Improving GPipe Partitioning

吳倉永、林其昌、錢柏均

Professor Chia-Lin Yang

Outline

- Project Introduction
- Technical Requirements
 - Timeline Profiling
 - Dynamic-Programming Partitioning
 - Throughput Estimation

Outline

- Experiments
 - Comparison with other Methods
 - Load Balancing
- Conclusion
 - Future Work
- References

Project Introduction

Goal

1. GPipe heuristic-based partitioning algorithm

1. GPipe heuristic-based partitioning algorithm

1. GPipe heuristic-based partitioning algorithm

2. Imbalanced partition results in waiting time for next batch

1. GPipe heuristic-based partitioning algorithm

2. Imbalanced partition results in waiting time for next batch

2 machines -> 4 machines Overhead 3.2% -> 10.9%

Proposed Solution

Proposed Solution

Proposed Solution

Proposed Solution – Black GPipe

Proposed Solution – Black GPipe

- Facilitate GPipe parallel training process of giant neural networks to get better training throughput
- To see if we can beat **DP** and **Naïve GPipe** on throughput

GPipe Micro-batch Recap

GPipe Micro-batch Recap

Split mini-batch into several micro-batches

GPipe Micro-batch Recap

- We need time information for a micro-batch to estimate training time
- Execution time & Communication time

- 1. Specify *number of machines* and *number of micro-batches*
 - Micro-batch size = Batch size / Number of micro-batches

- 1. Specify *number of machines* and *number of micro-batches*
 - Micro-batch size = Batch size / Number of micro-batches
- 2. Profile **Resnet-152** and **VGG19** to get time information w.r.t the micro-batch size

- 1. Specify *number of machines* and *number of micro-batches*
 - Micro-batch size = Batch size / Number of micro-batches
- 2. Profile **Resnet-152** and **VGG19** to get time information w.r.t the micro-batch size
- 3. Use our algorithm to determine partition scheme (DP + MP)

- 1. Specify *number of machines* and *number of micro-batches*
 - Micro-batch size = Batch size / Number of micro-batches
- 2. Profile **Resnet-152** and **VGG19** to get time information w.r.t the micro-batch size
- 3. Use our algorithm to determine partition scheme (DP + MP)
- 4. For each stages, obtain its execution time and get the throughput of the model by estimation
 - Including backward and forward pass
 - Moreover in backward we implement re-computation

Timeline Profiling

Dynamic-Programming Partitioning

Throughput Estimation

G What to Get?

- Profiles the DNN model with micro-batch size N/T, and records
 - T_l : the total computation time across the forward pass for layer l
 - C_l : the communication time to send output from layer l and input to layer l+1
 - a_l : the size of the activations of layer l
 - w_l : the size of parameters for layer l

Fig. referred from [4].

TensorFlow *Timeline* Object

• TensorFlow *Timeline* Object

• TensorFlow *Timeline* Object

TensorFlow *Timeline* Object

• TensorFlow *Timeline* Object

TensorFlow *Timeline* Object

TensorFlow *Timeline* Object

Total Output Communication Time : from GPU to CPU

G Why We Need This

Image

- Assume no inter-connection between GPU
- Data Communication need to send between CPU and GPU

Image

- Assume no inter-connection between GPU
- Data Communication need to send between CPU and GPU

Image

CPU

GPU

G

What We Want

- We need each layer's communication time which are
 - the time to send activations from GPU to CPU w.r.t current layer
 - and time to send these activations from CPU back to GPU w.r.t next layer

G

What We Want

- Since we want to find a split point to split model into stages
- We need this communication time to determine the cost of this split point

Split Model into Stages

Split Model into Stages

We have 3 machines computing this model

Input image communication (ignore this operation cost)

Layer Conv1_1 computation time

Output activation of layer Conv1_1 communication time

Output activation of layer Conv1_1 communication time

G

- Output activation of layer Conv1_1 communication time
- Input activation of next layer Conv1_2 communication time

- Output activation of layer Conv1_1 communication time
- Input activation of next layer Conv1_2 communication time

- So, we can model the stage 1's execution time and communication time
- And we know if we split in here, we have cost of \mathcal{C}_l to transmit data to other GPU

Move On to Partitioning

- We now have
 - T_l : the total computation time across the forward pass for layer l
 - C_l : the communication time to send output from layer l and input to layer l+1
 - a_l : the size of the activations of layer l
 - w_l : the size of parameters for layer l for micro-batch size N/T

Move On to Partitioning

- We now have
 - T_l : the total computation time across the forward pass for layer l
 - C_l : the communication time to send output from layer l and input to layer l+1
 - a_l : the size of the activations of layer l
 - w_l : the size of parameters for layer l for micro-batch size N/T
- With this information we can split model into stages to obtain the lowest computation time and load balancing among GPUs

Timeline Profiling

Dynamic-Programming Partitioning

Throughput Estimation

G

Profiling

- Profiles the DNN model with 1000 mini-batches, and records
 - T_l : the total computation time across the forward pass for layer l

Fig. taken from [4].

G

Profiling

- Profiles the DNN model with micro-batch size N/T, and records
 - T_l : the total computation time across the forward pass for layer l
 - C_l : the communication time to send output from layer l and input to layer l+1
 - a_l : the size of the activations of layer l
 - w_l : the size of parameters for layer l

Fig. referred from [4].

Partitioning

G

Partitioning

- Find an optimal partition of *N* neural network layers among *M* machines with dynamic programming.
- Goal: minimize the time taken by the slowest stage.
- Sub-problem: partition layer 1 to j among m machines.
- Complexity
 - #subproblem: O(NM)
 - Complexity per subproblem: O(NM)
 - Overall complexity: $O(N^2M^2)$

Partitioning Algorithm with DP

```
A(j,m): min(bottleneck stage_cost). j layers, m machines in total.
T(i \rightarrow j, m): compu_cost(stage(layer i to j)), replicated over m machines.
```

[Algorithm]

Case 1: Pure data parallelism (single stage)

$$A(j,m) = T(1 \to j,m)$$

Case 2: More than one stage

$$A(j,m) = \min_{1 \le i < j} \min_{1 \le m' < m} \max \begin{cases} A(i,m-m') \\ 2 \cdot C_i \\ T(i+1 \to j,m') \end{cases} T(i \to j,m) = \frac{1}{m} \max \left(\sum_{l=i}^{j} T_l, \sum_{l=i}^{j} W_l^m \right)$$

Output: A(N, M)

What we have:

 C_l : communication cost from layer i to i+1

 W_l^m : weight update cost for layer i

$$T(i \to j, m) = \frac{1}{m} \max \left(\sum_{l=i}^{J} T_l, \sum_{l=i}^{J} W_l^m \right)$$

Pipelining in PipeDream vs. in GPipe

PipeDream

Hide communication latency by overlapping communication and computation of different mini-batch

GPipe

Same Order of Amortized Bubble Time

T = # of micro-batches

K = # of stages

Amortized bubble time = $O\left(\frac{K-1}{T \perp V - 1}\right)$

GPipe

Amortized bubble time =
$$O\left(\frac{K-1}{T+2(K-1)}\right)$$

As
$$T \gg K$$
, $O\left(\frac{K-1}{T+2(K-1)}\right) \cong O\left(\frac{K-1}{T+K-1}\right)$

Customized Partitioning Algorithm

A(j,m): min(bottleneck stage_cost). j layers, m machines in total. $T(i \rightarrow j, m)$: compu_cost(stage(layer i to j)), replicated over m machines.

[Algorithm]

Case 1: Pure data parallelism (single stage)

$$A(j,m) = T(1 \rightarrow j,m)$$
 3. if ...

Case 2: More than one stage

$$A(j,m) = \min_{1 \le i < j} \min_{1 \le m' < m} \max \left\{ \begin{array}{l} A(i,m-m') \\ 2 \cdot C_i \\ T(i+1 \rightarrow j,m') \end{array} \right. \quad \frac{\text{3. if ...}}{T(i \rightarrow j,m')}$$

$$T(i \rightarrow j,m) = \frac{1}{m} \max \left(\sum_{l=i}^{j} T_l, \sum_{l=i}^{j} W_l^m \right)$$

Output: A(N, M)

What we have:

 C_l : communication cost from layer i to i+1

$$T(i \to j, m) = \frac{1}{m} \max \left(\sum_{l=i}^{j} T_l, \sum_{l=i}^{j} W_l^m \right)$$

1. No Within-Stage Weight Synchronization

PipeDream

1F1B ⇒ within-stage weight synchronization / update (overlapped with computation)

$$T(i \to j, m) = \frac{1}{m} \max \left(\sum_{l=i}^{j} T_l, \sum_{l=i}^{j} W_l^m \right)$$

GPipe

Weight synchronization / update is performed at the end of each mini-batch

$$T(i \to j, m) = \frac{1}{m} \sum_{l=i}^{j} T_l$$

2. Communication Cost Estimator

- Inter-machine communication in PipeDream
 - ZeroMQ & Fast custom serialization
 - Cost estimator = $2C_i$, from i^{th} to $(i+1)^{th}$ layer
- Communication cost customized for our simulation

- CPU
- Communication flow goes through CPU node (limited bandwidth)
- GPU

• Remains $2C_i$

3. Upper Bound of Device Memory Usage

- The algorithm finds the optimal solution, i.e. the most balanced solution
 - ⇒ Tends to suggest pure data parallelism
 - Intuitively, model parallelism more or less induces imbalance
 - Mathematically, the minimal bottleneck cost is the average of the total cost
- To solve this problem, the memory limit is set

L(i,j) = memory usage for layer i to j

Filter out infeasible solution

$$A(j,m) = T(1 \to j,m) \qquad \qquad if \ L(1 \to j) < Memory \ Limit$$

$$A(j,m) = \min_{1 \le i < j} \min_{1 \le m' < m} \max \begin{cases} A(i,m-m') \\ 2 \cdot C_i \\ T(i+1 \to j,m') \end{cases} \qquad if \ L(i+1 \to j) < Memory \ Limit$$

Example of Partitioning Solutions

PrintableParadine.com		
Memory Limit (MB)	Partition	Bottleneck cost
400	1->8 9->20 21->22 23->27	13166
448	1->7 8->15 16->22 23->27	11947
512	1->10 11->17 18->27	8419
1024	1->14 15->27	7182
2048	1->27	6776

Model: VGG. Profiled with a fixed batch size.

of layers = 27 # of machines = 4

```
dp> setprof -f ../case/vgg w4mb8.txt dp> setprof -f ../case/vgg w4mb8.txt dp> setprof -f ../case/vgg w4mb8.txt
dp> memlim 400
                                  dp> memlim 512
                                                                     dp> memlim 2048
dp> partition
                                  dp> partition
                                                                     dp> partition
Profile: ../case/vgg w4mb8.txt
                                  Profile: ../case/vgg w4mb8.txt
                                                                     Profile: ../case/vgg w4mb8.txt
 ===== Partition ======
                                  ====== Partition =======
                                                                     ====== Partition ======
 of lavers : 27
                                  # of lavers : 27
                                                                     # of layers : 27
 of workers: 4
                                  # of workers: 4
                                                                     # of workers: 4
         layer
                  reps
                        cost
                                           layer
                                                     reps cost
                                                                     stage
                                                                             layer
                                                                                       reps cost
                         13166
                                     1 1-> 10
      1-> 8
                                                          8418.5
                                                                        1 1-> 27
                                                                                         4 6775.75
   2 9-> 20
                         12522
                                     2 11-> 17
                                                            7848
                                                                     Pipeline bottleneck cost: 6775.75
   3 21-> 22
                          996
                                      3 18-> 27
                                                            3159
   4 23-> 27
                                  Pipeline bottleneck cost: 8418.5
                          625
                                                                     dp>
Pipeline bottleneck cost: 13166
                                  dp> memlim 1024
dp> memlim 448
                                  dp> partition
dp> partition
                                  Profile: ../case/vgg w4mb8.txt
Profile: ../case/vgg w4mb8.txt
                                  ====== Partition =======
 ===== Partition ======
                                  # of layers : 27
 of layers : 27
                                  # of workers: 4
 of workers: 4
                                  stage
                                           layer
                                                     reps cost
         layer
                  reps
                                      1 1-> 14
                                                      3 7181.67
                         11337
                                      2 15-> 27
                                                            5558
   2 8-> 15
                         11947
                                  Pipeline bottleneck cost: 7181.67
                          3930
   3 16-> 22
                                  dp>
      23-> 27
                          625
 peline bottleneck cost: 11947
```


Timeline Profiling

Dynamic-Programming Partitioning

Throughput Estimation

G Model Partitioning

With the obtained partition from previous steps...

Forward Pass

Backward Pass

Stage i

Backward Pass

GDP Time Estimation

Let micro-batch size be b

G

Pipelining

Throughput Estimation

 $T_{pipeline}$ \longrightarrow T_{update} \longrightarrow

$$T_{cycle} = T_{pipeline} + T_{update}$$

$$throughput = \frac{mini-batch\ size}{T_{cycle}}$$

Experiments

G

Environments

- Intel® Core™ i7-8700 with 32G RAM
- GeForce RTX 2080 Ti (CUDA 10.1)
- Ubuntu 16.04.6 LTS
- Python2.7 with TensorFlow 1.14

Parameters

- NN models: VGG19(1.17G) and ResNet-152(3.63G) and SE-ResNeXt(0.49G) all with input image size (448, 448, 3)
- #GPU: 1, 2, 4, 8
- Mini-batch size: 16, 32, 64, 128
- #Micro-batch: 2, 4, 8, 16
- Methods: single GPU, Vanilla DP, GPipe with heuristic, Black GPipe
 - Record throughput: #images processed per second

Experimental Results

Observation

on mini-batch size and #micro-batch

#micro mini -batch -batch size	2	4	8	16
16	7.91	10.42	9.48	5.25
32	10.27	10.25	11.62	10.39
64	-	13.51	12.06	12.34
same micro-batch size, 128 larger #micro-batch - 16.14 \rightarrow higher throughput				13.18

Larger batch size & more batches

 \rightarrow higher throughput

same #micro-batch, larger mini-batch size → higher throughput

(VGG19, 2 GPUs, Ours Partitioning)

OOM due to large batch size

Load Balancing

Load Balancing

Throughput

Throughput

Conclusion

Conclusion

- We profiled the computation/communication time of each layer in a neural network, and applied PipeDream-like partitioning algorithm to split the model into different stages.
- We proposed an approach to simulate multi-GPUs system to estimate the Black GPipe training time and throughput.
- The experiments showed that our partitioning algorithm is better than the heuristic-based one when comparing the estimated throughput.
- The experiments showed that our partitioning algorithm is better than the heuristic-based one on larger models when comparing load imbalance overhead
- Black GPipe can achieve higher throughput with larger micro-batch size and larger #micro-batch.

Future Work

Some potential improvement...

- Checkpoints for re-computation
- Partitioning algorithm
 - Take #micro-batch into consideration
 - Better integration of DP overhead and BP time
 - More accurate memory constraint
- Run the experiments on multi-GPUs server

References

G

References

- 1. T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training deep nets with sublinear memory cost.
- 2. A. Griewank and A. Walther. Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation.
- 3. A. Mirhoseini, H. Pham, Q. V. Le, B. Steiner, R. Larsen, Y. Zhou, N. Kumar, M. Norouzi, S. Bengio, and J. Dean, "Device placement optimization with reinforcement learning."
- 4. A. Harlap, D. Narayanan, A. Phanishayee, V. Seshadri, N. Devanur, G. Ganger, and P. Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training.
- 5. Huang, Y., Cheng, Y., Chen, D., Lee, H., Ngiam, J., Le, Q. V., and Chen, Z. Gpipe: Efficient training of giant neural networks using pipeline parallelism.
- 6. C.-C. Chen, C.-L. Yang, and H.-Y. Cheng. Efficient and robust parallel dnn training through model parallelism on multi-gpu platform.
- 7. L. G. Valiant. A bridging model for parallel computation. Communications of the ACM, 33(8):103–111, 1990.
- 8. A. Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv preprint arXiv:1404.5997, 2014.

THANKS