Exercise Sheet 5 - Solutions Propositional Logic - Semantics

1. For example:

- a non-valid satisfiable formula: $(p \to p) \land (\neg q \lor r)$. It is satisfiable because $p = \mathbf{T}, q = \mathbf{T}, r = \mathbf{T}$ for example satisfies, while $p = \mathbf{T}, q = \mathbf{T}, r = \mathbf{F}$ does not.
- a non-unsatisfiable, falsifiable formula: $(p \to p) \land (\neg q \lor r)$ (same as above). It is falsifiable because $p = \mathbf{T}, q = \mathbf{T}, r = \mathbf{F}$ for example falsifies it, while $p = \mathbf{T}, q = \mathbf{T}, r = \mathbf{T}$ does not (it satisfies it).
- an unsatisfiable formula: $\neg((p \land q) \to (p \lor q))$
- a valid formula: $(p \land q) \rightarrow (\neg(\neg p \lor \neg q))$
- 2. Here is the truth table for $F = (q \lor r \to p) \land (q \to r) \land \neg r$:

p	q	r	$q \vee r$	$q \lor r \to p$	$q \rightarrow r$	$\neg r$	F
$\overline{\mathbf{T}}$	\mathbf{T}	\mathbf{T}	${f T}$	\mathbf{T}	\mathbf{T}	F	$\overline{\mathbf{F}}$
${f T}$	\mathbf{T}	\mathbf{F}	${f T}$	$\mid \mathbf{T} \mid$	\mathbf{F}	\mathbf{T}	\mathbf{F}
${f T}$	\mathbf{F}	${f T}$	${f T}$	$\mid \mathbf{T} \mid$	\mathbf{T}	\mathbf{F}	\mathbf{F}
${f T}$	\mathbf{F}	\mathbf{F}	${f F}$	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	${f T}$	${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{F}	${f T}$	${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	${f T}$

Because there are rows where F is \mathbf{F} , the formula is not valid.

3. Here is the truth table for $F = (q \lor r \to p) \lor (q \to r) \lor \neg r$:

p	q	r	$q \lor r$	$q \lor r \to p$	$q \rightarrow r$	$\neg r$	F
$\overline{\mathbf{T}}$	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	F	$\overline{\mathbf{T}}$
${f T}$	${f T}$	\mathbf{F}	\mathbf{T}	$\mid \mathbf{T} \mid$	\mathbf{F}	\mathbf{T}	${f T}$
${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{T}	$\mid \mathbf{T} \mid$	\mathbf{T}	\mathbf{F}	${f T}$
${f T}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	$\mid \mathbf{T} \mid$	\mathbf{T}	\mathbf{T}	${f T}$
${f F}$	${f T}$	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$
${f F}$	${f T}$	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	${f T}$
${f F}$	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	${f T}$
${f F}$	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

Because F is $\mathbf T$ w.r.t. all valuations, the formula is therefore valid.

- 4. Consider the following valuation ϕ : $\phi(p_0) = \mathbf{T}$, $\phi(p_1) = \mathbf{F}$, $\phi(q_0) = \mathbf{F}$, $\phi(q_1) = \mathbf{T}$, $\phi(r_0) = \mathbf{F}$, $\phi(r_1) = \mathbf{T}$, $\phi(s_0) = \mathbf{T}$, $\phi(s_1) = \mathbf{F}$. Therefore,
 - $\phi(p_0 \vee p_1) = \mathbf{T}$ because $\phi(p_0) = \mathbf{T}$
 - $\phi(q_0 \vee q_1) = \mathbf{T}$ because $\phi(q_1) = \mathbf{T}$

- $\phi(r_0 \vee r_1) = \mathbf{T}$ because $\phi(r_1) = \mathbf{T}$
- $\phi(s_0 \vee s_1) = \mathbf{T}$ because $\phi(s_0) = \mathbf{T}$
- therefore $\phi((p_0 \vee p_1) \wedge (q_0 \vee q_1) \wedge (r_0 \vee r_1) \wedge (s_0 \vee s_1)) = \mathbf{T}$ because all conjuncts evaluate to \mathbf{T}
- $\phi(\neg p_0 \lor \neg p_1) = \mathbf{T}$ because $\phi(p_1) = \mathbf{F}$, and therefore $\phi(\neg p_1) = \mathbf{T}$
- $\phi(\neg q_0 \lor \neg q_1) = \mathbf{T}$ because $\phi(q_0) = \mathbf{F}$, and therefore $\phi(\neg q_0) = \mathbf{T}$
- $\phi(\neg r_0 \lor \neg r_1) = \mathbf{T}$ because $\phi(r_0) = \mathbf{F}$, and therefore $\phi(\neg r_0) = \mathbf{T}$
- $\phi(\neg s_0 \lor \neg s_1) = \mathbf{T}$ because $\phi(s_1) = \mathbf{F}$, and therefore $\phi(\neg s_1) = \mathbf{T}$
- therefore $\phi((\neg p_0 \lor \neg p_1) \land (\neg q_0 \lor \neg q_1) \land (\neg r_0 \lor \neg r_1) \land (\neg s_0 \lor \neg s_1)) = \mathbf{T}$ because all conjuncts evaluate to \mathbf{T}
- $\phi(p_0 \vee q_0) = \mathbf{T}$ because $\phi(p_0) = \mathbf{T}$
- $\phi(r_0 \vee s_0) = \mathbf{T}$ because $\phi(s_0) = \mathbf{T}$
- $\phi(p_1 \vee q_1) = \mathbf{T}$ because $\phi(q_1) = \mathbf{T}$
- $\phi(r_1 \vee s_1) = \mathbf{T}$ because $\phi(r_1) = \mathbf{T}$
- $\phi(p_0 \vee r_0) = \mathbf{T}$ because $\phi(p_0) = \mathbf{T}$
- $\phi(q_0 \vee s_0) = \mathbf{T}$ because $\phi(s_0) = \mathbf{T}$
- $\phi(p_1 \vee r_1) = \mathbf{T}$ because $\phi(r_1) = \mathbf{T}$
- $\phi(q_1 \vee s_1) = \mathbf{T}$ because $\phi(q_1) = \mathbf{T}$
- Therefore $\phi((p_0 \vee q_0) \wedge (r_0 \vee s_0) \wedge (p_1 \vee q_1) \wedge (r_1 \vee s_1) \wedge (p_0 \vee r_0) \wedge (q_0 \vee s_0) \wedge (p_1 \vee r_1) \wedge (q_1 \vee s_1)) = \mathbf{T}$ because all conjuncts evaluate to \mathbf{T}
- Finally the entire formula evaluate to **T** because all conjuncts evaluate to **T**

The truth table would have $2^8 = 256$ rows because we have 8 atoms.