Contents

1.	Combinatorial methods	2
2.	Fourier-analytic techniques	10
3.	Probabilistic tools	12
4.	Further topics	12

1. Combinatorial methods

Definition 1.1 Let G be an abelian group and $A, B \subseteq G$. The **sumset** of A and B is

$$A + B := \{a + b : a \in A, b \in B\}.$$

The difference set of A and B is

$$A - B := \{a - b : a \in A, b \in B\}.$$

Proposition 1.2 $\max\{|A|, |B|\} \le |A + B| \le |A| \cdot |B|$.

$$Proof.$$
 Trivial.

Example 1.3 Let $A = [n] = \{1, ..., n\}$. Then $A + A = \{2, ..., 2n\}$ so |A + A| = 2|A| - 1.

Lemma 1.4 Let $A \subseteq \mathbb{Z}$ be finite. Then $|A + A| \ge 2|A| - 1$ with equality iff A is an arithmetic progression.

Proof (*Hints*). Consider two sequences in A + A which are strictly increasing and of the same length.

Proof.

- Let $A = \{a_1, ..., a_n\}$ with $a_i < a_{i+1}$. Then $a_1 + a_1 < a_1 + a_2 < \cdots < a_1 + a_n < a_2 + a_n < \cdots < a_n + a_n$.
- Note this is not the only choice of increasing sequence that works, in particular, so does $a_1+a_1 < a_1+a_2 < a_2+a_2 < a_2+a_3 < a_2+a_4 < \cdots < a_2+a_n < a_3+a_n < \cdots < a_n+a_n$.
- So when equality holds, all these sequences must be the same. In particular, $a_2+a_i=a_1+a_{i+1}$ for all i.

Lemma 1.5 If $A, B \subseteq \mathbb{Z}$, then $|A + B| \ge |A| + |B| - 1$ with equality iff A and B are arithmetic progressions with the same common difference.

Proof (Hints). Similar to above, consider 4 sequences in A + B which are strictly increasing and of the same length.

Example 1.6 Let $A, B \subseteq \mathbb{Z}/p$ for p prime. If $|A| + |B| \ge p + 1$, then $A + B = \mathbb{Z}/p$.

Proof (Hints). Consider
$$A \cap (g - B)$$
 for $g \in \mathbb{Z}/p$.

Proof.

- $g \in A + B$ iff $A \cap (g B) \neq \emptyset$ where $(g B = \{g\} B)$.
- Let $g \in \mathbb{Z}/p$, then use inclusion-exclusion on $|A \cap (g-B)|$ to conclude result.

Theorem 1.7 (Cauchy-Davenport) Let p be prime, $A, B \subseteq \mathbb{Z}/p$ be non-empty. Then

$$|A+B|\geq \min\{p,|A|+|B|-1\}.$$

Proof (Hints).

- Assume $|A| + |B| , and WLOG that <math>1 \le |A| \le |B|$ and $0 \in A$ (by translation).
- Induct on |A|.
- Let $a \in A$, find B' such that $0 \in B'$, $a \notin B'$ and |B'| = |B| (use fact that p is prime).
- Apply induction with $A \cap B'$ and $A \cup B'$, while reasoning that $(A \cap B') + (A \cup B') \subseteq A + B'$.

Proof.

- Assume $|A| + |B| , and WLOG that <math>1 \le |A| \le |B|$ and $0 \in A$ (by translation).
- Use induction on |A|. |A| = 1 is trivial.
- Let $|A| \geq 2$ and let $0 \neq a \in A$. Then since p is prime, $\{a, 2a, ..., pa\} = \mathbb{Z}/p$.
- There exists $m \ge 0$ such that $ma \in B$ but $(m+1)a \notin B$ (why?). Let B' = B ma, so $0 \in B'$, $a \notin B'$ and |B'| = |B|.
- $1 \le |A \cap B'| < |A|$ (why?) so the inductive hypothesis applies to $A \cap B'$ and $A \cup B'$.
- Since $(A \cap B') + (A \cup B') \subseteq A + B'$ (why?), we have $|A + B| = |A + B'| \ge |(A \cap B') + (A \cup B')| \ge |A \cap B'| + |A \cup B'| 1 = |A| + |B| 1$.

Example 1.8 Cauchy-Davenport does not hold general abelian groups (e.g. \mathbb{Z}/n for n composite): for example, let $A = B = \{0, 2, 4\} \subseteq \mathbb{Z}/6$, then $A + B = \{0, 2, 4\}$ so $|A + B| = 3 < \min\{6, |A| + |B| - 1\}$.

Example 1.9 Fix a small prime p and let $V \subseteq \mathbb{F}_p^n$ be a subspace. Then V + V = V, so |V + V| = |V|. In fact, if $A \subseteq \mathbb{F}_p^n$ satisfies |A + A| = |A|, then A is an affine subspace (a coset of a subspace).

Proof. If $0 \in A$, then $A \subseteq A + A$, so A = A + A. General result follows by considering translation of A.

Example 1.10 Let $A \subseteq \mathbb{F}_p^n$ satisfy $|A+A| \leq \frac{3}{2} |A|$. Then there exists a subspace $V \subseteq \mathbb{F}_p^n$ such that $|V| \leq \frac{3}{2} |A|$ and A is contained in a coset of V.

Proof. Exercise (sheet 1). \Box

Definition 1.11 Let $A, B \subseteq G$ be finite subsets of an abelian group G. The Ruzsa distance between A and B is

$$d(A,B)\coloneqq\log\frac{|A-B|}{\sqrt{|A|\cdot|B|}}.$$

Lemma 1.12 (Ruzsa Triangle Inequality) Let $A, B, C \subseteq G$ be finite. Then

$$d(A,C) \le d(A,B) + d(B,C).$$

Proof (*Hints*). Consider a certain map from $B \times (A - C)$ to $(A - B) \times (B - C)$. \square *Proof*.

- Note that $|B| |A-C| \le |A-B| |B-C|$. Indeed, writing each $d \in A-C$ as $d = a_d c_d$ with $a_d \in A, c_d \in C$, the map $\varphi : B \times (A-C) \to (A-B) \times (B-C), \varphi(b,d) = (a_d b, b c_d)$ is injective (why?).
- Triangle inequality now follows from definition of Ruzsa distance.

Definition 1.13 The doubling constant of finite $A \subseteq G$ is $\sigma(A) := |A + A|/|A|$.

Definition 1.14 The difference constant of finite $A \subseteq G$ is $\delta(A) := |A - A|/|A|$.

Remark 1.15 The Ruzsa triangle inequality shows that

$$\log \delta(A) = d(A, A) \le d(A, -A) + d(-A, A) = 2\log \sigma(A).$$

So
$$\delta(A) \le \sigma(A)^2$$
, i.e. $|A - A| \le |A + A|^2/|A|$.

Notation 1.16 Let $A \subseteq G$, $\ell, m \in \mathbb{N}_0$. Then

$$\ell A + mA \coloneqq \underbrace{A + \dots + A - A - \dots - A}_{\ell \text{ times}} \underbrace{m \text{ times}}$$

This is referred to as the iterated sum and difference set.

Theorem 1.17 (Plunnecke's Inequality) Let $A, B \subseteq G$ be finite and $|A + B| \le K|A|$ for some $K \ge 1$. Then $\forall \ell, m \in \mathbb{N}_0$,

$$|\ell B - mB| \le K^{\ell + m} |A|.$$

Proof (Hints).

- Let $A' \subseteq A$ minimise |A' + B|/|A'| with value K'.
- Show that for every finite $C \subseteq G$, $|A' + B + C| \le K'|A + C|$ by induction on |C| (note two sets need to be written as disjoint unions here).
- Show that $\forall m \in \mathbb{N}_0, |A' + mB| \leq (K')^m |A'|$ by induction.
- Use Ruzsa triangle inequality to conclude result.

Proof.

- Choose $\emptyset \neq A' \subseteq A$ which minimises |A' + B|/|A'|. Let the minimum value by K'.
- Then |A' + B| = K'|A'|, $K' \le K$ and $\forall A'' \subseteq A$, $|A'' + B| \ge K'|A''|$.
- Claim: for every finite $C \subseteq G$, $|A' + B + C| \le K'|A' + C|$:
 - Use induction on |C|. |C| = 1 is true by definition of K'.
 - Let claim be true for C, consider $C' = C \cup \{x\}$ for $x \notin C$.
 - $A' + B + C' = (A' + B + C) \cup ((A' + B + x) (D + B + x))$, where $D = \{a \in A' : a + B + x \subseteq A' + B + C\}$.
 - By definition of K', $|D+B| \ge K'|D|$. Hence,

$$\begin{split} |A'+B+C| &\leq |A'+B+C| + |A'+B+x| - |D+B+x| \\ &\leq K'|A'+C| + K'|A'| - K'|D| \\ &= K'(|A'+C| + |A'| - |D|). \end{split}$$

- Applying this argument a second time, write $A' + C' = (A' + C) \cup ((A' + x) (E + x))$, where $E = \{a \in A' : a + x \in A' + C\} \subseteq D$.
- Finally,

$$|A' + C'| = |A' + C| + |A' + x| - |E + x|$$

$$\ge |A' + C| + |A'| - |D|.$$

- We first show that $\forall m \in \mathbb{N}_0, |A' + mB| \leq (K')^m |A'|$ by induction:
 - m = 0 is trivial, m = 1 is true by assumption.
 - Suppose $m-1 \ge 1$ is true. By the claim with C = (m-1)B, we have

$$|A'+mB| = |A'+B+(m-1)B| \le K'|A'+(m-1)B| \le (K')^m|A'|.$$

• As in the proof of Ruzsa's triangle inequality, $\forall \ell, m \in \mathbb{N}_0$,

$$|A'| |\ell B - mB| \le |A' + \ell B| |A' + mB| \le (K')^{\ell} |A'| (K')^m |A'| = (K')^{\ell+m} |A'|^2.$$

Theorem 1.18 (Freiman-Ruzsa) Let $A \subseteq \mathbb{F}_p^n$ and $|A + A| \leq K|A|$. Then A is contained in a subspace $H \subseteq \mathbb{F}_p^n$ with $|H| \leq K^2 p^{K^4} |A|$.

Proof (Hints).

- Let $X \subseteq 2A A$ be of maximal size such that all x + A, $x \in X$, are disjoint.
- Use Plunnecke's inequality to obtain an upper bound on |X||A|.
- Show that $\forall \ell \geq 2$, $\ell A A \subseteq (\ell 1)X + A A$ by induction.
- Let H be subgroup generated by A. By writing H as an infinite union, show that $H \subseteq Y + A A$, where Y is subgroup generated by X.
- Find an upper bound for |Y|, conclude using Plunnecke inequality.

Proof.

- Choose maximal $X \subseteq 2A A$ such that the translates x + A with $x \in X$ are disjoint.
- Such an X cannot be too large: $\forall x \in X, x + A \subseteq 3A A$, so by Plunnecke's inequality, since $|3A A| \le K^4 |A|$,

$$|X||A| = \left|\bigcup_{x \in X} (x+A)\right| \le |3A-A| \le K^4|A|.$$

Hence $|X| \leq K^4$.

• We next show that $2A - A \subseteq X + A - A$. Indeed, if, $y \in 2A - A$ and $y \notin X$, then by maximality of X, then $(y + A) \cap (x + A) \neq \emptyset$ for some $x \in X$. If $y \in X$, then $y \in X + A - A$.

5

- It follows from above, by induction, that $\forall \ell \geq 2$, $\ell A A \subseteq (\ell 1)X + A A$: $\ell A A = A + (\ell 1)A A \subseteq (\ell 2)X + 2A A \subseteq (\ell 2)X + X + A A = (\ell 1)X + A A$.
- Now, let $H \subseteq \mathbb{F}_p^n$ be the subgroup generated by A:

$$H = \bigcup_{\ell \geq 1} (\ell A - A) \subseteq Y + A - A$$

where $Y \subseteq \mathbb{F}_p^n$ is the subgroup generated by X.

• Every element of Y can be written as a sum of |X| elements of X with coefficients in $\{0,...,p-1\}$. Hence, $|Y| \leq p^{|X|} \leq p^{K^4}$.

• Hence $|H| \leq |Y||A - A| \leq p^{K^4} K^2 |A|$ by Plunnecke/Ruzsa triangle inequality.

Example 1.19 Let $A = V \cup R$, where $V \subseteq \mathbb{F}_p^n$ is a subspace with $\dim(V) = d = n/K$ satisfying $K \ll d \ll n - K$, and R consists of K - 1 linearly independent vectors not in V. Then $|A| = |V \cup R| = |V| + |R| = p^{n/K} + K - 1 \approx p^{n/K} = |V|$.

Now $|A+A|=|(V\cup R)+(V\cup R)|=|V\cup (V+R)\cup 2R|\approx K|V|\approx K|A|$ (since $V\cup (V+R)$ gives K cosets of V). But any subspace $H\subseteq \mathbb{F}_p^n$ containing A must have size at least $p^{n/K+(K-1)}\approx |V|p^K$. Hence, the exponential dependence on K in Freiman-Ruzsa is necessary.

Theorem 1.20 (Polynomial Freiman-Ruzsa Theorem) Let $A \subseteq \mathbb{F}_p^n$ be such that $|A+A| \leq K|A|$. Then there exists a subspace $H \subseteq \mathbb{F}_p^n$ of size at most $C_1(K)|A|$ such that for some $x \in \mathbb{F}_p^n$,

$$|A \cap (x+H)| \ge \frac{|A|}{C_2(K)},$$

where $C_1(K)$ and $C_2(K)$ are polynomial in K.

Proof. Very difficult (took Green, Gowers and Tao to prove it).

Definition 1.21 Given $A, B \subseteq G$ for an abelian group G, the **additive energy** between A and B is

$$E(A,B) := |\{(a,a',b,b') \in A \times A \times B \times B : a+b=a'+b'\}|.$$

Additive quadruples (a, a', b, b') are those such that a + b = a' + b'. Write E(A) for E(A, A).

Example 1.22 Let $V \subseteq \mathbb{F}_p^n$ be a subspace. Then $E(V) = |V|^3$. On the other hand, if $A \subseteq \mathbb{Z}/p$ is chosen at random from \mathbb{Z}/p (where each $a \in \mathbb{Z}/p$ is included with probability $\alpha > 0$), with high probability, $E(A) = \alpha^4 p^3 = \alpha |A|^3$.

Definition 1.23 For $A, B \subseteq G$, the **representation function** is $r_{A+B}(x) := |\{(a,b) \in A \times B : a+b=x\}| = |A \cap (x-B)|.$

Lemma 1.24 Let $\emptyset \neq A, B \subseteq G$ for an abelian group G. Then

$$E(A,B) \ge \frac{|A|^2|B|^2}{|A \pm B|}.$$

 $Proof\ (Hints).$

• Show that using Cauchy-Schwarz that

$$E(A, B) = \sum_{x \in G} r_{A+B}(x)^2 \ge \frac{\left(\sum_{x \in G} r_{A+B}(x)\right)^2}{|A+B|}.$$

• By using indicator functions, show that $\sum_{x \in G} r_{A+B}(x) = |A||B|$.

Proof. Observe that

$$\begin{split} E(A,B) &= \left| \left\{ (a,a',b,b') \in A^2 \times B^2 : a+b=a'+b' \right\} \right| \\ &= \left| \bigcup_{x \in G} \left\{ (a,a',b,b') \in A^2 \times B^2 : a+b=x \text{ and } a'+b'=x \right\} \right| \\ &= \bigcup_{x \in G} \left| \left\{ (a,a',b,b') \in A^2 \times B^2 : a+b=x \text{ and } a'+b'=x \right\} \right| \\ &= \sum_{x \in G} r_{A+B}(x)^2 \\ &= \sum_{x \in A+B} r_{A+B}(x)^2 \\ &\geq \frac{\left(\sum_{x \in A+B} r_{A+B}(x) \right)^2}{|A+B|} \quad \text{by Cauchy-Schwarz} \end{split}$$

But now

$$\begin{split} \sum_{x \in G} r_{A+B}(x) &= \sum_{x \in G} |A \cap (x-B)| = \sum_{x \in G} \sum_{y \in G} \mathbb{1}_A(y) \mathbb{1}_{x-B}(y) \\ &= \sum_{x \in G} \sum_{y \in G} \mathbb{1}_A(y) \mathbb{1}_B(x-y) = |A||B|. \end{split}$$

Note that the same argument works for |A - B|.

Corollary 1.25 If $|A + A| \le K|A|$, then $E(A) \ge \frac{|A|^4}{|A + A|} \ge \frac{|A|^3}{K}$. So if A has small doubling constant, then it has large additive energy.

 $Proof\ (Hints)$. Trivial.

Proof. Trivial.

Example 1.26 The converse of the above lemma does not hold: e.g. let G be a (class of) abelian group(s). Then there exist constants $\theta, \eta > 0$ such that for all n large enough, there exists $A \subseteq G$ with $|A| \ge n$ satisfying $E(A) \ge \eta |A|^3$, and $|A + A| \ge \theta |A|^2$.

Definition 1.27 Given $A \subseteq G$ and $\gamma > 0$, let $P_{\gamma} := \{x \in G : |A \cap (x+A)| \ge \gamma |A|\}$ be the set of γ -popular differences of A.

Lemma 1.28 Let $A \subseteq G$ be finite such that $E(A) = \eta |A|^3$ for some $\eta > 0$. Then $\forall c>0$, there is a subset $X\subseteq A$ with $|X|\geq \frac{\eta}{3}|A|$ such that for all (16c)-proportion of pairs $(a,b) \in X^2$, $a-b \in P_{cn}$.

Proof.

- We use a technique called "dependent random choice".
- Let $U = \{x \in G : |A \cap (x+A)| \le \frac{1}{2}\eta |A| \}.$
- Then $\sum_{x \in U} |A \cap (x+A)|^2 \le \frac{1}{2} \eta |A| \sum_{x \in G} |A \cap (x+A)| = \frac{1}{2} \eta |A|^3 = \frac{1}{2} E(A)$. For $0 \le i \le \lceil \log_2 \eta^{-1} \rceil$, let $Q_i = \{x \in G : |A|/2^{i+1} < |A \cap (x+A)| \le |A|/2^i\}$ and set $\delta_i = \eta^{-1} 2^{-2i}$.
- Then

$$\begin{split} \sum_{i=0}^{\lceil \log_2 \eta^{-1} \rceil} \delta_i |Q_i| &= \sum_i \frac{|Q_i|}{\eta 2^{2i}} \\ &= \frac{1}{\eta |A|^2} \sum_i \frac{|A|^2}{2^{2i}} |Q_i| \\ &= \frac{1}{\eta |A|^2} \sum_i \frac{|A|^2}{2^{2i}} \sum_{x \notin U} \mathbbm{1}_{\{|A|/2^{i+1} < |A \cap (x+A)| \le |A|/2^i\}} \\ &\geq \frac{1}{\eta |A|^2} \sum_{x \notin U} |A \cap (x+A)|^2 \\ &\geq \frac{1}{\eta |A|^2} \cdot \frac{1}{2} E(A) = \frac{1}{2} |A|. \end{split}$$

• Let $S = \{(a, b) \in A^2 : a - b \notin P_{cn}\}$. Now

$$\begin{split} \sum_i \sum_{(a,b) \in S} |(A-a) \cap (A-b) \cap Q_i| &\leq \sum_{(a,b) \in S} |(A-a) \cap (A-b)| \\ &= \sum_{(a,b) \in S} |A \cap (a-b+A)| \\ &\leq \sum_{(a,b) \in S} c \eta |A| \quad \text{by definition of } S \\ &= |S| c \eta |A| \\ &\leq c \eta |A|^3 = 2c \eta |A|^2 \cdot \frac{1}{2} |A| \\ &\leq 2c \eta |A|^2 \sum_i \delta_i |Q_i| \quad \text{by above inequality.} \end{split}$$

• Hence $\exists i_0$ such that

$$\sum_{(a,b) \in S} \left| (A-a) \cap (A-b) \cap Q_{i_0} \right| \leq 2c\eta |A|^2 \delta_{i_0} \left| Q_{i_0} \right|$$

• Let $Q=Q_{i_0},\,\delta=\delta_{i_0},\,\lambda=2^{-i_0},$ so that

$$\sum_{(a,b)\in S} |(A-a)\cap (A-b)\cap Q| \le 2c\eta |A|^2 \delta |Q|$$

• Given $x \in G$, let $X(x) = A \cap (x + A)$. Then

$$\mathbb{E}_{x \in Q}|X(x)| = \frac{1}{|Q|} \sum_{x \in Q} |A \cap (x+A)| \geq \frac{1}{2} \lambda |A|.$$

• Define $T(x) = \{(a, b) \in X(x)^2 : a - b \in P^{c\eta}\}$. Then

$$\begin{split} \mathbb{E}_{x \in Q} |T(x)| &= \mathbb{E}_{x \in Q} \big| \big\{ (a,b) \in (A \cap (x+A))^2 : a - b \notin P_{c\eta} \big\} \big| \\ &= \frac{1}{|Q|} \sum_{x \in Q} \big| \big\{ (a,b) \in S : x \in (A-a) \cap (A-b) \big\} \big| \\ &= \frac{1}{|Q|} \sum_{(a,b) \in S} \big| (A-a) \cap (A-b) \cap Q \big| \\ &\leq \frac{1}{|Q|} 2c\eta |A|^2 \delta |Q| = 2c\eta \delta |A|^2 = 2c\lambda^2 |A|^2. \end{split}$$

• Therefore,

$$\begin{split} \mathbb{E}_{x \in Q} \big(|X(x)|^2 - (16c)^{-1} |T(x)| \big) &\geq \left(\mathbb{E}_{x \in Q} |X(x)| \right)^2 - (16c)^{-1} \mathbb{E}_{x \in Q} |T(x)| \text{ by C-S} \\ &\geq \left(\frac{\lambda}{2} \right)^2 |A|^2 - (16c)^{-1} 2c\lambda^2 |A|^2 \\ &= \left(\frac{\lambda^2}{4} - \frac{\lambda^2}{8} \right) |A|^2 = \frac{\lambda^2}{8} |A|^2. \end{split}$$

• So $\exists x \in Q$ such that $|X(x)|^2 \ge \frac{\lambda^2}{8} |A|^2$, so $|X| \ge \frac{\lambda}{\sqrt{8}} |A| \ge \frac{\eta}{3} |A|$ and $|T(x)| \le 16c|X|^2$.

Theorem 1.29 (Balog-Szemerédi-Gowers, Schoen) Let $A \subseteq G$ be finite such that $E(A) \ge \eta |A|^3$ for some $\eta > 0$. Then there exists $A' \subseteq A$ with $|A'| \ge c_1(\eta)|A|$ such that $|A' + A'| \le |A|/c_2(\eta)$, where $c_1(\eta)$ and $c_2(\eta)$ are both polynomial in η .

Proof.

- The idea is to find $A' \subseteq A$ such that $\forall a, b \in A'$, a b has many representations as $(a_1 a_2) + (a_3 a_4)$ with each $a_i \in A$.
- Apply the above lemma with $c=2^{-7}$ to obtain $X\subseteq A$ with $|X|\geq \frac{\eta}{3}|A|$ such that for all but $\frac{1}{8}$ of pairs $(a,b)\in X^2, \ a-b\in P_{\eta/2^7}.$ In particular, the bipartite graph $G=(X\sqcup X,\{(x,y)\in X\times X: x-y\in P_{\eta/2^7}\})$ has at least $\frac{7}{8}|X|^2$ edges.
- Let $A' = \left\{ x \in X : \deg_G(x) \ge \frac{3}{4}|X| \right\}$. Clearly $|A'| \ge |X|/8$.
- For any $a,b\in A'$, there are at least |X|/2 elements $y\in X$ such that $(a,y),(b,y)\in E(G)$ (so $a-y,b-y\in P_{n/2^7}$). Hence a-b=(a-y)-(b-y) has at least

$$\underbrace{\frac{\eta}{6}|A|}_{\text{choices for }y} \cdot \frac{\eta}{2^7}|A| \frac{\eta}{2^7}|A| \ge \frac{\eta^3}{2^{17}}|A|^3$$

9

representations of the form $a_1-a_2-(a_3-a_4)$ with each $a_i\in A$.

• It follows that $\frac{\eta^3}{2^{17}}|A|^3|A'-A'|\leq |A|^4$, hence $|A'-A'|\leq 2^{17}\eta^{-3}|A|\leq 2^{22}\eta^{-4}|A'|$, and so $|A' + A'| \le 2^{44} \eta^{-8} |A'|$.

2. Fourier-analytic techniques

In this chapter, assume that G is a *finite* abelian group.

Definition 2.1 The group \hat{G} of characters of G is the group of homomorphisms γ : $G \to \mathbb{C}^{\times}$. In fact, \widehat{G} is isomorphic to G.

Notation 2.2 Norm and inner product notation:

• Write

$$\begin{split} \|f\|_q &= \|f\|_{L^q(G)} = (\mathbb{E}_{x \in G} |f(x)|^q)^{1/q}, \\ \|\hat{f}\|_q &= \|\hat{f}\|_{\ell^q\left(\widehat{G}\right)} = (\sum_{\gamma \in \widehat{G}} \left|\hat{f}(\gamma)\right|^q)^{1/q}, \\ \langle f, g \rangle_{L^2(G)} &= \mathbb{E}_{x \in G} f(x) \overline{g(x)}, \\ \langle f, g \rangle_{\ell^2\left(\widehat{G}\right)} &= \sum_{\gamma \in \widehat{G}} \hat{f}(\gamma) \overline{\hat{g}(\gamma)} \end{split}$$

• If Fourier support of function is restricted to $\Lambda \subseteq \hat{G}$, write $\|\hat{f}\|_{\ell^q(\Lambda)} = \left(\sum_{\gamma \in \Lambda} \left|\hat{f}(\gamma)\right|^q\right)^{1/q}$.

Notation 2.3 Asymptotic notation:

• Write f(n) = O(g(n)) if

$$\exists C > 0 : \forall n \in \mathbb{N}, \quad |f(n)| < C|g(n)|.$$

• Write f(n) = o(g(n)) if

$$\forall \varepsilon > 0, \exists N \in \mathbb{N} : \forall n \geq N, |f(n)| \leq \varepsilon |g(n)|,$$

i.e. $\lim_{n\to\infty} \frac{f(n)}{g(n)} = 0$.

- Write $f(n) = \Omega(g(n))$ if g(n) = O(f(n)).
- If the implied constant depends on a fixed parameter, this may be indicated by a subscript, e.g. $\exp(pn^2) = O_p(\exp(n^2))$.

Theorem 2.4 (Hölder's Inequality) Let $p, q \in [1, \infty]$ with $\frac{1}{p} + \frac{1}{q}$, and $f \in L^p(G), g \in$ $L^q(G)$. Then

$$||fg||_1 \le ||f||_p ||g||_q.$$

Theorem 2.5 (Cauchy-Schwarz Inequality) For $f, g \in L^2(G)$, we have

$$\langle f,g\rangle_{L^2(G)}\leq \|f\|_2\|g\|_2.$$

Note this is a special case of Hölder's inequality with p = q = 2.

Theorem 2.6 (Young's Convolution Inequality) Let $p, q, r \in [1, \infty]$, $\frac{1}{p} + \frac{1}{q} = \frac{1}{r}$, $f \in L^p(G)$, $g \in L^q(G)$. Then

$$||f * g||_r \le ||f||_p ||g||_q$$

Notation 2.7 e(y) denotes the function $e^{2\pi iy}$.

Example 2.8

- Let $G = \mathbb{F}_p^n$, then for any $\gamma \in \hat{G}$, we have a corresponding character $\gamma(x) = e((\gamma \cdot x)/p)$.
- If $G = \mathbb{Z}/N$, then any $\gamma \in \hat{G}$ has a corresponding character $\gamma(x) = e(\gamma x/N)$.

Notation 2.9 Given a non-empty $B \subseteq G$ and $g: B \to \mathbb{C}$, write $\mathbb{E}_{x \in B} g(x)$ for $\frac{1}{|B|} \sum_{x \in B} g(x)$. If B = G, we may simply write \mathbb{E} instead of $\mathbb{E}_{x \in B}$.

Lemma 2.10 For all $\gamma \in \hat{G}$,

$$\mathbb{E}_{x \in G} \gamma(x) = \begin{cases} 1 & \text{if } \gamma = 1 \\ 0 & \text{otherwise}. \end{cases}$$

and for all $x \in G$,

$$\sum_{\gamma \in \widehat{G}} \gamma(x) = \begin{cases} |G| & \text{if } x = 0\\ 0 & \text{otherwise} \end{cases}.$$

Proof (Hints).

- For $1 \neq \gamma \in \hat{G}$, consider $y \in G$ with $\gamma(y) \neq 1$.
- For $0 \neq x \in G$, by considering $G/\langle x \rangle$, show by contradiction that there is $\gamma \in \hat{G}$ with $\gamma(x) \neq 1$.

Proof. The first case for both equations is trivial. Let $1 \neq \gamma \in \hat{G}$. Then $\exists y \in G$ with $\gamma(y) \neq 1$. So

$$\begin{split} \gamma(y) \mathbb{E}_{z \in G} \gamma(z) &= \mathbb{E}_{z \in G} \gamma(y+z) \\ &= \mathbb{E}_{z' \in G} \gamma(z'). \end{split}$$

Hence $\mathbb{E}_{z \in G} \gamma(z) = 0$.

For second equation, given $0 \neq x \in G$, there exists $\gamma \in \hat{G}$ such that $\gamma(x) \neq 1$, since otherwise \hat{G} would act trivially on $\langle x \rangle$, hence would also be the dual group for $G/\langle x \rangle$, a contradiction.

Definition 2.11 Given $f: G \to \mathbb{C}$, define the **Fourier transform** of f to be

$$\hat{f}: \hat{G} \to \mathbb{C},$$

$$\gamma \mapsto \mathbb{E}_{x \in G} f(x) \overline{\gamma(x)}.$$

TODO: look at notation sheet on Moodle.

- 3. Probabilistic tools
- 4. Further topics