МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Лабораторная работа 3.2.3

Резонанс токов в параллельном контуре

Выполнил:

Гисич Арсений

Б03-102

1 Аннотация

В данной работе исследовался резонанс токов в параллельном колебательном контуре с изменяемой ёмкостью, были получены амплитудно-частотные и фазово-частотные характеристики, определены основные параметры контура.

2 Теоретические сведения

Рассмотрим процессы, протекающие в контуре, подключённом к источнику внешней ЭДС, изменяющейся по гармоническому закону $\varepsilon = \varepsilon_0 \cos{(\omega t + \varphi_0)}$. Для напряжения на конденсаторе $U_C(t)$ получим уравнение

$$\ddot{U}_C + 2\gamma \dot{U}_C + \omega_0^2 U_C = \varepsilon_0 \cos(\omega t + \varphi_0). \tag{1}$$

Перейдём к комплексному представлению колебаний. Запишем уравнение (1) в комплексной форме, обозначая комплексные величины как «векторы»:

$$\mathcal{E} = \mathcal{E}_0 \cos(\omega_0 t + \varphi_0)$$

$$C \qquad L$$

$$U_C = \operatorname{Re} \mathbf{U_C},$$
 $\mathbf{U_C} = \operatorname{Re} \mathbf{U_C} + i \operatorname{Im} \mathbf{U_C},$
 $\varepsilon = \operatorname{Re} \varepsilon,$ $\varepsilon = \varepsilon_0 e^{i\omega t} = \varepsilon_0 e^{i(\omega t + \varphi_0)},$

Рис. 1: Последовательный контур с внешней ЭДС

 $\ddot{\mathbf{U}}_{\mathbf{C}} + 2\gamma\dot{\mathbf{U}}_{\mathbf{C}} + \omega_0^2\mathbf{U} = \omega_0^2\varepsilon.$ (2) Комплексный множитель $\varepsilon_{\mathbf{0}} = \varepsilon_0 e^{i\varphi_0}$, стоящий перед $e^{i\omega t}$, называется комплексной ам-

Решив уравнение (2), получим комплескное выражение для напряжения на конденсаторе $U_{\mathbf{C}}$. Вещественная часть этого решения $\mathrm{Re}\,U_{\mathbf{C}}$ и является решением исходного уравнения (1). Будем искать решение уравнения (2) в виде

$$\mathbf{U}_{\mathbf{C}}(t) = \mathbf{U}_{\mathbf{C}\mathbf{0}}e^{i\omega t},\tag{3}$$

где $\mathbf{U_{C0}}$ — комплексная амплитуда напряжения на конденсаторе, не зависящая от времени. Подставляя (3) в (2), находим $\mathbf{U_{C0}}$ и далее, комплексные амплитуды тока в контуре и напряжений на сопротивлении и индуктивности:

$$\mathbf{U_{C0}} = \frac{\varepsilon_0}{i\omega CZ}, \quad Z = R + i\left(\omega L - \frac{1}{\omega C}\right),\tag{4}$$

$$\mathbf{I_0} = \frac{\varepsilon_0}{Z}, \quad \mathbf{U_{R0}} = \frac{R\varepsilon_0}{Z}, \quad \mathbf{U_{L0}} = i\omega L \frac{\varepsilon_0}{Z}.$$
 (5)

Комплексная величина Z называется комплексным сопротивлением, или импедансом, последовательного контура. Можно определить импеданс каждого отдельного элемента контура:

$$Z_R = R$$
, $Z_L = i\omega L$, $Z_C = \frac{1}{i\omega C}$.

В новых обозначениях уравнения (4)-(5) принимают вид

$$\mathbf{I} = \frac{\varepsilon_0}{Z}, \quad \mathbf{U_{R0}} = Z_R \mathbf{I_0}, \quad \mathbf{U_{C0}} = Z_C \mathbf{I_0}, \quad \mathbf{U_{L0}} = Z_L \mathbf{I_0}. \tag{6}$$

Импеданс контура Z не зависит от начальных условий, не содержит величин ни токов, ни напряжений, а определяется свойствами всех элементов, соединённых в контур, и частотой синусоидальной ЭДС, к которой он подключён. Таким образом, $импеданс\ Z$ является характеристикой колебательного контура на заданной частоте.

Выражение (4) для импеданса контура Z содержит действительную часть

$$\operatorname{Re} Z = R$$
,

называемую активным сопротивлением контура, и мнимую часть

$$\operatorname{Im} Z = \omega L - \frac{1}{\omega C},$$

носящую название реактивного сопротивления.

Импедансы контура и его отдельных элементов — комплексные числа — могут быть представленны в показательной форме:

$$Z = Z_0 e^{i\psi},$$

где $Z_0 = |Z|$ — модуль комплексного числа, $\psi = \arg Z$ — его аргумент (фаза). Для импеданса рассматриваемого последовательного контура при этом находим

$$Z_0 = \sqrt{(\operatorname{Re} Z)^2 + (\operatorname{Im} Z)^2} = \sqrt{R^2 + \left(\omega L - \frac{1}{\omega C}\right)^2} = \frac{R}{\cos \psi_I},$$

$$\tan \psi_I = \frac{\operatorname{Im} Z}{\operatorname{Re} Z} = \frac{\omega L - \frac{1}{\omega C}}{R}.$$
(7)

Ток в контуре и напряжения на отдельных его элементах теперь могут быть получены по формулам (4)–(6). Например, действительная часть тока в контуре

$$I(t) = \frac{\varepsilon_0}{R} \cos \psi_I \cos(\omega t + \varphi_0 - \psi_I). \tag{8}$$

Как видно из (7) и (8), угол ψ_I , определяемый отношением мнимой и действительной частей импеданса, представляют собой сдвиг фаз между напряжением на последовательном контуре и током в нём, причём положительные значения угла ψ_I соответствуют отставанию фазы тока, а отрицательные — опережению. В общем случае, когда к источнику последовательно подключены резистор, конденсатор и катушка самоиндукции, сдвиг фазы ψ_I лежит в пределах $-\pi/2 < \psi_I < \pi/2$.

3 Методика измерений

$$I=\frac{E}{R_I}=\frac{E_0cos(\omega t+\varphi_0)}{R_I}=I_0cos(\omega t+\varphi_0)-\text{ ток на генераторе}$$

$$R_S=\frac{U_{RS}}{I}=\frac{U_{RS}}{\omega CU_{CS}}=\frac{1}{\omega C}tg\delta$$

где R_S — эквивалентное последовательное сопротивление (ЭПС) Для используемых емкостей C_n выполнено $tg\delta < 10^{-3}$

$$R_{\sum} = R + R_L + R_S$$

где R_{\sum} — суммарное активное сопротивление контура. Воспользуемся методом комплексных амплитуд:

$$Z_L = R_L + i\omega L, Z_C = R_S - i\frac{1}{\omega C}, Z = R_{\Sigma} + i(\omega L - d\frac{1}{\omega C})$$

Рис. 2: Блок-схема экспериментального стенда

Тогда напряжение на контуре и токи на индуктивной и емкостной частях контура при нулевой начальной фазе можно представить в виде:

$$\begin{split} I_c &= I \frac{Z_L}{Z_C + Z_L} = iQI_0 \frac{\omega}{\omega_0} \frac{1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega}}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ I_L &= I \frac{Z_c}{Z_C + Z_L} = iQI_0 \frac{\omega_0}{\omega} \frac{1 + itg\delta}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \\ U &= I \frac{Z_L Z_c}{Z_C + Z_L} = Q\rho I_0 \frac{(1 - i \frac{R + R_L}{\rho} \frac{\omega_0}{\omega})(1 + itg\delta)}{1 + iQ(\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega})} \end{split}$$

где $\omega_0=\frac{1}{\sqrt{LC}}$ — собственная частота, $\rho=\sqrt{\frac{L}{C}}$ — реактивное сопротивление контура, $Q=\frac{\rho}{R_{\Sigma}}$ — добротность контура

Рассмотрим случай, когда $|\Delta\omega|=|\omega-\omega_0|\ll\omega_0$. Тогда

$$\frac{\omega}{\omega_0} - \frac{\omega_0}{\omega} = \frac{2\Delta\omega}{\omega_0}$$

Пренебрегая поправками порядка Q^{-2} , получим:

$$I_c = QI_0 \frac{\omega}{\omega_0} \frac{e^{i\phi_c}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \phi_c = \frac{\pi}{2} - \frac{R + R_L}{\rho} - arctg(\tau \Delta \omega)$$
$$I_L = QI_0 \frac{\omega_0}{\omega} \frac{e^{i\phi_L}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \phi_L = -\frac{\pi}{2} + \delta \arctan(\tau \Delta \omega)$$

$$U = Q\rho I_0 \frac{\omega}{\omega_0} \frac{e^{i\phi_U}}{\sqrt{1 + (\tau \Delta \omega)^2}}, \phi_U = -\frac{\omega}{\omega_0} \frac{R + R_L}{\rho} + \delta - arctg(\tau \Delta \omega)$$

где $au = rac{2L}{R_{\sum}} = rac{2Q}{\omega_0}$ — время затухания.

При резонансе, т.е. когда $\Delta\omega=0$:

$$I_c(\omega_0) = QI_0, \phi_c(\omega_0) = \frac{\pi}{2} - \frac{R + R_L}{\rho}$$

$$I_L(\omega_0) = QI_0, \phi_L(\omega_0) = -\frac{\pi}{2} + \delta$$

$$U(\omega_0) = Q\rho I_0 = Q^2 R_{\sum} I_0, \phi_U \omega_0 = -\frac{R + R_L}{\rho} + \delta$$

$$\phi'_c(\omega_0) = \phi'_L(\omega_0) = \phi'_U(\omega_0) = -\tau$$

4 Используемое оборудование

- 1. генератор сигналов;
- 2. источник напряжения;
- 3. двухканальный осциллограф;
- 4. цифровые вольтметры;

5 Результаты измерений и обработка данных

Параметры установки:

$$R=3,5~OM$$

$$R_1 = 1008 \ O_M$$

Результаты измерения резонансных частот для 7 разных конденсаторов и вычисления параметров контура представлены в таб. 1. Параметры контура вычислим по формулам:

$$L = \frac{1}{C(2\pi f)^2}$$

$$\rho = \frac{1}{2\pi fC}$$

$$Z_{\text{pes}} = \frac{U}{E_0} R_1$$

$$Q = \frac{UR_1}{E_0} 2\pi fC$$

$$R_{\sum} = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2}$$

$$R_{Smax} = 10^{-3} \cdot \frac{1}{\omega_0 C}$$

$$R_L = \frac{E_0}{UR_1} \frac{1}{(2\pi fC)^2} - R - 10^{-3} \cdot \frac{1}{\omega_0 C}$$

Результаты измерений амплитудно-частотной характеристики $U(\nu)$ для 1-ой (25, 1 $n\Phi$) и 7-ой (101, 6 $n\Phi$) ёмкостей конденсатора представлены в таб. 2 и 3.

График амплитудно-частотных характеристик $U(\nu)$ для обеих ёмкостей представлен на рис. 3.

$C, H\Phi$	$f, \kappa \Gamma u$	U, B	E, B	L , мк Γ н	ρ, O_M	$ Z_{pes} , O_{\mathcal{M}}$	Q	$R_{sum}, O_{\mathcal{M}}$	$R_{S_{max}}, O_{\mathcal{M}}$	R_L , Ом
25,1	32,12	1,190	0,202	978,2	197,4	5938,2	30	6,56	0,20	2,87
33,2	27,79	0,790	0,202	987,9	172,5	3942,2	23	7,55	0,17	3,88
47,3	23,16	0,670	0,202	998,4	145,3	3343,4	23	6,31	0,15	2,67
57,4	21,28	0,573	0,202	974,5	130,3	2859,3	22	5,94	0,13	2,31
67,5	19,46	0,449	0,202	990,9	121,2	2240,6	18	6,55	0,12	2,93
82,7	17,67	0,380	0,202	981,0	108,9	1896,2	17	6,26	0,11	2,65
101,6	16,02	0,335	0,202	971,5	97,8	1671,7	17	5,72	0,10	2,12
Среднее значение			983,2						2,77	
Случ. погрешность				3,6						0,21

Таблица 1: Параметры колебательного контура при разных значениях ёмкости конденсатора

	СП	TT D	c D
$\nu, \kappa \Gamma u$	$\delta_{ u}, \kappa \Gamma u$	U, B	δ_U, B
31,38	0,01	0,682	0,001
31,44	0,01	0,715	0,001
31,51	0,01	0,765	0,001
31,58	0,01	0,822	0,001
31,69	0,01	0,910	0,001
31,73	0,01	0,951	0,001
31,78	0,01	0,992	0,001
32,08	0,01	1,187	0,001
32,86	0,01	0,705	0,001
32,81	0,01	0,735	0,001
32,68	0,01	0,825	0,001
32,48	0,01	0,986	0,001
32,30	0,01	1,127	0,001
32,12	0,01	1,189	0,001

Таблица 2: Амплитудно-частотная характеристика колебательного контура для 1-ой ёмкости

График амплитудно-частотных характеристик $U(\nu)$ для обеих ёмкостей в безразмерных координатах представлен на рис. 4. Кривая для ёмкости C_7 шире, чем для ёмкости C_1 , что говорит о меньшей добротности контура с ёмкостью C_7 .

 C_1 , что говорит о меньшей добротности контура с ёмкостью C_7 . Добротность определяется по формуле $Q=\frac{1}{\delta\omega}$, где $\delta\omega$ — ширина резонансных кривых на уровне $\frac{1}{\sqrt{2}}=0,707$. Полученные значения добротности:

$$Q_1 = 29 \pm 1, \quad Q_7 = 16 \pm 1.$$

$\nu, \kappa \Gamma u$	$\delta_{ u}, \kappa \Gamma u$	U, B	δ_U, B
15,41	0,01	0,193	0,001
15,51	0,01	0,215	0,001
15,54	0,01	0,222	0,001
15,60	0,01	0,239	0,001
15,61	0,01	0,242	0,001
15,64	0,01	0,250	0,001
15,69	0,01	0,267	0,001
15,78	0,01	0,289	0,001
15,83	0,01	0,304	0,001
15,92	0,01	0,325	0,001
16,03	0,01	0,338	0,001
16,71	0,01	0,200	0,001
16,66	0,01	0,211	0,001
16,60	0,01	0,223	0,001
16,52	0,01	0,243	0,001
16,44	0,01	0,264	0,001
16,30	0,01	0,301	0,001
16,15	0,01	0,332	0,001

Таблица 3: Амплитудно-частотная характеристика колебательного контура для 7-ой ёмкости

Рис. 3: Амплитудно-частотная характеристика $U(\nu)$ для колебательного контура с 1-ой и 7-ой ёмкостями конденсатора

Рис. 4: Амплитудно-частотная характеристика $U(\nu)$ для колебательного контура с 1-ой и 7-ой ёмкостями конденсатора в безразмерных координатах

Результаты измерений фазово-частотной характеристики $\psi_U(\nu)$ для 1-ой и 7-ой ёмкостей конденсатора представлены в таб. 4 и 5.

$\nu, \kappa \Gamma u$	$\delta_{ u},\kappa arGamma arGamma_{ u}$	знак ψ_U	$x, \partial e n$	δ_x , дел	$x_0, \partial e \Lambda$	δ_{x_0} , дел	$\psi_U, \pi \cdot pa \partial$	$\delta_{\psi_U}, \pi \cdot pa \partial$
30,35	0,01	-1	3,5	0,5	17,0	0,5	-0,21	0,03
30,75	0,01	-1	3,5	0,5	17,0	0,5	-0,21	0,03
30,99	0,01	-1	3,0	0,5	16,5	0,5	-0,18	0,03
31,10	0,01	-1	3,0	0,5	16,5	0,5	-0,18	0,03
31,35	0,01	-1	3,0	0,5	16,0	0,5	-0,19	0,03
31,56	0,01	-1	2,0	0,5	16,0	0,5	-0,13	0,03
31,64	0,01	-1	2,0	0,5	16,0	0,5	-0,13	0,03
31,88	0,01	-1	0,5	0,5	16,0	0,5	-0,03	0,03
32,17	0,01	1	0,5	0,5	16,0	0,5	0,03	0,03
32,50	0,01	1	3,0	0,5	16,0	0,5	0,19	0,03
32,68	0,01	1	4,0	0,5	16,0	0,5	0,25	0,03
32,81	0,01	1	4,5	0,5	16,0	0,5	0,28	0,03
32,99	0,01	1	5,0	0,5	16,0	0,5	0,31	0,03
33,21	0,01	1	5,0	0,5	15,5	0,5	0,32	0,03
33,67	0,01	1	5,5	0,5	15,5	0,5	0,35	0,03
34,28	0,01	1	6,5	0,5	15,0	0,5	0,43	0,04

Таблица 4: Фазово-частотная характеристика колебательного контура для 1-ой ёмкости

ν , $\kappa \Gamma$ μ	$\delta_{ u},\kappa arGamma_{ u}$	знак ψ_U	$x, \partial e \Lambda$	δ_x , дел	$x_0, \partial e$ л	δ_{x_0} , дел	$\psi_U, \pi \cdot pa\partial$	$\delta_{\psi_U}, \pi \cdot pa\partial$
14,51	0,01	-1	4,0	0,5	17,5	0,5	-0,23	0,03
14,90	0,01	-1	4,0	0,5	17,0	0,5	-0,24	0,03
15,17	0,01	-1	4,0	0,5	17,0	0,5	-0,24	0,03
15,51	0,01	-1	3,5	0,5	16,5	0,5	-0,21	0,03
15,68	0,01	-1	2,5	0,5	16,5	0,5	-0,15	0,03
15,82	0,01	-1	2,0	0,5	16,0	0,5	-0,13	0,03
15,95	0,01	-1	1,0	0,5	16,0	0,5	-0,06	0,03
16,12	0,01	1	0,5	0,5	16,0	0,5	0,03	0,03
16,29	0,01	1	2,0	0,5	16,0	0,5	0,13	0,03
16,46	0,01	1	4,0	0,5	16,0	0,5	0,25	0,03
16,69	0,01	1	5,0	0,5	15,5	0,5	0,32	0,03
17,02	0,01	1	5,5	0,5	15,0	0,5	0,37	0,04
17,45	0,01	1	6,0	0,5	15,0	0,5	0,40	0,04

Таблица 5: Фазово-частотная характеристика колебательного контура для 7-ой ёмкости

График фазово-частотных характеристик $\psi_U(\nu)$ для обеих ёмкостей в безразмерных координатах представлен на рис. 5.

Рис. 5: Фазово-частотная характеристика $\psi_U(\nu)$ для колебательного контура с 1-ой и 7-ой ёмкостями конденсатора в безразмерных координатах

Добротности контуров можно определить двумя способами: по формуле $Q=\frac{1}{2}\frac{d\psi_U(x)}{dx}$ при x=1 или по расстоянию 1/Q между точками оси x, в которых у меняется от -1/4 до

1/4. Результаты измерения добротности 1-ым способом:

$$Q_1 = 18 \pm 5, \quad Q_7 = 13 \pm 4.$$

Результаты измерения добротности 2-ым способом (так как график не доходит до -1/4, то были взяты значения, наиболее близкие к -1/4):

$$Q_1 = 17 \pm 1, \quad Q_7 = 13 \pm 1.$$

График зависимости $R_L(\nu_{0n})$ представлен на рис. 6.

Рис. 6: График зависимости активного сопротивления катушки R_L от резонансной частоты контура ν_{0n}

Рис. 7: Векторная диаграмма

Построим векторную диаграмму для контура с наименьшей добротностью, например, для C_7 с добротностью $Q_7=17$.

Посчитаем ток $I=\frac{E}{R_1}=\frac{0,2}{1008}\approx 0,1$ мА. Его вектор равен сумме: $\vec{I}=\vec{I_L}+\vec{I_C}$, причем \vec{I} расположен на оси абсцисс, а его компоненты расположены к нему под углами

$$\varphi_C = \frac{\pi}{2} - \frac{R + R_L}{\rho}, \quad \varphi_L = -\frac{\pi}{2} + \delta$$

Здесь $\delta \simeq 10^{-3}$ — очень малый параметр установки, которым допустимо пренебречь при расчёте, однако можно изобразить для наглядности. Подсчитаем угол

$$\varphi_C' = \frac{R + R_L}{\rho} \approx 0,057.$$

Аналогичный угол у напряжения $\vec{U}: \varphi_U = -\frac{R+R_L}{\rho}$. Т.е. оно незначительно отклоняется от оси абсцисс на от-

рицательный угол.

6 Обсуждение результатов и выводы

В данной работе был исследован резонанс токов в параллельном колебательном контуре с изменяемой ёмкостью, были определены параметры контура, получены амплитудночастотные и фазово-частотные характеристики контура при 2 различных значениях ёмкости конденсатора. По графику АЧХ были определены добротности соответствующих контуров. Полученные значения:

$$Q_1 = 29 \pm 1$$
, $Q_7 = 16 \pm 1$.

Также добротности были определены с помощью графика ФЧХ 2-мя способами. Значения, полученные 1-ым способом (по углу наклона прямой вблизи резонанса):

$$Q_1 = 18 \pm 5, \quad Q_7 = 13 \pm 4.$$

Результат, полученный 2-ым способом (по расстоянию между y(-1/4) и y(1/4) по оси x):

$$Q_1 = 17 \pm 1, \quad Q_7 = 13 \pm 1.$$

Значения добротности, рассчитанные теоретически:

$$Q_1 = 30, \quad Q_7 = 17.$$

Результат, рассчитанный по AЧX совпадает с теоретическим в пределах погрешности. Однако результаты, полученные при исследовании ФЧX, совпадают по порядку, но существенно отличаются от рассчитанных теоретически. Это может быть связано с высокой погрешностью предложенного метода измерения сдвига фаз между E и U ввиду его сложности. Например, графики ФЧX для обоих контуров не пересекают прямую y = -1/4, что говорит о наличии систематической погрешности измерений.

Также была определена зависимость активного сопротивления катушки R_L от резонансной частоты ν_0 . Как видно из графика, R_L возрастает с возрастанием частоты. Это может быть вызвано скин-эффектом. Резкое скачкообразное изменение значений R_L может быть связано с изменением амплитуды ЭДС в процессе эксперимента.