Written Exercises, Pages 63-65

1. Seg. Add. Post. 3. Vertical \angle are \cong . 5. Def. of \angle bis. 7. Def. of \bot lines 9. Def. of comp. \angle 11. If 2 lines are \bot , then they form \cong adj. \angle . 13. Def. of \bot lines 15. 1. \angle 5 are supplementary; Given 2. Def. of supp. \triangle 3. Substitution Prop. 5. Subtr. Prop. of = 17. a. 1. Given 2. If the ext. sides of 2 adj. acute \triangle are \bot , then the \triangle are comp. 3. Given 4. If $2 \triangle$ are comp. of \cong \triangle , then the $2 \triangle$ are \cong . b. Show that \angle 3 and \angle 6 are supps. of \cong \triangle . 19. 1. \angle 2 \cong \angle 3 (Given) 2. \angle 1 \cong \angle 2 (Vert. \triangle are \cong .) 3. \angle 1 \cong \angle 3 (Substitution Prop.) 4. \angle 3 \cong \angle 4 (Vert. \triangle are \cong .) 5. \angle 1 \cong \angle 4 (Trans. Prop.) 21. 1. $\overrightarrow{AC} \bot \overrightarrow{BC}$ (Given) 2. \angle 2 is comp. to \angle 1. (If the ext. sides of 2 adj. acute \triangle are \bot , then the 2 \triangle are comp.) 3. \angle 3 is comp. to \angle 1 (Given) 4. \angle 3 \cong \angle 2 (If 2 \triangle are comp. of the same \angle , then the 2 \triangle are \cong .) 23. \overrightarrow{OF} bisects \angle COD. Proof: 1. \overrightarrow{OE} bisects \angle AOB. (Given) 2. \angle 1 \cong \angle 2 (Def. of \angle bis.) 3. \angle 2 \cong \angle 3 (Substitution Prop.) 7. \overrightarrow{OF} bisects \angle COD. (Def. of \angle bis.)

Self-Test 2, Page 65

1. Answers may vary; $90 \le m \angle HOK < 180$ 2. a. 15 b. 40 3. 53; 37; 53 4. $m \angle 4 = 90 - t$, $m \angle 5 = t$, $m \angle 6 = 90 - t$ 5. Def. of \bot lines 6. Vert. \angle are \cong 7. If the ext. sides of 2 adj. \angle are \bot , then the \angle are comp. 8. Show that $\angle 1 \cong \angle 2$, so $j \bot k$ 9. 1. $\angle 1$ is supp. to $\angle 3$; $\angle 2$ is supp. to $\angle 3$ (Given) 2. $\angle 1 \cong \angle 2$ (If 2 \angle are supp. of the same \angle , the 2 \angle are \cong .) 3. $j \bot k$ (If 2 lines form \cong adj. \angle , then the lines are \bot .)

Extra, Page 66

1. None of it; one 3. 2; the result is 2 non-Möbius (2-sided) bands linked together. 5. The result is a rectangular frame.

Chapter Review, Pages 67-68

1. H: $m \angle 1 = 120$, C: $\angle 1$ is obtuse 3. Answers may vary; $m \angle 1 = 100$ 5. Substitution Prop. 7. Div. Prop. of = 9. Def. of midpt. 11. \angle Bis. Thm. 13. \angle BOA or \angle DOE 15. Def. of \bot lines 17. If 2 lines are \bot , then they form \cong adj. \triangle . 19. Show that \angle 3 and \angle 4 are supp. of \cong \triangle .

Algebra Review, Page 69

1. x = 3, y = 9 3. x = -16, y = -8 5. x = 28, y = 4 7. x = 1, y = 6 9. x = 5, y = 4 11. x = -2, y = 3 13. x = 4, y = 1 15. x = 6, y = 2 17. x = 11, y = 16

Preparing for College Entrance Exams, Page 70

1. C 2. C 3. D 4. E 5. D 6. B 7. E 8. C

Cumulative Review, Page 71

1. Div. Prop. of = 3. Def. of \pm lines 5. Subtr. Prop. of = 7. If 2 planes int., then their int. is a line. 9. Seg. Add. Post. 11. True 13. False 15. False; 3 collinear pts. 17. True 19. True 21. x = 36 23. x = 10 25. x = 31

Chapter 3

Written Exercises, Pages 76-77

1. alt. int. \triangle 3. s-s. int. \triangle 5. corr. \triangle 7. \overrightarrow{PQ} , \overrightarrow{SR} ; \overrightarrow{SQ} 9. \overrightarrow{PQ} , \overrightarrow{SR} ; \overrightarrow{PS} 11. \overrightarrow{PQ} , \overrightarrow{SR} ; \overrightarrow{QR} 13. corr. \triangle 15. s-s. int. \triangle 17. corr. \triangle 19. Alt. int. \triangle are \cong 21. a. Answers may vary. b. Same as $m \angle 1 + m \angle 2$ c. Same as $m \angle 1 + m \angle 2$ d. When 2 nonparallel lines are cut by trans., the sum of the meas. of s-s. int. \triangle is a constant. 23. \overrightarrow{BH} , \overrightarrow{CI} , \overrightarrow{DJ} , \overrightarrow{EK} , \overrightarrow{FL} 25. Answers may vary. \overrightarrow{FL} , \overrightarrow{EK} , \overrightarrow{DJ} , \overrightarrow{CI} , \overrightarrow{GL} , \overrightarrow{LK} , \overrightarrow{JI} , \overrightarrow{IH} 27. \overrightarrow{ABHG} , \overrightarrow{BCIH} , \overrightarrow{CDJI} , \overrightarrow{DEKJ} 29. If the top and bottom lie in $\|$ planes, then \overrightarrow{CD} and \overrightarrow{IJ} are the lines of intersection of \overrightarrow{DCIJ} with 2 $\|$ planes, and are therefore $\|$. 31. sometimes 33. always 35. sometimes 37. always 39. sometimes

Written Exercises, Pages 80-82

1. $\angle 3$, $\angle 6$, $\angle 8$ 3. $\angle 4$, $\angle 5$, $\angle 7$, $\angle 10$, $\angle 12$, $\angle 13$, $\angle 15$ 5. 110, 70 7. x = 60, y = 61 9. x = 60, y = 18 11. x = 14, y = 9 13. 1. Given 2. Def. of \bot lines 3. $t \parallel n$ 4. If $2 \parallel$ lines are cut by a trans., then corr. \triangle are \cong . 5. $m \angle 2 = 90$ 6. Def. of \bot lines 15. x = 70, y = 12, z = 38