Chapitre 6: Statistiques

21-03-17

Plan du cours

- A. Statistique descriptive
- B. Exercices
- C. Réflexions

A. Statistique descriptive

21-03-17

1. Introduction à la statistique descriptive

2. Définitions, classification variables & notations

3. Analyse descriptive d'une variable

21-03-17

- Introduction à la statistique descriptive
- 2. Définitions, classification variables & notations
- 3. Analyse descriptive d'une variable

1. Introduction

Statistique descriptive

Statistiques démographiques

- Pyramide des âges
- Répartition hommes / femmes

• •

Statistiques financières

- Indices des cours des actions
- Volume des transactions

•••

Statistiques économiques

- Prix à la consommation
- Indice du pouvoir d'achat

• • •

6

Entreprises

Prévisions des ventes...

Statistique descriptive

- Synthétiser un grand ensemble de données;
- Les représenter graphiquement;
- Les analyser;
- Les présenter à d'autres.

Objectif

Le but de la statistique descriptive est de :

Représenter et résumer

utilement, objectivement et clairement

les informations disponibles dans un grand ensemble de données

sous la forme de tableaux, de graphiques et/ou de mesures numériques.

21-03-17

- Introduction à la statistique descriptive
- 2. Définitions, classification variables & notations
- 3. Analyse descriptive d'une variable

2. Définitions, classification variables & notations

Définitions (1)

- **Population** : ensemble de toutes les personnes ou tous les faits sur lesquels porte l'étude
- Individu : chaque élément d'une population
- Echantillon : sous-ensemble de la population sur lequel on effectue l'étude

Définitions (2)

- Variable statistique : qualité, attribut ou caractéristique de la population à laquelle on s'intéresse
- Observation : valeur d'une variable pour un individu donné
- **Série statistique**: ensemble d'observations d'une variable sur un ensemble d'individus

Résumé

X1 X2 X3, ..., XN série statistique d'observations

21-03-17

Exemple

A l'aube des élections de mai 2014 en Belgique, la RTBF a effectué un sondage afin de connaître les intentions de vote en Wallonie.

Population:

Individu:

Echantillon:

Variable statistique:

Observation:

Série statistique :

Exemple

A l'aube des élections de mai 2014 en Belgique, la RTBF a effectué un sondage afin de connaître les intentions de vote en Wallonie.

Population: tous les électeurs wallons

Individu: chaque électeur wallon

Echantillon: 1000 électeurs wallons tirés au hasard

Variable statistique : l'intention de vote (parti)

Observation: l'intention de vote de Mr Dupont est: PS

Série statistique: PS, Ecolo, MR, MR, PS, MR, cdH, ...

- Introduction à la statistique descriptive
- 2. Définitions, classification variables & notations
- 3. Analyse descriptive d'une variable

Classification des variables

Type de variables

Variable quantitative si les valeurs qu'elle prend sont des nombres;

Variable qualitative sinon.

Variable qualitative (1)

Variable qui prend un nombre fini de valeurs possibles à caractère qualitatif

Exemple: Etat civil (célibataire, marié, divorcé, veuf, cohabitant)

Les valeurs possibles sont appelées modalités ou niveaux (parfois encore catégories).

Echelle de mesure :

- Ordinale s'il existe une relation d'ordre entre les catégories
- Nominale, sinon.

Variable qualitative (2)

Variable: Etat civil

- Modalités: célibataire, marié, divorcé, veuf, cohabitant
- > Variable qualitative nominale

Variable : appréciation des services téléphoniques de Belgacom

- Modalités : très mauvais, mauvais, satisfaisant, bon, très bon
- > Variable qualitative ordinale

Variables quantitatives(1)

Variable qui représente une **quantité** pouvant prendre un nombre fini ou infini de valeurs **numériques**.

Variable discrète: prend un nombre fini ou infini dénombrable de valeurs. Ces valeurs sont souvent des entiers.

Variable continue : prend un nombre infini non dénombrable de valeurs. Elle peut prendre n'importe laquelle des valeurs contenues dans un intervalle donné de nombres réels.

Variables quantitatives(2)

Exemples de variables quantitatives discrètes :

- Nombre d'enfants par famille
- Nombre de voitures par ménage
- Nombre d'étudiants en informatique en Europe

Exemples de variables quantitatives continues:

- Mesure du poids des enfants
- Mesure de la vitesse d'une voiture
- % de filles dans la filière informatique en Europe

Résumé

Notations

Notations (1)

- X, Y, Z...: noms symboliques pour désigner une variable (on dira : soit X la variable poids...)
- N : nombre d'observations d'une série statistique, effectif total
- X_i: observation ou valeur de la variable X prise par l'individu i (i= 1,... N)
- x_i : niveau ou modalité d'une variable qualitative ou quantitative discrète
- (X₁, X₂, X₃,... X_N) : série statistique pour la variable X

Notations (2)

∑ : signe de sommation

$$\sum_{i=1}^{N} X_i = X_1 + X_2 + X_3 + \dots + X_N$$

- Introduction à la statistique descriptive
- 2. Définitions, classification variables & notations
- 3. Analyse descriptive d'une variable

3. Analyse descriptive d'une variable

Analyse descriptive

- Objectif : résumer les caractéristiques d'une série statistique graphiquement ou par des chiffres
- Pour variables qualitatives :
 - Tableau de fréquences
- Pour variables quantitatives :
 - Tableau de fréquences
 - Tendance centrale
 - Dispersion
 - Distribution de la série

3.1. Analyse des variables qualitatives

Fréquence / effectif

- Soit une série statistique X : (X₁, X₂, ... X_N)
- Fréquence ou effectif d'une modalité (x_i) : nombre d'individus de la population ayant cette modalité. Notation: n_i .

$$\sum_{i}$$
 $n_i = N$ (effectif total)

- Fréquence relative d'une modalité : effectif de la modalité divisé par l'effectif total. f_i = n_i/N. (entre 0 et 1)
 - Peut être exprimée en Pourcentage : fréquence relative * 100

Tableau de fréquences

Tableau regroupant, pour chaque modalité ou niveau d'une variable, l'effectif et la fréquence relative de la modalité.

Exemple: soit la variable X, groupe sanguin

Modalités: A, B, AB, O

Série statistique : (A, A, O, B, A, AB, O, ...)

Exemple: tableau de fréquences pour le groupe sanguin

Groupe sanguin x _i	Nombre d'individus n _i	Fréquence relative f _i =n _i /N	Pourcentage d'individus
Α	451	0,45	45%
В	79	0,08	8%
AB	32	0,03	3%
0	438	0,44	44%
	N=1000	1,00	100

Population: les belges

Echantillon: 1000 individus prélevés au hasard dans les listes des

donneurs de la croix rouge

Représentation graphique

- Diagramme en colonnes (verticales ou horizontales)
- Diagramme à secteurs

Exemple

«L'alimentation de l'étudiant en première année d'enseignement supérieur et vivant en kot» A. Pierson

Représentez le fait de fumer auprès des étudiants de sexe masculin interrogés.

Codage:

Col 2	M	Masculin	
	F	Féminin	
Col 7	0	Non fumeur	
	1	1 à 10 cig / jour	
	2	11 à 20 cig / jour	
	3	Plus de 20 cig / jour	

<u>Contexte</u>: population, **taille** de l'échantillon, variable(s) statistique(s) étudiées

- L'enquête s'est déroulée auprès de la population étudiante en première année d'enseignement supérieur et vivant en kot.
- La population étudiée inclut les deux sexes et répond à une enquête concernant notamment la consommation de cigarettes.
- L'analyse porte sur 100 étudiants dont 37 de sexe masculin.

Tableau de distribution de fréquences

Répartition des étudiants masculins en fonction du nombre de cigarettes fumées par jour

Nombre de cigarettes	Nombre d'étudiants	Fréquence relative d'ét.	Pourcentage d'étudiants
Non fumeur	31	0,83	83%
1 à 10	5	0,14	14%
11 à 20	1	0,03	3%
Plus de 20	0	0,00	0%
Total	37	1,00	100%

Titre qui évoque le contenu du graphique :

+ titres sur les axes

Individu

(unité

statistique)

Variable

(d'intérêt)

Présentation d'un graphique

Attention on a interrogé beaucoup plus d'étudiantes que d'étudiants!

37

^{1 =} faible

^{2 =} modéré

Les pourcentages sont indispensables pour les comparaisons!

3 = intense

Si variable « ordonnée », on préfère souvent le diagramme à colonnes au diagramme à secteurs. L'ordre apparaît sur le diagramme à colonnes.

39 21-03-17

Si variable « non ordonnée » et nombre de modalités élevé, on préfère le diagramme à colonnes où celles-ci apparaissent triées par ordre décroissant.

40 21-03-17

Il faut éviter un diagramme à secteurs avec trop de secteurs, ils deviennent rapidement illisibles

Illustrations

42 21-03-17

Répartition des chevaux suivant leur race

Répartition du nombre d'enfants par femme

Répartition des femmes en fonction du nombre d'enfants en 1990 et en 2010

44 21-03-17

- Introduction à la statistique descriptive
- 2. Définitions, classification variables & notations
- 3. Analyse descriptive d'une variable

3.2. Analyse des variables quantitatives

Analyse des variables quantitatives

- 1. Variable quantitative discrète comportant peu de modalités
- 2. Variable quantitative discrète ou continue

Variables discrètes comportant peu de valeurs possibles

- Variable discrète comportant un nombre <u>fini</u> et <u>faible</u> de valeurs → représentée comme une variable qualitative :
 - Tableau de fréquences
 - Diagramme en colonnes (en barres)
 - +
 - Fréquence cumulée
 - Fréquence relative cumulée
 - Fonction de répartition de la variable

Relevé de températures (°C): 7, 8, 7, 8, 10, 10, 7, 8, 8, 8, 8, 10, 8, 10, 7, 8, 10, 10, 8, 8

20 observations

Tableau de fréquences

$\mathbf{x}_{\mathbf{j}}$	$\mathbf{n_{j}}$	$\mathbf{f_j}$	N_{j}	$\mathbf{F_{j}}$
7	4	0.2	4	0.2
8	10	0.5	14	0.7
10	6	0.3	20	1

$$N=20$$
 $\sum_{j=1}^{3} f_j = 1$

$\mathbf{x}_{\mathbf{j}}$	$\mathbf{n_{j}}$	$\mathbf{f_j}$	N_{j}	$\mathbf{F_{j}}$
7	4	0.2	4	0.2
8	10	0.5	14	0.7
10	6	0.3	20	1

Fréquence cumulée

• Fréquence cumulée ou effectif cumulé pour la jème

N_i: effectif cumulé pour le niveau "j"

$$\underline{\mathbf{N}}_{\mathbf{j}} = \mathbf{n}_{1} + \mathbf{n}_{2} + \dots + \underline{\mathbf{n}}_{\mathbf{j}}$$

$$\underline{\mathbf{N}}_{\mathbf{j}} = \sum_{\mathbf{j}=1}^{\mathbf{j}} \underline{\mathbf{n}}_{\mathbf{j}}$$

• nombre d'observations plus petites ou égales à xj dans la série statistique.

$\mathbf{x}_{\mathbf{j}}$	$\mathbf{n_{j}}$	$\mathbf{f_j}$	N_{j}	$\mathbf{F_{j}}$
7	4	0.2	4	0.2
8	10	0.5	14	0.7
10	6	0.3	20	1

Fréquence relative cumulée

réquence relative cumulée pour la j^{ème} (modalité :)

E_j: fréq. relative cumulée pour le niveau "j"

$$\underbrace{F_{i}}_{j} = f_{1} + f_{2} + \dots + \underbrace{f_{i}}_{j}$$

$$\underbrace{F_{i}}_{i=1} = \sum_{i=1}^{j} f_{i}$$

• Tréquence cumulée divisée par l'effectif total : F_i =

Variables discrètes et continues

- Pour variables quantitatives :
 - Tableau de fréquences (& histogramme)
 - Tendance et position
 - Dispersion
 - Distribution de la série

Regroupement des données par classe

Les nuisances sonores

Au-delà des 80 décibels, attention

Voici les résultats des 25 vols enregistrés au dessus de Bruxelles

la nuit-j:

90	319	26	94	75	25	61,65	66,86	63
142	60,93	68,45	77,87	119	51,63	75,33	183	67
136	98	42	75	131	43	43		

Regroupement en classes (intervalles)

- 2 observations dans la classe [0,40[
- 14 observations dans la classe [40;80]

Nombre de classes entre 5 et 10, voire 15.

Nuisances sonores

		Fréquence	Effectif	Fréquence relative
Classes	Effectif	relative	cumulé	cumulée
[0-40[2	0,08	2	0,08
[40-80[14	0,56	16	0,64
[80-120[4	0,16	20	0,8
[120-160[3	0,12	23	0,92
[160-200[1	0,04	24	0,96
[200-240[0	0	24	0,96
[240-280[0	0	24	0,96
[280-320[1	0,04	25	1,00
Total	25	1,00		

Définir les classes

- Pas de règle stricte, entre 5 et 10, voire 15 au maximum
 - Prendre, par exemple, un chiffre proche de \sqrt{N}

- Limites de classes valeurs observées
- Importance des valeurs « seuil » (80 décibels à partir desquels on dépasse la norme)

Représentations graphiques

- Histogramme
 - pour les effectifs et fréquences relatives
- Fonction de répartition
 - pour les fréquences cumulées

Histogramme

Répartition des vols de la nuit-j en fonction de leur volume sonore

Exemple 1

Répartition des points de statistique en juin 2010

59

Statistique descriptive

Exemple 2

Répartition des points de statistique et de logique en juin 2010

Histogramme

200 observations - 5 classes

10 classes

Histogramme

Distribution de fréquence de la variable :

Statistique descriptive

Résumer une série statistique quantitative

valeurs numériques

- Tendance centrale : mode, médiane, moyenne
- Quantiles: minimum, maximum, premier quartile, troisième quartile $q_p (0 \le p \le 1)$
- Variabilité (dispersion) : étendue, écart interquartile, variance/écart-type, coefficient de variation (CV)

Mesures de tendance centrale

- Moyenne
- Médiane
- Mode classe modale

Moyenne

• Moyenne d'une série stat. : la plus connue MAIS

Médiane

- Médiane : valeur « milieu » de la série ordonnée
 - 50% des observations ≤ médiane
- Si N est impair, (N+1)/2ième donnée

• Si N est pair, point milieu entre observation N/2^{ième} et observation (N/2+1)^{ième}

Médiane

Si variable regroupée en classes (continue),

Déterminer la classe]a;b] qui contient la médiane

Min	25
Max	59
Etendue	34
Median	39

Mode

- Mode d'une série stat. : valeur qui est observée le plus fréquemment
 - Variable discrète : modalité qui apparaît le plus souvent (avec effectif maximum)
 - Variable continue : classe modale : classe la plus élevée de l'histogramme (effectif de classe maximum)

Calcul moyenne

Moyenne (X): somme des observations divisée par le nombre total d'observations

$$(X_1, X_2, ..., X_N)$$
 \Longrightarrow $\overline{X} = \frac{1}{N} \sum_{i=1}^{N} X_i$

20 relevé de températures (°C): 7, 8, 7, 8, 10, 10, 7, 8, 8, 8, 8, 10, 8, 10, 7, 8, 10, 10, 8, 8

$$\overline{X} = (7+8+7+8+10+...+8)/20 = 8,4$$
 °C

Calcul moyenne

$$\overline{X} = \frac{1}{N} \sum_{j=1}^{k} n_j x_j$$

où x_j = niveau (cas discret) ou centre de classe (cas continu)

$\mathbf{X}_{\mathbf{j}}$	$\mathbf{n_{j}}$	$\mathbf{f_j}$
7	4	0.2
8	10	0.5
10	6	0.3

$$\overline{X} = (7*4+8*10+10*6)/20 = 8,4$$
 °C

Tendance centrale: comparaison

Mode: effectif maximum

Médiane: 50% des observations,

pas d'influence de données aberrantes

Moyenne: toutes les observations interviennent,

influence de données aberrantes

Les trois ensemble :

indication sur la forme de la distribution

(graphe des fréquences relatives)

Comparaison des mesures de tendance centrale

A. Dupont, diapositive du cours de statistiques en Info2 - 2011

Autres mesures de tendance

Quantiles

```
Quantile q_p (0 \le p \le 1):
```

valeur de la variable telle que (100*p)% des observations sont inférieures à cette valeur

q₀: minimum (aucune valeur inférieure)

 $q_{0.25}$: premier quartile (25% valeurs inférieures)

q_{0.50} : médiane (50% valeurs inférieures)

 $q_{0.75}$: troisième quartile (75% valeurs inférieures)

q₁: maximum (toutes les valeurs sont inférieures)

Quartiles

Quartiles

Relevé de températures (°C):

7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 10, 10, 10, 10, 10, 10

Tableau de fréquences

$\mathbf{X_{j}}$	$\mathbf{n_{j}}$	$\mathbf{f_j}$	N_{j}	$\mathbf{F_{j}}$
7	4	0.2	4	0.2
8	10	0.5	14	$0.7 \stackrel{q_1 = q_{0,25} = 8}{\underset{q_2 = q_{0,50} = 8}{\longleftarrow}}$
10	6	0.3	20	1 $q_3 = q_{0,75} = 10$

$$N=20$$
 $\sum_{j=1}^{3} f_j = 1$

Statistique descriptive 76 21-03-17

Quartiles

Si variable regroupée en classes (continue),

Déterminer la classe]a;b] qui contient le quartile

Mesures de dispersion

But

Mesurer la dispersion ou variabilité d'une série statistique autour de sa tendance centrale

Etendue

• Etendue d'une série stat. : différence entre la plus grande et la plus petite valeur de la variable

Maximum - Minimum

- Utilise très peu d'informations
- Est sensible aux valeurs aberrantes
- Manque de « stabilité » : dépend uniquement de deux valeurs extrêmes (même s'il y a 1000 valeurs connues)

Ecart interquartile

Ecart interquartile: $q_{0.75} - q_{0.25}$

- Distance entre le 1er et le 3ième quartiles : longueur de l'intervalle contenant 50% des observations, les plus centrées
- Etendue des 50% des données « milieu » de la série
- Pas influencé par les valeurs extrêmes de la série

Box-plot

Graphique reprenant 5 quantiles, qui résume la structure des observations

- Indique si la distribution des observations est :
 - en forme de "cloche"
 - dissymétrique à droite / gauche
 - uniforme

- ...

82 21-03-17

Forme de la distribution

Statistique descriptive 83 21-03-17

Box-plot

Excel Box and Whisker Diagrams (Box Plots) | Peltier Tech Blog | Excel Charts

Bonne alternative à l'histogramme quand le nombre de données est faible; en effet,

- Est unique
- •Ne dépend pas d'un choix arbitraire de classes

Variance

Mesure de la dispersion par la moyenne des carrés des écarts entre les observations et la moyenne.

Pour la calculer :

- \Rightarrow 1. Ecart à la moyenne : $(X_i \overline{X})^2$
- \Rightarrow 2. Prendre en compte toutes les observations : $\sum_{i=1}^{N} (X_i \overline{X})^2$

$$\sum_{i=1}^{N} \left(X_i - \overline{X} \right)^2$$

3. Prendre la moyenne

$$V_X^2 = \frac{1}{N} \sum_{i=1}^N \left(X_i - \overline{X} \right)^2 = \frac{1}{N} \sum_{j=1}^k n_j \left(x_j - \overline{X} \right)^2$$

85 21-03-17

Variance et écart-type

Pour un échantillon, formule de la variance :

$$S_X^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \overline{X})^2 = \frac{1}{N-1} \sum_{j=1}^{N} n_j (x_j - \overline{X})^2$$

Ecart-type:

Variance □ unités au carré!!!

Unités de base
$$\Longrightarrow$$
 écart-type population: $V_X = \sqrt{V_X^2}$

échantillon :
$$S_X = \sqrt{S_X^2}$$

21-03-17

Coefficient de variation

Variabilité relative ne dépendant pas des unités

$$CV_X = \frac{S_X}{\overline{X}}$$

Comparer la variabilité de plusieurs séries avec des unités différentes ou des ordres de grandeur différents!