Step-1

We know that Markov matrix has no negative entries, $a_{ij} \ge 0$ and each column of the matrix adding to 1.

Consider A is a Markov matrix and let y = Ax, here x is a vector.

We have to show that the sum of the components of y is equal to the sum of the components of vector x.

We know that for a vector x, the sum of the component of x is given by

$$x_1 + x_2 + x_3 + \dots + x_n = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}$$
$$= \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} x$$

We have considered A is Markov matrix, so we have

$$\begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} A = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}$$

Step-2

The sum of the components of y is given by

$$y_1 + y_2 + y_3 + \dots + y_n = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} \begin{bmatrix} y \\ \vdots \\ y_n \end{bmatrix}$$

= $\begin{bmatrix} 1 & \dots & 1 \end{bmatrix} y$

Since y = Ax and $\begin{bmatrix} 1 & \cdots & 1 \end{bmatrix} A = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}$, so we have

$$y_1 + y_2 + y_3 + \dots + y_n = \begin{bmatrix} 1 & \dots & 1 \end{bmatrix} y$$

= $\begin{bmatrix} 1 & \dots & 1 \end{bmatrix} Ax$
= $\begin{bmatrix} 1 & \dots & 1 \end{bmatrix} x$
= $x_1 + x_2 + x_3 + \dots + x_n$

Therefore, the sum of the components of y is $\frac{\text{equal}}{\text{to the sum of the components of vector } x}$.

Step-3

We know that each column of the Markov matrix adding to 1, so the component of Ax is given by

$$x_1 + x_2 + x_3 + \dots + x_n$$

And the component of λx is given by

$$\lambda \left(x_1 + x_2 + x_3 + \dots + x_n \right)$$

If $Ax = \lambda x$ then we have

$$x_1 + x_2 + x_3 + \dots + x_n = \lambda (x_1 + x_2 + x_3 + \dots + x_n)$$

Since $\lambda \neq 1$ then $x_1 + x_2 + x_3 + \dots + x_n$ must be zero.