Applied Statistical Multivariate Analysis Principal Component Analysis

Instructor: Yaser Zerehsaz

موسسه آموزش عالی آزاد توسعه برگزار کننده دورههای تخصصی علم داده

Motivation

- Dimension reduction of a dataset
- Extract the relevant features for monitoring, fault diagnosis and prediction
- PCA is a linear dimension reduction method, it constructs a linear combination of the original variables. The new space will be q-dimensional where q < p.
- It works based on a projection method
- It can be used for visualization of data
- It can be employed for noise reduction

Geometric representation

What is an appropriate one-dimensional projection?

Mathematical formulation

Suppose that the columns of matrix **X** are centered i.e. $E(\mathbf{X}) = \mathbf{0}$ or the mean of each column is zero, and let's denote each column of **X** by $\mathbf{x}_i \in \mathbb{R}^n$; i = 1, 2, ..., p. Then:

PCA problem is to find $q \le p$ new variables $\mathbf{y}_j \in \mathbb{R}^n$; j = 1, 2, ..., q, such that:

$$\mathbf{y}_j = \sum_{i=1}^p w_i \mathbf{x}_i$$
 maximizes $\operatorname{var}(\mathbf{y}_j) = \mathbf{w}_j^T \mathbf{\Sigma} \mathbf{w}_j$
with $\mathbf{w}_j^T \mathbf{w}_j = 1$, $\mathbf{w}_j^T \mathbf{w}_k = 0$ for $k \neq j = 1, 2, ..., q$

In matrix form:

Y = XW where W solves

Maximize $\mathbf{W}^T \mathbf{\Sigma} \mathbf{W}$ Subject to: $\mathbf{W}^T \mathbf{W} = \mathbf{I}$

y_i's are called PC scores or features

Solution to the PCA problem

Derive the first PC:

Maximize
$$f(\mathbf{w}_1) = \mathbf{w}_1^T \mathbf{\Sigma} \mathbf{w}_1$$

S.t. $\mathbf{w}_1^T \mathbf{w}_1 = 1$

Incorporate the constraint in the objective function using Lagrange multipliers and take the derivative with respect to \mathbf{w}_1 :

$$\Sigma \mathbf{w}_1 = \lambda_1 \mathbf{w}_1$$

 λ_1 must be the eigenvalue of Σ and \mathbf{w}_1 is the corresponding eigenvector.

Solution to the PCA problem

Recall the eigendecomposition problem

$$\mathbf{\Sigma} = \mathbf{W} \mathbf{\Lambda} \mathbf{W}^T = \sum_{i=1}^p \lambda_i \mathbf{w}_i \mathbf{w}_i^T$$

W is the matrix of eigenvectors and Λ is the diagonal matrix of eigenvalues.

- To obtain w₁, we should choose one eigenvalue and its associated eigenvector, but which one?
- Choose λ_i maximizing $\sum_{i=1}^p \lambda_i \mathbf{w}_i \mathbf{w}_i^T$
- How can we get the second direction?
- They should be perpendicular to the first direction \mathbf{w}_1 i.e. $\mathbf{w}_1^T \mathbf{w}_2 = 0$
- Recall that in eigendecomposition, different eigenvectors are orthogonal. So, the solution to PCA problem is given by the eigendecomposition of Σ and Y = XW

Properties of PCs

- $E(\mathbf{y}_i) = 0$
- $Cov(y) = \Lambda$; as a result, PCs are uncorrelated
- $Var(\mathbf{y}_i) = \lambda_i$
- if X is a multivariate normal, Y will be multivariate normal and
 PCs are independent
- $Cov(X, Y) = W\Lambda$.

Example- Athletic performance data

- Records for 55 countries in the following men's track events:
 100, 200, 400, 800, 1500, 5000, 10000 meters and marathon
- The data are in seconds for the first three variables and in minutes for the rest

Example- Components

	PC1	PC2	PC3
100	0.019865	0.210690	0.029042
200	0.041554	0.358926	0.018390
400	0.110632	0.827863	0.377669
800	0.005488	0.023175	-0.005342
1500	0.014387	0.044653	-0.050004
5000	0.079308	0.129961	-0.336449
10,000	0.181099	0.298854	-0.848723
Marathon	0.972787	-0.180807	0.141872

First component:

- Overall mean with much more emphasis on Marathon
- Higher variability

Second component:

A contrast between Marathon and the rest of variables

Example- First two PCs

	PC1	PC2
100	0.019865	0.210690
200	0.041554	0.358926
400	0.110632	0.827863
800	0.005488	0.023175
1500	0.014387	0.044653
5000	0.079308	0.129961
10,000	0.181099	0.298854
Marathon	0.972787	-0.180807

Number of PCs to keep

- The criterion is to keep enough PCs to appropriately represent the data
- Scree plot: plot λ_i against i and for an elbow
- Explained variability of each component i is $\frac{\lambda_i}{\sum_{j=1}^p \lambda_j}$
- Percentage of explained variability: pick the first q components such that

$$\frac{\sum_{j=1}^{q} \lambda_j}{\sum_{j=1}^{p} \lambda_j} \ge 1 - \alpha$$

where α is a pre-specified small value.

There is no universal rule

Scree plot

Using SVD in PCA

- If the original matrix \mathbf{X} is centered, the covariance matrix $\mathbf{\Sigma}$ can be estimated by $\widehat{\mathbf{\Sigma}} = \frac{\mathbf{X}^T\mathbf{X}}{n-1}$
- When p is large, computing $\mathbf{X}^T\mathbf{X}$ is cumbersome
- Based on SVD, $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^T$. Then we can write

$$(n-1)\widehat{\mathbf{\Sigma}} = \mathbf{V}\mathbf{D}^2\mathbf{V}^T$$

- **V** is the matrix of eigenvectors of $\widehat{\Sigma}$ and **D** contains the square roots of the eigenvalues of $(n-1)\widehat{\Sigma}$
- Hence, we can compute the PC scores as Y = XV

Using SVD in PCA- Power Method

- The solution for SVD goes through eigendecomposition
- It can be showed that for a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ the eigenvalues can be obtained by solving

$$c_n \lambda^n + c_{n-1} \lambda^n + c_0 = 0$$

• For large values of n, polynomial equations like this one are difficult and time-consuming to solve

Solution

Use the power method algorithm based upon the following theorem

Theorem: if $A \in \mathbb{R}^{n \times n}$ is a diagonalizable matrix with a dominant eigenvalue, then there exist a nonzero vector $\mathbf{x} \in \mathbb{R}^n$ such that the sequence of

$$\mathbf{A}\mathbf{x}, \mathbf{A}^2\mathbf{x}, \dots, \mathbf{A}^k\mathbf{x}$$

Converges to a multiple of the dominant eigenvector of A

Using SVD in PCA- Power method

$$\mathbf{A} = \begin{pmatrix} -4 & 10 \\ 7 & 5 \end{pmatrix}, \mathbf{x} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

Problems with PCA

- Since we do not know Σ , we replace it with $\widehat{\Sigma}$
- When $p \gg n$, the estimated eigenvalues and eigenvectors might not be very accurate
- Also, in some cases it is not easy to choose the appropriate number of PCs

Bootstrap as a possible solution

Use bootstrap method (Efron 1979):

 To make an inference regarding some of the estimators, like the explained variance

Fundaments:

- Apply bootstrap when the there is no theory to compute standard errors, confidence intervals, etc.
- It may not always work, but it works generally
- Basic idea is to pretend that the observed sample is the population
- For this reason, we can resample several samples
- Compute the estimators and evaluate the variability

Bootstrap- Algorithm

- Sample with replacement from data $x_1, x_2, ..., x_n$ to generate $x_1^*, x_2^*, ..., x_n^*$
- Compute the parameter of interest $\hat{\theta}^*$ e.g. $\frac{\sum_{j=1}^{\kappa} \lambda_j}{\sum_{j=1}^{p} \lambda_j}$ and repeat the process for N times
- You can now plot a histogram of all $\hat{\theta}^*$'s or compute a (1-p)% confidence interval by taking the $\frac{p}{2}$ th or $(1-\frac{p}{2})$ th percentiles of $\hat{\theta}^*$

Example- LA air pollution data

```
PC2
                           PC1
                                               PC3
                     -0.236821 0.278445 -0.643474
Wind
                      0.205567 - 0.526614 - 0.224469
 Solar radiation
                      0.551084 - 0.006820 0.113609
carbon monoxide
 nitric oxide
                    0.377615 0.434674 0.407098
nitrogen dioxide
                    0.498016 0.199767 -0.196557
                      0.324551 - 0.566974 - 0.159847
 ozone
 hydrocarbon content
                     0.319403 0.307883 -0.541048
```

First two PCs

	PC1	PC2
Wind	-0.236821	0.278445
Solar radiation	0.205567	-0.526614
carbon monoxide	0.551084	-0.006820
nitric oxide	0.377615	0.434674
nitrogen dioxide	0.498016	0.199767
ozone	0.324551	-0.566974
hydrocarbon content	0.319403	0.307883

Variance explained

Can we build an empirical confidence interval for the explained variance by the 1st two PCs?

Bootstrap histogram for explained variance

Biplots

- Demonstrating both observations and variables on the same plot
- The variables are represented by directions
- (Cosines of) angles between directions are proportional to correlations between variables
- If the first two components do not explain most of variance, be cautious in interpretation of the biplot

Biplot-Simple example

Biplot for LA Air Pollution Data

	PC1	PC2
Wind	-0.236821	0.278445
Solar radiation	0.205567	-0.526614
carbon monoxide	0.551084	-0.006820
nitric oxide	0.377615	0.434674
nitrogen dioxide	0.498016	0.199767
ozone	0.324551	-0.566974
hydrocarbon content	0.319403	0.307883

Useful functions in Python

from sklearn.decomposition import PCA

 $P = PCA(n_components)$

p.fit(X): fit a PCA model to a dataset X

p.components_: matrix of loadings

p.explained_variance_: The amount of variance explained by each of the selected components.

p.fit_transform(X): Compute the PC scores