UNIVERSIDADE ESTADUAL DO NORTE FLUMINENSE LABORATÓRIO DE ENGENHARIA E EXPLORAÇÃO DE PETRÓLEO

PROJETO ENGENHARIA DESENVOLVIMENTO DO SOFTWARE OSOSSSS MODELOS DE DESLOCAMENTO IMISCÍVEL PARA RECUPERAÇÃO SECUNDÁRIA DE PETRÓLEO TRABALHO DA DISCIPLINA PROGRAMAÇÃO PRÁTICA

DAVID HENRIQUE LIMA DIAS

JULIA RANGEL RIBEIRO

MARCOS VINÍCIUS DE PAULA CHAIBEN

- Versão 1:

Prof. André Duarte Bueno

MACAÉ - RJ DEZEMBRO - 2021

Sumário

1	Intr	rodução	0	1		
	1.1	Escope	o do problema	1		
	1.2	Objeti	VOS	1		
2	Esp	ecifica	ção	3		
	2.1	Especi	ficação do Software - Requisitos	3		
		2.1.1	Nome do sistema/produto	3		
		2.1.2	Especificação	3		
		2.1.3	Requisitos funcionais	5		
		2.1.4	Requisitos não funcionais	6		
	2.2	Casos	de uso do software	6		
		2.2.1	Diagrama de caso de uso geral	6		
		2.2.2	Diagrama de caso de uso específico	7		
3	Ela	laboração s				
	3.1	Anális	e de domínio	9		
	3.2	Conce	itos Fundamentais	11		
		3.2.1	Conceitos de Propriedades de Rochas e Fluidos	11		
		3.2.2	Conceitos Teóricos:	16		
	3.3	Formu	lações Matemáticas	22		
		3.3.1	Modelo de Fluxo Bifásido (1D)	22		
		3.3.2	Modelo de Fluxo Bifásido Areal (2D)	23		
		3.3.3	Modelo de Fluxo Bifásido em Sistemas Estratificados (3D)	29		
	3.4	Diagra	ama de Pacotes – assuntos	31		
4	AO	O – Aı	nálise Orientada a Objeto	33		
	4.1	Diagra	amas de classes	33		
		4.1.1	Dicionário de classes	33		
	4.2	Diagra	ama de seqüência – eventos e mensagens	33		
		4.2.1	Diagrama de sequência geral	34		
		4.2.2	Diagrama de sequência específico	34		
	4.3	Diagra	ma de comunicação – colaboração	35		

SUMÁRIO SUMÁRIO

	4.4	Diagrama de máquina de estado	35		
	4.5	Diagrama de atividades	36		
5	Projeto				
	5.1	Projeto do sistema	39		
	5.2	Projeto orientado a objeto – POO	41		
	5.3	Diagrama de componentes	45		
	5.4	Diagrama de implantação	46		
6	Implementação				
	6.1	Código fonte	48		
7	Teste				
	7.1	Teste 1: Descrição	52		
	7.2	Teste 2: Descrição	53		
8	Documentação 5				
	8.1	Documentação do usuário	55		
		8.1.1 Como instalar o software	55		
		8.1.2 Como rodar o software	55		
	8.2	Documentação para desenvolvedor	55		
		8.2.1 Dependências	56		
		8.2.2 Como gerar a documentação usando doxygen	56		
9	Título do Apêndice				
	9.1	Sub-Titulo do Apêndice	60		
10	Títu	ılo do Apêndice Usando Citações	61		
	10.1	Roteiro Para Uso do Sistema de Citações Com Banco de Dados .bib	62		
		10.1.1 Citações no meio do texto	63		
		10.1.2 Incluir nas referências bibliográficas (fim do documento), mas não			
		citar	63		
	10.2	Informações adicionais	63		
11	Con	no criar seu projeto no github a partir do modelo do professor	64		
	11.1	Roteiro para criar uma conta no github	64		
	11.2	Roteiro para criar um repositório novo (vazio) no github	64		
	11.3	Roteiro para clonar o repositório do projeto modelo em seu computador	66		
	11.4	Roteiro para clonar o repositório do projeto modelo diretamente (+simples)	67		

Capítulo 1

Introdução

Impulsionado pela importância que o petróleo tem sobre toda a humanidade, sendo ainda hoje uma das maiores fonte de energia em uso pelo ser humano, o presente trabalho de engenharia, desenvolve-se um projeto computacional em linguagem orientada a objeto C++ que tem como principal objetivo o gerenciamento de informações e realização de cálculos para estudo da recuperação de óleo resultante do deslocamento por um fluido imiscível.

1.1 Escopo do problema

No início de sua descoberta, os reservatórios de óleo e gás possuem uma certa quantidade de energia denominada energia primária. Com o avanço da vida produtiva, ocorre uma dissipação dessa energia primária resultando em um esgotamento da energia natural e uma queda no diferencial de pressão entre os limites do reservatório e os poços produtores. Com isso, o reservatório estaria destinado a uma baixa taxa de produção (ROSA ET AL.,2006).

Para contornar tal problema são usadas operações de manutenção de pressão, como a recuperação secundária. Este método consiste na recuperação por injeção de fluidos, como água e/ou gás, principalmente para fins de manutenção de pressão e eficiência de varredura volumétrica (SHENG, 2011). A eficiência deste método pode ser superior a 60%, embora o valor mais frequente seja de 30 a 50%, para os métodos convencionais (ROSA ET AL.,2006).

1.2 Objetivos

Os objetivos deste projeto de engenharia são:

• Objetivo geral:

- Desenvolver um software na área da engenharia de petróleo, mais especificamente, engenharia de reservatório. O desenvolvedor proposto tem como foco a aplicação do método de recuperação secundária, a partir de água como fluido injetado;
- Será realizada diferentes análises para previsão de escoamento bifásico imiscível num reservatório, considerando modelo de análise 1D por Buckley Leverett,
 2D a partir da eficiência do varrido areal, e 3D pelo estudo num sistema estratificado sem fluxo.

• Objetivos específicos:

- Modelo de Corey-Brooks para permeabilidade relativa;
- Método das Características;
- Equação de Buckey Leverett;
- Cálculo de mobilidade para esquemas de injeção;
- Cálculo da área invadida pela injeção;
- Comportamento das pressões;
- Modelo de Dykstra-Parsosn (1950) e Stiles (1949);
- Cálculo da frente de avanço da camada em cada breakthrough (BT);
- Cálculo da eficiência vertical em cada BT;
- Cálculo do volume de óleo recuperado total;
- Cálculo do tempo necessário do BT na última camada (todo óleo recuperável possível por esse método de injeção);

Capítulo 2

Especificação

O desenvolvimento de um projeto de engenharia é constituído por várias etapas, e a primeira delas se trata da especificação/concepção. Neste capítulo serão definidos os requisitos a serem satisfeitos e as especificações do sistema como a descrição do objeto, o que se espera do projeto e o contexto da aplicação para o estudo dos processos de recuperação secundária de óleo.

2.1 Especificação do Software - Requisitos

Nesta seção são descritas as principais características, além dos requisitos para a utilização do software desenvolvido.

2.1.1 Nome do sistema/produto

Na Tabela 2.1, apresenta-se as características do software.

2.1.2 Especificação

O projeto a ser desenvolvido consiste em um programa que calculará características de um reservatório homogêneo a partir de um fluxo bifásico areal, preverá o desempenho no processo de recuperação secundária do óleo a partir de um sistema estratificado com fluxo bifásico e fará estimativa da velocidade pelo modelo de fluxo bifásico unidimencional a partir da equação de Buckey Leverett.

A presente construção do sistema será utilizado em âmbito acadêmico como software livre, a partir do uso da Programação Orientada a Objeto em C++ e software Gnuplot, para que esteja disponível de fácil acesso a todos. A interface selecionada para o programa é em modo texto, o usuário irá se relacionar a partir do uso do teclado, mouse e monitor em conjunto com a interface do sistema construído. Os dados de entrada, propriedades do reservatório, serão fornecidos em modo .xlsx, na qual poderá ser modificado pelo usuário com base nas informações do reservatório em questão, enquanto que os dados de saída

Tabela 2.1: Característica do software

	Tabela 2.1: Característica do software
Nome	Modelos de Deslocamentos Imiscíveis Bifásico Usados no Processo de Recuperação Secundária de Petróleo
Componentes principais	Modelos de Fluxo Bifásico 1D para o estudo sobre o cálculo da recuperação de óleo resultante do deslocamento por um fluido imiscível a partir da equação de buckley-Leverett em conjunto com o Método das Característica para solução de problemas do tipo Riemann e Goursat-Riemann,
	Fluxo Bifásico Areal para cálculo do comportamento das propriedades de reservatório homogênio em esquemas de injeção em malhas e
Missão	Fluxo Bifásico em Sistema Estratificado para previsão de desempenho num processo de recuperação secundária do óleo de acordo com o modelo de Dykstra-Parsons (1950) e Stiles (1949). Calcular a permeabilidade relativa a partir do modelo de Corey-Brooks;
	Calcular o deslocamento do óleo a partir de um fluido imiscível pela equação de Buckey Leverett e solucionar o problema do tipo Riemann e Goursat-Riemann pelo método das características;
	Calcular comportamento da pressão em reservatório homogênio em esquemas de injeção em malhas; Calcular área invadida pela injeção de água no instante do "breakthrough";
	Calcular mobilidade relativa do óleo à água;
	Cálculo da frente de avanço da camada em cada "breakthrough";
	Cálculo da eficiência vertical em cada BT;
	Cálculo do volume de óleo recuperado total;
	Cálculo do tempo necessário do BT na última camada (todo óleo recuperável possível por esse método de inje- ção) .

serão em modo arquivo de texto .txt e imagem .png com base nos diferentes modelos de deslocamento possíveis do software.

• Dados/Atributos relativos ao reservatório:

- Porosidade;
- Diferencial de Pressão [Pa];
- Permeabilidade [mD];
- Dimensões [m];

• Dados/Atributos relativos aos fluidos:

- Saturação de água irredutivel;
- Saturação de óleo residual;
- Viscosidade da água [Pa.s];
- Viscosidade do óleo [Pa.s];
- Mobilidade [Kg. m^3].

• Dados/Atributos relativos ao teste de injeção:

- Vazão de injeção $[m^3/s]$;
- Esquemas de injeção;
- Volume de óleo produzido $[m^3]$;

2.1.3 Requisitos funcionais

níveis para cálculo;

Apresenta-se a seguir os requisitos funcionais.		
RF-01	O usuário deverá ser capaz de incluir valores de parâmetros de	
	reservatório e propriedades do fluido;	
RF-02 O usuário deverá ter liberdade para carregar dados a		
	um arquivo de disco criado pelo mesmo;	
RF-03	F-03 Os resultados deverão ser exportados como textos e/ou gráficos	
RF-04	O usuário poderá plotar seus resultados em um gráfico. O gráfico	
	poderá ser salvo como imagem ou ter seus dados exportados	
	como texto.	

RF-05

O usuário deve ter tal liberdade para escolher os modelos dispo-

2.1.4 Requisitos não funcionais

Apresenta-se a seguir os requisitos não-funcionais.

RNF-01	Os cálculos devem ser feitos utilizando-se formulações mate-
	máticas conhecidas da literatura;.
RNF-02	O programa deverá ser multi-plataforma, podendo ser execu-
	${ m tado\ em}\ {\it Windows},\ {\it GNU/Linux}\ { m ou}\ {\it Mac}.$

2.2 Casos de uso do software

A tabela 2.2 apresenta um caso de uso do sistema, bem como os diagramas de caso de uso.

Tabela 2.2: Caso de uso geral do sistema.

Nome do caso de uso:	Modelagem de Fluxo Bifásico Imiscísvel em Reservatório
Resumo/descrição:	Cálculo das características de um reservatório homogê-
	neo
	Cálculo do desempenho no processo de recuperação secundária
	Calculo do fluxo fracionário
Etapas:	1. Inserir dados de entrada
	2. Definir esquema de injeção
	3. Calcular fluxo fracionário
	4. Calcular características do reservatório e desempenho
	do processo de recuperação secundária;
	5. Gerar gráficos.
	6. Analisar resultados;
Cenários alternativos:	Inserir modelos, esquemas ou dados incompatíveis com
	a ordem de grandeza do problema.

2.2.1 Diagrama de caso de uso geral

O diagrama de caso uso geral da Figura 2.1 exibe o usuário interagindo com o software para obter o fluxo bifásico, características do reservatório e previsão do desempenho durante um processo de injeção. Neste caso de uso geral, o usuário insere os dados de entrada .xlsx, define o esquema de injeção, calcula o do fluxo fracionário, calcula as características de um reservatório homogêneo, calcula o desempenho no processo de recuperação secundária e plotará gráficos de comportamento de pressão, de mobilidade, perfís de velocidade, perfis de fluxo fracionário, perfis de saturação, volume de óleo produzido em função do tempo e gera dados de saída .txt com dados de presão, área invadida, posição da frente

de avanço da água injetada, vazões de injeção e produção, volume de óleo produzido e tempo de produção. O usuário pode então fazer a análise dos resultados obtidos.

Figura 2.1: Diagrama de caso de uso geral – Modelos de fluxo bifásico em reservatórios

2.2.2 Diagrama de caso de uso específico

O diagrama de caso de uso específico da Figura 2.2 é um detalhamento do caso de uso para os calculos que serão realizados, ele mostra a interação do usuário com o software para realizar os cálculo descritos anteriormente usando os modelos de deslocamento imiscível bifásico.

Figura 2.2: Diagrama de caso de uso específico – Modelos de fluxo bifásico em reservatórios

Capítulo 3

Elaboração

Depois da denição dos objetivos, da especicação do software e da montagem dos primeiros diagramas de caso de uso, a etapa do projeto de engenharia envolve a identicação e o estudo dos conceitos relacionados ao sistema a ser desenvolvido, isto é, a análise de domínio e a identicação de pacotes. Na elaboração fazemos uma análise dos requisitos, ajustando os requisitos iniciais de forma a desenvolver um sistema útil e adequado, que atenda às necessidades do usuário além de permitir seu reuso e futura extensão.

3.1 Análise de domínio

As acumulações de petróleo possuem certa quantidade de energia, denominada energia primária. A grandeza dessa energia é determinada pelo volume e pela natureza dos fluidos existentes na acumulação, bem como pelos níveis de pressão e de temperatura reinantes no reservatório. No processo de produção há uma dissipação da energia primária, causada pela descompressão dos fluidos do reservatório e pelas resistências encontradas por eles ao fluírem em direção aos poços de produção. Essas resistências são devidas, ou associadas, às forças viscosas e capilares presentes no meio poroso. O consumo de energia primária reflete-se principalmente no decréscimo da pressão do reservatório durante a sua vida produtiva, e consequente redução da produtividade dos poços (ROSA ET AL., 2006).

Há duas linhas gerais de ação para aprimorar os efeitos nocivos da dissipação da energia primaria dos reservatórios de petróleo: Suplementando a com energia secundária através da injeção ou reduzindo as resistências viscosas e/ou capilares por meio de metodos especiais, como por exemplo o aquecimento da jazida (ROSA ET AL., 2006).

A quantidade de óleo que pode ser retirada de um reservatório unicamente às expensas de suas energias naturais é chamada de recuperação primária. Por outro lado, recuperação secundária é a quantidade adicional de óleo obtida por suplementação da energia primária com energia secundária, artificialmente transferida para a jazida, ou por meios que tendem a tornar a energia primária mais eficiente. Os objetivos práticos básicos dos métodos de recuperação secundária são o aumento da eficiência de recuperação e a ace-

leração da produção (ROSA ET AL., 2006). De acordo com Coelho (1991) um processo de exploração e produção de uma reserva de hidrocarbonetos, suas características petrofísicas, geológicas, geológicas e geoquímicas são fundamentais de entendimento para a eficiente recuperação. A qualidade de um reservatório esta diretamente ligado ao ambiente deposicional do mesmo, bem como aos processos diagenéticos que lhe deram origem.

Em um projeto de injeção de fluidos a escolha do esquema de injeção - distribuição dos poços de injeção e produção - é fundamental, pois o sucesso aumenta à medida que certas linhas básicas de procedimento são adotadas ao se fazer essa escolha. Como o objetivo primordial da injeção é o aumento da recuperação de petróleo, deve-se tentar produzir esse volume adicional desejado utilizando-se esquemas em que os volumes de fluidos injetados sejam os menores possíveis. Devem ser buscadas situações em que a maior quantidade de fluido injetado permaneça no interior do reservatório, ou seja, a produção do fluido injetado seja a menor possível. As relações entre pressões e vazões e as relações destas últimas com o tempo do projeto são da maior importância e, portanto, devem ser encaradas como aspectos fundamentais a serem levados em conta no projeto. Finalmente, devem ser observadas as características particulares do reservatório em estudo, tais como a existência de falhas, variações de permeabilidade, estratificações, barreiras etc. Além disso, o aspecto econômico é decisivo (ROSA ET AL., 2006).

A teoria do avanço frontal é usada para calcular a vazão dos poços em esquemas de injeção, e em algumas de suas simplificações assumem que o fluxo entre os poços de injeção e produção é linear (todos os caminhos de fluxo são linhas retas) e que 100% do volume do poro do reservatório é contatado por água Injetada. Embora este comportamento possa ser aproximado em alguns reservatórios alongados, o fluxo linear ideal seria possível apenas se os fluidos pudessem ser injetados e produzidos a partir de toda a seção transversal do reservatório, ao invés de ser através da área limitada de um poço. Este problema é ainda mais complicado pelo fato da maioria dos campos serem desenvolvidos e a injeção de água ser feita utilizando algum padrão regular de poço (SMITH, COBB, 1997).

Quando se trata de um reservatório heterogêneo as taxas energéticas de sedimentação influenciam diretamente na seleção dos grãos. Em geral, ambientes de deposição com alta energia, geram reservatórios com boas características permoporosas, visto que os grãos foram melhor retrabalhados ao longo do curso até a compactação. Um exemplo interessante são os reservatórios originados em paleo-deltas, que são portadores da maior parte do óleo existente em reservatórios areníticos no planeta, (COELHO, 1991). Contudo, a taxa pode variar num mesmo ambiente, gerando reservatórios com variações verticais de permeabilidade, ou reservatórios heterogêneos, que ainda podem se dividir em dois grupos, aqueles que possuem camadas sem cruzamento de fluxo.

A heterogeneidade do reservatório provavelmente tem mais influência do que qualquer outro fator no desempenho de uma injeção de fluido, ao passo que se torna a variável mais difícil de determinar (SMITH, COBB, 1997). É necessário entender como as variações de permeabilidade vertical e areal podem ser determinadas, a fim de obter uma melhor

previsão de desempenho de eficiência do método de recuperação por injeção

Neste trabalho serão discutidos conceitos de razão mobilidade, condutividade, fluxo fracionário, esquemas de injeções em malhas, linhas de fluxo e de pressão, a área invadida pela água, bem como a eficiência do varrido horizontal e vertical em reservatórios homogêneos e heterogêneos

3.2 Conceitos Fundamentais

O conhecimento das propriedades das rochas e fuidos é essencial para o desenvolvimento de qualquer metodologia para aumentar o fator de recuperação do petróleo. Assim, será mostrado denições de porosidade absoluta e relativa, molhabilidade, permeabilidade absoluta, fator de recuperação, mobilidade, razão mobilodade, entre outros.

3.2.1 Conceitos de Propriedades de Rochas e Fluidos

• Porosidade:

A porosidade de uma rocha é defnida como a razão entre o volume poroso, capaz de armazenar fluidos, e o volume total da rocha, que é dado pela soma do volume poroso e do volume da parte sólida da rocha. A porosidade mede o volume dos espaços vazios em um meio poroso, independente de estarem ou não interligados. Portanto, a porosidade é um parâmetro petrofísico de grande importância visto que se consegue medir a capacidade de armazenagem de fluidos em um corpo poroso [Rosa et al., 2006].

Assim, a porosidade (ϕ) , expresso em porcentagem, pode ser denida como a razão entre o volume poroso (Vp) e o volume total (Vt) da amostra (Equação 3.1), onde o volume total é dado pela soma do espaço poroso e da fase sólida (Equação 3.2).

$$\phi = \frac{V_p}{V_t} \tag{3.1}$$

$$V_t = V_p + V_{s\'olida} (3.2)$$

• Conservação de Massas:

A equação da continuidade é desenvolvida efetuand-se um balanço de massas sobre um elemento de volume $\Delta x \Delta y \Delta z$, fixo no espaço, através do qual um fluido está escoando (Figura 3.1). Pelo Princípio da Conservação das Massas, pode-se dizer que ao longo de um determinado intervalo de tempo, a massa de água que entra num determinado sistema subtraído da massa que sai, será igual ao acúmulo de massa dentro do sistema. (BIRD;LIFHFOOT, STEWART, 1987)

Figura 3.1: Balanço de Massas (Autor)

$$\frac{\partial(\rho_j S_j \phi)}{\partial t} = -\nabla \cdot (\rho_j \mathbf{u}) \tag{3.3}$$

sendo:

$$\nabla \cdot (\rho \mathbf{u}) = \frac{\partial (\rho u_x)}{\partial x} + \frac{\partial (\rho u_y)}{\partial y} + \frac{\partial (\rho u_z)}{\partial z}$$
(3.4)

• Equação de Buckey Levet

Para definição da Equação de Buckey-Levett, vamos determinar as seguintes premissas:

- Fluxo 1D, horizontal, Isotérmico;
- Meio Poroso Homogêneo e incompressível (porosidade e permeabilidade cte);
- Fases imiscíveis, incompressíveis e viscosidade constante;
- Sem reações químicas e adsorção;

Obtêm-se:

Equação de Buckey-Leverett:
$$\phi \frac{\partial(S_j)}{\partial t} + \frac{\partial(u_{jx})}{\partial x} = 0$$
 (3.5)

• Molhabilidade:

O deslocamento de petróleo por meio dos poros da rocha reservatório também é influenciado por outros parâmetros petrofísicos como a molhabilidade, a qual pode ser definida como a capacidade de um fluido de se espalhar em uma superfície sólida na presença de outros fluidos, ou seja, é a tendência da superfície de ter mais afinidade por um fluido em detrimento de outro, também presente no meio poroso. Isto signica que em um fluxo.multifásico, um fludo tem mais anidade com o meio poroso que outros uidos presentes [Rosa et al., 2006, Dandekar, 2013]. Desta forma, a molhabilidade quantifica a afinidade que a superfície da rocha apresenta para cada fluido na presença de outros, estando relacionada com as forças intermoleculares que atuam entre a superfície e as moléculas dos líquidos presentes. Em reservatórios de petróleo, encontram-se basicamente duas fases líquidas, formadas pelo óleo e a água [Rosa et al., 2006].

• Permeabilidade:

A permeabilidade é uma das características petrofísicas mais importantes de um reservatório, sendo a capacidade da rocha de permitir o escoamento de fluidos. Uma rocha pode ter alta porosidade e apresentar baixa permeabilidade, caso os poros não sejam bem conectados, ou seja, para que o reservatório seja produtivo não basta um alto valor de porosidade, a rocha deve possuir a capacidade de permitir o deslocamento de fluidos através dela [Rosa et al., 2006].

Este parâmetro é um dos que tem mais influência na determinação da capacidade de produção de hidrocarbonetos acumulados. A permeabilidade (k) é uma propriedade dinâmica, definida como a capacidade de um dado meio poroso se deixar atravessar por um fluido [Rosa et al., 2006]. Ela é uma função da posição e pressão, e varia fortemente com o tamanho dos poros e sua distribuição em determinado local [Lake et al., 1989].

O conceito de permeabilidade aparece na lei que governa o deslocamento dos fluidos através de meios porosos, conhecida como a Lei de Darcy, sendo medida em milidarcy (md). Existem dois tipos de permeabilidades, a permeabilidade absoluta, quando o reservatório está saturado com um único fluido, e a permeabilidade efetiva, quando existem dois ou mais fluidos coexistindo dentro de uma mesma rocha [Albuquerque et al., 2007, Dandekar, 2013]. O desenvolvimento da expressão que permite encontrar a permeabilidade absoluta de um meio poroso é utilizado até os dias atuais na indústria do petr óleo. O experimento original de Darcy investigou o fluxo de água através da areia e concluiu que um fluxo linear com vazão de injeção (q) é função da condutividade hidráulica (k), da área da seção transversal (A), do diferencial de pressão da entrada para a saída ($\triangle P$) e do comprimento do meio poroso (L), conforme mostra a Equação [Rosa et al., 2006, Lake et al., 1989].

$$q = \frac{kA\triangle P}{\mu L} \tag{3.6}$$

A permeabilidade absoluta pode ser calculada isolando k na equação de Darcy conforme Equação3.7.

$$k = \frac{q\mu L}{A\triangle P} \tag{3.7}$$

Sendo:

- k = Permeabilidade
- A = Área da seção transversal
- $\mu = Viscosidade$
- L = Comprimento do meio poroso

Desta forma, durante um fluxo, se todas as variáveis são conhecidas, menos a permeabilidade, torna-se possível encontrá-la. A forma para a Equação 3.7 é utilizada para um fluxo linear. Em poços, com fluxo radial, modifica-se a geometria para definir a permeabilidade levando em consideração o raio externo do reservatório, o raio do poço, a pressão externa do reservatório, e a pressão medida no poço em uma determinada altura do reservatório, como será visto na fundamentação teórica dos métodos utilizados neste trabalho [Rosa et al., 2006]. A permeabilidade efetiva (ke), quando dois ou mais fluidos saturam o meio poroso [Rosa et al., 2006], sempre apresentará valores menores do que o valor da permeabilidade absoluta da rocha. O cálculo das permeabilidades efetivas à água e ao óleo (kw e ko) também pode ser realizado usando a Lei de Darcy conforme Equações 3.8 e 3.9 [Rosa et al., 2006].

$$k_{rw} = \frac{k_w L q_w}{A \triangle P} \tag{3.8}$$

$$k_{ro} = \frac{k_o L q_o}{A \wedge P} \tag{3.9}$$

A razão entre a permeabilidade efetiva de determinado uido no meio poroso e a permeabilidade absoluta é denominada permeabilidade relativa (kr), a qual pode ser representada pelas Equações 3.9 e 3.10 para um sistema bifásico óleo-água.

$$k_{rw} = \frac{k_w}{k} \tag{3.10}$$

$$k_{ro} = \frac{k_o}{k} \tag{3.11}$$

Este parâmetro sofre efeitos da variação da saturação dos fluidos, da molhabilidade da rocha, da estrutura dos poros da rocha, da tensão de confinamento, do teor de argila

da rocha, da migração de finos, da temperatura, além das variações de tensão interfacial, viscosidade e velocidade do fluxo [Dandekar, 2013].

O aumento da saturação de um fluido molhante no meio poroso em relação a outro fluido chama-se de embebição, e, por outro lado, quando existe uma redução de saturação do fluido que molha preferencialmente a rocha em relação a outro fluido, tem-se uma drenagem [Donaldson et al., 1985]. Assim, no processo de embebição, é necessário que haja uma determinada saturação da fase molhante no inicio do fluxo, chamada saturação de água conata ou saturação irredutível (Swi). Da mesma forma ocorre no processo de drenagem, e essa saturação é denominada saturação de óleo residual (Sor). A saturação da fase não molhante atinge seu valor máximo a saturações menores que 100%, o que indica que nem todo o meio poroso interligado irá contribuir ao uxo desta fase [Núñez, 2011].

• Mobilidade e Razão Mobilidade:

Na lei de Darcy, há um fator de proporcionalidade relacionado à velocidade de um fluido e ao gradiente de pressão. Este fator de proporcionalidade, denominado mobilidade do fluido, é a permeabilidade efetiva da rocha à esse fluido, dividida pela viscosidade do mesmo (CRAIG, F.F.,1971).

Se três fluidos (óleo, água e gás) estiverem presentes no meio poroso as suas mobilidades serão definidas, respectivamente, por:

$$\lambda_w = \frac{k_w}{\mu_w},\tag{3.12}$$

$$\lambda_o = \frac{k_o}{\mu_o},\tag{3.13}$$

$$\lambda_g = \frac{k_g}{\mu_g},\tag{3.14}$$

Muskat (1937) discutiu pela primeira vez o termo que ficou conhecido como razão de mobilidade. Posteriormente, foi usado para relacionar a mobilidade da água na porção de uma injeção no contato água com a mobilidade do óleo no banco de óleo. Ele apresentou as distribuições de pressão em regime permanente para uma série de arranjos de poços de produção de injeção, isto é, sob condições de uma razão de mobilidade unitária. A razão de mobilidades (M) é a relação entre a mobilidade do fluido deslocante (λ_d) atrás da frente de avanço do mesmo e a mobilidade do fluido deslocado no banco deste fluido. Por exemplo, no caso do fluido deslocado ser o óleo a razão de mobilidades é dada por :

$$M = \frac{k_d}{\mu_d} \frac{\mu_o}{k_o} = \frac{\lambda_d}{\lambda_o},\tag{3.15}$$

onde o subscrito d denota a fase de deslocamento. Na terminologia de injeção de água, isso se torna,

$$M = \frac{k_w}{\mu_w} \frac{\mu_o}{k_o} = \frac{k_w}{\mu_w} \frac{\mu_o}{k_{ro}},\tag{3.16}$$

como a permeabilidade efetiva é função da saturação, a mobilidade também é.

É importante notar que as permeabilidades relativas à água e óleo na Eq.3.16 são definidas em dois pontos separados no reservatório, ou seja, k_w é a permeabilidade relativa à água na parte do reservatório em contato com a água (na parte invadida pela água) e k_o é a permeabilidade relativa ao óleo no banco de óleo (parte não invadida do reservatório) (COBB; SMITH, 1997).

3.2.2 Conceitos Teóricos:

• Fluxo Fracionário:

O fluxo fracionário de um fluido é interpretado como o quociente entre a taxa de fluxo desse fluido e a taxa total de fluxo. Assim, o fluxo fracionário da água, f_w , do óleo, f_o e o total, f_t são definidos, respectivamente, pelas Equações 3.17, 3.18 e 3.19. (ROSA, 2006).

$$f_w = \frac{u_w}{ut} \tag{3.17}$$

$$f_o = \frac{u_o}{ut} \tag{3.18}$$

$$f_t = f_w + f_o (3.19)$$

• Eficiência do Varrido Vertical (Ev):

Definida pela razão entre o volume invadido pela água e o volume total da malha:

$$Ev = \frac{Volume.invadido.pela.\acute{a}gua}{Volume.total.da.malha}$$
(3.20)

Como a própria definição mostrou, quantifica o volume invadido pela água injetada no reservatório, sendo significativamente afetada pela estratificação devido ao movimento preferencial de fluidos nas zonas mais permeáveis. Sofre ainda influência de outros parâmetros como razão de mobilidade, fluxo entre camadas, força da gravidade e forças capilares.

• Eficiência do Varrido Horizontal (Ev):

Em qualquer projeto, independentemente do esquema escolhido, existe uma área total definida que está sujeita à influência da injeção. Por exemplo, em um esquema "five-spot" essa área total é a área da malha base, ou seja, um quadrado. Já no modelo "seven-spot" essa área é um hexágono. Em um reservatório como o da Figura ?? a área total pode

ser vista em planta, delimitada pelo contato óleo/água. Observe que esta área é sempre medida em planta (ROSA ET AL., 2006).

Se não existissem fatores que interferem no desempenho do processo e se o tempo de atuação fosse infinito, a área da malha ou do reservatório seria integralmente varrida pelo fluido injetado, e a recuperação de petróleo seria proveniente de toda essa área. Em projetos reais, devem ser efetuados cálculos para estimar que percentuais dessa área total foram invadidos em diferentes tempos e diferentes condições, uma vez que o fluido injetado invade apenas uma parte da área total (ROSA ET AL., 2006).

Define-se eficiência de varrido horizontal, E_A , como a relação entre a área invadida pelo fluido injetado e a área total do meio poroso, ambas medidas em planta. Assim:

$$E_A = A_{inv}/A_t \tag{3.21}$$

onde A_{inv} é a área invadida pelo fluido e A_t a área total.

• Campo potencial e linhas de fluxo

Para cada distribuição de poços de injeção e de produção que se implanta em um reservatório, e a cada instante, existe um campo potencial que é resultado não só das posições desses poços como também das suas vazões e pressões. Para uma formação horizontal e de pequena espessura, o potencial pode ser substituído pela pressão (ROSA ET AL., 2006).

Os pontos de maior potencial são os poços de injeção e os de menor potencial são os poços de produção, e entre esses pontos existem valores intermediários espalhados por todo o reservatório. Esse campo potencial pode ser representado em planta por meio de linhas equipotenciais. No caso de um único poço situado no centro de um reservatório cilíndrico, por exemplo, as linhas equipotenciais são circunferências que têm o poço como centro como mostrado a Figura 3.2 (ROSA ET AL., 2006).

Figura 3.2: Linhas equipotenciais concêntricas em um reservatório infinito.

Perpendiculares às linhas equipotenciais se localizam as linhas de fluxo, que começam nos poços de injeção e se estendem até os poços de produção. Como o próprio nome já indica, o fluxo ocorre ao longo dessas linhas. Se o sistema está em regime permanente, tanto o campo potencial como a localização das linhas de fluxo não se alteram com o tempo.

A Figura 3.3 apresenta uma malha de injeção em linha direta com algumas das suas linhas de fluxo. Nas vizinhanças dos poços as equipotenciais são circunferências concêntricas aos mesmos. Como as linhas de fluxo são perpendiculares às equipotenciais, nessas regiões o fluxo é radial (ROSA ET AL., 2006).

Como pode ser observado na Figura 3.3, as linhas de fluxo entre dois poços têm comprimentos diferentes. Como a diferença de pressão entre o poço de injeção e o de produção é a mesma ao longo de qualquer linha, cada uma tem um gradiente médio de pressão diferente. As linhas de menor comprimento são as de maior gradiente médio (ROSA ET AL., 2006).

Ao penetrarem no meio poroso, as partículas de fluido que se deslocarem ao longo da linha de fluxo mais curta terão maior velocidade que as partículas que percorrerem outras linhas quaisquer. Isso quer dizer que em um determinado instante cada linha de fluxo terá sido varrida de uma maneira diferente das outras. Deve ser observado que a velocidade varia não só de uma linha para outra como ao longo da própria linha. A Figura 3.4 mostra como o fluido injetado penetra no meio poroso e a forma que a região invadida vai tomando em função das diferenças de gradiente médio de pressão entre as linhas de fluxo (ROSA ET AL., 2006).

Figura 3.3: Linhas de Fluxo (ROSA ET AL., 2006).

Figura 3.4: Evolução da área invadida em uma malha em linha direta (ROSA ET AL., 2006).

Inicialmente o fluido injetado se propaga radialmente porque nas proximidades do poço de injeção o gradiente de pressão em todas as linhas é praticamente o mesmo. Quando vista em planta, a área invadida pelo fluido tem uma forma também praticamente circular. À medida que o fluido avança em cada linha, como o seu gradiente de pressão vai se alterando, a sua velocidade também vai se alterando, de tal maneira que a região invadida, que inicialmente era circular, vai adquirindo outra forma. No instante em que a primeira partícula do fluido injetado alcança o poço de produção, teoricamente só a linha de fluxo mais curta foi inteiramente varrida, restando partes do reservatório que ainda não foram contatadas. A região invadida pelo fluido injetado vai se alterando não só em forma como também em dimensão, à medida que mais e mais fluido vai penetrando no meio poroso (ROSA ET AL., 2006).

Conforme será discutido na próxima seção, usando as expressões analíticas que descre-

vem o comportamento da pressão em reservatórios homogêneos infinitos é possível estimar a área de varrido, bem como a distribuição de pressão e o comportamento das linhas de fluxo, em reservatórios submetidos à injeção de água (ROSA ET AL., 2006).

A dimensão da área invadida e, consequentemente, a eficiência de varrido horizontal dependem da geometria de injeção, do volume de fluido injetado e da razão entre a mobilidade do fluido injetado e a mobilidade do fluido deslocado. Para se entender um pouco mais sobre a formação dessas áreas invadidas é necessário um pequeno estudo a respeito de campos potenciais e linhas de fluxo, que será mostrado a seguir (ROSA ET AL., 2006).

• Modelo de Corey-Brooks:

A Figura 3.5 mostra os valores de permeabilidade relativa para todo o intervalo de valores de saturação de água. É possível observar que à medida que a saturação de água diminui, a sua permeabilidade efetiva cai de forma sensível no início. Considerando que o meio poroso em estudo é molhável a água, essa situação já era esperada, visto que o óleo irá ocupar inicialmente uma região de maior diâmetro no centro dos capilares. A tendência natural é que a saturação de óleo cresça até atingir a saturação crítica e começar a fluir e em consequência, a saturação de água começará a diminuir de forma mais significativa (Rosa et al, 2016).

O crescimento da saturação de óleo é diretamente proporcional ao da sua permeabilidade relativa. Enquanto isso, a permeabilidade relativa da água descrece até que seja atingido o ponto de saturação irredutível de água (S_{wi}) , em que ela parará de fluir , logo , sua permeabilidade relativa será nula.

Figura 3.5: Modelo de Corey-Brooks para permeabilidade relativa (Autor).

A partir do modelo de Corey-Brooks para permeabilidade relativa e pressão capilar, temos as seguintes relações:

$$k_{rw}(S_w) = (k_{rw})_{s_{orw}} \left(\frac{S_w - S_{wi}}{1 - S_{wi} - S_{orw}} \right)^{ew}$$
(3.22)

$$k_{ro}(S_w) = (k_{ro})_{s_{wi}} \left(\frac{1 - S_w - S_{orw}}{1 - S_{wi} - S_{orw}}\right)^{eow}$$
(3.23)

$$P_c(S_w) = (P_c)_{s_{wi}} \left(\frac{1 - S_w - S_{orw}}{1 - S_{wi} - S_{orw}}\right)^{epcow}$$
(3.24)

sendo k_{rw} =permeabilidade relativa na água, k_{ro} =permeabilidade relativa na óleo, $(k_{rw})_{s_{orw}}$ =permeabilidade relativa na água na saturação de óleo residual, $(k_{rw})_{s_{wi}}$ =permeabilidade relativa da água na saturação de agua irredutivel, S_w =Saturação de água, S_{wi} =Saturação de água irredutível, S_{orw} =Saturação de óleo residual, P_c =pressão capilar, ew,eow e

epcow= constantes experimentais de Corey-Brooks .

3.3 Formulações Matemáticas

3.3.1 Modelo de Fluxo Bifásido (1D)

Posteriormente as suposições básicas, o assunto é introduzido da maneira convencional, descrevendo a equação fluxo e a equação de Buckley-Leverett. Por ser unidimensional, sua aplicação direta, no cálculo da recuperação de óleo, ficaria restrita à distribuição da saturação de água uniforme em relação ao comprimento. Mediante ao fato de que há uma distribuição de saturação não uniforme, utilizou-se o modelo de Corey-Brooks para permeabilidades relativas, que são funções da saturação de água e foi obtida uma solução para o problema de Riemann e de Goursat-Riemann para uso em conjunto com a teoria de Buckley-Leverett(DAKE,1978).

• Equação de Buckey Leverett

$$\phi \frac{\partial(S_j)}{\partial t} + \frac{\partial(u_{jx})}{\partial x} = 0 \tag{3.25}$$

• Lei de Darcy

$$u_{\pi} = -k \frac{k_{r\pi}}{\mu_{\pi}} \left(\frac{\partial P_{\pi}}{\partial x} - \rho_{\pi} g sen\alpha \right)$$
 (3.26)

• Velocidade de deslocamento do óleo

$$u_o = -k \frac{k_{ro}}{\mu_o} \left(\frac{\partial P_o}{\partial x} - \rho_o g sen\alpha \right)$$
 (3.27)

• Velocidade de deslocamento da água

$$u_w = -k \frac{k_{rw}}{\mu_w} \left(\frac{\partial P_w}{\partial x} - \rho_w g sen\alpha \right)$$
 (3.28)

Função Fluxo

$$u_{t} = -k \frac{k_{rw}}{\mu_{w}} \left(\frac{\partial P_{w}}{\partial x} - \rho_{w} g s e n \alpha \right) - k \frac{k_{ro}}{\mu_{o}} \left(\frac{\partial P_{o}}{\partial x} - \rho_{o} g s e n \alpha \right)$$
(3.29)

• Pressão Capilar

$$P_c = P_o - P_w \tag{3.30}$$

• Derivada da Função Fluxo

$$\frac{du_w}{dS_w} = u_t \frac{d}{dS_w} \left(\frac{\lambda_w}{\lambda_t} \right) + gsen\alpha \left(\rho_w - \rho_o \right) \frac{d}{dS_w} \left(\frac{\lambda_w \lambda_o}{\lambda_t} \right) + \frac{d}{dS_w} \left(\frac{\lambda_w \lambda_o}{\lambda_t} \frac{\partial P_c}{\partial x} \right)$$
(3.31)

3.3.2 Modelo de Fluxo Bifásido Areal (2D)

 Método aproximado de Deppe para análise da injetividade relativa contra o avanço da frente de injeção:

Em um projeto de injeção de água é necessário o conhecimento dos valores, pelo menos aproximados, das vazões e das pressões de injeção. Valores muito altos de pressões de injeção podem acarretar fraturas na formação e prejudicar seriamente o deslocamento do óleo pela água. Por outro lado, é necessária uma boa injetividade para se obter uma boa produtividade. Os valores de vazão e de pressão de injeção são necessários também para o dimensionamento dos equipamentos de superfície a serem utilizados no projeto de injeção (ROSA ET AL., 2006).

Quando se estuda a distribuição de pressão no meio poroso (dentro de uma determinada malha), observa-se que uma grande parcela da queda de pressão entre os poços de injeção e de produção ocorre exatamente nas proximidades dos poços, onde o fluxo comporta-se como sendo radial. Em alguma região entre os poços o fluxo é aproximadamente linear, de modo que a injetividade na malha deve ser calculada fazendo-se a combinação dos fluxos que ocorrem na malha. Diversos estudos foram feitos, principalmente por Deppe J. (1961) e Muskat (1946), sobre injetividade para os vários tipos de geometria de injeção, entre os quais podem ser destacadas as equações para os modelos de linha direta, linha esconsa, "five-spot", "seven-spot" e "nine-spot" invertido. Essas equações foram deduzidas admitindo-se razão de mobilidades igual a 1, saturação de gás inicial igual a zero e regime permanente.

Quando as mobilidades de fluido nas regiões varridas e não-varridas são iguais, a injetividade não mudará conforme a frente de inundação avança. Para padrões regulares, pode ser calculado por fórmulas matemáticas.

Quando as mobilidades de fluido nas regiões varridas e não-varridas não são iguais, a injetividade aumentará ou diminuirá conforme a frente de inundação avança. Nesse caso, a injetividade não foi calculada por métodos analíticos para nenhum padrão prático de poço e, além disso, os resultados do modelo em escala e analógico foram publicados apenas para o padrão de cinco pontos (DEPPE J.,1961).

O objetivo é apresentar um método aproximado de cálculo da injetividade para o caso de mobilidades desiguais sendo aplicado a padrões regulares. Antes que o método aproximado de Deppe J. seja discutido, as fórmulas analíticas para mobilidades iguais serão resumidas, e a solução analítica para fluxo radial com mobilidades diferentes será usada para mostrar como a injetividade muda conforme a injeção avança.

Considere um sistema radial com um poço de injeção central de raio r_w e imagine que o fluido é produzido uniformemente a partir de cada ponto em um círculo de raio r_e . Um fluxo puramente radial resultará, e a frente entre os fluidos injetados e originais será um círculo cujo raio será denominado r_f como mostram as Figuras 3.6 e 3.7.

Figura 3.6: Sistema radial em poços de injeção (Adaptado de ROSA ET AL., 2006).

Figura 3.7: Sistema radial em poços de injeção.

Partido na equação da Lei de Darcy, e fazendo substituições para adequar-se ao esquema mostrado na Figura 3.6 encontramos a formulação para a injetividade (Eq. 3.32). Na maioria das aplicações, é conveniente expressar a variação da injetividade como o progresso da frente em termos da injetividade inicial. Neste caso, isto é, uma injetividade relativa q_{ir} , é definida como a razão da injetividade em qualquer momento

$$q_{inj} = \frac{C_1 h \lambda_o \triangle P}{\log\left(\frac{rf}{rw}\right) \frac{1}{M} + \log\left(\frac{re}{rf}\right)},\tag{3.32}$$

onde $\triangle P = P_e - P_w$ e $M = \frac{\lambda_d}{\lambda_o}$.

Na maioria das aplicações, é conveniente expressar a variação da injetividade como o progresso da frente em termos da injetividade inicial. Neste caso, isto é, uma injetividade relativa q_{ir} , é definida como a razão da injetividade em qualquer momento, dada pela Eq. 3.32, pela a injetividade inicial, dada pela Eq. 3.32com $r_f = r_w$, (DEPPE J.,1961). Fazendo a injetividade inicial $(q_{inj,i})$, temos:

$$q_{inj,i} = \frac{C_1 h \lambda_o \triangle (A_{inv})_{BT}, P}{\log \left(\frac{re}{rf}\right)}.$$
(3.33)

Então, a razão entre a Eq. 3.32 e Eq. 3.33, resulta :

$$q_{ir} = \frac{log\left(\frac{re}{rf}\right)}{log\left(\frac{rf}{rw}\right)\frac{1}{M} + log\left(\frac{re}{rf}\right)}$$
(3.34)

A equação da injetividade relativa calculada através do método aproximado de Deppe (Eq. 3.34) será um dos cálculos realizados pelo Software na análise do comportamento areal. A injetividade relativa começa unitária quando $r_f = r_w$ e termina quando $r_f = r_e$ (correspondente à varredura completa da área e mudança completa da mobilidade do fluido de λ_o para λ_d).

As curvas calculadas a partir desta equação serão traçadas pelo software gnuplot para quaise razões de mobilidade. A injetividade relativa é plotada contra a fração da área varrida E_A , ao invés de contra a posição da frente de avanço. Nesse caso, a relação é $\frac{r_f^2}{r_e^2} = E_A$ para $r_w \ll r_e$.

• Determinação analítica da área de varrido e do comportamento das linhas de fluxo

Conforme mostrado por Brigham (1981), em algumas situações particulares é possível a determinação analítica da área de varrido, da distribuição de pressão e do comportamento das linhas de fluxo em um reservatório sujeito à injeção de água. Dentre essas situações pode-se considerar o caso de um reservatório de óleo subsaturado, homogêneo e horizontal, sujeito à injeção de água, onde a razão de mobilidades seja unitária. Em outras situações mais complexas, a solução obtida com essas hipóteses simplificadoras fornecerá uma idéia do comportamento real.

Considere, por exemplo, o caso de dois poços, sendo um deles injetor de água, com vazão q_1 , e o outro produtor de óleo, com vazão q_2 , localizados em um reservatório muito extenso, conforme mostrado na Figura 3.8. O reservatório é homogêneo e horizontal, e a razão entre as mobilidades da água e do óleo é unitária. Admita que a espessura do reservatório seja pequena, de modo que o fluxo possa ser considerado como sendo praticamente horizontal. Admita ainda que as vazões sejam medidas em condições de reservatório e que os valores absolutos das vazões de injeção e de produção sejam iguais a q, sendo q > 0. Como normalmente convenciona-se que a vazão de produção é positiva, então $q_2 = q$ e $q_1 = -q_2 = -q$ (ROSA ET AL., 2006).

Figura 3.8: Sistema composto de um poço injetor e de um produtor (ROSA ET AL., 2006).

Utilizando a aproximação logarítmica para representar a solução do modelo da fonte

linear, a queda de pressão adimensional em um ponto qualquer de um reservatório infinito, devida à produção de um poço com vazão q, é dada, empregando- se um sistema compatível de unidades, pela expressão:

$$p_D(r_D, t_D) \equiv \frac{2\pi k h[p_i - p(r, t)]}{q\mu} = \frac{1}{2}[ln(t_D/r_D^2) + 0,80907]$$
(3.35)

Para facilitar o entendimento da aplicação desse princípio, considere a Figura 3.9, onde está representado um sistema de coordenadas cartesianas para as três situações em que o programa irá fazer os cálculos, sendo C a metade da distância entre os dois poços, (x,y) um ponto qualquer do sistema, r_1, r_2 e r_3 a distância entre os poços e o ponto (x,y). Após substituir as distâncias na Eq. 3.35 e fazer as manipulações matemáticas necessárias, as Eqs. 3.36, 3.39 e 3.43 permitem calcular a pressão em qualquer ponto do reservatório, em um tempo qualquer t. O Software desenvolvido irá calcular o valor das pressões para um ponto (x,y) qualquer escolhido pelo usuário.

Conforme se observa, usando a aproximação de longo tempo (aproximação logarítmica da solução do modelo da fonte linear) para o comportamento transiente de pressão, Eq. 3.35, e aplicando o princípio da superposição de efeitos, obteve-se uma solução para fluxo permanente, já que não há dependência do tempo no lado direito da equação. Isso ocorre porque os poços injetor e produtor têm a mesma vazão, gerando então no reservatório um estado permanente de fluxo, ou seja, a pressão no reservatório é uma função somente da posição (ROSA ET AL., 2006).

(a) Sistema composto de um poço produtor e um injetores, em um sistema de coordenadas cartesianas.

(b) Sistema composto de um poço produtor e de(c) Sistema composto de um poço injetor e de dois dois injetores, em um sistema de coordenadas cartesitesianas.

Figura 3.9: Sistemas de coordenadas cartesianas.

Uma maneira de se analisar o comportamento da pressão (e consequentemente das linhas de fluxo) nos sistemas mostrados na Figura 3.10 é verificar a forma geométrica das linhas de pressão constante, ou seja, das linhas de mesmo potencial (equipotenciais), já que neste caso o potencial de fluxo e a pressão do fluido são iguais, pois o fluxo é horizontal. Para se analisar o comportamento das linhas equipotenciais basta admitir que o lado direito das Eqs. 3.36, 3.39 e 3.43 sejam constantes, isto é, considerar a situação em que o quociente entre as distâncias r_2 , r_1 e r_3 seja constante (ROSA ET AL., 2006). Com isso, após algumas manipulações, obtem-se as Eqs. 3.37, 3.40 e 3.44, que sarão origem a gráficos mostrando o comportamento dessas linhas de pressão constante ao redor dos poços de injeção e produção.

Um outro aspecto de interesse é a determinação da área varrida pelo fluido injetado até um determinado instante. Por exemplo, no caso do esquema da Figura 3.10, onde são mostradas as dimensões do sistema, é interessante saber qual seria a área invadida pela água no momento que a água atingisse o poço produtor ("breakthrough") e, nesse

instante, qual seria a distância percorrida pela água no sentido oposto ao do poço produtor. Para facilitar o desenvolvimento a ser apresentado, admita novamente um sistema de coordenadas cartesianas, em que o eixo horizontal coincide com a linha horizontal que passa pelos dois poços, como ilustrado na Figura 3.10. Para se analisar o comportamento do sistema no instante do "breakthrough", é conveniente admitir também que o eixo horizontal tem origem no poço injetor, com valores de x crescentes para a direita neste caso, já que o poço injetor encontra-se à esquerda do produtor (ROSA ET AL., 2006). Com isso, obtém-se o valor da área invadida no instante do "breakthrogh" (Figura 3.11), $(A_{inv})_{BT}$, pode ser calculado pelas Eqs. 3.38, 3.42 e 3.45, que serão também dados de saída do programa.

Figura 3.10: Sistema composto de dois poços: injetor e produtor (ROSA ET AL., 2006).

Figura 3.11: Ilustração da área invadida pela água no instante de "breakthrough" em um sistema composto de um injetor e de um produtor (ROSA ET AL., 2006)

• Caso 1:
$$\frac{2\pi k h[p(x,y,t) - p_i]}{q\mu} = ln(r_2/r_1), \tag{3.36}$$

$$x^{4} + y^{4} + 2x^{2}y^{2} + x^{2}R - y^{2}R'' = \frac{C^{2}R''}{2},$$
(3.37)

$$(A_{inv})_{BT} = \frac{\pi C^2}{2}. (3.38)$$

• Caso 2:

$$\frac{2\pi k h[p_i - p(x, y, t)]}{\mu q} = \ln\left(\frac{r_3^4}{r_1^2 r_2^2}\right)^{\frac{1}{4}},\tag{3.39}$$

$$(x^{2} + y^{2})^{2} + (y^{2} - x^{2})R' = -\frac{C^{2}R'}{2},$$
(3.40)

Transformando em coordenadas polares,

$$r^{4} + r^{2} \left[\left(-\cos(2\theta) \right] R' = -\frac{C^{2}R'}{2}, \tag{3.41}$$

$$(A_{inv})_{BT} = 2\pi C^2 (3.42)$$

• Caso 3:

$$\frac{2\pi k h[p_i - p(x, y, t)]}{\mu q} = \ln\left(\frac{r_1^2 r_2^2}{r_3^4}\right)^{\frac{1}{4}}.$$
 (3.43)

$$x^{4} + y^{4} + 2x^{2}y^{2} + x^{2}R - y^{2}R'' = \frac{C^{2}R''}{2}.$$
 (3.44)

Transformando em coordenadas polares,

$$r^4 - r^2 \left[(sen^2(\theta) - cos^2(\theta)) \right] R'' = \frac{C^2 R''}{2}$$

$$(A_{inv})_{BT} = 2\pi C^2 (3.45)$$

onde,

$$R = \frac{r_3^4}{r_1^2 r_2^2}.$$

$$R' = \frac{2RC^2}{R-1}$$

$$R'' = \frac{2C^2}{R^{-1} - 1}.$$

3.3.3 Modelo de Fluxo Bifásido em Sistemas Estratificados (3D)

Dada uma perspectiva particular de injeção num reservatório heterogêneo (Figura 3.12), pretende-se prever informações como o tempo necessário para o "breakthrough", recuperação de óleo no "breakthrough", tempo de produção, desempenho de produção de óleo com a injeção de água, etc. Vários métodos foram propostos para fazer isso, cada um

diferindo na maneira de lidar com a heterogeneidade, cálculos de varredura, desempenho de injeção de água, eficiência do deslocamento e muitas outras variáveis que podem afetar a desempenho de injeção (SMITH; COBB, 1997). Como dito na especificação, será analisada a previsão de desempenho num reservatório com múltiplas camadas, com base nos métodos de Stiles (1949) e Dykstra-Parsons(1950), as formulações para tal são definidas a seguir:

Considerando o Método de Stiles, temos que:

• Posição da frante de avanço da água numa cada i qualquer (i > j):

$$X_i = X_j \left(\frac{k_i}{k_j}\right) \tag{3.46}$$

• Vazão de injeção numa camada j:

$$q_j = q_w = q_o = \frac{k_w A_j \triangle p}{\mu_w L} = \frac{k_o A_j \triangle p}{\mu_o L}$$
(3.47)

• Volume de óleo produzido por camada em condições padrão:

$$N_{pi} = \frac{V_{pi}(1 - S_w - S_{or})}{Bo} = \frac{WX_i h_i \phi (1 - S_w - S_{or})}{Bo}$$
(3.48)

• Volume de óleo produzido em toda a malha em condições padrão:

$$N_p = \frac{V_p(1 - S_w - S_{or})}{Bo} E_v = \frac{WLh_t\phi(1 - S_w - S_{or})}{Bo}$$
(3.49)

Considerando o Método de Dykstra-Parsons, temos que:

• Posição da frante de avanço da água numa cada i qualquer (i > j):

$$X_{i} = L \left[\frac{M - \sqrt{M^{2} + (1 - M^{2})\frac{k_{i}}{k_{j}}}}{M - 1} \right]$$
(3.50)

• A eficiência do varrido vertical é definida matematicamente como:

$$E_v = \frac{\sum_{i=l}^n X_i h_i}{Lh_t} \tag{3.51}$$

A vazão de injeção em cada camada como sendo dependente da razão de mobilidade
 M e posição X:

$$(Q_{inj})_i = \frac{k_i k_{rw} A \triangle p}{B_w \mu_w [X_i + M(L - X_i)]}$$
(3.52)

• Volume de óleo produzido por camada em condições padrão:

$$N_{pi} = \frac{V_{pi}(1 - S_w - S_{or})}{Bo} = \frac{WX_i h_i \phi (1 - S_w - S_{or})}{Bo}$$
(3.53)

• Volume de óleo produzido em toda a malha em condições padrão:

$$N_p = \frac{V_p(1 - S_w - S_{or})}{Bo} E_v = \frac{WLh_t\phi(1 - S_w - S_{or})}{Bo}$$
(3.54)

Figura 3.12: Reservatório Estratificado (SMITH, COBB, 1997).

3.4 Diagrama de Pacotes – assuntos

Com base na análise do domínio do software desenvolvivo, foram identificados ps seguintes pacotes:

- Propriedades da Rocha e dos fluidos: é um pacote que possui os dados das propriedades da rocha e dos fuidos, que compõem o meio poroso. Sua função é fornecer estas propriedades para o modelo de recuperação;
- Métodos de Deslocamento Imiscivel 1D, 2D e 3D: é um pacote que contém diferentes métodos de deslocamentos por fluidos imiscíveis;
- Recuperação Secundária: é um pacote que envolve a injeção de água como método de recuperação;
- Gnuplot: envolve um utilitário de criação de gráficos orientado por linha de comando multi-plataforma;
- Engenharia de Reservatório: é um ramo da engenharia que fornece um estudo específico para fluxo em meios porosos em rochas reservatório.

Figura 3.13: Diagrama de Pacotes

Capítulo 4

AOO – Análise Orientada a Objeto

A terceira etapa do desenvolvimento de um projeto de engenharia, no nosso caso um software aplicado a engenharia de petróleo, é a AOO – Análise Orientada a Objeto. A AOO utiliza algumas regras para identificar os objetos de interesse, as relacões entre os pacotes, as classes, os atributos, os métodos, as heranças, as associações, as agregações, as composições e as dependências.

O modelo de análise deve ser conciso, simplificado e deve mostrar o que deve ser feito, não se preocupando como isso será realizado.

O resultado da análise é um conjunto de diagramas que identificam os objetos e seus relacionamentos.

4.1 Diagramas de classes

O diagrama de classes é apresentado na Figura 4.1.

Nota:

deve ocupar toda a página impressa! se necessário rotacionar 90 graus; SE NECESSÁRIO DIVIDIR EM 2 PÁGINAS; o importante é que toda figura/tabela deve ser bem legível (fonte mínima = 10).

4.1.1 Dicionário de classes

• Classe CNomeClasse: representa.....

• Classe CNomeClasse: representa.....

• Classe CNomeClasse: representa.....

4.2 Diagrama de seqüência – eventos e mensagens

O diagrama de seqüência enfatiza a troca de eventos e mensagens e sua ordem temporal. Contém informações sobre o fluxo de controle do software. Costuma ser montado a

partir de um diagrama de caso de uso e estabelece o relacionamento dos atores (usuários e sistemas externos) com alguns objetos do sistema.

4.2.1 Diagrama de sequência geral

Veja o diagrama de seqüência na Figura 4.2.

• [Aqui a ênfase é o entendimento da sequência com que as mensagens são trocadas, a ordem temporal.]

Figura 4.2: Diagrama de seqüência

4.2.2 Diagrama de sequência específico

•••

• [deve mostrar uma sequência específica; NÃO É PARA REPETIR O GERAL COM 1-2 coisas diferentes!

é um novo diagrama; detalhando algo!]

4.3 Diagrama de comunicação – colaboração

No diagrama de comunicação o foco é a interação e a troca de mensagens e dados entre os objetos.

• [Pode ser a repetição de um diagrama de sequência; mas note que o formato do gráfico é diferente, aqui a ênfase é o entendimento das mensagens que chegam e saem de cada objeto.]

Veja na Figura 4.3 o diagrama de comunicação mostrando a sequência de blablabla. Observe que

Figura 4.3: Diagrama de comunicação

4.4 Diagrama de máquina de estado

Um diagrama de máquina de estado representa os diversos estados que o objeto assume e os eventos que ocorrem ao longo de sua vida ou mesmo ao longo de um processo (histórico do objeto). É usado para modelar aspectos dinâmicos do objeto.

Veja na Figura 4.4 o diagrama de máquina de estado para o objeto XXX. Observe que....

- Lembre-se, são os estados de um objeto específico e não uma sequência de cálculo; as sequência já foram mostrados nos diagramas de sequência e comunicação!!
- Vou repetir; N\(\tilde{a}\) o diagrama de m\(\tilde{a}\) quina de estado como sendo uma repeti\(\tilde{a}\) o dos diagramas de sequ\(\tilde{e}\) ncia!
- Este diagrama trata dos estados de um objeto único/específico!

Figura 4.4: Diagrama de máquina de estado

4.5 Diagrama de atividades

.

Veja na Figura 4.5 o diagrama de atividades correspondente a uma atividade específica do diagrama de máguina de estado. Observe que....

...descrever em detalhes uma atividade específica..não pode ser a sequência de uso geral, trata-se de um caso específico, detalhado do diagrama de máquina de estado.

- Lembrar que o diagrama de sequência é a representação de um método de cálculo específico.
- Não é para fazer o diagrama de atividades do método de gerenciamento!!!
- Coloque aqui um diagrama de atividades que mostra contas/cálculos!

Figura 4.5: Diagrama de atividades

Nota:

Não perca de vista a visão do todo; do projeto de engenharia como um todo. Cada capítulo, cada seção, cada parágrafo deve se encaixar. Este é um diferencial fundamental do engenheiro em relação ao técnico, a capacidade de desenvolver projetos, de ver o todo e suas diferentes partes, de modelar processos/sistemas/produtos de engenharia.

Figura 4.1: Diagrama de classes

Projeto

Neste capítulo do projeto de engenharia veremos questões associadas ao projeto do sistema, incluindo protocolos, recursos, plataformas suportadas, inplicações nos diagramas feitos anteriormente, diagramas de componentes e implantação. Na segunda parte revisamos os diagramas levando em conta as decisões do projeto do sistema.

5.1 Projeto do sistema

Depois da análise orientada a objeto desenvolve-se o projeto do sistema, qual envolve etapas como a definição dos protocolos, da interface API, o uso de recursos, a subdivisão do sistema em subsistemas, a alocação dos subsistemas ao hardware e a seleção das estruturas de controle, a seleção das plataformas do sistema, das bibliotecas externas, dos padrões de projeto, além da tomada de decisões conceituais e políticas que formam a infraestrutura do projeto.

Deve-se definir padrões de documentação, padrões para o nome das classes, padrões de retorno e de parâmetros em métodos, características da interface do usuário e características de desempenho.

Segundo [Rumbaugh et al., 1994, Blaha and Rumbaugh, 2006], o projeto do sistema é a estratégia de alto nível para resolver o problema e elaborar uma solução. Você deve se preocupar com itens como:

1. Protocolos

- Definição dos protocolos de comunicação entre os diversos elementos externos (como dispositivos). Por exemplo: se o sistema envolve o uso dos nós de um cluster, devem ser considerados aspectos como o protocolo de comunicação entre os nós do cluster.
 - Neste projeto blablabla
- Definição dos protocolos de comunicação entre os diversos elementos internos (como objetos).

- Neste projeto blablabla
- Definição da interface API de suas bibliotecas e sistemas.
 - Neste projeto blablabla
- Definição do formato dos arquivos gerados pelo software. Por exemplo: prefira formatos abertos, como arquivos txt e xml.
 - Neste projeto blablabla

2. Recursos

- Identificação e alocação dos recursos globais, como os recursos do sistema serão alocados, utilizados, compartilhados e liberados. Implicam modificações no diagrama de componentes.
 - Neste projeto blablabla
- Identificação da necessidade do uso de banco de dados. Implicam em modificações nos diagramas de atividades e de componentes.
 - Neste projeto blablabla
- Identificação da necessidade de sistemas de armazenamento de massa. Por exemplo: um *storage* em um sistema de cluster ou sistemas de backup.
 - Neste projeto blablabla

3. Controle

- Identificação e seleção da implementação de controle, seqüencial ou concorrente, baseado em procedimentos ou eventos. Implicam modificações no diagrama de execução.
 - Neste projeto blablabla
- Identificação das condições extremas e de prioridades.
 - Neste projeto blablabla
- Identificação da necessidade de otimização. Por exemplo: prefira sistemas com grande capacidade de memória; prefira vários hds pequenos a um grande.
 - Neste projeto blablabla
- Identificação e definição de loops de controle e das escalas de tempo.
 - Neste projeto blablabla
- Identificação de concorrências quais algoritmos podem ser implementados usando processamento paralelo.
 - Neste projeto blablabla

4. Plataformas

- Identificação das estruturas arquitetônicas comuns.
 - Neste projeto blablabla
- Identificação de subsistemas relacionados à plataforma selecionada. Podem implicar em modificações no diagrama de pacotes e no diagrama de componentes.
 - Neste projeto blablabla
- Identificação e definição das plataformas a serem suportadas: hardware, sistema operacional e linguagem de software.
 - Neste projeto blablabla
- Seleção das bibliotecas externas a serem utilizadas.
 - Neste projeto blablabla
- Seleção da biblioteca utilizada para montar a interface gráfica do software –
 GDI.
 - Neste projeto blablabla
- Seleção do ambiente de desenvolvimento para montar a interface de desenvolvimento IDE.
 - Neste projeto blablabla

5. Padrões de projeto

- Normalmente os padrões de projeto são identificados e passam a fazer parte de uma biblioteca de padrões da empresa. Mas isto só ocorre após a realização de diversos projetos.
 - Neste projeto blablabla

5.2 Projeto orientado a objeto - POO

O projeto orientado a objeto é a etapa posterior ao projeto do sistema. Baseiase na análise, mas considera as decisões do projeto do sistema. Acrescenta a análise desenvolvida e as características da plataforma escolhida (hardware, sistema operacional e linguagem de softwareção). Passa pelo maior detalhamento do funcionamento do software, acrescentando atributos e métodos que envolvem a solução de problemas específicos não identificados durante a análise.

Envolve a otimização da estrutura de dados e dos algoritmos, a minimização do tempo de execução, de memória e de custos. Existe um desvio de ênfase para os conceitos da plataforma selecionada.

Exemplo: na análise você define que existe um método para salvar um arquivo em disco, define um atributo nomeDoArquivo, mas não se preocupa com detalhes específicos da linguagem. Já no projeto, você inclui as bibliotecas necessárias para acesso ao disco, cria um objeto específico para acessar o disco, podendo, portanto, acrescentar novas classes àquelas desenvolvidas na análise.

Efeitos do projeto no modelo estrutural

- Adicionar nos diagramas de pacotes as bibliotecas e subsistemas selecionados no projeto do sistema (exemplo: a biblioteca gráfica selecionada).
 - Neste projeto blablabla
- Novas classes e associações oriundas das bibliotecas selecionadas e da linguagem escolhida devem ser acrescentadas ao modelo.
 - Neste projeto blablabla
- Estabelecer as dependências e restrições associadas à plataforma escolhida.
 - Neste projeto blablabla

Efeitos do projeto no modelo dinâmico

- Revisar os diagramas de sequência e de comunicação considerando a plataforma escolhida.
 - Neste projeto blablabla
- Verificar a necessidade de se revisar, ampliar e adicionar novos diagramas de máquinas de estado e de atividades.
 - Neste projeto blablabla

Efeitos do projeto nos atributos

- Atributos novos podem ser adicionados a uma classe, como, por exemplo, atributos específicos de uma determinada linguagem de softwareção (acesso a disco, ponteiros, constantes e informações correlacionadas).
 - Neste projeto blablabla

Efeitos do projeto nos métodos

- Em função da plataforma escolhida, verifique as possíveis alterações nos métodos.
 O projeto do sistema costuma afetar os métodos de acesso aos diversos dispositivos (exemplo: hd, rede).
 - Neste projeto blablabla
- De maneira geral os métodos devem ser divididos em dois tipos: i) tomada de decisões, métodos políticos ou de controle; devem ser claros, legíveis, flexíveis e usam polimorfismo. ii) realização de processamentos, podem ser otimizados e em alguns casos o polimorfismo deve ser evitado.
 - Neste projeto blablabla
- Algoritmos complexos podem ser subdivididos. Verifique quais métodos podem ser otimizados. Pense em utilizar algoritmos prontos como os da STL (algoritmos genéricos).
 - Neste projeto blablabla
- Responda a pergunta: os métodos da classes estão dando resposta às responsabilidades da classe?
 - Neste projeto blablabla
- Revise os diagramas de classes, de seqüência e de máquina de estado.
 - Neste projeto blablabla

Efeitos do projeto nas heranças

- Reorganização das classes e dos métodos (criar métodos genéricos com parâmetros que nem sempre são necessários e englobam métodos existentes).
 - Neste projeto blablabla
- Abstração do comportamento comum (duas classes podem ter uma superclasse em comum).
 - Neste projeto blablabla
- Utilização de delegação para compartilhar a implementação (quando você cria uma herança irreal para reaproveitar código). Usar com cuidado.
 - Neste projeto blablabla

- Revise as heranças no diagrama de classes.
 - Neste projeto blablabla

Efeitos do projeto nas associações

- Deve-se definir na fase de projeto como as associações serão implementadas, se obedecerão um determinado padrão ou não.
 - Neste projeto blablabla
- Se existe uma relação de "muitos", pode-se implementar a associação com a utilização de um dicionário, que é um mapa das associações entre objetos. Assim, o objeto A acessa o dicionário fornecendo uma chave (um nome para o objeto que deseja acessar) e o dicionário retorna um valor (um ponteiro) para o objeto correto.
 - Neste projeto blablabla
- Evite percorrer várias associações para acessar dados de classes distantes. Pense em adicionar associações diretas.
 - Neste projeto blablabla

Efeitos do projeto nas otimizações

- Faça uma análise de aspectos relativos à otimização do sistema. Lembrando que a otimização deve ser desenvolvida por analistas/desenvolvedores experientes.
 - Neste projeto blablabla
- Identifique pontos a serem otimizados em que podem ser utilizados processos concorrentes.
 - Neste projeto blablabla
- Pense em incluir bibliotecas otimizadas.
- Se o acesso a determinados objetos (atributos/métodos) requer um caminho longo (exemplo: A->B->C->D.atributo), pense em incluir associações extras (exemplo: A-D.atributo).
 - Neste projeto blablabla
- Atributos auxiliares podem ser incluídos.
 - Neste projeto blablabla

- A ordem de execução pode ser alterada.
 - Neste projeto blablabla
- Revise as associações nos diagramas de classes.
 - Neste projeto blablabla

Depois de revisados os diagramas da análise você pode montar dois diagramas relacionados à infraestrutura do sistema. As dependências dos arquivos e bibliotecas podem ser descritos pelo diagrama de componentes, e as relações e dependências entre o sistema e o hardware podem ser ilustradas com o diagrama de implantação.

5.3 Diagrama de componentes

O diagrama de componentes mostra a forma como os componentes do software se relacionam, suas dependências. Inclui itens como: componentes, subsistemas, executáveis, nós, associações, dependências, generalizações, restrições e notas. Exemplos de componentes são bibliotecas estáticas, bibliotecas dinâmicas, dlls, componentes Java, executáveis, arquivos de disco, código-fonte.

Veja na Figura 5.1 um exemplo de diagrama de componentes. Observe que este inclui muitas dependências, ilustrando as relações entre os arquivos. Por exemplo: o subsistema biblioteca inclui os arquivos das classes A e B, e a geração dos objetos A.obj e B.obj depende dos arquivos A.h, A.cpp, B.h e B.cpp. A geração da biblioteca depende dos arquivos A.obj e B.obj. O subsistema biblioteca Qt, um subsistema exerno, inclui os arquivos de código da biblioteca Qt e a biblioteca em si. O subsistema banco de dados representa o banco de dados utilizado pelo sistema e tem uma interface de acesso que é utilizada pelo software para acesso aos dados armazenados no banco de dados. O software executável a ser gerado depende da biblioteca gerada, dos arquivos da biblioteca Qt, do módulo de arquivos MinhaJanela e do banco de dados.

Algumas observações úteis para o diagrama de componentes:

- De posse do diagrama de componentes, temos a lista de todos os arquivos necessários para compilar e rodar o software.
- Observe que um assunto/pacote pode se transformar em uma biblioteca e será incluído no diagrama de componentes.
- A ligação entre componentes pode incluir um estereótipo indicando o tipo de relacionamento ou algum protocolo utilizado.

Neste projeto blablabla

Figura 5.1: Diagrama de componentes

5.4 Diagrama de implantação

O diagrama de implantação é um diagrama de alto nível que inclui relações entre o sistema e o hardware e que se preocupa com os aspectos da arquitetura computacional escolhida. Seu enfoque é o hardware, a configuração dos nós em tempo de execução.

O diagrama de implantação deve incluir os elementos necessários para que o sistema seja colocado em funcionamento: computador, periféricos, processadores, dispositivos, nós, relacionamentos de dependência, associação, componentes, subsistemas, restrições e notas.

Veja na Figura 5.2 um exemplo de diagrama de implantação de um cluster. Observe a presença de um servidor conectado a um switch. Os nós do cluster (ou clientes) também estão conectados ao switch. Os resultados das simulações são armazenados em um servidor de arquivos (storage).

Pode-se utilizar uma anotação de localização para identificar onde determinado componente está residente, por exemplo {localização: sala 3}.

Figura 5.2: Diagrama de implantação

Nota:

Não perca de vista a visão do todo; do projeto de engenharia como um todo. Cada capítulo, cada seção, cada parágrafo deve se encaixar. Este é um diferencial fundamental do engenheiro em relação ao técnico, a capacidade de desenvolver projetos, de ver o todo e suas diferentes partes, de modelar processos/sistemas/produtos de engenharia.

Implementação

Neste capítulo do projeto de engenharia apresentamos os códigos fonte que foram desenvolvidos.

Nota: os códigos devem ser documentados usando padrão **javadoc**. Posteriormente usar o programa **doxygen** para gerar a documentação no formato html.

- Veja informações gerais aqui http://www.doxygen.org/.
- Veja exemplo aqui http://www.stack.nl/~dimitri/doxygen/manual/docblocks.html.

Nota: ao longo deste capítulo usamos inclusão direta de arquivos externos usando o pacote *listings* do LATEX. Maiores detalhes de como a saída pode ser gerada estão disponíveis nos links abaixo.

- http://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings.
- http://mirrors.ctan.org/macros/latex/contrib/listings/listings.pdf.

6.1 Código fonte

Apresenta-se a seguir um conjunto de classes (arquivos .h e .cpp) além do programa main.

Apresenta-se na listagem 6.1 o arquivo com código da classe CAplicacao.

Listing 6.1: Arquivo de cabeçalho da classe CAplicacao.

```
7/** Breve descrição da classe termina com ponto.
8 * ...descrição detalhada da classe...
9 * ...pode ter várias linhas...
10 * * /
11 class CAplicacao
12 {
13 public:
     /// Descrição breve do construtor.
     /** Descrição detalhada do construtor.
     * ....blablabla....
      * /
     CAplicacao()
                          {};
18
19
     /// Descrição breve do construtor.
20
     /** Descrição detalhada do construtor.
     * ....blablabla....
      * /
23
    ~CAplicacao()
                          {};
24
    /// Apenas exibe mensagem na tela.
26
    void Run();
27
    /// Seta valor de x
    void X( int _x) { x = _x; }
    /// Retorna valor de x
    int X()
                          { return x; }
33
35 private:
     /// Descrição breve do método M1.
      * Descrição detalhada....
      * Posso incluir informações sobre parâmetros e retorno.
      * Oparam a um inteiro que representa ....
      * Oparam s uma string que representa ....
      * @return retorna ...
42
     * /
43
     int M1(int a, std::string s);
44
45
     /// Descrição breve do atributo...
46
     /** Descrição detalhada do atributo... */
```

```
std::vector<int> vy;
49
     /// Descrição breve do atributo...
50
     int x;
51
52
     int z; ///< Descrição breve (use apenas se for bem curta!).</pre>
53
54
     /// Enum representa (descrição breve).
55
     /** Descrição detalhada. */
56
     enum Enum {
57
                    EVal1, ///< Breve descrição EVal1.
                    EVal2, ///< Breve descrição EVal2.
59
                    EVal3 ///< Breve descrição EVal3.
60
                  } ;
61
62
     /// Descrição breve.
63
     /** Descrição detalhada. */
64
     Enum
             variavelDoTipoEnumeracao;
65
67 };
```

Apresenta-se na listagem 6.2 o arquivo de implementação da classe Caplicacao.

Listing 6.2: Arquivo de implementação da classe CAplicacao.

```
1// Este programa exemplifica a estrutura de um programa típico em
        C++
2#include <iostream>
3
4// Inclui a declaração da classe
5#include "CAplicacao.h"
6
7/** Note que no arquivo .cpp não é necessário colocar novamente a
        documentação
8 * que foi colocada no arquivo .h.
9 * A documentação no arquivo .cpp costuma usar o padrão básico de C
        ++ que é //
10 * e costuma estar mais diretamente relacionada a implementação em
        sí,
11 * ou seja, aos detalhes numéricos e computacionais;
12 * detalhes e explicação das contas e da lógica computacional.
13 * */
14 void CAplicacao::Run()
15 {
```

```
16  // std::cout escreve na tela o texto "Bem-vindo ao C++!"
17  std::cout << "Bem-vindouaouC++!" << std::endl;
18}</pre>
```

Apresenta-se na listagem 6.3 o programa que usa a classe CAplicacao.

Listing 6.3: Arquivo de implementação da função main().

```
2/** Este programa exemplifica a estrutura/layout de um programa
    típico em C++ */
4// Inclui o arquivo "CAplicacao.h" que tem a declaração da classe
5#include "CAplicacao.h"
7/// A função main(), retorna um inteiro, se chama main() e nao tem
8 int main ()
9 {
   CAplicacao ap; // Cria objeto do tipo CAplicacao com nome ap
10
11
   ap.Run ();
                    // Executa o método Run() do objeto ap
12
13
                    // A função main() deve retornar um inteiro
   return 0;
14
                    // o zero indica que o programa terminou bem.
15
16 }
```

Bem vindo ao C++!

Nota:

Não perca de vista a visão do todo; do projeto de engenharia como um todo. Cada capítulo, cada seção, cada parágrafo deve se encaixar. Este é um diferencial fundamental do engenheiro em relação ao técnico, a capacidade de desenvolver projetos, de ver o todo e suas diferentes partes, de modelar processos/sistemas/produtos de engenharia.

Teste

Todo projeto de engenharia passa por uma etapa de testes. Neste capítulo apresentamos alguns testes do software desenvolvido. Estes testes devem dar resposta aos diagramas de caso de uso inicialmente apresentados (diagramas de caso de uso geral e específicos).

7.1 Teste 1: Descrição

No início apresente texto explicativo do teste:

- O que esta sendo testado?
- Como o teste vai ser realizado?
- Como o programa será validado?

A seguir apresente texto explicando a sequência do teste e imagens do programa (captura de tela).

coloque aqui texto falando do diagrama de pacotes, referencie a figura. Veja Figura 7.1.

Figura 7.1: Tela do programa mostrando xxx

7.2 Teste 2: Descrição

No início apresente texto explicativo do teste:

- O que esta sendo testado?
- Como o teste vai ser realizado?
- Como o programa será validado?

A seguir apresente texto explicando a sequência do teste e imagens do programa (captura de tela).

Coloque aqui texto falando do diagrama de pacotes, referencie a figura. Veja Figura 7.2.

Figura 7.2: Tela do programa mostrando xxx

Nota:

Não perca de vista a visão do todo; do projeto de engenharia como um todo. Cada capítulo, cada seção, cada parágrafo deve se encaixar. Este é um diferencial fundamental do engenheiro em relação ao técnico, a capacidade de desenvolver projetos, de ver o todo e suas diferentes partes, de modelar processos/sistemas/produtos de engenharia.

Documentação

Todo projeto de engenharia precisa ser bem documentado. Neste sentido, apresenta-se neste capítulo a documentação de uso do "software XXXX". Esta documentação tem o formato de uma apostila que explica passo a passo como usar o software.

8.1 Documentação do usuário

Descreve-se aqui o manual do usuário, um guia que explica, passo a passo a forma de instalação e uso do software desenvolvido.

8.1.1 Como instalar o software

Para instalar o software execute o seguinte passo a passo:

- blablabla
- .
- •

8.1.2 Como rodar o software

Para rodar o softwareblablabla Veja no Capítulo 7 - Teste, exemplos de uso do software.

8.2 Documentação para desenvolvedor

Apresenta-se nesta seção a documentação para o desenvolvedor, isto é, informações para usuários que queiram modificar, aperfeiçoar ou ampliar este software.

8.2.1 Dependências

Para compilar o software é necessário atender as seguintes dependências:

- Instalar o compilador g++ da GNU disponível em http://gcc.gnu.org. Para instalar no GNU/Linux use o comando yum install gcc.
- Biblioteca CGnuplot; os arquivos para acesso a biblioteca CGnuplot devem estar no diretório com os códigos do software;
- O software gnuplot, disponível no endereço http://www.gnuplot.info/, deve estar instalado. É possível que haja necessidade de setar o caminho para execução do gnuplot.

• .

• ,

8.2.2 Como gerar a documentação usando doxygen

A documentação do código do software deve ser feita usando o padrão JAVADOC, conforme apresentada no Capítulo - Documentação, do livro texto da disciplina. Depois de documentar o código, use o software doxygen para gerar a documentação do desenvolvedor no formato html. O software doxygen lê os arquivos com os códigos (*.h e *.cpp) e gera uma documentação muito útil e de fácil navegação no formato html.

- Veja informações sobre uso do formato JAVADOC em:
 - http://www.stack.nl/~dimitri/doxygen/manual/docblocks.html
- Veja informações sobre o software doxygen em
 - http://www.stack.nl/~dimitri/doxygen/

Passos para gerar a documentação usando o doxygen.

- Documente o código usando o formato JAVADOC. Um bom exemplo de código documentado é apresentado nos arquivos da biblioteca CGnuplot, abra os arquivos CGnuplot.h e CGnuplot.cpp no editor de texto e veja como o código foi documentado.
- Abra um terminal.
- Vá para o diretório onde esta o código.

cd /caminho/para/seu/codigo

• Peça para o doxygen gerar o arquivo de definições (arquivo que diz para o doxygem como deve ser a documentação).

dogygen -g

• Peça para o doxygen gerar a documentação.

doxygen

• Verifique a documentação gerada abrindo o arquivo html/index.html.

firefox html/index.html

ou

chrome html/index.html

Apresenta-se a seguir algumas imagens com as telas das saídas geradas pelo software doxygen.

Nota:

Não perca de vista a visão do todo; do projeto de engenharia como um todo. Cada capítulo, cada seção, cada parágrafo deve se encaixar. Este é um diferencial fundamental do engenheiro em relação ao técnico, a capacidade de desenvolver projetos, de ver o todo e suas diferentes partes, de modelar processos/sistemas/produtos de engenharia.

Referências Bibliográficas

- [Blaha and Rumbaugh, 2006] Blaha, M. and Rumbaugh, J. (2006). Modelagem e Projetos Baseados em Objetos com UML 2. Campus, Rio de Janeiro. 39
- [e Patrick W. Daly, 1995] e Patrick W. Daly, H. K. (1995). A Guide to Latex 2e. Addison-Wesley, New York, 2 edition. 62
- [Grossens et al., 1993] Grossens, M., Mittelbach, F., and Samarin, A. (1993). *Latex Companion*. Addison-Wesley, New York. 62
- [Karger, 2004] Karger, A. (2004). O Tutorial de Lyx. LyX Team http://www.lyx.org.
 62
- [Knuth, 1986] Knuth, D. E. (1986). The Texbook. Addison-Wesley. 62
- [Lamport, 1985] Lamport, L. (1985). Latex A Document Preparation System. Addison-Wesley. 62
- [LyX-Team, 2004a] LyX-Team, editor (2004a). Extended LyX Features. LyX Team http://www.lyx.org. 62
- [LyX-Team, 2004b] LyX-Team, editor (2004b). The LyX User's Guide. LyX Team http://www.lyx.org. 62
- [Rumbaugh et al., 1994] Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1994). Modelagem e Projetos Baseados em Objetos. Edit. Campus, Rio de Janeiro. 39
- [Steding-Jessen, 2000] Steding-Jessen, K. (2000). Latex demo: Exemplo com Latex 2e. 62

Título do Apêndice

Descreve-se neste apêndice ...

- Os anexos ou apêndices contém material auxiliar. Por exemplo, tabelas, gráficos, resultados de experimentos, algoritmos, códigos e simulações.
- Um apêndice pode incluir assuntos mais gerais (geral demais para estar no núcleo do trabalho) ou mais específicos (detalhado demais para estar no núcleo do trabalho).
- Pode conter um artigo de auxílio fundamental ao trabalho.
- Pode conter artigos publicados.
- [tudo aquilo que for importante para a tese mas não essencial, deve ser colocado em apêndices]
- [como exemplo, revisão de metodologias, técnicas, modelos matemáticos, ítens desenvolvidos por terceiros]
- [algoritmos e programas devem ser colocados no apêndice]
- [imagens detalhadas de programas desenvolvidos devem ser colocados no apêndice]

9.1 Sub-Titulo do Apêndice

.....conteúdo..

Título do Apêndice.. Usando Citações

Descreve-se neste apêndice ...

[tudo aquilo que for importante para a tese mas não essencial, deve ser colocado em apêndices]

[como exemplo, revisão de metodologias, técnicas, modelos matemáticos, ítens desenvolvidos por terceiros]

[algoritmos e programas devem ser colocados no apêndice]

[imagens de programas desenvolvidos/utilizados devem ser colocados no apêndice]

10.1 Roteiro Para Uso do Sistema de Citações Com Banco de Dados .bib

O sistema de referências usando bibtex é extremamente simples e muito prático. O mesmo é composto de uma base de dados (um arquivo .bib que contém a lista de referencias a ser utilizada). Por exemplo, o arquivo andre.bib, inclui referencias bibliograficas no formato bib (de uma olhada agora no arquivo andre.bib usando um editor de texto como o emacs). A seguir, você deve incluir no arquivo do lyx, o nome de sua base de dados. Finalmente, você precisa incluir as referencias cruzadas.

Veja a seguir um roteiro:

- 1. Você deve fazer uma copia do arquivo andre.bib com seu nome, e a seguir usar um editor qualquer (mas preferencialmente o emacs) para incluir suas referências bibliográficas. Ou seja, inclua no arquivo seuNome.bib todas as citações e referências bibliográficas a serem incluídas em sua tese (tudo que você leu, e que pode ser incluído na citação da tese e de outros artigos. É sua base de dados de citações).
 - (a) Você pode incluir ítens no arquivo .bib que não irão fazer parte da tese, mas poderão ser citadas em artigos futuros.
- 2. Para fazer uma citação é necessário incluir no arquivo do lyx um "Insert-> Lists & Toc->Bibtex reference". Vai aparecer um diálogo pedindo para você incluir o nome do arquivo com a base de dados de citações (digite seuNome.bib).
- 3. Finalmente, faça referencias cruzadas usando o ítem de menu "Insert Cross-Reference".
- 4. Aqui um exemplo, vou citar material sobre LyX e Latex. Veja maiores informações sobre latex em [Grossens et al., 1993, Knuth, 1986, Steding-Jessen, 2000, e Patrick W. Daly, 1995, Lamport, 1985, LyX-Team, 2004a, Karger, 2004, LyX-Team, 2004b].

10.1.1 Citações no meio do texto

10.1.2 Incluir nas referências bibliográficas (fim do documento), mas não citar

asldkjasldkajsdlaksjd asldkjasldkajsdlaksjd

10.2 Informações adicionais

- Manuais do LyX (precisa ler!)
- http://chem-e.org/comando-cite-e-citeonline-no-abntex/
- http://win.ua.ac.be/~nschloe/content/bibtex-how-cite-website.
- http://chem-e.org/comando-apud-e-apudonline-no-abntex/.
- http://en.wikibooks.org/wiki/LaTeX/Bibliography_Management

...

Como criar seu projeto no github a partir do modelo do professor

11.1 Roteiro para criar uma conta no github

Objetivo: Criar uma conta no site github.

- 1. Entrar no site http://github.com.
- 2. Clicar em criar conta.
- 3. Entre com login.
- 4. Entre com senha.

11.2 Roteiro para criar um repositório novo (vazio) no github

Objetivo: criar um repositório novo, vazio, no site do github. Depois este repositório será clonado em seu computador, você vai adicionar os arquivos (git add), commitar (git commit -m"mensagem") e então enviar para o servidor github (git push).

- 1. O primeiro passo é criar sua conta no github (se ainda não tem), veja 11.1. Entre no site https://github.com e crie sua conta, login e senha.
- 2. Após fazer o login no site https://github.com você vai encontrar, lá em cima, a direita, um ícone +; pressione ele e a seguir selecione "new repository". De o nome "ProjetoEngenharia-Ano-SeuNome". Não adicione nenhum arquivo no projeto, ou seja, não adicione Readme, nem nenhum outro arquivo. Click em "create repository". O github vai criar o repositório.

Agora vamos copiar/clonar o seu novo repositório do site do github para sua máquina.

Selecione o botão "copy" e então copie o endereço do projeto. Outra opção seria copiar o endereço do projeto na barra de comandos de seu navegador de internet.

Abra um terminar e digite a sequência:

```
cd
cd workdir
git clone https://github.com/seuLogin/ProjetoEngenharia-Ano-SeuNome
```

O programa git vai copiar os arquivos do servidor github para sua máquina local.

4. Agora temos de obter uma copia dos arquivos do modelo do professor. Veja na seção 11.3 como clonar o modelo de projeto.

Depois de clonar o modelo de projeto, dentro do diretorio wordir, teremos dois subdiretórios, um com o projeto modelo do professor e outro com seu projeto

```
workdir/ModeloDocumento-ProjetoEngenharia-ProgramacaoPratica workdir/ProjetoEngenharia-Ano-SeuNome
```

5. Bem, até aqui o seu projeto ainda esta vazio. Temos de copiar os arquivos do modelo para dentro do seu projeto.

Usando o navegador de arquivos você deve copiar os diretórios "imagens", "listagens", "lyx" e o arquivo leiame.txt para dentro do diretório "workdir/ModeloDocumento-ProjetoEngenharia-ProgramacaoPratica". Também pode fazer isso usando o terminal, veja comandos de terminal abaixo.

```
cd
cd workdir/ModeloDocumento-ProjetoEngenharia-ProgramacaoPratica
cp -R imagens listagens lyx leiame.txt ../ProjetoEngenharia-Ano-SeuNome
```

Entre no diretório workdir/ProjetoEngenharia-Ano-SeuNome e verifique se os arquivos foram copiados.

Neste momento o diretório workdir/ProjetoEngenharia-Ano-SeuNome já tem diversos arquivos novos, mas estes arquivos ainda não fazem parte do repositório.

6. Agora você precisa pedir ao git para adicionar estes arquivos novos no seu repositório local. Possível sequência de comandos:

```
cd ~/workdir/ProjetoEngenharia-Ano-SeuNome
git status
git add *
```

7. Precisa comitar os arquivos, ou seja, enviar para o repositório local:

```
git commit -m "Adicionados arquivos do modelo no ProjetoEngenharia-Titulo-
```

8. Finalmente precisa enviar os arquivos do repositório local para o repositório no site github. Comandos:

```
git push
```

é possível que peça seu login e senha de acesso ao site github.

9. Neste momento você pode usar seu navegador e verificar se os arquivos foram carregados no site do seu repositório

Veja: https://github.com/seuLogin/ProjetoEngenharia-Ano-SeuNome

Se os arquivos não foram carregados é possível que você tenha de configurar seu ssh e copiar os dados de acesso no site do github. Tem vídeos na internet que mostram como fazer. Na videoaula que disponibilizamos mostramos como fazer. Tem instruções no site do github, veja https://docs.github.com/en/github/authenticating-to-github/connecting-to-github-with-ssh.

10. Estando tudo correto, você poderá modificar os arquivos, adicionar novos arquivos, enviar os arquivos para o site do seu repositório no site do github.Ou seja, pode usar comandos como:

```
git status
git add Class1.h Class1.cpp
git commit -m "mensagem"
git push
```

11.3 Roteiro para clonar o repositório do projeto modelo em seu computador

Objetivo: neste caso queremos ter, em nosso computador, uma cópia do modelo do projeto da disciplina de projeto de engenharia(programação prática).

1. Copiar(clonar) o modelo de projeto da disciplina em seu computador

Abra um terminal e faça o download do modelo de projeto, abaixo os comandos:

```
cd
mkdir workdir
cd workdir
```

git clone https://github.com/ldsc/ModeloDocumento-ProjetoEngenharia-Progra

Após alguns segundos/minutos o projeto estará em seu computador na pasta ~/workdir/ModeloDocumento-ProjetoEngenharia-ProgramacaoPratica.

Note que você clonou um projeto pré-existente, criado pelo professor. Você não pode usar ele como o seu projeto, pois o site github não vai aceitar o envio de modificações feitas por você. Ou seja, você clonou o projeto do professor e tem acesso apenas leitura. Mas você pode copiar estes arquivos para dentro do repositório workdir/ProjetoEngenharia-Ano-SeuNome e manipular como sendo seus.

11.4 Roteiro para clonar o repositório do projeto modelo diretamente (+simples)

Atualmente o github permite que um repositório público possa ser clonado diretamente. Veja as etapas:

- 1. Entrar no site http://github.com; Entre com seu login e senha.
- 2. Clicar no botão + e selecionar "import repository".
- Abaixo de "Your old repository's clone URL" você deve colocar o endereço do repositório que será clonado. Cole alí o seguinte endereço:
 - "https://github.com/ldsc/ModeloDocumento-ProjetoEngenharia-ProgramacaoPratica".
- 4. Marcar como publico.
- 5. Clicar em "Begin import". Com esta sequência você estará criando uma cópia do modelo do professor em sua conta pessoal, e poderá modificar a mesma.
- 6. Lembre que esta cópia está lá no servidor do github, e que você terá de copiar/clonar a mesma em seu computador local. Terá de executar uma sequência de comandos como esta abaixo:

```
cd
cd workdir
git clone https://github.com/seuLogin/ProjetoEngenharia-Ano-SeuNome
cd ProjetoEngenharia-Ano-SeuNome
```