Processo de Poisson

Propriedades, resultados e generalizações

Partição do processo de Poisson

Partição do processo de Poisson

Seja $N = \{N(t), \ t \ge 0\}$ um processo de Poisson com taxa (intensidade) θ .

Considere que cada evento do processo é classificado em tipo A ou B com probabilidades p e 1-p (0), respectivamente; e cada classificação é independente uma da outra.

Então o número X(t) de ocorrências do tipo A e o número Y(t) do tipo B, até o instante t, são processos de Poisson com intensidades θp e $\theta(1-p)$, respectivamente.

Além disso, os processos ${\bf X} = \{X(t), \ t \geq 0\}$ e ${\bf Y} = \{Y(t), \ t \geq 0\}$ são independentes.

Prova na lousa (via resolução do exemplo a seguir)

Exemplo (Exercício 4 da Lista 05)

Num intervalo de tempo (0,t], o número de partículas radioativas N(t) emitidas por um reator segue um Processo de Poisson com taxa θ .

Cada partícula é classificada, independente das outras partículas, como sendo do tipo α ou do tipo β , com probabilidade p e 1-p, respectivamente.

Denote por X(t) o número de partículas do tipo α e por Y(t) o número de partículas do tipo β , de modo que N(t)=X(t)+Y(t).

Para todo t > 0,

- (a) Encontre a distribução de probabilidade de X(t).
- (b) Encontre a distribução de probabilidade de Y(t).
- (c) Mostre que X(t) e Y(t) são independentes.

Esse caso é similar ao problema dos ovos e do inseto.

Superposição ou soma de Processos de Poisson independentes

Superposição de Processos de Poisson Independentes

Considere

 $N_1 = \{N_1(t), t \ge 0\}$ um processo de Poisson com taxa λ_1 ;

 ${m N_2}=\{N_2(t),\;t\geq 0\}$ um processo de Poisson com taxa λ_2 tais que

 N_1 e N_2 sejam independentes.

Então o processo $\{N(t),\;t\geq 0\}$ definido por

$$N(t) = N_1(t) + N_2(t)$$

é um processo de Poisson com taxa $\lambda = \lambda_1 + \lambda_2$.

Prova e exemplo: Exercício 09 - Lista 05

Processo de Poisson e distribuição UNIFORME

Exemplo - Exercício 7 - Lista 5

Considere um processo de Poisson com taxa λ .

Dado que houve exatamente 1 (uma) ocorrência do processo até o instante t, encontre a distribução de probabilidade do tempo de ocorrência, isto é, encontre a distribução condicional de T_1 dado que N(t)=1.

Interprete verbalmente o resultado.

Resolução na lousa

Interpretação: Fixado um intervalo de tempo (0,t] e que nesse intervalo houve exatamente uma ocorrência, o instante de ocorrência é uniformemente distribuído em (0,t].

A generalização desse resultado para mais que uma ocorrência é verdadeira.

Processo de Poisson e distribuição UNIFORME

Teorema

Sejam S_1, S_2, \ldots os tempos/instantes de ocorrências de um Processo de Poisson de taxa $\lambda, \lambda > 0$.

Condicionado a que N(t)=n, a função de densidade conjunta de S_1,S_2,\ldots,S_n é dada por

$$f_{S_1, \dots, S_n \mid N(t) = n}(s_1, \dots, s_n \mid N(t) = n) = \frac{n!}{t^n} \text{ para } 0 < s_1 < \dots < s_n \le t$$

que é a f.d.p. conjunta das estatísticas de ordem de n variáveis aleatórias independentes com distribuição ${\bf Uniforme}(0,t].$

A generalização desse resultado para \mathbb{R}^2 ou \mathbb{R}^3 é válida.

6/10

Generalizações do Processo de Poisson

Há várias generalizações do processo de Poisson:

- Processo de Poisson não-homogêneo
 - → A generalização é na taxa/intensidade do processo.
- Processo de Poisson no espaço
 - \rightarrow Em vez de considerarmos ocorrências por intervalo de tempo (contido em \mathbb{R}^1), consideramos o número de ocorrências num subconjunto de \mathbb{R}^d (em geral, d=2 ou 3).
- Processo de Poisson composto
 - → Soma aleatória de variáveis aleatórias.

Processo de Poisson Não-Homogêneo

Um processo de Poisson não-homogêneo com função intensidade não negativa $\lambda(\cdot)$, é um processo de contagem ${\bf N}=\{N(t);t\geq 0\}$ assumindo valores em $S=\{0,1,2,\ldots\}$ tal que

- (a) N(0) = 0;
- (b) o processo N tem incrementos independentes;

(c)

$$N(t) - N(s) \sim \mbox{ Poisson } \left(\int_s^t \lambda(u) du \right) \; , \label{eq:normalization}$$

ou equivalentemente na definição A,

$$P(N(t+h)-N(t)=1) = \int_{t}^{t+h} \lambda(u)du + o(h) \approx \lambda(t) \cdot h, \quad h \text{ pequeno}$$

A condição (c) acima implica que os incrementos não são mais estacionários, pois dependem tanto do instante em que se encontram quando do comprimento do intervalo de tempo em questão.

Processo de Poisson no Espaço

O processo de Poisson no espaço $N=\{N(B),\ B\subset I\!\!R^d\}$, com N(B) representando o número de ocorrências de um evento em B, satisfaz

- (a) $N(\emptyset) = 0$;
- (b) o processo N tem incrementos independentes; isto é, se B_1, B_2, \ldots, B_k são disjuntos ($B_i \cap B_j = \emptyset$ para $i \neq j$), então $N(B_1), N(B_2), \ldots, N(B_k)$ são independentes;
- (c) $N(B_i)$ tem distribuição de Poisson com parâmetro $\lambda(B_i)$, $i=0,1,2,\ldots,k$. No caso homogêneo, $\lambda(B_i)=\lambda\cdot V(B_i)$, em que $V(B_i)$ é o volume de B_i .

A relação da distribuição **uniforme** com o processo de Poisson ainda vale para o caso espacial:

 \rightarrow exemplo (Feller-vol.1- Cap VI-§7): bombas em Londres na 2a.guerra mundial

Processo de Poisson Composto

Seja $N = \{N(t), t \ge 0\}$ um processo de Poisson com taxa λ .

Seja X_1,X_2,\ldots uma sequência de variáveis aleatórias independentes e identicamente distribuídas com função distribuição F_X e independente de ${\bf N}$.

Então o processo definido por

$$S_{N(t)} = \sum_{i=1}^{N(t)} = X_1 + \dots + X_{N(t)}$$

é denominado Processo de Poisson Composto

10/10