Deep Learning

Lecture 8.1

from really good course in Al masters (https://ozonmasters.ru/reinforcementlearning).

Recap

- Semantic segmentation problem
- Upsampling
- Architectures
- Panoptic / Instance segmentation

What is Reinforcement Learning?

Let's start from...

Supervised Learning Problem

Supervised Learning case:

Given Dataset $D := \{(X_i, y_i)\}$

Learn a function that will predict y from X: f_{θ} : $X \rightarrow y$

e.g. find parameters theta that will minimize: $L(f_{\theta}(X_i), y_i)$, where L is a loss function

Standard Assumptions:

- Samples in dataset are I.I.D
- We have ground truth labels *y*

No ground truth answers

You don't have answers at all

Your answers are not good enough

Choice matters

Assume that we have expert trajectories, i.e. sufficiently good answers:

• Treat trajectories as a dataset:

$$D = \{(x_1, a_1), ..(x_N, a_N)\}$$

- Train with Supervised Learning
- Done?:)

Choice matters

New Plan (<u>DAGGER algorithm</u>):

1. Train a model from human trajectories :

$$D_0 = \{(x_1, a_1), ..(x_N, a_N)\}$$

2. Run the model to get new trajectories:

$$D' = \{(x_1, ?), ..(x_N, ?)\}$$

- 3. Ask humans to label D' with actions a_{t}
- 4. Aggregate: $D1 \leftarrow D_0 \cup D'$
- 5. Repeat

Choice matters

But this is really hard to do: 3. Ask humans to label D' with actions a_t

Reinforcement learning

If you know what you want, but don't know how to do it...

USE REWARDS!

Assumptions:

- It's easy to compute reward
- You can express your goals with rewards!

Reinforcement Learning Problem

You have **Agent** and **Environment** that interact with each other:

- Agent's actions change the state environment
- After each action agent receives new state and reward

Interaction with environment is typically divided into episodes.

Reinforcement Learning Problem

Agent has a policy: $\pi(action | observations from env)$

Agent learns its policy via **Trial and Error**!

The goal is to find a policy that maximizes total expected reward:

$$\text{maximize}_{\pi} \mathbf{E}_{\pi} [\sum_{t=0}^{T} r_{t}]$$

Why we need E_{π} ?

A non-deterministic policy or environment lead to a distribution of total rewards!

Environment and Observation

What should an agent observe?

- Wheel speed
- Acceleration
- LiDAR
- Battery
- Map of the apartment
- Location

Is this enough?

Does agent need past observations?

Markovian Property

Task: Open the red door with the key

Details: Agent starts at random location

Actions:

- move up/left/right/down
- pick up an object
- apply an object to the door (when near the door)

Markovian Property

Which observations are enough to learn the optimal policy?

- 1. Agent's coordinates, and previous action
- 2. Full image of the maze
- 3. Agent's coordinates and does it has key

For 2 and 3 agent doesn't need to remember it's history:

$$P(o_{t+1}, r_{t+1} | o_t, a_t) = P(o_{t+1}, r_{t+1} | o_t, a_t, ..., o_1, a_1, o_0, a_0)$$

Markovian property: "The future is independent of the past given the present."

Markov Decision Process

MDP is a 5-tuple $\langle S, A, R, T, \gamma \rangle$:

- *S* is a set of states
- A is a set of actions
- $R: S \times A \rightarrow R$ is a reward function
- $T: S \times A \times S \rightarrow [0, 1]$ is a transition function $T(s, a, s') = P(S_{t+1} = s' | S_t = s, A_t = s')$
- a) $\gamma \in [0, 1]$ is a discount factor

Discount factor γ determines how much we should care about the future!

Given Agent's policy π , RL objective become: $\mathbf{E}_{\pi} \sum_{t=0}^{\mathsf{T}} \mathbf{v}^{t} r_{t}$

Multi-Armed Bandits

MDP for Multi-Armed Bandits:

- 1. Only one state: $\pi(a \mid s) = \pi(a)$
- 2. Rewards are immediate
- 3. Rewards are stochastic

RL problems

- Local optimum
 Stuck in safe choices, missing the bigger rewards
- Delayed reward
 Actions now, consequences later
- Credit assignment problem
 Tracing rewards back to the right actions
- Exploration-exploitation trade-off
 Balancing discovery with reward

Delayed reward

- Agent makes a move at step 8
- At step 50 agent loses: R = -1
- Was it a good move?

Your data is not i.i.d. Previous actions affect future states and rewards. Credit Assignment Problem:

How to determine which actions are responsible for the outcome?

Credit assignment problem

Goal: Train a bot to win the game!

Rewards:

- +100 for the first place
- +5 for additional targets along the course

Link

Reward is a proxy for you goal, but they are not the same!

Exploration-Exploitation Dilemma

We have ground truth labels

- Was that action optimal?
- Should you explore other actions?
- When you need to stop exploration?

Reward contains **less information** than a correct answer!

We have rewards

What we have discussed:

- What is RL?
- When do we need it?
- State, action, policy, reward, markovian property
- Main problems

Let's estimate policies.

Basics

s ~ S; a ~ A - state/action spaces (can be infinite)

 $p(s_{t+1}|s_t, a_t)$ - dynamics of transitions in the environment (Markovian)

r(s, a) - reward for action a in state s (can be random or depends on other variables) $\pi(a \mid s)$ - agent policy

now consider is known, but in practice - NO!

$$p(\tau \mid \pi) = p(s_0) \prod_{t=0}^{\infty} \pi(a_t \mid s_t) p(s_{t+1} \mid a_t, s_t)$$
 - agent policy

where $\tau = (s_0, a_0, s_1, a_1, \dots)$ - agent trajectory

$$R_t = \sum_{k=0}^{\infty} \gamma^k \ r(s_{t+k}, a_{t+k})$$

$$R_t = r(s_t, a_t) + \gamma r(s_{t+1}, a_{t+1}) + \gamma^2 r(s_{t+2}, a_{t+2}) + \dots$$
 - reward to go **or** return

Time-independence

$$\tau_{t} = (s_{t}, a_{t}, s_{t+1}, a_{t+1}, \dots) - \text{trajectory from time t}$$

Statement 1.
$$\forall t \ P(\tau_t \mid s_t = s) = P(\tau \mid s_0 = s)$$

Statement 2.
$$\forall f \ \forall t \ E_{\tau_- t \mid s_- t = s} f(\tau_t) = E_{\tau_- \mid s_- 0 = s} f(\tau)$$

All properties of reward-to-go are defined by the start state s

Rate policy

How good is the policy π , if we start in state s?

Policy $\forall s$:

Terminal state

+1 for fish

V - value function:

Rate policy

How good is the policy π , if we start in state s?

What if we "force" to choose the action a in s, and only then follow the policy π ?

$$Q_{t}^{\pi}(s, a) = E_{\tau \sim \pi} [R_{t} | s_{t} = s, a_{t} = a] = Q^{\pi}(s, a)$$

In complex environments, it is inconvenient to count!

V - value function:

- value function:

Finite and infinite time

In practice, the interaction between agent and environment can be completed in a finite number of steps

At each step, agent receives predicate $done(s) \in \{0, 1\}$, whether the state is terminal or not

If the agent reached terminal state, then we can reset the environment in s_0

That's why we assume that $T = \infty$

Dynamic programming

Reformulation of a complex problem as a recursive sequence of simpler problems.

Get the recursive ratio for the cumulative reward R_{t} :

$$R_t = r(s_t, a_t) + \gamma r(s_{t+1}, a_{t+1}) + \gamma^2 r(s_{t+2}, a_{t+2}) + \dots = r(s_t, a_t) + \gamma R_{t+1}$$

For *V* - function:

$$V^{\pi}(s) = E[R_t | s_t = s] = E[r(s_t, a_t) + \gamma R_{t+1} | s_t = s] = E_{a \sim \pi(\cdot | s)}[r(s, a) + \gamma E_{s' \sim p(s' | s, a)} E[R_{t+1} | s_{t+1} = s']] = E_{a \sim \pi(\cdot | s)}[r(s, a) + \gamma E_{s' \sim p(s' | s, a)} V^{\pi}(s')]$$

For Q - function:

$$Q^{\pi}(s, a) = r(s, a) + \gamma E_{s' \sim p(\cdot | s, a)} E_{a' \sim \pi(\cdot | s')} Q^{\pi}(s', a')$$

Dynamic programming

If states never repeat in the environment, the graph of this MDP will be a tree

$$V^{\pi}(s_T) = \mathsf{E}_{a \sim \pi(\cdot \mid s \mid T)} r(s_T, a)$$

$$V^{\pi}(s) = E_{a^{\pi}(\cdot \mid s)} [r(s, a) + \gamma E_{s'^{\pi}(s' \mid s, a)} V^{\pi}(s')]$$

Bellman's Equations tell you how to calculate value "backwards".

Relationship of Q and V functions

Expressing V in terms of Q:

$$V^{\pi}(s) = \mathsf{E}_{a \sim \pi(\cdot \mid s)} Q^{\pi}(s, a)$$

V - this is Q, in which the action from the policy was substituted

Expressing Q in terms of V:

$$Q^{\pi}(s, a) = r(s, a) + E_{s' \sim p(\cdot \mid s, a)} V^{\pi}(s')$$

Q - is the instant reward for (s, a) plus future state value

How to solve the Bellman equation?

$$V^{\pi}(s) = E_{a \sim \pi(\cdot \mid s)} [r(s, a) + \gamma E_{s' \sim p(s' \mid s, a)} V^{\pi}(s')] =$$

$$= E_{a \sim \pi(\cdot \mid s)} r(s, a) + \gamma E_{s' \sim p(s' \mid s)} V^{\pi}(s') = u(s) + \gamma E_{s' \sim p(s' \mid s)} V^{\pi}(s')$$
(s')

Everything is linear with respect to V

$$V = U + \gamma PV$$

$$(I - \gamma P)V = U$$

$$V = (I - \gamma P)^{-1} U$$

It will be expensive!

Without taking into account |A| - already $O(|S|^3)$

How to solve the Bellman equation?

Simple iteration method:

$$V_{new} = F(V_{old})$$

$$F(V_s) = E_{a \sim \pi(\cdot \mid s)} [r(s, a) + \gamma E_{s' \sim p(s' \mid s, a)} V_s]$$

Will the algorithm converge? It will be if the mapping F is contractive

Is the Bellman operator a contraction?

By the infinite norm:

reminder:
$$|x||_{\infty} = max_i |x_i|$$

$$||F(V) - F(W)||_{\infty} = ||U + \gamma PV - U - \gamma PW||_{\infty} =$$

= $||\gamma P(V - W)||_{\infty} \le \gamma ||P||_{\infty} ||V - W||_{\infty}$

where is the matrix norm:

Q.E.D.: $| |F(V) - F(W) | |_{\infty} \le \gamma | |V - W| |_{\infty}$

$$||P|||_{\infty} = \max_{x:||x||_{\infty=1}} ||Px|||_{\infty} = \max_{x:||x||_{\infty=1}} \max_{i} |\sum_{j} P_{ij} x_{j}|$$

$$= \max_{i} |\sum_{j} P_{ij}| = 1$$

$$x_{j} = \text{sign}(P_{ij})$$

Algorithm Policy Evaluation

- Initialize $V(s) \forall s$
- Repeat:
 - $\Delta = 0$
 - For all s:
 - $^{\circ}$ v = V(s) $^{\circ}$ $V(s) = E_{a \sim \pi(\cdot \mid s)} [r(s, a) + \gamma E_{s' \sim p(\cdot \mid s, a)} V(s')]$ $^{\circ}$ (s') $\Delta = \max(\Delta, |v V(s)|)$

while $\Delta > \epsilon$

Policy improvement

Optimal Bellman Equations

Def: π^* - optimal policy $\Leftrightarrow \forall \pi \ \forall s \in S$ $V^{\pi^*}(s) \geq V^{\pi}(s)$

Def:
$$V^*(s) = \max_{\pi} V^{\pi}(s, a)$$

 $Q^*(s, a) = \max_{\pi} Q^{\pi}(s, a)$

Bellman's optimality principle:

A greedy choice of action under the assumption of further optimality is optimal

Th:

$$\pi$$
 - optimal $\Leftrightarrow \forall s$, a: $\pi(a \mid s) > 0$
a \in arg max_a, $Q^{\pi}(s, a')$

Optimal Bellman equations:

$$V^*(s) = \max_a [r(s, a) + \gamma E_s, V^*(s')])$$

 $Q^*(s, a) = r(s, a) + \gamma E_s, \max_a, Q^*(s', a')$

Expressing V^* in terms of Q^* :

$$V^*(s) = \max_a Q^*(s, a)$$

Expressing Q^* in terms of V^* :

$$Q^*(s, a) = r(s, a) + \gamma E_s, V^*(s')$$

Policy improvement

Def: $\pi' \ge \pi$ if $V^{\pi'}(s) \ge V^{\pi}(s)$ $\forall s \in S$

Our Policy Update Strategy:

- let \exists s be such that: $\exists a : Q^{\pi}(s, a) > V^{\pi}(s)$
- then $\pi'(s) := a$. In all $s^{\sim} != s$ define $\pi'(s^{\sim}) = \pi(s^{\sim})$
- note that $\forall s \in S \ V^{\pi'}(s) \leq Q^{\pi}(s, \pi'(s))$

In this case, $\pi' \geq \pi$

Policy improvement

Given: $\forall s \in S \ V^{\pi'}(s) \leq Q^{\pi}(s, \pi'(s))$

Prove: $\forall s \in S \ V^{\pi}(s) \leq V^{\pi'}(s)$

Proof: $V^{\pi}(s) \le Q^{\pi}(s, \pi'(s)) = r(s, \pi'(s)) + \gamma E_{s'} V^{\pi}(s') \le r(s, \pi'(s)) + \gamma E_{s'} Q^{\pi}(s', \pi'(s'))$

 $\leq r(s, \pi'(s)) + \gamma r(s', \pi'(s')) + \gamma^2 E_{s''} V^{\pi}(s'') \leq ... \leq V^{\pi'}(s)$

Algorithm Policy Iteration

- Initialize V(s), $\pi(s)$ $\forall s$
- estimate V for policy π by method PE
- stop = True
- For all s:
 - $\circ \quad a = \pi(s)$
 - $\circ \pi(s) = \arg\max_{a} [r(s, a) + \mathsf{E}_{s}, V(s')]$
 - \circ **if** $a != \pi(s)$:
 - \blacksquare stop = False
- if not stop

Algorithm Value Iteration

- Initialize $V(s) \forall s$
- Repeat:
 - $\Delta = 0$
 - **For all** *s*:
 - v = V(s) $V(s) = \max_{a} [r(s, a) + \gamma E_{s, \sim p(\cdot | s, a)} V(s')]$ $\Delta = \max(\Delta, |v V(s)|)$
- while $\Delta > \epsilon$

Recap

- What is RL?
- When do we need it?
- State, action, policy, reward, markovian property, MDP
- Main problems
- V-function
- Q-function
- Value Iteration