

Derivada

Sea f definida en un dominio D, se dice que f es diferenciable o que tiene derivada en $z_0 \in D$ si

existe
$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$$

Si
$$z - z_0 = \Delta z$$
, entonces, el límite puede escribirse :
$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = f'(z_0)$$

Ejemplo:

• La derivada de f(z)=z+5 es f'(z)=1

• La función $f(z) = \overline{z}$ no es derivable en ningún punto

Derivada

Reglas básicas de derivación:

Sean f y g funciones derivables y k una constante compleja, entonces:

a)
$$f(z) = k$$

$$f'(z) = 0$$

b)
$$f(z) = k g(z)$$

$$f'(z) = k g'(z)$$

c)
$$(f \pm g)'(z) = f'(z) \pm g'(z)$$

d)
$$(f. g)'(z) = f'(z) g(z) + f(z) g'(z)$$

e)
$$\left(\frac{f}{g}\right)'(z) = \frac{f'(z)g(z) - f(z)g'(z)}{(g(z))^2}$$
 si $g(z) \neq 0$

Función Analítica

Sea f una función definida en un dominio D, entonces:

Definición:

Se dice que f es analítica en un punto $z_0 \in D$ si y sólo si f es derivable no sólo en z_0 sino en todo punto de algún entorno de z_0 contenido en D.

Definición:

Se dice que f es analítica en un dominio D si y sólo si es analítica en todos los puntos del dominio D.

Función Analítica

 $\operatorname{Si} f(z)$ es analítica en \mathbb{C} dice que f es entera.

Un punto z_0 se dice *punto singular aislado* o *singularidad aislada* de f si la función no es derivable en z_0 , pero sí es analítica en algún entorno reducido de z_0 .

Importante: Siempre que la función f dependa de \bar{z} , no será derivable, por lo tanto tampoco analítica.

Función Analítica

Todas las reglas de derivación del Cálculo Real, son válidas para el complejo.

Nota:

- 1. Sean f y g funciones analíticas en un dominio D; entonces:
 - a) $f \pm g$ es analítica en D.
 - b) f . g es analítico en D.
 - c) $\frac{f}{g}$ es analítico en D, si g (z) $\neq 0$ en D

Función Analítica

- 2. f(z) = k es analítica en \mathbb{C}
- 3. f(z) = z es analítica en \mathbb{C}
- 4. Toda función polinómica es analítica en C
- 5. Toda función racional P(z)/Q(z) es analítica en \mathbb{C} , salvo en los puntos tales que Q(z)=0.
- 6. Las funciones exponencial, seno y coseno son enteras.

Si f(z) es *derivable* en z_0 , es *continua* en z_0 .