Assignment 02

(Substitute of Mid Term Exam)

Trimester: Summer 2024 Course code: PHY 2105 Course Title: Physics Full Marks: 10

1	a.	Briefly discuss the applications of damped harmonic motion (DHM) that you observe	1
		in your real life.	
	b.	Why does the amplitude of the damped harmonic motion (DHM) decrease with time?	1
		Briefly Explain.	
2	a.	For a damped oscillator $m = 200 \text{ g}$, $k = 90 \text{ N/m}$ and $b = 68 \text{ g/s}$.	2

- For a damped oscillator m = 200 g, k = 90 N/m and b = 68 g/s.
 - How long does it take for the amplitude of the damped oscillations to drop to one fifth of it's initial value?
 - (ii) The maximum displacement of undamped oscillator is 35 cm. If the damping is stopped after Z cycles, what is the damping energy? Here Z is the last digit of your student ID. If the last digit of your ID is 0 then use $\mathbf{Z} = 5$.
 - b. Calculate the value of L that is required to construct a critically damped RLC circuit 2 with $R = 50 \Omega$, $C = 0.2 \mu F$. Construct the equation of charge if the initial charge in the capacitor is $Q_0 = 5$ C and L = 0.3 mH, $R = 50 \Omega$, $C = 0.2 \mu$ F.
 - 2 A mass spring system in DHM with m = 500 g, b = 80 g/s. (i) What must be the spring constant of the spring for the system to be oscillatory? (ii) If the time period of the undamped oscillator is 2 s and the initial amplitude of the oscillator is 2 m, what will be the displacement at t = M sec? Here M is the last digit of
- 3 A mass spring system is undergoing DHM with mass m and the equation of 2 displacement

your Student ID. If the last digit of your ID is 0 then use M = 7.

 $y = 5e^{-2t}\cos 2t$ Show that damping energy decreases faster compared to the amplitude using the damping constant. [Use equations to justify your answer].