Outils de visualisation de traces

Damien DOSIMONT

23 mars 2012

Sommaire

- 1 Introduction
 - Complexité croissante des systèmes embarqués
 - Visualisation de traces
 - Thèse et travaux de Lucas Schnorr
- 2 Etat de l'art des outils et techniques de visualisation
 - Outils de visualisation
 - Techniques de visualisation
- 3 Paje
 - Principe
 - Format de traces
 - Architecture
 - Types de Visualisation
 - Limites de l'outil
- 4 viT
- 5 Triva
 - Principe
 - Algorithme de la tranche de temps
 - Treemap
 - Graphe Topologique
 - Graphe 3D
- 6 Conclusio

Complexité croissante des systèmes embarqués

- Systèmes embarqués actuels : de plus en plus complexes
- Matériel :
 - Nombre de coeurs importants, hétérogènes
 - Interconnexions plutôt que mémoire partagée
- Logiciel :
 - OS: noyaux linux
 - POSIX, etc.
- Rapprochement peut être fait avec systèmes distribués de grande échelle
 - Nombre d'entités important
 - Accès aux ressources non uniforme
 - Hétérogéneité (processeurs différents, coprocesseurs, etc.)
 - Cohérence (cache, mémoire, synchronisation)

Intérêt des traces d'exécution

- Traces d'éxecution : répondre (en partie) aux difficultés de la programmation parallèle
 - Analyse des performances
 - Déterminer comportements "anormaux", bugs
 - Optimiser
- Difficultés : traces volumineuses
 - Gestion du stockage
 - Elimination du bruit
 - Reconnaissance de motifs
 - Réprésentation visuelle

Difficultés inhérentes à la visualisation

- ► Espace limité : écran avec résolution fixe
- Nombre d'informations important
 - Temporalité : évenements en fonction du temps
 - Hiérarchie: entités mères et filles (ex: thread, processus, cœur, machine, cluster, site)
 - **Topologie** : répartition géographique des entités, liens
- Outils actuels :
 - Représentation majoritairement temporelle (diagramme de Gantt)
 - Agrégation plus ou moins sommaire
 - Nécessité de **scroller** (abscisse ou ordonnée)
 - Plus ou moins dépendants d'un format de trace particulier

Thèse et travaux de Lucas Schnorr

- Répondre aux problématiques précédentes, dans le cadre des systèmes distribués de grande échelle
 - Etat de l'art des techniques et outils de visualisation existants
 - Focus sur Pajé : outil et format de trace
 - Triva :
 - Time-Slice Algorithm
 - Treemap
 - Modèle 3D
 - Graphe topologique
 - Etudes de cas
 - KAAPI
 - MPI
 - BOINC/SimGrid

Outils de visualisation : état de l'art (1)

ParaGraph

- Concept de "Simulation"
- Implémentation de plusieurs techniques de visualisation
- Architecture basée sur évenements
- Interface interactive: 25
 affichages (synchronisés), 3
 familles
 - Utilisation
 - Communication
 - Tâches
- Développement non maintenu : couplage avec bibliothèque
 PICL

Outils de visualisation : état de l'art (2)

- TraceView
 - Généralisation, et définition de l'organisation des outils de visualisation
- Pablo
 - Modularité
 - Format SDDF
- Paradyn
 - Axé sur les performances des systèmes parallèles
 - Instrumentation dynamique
- Jumpshot
 - MPI
- ParaProf
 - Reprend les techniques les plus performantes des autres outils
 - Différentes techniques 3D
 - OpenGL

Outils de visualisation : état de l'art (3)

Vampir

- Analyse des applications parallèles + OpenMP/MPI
- Grande scalabilité
- Set de filtres flexibles
- Grand nombre de visualisations disponibles (Gantt, matrix, histogrammes, timelines)
- Visualisation hiérarchique basée sur diagrammes de Gantt (3 niveaux)
- Regroupement des tâches par profile (clusterisation)
- Format OTF
- Commercial :-(

Outils de visualisation : état de l'art (4)

Extravis

Techniques de visualisation

- Comportementales
 - Gantt-Charts
 - Implémenté dans la majorité des outils
 - Pajé et Vampir -> mécanismes de groupement hiérarchique

- Variables en 2 ou 3D
 - Implémenté dans la majorité des outils
 - Variables dans Pajé, Communication traffic, Utilization Count dans ParaGraph, Performance Counters dans Vampir
 - Paradyn: 3D -> corréler deux métriques + ligne de temps

Techniques de visualisation (2)

- Comportementales (2)
 - Time-Tunnel (Virtue)
 - 2 dimensions pour placer processes, au milieu d'un cercle, et 3e pour la ligne de temps
 - Phase Portraits

Techniques de visualisation (3)

- Structurelles
 - Call Graphs
 - Interactions parmi les composants de l'application -> ParaProf, Virtue

- Matrix
 - Proposé en premier par ParaGraph
 - ex : Communications
 - Problème de scalabilité résolu dans Vampir en regroupant les processus (nombre ou autres caractéristiques)

Techniques de visualisation (4)

- ► Structurelles (2)
 - Graphes avec communications
 - Présent dans ParaGraph, mais trop peu d'informations, par exemple sur les liens

Techniques de visualisation (5)

- Statistiques
 - Histogrammes

■ Diagramme circulaire

■ Diagramme de Kiviat

Représentations 3D

Outil de Visualisation Pajé

- ► Développé par LIG puis par l'UFSM (Brésil)
- Outil de visualisation générique conçu pour être :
 - Interactif
 - Possibilité d'intéragir avec les entités monitorées afin d'obtenir des informations à travers la fenêtre de visualisation
 - Scalable
 - Gestion d'un grand nombre d'entités (threads, processes)
 - Extensible
 - Possibilité d'ajouter de nouvelles fonctions/modules, de nouveaux types de traces, de nouvelles techniques de visualisation, etc.

Format de traces Pajé

- Format de trace Pajé, associé à l'outil
- Textuel, pas de sémantique : évenements décrivent le comportement des entités observées
- Types basiques :
 - Containers
 - State
 - Link
 - Variable
 - Event
- Possibilité de décrire le comportement d'un grand nombre de systèmes à partir de ce set d'entités seulement

Architecture

Modules

- Connectés entre eux par un graphe
- Possibilité de réorganiser l'ensemble pour ajouter de nouveaux composants
- Types de composants :
 - Trace file reader
 - Event decoder
 - Simulator
 - Storage controller
 - Filters
 - _

Deux types de visualisation

- Diagramme de Gantt
 - Le plus utilisé
 - Permet de représenter les intéractions entre les entités
 - Agrégation temporelle
 - Agrégation hiérarchique
- Statistiques
 - Diagrammes circulaires
 - Synthèse de ce qui est représenté dans le diagramme de Gantt

Limites de l'outil

- Repose sur le Framework GNUSTEP
 - ObjectiveC, difficile à maintenir
 - Compilation de GNUSTEP peut être problématique
- Moteur graphique peu puissant
- Agrégation sommaire

Outil de visualisation ViTE

- Rendu visuel proche de Pajé mais moteur OPENGL -> plus fluide
- Ecrit en C++
- Non modulaire comme Pajé : un seul binaire mais possibilité de mettre des plug-ins
- Lit les formats de trace :
 - Pajé
 - Pajé extended
 - OTF (Vampir)
 - Tau
- Pas d'agrégation :(

Comparaison Pajé/ViTE

Outil de visualisation Triva

- Développé par Lucas Schnorr au cours de sa thèse
- Utilise le Framework Pajé : modules supplémentaires
- Permet 3 types d'affichage
 - Squarified Treemap
 - Graph View
 - 3D View (plus utilisé actuellement)
- Intégrations spatiale (somme) et temporelle (tranche de temps)
- Objectif: palier les failles du Gantt Chart, en particulier pour la représentation de la topologie

Algorithme de la tranche de temps

- Objectif : définir une structure hiérarchique reflétant comportement programme pour intervalle de temps donné
- Analyste : choisit une tranche de temps : deux marqueurs
 - Longueur peut être changée dynamiquement
- Entités
 - Etats
 - Variables
 - Liens
 - Evenements
- Intégration temporelle afin d'obtenir une valeur **moyenne**, ou, pour les évenements et les liens, somme

Treemap

- Résoudre le problème de scalabilité des représentations hiérarchiques
- Algorithme de Space-Filling
 - Divise l'espace dédié pour dessiner la hiérarchie, suivant l'organisation de l'arbre
 - Chaque entité possède une valeur = poids dans la hiérarchie
- Version squarified : ratio longueur/largeur proche de 1

Treemap (2)

- Organisation des entités sous forme de hiérarchie
- Agrégation Spatiale

Original Hierarchy	Aggregated by Machine	Aggregated by Cluster	Aggregated by Grid
B(5) E(4) B E(7)	B (7) E (11)	B(7) E(11)	
B (6) E (9)	B(6) E (12) B(5)	B (11) E (16)	B (18) E (27)
E (8)	E(4)		
P3	► M2	C2	

Graphe Topologique

- Introduire une notion de topologie non présente dans treemap
- Basé sur la visualisation de ressources
- Données agrégées en espace et en temps
- Idéal pour identifier les goulots d'étranglement
- Cependant, pas de space-filling

Représentation 3D

■ Plus utilisée aujourd'hui

Conclusion

- Multitude d'outils
- Multitude de formats
- Mais les principes restent les mêmes
- Techniques principales : Gantt, statistiques
- Principaux problèmes : représenter un nombre important de données
- Solutions? Agrégation, représentation topologique, optimisation de l'espace (treemap), techniques plus extravagantes?

