

CCP907T SDF 虚拟化使用说明 v1.0

文件修改履历表:

版本号	文件修改描述	修订者	日期
V1.0	创建	李玲勇	2021-06-16

目 录

1.	简介			
	CCP907T 虚拟化开发环境搭建			
		判断平台是否支持虚拟化技术		
		AMD R9 平台 BIOS 虚拟化配置		
		INTEL XEON 平台虚拟化配置		
		虚拟机安装		
3.	3. CCP907T SDF 虚拟化程序运行			
	3.1	安装 PF 驱动		
	3.2	虚拟机 PCIE 设备配置		
	3.3	安装 VF 驱动和内核模块		
	3.4	运行测试程序		

1.简介

本文主要介绍了在 AMD R9 平台和 INTEL XEON 平台上 CCP907T 密码卡 SDF 虚拟化环境的搭建和使用。所使用的软件有:

CCP907T PF 驱动:

CCP907T VF 驱动;

CCP907T SDF 内核库;

CCP907T SDF 应用层库:

CCP907T SDF 测试程序;

2.CCP907T 虚拟化开发环境搭建

2.1 判断平台是否支持虚拟化技术

1.使用 egrep '(vmx|svm)' /proc/cpuinfo 命令查看,如果没有输出说明 CPU 不支持虚拟化,需在 BIOS 中配置,或者需咨询 CPU 本身是否支持虚拟化技术。其中 vmx 表示 Intel-VT 技术,svm 表示 AMD-V 技术。2.主板和 CPU 需支持 Intel 的 VT-d 或者 AMD 的 IOMMU 以及 PCI-SIG 的 IOV。通常情况下默认是关闭的,需在 BIOS 中重新配置或者修改 linux 系统启动参数。IOV 通过在硬件设备中增加一个 PCIE 设备,用于呈现一个 PF 或多个 VF,从而可以将每个 VF 单独分配给不同的虚拟机使用。

2.2AMD R9 平台 BIOS 虚拟化配置

Advanced CPU Settings → SVM Mode Enabled (CPU 虚拟化);

Chipset → IOMMU Enabled (PCIE 虚拟化);

AMD CBS → ACS Enable Enable (不同 PCIE 总线使用不同 IOMMU 地址组);

AMD CBS → PCIe ARI Support Enable (选择性开启,使用更多的 PCIE 总线号);

AMD CBS → Enable AER Cap Auto (不要使用高级错误功能);

2.3 INTEL XEON 平台虚拟化配置

启动虚拟机时提示 PCI Pass-through 的 ERROR 信息,可通过以下方式修改:

- 1. cat /proc/cmdline | grep intel_iommu 判断内核启动是否支持 intel_iommu 技术;
- 2. 若无上述启动参数,把 intel_iommu=on iommu=pt 添加到 grub 配置文件的 GRUB_CMDLINE_LINUX 一行的最后。

vi /etc/default/grub

```
.x86_64 root=/dev/mapper/centos-root ro crashkernel=auto rd.lvm.lv=centos/root
quiet intel iommu⇒on iommu⇒pt
 root@ccore CCP908 SEC BASE PF # ls /boot/
config-3.10.0-957.el7.x86_64
efi/
extlinux/
grub/
grub2/
initramfs-0-rescue-2c170e4bce5b4269b6324b1237057d63,img

symvers-3,10,0-957,el7,x86_64,gz
System.map-3,10,0-957,el7,x86_64
vmlinuz-0-rescue-2c170e4bce5b4269b6324b1237057d63
vmlinuz-3,10,0-957,el7,x86_64
.vmlinuz-3,10,0-957,el7,x86_64,hmac
                                                                                     initramfs-3.10.0-957.el7.x86 64kdump.img
 root@ccore CCP908_SEC_BASE_PF| # ls /boot/efi/EFI/
 GOOT/ centos/ Dell/ root@ccore CCP908_SEC_BASE_PF] # ls /boot/efi/EFI/centos/
 back_grub.cfg
                              fonts/
                                                            fwupx64.efi
                                                                                         grubx64.efi
                                                                                                                      shim, efi
 BOOT, CSV
                              fw/
                                                            grub.cfg
                                                                                         mmx64 efi
                                                                                                                      shimx64-centos.efi
 BOOTX64 CSV
                              fwupia32.efi
                                                            grubenv
                                                                                         MokManager.efi
                                                                                                                      shimx64.efi
  root@ccore CCP908_SEC_BASE_PF| # ls /boot/efi/EFI/centos/grub*
   boot/efi/EFI/centos/grub.cfg /boot/efi/EFI
root®ccore CCP908 SEC_BASE_PF| #
root®ccore CCP908 SEC_BASE_PF| # cd /etc/de
                                               /boot/efi/EFI/centos/grubenv /boot/efi/EFI/centos/grubx64.efi
 default/ depmod.d/
[root@ccore CCP908_SEC_BASE_PF] # cd /etc/de
| root@ccore CCP908_SEC_BASE_PF] # cd /etc/default/
| root@ccore default| # ls
| grub grub.bak nss useradd
| root@ccore default| # cat grub
  GRUB_TIMEOUT=5
   GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"
  GRUB_DEFAULT=saved
GRUB_DISABLE_SUBMENU=true
   GRUB_TERMINAL_OUTPUT='console"

GRUB_CMDLINE_LINUX='crashkernel=auto rd.lvm.lv=centos/root rd.lvm.lv=centos/swap rhgb quiet intel_iommu=on iommu=pt"

GRUB_DISABLE_RECOVERY='true"
    root@ccore default] #
      CCP908_SEC_BASE_PF
                                            ccore@ccore:/etc/default
                                                                                       WM [成拟系统管理器]
                                                                                                                               WM [ubuntu16.04 - QEMU/KVM]
```

图 2.1 grub 配置信息

3. 刷新 grub.cfg 文件并重新启动主机生效。通过 grub2-mkconfig –o /boot/grub2/grub.cfg 重新生成 grub.cfg 文件。系统若是通过 efi 启动,需将/boot/efi/EFI/centos/grub.cfg 更新成上述生成的 grub.cfg 文件

2.4虚拟机安装

- 1. centos 系统通常默认安装虚拟机管理程序,测试机安装的是 Ubuntu1804 系统,需手动 安装 qemu-kvm:
 - a) atp-get install qemu-kvm
- 2. 安装 libvirt 虚拟化管理模块
 - a) atp-get install libvirt
- 3. 安装 virt-manage:
 - a) apt-get install virt-manger
- 4. 虚拟机安装系统:
 - a) 将虚拟机 ISO 文件拷贝入电脑,打开 virtual machine manager 软件,选择 create a new virtual

machine 在虚拟机中安装 linux 系统。

3.CCP907T SDF 虚拟化程序运行

3.1 安装 PF 驱动

将 908_sdf_pf_driver 考入主系统, 进入 CCP907_SEC_BASE_PF 目录, 运行如下命令安装 PF 驱动:

make clean

make

insmod PCIE_CCP907_PF.ko

安装成功后,输入 lspci 命令,可以看到如下多出的 8 个 PCIE 设备(ID 号为 9000:0000):

图 3.1 虚拟出的 PCIE 设备

3.2 虚拟机 PCIE 设备配置

打开虚拟机,右击选择 Add Hardware 添加虚拟化出的 PCIE 设备:

图 3.2 虚拟机添加虚拟出的 PCIE 设备

启动虚拟机,输入 lspci 命令可以看到添加的设备(设备 ID 为 9000:0000):。

图 3.3 虚拟机中识别的 PCIE 设备

3.3 安装 VF 驱动和内核模块

将 908_sdf_virtual 文件夹考入虚拟机系统中,进入 sdf 目录,运行 source script/build_sdf.sh source script/insmod_sdf.sh 编译并安装 PCIE_CCP907_VF.ko 和 ntl_crypto.ko 两个内核 ko 文件。

3.4 运行测试程序

将 LIB 目录下 libsdf_crypto.so 库文件拷贝至 sdf_test 目录下,编辑 main.c 文件,打开不同的宏定义保存后,输入如下命令:

make clean

make

source run_command.sh

./sdftest

进行不同测试项的测试。