import Data mport # usit salar	t numpy as np t pandas as pd t plotly.express as px sklearn.linear_model import LinearRegression t plotly.graph_objects as go set - (Salary data based on years of experience) ing the dataset ng pandas read csv function for importing the dataframe y = pd.read_csv("/Users/kumarrohit/Downloads/Salary_Data.csv")
salar	-
6 7 8 9 10 11	3.0 60150.0 3.2 54445.0 3.2 64445.0 3.7 57189.0 3.9 63218.0 4.0 55794.0 4.0 56957.0
13 14 15 16 17 18 19	4.1 57081.0 4.5 61111.0 4.9 67938.0 5.1 66029.0 5.3 83088.0 5.9 81363.0 6.0 93940.0 6.8 91738.0
21 22 23 24 25 26	7.1 98273.0 7.9 101302.0 8.2 113812.0 8.7 109431.0 9.0 105582.0 9.5 116969.0
salar	9.6 112635.0 10.3 122391.0 10.5 121872.0 Ing for the null values y.isnull().sum() xperience 0 0
dtype: Getting salar	int64 g the statistical information of the dataset y.describe() YearsExperience Salary 30.000000 30.000000 5.313333 76003.000000
std min 25% 50% 75% max	2.837888 27414.429785 1.100000 37731.000000 3.200000 56720.750000 4.700000 65237.000000 7.700000 100544.750000 10.500000 122391.000000
sc = salar	[[-1.51005294, -1.36011263], [-1.43837321, -1.10552744], [-1.36669348, -1.419919], [-1.18749416, -1.20495739], [-1.11581443, -1.33978143], [-0.86493538, -0.71830716],
	[-0.82909552, -0.58815781], [-0.75741579, -0.79981746], [-0.75741579, -0.42881019], [-0.57821647, -0.69801306], [-0.50653674, -0.47433279], [-0.47069688, -0.74976858], [-0.47069688, -0.70662043], [-0.43485702, -0.70201994], [-0.29149756, -0.55250402], [-0.1481381, -0.29921736], [-0.07645838, -0.37004264], [-0.00477865, 0.26285865], [0.21026054, 0.19885989], [0.2461004, 0.66547573],
salar salar	<pre>[0.53281931, 0.58377993], [0.6403389 , 0.82623317], [0.92705781, 0.93861127], [1.03457741, 1.40274136], [1.21377673, 1.24020308], [1.32129632, 1.09740238], [1.50049564, 1.51986835], [1.5363355 , 1.3590738], [1.78721455, 1.72102849], [1.85889428, 1.70177321]])</pre> <pre>y_sc = pd.DataFrame(data=salary_sc,columns=['YearsExperience','Salary'])</pre>
	ParsExperience Salary -1.510053 -1.360113 -1.438373 -1.105527 -1.366693 -1.419919 -1.187494 -1.204957 -1.115814 -1.339781 -0.864935 -0.718307
6 7 8 9 10 11	-0.829096 -0.588158 -0.757416 -0.799817 -0.757416 -0.428810 -0.578216 -0.698013 -0.506537 -0.474333 -0.470697 -0.749769 -0.470697 -0.706620
13 14 15 16 17 18	-0.434857 -0.702020 -0.291498 -0.552504 -0.148138 -0.299217 -0.076458 -0.370043 -0.004779 0.262859 0.210261 0.198860 0.246100 0.665476
20 21 22 23 24 25 26 27	0.532819 0.583780 0.640339 0.826233 0.927058 0.938611 1.034577 1.402741 1.213777 1.240203 1.321296 1.097402 1.500496 1.519868 1.536336 1.359074
28 29 EDA or	1.787215 1.721028 1.858894 1.701773 The dataset ting a scatter plot on the dataset px.scatter(data_frame=salary, x='YearsExperience', y='Salary', template='plotly_dark', labels={'YearsExperience'} title="Salary vs Years Of Experience")
J	
	g the data into input(X) and output label(Y)
y = sa # Resint $X = X$ $y = y$	alary_sc['YearsExperience'].values alary_sc['Salary'].values haping the data .reshape(-1,1) .reshape(-1,1) (X.shape) (y.shape)
(30, 1 (30, 1 Splittin # Doi: from .	g the data for training and testing and fitting the model ng 80 - 20 split for training and testing respectively sklearn.model_selection import train_test_split sklearn.linear_model import LinearRegression
# Fit lr.fi ▼ Line	in, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_state=42) LinearRegression() ting the data on the training set t(X_train,y_train) arRegression Regression() g out the predictions from the model
y_pred y_pred	ds = lr.predict(X_test)
<pre>print print # Equa # y = # y =</pre> The sl	<pre>("The slope of the regression line is :" ,lr.coef_) ("The intercept of the regression lne is:",lr.intercept_) ation of the line mx + c 0.97553493(x) + -0.02261456 ope of the regression line is : [[0.97553493]]</pre>
impor plt.f. # plt plt.s. plt.t. plt.x. plt.y.	<pre>tercept of the regression lne is: [-0.02261456] g the regression line t matplotlib.pyplot as plt igure (figsize=(5,5),dpi=150) .plot(X,y,color='red') catter(X,y,color='rblue',label='Scatter Plot') itle('Relationship between Sales and Years of Experience') label('Years of Experience (Scaled)') label('Salary (Scaled)') lot(X test,y preds,label='Regression Line',color='red')</pre>
	egend(loc=4)
Salary (Scaled)	1.0 - 0.5 -
-	-0.5 -
	Regression Line Scatter Plot -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Years of Experience (Scaled) S- Checking the performance of the model using RMSE and R2 score
from . from . mse = rmse : print print The R2	prting the required libraries sklearn.metrics import r2_score sklearn.metrics import mean_squared_error mean_squared_error(y_test,y_preds) = np.sqrt(mse) (f'The R2 score the model is: {r2_score(y_test,y_preds)}') (f'The RMSE value is {rmse}') score the model is: 0.9024461774180498 SE value is 0.2618956451815691
print print Traini Test s	<pre>cking for Overfitting and Underfitting ("Training set score: {:.4f}".format(lr.score(X_train,y_train))) ("Test set score: {:.4f}".format(lr.score(X_test,y_test))) ing set score: 0.9645 et score: 0.9024 ing for individual prediction</pre>
predSo print Enter Predic	_of_exp = int(input("Enter the number of years of experience : ")) alary = lr.predict([[years_of_exp]]) (f"Predicted Salary is :{predSalary}") the number of years of experience : 19 ted Salary is :[[18.51254916]] set - (Position Salaries) ing the dataset
<pre>posit. 0 Bus 1 Juni 2 Seni 3</pre>	Position Level Salary siness Analyst 1 45000 or Consultant 2 50000 or Consultant 3 60000 Manager 4 80000
5 Re 6 7 S 8 9	Intry Manager 5 110000 Gion Manager 6 150000 Partner 7 200000 Senior Partner 8 300000 C-level 9 500000 CEO 10 1000000 Ing for the null values
posit. Positi Level Salary dtype:	ion.isnull().sum() on 0 0
	Level Salary 10.00000 10.000000 5.50000 249500.000000 3.02765 299373.883668 1.00000 45000.000000 3.25000 65000.000000
50% 75% max EDA or # Pol fig =	5.50000 130000.000000 7.75000 275000.000000 10.00000 1000000.000000 Ithe dataset tting a bar chart to analyse the salaries at different positions px.bar(data_frame=position, x='Position', y='Salary', text='Salary', template='plotly_dark')
fig.s.	<pre>pdate_layout(xaxis=dict(showgrid=False),yaxis=dict(showgrid=False)) how()</pre>
#	tter Plot between Level and Salary
fig =	<pre>px.scatter(data_frame=position,x='Level',y='Salary',template='plotly_dark') .update_layout(xaxis=dict(showgrid=Fa))</pre>
# Crea sc2 = posit. # Con posit.	the dataset for modelling and applying Linear Regression Algorithm ating an object of Standard Scaler StandardScaler() ion_sc = sc2.fit_transform(position.iloc[:,1:]) verting this into a dataframe - ion_sc = pd.DataFrame(data=position_sc,columns=['Level','Salary']) ion_sc
<pre>posit. 0 -1.56 1 -1.2 2 -0.8. 3 -0.5. 4 -0.1</pre>	Level Salary 56699 -0.720043 18544 -0.702438 70388 -0.667228 22233 -0.596808 74078 -0.491178
6 0.5. 7 0.8. 8 1.2 9 1.56	74078 -0.350339 22233 -0.174289 70388 0.177810 18544 0.882008 66699 2.642503 The data into input (X) and output label (Y)
# Res. X_2 = Y_2 =	position_sc['Level'].values position_sc['Salary'].values haping the data X.reshape(-1,1) y.reshape(-1,1) by the data for training and testing
lr2 = # Fit lr2.f. ▼ Line Linear	LinearRegression() ting the data for training the model arRegression Regression() Regression()
y_pred y_pred array([[1.16611728], [-1.2113464]]) g out the slope and intercept
The sl The in Plotting impor plt.f. # plt	<pre>("The slope of the regression line is :" ,lr2.coef_) ("The intercept of the regression lne is:",lr2.intercept_) ope of the regression line is : [[0.97553493]] tercept of the regression lne is: [-0.02261456] g the regression line t matplotlib.pyplot as plt igure (figsize=(5,5),dpi=150) .plot(X,y,color='red')</pre>
# plt	<pre>.plot(X,y,color='red') catter(X_2,y_2,color='blue',label='Scatter Plot') itle('Relationship between Level and Salary') label('Level (Scaled)') label('Salary (Scaled)') lot(X_test_2,y_preds_2,label='Regression Line',color='red') egend(loc=4)</pre>
plt.x. plt.y. plt.p.	2.5 - 2.0 -
plt.t. plt.x. plt.y. plt.p. plt.le	1.5 -
plt.t. plt.x. plt.y. plt.p. plt.l.	
Salary (Scaled)	1.5 - 1.0 - 0.5 -