Calvin Passmore

A02107892

ECE 5420

Lab Optoelectronics

DC Operating Point: Transmit Side

DC Operating Point: Receive Side

$$I_PH = 12 uA$$

Vy = 3.7 v

Minimum Signal Frequency

Transformation

Showing the transformation of the circuit to small signal.

High-pass filter

$$$$ H(s) = sRC/(1 + sRC) $$$$

where
$$R = R_{sig}(R_1 + r_d) + R_1r_d \cdot R_1 + r_d$$

$$$$$
 H(s) = {sC (R1 || rd) \over 1 + sC ({R_{sig} R_1 + R_{sig} r_d + R_1 r_d})\over R_1 + r_d})}\$\$

Low-Frequency Cutoff

$$f_L = \{1 \setminus 2 \in RC\}$$

where
$$R = \ R_{sig}(R_1 + rd) + R_1 r_d \vee R_1 + r_d$$

$$f_L = \{1 \cdot C\{(R_{sig}(R_1 + r_d) + R_1 \cdot r_d) \cdot C\{(R_{sig}(R_1 + r_d) + R_1 \cdot r_d) \}$$

$$f_L = \{R_1 + r_d \cdot C[R_{sig}(R1 + rd) + R1rd]\}$$

$$R1 >> rd$$
\$, so $R_1 + r_d \sim R_1$ \$

$$f_L \exp C(R_{sig} + rd)$$

\$ C = 1\mu F\$

$$R_{sig} = 100k\Omega$$

\$ r_d = 25\Omega\$

fL = 1.6 Hz

Maximum Signal Frequency

 $$V_R = 3.7 \times C_j = 26 pF$

 $f_H = {1 \over 2\pi RC}$ \$\$ $f_H = {1 \over 2\pi RC} + rd)} = 1.84 Hz$$$

Signal Distortion: Forward Bias LED

Forward Bias current at 0.05 v

Forward Bias current at 0.05 v

MatLab Data

>> plot_signal_spectrum(0.02)

THD: 17.776924% SNDR: 14.524570 dB

>> plot_signal_spectrum(0.01)

THD: 9.486085% SNDR: 20.388633 dB

>> plot_signal_spectrum(0.005)

THD: 4.997734% SNDR: 26.366854 dB

