STA3000F: Homework 2

Due: November 18, 2024, noon on Quercus

Q1: VC dimension of two-layer neural networks

Given a pair of integers m, d > 2, consider the following class of two-layer neural networks that map \mathbb{R}^d to binary labels

$$\mathcal{F} := \Big\{ x \mapsto \sigma \Big(\sum_{i=1}^m a_i \sigma(w_i^\top x) \Big) : w_i \in \mathbb{R}^d, a_i \in \mathbb{R}, \text{ for any } i = 1, 2, \cdots, m \Big\},$$

where we use a binary activation function $\sigma(x) := \mathbf{1}_{x \geq 0}$.

Prove that

$$VC(\mathcal{F}) \le cmd(\log m + \log d),$$

for some universal constant c > 0.

Q2: rate theorem with non-standard growth conditions

Following empirical process notations, we denote $Pf := \mathbb{E}_P[f(X)]$ and $P_n f := n^{-1} \sum_{i=1}^n f(X_i)$. Let us consider the M-estimator $\widehat{\theta}_n := \arg\min_{\theta \in K} P_n f_{\theta}$. We define the population-level minimizer $\theta^* := \arg\min_{\theta \in K} Pf_{\theta}$. Suppose that

$$Pf_{\theta} - Pf_{\theta^*} \ge \|\theta - \theta^*\|_2^4$$
, and $\mathbb{E}\Big[\sup_{\substack{\theta \in K \\ \|\theta - \theta^*\|_2 \le u}} |(P_n - P)(f_{\theta} - f_{\theta^*})|\Big] \le \phi_n(u)$.

Find a high-probability bound on the convergence rate $\|\widehat{\theta}_n - \theta^*\|_2$, and prove your result. You may assume some growth condition on the function ϕ_n , and please specify such a condition used in your proof clearly.

[The answer should be expressed in terms of a fixed-point equation related to the function ϕ_n .]

Q3: classical Donsker's theorem

Let $(X_k: k \ge 0)$ be a one-dimensional simple random walk, i.e., $X_0 = 0$ and $X_{k+1} = X_k + \varepsilon_{k+1}$, where $(\varepsilon_k)_{k=1,2,\cdots}$ are i.i.d. Rademacher random variables. Let $(B_t: t \ge 0)$ be a standard Brownian motion.¹ Prove that

$$\left(\frac{1}{\sqrt{n}}X_{\lfloor nt\rfloor}:0\leq t\leq T\right)\xrightarrow{d}(B_t:0\leq t\leq T),$$

for any T > 0.

[Hint: it suffices to verify finite-dimensional marginal convergence and stochastic equicontinuity. To verify the latter, we can use concentration inequalities discussed in previous lectures.]

¹A standard Brownian motion is Gaussian process defined on $(t:t\geq 0)$ such that $\mathbb{E}[B_t]=0$ and $\mathbb{E}[B_tB_s]=\min(t,s)$ for any $t,s\geq 0$.

Q4: fat-shattering dimension

Let \mathcal{F} be the class of convex functions that maps [0,1] to [0,1].

- 1. Prove that $VC(\mathcal{F}) = +\infty$.
- 2. For any $\varepsilon > 0$, prove an upper bound on $\mathsf{fat}_{\varepsilon}(\mathcal{F})$.

[Your grade will depend on how tight a bound you could get. For example, if the optimal bound is $\varepsilon^{-\alpha}$ but you get a correct proof of $\mathsf{fat}_{\varepsilon}(\mathcal{F}) \leq \varepsilon^{-\beta}$ for some $\beta > \alpha$, you will get α/β fraction of the total marks. However, you do not need to justify the optimality of your bound.]