```
In [ ]: #1. Importe la base de datos a una base en Jupyter Notebook con pandas.
In [2]: import pandas as pd
         import matplotlib.pyplot as plt
         import seaborn as sns
         import numpy as np
In [8]: base= "C:/Users/i7/Downloads/Walmart.csv"
         data = pd.read_csv(base, sep=',')
In [9]: data.head()
Out[9]:
                       Date Weekly_Sales Holiday_Flag Temperature Fuel_Price
                                                                                  CPI Unemployment
            Store
               1 05-02-2010
                              1643690.90
                                                            42.31
                                                                     2.572 211.096358
         0
                                                  0
                                                                                               8.106
              1 12-02-2010
                                                  1
                                                                                               8.106
         1
                              1641957.44
                                                            38.51
                                                                      2.548 211.242170
         2
               1 19-02-2010
                              1611968.17
                                                  0
                                                            39.93
                                                                     2.514 211.289143
                                                                                               8.106
         3
               1 26-02-2010
                                                  0
                                                                     2.561 211.319643
                                                                                               8.106
                              1409727.59
                                                            46.63
               1 05-03-2010
                                                  0
                                                            46.50
                                                                     2.625 211.350143
                                                                                               8.106
                              1554806.68
```

In [11]: data

Out[11]:	;	Store	Date	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment
	0	1	05-02-2010	1643690.90	0	42.31	2.572	211.096358	8.106
	1	1	12-02-2010	1641957.44	1	38.51	2.548	211.242170	8.106
	2	1	19-02-2010	1611968.17	0	39.93	2.514	211.289143	8.106
	3	1	26-02-2010	1409727.59	0	46.63	2.561	211.319643	8.106
	4	1	05-03-2010	1554806.68	0	46.50	2.625	211.350143	8.106
	•••								
	6430	45	28-09-2012	713173.95	0	64.88	3.997	192.013558	8.684
	6431	45	05-10-2012	733455.07	0	64.89	3.985	192.170412	8.667
	6432	45	12-10-2012	734464.36	0	54.47	4.000	192.327265	8.667
	6433	45	19-10-2012	718125.53	0	56.47	3.969	192.330854	8.667
	6434	45	26-10-2012	760281.43	0	58.85	3.882	192.308899	8.667

6435 rows × 8 columns

```
In []: #2. Obtenga los descriptivos resumen de la base de datos e identifique a las variables numéricas y categóricas.
        #¿Hay algo que le llame la atención?
```

```
In [10]: print(data.dtypes)
         Store
                          int64
         Date
                         object
         Weekly_Sales
                        float64
         Holiday_Flag
                          int64
         Temperature
                        float64
         Fuel Price
                        float64
         CPI
                        float64
         Unemployment
                        float64
         dtype: object
```

```
In [ ]: #la variable date se encuentra como object se puede ajustar como fecha
```

```
In [15]: data['Date'] = pd.to_datetime(data['Date'], format='%m/%d/%Y')
```

```
# Ahora la columna "Date" debería estar en formato de fecha
         print(data.dtypes)
         Store
                                  int64
         Date
                         datetime64[ns]
         Weekly Sales
                                float64
         Holiday_Flag
                                  int64
                                float64
         Temperature
                                float64
         Fuel Price
                                float64
         CPI
         Unemployment
                                float64
         dtype: object
         #3. Evalúe si la base contiene datos perdidos
In [ ]:
         data_perdidos = data.isnull().sum()
In [17]:
In [18]: print(data_perdidos)
                         0
         Store
         Date
                         0
         Weekly Sales
         Holiday Flag
         Temperature
         Fuel Price
                         0
         CPI
                         0
         Unemployment
         dtype: int64
In [19]: total_cells = data.size
         total missing = data.isnull().sum().sum()
         missing_percentage = (total_missing / total_cells) * 100
         print(f"Porcentaje de valores perdidos: {missing percentage:.2f}%")
         Porcentaje de valores perdidos: 0.00%
         #No se registran datos perdidos
In [ ]:
         #4. Evalúe si alguna de las variables contiene datos atípicos (outliers)
         data.describe()
In [20]:
```

Out[20]:		Store	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment
	count	6435.000000	6.435000e+03	6435.000000	6435.000000	6435.000000	6435.000000	6435.000000
	mean	23.000000	1.046965e+06	0.069930	60.663782	3.358607	171.578394	7.999151
	std	12.988182	5.643666e+05	0.255049	18.444933	0.459020	39.356712	1.875885
	min	1.000000	2.099862e+05	0.000000	-2.060000	2.472000	126.064000	3.879000
	25%	12.000000	5.533501e+05	0.000000	47.460000	2.933000	131.735000	6.891000
	50%	23.000000	9.607460e+05	0.000000	62.670000	3.445000	182.616521	7.874000
	75%	34.000000	1.420159e+06	0.000000	74.940000	3.735000	212.743293	8.622000
	max	45.000000	3.818686e+06	1.000000	100.140000	4.468000	227.232807	14.313000

```
In [21]: plt.figure(figsize=(10, 6))
    sns.boxplot(data=data)
    plt.title('Variables regresion')
    plt.xlabel('Variables')
    plt.ylabel('Valores')
    plt.show()
```



```
In [30]: data['Unemployment'].plot.box()
Out[30]: <Axes: >
```



```
In [35]: sns.displot(data['Weekly_Sales'], color="green", kde=True)
    plt.show()
```



```
In [36]: sns.displot(data['Holiday_Flag'], color="green", kde=True)
    plt.show()
```



```
In [38]: sns.displot(data['Temperature'], color="green", kde=True)
    plt.show()
```



```
In [39]: sns.displot(data['Fuel_Price'], color="green", kde=True)
    plt.show()
```



```
In [40]: sns.displot(data['CPI'], color="green", kde=True)
    plt.show()
```



```
In [41]: sns.displot(data['Unemployment'], color="green", kde=True)
    plt.show()
```



```
In [42]: sns.regplot(y='Temperature',x='Weekly_Sales',data=data,line_kws={'color':'red'})
Out[42]: <Axes: xlabel='Weekly_Sales', ylabel='Temperature'>
```



```
In [48]: sns.regplot(y='Store',x='Weekly_Sales',data=data,line_kws={'color':'red'})
Out[48]: <Axes: xlabel='Weekly_Sales', ylabel='Store'>
```


In [50]: data.corr(numeric_only=True).style.background_gradient(cmap='coolwarm')

Out[50]:		Store	Weekly_Sales	Holiday_Flag	Temperature	Fuel_Price	СРІ	Unemployment
	Store	1.000000	-0.335332	-0.000000	-0.022659	0.060023	-0.209492	0.223531
	Weekly_Sales	-0.335332	1.000000	0.036891	-0.063810	0.009464	-0.072634	-0.106176
	Holiday_Flag	-0.000000	0.036891	1.000000	-0.155091	-0.078347	-0.002162	0.010960
	Temperature	-0.022659	-0.063810	-0.155091	1.000000	0.144982	0.176888	0.101158
	Fuel_Price	0.060023	0.009464	-0.078347	0.144982	1.000000	-0.170642	-0.034684
	СРІ	-0.209492	-0.072634	-0.002162	0.176888	-0.170642	1.000000	-0.302020
	Unemployment	0.223531	-0.106176	0.010960	0.101158	-0.034684	-0.302020	1.000000

```
In [54]: import statsmodels.api as sm
from statsmodels.formula.api import ols
regression = ols("Weekly_Sales ~ Store + Holiday_Flag + Temperature + Fuel_Price + CPI + Unemployment", data=data)
# Ajustar el modelo a los datos
results = regression.fit()
# Imprimir el resumen del modelo
print(results.summary())
```

OLS Regression Results

===========	:==========		=========
Dep. Variable:	Weekly_Sales	R-squared:	0.142
Model:	OLS	Adj. R-squared:	0.141
Method:	Least Squares	F-statistic:	176.7
Date:	Tue, 19 Mar 2024	<pre>Prob (F-statistic):</pre>	9.33e-209
Time:	23:33:11	Log-Likelihood:	-93861.
No. Observations:	6435	AIC:	1.877e+05
Df Residuals:	6428	BIC:	1.878e+05
Df Model:	6		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.996e+06	7.54e+04	26.461	0.000	1.85e+06	2.14e+06
Store	-1.539e+04	521.895	-29.486	0.000	-1.64e+04	-1.44e+04
Holiday_Flag	7.303e+04	2.59e+04	2.815	0.005	2.22e+04	1.24e+05
Temperature	-975.4019	375.974	-2.594	0.009	-1712.436	-238.367
Fuel_Price	9596.0739	1.48e+04	0.648	0.517	-1.94e+04	3.86e+04
CPI	-2319.4558	184.772	-12.553	0.000	-2681.670	-1957.241
Unemployment	-2.188e+04	3788.000	-5.776	0.000	-2.93e+04	-1.45e+04
==========	========			========	========	=======
Omnibus:		188.961	Durbin-	Watson:		0.130
Prob(Omnibus)	:	0.000	Jarque-	Bera (JB):		205.250
Skew:		0.435	Prob(JB):		2.69e-45
Kurtosis:		3.100	Cond. N	0.		2.19e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.19e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [55]: import statsmodels.api as sm
from statsmodels.formula.api import ols
```

```
regression = ols("Weekly_Sales ~ Store + Holiday_Flag + Temperature + CPI + Unemployment", data=data)
# Ajustar el modelo a los datos
results = regression.fit()
# Imprimir el resumen del modelo
print(results.summary())
```

OLS Regression Results

=========									
Dep. Variable	: :	Weekly_Sales	R-square	d:		0.141			
Model:		OLS	Adj. R-s	quared:		0.141			
Method:	L	east Squares	F-statis	tic:		211.9			
Date:	Tue,	, 19 Mar 2024	Prob (F-	statistic)	:	7.51e-210			
Time:		23:34:24	Log-Like	lihood:		-93861.			
No. Observati	lons:	6435	AIC:			1.877e+05			
Df Residuals:	:	6429	BIC:			1.878e+05			
Df Model:		5							
Covariance Ty	/pe:	nonrobust							
=========	:========			=======	.=======				
	coef	std err	t	P> t	[0.025	0.975]			
Intercept	2.032e+06	5.07e+04	40.114	0.000	1.93e+06	2.13e+06			
Store	-1.537e+04	521.337	-29.488	0.000	-1.64e+04	-1.44e+04			
Holiday_Flag	7.222e+04	2.59e+04	2.787	0.005	2.14e+04	1.23e+05			
Temperature	-929.0252	369.081	-2.517	0.012	-1652.547	-205.503			
CPI	-2345.9264	180.191	-13.019	0.000	-2699.160	-1992.693			
Unemployment	-2.22e+04	3755.948	-5.910	0.000	-2.96e+04	-1.48e+04			
=========				=======					
Omnibus:		188.685	Durbin-W	atson:		0.130			
Prob(Omnibus)):	0.000	Jarque-B	era (JB):		204.924			
Skew:		0.434	Prob(JB)	:		3.17e-45			
Kurtosis:		3.100	Cond. No	•		1.46e+03			
=========	:=======		========	=======		=======			

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.46e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
import statsmodels.api as sm
from statsmodels.formula.api import ols
regression = ols("Weekly_Sales ~ Store + Holiday_Flag + CPI + Unemployment", data=data)
# Ajustar el modelo a los datos
results = regression.fit()
```

```
# Imprimir el resumen del modelo
print(results.summary())
```

OLS Regression Results

===============			=========
Dep. Variable:	Weekly_Sales	R-squared:	0.141
Model:	OLS	Adj. R-squared:	0.140
Method:	Least Squares	F-statistic:	263.1
Date:	Tue, 19 Mar 2024	<pre>Prob (F-statistic):</pre>	1.02e-209
Time:	23:35:12	Log-Likelihood:	-93864.
No. Observations:	6435	AIC:	1.877e+05
Df Residuals:	6430	BIC:	1.878e+05
- 6			

Df Model: 4
Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept Store Holiday_Flag CPI Unemployment	2.004e+06 -1.535e+04 8.273e+04 -2444.4274 -2.379e+04	4.94e+04 521.499 2.56e+04 175.963 3703.784	40.528 -29.443 3.234 -13.892 -6.424	0.000 0.000 0.001 0.000 0.000	1.91e+06 -1.64e+04 3.26e+04 -2789.374 -3.11e+04	2.1e+06 -1.43e+04 1.33e+05 -2099.481 -1.65e+04
Omnibus: Prob(Omnibus) Skew: Kurtosis:):	198.096 0.000 0.442 3.150	Jarque-	Bera (JB):):		0.130 216.005 1.24e-47 1.35e+03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.35e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [58]: from statsmodels.stats.outliers_influence import variance_inflation_factor
```

```
In [59]: results.predict()
```

Out[59]: array([1279838.7887136 , 1362216.26679386, 1279367.54050364, ..., 636770.34491274, 636761.57235155, 636815.24048924])

In []: #Se toma como referencia el enfoque econométrico, tomando los elementos de p Value < 0.05 a fin de validar la significancia #de las variables.