

Applications to the Homogeneous Electron Gas

Evan Curtin

March 8, 2017

University of Illinois at Urbana-Champaign

Table of contents

- 1. Background Information
- 2. Hartree-Fock Stability
- 3. Homogeneous Electron Gas
- 4. Results
- 5. Concluding Remarks

Background Information

Levels of Hartree-Fock Theory

Method	Spinorbital	DoF	Eigenfunction of	
Restricted	$\chi_{j}^{\alpha}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}\phi_{i}(\vec{r})\alpha(\sigma)$ $\chi_{j}^{\beta}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}\phi_{i}(\vec{r})\beta(\sigma)$	N/2	\hat{S}^2 , \hat{S}_z	
Unrestricted	$\chi_{j}^{\alpha}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}^{\alpha} \phi_{i}(\vec{r}) \alpha(\sigma)$ $\chi_{j}^{\beta}(\vec{r},\sigma) = \sum_{i=1}^{N} c_{ij}^{\beta} \phi_{i}(\vec{r}) \beta(\sigma)$	N	Ŝz	
General	$\chi_{j}(\vec{r},\sigma) = \sum_{i=1}^{N} [c_{ij}^{\alpha} \phi_{i}(\vec{r}) \alpha(\sigma) + c_{ij}^{\beta} \phi_{i}(\vec{r}) \beta(\sigma)]$	2N	Neither	

- Hartee-Fock SCF guarantees only stationary energy w.r.t. change in orbitals
- The solution may be a maximum, minimum or saddle point

- Hartee-Fock SCF guarantees only stationary energy w.r.t. change in orbitals
- The solution may be a maximum, minimum or saddle point

Within the Constrained Space

 Restricted minima may correspond to minima in another dimension

- Restricted minima may correspond to minima in another dimension
- Restricted minima may correspond to maxima in another dimension

- Restricted minima may correspond to minima in another dimension
- Restricted minima may correspond to maxima in another dimension
- Restricted minima may be nonstationary

• Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.

- Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.
- We need to know if this is indeed a minimum.

- Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.
- We need to know if this is indeed a minimum.
- We can determine this if we inspect the second order variation in the energy.

- Solving the HF equations guarantees only that the energy is stationary. The first order variation is therefore 0.
- We need to know if this is indeed a minimum.
- We can determine this if we inspect the second order variation in the energy.
- Thouless¹ showed a physically motivated derivation using Time-Dependent Hartree-Fock theory (TDHF).

 The RPA frequencies represent electronic oscillations about the ground state

- The RPA frequencies represent electronic oscillations about the ground state
- Real frequencies are stable, imaginary frequencies are unstable

- The RPA frequencies represent electronic oscillations about the ground state
- Real frequencies are stable, imaginary frequencies are unstable
- The RPA frequencies are imaginary when the Orbital Hessian (aka stability matrix, electronic Hessian) eigenvalues are negative

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \omega \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$$
 (1)

- The RPA frequencies represent electronic oscillations about the ground state
- Real frequencies are stable, imaginary frequencies are unstable
- The RPA frequencies are imaginary when the Orbital Hessian (aka stability matrix, electronic Hessian) eigenvalues are negative

$$\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B}^* & \mathbf{A}^* \end{bmatrix} \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix} = \omega \begin{bmatrix} \mathbf{X} \\ \mathbf{Y} \end{bmatrix}$$
 (1)

Where

$$A_{ia,jb} = \langle_i^a | H - E_0 |_j^b \rangle = (\epsilon_a - \epsilon_i) \, \delta_{ij} \delta_{ab} + \langle aj | | ib \rangle$$

$$B_{ia,jb} = \langle_i^{ab} | H - E_0 | 0 \rangle = \langle ab | | ij \rangle.$$
(2)

The eigenvalue equation can be factorized depending on symmetry.

Solution Type	Space Type						
	Real RHF	Complex RHF	Real UHF	Complex UHF	Real GHF	Complex GHF	
Real RHF	1 A $^{\prime}$ + 1 B $^{\prime}$	$^{1}A^{\prime}-{}^{1}B^{\prime}$	3 A $^\prime$ + 3 B $^\prime$	-	-	-	
Complex RHF	-	¹ H′	-	³ H′	-	-	
Real UHF	-	-	$\mathbf{A}'+\mathbf{B}'$	$\mathbf{A}' - \mathbf{B}'$	$\mathbf{A}''+\mathbf{B}''$	-	
Complex UHF	-	-	-	H'	-	H'	
Real GHF	-	-	-	-	A-B	A-B	
Complex GHF	-	-	-	-	-	Н	

Table reproduced from Seeger & Pople 1

Homogeneous Electron Gas

Brief Overview

- Homogeneous Electron Gas (HEG) model, also known as Uniform Electron Gas or Jellium Model.
- ullet Electrons in a box with "smeared" nuclei ullet uniform positive background charge
- The total charge is constrained to be neutral,

$$V_{bg}(\mathbf{r}) = \sum_{i} \frac{-Ze^2}{|\mathbf{r} - \mathbf{R_i}|} \to -e^2 \int \frac{d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|},\tag{3}$$

and the background and coulomb terms cancel exactly,

$$V_{ee} = e^2 \int \frac{d\mathbf{r}'}{|\mathbf{r} - \mathbf{r}'|}.$$
 (4)

Brief Overview

The discretized solutions are given by,

$$\epsilon_{\vec{k}} = \frac{\hbar^2 k^2}{2m} - \sum_{\vec{k'}}^{|\vec{k'}| < k_f} \langle \vec{k}, \vec{k'} | \vec{k'}, \vec{k} \rangle \tag{5}$$

• Where the two electron integral is given by

$$\langle \vec{k}, \vec{k}' | \vec{k}'', \vec{k}''' \rangle \overset{\text{2D, 3D}}{=} \begin{cases} \frac{\pi}{V} \frac{2^{D-1}}{|\vec{k} - \vec{k}''|^{D-1}} & \vec{k}''' = \vec{k} + \vec{k}' - \vec{k}'' \\ 0 & \text{else} \end{cases}$$

$$\langle k, k' | k'', k''' \rangle \overset{\text{1D}}{=} \begin{cases} e^{|k - k''|^2 a^2} \text{Ei}(-|k - k''|^2 a^2) ; & k''' = k + k' - k'' \\ 0 ; & \text{else} \end{cases}$$

$$(6)$$

Giuliani, G.; Vignale, G. Quantum Theory of the Electron Liquid; 2005.

• Can we use the HF-Stability analysis to determine where the HEG is unstable?

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?
- It is known that the RHF-GHF instability persists at all densities for the HEG¹.

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?
- It is known that the RHF-GHF instability persists at all densities for the HEG¹.
- Can we show this numerically, and discriminate between RHF-UHF and RHF-GHF instability?

- Can we use the HF-Stability analysis to determine where the HEG is unstable?
- Will this predict the known tendency of crystallization at low density?
- It is known that the RHF-GHF instability persists at all densities for the HEG¹.
- Can we show this numerically, and discriminate between RHF-UHF and RHF-GHF instability?
- (Future) Can we combine this with to improve the efficacy of correlation theories (CC, MBPT)?

Results

Orbital Energies

- Nk = 57 reproduces the orbital energies reasonably well
- Worst towards Γ , better for higher $|\vec{k}|$

Matrix Diagonals

• Spectrum is Dense

Matrix Size Scaling

- Scales as 2N_{exc}
- N_{occ} and N_{vir} both scale with $N_{kpoints}^{D}$
- Use an iterative subspace method
- Jacobi-Davidson(-Liu)

Matrix-Vector Scaling

• Scales as $N_{exc} \times N_{occ}$ due to momentum conservation

Davidson Scaling

- Davidson is Asymptotically quadratic.
- Full diagonalization is almost cubic.
- Matrix multiplication is order¹ $log_2(7) \approx 2.807$

Efficacy of Davidson's Algorithm

- Reproduces Exact result to machine precision in all test cases.
- Odd spikes are due to approximating circle by squares

Dependence on r_s

Crossover from stable to unstable agrees with previous results.

Dependence on r_s

3D data is currently inconclusive.

