$\bullet y' = f(x,y) :$

$$f(tx, ty) = f(x, y) \ \forall t \in \mathbb{R} \Rightarrow u(x) = \frac{y}{x} \& y' = u'x + u$$

Bernoullijeva $y'(x) + p(x)y(x) = q(x)y^{\alpha}$; $\alpha \neq 1 \Rightarrow$ delimo z $y^{\alpha}, z(x) = y^{1-\alpha}(x) \& z'(x) = y'(x)y^{-\alpha}(x)$

Ricattijeva $y'(x) = a(x)y^2(x) + b(x)y(x) + c(x)$; $\alpha \neq 1 \Rightarrow$ najdi eno $y_p \& y(x) = y_p(x) + u(x)$

V splošnih enačbah 1. reda izrazi y', če lahko, sicer pa smiselno parametriziraj.

• $F(x, y, y', y'', \dots, y^{(n)}) = 0$:

$$F(x, y', \dots, y^{(n)}) = F(tx, ty, ty', \dots, ty^{(n)}) \forall t \in \mathbb{R}; \text{ Uporabimo } z(x) = \frac{y'(x)}{y(x)}, \text{ rešimo za } z(x)$$

• Eksistenčna izreka :

Lokalni: $(x_0, y_0) \in \mathbb{R}^2$, a, b > 0, $I = [x_0 - a, x_0 + a]$, $J = [y_0 - b, y_0 + b]$. Če je $f: I \times J \to \mathbb{R}$ zvezna & $\exists M > 0; \ \forall y_1, y_2 \in J | f(x, y_1) - f(x, y_2) | < M | y_1 - y_2 |, \ \exists ! \text{ rešitev } y' = f(x, y); y(x_0) = y_0 \text{ na okolici } x_0.$

Globalni : $(x_0, y_0) \in (a, b) \times \mathbb{R}$. Če je $f: (a, b) \times \mathbb{R} \to \mathbb{R}$ zvezna & $\exists k: (a, b) \to \mathbb{R}$; $\int_a^b k(x) dx < \infty$; &

 $\forall y_1, y_2 \in \mathbb{R}, \ \forall x \in (a,b): |f(x,y_1) - f(x,y_2)| < k(x)|y_1 - y_2|, \ \exists! \ \text{rešitev} \ y' = f(x,y); y(x_0) = y_0 \ \text{na} \ (a,b).$

• Jordanova forma :

 $A \in M_{n \times n}, p(\lambda) = det(A - \lambda I) = (\lambda - \lambda_1)^{k_1} \dots (\lambda - \lambda_s)^{k_s}$

 $\forall \lambda_i J_i \in M_{k_i \times k_i}$ št. celic = $dim(Ker(A - \lambda_i I))$. Če je $(A - \lambda_i I)^k = 0$ je največji blok v $J_i \times k$.

$$\operatorname{Za} n \leq 3 : \check{\operatorname{ce}} \text{ je } \lambda_i = a + ib, \text{ je } J_i = \begin{bmatrix} a & b \\ -b & a \end{bmatrix}, \ \check{\operatorname{ce}} \text{ je realna (za poljuben } n) \text{ pa } J_i = \begin{bmatrix} \lambda_i & 1 & 0 & 0 \\ 0 & \ddots & \ddots & 0 \\ 0 & 0 & \lambda_i & 1 \\ 0 & 0 & 0 & \lambda_i \end{bmatrix}$$

Lastni vektorji za λ_i : Določi bazo za $A - \lambda_i I$, dopolni do baze $(A - \lambda_i)^2$ itd. do k. vsi l. vektorji so stolpci matrike $P. A = PJP^{-1}$

$$e^{tJ} = diag(e^{tJ_1, \dots, e^{tJ_s}}); e^{tJ_i} = e^{\lambda_i t} \begin{bmatrix} 1 & t & \frac{t^2}{2} & \dots \\ 0 & 1 & t & \frac{t^2}{2} \dots \\ 0 & 0 & \ddots & \ddots \dots \\ 0 & 0 & 0 & 1 \end{bmatrix} \text{ \'e je } \lambda_i \in \mathbb{R} \text{ in } e^{tJ_{a\pm ib}} = e^{at} \begin{bmatrix} \cos(bt) & \sin(bt) \\ -\sin(bt) & \cos(bt) \end{bmatrix}$$

• Sistemi LDE s konstantnimi koeficienti : $\dot{\vec{x}}(t) = A\vec{x}(t) + \vec{f}(t)$

Najprej naredimo Jordanov razcep A. $\vec{x}_h(t) = Pe^{tJ}P^{-1}\vec{c}; \ \vec{c} \in \mathbb{R}^n$

$$\frac{\vec{d}(t) = \int e^{-tJ} P^{-1} \vec{f}(t) dt; \ \vec{x}_p(t) = P e^{tJ} \vec{d}(t) \ \& \ \vec{x}(t) = \vec{x}_h(t) + \vec{x}_p(t)}{\bullet \text{ LDE drugega reda} : a(x)y''(x) + b(x)y'(x) + c(x)y(x) = d(x)}$$

V H delu eno rešitev y_1 uganemo, drugo lin. neodv. pa dobimo z : $\begin{pmatrix} y_1(x) & y_2(x) \\ y_1'(x) & y_2'(x) \end{pmatrix} = e^{-\int \frac{b(x)}{a(x)} dx}$

V P delu uporabimo variacijo konstante

• LDE višjega reda s konst. koef.: $a_n y^{(n)}(x) + \ldots + a_1 y'(x) + a_0 y(x) = f(x)$

H del z nastavkom : $y(x) = e^{\lambda x}$ dobimo karakteristični polinom z ničlami $\lambda_1, \ldots, \lambda_n$

Če je λ_i k – kratna realna ničla k rešitvi prispeva člene $C_1e^{\lambda_ix}+C_2xe^{\lambda_ix}+\ldots+C_kx^{k-1}e^{\lambda_ix}$

Če je $\lambda_i = a \pm ib \ k$ – kratna kompleksna ničla k rešitvi prispeva člene

$$e^{ax}(A_1\cos(bx) + A_2\sin(bx) + A_3x\cos(bx) + A_4x\sin(bx) + \dots + A_{2k-1}x^{k-1}\cos(bx) + A_{2k}x^{k-1}\sin(bx))$$

Če je f(x) = P(x) polinom stopnje $n: y_p(x) = R(x)x^r$; r je krat. ničle 0 v kara. polinomu, stP = stR

Če je $f(x) = P(x)e^{ax}$ je $y_p(x) = R(x)x^re^{ax}$; r je krat. ničle a v kara. polinomu, stP = stR

Če je $f(x) = (P_1(x)\cos(bx) + P_2(x)\sin(bx))e^{ax}$ je $y_p(x) = e^{ax}x^r(R_1(x)\cos(bx) + R_2(x)\sin(bx));$

r je krat. ničle $a \pm ib$ v kara. polinomu, $st(R_1, R_2) = \max(stP_1, stP_2)$

Sicer variacija konstante

- LDE višjega reda s konst. koef. : $a_n x^n y^{(n)}(x) + \ldots + a_1 x y'(x) + a_0 y(x) = f(x)$ H del z nastavkom : $y(x) = x^{\lambda}$ dobimo karakteristični polinom z ničlami $\lambda_1, \ldots, \lambda_n$ Če je λ_i k – kratna realna ničla k rešitvi prispeva člene $C_1 x^{\lambda_i} + C_2 \ln(x) x^{\lambda_i} + \ldots + C_k \ln(x)^{k-1} x^{\lambda_i}$ Če je $\lambda_i = a \pm ib \ k$ – kratna kompleksna ničla k rešitvi prispeva člene $x^{a}(A_{1}\cos(b\ln(x)) + A_{2}\sin(b\ln(x)) + \dots + C_{2k-1}\ln(x)^{k-1}\cos(b\ln(x)) + C_{2k}\ln(x)^{k-1}\sin(b\ln(x)))$ Če je $f(x)=P(\ln(x))x^{\alpha}$ je $y_p(x)=Q(\ln(x))\ln(x)^kx^{\alpha};\ k$ je krat. ničle α v kara. polinomu, stP=stQSicer variacija konstante
- Variacijski račun: $F(y) = \int_a^b \varphi(x, y(x), y'(x)) dx; \ \varphi : \mathbb{R}^3 \to \mathbb{R} \ \& \ y : [a, b] \to \mathbb{R}, y(a) = A, y(b) = B$

V F nastopajo vsi členi: Iščemo ekstremalo y preko $\varphi_y = \frac{\partial}{\partial x}(\varphi_{y'})$. Da je ekstrem, preverimo posebej

Če imamo podan samo en robni pogoj, npr. y(a) = A: $\varphi_{y'}(b, y(b), y'(b)) = 0$

Če ni podan noben robni pogoj : $\varphi_{y'}(a,y(a),y'(a))=0 \ \& \ \varphi_{y'}(b,y(b),y'(b))=0$

Če je : $\varphi(x,y')$ rešujemo $\varphi_{y'}=C$ če je : $\varphi(y,y')$ pa $\varphi-y'\varphi_{y'}=C$

Če imamo robna pogoja in še pogoj : $\Phi(y) = \int_{0}^{b} \zeta(x,y(x),y'(x))dx = l \in \mathbb{R}$ rešujemo problem

p in q analitični v z_0 ju razvijemo po Taylorju in : $w(z) = \sum_{k=0}^{\infty} c_k (z-z_0)^k$, določimo lin. neodv. w_1 in w_2

 z_0 pol p stopnje največ prve stopnje in za q največ druge : $w(z) = z^{\rho} \sum_{k=0}^{\infty} c_k (z-z_0)^k$

 ρ_1, ρ_2 določimo tako, da primerjamo člene (nizke potence). Če $\rho_1 - \rho_2 \notin \mathbb{Z}$: $w_1(z) = z^{\rho_1} \sum_{k=0}^{\infty} c_k (z - z_0)^k$

&
$$w_2(z) = z^{\rho_2} \sum_{k=0}^{\infty} d_k (z - z_0)^k$$
. Če $\rho_1 = \rho_2 : w_1(z) = z^{\rho_1} \sum_{k=0}^{\infty} c_k (z - z_0)^k$.

Sicer za $Re(\rho_1) \ge Re(\rho_2)$ uporabimo nastavka iz 1. in če w_1 in w_2 nista lin. neodv. za w_2 uporabimo :

$$w_2(z) = w_1(z) \ln(z) + z^{\rho_2} \sum_{k=0}^{\infty} d_k (z-z_0)^k$$
. Rešitev je (v vsakem primeru) $w(z) = Aw_1(z) + Bw_2(z)$

• Besselova DE $x^2w'' + xw' + (x^2 - n^2)w = 0$

Uporabimo nastavek $w(x) = x^m \sum_{k=0}^{\infty} a_k x^k$ in najprej določimo m_1 in m_2 (kot pri kompleksnih DE)

Če je
$$n \notin \mathbb{N}_0$$
 sta $J_n(x) = \sum_{i=0}^{\infty} \frac{(-1)^i}{i!\Gamma(i+n+1)} (\frac{x}{2})^{2i+n} \& J_{(-n)}(x) = \sum_{i=0}^{\infty} \frac{(-1)^i}{i!\Gamma(i-n+1)} (\frac{x}{2})^{2i-n}$

linearno neodvisni rešitvi, in splošna rešitev je : $w(x) = AJ_n(x) + BJ_{(-n)}(x)$

Če je pa $n \in \mathbb{N}_0$ pa vzamemo $w_1 = J_n$ in $w_2(x) = w_1(x) \ln(x) + \sum_{k=0}^{\infty} a_k x^{k+m}$ ter uporabimo

determinanto wronskega, da določimo w_2 (koef. a_k ne računamo eksplicitno).

V tem primeru je splošna rešitev : $w(x) = AJ_n(x) + Bw_2(x)$

Velja tudi:
$$J_n(x) = \frac{2(\frac{x}{2})^n}{\sqrt{\pi}\Gamma(n+\frac{1}{2})} \int_0^{\frac{\pi}{2}} \cos(x\sin(t))\cos^{2n}(t)dt$$