## Algebra: Chapter 0 Exercises Chapter 2, Section 8

David Melendez

August 10, 2017

**Problem 8.1.** If a group H may be realized as a subgroup of two groups  $G_1$  and  $G_2$ , and

$$\frac{G_1}{H} \cong \frac{G_2}{H},$$

does it follow that  $G_1 \cong G_2$ ? Give a proof or counterexample

Solution. No. As a counterexample, take  $G_1 = D_6$ ,  $G_2 = C_6$ , and  $H = C_3$ . In this case, we have  $D_6/C_3 \cong C_2 \cong C_6/C_3$ , but  $D_6 \not\cong C_3$ .

**Problem 8.2.** Suppose G is a group, and  $H \subseteq G$  is a subgroup of index 2. Prove that H is normal in G.

Solution. Consider the function  $\varphi: G \to C_2$  defined by

$$\varphi(g) = \begin{cases} 0 & g \in H \\ 1 & g \notin H \end{cases}$$

To check that this is a homomorphism, suppose  $g_1, g_2 \notin H$ . In particular,  $g_2^{-1} \notin H$ , so

$$g_1H = g_2^{-1}H,$$

since there are only two left cosets of H in G, so

$$g_1g_2 \in H$$

and hence

$$\varphi(g_1g_2) = 0$$

$$= 1 + 1$$

$$= \varphi(g_1) + \varphi(g_2).$$

Clearly ker  $\varphi = H$ , so H is normal in G.

**Problem 8.7.** Let  $\langle A|\mathscr{R}\rangle$  resp.  $\langle A'|\mathscr{R}'\rangle$  be presentations for two groups G resp. G'; we may assume that A and A' are disjoint. Prove that the groups G\*G' presented by

$$\langle A \cup A' | \mathscr{R} \cup \mathscr{R}' \rangle$$

satisfies the universal property for the coproduct of G and G' in Grp.

Solution. Let G, G' and  $A, A', \mathcal{R}, \mathcal{R}'$  be as described above, let R resp. R' resp.  $\hat{R}$  be the normal closures of  $\mathcal{R}$  resp.  $\mathcal{R}' \mathcal{R} \cup \mathcal{R}'$ , and let H be any group. Consider the diagram below, in which we use the universal properties of free groups and quotient groups to construct two morphisms  $\tau: G \to G*G'$  and  $\tau': G' \to G*G'$ :



Here,  $\iota$  and  $\iota'$  are canonical inclusions (since A and A' are disjoint), j,  $\hat{j}$ , j' are the canonical inclusions into the free groups, u resp. u' are defined by  $\hat{j}\iota$  resp.  $\hat{j}\iota'$ , and p and p' are obtained by applying the universal property of free groups.

The morphisms  $\pi, \hat{\pi}$ , and  $\pi'$  are the canonical projections, q resp q' are defined by  $\hat{\pi}p$  resp.  $\hat{\pi}p'$ , and  $\tau$  and  $\tau'$  are obtained by invoking the universal property of quotient groups.

Finally,  $\varphi, \varphi'$  are any morphisms, and we propose that there exists a unique morphism  $\hat{\varphi}$  such that  $\hat{\varphi}\tau = \varphi$  and  $\hat{\varphi}\tau' = \varphi'$ . For this, we simply must prove that if we define  $\hat{\varphi}$  by those two relations, then  $\hat{\varphi}$  is well defined.

Hence, suppose  $\tau(w_1R) = \tau(w_2R)$ . We then have

$$\tau(\pi(w_1)) = \tau(\pi(w_2)),$$

and hence

$$q(w_1w_2^{-1}) = 0.$$

Note that

$$\ker q = \ker(\hat{\pi}p)$$

$$= \ker(p) \cup p^{-1}(\ker \hat{\pi})$$

$$= p^{-1}(\ker \hat{\pi})$$

$$= p^{-1}(\hat{R})$$

$$= R.$$

This tells us that  $w_1w_2^{-1} \in R$ , and so  $w_1R = w_2R$ ; hence  $\tau$  is injective. The same reasoning applies to  $\tau'$ . Since  $F(A \cup A')/\hat{R}$  is generated by the images of  $\tau$  and  $\tau'$ , this  $\hat{\varphi}$  is well-defined, and hence unique.

**Problem 8.12.** Prove 'by hand' (that is, by using Proposition 6.2), that if H, K are subgroups of G, then HK is a subgroup of G if H is normal.

Solution. Let  $h_1, h_2$  and  $k_1, k_2$  be in H and K, respectively. We then have

$$(h_1k_1)(h_2k_2)^{-1} = h_1k_1k_2^{-1}h_2^{-1}$$

$$= k_1(k_1^{-1}h_1k_1)(k_2^{-1}h_2^{-1}k_2)k_2^{-1}$$

$$= k_1h'h''k_1^{-1}$$

$$\in H.$$

Hence HK is a group by Proposition 6.2.

**Problem 8.13.** Let G be a finite commutative group, and assume |G| is odd. Prove that every element of G is a square.

Solution. Let  $g \in G$ . Since |G| is odd, |g| is also odd (by Lagrange's Theorem), so |g| + 1 is even. We then have

$$\left(g^{\frac{|g|+1}{2}}\right)^2 = g^{|g|+1}$$
$$= g$$

Hence g is a square.

**Problem 8.14.** Generalize the result of Exercise 8.13: if G is a group of order n, and k is an integer relatively prime to n, then the function  $G \to G$ ,  $g \mapsto g^k$  is surjective.

*Proof.* Suppose  $g \in g$ . If gcd(k, n) = 1, then by Lagrange's Theorem, we have gcd(|g|, k) = 1 as well. Hence there exist integers a and b such that a|g| + bk = 1. Let a, b be integers that satisfy this property. We then have:

$$g = g^{a|g|+bk}$$

$$= g^{a|g|}g^{bk}$$

$$= g^{bk}$$

$$= (g^b)^k$$

Hence every  $g \in G$  is in the image of the map mentioned above.

**Problem 8.15.** Let a, n be positive integers. Prove that n divides  $\phi(a^n - 1)$ , where  $\phi$  is Euler's  $\phi$ -function.

Solution. Let  $m = a^n - 1$ , and consider the group  $G = (\mathbb{Z}/m\mathbb{Z})^*$ . If a = 1 then the question is nonsense, and if n = 1 then clearly  $1|\phi(a-1)$ . Hence, assume that m > 1 and n > 1. We know that  $a \in G$  because  $a^n - 1 > a$  and  $\gcd(a, a^n - 1) = 1$ . We also know that

$$a^n \equiv 1 \mod m$$
.

Since x < n implies

$$1 < a \le a^x < a^n - 1$$
.

it then follows that |a| = n, and hence  $n \mid |G| = \phi(a^n - 1)$ .

**Problem 8.16.** Generalize Fermat's Little Theorem to congruences modulo arbitrary integers.

Solution.

**Euler's Theorem.** Let a, b be positive integers. Then

$$a^{\phi(n)} \equiv 1 \mod n$$
.

*Proof.* We have  $[a^{\phi(n)}]_n = [1]_n$  in  $(\mathbb{Z}/n\mathbb{Z})^*$ .

**Problem 8.17.** Assume G is a finite abelian group, and let p be a prime divisor of |G|. Prove that there exists an element in G of order p.

Solution. Let  $G_0 = G$ . We will soon define each  $G_k$  to be a quotient  $G_{k-1}/H$ , where H is a subgroup of prime order. We will proceed by (strong) induction on this subscript k, proving that, for  $0 \le k < \Omega(|G|)$ :

1. If  $\Omega(n)$  is the number of prime divisors of n including multiplicity, then

$$\Omega(|G_k|) = \Omega(|G|) - k.$$

- 2. There exists an element of  $|G_k|$  of prime order.
- 3. If  $g \in G_k$ , has prime order p, then there exists an element of G of order p.

Proof.

Base case (n=0): Let  $G_0 = G$ .

- 1.  $\Omega(|G_0|) = \Omega(|G|) = \Omega(|G|) 0$
- 2. Let  $g_0 \in G_0$ , and for some prime divisor  $q_0$  of  $|g_0|$ , let  $h_0 = g_0^{\frac{|g_0|}{q_0}}$ . We then have  $|h_0| = q_0$ , hence (2) holds.
- 3. Trivial.

**Induction** (n = k + 1): Suppose (1), (2), and (3) hold for  $n \le k$ . Let  $H_k = \langle h_k \rangle$  (which is normal because G is abelian), and define  $G_{k+1} = G_k/H_k$ .

1. We have:

$$\Omega(|G_{k+1}|) = \Omega\left(\left|\frac{G_k}{H}\right|\right)$$

$$= \Omega\left(\frac{|G_k|}{|H|}\right)$$

$$= \Omega\left(\frac{|G_k|}{q}\right)$$

$$= \Omega(|G_k|) - 1$$

$$= \Omega(G) - k - 1$$

as desired.

- 2. Same as the base case let  $q_{k+1}$  be a prime divisor of  $|G_{k+1}|$ , let  $g_{k+1} \in G_{k+1}$ , and define  $h_{k+1} := g^{\frac{|g_{k+1}|}{q_{k+1}}}$ . Then  $|h_{k+1}| = q_{k+1}$ .
- 3. Suppose  $gH_k \in G_{k+1}$  has order p, where p is a prime divisor of  $|G_{k+1}|$ . It then follows that  $(gH_k)^p = e$ , and so  $g^p = h_k^m$  for some integer m. Since  $e = (h^k)^x = g^{px}$  for some  $x = |h^k|$ , we then have  $|g^x| = p$  in  $G_k$ . By our inductive hypothesis, then, we have an element of G of order p, as desired.

The set  $\{q_0, \ldots, q_n\}$  where  $n = \Omega(G) - 1$  is the set of all prime divisors of |G|, since at each step of the process we have removed a prime divisor before choosing a new one.. At the end of this process, we have proven that G contains an element of order  $q_n$  for each n, and hence an element of order p for each prime divisor p of |G|.

Solution. [Alternative (better) proof]

Let p be any prime divisor of |G|. We will proceed by strong induction on |G|.

Base Case (|G| = p): Since |G| is of prime order, it is cyclic, and so any non-identity element will be a generator, i.e. of order p.

**Induction** (|G| = n): Suppose the statement holds for every group of order  $p \le k < n$ . Take some  $g \in G$ , and consider the group  $\langle g \rangle$ . If we take some prime divisor q of |g|, then  $h := g^{\frac{|g|}{q}}$  has order q. If q = p, then we're done. Otherwise, let  $H = \langle h \rangle$ , and consider the group G/H.

We know that  $\left|\frac{G}{H}\right| = \frac{|G|}{q} < |G|$ . Moreover, p divides |H|, so by our inductive hypothesis, there exists a  $gH \in G/H$  of order p. The same argument from part 3 of the inductive step of the other proof of this exercise applies here, giving us an element of G of order p, as desired.

**Problem 8.18.** Let G be an abelian group of order 2n, where n is odd. Prove that G has exactly one element of order 2.

Solution. Let g, h be distinct elements of G. If g and h both have order 2, then the subgroup generated by g and h equals  $\{e_G, g, h, gh\}$ , which has order 4. But 4 is not a divisor of |G| = 2n for n odd (otherwise n would be even), so g and h do not both have order 2. This does not necessarily hold if G is not commutative. A counterexample is the dihedral group  $D_6$ , where  $f \neq rfr^{-1}$  both have order 2.

**Problem 8.19.** Let G be a finite group, and let d be a proper divisor of |G|. Is it necessarily true that there exists an element of G of order d?

Solution. No. The group  $S_4$  has no elements of order 8, or more generally, of order greater than 4.