A

北京航空航天大学 2020-2021 学年 第一学期期末考卷

《 工科数学分析 ([)》 (A 卷)

班号	学号	姓名
主讲教师	考场	成绩

题 号	1	11	111	四	五.	六	七	总分
成绩								
阅卷人								
校对人								

2021年1月8日

选择题(每题4分,满分20分)

- 1. 曲线 $\begin{cases} x = 3 \int_1^t e^u du, \\ y = 4e^t + 5, \end{cases}$ 1 \(\text{ of } x \) 1 \(\text{ of }

- A. 5(e-1); B. $5(e^2-1)$; C. $5(e^2-e)$; D. 5e.
- 2. 设f(x)在[a,b]上连续, $F(x) = \int_a^x f(t)dt$,则下列说法错误的是().
- A. F(x)在[a,b]上连续;
- B. F(x)在[a,b]上可导;
- C. 若G(x)为f(x)的一个原函数,则F(x) G(x)在[a,b]上为常数;
- D. $\frac{d}{dx}F(2x) = f(2x)$.

- A. 0; B. 2π ; C. 4π ; D. 条件不足, 无法计算.
- 4. 下列广义积分中,收敛的是().
- A. $\int_0^1 \frac{\ln x}{x} dx$; B. $\int_2^{+\infty} \frac{\sin \frac{1}{x}}{\sqrt{x}} dx$; C. $\int_0^{+\infty} \frac{1}{(x-1)^2} dx$; D. $\int_{-\infty}^{\infty} e^{-x} dx$.
- 5. 设 $y_1 = e^x$, $y_2 = e^x + e^{2x}$, $y_3 = e^x + e^{3x}$ 是一个二阶非齐次线性微分方程的三个特解, 则此方程的表达式为().
- A. $y'' 3y' + 2y = e^x$; B. $y'' 4y' + 3y = 2e^x$;
- C. $y'' 6y' + 5y = e^x$; D. $y'' 5y' + 6y = 2e^x$.
- 二、 计算题 (每题 6 分, 满分 30 分)
- 1. 计算 $\lim_{x\to 1} \frac{x-1-\int_1^x e^{(t-1)^2} dt}{\sin^2(x-1)\ln x}$.

2. 计算
$$\lim_{n\to\infty} \left[\left(1+\frac{1}{n}\right) \left(1+\frac{2}{n}\right) \cdots \left(1+\frac{n}{n}\right) \right]^{\frac{1}{n}}$$
.

3. 计算
$$\int \frac{\arctan x}{x^2} dx$$
.

4. 计算
$$\int_{2}^{3} \frac{1}{\sqrt{x(1-x^2)}} dx$$
.

5. 设
$$f(x) = x + \sqrt{1 - x^2} \int_0^1 t f(t) dt$$
, 求 $f(x)$ 的表达式.

三、(本题 10 分)

设 $y'' + 2y' + y = 2e^{-x}x$,求此微分方程的通解.

四、(本题 10 分)

设直线y=ax 与曲线 $y=\sqrt{x}$ 所围成的图形面积为 A_1 ,由直线y=ax,x=1 和 $y=\sqrt{x}$ 所围成的图形面积为 A_2 . 假设a>1,当a 取何值时两图形的面积之和 A_1+A_2 达到最小.

五. (本题 10 分)

假设p > 0,讨论积分 $\int_{1}^{+\infty} \frac{\sin x \cos \frac{1}{x}}{x^{p}} dx$ 的敛散性. 若积分收敛,请指出是绝对收敛还是条件收敛.

六、 (本题 10 分)

设f(x)在[0,1]上连续可导,记 $F(x) = \int_0^x f(t)dt$,若 $\int_0^1 f(x)dx = 0$, $\int_0^1 F(x)dx = 0$. 证明: $(1)\int_0^1 xf(x)dx = 0$; (2)存在 $\xi \in (0,1)$,使 $f'(\xi) = 0$.

七、(本题 10 分)

证明:若有界函数f(x)在[a,b]上仅有间断点b,则f(x)在[a,b]上可积.