Notes on monotonicity of $\alpha \mapsto D_{\alpha,z}$

Anna Jenčová

January 10, 2024

Assume that z>1/2 and let p=2z and $q=\frac{2z-1}{2z}$ the dual parameter. Let $e:=s(\varphi)$ and $f:=s(\psi)$, and let $\sigma,\tau\in\mathcal{M}^+_*$ be such that $s(\sigma)=1-e,\,s(\tau)=1-f$. Put $\psi_0:=\psi+\tau,\,\varphi_0=\varphi+\sigma,$ then ψ_0,φ_0 are faithful positive normal functionals on \mathcal{M} and we have $h^\theta_\varphi=eh^\theta_{\varphi_0}=h^\theta_{\varphi_0}e$ and $h^\theta_\psi=fh^\theta_{\psi_0}=h^\theta_{\psi_0}f$ for any $\theta>0$. We will use the notations $L^p_L:=L^p(\mathcal{M};\varphi_0)_L,\,L^p_R:=L^p(\mathcal{M};\psi_0)_R$ and $L^p_n:=C_n(L^p_L,L^p_R)$.

1 Remarks for the case $\alpha > 1$

1. Let $1 < \alpha \le 2z$ and assume that $Q_{\alpha,z}(\psi \| \varphi) < \infty$, so that there exists a (unique) $y \in L^p(\mathcal{M})e$ such that $h_{\psi}^{\alpha/p} = y h_{\varphi}^{(\alpha-1)/p}$. Note that we may as well assume that $y \in fL^p(\mathcal{M})e$, so that

$$h_{\psi} = h_{\psi_0}^{\eta/q} y h_{\varphi_0}^{(1-\eta)/q} \in L_{\eta}^p,$$

where $\eta = (2z - \alpha)/(2z - 1)$ and $Q_{\alpha,z}(\psi \| \varphi) = \|y\|_{2z}^{2z} = \|h_{\psi}\|_{p,\varphi_0,\psi_0,\eta}^p$. In this way, we may use interpolation theory directly, without first assuming that φ and ψ are faithful.

2. Note that we always have $h_{\psi} = h_{\psi_0}^{1/q} h_{\psi}^{1/p} \in L_R^p$ and $\|h_{\psi}\|_{L_R^p}^p = \|h_{\psi}^{1/p}\|_p^p = \psi(1)$. Assume that $1 < \alpha_1 \le 2z$ is such that $Q_{\alpha_1,z}(\psi \| \varphi) < \infty$ and let $1 < \alpha < \alpha_1$. Then $\alpha = (1-\theta)\alpha_1 + \theta$ for some $\theta \in (0,1)$. Using the reiteration theorem as in [2], we obtain

$$Q_{\alpha,z}(\psi||\varphi) \le Q_{\alpha_1,z}(\psi||\varphi)^{1-\theta}\psi(1)^{\theta}.$$

Taking the logarithm and noting that $\theta = (\alpha_1 - \alpha)/(\alpha_1 - 1)$, we obtain directly that

$$D_{\alpha,z}(\psi||\varphi) \le D_{\alpha_1,z}(\psi||\varphi).$$

3. Note that elements of the form $xh_{\varphi_0}^{1/q}$ with $x \in L_p(\mathcal{M})$ an analytic element with respect to $h_{\psi_0}^{it} \cdot h_{\varphi_0}^{-it}$ are contained in $L_L^p \cap L_R^p$. Since the analytic elements are dense in $L_p(\mathcal{M})$ [3, Lemma 10.4], it follows that $L_L^p \cap L_R^p$ is dense in both L_L^p and L_R^p . I am not sure if this implies that $L_L^p \cap L_R^p$ is dense in $L_{\eta_1}^p \cap L_{\eta_2}^p$, though, as required by the usual form of the reiteration theorem. In any case, the result by Cwikel can be used.

2 The case $\alpha \in (0,1)$

We will show that we can use complex interpolation and Kosaki L_p -spaces also in the case $\alpha \in (0,1)$ if z > 1/2. The proof is easier in the case $z \ge 1$, which we prove first.

Proposition 1. Assume that $z \geq 1$. Then

- 1. $\alpha \mapsto \log Q_{\alpha,z}(\psi \| \varphi)$ is convex on (0,1)
- 2. $\alpha \mapsto D_{\alpha,z}(\psi \| \varphi)$ is monotone increasing on (0,1).

Proof. Put $\xi := h_{\psi}^{1/2} h_{\varphi}^{1/2} \in L_1(\mathcal{M})$. Let $\alpha \in (0,1)$ and put $\eta := \frac{z-\alpha}{2z-1}$, so that we have

$$0 \le 1 - \frac{q}{2} = \frac{z - 1}{2z - 1} < \eta < \frac{z}{2z - 1} = \frac{q}{2} \le 1.$$

Then

$$\xi = h_{\psi}^{\frac{\eta}{q}}(h_{\psi}^{\frac{\alpha}{2z}}h_{\varphi}^{\frac{1-\alpha}{2z}})h_{\varphi}^{\frac{1-\eta}{q}} = h_{\psi_0}^{\frac{\eta}{q}}(h_{\psi}^{\frac{\alpha}{2z}}h_{\varphi}^{\frac{1-\alpha}{2z}})h_{\varphi_0}^{\frac{1-\eta}{q}} \in L_{\eta}^p$$

and $Q_{\alpha,z}(\psi||\varphi) = ||\xi||_{p,\psi_0,\varphi_0,\eta}^p$. The proof can be finished by reiteration theorem, similarly as in [2, Prop. 0.1] and the remark 2. in Section 1 above.

Now we turn to the case 1/2 < z < 1. Note that a similar strategy as in the above proof works only for restricted values of α . We will need a bit more of the complex interpolation method. Let us denote $\Sigma := \Sigma(L_L^p, L_R^p) = L_L^p + L_R^p$ and let $\mathcal{F} := \mathcal{F}(L_L^p, L_R^p)$ be the set of functions $S := \{w \in \mathbb{C}, \text{ Re}(w) \in [0, 1]\} \to \Sigma$ that are

- (i) bounded, continuous and analytic in the interior of S (with respect to the norm in Σ),
- (ii) $f(it) \in L_L^p$, $f(1+it) \in L_R^p$, $t \in \mathbb{R}$,
- (iii) the maps $t \mapsto f(it) \in L_L^p$ and $t \mapsto f(1+it) \in L_R^p$ are continuous and

$$\max\{\sup_{t} \|f(it)\|_{p,\varphi_0,L}, \sup_{t} \|f(1+it)\|_{p,\psi_0,R}\} < \infty.$$

We will use the following functions, defined on the strip S:

$$f(w) = h_{\psi}^{\frac{w}{q} + \frac{1-w}{p}} h_{\varphi}^{\frac{1-w}{q} + \frac{w}{p}}, \qquad w \in S.$$
 (1)

Note that f(w) is an element in $L_1(\mathcal{M})$. The next lemma shows that f has values in Σ .

Lemma 1. We have $f \in \mathcal{F}$ and for each $\eta \in (0,1)$, we have

$$||f(\eta + it)||_{p,\varphi_0,\psi_0,\eta}^p = Q_{1-\eta,z}(\psi||\varphi).$$

Proof. For $\eta \in [0,1]$ we have

$$f(\eta+it) = h_{\psi}^{\frac{\eta}{q}} h_{\psi}^{i(\frac{1}{q}-\frac{1}{p})t} h_{\psi}^{\frac{1-\eta}{p}} h_{\varphi}^{\frac{\eta}{p}} h_{\varphi}^{i(\frac{1}{p}-\frac{1}{q})t} h_{\varphi}^{\frac{1-\eta}{q}} = h_{\psi_0}^{\frac{\eta}{q}} \Big(h_{\psi_0}^{i(\frac{1}{q}-\frac{1}{p})t} h_{\psi}^{\frac{1-\eta}{p}} h_{\varphi}^{\frac{\eta}{p}} h_{\varphi_0}^{i(\frac{1}{p}-\frac{1}{q})t} \Big) h_{\varphi_0}^{\frac{1-\eta}{q}}$$

By [3, Lemmas 10.1 and 10.2], $h_{\psi_0}^{it} \cdot h_{\varphi_0}^{-it}$ defines a strongly continuous group of isometries on $L_p(\mathcal{M})$ for every $1 \leq p \leq \infty$. This implies the property (iii) in the definition of \mathcal{F} . Also for $\eta \in (0,1)$, we see that $f(\eta + it) \in L_\eta^p$ and

$$||f(\eta+it)||_{p,\varphi_0,\psi_0,\eta}^p = ||h_{\psi_0}^{i(\frac{1}{q}-\frac{1}{p})t}h_{\psi}^{\frac{1-\eta}{p}}h_{\varphi}^{\frac{\eta}{p}}h_{\varphi_0}^{i(\frac{1}{p}-\frac{1}{q})t}||_p^p = ||h_{\psi}^{\frac{1-\eta}{p}}h_{\varphi}^{\frac{\eta}{p}}||_p^p = Q_{1-\eta,z}(\psi||\varphi).$$

Since L^p_{η} for each η is continuously embedded in Σ , this implies that f is Σ -valued. Since by Hölder $\|h^{\frac{1-\eta}{p}}_{\psi}h^{\frac{p}{p}}_{\varphi}\|_p \leq \psi(1)\varphi(1)$ for any η , f is also bounded. Note that as a function with values in $L_1(\mathcal{M})$, f is bounded, continuous on S and analytic in the interior. We now prove that the continuity and analyticity properties also hold in Σ (maybe this is already obvious, but I will give an argument similar to that in [1, Sec. 9.1,29.1] just for the case). Let $\mu_0(w,t)$ and $\mu_1(w,t)$ be the Poisson kernels associated with S. We then have

$$f(w) = \int_{\mathbb{R}} f(it)\mu_0(w,t)dt + \int f(1+it)\mu_1(w,t)dt.$$

The integrals are in $L_1(\mathcal{M})$, but since $t \mapsto f(it) \in L_L^p$ and $t \mapsto f(1+it) \in L_R^p$ are continuous and bounded in the respective norms, we see that the integrals also exist in Σ and since Σ is continuously embedded in $L_1(\mathcal{M})$, the above equality holds. This shows that $f: S \to \Sigma$ is continuous. Therefore, the expressions

$$\frac{1}{2\pi i} \int_{\Gamma} \frac{f(\xi)}{\xi - w} d\xi$$

for a suitable circle Γ around a point w in the interior of S are defined in Σ . Since f is analytic in $L_1(\mathcal{M})$, this expression is equal to f(w), hence f is analytic in the interior of S.

Proposition 2. Assume that 1/2 < z < 1. Then

1. $\alpha \mapsto \log Q_{\alpha,z}(\psi \| \varphi)$ is convex on (0,1)

2. $\alpha \mapsto D_{\alpha,z}(\psi \| \varphi)$ is monotone increasing on (0,1).

Proof. Let $\alpha_1, \alpha_2 \in (0,1)$ and let $\alpha := (1-\theta)\alpha_1 + \theta\alpha_2$. Put $\eta_i = 1-\alpha_i$, i=1,2 so that $\eta := 1-\alpha = (1-\theta)\eta_1 + \theta\eta_2$. By the reiteration theorem, $L^p_{\eta} = C_{\theta}(L^p_{\eta_1}, L^p_{\eta_2})$. Let f be the function given by (1). Then $f_1 : w \mapsto f((1-w)\eta_1 + w\eta_2) \in \mathcal{F}(L^p_{\eta_1}, L^p_{\eta_2})$ and by usual arguments, we have

$$||f(\eta)||_{p,\varphi_0,\psi_0,\eta} = ||f_1(\theta)||_{C_{\theta}(L^p_{\eta_1},L^p_{\eta_2})} \le (\sup_t ||f_1(it)||_{L^p_{\eta_1}})^{1-\theta} (\sup_t ||f_1(1+it)||_{L^p_{\eta_1}})^{\theta}.$$

Since $f_1(it) = f(\eta_1 + i(\eta_2 - \eta_1)t)$ and $f_1(1 + it) = f(\eta_2 + i(\eta_2 - \eta_1)t)$, we get from Lemma 1 that $Q_{1-\eta,z}(\psi||\varphi) \leq Q_{1-\eta_1,z}(\psi||\varphi)^{1-\theta}Q_{1-\eta_2,z}(\psi,\varphi)^{\theta}$.

This implies 1. Further, since $f(it) \in L_L^p$ and $||f(it)||_{L_L^p}^p = \psi(1)$, we obtain 2. similarly as in remark 2. of Section 1.

References

- [1] A. Calderón. Intermediate spaces and interpolation, the complex method. *Studia Mathematica*, 24(2):113–190, 1964.
- [2] F. Hiai, Monotonicity of $\alpha \mapsto D_{\alpha,z}$, (12/31/2023) notes.
- [3] H. Kosaki. Applications of the complex interpolation method to a von Neumann algebra: Non-commutative L_p -spaces. J. Funct. Anal., 56:26–78, 1984. doi:https://doi.org/10.1016/0022-1236(84)90025-9.