Analiza zlewni w środowisku QGIS (SAGA) – projekt porównawczy z Civil 3D

Cel projektu:

Celem pracy było wykonanie mapy zlewni na podstawie danych wysokościowych oraz porównanie wyników i podejścia z narzędziami używanymi w AutoCAD Civil 3D. Analiza ta miała na celu lepsze zrozumienie hydrologicznego zachowania terenu oraz sprawdzenie możliwości narzędzi GIS w modelowaniu powierzchniowym.

Metodologia (QGIS + SAGA):

1. Dane wejściowe:

- Numeryczny Model Terenu (NMT) w postaci rastra.
- Wstępna analiza warstwicowa celem weryfikacji topografii.

2. Preprocessing terenu:

- Wypełnianie depresji (SAGA → Fill Sinks).
- Klasyfikacja hierarchii strumieni w sieci rzecznej (SAGA → Strahler Order).
- Obliczenie akumulacji spływu (SAGA → Flow Accumulation).

3. Wyznaczenie zlewni:

- Wskazanie punktu wylotu zlewni.
- Narzędzie "Upslope Area" (SAGA → Upslope Area) do wygenerowania granic zlewni.

4. Wynik końcowy:

- Mapa zlewni (rys. 1) z graficznym podziałem na obszary spływu.
- Obliczenie powierzchni zlewni i podstawowe statystyki hydrologiczne.

Tablica 2.

Granica zlewni rzeki Sungaj Jelaj k. Tajlandia

Rysunek 1 – Mapa granic zlewni rzeki Sungaj Jelaj, Tajland.

Metodologia (AutoCAD Civil 3D):

1. Dane wejściowe:

• Warstwicowy model terenu.

2. Tworzenie powierzchni terenu (surface):

• Na podstawie warstwic wykonano model powierzchni 3D.

3. Zlewnie i tablice hydrologiczne:

- Wskazanie trzech obszarów zlewni.
- Automatyczne wygenerowanie tabeli danych: punkt i segment obwiedni, depresje, powierzchnie płaskie, dreny wielokrotne.

4. Wizualizacja:

• Wygenerowana mapa powierzchniowa z oznaczeniem zlewni.

		Tablica	W	ygenerowa				
Nr		Powierzchnie			Wyświetianie segmentu	zgodnie	Z	parametrai
1						obszaru		r
2		23614.11				ooszaru		
3		317761.72		Opis 3				
4		416850.75		Opis 4				
5		59261.58		Opis 5				
6								
7		71300.31		Opis 7				
8	Segment obwledni	811536/28		Opls 8				
9	Segment obwiedni	92.31		Opis 9				
10		1025013.75		Opis 10				
н		11188.80		Opis 11				
12		1262653.25		Opis 12				
13		131025.41		Opis 13				
14		1419010.93		Opis 14				
15		1596009.60		Upis 15				
16		163042.07		Opis 16	·			
177	Płaska powierzchnia	17809.38		Dpis 17				
18	Płosko powierzchnia	1813599.65		Opis 18				
19	Płaska powierzchnia	19201.52	6, 10, 12, 15, 18	Opis 19				
20	Płaska powierzchnia	207728.96		Opis 20				
Ž1				Opis 21				
52				Opis 22				
23				Dpis 23				

Tablica 1. Porównanie narzędzi QGIS + SAGA & AutoCAD Civil 3D

Kategoria	QGIS + SAGA	AutoCAD Civil 3D			
Dostępność	Darmowy i open-source	Komercyjny, drogi			
Dokładność analizy	Wysoka, zależna od jakości rastra	Bardzo precyzyjna przy dobrych danych			
Automatyzacja obliczeń	Wysoka, wiele gotowych algorytmów SAGA	Średnia – więcej ręcznej konfiguracji			
Przejrzystość wyników	Intuicyjna mapa wynikowa, legenda	Wynik bardziej techniczny (tabela danych)			
Zastosowanie praktyczne		Często używane w projektowaniu inżynierskim			
Wydajność	Wysoka, choć zależna od wersji QGIS	Bardzo dobra, zoptymalizowana dla CAD			

WNIOSKI

Oba środowiska mają swoje mocne strony. QGIS z SAGA pozwala na elastyczne podejście do analiz przestrzennych i bardzo szybkie generowanie map hydrologicznych, a jego otwartość jest dużym atutem w pracy naukowej czy samodzielnej. Civil 3D z kolei oferuje bardzo precyzyjne odwzorowanie geometrii i dobrą integrację z projektowaniem inżynieryjnym, co czyni go idealnym dla prac projektowych.