7. Models of Equational Specifications

핵심 개념

목표:

Maude 명세가 정의하는 **수학적 모델**(mathematical model)을 이해하고, 이를 **대수적 구조(algebraic structure)**로 정식화한다.

• 핵심 개념:

프로그램(또는 명세)이 정의하는 수학적 객체 = 그 프로그램의 의미론(denotational semantics)

→ Maude의 수학적 의미를 대수로 정의하는 것이 이 장의 목적.

Equational Model의 개념

- 등식 명세 (Σ, Ε)는 여러 모델(models)을 가질 수 있다.
- 그러나 대부분의 경우 관심 있는 것은 **의도된 모델(intended model)** 하나이다.
- 이 모델은 우리가 명세를 통해 의도한 "진짜 수학적 구조"를 의미한다.

Equational Logic의 성질

• 등식 논리는 sound(논리적으로 참인 것은 모델에서도 참)하고 complete(모델에서 참인 것은 논리적으로 증명 가능)함. 즉,

$$t_1 = t_2$$
 holds in all models of $(\Sigma, E) \iff E \vdash t_1 = t_2$

- E가 수렴(confluent) 하고 종결(terminating) 하면, E |- t_1 = t_2 판정은 결정 가능(decidable) 하다.
- 하지만 "의도된 모델" 내에서 등식이 성립하는지를 판정하는 문제는 **귀납적 정리(inductive theorem)** 문제로, 일반적으로 **완전한 증명 체계가 없음**.

Algebra로서의 소프트웨어 모듈

- Meseguer & Goguen: 소프트웨어 모듈은 여러 데이터 집합(sets)과 그 위의 연산(operations)을 포함하므로, 본질적으로 대수(algebra)의 구조를 가진다.
- 따라서
 - Maude 명세 = 대수(algebra)를 정의하는 것
 - Maude의 함수형 모듈은 결국 수학적 대수를 명세한다.

Intended Model (초기 대수, Initial Algebra)

7.4절:

의도된 모델은 (Σ , E)-모델들의 집합 Alg(Σ , E) 안의 **초기 대수(initial algebra)**로 정의된다.

- 이 모델은 유일하지 않지만, 같은 구조를 가지며 단지 표현 방식만 다름.
 - 。 예: 불리언의 경우

true/false , T/1 , 1/0 모두 동일한 구조를 표현.

따라서 (Σ, E)는 추상 자료형(ADT, abstract data type)을 정의하며, 구체적인 표현(concrete representation)은 정의하지 않는다.

초기 대수의 성질

- 모든 명세는 의도된 모델을 가진다.
- 이 모델들은 서로 **동형(isomorphic)**인 구조를 가진다.
- (Σ, E)는 초기 모델 T_Σ,E을 가지며, 이는 ground term들의 동치류로 표현된다.
- 올바른 의도된 모델은 다음 조건을 만족해야 한다:
 - ∘ "쓸모없는(junk)" 원소 없음 (모든 원소는 어떤 ground term으로 표현됨)
 - ∘ E-동치인 ground term들은 같은 값을 가짐

단순화된 가정

- 설명의 단순화를 위해,
 - 。 단일 정렬(un-sorted)
 - ∘ 조건부 등식(conditional equations)과 함수 속성 없음
- 다중 정렬(many-sorted) 확장은 ground term이 있으면 간단히 가능.

섹션별 개요

절	내용 요약
7.1	Σ-대수와 Σ-homomorphism 정의
7.2	Alg(Σ, E)\$: (Σ, E)를 만족하는 모든 대수들의 집합
7.3	등식 논리의 건전성(soundness)과 완전성(completeness) 증명
7.4	의도된 모델(초기 대수)의 정의 및 성질
7.5	다중 정렬 등식 논리에 대한 간단한 확장 논의

7.1 Many-Sorted Σ-Algebras

Maude 명세와 대수(Algebra)의 관계

- Maude 코드(fmod 등)는 실제 계산을 정의하지 않고, "이런 연산들이 이런 등식을 만족해야 한다"라는 명세 (specification)만 제공.
- 이 명세를 만족하는 수학적 구조(대수, algebra)들이 Maude 명세의 모델(models)이다.
- 즉, Maude 명세 → (Σ, Ε) → 그걸 만족하는 대수들(모델들)

정의

Many-sorted signature (Σ = (S, Σ))에 대한 Σ-Algebra A는 다음으로 구성됨:

- 1. 각 정렬 $s \in S$ 마다 하나의 집합 A_s
- 2. 각 함수기호 $f \in \Sigma_{s_1,\ldots,s_n,s}$ 마다 실제 함수

$$f_A:A_{s_1} imes\cdots imes A_{s_n} o A_s$$

즉, 정렬은 "값의 집합", 연산은 "그 집합 위의 실제 함수".

Example 7.1 — NAT < 모듈의 해석 (표준 모델)

요소	해석
$A_{ ext{Nat}} = \mathbb{N}, A_{ ext{Bool}} = \{t,f\}$	실제 값 집합
$0_A=0$	상수 0
$s_A(n)=n+1$	successor 함수
$+_A(m,n)=m+n$	덧셈 함수
$<_A (m,n) = t ext{ if } m < n ext{ else } f$	비교 연산
$\mathrm{true}_A = t, \mathrm{false}_A = f$	불리언 상수

→ 이것이 표준(의도된) 모델, 즉 초기 대수(initial algebra)

Maude가 실제로 계산할 때 쓰는 수학적 의미다.

Example 7.2 — 비표준 모델(Non-standard Model)

Maude의 NAT< 서명을 문자열 기반으로 **다르게 해석**할 수도 있다.

구성	해석
$S_{ m Nat} = \{a,b,c\}^*$	문자열들의 집합
$S_{ m Bool} = \{t,f\}$	불리언
$0_S=arepsilon$	빈 문자열
$s_S(x)=x+"a"$	문자열 뒤에 "a" 추가
$+_S$	문자열 이어붙이기
$<_S$	부분문자열(substring) 관계

→ NAT< 명세를 만족하지만, 의미는 전혀 다름.

즉, **같은 Maude 코드라도 무한히 많은 모델이 존재**할 수 있다.

Example 7.3 — NAT-ADD 명세를 만족하는 여러 대수들

이 부분이 핵심.

"같은 명세(NAT-ADD)"를 만족하는 수많은 대수 모델을 예시로 보여줌.

번호	대수 이름
(1) №	표준 자연수 모델 (0, +, s)
(2) N_{\perp}	정의되지 않은 값 ㅗ 추가
(3) $N_{ imes N}$	쌍(pair)을 이용한 비표준 해석
(4) E	짝수만 포함하는 모델
(5) ℤ	정수 전체
(6) squares	제곱수만 포함, 특수 연산 정의
(7) bits	비트열 기반 덧셈
(8) bits0	leading zero 허용 비트열 모델
(9) *	단 하나의 원소만 가진 대수
(10) +2	successor가 "+2"로 정의된 모델
(11) $\mathbb{Q}_{\geq 0}$	비음이 아닌 유리수 덧셈군
(12) N_k	mod k 연산 기반 모델
(13) AB	{*, a, b} 세 원소를 가진 특이한 대수

→ 결론 : 하나의 Maude 명세는 **무수히 많은 수학적 모델**을 가질 수 있고, 그 중 "초기 대수(initial algebra)"가 **Maude가 실제로 사용하는 의미론**이다.

Example 7.4 — Groups의 서명과 여러 대수들

groups 명세:

- sort: s
- 상수 e (항등원)
- 단항 함수 i (역원)
- 이항 함수 (군 연산)

대수	도메인	해석
(1) \mathbb{Z}	정수	$e=0,\ i(x)=-x,\ x\circ y=x+y$
(2) $\mathbb{R}_{>0}$	양의 유리수	$e=1,\ i(x)=1/x,\ x\circ y=x*y$
(3) funcs({a,b,c})	{a,b,c}→{a,b,c} 전단사 함수 집합	$e=\lambda x.x,\; i=\lambda f.f^{-1},\; (f\circ g)(x)=f(g(x))$

- → 같은 군(group) 명세를 세 가지 다른 방식으로 해석한 예시.
- 즉, **같은 서명(Σ)** 이라도 **서로 다른 대수 구조**로 표현될 수 있음을 보여줌.

Order-Sorted Algebra (부분정렬 대수)

- Maude의 정렬 체계는 **서브정렬(subsort)** 관계를 가질 수 있다. 예: NzNat < Nat < Int
- 이 경우 각 정렬의 도메인은 포함 관계를 만족해야 함:

$$\{1,2,3,\dots\}\subseteq\{0,1,2,3,\dots\}\subseteq\{\dots,-2,-1,0,1,2,\dots\}$$

핵심 요약

Maude 명세 = (Σ, E)

- → "이 등식들을 만족하는 대수 구조(모델)"들을 정의한다.
- → 그 중 **초기 대수(initial algebra)**가 **Maude의 표준 의미(실행 의미)**다.

7.1.1 Homomorphisms and Isomorphisms

Homomorphism (준동형)

• 정의:

두 Σ-대수 A, B 사이의 함수족(ϕ)이 **준동형(homomorphism)**이 되려면, Σ의 모든 연산 f에 대해 다음을 만족해야 한다.

$$\phi_s(f_A(a_1,\ldots,a_n))=f_B(\phi_{s_1}(a_1),\ldots,\phi_{s_n}(a_n))$$

- 즉, A에서 연산 후 옮기거나, 옮긴 뒤 B에서 연산해도 결과가 같다.
- **의미 :** 구조(연산)를 보존하는 함수 → 대수의 "형태적 일관성" 유지.

Example 7.5 — 자연수 ↔ 문자열 대수 간 준동형

- $\phi_{\mathrm{Nat}}(n)="a"^n$: 자연수 n을 문자 'a'가 n번 반복된 문자열로 매핑.
- $\phi_{\mathrm{Bool}}(x)=x$: 불리언 값은 항등함수.

확인 결과:

$$\left\{egin{aligned} \phi(0) &= arepsilon, \ \phi(s(n)) &= \phi(n) + ext{``a"}, \ \phi(m+n) &= \phi(m) + \phi(n), \ \phi(m < n) &= t ext{ if } m < n \end{aligned}
ight.$$

→ 모든 연산이 일관되게 보존됨 → **준동형 성립.**

Example 7.6 — 정수 ↔ 양의 유리수 대수 간 준동형

$$\phi: \mathbb{Z} o \mathbb{R}_{>0}, \quad \phi(x) = 2^x$$

•
$$e_{\mathbb{Z}}\mapsto 1$$
, $i_{\mathbb{Z}}(x)=-x\mapsto 1/2^x$, $x+y\mapsto 2^x*2^y$ $ightarrow$ 모든 군 연산 보존 $ightarrow$ 준동형.

Example 7.7 — 자연수 ↔ 짝수 대수 간 준동형

$$\phi(n) = 2n$$

•
$$0\mapsto 0$$
, $s(n)\mapsto s(2n)=2n+2$, $m+n\mapsto 2m+2n$ o 연산 보존 o 준동형.

또한 φ는

- 전사(surjective): 모든 짝수는 어떤 n에서 옴 (n/2).
- 단사(injective): $m \neq n \Rightarrow 2m \neq 2n$. \rightarrow 따라서 동형(isomorphism) 도 성립.

Example 7.8 — 준동형이 존재하지 않는 경우

• $* \to \mathbb{N}$ 사이에는 $\mathrm{sign}(\mathrm{NAT}\text{-}\mathrm{ADD}) ext{-}$ 준동형이 존재하지 않음. (연산 정의 충돌 \to 모순 발생.)

Example 7.9 — 준동형이 여러 개 존재하는 경우

- $A = \{1, 2\}, B = \{1, 3\}$, 상수 $a_A = 1, a_B = 1$
- 조건: $\phi(1) = 1$ 이면 성립.
- 가능한 두 준동형:

$$\phi_1=\{1
ightarrow 1,2
ightarrow 3\}$$
 , $\phi_2=\{1
ightarrow 1,2
ightarrow 1\}$

Isomorphism (동형) 정의

 $\phi: A \to B$ 가 동형 $\iff \phi$ 가 준동형이며, 전사 + 단사

- 역함수 ϕ^{-1} 또한 준동형일 때 A와 B는 isomorphic (동형) 대수라 한다.
- 즉, 구조가 완전히 같고 표현만 다르다.

- 전사(surjective): 모든 결과가 누군가에게서 나옴
- 단사(injective) : 서로 다른 입력은 다른 결과로 감

Example 7.10~7.12 — 동형과 비동형 사례

예제	내용	결론
7.10	$\phi(n)=2n$: N $\leftrightarrow arepsilon$ (짝수 대수)	동형
7.11	N ↔ bits	동형
7.12	$N \leftrightarrow N_3$	비동형 (단사·전사 불가능)

동형 대수는 구조적으로 동일하며, 원소 표현만 다름.

$$(9: 0,1,2,3... \equiv 0,2,4,6... \equiv 0,1,0,1,1...)$$

Example 7.13 — N ↔ N⊥ (비동형)

$$\phi(0)=0,\quad \phi(n+1)=\phi(n)+1$$

 \rightarrow 가능한 유일한 함수는 **항등함수**, 하지만 \perp 에는 도달 불가능 \rightarrow 전사X \rightarrow 비동형.

7.1.2 Term Algebras

Term Algebra

- signature(Σ)과 변수 집합(X)이 주어졌을 때, Σ의 기호들로 만들어지는 **모든 식(term)** 들의 대수.
- 즉, "기호로만 표현된 식들의 집합" → 실제 계산이 아니라 **기호적 구조** 자체를 다룸.
 - \circ ex: 0, s(0), s(s(0)), s(0 + s(0))
- 변수가 없을 경우(즉, $X = \emptyset$), 이를 **Ground Term Algebra**라 부른다.

Example 7.14

- φ: term algebra → 자연수 대수
 - 。 각 term이 나타내는 실제 수로 해석하는 함수.
 - 。 조건:

$$arphi(0)=0, \quad arphi(s(t))=arphi(t)+1, \quad arphi(t_1+t_2)=arphi(t_1)+arphi(t_2)$$

- 즉, 기호적 식을 실제 숫자로 바꿔주는 준동형(homomorphism).
- 반대 방향(자연수 → term algebra) 준동형은 **존재하지 않음.**
 - 이유: 자연수에선 0과 0+0이 같지만, term algebra에선 과 ○+○ 은 서로 **다른 식(term)** 이기 때문.
- → 기호적 표현을 실제 의미(숫자)로 해석하는 과정을 보여주기 위한 예제

Example 7.15

- 서명 Σ_o,s = { 0 : → Nat, s : Nat → Nat }
- Σ_o,s 대수 TΣO,s와 자연수 대수 N은 **동형(isomorphic)** 구조를 가짐.
 (단, 덧셈 연산을 무시했을 때 구조가 동일함.)

7.2 (Σ , E)-Models: (Σ , E)-Algebras

개념 요약

- (Σ,E)-algebra = 주어진 서명 Σ(기호들의 틀)과 등식 집합 E(규칙들)을 모두 만족하는 수학적 모델.
- 즉, E에 들어 있는 모든 등식이 A 안에서 항상 참인 구조.

형식적 정의

- 변수 집합 X이 있을 때, 변수 할당 σ: X → A는 각 변수에 값을 넣는 것.
 (예: σ(M)=2, σ(N)=3)
- 이걸 식 전체로 확장한 게 (σ^* : T_Σ(X) → A).
 → 즉, "기호로 된 식 전체를 실제 값으로 계산하는 함수".

만족 조건

대수 A가 등식 (\forall X); t = t'를 만족한다는 건 모든 변수 할당 σ 에 대해 $\sigma^{*}(t) = \sigma^{*}(t')$ 이 항상 성립하는 경우야. \rightarrow 즉, "변수에 어떤 숫자를 넣어도 좌우항이 같다."

표기 요약

표기	의미
$A \models (\forall X); t = t'$	대수 A가 등식 t=t'를 만족
A⊨E	A가 등식 집합 E 전체를 만족
Alg(Σ,E)	E를 만족하는 모든 Σ-대수들의 집합

Example 7.16 — N은 NAT-ADD 대수임

- NAT-ADD의 등식:
 - 1. (0 + M = M)
 - 2. (s(M) + N = s(M + N))

이걸 실제 자연수 대수 №에서 확인하면,

(1)
$$0 + M = M$$

$$\sigma^*(0+M) = \sigma^*(0) + \sigma^*(M) = 0 + \sigma^*(M) = \sigma^*(M)$$

항상 참 🔽

(2)
$$s(M) + N = s(M + N)$$

$$\sigma^*(s(M) + N) = \sigma^*(s(M)) + \sigma^*(N) = (\sigma^*(M) + 1) + \sigma^*(N) = 1 + (\sigma^*(M) + \sigma^*(N)) = \sigma^*(s(M + N))$$

항상 참 🗸

☑ 따라서 №은 NAT-ADD의 모든 등식을 만족 →

№은 NAT-ADD-algebra.

Example 7.17 — N_x는 NAT-ADD 대수가 아님

- N_x (예제 7.3의 대수)에서는 0이 84로 해석되고, +도 일반적인 덧셈이 아님.
- 예를 들어,

$$\sigma^*(0+M) = \sigma^*(0) +_{N_{\pi}} \sigma^*(M) = 84 + \sigma^*(M) \neq \sigma^*(M)$$

이므로, 첫 번째 등식 (0 + M = M)부터 깨짐

• 따라서 N_x는 NAT-ADD 명세를 만족하지 않음 → N_x는 NAT-ADD-algebra가 아님.

대수(algebra)는 **숫자 집합(자연수, 정수, 유리수 등)**과 그 위에서 정의된 **연산들(+, ×, s 등)** 을 포함하는 **수학적 구조임.**

그리고 (Σ,E)-algebra란 바로 그 구조(대수)에서 명세 E의 모든 등식이 실제로 참인 경우임.

예시로 보면

서명(Σ)	등식(E)	대수(A)	만족 여부
0, s, +	0 + M = M, $s(M) + N = s(M + N)$	№ (자연수)	참 - NAT-ADD 대수
0, s, +	같은 등식	ℤ (정수)	참 - NAT-ADD 대수
0, s, +	같은 등식	N_x (기호적 다른 대수)	불만족 - NAT-ADD 대수 아님

7.2.1 Quotient Algebras

핵심 아이디어

Quotient algebra (몫 대수) = "원래 대수의 원소들을 **'같다고 보는 기준(≈)'으로 묶은 새로운 대수**"

비유로 쉽게 말하면

예:

- 원래 대수 **A** = 자연수 N = {0, 1, 2, 3, 4, 5, 6, ...}
- 우리가 "같다고 본다(≈)"의 기준을 이렇게 정함: "3으로 나눈 나머지가 같으면 같은 수로 본다"
- 그럼 아래처럼 묶을 수 있음

동치류(묶음)	실제 원소
[0]	{0, 3, 6, 9,}
[1]	{1, 4, 7, 10,}
[2]	{2, 5, 8, 11,}

이게 바로 A/≈ = N_3임. 즉, "3으로 나눈 나머지만 신경 쓰는 대수"임.

이걸 수학적으로는 몫 대수(quotient algebra) 라고 부름.

왜 굳이 이렇게 하냐?

어떤 경우에는 "값이 완전히 다르더라도 **특정 관점에서는 같다**"라고 보고 싶을 때가 있음.

예를 들어 모듈로 연산(mod 3)에서는 3과 6은 같음.

그럼 자연수 전체를 쓰는 게 아니라 "3으로 나눈 나머지"만 쓰면 됨.

이게 바로 "원래 대수를 같다고 보는 기준(≈)으로 압축시킨 것"임.

즉, Quotient Algebra = A/≈ 는 "원래 대수 A를 ≈로 묶은 압축판(algebra)"임.

그럼 함수나 연산은?

예를 들어 원래 대수에서 덧셈이 있었다면, 몫 대수에서도 덧셈을 **그대로 유지**하지만 이제는 **동치류끼리 더하는 연산**으로 바뀜.

예를 들어, [1] + [2] = [1 + 2] = [3] = [0] (왜냐하면 3 = 0 (mod 3))

즉, 이 연산은 "원래 덧셈을 그대로 쓰되, 결과를 ≈ 기준으로 다시 묶은 것".

7.2.2 The Algebra

$$\mathscr{T}_{\Sigma,E}$$

이 장은 "명세 (Σ, E) 로부터 가장 기본적이고 직접적인 모델(대수)을 어떻게 만드는가"를 설명하는 핵심임.

즉, **명세의 의미(semantics)를 수학적으로 구현한 대수**를 정의하는 부분임.

핵심 개념 요약

 \mathscr{D} ,E (The Algebra T Σ ,E) : "명세 (Σ ,E) 안에 있는 모든 등식이 실제로 참이 되는, 명세로부터 직접 만들어진 기본적인 대수(structure)"

그걸 만드는 아이디어

Step 1. term algebra 3Σ

"기호(Σ)로 만들 수 있는 모든 식(term) 들의 집합"

0, s(0), s(s(0)), 0 + 0, s(0) + 0, s(0 + 0), ...

Step 2. 등식 집합 E로 "같다고 보기"

• 명세 E 안에는 이런 규칙들이 들어 있음.

$$0 + M = M$$
$$s(M) + N = s(M + N)$$

• 그럼 이런 식들은 실제로는 **같은 의미**를 가지는 식이 됨. 예를 들어,

$$0 + s(0) = s(0)$$

즉, "기호는 다르지만 의미가 같은 식"이 존재함.

그래서 **이걸 동치로 묶어야함.**

Step 3. "같다고 보는 기준" 정의하기

두 식 t, t'가 같다고 보는 기준:

$$t =_E t\prime$$
 iff $E \vdash t = t\prime$

즉, E의 등식들로부터 **증명할 수 있으면 같은 식**으로 취급.

Step 4. 동치로 묶은 결과가 바로 5∑,E

이제 "E로 같다고 본 식들"을 한 덩어리로 묶으면 그게 바로 몫 대수 (quotient algebra)

$$\mathcal{T}_{\Sigma,E}=\mathcal{T}_{\Sigma}/=_{E}$$

즉, "term algebra를 E로 나눈(=E로 묶은) 결과"가 **명세의 의미를 직접 표현하는 대수**가 됨.

예시 — Example 7.19 (NAT-ADD)

명세:

eq
$$0 + M = M$$
.
eq $s(M) + N = s(M + N)$.

이걸로 term들을 묶으면

동치류 (한 덩어리)	포함된 term들
[0]	{0, 0+0, 0+(0+0),}
[s(0)]	{s(0), 0+s(0), s(0)+0,}
[s(s(0))]	{s(s(0)), s(0)+s(0)), s(s(0)+0),}

즉, 기호로 표현은 달라도 의미가 같은 모든 식들이 하나의 원소가 됨.

결과적으로 $\mathfrak{I}\Sigma$, E는 "자연수의 구조를 정확히 반영한 대수"가 됨. (0, 1, 2, 3, ...을 각각 [0], [s(0)], [s(s(0))], ... 로 표현)

Theorem 7.1

$\mathcal{T}_{\Sigma,E}$ is a (Σ,E) -algebra.

즉, "᠀Σ,E는 명세 E에 포함된 모든 등식을 실제로 만족하는 대수이다."

→ 따라서 (∑,E)의 **의도된 모델(intended model)** 역할을 함.

7.2.3 The Normal Form Algebra

우리가 앞에서 만든 건 $\mathfrak{D}\mathbf{\Sigma}, \mathbf{E}$, 즉 "E로 동치인 식들을 묶은 대수"였음. \rightarrow 이건 **이론적 모델**임. (어떤 식들이 같은지 증명은 가능하지만, 실제 계산은 안 됨.) "이제 그걸 실제 계산 가능한 형태(normal form) 로 바꾸자."

Normal form이란?

"식(term)을 E의 규칙으로 다 줄였을 때 더 이상 줄일 수 없는 형태."

예를 들어 NAT-ADD 명세:

```
eq 0 + M = M.
eq s(M) + N = s(M + N).
```

이 규칙으로 식을 계속 줄이면?

식	줄임 결과
0 + s(0)	s(0)
s(0) + s(0)	s(s(0))
s(0 + s(0))	s(s(0))

즉, 아무리 복잡하게 써도 결국 **"정규형(normal form)"** 은 아래처럼 단순해짐.

0, s(0), s(s(0)), s(s(s(0))), ...

즉, 그냥 자연수 0, 1, 2, 3, ... 과 완전히 1:1 대응.

정규형(normal form)이 가능한 조건

책에 나온 "terminating" 과 "ground confluent" 조건이 이걸 보장해줌.

용어	뜻	쉽게 말하면
terminating	줄이는 과정이 무한히 반복되지 않음	식 줄이다 보면 언젠가 끝남
ground confluent	줄이는 순서가 달라도 결과는 같음	어떻게 줄이든 결과(정규형)는 유일함

이 두 조건이 있으면 모든 식은 단 하나의 최종 형태(normal form)로 수렴함.

그래서 나온 게 정규형 대수 (Normal Form Algebra)

정의: 정규형(normal form)들만 원소로 가지는 대수

기호로는

 $\mathscr{C}_{\Sigma,E}$

라고 쓰고,

원소들은 "E로 줄인 식들"이야.

$$\{t!_E\mid t\in\mathscr{T}_\Sigma\}$$

여기서 $t!_E$ 는

"식 t를 E로 완전히 줄인 결과" (즉, normal form)

그럼 연산은 어떻게 정의되냐?

대수에는 연산(+, s, 등)이 있음.

그럼 이제 함수 f(0: +, s)를 정의할 때도 "결과를 다시 줄여서($normal\ form으로$) 저장" 하는 식으로 동작함. 즉,

$$f_{\mathscr{C}_{\Sigma,E}}(t_1,\ldots,t_n)=(f(t_1,\ldots,t_n))!_E$$

→ "f를 적용하고, 그 결과를 정규형으로 줄인다."

예제 — NAT-ADD

명세:

eq
$$0 + M = M$$
.
eq $s(M) + N = s(M + N)$.

이건 terminating + confluent 이므로 정상적으로 정규형 대수 만들 수 있음.

그럼 이제 정규형 대수 《NAT-ADD의 원소들은

$$\{ 0, s(0), s(s(0)), s(s(s(0))), \dots \}$$

즉, 단순한 형태의 "자연수"들임.

덧셈 연산 정의

이 대수 안에서의 덧셈은 이렇게 정의됨.

$$s^m(0) + s^n(0) = s^{m+n}(0)$$

즉,

"s를 m번 적용한 것 + s를 n번 적용한 것 = s를 (m+n)번 적용한 것" 예를 들어:

 $s(s(0)) + s(0) \rightarrow s(s(s(0)))$

(2 + 1 = 3)

요약

구분	의미	예시
Normal Form	E의 규칙으로 다 줄여서 더 이상 줄일 수 없는 식	s(s(0))
% Σ,Ε	모든 normal form 들로 만든 대수	{0, s(0), s(s(0)),}
연산 정의	f를 적용한 뒤 결과를 다시 normal form으로 줄임	$s^m(0) + s^n(0) = s^{m+n}(0)$
NAT-ADD 예시	자연수 덧셈 구조 그대로 복원됨	2 + 1 = 3

7.3 Soundness and Completeness of Equational Logic

이 장의 핵심 목표

등식 논리(equational logic)는 모든 모델에서 참인 등식을 논리적으로 증명 가능하게 만드는 시스템임을 보인다. 즉,

$$Alg(\Sigma, E) \vDash (\forall X) t = t \prime \quad \text{iff} \quad E \vdash t = t \prime$$

두 가지 속성의 의미

속성	의미	요약 문장
Soundness (타당성)	틀린 걸 참이라고 증명할 수 없다.	"증명 가능한 것은 실제로 참이다."
Completeness (완전성)	참인 건 반드시 증명할 수 있다.	"모든 참을 논리로 증명할 수 있다."

왜 Soundness는 쉽고 Completeness는 어려운가?

- Soundness는 "규칙이 상식적이냐"만 확인하면 됨.
 - → 규칙이 거짓을 참으로 만들지 않으면 끝.
- Completeness는 "모든 모델에서 참인 것을 다 증명할 수 있느냐"를 보여야 함.
 - → 즉, **무한히 많은 모델**에서 참인 것을 **하나의 논리 시스템으로** 커버해야 함.

Completeness 증명의 핵심 아이디어 (버코프 정리 Birkhoff's Theorem)

1. "E로부터 증명 가능한 식들만 같다"고 정의한 특수한 모델 S를 만든다.

$$t =_S t\prime \iff E \vdash t = t\prime$$

- 2. 이 모델 **S**가 실제로 (Σ ,E)-algebra임을 보인다.
- 3. 그러면

$$Alg(\Sigma, E) \vDash (\forall X)t = t\prime \Rightarrow E \vdash t = t\prime$$

가 자동으로 따라온다.

→ 즉, "모든 모델에서 참이면, 이 논리로도 증명 가능하다."

Completeness 증명 (핵심 구조)

- $lue{1}$ $E
 vdash t_1 = t_2$ 라고 가정한다.
- ightarrow 즉, $t_1=t_2$ 는 E로부터 증명 불가능하다.
- ② 그러면 t₁, t₂는 서로 다른 원소가 된다.

$$[t_1]_{=E} \neq [t_2]_{=E}$$

③ 따라서 quotient algebra

$$\mathcal{T}_{\Sigma}(X)/=E$$

안에서는 $t_1
eq t_2$ 이다.

④ 그런데 이 algebra는 실제 (Σ,E)-algebra이므로, "모든 모델에서 참"일 수 없다.

ightarrow 결론: $E
ot \vdash t_1 = t_2$ 라면, $Alg(\Sigma,E)
ot \vdash (orall X)t_1 = t_2$ 이다. lacktriangledown (즉, 완전성의 대우 증명)

Soundness 증명 (귀납법으로)

 $oxed{oxed{1}} E dash t_1 = t_2$ 가 증명되었다면, 어떤 모델 A에서도 $\sigma^*(t_1) = \sigma^*(t_2)$ 임을 보인다.

- ② 증명의 길이(length)에 대해 귀납한다.
 - 기저 단계 (length = 0)
 - Reflexivity: $t_1=t_2$ 자체가 같은 항이므로 성립.
 - Substitutivity: E 안의 식 t=t/를 대입해도 모델에서 같음이 유지됨.
 - 귀납 단계 (length = n+1)
 - ullet Symmetry: $E dash t_2 = t_1$ 이면 $\sigma^*(t_2) = \sigma^*(t_1)$
 - Transitivity / Congruence: 중간 단계가 같으면 전체도 같음.
- → 즉, "증명된 등식은 어떤 모델에서도 항상 참이다." ▼

결론: Birkhoff's Completeness Theorem

정리 7.2 (Birkhoff's Completeness Theorem)

주어진 등식 집합 E에 대해, 모든 항 $t_1,t_2\in\mathcal{T}_\Sigma(Y)$ 에 대해

$$Alg(\Sigma, E) \vDash (\forall Y) t_1 = t_2 \iff E \vdash t_1 = t_2$$

즉,

- "E로 증명 가능하다" ↔ "모든 모델에서 참이다"
- 등식 논리는 완전하고 타당하다.

한 줄 요약 (암기용)

등식 논리는 sound하고 complete하다.

- ⇒ "틀린 걸 증명할 수 없고, 참인 건 반드시 증명할 수 있다."
- ⇒ 이를 보이기 위해 '증명 가능한 등식만 같다'고 정의한 모델을 만들어 증명한다.

7.4 Intended Models: Initial Algebras

핵심 개념 한 줄 요약

우리가 의도한 모델은 '초기 대수(Initial Algebra)'다.

즉, 같은 명세(Σ , E)를 만족하는 여러 모델 중에서도 **가장 기본적이고 불필요한 요소("junk")가 없는 모델**이 의도된 모델이다.

문제의 시작: "진짜 모델은 누구인가?"

하나의 명세 (예: NAT-ADD)를 놓고 보면, 그걸 만족하는 모델이 여러 개 있을 수 있다.

예를 들어 NAT-ADD의 경우:

- 자연수 대수 N
- 비트(binary) 대수 bits
- 짝수만 있는 대수 $\mathscr E$
- squares, +2, AB ...

등이 모두 (Σ,E)-algebra가 될 수 있음.

그러면 "진짜 우리가 의미한 자연수"는 이 중 어떤 것일까?

답: 초기 대수(Initial Algebra)

Goguen, Thatcher, Wagner, Wright(1975)의 답변:

"명세 (Σ, Ε)의 의도된 모델은 (Σ, Ε)-algebra들 중 **초기(initial) algebra**이다."

정의: Initial Algebra

Definition 7.5 A Σ -algebra A is initial in a class \mathbb{A} of Σ -algebras if and only if for each algebra $B \in \mathbb{A}$, there is exactly one Σ -homomorphism from A to B.

즉, 초기 대수 A는 "다른 모든 대수로 가는 유일한 길"이 존재하는 대수다.

직관적으로는 이렇게 생각하면 됨 : "초기 대수는 다른 모든 모델의 '뼈대'가 되는 최소 모델이다."

성질 1: 초기 대수는 유일하다 (up to isomorphism)

Theorem 7.3

만약 두 초기 대수 A와 B가 존재한다면, 둘은 서로 동형(isomorphic)이다.

즉, 여러 개의 초기 대수가 존재하더라도, 결국 "내용이 같은" 하나의 모델이라고 봐도 무방하다.

성질 2: 항상 하나의 초기 대수가 존재한다

Theorem 7.4

 $\mathcal{T}_{\Sigma,E}$ (즉, ground term algebra의 quotient) 는 (Σ .E)-algebra들 중 하나의 초기 대수다.

이게 바로 **의도된 모델(Intended Model)** 이다.

이 모델은 "모든 식이 E로부터 증명 가능한 만큼만 동일하다고 보는" 가장 단순하고 근본적인 대수다.

예시: NAT-ADD

- NAT-ADD의 초기 대수는 $\mathcal{T}_{NAT-ADD}$ 이다.
- 이건 "0, s(0), s(s(0)), ..." 같은 모든 기본 식(ground term) 으로 구성된다.
- 자연수 대수 N과도 동형(isomorphic) 이다.
 → 즉, 우리가 아는 자연수 모델이 곧 초기 대수.

$$\phi([s(s(\cdots s(0)\cdots))])=n$$

이 함수 ϕ 는 (Σ, E) -동형사상(homomorphism)이며, 자연수 모델과 $\mathcal{T}_{NAT-ADD}$ 가 같은 구조임을 보인다.

성질 3: 정상형 대수 (Normal Form Algebra)

Theorem 7.5

만약 E가 terminating(종료) 하고 confluent(일관) 하다면, Normal Form Algebra $\mathcal{C}_{\Sigma,E}$ 는 $\mathcal{T}_{\Sigma,E}$ 와 동형이며, 따라서 초기 대수다.

즉, 우리가 실제로 Maude에서 계산해서 얻는 **정상형(normal form)** 들로 이루어진 대수가 바로 의도된 모델과 동일하다.

초기 대수의 두 가지 중요한 특성

성질	의미
No Junk	대수 안에 "불필요한 원소"가 없음. 즉, ground term의 해석으로 얻을 수 없는 원소가 없다.
No Confusion	E로부터 동등하다고 증명되지 않은 두 항은 같다고 취급하지 않는다.

이 두 성질을 만족하면 그 대수는 초기 대수와 동형(isomorphic) 이 된다.

예시로 이해하기

예를 들어 \mathbb{N}_3 (mod 3 정수 대수)에서는 s(s(s(0))) 와 0 이 같은 값으로 해석된다. 하지만 NAT-ADD에서는 $s(s(s(0))) \neq 0$ 임을 증명할 수 있다. \rightarrow 따라서 \mathbb{N}_3 는 no-confusion을 위반함. \rightarrow 즉, 의도된 모델이 아님.

결론 요약

개념	설명
Intended Model	우리가 명세로 정의한 "진짜" 모델
Initial Algebra	모든 모델로 가는 유일한 homomorphism이 존재하는 최소 모델
No Junk / No Confusion	초기 대수의 특징 (불필요한 원소 없음, 잘못된 식 동일시 안 함)
결론	$\mathcal{T}_{\Sigma,E}$ (또는 $\mathcal{C}_{\Sigma,E}$) 가 바로 intended model이다.

요약 한 줄

초기 대수(Initial Algebra) 는 명세 (Σ ,E)의 **의도된 모델**이며, "불필요한 원소(No Junk)"도 없고 "잘못된 동일시 (No Confusion)"도 없는 가장 단순하고 본질적인 모델이다.

7.5 Empty Sorts and Many-Sorted Equational Logic

핵심 요약

어떤 sort(정렬)에도 ground term이 하나도 없다면, 기존의 등식 논리(equational logic)를 그대로 확장해서 쓰면 논리가 무너진다(unsound).

기본 아이디어

"unsorted"에서 "many-sorted" (즉, 여러 sort가 있는 경우)로 확장하는 건 보통 쉽다.

단, 모든 sort가 적어도 하나의 ground term을 가지고 있다면 괜찮다.

하지만 어떤 sort가 ground term이 전혀 없을 때는 문제가 생긴다.

이게 바로 Empty Sort 문제다.

예제 (Example 7.23)

fmod EMPTY-SORT is including BOOL .

sort Empty.

op $f : Empty \rightarrow Bool$.

var X: Empty.

eq f(X) = true.

eq f(X) = false . endfm

설명 :

- Empty sort에는 ground term이 없음 (즉, Empty 타입의 실제 값이 존재하지 않음)
- 하지만 f: Empty → Bool 은 정의됨
- 식 f(X) = true 와 f(X) = false 두 개가 존재함

모델 해석 (Model A)

이 명세의 한 모델 A를 보자:

- $A_{Empty} = \emptyset$ (Empty sort는 공집합)
- $A_{Bool} = \{t, f\}$

함수 f는 다음과 같이 정의할 수 있다:

$$f(e) = t \quad \forall e \in \emptyset$$

즉, 입력이 없으니까 아무 문제 없이 참으로 정의 가능함.

이 A는 명세의 **정상적인 모델**이다.

왜냐면:

- "모든 X ∈ ∅에 대해 f(X) = false"는 자동으로 참이다.
 (공집합에 대한 전칭명제는 vacuously true)
- 따라서 두 등식 f(X)=true 와 f(X)=false 모두 만족함. (둘 다 빈 집합에 대해 참이 되므로 충돌 없음)

그런데 문제가 생김

이제 unsorted equational logic을 그대로 확장해서 쓰면,

논리적으로 다음을 증명할 수 있게 되어버림:

$$EMPTY ext{-}SORT \vdash true = false$$

하지만 실제 모델 A에서는

t 와 f 가 서로 다르기 때문에 이건 **거짓**이다.

(논리적으로 증명할 수 있는 게 실제 모델에서는 성립하지 않음)

왜 이런 일이 생기나?

Empty sort 안에는 변수를 대입할 ground term이 없음.

그래서 식에 나오는 "∀X : Empty"는 실제로는 아무 것도 검증하지 않는데, 논리 체계는 "모든 X에 대해 참이다"라고 착각한다.

→ 즉, "공집합에 대해 모든 게 참으로 간주되는 vacuous truth" 때문에 모순된 등식($\frac{true = false}{true}$)까지도 증명 가능한 상황이 생긴다.

해결책

Meseguer & Goguen이 **sound하고 complete한 many-sorted equational logic**을 새로 정의함. 이 논리에서는 변수를 **정렬별로 조심스럽게 다루기 때문에**,

다음은 증명 가능하지만,

$$EMPTY\text{-}SORT \vdash (\forall X: Empty)true = false$$

이건 **증명 불가능하다**:

$$\mathit{EMPTY}\text{-}\mathit{SORT} \nvdash \mathit{true} = \mathit{false}$$

즉, 그들의 체계에서는 soundness가 유지된다. 🗸

요약 정리

개념	설명
Empty Sort	ground term이 하나도 없는 sort
문제점	기존 equational logic을 그대로 확장하면 unsound해짐
원인	공집합에 대해 전칭명제가 "항상 참"이 되어버려 잘못된 등식(true=false)도 증명 가능
해결책	Meseguer & Goguen의 many-sorted equational logic — 변수를 정렬별로 엄밀히 다 룸
결론	Empty sort를 다룰 땐 기존 논리를 그대로 쓰면 안 된다. Soundness를 깨뜨림.

한 줄 요약

Empty Sort(비어있는 정렬) 때문에 "공집합에서는 뭐든 참"이라는 논리적 함정이 생겨 기존 등식 논리를 그대로 확장하면 **unsound(비타당)** 해진다. Meseguer & Goguen은 이를 수정해 sound하고 complete한 **many-sorted equational logic**을 제안했다.