T S2/7

```
2/7/1
DIALOG(R)File 351:Derwent WPI
(c) 2002 Thomson Derwent. All rts. reserv.
013260349
            **Image available**
WPI Acc No: 2000-432244/200038
Projection objective has first and second positive and negative lens
groups, lens group contg. aperture stop with at least one of two next
lenses before/after stop with negative refractive index
Patent Assignee: ZEISS FA CARL (ZEIS ); ZEISS CARL (ZEIS ); ZEISS
 STIFTUNG CARL (ZEIS ); ZEISS STIFTUNG T/A CARL ZEISS (ZEIS )
Inventor: SCHUSTER K
Number of Countries: 028 Number of Patents: 005
Patent Family:
                    Date
                            Applicat No
                                           Kind
                                                 Date
Patent No
             Kind
                                                19981130
                                                          200038
             A1 20000531 DE 1055157
                                           A
DE 19855157
                                                19991028 200038
              A2 20000607 EP 99121433
                                            Α
EP 1006387
                  20000623 JP 99316319
                                           A
                                                19991108 200041
JP 2000171699 A
KR 2000034929 A
                  20000626 KR 9939823
                                           Α
                                                19990916 200111
                  20010623 TW 99119511
                                           Α
                                                19991108 200206
TW 442669
              Α
Priority Applications (No Type Date): DE 1055157 A 19981130
Patent Details:
Patent No Kind Lan Pg
                                    Filing Notes
                        Main IPC
                   29 G02B-013/24
DE 19855157
             A1
             A2 G
                      G02B-013/14
EP 1006387
  Designated States (Regional): AL AT BE CH CY DE DK ES FI FR GB GR IE IT
  LI LT LU LV MC MK NL PT RO SE SI
                19 G02B-013/00
JP 2000171699 A
KR 2000034929 A
                      G02B-013/26
                      G02B-027/00
TW 442669
            A·
Abstract (Basic): DE 19855157 A1
       NOVELTY - The projection objective has at least three light beam
   constrictions, a lens arrangement consisting of a first positive lens
   group (LG1), a first negative lens group (LG2), a second positive lens
    group (LG3), a second negative lens group (LG4), a further lens
   arrangement (LG5-LG7) contg. the aperture stop (AS), whereby at least
    one of the two next lenses before and/or after the aperture stop has a
   negative refractive index.
        DETAILED DESCRIPTION - INDEPENDENT CLAIMS are also included for a
   projection exposure system for microlithography and a method of
    manufacturing microstructured components.
        USE - For manufacturing microstructured components.
       ADVANTAGE - Enables very large numerical apertures for very small
    lens dia. whilst observing the other qualities required for
    microlithography.
        DESCRIPTION OF DRAWING(S) - The drawing shows a schematic
    representation of a lens arrangement with a numerical aperture of 0.7
        positive lens groups (LG1,LG3)
        negative lens groups (LG2, LG4)
        further lens group (LG5-LG7)
        aperture stop (AS)
       pp; 29 DwgNo 1/7
Derwent Class: P81; P84; U11
International Patent Class (Main): G02B-013/00; G02B-013/14; G02B-013/24;
 G02B-013/26; G02B-027/00
International Patent Class (Additional): G03B-013/24; G03F-007/20
```


Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 006 387 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 07.06.2000 Patentblatt 2000/23

(21) Anmeldenummer: 99121433.9

(22) Anmeldetag: 28.10.1999

(51) Int. Cl.7: G02B 13/14, G03F 7/20

= WO\$00/33138

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

(30) Priorität: 30.11.1998 DE 19855157

(71) Anmelder:

Carl Zeiss
 89518 Heidenheim (Brenz) (DE)
 Benannte Vertragsstaaten:
 DE FR NL

 Carl-Zeiss-Stiftung trading as Carl Zeiss 89518 Heidenheim (Brenz) (DE) Benannte Vertragsstaaten:
 GB

(72) Erfinder: Schuster, Karl-Heinz 89551 Königsbronn (DE)

(54) Projektionsobjektiv für die Mikrolithographie

(57) Ein Projektionsobjektiv, besonders für die Mikrolithographie bei 248 nm oder 193 nm, weist nach zwei Bäuchen und zwei Taillen eine ausgeprägte Linsenanordnung auf, die vorzugsweise eine weitere Taille und stets die Aperturblende (AS) enthält. Diese ist von der die zweite Taille enthaltenden negativen Linsengruppe (LG4) deutlich abgerückt und von wichtigen Kor-

rekturmitteln umgeben. Höchste numerische Apertur (0,65 - 0,80) wird bei kleinsten Linsendurchmessern bei Beachtung der für ein derartiges Mikrolithographie-Projektionsobjektiv erforderlichen weiteren Qualitäten erreicht.

F/G. 1

Beschreibung

[0001] Die Erfindung betrifft ein Projektionsobjektiv mit mindestens zwei Taillen und drei Bäuchen, wie es für die Mikrolithographie entwickelt wurde und zum Beispiel aus der nicht vorveröffentlichten Patentanmeldung "Mikrolithographisches Reduktionsobjektiv, Projektionsbelichtungs-Anlage und -Verfahren" des Anmelders vom gleichen Anmeldetag und den darin zitierten Schriften bekannt ist. Ein Beispiel daraus ist z.B. EP 0 770 895. Diese Anmeldung und die darin zitierten Schriften sollen auch Teil der Offenbarung dieser Anmeldung sein.

[0002] Im Zuge der geforderten Verkleinerung der projizierten Strukturen wird mit immer niedrigeren Wellenlängen des verwendeten Lichts gearbeitet. Bedeutend sind hier die Excimer-Laser-Quellen bei 248 nm, 193 nm und 157 nm.

[0003] Während bei 248 nm noch reine Quarzglas-Objektive gangbar sind, ist bei 193 nm wegen der anwachsenden Dispersion des Quarzglases eine Teilachromatisierung nötig, für die Kalziumfluorid als zweites Material zur Kombination mit Quarzglas zur Verfügung steht.

[0004] Kalziumfluorid-Linsen müssen jedoch aus den verschiedensten Gründen - von der Verfügbarkeit großer homogener Kristalle bis zur optischen Bearbeitungsmöglichkeit - möglichst sparsam eingesetzt werden.

[0005] Es macht wenig Sinn, die Wellenlänge abzusenken und komplett neue Systemtechnologien einzuführen, wenn nicht die numerische Apertur auf dem erreichten hohen Niveau (oberhalb 0,6, möglichst 0,65 und mehr) gehalten wird, da die Auflösung ja von dem Quotienten Lambda/NA bestimmt wird.

[0006] Auch für andere Wellenlängen, insbesondere reine Quarzglas-DUV-Systeme, ist eine Steigerung der numerischen Apertur angestrebt, ohne daß die Linsendurchmesser weiter anwachsen, da auch da Grenzen der Herstellbarkeit erreicht werden.

[0007] Es ist daher die Aufgabe der Erfindung, ein Projektionsobjektiv anzugeben, das höchste numerische Apertur bei kleinsten Linsendurchmessern ermöglicht, unter Beachtung der für ein Mikrolithographie-Projektionsobjektiv erforderlichen weiteren Qualitäten.

[0008] Dies gelingt mit den in den Ansprüchen 1-5 vorgesehenen Maßnahmen, die alle die nach der zweiten Taille vor dem Bild liegenden Linsengruppen, die Lage der Aperturblende und die Ausbildung des Blendenraums betreffen und dort eine neuartige Einschnürung vorsehen.

[0009] Anspruch 6 gibt als vorteilhaft die möglichen Kombinationen der Maßnahmen nach den vorhergehenden Ansprüchen an, was auch in den Ausführungsbeispielen aufgezeigt wird

[0010] Anspruch 7 beschreibt die besonders vorteilhafte Ausführung mit hoher numerischer Apertur von über 0,65 bzw. 0,70. Dies kann zwar als an sich immer gestellte Aufgabe gelten, es ist aber ein hervorragendes Merkmal der Erfindung, daß diese Werte sicher erreicht werden, und zwar unter auch sonst brauchbaren Bedingungen wie Bildfeld usw.

[0011] Die Eignung der erfindungsgemäßen Konstruktion als Ein-Material-Objektiv, insbesondere als Quarzglas-Objektiv wie es für das DUV bei 248nm vorgesehen wird, ist Gegenstand der Unteransprüche 8 und 9. Die Ausführung mit zwei verschiedenen Linsenmaterialien ist in Anspruch 10 beschrieben, während Anspruch 11 die Ausbildung als teilachromatisiertes Objektiv (z. B für 193 nm) mit Quarzglas und Kalziumfluorid beschreibt. Man sieht daraus die breite Anwendbarkeit des erfindungsgemäßen Objektivdesigns, das mit anderen Linsenmaterialien auch für andere Wellenlängen ausgelegt werden kann, so für 365 nm oder 157 nm.

[0012] Unteranspruch 12 zeigt die vorteilhafte Ausführung des Korrektionsmittels der Negativlinse im Blendeno raum, wie es kennzeichnendes Merkmal der Ansprüche 1 und 5 ist, in der Art, daß die Negativlinsen beiderseits der Aperturblende vorgesehen sind.

[0013] In Erweiterung des Anspruchs 4 sind gemäß Anspruch 13 in diesem Bereich ebenfalls zwei sphärisch überkorrigierende Lufträume, deren Mittendicke also größer als die dicke am Rand ist, als vorteilhafte Ausführungsform vorgesehen.

5 [0014] Anspruch 14 gibt auch für den Bereich der ersten positiven Linsengruppe ein Konstruktionsmerkmal an. Demnach sind von den ersten drei objektseitigen Linsen zwei Negativlinsen vorzusehen, wobei bevorzugt die erste Linse negativ ist. Dies hilft zur Erreichung hoher Aperturen bei guter Petzval-Korrektur.

[0015] Der unabhängige Anspruch 15 betrifft die Einbindung der erfindungsgemäßen Projektionsobjektive in eine Projektionsbelichtungsanlage der Mikrolithographie, mit der im Rahmen konventioneller Aufbauten gesteigerte Abbildungsleistung zum Beispiel bei 248 nm oder 193 nm Laserlicht erbracht werden kann..

[0016] Anspruch 16 betrifft das vorteilhafte Verfahren zur Herstellung mikrostrukturierter Bauteile, bei dem eine derartige Projektionsbelichtungsanlage und damit ein Projektionsobjektiv nach einem der vorhergehenden Ansprüche Verwendung findet.

[0017] Näher erläutert wird die Erfindung anhand der Zeichnung.

55

Figur 1 zeigt den Linsenschnitt eines ersten Ausführungsbeispiels mit NA = 0,7;

Figur 2 zeigt den Linsenschnitt eines zweiten Ausführungsbeispiels mit NA = 0,7;

- Figur 3 zeigt den Linsenschnitt eines dritten Ausführungsbeispiels mit NA = 0,75;
- Figur 4 zeigt den Linsenschnitt eines vierten Ausführungsbeispiels mit NA = 0,8;
- 5 Figur 5 zeigt den Linsenschnitt eines fünften Ausführungsbeispiels mit NA = 0,8, als reines Quarzlinsenobjektiv für 248 nm;
 - Figur 6 zeigt den Linsenschnitt eines sechsten Ausführungsbeispiels; und
- 10 Figur 7 zeigt typische Aberrationen zum sechsten Ausführungsbeispiel.

[0018] Ein teilachromatisiertes refraktives 193 nm Lithographieobjektiv benötigt wenigstens zwei optische Materialien. Dafür sind Quarzglas und Kalziumfluorid (CaF₂) am ehesten geeignet. Bei CaF₂ gibt es Mängel bei der Homogenität und der Doppelbrechung (neben anderen Kristallfehlern und Einschlüssen). Um den Einfluß der Doppelbrechung gering zu halten, muß die optische Weglänge im Kristall möglichst klein sein, d.h. möglichst wenig Kristall im Objektiv verwendet werden. Was den schädlichen Einfluß der Inhomogenität betrifft, gilt ähnliches, zusätzlich soll der Kristall möglichst pupillennah stehen, damit die Inhomogenitätseinflüsse nicht über die Bildhöhe variieren. Dies gelingt um so besser, je dichter der Kristall an der Systemblende steht. Die Reduzierung des Kristall-Volumens ist auch eine Notwendigkeit bezüglich der beschränkten verfügbaren Menge und nicht zuletzt eine ganz erhebliche Kostenfrage.

[0019] Beim Teilachromatisieren eines Lithographieobjektives mit CaF₂ im Blendenbereich in den Positivlinsen - alle anderen Linsen sind aus Quarzglas - ergibt sich regelmäßig ein bestimmtes Problem: Die Wirkung auf den Farblängsfehler ist durch das Ersetzen von Quarzglas durch CaF₂ in den positiven Linsen nur gering, auch wenn erfindungsgemäß die wirksamsten Einsatzmöglichkeiten angewendet werden. Dies ist eine Folge des geringen Dispersionsabstandes von Quarzglas und CaF₂. Zugleich stellt sich ein ungünstiger Farbquerfehler ein. Oftmals stehen hinter der Blende mehr positive Linsen, die man substituieren kann, als vor der Blende. Wird für die positiven CaF₂-Linsen ein Durchmesser im Blendenbereich gefordert, der kleiner ist als etwa für ein reines Quarzglasobjektiv mit guter Farbquerfehlerkorrektur, stellt sich ein ungünstiger Farbquerfehler ein. Um die Petzvalkorrektur des Objektives zu halten, wird bei einem typischen Drei-Bäuche-Aufbau der zweite Bauch größer, wenn der dritte Bauch kleiner werden soll. [0020] Möchte man ein hochgeöffnetes Lithographieobjektiv mit z.B. bildseitig NA größer oder gleich 0,65 und gleichzeitig kleinen CaF₂-Linsendurchmessern bauen, verschärft sich die Situation dramatisch.

[0021] Um den Farbquerfehler wieder zu verkleinern, müßte man positive CaF₂-Linsen im zweiten Bauch einbringen. Dies verletzt aber die Forderung nach blendennaher Stellung, und überdies ist ja gerade der zweite Bauch jetzt im Durchmesser groß.

[0023] Diese Maßnahme reicht aber nicht aus, um die Petzvalkorrektur zu bewerkstelligen. Auch der "dritte Bauch" müßte größer sein. Dies ist aber nicht akzeptabel, da hier die CaF₂-Linsen L18-L20, L22, L23 stehen. Die Lösung des Problems besteht in einer Umwandlung des dritten Bauches in einen Doppelbauch LG5-LG7. Der erste Teil LG5 des Doppelbauches ist im Durchmesser klein und ist voll bestückt mit CaF₂-Linsen L18-L20. In der Verengung (Taille) LG6 sitzt eine Linse L21 mit starker negativer Brechkraft. Der zweite Teilbauch LG7 startet ebenfalls noch mit CaF₂-Linsen L23, L24, die im Durchmesser noch klein sind. Dann steigt der Durchmesser stark an. Dies wird durch stark negative Brechkraft der Linse L24 möglich, die sich an die CaF₂-Linsen L22, L23 anschließt. Ein deutlich gekrümmter sammelnder Meniskus L25, der objektivseitig konkav ist, verstärkt die Durchmesseraufweitung (Er reduziert den Farbquerfehler und verhilft zu den kleinen Durchmessern im Blendenbereich.). Vom größten Durchmesser hin zum Bild IM sammelt nun eine stark positive Gruppe L26-L28. Durch diese Gruppe mit großem Durchmesser und starker positiver Brechkraft wird schließlich erreicht, daß das System gleichzeitig bezüglich Petzvalkrümmung und Farbquerfehler hervorragend korrigiert werden kann.

[0024] Diese Anordnung verkleinert den Farblängsfehler. Die große Brechkraft der CaF₂-Linsen L18-L20 im ersten Teil LG5 des Doppelbauches ist ebenfalls der Lösung des Farbquerfehlerproblems sehr zuträglich.

[0025] Durch die Lösung der angesprochenen Probleme gelingt die Teilachromatisierung eines 193 nm Lithographieobjektivs. Fünf CaF₂-Linsen L18-L20, L23, L24, alle nahe der Systemblende AS wie das Beispiel zeigt, genügen um NA = 0,7 und ein Bildfeld von 29,1 mm bei einer Bandbreite von 0,5 pm zu erreichen. Der Reduktionsfaktor beträgt

- 4,0. Das Objektiv ist bildseitig telezentrisch. Alle CaF₂-Linsen sind kleiner als 220 mm im (optisch benötigten) Durchmesser und besitzen im Beispiel eine Gesamtdicke von weniger als 200 mm. Insgesamt sind 32 Linsen im Objektiv.
- [0026] Die am bildseitigen Ende liegenden beiden Linsen L31, L32 und die plane Abschlußplatte P (zum Schutz des Objektivs) sind ebenfalls aus CaF₂ gefertigt. Dies hat aber nichts mit der Achromatisierung zu tun: Hier ist die Lichtintensität am höchsten, und CaF₂ ist gegen Bestrahlung stabiler als Quarzglas, insbesondere hinsichtlich der "compaction".
- [0027] Die in Tabelle 1 mit angegebenen und in Figur 1 gut nachzuverfolgenden Strahlhöhen H_{max} zeigen deutlich, wie in der ersten Linsengruppe LG1 ein Bauch an Linse L4, in der zweiten (LG2) eine Taille zwischen Linse L8 und L9, in der dritten (LG3) ein Bauch an der Linse L12, in der vierten (LG4) eine Taille zu der Linse L16 ausgebildet ist.
- [0028] Nicht so stark durchmoduliert wie diese, bilden die weiteren Linsengruppen LG5-LG7 einen Bauch an der Linse L19, eine erstmals vorhandene dritte Taille an der Negativlinse L21 und einen vierten Bauch an der Linse L26 aus.
 - [0029] Die Systemblende AS ist zwischen dieser neuen Taille (L21) und dem vierten Bauch (L26) angeordnet. Signifikant ist, daß die Systemblende AS von zwei Negativlinsen L21, L24 umgeben ist, jeweils nur durch eine positive Linse L22, L23 aus CaF₂ getrennt.
 - [0030] Diese Gruppierung ist gemäß den Ansprüchen 1, 5 und 12 kennzeichnend für den gefundenen Ansatz zur Objektivkorrektur. Er verlängert diese zwar, hält aber die Linsendurchmesser begrenzt dadurch, daß er sie über weite Strecken weitgehend stabil hält.
- [0031] Signifikant sind auch die Lufträume zwischen den Linsen L20/L21, L21/L22 und L23/L24 mit größerer Mitten- als Rand-Dicke ausgeführt, sie wirken also sphärisch überkorrigierend Wichtig ist dabei vor allem ein solcher Luftraum vor der Aperturblende AS, wie es in Anspruch 4 Niederschlag findet. Vorteilhaft ist jedoch auch die Paarung im Sinne des Anspruchs 13, mit der die Ausführung nach Anspruch 12 weiter optimiert wird.
- [0032] Eine Besonderheit der gezeigten Ausführungsbeispiele ist es auch, wie im Anspruch 3 zum Ausdruck kommt, daß die Aperturblende weit von der zweiten negativen Linsengruppe LG4 abgerückt ist. Im Beispiel Fig. 1 liegen fünf Linsen L18 bis L22 dazwischen.
- [0033] Die Korrektion dieses Ausführungsbeispiels erreicht 23 mλ. Als Gasfüllung ist Helium vorgesehen.
- [0034] Das Ausführungsbeispiel nach Figur 2 und Tabelle 2 unterscheidet sich vom Beispiel der Figur 1 im wesentlichen dadurch, daß auch zwischen zweitem Bauch und zweiter Taille in der dritten Linsengruppe LG3 eine CaF₂-Linse L7 zur Farbkorrektur vorgesehen ist. Hier hat diese auch mäßigen Durchmesser, verbunden mit guter Wirkung. Zwischen der auf die Systemblende AS folgenden Negativlinse 48 und dem objektseitig konkaven Meniskus 50 ist hier eine Positivlinse 49 angeordnet, die von der nachfolgenden Sammelgruppe abgezogen wurde. Insgesamt ist bei gleicher Leistung hier die Linsenzahl höher als in Figur 1.
- [0035] Das Ausführungsbeispiel nach Figur 3 hat die Kenndaten aus Tabelle 3.
- [0036] Die gesamte Linsenzahl ist auf 37 angewachsen. Die erste Linse L1 ist zu den zwei negativen Linsen 301, 302 aufgespalten. Dies erleichtert die starke Strahlaufweitung zugunsten der Petzval-Korrektur bei Erhalt der anderen günstigen Aberrationswerte. Ein weiterer Ausbau der ersten Linsen zu einer weiteren eigenständigen Linsengruppe ist möglich. Der Meniskus L10 ist zu den Linsen 311, 312 aufgespalten. In der dritten Linsengruppe LG3 ist eine Sammellinse 317 dazu gekommen. Auch in der Taille LG4 ist die Linse L16 zu zwei Linsen 319, 320 aufgespalten. LG5 bleibt und danach folgen noch 13 statt 12 Linsen. Die damit gewonnenen Freiheitsgrade sind nützlich, um die mit der erhöhten Apertur von NA = 0,75 einhergehende drastisch erhöhte Fehlerbelastung zu kompensieren.
- [0037] Die aufdie fünfte Linsengruppe LG5 mit dem dritten Bauch folgenden Linsen werden für dieses Beispiel in abweichender Gruppenaufteilung beschrieben (ohne daß sich dadurch sachlich etwas ändert).
- [0038] Die Gruppe LG6 umfaßt die vierte Strahltaille an der Linse 325 und die von zwei Negativlinsen 325, 328 mit zwischengeschalteten positiven CaF₂-Linsen 326, 327 umgebene Systemblende AS. Wie bei Figur 1 wird diese Gruppe in ihrer Korrekturwirkung von bikonvexen Luftlinsen vor und nach den beiden Negativlinsen 325, 328 unterstützt. Die Linsengruppe LG7 umfaßt den objektivseitig konkaven Meniskus 329 und vier Sammellinsen 330-333. Der vierte Bauch ist an Linse 330 ausgebildet. Dieser Bereich entspricht der Fokussiergruppe der Figur 1.
- [0039] Die nachfolgende hier separat bezeichnete Linsengruppe LG8 weist wieder negative Brechkräfte auf. Ihre Funktion ist in gattungsgemäßen Objektiven verbreitet. Sie sorgt dafür, daß die hohen Strahlwinkel entsprechend der numerischen Apertur erst in den letzten Linsen vor dem Bild IM auftreten, und damit zugleich ganz wesentlich dafür, daß die Linsendurchmesser beschränkt bleiben. Hier ist der dicke Meniskus L30 der Figur 1 in zwei Menisken 334, 335 aufgespalten.
- [0040] Das vierte Ausführungsbeispiel nach Figur 4 und Tabelle 4 weist eine weiter gesteigerte numerische Apertur von 0,8 auf. Die Linsenzahl beträgt hierbei ebenfalls 37. Gegenüber Figur 3 sind die Linsengruppen LG3 und LG4 wieder vereinfacht. LG5 weist jetzt aber eine zusätzliche positive Linse 423 auf. Auch LG6 ist durch Aufspaltung der Negativlinse 325 zum Meniskus 424 und zur Negativlinse 425 bei erheblicher Dickenzunahme mit zusätzlicher Korrekturfunktion versehen. In der Gruppe LG7 ist der Meniskus 429 zugunsten der Sammellinse 431 dünner geworden

[0041] Zur Achromatisierung sind wie bei den vorherigen Beispielen Figur 1 und 3 die Positivlinsen 420-423 und 426, 427 der Linsengruppen LG5 und LG6 in Blendennähe aus CaF₂ gefertigt. Der größte Durchmesser einer CaF₂-Linse ist bei Linse 22 mit 315 mm erreicht. Größte Linse überhaupt ist Linse 30 mit 325 mm Durchmesser. Diese Werte sind natürlich fertigungstechnisch anspruchsvoll, in Anbetracht der Leistung des Objektivs aber nicht zu hoch. Auch die Linsen 436 und 437 sowie die Abschlußplatte P4 sind aus CaF₂ gefertigt, aus Gründen der Compaction, wie zu Figur 1 erklärt.

[0042] In Figur 5 und Tabelle 5 wird ein fünftes Beispiel vorgestellt, ebenfalls mit der extremen numerischen Apertur von 0,8. Hier handelt es sich um ein DUV-Objektiv für 248 nm, das als reines Quarzobjektiv ausgeführt ist.

[0043] Im Vergleich zu anderen Objektivtypen ist hier zwar die Baulänge mit Ob - IM = 1695 mm groß, es gelingt aber, die große NA = 0,8 bei einem Bildfelddurchmesser von 27,2 mm mit einem größten Linsendurchmesser von 341 mm (Linse 529) auszuführen.

[0044] Der Farblängsfehler CHV (500 pm) = 0,11 mm ist weiter verbessert, bei gutem Farbquerfehler CHV (500 pm) = -0,41 mm und einem größten RMS-Fehler = 18,7 m λ über das ganze Bildfeld.

[0045] Wie beim Beispiel der Figur 4 sind hier 37 Linsen angeordnet, in weitgehend gleichartigem Aufbau. Auch hier bewährt sich das erfindungsgemäße Konzept, ausgehend vom Aufbau mit zwei Taillen (LG2, LG4) und den zwei ersten Bäuchen (LG1, LG3) des Lichtbündels, nicht einen einfachen dritten Bauch, sondern einen durch eine dritte, wenn auch nicht stark ausgeprägte, Taille LG6 geteilten Doppelbauch LG5, LG7 vorzusehen. Die Systemblende AS ist dann in diesem nahe der Taille LG6 angeordnet, zwischen Negativlinsen 525, 528.

[0046] Das Ausführungsbeispiel nach Figur 6 und Tabelle 6 ist wieder für 193 nm-Excimer-Laser ausgelegt und hat die bildseitige numerische Apertur von NA = 0,7. Gegenüber den vorhergehenden Beispielen ist aber die Zahl der Linsen deutlich auf 31 reduziert. Mit vier achromatisierenden CaF₂-Linsen und einer Compaction-verhindernden CaF₂-Linse plus CaF₂-Planplatte P6 sind auch weniger CaF₂-Elemente eingesetzt. Dies ergibt insgesamt erhebliche Einsparungen bei den Herstellkosten.

[0047] Die wesentliche Besonderheit ist, daß die ersten drei Linsen 601, 602, 603 nach der Objektebene 0 negative, positive und negative (-+-) Brechkraft aufweisen, wobei die dritte Linse ein objektseitig konkaver Meniskus ist. Vergleichsweise sind bei den Beispielen nach Figur 1 und 2 -++ und nach Figur 3 bis Figur 5 --+ Anordnungen vorgesehen, wobei die zweite + Linse bei Figur 1 und 2 bikonvex ist.

[0048] Mit dieser Maßnahme gelingt es, den Durchmesser der ersten Linsengruppe (bei der Linse 605) aufdas Niveau der zweiten Linsengruppe (bei der Linse 614) anzuheben und somit schon in der ersten Linsengruppe die Petzvalsumme günstig zu beeinflussen. Gleichzeitig können Telezentrie, Verzeichnung und weitere Abbildungsfehler optimiert werden.

[0049] Ein weiterer Ausbau der ersten Linsen zu einer eigenständigen Linsengruppe ist hier ebenfalls möglich.

[0050] Beiderseits der Systemblende AS sind zwei bikonvexe positive CaF₂-Linsen 622, 623 angeordnet, eingerahmt von zwei negativen Quarzglaslinsen 621, 624. Dazwischen sind jeweils positive Luftlinsen wie auch in den vorhergehenden Beispielen als typische Korrekturmittel vorgesehen.

[0051] Davor sind nur zwei positive CaF₂-Linsen und damit insgesamt nur vier CaF₂-Linsen zur Achromatisierung eingesetzt.

[0052] Nachfolgend ist die Linse 624 als objektseitig konkaver positiver Meniskus ebenfalls typisch für die vorgestellte Objektivart ausgebildet.

[0053] Eine dritte Taille ist hier an der objektseitigen Fläche der Linse 624 nur ansatzweise vorhanden. Es wird aber der typische rund um die Systemblende AS lange Bereich stabiler Linsendurchmesser ausgebildet.

[0054] Am bildseitigen Ende ist es gelungen, das in den vorhergehenden Beispielen vorhandene Linsenpaar mit stark gekrümmtem dünnem Luftspalt zu einer dicken Linse 631 zu vereinigen. Diese, zusammen mit der vorangehenden Linse 630 und der planen Abschlußplatte P6 ist aus CaF₂ gefertigt, wie in den vorigen Beispielen zum Schutz vor störenden Compaction-Effekten.

[0055] Die erreichte gute Korrektion dieses Beispiels zeigen die Aberrationskurven der Figur 7. Figur 7a gibt die Verzeichnung (in µm) als Funktion der Bildhöhe YB (in mm). Ihre größten Beträge liegen bei 2 nm.

[0056] Figur 7b gibt für die Bildhöhen Y' = 14,5 mm, 10,3 und 0 die sagittale Queraberration DZS als Funktion des halben Aperturwinkels DW' an.

[0057] Figur 7c gibt für die gleichen Bildhöhen die meridionale Queraberration DYM an. Beide zeigen bis zu den höchsten DW' hervorragenden Verlauf.

[0058] Die verschiedenen Beispiele zeigen die große Tragfähigkeit dieses Konzepts für verschiedene Ausführungsformen bei sehr hohen Aperturen.

[0059] Insgesamt gelingt es mit der erfindungsgemäßen Anordnung, klassische axialsymmetrische rein refraktive Objektive mit hoher numerischer Apertur für die Mikrolithographie mit Strukturbreiten unter 0,2 µm anzugeben, deren Qualitäten noch vor kurzem nur katadioptrischen oder katoptrischen Systemen zugebilligt wurden.

Tabelle 1

λ (193 nm)

	No.	r (mm)	d (mm)	Glas	H _{max} (mm)
10	Ob	∞	20,139		
	L1	-123,979	10,278	SiO ₂	64
		403,784	19,789	_	
15	L2	-317,124	17,341	SiO ₂	78 .
		-189,047	,750		
	L3	1942,788	36,025	SiO_2	96
20		-210,589	,750		
	L4	493,421	41,364	SiO_2	107
		-314,691	,750		
25	L5	211,644	36,468	SiO_2	102
		36053,922	,756		
30	L6	122,962	13,151	SiO_2	84
30		87,450	46,263		
	L7	-741,457	14,677	SiO ₂	72
35		-245,743	3,094		
	L8	-708,992	9,066	SiO ₂	67
		132,207	35,782		
40	L9	-119,439	9,425	SiO2	61
		254,501	31,157		
	L10	., -143,292	32,973	SiO ₂	69
45		-162,944	2,513		
	L11	673,137	41,208	SiO ₂	101
		-230,715	1,371		•
50	L12	-3742,535	19,854	SiO ₂	105
		-444,648	,750		

55

	L13	482,433	20,155	SiO ₂	105
_		-3294,813	,750		105
5	L14	221,831	31,717	SiO ₂	99
		-3330,760	,151	2	,,
	L15	301,827	8,035	SiO,	90
10		133,707	44,742	2	,,,
	L16	-235,659	9,864	SiO ₂	79
15		200,421	47,451	•	.,
15	L17	-126,570	9,713	SiO ₂	79
		-8830,267	2,058		
20	L18	3591,477	47,215	CaF ₂	96
20		-155,694	,761	-	
	L19	1671,774	42,497	CaF ₂	108
25		-212,059	,754	-	
23	L20	767,377	20,436	CaF ₂	103
		-2961,864	24,166		
30	L21	-236,317	20,505	SiO _z	101
		313,867	7,393		
	L22	365,958	35,000	CaF ₂	105
35		-1015,913	15,000		
	AS	œ	4,055		107
	L23	304,439	47,448	CaF ₂	109
40		-354,885	12,212		
	L24	-237,609	30,672	SiO ₂	108
		³² -1864,732	26,398		
45	L25	-255,995	43,703	SiO_2	114
		-220,445	,050		
	L26	661,898	30,058	SiO ₂	124
50		-944,348	,052		
	L27	186,291	45,831	SiO ₂	116
		1112,534	,759		

EP 1 006 387 A2

	L28	162,645	26,119	SiO ₂	97
5		311,699	16,235		
	L29	67979,776	16,754	SiO ₂	90
		371,623	,784		
10	L30	131,714	57,413	SiO_2	71
	•	98,261	4,425		
15	L31	134,217	4,625	CaF₂	41
		44,911	2,076		
	L32	43,874 ·	22,782	CaF ₂	33
20		678,386	2,262		
	P	∞	2,000	CaF₂	27
		∞	12,000		
25	IM				

Tabelle 2

λ (193 nm)

	No.	r (mm)	d (mm)	Glas	H _{max} (mm)	
10						
	0	œ	15,691		64	
	21	-154,467	11,998	SiO ₂	64	
15		446,437	12,272		73	
	22	-723,377	25,894	SiO ₂	74	
		-222,214	,824		80	
20	23	920,409	26,326	SiO ₂	89	
		-287,371	,750		90	
	24	499,378	30,073	SiO ₂	94	
25		-358,998	,751		94	
	25	238,455	27,454	SiO ₂	90	
		-3670,974	,750		89	
30	26	182,368	13,402	SiO_2	81	
		115,264	31,874		72	
	27	-710,373	13,095	SiO2	72	
35		-317,933	2,550		71	
	28	-412,488	8,415	SiO ₂	69	
		132,829	32,913		65	
40	29	-184,651	11,023	SiO2	66	
		2083,916	28,650		71	
•	30	-120,436	10,736	SiO ₂	72	
45		-629,160	16,486		86	
	31	-213,698	24,772	SiO ₂	89	
		-151,953	,769		95	
50	32	11013,497	48,332	SiO2	115	
		-202,880	,750		118	

EP 1 006 387 A2

	33	-1087,551	22,650	SiO_2	122
_		-483,179	,750		124
5	34	1797,628	23,724	SiO ₂	125
		-1285,887	,751		125
	35	662,023	23,589	SiO ₂	124
10		45816,292	,750	-	123
	36	361,131	22,299	SiO ₂	119
		953,989	,750		117
15	37	156,499	49,720	CaF ₂	107
		2938,462	,154	-	103
	38	377,619	8,428	SiO ₂	94
20		123,293	40,098		80
	39	-425,236	10,189	SiO ₂	78
		413,304	18,201		74
25	40	-302,456	6,943	SiO ₂	73
		190,182	46,542		73
	41	-109,726	9,022	SiO ₂	73
30		-1968,186	5,547		89
	42	-768,656	37,334	CaF ₂	90
		-145,709	,753		94
35	43	925,552	49,401	CaF ₂	108
		-193,743	,847		109
	44	507,720	22,716	CaF ₂	105
40		-1447,522	21,609		104
	45	-2 50,873	11,263	SiO ₂	104
		314,449	2,194		105
45	46	316,810	28,459	CaF ₂	106
		-1630,246	4,050		106
	AS	Blende	15,000		106
50	47	312,019	45,834	CaF₂	108
		-355,881	11,447		108

	48	-242,068	14,119	SiO ₂	107
5		312,165	4,687		112
	49	327,322	49,332	SiO ₂	114
		-372,447	14,727		115
10	50	-234,201	26,250	SiO ₂	115
		-226,616	,850	_	118
	51	203,673	45,914	SiO_2	113
15	٠	-3565,135	,751	•	111
	52	157,993	29,879	SiO_2	94
		431,905	14,136	•	90
20	53	-1625,593	12,195	SiO ₂	.88
		230,390	,780	•	76
25	54	124,286	66,404	SiO ₂	71
		538,229	1,809	-	46
	55	778,631	4,962	CaF ₂	45
30		43,846	2,050	-	34
	56	43,315	23,688	CaF ₂	33
		1056,655	2,047	-	29
35	P2	∞	2,000	CaF ₂	27
		œ	12,000	-	26
	IM	œ			14
40					• •

Tabelle 3

	Bildseitige numerische Apertur	0,75
50	Bildfelddurchmesser	29 mm
	Linsen	37
	davon CaF ₂	5
	chromatischer Längsfehler	CHL (500 pm) = 0,15 mm
55	chromatischer Querfehler	CHV (500 pm) = -0,55 mm

Tabelle 4

λ (193 nm)

	No.	r (mm)	d (mm)	Glas	$H_{max}(mm)$	
)	401	-162,231	7,821	SiO ₂	65	
		549,305	14,754			
	402	-1637,355	13,618	SiO ₂	77	
		558,119	14,177	-		
	403	-1250,520	21,761	SiO ₂	89	
		-266,751	,103			
	404	1413,418	35,164	SiO ₂	105	
		-289,540	,100			
	405	558,984	44,391	SiO_2	117	
		-330,447	,052			
	406	236,035	37,754	SiO_2	112	
		2512,736	,100			
	407	149,568	12,990	SiO ₂	97	
		108,658	50,886			
	408	-872,416	17,292	SiO_2	85	
		-295,279	3,065			
	409	-2305,329	11,081	SiO ₂	80	
		175,377	36,326			
	410	-170,438	10,667	SiO_2	73	
		., 287,702	33,693			
	411	-176,405	12,554	SiO_2	80	
		-646,797	20,615			
	412	-185,487	19,173	SiO_2	92	
		-168,577	,754			

EP 1 006 387 A2

	413	2643,150	43,274	SiO ₂	120
_		-279,867	,751	•	
5	414	-1446,340	26,732	SiO ₂	129
		-431,016	,751	•	
10	415	615,237	32,058	SiO_2	134
,,,		-1552,907	,752	÷	
	416	304,657	51,152	SiO_2	131
15		-1002,990	,766	•	
	417	377,443	11,011	SiO ₂	115
		174,347	61,706	•	
20	418	-265,771	10,574	SiO ₂	103
		358,610	61,744	-	
	419	-156,420	17,749	SiO ₂	104
25		4276,769	,752	•	
	420	1792,611	65,815	CaF ₂	132
		-237,576	,756		
30	421	-5418,034	38,924	CaF,	151
		-453,224	,750		
	422	2719,661	63,360	CaF ₂	157
35		-324,840	,750		
	423	794,699	30,677	CaF ₂	146
40		-7159,901	44,836		
40	424	-265,231	27,682	SiO ₂	141
		· -340,529	2,566		
45	425	-377,893	19,008	SiO ₂	141
		322,651	8,918		
	426	384,063	50,258	CaF ₂	144
50		-1522,566	,001		
	AS	Blende			145

EP 1 006 387 A2

	427	461,641	73,243	CaF ₂	149
5		-346,299	14,306		
	428	-265,687	14,512	SiO_2	149
		-2243,987	44,637		
10	429	-273,302	32,232	SiO ₂	155
		-236,716	,759		
	430	630,915	33,935	SiO ₂	162
15		-33939,086	,770		
	431	267,710	59,062	SiO ₂	154
20		1417,026	1,266		
	432	186,762	42,895	SiO ₂	128
		428,787	,750		
25	433	157,406	28,844	SiO ₂	103
		286,130	12,072		
	434	642,977	21,646	SiO ₂	95
30		305,781	,394		
	435	146,258	14,296	SiO ₂	69
35		95,566	11,824		
	436	177,258	5,877	CaF ₂	53
		48,067	2,299		
40	437	47,757	26,836	CaF ₂	39
		545,368	3,220		
	P4	∞	2,000	CaF ₂	32
45		თ ∞	12,000		
	. IM	∞			14

Tabelle 5

λ (248 nm)

	No.	r (mm)	d (mm)	Glas	$H_{max}(mm)$
10					
	0	∞	14,767		
	501	-168,448	7,819	SiO ₂	•
15		451,839	10,150		
	502	-1469,667	12,827	SiO_2	
		507,556	9,846		
20	503	3953,186	24,517	SiO_2	
		-255,806	,109		
	504	677,358	35,314	SiO ₂	
25		-291,838	,717		
	505	514,352	37,652	SiO_2	
		-349,357	2,388		102
30	506	47,966	31,567	SiO ₂	
		4511,896	,103		
	507	173,084	12,702	SiO ₂	
35		114,678	44,986		
	508	-699,118	16,715	SiO ₂	
		-255,168	3,212		
40	509	-704,667	11,272	SiO ₂	
		204,972	33,860		
	510	-169,644	12,141	SiO_2	71 -
45		283,339	36,451		
	511	-164,668	11,842	SiO2	
		-1145,627	22,777		
50	512	-199,780	20,265	SiO ₂	
		-176,684	7,310		

EP 1 006 387 A2

	513	8844,587	46,194	SiO ₂	
		-273,661	,761	_	
5	514	-1811,014	32,660	SiO ₂	
		-386,108	,755	-	
	515	626,689	42,026	SiO ₂	143
10		-896,109	,821	-	
	516	336,397	54,598	SiO ₂	
		-1002,851	,752	_	
15	517	411,928	12,364	SiO ₂	
		183,595	73,688		
	518	-237,160	12,074	SiO ₂	110
20		339,922	67,674		
	519	-181,378	19,614	SiO_2	
		3323,801	,795		
25	520	1648,704	72,249	SiO ₂	
		-259,967	,772		
	521	-3288,150	36,331	SiO ₂	
30		-547,040	,754		
	522	3160,321	71,293	SiO ₂	
		-337,191	,750		172
35	523	794,782	31,332	SiO ₂	
		3890,718	55,484		
	524	-273,219	30,190	SiO ₂	152
40		-316,643	,894		
	525	-358,789	20,418	SiO ₂	
		330,466	15,787		
45	526	423,693	48,720	SiO_2	
		-3000,977	,034		
	527	584,671	78,378	SiO ₂	159
50	AS	-341,375	13,393		•
	. 528	-276,351	6,015	SiO ₂	

EP 1 006 387 A2

		-2430,384	49,784		
5	529	-282,253	33,801	SiO ₂	
		-247,816	,751	-	
	530	497,380	43,718	SiO ₂	170
10		-593481,158	,762	-	
	531	257,876	58,302	SiO ₂	
		1283,553	,760		
15	532	192,763	41,022	SiO ₂	
		379,416	1,212		
20	533	158,692	33,559	SiO ₂	
		318,371	10,419		
	534	602,941	22,348	SiO ₂	
25		312,341	,449		
	535	151,612	13,858	SiO ₂	
		94,174	13,001		,
30	536	178,383	6,551	SiO_2	
		47,957	2,052		
35	537	47,759	28,153	SiO ₂	
		457,020	3,585		
	P5	∞	2,000	SiO ₂	
40		∞			
	IM				

Tabelle 6

 λ (193 nm)

	No.	r (mm)	d (mm)	Glas	$H_{max}(mm)$
10	 .				
	0	∞	13,589	•	63,2
	601	-153,8668	8,593	SiO ₂	
15		536,387	13,446		
	602	-489,958	16,326	SiO_2	
		-180,299	8,335		
20	603	-139,921	17,269	SiO ₂	
		-183,540	,726		
	604	-5959,817	27,191	SiO ₂	
25		-213,388	,720		
	605	540,568	28,565	SiO_2	
		-384,411	,721		100,4
30	606	228,447	27,846	SiO_2	
		39808,827	1,596		
	607	145,747	26,420	SiO_2	
35		99,912	29,130		
	608	551,820	28,093	SiO ₂	
		125,153	27,708		
40	609	-224,142	16,347	SiO ₂	
		-120,259	3,704		
	610	-120,684	7,531	SiO ₂	60,7
45		190,217	30,347		
	611	-127,179	9,201	SiO ₂	
		-2280,949	10,944		
50	612	-402,034	21,512	SiO_2	
		-163,852	,720		

EP 1 006 387 A2

	613	558,842	36,296	SiO ₂	
5		-232,880	,721	- 2	
J	614	326,378	40,631	SiO ₂	102,3
		-458,721	1,006	•	,5
10	615	243,250	21,969	SiO ₂	
70		1849,289	,953	•	
	616	181,775	11,594	SiO ₂	
		120,678	44,346	2	
15	617	-193,008	8,915	SiO ₂	
		164,718	41,514	- 2	71,6
	618	-127,692	10,925	SiO ₂	, 1,0
20		522,864	4,106	2	
	619	427,581	53,250	CaF,	
		-161,175	,720	4	97,4
25	620	472,871	36,987	CaF ₂	106,2
		-413,834	5,594	•	106,7
	621	-527,170	9,730	SiO ₂	106,2
30		249,617	5,154	-	107,7
	622	282,914	48,128	CaF ₂	108,6
		-361,054	9,000	-	109,3
35	AS		,011 .		108,2
	623	513,367	44,253	CaF ₂	•
		-251,673	14,542		108,7
40	624	-181,317	14,388	SiO ₂	107,9
		-1446,451	34,190		113,7
	625	-221,707	30,966	SiO ₂	114,7
45		-174,183	,778		119,4
	626	367,930	29,615	SiO ₂	
		-5635,900	,727		
50	627	149,485	42,977	SiO ₂	
		478,121	,974	-	

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		628	152,986	28,094	SiO ₂	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5		224,466	14,618		
10 630 109,931 39,083 SiO_2 53,759 5,493 631 52,584 31,677 CaF_2 582,406 2,674 P6 ∞ 2,000 CaF_2 ∞ 12,521		629	794,048	14,783	SiO ₂	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			152,177	2,330		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	630	109,931	39,083	SiO ₂	
582,406 2,674 P6 ∞ 2,000 CaF₂ ∞ 12,521			53,759	5,493		
582,406 2,674 P6 ∞ 2,000 CaF₂ ∞ 12,521		631	52,584	31,677	CaF ₂	
∞ 12,521	15		582,406	2,674		
20 -		P6	∞	2,000	CaF ₂	
IM ∞ ,000 14,5	20 -		∞	12,521		
		IM	∞	,000		14,5

25

35

40

55

Patentansprüche

- 30 1. Projektionsobjektiv mit mindestens drei Taillen des Lichtbündels.
 - 2. Projektionsobjektiv mit einer Linsenanordnung, bestehend aus
 - einer ersten positiven Linsengruppe (LG1)
 - einer ersten negativen Linsengruppe (LG2)
 - einer zweiten positiven Linsengruppe (LG3)
 - einer zweiten negativen Linsengruppe (LG4)
 - einer weiteren Linsenanordnung (LG5 bis LG7) enthaltend die Aperturblende (AS),
 wobei jeweils mindestens eine (L21, L24) der zwei nächsten Linsen (L21, L22; L23, L24) vor und/oder nach der Aperturblende (AS) negative Brechkraft hat.
 - 3. Projektionsobjektiv mit einer Linsenanordnung, bestehend aus
- einer ersten positiven Linsengruppe (LG1)
 einer ersten negativen Linsengruppe (LG2)
 einer zweiten positiven Linsengruppe (LG3)
 einer zweiten negativen Linsengruppe(LG4)

einer weiteren Linsenanordnung (LG5 bis LG7) enthaltend die Aperturblende (AS) und mindestens drei Linsen (L18 bis L22) vor der Aperturblende (AS).

4. Projektionsobjektiv mit einer Linsenanordnung , bestehend aus

einer ersten positiven Linsengruppe (LG1) einer ersten negativen Linsengruppe(LG2)

einer zweiten positiven Linsengruppe (LG3) einer zweiten negativen Linsengruppe (LG4)

und einer weiteren Linsenanordnung (LG5 bis LG7) enthaltend die Aperturblende (AS)

und vor dieser mindestens einen sphärisch überkorrigierenden Luftraum zwischen benachbarten Linsen (L20,

L21).

- •
- Projektionsobjektiv mit mindestens zwei Taillen und drei B\u00e4uchen,
 dadurch gekennzeichnet, daß die Systemblende (AS) im Bereich des bildseitig letzten Bauches angeordnet ist und von den jeweils zwei Linsen (L21, L22; L23, L24) vor und/oder nach der Systemblende (AS) mindestens eine Linse (L21, L24) negativ ist.
 - 6. Projektionsobjektiv nach mindestens zwei der Ansprüche 1 bis 5.
- 10
- 7. Projektionsobjektiv nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es eine bildseitige numerische Apertur von mindestens 0,65, vorzugsweise größer gleich 0,70 aufweist.
- 8. Projektionsobjektiv nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß alle Linsen aus dem gleichen Material bestehen.
 - 9. Projektionsobjektiv nach Anspruch 8, dadurch gekennzeichnet, daß es als reines Quarzglas-Objektiv aufgebaut ist.
- 20 10. Projektionsobjektiv nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß die Linsen aus zwei verschiedenen Materialien bestehen.
 - 11. Projektionsobjektiv nach mindestens einem der Ansprüche 1 bis 7 und/oder 10, dadurch gekennzeichnet, daß es als teilachromatisiertes Quarzglas/Kalziumfluorid-Objektiv, insbesondere für 193 nm Wellenlänge, aufgebaut ist.

25

- 12. Projektionsobjektiv nach mindestens einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß vor und nach der Aperturblende (AS) jeweils mindestens eine (L21, L24) der zwei nächsten Linsen (L21, L22; L23, L24) negative Brechkraft hat
- 30 13. Projektionsobjektiv nach mindestens einem der Ansprüche 2 und 5 bis 12, dadurch gekennzeichnet, daß angrenzend an die mindestens eine der zwei nächsten Linsen vor und/oder nach der Aperturblende mit negativer Brechkraft ein sphärisch überkorrigierender Luftraum angeordnet ist.
- 14. Projektionsobjektiv nach mindestens einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß von den objektseitig ersten drei Linsen zwei negative Brechkraft aufweisen, vorzugsweise in -+- oder --+ Anordnung.
 - 15. Projektionsbelichtungsanlage der Mikrolithographie, dadurch gekennzeichnet, daß sie ein Projektionsobjektiv nach mindestens einem der Ansprüche 1 bis 14 enthält.
- 40 16. Verlahren zur Herstellung mikrostrukturierter Bauteile, bei dem ein mit einer lichtempfindlichen Schicht versehenes Substrat mittels einer Maske und einer Projektionsbelichtungsanlage nach Anspruch 13 belichtet wird und insbesondere nach Entwickeln der lichtempfindlichen Schicht entsprechend einem aufder Maske enthaltenen Muster strukturiert wird.

45

50

FIG. 7a

FIG.7b

FIG. 7c

