Example 5. Find the particular solution to the DS $A_{n+2} = 2A_{n+1} - A_n + 3$ that satisfies $A_0 = 0$, $A_1 = -1$. What is A_{10} ?

Here,
$$a=2$$
, $b=-1$, $c=3$ =7 CE: $x^2 = 2t-1$
=> $r=s=1$

GS:
$$A_n = C_1 + C_2 n + (\frac{3}{2}) n^2$$

IC:
$$A_0 = 0 \Rightarrow 0 = C_1$$

 $A_1 = -1 \Rightarrow -1 = C_1 - C_2 + \frac{3}{2} \Rightarrow C_2 = \frac{5}{2}$

$$PS: A_{n} = \frac{5}{2}n + \left(\frac{3}{2}\right)n^{2}$$

$$A_{10} = \frac{5}{2}(10) + \left(\frac{3}{2}\right)10^{2}$$

$$= 175$$

Example 6. Find the particular solution to the DS $A_{n+2} = 2A_{n+1} - A_n + 4$ that satisfies $A_0 = 3$, $A_1 = 6$. What is A_{10} ?

Here,
$$a=2$$
, $b=-1$, $c=4$ \Rightarrow $CE: $\chi^2 = 2\chi - 1$ $\Rightarrow r=S=1$$

GS:
$$A_n = c_1 + c_2 n + 2n^2$$

IC:
$$A_0 = 3 \Rightarrow 3 = C_1$$

 $A_1 = 6 \Rightarrow 6 = C_1 + C_2 + 2 \Rightarrow C_1 + C_2 = 4 \Rightarrow C_2 = 1$

$$PS: A_n = 3 + n + 2n^2 \qquad A_{10} = 3 + 10 + 2(10^2)$$
= 213