Γ Ц Φ О. 9 КЛАСС. 2014/15.

34	На концах длинной нити подвешены грузы массы m каждый. Нить перекинута через два легких маленьких блока, расположенных на расстоянии $2l$ друг от друга. К ней посередине между блоками прикрепляют груз массы $2m$, и система приходит в движение. Найдите скорость грузов по истечении достаточно большого промежутка времени.	
38	Два сообщающихся сосуда, площади дна которых S и $2S$, соединены трубкой L с большим резервуаром воды R . На воду в каждый сосуд положили по невесомому поршню, плотно прилегающему к стенкам. Первый поршень отвели на x вверх, второй — на x вниз, и закрепили. Затем к поршням подсоединили систему нитей и блоков (см. рис.). На поршни положили грузы массами m и $2m$, за нить потянули с силой $T=mg/2$. Поршни отпустили, и оказалось, что в начальный момент оба они поехали вниз. В какую сторону поехали бы поршни, если бы нить тянули с силой mg ? Нити нерастяжимы, блоки невесомы, трением пренебречь. При движении воды по трубке уровень воды в резервуаре R практически не изменяется.	$ \begin{array}{c c} R & \Delta x & -1 & 2m & \Delta x \\ \hline L & -1 & -1 & -1 & S & 2S \end{array} $
39	Легкий жгут жесткости k прикреплен к потолку, а на его конце висят два жука (см. рис.). В таком положении жгут равномерно растянут и его длина от потолка до жуков равна l . Потом один жук начинает карабкаться по жгуту вверх с постоянной сокростью V относительно жгута. Как и с какой скоростью относительно потолка будет двигаться второй жук, который продолжает держаться за конец жгута. Считать, что каждый жук хватается за жгут в одной точке. Масса обоих жуков равна m , их размерами пренебречь. Ускорение свободного падения равно g .	l e
40	Два одинаковых проводящих проволочных кольца радиуса a сварили в противоположных точках О и О' как указано на рисунке. Сопротивление единицы длины проволоки равно λ . Дуги АО и ВО равны, их длина l . Найти зависимость сопротивления между точками А и В от величины l .	A O O
41	Поршень массы $M=2$ кг может с трением скользить внутри вертикальной неподвижной трубы. Сначала поршень прикрепили внутри трубы к потолку пружиной жесткостью $k_1=20~{\rm H/m}$, длина которой в нерастянутом состоянии $l_1{=}60~{\rm cm}$. Поршень расположили на уровне середины трубы, отпустили, и он остался неподвижен. Затем опыт повторили, поменяв пружину жесткость новой пружины стала $k_2=10~{\rm H/m}$, а длина в нерастянутом состоянии $l_2=20~{\rm cm}$. Удивительно, но поршень в середине трубы снова остался неподвижен. При каких знчениях силы трения поршня о трубу это возможно? Влиянием воздуха пренебречь, $g=10~{\rm m/c}^2$	
42	Из куска покрытого изоляцией провода сопротивлением R спаяли кольцо; кольцо свернули в симметричную восьмерку (с одинаковыми петельками). В середине, где провода восьмерки скрещиваются, котакта нет. Точно таким же образом изготовили вторую восьмерку. Источник тока подключают к точкам скрещивания обеих восьмерок (на рис.1 крупно показано подключение одной восьмерки): один из скрещивающихся проводов подключен к "плюсу а другой - к "минусу". Затем полученные восьмерки спаяли друг с другом в симметричных точках A и B (см. рис.2), сопротивление участка провода между A и B равно $R/4$. Каково полное сопротивление этой схемы?	рис.1 - A R 4 рис.2 - A B