Exercise 2, Lecture slides p. 45 (Ex.1 p.19 contá)

ES; and EF; with the LCA doi poi 1-0-1 1-00-1

2.) Assume LFG= EFG= 10 and calculate latest start and finish times with the LCA -> To compute latest stast and which times with the LCA, we first have to modify our network.

• add an arc (6,0) with $\delta_{60} = -1F_6 = -10$ · reverse the direction of all arcs in our network -> This good the following auxiliary network 6#

-> Now, you apply the standard steps of the LCA to this modified network:

iter	1.017		2	3]: 4	ک ا) 6	7	RESI)LT (LF;
ieV	doi Poi	doi Poi	doi Poi	doi Poi	doi foi	doi Poi	doi poi	daifoi	doi	Poi	
	000					 			0	0	0
	1-0-1		-46						-4	6	10
2	1-00-1		-66						-6		10
3	-w-1	-100							-1	0	3.9
4	1-00-1		-66	-53					-5		9
5	1-00-1		-86						-8	6	No
6	1-00-1	-100							-lo,	0,	10
	40]	46,3]	(3,1,2,4,5)	{1,2,4,5]	(2,4,5)	(4,5]	(5)	4]	1/2		
			7] 						J
	(= Prede	d consider	CIENCO CO	2850rs)-that h	that !		S: = -d	Oì ·	4:=	LS: 4	P;

3.) Nao, consider LF6=14 and calculate latest start and finish times with the LCA -> To compute latest stast and which times with the LCA, we first have to modify our network.

• add an arc (6,0) with $\delta_{60} = -1F_6 = -14$ · reverse the direction of all arcs in our network -> This gives the following auxiliary network 6#

-> Now, you apply the standard steps of the LCA to this modified network:

iter	1 Init		2	3	1 4	5	6	7	RESI	DLT	UF;
iev	doi Poi	doi Poi	doi Poi	doi Poi	doi foi	doi Poi	doi pei	doipoi	doi	Poi	
	00						 		0		0
	1-0-1		-86						-8	6	14
2 2	-00-1		-106						-\Q	6	14
3	-20-1	-100	 						-1	O	3
4	1-00-1		-106	-5 3					-5	3	
5 2	1-00-1		-126				-104		-10	4	12
6	1-00-1	-140							-14,	0,	14
	10]	(6,3]	(3,12,4,5)	{1,2,4,5]	(2,4,5)	(4,5)	257	17	1/		
			17				`	7			
	·	rant, we	pick ho	de G		,	C = - d		/I.=	15.	10°
	= prede	cessors in	City Lot &)-that h	hat		J; - U	01	LT;		7

4.) Assume LF6=14 and calculate earliest and latest start times with the FWA

Init	(Notation dispis)								
j	0		2	3	4	5	6		
	0 0	0 0	-00 -1	00	00 -1	8 0	20-1		
[N]	-20 -1	0 1	1/1 1/1	7-00-1	-00 -1	-00-1	6 1		
2	-00-1	-32	0 2	-00-1	-00 -1	-0 -1	142		
3	-13	1-00-1	-00 -1	03	23	23	70-1		
4 4	-00 -1	-00-1	-00 -1	-414	04	-00 -1	44		
5	-00 -1	-00-A	7-00	1-00-	-55	05	2 5		
6 6	-14 6	J-00-1	7-00-1	7-00-1	-00 -l	7-00	06		

Step 1: V=0 (Notation dispis Step 2: V=1 (Notation dispis Step 3: V=2 (Notation dispis Step 4: V=3 (Notation dippi

Step 5:
$$V=Y$$

(Notation $\frac{1}{4ii pii}$)

10 1 2 3 4 5 6

0 0 0 0 0 1 1 0 0 2 3 8 0 6 1

1 -2 -1 0 1 1 1 2 2 3 8 0 6 1

2 2 -2 -1 -2 -1 2 -1 4 2

3 -1 3 -1 0 0 1 0 3 2 3 7 0 6 4

4 -5 3 -5 3 -4 3 -4 4 0 4 3 3 4 4

5 -10 4 -10 4 -9 4 -9 4 -9 4 -5 5 0 5 2 5

6 -14 6 -14 0 -13 1 -14 0 -12 3 -6 0 0 6

-> we iterated over all nodes and can now terminate.

-> from this final table we can derive to; = dois and LS; = -diso + iev