Формулы над классом функций

Понятие формулы определяется по индукции:

- 1. Каждая булева переменная есть формула.
- 2. Если A и B формулы, то (¬A), (A & B), ($A \lor B$),
- $(A \to B),\, (A \leftrightarrow B),\, (A \oplus B),\, (A \mid B),\, (A \downarrow B) формулы.$
- 3. Формулами являются только выражения, которые могут быть получен из 1 и 2. Других формул не существует.

Формулы над классом функций

Пусть $\mathcal{F}-$ класс всех булевых функций $f: B^n \to B,$ $n \in \mathbb{N} \cup \{0\}.$

Определение. Пусть дан класс функций $\mathcal{C} \subseteq \mathcal{F}$. Понятие формулы над классом \mathcal{C} определяется по индукции:

- ightharpoonup Каждая переменная есть формула над ${\cal C}.$
- **Р** Если $f \in \mathcal{C}$, $f : B^n \to B$, и A_1, A_2, \dots, A_n формулы над \mathcal{C} , то выражение $f(A_1, A_2, \dots, A_n)$ тоже является формулой над \mathcal{C} .
- ightharpoonup Других формул над ${\cal C}$ нет.

Примеры

Пусть
$$\mathcal{C} = \{\overline{}\} = \{\neg\}.$$

- 1. **х** формула.
- 2. $\overline{\mathbf{x}}$ формула.
- $3. \ \overline{\overline{x}}$ формула.
- 4. $\overline{\overline{\overline{\mathbf{x}}}}$ формула.

Функции, представимые формулами над $\mathcal{C} = \{\overline{\ }\} = \{\neg\},$ исчерпываются функциями X, \overline{X} .

Примеры

Пусть
$$\mathcal{C} = \{\lor, \&, \overline{}\}.$$

- 1. $x, y \phi$ ормулы.
- 2. $x \& y, \overline{x} \phi$ ормулы.
- 3. $x \& y \lor \overline{x}$ формула.

Любая ДНФ является формулой над $\mathcal{C} = \{\lor, \&, \overline{}\}.$

Примеры

Пусть
$$\mathcal{C} = \{\lor, \&, \overline{}\}.$$

- 1. $x, y \phi$ ормулы.
- 2. $\mathbf{x} \vee \mathbf{y}, \overline{\mathbf{x}}$ формулы.
- 3. $(x \lor y) \& \overline{x}$ формула.

Любая КНФ является формулой над $\mathcal{C} = \{\lor, \&, \overline{}\}.$

Формулы над классом функций

Предложение 1. Если $D: B^n \to B$ — формула над C и E_1, E_2, \ldots, E_n — формулы над C, то выражение $D(E_1, E_2, \ldots, E_n)$ также является формулой над C.

Доказательство. Индукция по индуктивному определению:

- lack E Если $D(x_1,\dots,x_m,\dots,x_n)=x_m, m\leq n,$ переменная, то $D(E_1,E_2,\dots,E_n)=E_m$ формула над $\mathcal C$.
- **Р** Если $D = f(A_1, A_2, \dots, A_k)$, где $f \in \mathcal{C}$ и A_1, A_2, \dots, A_k формулы над \mathcal{C} , то делаем индукционное предположение о том, что $A_1(E_1, \dots, E_n), \dots, A_k(E_1, \dots, E_n)$ формулы над \mathcal{C} . Тогда

$$D(E_1, E_2, ..., E_n) = f(A_1(E_1, ..., E_n), ..., A_k(E_1, ..., E_n))$$

снова формула над \mathcal{C} .

▶ Так как других формул D над C нет, предложение доказано.

Замыкание класса

Пусть \mathcal{F} — класс всех булевых функций $f: B^n \to B$, $n \in \mathbb{N} \cup \{0\}$.

Определение. Пусть дан класс функций $\mathcal{C} \subseteq \mathcal{F}$. Замыканием класса \mathcal{C} называется класс $[\mathcal{C}]$, состоящий из всех функций, представимых формулами над \mathcal{C} .

Примеры:

- $F = [\{\lor, \&, \overline{\ }\}] = [\{\lor, \overline{\ }\}] = [\{\&, \overline{\ }\}].$
- ▶ $[\{|\}] = [\{\downarrow\}] = \mathcal{F}$.
- ▶ $[{^{-}}] = {^{-}}, id$ } (id тождественная функция).

Свойства замыкания

Предложение 2. Для каждого $\mathcal{C} \subseteq \mathcal{F}$ имеет место $\mathcal{C} \subseteq [\mathcal{C}]$.

Доказательство. Пусть $f(x_1, x_2, ..., x_n) \in \mathcal{C}$. Но $x_1, x_2, ..., x_n$ — формулы над \mathcal{C} . Значит $f(x_1, x_2, ..., x_n)$ — формула над \mathcal{C} , то есть $f(x_1, x_2, ..., x_n) \in [\mathcal{C}]$.

Свойства замыкания

Предложение 3. Если $\mathcal{C} \subseteq \mathcal{D}$, то $[\mathcal{C}] \subseteq [\mathcal{D}]$.

Доказательство. Индукция по индуктивному определению:

- ightharpoonup Каждая переменная есть формула над $\mathcal C$ и над $\mathcal D$.
- ▶ Пусть $f \in \mathcal{C} \subseteq \mathcal{D}$ и A_1, A_2, \dots, A_n формулы над \mathcal{C} . Делаем индукционное предположение о том, что A_1, A_2, \dots, A_n формулы над \mathcal{D} . Так как $f \in \mathcal{D}$, то новая формула $f(A_1, A_2, \dots, A_n)$ над \mathcal{C} будет также формулой и над \mathcal{D} .
- ▶ Так как других формул над \mathcal{C} нет, каждая формула над \mathcal{C} будет формулой над \mathcal{D} , то есть $[\mathcal{C}] \subseteq [\mathcal{D}]$.

Свойства замыкания

Предложение 4. Для каждого $\mathcal{C} \subseteq \mathcal{F}$ имеет место $[\mathcal{C}] = [[\mathcal{C}]]$.

Доказательство. По предложению 2 имеем $[C] \subseteq [[C]]$. Для доказательства $[[C]] \subseteq [C]$ используем индукцию по индуктивному определению:

- lacktriangle Каждая переменная есть формула над [$\mathcal C$] и над $\mathcal C$.
- ▶ Пусть $f \in [\mathcal{C}]$ и A_1, A_2, \ldots, A_n формулы над $[\mathcal{C}]$. Делаем индукционное предположение о том, что A_1, A_2, \ldots, A_n формулы над \mathcal{C} . Так как f формула над \mathcal{C} , то по Предложению 1 новая формула $f(A_1, A_2, \ldots, A_n)$ над $[\mathcal{C}]$ будет также формулой и над \mathcal{C} .
- ▶ Так как других формул над [\mathcal{C}] нет, каждая формула над [\mathcal{C}] будет формулой над \mathcal{C} , то есть [[\mathcal{C}]] \subseteq [\mathcal{C}].

Замкнутые классы

Определение. Класс функций $\mathcal{C} \subseteq \mathcal{F}$ называется замкнутым, если $[\mathcal{C}] = \mathcal{C},$

Замкнутые классы

Определение. Класс функций $\mathcal{C} \subseteq \mathcal{F}$ называется замкнутым, если $[\mathcal{C}] = \mathcal{C}$, то есть каждая формула над \mathcal{C} принадлежит \mathcal{C} .

Примеры:

- ▶ Класс всех функций F замкнутый.
- В силу Предложения 4 любое замыкание [\mathcal{C}] является замкнутым классом.

Замкнутые классы

Предложение 5. Для того чтобы класс \mathcal{C} (содержащий не только константы) был замкнутым необходимо и достаточно, чтобы тождественная функция (то есть сама переменная) принадлежала \mathcal{C} , и $g = f(A_1, \ldots, A_n) \in \mathcal{C}$ для всех $f, A_1, \ldots, A_n \in \mathcal{C}$.

Доказательство. Необходимость очевидна. Докажем достаточность индукцией по индуктивному определению:

- ightharpoonup Каждая переменная есть $I_m^n \in \mathcal{C}$.
- ▶ Пусть $f \in \mathcal{C}$ и A_1, A_2, \ldots, A_n формулы над \mathcal{C} . Делаем индукционное предположение о том, что $A_1, A_2, \ldots, A_n \in \mathcal{C}$. Так как $f(A_1, A_2, \ldots, A_n)$ формула над \mathcal{C} , то по нашим условиям новая формула $f(A_1, A_2, \ldots, A_n)$ над \mathcal{C} будет принадлежать \mathcal{C} .
- Так как других формул над C нет, каждая формула над C принадлежит C, то есть [C] = C.

Полный класс

Определение. Класс функций $\mathcal{C} \subseteq \mathcal{F}$ называется полным, если $[\mathcal{C}] = \mathcal{F}$, то есть каждая булева функция может быть записана в виде формулы над \mathcal{C} .

Примеры:

- ▶ $\{\lor, \&, \overline{\ }\}, \{\lor, \overline{\ }\}, \{\&, \overline{\ }\}$ полные классы.
- **▶** {|}, {↓} полные классы.
- ▶ { ¬ не полный класс.