CONDICIONES DE PRIMER ORDEN

APLICACIONES MATEMÁTICAS PARA ECONOMÍA Y NEGOCIOS (EAF2010)

FELIPE DEL CANTO

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

PRIMER SEMESTRE DE 2021

INTRODUCCIÓN

Introducción

- Comenzamos con los capítulos más importantes.
- Muchos de los problemas en economía y negocios incorporan optimización.
 - Encontrar utilidades máximas (y cómo alcanzarlas).
 - Maximizar recaudación fiscal.
 - Optimizar el gasto en publicidad.
- Pero hay muchas preguntas:
 - ¿Cómo hacer optimización?
 - ¿Cómo interpretar la respuesta?
 - ¿Cuándo puede hacerse?

Introducción

- En general en aplicaciones hay restricciones en el problema.
 - ► Hay restricciones de capital (*K*) y trabajo (*L*).
 - ► Restricciones de demanda.
 - Restricciones de presupuesto.

■ Pero en esta parte no consideramos restricciones explícitas.

■ Las únicas "restricciones" vendrán del dominio donde podemos escoger.

NOTACIÓN Y DEFINICIONES

- Una empresa vende dos tipos de un mismo bien.
 - ► Buena calidad y mala calidad.

 \blacksquare Produce x unidades del primer tipo e y unidades del segundo, con costo

$$C(x,y) = 0.04x^2 + 0.01xy + 0.01y^2 + 4x + 2y + 500$$

■ Evidentemente, el costo mínimo es 500 (cuando x = y = 0).

■ Pero, si el tipo 1 se vende a \$100 y el tipo 2 a \$50, ¿cuánto conviene producir?

■ La empresa tiene ingresos dados por

$$I(x,y) = 100x + 50y$$

■ Y por lo tanto quiere maximizar sus utilidades netas

$$\pi(x,y) = I(x,y) - C(x,y)$$

 \blacksquare ¿Cómo encontrar las cantidades óptimas de x e y? ¿Existen?

■ La idea del punto crítico (donde la derivada es o), volverá a aparecer...

■ Pero antes de ver **cómo** calcular, diremos **cuándo** tiene sentido hacerlo.

- En el ejemplo anterior, la empresa presentó un problema de optimización.
- Formalmente vamos a escribir

$$\max_{x,y\in\mathbb{R}^2_+}\pi(x,y)$$

o bien

$$\max_{x,y \in \mathbb{R}^2_+} I(x,y) - C(x,y)$$

■ Vamos a ver qué significa cada parte de esta notación.

■ La notación general de este tipo de problemas es:

■ Se lee

"maximizar la función (objetivo) función con respecto a variables dentro del conjunto Conjunto."

■ Por ejemplo, para la empresa anterior:

"maximizar la función π con respecto a x e y en \mathbb{R}^2_+ ."

- Cada problema de optimización es único.
- Y está determinado por sus tres componentes:
 - 1. Si se maximiza o se minimiza la función (máx ó mín).
 - 2. La función objetivo.
 - 3. Las variables de decisión y el conjunto donde ellas se mueven.
- Entendemos como solución del problema dos cosas:
 - 1. El valor (o los valores) de las variables que maximizan/minimizan la función.
 - 2. El valor máximo/mínimo de la función objetivo.

- Lo anterior dice que dos problemas de optimización son iguales si:
 - 1. Comparten las variables de decisión.
 - 2. Comparten la función objetivo.
- En el ejemplo de la motivación:

$$\max_{x,y} \pi(x,y) = \max_{x,y} I(x,y) - C(x,y)$$

 \blacksquare Son iguales porque las variables son las mismas y porque para todo (x,y)

$$\pi(x,y) = I(x,y) - C(x,y)$$

por lo que la función no cambió en realidad.

¡IMPORTANTE!

También suele suceder que reescribimos un problema de optimización, jugando con las variables o modificando ligeramente la función objetivo. Eso puede llevarnos a obtener otros problemas de optimización que son idénticos uno del otro, aunque se vean diametralmente diferentes. Este truco es muy usado para resolver algunos problemas de optimización difíciles.

MÁXIMOS Y MÍNIMOS GLOBALES Y LOCALES

- La solución del problema de optimización corresponde a un máximo/mínimo.
 - ► Hablaremos genéricamente de "óptimo".

- Este se conoce como óptimo **global**.
 - Porque es sobre todos los puntos del conjunto considerado.

- Pero al resolver el problema podemos encontrarnos con otros tipos de puntos.
 - Que son óptimos pero sobre puntos muy cercanos a ellos.
 - Que se conocen como máximos/mínimos locales.

MÁXIMOS Y MÍNIMOS GLOBALES Y LOCALES

Definición (Máximos globales y locales)

Sea $f: D \to \mathbb{R}$ una función multivariada y sea $\mathbf{x}_0 \in D$. Diremos que \mathbf{x}_0 es un:

■ máximo (global) de f si

$$f(\mathbf{x}) \le f(\mathbf{x}_0) \qquad \forall \, \mathbf{x} \in D$$

 \blacksquare máximo local de f si

$$f(\mathbf{x}) \le f(\mathbf{x}_0)$$
 $\forall \mathbf{x}$ cerca de \mathbf{x}_0

- La definición de mínimos globales y locales es análoga (" \leq " cambia por " \geq ").
- Por definición, todo máximo global es un máximo local.

MÁXIMOS Y MÍNIMOS GLOBALES Y LOCALES

EXISTENCIA DE MÁXIMOS Y MÍNIMOS GLOBALES

■ Nos gustaría encontrar óptimos globales siempre.

■ Pero dependiendo de la función eso podría no ocurrir.

- Y nos pueden pasar dos cosas:
 - ► Hay óptimos locales (a veces eso basta).
 - No hay óptimos en la función (pensar en f(x) = x en todo \mathbb{R})

EXISTENCIA DE MÁXIMOS Y MÍNIMOS GLOBALES

■ Parte de este capítulo será tratar de dilucidar cuándo existen óptimos globales.

- Ese camino nace con el siguiente teorema.
 - ► Su resultado es muy general, pero útil.

■ Pero antes, necesitamos una definición.

Definición (Conjunto compacto)

Sea $D \subset \mathbb{R}^n$ un conjunto. Diremos que D es **compacto** si:

- es **cerrado**, es decir, si *D* incluye todos sus bordes.
- es **acotado**, es decir, es posible contener a todo *D* por una "esfera", centrada en el origen y con radio finito.
- Debemos entender "esfera" en un sentido abstracto:
 - ightharpoonup En \mathbb{R}^2 , la "esfera" es un círculo.
 - ightharpoonup En \mathbb{R}^3 , la "esfera" es la usual.
 - ightharpoonup En \mathbb{R}^n , la esfera se escribe igual que antes, pero con más variables.

(a) No cerrado ni acotado

(c) No cerrado pero acotado

(b) Cerrado pero no acotado

(d) Cerrado y acotado (compacto)

Ejercicio (Conjunto compacto)

Determine si los siguientes conjuntos son compactos:

- 1. Un plano en \mathbb{R}^3 .
- **2.** $D = \{(x,y) \in \mathbb{R}^2 \mid x,y > 0, x + y \le 2, 3x + y \le 3\}.$
- 3. El conjunto de los pares (L,K) que puede utilizar una empresa que tiene 5 trabajadores y 2 máquinas (Ayuda: Pensar que todo es infinitamente divisible).
- 4. El conjunto $S = \{(x,y) \in \mathbb{R}^2 | x^2 + xy + y^2 \le 9\}$. (Ayuda: Reescriba la ecuación usando el cuadrado del binomio y un término adicional.)

Teorema (Teorema de Weierstrass)

Sea $f:D\to\mathbb{R}$ una función continua, con $D\subset\mathbb{R}^n$ compacto. Entonces f alcanza su máximo y su mínimo, es decir, existen \mathbf{x}_m y $\mathbf{x}_M\in D$ tales que

$$f(\mathbf{x}_m) \le f(\mathbf{x}) \le f(\mathbf{x}_M) \qquad \forall \mathbf{x} \in D$$

- El teorema dice en verdad dos cosas:
 - ► El máximo y el mínimo de f existen.
 - ightharpoonup El máximo y el mínimo de f se alcanzan en puntos específicos de D.
- Ojo que x_m y x_M pueden no ser únicos.

Ejemplo (Teorema de Weierstrass)

$$g(x,y) = \frac{x^2 + y^2 - 4}{x - y}$$

es continua en los puntos con $x \neq y$. Si su dominio es $D_1 = \{(x,y) \in \mathbb{R}^2 \mid x \neq y\}$ no podemos ocupar el teorema, porque D_1 no es compacto (ni cerrado ni acotado). Si su dominio fuera

$$D_2 = \{(x,y) \in \mathbb{R}^2 \mid x \neq y, 0 \le x \le 2, 0 \le y \le 4\},\$$

entonces tampoco podemos ocupar el teorema, porque el conjunto ahora es acotado, ¡pero sigue sin ser cerrado!.Sí puede funcionar lo siguiente:

$$D_3 = \{(x,y) \in \mathbb{R}^2 \mid 0 \le x \le 2, 3 \le y \le 4\},\$$

que es cerrado y acotado.

Ejemplo (Teorema de Weierstrass)

Ejercicio (Teorema de Weierstrass)

Determine si las siguientes funciones tienen máximo o mínimo global usando el teorema:

1.
$$f(x,y) = \alpha \ln(L) + \beta \ln(K)$$
, en $D = \{(L,K) \in \mathbb{R}^2 | 0 \le L \le 5, 0 \le K \le 2\}$.

2.
$$f(x,y) = L^{\alpha}K^{\beta}$$
, en $D = \{(L,K) \in \mathbb{R}^2 | 0 \le L \le 5, 0 \le K \le 2\}$.

3.
$$f(x,y,z) = \frac{\sqrt{9-x^2-y^2}}{x+z}$$
, en $D = \{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 \le 9, x \ne -z\}$.

4. $f(x,y) = \frac{\sqrt{9-x^2-xy-y^2}}{x+y-3}$, en el conjunto S del ejercicio anterior.

- El teorema tiene algunos problemas:
 - ► Solemos usar conjuntos no acotados (ejemplo, \mathbb{R}^n_+).
 - ▶ O que no son completamente cerrados (ejemplo, $\{x \in \mathbb{R}^n | 0 < x_i \le 1 \quad \forall i\}$).

- Pero también hay un problema en lo que no dice.
 - No sabemos cómo encontrar x_m y x_M .
 - ► Vamos a ver herramientas para eso en este capítulo.

OPTIMIZACIÓN SIN RESTRICCIONES: CONDICIONES DE PRIMER ORDEN

- Recordemos el ejemplo de la empresa que produce bienes de dos tipos.
- Sus utilidades venían dadas por

$$\pi(x,y) = I(x,y) - C(x,y)$$

donde

- I(x,y) = 100x + 50y.
- $ightharpoonup C(x,y) = 0.04x^2 + 0.01xy + 0.01y^2 + 4x + 2y + 500.$
- \blacksquare ¿Cómo encontrar la combinación (x,y) que maximiza las utilidades?

■ Pensemos que (x^*,y^*) es un máximo local.

- lacktriangle Intuitivamente, aumentar o disminuir x en el margen no mejora las ganancias.
 - ▶ Porque en ese caso, (x^*, y^*) no sería óptimo.
 - ightharpoonup Y la misma lógica aplica para y.

 \blacksquare Pero, ¿aumentar o disminuir x en el margen puede empeorarlas?.

- La respuesta es **NO**.
 - ightharpoonup Si así fuera, y en una dirección π decreciera marginalmente.
 - Entonces debería crecer en la dirección opuesta.
 - Y acabamos de decir que eso no es posible.

- lacktriangle La lógica anterior dice que, en un punto óptimo, f es localmente constante.
 - ► En términos de "la derivada", esta debiera ser 0.
 - ¿Qué es "la derivada" en este contexto multivariado?

■ Lo que debería pasar entonces es que en (x^*, y^*) , $\nabla \pi = 0$.

■ Tenemos:

- $ightharpoonup \frac{\partial \pi}{\partial y} = 50 0.01x 0.02y 2.$

- Luego $\nabla \pi = 0$ solo en el punto (960,1920).
 - ¿Significa eso que este punto es máximo local?

■ La misma lógica del ejemplo anterior sirve para los mínimos locales.

- Por esa razón la respuesta a la pregunta anterior es **NO**.
 - ► Lo que encontramos es un candidato.
 - ▶ Podría ser máximo o mínimo local...o incluso ninguno de los dos.

■ Por eso debemos usar este criterio con cuidado.

(a) Punto crítico que es máximo local

(b) Punto crítico que es mínimo local

(c) Punto crítico que es punto silla

Definición (Punto crítico/estacionario)

Sea $f:D\to\mathbb{R}$ una función con $D\subset\mathbb{R}^n$ abierto. Diremos que \mathbf{x}_0 es un punto crítico (o estacionario) de f si $\nabla f(\mathbf{x}_0)=0$.

■ Con esta definición, la intuición anterior de los óptimos locales queda:

"si x_0 es un óptimo local, entonces es un punto crítico"

■ Es la misma intuición que en una variable, pero aplicada al caso multivariado.

Teorema (Condiciones de primer orden)

Sea $f: D \to \mathbb{R}$ una función diferenciable, con dominio $D \subset \mathbb{R}^n$ abierto. Sea $\mathbf{x}_0 \in D$ un máximo local de f. Entonces, \mathbf{x}_0 es un punto crítico.

- El teorema da condiciones **necesarias** para que un cierto punto sea un óptimo.
 - Es necesario que un punto candidato a óptimo sea un punto crítico.
 - Dicho de otra manera, los puntos que no son críticos, no son óptimos.

■ Entonces, el primer paso para buscar óptimos será considerar puntos críticos.

"Demostración"

Por simplicidad, pensemos que f es bivariada y que (x_0,y_0) es un máximo local. Eso significa que la función $g(x)=f(x,y_0)$ (donde dejamos la coordenada g fija) es una función univariada que alcanza su máximo en $g(x_0)$ por lo que $g'(x_0)=0$. Pero $g'=f_x$, luego $g(x_0)=0$. Un argumento similar dice que $g(x_0)=0$.

- Esta demostración se basa en el caso univariado.
- Si no lo recuerdan y les interesa lo pueden ver aquí.

Ejemplo (Condiciones de primer orden, CPO)

Supongamos que una empresa produce según la función $F(K,L) = AK^{\alpha}L^{\beta}$, con $0 < \alpha + \beta < 1$. Cada unidad de capital cuesta r y cada unidad de trabajo w. El precio del bien es p. Entonces, las ganancias de la empresa son:

$$\pi(K,L) = pAK^{\alpha}L^{\beta} - (rK + wL)$$

Como

$$\pi_K(K,L) = p\alpha AK^{\alpha-1}L^{\beta} - r, \qquad \pi_L(K,L) = p\beta AK^{\alpha}L^{\beta-1} - w$$

Entonces las CPO son

$$p\alpha AK^{\alpha-1}L^{\beta}-r=0$$
, $p\beta AK^{\alpha}L^{\beta-1}-w=0$

Ejemplo (Condiciones de primer orden, CPO)

Despejando podemos escribir:

$$K^{\alpha-1}L^{\beta} = \frac{r}{pA\alpha}, \qquad K^{\alpha}L^{\beta-1} = \frac{w}{pA\beta}$$

Y dividiendo ambas obtenemos

$$\frac{L}{K} = \frac{r}{\alpha} \cdot \frac{\beta}{w} = \frac{r/\alpha}{w/\beta}$$

De aquí, $L=\frac{r/\alpha}{w/\beta}K$ y podemos despejar cualquiera de las ecuaciones anteriores:

$$K^{\alpha+\beta-1} \left(\frac{r/\alpha}{w/\beta} \right)^{\beta} = \frac{r}{pA\alpha} \Rightarrow K = \left(\frac{r}{pA\alpha} \right)^{\frac{1}{\alpha+\beta-1}} \left(\frac{w/\beta}{r/\alpha} \right)^{\frac{\beta}{\alpha+\beta-1}}$$

y L se obtiene de la razón anterior.

Ejercicio (Condiciones de primer orden, CPO)

Realice el mismo ejemplo anterior pero con $F(K,L)=\sqrt{K+1}+\sqrt{L+1}$. ¿Qué pasa cuando p es muy pequeño?

Ejercicio (Condiciones de primer orden, CPO)

Encuentre los candidatos a óptimo de las funciones $f(x,y) = x^2 - y^2$ y $g(x,y) = x^2 + y^2$. ;Son óptimos locales de cada una?

LIMITACIONES

■ Ya hemos discutido que las CPO son **necesarias** para un óptimo.

- Pero no son suficientes.
 - Para que un punto sea óptimo, debe cumplir las CPO (es necesario).
 - ▶ Un punto que cumple las CPO no necesariamente es óptimo (no es suficiente).

- Luego de tener candidatos, queremos comprobar qué tipo de puntos son.
 - ► ¿Son solo óptimos locales? ¿O también globales?

LIMITACIONES

- Hay maneras de revisar "a mano" en algunos casos.
- Por ejemplo, si el Teorema de Weierstrass se cumple, uno razona como sigue.
 - ► El teorema asegura que los óptimos existen.
 - Esos óptimo están en el interior o en la frontera.
 - Luego basta buscar puntos críticos y compararlos con la frontera.
 - Pero eso último puede ser más o menos fácil dependiendo del contexto.
- Pero como hemos visto, el teorema no es siempre aplicable.
 - Queremos resultados más generales, que veremos a continuación.