

G H Patel College of Engineering & Technology (A Constituent College of CVM University) Academic Year 2022-23, Semester – I

Subject Code: 102000104
Subject Name: CALCULUS
Tutorial-6 Partial Differentiation

EXAMPLE -1:

1. If $x = r \sin\theta \cos\phi$, $y = r \sin\theta \sin\phi$, $z = r \cos\theta$, find $\frac{\partial(x,y,z)}{\partial(r,\theta,\phi)}$. Ans: $r^2 \sin\theta$.

2. If
$$u = \frac{(2x-y)}{2}$$
, $v = \frac{y}{2}$, $w = \frac{z}{3}$, find $J(u, v, w)$. Ans:6

EXAMPLE -2:

Find gradient of a function at the given point.

(a)
$$g(x,y) = \frac{x^2}{2} - \frac{y^2}{2}$$
, $(\sqrt{2}, 1)$, Ans: $\sqrt{2} \hat{\imath} - \hat{\jmath}$.

(b)
$$f(x,y) = (x^2 + xy)^3$$
, $(-1,-1)$, Ans: $-36\hat{\imath}-12\hat{\jmath}$.

(c)
$$\varphi(x, y, z) = \ln(x^2 + y^2 + z^2)$$
, Ans: $\frac{2(x\hat{i} + y\hat{j} + z\hat{k})}{x^2 + y^2 + z^2}$

(d)
$$\varphi(x, y, z) = 3x^2y - y^3z^2$$
, $(1, -2, -1)$, Ans: $-12\hat{\imath} - 9\hat{\jmath} + 16\hat{k}$.

EXAMPLE -3:

Find the derivative of the function at P_0 in the direction of given vector.

(a)
$$f(x,y) = x^2 \sin 2y$$
, $P_0(1,\pi/2)$, $\bar{A} = 3\hat{i} - 4\hat{j}$, Ans: 8/5.

(b)
$$f(x,y) = tan^{-1}(y/x)$$
, $P_0(-2,2)$, $\bar{v} = -\hat{i} - \hat{j}$, Ans: $72/\sqrt{14}$.

(c)
$$g(x, y, z) = 3e^x \cos(yz)$$
, $P_0(0, 0, 0)$, $\bar{A} = 2\hat{\imath} + \hat{\jmath} - 2\hat{k}$, Ans: 2.

(d)
$$h(x, y, z) = \cos(xy) + e^{yz} + \ln(zx)$$
, $P_0\left(1, 0, \frac{1}{2}\right)$, $\bar{A} = \hat{\iota} + 2\hat{\jmath} + 2\hat{k}$, Ans: 2

(e)
$$f(x, y, z) = (x^2 + y^2 + z^2)^{3/2}$$
, $P_0(1, 1, 2)$, $\bar{A} = 2\hat{j} - \hat{k}$, Ans: $9/2\sqrt{5}$.

(f)
$$f(x, y, z) = x^2y - yz^3 + z$$
, $P_0(1, -2, 0)$, $\bar{v} = 2\hat{\imath} + \hat{\jmath} - 2\hat{k}$, Ans: -3.

EXAMPLE -4:

Find equations for the (i) tangent plane and (ii) normal line at the point P_0 on the surface:

(a)
$$\cos \pi x - x^2 y + e^{xz} + yz = 4$$
, $P_0(0,1,2)$, Ans: $2x+2y+z-4=0$, $x=2t$, $y=1+2t$, $z=2+t$.

(b)
$$x^2 + y^2 - 2xy - x + 3y - z = -4$$
, $P_0(2, -3, 18)$, Ans: (i) $9x-7y - z = 21$, (ii) $x = 2 + 9t$, $y = -3 - 7t$, $z = 18 - t$.

(c)
$$z^2 = 4(1 + x^2 + y^2)$$
, $P_0(2, 2, 6)$, Ans: (i) $4x + 4y - 3z = -2$, (ii) $x = 2 + 4t$, $y = 2 + 4t$, $z = 6 - 3t$.

(d)
$$z + 1 = xe^y \cos z$$
, P_0 (1,0,0), Ans: (i) $x + y - z = 1$, (ii) $x = 1 + t$, $y = t$, $z = -t$.

G H Patel College of Engineering & Technology (A Constituent College of CVM University) Academic Year 2022-23, Semester – I

Subject Code: 102000104
Subject Name: CALCULUS
Tutorial-6 Partial Differentiation

EXAMPLE -5:

Find an equation for the plane that is tangent to the given surface at the given point.

- (a) $z = \ln(x^2 + y^2)$, (1,0,0), Ans: 2x z = 2.
- (b) $z = \sqrt{y x}$, (1,2,1), Ans: x y + 2z = 1.
- (c) $z = e^{-(x^2+y^2)}$, (0,0,1), Ans: z = 1.
- (d) $z = 4x^3y^2 + 2y$, (1, -2, 12), Ans: 48x 14y z = 64.
- (e) $z = e^{3y} \sin 3x$, $(\pi/6, 0, 1)$, Ans: 3y z = -1.

EXAMPLE -6:

Find all the local maxima, local minima and saddle points (if exist) of the below functions.

- (a) $f(x,y) = x^2 + xy + y^2 + 3x 3y + 4$; Ans: local min at (-3,3). f(-3,3) = -5
- (b) $f(x,y) = 2xy x^2 2y^2 + 3x + 4$; Ans: local max at $\left(3, \frac{3}{2}\right)$. $f\left(3, \frac{3}{2}\right) = \frac{17}{2}$
- (c) $f(x,y) = x^3 2xy y^3 + 6$; Ans: critical points: (0,0), $\left(-\frac{2}{3}, \frac{2}{3}\right)$; saddle point is (0,0), local maximum is $f\left(-\frac{2}{3}, \frac{2}{3}\right) = \frac{170}{27}$
- (d) $f(x,y) = 6x^2 2x^3 + 3y^2 + 6xy$; Ans: critical points: (0,0), (1,-1); saddle point is (1,-1), local minimum is f(0,0) = 0
- (e) $f(x,y) = 4xy x^4 y^4$; Ans: critical points: (0,0), (1,1), (-1,-1); saddle point is (0,0); local min is f(0,2) = -12, local max is f(1,1) = f(-1,-1) = 2