CSE2315 Slides week 3

Matthijs Spaan Stefan Hugtenburg

Algorithmics group

Delft University of Technology

4 March 2020

This lecture

- Grammars, derivations, parse trees
- Context-free Grammars (CFGs) and their formal definition
- Language of a grammar
- Designing CFGs
- Ambiguity
- Closure properties of context-free languages
- Chomsky Normal Form (CNF)
- Simplifying CFGs: elimination of ε and unit productions
- Push down automata (PDAs) and their formal definition
- Construction of a PDA from a CFG
- Construction of a CFG from a PDA (informally)
- Pumping lemma for context-free languages (informally)

Grammars

- A grammar describes the formal aspects of (natural) languages, which is called their syntax.
- Besides this there is also semantics, the study of the meaning of (natural) languages.
- A grammar describes what are correct "sentences" in a language. Here, a "sentence" is a program (in some programming language) or a logical formula, or a word from a language.

Applications of grammars

Originally: Linguistics and natural language (Noam Chomsky)

In computer science, they are used (for instance)

- to define programming languages,
- in compiler construction: recognizing the structure (parsing) of a program,
- to describe document formats, such as XML, and
- to describe communication protocols.

Grammars

(See also video Intro to Context-Free Grammars and Languages)

A grammar is a 4-tuple $G = (V, \Sigma, R, S)$, where:

- V is a finite set of variables,
- Σ is a finite set of terminal symbols,
- S is the starting variable ($S \in V$), and
- R is a finite set of rules of the form

$$x \rightarrow y$$
,

with $x \in (V \cup \Sigma)^+$ and $y \in (V \cup \Sigma)^*$.

Context-free grammars and context-free languages

Definition: A grammar $G = (V, \Sigma, R, S)$ is context free iff all rules in R are of the following form:

$$A \rightarrow x$$

where $A \in V$ and $x \in (V \cup \Sigma)^*$.

Definition: A language L is context free iff there exists a context-free grammar G such that L = L(G).

Example

Let $G=(V,\Sigma,R,S)$ with $V=\{S,A,B,C,D\},$ $\Sigma=\{a,b,c,d\}$ and R the following set of rules:

$$\begin{array}{ccc} S & \rightarrow & AB \mid DC \\ A & \rightarrow & \varepsilon \mid Aa \\ B & \rightarrow & \varepsilon \mid bBc \\ C & \rightarrow & \varepsilon \mid Cc \\ D & \rightarrow & \varepsilon \mid aDb \end{array}$$

Notation: " $X \to x \mid y$ " represents two rules, $X \to x$ and $X \to y$.

Derivations in grammars

If $x \to y$ is a rule, then from the word w = uxv the word z = uyv can be derived.

Notation: $w \Rightarrow z$ if z can be derived (immediately) from w.

Notation: If $w_1 \Rightarrow w_2 \Rightarrow ... \Rightarrow w_n$, this is written as $w_1 \stackrel{*}{\Rightarrow} w_n$.

Note: The * indicates 0 or more derivation steps are used, so we also have $w \stackrel{*}{\Rightarrow} w$.

Example

$$\begin{array}{ccc} S & \rightarrow & AB \mid DC \\ A & \rightarrow & \varepsilon \mid Aa \\ B & \rightarrow & \varepsilon \mid bBc \\ C & \rightarrow & \varepsilon \mid Cc \\ D & \rightarrow & \varepsilon \mid aDb \end{array}$$

Then:

$$S \Rightarrow D\underline{C} \Rightarrow \underline{D}Cc \Rightarrow a\underline{D}bCc \Rightarrow ab\underline{C}c \Rightarrow abc$$

and so $S \stackrel{*}{\Rightarrow} abc$.

Parse trees

Each derivation has a matching parse tree B: the root of B is S and for every application of a rule $A \to x_1x_2 \dots x_n$, with $A \in V$ and $x_1, x_2, \dots, x_n \in V \cup \Sigma$ there is a node in B with (only) the children x_1, x_2, \dots, x_n , from left to right.

The word produced through a parse tree is the word consisting of all the symbols that "hang" from the tree as leaves, from left to right.

Example parse tree

Parse tree

belonging to the derivation

$$S \Rightarrow D\underline{C} \Rightarrow \underline{D}Cc \Rightarrow a\underline{D}bCc \Rightarrow ab\underline{C}c \Rightarrow abc$$

Exercise

Suppose we have a CFG with the following rules:

$$\begin{array}{ccc} S & \rightarrow & AB \mid \varepsilon, \\ A & \rightarrow & aB, \\ B & \rightarrow & Sb. \end{array}$$

Give a derivation and a parse tree for the word *aabbbb*.

Solution

$$S \Rightarrow \underline{A}B$$

$$\Rightarrow a\underline{B}B$$

$$\Rightarrow a\underline{S}b\underline{B}$$

$$\Rightarrow a\underline{S}bSb$$

$$\Rightarrow a\underline{A}Bb\underline{S}b$$

$$\Rightarrow a\underline{A}Bbb$$

$$\Rightarrow aa\underline{B}Bbb$$

$$\Rightarrow aa\underline{S}b\underline{S}bbb$$

$$\Rightarrow aa\underline{S}bSbbb$$

$$\Rightarrow aab\underline{S}bbb$$

$$\Rightarrow aabbbb$$

Languages of grammars

Let $G = (V, \Sigma, R, S)$ be a grammar. Then the language L(G) generated by G is given by:

$$L(G) = \{ w \in \Sigma^* \mid S \stackrel{*}{\Rightarrow} w \}$$

Two grammars G_1 and G_2 are equivalent iff $L(G_1) = L(G_2)$.

Exercise

Design a context-free grammar for the (nonregular!) language

$$L = \{a^n b^n \mid n \ge 0\}$$

Solution

$$S \rightarrow \varepsilon \mid aSb$$

(See also video Context-Free Grammar Example)

Exercise: the language of palindromes

A palindrome is a word that stays the same when read left to right and right to left.

Examples: refer, noon, racecar.

Formally: Let Σ be an alphabet. Then

$$L_{pal} = \{ w \in \Sigma^* \mid w = w^R \}.$$

Exercise:

- 1 Give an inductive definition of L_{pal} .
- 2 Is L_{pal} a regular language?

Solution

- 1 Define L_{pal} inductively such that:
 - ▶ Basis: $\varepsilon \in L_{pal}$ and $\Sigma \subseteq L_{pal}$.
 - ▶ Inductive clause: For all $a \in \Sigma$: if $w \in L_{pal}$ then $awa \in L_{pal}$.
 - **Exclusion**: No other string is a word in L_{pal} .
- 2 No; use the pumping lemma.

Exercise

Give a context-free grammar for the language L_{pal} of palindromes over the alphabet $\{a, b\}$.

(see Sipser, Section 2.1, Designing Context-Free Grammars)

Solution

Follow the inductive definition:

$$S \rightarrow \varepsilon \mid a \mid b \mid aSa \mid bSb$$

Useful exercise: Give an inductive proof that this grammar does indeed generate L_{pal} . That is, prove that $L(G) = L_{pal}$, where G represents the above grammar.

Hint: Proving set equality entails proving \subseteq and \supseteq . Prove \subseteq by induction over the length of the derivation. Prove \supseteq by induction over the construction of a palindrome (use the inductive definition of L_{pal}).

Exercise

Give a context-free grammar for the following language:

$$L = \{a^k b^m c^n \mid k = m \text{ or } m = n\}.$$

For instance: $aaabbbcc \in L$ en $aabbbccc \in L$ but $aabbbccc \notin L$.

A solution

$$S \rightarrow AB_1 \mid B_2C$$

$$A \rightarrow \varepsilon \mid Aa$$

$$C \rightarrow \varepsilon \mid Cc$$

$$B_1 \rightarrow bB_1c \mid \varepsilon$$

$$B_2 \rightarrow aB_2b \mid \varepsilon$$

Leftmost and rightmost derivations

Definition: A derivation is a leftmost derivation if in every step of the derivation, each time the leftmost variable is rewritten. If in each step the rightmost variable is rewritten, we call it a rightmost derivation.

Theorem: Every word generated by a CFG has a leftmost derivation.

Note: This does not hold in general for (context-sensitive) grammars!

Parsing and ambiguity

(See also video Kinds of Context-Free Languages)

The sentence:

"They saw the girl with binoculars."

has two different, conventional readings. Besides this there are also two "strange" readings.

Check this!

Ambiguity

Definition: A CFG G is called ambiguous if there exists a $w \in L(G)$ with at least two different leftmost or two different rightmost derivations in G.

Or, equivalently, a G is ambiguous if there exists a $w \in L(G)$ with at least two different parse trees.

Important: Also in non-ambiguous grammars a word can have different parse trees, but not different leftmost derivations.

Example ambiguity (1)

Let $G = (V, \Sigma, R, E)$ be a CFG with $V = \{E\}$ and rules:

$$E \rightarrow a \mid b \mid c \mid (E) \mid E + E \mid E * E$$

The word $a + b * c \in L(G)$ has two different leftmost derivations:

$$\underline{E} \Rightarrow \underline{E} + E \Rightarrow a + \underline{E} \Rightarrow a + \underline{E} * E \Rightarrow a + b * \underline{E} \Rightarrow a + b * c,$$

$$\underline{E} \Rightarrow \underline{E} * E \Rightarrow \underline{E} + E * E \Rightarrow a + \underline{E} * E \Rightarrow a + b * \underline{E} \Rightarrow a + b * c.$$

Example ambiguity (2)

Equivalent unambiguous CFG $G' = (V', \Sigma, R', E)$ with $V' = \{E, T, F, I\}$ and R':

$$E \rightarrow T \mid E + T$$

$$T \rightarrow F \mid T * F$$

$$F \rightarrow I \mid (E)$$

$$I \rightarrow a \mid b \mid c$$

Make a leftmost derivation for a + b * c.

Exercise

Let *G* be a CFG with the following rules:

$$S \rightarrow AB \mid aaB$$

$$A \rightarrow Aa \mid a$$

$$B \rightarrow b$$

Show that G is ambiguous and construct an equivalent unambiguous grammar.

Solution

The word *aab* can be derived in two different ways:

- $2 \qquad S \Rightarrow aaB \Rightarrow aab$

An unambiguous grammar could be:

$$S \rightarrow aS \mid ab$$

An alternative solution:

$$S \rightarrow aB$$

 $B \rightarrow aB \mid b$

Inherent ambiguity

Definition: If every grammar for a context-free language L is ambiguous, then L is said to be inherently ambiguous.

Example: The language $\{a^kb^mc^n \mid k=m \text{ or } m=n\}$ is inherently ambiguous. However, proving this is complicated.

Exercise: closure properties

Question: Is the class of context-free languages closed under union, concatenation and star?

Solution

Yes! (See also video Facts About Context-Free Languages)

Proof: (union)

Let L_1 and L_2 be context-free languages. Then there exist CFGs $G_1=(V_1,\Sigma_1,R_1,S_1)$ and $G_2=(V_2,\Sigma_2,R_2,S_2)$ such that $L(G_1)=L_1$ and $L(G_2)=L_2$.

Suppose $V_1 \cap V_2 = \emptyset$ and $S \notin V_1 \cup V_2$ (rename variables where necessary).

Then $G = (V_1 \cup V_2 \cup \{S\}, \Sigma_1 \cup \Sigma_2, R, S)$ is a CFG that generates $L_1 \cup L_2$, where

$$R = R_1 \cup R_2 \cup \{S \rightarrow S_1 \mid S_2\}.$$

Chomsky Normal Form

(See also video Chomsky Normal Form)

Definition: A CFG $G = (V, \Sigma, R, S)$ is in Chomsky normal form (CNF) iff every rule in R is of one of the following forms:

- $1 S \rightarrow \varepsilon$
- $2 A \rightarrow a$
- $3A \rightarrow BC$

where $a \in \Sigma$ and $A, B, C \in V$ with B and C not equal to S.

Problematic rules:

- 1 Rules of the form $A \rightarrow xSy$
- 2 ε rules (of the form $A \to \varepsilon$)
- 3 Unit rules (of the form $A \rightarrow B$)
- 4 Rules of the form $A \rightarrow x$ with |x| > 2

Chomsky normal form

Theorem: Every CFG *G* is equivalent to some CFG in Chomsky normal form.

Proof idea: Let $G = (V, \Sigma, R, S)$ be a CFG. Transform G into an equivalent CFG in Chomsky normal form by performing the following steps:

- **1** Add a new start variable S_0 to V and the rule $S_0 \to S$ to R.
- **2** Eliminate all ε rules except possibly $S_0 \to \varepsilon$.
- 3 Eliminate all unit rules.
- 4 Convert all rules to the right form.

The resulting CFG is in Chomsky normal form and is also equivalent to G.

Note: First eliminate ε rules and only then the unit rules!

Algorithm for eliminating ε rules

While there are rules of the form $A \to \varepsilon$ (with A not equal to the start variable):

- Take such a rule $A \to \varepsilon$ and remove it from R.
- For all rules of the form $B \to xAy$: add the rule $B \to xy$ to R.
- For all rules of the form $B \to xAyAz$: add the rules $B \to xyAz$, $B \to xAyz$ and $B \to xyz$ to R.
- . . .
- If while doing this the rule B → ε would be created, only add it if it was not removed in an earlier stage.

Exercise

Eliminate the ε rules from the following context-free grammar:

$$\begin{array}{ccc} S & \rightarrow & Abb \mid B \\ A & \rightarrow & \varepsilon \mid BA \\ B & \rightarrow & A \mid AcB \end{array}$$

Solution

Unit rules

A unit rule is a rule of the form $A \rightarrow B$, where A and B are variables $(A, B \in V)$.

Algorithm for eliminating unit rules

While there are unit productions of the form $A \rightarrow B$ (with A and B being variables):

- Take a unit rule $A \rightarrow B$ and remove it.
- For all rules of the form $B \to x$, add the rule $A \to x$ to R, unless this is a unit rule that was previously removed.

Note: Rules of the form $A \rightarrow A$ can be removed immediately!

Exercise

Eliminate the unit productions from the following CFG:

Solution

$$S \rightarrow Abb \mid bb \mid BA \mid AcB \mid cB \mid Ac \mid c \mid \varepsilon$$

$$A \rightarrow BA \mid AcB \mid cB \mid Ac \mid c$$

$$B \rightarrow AcB \mid cB \mid Ac \mid c \mid BA$$

Algorithm for putting rules in the right form

Let $G=(V,\Sigma,R,S)$ be a CFG without ε or unit rules (with the exception of $S\to \varepsilon$).

Construct $G' = (V', \Sigma, R', S)$ as follows:

- **1** For every symbol $a \in \Sigma$, add a variable U_a to V.
- **2** For every $a \in \Sigma$, add the rule $U_a \to a$ to R.
- 3 For $n \geq 3$, replace every rule $A_0 \to x_1 \cdots x_n$ in R with the rules $A_0 \to x_1 A_1, A_1 \to x_2 A_2, \ldots, A_{n-2} \to x_{n-1} x_n$, with all $x_i \in V \cup \Sigma$ and A_1, \ldots, A_{n-2} being new variables.
- 4 In every rule $A \to x$ in R with |x| = 2, replace every occurrence of a terminal symbol $a \in \Sigma$ in x by U_a .

Example

Put the following rule into the right form:

$$S \rightarrow Abb$$

Result:

$$\begin{array}{ccc} S & \rightarrow & AX_1 \\ X_1 & \rightarrow & U_bU_b \\ U_b & \rightarrow & b \end{array}$$

Exercise

Suppose we have the following grammar *G*:

$$S \rightarrow SS \mid BA$$

$$A \rightarrow \varepsilon \mid a \mid Ab$$

$$B \rightarrow \varepsilon \mid b$$

Give a CFG in Chomsky normal form equivalent to G.

Solution

A possible equivalent CFG in CFN is given by $G' = \{V', \Sigma, R', S_0\}$ with $V' = \{S_0, S, A, B\}$ and where R' consists of the following rules:

$$S_{0} \rightarrow \varepsilon \mid SS \mid BA \mid a \mid AB \mid b$$

$$S \rightarrow SS \mid BA \mid a \mid AB \mid b$$

$$A \rightarrow a \mid AB \mid b$$

$$B \rightarrow b$$

G' is in Chomsky normal form and is equivalent to the CFG G.

Note: for this exercise, other than the start variable S_0 , no new variables were needed to put rules in the right form.

Pushdown automata

(See also video PDAs: Pushdown Automata)

Pushdown automata are a machine model for context-free languages.

Intuitively: A pushdown automaton is an NFA with a stack for memory.

Stack:

- Stack elements on top of each other.
- Stack operations: pop and push.
- Last-in-First-out (lifo) principle.

Note: A stack is memory with a limited form of access. Other forms of memory are quite possible.

Pushdown automata

Pushdown automata: formal definition

Definition: A pushdown automaton (PDA) is a 6-tuple

$$P = (Q, \Sigma, \Gamma, \delta, q_0, F)$$

where:

- Q a finite set of states,
- Σ and Γ are the input and stack alphabet, respectively (both of them finite),
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \times (\Gamma \cup \{\varepsilon\}) \to \mathscr{P}(Q \times (\Gamma \cup \{\varepsilon\}))$ is the transition function,
- q₀ is the start state,
- $F \subseteq Q$ is set of accept states.

Transition function of a pushdown automaton

Let $P=(Q,\Sigma,\Gamma,\delta,q_0,F)$ with $q,q'\in Q,\,a\in\Sigma\cup\{\varepsilon\}$ and $X,Y\in\Gamma\cup\{\varepsilon\}$:

If $(q', Y) \in \delta(q, a, X)$, then *P* can perform the following transition:

- 1 *P* in state *q* reads *a* as the first symbol of the word to be processed,
- \bigcirc *P* in state *q* reads *X* as the top symbol on the stack,
- \bigcirc P pops X (from the stack),
- P pushes Y (onto the stack),
- **5** P transitions to state q',

Transition graphs for pushdown automata

State descriptions

A state description is a triple $(q, w, Z_0 \cdots Z_n)$ with

- q a state,
- $w \in \Sigma^*$ and
- $Z_0 \cdots Z_n$ the stack.

Transition between state descriptions:

$$(q_1, aw, XZ_0 \cdots Z_n) \vdash_P (q_2, w, YZ_0 \cdots Z_n)$$
iff
 $(q_2, Y) \in \delta(q_1, a, X).$

Notation: \vdash^* for zero or more steps of \vdash .

The language of a pushdown automaton

Definition: The language L(P) accepted by a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is defined as:

$$w\in L(P)$$
 iff
$$\text{there exist }q\in F\text{ and }u\in\Gamma^*\text{ with }(q_0,w,\varepsilon)\vdash_P^*(q,\varepsilon,u).$$

Note: When accepting a word, the stack does not have to be empty. Of course the whole word must have been read.

Example of a pushdown automaton

The following PDA recognizes the language $\{a^nb^n \mid n \ge 0\}$:

Exercise

- Oonstruct a PDA P that accepts the language $\{ww^R \mid w \in \{a, b, c\}^*\}$.
- 2 Show that $abccba \in L(P)$.

Solution 1

Solution 2

$$(q_0, abccba, \varepsilon) \vdash (q_1, abccba, \$)$$

$$\vdash (q_1, bccba, A\$)$$

$$\vdash (q_1, ccba, BA\$)$$

$$\vdash (q_1, cba, CBA\$)$$

$$\vdash (q_2, cba, CBA\$)$$

$$\vdash (q_2, ba, BA\$)$$

$$\vdash (q_2, a, A\$)$$

$$\vdash (q_2, \varepsilon, \$)$$

$$\vdash (q_3, \varepsilon, \varepsilon).$$

Generalizing the transition function

Instead of popping one symbol from the stack and pushing another, you are allowed to pop a symbol from the stack and push an arbitrary string of symbols.

$$(q, aw, XZ_0 \cdots Z_m) \vdash (q', w, Y_0 \cdots Y_n Z_0 \cdots Z_m)$$
iff
$$(q', Y_0 \cdots Y_n) \in \delta(q, a, X).$$

$$\overbrace{q} \quad a, X \to Y_0 \cdots Y_n \quad q'$$

Exercise

Let $\Sigma = \{a, b\}$. Construct a PDA $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ such that

$$L(P) = \{ w \in \Sigma^* \mid n_a(w) = n_b(w) \}.$$

Here $n_a(w)$ is the number of as and $n_b(w)$ the number of bs in w.

Exercise: Show that indeed $bbaaab \in L(P)$.

Solution

PDAs recognize context-free languages

Theorem: A language L is context-free iff there exists a PDA P recognizing L.

Proof sketch: Prove both directions separately.

- If a language L is context free, then there exists a PDA recognizing L.
- ② If P is a PDA, then L(P) is context free.

For 1: Take a CFG and construct a PDA.

For 2: Take a PDA and formulate a CFG.

From CFG to PDA

(See also video Equivalence of CFGs and PDAs (part 1))

Idea: Alternate between: (1) processing input and (2) guessing the correct rule from the grammar on the stack until accepting is possible (or not).

From CFG to PDA: formally

Let $G = (V, \Sigma, R, S)$ be a CFG. Now define $P_G = (Q, \Sigma, \Gamma, \delta, q_s, F)$ such that:

$$Q = \{q_s, q_l, q_a\} \cup E \qquad \Gamma = \Sigma \cup V \cup \{\$\}$$

$$q_s : \text{ start state} \qquad F = \{q_a\}$$

$$\{(q_l, S\$)\} \qquad \text{if } q = q_s \text{ and } x = z = \varepsilon,$$

$$\{(q_a, \varepsilon)\} \qquad \text{if } q = q_l, x = \varepsilon \text{ and } z = \$,$$

$$\{(q_l, \varepsilon)\} \qquad \text{if } q = q_l \text{ and } x = z = a \in \Sigma,$$

$$\{(q_l, w) \mid A \to w \in R\} \qquad \text{if } q = q_l, x = \varepsilon \text{ and } z = A,$$

$$\emptyset \qquad \text{otherwise.}$$

NB: E is a set of auxiliary states (see Sipser).

Exercise

Fact: For every PDA P there is an equivalent P' that:

- 1 has exactly one accept state,
- clears the stack before reaching the accept state, and
- 3 always either pushes or pops a symbol, but never both simultaneously.

Exercise: Show this.

Hint: First ensure that in the original automaton the stack is never completely cleared and then introduce a state that clears the stack before the accept state is reached.

Context-free grammar for a PDA

Theorem: Let P be a PDA. Then L(P) is context-free.

Idea: We can assume that $P = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is a PDA that

- \bullet has exactly one accept state q_f ,
- clears the stack before the accept state is reached, and
- 3 always either pushes or pops a symbol, but never both simultaneously.

Construct a context-free grammar $G = (V, \Sigma, R, S)$ that for all $p, q \in Q$ has a variable A_{pq} such that for all $w \in \Sigma^*$:

$$A_{pq} \stackrel{*}{\Rightarrow} w \quad \text{iff} \quad (p,w,\varepsilon) \vdash^{*} (q,\varepsilon,\varepsilon)$$

Pumping lemma for context-free languages

Idea: If a word from a language is long enough, then there must be a rule in the derivation of that word that is applied more than once. This way the word can be "pumped up".

Variations on a theme

- Deterministic pushdown automata
- Chomsky hierarchy
- Turing machines
- Turing-Church Thesis

Chomsky hierarchy

Classification of grammars, corresponding classes of languages and machine models:

Type	Grammar	Languages	Machine model
0	unlimited	recursively enumerable	Turing machines
1	context-sensitive	context-sensitive	linear-bounded automata
2	context-free	context-free	PDAs (nondeterministic)
3	regular	regular	finite automata

(See also optional video Chomsky Hierarchy and Context-Sensitive Languages)