

Semiparametric Spatiotemporal Hazard Mapping Under Local Stationarity

Jialuo Liu*, Tingjin Chu[†], Jun Zhu[‡] and Haonan Wang*

Colorado State University*, University of Melbourne† and University of Wisconsin-Madison‡

EXAMPLE: HAZARD MAPPING

- The dataset consists of the measurements of noise intensity collected by 17 static sensors and 2 roving sensors.
- Measurements are taken between 10:29:00 am and 11:24:00 am when all sensors are operating.

Figure 1: Locations and time series plot

- Irregularity and Sparsity: in space and in time
- Nonlinearity: nonlinear time trend
- Nonstationarity: inhomogeneous error variances

SPATIOTEMPORAL SAMPLING DESIGN

We introduce a (L_n, T_n) -rate spatiotemporal distance expanding asymptotics for fixed spatiotemporal domain (STDE) asymptotics. Let $\{L_n\}, \{T_n\} \to \infty$ be two sequences of positive numbers.

- $\max_{1 \le j \le N_n} \delta_{j,n} \le c_1/L_n$,
- $\max_{1 \le j \le N_n} \zeta_{j,n} \le c_2/T_n$,
- $\min_{1 \le j \le N_n} L_n \delta_{j,n} + T_n \zeta_{j,n} \ge c_3$,

where

- $\delta_{j,n} = \min\{\|s_i - s_j\| : 1 \le i \le N_n, s_i \ne s_j\}$ $-\zeta_{j,n} = \min\{|t_i - t_j| : 1 \le i \le N_n, t_i \ne t_j\}$

LOCALLY STATIONARY PROCESS

Consider a spatiotemporal random process $\{Y(s,t):s\in\mathcal{R}\subset$ $\mathbb{R}^d, t \in \mathcal{T} \subset \mathbb{R}$. Denote $Cov(Y(s,t), Y(s',t')) = \gamma((s,t), (s',t'))$ Denote the stage of the asymptotics as n.

• There exists a function $g(u_1, u_2, s, t)$ such that

$$\lim_{n\to\infty} \gamma_n((\boldsymbol{s},t),(\boldsymbol{s}+\boldsymbol{u}_1/L_n,t+u_2/T_n)) = g(\boldsymbol{u}_1,u_2,\boldsymbol{s},t),$$

where $||u_1|| \le \tau_1, |u_2| \le \tau_2$ for any given $\tau_1 > 0, \tau_2 > 0$.

• Let $g(\boldsymbol{s},t) = g(\boldsymbol{0},0,\boldsymbol{s},t)$, then $\gamma_n((\boldsymbol{s},t),(\boldsymbol{s},t)) = g(\boldsymbol{s},t) + |$ $\mathcal{O}(\rho_n)$ uniformly in (s,t), where $\{\rho_n\} \to 0$ as $n \to \infty$.

MODEL

Consider a general Gaussian spatiotemporal model,

$$y(\boldsymbol{s},t) = \boldsymbol{x}(\boldsymbol{s},t)^{\top} \boldsymbol{\beta} + f(t) + \varepsilon(\boldsymbol{s},t), \quad \boldsymbol{s} \in [0,1]^d, \ t \in [0,1], \quad (1)$$

where

- $\boldsymbol{\beta} = (\beta_1, \dots, \beta_p)^{\top}.$
 - f(t) is an unknown temporal trend function on [0,1].
 - $\varepsilon(s,t)$ is the spatiotemporal gaussian error process.

GENERALIZED SPATIOTEMPORAL MATÉRN COVARIANCE FUNCTIONS

We consider a class of nonseparable nonstationary S-T covariance functions

$$\gamma_{n}((s,t),(s',t');\boldsymbol{\theta}) = \begin{cases}
\frac{D(s,t)D(s',t')\sigma^{2}(1-c)\theta_{3}^{d/2}2^{1-\nu}}{(\theta_{1}^{2}u_{2}^{2}+1)^{\nu}(\theta_{1}^{2}u_{2}^{2}+\theta_{3})^{d/2}\Gamma(\nu)} m(\boldsymbol{u}_{1},u_{2})^{\nu}K_{\nu} \left\{ m(\boldsymbol{u}_{1},u_{2}) \right\}, & \|\boldsymbol{u}_{1}\|_{2} > 0, \\
\frac{D(s,t)D(s',t')\sigma^{2}(1-c)\theta_{3}^{d/2}}{(\theta_{1}^{2}u_{2}^{2}+1)^{\nu}(\theta_{1}^{2}u_{2}^{2}+\theta_{3})^{d/2}}, & \|\boldsymbol{u}_{1}\|_{2} = 0, |u_{2}| > 0, \\
D(s,t)^{2}\sigma^{2}, & \|\boldsymbol{u}_{1}\|_{2} = 0, |u_{2}| = 0, \\
\end{pmatrix} \tag{2}$$

where

- $u_1=L_n(s-s')$, $u_2=T_n(t-t')$ - $m(u_1,u_2)=\theta_2\left(\frac{\theta_1^2u_2^2+1}{\theta_1^2u_2^2+\theta_3}\right)^{1/2}\|u_1\|$

- $K_{\nu}(\cdot)$ is the modified Bessel function of the second kind of order ν
- D(s,t) is some known function

The above covariance function is generally nonseparable and nonstationary.

PROFILE LIKELIHOOD ESTIMATION

We consider profile likelihood estimation method:

1. Let $y^* = y - X\beta$. Estimate f using local polynomial regression, i.e., $f = Sy^* = S(y - X\beta)$, where

$$S = \left(egin{array}{c} (1,0)(oldsymbol{D}_{t_1}^ op oldsymbol{K}_{t_1} oldsymbol{D}_{t_1})^{-1} oldsymbol{D}_{t_1}^ op oldsymbol{K}_{t_1} \\ dots \\ (1,0)(oldsymbol{D}_{t_N}^ op oldsymbol{K}_{t_N} oldsymbol{D}_{t_N})^{-1} oldsymbol{D}_{t_N}^ op oldsymbol{K}_{t_N} \end{array}
ight),$$

- 2. Plugging f into (1), $(I S)y \approx (I S)X\beta + \varepsilon$,
- 3. The estimates $(\widehat{\boldsymbol{\beta}}^{\top}, \widehat{\boldsymbol{\theta}}^{\top})^{\top}$ minimize the following (negative) profile log-likelihood criterion $\ell(\beta, \theta)$

$$\frac{1}{2}\log|\mathbf{\Gamma}(\boldsymbol{\theta})| + \frac{1}{2}(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^{\top}(\boldsymbol{I} - \boldsymbol{S})^{\top}\mathbf{\Gamma}(\boldsymbol{\theta})^{-1}(\boldsymbol{I} - \boldsymbol{S})(\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}),$$

4. The estimates of f can be obtained as $\widehat{f} = S(y - X\widehat{\beta})$.

THEORETICAL PROPERTIES

Theorem 1 There exists, with probability tending to one, a local minimizer ${}^{n}\widehat{\boldsymbol{\eta}} = ({}^{n}\widehat{\boldsymbol{\beta}}^{\top}, {}^{n}\widehat{\boldsymbol{\theta}}^{\top})^{\top}$ of $\ell(\boldsymbol{\eta})$ such that $\|{}^{n}\widehat{\boldsymbol{\eta}} - \boldsymbol{\eta}_{0}\| = O_{p}(N_{n}^{-1/2})$ Moreover, the local minimizer ${}^{n}\widehat{\eta}$ is asymptotic normal,

$$N_n^{1/2}(^n\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}_0) \xrightarrow{D} N(\mathbf{0}, \mathbf{\Pi}^{-1}),$$

 $N_n^{1/2}(^n\widehat{\boldsymbol{\theta}} - \boldsymbol{\theta}_0) \xrightarrow{D} N(\mathbf{0}, \boldsymbol{\mathcal{I}}_0(\boldsymbol{\theta}_0)^{-1}).$

Theorem 2 If $f^{(3)}(t)$ is bounded, under some regularity conditions, then for $t \in (0,1)$, we have

$$(N_n h)^{1/2} \left\{ \widehat{\boldsymbol{F}}(t) - \boldsymbol{F}(t) - \frac{1}{2} h^2 \begin{pmatrix} \mu_2 f''(t) \\ 0 \end{pmatrix} + o(h^2) \right\} \xrightarrow{D} N \left(0, \begin{pmatrix} 1 & 0 \\ 0 & \mu_2^{-1} \end{pmatrix} \Delta_t \begin{pmatrix} 1 & 0 \\ 0 & \mu_2^{-1} \end{pmatrix} \right).$$

where $\widehat{\boldsymbol{F}}(t) = \boldsymbol{\omega}(t)(\boldsymbol{y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}})$ is the estimate of $\boldsymbol{F}(t) = (f(t), hf'(t))^{\top}$ and $\boldsymbol{\omega}(t) = (\boldsymbol{D}_t^{\top} \boldsymbol{K}_t \boldsymbol{D}_t)^{-1} \boldsymbol{D}_t^{\top} \boldsymbol{K}_t$.

SIMULATION

Spatiotemporal Sampling Design:

- Consider N_s locations s_1, \ldots, s_{N_s} in $[0, 1]^2$.
- Time points are sampled from $\{t_1,\ldots,t_{N_t}\}$, where $t_i=(i-1)$ $0.5)/N_t$ and $N_t = 1000$.

Mean Structure:

-
$$X \sim \text{mvn}\left(\mathbf{0}, \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}\right)$$
 and $\boldsymbol{\beta} = (4, 3, 2, 1)^{\top}$.
- $f(t) = 2(1 - \cos(2\pi t))$.

Error Process:

- consider a special case of (2) when $\nu=1/2$ and $\theta_3=1$, simplified as

$$Cov(\epsilon_i, \epsilon_j) = \begin{cases} \frac{\tau^2 (1-c)}{(a^2 |(t_{i,N} - t_{j,N})|^2 + 1)^{3/2}} \exp\{-b \| \mathbf{s}_{i,N} - \mathbf{s}_{j,N} \| \}, & i \neq j \\ \tau^2, & i = j \end{cases}$$

$$\circ \ \tau^2 = D(\boldsymbol{s_i}, t_i) D(\boldsymbol{s_j}, t_j) \sigma^2$$

$$\circ \ oldsymbol{s}_{i,N} = L_N oldsymbol{s}_i \ ext{and} \ t_{i,N} = T_N t_i$$

 $\circ D(s_i, t_i) = dt_i + 1$

$$\sigma^2 = 0.2, c = 0.2, a = 1, b = 1, d = 2$$

We consider three sample sizes $N_n = 806, 1644, 2449$ by letting $N_s = 20, 40, 60$ and the following results are summarized from 400 iterations.

N_s	$N_s = 20$		$N_s = 40$		$N_s = 60$	
h	0.032		0.029		0.027	
Regression parameters						
β_1	3.996(0.032)	0.032	4.001(0.023)	0.023	4.001(0.019)	0.019
eta_2	3.003(0.037)	0.034	3.002(0.022)	0.023	2.999(0.018)	0.018
eta_3	2.003(0.032)	0.033	1.997(0.023)	0.024	2.000(0.019)	0.018
eta_4	1.000(0.033)	0.032	0.999(0.022)	0.023	0.999(0.018)	0.018
Covariance parameters						
σ^2	0.210(0.029)	0.028	0.205(0.020)	0.020	0.203(0.016)	0.016
c	0.206(0.156)	0.138	0.213(0.093)	0.080	0.196(0.076)	0.068
a	0.947(0.296)	0.226	0.939(0.179)	0.135	0.987(0.143)	0.117
b	0.995(0.298)	0.298	0.970(0.146)	0.159	0.981(0.110)	0.124
d	1.967(0.279)	0.274	1.989(0.204)	0.197	1.994(0.156)	0.159
MSPE	0.824		0.718		0.841	

Table 1: Parameter estimates.

BANDWIDTH SELECTION

Theorem 3 For the spatiotemporal partial linear model (1) with a locally stationary covariance function, we have

$$E\{CV(h)\} = \frac{1}{N_n} \sum_{i=1}^{N_n} E\{f(t_i) - \hat{f}^{(-i)}(t_i)\}^2 + \overline{\sigma^2} + o\left(\frac{1}{N_n h}\right)$$

$$-\frac{K(0)}{N_n hq(t) - K(0)} \left(\frac{2}{N_n} \sum_{i=1}^{N_n} \sum_{\substack{j \neq i \\ t_j = t_i}} \gamma(i, j) \right),\,$$

- K(0) = 0 will remove the effect of correlated errors.
- Bimodal kernel: $K_2(u) = \frac{2}{\sqrt{\pi}}u^2 \exp(-u^2)$.

• Bandwidth selection criterion: cross-validation (CV)

REAL DATA ANALYSIS

For the noise intensity data, we have the fitted mean structure

$$\widehat{y} = -0.51s_1 + 0.45s_2 + \widehat{f}(t)$$

Figure 2: $\widehat{f}(t)$

Figure 3: D(s,t)

Here, $D(s,t) = 1 + 2.22t + 7.77(t-\tau)_+$, and τ is chosen as 11:10:00.

Figure 4: Dynamic hazard maps

- The dynamic hazard maps suggest a possible noise source on the upper-left corner.
- A change of the overall noise intensity at 11:10:00.
- A horizontal separation around y = 30 before 11:10:00.