

Forelesning nr.5 analog elektronikk IN 1080 Mekatronikk

Analyse av RC-kretser Induksjon

Dagens temaer

- Analyse av RC-kretser i tidsplanet
- Frekvens vs tid
- Filtre
- Induksjon
 - Induktorer
 - Elektromotorer

Oppsummering puls- og naturlig respons

- Hva er viktig å kunne/huske:
 - . Oppladning og utladning skjer ikke momentant
 - . Opp- og utladningskurvene er eksponensielle, og ikke lineære
 - . Naturlig respons er oppførselen ETTER at spenningskilden er kortsluttet (ingen påvirkning fra eksterne kilder)
 - . Pulsrespons er oppførselen når
 - 1. spenningskilden går fra max spenning til 0 (tilsvarer naturlig respons)
 - 2. spenningskilden går fra 0 til max spenning
 - **Tidskonstanten** τ =RC sier hvor raskt utladningen eller oppladningen skjer
- Ligningen for **utladning** er $v_c = V_F e^{-\frac{t}{\tau}}$ Ligningen for **oppladning** er $v_c = V_F (1 e^{-\frac{t}{\tau}})$

 - Etter $t = \tau 5$ er kondensatoren nesten helt oppladet eller helt utladet
 - Vi må **regne ut RC** for å finne opp/utladningstiden for en konkret RC-krets

Det matematisk-naturvitenskapelige fakultet

Fouriers teorem

- Et periodisk signal kan skrives som en sum av sinus- og cosinussignaler vha Fourier-transform
 - Vi skal ikke bevise dette; kun se på et eksempel og bruke resultatet
- Fourier-serien beskriver hvordan et periodisk signal f(t) kan skrives som en funksjon g(t) som er en (uendelig) sum av sinus- og cosinusledd
- Fourier-transform er prosessen med å finne Fourier-serien
- Vi antar derfor at ethvert periodisk inputsignal kan skrives på denne formen:
 - Det kan også vises at vi strengt tatt kun trenger bare sinus eller bare cosinus

$$g(t) = a_0 + \sum_{m=1}^{\infty} a_m \cos\left(\frac{2\pi mt}{T}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{T}\right)$$
$$= \sum_{m=0}^{\infty} a_m \cos\left(\frac{2\pi mt}{T}\right) + \sum_{n=1}^{\infty} b_n \sin\left(\frac{2\pi nt}{T}\right)$$

Det matematisk-naturvitenskapelige fakultet

Fouriers teorem: eksempel 1

- Ønsker å finne hvilke sinuskomponenter som trengs for å beskrive f(t) som g(t), dvs Fourierserien til f(t)
- For å vise prosessen skal vi gradvis prøve med flere og flere ledd i g(t) og så se om g(t) er en god tilnærming til f(t)
- Starter med g(t) med ett enkelt ledd
- $a_i = 0.3$, $T=2\pi$ og $\theta=1/2\pi$

5

Det matematisk-naturvitenskapelige fakultet

Fouriers teorem: eksempel 1 (forts)

Fouriers teorem: eksempel 1 (forts)

- For at g(t) ≈ f(t) trengte vi fire sinusledd med fire ulike frekvenser som er et helt antall ganger grunnfrekvensen θ (3θ, 5θ osv)
- Hvor mange ledd vi trenger avhenger bla av hvor nøyaktig vi trenger å være
- Legg merke til at vi ikke har vist hvordan man går frem for å finne g(t) generelt.

Det matematisk-naturvitenskapelige fakultet

Fouriers teorem: eksempel 2

Tilnærming til firkantbølge og sagtannbølge som sum av fire grunnfrekvenser

Vi kan defor beskrive digitale signaler som en fourier-serie

Sammenheng mellom frekvens og tid

- Når vi beskriver et ac-signal er det noen ganger som funksjon av tid, andre ganger som funksjon av frekvens
- Signalets amplitude er den samme i begge tilfeller

Filtre (1)

- Et filter er en innretning som slipper gjennom bestemte ting og blokkerer andre
- F.eks en tesil: Slipper gjennom vann (veldig små molekyler), men blokkerer teblader (store objekter sammenlignet med vannmolekyler)

- Utesteder med aldersgrense har også en type filter:
 - Yngre 20 år: Ingen adgang
 - 20 år eller eldre: Adgang

Filtre (2)

- I elektronikk trenger vi også ulike typer filtre for å slippe gjennom det vi ønsker og sperre det vi ikke ønsker:
 - Stoppe u
 ønskede h
 øyspenninger i bolighus (ved lynnedslag):
 Overspenningsvern
 - Forhindre at det går for mye strøm gjennom ledninger (overbelstning): Automatsikring
- Hvordan og hva man stopper varierer fra en anvendelse til en annen, men formålet er uansett å stoppe det vi ikke ønsker og slippe gjennom det vi ønsker

Filtre (3)

- Vi skal se nærmere på filtre som stopper visse frekvenser samtidig som de slipper gjennom andre frekvenser
- Filtre har ulike egenskaper og parametre; en av de viktigste er hvilke frekvenser som stoppes og hvilke som slipper gjennom :
 - Høypassfiltre stopper lave frekvenser og slipper gjennom høye
 - Lavpassfiltre slipper gjennom lave frekvenser og stopper høye
 - Båndpassfiltre slipper igjennom frekvenser i et bestemt område og stopper frekvenser utenfor dette området
 - Båndstoppfiltre stopper frekvenser innenfor et bestemt område og slipper gjennom frekvenser utenfor dette området

Filteregenskaper og gain (1)

- Egenskapene og oppførselen til et filter kalles filterkarakteristikken
- En viktig egenskap er gain (forsterkning) og er forholdet mellom utsignalet og innsignalet
- Den enkleste varianten er se på forholdet mellom utgang og inngang for samme signaltype: $G_v = A_v = \frac{v_{out}}{v_{in}} \qquad G_i = A_i = \frac{i_{out}}{i_{in}}$
- A = "Amplification" ≈ "Gain" og måles ofte i decibel (dB)

$$G_{dB} = 10 * \log(A_v)$$
 $G_{dB} = 10 * \log(A_i)$ dB for spenningsgain dB for strømgain

Filteregenskaper og gain (2)

- Sammenheng mellom noen dB-verdier og Gain
 - 0 dB tilsvarer $V_{out}=V_{in}$ og $A_v=1$, dvs ingen forsterkning
 - ~6 dB tilsvarer $V_{out} = 2*V_{in}$
 - 20 dB tilsvarer $V_{out} = 10^*V_i$ og $A_v = 10$
 - -20 dB tilsvarer $V_{out} = 0.1*V_i$ og $A_v = 0.1$
 - 30 dB tilsvarer $V_{out} = 1000^*V_i$ og $A_v = 1000$
- decibel-skalaen er svært utbredt innen bla akustikk, antennemålinger, audioelektronikk, energi, feltstyrke, osv. MEN (liten advarsel):
 - Både formlene for å regne ut og navnene varier, f.eks dBV, dBA, dB Q, dBsm, dBJ
 - For eksempel: Forholdet mellom effekt ut og effekt in er $A_p = A_v * A_i$ og i desibel:

$$G_{dB} = 10 * \log(A_p)$$

Ideelle versus fysiske filtre

Knekkfrekvens

- Knekkfrekvensen («cutoff») er frekvensen hvor filteret begynner å slippe igjennom (eller stoppe) signaler
- Ideelle filtre slipper gjennom signaler i passområdet uten dempning, og stopper fullstendig signaler utenfor
- I praksis dempes signaler i passområdet, og stoppes ikke helt i stoppområdet
- Båndbredden er frekvensområdet som slipper igjennom filteret

Ulike filtre og filterkarakteristikker

- Filtre finnes i mange typer med ulike navn
 - Filterets orden angir hvor raskt filteret demper
 - Jo brattere kurve desto bedre, men det straffer seg i passområdet

Frequency Response Curve

17

RC-krets som lavpassfilter

RC krets kan benyttes som et lavpassfilter

RC-krets som høypassfilter

RC-krets som høypassfilter

Det matematisk-naturvitenskapelige fakultet

RC lead/lag kretser

RC «lead»- og «lag»-kretser er faseskiftkretser

• I en RC «lag»-krets er utspenningen V_{out} forskjøvet φ grader i

forhold til V_{in}

 $\theta = 90^{\circ} - \theta$ (phase lag) $V_{C}(V_{out})$ V_{in}

- (b) Phasor voltage diagram showing the phase lag between V_{in} and V_{out}
- ø (phase lag)
- (c) Input and output voltage waveforms

- V_{out} er lik V_c , V_{in} lik V_s og $\varphi=90^{\circ}-\theta$
- Kretsen kan også ses på som en spenningsdeler hvor

$$\varphi = 90^{\circ} - \tan^{-1}(\frac{X_C}{R})$$

$$V_{out} = \left(\frac{X_C}{\sqrt{R^2 + X_C^2}}\right) V_{in}$$

RC lead/lag kretser (forts)

Ved å bytte om R og C får man en RC-«lead»-krets

Utspenningen tas over resistoren og φ og V_{out} er her gitt av

$$R \operatorname{og} X_{\mathbf{C}}$$

$$\varphi = \operatorname{tan}^{-1}(\frac{X_{C}}{R})$$

$$V_{out} = \left(\frac{R}{\sqrt{R^{2} + X_{C}^{R}}}\right) V_{in}$$