CentraleSupelec 2018-2019 MSC DSBA / DATA SCIENCES Big Data Algorithms, Techniques and Platforms

# Distributed Computing with MapReduce and Hadoop: PageRank

Hugues Talbot & Céline Hudelot, professors.

## Plan

Page Rank Algorithm



# Page Rank: the origin

### Citation analysis in scientific litterature

- Example: "Miller (2001) has shown that physical activity alters the metabolism of estrogens."
- "Miller (2001)" can be seen as an hyperlink between two scientific articles.

Origin of the page rank: Pinsker and Narin, 1960s



## Page Rank: principle

- Web = oriented graph
- the links are important information
  - a link between two pages = a relation of relevance
  - the anchoring text of a link is a summary of the content of the targeted page: the anchoring text is used during indexation

page rank: an algorithm to compute weighted citations in the web

## PageRank: idea

- a guy doing a random walk in the web graph
  - ▶ It start from a random node (a random page)
  - A each step, he can go out the current page by following an out link (equiprobable)
- At a time, we reach a stationnary state which represents the probability to reach each visited page: this value is the Page Rank or steady state probability or long-term visit rate.
- Modeling as a Markov chain

The pages which are the most visited as the pages which have many in-links



## PageRank: idea



- Page rank PR of a page i = probability that the walker reaches i at a moment.
- Left figure : PR(A) = PR(B) + PR(C) + PR(D) (he will reach A if he reaches B, C or D in time i 1.
- Right figure :  $PR(C) = \frac{1}{2}PR(B) + \frac{1}{2}PR(D)$  (probability of the node B (or D) to go to C is  $\frac{1}{2}$ ).

4□ > 4□ > 4□ > 4□ > 4□ > 9

## Link analysis

## PageRank: Markov chain

- A Markov chain consists in n states and a transition matrix P of size
- a state = a page
- At each step, we are exactly on one page
- For  $1 \le i, j \le n$ , the element  $P_{ij}$  of the matrix represents the probability of j to be the next page considering that i is the current page.
- For all i,  $\sum_{i=1}^{n} P_{ij} = 1$







## Example: transition matrix

Let  $G = (g_{ij})$  be the transition matrix of the graph.

- $g_{ij} = 0$  if no link between i and the page j.
- $g_{ij} = \frac{1}{n_i}$  else with  $n_i$  the number of out-links of the page i.

```
dο
           d_1 d_2 d_3 d_4
         0.00
              1.00 0.00
    0.00
                          0.00
                                0.00
                                      0.00
         0.50
              0.50
                     0.00
                          0.00
   0.00
                                0.00
                                      0.00
   0.33
         0.00
               0.33
                     0.33
                          0.00
                                0.00
                                      0.00
   0.00
         0.00
              0.00
                     0.50
                          0.50
                                0.00
                                      0.00
   0.00
         0.00
              0.00
                     0.00
                          0.00
                                0.00
                                     1.00
              0.00
                          0.00
d_5
   0.00
         0.00
                     0.00
                                0.50
                                      0.50
   0.00
         0.00 0.00
                     0.33
                          0.33 0.00
                                      0.33
d6
```

Stochastic matrix: each row has for sum the number 1.



## Consequences for the graph

- the page rank is the probability of the walker to be on the page d at a given time.
- What are the properties of the graph to have a well-defined page rank?
- An ergodic markov chain: i.e. each state can be reach from each other state.
- consequence : no dead ends. This is not the case of the web

# Page rank : dead ends



# Page rank: to solve the dead end problem

## Principle

- At each *dead end*, skip to a random page with the probability  $\frac{1}{N}$  (N number of nodes).
- At each other step :
  - Skip to a random page with a probability p
  - With the remaining probability 1-p chose one of the out-links of the page with equal probability
- p is the teleportation rate.
- it makes the web graph ergodic
  - There is a path between any two nodes of the graph.

# Page rank :how to compute it?

#### Some formalisation

- A vector (row) of probability  $\vec{x} = (x_1, ... x_n)$  gives the position of the walker at a time
- We consider that the walker is at the position i with the probability  $x_i$
- Exemple 1 : ( 0 0 0 ... 1 ... 0 0 0 ) 1 2 3 ... i ... N-2 N-1 N
- Exemple 2:

  ( 0.05 0.01 0.0 ... 0.2 ... 0.01 0.05 0.03 )

  1 2 3 ... i ... N-2 N-1 N
- We have  $\sum x_i = 1$
- How to go to the next step?



## Page rank :how to compute it?

- We use the transition matrix which row i informs on where to go after node i
- Next step :  $\vec{x}P$
- We have  $\vec{\pi} = (\pi_1, ... \pi_n)$  probability vector with  $\pi_i$  the page rank of page i.
- We search for  $\vec{\pi} = \vec{\pi} P$  (steady state)



# Steady-state: Example

• PageRank / steady state of this example?



# Steady-state : Example

|                                                               |                                                            | $P_t(d_2)$ |                                |                 |  |  |  |  |  |  |
|---------------------------------------------------------------|------------------------------------------------------------|------------|--------------------------------|-----------------|--|--|--|--|--|--|
|                                                               |                                                            |            | $P_{11} = 0.25  P_{21} = 0.25$ | $P_{12} = 0.75$ |  |  |  |  |  |  |
|                                                               |                                                            |            | $P_{21} = 0.25$                | $P_{22} = 0.75$ |  |  |  |  |  |  |
|                                                               |                                                            |            | 0.25                           |                 |  |  |  |  |  |  |
| $t_1$                                                         | 0.25                                                       | 0.75       | (conver                        | rgence)         |  |  |  |  |  |  |
| PageRank vector = $\vec{\pi} = (\pi_1, \pi_2) = (0.25, 0.75)$ |                                                            |            |                                |                 |  |  |  |  |  |  |
| $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$    |                                                            |            |                                |                 |  |  |  |  |  |  |
| $P_t(c)$                                                      | $P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$ |            |                                |                 |  |  |  |  |  |  |



# Page rank computation

## The power approach

- We start by an uniform distribution  $\vec{x}$
- After 1 step, we are in  $\vec{x}P$
- After 2 steps, we are in n  $\vec{x}P^2$
- ...
- We multiply  $\vec{x}$  by power of P until a stationary state is reached.

#### Power method.

# Page rank computation

## The power method

• With two nodes : 
$$\vec{x} = (0.5, 0.5), P = \begin{pmatrix} 0.25 & 0.75 \\ 0.25 & 0.75 \end{pmatrix}$$

- $\vec{x}P = (0.25, 0.75)$
- $\vec{x}P^2 = (0.25, 0.75)$
- Convergence from the first iteration



# Example



We have for page rank 0.25 for  $d_1$  and 0.75 for  $d_2$ .

# Page rank computation: the power method

|              | $P_t(d_1)$                                                    | $P_t(d_2)$ |                |                |                      |  |  |  |  |
|--------------|---------------------------------------------------------------|------------|----------------|----------------|----------------------|--|--|--|--|
|              |                                                               |            |                | $P_{12} = 0.9$ |                      |  |  |  |  |
|              |                                                               |            | $P_{21} = 0.3$ | $P_{22} = 0.7$ |                      |  |  |  |  |
| $t_0$        | 0                                                             | 1          | 0.3            | 0.7            | $=\vec{x}P$          |  |  |  |  |
| $t_1$        | 0.3                                                           | 0.7        | 0.24           | 0.76           | $=\vec{x}P^2$        |  |  |  |  |
| $t_2$        | 0.24                                                          | 0.76       | 0.252          | 0.748          | $=\vec{x}P^3$        |  |  |  |  |
| $t_3$        | 0.252                                                         | 0.748      | 0.2496         | 0.7504         | $=\vec{x}P^4$        |  |  |  |  |
|              |                                                               |            |                |                |                      |  |  |  |  |
| $t_{\infty}$ | 0.25                                                          | 0.75       | 0.25           | 0.75           | $=\vec{x}P^{\infty}$ |  |  |  |  |
| Pagel        | PageRank vector = $\vec{\pi} = (\pi_1, \pi_2) = (0.25, 0.75)$ |            |                |                |                      |  |  |  |  |

PageRank vector 
$$= \vec{\pi} = (\pi_1, \pi_2) = (0.25, 0.75)$$

$$P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$$

$$P_t(d_2) = P_{t-1}(d_1) * P_{12} + P_{t-1}(d_2) * P_{22}$$



# Other example





## Solution

|                                                             | $P_t(d_1)$                                                 | $P_t(d_2)$  |                   |                          |  |  |  |  |  |  |
|-------------------------------------------------------------|------------------------------------------------------------|-------------|-------------------|--------------------------|--|--|--|--|--|--|
|                                                             |                                                            |             | $P_{11} = 0.7$    | $P_{12} = 0.3$           |  |  |  |  |  |  |
|                                                             |                                                            |             | $P_{21} = 0.2$    | $P_{22} = 0.8$           |  |  |  |  |  |  |
| $t_0$                                                       | 0                                                          | 1           | 0.2               | 0.8                      |  |  |  |  |  |  |
| $t_1$                                                       | 0.2                                                        | 8.0         | 0.3               | 0.7                      |  |  |  |  |  |  |
| $t_2$                                                       | 0.3                                                        | 0.7         | 0.35              | 0.65                     |  |  |  |  |  |  |
| $t_3$                                                       | 0.35                                                       | 0.65        | 0.375             | 0.625                    |  |  |  |  |  |  |
|                                                             |                                                            |             |                   |                          |  |  |  |  |  |  |
| $t_{\infty}$                                                | 0.4                                                        | 0.6         | 0.4               | 0.6                      |  |  |  |  |  |  |
| PageRank vector $= \vec{\pi} = (\pi_1, \pi_2) = (0.4, 0.6)$ |                                                            |             |                   |                          |  |  |  |  |  |  |
| $P_t(d_1$                                                   | $P_t(d_1) = P_{t-1}(d_1) * P_{11} + P_{t-1}(d_2) * P_{21}$ |             |                   |                          |  |  |  |  |  |  |
| $P_t(d_2)$                                                  | $P_{t-1}$                                                  | $(d_1)*P_1$ | $_2+P_{t-1}(d_2)$ | * <i>P</i> <sub>22</sub> |  |  |  |  |  |  |



# Page Rank: in brief

## **Processing**

- Building of the matrix P
- Teleportation principle
- From the modified matrix, we can compute  $\vec{\pi}$
- $\pi_i$  is the page rank of the page i

## Page rank : teleportation

## Principle: building of the matrix

- From the adjacency matrix, we obtain the transition matrix
- ullet Teleportation : multiplication of the matrix by 1-lpha
- We add  $\frac{\alpha}{N}$  to the matrix to obtain P.
- We have  $R(u) = (1 \alpha) \sum_{v \in B_u} \frac{R(v)}{|N_v|} + \frac{\alpha}{N}$  with u, v some web pages,  $B_u$  the set of the pages that go to u,  $N_v$  the set of out-links from v

## Example



page rank of  $d_2$ ; page rank of  $d_6$ . Why?



## Example: adjacency matrix

## Example: transition matrix

|       | $u_0$ | $a_1$ | u <sub>2</sub> | $u_3$ | 4    | $u_5$ | 46   |
|-------|-------|-------|----------------|-------|------|-------|------|
| $d_0$ | 0.00  | 0.00  | 1.00           | 0.00  | 0.00 | 0.00  | 0.00 |
| $d_1$ | 0.00  | 0.50  | 0.50           | 0.00  | 0.00 | 0.00  | 0.00 |
| $d_2$ | 0.33  | 0.00  | 0.33           | 0.33  | 0.00 | 0.00  | 0.00 |
| $d_3$ | 0.00  | 0.00  | 0.00           | 0.50  | 0.50 | 0.00  | 0.00 |
| $d_4$ | 0.00  | 0.00  | 0.00           | 0.00  | 0.00 | 0.00  | 1.00 |
| $d_5$ | 0.00  | 0.00  | 0.00           | 0.00  | 0.00 | 0.50  | 0.50 |
| ds    | 0.00  | 0.00  | 0.00           | 0.33  | 0.33 | 0.00  | 0.33 |

## Page rank: teleportation

Principle : building of the matrix with lpha= 0.14

$$(1-\alpha)P + \frac{\alpha}{N}$$

| 0.02<br>0.02<br>0.31<br>0.02<br>0.02 | 0.02<br>0.45<br>0.02<br>0.02<br>0.02<br>0.02 | 0.88<br>0.45<br>0.31<br>0.02<br>0.02 | 0.02<br>0.02<br>0.31<br>0.45<br>0.02 | 0.02<br>0.02<br>0.02<br>0.45<br>0.02<br>0.02 | 0.02<br>0.02<br>0.02<br>0.02<br>0.02<br>0.02 | 0.02<br>0.02<br>0.02<br>0.02<br>0.88<br>0.45 |  |
|--------------------------------------|----------------------------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|----------------------------------------------|----------------------------------------------|--|
| 0.02                                 | 0.02                                         | 0.02                                 | 0.02                                 | 0.02                                         | 0.45                                         | 0.45                                         |  |
| 0.02                                 | 0.02                                         | 0.02                                 | 0.31                                 | 0.31                                         | 0.02                                         | 0.31                                         |  |



# Power method $\vec{x}P^k$

|       | $\vec{x}$ | $\vec{x}P^1$ | $\vec{x}P^2$ | $\vec{x}P^3$ | $\vec{x}P^4$ | $\vec{x}P^5$ | $\vec{x}P^6$ | $\vec{x}P^7$ | $\vec{x}P^8$ | $\vec{x}P^9$ | $\vec{x}P^{10}$ | $\vec{x}P^{11}$ | $\vec{x}P^{12}$ | $\vec{x}P^{13}$ |
|-------|-----------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|-----------------|-----------------|-----------------|-----------------|
| $d_0$ | 0.14      | 0.06         | 0.09         | 0.07         | 0.07         | 0.06         | 0.06         | 0.06         | 0.06         | 0.05         | 0.05            | 0.05            | 0.05            | 0.05            |
|       |           |              |              |              |              |              |              |              |              |              |                 | 0.04            |                 |                 |
| $d_2$ | 0.14      | 0.25         | 0.18         | 0.17         | 0.15         | 0.14         | 0.13         | 0.12         | 0.12         | 0.12         | 0.12            | 0.11            | 0.11            | 0.11            |
| $d_3$ | 0.14      | 0.16         | 0.23         | 0.24         | 0.24         | 0.24         | 0.24         | 0.25         | 0.25         | 0.25         | 0.25            | 0.25            | 0.25            | 0.25            |
| $d_4$ | 0.14      | 0.12         | 0.16         | 0.19         | 0.19         | 0.20         | 0.21         | 0.21         | 0.21         | 0.21         | 0.21            | 0.21            | 0.21            | 0.21            |
|       |           |              |              |              |              |              |              |              |              |              |                 | 0.04            |                 |                 |
| $d_6$ | 0.14      | 0.25         | 0.23         | 0.25         | 0.27         | 0.28         | 0.29         | 0.29         | 0.30         | 0.30         | 0.30            | 0.30            | 0.31            | 0.31            |

## Example



page rank of  $d_2$  j page rank of  $d_6$ 

# Page rank: from the web scale

## Some principles

- Sparse transition matrix : efficient representation of the matrix.
- Distributed computing, partition into blocks of the matrix.
- Google Pregel <sup>a</sup>, Apache Giraph <sup>b</sup>
- a. https://kowshik.github.io/JPregel/pregel\_paper.pdf
- b. http://giraph.apache.org/

## Page rank : some ressources

- Article of Sergey Brin and Lawrence Page : The Anatomy of a Large-Scale Hypertextual Web Search.
  - http://infolab.stanford.edu/pub/papers/google.pdf
- some web sites :
  - http://www.ams.org/samplings/feature-column/fcarc-pagerank
  - http://www.sirgroane.net/google-page-rank/
  - Page rank computing: http://www.webworkshop.net/pagerank\_calculator.php
- Some articles :
  - Kurt Bryan, Tanya Leise, The 25,000,000,000 eigenvector. The linear algebra behind Google. SIAM Review, 48 (3), 569-81. 2006 http://www.rose-hulman.edu/~bryan/google.html
  - ► Taher Haveliwala, Sepandar Kamvar, The second eigenvalue of the Google matrix. (http://kamvar.org/publications)

Page rank: with map reduce?

34 / 34