Übungsblatt 5

Abgabefrist: 05. Juli 2024 um 10:00 Uhr

Aufgabe 1 Es seien X ein topologischer Raum und $f:S^1\to X$ stetig. Man zeige, dass die folgenden Aussagen äquivalent sind:

- 1. f ist homotop zu einer konstanten Abbildung.
- 2. f lässt sich stetig auf D^2 fortsetzen.

 $\bf Aufgabe~2$ Zeigen Sie, dass die Kreislinie S^1 und das Möbiusband homotopie
äquivalent sind.

Aufgabe 3 Es seien (X, x_0) und (Y, y_0) punktierte topologische Räume. Beweisen Sie:

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

Aufgabe 4 Sei M ein Möbiusband und wähle einen Randpunkt $x \in \delta M$. Zeigen Sie:

- 1. Es gibt zwei homotope Schleifen $\gamma_1 \cong \gamma_2$ rel $\{0,1\}$ in M mit $\gamma_i(a) = x$ für $a \in \{0,1\}$, sodass $\gamma_1 \bullet \gamma_2$ homotop zu dem Weg genau einmal entlang des Randes δM ist.
- 2. Der Rand δM ist kein Deformationsretrakt von M.

Hinweis: Sie dürfen für Teil b die in der Vorlesung genannte (aber noch nicht bewiesene) Tatsache benutzen, dass $\pi_1(S^1) = \mathbb{Z}$ ist und $\pi_1(S^1)$ durch den einfachen Weg entlang des Kreises erzeugt wird.

Bonusaufgabe

Nachdem wir uns auf dem dritten Übungsblatt politisch mit der Hufeisentheorie¹ auseinander gesetzt haben, wollen wir dieses Mal (topologisch) zeigen, dass es kein faires Wahlsystem gibt:

Ein Wahlsystem ist eine Abbildung φ , die aus n Stimmen $P_1, \ldots, P_n \in \mathcal{P}$ ein Wahlergebnis $P \in \mathcal{P}$ ermittelt. Dabei modellieren wir den Raum der politischen Orientierungen \mathcal{P} als zweidimensionale Vektoren der Länge eins², das heißt $\mathcal{P} = S^1$. Es ist also $\varphi : (S^1)^n \to S^1$. Ein faires Wahlsystem φ sollte nun die folgenden Eigenschaften besitzen.

- \bullet φ sollte stetig sein. Kleinste Änderungen am Abstimmungsverhalten sollten nur kleinste Änderungen am Ergebnis bewirken.
- Anonymität: Das Ergebnis sollte unabhängig davon sein, wer welche Stimme abgegeben hat. Mathematisch: Für jede Permutation $\sigma \in S_n$ ist $\varphi(P_1, \ldots, P_n) = \varphi(P_{\sigma(1)}, \ldots, P_{\sigma(n)})$.
- Einstimmigkeit: Wenn alle das gleiche wählen, sollte auch das das Wahlergebnis sein. Das heißt $\varphi(P,\ldots,P)=P.$

Für die Aufgabe nehmen wir nun der Einfachheit halber n=2 an. Zeigen Sie mit Aufgabe 4: Es gibt kein faires Wahlsystem.

¹der Einpunktkompaktifizierung des links-rechts Spektrums

²Falls Ihnen der *politische Kompass* etwas sagt, können Sie sich das so vorstellen.