GEOMETRÍA BÁSICA 2017

NO SE PERMITE NINGÚN TIPO DE MATERIAL. Todas las respuestas deben estar justificadas razonadamente.

Ejercicio 1. (3 puntos)

- a) Definir espacio métrico y métrica.
- b) ¿Qué se entiende por segmento entre dos puntos de un espacio métrico?
- c) Dados dos puntos A y B de un espacio euclidiano, probar que existe un punto M único (llamado punto medio de A y B) de modo que $M \in [A, B]$ y d(A, M) = d(B, M).

Ejercicio 2. (4 puntos)

- a) Sea h una reflexión con deslizamiento del plano, es decir $h = \tau \circ \sigma_r$, donde σ_r es una reflexión cuyo eje es una recta r y τ es una traslación paralela a r. Probar que si P es un punto del plano entonces el punto medio entre P y h(P) pertenece a r, es decir: medio $[P, h(P)] \in r$.
- b) Sean $\mathcal{T} = \Delta\{A, B, C\}$ y $\mathcal{T}' = \Delta\{A', B', C'\}$ dos triángulos de modo que existe una isometría impar f (es decir f es una isometría que invierte la orientación) tal que f(A) = A', f(B) = B' y f(C) = C'. Probar que los puntos medios: medio[A, A'], medio[B, B'] y medio[C, C'] están alineados.

Ejercicio 3. (3 puntos)

Sea \mathcal{C} la circunferencia circunscrita al triángulo $\Delta\{A, B, C\}$ y H el semiplano determinado por r_{AB} y que contiene al vértice C. Probar que si $P \in H$ es tal que $\Delta_{\{A,B,C\}}C = \Delta_{\{A,B,P\}}P$, entonces $P \in \mathcal{C}$.

Soluciones

Ejercicio 1.

- a) Definición 1.1. Capítulo 1.
- b) Definición 1.12. Capítulo 1.
- c) Observación 2.8 (i). Capítulo 2.

Ejercicio 2.

a) Si $P \in r$, entonces $h(P) = \tau(\sigma_r(P)) = \tau(P) \in r$, con lo que medio $[P, h(P)] \in r$

Supongamos ahora que $P \notin r$.

Sea s la recta que pasa por $\sigma_r(P)$ y $h(P) = \tau(\sigma_r(P))$, por ser τ una traslación paralela a r se tiene que r||s.

Por las propiedades de la reflexión $M = \text{medio}[P, \sigma_r(P)]$ está sobre r.

Llamemos Q al punto $r \cap r_{Ph(P)}$. Por ser r || s, podemos aplicar el teorema de Tales a los triángulos $\Delta \{P, \sigma_r(P), h(P)\}$ y $\Delta \{P, M, Q\}$:

$$2 = \frac{P\sigma_r(P)}{PM} = \frac{Ph(P)}{PQ}$$

de donde tenemos que Q = medio[P, h(P)]. Y como Q era $r \cap r_{Ph(P)}$, entonces $Q \in r$.

Otro método:

Supongamos que $P \notin r$. Si $P \in r$ lo deducimos como antes.

Sea $t_1 = r_{P\sigma_r(P)}$ y t_2 es la recta paralela a t_1 de modo que $\tau = \sigma_{t_2} \circ \sigma_{t_1}$.

Entonces tenemos que $h = \tau \circ \sigma_r = \sigma_{t_2} \circ \sigma_{t_1} \circ \sigma_r$, luego $h(P) = \sigma_{t_2}(\sigma_{t_1}(\sigma_r(P)))$ y como $\sigma_r(P) \in t_1$, tenemos que $h(P) = \sigma_{t_2}(\sigma_r(P)) = \sigma_{t_2} \circ \sigma_r(P)$. Dado que $\sigma_{t_2} \circ \sigma_r$ es una media vuelta con punto fijo $R = r \cap r_{t_2}$, entonces el punto R es el punto medio de P y h(P) y $R \in r$.

En este método hay que tener cuidado: $\sigma_{t_2} \circ \sigma_r$ no es igual a $\sigma_{t_2} \circ \sigma_{t_1} \circ \sigma_r$, eso solo ocurre cuando se aplica a P.

b) Por la clasificación de las isometrías impares del plano f es una reflexión sobre una recta o una reflexión con deslizamiento.

Si f es una reflexión sobre una recta r los puntos medios medio[A, A'], medio[B, B'] y medio[C, C'] están sobre r, luego están alineados.

Si f es una reflexión con deslizamiento, $f = \tau \circ \sigma_r$ donde σ_r es una reflexión cuyo eje es una recta r y τ es una traslación paralela a r. Por el apartado a) medio[A, A'], medio[B, B'] y medio[C, C'] están sobre r, luego están alineados.

Ejercicio 3.

Ver solución del Ejercicio 8.11.

Otra solución:

Sea O el centro de la circunferencia \mathcal{C} . Tenemos que $2\measuredangle_{\triangle\{A,B,C\}}C = \measuredangle_{\triangle\{A,B,O\}}O$. Sea \mathcal{C}' la circunferencia circunscrita al triángulo $\triangle\{A,B,P\}$ y sea O' el centro de \mathcal{C}' , tenemos que $2\measuredangle_{\triangle\{A,B,P\}}P = \measuredangle_{\triangle\{A,B,O'\}}O'$. Pero como $\measuredangle_{\triangle\{A,B,P\}}P = \measuredangle_{\triangle\{A,B,C\}}C$, los triángulos isósceles $\triangle\{A,B,O'\}$ y $\triangle\{A,B,O\}$, son congruentes. Como tales triángulos isósceles congruentes comparten el lado [A,B], P, C están en H (por tanto O y O' están en el mismo semiplano de los dos determinados por r_{AB}), entonces $\triangle\{A,B,O\} = \triangle\{A,B,O'\}$ y $\mathcal{C} = \mathcal{C}'$. Por tanto $P \in \mathcal{C}$.