Задание № 14: деревья

Для всех задач:

Имя входного файла: input.txt Имя выходного файла: output.txt

Ограничение по времени: 1 секунда на тест

Ограничение по памяти: 64 Мб

Задача 1. Дерево двоичного поиска

По заданным словам построить дерево двоичного поиска и обойти его в инфиксном порядке. Повторяющиеся слова в дерево не вставлять.

Входные данные

Входной файл содержит строки, в каждой из которых записано по одному слову. Длина каждого слова не превосходит 100 символов. Количество слов не превосходит 1000.

Выходные данные

В выходной файл нужно выдать эти слова, упорядоченные в лексикографическом порядке, по одному на строке.

Пример

input.txt	output.txt
orange	apple
mallon	banana
apple	grapes
grapes	mallon
plum	orange
banana	plum

Задача 2. Обходы дерева

По заданной последовательности целых чисел построить дерево двоичного поиска и обойти его в прямом и обратном порядках. Повторяющиеся числа в дерево не вставлять.

Входные данные

Во входном файле через пробел записаны целые числа. Количество чисел не превосходит 1000.

Выходные данные

В первую строку выходного файла нужно вывести значения, содержащиеся в построенном дереве в прямом порядке обхода, а во вторую — в обратном. Числа выводить через пробел.

Пример

input.txt	output.txt
5 1 10 -3 12 1 9 4	5 1 -3 4 10 9 12
	-3 4 1 9 12 10 5

Задача 3. Дерево-формула

Деревом-формулой называется двоичное дерево, в листах которого расположены цифры, а в вершинах, которые не являются листами — знаки операций. На рисунке показано дерево-формула, соответствующее формуле (5*(3+8)).

Описать рекурсивную функцию, которая вычисляет (как целое число) значение дерева-формулы.

Входные данные

Во входном файле записано выражение в префиксной форме.

По этой записи нужно построить двоичное дерево. Длина строки во входном файле не превосходит 1000 знаков.

Выходные данные

В выходной файл нужно выдать одно целое число — значение выражения, заданного деревом.

Если возникнет деление на 0, то выдать слово **NO.**

Пример

input.txt	output.txt
*5+38	55

Задача 4. Пляски с бубном

— А это, кажется, будет тебе интересно, — Эдик Амперян положил на стол передо мной копию какой-то статьи.

В статье рассказывалось о магической системе, основанной на применении бубнов. Каждой нештатной ситуации поставлена в соответствие последовательность ударов правого и левого бубна так, что в результате получается полное двоичное дерево из $M=2^N-1$ вершин. Статья обосновывала применимость данного метода к поиску и устранению ошибок в компьютерных системах. При этом проблема заключалась в том, что авторы статьи использовали различные источники, в которых вершины были занумерованы, начиная с единицы, одним из следующих способов:

• инфиксный

Вершины нумеруются в следующем порядке: сначала левая ветка, потом корень, потом правая (источники, связанные с чукотскими шаманами и Windows Vista).

• постфиксный

В этом случае сначала нумеруем левую ветку, потом правую, а потом корень (источники, связанные с якутскими шаманами и Windows XP).

• префиксный

Тут наоборот: сначала корень, потом левую ветку, потом правую (источники, связанные с эскимосскими шаманами и FreeBSD).

• согласно правилу "кучи"

Вершины нумеруются слева направо по уровням, сверху вниз, начиная с корня (источники, связанные с шаманами племени яки и Linux).

Я перечитал эту статью и понял, что перед тем, как проверять её утверждения и начинать пляски с бубном, необходимо научиться делать преобразование из любого типа нумерации в любой.

Ниже дан пример нумерации дерева для N = 3, M = 7:

Входные данные

В первой строке входного файла дано целое число L – количество деревьев; $0 < L \le 1000$. В каждой из следующих L строк даны два целых числа N_i и K_i и одна строка S. N_i задаёт высоту дерева, K_i задаёт номер элемента в нём, а S задаёт, каким способом задана нумерация: если $S = \mathbf{INF}$ – нумерация инфиксная, **POSTF** – постфиксная, **PREF** – префиксная, **HEAP** – согласно правилу «кучи» ($0 < N_i \le 60$, $1 \le K_i \le 2^{N_i} - 1$).

Выходные данные

 $B\ L$ строках выходного файла нужно вывести в порядке, соответствующему входному файлу, по четыре числа в каждой строке: номер элемента в инфиксной записи, номер элемента в постфиксной записи, номер элемента в префиксной записи, и номер элемента, вычисленный по правилу «кучи».

Пример

input.txt	output.txt
3	4 7 1 1
3 1 PREF	7 5 7 7
3 7 INF	6 6 6 5
4 5 HEAP	