변종 악성코드에 대한 대비를 위한 최적의 악성코드 분류 모델 생성

lo I Malware Prediction

TABA 2조

곽성신, 곽보선, 박민영, 박서영, 이지영

프로젝트 배경

• • • • • •

프로젝트 목표

••••

역할 분담 및 프로젝트 진행 과정

• 데이터 시각화 : 이지영

• 데이터 전처리 : 박민영, 박서영

• 모델 학습 및 평가: 곽보선, 곽성신, 박민영, 박서영

	A				10			.14	(1.0	K.	13.	M.
< 251.1	創別場>		https://docs.goo	gle.com/docum	ent/d/18u/WZ0Ye	SeltBl-r6eop	CZme8wbGq6oJ5A	zytGUEMc/edit					
+838	동노선에 참	No.	https://instinctive	e-pawpaw-681.n	otion.site/d9fa53	6c852845acb	245beddfc2bcbe9						
< 2.46	한 데이터넷	800	구글 공유 문서 : 5	tos //docs.google	e.com/document/	d/ToMbSHnK()	714c3fatb.7272b38ci HU_bBy/R3CRu9_4 Idens/10GLubU052M	FFTG cbM46xyAOy	QZpD4/edit7uspr 4KGcXyG7usprs	sharingosy			
https://	/idocs.goo	gle.com/presentation	M/1ciUDzQ4sim35	syAdich+GonAffA	NoTitleMZEJpyOxi	crRr0/editfelid	e-id.g1bc69ab1ab6	0.6					
의용		ARY	48										
시원적		現金製 11시世	변토랑 내용이 위성	U27 (MA)									
29		福泉製 13-164週	논문 양고 되론 / 합	함 의미 추정 / 방향	항상 상의 등								
백세명	1/199/98	목요일 22시까지	주되다 환경 세당 (균렵이 너무 느려서	우선 주의대로 작업	했습니다)/대	이터 이렇지걸 처리(그)	NE / 갈 확인 등, 할당	의 의미를 아직 정확	히 용라 우선 뛰리도	해박이겠다 싶어서	MWSSGLICE)	
							명은 고행에서 확인가(smoXHWYeVUBZA			(함 식제도 해용)			
1042	6	급요일 10시 반 경	>>> \$ALT 580	될까 싶어서 보냅	UD.								
국생선	1	금유일 11시 30분	주어진 데이터를 X	GBoost ⊆W4 ¥	이 동리점	https://colab.	research google.com	widniye/1r4dGezcYS	EVOP10/D3CSyG	WOWSHNA-97usp	esharing		
4148		공유일 13시 경			하용 >> 그냥 대충 (n/drive/13KzqbU/		SZI 94%LI LIB ML/SAZKKIQNZMID	apraherns					
444		급유일 13시 30분경			서 추가 (편집 했음데 m/drive/tnkYzp_D		다고 等) ONHMEOtosi_nUT?	usprahering					
च्छा	r.	급요일 14시	Delcision Tree 整 >> 發軟架 97% LI		를 아직 진행 X) E. K-Fold 과정 진행	18885	https://colab.rec	earch.google.com/	anne/1KtBodpGZI	.CGGOW04xZOU	NEEDNPWYTR?	usersbarne	
목생선	6	금요일 11시	데이터 66-120 자료고 데이터 성관관계 heatmap 으로 시작화 택됨 - 태합s.//coleb research.google.com/drive/1NWaSRmztLT0TMtavSMcMgzctyn/UnAnTusp=sharing										
me		THE REAL PROPERTY.	The Control of the Control	HER PARK AND AS	AND RESIDENCE TO	a accommode and	A REPORT BOTH	90					

Contents

• • • • •

_1

Dataset 설명

기본 원리

• • • • •

ARM 기반 Instruction Set Architecture

- Dofloo
- Gafgyt
- Mirai
- Tsunami
- Benign

엔트로피 히스토그램 계산 & 특징 추출

기능 별로 카테고리 분류

기본 Dataset

••••

생성된 Malware 데이터셋은 121개의 특징을 가지고 있으며 총 5종

전체 데이터셋 구조

	0 ~ 120 칼럼	label
0	(시퀀스 값)	Mirai
1		Gafgyt

코드 분류 비율

코드 분류	개수	비율	
Dofloo	844	4.2%	
Gafgyt	8,582	43.2%	014 75
Mirai	7,404	37.2%	〜 악성 코드
Tsunami	467	2.3%	
Benign	2,591	13.0%	정상 코드
전체	19,888	100.0%	•

상관관계

• • • • •

feature importance

 $\bullet \bullet \bullet \bullet \bullet \bullet$

기타

• • • • •

최적의 모델에서 사용한 데이터셋 - LightGBM

 $\bullet \bullet \bullet \bullet \bullet \bullet$

최적의 모델에서 사용한 데이터셋 - LightGBM

그래프에서 칼럼명 추출

```
# feature importance에서 나온 중요 columns만 뽑기
                                                                   #정렬 후. 데이터프레임화
# 1. 전체 column 뽑기 / 2. 절반만 가져오기
                                                                   importanceList50.sort()
                                                                   importanceList25.sort()
#중요도가 DOI 아닌 feature(column)의 개수
                                                                  print(importanceList50)
len_yticks = len(curve.get_yticklabels())
                                                                   print(importanceList25)
#각 중요 column을 담을 리스트 생성
                                                                   importanceList50.append('label')
importanceList50 = list()
                                                                   importanceList25.append('label')
importanceList25 = list()
                                                                   importanceList50_df = data[list(map(str,importanceList50))]
#1. 전체 column 뽑기
                                                                   importanceList25 df = data[list(map(str.importanceList25))]
 #사용한 모든 column을 담은 리스트
for i in range(0, len_yticks):
                                                                   ['0', '10', '11', '12', '13', '14', '15', '16', '18', '19', '2', '2|
   #column명 리스트에 추가
                                                                  ['10', '13', '14', '2', '22', '24', '29', '3', '30', '32', '33', '3!
   importanceList50.append(curve.get_yticklabels()[i].get_text())
                                                                               0
                                                                                      10
                                                                                              -11
#2. 절반만 가져오기
                                                                        0.000000 0.509727 0.000000 0.000000 2.208603 0.187500 0.0
 #사용한 column의 상위 25개만 담은 리스트
   #순서대로 정렬이 되어있어 절반부터 시작해도 됨
                                                                         0.000000 0.171875 0.000000 0.000000 3.160784 0.694216 0.0
   #중요 column을 절반으로 줄여도 문제가 있을지 궁금해서 추가함
                                                                         0.000000
                                                                                 0.000000 0.141986 0.000000 1.409876 0.268901 0.0
for i in range(int(len_yticks/2), len_yticks):
   #column명 리스트에 추가
                                                                         0.000000 0.530216 0.128705 0.000000 2.507974 0.187500 0.0
   importanceList25.append(curve.get_yticklabels()[i].get_text())
                                                                         0.000000 0.470665 0.093750 0.000000 3.611514 0.694216 0.0
#잘 생성됐는지 확인
print(len(importanceList50))
print(len(importanceList25))
                                                                  19888 rows × 51 columns
```

값 정렬 label 칼럼 추가 데이터프레임화

데이터프레임 확인

12

13

14 15

사용한 모델

• • • • • •

	Decision Tree	Random Forest	KNN	
특징	데이터의 패턴 을 찾아내고 트리 모양으로 조건에 따라 데이터를 분할 하며 예측	여러 데이터 샘플을 추출 하고 각 샘플마다 Decision Tree 를 만들어 결과를 종합	데이터들 사이의 거리를 측정 하여 어떤 데이터가 가까운지 파악 하고 새로운 데이터를 분류	
장점	단순한 규칙, 특성 별 중요도 파악 용이	Decision Tree 한계점 보완, 결측치에도 높은 정확도를 보임	간단한 알고리즘, 수치형 데이터 분류 작업에 용이	
단점	과적합 발생하기 쉬움, 모델이 복잡할 경우 성능 저하	많은 메모리 사용, 속도 느림	데이터 양이 많은 경우 계산 속도 저하	
기본 데이터 셋	0.951100	0.963545	0.974041	
효과적인 데이터셋	상관관계 낮은 칼럼 삭제한 데이터셋	DT에서 중요도 높게 나온 칼럼 36개를 추출 한 데이터셋	LightGBM 돌렸을 때 중요도 높게 나온 칼럼 25개를 추출한 데이터셋	
최고 정확도	0.955123	0.964865	0.976241	

사용한 모델

	XGBoost	LightGBM		
특징	이전 모형에서의 실제값과 예측값의 오차를 훈련데이터로 투입하고 gradient를 이용하여 오류를 보완하는 방식을 병렬적으로 처리	최대 손실 값을 가지는 리프 노드를 지속적으로 분할하여 비대칭적인 트리를 생성 하고 예측 오류 손실을 최소화		
장점	병렬 처리로 학습/분류 속도 빠름, 과적합 방지가 잘 되어 있음	XGBoost보다 학습 시간/메모리 사용량 적음		
단점	데이터 개수가 적을 경우 과적합 가능성이 있음	데이터 개수가 적을 경우 과적합 발생하기 쉬움		
기본 데이터 셋	0.983595	0.982967		
효과적인 데이터셋	LightGBM에서 중요도 높게 나온 칼럼 50개를 추출한 데이터셋	RF에서 중요도 높게 나온 칼럼 58개를 추출한 데이터셋		
최고 정확도	0.983721	0.983030		

결과치가 낮게 나온 모델 및 구현에 실패한 모델

• • • • •

	다층신경망 모델	K-Mean	SVM	
특징	여러 개의 퍼셉트론 뉴런을 여러 층으로 쌓아 입력 층과 출력층 사이에 하나 이상의 은닉층을 가지고 있는 신경망	반복적인 연산을 거듭하여 점점 비슷한 데이터들끼 리 모여서 군집을 만드는 방법	주어진 데이터가 어느 카테고리에 속할지 분류를 위한 기준을 정의 하는 선형 분류 모델	
장점	대량의 데이터의 정보를 잡아내고 매우 복잡한 모델 생성 가능	많은 양의 데이터 빠르게 분류 가능, 데이터 사전 정보 없이 분석 가능	분류문제나 예측문제 동시에 사용 가능	
단점	같은 의미를 가진 동질의 데이터에서 잘 작동함	이상치의 영향을 많이 받음	여러 테스트를 통해 최적화 모형 구축 가능, 모형 구축 시간이 오래 걸림	
학습 환경	기본 데이터 셋	기본 데이터셋 - 군집 2개일 때	-	
최고 정확도	0.9181	0.40391	_	

기본 데이터셋에 대한 모델 별 정확도 비교

프로젝트 목표와 부합하는 알고리즘

- 해당 코드가 정상 코드인지 악성 코드인지 구별
- 최고의 정확도

XGBoost

파라미터 설정

 $\bullet \bullet \bullet \bullet \bullet \bullet$

과적합 방지를 위한 파라미터

- max_depth
- eta
- subsample
- colsample_bytree
- n_estimators

```
1 params = {
2  # Parameters that we are going to tune.
3  'max_depth':[4,6],
4  'eta':[0.01,0.1,0.2],
5  'subsample': [0.5,1],
6  'colsample_bytree': [0.5,1],
7 }
1 xgb = XGBClassifier(n_estimators=500)
```

GridSearchCV를 사용하여 최적의 모델을 위한 파라미터 추출

```
1 from sklearn.model_selection import GridSearchCV
2 gs = GridSearchCV(xgb, params, cv=5)
3 gs.fit(x_train, y_train)
4 print("Best Parameters : ", gs.best_params_)
```

XGBoost

최적의 파라미터 조합으로 적용

• • • • • •

XGBoost

모델 트리 형태로 시각화

결과 분석

• • • • •

결과1

모든 모델이 정확도 95% 이상

결과2

정확도 비교 Decision Tree 〈 Random Forest 〈 KNN 〈 LightGBM 〈 XGBoost

향후 방향성

학습 소요 시간 등 다양한 방면을 종합해서 최적의 모델 개선 예정

향후 개선 과제

••••

이번에 시도하지 못했지만 진행하면 좋은 결과를 가져올 것 같은 체크리스트 생성

✓ 데이터 전처리를 하는 부분을 컬럼 별로 큰 범위의 값 모두를 조정하는 방향으로 진행한다.

데이터셋 전처리에서 각 컬럼 별로 상위 25% 데이터들을 적당히 큰 수로 조정하는 과정을 진행할 때, 나머지 75%의 데이터들 중에도 값이 너무 큰 값들이 있었다.

- ✓ 인공지능 모델이 제대로 학습된 것인지 확인하는 더 많은 방법을 찾고 다양한 측면에서 인공지능을 평가한다.
- ✓ K_Means을 사용해볼 때 단순히 기본 데이터 셋을 적용만 시켜볼 것이 아니라 이상치를 제거하는 등의 시간을 조금 더 들여 높은 정확도를 만들어 본다.

출처

•••••

논문

BAEK, Byunghyun, et al. **Histogram Entropy Representation and Prototype Based Machine Learning Approach for Malware Family Classification**. IEEE Access, 2021, 9: 152098–152114.

MUN, Sunghyun, et al. **Opcode category sequence feature and machine learning for analyzing IoT malware**. In: Proceedings of the Korea Information Processing Society Conference. Korea Information Processing Society, 2021. p. 914–917.

LEE, Hyunjong; EUH, Seongyul; HWANG, Doosung. **API Feature Based Ensemble Model for Malware Family Classification**. Journal of the Korea Institute of Information Security & Cryptology, 2019, 29.3: 531–539.

LEE, Hyunjong; EUH, Seongyul; HWANG, Doosung. **Distributed Processing System Design and Implementation for Feature Extraction from Large-Scale Malicious Code.** KIPS Transactions on Computer and Communication Systems, 2019, 8.2: 35–40.

공식 문서

xgboost parameter, xgboost, https://xgboost.readthedocs.io/en/stable/parameter.html

axes, bbox, text, https://matplotlib.org/stable/api

LGBM parameter, https://lightgbm.readthedocs.io/en/latest/Parameters.html

출ᄎ

• • • • • •

https://school.coding-x.com/course (전체적인 인공지능 모델)

https://goldenrabbit.co.kr/2022/07/14/%ED%99%95%EC%8B%A4%ED%9E%88-%EC%95%8C%EC%95%84%EB%91%90%EB%A9%B4-%EB%A7%8C%EC%82%AC%EA%B0%80-%ED%8E%B8%ED%95%B4%EC%A7%80%EB%8A%94-%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D-10%EA%B0%80%EC%A7%80-%EC%95%8C/ (전체적인 인공지능 모델)

https://injo.tistory.com/48 (LGBM feature importance 시각화)

https://runingcoding.tistory.com/33 (LGBM)

https://romg2.github.io/mlguide/04 %EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D-%EC%99%84%EB%B2%BD%EA%B0%80%EC%9D%B4%EB%93%9C-04.-%EB%B6%84%EB%A5%98-LightGBM/ (LGBM 파라미터와 디폴트 파라미터)

https://nurilee.com/2020/04/03/lightqbm-definition-parameter-tuning/ (LGBM 파라미터)

https://wikidocs.net/14605 (그래프의 객체 정보 추출)

https://inuplace.tistory.com/570 (RF 파라미터)

https://todavisbetterthanyesterday.tistory.com/51 (RF)

https://www.kaggle.com/code/prashant111/random-forest-classifier-feature-importance (RF feature importance)

https://m.blog.naver.com/dotorimj2/222178563106 (PCA)

https://seong6496.tistory.com/136 (파이썬 특정확장자 파일 찾기)

https://velog.io/@ohxhxs/%ED%8C%8C%EC%9D%B4%EC%8D%AC-%EB%A8%B8%EC%8B%A0%EB%9F%AC%EB%8B%9D-%EA%B5%90%EC%B0%A8%EA%B2%80%EC%A6%9D-KFold-StratifiedKFold-crossvalscoreGridSearchCV (교차검증 - KFold, GridSearchCV)

https://karupro.tistory.com/79?category=955612 (교차검증)

https://hleecaster.com/ml-svm-concept/ (svm 모델)

velog.io/@rosesua318/12장-다층-인공-신경망을-밑바닥부터-구현(딥러닝 모델)

velog.io/@raffier/머신러닝-데이터모델 (데이터 모델 분류)

https://seominseok4834.github.io/machine%20learning/4.classification/#xgboostextra-gradient-boost (classification)

출처

https://seominseok4834.github.io/machine%20learning/4.classification/#xgboostextra-gradient-boost (classification)

https://www.kaggle.com/code/lifesailor/xgboost (xgboost)

https://ko.wikipedia.org/wiki/서포트_벡터_머신(서포트 벡터 머신)

https://velog.io/@hhhs101/머신러닝-KNN (KNN)

https://m.blog.naver.com/PostView.naver?isHttpsRedirect=true&blogId=winddori2002&logNo=221659080425 (DT, 교차검증)

https://injo.tistory.com/15 (DT 시각화)

http://www.gisdeveloper.co.kr/?p=9932 (모델평가기준 - Confusion Matrix)

https://free-eunb.tistory.com/14 (DT 시각화 - Graphviz 모듈)

https://jimmy-ai.tistory.com/260 (IQR 기반 이상치 탐지 및 제거)

https://chancoding.tistory.com/191 (파이썬 Pandas apply 함수)

https://wooono.tistory.com/293 (데이터프레임 칼럼 값 조건 변경)

••••

0 보다 큰 값들이 모두 benign 인 경우 의 칼럼 제거 데이터셋 관련

ex) 39번 칼럼

••••

데이터셋에서 상위 25퍼 값을 적당히 큰수로 설정하기(1)

ex) 기본데이터셋 32번 칼럼

••••

데이터셋에서 상위 25퍼 값을 적당히 큰수로 설정하기(2)

ex) 조작데이터셋 32번 칼럼

••••

Level-wise tree growth 다른 Boosting 알고리즘 작동 방식

Leaf-wise tree growth

LGBM 작동 방식

• • • • •

각 칼럼별 상관관계를 heatmap으로 표현한 것