Chapitre 12: Intégration: rappels et compléments

1 Rappels: intégration sur un segment

1.1 Primitive et intégrale sur un segment

Définition 1 (Primitive)

Soient f et F deux fonctions définies sur un intervalle I.

On dit que F est une **primitive de** f sur I si F est dérivable sur I de dérivée f:

$$\forall x \in I$$
, $F'(x) = f(x)$.

Remarque 1

Si une fonction f possède une primitive F sur un intervalle I, alors pour tout réel k, la fonction défine sur I par

$$x \in I \longrightarrow F(x) + k$$

est aussi une primitive de f sur I. De plus, toute primitive de f sur I est de cette forme.

Théorème 1

Toute fonction continue sur un intervalle I possède une primitive sur I.

Remarque 2

Une primitive F d'une fonction continue f sur I est donc de classe \mathscr{C}^1 sur I.

Proposition 1 (Théorème fondamental du calcul intégral)

Soient f une fonction définie sur un intervalle I et a, b deux éléments de I. Soit F une primitive de f sur I.

- 1. Le réel F(b) F(a) ne dépend pas du choix de la primitive F de f sur I.
- 2. On appelle **intégrale de** f **sur le segment** [a,b] et on note $\int_a^b f(t)dt$ ce réel :

$$\int_{a}^{b} f(t) dt = F(b) - F(a).$$

Remarque 3

On conserve les notations de la proposition précédente.

1. On note souvent:

$$[F(t)]_a^b = F(b) - F(a) = \int_a^b f(t) dt.$$

2. Dans la notation $\int_a^b f(t)dt$, la variable t est muette, ainsi

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f(t)dt = F(b) - F(a).$$

3. On a

$$\int_{a}^{b} f(t)dt = F(b) - F(a) = -(F(a) - F(b)) = -\int_{b}^{a} f(t)dt.$$

1

Proposition 2

Soient f, g deux fonctions continues sur un intervalle I, a, b, c trois éléments de I et λ un réel.

1. Linéarité: on a

$$\int_{a}^{b} (f(t) + \lambda g(t)) dt = \int_{a}^{b} f(t) dt + \lambda \int_{a}^{b} g(t) dt.$$

2. Relation de Chasles: on a

$$\int_{a}^{b} f(t)dt = \int_{a}^{c} f(t)dt + \int_{c}^{b} f(t)dt.$$

3. *Positivité* : si $a \le b$ alors

$$\forall t \in [a,b], f(t) \geqslant 0 \Longrightarrow \int_a^b f(t)dt \geqslant 0.$$

4. *Croissance*: si $a \le b$ alors

$$\forall t \in [a,b], f(t) \geqslant g(t) \Longrightarrow \int_a^b f(t)dt \geqslant \int_a^b g(t)dt.$$

5. Inégalité triangulaire:

$$\left| \int_{a}^{b} f(t)dt \right| \leq \int_{a}^{b} |f(t)|dt.$$

Proposition 3

Soit f une fonction **positive et continue** sur un segment [a,b] telle que $\int_a^b f(t)dt = 0$. Alors, f est identiquement nulle sur [a,b].

Test 1 (Voir solution.)

Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_0^1 \frac{t^n}{1+t^2} dt$.

- 1. Justifier que la suite $(I_n)_{n\in\mathbb{N}}$ est bien définie.
- 2. Soit $n \in \mathbb{N}$. Montrer que pour tout $t \in [0,1]$, $0 \leq \frac{t^n}{1+t^2} \leq t^n$.
- 3. En déduire que pour tout $n \in \mathbb{N}$, $0 \le I_n \le \frac{1}{n+1}$.
- 4. Monter que $(I_n)_{n\in\mathbb{N}}$ converge et calculer sa limite.

Extension aux fonctions continues par morceaux

- Soit f une fonction définie sur un segment [a,b]. On dit que f est **continue par morceaux** sur [a,b] s'il existe une subdivision $a_0 = a < a_1 < \cdots < a_n = b$ de [a,b] telle que les restrictions de f à chaque intervalle ouvert $]a_i, a_{i+1}[$ admettent un prolongement par continuité à l'intervalle fermé $[a_i, a_{i+1}]$.
- Pour une telle fonction continue par morceaux f, on définit l'intégrale de f sur [a,b] par

$$\int_{a}^{b} f(t)dt = \sum_{i=0}^{n-1} \int_{a_{i}}^{a_{i+1}} f(t)dt.$$

• La proposition 2 reste vraie pour les fonctions continues par morceaux.

Remarque 4

Une fonction continue par morceaux sur [a, b] est donc une fonction qui est continue sur [a, b] sauf éventuellement en un nombre fini de points en lesquels elle admet tout de même des limites finies à droite et à gauche.

2

Exemple 1

1. La fonction partie entière f est continue par morceaux sur [0,2].

En effet, elle est continue sur]0,1[et]1,2[car constante sur chacun de ces intervalles. De plus,

$$\lim_{x \to 0^+} \lfloor x \rfloor = 0 \quad ; \quad \lim_{x \to 1^-} \lfloor x \rfloor = 0 \quad ; \quad \lim_{x \to 1^+} \lfloor x \rfloor = 1 \quad ; \quad \lim_{x \to 2^-} \lfloor x \rfloor = 1 \quad ;$$

 $donc\ sa\ restriction\ \grave{a}\]0,1[\ (resp.\ \grave{a}\]1,2[)\ est\ prolongeable\ par\ continuit\acute{e}\ sur\ [0,1]\ (resp.\ [1,2]).$

2. Intégrale de f sur [0,2].

$$\int_{0}^{2} f(t)dt = \int_{0}^{1} f(t)dt + \int_{1}^{2} f(t)dt \quad \text{par d\'efinition de l'int\'egrale d'une fonction continue par morceaux}$$

$$= \int_{0}^{1} 0dt + \int_{1}^{2} 1dt$$

$$= 1$$

1.2 Techniques de calcul

► Calcul de primitives « à vue »

Fonction f	Une primitive de f	sur l'intervalle :
$x \longmapsto a, a \in \mathbb{R}$	$x \longmapsto ax$	R
$x \longmapsto x^n, n \in \mathbb{N}$	$x \longmapsto \frac{x^{n+1}}{n+1}$	R
$x \longmapsto x^a, a \in \mathbb{R} \setminus \{-1\}$	$x \longmapsto \frac{x^{a+1}}{a+1}$	\mathbb{R}_+^*
$x \longmapsto \frac{1}{x}$	$x \longmapsto \ln(x)$	\mathbb{R}_+^*
$x \longmapsto e^x$	$x \longmapsto e^x$	R

TABLE 1 – Primitives usuelles

Fonction f	Une primitive de f	sur tout I tel que :
$x \longmapsto u'(x)u(x)^n, n \in \mathbb{N}$	$x \longmapsto \frac{u(x)^{n+1}}{n+1}$	<i>u</i> est dérivable sur I
$x \longmapsto u'(x)u(x)^a, a \in \mathbb{R} \setminus \{-1\}$	$x \longmapsto \frac{u(x)^{a+1}}{a+1}$	u est dérivable et $u > 0$ sur I
$x \longmapsto \frac{u'(x)}{u(x)}$	$x \longmapsto \ln(u(x))$	u est dérivable et ne s'annule pas sur I
$x \longmapsto u'(x)e^{u(x)}$	$x \longmapsto e^{u(x)}$	<i>u</i> est dérivable sur I

TABLE 2 – Primitives de fonctions composées

Exemple 2

Calculer
$$\int_0^1 \frac{t}{\sqrt{t^2 + 1}} dt$$
.
On remarque que pour tout $t \in [0, 1]$:

$$\frac{t}{\sqrt{t^2+1}} = \frac{1}{2} \frac{2t}{(t^2+1)^{\frac{1}{2}}} = \frac{1}{2} u'(t) u(t)^{-\frac{1}{2}}$$

 $où u(t) = t^2 + 1$. Donc

$$\int_0^1 \frac{t}{\sqrt{t^2 + 1}} dt = \frac{1}{2} \left[\frac{u(t)^{-\frac{1}{2} + 1}}{-\frac{1}{2} + 1} \right]_0^1 = \left[u(t)^{\frac{1}{2}} \right]_0^1 = \sqrt{2} - 1.$$

Test 2 (Voir solution.)

Calculer les intégrales suivantes :

$$1. \int_e^{3e} \frac{1}{x \ln(x)} dx.$$

2.
$$\int_{0}^{2} e^{2t-1} dt$$
.

3.
$$\int_0^1 s(s^2+3)^2 ds$$
.

► Intégration par parties

Proposition 4 (Intégration par parties)

Soient u et v deux fonctions de classe \mathscr{C}^1 sur un segment [a,b]. Alors

$$\int_a^b u'(t)v(t)dt = \left[u(t)v(t)\right]_a^b - \int_a^b u(t)v'(t)dt.$$

Exemple 3

Calculer
$$\int_{1}^{3} t^{2} \ln(t) dt$$
.

Les fonctions $u: t \mapsto \frac{t^3}{3}$ et $v: t \mapsto \ln(t)$ sont de classe \mathscr{C}^1 sur [1,3] et

$$\int_{1}^{3} t^{2} \ln(t) dt = \int_{1}^{3} u'(t) v(t) dt.$$

Par intégration par parties, on trouve donc

$$\int_{1}^{3} t^{2} \ln(t) dt = \left[u(t)v(t) \right]_{1}^{3} - \int_{1}^{3} u(t)v'(t) dt$$

$$= \left[\frac{t^{3} \ln(t)}{3} \right]_{1}^{3} - \int_{1}^{3} \frac{t^{2}}{3} dt$$

$$= 3^{2} \ln(3) - \frac{1}{3} \left[\frac{t^{3}}{3} \right]_{1}^{3}$$

$$= 9 \ln(3) - \frac{26}{9}$$

Test 3 (Voir solution.)

Soit
$$x \in]1, +\infty[$$
. Calculer $\int_1^x \ln(t) dt$.

► Changement de variables

Proposition 5 (Changement de variables)

Soit u une fonction de classe \mathcal{C}^1 sur [a,b] et soit f une fonction continue sur u([a,b]). Alors

4

$$\int_{u(a)}^{u(b)} f(x) dx = \int_{a}^{b} f(u(t)) u'(t) dt.$$

Exemple 4

Calculer $\int_1^2 \frac{dt}{e^t + 1}$ à l'aide du changement de variable $u = e^t$.

- 1. Transformer du avec la formule du = u'(t)dt. Ici, $du = e^t dt$ ou encore du = udt, c'est-à-dire $\frac{du}{u} = dt$.
- 2. Transformer l'expression sous l'intégrale.

$$\frac{dt}{e^t + 1} = \frac{\frac{du}{u}}{u + 1} = \frac{du}{u(u + 1)}$$

3. Transformer les bornes. u(1) = e et $u(2) = e^2$.

La fonction $u: t \mapsto e^t$ est de classe \mathscr{C}^1 sur [1,2] et $u'(t) = e^t$ pour tout $t \in [1,2]$ donc:

$$\int_{1}^{2} \frac{dt}{e^{t} + 1} = \int_{1}^{2} \frac{dt}{u(t) + 1} \frac{e^{t}}{e^{t}} dt = \int_{1}^{2} \frac{dt}{u(t) + 1} \frac{u'(t)}{u(t)} dt = \int_{e}^{e^{2}} \frac{1}{u(u + 1)} du$$

 $car u \mapsto \frac{1}{u(u+1)}$ est continue sur $[e, e^2]$.

On remarque ensuite que pour tout $u \in [e, e^2]$,

$$\frac{1}{u(u+1)} = \frac{1}{u} - \frac{1}{u+1}$$

donc

$$\int_{1}^{2} \frac{dt}{e^{t} + 1} = \int_{e}^{e^{2}} \frac{1}{u(u+1)} du = \int_{e}^{e^{2}} \frac{1}{u} du - \int_{e}^{e^{2}} \frac{1}{u+1} du = 1 - \ln\left(\frac{e^{2} + 1}{e + 1}\right)$$

Test 4 (Voir solution.)

Soit f une fonction impaire continue sur \mathbb{R} . Montrer que pour tout $a \ge 0$

$$\int_{-a}^{a} f(t)dt = 0.$$

Indication: à l'aide d'un changement de variable, montrer que $\int_0^a f(t)dt = \int_{-a}^0 f(-t)dt$

Test 5 (Voir solution.)

Soit f une fonction définie sur \mathbb{R}^*_+ par

$$\forall x \in \mathbb{R}^*_+, \quad f(x) = \int_{-\sqrt{x}}^{x^2} \frac{\ln(1+t^2)}{e^t} dt.$$

5

Montrer que f est de classe \mathscr{C}^1 sur \mathbb{R}_+^* et calculer sa dérivée.

2 Intégrales impropres

2.1 Intégrales impropres en $\pm \infty$

Définition 2 (Convergence d'une intégrale impropre en $+\infty$)

Soit f une fonction continue sur un intervalle de la forme $[a, +\infty[$.

• Si la limite suivante existe et est finie

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt,$$

on l'appelle **intégrale impropre (ou généralisée) de** f **sur** $[a, +\infty[$ et on la note $\int_a^{+\infty} f(t)dt$.

• Si la limite $\int_a^{+\infty} f(t)dt$ existe et est finie, on dira que l'intégrale impropre $\int_a^{+\infty} f(t)dt$ converge, sinon on dira qu'elle **diverge**.

De même:

Définition 3 (Convergence d'une intégrale impropre en $-\infty$)

Soit *f* une fonction continue sur un intervalle de la forme $]-\infty,b]$.

• Si la limite suivante existe et est finie

$$\lim_{x \to -\infty} \int_{x}^{b} f(t) dt,$$

on l'appelle **intégrale impropre (ou généralisée) de** f **sur** $]-\infty$, b] et on la note $\int_{-\infty}^{b} f(t)dt$.

• Si la limite $\int_{-\infty}^{b} f(t)dt$ existe et est finie, on dira que l'intégrale impropre $\int_{-\infty}^{b} f(t)dt$ converge, sinon on dira qu'elle **diverge**.

Méthode 1

Soit f définie sur un intervalle $[a, +\infty[$. Étudier la nature de l'intégrale impropre $\int_a^{+\infty} f(t)dt$, c'est déterminer si elle converge ou non, c'est-à-dire déterminer si

$$\lim_{x \to +\infty} \int_{a}^{x} f(t) dt$$

existe et est finie ou non. En pratique :

- 1. on commence par montrer que f est continue sur $[a, +\infty[$,
- 2. on introduit $x \in [a, +\infty[$ et on étudie $si \int_a^x f(t) dt$ admet une limite finie quand x tend vers $+\infty$.

On procède de manière analogue pour étudier la nature d'une intégrale de la forme $\int_{-\infty}^{b} f(t)dt$.

Exemple 5

1. Étudier la nature de $\int_1^{+\infty} \frac{1}{t} dt$.

La fonction $t \mapsto \frac{1}{t}$ est continue sur $[1, +\infty[$, l'intégrale est donc impropre en $+\infty$. Soit $x \in [1, +\infty[$. Alors

$$\int_{1}^{x} \frac{1}{t} dt = \left[\ln(t) \right]_{1}^{x} = \ln(x)$$

Ainsi $\lim_{x \to +\infty} \int_{1}^{x} \frac{1}{t} dt = \lim_{x \to +\infty} \ln(x) = +\infty$. L'intégrale impropre $\int_{1}^{+\infty} \frac{1}{t} dt$ est donc divergente.

6

2. Étudier la nature de $\int_{2}^{+\infty} \frac{1}{t^2} dt$.

La fonction $t\mapsto \frac{1}{t^2}$ est continue sur $[2,+\infty[$, l'intégrale est donc impropre en $+\infty$. Soit $x\in[2,+\infty[$. Alors

$$\int_{2}^{x} \frac{1}{t^{2}} dt = \left[-\frac{1}{t} \right]_{2}^{x} = -\frac{1}{x} + \frac{1}{2}.$$

Ainsi $\lim_{x\to +\infty} \int_2^x \frac{1}{t^2} dt = \frac{1}{2}$. L'intégrale $\int_2^{+\infty} \frac{1}{t^2} dt$ est donc convergente et

$$\int_2^{+\infty} \frac{1}{t^2} dt = \frac{1}{2}.$$

3. Étudier la nature de $\int_0^{+\infty} e^{-t} dt$.

La fonction $t\mapsto e^{-t}$ est continue sur $[0,+\infty[$, l'intégrale est donc impropre en $+\infty$. Soit $x\in[0,+\infty[$. Alors

$$\int_0^x e^{-t} dt = \left[-e^{-t} \right]_0^x = -e^{-x} + 1.$$

Ainsi $\lim_{x\to +\infty} \int_0^x e^{-t} dt = 1$. L'intégrale $\int_0^{+\infty} e^{-t} dt$ est donc convergente et

$$\int_0^{+\infty} e^{-t} dt = 1.$$

Plus généralement :

Exemples de référence

- 1. L'intégrale $\int_0^{+\infty} e^{-\lambda t} dt$ converge si et seulement si $\lambda > 0$.
- 2. *Intégrale de Riemann en* $+\infty$: pour tout réel c > 0, l'intégrale $\int_{c}^{+\infty} \frac{1}{t^a} dt$ converge si et seulement si a > 1.

Test 6 (Voir solution.)

Démontrer les critères de convergence des exemples de référence.