

Ayudantía 14 - Teoría de números

Héctor Núñez, Paula Grune, Manuel Irarrázaval

Ejercicio 1: Aritmética Modular

Sean a, b, c y $m \in \mathbb{Z}$ tales que $m \ge 2$.

- 1. Demuestre que si $a \equiv b(\text{m\'od}m)$, entonces MCD(a, m) = MCD(b, m).
- 2. Demuestre que si $ac \equiv bc(\text{m\'od}\,m)$, entonces $a \equiv b\left(\text{m\'od}\frac{m}{MCD(c,m)}\right)$.

Solución

1. Supongamos que $a \equiv b(\text{m\'od}m)(1)$. Primero demostraremos que para cualquier $c \in \mathbb{Z}$ tal que $c \mid m$, se cumple que $c \mid a$ si, y solo si, $c \mid b$.

Sea c tal que $c \mid m$ y $c \mid a$ (2). Por definición de (1), sabemos que existe un $k \in \mathbb{Z}$ tal que

$$b = a + k \cdot m$$

Por (2), sabemos que c divide a ambos sumandos del lado derecho de esta igualdad. En consecuencia, concluimos que c divide al lado izquierdo de tal igualdad: $c \mid b$.

Análogamente podemos demostrar la dirección contraria, vale decid
r que si $c \mid m$ y $c \mid b$, entonces $c \mid a$.

Esto implica que los factores en común de a y m son los mismos que los de b y m. En particular, podemos concluir que el máximo de estos factores debe ser el mismo, y por lo tanto:

$$MCD(a, m) = MCD(b, m)$$

2. Supongamos que $ac \equiv bc \pmod{m}$. Por definición sabemos que existe $k \in \mathbb{Z}$ tal que:

$$ac - bc = k \cdot m$$
$$(a - b) \cdot c = k \cdot m$$
$$a - b = \frac{k \cdot m}{c}$$

Por otro lado, sea $c' \in \mathbb{Z}$ tal que $c = c' \cdot MCD(c, m)$. Reemplazando esto en (1):

$$a - b = \frac{k \cdot m}{c' \cdot MCD(c, m)}$$

Notemos que a-b es un entero y por definición $\frac{m}{MCD(c,m)}$ también lo es. Luego, $\frac{k}{c'}$ también debe ser un entero. Sea este último entero k', entonces tenemos que:

$$a - b = k' \cdot \frac{m}{MCD(c, m)}$$

Lo cual por definición implica que:

$$a \equiv b \left(\operatorname{m\'od} \frac{m}{MCD(c, m)} \right)$$

Ejercicio 2: Pequeño teorema de Fermat

1. Demuestre que $13|(7^{121}+6)$

Veamos que esto es equivalente a:

$$7^{121} + 6 \mod 13 = 0$$

Descomponiendo $121 = 12 \cdot 10 + 1$ y ocupando el pequeño teorema de Fermat:

$$7^{120} \cdot 7 + 6 \mod 13 = (7^{10})^{(13-1)} \cdot 7 + 6 \mod 13 = 1 \cdot 7 + 6 \mod 13 = 0$$

2. Un googleplex es equivalente $10^{10^{100}}$. ¿Que dia de la semana va a ser en un googleplex dias? (Hoy dia es miércoles).

Para encontrar el cambio neto en dias de semana, debemos encontrar cuantos dias han pasado módulo 7, es decir:

$$10^{10^{100}} \bmod 7$$

Notemos que como 7 es primo y no divide a ninguna potencia de 10, entonces $10^{(7-1)c} \mod 7 = 1$. Si descomponemos $10^{100} = 6q + r$:

$$10^{10^{100}} \bmod 7 = 10^{6q} \cdot 10^r \bmod 7 = 10^r \bmod 7$$

Vemos que $r = (10^{100} \text{ mod } 6) \text{ y notemos lo siguiente:}$

$$10 \bmod 6 = 4$$

Y si $10^k \mod 6 = 4$, entonces:

$$10^k \cdot 10 \mod 6 = 4 \cdot 4 \mod 6 = 16 \mod 6 = 4$$

$$10^{k+1} \mod 6 = 4$$

Por lo que por inducción $10^n \bmod 6 = 4$ para todo n.. Especificamente, $10^{100} \bmod 6 = 4 = r$

Finalmente llegamos a lo siguiente:

$$10^r \mod 7 = 10^4 \mod 7 = 4$$

Por lo tanto, en un googleplex días va a ser domingo.

Ejercicio 3: Máximo común divisor y algoritmo euclidiano

Considere el sistema

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \end{cases}$$

Demuestre que el sistema tiene solución si y solo si $MCD(m_1, m_2) \mid (a_1 - a_2)$.

Solución:

 (\Rightarrow) Sea $d = MCD(m_1, m_2)$. Si el sistema tiene solución, entonces existe $x \in \mathbb{Z}$ tal que

$$x = a_1 + m_1 k_1 = a_2 + m_2 k_2$$

para algunos $k_1, k_2 \in \mathbb{Z}$. De lo anterior, tenemos que

$$a_1 - a_2 = m_2 k_2 - m_1 k_1.$$

Finalmente, como d divide a m_1 y a m_2 (por ser el máximo común divisor entre ambos), obtenemos que

$$MCD(m_1, m_2) \mid (a_1 - a_2).$$

(\Leftarrow) Suponemos $d \mid (a_1 - a_2)$, en otras palabras, existe $k \in \mathbb{Z}$ tal que $a_1 - a_2 = dk$. Utilizando el algoritmo extendido de Euclides, sabemos que existen enteros s y t tales que $d = sm_1 + tm_2$. Si juntamos lo anterior, obtenemos

$$a_1 - a_2 = dk = (sm_1 + tm_2)k.$$

Luego podemos obtener $a_1 + (sk)m_1 = a_2 + (tk)m_2$, lo que significa que existe un entero z tal que $z \equiv a_1 \pmod{m_1}$ y $z \equiv a_2 \pmod{m_2}$.