Self-Attention, Transformers, BERT, GPT

Sophisticated Input

Input is a vector

Input is a set of vectors

Vector Set as Input

A 4-dimensional embedding

One-hot Encoding

cat =
$$[0 \ 0 \ 1 \ 0 \ 0 \dots]$$

$$dog = [0 \ 0 \ 0 \ 1 \ 0 \dots]$$

elephant =
$$[0 \ 0 \ 0 \ 1 \dots]$$

Word Embedding

What is the output?

• Each vector has a label.

• The whole sequence has a label.

Model decides the numbers of labels itself.

Sequence Labeling

Find the relevant vectors in a sequence

$\alpha'_{1,i} = exp(\alpha_{1,i}) / \sum_{j} exp(\alpha_{1,j})$

$$k^1 = W^k a^1$$

Extract information based on attention scores

$$v^1 = W^v a^1$$

$$v^2 = W^v a^2$$

$$v^3 = W^v a^3$$

$$v^4 = W^v a^4$$

Can be either input or a hidden layer

Self-attention Q K W^k W^{v} V = Parameters to be learned A'Q A = **Attention Matrix** A'0 V =

Multi-head Self-attention

Different types of relevance

Multi-head Self-attention

Different types of relevance

Positional Encoding

- No position information in self-attention.
- Each position has a unique positional vector e^i
- hand-crafted
- learned from data

Each column represents a positional vector e^i

Attention Visualization

The encoder self-attention distribution for the word "it" from the 5th to the 6th layer of a Transformer trained on English to French translation (one of eight attention heads). https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Encoder

Decoder

Autoregressive (AT)

Autoregressive

Self-attention → Masked Self-attention

Why masked? Consider how does decoder work

Autoregressive

We do not know the correct output length.

The models become larger and larger ...

Turing NLG (17B)

GPT-3 is **10** times larger than Turing NLG.

Megatron (8B)

Outline

Self-supervised Learning

I now call it "self-supervised learning", because "unsupervised" is both a loaded and confusing term.

In self-supervised learning, the system learns to predict part of its input from other parts of it input. In other words a portion of the input is used as a supervisory signal to a predictor fed with the remaining portion of the input.

Why does BERT work?

Α

G

https://arxiv.org/abs/2103.07162 class Random Linear initialization pre-train on English Init by pre-train we **BERT** you he [CLS] she we he we she DNA sequence

Outline

\mathbf{W}_{t+1} Training data: "I Predict Next Token love new york" love york new Cross entropy softmax h_2 h_1 h_3 h_4 Linear **Transform** from w_t h_t <BOS> love new

"In-context" Learning

task description Translate English to French: Few-shot **Learning** sea otter => loutre de mer examples peppermint => menthe poivrée (no gradient descent) plush girafe => girafe peluche cheese => prompt One-shot task description Translate English to French: **Learning** sea otter => loutre de mer example cheese => prompt Zero-shot Translate English to French: task description <u>Learning</u> cheese => prompt

GPT-3

Language Models are Few-Shot Learners

Tom B. Brow	wn* Benjam	in Mann*	Nick Ryder*	Melanie Subbiah*	
Jared Kaplan [†]	Prafulla Dhariwal	Arvind Neelak	antan Pranav Shy	am Girish Sastry	
Amanda Askell	Sandhini Agarwal	Ariel Herbert-	Voss Gretchen Krue	eger Tom Henighan	
Rewon Child	Aditya Ramesh	Daniel M. Zie	gler Jeffrey Wu	Clemens Winter	
Christopher He	esse Mark Che	n Eric Sigle	r Mateusz Litwi	n Scott Gray	
Benjamin Chess		Jack Clark	Christop	Christopher Berner	
Sam McCandlish Alec Ra		Radford	Ilya Sutskever	Dario Amodei	

OpenAI