Алгоритм розміщення Хіллера

Число можливих парних перестановок на кожній ітерації з n-елементів визначається $N=\frac{n\cdot (n-1)}{2}$, і тому зв'язано зі значними часовими затратами, деколи це є недоцільно.

Тому в ряді алгоритмів на кожній ітерації досліджуються тільки перестановки сусідніх елементів - ми виділяли групи сильно зв'язаних елементів. В цьому випадку скорочується кількість розраховуємих приростів сумарної довжини, а також спрощується й обчислення самих приростів.

При матричному розміщенні є початкове розміщення, є прямокутний масив позицій (ПМ) та матриця |A|. Відстань між сусідніми позиціями примемо за одницю довжини

Елемент обозначимо як l_i (а не x_i), тому що використовуємо координати x_i (потім перейжемо до звичних обозначень).

Оцінимо зміну сумарної довжини з'єднань при переміщенні елементу l_i в одну з позицій, розташованих безпосередньо зліва, справа, зверху та знизу.від нього, відповідно обозначимо $\Delta L_{i\leftarrow}, \Delta L_{i\rightarrow}, \Delta L_{i\uparrow}, \Delta L_{i\downarrow}$.

Ці зміни можна визначити по матриці зв'язку |A| та поточному розміщеню елементів. При переміщені одного елементу зміну сумарної довжини в загальному випадку визначається так

$$l_j$$
 l_i l_i Розташовані зліва елементи l_i Розташовані справа елементи l_i $\Delta L_{i\leftarrow} = \sum_{\substack{j,x_j < x_i \\ \text{Розташовані зліва} \\ \text{елементи } l_i}$ $-\sum_{\substack{j,x_j < x_i \\ \text{Розташовані зліва} \\ \text{елементи } l_i}} a_{ij}$

Тут сума - сума зв'язків l_i елементів з усіма елементами l_j , що розташовані лівіше l_i $(x_i < x_i)$, правіше l_i $(x_i > x_i)$ та стовпчика з координатами x_i $(x_i = x_j)$.

АПТК. Лекції 1 of 9 Губар В.Г. 2014

Оскільки при переміщені елементу l_i вліво (\leftarrow) зменшується на одиницю довжини його з'єднань зі всіма елементами l_j , розташованими лівіше стовпчика x_i та збільшується на одиницю довжини з усіма елементами l_j ($j \neq i$), розташованими в стовпчику x_i , і правіше його.

$$\begin{array}{c|c}
l_{j} & l_{i} \\
\bullet & \bullet \\
x_{i} & x_{i}
\end{array}$$

$$\Delta L_{i\rightarrow} = \sum_{j,x_{j}>x_{i}} a_{ij} - \sum_{j,x_{j}\leq x_{i}} a_{ij}$$

Скорочується вище - зменшується нижче.

Ці формули дозволяють визначити зміну суми довжини зв'язків при перестановці елементу $\leftrightarrow \updownarrow$ - одного елементу. Якщо елемент l_i ми зміщуємо в нову позицію, то елемент з цюєї позиції ми повинні переставити в позицію елементу l_i .

$$\Delta L_{i\leftarrow} = \sum_{\substack{j,x_j < x_i \\ j,x_j < x_i}} a_{ij} - \sum_{\substack{j,x_j \ge x_i \\ j,x_j < x_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,x_j < x_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_i \\ j,y_j < y_i}} a_{ij} - \sum_{\substack{j,x_j \le x_$$

Визначемо приріст сумарної довжини з'єднань при перестановці пари сусідніх елементів $l_i \leftrightarrow l_i$.

Для випадку, коли елементи розташовані в одному рядку горизонтального масиву, тобто $y_i = y_j$ та нехай $x_j = x_i \pm 1$, тоді отримаємо при зміщені двох елементів

$$l_i$$

або
$$\Delta L_{l_i\leftrightarrow l_j}=\Delta L_{l_i\to}+\Delta L_{l_j\leftarrow}-2a_{l_il_j}\big|_{\max}$$
 (аналог з компонуванням - Δm)

 $2a_{l_l_j}$ - враховує безпосередньо зв'язки елементів l_i та l_j , які використовувалися при розразунку як $\Delta L_{l,\leftarrow}$ так і $\Delta L_{l,\rightarrow}$.

Для вертикального розташування переставляємих елементів $(x_i = x_j, y_j = y_i \pm 1)$ -отримаємо аналогічну формулу

$$\Delta L_{l_i} = \Delta L_{l_i \uparrow} + \Delta L_{l_j \downarrow} - 2a_{l_i l_j} \Big|_{\max}$$

Тому з ціллю збільшення ймовірності отримання результативного обміну місцями сусідніх елементів в алгоритмі Хіллера використовується такий спосіб.

По матриці зв'язку та для данного поточного розташування елементів визначають $\Delta L \to$, $\Delta L \leftarrow$, $\Delta L \uparrow$, $\Delta L \downarrow$ при зміщенні його в сусідні позиції. Складають таблицю змін сум довжин зв'язків. Тобто розраховується таблиця змін сум довжин зв'язків для кожного елемента при його зміщені $\updownarrow \leftrightarrow$ до всіх сусідніх позицій.

$x_i(l_i)$	$\Delta L_{x_i} \leftarrow$	$\Delta L_{_{\substack{\chi_{_{i}}} \\ \rightarrow}}$	$\Delta L_{x_i \uparrow}$	$\Delta L_{x_i\downarrow}$
x_1	$\Delta L_1 < 0$			
x_2	$\Delta L_1 < 0$ $\Delta L_2 = 0$			
\vdots x_i	$\Delta L > 0$			
: r	$\Delta L > 0 = \max$			
x_k \vdots	ш > 0 − шах			
X_n				

З таблиці вибираємо максимальне додатнє значення ΔL , яке визначає перший елемент для перестановки та направлення його переміщення . Другим переставляємим елементом є сусідній до першого. При цьому другий елемент переміщається в протилежному напрямку відносно раніш розглянутого першого елементу (по $+\Delta L = \max$).

Розглянемо приклад.

В алгоритмі Хіллера завжди дано:

- 1) матриця з'єднань
- 2) початкове розміщення елементів

Визначимо два елемента для перестановки та зміну $\Delta L_{x_i x_j}$ Матриця зв'язків має вид:

			ĺ	1	l_2	l_3	l_4	l_5	l_6	l_7	l_8	l_9	l_{10}	l_{11}	l_{12}
)	c_1	x_2	x_3	X_4	x_5	x_6	x_7	x_8	x_9	x_{10}	<i>x</i> ₁₁	<i>x</i> ₁₂
	l_1	x_1	()	5	2	4	1	0	0	6	2	1	1	1
	l_2	x_2	:	5	0	3	0	2	2	2	0	4	5	0	0
	l_3	x_3	,	2	3	0	0	0	0	0	5	5	2	2	2
	l_4	X_4	4	4	0	0	0	5	2	2	10	0	0	5	5
A =	l_5	x_5		1	2	0	5	0	10	0	0	0	5	1	1
	l_6	x_6	()	2	0	2	10	0	5	1	1	5	4	0
	l_7	x_7	()	2	0	2	0	5	0	10	5	2	3	3
	l_8	x_8	(5	0	5	10	0	1	10	0	0	0	5	0
	l_9	x_9	,	2	4	5	0	0	1	5	0	0	0	10	10
	l_{10}	x_{10}		1	5	2	0	5	5	2	0	0	0	5	0
	l_{11}	<i>x</i> ₁₁		1	0	2	5	1	4	3	5	10	5	0	2
	l_{12}	x_{12}		1	0	2	5	1	0	3	0	10	0	2	0

Та початкове розміщення має вигляд

$x_4(l_4)$	$x_9(l_9)$	$x_{11}(l_{11})$	$x_{10}(l_{10})$
$x_6(l_6)$	$x_{12}(l_{12})$	$x_7(l_7) \rightarrow$	$\leftarrow x_8(l_8)$
$x_3(l_3)$	$x_1(l_1)$	$x_{2}(l_{2})$	$x_5(l_5)$

 x_8 - визначаємо по таблиці (максимальне значення) та направлення зміщення. Другий елемент для зміщення буде сусідній з x_8 , тобто x_7 .Направлення зміщення - зворотнє направленню x_8 - тобто $x_7 \to$.

По матриці зв'язків A та початковому розміщенню складаємо таблицю ΔL змін довжини з'єднань при переміщені елементів в сусідні позиції.

$x_i(l_i)$	$\Delta L_{x_i \leftarrow}$	$\Delta L_{x_i ightarrow}$	$\Delta L_{x_i \uparrow}$	$\Delta L_{x_i\downarrow}$
X_1	-11	+5	+7	-
X_2	+5	-9 (-5)	+3	-
x_3	-	+21	+11	-
x_4	-	+29	-	+23
x_5	+15	-	+19	-
x_6	-	+26	-6	-6
x_7	-2 (+28)	-8 (-)	-8	-28
X_8	+37 (+7)	- (-17)	-7	-15
X_9	-25	+1	-	+17
\mathcal{X}_{10}	+15 (+11)	-	-	+15
x_{11}	+10	-16 (-20)	-	-2
x_{12}	-10	-12	+10	-16

Проаналізуємо таблицю

⊕ - зменшення сумарної довжини

Θ - збільшується сумарна довжина

·-· - не можна проводити зміщення

0 - сумарна довжина не змінюється

Розглянемо, наприклад, розрахунок значень ΔL для x_8 . При переміщені його вліво зменшується на одиницю довжини зв'язків з елементами $x_4, x_6, x_3, x_9, x_{12}, x_1, x_{11}, x_7, x_2$ і збільшується на одиницю довжини зв'язків з елементами x_{10} та x_5 , розташованими в стовпчику. ΔL_{x_8} можливо визначити так: по стовпчикам або по рядкам - результат буде той самий.

По стовпчикам:

$$\Delta L_{x_8 \leftarrow} = (a_{84} + a_{86} + a_{83} + a_{89} + a_{8.12} + a_{81} + a_{8.11} + a_{87} + a_{82}) \times 1 - (a_{8.10} + a_{85}) \times 1 =$$

$$= (10 + 1 + 5 + 0 + 0 + 6 + 5 + 10 + 0) \times 1 - (0 + 0) \times 1 = +37$$

По рядкам:

$$\Delta L_{x_8 \leftarrow} = (a_{84} + a_{89} + a_{8.11} + a_{86} + a_{8.12} + a_{87} + a_{83} + a_{81} + a_{82}) \times 1 - (a_{8.10} + a_{85}) \times 1 = +37$$

 $\Delta L_{_{x_{\mathrm{S}}}
ightarrow}$ - переміщати неможна, тому що елемент виходить за габарити монтажного простору.

$$\Delta L_{x_8\uparrow} = \underbrace{\left(\underbrace{a_{84} + a_{89} + a_{8.11} + a_{8.10}}_{\text{всі елементи,які вище } \mathbf{x}_8}\right) - \underbrace{\left(\underbrace{a_{83} + a_{81} + a_{82} + a_{85}}_{\text{всі елементи,які нижче } \mathbf{x}_8} + \underbrace{a_{86} + a_{8.12} + a_{87}}_{\text{всі елементи,які знаходяться в рядку } \mathbf{x}_8}\right) = \\ = (10 + 0 + 5 + 0) - (5 + 6 + 0 + 0 + 1 + 0 + 10) = 15 - 22 = -7$$

$$\begin{split} & \Delta L_{s_1\leftarrow} = (a_{14} + a_{16} + a_{13}) - (a_{15} + a_{112} + a_{12} + a_{17} + a_{15} + a_{18} + a_{16}) \approx \\ & = (4 + 0 + 2) - (2 + 5 + 1 + 0 + 1 + 1 + 1 + 6 + 1) = 6 - 17 = -11 \\ & \Delta L_{s_2\leftarrow} = (a_{24} + a_{26} + a_{23} + a_{29} + a_{232} + a_{21}) - (a_{2,11} + a_{27} + a_{25} + a_{28} + a_{230}) = \\ & = (0 + 2 + 3 + 4 + 0 + 5) - (0 + 2 + 2 + 0 + 5) = 14 - 9 = +5 \\ & \Delta L_{s_3\leftarrow} = -\Delta L_{3,4\leftarrow} = -\Delta L_{3,4\leftarrow} = (a_{54} + a_{56} + a_{53} + a_{59} + a_{5,12} + a_{51} + a_{5,11} + a_{57} + a_{52}) - (a_{5,10} + a_{52}) = \\ & = (5 + 10 + 0 + 0 + 1 + 1 + 1 + 0 + 2) - (5 + 0) = +15 \\ & \Delta L_{s_4\leftarrow} = -\Delta L_{s_5\leftarrow} = (a_{74} + a_{76} + a_{71} + a_{79} + a_{712} + a_{71}) - (a_{7,11} + a_{72} + a_{7,10} + a_{78} + a_{75}) = \\ & = (2 + 5 + 0 + 5 + 3 + 0) - (3 + 2 + 2 + 10 + 0) = 15 - 17 = -2 \\ & \Delta L_{s_4\leftarrow} = (a_{84} + a_{86} + a_{83} + a_{89} + a_{812} + a_{81} + a_{811} + a_{87} + a_{82}) - (a_{8,10} + a_{85}) = \\ & = (10 + 1 + 5 + 0 + 0 + 6 + 5 + 10 + 0) - (0 + 0) = +37 \\ & \Delta L_{s_6\leftarrow} = (a_{94} + a_{96} + a_{93}) - (a_{912} + a_{91} + a_{911} + a_{97} + a_{92} + a_{910} + a_{98} + a_{98}) = \\ & = (0 + 15) - (10 + 2 + 10 + 5 + 4 + 0 + 0 + 0) = +6 - 31 = -25 \\ & \Delta L_{s_{10}\leftarrow} = (a_{104} + a_{106} + a_{103} + a_{103} + a_{102} + a_{1012} + a_{1014} + a_{1011} + a_{102} + a_{102}) - (a_{108} + a_{105}) = \\ & = (5 + 4 + 2 + 10 + 2 + 1) - (3 + 0 + 5 + 5 + 1) = 24 - 14 = +10 \\ & \Delta L_{s_{10}\leftarrow} = (a_{114} + a_{116} + a_{113} + a_{112} + a_{1112}) - (a_{117} + a_{112} + a_{1110} + a_{118} + a_{115}) = \\ & = (5 + 0 + 2) - (10 + 1 + 2 + 3 + 0 + 0 + 0 + 1) = 7 - 17 = -10 \\ & \Delta L_{s_1} = (a_{124} + a_{126} + a_{123}) - (a_{129} + a_{211} + a_{211} + a_{212} + a_{22} + a_{22} + a_{24} +$$

$$\Delta L_{x_{11} \to} = -\Delta L_{x_{11} \to} = (a_{11.10} + a_{11.8} + a_{11.5}) - (a_{11.7} + a_{11.2} + a_{11.9} + a_{11.12} + a_{11.1} + a_{11.4} + a_{11.6} + a_{11.3}) =$$

$$= (5 + 5 + 1) - (3 + 0 + 10 + 2 + 1 + 5 + 4 + 2) = 11 - 24 = -16$$

$$\Delta L_{x_{12} \to} = (a_{12.11} + a_{12.7} + a_{12.2} + a_{12.10} + a_{12.8} + a_{12.5}) - (a_{12.9} + a_{12.1} + a_{12.4} + a_{12.6} + a_{12.3}) =$$

$$= (2 + 3 + 0 + 0 + 0 + 1) - (10 + 1 + 5 + 0 + 2) = 6 - 18 = -12$$

$$\Delta L_{x_1 \uparrow}$$

$$\Delta L_{x_1 \uparrow} = (a_{16} + a_{14} + a_{1.12} + a_{19} + a_{17} + a_{1.11} + a_{18} + a_{1.10}) - (a_{13} + a_{12} + a_{15}) =$$

$$= (0 + 4 + 1 + 2 + 0 + 1 + 6 + 1) - (2 + 5 + 1) = 15 - 8 = +7$$

$$\Delta L_{x_3 \uparrow} = (a_{84} + a_{89} + a_{8.11} + a_{8.10}) - (a_{86} + a_{8.12} + a_{87} + a_{83} + a_{81} + a_{82} + a_{85}) = -7$$

$$\Delta L_{x_3 \uparrow} = -\Delta L_{x_3 \uparrow} = -\Delta L_{x_{11} \downarrow} = -\Delta L_{x_{12} \downarrow} =$$

 $\Delta L_{r_0 \to} = (a_{911} + a_{97} + a_{92} + a_{910} + a_{98} + a_{95}) - (a_{912} + a_{91} + a_{94} + a_{96} + a_{93}) =$

=(10+5+4+0+0+0)-(10+2+0+1+5)=19-18=+1

Аналогічно можливо обчислити приріст довжин з'єднань при переміщенні всіх елементів вліво, вправо, вверх, вниз. Значення змін приростів ΔL зведені до таблиці, що представлена.

З таблиці слідує. що $\Delta L_{x_8\leftarrow}=37~$ є максимальною. Так вибирається перший елемент для переміщення x_8 та його направлення переміщення $x_{8\leftarrow}$. Тому згідно алгоритму Хіллера, зробимо обмін $x_{8\leftarrow}$ з сусіднім з ним елементом $x_{7\rightarrow}$.

Визначемо
$$\Delta L_{x_7 \leftrightarrow x_9} = \Delta L_{x_7} + \Delta L_{x_9 \rightarrow} - 2a_{x_7 s_9} = -8 + 37 - 2 \cdot 10 = 9$$

Дана перестановка є результативною та отримаємо нове розміщення з меншою довжиною з'єднань.

Отримаємо нове розміщення

$x_4(l_4)$	$x_9(l_9)$	$x_{11}(l_{11})$	$x_{10}(l_{10})$
$x_6(l_6)$	$x_{12}(l_{12})$	$x_8(l_8)$	$x_7(l_7)$
$x_3(l_3)$	$x_1(l_1)$	$x_{2}(l_{2})$	$x_5(l_5)$

Щоб заповнити нову таблицю необхідно визначити $\Delta L_{x_{\circ}\leftarrow}$ та $\Delta L_{x_{\tau}\rightarrow}$

$$\Delta L_{x_8\leftarrow} = \left(a_{84} + a_{86} + a_{83} + a_{89} + a_{8.12} + a_{81}\right) - \left(a_{8.11} + a_{82} + a_{8.10} + a_{87} + a_{85}\right) = 22 - 15 = +7$$
 - значення в дужках в таблиці

 $\Delta L_{\scriptscriptstyle x_7
ightarrow}$ = – . x_7 в праву сторону переставляти не можна

Слідує відмітити, що на кожній наступній перестановці з ціллю скорочення операцій при обчисленні приростів можливо перераховувати тільки деякі елементи таблиці.

Нехай виконали перестановку сусідніх елементів l_i та l_j в одному рядку масиву позицій $y_i = y_j$ $x_j = x_i + 1$.

Очевидно, що $\Delta L_{k\uparrow}$ та $\Delta L_{k\downarrow}$ при цьому не змінюється. Ми визначили $\Delta L_{7\leftarrow}$ та $\Delta L_{8\rightarrow}$ та $\Delta L_{8\leftarrow}$. Аналогічно для випадку $x_i=x_j$; $y_j=y_i+1$ (елемент змінюється стовпчику, тоді $\Delta L_{k\leftarrow}$ та $\Delta L_{k\rightarrow}$ при цьому не змінюється.

Для елементів $l_k \big(x_k = x_i \big)$ змінюється праві $M_{k \to}$, а для елементів $l_k \big(x_k = x_j \big)$ змінюються ліві $M_{k \leftarrow}$. Схематично зони зміни характеристики для випадку

"горизонтального" обміну

та "вертикального" обміну

Алгоритми розміщення, в яких досліджується тільки перестановки сусідніх елементів, мають переваги порівняно з алгоритмами, в яких аналізується вся множина можливих парних обмінів, в тому випадку, коли вони використовуються для гарного початкового розміщення. Для такого розміщення ймовірність розміщення сильно зв'язаних елементів в безпосередній близкості одне від одного достатньо велика.