	- Alle	WACTVITT. 3.0 JUNIBOS 60
(REV 10-97)	PARTMENT OF COMMERCE PATENT AND TRADEMARK OFFICE	ATTORNEY'S DOCKET NUMBER
TRANSMITTAL LETTER		760-248P
DESIGNATED/ELECTE	D OFFICE (DO/EO/US)	U.S. APPLICATION NO. (If known, see 37 CFR 1.5)
CONCERNING A FILIN	G UNDER 35 U.S.C. 371	09/10 ^{4w} 132
INTERNATIONAL APPLICATION NO.	INTERNATIONAL FILING DATE	PRIORITY DATE CLAIMED
PCT/JP97/03946	October 30, 1997	October 30, 1996
TITLE OF INVENTION	CAUSATIVE GENE OF SPINOCEREBELI	מעמעד מדעעד העטקר?
APPLICANT(S) FOR DO/EO/US	CAUSALIVE GENE OF STINGEREDEDI	AN AIMIN IIIUZ
	TSUJI, Shoji; SANPEI, Kazuhiro	
Applicant herewith submits to the Untied State	s Designated/Elected Office (DO/EO/US) the following	owing items and other information:
1. This is a FIRST submission of items conc	erning a filing under 35 U.S.C. 371.	
L	bmission of items concerning a filing under 35 U.S.	
	examination procedures (35 U.S.C. 371(f)) at applicable time limit set in 35 U.S.C. 371(b)	
	eliminary Examination was made by the 19th n	
5. A copy of the International Application		
a. is transmitted herewith (requir	ed only if not transmitted by the International	Bureau).
b. A has been transmitted by the In	ternational Bureau.	
c. is not required, as the applicat	ion was filed in the United States Receiving O	ffice (RO/US).
6. A translation of the International App	olication into English (35 U.S.C. 371(c)(3)).	
7. Amendments to the claims of the Inte	ernational Application under PCT Article 19 (3	35 U.S.C. 371(c)(2)).
a. are transmitted herewith (requ	ired only if not transmitted by the Internationa	l Bureau).
b. have been transmitted by the l	nternational Bureau.	
"	, the time limit for making such amendments h	as NOT expired.
d. kave not been make and will r	not be made.	
<u></u>	the claims under PCT Article 19 (35 U.S.C. 37	71(c)(3)).
9. An oath or declaration of the inventor		
10. A translation of the annexes to the In (35 U.S.C. 371(c)(5)).	nternational Preliminary Examination Report (ınder PCT Article 36
Items 11. to 16. below concern document(s	s) or information included:	
11. An Information Disclosure Statemen	nt under 37 CFR 1.97 and 1.98.	
12. An assignment document for record	ing. A separate cover sheet in compliance with	1 37 CFR 3.28 and 3.31 is included.
A PIPOT III		
13. A FIRST preliminary amendment. A SECOND or SUBSEQUENT pre	lieule am, am an dra ant	•
A SECOND of SUBSEQUENT PIE	immary amendment.	
14. A substitute specification.		
15. A change of power of attorney and/	or address letter.	
16. Other items or information:		
1). International Search Report	0.5:1.0	
2). Substitute Sequence Listing Pap	er & Disk Copy 14 Pages	

U.S. APPLICATION NO (if known, see 37		INTERNAT	TONAL APPLICATION NO			ATTORNEY'S DOCE	KET NUMBER
¹ NÉ	W		PCT/JP97/03946			7	60-248P
17. The following fee	s are submitted:				CAL	CULATIONS	PTO USE ONLY
BASIC NATIONAL	FEE (37 CFR 1.492(
	een prepared by the E			930.00	1		
					1		
1	-	•	USPTO (37 CFR 1.482)	720.00	}		
			• • • • • • • • • • • • • • • • • • •	720.00	Ì		
No international pre	liminary examination	fee naid	to USPTO (37 CFR 1.482)		ĺ		
	rch fee paid to USPTO			790.00	ļ		
		`					
	preliminary examina				ŀ		
international search	fee (37 CFR 1.445(a)	(2)) paid	to USPTO \$1,	070.00	ļ		
International prelimi	nary evamination fee	paid to I	JSPTO (37 CFR 1.482)		[
			•	\$98.00			
	•				<u> </u>		
E	NTER APPROF	PRIAT	E BASIC FEE AMO	= TNUC	\$	930.00	
Surcharge of \$130.00				30	\$	0.00	
months from the earlie			FR 1.492(e)).		, p	0.00	
CLAIMS	NUMBER FILI	ED	NUMBER EXTRA	RATE			
Total Claims	13 - 20 =		0	X \$22.00	\$	0.00	
Independent Claims	1 - 3 =		0	X \$82.00	\$	0.00	
MULTIPLE DEPEND	ENT CLAIM(S) (if a	applicable	e) YES	+ \$270.00	\$	270.00	
			OF ABOVE CALCULA	TIONS =	\$	1,200.00	
			le. Verified Small Entity st		 		
must also be filed (No					\$	0.00	
			SUB'	TOTAL =	\$	1,200.00	
Processing fee of \$130	0.00 for furnishing the	English	translation later than	720 730	6		
months from the earlie	est claimed priority da	te (37 CF		+	\$	0.00	
ii .			TOTAL NATIONA		\$	1,200.00	
Fee for recording the	enclosed assignment (37 CFR 1	1.21(h)). The assignment n	nust be	\$	40.00	
	propriate cover sheet	(37 CFR	3.28, 3.31). \$40.00 per pro		<u> </u>		
			TOTAL FEES ENC	LOSED =	\$	1,240.00	
100]	Amount to be: refunded	\$
					 -	charged	s
a. A check in the a	mount of \$ <u>1,240.00</u>	to cover	the above fees is enclosed.				
h Dlagge shores m	vy Domosit Assovat N	J.	in the amount of	n 4	4	l l	
A duplicate cor	by of this sheet is encl	nu. osed	in the amount of	s to	covert	ne above lees.	
1. auphoute out) or and anoon is only	.0304.					
c. X The Commission	ner is hereby authoriz	zed to cha	arge any additional fees wh	ich may be re	quired	, or credit any	
overpayment to	Deposit Account No	. 02-244	A duplicate copy of this	sheet is encl	osed.		
NOTE: Whom on	annuanziata tima lir	nit unda	27 CED 1 404 ou 1 405 k	os not hoon	mot o	notition to you	rivo (27 CED
			r 37 CFR 1.494 or 1.495 h store the application to pe			pennon to rev	ive (57 CFR
1010 (4) 01 (0)) 111	or be made grand		word and approximation to pr	ر. م	· ·		
Send all correspondence t					1 >=-	0-1111	32350
Birch, Stewart, Ko P.O. Box 747	iasen & Birch, LLP			CICNIAT	TUPE	- com	
Falls Church, VA	22040-0747			, SIGNAT	OKE "		
(703)205-8000				MURI	PHY, C	GERALD M., J	<u>R.</u>
				NAME			
				28,977	7		
1,						NUMBER	
/aam June 30, 1998							

12 Rec'd PCT/PTO 30 JUN1998

IN THE U. S. PATENT AND TRADE MARK OFFICE

APPLICANT:

Shoji TSUJI et al.

INT'L. APPLN. NO.: PCT/JP97/03946

SERIAL NO.: New

GROUP:

FILED:

June 30, 1998

EXAMINER:

FOR:

cDNA FRAGMENT OF CAUSATIVE GENE OF SPINOCEREBELLAR

ATAXIA TYPE2

PRELIMINARY AMENDMENT

Honorable Commissioner of Patents BOX PATENT APPLICATION Washington, D.C. 20231

June 30, 1998

Sir:

The following Preliminary Amendment and Remarks are respectfully submitted in connection with the above-identified application.

IN THE SPECIFICATION:

Before line 1, insert -- This application claims the benefit under 35 U.S.C. §371 of prior PCT International Application No.

PCT/JP97/03946 which has an International filing date of October 30, 1997 which designated the United States of America, the entire contents of which are hereby incorporated by reference. --

REMARKS

The specification has been amended to provide a cross-reference to the previously filed International Application.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account 02-2448 for any additional fees required under 37 C.F.R §1.16 or under 37 C.F.R. §1,17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH, BIRCH, LLP

Bv

Gerald M. MURPHY Reg. No. 28,977

P.O. Box 747

Falls Church, VA 22040-0747

GMM/aam (703) 205-8000

IN THE U.S. PATENT AND TRADEMARK OFFICE

Applicant(s):

Shoji TSUJI, Kazuhiro SANPEI

Application No.:

NEW

Group No.:

Filed:

June 30, 1998

Examiner:

For:

cDNA FRAGMENT OF CAUSATIVE GENE OF SPINOCEREBELLAR

ATAXIA TYPE 2

PRELIMINARY AMENDMENT

Assistant Commissioner for Patents

June 30, 1998

Washington, D.C. 20231

Dear Sir:

Preliminary to the examination of the above-referenced NEW U.S. patent application, the following amendments and remarks are respectfully submitted.

IN THE SPECIFICATION:

Page 3

Line 5, change "SEQ ID NO: 1" to --SEQ ID NO:2--

Page 4

Line 11, after "sequence" insert --(SEQ ID NO:1)--

Page 5

Line 6, change "ID NO: 1" to --ID NO:2--

Line 13, change "SEQ ID NO: 1" to --SEQ ID NO:2--

Page 12

```
Line 3, after "(CAG)<sub>56</sub>" insert --(SEQ ID NO:6)--
       Line 5, after "CC-3" insert --(SEQ ID NO:3)--
       Line 7, after first occurrence of "3' " insert -- (SEQ ID NO:4)--
       Line 7, after "TG-3" insert --(SEQ ID NO:5)--
Page 15
       Line 9, after "AGC-3" insert --(SEQ ID NO:7)--
       Line 10, after "3" insert --(SEQ ID NO:8)--
Page 16
       Line 11, after "C-3" insert -- (SEQ ID NO:9)--
       Line 20, after "ACC-3" insert --(SEQ ID NO:10)--
Page 17
       Line 3, after "C-3" insert -- (SEQ ID NO:11)--
      Line 4, after "CG-3" insert --(SEQ ID NO:12)--
Page 18
       Line 9, after "C-3" insert -- (SEQ ID NO:13)--
```

Please replace pages 21-33 with the Substitute Sequence Listing enclosed herewith.

Please renumber the remaining pages of the Specification, beginning with the Claims consecutively from page 35 of the Substitute Sequence Listing.

IN THE CLAIMS:

Claim 1, line 2: after "sequence" insert --as--.

Remarks

Enclosed herewith in full compliance with 37 C.F.R. 1.821-1.825 is a Substitute Sequence Listing to be inserted into the specification as indicated above. The Substitute Sequence Listing in no way introduces new matter into the specification.

Also submitted herewith in full compliance with 37 C.F.R. 1.821-1.825 is a disk copy of the Substitute Sequence Listing. The disk copy of the Substitute Sequence Listing, file 760-248.SUB, is identical to the paper copy, except that it lacks formatting.

If necessary, the Commissioner is hereby authorized in this, concurrent, and future replies, to charge payment or credit any overpayment to Deposit Account No. 02-2448 for any additional fees requires under 37 C.F.R. § 1.16 or under 37 C.F.R. § 1.17; particularly, extension of time fees.

Respectfully submitted,

BIRCH, STEWART, KOLASCH & BIRCH, LLP

Gerald M. Murphý/Jr. Reg. No. 28.977

P.O. Box 747

Falls Church, VA. 22040-0747

(703) 205-8000

GMM/jrr 760-248P

Enclosures: Paper and Disk copy of Substitute Sequence Listing

10

ļ.ā.

The last that then not that the

15

20

25

DESCRIPTION

1

cDNA Fragment of Causative Gene of Spinocerebellar Ataxia
Type 2

TECHNICAL FIELD

The present invention relates to cDNA fragments of the causative gene of spinocerebellar ataxia type 2 (hereinafter also referred to as "SCA2"), proteins encoded thereby, antibodies corresponding to the proteins, and antisense nucleic acids of the above-mentioned cDNA fragments.

BACKGROUND ART

SCA2 is an autosomal dominant, neurodegenerative disorder that affects the cerebellum and other areas of the central nervous system.

It has recently been discovered that the causative genes of 6 neurodegenerative diseases including dentatorubral-pallidoluysian atrophy (DRPLA) have more CAG repeats than the normal genes. That is, the numbers of CAG repeats in the causative genes of the neurodegenerative diseases are 37 to 100, while those in the normal genes are less than 35.

It has been suggested that the causative gene of SCA2 has an increased number of CAG repeats (Trottier, Y. et al. *Nature*, 378, 403-406 (1995)). However, since the causative gene of SCA2 has not been identified, and since its nucleotide sequence has not been determined, SCA2 cannot be diagnosed by a genetic assay.

DISCLOSURE OF THE INVENTION

An object of the present invention is to provide a sequence-determined cDNA fragment of the causative gene of SCA2. Another object of the present invention is to provide a protein produced by the causative gene of SCA2. Still another object of the present invention is to provide an antibody specific to the above-mentioned protein, which antibody is useful for therapy and diagnosis of SCA2. Still another object of the present invention is to provide an antisense of the causative gene of SCA2, which is useful for therapy of SCA2.

The present inventors intensively studied to discover a Tsp El fragment with a size of 2.5 kb in which the number of CAG triplet is increased only in SCA2 patients, and partial sequence thereof was determined. Human cDNA library was screened using as probes the oligonucleotides that respectively hybridize with the regions between which the CAG triplet repeats are interposed, and a cDNA fragment which hybridizes with both of these two probes was cloned. Using this cDNA fragment as a probe, human cDNA library was screened and a plurality of cDNA fragments which hybridize with the probe were cloned. Sequencing the cDNA fragments revealed that these cDNA fragments overlap with each other. To sequence the 5'-end and 3'-end regions, RACE (rapid amplification of cDNA ends) was performed. Further, to sequence the 5'-end region, RT-PCR was

15

10

5

20

25

10

15

20

25

performed, thereby succeeding in sequencing the full length of the cDNA of the causative gene of SCA2.

That is, the present invention provides a nucleic acid fragment comprising a nucleic acid region encoding an amino acid sequence shown in SEQ ID NO: 1 (provided that the number of repeat units of Gln from the 166th to 188th amino acid varies between 15 and 100). The present invention also provides a protein having an amino acid sequence encoded by the nucleic acid fragment according to the present invention. The present invention further provides an antibody which undergoes antigen—antibody reaction with the above—mentioned protein. The present invention still further provides an antisense nucleic acid having a size of not less than 15 bp, which hybridizes with a mRNA transcribed from the nucleic acid fragment according to the present invention so as to inhibit translation thereof.

By the present invention, a sequence-determined cDNA fragment of the causative gene of SCA2 was provided. The protein encoded by the nucleic acid fragment according to the present invention may be used for therapy of SCA2 and may be used as an immunogen for preparing an antibody useful for therapy and diagnosis of SCA2. Further, since the nucleotide sequence of the causative gene of SCA2 was determined by the present invention, antisense to this gene may now be designed. Still further, by the present invention, a recombinant vector comprising the nucleic

10

15

20

25

acid fragment according to the present invention which is incorporated in an expression vector that can express a desired gene in human body, which recombinant vector can express the nucleic acid fragment in human body, as well as a method for expressing the nucleic acid fragment according to the present invention comprising introducing the recombinant vector into human body. Thus, the present invention is thought to largely contribute to the therapy and diagnosis of SCA2.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 shows the nucleotide sequence of the cDNA fragment according to the present invention together with the amino acid sequence encoded thereby, which nucleotide sequence was determined in the Examples of the present invention.

Fig. 2 shows the continuation of Fig. 1.

Fig. 3 shows the continuation of Fig. 2.

Fig. 4 shows the continuation of Fig. 3.

Fig. 5 is a pedigree chart of the SCA2 patients who donated the genomic DNAs used in the Examples.

Fig. 6 shows the sizes, positions and restriction sites of the genomic DNA fragments Tsp1 and Tsp2, and SCA2 cDNA obtained in the Examples of the present invention, as well as the size and position of each of the obtained cDNA fragment.

Fig. 7 shows the distribution of the numbers of the CAG repeat units in the normal and SCA2 genes, which were

5

10

15

20

25

measured by using the (CAG)₅₅ probe.

BEST MODE FOR CARRYING OUT THE INVENTION

As described above, the nucleic acid fragment according to the present invention comprises the nucleic acid region encoding the amino acid sequence shown in SEQ ID NO: 1 in the SEQUENCE LISTING, provided that the number of repeating units of Gln from the 166th to the 188th amino acid varies between 15 and 100. The number of this repeat units is 15 to 25 in normal individuals and 35 to 100 in SCA2 patients. As is well-known, due to degeneration, there are a plurality of codons encoding one amino acid, and any nucleic acids which encode the amino acid sequence shown in SEQ ID NO: 1 are included within the scope of the present invention. nucleotide sequence actually determined in the Examples below is shown in SEQ ID NO:1 and in Figs. 1-4. The way how the nucleotide sequence was determined and the fact that the cDNA having this nucleotide sequence is the cDNA of the causative gene of SCA2 are detailed in the Examples below.

The nucleic acid fragment according to the present invention may be cloned by the method detailed in the Examples below. Further, since the nucleotide sequence of the nucleic acid fragment according to the present invention was determined by the present invention, the nucleic acid fragment may be cloned by utilizing amplification by PCR using human cDNA library as a

10

20

25

template, or by hybridization using the PCR product as a probe. In cases where it is difficult to amplify the nucleic acid fragment by a single PCR, the nucleic acid fragment may be divided into a plurality of regions and the PCR products may be ligated by a conventional method so as to clone the nucleic acid fragment.

By incorporating the nucleic acid fragment according to the present invention into the multicloning site of a commercially available expression vector, and by transforming host cells with the obtained recombinant vector, the protein encoded by the nucleic acid fragment may be produced. Host-vector systems for expressing an arbitrary gene in a host cell is well-known in the art and a number of host-vector systems are commercially available. Those skilled in the art may easily express the nucleic acid fragment according to the present invention so as to produce the protein using such a commercially available host-vector system. Such a wellknown method is described in, for example, D. M. Glover, DNA Cloning Volume III a practical approach, 1987, IRL Press.

For example, according to a conventional method, the nucleic acid fragment according to the present invention may be amplified by the long PCR (LA PCR) (Hiroyuki MUKAI, PROTEIN, NUCLEIC ACID, ENZYME, Vol.41, No.5, 585-594, 1996) using primers in which restriction sites are introduced, and the amplified product is digested with a

restriction enzyme. The digested amplified product is then inserted into the multicloning site of a commercially available plasmid vector pGEX (PHARMACIA) and ligated to obtain a recombinant vector, followed by transforming $E.\ coli\ DH5\alpha$ (GIBCO BRL) by the conventional calcium chloride method. Transformants are then selected based on the drug resistance (ampicillin resistance) and the protein encoded by the causative gene of SCA2 may be recovered from the transformants. In cases where this vector is used, the desired protein is obtained as a fusion protein with GST (Glutathion S-Transferase), so that the protein may easily be detected using a commercially available anti-GST antibody (PHARMACIA).

Since the active protein produced by the gene of normal individuals (the number of CAG repeats is 15 to 25) is thought to have the normal function, SCA2 may be treated or alleviated by administering the normal protein to SCA2 patients. However, since SCA2 is autosomal dominant, it is necessary to simultaneously block the causative gene of SCA2 of the patient with the antisense described below.

By immunizing an animal with the above-described protein or an antigenic fragment thereof, an antibody specific to the protein or the fragment thereof may be recovered from the animal by a conventional method. The antibody may be a polyclonal antibody or a monoclonal antibody, and the monoclonal antibody may be prepared by

10

20

25

a well-known method.

It is theoretically difficult to construct an antibody using the polyglutamine chain encoded by the CAG repeat, which antibody has varying reactivities with the polyglutamine chain depending only on the lengths of the polyglutamine chain. However, by using the full length protein which was clarified by the present invention, an antibody which recognizes the stereoscopic difference between the patient's protein and the normal protein may be prepared. Further, by virtue of the present invention, since an antibody may be prepared by using a region of the SCA2 product, which is common to the normal individuals and the patients, a control is available in any assay system using an antibody specific to the protein according to the present invention. Using such an antibody, a simple assay such as plate method may be attained by a conventional method.

An affinity column may be prepared by immobilizing the antibody according to the present invention on agarose gel (e.g., Sephadex (trademark) of PHARMACIA), polystyrene beads or the like and by packing the resultant in a column. By passing a body fluid (blood, serum, spinal fluid or the like) through the affinity column, the protein produced by the causative gene of SCA2 of the patient may be obtained. By eluting the protein and by measuring the molecular weight thereof, diagnosis of SCA2 may be attained. This is because that

10

15

the protein of a SCA2 patient has a molecular weight larger than that of the protein of a normal individual because the number of CAG repeat units of the SCA2 causative gene in the patient is larger than that of the gene in the normal individual.

Possible gene therapies include the method by which production of the abnormal SCA2 gene product is stopped and the method by which normal SCA2 gene product is introduced. The former method includes blocking of translation of mRNA using an antisense. The latter method includes administration of the SCA2 gene product prepared in vitro, and introduction of the nucleic acid fragment into the cells. Since in patients suffering from SCA2 caused by extension of the CAG repeat, the abnormal protein is dominant, it is thought that the desired effect may be obtained by simultaneously performing both of the above-mentioned methods. In this case, the antisense is designed such that it hybridizes with a region not affecting the activity of the SCA2 product, and the region is removed from the normal SCA2 gene to be introduced, thereby assuring that the antisense does not inhibit the production of the normal protein. By designing the antisense and the normal SCA2 gene as mentioned above, the antisense and the SCA2 gene may be incorporated in the same vector and the vector may be introduced into cells.

The antisense nucleic acid according to the present

20

25

25

5

invention hybridizes with the mRNA transcribed from the nucleic acid fragment according to the present invention, and has a size of preferably not less than 15 bp and not more than the full length of the coding region of the nucleic acid fragment, more preferably not less than 50 bp and not more than the full length of the coding region of the nucleic acid fragment. Although the antisense nucleic acid preferably has a nucleotide sequence completely complementary to the entire mRNA or a part thereof, transcribed from the nucleic acid fragment according to the present invention, those having homologies to the degree that they hybridize with the mRNA in vivo are within the scope of the present invention. By administering the antisense according to the present invention to an SCA2 patient, the causative gene of SCA2 may be blocked. By administering the abovementioned protein from a healthy individual to the patient under this condition, SCA2 may be treated or alleviated. The dose of the antisense nucleic acid may be appropriately selected depending on the conditions of the patient, and may usually be 0.001 mmol to 1000 mmol per day per 1 kg of bodyweight.

Known methods for introducing the gene into the body include methods in which Retrovirus or Adenovirus is used as a vector (Yasuhiro SETOGUCHI, Experimental Medicine, Vol.12, No.15 (extra edition) 1994, pp.114-121; Hiromi KANEGAE et al., Experimental Medicine, Vol.12, No.15

5

(extra edition) 1994, pp.34-40), methods using liposomes, and methods using fusion liposomes (membrane-fused liposome and the like). Among these, since Adenovirus expresses the introduced gene without proliferation of the target cells, the method utilizing Adenovirus is most appropriate as the method for introducing the nucleic acid into nervous system. More particularly, E3 and a part of Ela of the DNA of wild type Adenovirus type 5 are removed and the nucleic acid in double-stranded form is introduced into the virus together with an expression unit such as a promoter. The recombinant virus vector is proliferated in 293 cells expressing Ela and Elb genes, originated from human fetal kidney to prepare a virus liquid, and the virus liquid is inoculated. The virus genome incorporated into the nucleus of the cell exists outside the chromosomes without replication. Since the virus genome is not lost by cell division in nerve cells, expression of normal SCA2 gene may be maintained for 1 to 3 months.

The present invention will now be described more concretely by way of examples thereof. It should be noted that the present invention is not restricted to the following examples.

Example 1 Preparation of (CAG)₅₅ Probe

A genomic DNA segment of DRPLA gene containing a CAG repeat with 55 repeat units was amplified from the genomic DNA of a patient with DRPLA (Koide, R. et al.,

25

5

Nature Genet., 6, 9-13 (1994)) and was subcloned into a plasmid vector, pT7Blue T(p-2093). The p-2093 plasmid contains the (CAG) 55 and the flanking sequences. That is, the plasmid contains the sequence of 5'-CAC CAC CAG CAA CAG CAA (CAG) 55 CAT CAC GGA AAC TCT GGG CC-3'. Using a pair of oligonucleotides 5'-CAC CAC CAG CAA CAG CAA CA-3'and 5'-biotin-GGC CCA GAG TTT CCG TGA TG-3', PCR was performed in a total volume of 16 µl containing 10 mM Tris-HCl, pH8.3, 50 mM KCl, 1.5 mM MgCl₂, 2M N,N,Ntrimethylglycine, 0.1 mM TTP, 0.1 Mm dCTP, 0.1 mM dGTP, 9.25 MBq of $[\alpha^{-32}P]$ dATP (222 TBq/mmol), 0.5 μ M each of the two primers, 0.3 ng of plasmid DNA (p-2093) and 2.0 U of Taq DNA polymerase (Takara Shuzo, Kyoto, Japan). After an initial 2-min. denaturation at 94°C, PCR was performed for 30 cycles consisting of 1-min. denaturation at 94° C, 1-min. annealing at 54° C and 3-min. extension at 72° C, followed by a final extension at 72° C for 10 min.

A single-stranded (CAG) $_{55}$ probe was isolated using streptavidin-coated magnetic beads (Dynabeads M-280, Streptavidin;Dynal AS, Oslo, Norway) on which 20 µl of streptavidin is coated. That is, after washing of the PCR products immobilized on the magnetic beads with 40 µl of a solution containing 5 mM Tris-HCl (pH 7.5), 0.5 mM EDTA and 1 M NaCl, the non-biotinylated strand containing the radio-label was separated from the biotinylated strand by incubation in 50 µl of 0.1 M NaOH for 10 min. The resultant supernatant was directly added to the

the first of the second that the second that the second the second that the se

5

10

15

20

25

hybridization solution described below.

Incidentally, using the single-stranded (CAG)₅₅ probe prepared as described above, Southern blot analysis was carried out on the androgen receptor genes containing 9, 22, 43 and 51 CAG repeat units, respectively. As a result, the (CAG)₅₅ probe strongly hybridized with the genes having 43 and 51 CAG repeats units, respectively, but scarcely hybridized with the gene having 22 CAG repeat units, and did not hybridize at all with the gene having 9 CAG repeat units (K. Sanpei et al., Biochemical and Biophysical Research Communications, Vol.212, No.2, 1995, pp.341-346). Thus, by using this probe, hybridization may be selectively attained only with DNAs containing a number of (e.g., 35 or more) CAG repeat units if the hybridization conditions are appropriately selected.

(2) Determination of Nucleotide Sequence of SCA2 Gene
Fig. 5 shows a pedigree chart of SCA2 patients. In
this pedigree chart, males are represented by squares and
females are represented by circles. SCA2 patients are
represented by black squares or circles, and unaffected
persons are represented by white squares or circles.

High-molecular-weight genomic DNA (15 μ g) was digested with 100 U of *TspEI* (Toyobo, Osaka, Japan), electrophoresed through 0.8% agarose gels and transferred to nitrocellulose membranes. The membranes were hybridized with the (CAG)₅₅ probe described above.

10

Hybridization was performed in a solution containing 2.75 x SSPE (1 x SSPE=150 mM NaCl, 10 mM NaH₂PO₄, 1 mM EDTA), 50% formamide, 5 x Denhardt's solution, 100 ng/ml of sheared salmon sperm DNA and the (CAG)₅₅ probe (6 x 10^6 cpm/ml) at 62°C for 18 hours. After the hybridization, the membranes were washed with 1 x SSC (150 mM NaCl, 15 mM sodium citrate) containing 0.5% SDS at 65°C for 0.5 hours. The membranes were autoradiographed for 16 hours to Kodak Bio Max MS film at -70° C using an MS intensifying screen.

As a result, 2.5 kbp TspEI fragment hybridized with the probe was detected only in all of the SCA2 patients.

Genomic DNA (270 µg) from an SCA2 patient (individual 7 in Fig. 5) was digested by TspEI and subjected to agarose gel electrophoresis. Genomic DNA fragments including the 2.5 kb TspEI fragment were cloned into an Eco RI-cleaved λ ZAPII vector. The genomic library was screened using the $(CAG)_{55}$ probe under the hybridization condition described above. A genomic clone, Tsp-1, containing an expanded CAG repeat was isolated.

After removal of the probe, the above-described genomic library was screened again using the Tsp-1 as a probe, which was labeled by the random priming. Hybridization was carried out in a solution containing 5 x SSC, 1 x Denhardt's solution, 10% dextran sulfate, 20 mM sodium phosphate, 400 µg/ml human placental DNA and the Tsp-1 probe at $42^{\circ}C$ for 18 hours. After the

20

25

ijĵ

20

25

5

hybridization, the membranes were washed finally in 0.1 x SSC - 0.1% SDS at 52°C for 0.5 hours. The membranes were autoradiographed for 24 hours to Kodak Bio Max MS films at -70°C using an MS intensifying screen. As a result, a genomic clone, Tsp-2, originated from a normal allele was isolated.

The SmaI-ApaI fragment (630 bp) of Tsp2 was sequenced and oligonucleotides F-1 (5'-CCC TCA CCA TGT CGC TGA AGC-3') and R-1 (5'-CGA CGC TAG AAG GCC GCT G-3') were designed such that the CAG repeat units are sandwiched between the oligonucleotides (see Fig. 1). Using oligonucleotides F-1 and R-1 as probes, human procephalic cortex cDNA library (STRATAGENE) was screened. Hybridization was performed in a solution containing 6 \times SSC, 10 x Denhardt's solution, 0.5% SDS, 0.05% sodium pyrophosphate, 100 ng/ml of sheared salmon sperm DNA and end-labeled oligonucleotide probes at 55°C for 18 hours. After the hybridization, the membrane was finally washed with 6 x SSC containing 0.5% SDS and 0.05% sodium pyrophosphate at 55°C for 0.5 hours. A cDNA clone Fc1 with a size of 4.0 kb which hybridized with the both probes was obtained. The nucleotide sequences of Fc1, Tsp1 and Tsp2 were determined and compared. As a result, the nucleotide sequences in the vicinities of the CAG repeat units were identical except for the number of the CAG repeat units. Restriction maps of Tsp1 and Tsp2, as well as the sizes and positions of Fc1 and other

25

5

fragments hereinbelow described, are shown in Fig. 6.

Using Fc1 or a fragment isolated by the screening later described as a probe, human cDNA libraries (human procephalic cortex, human fetal brain, human brain and brain stem) were screened to isolate cDNA clones Fc2, Fb14, B4, C6 and C19 (see Fig. 6). To identify the 5'-end of Fc1, 5'-RACE (Frohman, M.A. et al, Proc. Natl. Acad. Sci. USA 85, 8998-9002 (1988)) was performed using 5'-RACE-Ready cDNA (Clonetech, Palo Alto, CA, USA).

Primer R-1 was used for the first PCR, and Primer R-2 (5'-CTT GCG GAC ATT GGC AGC C-3', see Fig. 1) was used for the second PCR. In both PCRs, F-1 (see Fig. 1) was used as the forward primer. The 5'-RACE product (5R1) having the size of 350 bp was subcloned into pT7Blue T vector (pT7Blue T-vector (5R1)). The identification of 5R1 was confirmed by the overlapping with the nucleotide sequences of Fc1, Tsp1 and Tsp2. To identify the 3'-end of the cDNA, 3'-RACE was performed using 1 µg of poly(A) mRNA extracted from human brain as a template and Primer F-13 (5'-TTC TCT CAG CCA AAG CCT TCT ACT ACC-3', see Fig. 3) as a primer. The obtained 3'-RACE product (3R1) with a size of 1300 bp was subcloned into pT7Blue T

To investigate the 5'-end region of the cDNA, reverse transcription PCR (RT-PCR) was performed. That is, total RNAs extracted from an autopsy from human brain were digested by RNase-free DNase (PROMEGA) (Onodera, O.

vector (pT7Blue T-vector (3R1)).

, 1.

5

10

20

25

et al., Am. J. Hum. Geent. 57, 1050-1060(1995)). As the primers for the PCR, F1006 (5'-TAT CCG CAG CTC CGC TCC C-3', see Fig. 1) and R1002 (5'-AGC CGG GCC GAA ACG CGC CG-3') were used. PCR was performed in a solution with a total volume of 20 $\mu M\text{,}$ which contained 5 pmol each of the each primer, 10 mM Tris HCl (pH8.3), 50 mM KCl, 1.5 mM $MgCl_2$, 1.7M N,N,N-trimethylglycine, 200 μ M each of dATP, dCTP and TTP, 100 μM of dGTP, 100 μM of 7-deaza dGTP and 2.5 U of Taq polymerase (TAKARA SHUZO). After carrying out the initial denaturation at 96°C for 2 minutes, a cycle of a denaturation step at 96°C for 1 minute, an annealing step at 65°C for 1 minute and an extension step at 72°C for 1 minute were repeated 30 times, and a final extension step at 72°C for 5 minutes was performed, thereby carrying out the PCR. As a result, a clone 5R1 which extends upstream of 5R1 by 246 bp was obtained (see Fig. 6).

In Fig. 6, the hollow regions in the Tsp1 and Tsp2 fragments indicate the regions which exist in SCA2 cDNAs. The hollow regions in the SCA2 cDNA shows coding regions. The CAG repeating regions are shown as solid boxes. Restriction sites TspE1 (T) , NotI (N), Sac II (S), Sau3AI (Sa) . Sma I (Sm). Eco52I (E52). Apa I (Ap). AccI (Ac). BamHI (B) , XhoI (X), EcoRI (E) and Pst I (P) are shown. The size and position of each cDNA clone are shown below the consensus SCA2 cDNA.

In this example, nucleotide sequences of double-

10

20

25

stranded DNAs were determined by the dideoxynucleotide chain termination method (Sanger, F. et al. Proc. Natl. Acad. Sci. USA 74, 5463-5467(1977); Chen E.Y. et al, DNA 4, 165-170 (1985)) using a double-stranded plasmid DNA as a template. To determine the nucleotide sequences of the CAG repeating regions and their flanking regions, genomic fragments containing the CAG repeating regions were amplified by PCR using biotinylated F-1 and RS-1 (5'-CCT CGG TGT CGC GGC GAC TTC C-3'). PCR was performed in a solution with a total volume of 25 µl, which contained $0.25~\mu\text{M}$ each of the each primer, 10 mM Tris HCl (pH8.3), 50 mM KCl, 2.0 mM MgCl₂, 1.7M N,N,N-trimethylglycine, 200 μM each of dNTP, 200 ng of the genomic DNA and 1.25 U of Taq polymerase (TAKARA SHUZO). After carrying out initial denaturation at 95°C for 1 minute, a cycle of a denaturation step at 95°C for 2 minutes, an annealing step at 62°C for 1 minute and an extension step at 72°C for 1 minute was repeated 32 times, and a final extension step at 72°C for 5 minutes was performed, thereby carrying out the PCR. Biotinylated chains were recovered using streptavidin-coated magnetic beads and were directly sequenced.

Based on the nucleotide sequences of the abovementioned cDNA clones, a consensus SCA2 cDNA sequence with a length of 4351 bp excluding the poly A tail was determined (SEQ ID NO:1, Figs. 1-4, see Fig. 6). In SEQ ID NO: 1, the region from 4352nt to 4367nt is the poly A

ıi. 15 12 1 ũ

5

10

20

25

size of the CAG region.

tail, and the number of "A" is not restricted to that shown in SEQ ID NO: 1. It was confirmed that the poly A tail exists at the same location in C19, B4 and 3R1 which were independent cDNA clones.

Example 2 Measurement of CAG Repeat Units in Sample Numbers of CAG repeat units were determined by polyacrylamide gel electrophoresis analysis of PCR products obtained using the primer pair of F-1 and R-1. PCR was performed in a total volume of 10 μ l containing 10 mM Tris-HCl, pH 8.3, 50 mM KCl, 2.0 mM MgCl₂, 1.7 M N, N, N-trimethylglycine, 111KBg of $[\alpha^{-32}P]dCTP$ (111 Tbq/mmol), 30 μ M dCTP, and 200 μ M each of dATP, dGTP and TTP, 0.25 μM each of the two primers, 200 ng of genomic DNA and 1.25 U of Taq DNA polymerase. After an initial 2-min denaturation at 95°C, PCR was performed for 32 cycles of 1-min denaturation at 95°C, 1-min annealing at 60°C and 1-min extension at 72°C, followed by a final extension at 72°C for 5 min. Sequence ladders obtained using the cloned genomic segments of the SCA2 gene, which contain various sizes of CAG repeats, were used as size markers. For normal alleles containing one or two CAA interruptions, the numbers of the CAA units were included in the CAG repeat size. For SCA2 alleles having expanded CAG region, the above-mentioned insert sequence immediately after the CAG region was not included in the

By the above-described method, the numbers of the

5

CAG repeat units of normal individuals (286 chromosomes) and 10 pedigrees of SCA2 patients (34 SCA2 chromosomes) were determined. The results are shown in Fig. 7. In Fig. 7, open bars indicate the results of the normal genes and solid bars indicate the results of the SCA2 genes.

As is apparent from Fig. 7, in all of the normal genes, the numbers of the CAG repeat units were not more than 24, while in all of the SCA2 genes, they were not less than 35. Thus, it was confirmed that the cDNA identified as described above is the cDNA of the causative gene of SCA2.

SEQUENCE LISTING

SEQ	ID	NO:	1													
SEQ	UENC	CE L	ENG	TH:	436	7										
SEQ	UENC	CE T	YPE	: nı	ıcle	ic .	acio	Ė								
STR	NDEI	ONES	S:	doul	ole											
TOP	OLO	GY:	lin	ear												
SEQ	UEN	CE D	ESC	RIP:	rion	ī										
TATO	CGCA	ACC T	CCGC	стесс	A CC	CGGC	GCCT	CGG	CGCC	CCC	GCC	тсс	ATC	GCGC	TCA	57
													Met	: Arg	Ser	
													1			
GCG	GCC	GCA	GCT	ССТ	CGG	AGT	CCC	GCG	GTG	GCC	ACC	GAG	TCT	CGC	CGC	105
Ala	Ala	Ala	Ala	Pro	Arg	Ser	Pro	Ala	Val	Ala	Thr	Glu	Ser	Arg	Arg	
	5					10					15					
TTC	GCC	GCA	GCC	AGG	TGG	CCC	GGG	TGG	CGC	TCG	СТС	CAG	CGG	CCG	GCG	153
Phe	Ala	Ala	Ala	Arg	Trp	Pro	Gly	Trp	Arg	Ser	Leu	Gln	Arg	Pro	Ala	
20					25					30					35	
CGG	CGG	AGC	GGG	CGG	GGC	GGC	GGT	GGC	GCG	GCC	CCG	GGA	CCG	TAT	CCC	201
Arg	Arg	Ser	Gly	Arg	Gly	Gly	Gly	Gly	Ala	Ala	Pro	Gly	Pro	Tyr	Pro	
				40					4 5					50		
														CGG		249
Ser	Ala	Ala		Pro	Pro	Pro	Gly		Gly	Pro	Pro	Pro		Arg	Gln	
			55					60					65			
														AAC		297
Ser	Ser		Pro	Ser	Ala	Ser		Cys	Phe	Gly	Ser		Gly	Asn	Gly	
000	000	70		000	000	000	75 T00	000	000	OTO	0 TT	80	OTO	000	ccc	345
GGC	GGC	GUG	111	UGG	UUU	uuU	TUU	Udd	UGG	UIU	UII	uul	UIU	GGC	auu	340

Gly Gly Ala Phe Arg Pro Gly Ser Arg Arg Leu Leu Gly Leu Gly Gly

	85					90					95					
CCT	ccc	CGC	CCC	TTC	GTC	GTC	GTC	CTT	CTC	CCC	CTC	GCC	AGC	CCG	GGC	393
Pro	Pro	Arg	Pro	Phe	Val	Val	Val	Leu	Leu	Pro	Leu	Ala	Ser	Pro	Gly	
100					105					110					115	
GCC	CCT	CCG	GCC	GCG	CCA	ACC	CGC	GCC	TCC	CCG	CTC	GGC	GCC	CGT	GCG	441
Ala	Pro	Pro	Ala	Ala	Pro	Thr	Arg	Ala	Ser	Pro	Leu	Gly	Ala	Arg	Ala	
				120					125					130		
TCC	CCG	CCG	CGT	TCC	GGC	GTC	TCC	TTG	GCG	CGC	CCG	GCT	CCC	GGC	TGT	489
Ser	Pro	Pro	Arg	Ser	Gly	Val	Ser	Leu	Ala	Arg	Pro	Ala	Pro	Gly	Cys	
			135					140					145			
CCC	CGC	CCG	GCG	TGC	GAG	CCG	GTG	TAT	GGG	CCC	СТС	ACC	ATG	TCG	CTG	537
Pro	Arg	Pro	Ala	Cys	Glu	Pro	Val	Tyr	Gly	Pro	Leu	Thr	Met	Ser	Leu	
		150					155					160				
AAG	CCC	CAG	CAA	585												
Lys	Pro	Gin	Gln	Gin	Gln	Gln	Gln	Gln								
	165					170					175					
CAG	CCG	CCG	CCC	GCG	GCT	GCC	AAT	633								
Gln	Pro	Pro	Pro	Ala	Ala	Ala	Asn									
180					185					190					195	
GTC	CGC	AAG	CCC	GGC	GGC	AGC	GGC	CTT	CTA	GCG	TCG	CCC	GCC	GCC	GCG	681
Val	Arg	Lys	Pro	Gly	Gly	Ser	Gly	Leu	Leu	Ala	Ser	Pro	Ala	Ala	Ala	
				200					205					210		
CCT	TCG	CCG	TCC	TCG	TCC	TCG	GTC	TCC	TCG	TCC	TCG	GCC	ACG	GCT	CCC	729
Pro	Ser	Pro	Ser	Ser	Ser	Ser	Val	Ser	Ser	Ser	Ser	Ala	Thr	Ala	Pro	
			215					220					225			
TCC	TCG	GTG	GTC	GCG	GCG	ACC	TCC	GGC	GGC	GGG	AGG	CCC	GGC	CTG	GGC	777
Ser	Ser	Val	Val	Ala	Ala	Thr	Ser	Gly	Gly	Gly	Arg	Pro	Gly	Leu	Gly	
		230					235					240				

AGA	GGT	CGA	AAC	AGT	AAC	AAA	GGA	CTG	CCT	CAG	TCT	ACG	ATT	TCT	TTT	825
Arg	Gly	Arg	Asn	Ser	Asn	Lys	Gly	Leu	Pro	Gln	Ser	Thr	He	Ser	Phe	
	245					250					255					
GAT	GGA	ATC	TAT	GCA	AAT	ATG	AGG	ATG	GTT	CAT	ATA	CTT	ACA	TCA	GTT	873
Asp	Gly	He	Tyr	Ala	Asn	Met	Arg	Met	Val	His	He	Leu	Thr	Ser	Val	
260					265					270					275	
GTT	GGC	TCC	AAA	TGT	GAA	GTA	CAA	GTG	AAA	AAT	GGA	GGT	ATA	TAT	GAA	921
Val	Gly	Ser	Lys	Cys	Glu	Val	Gln	Val	Lys	Asn	Gly	Gly	Пе	Tyr	Glu	
				280					285					290		
GGA	GTT	TTT	AAA	ACT	TAC	AGT	CCG	AAG	TGT	GAT	TTG	GTA	CTT	GAT	GCC	969
Gly	Val	Phe	Lys	Thr	Tyr	Ser	Pro	Lys	Cys	Asp	Leu	Val	Leu	Asp	Ala	
			295					300					305			
GCA	CAT	GAG	AAA	AGT	ACA	GAA	TCC	AGT	TCG	GGG	CCG	AAA	CGT	GAA	GAA	1017
Ala	His	Glu	Lys	Ser	Thr	Glu	Ser	Ser	Ser	Gly	Pro	Lys	Arg	Glu	Glu	
		310					315					320				
ATA	ATG	GAG	AGT	ATT	TTG	TTC	AAA	TGT	TCA	GAC	TTT	GTT	GTG	GTA	CAG	1065
He	Met	Glu	Ser	He	Leu	Phe	Lys	Cys	Ser	Asp	Phe	Val	Val	Val	Gln	
	325					330					335					
TTT	AAA	GAT	ATG	GAC	TCC	AGT	TAT	GCA	AAA	AGA	GAT	GCT	TTT	ACT	GAC	1113
Phe	Lys	Asp	Met	Asp	Ser	Ser	Tyr	Ala	Lys	Arg	Asp	Ala	Phe	Thr	Asp	
340					345					350					355	
TCT	GCT	ATC	AGT	GCT	AAA	GTG	AAT	GGC	GAA	CAC	AAA	GAG	AAG	GAC	CTG	1161
Ser	Ala	He	Ser	Ala	Lys	Val	Asn	Gly	Glu	His	Lys	Glu	Lys	Asp	Leu	
				360					365					370		
GAG	CCC	TGG	GAT	GCA	GGT	GAA	CTC	ACA	GCC	AAT	GAG	GAA	CTT	GAG	GCT	1209
Glu	Pro	Trp	Asp	Ala	Gly	Glu	Leu	Thr	Ala	Asn	Glu	Glu	Leu	Glu	Ala	
			375					380					385			
TTG	GAA	AAT	GAC	GTA	TCT	AAT	GGA	TGG	GAT	CCC	AAT	GAT	ATG	TTT	CGA	1257

L	.eu	Glu	Asn	Asp	Val	Ser	Asn	Gly	Trp	Asp	Pro	Asn	Asp	Met	Phe	Arg	
			390					395					400				
T	ΑT	AAT	GAA	GAA	AAT	TAT	GGT	GTA	GTG	TCT	ACG	TAT	GAT	AGC	AGT	ATT	1305
T	yr	Asn	Glu	Glu	Asn	Tyr	Gly	Val	Val	Ser	Thr	Tyr	Asp	Ser	Ser	Leu	
		405					410					415					
T	СТ	TCG	TAT	ACA	GTG	CCC	TTA	GAA	AGA	GAT	AAC	TCA	GAA	GAA	TTT	TTA	1353
S	er	Ser	Tyr	Thr	Val	Pro	Leu	Glu	Arg	Asp	Asn	Ser	Glu	Glu	Phe	Leu	
4	20					425					430					435	
A	AA	CGG	GAA	GCA	AGG	GCA	AAC	CAG	TTA	GCA	GAA	GAA	ATT	GAG	TCA	AGT	1401
L	ys	Arg	Glu	Ala	Arg	Ala	Asn	Gln	Leu	Ala	Glu	Glu	He	Glu	Ser	Ser	
					440					445					450		
G	CC	CAG	TAC	AAA	GCT	CGA	GTG	GCC	CTG	GAA	AAC	GAT	GAT	AGG	AGT	GAG	1449
Þ	la	Gln	Tyr	Lys	Ala	Arg	Val	Ala	Leu	Glu	Asn	Asp	Asp	Arg	Ser	Glu	
				455					460					465			
6	AA	GAA	AAA	TAC	ACA	GCA	GTT	CAG	AGA	AAT	TCC	AGT	GAA	CGT	GAG	GGG	1497
6	ilu	Glu	Lys	Tyr	Thr	Ala	Val	Gln	Arg	Asn	Ser	Ser	Glu	Arg	Glu	Gly	
			470					475					480				
C	CAC	AGC	ATA	AAC	ACT	AGG	GAA	AAT	AAA	TAT	ATT	ССТ	CCT	GGA	CAA	AGA	1545
ŀ	lis	Ser	He	Asn	Thr	Arg	Glu	Asn	Lys	Tyr	He	Pro	Pro	Gly	Gln	Arg	
		485					490					495					
F	AT	AGA	GAA	GTC	ATA	TCC	TGG	GGA	AGT	GGG	AGA	CAG	AAT	TCA	CCG	CGT	1593
P	lsn	Arg	Glu	Val	He	Ser	Trp	Gly	Ser	Gly	Arg	Gln	Asn	Ser	Pro	Arg	
5	00					505					510					515	
F	ATG	GGC	CAG	CCT	GGA	TCG	GGC	TCC	ATG	CCA	TCA	AGA	TCC	ACT	TCT	CAC	1641
ħ	let	Gly	Gln	Pro	Gly	Ser	Gly	Ser	Met	Pro	Ser	Arg	Ser	Thr	Ser	His	
					520					525					530		
ļ	ACT	TCA	GAT	TTC	AAC	CCG	AAT	TCT	GGT	TCA	GAC	CAA	AGA	GTA	GTT	TAA	1689
٦	ſhr	Ser	Asp	Phe	Asn	Pro	Asn	Ser	Gly	Ser	Asp	Gln	Arg	Val	Val	Asn	

			535					540					545			
GGA	GGT	GTT	CCC	TGG	CCA	TCG	CCT	TGC	CCA	TCT	CCT	TCC	TCT	CGC	CCA	1737
Gly	Gly	Val	Pro	Trp	Pro	Ser	Pro	Cys	Pro	Ser	Pro	Ser	Ser	Arg	Pro	
		550					555					560				
CCT	TCT	CGC	TAC	CAG	TCA	GGT	CCC	AAC	TCT	CTT	CCA	CCT	CGG	GCA	GCC	1785
Pro	Ser	Arg	Tyr	Gln	Ser	Gly	Pro	Asn	Ser	Leu	Pro	Pro	Arg	Ala	Ala	
	565					570					575					
ACC	CCT	ACA	CGG	CCG	ccc	TCC	AGG	CCC	CCC	TCG	CGG	CCA	TCC	AGA	CCC	1833
Thr	Pro	Thr	Arg	Pro	Pro	Ser	Arg	Pro	Pro	Ser	Arg	Pro	Ser	Arg	Pro	
580					585					590					595	
CCG	TCT	CAC	CCC	TCT	GCT	CAT	GGT	TCT	CCA	GCT	CCT	GTC	TCT	ACT	ATG	1881
Pro	Ser	His	Pro	Ser	Ala	His	Gly	Ser	Pro	Ala	Pro	Val	Ser	Thr	Met	
				600					605					610		
CCT	AAA	CGC	ATG	TCT	TCA	GAA	GGG	CCT	CCA	AGG	ATG	TCC	CCA	AAG	GCC	1929
Pro	Lys	Arg	Met	Ser	Ser	Glu	Gly	Pro	Pro	Arg	Met	Ser	Pro	Lys	Ala	
			615					620					625			
CAG	CGA	CAT	CCT	CGA	AAT	CAC	AGA	GTT	TCT	GCT	GGG	AGG	GGT	TCC	ATA	1977
Gln	Arg	His	Pro	Arg	Asn	His	Arg	Val	Ser	Ala	Gly	Arg	Gly	Ser	He	
		630					635					640				
TCC	AGT	GGC	CTA	GAA	TTT	GTA	TCC	CAC	AAC	CCA	CCC	AGT	GAA	GCA	GCT	2025
Ser	Ser	Gly	Leu	Glu	Phe	Val	Ser	His	Asn	Pro	Pro	Ser	Glu	Ala	Ala	
	645					650					655					
ACT	CCT	CCA	GTA	GCA	AGG	ACC	AGT	CCC	TCG	GGG	GGA	ACG	TGG	TCA	TCA	2073
Thr	Pro	Pro	Val	Ala	Arg	Thr	Ser	Pro	Ser	Gly	Gly	Thr	Trp	Ser	Ser	
660					665					670					675	
GTG	GTC	AGT	GGG	GTT	CCA	AGA	ATT	TCC	CCT	AAA	ACT	CAT	AGA	CCC	AGG	2121
Va I	Val	Ser	Gly	Val	Pro	Arg	Leu	Ser	Pro	Lys	Thr	His	Arg	Pro	Arg	
				680					685					690		

TCT	CCC	AGA	CAG	AAC	AGT	ATT	GGA	AAT	ACC	CCC	AGT	GGG	CCA	GTT	CTT	2169
Ser	Pro	Arg	GIn	Asn	Ser	He	Gly	Asn	Thr	Pro	Ser	Gly	Pro	Val	Leu	
			695					700					705			
GCT	TCT	CCC	CAA	GCT	GGT	ATT	ATT	CCA	ACT	GAA	GCT	GTT	GCC	ATG	CCT	2217
Ala	Ser	Pro	Gln	Ala	Gly	He	He	Pro	Thr	Glu	Ala	Val	Ala	Met	Pro	
		710					715					720				
ATT	CCA	GCT	GCA	TCT	CCT	ACG	CCT	GCT	AGT	CCT	GCA	TCG	AAC	AGA	GCT	2265
lle	Pro	Ala	Ala	Ser	Pro	Thr	Pro	Ala	Ser	Pro	Ala	Ser	Asn	Arg	Ala	
	725					730					735					
GTT	ACC	CCT	TCT	AGT	GAG	GCT	AAA	GAT	TCC	AGG	CTT	CAA	GAT	CAG	AGG	2313
Val	Thr	Pro	Ser	Ser	Glu	Ala	Lys	Asp	Ser	Arg	Leu	Gln	Asp	Gln	Arg	
740					745					750					755	
CAG	AAC	TCT	CCT	GCA	GGG	AAT	AAA	GAA	AAT	ATT	AAA	CCC	AAT	GAA	ACA	2361
Gln	Asn	Ser	Pro	Ala	Gly	Asn	Lys	Glu	Asn	He	Lys	Pro	Asn	Glu	Thr	
				760					765					770		
TCA	CCT	AGC	TTC	TCA	AAA	GCT	GAA	AAC	AAA	GGT	ATA	TCA	CCA	GTT	GTT	2409
Ser	Pro	Ser	Phe	Ser	Lys	Ala	Glu	Asn	Lys	Gly	He	Ser	Pro	Val	Val	
			775					780					785			
TCT	GAA	CAT	AGA	AAA	CAG	ATT	GAT	GAT	TTA	AAG	AAA	TTT	AAG	AAT	GAT	2457
Ser	Glu	His	Arg	Lys	Gln	lle	Asp	Asp	Leu	Lys	Lys	Phe	Lys	Asn	Asp	
		790					795					800				
TTT	AGG	TTA	CAG	CCA	AGT	TCT	ACT	TCT	GAA	TCT	ATG	GAT	CAA	CTA	CTA	2505
Phe	Arg	Leu	Cl.	Dro	Sar	Ser	Thr	Ser	Glu	Ser	Met	Asp	Gln	Leu	Leu	
	•	Lou	GIII	FIG	361											
	805	Lou	GIII	PTO	361	810					815					
AAC	805				GGA	810		TCA	AGA	GAT		ATC	AAA	GAC	AAA	2553
	805 AAA	AAT	AGA	GAG		810 GAA	AAA				TTG					2553
	805 AAA	AAT	AGA	GAG	GGA	810 GAA	AAA				TTG					2553

He	Glu	Pro	Ser	Ala	Lys	Asp	Ser	Phe	He	Glu	Asn	Ser	Ser	Ser	Asn	
				840					845					850		
TGT	ACC	AGT	GGC	AGC	AGC	AAG	CCG	AAT	AGC	CCC	AGC	ATT	TCC	CCT	TCA	2649
Cys	Thr	Ser	Gly	Ser	Ser	Lys	Pro	Asn	Ser	Pro	Ser	He	Ser	Pro	Ser	
			855					860					865			
ATA	CTT	AGT	AAC	ACG	GAG	CAC	AAG	AGG	GGA	CCT	GAG	GTC	ACT	TCC	CAA	2697
He	Leu	Ser	Asn	Thr	Glu	His	Lys	Arg	Gly	Pro	Glu	Val	Thr	Ser	GIn	
		870					875					880				
GGG	GTT	CAG	ACT	TCC	AGC	CCA	GCA	TGT	AAA	CAA	GAG	AAA	GAC	GAT	AAG	2745
Gly	Val	Gln	Thr	Ser	Ser	Pro	Ala	Cys	Lys	GIn	Glu	Lys	Asp	Asp	Lys	
	885					890					895					
GAA	GAG	AAG	AAA	GAC	GCA	GCT	GAG	CAA	GTT	AGG	AAA	TCA	ACA	TTG	AAT	2793
Glu	Glu	Lys	Lys	Asp	Ala	Ala	Glu	Gln	Val	Arg	Lys	Ser	Thr	Leu	Asn	
900					905					910					915	
CCC	AAT	GCA	AAG	GAG	TTC	AAC	CCA	CGT	TCC	TTC	TCT	CAG	CCA	AAG	CCT	2841
Pro	Asn	Ala	Lys	Glu	Phe	Asn	Pro	Arg	Ser	Phe	Ser	Gln	Pro	Lys	Pro	
				920					925					930		
TCT	ACT	ACC	CCA	ACT	TCA	CCT	CGG	CCT	CAA	GCA	CAA	CCT	AGC	CCA	TCT	2889
Ser	Thr	Thr	Pro	Thr	Ser	Pro	Arg	Pro	Gln	Ala	Gln	Pro	Ser	Pro	Ser	
			935					940					945			
ATG	GTG	GGT	CAT	CAA	CAG	CCA	ACT	CCA	GTT	TAT	ACT	CAG	CCT	GTT	TGT	2937
Met	Val	Gly	His	GIn	Gln	Pro	Thr	Pro	Val	Tyr	Thr	Gln	Pro	Val	Cys	
		950					955					960				
TTT	GCA	CCA	AAT	ATG	ATG	TAT	CCA	GTC	CCA	GTG	AGC	CCA	GGC	GTG	CAA	2985
Phe	Ala	Pro	Asn	Met	Met	Tyr	Pro	Val	Pro	Val	Ser	Pro	Gly	Val	Gln	
	965					970					975					
CCT	ATT	TAC	CCA	ATA	CCT	ATG	ACG	CCC	ATG	CCA	GTG	AAT	CAA	GCC	AAG	3033
${\sf Pro}$	Leu	Tyr	Pro	He	Pro	Met	Thr	Pro	Met	Pro	Val	Asn	Gln	Ala	Lys	

980					985					990					995	
ACA	TAT	AGA	GCA	GTA	CCA	AAT	ATG	CCC	CAA	CAG	CGG	CAA	GAC	CAG	CAT	3081
Thr	Tyr	Arg	Ala	Val	Pro	Asn	Met	Pro	GIn	Gln	Arg	Gln	Asp	Gln	His	
				1000)				1005	5				1010)	
CAT	CAG	AGT	GCC	ATG	ATG	CAC	CCA	GCG	TCA	GCA	GCG	GGC	CCA	CCG	ATT	3129
His	Gin	Ser	Ala	Met	Met	His	Pro	Ala	Ser	Ala	Ala	Gly	Pro	Pro	He	
			1015	5				1020)				1025	5		
GCA	GCC	ACC	CCA	CCA	GCT	TAC	TCC	ACG	CAA	TAT	GTT	GCC	TAC	AGT	CCT	3177
Ala	Ala	Thr	Pro	Pro	Ala	Tyr	Ser	Thr	Gln	Tyr	Val	Ala	Tyr	Ser	Pro	
		1030)				1035	5				1040)			
CAG	CAG	TTC	CCA	AAT	CAG	CCC	CTT	GTT	CAG	CAT	GTG	CCA	CAT	TAT	CAG	3225
Gln	Gln	Phe	Pro	Asn	Gln	Pro	Leu	Val	Gln	His	Val	Pro	His	Tyr	GIn	
	1045	ō				1050)				105	5				
TCT	CAG	CAT	CCT	CAT	GTC	TAT	AGT	CCT	GTA	ATA	CAG	GGT	AAT	GCT	AGA	3273
Ser	Gln	His	Pro	His	Val	Tyr	Ser	Pro	Val	lle	Gln	Gly	Asn	Ala	Arg	
Ser 1060		His	Pro	His	Val 1065		Ser	Pro	Val	lle 1070		Gly	Asn	Ala	Arg 1075	
1060)				1065	ō				1070)			Ala TCT	1075	3321
1060 ATG) ATG	GCA	CCA	CCA	1065 ACA	CAC	GCC	CAG	CCT	1070 GGT) TTA	GTA	TCT		1075 TCA	3321
1060 ATG) ATG	GCA	CCA	CCA	1069 ACA Thr	CAC	GCC	CAG	CCT	1070 GGT Gly) TTA	GTA	TCT	тст	1075 TCA Ser	3321
1060 ATG Met	ATG Met	GCA Ala	CCA Pro	CCA Pro 1080	1065 ACA Thr	CAC His	GCC Ala	CAG Gln	CCT Pro 1088	1070 GGT Gly) TTA Leu	GTA Val	TCT Ser	TCT Ser	1075 TCA Ser	3321 3369
1060 ATG Met	ATG Met	GCA Ala CAG	CCA Pro	CCA Pro 1080 GGG	1069 ACA Thr O	CAC His	GCC Ala GAG	CAG GIn CAG	CCT Pro 1088 ACG	1070 GGT Gly 5 CAT	TTA Leu GCG	GTA Val ATG	TCT Ser TAT	TCT Ser 1090	1075 TCA Ser) TGT	
1060 ATG Met	ATG Met	GCA Ala CAG	CCA Pro	CCA Pro 1080 GGG GIy	1069 ACA Thr O	CAC His	GCC Ala GAG	CAG GIn CAG	CCT Pro 1088 ACG Thr	1070 GGT Gly 5 CAT	TTA Leu GCG	GTA Val ATG	TCT Ser TAT	TCT Ser 1090 GCA Ala	1075 TCA Ser) TGT	
1060 ATG Met GCA Ala	ATG Met ACT Thr	GCA Ala CAG GIn	CCA Pro TAC Tyr 1095	CCA Pro 1080 GGG GIy	1069 ACA Thr) GCT Ala	CAC His CAT His	GCC Ala GAG Glu	CAG GIn CAG GIn	CCT Pro 1089 ACG Thr	1070 GGT Gly CAT His	TTA Leu GCG Ala	GTA Val ATG Met	TCT Ser TAT Tyr 1109	TCT Ser 1090 GCA Ala	1075 TCA Ser TGT Cys	
1060 ATG Met GCA Ala	ATG Met ACT Thr	GCA Ala CAG GIn	CCA Pro TAC Tyr 1098 CCA	CCA Pro 1080 GGG Gly TAC	106s ACA Thr O GCT AIa	CAC His CAT His	GCC Ala GAG Glu GAG	CAG GIn CAG GIn 1100	CCT Pro 1089 ACG Thr AGC	1070 GGT Gly CAT His	TTA Leu GCG Ala	GTA Val ATG Met	TCT Ser TAT Tyr 1109 TAC	TCT Ser 1090 GCA Ala	1075 TCA Ser TGT Cys	3369
1060 ATG Met GCA Ala	ATG Met ACT Thr	GCA Ala CAG GIn	CCA Pro TAC Tyr 1099 CCA Pro	CCA Pro 1080 GGG Gly TAC	106s ACA Thr O GCT AIa	CAC His CAT His	GCC Ala GAG Glu GAG	CAG GIn CAG GIn 1100 ACA Thr	CCT Pro 1089 ACG Thr AGC	1070 GGT Gly CAT His	TTA Leu GCG Ala	GTA Val ATG Met	TCT Ser TAT Tyr 1105 TAC Tyr	TCT Ser 1090 GCA Ala 5	1075 TCA Ser TGT Cys	3369
1060 ATG Met GCA Ala CCC Pro	ATG Met ACT Thr AAA Lys	GCA Ala CAG GIn TTA Leu 1110	CCA Pro TAC Tyr 1099 CCA Pro	CCA Pro 1080 GGG GIY TAC	106s ACA Thr O GCT AIa AAC Asn	CAC His CAT His AAG	GCC Ala GAG Glu GAG Glu 1118	CAG GIn 1100 ACA Thr	CCT Pro 1088 ACG Thr AGC Ser	GGT GIY CAT His	TTA Leu GCG Ala TCT Ser	GTA Val ATG Met TTC Phe 1120	TCT Ser TAT Tyr 1109 TAC Tyr	TCT Ser 1090 GCA Ala 5	1075 TCA Ser TGT Cys GCC Ala	3369
1060 ATG Met GCA Ala CCC Pro	ATG Met ACT Thr AAA Lys	GCA Ala CAG GIn TTA Leu 1110 ACG	CCA Pro TAC Tyr 1098 CCA Pro O	CCA Pro 1080 GGG GIY TAC Tyr	1068 ACA Thr O GCT AIA AAC Asn	CAC His CAT His AAG Lys	GCC Ala GAG Glu GAG Glu 1118 CAG	CAG GIn 1100 ACA Thr CAG	CCT Pro 1089 ACG Thr AGC Ser	GGT GIY CAT His CCT Pro	TTA Leu GCG Ala TCT Ser	GTA Val ATG Met TTC Phe 1120 CCT	TCT Ser TAT Tyr 1109 TAC Tyr O AAC	TCT Ser 1090 GCA Ala TTT Phe	1075 TCA Ser O TGT Cys GCC Ala	3369 3417

CTG	CAC	CCA	CAT	ACT	CCA	CAC	CCT	CAG	CCT	TCA	GCT	ACC	CCC	ACT	GGA	3513
Leu	His	Pro	His	Thr	Pro	His	Pro	Gln	Pro	Ser	Ala	Thr	Pro	Thr	Gly	
1140	0				1145	5				1150)				1155	
CAG	CAG	CAA	AGC	CAA	CAT	GGT	GGA	AGT	CAT	CCT	GCA	CCC	AGT	CCT	GTT	3561
Gln	Gln	Gln	Ser	GIn	His	Gly	Gly	Ser	His	Pro	Ala	Pro	Ser	Pro	Val	
				1160)				116	ō				1170	o	
CAG	CAC	CAT	CAG	CAC	CAG	GCC	GCC	CAG	GCT	стс	CAT	CTG	GCC	AGT	CCA	3609
Gln	His	His	Gln	His	GIn	Ala	Ala	Gln	Ala	Leu	His	Leu	Ala	Ser	Pro	
			1175	5				1180)				1185	ō		
CAG	CAG	CAG	TCA	GCC	ATT	TAC	CAC	GCG	GGG	CTT	GCG	CCA	ACT	CCA	CCC	3657
Gln	Gln	Gln	Ser	Ala	He	Tyr	His	Ala	Gly	Leu	Ala	Pro	Thr	Pro	Pro	
		1190)				1195	ō				1200)			
TCC	ATG	ACA	CCT	GCC	TCC	AAC	ACG	CAG	TCG	CCA	CAG	AAT	AGT	TTC	CCA	3705
Ser	Met	Thr	Pro	Ala	Ser	Asn	Thr	Gln	Ser	Pro	Gln	Asn	Ser	Phe	Pro	
	1205	5				1210)				1215	ō				
GCA			CAG	ACT	GTC			ATC	CAT	CCT			GTT	CAG	CCG	3753
	GCA	CAA			GTC Val	TTT	ACG				TCT	CAC				3753
	GCA Ala	CAA				TTT Phe	ACG				TCT Ser	CAC				3753
Ala 1220	GCA Ala)	CAA GIn	GIn	Thr	Val	TTT Phe	ACG Thr	He	His	Pro 1230	TCT Ser	CAC His	Val	Gln	Pro 1235	3753 3801
Ala 1220 GCG	GCA Ala) TAT	CAA GIn ACC	GIn AAC	Thr CCA	Val 1225	TTT Phe	ACG Thr	lle GCC	His CAC	Pro 1230 GTA	TCT Ser) CCT	CAC His	Val GCT	GIn CAT	Pro 1235 GTA	
Ala 1220 GCG	GCA Ala) TAT	CAA GIn ACC	GIn AAC	Thr CCA	Val 1225 CCC Pro	TTT Phe	ACG Thr	lle GCC	His CAC	Pro 1230 GTA Val	TCT Ser) CCT	CAC His	Val GCT	GIn CAT	Pro 1235 GTA Val	
Ala 1220 GCG Ala	GCA Ala) TAT Tyr	CAA GIn ACC Thr	GIn AAC Asn	Thr CCA Pro 1240	Val 1225 CCC Pro	TTT Phe G CAC His	ACG Thr ATG Met	lle GCC Ala	His CAC His	Pro 1230 GTA Val	TCT Ser) CCT Pro	CAC His CAG GIn	Val GCT Ala	GIn CAT His 1250	Pro 1235 GTA Val	
Ala 1220 GCG Ala CAG	GCA Ala) TAT Tyr TCA	CAA GIn ACC Thr	GIn AAC Asn ATG	Thr CCA Pro 1240 GTT	Val 1225 CCC Pro	TTT Phe GAC His	ACG Thr ATG Met	GCC Ala	His CAC His 1245 ACT	Pro 1230 GTA Val GCC	TCT Ser) CCT Pro	CAC His CAG GIn	Val GCT Ala CCA	GIn CAT His 1250 ATG	Pro 1235 GTA Val)	3801
Ala 1220 GCG Ala CAG	GCA Ala) TAT Tyr TCA	CAA GIn ACC Thr	GIn AAC Asn ATG	Thr CCA Pro 1240 GTT Val	Val 1225 CCC Pro) CCT	TTT Phe GAC His	ACG Thr ATG Met	GCC Ala	His CAC His 1245 ACT Thr	Pro 1230 GTA Val GCC	TCT Ser) CCT Pro	CAC His CAG GIn	Val GCT Ala CCA	GIn CAT His 1250 ATG	Pro 1235 GTA Val)	3801
Ala 1220 GCG Ala CAG GIn	GCA Ala) TAT Tyr TCA Ser	CAA GIn ACC Thr GGA GIy	AAC Asn ATG Met	Thr CCA Pro 1240 GTT Val	Val 1225 CCC Pro) CCT	TTT Phe GAC His TCT Ser	ACG Thr ATG Met CAT His	GCC Ala CCA Pro	His CAC His 1245 ACT Thr	Pro 1230 GTA Val GCC Ala	TCT Ser) CCT Pro CAT His	CAC His CAG GIn GCG Ala	Val GCT Ala CCA Pro 1265	GIn CAT His 1250 ATG Met	Pro 1235 GTA Val) ATG Met	3801
Ala 1220 GCG Ala CAG GIn	GCA Ala) TAT Tyr TCA Ser	CAA GIn ACC Thr GGA GIy	AAC Asn ATG Met 1255 ACA	Thr CCA Pro 1240 GTT Val CAG	Val 1225 CCC Pro) CCT Pro	TTT Phe CAC His TCT Ser	ACG Thr ATG Met CAT His	GCC Ala CCA Pro 1260 GGT	His CAC His 1245 ACT Thr CCC	Pro 1230 GTA Val GCC Ala	TCT Ser) CCT Pro CAT His	CAC His CAG GIn GCG Ala	Val GCT Ala CCA Pro 1265 CTC	CAT His 1250 ATG Met GCT	Pro 1235 GTA Val) ATG Met	3801 3849
Ala 1220 GCG Ala CAG GIn	GCA Ala) TAT Tyr TCA Ser	CAA GIn ACC Thr GGA GIy	AAC Asn ATG Met 1255 ACA Thr	Thr CCA Pro 1240 GTT Val CAG	Val 1225 CCC Pro CCT Pro	TTT Phe CAC His TCT Ser	ACG Thr ATG Met CAT His	GCC Ala CCA Pro 1260 GGT Gly	His CAC His 1245 ACT Thr CCC	Pro 1230 GTA Val GCC Ala	TCT Ser) CCT Pro CAT His	CAC His CAG GIn GCG Ala	Val GCT Ala CCA Pro 1265 CTC Leu	CAT His 1250 ATG Met GCT	Pro 1235 GTA Val) ATG Met	3801 3849

Ser Ala Leu Gln Pro Ile Pro Val Ser Thr Thr Ala His Phe Pro Tyr 1285 1290 1295

ATG ACG CAC CCT TCA GTA CAA GCC CAC CAC CAA CAG CAG TTG 3987 Met Thr His Pro Ser Val Gln Ala His His Gln Gln Gln Leu 1300 1305

1310

TAAGGCTGCC CTGGAGGAAC CGAAAGGCCA AATTCCCTCC TCCCTTCTAC TGCTTCTACC 4047 AACTGGAAGC ACAGAAAACT AGAATTTCAT TTATTTTGTT TTTAAAATAT ATATGTTGAT 4107 TTCTTGTAAC ATCCAATAGG AATGCTAACA GTTCACTTGC AGTGGAAGAT ACTTGGACCG 4167 AGTAGAGGCA TTTAGGAACT TGGGGGCTAT TCCATAATTC CATATGCTGT TTCAGAGTCC 4227 CGCAGGTACC CCAGCTCTGC TTGCCGAAAC TGGAAGTTAT TTATTTTTTA ATAACCCTTG 4287

AAAGTCATGA ACACATCAGC TAGCAAAAGA AGTAACAAGA GTGATTCTTG CTGCTATTAC 4347 TGCTAAAAA AAAAAAAAA 4367

SEQUENCE LENGTH: 203

SEQ ID NO: 2

SEQUENCE TYPE: nucleic acid

STRNDEDNESS: single

TOPOLOGY: linear

SEQUENCE DESCRIPTION

CACCACCAGC AACAGCAACA GCAGCAGCAG CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG 60 CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG 120 CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG 180 CAGCATCACG GAAACTCTGG GCC 203

SEQ ID NO: 3

SEOUENCE LENGTH: 20

SEQUENCE TYPE: nucleic acid

STRNDEDNESS: single TOPOLOGY: linear SEQUENCE DESCRIPTION CACCACCAGC AACAGCAACA 20 SEQ ID NO: 4 SEQUENCE LENGTH: 20 SEQUENCE TYPE: nucleic acid STRNDEDNESS: single TOPOLOGY: linear SEQUENCE DESCRIPTION GGCCCAGAGT TTCCGTGATG 20 SEQ ID NO: 5 SEQUENCE LENGTH: 165 SEQUENCE TYPE: nucleic acid STRNDEDNESS: single TOPOLOGY: linear SEQUENCE DESCRIPTION

CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG 60
CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG CAGCAGCAGCA GCAGCAGCAG 120

CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG CAGCAGC AGCAG 165

SEQ ID NO: 6

SEQUENCE LENGTH: 21

SEQUENCE TYPE: nucleic acid

STRNDEDNESS: single

TOPOLOGY: linear SEQUENCE DESCRIPTION CCCTCACCAT GTCGCTGAAG C 21 SEQ ID NO: 7 SEQUENCE LENGTH: 19 SEQUENCE TYPE: nucleic acid STRNDEDNESS: single TOPOLOGY: linear SEQUENCE DESCRIPTION CGACGCTAGA AGGCCGCTG 19 SEQ ID NO: 8 SEQUENCE LENGTH: 19 SEQUENCE TYPE: nucleic acid STRNDEDNESS: single TOPOLOGY: linear SEQUENCE DESCRIPTION CTTGCGGACA TTGGCAGCC 19 SEQ ID NO: 9 SEQUENCE LENGTH: 27 SEQUENCE TYPE: nucleic acid STRNDEDNESS: single TOPOLOGY: linear SEQUENCE DESCRIPTION TTCTCTCAGC CAAAGCCTTC TACTACC 27

100
113
į.
13
ķå
-1
81
124
ij

SEQ ID NO: 10

SEQUENCE LENGTH: 19

SEQUENCE TYPE: nucleic acid

STRNDEDNESS: single

TOPOLOGY: linear

SEQUENCE DESCRIPTION

TATCCGCAGC TCCGCTCCC

19

SEQ ID NO: 11

SEQUENCE LENGTH: 20

SEQUENCE TYPE: nucleic acid

STRNDEDNESS: single

TOPOLOGY: linear

SEQUENCE DESCRIPTION

AGCCGGGCCG AAACGCGCCG

20

25

CLAIMS

- A nucleic acid fragment comprising a nucleic acid region encoding an amino acid sequence shown in SEQ ID NO: 1 (provided that the number of repeat units of Gln
- 5 from the 166th to 188th amino acid varies between 15 and 100).
 - 2. The nucleic acid fragment according to claim 1, wherein said nucleic acid region is the region from 49nt to 3987nt (provided that the number of repeat units of
- CAG or CAA in the region from the 543nt to 612nt varies between 15 and 100, and that the CAA in this region may be CAG).
 - 3. A protein having the amino acid sequence encoded by said nucleic acid fragment according to claim 1 or 2.
- 15 4. An antibody which undergoes antigen-antibody reaction with said protein according to claim 3.
 - 5. An antisense nucleic acid having a size of not less than 15 bp, which hybridizes with the mRNA transcribed from the nucleic acid fragment according to claim $1\ \mathrm{or}\ 2$
- 20 so as to inhibit translation thereof.
 - A recombinant vector comprising said nucleic acid fragment according to claim 1 or 2 incorporated into an expression vector which can express a desired gene in human body, which recombinant vector can express said nucleic acid fragment in human body.
 - 7. A method comprising introducing said recombinant vector according to claim 6 into human body and

expressing said nucleic acid fragment according to claim 1 or 2 in said human body.

the party of the second pa

ABSTRACT

A sequence-determined cDNA fragment of the causative gene of SCA2 is disclosed. The cDNA fragment according to the present invention comprises a nucleic acid region encoding an amino acid sequence shown in SEQ ID NO: 1 (provided that the number of repeat units of Gln from the 166th to 188th amino acid varies between 15 and 100).

F-1006 61 GCCGCAGCTCCTCGGAGTCCCGCGGTGGCCACCGAGTCTCGCCGCTTCGCCGCAGCCAGG 5 A A A P R S P A V A T E S R R F A A A R 25 W P G W R S L Q R P A R R S G R G G G 181 GCGGCCCGGGACCGTATCCCTCCGCCGCCCCCCCCCCGGCCCCGGCCCCCCTCCC 45 A A P G P Y P S A A P P P P G P G P P 241 TCCCGGCAGAGCTCGCCTCCGCCTCAGACTGTTTTGGTAGCAACGGCAACGGCGGC 65 S R Q S S P P S A S D C F G S N G N G G R P G S R R L 361 GTCGTCGTCCTTCTCCCCTCGCCAGCCCGGGCGCCCCTCCGGCCGCCCAACCCGCGCC 105 V V V L L P L A S P G A P P A A P T R A. 421 TCCCGCTCGGCGCCGTGCGTCCCGCCGCGTTCCGGCGTCTCCTTGGCGCCCGGCT 125 S P L G A R A S P P R S G V S L A R P A 481 CCCGCCTGTCCCCGCCCGGCGTGCGAGCCGGTGTATGGGCCCCTCACCATGTCGCTGAAG 145 P G C P R P A C E P V Y G P L 165 P Q Q Q Q Q Q Q Q 601 CAGCAGCAGCCGCCGCCCGCGCCGCCAATGTCCGCAAGCCCGGCGGCAGCGGCCTT **- R-2** P G G 185 Q Q Q P P P A A A N V R K 661 CTAGCGTCGCCGCCGCCGCCCTCCTCGTCCTCGTCCTCGTCCTCGGCC 205 L A S P A A A P S P S S S 721 ACGCTCCTCCGCTGGTCGCCGCCGACCTCCGGCGGCGGGAGGCCCGGCCTGGGCAGA 225 T A P S S V V A A T S G G G R P G L G R 781 GGTCGAAACAGTAACAAAGGACTGCCTCAGTCTACGATTTCTTTTGATGGAATCTATGCA 245 G R N S N K G L P Q S T I S F 841 AATATGAGGATGGTTCATATACTTACATCAGTTGTTGGCTCCAAATGTGAAGTACAAGTG 265 N M R M V H I L T S V V G S K C E V 901 AAAAATGGAGGTATATATGAAGGAGTTTTTAAAACTTACAGTCCGAAGTGTGATTTGGTA 285 K N G G I Y E G V F K T Y S P K C D L V 961 CTTGATGCCGCACATGAGAAAAGTACAGAATCCAGTTCGGGGCCGAAACGTGAAGAAATA 305 L D A A H E K S T E S S G P K R E E 1021 ATGGAGAGTATTTTGTTCAAATGTTCAGACTTTGTTGTGGTACAGTTTAAAGATATGGAC 325 M E S I L F K C S D F V V V O F K D M D 1081 TCCAGTTATGCAAAAAGAGATGCTTTTACTGACTCTGCTATCAGTGCTAAAGTGAATGGC 345 S S Y A K R D A F T D S A I S A K V 1141 GAACACAAAGAGAAGGACCTGGAGCCCTGGGATGCAGGTGAACTCACAGCCAATGAGGAA 365 E H K E K D L E P W D A G E L T A N E E 1201 CTTGAGGCTTTGGAAAATGACGTATCTAATGGATGGGATCCCAATGATATGTTTCGATAT 385 L E A L E N D V S N G W D P N D M F 1261 AATGAAGAAATTATGGTGTAGTGTCTACGTATGATAGCAGTTTATCTTCGTATACAGTG 405 N E E N Y G V V S T Y D S S L S S

1321 CCCTTAGAAAGAGATAACTCAGAAGAATTTTTAAAACGGGAAGCAAGGGCAAACCAGTTA 425 P L E R D N S E E F L K R E A R A N Q L 1381 GCAGAAGAAATTGAGTCAAGTGCCCAGTACAAAGCTCGAGTGGCCCTGGAAAACGATGAT 445 A E E I E S S A Q Y K A R V A L E N D D 1441 AGGAGTGAGGAAGAAAAATACACAGCAGTTCAGAGGAAATTCCAGTGAACGTGAGGGGCAC 465 R S E E E K Y T A V Q R N S S E R E G H 1501 AGCATAAACACTAGGGAAAATAAATATATTCCTCCTGGACAAAGAAATAGAGAAGTCATA 485 S I N T R E N K Y I P P G Q R N R E V I 1561 TCCTGGGGAAGTGGGAGACAGAATTCACCGCGTATGGGCCAGCCTGGATCGGGCTCCATG 505 S W G S G R Q N S P R M G Q P G S G S M 1621 CCATCAAGATCCACTTCTCACACTTCAGATTTCAACCCGAATTCTGGTTCAGACCAAAGA 525 P S R S T S H T S D F N P N S G S D O R 1681 GTAGTTAATGGAGGTGTTCCCTGGCCATCGCCTTGCCCATCTCCTCTCCTCCCCCACCT 545 V V N G G V P W P S P C P S 1741 TCTCGCTACCAGTCAGGTCCCAACTCTCTTCCACCTCGGGCAGCCACCCCTACACGGCCG 565 S R Y Q S G P N S L P P R A A T P T R P 1801 CCCTCCAGGCCCCCTCGCGGCCATCCAGACCCCGTCTCACCCCTCTGCTCATGGTTCT 585 P S R P P S R P S R P P S H P S A H G S 1861 CCAGCTCCTGTCTCTACTATGCCTAAACGCATGTCTTCAGAAGGGCCTCCAAGGATGTCC 605 P A P V S T M P K R M S S E G P P R M 1921 CCAAAGGCCCAGCGACATCCTCGAAATCACAGAGTTTCTGCTGGGAGGGGTTCCATATCC 625 P K A Q R H P R N H R V S A G R G 1981 AGTGGCCTAGAATTTGTATCCCACAACCCACCCAGTGAAGCAGCTACTCCTCCAGTAGCA 645 S G L E F V S H N P P S E A A T P P V A 2041 AGGACCAGTCCCTCGGGGGAACGTGGTCATCAGTGGTCAGTGGGGTTCCAAGATTATCC 665 R T S P S G G T W S S V V S G V P R L S 2101 CCTAAAACTCATAGACCCAGGTCTCCCAGACAGAACAGTATTGGAAATACCCCCAGTGGG KTHRPRSPRONSIGNTPSG 2161 CCAGTTCTTGCTTCTCCCCAAGCTGGTATTATTCCAACTGAAGCTGTTGCCATGCCTATT V L A S P Q A G I I P T E A V A M 2221 CCAGCTGCATCTCCTACGCCTGCTAGTCCTGCATCGAACAGAGCTGTTACCCCTTCTAGT 725 P A A S P T P A S P A S N R A V T P S 2281 GAGGCTAAAGATTCCAGGCTTCAAGATCAGAGGCAGAACTCTCCTGCAGGGAATAAAGAA 745 E A K D S R L Q D Q R Q N S P A G N K E 2341 AATATTAAACCCAATGAAACATCACCTAGCTTCTCAAAAGCTGAAAACAAAGGTATATCA 765 N I K P N E T S P S F S K A E N K G I S 2401 CCAGTTGTTTCTGAACATAGAAAACAGATTGATGATTTAAAGAAATTTAAGAATGATTTT 785 P'V V S E H R K Q I D D L K K F K N D F 2461 AGGTTACAGCCAAGTTCTACTTCTGAATCTATGGATCAACTACTAAACAAAATAGAGAG 805 R L Q P S S T S E S M D Q L L N K N R E 2521 GGAGAAAAATCAAGAGATTTGATCAAAGACAAAATTGAACCAAGTGCTAAGGATTCTTTC 825 G E K S R D L I K D K I E P S A K 2581 ATTGAAAATAGCAGCAGCAACTGTACCAGTGGCAGCAGCAAGCCGAATAGCCCCAGCATT 845 I E N S SSNCTSGS S K P

2641 TCCCCTTCAATACTTAGTAACACGGAGCACAAGAGGGGACCTGAGGTCACTTCCCAAGGG 865 S P S I L S N T E H K R G P E V T S O G 2701 GTTCAGACTTCCAGCCCAGCATGTAAACAAGAGAAAAGACGATAAGGAAGAAGAAGAC 885 V Q T S S P A C K Q E K D D K E E K K D 2761 GCAGCTGAGCAAGTTAGGAAATCAACATTGAATCCCAATGCAAAGGAGTTCAACCCACGT 905 A A E Q V R K S T L N P N A K E F N P R 2821 TCCTTCTCAGCCAAAGCCTTCTACTACCCCAACTTCACCTCGGCCTCAAGCACAACCT Q P K P S T T P T S P R P Q A O P 945 S P S M V G H Q Q P T P V Y T Q P V C F 2941 GCACCAAATATGATGTATCCAGTCCCAGTGAGCCCAGGCGTGCAACCTTTATACCCAATA 965 A P N M M Y P V P V S P G V Q P L Y P I 3001 CCTATGACGCCCATGCCAGTGAATCAAGCCAAGACATATAGAGCAGTACCAAATATGCCC 985 P M T P M P V N O A K T Y R A V P N M P 3061 CAACAGCGGCAAGACCAGCATCATCAGAGTGCCATGATGCACCCAGCGTCAGCAGCGGGGC 1005 Q Q R Q D Q H H Q S A M M H P A S A A G 3121 CCACCGATTGCAGCCACCCACCAGCTTACTCCACGCAATATGTTGCCTACAGTCCTCAG 1025 P P I A A T P P A Y S T Q Y V A Y S P Q 3181 CAGTTCCCAAATCAGCCCCTTGTTCAGCATGTGCCACATTATCAGTCTCAGCATCCTCAT 1045 Q F P N Q P L V Q H V P H Y O S O H P H 3241 GTCTATAGTCCTGTAATACAGGGTAATGCTAGAATGATGGCACCACCAACACACGCCCAG 1065 V Y S P V I Q G N A R M M A P P T H A O 3301 CCTGGTTTAGTATCTTCTTCAGCAACTCAGTACGGGGCTCATGAGCAGACGCATGCGATG 1085 P G L V S S S A T Q Y G A H E Q T H A M 1105 Y A C P K L P Y N K E T S P S F Y F A I 3421 TCCACGGCTCCCTTGCTCAGCAGTATGCGCACCCTAACGCTACCCTGCACCCACATACT 1125 S T G S L A O O Y A H P N A T L H P H T 3481 CCACACCTCAGCCTTCAGCTACCCCCACTGGACAGCAGCAAAGCCAACATGGTGGAAGT 1145 P H P Q P S A T P T G Q Q Q S Q H G G S 3541 CATCCTGCACCCAGTCCTGTTCAGCACCATCAGCCCCGGCCCAGGCTCTCCATCTG 1165 H P A P S P V Q H H O H O A A O A L H L 3601 GCCAGTCCACAGCAGTCAGCCATTTACCACGCGGGGCTTGCGCCAACTCCACCCTCC 1185 A S P Q Q Q S A I Y H A G L A P T P P S 3661 ATGACACCTGCCTCCAACACGCAGTCGCCACAGAATAGTTTCCCAGCAGCACAACAGACT 1205 M T P A S N T Q S P Q N S F P A A O O T 1225 V F T I H P S H V Q P A Y T N P P H M A 3781 CACGTACCTCAGGCTCATGTACAGTCAGGAATGGTTCCTTCTCATCCAACTGCCCATGCG 1245 H V P Q A H V Q S G M V P S H P T A H A 3841 CCAATGATGCTAATGACGACACACCCGGCGGTCCCCAGGCCGCCCTCGCTCAAAGT 1265 P M M L M T T Q P P G G P Q A A L A O S 3901 GCACTACAGCCCATTCCAGTCTCGACAACAGCGCATTTCCCCTATATGACGCACCCTTCA 1285 A L Q P I P V S T T A H F P Y M T H P S 3961 GTACAAGCCCACCAACAGCAGTTGTAAGGCTGCCCTGGAGGAACCGAAAGGCCAAAT 1305 V Q A H H Q Q Q L *

4/6

4021 TCCCTCCTCCCTTCTACTGCTTCTACCAACTGGAAGCACAGAAAACTAGAATTTCATTTA
 4081 TTTTGTTTTTAAAATATATATGTTGATTTCTTGTAACATCCAATAGGAATGCTAACAGTT
 4141 CACTTGCAGTGGAAGATACTTGGACCGAGTAGAGGCATTTAGGAACTTGGGGGCTATTCC
 4201 ATAATTCCATATGCTGTTTCAGAGTCCCGCAGGTACCCCAGCTCTGCTTGCCGAAACTGG
 4261 AAGTTATTTATTTTTTAATAACCCTTGAAAGTCATGAACACATCAGCTAGCAAAAGAAGT
 4321 AACAAGAGTGATTCTTGCTGCTATTACTGCT (A) n

Fig. 4

Fig. 5

the fact that the fact the fact that the fac

Fig. 6

Fig. 7

COMBINED DECLARATION AND POWER OF ATTORNEY FOR PATENT APPLICATION

As a below named inventor, I hereby declare that: my residence post office address and citizenship are as stated next to my name; that I verily believe that I am the original, first and sole inventor (if only one inventor is named below) or a joint inventor (if plural inventors are named below) of the subject matter which is claimed and for which a patent is sought on the invention entitled: "cDNA Fragment of Causative Gene of Spinocerebellar Ataxia Type 2"

the specification of which is attached hereto unless one of the following boxes is checked:

The Specification was filed on and was assigned Serial No. and was amended on was filed as PCT international application number PCT/JP97/03946 on October 30, 1997 and was amended under PCT Article 19 on (if applicable).

I hereby state that I have reviewed and understand the contents of the above identified specification, including the claims, as amended by any amendment referred to above.

I acknowledge the duty to disclose information material to patentability as defined in Title 37, Code of Federal Regulations, § 1.56.

I do not know and do not believe the same was ever known or used in the United States of America before my or our invention thereof, or patented or described in any printed publication in any country before my or our invention thereof, or more than one year prior to this application, that the same was not in public use or on sale in the United States of America more than one year prior to this application, that the invention has not been patented or made the subject of an inventor's certificate issued before the date of this application in any country foreign to the United States of America on an application filed by me or my legal representatives or assigns more than twelve months prior to this application, and that no application for patent or inventor's certificate on this invention has been filed in any country foreign to the United States of America prior to this application by me or my legal representatives or assigns, except as follows:

I hereby claim foreign priority benefits under Title 35, United States Code, § 119 of any foreign application(s) for patent or inventor's certificate listed below:

Prior Foreign Application(s)

Priority Claimed

304059/96

<u>Japan</u>

<u>10.30.96</u>

Yes

(Number)

(Country)

(Month/Day/Year Filed)

All Foreign Applications, if any, for any Patent or Inventor's Certificate Filed More Than 12 Months Prior To The Filing Date of This Application:

Country

Application No.

Date of Filing (Month/Day/Year)

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, 112, I acknowledge the duty to disclose material information as defined in Title 37, Code of Federal Regulations, § 1.56 which occurred between the filing date of the prior application and the national or PCT international filing date of this application:

(Application Serial No.)

(Filing Date)

(Status-patented,

pending, abandoned)

I hereby appoint the following attorneys to prosecute this application and/or an international application based on this application and to transact all business in the Patent and Trademark Office connected therewith and in connection with the resulting patent based on instructions received from the entity who first sent the application papers to the attorneys identified below, unless the inventor(s) or assignee provides said attorneys with a written notice to the contrary:

RAYMOND C.STEWART(Reg.No.21,066) TERRELL C.BIRCH(Reg.No.19,382)

JOSEPH A.KOLASCH(Reg.No.22,463) ANTHONY L.BIRCH(Reg.No.26,122)

JAMES M.SLATTERY(Reg.No.28,380) BERNARD L.SWEENEY(Reg.No.24,448)

DONALD C.KOLASCH(Reg.No.23,038) MICHAEL K.MUTTER(Reg.No.29,680)

CHARLES GORENSTEIN(Reg.No.29,271) GERALD M.MURPHY,JR.

LEONARD R.SVENSSON(Reg.No.30,330) (Reg.No.28,977)

MARC S.WEINER(Reg.No.32,181) TERRY L. CLARK(Reg.No.32,644)

ANDREW D.MEIKLE(Reg.No.32,868)

Send Correspondence to: BIRCH, STEWART, KOLASCH AND BIRCH

8110 Gatehouse Road Suite 500 East P.O.Box 747

Falls Church, Virginia 22040-0747

Telephone: (703)205-8000 Facsimile: (703)205-8050

14

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

1-00	GIVEN NAME	FAM	
1-0-	<u>Shoj</u> i	TSU	
•	RESIDENCE(Ci	ty, Sta	
	Niigata-shi, Niig		
	POST OFFICE A	\DDRI	
	1-10-45, Kobari	, Niiga	
, a tau au	GIVEN NAME	FAM	
21)	Kazuhiro	SANI	
LA LA	RESIDENCE(Ci		
======	Niinata ali Niinata		

forth from Arms of the Control of th

GIVEN NAME FAMI	LY NAME	INVENTOR'S SIGNATURE	*Date	
Shoji TSUJ	L.,	Shippy	June 23, 1998	
RESIDENCE(City, State & Country)			CITIZENSHIP	
Niigata-shi, Niigata, JAPAN			Japanese	
POST OFFICE ADDRESS (Complete Street Address including City, State & Country)				
1-10-45, Kobari, Niigata-shi, Niigata 950-21 JAPAN				
GIVEN NAME FAMI	LY NAME	INVENTOR'S SIGNATURE	*Date	
Kazuhiro SANP	<u>E</u> I	Hozukiro Sanpei	June 23, 1998	
RESIDENCE(City, State	e & Country)		CITIZENSHIP	
Niigata-shi, Niigata, JAPAN Japanese				
POST OFFICE ADDRESS (Complete Street Address including City, State & Country)				
A-203 Advantage, 98-1, Oshima, Niigata-shi, Niigata 950 JAPAN				