

Fiber-detector subsystem loss comparison for a ground-based photon-counting optical receiver

Free-Space Laser Communications XXXV

Session 7: Ground Transceiver Technologies II

Brian E. Vyhalek, Sarah A. Tedder

NASA Glenn Research Center

Cleveland, OH

Introduction

- NASA Glenn is building a photon-counting ground receiver compliant with the CCSDS Optical Communications HPE standard
- Goals:
 - Utilize commercial off the shelf (COTS) components
 - Demonstrate with O2O at the NASA Goddard Low-Cost Optical Terminal (LCOT) ground station
 - Transfer technology to commercial company
- Receiver subsystems are:
 - Fiber interconnect, from telescope to detectors
 - COTS superconducting nanowire single photon detectors (SNSPDs)
 - FPGA on COTS development platform for real-time processing
- Two receiver concepts:
 - Photonic lantern with 1 multi-mode input and 7 few mode fiber (FMF) outputs to 7 single-element COTS SNSPDs
 - A single FMF to a COTS 16-element SNSPD array
- Need to fully characterize system losses

Photonic Lantern + 7 Single Element Detectors

Photonic Lantern:

- **FMFs:**
 - 20 μm graded-index core
 - 4LP, 6-mode
- **MMF input:**
 - 55 μm
 - 42 total modes

FMF + 16-Channel SNSPD Array

FMF #1 (coupled to SNSPD array):

- **20 μm graded-index core**
- **4 LP, 6-modes**

FMF #2 (20 m system input):

- **25 μm graded-index core**
- **6 LP, 10-modes**

Layout of the SNSPD linear array active area, with each individual element color-coded

*Rambo, T. M., Conover, A. R., and Miller, A. J., "16-element superconducting nanowire single-photon detector for gigahertz counting at 1550-nm," (2021). <https://arxiv.org/abs/2103.14086>

SNSPD Characteristics

Single-Element Detector

Parameter	Value
Efficiency	≈ 80 - 83% max
Dark count rate	< 5 kcps
Polarization loss	1.2 dB
Reset time	15 - 18 ns
Pulse rising edge	≈ 850 ps
Pulse amplitude	600 – 800 mV
Blocking loss*	< 1 dB @ 100 M-ph/s
Count rate (3 dB)*	≈ 160 Mcps @ 400 M-ph/s
Jitter (FWHM)	≈ 60 – 80 ps
Channel skew	< 500 ps

* Aggregate for 7 detectors

16-Channel Array

Parameter	Value
Efficiency	≈ 83% max
Dark count rate	3 - 10 kcps
Polarization loss	1.35 dB
Reset time	5 - 8 ns
Pulse rising edge	≈ 500 ps
Pulse amplitude	240 – 300 mV
Blocking loss	< 1 dB @ 300 M-ph/s
Count rate (3 dB)	≈ 500 Mcps @ 1 G-ph/s
Jitter (FWHM)	75 – 95 ps
Channel skew	< 150 ps
Crosstalk probability	< 0.002%

Sources of Loss

Fiber interconnect:

- Coupling under atmospheric turbulence
- Control of distribution to detectors

Single-photon detectors:

- Detection efficiency
- Reset time limits count rates
- Depends on input rate (power)

SNSPD Array Count Spatial Distribution

To input fiber

Emulated turbulence intensity profile from
Arbitrary Light Field Generator (ALF-G)

- Emulated wavefront from the ALF-G couples to input 25/20- μm FMF which is coupled to the 16- μm SNSPD array

**Linear SNSPD array layout provides 1-D spatial information.
Distributions are in general, non-uniform.**

Arbitrary Light Field Generator (ALF-G)

Simulated 2D beam profiles (phase and intensity) are recreated in the lab by modulating the beam via a complex amplitude phase hologram written to the SLM.

Hologram of beam with
emulated atmosphere

www.nasa.gov

Vary numerical aperture with L3 to measure light distribution on detectors

Average Count Rate Distributions

Photonic lantern

FMF

Added Loss From Non-Uniform Distribution

Additional flux dependent loss due to the non-uniformly distributed incident light is less than about 1 dB for all D/r_0

Loss Comparison

D/r_0	Relative Loss (dB)	P_{RX} (dBm)
2	0.20	-81.31
4	1.08	-72.82
6	1.96	-68.78
9	3.28	-63.53

- Combined coupling loss, blocking loss, and input distribution effects over a range of input power
- FMF/SNSPD array system has more loss at lower received power and higher D/r_0 due to coupling
- Photonic lantern/single SNSPDs system has more loss at higher input powers due to detector count rate limitations
- There is a cross-over input power where relative coupling loss balances detector blocking losses

Estimated Link Performance

Parameters:

- PPM order
 $M = \{4, 8, 16, 32, 64, 128, 256\}$
- Code rate
 $CR = \{1/3, 1/2, 2/3\}$
- Slot width
 $T_s = \{0.5, 1, 2, 4, 8, 16, 32\} \text{ ns}$
- Implementation loss:
 - 0.3 for PL-single element SNSPDs
 - 1.2 for FMF-SNSPD array
- Assumes $\text{BER} \leq 10^{-6}$
- Margin $\geq 2 \text{ dB}$
- 230 kbps – 533 Mbps

Both systems show feasibility to achieve data rates into the 100s Mbps. The photonic lantern-based system outperforms the FMF/array system for lower data rates/input power.

Summary

- We have characterized the main loss mechanisms for two fiber-detector subsystems as part of a photon-counting optical receiver based (mostly) on commercially available components
- Losses due to coupling, blocking, and non-uniform signal splitting were quantified, for a range of input power and various D/r_0
- With optimal coupling, the receiver concept based on a FMF photonic lantern with 7 single-element SNSPDs has lower total losses for lower data rates and input powers
- For rates above ~ 200 Mbps the single FMF-SNSPD array system outperforms and can potentially achieve data rates up to 533 Mbps

Thank You!

www.nasa.gov/SCaN