Finite Fields

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

September 25, 2014

Fields

Definition

A set F together with two binary operations + and * is a field if

- F is an abelian group under + whose identity is called 0
- $F^* = F \setminus \{0\}$ is an abelian group under * whose identity is called 1
- For any $a, b, c \in F$

$$a*(b+c)=a*b+a*c$$

Definition

A finite field is a field with a finite cardinality.

Example

 $\mathbb{F}_p = \{0, 1, 2, \dots, p-1\}$ with mod p addition and multiplication where p is a prime. Such fields are called prime fields.

Some Observations

Example

- $\mathbb{F}_5 = \{0, 1, 2, 3, 4\}$
- $2^5 = 2 \mod 5$, $3^5 = 3 \mod 5$, $4^5 = 4 \mod 5$
- All elements of \mathbb{F}_5 are roots of $X^5 X = 0$
- $2^2 = 4 \mod 5$, $2^3 = 3 \mod 5$, $2^4 = 1 \mod 5$
- $\mathbb{F}_5^* = \{1, 2, 3, 4\}$ is cyclic

Example

- $F = \{0, 1, X, X + 1\}$ under + and * modulo $X^2 + X + 1$
- $X^4 = X \mod (X^2 + X + 1), (X + 1)^4 = X + 1 \mod (X^2 + X + 1)$
- All elements of F are roots of $Y^4 Y = 0$
- $(X+1)^2 = X \mod (X^2 + X + 1), (X+1)^3 = 1 \mod (X^2 + X + 1)$
- $F^* = \{1, X, X + 1\}$ is cyclic

Field Isomorphism

Definition

Fields F and G are isomorphic if there exists a bijection $\phi:F\to G$ such that

$$\phi(\alpha + \beta) = \phi(\alpha) \oplus \phi(\beta)$$
$$\phi(\alpha \star \beta) = \phi(\alpha) \otimes \phi(\beta)$$

for all $\alpha, \beta \in F$.

Example

•
$$F = \left\{ a_0 + a_1 X + a_2 X^2 \middle| a_i \in \mathbb{F}_2 \right\}$$
 under $+$ and $*$ modulo $X^3 + X + 1$

•
$$G = \left\{ a_0 + a_1 X + a_2 X^2 \middle| a_i \in \mathbb{F}_2 \right\}$$
 under $+$ and $*$ modulo $X^3 + X^2 + 1$

Uniqueness of a Prime Field

Theorem

Every field F with a prime cardinality p is isomorphic to \mathbb{F}_p

Proof.

- Let F be any field with p elements where p is prime
- F has a multiplicative identity 1
- Consider the additive subgroup $S(1) = \langle 1 \rangle = \{1, 1+1, \ldots\}$
- By Lagrange's theorem, |S(1)| divides p
- Since $1 \neq 0$, $|S(1)| \geq 2 \implies |S(1)| = p \implies S(1) = F$
- F is isomorphic to the group \mathbb{Z}_p under addition
- Elements in F can be labelled as $\{0, 1, 2, \dots, p-1\}$
- $\mathbb{Z}_p^* = \{1, 2, \dots, p-1\}$ is a field under * modulo p
- F is isomorphic to \mathbb{F}_p

Subfields

Definition

A nonempty subset S of a field F is called a subfield of F if

- $\alpha + \beta \in S$ for all $\alpha, \beta \in S$
- $-\alpha \in S$ for all $\alpha \in S$
- $\alpha * \beta \in S$ for all nonzero $\alpha, \beta \in S$
- $\alpha^{-1} \in S$ for all nonzero $\alpha \in S$

Example

$$F = \{0, 1, X, X + 1\}$$
 under $+$ and $*$ modulo $X^2 + X + 1$ \mathbb{F}_2 is a subfield of F

Characteristic of a Field

Definition

Let F be a field with multiplicative identity 1. The characteristic of F is the smallest integer p such that

$$\underbrace{1+1+\cdots+1+1}_{p \text{ times}}=0$$

Examples

- F₂ has characteristic 2
- F₅ has characteristic 5
- R has characteristic 0

Theorem

The characteristic of a finite field is prime

Prime Subfield of a Finite Field

Theorem

Every finite field has a prime subfield.

Examples

- \mathbb{F}_2 has prime subfield \mathbb{F}_2
- $F = \{0, 1, X, X + 1\}$ under + and * modulo $X^2 + X + 1$ has prime subfield \mathbb{F}_2

Proof.

- Let F be any field with q elements
- F has a multiplicative identity 1
- Consider the additive subgroup $S(1) = \langle 1 \rangle = \{1, 1+1, \ldots\}$
- |S(1)| = p where p is the characteristic of F
- S(1) is a subfield of F and is isomorphic to \mathbb{F}_p

Questions? Takeaways?