Spanning Tree (ST)

• A spanning tree is a minimal subgraph G', such that V(G')=V(G) and G' is connected.

Either DFS or BFS can be used to create a spanning

Examples of spanning trees

lacktriangle

A connected, undirected graph

Four of the spanning trees of the graph

CHAPTER 1

BASIC CONCEPT

All the programs in this file are selected from

Ellis Horowitz, Sartaj Sahni, and Susan Anderson-Freed "Fundamentals of Data Structures in C", Computer Science Press, 1992.

Steps in system life cycle

- Requirements
- Analysis:
- Design: data objects and operations
- Refinement and Coding
- Verification
 - Program Proving
 - Testing
 - Debugging

Algorithm

- Definition An algorithm is a finite set of instructions that accomplishes a particular task.
- Criteria
 - input
 - output
 - definiteness: clear and unambiguous
 - finiteness: terminate after a finite number of steps
 - effectiveness: instruction is basic enough to be carried out

Performance Analysis and Measurements

- Performance Analysis (machine independent)
- space complexity: storage requirement
 time complexity: computing time
- Performance Measurement (machine dependent)

Space Complexity $S(P)=C+S_P(I)$

- Memory space needed by a program:
 - Fixed Space requirements —
 - \sim Variable Space requirements $-S_{P}(I)$

C Instance

if (trui)
{ additionale memor}
dse
{ de leting therecords}

Space Complexity $S(P)=C+S_P(I)$

- Fixed Space Requirements (C) Independent of the characteristics of the inputs and outputs
 - instruction space
 - space for simple variables, fixed-size structured variable, constants
- Variable Space Requirements (S_P(I))
 depend on the instance characteristic I
 - number, size, values of inputs and outputs associated with Instance
 - recursive stack space, formal parameters, local variables, return address

```
*Program 1.9: Simple arithmetic function (p.19) float abc(float a, float b, float c) { return a + b + b * c + (a + b - c) / (a + b) + 4.00; } <math display="block"> S_{abc}(I) = 0
```

*Program 1.10: Iterative function for summing a list of numbers (p.20)

```
float sum(float list[], int n)
{

float tempsum = 0;
int i;
for (i = 0; i<n; i++)
  tempsum += list [i];
return tempsum;
}
```

$$S_{\text{sum}}(I) = 0$$

Recall: pass the address of the first element of the array & pass by value

*Program 1.11: Recursive function for summing a list of numbers (p.20)
float rsum(float list[], int n)

if (n) return rsum(list, n-1) + list[n-1];

return 0;

Sum(I)=Sum(n)=6n

Assumptions:

*Figure 1.1: Space needed for one recursive call of Program 1.11 (p.21)

Type	Name	Number of bytes
parameter: float	list []	2
parameter: integer	n	2
return address:(used internally)		2
TOTAL per recursive call		6

Time Complexity

• Time taken by a program : Compile time +Run Time

$$T(P) = \underline{C} + T_P(\underline{\underline{I}})$$

- Compile time is similar to the fixed space component
- Execution time depends on the program instances.
- For ex: Consider a simple program that adds and subtracts
 n numbers

 α = α + □

$$T_P(n) = c_a A \underline{DD(n)} + c_s S \underline{UB(n)} + c_l \underline{LDA(n)} + c_{st} \underline{STA(n)}$$

• ca,cs,cl,cst are the constants that refer to the time needed to perform each operations: ADD,SUB, LOAD, STORE

Methods to compute the step count

- Introducing variable count into programs
 Tabular method
 - - Determine the total number of steps contributed by each statement
 - step per execution × frequency
 - add up the contribution of all statements

Time Complexity

Time complexity computed by counting program steps

Definition A program step is a syntactically or semantically meaningful program segment whose execution time is independent of the instance characteristics.

Regard as the same unit machine independent

Iterative summing of a list of numbers **Step count method**

*Program 1.12: Program 1.10 with count statements (p.23)

```
float sum(float list[], int n)
          float tempsum = 0; count++; /* for assignment */

\int_{-\infty}^{\infty} \frac{for (i = 0; i < n; i++))}{for (i = 0; i < n; i++))} 

\Rightarrow count++; /* for the for loop */
        tempsum += list[i]; count++; /* for assignment */
           count++; /* last execution of for */
      return tempsum;
    → count++; /* for return */
```

Recursive summing of a list of numbers **Step count method**

```
*Program 1.14: Program 1.11 with count statements added (p.24)
float rsum(float list[], int n)
count++; /*for if conditional */
if (n) {
                count++; /* for return and rsum invocation */
                return rsum(list, n-1) + list[n-1];
     count++; return list[0];
```

Matrix addition

Step count method

```
*Program 1.15: Matrix addition (p.25)
```

17

Step count method

*Program 1.16: Matrix addition with count statements (p.25)

```
void add(int a[][MAX_SIZE], int b[][MAX_SIZE],
                           int c[][MAX_SIZE], int row, int cols )
                                               2rows * cols + 2 rows + 1
         for (i = 0; i < rows; i++){ } 1 = x = con to the count ++; /* for i for loop */
for (j = 0; j < cols; j++) {
count++; /* \text{ for } j \text{ for } loop */
c[i][j] = a[i][j] + b[i][j]; < -
                   count++; /* for assignment statement */
               count++; /* last time of j for loop */
             ✓count++; /* last time of i for loop */
```

Step count method

```
*Program 1.17: Simplification of Program 1.16 (p.26)
void add(int a[][MAX_SIZE], int b [][MAX_SIZE],
                int c[][MAX_SIZE], int rows, int cols)
  int i, j;
  for(i = 0; i < rows; i++) {
    for (j = 0; j < cols; j++)
      count += 2;
      count += 2;
  count++;
```

 $2rows \times cols + 2rows + 1$

Suggestion: Interchange the loops when rows >> cols

Tabular Method

*Figure 1.2: Step count table for Program 1.10 (p.26)

Iterative function to sum a list of numbers steps/execution

Statement	s/e	Frequency	Total steps
float sum(float list[], int n)	0	0	0
{	0	0	0
float tempsum = 0 ; \rightarrow	1	1	
int i;	0	0	0
for($i=0$; $i < n$; $i++$)	1	n+1	→ n+1
tempsum += list[i]; ->	1	n —	\rightarrow n
return tempsum; ——>	1	1 —	
}	0	0	0
Total			2n+3

Recursive Function to sum of a list of numbers

*Figure 1.3: Step count table for recursive summing function (p.27)

Statement	s/e	Frequency	Total steps
float rsum(float list[], int n)	0	0	0
{	0	0	0
if (n)	1	n+1	n+1
return rsum(list, n-1)+list[n-1];	1	n	n
return list[0];	1	1	1
}	0	0	0
Total			2n+2

Matrix Addition

*Figure 1.4: Step count table for matrix addition (p.27)

Statement	s/e	Frequency	Total steps
Void add (int a[][MAX_SIZE]) { int i, j; for (i = 0; i < row; i++) for (j=0; j < cols; j++) c[i][j] = a[i][j] + b[i][j]; }	0 0 0 1 1 0	0 0 0 > rows+1 > rows. (cols+1) rows. cols 0	0 0 0 rows+1 rows. cols+rows rows. cols
Total		2r	ows. cols+2rows+1

Thank you