

IN THE CLAIMS:

1. (currently amended) An image generating system, comprising:

A a polygon direction judging means for judging a direction of a polygon constituting a three dimensional model, in relations relation to a viewpoint; and

A a contour generating means for shifting vertices of a first polygon that face a back side in relation to the viewpoint, in a direction of a normal, for generating a second polygon by connecting said vertices thus shifted, and for painting said second polygon with a color that is darker than a color of said first polygon;

wherein the normal for each of the vertices of the first polygon is determined as an average of normals for each of a plurality of surfaces of the first polygon that abuts the vertex.

2. (previously amended) The image generating system according to claim 1, wherein:

said contour generating means can generate said second polygon with a different quantity of shift for each three dimensional model.

3. (previously amended) The image generating system according to claim 1, wherein:

said contour generating means can paint said second polygon with a different color for each three dimensional model.

4. (previously amended) The image generating system according to claim 1, wherein:

said contour generating means can generate said second polygon with a smaller quantity of shift and with a color closer to the color of said first polygon, as the three dimensional model exists more distantly from the screen.

5. (previously amended) The image generating system according to claim 2, wherein:
said contour generating means can generate said second polygon with a smaller quantity of shift and with a color closer to the color of said first polygon, as the three dimensional model exists more distantly from the screen.

6. (previously amended) The image generating system according to claim 3, wherein:
said contour generating means can generate said second polygon with a smaller quantity of shift and with a color closer to the color of said first polygon, as the three dimensional model exists more distantly from the screen.

7. (currently amended) A method of generating an image, comprising steps of:
judging a direction of a polygon constituting a three dimensional model, in relation to a viewpoint; and

shifting vertices of a first polygon that face a back side in relation to the viewpoint, each in a direction of a normal, generating a second polygon by connecting said vertices thus shifted, and painting said second polygon with a color that is darker than a color of said first polygon;
wherein the normal for each of the vertices of the first polygon is determined as an average of normals for each surface of the first polygon that abuts the vertex.

8. (currently amended) A storage medium that stores an image generating program, wherein said program causes a computer, which has read said program, to execute processes of:

judging a direction of a polygon constituting a three dimensional model, in relation to a viewpoint; and

shifting vertices of a first polygon that face a back side in relation to the viewpoint, each in a direction of a normal, generating a second polygon by connecting said vertices thus shifted, and of painting said second polygon with a color that is darker than a color of said first polygon; wherein the normal for each of the vertices of the first polygon is determined as an average of normals for each of a plurality of surfaces of the first polygon that abuts the vertex.

9. (currently amended) A computer program for causing a computer, which has read said program, to execute processes of:

judging a direction of a polygon constituting a three dimensional model, in relation to a viewpoint; and

shifting vertices of a first polygon that face a back side in relation to the viewpoint, each in a direction of a normal, generating a second polygon by connecting said vertices thus shifted, and of painting said second polygon with a color that is darker than a color of said first polygon;

wherein the normal for each of the vertices of the first polygon is determined as an average of normals for each of a plurality of surfaces of the first polygon that abuts the vertex.

10. (previously presented) A method of generating an image according to claim 7, wherein:

said second polygon is generated with a different quantity of shift for each three dimensional model.

11. (previously presented) A method of generating an image according to claim 7, wherein:

said second polygon is generated with a different color for each three dimensional model.

12. (previously presented) A method of generating an image according to claim 7, wherein:

said second polygon is generated with a smaller quantity of shift and with a color closer to the color of said first polygon, as the three dimensional model exists more distantly from the screen.

13. (previously presented) A storage medium storing the computer program for generating images according to claim 8, wherein:

said second polygon is generated with a different quantity of shift for each three dimensional model.

14. (previously presented) A storage medium storing the computer program for generating images according to claim 8, wherein:

said second polygon is generated with a different color for each three dimensional model.

15. (previously presented) A storage medium storing the computer program for generating images according to claim 8, wherein:

said second polygon is generated with a smaller quantity of shift and with a color closer to the color of said first polygon, as the three dimensional model exists more distantly from the screen.

16. (previously presented) A computer program according to claim 9, wherein:

said second polygon is generated with a different quantity of shift for each three dimensional model.

17. (previously presented) A computer program according to claim 9, wherein:
said second polygon is generated with a different color for each three dimensional model.

18. (previously presented) A computer program according to claim 9, wherein:
said second polygon is generated with a smaller quantity of shift and with a color closer to the color of said first polygon, as the three dimensional model exists more distantly from the screen.