Nama : Sisca Linda Anari

NIM : 12030123120044

Kelas : F

PENGKODEAN DAN PEMROGRAMAN

PERTEMUAN 13 dan 14

DATASET PERDAGANGAN

Question: buat dataset perdagangan yang didalammnya terdapat tiga tabel: tabel produksi, tabel persediaan, tabel penjualan, tabel dalam bentuk csv. penjelasan lengkap dengan struktur tabelnya.

Jawab:

Penjelasan Struktur Tabel

1. Tabel Produksi (production.csv)

Tabel ini mencatat data produksi barang di suatu perusahaan perdagangan.

Struktur Kolom:

- o production_id: ID unik untuk setiap catatan produksi (integer).
- product id: ID produk yang diproduksi (string, misal: PROD001).
- o product name: Nama produk (string).
- o production date: Tanggal produksi (format: YYYY-MM-DD).
- o quantity produced: Jumlah unit yang diproduksi (integer).
- o production cost: Biaya produksi per unit (decimal).

2. Tabel Persediaan (inventory.csv)

Tabel ini mencatat status persediaan barang di gudang.

Struktur Kolom:

- o inventory id: ID unik untuk setiap catatan persediaan (integer).
- o product id: ID produk yang ada di persediaan (string, sesuai dengan tabel produksi).
- o warehouse id: ID gudang tempat penyimpanan (string, misal: WH001).
- o stock quantity: Jumlah stok saat ini (integer).
- last_updated: Tanggal terakhir pembaruan stok (format: YYYY-MM-DD).

3. Tabel Penjualan (sales.csv)

Tabel ini mencatat data penjualan produk.

Struktur Kolom:

- o sale id: ID unik untuk setiap transaksi penjualan (integer).
- o product id: ID produk yang dijual (string, sesuai dengan tabel produksi).
- o sale date: Tanggal penjualan (format: YYYY-MM-DD).
- o quantity sold: Jumlah unit yang terjual (integer).
- sale price: Harga jual per unit (decimal).

o total_revenue: Total pendapatan dari penjualan (quantity_sold * sale_price, decimal).

Dataset

production.csv

Production_id	Product_id	Product_name	Production_date	Quantity_produced	Production_cost
1	PROD001	Beras Premium	45667	1000	12000.5
2	PROD002	Minyak Goreng	45672	500	15000.75
3	PROD003	Gula Pasir	45689	800	13000.25
4	PROD001	Beras Premium	45698	1200	12200
5	PROD004	Tepung Terigu	45703	600	9000.3

inventory.csv

Inventory_id	Product_id	Warehouse_id	Stock_quantity	Last_updated
1	PROD001	WH001	800	45717
2	PROD002	WH002	300	45718
3	PROD003	WH001	500	45717
4	PROD004	WH003	400	45719
5	PROD001	WH002	200	45718

sales.csv

Sale_id	Product_id	Sale_date	Quantity_sold	Sale_price	Total_revenue
1	PROD001	45717	200	15000	3000000
2	PROD002	45718	100	18000.5	1800050
3	PROD003	45719	150	16000.75	2400112.5
4	PROD001	45720	300	15200	4560000
5	PROD004	45721	50	11000.25	550012.5

Catatan tambahan:

Konsistensi Data

Kolom product_id digunakan untuk menghubungkan ketiga tabel, memastikan integritas data antar tabel.

• Format Tanggal

Semua tanggal menggunakan format YYYY-MM-DD untuk konsistensi.

• Contoh Penggunaan

Dataset ini dapat digunakan untuk analisis perdagangan, seperti menghitung keuntungan (dari total revenue dan production cost), memantau stok, atau melacak tren penjualan.

Input >>colab

Question: Berdasarkan dataset perdagangan yang berisi ketiga tabel dibawah ini, buat data analitik sederhana lengkap dengan download hasil tabel dan visualisasi hasilnya.

Result:

Reasoning: tiga file CSV ke dalam pandas DataFrames dan tampilkan 5 baris pertama masing-masing untuk diverifikasi.

imp	oort panda	s a	as pd												
try	7 :														
	<pre>sales_df = pd.read_csv('sales.csv')</pre>														
	inventor	_			_										
	producti	on_	_df =	pd.r	ead_c	sv('pro	oducti	on.c	sv')						
	display(sa]	les di	f.hea	d())										
	display(_			())									
	display(pro	oducti	ion_d	f.hea	d())									
	cont EileM	- + T	Zaum dī	C	_										
exc	cept FileN print("O					les not	t four	nd.")							
exc	cept pd.er							,							
	print("E				one	or more	e CSV	file	s. Ch	neck	file	forma	t.")		
exc	cept Excep				d 0.555			(0)	T \						
	print(f"										.1				
	sale_id pr					quantity	_		•						
0	1	PR	OD001	2025-	03-01		200	150	00.00		300000	0.00	11.		
1	2	PR	OD002	2025-	03-02		100	180	00.50		18000	50.0			
2	3	PRO	OD003	OD003 2025-03-03			150	50 16000.75 2400112.5		12.5					
3	4	PRO	OD001	2025-	03-04		300	152	200.00		456000	0.00			
4	5	PRO	OD004	2025-	03-05		50	110	000.25		5500	12.5			
	inventory_:	id	produc	t_id	wareho	use_id	stock_c	quanti	ty la	ast_up	dated	11			
0		1	PRO	D001		WH001		8	00	2025	-03-01				
1		2	PRO	D002		WH002		3	00	2025	-03-02				
2		3	PRO	D003		WH001		5	00	2025	-03-01				
3		4		D004		WH003			00		-03-03				
4		5		D001		WH002			00		-03-02				
4															
	production_	_1a		ıct_id						quan	стсу_рі		-	oduction_cost	
0		1	PRO	OD001	Beras	Premium		2025-	01-10			1000)	12000.50	
1		2	PRO	OD002	Minya	k Goreng		2025-	01-15			500)	15000.75	
2		3	PRO	OD003	G	Gula Pasir		2025-	02-01			800)	13000.25	
3		4	PRO	OD001	Beras	Premium		2025-	02-10			1200	0	12200.00	
4		5	PRO	OD004	Tepu	ıng Terigu		2025-	02-15			600)	9000.30	

Data exploration

```
# Data Exploration
# 1. Shape of DataFrames
print("Sales DataFrame Shape:", sales df.shape)
print("Inventory DataFrame Shape:", inventory df.shape)
print("Production DataFrame Shape:", production df.shape)
# 2. Data Types
print("\nSales DataFrame Data Types:\n", sales df.dtypes)
print("\nInventory DataFrame Data Types:\n", inventory df.dtypes)
print("\nProduction DataFrame Data Types:\n", production_df.dtypes)
# 3. Descriptive Statistics
print("\nSales DataFrame Descriptive Statistics:\n",
sales df.describe(include='all'))
print("\nInventory DataFrame Descriptive Statistics:\n",
inventory df.describe(include='all'))
print("\nProduction DataFrame Descriptive Statistics:\n",
production df.describe(include='all'))
# 4. Missing Values
print("\nSales DataFrame Missing Values:\n", sales df.isnull().sum())
print("\nInventory DataFrame Missing Values:\n", inventory df.isnull().sum())
print("\nProduction DataFrame Missing Values:\n", production_df.isnull().sum())
# 5. Duplicate Rows
print("\nSales DataFrame Duplicate Rows:", sales df.duplicated().sum())
print("\nInventory DataFrame Duplicate Rows:", inventory df.duplicated().sum())
print("\nProduction DataFrame Duplicate Rows:", production_df.duplicated().sum())
# 6. Unique Values in Key Columns
print("\nSales DataFrame Unique Product IDs:", sales df['product id'].nunique())
print("Inventory DataFrame Unique Product IDs:",
inventory df['product id'].nunique())
print ("Production DataFrame Unique Product IDs:",
production_df['product_id'].nunique())
print("\nSales DataFrame Unique Sale Dates:", sales df['sale date'].nunique())
print("Inventory DataFrame Unique Update Dates:",
inventory_df['last_updated'].nunique())
print ("Production DataFrame Unique Production Dates:",
production df['production date'].nunique())
# Check for product ids in sales that are not in production
sales products = set(sales df['product id'].unique())
production products = set(production df['product id'].unique())
missing products = sales products - production products
print("\nProduct IDs in sales but not in production:", missing_products)
```

Sales DataFrame Shape: (5, 6)
Inventory DataFrame Shape: (5, 5)
Production DataFrame Shape: (5, 6)

Sales DataFrame Data Types:
sale_id int64
product_id object
sale_date object
quantity_sold int64
sale_price float64
total revenue float64

dtype: object

Inventory DataFrame Data Types:

inventory_id int64
product_id object
warehouse_id object
stock_quantity int64
last_updated object

dtype: object

Production DataFrame Data Types:

production_id int64
product_id object
product_name object
production_date object
quantity_produced int64
production cost float64

dtype: object

Sales DataFrame Descriptive Statistics:

	sale_id	<pre>product_id</pre>	sale_date	quantity_sold	sale_price
count	5.000000	5	5	5.00000	5.00000
unique	NaN	4	5	NaN	NaN
top	NaN	PROD001	2025-03-01	NaN	NaN
freq	NaN	2	1	NaN	NaN
mean	3.000000	NaN	NaN	160.00000	15040.300000
std	1.581139	NaN	NaN	96.17692	2551.194839
min	1.000000	NaN	NaN	50.00000	11000.250000
25%	2.000000	NaN	NaN	100.00000	15000.000000
50%	3.000000	NaN	NaN	150.00000	15200.000000
75%	4.000000	NaN	NaN	200.00000	16000.750000
max	5.000000	NaN	NaN	300.00000	18000.500000

total revenue 5.000000e+00 count NaN unique NaN top NaN freq mean 2.462035e+06 std 1.482291e+06 min 5.500125e+05 1.800050e+06 25% 50% 2.400112e+06 3.000000e+06 75% 4.560000e+06 max

Inventory DataFrame Descriptive Statistics:

	<u> -</u>	_			
	inventory id	product id	warehouse id	stock quantity	last updated
count	5.000000	5	5	5.00000	5
unique	NaN	4	3	NaN	3
top	NaN	PROD001	WH001	NaN	2025-03-01
freq	NaN	2	2	NaN	2
mean	3.000000	NaN	NaN	440.000000	NaN
std	1.581139	NaN	NaN	230.217289	NaN
min	1.000000	NaN	NaN	200.000000	NaN

25%	2.00000	NaN		NaN	300.000000		NaN
50%	3.000000	NaN		NaN	400.000000		NaN
75%	4.000000	NaN		NaN	500.000000		NaN
max	5.000000	NaN		NaN	800.000000		NaN
max	3.00000	nan		IVAIN	000.000000		IVAIN
Product	ion DataFrame Des						
	<pre>production_id p</pre>	_	prod	_	<pre>production_date</pre>	\	
count	5.00000	5		5	5		
unique	NaN	4		4	5		
top	NaN	PROD001	Beras	Premium	2025-01-10		
freq	NaN	2		2	1		
mean	3.00000	NaN		NaN	NaN		
std	1.581139	NaN		NaN	NaN		
min	1.00000	NaN		NaN	NaN		
25%	2.00000	NaN		NaN	NaN		
50%	3.00000	NaN		NaN	NaN		
75%	4.00000	NaN		NaN	NaN		
max	5.000000	NaN		NaN	NaN		
	quantity produce	ad produc	tion co	q+			
count	5.0000		5.0000				
unique	N. 6			aN			
top	Nã			aN			
freq	Ná			aN			
mean	820.00000		40.3600				
std	286.35642		65.3138				
min	500.00000		00.3000				
25%	600.00000		00.5000				
50%	800.00000		00.0000				
75%	1000.00000		00.2500				
max	1200.00000		00.7500				
111(42)	1200.0000	70 100	00.7000				
	ataFrame Missing	Values:					
sale_i							
product	—						
sale_da							
quantit							
sale_pr							
total_r							
dtype:	int64						
Invento	ry DataFrame Miss	sing Value	s:				
invent	ory_id 0						
product							
warehou	se_id 0						
stock q							
last_up	-						

last_updated dtype: int64

Production DataFrame Missing Values:

production_id 0 product_name product_id 0 0 production_date 0 quantity_produced 0 production_cost 0 dtype: $int\overline{6}4$

Sales DataFrame Duplicate Rows: 0

Inventory DataFrame Duplicate Rows: 0

Production DataFrame Duplicate Rows: 0

Sales DataFrame Unique Product IDs: 4 Inventory DataFrame Unique Product IDs: 4

```
Sales DataFrame Unique Sale Dates: 5
Inventory DataFrame Unique Update Dates: 3
Production DataFrame Unique Production Dates: 5
Product IDs in sales but not in production: set()
# Data Exploration (Continued)
# 3. Descriptive Statistics (Continued)
print("\nProduction DataFrame Descriptive Statistics:\n",
production df.describe(include='all'))
# 4. Missing Values
print("\nSales DataFrame Missing Values:\n", sales df.isnull().sum())
print("\nInventory DataFrame Missing Values:\n", inventory df.isnull().sum())
print("\nProduction DataFrame Missing Values:\n", production df.isnull().sum())
# 5. Duplicate Rows
print("\nSales DataFrame Duplicate Rows:", sales df.duplicated().sum())
print("\nInventory DataFrame Duplicate Rows:", inventory df.duplicated().sum())
print("\nProduction DataFrame Duplicate Rows:", production df.duplicated().sum())
# 6. Unique Values in Key Columns
print("\nSales DataFrame Unique Product IDs:", sales df['product id'].nunique())
print ("Inventory DataFrame Unique Product IDs:",
inventory df['product id'].nunique())
print ("Production DataFrame Unique Product IDs:",
production df['product id'].nunique())
print("\nSales DataFrame Unique Sale Dates:", sales_df['sale_date'].nunique())
print("Inventory DataFrame Unique Update Dates:",
inventory df['last updated'].nunique())
print ("Production DataFrame Unique Production Dates:",
production df['production date'].nunique())
# Check for product ids in sales that are not in production
sales products = set(sales df['product id'].unique())
production products = set(production df['product id'].unique())
missing products = sales products - production products
print("\nProduct IDs in sales but not in production:", missing_products)
Production DataFrame Descriptive Statistics:
         production id product id product name production date
             5.000000
                                               5
                                                               5
count
                                                               5
unique
                  NaN
                                               4
                         PROD001 Beras Premium
                  NaN
                                                      2025-01-10
top
                               2
                                               2
freq
                  NaN
                                                               1
mean
             3.000000
                             NaN
                                            NaN
                                                             NaN
std
             1.581139
                             NaN
                                            NaN
                                                             NaN
min
             1.000000
                             NaN
                                            NaN
                                                             NaN
2.5%
             2.000000
                                            NaN
                                                             NaN
                             NaN
50%
             3.000000
                             NaN
                                            NaN
                                                            NaN
75%
             4.000000
                             NaN
                                            NaN
                                                            NaN
             5.000000
                             NaN
                                            NaN
                                                             NaN
max
        quantity_produced production_cost
count
                 5.000000
                                  5.000000
unique
                      NaN
                                       NaN
```

Production DataFrame Unique Product IDs: 4

```
top
                     NaN
                                      NaN
                     NaN
freq
                                      NaN
              820.000000
                            12240.360000
mean
std
              286.356421
                             2165.313852
              500.000000
                             9000.300000
min
25%
              600.000000
                            12000.500000
50%
              800.00000
                            12200.000000
75%
             1000.000000
                             13000.250000
             1200.000000
                             15000.750000
max
Sales DataFrame Missing Values:
sale id 0
product id
sale date
                0
quantity_sold
                \cap
sale price
                0
total_revenue
dtype: int64
Inventory DataFrame Missing Values:
               0
 inventory id
product id
                 0
warehouse_id
                 0
                 0
stock quantity
                 0
last_updated
dtype: int64
Production DataFrame Missing Values:
production id 0
product id
                    0
product name
                    0
                     0
production_date
quantity produced
                     0
production cost
dtype: int64
Sales DataFrame Duplicate Rows: 0
Inventory DataFrame Duplicate Rows: 0
Production DataFrame Duplicate Rows: 0
Sales DataFrame Unique Product IDs: 4
Inventory DataFrame Unique Product IDs: 4
Production DataFrame Unique Product IDs: 4
Sales DataFrame Unique Sale Dates: 5
Inventory DataFrame Unique Update Dates: 3
Production DataFrame Unique Production Dates: 5
Product IDs in sales but not in production: set()
Data Analysis & Visualization
# Calculate total sales, revenue, production costs, and profit for each product
combined df['total sales'] =
combined df.groupby('product id')['quantity sold'].transform('sum')
combined df['total revenue per product'] =
```

combined df.groupby('product id')['total revenue'].transform('sum')

combined df.groupby('product id')['production cost'].transform('sum')

combined df['total profit per product'] = combined df['total revenue per product'] -

combined_df['total_production_cost_per_product'] =

combined_df['total_production_cost_per_product']

```
# Analyze sales trends
sales trends df = combined df.groupby('sale date').agg({'quantity sold': 'sum',
'total revenue': 'sum'}).reset index()
sales_trends_df.rename(columns={'quantity_sold': 'total_sales', 'total_revenue':
'total revenue on date'}, inplace=True)
# Investigate inventory levels
inventory_trends_df = combined_df.groupby('last_updated').agg({'stock_quantity':
'mean'}).reset index()
inventory trends df.rename(columns={'stock quantity': 'average stock quantity'},
inplace=True)
# Calculate average profit margin
combined df['profit margin'] = (combined df['total revenue per product'] -
combined df['total production cost per product']) /
combined df['total revenue per product']
# Explore correlations (example: sales quantity and production quantity)
correlation sales production =
combined df['quantity sold'].corr(combined df['quantity produced'])
print(f"Correlation between sales quantity and production quantity:
{correlation sales production}")
# Identify potential outliers (example: using IQR for profit margin)
Q1 = combined df['profit margin'].quantile(0.25)
Q3 = combined df['profit margin'].quantile(0.75)
IQR = Q3 - Q1
lower bound = Q1 - 1.5 * IQR
upper bound = Q3 + 1.5 * IQR
outliers = combined df[(combined df['profit margin'] < lower bound) |</pre>
(combined df['profit margin'] > upper bound)]
display(combined df.head())
display(sales trends df.head())
display(inventory trends df.head())
display(outliers.head())
import matplotlib.pyplot as plt
from mpl toolkits.mplot3d import Axes3D
import plotly.express as px
# 3D Scatter Plot: total revenue per product, total production cost per product,
total profit per product
fig = plt.figure(figsize=(10, 8))
ax = fig.add subplot(111, projection='3d')
scatter = ax.scatter(combined df['total revenue per product'],
combined_df['total_production_cost_per_product'],
combined df['total profit per product'],
c=combined df['product id'].astype('category').cat.codes)
ax.set xlabel('Total Revenue per Product')
ax.set ylabel('Total Production Cost per Product')
ax.set zlabel('Total Profit per Product')
ax.set title('3D Scatter Plot of Revenue, Cost, and Profit by Product')
plt.savefig('3d scatter revenue cost profit.png')
plt.show()
```

```
# 3D Surface Plot: average_stock_quantity over time
fig = px.scatter_3d(inventory_trends_df, x='last_updated',
y='average_stock_quantity', z=inventory_trends_df.index,
color='average_stock_quantity')
fig.update_layout(title='Average Stock Quantity Over Time',
scene=dict(xaxis_title='Last Updated', yaxis_title='Average Stock Quantity',
zaxis_title='Index'))
fig.write_html('3d_surface_inventory_trends.html')
fig.show()

# Another 3D visualization (e.g., scatter matrix)
fig = px.scatter_matrix(combined_df, dimensions=['quantity_sold',
'quantity_produced', 'stock_quantity'], color='product_id')
fig.update_layout(title='Scatter Matrix of Sales, Production, and Stock Quantities')
fig.write_html("3d_scatter_matrix_sales_production_stock.html")
fig.show()
```

Average Stock Quantity Over Time

回 电中心正 香鹼 ■

Sample (quantity_sold)

Scatter Matrix of Sales, Production, and Stock Quantities

Summary

Temuan Kunci Analisis Data

Integrasi Data

Data penjualan, persediaan, dan produksi berhasil digabungkan ke dalam satu DataFrame (combined_df) menggunakan *inner join* berdasarkan product_id. Kolom tanggal diubah menjadi objek datetime. Tidak ditemukan nilai yang hilang dalam dataset gabungan.

Analisis Penjualan

Total penjualan, pendapatan, biaya produksi, dan laba dihitung per produk. Tren penjualan dianalisis berdasarkan tanggal, menunjukkan total penjualan dan pendapatan per hari.

Analisis Persediaan

Rata-rata tingkat persediaan dilacak dari waktu ke waktu.

Analisis Profitabilitas

Margin laba dihitung untuk setiap produk. *Outlier* dalam margin laba diidentifikasi menggunakan metode IQR. **Analisis Korelasi**

Koefisien korelasi dihitung antara jumlah penjualan dan jumlah produksi.

Visualisasi:

Visualisasi 3D dibuat, termasuk *scatter plot* untuk pendapatan, biaya, dan laba; *surface plot* untuk ratarata jumlah stok dari waktu ke waktu; dan *scatter matrix* untuk jumlah penjualan, produksi, dan stok.

Pembuatan Laporan

Laporan PDF dibuat yang berisi visualisasi dan deskripsi teks. DataFrame utama (combined_df, sales trends df, inventory trends df, dan outliers) disimpan sebagai file CSV.

Wawasan

Menyelidiki lebih lanjut korelasi antara jumlah penjualan dan jumlah produksi untuk mengoptimalkan perencanaan produksi. Koefisien korelasi telah dihitung, tetapi analisis lebih lanjut diperlukan untuk memahami implikasi praktisnya.