§8. Частные производные и дифференциалы высших порядков

П.1. Формула Тейлора

Производная второго порядка функции f двух переменных есть $\frac{\partial^2 f(x,y)}{\partial x \partial y} =$ $\frac{\partial}{\partial y}\frac{\partial f}{\partial x}(x,y)=\frac{\partial}{\partial x}\frac{\partial f}{\partial y}(x,y)$. Аналогично определяется производная n – го порядка $\frac{\partial^k f(x_1, x_2, \dots, x_n)}{\partial_{x_1}^{k_1} * \partial_{x_2}^{k_2} * \dots * \partial_{x_n}^{k_n}} = \frac{\partial}{\partial x_1} \frac{\partial^{k-1} f}{\partial_{x_1}^{k_1-1} * \partial_{x_2}^{k_2} * \dots * \partial_{x_n}^{k_n}}$, $k_1 + k_2 + \dots + k_n = k$. Точно таким же образом определяется дифференциал n – го порядка функции f. По определению это есть $d^nf\equiv d(d^{n-1}f)$, где $d^2f=d(df)$. Пусть есть некая функция от двух переменных f(x,y). Тогда $df=rac{\partial f}{\partial x}dx+rac{\partial f}{\partial y}dy$. Дифференциал зависит от четырех переменных – точки (x,y), dx, dy, от последних двух зависит линейно. Тогда дифференциал второго порядка есть $d^2f = d\left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right) = \frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy\right)dx + \frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}dx + \frac{\partial}{\partial y}dy\right)dx$ $\left(\frac{\partial f}{\partial y}dy\right)dy = \frac{\partial^2 f}{(\partial x)^2}(dx)^2 + 2\frac{\partial^2 f}{\partial x \partial y}dxdy + \frac{\partial^2 f}{(\partial y)^2}(dy)^2$. Таким образом, дифференциал второго порядка есть $d(...)=rac{\partial}{\partial x}(...)dx+rac{\partial}{\partial y}(...)dy$, а дифференциал n – го порядка есть $d^n(...) = \left(\frac{\partial}{\partial x}(...)dx + \frac{\partial}{\partial y}(...)dy\right)^n$. Рассмотрим функцию f(x,y), у которой существуют частные производные n — го порядка в окрестности точки в окрестности точки (x_0,y_0) . Тогда имеет место выражение $f(x,y)=f(x_0,y_0)+\frac{1}{1!}df(x_0,y_0)+$ $\frac{1}{2!}d^2f(x_0,y_0)+\cdots+\frac{1}{n!}d^nf(x_0,y_0)+o\left(\left(\sqrt{(\Delta x)^2+(\Delta y)^2}\right)^n\right)$, где $dx=x-x_0,dy=y-x_0$ y_0 , которое и называется формулой Тейлора. Пояснение: $\left(\sqrt{(\Delta x)^2 + (\Delta y)^2}\right)^n$ – бесконечно малая функция, а $o\left(\left(\sqrt{(\Delta x)^2+(\Delta y)^2}\right)^n\right)$ – бесконечно большая более высокого порядка, остаточный член формулы Тейлора. Аналогичная формула для одной переменной была в первом семестре.

П.2. Экстремум функции нескольких переменных

Пусть некая функция f(x,y) определена в окрестности точки (x_0,y_0) и имеет частные производные 1-го порядка. Говорят, что функция f имеет локальный максимум в точке (x_0,y_0) , если существует такая окрестность точки (x_0,y_0) , что для любого x и $y \in$ этой окрестности выполняется неравенство $f(x,y) \leq f(x_0,y_0)$. Аналогичным образом определяется локальный минимум. Точки локального минимума и максимума называются точками экстремума.

Теорема 24. Пусть точка (x_0,y_0) – точка экстремума. Тогда частные производные (если они существуют) $\frac{\partial f}{\partial x}(x_0,y_0)$ и $\frac{\partial f}{\partial y}(x_0,y_0)$ равны нулю.

Доказательство. Пусть точка (x_0,y_0) – точка максимума (аналогичные рассуждения можно вести для точки минимума) функции f. Тогда по определению существует такая окрестность точки (x_0,y_0) , что $f(x_0,y_0) \geq f(x_0+\Delta x,y_0)=f(x,y_0)$. Так как y_0 фиксировано, то это функция одной переменной, и, следовательно, частная производная по x обращается в ноль $\frac{\partial f}{\partial x}(x_0,y_0)=0$. Это является необходимым условием существования экстремума для функции одной переменной (также су-

ществование производной в этой точке). Аналогичным образом частная производная по y обращается в ноль $\frac{\partial f}{\partial y}(x_0,y_0)=0$. Точки, в которых производная обращается в ноль, называются стационарными точками.

<u>Замечание.</u> Обращение частных производных в ноль является необходимым, но не достаточным условием существования точки экстремума. Пример: $f(x,y)=x^2-y^2$. Точка (0;0) не принимает экстермальное значение, хотя частные производные в этой точке равны нулю $\frac{\partial f}{\partial x}(0;0)=\frac{\partial f}{\partial y}(0;0)=0$.

Теорема 25. Достаточные условия экстремума. Пусть некая функция f(x,y) имеет частные производные до второго порядка включительно в окрестности точки (x_0,y_0) . Пусть $A=\frac{\partial^2 f}{(\partial x)^2}(x_0,y_0), B=\frac{\partial^2 f}{\partial x \partial y}(x_0,y_0); C=\frac{\partial^2 f}{(\partial y)^2}(x_0,y_0).$ Если:

- 1. $A*C-B^2>0$ и A>0, то точка (x_0,y_0) точка минимума.
- 2. $A * C B^2 > 0$ и A < 0, то точка (x_0, y_0) точка максимума.
- 3. $A*C-B^2<0$, то точка (x_0,y_0) не является точкой экстремума.
- 4. $A * C B^2 = 0$, то требуется дополнительное исследование. Доказательство теоремы в следующей лекции.