RoHS-compliant Product

Advanced Power Electronics Corp.

N-CHANNEL ENHANCEMENT MODE POWER MOSFET

- **▼** Low Gate Charge
- **▼** Simple Drive Requirement
- **▼** Fast Switching Characteristic

BV_{DSS}	30V
R _{DS(ON)}	$\mathbf{17m}\Omega$
I_{D}	40A

Description

Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-220 package is widely preferred for all commercial-industrial applications and suited for low voltage applications such as DC/DC converters and high efficiency switching circuits.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	<u>+</u> 20	V
I _D @T _C =25°C	Continuous Drain Current, V _{GS} @ 10V	40	Α
I _D @T _C =100°C	Continuous Drain Current, V _{GS} @ 10V	30	Α
I _{DM}	Pulsed Drain Current ¹	169	Α
P _D @T _C =25°C	Total Power Dissipation	50	W
	Linear Derating Factor	0.4	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\mathbb{C}$
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\mathbb{C}$

Thermal Data

Symbol	Parameter	Value	Unit
Rthj-c	Maximum Thermal Resistance, Junction-case	2.5	°C/W
Rthj-a	Maximum Thermal Resistance, Junction-ambient	62	°C/W

AP40N03GP

Electrical Characteristics@T_j=25°C(unless otherwise specified)

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30	-	-	V
$\Delta BV_{DSS}/ \Delta T_j$	Breakdown Voltage Temperature Coefficient	Reference to 25℃, I _D =1mA	-	0.037	-	V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance ²	V _{GS} =10V, I _D =20A	-	14	17	mΩ
		V _{GS} =4.5V, I _D =16A	-	20	23	mΩ
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	1	-	3	V
g _{fs}	Forward Transconductance	V_{DS} =10V, I_{D} =20A	-	26	-	S
I _{DSS}	Drain-Source Leakage Current	V_{DS} =30V, V_{GS} =0V	-	-	1	uA
	Drain-Source Leakage Current (T _j =125°C)	V_{DS} =24V, V_{GS} =0V	-	-	250	uA
I _{GSS}	Gate-Source Leakage	$V_{GS} = \pm 20V, V_{DS} = 0V$	-	-	<u>+</u> 100	nA
Q_g	Total Gate Charge ²	I _D =20A	-	17	-	nC
Q_{gs}	Gate-Source Charge	V _{DS} =24V	_	3	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =5V	-	10	-	nC
$t_{d(on)}$	Turn-on Delay Time ²	V _{DS} =15V	-	7.2	-	ns
t _r	Rise Time	I _D =20A	_	60	-	ns
$t_{d(off)}$	Turn-off Delay Time	R_G =3.3 Ω , V_{GS} =10 V	_	22.5	-	ns
t _f	Fall Time	R_D =0.75 Ω	-	10	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	800	-	pF
C _{oss}	Output Capacitance	V _{DS} =25V	_	380	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	133	-	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
Is	Continuous Source Current (Body Diode)	$V_D = V_G = 0V$, $V_S = 1.3V$	-	-	40	Α
I _{SM}	Pulsed Source Current (Body Diode) ¹		-	-	169	Α
V_{SD}	Forward On Voltage ²	T _j =25℃, I _S =40A, V _{GS} =0V	-	-	1.3	V

Notes:

- 1. Pulse width limited by Max. junction temperature.
- 2.Pulse test

THIS PRODUCT IS SENSITIVE TO ELECTROSTATIC DISCHARGE, PLEASE HANDLE WITH CAUTION.

USE OF THIS PRODUCT AS A CRITICAL COMPONENT IN LIFE SUPPORT OR OTHER SIMILAR SYSTEMS IS NOT AUTHORIZED.

APEC DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

APEC RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN.

Fig 1. Typical Output Characteristics

Fig 3. On-Resistance v.s. Gate Voltage

Fig 5. Forward Characteristic of Reverse Diode

Fig 2. Typical Output Characteristics

Fig 4. Normalized On-Resistance v.s. Junction Temperature

Fig 6. Gate Threshold Voltage v.s.
Junction Temperature

Fig 7. Gate Charge Characteristics

Fig 8. Typical Capacitance Characteristics

Fig 9. Maximum Safe Operating Area

Fig 10. Effective Transient Thermal Impedance

Fig 11. Switching Time Waveform

Fig 12. Gate Charge Waveform