

### Базы Данных

(T-SQL: скалярные и агрегатные функции, агрегирование объединений, группировка)

Андрей Голяков

### Схема и данные для работы в классе

Для работы в классе мы будем использовать БД, состоящую из четырёх таблиц, хранящих информацию о каталоге и продажах простого магазина:

- Customer : клиент
  - о Id: идентификатор
  - Name : имя
- Product: продукт
  - о Id: идентификатор
  - Name: наименование
  - o Price: цена

- Order : заказ
  - о Id: идентификатор
  - CustomerId : идентификатор клиента
  - o OrderDate : дата заказа
  - o Discount : размер скидки
- OrderItem: единичная позиция заказа
  - Orderld : идентификатор заказа
  - ProductId : идентификатор продукта
  - о NumberOfItems: количество единиц





#### Функции T-SQL

В T-SQL существует большое количество встроенных функций. Среди прочих хочется выделить две основные группы:

- Скалярные функции обрабатывают одиночное значение и возвращают одиночное значение.
- Агрегатные функции выполняют вычисление на наборе значений и возвращают одиночное значение.



#### Строковые функции в T-SQL (На примере LEN)

Функция LEN возвращает количество символов строки, исключая конечные пробелы. Может использоваться с константами, при выборке данных или в условном выражении:

```
-- LEN: вызов для константы или переменной SELECT LEN('Hello, world!');
-- LEN: вызов в качестве вычисляемого поля SELECT [SomeField], LEN([StringField]) FROM [SomeTable]
-- LEN: вызов в условном выражении SELECT * FROM [SomeTable] WHERE LEN([StringField]) > 20
```



#### Функции даты/времени (На примере YEAR)

Функция YEAR возвращает год как целое число от даты, переданной аргументом. Может использоваться с константами, при выборке данных или в условном выражении:

```
-- YEAR: вызов для константы или переменной

DECLARE @year AS INT

SET @year = YEAR(GETUTCDATE())

SELECT @year;

-- YEAR: вызов в качестве вычисляемого поля

SELECT YEAR([DateTimeField]) FROM [SomeTable]

-- YEAR: вызов в условном выражении

SELECT [AnyField] FROM [SomeTable] WHERE YEAR([DateTimeField]) = @year
```

#### Агрегатные/статистические функции

• COUNT, COUNT\_BIG : возвращает количество элементов, найденных в группе набора данных. Функции различаются только типами возвращаемых значений (int / bigint): SELECT COUNT(\*) FROM SomeTable

• MAX, MIN : возвращает соответственно максимальное или минимальное значение элементов, найденных в группе набора данных:

SELECT MAX(SomeField), MIN(SomeField) FROM SomeTable

SELECT COUNT(DISTINCT SomeField) FROM SomeTable

- SUM: возвращает сумму всех, либо только уникальных, значений в выражении. Функция SUM может быть использована только для числовых столбцов. Значения NULL пропускаются: SELECT\_SUM(SomeField) FROM SomeTable
- AVG: возвращает среднее арифметическое группы значений. Значения NULL не учитывается: SELECT AVG(SomeField) FROM SomeTable

Написать запросы, возвращающие следующие данные:

- 1. Полное количество записей в таблице OrderItem
- 2. Количество уникальных заказов (по таблице OrderItem)
- 3. Максимальный номер заказа (по таблице Order)
- 4. Средний размер скидки (по таблице Order)
- 5. Дата первой и последней продажи (по таблице Order)
- 6. Дата последней продажи в 2018 году (по таблице Order)
- 7. Максимальная длина наименования товара (по таблице Product)



#### Вложенные запросы в условии

```
-- Найти ID и имена клиентов, сделавших заказы в 2018 году,
SELECT C [Id] C [Name]
FROM [dbo] [Customer] AS C
WHERE C.[Id] IN (
    SELECT O.CustomerId
    FROM [dbo].[Order] AS O
   WHERE YEAR(0.OrderDate) = 2018 !
-- Найти ID и название товара с максимальной длиной наименования
-- (надо понимать, что потенциально такой запрос может вернуть N записей,
-- в случае, если у нас N единиц товара, имеющих одинаковую длину,
-- которая окажется максимальной)
SELECT Id [Name]
FROM [dbo] Product AS P
WHERE LEN(P.[Name]) =
   SELECT MAX(LEN(P.[Name]))
   FROM [dbo] Product AS P
```



Написать запросы, возвращающие следующие данные:

- 1. Номер заказа с максимальной скидкой в 2016 году
- 2. Номер первого заказа в 2019 году
- 3. ID и имя клиента, получившего максимальную скидку в 2016 году
- 4. ID и имя клиента, сделавшего первый заказ в 2019 году



### Агрегирование значений в объединениях

#### Алгоритм действий

- 1. Сначала определяем по схеме, в каких таблицах лежат необходимые для вывода и условий данные
- 2. Объединяем целевые таблицы, при необходимости используя связи с промежуточными таблицами
- 3. Определяем условия с помощью конструкции WHERE
- 4. Перечисляем необходимые поля и/или, при необходимости, вводим расчётные поля

#### Совместная работа

Найти список товаров с ценой, количеством и стоимостью для заказа с ID = 22, а также посчитать полную стоимость этого заказа.



Написать запрос, возвращающий полную итоговую сумму, потраченную Марией.



#### Группировка значений (с помощью GROUP BY)

Команда GROUP BY позволяет группировать результаты при выборке из базы данных. При этом агрегирующие функции будут применяться к отдельным группам.

```
-- Общее количество обработанных заказов
SELECT COUNT(*)
FROM [dbo].[Order] AS O

-- Количество обработанных заказов сгруппированных по годам
SELECT YEAR(O.[OrderDate]), COUNT(*)
FROM [dbo].[Order] AS O
GROUP BY YEAR(O.[OrderDate])
```



- 1. Написать запрос, возвращающий полную итоговую сумму, потраченную каждым клиентом в формате:
  - Id клиента
  - Имя клиента
  - Итоговая потраченная сумма
- 2. Добавить разбивку по годам и сортировку по имени, а затем по году.



## Домашняя работа





# Спасибо за внимание.

