Wykład 2 - Regresja Wielomianowa

dr inż. Grzegorz Sarwas

Wydział Elektryczny Politechniki Warszawskiej

Regresja

- Regresja przewidywanie wartości danej zmiennej o ciągłej wartości na podstawie wartości innych zmiennych, zakładając liniowy lub nieliniowy model zależności.
- Miara korelacji Pearsona odpowiada na pytanie czy (w jakim stopniu) dane atrybuty (x, y) są od siebie zależne liniowo.
 Odpowiedzi na pytanie jak od siebie zależą, udzieli model regresyjny.

Regresja wielomianowa

Celem regresji wielomianowej jest dopasowanie do danych doświadczalnych/historycznych wykresu funkcji, która oddaje charakter tych danych.

Zadanie polega na znalezieniu wielomianu $\hat{f}(x)$ postaci:

$$\hat{f}(x) = \omega_0 + \omega_1 x^1 + \omega_2 x^2 + \dots + \omega_n x^n,$$

gdzie $x \in R$, a $\omega \in R^{n+1}$ jest wektorem zawierającym współczynniki wielomianu.

Przykład

Mając dane historyczne $X=x_1,x_2,\ldots,x_k$ oraz odpowiadające im wartości $Y=y_1,y_2,\ldots,y_k$ będziemy poszukiwać najlepiej dopasowanego wektora ω .

W efekcie musimy znaleźć takie parametry modelu (wielomianu), które zminimalizują nam sumę kwadratów błędu (RSE).

Czyli takiego, dla którego wartości zwracane przez funkcję \hat{f} i odpowiadające im wartości rzeczywiste najmniej się różnią.

Przykład cd.

Załóżmy że mamy już wybrany wektor $\omega = [\omega_0, \omega_1, \omega_2, \dots, \omega_n]$ możemy zatem obliczyć:

$$\hat{f}(x_1) = \omega_0 + \omega_1 x_1^1 + \omega_2 x_1^2 + \dots + \omega_n x_1^n
\hat{f}(x_2) = \omega_0 + \omega_1 x_2^1 + \omega_2 x_2^2 + \dots + \omega_n x_2^n
\vdots
\hat{f}(x_k) = \omega_0 + \omega_1 x_k^1 + \omega_2 x_k^2 + \dots + \omega_n x_k^n$$

Błąd dopasowania modelu

Błąd dopasowania możemy wyliczyć poprzez porównanie wartości otrzymanej dla danego argumentu $\hat{f}(x_i)$ z wartością rzeczywistą y_i odpowiadającą temu argumentowi, stąd mamy:

$$e^{1} = \hat{f}(x_{1}) - y_{1}$$

$$e^{2} = \hat{f}(x_{2}) - y_{2}$$

$$\vdots$$

$$e^{k} = \hat{f}(x_{k}) - y_{k}$$

Błąd dopasowania modelu cd.

Błąd dopasowania możemy wyliczyć poprzez porównanie wartości otrzymanej dla danego argumentu $\hat{f}(x_i)$ z wartością rzeczywistą y_i odpowiadającą temu argumentowi, stąd mamy:

$$e^{1} = \hat{f}(x_{1}) - y_{1}$$

$$e^{2} = \hat{f}(x_{2}) - y_{2}$$

$$\vdots$$

$$e^{k} = \hat{f}(x_{k}) - y_{k}$$

Następnie sumując kwadraty błędów e^1, \ldots, e^k otrzymujemy wartość błędów dla danych parametrów modelu:

$$E(\omega) = \sum_{i=1}^{k} \left(\hat{f}(x_i) - y_i \right)^2$$

Chcemy aby suma kwadratów błędów była jak najmniejsza dla danego stopnia wielomianu, a to co możemy zmieniać to wartości współczynników wektora ω .

Macierzowe przedstawienie równania regresji

Powyższe analizy możemy zapisać w postaci macierzowej.

$$X\omega = Y$$
,

$$\mathsf{gdzie} \; X = \left| \begin{array}{cccc} 1 & x_1 & x_1^2 & \dots & x_1^n \\ 1 & x_2 & x_2^2 & \dots & x_2^n \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_k & x_k^2 & \dots & x_l^n \end{array} \right|, \; \omega = \left| \begin{array}{c} \omega_0 \\ \omega_1 \\ \dots \\ \omega_n \end{array} \right|, \; Y = \left| \begin{array}{c} y_0 \\ y_1 \\ \dots \\ y_k \end{array} \right|$$

Rozwiązaniu równania regresji

Ponieważ w ogólnym przypadku macierz X jest macierzą prostokątną, więc nie można jej odwrócić (nie da się wyzerować błędu aproksymacji), za to możemy znaleźć rozwiązanie przybliżone (takie, które minimalizuje nasz błąd):

$$\min_{\omega} ||X\omega - Y||_2^2$$

Rozwiązaniem, które jest w stanie zminimalizować nam sumę kwadratów błędu jest równanie:

$$w = X^+ Y$$
,

gdzie X^+ jest pseudoodwrotnością macierzy X.

Równanie Moore'a-Perose'a

W naszym przypadku macierz X jest macierzą pełnego rzędu kolumnowego (tzn. istnieje niezerowy wyznacznik minor o wymiarze n_k olumn \times n_k olumn lub macierz posiada 2 niezerowe wartości singularne lub wszystkie kolumny są od siebie liniowo niezależne). X^+ zdefiniowana jest wtedy jako:

$$X^+ = (X^T X)^{-1} X^T$$

Odwzorowanie to jest odwzorowaniem jednoznacznym.

Macierz Vandermonda.

Jeśli do aproksymacji naszego modelu wykorzystamy wielomian stopnia k-1 (o 1 mniejszego niż ilość próbek), wtedy macierz X będzie macierzą kwadratową o wymiarze $k \times k$ postaci:

$$X = \left| \begin{array}{cccc} 1 & x_1 & x_1^2 & \dots & x_1^{k-1} \\ 1 & x_2 & x_2^2 & \dots & x_2^{k-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & x_k & x_k^2 & \dots & x_k^{k-1} \end{array} \right|.$$

Macierz taka nazywana jest macierzą Vandermonda.

Ponieważ macierz ta jest kwadratowa oraz jest pełnego rzędu kolumnowego, oznacza to, że jest ona macierzą nieosobliwą, a co za tym idzie pozwala się odwrócić. Wtedy zachodzi równanie: $X^+=X^{-1}$ Co oznacza, że otrzymujemy dokładne rozwiązania (błąd $E(\hat{\omega})=0$)

