

All Updated GSFLOW Budget Components

LS = Land Surface

SZ = Soil Zone

UZ = Unsaturated Zone

SAT = Groundwater

STRM/LAKE = Streams and Lakes

Basin Budget

 $\Delta Storage = \Delta Dprst_S + \Delta SnowPweqv_S + \Delta Canopy_S + \Delta Imperv_S + \Delta Cap_S + \Delta Grav_S + \Delta Unsat_S + \Delta Sat_S \\ In = Precip_Q + NetBoundaryFlow2Sat_Q + BoundaryStreamFlow_Q$

Out = StreamOut_Q + ActualET_Q + NetWellFlow_Q

 $\label{eq:constraint} \textbf{ActualET}_\textbf{Q} = \text{SatET}_\textbf{Q} + \text{UnsatET}_\textbf{Q} + \text{CanopyEvap}_\textbf{Q} + \text{SnowEvap}_\textbf{Q} + \text{ImpervEvap}_\textbf{Q} + \text{DprstEvap}_\textbf{Q} + \text{CapET}_\textbf{Q} + \text{SwaleEvap}_\textbf{Q} + \text{LakeEvap}_\textbf{Q} \\ \textbf{Error} = \text{Storage Change} - \text{In} + \text{Out} \\ \textbf{Storage} = \text{Change} - \text{Change$

**Note: Terms denoted with the " Δ " symbol (e.g., Δ Cap_S) are change-in-storage terms that are not GSFLOW output variables but have been calculated externally in the *gsflowAnalyis.xlsx* utility using storage terms output from GSFLOW. Similarly, *ActualET_Q* is calculated externally in the *gsflowAnalysis.xlsx* utility as the sum of *ET* and *Evap* terms.

HRU Budget

```
 \label{eq:local_state} \begin{split} & \Delta Storage = \Delta Dprst\_S + \Delta SnowPweqv\_S + \Delta Canopy\_S + \Delta Imperv\_S + \Delta Cap\_S + \Delta Grav\_S \\ & \textbf{In} = Precip\_Q + Sat2Grav\_Q \\ & \textbf{Out} = CanopyEvap\_Q + SnowEvap\_Q + ImpervEvap\_Q + DprstEvap\_Q + CapET\_Q + SwaleEvap\_Q + SoilDrainage2Unsat\_Q \\ & + HortSroff2Stream\_Q + DunnSroff2Stream\_Q + Interflow2Stream\_Q + HortSroff2Lake\_Q + DunnInterflow2Lake\_Q \\ & \textbf{Error} = \Delta Storage - In + Out \end{split}
```

^{**}Note: Terms denoted with the " Δ " symbol (e.g., ΔCap_S) are change-in-storage terms that are not GSFLOW output variables but have been calculated externally in the *gsflowAnalyis.xlsx* utility using storage terms output from GSFLOW.

Soil-Zone Budget

$$\label{eq:local_section} \begin{split} & \textbf{AStorage} = \Delta \text{Cap_S} + \Delta \text{Grav_S} \\ & \textbf{In} = \text{Sat2Grav} _Q + \text{Infil2Soil_Q} \\ & \textbf{Out} = \text{DunnSroff2Stream_Q} + \text{Interflow2Stream_Q} + \text{DunnInterflow2Lake_Q} + \text{CapET_Q} + \text{SoilDrainage2Unsat_Q} \\ & \textbf{Error} = \Delta \text{Storage} - \text{In} + \text{Out} \end{split}$$

**Note: Terms denoted with the " Δ " symbol (e.g., ΔCap_S) are change-in-storage terms that are not GSFLOW output variables but have been calculated externally in the *gsflowAnalyis.xlsx* utility using storage terms output from GSFLOW.

Unsaturated-Zone Budget

$$\label{eq:local_problem} \begin{split} &\textbf{In} = SoilDrainage2Unsat_Q + Lake2Unsat_Q + Stream2Unsat_Q \\ &\textbf{Out} = RechargeUnsat2Sat_Q + UnsatET_Q \\ &\textbf{Error} = \Delta Unsat_S - In + Out \end{split}$$

**Note: Terms denoted with the " Δ " symbol (e.g., Δ Unsat_S) are change-in-storage terms that are not GSFLOW output variables but have been calculated externally in the *gsflowAnalyis.xlsx* utility using storage terms output from GSFLOW.

Saturated-Zone Budget

$$\label{eq:low2} \begin{split} &\textbf{In} = \text{RechargeUnsat2Sat}_Q + \text{NetBoundaryFlow2Sat}_Q + \text{LakeExchng2Sat}_Q + \text{StreamExchng2Sat}_Q \\ &\textbf{Out} = \text{Sat2Grav}_Q + \text{SatET}_Q + \text{NetWellFlow}_Q \\ &\textbf{Error} = \Delta \text{Sat}_S - \text{In} + \text{Out} \end{split}$$

**Note: Terms denoted with the " Δ " symbol (e.g., ΔSat_S) are change-in-storage terms that are not GSFLOW output variables but have been calculated externally in the *gsflowAnalyis.xlsx* utility using storage terms output from GSFLOW.

Evapotranspiration Budget

 $\textbf{ActualET_Q} = SatET_Q + UnsatET_Q + CanopyEvap_Q + SnowEvap_Q + ImpervEvap_Q + DprstEvap_Q + CapET_Q + SwaleEvap_Q + LakeEvap_Q + CapET_Q + CapET_Q + CapET_Q + CapET_Q + Ca$

^{**}Note: ActualET_Q is not a GSFLOW output variable but has been calculated externally in the gsflowAnalysis.xlsx utility as the sum of ET and Evap terms output from GSFLOW.