		Date/
		Page
	Aschit Matta	Jone work 2
	an 5500	28/2/21
	J. 1 5 5 0 0	
2	(a) Since only one part of the object	
i.	TT = ang max. Estape	
	yi ~ Bon (TT) → p (yi ITT) =	
	A = arg max. Z la (TTy)	(1-17)
	Taking derivative wirt IT and setting	, is to 0
	$\frac{2}{2\pi} d \left(h \left(\pi^{4i} (1-\pi)^{+4i} \right) = 0$	
	=> \frac{1}{2} \d (\gamma_i \lambda_i \tau_i \lambda_i \tau_i \lambda_i \tau_i) = 0
	$\frac{2yi}{\pi} - \frac{2(1-yi)}{1-\pi} = 0$	•
	=> \frac{A}{2} = \frac{7}{2} \frac{1}{1}	
	(a) Lince only one part of the objective	
	Roa Englosa) + Ela	p (ri, a 1 so, a)
	xillyon Pois (Nu, d) =) p (Nudlyo) = 2	e-20, c
	2 () =) p () =)	6,0 () rold
a Marindan - I amende dispublican in prosper	X d yo	x)
		1, Das

Taking derivative cort $\lambda_0 d$ and setty it to 0: $\frac{d}{d\lambda_0 d} \left[\ln \left(\lambda_{0,a} e^{-\lambda_{0,a} d} \right) + \frac{7}{2} \ln \left(e^{-\lambda_{0,a} d} \left(\lambda_{0,a} \right)^{1/4} \right) \right] = 0$

1 -1 + 2 [20d + (-1) = T Egi = 0] = 0

*) 1 + \(\frac{2}{2}\) = 1 + \(\frac{2}{2}\) I \(\frac{1}{2}\) = 03

5) Sod = 1 + Exideros

Since our expression is synthic unt Logal > id >)

1 + Z I {y = y }

(a)
$$L(\omega) = L(\omega) = L(\omega) + (\omega - \omega_1)^T \nabla L(\omega_1) + (\omega - \omega_1)^T \nabla^2 L(\omega_1) (\omega - \omega_1)$$
 $L(\omega) = (\omega - \omega_1)^T \nabla^2 L(\omega_1) (\omega - \omega_1)$
 $L(\omega) + (\omega - \omega_1)^T \nabla L(\omega_1) + (\omega$

Problem 2

Part a - Naive Bayes

Part b - Naive Bayes

```
In [13]:
          fig = plt.figure()
          fig.set_figheight(12)
          fig.set figwidth(18)
          plt.rcParams["figure.figsize"] = (20,10)
          ax1 = fig.add subplot(211)
          ax2 = fig.add_subplot(212)
          ax1.set_title('Stem plot for \u03BB = 0')
          ax1.set_xlabel('Dimension')
          ax1.set ylabel('Weight')
          ax1.stem(numbers, lamda 0 average)
          ax2.set title('Stem plot for \u03BB = 1')
          ax2.set xlabel('Dimension')
          ax2.set ylabel('Weight')
          ax2.stem(numbers, lamda 1 average)
          plt.show()
```



```
In [15]:
          barWidth = 0.25
          # Set position of bar on X axis
          r1 = np.arange(len(lamda 0 subset))
          r2 = [x + barWidth for x in r1]
          # Make the plot
          plt.bar(r1, lamda_0_subset, color='#7f6d5f', width=barWidth, edgecolor='white
          plt.bar(r2, lamda_1_subset, color='#557f2d', width=barWidth, edgecolor='white
          # Add xticks on the middle of the group bars
          plt.title('Comparing 16th and 52nd Dimensions')
          plt.xlabel('Term', fontweight='bold', fontsize=15)
          plt.ylabel('Weight', fontweight='bold', fontsize=15)
          plt.xticks([r + (barWidth/2) for r in range(len(lamda_0_subset))], label_subs
          # Create legend & Show graphic
          plt.legend()
          plt.show()
```


16th and 52nd Dimension refer to the terms 'free' and '!'. These terms are seen having more weight for the case λ = 1 than λ = 0. This is expected as the terms 'free' and '!' are more likely to present in spam emails.

Part c - Logistic Regression

```
In [20]: accuracy = "\033[1m" + 'Prediction Accuracy = ' + str((df_confusion_sa[-1][-1
    print(accuracy)
    df_confusion_sa
```

Prediction Accuracy = 0.927608695652174

Out[20]: Predicted -1.0 1.0

Actual

- **-1** 2615 172
- **1** 161 1652

```
objective_all_sa_df = pd.DataFrame(objective_all_sa)
objective_all_sa_df.columns = [1,2,3,4,5,6,7,8,9,10]
ax = plt.gca()
ax.set_title('Objective Training Function vs Number of Iterations by Test Groax.set_xlabel('Number of Iterations')
ax.set_ylabel('Objective Training Function')
objective_all_sa_df.plot(kind='line', ax = ax)
plt.show()
```


Part - d Newton's Method

```
objective_all_nm_df = pd.DataFrame(objective_all_nm)
objective_all_nm_df.columns = [1,2,3,4,5,6,7,8,9,10]
ax = plt.gca()
ax.set_title('Objective Training Function vs Number of Iterations by Test Groax.set_xlabel('Number of Iterations')
ax.set_ylabel('Objective Training Function')
objective_all_nm_df.plot(kind='line', ax = ax)
plt.show()
```


Part - e Newton's Method

Question 3

Part - a Gaussian Process

In [32]:	rmse_matrix								
Out[32]:	b	5	7	9	11	13	15		
	Sigma^2								
	0.1	1.938372	1.940853	1.941556	1.941658	1.941612	1.94159		
	0.2	1.933602	1.934726	1.935956	1.93735	1.938869	1.940463		
	0.3	1.930739	1.933197	1.936128	1.939142	1.942123	1.945042		
	0.4	1.930309	1.934424	1.938905	1.943281	1.947501	1.951609		
	0.5	1.931505	1.937161	1.942999	1.948611	1.954042	1.959397		
	0.6	1.933778	1.940821	1.947915	1.954755	1.961467	1.968194		
	0.7	1.936804	1.945119	1.953441	1.961562	1.969661	1.977894		
	0.8	1.940386	1.949906	1.959475	1.968956	1.978548	1.988404		
	0.9	1.944405	1.955098	1.965958	1.976881	1.988065	1.999638		
	1.0	1.948782	1.960644	1.972848	1.985292	1.998149	2.011511		

Part - b Gaussian Process

```
b_min = 0
sigma_min = 0
min = rmse_matrix.to_numpy().min()
for b_i in b:
    for sigma_i in sigma:
        if rmse_matrix[b_i][sigma_i] == min:
            b_min = b_i
            sigma_min = sigma_i
            break
print('Minimum RMSE :', min)
print('Ideal b :', b_min)
print('Ideal \u03C3^2 :', sigma_min)
```

Minimum RMSE : 1.9303087263142182 Ideal b : 5 Ideal σ^2 : 0.4

The minimum RMSE in Assignment 1 was 2.100110972109874 while the minimum RMSE using the Gaussian Process Approach is 1.9303087263142182. As we can see, Gaussian Process has a lower RMSE value and is thus better at making predictions. Some drawbacks of using this approach are - Higher Computation Time, Higher Prediction Variance and Difficulty in Interpreting Feature Importance (Due to Kernel based Approach).

Part - c Gaussian Process

