Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Claims

- (Original) A microsilica with pozzolanic activity that contains at least 85% in weight of silica with respect to the total weight of microsilica, characterized because the silica contains 55 to 90% in weight of cristobalite and tridimite with respect to the total weight of silica.
- (Original) The microsilica of claim 1, characterized because the amount of cristobalite and tridimite is 70 to 90% in weight with respect to the total weight of silica.
- (Original) The microsilica of claim 1, characterized because the cristobalite and tridimite have a crystal size of 5 to 12 nm.
- (Original) The microsilica of claim 3, characterized because the cristobalite and tridimite have a crystal size of 6 to 11 nm.
- (Original) The microsilica of claim 1, characterized because has a pozzolanic index from 100 to 125%.
- (Original) The microsilica of claim 5, characterized because has a pozzolanic index from 115% to 125%.
- (Original) The microsilica of claim 1, characterized because has a superficial area of 25,000 m²/Kq.
- (Original) The microsilica of claim 1, characterized because has a particle size distribution equal or minor to 40 um at 98%.
- (Original) The microsilica of claim 1, characterized because has a density equal or minor to 2.4 g/cm³.
- 10. (Currently Amended) The microsilica of the claim 1-te-9, characterized because it includes:

Components	Percentage in weight with respect to the total weight of microsilica (%)	Method
SiO ₂	89.08	ASTM-C114
Al ₂ O ₃	1.87	ASTM-C114
Fe ₂ O ₃	0.1	ASTM-C114
CaO	3.96	ASTM-C114

MgO	0.88	ASTM-C114
K ₂ O	0.06	ASTM-C114
SO ₃	0.35	ASTM-C114
PPI	2.22	ASTM-C114

- (Original) The microsilica of the claim 10, characterized because has a density of 2.33 g/cm³, a mesh fineness of 325 in a 96.7 % and a Blaine value of 6,536 g/cm².
- (Currently Amended) A method for the obtention of microsilica of claim 1-te-11, characterized because the method includes the steps of:
 - a) Obtaining siliceous material from natural deposits,
 - b) Selecting those parts of the deposit that contain SiO₂ in an equal or greater amounts than 85% in weight with respect to the total weight of the material.
 - c) Selecting the parts with a density lower to 2.4 g/cm³ from the obtained parts in b).
 - d) Crushing the obtained parts in c) until obtaining a particle size lower than 1/2",
 - e) Calcination of the material obtained before at 590 to 620°C, and
 - f) Milling the calcined material until obtaining a mesh particle size of 325 at 96% minimum.
- (Original) The method of claim 12, characterized because the natural deposit is an ignimbrite deposit.
- (Original) The method of claim 13, characterized because the microsilica has a pozzolanic index from 100 to 125%.
- (Original) The method of claim 14, characterized because the microsilica has a pozzolanic index from 115% to 125%.
- 16. (Currently Amended) A method for the obtention of microsilica of claim 1, characterized because the method includes the steps of:
 - a) Obtaining siliceous material from natural deposits,
 - b) Selecting those parts of the deposit that contain SiO_2 in an equal or greater amounts than 85% in weight with respect to the total weight of the material,
 - Selecting the parts with a density lower to 2.4 g/cm³ from the obtained parts in b),
 - d) Crushing the obtained parts in c) until obtaining a particle size lower than 1/2", and
 - Milling the calcined material obtaining in d) until obtaining a mesh particle size of 325 at 96% minimum.

- (Original) The method of claim 16, characterized because the natural deposit is an ignimbrite deposit.
- (Original) The method of claim 17, characterized because the microsilica has a pozzolanic index from 100 to 120%.