ICS 321 Spring 2013 Algebraic and Logical Query Languages (ii)

Asst. Prof. Lipyeow Lim
Information & Computer Science Department
University of Hawaii at Manoa

Datalog: Database Logic

- A (relational) <u>atom</u>
 - Consists of a predicate and a list of arguments
 - Arguments can be constants or variables
 - Takes on Boolean value (true or false)
- A relation R can be represented as a predicate R
 - A tuple <a,b,c,d,e,f,g> is in R iff the atom
 R(a,b,c,d,e,f,g) is true.

Example: tables in datalog

R	
A	В
1	2
3	4

Arithmetic Atoms

Datalog Rules

head "if" or ← body for AND

LongMovie(t,y): - Movies(t,y,l,g,s,p)/, |>=100

(t,y) is a tuple of LongMovie **IF** (t,y,l,g,s,p) is a tuple of

Movies and length of movie is

at least 100

These two "t,y" have to match

These two "I" have to match

Anonymous variables

Aka "subgoal"

Can be preceded

by negation

operator "NOT"

or "~"

LongMovie(t,y):- Movies(t,y,I, \searrow , $_$, $_$), I >=100

Safety Condition for Datalog Rules

Every **variable** that appears anywhere in the rule **must** appear in some **nonnegated**, **relational subgoal** of the body

- Without the safety condition, rules may be underspecified, resulting in an infinite relation (not allowed).
- Examples
 - LongMovie(t,y) :- Movies(t,y,l,_,_,) , l >=100
 - P(x,y) := Q(x,z), NOT R(w,x,z), x < y

Alternative Interpretation: Consistency

```
Q(1,2)
Q(1,3)
R(2,3)
R(3,1)
P(x,y):- Q(x,z), R(z,y), NOT Q(x,y)
```

- For each consistent assignment of nonnegated, relational subgoal,
- Check the negated, relational subgoals and the arithmetic subgoals for consistency

Q(x,z)	R(z,y)	Consistent?	NOT Q(x,y)	Head
(1,2)	(2,3)	Yes	false	
(1,2)	(3,1)	No, z=2,3		
(1,3)	(2,3)	No, z=2,3		
(1,3)	(3,1)	Yes	true	P(1,1)

Intensional vs Extensional

```
Q(1,2)
Q(1,3)
R(2,3)
R(3,1)
P(x,y) :- Q(x,z), R(z,y), NOT Q(x,y) intensional
```

- Extensional predicates relations stored in a database
- Intensional predicates computed by applying one or more datalog rules

What about bag semantics?

- Datalog still works if there are no negated, relational subgoals.
- Treat duplicates like non-duplicates

R(1,2)
R(1,2)
S(2,3)
S(4,5)
S(4,5)
H(x,z) := R(x,y), S(y,z)

R(x,y)	S(y,z)	Consistent?	Head
(1,2)	(2,3)	Yes	H(1,3)
(1,2)	(4,5)	No, y=2,4	
(1,2)	(4,5)	No, y=2,4	
	•••		•••

```
Answer(x,y):- A(x,y)
Answer(x,y):- B(x,y)
```

Datalog

Answer(x,y) :- A(x,y), B(x,y)

Datalog

Answer(x,y) :- A(x,y), NOT B(x,y)

Datalog

Answer(x,y) :- A(x,y), x > 10, y = 200

Datalog

Answer(x) :- A(x,y)

Datalog

Answer(w,x,y,z) :- A(w,x), B(y,z)

Datalog

Answer(w,x,y) :- A(w,x), B(x,y)

Datalog

Answer(w,x,z) :- A(w,x), B(y,z), x>y

Datalog

```
Path(x,y) :- Edge(x,y)
```

Path(x,z) :- Edge(x,y), Edge(y,z)