

INSTITUTO SUPERIOR DE ENGENHARIA DE COIMBRA

DEPARTAMENTO DE FÍSICA E MATEMÁTICA

ENGENHARIA INFORMÁTICA – 1º ano /2º Semestre ANÁLISE MATEMÁTICA I

Teste B

17-jul-2013 Duração:2h

Importante:

A resolução completa de cada pergunta inclui a justificação do raciocínio utilizado bem como a apresentação de todos os cálculos efectuados.

- 1. Justificando convenientemente as suas respostas, determine o valor lógico das seguintes afirmações:
 - a) $\sum_{n=1}^{\infty} \frac{1}{n^2 + n 2}$ é uma série de Mengoli convergente e a sua soma é igual a $3\frac{1}{2}$;
 - b) $\sum_{n=0}^{\infty} \frac{3^{2-2n}}{2^{n-1}}$ é uma série geométrica convergente e a sua <u>soma</u> é igual a 4;
 - c) Uma das séries $\sum_{n=2}^{\infty} \frac{3}{\sqrt[4]{n^3}}$, $\sum_{n=2}^{\infty} \frac{4n^2 1}{2 3n^2}$ é convergente.
- 2. Determine a seguinte primitiva $\int \frac{e^{4x-1}-3e^{2x}}{9+4e^{4x}} dx$ aplicando a técnica da decomposição e a primitivação imediata.
- 3. Considere a primitiva $\int \frac{x^3}{\sqrt{4+x^2}} dx$.
 - a) Calcule a primitiva dada utilizando a técnica de primitivação por substituição.
 - b) Utilize a técnica de primitivação por partes para resolver a primitiva.
 - c) Recorrendo à definição de primitiva prove que:

$$\int \frac{x^3}{\sqrt{4+x^2}} dx = \frac{(x^2-8)\sqrt{4+x^2}}{3} + C, C \in \Re.$$

- 4. Usando a primitivação de funções trigonométricas resolva a primitiva $\int \frac{xsen^3(x^2)}{sec(x^2)ta(x^2)} dx$.
- 5. Calcule **três** das seguintes primitivas:

a)
$$\int \frac{\sqrt{x(x-1)}}{\sqrt[3]{x}} dx$$

a)
$$\int \frac{\sqrt{x(x-1)}}{\sqrt[3]{x}} dx$$
 b) $\int \frac{x^2 - 4x + 6}{(x-1)(x^2 + x - 2)} dx$ c) $\int \frac{1}{2} sen(\sqrt{x}) dx$ d) $\int \frac{e^x}{3 - e^{-x}} dx$

c)
$$\int \frac{1}{2} sen(\sqrt{x}) dx$$

$$d) \int \frac{e^x}{3 - e^{-x}} dx$$

Cotação

1a	1b	1c	2	3a	3b	3c	4	5a	5b	5c	5d
1,5	1,5	1	2	2	2	2	2	2	2	2	2