

Search

Uninformed Algorithms

Introduction to Artificial Intelligence

Chandra Gummaluru University of Toronto

Version W22.1

Acknowledgements

- The following is based on material developed by many individuals, including (but not limited to):
 - Sheila McIlraith
 - Bahar Aameri
 - Fahiem Bacchus
 - Sonya Allin

Properties of Search Algorithms

- In the previous module, we claimed that the order in which the successors are explored (i.e., the removal order) changes the search algorithm's properties.
- In this module, we will consider three orderings:
 - first-in-first-out (breadth-first search / BFS)
 - first-in-last-out (depth-first search / DFS)
 - smallest cumulative cost first (uniform cost search / UCS)

Toy Search Graph for Uninformed Search

• To compare the effects of different orderings, we will run the corresponding algorithms on the following search graph (starting at A and looking for E):

We will use local path-checking and break ties alphabetically.

Breadth-First Search: Example

• In breadth-first search (BFS), the open is treated as a queue. In other words, paths discovered less recently are explored first.

ltr.	р	O
1	-	A
2	\boldsymbol{A}	AB, AC, AD
3	AB	AC, AD, ABC
4	AC	AD, ABC, ACB, ACD, ACE
5	AD	ABC, ACB, ACD, ACE, ADC, ADE
6	ABC	ACB, ACD, ACE, ADC, ADE, ABCD, ABCE
7	ACB	ACD, ACE, ADC, ADE, ABCD, ABCE
8	ACD	ACE, ADC, ADE, ABCD, ABCE, ACDE

ACE ADC, ADE, ABCD, ABCE, ACDE

Depth-First Search: Example

• In depth-first search (DFS), the open is treated as a stack. In other words, paths discovered more recently are explored first.

ltr.	р	0
1	-	A
2	Α	AB, AC, AD
3	AB	ABC, AC, AD
4	ABC	ABCD, ABCE, AC, AD
5	ABCD	ABCDE, ABCE, AC, AD
6	<i>ABCDE</i>	ABCE, AC, AD

Uniform-Cost Search Search: Example

• In uniform-cost search (UCS), the open is treated as a heap, ordered by path costs. In other words, the cheapest paths are explored first.

ltr.	р	\mathcal{O}
1	_	A 0 2
2	Α	AB 2, AC 4, AD 6
3	AB	ABC 3, AC 4, AD 6
4	ABC	AC 4, ABCE 4, ABCD 6, AD 6
5	AC	ABCE 4, ACB 5, ACE 5, ABCD 6, AD 6, ACD 7
6	ABCE	ACB 5, ACE 5, ABCD 6, AD 6, ACD 7

Uniform-Cost Search Search: Example (with Global Path Checking)

• It turns out that UCS satisfies the condition needed to implement global path checking (we will prove this later).

Itr. p	O
1 -	<i>A</i> 0
2 A	AB 2, AC 4, AD 6
3 <i>AB</i>	ABC 3, AC 4, AD 6
4 ABC	AC 4, ABCE 4, ABCD 6, AD 6
5 <i>AC</i>	ABCE 4, ACE 5, ABCD 6, AD 6, ACD 7
6 ABCE	EACE 5,ABCD 6,AD 6,ACD 7

Tree of Possible Paths: Example

• Recall that the generalized search algorithm explores a tree of possible paths.

- We wish to determine the properties of the various search algorithm in terms of b, d, ε , m and c^* , where:
 - b, m, and ε , be the branching factor, depth, and minimum edge weight of the tree
 - d and c^* denote the length and cost of the optimal solution

Properties of BFS

- Complete for $b < \infty$.
 - There are at most b^{I} paths of length, I.
 - All paths of length I are explored before any path of length I+1.
 - If the solution path, p, is the last path of length d to be explored, the maximum number of nodes generated before p is

$$1 + b + b^2 + \cdots + b^d + b(b^d - 1),$$

which is finite for $d < \infty$.

- **Optimal** if $c(\cdot)$ is constant.
 - Action costs are not used by the algorithm.
- Time Complexity: $O(b^{d+1})$.
 - The maximum number of nodes generated is $1 + b + b^2 + \cdots + b^d + b(b^d 1)$.
- Space Complexity: $O(b^{d+1})$.
 - The maximum number of nodes simultaneously on the open is $b(b^d 1)$.

Properties of DFS

- Complete for $b, m < \infty$.
 - If b and m are both finite, then the tree of possible paths contains a finite number of paths, namely, $1 + b + b^2 + \dots b^m$.
- Suboptimal.
 - Action costs are not used by the algorithm.
- Time Complexity: $O(b^m)$.
 - In the worst case, the search will need to explore all $1 + b + b^2 + \cdots + b^m$ paths.
- Space Complexity: O(bm).
 - Whenever a node is expanded, at most b other nodes, t_1, \ldots, t_b , will be discovered.
 - All successors of t_i must be explored before any successor of t_i is discovered.
 - The maximum number of times a node can be expanded is m.
 - Thus, the maximum number of nodes simultaneously on the open is at most bm.

Properties of UCS

- Complete for $b < \infty$.
 - We will prove this later.
- Optimal always.
 - We will prove this later.
- Time Complexity: $O(b^{c^*/\varepsilon+1})$.
 - We use the result from the BFS analysis and the fact that the maximum length of the solution, d, is c^*/ε .
- Space Complexity: $O(b^{c^*/\varepsilon+1})$.
 - We use the result from the BFS analysis and the fact that the maximum length of the solution, d, is c^*/ε .

Summary of Search Properties

• Below, we summarize the properties of BFS, DFS, and UCS:

Property	BFS	DFS	UCS
Complete	$b<\infty$	$b, m < \infty$	$b<\infty$
Optimal	constant c	never	always
Time Complexity	$O(b^{d+1})$	$O(b^m)$	$O(b^{c^*/arepsilon+1})$
Space Complexity	$O(b^{d+1})$	O(bm)	$O(b^{c^*/arepsilon+1})$

• Note that $d \le m$, and typically, $d \ll m$. Thus, generally speaking, BFS is time-efficient while DFS is space-efficient.

Iterative Deepening Depth-First Search

- Unlike with BFS, the completeness of DFS requires that *m* be finite. Otherwise, DFS can get stuck exploring an infinitely long path.
- If we knew *d* ahead of time, we could enforce a depth limit so that DFS only expands paths whose length is strictly less than *d*.
- Otherwise, we could start with a depth limit of $d_{max} = 0$, and repeatedly perform DFS, increasing the depth limit each time, until a solution is found.
- This is called iterative-deepening depth-first search (IDDFS).

Iterative-Deepening Depth-First Search: Example

• IDDFS is like performing DFS multiple times on a sub-tree of possible paths.

Iterative-Deepening Depth-First Search: Example

• IDDFS is like performing DFS multiple times on a sub-tree of possible paths.

ltr.	p	0
1	_	A
2	Α	AB, AC, AD
3	AB	AC, AD
4	AC	AD
5	AD	

Iterative-Deepening Depth-First Search: Example

• IDDFS is like performing DFS multiple times on a sub-tree of possible paths.

ltr. p	O	$d_{\max} = 2$	A	3
1 -	A		2	
	AB, AC, AD	(B)	\overline{C}	D
	ABC, AC, AD	\succ		\mathcal{H}_{a}
	CAC,AD	$\frac{1}{2}$	$\frac{4}{1}$ $\frac{1}{3}$	$\int_{6} 3\rangle^{2}$
	ACB, ACD, ACE, AL			
6 ACE	BACD, ACE, AD	(A) (C)	(A)(B)(D)(E)	(A)(B)(E)
		0		0 0 0

Properties of IDDFS

- Complete for $b < \infty$.
 - Each IDDFS iteration is a DFS with $m = d_{max}$.
 - Since d_{max} is finite, each iteration of IDDFS is complete.
- Suboptimal.
 - Action costs are not used by the algorithm.
- Time Complexity: $O(b^d)$.
 - Each IDDFS iteration is a DFS with $m = d_{max}$.
 - Thus, each iteration of IDDFS has a time-complexity of $O(b^{d_{\text{max}}})$.
- Space Complexity: O(bd).
 - Each IDDFS iteration is a DFS with $m = d_{max}$.
 - Thus, each iteration of IDDFS has a space-complexity of $O(bd_{max})$.

Summary of Search Properties

• Below, we summarize the properties of BFS, DFS, UCS, and IDDFS:

Property	BFS	DFS	UCS	IDDFS
Complete	$b<\infty$	$b, m < \infty$	$b<\infty$	$b<\infty$
Optimal	constant c	never	always	never
Time Complexity	$O(b^{d+1})$	$O(b^m)$	$O(b^{c^*/arepsilon+1})$	$O(b^d)$
Space Complexity	$O(b^{d+1})$	O(bm)	$O(b^{c^*/arepsilon+1})$	O(bd)

IDDFS seems to combine the best aspects of BFS and DFS. However, it is still
not an optimal algorithm, and thus cannot be used with non-uniform action costs

Uninformed versus Informed Algorithms

- All of the algorithms discussed thus far work by maintaining a list of discovered paths (i.e., \mathcal{O}), and iteratively explore them to find a goal:
 - BFS explores shorter paths first
 - DFS explores longer paths first
 - UCS explores cheaper paths first
- In all cases, the order depends only on the length or cost of the path.
- In practice, the actual states traversed by the paths can provide substantial information in determining which paths are "more promising".
- Since the aforementioned algorithms do not make use of such information, we say that they are **uninformed**.
- Algorithms that do make use of this information are then informed.