Particle Physics Lecture 6

PHYS 246 class 6 Fall 2025 J Noronha-Hostler

https://jnoronhahostler.github.io/IntroductionToComputationalPhysics/intro.html

Announcements/notes

• Oct 7th, there's a CS+Phys lunch: Date/Time: Tuesday, October 7 at 12pm to 1:30pm Location: 204 Loomis Lab To RSVP click <u>here</u>.

TBD

Particle Physics 101

Smallest building blocks of matter

- There are many, many different types of particles!
- You probably know of a few already like:
 - Electrons e^-
 - Protons *p* or neutrons *n*
 - Photons γ
 - Pions π
- These are all different types of particles and if you take
 Subatomic physics (either with me or someone else), you'll learn
 about them more

When particles decay

Particles are weird

- Let's say we have particle A. The vast majority of particles are "unstable" which means that they will spontaneously break apart into smaller particles after some time τ (called the lifetime)
- "Parent" particles decay into their "children" particles: $A \rightarrow B + C$
- Certain properties need to be conserved (we won't go into all of them) but for this class it's important to know that electric charge needs to be conserved $Q_A = Q_B + Q_C$

Kaon decays STRANGE particles!

- Kaons are very strange particles
 - Literally, they "carry" a strangeness number of $S = \pm 1$
 - While other kaons exist, we'll consider neutral kaons $Q_{K^0} = 0$
- Kaons are unstable particles and can decay into pions:
 - $K^0 \rightarrow \pi^+\pi^-$
 - $K^0 \rightarrow \pi^0 \pi^0$
- Kaons are extremely tiny, length scales of $L_{K^0} \sim 10^{-15} \, m = 1 \, fm$
 - *fm* is femto-meter

Relativity Small and FAST

- Recall relativistic energy is $E = \sqrt{m^2c^4 + p^2c^2}$
- In relativistic systems, mass is no longer conserved.
- However, we can talk about the invariant mass

•
$$m_0 = \frac{1}{c^2} \sqrt{E^2 - p^2 c^2}$$

- Frame independent!
- Can think of as the rest mass as well when $p \to 0$
- Experimentalists measure the invariant mass to find particles

Frames of reference

Lab frame vs rest frame

Lab Frame

Rest Frame

All kaons have the same initial energy

$$E_{K_0} = 60 \, GeV$$

How do we measure insanely fast and tiny particles?

Beams

Optimizing $z_{tracker1}$

Too close

Too far

$$z = 0$$

Histograms

Particle and nuclear physicists's BFF

 Δx Bin size

 $x_{trigger1}$

Python help

Logical

- np.logical
 - out=np.logical_and(x<0.6,y>1)
 - If x=0.5 and y=1.1, then out=true
 - If x=0.7 and y=1.1, then out=false
 - If x=0.5 and y=0.9, then out=false
 - If x=0.7 and y=0.9, then out=false

- np.logical_not
 - out=np.logical_not(x<0.6,y>1)
 - If x=0.5 and y=1.1, then out=false
 - If x=0.7 and y=1.1, then out=false
 - If x=0.5 and y=0.9, then out=false
 - If x=0.7 and y=0.9, then out=true

How to deal with multiple constraints: don't use a million nested if statements!

Python help

Mask

```
D ~
\triangleright \vee
                                                             x = np.array([0, 0.5, 1, 1.5, 2, 2.5])
         x = np.array([0, 0.5, 1, 1.5, 2, 2.5])
                                                             y = np.array([1, 1.5, 2, 2.5, 3, 3.5])
         y = np.array([1, 1.5, 2, 2.5, 3, 3.5])
                                                             mask = np.logical\_and(x < 0.6, y > 1)
         mask = np.logical_not(x < 0.6, y > 1)
                                                             z = x[mask]
         z = x[mask]
                                                             print(z)
         print(z)
                                                             print(mask)
         print(mask)
                                                           ✓ 0.0s
                                                     [28]
[27]
      ✓ 0.0s
                                                          [0.5]
     [1, 1.52, 2.5]
                                                          [False True False False False]
     [False False True True True]
```

Selects elements of the array that are "true"

Strategies to code when the physics is new?

Real life scenario...

• Often when you enter a new research group, the physics is totally new and you're asked to start right away. How do you approach such a problem? Strategies?