2017 年普通高等学校招生全国统一考试

理科数学

注意事项:

- 1. 答卷前, 考生务必将自己的姓名和准考证号填写在答题卡上。
- 2. 回答选择题时, 选出每小题答案后, 用铅笔把答题卡对应题目的答案标号涂黑。如需改动, 用橡皮擦干净 后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。
- 3. 考试结束后,将本试卷和答题卡一并交回。请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考 证号与您本人是否相符。
- 一、选择题:本大题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一项是符合题目要求
- 1. 已知集合 $A = \{(x,y)|x^2+y^2=1\}$, $B = \{(x,y)|y=x\}$, 则 $A \cap B$ 中元素的个数为

A. 3

D. 0

2. 设复数 z 满足 (1+i)z = 2i, 则 |z| =

3. 某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间 月接待游客量(单位:万人)的数据,绘制了下面的折线图.

根据该折线图,下列结论错误的是

- A. 月接待游客量逐月增加
- B. 年接待游客量逐年增加
- C. 各年的月接待游客量高峰期大致在 7.8 月份
- D. 各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳
- 4. $(x+y)(2x-y)^5$ 的展开式中 x^3y^3 的系数为

B. -40

C. 40

5. 已知双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ (a > 0, b > 0) 的一条渐近线方程为 $y = \frac{\sqrt{5}}{2}x$, 且与椭圆 $\frac{x^2}{12} + \frac{y^2}{3} = 1$

C. $\frac{x^2}{5} - \frac{y^2}{4} = 1$ D. $\frac{x^2}{4} - \frac{y^2}{3} = 1$

6. 设函数 $f(x) = \cos\left(x + \frac{\pi}{3}\right)$, 则下列结论错误的是

A. f(x) 的一个周期为 -2π

B. y = f(x) 的图像关于直线 $x = \frac{8\pi}{3}$ 对称

C. $f(x+\pi)$ 的一个零点为 $x=\frac{\pi}{6}$

D. f(x) 在 $\left(\frac{\pi}{2},\pi\right)$ 单调递减

理科数学试题 第1页 (共4页)

7. 执行右面的程序框图,为使输出S的值小于91,则 输入的正整数 N 的最小值为

A. 5

B. 4

C. 3

D. 2

8. 已知圆柱的高为 1, 它的两个底面的圆周在直径为 2 的同一个球的球面上, 则该圆柱的体积为

D. 0

9. 等差数列的首项为 1, 公差不为 0. 若 a_2 , a_3 , a_6 成等比数列,则前 6 项的和为

B. -3

C. 3

10. 已知椭圆 $C: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$,的左、右顶点分别为 A_1, A_2 ,且以线段 A_1A_2 为直径的圆与直线 bx - ay + 2ab = 0相切,则 C的离心率为

11. 已知函数 $f(x) = x^2 - 2x + a(e^{x-1} + e^{-x+1})$ 有唯一零点,则 $a = x^2 - 2x + a(e^{x-1} + e^{-x+1})$

D. 1

12. 在矩形 ABCD 中, AB=1, AD=2, 动点 P 在以点 C 为圆心且与 BD 相切的圆上.

 $\vec{A}\vec{AP} = \lambda \vec{AB} + \mu \vec{AD}$, 则 $\lambda + \mu$ 的最大值为

A. 3

B. $2\sqrt{2}$

C. $\sqrt{5}$

D. 2

- 二、填空题:本题共4小题,每小题5分,共20分。
- 13. 若 x, y 满足约束条件 $\{x+y-2 \le 0, , 则 z = 3x 4y$ 的最小值为 _
- 15. 设函数 $\begin{cases} x+1, & x \leq 1 \\ 2^x, & x>0 \end{cases}$ 则满足的 $f(x) + f(x-\frac{1}{2}) > 1$ 的 x 取值范围是
- 16. a, b 为空间中两条互相垂直的直线,等腰直角三角形 ABC 的直角边 AC 所在直线与 a, b 都垂直,斜边 AB以直线 AC 为旋转轴旋转, 有下列结论:
 - ① 当直线 AB 与 a 成 60° 角时,AB 与 b 成 30° 角;
 - ② 当直线 AB 与 a 成 60° 角时, AB 与 b 成 60° 角;
 - ③ 直线 AB 与 a 所称角的最小值为 45° ;
 - ④ 直线 AB 与 a 所称角的最小值为 60° ;

其中正确的是 (填写所有正确结论的编号)

- 三、解答题: 共 70 分。解答应写出文字说明、证明过程或演算步骤。第 $17 \sim 21$ 题为必考题,每个试题考生都必须作答。第 22×23 题为选考题,考生根据要求作答。
 - (一) 必考题: 60分。
- 17. (12分)

 $\triangle ABC$ 的内角 A, B, C 的对边分别为 a, b, c, 已知 $\sin A + \sqrt{3}\cos A = 0$, $a = 2\sqrt{7}$, b = 2.

- (1) 求 c;
- (2) 设 D 为 BC 边上一点,且 $AD \perp AC$,求 $\triangle ABD$ 的面积.
- 18. (12分)

某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶 4 元,售价每瓶 6 元,未售出的酸奶降价处理,以每瓶 2 元的价格当天全部处学科网理完. 根据往年销售经验,每天需求量与当天最高气温(单位:°C)有关. 如果最高气温不低于 25,需求量为 500 瓶;如果最高气温位于区间 [25,30),需求量为 300 瓶;如果最高气温低于 20,需求量为 200 瓶. 为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:

最高气温	[10, 15)	[15,20)	[20, 25)	[25, 30)	[30, 35)	[35,40)
天数	2	16	36	25	7	4

以最高气温位于各区间的频率代替最高气温位于该区间的概率。

- (1) 求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;
- (2) 设六月份一天销售这种酸奶的利润为 Y (单位:元),当六月份这种酸奶一天的进货量 n (单位:瓶) 为多少时,Y 的数学期望达到最大值?
- 19. (12分)

如图,四面体 ABCD 中, $\triangle ABC$ 是正三角形, $\triangle ACD$ 是直角三角形, $\triangle ABD = \angle CBD$, AB = BD.

- (1) 证明: 平面 *ACD* ⊥ 平面 *ABC*;
- (2) 过 AC 的平面交 BD 于点 E,若平面 AEC 把四面体 ABCD 分成体积相等的两部分,求二面角 D-AE-C 的余弦值.

20. (12分)

已知抛物线 $C: y^2 = 2x$, 过点 (2,0) 的直线 $l \in C = A$, B 两点,圆 M 是以线段 AB 为直径的圆.

- (1) 证明: 坐标原点 O 在圆 M 上;
- (2) 设圆 M 过点 P(4,-2), 求直线 l 与圆 M 的方程.
- 21. (12分)

已知函数 $f(x) = x - 1 - a \ln x$.

- (1) 若 $f(x) \ge 0$, 求 a 的值;
- (2) 设 m 为整数,且对于任意正整数 n, $(1+\frac{1}{2})(1+\frac{1}{22})\cdots(1+\frac{1}{2n}) < m$, 求 m 最小值.

- (二) 选考题: 共 10 分。请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分。
- 22. [选修 44: 坐标系与参数方程] (10 分)

在直角坐标系 xOy 中,直线 l_1 的参数方程为 $\begin{cases} x=2+t, \\ y=kt, \end{cases}$ (t 为参数),直线 l_2 的参数方程为 $\begin{cases} x=-2+m \\ y=\frac{m}{k}, \end{cases}$ (m 为参数),设 l_1 与 l_2 的交点为 P,当 k 变化时,P 的轨迹为曲线 C.

- (1) 写出 C 的普通方程;
- (2) 以坐标原点为极点, x 轴正半轴为极轴建立极坐标系, 设 l_3 : $\rho(\cos\theta + \sin\theta) \sqrt{2} = 0$, M 为 l_3 与 C 的交点, 求 M 的极径.
- 23. [选修 4-5: 不等式选讲] (10 分)

已知函数 f(x) = |x+1| - |x-2|.

- (1) 求不等式 $f(x) \ge 1$ 的解集;
- (2) 若不等式 $f(x) \ge x^2 x + m$ 的解集非空,求 m 的取值范围.