

Discovering Causal Relations in Semantically-Annotated Probabilistic Business Process Diagrams

Héctor G. Ceballos, Francisco J. Cantú

Tecnológico de Monterrey

GCAI-2018: 4th Global Conference on Artificial Intelligence

Luxembourg City, Luxembourg, September 18-21, 2018

Agenda

- Business Process Diagrams
- ► Probabilistic BPMN normal form
- Semantic Descriptors
- ► A probabilistic and semantic process instance
- Causal Learning
- Decision Making
- **▶** Conclusions

Business Process Diagrams

- Business Process Modeling and Notation (BPMN)
 - Alternative sequencences of tasks and events.
- Stochastic BPMN
 - ▶ Based on Continuous Time-Markov Chains
 - Probability of observing a given event or task at time t.
- Probabilistic BPMN normal-form
 - ► Based on Bayesian Networks
 - ► How likely is to observe an event or a task B given that another one A occurs
- ► The goal: discovering causal dependencies between non-consecutive events/tasks.

The BPMN normal form

- Business Process Diagram: W = {P, L, N, F}
- ► Lanes represent agent roles.
- \triangleright DAG (G_N)

E	Events	Actions (NA)	Gateway	s (N ^G)
	Start (N ^s)	Task name	Paral	llel (AND)
	Intermediate (N ^I)	Control Flows (F)	O Inclu	sive (OR)
O	End (N ^E)	$n_i \xrightarrow{F(n_i, n_j)} n_j$	X Exicu	ısive (XOR)
Pool p	Environment Actor 2 Actor 1			Lane I_1
	Envir			Lane I ₂

	Stı	ructure	Mappings	In G' _N
Trigger		s → n _i	map(s, Z_s =True) (1)	s
Outcome		n _i — e	$map(e_i, Z_E = e_i) \qquad (2)$	e ₁ (7d)
Event		$n_i \longrightarrow i \longrightarrow n_j$	map(i, Z _i =True) (3)	i
Actions		$n_i \longrightarrow a \longrightarrow n_j$	map(a, X _a =True) (6)	а
teways	Decision	$n_i \longrightarrow g$ n_{j-1} n_{j-2}	$map(i,Z_g\!\!=\!\!i) \tag{4}$	g (7a)
Split gateways	Alternative	$n_i \xrightarrow{g} n_{j-1}$	n _i , n _j (see above)	n _i , n _j (7c)
Merge gateways		n_{i-1} g n_{j-2}	n _i , n _j (see above)	n _i , n _j (7b)

Processing an electronic auction (BPD)

Processing an electronic auction (BPD)

Processing an electronic auction (BN)

Semantic Descriptors

▶ A semantic descriptor Ann(n,Q) is used for describing the meaning of lanes, events and tasks, where Q is a DL conjunctive query

▶ A **bridge descriptor** is a semantic descriptor $Ann(n, Q_B)$ such that its conjunctive query Q_B has a single distinguished variable $Dis(Q_B) = \{s_B\}$

· · · · · · · · · · · · · · · · · · ·	
1 V_{BID} ?bidder $Q_{BID}() = (?bidder).\{?a rdf : type : Auction . ?a : awardedBidder ?bidder }$	

A probabilistic and semantic process instance

An instance of a process modeled through an annotated BPD W_D and compliant with a probabilistic normal form is represented by a tuple $I_W = \langle \pi_i, \overline{v_i} \rangle$.

► Example of a void auction: $I_{auction} = \langle \pi_{void}, \overline{v_{void}} \rangle$

$$\pi_{void} = \{?a : \langle things/auction_003 \rangle, ?seller : \langle people/john \rangle \},$$

$$\bar{v}_{void} = \{V_{AO} = TRUE, V_{BID} = FALSE, V_{AP} = TRUE, V_{PAY} = FALSE, V_{GS} = FALSE\}.$$

Structural Learning

Structural learning on 1,000 instances based on a probabilistic distribution: 10 folds cross-validation (80% - 20%)

Cases	AO	BID	PAY	GS	TRA	REV_B	REV_S	AP	Comment
5%	TRUE	FALSE	FALSE	FALSE				FAILURE	Void auction
4%	TRUE	?bidder	FALSE	FALSE				FAILURE	Bidder doesn't pay item
									Bidder doesn't pay item. Seller rates
4%	TRUE	?bidder	FALSE	FALSE			NEG	FAILURE	negatively.
5%	TRUE	?bidder	TRUE	FALSE	BIDDER	NEG		FAILURE	Bidder pays, Seller doesn't send the
									item. Bidder rates negatively.
65%	TRUE	?bidder	TRUE	TRUE	SELLER	POS	POS	SUCCESS	Item sold. Rating POS-POS.
8%	TRUE	?bidder	TRUE	TRUE	SELLER	NEG	POS	SUCCESS	Item sold. Rating NEG-POS.
6%	TRUE	?bidder	TRUE	TRUE	SELLER	POS	NEG	SUCCESS	Item sold. Rating POS-NEG.
3%	TRUE	?bidder	TRUE	TRUE	SELLER	NEG	NEG	SUCCESS	Item sold. Rating NEG-NEG.

▶ 87% of the instances classified correctly: causal relations are not encoded in temporal precedence.

Causal Learning

- a) Inferred Causation (IC*)
 discovered 5 new valid arcs and 2
 new undirected arcs.
- ▶ b) Temporal precedence was used for directing these 2 arcs.
- c) A compact model with only the7 arcs discovered by IC*.
- ► 100% instances classified correctly with b) and c)

Decision Making

- ► The variable ?bidder in the bridge descriptor is used for selecting instances associated to a specific bidder.
- ► A bad bidder can be discovered by comparing his probabilistic distribution (<people/tom>) against the overall behavior (?bidder).

	Enri	ched Model	Compact Model		
A posteriori probability	?bidder	⟨people/tom⟩	?bidder	$\langle people/tom \rangle$	
P(AP = SUCCESS BID = ?bidder)	0.9142	0.3924	0.8715	0.3912	
$P(REV_S = POS BID = ?bidder)$	0.8431	0.3091	0.8614	0.2939	
P(PAY = TRUE BID = ?bidder)	0.9153	0.3888	0.9153	0.3888	

Conclusions

- ► IC* discovered new causal relationships that improved process development prediction.
- ► Temporal precedence was used for redirecting undirected arcs.

► Future Work

- ▶ Normalization of BPDs by supporting cycles.
- ► Using semantic annotations for generating traces from Linked Data.

Thank you for your attention

Hector G. Ceballos (ceballos@itesm.mx)