STAT 510: Spatiotemporal Stats Exploratory Modeling of SPT Data (Part 2)

Prof. Taylor-Rodriguez

Trend-Surface Estimation

Trend-Surface Estimation

An alternative to doing prediction based on deterministic methods is to use simple statistical models

The idea is to try to capture all ST dependence in the trend

So what is gained by doing this?

- ► Easily implementable
- Provides model based error estimate
- Provides model based prediction-error variance
- We can also use cv to assess performance

Trend-Surface Estimation

For simplicity assume we have all locations $\{\mathbf{s}_1, \dots, \mathbf{s}_m\}$ measured at all time points $\{t_1, \dots, t_T\}$, such that

$$Z(\mathbf{s}_i;t_j) = \beta_0 + \beta_1 X_1(\mathbf{s}_i;t_j) + \cdots + \beta_1 X_p(\mathbf{s}_i;t_j) + \epsilon(\mathbf{s}_i;t_j),$$

- $X_j(\cdot;\cdot)$'s represent spatially varying, temporally varying, and/or spatio-temporally varying predictors
- could also represent ST basis functions

Basis Functions

Under certain regularity conditions, it is possible to decompose curves or surfaces using a linear combination of *elemental basis functions*.

For example, a surface Y(s) in space can be represented as

$$Y(\mathbf{s}) = \alpha_1 \phi_1(\mathbf{s}) + \alpha_2 \phi_2(\mathbf{s}) + \dots + \alpha_r \phi_r(\mathbf{s})$$

- $\{\phi_k(\mathbf{s})\}\$ denoting a **known** set of basis functions (can have local or global support)
- ▶ $\{\alpha_k\}$ represent constants that weight the relative importance of each basis function

Note here the absence of error, we are not dealing with data but with the *process* function

Basis Functions

Basis Functions

Some examples of basis functions are

polynomials, splines, wavelets, sines and cosines

If $Y(\mathbf{s})$ is a random process, a statistical model would assume known basis functions $\{\phi_k(\mathbf{s})\}$ and random weights $\{\alpha_k\}$, with a data model, for example, given by

$$Z(\mathbf{s}) = Y(\mathbf{s}) + \epsilon(\mathbf{s})$$

= $\alpha_1 \phi_1(\mathbf{s}) + \alpha_2 \phi_2(\mathbf{s}) + \dots + \alpha_r \phi_r(\mathbf{s}) + \epsilon(\mathbf{s})$

Very cool... these models are easy to fit and can be super flexible

Trend-Surface Estimation: Example

Consider the NOAA daily Tmax data for July of 1993, which has m=138 locations, each measured every day of the month (i.e.,

T=31). Let's use as covariates:

 $X_0(\cdot;\cdot)=1$: Intercept

 $X_1(\cdot;\cdot)$: lon

 $X_2(\cdot;\cdot)$: lat

 $X_3(\cdot;\cdot)$: t

 $X_4(\cdot;\cdot)$: lon×lat

 $X_5(\cdot;\cdot)$: lon×t $X_6(\cdot;\cdot)$: lat×t $X_k(\cdot;\cdot) = \phi_{k-6}(\cdot\cdot\cdot)$: with

 $X_k(\cdot; \cdot) = \phi_{k-6}(\cdot \cdot \cdot)$: with $k = 7, \dots, 18$ spatial-only

basis functions

Trend-Surface Estimation:

Now, let's fit the model

$$Z(\mathbf{s}_i;t_j) = \beta_0 + \beta_1 X_1(\mathbf{s}_i;t_j) + \cdots + \beta_{18} X_{18}(\mathbf{s}_i;t_j) + \epsilon(\mathbf{s}_i;t_j),$$

using ordinary least squares

$$RSS = \sum_{i=1}^{T} \sum_{i=1}^{m} (Z(\mathbf{s}_{i}; t_{j}) - \hat{Z}(\mathbf{s}_{i}; t_{j}))^{2}$$

to find parameter estimates

$$\hat{\boldsymbol{\beta}} = (\hat{\beta}_0, \hat{\beta}_1, \cdots, \hat{\beta}_{18})' = (\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\mathbf{Z},$$

with
$$var(\hat{\boldsymbol{\beta}}) = \sigma^2(\mathbf{X}'\mathbf{X})^{-1} \approx \hat{\sigma}^2(\mathbf{X}'\mathbf{X})^{-1}$$
,

Trend-Surface Estimation: Fitting the model

Let's make the spatial basis fns with FRK::auto_basis()

Evaluate basis fns at locations of interest

Fit the model

Let's generate prediction grid


```
pred_grid \leftarrow expand.grid(lon = seq(-100, -80, length = 20),
                           lat = seq(32, 46, length = 20),
                           day = seq(4,31,by=5))
# generate basis fns at prediction points
S.pred <- eval basis(basis = G.
                     s = as.matrix(dplyr::select(pred_grid,lon,lat))) %>%
  as.matrix()
colnames(S.pred) <- paste0("B", 1:ncol(S.pred))</pre>
# append to basis prediction grid
pred_grid <- cbind(pred_grid,S.pred)</pre>
#qte predictions including 95% pred int.
preds <- predict(Tmax July lm,
                     newdata=pred grid,
                     interval = "prediction")
pred grid <- pred grid %>%
  bind_cols(as_tibble(preds))
```

Fitted Values

Standard Errors

Trend-Surface Estimation: Smoothing - Comments

- Prediction SE's don't show structure, but display undertainty increasing at domain boundaries (extrapolation)
- Predictions smoother than kernel predictions from before (due to smooth basis fns), but it's not always the case depends on predictors
- This model does not explicitly account for response measurement errors
- Variation from measurement error confounded with variation due to lack of fit
- Note that the regression predictor can be considered a type of kernel predictor

Trend-Surface Estimation: Parameter Estimation

Table 1:

	Dependent variable:
	z
lon	1.757 (1.088)
lat	-1.317 (2.556)
day	-1.216*** (0.134)
B1	16.647*** (4.832)
B2	18.528*** (3.056)
B3	-6.607** (3.172)
B4	30.545*** (4.370)
B5	14.739*** (2.747)
B6	-17.541*** (3.423)
B7	28.472*** (3.552)
B8	-27.348*** (3.164)
B9	-10.235** (4.457)
B10	10.558*** (3.327)
B11	-22.758*** ^(3.533)
B12	21.864*** (4.813)
lon:lat	-0.026 (0.028)
lon:day	-0.023*** (0.001)
lat:day	-0.019*** (0.002)
Constant	192.243** (97.854)
Observations	3,989
R^2	0.702
Adjusted R ²	0.701
Residual Std. Error	4.225 (df = 3970)
F Statistic	520.410*** (df = 18; 3970)
Note:	*p<0.1; **p<0.05; ***p<0.01

After fitting a model such as this, we need to check:

- non-constant error variance
- error (in)dependence (specially important with ST data)
- outliers and influential observations
- multicollinearity
- non-normality, etc. . .

Trend-Surface Estimation: Diagnostics Error dependence checks

```
library(modelr)
Tmax no 14 <- Tmax no 14 %>%
 add_predictions(Tmax_July_lm) %>%
 add_residuals(Tmax_July_lm)
#plotting spatial residuals last 7 days
ggplot(filter(Tmax_no_14, day %in% 24:31)) +
 geom_point(aes(lon, lat, colour = resid)) +
 facet_wrap(~ day, ncol=4) +
 col scale(name = "degF") +
 geom_point(data = filter(Tmax_no_14,day %in% 24:31 &
                             id %in% c(3810, 3889)),
             aes(lon, lat), colour = "black",
             pch = 2, size = 2.5) +
 theme bw()
#plotting temporal residuals 2 stations
Tmax no 14 %>%
 filter(id %in% c(3810, 3889)) %>%
 mutate(id=as.character(id)) %>%
 ggplot(aes(x=day,y=resid)) +
 geom_line(aes(group=id,colour=id)) +
 theme bw()
```

Residual Analysis: Spatial Residuals

Residual Analysis: Temporal Residuals

Error dependence checks (Semivariogram)

$$F = \left| \frac{\hat{\gamma}_e(\|\mathbf{h}_1\|; \tau_1)}{\hat{\sigma}^2} - 1 \right|$$

 \mathbf{h}_1 and τ_1 denote smallest possible lags in space and time, respectively.

reject if *F* large (determine what is *large* permuting ST locations)

Error dependence checks

Durbin-Watson Statistic

$$d = \frac{\sum_{t=2}^{T} (\hat{\mathbf{e}}_t - \hat{\mathbf{e}}_{t-1})^2}{\sum_{t=1}^{T} \hat{\mathbf{e}}_t^2}, \quad d \in [0, 4]$$

$$d=2\Rightarrow \mathsf{Indep},\ d\to 0\Rightarrow (\mathsf{+dep}),\ d\to 4\Rightarrow (\mathsf{-dep})$$

Moran's I

$$I = \frac{m \sum_{i=1}^{m} \sum_{j=1}^{m} w_{ij} (Z_i - \bar{Z})(Z_i - \bar{Z})}{\left(\sum_{i=1}^{m} \sum_{j=1}^{m} w_{ij}\right) \sum_{i=1}^{m} \sum_{j=1}^{m} (Z_i - \bar{Z})^2}$$

Effect of error dependence

On the bright side

▶ Regression coefficients and predictions are still unbiased

The not so great side

SE's and prediction SE's wrong, for ST data usually underestimated!!!

How can we fix it?

- ▶ Modeling error dependence: assume $\mathbf{e} \sim \mathbf{N_{mT}}(\mathbf{0}, \mathbf{C_e})$
- ► What challenges do you see with this fix? (more on Lab 02 and in Ch 4)

In-class Exercise

Under ST dependence, $\mathbf{Z} \sim N_{mT}(\mathbf{X}\boldsymbol{\beta}, \mathbf{C}_e)$. Note that the likelihood for \mathbf{Z} is maximized when minimizing

$$(Z - \mathbf{X}\beta)'C_e^{-1}(Z - \mathbf{X}\beta).$$

Derive the Generalized Least Squares Estimator for $oldsymbol{eta}$

Trend-Surface Estimation: Variable Selection

Options

- ▶ Best subsets (with leaps function)
- ► Stepwise and forward selection (with step function)
- Penalized regression (e.g., Ridge and Lasso)

Trend-Surface Estimation: Variable Selection Penalized Regression

$$Z(\mathbf{s}_i;t_j) = \underbrace{\beta_0 + \beta_1 X_1(\mathbf{s}_i;t_j) + \dots + \beta_{18} X_{18}(\mathbf{s}_i;t_j)}_{=\hat{Z}(\mathbf{s}_i;t_j)} + \epsilon(\mathbf{s}_i;t_j),$$

OLS estimates β by minimizing

$$RSS = \sum_{i=1}^{T} \sum_{j=1}^{m} (Z(\mathbf{s}_{i}; t_{j}) - \hat{Z}(\mathbf{s}_{i}; t_{j}))^{2}$$

Penalized approaches estimate β by minimizing

$$RSS + \lambda \sum_{j=1}^{p} |\beta_j|^q$$

Ridge: q = 1, Lasso: q = 2