Методы машинного обучения. Обучение ранжированию (Learning to Rank)

Bopoнцов Константин Вячеславович www.MachineLearning.ru/wiki?title=User:Vokov вопросы к лектору: voron@forecsys.ru

материалы курса: github.com/MSU-ML-COURSE/ML-COURSE-22-23 орг.вопросы по курсу: ml.cmc@mail.ru

ВМК МГУ • 11 апреля 2023

Содержание

- 🚺 Постановка задачи и основные подходы
 - Поточечный подход
 - Попарный подход
 - Списочный подход
- 2 Ранжирование в поисковых системах
 - Текстовые признаки ранжирования
 - Ссылочные признаки ранжирования
 - Поведенческие признаки ранжирования
- Притерии качества ранжирования
 - Точность и полнота поиска
 - Качество ранжированного списка
 - Вероятностная модель поведения пользователя

Определения и обозначения

Дано: $X^\ell = \{x_1, \dots, x_\ell\}$ — обучающая выборка, $i \prec j$ — отношение $\ll x_j$ лучше, чем x_i » между объектами из X^ℓ

Найти: ранжирующую функцию $a: X \to \mathbb{R}$, восстанавливающую правильное отношение порядка:

$$i \prec j \Rightarrow a(x_i) < a(x_j)$$

Критерий конструируется по-разному в трёх подходах:

- Point-wise поточечный (аналог регрессии/классификации)
- Pair-wise попарный (качество парных сравнений)
- List-wise списочный (качество ранжированного списка)

Линейная модель ранжирования:

$$a(x, w) = \langle x, w \rangle$$

где $x\mapsto (f_1(x),\ldots,f_n(x))\in\mathbb{R}^n$ — вектор признаков объекта x

Примеры задач ранжирования

Ранжирование (Learning to Rank, LtR, L2R, LETOR) нужно везде, где система предоставляет пользователю выбор из большого числа вариантов

- ранжирование выдачи поисковой системы
- ранжирование рекомендаций пользователям (книги, фильмы, музыка, товары интернет-магазина, и т.п.)
- ранжирование вариантов автоматического завершения запроса (Query Auto Completion, auto-suggest)
- ранжирование возможных ответов в диалоговых системах (Question Answering Systems)
- ранжирование вариантов перевода в системах машинного перевода (Machine Translation)

Ранговая регрессия (Ordinal Regression)

Обучающая выборка $(x_i,y_i)_{i=1}^\ell$, где $y_i\in Y=\{1\prec 2\prec \cdots \prec R\}$. Функция ранжирования с параметрами w и порогами $b_0=-\infty$, $b_1\leqslant\ldots\leqslant b_{R-1}$, $b_R=+\infty$:

$$a(x,w,b)=y$$
, если $b_{y-1} < g(x,w) \leqslant b_y$

Функция потерь $\mathscr{L}(M)$ — убывающая функция отступа M

Сумма потерь по двум ближайшим порогам:

$$\sum_{i=1}^{\ell} \mathscr{L}(g(x_i, w) - b_{y_i-1}) + \mathscr{L}(b_{y_i} - g(x_i, w)) \to \min_{w, b}$$

 $y_i = 4$

Сумма потерь по всем порогам:

$$\sum_{i=1}^{\ell} \sum_{y=1}^{R} \mathcal{L}\left(\left(b_{y} - g(x_{i}, w)\right) \operatorname{sign}\left(y - y_{i}\right)\right) \to \min_{w, b}$$

J.D.M.Rennie, N.Srebro. Loss functions for preference levels: regression with discrete ordered labels. IJCAI-2005.

Напоминание. SVM — метод опорных векторов

Линейный классификатор, $Y = \{-1, +1\}$:

$$a(x, w, w_0) = sign(\langle w, x \rangle - w_0), \quad w, x \in \mathbb{R}^n, \ w_0 \in \mathbb{R}$$

Задача обучения SVM:

$$\begin{cases} \frac{1}{2} ||w||^2 + C \sum_{i=1}^{\ell} \xi_i \to \min_{w, w_0, \xi} \\ M_i(w, w_0) \geqslant 1 - \xi_i, & i = 1, \dots, \ell \\ \xi_i \geqslant 0, & i = 1, \dots, \ell \end{cases}$$

где $M_i(w,w_0)=y_i(\langle w,x_i\rangle-w_0)$ — отступ объекта x_i

Эквивалентная задача безусловной минимизации:

$$\sum_{i=1}^{\ell} (1 - M_i(w, w_0))_+ + \frac{1}{2C} ||w||^2 \rightarrow \min_{w, w_0}$$

Ранговый SVM (Support Vector Ordinal Regression, SVOR)

Частный случай: линейная модель $g(x,w)=\langle w,x\rangle$, сумма по двум порогам, функция потерь $\mathscr{L}(M)=(1-M)_+$:

$$\sum_{i=1}^{\ell} \left(1 - \langle x_i, w \rangle + b_{y_i - 1} \right)_+ + \left(1 + \langle x_i, w \rangle - b_{y_i} \right)_+ + \frac{1}{2C} \|w\|^2 \to \min_{w, b}$$

Эквивалентная задача квадратичного программирования:

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i=1}^{\ell} [y_i \neq 1] \xi_i^* + [y_i \neq R] \xi_i \to \min_{w,b,\xi} \\ \langle x_i, w \rangle \geqslant b_{y_i-1} + 1 - \xi_i^*, & \xi_i^* \geqslant 0, \quad y_i \neq 1; \\ \langle x_i, w \rangle \leqslant b_{y_i} - 1 + \xi_i, & \xi_i \geqslant 0, \quad y_i \neq R; \quad b_r \leqslant b_{r+1} \end{cases}$$

Ранговый SVM (Support Vector Ordinal Regression, SVOR)

Двойственная задача $(\lambda_i^*=0$ при $y_i=1,~\lambda_i=0$ при $y_i=R)$:

$$\begin{cases} \sum_{i=1}^{\ell} (\lambda_i^* + \lambda_i) - \frac{1}{2} \sum_{i,j=1}^{\ell} (\lambda_i^* - \lambda_i) (\lambda_j^* - \lambda_j) K(\mathbf{x}_i, \mathbf{x}_j) \to \max_{\lambda^*, \lambda, \mu}; \\ \mu_r + \sum_{i=1}^{\ell} \lambda_i [y_i = r] = \mu_{r+1} + \sum_{i=1}^{\ell} \lambda_i^* [y_i = r+1], \ r = 1, \dots, R-1; \\ 0 \leqslant \lambda_i^* \leqslant C; \quad 0 \leqslant \lambda_i \leqslant C; \quad \mu_r \geqslant 0 \end{cases}$$

Модель ранжирования после решения двойственной задачи:

$$\langle w, x \rangle = \sum_{i=1}^{\ell} (\lambda_i^* - \lambda_i) K(x, x_i)$$

Преимущества SVOR — те же, что у SVM:

- задача выпуклая, имеет единственное решение
- возможны нелинейные обобщения с ядрами K(x, x')
- решение разреженное, зависит только от опорных векторов

Wei Chu, Sathiya Keerthi. Support Vector Ordinal Regression. 2007.

Попарный подход

Переход к гладкому функционалу качества ранжирования:

$$Q(w) = \sum_{i \prec j} \underbrace{\left[\underbrace{a(x_j, w) - a(x_i, w)}_{\mathsf{Margin}(i, j)} < 0 \right]}_{\mathsf{Margin}(i, j)}$$

$$\leq \sum_{i \prec j} \mathscr{L} \left(a(x_j, w) - a(x_i, w) \right) \rightarrow \min_{w}$$

где a(x,w) — параметрическая модель ранжирования

 $\mathscr{L}(M)$ — убывающая непрерывная функция отступа $\mathsf{Margin}(i,j)$:

- $\mathscr{L}(M) = (1 M)_{+} \mathsf{RankSVM}$
- $\mathcal{L}(M) = \exp(-M) \text{RankBoost}$
- $\mathcal{L}(M) = \log(1 + e^{-M})$ RankNet

Напоминание. Градиентная максимизация AUC

Модель классификации: $a(x_i, w, w_0) = \operatorname{sign}(g(x_i, w) - w_0)$.

 AUC — это доля правильно упорядоченных пар (x_i, x_j) :

$$\begin{aligned} \mathsf{AUC}(w) &= \frac{1}{\ell_{-}} \sum_{i=1}^{\ell} \big[y_{i} = -1 \big] \mathsf{TPR}_{i} = \\ &= \frac{1}{\ell_{-}\ell_{+}} \sum_{i=1}^{\ell} \sum_{j=1}^{\ell} \big[y_{i} < y_{j} \big] \big[g(x_{i}, w) < g(x_{j}, w) \big] \to \max_{w}. \end{aligned}$$

Явная максимизация аппроксимированного AUC:

$$1 - \mathsf{AUC}(w) \leqslant Q(w) = \sum_{i,j \colon y_i < y_j} \mathscr{L}(\underbrace{g(x_j, w) - g(x_i, w)}_{M_{ij}(w)}) \to \min_{w},$$

где $\mathscr{L}(M)$ — убывающая функция отступа,

 $M_{ij}(w)$ — новое понятие отступа для пар объектов.

Напоминание. Алгоритм SG для максимизации AUC

Возьмём для простоты линейный классификатор:

$$g(x, w) = \langle x, w \rangle, \qquad M_{ij}(w) = \langle x_j - x_i, w \rangle, \qquad y_i < y_j.$$

Вход: выборка X^{ℓ} , темп обучения h, темп забывания λ ; **Выход:** вектор весов w;

инициализировать веса w_j , $j=0,\ldots,n$; инициализировать оценку: $ar{Q}:=rac{1}{\ell+\ell-}\sum_{i,j}[y_i< y_j]\,\mathscr{L}(M_{ij}(w))$;

повторять

выбрать пару объектов (i,j): $y_i < y_j$, случайным образом; вычислить потерю: $\varepsilon_{ij} := \mathscr{L}(M_{ij}(w));$ сделать градиентный шаг: $w := w - h \mathscr{L}'(M_{ij}(w))(x_j - x_i);$ оценить функционал: $\bar{Q} := (1 - \lambda)\bar{Q} + \lambda \varepsilon_{ij};$ пока значение \bar{Q} и/или веса w не сойдутся;

Ranking SVM: метод опорных векторов для ранжирования

Постановка задачи SVM для попарного подхода:

$$Q(w) = \frac{1}{2} \|w\|^2 + C \sum_{i \prec j} \mathscr{L} \underbrace{\left(\underbrace{a(x_j, w) - a(x_i, w)}_{\mathsf{Margin}(i, j)} \right)}_{\mathsf{Margin}(i, j)} \rightarrow \min_{w},$$

где
$$a(x,w)=\langle w,x\rangle$$
 — линейная функция ранжирования $\mathscr{L}(M)=(1-M)_+$ — «шарнирная» функция потерь (hinge loss) $M=\mathsf{Margin}(i,j)=\langle w,x_j-x_i\rangle$ — отступ

Постановка задачи квадратичного программирования:

$$\begin{cases} \frac{1}{2} \|w\|^2 + C \sum_{i \prec j} \xi_{ij} \to \min_{w, \xi} \\ \langle w, x_j - x_i \rangle \geqslant 1 - \xi_{ij}, \quad i \prec j \\ \xi_{ii} \geqslant 0, \quad i \prec j \end{cases}$$

RankNet: логистическая регрессия для ранжирования

RankNet: функция потерь $\mathscr{L}(M) = \log(1+e^{-\sigma M})$, модель $a(x_i,w) = a_i(w)$ — нейронная сеть или бустинг:

$$Q(w) = \sum_{i \prec j} \mathscr{L}(a_j(w) - a_i(w)) \rightarrow \min_{w}$$

Метод стохастического градиента:

выбираем на каждой итерации случайную пару $i \prec j$:

$$w := w - \eta \cdot \underbrace{\mathscr{L}'(a_j(w) - a_i(w))}_{\lambda_{ij}} \cdot \nabla_w(a_j(w) - a_i(w))$$

Более эффективное обновление: выбираем случайный объект x_i и пакет (mini-batch) всех объектов, с которыми он сравним:

$$w := w - \eta \sum_{j} \frac{\lambda_{ij}}{\lambda_{ij}} \cdot \left([i \succ j] - [i \prec j] \right) \cdot \nabla_{w} a_{i}(w)$$

C.Burges. From RankNet to LambdaRank to LambdaMART: an overview. 2010

От попарного RankNet к списочному LambdaRank

Пусть \tilde{Q} — негладкий функционал качества ранжирования, в частности, для его вычисления список объектов x_i может ранжироваться по убыванию значений $a(x_i, w)$.

 $\Delta ilde{Q}_{ij}$ — изменение $ilde{Q}$ при перестановке $x_i \leftrightarrows x_j$ в списке.

 ${f LambdaRank}$: домножение градиента на $|\Delta ilde{Q}_{ij}|$ приводит к приближённой оптимизации негладкого функционала $ilde{Q}$:

$$w := w - \eta \sum_{j} \lambda_{ij} \cdot |\Delta \tilde{Q}_{ij}| \cdot ([i \succ j] - [i \prec j]) \cdot \nabla_{w} a_{i}(w)$$

Если $i\succ j$, то w изменяется в сторону увеличения $a_i(w)$. Если $i\prec j$, то w изменяется в сторону уменьшения $a_i(w)$. Сумма этих изменений смещает x_i выше или ниже по списку. $|\Delta \tilde{Q}_{ij}|$ изменяет величину смещения, сохраняя его направление.

C.Burges. From RankNet to LambdaRank to LambdaMART: an overview. 2010

Задача ранжирования поисковой выдачи

D — множество web-страниц или документов (documents)

Q — множество запросов (queries)

 $D_q \subseteq D$ — множество документов, найденных по запросу q

X=Q imes D — объектами являются пары «запрос, документ»:

$$x \equiv (q, d), \ q \in Q, \ d \in D_q$$

Y — упорядоченное множество рейтингов

 $y\colon X o Y$ — оценки релевантности, поставленные асессорами: чем выше оценка y(q,d), тем релевантнее документ d запросу q

Правильный порядок определён только между документами, найденными по одному и тому же запросу q:

$$(q,d) \prec (q,d') \Leftrightarrow y(q,d) < y(q,d')$$

Типы признаков для ранжирования поисковой выдачи

Типы признаков f(q,d), f(d):

- текстовые, документные
 слова запроса q встречаются в d чаще обычного
 слова запроса q есть в заголовках или выделены в d
 длина d, возраст d, читабельность d, мультимедиа в d
- ссылочные число ссылок на документ d, на сайт, на домен число ссылок из тематически близких документов (ТИЦ) число полезных ссылок, содержащихся в документе d
- поведенческие, кликовые
 на документ d часто кликают
 на документ d часто кликают по запросу q
 на документе d долго задерживаются
 после документа d редко возвращаются к поиску

$\mathsf{TF}\text{-}\mathsf{IDF}(q,d)$ — мера релевантности документа d запросу q

 n_{dw} (term frequency) — число вхождений слова w в текст d N_w (document frequency) — число документов, содержащих w N — число документов в коллекции D

 N_w/N — оценка вероятности встретить слово w в документе $(N_w/N)^{n_{dw}}$ — оценка вероятности встретить его n_{dw} раз

 $P(q,d)=\prod_{w\in q}(N_w/N)^{n_{dw}}$ — оценка вероятности встретить в документе d слова запроса $q=\{w_1,\ldots,w_k\}$ чисто случайно

Оценка релевантности запроса q документу d:

$$\mathsf{TF}\text{-}\mathsf{IDF}(q,d) = -\log P(q,d) = \sum_{w \in q} \underbrace{n_{dw}}_{\mathsf{TF}(w,d)} \underbrace{\log(N/N_w)}_{\mathsf{IDF}(w)} \ \to \ \mathsf{max}$$

$$TF(w, d) = n_{dw}$$
 — term frequency $IDF(w) = log(N/N_w)$ — inverted document frequency

Семейство мер релевантности Best Matching (Okapi BM25)

Модификация TF-IDF:

- рост ТF ограничивается сверху
- ТF уменьшается для длинных документов
- вес IDF для частых слов становится ещё меньше

$$\mathsf{BM}(q,d) = \sum_{w \in q} \frac{n_{dw}(k_1+1)}{n_{dw} + k_1(1-b+b\frac{n_d}{\bar{n}_d})} \max \left\{ \log \frac{N-N_w+\frac{1}{2}}{N_w+\frac{1}{2}}, \varepsilon \right\}$$

 n_d — длина документа d $ar{n}_d$ — средняя длина документов в коллекции $b \in [0,1]$ управляет учётом длины документа (обычно b=0.75) $k_1 \geqslant 0$ ограничивает линейный рост TF (обычно $k_1=2$) arepsilon ограничивает снизу IDF (обычно arepsilon=0)

S.Robertson, H.Zaragoza. The probabilistic relevance framework: BM25 and beyond. 2009.

PageRank — классический ссылочный признак

Документ d тем важнее, чем больше ссылок других документов c на d, чем важнее документы c, ссылающиеся на d, чем меньше других ссылок имеют эти c.

Вероятность посетить страницу d, кликая по ссылкам случайно:

$$\mathsf{PR}(d) = (1 - \delta) \frac{1}{N} + \delta \sum_{c \in D_d^{in}} \frac{\mathsf{PR}(c)}{|D_c^{out}|},$$

 $D_d^{in} \subset D$ — множество документов, ссылающихся на d, $D_c^{out} \subset D$ — множество документов, на которые ссылается c, $\delta = 0.85$ — вероятность продолжать клики (damping factor), N — число документов в коллекции D.

Lawrence Page, Sergey Brin, Rajeev Motwani, Terry Winograd. The PageRank citation ranking: bringing order to the Web. 1998.

Поведенческие признаки ранжирования

- \bullet CTR(d), CTR(q, d) кликабельность, Click-Through Rate — отношение числа кликов к числу показов
- Вероятность единственного клика / последнего клика
- Средняя длительность посещения, частота посещений
- Удовлетворённость пользователей вероятность завершить поиск после посещения страницы d
- Глубина просмотра число страниц сайта, посещаемых пользователями через страницу d в течение одной сессии
- ullet BrowseRank(d) аналог PageRank(d), оценка доли времени, проводимого пользователями на странице d; страницы и ссылки образуют граф, как и в PageRank, но:
 - для каждого d дано распределение времени посещения,
 - для каждой ссылки дано число переходов пользователей.

Оценивание качества поиска

Precision — доля релевантных среди найденных Recall — доля найденных среди релевантных

$$P=rac{ ext{TP}}{ ext{TP}+ ext{FP}}$$
 — точность (precision) $R=rac{ ext{TP}}{ ext{TP}+ ext{FN}}$ — полнота (recall) $F_1=rac{2PR}{P+R}$ — F1-мера

TP (true positive) — найденные релевантные FP (false positive) — найденные нерелевантные FN (false negative) — ненайденные релевантные TN (true negative) — не должен учитываться

Недостаток: в «большом поиске» FN и Recall неизвестны

Точность, средняя точность, усреднённая средняя точность

Пусть $Y = \{0,1\}$, y(q,d) — релевантность, a(q,d) — оцениваемая функция ранжирования, $d_q^{(i)}$ — i-й документ по убыванию a(q,d).

Precision, точность — доля релевантных среди первых n:

$$P_n(q) = \frac{1}{n} \sum_{i=1}^n y(q, d_q^{(i)})$$

Average Precision, средняя P_n по позициям n релевантных $d_q^{(n)}$:

$$AP(q) = \sum_{n} y(q, d_{q}^{(n)}) P_{n}(q) / \sum_{n} y(q, d_{q}^{(n)})$$

Mean Average Precision — AP, усреднённая по всем запросам:

$$MAP = \frac{1}{|Q|} \sum_{q \in Q} AP(q)$$

Доля «дефектных пар»

Пусть $Y \subseteq \mathbb{R}$, y(q,d) — релевантность, a(q,d) — оцениваемая функция ранжирования, $d_q^{(i)}$ — i-й документ по убыванию a(q,d).

Доля инверсий порядка среди первых n документов:

$$\mathsf{DP}_n(q) = \frac{2}{n(n-1)} \sum_{i,j=1}^n \left[i < j \right] \left[y(q, d_q^{(i)}) < y(q, d_q^{(j)}) \right]$$

Связь с коэффициентом ранговой корреляции (au Кенделла):

$$\tau(a,y) = 1 - 2 \cdot \mathsf{DP}_n(q)$$

Связь с AUC (area under ROC-curve) в задачах классификации с двумя классами $\{-1,+1\},\ a\colon X\to \mathbb{R}$:

$$\mathsf{AUC}_n(q) = rac{1}{\ell_-\ell_+} \sum_{i,i=1}^n \left[y_i < y_i
ight] \left[a(x_i) < a(x_j)
ight] = 1 - rac{n(n-1)}{2\ell_-\ell_+} \mathsf{DP}_n(q)$$

DCG — Discounted Cumulative Gain

Пусть $Y \subseteq \mathbb{R}$, y(q,d) — релевантность, a(q,d) — оцениваемая функция ранжирования, $d_q^{(i)}$ — i-й документ по убыванию a(q,d).

Дисконтированная (взвешенная) сумма выигрышей:

$$\mathsf{DCG}_n(q) = \sum_{i=1}^n \underbrace{G_q(d_q^{(i)})}_{\mathsf{gain}} \cdot \underbrace{D(i)}_{\mathsf{discount}}$$

 $G_q(d) = (2^{y(q,d)}-1)$ — бо́льший вес релевантным документам $D(i) = 1/\log_2(i+1)$ — бо́льший вес в начале выдачи

Нормированная дисконтированная сумма выигрышей:

$$NDCG_n(q) = \frac{DCG_n(q)}{\max DCG_n(q)}$$

 $\max \mathsf{DCG}_n(q)$ — это $\mathsf{DCG}_n(q)$ при идеальном ранжировании

Яндекс pFound — модель поведения пользователя

Пусть $Y \subseteq [0,1]$,

y(q,d) — релевантность, оценка вероятности найти ответ в d, a(q,d) — оцениваемая функция ранжирования, $d_a^{(i)} = i$ -й документ по убыванию a(q,d).

Вероятность найти ответ в первых n документах (по формуле полной вероятности):

$$\mathsf{pFound}_n(q) = \sum_{i=1}^n P_i \cdot y(q, d_q^{(i)}),$$

где P_i — вероятность дойти до i-го документа:

$$P_1 = 1;$$

$$P_{i+1} = P_i \cdot (1 - y(q, d_q^{(i)})) \cdot (1 - P_{out}),$$

где P_{out} — вероятность прекратить поиск без ответа

Яндекс pFound — модель поведения пользователя

Параметры критерия pFound:

- $P_{out} = 0.15$ вероятность прекратить поиск без ответа;
- y(q,d) оценка вероятности найти ответ в документе, вычисленная по кликовым данным пользователей:

оценка асессора		y(q,d)
5	Vital	0.61
4	Useful	0.41
3	Relevant +	0.14
2	Relevant—	0.07
1	Not Relevant	0.00

Гулин А., Карпович П., Расковалов Д., Сегалович И. Оптимизация алгоритмов ранжирования методами машинного обучения. РОМИП-2009.

О ранжировании поисковой выдачи в Яндексе

- Более 50 000 новых оценок асессоров ежемесячно
- За 8 лет придумано и проверено более 2000 признаков
- Pair-wise подход лучше, чем point-wise и list-wise
- Наряду с данными асессоров (explicit relevance feedback) используются большие, но менее надёжные данные о поведении пользователей (implicit relevance feedback)

Технологии:

- MatrixNet: модель ранжирования градиентный бустинг над ODT (небрежными решающими деревьями)
- CatBoost: свободно доступный аналог MatrixNet, хорошо работающий с категориальными признаками
- FML (Friendly Machine Learning): среда для тестирования алгоритмов машинного обучения, включая ранжирование

Резюме в конце лекции

- Ранжирование особый класс задач машинного обучения:
 - по обучающей выборке похоже на классификацию,
 - по функции ранжирования похоже на регрессию.
- Критерий качества ранжирования зависит от приложения.
 Наилучшего универсального критерия не существует.
- Три подхода: поточечный, попарный, списочный.
 Теоретически списочный должен быть наилучшим.
 Однако в Яндексе долгое время лучше работал попарный.
- Со временем становится всё труднее создавать и улучшать признаки ранжирования, «большой поиск» переходит на глубокие нейронные сети для ранжирования.

Tie-Yan Liu. Learning to Rank for Information Retrieval. 2011. Hang Li. A Short Introduction to Learning to Rank. 2011.