1) What is the task?

Task: Classify Amazon Book Reviews according to rating.

2) What ML solution did you choose and, most importantly, why was this an appropriate choice?

I tried two Naïve Bayes classifiers with their variant

Steps - Load data > Preprocess the data > Split train/dev/test > vectorize the feature and the target variables using TF-IDF vectorizer converting category to numbers > use test data in the inference process.

3) How did you choose to evaluate success?

I used the F1 score, accuracy score, Confusion matrix, and classification report to evaluate the models.

4) What software did you use and why did you choose it?

Language: Python as all the libraries.

Software: scikit-learn has all the machine learning algorithms prewritten, NumPy, pandas, matplotlib,

NLTK and others that are written in python.

5) what are the results?

Predicting test data using Multinomial Naive Bayes

Accuracy score: 0.83
Precision score: 0.84
Recall score: 0.80
F1 score: 0.83

Predicting test data using GaussianNaive Bayes

Accuracy score: 0.61 Precision score: 0.68 Recall score: 0.42

F1 score: 0.61

Predicting test data using BernoulliNaive Bayes

Accuracy score: 0.82 Precision score: 0.84 Recall score: 0.78

F1 score: 0.82

Predicting test data using ComplementNaive Bayes

Accuracy score: 0.83 Precision score: 0.84 Recall score: 0.80 F1 score: 0.83

Predicting test data using Logistic Regression

Accuracy score: 0.81 Precision score: 0.80 Recall score: 0.82

F1 score: 0.81

The Support vector machine achieves a better result on the data. Hence it could be used in the production server.