Practica KeepCoding SAS

La práctica la he realizado con SAS estudio ya que SAS miner me daba muchos problemas.

Cocinado de los datos

En primer lugar analizaremos los datos categóricos y los numericos y los procesaremos para dejar el dataset preparado para los modelos.

Transformar variables categóricas

job:

Estudio de frecuencia:

Todos los valores tienen una cantidad de apariciones suficiente como para quedarse en el modelo, por lo que no agruparemos ninguna y las codificamos con one hot encoding

job	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
admin.	10422	25.30	10422	25.30
blue-collar	9254	22.47	19676	47.77
entrepreneur	1456	3.54	21132	51.31
housemaid	1060	2.57	22192	53.88
management	2924	7.10	25116	60.98
retired	1720	4.18	26836	65.15
self-employed	1421	3.45	28257	68.60
services	3969	9.64	32226	78.24
student	875	2.12	33101	80.37
technician	6743	16.37	39844	96.74
unemployed	1014	2.46	40858	99.20
unknown	330	0.80	41188	100.00

marital:

Estudio de frecuencia

Mismo caso que el anterior, codificamos con one hot encoding

marital	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
divorced	4612	11.20	4612	11.20
married	24928	60.52	29540	71.72
single	11568	28.09	41108	99.81
unknown	80	0.19	41188	100.00

Education:

Estudio de frecuencia

En este caso los valores de las variables tienen un orden lógico, por lo que lo codificamos con enteros incrementales. Como los desconocidos son bastantes y no tienen un orden, le dare un valor intermedio.

education	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
basic.4y	4176	10.14	4176	10.14
basic.6y	2292	5.56	6468	15.70
basic.9y	6045	14.68	12513	30.38
high.school	9515	23.10	22028	53.48
illiterate	18	0.04	22046	53.53
professional.course	5243	12.73	27289	66.25
university.degree	12168	29.54	39457	95.80
unknown	1731	4.20	41188	100.00

Default:

Esta variable puede tener poco valor ya que la mayoría son No o desconocidos. Aun asi lo pasamos a one hot encoding antes de descartarla

default	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
no	32588	79.12	32588	79.12
unknown	8597	20.87	41185	99.99
yes	3	0.01	41188	100.00

Housing

Lo transformo a one hot encoding para mantener los 3 valores

housing	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
no	18622	45.21	18622	45.21
unknown	990	2.40	19612	47.62
yes	21576	52.38	41188	100.00

Loan

Lo transformo a one hot encoding para mantener los 3 valores

loan	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
no	33950	82.43	33950	82.43
unknown	990	2.40	34940	84.83
yes	6248	15.17	41188	100.00

Contact

Lo transformo a one hot encoding para mantener los 3 valores

contact	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
cellular	26144	63.47	26144	63.47
telephone	15044	36.53	41188	100.00

Month

Lo transformo a numérico donde a cada me le doy su numero correspondiente

month	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
apr	2632	6.39	2632	6.39
aug	6178	15.00	8810	21.39
dec	182	0.44	8992	21.83
jul	7174	17.42	16166	39.25
jun	5318	12.91	21484	52.16
mar	546	1.33	22030	53.49
may	13769	33.43	35799	86.92
nov	4101	9.96	39900	96.87
oct	718	1.74	40618	98.62
sep	570	1.38	41188	100.00

Day_of_week

Lo transformo a numérico, donde a cada día le doy un valor del 1 al 5, ya que tienen un orden.

day_of_week	Frecuencia	Porcentaje	Frecuencia acumulada	Porcentaje acumulado
fri	7827	19.00	7827	19.00
mon	8514	20.67	16341	39.67
thu	8623	20.94	24964	60.61
tue	8090	19.64	33054	80.25
wed	8134	19.75	41188	100.00

Analisis de las variables numéricas

Missing values

Con el procedimiento FREQ hemos observado que no hay missing values en ninguna variable

Tratamiento de outliers

Con el procedimiento means, sacamos los estadísticos de las variables numéricas

no Mínim	Máximo	N	Cuartil superior	Cuartil inferior	Media	Variable
00 17.000000	98.0000000	41188	47.0000000	32.0000000	40.0240604	age
00	4918.00	41188	319.0000000	102.0000000	258.2850102	duration
1.000000	56.0000000	41188	3.0000000	1.0000000	2.5675925	campaign
00	999.0000000	41188	999.0000000	999.0000000	962.4754540	pdays
00	7.0000000	41188	0	0	0.1729630	previous
-3.400000	1.4000000	41188	1.4000000	-1.8000000	0.0818855	emp.var.rate
00 92.201000	94.7670000	41188	93.9940000	93.0750000	93.5756644	cons.price.idx
-50.800000	-26.9000000	41188	-36.4000000	-42.7000000	-40.5026003	cons.conf.idx
0.634000	5.0450000	41188	4.9610000	1.3440000	3.6212908	euribor3m
10 4963.6	5228.10	41188	5228.10	5099.10	5167.04	nr.employed

Todo lo que supere Q3 + 1.5RIC o sea menor Q1 - 1.5RIC lo sustituiremos por esos respectivos valores para eliminar los outliers (los valores los he calculado por fuera de SAS porque no he sabido hacerlo en SAS)

En previous y pdays no tiene sentido hacer este tratamiento

	Q3 + 1.5RIC	Q1 - 1.5RIC
age	80,75	-1,75
duration	644,5	-223,5
campaing	6	-2
pdays	999	999
previous	0	0
emp.var.rate	6,2	-6,6
cons.price.idx	95,374	91,695
cons.conf.idx	-26,95	-52,15
euribos3m	10,391	-4,086
nr.employed	5421,6	4905,6

Correlacion

Analizamos la tabla de correlacion de las variables

Existen algunas variables que podríamos eliminar por tener alta correlación pero de momento las dejamos

Análisis de las variables desde el punto de vista del negocio

Desde el punto de vista del negocio parece que las siguientes variables pueden tener más peso:

- Edad: La edad parece que puede ser un factor importante para pedir un depósito
- Que no tengas prestamos previos (loan, housing)
- La estabilidad de su trabajo
- La duración del último contacto nos puede hacer pensar si ha podido tener algún interés Estas serán las variables candidatas de nuestros datos procesados para nuestros modelos:
 - entrepreneur management student selfemployed housingno loanno ageN durationN

Modelos

Modelo de regresión lineal.

Utilizaré la macro de validación cruzada para evaluar varios modelos y me quedaré con el que menor error tenga. Aparte de las variables previamente elegidas se incorporaran otras en los diferentes modelos para evaluar la mejora.

De los 3 modelos elegidos, parece que el que mejor se comporta es el segundo, que tiene las variables previamente seleccionadas y alguna más relacionadas sobre todo con el trabajo: entrepreneur management student selfemployed housingno loanno ageN durationN educationN services retired housemaid

Una vez seleccionado nuestro modelo óptimo pasamos a evaluarlo

Podemos observar que tiene una bondad de ajuste de 0.18 que no es un buen valor y la suma de los errores tiene un valor alto. Usaremos estos parámetros para comparar con otros modelos

Modelo GLM

Para el modelo GLM he utilizado el procedimiento glmselect, he introducido las variables que he comentado en el modelo anterior y he introducido interacciones con laedad. El método de seleccion de variables ha sido stepwise.

El resultado ha sido el siguiente:

El mejor modelo lo ha encontrado en el paso 13 y estos son los efectos que ha considerado

entrepreneur student selfemployed durationN educationN retired housemaid student*ageN selfemployed*ageN housingno*ageN ageN*retired ageN*services ageN*housemaid

	Aná	lisis de va	rian	za	
Origen	DF	Suma		Cuadrado de la media	
Modelo	13	813.399	950	62.56919	779.76
Error	41174	3303.889	515	0.08024	
Total corregido	41187	4117.28	465		
R	aíz MSE			0.28327	
	Media dependiente			0.11265	
	R-cuadrado			0.1976	
R	-Sq Ajust			0.1973	
A	AIC		-62701		
A	AICC			-62701	
В	BIC			-103889	
C	C(p)		1	15.02846	
P	PRESS		330	07.39799	
S	вс			-103771	
Α	SE			0.08021	

La bondad de ajuste del modelo es de 0.19, o que tampoco es muy bueno.

Escojo los efectos seleccionados y lo aplico a un modelo GLM

Parámetro	Estimación	Error estándar	t valor	Pr > t
T. independiente	0892663132	0.00521612	-17.11	<.0001
entrepreneur	0254211460	0.00759797	-3.35	0.0008
student	0.6018649153	0.05069269	11.87	<.0001
selfemployed	0.0733163606	0.03283908	2.23	0.0256
durationN	0.0004926478	0.00000539	91.48	<.0001
educationN	0.0138201528	0.00087584	15.78	<.0001
retired	7455049755	0.04099807	-18.18	<.0001
housemaid	2815716381	0.03777517	-7.45	<.0001
student*ageN	0155935605	0.00192077	-8.12	<.0001
selfemployed*ageN	0021389375	0.00079876	-2.68	0.0074
ageN*housingno	0001998843	0.00006674	-3.00	0.0027
retired*ageN	0.0145143607	0.00065175	22.27	<.0001
ageN*services	0005235916	0.00012257	-4.27	<.0001
housemaid*ageN	0.0066110248	0.00080829	8.18	<.0001

Ninguna de las variables tiene un p-valor superior a 0.05 por lo que no elimino ninguna variable

Modelo redes neuronales

Utilizaré la macro para efectuar validación cruzada y comparar varios modelos

Las variables iniciales son las mismas a las seleccionadas en otros modelo. Cambiamos parámetros como la función de activación y el número de nodos para encontrar la mejor configuración del modelo.

El tiempo de procesamiento es muy alto, por lo que no he podido realizar muchas prebas para optimizar el modelo

El modelo 2 tener la suma de los errores menor que el modelo 1, por lo que será el escogido

Aquí podemos observar los resultados de la optimización del modelo

Regresión logística

A continuación vamos a probar con la macro de regresión logistica. E tenido que reducir el numero de variables porque tardaba demasiado en ejecutarse.

El mejor modelo incorpora las siguientes variables

entrepreneur management student selfemployed housingno loanno ageN

La curva ROC de este modelo nos muestra que es un modelo muy malo

Adjunto también los estadísticos de calidad del modelo.

Model Fit Statistics			
Criterion	Intercept Only	Intercept and Covariates	
AIC	29000.724	28631.664	
sc	29009.350	28700.671	
-2 Log L	28998.724	28615.664	

Conclusiones

Para hacer una buena elección de modelo habría que haber dedicado más tiempo a la elección de las variables y haber dejado más tiempo de computación, ya que todos los modelos conseguidos han sido bastante malos.

Voy a elegir el modelo GLM como modelo final porque la suma de los errores es ligeramente menor que en los otros casos.

Predicciones

Con el modelo escogido, extraigo sus predicciones y las ordeno. Ya que estamos buscando las que estén más cerca de 1 y más lejos de 0. Posteriormente obtengo el 10% de esas observaciones (4118 observaciones) (proc sql). El resto, el 5% de observaciones las obtengo de manera aleatoria.(PROC SURVEYSELECT)