Notes on Evans & Didelez (2023)

Gregor Steiner

July 21, 2023

This document collects my notes on Evans and Didelez (2023). They propose a new parameterization for causal problems, termed **frugal parameterization**, which consists of three pieces: the joint distribution of the treatment and covariates $p_{ZX}(z,x)$ (the 'past'), the causal distribution of interest $p_{Y|X}^*(y|x)$, and a dependence measure between the outcome and the covariates conditional on the treatment $\phi_{YZ|X}^*$ (could be a conditional odds-ratio or a copula). In sequential treatment models, this parameterization circumvents the so-called **g-null paradox** (Robins and Wasserman, 1997). Their main result shows that a frugal parametrization $\theta = (\theta_{ZX}, \theta_{Y|X}, \phi_{YZ|X})$ of the observational distribution induces a corresponding parameterization $\theta^* = (\theta_{ZX}, \theta_{Y|X}^*, \phi_{YZ|X}^*)$ that is also frugal. Replacing θ_{ZX} in θ^* with $\eta_{ZX}(\theta_{ZX})$, where η_{ZX} is a twice differentiable function with a Jacobian of constant rank, yields a parameterization of the causal joint distribution p_{ZXY}^* . Using this, they propose a rejection sampling algorithm to sample from p_{ZXY} (implemented in the R-package causl). Furthermore, they show that under certain assumptions we can obtain consistent parameter estimates for the model $p_{Y|X}^*$ by maximizing the likelihood with respect to the observational data from p_{ZXY} .

As far as I understand, the main advantage of the frugal parameterization is that it provides a convenient characterization of the joint distribution p_{ZXY} , which is usually unknown or difficult to handle. Instead, we can specify a model for $p_{ZX}(z,x)$ and $p_{Y|X}^*(y|x)$ and choose a dependence measure of Y and Z conditional on X. Then, we can use these three to perform likelihood-based inference or simulate from the joint distribution. Consider the following example corresponding to Figure 1: The joint distribution can be factorized into the frugal parameterization:

$$p_{ZXY}(z, x, y | \theta^*) = p_{ZX}(z, x | \theta_{ZX}) p_{Y|ZX}^*(y | z, x)$$
(1)

$$= p_{ZX}(z, x | \theta_{ZX}) p_X^*(y | x; \theta_{Y|X}^*) c(y, z | x),$$
(2)

where $c(y, z|x) =: \phi_{YZ|X}^*$ is a copula density for continuous Y and Z given X. Given observations for (Y, X, Z), we can estimate θ^* by maximizing the expression above. Or we can even obtain a posterior distribution

$$p(\theta^*|z, x, y) \propto p_{ZXY}(z, x, y|\theta^*)p(\theta^*), \tag{3}$$

where $p(\theta^*)$ is some prior distribution.

Comments/Questions:

- It's not clear to me what the role of η_{ZX} is and how we obtain it. Is it chosen by the analyst?
- The parameterization is not unique: Given $p_{Y|X}^*$, p_{ZX} and the dependence measure $\phi_{YZ|X}^*$ need to be chosen. How do we choose them? Can this choice introduce uncertainty that is not accounted for, maybe like selective inference type problems?

Figure 1: Causal diagram

• Similarly, what happens if the causal model $p_{Y|X}^*$ is misspecified? Then, the causal and observational joint distributions will be misspecified as well, leading to false simulation results, right?

Further reading:

• Robins and Wasserman (1997) and McGrath et al. (2022) to better understand the g-null paradox. Also, problem 29.1 in Ding (2023) is similar to their example R2.

References

- Ding, P. (2023). A first course in causal inference.
- Evans, R. J. and Didelez, V. (2023). Parameterizing and Simulating from Causal Models. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, page qkad058.
- McGrath, S., Young, J. G., and Hernán, M. A. (2022). Revisiting the g-null paradox. *Epidemiology (Cambridge, Mass.)*, 33(1):114.
- Robins, J. M. and Wasserman, L. (1997). Estimation of effects of sequential treatments by reparameterizing directed acyclic graphs. In *Proceedings of the Thirteenth Conference on Uncertainty in Artificial Intelligence*, UAI'97, page 409–420, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.