Neural Networks

7. Recurrent Networks

Center for Cognitive Science Department of Applied Informatics Faculty of Mathematics, Physics and Informatics Comenius University in Bratislava

Tuesday 9th April, 2024

Simple Recurrent Network (SRN) – architecture

x - input c - context h - hidden layer y - output * bias terms applied on x, c and h

Simple Recurrent Network (SRN) – forward pass

$$c(t) = h(t-1)$$
 $h = f_{hid}(W^{in}x' + W^{rec}c')$ $y = f_{out}(W^{out}h')$

Simple Backpropagation

$$\mathbf{g}^{out} = f'_{out}(\mathbf{b}) \odot (\mathbf{d} - \mathbf{y})$$
 $\mathbf{g}^{hid} = f'_{hid}(\mathbf{a}) \odot \mathbf{W}^{out}^{T} \mathbf{g}^{out}$
 $\Delta \mathbf{W}^{in} = \mathbf{g}^{hid} \mathbf{x}'^{T}$
 $\Delta \mathbf{W}^{rec} = \mathbf{g}^{hid} \mathbf{c}'^{T}$
 $\Delta \mathbf{W}^{out} = \mathbf{g}^{out} \mathbf{h}'^{T}$

 ${\it u} \odot {\it v}$ – element-wise multiplication of vectors ${\it u}$ and ${\it v}$

Simple Recurrent Network – task

- one-step prediction:
 - \triangleright given a sequence of inputs x(1),...,x(T)
 - redict the next value x(T+1)
 - ightharpoonup context-based regression $\mathbf{x}(t)
 ightarrow \mathbf{x}(t+1)$
- we need to reset the context to neutral activation before each run, e.g.
 - ▶ set c(1) = h(0) as if x(0) = c(0) = 0

Task

- ▶ elman.py TODO:
 - initialize weights (can be sensitive)
 - ▶ initialize context by feeding zero input
 - forward pass & backward pass
 - weight adjustment