sine basis 02

Statistics: p-values adjusted for search volume

set-level		cluster-level				peak-level					mm mm mm			
p c p		p _{FWE-corr} p _{DR-corr} k _E		puncorr	p_{FWE-c}	g T /E-corrFDR-corr		$(Z_{\equiv}) p_{\text{uncorr}}$		111111		11111		
			1.000	0.791	11	0.314	1.000	0.994	2.89	2.88	0.002	42	56	-8
			1.000	0.791	5	0.504	1.000	0.994	2.87	2.85	0.002	6	50	46
			1.000	0.791	4	0.554	1.000	0.994	2.86	2.84	0.002	-54	-52	-30
			1.000	0.791	9	0.363	1.000	0.994	2.85	2.84	0.002	-18	62	22
			1.000	0.724	31	0.099	1.000	0.994	2.85	2.84	0.002	38	16	48
							1.000	0.994	2.70	2.69	0.004	36	26	46
			1.000	0.791	11	0.314	1.000	0.994	2.84	2.83	0.002	-58	-6	-26
			1.000	0.791	12	0.293	1.000	0.994	2.84	2.83	0.002	30	-40	34
			1.000	0.791	9	0.363	1.000	0.994	2.84	2.83	0.002	54	-18	-14
			1.000	0.791	7	0.424	1.000	0.994	2.84	2.82	0.002	44	-2	-46
			1.000	0.724	32	0.094	1.000	0.994	2.83	2.82	0.002	-64	-22	8
			1.000	0.791	6	0.461	1.000	0.994	2.83	2.81	0.002	18	36	50
			1.000	0.791	4	0.554	1.000	0.994	2.82	2.81	0.002	6	36	56
			1.000	0.791	7	0.424	1.000	0.994	2.81	2.80	0.003	68	-18	12
			1.000	0.791	17	0.212	1.000	0.994	2.81	2.80	0.003	-56	-22	-10
			1.000	0.791	6	0.461	1.000	0.994	2.81	2.80	0.003	-30	-36	14
			1.000	0.791	12	0.293	1.000	0.994	2.80	2.79	0.003	36	-4	22
			1.000	0.696	34	0.086	1.000	0.994	2.80	2.79	0.003	-8	-76	-40
			1.000	0.791	14	0.256	1.000	0.994	2.80	2.78	0.003	36	6	-34
							1.000	0.994	2.63	2.62	0.004	28	8	-32
			1.000	0.791	6	0.461	1.000	0.994	2.79	2.78	0.003	20	-58	24
			1.000	0.791	17	0.212	1.000	0.994	2.78	2.77	0.003	26	-40	46
						_								

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Φ) egrees of freedom = [1.0, 498.0]

Extent threshold: k = 0 voxels FWHM = 6.9 6.8 6.9 mm mm mm; 3.4 3.4 3.5 {voxels}

Expected voxels per cluster, <k> = 11.721 Volume: 1655712 = 206964 voxels = 4706.2 resels

Expected number of clusters, <c> = 200.31 Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 40.73 voxels)

FWEp: 5.084, FDRp: Inf, FWEc: 221, FDRo?45€ 6