Video Indexing and Retrieval (VIR)

By Rupsi Kaushik

What is VIR?

VIR is the indexing and retrieval of <u>video data</u> from large databases

Video data is data in the form of <u>text</u>, <u>audio</u>, and <u>images</u>, incorporated with a <u>time dimension</u>

Video databases have a shot as a basic unit of data

Keywords: video, scenes, shots, frames

Motivation

- → Growth of multimedia data

 Need for more efficient tools to classify
 and retrieve high volumes of video data
- The complex nature of indexing and retrieving video data

 Call for better ways to help machines evaluate challenging video data
- → The limitations in our current multimedia retrieval systems

 Require more practical solutions than the ones we have now for managing and retrieving video data

Applications of VIR

- → News videos
- → Surveillance videos
- → Sports highlights
- → Film archives

VIR Methods

Based on metadata information

Uses descriptor information such as title, author, and date in traditional database

Based on sound

Uses audio IR methods based on associated audio

Based on a combination

Uses two or more of the approaches mentioned

Metadata-based method

Text-based method

Audio-based method

Content-based method

Integrated method

Based on subtitles

Uses traditional IR techniques based on associated subtitles

Based on the media content

Uses the video content itself
Focuses on three main methods to VIR

Content-based Video Retrieval

Architecture

Shot-based video retrieval

Based on representative frames (r-frames)

Step 1: Video segmentation

→ Decompose video into elementary shots and frames

Step 2: Index each shot

- → Use an r-frame to represent each shot in order to create a shot index
- → Image IR is used to extract features of key frames for information

Step 3: Apply a similarity measure

- → Compute similarity
 between r-frames and
 user query and rank
 them
- → The most relevant/ similar frames are displayed

Motion-based video retrieval

Based on motion parameters

Captures parameters from video such as:

- → Motion content
- → Motion uniformity
- → Motion panning
- → Motion tilting

Object-based video retrieval

Based on object detection

Primarily concerned with detecting occurrences of objects, their interactions, and relationships among other objects in a video content

- → Group pixels that move together as an object
- Use these segmented objects to index the video
- → Continue with feature extraction

Comparative Analysis of VIR Methods

Shot-based video retrieval

- Simple computations
- Less computational cost to use keyframes to represent a shot
- Ignores the concept of motion
- Does not directly represent content

Motion-based video retrieval

- Extends the concept and benefits of r-frames
- Captures the motion information

Object-based video retrieval

- Aims to represent actual content
- Computationally complex to extract objects from videos
- Easier when video is compressed

Evaluating VIR systems

- → Precision (P)
- → Recall (R)
- → Harmonic average values (F1 score)

F1 score = 2PR /(P + R)

Growing need of VIR in multimedia retrieval VIR has an increasing importance in today's ever-growing multimedia repositories 1

Different approaches to video retrieval We are able to apply metadata IR, text IR, annotative IR, image IR, and so on, to retrieve videos

2

Representative frames, motion information, and object-based retrieval are the most common methods for content based video retrieval

3

Precision & recall can be used for evaluation Precision, recall, and their harmonic average values can be used to evaluate a VIR system

4

Key Takeaways

