

Instituto Federal de Educação, Ciências e Tecnologia – PB Campus Campina Grande

Curso: Bacharelado em Engenharia de Computação Alunos: Willian A. Ullmann Klein – Iury Coelho Disciplina: Técnicas de Prototipagem

Professores: Moacy Pereira da Silva, Fagner de Araújo Pereira

Referência Ponte H 255

1. Sobre esse Manual

Este manual apresenta as características do shield ponte H255 para arduíno. O shield ponte H255 é um dispositivo de hardware que pode ser utilizado para controlar um motor obedecendo os princípios de uma ponte H. Desta forma, com o shield ponte H255 é possível controlar o sentido de giro de um motor DC bem como a potência fornecida da fonte para o motor.

2. Introdução

Neste capítulo será descrito o esquemático do circuito

- O shield ponte H foi desenvolvido maneira que se possa ligar um motor DC e obter o controle da potência e do sentido de rotação do motor;
- Um simples código é capaz de interagir com a ponte H e obter o controle do motor;
- Este shield foi produzido pelo IFPB durante a disciplina técnicas de prototipagem;
- A confecção da placa e trilhas de circuitos foi feita através dos serviços oferecidos pelo laboratório de prototipagem;

2.1 Componentes de Hardware do Shield Ponte H255

O shield Ponte H 255 possui os seguintes componentes:

- 2x NPN BIPOLAR BC548 B TO-92
- 2x Transistor IRF4905
- 2x Transistor IRFZ44N
- 6x Resistores de 100Ω
- 6x Resistores de 10kΩ
- 1x Capacitor de 1μF

2.2 Operação do Circuito

- O circuito apresentado usa transistores MOSFET's e que operam em regime de corte e saturação. Durante a operação de corte, não existe corrente passando pelos transistor e existe tensão sobre o m1 e m2. Já durante a operação de saturação, existe corrente no transistor e a tensão sobre o motor é praticamente nula.
- Pode-se operar com o shield Ponte H255 tensões +Vcc de um valor máximo de 55V e corrente máxima de 49A.
- As entradas J3 (1,2,3,4) devem receber nivel lógica alto (5v) ou baixo(0V) para que seja possível alimentar os motores.
- De acordo com a configuração de nível lógico presente nas entradas de J3 podemos ter as seguintes respostas:

TABELA LÓGICA DE RESPOSTA DO SHIELD PONTE H 255						
ENTRADAS J3				MOTOR		
J3,1	J3,2	J3,3	J3,4	Ação Motor		
HIGH	LOW	HIGH	LOW	Sentido Horário		
HIGH	HIGH	HIGH	HIGH	Para o motor		
LOW	HIGH	LOW	HIGH	Sentido Anti Horário		

2.3 Esquemático do Circuito

3. Trilhas e Layer

• Legenda e Características Elétricas

Símbolo	Especificação	Parâmetro	Operação
Q3	IRFZ44N	Mosfet canal N	55V e -49A
Q4	BC548	Transistor bipolar NPN	Coletor 80V
Q5	IRF4905	Mosfet canal P	-55v e -74A
Q6	IRFZ44N	Mosfet canal N	55V e -49A
Q7	BC548	Transistor bipolar NPN	Coletor 80V
Q8	IRF4905	Mosfet canal P	-55v e -74A
R5	Resistor	Resistência	100 Ω
R7	Resistor	Resistência	100 Ω
R8	Resistor	Resistência	10 kΩ
R9	Resistor	Resistência	100 Ω
R10	Resistor	Resistência	10 kΩ
R11	Resistor	Resistência	100 Ω
R12	Resistor	Resistência	10 kΩ
R13	Resistor	Resistência	100 Ω
R14	Resistor	Resistência	10 kΩ
R15	Resistor	Resistência	100 Ω
R16	Resistor	Resistência	10 kΩ
J1	Pino gnd	Ground	-
J2	Pino motores	-	-
J4	Pino fonte	-	-

4. Esquemático 3D

5. Software

Nesta seção serão apresentadas exemplos de códigos para implementar o Shield ponte H255.

5.1 Esquema de montagem no arduino

5.2 ALGORITMO TESTE PWM

```
/* Número das portas do Arduino usadas para teste
*/
int IN3 = 6;
int IN4 = 7;
void setup()
  pinMode(IN3, OUTPUT);
  pinMode(IN4, OUTPUT);
void loop()
{
  int pwmValue = ∅
  for (pwmValue = 0; pwmValue< 256; pwmValue++)</pre>
    {
      analogWrite(IN3, pwmValue);
      digitalWrite(IN4, LOW);
      delay(300);
    }
    for (pwmValue = 255; pwmValue>= 0; pwmValue--)
```

```
{
    digitalWrite(IN3, LOW);
    analogWrite(IN4, pwmValue);
    delay(300);
}
```

5.3 ALGORITMO TESTE GIRO E DIREÇÃO DE MOTOR

```
/* Número dos pinos do esquema reproduzido no esquemático
*/
int IN1 = 4;
int IN2 = 5;
int IN3 = 6;
int IN4 = 7;
void setup()
{
 //definido pinos de saída
 pinMode(IN1, OUTPUT);
 pinMode(IN2, OUTPUT);
 pinMode(IN3, OUTPUT);
 pinMode(IN4, OUTPUT);
}
void loop()
 //Gira o Motor no sentido horário
 digitalWrite(IN1, HIGH);
 digitalWrite(IN2, LOW);
 delay(1000);
 //Para o motor
 digitalWrite(IN1, HIGH);
 digitalWrite(IN2, HIGH);
 delay(500);
 digitalWrite(IN3, HIGH);
 digitalWrite(IN4, LOW);
 delay(1000);
digitalWrite(IN3, HIGH);
 digitalWrite(IN4, HIGH);
 delay(500);
```