입문자를 위한 인공지능기초-과제2

2312282 컴퓨터과학전공 임다희

1번

Fork me on GitHub

GPU Deep Learning Demo

Please draw a digit into this canvas.

(It will probably only work in Firefox and Chrome. And it may not work on mobile. It should look like this)

4

How does this work?

- OUT THE OH OR HAD

GPU Deep Learning Demo

Please draw a digit into this canvas.

(It will probably only work in Firefox and Chrome. And it may not work on mobile. It should look like this)

GPU Deep Learning Demo

Please draw a digit into this canvas.

(It will probably only work in Firefox and Chrome. And it may not work on mobile. It should look like $\underline{\text{this}}$)

How does this work?

3번- 머신러닝의 종류에 속하지 않는 것은? >>④자연어 처리

4번- 지도학습, 비지도학습, 강화학습

5번- 머신러닝 활용 분야중 성질이 다른 하나? >>③금융, 투자, 비즈니스적 가격 판단

6번

(1,1)과 가장 가까운 거리에 위치한 3개의 점을 찾는다.

유클리드 거리(d=√(a1-b1)²+(a2-b2))를 사용하면

(1,1)과 가장 가까운 거리에 위치한 3개의 점은 (1,2),(0,1),(1,0)이며 모두 1만큼 떨어진 거리에 위치한다.

세 점 중 ■ 클래스가 (1,2),(0,1)로 2개, ○클래스가 (1,0)으로 1개이므로 (1,1)은 ■ 클래스에 속한다.

7번

-손실함수란?

: 예측값과 실제값(레이블)의 차이를 구하는 기준이다.

학습률 알고리븜이 잘못 예측하는 정도를 확인하기 위한 함수이며, 최적화를 위해 이를 최소화하는 것이 목적이다.

-손실함수의 종류

- 1) MSE(Mean Square Error): 예측값과 실제값 사이의 평균 제곱 오차를 합한 것.
- 2) RMSE: MSE에 루트를 씌운 값. MSE와 기본적으로 동일하지만 MSE가 오류의 제곱을 구하기 때문에 실제 오류 평균에 비해 왜곡되는 문제를 해결한다.
- 3) MAE: 예측값과 실제값 사이의 차에 절대값을 씌우고 그 값을 전부 더해 값의 개수로 나우 어 평균한 값을 구한다.
- 8. 정밀도=TP/(TP+FP)=2((2+7)=22.2% 재현율=TP/(TP+FN)=2/(2+1)=66.6%

9.

1)활성화 함수의 종류

- -계단함수: 입력이 0보다 크면 1을 출력하고 그 외에는 0을 출력한다.
- -시그모이드함수: 입력이 음수면 0에 수렴하는 값을 출력, 양수면 1에 수렴한다.
- -TanH 함수: 입력값이 작은 신호일 시 -1에 가까운 숫자로 바꾸어 내보낸다.
- -ReLU함수: 입력값이 0보다 작을 시 0으로 바꾸어 출력, 0보다 클 시 입력값을 출력한다.
- 2) 퍼셉트론에서 사용한 함수
- : 입력이 0보다 크면 1을 출력, 그 외에는 0을 출력하는 계단함수를 사용하였다. 미분과 경사하강법을 사용할 수 없다는 단점이 있다.
- 10. 퍼셉트론이 분리하지 못하는 입력: © (c는 하나의 직선으로 두 값을 완전히 분리할 수 없는 경우이다.)
- 11. x1,x2의 입력이 0,0일 경우 출력은 (1*0+1*0-1.5)<0이므로 0이다. 바이어스를 0.5로 변경할 경우에도 입력값과 가중치가 동일하므로 출력은 (1*0+1*0-0.5)<0으로 역시 0이다.
- 12. 강화학습의 4가지 구성요소

1)에이전트: 환경에서 어떤 행동을 취할지 결정하는 학습주체

2)행동: 에이전트가 환경에서 선택할 수 있는 행동

3)환경: 에이전트 행동에 반응해 보상을 제공받는 공간

4) 보상: 환경이 에이전트 행동에 따라 제공하는 피드백. 보상의 최대화가 목표이다.

13.

- (가): 최초의 머신러닝 프로그램인 체커. 경험을 통해 학습하며 알파고 등의 AI 바둑 소프트웨어에 영향을 주었다.
- (나): 애플 소프트웨어 기기들에서 작동하는 인공지능 개인 비서 프로그램 시리.
- (다): 마크 I 퍼셉트론 신경망 컴퓨터. 20x20의 화소를 가졌으며 연결선으로 연결강도를 조절해 학습이 가능하다.
- (라): 역전파 알고리즘. 입력이 주어지면 순방향으로 계산해 출력을 계산하고, 실제 출력과 원하는 출력간 오차를 계산하여 오차를 다시 역방향으로 전파하면서 가중치를 변경한다.
- (마): 컨볼루션 신경망. 시각세포의 작동 원리를 모방하여 영상에서의 물체가 어떤 물체일지의 가능성을 특정한다. 이미지를 특정한 영역별로 추출하여 학습하기에 부분의 특징을 찾아낼 수 있다.
- (바): 심층 신경망. 여러개의 은닉층을 사용하며 다층 신경망에 학습을 통한 전처리과정을 추가하였다. 대규모 데이터를 사용한다.

개발 연도에 따라 정렬>> 가 다 라 마 바 나

14.

- -GPU란: Graphic Processing Unit. 수많은 산술논리연산유닛이 탑재되어 CPU보다 빠른 기계학습이 가능하고. 대량 연산에 특화되어 있다. 게임, CG 등에도 활용할 수 있는 범용 칩이 사용되어 머신러닝 전용의 칩보다는 효율이 떨어진다.
- -NPU란: Neural network Processing Unit. 대량 연산 동시 수행에 특화되었으며 머신러닝 전용으로 설계되어 범용성은 떨어지지만 GPU보다 효율적인 연산이 가능하다.
- -TPU: 구글이 개발한 NPU의 일종이다. Tensor Processing Unit. 스스로 하드웨어를 준비하지 않아도 고효율의 머신러닝 작업이 가능하게 해준다. 딥러닝 작업에 특화되어 있으며 대규모 연산작업에서의 빠른 속도와 전력 효율을 보장한다.