Data mining - zadanie 44

Gabriel Budziński

January 20, 2024

1 Treść

Explain why feature scaling of the input features is important.

2 Skalowanie

Cechy w danych które dostarczamy do naszej sieci mogą mieć różne zakresy, jednostki czy rzędy wielkości. W takich wypadkach model niektóre z cech mogą zdominować inne, które zostaną pominiętem, co negatywnie wpłynie na dokładność naszego modelu.

3 Metody skalowania

Najczęstszymi metodami skalowania są normalizacja, standaryzacja i min-max scaling.

3.1 Standaryzacja

$$x' = \frac{x - \bar{x}}{\sigma}$$

W ten sposób otrzymujemy zbiór ze średnią $\mu=0$ oraz odchyleniem standardowym $\sigma=1.$

3.2 Normalizacja

$$x' = \frac{x - \bar{x}}{\max(x) - \min(x)}$$

W ten sposób otrzymujemy wartości $x' \in [-1, 1]$ ze średnią $\mu = 0$.

3.3 Min-max

$$x' = \frac{x - \min(x)}{\max(x) - \min(x)}$$

W ten sposób otrzymujemy wartości $x' \in [0, 1]$.

4 Skalowanie a trening

Skalowanie zbioru danych ma też pozytywny wpływ na szybkość uczenia lub dokładność modelu w zależności od metody.

4.1 Gradient decent

Jeśli dane są rozciągniete w jednym z wymiarów (ma duże odchylenie standardowe), gradient może długo skakać na drodze do optimum. Kiedy przeskalujemy te dane droga do rozwiązania optymalnego jest łatwiejsza.

4.2 KNN

Jak widzimy dane oryginalne oraz przeskalowane prowadzą do powstania zupełnie różnych modeli.

4.3 Modele oparte o drzewa

W modelach opartych o drzewa wpływ sklaowania jest znikomy.