Computability via Recursive Functions

Justin Pumford

March 2020

1 Effective Calcubility and Computability

2 Primitive Recursive Functions

2.1 Functions

For this paper, \mathbb{N} refers to the set $\{0, 1, 2, 3, ...\}$

3 The Ackermann Function

Definition (The Ackermann Function). Let $n, m \in \mathbb{N}$. Then define A(n, m) as follows:

$$A(m,n) = \begin{cases} n+1 & m=0\\ A(m-1,1) & m>0 \land n=0\\ A(m-1,A(m,n-1)) & m>0 \land n>0 \end{cases}$$

Lemma 1. For any $m, n \in \mathbb{N}, A(m, n) \in \mathbb{N}$

Proof. Proof Here \Box

Theorem 1. A(m, n) is a total function

Proof. We will proceed inductively to show that A(m,n) is defined for all $m,n\in\mathbb{N}$.

Clearly A(0,n) is defined for all $n \in \mathbb{N}$. Assume A(k,n) is defined for some

 $k \in \mathbb{N}$ and every $n \in \mathbb{N}$. Since k+1 > 0, A(k+1,0) = A(k,1), which is defined.

Now we assume A(k+1,j) is defined for some $j \in \mathbb{N}$. By Lemma 1, A(k+1,j) = a for some $a \in \mathbb{N}$. Then since j+1>0, A(k+1,j+1) = A(k,A(k+1,j)) = A(k,a). Since A(k,n) is defined for every $n \in \mathbb{N}$ by our inductive hypothesis, A(k,a) = A(k+1,j+1) is defined.

Definition. Let P be the set of all primitive recursive functions so that if $f(x_1, x_2, ..., x_n) \in P$ and $m = max\{x_1, x_2, ..., x_n\}$, then there exists $t \in \mathbb{N}$ so that $f(x_1, x_2, ..., x_n) < A(t, m)$

Theorem 2. c(x), s(x), $p_i(x) \in P$

Proof.

Theorem 3. P is closed under composition

Proof.

Theorem 4. P is closed under primitive recursion

Proof.

Theorem 5. P is precisely the primitive recursive functions

Proof. \Box

Theorem 6. A(m,n) is not a primitive recursive function

Proof. Proof Here \Box

4 General Recursive Functions

4.1 Partial Functions

4.2 Definition of General Recursive Functions