## The latent factor structure of child development

**Anonymous Cogsci Submission** 

#### **Abstract**

Hello

Keywords: one; two;

#### Introduction

TO DO

#### Data

A child's development can be thought of as the set of developmental milestones that they have reached at a particular point in time. This conceptualization results in data with the same structure as the item response data common to educational measurement. In education, item response data is most typically students responding to test items (i.e., questions) and, in the dichotomous case, getting each question either correct or incorrect. In the context of child development, the child is the "student," and each developmental milestone is the "item."

We use Kinedu, a Mexico-based child development app, as a source for this type of data. When parents first start using the Kinedu app, they are asked a series of questions about which developmental milestones their child has reached. We consider the 1946 children between 2 and 55 months of age whose parents responded to all 414 of the developmental milestones. Each developmental miletone on Kinedu is mapped to a milestone group: physical, cognitive, linguistic, or social & emotional. Table 1 shows the number of developmental milestones in each group along with an example milestone translated to English.

Table 1: Developmental milestone groups and examples

| Group              | Count | Milestone                          |
|--------------------|-------|------------------------------------|
| Physical           | 180   | Stands on their toes               |
| Cognitive          | 100   | Finds objects on the floor         |
| Linguistic         | 75    | Babbles to imitate conversations   |
| Social & Emotional | 59    | Complains when play is interrupted |

Figure 1 shows the age (in months) and number of developmental milestones for each child. At 12 months old, most children have reached about 200 developmental milestones. At 24 months old, most children have reached about 300 developmental milestones. Finally, at 48 months old, most children have reached about 375 of the 414 developmental milestones.



Figure 1: Number of milestones by age

# Empirical assessment of the dimensionality of child development

We frame the assessment of the dimensionality of child development as a model comparison question.

#### **Models**

Item response theory offers a suite of models with which to model item response data. We adopt the notation used in Chalmers & others (2012). Let  $i=1,\ldots,I$  represent the distinct children and  $j=1,\ldots,J$  the developmental milestones. The Kinedu item response data is stored in a matrix, y, where element  $y_{ij}$  denotes if the ith child has or has not achieved the jth developmental milestone as reported by their parent/guardian. Each model represents the ith child's development using m latent factors  $\mathbf{\theta}_i = (\theta_1, \ldots, \theta_m)$ . The jth milestone's discriminations (i.e. slopes)  $\mathbf{a}_j = (a_1, \ldots, a_m)$  capture the latent factor loadings onto that milestone.

We fit four two-parametric logistic (2PL) models where a child's development is represented by  $m=1,\ m=2,\ m=3,$  and m=4 latent factors. According to the 2PL model, the probability of a child having achieved a developmental milestone is

$$P(y_{ij} = 1 | \boldsymbol{\theta_i}, \boldsymbol{a_j}, b_j) = \sigma(\boldsymbol{a}_i^{\top} \boldsymbol{\theta_i} + b_j)$$

where  $b_j$  is the milestone easiness (i.e. intercept) and  $\sigma(x) = \frac{e^x}{e^x + 1}$  is the standard logistic function.

The 2PL models learn the latent factor structure entirely from the data, making them exploratory. The bifactor model offers an alternative specification where each milestone loads onto a general factor  $\theta_0$  and a specific factor  $\theta_s$  (Cai, Yang, & Hansen, 2011). The assignment of each developmental milestone to its specific factor is an opportunity to specify the latent factor structure, making the model confirmatory as opposed to exploratory. We map each milestone to its specific factor according to the four developmental milestone groups shown in Table X. For the bifactor model, the probability of a child having achieved a developmental milestone is

$$P(y_{ij} = 1 | \theta_0, \theta_s, a_0, a_s) = \sigma(a_0\theta_0 + a_s\theta_s + b_j).$$

#### **Model comparison**

Model comparison in IRT typically uses information criterion such as AIC and BIC (Maydeu-Olivares, 2013). However, these methods are not guaranteed to work with modest sample sizes (McDonald & Mok, 1995). Instead, we prefer a marginalized version of cross-validation. In essence, we partition the data into folds based on the children (i.e. the rows of the item response matrix). Then for each fold, we estimate the item parameters using all but that fold, and calculate the likelihood of that fold by integrating over  $g(\theta)$ .

Mathematically and following notation similar to Vehtari, Gelman, & Gabry (2017), we partition the data into K subsets  $y^{(k)}$  for  $k=1,\ldots,K$ . Each model is fit separately to each training set  $y^{(-k)}$  yielding item parameter estimates which we compactly denote  $\Psi_j^{(-k)}$ . The predictive (i.e. out-of-sample) likelihood of  $y^{(k)}$  is

$$p(y^{(k)}|y^{(-k)}) = \prod_{i \in i^{(k)}}^{I} \int_{\theta} \prod_{j=1}^{J} \hat{\Pr}(y_{ij}^{(k)}|\Psi_{j}^{(-k)}, \theta) g(\theta) d\theta.$$

The ultimate quantity of interest for each model is the log predictive likelihood for the entire item response matrix, which is defined as

$$lpl y = \sum_{k=1}^{K} log p(y^{(k)}|y^{(-k)}).$$

#### Results

**HELLO** 

#### **Understanding the latent factor structure**

To understand each of the three factors in the best performing model, we fit the model to the full dataset. We then estimate the factor loadings (i.e. discriminations or slopes) using a varimax rotation. The varimax rotation results in orthogonal and, therefore, more interpretable factors (Kaiser, 1959). Figure 2 shows the distribution of factor loadings for each group on each of the three factors. The first factor is mainly cognitive and linguistic. The second factor is a combination of

each of the groups with the strongest loadings on the physical and social & emotional milestones. The third mainly loads positively on linguistic milestones and negatively on physical milestones.

\begin{CodeChunk} \begin{CodeOutput}

Rotation: varimax Rotated factor loadings:

abs\_12 -0.51680 -0.58278 0.044006 0.6087 abs\_148 -0.34897 0.119377 0.7364 abs\_183 -0.60944 -0.77483 0.001097 0.7016 abs\_199 -0.62202 -0.36144 0.6252 abs\_206 -0.56340 -0.50044 -0.046780 0.5700 abs\_317 -0.53209 -0.49228 0.151364 0.5484 abs\_385 -0.79606 -0.26714 0.025069 0.7057 abs\_387 -0.78031 0.002409 0.8102 attach\_111 -0.23760 -0.35900 -0.059810 0.1889 attach\_122 -0.23534 -0.32500 -0.207071 0.2039 attach\_129 -0.01819 -0.17826 -0.197429 0.0711 attach\_186 -0.19208 -0.18009 0.060800 0.0730 attach\_20 -0.20588 -0.63238 0.100786 0.4524 attach\_252 -0.07626 -0.42677 -0.344363 0.3065 attach\_283 0.15579 -0.19063 -0.208809 0.1042 attach\_308 -0.27002 -0.35564 -0.103310 0.2101 attach\_36 -0.24869 -0.29504 -0.116073 0.1624 attach\_441 -0.76651 -0.35221 -0.003165 0.7116 attach\_97 -0.38659 -0.57228 -0.254446 0.5417 babbling\_126 -0.01834 -0.61770 -0.093935 0.3907 babbling\_143 -0.22360 -0.22116 -0.255054 0.1640 babbling\_196 -0.04657 -0.57924 -0.129663 0.3545 bling\_23 0.19703 -0.54914 -0.210168 0.3846 babbling\_247 0.16482 -0.37034 -0.293189 0.2503 babbling\_301 0.35609 -0.58954 -0.235290 0.5297 babbling\_31 -0.02729 -0.67950 -0.154188 0.4862 babbling\_589 0.12125 -0.62995 -0.090468 0.4197 balance\_635 -0.68247 -0.39343 0.274479 0.6959 balance\_638 -0.73792 -0.24225 0.267574 0.6748 balance\_640 -0.66218 -0.45047 0.277316 0.7183 balance\_641 -0.68935 -0.23409 0.188265 0.5654 balance\_671 -0.63827 -0.26058 0.215091 0.5216 balance\_683 -0.67314 -0.26341 0.163717 0.5493 balance\_708 -0.52089 -0.30648 0.175395 0.3960 balance\_712 -0.57953 -0.29436 0.179695 0.4548 care\_411 -0.71984 -0.33239 0.180054 0.6611 care\_565 -0.76149 -0.44909 0.170122 0.8105 care\_606 -0.64523 -0.36614 0.159087 0.5757 care\_607 -0.59098 -0.25592 0.216885 0.4618 care\_608 -0.75596 -0.27365 0.230677 0.6996 care\_609 -0.64086 -0.30787 0.171594 0.5349 care\_610 -0.79137 -0.18894 0.221224 0.7109 care\_611 -0.72682 -0.19154 0.271319 0.6386 care\_612 -0.78151 -0.17374 0.241659 0.6993 care\_85 -0.74392 -0.29226 0.086208 0.6463 color\_629 -0.63097 -0.25557 0.214753 0.5096 color\_630 -0.84911 -0.22171 0.179524 0.8024 color\_666 -0.84270 -0.14231 0.140191 0.7500 color\_677 -0.84025 -0.15780 0.161535 0.7570 color\_678 -0.79747 -0.16492 0.7404 compreh\_109 -0.83074 -0.33811 0.031930 0.8055 compreh\_258 -0.75256 -0.50313 0.034655 0.8207 compreh\_27 -0.79997 -0.29591 -0.054170 0.7304 compreh\_279 -0.85065 -0.35171 0.015058 0.8475 compreh\_307 -0.88603 -0.24551 -0.038121 0.8468 compreh\_32 -0.89737 -0.16569 -0.093742 0.8415 compreh\_360 -0.87122 -0.28877 -0.059089 0.8459 compreh\_366 -0.86884 -0.26314 -0.009213 0.8242 compreh\_368 -0.77041 -0.31750 -0.079296 0.7006 compreh\_505 -0.76775 -0.29606 0.029636 0.6780 compreh\_566 -0.87925 -0.14536 -0.089987 0.8023 compreh\_67 -0.63737 -0.50212 0.063734 0.6624 compreh\_695 -0.72731 -0.11611 0.005496 0.5425 compreh\_700 -0.84840 -0.10520 -0.068342 0.7355 compreh\_703 -0.84802 -0.20975 -0.006219 0.7632 concept\_334 -0.83403 -0.25130 0.055468 0.7618 concept\_386 -0.79878 -0.26368 0.074529 0.7131 concept\_523 -0.87384 -0.24607 0.079225 0.8304 concept\_568 -0.81192 -0.19310 0.086102 0.7039 concept\_569 -0.81951 -0.23228 0.024558 0.7262 concept\_574 -0.75898 -0.24445 0.033444 0.6369 concept\_578 -0.73690 -0.20740 0.117584 0.5999 concept\_579 -0.86886 -0.13312 0.072253 0.7779 concept\_615 -0.78795 -0.29902 0.084420 0.7174 concept\_628 -0.87217 -0.20011 0.047399 0.8030 concept\_659 -0.86026 -0.10987 0.042040 0.7539 concept\_661 -0.86629 -0.17226 0.049797 0.7826 concept\_663 -0.66609 -0.13436 0.025780 0.4624 concept\_665 -0.77878 -0.22300 0.088105 0.6640 concept\_705 -0.87799 -0.21415 0.119316 0.8310 concept\_728 -0.82946 -0.25512 0.066116 0.7575 conver\_617 -0.93844 -0.04204 -0.090258 0.8906 conver\_622 -0.78108 0.00350 -0.090652 0.6183 conver\_623 -0.91920 0.02181 -0.100490 0.8555 conver\_656 -0.93699 -0.01608 -0.115908 0.8916 conver\_657 -0.93419 -0.08356 -0.072035 0.8849 conver\_698 -0.92130 -0.08113 -0.079922 0.8618 conver\_699 -0.93557 -0.05812 -0.051953 0.8814 conver\_704 -0.92432 -0.08615 -0.032960 0.8629 crawl\_116 -0.11104 -0.76023 -0.104203 0.6011 crawl\_158 -0.07378 -0.73756 -0.254467 0.6142 crawl\_164 -0.35155 -0.83977 0.036515 0.8301 crawl\_17 -0.26237 -0.80871 -0.010005 0.7230 crawl\_173 -0.26369 -0.80466 -0.054259 0.7200 crawl\_230 -0.34160 -0.83880 0.015824 0.8205 crawl\_239 -0.09545 -0.66213 -0.245682 0.5079 crawl\_262 -0.25018 -0.77921 -0.083573 0.6767 crawl\_267 -0.10802 -0.74516 -0.180882 0.5996 crawl\_269 -0.17238 -0.80994 -0.186885 0.7206 crawl\_39 -0.35368 -0.80366 0.111123 0.7833 crawl\_413 -0.38707 -0.67677 0.4234 crawl\_72 -0.37590 -0.77106 0.049889 0.7383 crawl\_9 -0.10705 -0.67512 -0.199191 0.5069 dfinger\_152 -0.30947 -0.52027 -0.038018 0.3679 dfinger\_172 -0.64064 -0.59371 0.180604 0.7955 dfinger\_235 -0.51083 -0.69929 0.091238 0.7583 dfinger\_251 -0.28863 -0.35764 0.010736 0.2113 dfinger\_295 -0.53841 -0.57700 0.127806 0.6391 dfinger\_296 -0.47415 -0.52538 -0.003304 0.5008 dfinger\_34 -0.71377 -0.43700 0.228969 0.7529 dfinger\_357 -0.64480 -0.53390 0.143884 0.7215 dfinger\_378 -0.53991 -0.56246 0.224670 0.6583 dfinger\_71 -0.63116 -0.47826 0.088819 0.6350 dhand\_135 -0.31368 -0.58140 0.044460 0.4384 dhand\_139 -0.66094 -0.49035 0.259622 0.7447 dhand\_14 -0.58612 -0.37896 0.112273 0.4998 dhand\_140 -0.59072 -0.46000 0.7321 dhand\_223 -0.51024 -0.51814 0.112738 0.5415 dhand\_298 -0.60587 -0.47915 0.089162 0.6046 dhand\_310 -0.68774 -0.53841 0.188219 0.7983 dhand\_312 -0.69614 -0.27123 0.144895 0.5792 dhand\_314 -0.76173 -0.30605 0.197863 0.7130 dhand\_362 -0.45144 -0.45741 0.083549 0.4200 dhand\_408 -0.57304 -0.51176 0.190849 0.6267 dhand\_467 -0.46787 -0.48098 0.197570 0.4893 dhand\_47 -0.65469 -0.37756 0.267154 0.6425 dhand\_484 -0.42056 -0.35606 0.137612 0.3226 dhand\_57 -0.61070 -0.50855 0.184192 0.6655 dhand\_633 -0.65983 -0.38749 0.270325 0.6586 dindep\_103 -0.71788 -0.40334 0.152031 0.7011 dindep\_241 -0.65652 -0.34404 0.144553 0.5703 dindep\_306 -0.78886 -0.30609 0.176420 0.7471 dindep\_349 -0.40415 -0.46635 0.125270 0.3965 dindep\_461 -0.54799 -0.51333 0.143063 0.5843 dindep\_476 -0.60875 -0.46074 0.160309 0.6086 dindep\_78 -0.44980 -0.29193 0.048769 0.2899 dmemory\_157 -0.65076 -0.35416 -0.082454 0.5557 dmemory\_188 -0.28092 -0.32251 -0.332224 0.2933 dmemory\_28 -0.30324 -0.34468 -0.291086 0.2955 dmemory\_333 -0.13509 -0.13765 -0.298486 0.1263 dmemory\_63 -0.41916 -0.31032 -0.220259 0.3205 dmemory\_89 -0.31540 -0.20928 -0.198568 0.1827 dmemory\_90 -0.31190 -0.14689 -0.298980 0.2082 dmusic\_255 -0.59879 -0.46856 0.009027 0.5782 dmusic\_315 -0.74231 -0.14782 -0.068505 0.5776 dmusic\_338 -0.57017 -0.44865 0.077765 0.5324 dmusic\_417 -0.61885 -0.43087 0.068651 0.5733 dself\_110 -0.42114 -0.58374 -0.065270 0.5224 dself\_120 -0.63540 -0.30396 0.021495 0.4966 dself\_509 -0.81266 -0.18405 -0.010769 0.6944 dself\_95 -0.21487 -0.60574 -0.009816 0.4132 emotion\_451 -0.84304 -0.23617 0.066571 0.7709 emotion\_600 -0.59557 -0.34787 0.4222 emotion\_602 -0.64693 -0.26997 0.000624 0.4914 emotion\_605 -0.12971 -0.06221 -0.064261 0.0248 emotion\_650 -0.63081 -0.30234 0.098845 0.4991 explore\_102 -0.30849 -0.70286 -0.283390 0.6695 explore\_117 -0.23590 -0.63516 -0.236238 0.5149 explore\_185 -0.40612 -0.66100 0.045118 0.6039 explore\_217 -0.21438 -0.78900 0.081079 0.6751 explore\_281 0.00543 -0.67090 -0.303407 0.5422 explore\_35 -0.20854 -0.75075 -0.004538 0.6071 explore\_37 -0.20681 -0.70676 -0.043110 0.5441 explore\_40 -0.29564 -0.53071 -0.055169 0.3721 explore\_41 0.35021 -0.37610 -0.232980 0.3184 explore\_73 0.21381 -0.48813 -0.106200 0.2953 explore\_81 0.06225 -0.63412 -0.086595 0.4135 explore\_82 -0.02566 -0.44325 -0.194198 0.2348 finger\_463 -0.77837 -0.29464 0.182978 0.7262 finger\_532 -0.78927 -0.22524 0.199986 0.7137 finger\_558 -0.60632 -0.30889 0.179744 0.4953 finger\_631 -0.59887 -0.34157 0.203091 0.5166 finger\_667 -0.80707 -0.18634 0.250304 0.7487 gesture\_22 -0.73264 -0.51714 0.036109 0.8055 gesture\_278 -0.64871 -0.51010 -0.015126 0.6813 gesture\_3 -0.02288 -0.55872 -0.065067 0.3169 gesture\_79 -0.35682 -0.48725 0.3933 grammar\_620 -0.89267 -0.03935 -0.121109 0.8131 grammar\_621 -0.88411 -0.14089 -0.031871 0.8025 grammar\_696 -0.90211 -0.06166 -0.112287 0.8302 grammar\_701 -0.67117 -0.21282 -0.012812 0.4959 hand\_414 -0.75635 -0.27660 0.233789 0.7032 hand\_536 -0.81517 -0.25327 0.202245 0.7695 hand\_632 -0.79149 -0.25365 0.247266 0.7519 hand\_634 -0.65068 -0.34322 0.257529 0.6075 hand\_687 -0.77778 -0.24716 0.255843 0.7315 head\_115 -0.25256 -0.51704 -0.137176 0.3499 head\_132 0.02690 -0.25727 -0.179416 0.0991 head\_216 -0.13401 -0.32277 -0.094141 0.1310 head\_30 -0.28549 -0.68385 -0.025746 0.5498 head\_75 -0.07376 -0.49446 -0.110335 0.2621 head\_91 -0.20753 -0.45785 -0.080097 0.2591 Imagine\_329 -0.79649 -0.28882 0.031915 0.7188 Imagine\_475 -0.82278 -0.19867 0.087363 0.7241 Imagine\_625 -0.79422 -0.22474 0.049463 0.6837 Imagine\_645 -0.85186 -0.20665 0.078881 0.7746 Imagine\_646 -0.84643 -0.22799 0.123401 0.7836 Imagine\_647 -0.79822 -0.21957 0.025834 0.6860 Imagine\_651 -0.85414 -0.18135 0.023716 0.7630 Imagine\_707 -0.77938 -0.18431 0.074941 0.6470 imitate\_189 -0.73941 -0.50362 0.051685 0.8030 imitate\_218 -0.55255 -0.27203 -0.159719 0.4048 imitate\_335 -0.79963 -0.28674 -0.057348 0.7249 imitate\_363 -0.73018 -0.31586 -0.013449 0.6331 imitate\_406 -0.69348 -0.47571 0.065450 0.7115 imitate\_443 -0.70540 -0.29966 0.027896 0.5882 imitate\_452 -0.76633 -0.32464 -0.035992 0.6939 imitate\_464 -0.55845 -0.35877 0.003928 0.4406 imitate\_5 -0.61899 -0.47289 0.063172 0.6108 imitate\_53 -0.72577 -0.46658 0.046311 0.7466 imitate\_551 -0.74807 -0.42811 -0.009559 0.7430 imitate\_588 -0.58955 -0.52259 -0.151885 0.6437 indep\_673 -0.61521 -0.23003 0.6090 indep\_675 -0.73792 -0.34410 0.203769 0.7044 indep\_686 -0.65962 -0.23892 0.279137 0.5701 inter\_108 -0.51115 -0.37263 -0.146760 0.4217 inter\_112 -0.24434 0.1442 inter\_340 -0.71125 -0.51549 0.048034 0.7739 inter\_354 -0.22722 -0.50497 -0.159145 0.3319 inter\_454 -0.43288 -0.48418 0.024642 0.4224 inter\_51 -0.33070 -0.36975 -0.288733 0.3294 jump\_670 -0.74580 -0.29754 0.286775 0.7270 jump\_680 -0.82880 -0.18018 0.277116 0.7962 jump\_681 -0.77504 -0.12656 0.227203 0.6683 jump\_682 -0.75346 -0.27676 0.260403 0.7121 jump\_706 -0.79468 -0.20487 0.289809 0.7575 jump\_713 -0.74917 -0.29081 0.314067 0.7445 jump\_715 -0.80917 -0.27147 0.6032 kick\_528 -0.74386 -0.37167 0.256035 0.7570 kick\_642 -0.64909 -0.33087 0.253715 0.5952 kick\_643 -0.73177 -0.38029 0.264351 0.7500 kick\_714 -0.61106 0.069265 0.7956 memory\_421 -0.82079 -0.35578 0.030471 0.8012 memory\_435 -0.82658 -0.17295 -0.083011 0.7200 memory\_436 -0.51936 -0.23053 -0.054047 0.3258 memory\_472 -0.76943 -0.31820 0.014306 0.6935 memory\_478 -0.84481 -0.17671 -0.034799 0.7461 memory\_524 -0.85426 -0.16151 -0.048335 0.7582 memory\_613 -0.78525 -0.33762 0.102208 0.7410 memory\_627 -0.81539 -0.23578 -0.004477 0.7205 memory\_664 -0.83838 -0.20419 0.013822 0.7448 move\_1 -0.25649 -0.77474 -0.010334 0.6661 move\_114 -0.10789 -0.71923 -0.003777 0.5289 move\_130 -0.30672 0.006601 0.4759 move\_146 -0.16985 -0.44974 -0.105350 0.2422 move\_149 -0.11143 -0.73172 0.004735 0.5479 move\_153 -0.21642 -0.86206 0.197434 0.8290 move\_159 -0.10137 -0.51849 -0.176788 0.3104 move\_165 -0.34304 -0.77071 0.087298 0.7193 move\_207 -0.04477 -0.40226 -0.024879 0.1644 move\_288 -0.29735 -0.64061 0.018620 0.4991 move\_294 -0.11344 -0.70484 0.037914 0.5111 move\_299 -0.22245 -0.69838 -0.017745 0.5375 move\_86 0.16859 -0.37996 -0.213382 0.2183 music\_352 -0.78063 0.037773 0.4867 music\_537 -0.85428 -0.05421 -0.066689 0.7372 music\_655 -0.86011 -0.01980 -0.054284 0.7431 0.03536 -0.18037 -0.220922 0.0826 newborn\_193 0.08219 -0.25083 -0.201681 0.1103 newborn\_201 -0.03314 -0.13060 -0.162080 0.0444 newborn\_21 -0.13688 -0.28194 -0.162996 0.1248 newborn\_236 0.09735 -0.17050 -0.237761 0.0951 0.06656 -0.36740 -0.266369 0.2104 problem\_409 -0.71081 -0.27185 0.160110 0.6048 problem\_624 -0.65174 -0.35570 0.133339 0.5691 problem\_626 -0.77449 -0.25373 0.170742 0.6934 problem\_662 -0.59130 -0.25913 0.054810 0.4198 problem\_669 -0.72710 -0.21314 0.182396 0.6074 prod\_419 -0.91900 -0.03064 -0.143428 0.8661 prod\_465 -0.91184 -0.13097 -0.124980 0.8642 prod\_483 -0.93286 -0.01455 0.8350 prod\_540 -0.76236 -0.17400 -0.141680 0.6315 prod\_544 -0.91625 -0.05138 -0.117634 0.8560 prod\_564 -0.91308 -0.11127 -0.083298 0.8530 prod\_572 -0.90990 -0.05347 -0.136354 0.8494 pronoun\_391 -0.82980 -0.11075 -0.203992 0.7424 pronoun\_394 -0.87368 -0.10156 -0.185804 0.8081 pronoun\_490 -0.68382 -0.16827 -0.121986 0.5108 pronoun\_587 -0.86451 -0.01878 -0.191532 0.7844 pronoun\_688 -0.86463 -0.05043 -0.153052 0.7735 pronoun\_689 -0.86222 -0.04727 -0.147430 0.7674 pronoun\_690 -0.79422 -0.04742 -0.092606 0.6416 pronoun\_691 -0.83273 -0.03756 -0.134896 0.7131 pronoun\_692 -0.85976 -0.02751 -0.167505 0.7680 pronoun\_693 -0.84794 -0.05947 -0.138355 0.7417 relation\_619 -0.80794 -0.12863 -0.062645 0.6732 relation\_648 -0.43180 -0.30943 0.049950 0.2847 relation\_649 -0.45181 -0.39761 0.055438 0.3653 relation\_694 -0.60133 -0.34735 0.003749 0.4823 relation\_84 -0.37381 -0.40225 0.087247 0.3091 run\_637 -0.74455 -0.43411 0.281636 0.8221 run\_711 -0.82411 -0.32618 0.328455 0.8934 run\_721 -0.62137 0.6383 run\_726 -0.75445 -0.33216 0.345903 0.7992 run\_727 -0.78941 -0.36483 0.267860 0.8280 scrib\_330 -0.50138  0.5317 scrib\_516 -0.70865 -0.34658 0.185030 0.6565 scrib\_518 -0.70703 -0.33653 0.172910 0.6430 scrib\_519 -0.75983 -0.26339 0.212147 0.6917 scrib\_559 -0.68848 0.8342 self\_653 -0.90629 -0.08695 -0.107573 0.8405 self\_658 -0.91740 0.00107 -0.091571 0.8500 senses\_138 -0.53163 -0.25761 -0.371878 0.4873 senses\_144 -0.11080 -0.28714 -0.344842 0.2136 senses\_145 -0.27109 -0.55199 -0.296297 0.4660 senses\_212 -0.38546 -0.32213 -0.133449 0.2702 senses\_214 -0.23047 -0.32015 -0.183881 0.1894 senses\_243 -0.48732 -0.24346 -0.115004 0.3100 senses\_303 -0.10882 -0.28717 -0.416676 0.2679 senses\_304 -0.43548 -0.13717 -0.100307 0.2185 senses\_38 0.08274 -0.14217 -0.199517 0.0669 senses\_577 -0.39413 -0.50233 0.039061 0.4092 senses\_6 -0.20941 -0.40904 -0.219205 0.2592 senses\_93 -0.27825 -0.21354 -0.069720 0.1279 shapes\_396 -0.86533 -0.11358 0.073181 0.7671 shapes\_397 -0.87163 -0.12943 0.073097 0.7818 shapes\_398 -0.87673 -0.14244 0.086914 0.7965 shapes\_399 -0.88285 -0.12244 0.088169 0.8022 shapes\_427 -0.88796 -0.03677 0.019242 0.7902 shapes\_429 -0.87530 -0.15893 0.123530 0.8067 shapes\_430 -0.81969 -0.12291 0.092841 0.6956 shapes\_431 -0.82982 -0.14239 0.110102 0.7210 shapes\_502 -0.86349 -0.23439 0.168516 0.8289 shapes\_503 -0.82046 -0.18519 0.146524 0.7289 shapes\_521 -0.88792 -0.17512 0.100310 0.8291 shapes\_660 -0.89847 -0.12306 0.066866 0.8269 sitting\_118 -0.41699 -0.77118 0.108220 0.7803 sitting\_151 -0.35771 -0.65760 0.068490 0.5651 sitting\_160 -0.30939 -0.57811 -0.037519 0.4313 sitting\_162 0.00407 -0.60536 -0.177203 0.3979 sitting\_227 -0.01430 -0.60573 -0.076956 0.3730 sitting\_270 -0.51735 -0.72748 0.188113 0.8323 sitting\_272 -0.19567 -0.57296 -0.072943 0.3719 sitting\_33 -0.01823 -0.46609 -0.150684 0.2403 sitting\_92 -0.43001 -0.64712 0.083659 0.6107 standing\_113 -0.41478 -0.76007 0.169243 0.7784 standing\_208 -0.59154 -0.64677 0.317316 0.8689 standing\_209 -0.54853 -0.64767 0.167364 0.7484 standing\_245 -0.47631 -0.69602 0.206391 0.7539 standing\_271 -0.17725 -0.58876 -0.016846 0.3783 standing\_325 -0.62938 -0.55131 0.297733 0.7887 standing\_350 -0.69098 -0.51985 0.323909 0.8526 standing\_438 -0.65127 -0.54868 0.351565 0.8488 standing\_459 -0.69313 -0.50986 0.329312 0.8488 standing\_470 -0.67139 -0.52038 0.351033 0.8448 steps\_124 -0.33700 -0.68834 0.107535 0.5989 steps\_15 -0.12503 -0.64711 -0.070198 0.4393 steps\_16 -0.66264 -0.61743 0.8753 steps\_355 -0.59069 -0.64577 0.263696 0.8355 steps\_4 -0.63048 -0.54870 0.393996 0.8538 steps\_415 -0.53416 -0.61373 0.206056 0.7044 throw\_456 -0.63879 -0.35951 0.240175 0.5950 throw\_457 -0.71088 -0.48364 0.5948 throw\_529 -0.60432 -0.33654 0.176118 0.5095 throw\_530 -0.50243 -0.32162 0.235224 0.4112 throw\_644 -0.62198 -0.32936 0.214171 0.5412 throw\_672 -0.59106

### Milestone loadings by factor



ading (i.e. discrimination or slope)

Figure 2: Factor loadings by group

-0.31941 0.245875 0.5118 throw\_716 -0.58665 -0.33365 0.226027 0.5066 throw\_717 -0.63433 -0.28103 0.251128 0.5444 throw\_718 -0.47945 -0.29647 0.245500 0.3780 walk\_182 -0.67615 -0.46837 0.325353 0.7824 walk\_382 -0.53664 -0.60750 0.276979 0.7338 walk\_471 -0.58521 0.6971 walk\_676 -0.73628 -0.26597 0.257621 0.6792 walk\_684 -0.63499 -0.44943 0.217972 0.6527 walk\_685 -0.68929 -0.38416 0.226307 0.6739 walk\_709 -0.69429 0.268015 0.6748 words\_24 -0.79808 -0.23025 -0.150630 0.7126 words\_249 -0.78007 -0.32015 -0.083887 0.7180 words\_353 -0.88525 -0.09676 -0.218593 0.8408 words\_373 -0.89474 -0.06526 -0.164544 0.8319 words\_375 -0.81848 -0.16940 -0.136419 0.7172 words\_437 -0.92674 -0.07124 -0.161292 0.8899 words\_439 -0.85292 -0.15842 -0.108072 0.7643 words\_445 -0.91155 -0.12918 -0.144866 0.8686 words\_469 -0.92259 0.00185 -0.143191 0.8717 words\_534 -0.89222 -0.07983 -0.067816 0.8070 words\_54 -0.75873 -0.19707 -0.211569 0.6593 words\_55 -0.85537 -0.24372 -0.047173 0.7933 words\_573 -0.93519 -0.01089 -0.134006 0.8926 words\_614 -0.91353 -0.09142 -0.193700 0.8804 words\_7 -0.67352 -0.26548 -0.303189 0.6160 words\_702 -0.63849 -0.10040 -0.334253 0.5295

Rotated SS loadings: 168.336 67.452 12.188

Factor correlations:

 $F1\ F2\ F3\ F1\ 1\ 0\ 0\ F2\ 0\ 1\ 0\ F3\ 0\ 0\ 1\ \backslash end\{CodeOutput\} \\ \land end\{CodeChunk\}$ 

We also estimate the factor scores for each child using expected a posteriori (EAP) with a three dimensional standard normal distribution (Embretson & Reise, 2013). Figure 3 shows the relationship between age and factor score for each factor. The first factor, perhaps unsurprisingly, has a high correlation (r = 0.90) with age. The second factor has a strong



Figure 3: The first factor is highly associated with age

association with age from 2 to 16 months but thereafter is unrelated to age. By and large, the third factor does not have any association with age.

#### Acknowledgements

We'd like to thank Kinedu for providing the data that made this research possible.

#### References

Cai, L., Yang, J. S., & Hansen, M. (2011). Generalized full-information item bifactor analysis. *Psychological Methods*, *16*(3), 221.

Chalmers, R. P., & others. (2012). Mirt: A multidimensional item response theory package for the r environment. *Journal of Statistical Software*, 48(6), 1–29.

Embretson, S. E., & Reise, S. P. (2013). *Item response theory*. Psychology Press.

Kaiser, H. F. (1959). Computer program for varimax rotation in factor analysis. *Educational and Psychological Measurement*, 19(3), 413–420.

Maydeu-Olivares, A. (2013). Goodness-of-fit assessment of item response theory models. *Measurement: Interdisciplinary Research and Perspectives*, 11(3), 71–101.

McDonald, R. P., & Mok, M. M.-C. (1995). Goodness of fit in item response models. *Multivariate Behavioral Research*, 30(1), 23–40.

Vehtari, A., Gelman, A., & Gabry, J. (2017). Practical bayesian model evaluation using leave-one-out cross-validation and waic. *Statistics and Computing*, 27(5), 1413–1432.