

This Page Is Inserted by IFW Operations
and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
 - FADED TEXT
 - ILLEGIBLE TEXT
 - SKEWED/SLANTED IMAGES
 - COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
 - GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

**As rescanning documents *will not* correct images,
please do not report the images to the
Image Problem Mailbox.**

Nucleic Acids Research

⑨

EV 357836964 US

Volume 15 number 8 April 24, 1987

 IRL PRESS

Oxford · Washington DC

ISSN 0305 1048
Coden NARHAD

DNA sequences for typical ribosomal gene spacers from *Xenopus laevis* and *Xenopus borealis*

Paul Labhart and Ronald H. Reeder

NOTICE: THIS MATERIAL MAY BE PROTECTED
BY COPYRIGHT LAW (TITLE 17 U.S. CODE)Hutchinson Cancer Research Center, 1124 Columbia Street, Seattle, WA 98104, USA
Submitted March 16, 1987

Accession no. Y00132

We have determined a few short DNA sequences that had not been previously reported from the *X. laevis* ribosomal gene spacer and about 3 kb of previously unreported sequence from the *X. borealis* spacer. For the convenience of other workers, we have compiled our data with other published reports so that, for the first time, one can refer to a typical, complete sequence for each of these spacers.

For both spacers, the sequence is shown from the C in the HindIII-recognition site at the 3' end of the 28S rRNA (nucleotide 1) to the transcription start site of the 40S precursor (*X. laevis*: at nucleotide 3952; *X. borealis*: 3930). The sequence is complied from the following sources: *X. laevis*: 1 to 197: (1,2); 190 to 532: (3); 529 to 1474: (2); 1475 to 1664: present work; 1665 to 2910: (2); 2804 to 3051: (1); 3052 to 3634: inferred from restriction data in (4); 3635 to 4000: (1,2). *X. borealis*: 1 to 453: (3); 454 to 3490: present work; 1081 to 1422: inferred from chemical cleavage pattern and restriction analysis; 2000 to 2296: inferred from restriction data; 3385 to 4000: (5). The clones used were pXlr14 in (1,3) and in the present work, pxl108 in (2,4), and pxbr101A in (5) and in the present work.

First nt.	10	20	30	40	50	60	70	80	90	100
+1	CTTTCTGGT AGGAGGAGG	CCGGCAGGGG	GGCCCCGGCG	CGCGCGGGG	CGACGTCCC	TCCGGCTCCC	CGGGCTCCC	GGCGCGCTCC	CCTTTCGGG	
+101	GGGGGGAGAG	AGCGCGGCCG	GGCGGGGGGG	GGCGCGGCCG	GGCGGGGGGG	GGACGGTCCC	GGCGGGGGGG	GGACGGTCCC	GGGGGGGGGG	
+201	CGAGGGCGCC	TTGGGGCCCC	GCACCCCCCG	GGGGGGAGGC	CTGACTTGCA	GGGCCGGCG	GGGACCCCTC	CGGGGGAGGC	GGGGGGGGGG	
+301	GACTTCTGG	CCCGCGGGGC	CTGGGGCCCC	TTGGAAAGCC	CGGCCGGGG	CGGGTATGG	GGGAGGGCCC	GGCGCGCTTC	TGGGGCGGCC	
+401	AGGACGGGGG	GGGGGGGGGG	GGCGCGGGGA	GGGGGGGGGG	GGCGCTTAAGG	GTCCGGCTGG	CCCGCTGGGG	TCCTCTCCCC	GGGCTTAAGG	
+501	GGCGCTGCC	GTCGGGGGGG	ACCTCTCCCC	GGGCTTAAGG	GTCCGGCTGG	CCCGCTGGGG	GGGCGGGCTT	AAAGGGCTGG	GGCCCCCATC	CTTCCCCGGG
+601	GCTTAAGGG	CGGTCGGGG	CATCTCTCCC	TGGCGGGGGT	AGCGACGGGG	GGCTGGGGGG	GGGTGGGGGG	TGAAGAGGGG	GGCGAGAGAA	TGAAGAGGGG
+701	AAGAAAAAAAT	CTGAGGGGG	GGCGGGGGGG	GGCGGGCTCC	GGGGTCCCCG	GGCGCGGGGG	GGGGGATATG	GGAGGCGAGG	GGCGGGATTC	GGCGGGATTC
+801	GGGGTGGGGG	CCCCGGGGGGT	GGCCGGCTGG	GGGGCTCCCC	GGCGAGAGGG	GGCCCATTCG	GGGCGAGGGG	ACCCGATTCG	GGGTGGGGGC	
+901	GGGGGGGGGG	CCCCGGGGGG	GGGGCTCCCC	GGGGTCCCCG	GGCGAGAGGG	GGCCCATTCG	GGGCGAGGGG	ACCCGATTCG	GGGTGGGGGC	
+1001	CCCCGGGGGT	CCCCGGGGGG	CCCCGGGGGG	GGGGCTCCCC	GGGGTCCCCG	GGCGAGAGGG	GGCCCATTCG	GGGCGAGGGG	ACCCGATTCG	GGGTGGGGGC
+1101	CCCCGGGGGT	CCCCGGGGGG	CCCCGGGGGG	GGGGCTCCCC	GGGGTCCCCG	GGCGAGAGGG	GGCCCATTCG	GGGCGAGGGG	ACCCGATTCG	GGGTGGGGGC
+1201	CCCCGGGGGT	CCCCGGGGGG	CCCCGGGGGG	CTTCCCCGGG	GGGGCTCCCC	GGGGTCCCCG	GGGGGATTCG	GGGCGAGGGG	GGGGGGCCCC	
+1301	GGGGGGTCCCC	GGGGGGGGCC	GGGGGGGGGG	CTCCCCGGCA	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+1401	GGGTGGGGCC	TAAGGGGGCC	GGGGGGGGCC	CTGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+1501	GGAAAAGAAC	CTAAGAAA	AAAAMATCC	CGACGGGGGG	CGACGGGGGG	GGCGGGGGGG	GGCGGGGGGG	GGTGGGGGGG	GGTGGGGGGG	
+1601	GGGAGGGGG	GGGAGGAAAC	CGGGAGGAAAT	ACCCAGGGGG	GGCAACGGGGG	GGGCGGGCGG	GGGAGTCCCC	GGGAGTCCCC	ATGGGGAGGG	ATCCGGGGCG
+1701	GGGGGGCCGG	GGGGGGCCGG	GGGGGGCCGG	GGGGGGCCGG	GGGGGGCCGG	GGGGGGCCGG	GGGGGGCCGG	GGGGGGCCGG	GGGGGGCCGG	ATGGGGGGGG
+1801	GTGCLBGLAD	CATTGGTAGG	ACGGGGCTCT	CGGGGGGGGG	TCCCCGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+1901	AGCTCGGGCA	GGGGGGAGCG	GCTGCTCCCC	CTGGCTGGG	GGGGGGCTGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+2001	GCTGCTCCCC	CTGGCTGGG	GGGGGGAGCG	ACCTGGGGCA	GGGGGGAGCG	GCTGGCTCCC	CTGGCTGGG	GGGGGGGGGG	GGGGGGGGGG	
+2101	AGCCCCCACG	GGGGGGGGGG	GAGCTGGGG	GGGGGGGGGG	CTGGCTGGG	ACGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	AGAGGGGGCA	
+2201	GGCTGCTCCC	CTGGCTGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+2301	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+2401	AGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+2501	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+2601	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+2701	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+2801	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+2901	ACGGGGTTTT	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+3001	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+3101	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+3201	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+3301	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+3401	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+3501	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+3601	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+3701	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+3801	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	
+3901	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	

FIGURE 1: A typical intergenic spacer region from the ribosomal DNA of *Xenopus laevis*.

First nt.	10	20	30	40	50	60	70	80	90	100
+1	CTTGTGTC	CTCCGAGAG	AGGAGGAGCG	GGCGCGCGCG	GGCGAAGAG	CCTCCACCGG	CCCGGAAAC	GTCCCCGTC	GTACCCCTTG	GGCGCGCGCG
+101	CACTTACGAC	CTTGCAGC	GGCGCGCGCG	TTCGGGGGGG	GGGGGAGCGG	CGGGGAGGGG	GAAAAGGCC	CGAGGGAGGG	CGACGGGGCT	
+201	CGGGCGGAC	CGCGCGCG	CGCGCGCGCG	TCCGAAGCGG	TCTCTGGCG	CGGGGAGGGG	CGCTCTCTCC	CCCTCTCTCC	7GGCGGAAAG	
+301	CGAGGACTG	TGCGGCGGCG	CGCGCGCGCG	CGACCCCGCA	GGGGGAGGGG	GGGGGAGGGG	GGGGGAGGGG	TGTTGTCGGG	GGGAGGACTT	GGGGGCGGCC
+401	CGGGCGGCGG	CTGCGGAGC	GGAGGGGCGG	GGCGCGCG	GGCAAGGCGT	GGCTTCCCGG	AAGCTCCGG	GGGGGCGGCC	GGGGGCGGCC	GGGGGCGGCC
+501	GGCTTAAGGG	CGCGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+601	GGAGCAAGAG	GGAGAGAGAG	GGAGAGAGAG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+701	GGTGTGCGG	AGAGAGCGT	GGAGCGTGT	CGCCATGCGG	TCACAGTC	GGTGTGCGG	TTCAGAGGT	CTCTGGCTG	TATGTAAGTT	TTGTAACATC
+801	AAACATGTC	CTGTCGTC	CGAGGCGCAT	GGGGTCTGCG	CGTAGAC	CGACACACT	CGTGGGAC	CCCCCAGGG	CGCTTTTT	TTTTTTTT
+901	AGGGTGGGGG	CGCTGCTGTC	GAACCTAAC	CTATAGAC	GAACGAAAC	CGGGGGGGGG	CGCTCTGGCT	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG
+1001	AGCCCTAGC	CTAGGCTCTG	CGCTAACCT	ACCCCTAGCC	CTACCTGCG	CGCTCTGGCT	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG
+1101	CTAACCTAAC	CGCTTACCGT	ACCCCTAAC	CTAGGCTAA	CGCTAACCT	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG
+1201	CGCTAACCT	ACCCCTAAC	CTAACCTAAC	ACCCCTAAC	CTAACCTAAC	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG
+1301	ACCCCTAAC	CTAACCTAAC	ACCCCTAAC	CTAACCTAAC	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG
+1401	CTAACCTAAC	CGGGGGGGGG	ACCCCTAAC	CTTGGCGCTAA	CGCTAACCT	ACCCCTAAC	CTAACCTAAC	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG
+1501	ACCCCTAAC	CTAACCTAAC	CTAACCTAAC	CTAACCTAAC	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG	CGGGGGGGGG
+1601	GGTGGCGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+1701	GACTTCCGGG	TATGGCGGAC	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+1801	ATCTGGGGG	TATGGCGGAC	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+1901	GGGGGGGGGG	ATCTGGGGG	ATGGCGGAC	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+2001	CGGAGGCGT	ACGGGGGGGT	TGCGCTCTG	GGCAACGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+2101	TGAGGCGG	GGTCAAGCGG	GGCGAAGAC	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+2201	GGTGGGGTAA	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+2301	GTGTTGGG	GGTGGGGTAA	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+2401	GGTCTGGG	GGTGGGGTAA	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+2501	GGGGGGGGGG	CGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+2601	TCTGGGGG	GGCAGCAGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+2701	GGGGGGGGGG	TTCGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+2801	GGTGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+2901	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+3001	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+3101	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+3201	GGGGGGGGGG	TGAGGCGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+3301	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+3401	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+3501	ACGACGAGG	TGCTGGGGAC	GTCTGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+3601	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+3701	ATTCGGCG	AGTGTGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+3801	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG
+3901	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG	GGGGGGGGGG

FIGURE 2: A typical intergenic spacer region from the ribosomal DNA of *Xenopus borealis*.

Partial sequences of spacers from other clones can be found in references (6-10). The sequence of the *X. laevis* 40S coding region, up to the 3' end of the 28S sequence, can be assembled from references (7,11,12, and 13).

REFERENCES

- Sollner-Webb, B. and Reeder, R.H. (1979) Cell 18, 485-499.
- Moss, T., Boseley, P.G., and Birnstiel, M.L. (1980) Nucl. Acids Res. 8, 467-485.
- Labhart, P. and Reeder, R.H. (1986) Cell 45, 431-443.
- Boseley, P., Moss, T., Maechler, M., Portmann, R., and Birnstiel, M. (1979) Cell 17, 19-31.
- Furlong, J.C., Forbes, J., Robertson, M., and Maden, B.E.H. (1983) Nucl. Acids Res. 11, 8183-8196.
- Bach, R., Allet, B., and Crippa, M. (1981) Nucl. Acids Res. 9, 5311-5330.
- Maden, B.E.H., Moss, M., and Salim, M. (1982) Nucl. Acids Res. 10, 2387-2398.
- LaVolpe, A., Taggart, M., McStay, B., and Bird, A. (1983) Nucl. Acids Res. 11, 5361-5380.
- McStay, B. and Bird, A. (1983) Nucl. Acids Res. 11, 8167-8181.
- Morgan, G.T., Roan, J.G., Bakken, A.H., and Reeder, R.H. (1984) Nucl. Acids Res. 12, 6043-6052.
- Salim, M., and Maden, B.E.H. (1981) Nature 291, 205-208.
- Hall, L.M.C. and Maden, B.E.H. (1980) Nucl. Acids Res. 8, 5993-6005.
- Ware, V.C., Tague, B.W., Clark, C.G., Gourse, R.L., Brand, R.C., and Gerbi, S.A. (1983) Nucl. Acids Res. 11, 7795-7817.

Figure: Yeast

Lanes a-e are *cerevisiae* 218 times over the to Ref. 2.

ACKNOWLEDG

We thank J probes, Drs A.

REFERENCES

- Carle, G.F.
- Snell, R.G.