Advanced computability theory

Textbook: Chapter 6

Quines

- ► A **Quine** is a self-producing program
- ➤ A Quine takes no input (files, command-line, cin, etc) and outputs only its own source code

In C:

```
/* (formatted to fit on slide) */
char*s="char*s=%c%s%c;main(){printf(s,34,s,34);}";
main(){printf(s,34,s,34);}
In English:
```

In English:

Print out this sentence.

Can we build a TM to do this?

Kleene's Recursion Theorem

- ▶ By the same Kleene from section 1
- ▶ Allows any TM M to access its own description $\langle M \rangle$

The idea:

"Print the previous with quotes and then without" Print the previous with quotes and then without

Kleene Recursion pt. 2

Lemma: Computable printing. There exists a computable function $q: \Sigma^* \to \Sigma^*$ where, for any string w, q(w) is the description of a Turing machine P_w that prints out w and then halts.

Pf: The following TM Q computes q(w).

Q = "On input string w:

- 1. Construct the following TM P_w : $P_w =$ "On any input:
 - 1.1 Erase input
 - 1.2 Write w on the tape
 - 1.3 Halt."
- 2. Output $\langle P_w \rangle$."

The TM SELF

- SELF will be a Quine TM
- ▶ We will make it 2 parts: A and B
 - $ightharpoonup \langle SELF \rangle = \langle AB \rangle$
- ▶ A will print out $\langle B \rangle$ and B will print out $\langle A \rangle$
- ► A is easy! Just use $q(\langle B \rangle)$
 - ► A leaves $\langle B \rangle$ on the tape
- ► How do we create B?
 - We can't use q, or we would get a circulate definition!
- B can look at the contents of the tape as its input
- We already know $\langle A \rangle = q(\langle B \rangle)$, so we can compute $\langle A \rangle$ given only $\langle B \rangle$

SELF pt. 2

B = "On input $\langle M \rangle$:

- 1. Compute $q(\langle M \rangle)$ (the description of a TM that prints out the description of M)
- 2. Erase the tape
- 3. Write $q(\langle M \rangle) \langle M \rangle$ "

$$\langle SELF \rangle = q(\langle B \rangle) \langle B \rangle$$

Running SELF

- What happens if we run SELF?
- 1. Start with some input tape
- 2. Start running the TM $q(\langle B \rangle)$
 - 2.1 Erases tape
 - 2.2 Writes $\langle B \rangle$
 - 2.3 Halts
- 3. Start running the TM B on the contents of the tape
 - 3.1 The input $\langle M \rangle$ is $\langle B \rangle$!
 - 3.2 Computes $q(\langle B \rangle)$
 - 3.3 Erases the tape
 - 3.4 Writes $q(\langle B \rangle) \langle B \rangle$
 - 3.5 Halts
- 4. Halts
- ▶ The contents of the tape are now $q(\langle B \rangle) \langle B \rangle = \langle SELF \rangle$
- Self takes any input and prints its own description

Recursion theorem

Def: Kleene's recursion theorem. Let T be a TM that computes a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$. There is a TM R that computes some $r: \Sigma^* \to \Sigma^*$ where, for every w,

$$r(w) = t(\langle R \rangle, w)$$

A TM can always obtain its own description!

Recursion theorem pf

▶ Let
$$\langle R \rangle = \langle ABT \rangle$$

A = "On input w:

- 1. Compute $q(\langle BT \rangle)$
 - 2. Erase tape
- 3. Write $q(\langle BT \rangle)w$ "

$$B =$$
 "On input $q(\langle MH \rangle)w$:

- 1. Create the TM N:
 - N = "On input w:
 - 1.1 Compute $q(\langle MH \rangle)$
 - 1.2 Erase tape 1.3 Write $q(\langle MH \rangle)w''$
- 2. Let $\langle R \rangle = \langle NMH \rangle$
- 3. Simulate H on input $\langle R, w \rangle$ "

The Minimality problem

Def: For a TM M, M is **minimal** if there exist no TMs equivalent to M with a smaller description. Let

$$MIN_{TM} = \{M : M \text{ is a minimal TM}\}$$

Thm: MIN_{TM} is not Turing-recognizable.

The Minimality problem pt. 2

Pf: We will assume some enumerator E for MIN_{TM} exists and obtain a contradiction.

C = "On input w:

- 1. Obtain, via the recursion theorem, own description $\langle C \rangle$
- 2. Run E until it yields a TM D such that $|\langle C \rangle| < |\langle D \rangle|$. Since MIN_{TM} is infinite, this is guaranteed to happen
- 3. Simulate D on input w."

All items yielded by E are definitionally in MIN_{TM} . However, C simulates D and is thus equivalent to it. We know C is shorter than D, but D is minimal: **Contradiction**.

Decidability of logical theories

Is logic decidable? Given some statement, can we every know whether or not it is true?

Three logic problems of increasing difficulty:

- 1. $\forall q \exists p \forall x, y [p > q \land (x, y > 1 \rightarrow xy \neq p)]$
 - ► (Infinitely many primes exist: Proven by Euclid)
- 2. $\forall a, b, c, n [(a, b, c > 0 \land n > 2) \rightarrow a^n + b^n \neq c^n]$
 - ► (Fermat's last theorem: Only recently proven)
- 3. $\forall q \exists p \forall x, y [p > q \land (x, y > 1 \rightarrow (xy \neq p \land xy \neq p + 2))]$
 - ► (Twin prime conjecture: Unproven)

Formal definition of logic

Let the alphabet of logic be:

$$\{\land,\lor,\neg,(,),\forall,x,\exists,R_1,\cdots,R_k\}$$

- $ightharpoonup \land, \lor, \text{ and } \neg \text{ are } \textbf{Boolean operations}$
- "(" and ")" are the parenthesis
- ightharpoonup and \exists are the quantifiers
- x represents the infinite sets of variables
- $ightharpoonup R_1, \cdots, R_k$ denote **relations**

Def: A string ϕ is a **formula** if:

- 1. ϕ has the form $R_i(x_1,\ldots,x_j)$ or
- 2. ϕ has the form $\phi_1 \wedge \phi_2$ or $\phi_1 \vee \phi_2$ or $\neg \phi_1$, where ϕ_1 and ϕ_2 are formulas **or**
- 3. ϕ has the form $\exists x_i(\phi_1)$ or $\forall x_i(\phi_1)$, where ϕ_1 is a formula

Mathematical models and theories

- ► A formula is in **prenex normal form** iff all quantifiers occur at the beginning
- ► An unquantified variable is called a **free variable**
- ► A formula with no free variables is called a **sentence** or **statement**
- ▶ The **universe** is the set of values that variables may take
- ▶ A **model** \mathcal{M} is a tuple (U, P_1, \dots, P_k) , where U is the universe and P_1, \dots, P_k are the relations assigned to symbols R_1 through R_k
- ▶ The **theory of** \mathcal{M} , written $Th(\mathcal{M})$, is the set of all true sentences on model \mathcal{M}

Ex: $(\mathcal{N},+,\times)$ is a model where variables can take any value $\in \mathcal{N}$ and the relations + and \times can be used. Note: + corresponds to a relation $R_+(x_1,x_2,x_3) \iff (x_1+x_2=x_3)$, with a similar relation for \times .

Proving Gödel's incompleteness theorem

Def: Formal proof. The **formal proof** π of a statement ϕ uis a sequence of statements S_1, S_2, \ldots, S_l where $S_l = \phi$. Each statement must follow simply and directly from the previous statements.

Assume the following are true:

- 1. The correctness of a proof of a statement can be checked by a machine. Formally, $\{\langle \phi, \pi \rangle : \pi \text{ is a proof of } \phi\}$ is decidable
 - Given a proof, we can check if it implies a given statement
- 2. If a statement is provable, it is true

Thm 1: $Th(\mathcal{N}, +, \times)$ is Turing-recognizable.

Pf: Use the implied proof-checker from property 1 to enumerate the set of all proofs. If a given proof proves the statement in question, accept. This is a recognizer, but not a decider. End of proof.

▶ Corollary: There is an algorithm to decide if a given statement is provable. Let this algorithm be called P

Lemma 1.1: A_{TM} is reducible to $Th(\mathcal{N}, +, \times)$.

Pf: You can use + and \times to extract and encode symbols in very large integers such that they simulate the evolution of computation histories. Therefore, $Th(\mathcal{N},+,\times)$ is Turing-complete and therefore undecidable.

 Consider encoding a TM in binary, then representing binary as a series of additions and multiplications

Thm 2: Some (true) statement in $Th(\mathcal{N}, +, \times)$ is not provable.

Pf: We will assume all true statements are provable and derive an algorithm to decide $Th(\mathcal{N}, +, \times)$, a contradiction of lemma 1.1.

Take in some statement ϕ . Simulate P on both ϕ and $\neg \phi$. Since a proof exists for ϕ , one of these two instances will halt. Therefore, our system decides the truth value of ϕ (A_{TM}). Contradiction! End of proof.

Thm 3: The sentence $\psi_{\tt unprovable} =$ "this statement has no proof within the system" is true.

Pf: Let $\phi_{M,w}$ be the statement "TM M accepts input w". This is implied to exist for any TM M and input w by lemma 1.1.

We will construct the statement "This statement is not provable within the proof system" using the recursion theorem.

S = "On any input (including 0):

- 1. Obtain own description $\langle S \rangle$ via the recursion theorem
- 2. Construct the sentence $\psi_{\text{unprovable}} = \neg \exists c [\phi_{S,0}]$ using lemma 1.1. ('this TM never accepts 0')
 - If $\psi_{\tt unprovable}$ is true, this TM never accepts 0
- 3. Run P (the theorem prover) on $\psi_{\tt unprovable}$
- 4. If P accepts (there is a proof for $\psi_{unprovable}$), accept. If P halts and rejects (there is no proof for $\psi_{unprovable}$), reject."

$$S = \begin{cases} \text{always accept if there is a proof for } \psi_{\text{unprovable}} \\ \text{reject or loop if there is no proof for } \psi_{\text{unprovable}} \end{cases}$$
$$= \begin{cases} \text{accept if proof exists that } S \text{ never accepts } 0 \\ \text{reject or loop otherwise} \end{cases}$$

Run S on input 0

S must accept, reject, or loop forever on 0

- ▶ If S accepts 0, proof exists that S never accepts 0
 - ► Since all proven statements are true, this can't happen!
 - ► Therefore, this can never be the case
 - S must reject or loop on 0
- lacktriangle "S rejects or loops on 0" is the same as $\psi_{ exttt{unprovable}}$
 - Only happens if no proof exists
 - "This statement has no proof within the proof system"
- $lackbox \psi_{ exttt{unprovable}}$ being false causes a contradiction
 - ▶ Therefore, $\psi_{\mathtt{unprovable}}$ must be true
- We have used a more powerful proof system to prove that a less powerful proof system (Peano arithmetic) contains unprovable truths

Turing reducibility pt. 1

- Is mapping reducibility the best explanation? No!
- ► Consider: Could we prove that $\overline{A_{TM}}$ is undecidable by mapping reducibility?
 - ightharpoonup Remember, $\overline{A_{TM}}$ is not Turing-recognizable
 - ► Therefore, we can't even identify instances of it, let along map them!
- ► However, $\overline{A_{TM}}$ is intuitively reducible to A_{TM} and vice versa since a solution to one solves the other
- ➤ **Solution:** Oracle Turing Machines. An Oracle TM has a "magic oracle" decider that it can call without cost at any time
 - Assume the "oracle" is magic: It can decide even undecidable and unrecognizable languages

Turing reducibility pt. 2

Def: A **TM** M with access to a decider for **language** B is written M^B .

Ex: A TM T with access to a decider for A_{TM} would be written $T^{A_{TM}}$

Def: If M^B decides A, we say A is **decidable relative** to B. - Given a decider for B, we can decide A

Much more intuitive than mapping reducibility

Def: If *A* is decidable relative to *B*, then *A* is **Turing reducible** to *B*, written $A \leq_T B$.

Ex: $E_{TM} \leq_T A_{TM}$

Thm: $E_{TM} \leq_T A_{TM}$ ("given a decider for A_{TM} , we can decide E_{TM} ")

Pf: By construction. Let accepts (M, w) be the oracle procedure deciding A_{TM} .

```
def is_empty(M):  # Decides emptiness problem
  def T(_):  # Define a helper TM T
    for every string s: # Enumerate every possible string
       if accepts(M, s): # If M accepts this random string
            accept
  if accepts(T, ''):  # T is empty iff not M(s)
    reject
  else:
    accept
```

This decides A_{TM} . End of proof.

Ex: $A_{TM} \leq_T E_{TM}$

Thm: $A_{TM} \leq_T E_{TM}$ ("given a decider for E_{TM} , we can decide A_{TM} ")

Pf: By construction. Let $is_empty(M)$ be an **oracle** (not the fn from the previous: That would be circular).

```
def accepts(M, w): # Decides acceptance problem
 def T(x):
           # Helper TM
   if x == w:
     if M(w): # Simulates M on w
       accept
           # Rejects all non-w
   reject
 if is empty(T): # Is empty iff M rejects w
   reject
 else:
   accept
                  # Nonempty iff M accepts w
```

This decides A_{TM} . End of proof.

The *other* meaning of Turing-Equivalence

- ► $E_{TM} \leq_T A_{TM}$ and $A_{TM} \leq_T E_{TM}$
- ▶ In this case we say that E_{TM} and A_{TM} are **Turing-equivalent**
- ▶ Written $E_{TM} \equiv_T A_{TM}$

This is an equivalence relation

Not to be confused with the Turing-equivalence of a system S, where a TM can simulate S and vice versa.

A definition of information

- ▶ There is no singular definition of information
- ▶ One definition is the size of the minimal representation

$$A = 10101010101010101010$$

 $B = 101110010111111101000$

- ► *A* is just 01 10 times
- ▶ B has "more information" than A, since it doesn't appear to follow a pattern

Def: Minimal descriptions. Let x be a binary string. The **minimal description** of x, written d(x), is the shortest string $\langle M, w \rangle$ where TM M on input w halts with x on its tape. The **descriptive complexity** of x, written K(x), is

$$K(x) = |d(x)|$$

Note: x's descriptive complexity **is not** its length! It can be **longer!**

Compression

- ightharpoonup K(x) might be longer than x
- ► If it's shorter, we can treat it as the compressed version, running *M* on *w* to uncompress it

Def: Let x be a string. x is said to be c-compressible for some natural number c if

$$K(x) \leq |x| - c$$

That is, if $|\langle M, w \rangle| \leq |x| - c$ for minimal $\langle M, w \rangle$.

If x is not compressible by 1, we say it is **incompressible**.

Incompressible strings

Thm: There are incompressible strings of every length.

Pf: If a string x is compressible, there exists a description d(x) such that |d(x)| < |x|. Let n be any arbitrary integer.

There are 2^n binary string of length n: However, there are only $\sum_{i=1}^{n-1} 2^i = 2^n - 1$ descriptions of length < n. Therefore, there must exist at least one incompressible string of length n. End of proof.

What do incompressible strings look like?

- ▶ It can be shown that incompressible strings look like series of random coin tosses
- K is incomputable, so no examples exist
- ▶ If we had an example, we couldn't prove it was incompressable

Next up: Intro to complexity and asymptotic analysis

End of part 2 out of 3!

Notation	Common name	Limit test (note limit may not exist)
$f(n) \in \mathcal{O}(g(n))$	Asymptotic upper bound	$\lim_{x \to \infty} \left \frac{f(x)}{g(x)} \right < \infty$
$f(n) \in \mathrm{o}(g(n))$	Asymptotically negligible	$\lim_{x \to \infty} \left \frac{f(x)}{g(x)} \right = 0$
$f(n) \in \Omega(g(n))$	Asymptotic lower bound	$\lim_{x \to \infty} \left \frac{f(x)}{g(x)} \right > 0$
$f(n) \in \omega(g(n))$	Asymptotically dominant	$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \infty$
$f(n) \in \Theta(g(n))$	Asymptotically tight bound	$0 < \lim_{x \to \infty} \left \frac{f(x)}{g(x)} \right < \infty$