CORRIGÉ DM N°8 : extrait de CNM, MP, 2009

1^{ère} Partie

Approximation par les polynômes de Lebesgue

A. Une relation entre coefficients binomiaux

1. Pour choisir une partie à n éléments de $E \cup F$, il y a $\binom{2m}{n}$ possibilités. D'autre part, on peut aussi former une partie à n éléments en choisissant p éléments de E (p entier fixé entre 0 et n, cela est donc possible puisque $n \le m$) et on complète par n-p éléments de l'ensemble F. Ceci se traduit par l'égalité entre les cardinaux :

$$\sum_{p=0}^{n} {m \choose p} {m \choose n-p} = {2m \choose n}.$$

Autre démonstration possible : On part de la relation $(1+X)^m(1+X)^m=(1+X)^{2m}$ où l'on développe chaque facteur par la formule du binôme :

$$\left(\sum_{k=0}^{m} \binom{m}{k} X^k\right)^2 = \sum_{k=0}^{2m} \binom{2m}{k} X^k \quad \text{soit} \quad \sum_{0 \le k, k' \le m} \binom{m}{k} \binom{m}{k'} X^{k+k'} = \sum_{k=0}^{2m} \binom{2m}{k} X^k.$$

En considérant alors le coefficient du terme de degré n dans les deux membres, on trouve

$$\binom{2m}{n} = \sum_{\substack{0 \leqslant k,k' \leqslant m \\ k+k'=n}} \binom{m}{k} \binom{m}{k'} = \sum_{k=0}^{n} \binom{m}{k} \binom{m}{n-k} \quad (n \leqslant m).$$

- 2. a) Pour tout α réel et tout entier naturel k, $\alpha \longmapsto \binom{\alpha}{k} = \frac{\alpha(\alpha-1)...(\alpha-k+1)}{k!}$ est une application polynomiale en α de degré n, et par conséquent l'application $\alpha \longmapsto \binom{2\alpha}{n} \sum_{p=0}^{n} \binom{\alpha}{p} \binom{\alpha}{n-p}$ est polynomiale de degré inférieure ou égal à n.

 D'après la question précédente elle s'annule pour tout entier $m \ge n$.
 - **b)** L'application $\alpha \mapsto \binom{2\alpha}{n} \sum_{p=0}^{n} \binom{\alpha}{p} \binom{\alpha}{n-p}$ étant polynomiale en α et admettant une infinité de zéros, elle est nulle, c'est-à-dire que pour tout α réel on a :

$$\sum_{p=0}^{n} {\alpha \choose p} {\alpha \choose n-p} = {2\alpha \choose n}$$

B. Recherche d'un équivalent

1. Comme la série $\sum\limits_{n\in\mathbb{N}}w_n$ est absolument convergente, elle converge et par conséquent $\lim\limits_{n\to\infty}w_n=0$, donc il existe $n_0\in\mathbb{N}$, tel que pour tout $n\geqslant n_0$, on a $1+w_n>0$. D'autre part, si $n\geqslant n_0$

$$\ln a_{n+1} - \ln a_n = \ln(1+w_n) \underset{n \to +\infty}{\sim} w_n.$$

et encore

$$|\ln a_{n+1} - \ln a_n| \underset{n \to +\infty}{\sim} |w_n|$$

donc, d'après les règles de comparaison sur les séries à termes positifs, la série $\sum_{n\in\mathbb{N}} (\ln a_{n+1} - \ln a_n)$ converge absolument, donc converge, et par suite $\lim_{n\to\infty} \ln a_n = \ell$ existe, ce qui montre que la suite $(a_n)_{n\in\mathbb{N}}$ converge vers $\mathrm{e}^\ell > 0$.

2. a) Soit $u_n = \ln[(n+1)^{\gamma}b_{n+1}] - \ln[n^{\gamma}b_n]$. On a

$$u_n = \ln\left(\frac{n+1}{n}\right)^{\gamma} + \ln\frac{b_{n+1}}{b_n}$$

$$= \gamma \ln\left(\frac{n+1}{n}\right) + \ln\left(1 - \frac{\gamma}{n} + w'_n\right)$$

$$= \frac{\gamma}{n} + O\left(\frac{1}{n^2}\right) - \frac{\gamma}{n} + w'_n + O\left(\left(-\frac{\gamma}{n} + w'_n\right)^2\right) = w''_n$$

où la série de terme général w_n'' est absolument convergente (comme somme de trois séries qui le sont), donc la série $\sum_{n\in\mathbb{N}}u_n$ converge et par conséquent la suite $(\ln(n^\gamma b_n))_{n\in\mathbb{N}}$ converge, donc la suite $(n^\gamma b_n)_{n\in\mathbb{N}}$ converge vers un réel $\ell>0$.

- b) D'après la question précédente, et comme $b_n \sim \frac{\ell}{n^{\gamma}}$, la série $\sum_{n \in \mathbb{N}} b_n$ converge si et seulement si $\gamma > 1$.
- **3.** a) Il est clair que pour tout $n \in \mathbb{N}^*$, $\frac{c_{n+1}}{c_n} = -\frac{\frac{1}{2}-n}{n+1} = \frac{2n-1}{2(n+1)}$.
 - **b)** On a $\frac{c_{n+1}}{c_n} = \frac{2n-1}{2(n+1)} = 1 \frac{3}{2n}(1 \frac{1}{n})^{-1} = 1 \frac{3}{2n} + O(\frac{1}{n^2})$, donc d'après la question 2. de cette partie, il existe C > 0 telle que $c_n \sim \frac{C}{n^{3/2}}$ ou encore $\binom{1/2}{n} \sim C\frac{(-1)^{n-1}}{n^{3/2}}$.

C. Résultat d'approximation

- **1.** On a $\left| (-1)^n \binom{1/2}{n} z^n \right| \sim C \frac{1}{n^{3/2}} |z|^n$. Donc si $|z| \le 1$ la série est absolument convergente (puisque la série $\sum_{n \in \mathbb{N}} \frac{1}{n^{3/2}}$ converge), et si |z| > 1, la série diverge grossièrement (son terme général n'est pas borné).
- 2. On a, pour tout $|z| \le 1$ et tout entier naturel n non nul, $\left| \binom{1/2}{n} (-1)^n z^n \right| \le \binom{1/2}{n}$ et la série numérique $\sum\limits_{n \in \mathbb{N}} \binom{1/2}{n}$ converge, donc la série $\sum\limits_{n \in \mathbb{N}} \binom{1/2}{n} (-1)^n z^n$ converge normalement sur le disque fermé de \mathbb{C} de centre O et de rayon 1.
- 3. Le produit de Cauchy la série $\sum_{n\in\mathbb{N}}\binom{1/2}{n}(-1)^nz^n$ par elle même, donne la série $\sum a_nz^n$ avec :

$$a_n = \sum_{p=0}^{n} (-1)^p \binom{1/2}{p} (-1)^{n-p} \binom{1/2}{n-p} = (-1)^n \binom{1}{n},$$

donc $a_0 = 1$, $a_1 = -1$ et $a_n = 0$ pour tout $n \ge 2$.

D'après le théorème du cours sur le produit de Cauchy de deux séries absolument convergentes, on en déduit $f(z)^2 = 1 - z$, pour $|z| \le 1$.

4. On a pour tout $x \in [-1,1]$, $f(x)^2 = 1 - x$, donc $f(x)^2$ est non nulle sur]-1,1[et par conséquent f ne s'annule pas sur]-1,1[.

f étant continue sur]-1,1[et même sur [-1,1] (car la convergence est uniforme sur [-1,1]), f garde le signe de f(0)=1, donc f(x)>0 sur]-1,1[et par suite $f(x)=\sqrt{1-x}$ sur]-1,1[et comme f est continue sur [-1,1], alors $f(x)=\sqrt{1-x}$ pour tout $x\in[-1,1]$.

5. a) On a

b) Si $x \in [-1,1]$, alors $1 - x^2 \in [-1,1]$ et $f(1-x^2) = \sqrt{1 - (1-x^2)} = |x|$. La suite de fonctions polynomiales $(L_n)_{n \in \mathbb{N}}$ avec

$$L_n(x) = -\sum_{k=0}^n {1/2 \choose k} (-1)^{k-1} (1-x^2)^k,$$

n'est autre la suite de somme partielle associée à la série de fonctions

$$\sum_{n\in\mathbb{N}} {1/2 \choose n} (-1)^n (1-x^2)^n,$$

et d'après la question 4., cette suite converge uniformément vers $f(1-x^2) = |x|$.

Approximation par d'autres suites de polynômes plus simples

A. Intégrales de Wallis

- 1. a) La fonction $t \mapsto \cos^n t$ étant continue positive et non nulle sur $\left[0, \frac{\pi}{2}\right]$, son intégrale sur $\left[0, \frac{\pi}{2}\right]$ est strictement positive. Il est clair que $I_0 = \frac{\pi}{2}$ et $I_1 = 1$.
 - b) Une intégration par parties donne :

$$I_n = \left[\cos^{n-1} x \sin x\right]_0^{\frac{\pi}{2}} + (n-1) \int_0^{\frac{\pi}{2}} \cos^{n-2} x \sin^2 x dx = (n-1)(I_{n-2} - I_n).$$

c) En multipliant par I_{n-1} on obtient :

$$nI_nI_{n-1} = (n-1)I_{n-1}I_{n-2}$$

c'est-à-dire la suite $(nI_nI_{n-1})_{n\in\mathbb{N}^*}$ est constante, donc $nI_nI_{n-1}=I_1I_0=\frac{\pi}{2}$

- 2. a) Si $p \in \mathbb{N}$ et $t \in [0, \frac{\pi}{2}]$, alors $\cos^{p+1} t \leq \cos^p t$ et donc $I_{p+1} \leq I_p$. D'autre part, d'après la question 1.b) de cette partie, $nI_n = (n-1)I_{n-2} \geq (n-1)I_{n-1}$, donc $\frac{n-1}{n} \leq \frac{I_n}{I_{n-1}} \leq 1$.
 - **b)** D'après ce qui précède, $\lim_{n\to\infty}\frac{\mathrm{I}_n}{\mathrm{I}_{n-1}}=1$, donc $\mathrm{I}_n\sim\mathrm{I}_{n-1}$ et par suite de la relation $\mathrm{I}_n\mathrm{I}_{n-1}=\mathrm{I}_1\mathrm{I}_0=\frac{\pi}{2}n$, on déduit que $\mathrm{I}_n^2\sim\frac{\pi}{2}n$ et comme $\mathrm{I}_n>0$, alors $\mathrm{I}_n\sim\sqrt{\frac{\pi}{2}n}$.

B. Étude d'une suite de fonctions

1. Soit $n \ge 1$. La fonction $t \mapsto \frac{1 - (1 - t^2)^n}{t^2}$ est continue sur]0,1]. De plus $(1 - t^2)^n = 1 - nt^2 + o(t^2)$ donc $\lim_{t \to 0} \frac{1 - (1 - t^2)^n}{t^2} = n$, et la fonction est donc prolongeable par continuité en 0.

2. a) Grâce au changement de variable $t = \sin x$, on obtient :

$$\int_0^1 (1-t^2)^p dt = \int_0^{\frac{\pi}{2}} \cos^{2p} t \cos t dt = I_{2p+1}.$$

b) Pour tout $t \neq 0$, on a $\frac{1 - (1 - t^2)^n}{t^2} = \frac{1 - (1 - t^2)^n}{1 - (1 - t^2)} = \sum_{p=0}^{n-1} (1 - t^2)^p$, donc:

$$v_n(1) = \int_0^1 \frac{1 - (1 - t^2)^n}{t^2} dt = \sum_{p=0}^{n-1} \int_0^1 (1 - t^2)^p = \sum_{p=0}^{n-1} I_{2p+1}.$$

c) On sait que $I_{2p+1} \sim \sqrt{\frac{\pi}{4p+2}}$ et la série $\sum_{p \in \mathbb{N}} \sqrt{\frac{\pi}{4p+2}}$ diverge, donc d'après le théorème de comparaison, les sommes partielles associées sont équivalentes, c'est-à-dire

$$v_n(1) \sim \sum_{p=0}^{n-1} \sqrt{\frac{\pi}{4p+2}} \sim \frac{\sqrt{\pi}}{2} \int_0^n \frac{dt}{\sqrt{t}}.$$

On a
$$\frac{1}{2} \int_0^n \frac{dt}{\sqrt{t}} = \left[\sqrt{t} \right]_0^n$$
, donc $v_n(1) \sim \sqrt{n\pi}$.

3. a) On sait que $I_{2n} = \frac{2n-1}{2n} I_{2(n-1)}$ et en écrivant successivement ces relations, on obtient :

$$I_{2n} = \frac{1.2.3...(2n-1)}{2.4...(2n)} \frac{\pi}{2}$$

Donc

$$\frac{\binom{2n}{n}}{2^{2n}} = \frac{2}{\pi} I_{2n}.$$

- **b)** Comme $I_n \sim \sqrt{\frac{\pi}{2n}}$, alors $\frac{\binom{2n}{n}}{2^{2n}} = \frac{2}{\pi} I_{2n} \sim \frac{2}{\pi} \sqrt{\frac{\pi}{4n}} = \frac{1}{\sqrt{\pi n}}$
- c) D'après la question 5. (a) de la partie 1, on a $(-1)^{n-1} \binom{1/2}{n} = \binom{2n}{n} \frac{1}{2^{2n}(2n-1)}$, et donc

$$(-1)^{n-1} \binom{1/2}{n} \sim \frac{1}{\sqrt{\pi n}} \frac{1}{2n-1} \sim \frac{1}{2\sqrt{\pi}n^{3/2}}$$

et par conséquent $C = \frac{1}{2\sqrt{\pi}}$

- **d)** On a $u_n(1) = \binom{2n}{n} \frac{1}{2^{2n}} v_n(1) \sim 1$, donc $\lim_{n \to \infty} u_n(1) = 1$.
- **4.** a) Pour tout x et y de [a,1], on peut écrire :

$$\left| u_n(x) - u_n(y) \right| = \frac{\binom{2n}{n}}{2^{2n}} \left| \int_x^y \frac{1 - (1 - t^2)^n}{t^2} dt \right| \le \frac{\binom{2n}{n}}{a^2 2^{2n}} |x - y|$$

Ainsi u_n est k_n -lipschitzienne sur [a,1].

b) Soit $x \in [a, 1]$. On a :

$$|u_n(x) - 1| \leq |u_n(x) - u_n(1)| + |u_n(1) - 1|$$

$$\leq k_n|x - 1| + |u_n(1) - 1|$$

$$\leq \frac{\binom{2n}{n}}{2^{2n}} \frac{|a - 1|}{a^2} + |u_n(1) - 1|$$

et comme la suite $(u_n)_{n\in\mathbb{N}}$ tend vers 1 et $\frac{\binom{2n}{n}}{2^n}$ tend vers 0, alors

$$\lim_{n\to\infty} \sup_{x\in[a,1]} |u_n(x) - 1| = 0$$

Donc la suite de fonctions $(u_n)_{n\geqslant 1}$ converge uniformément vers 1 sur [a,1].

5. a) La fonction $t \mapsto \frac{1-(1-t^2)}{t^2}$ étant positive sur [0,1], donc si $0 \le x < y \le 1$, alors

 $\int_0^x \frac{1-(1-t^2)}{t^2} dt \leqslant \int_0^y \frac{1-(1-t^2)}{t^2}, \text{ donc } v_n \text{ est croissante sur } [0,1] \text{ et comme } u_n = \frac{\binom{2n}{n}}{2^{2n}} v_n, \text{ alors } u_n \text{ est aussi croissante sur } [0,1].$

b) Puisque u_n est croissante, alors $\forall x \in [0,1], \ 0 \le u_n(x) \le u_n(1), \ d'autre part <math>(u_n(1))_{n\geqslant 1}$ est convergente donc bornée par une constante M>0 et donc

$$0 \le u_n(x) \le M$$
.

C. D'autres suites de polynômes approchant uniformément la valeur absolue sur [-1,1]

1. Si $t \neq 0$, on a $\frac{1 - (1 - t^2)^n}{t^2} = \frac{1 - \sum_{k=0}^n \binom{n}{k} (-t^2)^k}{t^2} = \sum_{k=1}^n \binom{n}{k} (-1)^{k-1} (t^2)^{k-1}$, d'où, pour $x \in [0,1]$:

$$v_n(x) = \int_0^x \frac{1 - (1 - t^2)^n}{t^2} dt = \sum_{k=1}^n \binom{n}{k} (-1)^{k-1} \int_0^x (t^2)^{k-1} = \sum_{k=1}^n \binom{n}{k} (-1)^{k-1} \frac{x^{2k-1}}{2k-1}$$

et par suite

$$xu_n(x) = \frac{\binom{2n}{n}}{2^{2n}}xv_n(x) = \frac{\binom{2n}{n}}{2^{2n}}\sum_{k=1}^n \binom{n}{k}(-1)^{k-1}\frac{x^{2k-1}}{2k} = P_n(x).$$

2. Soit $\varepsilon > 0$. Pour tout $x \in [0,1]$, on a $|P_n(x) - x| = |x(u_n(x) - 1)| \le x(M+1)$, donc il existe a > 0 tel que $0 \le x \le a$ implique $x(M+1) \le \frac{\varepsilon}{2}$. Sur [a,1], la suite de fonctions $(u_n)_{n \in \mathbb{N}^*}$ converge uniformément vers 1, et par conséquent la suite $(P_n)_{n \in \mathbb{N}^*}$ converge uniformément vers $x \mapsto x$ sur [a,1], grâce à l'inégalité :

$$|P_n(x) - x| \le |u_n(x) - 1|.$$

Donc il existe $n_0 \in \mathbb{N}$ tel que $n \ge n_0$ implique, pour tout $x \in [a,1]$, $|P_n(x) - x| \le \frac{\varepsilon}{2}$ Ainsi,

$$\lim_{n \to \infty} \sup_{x \in [0,1]} |P_n(x) - x| = 0$$

Si $x \in [-1,0]$, alors $P_n(x) + x = P_n(-x) - (-x)$ et par conséquent

$$\sup_{x \in [-1,0]} |P_n(x) + x| = \sup_{t \in [0,1]} |P_n(t) - t|,$$

ce qui permet de dire que la convergence est uniforme sur [-1,1] de la suite $(P_n)_{n\in\mathbb{N}}$ vers la valeur absolue.

3. On a, pour tout x de [-1,1]:

$$|Q_n(x) - |x|| \le |Q_n(x) - P_n(x)| + |P_n(x) - |x||$$

Il suffit donc de montrer que la suite $(Q_n - P_n)_{n \in \mathbb{N}^*}$ converge uniformément vers 0. Or

$$Q_n(x) - P_n(x) = \frac{\binom{2n}{n}}{2^{2n}} \sum_{k=1}^n (-1)^{k-1} x^{2k} = \frac{\binom{2n}{n}}{2^{2n}} [(1-x^2)^n - 1]$$

et donc

$$|Q_n(x) - P_n(x)| \le 2\frac{\binom{2n}{n}}{2^{2n}}$$

ce qui permet de conclure.

4. Il suffit de remarquer que
$$\widetilde{P}_n(x) = \frac{\frac{1}{\sqrt{2n}}}{\binom{2n}{n}} P_n(x)$$
, que $\widetilde{Q}_n(x) = \frac{\frac{1}{\sqrt{2n}}}{\binom{2n}{n}} Q_n(x)$ et que $\frac{\binom{2n}{n}}{2^{2n}} \sim \frac{1}{\sqrt{\pi n}}$.