P vs. NP Question

1

Lecture outline

- Basic definitions:
 - P, NP complexity classes
 - the notion of a certificate.
- reductions, various types:
 - · Karp, Cook and Levin.
- Search vs Decision problems
 - · self-reducibility.
- NP-Complete languages and relations
 - NP Complete relation and self-reducibility.
- Introducing some NP-Complete problems.
- Showing R_{SAT} is NP-hard.

The P, NP complexity classes

Def: A Decision problem for a language

 $L \subseteq \{0,1\}^*$ is to decide whether a given string x belongs to the language L.

<u>Def</u>: <u>P</u> is the class of languages (decision problems) that can be recognized by a deterministic polynomial time Turing machine.

<u>Def</u>: <u>NP</u> is the class of languages that can be recognized by a non-deterministic polynomial-time Turingmachine.

3

Polynomially Verifiable Relations

<u>Def</u>: A binary relation R is <u>polynomially</u> bounded if:

$$(x,y) \in R \implies |y| \le |x|^{o(1)}$$

<u>Def</u>: R is <u>polynomial-time-decidable</u> if the corresponding language

$$L_R = \{ (x,y) : (x,y) \in R \}$$

is in P.

<u>Def</u>: A relation that is both polynomiallybounded & polynomial-time-decidable is <u>polynomially-verifiable</u>.

NP – Alternative Definition

<u>Def</u>: L is an <u>NP</u> language if there is a polynomially-verifiable relation R_L s.t.

 $X \in L \Leftrightarrow \exists w \text{ for which } (x,w) \in R_L$

w is a witness or a certificate.

Given a witness, membership can be verified in polynomial time.

P=NP implies: \exists witness \Rightarrow can be found efficiently

The NP game

The notion of a certificate can be thought of a game between a prover and a verifier

Given input X The all powerful prover sends a certificate for membership of X

Which the verifier can validate efficiently

NDTM ⇒ PolyVerRel

- Assume M_L is a non-deterministic TM that decides L within $P_L(|x|)$ steps
- Let R₁ be the set of all pairs (x,y) s.t.
 - -x is an input to M_L
 - \boldsymbol{Y} is an accepting, legal computation of \boldsymbol{M}_L on \boldsymbol{x}
- R_L is polynomially-verifiable
- $X \in L \iff \exists a \text{ computation } y \text{ s.t. } (x,y) \in R_L$

7

$PolyVerRel \Rightarrow NDTM$

- Let R_L be the relation for L, decided by a deterministic TM M*_L
- Def a <u>non</u>-deterministic TM M_L:
 - Guess y of proper polynomial size
 - Call M_L^* to check if $(x,y) \in R_L$
 - Accept x if M_L^* accepts (x,y)
- M_L is a non-deterministic TM for L

Search Problems

- <u>Def</u>: A <u>search problem</u> over a binary relation R finds, given x, a string y s.t. $(x,y) \in R$.
- Given a polynomially-verifiable relation R, define:

$$L(R) = \{ x : \exists y \text{ s.t. } (x,y) \in R \}$$

Clearly, finding a solution can only be harder than just deciding whether it exists.

Note: $NP = \{ L(R) : R \text{ is polynomially-verifiable } \}$

9

Example

Problem: 3-coloring graphs

<u>Instance</u>: An undirected graph G=(V,E)

Corresponding relation:

$$R_{3COL} = \{ (G, \varphi) : \varphi \text{ is a legal 3-coloring of } G \}$$

Decision problem: decide the language $L(R_{3COL})$, namely whether G is 3-colorable.

Search problem: find a 3-coloring of G.

Reductions

2.1

- The purpose of a <u>reduction</u> is to show that some problem is at least as hard as some other problem.
- If problem A <u>reduces</u> to problem B, then solving B implies solving A.

B is at least as hard as A, denoted $A \le B$

11

Cook Reduction

Def: An oracle for a problem Π is a magical apparatus that, given an input x to Π , returns $\Pi(x)$ in a single step.

<u>Def</u>: A <u>Cook reduction</u> from problem Π_1 to problem Π_2 is a polynomial-time TM for solving Π_1 on input x utilizing an oracle for Π_2 .

Denoted $\Pi_1 \leq_{\operatorname{cook}} \Pi_2$.

Karp Reduction

<u>Def</u>: A <u>Karp reduction</u> of L_1 to L_2 is a polynomial-time--computable function f s.t.

$$x\in L_1 \Longleftrightarrow f(x)\in L_2$$

Karp vs. Cook reductions

Cook reduction allows calling the oracle polynomially many times

Karp reduction allows only one call to the oracle, and only at the end of the computation.

- Cook reduction is stronger: given Karp reduction f,
 - On input x compute the value f(x).
 - Present f(x) to the oracle, and output its answer.
- There are (few) examples where a Cook reduction is known, while a Karp reduction is unknown.

14

 Π_2 oracle

Levin Reduction

2.1

<u>Def</u>: a <u>Levin reduction</u> from R_1 to R_2 is 3 polytime-computable functions f,g,h s.t.

- $-x \in L(R_1) \iff f(x) \in L(R_2)$
- $-(x,y) \in R_1 \implies (f(x), g(x,y)) \in R_2$
- $-\left(\ f(x),z\ \right)\in R_{2}\quad \Rightarrow\quad \left(\ x,\,h(x,z)\ \right)\in R_{1}$

f translates inputs of the first problem to inputs of the second problem, g & h transform certificates of one to the other.

Note: A Levin reduction implies Cook / Karp reductions of the corresponding search / decision problems.

15

Properties of Reductions

2.1

Claim: All reductions are transitive: A reduces to B, B to $C \Rightarrow A$ reduces to C

<u>Claim</u>: Cook reduction preserves poly-timecomputability So do Karp & Levin reductions

Proof: assume Π_1 Cook-reduces to the poly-time-comp problem Π_2 , and M is the reduction algorithm.

- $-\Pi_2$ -oracle can be simulated by a poly-time TM
- Replacing oracle queries in M by the simulation we get a poly-time TM that solves Π_1 .

Search vs. Decision Problem 1.4

Recall: for poly-time verifiable relation R, $L(R) = \{ x : \exists y \text{ s.t. } (x,y) \in R \}$

<u>Def</u>: A relation R is called <u>self-reducible</u> if solving the search problem for R is Cook-reducible to deciding the language L(R).

The search problem can be solved using the decision problem

17

An Example: 3-SAT

 $\underline{Input} \hbox{: } A \ CNF \ formula \ \phi \ with \ n \ variables.$

Task: find
$$\sigma : \{1,..,N\} \rightarrow \{0,1\}$$
 such that $\phi (\sigma(1),...,\sigma(n)) = True$

Corresponding relation:

$$\begin{split} R_{SAT} &= \{\; (\phi,\sigma): \phi \; (\; \sigma(1),\; ...,\; \sigma(n) \;) \; = \; T \; \} \\ SAT &= L(R_{SAT}) \end{split}$$

Note: Self-reducibility is a property of a <u>relation</u>, not a <u>language</u>.

[There are many relations R for which SAT = L(R).]

R_{SAT}

1.4.1

Thm: R_{sat}is Self-Reducible.

<u>Proof</u>: Assuming an oracle O for the language SAT = $L(R_{SAT})$. solving the <u>search problem</u>:

Query O whether $\phi \in SAT$. If not - stop.

- For k := 1 to n:
 - $\varphi_K (x_{k+1}, ..., x_n) := \varphi(\sigma_1, ..., \sigma_{k-1}, 1, x_{k+1}, ..., x_n)$
 - If $\varphi_k \in SAT$ (Query O), $\sigma_k = 1$ else $\sigma_k = 0$.

formula obtained by replacing

- $\sigma(1)=\sigma_1, ..., \sigma(n)=\sigma_n \text{ satisfies } \phi!$
- $x_1, ..., x_k$ with $\sigma_1, ..., \sigma_{k-1}, 1$

Self-reducibility of SAT

Given: $(\neg x \lor \neg y) \land (\neg x \lor z)$

$$(\neg x \lor \neg y) \land (\neg x \lor z)$$

x = 1: $(\neg 1 \lor \neg y) \land (\neg 1 \lor z)$

y = 1: $(\neg 1 \lor \neg 1) \land (\neg 1 \lor z)$

y = 0: $(\neg 1 \lor \neg 0) \land (\neg 1 \lor z)$

z = 1: $(-1 \lor -0) \land (-1 \lor 1) -$

Another Example: GI

<u>Graph Isomorphism</u>: given two (simple) graphs, are they isomorphic?

Natural relation: R_{GI} contains all ($(G1,G2),\pi$) s.t. π is an isomorphism between G_1 and G_2 .

Unlike SAT, GI is not known to be NP-Complete

in fact GI is unlikely to be NP-hard, as we'll see later in the course

21

R_{GI}

1.4.2

Thm: R_{GI} is Self-Reducible.

Proof: construct π piecemeal, 1 vertex at a time check if $u \in G_1$ can be mapped by π to $v \in G_2$:

- Connect both v and u to new n leaf-vertices to obtain 2 new graphs, G'₁ & G'₂
- If G'₁ isomorphic to G'₂ u must be mapped to v
- Iterating this deleting matching vertices determines the isomorphism, a vertex at a time

u and v are distinguished from other vertices so any isomorphism must map u to v

Non Self-Reducibility

- There are many non-self-reducible relations, but it is hard to find an NP language, whose "natural" relation is non-self-reducible.
- $L_{COMP} = \{ N : N = n1 \cdot n2 \}$ is poly-time decidable via a randomized algorithm. deterministic!
- The natural choice is

$$R_{COMP} = \{ (N, (n1,n2)) : N = n1 \cdot n2 \}$$

• It is widely believed the <u>search</u> of R_{COMP} is not poly-time-comp (factoring), which would imply it is not self-reducible (by a random algorithm)

NP-completeness

<u>Def</u>: A language L is <u>NP-Complete</u> if:

- 1. L∈NP.
- 2. \forall L' \in NP: L' \leq _{Karp}L.

 $\underline{Generalize} \colon L' \leq_{Cook} L$

<u>Def</u>: A relation R is <u>NP-Complete</u> if:

- 1. $L(R) \in NP$.
- 2. $\forall R'$ s.t. $L(R') \in NP$: $R' \leq_{Levin} R$.

25

NP-completeness & Self-Reducibility

2.2

<u>Thm</u>: For every relation R,

R is NP-Complete \Rightarrow R is self-reducible.

Proof: Let R be an NP-complete relation.

 R_{SAT} is NP-hard under Levin reduction (to be proven later), namely, there is a Levin reduction (f,g,h) from R to R_{SAT}

Since R is NP-complete, there exists a Karp reduction k from SAT to L(R).

NP-completeness & Self-Reducibility

Proof (continue): an algorithm that finds y s.t. $(x,y) \in \mathbb{R}$, using the Levin & karp reductions:

- 1. Query L(R)'s oracle whether $x \in L(R)$
- 2. If "no", announce: $x \notin L(R)$ $\sqrt{x \in L(R) \Rightarrow f(x) \in L(R_{SAT})}$
- 3. If "yes", translate x into a CNF formula $\phi = f(x)$ [using Levin's f function]
- 4. Compute a satisfying assignment $(\sigma_1,...,\sigma_n)$ for
 - ϕ show later $f(x,z) \in L(R_{SAT}) \Rightarrow (x,h(x,z)) \in L(R)$
- Translate $(\sigma_1,...,\sigma_n)$ to a witness $y=h(x, (\sigma_1,...,\sigma_n))$ [Using Levin's h function]

NP-completeness & Self-reducibility

<u>Proof</u> (continue): given a partial assignment $(\sigma_1,...,\sigma_i)$, compute a satisfying assignment $(\sigma_1,...,\sigma_n)$ for φ ,

- Trying to assign $x_{i+1}=1$:
- check L(R)'s oracle to see if $\phi(\sigma_1,...,\sigma_i,1,x_{i+2},...,x_n)$ is satisfiable [By translating the CNF formula $\phi(\sigma_1,...,\sigma_i,1,x_{i+2},...,x_n)$ to the language L(R), using the Karp function k]
- If the oracle answers "yes" assign $\sigma_{i+1}=1$, otherwise assign $\sigma_{i+1}=0$
- Iterate until i=n.

 $SAT \leq_{Karp} L(R)$ and since L(R) is NP-complete $\phi \in SAT \Leftrightarrow k(\phi) \in L(R)$

same as in self-reducibility of SAT. instead of SAT's oracle, use L(R)'s oracle28

NP-completeness & Self-reducibility

```
Given: (\neg x \lor \neg y) \land (\neg x \lor z)

(\neg x \lor \neg y) \land (\neg x \lor z)

x = 1: (\neg 1 \lor \neg y) \land (\neg 1 \lor z)

y = 1: (\neg 1 \lor \neg 1) \land (\neg 1 \lor z)

y = 0: (\neg 1 \lor \neg 0) \land (\neg 1 \lor z)

z = 1: (\neg 1 \lor \neg 0) \land (\neg 1 \lor z)
```

Bounded-Halting

2.3

Two Equivalent Definitions:

```
<u>BH</u> = { \langle \langle M \rangle, x, 1^t \rangle | \langle M \rangle is the description of a non-deterministic TM that accepts input x within t steps. }
```

```
<u>BH</u> = { \langle \langle M \rangle, x, 1^t \rangle | \langle M \rangle is the description of a deterministic TM, and \exists y \text{ s.t. } |y| \leq |x|^{O(1)} and M accepts (x,y) within t steps }
```

Bounded-Halting Cont.

Def: Bounded-Halting Relation

 $\underline{R}_{BH} = \{ (\langle <M>,x,1^t \rangle, y) | <M> \text{ is the }$ description of a deterministic machine, which accepts input (x,y) within t steps $\}$

Note: The length of y is bounded by t,

therefore it is polynomial in the length of the input $\langle M \rangle, x, 1^t \rangle$.

31

Bounded-Halting is NP-Complete

Claim: BH is NP-Complete.

Proof:

- BH∈NP (immediate from definition)
- Any L in NP, Karp-reduces to BH: Let L be in NP, then:
 - There exists a poly-time verifiable witness-relation R_L , recognized by M_L .
 - $-M_L$ accepts every (x,y) in p(|x|) steps
- The reduction transforms x to $\langle M_L, x, 1^{p(|x|)} \rangle$

Bounded-Halting is NP-complete

Proof (continue):

 $X \in L \Leftrightarrow$ Exists a polynomially bounded witness y such that $(x,y) \in R_L$

- \Leftrightarrow Exists a polynomial time computation of M_L accepting (x,y)
- $\Leftrightarrow \langle M_{I}, x, 1^{p(|x|)} \rangle \in BH$

 $(x,y) \leftrightarrow (\langle M,x,1t \rangle,y)$

Note: The reduction can be transformed into Levin reduction of R_L to R_{BH} with the identity function supplying the two missing functions.

22

Circuit-Satisfiability

2.4

<u>Def</u>: a <u>circuit</u> is a directed acyclic graph G=(V,E) with vertices labeled output, \land , \lor , \neg , x_1 , ..., x_m , 0 s.t.

- A vertex labeled x_i has in-degree 0
- A vertex labeled 0 (or 1) has in-degree 0
- The in-degree of vertices labeled \wedge , \vee is 2 (bounded fan-in)
- A vertex labeled ¬ has in-degree 1
- ∃a single sink (of out-degree 0), of in-degree 1, labeled "output"

Circuit-Satisfiability

Given an assignment $\sigma \in \{0, 1\}^m$ to the variables $x_1, \dots, x_m, C(\sigma)$ will denote the value of the circuit's output

<u>Def</u>: <u>Circuit-Satisfiabilty</u> $CS = \{ circuit C : exists \sigma s.t. C(\sigma)=1 \}$

 $R_{CS} \equiv \{(C, \sigma) : C(\sigma)=1\}$

The value is defined by setting the value of each vertex to the natural value imposed by the Boolean operation it is labeled by

35

CS is NP-complete

2.4,2.6

Claim: CS is NP-Complete.

Proof:

- CS ∈ NP
 - $-R_{CS}$ is polynomialy-bounded: the witness σ is an assignment it has one bit for each x_i
 - -Given a pair (C, σ) evaluating one gate takes O(1) steps, therefore total evaluation time is polynomial in |C|.

CS is NP-complete

Proof (continue):

• CS is NP-hard (show a reduction from BH):

Given $\langle M,x,1^t \rangle$ the computation of M can be fully described by a t×t matrix in which entry (i,j) is:

- The content of cell j at time i (constant)
- An indicator to whether the head is on cell j at time i (1 bit).
- In case the head is indeed there: the state of the machine (O(log |M|)).

Each row of the matrix corresponds to a configuration of the machine

37

CS is NP-complete

Proof (continue):

- The transition between following configurations can be simulated by a series of t circuits C_t as shown later.
- The reduction constructs a circuit C' from the t × t C_t circuits, where the ith series is the input of the i+1 series.
- The input to the circuit is built of |x| vertices corresponding to the input x, and t-|x| "variable vertices".
- Finally, we add to C' the ability to identify that a certain configuration has reached <u>accepting</u> state, so that the circuit will output 1.
- It is shown that the whole circuit can be built using $O(n^5)$ gates.

• The j'th triple in the i'th configuration, is determined by the j-1, j, j+1 triples in the i-1 configuration. This can be described by boolean functions implemented by C₁.

CS is NP-complete

Proof (continue):

The accepting states can be encoded into a Boolean function, which will return 1, on input an accepting state.
 The output of the entire circuit is an OR over all the state outputs of all C_t circuits. This can be described by O(n² log n) gates.

R_{SAT} is NP-hard

2.5

Claim:

R_{SAT} is NP-hard under Levin reduction.

Proof:

Since Circuit-satisfiability is NP-Complete it suffices to show a reduction from R_{CS} to R_{SAT} :

The reduction maps a circuit C to a CNF formula φ_C , and an input y for the circuit to an assignment y'*to the formula and vice versa.

41

R_{SAT} is NP-hard

Proof (continue): Mapping circuit C to CNF formula φ_C

- Every vertex of the circuit-graph is mapped into a variable.
- For every such variable V_i we define a CNF formula φ_i that forces the variable to have the same value as the gate represented by V_i
- We define $\phi_c = \phi_1 \wedge ... \wedge \phi_n$

R_{SAT} is NP-hard

<u>Proof</u> (continue): mapping a gate to a formula:

For a \neg vertex ν with an in-edge from u:

$$\phi_i(v, u) = (u \vee v) \wedge (\neg u \vee \neg v)$$

For a \vee vertex ν with in-edges from u, w:

$$\begin{aligned} \varphi_i\left(v,\,u,\,w\right) &= \left(u \vee w \vee \neg v\right) \wedge \left(u \vee \neg w \vee v\right) \, \wedge \\ \left(\neg u \vee w \vee v\right) \wedge \left(\neg u \vee \neg w \vee v\right) \end{aligned}$$

For a \wedge vertex ν with in-edges from u, w:

$$\varphi_{i}(v, u, w) = (u \lor w \lor \neg v) \land (u \lor \neg w \lor \neg v) \land (\neg u \lor w \lor \neg v) \land (\neg u \lor \neg w \lor v)$$

• For the vertex marked *output* with an in-edge from *u*:

$$\varphi_{\text{output}}(\mathbf{u}) = \mathbf{u}$$

43

R_{SAT} is NP-hard

Proof (continue):

- $C \in CS \Leftrightarrow \phi_c \in SAT$: given an assignment to ϕ_c it's easy to construct an assignment to C, and vice versa
- Note: The reduction is poly-time the size of the CNF formula ϕ_c is linear in the size of C, therefore, it can be constructed in polynomial time

Bibliographic Notes

- Lecture notes for a course by Oded Goldreich.
- M. Bellare and s. Goldwasser, "The Complexity of Decision vs Search"
- M. Sipser, "The History and Status of the P vs NP Problems"
- M. Sipser, "Introduction to the Theory of Computation"