Number Theory

Instructor: Dušan Djukić

Problems - April 22

- 1. If p is an odd divisor of $a^{2^n} + 1$, prove that $p \equiv 1 \pmod{2^{n+1}}$.
- 2. Let p be a prime and let n be coprime to p-1. Prove that th numbers $1^n, 2^n, \ldots, (p-1)^n$ are all distinct modulo p.
- 3. If a > 1, prove that $\varphi(a^n 1)$ is divisible by n.
- 4. (a) Find all positive integers n such that n divides $2^n 1$.
 - (b) Find all positive integers n such that n divides $2^{n-1} + 1$.
- 5. Find (a) the order of 2 modulo 3^n ; the order of 3 modulo 2^n .
- 6. Find the largest (a) power of 2; (b) power of 11 that divides $3^{100!} 1$.
- 7. Let p be an odd prime divisor of a b, not dividing a or b.
 - (a) If $p \nmid n$, prove that $p \nmid \frac{a^n b^n}{a b}$.
 - (b) $\frac{a^p b^p}{a b}$ is divisible by p, but not by p^2 .
- Let a and b be integers with $|a| \neq |b|$. Prime p divides a b, but not a and b. Then $v_p(a^n b^n) = v_p(a b) + v_p(n)$, provided that either p > 2, or p = 2 and $4 \mid a b$. (Lifting the exponent Lemma)
- 8. What is the largest power of 5 dividing $2^{299} + 2^{199} 1$?
- 9. Find all positive integers n for which n^2 divides $2^n + 1$.
- 10. Find all positive integers x, y and n for which $x^3 + y^3 = 3^n$.
- 11. Let n > 2 be a positive integer. Prove that the number $2^{2^n-1} 2^n 1$ is composite.