Introduction to Machine Learning, Final Project

GitHub link of your code

Github Link

Reference if you used any code from other resources

Reference Link

如何過透 tenserflow 實作 NN model

Brief introduction

看完這次的作業,要預測的結果是0和1的機率分佈,第一直覺是就 logistic regression 去預測結果,再來就是利用 NN model 去預測結果,所以在這次的final project我就利用這兩個 ML model 來完成這次的作業。

Methodology

1. Data pre-process

首先透過 pandas 將 train dataset 讀進來

然後透過 feature name 以及數據的觀察,可以發現 ID 數值全部不一樣可以將他 drop 掉。再來 product code 是產品的編號 ID,跟failure影響沒有關係,我也將 drop掉。再來我們可以看到 feature attribute_0 跟 attribute_1 這兩個 feature 都是 由字串所組成的,我們要將它變成數值的資料。所以我們字串前面的 material_ 去掉,只留下他後面的數字。這樣所有數據都是數值的資料了。再來有一些資料是 missing 的。我使用 skleanr 的 simpleImputer 來填空缺失的資料。並且參數使用 median。

2. Model architecture

模型設計的部分,我是使用 NN model , NN model 的部分 hidden layer 有兩層,一層 input layer 跟 一層 output layer。 而input layer 的 dimension 為 23 ,因為總共有 23 個feature,而兩個 hidden layer 使用的unit 為 94 ,最後的output layer unit 則是設定成 1。 Activation function 設定成 relu,。 然後 drop 設定成 0.3 隨機捨棄 30%的連線。

3. Hyperparameter

```
model = Sequential()
model.add(Dense(92, input_dim=23))
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(Dense(92))
model.add(Activation('relu'))
model.add(Dropout(0.3))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
```

```
loss='binary_crossentropy'
optimizer='adam'
```

Model Link

Summary

Comparisons of different approaches

除了利用 NN model 外,我還使用了 logistic regression 來預測這次的作業。 模型的參數就只有改變 max_iter=1000,跑出來的結果大概是 0.58903已經快要接近 baseline了。但相較於 NN model NN model 擁有比較高一點點的 score 但是也大概高 0.002左右。

Result

1. For logistic regression

€ 0	result.csv Complete (after deadline) · 15m ago	0.58903	0.58107	
-0	Complete (after deadline) - 15m ago			

2. For NN model

