

浮力的应用

日期:	时间:	姓名:	
Date:	Time:	Name:	

初露锋芒

学习目标

- 1. 了解浮力的沉浮条件
- 2. 掌握浮力的应用

&

重难点

- 1. 了解浮力的沉浮条件(考试要求 B; 出题频率一般)
- 2. 掌握浮力的应用(考试要求 B; 出题频率一般)

根深蒂固

一、物体的沉浮条件

- 1、物体的浮沉应用:
- ①物体漂浮在水面上时, F_浮______O_物, ρ_物_______ρ_液, V_‡______V_物
- ②物体悬浮在水中上时, F_Ξ_____G_物, ρ_物______ρ_液, V_‡_____V_物
- ③物体沉底时, F_浮_____O_物, ρ_物______ρ_液, V_排_____V_物
- ④物体浸没下沉时, F_浮_____V_物, ρ_物______ν, V_‡_____V_物
- ⑤物体浸没上浮时, F_浮______O_物, ρ_物_______ρ_液, V_排______V_物

二、浮力的应用

- **2**、潜水艇:钢制的潜水艇是"空心的"。浸没时它受到的浮力______,通过对水舱充水和排水,达到改变 ,实现 。

3、密度计:密度计是用来测定液体密度的仪器。它根据漂浮时_______条件,浮力大小等于密度计自身重力大小, $\mathbf{F}_{\vec{r}} = \mathbf{p}_{\vec{w}} \mathbf{g} \mathbf{v}_{\#}$ 显然,______时,_____小,密度计露出部分大; _____小时,_____,密度计露出部分小。所以密度计上的刻度数是上面表示的密度数值_____,下面表示的密度数值_____,而且刻度是______的。

枝繁叶茂

一、浮力的沉浮条件

知识点一: 浮力的沉浮条件

【例 1】用弹簧测力计测出一个物体重为 4N, 然后将该物体浸没在水中, 这时弹簧测力计的示数变为 3N, 则该物体在水中受到的浮力是(

- A. 7N
- B. 4N C. 3N
- D. 1N

【例2】把一木块分别放入甲、乙、丙三种液体中,静止后木块在液体中所处的位置如图所示,则木块所 受浮力的大小关系为 ()

- A. 在甲液体中浮力最大 B. 在乙液体中浮力最大
- C. 在丙液体中浮力最大. D. 一样大

【例 3】如图所示,有一质量分布均匀的物体,漂浮在水面上有 1/3 的体积露出水面,将露出水面部分切 去后,剩余浸在水中的部分将

- A. 上浮
- B. 悬浮
- C. 下沉
- D. 无法确定

【例 4】质量相等的甲、乙、丙三个实心小球,放入水中后,甲球漂浮,乙球悬浮,丙球下沉,位置如图 所示,则 ()

- A. 三个小球所受的浮力是 $F_{\pi} < F_{Z} < F_{\pi}$
- B. 三个小球密度是 $\rho_{\text{\tiny H}} > \rho_{\text{\tiny Z}} > \rho_{\text{\tiny M}}$
- C. 三个小球的体积是 $F_{\parallel} < F_{Z} < F_{\Xi}$
- D. 三个小球所受的重力关系是 $G_{\parallel} = G_{Z} = G_{\Xi}$

【例 5】把质量相等的两块橡皮泥分别捏成实心球状和碗状,轻轻放到水面,静止之后,实心球橡皮泥沉 到容器底部,碗状橡皮泥漂浮在水面,如图所示,则它们所受浮力的大小关系是 (

- A. F>F 麻
- B. F ☆ < F スデi
- C. F_球=F_碗

二、浮力的应用

知识点一: 浮力知识应用

【例 1】如右图所示,一船在某水域作业时,将装满金属工具的大铁箱用绳子悬放入水。第一次放,因水太深,铁箱没触碰到水底,此时船的吃水线在 A 处。换个地方第二次再放,铁箱才接触到水底。下列说法正确的是

- A. 铁箱在船上时,船的吃水线在 A 处下方
- B. 铁箱接触到水底时,船的吃水线仍在 A 处
- C. 铁箱接触到水底时,船的吃水线在 A 处之下
- D. 铁箱接触到水底时,船的吃水线在 A 处之上

- A. $\rho_1 < \rho_2$, $F_1 < F_2$
- B. $\rho_1 < \rho_2$, $F_1 = F_2$
- C. $\rho_1 > \rho_2$, $F_1 > F_2$
- D. $\rho_1 > \rho_2$, $F_1 = F_2$

【例3】如图所示,水平桌面上有两个完全相同的鱼缸甲和乙,盛有适量的水,把一个橡皮泥做的小船放入乙后,小船处于漂浮状态,此时两鱼缸内的水面刚好相平.然后把它们分别放在台秤上,则台秤的示数

()

- A. 甲放上时大
- B. 乙放上时大
- C. 甲或乙放上一样大
- D. 无法判断

- A. 重力越大, 浮力越大
- B. 液体密度越大, 所受浮力越大
- C. 排开液体的重力越大, 浮力越大
- D. 物体在两种液体中受的浮力不等,排开液体的体积也不相等

【例 5】一同学在岸上最多只能搬得起质量是 30 kg 的鹅卵石。如果鹅卵石的密度是 $2.5 \times 10^3 kg/m^3$,则该同学在水中最多能搬得起质量是______kg 的鹅卵石(石头不露出水面)。这时石头受到的浮力是______N(ρ_{π} =1. $0 \times 10^3 kg/m^3$,取 g=10N/kg)。

知识点二:实验

【例2】某教师在"阿基米德原理"教学过程中,做了如下演示实验。

- (1) 在弹簧下端挂上小筒和金属块,记下弹簧伸长后指针位置 O,如图甲所示。
- (2)溢水杯中装满水,把金属块全部浸入溢水杯的水中,用烧杯收集排开的水,弹簧缩短,如图乙所示。
- (3)把烧杯中的水全倒入小筒中,弹簧指针又恢复到原来位置 O,如图丙所示。乙图的弹簧比甲图的弹簧缩短了,说明金属块受到 的作用,丙图弹簧指针又恢复到位置 O,说明______

随堂检测

1、在探究"影响浮力大小的因素"时,小琪做了一系列实验(实验装置及相关数据如图所示)。请回答以下问题:

- (1) 物体 A 在②中所受的浮力大小为_____牛;
- (3) 在图③中,若物体 A 完全浸没到盐水后,继续向下移动,则烧杯底部所受的液体压强会_____(填"变大"、"变小"或"不变")。
- 2、一个重 30N、体积为 0.002m³ 的物体用绳子悬挂着,如图所示. 现将物体浸没在烧杯的水中,物体受到的浮力是______N(g 取 10N/kg)。物体浸入水后,水对杯底的压强______(填"增大"、"不变"或"减小")。释放绳子后,物体将

3、如图某物块用细线系在弹簧测力计下,在空气中时示数是 15N,浸没在水中时示数是 5N,则此时物块受到水的浮力为_____N,物块的密度为_____kg/m³。(水的密度为 $1.0 \times 10^3 kg/m³$)

4、如图所示,甲、乙、丙是体积相同,形状不同的铝块、铁块和铜块,当它们浸没在水中时,它受到的浮力
是 () A. 甲最大 B. 乙最大 C. 丙最大 D. 一样大
5、将边长是 10cm 的实心正方体木块轻轻放入盛满水的溢水杯内,待木块静止时,从杯中溢出 0.6kg 水。(取 10N/kg) 求:(1) 木块受到的浮力。(2) 木块的密度
6、某同学在实验室里探究"影响浮力大小的因素"的实验,如图是其中的一次实验情景。根据图示可以知道
该同学这次操作的目的是 () (A\B 体积相同) A. 探究物体所受浮力大小与其浸入深度的关系 B. 说明物体所受浮力的大小跟排开液体的体积大小有关 C. 探究物体所受浮力大小与液体密度的关系 D. 验证阿基米德原理 F _评 =G _#
7、某容器装满水,轻轻放入一小球后,溢出 50g 水,则下列判断正确的是 () A. 小球的质量肯定小于 50g B. 小球的质量肯定等于 50g C. 若小球质量大于 50g,则小球的体积一定等于 50cm ³ D. 若小球质量等于 50g,则小球的体积一定大于 50cm ³
8、将一实心小物块轻轻放入装满水的烧杯中,物块漂浮在水面上,有 1/4 体积露出水面,从烧杯中溢出的 2 重为 1N。则物块漂浮时与未放入物块时相比较,烧杯中的水对烧杯底部的压力将(减小/不变/增大)若用与物块相同材料制成一个 1m³的实心物体,其质量为kg。
9、质量为 2kg 的木块,漂浮在水面上,有 4/5 的体积露出水面则木块所受的浮力为多少?木块的密度为多少?

10、小明利用弹簧测力计和水测量某种液体的密度的实验如图所示,则计算这种液体密度的表达式是:

11、如图所示,已知甲、乙两弹簧测力计的示数分别为 5N、4N,把甲测力计下移,使金属块刚好没入水中时, 甲的示数变成了 3N。则此时 ()

- A. 乙的示数为 9N
- B. 乙的示数为 5N
- C. 金属块受到的浮力大小为 2N D. 金属块受到的浮力大小为 3N

12、用手将一重为 5N 的物体全部压入水中,物体排开的水重 8N,此时物体受到的浮力为 N,放手后物 体将 (选填""上浮"、"下沉"或"悬浮"), 待物体静止时所受浮力为 N, 排开水的体积是 ____m³。

- 13、小玲将一块矿石挂在弹簧测力计下,然后又将此矿石浸没在水中,测力计两次示数分别如图(甲)、(乙) 所示。
- (1) 矿石受到浮力的大小为 F= N;
- (2) 矿石的密度 ρ =____kg/m³。

- 14、水平桌面上的烧杯内装有一定量的水,轻轻放入一个小球后,从烧杯中溢出 100g 的水,则下列判断正确 的是 ()

 - A. 小球所受浮力可能等于 1N B. 水对烧杯底的压强一定增大

 - C. 小球的质量可能小于 100g D. 小球的体积一定等于 100cm³
- 15、一个球, 先后在盛有不同液体的容器 A、B、C 和 D 中保持静止, 情况如图所示。容器内液体密度最大的是

瓜熟蒂落

- 1、如图所示,向两个质量可以忽略不计且完全相同的塑料瓶中装入密度为 ρ_A 和 ρ_B 的液体后密闭,把它分别放在盛有密度为 ρ_{\parallel} 、 $\rho_{\scriptscriptstyle Z}$ 两种液体的容器中,所受浮力分别为 F_{\parallel} 、 $F_{\scriptscriptstyle Z}$,二者露出液面的高度相等,下列判断正确的是
 - A. 由图可知: ρ_A>ρ_Ψ>ρ_Z
 - B. 若 $\rho_A = \rho_B$,则 $\rho_{\text{\tiny H}} > \rho_{\text{\tiny Z}}$
 - C. 若ρ_Ψ=ρ_Z,则ρ_A>ρ_B
 - D. 若 F _Ψ=F _Z,则ρ_Ψ>ρ_Z

- 2、(多选)如图所示,一个重 50N的金属球,在盛水的容器中静止,用弹簧弹簧测力计的示数为 30N。关于金属球的下列说法中,正确的是()
 - A. 金属球受到的浮力可能是 20N
 - B. 金属球受到两个力的作用
 - C. 金属球的密度可能是 2.5g/cm3
 - D. 金属球对容器底部的压力是 20N

- 3、小明利用一个烧杯、天平、水测出了不规则小石块的密度.请将他的步骤补充完整。
- (1) 把托盘天平放在水平台面上,将标尺上的游码移到零刻线处,调节天平右端的平衡螺母,使天平平衡;
 - (2) 用天平测量小石块的质量为 52g;
 - (3) 往烧杯中加入适量的水,把小石块浸没,在水面到达的位置做上标记;
 - (4) 取出小石块,测量烧杯和水的总质量为 122g;
 - (5) 往烧杯中加水,直到 ,再测出此时烧杯和水的总质量为 142g;
 - (6) 用密度公式计算出小石块的密度为 kg/m³
- 4、一个鸡蛋漂浮在装盐水的烧杯中,在慢慢往烧杯里注入清水的过程中 ()
 - A. 鸡蛋在露出部分越来越少的过程中受到的浮力变小
 - B. 鸡蛋在露出部分越来越少的过程中受到的浮力变大
 - C. 鸡蛋从悬浮到沉入烧杯底的过程中受到的浮力变小
 - D. 鸡蛋从悬浮到沉入烧杯底的过程中受到的浮力不变

5、我国的航母正按计划进行各项科研试验和训练.如图所示是中国航母"瓦良格"号训练时的图片.当飞机飞回航母后 ()

- A. 航母将浮起一些, 所受浮力减小
- B. 航母将沉下一些, 所受浮力增大
- C. 航母将沉下一些, 所受浮力减小
- D. 航母始终漂浮, 所受浮力不变

6、如图所示,将一只玩具青蛙放入水中,它能漂浮于水面;把它放入另一种液体中,它却沉入底部。则在这两种情况下这只玩具青蛙受到的浮力大小相比较 ()

- A. 在水中受到的浮力较大
- B. 在另一种液体中受到的浮力较大
- C. 受到的浮力一样大
- D. 无法比较浮力大小

10、在弹簧测力计下悬挂一个小球,示数为 4.2N,当把小球的一半体积浸在水中时,弹簧测力计的示数为 1.7N。已知 ρ_{π} =1.0×10³kg/m³,g 取 10N/kg,问:

- (1) 小球所受的浮力为多大?
- (2) 小球的总体积为多大?
- (3) 把小球从弹簧测力计取下, 浸没在水中后放手, 请通过计算判断小球为什么不能悬浮在水中。

11、在两个完全相同的容器 A 和 B 中分别装有等质量的水和酒精($\rho_* > \rho_{\text{aff}}$),现将两个完全相同的长方体木块甲和乙分别放到两种液体中,如图所示,则此时甲和乙长方体木块下表面所受的压强 P_{T} 、 P_{Z} ,以及 A 和 B 两容器底部所受的压力 F_{A} 、 F_{B} 的关系是

- A. $P_{\parallel} < P_{Z}$, $F_A = F_B$
- B. $P_{\parallel}=P_{\angle}$, $F_A>F_B$
- C. $P_{\parallel}>P_{Z}$, $F_{A}=F_{B}$
- D. $P_{\parallel}=P_{\perp}$, $F_{A}=F_{B}$

12、小吴同学为探究力之间的关系做了如图所示的实验。将弹簧测力计下端吊着的铝块逐渐浸入台秤上盛有水的烧杯中,直至刚没入水中(不接触容器,无水溢出)。在该过程中,下列有关弹簧测力计和台秤示数的说法 正确的是 ()

- A. 弹簧测力计的示数减小, 台秤示数不变
- B. 弹簧测力计的示数不变, 台秤示数也不变
- C. 弹簧测力计的示数减小, 台秤示数增大
- D. 弹簧测力计的示数不变, 台秤示数增大

13、在一根表面涂蜡的细木棍的一端绕着适量的铁丝,把它放到甲乙丙三种密度不同的液体中,木棍浸入液体里的情况如图所示,则木棍在三种液体里受到的浮力 F 的大小及三种液体密度 ρ 之间的关系,正确的是

()

- C. $F_{\parallel}=F_{\perp}=F_{\parallel}$, $\rho_{\parallel}>\rho_{\perp}>\rho_{\parallel}$
- D. F $_{\text{\tiny H}}\text{=F}$ $_{\text{\tiny Z}}\text{=F}$ $_{\text{\tiny B}}\text{,}$ $\rho_{\text{\tiny H}}\text{<}\rho_{\text{\tiny Z}}\text{<}\rho_{\text{\tiny B}}$

14、	某!	物体重为 0.5N	,把它放在	E盛满水的烧杯	下中,溢出	当重为 0.3	N 的水,	则它受到	的浮力()			
	Α.	一定为 0.3N	B. 🗏	可能为 0.2N	C	一定为 0.5	5N	D. 可能	为 0.4N				
15、	某	小组同学研究	圆柱体上 (或下) 表面受	到液体的	压力大小	与液体的	深度、密	度的关系	。实验时,该小组			
同学	把	一个高为 0.1 划	米的实心圆	柱体先后浸没	在甲、乙	两种液体	中(液体	甲的密度	5大于液体	云的密度),如图			
所元	; , j	并不断改变它原	近处的深度	。他们利用仪	器测得液	面到圆柱	体上表面	的距离及	圆柱体上	、下表面受到液体			
的圧	强,	,并利用公式。	求得上、下	表面受到液体	的压力,	记录数据	如表一、	表二所示	; .	1			
表-	•	液体甲								h			
液	面到	到上表面的距离	写h (米)	0	0.02	0.04	0.06	0.08	0.10	-二十			
上	表正	面受到液体的压	医力(牛)	0	0.20	0.40	0.60	0.80	1.00				
下	表面	面受到液体的压	医力(牛)	1.00	1.20	1.40	1.60	1.80	2.00				
表_		液体乙											
液	面至	削上表面的距离	写h (米)	0	0.02	0.04	0.06	0.08	0.10				
上表面受到液体的压力(牛)				0	0.16	0.32	0.48	0.64	0.80				
下表面受到液体的压力 (牛)				0.80	0.96	1.12	1.28	1.44	1.60				
(1)分	析		_ (条件), 可	得出的初	步结论是	· 在同种	液体中,	圆柱体上	- 表面受到液体的压			
力与	深月	度成正比。											
(2)分	析比较表一和	表二中的第	第三列(或第四	四列、或领	第五列••••	···)数据	及相关条	件,可得	出的初步结论是:			
							0						
(3	〕请	 一步综合分	析比较表一	一、表二中的数	数据及相差	关条件,	并归纳得日	出结论。					
(a)分	析比较表一(或表二) 「	中的第二行与第	第三行数 指	居及相关。	条件,可	初步得出:	·				
					0								
(b)分	析比较表一和	表二中的第	第二行与第三征	亍数据及 相	相关条件,	可初步	得出:					
					0								

- 16、水平地面上有一个质量为 1 千克、底面积为 1×10⁻² 米 ² 的薄壁圆柱形容器,容器内盛有质量为 4 千克的水。
- (1) 求水的体积 V
- (2) 求容器对地面的压强 p
- (3) 现将一物块浸没在水中,水未溢出,若容器对地面压强的增加量等于水对容器底部压强的增加量,求该物块的密度