## Mathematical Foundation of Computer Sciences I

Finite Automata and Regular Languages

Guoqiang Li

School of Software, Shanghai Jiao Tong University

Instructor and Textbook

### Instructors

Guoqiang Li, 1-8, Automata Theory

Xiaodong Gu, 9-16, Optimization Theory

Xubo Yang, 17-24, Scientific Computing

#### Instructor

- Guoqiang LI
  - Homepage: https://basics.sjtu.edu.cn/~liguoqiang
  - Course page: https://basics.sjtu.edu.cn/~liguoqiang/teaching/SE2324/
  - Email: li.g@outlook.com
  - Office: Rm. 1212, Building of Software
  - Phone: 3420-4167
- TA:
  - Ying ZHAO: 765875306 (AT) qq (DOT) com

## **Textbook**

There are no textbooks for this lecture!

### Reference Book

[Sip12] Introduction to the Theory of Computation, Michael Sipser, 2012



## **Scoring Policy**

30% Homework.

70% Final exam.

# Regular Languages and DFA

#### **Deterministic Finite Automata**

### **Definition (DFA)**

A deterministic finite automaton (DFA) is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set called the states,
- 2.  $\Sigma$  is a finite set called the alphabet,
- 3.  $\delta: Q \times \Sigma \to Q$  is the transition function,
- 4.  $q_0 \in Q$  is the start state, and
- 5.  $F \subseteq Q$  is the set of accept states.

### **Formal Definition of Computation**

Let  $M = (Q, \Sigma, \delta, q_0, F)$  be a finite automaton and let  $w = w_1 w_2 \dots w_n$  be a string with  $w_i \in \Sigma$  for all  $i \in [n]$ . Then M accepts w if a sequence of states  $r_0, r_1, \dots, r_n$  in Q exists with:

- 1.  $r_0 = q_0$ ,
- 2.  $\delta(r_i, w_{i+1}) = r_{i+1}$  for i = 0, ..., n-1, and
- 3.  $r_n \in F$ .

We say that M recognizes A if

$$A = \{w \mid M \text{ accepts } w\}$$

## **Regular Languages**

## **Definition (Regular languages)**

A language is called regular if some finite automaton recognizes it.

## **Examples of Regular Languages**

$$\{(ab)^n \mid \forall n \ge 0\}$$

$$\{a^n b^n \mid \forall n \ge 0\}$$

$$\{ab, a^2 b^2, \dots a^n b^n\}$$

## **The Regular Operators**

### Definition

Let A and B be languages. We define the regular operations union, concatenation, and star as follows:

- Union:  $A \cup B = \{x \mid x \in A \text{ or } x \in B\}.$
- Concatenation:  $A \circ B = \{xy \mid x \in A \text{ and } y \in B\}.$
- Kleene star:  $A^* = \{x_1 x_2 \dots x_k \mid k \ge 0 \text{ and each } x_i \in A\}.$

### Closure under Union

### Theorem

The class of regular languages is closed under the union operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \cup A_2$ .

### **Pre-Proof**

For  $i \in [2]$  let  $M_i = (Q_i, \Sigma_i, \delta_i, q_{0_i}, F_i)$  recognize  $A_i$ . We can assume without loss of generality  $\Sigma_1 = \Sigma_2$ :

- Let  $a \in \Sigma_2 \Sigma_1$ .
- We add  $\delta_1(r, a) = r_{trap}$ , where  $r_{trap}$  is a new state with  $\delta_1(r_{trap}, w) = r_{trap}$  for every w.

## We construct $M = (Q, \Sigma, \delta, q_0, F)$ to recognize $A_1 \cup A_2$ :

1. 
$$Q = Q_1 \times Q_2 = \{(r_1, r_2) \mid r_1 \in Q_1 \text{ and } r_2 \in Q_2\}.$$

- 2.  $\Sigma = \Sigma_1 = \Sigma_2$ .
- 3. For each  $(r_1, r_2) \in Q$  and  $a \in \Sigma$  we let

$$\delta((r_1, r_2), a) = (\delta_1(r_1, a), \delta_2(r_2, a))$$

- 4.  $q_0 = (q_1, q_2)$ .
- 5.  $F = (F_1 \times Q_2) \cup (Q_1 \times F_2) = \{(r_1, r_2) \mid r_1 \in F_1 \text{ or } r_2 \in F_2\}.$

#### Closure under Concatenation

### Theorem

The class of regular languages is closed under the concatenation operation.

In other words, if  $A_1$  and  $A_2$  are regular languages, so is  $A_1 \circ A_2$ .

We prove the above theorem by nondeterministic finite automata.

## **Nondeterministic Finite Automata**

#### Nondeterminism

### Definition (NFA)

A nondeterministic finite automaton (NFA) is a 5-tuple  $(Q, \Sigma, \delta, q_0, F)$ , where

- 1. Q is a finite set called the states,
- 2.  $\Sigma$  is a finite set called the alphabet,
- 3.  $\delta: Q \times \Sigma_{\varepsilon} \to \mathscr{P}(Q)$  is the transition function, where  $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
- 4.  $q_0 \in Q$  is the start state, and
- 5.  $F \subseteq Q$  is the set of accept states.

### **Formal Definition of Computation**

Let  $N = (Q, \Sigma, \delta, q_0, F)$  be a nondeterministic finite automaton and let  $w = w_1 w_2 \dots w_m$  be a string with  $w_i \in \Sigma$  for all  $i \in [m]$ . Then N accepts w if a sequence of states  $r_0, r_1, \dots, r_m$  in Q exists with:

- 1.  $r_0 = q_0$ ,
- 2.  $r_{i+1} \in \delta(r_i, w_{i+1})$  for i = 0, ..., m-1, and
- 3.  $r_m \in F$ .

We say that N recognizes A if

$$A = \{w \mid M \text{ accepts } w\}$$

## **Examples of NFA**



Accepts {0\*1\*2\*}



Accepts  $\{ab^+, ac^+\}$ 

## **Equivalence of NFAs and DFAs**

### Theorem

Every NFA has an equivalent DFA, i.e., they recognize the same language.

### Proof

Let  $N = (Q, \Sigma, \delta, q_0, F)$  be the NFA recognizing some language A. We construct a DFA  $M = (Q', \Sigma, \delta', q'_0, F')$  recognizing the same A.

First assume N has no " $\epsilon$ " arrows.

- 1.  $Q' = \mathscr{P}(Q)$ .
- 2. Let  $R \in Q'$  and  $a \in \Sigma$ . Then we define

$$\delta'(R, a) = \{ q \in Q \mid q \in \delta(r, a) \text{ for some } r \in R \}$$

- 3.  $q'_0 = \{q_0\}.$
- 4.  $F' = \{ R \in Q' \mid R \cap F \neq \emptyset \}.$

## Determinization





## Proof (cont'd)

#### Proof

Now we allow " $\epsilon$ " arrows.

For every  $R \in Q'$ , i.e.,  $R \subseteq Q$ , let

$$E(R) = \{ q \in Q \mid q \text{ can be reached from } R$$
  
by traveling along 0 and more  $\varepsilon$  arrows  $\}$ 

- 1.  $Q' = \mathscr{P}(Q)$ .
- 2. Let  $R \in Q'$  and  $a \in \Sigma$ . Then we define

$$\delta'(R, a) = \{ q \in Q \mid q \in E(\delta(r, a)) \text{ for some } r \in R \}$$

- 3.  $q_0' = E(\{q_0\}).$
- 4.  $F' = \{ R \in Q' \mid R \cap F \neq \emptyset \}.$

## **Example of** $\varepsilon$ -Transition Removal



Put a new transition  $\xrightarrow{a}$  where  $\xrightarrow{\varepsilon^* a \varepsilon^*}$ 

If  $q_0 \xrightarrow{\varepsilon^*} q_f$  for  $q_f \in F$ , add  $q_0$  to F



## Corollary

## Corollary

A language is regular if and on if some nondeterministic finite automaton recognizes it.

### Second Proof of the Closure under Union

For  $i \in [2]$  let  $N_i = (Q_i, \Sigma, \delta_i, q_i, F_i)$  recognize  $A_i$ . We construct an  $N = (Q, \Sigma, \delta, q_0, F)$  to recognize  $A_1 \cup A_2$ :

- 1.  $Q = \{q_0\} \cup Q_1 \cup Q_2$ .
- 2.  $q_0$  is the start state.
- 3.  $F = F_1 \cup F_2$ .
- 4. For any  $q \in Q$  and any  $a \in \Sigma_{\varepsilon}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 \\ \delta_2(q, a) & q \in Q_2 \\ \{q_1, q_2\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$





### **Closure under Concatenation**

## Theorem

The class of regular languages is closed under the concatenation operation.

For  $i \in [2]$  let  $N_i = (Q_i, \Sigma_i, \delta_i, q_i, F_i)$  recognize  $A_i$ . We construct an  $N = (Q, \Sigma, \delta, q_1, F_2)$  to recognize  $A_1 \circ A_2$ :

- 1.  $Q = Q_1 \cup Q_2$ .
- 2. The start state  $q_1$  is the same as the start state of  $N_1$ .
- 3. The accept states  $F_2$  are the same as the accept states of  $N_2$ .
- 4. For any  $q \in Q$  and any  $a \in \Sigma_{\varepsilon}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 - F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_2\} & q \in F_1 \text{ and } a = \varepsilon \\ \delta_2(q, a) & q \in Q_2 \end{cases}$$

### Closure under Kleene Star

## Theorem

The class of regular languages is closed under the star operation.

Let  $N_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  recognize  $A_1$ . We construct an  $N = (Q, \Sigma, \delta, q_0, F)$  to recognize  $A_1^*$ :

- 1.  $Q = \{q_0\} \cup Q_1$ .
- 2. The start state  $q_0$  is the new start state.
- 3.  $F = \{q_0\} \cup F_1$ .
- 4. For any  $q \in Q$  and any  $a \in \Sigma_{\varepsilon}$

$$\delta(q, a) = \begin{cases} \delta_1(q, a) & q \in Q_1 - F_1 \\ \delta_1(q, a) & q \in F_1 \text{ and } a \neq \varepsilon \\ \delta_1(q, a) \cup \{q_1\} & q \in F_1 \text{ and } a = \varepsilon \\ \{q_1\} & q = q_0 \text{ and } a = \varepsilon \\ \emptyset & q = q_0 \text{ and } a \neq \varepsilon \end{cases}$$

## Regular Expression

## **Regular Expression**

### **Definition**

We say that R is a regular expression if R is

- 1. a for some  $a \in \Sigma$ ,
- 2. **ε**,
- 3. **Ø**,
- 4.  $(R_1 \cup R_2)$ , where  $R_1$  and  $R_2$  are regular expressions,
- 5.  $(R_1 \circ R_2)$ , where  $R_1$  and  $R_2$  are regular expressions,
- 6.  $R_1^*$ , where  $R_1$  is a regular expression.

We often write  $R_1R_2$  instead of  $(R_1 \circ R_2)$  if no confusion arises.

## Language Defined by Regular Expressions

| regular expression R | language <i>L(R)</i>  |
|----------------------|-----------------------|
| a                    | {a}                   |
| arepsilon            | $\{arepsilon\}$       |
| Ø                    | Ø                     |
| $R_1 \cup R_2$       | $L(R_1) \cup L(R_2)$  |
| $R_1 \circ R_2$      | $L(R_1) \circ L(R_2)$ |
| $R_1^*$              | $L(R_1)^*$            |

## **Equivalence with Finite Automata**

### **Theorem**

A language is regular if and only if some regular expression describes it.

## The Languages Defined by Regular Expressions Are Regular

- 1. R = a: Let  $N = (\{q_1, q_2\}, \Sigma, \delta, q_1, \{q_2\})$ , where  $\delta(q_1, a) = \{q_2\}$  and  $\delta(r, b) = \emptyset$ , for all  $r \neq q_1$  or  $b \neq a$ .
- 2.  $R = \varepsilon$ : Let  $N = (\{q_1\}, \Sigma, \delta, q_1, \{q_1\})$ , where  $\delta(r, b) = \emptyset$ , for all r and b.
- 3.  $R = \emptyset$ : Let  $N = (\{q_1\}, \Sigma, \delta, q_1, \emptyset)$ , where  $\delta(r, b) = \emptyset$ , for all r and b.
- 4.  $R = R_1 \cup R_2$ :  $L(R) = L(R_1) \cup L(R_2)$ .
- 5.  $R = R_1 \circ R_2$ :  $L(R) = L(R_1) \circ L(R_2)$ .
- 6.  $R = R_1^*$ :  $L(R) = L(R_1)^*$ .