AC32008 Theory of Computation Tutorial Sheet 1 - Sets, Languages, Proofs and DFAs

- 1. Let $A = \{ab, c\}$ and $B = \{c, ca\}$ be two languages over the alphabet $\Sigma = \{a, b, c\}$. Calculate
 - (a) AB;
 - (b) B^2A ;
 - (c) $A^2 \cup B^2$.
- 2. Describe deterministic finite automata which accept each of the following languages over $\Sigma = \{0, 1\}$. Give a transition diagram or a table showing the transition function.
 - (a) The set of all strings ending in 00.
 - (b) The set of all strings that do not contain 10 as a substring.
 - (c) The set of all strings with three consecutive 0's.
 - (d) The set of all strings that start and end with the same symbol.
 - (e) The set of all strings of length at most 4.
- 3. Suppose that $\hat{\delta}$ is the transition function over strings of a DFA. Prove, by induction over y, that for any input strings x and y, $\hat{\delta}(q, xy) = \hat{\delta}(\hat{\delta}(q, x), y)$.
- 4. Suppose that we have two DFAs, $M_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$ and $M_2 = \{Q_2, \Sigma, \delta_2, q_2, F_2\}$. Let M_1 accept the language L_1 and M_2 accept the language M_2 . We can construct a DFA $M = (Q, \Sigma, \delta, q_0, F)$ to recognise the language $L_1 \cup L_2$ in the following way:
 - (a) $Q = \{(r_1, r_2) | r_1 \in Q_1, r_2 \in Q_2\}$. That is, Q is the Cartesian product of Q_1 and Q_2 .
 - (b) δ is defined as follows: for each $(r_1, r_2) \in Q$ and each $a \in \Sigma$, let

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a)).$$

- (c) q_0 is the pair (q_1, q_2) .
- (d) $F = \{(r_1, r_2) | r_1 \in F_1, r_2 \in F_2\}$. That is, F is the Cartesian product of F_1 and F_2 .

Use this construction to describe (giving a transition diagram) DFAs accepting the following languages

- (a) The set of all strings over the alphabet $\{0,1\}$ that have an even number of 0's and one or two 1's.
- (b) The set of all strings over the alphabet $\{0,1\}$ that have an odd number of 0's and end with a 1.

- 5. (**Harder**) The string over alphabet $\{(,)\}$ is balanced if it has an equal number of ('s and)'s and if every prefix w of that string has at least as many ('s as)'s. Some examples of balanced strings are (), (()), ()(()), ()(()), while strings (() and)(() are not balanced. Let a set of strings <math>R be defined using the following 4 rules:
 - (a) ϵ is in R.
 - (b) If w is in R, then (w) is in R.
 - (c) If w and x are in R, so is wx.
 - (d) There are no other strings in R.

Prove by induction on the length of a string that every string in R is balanced.