

Classification tables

How well does the model classify subjects as diseased or non-diseased?

Validity and predictive values

 Calculate sensitivity (Se), specificity (Sp), and positive and negative predictive values (PPV, NPV) for the model

Present True + False + Absent False - True - Total • For each subject we must decide if π̂ suggests that th outcome is present or that the outcome is absent • To do this, we must choose a cutpoint, e.g. • π̂ ≥ 0.5 → predicted outcome present	Cutpoint selection	Predicted Outcome	Observed		
Absent False - True - Total • For each subject we must decide if π̂ suggests that th outcome is present or that the outcome is absent • To do this, we must choose a cutpoint, e.g. • π̂ ≥ 0.5 → predicted outcome present	SCICCION		Present	Absent	Total
 For each subject we must decide if π̂ suggests that th outcome is present or that the outcome is absent To do this, we must choose a cutpoint, e.g. π̂ ≥ 0.5 → predicted outcome present 		Present	True +	False +	
 For each subject we must decide if π̂ suggests that the outcome is present or that the outcome is absent To do this, we must choose a cutpoint, e.g. π̂ ≥ 0.5 → predicted outcome present 		Absent	False -	True -	
 outcome is present or that the outcome is absent To do this, we must choose a cutpoint, e.g. n̂ ≥ 0.5 → predicted outcome present 		Total			
 π̂ < 0.5 → predicted outcome absent 	,	we must de		00	

Examples	Predicted Outcome	Observed	Outcome		
		Present	Absent	Total	۱١
	Present	True +	False +		
	Absent	False -	True -		П
	Total				
					1

- A subject with $\hat{\pi}$ =0.7 ($\hat{\pi}$ >0.5) and outcome present counts toward the true positives
- A subject with $\hat{\pi}$ =0.7 ($\hat{\pi}$ >0.5) and outcome absent counts toward the false positives

Examples	Predicted Outcome	Observed	Outcome	
		Present	Absent	Total
	Present	True +	False +	
	Absent	False -	True -	
	Total			
 A subject with π̂ = 	$0.3 (\hat{\pi} < 0.5)$	and outc	ome pres	ent

Problems

- Continuous probabilities $(\hat{\pi})$ are reduced to 0/1
- If 0.5 is chosen as the cutpoint,
 - $\hat{\pi}$ =0.49 and $\hat{\pi}$ =0.01 are considered the same
 - $\hat{\pi}$ =0.49 and $\hat{\pi}$ =0.51 are considered different
- 0.5 may not be the most appropriate cutpoint

Example: Glow500 data set

Determine best cutpoint for the classification table

proc logistic descending data=glow500; model fracture=priorfrac momfrac armassist raterisk2 height age priorfrac*age momfrac*armassist /outroc=rocdat;

run;

Creates data set containing sensitivity and 1-specificity for all values of $\hat{\pi}$ in the data set

axis1 label=(f=swiss h=2.5 'Probability Cutoff') minor=none; axis2 label=(f=swiss h=2.5 a=90 'Sensitivity,Specificity') minor=none;

goptions FTEXT=swissb HTEXT=2.0 HSIZE=8 in VSIZE=6 in;

symbol1 v=dot i=join c=black h=1; symbol2 v=diamond i=join c=black h=1;

footnote1 c=black f=special h=1 'J J J' f=swissb h=1.5' Sensitivity' c=black f=special h=1' D D D' f=swissb h=1.5' Specificity'; proc gplot data=rocdat; plot (_sensit_ spec)*_prob_ /overlay haxis=axis1 vaxis=axis2; run; quit;

Se, Sp and PPV are low A model tends to predict better in the data set it was based upon, i.e. it may perform (even) worse in other data sets But remember: Se and Sp are not indicators of goodness-of-fit

Se and Sp are not indicators of goodness-of-fit Reason: Se and Sp depend on the proportion of $\hat{\pi}$ s near the cutpoint (generally but not always 0.5)

Classify study subjects as follows: if π̂ < 0.5, then the predicted outcome is 0 if π̂ ≥ 0.5, then the predicted outcome is 1 Assume perfect goodness-of-fit In other words, assume that the predicted values perfectly reflect the observed values

y=outcome

$\hat{\pi} > 0.5$ but not by much

- If $\hat{\pi}$ =0.51 for 100 subjects
 - 51 subjects have y=1
 - 49 subjects have y=0
- But $\hat{\pi}$ >0.5 for 100 subjects
 - Predicted outcome=1 for all 100 subjects
 - 49 false positives
- → Substantial decrease in Sp

y=outcome

$\hat{\pi}$ < 0.5 but not by much

- If $\hat{\pi}$ =0.49 for 100 subjects
 - 49 subjects have y=1
 - 51 subjects have y=0
- But $\hat{\pi}$ <0.5 for 100 subjects
 - Predicted outcome=0 for all 100 subjects
 - 49 false negatives
- → Substantial decrease in Se

y=outcome

$\hat{\pi}$ > 0.5 by a lot

- If $\hat{\pi}$ =0.95 for 100 subjects
 - 95 subjects have y=1
 - 5 subjects have y=0
- But $\hat{\pi}$ >0.5 for 100 subjects
 - Predicted outcome=1 for all 100 subjects
 - 5 false positives
- → Small decrease in Sp

y=outcome

$\hat{\pi}$ < 0.5 by a lot

- If $\hat{\pi}$ =0.05 for 100 subjects
 - 5 subjects have y=1
 - 95 subjects have y=0
- But $\hat{\pi}$ <0.5 for 100 subjects
 - Predicted outcome=0 for all 100 subjects
 - 5 false negatives
- → Small decrease in Se

Example summary

- In this example, the goodness-of-fit of the model is the same in all situations
- But Se and Sp depend on $\hat{\pi}$ and are not the same in all situations

Area under the ROC curve

Measures the model's ability to discriminate between the diseased and the non-diseased

Background

- ROC stands for Receiver Operating Characteristic
- First used in signal detection theory: How well does the receiver detect a signal in the presence of noise?
- ROC curve = Plot of Se vs. 1-Sp
- Area under the ROC curve measures receiver's ability to discriminate between true and false signals

Area under the ROC curve - Idea

- Pair each diseased subject with each nondiseased subject and compare each pair's π̂s
- Determine the proportion of pairs where $\hat{\pi}$ for the diseased subject is greater than $\hat{\pi}$ for the non-diseased subject
- This proportion is equal to the area under the ROC curve

Area under the ROC curve

- 0.5 no discrimination (as good as coin toss)
- 0.7 < 0.8 acceptable discrimination
- 0.8 < 0.9 excellent discrimination
- ≥ 0.9 outstanding discrimination

Area under the ROC curve

- Close to quasi-complete separation would be required for the area under the ROC curve to be ≥ 0.9
- A diagonal line indicates no discrimination
- The faster Se increases with decreasing Sp (i.e., increasing 1-Sp), the better the discrimination

