Feuille de travaux dirigés nº 6 Instructions et chemins de données

Instructions

Exercice 6.1

On rappelle les formats pour les instructions du MIPS :

	31		26	25		21	20		16	15	11	10	6	5	0
Format R		Opcode			rs			rt			rd	(decval	fonct	
	31		26	25		21	20		16	15					0
Format I		Opcode			rs			rt					Imm16		
	31		26	25											0
Format J		Opcode		Adresse											

Le processeur MIPS a 32 registres généraux. Les codes (opcode/foncteur) des instructions utilisées dans cet exercice sont présentés dans le tableau ci-dessous :

Opération	Mnémonique	Format	Opcode	Foncteur				
Addition	add	R	000000	110010				
add rd, rs, rt	$\mathbf{c}:R[r_d]\leftarrow R[r_s]$	$[r_t] + R[r_t]$						
Addition Immédiat	addi	I	001000					
addi rt, rs,	$\operatorname{Imm}:R[r_t] \leftarrow R$	$2[r_s] + \operatorname{Sig}$	nExt(Imm))				
Soustraction	sub	R	000000	110100				
sub rd, rs, rt	$\mathbf{c}:R[r_d]\leftarrow R[r_s]$	$[r_t] - R[r_t]$						
Chargement	lw	I	100011					
lw rt, Imm(rs): $R[r_t] \leftarrow \text{MEM}[R[r_s] + \text{SignExt}(\text{Imm})]$								
Rangement	SW	I	101011					
sw rt, Imm(rs): $\operatorname{MEM}\left[R[r_s] + \operatorname{SignExt}(\operatorname{Imm})\right] \leftarrow R[r_t]$								
Décalage à droite	srl	R	000000	000010				
srl rd, rt, de	$ecval: R[r_d] \leftarrow$	$-R[r_t] >$	> decval					

- 1. Quel est l'intervalle maximal pour l'opérande immédiat de addi?
- 2. Quel est l'intervalle maximal pour les pas de décalage de l'instruction srl ? Justifier ;
- 3. Quelles sont les instructions qui correspondent aux codages suivants :

```
0x23bdffe0
0xafa50024
0x8fae001c
```

4. Quels seraient les codages en binaire et en hexadécimal des instructions suivantes :

```
sw $ra, 20($sp)
sw $fp, 16($sp)
addi $fp, $sp, 32
lw $v0, 0($fp)
srl $v0, $v0, 4
add $v0, $a0, $v0
sub $v0, $v0, $a1
```

Exercice 6.2

On considère une machine à pile M_0 , une machine à accumulateur M_1 et une machine à registres M_2 . Ces machines disposent des instructions décrites ci-dessous :

M_0	M_1	M_2
add	load $X (acc \leftarrow X)$	load Ri, X
sub	store $X(X \leftarrow acc)$	store Ri, X
push X	add $X (acc \leftarrow acc + X)$	add Ri, Rj, Rk $(R_i \leftarrow R_j + R_k)$
pop X	sub $X (acc \leftarrow acc - X)$	sub Ri, Rj, Rk $(R_i \leftarrow R_j - R_k)$

1. Écrire les séquences de code suivantes pour les machines M_0 , M_1 et M_2 (on suppose que les variables A, B, C et D sont initialement en mémoire :

2. Comparer ces machines en taille de code statique et en nombre d'accès à la mémoire.

Chemins de données

Exercice 6.3

On souhaite ajouter au chemin de données mono-cycle vu en cours et rappelé ci-dessous l'instruction jal.

- 1. Ajouter au chemin de données tous les éléments nécessaires à la gestion de jal (lignes de données, modules combinatoires/séquentiels, signaux de contrôle);
- 2. Étendre la table ci-dessous de façon à tenir compte des signaux de contrôle ajoutés.

Foncteur	100000	100010	Don't care							
Opcode	000000	000000	001101	100011	101011	000100	000010			
	add	sub	ori	lw	SW	beq	j			
RegDst	1	1	0	0	X	X	X			
ALUSrc	0	0	1	1	1	0	X			
MemtoReg	0	0	0	1	X	X	X			
RegWrite	1	1	1	1	0	0	0			
MemWrite	0	0	0	0	1	0	0			
Branch	0	0	0	0	0	1	0			
Jump	0	0	0	0	0	0	1			
ExtOp	X	X	0	1	1	X	X			
ALUctr	Add	Sub	Or	Add	Add	Sub	XXX			