

알고리즘 7주차

Graph 1

MMC 연구실 박사 과정 문희찬

조교 소개

- 문희찬
- 컴퓨터공학과 대학원 석사과정
- MMC연구실 (A1406)
- HCMoon@hallym.ac.kr

실습 수업 진행 방식

- 쉬는 시간 없이 1시간 30분 수업 (화장실 자유롭게 다녀오세요)
- 출석체크: 수업 시작, 수업 끝날 때 체크
- 수업 시작 30분 뒤부터, 확인 문제를 해결한 학생은 검사 받고 퇴실
- 과제 진행 중 모르는 부분은 메일로 질문

과제 설명

- 알고리즘 수업은 Eclipse를 사용하여 코드를 작성합니다.
- 확인 문제 및 과제를 전부 해결하여 제출해주세요.
- 과제 제출 시 프로젝트 폴더를 압축해서 제출합니다.
- 과제의 채점은 프로젝트의 실행 결과를 기준으로 점수를 매깁니다.
- 컨닝 금지, 모르는 것이 있으면 저에게 질문해주세요.
 (메일 주소 확인)

과제 제출 방법

- 프로젝트 폴더를 압축하여 제출
- 프로젝트이름 : AL_(주차)_(학번) 예) AL_07_0000000
- *.java파일만 제출하면 안됩니다.
- <u>제출양식을 반드시 지켜주세요!</u>

확인문제

Package Name: graph Class Name: Graph

```
public class Graph {
    int n; // Number of vertices
    int e; // Number of edges
    int[][] weight;
    public Graph(int noOfVertices) {
        n = noOfVertices;
        weight = new int[n][n];
    public void insertEdge(int i, int j) {
    }
    public void removeEdge(int i, int j) {
    public int[] adjacency(int u) {
    public void bfs(int v) {
    public void dfs(int v) {
```

확인문제

Package Name: graph Class Name: GraphTest

```
public static void main(String[] args) {
   // TODO Auto-generated method stub
    Graph gr = new Graph(6);
   gr.insertEdge(0, 1);
    gr.insertEdge(0, 2);
    gr.insertEdge(1, 2);
    gr.insertEdge(1, 3);
    gr.insertEdge(2, 3);
    gr.insertEdge(2, 4);
    gr.insertEdge(3, 4);
    gr.insertEdge(3, 5);
    gr.insertEdge(4, 5);
    gr.insertEdge(1, 5);
    System.out.println();
    int[] adj;
   for(int i = 0; i < 6; i++) {
        adj = gr.adjacency(i);
        System.out.print(i + ": ");
        for(int e: adj) {
            System.out.print(e + " ");
        System.out.println();
    gr.bfs(1);
    System.out.println();
    gr.dfs(1);
    System.out.println();
```

<terminated> GraphTest [Java Application]

```
0: 1 2

1: 0 2 3 5

2: 0 1 3 4

3: 1 2 4 5

4: 2 3 5

5: 1 3 4

BFS

1, 0, 2, 3, 5, 4,

DFS

1, 5, 4, 3, 2, 0,
```

실습 과제

- 1. dfsComponent 구현
- 2. 연결리스트를 이용하여 Graph 구현

Package Name: graph Class Name: Graph

◆ 연결 요소를 찾는 알고리즘

```
dfsComponent(G, n) // G=(V,E), n은 G의 정점 수
  for (i\leftarrow 0; i \le n; i\leftarrow i+1) do {
     visited[i] \leftarrow false;
 for (i \leftarrow 0; i \leq n; i \leftarrow i + 1) do {
   // 모든 정점 0, 1, ..., n-1에 대해 연결 요소 검사
     if (visited[i] = false) then {
         print("new component");
         DFS(i); // 정점 i가 포함된 연결 요소를 탐색
end dfsComponent()
```

Package Name: graph Class Name: Graph

```
public void dfsComponent() {
}
```

Package Name: graph Class Name: GraphTest

```
public static void main(String[] args) {
    Graph gr = new Graph(6);
    gr.insertEdge(0, 1);
    gr.insertEdge(0, 2);
    gr.insertEdge(1, 2);
    gr.insertEdge(1, 3);
    gr.insertEdge(2, 3);
    gr.insertEdge(2, 4);
    gr.insertEdge(3, 4);
    gr.insertEdge(3, 5);
    gr.insertEdge(4, 5);
    gr.insertEdge(1, 5);
    System.out.println();
    int[] adj;
    for(int i = 0; i < 6; i++) {
        adj = gr.adjacency(i);
        System.out.print(i + ": ");
        for(int e: adi) {
            System.out.print(e + " ");
        System.out.println();
    gr.bfs(1);
    System.out.println();
    gr.dfs(1);
    System.out.println();
    gr = new Graph(9);
    gr.insertEdge(0, 1);
    gr.insertEdge(0, 2);
    gr.insertEdge(2, 6);
    gr.insertEdge(1, 7);
    gr.insertEdge(3, 4);
    gr.insertEdge(5, 8);
    gr.dfsComponent();
```

<terminated> GraphTest [Java Application] 0:12 1: 0 2 3 5 2: 0 1 3 4 3: 1 2 4 5 4: 2 3 5 5: 1 3 4 BFS 1, 0, 2, 3, 5, 4, DFS 1, 5, 4, 3, 2, 0, New Component 0, 2, 6, 1, 7, New Component 3, 4, New Component 5, 8,

Package Name: graph Class Name: GraphList

```
public class GraphList {
   int n; // Number of vertices
   int e; // Number of edges
   Node[] header;
   public GraphList(int noOfVertices) {
       n = noOfVertices;
        e = 0;
        header = new Node[n];
   public void insertEdge(int i, int j) {
   public void removeEdge(int i, int j) {
   public int[] adjacency(int u) {
   public void bfs(int v) {
   public void dfs(int v) {
```

Package Name: graph Class Name: GraphTest

```
GraphList grList = new GraphList(6);
grList.insertEdge(1, 5);
grList.insertEdge(4, 5);
grList.insertEdge(3, 5);
grList.insertEdge(3, 4);
grList.insertEdge(2, 4);
grList.insertEdge(2, 3);
grList.insertEdge(1, 3);
grList.insertEdge(1, 2);
grList.insertEdge(0, 2);
grList.insertEdge(0, 1);
System.out.println();
for(int i = 0; i < 6; i++) {
    adj = grList.adjacency(i);
    System.out.print(i + ": ");
    for(int e: adj) {
        System.out.print(e + " ");
    System.out.println();
}
grList.bfs(1);
System.out.println();
grList.dfs(1);
System.out.println();
```

```
0: 1 2
1: 0 2 3 5
2: 0 1 3 4
3: 1 2 4 5
4: 2 3 5
5: 3 4 1
BFS
1, 0, 2, 3, 5, 4,
DFS
1, 5, 4, 3, 2, 0,
```

과제 제출 방법

- 프로젝트 폴더를 압축하여 제출
- 프로젝트이름 : AL_(주차)_(학번) __ 예) AL_07_00000000
- *.java파일만 제출하면 안됩니다.

과제 제출 방법

- 반드시 프로젝트 폴더를 압축하여 제출