

www.kapei-conseil.com

Clément LEFAURE Co-gérant / Directeur technique

clefaure@kapei-conseil.com 30, rue Pré-Gaudry 69007 Lyon

Business Intelligence (BI)

Modélisation Datavault

Master Informatique Science et Ingénierie des Données (SID)

Objectifs de la présentation

- > Rappeler les modélisations existantes
- > Présenter le concept de datavault
- > Etudier l'éventuel intérêt de ce nouveau paradigme
- > Donner les références pour en savoir plus

Modélisation « datavault »

> 1 - Présentation

> 2 - Les modèles existants

- Relationnel et « formes normales »
- Le multi-dimensionnel
- Objectifs du datavault

> 3 - Le datavault en quelques mots

- Les composants du datavault modeling
- > Architecture du datavault
- Etapes de chargement

> 4 - Conclusion

- > Est-ce vraiment nouveau ?
- > Avantages / Inconvénients
- Quand et pour quoi l'utiliser ?

1 - PRESENTATION DU DATAVAULT

Qu'est-ce que le « Datavault » ?

- Un modèle qui nous vient des Pays-Bas :
 - Dan Linstedt a conçu la modélisation Data Vault en 1990.
 - > Il l'a placé dans le domaine public en 2000
- > Il est utilisé par de grands groupes partout dans le monde (Volvo, IBM, HP, Deloitte, Dutsch police, Logica, Microsoft, Informatica, US universities... la liste est longue)
- > Il est conçu pour gour gérer les datawarehouses entreprises (i.e. Enterprise Datawarehouse ou EDW)

Dan Linstedt, le grand gourou

Pauvre mortel

2 - MODELES EXISTANTS

Le relationnel et les formes normales

- > La plupart des bases relationnelles sont modélisées à l'aide des formes normales:
 - > 1ère forme normale (1NF) :
 - Les tables ont des clés uniques
 - Elles contiennent des valeurs non répétitives (le cas contraire consiste à mettre une liste dans un seul attribut).
 - Les attributs sont constants dans le temps (utiliser par exemple la date de naissance plutôt que l'âge).
 - > 2ieme forme normale (2NF):
 - > Tout attribut ne composant pas un identifiant dépend d'un identifiant.
 - > 3ième forme normale (3NF) :
 - > Tout attribut ne composant pas un identifiant dépend directement d'un identifiant.
- Les autres formes normales ne sont guère utilisées

2 | Modèles existants

Le relationnel et les formes normales: 1NF

Table non normalisée (type "fichier Excel"):

Produit	Fournisseur
téléviseur	VIDEO SA, HITEK LTD

Première forme normale (1NF)

Produit	Fournisseur
téléviseur	VIDEO SA
téléviseur	HITEK LTD

2 | Modèles existants

Le relationnel et les formes normales: 2NF et 3NF

Deuxième forme normale (2NF):

Produit	Fournisseur	Adresse fournisseur
téléviseur	VIDEO SA	13 rue du cherche-midi
écran plat	VIDEO SA	13 rue du cherche-midi
téléviseur	HITEK LTD	25 Bond Street

Produit	Fournisseur
téléviseur	VIDEO SA
téléviseur	HITEK LTD
écran plat	VIDEO SA

Fournisseur	Adresse fournisseur
VIDEO SA	13 rue du cherche-midi
HITEK LTD	25 Bond Street

Troisième forme normale (3NF):

Fournisseur	Adresse fournisseur	Ville	Pays
VIDEO SA	13 rue du cherche-midi	PARIS	FRANCE
HITEK LTD	25 Bond Street	LONDON	ENGLAND

Fournisseur	Adresse fournisseur	Ville
VIDEO SA	13 rue du cherche-midi	PARIS
HITEK LTD	25 Bond Street	LONDON

Ville	Pays
PARIS	FRANCE
LONDON	ENGLAND

Schéma normalisé 3NF

Exemple classique (Commandes / lignes de commande)

2 | Modèles existants

Modèle relationnel PROS / CONS

> Avantages:

- Normalisé (3NF)
- > Pas de duplication de données
- > Utilisé pour les applications transactionnelles depuis 30 ans

- ➤ La structure de la donnée n'est pas dédiée à l'analyse
- > Il manque un historique du contexte
- > Les jointures multiples consomment beaucoup de ressources

2 | Modèles existants Modèle mu

Modèle multi-dimensionnel

Modèle multi-dimensionnel

Table de fait « Commandes »

(Ralph Kimball)

3

Business Intelligence (BI) - Clément LEFAURE

Modèle multi-dimensionnel PROS / CONS

Avantage:

- Modèle orienté analyse pour :
 - Comprendre des tendances
 - Prédire les futurs comportements et futurs besoins
- Possibilités d'analyse d'une grande profondeur d'historique
- > Temps de réponse intéressants (OLAP)

> Inconvénients:

- La dénormalisation et la duplication de données est autorisée: risque de problème de performance avec les chargements de données temps réel (ou pseudo temps réel)
- > A l'origine conçu pour analyser en se focalisant sur un seul domaine fonctionnel ("star schema"
 - + logique de "datamart")
- Difficultés avec les tables de faits évolutives ou à granularité variable

Datavault: un mix entre le relationnel et le dimensionnel

Objectifs du Datavault

"Data Vault is a **detail oriented**, **historical tracking** and uniquely linked set of **normalized tables** that support one or more functional areas of business."

- > Approche hybride 3NF / « Star schema »
- Modèle normalisée
- Avec historisation des données
- > Couvrant de multiples domaines fonctionnels de l'entreprise
- Venant de sources de données opérationnelles multiples (et tracking)
- > Avec gestion du temps réel (ou pseudo temps-réel)

3 – LE DATAVAULT EN QUELQUES MOTS

Composants du Datavault: Hubs

- > Les « hubs »
 - > Une simple table contenant une liste de clés business
 - Ces clés sont celles utilisées dans la source tous les jours:
 - > EX : numéro de facture, identifiant d'employé etc...
 - > Attributs types :
 - > Business key
 - Surrogate key
 - Load Date time stamp
 - Record source

Composants du Datavault: Liens

- Les « liens »
 - > Ils représentent la relation (la transaction) entre plusieurs composants business
 - Ils contiennent des clés business
 - Cela ressemble un peu aux "tables de faits" de Kimball
 - Attributs types :
 - > Surrogate Key
 - > Hub 1 Key to Hub N Key
 - Load Date Time Stamp
 - > Record Source

Composants du Datavault: Satellites

- Les « satellites »
 - Les satellites sont des attributs descriptifs des "Hubs"
 - > Toute cette information peut changer dans le temps
 - > Ressemble aux dimension de Type 2 de Kimball (SCD)
 - > Attributs types :
 - > Satellite Primary Key:
 - > Hub Or Link PK
 - > and Load Date Time Stamp
 - (Begin Date)
 - Satellite Optional PK:
 - Seq. Surrogate Num
 - > End Date (Optional)
 - > Record Source

DNK_CRROWRS

Vue macro sur un modèle Datavault

Data Vault - Hubs / Links / Satellites

Architecture du Datavault

Closed Loop Processing: Improves data quality, as the end-user begins to clean-up information in the source systems

OPTIMIZE

- Parallel Processing
- Maximize Resources
- · Optimize Throughput And Scalability
- Flexibility
- Information and Process. Tracability

DW Team Owns

- Indexes.
- Partitioning
- Restartability
- Parallelism
- Volume
- · Data Processing

Why Views?

- · Ability to control access
- Query Monitoring and Maintenance
- · Isolate Reports from Architecture Changes
- · Fast Re-use of Multiple DB Buffers
- · Layer of Abstraction
- · Logical Data Marts

Business User Owns

- Business Rules
- Accessibility
- Data Formatting
- Quality
- · Information (the data).

Etapes de chargement

Chargement des Hubs

Chargement des Liens

Chargement des satellites

4 - CONCLUSION

Le Datavault n'est pas

- Un système opérationnel ou un ERP
 - ➤ Le datavault n'est pas conçu pour gérer du transactionnel (peu d'updates)
- > Un cube OLAP
 - > En revanche des cubes ou des datamarts peuvent être clients du datavault
- > Un MDM
 - > Le datavault ne permet pas de gérer les données référentielles
 - > Il permet juste de gérer les sources multiples
 - ➤ Mais il peut aussi se situer en parallèle d'un MDM

KAPEI

4 | Condusion

En résumé...

- ➤ C'est une sorte d'ODS amélioré (« ODS++ »)
- > Proche de l'ancienne notion d' « infocentre »
- > Ou d'une base de données temporelle :
 - > Les données sont « time-stampées »
 - > Et tracées par source
- > Ce n'est pas si différent de ce que l'on fait déjà

Avantages du Datavault

- Datavault permet de construire un EDW (enterprise datawarehouse) d'une grande souplesse
- > Différents sources et types de données peuvent être intégrés facilement
- > Avec une traçabilité complète des données
- > Ses techniques de modélisation permettent de supporter vraiment du "temps réel"
- > Permet d'intégrer facilement des domaines fonctionnels très divers
- Son architecture évolutive garantie

En doublant les capacité hardware on diminue par deux le temps de restitution !

Inconvénients du Datavault

- > Plus difficile à maintenir qu'un schéma en étoile
 - ➤ Il est possible de développer un « framework » pour automatiser la maintenance (voir le site pour plus d'info)
- La création du modèle est assez couteuse en temps et énergie et requiert de bonnes compétences en modélisation
- Relativement peu d'experts à l'heure actuelle comparé aux autres méthodologies

Quand et pour quoi utiliser le Datavault ?

- > Pour construire un datawarehouse entreprise centralisé:
 - Besoin de temps réel
 - Multiples sources de données contradictoires
 - > Forte évolutivité des données
- Pour s'appuyer sur une méthodologie et éviter "réinventer la roue"
 - > Si les problématiques ont déjà été étudiées, autant réutiliser l'existant
 - Possibilité de piocher les bonnes idées "à la carte"
- > Pour s'en servir de caution méthodologique :
 - > Pour rassurer client et consultant

Annexes

Bibliographie et crédits

- > Le site officiel :
 - http://danlinstedt.com/

- Wikipédia:
 - http://en.wikipedia.org/wiki/Data Vault Modeling
- ➤ Datavault Academy :
 - https://www.youtube.com/user/DataVaultAcademy

KAPEI

Annexes

Quizz

- Que veut dire le « vault » de datavault ?
- Le datavault est une base relationnelle. Vrai ou faux ?
- Une modélisation en datavault permet-il de minimiser le volume d'une base de données ?
- Modéliser en datavault permet de réduire le temps d'analyse en phase de conception.
 Vrai ou faux ?
- Le datavault est-il apparut avant le décisionnel ?
- Doit-on développer un datavault par domaine métier?
- BONUS: Quand doit-on passer en datavault ?

A retrouver sur Kahoot.com