Code No: R201109

SET - 1

I B. Tech I Semester Regular Examinations, April - 2022 MATHEMATICS-II

R20

(Only EEE)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- 1. a) Find the rank of $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & -4 \\ 2 & 3 & 5 & -5 \\ 3 & -4 & -5 & 8 \end{bmatrix}$ by Echelon form (5M)
 - b) Find the Eigen values and Eigen vectors of $A = \begin{bmatrix} 3 & -6 & 3 \\ 1 & 0 & -1 \\ 1 & 2 & -3 \end{bmatrix}$. (9M)

2. a) Solve the system of equations by Gauss -elimination method (8M)

2x + y + 2z + w = 6, 6x - 6y + 6z + 12w = 36, 4x + 3y + 3z - 3w = -1, 2x + 2y - z + w = 10.

b) Prove that the eigen vectors corresponding to distinct eigenvalues of a matrix are independent. (6M)

UNIT-II

- 3. a) Verify Cayley Hamilton theorem for $A = \begin{bmatrix} 4 & 1 & 1 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{bmatrix}$ and hence find A^{-1} . (7M)
 - Find Singular values and singular value decomposition of a matrix $\begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 2 \\ 1 & 2 & 1 \end{bmatrix}$. (7M)

Or

4. Reduce the quadratic form $3x^2 + 5y^2 + 3z^2 - 2xy - 2yz + 2zx$ to the canonical form by orthogonal transformations and find rank, index, signature, nature of the quadratic form. (14M)

UNIT-III

- 5. a) Find a real root of $xe^x = 3$ using Regula–Falsi method. (5M)
 - b) Perform two iterations of the Newton-Raphson method to solve the system of equations $x^2 + y^2 + xy = 7$ and $x^3 + y^3 = 9$.

- 6. a) Using Newton Raphson method, find real root of $\cos x = \chi e^x$ and correct to four decimal places. (7M)
 - b) Solve the system 10x-2y-z-w=3; -2x+10y-z-w=15; -x-y+10z-2w=15; -x-y-2x+10w=-9 using Gauss Seidel method. (7M)

(8M)

UNIT-IV

7. a) The population of a nation in the decimal census was given below. Estimate the population in the year 1925 using appropriate interpolation formula

Year x	1891	1901	1911	1921	1931
Population y (thousands)	46	66	81	93	101

b) Find Interpolating polynomial by Lagrange's method and hence find f(2) for the following data (7M)

X	0	1	3	4
f(x)	-12	0	6	12

Or

8. a) Evaluate i).
$$\Delta^2 \sin(px+q)$$
 ii) $\Delta \left[\frac{f(x)}{g(x)} \right]$. (6M)

b) Using Newton's divided difference formula, evaluate *f*(8) given

X	4	5	7	10	11	13		
f(x)	48	100	294	900	1210	2028		

UNIT-V

- 9. a) Find y(1.1) by Taylor's series method given that y' = y + x, y(1) = 0. (7M)
 - b) Compute the value of $\int_{0.2}^{1.4} (\log x + e^x) dx$ using Simpson's $3/8^{th}$ rule. (7M)

Or

- 10. a) Using Euler method find y(0.2) y(0.4) and y(0.6) given $y' = y + e^x$, y(0) = 0. (7M)
 - b) Find y(0.1) using Runge-Kutta fourth order formula given that $y^1 = x + x^2 y$; y(0) = 1. (7M)

2 of 2

SET - 2

I B. Tech I Semester Regular Examinations, April - 2022 MATHEMATICS-II

(Only EEE)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

1 a)
Find rank of matrix $A = \begin{bmatrix} 2 & 3 & 4 & -1 \\ 5 & 2 & 0 & -1 \\ -4 & 5 & 12 & -1 \\ 2 & 4 & 0 & 3 \end{bmatrix}$ using Echelon form

b) Find the Eigen values and Eigen vectors of $A = \begin{bmatrix} 2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ (9M)

Or

- 2 a) Solve the system of equations by Gauss -elimination method x + y + z w = 2,7x + y + 3z + w = 12,8x y + z 3w = 5,10x + 5y 3z + 2w = 20. (8M)
 - b) Prove that the eigen vectors corresponding to distinct eigenvalues of a real symmetric matrix are orthogonal. (6M)

UNIT-II

- 3 a) Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 6 & 1 \\ 2 & 3 & 1 \end{bmatrix}$ and hence find A^{-1} .
 - b) Find Singular values and singular value decomposition of a matrix $\begin{bmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{bmatrix}$. (7M)

Or

4 Reduce the quadratic form $3x^2 + 2y^2 + 3z^2 - 2xy - 2yz$ to the canonical form by orthogonal transformations and find rank, index, signature, nature of the quadratic form. (14M)

UNIT-III

- 5 a) Find a real root for $e^x \sin x = 1$, using Regula Falsi method. (5M)
 - b) Perform two iterations of the Newton-Raphson method to solve the system of equations $x^2 + 3y^2 = 4$ and $x^2 + 3x + y = 5$.

- 6 a) Using Newton-Raphson method find the root of the equation $x + \log_{10} x = 3.375$ (7M) corrected to four significant figures.
 - b) Solve the system of equations x+y+54z=110; 27x+6y-z=85; 6x+15y+2z=72 (7M) using Gauss Seidel method.

UNIT-IV

7 a) From the following table of half yearly premium for policies, estimate the premium for policies at the age of 63.

Age x	45	50	55	60	65
Premium y	114.84	96.16	83.32	74.48	68.48

b) Using Lagrange's Interpolation formula find the value of y(10) from the following table (7M)

X		5	6	9	11
у	(x)	12	13	14	16

Or

8 a) Prove that
$$\Delta \tan^{-1} \left(\frac{n-1}{n} \right) = \tan^{-1} \left(\frac{1}{2n^2} \right)$$
. (6M)

b) Given the values, find f(9), using divided difference formula (8M)

X	5	7	11	13	18
f(x)	150	392	1452	2366	5202

UNIT-V

- 9 a) Evaluate y(1.1) from $y' = y x^2$, y(0) = 1, by using Taylor series method. (7M)
 - Find the value of y at x = 0.1 by Picard's method, given that $\frac{dy}{dx} = \frac{y-x}{y+x}$, y(0) = 1.

- 10 a) Apply the fourth order Runge-Kutta method, to find an approximate value of y when x = 1.2, given that : $y' = x^2 + y^2$, y(1) = 1.5.
 - Evaluate $\int_{0}^{1} \sqrt{1 + x^4} dx$ using Simpson's 3/8 rule. (7M)

Code No: R201109

SET - 3

I B. Tech I Semester Regular Examinations, April - 2022 MATHEMATICS-II

(Only EEE)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- 1 a) Find rank of matrix $A = \begin{bmatrix} 1 & 2 & 3 & 0 \\ 2 & 4 & 3 & 2 \\ 3 & 2 & 1 & 3 \\ 6 & 8 & 7 & 5 \end{bmatrix}$ by reducing it to Echelon form. (5M)
 - b) Find the Eigen values and Eigen vectors of A=. $\begin{bmatrix} 1 & 0 & 3 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{bmatrix}$ (9M)
- 2 a) Solve the system of equations by Gauss -elimination method 5x + y + z + w = 4, x + 7y + z + w = 12, x + y + 6z + w = -5, x + y + z + 4w = -6. (8M)
 - b) Prove that the eigenvalues of a real symmetric matrix are real. (6M)

UNIT-II

- 3 a) Verify Cayley Hamilton theorem for the Matrix $A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 1 \\ 2 & 1 & 1 \end{bmatrix}$ and hence find
 - b) Find Singular values and singular value decomposition of a matrix $\begin{bmatrix} 3 & 1 & 1 \\ -1 & 3 & 1 \end{bmatrix}$. (7M)
- Reduce the quadratic form $6x^2 + 3y^2 + 3z^2 4xy 2yz + 4zx$ to the canonical form by orthogonal transformations and find rank, index, signature, nature of the quadratic form. (14M)

UNIT-III

- 5 a) Using Regula-falsi method, find the real root of $2x \log x = 6$ correct to three decimal places. (5M)
 - b) Solve sinx y + 1.32 = 0 and x cosy 0.85 = 0 starting with $x_0 = 0.6$ and $y_0 = 1.9$ using (9M) Newton Raphson method.

Or

- 6 a) Find a real root of $x^4 x 9 = 0$ using Newton-Raphson method. (7M)
 - b) Solve the system 10x-2y-z-w=3; -2x+10y-z-w=15; -x-y+10z-2w=15; -x-y-2y+10w=-9 using Gauss Seidel method. (7M)

1 of 2

SET - 3

(7M)

(7M)

(7M)

UNIT-IV

7 a) Find f(2.5) using Newton's forward formula from the following table:

						\mathcal{C}	
X	0	1	2	3	4	5	6
у	0	1	16	81	256	625	1296

Using Lagrange's interpolating formula, find y (10) from the following table b)

X	5	6	9	11
f(x)	12	13	14	16

Or

8 a) Prove that i)
$$\Delta \nabla = \Delta - \nabla$$
 ii) $\frac{\Delta}{\nabla} - \frac{\nabla}{\Lambda} = \Delta + \nabla$. (7M)

Using Newton's divided difference formula, find y (8) from the following table b) (7M)

X	5	6	9	10
f(x)	12	13	14	16

UNIT-V

9 Solve $y' = y - x^2$, y(0) = 1, by Picard's method up to the fourth approximation. (7M)Hence, find the value of y(0.1).

b) Evaluate
$$\int_{0}^{2} e^{-x^{2}} dx$$
 using Simpson's rule taking h = 0.25.

Given $y^1 = x + \sin y$, y(0) = 1, compute y(0.2) using Euler's method taking h=0.05 10 a) (7M)

Using Runge-kutta method of fourth order, find y (0.3), given that b) (7M) $\frac{dy}{dx} = \frac{1}{2}(1+x)y^2$, y(0) = 1.

I B. Tech I Semester Regular Examinations, April - 2022 MATHEMATICS-II

(Only EEE)

Time: 3 hours Max. Marks: 70

Answer any five Questions one Question from Each Unit All Questions Carry Equal Marks

UNIT-I

- 1 a) Find rank of matrix $A = \begin{bmatrix} 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7 \\ 5 & 6 & 7 & 8 \end{bmatrix}$ using Echelon form (5M)
 - Find the eigenvalues and the corresponding eigen vectors of $\begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ Or (9M)
- 2 a) Solve the system of equations by Gauss -elimination method (8M)
 - 2x y + 2z + 6w = 4, 6x + y + 6z + 12w = 2, 4x + y + 3z 3w = -1, 2x + 2y z + w = 1
 - b) Prove that the eigen vectors corresponding to distinct eigenvalues of a matrix are independent. (6M)

UNIT-II

- 3 a) Verify Cayley Hamilton theorem for the Matrix $A = \begin{bmatrix} 1 & -3 & 1 \\ 6 & 3 & 1 \\ 1 & 3 & 1 \end{bmatrix}$ and hence find A^{-1} .
 - b) Find Singular values and singular value decomposition of a matrix $\begin{bmatrix} 3 & 0 \\ 4 & 5 \end{bmatrix}$. (7M)
- Reduce the quadratic form $3x^2 + 3y^2 + 3z^2 + 2xy 2yz + 2zx$ to the canonical form by orthogonal transformations and find rank, index, signature, nature of the quadratic form. (14M)

UNIT-III

- 5 a) Using Regular Falsi method, find real root of $\chi^3 2x 5 = 0$. (5M)
 - b) Solve the system of equations by Newton Raphson method $x^2 + y^2 1 = 0$ and $y x^2 = 0$. (9M)

- 6 a) Using Newton-Raphson method find the root of the equation $x + \log_{10} x = 3.375$ (7M) corrected to four significant figures.
 - b) Solve the system 10x-2y-z-w=3; -2x+10y-z-w=15; -x-y+10z-2w=15; -x-y-2y+10w=-9 using Gauss Seidel method. (7M)

(7M)

(7M)

UNIT-IV

7 a) Construct difference table for the following data

u	ict difference table for the following data									
	X	0.1	0.3	0.5	0.7	0.9	1.1	1.3		
	f(x)	0.003	0.067	0.148	0.248	0.370	0.518	0.697		

and evaluate f(0.6).

b) Using Lagrange's interpolating formula, find y (8) from the following table

X	1	4	6	10
f(x)	3	5	9	11

Or

8 a) Find the second difference of the polynomial $x^4 - 12x^3 + 42x^2 - 30x + 9$ with interval of differencing h = 2. (7M)

b) Using Newton's divided difference formula, find y (8) from the following table (7M)

X	3	5	9	11
f(x)	10	13	12	18

UNIT-V

9 a) Evaluate $\int_{0}^{2} e^{-x^{2}} dx$ using Trapezoidal rule taking h = 0.25.

(7M)

(7M)

b) Given $y' = x + \sin y$, y(0) = 1, compute y(0.2) using Euler's method taking h=0.05

Or

10 a) Find y(0.1) using Runge-Kutta fourth order formula given that $y^1 = x + x^2 y$; y(0) = 1.

(7M)

b) Solve $y' = y - x^2$, y(0) = 1, by Taylor's method up to the fourth approximation. (7M) Hence, find the value of y(0.1).