Soil Conserv. Serv. Tech. Pap. 148, Suppl. 1, 105 p.
- Searcy, J. K. 1959. Low flow techniques, flow-duration curves. Manual of Hydrology, Pt. 2, U.S. Geol. Surv. Water-Supply Pap. 1542-A, 33 p.
- Snedecor, G. W., and W. G. Cochran. 1957. Statistical methods. Iowa State Univ. Press, Ames, Iowa, 534 p.
- Spiegel, M. R. 1961. Schaum's outline of theory and problems of statistics. Shaum Publ. Co., N.Y. 359 p.
- Thom, H. C. S. 1958. A note on the gamma distribution. U.S. Weather Bur. Mon. Weather Rev. 86(4):117-122.
- U.S. Army Corps of Engineers. 1975. Hydrologic engineering methods. Vol. 3, Hydrologic frequency analysis, 134 p.

- U.S. Department of Agriculture, Soil Conservation Service. 1976. New tables of percentage points of the Pearson Type III distribution. Tech. Rel. 38, 18 p.
- U.S. Department of Agriculture, Soil Conservation Service. 1977. National Engineering Handbook, Section 22, Snow survey and water supply forecasting.
- Wang, L., and A.L. Huber. 1967. Estimating water yields in Utah by principal component analysis, PrWg 35a-1. Utah Water Res. Lab. Logan, Utah, 76 p.
- Water Resources Council. 1966. Methods of flow frequency analysis—notes on hydrologic activities. Bull. No. 13, 42 p.
- Water Resources Council. 1967. A uniform technique for determining flood flow frequencies. Bull. No. 15, 15 p.
- Water Resources Council. 1981. Guidelines for determining flood flow frequency. Bull. No. 17B, 28 p.

Exhibit 18-1. - Five-percent two-sided critical values for outlier detection

N	K _n	Low prob.	High prob.	N	K _n	Low prob.	High prob.
10	2.294	0.9891048	0.0108952				
11	2.343	0.9904353	0.0095647	56	3.032	0.9987853	0.0012147
12	2.387	0.9915068	0.0084932	57	3.040	0.9988171	0.0011829
13	2.426	0.9923669	0.0076331	58	3.046	0.9988404	0.0011596
14	2.461	0.9930725	0.0069275	59	3.051	0.9988596	$0.0011404 \\ 0.0011141$
15	2.493	0.9936665	0.0063335	60	3.058	0.9988859	
16	2.523	0.9941821	0.0058179	61	3.063	0.9989043	0.0010957
17	2.551	0.9946293	0.0053707	62	3.070	0.9989297	0.0010703
18	2.577	0.9950169	0.0049831	63	3.075	0.9989474	0.0010526
19	2.600	0.9953388	0.0046612	64	3.082	0.9989719	0.0010281
20	2.623	0.9956420	0.0043580	65	3.086	0.9989856	0.0010144
21	2.644	0.9959034	0.0040966	66	3.090	0.9989992	0.0010008 $0.0009808$ $0.0009644$ $0.0009514$ $0.0009355$
22	2.664	0.9961391	0.0038609	67	3.096	0.9990192	
23	2.683	0.9963517	0.0036483	68	3.101	0.9990356	
24	2.701	0.9965434	0.0034566	69	3.105	0.9990486	
25	2.717	0.9967061	0.0032939	70	3.110	0.9990645	
26	2.734	0.9968715	0.0031285	71	3.115	0.9990802	0.0009198
27	2.751	0.9970293	0.0029707	72	3.121	0.9990988	0.0009012
28	2.768	0.9971799	0.0028201	73	3.125	0.9991109	0.0008891
29	2.781	0.9972904	0.0027096	74	3.130	0.9991260	0.0008740
30	2.794	0.9973969	0.0026031	75	3.134	0.9991378	0.0008622
31	2.808	0.9975075	0.0024925	76	3.138	0.9991494	0.0008506
32 33	2.819 2.833	0.9975913 0.9976943	0.0024087 0.0023057	77 78	3.142 3.148	0.9991609 $0.9991780$	0.0008391 $0.0008220$
34 35	2.846 2.858	0.9977863 0.9978684	0.0022137 0.0021316	79 80	3.152 3.157	0.9991892 $0.9992030$	$0.0008108 \\ 0.0007970$
36 37	2.869 2.880	0.9979411 0.9980116	0.0020589 0.0019884	81 82	3.161 3.164	0.9992138 $0.9992219$	0.0007862 $0.0007781$
38	2.890	0.9980738	0.0019262	83	3.168	0.9992325	0.0007675
<b>39</b>	2.900	0.9981341	0.0018659	84	3.172	0.9992430	0.0007570
40	2.910	0.9981928	0.0018072	85	3.176	0.9992533	0.0007467
41	2.919	0.9982442	0.0017558	86	3.180	0.9992636	0.0007364
42	2.925	0.9982777	0.0017223	87	3.184	0.9992737	0.0007263
43	2.937	0.9983429	0.0016571	88	3.188	0.9992837	0.0007163
44	2.945	0.9983852	0.0016148	89	3.191	0.9992911	0.0007089
45	2.954	0.9984316	0.0015684	90	3.194	0.9992984	0.0007016
46	2.960	0.9984618	0.0015382	91	3.198	0.9993080	0.0006920
47	2.970	0.9985110	0.0014890	92	3.202	0.9993176	0.0006824
48	2.978	0.9985493	0.0014507	93	3.205	0.9993247	0.0006753
49	2.985	0.9985821	0.0014179	94	3.208	0.9993317	0.0006683
50	2.993	0.9986187	0.0013813	95	3.211	0.9993386	0.0006614
51	3.000	0.9986501	0.0013499	96	3.214	0.9993455	0.0006545
52	3.007	0.9986808	0.0013192	97	3.217	0.9993523	0.0006477
53	3.013	0.9987066	0.0012934	98	3.220	0.9993590	0.0006410
54	3.020	0.9987361	0.0012639	99	3.224	0.9993679	0.0006321
55	3.025	0.9987568	0.0012432	100	3.228	0.9993767	0.0006233

Note:  $K_n$  values are positive for high outliers and negative for low outliers.

EXHIBIT 18-2 EXPECTED VALUES OF NORMAL ORDER STATISTICS

K/N	10	11	12	13	14	15	16
1	1.53875	1.58644	1.62923	1.66799	1.70338	1.73591	1.76599
2	1.00136	1.06192	1.11573	1.16408	1.20790	1.24794	1.28474
3	0.65606	0.72884	0.79284	0.84983	0.90113	0.94769	0.99027
4	0.37576	0.46198	0.53684	0.60285	0.66176	0.71488	0.76317
5	0.12267	0.22489	0.31225	0.38833	0.45557	0.51570	0.57001
6		0 • 0	0.10259	0.19052	0.26730	0.33530	0.39622
7				0 • 0	0.08816	0.16530	0.23375
8						0.0	0.07729
K/N	17	18	19	20	21	22	23
1	1.79394	1.82003	1.84448	1.86748	1.88917	1.90969	1.92916
2	1.31878	1.35041	1.37994	1.40760	1.43362	1.45816	1.48137
3	1.02946	1.06573	1.09945	1.13095	1.16047	1.18824	1.21445
4	0.80738	0.84812	0.88586	0.92098	0.95380	0.98459	1.01356
5	0.61946	0.66479	0.70661	0.74538	0.78150	0.81527	0.84697
4	0.45133	0.50158	0.54771	0.59030	0.62982	0.66667	0.70115
6 7	0.29519	0.35084	0.40164	0.44833	0.49148	0.53157	0.56896
8	0.14599	0.20774	0.26374	0.31493	0.36203	0.40559	0.44609
9	0.0	0.06880	0.13072	0.18696	0.23841	0.28579	0.32965
10		000000	0.0	0.06200	0.11836	0.16997	0.21755
11					0.0	0.05642	0.10813
12							0 • 0
KIN	24	25	26	27	28	29	30
4	1 0 4 7 4 7	1 0/571	1 00016	1 60007	0 01771	0 00050	2 04 276
1 2	1.94767 1.50338	1.96531 1.52430	1.98216 1.54423	1.99827 1.56326	2.01371 1.58145	2.02852 1.59888	2.04276 1.61560
3	1.23924	1.26275	1.28511	1.30641	1.32674	1.34619	1.36481
4	1.04091	1.06679	1.09135	1.11471	1.13697	1,15822	1.17855
5	0.87682	0.90501	0.93171	0.95705	0.98115	1.00414	1.02609
•	000.002	00/0001	0070111	00/0:00	00,0115	1000.1.	1002007
6	0.73354	0.76405	0.79289	0.82021	0.84615	0.87084	0.89439
7	0.60399	0.63690	0.66794	0.69727	0.72508	0.75150	0.77666
8	0.48391	0.51935	0.55267	0.58411	0.61385	0.64205	0.66885
9	0.37047	0.40860	0.44436	0.47801	0.50977	0.53982	0.56834
10	0.26163	0.30268	0.34105	0.37706	0.41096	0.44298	0.47329
11	0.15583	0.20006	0.24128	0.27983	0.31603	0.35013	0.38235
12	0.05176	0.09953	0.14387	0.18520	0.22389	0.26023	0.29449
13	0000118	0.09933	0.04781	0.09220	0.13361	0.17240	0.20885
14			0501101	0.0	0.04442	0.08588	0.12473
15					0001112	0.0	0.04148
-							

EXHIBIT 18-2 EXPECTED VALUES OF NORMAL ORDER STATISTICS

	K/N	31	32	33	34	35	36	37	
•	1	2.05646	2.06967	2.08241	2.09471	2.10661	2.11812	2.12928	-
	2	1.63166	1.64712	1.66200	1.67636	1.69023	1.70362	1.71659	
	3	1.38268	1.39985	1.41637	1.43228	1.44762	1.46244	1.47676	
	4	1.19803	1.21672	1.23468	1.25196	1.26860	1.28466	1.30016	
	5	1.04709	1.06721	1.08652	1.10509	1.12295	1.14016	1.15677	
	3	100.707	1400721		101000	1012275	1010	16130//	
	6	0.91688	0.93841	0.95905	0.97886	0.99790	1.01624	1.03390	
	7	0.80066	0.82359	0.84555	0.86660	0.88681	0.90625	0.92496	
	8	0.69438	0.71875	0.74204	0.76435	0.78574	0.80629	0.82605	
	9	0.59545	0.62129	0.64596	0.66954	0.69214	0.71382	0.73465	
	10	0.50206	0.52943	0.55552	0.58043	0.60427	0.62710	0.64902	
	11	0.41287	0.44185	0.46942	0.49572	0.52084	0.54488	0.56793	
	12	0.32686	0.35755	0.38669	0.41444	0.44091	0.46620	0.49042	
	13	0.24322	0.27573	0.30654	0.33582	0.36371	0.39032	0.41576	
	14	0.16126	0.19572	0.22832	0.25924	0.28863	0.31663	0.34336	
	15	0.08037	0.11695	0.15147	0.18415	0.21515	0.24463	0.27272	
	10		0011070	00101	0010,15	0021313	002,100	002,2,2	
	16	0.0	0.03890	0.07552	0.11009	0.14282	0.17388	0.20342	
	17			0.0	0.03663	0.07123	0.10399	0.13509	
	18					0.0	0.03461	0.06739	
	19							0.0	
	K/N	38	39	40	41	42	43	44	
•	1	2.14009	2.15059	2 1 ( 0.7 0	2.17068	2 10072	2.18969	2.19882	-
	1	1.72914	1.74131	2.16078 1.75312	1.76458	2.18032 1.77571	1.78654	1.79707	
	2 3	1.49.061	1.50402	1.51702	1.52964	1.54188	1.55377	1.56533	
	4	1.31514	1.32964	1.34368	1.35728	1.37048	1.38329	1.39574	
	5	1.17280	1.18830	1.20330	1.21782	1.23190	1.24556	1.25881	
		1011200	1010000	1 62 0000	1021/02	1020170	1.2.000	1423001	
	6	1.05095	1.06741	1.08332	1.09872	1.11364	1.12810	1.14213	
	7	0.94300	0.96041	0.97722	0.99348	1.00922	1.02446	1.03924	
	8	0.84508	0.86343	0.88114	0.89825	0.91480	0.93082	0.94634	
	9	0.75468	0.77398	0.79259	0.81056	0.82792	0.84472	0.86097	
	10	0.67009	0.69035	0.70988	0.72871	0.74690	0.76448	0.78148	
	11	0.59005	0.61131	0.63177	0.65149	0.67052	0.68889	0.70666	
	12	0.51363	0.53592	0.55736	0.57799	0.59788	0.61707	0.63561	
	13	0.44012	0.46348	0.48591	0.50749	0.52827	0.54830	0.56763	
	14	0.36892	0.39340	0.41688	0.43944	0.46114	0.48204	0.50220	
	15	0.29954	0.32520	0.34978	0.37337	0.39604	0.41784	0.43885	
	1.0	0 07150	0 05060	0.00407	0.70000	0 77057	0 75577	0 77707	
	16 17	0.23159 0.16469	0.25849 0.19292	0.28423	0.30890	0.33257	0.35533	0.37723	
	18	0.09853	0.19292	0.21988 0.15644	0.24569 0.18345	0.27043 0.20931	0.29418 0.23411	0.31701 0.25792	
	19	0.03280	0.06395	0.09362	0.12192	0.14897	0.17488	0.19972	
	20	0 0 0 0 2 0 0	0.00	0.03117	0.06085	0.08917	0.11625	0.14219	
				0000117	000000	0000717	0011020	0021227	
	21				0.0	0.02969	0.05803	0.08513	
	22						0 • 0	0.02835	

EXHIBIT 18-2 EXPECTED VALUES OF NORMAL ORDER STATISTICS

K/N	45	46	47	48	49	50	51	
1	2.20772	2.21639	2.22486	2.23312	2.24119	2.24907	2.25678	
2	1.80733	1.81732	1.82706	1.83655	1.84582	1.85487	1.86371	
3	1.57658	1.58754	1.59820	1.60860	1.61874	1.62863	1.63829	
4	1.40784	1.41962	1.43108	1.44224	1.45312	1.46374	1.47409	
5	1.27170	1.28422	1.29641	1.30827	1.31983	1.33109	1.34207	
6	1.15576	1.16899	1.18186	1.19439	1.20658	1.21846	1.23003	
7	1.05358	1.06751	1.08104	1.09420	1.10701	1.11948	1.13162	
8	0.96139	0.97599	0.99018	1.00396	1.01737	1.03042	1.04312	
9	0.87673	0.89201	0.90684	0.92125	0.93525	0.94887	0.96213	
10	0.79795	0.81391	0.82939	0.84442	0.85902	0.87321	0.88701	
11	0.72385	0.74049	0.75663	0.77228	0.78748	0.80225	0.81661	
12	0.65353	0.67088	0.68768	0.70397	0.71978	0.73513	0.75004	
13	0.58631	0.60438	0.62186	0.63881	0.65523	0.67117	0.68666	
14	0.52166	0.54046	0.55865	0.57625	0.59331	0.60986	0.62592	
15	0.45912	0.47868	0.49759	0.51588	0.53360	0.55077	0.56742	
16	0.39833	0.41868	0.43834	0.45734	0.47573	0.49354	0.51080	
17	0.33898	0.36016	0.38060	0.40034	0.41942	0.43789	0.45578	
18	0.28081	0.30285	0.32410	0.34460	0.36441	0.38357	0.40211	
19	0.22358	0.24652	0.26862	0.28992	0.31049	0.33036	0.34957	
20	0.16707	0.19097	0.21396	0.23610	0.25746	0.27807	0.29799	
21	0.11109	0.13600	0.15993	0.18296	0.20514	0.22653	0.24719	
22	0.05546	0.08144	0.10637	0.13033	0.15338	0.17559	0.19702	
23	0.0	0.02712	0.05311	0.07805	0.10203	0.12511	0.14735	
24			0.0	0.02599	0.05095	0.07494	0.09803	
25					0 • 0	0.02496	0.04896	
26							0.0	

EXHIBIT 18-2 EXPECTED VALUES OF NORMAL ORDER STATISTICS

	K/N	52	53	54	55	56	57	58	
-	1	2.26432	2.27169	2.27891	2.28598	2.29291	2.29970	2.30635	_
	2	1.87235	1.88080	1.88906	1.89715	1.90506	1.91282	1.92041	
	3	1.64773	1.65695	1.66596	1.67478	1.68340	1.69185	1.70012	
	4	1.48420	1.49467	1.50372	1.51315	1.52237	1.53140	1.54024	
	5	1.35279	1.36326	1.37348	1.38346	1.39323	1.40278	1.41212	
	,	1 0/170	1 25274	1 07710	1 077(1	1 20707	1 00701	1 70777	
	6	1.24132	1.25234	1.26310	1.27361	1.28387	1.29391	1.30373	
	7	1.14347	1.15502	1.16629	1.17729	1.18804	1.19855	1.20882	
	8	1.05550	1.06757	1.07934	1.09083	1.10205	1.11300	1.12371	
	9	0.97504	0.98762	0.99988	1.01185	1.02352	1.03493	1.04607	
	10	0.90045	0.91354	0.92629	0.93873	0.95086	0.96271	0.97427	
	11	0.83058	0.84417	0.85742	0.87033	0.88292	0.89520	0.90719	
	12	0.76455	0.77866	0.79240	0.80578	0.81883	0.83155	0.84397	
	13	0.70170	0.71633	0.73057	0.74444	0.75794	0.77111	0.78396	
	14	0.64152	0.65668	0.67143	0.68578	0.69976	d.71337	0.72665	
	15	0.58358	0.59928	0.61455	0.62940	0.64385	0 65793	0.67164	
	16	0.52755	0.54380	0.55960	C.57495	0.58989	0.60444	0.61860	
	17	0.47312	0.48995	0.50629	0.52217	0.53761	0.55263	0.56725	
	18	0.42007	0.43749	0.45439	0.47080	0.48675	0.50226	0.51736	
	19	0.36818	0.38621	0.40369	0.42065	0.43713	0.45314	0.46872	
	20	0.31726	0.33592	0.35400	0.37154	0.38856	0.40510	0.42117	
	21	0.26716	0.28648	0.30518	0.32331	0.34090	0.35797	0.37456	
	22	0.21772	0.23772	0.25708	0.27583	0.29400	0.31163	0.32875	
	23	0.16880	0.18953	0.20957	0.22896	0.24774	0.26595	0.28362	
	24	0.12029	0.14177	0.16252	0.18259	0.20201	0.22082	0.23906	
	25	0.07206	0.09434	0.11584	0.13661	0.15669	0.17614	0.19498	
	26	0.02400	0.04712	0.06940	0.09091	0.11170	0.13180	0.15127	
	27		0.0	0.02312	0.04541	0.06693	0.08773	0.10785	
	28				0.0	0.02229	0.04382	0.06463	
	29						0.0	0.02153	

EXHIBIT 18-2 EXPECTED VALUES OF NORMAL ORDER STATISTICS

K/N	59	60	61	62	63	64	65	
1	2.31288	2.31928	2.32556	2.33173	2.33778	2.34373	2.34958	
2	1.92786	1.93516	1.94232	1.94934	1.95624	1.96301	1.96965	
3	1.70822	1.71616	1.72394	1.73158	1.73906	1.74641	1.75363	
4	1.54889	1.55736	1.56567	1.57381	1.58180	1.58963	1.59732	
5	1.42127	1.43023	1.43900	1.44760	1.45603	1.46430	1.47241	
6	1.31334	1.32274	1.33195	1.34097	1.34982	1.35848	1.36698	
7	1.21886	1.22869	1.23832	1.24774	1.25698	1.26603	1.27490	
8	1.13419	1.14443	1.15445	1.16427	1.17388	1.18329	1.19252	
9	1.05695	1.06760	1.07802	1.08821	1.09819	1.10797	1.11754	
10	0.98557	0.99662	1.00742	1.01799	1.02833	1.03846	1.04838	
11	0.91890	0.93034	0.94153	0.95247	0.96317	0.97365	0.98391	
12	0.85609	0.86793	0.87950	0.89081	0.90187	0.91270	0.92329	
13	0.79649	0.80873	0.82068	0.83237	0.84379	0.85496	0.86590	
14	0.73960	0.75224	0.76459	0.77665	0.78843	0.79996	0.81123	
15	0.68502	0.69807	0.71081	0.72324	0.73540	0.74727	0.75889	
16	0.63241	0.64587	0.65901	0.67183	0.68436	0.69659	0.70856	
17	0.58150	0.59538	0.60893	0.62214	0.63504	0.64764	0.65996	
18	0.53205	0.54637	0.56033	0.57395	0.58723	0.60020	0.61288	
19	0.48388	0.49864	0.51303	0.52705	0.54073	0.55408	0.56712	
20	0.43681	0.45202	0.46685	0.48129	0.49537	0.50911	0.52252	
21	0.39068	0.40637	0.42164	0.43652	0.45101	0.46515	0.47894	
22	0.34538	0.36155	0.37729	0.39260	0.40752	0.42207	0.43625	
23	0.30078	0.31745	0.33366	0.34944	0.36480	0.37976	0.39435	
24	0.25677	0.27396	0.29066	0.30691	0.32272	0.33812	0.35312	
25	0.21325	0.23098	0.24820	0.26494	0.28122	0.29706	0.31249	
26	0.17013	0.18842	0.20618	0.22343	0.24019	0.25650	0.27237	
27	0.12733	0.14621	0.16452	0.18230	0.19957	0.21636	0.23269	
28	0.08476	0.10425	0.12315	0.14148	0.15927	0.17656	0.19337	
29	0.04234	0.06248	0.08198	0.10089	0.11923	0.13704	0.15435	
30	0.0	0.02081	0.04096	0.06047	0.07938	0.09774	0.11556	
31			0 • 0	0.02014	0.03966	0.05858	0.07694	
32					0.0	0.01952	0.03844	
33							0.0	

EXHIBIT 18-2 EXPECTED VALUES OF NORMAL ORDER STATISTICS

 K/N	66	67	68	69	70	71	72
 1	2.35532	2.36097	2.36652	2.37199	2.37736	2.38265	2.38785
2	1.97618	1.98260	1.98891	1.99510	2.00120	2.00720	2.01310
3	1.76071	1.76767	1.77451	1.78122	1.78783	1.79432	1.80071
4	1.60487	1.61228	1.61955	1.62670	1.63373	1.64063	1.64742
5	1.48036	1.48817	1.49584	1.50338	1.51078	1.51805	1.52520
6	1.37532	1.38351	1.39154	1.39942	1.40717	1.41478	1.42226
7	1.28360	1.29213	1.30051	1.30873	1.31680	1.32473	1.33252
8	1.20157	1.21044	1.21915	1.22769	1.23608	1.24431	1.25240
9	1.12693	1.13613	1.14516	1.15401	1.16270	1.17123	1.17961
10	1.05810	1.06762	1.07696	1.08612	1.09511	1.10393	1.11259
11	0.99395	1.00380	1.01345	1.02291	1.03220	1.04130	1.05024
12	0.93367	0.94383	0.95379	0.96355	0.97313	0.98252	0.99173
13	0.87660	0.88708	0.89735	0.90741	0.91728	0.92695	0.93644
14	0.82226	0.83306	0.84364	C.85400	0.86416	0.87412	0.88388
15	0.77025	0.78138	0.79226	0.80293	0.81338	0.82362	0.83366
16	0.72025	0.73170	0.74298	0.75387	0.76462	0.77514	0.78546
17	0.67200	0.68377	0.69529	0.70657	0.71761	0.72843	0.73903
18	0.62526	0.63737	0.64921	0.66080	0.67214	0.68325	0.69413
19	0.57985	0.59230	0.60447	0.61638	0.62803	0.63943	0.65060
20	0.53561	0.54841	0.56091	0.57314	0.58510	0.59681	0.60827
21	0.49240	0.50555	0.51839	0.53095	0.54323	0.55525	0.56701
22	0.45009	0.46360	0.47680	0.48969	0.50230	0.51463	0.52669
23	0.40857	0.42245	0.43601	0.44925	0.46219	0.47484	0.48721
24	0.36775	0.38201	0.39594	0.40953	0.42281	0.43579	0.44848
25	0.32753	0.34219	0.35649	0.37045	0.38408	0.39739	0.41041
26	0.28784	0.30290	0.31759	0.33192	0.34591	0.35958	0.37292
27	0.24859	0.26408	0.27917	0.29389	0.30825	0.32227	0.33596
28	0.20973	0.22565	0.24116	0.25627	0.27102	0.28540	0.29945
29	0.17118	0.18755	0.20349	0.21902	0.23416	0.24893	0.26333
30	0.13288	0.14972	0.16611	0.18207	0.19762	0.21277	0.22756
31	0.09478	0.11211	0.12896	0.14536	0.16134	0.17690	0.19208
32	0.05681	0.07465	0.09199	0.10885	0.12527	0.14125	0.15683
33	0.01893	0.03730	0.05514	0.07249	0.08936	0.10579	0.12178
34		0 • 0	0.01837	0.03622	0.05357	0.07045	0.08688
35				0 • 0	0.01785	0.03520	0.05209
36						0.0	0.01736

EXHIBIT 18-2 EXPECTED VALUES OF NORMAL ORDER STATISTICS

K/N	73	74	75	76	77	78	79
1	2.39298	2.39802	2.40299	2.40789	2.41271	2.41747	2.42215
2	2.01890	2.02462	2.03024	2.03578	2.04124	2.04662	2.05191
3	1.80699	1.81317	1.81926	1.82525	1.83115	1.83696	1.84268
4	1.65410	1.66067	1.66714	1.67350	1.67976	1.68592	1.69200
5	1.53223	1.53914	1.54594	1.55263	1.55921	1.56569	1.57207
6	1.42961	1.43684	1.44395	1.45094	1.45782	1.46459	1.47125
7	1.34017	1.34770	1.35510	1.36237	1.36953	1.37657	1.38350
8	1.26034	1.26815	1.27583	1.28338	1.29080	1.29810	1.30529
9	1.18784	1.19592	1.20387	1.21168	1.21936	1.22691	1.23434
10	1.12110	1.12945	1.13766	1.14572	1.15365	1.16145	1.16912
11	1.05902	1.06764	1.07610	1.08442	1.09260	1.10063	1.10854
12	1.00078	1.00966	1.01838	1.02695	1.03537	1.04364	1.05178
13	0.94576	0.95490	0.96387	0.97269	0.98135	0.98986	0.99822
14	0.89346	0.90286	0.91209	0.92115	0.93005	0.93880	0.94739
15	0.84351	0.85317	0.86265	0.87196	0.88110	0.89008	0.89890
16	0.79558	0.80550	0.81524	0.82480	0.83418	0.84339	0.85244
17	0.74942	0.75960	0.76960	0.77940	0.78903	0.79848	0.80776
18	0.70480	0.71526	0.72551	0.73557	0.74544	0.75512	0.76463
19	0.66155	0.67227	0.68279	0.69310	0.70322	0.71314	0.72289
20	0.61950	0.63050	0.64128	0.65185	0.66222	0.67239	0.68237
21	0.57852	0.58980	0.60085	0.61168	0.62230	0.63272	0.64294
22	0.53850	0.55006	0.56138	0.57248	0.58336	0.59403	0.60449
23	0.49932	0.51117	0.52277	0.53414	0.54528	0.55621	0.56692
24	0.46089	0.47304	0.48493	0.49657	0.50798	0.51917	0.53013
25	0.42313	0 • 43558	0.44777	0.45970	0.47138	0.48283	0.49404
26	0.38597	0.39873	0.41122	0.42343	0.43540	0.44711	0.45859
27	0.34934	0.36242	0.37521	0.38772	0.39997	0.41196	0.42371
28	0.31317	0.32657	0.33968	0.35250	0.36504	0.37731	0.38934
29	0.27740	0.29114	0.30457	0.31770	0.33055	0.34311	0.35542
30	0.24199	0.25698	0.26984	0.28329	0.29645	0.30931	0.32190
31	0.20688	0.22133	0.23543	0.24922	0.26269	0.27586	0.28875
32	0.17202	0.18684	0.20130	0.21543	0.22923	0.24272	0.25591
33	0.13737	0.15257	0.16740	0.18188	0.19602	0.20983	0.22334
34	0.10289	0.11848	0.13370	0.14854	0.16303	0.17718	0.19101
35	0.06852	0.08453	0.10014	0.11536	0.13021	0.14471	0.15888
33	0.05632	0.00433	0.10014	0.11320	0.13021	0.14411	0.13000
36	0.03424	0.05068	0.06679	0.08231	0.09754	0.11240	0.12691
37	0.0	0.01689	0.03333	0.04935	0.06497	0.08020	0.09507
38			0 • 0	0.01644	0.03247	0.04809	0.06333
39					0.0	0.01602	0.03165
4 0							0.0

EXHIBIT 18-2 EXPECTED VALUES OF NORMAL ORDER STATISTICS

	K/N	8.0	81	82	83	84	85	86	
-	1	2.42677	2 • 43133	2.43582	2 • 4 4 0 2 6	2.44463	2.44894	2.45320	-
	2	2.05714	2.06228	2.06735	2.07236	2.07729	2.08216	2.08696	
	3	1.84832	1.85387	1.85935	1.86475	1.87007	1.87532	1.88049	
	4	1.69798	1.70387	1.70968	1.71540	1.72104	1.72660	1.73209	
	5	1.57836	1.58455	1.59065	1.59665	1.60258	1.60841	1-61417	
	6	1.47781	1.48428	1.49064	1.49691	1.50309	1.50918	1.51518	
	7	1.39032	1.39704	1.40366	1.41017	1.41659	1.42292	1.42915	
	8	1.31236	1.31932	1.32617	1.33292	1.33957	1.34611	1.35257	
	9	1.24165	1.24884	1.25593	1.26290	1.26977	1.27653	1.28320	
	10	1.17666	1.18409	1.19139	1.19859	1.20567	1.21264	1.21951	
	11	1.11631	1.12396	1.13148	1.13889	1.14618	1.15336	1.16043	
	12	1.05978	1.06764	1.07539	1.08300	1.09050	1.09788	1.10515	
	13	1.00644	1.01453	1.02249	1.03031	1.03802	1.04560	1.05306	
	14	0.95584	0.96414	0.97231	0.98034	0.98825	0.99603	1.00369	
	15	0.90757	0.91609	0.92447	0.93271	0.94082	0.94880	0.95665	
	16	0.86134	0.87007	0.87867	0.88711	0.89542	0.90360	0.91164	
	17	0.81687	0.82583	0.83464	0.84329	0.85180	0.86017	0.86841	
	18	0.77398	0.78315	0.79217	0.80103	0.80975	0.81832	0.82675	
	19	0.73246	0.74186	0.75109	0.76016	0.76908	0.77785	0.78647	
	20	0.69217	0.70179	0.71124	0.72053	0.72965	0.73862	0.74744	
	21	0.65297	0.66282	0.67249	0.68199	0.69133	0.70050	0.70952	
	22	0.61476	0.62484	0.63473	0.64445	0.65399	0.66337	0.67259	
	23	0.57742	0.58773	0.59785	0.60779	0.61755	0.62714	0.63656	
	24	0.54088	0.55143	0.56178	0.57193	0.58191	0.59171	0.60133	
	25	0.50504	0.51583	0.52641	0.53680	0.54700	0.55701	0.56684	
	26	0.46985	0.48088	0.49170	0. 50232	0.51274	0.52297	0.53301	
	27	0.43522	0.44651	0.45757	0.46842	0.47907	0.48952	0.49979	
	28	0.40111	0.41265	0.42397	0.43506	0.44594	0.45662	0.46710	
	29	0.36747	0.37927	0.39084	0.40218	0.41330	0.42421	0.43491	
	30	0.33423	0.34630	0.35813	0.36972	0.38108	0.39223	0.40316	
	31	0.30136	0.31371	0.32580	0.33765	0.34926	0.36065	0.37182	
	32	0.26881	0.28144	0.29381	0.30592	0.31779	0.32943	0.34084	
	33	0.23655	0.24947	0.26212	0.27450	0.28664	0.29852	0.31018	
	34	0.20453	0.21775	0.23069	0.24335	0.25576	0.26790	0.27981	
	35	0.17272	0.18625	0.19949	0.21244	0.22512	0.23753	0.24970	
	36	0.14108	0.15493	0.16848	0.18172	0.19469	0.20738	0.21981	
	37	0.10959	0.12377	0.13763	0.15118	0.16444	0.17741	0.19012	
	38	0.07820	0.09272	0.10691	0.12078	0.13434	0.14761	0.16059	
	39	C.04689	0.06177	0.07629	0.09049	0.10436	0.11793	0.13121	
	40	0.01562	0.03087	0.04575	0.06028	0.07448	0.08836	0.10193	
	4 1		0 • 0	0.01524	0.03013	0.04466	0.05886	0.07275	
	42				0.0	0.01488	0.02942	0.04362	
	43						0.0	0.01454	

EXHIBIT 18-2 EXPECTED VALUES OF NORMAL ORDER STATISTICS

K/N	87	88	89	90	91	92	93
1	2.45741	2.46156	2.46565	2 • 46970	2.47370	2.47764	2.48154
2	2.09170	2.09637	2.10099	2.10554	2.11004	2.11448	2.11887
3	1.88560	1.89064	1.89561	1.90052	1.90536	1.91015	1.91487
4	1.73750	1.74283	1.74810	1.75329	1.75842	1.76348	1.76848
5	1.61984	1.62544	1.63096	1.63641	1.64178	1.64709	1.65232
6	1.52110	1.52693	1.53269	1.53836	1.54396	1.54949	1.55,494
7	1.43529	1.44135	1.44732	1.45321	1.45903	1.46476	1.47042
8	1.35893	1.36520	1.37138	1.37747	1.38348	1.38941	1.39526
9	1.28976	1.29624	1.30262	1.30891	1.31511	1.32123	1.32726
10	1.22628	1.23295	1.23952	1.24600	1.25239	1.25869	1.26491
11	1.16740	1.17426	1.18102	1.18769	1.19426	1.20073	1.20712
12	1.11231	1.11936	1.12631	1.13316	1.13990	1.14656	1.15311
13	1.06041	1.06765	1.97478	1.08181	1.98873	1.09555	1.10228
14	1.01122	1.01855	1.02596	1.03316	1.04026	1.04726	1.05415
15	0.96437	0.97198	0.97948	0.98686	0.99413	1.00129	1.00835
16	0.91956	0.92735	0.93502	0.94258	0.95002	0.95735	0.96458
17	0.87651	0.88449	0.89234	0.90007	C.90769	0.91519	0.92258
18	0.83594	0.84320	0.85123	0.85914	0.86693	0.87460	0.88215
19	0.79496	0.80330	0.81152	0.81960	0.82756	0.83540	0.84312
20	0.75611	0.76465	0.77304	0.78131	0.78944	0.79745	0.80533
21	0.71838	0.72710	0.73568	0.74412	0.75243	0.76061	0.76866
22	0.68165	0.69056	0.69932	0.70795	0.71643	0.72478	0.73300
23	0.64581	0.65492	0.66387	0.67267	0.68134	0.68986	0.69825
24	0.61079	0.62009	0.62923	0.63822	0.64706	0.65576	0.66432
25	0.57650	0.58600	0.59533	0.60451	0.61353	0.62241	0.63115
26	0.54288	0.55258	0.56210	0.57147	0.58068	0.58974	0.59865
27	0.50986	0.51976	0.52949	0.53905	0.54845	0.55769	0.56678
28	0.47739	0.48750	0.49743	0.50718	0.51677	0.52620	0.53547
29	0.44542	0.45574	0.46587	0.47582	0.48561	0.49522	0.50468
30	0.41389	0.42443	0.43477	0.44493	0.45491	0.46472	0.47436
31	0.38278	0.39353	0.40409	C • 41445	0.42463	0.43464	0.44447
32	0.35203	0.36300	0.37378	0.38436	0.39474	0.40495	0.41498
33	0.32161	0.33281	0.34381	0.35461	0.36520	0.37561	0.38584
34	0.29148	0.30292	0.31415	0.32517	0.33598	0.34660	0.35702
35	0.26162	0.27330	0.28476	0.29601	0.33378	0.31787	0.32850
33	0.2012	0.2/330	0.204/6	0 • 2 7 5 7 1	0.30/04	0.51767	0.52650
36	0.23199	0.24392	0.25562	0.26710	0.27835	0.28940	0.30025
37	0.20256	0.21475	0.22669	0.23841	0.24990	0.26117	0.27223
38	0.17330	0.18576	0.19796	0.20991	0.22164	0.23314	0.24443
39	0.14420	0.15692	0.16938	0.18159	0.19356	0.20530	0.21681
40	0.11521	0.12821	0.14094	0.15341	0.16563	0.17761	0.18936
10	0011321	0012021	0011001	0013011	3010303	001//01	0020700
41	0.08633	0.09961	0.11262	0.12536	0.13783	0.15006	0.16205
42	0.05751	0.07110	0.08439	0.09740	0.11614	0.12262	0.13486
43	0.02874	0.04263	0.05622	0.06952	0.08253	0.09528	0.10777
44	0.0	0.01421	0.02810	0.04169	0.05499	0.06801	0.08076
45	-		0.0	0.01389	0.02748	0.04078	0.05381
46					0.0	0.01359	0.02689
47							0.0

EXHIBIT 18-2 EXPECTED VALUES OF NORMAL ORDER STATISTICS

K/N	94	795	96	97	98	99	100
1	2.48540	2.48920	2.49297	2.49669	2.50036	2.50400	2.50759
2	2.12321	2.12749	2.13172	2.13590	2.14003	2.14411	2.14814
3	1.91953	1.92414	1.92869	1.93318	1.93763	1.94201	1.94635
4	1.77341	1.77828	1.78309	1.78784	1.79254	1.79718	1.80176
5	1.65749	1.66259	1.66763	1.67261	1.67752	1.68238	1.68718
3	1003747	1.60237	1.00103	1.67201	1.67752	1.60236	1.00710
6	1.56033	1.56564	1.57089	1.57607	1.58118	1.58624	1.59123
7	1.47600	1.48151	1.48695	1.49232	1.49762	1.50286	1.50803
8	1.40103	1.40673	1.41235	1.41790	1.42338	1.42879	1.43414
9	1.33321	1.33909	1.34489	1.35061	1.35626	1.36183	1.36734
10	1.27104	1.27708	1.28305	1.28894	1.29475	1.30049	1.30615
11	1.21342	1.21964	1.22577	1.23182	1.23779	1.24368	1.24950
12	1.15958	1.16596	1.17226	1.17847	1.18459	1.19064	1.19661
13	1.10891	1.11546	1.12191	1.12827	1.13455	1.14075	1.14687
14	1.06095	1.06765	1.07426	1.08078	1.08721	1.09356	1.09982
15	1.01531	1.02217	1.02894	1.03561	1.04219	1.04868	1.05509
19	1.01331	1.02211	1 0 2 0 7 4	1.005581	1.04217	1.04086	1003307
16	0.97170	0.97872	0.98564	0.99246	0.99919	1.00583	1.01238
17	0.92986	0.93704	0.94411	0.95109	0.95797	0.96475	0.97145
18	0.88959	0.89693	0.90416	0.91129	0.91831	0.92524	0.93208
19	0.85072	0.85822	0.86560	0.87288	0.88006	0.88713	0.89411
20	0.81310	0.82075	0.82829	0.83572	0.84305	0.85027	0.85739
21	0 77(50	0 30661	0.78210	0.700/0	0.00716	0.81452	0.82179
21	0.77659	0.78441	0.79210	0.79968	0.80716		0.02179
22	0.74110	0.74907	0.75692	0.76466	0.77228	0.77980	
23	0.70651	0.71464	0.72266	0.73055	0.73832	0.74598	0.75353 0.72070
24	0.67275	0.68105	0.68922	0.69727	0.70519	0.71301	0.68863
25	0.63974	0.64821	0.65654	0.66474	0.67282	0.68079	0.68863
26	0:60742	0.61605	0.62454	0.63291	0.64115	0.64926	0.65725
27	0.57572	0.58452	0.59318	0.60170	0.61010	0.61837	0.62651
28	0.54459	0.55356	0.56239	0.57108	0.57963	0.58805	0.59635
29	0.51398	0.52312	0.53212	0.54097	0.54969	0.55827	0.56672
3.0	0.48384	0.49316	0.50233	0.51136	0.52024	0.52898	0.53758
31	0.45414	0.46364	0.47299	0.48218	0.49123	0.50013	0.50890
32	0.42483	0.43452	0.44404	0.45341	0.46263	0.47170	0.48062
33	0.39588	0.40576	0.41547	0.42501	0.43440	0.44364	0.45273
34	0.36727	0.37733	0.38722	0.39695	0.40652	0.41593	0.42518
35	0.33895	0.34921	0.35929	0.36920	0.37895	0.38853	0.39796
33	0.55675	0.54721	0.33727	0.36920	0.51675	0.30633	0.57176
36	0.31090	0.32136	0.33163	0.34173	0.35166	0.36142	0.37102
37	0.28309	0.29375	0.30423	0.31452	0.32464	0.33458	0.34436
38	0.25550	0.26637	0.27705	0.28754	0.29785	0.30797	0.31793
39	0.22810	0.23919	0.25008	0.26077	0.27127	0.28159	0.29173
40	0.20088	0.21219	0.22328	0.23418	0.24488	0.25539	0.26572
41	0.17389	0.18533	0.19665	0.20776	0.21866	0.22937	0.23990
42	0.14685		0.17015		0.19259	0.20351	0.21423
43	0.12001	0.15861 0.13201	0.14378	0.18148 0.15533	0.19239	0.17778	0.18870
44	0.09325	0.10550	0.14378	0.13933	0.14083	0.15217	0.16330
45	0.05525	0.10550	0.09131	0.10332	0.11510	0.12666	0.13800
70	0.00000	0 - 0 / 3 0 6	0.07131	0.10332	0.11310	0.12000	0 - 1 3 0 0 0
46	0.03992	0.05267	0.06518	0.07743	0.08944	0.10123	0.11279
47	0.01330	0.02633	0.03909	0.05159	0.06385	0.07586	0.08765
48		0 • 0	0.01303	0.02579	0.03829	0.05055	0.06257
49				0 • 0	0.01276	0.02527	0.03753
50						0 • 0	0.01251



## Chapter 19 Transmission Losses

by

Leonard J. Lane
Hydrologist
USDA-ARS
Southwest Rangeland Watershed Research Center
Tucson, Arizona

In cooperation with

G. Comer

G. Conaway

H. McGill

H. Millsaps

Soil Conservation Service

V. Ferreira

E. Shirley

D. Wallace

Agricultural Research Service



## Contents

	Page
Introduction	19-1
Assumptions and limitations	19-1
Assumptions	19-1
Limitations	19-2
Symbols and notation	19-2
Upstream inflow	19-2
Lateral inflow	19-2
Outflow	19-2
Channel reach	19-2
Prediction equations (parameters)	19-2
Applications	19-3
Summary of procedure	19-3
Estimating parameters from observed inflow-outflow data	19-3
Unit channels	19-4
Reaches of arbitrary length and width	19-4
Estimating parameters in the absence of observed inflow-outflow data	19-4
Summary of parameter estimation techniques	19-5
Examples	19-6
Example 1. No lateral inflow or out-of-bank flow	19-6
Case 1. Observed inflow-outflow data	19-6
Case 2. No observed inflow-outflow data	19-6
Example 2. Uniform lateral inflow	19-7
Example 3. Approximations for out-of-bank flow	19-7
Example 4. Transmission losses limited by available storage	19-9
Summary	19-10
Appendices	19-10
Appendix 1—Derivation of procedures for estimating transmission losses when observed data are	15-10
available	19-10
Empirical basis of the regression equation	19-10
Differential equation for changes in volume: linkage with the regression model	19-10
Unit channel	19-11
Channel of arbitrary length and width	19-11
	19-11
Influence of uniform lateral inflow	19-11
Approximations for peak discharge	19-12
Appendix 2—Analysis of selected data used to develop the procedure for estimating transmission losses	19-12
Appendix 3—Estimating transmission losses when no observed data are available	19-12
Estimating effective hydraulic conductivity	19-16
Effective hydraulic conductivity vs. model parameters	19-10
References	13-71

Figu	res	Page
19–1	Observed vs. computed peak discharge of the outflow hydrograph	19-13
	Relation between KD and regression intercept for a unit channel	19-17
19–3	Relation between KD/P and decay factor	19-18
Tabl	es	Page
19–1	Relationships between bed material characteristics and parameters for a unit channel (average antecedent conditions)	19-5
19–2	Procedures to use when observed inflow-outflow data are available	19-5
19–3	Procedures to use when no observed inflow-outflow data are available	19-5
19-4	Outline of examples and comments on their applications	19-10
19–5	Hydrologic data used in analyzing transmission losses (Lane et al. 1980)	19-14
19–6	Parameters for regression model and differential equation model for selected channel reaches (Lane	
	et al. 1980)	19-14
19–7	Unit length, unit width, and unit length and width parameters for selected channel reaches (Lane et al. 1980)	19-15
19–8	Data for analysis of relations between effective hydraulic conductivity and model parameters (Lane et al. 1980)	19-19
19–9	Auxiliary transmission-loss data for selected ephemeral streams in southern Arizona (data taken from Wilson et al. [1980]).	19-19
19–10		19-20

## Chapter 19 Transmission Losses

#### Introduction

Streams in natural channels in arid and semiarid regions are usually ephemeral. Flow is occasional and follows storms, which are infrequent. When flood flows occur in normally dry stream channels, the volume of flow is reduced by infiltration into the bed, the banks, and possibly the flood plain. These losses to infiltration, called transmission losses, reduce not only the volume of the hydrograph, but also the peak discharge.

This chapter describes a procedure for estimating the volume of runoff and peak discharge for ephemeral streams; it can be used with or without observed inflow-outflow data. If available, observed inflow-outflow data can be used to derive regression equations for the particular channel reach. Procedures based on the derived regression equations enable a user to determine prediction equations for similar channels of arbitrary length and width.

Also presented are procedures for estimating parameters of the prediction equations in the absence of observed inflow-outflow data. These procedures are based on characteristics of the bed and bank material. Approximations for lateral inflow and out-of-bank flow are also presented.

### **Assumptions and Limitations**

#### Assumptions

The methods described in this chapter are based on the following assumptions:

- 1. Water is lost in the channel; no streams gain water.
- 2. Infiltration characteristics and other channel properties are uniform with distance and width.
- 3. Sediment concentration, temperature, and antecedent flow affect transmission losses, but the equations represent the average conditions.
- 4. The channel reach is short enough that an average width and an average duration represent the width and duration of flow for the entire channel reach.
- 5. Once a threshold volume has been satisfied, outflow volumes are linear with inflow volumes.
- 6. Once an average loss rate is subtracted and the inflow volume exceeds the threshold volume, peak rates of outflow are linear with peak rates of inflow. Moreover, the rate of change in outflow peak discharge with changing inflow peak discharge is the same as the rate of change in outflow volume with changing inflow volume.

### Symbols and Notation

- 7. Lateral inflow can be either lumped at points of tributary inflow or uniform with distance along the channel.
- 8. For volume and peak discharge calculations, lateral inflow is assumed to occur during the same time as the upstream inflow.

#### Limitations

The main limitations of the procedures are:

- 1. Hydrographs are not specifically routed along the stream channels; predictions are made for volume and peak discharge.
- 2. Peak flow equations do not consider storage attenuation effects or steepening of the hydrograph rise.
- 3. Analyses on which the procedures are based represent average conditions or overall trends.
- 4. Influences of antecedent flow and sediment concentration in the streamflow have not been quantified.
- 5. Estimates of effective hydraulic conductivity in the streambed are empirically based and represent average rates.
- 6. Peak discharge of outflow is decreased by the average loss rate for the duration of flow.
- 7. Procedures for out-of-bank flow are based on the assumption of a weighted average for the effective hydraulic conductivity.

#### **Upstream Inflow**

D = duration of inflow (hours)

P = inflow volume (acre-feet)

p = peak rate of inflow (cubic feet per second)

#### Lateral Inflow

Q_L = lateral inflow volume (acre-feet per mile)

q_L = peak rate of lateral inflow (cubic feet per second per foot)

#### **Outflow**

Q(x,w) = outflow volume (acre-feet)

q(x,w) = peak rate of outflow (cubic feet per second)

#### **Channel Reach**

D = duration of streamflow (hours)

K = effective hydraulic conductivity (inches per

V = total available storage volume of alluvium in the channel reach (acre-feet)

w = average width of flow (feet)

x = length of reach (miles)

## **Prediction Equations (Parameters)**

a = regression intercept for unit channel (acrefeet)

a(D) = regression intercept for unit channel with a flow of duration D (acre-feet)

a(x,w) = regression intercept for a channel reach of length x and width w (acre-feet)

b = regression slope for unit channel

b(x,w) = regression slope for a channel reach of length x and width w

 $k = decay factor (foot-miles)^{-1}$ 

k(D,P) = decay factor for unit channel with a flow duration D and volume P (foot-miles)⁻¹

P_o = threshold volume for a unit channel (acrefeet)

 $P_o(x,w)$  = threshold volume for a channel reach of length x and width w (acre-feet)

### **Applications**

The simplified procedures are summarized here; additional details and derivations are given in the appendices. Methods have been developed for two situations: (1) when observed inflow-outflow data are available and (2) when no observed data are available.

### **Summary of Procedure**

The prediction equation for outflow volume, without lateral inflow, is

$$Q(x,w) = \begin{cases} 0 & P \leq P_o(x,w) \\ a(x,w) + b(x,w)P & P > P_o(x,w), \end{cases}$$
 (19–1)

where the threshold volume is

$$P_o(x,w) = \frac{-a(x,w)}{b(x,w)}$$
 (19–2)

The corresponding equation for peak discharge is

$$q(x,w) = \begin{cases} 0 & Q(x,w) = 0\\ \frac{12.1}{D}(a(x,w) & Q(x,w) > 0,\\ -[1 - b(x,w)]P) & +b(x,w)p \end{cases}$$
(19-3)

where 12.1 converts from acre-feet per hour to cubic feet per second.

If lateral inflow is uniform, the volume equation becomes

$$Q(x,w) = \begin{cases} 0 & b(x,w)P + \frac{Q_L}{kw}[1 - b(x,w)] \le -a(x,w) \\ a(x,w) + b(x,w)P + \frac{Q_L}{kw}[1 - b(x,w)]. \end{cases}$$
(19-4)

The corresponding equation for peak discharge is

$$q(x,w) = \begin{cases} 0 & Q(x,w) = 0 \\ \frac{12.1}{D} (a(x,w) - [1 - b(x,w)]P) & (19-5) \\ + b(x,w)p + \frac{q_L(5,280)}{kw} & [1 - b(x,w)]. \end{cases}$$

The factor 5,280 converts cubic feet per second per

foot to cubic feet per second per mile. Derivations and background information are found in Appendix 1.

For a channel reach with only tributary lateral inflow, equations 19–1 and 19–3 would be applied on the tributary channel and the main channel to the point of tributary inflow. Then the sum of the outflows from these two channel reaches would be the inflow to the lower reach of the main channel.

The procedures described by equations 19–1, 19–3, 19–4, and 19–5 require that the upstream inflow and lateral inflow along the channel reach be estimated by use of procedures described in Chapter 10. Peak rates and durations are estimated by use of procedures described in Chapter 16.

## Estimating Parameters From Observed Inflow-Outflow Data

If one assumes a channel reach of length x and average width w, then n observations on  $P_i$  and  $Q_i$  (without lateral inflow) can be used to estimate the parameters in equation 19–1. Parameters of the linear regression equation can be estimated as

$$b(x,w) = \frac{\sum_{i=1}^{n} (Q_i - \overline{Q})(P_i - \overline{P})}{\sum_{i=1}^{n} (P_i - \overline{P})^2}$$
 (19-6)

and

$$a(x,w) = \overline{Q} - b(x,w)\overline{P}, \qquad (19-7)$$

where  $\overline{Q}$  is the mean outflow volume and  $\overline{P}$  is the mean inflow volume. Alternative formulas recommended for computation are

$$\sum_{i=1}^{n} (Q_{i} - \overline{Q})(P_{i} - \overline{P})$$

$$= \frac{n \sum_{i=1}^{n} P_{i}Q_{i} - \left(\sum_{i=1}^{n} P_{i}\right)\left(\sum_{i=1}^{n} Q_{i}\right)}{n}$$
 (19-8)

and

$$\sum_{i=1}^{n} (P_i - \overline{P})^2 = \frac{n \sum_{i=1}^{n} P_i^2 - \left(\sum_{i=1}^{n} P_i\right)^2}{n}.$$
 (19-9)

Linear regression procedures are available on most computer systems and on many hand-held calculators. Constraints on the parameters are

and

$$0 \le b(x, w) \le 1$$
.

When one or both of the constraints are not met, the following procedure is suggested:

- 1. Plot the observed data on rectangular coordinate paper:  $P_i$  on the X-axis and  $Q_i$  on the Y-axis.
- 2. Plot the derived regression equation on the graph with the data.
- 3. Check the data for errors (events with lateral inflow, computational errors, etc.). Pay particular attention to any data points very far from the regression line, especially those points that may be strongly influencing the slope or intercept.
- 4. Correct data points that are in error; remove points that are not representative.
- 5. Recompute the regression slope and intercept using equations 19-6 to 19-9 and the corrected data.

A great deal of care and engineering judgment must be exercised in finding and eliminating errors from the set of observed inflow-outflow observations.

#### **Unit Channels**

A unit channel is defined as a channel of length x=1 mi and width w=1 ft. Parameters for the unit channel are required to compute parameters for channel reaches with arbitrary length and width. The unit channel parameters are computed by the following equations:

$$k = -\frac{\ln b(x, w)}{x w}$$
 (19–10)

$$b = e^{-k}$$
 (19–11)

$$a = \frac{a(x,w)(1-b)}{[1-b(x,w)]},$$
 (19-12)

where a(x,w) and b(x,w) are the regression parameters derived from the observed data. In this case, the length x and width w are fixed known values. Particular care must be taken to maintain the maximum number of significant digits in determining k, k, and k. Otherwise, significant round-off errors can result.

#### Reaches of Arbitrary Length and Width

Given parameters for a unit channel, parameters for a channel reach of arbitrary length x and arbitrary width w are computed by the following equations:

$$b(x,w) = e^{-kxw},$$
 (19–13)

$$a(x,w) = \frac{a}{1-b} [1 - b(x,w)],$$
 (19-14)

$$P_o(x,w) = \frac{-a(x,w)}{b(x,w)}$$
 (19–2)

## Estimating Parameters in the Absence of Observed Inflow-Outflow Data

When inflow-outflow data are not available, an estimate of effective hydraulic conductivity is needed to predict transmission losses. Effective hydraulic conductivity, K, is the infiltration rate averaged over the total area wetted by the flow and over the total duration of flow. Because effective hydraulic conductivity represents a space-time average infiltration rate, it incorporates the influence of temperature, sediment concentration, flow irregularities, errors in the data, and variations in wetted area. For this reason, it is not the same as the saturated hydraulic conductivity for clear water under steady-state conditions.

Analysis of observed data resulted in equations of the form

$$a(D) = -0.00465KD (19-15)$$

for the unit channel intercept and

$$k(D,P) = -1.09 \ln \left[ 1.0 - 0.0545 \frac{KD}{P} \right]$$
 (19–16)

for the decay factor on ungaged reaches. Given values of a and k from equations 19–15 and 19–16, equations 19–13, 19–14, and 19–2 are used to compute parameters for a particular x and w.

Derived relationships between bed material characteristics, effective hydraulic conductivity, and the unit channel parameters a and k are shown in table 19–1. These data can be used to estimate parameters for ungaged channel reaches.

Table 19–1.—Relationships between bed material characteristics and parameters for a unit channel (average antecedent conditions)

D 1		Effective	Unit channel pa	arameters
Bed material group	Bed material characteristics	hydraulic conductivity,¹ K	Intercept, ²	Decay factor,3 k
1		in/hr	acre-ft	(ft-mi) ⁻¹
Very high loss rate	Very clean gravel and large sand	>5	<-0.023	>0.030
2 High loss rate	Clean sand and gravel, field conditions	2.0-5.0	-0.0093 to $-0.023$	0.0120 to 0.030
3				
Moderately high loss rate	Sand and gravel mixture with low silt- clay content	1.0–3.0	-0.0047 to $-0.014$	0.0060 to 0.018
4				
Moderate loss rate	Sand and gravel mixture with high silt- clay content	0.25–1.0	-0.0012 to $-0.0047$	0.0015 to 0.0060
5				
Insignificant to low loss rate	Consolidated bed material; high silt-clay content	0.001-0.10	$-5 \times 10^{-6}$ to $-5 \times 10^{-4}$	$6 \times 10^{-6}$ to $6 \times 10^{-4}$

¹ See Appendix 3 for sources of basic data.

² Values are for unit duration, D = 1 hr. For other durations, a(D) = -0.00465KD.

 3  Values are for unit duration and volume, D/P = 1. For other durations and volumes,

use 
$$k(D,P) = -1.09 \ln \left[ 1.0 - 0.00545 \frac{KD}{P} \right]$$
.

## Summary of Parameter Estimation Techniques

Suggested procedures for use when observed data are available are summarized in table 19–2. Procedures for use on ungaged channel reaches are summarized in table 19–3. Again, whatever procedure is used, the parameter estimates must satisfy the constraints a(x,w) < 0 and  $0 \le b(x,w) \le 1$ .

Table 19–2.—Procedures to use when observed inflowoutflow data are available

	Step	Source	Result
1.	Perform regression analysis	Eqs. 19–6, 19–7, 19–2	Prediction equations for the particular reach
2.	Derive unit channel parameters	Eqs. 19–10 to 19–12	Unit channel parameters
3.	Calculate parameters	Eqs. 19–13, 19–14, 19–2	Parameters of the pre- diction equations for arbitrary x and w

Table 19–3.—Procedures to use when no observed inflow-outflow data are available

Step	Source	Result
1. Estimate inflow	Hydrologic analysis	Mean duration of flow, D, and volume of inflow, P
2. Identify bed material	Table 19–1	Effective hydraulic conductivity, K
3. Derive unit chan- nel parameters	Eqs. 19–15, 19–16, 19–11	Unit channel parameters
4. Calculate parameters	Eqs. 19–13, 19–14, 19–2	Parameters of the pre- diction equations for arbitrary x and w

### **Examples**

The following examples illustrate application of the procedures for several cases under a variety of circumstances. As in any analysis, it was impossible to consider all possible combinations of circumstances, but the examples presented here should provide an overview of useful applications of the procedures. Use of these procedures requires judgment and experience. At each step of the process, care should be taken to ensure that the results are reasonable and consistent with sound engineering practice.

#### Example 1. No Lateral Inflow or Out-of-Bank Flow

Given: A channel reach of length x=5.0 mi, of average width w=70 ft, and with bed material consisting of sand and gravel with a small percentage of silt and clay. Assume a mean flow duration D=4 hr and a mean inflow volume of P=34 acre-ft.

Find: The prediction equations for the channel reach. Estimate the outflow volume and peak for an inflow P = 50 acre-ft and p = 1,000 cfs.

#### Case 1. Observed Inflow-Outflow Data

Observed Inflow-Outflow Data (acre-ft)

$\overline{P_i}$	20.	100.	25.	10.	15.	$\overline{\overline{P}} = 34$
$\overline{Q_i}$	6.0	75.	9.0	0.1	2.5	$\overline{\overline{Q}} = 18.52$

Solution: Follow the procedure outlined in table 19-2, Step 1, for x = 5.0 mi and w = 70 ft.

$$b(x,w) = \frac{\Sigma(Q_i - \overline{Q})(P_i - \overline{P})}{\Sigma(P_i - \overline{P})^2} = 0.850$$

$$a(x,w) = \overline{Q} - b(x,w)\overline{P}$$
  
= 18.52 - 0.850(34) = -10.38 acre-ft

$$P_o(x,w) = \frac{-a(x,w)}{b(x,w)} = \frac{10.38}{0.850} = 12.21 \text{ acre-ft}$$

Substituting these values in equation 19-1, the prediction equation for volume is

$$Q(x,w) = \begin{cases} 0 & P \le 12.21 \\ -10.38 + 0.850P & P > 12.21 \end{cases}$$

and the prediction equation (from equation 19-3) for peak discharge is

$$q(x,w) = \begin{cases} 0 & Q(x,w) = 0 \\ -31.4 - 0.454P & Q(x,w) > 0. \end{cases}$$

For an inflow volume P = 50 acre-ft and an inflow peak rate p = 1,000 cfs, the predicted outflow volume is

$$Q(x,w) = -10.38 + 0.850(50) = 32.1 \text{ acre-ft}$$

and the predicted peak rate of outflow is

$$q(x,w) = -31.4 - 0.454(50) + 0.850(1,000)$$
  
= 796 cfs.

#### Case 2. No Observed Inflow-Outflow Data

Solution: Follow the procedures outlined in table 19-3.

From table 19–1, estimate K = 1.0 in/hr, with D = 4.0 hr, P = 34 acre-ft. So

$$a = -0.00465KD = -0.01860$$
 acre-ft,

$$k = -1.09 \ln \left[ 1.0 - 0.00545 \frac{KD}{P} \right]$$
  
= 0.000699 (ft-mi)⁻¹,

and

$$b = e^{-k} = e^{-0.000699} = 0.999301$$

are the unit channel parameters. From equations 19–13, 19–14, and 19–2, the parameters for the given reach with x=5.0 mi and w=70 ft are

$$b(x,w) = e^{-kxw} = e^{-(0.000699)(5.0)(70)}$$
  
= 0.783,

$$a(x,w) = \frac{a}{1-b} [1 - b(x,w)]$$

$$= \frac{-0.01860}{(1 - 0.999301)} [1 - 0.783]$$

$$= -5.78 \text{ acre-ft,}$$

and

$$\begin{split} P_o(x,w) &= \frac{-a(x,w)}{b(x,w)} \\ &= -\frac{(-5.78)}{0.783} = 7.38 \text{ acre-ft.} \end{split}$$

The prediction equation for the volume is

$$Q(x,w) \, = \, \begin{cases} 0 & P < 7.38 \\ -\,5.78 \, + \, 0.783P, & P > 7.38 \end{cases} \label{eq:Q}$$

and the prediction equation for peak discharge is

$$q(x,w) = \begin{cases} 0 & Q(x,w) = 0 \\ -17.5 - 0.656P & Q(x,w) > 0. \end{cases}$$

For an inflow volume of P=50 acre-ft and an inflow peak rate of p=1,000 cfs, the predicted outflow volume is

$$Q(x,w) = -5.78 + 0.783(50) = 33.4 \text{ acre-ft},$$

and the predicted peak rate of outflow is

$$q(x,w) = -17.5 - 0.656(50) + 0.783(1,000)$$
  
= 733 cfs.

This example illustrates application of the procedures with and without observed data when flow is within the channel banks and there is no lateral inflow. The next example is for the same channel reach but is based on assumption of uniform lateral inflow between the inflow and outflow stations.

## Example 2. Uniform Lateral Inflow

Given: The channel reach parameters from Example 1 and a lateral inflow of 21.3 acre-ft at a peak rate of 500 cfs. Assume the lateral inflow is uniformly distributed.

Find: The volume of outflow and peak rate of outflow if P = 50 acre-ft and p = 1,000 cfs.

Solution: Compute the lateral rates as follows:

$$Q_L = \frac{21.3 \text{ acre-ft}}{5.0 \text{ mi}} = 4.26 \text{ acre-ft/mi}$$

and

$$q_L = \frac{500 \text{ cfs}}{(5.0 \text{ mi})(5,280 \text{ ft/mi})} = 0.0189 \text{ cfs/ft.}$$

Using a(x,w)=-5.78, b(x,w)=0.783, k=0.000699, and w=70 from Case 2 of Example 1 in equation 19–4, the result is

$$Q(x,w) = -5.78 + 0.783P + \frac{Q_L}{kw} (1 - 0.783)$$
  
= 52.3 acre-ft.

The corresponding calculations for peak discharge of the outflow hydrograph (eq. 19-5) are

$$q(x,w) = -17.5 - 0.656P + 0.783p + \frac{q_L (5,280)}{kw} [1 - 0.783]$$
$$= 1,175 \text{ cfs.}$$

## Example 3. Approximations for Out-of-Bank Flow

In this example, approximations for out-of-bank flow are described and discussed.

Given: A channel reach of length x=10 mi and an average width of in-bank flow  $w_1=150$  ft with inbank flow up to a discharge of 3,000 cfs. Once the flow exceeds 3,000 cfs, out-of-bank flow rapidly covers wide areas. The bed material consists of clean sand and gravel, and the out-of-bank material is sandy with significant amounts of silt-clay.

Find: The outflow if the inflow is P = 700 acre-ft with a peak rate of p = 4,000 cfs. Assume the mean duration of flow is 12 hr and the total average width of out-of-bank flow is 400 ft. Also, estimate the distance downstream before the flow is back within the channel banks.

Solution: Using the procedures outlined in table 19–3, make the following calculations:

In-bank flow:

 $w_1 = 150 \text{ ft};$ 

 $K_1^* = 3.0 \text{ in/hr}.$ 

Out-of-bank flow:

 $w_2 = 400 \text{ ft}^{\dagger};$ 

 $K_2^* = 0.5$  in/hr for width  $w_2 - w_1$ .

The weighted average for effective hydraulic conductivity is

$$K = \frac{w_1 K_1 + (w_2 - w_1) K_2}{w_2}$$
 (19–17)

K = 1.44 in/hr.

Using this average value of K, D = 12 hr, and P = 700 acre-ft, the unit channel parameters are

$$a = -0.00465KD = -0.08035$$
 acre-ft,

$$k = -1.09 \ln \left[ 1.0 - 0.00545 \frac{KD}{P} \right]$$
  
= 0.000147 (ft-mi)⁻¹,

and

$$b = e^{-k} = e^{-0.000147} = 0.99985$$

Given the unit channel parameters and  $w_2 = 400$  ft, the parameters for the channel reach are

$$b(x, w_2) = e^{-kxw_2} = e^{-(0.000147)(400)x} = e^{-0.0588x}$$

and

$$a(x, w_2) = \frac{a}{1 - b} [1 - b(x, w_2)]$$
$$= \frac{-0.08035}{(1 - 0.99985)} [1 - e^{-0.0588x}].$$

Now, estimate the distance downstream until flow is contained within the banks (from equation 19-3) as

$$q(x,w) = \frac{12.1}{D} (a(x,w) - [1 - b(x,w)]P) + b(x,w)p.$$

Use an upper limit as

$$q(x,w) = 3,000 \text{ cfs} \le b(x,w)p = e^{-0.0588x}(4,000),$$

which means

$$e^{-0.0588x} \ge \frac{3,000}{4,000} = 0.75$$

$$x \le -\frac{1.0}{0.0588} \ln 0.75 = 4.89 \text{ mi.}$$

Then a trial-and-error solution of the volume and peak discharge equations for various values of x < 4.89 mi produces a best estimate of x = 3.6 mi. Based on this value, the parameters are

$$b(3.6, w_2) = 0.809$$

and

$$a(3.6, w_2) = -102.3 \text{ acre-ft.}$$

Therefore, the predictions for x = 3.6 mi are

$$Q(3.6, w_2) = -102.3 + 0.809(700)$$
  
= 464.0 acre-ft

for the volume and

$$q(3.6, w_2) = -238.0 + 0.809(4,000) = 2,998 \text{ cfs}$$

for the peak rate. For distances beyond this point, the flow will be contained in the channel banks. The parameters for in-bank flow with a distance of x=10.0-3.6=6.4 mi are

$$a = -0.00465KD = -0.1674$$
 acre-ft,

$$k = -1.09 \ln \left[ 1 - 0.00545 \frac{KD}{P} \right]$$
  
= 0.000461 (ft-mi)⁻¹,

and

$$b = e^{-k} = e^{-0.000461} = 0.99954$$

^{*} Average hydraulic conductivity from

[†] Includes width  $w_1$ .

for  $K=3.0,\,D=12,\,$  and P=464.0 acre-ft, which is the inflow from the upstream reach. With these unit channel parameters, the parameters for in-bank flow are

$$b(6.4, w_1) = e^{-kxw_1} = e^{-(0.000461)(6.4)(150)} = 0.642$$

and

$$a(6.4, w_1) = \frac{a}{1 - b} [1 - b(x, w_1)]$$

$$= \frac{-0.1674}{(1 - 0.99954)} [1 - 0.642]$$

$$= -130.3 \text{ acre-ft.}$$

The predicted outflow is

$$Q(6.4, w_1) = -130.3 + 0.642(464.0)$$
  
= 167.6 acre-ft

for the volume and

$$q(6.4, w_1) = -298.9 + 0.642(2,998)$$
  
= 1.626 cfs

for the peak discharge. Therefore, the prediction is out-of-bank flow for about 3.6 mi and in-bank flow for 6.4 mi, with an outflow volume of 168 acre-ft and a peak discharge of 1,626 cfs.

This example illustrates the need for judgment in applying the procedure for estimating losses in out-of-bank flow. Care must be taken to ensure that transmission losses do not reduce the flow volume and peak to the point where flow is entirely within the channel banks. If this occurs, then the reach length must be broken into subreaches, as illustrated in this example.

# Example 4. Transmission Losses Limited by Available Storage

In some circumstances, an alluvial channel could be underlain by nearly impervious material that might limit the potential storage volume in the alluvium (V) and thereby limit the potential transmission losses. Once the transmission losses fill the available storage, nearly all additional inflow will become outflow; the

procedure is modified to predict and apply this secondary threshold volume,  $P_1$ .

Given: The channel reach in Example 1 with total available storage (maximum potential transmission loss) of V=30 acre-ft. Given the volume equation from Case 1 of Example 1, compute equations to apply after the potential losses are satisfied. From Example 1, a(x,w)=-10.38 acre-ft, b(x,w)=0.850, and  $P_o(x,w)=12.21$  acre-ft.

Solution: The total losses are P - Q(x, w) computed as

$$P - [a(x,w) + b(x,w)P] = -a(x,w) + [1 - b(x,w)]P.$$

Equating this computed loss to V and solving for the inflow volume predicts the inflow volume above which only the maximum alluvial storage is subtracted,

$$P_1 = \frac{V + a(x, w)}{1 - b(x, w)}.$$

For this example, this threshold inflow volume is 130.8 acre-ft. With this additional threshold, the prediction equation for outflow volume is modified to

$$Q(x,w) = \begin{cases} 0 & P \leq P_o(x,w) \\ a(x,w) + b(x,w)P & P_o(x,w) \leq P \leq P_1 \\ P - V & P > P_1. \end{cases}$$
(19–18)

For the example being discussed, the solution to this general equation is

$$Q(x,w) = \begin{cases} 0 & P \le 12.21 \\ -10.38 + 0.850P & 12.21 \le P \le 130.8 \\ P - 30 & P > 130.8 \end{cases}$$

The slope of the regression line is equal to  $Q(x,w)/[P-P_o(x,w)]$ , so an equivalent slope, once the available storage is filled, is  $b_{eq}=(P-V)/[P-P_o(x,w)]$ , which for this example is  $b_{eq}=(P-30)/(P-12.21)$ . For an inflow volume of P=300 acre-ft and p=3,000, the equivalent slope is  $b_{eq}=0.938$ . Using the equivalent slope, the peak equation is

$$q(x,w) = \frac{-12.1}{D}[P - Q(x,w)] + b_{eq} P$$
$$= -90.75 + 0.938(3,000) = 2,723 \text{ cfs.}$$

### **Appendices**

Therefore, the predicted outflow is Q(x,w) = 270 acre-ft and  $q(x,w) = 2{,}723$  cfs.

If the storage limitation had been ignored, the original equations would have predicted an outflow volume of 245 acre-ft and a peak rate of outflow of 2,384 cfs. If a channel reach has limited available storage, the procedure should be modified, as it was in Example 4, to compute losses that do not exceed the available storage.

#### **Summary**

The examples presented illustrate the wide range of applications of the transmission loss procedures described in this chapter. The examples were chosen to emphasize some limitations and the need for sound engineering judgment. These concepts are summarized in table 19-4.

Table 19-4.—Outline of examples and comments on their applications

Example	Procedure	Special circumstances	Comments
1 (Case 1)	Table 19–2	Observed data available	Slope and intercept must satisfy the constraints
1 (Case 2)	Table 19–3	No observed data	Typical application
2	Table 19–3 Eqs. 19–4, 19–5	Uniform lateral inflow	Importance of lateral inflow demonstrated
3	Table 19–3 Eq. 19–17	Out-of-bank flow	Judgment required to interpret results
4	Table 19–2 Eq. 19–18	Limited available storage	Concept of equivalent slope used

These appendices provide the reference material, derivations, and analyses of available data upon which the material presented in Chapter 19 is based. The basic procedure is outlined, and sources for additional information are provided.

# Appendix 1—Derivation of Procedures for Estimating Transmission Losses When Observed Data Are Available

In much of the Southwestern United States, watersheds are characterized as semiarid with broad alluvium-filled channels that abstract large quantities of streamflow (Babcock and Cushing 1941; Burkham 1970a, 1970b; Renard 1970). These abstractions or transmission losses are important because streamflow is lost as the flood wave travels downstream, and thus runoff volumes are reduced. Although these abstractions are referred to as losses, they are an important part of the water balance. They diminish streamflow, support riparian vegetation, and recharge local aquifers and regional ground water (Renard 1970).

Simplified procedures have been developed to estimate transmission losses in ephemeral streams. These procedures include simple regression equations to estimate outflow volumes (Lane, Diskin, and Renard 1971) and simplified differential equations for loss rate as a function of channel length (Jordan 1977). Other, more complicated methods have also been used (Lane 1972, Wu 1972, Smith 1972, Peebles 1975).

Lane, Ferreira, and Shirley (1980) developed a procedure to relate parameters of the linear regression equations (Lane, Diskin, and Renard 1971) to a differential equation coefficient and the decay factor proposed by Jordan (1977). This linkage between the regression and differential equations provides the basis of the applications described in this chapter.

#### **Empirical Basis of the Regression Equation**

When observed inflow-outflow data for a channel reach of an ephemeral stream with no lateral inflow are plotted on rectangular coordinate paper, the result is often no outflow for small inflow events, with outflow increasing as inflow increases. When data are fitted with a straight-line relationship, the intercept on the X axis represents an initial abstraction. Graphs of this type suggest equations of the form

$$Q(x,w) \ = \ \begin{cases} 0 & P \leqslant P_o(x,w) \\ a(x,w) \ + \ b(x,w)P & P > P_o(x,w). \end{cases} \eqno(19-1)$$

By setting Q(x,w) = 0.0 and solving for P, the threshold volume, the volume of losses that occur before outflow begins, is

$$P_o(x, w) = \frac{-a(x, w)}{b(x, w)}$$
 (19-2)

## Differential Equation for Changes in Volume: Linkage With the Regression Model

Differential equations can be used to approximate the influence of transmission losses on runoff volumes. Because the solutions to these equations can be expressed in the same form as the regression equations, least-squares analysis can be used to estimate parameters in the transmission loss equations.

#### **Unit Channel**

The rate of change in volume, Q (as a function of arbitrary distance), with changing inflow volume, P, can be approximated as

$$\frac{\mathrm{dQ}}{\mathrm{dx}} = -c - k \ Q(x). \tag{19-19}$$

Substituting the initial condition and defining P = Q(x = 0), the solution of equation 19-19 is

$$Q(x) = -\frac{c}{k}(1 - e^{-kx}) + Pe^{-kx}.$$
 (19-20)

For a unit channel, equation 19-20 becomes

$$Q = -\frac{c}{k}(1 - e^{-k}) + Pe^{-k}, \qquad (19-21)$$

which corresponds to the regression equation

$$Q = a + bP.$$
 (19–22)

Equating equations 19-21 and 19-22, it follows that

$$b = e^{-k}$$
 (19–11)

and

$$a = -\frac{c}{k}(1 - e^{-k}) = -\frac{c}{k}(1 - b)$$
 (19-23)

are the linkage equations. Equation 19–23 can be solved for  ${\bf c}$  as

$$c = -k \frac{a}{1 - b}$$

#### Channel of Arbitrary Length and Width

For a channel of width w and length x,

$$\frac{dQ}{dx} = -wc - wkQ(x, w),$$

where  $c = -k \frac{a}{1 - b}$ , so that the differential equation is

$$\frac{dQ}{dx} = wk \frac{a}{1 - b} - wkQ(x, w).$$

Defining P as Q(x = 0) and substituting this initial condition, the solution is

$$Q(x,w) = \frac{a}{1-b}[1-e^{-kxw}] + Pe^{-kxw}.$$

From the linkage

$$b(x,w) = e^{-kxw}$$
 (19–13)

and

$$a(x,w) = \frac{a}{1-b}[1-b(x,w)]$$

$$= \frac{a}{1-b}[1-e^{-kxw}],$$
(19-14)

where a and b are unit channel parameters and k is the decay factor.

#### Influence of Uniform Lateral Inflow

If Q_L is the uniform lateral inflow (acre-feet per

mile), this inflow becomes an additional term in the differential equation

$$\frac{dQ}{dx} = wk\frac{a}{1-b} - wkQ(x,w) + Q_L.$$

The solution is

$$\begin{split} Q(x,w) \, &= \, \frac{a}{1 \, - \, b} [1 \, - \, e^{-kxw}] \\ &+ \, P e^{-kxw} \, + \, \frac{Q_L}{kw} [1 \, - \, e^{-kxw}], \end{split}$$

and through the linkage, the outflow volume equation for upstream inflow augmented by uniform lateral inflow is

$$Q(x,w) = a(x,w) + b(x,w)P + \frac{Q_L}{kw}[1 - b(x,w)].$$
 (19-4)

#### Approximations for Peak Discharge

The basic assumption for peak discharge, q(x,w), is that the outflow peak, once an average loss rate has been subtracted, is equal to b(x,w) times the peak of the inflow hydrographs, p. That is, assume that

$$q(x,w) = -\frac{P - Q(x,w)}{D} + b(x,w)p,$$

where P - Q(x, w) = -a(x, w) + [1 - b(x, w)]P, so that

$$q(x,w) = \frac{12.1}{D}(a(x,w) - [1 - b(x,w)]P) + b(x,w)p,$$
 (19–3)

where D is the mean duration of flow and 12.1 converts acre-feet per hour to cubic feet per second. For a peak lateral inflow rate of  $q_L$  (cfs/ft), uniform along the reach, the peak discharge equation becomes

$$\begin{split} q(x,w) \, = \, \frac{12.1}{D} (a(x,w) \, - \, [1 \, - \, b(x,w)] P) \\ \\ + \, b(x,w) p \, + \, \frac{q_L(5,280)}{kw} [1 \, - \, b(x,w), ] \end{split}$$

where 5,280 converts cubic feet per second per foot to cubic feet per second per mile.

For small inflows, where the volume of transmission losses is about equal to the volume of inflow, the peak discharge equation, equation 19–3, overestimates the peak rate of outflow. The relation between peak rate of outflow observed and that computed from equation 19–3 is shown in figure 19–1. The bias shown in figure 19–1 is for small events and tends to overpredict, but the equation does well for the larger events. The computed values shown in figure 19–1 were based on the mean duration of flow for each channel reach. Better agreement of predicted and observed peak rates of outflow might be obtained by using actual flow durations.

#### Appendix 2—Analysis of Selected Data Used to Develop the Procedure for Estimating Transmission Losses

So that parameters of the prediction equations could be related to hydrograph characteristics and to effective hydraulic conductivity, it was necessary to analyze selected data. Events involving little or no lateral inflow were selected from channel reaches in Arizona, Kansas, Nebraska, and Texas (table 19–5).

The data shown in table 19–5 are not entirely consistent because the events were floods of different magnitudes. The Walnut Gulch data are from a series of small to moderate events representing in-bank flow, whereas the Queen Creek data are for relatively larger floods and no doubt include some out-of-bank flow. The Trinity River data represent pumping diversions entirely within the channel banks. Data for the Kansas-Nebraska streams represent floods of unknown size, and may include out-of-bank flow.

The data summarized in table 19–5 were subjected to linear regression analysis to estimate the parameters a(x,w), b(x,w),  $P_o(x,w)$ , and kxw. These parameters are summarized in table 19–6. Parameters for the unit channels were computed for 10 channel reaches and are shown in table 19–7.

#### Appendix 3.—Estimating Transmission Losses When No Observed Data Are Available

Estimating transmission losses when observed inflow-outflow data are not available requires a technique for using effective hydraulic conductivity to develop parameters for the regression analysis.



Figure 19-1.—Observed vs. computed peak discharge of the outflow hydrograph.

Table 19-5.—Hydrologic data used in analyzing transmission losses (Lane et al. 1980)

				Number _ of events	Inflow	volume	Outfloy	v volume
Location	Reach identification	Length,	Average width, w		Mean	Standard deviation	Mean	Standard deviation
		mi	ft		acre-ft	acre-ft	acre-ft	acre-ft
Walnut	11–8	4.1	38	11	16.5	14.4	8.7	11.4
Gulch, Ariz.1	8–6	0.9	_	3	13.7	_	11.4	_
,	8–1	7.8	_	3	16.3		1.6	_
	6–2	2.7	107	30	75.1	121.6	59.9	101.0
	6–1	6.9	121	19	48.3	51.7	17.1	26.5
	2–1	4.2	132	32	49.3	42.7	24.4	31.4
Queen Creek, Ariz. ²	Upper to lower gaging station	20.0	277	10	4,283	5,150	2,658	3,368
Elm Fork	Elm Fork-1	9.6	_	3	454		441	_
of Trinity	Elm Fork-2	21.3	_	3	441	_	424	_
River, Tex.3	Elm Fork-3	30.9	120	3	454	_	424	_
Kansas-Neb.4	Prairie Dog	26.0	17	5	1,890	1,325	1,340	1,218
	Beaver	39.0	14	7	2,201	2,187	1,265	1,422
	Sappa	35.0	23	6	6,189	8,897	3,851	7,144
	Smokey Hills	47.0	72	4	1,217	663	648	451

¹ Data on file at USDA-ARS, Southwest Rangeland Water Research Center, 442 E. 7th Street, Tucson, AZ 85705.

⁴ Data from Jordan (1977).

Table 19-6.—Parameters for regression model and differential equation model for selected channel reaches (Lane et al. 1980)

Location	Reach identification	Reach no.	Length,	Average width,w	Regression intercept, a(x,w)	Model slope, b(x,w)	Threshold volume, P _o (x,w)	Decay factor, kxw	$\mathbb{R}^2$
Walnut Gulch, Ariz.	11–8 8–6 8–1 6–2 6–1 2–1	1 2 3 4 5 6	mi 4.1 0.9 7.8 2.7 6.9 4.2	ft 38 107 121 132	acre-ft -4.27 -0.34 -2.38 -4.92 -5.56 -8.77	acre-ft 0.789 0.860 0.245 0.823 0.469 0.673	5.41 0.40 9.71 5.98 11.86 13.03	0.2370 0.1508 1.4065 0.1948 0.7572 0.3960	0.98 .99 .84 .98 .84
Queen Creek, Ariz.	Upper to lower station	7	20.0	277	-117.2	0.648	180.90	0.4339	<b>.9</b> 8
Elm Fork of Trinity River, Tex.	Elm Fork–1 Elm Fork–2 Elm Fork–3	8 9 10	9.6 21.3 30.9	_ _ 120	$-15.0$ $^{1}+7.6$ $-8.7$	11.004 0.944 0.952	<u> </u>	  0.0492	.99 .99 .99
Kansas- Nebraska	Prairie Dog Beaver Sappa Smokey Hills	11 12 13 14	26.0 39.0 35.0 47.0	17 14 23 72	-353.1 -157.3 -1,076.3 -99.1	0.896 0.646 0.796 0.614	394.10 243.50 1,352.10 161.40	0.1098 0.4370 0.2282 0.4878	.95 .99 .98 .81

¹ Channel reaches where derived regression parameters did not satisfy the constraints.

Data from Babcock and Cushing (1941).
 Data from the Texas Board of Water Engineers (1960).

0.0000783 0.0000133 $0.000674 \\ 0.000907$ 0.0002480.0008000.0002830.000144 0.000714 0.001521۲. Unit length and width parameters  $0.8422 \\ 0.3558$  $1.4935 \\ 0.0370$ 0.0308 0.0095 0.0192 0.02600.00240.0187 Ъ 0.999326 0.9990940.999717 0.9998560.9992860.9999870.9997520.9992000.9984800.999922q -0.842008 -0.355480-1.493102 -0.036970-0.002404-0.00950-0.01915-0.03076-0.02597-0.01874Table 19-7.—Unit length, unit width, and unit length and width parameters for selected channel reaches (Lane et al. 1980) 0.0658 0.0743 22.0029 14.0874 52.5972 1.7451 0.05070.0807 0.52360.1267P_o(x) Unit width parameters  $0.99818 \\ 0.99376$ 0.99700 0.99959 $\begin{array}{c} 0.99356 \\ 0.96927 \\ 0.99013 \\ 0.99325 \end{array}$ 0.993780.99843b(x)  $\begin{array}{c} -21.86124 \\ -13.65447 \\ -52.07808 \\ -1.73337 \end{array}$ -0.05059 -0.06541-0.08046-0.07427-0.52273-0.12587a(x) 1.2042 2.0796 1.2144 2.6518 14.3705 5.0065 34.5052 2.6782 7.3018 0.2887P_o(w) Unit length parameters  $\begin{array}{c} 0.94384 \\ 0.93039 \\ 0.89607 \\ 0.91002 \end{array}$  $\begin{array}{c} 0.99579 \\ 0.98886 \\ 0.99350 \\ 0.98968 \end{array}$ 0.998410.97854b(w) -1.93484 -1.08819 -2.41320-14.30986 -4.95071-34.28091 -2.65060-0.28825-7.14508-1.13657a(w) Identification Upper to lower Sappa Smokey Hills Elm Fork-3 Prairie Dog 11–8 6–2 2 2 station Beaver Trinity River, Queen Creek, Gulch, Ariz. Nebraska Location Walnut Kansas-Tex.

#### **Estimating Effective Hydraulic Conductivity**

The total volume of losses for a channel reach is KD, where K is the effective hydraulic conductivity and D is the duration of flow. Also, the total losses are P - Q(x, w), so that

$$KD = 0.0275[P - Q(x,w)],$$

where 0.0275 converts acre-feet per foot-mile-hour to inches per hour. Or, solving for K,

$$K = \frac{0.0275 [P - Q(x, w)]}{D}.$$

But

$$P - Q(x,w) = -a(x,w) + [1 - b(x,w)]P$$

so that

$$K = \frac{0.0275}{D}[-a(x,w) + [1 - b(x,w)]P]$$
 (19–24)

is an expression for effective hydraulic conductivity. If mean values for D and P are used, then equation 19–24 estimates the mean value of the effective hydraulic conductivity.

## Effective Hydraulic Conductivity vs. Model Parameters

For a unit channel, outflow is the difference between inflow and transmission losses:

$$Q = P - KD.$$

Because Q = a + bP,

$$-a + (1 - b)P = KD.$$

But because a and (1 - b)P are in acre-feet and KD, the product of conductivity and duration, is in inches, the dimensionally correct equation is

$$-a + (1 - b)P = 0.0101KD$$

where 0.0101 converts inches over a unit channel to acre-feet. Because this equation is in two unknowns (a and b), an additional relationship is required to solve it. As a first approximation, the total losses are

partitioned between the two terms in the equation. That is, let

$$a = -\alpha(0.0101KD)$$

and

$$(1 - b) = (1 - \alpha) \left( 0.0101 \frac{KD}{P} \right).$$

Solving for b,

$$b = 1 - (1 - \alpha) \left( 0.0101 \frac{KD}{P} \right),$$

where  $0 \le \alpha \le 1$  is a weighting factor. Solve for k by substituting  $b = e^{-k}$  and taking the negative natural log of both sides, i.e.,

$$k = -\ln \left[1 - (1 - \alpha) \left(0.0101 \frac{KD}{P}\right)\right].$$

The selected data were analyzed to determine  $\alpha$  by least-squares fitting as shown in table 19–8. For the data shown in table 19–8, the estimate of  $\alpha$  was 0.46. Figures 19–2 and 19–3 show the data in table 19–8 plotted according to the equations

$$a = -0.00465KD (19-15)$$

and

$$k = -1.09 \ln \left[ 1 - 0.00545 \frac{KD}{P} \right],$$
 (19–16)

where for each channel reach, mean values were used for K, D, and P. These relationships were used to calculate the values shown in table 19–1.

Auxiliary data compiled in a report by Wilson et al. (1980) are shown in table 19–9. Although the estimates of infiltration rates were obtained by a variety of methods, most rates were based on streamflow data. Because these estimates generally involved longer periods of flow than in the smaller ephemeral streams, they should be representative of what is called effective hydraulic conductivity. The data show the range of estimates of hydraulic conductivity for various streams within a river basin as estimated by several investigators. For this reason, they should be



Figure 19-2.—Relation between KD and regression intercept.



Figure 19-3.—Relation between KD/P and decay factor.

Table 19-8.—Data for analysis of relations between effective hydraulic conductivity and model parameters (Lane et al. 1980)

Location	Unit channel intercept, a	Decay factor, k	K	KD	KD P	$-\ln\left[1 - 0.00545\frac{\text{KD}}{\text{P}}\right]$	Comments
	acre-ft	$(ft\text{-}mi)^{-1}$	in/hr	in	in		
					acre-ft		
Walnut Gulch							
11–8	-0.03076	0.001521	1.55	4.96	0.3010	0.001643	In-bank flow
6–2	-0.01874	0.000674	1.36	6.26	0.0834	0.000455	
6–1	-0.00950	0.000907	1.03	3.71	0.0768	0.000419	
2–1	-0.01915	0.000714	1.11	4.44	0.0901	0.000492	
Queen Creek	-0.02597	0.0000783	0.54	29.16	0.0068	0.0000371	Mixed flow
Elm Fork	-0.00240	0.0000133	0.01	0.84	0.0019	0.0000104	In-bank flow
Kansas-Nebraska							
Prairie Dog	-0.84201	0.000248	1.28	122.9	0.0650	0.000355	Mixed flow:
Beaver	-0.35548	0.000800	1.38	169.7	0.0771	0.000421	average widths
Sappa	-1.49310	0.000283	2.57	287.8	0.0465	0.000254	may be under-
Smokey Hills	-0.03697	0.000144	0.17	16.3	0.0134	0.000073	estimated

Least-squares fit:

$$a = -0.00465KD$$

$$k = -1.09 \ln \left[ 1 - 0.000545 \frac{KD}{P} \right]$$

Table 19-9.—Auxiliary transmission-loss data for selected ephemeral streams in southern Arizona (data taken from Wilson et al. [1980])

River basin	Stream reach	Estimation method	Effective hydraulic conductivity	Source of estimates
			in/hr	
Santa Cruz	Santa Cruz River, Tucson to Continental	Streamflow data ¹	1.5–3.4	Matlock (1965)
	Santa Cruz River, Tucson to Cortero	Streamflow data	3.2–3.7	Matlock (1965)
	Rillito Creek, Tucson	Streamflow data	0.5-3.3	Matlock (1965)
	Rillito Creek, Cortero	Streamflow data	2.2-5.5	Matlock (1965)
	Pantano Wash, Tucson	Streamflow data	1.6-2.0	Matlock (1965)
	Average for Tucson area		1.65	Matlock (1965)
Gila	Queen Creek	Streamflow data:		Babcock and
		Summer flows	0.07 – 0.52	Cushing (1942)
		Winter flows	0.37–1.05	Babcock and Cushing (1942)
		Average for all events	0.54	Babcock and Cushing (1942)
		Seepage losses in pools ²	>2.0	Babcock and Cushing (1942)
	Salt River, Granite Reef Dam to 7th Avenue	Streamflow data	0.75–1.25	Briggs and Werho (1966)
San Pedro	Walnut Gulch	Streamflow data	1.1–4.5	Keppel (1960), Keppel and Renard (1962)
	Walnut Gulch	Streamflow data	2.4	Peebles (1975)
San Simon	San Simon Creek	_	0.18	Peterson (1962)

 ¹ Transmission losses estimated from streamflow data.
 ² Measurement of loss rates from seepage in isolated pools.



### NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 20. WATERSHED YIELD

by

Victor Mockus Hydraulic Engineer

1956

Reprinted with minor revisions, 1971



# SECTION 4

# HYDROLOGY

# CHAPTER 20. WATERSHED YIELD

# Contents

																		Page
Summary of problems Methods for estimating yields Regional analysis Water accounting Direct runoff method Climatic and geographic for the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	20 <b>-</b> 2 20 <b>-</b> 2 20 <b>-</b> 3 20 <b>-</b> 6
Discussion		•	•		•													
Table																		Page
20-1.—Sample computation by w	vat	er	a	.cc	ou	ınt	ir	g	me	etł	100	l	•	•	•	•	•	20-5



SECTION 4

HYDROLOGY

#### CHAPTER 20. WATERSHED YIELD

The water yield of a watershed, by years or seasons or months, is used in the planning and design of some watershed projects, especially those involving irrigation. The hydrologist supplies estimates of these yields, as required, or supplies methods adapted to specific local conditions by which others may make the estimates. This chapter contains general methods for estimating water yields on ungaged watersheds, with suggestions for such modifications as local conditions may justify.

### Summary of Problems

Watershed yield is dependent on many physical factors, most of which usually cannot be quantitatively determined during ordinary field operations. Methods of estimating yield from ungaged watersheds may be classified as follows:

- (a) <u>Using only climatic factors</u>. Examples are graphs or equations using precipitation and temperature, or only precipitation.
- (b) <u>Using only geographic location</u>. Examples are maps having lines of equal runoff, or the practice of estimating yield by interpolation between gaged watersheds.
- (c) <u>Using watershed and climatic factors</u>. Examples are (1) water accounting method, (2) regional analysis, and (3) use of figure 10-1 and daily rainfall.

The choice of method often rests on the type of runoff to be estimated, which may be classified as:

- (a) Yield as a residual of precipitation after evapotranspiration. Examples are watersheds where base flow predominates. Water accounting methods are useful with this type.
- (b) Yield as an excess of surface supply over watershed surface intake. Examples are watersheds where surface runoff predominates. Methods using rainfall and infiltration are needed, such as a method utilizing figure 10-1.

(c) Yield as a diverted flow. Examples are watersheds having irrigation projects that get their supply outside of the watershed and their return flows occur inside; or watersheds with surface runoff predominating, whose streams carry return or waste flows from irrigation projects or municipal and industrial plants that pump their supplies from deep wells or receive them from outside the watershed.

Instrumentation and watershed conditions may suggest or govern the choice of method. These conditions may vary with <u>watershed size</u>—that is, instrumentation or methods suitable for a small watershed having surface runoff may be unsuitable for a large watershed (into which the small one drains) that has a high percent of base flow. The conditions may similarly vary with <u>geographic location</u>, the presence of <u>water tables</u>, <u>elevation</u>, <u>aspect</u>, and <u>latitude</u>. Other factors that have influence can also be listed. However, evaluation of the listed and unlisted factors is still more properly a research activity. In practice, the primary factors that can ordinarily be considered for ungaged streams are:

(1) streamflow on nearby watersheds, (2) precipitation, (3) hydrologic soil—cover complexes, (4) evapotranspiration, (5) temperature, (6) transmission losses, and (7) base flow accretions.

Determinations of water yield will usually have two types of error, (1) that due to insufficient recognition of the natural fluctuations of yield from year to year, and (2) that due to insufficient recognition of the most important influences on yield in a given watershed. The first type of error can be reduced by working with long records, the second by further studies of all possible major influences. However, increasing the time spent on yield estimates does not always assure greater accuracy in the estimates. Therefore, the methods given below should be considered as giving estimates so broad that the influence of specific factors have large margins of error.

#### Methods for Estimating Yields

A fuller account of such methods will be given in the National Engineering Handbook, Section 4, Hydrology.

Regional analysis

The general procedure is described in Section 2.8 of the Guide. For water yield, the method is used with annual, seasonal, or monthly flows of gaged watersheds. The slopes of the frequency lines will vary, being flattest for annual yields and becoming steeper (larger R on figure 18-3) as smaller divisions of a year are used.

This method is suitable for estimating the first two types of runoff mentioned above. It is readily adapted to watershed conditions, when data are available, since the watersheds can be selected for whatever factors can be used. However, the factors (and not the regional analysis method) may very strongly govern the accuracy of the results

for watershed yield. For example, if one of the important factors on the problem watershed is <u>aspect</u>, and it is too vaguely represented by the gaged watersheds used in the analysis, then the accuracy of the results of the regional analysis will suffer. Transmission losses, for example, may be insufficiently detected by this method, and additional field studies may be required to determine those losses.

Water accounting

This method is suitable for estimating the first type of runoff mentioned above. As presented here, the method is A. L. Sharp's modification and enlargement of a method proposed by C. W. Thornthwaite in Trans. Amer. Geophys. Union, pp. 686-693, April 1944. The transmission loss is not estimated by this method and must be determined by other methods (Chapter 19).

The flow chart in Chapter 10 will assist in understanding the following steps.

- 1. Obtain soils and land treatment data for the watershed.
- 2. Obtain estimates of the water-holding capacity of each soil or soil group, expressed as inches depth of water between the amounts at field capacity and wilting point. The soil depth for which this capacity is needed is the depth of the <u>intensive</u> root zone, or 3 feet, whichever is lesser.
- 3. Compute the water-holding capacity of the watershed, weighting by areal extent of the soils or soil groups.
- 4. Obtain watershed cover data for the season or seasons for which yields are to be estimated. Data needed are (1) types of cover, and (2) areal extent.
- 5. Compute potential evapotranspiration (potential ET), or consumptive use by months for each major crop or land use. The Blaney-Criddle method of computing potential ET is generally used as given in "Determining Water Requirements in Irrigated Areas from Climatological and Irrigation Data," by Harry F. Blaney and Wayne D. Criddle, Soil Conservation Service, U.S.D.A., SCS-TP-96, Washington, D. C., revised 1952.
- Compute monthly weighted potential ET for the watershed.
- 7. Obtain monthly rainfall data for the watershed, for a period of years estimated to be long enough to give adequate yield values (see Chapter 18 on length of record). The estimate of length should be made after previous use of figure 18-3 with other yield data in the vicinity.

- 8. Compute average rainfall over the watershed, by months, for each year of record.
- 9. Tabulate rainfall and ET data as shown on table 20-1, and compute runoff, by months, for each year of record.
  - (a) In table 20-1, the computation starts with a month when available soil moisture is <u>fully depleted</u>. It could start equally well with a month when the soils are <u>fully saturated</u>.
  - (b) If there is a break in the year, as in table 20-1, the first month after the break should have either of the moisture conditions given in (a) above.
  - (c) When the precipitation is snowfall, convert to water equivalent (watershed average) before using in line 1 (see Chapter 11 for methods). Watersheds consistently having snowfall on one portion and rainfall on the other should be subdivided and the yields of the subdivisions computed separately, then combined for total watershed yi'eld.
  - (d) Work with subdivisions if the watershed soils differ in water-holding capacities by more than about 100% of the smallest capacity or by more than about 1 inch, whichever is greater.
  - (e) Work with subdivisions if the watershed precipitation consistently varies widely in amount at different localities. This may be determined using average annual precipitation. The variation over a watershed (or subdivision) should not be greater than about 30% of the smallest value, or about 3 inches, whichever is greater.
- 10. After completion of the computations for the selected length of record, test the runoff estimates for adequacy of length of record, using the method of Chapter 18. The test should be made with values that will be used in planning or design. For example, if annual values are to be used, when they are tested; if monthly values are to be used, then all October values are tested separately, next all November, and so on. If the length of record is not adequate, additional years of precipitation are added and the yield computations extended.

Transmission losses are subtracted after Step 10. If these losses are proportionately large, it may be necessary to test the modified yields for adequacy of length of record.

Sample computation by water accounting method. Table 20-1.

Seasonal	runoff				11.92				5.54	
Seg	rı				ਜ					
	May		1.34 3.20 4.54	3.89	0.65		0.46	3.89	00.00	
	April		10.04 3.20 13.24	3.18	10.06 3.20 6.86		3.23	3.18	0.05	
	March		5.48 3.20 8.68	2.69	5.99 3.20 2.79		7.34 3.20 10.54	2.69	7.85	
	February	876	2.34 3.20 5.54	1.00	4.54 3.20 1.34	676	2.22 2.87 5.09	1.00	4.09 3.20 0.89	
	January	1947 - 1948	2.41 2.62 5.03	%.0	4.13 3.20 0.93	1948 - 1949	1.24 2.53 3.77	0.00	2.87	
	December		1.88 1.74 3.62	1.00	2.62		3.53	1.00	2.53	
	November		1.04 2.87 3.91	2.17	1.74		0.84 0.00 0.84	2.17	0.00	44
	October		5.65 0.003/ e 5.65	2.78 .on2.78	2.87		0.75 0.003/ e 0.75	2.78 .on0.75	00.00	2000
	Item	All units in inches	1/ Average rainfall 2/ Initial soil moisture Total available moisture	~	moisture 6/ Final soil moisture Runoff		<pre>1/ Average rainfall 2/ Initial soil moisture     Total available moisture 4/ Potential evapotrans-</pre>	_	moisture 6/ Final soil moisture Runoff	Aronom does not bodomston the does someth
	Line		100°				100 4		2 × 8	۸ / ۲

At start of month. Same as "Final soil moisture" for previous month. See text, Step 9, notes (a) and (b). Average annual values for the month. 1/ Average over the watershed for each month of record.
2/ At start of month. Same as "Final soil moisture" for 3/ See text, Step 9, notes (a) and (b).
4/ Average annual values for the month.
5/ Total available moisture, or potential ET, whichever 6/ At end of month. Same as "Initial soil moisture" for

At end of month. Same as "Initial soil moisture" for next month. This is never larger than the waterholding capacity determined in Step 3 of the text -- in this case, 3.20 inches. Total available moisture, or potential ET, whichever is smaller.

Note: Data are for a West Coast area of the United States, where the June-September precipitation is negligible.

Direct runoff method

Daily rainfall values and figure 10-1 can be used to estimate yields when these are of the second type described. Generally it may be assumed that <u>direct runoff</u> is being estimated. The procedure consists of using the method of Chapter 10 with all rainfalls. Snowmelt runoff is estimated separately using the methods of Chapter 11.

Table 9-1, which is used to determine curve numbers on figure 10-1, gives average values for the year. In using this table for yield estimates it is usually necessary to go into more detail about the cover, so that the weighted hydrologic soil-cover complex number varies not only for antecedent moisture conditions but also for the variation in cover throughout a given year and from year to year.

The direct runoff method is usually very tedious, since all daily precipitation in a long period of record must be accounted for, day by day, using soil-cover complex numbers that vary from month to month or even more often. The laboriousness of the procedure, however, does not guarantee close accuracy in the yield estimate.

Major errors with this method will generally be in the determinations of soil-cover complexes (which will vary through the year) and in antecedent moisture conditions (which will vary not only with precipitation and temperature, but also with soil-cover complexes). This method is more suitable for small watersheds than for large ones, since the large watersheds will have some base flow, which may be a significant proportion of total yield. Estimates by this method generally will have such a margin of error that the effects of individual factors should not be given much significance.

Climatic and geographic factors

In areas where there is no abrupt change in precipitation, hydrologic soil-cover complexes, or geology, yield may be readily estimated using maps with lines of equal runoff. Generalized national maps, such as Plate 1 of U.S.G.S. Circular 52, should be used with great caution. The text of the Circular, page 9, states that "Figure 2 and plate 1 should not be used to estimate runoff from ungaged areas." More localized maps, however, such as those prepared by John H. Dorroh, Jr. for the Southwestern States, will be very useful, especially where the advice of the map's originator may be sought.

K. M. Kent has used a form of the "direct runoff method" described above to prepare typical yield frequency lines for selected soil-cover complex numbers, which are used with a state map giving precipitation indices. Given the soil-cover complex number, the yield for a given frequency is quickly estimated for any locality in that state.

Graphs and equations of precipitation and temperature, or precipitation alone, have been used in the past much more than they are today. Figure 2 of U.S.G.S. Circular 52 is an example (but see remark about Plate 1). Such graphs and equations should be used with great caution since so many factors are ignored.

### Discussion

Since so many factors enter into the estimating of yields, and since both the relative importance and quantitative influences of some factors are nearly always unknown, estimates of yield should be conservative, according to the use they will have. The planners and designers who will use the yield estimates will be best able to state the direction and degree of conservativeness required. The hydrologist can obtain the conservativeness by the use of the methods given above, and those in Chapter 18, Frequency Methods.



SECTION 4

HYDROLOGY

CHAPTER 21. DESIGN HYDROGRAPHS

bу

Victor Mockus Hydraulic Engineer

Revisions by

Vincent McKeever William Owen Robert Rallison Hydraulic Engineers

1965

Reprinted with minor revisions, 1972

NEH Notice 4-102, August 1972



# SECTION 4

## HYDROLOGY

# CHAPTER 21. DESIGN HYDROGRAPHS

<u>Contents</u> <u>Pa</u>	ge.
Introduction	.1
Areal adjustment of rainfall amount21	.2
Runoff curve numbers	
Channel losses	• 5
Quick return flow	
Combination of channel loss, quick return flow, and upstream release	5
Runoff volume maps procedure	.8
Areas of mapped runoff volume	
Construction of principal spillway hydrographs and	
mass curves	9
Use of Table 21.10	.10
Emergency Spillways	.49
Hydrologic criteria	49
Duration adjustment of rainfall amount	
Runoff determination	50
Construction of emergency spillway and freeboard	
hydrographs	50
<u>Figures</u>	
<u>Figure</u> Pa	ge
21.la Quick return flow combined with principal spillway hydrograph for the runoff volume map	
procedure	.9

# Figures

Figure			Page
21.2 ES-1003 21.3 ES-1011			21.48 21.81 21.83 21.85
Sheet 1 of 5 Sheet 2 of 5 Sheet 3 of 5 Sheet 4 of 5			21.87 21.88 21.89 21.90 21.91
21.6 ES-1021 (Hawaii) Sheet 1 of 5 Sheet 2 of 5 Sheet 3 of 5 Sheet 4 of 5			21.93 21.94 21.95 21.96
21.7 ES-1022 (Alaska) Sheet 1 of 5 Sheet 2 of 5 Sheet 3 of 5 Sheet 4 of 5			21.99 21.100 21.101 21.102
21.8 ES-1023 (Puerto R: Sheet 1 of 5 Sheet 2 of 5			21.105 21.106 21.107 21.108
Sheet 1 of 5 Sheet 2 of 5 Sheet 3 of 5 Sheet 4 of 5	as, St. John, St. Cro		21.113 21.114
	Tables		
Tables			Page
21.2 Ten-day runoff cur	adjustment of rainfal rve numbers ors for reduction of		
runoff 21.4 Minimum quick retu		ved from	

# Tables

Table		Page
21.5	Arrangement of increments before construction of	
	PSH and PSMC	21.11
21.6	PSH and PSMC for example 21.1	
21.7	PSH and PSMC for example 21.2	
21.8	PSH for example 21.3	
21.9	Serial numbers of PSH and PSMC	
21.10	Time, rate, and mass tabulation for principal	,
	spillway hydrographs (PSH) and mass curves (PSMC).	21.20
21.11	Equations used in construction of ESH and FH	
21.12	Hydrograph computation	
21.13	Hydrograph computation	
21.14	Rainfall prior to excess rainfall	
21.15	Rainfall and time ratios for determining $T_O$	
,	when storm duration is greater than 6 hours	21.58
21,16	Hydrograph families and $T_{\rm O}/T_{\rm p}$ ratios for which	•
	dimensionless hydrograph ratios are given in	
	Table 21.17	21.59
21:17	Time, discharge, and accumulated runoff ratios	
	for dimensionless hydrographs	21.60
	<u>Exhibits</u>	
Exhibit		
•		
21.1	100-year 10-day runoff for developing the principal	
	spillway hydrograph (east)	21.48a
21.2	Ratios of volumes of runoff $(Q_1/Q_{10})$ for developing	
	the PSH (east)	21.481
21.3	Quick return flow for developing the principal	
	spillway hydrograph	21.480
21.4	100-year 10-day runoff for developing the princi-	
	pal spillway hydrograph (west)	21.486
21.5	Ratios of volumes of runoff $(Q_1/Q_{10})$ for develop-	02 1.0
	ing the PSH (west)	21.48e



SECTION 4

HYDROLOGY

CHAPTER 21. DESIGN HYDROGRAPHS

#### Introduction

This chapter contains a systematic approach to the development of design hydrographs for use in proportioning earth dams and their spill-ways according to SCS criteria. Included are data or sources of data for design rainfall amount, duration, and distribution; methods of modifying design runoff to include effects of channel losses, quick return flow, or upstream releases; and methods for rapid construction of hydrographs.

The methodology presented in this chapter is suitable for the design of many types of water control structures, including channel works, but the emphasis is on hydrology for design of earth dams that provide temporary storage for flood prevention in addition to permanent storage for other uses. Its chief purpose is to contribute to safe design. Although the methods are based on data of actual storms and floods, they are not intended for reproducing hydrographs of actual floods; more suitable methods for actual floods are found in earlier chapters.

The remainder of this chapter is divided into two major parts. The first is concerned with hydrologic design for principal spillways, the second for emergency spillways. The examples in each part go only as far as the completion of hydrographs. Methods of routing hydrographs through spillways are given in chapter 17. Uses of hydrographs are illustrated in other SCS publications.

#### Principal Spillways

The SCS criteria require principal spillway capacity and the associated floodwater retarding storage to be such that project objectives are met and that the frequency of emergency spillway operation is within specified limits. The criteria are met by use of a Principal Spillway Hydrograph (PSH) or its mass curve (PSMC), which are developed as shown in this part of the chapter. Details of SCS hydrologic criteria are given first, then details of the PSH and PSMC development are given in examples.

Any one of four methods of runoff determination is suitable for the design of principal spillway capacity and retarding storage. They are (1) the runoff curve number procedure using rainfall data and the watershed's characteristics, (2) the use of runoff volume maps covering specific areas of the United States, (3) the regionalization and transposition of volume-duration-probability analyses made by the SCS Central Technical Unit, and (4) the use of local streamflow data with provision of sufficient documentation on the method and results. The latter two methods are not discussed in this chapter because they vary in procedure from case to case, due to conditions of local data, and standard procedures have not yet been established.

### Runoff Curve Number Procedure

The runoff curve number procedure uses certain climatic data and the characteristics of a watershed to convert rainfall data to runoff volume. This procedure should be used for those areas of the country not covered by runoff volume and rate maps. (Exhibit 21.1 through 21.5.)

SOURCES OF RAINFALL DATA. Rainfall data for the determination of direct runoff may be obtained from maps in U.S. Weather Bureau technical papers:

For durations to 1 day .--

TP-40. 48 contiguous States.

TP-42. Puerto Rico and Virgin Islands.

TP-43. Hawaii.

TP-47. Alaska.

For durations from 2 to 10 days.--

TP-49. 48 contiguous States

TP-51. Hawaii.

TP-52. Alaska.

TP-53. Puerto Rico and Virgin Islands.

AREAL ADJUSTMENT OF RAINFALL AMOUNT. If the drainage area above a structure is not over 10 square miles, no adjustment in rainfall amount is made. If it is over 10 square miles, the area-point ratios of table 21.1 may be used to reduce the rainfall amount. The table applies to all geographical locations serviced by SCS. The ratios are based on the 1- and 10-day depth-area curves of figure 10, U.S. Weather Bureau TP-49, but are modified to give a ratio of 1 at 10 square miles.

RUNOFF CURVE NUMBERS. The runoff curve number (CN) for the drainage area above a structure is determined and runoff is estimated as described in chapters 7 through 10. The CN is for antecedent moisture condition II and it applies to the 1-day storm used in development of the PSH or PSMC. If the 100-year frequency 10-day duration point

.959

.957

.956

.955

Area/point ratio for Area/point ratio for Area Area 10 days l day 10 days l day sq. mi. sq. mi. 80 10 or less 1.000 1.000 0.968 937 Use Revised Table in TR-60 15 .978 .966 732 20 .969 28 .964 25 .964 .925 .962 30 .960 .922 .961 35 .957 .920 .960

Table 21.1. -- Ratios for areal adjustment of rainfall amount

rainfall for the structure site is 6 or more inches, the CN for the 10day storm is taken from table 21.2. If it is less than 6 inches, the CN for the 10-day storm is the same as that for the 1-day storm. 10-day CN is used only with the total 10-day rainfall.

CLIMATIC INDEX. The climatic index used in this part of the chapter is:

$$Ci = \frac{100 \text{ Pa}}{(\text{Ta})^2}$$
 (21.1)

400

.918

.914

.911

.910

where

40

50

60

70

Ci = climatic index

.952

ر و.

Pa = average annual precipitation in inches

.970

Ta = average annual temperature in degrees Fahrenheit

Precipitation and temperature data for U.S. Weather Bureau stations can be obtained from the following Weather Bureau publications:

Climatological Data. Issued annually and monthly for each State or a combination of States and for Puerto Rico and Virgin Islands. The annual issues contain annual and monthly data and averages or departures; monthly issues contain similar information for individual months.

Climatic Summary of the United States - Supplement for 1931-1952. Issued once for each State or a combination of States.

Climates of the States. Issued once for each State and for Puerto Rico and Virgin Islands.

Monthly Normals of Temperature, Precipitation, and Heating Degree Days. Issued once for each State or a combination of States. Also contains annual averages.

Table 21.2.--Ten-day runoff curve numbers*

		Runo	off curve	numbers for:		
]	L day	10 days	l day	10 days	1 day	10 days
1	100 99 98 97 96	100 98 96 94 92	80 79 78 77 76	65 64 62 61 60	60 59 58 57 56	41 40 39 38 37
	95 94 93 92 91	90 88 86 84 82	75 74 73 72	58 57 ble in TR-6 52 51 50	52 51	36 35 34 33 32
	90 89 88 87 86	Use Rev	69 68 67 66	52 51 50 48 47	50 49 48 47 46	32 31 30 29 28
	85 84 83 82 81	72 71 69 68 66	65 64 63 62 61	46 45 44 43 42	45 44 43 42 41	27 27 26 25 24

^{*} This table is used only if the 100-year frequency 10-day point rainfall is 6 or more inches. If it is less, the 10-day CN is the same as that for 1 day.

Climatic Maps for the National Atlas. Maps with a scale of one in ten million. A map for average annual precipitation is available but there is no map for average annual temperature.

SCS personnel may obtain these publications through their Regional Technical Service Center.

CHANNEL LOSSES. If the drainage area above a structure has a climatic index less than 1, then the direct runoff from rainfall may be decreased to account for channel losses of influent streams. Channel losses can be determined from local data but the losses must not be more than determined by use of table 21.3. When adequate local data are not available, table 21.3 is to be used. Example 21.1 gives the procedure for making the channel loss reduction of direct runoff.

Channel losses in areas where the climatic index is 1 or more will require special study; results must be approved by the Director, Engineering Division, before being used in final design hydrology.

QUICK RETURN FLOW. Quick return flow (QRF) is the rate of discharge that persists for some period beyond that for which the 10-day PSH is derived. It includes base flow and other flows that become a part of the flood hydrograph such as (1) rainfall that has infiltrated and reappeared soon afterwards as surface flow; (2) drainage from marshes and potholes; and (3) delayed drainage from snow banks. If the drainage area above a structure has a climatic index greater than 1, then QRF must be added to the hydrograph or mass curve of direct runoff from rainfall. QRF can be determined from local data but it must not be less than the steady rate determined by use of table 21.4. When adequate local data are not available, table 21.4 is to be used. Example 21.2 gives the procedure for adding QRF to the hydrograph or mass curve of direct runoff derived from rainfall.

<u>UPSTREAM RELEASES</u>. Releases from upstream structures must be added to the hydrograph or mass curve of runoff. This addition must be made regardless of other additions or subtractions of flow. Upstream release rates are determined from routings of applicable hydrographs or mass curves through the upstream structures and the reaches downstream from them.

COMBINATIONS OF CHANNEL LOSS, QUICK RETURN FLOW AND UPSTREAM RELEASE. In the introduction it was stated that the chief purpose of the methodology in this chapter is to contribute to safe design and that these methods are not intended for reproducing actual floods. Equation 21.1 and tables 21.1 through 21.4 must be considered in that light.

For large watersheds the topography may be such that two climatic indexes are needed, for example where a semiarid plain is surrounded by mountains. In such cases the design storm is determined for the watershed as a whole, the direct runoff is estimated separately for the two

TABLE 21.3--CHANNEL-LOSS FACTORS FOR REDUCTION OF DIRECT RUNOFF

				IC INDE			
DRAINAGE :	1.0			0.7			0.4 OR Less
SQ. MI.	*******						
1. OR LESS	1.00	1.00	1.00	1.00	1.00	1.00	1.00
2.	1.00	.98	•97	•95	.93	.90	
3.	1.00	•98	•95	•92	.89	.85	
4.	1.00	•97	•94	•90	-86	.81	•76
5.	1.00	.96	•92	.88	.84	•78	•73
6.	1.00	.96	•92	.87	•82	•76	.70
7.	1.00	• 96	•91	.86	.81	.75	-68
8.	1.00	.95	.90	.85	.79	.73	.66
9.	1.00	.95	-90	.84	-78	.72	.65
10.	1.00	•95	.89	.84	•77	•71	•63
20.	1.00	•93	.86	•79	•72	•64	.55
30.	1.00	• 93	-85	•77	.69	.60	.51
40.	1.00	•92			.66		.48
50.	1.00	•91	-83	.74	.65	•55	.46
60.	1.00	.91	.82	.73	.63	.54	• 4 4
70.	1.00	.91	.81	.72	.62	•53	.43
.03		•90	-81		.62		
90.	1.00	•90			.61	•51	
00.		.90	.80	.70	.60	•50	.40
50.	1.00	. 89	.78	.68	•57	•47	•37
00.	1.00	.89	.77	•66	•56	•45	•35
250.	1.00	.88	.77	• 65	•54	.44	•33
00.	1.00	.88	.76	.64	•53	.42	.32
50. 500.	1.00	-87	•75 •75	.64	•52	.41	.31

+U.S. GOVERNMENT PRINTING OFFICE: 1981— 349-931:201

Table 21.4. Minimum quick return flow for PSH derived from rainfall.

Ci	QRF		Ci	QRF	,
	in./day	csm		in./day	csm
1.00 1.02 1.04 1.06 1.08	0 .011 .022 .033 .045	0 .30 .60 .90 1.20	1.50 1.52 1.54 1.56 1.58	0.234 .239 .244 .249 .254	6.29 6.43 6.56 6.70 6.83
1.10 1.12 1.14 1.16 1.18	.056 .067 .078 .089 .100	1.50 1.80 2.10 2.40 2.70	1.60* 1.65 1.70 1.75	.259 .270	6.96 7.26 7.53 7.80 8.04
1.20 1.22 1.24 1.26 1.28	.112 .123 .13 ²	3.00 Revised	1.75 1.75 1.95 2.00 2.05	.308 .318 .326 .335 .343	8.28 8.55 8.76 9.00 9.22
1.30 1.32 1.34 1.36 1.38	.163 .171 .180 .188 .195	4.38 4.60 4.84 5.06 5.24	2.10* 2.20 2.30 2.40 2.50	.351 .367 .382 .396 .410	9.44 9.87 10.27 10.65 11.02
1.40 1.42 1.44 1.46 1.48	.202 .209 .216 .222 .228	5.43 5.62 5.81 5.97 6.13	2.60 2.70 2.80 2.90 3.00**	.423 .436 .449 .461 .473	11.37 11.72 12.07 12.40 12.72

^{*} Change in tabulation interval.

QRF = 
$$9 (Ci - 1)^{0.5}$$
 for QRF in csm  
or QRF =  $0.335 (Ci - 1)^{0.5}$  for QRF in inches per day.

^{**} For Ci greater than 3, use:

parts by use of appropriate CN and then combined, the channel loss reduction is based on the area of the semiarid plain and its climatic index, the hydrograph or mass curve of direct runoff is constructed, and QRF from the mountain area is added.

If there are upstream structures, their releases are always added regardless of the downstream climatic index or other considerations.

### Runoff Volume Maps Procedure

The runoff volume and rate maps, exhibits 21.1 through 21.5, are provided for areas of the United States where measured runoff volumes vary significantly from those obtained from the curve number procedure for converting rainfall to runoff. The mapped areas are of two general types: (1) the areas where runoff from either snowmelt, dormant season rainfall, or a combination of the two produce greater runoff volumes than growing season rainfall and (2) the deep snowpack areas of high mountain elevations.

AREAS OF MAPPED RUNOFF VOLUME. The 100-year 10-day runoff volume maps, exhibits 21.1 and 21.4, represent regionalized values derived from gaged streamflow data and supplemented with climatological data and local observations. These values should be used for estimating floodwater detention storage within the map area where local streamflow data are not adequate.

Areal reduction should not be made on the 10-day runoff volumes shown in the maps. Since these amounts were derived from stream gage data, base flow and channel loss will be automatically included in the map values and in Table 21.10.

Quick return flow in this procedure is used as the rate of discharge expected to persist beyond the flood period described under the 10-day PSH. The rates of discharge, exhibit 21.3, were derived by averaging the accumulated depths of runoff between the 15th and 30th day on volume-duration-probability (VDP) accumulation graphs. They were obtained from the same VDP station data from which the 100-year 10-day runoff volumes in exhibit 21.1 were obtained.

When using the Runoff Volume Maps Procedure, the quick return flow rate, exhibit 21.3, is made an extension to the PSH before routing it through the reservoir, figure 21.1a.

DEEP SNOWPACK AREAS. Flood volume estimates from the deep snowpack areas may be calculated from local streamflow data or by regionalization and transposition of streamflow data.

A standard procedure for making a regional analysis of volumes of runoff for varying durations and frequencies has not been developed at this time. Past experience has indicated that acceptable estimates can be made using multiple regression techniques. If watersheds can be selected that are reasonably homogeneous with regard to items



Figure 21.1a Quick Return Flow Combined with Principal Spillway Hydrograph for the Runoff Volume Maps Procedure.

such as seasonal precipitation, range of elevation, aspect, cover, geology, soils, etc., estimating equations can be developed with a minimum number of independent variables. Until techniques are developed to properly analyze the effects of a number of variables, the selection of homogeneous gaged watersheds with as much similarity to the ungaged watersheds as possible is recommended for estimating volume-duration-probability data. Statistics from volume-duration-probability studies of gaged watersheds can also be used to assist in developing estimating equations.

## Construction of Principal Spillway Hydrographs and Mass Curves

The principal spillway capacity and retarding storage amount are proportioned using the Principal Spillway Hydrograph (PSH) or its mass curve (PSMC) developed from tabulations given in table 21.10. Examples in this section show how to select the appropriate set of tabulations and to construct the PSH or PSMC. One or more routings of the PSH or PSMC give the required storage and principal spillway capacity; the routings are discussed in chapter 17.

DEVELOPMENT OF TABLE 21.10. The principles of hydrograph development are discussed in chapter 16 but because the standard series of PSH and PSMC is not described there, the method of preparation will be briefly given here.

The PSH and PSMC in table 21.10 are developed from a continuous 10-day period of on-site direct runoff, all of a given frequency. Choice of the 10-day period is based on SCS experience with the use of both stream-flow records and an earlier system of standardized hydrographs. If the runoff in the 10-day period is arranged in order of decreasing

rate of flow and then accumulated to form a mass curve, it has the appearance of curve A in figure 21.1. Such a curve is a straight line on log paper and it has the equation:

 $Q_D = Q_{10} (D/10)^a$  (21.2)

Where

QD = total runoff at time D in days

Q10 = total runoff at the end of 10 days

D = time in days

a =  $\log (Q_{10}/Q_1)$ , in which  $Q_1$  is the total runoff at the end of 1 day

Thus, knowing only the 1- and 10-day runoff amounts, a continuous mass curve can be developed for the entire 10-day period.

Examination of such mass curves of runoff from streamflow stations in many locations of the United States showed that the exponent  $\underline{a}$  varied from 0.1 to 0.5. Extremes of 0.0458 and 0.699 were chosen for the standard curves; these extremes correspond to  $Q_1/Q_{10}$  ratios of 0.9 and 0.2 respectively. The ratio  $Q_1/Q_{10}$  is used hereafter in this chapter as a parameter in preference to  $\underline{a}$  or  $Q_{10}/Q_{1}$  because  $Q_{10}$  is more satisfactory as a divisor in preparing PSH and PSMC with dimensionless rates and amounts of flow.  $Q_1/Q_{10}$  ratios of 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9 were selected to give representative degrees of curvature for the runoff curves.

The 10-day on-site runoff for each  $Q_1/Q_{10}$  ratio was rearranged as shown in table 21.5 to provide a moderately critical distribution of the 10-day runoff. This gave a distribution midway between extremes that are theoretically possible. On figure 21.1, curves A and B show the extremes and curve C shows the rearranged distribution for a  $Q_1/Q_{10}$  ratio of 0.4.

The effects of watershed lag were included by taking increments of runoff for each of the eight typical mass curves, making incremental hydrographs, and summing these to give total hydrographs for watersheds with times of concentration of 1.5, 3, 6, 12, 18, 24, 30, 36, 42, 48, 54, 60, 66, and 72 hours. This gave 112 hydrographs, each of which was reduced to unit rates of runoff and afterwards accumulated and reduced to unit mass curves. Curve D in figure 21.1 is the mass curve developed from curve C for a watershed with a time of concentration of 24 hours. Runoff for curve D went on for more than a day past the termination point E but because the rate was so small, the mass curve was terminated as shown. Other PSH and PSMC in table 21.10 are similarly terminated. The time interval is varied to reduce the size of the table and at the same time give enough points for reproducing the PSH and PSMC accurately. Straight-line connection of points is accurate enough for graphical work and linear interpolation for tabular work.

<u>USE OF TABLE 21.10.</u> The parameters for selecting a set of tabulations from table 21.10 are the  $Q_1/Q_{10}$  ratio and the time of concentration  $T_C$  in hours. The ratio and  $T_C$  of a watershed will seldom be values for

Table 21.5.--Arrangement of increments before construction of PSH and PSMC

0.0 to 0.5 0.5 to 1.0 1.0 to 1.5 1.5 to 2.0 1.5 to 1.0 1.5 to 2.0 1.5 th " " " 1.5 to 2.5 1.5 to 3.0 3.0 to 3.5 3.5 to 4.0 4.0 to 4.5 4.5 to 4.6  9th largest 1/10 day  4.6 to 4.7 7th " " " 4.7 to 4.8 4.8 to 4.9 4.9 to 5.0 5.0 to 5.1  2.1 to 5.2 4th " " " 4.7 to 5.4 5.3 to 5.4 5.4 to 5.5 10th " " " 5.5 to 6.0  4th largest 1/10 day  6.0 to 6.5 6th " " " 7.5 to 8.0 12th " " " 8.5 to 9.0 9.0 to 9.5  18th " " " 8 8.5 to 9.0 9.0 to 9.5	and PSMC Time	Increment
1.0 to 1.5 1.5 to 2.0 2.0 to 2.5  11th " " "  2.5 to 3.0 3.0 to 3.5 3.5 to 4.0 4.0 to 4.5 4.5 to 4.6  4.6 to 4.7 4.7 to 4.8 4.8 to 4.9 4.9 to 5.0 5.0 to 5.1  5.1 to 5.2 5.2 to 5.3 5.3 to 5.4 5.4 to 5.5 5.5 to 6.0  6th " " "  2.5 to 8.0 8th " " "  3.6 to 7.5 7.5 to 8.0 8th " " "  3.7 to 7.5 8th " " "  4.7 to 4.8 8.5 to 9.0  6.0 to 6.5 8th " " "  8.5 to 9.0	days	
1.0 to 1.5 1.5 to 2.0 2.0 to 2.5  11th " " "  2.5 to 3.0 3.0 to 3.5 3.5 to 4.0 4.0 to 4.5 4.5 to 4.6  4.6 to 4.7 4.7 to 4.8 4.8 to 4.9 4.9 to 5.0 5.0 to 5.1  5.1 to 5.2 5.2 to 5.3 5.3 to 5.4 5.4 to 5.5 5.5 to 6.0  6th " " "  2.5 to 8.0 8th " " "  3.6 to 7.5 7.5 to 8.0 8th " " "  3.7 to 7.5 8th " " "  4.7 to 4.8 8.5 to 9.0  6.0 to 6.5 8th " " "  8.5 to 9.0	0.0 to 0.5	19th largest 1/2 day
1.5 to 2.0  1.5 to 2.0  1.5 to 2.0  1.5 to 2.0  1.5 to 2.0  1.5 to 2.0  1.5 to 2.0  1.5 to 2.0  1.5 to 2.0  1.5 to 2.0  1.5 to 2.0  1.5 th " " "  1.5 to 3.0  3.0 to 3.5  7th " " "  4.0 to 4.5  4.5 to 4.6  9th largest 1/10 day  4.6 to 4.7  4.7 to 4.8  5th " " "  4.7 to 4.8  5th " " "  4.9 to 5.0  1.2 to 5.2  5.2 to 5.3  5.3 to 5.4  5.4 to 5.5  5.5 to 6.0  4th " " "  6.5 to 7.0  7.0 to 7.5  7.5 to 8.0  8.0 to 8.5  14th " " "  8.5 to 9.0  16th " " "	0.5 to 1.0	1 011
2.0 to 2.5  2.5 to 3.0  3.0 to 3.5  3.5 to 4.0  4.0 to 4.5  4.5 to 4.6  9th " " "  4.7 to 4.8  4.8 to 4.9  4.9 to 5.0  5.0 to 5.1  2nd largest 1/10 day  5.1 to 5.2  4th " "  5.2 to 5.3  5.3 to 5.4  5.4 to 5.5  10th " "  6.5 to 7.0  6.5 to 7.0  8.0 to 8.5  8.5 to 9.0  9th " " "  1 "  1 "  1 "  1 "  1 "  1 "  1		17011
2.5 to 3.0 3.0 to 3.5 3.5 to 4.0 4.0 to 4.5 3.5 to 4.6  9th " " " 4.5 to 4.6  9th largest 1/10 day  4.6 to 4.7 7th " " " 4.7 to 4.8 4.8 to 4.9 3rd " " " 4.9 to 5.0 Largest 1/10 day  5.1 to 5.2 5.2 to 5.3 5.3 to 5.4 5.4 to 5.5 10th " " " 5.5 to 6.0  4th largest 1/2 day  6.0 to 6.5 6.5 to 7.0 7.0 to 7.5 7.5 to 8.0 8.0 to 8.5  16th " " " 8.5 to 9.0		1) 011
3.0 to 3.5 3.5 to 4.0 4.0 to 4.5 3.7 to 4.6  4.5 to 4.6  4.6 to 4.7 4.7 to 4.8 5th " " " 4.7 to 4.8 5th " " " 4.9 to 5.0 5.0 to 5.1  5.2 to 5.3 5.3 to 5.4 5.4 to 5.5 5.5 to 6.0  4th largest 1/2 day  6.0 to 6.5 6.5 to 7.0 7.0 to 7.5 7.5 to 8.0 8.0 to 8.5  8th " " " 8.5 to 9.0  8th " " " 8.5 to 9.0	2.0 to 2.5	11th " " "
3.5 to 4.0 4.0 to 4.5 4.5 to 4.6  9th largest 1/10 day  4.6 to 4.7 7th " " " 4.7 to 4.8 5th " " " 4.9 to 5.0 5th " " " 7th " " " 7th " " " 7th " " " 7th " " " 7th " " " 7th " " " 7th " " " 7th " " " 7th " " " 7th " " " 7th " " " 7th " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " 7th " " " " " 7th " " " " 7th " " " " 7th " " " " " 7th " " " " " 7th " " " " " 7th " " " " " 7th " " " " " 7th " " " " " 7th " " " " " " 7th " " " " " " 7th " " " " " " " " 7th " " " " " " " " 7th " " " " " " " " " " " " 7th " " " " " " " " " " " " " " " " " " "		9011
4.0 to 4.5 4.5 to 4.6  9th largest 1/10 day  4.6 to 4.7 7th " " " 4.7 to 4.8 5th " " " 4.9 to 5.0 Largest 1/10 day  5.1 to 5.2 4th " " " 5.2 to 5.3 5.3 to 5.4 5.4 to 5.5 10th " " " 5.5 to 6.0  4th largest 1/2 day  6.0 to 6.5 6.5 to 7.0 7.0 to 7.5 7.5 to 8.0 8.0 to 8.5  16th " " " 8.5 to 9.0  16th " " "		( 011
4.5 to 4.6  9th largest 1/10 day  4.6 to 4.7  4.7 to 4.8  5th " " "  4.8 to 4.9  4.9 to 5.0  Largest 1/10 day  5.1 to 5.2  4th " " "  5.2 to 5.3  5.3 to 5.4  5.4 to 5.5  10th " " "  5.5 to 6.0  6th " " "  6.5 to 7.0  7.0 to 7.5  7.5 to 8.0  8.0 to 8.5  8th " " "  8.5 to 9.0  16th " " "		) til
4.6 to 4.7 4.7 to 4.8 5th " " " 4.8 to 4.9 5.0 to 5.0 5.0 to 5.1  5.1 to 5.2 5.2 to 5.3 5.3 to 5.4 5.4 to 5.5 5.5 to 6.0  6.0 to 6.5 6.5 to 7.0 6.5 to 7.0 7.5 to 8.0 8.0 to 8.5  8.5 to 9.0  4.6 to 4.7 7 th " " " 7 " 7 " 7 " 7 " 7 " 7 " 7 th " " " 7 " 7 " 7 " 7 " 7 th " " " 7 " 7 " 7 th " " " 7 " 7 th " " " 7 " 7 th " " " 7 " 7 th " " " 7 " 7 th " " " 7 " 7 to 4.8 7 to 4.8 7 to 4.9 7 to 7.5 7 to 8.0 7 to 7.5 7 to 8.0 7 to 9.0  16th " " "		)I'u
4.7 to 4.8 4.8 to 4.9 4.9 to 5.0 5.0 to 5.1  2nd largest 1/10 day  5.1 to 5.2 5.2 to 5.3 5.3 to 5.4 5.4 to 5.5 10th " " " 5.5 to 6.0  4th largest 1/2 day  6.0 to 6.5 6.5 to 7.0 7.0 to 7.5 10th " " " 8.5 to 9.0  16th " " "  8.5 to 9.0	4.5 to 4.6	9th largest 1/10 day
4.8 to 4.9  4.8 to 4.9  4.9 to 5.0  5.0 to 5.1  2nd largest 1/10 day  5.1 to 5.2  4th " " "  5.2 to 5.3  6th " " "  5.4 to 5.5  10th " " "  5.5 to 6.0  4th largest 1/2 day  6.0 to 6.5  6th " " "  7.0 to 7.5  10th " " "  7.5 to 8.0  12th " " "  8.5 to 9.0	4.6 to 4.7	CII
4.5 to 4.9 4.9 to 5.0 5.0 to 5.1  2nd largest 1/10 day  5.1 to 5.2 5.2 to 5.3 5.3 to 5.4 5.4 to 5.5 10th " " " 5.5 to 6.0  4th largest 1/2 day  6.0 to 6.5 6.5 to 7.0 7.0 to 7.5 10th " " " 7.5 to 8.0 8.0 to 8.5  16th " " " 8.5 to 9.0  16th " " "		7th
5.0 to 5.1  2nd largest 1/10 day  5.1 to 5.2  4th " " "  5.2 to 5.3  6th " " "  5.3 to 5.4  8th " " "  5.4 to 5.5  10th " " "  5.5 to 6.0  4th largest 1/2 day  6.0 to 6.5  6th " " "  7.0 to 7.5  10th " " "  7.5 to 8.0  12th " " "  8.5 to 9.0  16th " " "	4.8 to 4.9	)ru
5.1 to 5.2 5.2 to 5.3 6th " " " 5.4 to 5.5 10th " " " 5.5 to 6.0 4th largest 1/2 day  6.0 to 6.5 6.5 to 7.0 7.0 to 7.5 7.5 to 8.0 8.0 to 8.5 12th " " " 8.5 to 9.0 16th " " "		
5.2 to 5.3 5.3 to 5.4 8th " " " 5.4 to 5.5 10th " " " 5.5 to 6.0 4th largest 1/2 day  6.0 to 6.5 6th " " " 7.0 to 7.5 10th " " " 7.5 to 8.0 12th " " " 8.5 to 9.0 16th " " "	5.0 to 5.1	2nd largest 1/10 day
5.2 to 5.3 5.3 to 5.4 5.4 to 5.5 10th " " " 5.5 to 6.0 4th largest 1/2 day  6.0 to 6.5 6.5 to 7.0 8th " " " 7.0 to 7.5 10th " " " 7.5 to 8.0 12th " " " 8.5 to 9.0 16th " " "	5.1 to 5.2	<u> </u>
5.3 to 5.4 5.4 to 5.5 10th " " " 5.5 to 6.0 4th largest 1/2 day  6.0 to 6.5 6.5 to 7.0 8th " " " 7.0 to 7.5 10th " " " 7.5 to 8.0 12th " " " 8.5 to 9.0  16th " " "		
5.4 to 5.5 5.5 to 6.0  10th " " " " 4th largest 1/2 day  6.0 to 6.5 6th " " " 6.5 to 7.0 8th " " " 7.0 to 7.5 10th " " " 7.5 to 8.0 12th " " " 8.0 to 8.5 14th " " "		
5.5 to 6.0  4th largest 1/2 day  6.0 to 6.5  6.5 to 7.0  8th " " "  7.0 to 7.5  10th " " "  7.5 to 8.0  12th " " "  8.5 to 9.0  16th " " "		
6.5 to 7.0 8th " " " 7.0 to 7.5 10th " " " 7.5 to 8.0 12th " " " 8.0 to 8.5 14th " " "		
6.5 to 7.0 8th " " " 7.0 to 7.5 10th " " " 7.5 to 8.0 12th " " " 8.0 to 8.5 14th " " "	6.0 to 6.5	6th " " "
7.0 to 7.5 10th " " " 7.5 to 8.0 12th " " " 8.0 to 8.5 14th " " "	_	
7.5 to 8.0 8.0 to 8.5 14th " " " 8.5 to 9.0 16th " " "		
8.0 to 8.5 14th " " " 8.5 to 9.0 16th " " "		
0.7 to 9.0		
	8.5 to 9.0	16th " " "
9.5 to 10.0 20th " "		

which the table is prepared, therefore choose that set having a  $Q_1/Q_{10}$  ratio and  $T_{\rm c}$  nearest those of the watershed. It is easier to make the choice on table 21.9, which gives available PSH and PSMC and their serial numbers, and then to look up the serial number in table 21.10 for the tabulations.

### Examples

The procedure by which a PSH or PSMC is developed will be illustrated by four examples. In example 21.1, channel losses are taken from direct runoff before development of a PSH and PSMC; in example 21.2, QRF is added to a PSH and PSMC; in example 21.3, runoff volume and rate maps (exhibit 21.1 through 21.5) are used to obtain runoff; and in example 21.4, upstream releases are added to a PSH.

- 1. Compile the 1- and 10-day point rainfall amounts from U.S. Weather Bureau maps. For this location TP-40 and TP-49 are used. The 50-year frequency 1- and 10-day amounts are 6.8 and 11.0 inches respectively.
- 2. Determine the areal rainfall. Get the adjustment factors from table 21.1. For the drainage area of 15.0 square miles they are 0.978 and 0.991 for the 1- and 10-day rains respectively. The areal rainfall is 0.978(6.8) = 6.65 inches for the 1-day rain and 0.991(11.0) = 10.9 inches for the 10-day rain.
- 3. Determine the CN for the 10-day rain. First check whether the 100-year frequency 10-day point rainfall amount is 6 or more inches. The appropriate map in TP-49 shows it is, therefore enter table 21.2 with the 1-day CN of 80 and find the 10-day CN is 65.
- 4. Estimate the direct runoff for 1 and 10 days. Enter figure 10.1 with the rainfall amounts from step 2 and the appropriate CN from step 3 and find  $Q_1 = 4.37$  and  $Q_{10} = 6.34$  inches.
- 5. Compute the climatic index. Using the given data and equation 21.1, the index Ci is  $100(22.8)/61.5^2 = 0.603$ . Because the Ci is less than 1 the channel loss may be used to reduce direct runoff.
- 6. Estimate the net runoff. The net runoff is the direct runoff minus the channel loss but when table 21.3 is used the net
  runoff is obtained by a multiplication not a subtraction. Enter

table 21.3 with the drainage area 15.0 square miles and the Ci of 0.603 and by interpolation find a reduction factor of 0.75. Multiply  $Q_1$  and  $Q_{10}$  of step 4 by the factor to get net runoffs of 3.28 and 4.76 inches respectively. The net runoffs will be  $Q_1$  and  $Q_{10}$  in the rest of this example.

- 7. Compute the  $Q_1/Q_{10}$  ratio. From step 6,  $Q_1/Q_{10} = 3.28/4.76 = 0.689$ .
- 8. Find the PSH and PSMC tabulations in table 21.10. Enter table 21.9 with the ratio 0.689 and  $T_{\rm c}$  of 7.1 hours and find that the PSH with values nearest those is No. 22. Locate the appropriate tabulations in table 21.10 by looking up PSH No. 22. Columns 1, 2, and 4 of table 21.6 show the time, rate, and mass tabulations taken from table 21.10.
- 9. Compute PSH discharges in cfs. First find the product of drainage area and  $Q_{10}$ . This is 15.0(4.76) = 71.40 mile²-inches. Multiply the entries in column 2, table 21.6 by 71.40, to get the discharges in cfs in column 3.
- 10. Compute PSMC amounts in inches. Multiply the entries in column 4, table 21.6, by  $Q_{10}$  (4.76) to get accumulated runoff in inches as shown in column 5. If amounts in acre-feet or another unit are desired, convert  $Q_{10}$  to the desired unit before making the series of multiplications.

The example is completed with step 10. The next step is that of routing the PSH or PSMC through the structure; see chapter 17 for routing methods.

In the second example the steps concerning channel loss are omitted and steps concerning QRF are included.

Example 21.2--Develop the 25-year frequency PSH and PSMC for a water-shed at latitude ______, longitude ______. The watershed has a drainage area of 8.0 square miles, time of concentration of 2.0 hours, average annual precipitation of 30.5 inches, average annual temperature of 53.1°F, and a runoff curve number of 75. QRF during flood periods is estimated to be 5 cfs. There are no upstream structures in the watershed.

- 1. Compile the 1- and 10-day point rainfall amounts from U.S. Weather Bureau maps. For this location TP-40 and TP-49 are used. The 25-year frequency 1- and 10-day amounts are 5.6 and 12.5 inches respectively.
- 2. Determine the areal rainfall. Because the drainage area is not over 10 square miles the areal rainfall is the same as the point rainfall. The amounts in step 1 will be used.

Table 21.6.--PSH and PSMC for example 21.1

Time	cfs A Q ₁₀	PSH	Acc. Q Q ₁₀	PSMC
days	csm/inch	cfs		inches
0	0	0	0	0
.2	•231	16	•0007	.00
.5	•418	30	•0045	.02
1.0	•535	38	•0135	.06
2.0	•610	44	•0340	.16
3.0 3.6 4.0 4.3 4.6	.837 1.123 1.398 1.932 2.865	60 80 100 138 204	.0609 .0827 .1019 .1196 .1464	.29 .39 .48 .57
4.8	3.973	284	.1709	.81
4.9	5.461	390	.1883	.90
5.0	27.118	1936	.2482	1.18
5.1	55.278	3947	.3998	1.90
5.2	41.011	2928	.5770	2.75
5.3	23.735	1695	.6961	3.31
5.4	13.975	998	.7655	3.64
5.5	8.668	619	.8072	3.84
5.6	5.638	402	.8335	3.97
5.8	2.818	201	.8634	4.11
6.0	1.859	133	.8798	4.19
6.5	1.360	97	.9078	4.32
7.0	1.002	72	.9290	4.42
7.5	.804	57	.9453	4.50
8.0	.687	59	.9588	4.56
9.0 9.9 10.1 10.3 10.8	•533 •416 •194 •044	38 30 14 3 0	.9812 .9966 .9990 .9998 1.0000	4.67 4.74 4.76 4.76 4.76

- 3. Determine the CN for the 10-day rain. The 10-day amount in step 1 is over 6 inches therefore the 100-year 10-day amount is too, and table 21.2 may be used. Enter the table with the CN of 75 for 1 day and find the CN is 58 at 10 days.
- 4 . Estimate the direct runoff for 1 and 10 days. Enter figure 10.1 with the rainfall amounts from step 2 and the appropriate CN from step 3 and find  $Q_1$  = 2.94 and  $Q_{10}$  = 6.68 inches. Because there are no channel losses, the direct runoff is the net runoff.
- 5. Compute the  $Q_1/Q_{10}$  ratio. From step 4,  $Q_1/Q_{10} = 2.94/6.68 = 0.440$ .
- 6. Find the PSH and PSMC tabulations in table 21.10. Enter table 21.9 with the ratio of 0.440 and  $T_{\rm C}$  of 2.0 hours and find that the PSH and PSMC with values nearest those is No. 3. Locate the appropriate tabulations in table 21.10 by looking up PSH No. 3.
- 7. Compute PSH discharges in cfs. First find the product of drainage area and  $Q_{10}$ . This is 8.0(6.68) = 53.44 mile²-inches. Multiply the entries in table 21.10 for PSH No. 3 by 53.44 to get discharges in cfs. These are shown in column 2, table 21.7, under the heading of "Preliminary PSH" because the final PSH must contain QRF.
- 8. Compute PSMC amounts in inches. Multiply the entries in table 21.10 for PSMC No. 3 by  $Q_{10}$  (6.68 inches) to get accumulated runoff in inches. The results are shown in column 5, table 21.7, under the heading "Preliminary PSMC" because the final PSMC must contain accumulated QRF. If the PSMC is to be in acre-feet or another unit, convert  $Q_{10}$  to the desired unit before making the series of multiplications.
- 9. Determine the minimum permissible quick return flow. First compute the climatic index: using the average annual precipitation and temperature and equation 21.1, the index Ci is  $100(30.5)/53.1^2 = 1.08$ . Enter table 21.4 with the Ci of 1.08 and find that the minimum QRF is 0.045 inches per day or 1.20 csm, which converts to 8.0(1.20) = 9.6 cfs. The locally estimated QRF is 5 cfs. Therefore the minimum permissible QRF is 9.6 cfs because it is larger than the locally estimated flow. Round 9.6 to 10 cfs and tabulate in column 3, table 21.7.
- 10. Add QRF to the preliminary PSH. The QRF shown in column 3, table 21.7, is added to the preliminary PSH, column 2, to give the PSH discharges in column 4.
- 11. Add QRF to the preliminary PSMC. The accumulated QRF in inches, column 6, table 21.7, is added to the preliminary PSMC column 5, to give the PSMC amounts in column 7.

Table 21.7.--PSH and PSMC for example 21.2

Time	Prelim- inary PSH	QRF*	PSH	Prelim- inary PSMC	Acc. QRF**	PSMC
days	cfs	cfs	cfs	inches	inches	inches
0 .1 .5 1.0 2.0	0 48 60 69 78	10 10 10 10	10 58 70 79 88	0 .01 .11 .26 .60	.00 .02 .04 .09	0 .01 .13 .30 .69
3.0 3.5 4.0 4.2 4.4	100 118 146 181 230	10 10 10 10	110 128 156 191 240	1.00 1.26 1.58 1.72 1.91	.14 .16 .18 .19	1.14 1.42 1.76 1.91 2.11
4.6 4.7 4.8 4.9 5.0	259 298 370 512 1992	10 10 10 10	269 308 380 522 2002	2.13 2.25 2.40 2.60 3.16	.21 .21 .22 .22	2.34 2.46 2.62 2.82 3.38
5.1 5.2 5.3 5.4 5.5	1039 567 383 302 257	10 10 10 10	1049 577 393 312 267	3.84 4.20 4.42 4.57 4.69	.23 .23 .24 .24	4.07 4.43 4.66 4.81 4.94
5.6 5.8 6.0 6.5 7.0	207 174 154 128 108	10 10 10 10	217 184 164 138 118	4.80 4.97 5.11 5.41 5.66	.25 .26 .27 .29 .32	5.05 5.23 5.38 5.70 5.98
8.0 9.0 10.0 10.1 10.3	84 72 57 2 0	10 10 10 10	94 82 67 12 10	6.07 6.41 6.66 6.68 6.68	.36 .40 .45 .45	6.43 6.81 7.11 7.13 7.14
11.0 12.0 etc.	0 0 etc.	10 10 etc.	10 10 etc.	6.68 6.68 etc.	.50 .54 etc.	7.18 7.22 etc.

^{* 9.6} cfs rounded to 10 cfs.

^{**} At a rate of 0.045 inches per day.

In the third example the use of the runoff volume maps is illustrated.

Example 21.3--Develop the 100-year frequency PSH for a water-shed located at 43° latitude and 77° longitude. The watershed has a drainage area of 12 square miles, time of concentration of 3.5 hours.

- 1. Estimate 100-year 10-day runoff volumes from exhibit 21.1. The interpolated value is 8.8.
- 2. Select the  $Q_1/Q_{10}$  ratio from exhibit 21.2. For this area the value is 0.4.
- 3. Calculate 1-day volume of runoff.  $Q_1/Q_{10} = 0.4$ ,  $Q_1 = (0.4)$  (8.8) = 3.52 inches.
- 4. Find the PSH tabulations in Table 21.10. Enter table 21.9 with the  $Q_1/Q_{10}$  ratio of 0.4 and Tc of 3.5 hours and find that the PSH with values nearest is No. 11. Locate appropriate tabulations in table 21.10 by looking up PSH No. 11.
- 5. Compute PSH discharges in cfs. Find the product of drainage area and  $Q_{10}$ . This is (12) (8.8) = 105.6 mile²-inches. Entries for PSH No. 11 are multiplied by this value to obtain discharge in cfs. These are shown in column 2, table 21.8.
- 6. Determine the quick-return flow rate. From exhibit 21.3 the interpolated value is 5.3 csm.
- 7. Extension of quick-return flow rates beyond the PSH. The quick-return flow rate is (12) (5.3) = 63.6 cfs, round to 64 cfs. This constant rate of discharge is an extension to the PSH as shown in figure 21.1a, and column 4, table 21.8. No value less than 64 cfs should be used in the recession side of the PSH.

The procedure for adding releases from upstream structures is shown in the following descriptive example. If a lower structure has channel losses in its contributing area the deduction for channel loss is made in the preliminary PSH for that area. Deductions may also be required for PSH of the upper structures but once these PSH are routed through the structures no further deductions are made in the release rates.

Example 21.4--Adding releases from upstream structures when developing the PSH for a lower structure in a series is done as follows:

1. Develop the preliminary PSH for the lower structure. Use the method of example 21.1 or 21.2 or 21.3 whichever is applicable.

Table 21.8.--PSH for Example 21.3.

Time	Prelim- inary PSH	QRF	PSH
days	cfs	<u>cfs</u>	cfs
0	0		0
.1	61		61
.5	116		116
1.0	134		134
2.0	151		151
3.0	195		195
3.5	230		230
4.0	285		285
4.3	371		371
4.6	495		495
4.8	667		667
4.9	894		894
5.0	2885		2885
5.1	2455		2455
5.2	1478		1478
5.3	954		954
5.4	696		696
5.5	552		552
5.6	446		446
5.7	383		383
5.8	352		352
6.0	307		307
6.5	251		251
7.0	211		211
7.5	181		181
8.0 9.0 10.0 10.1 10.7	163 140 111 16 0	64 64	163 140 111 64 64
11.0	0	64	64
12.0	0	64	64
etc.	etc.	etc.	etc:

- 2. Flood-route the upstream structure releases or outflows to the lower structure. Chapter 17 discusses flood-routing procedures.
- 3. Add the routed flows to the preliminary PSH to get the PSH for the lower structure.

Note that if an upstream structure is itself a lower structure in a series then the procedure of example 21.4 must be followed for it first.

Table 21.9. -- Serial numbers of PSH and PSMC

T _C	Q ₁ /Q ₁₀												
	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9					
hours	Serial numbers												
.1.5* 3 6 12 18	1 9 17 25 33	2 10 18 26 34	3 11 19 27 35	4 12 20 28 36	5 13 21 29 37	6 14 22 30 38	7 15 23 31 39	8 16 24 32 40					
24 30 36 42 48	41 49 57 65 73	42 50 58 66 74	43 51 59 67 75	44 52 60 68 76	45 53 61 69 77	46 54 62 70 78	47 55 63 71 79	48 5.6 64 72 80					
54 60 66 72**	81 89 97 105	82 90 98 106	83 91 99 107	84 92 100 108	85 93 101 109	86 94 102 110	87 95 103 111	88 96 104 112					

^{*} Use this row for all  $T_c$  less than 1.5 hours.

^{**} Use this row for all  $T_{\mbox{\scriptsize C}}$  over 72 hours.

Table 21.10.--Time, rate and mass tabulations for Principal Spillway Hydrographs (PSH) and Mass Curves (PSMC)

							$T_c = 1.5$	hours
Serial No.: 1 $Q_1/Q_{10}$ : 0.2		2		3		4		
		0.3		0.4		0.5		
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ _{lO}	<u>ହ/ହ</u> ୀ0	cfs/AQ _{lO}	<u>Q/Q₁₀</u>	cfs/AQ _{lO}	ବ/ବ ₁₀	cfs/AQ _{lO}	ବ୍/ବ୍ର
0	0	0°	0	0	0	0	0	0
.1	1.584	.0028	1.188	.0021	.890	.0016	•704	.0013
.5	2.014	.0308	1.510	.0230	1.119	.0170	•895	.0136
1.0	2.126	.0687	1.594	.0515	1.286	.0397	•951	.0305
2.0	2.237	.1480	1.846	.1156	1.454	.0894	1•203	.0705
3.0	2.517	.2358	2.209	.1904	1.873	•1505	1.510	.1208
3.5	2.741	.2845	2.489	.2342	2.208	•1890	1.846	.1530
4.0	3.210	.3385	2.992	.2866	2.741	•2365	2.405	.1946
4.2	3.470	.3624	3.618	.3094	3.394	•2583	3.222	.2144
4.4	3.760	.3885	4.237	.3374	4.313	•2854	3.928	.2396
4.6	4.060	.4172	4.732	.3701	4.851	•3186	4.655	.2706
4.7	4.342	.4323	5.257	.3881	5.570	•3373	5.485	.2888
4.8	4.868	.4489	6.209	.4087	6.916	•3597	6.966	.3111
4.9	5.708	.4679	8.068	.4343	9.587	•3893	10.303	.3421
5.0	10.027	.4962	21.540	.4876	37.270	•4734	57.224	.4632
5.1 5.2 5.3 5.4 5.5	7.689 5.825 4.916 4.444 4.065	.5281 .5524 .5718 .5886 .6040	13.395 8.470 6.320 5.270 4.652	•5504 •5897 •6162 •6371 •6549	19.442 10.603 7.162 5.642 4.812	.5752 .6291 .6610 .6840 .7027	25.499 12.108 7.460 5.520 4.584	.6115 .6790 .7141 .7373
5.6	3.546	.6176	3.976	.6704	3.875	.7183	3.605	.7701
5.8	3.300	.6430	3.230	.6971	3.261	.7435	2.847	.7927
6.0	3.193	.6659	3.124	.7196	2.882	.7653	2.553	.8121
6.5	2.797	.7183	2.713	.7696	2.405	.8100	2.070	.8505
7.0	2.629	.7661	2.321	.8126	2.020	.8476	1.678	.8816
8.0 9.0 10.0 10.1 10.3	2.293 2.126 1.902 .070	.8526 .9306 .9948 .9998 1.0000	1.846 1.594 1.510 .056	.8848 .9458 .9959 .9999	1.566 1.342 1.063 .039	.9082 .9590 .9971 .9999	1.230 .951 .839 .031	•9305 •9683 •9977 •9999 1•0000

 $T_c = 1.5 \text{ hours}$ 

Serial		.6	6	7	7	8	8	9
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u> </u>	cfs/AQ ₁₀	<u> </u>	cfs/AQ _{lO}	<u>२/२₁₀</u>	cfs/AQ ₁₀	ହ/ହ ₁₀
0 .1 .5 1.0 2.0	0 •528 •671 •754 •922	.0009 .0102 .0232 .0534	0 •352 •470 •559 •642	.0006 .0068 .0164 .0373	0 •198 •280 •330 •442	.0004 .0040 .0095 .0240	0 .088 .140 .168 .218	0 .0002 .0019 .0047 .0113
3.0 3.5 4.0 4.2 4.4	1.225 1.482 2.014 2.808 3.374	.0929 .1186 .1533 .1702 .1918	.867 1.113 1.454 2.034 2.855	.0654 .0844 .1095 .1222 .1400	.587 .671 1.062 1.650 1.678	.0428 .0546 .0723 .0826 .0946	.302 .390 .531 .838 .974	.0203 .0268 .0359 .0412 .0479
4.6 4.7 4.8 4.9 5.0	4.154 4.960 6.567 10.131 81.384	.2191 .2354 .2561 .2860 .4500	3.405 4.162 5.627 9.071 109.748	.1621 .1757 .1932 .2195 .4323	2.442 3.055 4.179 6.888 142.265	.1096 .1194 .1324 .1522 .4191	1.270 1.660 2.317 3.956 179.016	.0555 .0607 .0678 .0790 .4063
5.1 5.2 5.3 5.4 5.5	31.367 12.872 7.150 5.069 4.112	.6520 .7312 .7671 .7890 .8054	36.714 13.042 6.332 4.242 3.366	.6945 .7836 .8183 .8372 .8508	41.728 12.441 5.140 3.117 2.426	.7483 .8452 .8767 .8915 .9014	45.898 11.085 3.430 1.704 1.298	.8086 .9105 .9364 .9456 .9510
5.6 5.8 6.0 6.5 7.0	2.998 2.554 2.028 1.678 1.342	.8182 .8379 .8543 .8853 .9103	2.554 1.976 1.622 1.371 1.007	.8614 .8770 .8897 .9152 .9344	1.696 1.406 1.088 .929 .671	.9088 .9195 .9286 .9459	.909 .805 .569 .426 .314	<ul><li>9550</li><li>9605</li><li>9652</li><li>9734</li><li>9796</li></ul>
8.0 9.0 10.0 10.1 10.3	.924 .727 .587 .022	.9481 .9769 .9984 1.0000	.699 .532 .420 .016	.9626 .9840 .9989 1.0000	.420 .308 .258 .009	.9765 .9897 .9993 1.0000	.224 .168 .118 .004	.9887 .9953 .9997 1.0000

Table 21.10.--(Continued)

 $T_c = 3 \text{ hours}$ 

Serial Q ₁ /G		,2	10	3	11	•4	12	5
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ _{lO}	<u> </u>	cfs/AQ ₁₀	ବ/ବ୍ର	cfs/AQ ₁₀	ବ∕ବ୍10	cfs/AQ ₁₀	<u>Q/Q</u> 10
0 .1 .5 1.0 2.0	0 1.034 1.984 2.097 2.207	0 •0019 •0277 •0654 •1445	0 •775 1.488 1.572 1.821	0 .0014 .0207 .0490 .1128	0 •574 1•102 1•269 1•434	0 .0010 .0153 .0377 .0872	0 •460 •882 •938 1•186	.0008 .0122 .0290 .0686
3.0 3.5 4.0 4.3 4.6	2.483 2.703 3.226 3.515 3.982	.2319 .2803 .3336 .3697 .4110	2.178 2.455 2.951 3.687 4.599	.1870 .2304 .2819 .3172 .3630	1.844 2.175 2.702 3.516 4.687	.1476 .1856 .2322 .2657 .3114	1.490 1.820 2.372 3.283 4.455	.1185 .1501 .1909 .2214 .2638
4.8 4.9 5.0 5.1 5.2	4.607 5.310 8.383 8.061 6.429	.4419 .4600 .4850 .5150 .5414	5.770 7.265 16.609 15.002 10.246	.4001 .4238 .4674 .5250 .5710	6.321 8.462 27.323 23.244 13.995	•3505 •3774 •4424 •5344 •6022	6.315 8.934 40.542 32.577 17.510	.3020 .3296 .4196 .5526 .6436
5.3 5.4 5.5 5.6 5.7	5.305 4.654 4.194 3.708 3.583	.5628 .5810 .5972 .6116 .6249	7.384 5.842 4.926 4.214 3.874	.6031 .6272 .6468 .6635 .6782	9.038 6.587 5.225 4.227 3.631	.6441 .6725 .6940 .7112 .7255	10.235 6.862 5.100 3.989 3.293	.6940 .7251 .7468 .7634 .7766
5.8 6.0 6.5 7.0 7.5	3.367 3.143 2.762 2.593 2.428	.6376 .6610 .7140 .7620 .8071	3.406 3.095 2.677 2.291 2.069	.6915 .7148 .7654 .8090 .8477	3.331 2.905 2.374 2.000 1.712	•7382 •7607 •8063 •8444 •8770	2.940 2.581 2.042 1.656 1.407	.7880 .8079 .8473 .8790 .9057
8.0 9.0 10.0 10.1 10.7	2.262 2.097 1.877 .280	.8490 .9273 .9919 .9991	1.821 1.573 1.490 .222	.8819 .9433 .9936 .9993	1.545 1.324 1.050 .156	.9058 .9569 .9955 .9995	1.214 .938 .829 .123	.9286 .9669 .9964 .9996

Table 21 10. -- (Continued)

 $T_c = 3 \text{ hours}$ 

Serial	_		14		15		16	
ବ <u>1</u> /ଜ	₁₀ : 0	<b>.</b> 6	0	•7	0	.8	0.	9
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ10	<u>Q/Q₁₀</u>	cfs/AQ ₁₀	<u>Q/Q₁₀</u>	cfs/AQ _{lO}	<u> </u>	cfs/AQ _{lO}	<u>ହ/ହ</u> 10
0 .1 .5 1.0 2.0	0 •345 •661 •741 •906	0 .0006 .0092 .0221	0 •230 •455 •550 •630	0 •000 ⁴ •0061 •0156 •0363	0 •129 •274 •318 •428	0 .0002 .0036 .0090 .0234	0 .057 .137 .165 .208	0 .0001 .0017 .0045
3.0 3.5 4.0 4.3 4.6	1.200 1.462 1.986 2.802 3.961	.0910 .1164 .1502 .1762 .2131	.855 1.090 1.434 2.305 3.220	.0641 .0827 .1073 .1270	•579 •662 1.044 1.626 2.277	.0420 .0536 .0707 .0860 .1062	.290 .382 .524 .892 1.160	.0198 .0262 .0351 .0431 .0538
4.8 4.9 5.0 5.1 5.2	5.881 8.682 56.240 42.862 20.664	.2477 .2741 .3920 .5720 .6874	5.004 7.686 74.415 53.883 23.462	.1861 .2091 .3581 .5910	3.699 5.803 94.971 65.740 25.834	.1271 .1444 .3272 .6187 .7848	2.035 3.303 118.066 78.137 27.664	.0650 .0746 .2947 .6504 .8423
5.3 5.4 5.5 5.6 5.7	10.890 6.744 4.686 3.438 2.871	•7447 •7767 •7975 •8122 •8237	11.095 6.234 3.953 2.890 2.282	.7941 .8256 .8441 .8565 .8659	10.896 5.412 2.980 1.996 1.580	.8514 .8810 .8962 .9053 .9118	10.182 4.240 1.764 1.073 •793	•9109 •9370 •9479 •9531 •9564
5.8 6.0 6.5 7.0 7.5	2.618 2.113 1.656 1.325 1.080	.8337 .8509 .8827 .9082 .9291	2.033 1.659 1.356 .995 .802	.8737 .8870 .9130 .9328 .9484	1.436 1.149 .924 .662 .525	•9172 •9267 •9445 •9576 •9678	.781 .587 .427 .317 .250	•9593 •9642 •9728 •9791 •9841
8.0 9.0 10.0 10.1 10.7	.915 .719 .582 .086	.9467 .9758 .9975 .9997	.690 .528 .415 .062	.9615 .9832 .9982 .9998	.414 .304 .262 .038	.9759 .9892 .9989 .9999	.221 .166 .123 .018	.9883 .9951 .9995 .9999

Table 21.10.--(Continued)

 $T_c = 6 \text{ hours}$ 

Serial	ż	•2	18	3	19	4	20	•5
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	ର/୧ ₁₀	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ ₁₀	<u>ର/ବ</u> ୃ	cfs/AQ ₁₀	<u> २/२</u> 10
0 .2 .5 1.0 2.0	0 1.038 1.862 2.063 2.174	0 .0031 .0205 .0575 .1361	0 •779 1•397 1•547 1•792	0 .0023 .0154 .0431 .1059	0 •577 1•035 1•244 1•410	0 .0017 .0114 .0329 .0818	0 •461 •828 •923 1•164	.0014. .0091 .0255
3.0 3.6 4.0 4.3 4.6	2.444 2.714 3.006 3.284 3.801	.2225 .2800 .3220 .3571 .3964	2.136 2.489 2.886 3.349 4.282	.1787 .2302 .2709 .3044 .3466	1.800 2.215 2.636 3.178 4.310	.1407 .1854 .2222 .2536 .2950	1.462 1.876 2.314 2.944 4.029	.1128 .1500 .1820 .2102 .2485
4.8 4.9 5.0 5.1 5.2	4.196 4.653 5.991 7.547 7.180	.4258 .4421 .4618 .4868 .5141	5.046 5.951 9.630 14.087 12.665	•3807 •4010 •4298 •4736 •5230	5.340 6.616 13.534 22.175 18.923	•3300 •3521 •3892 •4551 •5309	5.225 6.721 17.748 31.771 25.805	.2820 .3040 .3491 .4404 .5464
5.3 5.4 5.6 5.8	6.166 5.330 4.723 4.212 3.587	•5388 •5601 •5786 •5952 •6237	9.785 7.628 6.186 5.169 3.923	.5645 .5967 .6222 .6432 .6764	13.444 9.677 7.310 5.727 3.881	.5906 .6332 .6645 .6886 .7233	17.306 11.430 8.067 5.954 3.641	.6254 .6778 .7138 .7396 .7741
6.0 6.5 7.0 7.5 8.0	3.188 2.757 2.566 2.403 2.240	.6486 .7034 .7522 .7978 .8404	3.214 2.662 2.282 2.052 1.808	.7023 .7552 .8002 .8398 .8750	3.109 2.372 2.000 1.706 1.532	.7487 .7971 .8367 .8704 .8999	2.784 2.040 1.652 1.400 1.207	.7972 .8394 .8727 .9003 .9239
9.0 9.9 10.1 10.3 10.8	2.071 1.862 .872 .198	.9193 .9847 .9955 .9991	1.559 1.475 .692 .158	•9373 •9879 •9965 •9992 1•0000	1.312 1.052 .490 .111	.9519 .9914 .9975 .9995	•933 •828 •386 •040	.9633 .9932 .9980 .9998 1.0000

Table 21.10.--(Continued)

							$T_c = 6$	hours			
Serial			22		23	0	24	24 0.9  PSH PSMC  Ss/AQ10 Q/Q10  0 0 058 0002 124 0012 160 0039 194 0102  274 0188 395 0262 510 0331 784 0401 999 0500  1.555 0591 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661 2.255 0661			
$Q_1/Q_1$	410 , O	.6	0.	7	0.	8	0.	9			
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC			
days	cfs/AQ ₁₀	ବ୍⁄ବ୍10	cfs/AQ _{lO}	<u>ହ/ହ</u> ୀଠ	cfs/AQ ₁₀	<u>ହ/ହ</u> ୀଠ	cfs/AQ ₁₀	<u>Q/Q</u> 10			
0 •2 •5 1.0 2.0	0 •346 •621 •719 •881	.0010 .0068 .0193 .0486	0 .231 .418 .535 .610	0 •0007 •0045 •0135 •0340	0 •130 •254 •302 •412	.0004 .0026 .0079 .0218	.058 .124 .160	.0002 .0012 .0039			
3.0 3.6 4.0 4.3 4.6	1.167 1.518 1.934 2.527 3.539	.0865 .1163 .1428 .1666 .1997	.837 1.123 1.398 1.932 2.865	.0609 .0827 .1019 .1196 .1464	•566 •708 1•004 1•489 1•961	.0398 .0536 .0668 .0804 .0987	•395 •510 •784	.0262 .0331 .0401			
4.8 4.9 5.0 5.1 5.2	4.747 6.335 22.276 42.826 33.204	•2295 •2499 •3026 •4225 •5625	3.973 5.461 27.118 55.278 41.011	.1709 .1883 .2482 .3998 .5770	2.887 4.056 32.166 69.093 49.241	.1161 .1289 .1955 .3817 .5993	1.555 .2.255 37.622 84.295 57.738	.0661 .1394 .3634			
5.3 5.4 5.5 5.6 5.8	20.462 12.851 8.521 5.896 3.326	.6613 .7226 .7619 .7885 .8212	23.735 13.975 8.668 5.638 2.818	.6961 .7655 .8072 .8335 .8634	26.833 14.846 8.572 5.120 2.199	.7392 .8159 .8589 .8841 .9096	29.654 15.379 8.194 4.424 1.490	.8679 •9112			
6.0 6.5 7.0 7.5 8.0	2.389 1.655 1.322 1.085 .918	.8417 .8764 .9031 .9249	1.859 1.360 1.002 .804 .687	.8798 .9078 .9290 .9453 .9588	1.326 .931 .666 .525 .415	.9216 •9409 •9551 •9658 •9743	.680 .438 .327 .253 .221	•9616 •9711 •9779 •9832 •9875			
9.0 9.9 10.1 10.3 10.8	.718 .586 .272 .062	•9730 •9952 •9986 •9997	•533 •416 •194 •044	.9812 .9966 .9990 .9998	•305 •271 •122 •028	.9880 .9978 .9988 .9999	.165 .129 .057 .013	.9944 .9990 .9997 .9999			

Table 21.10.--(Continued)

						$T_{C}$	= 12 hou	rs
Serial Q1/Q		•2	26 0.	3	27	4	28 0.	5
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	8/810	cfs/AQ _{lO}	<u>ଷ୍/ହ</u> ୀଠ	cfs/AQ _{lO}	ବ/ବ୍ ₁₀	cfs/AQ _{lO}	<u>0/0</u> 10
0 .6 1.0 2.0	0 .678 1.577 1.967 2.156	0 .0026 .0158 .0426 .1198	0 .509 1.183 1.475 1.764	0 .0019 .0118 .0319 .0926	0 •377 •879 1•165 1•379	0 .0014 .0088 .0242 .0714	0 .302 .701 .878 1.124	.0011 .0070 .0189 .0557
3.0 4.0 4.3 4.6 4.8	2.408 2.842 3.105 3.485 3.804	.2043 .3006 .3336 .3701 .3971	2.075 2.748 2.992 3.711 4.310	.1631 .2502 .2818 .3187 .3483	1.726 2.486 2.979 3.630 4.377	.1278 .2035 .2325 .2677 .2971	1.414 2.164 2.507 3.345 4.148	.1022 .1658 .1913 .2234 .2508
4.9 5.0 5.1 5.2 5.3	4.043 4.540 5.388 6.200 6.451	.4116 .4275 .4459 .4673 .4908	4.768 5.944 8.174 10.329 10.879	.3651 .3849 .4110 .4452 .4844	4.995 6.976 11.052 15.007 15.865	•3144 •3365 •3698 •4179 •4749	4.855 7.736 14.079 20.236 21.358	.2674 .2907 .3309 .3942 .4710
5.4 5.5 5.6 5.8 6.0	6.163 5.659 5.157 4.298 3.706	.5141 .5360 .5561 .5910 .6205	9.984 8.609 7.374 5.483 4.796	•5230 •5574 •5870 •6342 •6533	14.080 11.562 9.437 6.345 4.558	.5302 .5776 .6164 .6741 .7138	18.384 14.463 11.327 7.000 4.649	.5443 .6049 .6525 .7192 .7615
6.2 6.5 6.8 7.4 8.0	3.331 2.940 2.717 2.477 2.283	.6465 .6812 .7126 .7702 .8232	3.500 2.893 2.569 2.161 1.875	.6985 .7335 .7638 .8159 .8608	3.519 2.684 2.286 1.848 1.582	.7434 .7772 .8046 .8502 .8880	3.366 2.389 1.948 1.519 1.262	.7907 .8220 .8457 .8837 .9144
9.0 10.0 10.3 10.6 11.4	2.086 1.826 .844 .239	.9036 .9772 .9926 .9981	1.601 1.439 .667 .189	.9253 .9820 .9942 .9985 1.0000	1.341 1.053 .480 .136	.9418 .9870 .9958 .9989 1.0000	•977 •822 •377 •107	•9559 •9898 •9967 •9991

Table 21.10.--(Continued)

							$T_c = 12 h$	ours
Serial	No.: 29		30		31		32	
Q <u>1</u> /6	₹ ₁₀ : 0	.6	0.	7	0.0	8	0.	9
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ10	ବ/ହ10	cfs/AQ ₁₀	<u>ୟ/ୟ₁₀</u>	cfs/AQ ₁₀	<u> २/२</u> 10	cfs/AQ ₁₀	<u>Q/Q</u> 10
0 .6 1.0 2.0	0 .226 .526 .672 .847	0 .0008 .0052 .0142 .0423	0 •151 •356 •490 •585	0 .0006 .0035 .0098 .0296	0 .086 .212 .281 .403	0 .0003 .0020 .0058 .0188	0 .038 .102 .145 .186	0 .0001 .0010 .0028 .0089
3.0 4.0 4.3 4.6 4.8	1.120 1.794 2.121 2.882 3.671	.0781 .1294 .1507 .1780 .2020	.801 1.303 1.574 2.315 2.999	.0549 .0922 .1078 .1290 .1484	•539 •902 1•197 1•594 2•114	.0358 .0601 .0714 .0868 .1002	.259 .470 .622 .848 1.112	.0169 .0296 .0354 .0436 .0507
4.9 5.0 5.1 5.2 5.3	4.396 8.270 17.276 25.994 27.302	.2169 .2402 .2873 .3671 .4653	3.664 8.608 20.646 32.253 33.657	.1607 .1833 .2372 .3347 .4561	2.644 8.709 24.136 38.973 40.402	.1090 .1299 .1904 .3066 .4527	1.421 8.691 27.865 46.207 47.511	.0554 .0740 .1412 .2776 .4500
5.4 5.5 5.6 5.8 6.0	22.834 17.279 13.048 7.474 4.661	•5577 •6317 •6876 •7620 •8058	27.414 20.012 14.617 7.808 4.506	.5686 .6560 .7198 .8007 .8450	32.115 22.676 16.047 7.959 4.272	.5862 .6871 .7584 .8447	36.878 25.213 17.313 7.993 3.938	.6053 .7196 .7978 .8884 .9308
6.2 6.5 6.8 7.4 8.0	3.122 2.029 1.582 1.203 .972	.8341 .8618 .8814 .9119 .9358	2.813 1.724 1.271 .907 .724	.8714 .8957 .9119 .9355 .9534	2.431 1.290 .858 .598 .450	•9125 •9323 •9436 •9594 •9709	1.968 .795 .413 .294	•9518 •9664 •9723 •9800 •9857
9.0 10.0 10.3 10.6 11.4	•752 •591 •268 •076	.9674 .9928 .9977 .9994	.560 .415 .189 .054	.9770 .9949 .9984 .9996 1.0000	.330 .269 .121 .034	.9855 .9967 .9990 .9997	.174 .125 .056 .016	.9932 .9985 .9995 .9999

Table 21.10.--(Continued)

							$T_c = 18 h$	ours
Serial		•2	34 0.	3	35 0.	<u>)</u>	36 0.	5
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ _{lO}	<u>Q/Q₁₀</u>	cfs/AQ ₁₀	<u>0/0</u> 10
0 .6 1.0 2.0	0 .277 1.095 1.736 2.124	0 .0010 .0086 .0302 .1039	0 .208 .821 1.302 1.716	0 .0007 .0064 .0226 .0798	0 •154 •609 1•008 1•334	0 .0005 .0047 .0170 .0614	0 •123 •487 •774 1•070	0 .0004 .0038 .0134 .0478
3.0	2.359	•1867	2.004	.1482	1.641	.1156	1.350	.0922
4.0	2.736	•2802	2.576	.2311	2.298	.1866	1.973	.1514
4.5	3.134	•3343	3.092	.2828	2.905	.2337	2.615	.1927
4.9	3.693	•3845	4.116	.3354	4.156	.2848	3.928	.2397
5.0	3.970	•3987	4.720	.3518	5.096	.3019	5.209	.2566
5.1	4.410	.4142	5.777	.3712	6.896	•3241	7.862	.2807
5.2	4.978	.4316	7.206	.3952	9.422	•3542	11.690	.3168
5.3	5.502	.4510	8.529	.4243	11.765	•3933	15.235	.3665
5.4	5.792	.4719	9.213	.4571	12.920	•4389	16.904	.4258
5.5	5.789	.4934	9.122	.4910	12.668	•4862	16.399	.4872
5.6	5.571	.5144	8.512	•5237	11.530	•5309	14.598	•5444
5.7	5.242	.5345	7.676	•5536	10.043	•5707	12.343	•5941
5.8	4.892	.5532	6.849	•5805	8.640	•6052	10.299	•6359
5.9	4.566	.5708	6.122	•6045	7.463	•6350	8.651	•6709
6.0	4.266	.5871	5.472	•6259	6.451	•6607	7.259	•7003
6.2	3.773	.6168	4.430	.6624	4.898	.7023	5.185	.7458
6.4	3.413	.6434	3.726	.6924	3.888	.7346	3.907	.7791
6.7	3.022	.6790	3.078	.7299	2.972	.7721	2.779	.8155
7.0	2.777	.7112	2.671	.7617	2.456	.8020	2.176	.8427
7.4	2.570	.7507	2.306	.7983	2.016	.8348	1.681	.8708
8.0	2.352	.8054	1.978	.8458	1.672	.8753	1.352	.9041
9.0	2.117	.8876	1.662	.9127	1.388	.9313	1.040	.9480
10.0	1.907	.9627	1.491	.9707	1.134	.9784	.874	.9832
10.3	1.375	.9816	1.082	.9855	.797	.9894	.620	.9917
10.7	.464	.9944	.366	.9956	.268	.9968	.209	.9975
11.0	.190	•9979	•149	.9983	•109	.9988	.085	.9990
12.0		1.0000	0	1.0000	0	1.0000	0	1.0000

Table 21.10.--(Continued)

							T _c = 18	hours
Serial Q ₁ /0	- 1	.6	38 0.	7	39 0.	8	40 0.	9
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ _{lO}	<u>ଷ/ସ</u> 10	cfs/AQ _{lC}	<u> </u>	cfs/AQ _{lo}	۵/۵ ₁₀	cfs/AQ _{lO}	<u> </u>
0 •3 •6 1.0 2.0	0 .092 .365 .588 .809	0 .0003 .0028 .0101 .0363	0 .062 .245 .418 .561	0 .0002 .0019 .0069 .0254	0 •035 •144 •244 •387	.0001 .0011 .0040 .0159	0 .016 .068 .122 .177	.0000 .0005 .0019 .0076
3.0 4.0 4.5 4.9 5.0	1.059 1.616 2.214 3.472 5.102	.0703 .1176 .1520 .1925 .2084	•754 1•179 1•684 2•830 4•811	.0494 .0836 .1090 .1410 .1551	.506 .789 1.228 2.004 4.331	.0320 .0544 .0724 .0951 .1068	.241 .417 .647 1.065 3.740	.0151 .0266 .0360 .0480 .0568
5.1 5.2 5.3 5.4 5.5	8.709 14.028 18.934 21.138 20.281	.2338 .2757 .3365 .4104 .4868	9.462 16.442 22.854 25.608 24.302	•1814 •2292 •3016 •3909 •4828	10.106 18.910 26.967 30.294 28.455	.1334 .1868 .2713 .3767 .4849	10.725 21.507 31.324 35.205 32.720	.0835 .1428 .2400 .3625 .4875
5.6 5.7 5.8 5.9 6.0	17.690 14.565 11.834 9. <b>7</b> 16 7.960	•5568 •6162 •6649 •7046 •7372	20.808 16.726 13.268 10.671 8.536	•5659 •6351 •6904 •7345 •7699	23.951 18.819 14.589 11.506 9.005	.5814 .6602 .7217 .7698 .8075	27.092 20.835 15.811 12.251 9.384	.5976 .6858 .7533 .8049 .8447
6.2 6.4 6.7 7.0 7.4	5.384 3.847 2.526 1.873 1.350	•7860 •8197 •8542 •8781 •9016	5.469 3.751 2.311 1.609 1.039	.8210 .8545 .8872 .9084 .9275	5.475 3.565 1.978 1.260 .694	.8602 .8930 .9227 .9401 .9540	5.391 3.308 1.586 .881 .341	.8984 .9299 .9558 .9689 .9774
8.0 9.0 10.0 10.3 10.7	1.051 .795 .640 .447 .150	•9278 •9613 •9879 •9941 •9982	•788 •592 •446 •314 •106	<ul><li>9474</li><li>9725</li><li>9915</li><li>9958</li><li>9987</li></ul>	.503 .361 .288 .202	•9671 •9828 •9946 •9973 •9992	.254 .184 .131 .094	•9838 •9918 •9975 •9988 •9996
11.0	.061	•9993 1.0000	•043 0	•9995 1.0000	•028 0	•9997 1•0000	•013 0	.9998 1.0000

Table 21.10.--(Continued)

							$T_{c} = 24$	hours
Serial	-	•2	42 0.3	3	43 0•	<u>)</u>	٠ O •	5
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ _{lO}	<u>ଷ/ହ</u> 10	cfs/AQ ₁₀	<u>ୟ/ୟ</u> ୀଠ	cfs/AQ _{lO}	<u>ଷ/ସ</u> ୍ୱୀଠ	cfs/AQ _{l0}	<u>Q/Q</u> 10
0 .8 1.3 2.0	0 •132 1•108 1•745 2•058	0 .0005 .0113 .0452 .0886	0 .099 .831 1.317 1.641	0 .0003 .0085 .0289	0 .622 1.029 1.273	0 .0002 .0063 .0220	0 •058 •493 •785 1•007	0 •0002 •0050 •0171 •0404
3.0 4.0 4.6 4.9 5.0	2.311 2.650 3.071 3.433 3.628	•1694 •2605 •3235 •3595 •3726	1.940 2.432 3.016 3.652 4.052	.1338 .2133 .2728 .3095 .3238	1.567 2.138 2.816 3.585 4.167	.1041 .1711 .2248 .2599	1.290 1.813 2.518 3.323 4.074	.0827 .1383 .1850 .2169
5.1 5.2 5.3 5.4 5.5	3.906 4.268 4.676 5.048 5.299	.3865 .4016 .4182 .4362 .4554	4.674 5.529 6.517 7.417 8.000	•3399 •3588 •3810 •4068 •4353	5.165 6.600 8.296 9.843 10.820	.2914 .3131 .3406 .3741 .4122	5.474 7.565 10.076 12.364 13.771	.2481 .2722 .3047 .3461 .3943
5.6 5.7 5.8 5.9 6.0	5.390 5.328 5.158 4.924 4.668	<ul><li>4751</li><li>4950</li><li>5144</li><li>55331</li><li>5508</li></ul>	8.180 7.984 7.544 6.981 6.387	<ul><li>4652</li><li>4950</li><li>5238</li><li>5506</li><li>5753</li></ul>	11.081 10.690 9.904 <b>8.</b> 936 7.950	.4526 .4928 .5308 .5656 .5967	14.095 13.448 12.247 10.817 9.397	.4457 .4964 .5438 .5864 .6236
6.2 6.4 6.6 6.9 7.2	4.189 3.788 3.457 3.090 2.839	•5836 •6130 •6398 •6761 •7089	5.336 4.505 3.864 3.227 2.785	.6185 .6548 .6857 .7248 .7580	6.302 5.060 4.114 3.216 2.633	.6491 .6909 .7246 .7648 .7970	7.119 5.471 4.240 3.120 2.412	.6841 .7303 .7660 .8062 .8365
7.6 8.0 9.0 10.0 10.3	2.614 2.440 2.159 1.962 1.660	.7492 .7866 .8711 .9476 .9681	2.396 2.115 1.728 1.528 1.301	•7961 •8294 •8993 •9590 •9750	2.148 1.816 1.444 1.197 .984	.8320 .8612 .9202 .9691 .9814	1.864 1.504 1.106 .913 .759	.8677 .8924 .9394 .9762 .9856
10.8 11.2 11.6 12.5	.670 .270 .105	.9894 .9960 .9986 1.0000	•527 •212 •083	•9917 •9968 •9989 1.0000	•392 •158 •061	•9938 •9977 •9992 1.0000	•304 •122 •048	•9952 •9982 •9994 1.0000

Table 21.10.--(Continued)

							$T_C = 24 h$	ours
Serial	No.: 45		46		47		48	
Q <u>1</u> /	Q ₁₀ : 0	.6	0.	7	0.	8	0.9	
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ _{lO}	<u>ର/୧</u> 10	cfs/AQ _{lC}	<u>ର/୧</u> 10	cfs/AQ ₁₀	<u>ର/୧</u> 10	cfs/AQ _{lC}	<u>e∕e</u> 10
0 •3 •8 1•3 2•0	0 •044 •370 •600 •764	.0002 .0038 .0130 .0307	0 •029 •252 •430 •533	.0001 .0025 .0090 .0216	0 •017 •149 •254 •362	.0000 .0015 .0053 .0133	0 .008 .071 .127 .166	.0000 .0007 .0026 .0064
3.0 4.0 4.6 4.9 5.0	1.003 1.469 2.124 2.888 3.800	.0630 .1070 .1457 .1729 .1852	.712 1.072 1.611 2.306 3.376	.0442 .0759 .1044 .1256 .1361	•477 •704 1•155 1•631 2•831	.0286 .0494 .0692 .0843 .0925	.225 .372 .607 .864 2.199	.0134 .0240 .0343 .0423 .0479
5.1 5.2 5.3 5.4 5.5	5.632 8.450 11.874 14.982 16.845	.2026 .2286 .2660 .3155 .3741	5.666 9.274 13.697 17.697 20.035	.1527 .1802 .2225 .2803 .3498	5.592 10.041 15.541 20.502 23.337	.1080 .1367 .1838 .2501 .3308	5.458 10.806 17.458 23.431 26.765	.0620 .0919 .1439 .2191 .3114
5.6 5.7 5.8 5.9 6.0	17.205 16.242 14.568 12.633 10.755	.4368 .4985 .5552 .6053 .6484	20.407 19.076 16.876 14.392 12.026	.4243 .4970 .5632 .6207 .6694	23.698 21.944 19.166 16.092 13.214	.4173 .5013 .5770 .6418 .6958	27.079 24.844 21.438 17.740 14.330	.4104 .5059 .5910 .6631
6.2 6.4 6.6 6.9 7.2	7.851 5.804 4.290 2.972 2.168	.7164 .7664 .8034 .8429	8.483 6.068 4.318 2.852 1.950	.7441 .7973 .8353 .8742 .9003	9.035 6.255 4.249 2.627 1.657	.7766 .8324 .8708 .9080 .9311	9.512 6.370 4.110 2.352 1.334	.8085 .8664 .9046 .9394 .9592
7.6 8.0 9.0 10.0	1.581 1.199 .844 .678 .554	.8981 .9185 .9548 .9826 .9895	1.320 .925 .630 .475	.9238 .9402 .9676 .9878 .9926	1.024 .628 .392 .303 .249	<ul><li>9503</li><li>9623</li><li>9797</li><li>9922</li><li>9953</li></ul>	.722 .349 .197 .140 .116	.9736 .9813 .9902 .9964 .9978
10.8 11.2 11.6 12.5	.220 .088 .034	.9966 .9986 .9995	•155 •062 •024	.9976 .9991 .9997	.099 .040 .015	•9984 •9994 •9998 1.0000	.046 .018 .007	•9993 •9997 •9999

Table 21.10.--(Continued)

							$T_c = 30 h$	ours
Serial Q ₁ /G			50 0.	3	.083 .0004 .067 .538 .0057 .425 .998 .0233 .764 1.195 .0437 .937 1.497 .0932 1.229 2.006 .1567 1.686 2.580 .2068 2.274 3.169 .2383 2.889 4.223 .2651 4.269 5.117 .2823 5.520 6.228 .3032 7.111 7.464 .3285 8.910 8.584 .3581 10.535 9.378 .3913 11.666		5	
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>Q/Q10</u>	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ ₁₀	<u> </u>	cfs/AQ ₁₀	<u>Q/Q</u> 10
0 .4 .9 1.5 2.0	0 •150 •955 1•686 1•955	0 .0007 .0103 .0407 .0747	0 •113 •716 1•281 1•541	0 .0005 .0077 .0306 .0568	•083 •538 •998	.0004 .0057 .0233	.067 .425 .764	0 .0003 .0046 .0181 .0339
3.0 4.0 4.6 4.9 5.1	2.252 2.574 2.929 3.228 3.579	.1527 .2416 .3022 .3363 .3614	1.872 2.316 2.814 3.306 4.022	.1201 .1965 .2528 .2865 .3133	2.006 2.580 3.169	<ul><li>.1567</li><li>.2068</li><li>.2383</li></ul>	1.686 2.274 2.889	.0738 .1263 .1693 .1975 .2232
5.2 5.4 5.5 5.6	3.830 4.124 4.438 4.724 4.935	.3751 .3898 .4057 .4226 .4405	4.582 5.258 5.994 6.662 7.144	.3292 .3474 .3682 .3916 .4171	6.228 7.464 8.584	•3032 •3285 •3581	7.111 8.910 10.535	.2412 .2645 .2940 .3299 .3708
5.7 5.8 5.9 6.0 6.2	5.052 5.063 4.985 4.845 4.471	.4590 .4777 .4963 .5145 .5490	7.397 7.391 7.182 6.841 5.976	.4440 .4713 .4982 .5241			12.098	.4148 .4597 .5032 .5440 .6149
6.4 6.6 6.9 7.2 7.6	4.090 3.758 3.346 3.042 2.760	.5807 .6097 .6490 .6844 .7272	5.149 4.479 3.706 3.159 2.658	.6126 .6481 .6933 .7312 .7640	6.050 5.048 3.919 3.157 2.497	.6400 .6808 .7301 .7689 .8103	6.816 5.492 4.032 3.076 2.284	.6715 .7167 .7689 .8078 .8469
8.0 8.6 9.2 10.0 10.5	2.555 2.322 2.170 2.009 1.530	.7665 .8206 .8703 .9322 .9661	2.313 1.957 1.738 1.566 1.200	.8106 .8576 .8984 .9470 .9734	2.068 1.677 1.457 1.253 .915	.8438 .8849 .9194 .9594 .9800	1.799 1.366 1.116 .951 .705	.8768 .9114 .9386 .9688 .9845
11.0 11.5 12.0 13.0	.702 .279 .107	•9864 •9949 •9982 1•0000	•551 •219 •084 0	•9893 •9960 •9986 1.0000	.416 .165 .063	.9920 .9970 .9990	•321 •127 •048	•9938 •9977 •9992 1•0000

Table 21.10.--(Continued)

							$T_c = 30 h$	ours
Serial Q ₁ /0		.6	54 0.	7	55 0.	8	56 0.	9
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ10	<u> </u>	cfs/AQ ₁₀	<u> </u>	cfs/AQ _{lO}	<u> </u>	cfs/AQ _{lO}	Q/Q ₁₀
0 .4 .9 1.5 2.0	0 •050 •320 •584 •713	0 .0002 .0034 .0137 .0257	0 .033 .219 .416 .500	.0001 .0023 .0096 .0180	0 .019 .129 .251 .332	.0001 .0013 .0056 .0110	0 .009 .062 .123 .153	.0000 .0006 .0027 .0053
3.0 4.0 4.6 4.9 5.1	.949 1.355 1.898 2.478 4.179	.0562 .0975 .1327 .1566 .1800	.671 .986 1.418 1.938 3.972	.0394 .0690 .0948 .1130 .1334	.450 .644 1.004 1.373 3.699	.0253 .0449 .0625 .0754 .0923	.211 .336 .526 .725 3.365	.0120 .0216 .0308 .0376 .0504
5.2 5.3 5.4 5.5 5.6	5.812 7.926 10.343 12.519 14.006	<ul><li>.1984</li><li>.2237</li><li>.2574</li><li>.2995</li><li>.3483</li></ul>	6.010 8.685 11.774 14.539 16.397	.1518 .1788 .2165 .2649 .3218	6.148 9.411 13.212 16.603 18.845	.1104 .1390 .1806 .2355 .3007	6.250 10.134 14.692 18.735 21.365	.0681 .0982 .1439 .2054 .2791
5.7 5.8 5.9 6.0 6.2	14.707 14.489 13.647 12.461 9.759	.4012 .4550 .5068 .5549 .6368	17.246 16.905 15.784 14.256 10.855	.3838 .4466 .5068 .5621 .6546	19.840 19.348 17.918 16.020 11.884	.3718 .4439 .5125 .5749 .6777	22.496 21.822 20.050 17.758 12.853	•3597 •4412 •5182 •5877 •7003
6.4 6.6 6.9 7.2 7.6	7.505 5.866 4.085 2.958 2.060	.7001 .7491 .8036 .8419 .8784	8.116 6.195 4.141 2.860 1.856	.7241 .7765 .8329 .8708 .9050	8.654 6.444 4.101 2.677 1.603	.7527 .8080 .8654 .9019 .9328	9.125 6.630 4.005 2.455 1.331	.7806 .8382 .8959 .9305 .9576
8.0 8.6 9.2 10.0 10.5	1.532 1.082 .856 .713 .517	.9045 .9331 .9541 .9771 .9887	1.292 .846 .639 .506	.9278 .9511 .9670 .9838 .9920	1.022 .580 .397 .319 .233	.9517 .9691 .9793 .9897 .9949	•757 •349 •201 •151 •109	.9725 .9846 .9900 .9952 .9976
11.0 11.5 12.0 13.0	•234 •093 •035	•9955 •9983 •9994 1.0000	.165 .065 .025	.9968 .9988 .9996	.105 .042 .016	.9980 .9992 .9997	.049 .019 .007	.9991 .9996 .9999

Table 21.10.--(Continued)

							$T_c = 36$	hours
Serial Q ₁ /Q	, , ,	2	58 0.3	5	59 0.1	+	60 0.	5
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ ₁₀	<u> </u>
0	0	0	0	0	0	0	0	0
•5	.163	.0009	•122	.0007	•091	.0005	•072	.0004
1.2	1.130	.0170	•848	.0127	•648	.0095	•504	.0075
2.0	1.817	.0623	1.418	.0473	1•101	.0363	•857	.0281
3.0	2.177	.1368	1.794	.1072	1•424	.0830	1•165	.0656
4.0	2.498	.2231	2.211	.1805	1.889	.1433	1.576	.1152
4.8	2.964	.3032	2.884	.2544	2.666	.2088	2.366	.1714
5.0	3.176	.3259	3.250	.2770	3.133	.2301	2.892	.1906
5.1	3.331	.3380	3.565	.2896	3.598	.2425	3.506	.2024
5.2	3.521	.3506	3.965	.3036	4.212	.2569	4.339	.2169
5.3	3.742	•364 <b>1</b>	4.451	•3192	4.982	•2739	5.411	.2349
5.4	3.987	•3784	5.002	•3366	5.874	•2940	6.673	.2572
5.5	4.238	•3937	5.574	•3562	6.814	•3174	8.017	.2843
5.6	4.467	•4098	6.095	•3778	7.670	•3442	9.240	.3162
5.7	4.644	•4267	6.492	•4011	8.311	•3737	10.141	.3519
5.8	4.760	.4441	6.741	.4256	8.704	.4051	10.682	•3904
5.9	4.806	.4618	6.826	.4507	8.824	.4375	10.825	•4301
6.0	4.784	.4796	6.757	.4758	8.686	.4698	10.598	•4696
6.1	4.708	.4972	6.567	.5005	8.354	.5013	10.099	•5078
6.2	4.593	.5144	6.293	.5243	7.898	.5314	9.435	•5439
6.4	4.296	.5474	5.623	.5684	6.815	.5858	7.902	.6080
6.6	3.984	.5781	4.960	.6076	5.787	.6323	6.494	.6610
6.8	3.704	.6066	4.403	.6422	4.956	.6719	5.399	.7048
7.1	3.348	.6457	3.736	.6872	3.989	.7212	4.151	.7573
7.5	2.989	.6925	3.078	.7373	3.072	.7729	2.997	.8095
8.0	2.680	•7449	2.536	.7890	2.366	.8227	2.159	.8565
8.6	2.414	•8014	2.108	.8402	1.861	.8690	1.583	.8973
9.2	2.230	•8529	1.837	.8838	1.568	.9068	1.248	.9285
10.0	2.052	•9163	1.610	.9344	1.308	.9490	.994	.9609
10.5	1.710	•9519	1.343	.9623	1.045	.9712	.803	.9778
11.0 11.6 12.5 14.0	.978 .391 .092 0	.9769 .9912 .9982 1.0000	•768 •307 •072	.9819 .9932 .9986 1.0000	•587 •234 •055 0	.9862 .9948 .9990	.453 .180 .042	.9894 .9960 9992 1.0000

Table 21.10.--(Continued)

							$T_{c} = 36$	hours
Serial Q ₁ /G		.6	62 0.	7	63 0.8	3	64 0.	9
Time	PSH	PSMC	PSH	PSMC	PSH.	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ ₁₀	<u> </u>	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ _{lC}	<u>Q/Q</u> 10
0 •5 1.2 2.0 3.0	0 •054 •382 •653 •895	0 .0003 .0056 .0214 .0498	0 .036 .266 .460 .631	.0002 .0039 .0150 .0349	0 .021 .156 .298 .422	.0001 .0023 .0091 .0224	0 .010 .077 .140 .198	.0000 .0011 .0044 .0106
4.0 4.8 5.0 5.1 5.2	1.258 1.986 2.536 3.301 4.360	.0887 .1347 .1510 .1618 .1759	.911 1.504 2.062 2.986 4.282	.0627 .0965 .1092 .1185 .1319	.596 1.059 1.574 2.645 4.170	.0407 .0638 .0730 .0808	.306 .555 1.014 2.244 4.011	.0195 .0315 .0367 .0427 .0542
5.3 5.4 5.5 5.6 5.7	5.752 7.411 9.193 10.811 11.982	.1946 .2189 .2495 .2864 .3284	6.014 8.096 10.347 12.385 13.839	.1509 .1769 .2109 .2528 .3011	6.245 8.766 11.507 13.984 15.724	.1125 .1401 .1775 .2244 .2792	6.449 9.430 12.688 15.620 17.650	.0735 .1027 .1434 .1956 .2568
5.8 5.9 6.0 6.1 6.2	12.675 12.833 12.498 11.814 10.927	•3739 •4209 •4676 •5125 •5544	14.683 14.846 14.387 13.499 12.374	.3537 .4081 .4620 .5134 .5611	16.719 16.878 16.277 15.167 13.786	.3389 .4008 .4619 .5198 .5732	18.791 18.923 18.170 16.818 15.168	.3239 .3934 .4617 .5261 .5850
6.4 6.6 6.8 7.1 7.5	8.922 7.130 5.776 4.260 2.893	.6277 .6868 .7342 .7893 .8412	9.876 7.709 6.123 4.373 2.805	.6432 .7079 .7586 .8161 .8680	10.772 8.215 6.390 4.400 2.648	.6638 .7335 .7870 .8459 .8966	11.616 8.662 6.602 4.379 2.461	.6838 .7581 .8140 .8738 .9228
8.0 8.6 9.2 10.0 10.5	1.947 1.323 .991 .752 .594	.8852 .9206 .9460 .9711 .9837	1.756 1.105 •779 •542 •422	.9092 .9400 .9607 .9794 .9884	1.528 .855 .540 .340 .268	•9343 •9596 •9749 •9870 •9927	1.295 .632 .340 .164 .126	•9564 •9767 •9873 •9938 •9966
11.0 11.6 12.5 14.0	•332 •132 •031	.9922 .9971 .9994 1.0000	.236 .094 .022	•9945 •9979 •9996 1.0000	.150 .059 .014	.9965 .9987 .9997	.070 .028 .006	.9984 .9994 .9999

Table 21.10.--(Continued)

						I	c = 42 ho	urs
Serial Q ₁ /0	۷)	.2	66 0.3	3	67 0.1	+	68 0.	5
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ _{lO}	<u> </u>	cfs/AQ ₁₀	<u> </u>	cfs/AQ ₁₀	<u> </u>	cfs/AQ ₁₀	<u>Q/Q</u> 10
0 .6 1.2 2.0 3.0	0 .174 .892 1.666 2.097	0 .0011 .0123 .0516 .1220	0 .131 .670 1.290 1.714	0 .0008 .0092 .0391 .0952	0 •097 •509 1•001 1•354	0 .0006 .0069 .0300 .0737	0 .078 .398 .777 1.101	.0005 .0054 .0232 .0580
4.0 4.8 5.0 5.2 5.4	2.428 2.846 3.026 3.301 3.669	.2056 .2829 .3046 .3280 .3537	2.120 2.711 3.007 3.550 4.330	.1655 .2358 .2568 .2809 .3099	1.789 2.466 2.834 3.630 4.841	.1309 .1922 .2117 .2353 .2664	1.484 2.162 2.570 3.610 5.268	.1050 .1572 .1744 .1969 .2294
5.5 5.6 5.8 5.9	3.875 4.082 4.272 4.425 4.536	•3677 •3824 •3979 •4139 •4305	4.784 5.245 5.667 6.004 6.241	•3268 •3453 •3654 •3870 •4096	5.564 6.306 6.989 7.524 7.898	•2856 •3075 •3320 •3588 •3872	6.278 7.325 8.287 9.031 9.546	.2507 .2757 .3045 .3364 .3707
6.0 6.1 6.2 6.3 6.4	4.597 4.606 4.569 4.497 4.399	.4474 .4644 .4814 .4982 .5146	6.366 6.370 6.272 6.098 5.872	.4329 .4564 .4798 .5026 .5247	8.086 8.075 7.899 7.608 7.239	.4167 .4465 .4759 .5045 .5319	9.795 9.756 9.484 9.058 8.531	.4063 .4423 .4778 .5119 .5444
6.6 6.8 7.0 7.3 7.6	4.155 3.895 3.653 3.343 3.088	.5463 .5761 .6040 .6428 .6784	5.338 4.795 4.317 3.734 3.266	.5662 .6036 .6372 .6818 .7205	6.391 5.554 4.840 4.001 3.348	.5822 .6262 .6645 .7133 .7538	7.346 6.206 5.262 4.182 3.359	.6029 .6528 .6949 .7469 .7884
8.0 8.5 9.2 10.0 10.5	2.820 2.565 2.310 2.110 1.840	.7220 .7718 .8346 .9000	2.784 2.355 1.961 1.683 1.451	.7650 .8122 .8676 .9212	2.700 2.165 1.713 1.397 1.151	.7981 .8427 .8922 .9379 .9616	2.568 1.943 1.420 1.084 .884	.8317 .8729 .9156 .9522 .9704
11.2 12.0 12.8 14.5	•967 •334 •110	•9737 •9915 •9975 1.0000	•762 •263 •086 0	•9794 •9933 •9980 1.0000	•588 •202 •066	.9842 .9949 .9985 1.0000	.454 .156 .051	.9878 .9961 .9988 1.0000

Table 21.10.--(Continued)

							$T_c = 42$	hours
Serial Q ₁ /G	- /	.6	70 0.	7	71 0.	8	72 0.	9
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>ୟ/ୟ</u> 10	cfs/AQ ₁₀	<u> </u>	cfs/AQ _{lo}	<u>Q/Q</u> 10	cfs/AQ _{lo}	<u>Q/Q</u> 10
0 .6 1.2 2.0 3.0	0 .058 .301 .592 .844	0 .0004 .0041 .0176 .0441	0 •039 •209 •418 •593	0 .0002 .0028 .0123 .0309	0 .023 .122 .266 .396	0 .0001 .0016 .0074 .0197	0 .010 .060 .126 .186	0 .0001 .0008 .0036 .0093
4.0 4.8 5.0 5.2 5.4	1.178 1.798 2.216 3.499 5.621	.0807 .1230 .1376 .1582 .1914	.850 1.347 1.759 3.293 5.903	.0569 .0879 .0990 .1172 .1505	.558 .939 1.313 3.079 6.173	.0370 .0579 .0658 .0814 .1148	.282 .490 .810 2.818 6.419	.0177 .0285 .0328 .0455 .0788
5.5 5.6 5.7 5.8 5.9	6.936 8.308 9.567 10.527 11.188	.2146 .2426 .2755 .3125 .3525	7.540 9.258 10.832 12.016 12.824	.1752 .2062 .2431 .2852 .3309	8.138 10.212 12.111 13.520 14.476	.1412 .1749 .2159 .2631 .3146	8.728 11.174 13.409 15.045 16.148	.1066 .1432 .1884 .2406 .2980
6.0 6.1 6.2 6.3 6.4	11.495 11.418 11.040 10.467 9.774	•3943 •4364 •4778 •5174 •5547	13.187 13.063 12.566 11.836 10.968	.3787 .4270 .4742 .5191 .5610	14.890 14.708 14.078 13.180 12.127	.3686 .4230 .4759 .5260 .5726	16.606 16.354 15.577 14.500 13.251	.3582 .4188 .4774 .5327 .5837
6.6 6.8 7.0 7.3 7.6	8.239 6.794 5.622 4.315 3.340	.6211 .6763 .7218 .7764 .8185	9.079 7.338 5.958 4.449 3.331	.6349 .6951 .7438 .8010 .8437	9.864 7.814 6.217 4.506 3.257	.6535 .7183 .7696 .8284 .8710	10.602 8.237 6.425 4.519 3.151	.6715 .7404 .7940 .8540 .8960
8.0 8.5 9.2 10.0 10.5	2.424 1.726 1.174 .844 .662	.8604 .8982 .9348 .9642	2.296 1.540 .973 .637 .475	.8844 .9192 .9507 .9742 .9844	2.123 1.320 .742 .428	.9097 .9409 .9665 .9835 .9901	1.937 1.114 .545 .250 .144	.9324 .9599 .9802 .9919
11.2 12.0 12.8 14.5	•335 •115 •037	.9910 .9971 .9992	.239 .082 .026	.9936 .9980 .9994 1.0000	.152 .052 .017	.9960 .9987 .9996	.072 .024 .008	.9981 .9994 .9998 1.0000

Table 21.10.--(Continued)

							$T_c = 48 h$	ours
Serial Q ₁ /G	17	•2	74 0.	3	75 0.1	0.4 0.5  PSH PSMC PSH F  S/AQ ₁₀ Q/Q ₁₀ cfs/AQ ₁₀ 0 0 0 0 0  .067 .0004 .054  .464 .0066 .362  .895 .0246 .694  1.278 .0651 1.033  1.692 .1193 1.398  2.291 .1770 1.988  2.291 .1770 1.988  2.595 .1949 2.320  3.203 .2162 3.099  4.107 .2430 4.305  4.670 .2592 5.077  5.272 .2775 5.909  5.877 .2981 6.752  6.437 .3208 7.532  6.892 .3454 8.160		5
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>ହ/ହ</u> ୀଠ	cfs/AQ ₁₀	<u>୧/୧</u> 10	cfs/AQ	<u> </u>	cfs/AQ	<u>Q/Q</u> 10
0 .6 1.3 2.0 3.0	0 .120 .811 1.500 2.001	0 .0008 .0118 .0425 .1083	0 .090 .610 1.155 1.624	0 .0006 .0088 .0321 .0842	.067 .464 .895	.0004 .0066 .0246	•054 •362 •694	.0003 .0052 .0191 .0512
4.0 4.8 5.0 5.2 5.4	2.350 2.733 2.888 3.116 3.413	.1888 .2635 .2843 .3065 .3306	2.027 2.557 2.803 3.230 3.831	.1514 .2182 .2380 .2602 .2862	2.291 2.595 3.203	.1770 .1949 .2162	1.988 2.320 3.099	.0955 .1442 .1599 .1797 .2068
5.5 5.6 5.7 5.8 5.9	3.585 3.763 3.939 4.100 4.235	.3436 .3572 .3714 .3863 .4017	4.194 4.576 4.958 5.310 5.600	.3010 .3172 .3348 .3538 .3740	5.272 5.877 6.437	.2775 .2981 .3208	5.909 6.752 7.532	.2241 .2443 .2677 .2940 .3229
6.0 6.1 6.2 6.3 6.4	4.335 4.400 4.428 4.420 4.379	.4176 .4338 .4501 .4665 .4828	5.812 5.943 5.992 5.962 5.863	.3951 .4168 .4388 .4610 .4828	7.221 7.419 7.486 7.427 7.257	.3714 .3985 .4260 .4535 .4806	8.606 8.868 8.946 8.848 8.596	•3538 •3860 •4189 •4517 •4839
6.6 6.8 7.0 7.3 7.6	4.228 4.025 3.804 3.499 3.240	.5146 .5452 .5742 .6147 .6521	5.521 5.084 4.630 4.037 3.556	.5249 .5642 .6000 .6480	6.702 6.017 5.322 4.446 3.765	.5322 .5791 .6209 .6748 .7202	7.805 6.860 5.917 4.766 3.899	.5444 .5986 .6456 .7044 .7521
8.0 8.5 9.2 10.0 10.5	2.956 2.677 2.393 2.171 1.944	.6979 .7499 .8153 .8827 .9212	3.037 2.552 2.097 1.775 1.558	.7386 .7900 .8497 .9065 .9376	3.053 2.425 1.881 1.512 1.273	•7702 •8203 •8753 •9250 •9508	3.014 2.259 1.621 1.213 1.003	.8028 .8508 .9002 .9413 .9618
11.2 12.0 13.0 15.0	1.189 .478 .142	.9625 .9858 .9962 1.0000	•942 •377 •112	•9704 •9889 •9970 1•0000	•737 •293 •086	•9770 •9914 •9977 1•0000	.570 .226 .066	•9823 •9934 •9982 1•0000

Table 21.10.--(Continued)

							$T_c = 48$	hours
Serial			78		79		80	
Q ₁ /G	₅ 10 : 0	.6	0.7	7	0.	8	0.	9
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u> </u>	cfs/AQ _{lO}	<u> </u>	ofs/AQ ₁₀	<u> २/२</u> 10	cfs/AQ ₁₀	<u>ୟ/ୟ</u> 10
0 .6 1.3 2.0 3.0	0 .040 .274 .528 .790	0 .0002 .0039 .0145 .0389	.027 .190 .373 .555	0 .0002 .0027 .0101 .0272	0 .016 .112 .234 .370	.0001 .0016 .0061 .1727	0 .007 .055 .112 .173	0 .0000 .0008 .0029 .0082
4.0 4.8 5.0 5.2 5.4	1.104 1.639 1.977 2.918 4.429	.0732 .1125 .1256 .1434 .1702	•793 1.218 1.545 2.651 4.476	.0516 .0802 .0901 .1052	.522 .840 1.138 2.395 4.524	.0334 .0526 .0596 .0722 .0972	.261 .437 .689 2.098 4.538	.0160 .0258 .0296 .0394 .0632
5.5 5.6 5.7 5.8 5.9	5.419 6.493 7.586 8.600 9.405	.1882 .2102 .2362 .2660 .2991	5.696 7.024 8.382 9.640 10.630	.1498 .1732 .2016 .2348 .2721	5.972 7.558 9.183 10.691 11.865	.1166 .1414 .1722 .2088 .2503	6.226 8.080 9.984 11.750 13.110	.0830 .1093 .1426 .1825 .2282
6.0 6.1 6.2 6.3 6.4	9.970 10.296 10.381 10.238 9.898	.3348 .3722 .4102 .4482 .4853	11.315 11.702 11.791 11.598 11.163	•3125 •3549 •3981 •4412 •4831	12.668 13.112 13.198 12.948 12.407	.2954 .3429 .3913 .4394 .4860	14.028 14.526 14.603 14.287 13.633	.2781 .3306 .3842 .4373 .4887
6.6 6.8 7.0 7.3 7.6	8.858 7.644 6.452 5.034 3.995	•5545 •6154 •6671 •7302 •7799	9.866 8.386 6.954 5.290 4.095	.5606 .6279 .6841 .7512 .8029	10.836 9.075 7.390 5.473 4.128	•5717 •6450 •7053 •7757 •8284	11.770 9.720 7.779 5.612 4.125	.5823 .6613 .7253 .7984 .8519
8.0 8.5 9.2 10.0 10.5	2.954 2.092 1.397 .985 .784	.8308 .8764 .9206 .9550 .9713	2.908 1.951 1.213 .791 .599	.8540 .8977 .9376 .9663 .9791	2.810 1.772 .998 .587 .422	.8789 .9200 .9546 .9770 .9863	2.693 1.599 .812 .416 .265	.9014 .9396 .9695 .9866 .9928
11.2 12.0 13.0 15.0	.425 .168 .049	.9869 .9951 .9987 1.0000	•305 •120 •035	.9906 .9965 .9991 1.0000	.194 .076 .022	.9941 .9978 .9994 1.0000	.093 .036 .010	•9972 •9990 •9997 1•0000

Table 21.10.--(Continued)

							$T_c = 54$	hours
Serial	No.: 81		82		83		84	
ବ ₁ /ବ	10: 0	.2	0.	3	0.1	4	0.	5
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ ₁₀	<u> </u>
0 .6 1.3 2.0 3.0	0 .087 .640 1.331 1.897	0 .0005 .0089 .0349 .0957	0 .065 .481 1.020 1.529	.0004 .0067 .0263 .0742	0 .048 .366 .790 1.199	0 .0003 .0050 .0201 .0573	0 .039 .286 .612 .965	.0002 .0039 .0156 .0450
4.0 4.8 5.0 5.2 5.4	2.269 2.631 2.768 2.961 3.210	.1730 .2451 .2650 .2862 .3090	1.937 2.422 2.633 2.977 3.462	.1381 .2018 .2204 .2411 .2648	1.601 2.141 2.398 2.876 3.589	.1085 .1629 .1795 .1989 .2226	1.319 1.841 2.118 2.717 3.652	.0867 .1323 .1468 .1644 .1877
5.6 5.8 6.0 6.1 6.2	3.504 3.811 4.070 4.164 4.231	.3338 .3609 .3901 .4054 .4209	4.063 4.713 5.261 5.454 5.591	.2926 .3250 .3620 .3181 .4022	4.502 5.516 6.370 6.666 6.873	.2524 .2894 .3334 .3574 .3824	4.883 6.275 7.446 7.844 8.121	.2191 .2602 .3110 .3392 .3686
6.3 6.4 6.5 6.6 6.8	4.271 4.278 4.260 4.219 4.085	.4366 .4524 .4682 .4839 .5147	5.667 5.672 5.621 5.524 5.230	.4230 .4439 .4648 .4854 .5252	6.986 6.982 6.891 6.732 6.262	.4080 .4337 .4593 .4845 .5325	8.269 8.246 8.108 7.876 7.216	.3989 .4293 .4594 .4889 .5446
7.0 7.3 7.6 8.0 8.5	3.912 3.630 3.373 3.085 2.790	.5443 .5862 .6250 .6727 .7270	4.866 4.298 3.808 3.278 2.754	.5625 .6132 .6581 .7104 .7659	5.697 4.840 4.130 3.392 2.695	•5766 •6348 •6843 •7396 •7955	6.443 5.294 4.372 3.445 2.591	.5950 .6597 .7129 .7703 .8256
9.0 9.5 10.0 10.6 11.2	2.560 2.381 2.237 1.969 1.389	.7764 .8220 .8647 .9119	2.371 2.086 1.874 1.603 1.119	.8131 .8541 .8906 .9294	2.218 1.880 1.632 1.335 .902	.8405 .8782 .9105 .9435 .9684	2.025 1.627 1.349 1.075 .718	.8678 .9013 .9286 .9554 .9754
12.0 13.0 14.0 16.0	.635 .218 .071	•9787 •9932 •9980	.504 .172 .056	•9832 •9946 •9985 1.0000	•397 •134 •043	.9869 .9958 .9988 1.0000	.308 .104 .033	.9899 .9968 .9991

Table 21.10.--(Continued)

					•		$T_c = 54$	hours
Serial	-/		86		87		88	
Q ₁ /G	§10 : 0	<b>.</b> 6	0.	.7	0.	8	0.	9
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>Q/Q</u> 10	cfs/AQ	<u> </u>	cfs/AQ ₁₀	<u>0/0</u> 10	cfs/AQ ₁₀	<u> २/२₁₀</u>
0	0	0	0	0	0	0	0	0
.6	.029	.0002	.019	.0001	.011	.0001	.005	.0000
1.3	.216	.0030	.150	.0020	.088	.0012	.043	.0006
2.0	.466	.0118	.328	.0082	.204	.0049	.098	.0024
3.0	.736	.0342	.517	.0239	.343	.0151	.160	.0072
4.0	1.036	.0664	•742	.0468	.490	.0302	.242	.0144
4.8	1.506	.1029	1•112	.0732	.760	.0479	.394	.0234
5.0	1.786	.1149	1•378	.0822	1.003	.0542	.597	.0268
5.2	2.494	.1304	2•194	.0951	1.916	.0646	1.604	.0345
5.4	3.650	.1528	3•575	.1160	3.512	.0842	3.419	.0525
5.6	5.204	.1853	5.464	.1491	5.730	.1180	5.975	.0868
5.8	6.992	.2302	7.667	.1974	8.350	.1698	9.207	.1419
6.0	8.492	.2876	9.507	.2611	10.530	.2398	11.554	.2182
6.1	8.993	.3198	10.113	.2972	11.237	.2798	12.360	.2622
6.2	9.340	.3535	10.531	.3352	11.722	.3220	12.912	.3087
6.3	9.523	.3883	10.748	.3744	11.972	.3656	13.191	.3567
6.4	9.476	.4233	10.674	.4138	11.860	.4094	13.035	.4049
6.5	9.286	.4578	10.427	.4526	11.551	.4525	12.656	.4521
6.6	8.978	.4914	10.041	.4903	11.079	.4941	12.092	.4976
6.8	8.120	.5545	8.982	.5604	9.805	.5711	10.593	.5812
7.0	7.135	.6107	7.792	.6222	8.398	.6381	8.962	.6531
7.3	5.694	.6813	6.072	.6984	6.386	.7192	6.657	.7386
7.6	4.572	.7377	4.765	.7578	4.894	.7809	4.985	.8022
8.0	3.472	.7967	3.505	.8183	3.484	.8421	3.439	.8637
8.5	2.478	.8511	2.385	.8721	2.250	.8944	2.113	.9142
9.0	1.847	.8904	1.701	.9091	1.521	.9284	1.358	•9453
9.5	1.417	.9203	1.245	.9360	1.044	.9518	.871	•9656
10.0	1.129	.9436	•944	.9560	.744	.9680	.575	•9787
10.6	.866	.9656	•689	.9739	.517	.9818	.366	•9888
11.2	.561	.9814	•432	.9863	.310	.9909	.201	•9951
12.0 13.0 14.0 16.0	.230 .077 .025	•9925 •9976 •9993 1•0000	.166 .055 .018	•9946 •9983 •9995 1.0000	.105 .035 .011	.9966 .9989 .9997	.050 .017 .005	.9984 .9995 .9999

Table 21.10.--(Continued)

							$T_c = 60 \text{ h}$	ours
Serial		)	90		91		92	
ରୁ/ଏ	₁₀ : 0	.2	0.	3	0.	14	0.	5
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u> </u>	cfs/AQ _{lO}	<u>Q/Q</u> 10	cfs/AQ _{lO}	<u>e/e</u> 10	cfs/AQ ₁₀	<u> </u>
0 .6 1.3 2.0 3.0	0 .065 .506 1.164 1.785	0 .0004 .0068 .0286 .0844	0 .048 .380 .890 1.430	.0003 .0051 .0216 .0652	0 .036 .288 .687 1.119	0 .0002 .0038 .0164 .0503	0 .029 .226 .533 .896	0 .0002 .0030 .0128 .0394
4.0 4.8 5.0 5.2 5.4	2.184 2.534 2.658 2.824 3.038	.1580 .2276 .2468 .2670 .2887	1.848 2.298 2.483 2.769 3.168	.1258 .1864 .2041 .2234 .2453	1.515 2.008 2.229 2.617 3.189	.0986 .1498 .1654 .1832 .2045	1.244 1.713 1.949 2.423 3.160	.0786 .1214 .1348 .1508 .1712
5.6 5.8 6.0 6.2 6.3	3.290 3.562 3.819 4.012 4.080	•3121 •3374 •3648 •3938 •4088	3.665 4.221 4.757 5.150 5.286	.2705 .2996 .3329 .3695 .3888	3.929 4.777 5.606 6.204 6.411	.2307 .2628 .3012 .3449	4.142 5.287 6.420 7.221 7.499	.1980 .2327 .2760 .3264 .3535
6.4 6.5 6.6 6.8 7.0	4.122 4.142 4.140 4.077 3.959	.4239 .4392 .4546 .4850 .5148	5.366 5.399 5.388 5.237 4.981	.4085 .4284 .4483 .4877 .5254	6.526 6.570 6.544 6.293 5.890	.3920 .4162 .4404 .4878 .5328	7.645 7.694 7.650 7.284 6.723	.3815 .4097 .4380 .4932 .5449
7.2 7.4 7.7 8.0 8.5	3.809 3.645 3.408 3.199 2.901	.5435 .5711 .6102 .6469 .7032	4.671 4.339 3.881 3.493 2.958	.5611 .5944 .6400 .6808 .7402	5.415 4.912 4.242 3.698 2.976	•5745 •6126 •6632 •7071 •7684	6.078 5.402 4.525 3.838 2.946	.5921 .6344 .6892 .7353 .7974
9.0 9.5 10.0 10.6 11.2	2.656 2.463 2.306 2.059 1.561	.7546 .8019 .8460 .8948 .9354	2.535 2.224 1.985 1.708 1.277	.7908 .8346 .8734 .9145 .9479	2.430 2.055 1.769 1.456 1.055	.8180 .8591 .8943 .9301 .9581	2.283 1.839 1.510 1.199 .859	.8453 .8830 .9138 .9437 .9666
12.0 13.0 14.0 16.0	.806 .308 .114	.9699 .9891 .9963 1.0000	.653 .245 .090	.9760 .9914 .9971 1.0000	.529 .193 .070	.9810 .9933 .9978 1.0000	.424 .150 .054 0	.9852 .9948 .9983 1.0000

Table 21.10.--(Continued)

							$T_c = 60$	hours
Serial	,,,	.6	9 ¹ ;	7	95 0.	8	96 0.	9
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ _{lO}	<u>Q/Q</u> 10	cfs/AQ _{lO}	<u>Q/Q</u> 10	cfs/AQ _{lO}	<u> </u>	cfs/AQ _{lO}	<u>Q/Q</u> 10
0 .6 1.3 2.0 3.0	0 •022 •170 •405 •683	.0001 .0023 .0097 .0299	0 .014 .118 .285 .480	.0001 .0016 .0067 .0210	0 .008 .069 .176 .317	.0000 .0009 .0040 .0132	0 •004 •034 •084 •148	.0000 .0004 .0019 .0063
4.0 4.8 5.0 5.2 5.4	•973 1•392 1•627 2•178 3•074	.0602 .0942 .1052 .1190 .1382	.695 1.022 1.244 1.865 2.921	.0423 .0669 .0751 .0863 .1038	.459 .694 .895 1.580 2.786	.0273 .0437 .0494 .0582 .0741	.224 .357 .525 1.268 2.626	.0130 .0212 .0243 .0306 .0447
5.6 5.8 6.0 6.2 6.3	4.299 5.750 7.197 8.204 8.555	.1652 .2022 .2499 .3069 .3377	4.394 6.161 7.936 9.151 9.578	.1305 .1692 .2212 .2844 .3188	4.503 6.582 8.687 10.102 10.602	.1007 .1413 .1976 .2670 .3050	4.590 6.989 9.432 11.047 11.622	.0709 .1133 .1738 .2494 .2911
6.4 6.5 6.6 6.8 7.0	8.729 8.782 8.718 8.230 7.507	.3696 .4018 .4340 .4966 .5546	9.779 9.835 9.750 9.138 8.255	•3545 •3906 •4266 •4963 •5604	10.824 10.878 10.768 10.016 8.961	•3445 •3844 •4242 •5008 •5707	11.860 11.908 11.770 10.868 9.633	.3342 .3780 .4215 .5049 .5804
7.2 7.4 7.7 8.0 8.5	6.690 5.840 4.765 3.946 2.903	.6069 .6531 .7116 .7595 .8220	7.272 6.254 4.994 4.055 2.874	.6176 .6673 .7293 .7791 .8422	7.804 6.610 5.162 4.109 2.803	.6324 .6854 .7502 .8012 .8640	8.298 6.924 5.294 4.136 2.723	.6463 .7022 .7694 .8212 .8834
9.0 9.5 10.0 10.6 11.2	2.142 1.657 1.306 .994 .693	.8681 .9028 .9299 .9552 .9739	2.027 1.510 1.136 .821 .558	.8868 .9190 .9432 .9647 .9798	1.876 1.332 .945 .647 .428	•9065 •9356 •9564 •9738 •9855	1.735 1.178 .784 .495	.9237 .9501 .9680 .9819 .9906
12.0 13.0 14.0 16.0	•334 •112 •040	•9887 •9962 •9987	.261 .081 .029	.9917 .9972 .9991	.191 .051 .018	•9945 •9982 •9994 1.0000	.128 .025 .009	•9970 •9992 •9997 1.0000

Table 21.10.--(Continued)

							$T_c = 66$	hours
Serial	<i>-</i> 1		98		99		100	
$Q_{1}/Q$	g10 : 0	.2	0.	3	0.1	4	0.	5
Time	PSH	PSMC	PSH	PS <b>M</b> C	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>ର/୧</u> 10	cfs/AQ _{lO}	<u>ୟ/ୟ₁₀</u>	cfs/AQ ₁₀	<u>Q/Q₁₀</u>	cfs/AQ ₁₀	<u>ସ/ସ</u> ୀ0
0	0	0	0	0	0	0	0	0
.6	.050	.0003	•037	.0002	.028	.0002	.022	.0001
1.3	.401	.0053	•302	.0040	.229	.0030	.179	.0023
2.0	1.008	.0234	•769	.0177	.593	.0135	.460	.0105
3.0	1.670	.0741	1•330	.0572	1.039	.0441	.828	.0345
4.0	2.095	.1441	1.758	.1143	1.431	.0894	1.171	.0712
4.8	2.438	.2110	2.184	.1720	1.887	.1378	1.599	.1113
5.0	2.553	.2294	2.349	.1888	2.082	.1524	1.803	.1238
5.2	2.701	.2488	2.593	.2070	2.406	.1688	2.193	.1384
5.4	2.887	.2695	2.926	.2273	2.872	.1882	2.781	.1567
5.6	3.106	.2917	3.342	.2505	3.478	.2116	3.572	.1800
5.8	3.348	.3156	3.819	.2769	4.191	.2399	4.520	.2098
6.0	3.589	.3412	4.308	.3070	4.934	.2736	5.521	.2468
6.2	3.796	.3686	4.726	.3404	5.570	.3124	6.377	.2909
6.4	3.942	.3972	5.015	.3765	6.003	.3552	6.952	.3401
6.5	3.987	.4119	5.102	•3952	6.129	•3776	7.114	.3661
6.6	4.015	.4267	5.154	•4141	6.205	•4004	7.211	.3925
6.7	4.023	.4416	5.160	•4332	6.204	•4233	7.197	.4190
6.8	4.014	.4565	5.133	•4522	6.157	•4461	7.125	.4454
7.0	3.951	.4860	4.988	•4897	5.921	•4907	6.787	.4968
7.2	3.846	.5148	4.764	•5257	5.571	•5332	6.305	.5451
7.4	3.716	.5428	4.497	•5600	5.165	•5728	5.756	.5896
7.7	3.502	.5829	4.070	•6074	4.528	•6264	4.910	.6485
8.0	3.297	.6206	3.679	•6504	3.964	•6733	4.181	.6987
8.5	3.001	.6788	3.142	•7132	3.230	•7394	3.266	.7669
9.0	2.752	.7320	2.707	.7671	2.661	•7935	2.570	.8204
9.5	2.545	.7809	2.362	.8138	2.228	•8384	2.048	.8627
10.0	2.379	.8264	2.103	.8549	1.917	•8765	1.688	.8970
10.6	2.143	.8769	1.816	.8985	1.585	•9153	1.339	.9304
11.2	1.708	.9200	1.418	.9346	1.196	•9462	.992	.9562
12.0 13.0 14.0 17.0	•978 •410 •166	.9596 .9839 .9939 1.0000	.806 .332 .132	.9672 .9872 .9952 1.0000	.669 .269 .104	•9734 •9898 •9962 1•0000	.552 .215 .081	.9787 .9921 .9971 1.0000

Table 21.10.--(Continued)

							$T_{c} = 66$	hours
Serial No.: 101		102		103		104		
Q ₁ /Q ₁₀ : 0.6		0.7		0.8		0.9		
Time	PSH ofc/AO	PSMC	PSH of s / AO	PSMC	PSH of a / AO	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>ର/ବ</u> ୀଠ	cfs/AQ ₁₀	<u>8√6</u> 10	cfs/AQ ₁₀	<u>e/e</u> 10	cfs/AQ	<u> </u>
0 .6 1.3 2.0 3.0	0 .016 .135 .350 .631	.0001 .0018 .0079 .0262	0 .011 .094 .246 .443	.0001 .0012 .0055 .0183	0 .006 .055 .150 .291	.0000 .0007 .0033 .0115	0 .003 .027 .072 .136	.0000 .0003 .0016 .0055
4.0 4.8 5.0 5.2 5.4	.913 1.292 1.493 1.939 2.642	.0544 .0862 .0964 .1089 .1256	.650 .945 1.132 1.627 2.441	.0382 .0612 .0687 .0786	.430 .638 .806 1.347 2.264	.0246 .0399 .0451 .0527	.209 .326 .466 1.047 2.065	.0117 .0193 .0221 .0273 .0386
5.6 5.8 6.0 6.2 6.4	3.615 4.801 6.067 7.146 7.864	.1486 .1795 .2196 .2685 .3239	3.597 5.028 6.568 7.876 8.740	.1156 .1473 .1900 .2434 .3048	3.598 5.268 7.079 8.612 9.617	.0873 .1198 .1653 .2234 .2907	3.577 5.492 7.581 9.340 10.484	.0593 .0925 .1406 .2033 .2764
6.5 6.6 6.7 6.8 7.0	8.061 8.181 8.151 8.052 7.608	•3533 •3832 •4133 •4431 •5009	8.972 9.116 9.068 8.942 8.392	•3374 •3707 •4042 •4373 •5012	9.878 10.044 9.970 9.814 9.146	.3266 .3632 .4000 .4364 .5063	10.772 10.959 10.854 10.664 9.871	.3155 .3555 .3956 .4351 .5108
7.2 7.4 7.7 8.0 8.5	6.991 6.301 5.246 4.361 3.282	•5547 •6037 •6674 •7203 •7902	7.645 6.818 5.567 4.535 3.309	.5604 .6136 .6818 .7375 .8090	8.257 7.288 5.833 4.654 3.291	•5704 •6276 •6998 •7575 •8298	8.836 7.722 6.063 4.744 3.259	•5797 •6406 •7163 •7757 •8484
9.0 9.5 10.0 10.6 11.2	2.480 1.893 1.506 1.143 .821	.8429 .8828 .9139 .9431 .9648	2.412 1.768 1.356 .980 .680	.8612 .8993 .9278 .9535 .9717	2.306 1.610 1.183 .809 .543	.8808 .9164 .9418 .9636 .9784	2.204 1.472 1.037 .662 .420	.8981 .9313 .9541 .9726 .9844
12.0 13.0 14.0 17.0	.452 .168 .060	.9832 .9940 .9978 1.0000	.371 .130 .044	.9869 .9956 .9984 1.0000	•293 •093 •028	.9904 .9971 .9990	.224 .059 .013	•9936 •9985 •9995 1.0000

Table 21.10.--(Continued)

						Γ	$C_c = 72 \text{ ho}$	urs
Serial No.: 105			106	106 107			108	
$Q_{1}/Q_{10} : 0.2$		0.3		0.4		0.5		
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	$\frac{\text{cfs/AQ}_{10}}{}$	<u>ର/ର</u> ୁ୦	cfs/AQ _{lO}	9/910	cfs/AQ ₁₀	ହ/ହ10	cfs/AQ10	<u>ର/ହ</u> 10
0 .6 1.3 2.0 3.0	0 .039 .321 .867 1.552	.0002 .0042 .0193 .0650	0 .029 .241 .660 1.230	.0002 .0031 .0146 .0500	0 •022 •183 •508 •959	.0001 .0023 .0111 .0385	0 .017 .143 .395 .762	.0001 .0018 .0086 .0302
4.0 4.8 5.0 5.2 5.4	2.001 2.345 2.452 2.587 2.753	.1311 .1953 .2130 .2317 .2514	1.668 2.076 2.226 2.438 2.725	.1037 .1586 .1745 .1917 .2107	1.349 1.777 1.950 2.226 2.620	.0810 .1266 .1403 .1556 .1735	1.101 1.497 1.676 2.001 2.492	.0644 .1021 .1137 .1272 .1437
5.6 5.8 6.0 6.2 6.4	2.946 3.161 3.383 3.591 3.755	<ul><li>.2725</li><li>.2951</li><li>.3193</li><li>.3451</li><li>.3723</li></ul>	3.078 3.487 3.923 4.338 4.658	.2322 .2564 .2838 .3143 .3476	3.123 3.721 4.372 5.000 5.477	.1946 .2198 .2497 .2843 .3230	3.136 3.919 4.785 5.629 6.257	.1643 .1903 .2224 .2608 .3047
6.6 6.7 6.8 6.9 7.0	3.863 3.895 3.911 3.912 3.899	.4006 .4149 .4294 .4438 .4583	4.866 4.923 4.948 4.943 4.908	.3829 .4010 .4192 .4375 .4557	5.782 5.862 5.894 5.879 5.819	.3646 .3861 .4078 .4295 .4511	6.655 6.755 6.790 6.762 6.672	.3524 .3771 .4021 .4271 .4518
7.2 7.5 8.0 8.5 9.0	3.838 3.689 3.378 3.088 2.840	.4869 .5288 .5942 .6540 .7088	4.772 4.460 3.844 3.303 2.866	.4915 .5428 .6195 .6853 .7422	5.601 5.121 4.210 3.454 2.874	<ul><li>4933</li><li>5528</li><li>6388</li><li>7091</li><li>7673</li></ul>	6.364 5.712 4.508 3.550 2.836	.5000 .5669 .6610 .7347 .7934
9.5 10.0 10.6 11.2 12.0	2.628 2.450 2.222 1.836 1.142	•7593 •8062 •8583 •9037 •9478	2.507 2.220 1.925 1.551 .954	.7918 .8353 .8813 .9200	2.418 2.064 1.719 1.337 .804	.8160 .8572 .8990 .9330 .9644	2.284 1.863 1.491 1.131 .673	.8404 .8783 .9153 .9444 .9708
13.0 14.0 15.0 17.0	•523 •229 •098 0	•9774 •9906 •9963 1•0000	.435 .185 .078	.9816 .9925 .9971 1.0000	•365 •150 •062 0	.9851 .9941 .9977 1.0000	.305 .119 .048	.9880 .9954 .9983 1.0000

Table 21.10.--(Continued)

							П 50	,
							$T_{c} = 72$	hours
Serial No.: 109		110 0.7		111 0.8		112 0 <b>.</b> 9		
$Q_{1}/Q_{10} : 0.6$		0.1		0.0		0.9		
Time	PSH	PSMC	PSH	PSMC	PSH	PSMC	PSH	PSMC
days	cfs/AQ ₁₀	<u>ର/୧</u> 10	cfs/AQ ₁₀	<u>ୟ/ୟ</u> 10	cfs/AQ ₁₀	<u>ର/ର</u> ୁ	cfs/AQ _{lO}	<u> </u>
0 .6 1.3 2.0 3.0	0 .013 .108 .300 .581	0 .0001 .0014 .0065 .0229	0 .009 .075 .210 .408	0 .0000 .0010 .0045 .0160	0 .005 .044 .128 .266	0 .0000 .0006 .0027 .0100	0 .002 .021 .062 .125	0 .0000 .0003 .0013 .0048
4.0 4.8 5.0 5.2 5.4	.856 1.202 1.378 1.744 2.324	.0492 .0789 .0884 .0997 .1146	.608 .876 1.037 1.437 2.103	.0345 .0559 .0629 .0717 .0847	.402 .590 .733 1.164 1.910	.0222 .0364 .0412 .0478	.194 .299 .419 .877 1.701	.0105 .0176 .0201 .0245 .0338
5.6 5.8 6.0 6.2 6.4	3.106 4.072 5.156 6.221 7.001	.1345 .1609 .1948 .2368 .2856	3.019 4.171 5.478 6.771 7.705	.1034 .1298 .1653 .2104 .2638	2.956 4.288 5.814 7.334 8.413	.0768 .1033 .1405 .1889 .2469	2.874 4.388 6.136 7.888 9.111	.0505 .0771 .1157 .1673 .2299
6.6 6.7 6.8 6.9 7.0	7.491 7.610 7.647 7.604 7.483	.3391 .3669 .3950 .4231 .4508	8.290 8.427 8.467 8.411 8.258	.3228 .3536 .3847 .4157 .4464	9.085 9.237 9.275 9.200 9.010	.3114 .3451 .3792 .4132 .4467	9.867 10.032 10.065 9.969 9.739	.2999 .3365 .3734 .4102 .4465
7.2 7.5 8.0 8.5 9.0	7.083 6.257 4.767 3.622 2.792	•5046 •5784 •6797 •7563 •8151	7.767 6.775 5.015 3.698 2.765	•5055 •5860 •6942 •7735 •8327	8.420 7.251 5.213 3.728 2.699	•5109 •5976 •7118 •7930 •8518	9.044 7.693 5.380 3.742 2.632	.5157 .6082 .7278 .8104 .8686
9.5 10.0 10.6 11.2 12.0	2.166 1.700 1.311 .962 .561	.8606 .8958 .9290 .9540 .9762	2.075 1.568 1.161 .822 .470	.8770 .9101 .9401 .9619 .9806	1.950 1.411 1.001 .683 .381	.8943 .9247 .9511 .9695 .9849	1.839 1.275 .863 .559 .301	.9095 .9376 .9609 .9764 .9887
13.0 14.0 15.0 17.0	•253 •092 •036 0	.9906 .9966 .9987 1.0000	.212 .069 .026	•9927 •9975 •9991 1•0000	.172 .047 .016	•9947 •9984 •9994 1•0000	.136 .027 .008	.9965 .9992 .9997



FIGURE 21.1 - Mass curves of runoff in various arrangements.







Exhibit 21-2 RATIDS OF VOLUMES OF RUNOFF  $(Q_1/Q_{10})$  for developing the Principal Spillway Hydrograph

(210-VI-NEH-4, Amend. 6, March 1985)















# Emergency Spillways 1

Flows larger than those completely controllable by the principal spillway and retarding storage are safely conveyed past an earth dam by an emergency spillway. The emergency spillway is designed by use of an Emergency Spillway Hydrograph (ESH) and its minimum freeboard determined by use of a Freeboard Hydrograph (FH). Both kinds of hydrographs are constructed by the same procedure. There is a small difference in that procedure depending on whether a watershed's time of concentration is or is not over six hours.

This part of the chapter presents a manual method of developing ESH and FH. The method requires the use of the dimensionless hydrographs given in table 21.17. Methods of routing the ESH or FH through structures are given in chapter 17.

Alternatives to developing and routing the hydrographs manually are (i) use of the SCS electronic computer program, in which basic data are input and the ESH or FH, the routed hydrograph, and reservoir elevations are output; and (ii) the Upper Darby or UD method, in which no hydrograph is needed but which uses the hydrograph characteristics of ESH or FH in an indirect routing procedure with results in terms of spillway elevation and capacity.

The hydrologic criteria given below apply to the manual method and its alternatives. The examples that follow apply only to the manual method.

#### Hydrologic Criteria

SOURCE OF DESIGN STORM RAINFALL AMOUNT. The basic 6-hour design storm rainfall amount used in development of ESH and FH is taken from one of the following maps:

L/ Background information on the material in this part of the chapter is given in "Central Technical Unit Method of Hydrograph Development," by M. H. Kleen and R. G. Andrews, Transactions, American Society of Agricultural Engineers, vol. 5, no. 2, p. 180-185, 1962; and in "Hydrology of Spillway Design: Small Structures - Limited Data," by Harold O. Ogrosky, paper no. 3914, Proceedings, American Society of Civil Engineers, Journal of the Hydraulics Division, May 1964.

ES-1020, 5 sheets. 48 contiguous States. Supplementary sheets for California and Washington-Oregon are also given.

ES-1021, 5 sheets. Hawaii.

ES-1022, 5 sheets. Alaska.

ES-1023, 5 sheets. Puerto Rico.

ES-1024, 5 sheets. Virgin Islands.

The rainfall amounts on these maps are minimums allowed by SCS criteria for various classes of structures.

DURATION ADJUSTMENT OF RAINFALL AMOUNT. If the time of concentration of the drainage area above a structure is more than six hours, the duration of the design storm is made equal to that time and the rainfall amount is increased using a factor from figure 21.2, part (c).

AREAL ADJUSTMENT OF RAINFALL AMOUNT. If the drainage area above a structure is 10 square miles or less, the areal rainfall is the same as the rainfall taken from the maps of ES-1020 through 1024. If the area is over 10 square miles but not over 100 square miles, the areal rainfall is obtained by use of a factor from figure 21.2, part (a). If the area is over 100 square miles, the adjustment factor for the area is requested from the Engineering Division, Washington, D. C. When a request is submitted, the following information about the area should also be submitted: (1) location, preferably the latitude and longitude of the watershed outlet; (2) size in square miles; (3) length in miles, following the main valley; (4) time of concentration in hours; (5) runoff curve number; (6) proposed value of the adjustment or adjustment factor. If a factor is also needed for a subwatershed of that watershed, then similar information about the subwatershed should also be submitted.

RUNOFF DETERMINATION. Runoff is determined using the methods of chapter 10. The runoff curve number (CN) for the drainage area above a structure is determined by any of the methods in chapter 10. This CN must be for antecedent moisture condition II or greater and it applies throughout the design storm regardless of the storm duration.

<u>DIMENSIONLESS HYDROGRAPHS</u>. The ESH and FH are made using the dimensionless hydrographs given in table 21.17. If a hydrograph is to be developed in an electronic computer program, then the storm distribution given in figure 21.2.b (ES-1003-b) must be used to get an equivalent ESH or FH.

#### Construction of Emergency Spillway and Freeboard Hydrographs

Two examples of hydrograph construction are given. The first illustrates the procedure when the watershed time of concentration is not over six hours,

the second when it is. There is no difference in procedure for ESH and FH. Equations used in the examples are listed in table 21.11.

Example 21.5.--Construct an ESH for a class (b) structure with a drainage area of 1.86 square miles, time of concentration of 1.25 hours, CN of 82, and location at latitude____, longitude____.

- 1. Determine the 6-hour design storm rainfall amount, P. For this structure class the ESH rainfall amount is taken from ES-1020, sheet 2 of 5. For the given location the map shows that P = 9.4 inches.
- 2. <u>Determine the areal rainfall amount</u>. The areal rainfall is the same as in step 1 because the drainage area is not over 10 square miles. Step 2 of example 21.6 shows the process.
- 3. <u>Make the duration adjustment of rainfall amount</u>. No adjustment is made because the time of concentration is not over six hours. Step 3 of example 21.6 shows the process.
- 4. Determine the runoff amount, Q. Enter figure 10.1 with P = 9.4 inches and CN = 82 and find Q = 7.21 inches.
- 5. Determine the hydrograph family. Enter figure 21.3 (ES-1011) with CN = 82 and at P = 9.4 read hydrograph family 2.
- 6. Determine the duration of excess rainfall,  $T_0$ . Enter figure 21.4 (ES-1012) with P=9.4 inches and at CN=82 read by interpolation that  $T_0=5.37$  hours.
- 7. Compute the initial value of  $T_p$ . By equation 21.4 this is 0.7(1.25) = 0.88 hours.
- 8. Compute the  $T_0/T_p$  ratio. This is 5.37/0.88 = 6.10.
- 9. Select a revised  $T_0/T_p$  ratio from table 21.16. This table shows the hydrograph families and ratios for which dimensionless hydrographs are given in table 21.17. Enter table 21.16 with the ratio from step 8 and select the tabulated ratio nearest it. For this example the selected ratio,  $(T_0/T_p)$ rev., is 6.
- 10. Compute Rev.  $T_p$ . This is a revised  $T_p$  used because of the change in ratio. By equation 21.5, Rev.  $T_p = 5.37/6 = 0.895$  hours.
- 11. Compute  $q_p$ . By equation 21.6 this is 484(1.86)/0.895 = 1006 cfs.
- 12. Compute  $Q_{qp}$ . Using the Q from step 4 and the  $q_p$  from step 11 gives  $Q_{qp} = 7.21(1006) = 7253.26$  cfs. Round to 7250 cfs.
- 13. Compute the times for which hydrograph rates will be computed. In equation 21.7 use Rev.  $T_p$  from step 10 and the entries in the  $t/T_p$  column of the selected hydrograph in table 21.17. The computed times are shown in column 2 of table 21.12.

Table 21.11--Equations used in construction of ESH and FH

	Equation	No.
	$T_p = 0.7 T_c$	21.4
	Rev. $T_p = \frac{T_o}{(T_o/T_p)_{rev.}}$	21.5
	$q_p = \frac{484 A}{\text{Rev. } T_p}$	21.6
	$t = (t/T_p) (Rev. T_p)$	21.7
	$q = (q_c/q_p) Q_{qp}$	21.8
where	A = drainage area in square miles q = hydrograph rate in cfs	
	$q_c$ = hydrograph rate in cfs when $Q$ = 1 inch	
	$q_p$ = hydrograph peak rate in cfs when Q = 1 inc Q = design storm runoff in inches	h
	Rev. $T_p$ = revised time to peak in hours	
	t = time in hours at which hydrograph rate is	computed
	$T_c$ = time of concentration in hours	
	$T_{O}$ = duration of excess rainfall in hours	
	$(T_0/T_p)_{rev.}$ = revised ratio from table 21.16	
	$T_{ m p}$ = time to peak in hours for CTU design hydro	graphs

14. Compute the hydrograph rates. Use equation 21.8 and the  $q_{\rm c}/q_{\rm p}$  column of the selected hydrograph in table 21.17. The computed rates are shown in column 3 of table 21.12.

The hydrograph is completed with step 14. How the hydrograph is further retabulated or plotted for routing through the spillway depends on the routing method to be used. See chapter 17 for routing details.

The mass curve for the hydrograph can be obtained using the  $Q_{\rm t}/Q$  column of the selected hydrograph in table 21.17. Ratios in that column are multiplied by the Q of step 4 to give accumulated runoff in inches at the time computed in step 13. For accumulated runoff in acre-feet or another unit, convert Q to the desired unit before making the series of multiplications.

In the following example the storm duration is increased because the time of concentration is over six hours. Increasing the duration also requires increasing the rainfall amount but if the drainage area is over 10 square miles the increase is partly offset by the decrease in areal rainfall.

Example 21.6.--Construct a FH for a class (c) structure with a drainage area of 23.0 square miles, time of concentration of 10.8 hours, CN of 77, and location at latitude____, longitude____.

- 1. Determine the 6-hour design storm rainfall amount, P. For this structure class the FH rainfall amount is taken from ES-1020, sheet 5 of 5. For the given location the map shows that P = 25.5 inches.
- 2. Determine the areal rainfall amount. Use the appropriate curve on figure 21.2.a (ES-1003-a). For this location the "Humid and subhumid climate" curve applies and the adjustment factor for the drainage area of 23.0 square miles is 0.93. The adjusted rainfall is 0.93(25.5) = 23.72 inches.
- 3. <u>Make the duration adjustment of rainfall amount</u>. The duration is made equal to the time of concentration, in this case, 10.8 hours. Enter figure 21.2.c (ES-1003-c) with the duration of 10.8 hours and find an adjustment factor of 1.18. The adjusted rainfall is 1.18(23.72) = 27.99 inches. It is rounded to 28.0 inches for the remainder of this example.
- 4. Determine the runoff amount, Q. Enter figure 10.1 with the rainfall from step 3 (P = 28.0 inches) and at CN = 77 find Q = 24.7 inches.
- 5. Determine the hydrograph family. Enter figure 21.3 (ES-1011) with CN = 77 and at P = 28.0 inches read hydrograph family 1.
- 6. Determine the duration of excess rainfall,  $T_0$ . Enter table 21.14 with CN = 77 and find that P*, the rainfall prior to the excess rainfall, is 0.60 inches. Enter table 21.15 with the ratio P*/P = 0.60/28.0 = 0.0214 and by interpolation read a time ratio of 0.950. Then  $T_0 = (\text{time ratio}) \times (\text{storm duration}) = 0.950(10.8) = 10.26 \text{ hours}$ .

SCS-ENG-319 Rev. 1-70 File Code ENG-13-14

HYDROGRAPH COMPU	TATIO	ON COMPO	JTED BY KED BY	
		t=(t/T _p )Rev. T _p	$q = (q_c/q_p)(Q)(q_p)$	$Q_t = (Q_t/Q)Q$
WATERSHED OR PROJECT (EXAMPLE 21.5)		t	q	Q
WATERISTED ON PROJECT		HOURS	CFS	INCHES
STATE	1	0	0	0
	2	.30	7	
STRUCTURE SITE OR SUBAREA	3	.61	36	
	4	.91	109	
DR. AREA 1.86 SQ. MI. STRUCTURE CLASS 6	5	1.22	268	
· · · · · · · · · · · · · · · · · · ·	6	1.52	710	
T 1.25 HR. STORM DURATION 6 HR.	7	1.82	1769	
POINT RAINFALL 9.4 IN.	8	2,13	2951	
ADJUSTED RAINFALL:	9	2,43	3364	•
	10	2.74	3110	
AREAL: FACTOR	11	3,04	2661	
DURATION: FACTOR 1.0 IN. 9.4	12	3.35	2240	
RUNOFF CURVE NO	13	3.65	1892	
KUNUFF CURVE NO	14	3.96	1624	
Q	15	4.26	1399	
HYDROGRAPH FAMILY NO	16	4.56	1225	
TOROGRAM TAMILING.	17	4.87	1102	
COMPUTED T 0.88 UP	18	5.17	1008	
COMPUTED T _p <i>O.88</i> _ HR.	19	5.48	935	
T ₀	20	5.18	819	
10	21	6.09	616	
(T _o / T _p ):	22	6.39	399	
COMPUTED 6.10 . USED 6	23	6.69	254	
,	24	7.00	145	
REVISED T _p <u>0.895</u>	25	7.30	87	
	26	7.61	58	
$q_{\rm n} = \frac{484A}{2} = \frac{1006}{100}$ CFS.	27	7.91	36	
REV. Tp	28	8.22	29	
$q_p = \frac{484A}{REV. T_p} = \frac{1006}{CFS.}$ $(Q)(q_p) = \frac{7250}{CFS.}$	29	8.52	22	
	30	8.82	14	
$(COLUMN) = (t/T_p) REV. T_p$ $q(COLUMN) = (q_c/q_p)(Q)(q_p)$	31	9.13	.7	
	32	9.43	0	
$Q(COLUMN) = (Q_t/Q)Q$	33			
	34			

Table 21.12 Hydrograph computation

- 7. Compute the initial value of  $T_p$ . By equation 21.4 this is 0.7(10.8) = 7.56 hours.
- 8. Compute the  $T_0/T_p$  ratio. This is 10.26/7.56 = 1.357.
- 9. Select a revised  $T_0/T_p$  ratio from table 21.16. Enter table 21.16 with the ratio from step 8 and select the tabulated ratio nearest it. For this example the selected ratio,  $(T_0/T_p)$  rev., is 1.5.
- 10. Compute Rev.  $T_p$ . This is a revised  $T_p$  used because of the change in ratio. By equation 21.5, Rev.  $T_p = 10.26/1.5 = 6.84$  hours.
- 11. Compute qp. By equation 21.6 this is 484(23.0)/6.84 = 1627.5 cfs. Round to 1628 cfs.
- 12. Compute  $Qq_p$ . Using the Q from step 4 and the  $q_p$  from step 11 gives  $Q(q_p) = 24.7(1628) = 40,211.6$  cfs. Round to 40,212 cfs.
- 13. Compute the times for which hydrograph rates will be computed. Use equation 21.7 with the Rev.  $T_p$  from step 10 and the entries in the  $t/T_p$  column of the selected hydrograph in table 21.17. The computed rates are shown in column 2 of table 21.13.
- 14. Compute the hydrograph rates. Use equation 21.8 with Qqp of step 12 and the  $q_{\rm C}/q_{\rm p}$  column of the selected hydrograph in table 21.17. The computed rates are shown in column 3 of table 21.13.

HYDROGRAPH COMPU	TATIO	ON COMP	UTED BY	
		t=(t/T _p )Rev. T _p	$q = (q_c/q_p)(Q)(q_p)$	$Q_t = (Q_t/Q)Q$
WATERSHED OR PROJECT (EXAMPLE 21.6)		t	q	Q
The state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the s		HOURS	CFS	INCHES
STATE	1	0	0	0
	2	2.19	482	
STRUCTURE SITE OR SUBAREA	3	4.38	4745	
	4	6.57	15160	
DR. AREA 23.0 SQ. MI. STRUCTURE CLASS C	5	8.76	28591	
	6	10.94	32773	
T _c HR. STORM DURATIONHR.	7	13.13	289/2	
POINT RAINFALL 25.5 IN.	8	15.32	21152	
ADJUSTED RAINFALL:	9	17.51	14155	
AREAL: FACTOR IN IN IN	10	19.70	9048	
	11	21.89	5750	
DURATION: FACTOR	12	24.08	3619	
RUNOFF CURVE NO. 77	13	26,26	2292	
	14	28.45	1488	
Q <u>24.7</u> IN.	15	30,64	965	
HYDROGRAPH FAMILY NO/	16	32.83	603	
	17	35.02	322	
COMPUTED To 7.56 HR.	18	37.21	161	
	19	39.40	80	
T ₀ <u>/0.26</u> HR.	21	41.59	40	
	22	43.18	0	
$(T_0/T_p)$ :	23			
COMPUTED	24			
/ 9//	25			
REVISED T _p 6.84	26			
a 484A /628 css	27			
$q_p = \frac{484A}{REV. T_p} = \frac{/628}{CFS.}$ $(Q)(q_p) = \frac{40, 2/2}{CFS.}$	28			
$(0)(q_{\perp}) = 40.2/2$ CFS.	29			
	30			
$(COLUMN) = (t/T_p) REV. T_p$ $q(COLUMN) = (q_c/q_p)(Q)(q_p)$	31			
у у	32			
$Q(COLUMN) = (Q_t/Q)Q$	33			
·	34			

Table 21.13 Hydrograph computation.

Table 21.14. -- Rainfall prior to excess rainfall.

CN	P*	CN	P*	CN	P*	CN	P*	CN	P*
	(inches)		(inches)		(inches)		(inches)		(inches)
100	0	86	0.33	72	0.78	58	1.45	14)4	2.54
99	.02	85	•35	71	.82	57	1.51	43	2.64
98	•04	84	•38	70	.86	56	1.57	42	2.76
97	.06	83	.41	69	.90	55	1.64	41	2.88
96	.08	82	• 14.14	68	•94	53	1.70	40	3.00
95	.11	81	.47	67	•98	53	1.77	39	3.12
94	.13	80	•50	66	1.03	52	1.85	38	3.26
93	.15	79	•53	65	1.08	51	1.92	37	3.40
92	.17	78	•56	64	1.12	50	2.00	36	3.56
91	•20	77	.60	63	1.17	49	2.08	35	3.72
90	.22	76	.63	62	1.23	48	2.16	34	3.88
89	•25	75	.67	61	1.28	47	2.26	33	4.06
88	.27	74	.70	60	1.33	46	2.34	32	4.24
87	•30	73	•74	59	1.39	45	5.44	31	7+•7+7+

Table 21.15.--Rainfall and time ratios for determining  $T_{\rm O}$  when the storm duration is greater than 6 hours.

Rain- fall ratio	Time ratio	Rain- fall ratio	Time ratio	Rain- fall ratio	Time ratio	Rain- fall ratio	Time ratio
0	1.000	0.070	0.852	0.140	0.746	0.210	0.684
.002	•995	.072	.848	.142	.744	.212	.682
.004	•990	.074	.844	.144	·742	.214	.680
		•	.841		•		
.006	• 985	.076		.146	•740	.216	.679
.008	.981	.078	.837	.148	•739	.218	.677
.010	•976	.080	.833	.150	•737	•220	.675
.012	•971	.082	.830	.152	•735	.222	.673
.014	.967	•084	.827	.154	•733	.224	.672
.016	.962	•086	.824	.156	•732	•226	.670
.018	•957	.088	.821	.158	• -	.228	.668
•010	•971	•000	•021	•1)0	•730	• 220	•000
.020	•952	.090	.818	.160	.728	•230	.667
.022	•948	.092	.815	.162	•726	.232	.666
.024	.943	.094	.812	.164	.724	.234	.666
.026	.938	.096	.809	.166	•723	.236	.665
.028	•933	.098	.806	.168	• •	•238	.665
.020	•900	•090	•000	•100	.721	•270	•00)
.030	•929	.100	.803	.170	•719	.240	.664
.032	•924	.102	.800	.172	.717		
.034	•919	.104	•797	.174	.716	(Chang	e in
.036	•915	.106	•794	.176	.714		ation
.038	.911	.108	.791	.178	.712		ment.)
aka	000	770	=00	7.00	<b></b>	050	((0
.040	.908	.110	.788	.180	.710	.250	.662
.042	•904	.112	.785	.182	•709	•300	.651
•044	•900	.114	.782	.184	•707	•350	.640
.046	.896	.116	•779	.186	•705	.400	.628
.048	.893	.118	.776	.188	.703	.450	.617
•050	.889	.120	•773	.190	.702	.500	.606
.052	.885	.122	•770	.192	.700	•550	•595
.054	.882	.124					
			.767	.194	.698	.600	•583
•056	•878	.126	.764	.196	.696	•650	•542
.058	.874	.128	.761	.198	.695	.700	•500
.060	.870	.130	•758	.200	•693	•750	•447
.062	.867	.132	•755	.202	.691	.800	.386
.064	.863	.134	.751	.204	.689	.850	.310
.066	.859	.136	•749	.206	.687	.900	.220
.068	.856	.138	• 747	.208	.686	.950	.116
•000	•0,0	الراء	• (4)	• 200	•000	• 700	•110

Table 21.16.--Hydrograph families and  $T_{\rm O}/T_{\rm p}$  ratios for which dimensionless hydrograph ratios are given in table 21.17

Hydrograph									$T_{o}/T_{p}$					
Family	1	1.5	2	3	4	6	10	16	25	<u>3</u> 6	50	75		
1	*	*	*	*	*	*	*	*	*	*	*	*		
2	*	*	*	*	Ä	*	*	*	*	*	*	*		
3	*	*	*	*	*	*	*	*	*	*	*	*		
4	*	*	*	*	*	*	*	*	*	*	*			
5	*	*	*	*	*	*	*	*	*	*	*			

Asterisks signify that dimensionless hydrograph tabulations are given in table 21.17.

Table 21.17 --Time, discharge, and accumulated runoff ratios for dimensionless hydrographs

	$T_{O}/T$	$r_p = 1$			T	$_{\rm p}/_{\rm p} = 1$	L•5	į	$T_{O}/T_{P} =$	2
Line No.	t/Tp	qc/qp	Qt/Q		t/Tp	$q_{\rm c}/q_{\rm p}$	Qt/Q	t/Tp	$q_{\rm c}/q_{\rm p}$	Qt/Q
1 2 3 4 5	0 .28 .56 .84 1.12	0 .029 .150 .472 .798	0 .003 .021 .086 .216		.32 .64 .96 1.28	0 .012 .118 .377 .711	.001 .017 .075 .204	0 .29 .58 .87 1.16	0 .007 .035 .164 .432	0 .001 .005 .027 .090
6 7 8 9 10	1.40 1.68 1.96 2.24 2.52	.901 .776 .568 .389 .258	.392 .564 .703 .801 .868	:	1.60 1.92 2.24 2.56 2.88	.815 .719 .526 .352 .225	.384 .565 .712 .815	1.45 1.74 2.03 2.32 2.61	.669 .740 .680 .561 .441	.208 .359 .511 .644 .751
11 12 13 14 15	2.80 3.08 3.36 3.64 3.92	.173 .115 .078 .052 .036	.913 .942 .962 .976 .985	:	3.20 3.52 3.84 4.16 4.48	.143 .090 .057 .037 .024	•927 •954 •972 •983 •990	2.90 3.19 3.48 3.77 4.06	.319 .212 .140 .094 .063	.833 .890 .927 .952 .969
16 17 18 19 20	4.20 4.48 4.76 5.04 5.32	.024 .016 .009 .005 .002	.991 .995 .997 .999	! !	4.80 5.12 5.44 5.76 6.08	.015 .008 .004 .002	•995 •997 •999 1.000	4.35 4.64 4.93 5.22 5.51	.042 .028 .017 .011	.981 .988 .993 .996 .998
21 22 23 24	5.60 5.88	.001	1.000	(	5.40	0	1.000	5.80 6.09 6.38 6.67	.004 .002 .001	.999 1.000 1.000

Table 21.17 (Continued)

	$T_{O}/T$	p = 3		$\mathbf{T}_{0}$	$_{\rm o}/T_{\rm p} = 4$	ŀ	r	$T_0/T_p =$	6
Line No.	t/Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q
1 2 3 4 5	0 .35 .70 1.05 1.40	0 .005 .027 .101 .302	0 .001 .005 .021 .074	0 •35 •70 1.05 1.40	0 .003 .015 .049 .122	0 .000 .003 .011 .033	0 .44 .98 1.32 1.76	0 .003 .018 .041 .084	0 .001 .003 .012 .032
6 7 8 9 10	1.75 2.10 2.45 2.80 3.15	.563 .650 .576 .460 .374	.185 .342 .501 .635 .743	1.75 2.10 2.45 2.80 3.15	.298 .528 .585 .518 .413	.087 .194 .337 .479	2.20 2.64 3.08 3.52 3.96	.176 .386 .497 .430	.074 .165 .309 .459
11 12 13 14 15	3.50 3.85 4.20 4.55 4.90	.290 .201 .127 .078 .047	.829 .892 .935 .961	3.50 3.85 4.20 4.55 4.90	.334 .273 .231 .185 .128	.695 .774 .839 .892	4.40 4.84 5.28 5.72 6.16	.258 .202 .164 .139 .124	.679 •754 .813 .862 •905
16 17 18 19 20	5.25 5.60 5.95 6.30 6.65	.028 .016 .009 .005	•993 •996 •998 •999	5.25 5.60 5.95 6.30 6.65	.080 .047 .028 .017	•959 •976 •985 •991 •995	6.60 7.04 7.48 7.92 8.36	.100 .060 .033 .018	.941 .967 .982 .991
21 22 23 24 25	7.00 7.35 7.70	.002 .001 0	.999 1.000 1.000	7.00 7.35 7.70 8.05 8.40	.006 .004 .003 .002	.997 .998 .999 1.000	8.80 9.24 9.68 10.12 10.56	.005 .003 .002 .001	.997 .999 .999 1.000
26				8.75	0	1.000			

Table 21.17 (Continued) Hydrograph Family 1

	T _O /T	p = 10		$\mathtt{T}_{O}$	/T _p = 1	.6	$T_0/T_p = 25$			
Line No.	t/Tp	$q_{\rm c}/q_{\rm p}$	Qt/Q	t/Tp	$q_c/q_p$	Qt/Q	t/Tp	qc/qp	Qt/Q	
1 2 3 4 5	0 .56 1.12 1.68 2.24	0 .002 .013 .027 .047	0 .000 .004 .012 .027	0 .66 1.32 1.98 2.64	0 .001 .006 .015	.000 .002 .007	0 1.22 2.44 3.66 4.88	0 .002 .009 .018 .027	0 .001 .006 .018 .038	
6 7 8 9 10	2.80 3.36 3.92 4.48 5.04	.071 .115 .278 .394 .322	.052 .090 .172 .312 .461	3.30 3.96 4.62 5.28 5.94	.037 .047 .062 .092 .223	.033 .053 .080 .117 .194	6.10 7.32 8.54 9.76 10.98	.036 .046 .116 .232 .146	.067 .103 .176 .333 .503	
11 12 13 14 15	5.60 6.16 6.72 7.28 7.84	.235 .174 .136 .110	•577 •662 •726 •777 •819	6.60 7.26 7.92 8.58 9.24	.309 .243 .171 .124 .097	•323 •457 •557 •629 •683	12.20 13.42 14.64 15.86 17.08	.088 .062 .051 .045	.608 .675 .726 .769 .807	
16 17 18 19 20	8.40 8.96 9.52 10.08 10.64	.079 .073 .068 .065	.855 .886 .916 .943 .968	9.90 10.56 11.22 11.88 12.54	.081 .070 .061 .055	.726 .763 .794 .823 .848	18.30 19.52 20.74 21.96 23.18	.035 .031 .027 .025	.840 .870 .896 .920 .942	
21 22 23 24 25	11.20 11.76 12.32 12.88 13.44	.027 .012 .006 .003 .002	.984 .993 .996 .998	13.20 13.86 14.52 15.18 15.84	.047 .045 .044 .043	.872 .894 .916 .937 .957	24.40 25.62 26.84 28.06 29.28	.025 .020 .005 .002	.965 .985 .996 .999	
26 27 28 29 30	14.00 14.56	.001	1.000	16.50 17.16 17.82 18.48 19.14	.034 .020 .008 .004	•975 •988 •995 •998 •999				
31 32				19.80 20.46	.001	1.000				

Table 21.17 (Continued)

	$T_{O}/T$	p = 36		$T_{\circ}$	$/T_p = 5$	0	$T_o/T_p = 75$			
Line No.	t/Tp	$q_{\rm c}/q_{\rm p}$	Qt/Q	t/Tp	qc/qp	Qt/Q	$t/T_p$	qc/qp	Qt/Q	
1 2 3 4 5	0 1.70 3.40 5.10 6.80	0 .002 .008 .014 .020	.001 .008 .021 .043	0 2.00 4.00 6.00 8.00	.0019 .0052 .0085 .0118	0 .001 .007 .017 .031	0 3.00 6.00 9.00 12.00	.0017 .0039 .0054 .0084	0 .002 .008 .018	
9	8.50 10.20 11.90 13.60 15.30	.026 .033 .077 .177	.072 .109 .178 .338 .513	10.00 12.00 14.00 16.00 18.00	.0151 .0192 .0259 .0578 .1330	.051 .076 .109 .170 .310	15.00 18.00 21.00 24.00 27.00	.0106 .0137 .0197 .0516 .0900	.053 .079 .115 .192 .344	
11 12 13 14 15	17.00 18.70 20.40 22.10 23.80	.058 .044 .036 .030	.613 .678 .728 .770 .805	20.00 22.00 24.00 26.00 28.00	.0941 .0506 .0357 .0297 .0254	.475 .581 .644 .692 .732	30.00 33.00 36.00 39.00 42.00	.0593 .0321 .0226 .0188 .0161	.504 .602 .661 .705 .742	
16 17 18 19 20	25.50 2 <b>7.</b> 20 28.90 30.60 32.30	.024 .022 .020 .018	.838 .867 .893 .917 .939	30.00 32.00 34.00 36.00 38.00	.0219 .0192 .0172 .0159	.766 .797 .823 .847 .870	45.00 48.00 51.00 54.00 57.00	.0142 .0125 .0112 .0105 .0100	•775 •804 •829 •852 •874	
21 22 23 24 25	34.00 35.70 37.40 39.10 40.80	.017 .017 .004 .002	.960 .982 .995 .999	40.00 42.00 44.00 46.00 48.00	.0145 .0140 .0136 .0131 .0125	.891 .912 .932 .952 .971	60.00 63.00 66.00 69.00 72.00	.0097 .0094 .0090 .0087 .0084	.896 .916 .936 .955 .973	
26 27 28				50.00 52.00 54.00	.0123 .0016 0	.989 .999 1.000	75.00 78.00 81.00	.0081 .0002	.991 1.000 1.000	

Table 21.17 (Continued)

Hydrograph Family 2

	$T_{O}/T$	p = 1		$\mathrm{T}_{\mathrm{O}}$	$/T_p = 1$	.•5	מ	$T_{o}/T_{p} =$	2
Line No.	t/Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q
1 2 3 4 5	0 .28 .56 .84 1.12	0 .026 .170 .480 .802	0 .003 .023 .091 .224	0 •22 •44 •66 •88	0 .003 .041 .161 .362	0 .000 .004 .020 .063	0 •28 •56 •84 1•12	0 .004 .040 .170 .428	0 .000 .005 .027 .089
6 7 8 9 10	1.40 1.68 1.96 2.24 2.52	.885 .770 .550 .380 .257	•399 •571 •708 •804 •870	1.10 1.32 1.54 1.76 1.98	.604 .740 .790 .746 .640	.142 .251 .375 .501 .613	1.40 1.68 1.96 2.24 2.52	.645 .715 .677 .574 .472	.200 .340 .484 .614 .722
11 12 13 14 15	2.80 3.08 3.36 3.64 3.92	.166 .113 .078 .052 .034	.914 .943 .963 .976	2.20 2.42 2.64 2.86 3.08	.536 .414 .303 .219	.709 .786 .845 .887	2.80 3.08 3.36 3.64 3.92	.369 .247 .168 .113 .075	.809 .873 .915 .945
16 17 18 19 20	4.20 4.48 4.76 5.04 5.32	.023 .015 .009 .004	.991 .995 .998 .999	3.30 3.52 3.74 3.96 4.18	.117 .088 .064 .047	•941 •947 •970 •979	4.20 4.48 4.76 5.04 5.32	.050 .034 .021 .014	•977 •986 •991 •995 •997
21 22 23 24 25	5.60 5.88	.001	1.000	4.40 4.62 4.84 5.06 5.28	.025 .018 .012 .007 .004	.990 .994 .996 .998	5.60 5.88 6.16 6.44 6.72	.004 .003 .002 .001	.998 .999 1.000 1.000
26 27 28 29				5.50 5.72 5.94 6.16	.003 .002 .001	.999 1.000 1.000			

Table 21.17 (Continued)

	$T_{0}/T_{0}$	p = 3		$T_{O}$	$/T_p = 4$		Т	$T_0/T_p = 6$			
Line No.	t/Tp	qc/qp	Qt/Q	$t/T_p$	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q		
1 2 3 4 5	0 .32 .64 .96 1.28	0 .003 .017 .093 .311	.000 .003 .016 .064	0 .32 .64 .96 1.28	0 .002 .009 .036 .129	.000 .002 .007 .026	0 .34 .68 1.02 1.36	0 .001 .005 .015	0 .000 .001 .003 .010		
6 7 8 9 10	1.60 1.92 2.24 2.56 2.88	.530 .615 .575 .487 .409	.163 .298 .439 .565	1.60 1.92 2.24 2.56 2.88	•332 •501 •550 •500 •422	.081 .179 .303 .426 .535	1.70 2.04 2.38 2.72 3.06	.098 .244 .407 .464 .429	.027 .070 .151 .261		
11 12 13 14 15	3.20 3.52 3.84 4.16 4.48	•344 •279 •206 •135 •087	.760 .834 .891 .931	3.20 3.52 3.84 4.16 4.48	•358 •302 •274 •230 •195	.627 .705 .773 .832 .882	3.40 3.74 4.08 4.42 4.76	.367 .309 .261 .224 .193	.473 .557 .629 .690 .742		
16 17 18 19 20	4.80 5.12 5.44 5.76 6.08	.054 .032 .019 .012	•974 •984 •990 •994 •997	4.80 5.12 5.44 5.76 6.08	.147 .099 .061 .037	.922 .951 .970 .982 .989	5.10 5.44 5.78 6.12 6.46	.169 .152 .139 .129	.787 .828 .864 .898 .928		
21 22 23 24 25	6.40 6.72 7.04 7.36 7.68	.005 .003 .002 .001	.998 .999 1.000 1.000	6.40 6.72 7.04 7.36 7.68	.013 .008 .005 .004	•993 •996 •997 •998 •999	6.80 7.14 7.48 7.82 8.16	.085 .055 .035 .020	•953 •971 •982 •989 •993		
26 27 28 29 30				8.00 8.32 8.64	.002 .001 0	1.000	8.50 8.84 9.18 9.52 9.86	.008 .005 .004 .003	•995 •997 •998 •999		
31 32							10.20 10.54	.001	1.000		

Table 21.17 (Continued)

Hydrograph Family 2

	$T_{O}/1$	$C_p = 10$		$\mathbf{T}_{C}$	$_{\rm p}/_{\rm p} = 1$	L6	$T_0/T_p = 25$			
Line No.	t/Tp	qc/qp	Qt/Q	t <b>/</b> Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q	
1 2 3 4 5	0 .63 1.26 1.89 2.52	.002 .009 .027 .063	0 .000 .003 .011 .032	0 .90 1.80 2.70 3.60	0 .002 .007 .020	.001 .004 .013 .031	0 1.30 2.60 3.90 5.20		0 .001 .005 .014 .032	
6 7 8 9 10	3.15 3.78 4.41 5.04 5.67	.236 .364 .307 .226	.102 .241 .397 .521 .613	4.50 5.40 6.30 7.20 8.10	.148 .277 .214 .149 .112	.093 .233 .396 .516 .603	6.50 7.80 9.10 10.40 11.70	.088 .210 .146 .097	.086 .228 .397 .513 .593	
11 12 13 14 15	6.30 6.93 7.56 8.19 8.82	.136 .113 .097 .085 .078	.685 •743 •792 •834 •872	9.00 9.90 10.80 11.70 12.60	.088 .073 .063 .056	.669 .722 .767 .807 .842	13.00 14.30 15.60 16.90 18.20	.057 .049 .044 .039	.655 .705 .750 .789 .824	
16 17 18 19 20	9.45 10.08 10.71 11.34 11.97	.074 .069 .053 .025	•907 •940 •969 •987 •995	13.50 14.40 15.30 16.20 17.10	.048 .045 .044 .042	.875 .906 .936 .964 .986	19.50 20.80 22.10 23.40 24.70	.033 .031 .029 .028	.857 .887 .916 .943 .969	
21 22 23 24	12.60 13.23 13.86 14.49	.004 .002 .001	.998 .999 1.000	18.00 18.90 19.80 20.70	.006 .003 .001	.995 .998 1.000	26.00 27.30 28.60 29.90	.014 .004 .001	.989 .997 1.000 1.000	

Table 21.17 (Continued)

To/Tp = 36			$T_0/T_p = 50$			$T_0/T_p = 75$			
Line No.	t/Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q
1 2 3 4 5	0 1.79 3.58 5.37 7.16	0 .002 .006 .012	.001 .007 .019 .039	0 2.50 5.00 7.50 10.00	.0018 .0047 .0087 .0145	0 .002 .008 .020	0 3.00 6.00 9.00 12.00	0 .0012 .0027 .0044 .0067	0 .001 .006 .014 .026
6 7 8 9 10	8.95 10.74 12.53 14.32 16.11	.057 .157 .104 .068 .047	.909 .232 .405 .519 .596	12.50 15.00 17.50 20.00 22.50	.0615 .1184 .0621 .0433 .0342	.111 .276 .442 .539 .611	15.00 18.00 21.00 24.00 27.00	.0108 .0309 .0790 .0624 .0357	.045 .091 .213 .369 .478
11 12 13 14 15	17.90 19.69 21.48 23.27 25.06	.040 .034 .030 .026	.653 .703 .745 .782 .816	25.00 27.50 30.00 32.50 35.00	.0274 .0234 .0209 .0187 .0167	.667 .714 .755 .791 .824	30.00 33.00 36.00 39.00 42.00	.0283 .0234 .0196 .0167 .0150	.548 .606 .653 .693 .728
16 17 18 19 20	26.85 28.64 30.43 32.22 34.01	.023 .021 .020 .019	.848 .877 .904 .930 .955	37.50 40.00 42.50 45.00 47.50	.0159 .0153 .0147 .0142 .0136	.854 .882 .910 .936 .962	45.00 48.00 51.00 54.00 57.00	.0137 .0126 .0115 .0108 .0104	.760 .789 .816 .840
21 22 23 24 25	35.80 37.59 39.38 41.17	.017 .007 .001	.978 .994 .999 1.000	50.00 52.50 55.00	.0131 .0008	.986 .999 1.000	60.00 63.00 66.00 69.00 72.00	.0101 .0098 .0095 .0092 .0089	.886 .908 .930 .950
26 27 28							75.00 78.00 81.00	.0086 .0003	.990 1.000 1.000

Table 21.17 (Continued)

Hydrograph Family 3

	To/Tp = 1					$T_o/T_p = 1.5$				$T_{O}/T_{p} = 2$		
Line No.	t <b>/</b> T _p	qc/qp	Qt <b>/</b> Q		t <b>/</b> Tp	qc/qp	Qt/Q		t <b>/</b> Tp	qc/qp	Qt <b>/</b> Q	
1 2 3 4 5	0 .26 .52 .78 1.04	0 .048 .219 .521 .762	0 .005 .030 .101 .224		0 .29 .58 .87 1.16	0 .028 .190 .450 .656	0 .003 .026 .094 .212		0 .30 .60 .90 1.20	0 .012 .123 .343 .570	0 .001 .016 .068 .169	
6 7 8 9 10	1.30 1.56 1.82 2.08 2.34	.844 .778 .621 .441	.378 .533 .668 .769		1.45 1.74 2.03 2.32 2.61	•734 •685 •585 •445 •350	.360 .511 .646 .756		1.50 1.80 2.10 2.40 2.70	.657 .630 .562 .484 .379	.304 .447 .578 .694 .789	
11 12 13 14 15	2.60 2.86 3.12 3.38 3.64	.214 .149 .103 .070 .048	.891 .925 .949 .966		2.90 3.19 3.48 3.77 4.06	.199 .132 .089 .057 .038	.899 .934 .958 .973		3.00 3.30 3.60 3.90 4.20	.267 .177 .116 .076	.861 .910   .942 .964 .977	
16 17 18 19 20	3.90 4.16 4.42 4.68 4.94	.034 .024 .016 .010	.985 .991 .995 .997		4.35 4.64 4.93 5.22 5.51	.025 .015 .008 .005	•990 •994 •997 •998 •999		4.50 4.80 5.10 5.40 5.70	.033 .020 .011 .006	.987 .992 .996 .998 .999	
21 22 23	5.20 5.46 5.72	.003 .001	1.000 1.000 1.000		5.80 6.09 6.38	.002 .001	1.000 1.000 1.000		6.00 6.30 6.60	.002 .001	1.000 1.000 1.000	

Table 21.17 (Continued)

	T _o /I	$n_p = 3$		$\mathtt{T}_{\Diamond}$	$/T_p = 4$		п	$T_o/T_p = 6$		
Line No.	t/Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q	
1 2 3 4 5	0 .34 .68 1.02 1.36	0 .004 .088 .289 .489	0 .001 .012 .059 .157	0 .36 .72 1.08 1.44	.003 .044 .203 .400	0 .000 .007 .040 .120	0 .42 .84 1.26 1.68	0 .002 .021 .138 .320	0 .000 .004 .029 .100	
6 7 8 9 10	1.70 2.04 2.38 2.72 3.06	.543 .507 .445 .385 .340	.286 .418 .537 .641	1.80 2.16 2.52 2.88 3.24	.478 .450 .397 .342 .296	•237 •360 •473 •572 •656	2.10 2.52 2.94 3.36 3.78	.390 .363 .314 .270 .232	.210 .327 .432 .522 .600	
11 12 13 14 15	3.40 3.74 4.08 4.42 4.76	.294 .223 .149 .096 .056	.811 .876 .922 .953	3.60 3.96 4.32 4.68 5.04	.257 .234 .210 .169	•730 •795 •855 •905 •942	4.20 4.62 5.04 5.46 5.88	.199 .174 .155 .144 .137	.667 .725 .776 .822 .866	
16 17 18 19 20	5.10 5.44 5.78 6.12 6.46	.033 .019 .013 .008	•983 •990 •994 •996 •998	5.40 5.76 6.12 6.48 6.84	.067 .037 .022 .014 .008	•966 •980 •988 •993 •995	6.30 6.72 7.14 7.56 7.98	.127 .101 .063 .033 .018	.907 .942 .968 .983	
21 22 23 24 25	6.80 7.14 7.48 7.82	.003 .002 .001	.999 .999 1.000 1.000	7.20 7.56 7.92 8.28 8.64	.006 .004 .002 .001	•997 •999 •999 1.000	8.40 8.82 9.24 9.66 10.08	.010 .005 .003 .002	•995 •997 •998 •999	
26 27							10.50	0	1.000	

Table 21.17(Continued)

Hydrograph Family 3

	$T_{\rm o}/T$	p = 10		To	$_{\rm p}/_{\rm p} = 1$	16	$T_0/T_p = 25$			
Line No.	t/Tp	qc/qp	Qt/Q	t/Tp	q _c /q _p	Qt/Q	t/Tp	qc/qp	Qt/Q	
1 2 3 4 5	0 .54 1.08 1.62 2.16	.001 .008 .069 .231	0 .000 .002 .017 .077	0 .90 1.80 2.70 3.60	0 .002 .016 .122 .230	0 .001 .007 .053 .170	0 1.23 2.46 3.69 4.92	0 .002 .009 .073 .173	0 .001 .006 .043 .154	
6 7 8 9 10	2.70 3.24 3.78 4.32 4.86	.303 .269 .223 .188 .159	.184 .298 .396 .478 .548	4.50 5.40 6.30 7.20 8.10	.185 .139 .113 .094 .081	.308 .415 .499 .568 .626	6.15 7.38 8.61 9.84 11.07	.132 .096 .076 .064	.291 .394 .471 .534 .588	
11 12 13 14 15	5.40 5.94 6.48 7.02 7.56	.139 .122 .108 .097 .089	.607 .659 .705 .746 .783	9.00 9.90 10.80 11.70 12.60	.072 .064 .057 .053	.677 .722 .762 .799 .833	12.30 13.53 14.76 15.99 17.22	.050 .046 .042 .038	.635 .678 .718 .754 .787	
16 17 18 19 20	8.10 8.64 9.18 9.72 10.26	.081 .078 .077 .077	.817 .849 .880 .911	13.50 14.40 15.30 16.20 17.10	.049 .048 .047 .046	.866 .898 .930 .961 .984	18.45 19.68 20.91 22.14 23.37	.033 .032 .031 .031	.818 .947 .875 .903 .931	
22 23 24	10.80 11.34 11.88 12.42 12.96	.055 .030 .012 .006 .004	.967 .984 .992 .996	18.00 18.90 19.80 20.70	.006 .004 .002	•994 •997 •999 1.000	24.60 25.83 27.06 28.29 29.52	.031 .025 .004 .001	.959 .984 .997 1.000	
27	13.50 14.04 14.58	.002 .001	.999 1.000 1.000							

Table 21.17 (Continued)

Hydrograph Family 3

	$T_{O}/T$	p = 36		$T_{O}$	$/T_p = 50$	)	$\mathbf{T}_{0}$	75	
Line No.	t/Tp	$q_c/q_p$	Qt/Q	$t/T_p$	q _c /q _p	Qt/Q	t/Tp	qc/qp	Qt/Q
1 2 3 4 5	0 1.62 3.24 4.86 6.48	0 .002 .006 .047 .130	.001 .006 .037 .143	0 2.25 4.50 6.75 9.00		.001 .007 .052 .173	0 3.25 6.50 9.75 13.00	0 .0009 .0057 .0289 .0667	0 .001 .009 .051 .166
6 7 8 9	8.10 9.72 11.34 12.96 14.58	.097 .069 .052 .045	.277 .376 .448 .505	11.25 13.50 15.75 18.00 20.25	.0642 .0460 .0375 .0322 .0285	•307 •399 •469 •527 •577	16.25 19.50 22.75 26.00 29.25	.0445 .0317 .0257 .0219 .0195	.299 .391 .460 .517
11 12 13 14 15	16.20 17.82 19.44 21.06 22.68	.037 .034 .031 .028	.603 .645 .683 .719	22.50 24.75 27.00 29.25 31.50	.0258 .0239 .0219 .0201 .0185	.622 .664 .702 .737 .769	32.50 35.75 39.00 42.25 45.50	.0176 .0160 .0147 .0136 .0127	.612 .652 .689 .723 .755
16 17 18 19 20	24.30 25.92 27.54 29.16 30.78	.024 .024 .024 .024	•779 •808 •836 •865 •893	33.75 36.00 38.25 40.50 42.75	.0173 .0165 .0162 .0159	•799 •829 •854 •881 •907	48.75 52.00 55.25 58.50 . 61.75	.0118 .0113 .0109 .0107 .0105	.784 .812 .839 .865 .890
21 22 23 24 25	32.40 34.02 35.64 37.26 38.88	.023 .023 .023 .007	•920 •947 •974 •992 •998	45.00 47.25 49.50 51.75 54.00	.0153 .0150 .0147 .0028	•933 •958 •983 •998	65.00 68.25 71.50 74.75 78.00	.0103 .0101 .0099 .0097 .0003	.915 .940 .964 .988
26	40.50	0	1.000				81.25	0	1.000

Table 21.17 (Continued)

	T	$T_{O}/T_{D} =$	1		$T_{O}/T_{D} =$	1.5	$T_0/T_p = 2$			
Line No.	t/Tp	qc/qp	Qt/Q	t/I	p qc/qp	Qt/Q	t/Tp	$q_{ m c}/q_{ m p}$	Qt/Q	
1 2 3 4 5	0 .28 .56 .84 1.12	0 .051 .220 .490 .738	0 .005 .033 .107 .234	0 •5 •8 1.1	.038 .6 .166 .360	.025 .079	0 •32 •64 •96 1•28	.173 .360	_	
6 7 8 9 10	1.40 1.68 1.96 2.24 2.52	.830 .751 .573 .392 .259	•397 •560 •697 •797 •865	1.4 1.6 1.9 2.2 2.5	8 .686 6 .650 4 .543	•436 •575 •698	1.60 1.92 2.24 2.56 2.88	•567 •555 •490	.315 .447 .580 .703 .805	
11 12 13 14 15	2.80 3.08 3.36 3.64 3.92	.174 .118 .079 .053 .036	.910 .940 .960 .974 .983	2.8 3.0 3.3 3.6 3.9	8 .180 6 .120 4 .081	.909 .940 .961	3.20 3.52 3.84 4.16 4.48		.877 .923 .952 .971 .983	
16 17 18 19 20	4.20 4.48 4.76 5.04 5.32	.025 .017 .011 .006	•990 •994 •997 •999	4.2 4.4 4.7 5.0 5.3	8 .024 6 .015 4 .009	•991 •995 •997	4.80 5.12 5.44 5.76 6.08	.024 .013 .008 .004	.991 .995 .997 .999	
21 22 23	5.60 5.88	.001	1.000	5.8 5.8 6.1	8 .001		6.40 6.72	.001	1.000	

Table 21.17 (Continued)

Hydrograph Family 4

$T_0/T_p = 3$				$T_{O}$	$/T_p = 4$		$T_0/T_p = 6$			
Line No.	t/Tp	q _c /q _p	Qt/Q	t/Tp	qc/qp	Qt/Q	t <b>/</b> Tp	qc/qp	Qt <b>/</b> Q	
1 2 3 4 5	0 .28 .56 .84 1.12	0 .018 .086 .200	0 .002 .013 .042 .095	0 .40 .80 1.20 1.60	0 .023 .143 .272 .326	0 .03 .028 .089 .177	0 .40 .80 1.20 1.60	0 .014 .088 .191 .244	0 .002 .017 .058 .122	
6 7 8 9 10	1.40 1.68 1.96 2.24 2.52	.386 .415 .422 .417 .402	.167 .250 .337 .424	2.00 2.40 2.80 3.20 3.60	•340 •337 •323 •306 •293	.276 .376 .473 .566 .654	2.00 2.40 2.80 3.20 3.60	.250 .246 .240 .233 .223	.195 .268 .340 .410	
11 12 13 14 15	2.80 3.08 3.36 3.64 3.92	•394 •387 •363 •316 •236	.591 .672 .750 .820	4.00 4.40 4.80 5.20 5.60	.286 .266 .197 .122 .067	.740 .821 .890 .937 .965	4.00 4.40 4.80 5.20 5.60	.212 .202 .194 .189 .187	.541 .602 .660 .717	
16 17 18 19 20	4.20 4.48 4.76 5.04 5.32	.164 .108 .073 .047	.919 .947 .966 .978 .986	6.00 6.40 6.80 7.20 7.60	.036 .021 .013 .008	.980 .988 .993 .996	6.00 6.40 6.80 7.20 7.60	.185 .175 .131 .080	.827 .880 .925 .956 .975	
21 22 23 24 25	5.60 5.88 6.16 6.44 6.72	.020 .013 .008 .005 .003	.991 .995 .997 .998	8.00 8.40 8.80	.002 .001 0	.999 1.000 1.000	8.00 8.40 8.80 9.20 9.60	.027 .016 .009 .005	.985 .992 .995 .997 .999	
26 27 28 29	7.00 7.28 7.56 7.84	.002 .001	1.000 1.000 1.000				10.00 10.40 10.80	.002 .001 0	.999 1.000 1.000	

Table 21.17 (Continued)

Hydrograph Family 4

$T_{o}/T_{p} = 10$			T,	$_{o}/T_{p} = 1$	16	$T_0/T_p = 25$			
Line No.	t <b>/</b> Tp	qc/qp	Qt/Q	t/Tp	qc/qp	^Q †/Q	t <b>/</b> Tp	$q_c/q_p$	Qt/Q
1 2 3 4 5	0 .50 1.00 1.50 2.00	0 .015 .079 .151 .177	0 .003 .020 .062 .122	0 .62 1.24 1.86 2.48	0 .015 .064 .112 .128	0 .003 .022 .062 .117	0 1.02 2.04 3.06 4.08	0 .025 .070 .092 .082	0 .009 .045 .106 .170
6 7 8 9 10	2.50 3.00 3.50 4.00 4.50	.170 .159 .152 .146 .141	.186 .247 .304 .358 .411	3.10 3.72 4.34 4.96 5.58	.119 .105 .097 .094	.173 .225 .271 .315 .357	5.10 6.12 7.14 8.16 9.18	.068 .062 .059 .056	.227 .276 .321 .365 .407
11 12 13 14 15	5.00 5.50 6.00 6.50 7.00	.136 .131 .126 .121	.462 .511 .558 .604 .647	6.20 6.82 7.44 8.06 8.68	.089 .087 .085 .082	.398 .438 .478 .516	10.20 11.22 12.24 13.26 14.28	.054 .053 .052 .050	.448 .488 .528 .566 .603
16 17 18 19 20	7.50 8.00 8.50 9.00 9.50	.112 .112 .111 .111	.689 .730 .771 .812 .852	9.30 9.92 10.54 11.16 11.78	.076 .074 .072 .071	.588 .623 .656 .689	15.30 16.32 17.34 18.36 19.38	.047 .046 .045 .044 .044	.639 .674 .709 .742 .775
21 22 23 24 25	10.00 10.50 11.00 11.50 12.00	.110 .100 .065 .033 .025	.893 .931 .962 .980 .990	12.40 13.02 13.64 14.26 14.88	.069 .069 .069 .069	•753 •785 •816 •848 •879	20.40 21.42 22.44 23.46 24.48	· O/1/1 · O/1/1 · O/1/1 · O/1/1	.809 .842 .875 .908 .941
26 27 28 29 30	12.50 13.00 13.50 14.00 14.50	.007 .004 .002 .001	.996 .998 .999 1.000	15.50 16.12 16.74 17.36 17.98	.069 .068 .053 .023	.911 .942 .970 .987 .995	25.50 26.52 27.54 28.56 29.58	.039 .012 .004 .001	.972 .992 .998 1.000
31 32 33 34				18.60 19.22 19.84 20.46	.004 .002 .001	.998 .999 1.000			

Table 21.17 (Continued)

		Hy	drograph		Hydro	graph F	amily 5		
	T _O /I	p = 36		$\mathrm{T}_{\mathrm{c}}$	o/Tp = :	50	$\mathbf{T}_{0}$	$_{\rm D}/{\rm T_{\rm p}} = 3$	l
Line No.	t/Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q	t/Tp	qc/qp	Qt/Q
1 2 3 4 5	0 1.50 3.00 4.50 6.00	0 .0306 .0575 .0672 .0492	0 .017 .066 .135 .199	0 2.00 4.00 6.00 8.00	0 .0277 .0464 .0435 .0378	0 .020 .075 .141 .201	0 .26 .52 .78 1.04	0 .021 .106 .289 .530	0 .002 .014 .052 .131
6 7 8 9 10	7.50 9.00 10.50 12.00 13.50	.0433 .0418 .0408 .0400 .0391	.251 .298 .344 .388 .432	10.00 12.00 14.00 16.00 18.00	.0335 .0307 .0291 .0282 .0274	.254 .301 .345 .388 .429	1.30 1.56 1.82 2.08 2.34	.740 .848 .767 .590 .406	.254 .407 .563 .693 .789
11 12 13 14 15	15.00 16.50 18.00 19.50 21.00	.0382 .0371 .0358 .0341 .0319	.475 .517 .557 .596 .632	20.00 22.00 24.00 26.00 28.00	.0266 .0258 .0250 .0242 .0234	.468 .507 .544 .581 .616	2.60 2.86 3.12 3.38 3.64	.279 .193 .134 .092	.855 .901 .933 .954 .969
16 17 18 19 20	22.50 24.00 25.50 27.00 28.50	.0308 .0306 .0306 .0306	.667 .701 .735 .769 .803	30.00 32.00 34.00 36.00 38.00	.0230 .0229 .0227 .0226 .0225	.650 .683 .718 .751 :784	3.90 4.16 4.42 4.68 4.94	.044 .030 .021 .015	.980 .987 .992 .995 .998
21 22 23 24 25	30.00 31.50 33.00 34.50 36.00	.0306 .0306 .0306 .0306	.837 .871 .905 .939 .973	40.00 42.00 44.00 46.00 48.00	.0224 .0222 .0221 .0219	.817 .850 .883 .915 .948	5.20 5.46 5.72	.005 .002 0	.999 1.000 1.000
26 27 28	37.50 39.00 40.50	.0085 .0009	.994 1.000 1.000	50.00 52.00 54.00	.0217 .0029	.980 .998 1.000			

Table 21.17 (Continued) Hydrograph Family 5

	$T_{\circ}/T$	p = 1.5		$\mathbf{T}_{C}$	$p/T_p = 2$	2	$T_0/T_p = 3$		
Line No.	7 10 =-7 =0 -7 =0		Qt/Q	t/Tp	$t/T_p$ $q_c/q_p$ $Qt/Q$		t/Tp	qc/qp	Qt/Q
1 2 3 4 5	0 .25 .50 .75 1.00	0 .013 .065 .173 .306	.001 .008 .030	0 •25 •50 •75 1.00	0 .010 .048 .127 .227	0 .001 .006 .022	0 .34 .68 1.02 1.36	0 .010 .068 .150 .229	0 .001 .011 .039 .086
<b>7</b> 8 9	1.25 1.50 1.75 2.00 2.25	.434 .562 .680 .737 .673	.143 .235 .350 .481 .611	1.25 1.50 1.75 2.00 2.25	.318 .389 .448 .523 .609	.106 .171 .248 .338 .443	1.70 2.04 2.38 2.72 3.06	.283 .315 .339 .378 .459	.151 .226 .308 .399 .504
12 13 14	2.50 3.75 3.00 3.25 3.50	.530 .381 .262 .185 .129	.722 .806 .866 .907 .936	2.50 2.75 3.00 3.25 3.50	.642 .576 .450 .322 .222	.558 .671 .766 .837 .888	3.40 3.74 4.08 4.42 4.76	.509 .446 .310 .190	.626 .746 .841 .904 .943
17 18 19	3.75 4.00 4.25 4.50 4.75	.090 .063 .045 .031	•956 •970 •980 •987 •992	3.75 4.00 4.25 4.50 4.75	.156 .109 .075 .053	•923 •947 •964 •976 •984	5.10 5.44 5.78 6.12 6.46	.069 .040 .025 .016	.966 .980 .988 .993 .997
22 23 24	5.00 5.25 5.50 5.75 6.00	.014 .009 .005 .003	•995 •998 •999 1.000	5.00 5.25 5.50 5.75 6.00	.025 .017 .011 .007 .004	.990 .994 .996 .998	6.80 7.14 7.48 7.82	.005 .003 .001	.998 .999 1.000
26 27 28	6.25	0	1.000	6.25 6.50 6.75	.002 .001	1.000 1.000 1.000			

Table 21.17 (Continued)

$T_{O}/T_{D} = 4$					$T_{O}$	$T_p = 6$		$T_{o}/T_{p} = 10$			
	Line $t/T_p$ $q_c/q_p$ $Qt/Q$ No.			Qt/Q	t/Tp	$t/T_p$ $q_c/q_p$ $Qt/Q$			qc/qp	Qt/Q	
	1 2 3 4 5	0 .36 .72 1.08 1.44	0 .010 .053 .124 .181	0 .001 .010 .033 .074	0 .52 1.04 1.56 2.08	0 .015 .070 .130 .159	0 .003 .019 .057 .112	0 .67 1.34 2.01 2.68	0 .013 .061 .091 .102	0 .003 .022 .059 .107	
	6 7 8 9 10	1.80 2.16 2.52 2.88 3.24	.220 .243 .256 .263 .273	.127 .189 .255 .325 .396	2.60 3.12 3.64 4.16 4.68	.172 .178 .182 .183 .184	.176 .242 .311 .381 .451	3.35 4.02 4.69 5.36 6.03	.107 .110 .111 .111	.159 .213 .268 .323 .378	
	11 12 13 14 15	3.60 3.96 4.32 4.68 5.04	.308 .380 .427 .377 .260	.473 .565 .672 .779 .864	5.20 5.72 6.24 6.76 7.28	.218 .285 .324 .267 .133	•527 •623 •740 •852 •929	6.70 7.37 8.04 8.71 9.38	.112 .116 .160 .198	.434 .490 .546 .615	
	16 17 18 19 20	5.40 5.76 6.12 6.48 6.84	.155 .094 .055 .032 .019	.919 .953 .972 .984 .991	7.80 8.32 8.84 9.36 9.88	.064 .029 .016 .007	.966 .984 .993 .997 .999	10.05 10.72 11.39 12.06 12.73	.212 .168 .074 .027	.805 .900 .960 .985 .994	
	21 22 23 24 25	7.20 7.56 7.92 8.28 8.64	.012 .007 .004 .002	.995 .997 .999 1.000	10.40 10.92	.001	1.000	13.40 14.07 14.74	.005 .002 0	.998 1.000 1.000	

Table 21.17 (Continued) Hydrograph Family 5

$T_0/T_p = 16$				$T_0/T_p = 25$		
Line No.	t/Tp	$q_{\rm c}/q_{\rm p}$	Qt/Q	t/Tp	$q_c/q_p$	Qt/Q
1 2 3 4 5	0 .80 1.60 2.40 3.20	0 .008 .046 .060	0 .002 .018 .050	0 1.25 2.50 3.75 5.00	0 .015 .039 .043 .044	0 .007 .032 .070
6 7 8 9 10	4.00 4.80 5.60 6.40 7.20	.067 .067 .068 .068	.126 .166 .206 .246 .286	6.25 7.50 8.75 10.00 11.25	• Ojtyt • Ojtyt • Ojtyt • Ojtyt • Ojtyt	.151 .191 .232 .273 .314
11 12 13 14 15	8.00 8.80 9.60 10.40 11.20	.068 .068 .068 .068	•327 •367 •407 •448 •488	12.50 13.75 15.00 16.25 17.50	• O ₁ + ₁ + • O ₁ + ₁ + • O ₁ + ₁ + • O ₁ + ₁ +	•354 •395 •436 •47 <b>6</b> •517
16 17 18 19 20	12.00 12.80 13.60 14.40 15.20	.068 .086 .121 .133 .136	.528 .574 .636 .711	18.75 20.00 21.25 22.50 23.75	.045 .067 .083 .087	•558 •610 •679 •758 •839
21 22 23 24 25	16.00 16.80 17.60 18.40 19.20	.137 .098 .033 .012	.872 .941 .980 .993	25.00 26.25 27.50 28.75 30.00	.088 .035 .006 .002	.920 .976 .995 .999
26 27	20.00	.001	1.000			

	To/T	p = 36		$\mathtt{T}_{\mathtt{O}}$	$T_o/T_p = 50$		
Line No.	, ,	qc/qp	Qt/Q	t/Tp	Qc/qp	Qt/Q	
1 2 3 4 5	0 1.50 3.00 4.50 6.00	0 .0195 .0275 .0294 .0300	0 .011 .037 .068 .101	0 2.00 4.00 6.00 8.00	0 .0167 .0204 .0214 .0216	0 .012 .040 .071 .102	
6 7 8 9 10	7.50 9.00 10.50 12.00 13.50	.0301 .0301 .0301 .0301	.135 168 .202 .235 .268	10.00 12.00 14.00 16.00 18.00	.0216 .0216 .0216 .0216	.134 .166 .198 .230	
11 12 13 14 15	15.00 16.50 18.00 19.50 21.00	.0301 .0301 .0301 .0301	•302 •335 •369 •402 •435	20.00 22.00 24.00 26.00 28.00	.0216 .0216 .0216 .0216 .0216	.294 .326 .358 .390 .422	
16 17 18 19 20	22.50 24.00 25.50 27.00 28.50	.0301 .0311 .0364 .0425 .0480	•469 •503 •540 •584 •634	30.00 32.00 34.00 36.00 38.00	.0216 .0217 .0243 .0287 .0329	.454 .486 .520 .559 .604	
21 22 23 24 25	30.00 31.50 33.00 34.50 36.00	.0525 .0561 .0584 .0598 .0603	.690 .750 .814 .879	40.00 42.00 44.00 46.00 48.00	.0363 .0391 .0411 .0423 .0430	.656 .711 .771 .832 .895	
26 27 28 29	37.50 39.00 40.50	.0167 .0018	.989 .999 1.000	50.00 52.00 54.00 56.00	.0433 .0058 .0002	•959 •995 1.000 1.000	

Table 21.17 (Concluded)



SHEET 1 OF 1

DATE <u>7.2.56</u> REVISED <u>9-10-63</u>

# HYDROLOGY: CRITERIA FOR DESIGN STORMS USED IN DEVELOPING EMERGENCY SPILLWAY DESIGN AND FREEBOARD HYDROGRAPHS



(d) RAINFALL RATIOS FOR DRAINAGE AREAS OF 10 TO 100 SQUARE MILES



ENGINEERING DIVISION - CENTRAL TECHNICAL UNIT





Figure 21-3. Chart for selecting a hydrograph family for a given rainfall and runoff curve number.





Figure 21-4. Duration of excess rainfall for a 6-hour rainfall and for runoff curve numbers 40 to 100.





FIGURE 21.5 (1 of 5)

(210-VI-NEH-4, Amend. 6, March 1985)



FIGURE 21.5 (2 of 5)







FIGURE 21.5 (4 of 5)



FIGURE 21.5 (5 of 5)





FIGURE 21.6 (1 of 5)



FIGURE 21.6 (2 of 5)



FIGURE 21.6 (3 of 5)



FIGURE 21.6 (4 of 5)



FIGURE 21.6 (5 of 5)





FIGURE 21.7 (1 of 5)



FIGURE 21.7 (2 of 5)



FIGURE 21.7 (3 of 5)



FIGURE 21.7 (4 of 5)



FIGURE 21.7 (5 of 5)





FIGURE 21.8 (1 of 5)



FIGURE 21.8 (2 of 5)











FIGURE 21.9 (1 of 5)



FIGURE 21.9 (2 of 5)



FIGURE 21.9 (3 of 5)



FIGURE 21.9 (4 of 5)





FIGURE 21.9 (5 of 5)



## NATIONAL ENGINEERING HANDBOOK

SECTION 4

HYDROLOGY

CHAPTER 22. GLOSSARY

1956

Reprinted with minor revisions, 1971



## NATIONAL ENGINEERING HANDBOOK

# SECTION 4

#### HYDROLOGY

### CHAPTER 22. GLOSSARY

A selected list of definitions of words and terms used in hydrologic evaluations of watershed projects is given. Other useful definitions are given in:

<u>National Handbook of Conservation Practices</u>, Information Division, Soil Conservation Service, U. S. Department of Agriculture, Washington, D. C. 20250.

Soil and Water Conservation Glossary, Soil Conservation Society of America, 7515 Northeast Ankeny Road, Ankeny, Iowa 50021.

Nomenclature for Hydraulics (1962), ASCE Manual No. 43 (\$6.00), American Society of Civil Engineers, United Engineering Center, 345 East 47th Street, New York, New York 10017.

Underlined words and terms in a definition are defined elsewhere in the list.

- acre-foot -- The amount of water that will cover 1 acre to a depth of 1 foot. Equals 43,560 cubic feet. Abbreviated AF.
- AF -- Abbreviation for acre-foot or acre-feet.
- annual flood -- The highest peak discharge in a water year.
- annual runoff -- The total natural discharge of a stream for a year, usually expressed in inches depth or AF. See water yield.
- annual series -- A <u>frequency series</u> in which only the largest value in each year is used, such as the <u>annual floods</u>.
- annual yield -- The total amount of water obtained in a year from a stream, spring, artesian well, etc. Usually expressed in inches depth, AF, millions of gallons, or cubic feet.
- antecedent moisture condition (AMC) -- The degree of wetness of a water-shed at the beginning of a storm. (See Chapter 4, Storm rainfall data).

- area rainfall -- The average rainfall over an area, usually as derived from, or discussed in contrast with, <u>point rainfall</u>.
- base flow -- Stream discharge derived from groundwater sources. Sometimes considered to include flows from regulated lakes or reservoirs. Fluctuates much less than storm runoff.
- cfs -- Abbreviation for cubic feet per second. A unit of water flow.

  Sometimes called "second-feet."
- cfs day -- Often called a second-foot-day. The volume of water represented by a flow of 1 cubic foot per second for a period of one day.
- consumptive use -- A term used mainly by irrigation engineers to mean the amount of water used in crop growth plus evaporation from the soil. See evapotranspiration.
- cover -- The vegetation, or vegetational debris such as mulch, that exists on the soil surface. In some classification schemes, such as table 9-1, fallow or bare soil is taken as the minimum cover class.
- cross section (stream or valley) -- The shape of a channel, stream, or valley, viewed across the axis. In watershed investigations it is determined by a line approximately perpendicular to the main path of water flow, along which measurements of distance and elevation are taken to define the cross-sectional area.
- damage reach -- A length of floodplain or valley selected for damage evaluation. (See Chapter 6, Stream reaches and cross sections).
- degree-day -- As used in snowmelt studies, a day with an average temperature one degree above 32° F. The average is usually obtained by averaging the maximum and minimum for the day. A day with an average of 40° F. gives 8 degree-days.
- depth-area curve -- A graph showing the change in average rainfall depth as size of area changes.
- design storm -- A given rainfall amount, areal distribution, and time distribution, used to estimate runoff. The rainfall amount is either a given frequency (25-, 50-year, etc.) or a special large value. (See Chapter 21, Design hydrographs).
- direct runoff -- The water that enters the stream channels during a storm or soon after, forming a runoff hydrograph. May consist of rainfall on the stream surface, surface runoff, and seepage of infiltrated water (rapid subsurface flow).

- double-mass curve -- A graph in which accumulated amounts of item X are plotted versus accumulated amounts of item Y, the amounts for given times being used.
- drainage area -- The area draining into a stream at a given point. The area may be of different sizes for <u>surface runoff</u>, <u>subsurface flow</u>, and <u>base flow</u>, but generally the surface runoff area is used as the drainage area. See <u>watershed</u>.
- effective duration -- The time in a storm during which the water supply for <u>direct runoff</u> is produced. Also used to mean the duration of <u>excess rainfall</u>.
- effective rainfall -- Another term for <u>direct runoff</u>. Usually not the same quantity on upland streams as on downstream rivers because of variability of seepage flows.
- emergency spillway -- A rock or vegetated earth waterway around a dam, built with its crest above the normally used <u>principal spillway</u>.

  Used to assist the principal spillway in conveying extreme amounts of runoff safely past the dam.
- ET -- Abbreviation for evapotranspiration.
- evaluation series -- A list of floods or storms that produced floods during a representative period, and used in water project evaluation to obtain estimates of flood damages.
- evapotranspiration -- Plant transpiration plus evaporation from the soil. Difficult to determine separately, therefore used as a unit for study. See <u>consumptive use</u>.
- excessive precipitation -- Standard USWB term for "Rainfall in which the rate of fall is greater than certain adopted limits, chosen with regard to the normal precipitation (excluding snow) of a given place or area." Not the same as excess rainfall.
- excess rainfall -- Direct runoff at the place where it originates.
- fallow -- Cropland kept free of vegetation during the growing season.

  May be a normal part of the cropping system for weed control,
  water conservation, soil conditioning, etc.
- f_c -- Symbol for the low, almost uniform, infiltration rate obtained after prolonged wetting of the soil.

- flood -- In common usage, an event where a stream overflows its normal banks. In frequency analysis it means an <u>annual flood</u> that may not overflow the banks.
- flood routing -- Determining the changes in a <u>flood wave</u> as it moves downstream through a valley or through a reservoir (then sometimes called <u>reservoir routing</u>). Graphic or numerical methods are used.
- flood pool -- Floodwater storage in a reservoir. In a floodwater retarding reservoir, the temporary storage between the crests of the <u>principal</u> and <u>emergency spillways</u>.
- floodwater retarding structure -- A dam, usually with an earth fill, having a <u>flood pool</u> where incoming flood water is temporarily stored and slowly released downstream through a <u>principal spillway</u>. The reservoir contains a <u>sediment pool</u> and sometimes storage for irrigation or other purposes.
- flood wave -- The rise and fall in streamflow during and after a storm.
- frequency -- An expression or measure of how often a hydrologic event of given size or magnitude should, on an average, be equaled or exceeded. For example a 50-year frequency flood should be equaled or exceeded in size, on the average, only once in 50 years. In drought or deficiency studies it usually defines how many years will, on the average, be equal to or less than a given size or magnitude.
- frequency line -- The line on probability paper that represents a series of events and their frequencies.
- frequency series -- A sequence or array of actual events (floods, etc.) suitable for use in frequency analysis; or, a sequence or array of hypothetical events obtained from a frequency analysis.
- ground water -- The water in the saturated zone beneath the <u>water table</u>.

  A source of <u>base flow</u> in streams.
- Hazen equation --  $F_a = (2n 1)/2y$ . Used to obtain plotting positions for plotting flood values on log-normal paper. (See Chapter 18, Frequency methods).
- Hazen method -- As considered in the Hydrology Guide, it consists of using the <u>Hazen equation</u> and <u>log-normal paper</u> (or Hazen paper) to obtain frequencies. More generally, it consists also of skewness computations described by Allen Hazen in his book, "Flood Flows," published in 1930 by John Wiley and Sons, Inc., New York, N. Y.

- historical series -- A list of all actual storms (or floods) that caused flood damage in a watershed, in a given period of years, with the date of each storm of flood being known.
- hydrograph -- A graph showing, for a given point on a stream or for a given point in any drainage system, the discharge, stage, velocity or other property of water with respect to time.
- hydrologic soil-cover complex -- A combination of a <u>hydrologic soil</u> group and a type of <u>cover</u>.
- hydrologic soil group -- A group of soils having the same runoff potential under similar storm and cover conditions.
- hydrology -- The science that deals with the occurrence and behavior of water in the atmosphere, on the ground, and underground. Rainfall intensities, rainfall interception by trees, effects of crop rotations on runoff, floods, droughts, the flow of springs and wells, are some of the topics studied by a hydrologist.
- initial abstraction  $(I_a)$  -- When considering <u>surface runoff</u>,  $I_a$  is all the rainfall before runoff begins. When considering <u>direct runoff</u>,  $I_a$  consists of interception, evaporation, and the soil-water storage that must be exhausted before direct runoff may begin. Sometimes called "initial loss," about which see <u>loss</u>.
- infiltration -- Rainfall minus interception, evaporation, and surface runoff. The part of rainfall that enters the soil.
- interception -- Precipitation retained on plant or plant residue surfaces and finally absorbed, evaporated, or sublimated. That which flows down the plant to the ground is called "stemflow" and not counted as true interception.
- irrigation pool -- Reservoir storage used to store water for release as needed in irrigation.
- isohyet -- A line on a map, connecting points of equal rainfall amounts.
- lag (or lag time) -- Is the time from the centroid of rainfall to the peak of the hydrograph. It can be estimated from time of concentration as 0.6  $T_c$ .

- land treatment measure -- A tillage practice, a pattern of tillage or land use, or any land improvement, with a substantial effect of reducing runoff and sediment production or of improving use of drainage and irrigation facilities. Examples are contouring, improved crop rotations, controlled grazing, land leveling, field drainage. In hydrologic computations, nonbeneficial measures (such as straight-row, poor-rotation corn) are included for convenience in evaluation. See table 9-1. In general conservation work "land treatment measure" has a broader meaning that includes measures to improve the soil, control sheet erosion, increase soil fertility.
- land use -- A land classification. <u>Cover</u>, such as row crops or pasture, indicates a kind of land use. Roads may also be classified as a separate land use. For a classification scheme, see table 9-1.
- log paper -- Short for "full-logarithmic graph paper," which is a graph paper (available commercially) that has logarithmic scales on both horizontal and vertical axes. Sometimes called "log-log paper." The scales may be any number of cycles, but usually in combinations like lxl, 2x2, 3x3, 3x5, 4x7, etc.
- log-normal Short for "logarithmic-normal probability distribution."
- log-normal paper -- Graph paper used in estimating frequencies of floods, etc. Has a logarithmic scale for the flood (or other) amounts, and a cumulative distribution scale (also called frequency or percent chance scale) for the probability plotting positions.
- loss -- In hydrology, a loss for one purpose is usually a gain for another, so that the net effect may be more important than the loss. At various times, evapotranspiration, initial abstraction, infiltration, surface storage, direct runoff, seepage, etc. have been called losses according to the aims of a water user. See water loss.
- Manning's n A coefficient of roughness, used in a formula for estimating the capacity of a channel to convey water. Generally, "n" values are determined by inspection of the channel. See Chapter 14, Stage-discharge relations.
- mean daily -- The average or mean discharge of a stream for one day. Usually given in cfs.
- NEH-4 -- National Engineering Handbook, Section 4, Hydrology.
- NEH-5 -- National Engineering Handbook, Section 5, Hydraulics.

- normal -- A mean or average value established from a series of observations, for purposes of comparison of some meteorological or hydrological event.
- partial-duration series -- A list of all events, such as floods, occurring above a selected base, without regard to the number, within a given period. In the case of floods, the selected base is usually equal to the smallest annual flood, in order to include at least one flood in each year.
- percent chance -- A name often given to the probability scale on <a href="log-normal paper"><u>log-normal paper</u></a>. A 2-percent chance flood is a 50-year frequency flood (see <a href="frequency">frequency</a>) since
  - 100 = frequency in years percent chance
- plotting position -- The point computed by an equation and used to locate given data on <u>probability paper</u>. See Chapter 18, Frequency methods.
- point rainfall -- Rainfall at a single rain gage.
- principal spillway -- A concrete or metal pipe or conduit used with a drop inlet dam or floodwater retarding structure. It conveys, in a safe and nonerosive manner, all ordinary discharges coming into a reservoir and all of an extreme amount that does not pass through the <a href="mailto:emergency spillway">emergency spillway</a>.
- probability paper -- Any graph paper prepared especially for plotting magnitudes of events versus their frequencies or probabilities. See <a href="log-normal paper">log-normal paper</a>.
- reach -- A length of stream or valley, selected for convenience in a study. See <u>damage reach</u>, <u>stream reach</u>.
- recession curve -- The receding portion of a hydrograph, occurring after excess rainfall has stopped.
- recurrence interval -- The average number of years within which a given event will be equaled or exceeded. A 50-year frequency flood has a 50-year recurrence interval; and so on.
- regional analysis -- Flood frequency lines for gaged watersheds in a similar area or region are used to develop a flood frequency line for an ungaged watershed in that region. Also used with other types of hydrologic data. Method is a simple (usually graphical and freehand) form of "regression analysis" used by statisticians.

- reservoir routing -- Flood routing through a reservoir.
- s. d. -- Abbreviation for standard deviation.
- second-foot -- See cfs.
- second-foot-day -- The volume of water represented by a flow of one cubic foot per second for a period of one day.
- sediment pool -- Reservoir storage provided for sediment, thus prolonging the usefulness of floodwater or irrigation pools.
- semilog paper -- Short for "semilogarithmic graph paper," which is graph paper having an arithmetic scale along one axis and a logarithmic scale along the other. Either scale is used for the independent variable, as the data require. Commercially available paper has various divisions (5, 6, 7, 10 to the inch) for the arithmetic scale, and various cycles (1, 2, 3, 4, 5) for the logarithmic side.
- skew -- When data plot in a curve on <u>log-normal paper</u>, the curvature is skewness. (See Chapter 18, Frequency methods).
- small grains -- Wheat, oats, barley, flax, rice, and other close-drilled or broadcast grain crops.
- soil-cover complex -- See hydrologic soil-cover complex.
- soil-water-storage -- The amount of water the soils (including geologic formations) of a watershed will store at a given time. Amounts vary from watershed to watershed. The amount for a given watershed is continually varying as rainfall or ET takes place.
- spillway -- See principal spillway and emergency spillway.
- standard deviation -- Statisticians' name for an important measure of dispersion, abbreviated s.d. Data grouped closely about their mean have a small s.d.; grouped less closely, they have a larger s.d. See table 18-3 for calculation of s.d.
- standard rain gage Also "standard gage." The USWB nonrecording rain gage, having an opening 8 inches in diameter, and a holding capacity of 24 inches of rainfall. The gage is usually examined once daily at a regular time, and the catch (if any) measured by depth in inches and hundredths of an inch.
- storage-indication method -- Name often given to a flood-routing method also often called the Puls method (after Louis G. Puls) though it is actually a variation of the method devised by Puls.

- stream reach -- A length of stream channel selected for use in hydraulic or other computations.
- structural measure -- For flood prevention work, any form of earthwork (dam, ditch, levee, etc.) or installation of concrete, masonry, metal or other material (drop spillway, jetties, riprap, etc.); or installation for forest fire protection (firetowers, roads, firebreaks); or, in some cases, a special planting for nonfarm purposes (stabilization of critical sediment-producing area, etc.).
- subsurface runoff -- Water that infiltrates the soil and reappears as seepage or spring flow, and forms part of the flood hydrograph for that storm. Difficult to determine in practice and seldom worked with separately. See <u>direct runoff</u>.
- subwatershed -- A watershed that is part of a larger watershed. It is worked on separately when necessary in order to improve computational accuracy for results on a whole watershed basis, or to get results for that area only.
- surface runoff -- Total rainfall minus <u>interception</u>, evaporation, <u>infiltration</u>, and <u>surface storage</u>, and which moves across the ground surface to a stream or depression.
- surface storage -- Natural or man-made roughness of a land surface, which stores some or all of the surface runoff of a storm. Natural depressions, contour furrows, and terraces are usually considered as producing surface storage, but stock ponds, reservoirs, stream channel storage, etc. are generally excluded.
- synthetic series -- A storm or flood series obtained by taking selected values from a frequency line based on historical data.
- time of concentration  $(T_c)$  -- The time it takes water from the most distant point (hydraulically) to reach a watershed outlet.  $T_c$  varies, but often used as constant.
- transmission loss -- A reduction in volume of flow in a stream, canal, or other waterway, due to infiltration or seepage into the channel bed and banks. Evaporation is also a transmission loss, but it is ordinarily neglected under the assumption that it is small.
- travel time -- The average time for water to flow through a reach or other stream or valley length that is less than the total length. A travel time is part of a  $T_c$  but never the whole  $T_c$ .

- unit hydrograph -- A discharge hydrograph coming from 1 inch of direct runoff distributed uniformly over the watershed, with the direct runoff generated at a uniform rate during the given storm duration. A watershed may have 1-hour, 2-hour, etc. unit hydrographs.
- USGS -- United States Department of the Interior, Geological Survey.
- USWB -- United States Department of Commerce, Weather Bureau.
- water equivalent -- The depth of water, in inches, that results from melting a given depth of snow.
- water loss -- Variable meaning, depending on personal interest of water user. Farmers and ranchers usually think of flood runoff as a water loss; many river engineers think of infiltration as a water loss. In Hydrology Guide, the meaning is apparent from the context. See loss.
- watershed -- The area contributing <u>direct runoff</u> to a stream. Usually it is assumed that <u>base flow</u> in the stream also comes from the same area. However, the ground-water watershed may be larger or smaller.
- watershed measures -- Any vegetative or structural means (including earthwork) of directly improving or conserving the soil and water resources of a watershed. See <u>land treatment measure</u> and <u>structural measure</u>.
- water table -- The upper surface of ground water.
- water year -- The year taken as beginning October 1. Often used for convenience in streamflow work, since in many areas streamflow is at its lowest at that time. Used by USGS in their WSP.
- water yield -- The actual streamflow, at a given place, from a watershed. This is natural <u>annual runoff</u> that may be affected by irrigation uses, reservoir losses, diversions into or out of the watershed, etc.
- WSP -- Water-Supply Paper. An annual publication of the USGS, in which streamflow for the <u>water year</u> is given for all gaged streams in a subdivision of the United States or in Hawaii.

# CONVERSIONS

THIS:	TIMES THIS:	GIVES YOU THIS:
cfs days	1.983	AF
cfs days	0.03719	inches depth on 1 square
cfs days per square mile	0.03719	mile inches depth
cfs hours	0.08264	AF
cfs hours per square mile	0.001550	inches depth
cfs	1.983	AF per day
	724.0	AF per year (365 days)
	448.8	U. S. gallons per minute
cfs	0.6463	million U.S. gallons per day
csm	0.03719	inches depth per day
csm	13.57	inches depth per year (365 days)
inches per hour	645.3	csm
inches per hour	1.008	cfs per acre
inches depth	53.33	AF per square mile
inches depth on 1 sq. mi.	53.33	AF
AF	0.5042	cfs days
AF	12.10	cfs hours
AF	0.01875	inches depth on 1 square mile
AF	0.3258	million U. S. gallons
AF per day	0.5042	cfs
AF per square mile	0.01875	inches depth
U. S. gallons per minute	0.002228	cfs
million U. S. gallons per day		cfs
million U. S. gallons per day	3.069	AF
feet per second	0.6818	miles per hour
centimeters	0.3937	inches
hectares	2.471	acres
liters	0.2642	U. S. gallons
kilograms	2.205	pounds
cubic feet	7.480	U. S. gallons
imperial gallons	1.200	U. S. gallons





