CS 2601 Linear and Convex Optimization

5. Convex optimization problems (part 2)

Bo Jiang

John Hopcroft Center for Computer Science Shanghai Jiao Tong University

Fall 2022

Outline

Quadratic program and quadratically constrained QP

Geometric program

1

Quadratic program (QP)

$$\min_{x} \quad \frac{1}{2}x^{T}Qx + c^{T}x$$
s.t. $Bx \leq d$ $Ax = b$

QP is convex iff $Q \succeq O$. Reduces to LP if Q = O.

Quadratically constrained quadratic program (QCQP)

$$\min_{\mathbf{x}} \quad \frac{1}{2} \mathbf{x}^{T} \mathbf{Q} \mathbf{x} + \mathbf{c}^{T} \mathbf{x}$$
s.t.
$$\frac{1}{2} \mathbf{x}^{T} \mathbf{Q}_{i} \mathbf{x} + \mathbf{c}_{i}^{T} \mathbf{x} + \mathbf{d}_{i} \leq 0, \quad i = 1, 2, \dots, m$$

$$A\mathbf{x} = \mathbf{b}$$

QCQP is convex if $Q \succeq O$ and $Q_i \succeq O$, $\forall i$. Reduces to QP if $Q_i = O$, $\forall i$.

Example: Linear least squares regression

Given $y \in \mathbb{R}^n$, $X \in \mathbb{R}^{n \times p}$, find $w \in \mathbb{R}^p$ s.t.

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

convex QP with objective

$$f(\mathbf{w}) = \mathbf{w}^T \mathbf{X}^T \mathbf{X} \mathbf{w} - 2\mathbf{y}^T \mathbf{X} \mathbf{w} + \mathbf{y}^T \mathbf{y}$$

Geometrically, we are looking for the orthogonal projection \hat{y} of y onto the column space of X. Does the solution always exist?

By the first-order optimality condition, w^* is optimal iff

$$\nabla f(\mathbf{w}^*) = \mathbf{0}$$
 无限制,优化条件就是梯度为0

i.e. w^* is a solution of the normal equation,

$$X^{T}(y - Xw) = 0 \iff X^{T}Xw = X^{T}y$$

Note. $X^T(y - Xw^*) = \mathbf{0}$ means precisely $y - Xw^*$ is perpendicular to the column space of X.

Grem Matrix

Case I. X has full column rank, i.e. rank X = p

- $X^TX \succ O$
- unique solution

$$\boldsymbol{w}^* = (\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{y}$$

Example. Solve

$$\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$

with

$$\mathbf{X} = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad \mathbf{y} = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}.$$

Solution. The normal equation is

$$X^T X w = X^T y$$

with

$$\mathbf{X}^T \mathbf{X} = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}, \quad \mathbf{X}^T \mathbf{y} = \begin{bmatrix} 6 \\ 2 \end{bmatrix}$$

Since X has full column rank,

$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y} = \begin{bmatrix} 1.5 \\ 2 \end{bmatrix}$$

Case II. $\operatorname{rank} X = r < p$. WLOG assume the first r columns are linearly independent, i.e. Without Loss of Generality

$$\boldsymbol{X}=(\boldsymbol{X}_1,\boldsymbol{X}_2)$$

where $X_1 \in \mathbb{R}^{n \times r}$ and rank $X_1 = r$.

Claim. There is a solution w^* with the last p-r components being 0.

- X and X₁ have the same column space
- If w₁* solves

$$\min_{\boldsymbol{w}_1 \in \mathbb{R}^r} \|\boldsymbol{y} - \boldsymbol{X}_1 \boldsymbol{w}_1\|$$

then
$$extbf{ extit{w}}^* = egin{bmatrix} extbf{ extit{w}}_1^* \ extbf{ extit{0}} \end{bmatrix}$$
 solves $\min_{ extbf{ extit{w}} \in \mathbb{R}^p} \| extbf{ extit{y}} - extbf{ extit{X}} extbf{ extit{w}} \|$

• $\mathbf{w}_1^* = (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{X}_1^T \mathbf{y}$

Question. Is the solution unique in this case?

A. rank $X s.t. <math>Xw_0 = 0$, so $w^* + w_0$ is also a solution.

Example Solve $\min_{\mathbf{w}} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$ with

$$X = \begin{bmatrix} 2 & 0 & 2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}, \quad y = \begin{bmatrix} 3 \\ 2 \\ 2 \end{bmatrix}.$$

Solution. Note rank X = 2 < 3.

Let

$$\boldsymbol{X}_1 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

• By the previous example,

$$\mathbf{w}_1^* = (\mathbf{X}_1^T \mathbf{X}_1)^{-1} \mathbf{X}_1^T \mathbf{y} = (1.5, 2)^T$$

is a solution to $\min_{\mathbf{w}_1 \in \mathbb{R}^2} \|\mathbf{y} - \mathbf{X}_1 \mathbf{w}_1\|^2$.

• $\mathbf{w}^* = (1.5, 2, 0)^T$ is a solution to $\min_{\mathbf{w} \in \mathbb{R}^3} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$.

Example (cont'd). The normal equation to the original problem is

$$X^T X w = X^T y$$

where

$$X^{T}X = \begin{bmatrix} 4 & 0 & 4 \\ 0 & 1 & -1 \\ 4 & -1 & 5 \end{bmatrix}, \quad X^{T}y = \begin{bmatrix} 6 \\ 2 \\ 4 \end{bmatrix}$$

- Note X^TX is not invertible, so we cannot use the formula¹ $w^* = (X^TX)^{-1}X^Tv$
- The solution $w^* = (1.5, 2, 0)^T$ satisfies the normal equation.
- The normal equation has infinitely many solutions given by

$$\mathbf{w} = (1.5, 2, 0)^T + \alpha(-1, 1, 1)^T, \quad \alpha \in \mathbb{R}.$$

All of them are solutions to the least squares problem.

¹This formula still applies if we use the so-called pseudo inverse of X^TX .

General unconstrained QP

Minimize quadratic function with $Q \in \mathbb{R}^{n \times n}$ s.t. $Q \succeq O$,

$$\min_{\mathbf{x}} f(\mathbf{x}) = \frac{1}{2} \mathbf{x}^T \mathbf{Q} \mathbf{x} + \mathbf{b}^T \mathbf{x} + c$$

By the first-order condition, the solutions satisfy

$$\nabla f(\mathbf{x}) = \mathbf{Q}\mathbf{x} + \mathbf{b} = \mathbf{0}$$

Case I. Q > 0. There is a unique solution $x^* = -Q^{-1}b$.

Case II. $\det Q = 0$ and $b \in \text{column space of } Q$. There are infinitely many solutions. (why?)

Case III. $\det Q = 0$ and $b \notin \text{column space of } Q$. There is no solution, and $f^* = -\infty$.

This is equivalent to $-b \in$ column space of Q, the latter being just another way to say Qx + b = 0 has a solution.

General unconstrained QP (cont'd)

To understand why $f^* = -\infty$ in case III, first assume Q is diagonal.

Example. n=3, $\mathbf{Q}=\operatorname{diag}\{\lambda_1,\lambda_2,0\}$ with $\lambda_1,\lambda_2>0$, $\mathbf{b}=(b_1,b_2,b_3)^T$, c=0.

$$f(\mathbf{x}) = \left(\frac{\lambda_1}{2}x_1^2 + b_1x_1\right) + \left(\frac{\lambda_2}{2}x_2^2 + b_2x_2\right) + b_3x_3$$

The column space of Q is

$$\operatorname{span}\left\{\begin{bmatrix}\lambda_1\\0\\0\end{bmatrix},\begin{bmatrix}0\\\lambda_2\\0\end{bmatrix},\begin{bmatrix}0\\0\\0\end{bmatrix}\right\} = \{(x_1,x_2,0)^T : x_1,x_2 \in \mathbb{R}\}$$

So $b \notin \text{column space of } Q \iff b_3 \neq 0.$

Since f(x) is affine in x_3 , it is unbounded below, so $f^* = -\infty$.

When Q is non-diagonal,

• Diagonalize Q by an orthogonal matrix U, so

$$Q = U\Lambda U^T$$
, where $\Lambda = \text{diag}\{\lambda_1, \dots, \lambda_n\}$

• Let x = Uy and $b = U\tilde{b}$. Then

$$f(\mathbf{x}) = \frac{1}{2} \mathbf{y}^T \mathbf{U}^T \mathbf{Q} \mathbf{U} \mathbf{y} + \tilde{\mathbf{b}}^T \mathbf{U}^T \mathbf{U} \mathbf{y} + c = \frac{1}{2} \mathbf{y}^T \mathbf{\Lambda} \mathbf{y} + \tilde{\mathbf{b}}^T \mathbf{y} + c \triangleq g(\mathbf{y})$$

- Minimizing f(x) is equivalent to minimizing g(y).
- In case III, $\exists i_0$ s.t. $\lambda_{i_0} = 0$ but $\tilde{b}_{i_0} \neq 0$, so g(y) is affine in y_{i_0} and hence unbounded below,

$$g(\mathbf{y}) = \sum_{i \neq i_0} \left(\frac{1}{2} \lambda_i y_i^2 + \tilde{b}_i y_i \right) + \tilde{b}_{i_0} y_{i_0} + c \implies f^* = g^* = -\infty$$

Example: Lasso

Lasso (Least Absolute Shrinkage and Selection Operator)

Given
$$\mathbf{y} \in \mathbb{R}^n$$
, $\mathbf{X} \in \mathbb{R}^{n \times p}$, $t > 0$,

$$\min_{\mathbf{w}} \quad \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_2^2$$
 s. t. $\|\mathbf{w}\|_1 \le t$ 把w的每个分

把w的每个分量拆开来 $\hat{y} = Xw^*$ column space of X

- convex problem? yes
- QP? no, but can be converted to QP
- optimal solution exists? yes
 - compact feasible set
- optimal solution unique?
 - ▶ yes if $n \ge p$ and X has full column rank ($X^TX \succ O$, strictly convex)
 - ▶ no in general, e.g. p > n and t is large enough for unconstrained optima to be feasible

Example: Ridge regression

Given
$$y \in \mathbb{R}^n$$
, $X \in \mathbb{R}^{n \times p}$, $t > 0$,

$$\min_{\mathbf{w}} \quad \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2}
\text{s. t.} \quad \|\mathbf{w}\|_{2}^{2} \le t$$

- convex problem? yes
- QCQP? yes

- optimal solution exists? yes
 - compact feasible set
- optimal solution unique?
 - ▶ yes if $n \ge p$ and X has full column rank ($X^TX \succ O$, strictly convex)
 - no in general

Example: SVM

Linearly separable case

$$\min_{m{w},b} \quad rac{1}{2} \| m{w} \|^2 \quad ext{ quadratic function}$$
 $ext{s. t.} \quad y_i(m{w}^Tm{x}_i+b) \geq 1, \quad i=1,2,\ldots,m$ affine function

Soft margin SVM

$$\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \quad \frac{1}{2} \|\boldsymbol{w}\|_2^2 + C \sum_{i=1}^m \xi_i$$

s.t. $y_i(\boldsymbol{w}^T \boldsymbol{x}_i + b) \ge 1 - \xi_i, \quad i = 1, 2, \dots, m$
 $\boldsymbol{\xi} \ge \mathbf{0}$

Equivalent unconstrained form

This is not linear, so no longer a QP problem.

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|_{2}^{2} + C \sum_{i=1}^{n} (1 - y_{i}b - y_{i}\mathbf{x}_{i}^{T}\mathbf{w})^{+}$$

Outline

Quadratic program and quadratically constrained QP

Geometric program

Geometric program

A monomial is a function $f: \mathbb{R}^n_{++} = \{x \in \mathbb{R}^n : x > 0\} \to \mathbb{R}$ of the form

单项式
$$f(\mathbf{x}) = \gamma x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$

for $\gamma > 0$, $a_1, \ldots, a_n \in \mathbb{R}$. A posynomial is a sum of monomials, 正项式

$$f(x) = \sum_{k=1}^{p} \gamma_k x_1^{a_{k1}} x_2^{a_{k2}} \cdots x_n^{a_{kn}}$$

A geometric program (GP) is an optimization problem of the form

$$\min_{\mathbf{x}} f(\mathbf{x})$$
s. t. $g_i(\mathbf{x}) \le 1$, $i = 1, ..., m$
 $h_j(\mathbf{x}) = 1$, $j = 1, ..., r$

where $f, g_i, i = 1, ..., m$ are posynomials and $h_j, j = 1, ..., r$ are monomials. The constraint x > 0 is implicit.

Geometric program (cont'd)

GP is nonconvex (why?)

$$\begin{split} & \min_{x} \quad \sum_{k=1}^{p_{0}} \gamma_{0k} x_{1}^{a_{0k1}} x_{2}^{a_{0k2}} \cdots x_{n}^{a_{0kn}} \quad \text{Not convex} \\ & \text{s. t.} \quad \sum_{k=1}^{p_{i}} \gamma_{ik} x_{1}^{a_{ik1}} x_{2}^{a_{ik2}} \cdots x_{n}^{a_{ikn}} \leq 1, \quad i=1,\ldots,m \quad \text{Not convex} \\ & \eta_{j} x_{1}^{c_{j1}} x_{2}^{c_{j2}} \cdots x_{n}^{c_{jn}} = 1, \quad j=1,\ldots,r \quad \text{Not affine} \end{split}$$

By $y_i = \log x_i$, $b_{ik} = \log \gamma_{ik}$, $d_j = \log \eta_j$, GP can be formulated as

$$egin{aligned} \min_{oldsymbol{y}} & \log \left(\sum_{k=1}^{p_0} e^{oldsymbol{a}_{0k}^T oldsymbol{y} + b_{0k}}
ight) & ext{Log-sum funcition} \ & ext{s. t.} & \log \left(\sum_{k=1}^{p_i} e^{oldsymbol{a}_{ik}^T oldsymbol{y} + b_{ik}}
ight) \leq 0, \quad i = 1, \dots, m \ & oldsymbol{c}_j^T oldsymbol{y} + d_j = 0, \quad j = 1, \dots, r \quad & ext{affine} \end{aligned}$$

This is convex by the convexity of log-sum-exp (soft max) functions

Geometric program (cont'd)

Example. Let
$$u = \log x$$
, $v = \log y$, $w = \log z$.

$$\min_{x,y,z>0} x^{-1}y + xz$$
s. t. $2x^{-1} \le 1$

$$\frac{1}{3}x \le 1$$

$$x^2y^{-1/2} + 3y^{1/2}z^{-1} < 1$$

is equivalent to

$$\min_{u,v,w} \log(e^{-u+v} + e^{u+w})$$
s.t.
$$\log 2 - u \le 0$$

$$-\log 3 + u \le 0$$

$$\log(e^{2u - \frac{1}{2}v} + e^{\log 3 + \frac{1}{2}v - w}) \le 0$$

$$2u - v - w = 0$$

 $x^2v^{-1}z^{-2}=1$