Semantic Theory Week 5 – Typed Lambda Calculus

Noortje Venhuizen

Universität des Saarlandes

Summer 2018

Compositionality

The principle of compositionality: "The meaning of a complex expression is a function of the meanings of its parts and of the syntactic rules by which they are combined" (Partee et al., 1993)

Compositional semantics construction:

- compute meaning representations for sub-expressions
- combine them to obtain a meaning representation for a complex expression.

Problematic case: "Not smoking (e,t) is healthy ((e,t),t)"

Lambda abstraction

 λ -abstraction is the operation that transforms expressions of any type τ into a function $\langle \sigma, \tau \rangle$, where σ is the type of the λ -variable.

Formal definition:

If α is in WE_T, and x is in VAR_{σ} then $\lambda x(\alpha)$ is in WE $\langle \sigma, \tau \rangle$

- The scope of the λ-operator is the smallest WE to its right. Wider scope must be indicated by brackets.
- We often use the "dot notation" $\lambda x. \phi$ indicating that the λ -operator takes widest possible scope (over ϕ).

Interpretation of Lambda-expressions

If $\mathbf{a} \in WE_T$ and $v \in VAR_\sigma$, then $[\![\lambda v \mathbf{a}]\!]^{M,g}$ is that function $f: D_\sigma \to D_T$ such that for all $a \in D_\sigma$, $f(a) = [\![\mathbf{a}]\!]^{M,g[v/a]}$

If the λ -expression is applied to some argument, we can simplify the interpretation:

•
$$[\lambda \lor \alpha]^{M,g}(x) = [\alpha]^{M,g[\lor/x]}$$

Example: "Bill is a non-smoker"

$$[\![\lambda x(\neg S(x))(b')]\!]^{M,g} = 1$$

$$\text{iff } [\![\lambda x (\neg S(x))]\!]^{M,g} (\![\![b']\!]^{M,g}) = 1$$

iff
$$[\neg S(x)]^{M,g[x/[b']^{M,g]}} = 1$$

$$iff \ \llbracket S(x) \rrbracket^{M,g[x/\llbracket b'\rrbracket^{M,g}]} = 0$$

$$\text{iff } \llbracket S \rrbracket^{M,g[x/\llbracket b'\rrbracket^{M,g]}} (\llbracket x \rrbracket^{M,g[x/\llbracket b'\rrbracket^{M,g]}}) = 0$$

iff
$$V_M(S)(V_M(b')) = 0$$

β-Reduction

$$[\![\lambda \lor (\mathbf{a})(\mathbf{\beta})]\!]^{\mathsf{M},\mathsf{g}} = [\![\mathbf{a}]\!]^{\mathsf{M},\mathsf{g}}[\![\lor /\![\mathbf{\beta}]\!]^{\mathsf{M},\mathsf{g}}]$$

 \Rightarrow all (free) occurrences of the λ -variable in α get the interpretation of β as value.

This operation is called β-reduction

- $\lambda \vee (\alpha)(\beta) \Leftrightarrow \alpha[\beta/\vee]$
- $\alpha[\beta/v]$ is the result of replacing all free occurrences of v in α with β

Achtung: The equivalence is not unconditionally valid!

Variable capturing

Q: Are $\lambda v(\mathbf{a})(\mathbf{\beta})$ and $\mathbf{a}[\mathbf{\beta}/v]$ always equivalent?

- λx(drive'(x) ∧ drink'(x))(j') ⇔ drive'(j') ∧ drink'(j')
- $\lambda x(drive'(x) \land drink'(x))(y) \Leftrightarrow drive'(y) \land drink'(y)$
- $\lambda x(\forall y \text{ know'}(x)(y))(j') \Leftrightarrow \forall y \text{ know}(j')(y)$
- NOT: $\lambda x(\forall y \text{ know'}(x)(y))(y) \Leftrightarrow \forall y \text{ know}(y)(y)$

Let v, v' be variables of the same type, and let α be any well-formed expression.

• v is free for v' in α iff no free occurrence of v' in α is in the scope of a quantifier or a λ -operator that binds v.

Conversion rules

- β -conversion: $\lambda v(\mathbf{a})(\mathbf{\beta}) \Leftrightarrow \mathbf{a}[\mathbf{\beta}/v]$ (if all free variables in $\mathbf{\beta}$ are free for v in \mathbf{a})
- a-conversion: $\lambda v.a \Leftrightarrow \lambda w.a[w/v]$ (if w is free for v in a)
- η -conversion: $\lambda v. \mathbf{a}(v) \Leftrightarrow \mathbf{a}$

Determiners as lambda-expressions

- a student works → ∃x(student'(x) ∧ work'(x)) :: t
 - a student $\rightarrow \lambda P \exists x (student'(x) \land P(x)) :: \langle \langle e, t \rangle, t \rangle$
 - a, some $\rightarrow \lambda Q \lambda P \exists x (Q(x) \land P(x)) :: \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$
- every student $\rightarrow \lambda P \forall x (student'(x) \rightarrow P(x)) :: \langle \langle e, t \rangle, t \rangle$
 - every $\rightarrow \lambda Q \lambda P \forall x (Q(x) \rightarrow P(x)) :: \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$
- no student $\rightarrow \lambda P \neg \exists x (student(x) \land P(x)) :: \langle \langle e, t \rangle, t \rangle$
 - no $\rightarrow \lambda Q \lambda P \neg \exists x (Q(x) \land P(x)) :: \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle \rangle$
- someone $\rightarrow \lambda F \exists x F(x) :: \langle \langle e, t \rangle, t \rangle$

NL Quantifier Expressions: Interpretation

- someone' $\in CON_{((e,t),t)}$, so V_M (someone') $\in D_{((e,t),t)}$
- D_{((e,t),t)} is the set of functions from D_(e,t) to D_t, i.e., the set of functions from P(U_M) to {0,1}, which in turn is equivalent to P(P(U_M))
- Thus, V_M (someone') $\subseteq \mathcal{P}(U_M)$. More specifically:
- V_M (someone') = { $S \subseteq U_M \mid S \neq \emptyset$ }, if U_M is a domain of persons
- ⇒ More on Natural Language Quantifiers next week!

β-Reduction Example

Every student works.

- (2) $\lambda P \lambda Q \forall x (P(x) \rightarrow Q(x)) :: \langle \langle e, t \rangle, \langle \langle e, t \rangle, t \rangle$
- (3) $\lambda x.student'(x) \Leftrightarrow^{n} student' :: \langle e, t \rangle$

 $(4)/(5) \lambda x. work'(x) \Leftrightarrow^{\eta} work' :: \langle e, t \rangle$

(0) $\lambda Q \forall x (student'(x) \rightarrow Q(x)) (work') \Leftrightarrow^{\beta} \forall x (student'(x) \rightarrow work'(x)) :: t$

Transitive Verbs: Type Clash

Someone reads a book

```
read :: \langle e, \langle e, t \rangle \rangle a book :: \langle \langle e, t \rangle, t \rangle someone :: \langle \langle e, t \rangle, t \rangle ?? :: ??
```

Solution: reverse functor-argument relation (again)

```
read<<<e, t>,t>,<e, t>> (Type Raising)
```

Type Raising

It's not enough to just change the type of the transitive verb:

read → read' ∈ CON(((e,t), t), (e, t))
 someone reads a book:

 $\lambda F \exists x F(x) (read'(\lambda P \exists y (book'(y) \land P(y)))$ $\Leftrightarrow^{\beta} \exists x (read'(\lambda P \exists y (book'(y) \land P(y)))(x)$

...but this does not support the following entailment: $someone\ reads\ a\ book \models there\ exists\ a\ book$

We need a more explicit λ -term:

• read $\rightarrow \lambda Q \lambda z. Q(\lambda x(\text{read}^*(x)(z))) \in WE_{(\langle e,t \rangle, t \rangle, \langle e, t \rangle)}$ where: read* $\in WE_{(e, \langle e, t \rangle)}$ is the "underlying" first-order relation

Transitive Verbs: example

```
someone reads a book
\lambda F \exists x F(x)(\lambda Q \lambda z. Q(\lambda x (read^*(x)(z)))(\lambda R \lambda P. \exists y (R(y) \land P(y)) (book')))
\Leftrightarrow \beta \lambda F \exists x F(x)(\lambda Q \lambda z. Q(\lambda x(read^*(x)(z)))(\lambda P. \exists y(book'(y) \land P(y))))
\Leftrightarrow \beta \lambda F \exists x F(x)(\lambda z.(\lambda P. \exists y (book'(y) \land P(y)))(\lambda x (read^*(x)(z))))
\Leftrightarrow \beta \lambda F \exists x F(x)(\lambda z. \exists y (book'(y) \wedge \lambda x (read^*(x)(z))(y)))
\Leftrightarrow \beta \lambda F \exists x F(x)(\lambda z. \exists y (book'(y) \wedge read^*(y)(z)))
\Leftrightarrow \beta \exists x(\lambda z. \exists y(book'(y) \land read^*(y)(z)))(x)
\Leftrightarrow \beta \exists x \exists y (book'(y) \land read^*(y)(x))
```

Background reading material

- Gamut: Logic, Language, and Meaning Vol II (Chapter 4, minus 4.3)
- Winter: Elements of Formal Semantics (Chapter 3)
 http://www.phil.uu.nl/~yoad/efs/main.html