

SEMICONDUCTOR DATABOOK

BIPOLAR IC

- AUDIO
- VIDEO
- COMMUNICATION
- OTHERS

JRC New Japan Radio Co., Ltd.

US SUBSIDIARY NJR CORPORATION, CALIFORNIA (U.S.A.)

SEMICONDUCTOR DATA BOOK

BIPOLAR IC

- AUDIO
- VIDEO
- COMMUNICATION
- OTHERS

New Japan Radio Co., Ltd.

[CAUTION]

- 1. NJRC strives to produce reliable and high quality semiconductors. NJRC's semiconductors are intended for specific applications and require proper maintenance and handling. To enhance the performance and service of NJRC's semiconductors, the devices, machinery or equipment into which they are integrated should undergo preventative maintenance and inspection at regularly scheduled intervals. Failure to properly maintain equipment and machinery incorporating these products can result in catastrophic system failures.
- 2. To ensure the highest levels of reliability, NJRC products must always be properly handled. The introduction of external contaminants (e.g. dust, oil or cosmetics) can result in failures of semiconductor products.
- 3. NJRC offers a variety of semiconductor products intended for particular applications. It is important that you select the proper component for your intended application. You may contact NJRC's Sale's Office if you are uncertain about the products listed in this catalog.
- 4. Special care is required in designing devices, machinery or equipment which demand high levels of reliability. This is particularly important when designing critical components or systems whose failure can foreseeably result in situations that could adversely affect health or safety. In designing such critical devices, equipment or machinery, careful consideration should be given to, amongst other things, their safety design, fail-safe design, back-up and redundancy systems, and diffusion design.
- 5. The products listed in the catalog may not be appropriate for use in certain equipment where reliability is critical or where the products may be subjected to extreme conditions. You should consult our sales office before using the products in any of the following types of equipment.

Aerospace Equipment
Equipment Used in the Deep sea
Power Generator Control Equipment (Nuclear, Steam, Hydraulic)
Life Maintenance Medical Equipment
Fire Alarm/Intruder Detector
Vehicle Control Equipment (automobile, airplane, railroad, ship, etc.)
Various Safety Equipment

- 6. NJRC's products have been designed and tested to function within controlled environmental conditions. Do not use products under conditions that deviate from methods or applications specified in this catalog. Failure to employ NJRC products in the proper applications can lead to deterioration, destruction or failure of the products. NJRC shall not be responsible for any bodily injury, fires or accidents, property damage or any consequential damages resulting from the misuse or misapplication of its products. PRODUCTS ARE SOLD WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
- 7. The product specifications and descriptions listed in this catalog are subject to change at any time, without notice.

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.

INTRODUCTION

1

PACKAGE

2

PACKING

3

AUDIO

4

VIDEO

5

COMMUNICATION

6

OTHERS

7

INDEX

INDEX

DISCONTINUED PRODUCTS

DISCONTINUE PRODUCTS

1	INTRODUCTION	
	Ordering Information · ·	1-1
	Quality Assurance System	1-4
		Method1-9
	Absolute Maximum Ratir	ng1-14
2	PACKAGE	
	Package Outline Table ··	2-1
	Package Code Table ·····	2-2
	Package Dimensions ·····	2-3
3	PACKING	
	General Description Pack	ing Specification
	Plastic Tube Dimensions	3-4
	Taping Dimensions ·····	3-14
	Tray Dimensions	3-30
	TCP Dimensions	3-38
4	AUDIO	
	Audio Signal ICs Cross R	deference4-1
	NJM386	Low Voltage Audio Power Amplifier ·····-4-2
	NJM386B	Low Voltage Audio Power Amplifier (1W)
	NJM2035	Stereo Modulator4-17
	NJM2063A	Dolby B-Type Noise Reduction Processor ······4-22
	NJM2065A	Dolby B-Type & C-Type Noise Reduction Processor ······4-23
	NJM2067	3V Auto-Reverse Dual Pre-Amplifier4-25
	NJM2070	Low Voltage Power Amplifier4-28
	NJM2072	Signal Level Sensor System ······4-31
	NJM2073	Dual Low Voltage Power Amplifier
	NJM2076	Dual Low Voltage Power Amplifier
	NJM2085	Pre-Amplifier and Dolby B-Type Noise Reduction System ·····-4-54
	NJM2096	Low Voltage Dual Power Amplifier4-57
	NJM2106	Active Bass Expander ······4-62
	NJM2110	Monaural Mic Amp. for Video Camera ······4-74
	NJM2113	Low Voltage Audio Power Amplifier ······4-76
	NJM2117	RF Amplifier for CD Player4-79
	NJM2118	Monaural Microphone Amplifier ······4-94
	NJM2128	Pre & Power Amplifier with ALC4-97
	NJM2135	Low Voltage Audio Power Amplifier4-100
	NJM2177/2177A	Dolby Pro Logic Surround Decoder4-104
	NJM2520	2-input 1-output Audio Switch ······4-107

NJM2521	3-input 1-output Audio Switch ······4-109
NJW1102	Dolby Pro Logic Surround Decoder · · · · · · 4-111
NJW1102A	Dolby Pro Logic Surround Decoder4-114
NJU9702	Signal Chip Digital Delay
5 VIDEO	
Video Signal ICs Cro	oss Reference ······5-1
NJM592	Video Amplifier5-3
NJM1372A	TV Video Modulator5-9
NJM2207	Video Super Imposer5-13
NJM2208	TV Video Modulator5-18
NJM2209	Video Picture Enhancer5-24
NJM2210	Video Noise Reducer5-27
NJM2214	Video On-Screen Disply5-34
NJM2217	Video Super Imposer with AFC5-39
NJM2218	NTSC M/PAL Modulator5-55
NJM2220/2230	Video Synchronous Detector5-59
NJM2223	Video Switch with 8dB Amplifier5-65
NJM2224	Video Noise Reducer5-70
NJM2225	Video Camera Auto-Iris Function5-76
NJM2228	Video Sub-Carrier Signal Doubler/Tripler5-86
NJM2238	Video Sub-Carrier Signal Tripler5-90
NJM2233B	2-Input Single Video Switch5-94
NJM2234	3-Input Video Switch5-101
NJM2235	3-Input Video Switch5-105
NJM2240	Video Sub-Carrier Signal Quadrupler5-109
NJM2229	Synchronous Separation with AFC5-113
NJM2243	3-Input Video Switch with 75 Ω Driver5-121
NJM2244	3-Input Video Switch with 75 Ω Driver5-125
NJM2245	3-Input Video Switch with 6dB Amplifier5-129
NJM2246	3-Input Video Switch with 6dB Amplifier5-133
NJM2247A/B	Video Color Super Imposer ·····5-137
NJM2248	3-Input Video Imposer ······5-150
NJM2249	3-Input Video Switch5-153
NJM2252	On Screen Display Mix IC5-156
NJM2255	Chroma Signal Hue Tint Controller5-165
NJM2256	Video Color Super Imposer5-169
NJM2257	Synchronous Separator with AFC5-181
NJM2258	Video Equalizer5-189

NJM2262	2-Input Video Super Imposer
NJM2263	3-Input Video Super Imposer with 75 Ω Driver ······5-204
NJM2264	3-Input Video Super Imposer with 75 Ω Driver ······5-208
NJM2265	3-Input Video Super Imposer with 6dB Amphifier5-212
NJM2266	3-Input Video Super Imposer with 6dB Amplifier ······5-215
NJM2267	Dual Video 6dB Amplifier with 75 Ω Driver ······5-218
NJM2268	Dual Video 6dB Amplifier with 75 Ω Driver ······5-227
NJM2273	3-Input 1 Mute Video Switch5-237
NJM2279	3-Input 2-output Video Switch for AV-Set·····5-248
NJM2283	2-Input 3 Channel Video Switch ······5-257
NJM2284	2-Input 3 Channel Video Switch ······5-267
NJM2285	2-Input 3 Channel Video Switch ······5-278
NJM2286	2-Input 3 Channel Video Switch ······5-289
NJM2293	4-Input 1 Mute Video Switch5-299
NJM2503	3-Input/2-Input Video Switch ······5-302
NJM25Q6	3-Input/2-Input Video Switch ······5-305
NJM2508	3-Input/2-Input Video Switch5-314
NJM2509	Video Super Imposer with Y-C Mixer ······5-323
NJM2513	3-Input/2-Input Video Switch ······5-327
NJM2523	3-Input/2-Input Video Switch ······5-330
NJM2533	2-Input 1-output Video Switch ······5-333
NJM2534	3-Input 1-output Video Switch5-336
NJM2535	3-Input 1-output Video Switch
COMMUNICATION	
NJM567	Tone Decoder/Phase Locked Loop ······6-1
NJM1496	Double Blanced Modulator/Demodulator6-11
NJM2105	Telephone Speech Network IC6-16
NJM2203	Full Balanced Mixer
NJM2204A	Log Amplifier ········6-25
NJM2206	Low Power IF/AF PLL Circuit for Narrow Band FM Receiver6-30
NJM2211	FSK Demodulator/Tone decoder ·················6-42
NJM2232A	FM IF with Log Amplifier6-52
NJM2236/2236A	FM Front-END6-59
NJM2237	AM/FM Radio ······6-65
NJM2241	AM/FM Radio ······6-78
NJM2292	Narrow Band FM IF IC6-91
NJM2294	FM IF IC for Pager6-97
NJM3357	Low Power Narrow Band FM IF6-106

	NJM3359	Low Power Narrow Band FM IF ·····6-109
	NJM3470/3470A	FDD Read Amplifier System ······6-113
7	OTHERS	
	NJMDAC-08C	8-Bit High Speed Multiplying D/A Converter ·····7-1
	NJM555	Timer7-7
	NJM556	Dual Timer7-12
	NJM2078	Voltage Detector ······7-16
	NJM2102	System Reset IC ·····7-24
	NJM2103	System Reset IC7-34
	NJM2405	Voltage Detector ······7-42
	NJM2606/2606A	Low Voltage DC Motor Controller ······7-45
	NJM2611	Servo Motor Controller 7-50
	NJM2624	Brush Less DC Motor Pre-Driver 7-59
	NJM4151	V-F/F-V Convertor ·······7-63
	NJM4200	Analog Multiplier ······7-72

- INDEX
- DISCONTINUED PRODUCTS

ZTESTUDO TO SUBSET

Yeldvil »

2000 GOLD PROPERTY AND PROPERTY AND ADDRESS OF THE PROPERT

INTRODUCTION

ORDERING INFORMATION

ORDERING INFORMATION

NJRC ICs are named by NJRC Naming Standard. Please order our ICs by their full names.

1. NJRC Naming Standard

NJRC applies IC naming standard in the following.

(1) Integrated Circuit

① Bipolar Example : NJM 4558 D - A (T1)

1 2 3 4 5

Item 1 Classification of items

NJM -----Bipolar monolithic IC

NJW -----Bi-MOS IC

Item 2 Part Number

The name of product is shown by three-digit or four-digit number.

In case of substantial modification of circuit or masks, one capital alphabet is added to the name.

Example : NJM2233 → NJM2233B

Item 3 Classification of Package

The codes in [] are names defined in NJRC.

DDual-in-line plastic mold	[DIP]
EDual-in-line plastic mini-mold	[EMP]
FDual-in-line plastic mini-mold	[MTP-5]
Quad flat plastic mold	[QFP]
*QFP package is indicated by one of	capital alphabet
(mold size) and one-digit number	(lead length and
forming) after F.	9(4)-
GDual-in-line plastic mini-mold	[SOP]

GDual-in-line plastic mini-mold	[SOP]
LShrunk dual-in-line plastic mold	[SDIP]
MDual-in-line plastic mini-mold	[DMP]
NDual-in-line plastic mold	[DIP]
VDual-in-line plastic shrunk mini-mold	[SSOP]

C -----Chip

Item 4 Characteristics Selection and Screening Option

Specially selected product or specially screened product are shown by within two capital alphabets after a hyphen.

Item 5 Taping Form

The taping form is shown by alphanumeric in parentheses.

② C-MOS Example : NJU 6408B FG1 - 00, NJU 6391A E (T1)

Item 1 Classification of items

NJU-----Bi-MOS IC

Item 2 Part Number

The name of product is shown by three-digit or four-digit number and one capital alphabet (series product only).

Example: NJU6391A/91B/91C

In case of substantial modification of circuit or masks, one capital alphabet is added to the name. Example: NJU6408 \rightarrow NJU6408B

Item 3 Classification of Package

The codes in [] are names defined in NJRC.

DDual-in-line plastic mold	[DIP]
EDual-in-line plastic mini-mold	[EMP]
FQuad flat plastic mold	[QFP]
Oved flat plastic mold	

*QFP package is indicated by one capital alphabet (mold size) and one-digit number (lead length and forming) after F.

GDual-in-line plastic mini-mold	[SOP]
LShrunk dual-in-line plastic mold	[SDIP]
MDual-in-line plastic mini-mold	[DMP]
NDual-in-line plastic mold	[DIP]
VDual-in-line plastic shrunk mini-mold	[SSOP]

C -----Chip

H -----TCP (Tape Carrier Package)

Item 4 ROM Code, Title and Screening Option

LCD Controller Driver : Indicating ROM code by a alphanumeric after a hyphen.

Melody IC : Indicating Title of the melody by capital

alphabets after a hyphen.

Screening Product : Indicating Screening level by one capital alphabet after

a hyphen.

Item 5 Taping Form

The taping form is shown by alphanumeric in parentheses.

ORDERING INFORMATION

(2) Terminal Voltage Regulator

① 78/79 series

Example : NJM 78M 00 FA - B (T1) 1 2 3 4 5 6

Item 1 Classification of items

NJM -----Bipolar monolithic IC

Item 2 Part Number

The name of product is shown by two-digit number and one capital alphabet.

Item 3 Output Voltage

The output voltage is shown by two-digit number.

Item 4 · Classification of Package

The codes in [] are names defined in NJRC.

F -----3 terminal plastic mold(Fully Covered)

U-----3 terminal plastic mini-mold

No mark ---- 3 terminal plastic mold

(Note): NJM78L/79L only

[TO-220F]

[TO-92] (Note)

·Output Voltage Accuracy

The output voltage accuracy is shown by one capital alphabet after package type mark.

Item 5 Characteristics Selection Option

Specially selected product is shown by within two capital alphabets after a hyphen.

The taping form is shown by alphanumeric in parentheses.

2 C-MOS

Example: NJU 7201 L 00 (T1)

1 2 3 4 5

Item 1 Classification of items

NJU-----MOS IC

Item 2 Part Number

The name of product is shown by four-digit number and one capital alphabet.

Item 3 Classification of Package

The codes in [] are names defined in NJRC.

L -----3 terminal plastic mold

[TO-92]

U-----3 terminal plastic mini-mold

[SOT-89]

Item 4 Output Voltage

The Output voltage is shown by two-digit number.

The taping form is shown by alphanumeric in parentheses.

QUALITY ASSURANCE SYSTEM

1. Preface

In the present circumstance, it is not too much to say all electronic equipment is produced from the IC. The electronic equipment has been upgraded with its performance and plays important role in any industry. And the default of the equipment might cause a serious problem on the system. Thus the industry has required higher quality and reliability of IC year after year.

In compliance with this requirement, we New Japan Radio Co., Ltd. (hereinafter called we or NJRC) maintain the quality and reliability of the product by the following quality assurance system. To our customers we proffer the product which meet the customers requirement.

2. Policy on the Quality

Our fundamental policy on the quality is described below. With this policy, we are making the utmost effort to have the highest quality of the product. Not that quality is secured by a department but that quality is secured by the whole company.

Therefore we lead all worker to understand what quality is the most important.

3. Quality Assurance System

Fig. 1 shows NJRC's quality assurance system from the planning to the shipping.

(1) Quality Assurance during Development

1 Design

We design the product to meet the customer's requirement by close communications.

For the quality of the design we check production technology, development data and quality information by Design Review (DR).

(2) Test Production

The test products are assessed the characteristic and the reliability.

The reliability evaluation method and condition shall be performed by ED-4741(EIAJ) specification.

3 Mass Production

The mass production is able to be started after consideration of process capability, yield result, reliability test result and customer's evaluation of ES (Engineering Sample).

(2) Quality Assurance during Mass Production

1 Environment Control

The environment during IC production effect importantly the quality and the reliability.

We control properly the temperature, the humidity and the dust in fabrication. Especially we make the utmost effort to improve the cleanliness for the dust control is the most important factor.

2 Quality Control of Raw Material

We make effort to improve the quality of the raw material by quality approval of the materials, the purchasing specification, incoming inspection and close communication with the vendors.

③ Process Control

We make effort to avoid scattering products by the standardization and automatic system.

We check the performance and the quality by the QC inspection. We feed back these results to the production department to maintain the stable process. Fig. 2 shows an example of process control.

4 Changing Control

We have the changing control system to avoid troubles by changing of the design, the process, the materials or the equipment. On this system, the changing of specification or characteristic is performed after customer's approval.

(5) Supervision of Entrustment Productions

In case of entrusting production, we recognize the companies after evaluating their management attitude, technical ability, production record and quality information including the audit.

Fig.2 QC Flow Chart

Fig. 1

4. Reliability Tests

We apply the reliability tests to new product, modified product (design, production equipment, process, materials) and reliability monitor test. The reliability tests are performed in accordance with EIAJ ED-4701. Example of reliability tests are in the following.

Example of reliability tests

Test Item	Test Condition	
Steady State Life	Ta=125℃, max voltage applied	1000h
High Temperature Storage	Ta=125℃	1000h
Temperature Humidity-Bias	85℃, 85%, max voltage applied	1000h
Humidity	85°C, 85%	1000h
Soldering Heat	260℃, 10sec	
Thermal Shock	0 °C(5min) ~ 100 °C(5min), Liquid Phase	10cycles
Temperature Cycling	-40℃(30min) ~ 125℃(30min), Atmospheric Phase	100cycles
Pressure Cooker	121℃, 100%, 2.03×10⁵Pa	100h
Solderability	230℃, 5s, Flux used	
E.S.D	C=200pF, R=0 Ω, V=200V	

5. Customer Returning and Failure Analysis

In case of device trouble on the customer's operation, Fig.3 shows customer returning and failure analysis route. Fig.4 shows failure analysis procedure of customer's returning.

Fig.3 Customer Returning and Failure Analysis Route

Fig.4 Failure Analysis Procedure

■ RECOMMENDED MOUNTING METHOD

1. Soldering Methods

The recommended soldering methods for each package are shown in the following table.

(1) Recommended Soldering Methods Table

Through-Hole mounted device type package

PKG	REFLOW	FLOW	IRON	PKG	REFLOW	FLOW	IRON
TO-92	0	0	0	SDIP22	0	0	0
TO-220F	0	0	0	SDIP24	0	0	0
DIP8	0	0	0	SDIP28	0	0	0
DIP14	0	0	0	SDIP30	0	0	0
DIP16	0	0	0	SDIP42	0	0	0
DIP18	0	0	0	SDIP56	0	0	0
DIP20	0	0	0	SIP8	0	0	0
DIP22	0	0	0	ZIP16	0	0	0
DIP28	0	0	0				
DIP40	0	0	0				

Surface mount device type package

PKG	REFLOW	FLOW	IRON	PKG	REFLOW	FLOW	IRON
SOT-89	O'*1	×	0	SSOP8	0	×	0
MTP-5	O*1	×	0	SSOP14	0	×	0
DMP8	O *2	○ *3	0	SSOP16	0	×	0
DMP14	0	0	0	SSOP20	0	×	0
DMP16	0	0	0	SSOP24	0	0	0
DMP20	0	×	0	QFP44-A1	0	×	0
DMP24	0	0	0	QFP44-B1	0	×	0
SDMP30	0	0	0	QFP56-A1	0	×	0
EMP8	0	0	0	QFP64-B2	0	×	0
EMP14	0	.0	0	QFP64-B3	0	×	0
SOP8	0	0	0	QFP64-C1	0	×	0
SOP18	0	0	0	QFP64-C2	0	×	0
SOP20	0	0	0	QFP64-D1	0	×	0
SOP22	0	0	0	QFP64-E1	0	×	0
SOP28	0	0	0	QFP80-C1	0	×	0
SOP40	0	0	0	QFP80-C2	0	×	0
				QFP100-C1	0	×	0
		the residence		QFP100-C2	0	×	0
				QFP64-G1	0	O *4	0
THETE				QFP80-G1	0	○*4	0
maca in a	YEL PRINCE AND	1 1400 161	NAME OF PERSONS	QFP100-G1	0	O *4	0

 $[\]bigcirc$: Twice soldering is allowed.

^{*1:}Once soldering only.

^{*2:}NJM2073M,NJMOP-07M and NJM5532M once soldering only.

^{*3:}Expect NJM2073M,NJMOP-07M,NJM5532M.

^{*4:}Some of devices are allowed only once.

^{× :} Don't apply.

RECOMMENDED MOUNTING METHOD

(2) Soldering Temperature Profile of Reflow

Recommended reflow soldering temperature profile is in the following.

a: Temperature ramping rate 1°C~7°C/sec

b: Pre-heating Temperature 150℃

Time 60~120sec

c: Temperature ramping rate $1^{\circ} \sim 7^{\circ} \text{C/sec}$

d: Main heating Temperature 240℃ max

Time within 10sec

7℃/sec max e: Ramping rate

Note: The temperature mentioned are measured on the surface of mold resin.

(3) Soldering Temperature Profile of Flow

Recommended flow soldering temperature profile is in the following.

a: Temperature ramping rate $1\% \sim 7\%/\text{sec}$

b: Pre-heating Temperature 150℃

Time 60~120sec

c: Main heating Temperature 240℃ max

within 10sec Time

7℃/sec max d: Ramping rate

Note: The temperature mentioned are measured on the surface of mold resin.

(4) Soldering Temperature Profile of Iron

Recommended iron soldering temperature profile is in the following.

At 1 lead Temperature: within 300~340℃

Time : within 3sec

(5) Note

It is not good for IC's reliability to keep IC High temperature for long time within limit of recommended ranges. Please finish soldering as soon as possible within limit of recommended ranges.

RECOMMENDED MOUNTING METHOD

- 2. Recommended Soldering Method for Moisture-Proof Packing
 - (1) Mounting

Be sure to use within 7days after opening and to apply 2nd soldering within 3days. Be sure to apply soldering within twice.

(2) Storage

It is better to keep ICs at following condition. Temperature: $5 \sim 40^{\circ}$ C, Humidity: $40 \sim 60\%$

(3) Baking

In case of keeping except above condition, be sure to apply baking. Baking Method: Ta=125℃, over 16h

3. Flux Cleaning

Please clean flux, because halogen compound in flux is badly affected to products. The example of flux cleaning is in the following.

Frequency : 28kHz Power : 20W/I

Temperature $:40^{\circ}C$

Time : between 30~40sec

CAUTION: Don't brush ink marking face while cleaning.

To take care the products resonation and touch directly to the vibrator.

RECOMMENDED MOUNTING METHOD

4. Recommended Solder Pads for Surface Mount Package

Recommended solder pads for each package are shown as follows.

Please take easiness of mounting, reliability of bonding, prevention of solder bridge, margin of pattern area into consideration when designing the solder pads.

(1) Example of Solder Pads Dimensions

DMP/SOP/EMP/SSOP

PKG	b	1	е	e1	е
DMP8	0.72	1.27	3.81	6.10	1.27
DMP14	0.72	1.27	7.62	6.10	1.27
DMP16	0.72	1.27	8.89	6.10	1.27
DMP20	0.72	1.27	8.55	6.10	0.95
DMP24	0.72	1.27	13.97	9.53	1.27
SDMP30	0.60	1.27	14.00	9.53	1.00
SOP8	0.76	1.27	3.81	4.00	1.27
SOP18	0.76	1.27	10.16	4.90	1.27
SOP20	0.76	1.27	11.43	4.90	1.27
SOP22	0.76	1.27	12.70	4.90	1.27
SOP28	0.76	1.27	16.51	7.00	1.27
SOP40	0.76	1.27	24.13	8.90	1.27
EMP8	0.72	1.27	3.81	5.72	1.27
EMP14	0.72	1.27	7.62	5.72	1.27
SSOP8	0.35	1.00	1.95	5.90	0.65
SSOP14	0.35	1.00	3.90	5.90	0.65
SSOP16	0.35	1.00	4.55	5.90	0.65
SSOP20	0.35	1.00	5.85	5.90	0.65
SSOP24	0.45	1.00	8.80	7.30	0.80

Unit:mm

QFP

PKG	MOLD SIZE	b	1	е	MID	MIE
QFP44-A1	10 X 10	0.50	1.20	0.80	10.4	10.4
QFP44-B1	14 X 14	0.70	1.80	1.00	14.4	14.4
QFP56-A1	10 X 10	0.35	1.20	0.65	10.4	10.4
QFP64-B2	14 X 14	0.50	1.60	0.80	14.4	14.4
QFP64-B3	14 X 14	0.50	1.40	0.80	14.4	14.4
QFP64-C1	20 X 14	0.70	2.80	1.00	20.4	14.4
QFP64-C2	20 X 14	0.70	2.00	1.00	20.4	14.4
QFP64-D1	10 X 10	0.20	1.00	0.50	10.4	10.4
QFP64-E1	14 X 14	0.50	1.30	0.80	14.4	14.4
QFP80-C1	20 X 14	0.50	2.80	0.80	20.4	14.4
QFP80-C1	20 X 14	0.50	2.80	0.80	20.4	14.4
QFP80-C2	20 X 14	0.50	2.00	0.80	20.4	14.4
QFP100-C1	20 X 14	0.35	2.80	0.65	20.4	14.4
QFP100-C1	20 X 14	0.35	2.80	0.65	20.4	14.4
QFP100-C2	20 X 14	0.35	2.00	0.65	20.4	14.4
QFP64-G1	14 X 14	0.50	1.00	0.80	14.4	14.4
QFP80-G1	14 X 14	0.35	1.00	0.65	14.4	14.4
QFP100-G1	14 X 14	0.20	1.00	0.50	14.4	14.4

Unit:mm

Note: These solder pads dimensions are just examples.

When designing PCB, please estimate the pattern carefully.

SOT-89

MTP5

ABSOLUTE MAXIMUM RATINGS

■ ABSOLUTE MAXIMUM RATINGS

1. Definition of Absolute Maximum Rating (Ta = 25°C)

NJRC defines maximum ratings as the values of voltage, current, temperature, power dissipation etc, which should not be exceeded at any time, otherwise deterioration or destruction of the IC may take place. Maximum values and limits published should be taken into consideration at all times when using or "designing in "NJRC IC's.

(1) Maximum Voltage Ratings

Specify the maximum limitation of supply and input voltages. Maximum values and limits published should be taken into consideration at all times when using or "designing in "NJRC IC's.

(2) Maximum Current Ratings

Specify the maximum limitation of input and output current. Maximum values and limits published should be taken into consideration at all times when using or "designing in "NJRC IC's.

(3) Maximum Temperature Ratings

Specify the maximum limitation of operating and storage temperature. Maximum values and limits published should be taken into consideration at all times when using or "designing in "NJRC IC's. The operating temperature range is the ambient temperature range that IC operates just normally.

The electrical characteristics of the ICs specified at 25°C are not guaranteed to apply at the extremes of the operating temperature range.

(4) Maximum Power Dissipation Rating

Specify the maximum limitation of power dissipation. Maximum values and limits published should be taken into consideration at all times when using or "designing in "NJRC IC's.

The power dissipation is mentioned following formula.

As Tj is normally constant, the maximum power dissipation at a particular ambient temperature is determined by the thermal resistance of the package, which is in turn determined by it's dimensions and materials used in it's manufacture.

As a rule the smaller the package, the lower it's maximum power dissipation.

Note: Exceeding any of the maximum ratings, even briefly lead to deterioration in IC performance or even destruction.

PACKAGE 2

PACKAGE

■ PACKAGE OUTLINE TABLE

	Suffix	3Pin	5Pin	8Pin	9Pin	14Pin	16Pin	18Pin	20Pin	22Pin
TO-92	L*1	0	-	-	-	-	-		_	_
TO-220F	F	0	-	-	-	-	-	_	-	-
SOT-89	U	0	-		-	-	_	-	_	-
MTP-5	F	-	0	O 178501	-	BODS	-	-352	DAFIL	-
DIP	D/N	-	-	0	1 -	0	0	0	0	0
SDIP	L	-			J	-			A	0
DMP	M	E S I TRI 128	-	0	-	0	0	-	O*2	-
SOP	G	(d(+)/)	-	0	-	-118.0	70-10	0	0	0
EMP	Е	S. S. DEICH	-	0	-	0	5-8-2	_	-190	_
SSOP	V	7 90 1970		0	-	0	0	-	0	-
SIP	S/L	1117108	-	0	0	Today	A. A.Tpittl	-		-
ZIP	S	-	-	400	-	-41080	0	-	-1-310	-
QFP	F		-	-	-	-	-	-	c-ble	_

	Suffix	24Pin	28Pin	30Pin	40Pin	42Pin	44Pin	56Pin	64Pin	80Pin	100Pin
DIP	D/N	O*3	76 L	-	0	_	THE STATE OF	70-2	-	V 101010	-
SDIP	L	0	0	0	13 -	0	how is	0	-	1.56	-
DMP	М	0	38 - I	O*4	DEF-	0	_	-	-		-
SOP	G	O*3	0		0	-	-	_	-	-	-
EMP	Е	-	-	- 18		Teal or 1	-		-		-
SSOP	V	0	-	7.41	nh- T	-	(non-4-	100178	-	70917	-
SIP	S/L	44 - 19	-			-	15-19	101-01	-	3+515	-
ZIP	S	311000	-	4	-	-	-	-	_	5095	-
QFP	F	4 E	50	-		-	0	0	0	0	0

^{*1)} Except NJM78L,NJM79LSeries

^{*4)} Lead pitch: 1.0mm(SDMP-30)

TO-92

TO-220F

SOT-89

MTP-5

DIP

SDIP

DMP

SIP

ZIP

QFP

^{*2)} Lead pitch: 0.95mm

^{*3)} These two packages are applied to only NJU9702.

■ PACKAGE CODE TABLE(NJRC vs. EIAJ CODE)

The package codes using in this Data Book are NJRC codes defined by NJRC. EIAJ codes which correspond to NJRC codes are shown as follows.

NJRC CODE	EIAJ CODE	NJRC CODE	EIAJ CODE
<dip></dip>		<sop></sop>	
DIP8	*DIP008-P-0300	SOP8	*SOP008-P-0225
DIP14	*DIP014-P-0300	SOP18	*SOP018-P-0300
DIP16	*DIP016-P-0300	SOP20	*SOP020-P-0300
DIP18	*DIP018-P-0300	SOP22	*SOP022-P-0300
DIP20	*DIP020-P-0300	SOP24	*SOP024-P-0450
DIP22	*DIP022-P-0400	SOP28	*SOP028-P-0375
DIP24	*DIP024-P-0600	SOP40	*SOP040-P-0450
DIP40	*DIP040-P-0600	<emp></emp>	13 11 - 2 11
<sdip></sdip>			
		EMP8	*SOL008-P-0150
SDIP22	SDIP022-P-0300	EMP14	*SOL014-P-0150
SDIP24	SDIP024-P-0300	<ssop></ssop>	
SDIP28	SDIP028-P-0400(Similar)	SHEET THISTER I THE	SET I WEST T WEST
SDIP30	SDIP030-P-0400	SSOP8	SSOP008-P-0225
SDIP42	SDIP042-P-0600	SSOP14	SSOP014-P-0225
SDIP56	SDIP056-P-0600	SSOP16	SSOP016-P-0225
<sip zip=""></sip>		SSOP20	SSOP020-P-0225
		SSOP24	SSOP024-P-0300
SIP8	*SIP008-P-0000	<ofp></ofp>	
SIP9	*SIP009-P-0000(Similar)	70117	
SIP9*	*SIP009-P-0000	QFP44-A1	*QFP044-P-1010
ZIP16	*ZIP016-P-0325	QFP44-B1	*QFP044-P-1414
<to></to>		QFP56-A1	*QFP056-P-1010
12.0		QFP64-B2	*QFP064-P-1414-(1) Note
TO-92(Viny Bag)	SC-43A	QFP64-B3	*QFP064-P-1414-(2) Note
TO-92(Taping)	SC-43A	QFP64-E1	*QFP064-P-1414-(3) Note
TO-220F	SC-67	QFP64-C1	*QFP064-P-1420-(1) Note
<mtp sot=""></mtp>		QFP64-C2	*QFP064-P-1420-(2) Note
WIII/501/		QFP64-D1	*QFP064-P-1010
SOT-89	SC-62	QFP80-C1	*QFP080-P-1420-(1) Note
MTP-5	SC-74A	QFP80-C1	*QFP080-P-1420-(2) Note
<dmp></dmp>		QFP80-C2	*QFP080-P-1420-(3) Note
TANKE /		QFP100-C1	*QFP100-P-1420-(1) Note
DMP8	- (250mil)	QFP100-C1	*QFP100-P-1420-(2) Note
DMP14	- (250mil)	QFP100-C2	*QFP100-P-1420-(3) Note
DMP16	– (250mil)	QFP64-G1	LQFP064-P-1414
DMP20	- (250mil)	QFP80-G1	LQFP080-P-1414
DMP24	*SOP-024-P-0375	QFP100-G1	LQFP0100-P-1414
SDMP30	SSOP030-P-0375	5-9-19	ALTOE YESTER
DMP42	- (450mil)		

Note: EIAJ code 'efines mold dimensions of the package exactly, but lead dimensions are defined loosely. There are some similar packages in accordance with the same EIAJ code.

NJRC adds the mark(-(x),x:number) after EIAJ code to distinguish them each other.

PACKAGE DIMENSIONS

■ PACKAGE DIMENSIONS

DIP8

Unit:mm

DIP14

DIP16

Unit:mm

DIP18

DIP20

Unit:mm

DIP22

DIP24

*This package is applied to only NJU9702.

Unit:mm

DIP40

SDIP22

*1: Slope direction on the right or left side are mingled.

 $23.0^{\,\pm\,0.3}$

Unit:mm

SDIP24

SDIP28

SDIP30

SDIP42

Unit:mm

SDIP56

SIP8

Unit:mm

SIP9

SIP9*

Unit:mm

ZIP16

Unit:mm

New Japan Radio Co., Ltd.

2-11

PACKAGE DIMENSIONS

TO-92(Vinyl Bag)

Unit:mm

TO-92(Taping)

TO-220F

SOT-89

Unit:mm

MTP5

Unit:mm

DMP14

Unit:mm

DMP20

Unit:mm

Unit:mm

SOP18

SOP22

* This package is applied to only NJU9702.

Unit:mm

SOP28

EMP8

Unit:mm

EMP14

SSOP8

Unit:mm

SSOP14

SSOP16

SSOP20

SSOP24

QFP44-A1

QFP44-B1

QFP56-A1

QFP64-B2

QFP64-B3

Unit:mm

QFP64-E1

QFP64-C2

QFP64-D1

QFP80-C1(1)

QFP64-G1

QFP80-G1

QFP100-G1

PACKING 3

PACKING

GENERAL DESCRIPTION/PACKING SPECIFICATION

■ GENERAL DESCRIPTION

NJRC delivers ICs in 4 methods of plastic tube container, two kind of Taping, tray and vinyl bag packing. Except adhesive tape treated anti electorostatic and contain carbon are using as the ESD (Electrostatic Discharge Damage) protection.

■ PACKING SPECIFICATION TABLE

PKG	- Sheka a shekaring		Packing Type			
	Plastic tube	Taping		Tray	Vinyl Bag	
		Adhesive	Emboss		,	
<dip></dip>			AND THE PARTY OF T		-	
DIP8	0					
	50pcs/tube	Changlet 1		Manual Control of the		
DIP14	0				_	
	25pcs/tube		orthograph S	MUNICIPAL TO		
DIP16	.0				_	
	25pcs/tube	1	Paracipus, I	ada6 sigCS		
DIP18	0		0.2	U _		
	20pcs/tube		USES (1990)	Maryanet.		
	O				_	
DIP20	20pcs/tube	+		Market Market		
	Copesitude					
DIP22	20pcs/tube	ļ			-+	
					3.77	
DIP40	0					
	10pcs/tube				1 10	
<sdip></sdip>		e reministration		000 188 202		
SDIP22	0					
	25pcs/tube			Part of the second		
SDIP24	0				_	
SDIF 24	20pcs/tube					
CDIDAG	0		3- 21071_	(3 3 08)_	_	
SDIP28	20pcs/tube	130 E 20 E				
	0		_		_	
SDIP30	20pcs/tube			BETT-WAS E	-+	
	O					
SDIP42	14pcs/tube	+				
The second second	14pcs/tube		WALL STREET	Marine State	2 1	
SDIP56	104-1-					
CID	10pcs/tube			HEAT PORTY		
<sip></sip>		Mineral Land	NAME OF TAXABLE PARTY.	and the same		
SIP8	0					
Emire kardavini a pro-	25pcs/tube		and the second second	-yrr Johnson	4-33	
SIP9	0	150 DE 10 TO				
OH 7	25pcs/tube				1112	
SIP9*	0				_	
	20pcs/tube					
7ID16	0				_	
ZIP16	20pcs/tube					
<to></to>						
			10 sept = 1	_		
TO-92		2,000pcs/reel			500pcs/bag	
10-92		2,000pcs/box			300pcs/bag	
TO 220E	_	2,000pcs/00X	_		0	
TO-220F		+			-+	
<sot mtp=""></sot>					100pcs/ba	
SOT-89	0					
	25pcs/tube		0		-+	
	25pcs/tube		1,000pcs/reel			
MTP-5			<u> </u>			
			3,000pcs/reel			

■ Packing Specification Table

PKG	Packing Type Taping Taping Taping						
	Plastic tube	Adhesive	Emboss	Tray	Vinyl Bag		
<dmp></dmp>		Adhesive	EIIIOOSS				
	0		0				
DMP8	100pcs/tube	2,000pcs/reel	2,000pcs/reel				
DMP14	Toopesituoe	2,000pcs/reci	2,000pcs/1cc1	III. SHEET	1000		
	50pcs/tube	2,000pcs/reel	2,000pcs/reel				
DMP16	Sopesitude	2,000pcs/reci	2,000pcs/1cc1				
	50pcs/tube	2,000pcs/reel	2,000pcs/reel				
	Sopesitude	2,000pcs/1cc1	2,000pcs/1cc1		<u> </u>		
DMP20	50pcs/tube	2,000pcs/reel	2,000pcs/reel				
	Sopesitude	2,000pcs/reer	2,000pcs/reci				
DMP24	25pcs/tube	1,500pcs/reel					
	25pcs/tube	1,500pcs/reer		ardindari V			
SDMP30	25pcs/tube	1,500pcs/reel			8752		
	25pcs/tube	1,500pcs/reer		THE PARTY OF THE P			
DMP42	20pcs/tube						
<sop></sop>	Zopes/tube				1		
4501 2			0		1 13740.1		
SOP8	50pcs/tube	2,000pcs/reel	3,000pcs/reel				
	Sopesitude	2,000pcs/reel	3,000pcs/reel		OPCIL		
SOP18	25pcs/tube	2,000pcs/reel	2,000pcs/reel				
	ZSpcs/tube	2,000pcs/reel					
SOP20	25pcs/tube	2.000===/===1	Note O				
	25pcs/tube	2,000pcs/reel Note	0	Contract of the Contract of th			
SOP22	25pcs/tube	Note O					
	Note O	Note O	2,000pcs/reel	New York			
SOP28	Note O	Note U	2 000 - / - 1				
			2,000pcs/reel	data da la constitución de la co			
SOP40	15 pcs/tube	ļ					
<emp></emp>	15 pcs/tube			distrebute			
CENII >			0 1		T PARTE		
EMP8	100pcs/tube	2,000pcs/reel	2,000pcs/reel				
	Toopes/tube	2,000pcs/reer	2,000pcs/reel	the same of the sa	0090022		
	50pcs/tube	2,000pcs/reel	2,000pcs/reel				
<ssop></ssop>	Sopesitude	2,000pcs/reer	2,000pcs/reer		1 314		
					1 8377		
SSOP8		 	2,000pcs/reel		-+		
SSOP14			2,000pcs/reel		19934		
			2 000-00/1				
SSOP16			2,000pcs/reel	and the second of	4 Vig12		
		 	2,000pcs/reel				
SSOP20			2,000pcs/reel		01917		
		 	2.000mag/mg1		-+		
		Note O	2,000pcs/reel		12.173		
SSOP24		Note O	2.000==================================				
1-132			2,000pcs/reel		50.68		

Note 🔾 : Examination for customer's request

PACKING SPECIFICATION

■ Packing Specification Table

PKG	Packing Type						
	'Plastic tube	Taping		Tray	Vinyl Bag		
		Adhesive	Emboss	Tray	Villyi Bag		
<qfp></qfp>			FlyG set appoint	periodo de primar a d			
QFP44 - * *	-			0	_		
				50pcs/tray			
QFP56 - * *			_	0	-		
				50pcs/tray			
QFP64 - * *	-			0	_		
				50pcs/tray			
QFP80 - * *			- 4	0	_		
			The second second	50pcs/tray			
QFP100 - * *		E G aven to #T.1	-	0	_		
	9	A LUMBAN A		50pcs/tray			
<tab></tab>	Q'ty depends on product type (Reel or Tray).						
<chip></chip>	Q'ty depends on product type (Tray only).						
<wafer></wafer>	O'ty depends on product type .						

PLASTIC TUBE DIMENSIONS

■ Plastic Tube Container Dimensions

DIP, SDIP, SIP, ZIP, DMP, SDMP, SOP, EMP, SOT packages can pack in the plastic tube container the dimensions are mentioned as follows.

1. Plastic Tube Container for dual-in-line plastic mold

(1) Plastic Tube Container dimensions for DIP8

(2) Plastic Tube Container dimensions for DIP14/16

PLASTIC TUBE DIMENSIONS

(3) Plastic Tube Container dimensions for DIP18/20

- 1.Thickness 0.6
- 2.Material PVC
- 3.Stopper Rubber Knob
- 4.Contents DIP20-20pcs/tube

Unit:mm

(4) Plastic Tube Container dimensions for DIP22/DMP42

- 1.Thickness 0.6
- 2.Material PVC
- 3.Stopper Stick Pin
- 4.Contents DIP22-20pcs/tube

(5) Plastic Tube Container dimensions for DIP40

- 1.Thickness 0.5
- 2.Material PVC
- 3.Stopper Rubber Knob
- 4.Contents DIP40 10pcs/tube

PLASTIC TUBE DIMENSIONS

- 2. Plastic Tube Container for shrunk dual-in-line plastic mold
 - (1) Plastic Tube Container dimensions for SDIP22

Unit:mm

(2) Plastic Tube Container dimensions for SDIP24

(3) Plastic Tube Container dimensions for SDIP28

Unit:mm

(4) Plastic Tube Container dimensions for SDIP30

(5) Plastic Tube Container dimensions for SDIP42

Unit:mm

(6) Plastic Tube Container dimensions for SDIP56

3.Plastic Tube Container for single-in-line plastic mold (1) Plastic Tube Container dimensions for SIP8

Unit: mm

1.Length 505

2.Thickness 0.5

3.Material PVC

3.Stopper Rubber Knob

4.Contents SIP8 25pcs/tube

(2) Plastic Tube Container dimensions for SIP9

Unit: mm

1.Length 580±2

2.Thickness 0.5

3.Material PVC

4.Stopper Rubber Knob

5.Contents SIP9 25pcs/tube

(3) Plastic Tube Container dimensions for SIP9%

Unit: mm

1.Length 460

2.Thickness 0.75

3.Material PVC

4.Stopper Rubber Knob

5.Contents SIP9 20pcs/tube

(4) Plastic Tube Container dimensions for ZIP16

1.Length 513

2.Thickness 0.6

3.Material PVC

4.Stopper Rubber Knob

5.Contents ZIP16 20pcs/tube

Unit: mm

4.Plastic Tube Container for Three terminal plastic mini mold
(1) Plastic Tube Container dimensions for SOT89

5.Plastic Tube Container for dual-in-line plastic mini mold
(1) Plastic Tube Container dimensions for DMP8/14/16/20

1.Length 515±2

2.Thickness 0.6

3.Material PVC

4.Stopper Rubber Knob

5.Contents DMP8 100pcs/tube

DMP14/16/20 50pcs/tube

(2) Plastic Tube Container dimensions for DMP24/SDMP30

1.Length 410±2

2.Thickness 0.6

3.Material PVC

4.Stopper Rubber Knob

5.Contents 25pcs/tube

(3) Plastic Tube Container dimensions for EMP8/14

1.Length EMP 8: 517±2

EMP14: 454±2

2.Thickness 0.6

3.Material PVC

4.Stopper Rubber Knob

5.Contents EMP8 100pcs/tube

EMP14 50pcs/tube

(4) Plastic Tube Container dimensions for SOP8

- 1.Length 280.5
- 2.Thickness 0.5
- 3.Material PVC
- 4.Stopper Rubber Knob
- 5.Contents SOP8 50pcs/tube

(5) Plastic Tube Container dimensions for SOP18/20/22

- 1.Length 400
- 2.Thickness 0.5
- 3.Material PVC
- 4.Stopper Rubber Knob
- 5.Contents SOP18 25pcs/tube
 - SOP20 25pcs/tube
 - SOP22 25pcs/tube

(6) Plastic Tube Container dimensions for SOP40

- 1.Length 430
- 2.Thickness 0.5
- 3.Material PVC
- 4.Stopper Rubber Knob
- 5.Contents SOP40 15pcs/tube

■ Taping Dimensions

There are two types of taping packing, Adhesive Taping in accordance with EIAJ standard ET-7101 "Packaging of Electronic Components on Continuous Tapes (Adhesive Types)" and Emboss carrier taping in accordance with JIS standard C-0806 "Packaging of Electronic Components on Continuous Tapes (Surface Mounting Device)".

1.Adhesive Taping Table

PKG	E	MP			DMP			SDMP	TO-	92
Item	8 pin	14 pin	8 pin	14 pin	16 pin	20 pin	24 pin	30 pin	3 p	in
Reel Diameter (mm)			φ 30	00	de la				ø 360	Zigzag
Tape Width (mm)			3	12	EBS				18	←
Pich (mm)			1	2	NE P				12.7	←
Contents (pcs)		obdered	200	00	C1.2		1500	1500	2000	2000
Pull-out Direction	T1	0000	14	8 1	4 16	20				0 0
	T2						0	0 0	T2	9999

PKG		SOP			
Item	8 pin	18 pin	20 pin		
Reel Diameter (mm)	orts timesky	φ:	300		
Tape Width (mm)	ukaets 0590		32		
Pitch (mm)	12				
Contents (psc)		20	000		
Pull-out Direction	Т1	8 18			
$\hat{\mathbb{T}}$	T2				

2.Emboss Taping Table

PKG	EN	MP			DMP		
Item	8 pin	14 pin	8 pin	8 pin	14 pin	16 pin	20 pin
Reel Diameter (mm)	φ 330	←	-	-	-	←	←
Tape Width (mm)	12	16	12	16	←	←	←
Pich (mm)	8	-	-	12	+	+	←
Contents (pcs)	2000	-	-	+	-	←	-
	TE1	TE1	TE3	TE1	TE1	TE1	TE1
Pull-out Direction							
\Rightarrow	TE2	TE2	TE4	TE2	TE2	TE2	TE2
			0000				

PKG			SSOP			MTP	SOT-89
Item	8 pin	14 pin	16 pin	20 pin	24 pin	5 pin	3 pin
Reel Diameter (mm)	φ 255	-	←	+	φ 300	φ 178	+
Tape Width(mm)	12	-	←	-	16	8	12
Pitch (mm)	8	←	←	-	12	4	8
Contents (pcs)	2000	←	-	+	←	3000	1000
	TÉ1	TE1	TE1	TE1	TE1	TE1	TE1
Pull-out Direction			0000				
\Rightarrow	TE2	TE2	TE2	TE2	TE2	TE2	TE2
		0000		0000	0000	0000	

Emboss Taping Table

PKG		SC	OP			
Item	8 pin	18 pin	22 pin	28 pin	Aig 41	
Reel Diameter (mm)	330	-	←			
Tape Width (mm)	12	24	+	[] ←	31	
Pich (mm)	8	12	←			
Contents (pcs)	3000	2000	+			
La	TE1	TE1	TE1	TE1	nen .	
Pull-out Direction			0000			
\Longrightarrow	TE2	TE2	TE2	TE2	192	
Œ	0000		0000	0000		

3. Adhesive Taping Dimensions

(1) Adhesive Taping Dimensions for DMP/EMP

Unit: mm DMP8/14/16/20/24 SDMP30,EMP8/14 Symbol Size D₀ 1.0+0.1 E 3.0±0.1 G 4.0 8.0 Н 6.0 26.0±0.1 K 4.0±0.1 P₀ 12.0±0.1 P_1 32.0±0.3 W

Pull-out direction

Unit: mm

	O
Symbol	Size
A	$\phi 300 \pm 2$
В	φ80±1
D	$\phi 16 \pm 0.8$
W	34±1
t	2

Pull-out beginning : Empty part 80 \sim 100cm+Adhesive Tape 20cm Pull-out end: Empty part 80 \sim 100cm

(2) Adhesive Taping Dimensions for SOP

□ Pull-out direction

	Unit: m
	SOP8/18 20
Symbol	Size
D ₀	1.0±0.1
G	4.0
II	8.0
J	6.0
K	26.0±0.1
P ₀	4.0±0.1
Pı	12.0±0.1
W	32.0±0.3
W_1	16.0
W_2	16.0
	more too

→ Pull-out direction

T2

| Unit:mm | Symbol | Size | A | φ 300±2 | B | φ 80±1 | D | φ 16±0.5 | W | 34±1 | t | 2

Pull-out beginning: Empty part more than 90cm+Adhesive Tape 20cm Pull-out end: Empty part more than 80cm

(3) Adhesive Taping Dimensions for TO-92

	Unit: mm
Symbol	Size
P	12.7±0.1
P ₀	12.7±0.3
P ₁	3.85 ± 0.7
F ₁ , F ₂	2.5+0.4
W	18.0+1.0
W_0	6.0
Wı	9.5±0.5
W ₂	0.5
H ₀	16.0±0.5
H ₁	24.7MAX
φ D ₀	φ 4.0±0.2
$\triangle h_1, \triangle h_2$	2.0MAX
ΔP	1.0
t ₁	0.6 ± 0.3
t ₂	1.5MAX
Α	2.5

Pull-out direction

T2

T1

| Unit : mm | Symbol | Size | | A | φ 360 | | B | φ 89 | | D | φ 30 | | W | 43.0 | | t | 3.0 |

Pull-out beginning: Empty part more than 5 devices+Layer paper more than 1000mm Pull-out end: Empty part more than 5 devices+layer paper more than 1000mm

4. Emboss Carrier Taping Dimensions

(1) Emboss Carrier Taping Dimensions for DMP8

	DMP8	Unit : mn
Symbol	Size	Remark
A	7.1 ± 0.1	Bottom Size
В	5.4±0.1	Bottom Size
D ₀	1.55±0.05	THE CHARLES
D ₁	2.05±0.1	LENER I
Е	1.75±0.1	
F	7.5±0.1	
P ₀	4.0±0.1	
P ₁	12.0±0.1	
P ₂	2.0±0.1	
T	0.3±0.05	
T ₂	2.3	
W	16.0±0.3	
W_1	13.5	Thickness 0.1MAX

Pull-out direction

TE2

	Unit: mm
Symbol	Size
Α	φ 330±2
В	ø 80±1
С	φ 13±0.5
D	φ 21±0.8
Е	2±0.5
W	17.5+2.0
W_1	2.5MAX

Pull-out beginning: Empty part more than 20 embosses+Cover tape more than one around reel Pull-out end: Empty part more than 20 embosses

Emboss Carrier Taping Dimensions for DMP8

	DMP8	Unit: mn
Symbol	Size	Remark
A	5.4±0.1	Bottom Size
В	7.3±0.1	Bottom Size
D_0	1.5+0-6	
Dı	1.7±0.1	TOTAL BE
E	1.75±0.1	117711 126
F	5.5±0.05	1 T/1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T 1 T
P ₀	4.0±0.1	7-1
Pı	8.0±0.1	1/ 14 12 12
P ₂	2.0±0.05	
T	0.3±0.05	
T ₂	2.4	
W	12.0±0.3	
W_1	9.5	Thickness 0.1MAX

TE4

	Unit: mm
Symbol	Size
A	φ 330±2
В	\$ 80.0±1
C	φ 13.0±0.5
D	φ 21.0±0.8
E	2.0±0.5
W	14.0±1.5
Wı	2.5MAX

Pull-out beginning: Empty part more than 20 embosses+Cover tape more than one around reel Pull-out end: Empty part more than 20 embosses

(2) Emboss Carrier Taping Dimensions for DMP14/16/20

	DMP14/16/20	Unit: mn
Symbol	Size	Remark
A	7.4±0.1	Bottom Size
В	10.4±0.1	Bottom Size
D ₀	1.5+0.1	Service 1
D ₁	1.7±0.1	大部分属于
Е	1.75±0.1	
F	7.5±0.1	
P ₀	4.0±0.1	S-all
P ₁	12.0±0.1	
P ₂	2.0±0.1	
T	0.3±0.05	440
T_1	=	
T ₂	2.3	
W	16.0±0.3	
W_1	13.5	Thickness 0.1MAX

Pull-out direction

TE2

Pull-out beginning: Empty part more than 20 embosses+Cover tape more than one around reel Pull-out end: Empty part more than 20 embosses

(3) Emboss Carrier Taping Dimensions for EMP8/14

	EMP8	EMP14	Unit: mn
Symbol	Size	Size	Remark
A	6.6±0.1	6.6±0.1	Bottom Size
В	5.4±0.1	9.1 ± 0.1	Bottom Size
D ₀	1.5+0.1	1.5+0.1	
D ₁	1.7±0.1	7.1±0.1	
E	1.75±0.1	1.75±0.1	
F	5.5±0.05	7.5±0.05	
P ₀	4.0±0.1	4.0±0.1	
P ₁	8.0±0.1	8.0±0.1	la La
P ₂	2.0±0.05	2.0±0.1	
T	0.3±0.05	0.3±0.05	
T ₂	2.2	2.2	
W	12.0±0.3	16.0±0.3	
W_1	9.5	13.5	Thickness 0.1MAX

		Unit:mm
	EMP8	EMP14
Symbol	Size	Size
A	φ 330±2	φ 330 ±2
В	\$ 80.0±1.0	\$ 80.0±1.0
C	ø 13.0±0.5	φ 13.0±0.5
ŋ	\$ 21.0±1.0	\$ 21.0±1.0
E	2.0±0.5	2.0±0.5
W	14.0±1.5	19.0+2.0
W ₁	2.5MAX	2.5MAX

Pull-out beginning: Empty part more than 20 embosses+Cover tape more than one around reel Pull-out end: Empty part more than 20 embosses

(4) Emboss Carrier Taping Dimensions for SOP8/18/22/28

	SOP8	SOP18	SOP22	SOP28	Unit: mn
Symbol	Size	Size	Size	Size	Remark
A	6.7	8.4	8.4	10.8	Book Femo
В	5.5	12.0	14.5	19.2	ant bean
D	1.55	1.55	1.55	1.55	
D ₁	2.0	2.05	2.05	2.05	
Е	1.75	1.75	1.75	1.75	
F	5.5	11.5	11.5	11.5	
P ₀	4.0	4.0	4.0	4.0	
P ₁	8.0	12.0	12.0	12.0	
P ₂	2.0	2.0	2.0	2.0	
T	0.3	0.3	0.3	0.3	
T ₂	2.51	2.86	2.86	3.36	
W	12.0	24.0	24.0	24.0	

		Unit: mm
	SOP8	SOP18/22/28
Symbol	Size	Size
A	ø 330±2	φ 330±2
В	φ 80±1	\$ 80±1
C	φ 13±0.5	φ 13±0.5
D	φ 21±0.5	ø 21±0.5
E	2±0.5	2±0.5
W	14±1.5	24.4±2.0
t	2±0.5	2±0.5

Pull-out beginning : Empty part more than 500mm+Cover tape more than 400mm Pull-out end: Empty part more than 500mm+Cover tape more than 400mm

(5) Emboss Carrier Taping Dimensions for SSOP8/14/16/20

	SSOP8	SSOP14/16	SSOP20	Unit : mn
Symbol	Size	Size	Size	Remark
A	6.70±0.1	6.95±0.1	6.70 ± 0.1	Bottom+0.3mm
В	3.9±0.1	5.4±0.1	6.9±0.1	Bottom+0.3mm
D ₀	1.55±0.05	1.55±0.05	1.55±0.05	
Dı	1.55±0.1	1.55±0.1	1.55 ± 0.1	
Е	1.75±0.1	1.75±0.1	1.75 ± 0.1	
F	5.5±0.05	5.5±0.05	5.5±0.05	
P ₀	4.0±0.1	4.0±0.1	4.0±0.1	
P ₁	8.0±0.1	8.0±0.1	8.0 ± 0.1	
P ₂	2.0±0.05	2.0±0.05	2.0±0.05	
T	0.3±0.05	0.3±0.05	0.3 ± 0.05	
T ₂	2.2	2.2	2.2	
W	12.0±0.3	12.0±0.3	12.0±0.3	
Wı	9.5	9.5	9.5	Thickness 0.1 MAX

Pull-out beginning: Empty part more than 20 embosses+Cover tape more than one around reel Pull-out end: Empty part more than 20 embosses

(6) Emboss Carrier Taping Dimensions for SSOP24

	Unit: mi
	SSOP24
Symbol	Size
Α	8.3
В	10.5
D ₀	1.55
D ₁	2.05
E	1.75
F	7.5
P ₀	4.0
P ₁	12.0
P ₂	2.0
T	0.3
T ₂	2.86
W	16.0

Pull-out beginning : Empty part more than 500mm+Cover tape more than 400mm Pull-out end: Empty part more than 500mm

(7) Emboss Carrier Taping Dimensions for MTP5

Unit: mm

Symbol	Size	Remark
A	3.2±0.1	Bottom Size
В	3.23±0.1	Bottom Size
D ₀	1.5+0.1	
D ₁	1.0	
E	1.75±0.1	
F	3.5±0.05	DATE BY
P ₀	4.0±0.1	Jan 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P ₁	4.0±0.1	
P ₂	2.0±0.05	LAAL
T	0.27±0.05	
T ₂	1.55	
W	8.0±0.3	
W_1	5.5±0.05	Thickness 0.1 MAX

 $\begin{array}{c|c} & \text{Unit: mm} \\ \hline \text{Symbol} & \text{Size} \\ \hline A & \phi \, 178 \pm 2 \\ \hline B & \phi \, 75 \pm 1 \\ \hline C & \phi \, 13 \pm 0.5 \\ \hline D & \phi \, 21 \pm 0.8 \\ \hline E & 2 \pm 0.5 \\ \hline W & 7.5 \\ \hline W_1 & 2 \\ \hline \end{array}$

Pull-out beginning: Empty part more than 20 embosses+Cover tape more than one around reel Pull-out end: Empty part more than 20 embosses

(8) Emboss Carrier Taping Dimensions for SOT89

Symbol	Size	Remark
A	4.9±0.1	Bottom Size
В	4.5±0.1	Bottom Size
D ₀	1.5+0.1	
Е	1.5±0.1	
F	5.65 ± 0.05	
P ₀	4.0±0.1	
P ₁	8.0±0.1	
P ₂	2.0 ± 0.05	
T	0.3 ± 0.05	
T ₂	2.0	
W	12.0±0.3	
W_1	9.5	Thickness 0.1 MAX

	Unit: mn
Symbol	Size
A	ø 178±2
В	ø 80±1
С	ø 13±0.5
D	ø 21±0.8
E	2±0.5
W	14±1.5
W_1	2+0.1

Pull-out beginning: Empty part more than 40mm+Cover tape more than 500mm Pull-out end: Empty part more than 40mm

■ Tray Dimensions

Two types of soft and hard tray are using as a QFP packing, the dimensions are shown in below.

(1) Hard Tray Dimensions for QFP44-A1,56-A1

Material Polypropylene (Anti Electnstatic treatment)

Maximum Conents 50pcs

(2) Soft Tray Dimensions for QFP44-B1

AA Cross Section

Material	Conductive Vinyl Chloride Resin
Maximum Contents	50pcs

(3) Hard Tray Dimensions for QFP64-B2

Material	Conductive Resin	
Maximum Contents	50pcs	

(4) Hard Tray Dimensions for QFP64-B3

AA Cross Section

BB Cross Section

CC Cross Section

Material	Conductive Resin		
Maximum Contents	50pcs		

(5) Hard Tray Dimensions for QFP64-C1/C2,80-C1/C2,100-C1/C2

Material Po		ystyrene (Anti Electrostatic treatment)			
Maximum C	onents	50pcs			

(6) Hard Tray Dimensions for QFP64-D1

Unit:mm

Material	Polystyrene		
Maximum Contents	50pcs		

(7) Hard Tray Dimensions for QFP64-E1

AA Cros Section

Material	Polystyrene		
Maximum Contents	50pcs		

(8) Hard Tray Dimensions for QFP64,80,100-G1

Material	Polypi	lypropylene (Anti Electnstatic treatment)		
Maximum C	onents	50pcs		

Note)

- 1) * Size indicates resin thickness included
- 2) Tape is used with 35mm width wide type
- 3) Tape rolling length is 20m long
 - (2) Standard Form of Shipping Out ①Tape dimensions

Name		Material		
1	Basefilm	Polyimide		
2	Conductive body Plating	Cu. thin film Electroless tin plating		
3	Sealing Material	Epoxi type		
4	Bump	Gold		

		Unit: mr
Symbol	Size	Remark
A	24.8 MAX	Effective area
В	60.0 MAX	Effective area
D	1.981	
F	28.977	and A
Po	4.75	
P ₁	61.75MAX	100000
W	34.975	

②Reel dimensions

	Unit: mr		
Symbol	Size		
Α	ø 330		
В	φ 105		
С	φ 25.9		
D	4.0±0.2		
W	37.0±0.5		
t	2.5MAX		

* Material: Styrol (Prevention of electrification)

TCP DIMENSIONS

③Taping Specification

Carrier tape : 20^{+6}_{-8} m Lead tape : 2 ± 1 m Conductive tape : 20^{+6}_{-8} m Saparator : 20^{+6}_{-8} m

Pull-out direction

Structural specification

Name	Number of contained	Size	Material		
Reel	-	φ 330x23 ^w	Styrol		
Outer Box	1 reel	343x336x50	Cardbroad		
Package bag	1 reel	440x480x0.08	Sheet for prevention of electrification		

AUDIO

4

A

OIGUA

AUDIO SIGNAL ICS CROSS REFERENCE

NJRC			EQUVALENT PRODUCTS BY OTHER COMPANIES					
FUNCTIONS Types		N·S	MITSUBISHI	SONY	ROHM	SGS	OTHERS	
Sys ₃	Single	NJM386D NJM386L NJM386M NJM386BD NJM386BL NJM386BM NJM2070D NJM2070M	LM386N LM386N4	estranço tera pilit ang prochemiento, el mendo como pilit graph militar	Scholav gas of			
POWER AMPLIFIER	B.T.L.	NJM2113D NJM2113L NJM2113M NJM2113E NJM2113V			(VS)	184 / 184 / 182)		MC34119P MC34119M MC34119D
	Dual	NJM2073D NJM2073M NJM2073S NJM2076D NJM2076M NJM2076S NJM2096D NJM2096M NJM2096S			BYBSCI STOPE	navida V n 2 MIN3	TDA2822M	
PRE		NJM387D NJM387L NJM387M	LM387N					
AMPLIFIER	for Head Phone Stereo	NJM2067D NJM2067M				BA3404F		
PRE-POWER A	MPLIFIER	NJM2128M						
STEREO MODU	JLATOR	NJM2035D NJM2035M						
SIGNAL LEVEL SENS	OR	NJM2072D NJM2072M	8		6	G		
ACTIVE BASS EXPAN	DER	NJM2106M	0 H		n n			
RF AMPLIFIER FOR (CD PLAYER	NJM2117V		M51593FP	CXA1571N			
DOLBY	N.R.	NJM2063AD NJM2063AM NJM2065AD NJM2065AM NJM2085M		FREE SECTION		THE	TDA7335	
	SURROUND	NJM2177L NJM2177FB3 NJM2177AL NJM2177AFB3 NJW1102L NJW1102FG1		M69032P	T A			
MONORAL MIC AM	PLIFIER	NJM2110M NJM2110V NJM2118M NJM2118V		(4.1)				
AUDIO SWITO	сн	NJM2520D NJM2520M NJM2520V NJM2520L NJM2521D NJM2521M NJM2521V NJM2521L			7.770			

LOW VOLTAGE AUDIO POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM386 is a power amplifier designed for use in low voltage consumer applications. The gain is internally set to 20 to keep external part count low, but the addition of an external resistor and capacitor between pins 1 and 8 will increase the gain to any value up to 200.

The inputs are ground reference while the output is automatically biased to one half the supply voltage. The quiescent power drain is only 24 milliwatts when operating from a 6 volt supply, making the NJM386 ideal for battery operation.

■ PACKAGE OUTLINE

N.IM3861

NJM386D

NJM386M

■ FEATURES

- Operating Voltage
- Minimum External Components Low Operating Current
- (3mA)
- Voltage Gain
- $(20 \sim 200)$

(4V~12V)

- Single Supply Operation
- Self-centering of Output Offset Voltage
- Package Outline
- DIP8, SIP8, DMP8
- Bipolar Technology

A PPLICATIONS

- AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Line drivers
- Ultrasconic drivers
- Power converters

- Small servo drivers
- PIN CONFIGURATION

PIN CONNECTION 1. GAIN -INPUT +INPUT GND

OUTPUT BYPASS GAIN

EQUIVALENT CIRCUIT

(ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	15	V
Power Dissipation	P _D	(DIP8) 700 (SIP8) 800 (DMP8) 300	mW mW
Input Voltage Range	V _{IN}	±0.4	V
Operating Temperature Range	Topr	-20~+70	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(Ta=25℃)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		4		12	V
Operating Current	Icc	$V^{+}=6V, V_{IN}=0$	_	3	8	mA
Output Power (note 2)	Po	$V^{+}=6V, R_{L}=8\Omega, THD=10\%$	250	325	_	mW
	1 - 1	$V^{+}=9V$, $R_{L}=16\Omega$, THD=10%	_	500	_	mW
Voltage Gain	Av	$V^{+}=6f, f=1kHz$	24	26	28	dB
		10μF from Pin 1 to 8	43	46	49	dB
Bandwidth	BW	V+=6V, Pins 1 and 8 Open		300	_	kHz
Total Harmonic Distortion	THD	V+=6V, $R_L = 8\Omega$, $P_{OUT} = 125$ mW f=1kHz, Pins 1 and 8 open	-	0.2	_	%
Power Supply Rejection Ratio	SVR	V+=6V, f=1kHz, C _{BYPASS} =10μF Pins 1 and 8 Open		50	_	dB
Input Resistance	R _{IN}	V+=6V, Pins 2 and 3 Open		50	_	kΩ
Input Bias Current	IB	v -ov, Filis 2 and 3 Open	_	250	_	nA

■ TYPICAL APPLICATION

■ POWER DISSIPATION VS. AMBIENT TEMPERATURE

■ NOTICE WHEN APPLICATION

Prevention of Oscillation

It is recommended to insert capacitors at around the supply source and the GND pins with the value of $0.1\mu F$ and more than $100\mu F$ which are featuring higher frequency efficiency.

When start of oscillation accordingly to the load condition, it is recommendable to insert the resistor of 10Ω and the capacitor of $0.047\mu F$ between the output and the GND pins.

• How to use the Input Resistor (TYP. $50k\Omega$)

The input resistors have much deviation in value generally, so that it is recommended not to use them as the constant of the circuit. The countermesure to be recommended si to apply the resistor of higher in value, which is so higher to be able to ignore the input deviation($3k\Omega$ approximately) in parallel application.

• Maintenance of Output Offset Voltage

By making connection of both input pins with low value resistors (below $10K\Omega$ approximately) to GND, the output offset voltage is automatically set in the medium range value of the supply source. However, the DC Gain of NJM386 is approximately at 20 times in value, so that when keeping one side input pin open, and the other side to GND on DC condition. The voltage drop caused by input resistor X input bias current, that is, (input resistor X input bias current) X 20 times voltage is to be added to the output offset voltage, and that the medium range output voltage is to be sheared, which in the result, no distortion output oscillation range shall be decreased.

In regard to dealing with the input pin, it is recommendable to put the input pin into the GND at first, and the other side of signal input pin, to be connected into GND with the resistor of less than about $10K\Omega$ on DC condition

Concerning Cross-Over Distortion

NJM386 in application, the cross-over distortion is to be generated in the high band operation.

The countermeasure for that, it is recommendable to have it replaced with NJM386B (But, be carful in prevention of oscillation). And for prevention of the cross-over distortion, it is recommendable to apply NJM2072, NJM2073.

. The Application Purpose and Recommended Value of the External parts.

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENDED VALUE	d behaviour of their REMARKS
Rs	Current like nois reduction VoQ stabilization	Below 10 KΩ	The noise becomes high when the input pin opend.
C _{IN}	V _{0Q} stabilization	lμF	It is not required in case when there is no DC offset in the input signal.
C_{P1}	V ⁺ stabilization	≅C _{CUP}	It can be decreased in value when the output impedance source is low.
C _{P2}	Oscillation prevention	0.1µF	Insert near around the supply source and GND pins.
C_B	Ripple rejection to V_0 by way of V^+	47μF	It is not required when the V ⁺ is stabilized.
Co	Oscillation prevention	0.047μF	To be decided in value according to load condition.
Ro	Oscillation prevention	10Ω	To be decided in value according to load condition.
CCUP	Output DC Decoupling	220μF when	Low band cutoff frequency(f _L) shall be decided by $C_{\text{CUP}}R_{\text{L}}$.
		$R_L = 8\Omega$	When C _{CUP} is less in value, f _L is to be increased.

■ MUTING CIRCUIT EXAMPLE

(1) The way how to apply DC voltage to -INPUT pin.

According to this method, when applicating DC voltage, Vmute to -INPUT PIN, the output voltage V_0 at voltage gain A_V will be,

 $V_0 = V^+/2 - V$ mute* A_V

It is the way that the muting shall be proceeded by keeping V_0 saturating at the GND side. Now, the output is saturated, so that there is no leakage of muting. However, when the peak value of signal input is increased higher than about the value of 1/4 Vmute, the leakage of muting shall be started.

(2) The way, how to connect gain. No. 8 PIN to GND

It is the way, originally that the pin which is to be used for adjusting the gain of NLM386, but to have it applied in connecting to GND side, and by doing so, to stop the earely stage motion, but keeping on for muting operation. The earely stage motion shall be stopped, therefore, the precise muting shall be proceeded with less leakage on operation.

(3) The way how to proceed casting the BY PASS pin on V+ side

By this way, the bias circuit within IC, to be stopped and then, further for stopping motion of driver level, and at the output level. However, the input level alone is operating, so that a slight leakage of signal to the output pin through inside resistor to be occured. The leakage level is to be inverse proportion to load, therefore, it is necessary to check accordingly through the load condition.

- OUTPUT

(Note) Improper Muting Circuit

Never to apply with the Muting Circuit, because of the fact that, there are cases when the muting does not operate depending on IC to be used.

The way how to connect the BY PASS PIN to GND.

APPLICATION CIRCUIT EXAMPLE

Amplifier 1

Low Distortion Power Wienbridge Oscillator

Amplifier 2

Square Wave Oscillator

■ WIDE RANGE APPLICATION

NJM386 is a small output power amplifier with minimum external parts, and also the gain of which is fixed, yet it can be made changeable in value, too.

GAIN CONTROL

To make the NJM386 a more versatile amplifier, two pins (1 and 8) are provided the gain contorol. With pins 1 and 8 open the $1.35k\Omega$ resistor sets the gain at 20 (26dB). If a capacitor is put from pin 1 to 8, bypassing the $1.35k\Omega$ resistor, the gain will go up to 200 (46dB). If a resistor is placed in series with the capacitor, the gain can be set to any value from 20 to 200. Gain contorol can also be done by capacitively coupling a resistor (or FET) from pin 1 to ground.

Additional external components can be placed in parallel with the internal feedback resistors to tailor the gain and frequency response for individual appapplications. For example, we can compensate poor speaker bass response by frequency shaping the feedback path. This is done with a series RC from pin 1 to 5 (paralleling the internal $15k\Omega$ resistor). For 6dB effective bass boost: $R \cong 15k\Omega$, the lowest value for good stable operation is $R_{MIN}=10k\Omega$ if pin 8 is open. If pins 1 and 8 are bypassed then R as low as $2k\Omega$ can be used. This restriction is because the amplifier is only compensated for closed-loop gains greater than 9.

■ TYPICAL CHARACTERISTICS

Operating Current vs. Operating Voltage

Voltage Gain vs. Frequency

Total Harmonic Distortion vs. Frequency

Maximum Output Voltage Swing vs. Operating Voltage

Power Supply Rejection Ratio vs. Frequency

Total Harmonic Distortion vs. Output Power

■ TYPICAL CHARACTERISTICS

Power Dissipation vs. Output Power

Power Dissipation vs. Output Power

Power Dissipation vs. Output Power

Power Dissipation vs. Output Power

Frequency Response with Bass Boost

(Typical Application "Amplifier 1")

Operating Current vs. Temperature

Voltage Gain vs. Temperature

LOW VOLTAGE AUDIO POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM386B is wider operating voltage and higher output power version of NJM386. The maximum operating voltage is 18V, and the maximum output power is up to 1W.

■ FEATURES

Operating Voltage

(4V~18V)

- Minimum External Components
- Low Operating Current

(5mA) $(20 \sim 200)$

- Voltage Gain
 - Single Supply Operation
- Self-centering of Output Offset Voltage Package Outline

DIP8, SIP8, DMP8

Bipolar Technology

- APPLICATIONS AM-FM radio amplifiers
- Portable tape player amplifiers
- Intercoms
- TV sound systems
- Line drivers
- Ultra-sonic Drivers
- Small servo drivers
- Power converters

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM386BD

NJM386BM

NJM386BL

PIN FUNCTION

- 1. GAIN
- 2. -INPUT
- 3. +INPUT 4. GND
- 5. OUTPUT 6. V⁺
- 7. BY PASS
- 8. GAIN

EQUIVALENT CIRCUIT

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	22	V
Power Dissipation	PD	(DIP-8) 700 (SIP-8) 800 (DMP-8) 300	mW mW
Input Voltage Range	V _{IN}	±0.4	V
Operating Temperature Range	Topr	-20~+70	C
Storage Temperature Range	. Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(Ta=25℃)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		4		18	V
Operating Current	Icc	V+=6V, V _{IN} =0	of the same	5	8	mA
Output Power	Po	$V^{+}=6V, R_{L}=8\Omega, THD=10\%$	250	325	-	mW
		$V^{+}=9V$, $R_{L}=8\Omega$, THD=10% (note 2)	500	850	1-	mW
		$V^{+}=16V$, $R_{L}=32\Omega$, THD=10% (note 1)	700	1000	-	mW
Voltage Gain	Av	Vs=6V, f=1kHz	24	26	28	dB
		10μF from Pin 1 to 8	43	46	49	dB
Bandwidth	BW	V+=6V, Pins 1 and 8 Open		600	-	kHz
Total Harmonic Distortion	THD	V ⁺ =6V, $R_L = 8\Omega$, $P_{OUT} = 125 \text{mV}$ f=1kHz, Pins 1 and 8 Open	-	0.1	-	%
Power supply Rejection Ratio	SVR	V ⁺ =6V, f=1kHz, C_{BYPASS} =10 μ F Pins 1 and 8 Open	14(2417)	50	M=)	dB
Input Resistance	R _{IN}		-	50	_	kΩ
Input Bias Current	I _B	V+=6V, Pins 2 and 3 Open	7	100	-	nA

(note 1) NJM386BM: At on Board (note 2) NJM386BS: At on Board

■ TYPICAL APPLICATION

■ POWER DISSIPATION VS. AMBIENT TEMPERATURE

Ambient Temperature Ta (°C)

■ NOTICE WHEN APPLICATION

· Prevention of Oscillation

It is recommended to insert capacitors at around the supply source and the GND pins with the value of 0.1μ F and more than 100μ F which are featuring higher frequency efficiency.

When the speaker load condition, it is recommendable to insert the resisitor of 10Ω and the capacitor of $0.047\mu F$ between the output and the GND pins.

• How to use the Input Resistor $(TYP. 50k\Omega)$

The input resistors have much deviation in value generally, so that it is recommended not to use them as the constant of the circuit. The countermeasure to be recommended is to apply the resistor of higher in value, which is so higher to be able to ignore the input deviation ($3k\Omega$ approximately) in parallel application.

Maintenance of Output Offset Voltage

By making connection of both input pins with low value (below $10k\Omega$ approximately) to GND, the output offset voltage is automatically set in the medium range value of the supply source. However, the DC Gain of NJM386 is approximately at 20 times in value, so that when keeping one side input pin open, and the other side to GND on DC condition. The voltage drop caused by input resistor \times input bias current, that is, (input resistor \times input bias current) \times 20 times voltage is to be sheared, which in the result, no distortion output Oscillation range shall be decreeased.

In regard to dealing with the input pin, it is recommendable to put the input pin into the GND at first, and the other side of signal input pin, to be connected into GND with the resisitor of less than about $10k\Omega$ on DC condition.

• The Application Purpose and Recommended Value of the External Parts.

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENED VALUE	REMARKS
Rs	Current like noise reduction Voo stabilization	Below 10kΩ	The noise becomes high when the input pin opend.
C _{IN}	V _{OQ} stabilization	lμF	It is not required in case when there is no DC offset in the input signal.
CPI	V ⁺ stabilization	≅ C _{cup}	It can be decreased in value when the output impedance source is low.
C _{P2}	Oscitallation prevention	0.1µF	Insert near around the supply source and GND pins.
Cv	Ripple rejection to V_0 by way of V^+	47μF	It is not required when the V ⁺ is stabilized.
*Co	Oscillation preventon	0.047µF	To be decided in value according to load condition.
*Ro	Oscillation prevention	10Ω	To be decided in value according to load condition.
CCUP	Output DC decoupling	470μ F when $R_L = 4\Omega$ 220μ F when $R_L = 8\Omega$	Low band cutoff frequency (f_L) shall be decided by C_{CUP} R_L When C_{CUP} is less in value, f_L is to be increassed.

NJM386B Recommended Circuit

■ TYPICAL CHARACTERISTICS

Operating Current vs. Temperature

Voltage Gain vs. Temperature

Operating Current vs. Operating Voltage

Maximum Output Voltage Swing vs. Operating Voltage

Total Harmonic Distortion vs. Output Power

■ TYPICAL CHARACTERISTICS

Power Dissipation vs. Output Power

STEREO MODULATOR

■ GENERAL DESCRIPTION

The NJM2035 is an integrated circuit used to generate a stereo composite signal and obtain switching output and 19kHz pilot signal due to two input audio signal and 38kHz X-tal and a few external CR.

The NJM2035 operates at 1.5V battery typically and even at 1.2V obtains separation more than 25dB.

NJM2035 can generate stereo multiplex signal easily by combination battery generator section.

■ PACKAGE OUTLINE

■ FEATURES

Low Operating Voltage	$(V^* \ge 1.0V)$
Low Operating Current	(Icc≤3.0mA)
High Separation	(SEP≥25dB)
Voltage Gain	(20~200)
Separation Adjustable	
Package Outline	DIP14, DMP14

Bipolar Technology

NJM2035M

BLOCK DIAGRAM

NJM2035D NJM2035M

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	3.6	V
Power Dissipation	PD	(DIP14) 500 (DMP14) 300	mW mW
Operating Temperature Range	Topr	−20~+75	C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V+=1.5V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Cuurent	Icc	$R_L = \infty$	_	1.8	3.0	mA
Input Impendance	Z _{IN}	f=1kHz	_	420	- T	Ω
Maximum Input Current	I _{IM}		_	4.1	_	μА
Voltage Gain	Gv	$R_S = 2k\Omega$, $R_L = 10k\Omega$	16	20	_	dB
Difference Gain Between Channels	GvD	$R_S = 2k\Omega$, $R_L = 10k\Omega$	_ 0	REDA	2.0	dB
Equivalent Input Noise Voltage	V _{NI}	$R_S = 2k\Omega$, $R_L = 10k\Omega$, Aweighted	_	_	2.0	μVrm:
Maximum Output Voltage Swing	V _{OM}	$R_S = 2k\Omega$, $R_L = 10k\Omega$	140	200	_	mVp-r
Output Impendance	Zo	f=1kHz	_	230	- 72	Ω
Pilot Output Voltage	VOP	$R_L = 150k\Omega$	/	240	1/2	mV
Pilot Output Impendance	ROP		_	3	_	kΩ
Separation	SEP	f=1kHz at Application Circuit	_	40	-	dB
Internal Separation Compensation	S.C			-19	_	dB

■ TYPICAL CHARACTERISTICS (*: BY APPLICATION CIRCUIT)

Operating Current vs. Operating Voltage

Voltage Gain vs. Input Series Resistance

Input Series Resistance Rs (Ω)

Pilot Output Voltage vs. Operating Voltage

* Separation vs. Frequency

*** Total Harmonic Distortion** vs. Modulation

MPX Maximum Output Voltage Swing vs. Operating Voltage

■ APPLICATION CIRCUIT EXAMPLES

The following block diagram shows an FM stereo transmitter using NJM2035. Input a current mode signal, because two inputs of NJM2035 are of a low impedance type. Also, the pre-emphasis can be applied at a time constant of C_L and R_L by utilizing this characteristic.

Input series resistance Rs of low band can be obtained from the maximum input voltage $V_{IM(P-P)}$ and the maximum input current I_{IM} of NJM2035.

 $R_s = V_{IM}/2I_{IM}$ ($R_s = R_1 + R_2$)

However, the circuit for stabilized operation, R_2 must stay between $2-12k\Omega$, and also, in order to get enough preemphasis characteristics, R_1 is repuired to maintain within the range of $5\times R_2 \sim 10\times R_2$. Transmitting on FM stereo. it is advisable to set the pre-emphasis time C_1 , R_1 at 50μ s. When it is large maximum input voltage and could not satisfy R_1 , R_2 condition, it is important to attenuate the input voltage beforehand, like that of Fig.2 the circuit example. In this case however, special care must be taken for not making the pre-emphasis time control influenced from the attenuater.

In order to get the important composit signals for stereo transmitting, the MPX signal and the pilot signal which were delivered output at each different pins, to be mixed (MIX) and the ratio is decided by the modulation of NJM2035 the maximum output voltage V_{OM} that means that, it can be decided by how much percent to be set the ratio of the maximum modulation. The maximum modulation takes the essential part to decide the dynamic range and to be set with consideration of modulation sensitivity of FM transmitter, S/N and also with the linearity of receiver. In general, 200% modulation ($\Delta f = \pm 150 \text{MHz}$) will give the satisfacting result.

■ RECOMMENDED APPLICATION CIRCUIT & EACH WAVEFORM

Recommended Application Circuit & Each Waveform on the other hand, the pilot level is to be modulated 10% with no connection of Max. modulation ratio, so that the following relation can be set.

$$\frac{R_{\text{O}} + R_{3}}{R_{\text{OP}} + R_{4}} \times \frac{2\sqrt{2} \ V_{\text{OP}}}{V_{\text{OM}}} = \frac{10}{200}$$

Howerer, for the stability in operation, it is advisable to control MPX signal loading more than $1.8k\Omega$, and the pilot signal loading more than $39k\Omega$.

As in example of Fig.l Simplified Application Circuit, when making the rectangular wave like output to be the composit signal itself, the separating effect shall be reduced due to influence by harmonic components included in MPX signal, so that it requires to make the adjustment to be able to get ample separation of pilot signal phase by the operation of C_2 , R_4 , time signal. In this procedure, there is defectine side of getting slightly difference of the best position of separating effect depending upon the tunner of receiver's side, however, when $R_3 = 2k\Omega$, $R_4 = 150k\Omega$, $C_2 = 330pF$ then the ample separation can be obtained practically.

Special care must be taken that the pilot signal's the third harmonic wave 57kHz will be the cause of dangerous beating.

Fig 2 idicates the example of recommende application circuit of stereo modulaton when NJM2035 in used. As explained in the wave form, high quality composit signal can be obtained by only putting a simpl filter beforehand. Then the previousely mentioned problems can be improved a great deal.

The input in mondulated 30% at AUX level (150mV) ——— changeable of + 3dB \sim $-\infty$ by volume control.

 V_{RI} corresponds to the fluctuation of GV feature of NJM2035, and also for fluctuation of modulation sensitivity of FM modulation circuit which in connected after $V_{R,2}$.

 V_{R3} is to make minimum adjustment of 38kHz sub-carrier leakage, and with this adjustment, it can control until about -50 dB in comparing to 100% modulation level.

■ The adjustment proceduce in the recommended application circuit.

- ① Sub-carrier leakage can be minimized by the adjustment of V_{R3}.
- 2 The maximum output voltage of pilot can be obtained by the adjustment of L2
- 3 V_{R2} adjustment of the pilot will help to bring the modulation ratio a little over 10% ($\triangle f = \pm 7.5 kH_Z$)
- ① The modulation ratio can be increased as much as 30% at VRI by putting designed standard input.
- By putting only the input for L-channel, and making re-adjustment of L₂, so that the maximum power of output at L-cannel can be obtained at the receiver's side. (19kHz phase adjustment)

Against 100% modulation at the recommended circuit S/N at A curve +15kHz LPF 77dB, ane at 15kHz LPF 67dB approximately can be obtained.

■ GENERAL DESCRIPTION

The NJM2063A is the dual low-voltage operating DOLBY B-type noise reduction processor IC. The NJM2036A operates as encode or decode mode and is suitable to the headphone stereo and small cassette tape recorder.

■ FEATURES

Operating Voltage

(1.8V~6V)

(4mA)

- 16 pins, Dual Circuit
- Minimum External Components
- Good temperature characteristics
- Internal NR ON/OFF and Mode SW
- Excellent Signal Handing characteristics
 Package Outline

DIP16, DMP16

Bipolar Technology

■ PACKAGE OUTLINE

NJM 2063 AD

NJM 2063 AM

(note) Dolby and the double-D symbol are trademarks of Dolby Labolatories Licensing Corporation. San Francisco, CA94103-4813, USA.

> This device available only to licensees of Dolby Lab. Licensing and application information may be obtained from Dolby Lab.

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	6.5	V
Power Dissipation	PD	(DIP16) 700	mW
	42 2 3	(DMP16) 350	mW
Operating Temperature Range	Topr	-25~+75	°C
Storage Temperature Range	Tstg	−55~+150	°C

■ ELECTRICAL CHARACTERISTICS

(V+=3.0V. Dolby Level=100mVrms=0dB, Ta=25℃)

				1000		
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V ⁺	And who sit is males Which to be	1.8	3.0	6.0	V
Operating Current	Icc	NR ON (ENCODE)	-	8.0	15.0	mA
	Gv2-3 / Gv15-14		9.0	10.0	11.0	dB
Voltage Gain	Gv24 / Gv15-13	f=1kHz, 0dB	9.0	10.0	11.0	dB
Total Harmonic Distortion	THD	f=1kHz, ENCODE		0.2	0.6	%
Signal Handing	X=X is ball	V+=1.8V, f=1kHz, THD<1%	12.0		PATE IN	dB
S/N Ratio	S/N	Rg=5.6kΩ CCIR/ARM FILTER Encode Decode NR-OFF	64.0	72.0 83.0 74.0		dB
N.R Encode Boost 20 $\log \frac{V_{3 (14)}(N.R \text{ ON})}{V_{3 (14)}(N.R \text{ OFF})}$	ENC-1.4k ENC-1.4k ENC-5k ENC-5k ENC-10k	f=1.4kHz, V ₃₍₁₄₎ (N.R OFF)=-20dB f=1.4kHz, V ₃₍₁₄₎ (N.R OFF)=-30dB f=5kHz, V ₃₍₁₄₎ (N.R OFF)=-20dB f=5kHz, V ₃₍₁₄₎ (N.R OFF)=-30dB f=10kHz, V ₃₍₁₄₎ (N.R OFF)=0dB f=10kHz, V ₃₍₁₄₎ (N.R OFF)=-40dB	2.9 6.0 1.7 6.7 -1.1 9.8	4.4 7.5 3.2 8.2 0.4 10.4	5.9 9.0 4.7 9.7 1.9	dB dB dB dB dB

DOLBY B.C TYPE NOISE REDUCTION PROCESSOR

■ GENERAL DESCRIPTION

The NJM2065A is a low-voltage operating DOLBY B·C-type noise reduction processor IC. The NJM2065A is a suitable to the headphone stereo and small cassette tape recorder.

■ FEATURES

- Low Operating Voltage
- (1.8V~6.0V)
- Minimum External Components
- Good temperature characteristics (4mA
- Internal Switch of NR ON/OFF ENCODE/DECODE
- Dolby Level Encode Output Level 100mVrms
 Decode Output Level 100mVrms
- Package Outline
- DIP20, DMP20
- Bipolar Technology

■ PACKAGE OUTLINE

NJM2065AD

NJM2065AM

(note) Dolby and the double-D symbol are trademarks of Dolby Labolatories Licensing Corporation. San Francisco, CA94103-4813, USA.

> This device available only to licensees of Dolby Lab. Licensing and application information may be obtained from Dolby Lab.

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	6.5	V
Power Dissipation	PD	(DIP16) 700	mW
		(DMP16) 350	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

ELECTRICAL CHARACTERISTICS

(V+=3.0V. (note 1). Ta=25°C)

	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	METER SYMBOL R/P NR f(Hz) OTTHER CONDITIONS				
	V _{ope}	1.8		6	v
ignal	I D OFF No signal	1.5	3	5	mA
C	G _{VR} R OFF 1k	9	10	11	dB
	G _{VM} R OFF 1k	9	10	11	dB
				1	
)dB	B-1 R B 5k 0dB	-1.2	0.3	1.8	dB
	B-2 R B 1.4k -15dB	0.8	2.3	3.8	dB
	B-3 R B 1k -25dB	4.2	5.7	7.2	dB
	B-4 R B 5k -30dB	6.7	8.2	9.7	dB
	B-5 R B 5k -40dB	9.8	10.3	11.8	dB
	C-1 R C 5k 0dB	-4.3	-2.3	-0.3	dB
	C-2 R C 1k -20dB	3.9	5.9	7.9	dB
	C-3 R C 500 -30dB	9.8	11.8	13.8	dB
	C-4 R C 700 -40dB	14.5	16.5	18.5	dB
	C-5 R C 5k -60dB	19.4	20.4	22.4	dB
Jul 2					
)dB	B _d P B 5k -30dB		-8.2		dB
	C _d P C 1k -40dB		-16.5		dB
	SH P C 1k THD=1%, V+=1.	12	13		dB
1.0		1.2			u.b
	SN _c R C	60	62	1000	dB
	$R_{\rm SN_0}$ R R $R_{\rm g}=5.6k\Omega$		71		dB
ARM	SN _o R OFF CCIR/ARM		78		dB
	on	100			
)dB	THD1 R OFF 1k 0dB		0.03	0.2	%
	THD2 P OFF 1k 0dB		0.03		%
	THD3 R B 1k 0dB		0.05		%
	THD4 P B 1k 0dB		0.05		%
	THD5 R C 1k OdB		0.09		%
	THD6 P C 1k OdB		0.08		%
, alb			0.00	1	10
ls of	V _{ctR} Voltage between both terminals of	0		0.2	v
	V_{clP} 10k Ω register connected to pin 20	1.6		V+	v
1 20) 10k12 register conflected to pin 20	1.0		,	
	V _{ctO}		open		v
ls of	Valtage between both terminals of	16	open	V+	v
n 1	8.2kΩ register connected to pin 1	1.0			
		0		0.2	v
	VotB >		0		

(note 1): Definition of 0dB DOLBY LEVEL.

Encode Mode: On NR-OFF condition. put 400 Hz input signal to PIN19, and adjust the voltage of PIN15 to 31.6mV, At this condition the voltage of PIN9 is about 100mV which is 0dB.

Decode Mode: On NR-OFF condition, put 400Hz input signal, to PIN19, and adjust the voltage of PIN15 to 31.6mV. At this condition the voltage of PIN10 is about 100mV which is 0dB.

3V AUTO-REVERSE DUAL PRE-AMPLIFIER

■ GENERAL DESCRIPTION

■ PACKAGE OUTLINE

NJM2067 is dual pre-amplifier including channel switch which was designed for 3V Auto-reverse Head Phone Stereo.

■ FEATURES

- Internal Switch of Input Channel
- Package Outline

DIP16, DMP16

Bipolar Technology

NJM2067D

NJM2067M

PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	4.5	V
Power Dissipation	PD	(DIP16) 700	mW
		(DMP16) 350	mW
Operating Temperature Range	Торг	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V^{+}=3V, R_{L}=10k\Omega)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	V _{IN} =0V	0.9	2.3	4.0	mA
Open Loop Voltage Gain	Gv	$V_O = -10 dBm$, $f = 1 kHz$	70	80	_	dB
Equivalent Input Noise Voltage	V _{NI}	$V_{IN}=0$, $R_g=2.2k\Omega$	_	1.2	-	μVrms
Maximum Output Voltage	V _{OM}	THD=1%, f=1kHz	250	450	_	mVrm:
Crosstalk between Channels	CST	Other channels V _O =-10dBm, f=1kHz	55	65	_	dB
Crosstalk between A and B Channel	CT	Other chanels V _O =-10dBm, f=1kHz	55	65	_	dB
l'otal harmonic Distortion	THD	$V_0=0.2V$ rms, $f=1$ kHz	_	0.08	0.15	%
Input Bias Current	I _B	$V_{IN}=0Vrms$	_	100	310	nA.
Maximum LED Current	ILED		_	5	_	mA

■ TYPICAL CHARACTERISTICS

Operating Current vs. Operating Voltage

Bias Voltage vs. Ambient Temperature

Open Loop Voltage Gain

Total Harmonic Distortion

Maximum Output Voltage Swing

LOW VOLTAGE POWER AMPLIFIER

■ GENERAL DESCRIPTION

NJM2070 is a power amplification monolithic IC of wide Operating voltage range. It is applied for audio power amplifier in portable radio and handy cassette player.

(1.8V~15V)

DIP8, DMP8

4mA typ: V+=6V)

■ PACKAGE OUTLINE

■ FEATURES

Operating Voltage

Low Operating Current

Package Outline

Bipolar Technology

■ PIN CONFIGURATION

PIN FUNCTION

- 1. NC
- 1. NC
 2. +INPUT
 3. -INPUT
 4. GND
 5. GND
- 6. OUTPUT
- 8. NC

(Ta=25℃)

V+	N 15	
	15	V
Iop	1	A
PD	(DIP8) 700	mW
	(DMP8) 500 (note)	mW
Topr	-20~+75	r
Tstg	-40~+125	°C
	P _D	P _D (DIP8) 700 (DMP8) 500 (note) Topr -20~+75

(note) At on PC board

■ ELECTRICAL CHARACTERISTICS

(V+=6V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		1.8	_	15	V
Output Voltage	Vo	1 2	_	2.7	_	V
Operating Current	Icc	$R_L = \infty$		4	7	mA
Input Bias Current	I _{IB}		_	200	-	nA
Output Power		THD=10%, f=1kHz				
	Po	$V^{+}=6V$, $R_L=4\Omega$	0.5	0.6	_	W
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	_	0.32	_	W
	Po	$V^{+}=3V$, $R_L=4\Omega$	_	120	_	mW
	Po	$V^{+}=2V$, $R_L=4\Omega$	_	30	_	mW
		THD=1%, f=1kHz				
	Po	$V^{+}=6V$, $R_L=4\Omega$	-	500	_	mW
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	_	250	_	mW
Total Harmonic Distortion	THD	$P_0 = 0.4W$, $R_L = 4\Omega$, $f = 1kHz$	_	0.25	_	%
Voltage Gain	Av	f=1kHz	41	44	47	dB
Input Impedance	Z _{IN}	f=1kHz	100	_	-	kΩ
Equivalent Input Noise Voltage	V _{NII}	$R_S = 10k\Omega$, A Curve	_	2.5	_	μV
	V _{NI2}	$R_S = 10k\Omega$, $B = 22Hz \sim 22kHz$	-	3	_	μV
Ripple Rejection	RR	$f=100Hz, C_X=100\mu F$	24	30	_	dB
Cut Off Frequency	f _H	$A_V = -3dB$ from $f = 1kHz$	_	200	_	kHz
		$R=8\Omega$, $P_0=250$ mW	-			

TYPICAL APPLICATION AND TEST CIRCUIT

■ OSCILLATION PREVENTION

Put in series a 1Ω resistor and a 0.22 μF capacitor on parallel to load, if the load is speaker. Recommend putting in parallel between pin 4 and pin 7, 0.1 μF and more than 100 μF capacitors with good high frequency characteristics near to the ground and supply voltage pins on parallel.

SIGNAL LEVEL SENSOR SYSTEM

■ GENERAL DESCRIPTION

The NJM2072 is a monolithic integrated circuit designed for signal level sensor system. The NJM2070 features low power, low voltage operation, and high input sensitivity and is suited for the signal level sensor system for micro cassette, vox for telecommunications.

(0.9V~7V)

0.55mA typ.

DIP8, DMP8

-36dB typ.

■ FEATURES

Operating VoltageLow Operating Current

High Input SensitivityPackage Outline

Bipolar Technology

nications.

■ PACKAGE OUTLINE

NJM2072D

NJM2072M

■ PIN CONFIGURATION

PIN FUNCTION

- 1. INPUT
- 2. Gain Control
- 3. Amp. Output
- 4. GND
- 5. Capacitor for Recovery time
- 6. OUT1
- 7. OUT2
- 8. V+

BLOCK DIAGRAM

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	I have a surply 8 with a live anything	V
Power Dissipation	PD	(DIP8) 500 (DMP8) 300	mW mW
Operating Temperature Range	Topr	-25~+75	C
Storage Temperature Range	Tstg	-40~+125	°C
Maximum Input Voltage	Vimax	V*-1	V

■ ELECTRICAL CHARACTERISTICS

(Ta=25℃, V+=3V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V'		0.9		7	V
Operating Current	Icc	$V_{IN} = 0 \text{mVrms}, R_L = \infty$	0.2	0.55	1.5	mA
nput Sensitivity	Vins	f=1kHz	-39	-36	-33	dBV
Attack Time (note 1)	Tatc	$C_R = 10\mu F$, $f = 1kHz$		1	25	mSec
Recovery Time (note 2)	Trec	$C_R = 10\mu F$, $f = 1kHz$	_	2	-	Sec
Output Current at ON(OUT 1)	I _{O1 on}	$V_{in} = 30 \text{mVrms}$. $V_o = 0.3 \text{V}$	1	3	-	mA
Output Current at ON(OUT 2)	l _{O2 on}	$V_{in}=0$ m V rms, $V_{o}=0.3V$	1	3	-	mA
Output Current at OFF(OUT1)	I _{O1 off}	V _{in} =0mVrms, V _o =8V	_	_	1	μΑ
Output Current at OFF(OUT2)	I _{O2 off}	V _{in} =30mVrms, V _o =8V		-	1	μΑ
nput Resistance	R _{in}	Access of	16	20	24	kΩ
Charge Current	Ichg	- TV - 8	1.0	2.0	3.0	μΑ

(note 1) Attack Time: Period from putting input signal of more than minimum input sensitive signal to output level change.

(note 2) Recovery Time: Period from input signal becoming lower than minimum input sensitine signal to output level change.

■ TYPICAL CHARACTERISTICS Operating Current

vs. Operating Voltage

Input Sensitivity vs. Operating Voltage

Output Voltage vs. Input Voltage

Input Voltage V_{IN} (dBV)

Output Current at ON

Input Sensitivity vs. Frequency

Input Sensitivity vs. Ambient Temperature

Recovery Time vs. Operating Voltage

Input Sensitivity Recovery Time vs. Amvient Temperature

Recovery Time Characteristics

Input Sensitivity vs. Operating Voltage

■ TYPICAL APPLICATIONS

Pins 6 and 7 show an open collector. Mount resistor R_p shown by the following equation. $R_p{=}(V^+{}_{MIN}{-}0.2)/0.3~(k\Omega)$

Resistor R_P to pin 7 is omissible, if pin 6 only is used. But resistor R_P to pin 6 should be put when Out 2 only is used. V^+_{MIN} is minimum supply voltage.

NJM 2073 M

DUAL LOW VOLTAGE POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2073 is a monolithic integrated circuit in 8 lead dual-inline package, which is designed for dual audio power amplifier in portable radio and handy cassette player.

■ FEATURES

- Operating Voltage
- V+=1.8~15V
- Low Crossover Distortion
- Low Operating Current
- Bridge or Stereo Configuration
- No Turn-on Noise
- Package Outline

DIP8, DMP8, SIP9

Bipolar Technology

■ PACKAGE OUTLINE

NJM 2073 D

■ PIN CONFIGURATION

(Ta=25℃)

SYMBOL	RATINGS	UNIT
V+	22	V
IOP	1	A
PD	(DIP8) 700	mW
	(SIP9) 700	mW
1943	(DMP8) 300	mW
V _{IN}	±0.4	V
Topr	Я 7/€= 17 −20~+70	°C
Tstg	-40~+125	r
	V* IOP PD VIN Topr	V* 22 Iop 1 PD (DIP8) 700 (SIP9) 700 (DMP8) 300 VIN ±0.4 Topr -20~+70

■ ELECTRICAL CHARACTERISTICS

(1) BTL Configuration (Test Circuit Fig. 1)

(V+=6V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNI
Operating Voltage	V+	MES NATIONALES EN THAN	1.8	_	15	V
Operating Current	Icc	$R_L = \infty$	_	6	9	mA
Output Offset Voltage	ΔV_0	$R_L = 8\Omega$	_	10	50	mV
(Between the Outputs) Input Bias Current	I_{B}			100		nA
Output Power	18	THD=10%, f=1kHz		100		IIA
Output Power	Po	$V^{+}=9V$, $R_{L}=16\Omega$ (Note)		2.0	_	w
	Po	$V^+=6V$, $R_L=8\Omega$ (Note)	0.9	1.2		W
	Po	$V=0V$, $R_L=012$ (Note) $V^+=4.5V$, $R_L=8\Omega$	0.9	0.6	_	W
	Po	$V^{+}=4.5V$, $R_L=622$ $V^{+}=4.5V$, $R_L=4\Omega$ (Note)	EL I	0.8	_	W
	Po	$V^{+}=3V$, $R_L=4\Omega$	200	300	_	mW
	Po	$V^{+}=2V$, $R_{L}=4\Omega$		80	_	mW
	1.0	THD=1%, f=40kHz~15kHz		00		111.11
	Po	$V^{+}=6V$, $R_{L}=8\Omega$		1.0	_	w
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	_	0.6	_	W
Total Harmonic Distortion	THD	$P_0 = 0.5W, R_L = 8\Omega, f = 1kHz$	-	0.2	_	%
Close Loop Voltage Gain	Av	f=1kHz	41	44	47	dB
Input Impedance	Z _{IN}	f=1kHz	100	_	_	kΩ
Equivalent Input Noise Voltage	V _{NI} 1	$R_S = 10k\Omega$, A Curve	_	2	_	μV
	V _{NI} 2	$R_S = 10k\Omega$, $B = 22Hz \sim 22kHz$	_	2.5	_	μV
Ripple Rejection	RR	f=100Hz		40	_	dB
Cutoff Frequency	f _H	$A_V = -3dB$ from $f = 1kHz$, $R_L = 8\Omega$, $P_0 = 1W$		130		kHz

PARAMETER	SYMBOL	TEST CONDITION		TYP.	MAX.	UNIT
Operating Voltage	V+		1.8		15	v
Output Voltage	Vo	40	_	2.7	_	V
Operating Current	Icc	$R_L = \infty$	_	6	9	mA
nput Bias Current	IB		_	100	_	nA
Output Power (Each Channel)	Section of the last	THD=10%, f=1kHz				
	Po	$V^{+}=6V$, $R_L=4\Omega$ (Note)	0.5	0.65	_	W
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	_	0.32	S walk	W
	Po	$V^{+}=3V$, $R_L=4\Omega$	-	120	- A	mW
	Po	$V^{+}=2V$, $R_L=4\Omega$	_	30		mW
		THD=1%, f=1kHz			110000	I DECOM
	Po	$V^{+}=6V, R_L=4\Omega$	_	500	_	mW
	Po	$V^{+}=4.5V, R_{L}=4\Omega$	_	250	_	mW
otal Harmonic Distortion	THD	$P_0 = 0.4W$, $R_L = 4\Omega$, $f = 1kHz$	PTK.	0.25		%
Voltage Gain	Av	f=1kHz	41	44	47	dB
Channel Balance	ΔA_V		_	-	±1	dB
nput Impedance	Z _{IN}	f=1kHz	100	MARKE AN	-	kΩ
Equivalent Input Noise Voltage	V _{NI} 1	$R_S = 10k\Omega$, A Curve	-	2.5	-	μV
	V _{NI} 2	$R_S = 10k\Omega$, $B = 22Hz \sim 22kHz$	_	3	_	μV
Lipple Rejection	RR	$f=100Hz, C_X=100\mu F$	24	30	AUGUD SI	dB
utoff Frequency	f _H	$A_V = -3dB$ from $f=1kHz$ $R_L = 8\Omega$, $P_O = 250mW$	-	200	O min	kHz

(Note) At on PC Board

■ ELECTRICAL CHARACTERISTICS M-Type

(1) BTL Configuration (Test Circuit Fig. 1)

(V+=6V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V ⁺	City of White	1.8	_	15	v
Operating Current	Icc	$R_{I} = \infty$	_	6	9 .	mA
Output Offset Voltage (Between the Outputs)	ΔVo	$R_1 = 8\Omega$	-	10	50	mV
nput Bias Current	IB	stiri-1 -va		100	oV Toes.	nA
Output Power		THD=10%, f=1kHz			se Soud	E blood
	Po	$V^+=6V, R_L=16\Omega (Note)$	Total V	0.8	- Table	W
	Po	$V^+=4V, R_L=8\Omega$ (Note)	350	460	_	mW
	Po	$V^+=3V$, $R_L=4\Omega$ (Note)	200	300	-	mW
	Po	$V^{+}=2V, R_{1}=4\Omega$ THD=1%, f=40Hz~15kHz	_	80	10000	mW
	Po	$V^+=4V, R_L=8\Omega$	_	380		mW
Cotal Harmonic Distortion	THD	$V^{+}=4V, R_{L}=8\Omega, P_{O}=200mW, f=1kHz$	_	0.2	_	%
Close Loop Voltage Gain	Av	f=1kHz	41	44	47	dB
nput Impedance	ZIN	f=1kHz	100	_	-	kΩ
Equivalent Input Noise Voltage	V _{NII}	R _S =10kΩ, A Curve	-	2	_	μV
	V _{N12}	$R_S=10k\Omega$, $B=22Hz\sim22kHz$	_	2.5	_	μV
Ripple Rejection	RR	f = 1000 Hz	-	40	-	dB
Cutoff Frequency	f _H	$A_V = -3dB$ from $f = 1kHz$, $R_L = 16\Omega$, $P_O = 0.5W$	_	130	-	kHz

(Note) At on PC Board

(2) Stereo Configuration (Test Circuit Fig. 2)

PARAMETER SYMBO		TEST CONDITION		TYP.	MAX.	UNI
Operating Voltage	V ⁺	Bess of anima, spatker vinger in cast	1.8	_	15	V
Output Voltage	Vo		_	2.7	_	V
Operating Current	I.c.c.	$R_1 = \infty$	_	6	9	mA
Input Bias Current	I_B		-	100	_	nΑ
Output Power (Each Channel)		THD=10%, f=1kHz				
	P_{O}	$V^{+}=6V, R_{L}=16\Omega$	_	240	_	mW
	Po	$V^+=5V$, $R_1=8\Omega$ (Note)		270	_	mW
	Po	$V^+=4V$, $R_1=4\Omega$ (Note)	180	250	_	mW
	Po	$V' = 3V, R_1 = 4\Omega$	-	120	_	mW
	P_{O}	$V^+=2V, R_L=4\Omega$	-	30	_	mW
		THD=1%, f=1kHz	1112			
	Po	$V^{+} = 4V, R_{1} = 4\Omega$	7	180	_	mW
Total Harmonic Distortion	THD	$V^{+}=4V$, $R_{L}=4\Omega$, $P_{O}=150$ mW, $f=1$ kHz	-	0.25	_	%
Voltage Gain	A_V	f=IkHz	41	44	47	dB
Channel Balance	$\Delta A_{\rm V}$		_	_	±1	dB
Input Inpedance	ZIN	f=1kHz	100	_	-	kΩ
Equivalent Input Noise Voltage	V _{NII}	$R_S = 10k\Omega$, A Curve	-	2.5	_	μV
	V _{NI2}	$R_S = 10k\Omega$, $B = 22Hz \sim 22kHz$	1-1	3	_	μV
Ripple Rejection	RR	$f = 100$ Hz, $Cx = 100\mu$ F	24	30	_	dB
Cutoff Frequency	f _H	$A_V = -3dB$ from $f = 1kHz$	-	200	. —	kHz
DESCRIPTION AND ADDRESS OF THE PARTY OF THE	THE	$R_1 = 16\Omega, P_{\Omega} = 125 \text{mW}$				

(Note) At on PC Board

TYPICAL APPLICATION & TEST CIRCUIT

Fig.1 BTL Configuration

note: pin No. to D,M-Type

()to S-Type

Fig.2 Stereo Configuration

■ PARASITIC OSCILLATION PREVENTING CIRCUIT

Put $1\Omega + 0.22\mu F$ on parallel to load, if the load is speaker. Recommend putting $0.1\mu F$ and more than $100\mu F$ capacitors with good high frequency characteristics in to near ground and supply voltage pins.

In BTL operation of less than 2V supply voltage, parasitic oscillation may be occurred with $R = 1\Omega$. And so recommended R to be the same valve of pure resistance(r) when it is lower than 3V.

MUTING CIRCUIT

When Mute ON, OUTPUT level saturates to GND side.

Fig.4 Stereo Configuration Fig.3 BTL Configuration # 1 Mute OFF ON 0.1μF INPUT INPUT RME RM R_M≅50 kΩ $R_{M}\!\cong\!50k\Omega$ 0-1Ω: † 100μF $0.01 \mu F$ 10μF 0.22µF # $0.01 \mu F =$ 100 µF

■ VOLTAGE GAIN REDUCTION APPLICATION EXAMPLE

(1) Outline of way to further Reduction

NJM2073 by taking in assamption, as one of OP-AMP (Gain 44dB, minus input impedance about 300Ω), to feedback from output to minus input helps to get reduction of stablized voltage Gain. Fig.5 indicates the model example.

Here is the point to be noticed that, in order to get the appropriate output Bias Voltage, it is important to keep the minus input floating as DC condition, (inserting C_X), and also that when extended too much reduction of Gain might cause Oscillation due to high band phase margin. The reduction of voltage gain is limitted at around 26 dB(20 times), and when oscillation, it in necessary to attach the oscillation atopper. Please examine the C_X value accordingly to the application reguirement.

Fig.5 Model of Voltage Gain Reduction

(2) The Application Example of Voltage Gain Reduction (STEREO)

Fig.6 indicates the application example and Table 1 indicates the recommendable value of parts to be attached externally.

Table 1, Applicating purpose and Recommended Value of Externally parts to be attached.

EXTERNAL PARTS	APPLICATION PURPOSE	RECOMMENDED VALUE	REMARKS
R_g	Plus input to be grounded by fixed DC	Under about 100kΩ	Catch the noise when much higher.
R_s	AV shall be decided with Rf	-	
R _f	AV shall be decided with Rs.	About 5kΩ	The co-temperature of AV becomes higher in case when Rs is higher resistance. The current from output pin to GND becomes higher, in case when Rs is lower resistance. (The current sinks in vain.)
C_X	Minus input to be ground- ed by fixed DC	no forest To be hone	Low-band Cut off frequency (fL) is to be decided. The rise time becomes longer in case that C _X is big.
C _{CUP}	Output DC Decoupling	When $R_L = 8\Omega$, More than 220μ F	fL shall be decided by C_{CUP} and $Z_{\text{L}}.$
CPI	Stabilization of V+	More than about Coup	Inserting near around V+ pin and GND pin.
C_{P2}	Prevention of Oscillation	More than 0.1μ F	
r	JI-	About R _L	II Institute the second
C	n	0.22µF	To be examined by about the resisitor volume of the speaker load.

Fig.6 STEREO Application Example.

Table 2 Applicating purpose and Recommended Value of External Part

PARTS	APPLICATION PURPOSE	RECOMMENDED VALUE	REMARKS
Rg	DC condition ground of plus input	Below about 10kΩ	Making noise when higher.
Rs	AV shall be decided with Rf		No. 1 AV 12 of Life discisses with the
netrod if all	sides and all pinglet monoted Vi		The Bell Bright, all they believe at their VA all
Rf	AV shall be decided with R _s	About 5kΩ	Temperature feature to be increased accordingly as in higher AV value.
	district on at a 7,411 game		When lower, to be trended of Oscillation.
C_1	Releasing minus input in to		Setting up low band Cut-off frequency (fL).
	DC condition		More higher, the rise time become longer.
C ₂	Preventing Oscillation	About 0.02μF	The more higher in ralue, the high band THD, due to phase slippling to be deteriorated.
			When lower, to be trended of oscillation.
CPI	Stability of V+	more than about	Inserting near around at V+ and the GND pin.
July witer	Preventing Oscillation	100μF	
C _{P2}	Preventing Oscillation	mote than $0.1\mu F$	n n
r	"	About R _L	To be examined at around pure resister Value of speaker load.
C	"	0.22µF	

Fig.7 BTL Application

Total Harmonic Distortion (BTL)

Power Dissipation

Power Dissipation vs. Output Power (BTL)

Total Harmonic Distortion (Stereo)

Power Dissipation vs. Output Power (BTL)

Power Dissipation vs. Output Power (BTL)

Power Dissipation vs. Output Power (Stereo)

Power Dissipation vs. Output Power (Stereo)

Power Dissipation vs. Output Power (Stereo)

Operating Current vs. Temperature

Voltage Gain vs. Temperature

Channel Separation vs. Frequency

DUAL LOW VOLTAGE POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2076 is a dual power amplifier, which operates with 1.0V minimum supply voltage. The NJM2076 is suitable to small radio and head-phone of stereo and single BTL application.

■ FEATURES

- BTL operation Po=90mW type.
- Minimum external components
- Headphone stereo Amp. with external transistors
- Low Operation Voltage (1.0V MIN.)

Low Operating Current

(4.7mA TYP.)

Package Outline

DIP8, DMP8, SIP9

Bipolar Technology

■ PACKAGE OUTLINE

NJM2076D

NJM2076M

NJM2076S

■ PIN CONFIGURATION

PIN FUNCTION

- 1. Inverting Amp. Input (A)
- 2. Non-Inverting Amp. Input(B)
- 3. V+
- 4. Base(B)
- 5. (B) Output
- 6. GND
- 7. (A) Output
- 8. Base (A)

NJM2076S

PIN FUNCTION

- 1. V+
- 2. Base (B)
- 3. (B) Output
- 4. Power GND
- 5. GND
- 6. (A) Output
- 7. Base (A)
- 8. Inverting Amp Input (A)
- 9. Non-Inverting Amp Input (B)

(Ta=25℃) **■ ABSOLUTE MAXIMUM RATINGS** UNIT PARAMETER SYMBOL RATINGS 4.5 V Supply Voltage Maximum Input Signal V_{IN} 200 mVrms Power Dissipation P_{D} (DIP 8) 500 mW (SIP 9) 500 mW (DMP 8) 500 mW C Operating Temperature Range Topr -20~+75 Storage Temperature Range Tstg -40~+125 $^{\circ}$

■ ELECTRICAL CHARACTERISTI	CS			(Ta	=25℃, V	/*=1.5V
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I_{cc}	Input: Open	_	4.7	7.0	mA
I) Stereo Configuration (Test Circuit 1. RL	=16Ω)	(A) annu apel poin	avid .			B
Voltage Gain	Av	V _{IN} =10mVrms	26.5	28.0	29.5	dB
Max. Output Power	Poi	THD=10%(S-Type)	15	20.0	-	mW
		THD=10%(D, M-Type)	15	17.5	- 8	mW
	Po ₂	THD=10%, V+=1.0V	Calc T	3	1000	mW
Total Harmonic Distortion	THD ₁	$P_O=1$ mW (126mVrms/16 Ω)	_	0.4	0.8	%
Output Noise Voltage	V _{NO1}	Rg=0, A Curve		50	150	μV
Ripple Rejection Ratio	RR ₁	$Rg=0.f_R=1kHz, V_R=30mvrms$	25	35	-	dB
Input Resistance	R _{IN}		25	33	43	kΩ
Output Pin Voltage	V _O (DC)		0.62	0.70	0.77	V
(II) BTL Configuration (Test Circuit 2, R _{I.} =80	2)					
Max. Output power	P _{O3}	THD=10% (S-Type)	75	100	_	mW
		THD=10% (D,M-Type)	75	90	_	mW
	P _{O4}	THD=10%, V ⁺ =1.0V (S-Type)	_	30	_	mW
		THD=10%. V+=1.0V(D, M-Type)	_	20	_	mW
Total Harmonic Distortion	THD ₂	$P_O = 10 \text{mW} (283 \text{mVrms}/8\Omega)$	_	1.5	4.5	%
Output Noise Voltage	V _{NO2}	Rg=0, A Curve	_	85	250	μV
Ripple Rejection Ratio	RR ₂	$Rg=0$, $f_R=1kHz$, $V_R=30mVrms$	20	25	_	dB
Voltage Difference between Two Output Pins	$\Delta V_{O}(DC)$		_	_	50	mV
The state of the s						

■ TEST CIRCUIT

2SA1313(Õ): h_{FF}=115~125 (Ic=100mA)

Operating Current (Stereo)

Total Harmonic Distortion (Stereo)

THD

(%)

Frequency f (Hz)

(%)

Frequency f (Hz)

Total Harmonic Distortion (Stereo)

(V+=1.5V, $R_L=16\Omega$, f=1kHz, Test Circuit 1)

Total Harmonic Distortion (Stereo)

(V+=1.5V, $R_L=16\Omega$, f=1kHz, Test Circuit 1)

Output Power Po (mW)

Total Harmonic Distortion (BTL)

(V+=1.5V, R_L=8Q, f=1kHz, Test Circuit 2)

Total Harmonic Distortion (BTL)

(V+=1.5V, $R_L=8\Omega$, f=1kHz, Test Circuit 2)

■ TYPICAL APPLICATION

1. For Stereo Head-Phone

2. BTL Amp. for Speaker

■ NOTICE

(1) External PNP Transistor

Maximum output power becomes large with low saturation voltage transistor, and so select transistor of low saturation. Saturation Voltage: less than 0.1V (Ic=100mA, $I_B=10mA$). h_{FE} : 120

(2) External Frequency Compensation

Recommend tantalum capacitor with low tan δ (less than 0.25 at f=10kHz) and 1Ω resistor. Stable with large capacitor of less high frequency distortion and worse tan δ . For example: $1\mu F$, $\tan \delta \leq 0.6$

(3) Layout on PCB

Be careful to get maximum output power and low distortion set. DIP/DMP: Signal ground has to be close to IC ground pin. Impedance of ground line must be low. SIP: Two terminals (Power GND, GND) are connected at one point on PCB.

■ GENERAL DESCRIPTION

The NJM2085 is a monolithic BiCMOS IC designed for use in the car stereo cassette player system. The audio signal system for cassette player can be realized very easy, as the device includes two channel low noise preamplifiers. Dolby B type noise reduction decorders and an audiomusic sensor.

(note) Dolby and the double-D symbol are trade marks of Dolby Labolatories Licensing Corporation San Francisco. CA94103-4813, USA.

This device available only to licensees of Dolby Lab.

Licensing and application information may be obtained from Dolby Lab.

■ PACKAGE OUTLINE

N IM2085N

FEATURES

- Operating Voltage
- (8~10.5V)
- The dual preamplifier contains mute, auto-reverse matel/norm, facilities for application of low level signal in applications requiring very low noise performances. Each channel consists of a 36dB fixed gain amplifier, having switchable input for forward/reverse, allows magnetic heads connection directry to ground and operational amplifier for switching the external eqalizing networks.
- The audio music sensor detects the interprogram space and then the starting point of musical program.
- Dolby B Type Noise Reduction Decorders require few external components.
- Package Outline
- SDMP30
- Bipolar Technology

■ FUNCTIONS

- · Low noise head preamplifiers
- Mute and auto-reverse functions
- Internal switches for equalization
- 2 channel Dolby B Type Noise Reduction Decoders
- Audio music sensor

■ ABSOLUTE MAXIMUM RATINGS AT TA=25°C

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	12	V	
Total Power Dissipation	PD	700	mW	
Operating Temperature Range	Topr	-40~+85	$^{\circ}$	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, all levels reference to -6dBm/400Hz at DOLBY OUT NR OFF, Unless otherwise specified.)

SUPPLY

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage Range	Vop		8	8.5	10.5	V
Operating Current	Is		_	18	25	mA
Reference Voltage	Vref		4.0	4.3	4.6	V
DC Voltage Pin 14	V _{dc}		1.15	1.25	1.35	V
MUTE ON LEVEL	MUTE ON		0	_	1.2	V
MUTE OFF LEVEL	MUTE OFF		2.2	_	V+	V
MUTE	ATT		55	65	_	dB
MUTE Current	IMUTE		_	10		μА

□PREAMPLIFIER

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Resistance	Ri	18 70 20	30	50	70	kΩ
Input Bias Current	$\mathbf{I}_{\mathbf{i}}$	M 2740 177	_	-	10	μΑ
Voltage Gain	Gv	pin4~5 and 26~27 shorted	32.5	35.5	38.5	dB
Voltage Gain Matching	ΔGv	M TOP BY	-1	_	1	dB
Resistor Metal Position	R _m	M MAD INVE	4.35	5.8	7.25	kΩ
Resistor Normal Position	Rn		_	150	400	kΩ
Total Input Noise	en 1	Rg=600Ω B=20-20kHz	_	0.8	_	μV
	en 2	Rg=600Ω, A-Weight		0.5	_	
Forward/Rev. Low Level	FRL	IN 2=ON; IN 1=OFF	0	-	0.8	V
Forward/Rev. High Level	FRH	IN 2=OFF; IN 1=ON	2	_	V+	V
Metal/Normal Low Level	NML	EQSW=ON	0	_	1.5	V
Metal/Normal High Level	NMH	EQSW=OFF	3.5	_	V+	V
Output Impedance	Ro		_	1.2	1.7	Ω

□AUDIÒ MUSIC SENSOR

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Output Low Level Voltage	V1		_	_	800	mV
Input Current	Iin		_	_	1	μΑ
ON/OFF Low level	AMSL		_	-	0.8	V
ON/OFF High Level	ANSH		2	-	V+	V
Interprogram Threshold Voltage	VTH 1		1.2	1.45	1.7	V
Interspace Threshold Voltage	VTH 2		4.0	. 4.3	4.6	V
AMS Threshold	AMSVTH 1		1.19	1.39	1.59	V
	AMSVTH 2		0.6	0.8	1.0	V
Switch Pin Current	Vol		_	18		μΑ

☐ DOLBY	SECTION
---------	---------

PARAMETER	ROVILA	TEST CONDITION			2.001	ASAS.	20175	
	SYMBOL	NR	f(Hz)	OTHER CONDITIONS	MIN.	TYP.	MAX.	UNIT
Voltage Gain	Gv	OFF	1K		-1	0	1	dB
Channel Matching	ΔGv	OFF	1K		-0.5	-	0.5	dB
Signal Handling	S/H	ON	1K	V _{CC} =8V, THD=1%	12	13	r a fettal	dB
Decode Cut	B-DEC1	ON	10K	Vout=0dB	-1.1	0.4	1.9	dB
V (-00	B-DEC2	ON	500	Vout=-25dB	1.4	2.9	4.4	dB
201og Vout (off) Vout (on)	B-DEC3	ON	2K	Vout=-25dB	5.5	7.0	8.5	dB
vout (on)	B-DEC4	ON	5K	Vout=-25dB	3.9	5.4	6.9	dB
	B-DEC5	ON	10K	Vout=-40dB	8.9	10.4	11.9	dB
ON/OFF Low Level	NRoff				0	-	0.8	V
ON/OFF Hight Level	NRon		18	MINISTER AND ADDRESS OF THE PARTY OF THE PAR	2.0	3V4 5 6	V+	V

GENERAL

4 St.1 St.1 St.1			TEST (CONDITION) (T)	TYP.	MAN	A DATE
PARAMETER	SYMBOL	NR	f(Hz)	OTHER CONDITIONS	MIN.	TIP.	MAX.	UNIT
Total Harmonics Distortion	THD1	OFF	1K	V _O =0dB	_	0.12	_	%
	THD2	ON	1K	V _O =0dB	_	0.08	_	%
	THD3	OFF	10K	V _O =0dB	_	0.18	_	%
	THD4	ON	10K	$V_O = 0 dB$	_	0.2	- 1	%
Signal to Noise Ratio	S/N1	OFF		$Rg=600\Omega$, $V_O=0dB$		60	11111111	dB
	S/N2	ON	1 1 3	CCIR/ARM	1	70	-	dB
Channel Separation	CS1	OFF	1K	Rg=600Ω	_	55	_	dB
	CS2	ON	1K	Rg=600Ω	_	60	301770	dB
Channel Cross Talk	CT1	OFF	1K	Rg=600Ω	-	58	en T :	dB
	CT2	ON	1K	$R_g = 600\Omega$	_	67	-	dB
Supply Voltage Rejection	SVR1	OFF	1K	Rg=600Ω	_	90	11/-	dB
	SVR2	ON	1K	Rg=600Ω	-	95	- 1	dB

LOW VOLTAGE DUAL POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2096 is a dual power amplifier, which operates with 1.0V minimum supply voltage. The NJM2096 is suitable to small radio and head-phone stereo. The NJM2096 is resemble to the NJM2076, but two amplifiers are the same.

■ FEATURES

- Low Operating Voltage
- Minimum external components
- Low Operating Current
- Package Outline

DIP8, DMP8, SIP9

(1.0V min)

Bipolar Technology

APPLICATION

Head-phone Stereo, Portable Radio, Portable TV, Hand-carry Tele-communication Set.

■ PACKAGE OUTLINE

NJM 2096 S

NJM 2096 M

■ PIN CONFIGURATION

PIN FUNCTION

- 1. Non-Inverting Amp. Input (A)
- 2. Non-Inverting Amp. Input (B)
- 3. V+
- 4. Base (B)
- 5. (B) Output
- 6. GND
- 7. (A) Output
- 8. Base (A)

PIN FUNCTION

- 1. V+
- 2. Base (B)
- 3. (B) Output
- 4. Power GND
- 5. GND
- 6. (A) Output
- 7. Base (A)
- 8. Non-Inverting Amp. Input (A)
- 9. Non-Inverting Amp. Input (B)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	4.5	V
Power Dissipation	PD	(DIP8) 500	mW
		(SIP9) 500	mW
		(DMP8) 300	mW
Maximum Input Signal	V _{IN}	200	mVrms
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V^{+}=1.5V. R_{L}=16\Omega)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I_{cc}	V _{IN} =Open	HOLLA	4.7	7	mA
Maximum Output Power	Pol	THD=10% D&S	15	20	-	mW
All House and All House		M	15	17.5	_	mW
Max. Output Power at Low Supply Voltage	Po	THD= 10% , V ⁺ = 1.0 V	_	3	_	mW
Voltage Gain	Av	V _{IN} =10mVrms	26.5	28	29.5	dB
Cotal Harmonic Distortion	THD	P _O =1mW		0.4	0.8	%
Ripple Rejection Ratio	RR	Rg= 0Ω , V _r = 30mVrms. F _r = 1kHz	25	35	_	dB
nput Resistance	RIN		25	33	43	kΩ
Output Noise Voltage	V _{NO}	Rg=0Ω, A Curve		40	150	μV
Output Pin Voltage	Vo (DC)		0.62	0.70	0.77	V
Voltage Difference between Two Output Pins	$\Delta V_{O}(DC)$		_		50	mV

■ TEST CIRCUIT

$\begin{array}{lll} \textbf{Total Harmonic Distortion} \\ (V^+1.5\,V, \ R_L\!=\!16\,\Omega, \ P_0\!=\!1\,\text{mW}) \end{array}$

Frequency f (Hz)

Voltage Gain

Frequency f (Hz)

Total Harmonic Distortion

Frequency f (Hz)

TYPICAL APPLICATION

Stereo Head-Phone

■ NOTICE

(1) External PNP Transistor

Maximum output power becomes large with low saturation voltage transistor, and so select transistor of low saturation voltage. h_{FF} : 120

(2) External Frequency Compensation

Recommend tantalum capacitor with low tan δ (less than 0.25 at f=10kHz) and 2Ω resistor. Stable with large capacitor of less high frequency distortion and worse tan δ . For example: $1\mu F$, $\tan\delta \leq 0.6$

(3) Layout on PCB

Be careful to get maximum output power and low distortion set.

DIP/DMP: Signal ground has to be close to IC ground pin. Impedance of ground line must be low.

SIP: Two terminals (Power GND, GND)are connected at one point on PCB.

■ GENERAL DESCRIPTION

NJM2106 is the active bass expander to be specifically used in the headphone type stereo operating at 1.5V power supply (standard). The low sound band less than 100Hz is boosted by 20 dB maximum at medium level input and at low level input, the clear feeling of listening sound, the high sound band is amplified by approx. 5dB fixed gain. These performances enable to improve dynamic range in music playback by the compact headphone stereo, the bass expansion of which is not good enough.

Thus the IC enables to get powerful and clear feeling of listening

The electronic switch simply enables switching on and off of the boost, circuit, and the mute circuit.

FEATURES

- Operating Voltage
- $(0.9 \sim 2.5 \text{V})$
- Boost Value: 20dB max. (variavle at and less than 100Hz)

50dB (fixed at and over 10Hz)

- Boost value in low sound band adjustable by the external resistor
- Internal mute circuit with a low click swtching sound
- On & Off boost and mute circuits by electronic switch
- Low power dissipation
- Minimum external components
- Low Operating Current
- Package Outline

DMP16

Bipolar Technology

PIN CONFIGURATION

PIN FUNCTION

- 1. Signal Input (B)
- 2. High Band Signal Input (B)
- 4. HPF
- 5. Boost Control
- 6. WGTF
- 8. GND

- 3. Signal Output (B)
- 7. Boost Signal Output

PACKAGE OUTLINE

9. Supply Voltage

11. Mute Control

12. DET

13. LPF

10. Reference Voltage

14. Signal Output (A) 15. High Band Signal Input (A)

16. Signal Input (A)

NJM2106M

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	5	V
Power Dissipation	PD	300	mW
Operating Temperature Range	Topr	-20~+70	C
Storage Temperature Range	Tstg	-40~+125	C

ELECTRICAL CHARACTERISTICS

 $(V^{+}=1.1V. R_L=3k \Omega, Ta=25 ^{\circ}C)$

DAD AMERICA	SYMBOL	MROI TEST CONDITION				MIN.	TYP.	MAX.	UNIT	
PARAMETER	SIMBOL	BOOST	MUTE	f (Hz)	V _{IN} (dBm)		MIN.	III.	MAA.	UNII
Operating Current 1	I _{cc} 1	ON	OFF	1k	-10		_	2.1	3.5	mA
Operating Current 2(Note 1)	Icc2	OFF	OFF	1k	-10			1.7	3.0	mA
Operating Current 3 (Note 1)	$I_{CC}3$	ON	ON	1k	-10	1		1.8	3.5	mA
Reference Voltage (Note 1)	VREF	ON	OFF	1k	-10		0.66	0.71	0.76	V
Voltage Gain 1	G _v 1	ON	OFF	1k	-30	Land A	-1.0	0.0	1.0	dB
Voltage Gain 2	G _V 2	OFF	OFF	1k	-30	370	-1.0	0.0	1.0	dB
Boost Value 1	BST1	ON	OFF	50	-60		0.0	2.6	10.0	dB
Boost Value 2	BST2	ON	OFF	50	-45		15.0	18.0	21.0	dB
Boost Value 3	BST3	ON	OFF	50	-20		1.3	3.3	5.3	dB
Boost Value 4	BST4	ON	OFF	10k	-20	1-10	2.5	4.5	6.5	dB
Total Harmonic Distortion 1 (Note 1)	THD1	ON	OFF	1k	-18	HETTIG CO	1771-	0.1	0.6	%
Total Harmonic Distortion 2	THD2	OFF	OFF	1k	-18		-	0.1	0.6	%
Ripple Rejection Ratio	RR	ON	OFF	Ripple	ed (400Hz, ed on V ⁺	-40dBm) is	40.0	43.5	-	dB
Output Noise Voltage (Note 1)	V_{NO}	OFF	OFF		Hz BPF,	$R_G = 600 \Omega$		2.7	4.0	μV
Mute Attenuation 1	MAT1	ON	ON	50	-20		43.0	50.0	-	dB
Mute Attenuation 2 (Note 1)	MAT 2	OFF	ON	50	-20		43.0	59.0	_	dB
Boost On Sensitivity (Note 2)	V_{BON}	ON	OFF	50	-45			Open		-
Boost Off Sensitivity Voltage (Note 3)	V_{BOFF}	ON	OFF	50	-45		0.0	-	0.2	V
Boost Off Sensitivity Current	I BOFF	ON	OFF	50	-45	⑤ Pin=0V		12.0	30.0	μА
Mute On Sensitivity Voltage (Note 4)	V _{MON}	ON	ON	50	-20		0.0	-	0.2	V
Mute On Sensitivity Current	I MON	ON	ON	50	-20	@Pin=0V	-	12.0	30.0	μΑ
Mute Off Sensitivity (Note 5)	V _{MOFF}	ON	ON	50	-20			Open		
Crosstalk (Note 1)	CT	ON ·	OFF	1k	-20		_	-27.0	-22.0	dB

⁽Note 1): These parameters are guaranteed by design. The testing during the productions are not to be conducted.

⁽Note 2): Recommendable (5) pin to be left open, under Boost on state.

⁽Note 3): Recommendable (5) pin on GND under Boost off state. In case of applying voltage, recommendable to be conducted within the range of the standard value.

⁽Note 4): Recommendable (11) pin on GND under Mute on state. In case of applying voltage, to be conducted within the range of the standard value.

⁽Note 5): Recommendable (11) pin to be left open under Mute Off state. At this time, when operating IC with the current running, there might be cases of making oscillations.

■ TEST CIRCUIT

PIN NO.	PIN SYNBOL	FUNCTION	PIN VOLTAGE (STANDARD)	INSIDE EQUIVALENT CIRCUIT
1	IN(B)	Signal Input (B)	0.71 V	
2	HPIN(B)	High Level Sound Signal Input (B)	0.71 V	13
13	LPF	Externally atteched R.C. Pin number at LPF	0.71 V	130 kΩ
15	HPIN(A)	High Level Sound Signal Input (A)	0.71 V	(16) (1) 26kΩ 26kΩ
16	IN(A)	Signal Input (A)	0.71 V	15 2
	500	-0-0-0-	0-0-0	V _{REF}
3	OUT (B)	Signal Output (B)	0.71 V	LJE I A
14	OUT (A)	Signal Output (A)	0.71 V	V ⁺
				+ 000,000
				3 8/0μA V _{REF}
				(14) GND
4	HPF	Externally attached R.C. pin number at HPF. Adjustment of Boost Value.	0.71 V	V*
				13kΩ 13kΩ
				4) BOND
5	BOOST	On/Off Switch of Boost Circuit. Open: On	ON State 0.75 V	V⁺ ⊗ 15μA
		GND: Off		6.5kΩ ξ
				GND

■ TERMINAL DESCRIPTION

PIN NO.	PIN SYNBOL	FUNCTION	PIN VOLTAGE (STANDARD)	INSIDE EQUIVALENT CIRCUIT
6	WGTF	Externally attached R.C.	0.71 V	
en meg ur ni neg der bars f	h lique bes to	Pin number of weighting filter Amp.	0.71 V	V+
e and Employ	raissahtuun teg	of a " decrease required and use taken	0.71 V	Accept to make the second of t
7	WGTOUT	Boost Signal Output	g Marin pili namin i grava	
etuur est e	elly militarie i i	was will but the death of description	mappy at the street of	7.3kΩ (7)
-			FEMAL CV Inch	6
post of stay U	na patatana inga	ley toronto selli (VISLo) vite	TOTAL PROPERTY OF ST	property and the second
10	V _{REF}	Reference Voltage	0.71 V	V*
gjir yd bollo	oncod to gui	is air sabhirir aidin cago ann in aigh	wated damen was and	
tion following	Statem out at	stari in languarthing to one will a	AND DESCRIPTION OF THE PARTY OF	(10)
was in bow	I profite (D);	on 174.5 and valual base 174	FO mis CLA sign to the sign of	8 150 μ A
d Glocule me	a Latina Lateria d	some only the districts at distinct.	of tolores it sufficient	a shower the of the same
10 0000 (c)	ed (000) v dee	her out Section for a define on the	allieb spissing are	GND
todalis) aliko		nest transcribed and the total the	See and see as con-	D) 48 160
11	MUTE	On/Off Switch of Mute Circuit	Off State 0.65 V	V+
		Open: Off	dishi tesenio te	♦ 12µA
		GND: On		100 1000
			Jeriakaya gelici	(11) 6.5kΩ
		(1)		
		And I		argin to him a second
		Topics Spits		XIII
				GND
	1000	at the second		
12	DET	Control Voltage Output		
		Pin		V+
		100/00/1		
				K
				66kΩ
		•		
				$66k\Omega$ $\left\{\begin{array}{c} (12) \\ \end{array}\right\}$ $\left\{\begin{array}{c} \\ \\ \end{array}\right\}$ $\left\{\begin{array}{c} \\ \\ \end{array}\right\}$ $\left\{\begin{array}{c} \\ \\ \end{array}\right\}$
				- I GIV

■ PRINCIPLE OF OPERATION

NJM2106 is consists of the circuit of high sound band amplifier, low sound band amplifier, the circuit to add amplifired signals on the main signal, and the mute which shuts off the signal.

Higher sound band element: It is supplied to 2 and 15 pins after passing through external R &C. This signal plus main signal input in 1 and 16 pins is output from 3 and 14 pins.

Low sound band element: It is extracted by bandpass filter consisted of internal resistors in 1 & 16 pins, external capacitor in 13 pin and Gm1 upon input in 1 and 16 pins. This signal goes through Gm4 after amplified in narrower bandwidth at Gm3, and output at 3 and 14 pins after added by the addition circuit of the main signal. The above circuits operate as the bigger signal, the larger amplification. Gm3 has one more output. The output signal rectified by all-wave rectifying circuit becomes controlled voltage by being balanced by external 12 pin capacitor. The controlled voltage controls the gain at Gm4 and Gm2 operates as limitter circuit to avoid saturation as the input signal becomes larger than some certain level. When the boost is off, the input signals at 1 & 16 pins output as they are by the gain 1 amplifier. When the mute is on, the signal is shut off by output circuit input connected to V_{REF}.

APPLICATION NOTE

1. Power supply

The NJM2106 is a single power supply IC operated at the voltages from 0.9V to 2.5V. The standard voltage generated at 10 pin is fixed at about 0.71V considering the low voltage operation. As such head room is not expandable even though the supply voltage is increased. Accordingly, the IC is suitable for single supply voltage operation by one dry cell battery and at 3V setting, the signal level is required to be lowered.

2. Operation mode control

The NJM2106 functions are controlled by internal electronic switch, the switch of the operation modes is designed to be controlled by either connecting or opening on & off of the boost and mute at 2 terminals. So, the use of mechanical switch is recommended, the following precausion should be taken in case of using NPN transistor to control.

- (1) The voltage should be loaded at 5 & 11 pins lower than 0.2V on 9 & v+ and higher than 0.4V on 8 pin(GND).
- (2) As 11 pin, mute control, is not digitally controlled, in case of switch on for mute, the voltage should be less than 0.2V, and in case of off, it should be open as much as possible. In case that it cannot be opened at switch off, the current coming into 11 pin should be less than 2uA. In this case outputs at 3 and 14 pins sometime oscillate, so stop it by putting the capacitor (1000 through 5000 pF) between 3/14 pins and ground. When the mute is on, 3 & 14 pins are in not signal position and generates the same voltage (approx. 0.71V) of that of V_{REF}.
- 3. Control of boost volume in high sound band

The boost is obtained by adding the high sound band element taken out by HPF at A and B channels to the main signal.

The signal in high sound band is boosted by the following equations.

Gain: GH=R7. $\{1/R_8+1/(R_9+1j\omega C_5)\}$

Cutoff Frequency: $f_{HH}=1/(2\pi R_9 \cdot C_5)$

In one of the application cases shown at right,

fHH=11.7kHz

Gain at 20kHz is around 6 dB.

4. Control of boost volume in low sound band

The bost is controlled by bandpass filter by LPF/HPF which takes out low sound band of IN(A) and IN(B), by gain control circuit and the circuit generating the control signal and by headroom control circuit. As the band and gain of the above filter are set up by the external C & R, low sound amplification effect is adjusted by external constant.

The foolwings are referenced to when adjusting.

 LPF cutoff frequency to be set up by R1, internal resistor and C1, external capacitor.

Cutoff frequency: $F_{L1}=1/(2\pi R_1/2 \cdot C_1)$

(2) HPF cutoff frequency and gain to be set up by: Internal resistor, R2 & R3, and external resistor, R4, and external capacitor, C2.

Gain: $G=1+R_2/(R_3+R_4+1/j\omega C_2)$

Cutoff Frequency: $f_{H1}=1/\{2\pi \cdot (R_3 + R_4) \cdot C_2\}$

(3) Cutoff frequency and gain of the amplifier with weighting function

They are set up by internal resistor, R5, external resistor, R6 and external capacitor, C3 as shown in the following equations.

Gain: $G=1+jwC_3 \cdot R_5 / (1+jwC_3 \cdot R_6)/(1+jwC_4 \cdot R_5)$

Cutoff Frequency: $F_{L2}=1/(2\pi \cdot R_6 \cdot C_3)$

 $F_{H2}=1/(2\pi \cdot R_5 \cdot C_4)$

Operating Current, Reference Voltage vs. Operating Voltage

Output Amplitude vs. Input Amplitude

Output Distortion vs. Input Amplitude

Output Amplitude vs. Operating Voltage

Output Amplitude vs. Input Amplitude

Output Distortion vs. Input Amplitude

Output Amplitude vs. Frequency

Output Amplitude vs. Frequency

Crosstalk vs. Frequency

Ripple Rejection Ratio vs. Operating Voltage

Operating Voltage V+ (V)

Mute Attenuation vs. Operating Voltage

Operating Voltage V+ (V)

Output Amplitude, Distortion vs. Load Resistor

■ APPLICATION CIRCUIT

■ GENERAL DESCRIPTION

NJM2110 is a monaural microphone amplifier for video camera. It can operate from 2.7V.

The performance is low Operating current and small package, therefore it is easy to design the downsizing and low consumption.

PART

■ PACKAGE OUTLINE

NJM2110M

N.IM2110V

■ FEATURES

Operating Voltage

2.7V~5.3V

Low Operating Current

(V*=5V:3.5mA Typ.) (V*=3.3V:1.1mA Typ.)

Short Circuit Protection for External MIC.

Package Outline

DMP8, SSOP8

Bipolar Technology

APPLICATION

• Video Camera

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	7.0	V
Power Dissipation	PD	(SSOP8) 250 (DMP8) 300	mW mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25℃)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current 1	Icc 1	I SOME SIME SOME	×	3.5	4.5	mA
Operating Current 2	Icc 2	V+= 3.3V	_	1.1	2.0	mA
Transfer Gain	Gv	f=1kHz	27	28	29	dB
Total Harmonic Distortion	THD	$f=1kHz$, $Vo=300mV_{rms}$, $R_L=10k\Omega$	_	0.05	0.2	%
Maximum Output Voltage	Vom	f=1kHz, V+=2.7V, THD=1%, R _L =10kΩ	2.0	2.5	_	V_{P-P}
Output Noise Voltage	V _{no}	$R_g = 1k\Omega$, C=0.1 μ F, A-Weight	_	30	42	μVrms
Input Resistance Gain	Zin	f=1kHz	_	110	_	kΩ
Output Resistance	Zo	f=1kHz	_	10	_	Ω
MIC Output Supply Voltage 1	MICo 1		2.0	2.35	2.7	V
MIC Output Supply Voltage 2	MICo 2	V+=2.7V	2.0	2.25	2.5	V
External Output Supply Voltage	EXTout	$I_0 = 25 \text{mA}$	4.0	-	_	V
Output Short Circuit Current	Ios	EXT _O =0V	_	_	30	mA

■ TEST CIRCUIT

LOW VOLTAGE AUDIO POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2113 is a audio power amplifier desined for telephone applications, such as in speakerphones.

Coupling capacitors to the speaker are not required, as it has differential speaker outputs. The closed loop gain is set with two external resistors. A CD pin permit powering down with muting the input signal.

■ PACKAGE OUTLINE

NJM2113D

NJM2113M

■ FEATURES

- Wide Operating Voltage
- (2~16V)
- Low Operating Current
- (2.7mA Typ.)
- CD Input to Power Down the IC with Mute
- Low Power-Down Operating Current (72 μA Typ.)
- Output Power Exceeds 250mW
- $(V^+=6V, R_L=32\Omega)$
- Gain Adjustable
- (GvD=0~43dB, Voice Band)
- Package Outline
- Bipolar Technology
- DMP8, DMP8, SIP8, SSOP8
- NJM2113L

NJM2113V

■ RECOMMENDED OPERATING CONDITIONS

- Load Impedance
- 8~200Ω

- Differential Gain Input Voltage at CD
- GVD V_{CD}
- 0~43dB (5kHz bandwidth)
- 0∼V+ Vdc

PIN CONFIGURATION

Pin Function

- 1. CD
- 2. VREF
- $-V_{\rm IN}$
- 5. V_{OUT}1 6. V⁺
- GND

BLOCK DIAGRAM

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	+18	V
Output Peak Current	IOP	±250	mA
Input Voltage Range	VIN	(1~4pin)-0.3 to V++0.3	V
		(5,8pin) -0.3 to V+0.3(when Power-Down)	V
Power Dissipation	PD	(DIP8) 500	mW
		(SIP8) 800	mW
		(DMP8) 500 (note 1)	mW
		(SSOP8) 360 (note 1)	mW
Operating Temperature Range	Topr	−20~+75	$^{\circ}$
Storage Temperature Range	Tstg	-40~+125	$^{\circ}$

(note 1) At on PC bosrd

■ ELECTRICAL CHARACTERISTICS

(V+=6V, Ta=25℃, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc1	$V^{+}=3V, R_{L}=\infty, 1pin=0.8V$	_	2.7	4.0	mA
(no signal)	Icc2	$V^{+}=16V, R_{L}=\infty, 1pin=0.8V$	_	3.4	5.0	mA
	Iccd	$V^{+}=3V$, $R_L=\infty$, 1pin=2V	_	72	100	μΑ
Open Loop Gain	Av 1	Amplifier#A, f<100Hz	77	83	_	dB
Closed Loop Gain	Av 2	Amplifier#B, $f=1kHz$, $R_L=32\Omega$	-0.35	0	+0.35	dB
Output Power	Po 1	V^{+} =3V, R_L =16Ω, THD≤10%	55		_	mW
(note2)	Po 2	V^{+} =6V, R_L =32Ω, THD≤10%	250		_	mW
	Po 3	$V^{+}=12V$, $R_{L}=100Ω$, THD $\leq 10\%$ (note3)	400	_	_	mW
Total Harmonic Distortion	THD1	$V^{+}=6V$, $R_L = 32\Omega$, $P_O = 125$ mW, $G_{VD} = 34$ dB		0.5	1.0	%
(f=1kHz)	THD2	$V^{+} \ge 3V$, $R_L = 8\Omega$, $P_O = 20$ mW, $G_{VD} = 12$ dB		0.5	_	%
	THD3	$V^{+} \ge 12V$, $R_L = 32\Omega$, $P_O = 200$ mW, $G_{VD} = 34$ dB	_	0.6	_	%
Power Supply Rejection Ratio	PSRR1	$C1=\infty$, $C2=0.01\mu$ F, DC	50	-	_	dB
$(V^{+}=6V, \Delta V^{+}=3V)$	PSRR2	$C1=0.1\mu F$, $C2=0$, $f=1kHz$	_	12	_	dB
	PSRR3	$C1=1\mu F$, $C2=5\mu F$, $f=1kHz$	_	52	-	dB
Mute Attenuation	MAT	f=1kHz~20kHz, 1pin=2V	_	70	_	dB
Output Voltage	Vo 1	$V^{+}=3V, R_{L}=16\Omega$	1.00	1.18	1.25	V
$(R_f = 75k\Omega, DC)$	Vo 2	V+=6V	_	2.68	_	V
	Vo 3	V+=12V	_	5.71	_	V
Output High Level	Voh	$I_{OUT} = -75 \text{mA}, V^{+} = 2 \sim 16 \text{V}$	_	V+-1.1	_	V
Output Low Level	Vol	$I_{OUT} = 75 \text{mA}, V^{+} = 2 \sim 16 \text{V}$	_	0.21	-	V
Output DC Offset	ΔVo	$R_f = 75k\Omega$, $R_L = 32\Omega$, 5pin-8pin	-30	0	+30	mV
Input Bias Current	I _B	4pin	_	-30	-200	nA
Equivalent Resistance	R+IN	3pin	100	150	220	kΩ
	RREF	2pin	18	25	40	kΩ
CD Input Voltage H	VCDH	1pin	2.0	_	V+	V
CD Input Voltage L	VCDL	1pin	0.0	_	0.8	V
CD Input Resistance	RcD	V _{CD} =16V, 1pin	50	75	175	kΩ

(note2) NJM2113M, NJM2113V:At on PC Board

(note3) Not specified for NJM2113V

Notice: 1. CD—A logic "Low" (<0.8V) sets normal operation.

A logic "High" (>2.0V) sets the power down mode.

- Power supply rejection is provided by C1 and C2.
 C2 is unnecessary, if C1 is sufficient capacitances.
 - 3. C1 and C2 also effect the turn-on time of the circuit at power-up.
 - 4. Equivalent Circuit of CD is as in the following diagram.

5. Normally a snubber is not needed at the output of the NJM2113, un-like many other audio amplifiers (NJM2073 etc.). However the PC board layout, stray capacitances, and the manner in which the speaker wires configured, may dictate otherwise.

RF AMPLIFIER FOR CD PLAYER

■ GENERAL DESCRIPTION

NJM2117 is designed for CD player, which contains RF amplifier for 3 spot system optical PICK-UP output, FOCUS error amplifier and APC circuit.

■ FEATURES

- Dual Supply ±5V Operation
- Single Supply +5V Operation Available
- Package Outline

SSOP20

Bipolar Technology

■ PIN FUNCTION

1. LD

20. V+ 19. LD ON

2. PD

3. PD1

18. RF1

4. PD2

17. RFO

5. V-

16. FE 15. FE BIAS

6. F 7. E

14. TE

8. VR 9. VC 13. EI 12. EO

10. NC

11. NC

■ PACKAGE OUTLINE

NJM2117V

■ BLOCK DIAGRAM

New Japan Radio Co., Ltd.

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*/V-	±6	V
Power Dissipation	PD	(SSOP8) 300	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

 $(V^{+}/V = \pm 5.0V, Ta = 25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	20pin	_	8.0	12.0	mA
Operating Current	IEE	5pin	-12.0	-8.0	-	mA
<pre><rf amplifier=""></rf></pre>				T Phi		de L
Output Offset Voltage	Voo1	TP17 Voltage	-50	5.10	50	mV
Voltage Gain	Gv 1	TP3/4=2KHz, 30mVppINPUT	28.2	31.2	34.2	dB
Frequency Characteristic	FGv 1	Frequency at G _V 1=-3dB	1.50	3.75	-	MHZ
Maximum Output Voltage H	+V _{OM} 1	TP3=0.6V	3.5	-47	-	V
Maximum Output Voltage L	-V _{OM} i	TP3=-0.6V	_	-48.	-0.3	V
<fe amplifier=""></fe>						NY K
Output Offset Voltage	V002	TP16 Voltage	-120	0	120	mV
Output Noise	V _{NOISE}	S3=ON TP16Noise (100KHZ LPF)	_	15	30	mV _{rms}
Voltage Gain 1	Gv 2-1	TP3=1KHz, 10mV _{PP} Input	39.1	42.1	45.1	dB
Voltage Gain 2	Gv 2-2	TP4=1KHz, 10mV _{PP} Input	39.1	42.1	45.1	dB
Frequency Characteristic 1	FGv 2-1	Frequency at G _V 2-1 = -3dB		27	_	KHZ
Frequency Characteristic 2	FGv 2-2	Frequency at Gv 2-2=-3dB		27	_	KHZ
Difference Voltage Gain	GvD2	$Gv_D2 = (Gv_2-1) - (Gv_2-2)$	-3.0	0	3.0	dB
Maximum Output Voltage H	+Vом2	TP3=0.3V	4.2	-	-	V
Maximum Output Voltage L	-V _{OM} 2	TP4=0.3V		_	-2.2	V
<te amplifier=""></te>		Ly Tov Lines Course				
Output Offset Voltage	V003	TP14 Voltage	-50	0	50	mV
Voltage Gain 1	Gv 3-1	TP6=1KHz, 100mVppInput	16.4	19.4	22.4	dB
Voltage Gain 2	Gv 3-2	TP7=1KHz, 100mV _{PP} Input	16.4	19.4	22.4	dB
Frequency Characteristic 1	FGv 3-1	Frequency at Gv 3-1=-3dB	Test	34	_	KHZ
Frequency Characteristic 2	FGv 3-2	Frequency at Gv 3-2=-3dB	14 127	34	_	KHZ
Difference Voltage Gain	GvD3	GvD3=(Gv 3-1)-(Gv 3-2)	-3.0	0	3.0	dB
Maximum Output Voltage H	+Vom3	TP7=1.5V	4.2	_	_	V
Maximum Output Voltage L	-V _{OM} 3	TP6=1.5V	A.T		-2.2	V
(APC)		The second second	- Janes /	CHEAT !	that.	40.57
Output Voltage 1	Vo I	$S_2 = 2 V1 = 69 \text{mV} V_2 = 0.5 \text{V}$	14 1-/	-1.7	-0.4	V
Output Voltage 2	Vo2	$S_2 = 2 V1 = 123 \text{mV } V_2 = 0.5 \text{V}$	-1.0	0.3	1.6	V
Output Voltage 3	Vo3	$S_2 = 2 V1 = 177 \text{mV} V_2 = 0.5 \text{V}$	1.0	2.3		V
Output Voltage 4	Vo4	$S_2 = 2 V1 = 0V V_2 = 4.5V$	4.6	4.8	-1	V
Output Voltage 5	Vo5	$S_1 = ON S_2 = 2 V_1 = 0V V_2 = 0.5V$	-1	-	2.0	V
(Center Voltage Amp.)					1	
Output Voltage 6	Vo6	TP8 Voltage	-100	0	100	mV

■ ELECTRICAL CHARACTERISTICS

 $(V^+/V^- = \pm 2.5V, Ta = 25^{\circ}C)$

ELECTRICAL CHARACTERISTICS			$(v'/v = \pm 2.3 v, 1a-23)$				
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT	
Operating Current	Icc	20pin		6.0	12.0	mA	
Operating Current	IEE	5pin	-12.0	-6.0	-	mA	
<pre></pre>							
Output Offset Voltage	V ₀₀ 1	TP17 Voltage	-50	_	50	mV	
Voltage Gain	Gv 1	TP3/4=2KHz, 30mVppINPUT	28.2	31.2	34.2	dB	
Maximum Output Voltage H	+V _{OM} 1	TP3=0.4V	V+-0.5	_	_	V	
Maximum Output Voltage L	-V _{OM} 1	TP3=-0.4V	_	_	V-+2.2	V	
<fe amplifier=""></fe>							
Output Offset Voltage	V ₀₀ 2	TP16 Voltage	-120	0	120	mV	
Voltage Gain 1	Gv 2-1	TP3=1KHz, 10mV _{PP} INPUT	39.1	42.1	45.1	dB	
Voltage Gain 2	Gv 2-2	TP4=1KHz, 10mV _{PP} INPUT	39.1	42.1	45.1	dB	
Difference Voltage Gain	GvD2	$G_{VD}2=(G_{V}2-1)-(G_{V}2-2)$	-3.0	0	3.0	dB	
Maximum Output Voltage H	+Vom2	TP3=0.3V	V+-0.5		_	V	
Maximum Output Voltage L	-V _{OM} 2	TP4=0.3V	_	_	V-+0.5	V	
(TE Amplifier)							
Output Offset Voltage	V ₀₀ 3	TP14 Voltage	-50	0	50	mV	
Voltage Gain 1	Gy 3-1	TP6=1KHz, 100mV _{PP} INPUT	16.4	19.4	22.4	dB	
Voltage Gain 2	Gv 3-2	TP7=1KHz, 100mV _{PP} INPUT	16.4	19.4	22.4	dB	
Difference Voltage Gain	GvD3	$G_{VD}3=(G_{V}3-1)-(G_{V}3-2)$	-3.0	0	3.0	dB	
Maximum Output Voltage H	+Vом3	TP7=1.5V	V+-0.5	_	_	V	
Maximum Output Voltage L	-V _{OM} 3	TP6=1.5V	_	-	V-+0.5	V	
(APC)							
Output Voltage 1	Vo 1	$S_2 = 2 V_1 = 110 \text{mV} V_2 = -20.\text{V}$	_	-1.6	-0.3	V	
Output Voltage 2	Vo 2	$S_2 = 2 V_1 = 160 \text{mV} V_2 = -20. \text{V}$	-1.1	0.2	1.5	V	
Output Voltage 3	Vo3	$S_2 = 2 V_1 = 210 \text{mV} V_2 = -20.\text{V}$	0.8	2.1	_	V	
Output Voltage 4	Vo4	$S_2 = 2 V_1 = 0V V_2 = -20.V$	2.1	2.3	_	V	
Output Voltage 5	Vo 5	$S_1 = ON S_2 = 2 V_1 = 0V_2 = 2.0V$	_	_	1.0	V	
(Center Voltage Amp.)							
Output Voltage 6	Vo6	$V_2 = -2.5V$ TP8 Voltage	-70	0	70	mV	

■ TEST CIRCUIT

■ TERMINAL EXPLANATION

SYMBOL	EQUIVALENT CIRCUIT	TERMINAL EXPLANATION
LD		Output pin of APC AMP.
		atom Office Visited
		95 Acophilus ugus Office Voltage orage Clare s
PD	υ 20μΑ	Input pin of APC AMP.
PD1 PD2	15.8k	Input pin of RF I-V AMP. Connect A+C pin, B+D pin of eac photo-diode and current input.
	22.6k 20.\(\mu\) 20.\(\mu\) 20.\(\mu\)	Carrier Votage Carrier THEST CARCEST TO THE TREE CARCEST THE TR
VEE		Connect minus supply(Two supply) Connect GND(Single supply)
F E	15.8k	Input pin of TE I-V AMP. Connec E pin, F pin of each photo-diode and current input.
	PD1 PD2	PD1 PD2 3, 4 20 4 15.8k VC 22.6k VC 22.6k VC 40 15.8k VC 40 VC

PIN NO.	SYMBOL	EQUIVALENT CIRCUIT	TERMINAL EXPLANATION
8	VR	150	Output pin of direct current<(V cc+Vee)/2>.
	REGISTANCES		
9	VC		Input pin of internal center point voltage. Connect GND(±5V) Connect VR pin. (Single supply)
12	ЕО		Output pin for monitor of I-V AMP E.
	DON RX dily salvuco	12 98k 98k 10.7k	
13	EI	13 260k	Gain adjustment pin of I-V AMP E.
14	TE	14	Output pin of TRACKING ERROR AMP. Output of E-F signal.
	1964 (1964) - 1964 1964 (1964) - 196	96k	NO-CLI ST

PIN NO.	SYMBOL	EQUIVALENT CIRCUIT	TERMINAL EXPLANATION
15	FE-BIAS	VC 31.6k 31.6k 20µA	Bias adjustment pin of FOCUS ERROR AMP. (Non-inverting side)
16	FE	16	Output pin FOCUS ERROR AMP.
elies tetura lici (1752)	pik pik di nter diper silvest VII ya miles (Singo m	Φ 300μA	
MA V-1 To rest	more till mig-micht.	25p	03 20
17	RFO	17	Output pin RF AMP.
18	RFI	13.43k VC 3.6k	Input pin of RF AMP. (Inverting side Establish Gain of RF AMP by resistor between RFI pin and RFO pin
TRACKING signs of B-Esi	TO RIG IN OF DEPART OF SECON PART OF SECON P	(ψ) 200μA	NT M
19	LD ON	19 80k 8k	Change-over pin(on/0ff) of APC AMP. ON···GND/OFF···Vcc
20	Vcc		Connect plus supply. (Two supply Connect Vcc. (Single supply

RF AMP

RFO-OUTPUT

 $V_{RFO} = (iPD1 + iPD2)(A) \times 111(k\Omega) \times \frac{22(k\Omega)}{13.43(k\Omega)}$

=181.8(k Ω)×(*i*PD1+*i*PD2)(A)

Establish Gain of RF AMP by resistor ($22k\Omega$) between RFI pin and RFO pin.

FE AMP

FE OUTPUT

$$V_{\text{FE}} = (i\text{PD1} - i\text{PD2})(\text{A}) \times 111(\text{k}\Omega) \times \frac{174(\text{k}\Omega)}{15.1 \text{ (k}\Omega)}$$

=1279(k Ω)×(*i*PD1-*i*PD2)(A)

It is possible to controll FE Output Offset by variable resistor with FE BIAS pin.

TE AMP

TE OUTPUT

$$V_{\text{TE}}\!=\!(i\text{E}\!-\!i\text{F})(\text{A})\!\times\!403(\text{k}\Omega)\!\times\!\frac{96(\text{k}\Omega)}{10.7(\text{k}\Omega)}$$

=3616 $(k\Omega)\times(iE-iF)(A)$

It is possible to trim 1-V Gain by resistor with ED pin.

APC CIRCUIT

LD ON pin: connect to GND···APC (Auto Power Controll) ON connect to V+···APC (") OFF

TYPICAL APPLICATION

1) ±5V (TWO SUPPLY VOLTAGE)

2) +5V (SINGLE SUPPLY VOLTAGE)

TYPICAL CHARACTERISTICS

Operating Current(Icc)vs. Temperature

Operating Current (IEE) vs. Temperature

RF Output Offset Voltage vs. Temperature

FE Output Offset Voltage vs. Temperature

TE Output Offset Voltage vs. Temperature

Center Voltage vs. Temperature

■ TYPICAL CHARACTERISTICS

RF Voltage Gain vs. Temperature

FE Voltage Gain vs. Temperature

TE Voltage Gain vs. Temperature

APC Vol vs. Temperature

APC Vo2 vs. Temperature

APC Vo3 vs. Temperature

■ TYPICAL CHARACTERISTICS

APC Vo4 vs. Temperature

RF Maximum Output Voltage H vs. Temperature

RF Maximum Output Voltage L vs. Temperature

FE Maximum Output Voltage H vs. Temperature

FE Maximum Output Voltage L vs. Temperature

TE Maximum Output Voltage H vs. Temperature

■ TYPICAL CHARACTERISTICS

TE Maximum Output Voltage L vs. Temperature

Operating Current(Icc) vs. Operating Voltage

Operating Current(lex) vs. Operating Voltage

RF Maximum Output Voltage

FE Maximum Output Voltage vs. Operating Voltage

TE Maximum Output Voltage vs. Operating Voltage

TYPICAL CHARACTERISTICS

APC Input vs. Output Voltage

MONAURAL MICROPHONE AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2118 is a monaural microphone amplifier with current limit.

The low operating current and 3V or 5V operation are easy apply to portable items such as camcorder, microphone module and others.

The very small package of SSOP8 makes downsized PCB design.

■ PACKAGE OUTLINE

NJM2118M

NJM2118V

■ FEATURES

 $(+2.7V \sim +5.3V)$ Operating Voltage (1.0mA typ.) • Low Operating Current $(30 \,\mu\text{Vrms typ.})$ Low Noise

Bipolar Technology

 Package Outline DMP8, SSOP8

■ PIN CONFIGURATION

PIN FUNCTION

1: MIC V⁺ 2: C-NOISE

3:+V_{IN}

4: GND

5: - VIN

6: AMP NFB

7: AMP OUT 8: V⁺

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	+7	V
Power Dissipation	P _D	(SSOP8) 250 (DMP8) 300	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	T _{stg}	-40~+125	C

ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		+2.7	_	+5.0	V
Operating Current	I _{CC}	Call Mark (AB)	_	1	2	mA
Voltage Gain	Gv	f=1kHz	27	28	29	dB
Total Harmonic Distortion	THD	f=1kHz, Vo=300mVrms, RL=10kΩ	-	0.05	0.5	%
Maximum Output Voltage	V _{om}	f=1kHz, THD=1%, R1=10kΩ	2.0	2.5	-	Vpp
Output Noise Voltage 1	V _{n1}	R1=100 Ω, Io=2.5mA, Weight JIS-A	-	30	35	μVrms
Output Noise Voltage 2	V _{n2}	Rg=1kΩ, Weight JIS-A	-	20	42	μVrms
Input Impedance	R _{in}	f=1kHz	_	110	_	kΩ
Output Impedance	Ro	f=1kHz	-	18	_	Ω
Mic Output Supply Voltage 1	MI Cout1	Io=0mA	2.0	2.45	-	V
Mic Output Supply Voltage 2	MI Cout2	Io=2.5mA, R1=100 Ω	2.0	2.15	- 1	V

TEST CIRCUIT

PRE & POWER AMPLIFIER WITH ALC

■ GENERAL DESCRIPTION

NJM2128 is a pre & power amplifier with ALC for micro and compact cassette recorders. It contains pre-amplifier, ALC circuit, power amplifiers, and ripple filter.

The pre-amplifier amplifies the signal come from magnetic head. The ALC circuit limits the input signal to optimize level in recording. The power amplifiers drive a speaker in play back and the magnetic head in recording. The ripple filter stabilizing the supply voltage to the internal pre-amplifier and an external condenser microphone.

■ PACKAGE OUTLINE

NJM2128M

■ FEATURES

- Operating Voltage
- 1.8V~7.0V
- Automatic Level Control (ALC) Limit Level=100mVrms typ.(f=1kHz)
- Ripple Filter R.R. (Ripple Rejection)=47dB _{typ.}(f=200Hz, C=47 μF)
- Bipolar Technology
- Package Outline

DMP16

PIN CONFIGURATION

PIN FUNCTION

- 1. PRE+IN SGND
- 3. POWER+INA
- 4. POWER-INA 5. POWER-INB
- 6. POWER+INB
- 7. RFOUT
- 8. RFIN
- 9. ALCIN 10. TC
- 11. POWER OUT B
- 12. POWER GND 13. V+
- 14. POWER OUT A
- 15. PREOUT
- 16. PRE-IN

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	+7.0	V
PA Output Peak Current	I _{op}	strongen men lance (stigle a	A
PA Intput Voltage Range	V _{IN}	±0.4	V
Power Dissipation	P _D	(M-Type) 300	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	T _{stg}	-40∼+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=3V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		1.8	3.0	6.0	V
Operating Current	Icc	$R_L=\infty$	_	9	14	mA
Power Amp						
Input Bias Current	I_B		NEW TOTAL	140	ви По	nA
Output Offset	ΔVo	$R_L=8\Omega$	-	0	50	mV
Output Power	Po	THD=10%, f=1kHz, V ⁺ =4V, R_L =8 Ω	300	400	-	mW
(Note1)	Po	THD=10%, f=1kHz, V+=3V, R_L =4 Ω	150	220	-	mW
T.H.D.	THD	$V^+=4V$, $\dot{R}_L=8\Omega$, $P_O=200$ mV, $f=1$ kHz	-	0.2	-	%
Close Loop V-Gain	A _V 1	f=1kHz	41	44	47	dB
2541-202020	V _{N1}	$R_S=10k\Omega$, $R_L=4\Omega$, A curve	-	2	-	μVrms
Equivalent Input Noise Voltage	V _{N2}	$R_s=10k\Omega$, $R_L=4\Omega$, $BW=22Hz\sim22kHz$		2.5	-	μVrms
Ripple Rejection	RR	f=100Hz	M -	47	-	dB
Cut off Frequency	f _H	$A_V = -3 dB$ from f=1kHz, $R_L = 4 \Omega$, $P_O = 0.1 W$	-	80	-	kHz
Pre Amp		A STATE OF THE STA		5.77		
Output Voltage	V ₀	f=1kHz, THD=1%	0.1	0.2	-	Vrms
Voltage Gain	Av	f=1kHz	35	38	41	dB
Output V-Gain	V _{NO}	$R_s=3.3k\Omega$	-	0.1	0.4	mVrms
ALC		THE PARTY OF THE P				
Limit Level	ALC	f=1kHz	100	200	300	mVrms
Ripple Filter						
Output Voltage	V ₀	$R_L=2k\Omega$	V+-0.24	V+-0.2	V+-0.16	V
Ripple Rejection	RR	f=200Hz, C=47 μF	40	47	54	dB

(Note 1) at on PC Board

■ TYPICAL APPLICATIONS

LOW VOLTAGE AUDIO POWER AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2135 is a Low voltage audio power amplifier for speaker drivers. No external coupling capacitors are reguired because of the differential output. The closed loop gain is adjusted by two external resistors. The low supply current in power down mode contributes to the reduction of power consumption of portable batterypowered equipment, cellular phones, for example.

■ FEATURES

Operating Voltage

+2V~+16V

Low Operating Current in Power Down Mode

 $0.1 \,\mu\text{A}$ typ.

Low Operating Current in Normal Operation Mode

2.7mA typ.

Output Power Exceeds 250mW

 $V^{+}=6V, R_{L}=32\Omega$

Gain Range

GVD=0~43dB, Voice Band

Load Impedance

8~200Ω

Bipolar Technology

Package Outline

DIP8, DMP8, EMP8, SIP8, SSOP8

■ PACKAGE OUTLINE

NJM2135D

NJM2135M

NJM2135L

NJM2135E

NJM2135V

■ PIN CONFIGURATION

PIN FUNCTION

- 1. CD
- V_{REFI}
- 2. V_{REF1}
 3. V_{REF2}
 4. -V_{IN}
 5. V_{OUT1}
 6. V⁺
- 7. GND
- 8. V_{OUT2}

4-100

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+	+2.0~+16	V	
Output Peak Current	Iop	±250	mA	
	V _{IN} (1-4pin)	−0.3, V++0.3	V	
Maximum Input Voltage	V _{IN} (5-8pin)	-0.3, V++0.3 (In power down)	V	
		(DIP-8) 500	LAN	
		(SIP-8) 800	STOLE 1	
Power Dissipation	P _D	(DMP-8) 500	mW	
		(EMP-8) 500(note1)		
	-	(SSOP-8) 360(note1)		
Operating Temperature Range	Topr	−20~+75	C	
Storage Temperature Range T _{stg}		-40~+125	C	

(note) Mounted on PC Board

■ ELECTRICAL CHARACTERISTICS

(V+=6V, Ta=25℃, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC1}	V*=3V, R _L =∞, 1pin=2.0V		2.7	4.0	mA
(NO SIGNAL)	I _{CC2}	V*=16.0V, R _L =∞, 1pin=2.0V		3.4	5.0	mA
(At Power Down Mode)	I _{CCD}	V+=3.0V, R _L =∞, 1pin=0.8V		0.1	1.0	μΑ
Open Loop Gain	AV1	AMP#A, f<100Hz	77	83		dB
Closed Loop Gain	AV2	AMP#B, $f=1kHz$, $R_L=32 \Omega$	-0.35		+0.35	dB
	Po1	V^+ =3.0 V , R_L =16 $Ω$, THD≤10%	55	sulfan K	4.000	mW
Output Power	Po2	$V^{+}=6.0V, R_{L}=32 \Omega, THD \le 10\%$	250	A SEXAMO	The same	mW
(Note1)	Po3	$V^{+}=12.0V$, $R_{L}=100 \Omega$, $THD \le 10\%$ (Note2)	400	al Aspenia 10 mile	of 107 ho	mW
	THD1	V ⁺ =6V, R _L =32Ω, Po=125mW, G _{VD} =34dB	DR IDW	0.5	1.0	%
Total Harmonic Distortion	THD2	$V^+ \ge 3V$, $R_L = 8\Omega$, $Po = 20mW$, $G_{VD} = 12dB$	main ta	0.5	HESTERS.	%
(f=1kHz)	THD3	$V^{+} \ge 12V$, $R_L = 32 \Omega$, $Po = 200 \text{mW}$, $G_{VD} = 34 \text{dB}$	Sine es la	0.6	o reddir	%
Power Supply Rejection Ratio	PSRR1	C1=∞, C2=0.01 µF, DC	50	Cold and I	old mas	dB
(V*=6.0V, △V*=3.0V)	PSRR2	C1=0.1 µF, C2=0, f=1kHz		12	7 100 1	dB
	PSRR3	C1=1.0 µF, C2=5.0 µF, f=1kHz	at realis	52		dB
Mute Attenuation	MAT	f=1kHz~20kHz, 1pin=2.0V		70	1	dB
	Vol	V+=3.0V, R _L =16 Ω	1.00	1.15	1.25	V
Output Voltage	Vo2	V*=6.0V	Catalian	2.55		V
$(R_f=75k\Omega,DC)$	Vo3	V+=12.0V	201038	5.45	ansta bes	V
Output High Level	V _{OH}	I _{OUT} = -75mA, V ⁺ =2.0~16.0V		V+-1.1		V
Output Low Level	V _{OL}	I _{OUT} =75mA, V ⁺ =2.0~16.0V		0.21		V
Output DC Offset	ΔVo	$R_f=75k\Omega$, $R_L=32\Omega$, $5pin-8pin$	-30	0	+30	mV
Input Bias Current	I _B	4pin		-30	-200	nA
	R _{+IN}	3pin	100	150	220	kΩ
Equivalent Resistance	R _{REF}	2pin	18	25	40	kΩ
CD Input Voltage H	V_{CDH}	1pin	2.0		V+	V
CD Input Voltage L	V _{CDL}	Ipin	0.0		0.8	V
CD Input Resistance	R _{CD}	V*=V _{CD} =16.0V, 1pin	50	90	175	kΩ

(note1) NJM2135M, NJM2135E, NJM2135V: Mounted on Pc board

(note2) NJM2135V is excluded

(note)

1. The NJM2135 is active mode during the CD terminal is High level (>2.0V) and it is stand-by mode during the CD terminal is Low level (<0.8V).

2.C1 and C2 improve power supply rejection ratio.

In case of C1 is enough large, C2 is unnecessary.

- 3.Please note that the C1 and C2 make slow power rise up to the NJM2135 regardless the external power supply condition.
- 4.Input current flow on the internal resistor shown in the equivalent circuit of CD terminal.
- 5.No sunbber resistor and capacitor are required are required normally. But the snubber resistor and capacitor are required if the NJM2135 oscillates by condition of PCB layout, stray capacitor and speaker wire length.
- 6.When the NJM2135 change the mode to active or stand-by the CD terminal ON/OFF, the actual operation takes some delay by the charge and discharge of C1,C2.
- 7. When the power turns on in stand-by mode, the NJM2135 operates during charging time of C1 and C2.
- If the supply voltage fluctuate large during the stand-by mode, the mode of active and stand-by of NJM2135 becomes unstable.

■ POWER DISSIPATION

The allowable power is restricted by the ambient temperature. Characterestics of the allowable power (PD:Powe Dissipation) against ambient temperature is indicated below.

DOLBY PRO LOGIC SURROUND DECODER

■ GENERAL DESCRIPTION

The NJM2177 is a higher level integration and high quality audio performance monolithic IC designed for use in Dolby Pro Logic Surround System. The NJM2177 provides all the necessary function for a complete Pro Logic processor except time delay; Automatic input balance, noise sepuencer, adaptibve matrix, center mode control, and modified B-type noise reduction all on chip.

In addition to Dolby Pro Logic function including Dolby 3-stereo, this device provides two channel bypass mode and two special outputs used for other surround conbeniently.

At two channel by pass mode, noise and distortion of NJM2177A are lower than that of NJM2177

(note) Dolby and the double-D symbol are trademarks of Dolby Laboratories Licensing Corporation. San Francisco, CA94103-4813, USA.

This device available only to licensees of Dolby Lab.

Licensing and application information may be obtained from Dolby Lab.

PACKAGE OUTLINE

NJM2177L/2177AL

NJM2177FB3/2177AFB3

■ FEATURES

- Operating Voltage
 Dolby operating level
 Lower Operating Current
 9 to 13V
 300mVrms
 Lower Operating Current
- Internal mode control switches
- Package SDIP-56, QFP-56, QFP-64

■ FUNCTIONS

- Auto input balance and buffer
- Noise sequencer; a Noise generator, a sequencer controlled by external two bits
- Adaptive Matrix
- Center mode control; ON/OFF, Normal/Phantom/Wideband
- Modified Dolby B Type Noise Reduction and OP amp. for 7kHz low-pass filter
- Operating mode control; 4ch(L,C,R), 3ch(L,C,R), 2ch(no processing)
- L+R and L-R output

■ ACTIVE SURROUND DECODER BLOCK DIAGRAM

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	15	V
Power Dissipation	PD	(SDIP-56) 700	mW
		(QFP-56) 500	mW
		(QFP-64) 500	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V+=12V, 0dB Reference is 300mV/1kHz at C-OUT. Unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNI
Overall	Di - AR-III					
Operating Voltage Range	V _{OP}		9.0	_	13.0	V
Operating Current	Icc	No signal		34.0	40.0	mA
Reference Voltage	V_{ref}	No signal	-	4.0	NATE OF	V
Control SW input voltage						-
2ch Mode	V _C -2ch	MODE-CNT PIN	0.0	_	0.8	V
3ch	V _C -3ch	MODE-CNT PIN	_	Open	_	
4ch	V _C -4ch	MODE-CNT PIN	3.8	_	7.0	V
Center on	V _C -con	CENTER-CNT PIN	2.4	_	7.0	V
Center off	V _C -coff	CENTER-CNT PIN	0.0	_	0.8	V
Noise Seq. on	V _C -nson	NOISE-CNT-E PIN	0.0	_	0.8	V
Noise Seq. off	V _C -nsoff	NOISE-CNT-E PIN	3.2	_	7.0	V
Noise Seq. channel select H	V _C -nssH	NOISE-CNT-A and NOISE-CNT-B PIN	3.2	_	7.0	V
Noise Seq. channel select L	V _C -nssL	NOISE-CNT-A and NOISE-CNT-B PIN	0.0	_	0.8	V
Modified B Noise Reduction (0dBd Reference	is input lev	ve at NR-IN when adjust to 300mV/100Hz	at S-OUT)			
Voltage Gain	GV-BNR	V _{in} = 0dBd, f=100Hz	1_	9.0		dB
Decode Responce 1	D _{ecl}	V _{in} =0dBd, f=1.0kHz	-1.6	-0.1	1.4	dB
2	Dec2	$V_{in} = -15 \text{dBd}, f = 1.4 \text{kHz}$	-3.0	-1.5	0.0	dB
3	D _{ec3}	V _{in} =-20dB, f=1.4kHz	-4.9	-3.4	-1.9	dB
4	Dec3	V _{in} =40dBd, f=5.0kHz	-6.8	-5.3	-3.8	dB
T.H.D	THD-NR	V _{in} =0dBd, f=1.0kHz		0.07		%
Headroom	HR-NR	V+=9V AT T.H.D.=1%	15.0	17.0		dB
SN Ratio	SN-NR	Rg=0, weighted CCIR/ARM	76	82		dB
	314-1410	kg-0, weighted CCIK/ ARIVI	10	02		UD
Noise sequencer						
OUTPUT Noise level	V _{no}		-15	-12.5	-10	dB
Output Noise Level Accuracy relative to Cch Lch Rch S'ch	ΔV_{no}		-0.5	0.0	0.5	dB
Adaptive Matrix						
Output Level Accuracy relative to Cch						
L,R,S'ch out	ΔVol		-0.5	0.0	0.5	dB
Matrix Rejection relative L,R,C,S'ch out	Mr		25.0	40.0		dB
T.H.D L,R,C,S'ch out	THD-AM			0.02	_	%
Headroom L,R,C,S'ch out	HR-AM	V+=9V at T.H.D=1%	15.0	15.7	_	dB
Signal to Noise Ratio L,R,C,S' ch out	SN-AM	Rg=0, weighted CCIR/ARM	78	83	_	dB
Auto Balance						
Capture Range	CPR		_	±5		dB
Error collection	CER		_	±4	_	dB
T.H.D Lt, Rt OUT	THD-AB			0.03		%
S/N Lt, Rt OUT	SN-AB	Rg=0, weighted CCIR/ARM	78	83	_	dB
Headroom Lt,Rt OUT	HR-AB	V+=9V at T.H.D=1%	15.0	17.0	-	dB
L+R & L-R OUTPUT						
Output Level Accuracy relative to Cch	AV-LOD			0.0		4D
L+R, L-R ch	ΔVol-OP			0.0		dB
T.H.D	THD-OP	P 0 11 1 COTT (17)		0.02		%
S/N	SN-OP	Rg=0, weighted CCIR/ARM		92		dB
Headroom	HR-OP	V _{CC} =9V at T.H.D=1%		17.0	_	dB

2-INPUT 1-OUTPUT AUDIO SWITCH

■ GENERAL DESCRIPTION

The NJM2520 is $58k\Omega$ input impedance 2-input 1-output audio

It contains two bias-type inputs and one buffer-type output.

■ FEATURES

- Operating Voltage
- Crosstalk
- Input Impedance
- 2-Input, 1-Output
- Bipolar Technology
- Package Outline

DIP8, DMP8, SIP8, SSOP8

 $+4.75V \sim +13V$

(-70dB typ.)

(58k Ω typ.)

■ PACKAGE OUTLINE

NJM2520D

NJM2520M

NJM2520L

NJM2520V

■ PIN CONFIGURATION

PIN FUNCTION

- 1. NC
- 2. Vin1 3. SW1 4. Vin2
- 5. NC 6. V⁺
- 7. Vout

8. GND

PIN FUNCTION

- 1. NC 2. NC
- 3. Vin1 4. SW1
- 5. Vin2 6. V⁺

7. Vout 8. GND

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+	+15	V	
		(DIP-8) 500		
Danier Dissipation		(DMP-8) 300	mW	
Power Dissipation	P _D	(SIP-8) 800	III VV	
TOURSET BESTELL		(SSOP-8) 250		
Operating Temperature Range	Topr	-20~+75	C	
Storage Temperature Range	T _{stg}	−40~+125	C	

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		+4.7	_	+13.0	V
Operating Current	I _{CC}		NO.	8.5	11.0	mA
Frequency Characteristics	Gf	Vin=2Vpp, Vo=10MHz/100kHz	-1.0	0	+1.0	dB
Voltage Gain	Gv	Vin=2Vpp, 100kHz	-0.5	0	+0.5	dB
Total Harmonic Distortion	THD	Vin=2.5Vpp, 1kHz		0.01	-	%
Output Offset Voltage	V _{off}		-35	0	+35	mV
Switching Voltage	V _{CH}		2.4	-	-	V
Switching Voltage	V _{CL}		witter		0.8	V
Input Impedance	Ri			58	-	kΩ
Output Impedance	Ro	6	-	10	-	Ω

3-INPUT 1-OUTPUT AUDIO SWITCH

■ GENERAL DESCRIPTION

The NJM2521 is $58k\Omega$ input impedance 3-input 1-output audio switch.

It contains two bias-type inputs and one buffer-type output.

■ FEATURES

0	Operating Voltage	$+4.75V \sim +13V$
0	Crosstalk	(-70dB typ.)
	Input Impedance	(58k Ω tvp.)

- 3-Input, 1-Output
- Bipolar Technology
- Package Outline

DIP8, DMP8, SIP8, SSOP8

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM2521D

NJM2521M

NJM2521L

NJM2521V

PIN FUNCTION

- 1. Vin1 2. SW1
- 3. Vin2 4. SW2
- 5. Vin3
- 6. V+
- 7. Vout
- 8. GND

PIN FUNCTION

- 1. Vin1
- 2. SW1
- 3. Vin2 4. SW2 5. Vin3

- 6. V⁺ 7. Vout
- 8. GND

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	+15	V
		(DIP-8) 500	
Para Distriction	D.	(DMP-8) 300	mW
Power Dissipation	P _D	(SIP-8) 800	III **
		(SSOP-8) 250	
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	T _{stg}	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25℃)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V ⁺		+4.75	-	+13.0	V
Operating Current	I _{CC}		-	11.0	14.5	mA
Frequency Characteristics	Gf	Vin=2Vpp, Vo=10MHz/100kHz	-1.0	0	+1.0	dB
Voltage Gain	Gv	Vin=2Vpp, 100kHz	-0.5	0	+0.5	dB
Total Harmonic Distortion	THD	Vin=2.5Vpp, 1kHz	_	0.03	-	%
Output Offset Voltage	V _{off}		-35	0	+35	mV
Control of Value	V _{CH}		2.4	-	-	V
Switching Voltage	V _{CL}	1 0 0	_	-	0.8	V
Input Impedance	Ri		_	58	-	kΩ
Output Impedance	Ro	THE FIRST OF		10	_	Ω

DOLBY PRO LOGIC SURROUND DECODER

■ GENERAL DESCRIPTION

The NJW1102 is a Dolby Pro Logic Surround Decoder including modified Dolby B-Type noise reduction circuit, input auto-balance controller, noise sequenoer, adaptive matrix, center and surround channel level trimmers, serial data interface and others. All of internal status and the balance of surround speakers are controlled by serial data. It performs the complete Dolby Pro Logic Surround function and surround function, such as Hall, Matrix, Simulated and others combine with the digital delay NJU9702.

(Note) Dolby and the double-D symbol are trademakes of Dolby Laboratories Licensing Corporation, San Francisco, CA94103-4813, USA.

This device is available only to licensees of Dolby Lab.

Licensing and application infromation may be obtained from Dolby Lab

■ FEATURES

Operating Voltage

Analog Block

 $V_{CC} = 9 - 13 \text{ or } \pm 5V$

Digital Block

 $V_{DD} = 5V$

Dolby Operating Level

300mVrms

• Center and Surround Channel Level Trimmers

-15 to +15dB/1dB step (-15dB to 3dB/1dB step in Pro Logic Mode)

- Internal Mode Control Switch
- Bi-CMOS Technology

Package Outline

TQFP64

Market Ma

NJW1102L

PACKAGE OUTLINE

NJW1102FG1

■ FUNCTIONS

- Input Auto-Balance
- Noise Generator And Sequencer
- Adaptive Matrix
- Pro Logic Surround Mode Conrtol: 4/3, Center ON/OFF, Normal/Phantom/Wideband
- 7kHz Low-pass Filter and Modified Dolby B Type Noise Reduction
- Center and Surround Channel Level Trimmer
- Other Surround Mode Control: S'Out Selector, Mixer And Mute Functions
- Serial Data Interface

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
	Vcc	13.0	V
Supply Voltage	V _{DD}	6.5	V
Power Dissipation	P _D	700	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	T _{stg}	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C,V_{CC}=10V,V_{DD}=5V,0dB\ reference\ is\ 300mVrms/1kHz\ at\ C-OUT\ with\ C\ ch\ trimmer\ being\ 0dB,unless\ otherwise\ specified.)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Overall						
O	V _{cc}		9	10	13	V
Operating Voltage	V _{DD}	V23 W/1-1-39	4.5	5.0	6.5	V
	I _{CC}	No Signal		35	45	mA
Operating Current	I _{DD}	No Signal	f factorit	0.6	1.5	mA
Reference Voltage	Vref	No Signal	3.6	4.0	4.4	V
ramani sek	Vthh	Digital Input High Level	0.7V _{DD}	lyme J	V _{DD}	V
Threshold Voltage	Vthl	Digital Input Low Level	0.0	100	0.3V _{DD}	V
Input short switch						
Resistance at input short	Ron			150	500	Ω
Switch Crosstalk	SC	Vin=0dB, f=1kHz, Rm=600Ω		-100	ell-cities.	dB
Input Auto Balance			rakiti pa	tone up	e Cuteru	Nels
Capture Range	CPR			±5	Sept 200	dB
Error Correction	CER	and other State of Year State of State	Leave Tree	±4	termina li	dB
Adaptive Matrix		resident to a	Liverse	Lincon	IR bears	10-01
Output Level Accuracy Relative to C ch	△Vol	L, R, S' ch out	-0.5	0.0	0.5	dB
Matrix Rejection Relative	MR	L, R, C, S' ch out'	25	40	11 2 B C I	dB
Headroom	HRAM	V _{CC} =9V at THD=1%	15	17		dB
Table Disco	THEAT	L, R, C, S' ch out at 4ch mode		0.050	0.200	%
Total Harmonic Distortion	THDAM	L, R ch out at 2ch mode		0.002	0.050	%
C. L. N. D.	CNIANA	Rg=0, weighted:CCIR/ARM at 4ch mode	75	80		dB
Signal to Noise Ratio	SNAM	L, R ch out at 2ch mode	93	100		dB
Noise Sequencer		Mark States and States				par ju
Output Noise Level	Vno		-15	-12.5	-10.0	dB
Output Noise Level Accuracy Relative to C ch	△Vno	L, R, S' ch out	-0.5	0.0	0.5	dB

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNI
Modified Noise B Type Noise Reduction		Southering mani . Italian and the bor o				
(0dBd reference is input level at NR-IN when S	out is adjusted	d to 0dB (300mVrms/100Hz) with S ch trimn	ner level	being 0d	B)	i maje
Voltage Gain	VGNR	Vin=0dBd, f=100Hz		9.5	Caper 1	dB'
Decode Response 1	DEC1	Vin=0dBd, f=1.0kHz	-1.6	-0.1	1.4	dB
Decode Response 2	DEC2	Vin=-15dBd, f=1.4kHz	-3.0	-1.5	0.0	dB
Decode Response 3	DEC3	Vin=-20dBd, f=1.4kHz	4.9	-3.4	-1.9	dB
Decode Response 4	DEC4	Vin=-40dBd, f=5.0kHz	-6.8	-5.3	3.8	dB
Total Harmonic Distortion	THDNR	Vin=0dBd, f=1kHz	riso elde	0.070	0.300	%
Headroom	HRNR	Vin=9V at THD=1%	15	17	e waani	dB
Signal to Noise	SNNR	Rg=0, weighted : CCIR/ARM	73	78	111111111111111111111111111111111111111	dB
Other Surround						
Total Harmonic Distortion	THDOS	Vin=0dB, f=1kHz L+R, L-R Output		0.050	0.200	%
Headroom	HROS	V _{CC} =9V at THD=1% L+R, L-R Output	15	17		dB
Signal to Noise Ratio	SNOS	Rg=0, weighted : CCIR/ARM L+R, L-R Output	75	80	Lett to	dB
Adder Gain	AG		(VOTTINGS)	0	C L Par No	dB
C.S Channel Trimmer			John Z	Control 1	A DATES	and I
Full Scale	FS	Digital Input=+15 or −15dB	+12	±15	±18	dB
Gain Accuracy at -6dB		Digital Input=-6dB	-7	-6	-5	dB
Non Linearity (Note 1)	NL	Digital Input=±1, 2, 4, 8dB	-0.5	0.0	0.5	dB
Control Timing				-131	OTO	UN
SCK Clock Width	t1	SCK	50	Charle wa	LE SURVEY S	μS
REQ Set-up Time	t2	REQ-SCK	25	111	o Washin	μS
REQ Hold Time	t3	REQ-SCK	25	Vi Linus	ing sign.	μS
Data Set-up Time	t4	SCK-DATA	25	mirt e	la della	μS
Data Hold Time	t5	SCK-DATA	25		CONTRACTOR	μS

(Note 1) NL=A·B/D-C

A: Measured gain value in full scale
B: Digital input value
C: Measured gain value of digital input
D: Full scale value

(Note 2) Control Timing

DOLBY PRO LOGIC SURROUND DECODER

■ GENERAL DESCRIPTION

The NJW1102A is a Dolby Pro Logic Surround Decoder including modified Dolby B-Type noise reduction circuit, input auto-balance controller, noise sequenoer, adaptive matrix, center and surround channel level trimmers, serial data interface and others. All of internal status and the balance of surround speakers are controlled by serial data. It performs the complete Dolby Pro Logic Surround function and surround function, such as Hall, Matrix, Simulated and others combine with the digital delay NJU9702.

(Note) Dolby and the double-D symbol are trademakes of Dolby Laboratories Licensing Corporation, San Francisco, CA94103-4813, USA.

This device is available only to licensees of Dolby Lab.

Licensing and application infromation may be obtained from Dolby Lab.

■ PACKAGE OUTLINE

NJW1102AF1

■ FEATURES

Operating Voltage

Analog Block

 $V_{CC} = 9 - 13 \text{ or } \pm 5V$

Digital Block

 $V_{DD} = 5V$

Dolby Operating Level

300mVrms

Center and Surround Channel Level Trimmers

-31 to +0dB/1dB step (0dB=Dloby Level)

- Internal Mode Control Switch
- Bi-CMOS Technology
- Package Outline

SDIP56, TQFP64

■ FUNCTIONS

- Input Auto-Balance
- Noise Generator And Sequencer
- Adaptive Matrix
- Pro Logic Surround Mode Conrtol: 4/3, Center ON/OFF, Normal/Phantom/Wideband
- 7kHz Low-pass Filter and Modified Dolby B Type Noise Reduction
- Center and Surround Channel Level Trimmer
- Other Surround Mode Control: S'Out Selector, Mixer And Mute Functions
- Serial Data Interface
- Optional Digital Outputs

AUX1, AUX2

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Complex Voltage	V _{cc}	13.0	V
Supply Voltage	V _{DD}	6.5	V
Power Dissipation	P _D	700	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25\,^\circ\text{C},\,V_{CC}=10\text{V},\,V_{DD}=5\text{V},\,0\text{dB reference is }300\text{mVrms/1kHz at C-OUT with C ch trimmer being }0\text{dB, unless otherwise specified.})$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Overall		DESCRIPTION OF THE PROPERTY OF				
	V _{CC}	estat automorphism and	9	10	13	V
Operating Voltage	V _{DD}	short the same of	4.5	5.0	6.5	V
	I _{CC}	No Signal		35	45	mA
Operating Current	I_{DD}	No Signal		0.6	1.5	mA
Reference Voltage	Vref	No Signal	3.6	4.0	4.4	V
m 1 11 1/1 1	Vthh	Digital Input High Level	0.7V _{DD}		V _{DD}	V
Threshold Voltage	Vthl	Digital Input Low Level	0.0		$0.3V_{DD}$	V
Input Auto Balance				Lauren		
Capture Range	CPR	The second secon		±5		dB
Error Correction	CER	Canada Anada Cara Cara Cara Cara Cara Cara Cara C		±4		dB
Adaptive Matrix						
Output Level Accuracy Relative to C ch	△Vol	L, R, S' ch out	-0.5	0.0	0.5	dB
Matrix Rejection Relative	MR	L, R, C, S' ch out	25	. 40		dB
Headroom	HRAM	V _{CC} =9V at THD=1%	15	17		dB
Total Harmonic Distortion	THDAM	L, R, C, S' ch out at 4ch mode		0.050	0.200	%
Total Harmonic Distortion	THDAM	L, R ch out at 2ch mode		0.002	0.050	%
Cincol to Main Datio	SNAM	Rg=0, weighted:CCIR/ARM at 4ch mode	75	80	a la	dB
Signal to Noise Ratio	SNAM	L, R ch out at 2ch mode	93	100		dB
Noise Sequencer		money fairness of	DIFFERENCE AND	Arriginal Park	BILL ON	
Output Noise Level	Vno		-15	-12.5	-10.0	dB
Output Noise Level	0.37	I D Cl I	0.5	0.0	0.5	ID
Output Noise Level Accuracy Relative to C ch	△Vno	L, R, S' ch out	-0.5	0.0	0.5	dB

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Modified Noise B Type Noise Reduction	BONSTAN	C 10skrys	SULTE	DEA SAID		
(0dBd reference is input level at NR-IN when	S out is adjuste	ed to 0dB (300mVrms/100Hz) with S ch trimn	ner level	being 0d	B)	
Voltage Gain	VGNR	Vin=0dBd, f=100Hz		9.0		dB
Decode Response 1	DEC1	Vin=0dBd, f=1.0kHz	-1.6	-0.1	1.4	dB
Decode Response 2	DEC2	Vin=-15dBd, f=1.4kHz	-3.0	-1.5	0.0	dB
Decode Response 3	DEC3	Vin=-20dBd, f=1.4kHz	-4.9	-3.4	-1.9	dB
Decode Response 4	DEC4	Vin=-40dBd, f=5.0kHz	-6.8	-5.3	3.8	dB
Total Harmonic Distortion	THDNR	Vin=0dBd, f=1kHz		0.070	0.300	%
Headroom	HRNR	Vin=9V at THD=1%	15	17	Jam Ind	dB
Signal to Noise	SNNR	Rg=0, weighted : CCIR/ARM	73	78		dB
Other Surround	SITUAL SAME	A RESIDENCE TO A RESIDENCE TO A SECOND CONTRACTOR OF THE PARTY OF THE				
Total Harmonic Distortion	THDOS	Vin=0dBd, f=1kHz L+R, L-R Output		0.050	0.200	%
Headroom	HROS	V _{CC} =9V at THD=1% L+R, L-R Output	15	17	eurio V.s	dB
Signal to Noise	SNOS	Rg=0, weighted : CCIR/ARM L+R, L-R Output	75	80		dB
Adder Gain	AG	THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TW		0		dB
C.S Channel Trimmer		The second second			ogal wif	unrire
Full Scale	FS	Digital Input= -31dB	-34	-31	-28	dB
Non Linearity (Note) NL	Digital Input=-1, -2, -4, -8, -16dB	-0.5	0.0	0.5	dB
Optional Digital Output (AUX1, AUX2)				100	12 11 11 11 11 11 11 11 11 11 11 11 11 1	
Low Level Voltage	VOL	Sink Current=0.8mA, V _{DD} =5V		0.6	1.0	V
High Level Voltage	VOH	Source Current=0.5mA, V _{DD} =5V	3.5	4.0	DC West	V
Control Timing					BITTE ST	11/2/11
SCK Clock Width	t1	SCK	50		S A BOY	μS
REQ Set-up Time	t2	REQ-SCK	25	9		μS
REQ Hold Time	t3	REQ-SCK	25			μS
Data Set-up Time	t4	SCK-DATA	25	100001010	LI diapin	μS
Data Hold Time	t5	SCK-DATA	25			μS

(Note 1) NL=A·B/D-C

A: Measured gain value in full scale
B: Digital input value
C: Measured gain value of digital input
D: Full scale value

(Note 2) Control Timing

SINGLE CHIP DIGITAL DELAY IC

■ GENERAL DESCRIPTION

NJU9702 is a single chip digital delay LSI designed for Dolby Prologic or other types surround processor.

It consists of 16k SRAM, input/output filter, A/D D/A converters

The A/D and D/A converter is using a ADM (Adaptive Delta Modulation) method. Consequntly, it is realized low noise and low

The delay time can select from 64 mode of 0.5ms to 32.8ms in 0.5ms step, according to the application.

Furthermore, the NJU9702 has a sleep mode, mute function, and power on initialization function which perform low current consumption in the sleep mode, muting on/off control and power on initialization.

■ PACKAGE OUTLINE

■ FEATURES

- ADM (Adaptive Delta Modulation) Method A/D and D/A Converter
- Low Noise and Low Distortion (No=95[dBV] TYP., THD=0.2[%] TYP.)
- 64 Delay Time Modes From 0.5ms To 32.8ms In 0.5ms step
- Low Current Consumption In Sleep Mode
- Input/Output Filter Built-in (Required External CR)
- A/D, D/A Converter Built-in (Required External CR)
- 16K SRAM (Internal)
- Power on initialization
- Oscillation Circuit
- Package Outline

DIP24, SOP24

C-MOS Technology

■ PIN CONFIGURATION

BLOCK DIAGRAM

■ TERMINAL DESCRIPTION

V _{DD}	Voltage Supply for Digital Block V _{DD} =5[V]	the mile	retproducen (MASE July			
DGND	Digital GND DGND=0[V]					
V _{CC}	Voltage Supply for Analog Block V _{CC} =5[V]		THE RESERVED AS A SECOND PARTY OF THE PARTY			
AGND	Analog GND AGND=0[V]					
REF	Analog Refernece Voltage REF=1/2 · V _{CC}	med to about	es dan selver trum his men			
X _{IN}	Oscillator Input Terminal		Albiminges Alb or in the			
Xout	Oscillator Output Terminal					
REQ	ata Request Input Terminal Connects to 2MHz ceramic Osci					
SCK	Serial Data Shift Clock Input Terminal					
DATA	Serial Data Input Terminal					
IDSW	ID Switch (ID Code When Connect to the Common Bus	s)				
DFLAG	ID Flag (Data Input Confirmation and Serial Data Output	ut)	AcuteM (mana kaporel silly)			
CC1	Current Control 1 Modulator	4004				
CC2	Current Control 2 Demodulator	ADM C	Controller			
EST1, 2	Test Terminal (Normally Connects to the GND)	1 Hyd Lean	ated Inspecial Control of			
LPF1IN	Lowpass Filter 1 Input	I C'. 1	There is the state of the state			
PF1OUT	Lowpass Filter 1 Output	Input Side	Constitute a Lowpass Filter			
LPF2IN	Lowpass Filter 2 Input	0 0.1	with external C and R.			
PF2OUT	Lowpass Filter 2 Output	Output Side				
OPIIN	OP-AMP 1 Input	I C: J				
PIOUT	OP-AMP 1 Output	Input Side	Constitute a Integrator with			
OP2IN	OP-AMP 2 Input	external C.				
P2OUT	OP-AMP 2 Output	Output Side				
	Vcc AGND REF X _{IN} X _{out} REQ SCK DATA IDSW DFLAG CC1 CC2 EST1, 2 PF1IN PF1OUT PF2IN PF2OUT OP1IN P1OUT OP2IN	Vcc Voltage Supply for Analog Block Vcc=5[V] AGND Analog GND AGND=0[V] REF Analog Refernece Voltage REF=1/2 · Vcc X _{IN} Oscillator Input Terminal X _{out} Oscillator Output Terminal REQ Data Request Input Terminal SCK Serial Data Shift Clock Input Terminal DATA Serial Data Input Terminal IDSW ID Switch (ID Code When Connect to the Common Buston ID Flag (Data Input Confirmation and Serial Data Output CC1 Current Control 1 Modulator CC2 Current Control 2 Demodulator EST1, 2 Test Terminal (Normally Connects to the GND) PFIOUT Lowpass Filter 1 Input DPFIOUT Lowpass Filter 2 Input DPFIOUT Lowpass Filter 2 Output OP-AMP 1 Input PIOUT OP-AMP 1 Output DPSIN OP-AMP 1 Output OP-AMP 2 Input	Vcc Voltage Supply for Analog Block Vcc=5[V] AGND Analog GND AGND=0[V] REF Analog Reference Voltage REF=1/2 · Vcc X _{IN} Oscillator Input Terminal X _{out} Oscillator Output Terminal REQ Data Request Input Terminal SCK Serial Data Shift Clock Input Terminal DATA Serial Data Input Terminal IDSW ID Switch (ID Code When Connect to the Common Bus) DFLAG ID Flag (Data Input Confirmation and Serial Data Output) CC1 Current Control 1 Modulator CC2 Current Control 2 Demodulator EST1, 2 Test Terminal (Normally Connects to the GND) DFIIN Lowpass Filter 1 Input Lowpass Filter 2 Input DF2OUT Lowpass Filter 2 Input Output Side DP1IN OP-AMP 1 Input P1OUT OP-AMP 1 Output OP2IN OP-AMP 2 Input Output Side			

FUNCTION DESCRIPTION

The sampling frequency (fs) is 500KHz when master clock frequency is 2MHz.

1)Data Format and Setting

The delay time is set by serial data.

The serial data is written into the NJU9702 sincronized by falling edge of shift clock (SCK) and the last 12 bit is effective before the data request (REQ) rising edge.

The time chart of serial data input is shown as fallows.

In order to avoid the shock noise output at the delay time setting, mute function using is recommended.

(note1)

When the corresponding DATA of ID code (refer 5) input to the NJU9702 during the REQ signal is "High", the DATA changed because of the NJU9702 always loading the latest 12-bit data.

Therefore following three operation methods are required when serial data input.

a)Fix the DATA terminal to "High" or "Low" except data setting period.

b)Fix the REQ terminal to "Low" except data setting period.

c)Fix the SCK terminal to "High" or "Low" after 12-bit data input.

(note2)

To use the mute after setting the delay time to avoided the shock noise.

2)Sleep Mode Setting

The sleep mode can be set by writing the code "1" (H level) to the Sleep bit of the serial data.

The sleep mode performs ① output muting, ② stop the internal clock, ③ stop the memory operation and put a low current consumption mode. Normally, this Sleep bit must be "0" (L level).

In order to avoid the shock noise output when the sleep mode released, mute function using is recommended.

SLEEP	MODE	FUNCTIONS
0	NORMAL	Normal operation
1	SLEEP	①Output Muting ② Stop the Internal Clock ③ Stop the Memory Operation

3)Delay Time Setting
64 kind of delay time from 0.5ms to 32.8ms in 0.5ms is set by D1 to D6 of the serial data.

)6	D5	D4	D3	D2	D1	Delay T.
				0	0	0.5
		, bo	0	U	100	1.0
		1111	0	1	0	1.5
		0		1	1	2.0
		0		0	0	2.6
		-	1	0	1	3.1
			1	1	0	3.6
	0				1	4.1
	0	1	m X s	0	0	4.6
			0	0	1	5.1
			0	1	0	5.6
		1			1	6.1
		1	1	0	0	6.7
geså A	ATMO	egil (* A			1	7.2
					0	7.7
)					1	8.2
'			0	0	0	8.7
					1	9.2
					0	9.7
		0			1	10.2
		0		.0	0	10.8
	log bei	profes	1	.0	1	11.3
	3		1	1	0	11.8
	1	pbers ma	DESCRIPTION	guller	1	12.3
				0	0	12.8
			0	U	1	13.3
			U	1	0	13.8
		1		1	1	14.3
		1		.0	0	14.8
			1	.0	1	15.4
	har-		1	1	0	15.9
				1	1	16.4

06	D5	D4	D3	D2	D1	Delay T
	120 Ed	husu i	221211	0	0	16.9
			0	0	1	17.4
			. 0	1	0	17.9
				1	1	18.4
		0		0	0	18.9
			1	0	1	19.5
		11	1	1	0	20.0
				1	1	20.5
	0	o X	d-)/95	0	0	21.0
ps (6 Man of his land) to the land of his	7/ /		0	0	1	21.5
			0	1	0	22.0
		1		1	1	22.5
		1		0	0	23.0
	eta) é	ove till sell syap odlære or stæll	1	0	1	23.6
				1	0	24.1
	-wal-				1	24.6
	a umba	dano 's	0		0	25.1
	1000				1	25.6
	BOYLE ISS.	oresi) es			0	26.1
		0			1	26.6
		0		0	0	27.1
	ORIGINAL DI	a gody	1	0	1	27.6
	LEIZ LI	W. Jella	1	1	0	28.2
	1		eson do	1	1	28.7
	1			0	0	29.2
		-	0	U	1	29.7
			0	1	. 0	30.2
		1		1	1	30.7
	and the St	1		0	0	31.2
			1	0	1	31.7
			1	1	0	32.3
				1	1	32.8

4) Mute Setting

The mute mode can be set by writing the code "1" (H level) to the Mute bit of the serial data. Normally, this Mute bit must be "0" (L level).

MUTE	MODE	notation to expended concentration	FUNCTIONS	seriod of PULLYTON deter
0	NORMAL	Normal operation		can correpte the men time
1	SLEEP	Output Muting		

5)ID Code Setting

The access froms the controller (CPU) is recognized the ID code input. It is useful when the NJU9702 connect the common bus togather with other LSI (s). The IDSW can select the prefixed ID code. If the other LSI using the ID code system and setting the same code already, please select other code by using this SW (IDSW).

CONDITIONS	CODE SELECTION TERM.	ID CODE			
CONDITIONS	IDSW	ID1	ID2	ID3	ID4
1	0	0	0	1	0
2	1	0	0	1	1

(note) ID code input except mentiond above, the NJU9702 can not be receive any data. In this case, the NJU9702 stil keeping the condition input before.

6)IDFLAG

IDFLAG is terminal to check the setting of delay time and the setting conditions.

When the serial data is received by the NJU9702, the IDFLAG terminal output "H" level for controller (CPU)'s confermation.

After serial data writting, except the ID code (Sleep, D1 to D6, and Mute) can read out for checking. When the read out, ① set the "L" level of the request signal (REQ), ② input the clock signal are required, The data is output syncronized by the rising edge of the clock signal. The ID code can not read out even if over 8 clock input.

7)Reset Function

NJU9702 performs power-on-initialization when turn on the power. After 120ms pased the turn at the condition of V_{CC} =5V, Capacitor connecting to the REF terminal=4.7 μ F, it is released automatically. The 20.0ms delay time is set by the power-on-initialization.

The reset period of NJU9702 depends on an on-chip resistance "R" and a capacitor connected REF terminal. Next expression can compute the reset time.

Reset Time= $2.5 \times C (\mu F)$

Condition: V_{CC}=5V, C=4.7 µF (REF terminal)

(REMARKS)

The NJU9702 needs to work a MUTE function for interruption that shock noise occurs when RESET is released.

The NJU9702 needs to supply a power to V_{DD} in adavance or at the mean time with other power source V_{CC} . If a power supplying sequence is not performed correctly, then power-on-initialization dose not work correctly.

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
	V _{DD}	6.5	V
Supply Voltage	V _{CC}	6.5	V
Operating Current	Icc	100	mA
Power Dissipation	P _D	500	mV
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	T _{stg}	-40~+125	C

 $(note) \ V_{DD} \ should \ be \ rise \ up \ before \ V_{CC} \ or \ same \ time. \ Otherwise \ power-on-initialization \ may \ not \ be \ operate \ corectly.$

■ RECOMMENDED OPERATING CONDITIONS

(V⁺=5V, Ta=25°C)

PARAMETER	SYMBOL	CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V _{DD}		4.5	5.0	5.5	V
Operating voltage	V _{cc}		4.5	5.0	5.5	V
Clock Frequency	fck			2.0		MHz
Input Voltage "H"	V _{IH}		0.7V _{DD}	1	V _{DD}	V
Input Voltage "L"	V _{IL}		0	-	0.3V _{DD}	V
Sirial Clock	f _{sck}		7 7 7	-	4.0	MHz

■ ELECTRICAL CHARACTERISTICS

 $(V_{DD}=V_{CC}=5V,f=1kHz, V_0=200mVrms, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Current	I_{CC}	No Signal	-	16	35	mA
Voltage Gain	Gv	R _L =47K Ω	-3.5	-0.5	2.5	dB
Max. Output Voltage	Vo _{max}	THD=10%	0.7	1	ATA	Vrms
Output Distortion	THD	30kHz LPF	1-1	0.2	1.0	%
Output Noise Voltage	No	DIN-AUDIO	-	-95	-75	dBV
Supply Voltage Rejc. Ratio	SVRR	V _{CC} =20dBV, f=100Hz	-	-40	-25	dB
Frequency Characteristics	f	−3dB, V ₀ =100mVrms	_	7	-	kHz

SERIAL DATA TIMING

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
SCK Clock Width	t1	250	_	0.77	ns
SCK Duty	ds	40	50	60	%
Data Set-up Time	t2	100	t1/2	-	ns
Data Hold Time	`t3	100	t1/2	-	ns
REQ Hold Time	t4	100	-	-	ns
REQ "H" Pulse Width	t5	100	-	-	ns
SCK Set-up Time	t6	100	-	-	ns

■ TIMING CHART

New Japan Ardio Co. Ltd.

VIDEO 5

VIDEO

VIDEO SIGNAL ICS CROSS REFERENCE

NJRC		EQUVALEN	NT PRODUCTS BY O	THER COMPANIES
FUNCTIONS	TYPES	MITSUMI	ROHM	OTHERS
VIDEO AMPLIFIER	NJM592D NJM592M NJM592D8 NJM592M8 NJM2267D NJM2267M NJM2267V NJM2268D NJM2268D NJM2268W		ARECESSAN ARECESSAN AREACESS	NE592N14 NE592DH NE592N8 NE592DE
VIDEO SWITCH	NJM2233BD NJM2233BM NJM2233BL NJM2234D NJM2234M NJM2234L NJM2235D NJM2235D NJM2235L NJM2243D NJM2243D NJM2243L NJM2244D NJM2244L NJM2244D NJM2244L NJM2245D NJM2245D NJM2245D NJM2246D NJM2246D NJM2246D NJM2246D NJM2246D NJM2246D NJM2246D NJM2246D NJM2273S NJM2279D NJM2279D NJM2279D	LVA521D LVA521F LVA521S *1 LVA522D LVA522D LVA522S *1 LVA523D LVA523F LVA523F LVA524D LVA524P LVA524F LVA525D LVA525D LVA525F LVA526D LVA526P LVA526S *1	BA7001 BN7611N BA7611AN BA7021 BA7602 BA7602F BA7609	E30XIV-CXXVS
	NJM2283D NJM2283M NJM2284D NJM2284M NJM2285D NJM2285M		BA7609F BA7607 BA7607F BA7603 BA7603F	TAL DIS
	NJM2286D NJM2286M NJM2293D NJM2293M NJM2503D NJM2503M		ATTIGUACE MINICIPALIA STREEMIN STREEMIN ATTIGUACE ATTIGUACE	ABRICA EMINE)
	NJM2506D NJM2506M NJM2508D		MANAGEMENT AND	si ounta
	NJM2508M NJM2533D NJM2533M	LVA521D LVA521F	46520000	AUTO BIS
	NJM2533L NJM2533V NJM2534D	LVA521S *1 LVA522D	BA7001	PICTOR 1
	NJM2534M NJM2534L NJM2534V NJM2535D	LVA522F LVA522S *1	GR-Severi	MALL BURKOS
	NJM2535D NJM2535M NJM2535L NJM2535V	LVA523D LVA523F LVA523S *1	alectrical	NSI LIAUKE
MODULATOR	NJM1372AD NJM2208D			MC1372

VIDEO SIGNAL ICS CROSS REFERENCE

	NJRC		EQUVALENT PRODUCTS BY OTHER COMPANIES			
FU	UNCTIONS	TYPES	MITSUMI	ROHM	OTHERS	
M	REQUENCY IULTIPLIER	NJM2228D NJM2228M NJM2228S NJM2238D NJM2238M NJM2238S NJM2234S		MICHESTA MIC	PARTY A MAY LINES	
		NJM2240M NJM2240S		AUGUSANA AUGUSANA		
SUPER INPORSER		NJM2247AM NJM2247BM NJM2248D NJM2248L NJM2249L NJM2249L NJM2256M NJM2263D NJM2263D NJM2263L NJM2264D NJM2264D NJM2264D NJM2264L NJM2265D NJM2265D NJM2265L NJM2265L NJM2266D NJM2266D NJM2266D NJM2266M	HISTORY HIS	CHECKSON CHECKS	HOW WE CHAPF	
SYI	NCHRONOUS SIGNAL	NJM2509V NJM2220S NJM2229M NJM2229S NJM2230M NJM2257D NJM2257M		PATTERNIA MATTERNIA GREEN MATE HERST CRACK GREEN CRACK TRAKESTIRLIN GREEN CRACK		
OTHERS	ADDER	NJM2207D NJM2207M NJM2207S NJM2217D NJM2217L		THERESALES CHIPCOMES INFECTATION		
	NOISE REDUCER	NJM2210D NJM2210M NJM2224M		MASSICIANA CONTINUA MARCONIA		
	ON SCREEN DISPLAY	NJM2214L NJM2252L	CONTRACT OF	ASSURE SHEAR		
	AUTO IRIS	NJM2225M NJM2225S	TOTAL CONCESS	JEEZENSKY JEEZENSKY		
	PICTURE ENHANCER	NJM2209M NJM2209S	distribut T	OREGUE IN		
	HUE TINP CONTROLLER	NJM2255D	** AUSTRANI	JACKSTACH VALSCIACH		
	EQUALIZER	NJM2258L	SECTION AND SECTION	NAME OF THE OWNER		

VIDEO AMPLIFIER

■ GENERAL DESCRIPTION

The NJM592 is a video amplifier of differential input and differential output.

The NJM592 is suitable for a preamplifier of memory equipment and video and pulse signal amplifier.

■ FEATURES

- Operating Voltage
- (±3V~±8V)
- Wide Fregueney Range
- (40MHz, 90MHz typ.)
- Differential Input, Differential Output.
- With Gain Select Terminal
- Package Outline

DIP 8 /14, DMP8/14, SSOP 8/14.

Bipolar Technology

■ PACKAGE OUTLINE

■ PIN CONFIGURATION

EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+/V-	±8	V
Differential Input Voltage	V _{DIEF}	±5	V
Common Mode Input Voltage	V _{CM}	±6	V
Output Current	Io	10	mA
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	C
Power Dissipation	PD	(DIP14) 500	mW
		(DMP14) 300	mW
		(SSOP14) 300	mW
		(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 250	mW

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V+=±6V, V_{CM}=0)

PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Differential Voltage Gain1 (note 1) Differential Voltage Gain2 (note 2, 4)	$R_L = 2k\Omega$, $V_{OUT} = 3V_{P,P}$	250 80	400 100	600 120	V/V
Bandwidth Gain1 (note 1) Bandwidth Gain2 (note 2,4)		=	40 90		MHz
Rise Time Gain1 (note 1) Rise Time Gain2 (note 2,4)	$V_{OUT} = IV_{P-P}$	Ī	10.5 4.5	2 2	ns
Propagation Delay Gain1 (note 1) Propagation Delay Gain2 (note 2, 4)	$V_{\rm OUT} = 1V_{\rm P.P}$	_	7.5 6.0	(8 1 <u>2</u> 0)	ns
Input Resistance Gain1 (note 1) Input Resistance Gain2 (note 2,4)	9911.000 000.00		4.0	=	kΩ
Input Capacitance Gain2 (note 2,4)		-	2.0	_	pF
Input Offset Current		-	0.4	5.0	μΑ
Input Bias Current	= D.D. Gate 19	11. -1 15	9.0	30	μΑ
Input Noise Voltage	BW=1kHz~10MHz	1-1-	12	1 -	μVrms
Input Voltage Range				±1.0	V
Common Mode Rejection Ratio Gain2 (note 4) Common Mode Rejection Ratio Gain2 (note 4)	V _{CM} =±1V, f<100kHz V _{CM} =±1V, f=5MHz	60	86 60		dB
Supply Voltage Rejection Ratio Gain2 (note 4)	$\Delta V'/V = \pm 0.5V$	50	70	10 -	dB
Output Offset Voltage Gain1 (note 1) Output Offset Voltage Gain2 (note 2,4) Output Offset Voltage Gain3 (note,3)	$\begin{array}{l} R_L = \infty \\ R_L = \infty \\ R_L = \infty \end{array}$		0.35	1.5 1.5 0.75	V
Output Common Mode Voltage	$R_L = \infty$	2.4	2.9	3.4	V
Output Voltage Swing	$R_L = 2K\Omega$	3.0	4.0	_	V
Output Resistance	tip 8 spario (ut i00 s 1 76 s -	/ telfes	20	_	Ω
Operating Current	$R_L = \infty$		18	24	mA

⁽note 1): Gain select pins G_{1A} and G_{1B} connected together. (Gain 1)

⁽note 2): Gain select pins G_{2A} and G_{2B} connected together. (Gain2)

⁽note 3): All gain select pins open.

⁽note 4): Apply to only 14 pin package.

■ TYPICAL CHARACTERISTICS

Differential Voltage Gain

■ TYPICAL CHARACTERISTICS

Voltage Gain

■ TEST CIRCUIT

TYPICAL APPLICATION

Basic circuit

$$\begin{split} \frac{V_0 \ (s)}{V_1 \ (s)} & \cong \frac{1.4 \times 10^4}{Z(s) + 2 r_e} \\ & \cong \frac{1.4 \times 10^4}{Z(s) + 32} \end{split}$$

Filter Network

Z NETWORK	FILTER TYPE	$\frac{V_0(s)}{V_1(s)}$ TRANSFER FUNCTION
	LOW PASS	$\frac{1.0 \times 10^4}{L} \left[\frac{1}{s + R/L} \right]$
o————— C	HIGH PASS	$\frac{1.4 \times 10^4}{R} \left[\frac{s}{s + 1/RC} \right]$
0 R L C	BAND PASS	$\frac{1.4 \times 10^4}{L} \left[\frac{s}{s^2 + R/L} \frac{s}{s + 1/LC} \right]$
C C	BAND REJECT	$\frac{1.4 \times 10^4}{R} \left[\frac{s^2 + 1/LC}{s^2 + 1/LC + s/RC} \right]$

(note): R includes 2 r_e ($\approx 32\Omega$)

Disk/Tape Phase Modulated Readback Systems

Differentiation with High Common Mode Noise Rejection

TV VIDEO MODULATOR

GENERAL DESCRIPTION

The NJM1372A is an integrated circuit to be used to generate an RFTV signal from baseband color-difference and luminance signals.

The NJM1372A contains a chroma subcarrier oscillator, lead and lag network, a quasi-quadrature suppressed carrier DSB chroma modulator, an RF oscillator and modulator, and a TTL compaible clock driver with adjustable duty cycle.

This device may also be used as a general-purpose modulator with a variety of video signal generating devices such as video games, test equipment, video type recorders, etc.

■ PACKAGE OUTLINE

NJM1372A

■ FEATURES

- Operating Voltage
- (+4.75V~+5.25V)
- Acts by Digital Control Signal
- Minimal External Components
- Composite Video Signal Generation Capability
- Low Power Dissipation
- Linear Chroma Modulators for High Versatility
- Ground-Referenced Video Prevents Over-modulation
- Package Outline

DIP_14

Bipolar Technology

■ PIN CONFIGURATION Clock Output RF Tank Oscillator Input [RF Modulator Output Duty Cycle Adj 12 Gnd [11 Chrominance Input Color B Input Color Ref Input [Luminance Input Color A Input Chroma Modulator Output NJM1372AD

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	8	V
Power Dissipation	PD	700	mW
Operating Temperature Range	Topr	-20~ + 75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		4.75	5.0	5.25	V
Operating Current	I _{CC}			25	-	mA

Chroma Oscillator/Clock Driver (TC1)

			Total Control		
V _{OL}			_	0.4	V
V _{OH}		2.4	-	-	V
tr	$V_1 = 0.4 \rightarrow 2.4V$	-440	river in	50	ns
tf	$V_1=2.4 \rightarrow 0.4V$		_	50	ns
Vaj	THreshold Voltage V ₁ =1.4V	40		60	%
V _{OD}	CONTRACTOR OF THE PROPERTY OF	outlest.	50	_	%
	V _{OH} tr tf V _{aj}	$ \begin{array}{c c} V_{OH} \\ tr & V_1 = 0.4 \rightarrow 2.4V \\ tf & V_1 = 2.4 \rightarrow 0.4V \\ V_{aj} & THreshold \ Voltage \ V_1 = 1.4V \end{array} $	$ \begin{array}{c cccc} V_{OH} & & 2.4 \\ tr & V_1{=}0.4 \rightarrow 2.4V & - \\ tf & V_1{=}2.4 \rightarrow 0.4V & - \\ V_{aj} & THreshold \ Voltage \ V_1{=}1.4V & 40 \end{array} $	$\begin{array}{c ccccc} V_{OH} & & 2.4 & - \\ tr & V_1 = 0.4 \rightarrow 2.4V & - & - \\ tf & V_1 = 2.4 \rightarrow 0.4V & - & - \\ V_{aj} & THreshold \ Voltage \ V_1 = 1.4V & 40 & - \\ \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Chroma Modulator (TC1)

Input Common Voltage Range		Pin 5, 6, 7	0.8	-	2.3	V
Oscillator Feedthrough	CL	Pin 8	Teriff (miles)	15	31	mV
Modulation Angle	Сθ	$\theta_8(V_7=2.0V) - \theta_8(V_5=2.0V)$	85	100	115	degree
Conversion Gain	Gcc	$V_8/(V_7-V_6); V_8/(V_5-V_6)$	_	0.8	_	V_{p-p}/V
Input Current	I _i	Pin 5, 6, 7		-	-20	μΑ
Input Resistance	Ri	Pin 5, 6, 7	100	_	_	kΩ
Input Capacitance	Ci	Pin 5, 6, 7		STATE !	5	pF
Chroma Modulator Linearity	L _{cm}	Pin 8; $V_5=1 \to 2 \ V:V_7=1 \to 2V$	_	4.0	_	%

RF Modulator (Test Circuit 2)

Luma, Input Dynamic Range		Pin 9	(TC2)	0	_	1.5	V
RF Output Voltage	V _{RF}	f=67.25MHz, V ₉ =1.0V	(TC1)	_	30		mVrms
Luma Conversion Gain	G _{LV}	$(\Delta V_{12}/\Delta V_9; V_9 = 0.1 \rightarrow 1.0V)$	(TC2)	_	0.7	_	V/V
Chroma Conversion Gain	G _{CV}	$(\Delta V_{12}/\Delta V_{10}: V_{10}=1.5V_{PP}, V_9=1.0V)$	(TC2)	_	0.9	-	V/V
Chroma Linearity	L _C	Pin 12 V ₁₀ =1.5V _{PP}	(TC2)	-	1.0	2.5	%
Luma Linearity	L _L	Pin 12 $V_9 = 0 \rightarrow 1.5V$	(TC2)	_	2.0		%
Input Current	Ii	Pin 9		-		-20	μΑ
Input Resistance	Ri	Pin 10		_	800	-	Ω
Input Resistance	Ri	Pin 9		100	-	_	kΩ
Input Capacitance	Ci	Pin 9, 10		_	_	5	pF
Output Current	Io	Pin 12	(TC2)	_	0.9	_	mA
Residual 920kHz	В	Pin 12 V ₉ =1V	(TC1)	Lines	50		dB
		$V_C = 300 \text{mV}/3.58 \text{MHz}; V_S = 250 \text{mV}/4.52 \text{mV}$	5MHz			1	

■ TYPICAL APPLICATION CIRCUIT

TEST CIRCUIT 1

TEST CIRCUIT 2

VIDEO SUPER IMPOSER

GENERAL DESCRIPTION

The NJM2207 is video signal superimposer, with synchronous separation circuit, vertical sinchronous reproduce circuit and two video high performance switches for switching from video signal to character signal and backgroud signal.

The NJM2207 is suitable for simply indicating the date time, TV channel and others.

■ FEATURES

Operating Voltage

(+4.75V~+13V)

• With Synchronous Separation Circuit

• With Vertical Sinchronous Reproduce Circuit

Package Outline

DIP-14, DMP-14, ZIP-16

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

4.75~13V

■ PACKAGE OUTLINE

NJM2207D

NJM2207 S

NJM2207M

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	17	V
Power Dissipation	PD	(ZIP16) 500	mW
		(DIP14) 700	mW
		(DMP14) 300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V+=5V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc		4	6.5	9	mA

Video Signal Processing Section (Video Input $2V_{PP}$, Source Resistance=75 Ω)

OFF-SET Voltage (Back-ground Input)	V _{BOS}	Cross Voltage In Ext. 10kΩ Resistor	-	-	0.1	V
OFF-SET Voltage (Char. Input)	V _{cos}	Cross Voltage In Ext. 10kΩ Resistor.	R-	-	0.1	V
OFF-Voltage (Background Cont. Input)	V _{BL}		1	-	0.4	V
OFF-Voltage (Char. Cont Input)	V _{CL}		-	-	0.4	V
ON-Voltage (Background Cont. Input)	V _{BH}	Total Property Miles	2.0	-	_	V
ON-Voltage (Char. Cont. Input)	V _{CH}		2.0	-	_	V
Transfer Gain	Gv	$R_L=5k\Omega$	-1 .	-	+1	dB
Frequency Response	Gf	$f=10MHz$, $R_L=5k\Omega$	-	-0.2	-	dB
Crosstalk In Each Signal	C _T	Video Input (f=3.58MHz)	-	50	_	
		Background Input (f=3.48MHz)				
The state of the s		Char. Input (f=3.68MHz)				
	- 4	Each Signal. is Sine-Wave $R_L = 5k\Omega$				
Video Differential Phase	DP	$R_L=5k\Omega$	1-	-	3	Deg
Video Differential Gain	DG	$R_L=5k\Omega$	_	-	3	%

■ ELECTRICAL CHARACTERISTICS SYNC. SEPARATION SECTION

(Ta=25℃, V+=5V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Sync. Sepa. Input Threshold Voltage	V _{ISP}	Source Resistance Rg=75Ω	100	140	180	mV
H-Sync. High Level	V _{HHI}	$R_L = 100 k\Omega$ Pin 3 (13)	4.0	1	prépar bres	V
H-Sync. High Level	V _{HH2}	$R_L = 2.2k\Omega$ Pin 3 (13)	3.6	4.1	_	V
H-Sync. Low Level	V _{HL}	$R_L = 2.2k\Omega$ Pin 3 (13)		_	0.1	V
H-Sync. High Level	V _{HH}	$R_L = 100 k\Omega$ Pin 4 (14)	4.9	_===	And Labor	V
H-Sync. Low Level	$V_{\overline{H}L}$	$R_L = 100 k\Omega$ Pin 4 (14)	formO_note	VINE WO	0.3	V
V-Sync.High Level	V _{VHI}	$R_L = 100 k\Omega$ Pin 7 (2)	4.0	aren <u>u y</u> si si	Ten bush of	V
V-Sync. High Level	V_{VH2}	$R_L=10k\Omega$ Pin 7 (2)	3.6	4.1	NEW TOTAL	V
V-Sync. Low Level	V _{VL}	$R_L = 10k\Omega$ Pin 7 (2)		400	0.1	V
V-Sync. High Level	$V_{\overline{V}H}$	$R_L = 100k\Omega$ Pin 9 (4)	4.9	_	_	V
V-Sync. Low Level	$V_{\overline{V}L}$	$R_L=100k\Omega$ Pin 9 (4)		ASIL M	0.3	V
Schmitt Trigger					DA SECTO	E0 6
Threshold High Level	V _{VTH}	Pin 5 Input Voltage (1)	1:9	2.1	2.3	V
Threshold Low Level	V _{VTL}	Pin 5 Input Voltage (1)	1.1	1.3	1.5	V

(Note): () to DIP-14/DMP-14

* A version (100mV Typ.)

■ TEST CIRCUIT

TYPICAL APPLICATION

Note 1: Pin Connection to ZIP-16 (Pin 2, Pin 15: NC). () to DIP-14/DMP-14

Note 2: Syn. Sepa. Input Threshold voltage increases 40 mV (typ.) when putting $1 \text{M}\Omega$ in to Pin 1 (Pin 12).

■ PRINCIPLE OF CHARACTER SUPERIMPOSER

Basic principle is shown at Fig. 1.

Usual TV has video (composite) signal output and input terminals to connect VCR or others. There is all information about picture on video composite signal (Ref. to Fig. 2). Its time signal of horizontal and vertical synchronous signal indicates the brighten place of TV tube. For brightening TV tube regardless video signal, the video input signal has to be switched to DC level (luminance level) on that scanning time. On this method, character is shown with background of usual picture.

TV SWv Video signal RF tuner CRT demodulator (TV) Brightness place is determined by character Video SW information using sync. signal. 1 uminance level Sync. composite Sync. signal When the bright spot is Superimposer Character information needed, switch to DC level. When switched Video signa superimposed to lower, CRT becomes bright. (b) with CRT (a) Basic Principle

Fig.1 Principle of Character Superimposer

■ CIRCUIT CONFIGURATION

Date superimposer circuit configuration on TV is shown at Fig. 3. The NJM2207 includes video switches which convert, usual video signal (horizontal and vertical synchronous signal, video) to signal, of superimposed character given by character generator.

Fig.3 Typical circuit of date superimposer

TV VIDEO MODULATOR

■ GENERAL DESCRIPTION

The NJM2208, an integrated circuit used to generate an RF TV signal from baseband color-difference and luminance signals.

The NJM2208 contains a chroma subcarrier oscillator, 3.58MHz oscillator, 4.5MHz oscillator, 3.58MHz lead and lag network, an RF oscillator, sound carrier oscillator, and a TTL compaible clock driver with adjustable duty cycle.

This device may also be used as a general-purpose modulator with a variety of video signal generating devices such as video games, test equipment, video tape recorders, etc.

■ PACKAGE OUTLINE

NJM2208D

FEATURES

- Operating Voltage
- (+4.75V~+5.25V)
- Acts by Digital Control Signal
- Single 5.0 Vdc Supply Operation for NMOS and TTL Compatibility
- Minimal External Components
- Low Power Dissipation
- Linear Chroma Modulators for High Versatility
- Composite Video Signal Generation Capability
- Ground-Referenced Video Prevents Overmodulation
- Internal Sound Carrier Oscillator
- Video Signal Encoder Capability
- Package Outline
- DIP16
- Bipolar Technology

PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RA			D 4 TIDLOG	1 7 18	LINIET		
PARAMETER	S	YMBOL			UNIT		
Supply Voltage		V+			V		
Power Dissipation		PD	700	101	mW		
Operating Temperature Range		Topr	-20~+75		$^{\circ}$ C		
Storage Temperature Range		Tstg	-40 [~] +125		°C		
Storage Temperature Range	l lah	2316	1994. 3 198. 3 1 1 1				
- 515070001 011404075	DICTION						0.00
ELECTRICAL CHARACTE	RISTICS		A reserve				(Ta=25℃
PARAMETER	SYMBOL		TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V ⁺	1 9	0 0 0	4.75	5.0	5.25	V
Operating Current	I_{CC}		ا و بالاسات بسط المراشد	1000000	26	-	mA
				101			
Chroma Oscillator/Clock Driver/Sound	Oscillator(Te	est Circuit	1)				
Chroma Output Voltage	V _{OL}	Te Trans				0.4	V
Chroma Output Voltage	V _{OL}			2.4		J. T	v
Rise Time	tr	0.4 → 2	.4V			50	ns
Fall Time	tf	2.4 → 0		1	_	50	ns
Duty Cycle Adjustment Range	Vaj		old Voltage $V_1 = 1.4 \text{V}, V_3 = 1.2 \sim 5 \text{V}$	40	_	60	%
Inherent Duty Cycle	V _{OD}			_	50		%
Sound Oscillator Output Voltage	V _{so}	Pin 9	SW 1 ON	3.0	4.0	5.0	V _{p-p}
Chroma Modulator (Test Circuit 1)			TOURIS TRAY			T	
Input Common Mode Voltage Range		Pin 5, 6	, 7	0.8		2.3	V
Oscillator Feedthrough	CL	Pin 10		_	15	31	mV
Modulation Angle	Сθ		$=2.0V) - \theta_{10} (V_5 = 2.0V)$	85	100	115	degree
Conversion Gain	G _{CC}	1	$-V_6$): $V_{10}/(V_5-V_6)$	_	0.6	20	V _{p-p} /V
Input Current	Ii D	Pin 5, 6		100		-20	μΑ
Input Resistance	R _i	Pin 5, 6		100	7	-	kΩ
Input Capacitance Chroma Modulator Linearity	C _i	Pin 5, 6	$V_5=1 \rightarrow 2V; V_7=1 \rightarrow 2V$		4.0	5	pF %
	Lem	Till 10,	v ₅ -1 → 2v, v ₇ -1 → 2v		4.0		/6
RF Modulator (Test Circuit 2)							
Luma Input Dynamic Range		Pin 11	(TC2)	0	_	1.5	V
RF Output Voltage	V _{RF}	f=67.25	MHz, $V_{11}=1.0V$ (TC1)	15	30		mVrms
Luminance	G _{LV}	$(\Delta V_{14}/L)$	$\Delta V_{11}:V_{11}=0.1 \rightarrow 1.0V)$ (TC2)	0.5	0.7	_	V/V
Chroma Conversion Gain	G _{CV}	$(\Delta V_{14}/$	$\Delta V_{12}: V_{12} = 1.5 Vpp, V_{11} = 1.0 V)$ (TC2)	0.7	0.9	1.2	V/V
Chroma Linearity	L _C	Pin 14	$V_{12} = 1.5 V_{PP}$ (TC2)	300	1.0	4.0	%
Luminance	L _L	Pin 14	$V_{11} = 0 \rightarrow 1.5V$ (TC2)	_	2.0	5.0	%
Input Current	I_i	Pin 11		-	all degree	-20	μΑ
Input Resistance	Ri	Pin 12		-	800	-	Ω
Input Resistance	Ri	Pin 11	0 0 0	100	-	-	kΩ
Input Capacitance	Ci	Pin 11,	12	-	-	5	pF
Output Current	Io	Pin 14	(TC2)	_	0.9	_	mA
Residual 920kHz	B	11.00	$V_{11}=1V$ (TC1 SW1 ON)	-	50	-	dB
			0mVpp/3.58MHz 0mVpp/4.5MHz				

TEST CIRCUIT 1

TEST CIRCUIT 2

■ DESCRIPTION OF OPERATION

NJM2208 produces color difference signals and luminance signal from microcomputer output signals RGB, clock, and hold signals through the matrix circuit, and also produces the TV RF signal or video base band signal. Sound Carrier Input is also added to this IC, and a color TV RF modulator is composed by adding the video and sound carrier tank LC and crystal oscillator.

Properties of TV waves

Fig. 2 shows the frequency band of TV RF signal. The band width of this signal is 6MHz, in which video signals (luminance signal and synchronous signals) are distributed with a video carrier wave of 4MHz. As a result, coase images appear at about 0Hz, while fine images appear at about 4MHz. The color signals are distributed over a range of 3.58MHz±500kHz from the color carrier. These signals are not included in monochromatic images, of course.

The color signals conduct the perpendicular 2-phase modulation with suppressed carrier in order to avoid the interference with the video signals. Unlike in AM and FM systems, this system modulates the color signals with the color difference signals obtained by deviating the carrier phase by 90°.

The TV sound carrier signal is distributed over a range of 4.5MHz ± 25kHz lated, the color signals are phase-modulated, and the sound carrier signal is FM-modulated in one channel, these signals overlap each other in a narrow band to be compatible with monochromatic TV, causing the TV waves to be complicated.

RF modulator for color TV

Fig. 3 shows the basic operation circuit of NJM2208. Now, the operation will be described according to the production sequence of broadcast waves. A 3.58MHz color carrier is oscillated by a crystal oscillator at pins 1 and 2. This output (pin 1) can be led as a microcomputer clock. Higher harmonic components are removed from this square waveform through a BPF (bandpass filter).

Then, two signals are produced from a 3.58MHz sine wave. Of these signals, the LEAD signal is obtained by leading the phase by 45°, while the LAG signal is obtained by lagging the phase by 45° from the carrier phase by the CR constant in the IC, repectively. On the other hand, the color signals RGB are converted into two color difference signals E_{B-Y} and E_{R-Y} by the matrix circuit, and applied to pins 5 and 7. The LEAD wave is modulated and added by E_{B-Y} , while the LAG wave is modulated and added by E_{R-Y} . These chroma-modulated signals are output to pin 10. photo 1 shows the relationship between the color diference signals and the modulation output in case of color bars (TV quasi signal generation).

A sound carrier 4.5MHz is oscillated by L_1 connected to pin 9, and FM-modulated by the audio signal. Accordingly, a VHF (2ch) is oscillated in the LC tank circuit of pins 15 and 16 by inputting the color and sound modulation signals to pin 12 and also color luminance signals to pin 11, and the differential transistors in IC are switched by the VHF voltage to generate an RF signal by the AM modulation. Photo 2 shows individual waveforms.

The RF signal is obtained through 75Ω to match the TV antenna impedance. Photo 3 indicates the RF signal with the sound carrier signal super imposed.

Since signals are present in the VHF band, the PCB patterns should be not long at pins 15 and 16, and a bypass capacitor should be connected to the power supply without fail. In addition, three oscillation signals should be isolated enough from each other with a sufficient mounting section interval.

Application to base band output

This IC can also be taken as the video base band output as well as the RF output. In order to convert the RGB output signals from the microcomputer into the color difference signals and luminance signal, they are converted by the matrix circuit and connected to the color input terminals of NJM2208. This IC serves as a color encoder. TV images become clear, because neither RF modulation nor RF demodulation is done. For this purpose, remove the LC from pins 15 and 16, and connect the diode instead, so that the differential voltage in IC is fixed to drive IC as an amplifier.

An $1k\Omega$ video signal is obtained. However, since this video signal output voltage is low and its output impedance is high, the video signal is amplified through an operational amplifier.

(Fig. 1) Application of video RF modulator (color encoder IC)

(Fig. 2) Frequency Spectrum In TV Wave

Fig - 3 MODULATOR FOR COLOR TV.

Fig - 4 APPLICATION OF BASE-BAND OUTPUT

VIDEO PICTURE ENHANCER

■ GENERAL DESCRIPTION

The NJM2209 is the video IC for quality improvement of the video picture to get high quality by rectifying the picture contour.

■ FEATURES

Operating Voltage

(+4.5V~+5.5V)

- By Differential Form, Picture Enhance
- at Minimal External Components
- Internal Switch of Hirough / Picture Enhance
- Package Outline

SIP9, DMP14

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

4.5~5.5V

APPLICATION

Upgrading of picture quality on VCR, personal computer and other video picture.

■ PIN CONFIGURATION

NJM2209M

- 1. Differential Output
- 2. Frequency Compensation
- 3. Video Signal Input

PIN FUNCTION

- 6. Video Signal Output

- 4. Phase Delay
- 5. GND

■ PACKAGE OUTLINE

NJM22098

NJM2209M

- 7. Differential Input
- 8. V+
 - 9. Control Input

PIN FUNCTION

- 1. Video Signal Output
- 2. N.C.
- 3. Differential Input
- 4. V+
- 5. Control Input
- 6. N.C.
- 7. Differential Output
- 8. Frequency Compensation
- 10. Video Signal Input
- 11. N.C.
- 12. Phase Delay
- 13. GND
- 14. N.C.

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	8	V
Power Dissipation	PD	(DIP8) 500 (DMP8) 300	mW mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25℃, Refer to Test Circuit))

PARAM	PARAMETER SYMBOL SIGNAL INPUT PIN TEST CONT. VOLTAGE TEST CONDITION		MIN.	TYP.	MAX.	UNIT				
Operating Cu	rrent	I _{CC}			2.8V	No Input Signal	-	7.5	10	mA
Limitter Leve	1 (1)	LIMI	3	2	Sec. 3.41	SYNC level>0.35V,Input Video Signal	0.23	0.27	0.31	v
Limitter Leve	1 (2)	LIM2	7	6	-	f=100kHz, 1V _{P-P} Sine Wave Input	0.21	0.25	0.29	V
(4.6)	Н	G _H	2	1	2.8V	f=100kHz,0.1Vrms.Sine Wave Input	-2	-0.9	0	dB
Control Amp Gain	М	G _M	2	1	1.3V	=== 4002	-12	-10	-8	dB
rinp Gum	Ĺ	GL	2	1	0.45V	$G=20 \log_{10} V_{\text{out}}/V_{\text{IN}} $ (dB)	-	20	-28	dB
Add	7 pin input	G ₇	7	6	2.8V		-1.6	-0.6	0.4	dB
Amp Gain	3 pin input	G ₃	3	6	2.8V	1V _{P-P} Video Signal Input G=20Log 10 V _{OUT} /V _{IN} (dB)	-1	0	+1	dB
Switch Cross	Talk	Csw	4	6	2.8→0V	f=2MHz, $1V_{P-P}$ Sine Wave C_{SW} =20 $log_{10}V(0V)/V(2.8V)$ (dB)	NG R	-50	BNCIP E NUN	dB
Through Gair	n salw ea	G _T	3	6	0V	$1V_{P-P}$ Video Signal Input $G_T = 20 \log_{10} V_{OUT}/V_{IN}$ (dB)	-1 -2 	0	1 Mason	dB
Switch Control		V _{TH}	4	6	nt Ml hozaloh el kulteg	f=100kHz, 1V _{P-P} Sine Wave Input -40dB=20log ₁₀ V _{OUT} /V _{IN}	0.2	0.3	0.4	V
Differential C	Gain(Note 1)	DG _{PC}	3	6	2.8V	DGDP Tester	-	1	3	%
Differential Gain(Note 2)		DGT	3	6	0V	Video Signal 1V _{p-p} (Stair Step)		0	3	%
6 PIN Voltag	ge(Note 1)	V _{6PC}		6	2.8V			1.8	1148	v
6 PIN Voltag	ge(Note 2)	V _{6T}		6	0V		_	2.0	_	v

■ PRINCIPLES OF OPERATION,BI BLOCK DIAGRAM

The NJM2209 is a video signal IC which converts an input video signal to a compensated video signal of the picture outline by adding an input signal through a differential amplifier to the original input signal.

The compensating (enhanced) ratio is decided by pin 9 voltage and so the original signal comes when pin 9 voltage is zero.

A peaking frequency compensation of the internal

differential amplifier is changed by C.R attached to pin 2 and L,R to pin 1.

The compensation signal and the original video signal are delayed the phase by low pass filter. These are done by a capacitor attached to pin 4. The compensated ratio is originally settled by the coupling condenser between pin 1 and pin 7.

VIDEO NOISE REDUCER

■ GENERAL DESCRIPTION

The NJM2210 is a video noise reducer IC of which operation is to reduce noise contained in video color and luminance signal and at the same time to correct outline of horizontal and vertical image signal.

The NJM2210 is suit for VCR camera especially.

■ FEATURES

- Operating Voltage
- (+4.75V~+5.25V)
- It can compose Combtype Filter, with CCD IH delay line by that connect with
- It can be useful as Switching Noise Reduce Mode and Enhence
- Mode that are because of to Comb type Filter
- Package Outline DIP8, DMP8

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

■ PIN CONFIGURATION

■ TEST CIRCUIT

NJM2210D

NJM2210M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	8	V	
Power Dissipation	PD	(SIP8) 500	mW	
		(DMP8) 300	mW	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	Tstg	-40~+125	C	

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V+=5V, F=100kHz)

PARAMETER	SYMBOL	TEST CONDIT	TION	MIN.	TYP.	MAX.	UNIT
Operating Curent	I _{cc}	MOIT	такао оки	APERO	6.9	10	mA
V. L. G. : (Pi. o. Pi. o.)	G _{VII}	V ₇ =4V	V _{IN} =100mV _{P-P}	-1	0	+1	JD.
Voltage Gain (Pin 8-Pin 2)	G _{V12}	V ₇ =0V	V _{IN} =100mV _{P-P}	-11.5	-10	-8.5	dB
Voltage Gain (Pin 1-Pin 2)	G _{V21}	V ₇ =4V	$V_{IN}=100mV_{P-P}$	gal - Co	-45	-38	dB
	G _{V22}	V ₇ =0V	$V_{IN}=100mV_{P-P}$	-4.2	-3.2	-2.2	ав
	G _{v31}	V ₇ =4V	V _{IN} =100mV _{P-P}	-2.0	-1.0	0	
Voltage Gain (Pin 8-Pin 6)	G _{V32}	V ₇ =0V	V _{IN} =100mV _{P-P}	-2.0	-1.0	0	
	G _{V33}	V ₇ =4V Pin 2-1 (Inv. Amp)	V _{IN} =10mV _{P-P}	-	-30	-18	10
	G _{V34}	V ₇ =0V Pin 2-1 (Inv. Amp)	$V_{IN} = 10 \text{mV}_{P-P}$		-30	-18	dB
	G _{V35}	V ₇ =4V Pin 2-1 (Inv. Amp)	V _{IN} =200mV _{P-P}	3.5	5.0	6.5	
	G _{V36}	V ₇ =0V Pin 2-1 (Inv. Amp)	V _{IN} =200mV _{P-P}	-5.0	-3.5	-2.0	
	G _{V41}	V ₇ =4V	V _{IN} = 20mV _{P-P}	-8.0	-7.0	-6.0	I.D.
Voltage Gain (Pin 1-Pin 6)	G _{V42}	V ₇ =0V	V _{IN} = 20mV _{P-P}	-3.4	-2.4	-1.4	dB
Bandwidth (Pin 8-Pin 2)	f_{B1}	V ₇ =4V	V _{IN} =100mV _{P-P}	10	- nag	Squal a	MHz
Bandwidth (Pin 1-Pin 2)	f_{B2}	V ₇ =0V	V _{IN} =100mV _{P-P}	10	1-	-	MHz
	f _{B31}	V ₇ =4V	V _{IN} =100mV _{P-P}	8	757	-	
Bandwidth (Pin 8-Pin 6)	f _{B32}	V ₇ =0V	V _{IN} =100mV _{P-P}	8	_		MH

Note: Unless specified, all items are tested by test circuit.

■ TERMINAL FUNCTION

- ILIMINAL FOR			
1 CCD Input	V+ (2.0V) 500 20K	5 Signal Bypass	20K 1K
2 CCD Output	200 \$ (3.3V)	6 Output	V ⁺ 200 (3.3V)
3 V*		7 Control Input	1K
4 GND	C) constant particle of the final of the fi	8 Input	5K (2.0V) 500 4K

■ APPLICATION NOTE

The NJM2210 is an integrated circuit of composing variable comb type filter which reduces noise mixed at chroma or luminance signal of VCR camera or others. Time delay element of comb type filter is fit to CCD delay element, not to glass delay line. The circuit is the most excellent FB with NULL system. Fig.1 is its basic block diagram and Fig.2 is actual block diagram of NJM2210.

Fig.3 is one of application examples.

This video noise reducer is composed of NJM2210, three capacitances for combination, one capacitance for signal bypass and CCD delay element. The NJM2210 is applicable to both of chroma and luminous signal with each fitted CCD delay element. The control terminal for switching reduce and enhance operates as enhance (increasing of high frequency part) with high level input and reduce (decreasing of high frequency part) with low level input. Its threshold level is about 2.25V at 5V supply voltage. Fig.4 is basic operating characteristics.

5-30

The comb type filter has special frequency characteristics like Fig.5 and is widely used to separate luminance and color signal in VCR circuit. The NJM2210 is automatical video signal noise reducer and signal enhancer.

Fig.6 shows video signal wave form and its frequency component.

Fig.5 Comb Type Filter Frequency Characteristic

Fig.6 Video Signal Waveform & Frequency Component

The NJM2210 operates automatically as noise reducer with low supply voltage to Pin 7 and signal enhancer with high voltage to Pin 7.

Fig.7 shows output characteristics when applied high or low voltage to Pin 7. This system is adding and subtracting form of signals and so the output characteristic distortion comb type filter comes from phase difference of each system. The NJM2210 phase difference is 2 degree at 4MHz. High dynamic range of video signal is reallized by high supply voltage.

Fig.8 shows vertical and horizontal enhance on display. Vertical enhance is signal treatment within 1H of horizontal synchronous time. Horizontal enhance is signal treatment between each horizontal synchronous signal and Fig.9 shows this.

Video Input (Pin 8)

Fig.9 Block Explanation

 $(800 \text{mV}_{PP} = 0 \text{dB})$ Input Signal Level - 0 dB -10 -- -60 Pin 7=4V 15.75kHz 62.94kHz - -10 - -50 -- -60 Pin 7=0V

Fig. 7 Comb Type Filter Characteristics vs. Input Signal Level $(800mV_{\rm pp}{=}0dB)$

VIDEO ON-SCREEN DISPLAY

■ GENERAL DESCRIPTION

The NJM2214 is a video display convertive integrated circuit. Its function is below.

- Character superimpose.
- 8 color generating function.
- Luminance signal wave shape-up function.
- Video effecter function of painting to background, superimposed character or some part of video signal.

■ FEATURES

Operating Voltage

(+4.7V~+5.3V)

- Internal 8 Color Generating Circuit
- Package Outline

SDIP22, DMP22

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

4.7~5.3V

APPLICATION

VCR, Video Camera

■ PACKAGE OUTLINE

ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	10	V
Power Dissipation	PD	(SDIP22) 700	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V⁺=5V)

	PAR	AMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operatin	g Curent	tec tec	I _{cc}	No signal, No load	17	25	33	mA
Video Sw	witch Volta	ge Gain	G _V	10, 11, 15, 22 Pin=Low 10STEP Stair wave, 2.2V _{P-P} , R1=5K	-1	0	+1	dB
Frequenc	cy Characte	eristics	G_{F}	10, 11, 15, 22 Pin=Low 2V _{p-p} , 4MHz, R1=5K	-1	0	+1	dB
Different	tial Gain	100 516	DG	10, 11, 15, 22 Pin=Low 10STEP Stair wave, 2.2V _{P-P} , R1=5K	-3	0	+3	%
Different	tial Phase		DP	10 STEP Stair wave, 2.2V _{p-p} R1=5K	-3	0	+3	degree
8 Color (Output			15 Pin=High, 10, 11, 22 Pin=Low (Note)				
	10	Amplitude	C _{1A}		-	0	100	mV _{p-p}
White		Luminance	C _{1D}		1.56	1.66	1.76	V
		Phase	C _{1P}		-	-		degree
	- 0.2	Amplitude	C _{2A}	91.460 n10 f	810	900	990	mV _{p-p}
Yellow		Luminance	C _{2D}	Mars many	1.45	1.55	1.65	V
		Phase	C _{2P}	Phase: Ref. to Yellow	-10	0	10	degree
٧	0.5	Amplitude	C _{3A}	Vpcs. Ph.ls	1160	1290	1420	mV _{p-p}
Cyan		Luminance	C _{3D} .	Venue Their	1.26	1.36	1.46	V
		Phase	C _{3P}	Value of the same	106	116	126	degree

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V⁺=5V)

PARAMETER		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
	Amplitude	C _{4A}	100	1080	1200	1320	mV _{p-p}
Green	Luminance	C _{4D}		1.14	1.24	1.34	v
	Phase	C _{4P}		63	73	83	degree
Yeary, Dissecti-	Amplitude	C _{5A}	abrais abrais	1080	1200	1320	mV _{p-p}
Magenta	Luminance	C _{5D}	syldeol: nest control	0.96	1.06	1.16	V
	Phase	C _{5P}	lo No specific No bad	243	253	263	degree
No. I To	Amplitude	C _{6A}	to E. M. M. Markins	1160	1290	1420	mV _{p-p}
Red	Luminance	C _{6D}		0.85	0.95	1.05	V
	Phase	C _{6P}	(20 - 124 see 100 mg / 124 mg	286	296	306	degree
	Amplitude	C _{7A}	wa. fe m? 42 - 23 - 21 - 21	810	900	990	mV _{p-p}
Blue	Luminance	C _{7D}		0.66	0.76	0.86	V
	Phase	C _{7P}		170	180	190	degree
	Amplitude	C _{8A}		_	0	100	mV _{p-p}
Black	Luminance	C _{8D}		0.54	0.64	0.74	v
	Phase	C _{8P}		_	_	_	degree
Blanking Pulse Inp Threshold Voltage	ut (12	V _{TH—19}	Pin 19	1.0	1.5	2.0	V
HD	Bu Lak	V _{TH—I8}	Pin 18	1.0	1.5	2.0	V
Invert	0 8-	V _{TH—II}	Pin 11	1.0	1.5	2.0	V
2 value Selection	OPEN DWG	V _{TH-10}	Pin 10	1.0	1.5	2.0	V
Background ON/O	FF	V _{TH—15}	Pin 15	1.0	1.5	2.0	V
Matrix 1	911 700	V _{TH—MI}	Pin 1	3.3	3.9	4.5	V
Matrix 2		V _{TH—M2}	Pin 2	3.3	3.9	4.5	v
Matrix 3		V _{TH—M3}	Pin 3	3.3	3.9	4.5	V
Character Input		V _{TH-21}	Pin 21	0.5	1.0	1.5	v
EXT/Character Sec	clection	V _{TH—20}	Pin 22	1.0	1.5	2.0	v

(Note): f_{SC1} , f_{SC2} =3.58MHz, 300mV_{PP}

 f_{SC1} : same phase of color burst signal. f_{SC2} : 90 degree phase lag from f_{SC1} .

■ RELATION BETWEEN 8 COLOR OUTPUT AND MATRIX INPUT

COLOR	MATRIX 1	MATRIX 2	MATRIX 3
White	L	L	L
Yellow	Н	L	L
Cyan	L	Н	L
Green	Н	Н	L
Magenta	L	EL R	Н
Red	Н	L	Н
Blue	L	Н	Н
Black	Н	Н	Н

L=0V (DC) H=5V (DC)

■ CONTROL SIGNAL AND FUNCTION

15 PIN	10 PIN	11 PIN	20 PIN	
L	L/H	L	L	Character superimposer (White/Black) on video through signal output
Н	L/H	L	L	Character superimposer (White/Black) on background (8 color)
Н	L/H	Н	L	Character superimposer (color) on background (White/Black)
L	L	Н	L	Character superimposer (color) on video through signal
L	L/H	L	Н	Luminance modification. Strong bright point is White/Black.
Н	L/H	L	Н	Colored except strong bright point.
Н	L/H	Н	Н	Colored at strong bright point and others is White/Black.
L	Н	Н	Н	Colored at strong bright point and others is video through.

■ TEST CIRCUIT

■ TYPICAL APPLICATION

GENERAL DESCRIPTION

The NJM2217 has functions of character and background superimposition to video signal and consists of synchronous separation circuit, vertical synchronous reproducing circuit, video switch and AFC circuit. Built-in AFC circuit makes the NJM2217 stable to noise and disorder of synchronous signal and takes off character disorder on Display Broun tube.

■ PACKAGE OUTLINE

NJM2217D

NJM2217L

■ FEATURES

- Operating Voltage
- (+4V~+6V)
- 2 video signal input terminals
- Internal synchronous separation Circuit and internal horizontal synchronous reproduce circuit. Can make trigger signal to character generator.
- Stable horizontal synchronous signal by build-in AFC circuit.
- Package Outline

DIP22, SDIP22

Bipolar Technology

Operating Voltage

4V~6V

■ APPLICATION

VCR, Video Camera, Other Video Equipment

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	consult, sides or 7 00 and 1,100 c	V
Power Dissipation	P _D	(DIP22) 1000	mW
		(SDIP22) 700	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I_{CC}	No signal	_	20	26	mA
Offset Voltage of Luminance Control	Vos	Ex. 10kΩ, Voltage difference between both terminals of resistor at 2.5V supply voltage 19 Pin, 17 Pin	ARBTO	03GX	0.1	v
Control Terminal Threshold	V_{TH}	16 Pin, 18 Pin, 20 Pin	0.4	1.4	2.0	V
Gain	G _V	10 STEP Stair wave 2.2V _{p-p} R _L =5k	-1	0	+1	dB
Frequency Characteristic	G_{F}	DC~5MHz 2V _{p-p} R _L =5k	-1	0	+1	dB
Cross-Talk	СТ	3.58MHz 2V _{P-P} One side 75Ω terminal	_	50	_	dB
Horizontal Sync. Output High	V _{HH}	R _L =2k	3.5	4.0	110 2400	v
Horizontal Sync. Output Low	V _{HL}	R _L =2k	_	0	0.1	v
Vertical Sync. Output High	V _{VH}	R _L =2k	3.5	4.0	_	v
Vertical Sync. Output Low	V _{VL}	R _L =2k	8-1	0	0.1	v
Free-Run Frequency	f _O	Pin 10=GND	14.5	100	17.0	kHz
Lock Range	f_L	(Note 1)	1.5	2.5	S Negal year	kHz
Capture Range	f_C	(Note 1)	0.6	1.3	Jugal na	kHz
AFC Output Pulse Width	P _W	Pin 8=5V Lock state	3.5	5.0	6.5	μs
AFC Output Delay	P _D	(Note 2)	-1.5	0	1.5	μs
Schmitt Trigger Threshold High	V _{TH}	Rise of Vertical Sync. Signal	1.9	2.1	2.3	V
Schmitt Trigger Threshold Low	V _{TL}	Fall of Vertical Sync. Signal	1.1	1.3	1.5	v
Differential Gain	DG	10 STEP Stair wave 2.2V _{p-p} R _L =5k	_	0.5	3.0	%
Differential Phase	DP	10 STEP Stair wave 2.2V _{p-p} R _L =5k	ns. S ned	0.5	3.0	deg
Sync. Separation Level	V _{SEPA}	Level from Sync. top	90	120	150	mV

⁽Note 1): AFC input is composite synchronous signal.

⁽Note 2): Time lag between horizontal synchronous signal with AFC and without AFC. (The timing gap at 9 pin output, in the case of 8 pin = high, and 8 pin = low.)

■ TEST CIRCUIT

■ AFC CIRCUIT CONFIGURATION & ITS FEATURE

The NJM2217 has AFC function of horizontal synchronous signal applied to character generator. AFC circuit of the NJM2217 is like PLL circuit and operates as band pass filter. If pulse Noise is mixed to the input horizontal synchronous signal of AFC circuit, it does not appear at AFC output when AFC circuit is on the lock condition. Because if noise appeared at output of phase comparator, low pass filter takes off it and it is not carried to VCO circuit. (Fig.1).

Fig.2 shows block diagram of AFC circuit.

Fig.1 Input and Output of AFC circuit with Mixed Noise

Fig.2 AFC Circuit Configuration

■ TEST CIRCUIT CONDITION

ARAMETER	INPUT	OUTPUT	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8	SW9	SW10	APPENDIX		
I _{cc}	Leik	J ₁ -J ₂ Current	В	В	В	A	A	Α	A	A	A	В	No Signal		
1, 1000	T.P3	T.P1	В	В	1	1				A	В	В,	Voltage between T.P1~3 & T.P2~4		
Vos	T.P4	T.P2	В	В						В	A	В	at DC 2.5V to T.P3 & T.P4, DC 1.5V to character 1 & 2		
V _{TH}	T.P5 chra. 1, 2	Video Out 1		50 100	9940	inda ya				A	A	С	Voltage of video output 1, when video signal to video input 1, DC0→2V to T.P5, character 1, 2		
	Video In 1	Video				E E	IN IS	491 5	В	in lan	di	В	garpett.		
G_V	Video In 2	Out 2	1900	(88)	m) på	0.0	10 100	15 69	of He	11 rai	garan	A	Input; 2.2V _{P-P} , 10 STEP stair wave		
	Video In 1	Video						100	227 100	1984 199		В	Input; 2V _{P-P} , Video sweep signal		
G_{F}	Video In 2	Out 2	+	+								A	(0~5MHz)		
	Video In 1	Video	В	A								A	RUTTANGLIGARIET		
C_{T}	Video In 2	Out 2	A	В					100			В	Input; 2V _{P-P} , Sine wave, 3.58MHz		
	Video In 1	Video	В	В								В	Input; 2.2V _{P-P} , 10 STEP stair wave		
DG	Video In 2	Out 2	В	В							100	A	Chroma 40IRE		
	Video In 1	Video	В	В					1	00000		В	Input; 2.2V _{P-P} , 10 STEP stair way		
DP	Video In 2	Out 2	В	В		1			В			A	Chroma 40IRE		
V _{HH}	Video In 1	H _{SYNC}	В	В		В			A		15 (6)	В	Input; standard color bar signal, $2V_{P,P}$		
V _{VH} V _{VL}	Video In 1	V _{SYNC}				A		В					Input; standard color bar signal, $2V_{P-P}$		
V_{SEPA}	Video In 1	H _{SYNC}						A					Level from SYNC. signal top at T.P		
V_{TH}	Video In 1	V _{SYNC}	1		Į,		1	В	ı,			ı,	Test at T.P7 & $\overline{V_{SYNC}}$ Pin (Note 1)		
f_O	Video In 1	H _{SYNC}	В	В	A	A	В	A	A	A	A	В	Count of frequency at \overline{H}_{SYNC} output with SW11 to \textcircled{B} .		
f_L	Video In 1	H _{SYNC}					A/B				1		Input; standard color bar 2V _{P-P} (Note 2)		
f_C	Video In 1	H _{SYNC}					A/B						Input; standard color bar, 2V _{P-P} (Note 2)		
P_{W}	Video In 1	H _{SYNC}				The state of	A	Total Control		10 7	915		Input; standard color bar, 2V _{P.P} (Note 3)		
P_D	Video In 1	H _{SYNC}			A/B		A/B						Input; standard color bar 2V _{P-P} (Note 3)		

(Note 2): Lock Range: At that time from lock to unlock condition by changing variable resistor value, change SW5 to (B) and measure

frequency at $\overline{H_{\text{SYNC}}}$ output (upper and lower limit).

Capture Range: At that time from unlock to lock condition by changing variable resistor value, change SW5 to (a) and measure frequency at $\overline{H_{SYNC}}$ output (upper and lower limit).

(Note 3): After adjusting $\overline{H_{SYNC}}$ output frequency to 15.73kHz with SW5 to B, changing SW3 alternately with AFC and without AFC condition of $\overline{H_{SYNC}}$ and measure delay time of two signal rise and fall wave.

TERMINAL FUNCTION

PIN NO.	PIN NAME	FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	NC	No connection	DO Viles 6.2 0.02 3.1
2 1 2 0	NC	No connection	E orbite I modeled
3	VIDEO-IN 2	Video signal input terminal Sink chip clamp at 2.1V	3 y+
ard color bar algual.		8 4	220
The not length 19894	Loruh Julya S		THE THEORY LAW
4	AFC-LPF	Connect AFC low pass filter.	V+
			₹ 1k
		A A A A B A A	
LaVE and redoction		1 1 100	4
and calor that a Very		10A	→ 1k
wWS old sold line	base requi		GND
5	f FREE-CONT	Connect variable resistor and adjust	
a of \$2 met pulse frai		free-run frequency.	≥ 1k
			5

TERMINAL FUNCTION

PIN NO.	PIN NAME	FUNCTION	INSIDE EQUIVALENT CIRCUIT
6	VCO-OUT	Connect capacitor to decide VCO frequency.	V ⁺
	SRI SAN		6 1k GND
7	V ⁺	Supply voltage	10 Sone Supe 204 Sym
8	AFC-OUT CONT	Control Pin 9 signal.	
			8
			20k 20k \$ 20k 20k \$ GND
		100	
9	Hsync-OUT	Horizontal synchronous signal output pin. Emitter follower output.	riV Vane Septe 184 Vir
			220 V+
	7.0		9
			→ GND

■ TERMINAL FUNCTION

PIN NAME	FUNCTION	INSIDE EQUIVALENT CIRCUIT
Sync Sepa-OUT	Synchronous separation circuit output. When testing free run oscillation frequency, short to GND.	10 V ⁺
Sync Sepa-IN	Synchronous separation circuit input.	New Y
	Surph Fort	(11) V+
0		
		220
100		GND
GND	Ground	
Vsync Sepa-IN	Vertical synchronous reproduce circuit input.	risting (Figure 1)
200		
3-		13)————————————————————————————————————
		1k
101		GND
	Sync Sepa-OUT Sync Sepa-IN	Sync Sepa-OUT Synchronous separation circuit output. When testing free run oscillation frequency, short to GND. Sync Sepa-IN Synchronous separation circuit input.

TERMINAL FUNCTION

PIN NAME	FUNCTION	INSIDE EQUIVALENT CIRCUIT
Vsync-OUT	Vertical synchronous output. (Emitter follower output)	¥ 220 V+
053		14) \$ 15k ————————————————————————————————————
VIDEO-OUT	Video signal output. (Emitter follower output)	Sign Control Str. Control (Str.
		220 V+
Charact IV.1	Control in a field SWA	GND
Charact-IN I		
		6.8k 2k 20k GND
	Vsync-OUT	Vsync-OUT Video signal output. (Emitter follower output) VIDEO-OUT (Emitter follower output)

■ TERMINAL FUNCTION

PIN NO.	PIN NAME	FUNCTION	INSIDE EQUIVALENT CIRCUIT
17	Lum-CONT 2	Luminance level adjustment of pin 16 character signal	V ⁺ 17 220 GND
18	Charact-IN 1	Control pin of video SW-2	intgravery 700-000ty tales
			(18) \$\bigg\{\bigg\} 2k
			6.8 k \$ 20 k GND
19	Lum-CONT 1	Luminance level adjustment of pin 18 character signal.	V ⁺ 19 220
	ik.		

TERMINAL FUNCTION

20	SW-CONT	Control pin of video SW-1. Input SW-1 output Low Video input 1 High Video input 2	(20)
			2k giv 1 stees
		that validgent or litely in a layer not office of rights hered Large granted	6.8k
nglarye latmisi Kanan negar b		it. Voluge proportional or physic differ	20k GND
21	VIDEO-IN 1	Video signal input pin. Sink chip clamp at 2.1V.	e of the mar, true sources as some dead
			(21) V+
		08 tigat 07/	220
22	NC	No connection	

■ PRINCIPLES OF OPERATION

1) Video Switch

The NJM2217 has three video switches. One of them is used to select one video signal from two input video signal, and two others are used for super-imposer of character and background. Switching operation is done by putting DC voltage in to Pin 16,18 or 20, and its threshold voltage is 1.4V typical.

The NJM2217 has inside clamp circuit, and input video signal of Pin3 or Pin21 is sink-chip-clamped at 2.1V. Output circuit is emitter follower and drives to $5k\Omega$ load.

2) Synchronous Separation Circuit

It separates composit synchronous signal from video signal, and this composit synchronous signal is applied to AFC circuit. And finally you can get horizontal synchronous signal (H_{sync}) from AFC circuit. Operation of synchronous separation is possible if signal level from synchronous signal top is more than 120mV_{P-P} .

3) Vertical Synchronous Reproduce Circuit

Composit signal from synchronous separation circuit is applied to integrator and triangle wave from it goes to schmitt trigger circuit which reproduces vertical synchronous signal. Output circuit is emitter follower and output voltage is $4V_{P,P}$ at $2k\Omega$ load.

4) AFC Circuit

Fig.3 shows block diagram of AFC circuit. Voltage proportional to phase difference between horizontal synchronous signal putted in to phase comparator and triangular wave from VCO is smoothed by low pass filter and is put in to VCO. This VCO frequency is changed to direction of coincidence with input frequency. Triangular wave from VCO output flows through window comparator and 5μ s width of output pulse signal which is same width to H_{sync} appears.

Fig.3 AFC Circuit Block

a) Free-Run Frequency

Free-run frequency depends on resistor R3 between Pin 5 and ground, and capacitor C_{AFC} between Pin 6 and ground. $|f_{FREE}| = 1/(3.3 \cdot C_{AFC} \cdot R3)[Hz] (1)$

b) Parameter of Low Pass Filter

Impedance vs. frequency characteristic from Pin 4 to Pin 5 is shown on Fig.4.

Fig.4 Low Pass Filter Impedance Characteristics

P₁, P₂, Z₁, Za, Zb are shown below.

$$\begin{array}{lll} P_1 = 1/\{2\pi C_2(R_2 + R_3)\} & [Hz] & (2) \\ P_2 = 1/(2\pi C_1 \cdot R_1) & [Hz] & (3) \\ Z_1 = 1/(2\pi C_2 \cdot R_1) & [Hz] & (4) \\ Za = R_2 + R_3 & (5) \\ Zb = R_1 & (6) \end{array}$$

Za is decided by R_2 and R_3 is decided by free run frequency and so Za is generally decided by R_2 . Value of P_1, P_2, Z_1, Z_2, Z_3 affects lock range, capture range, frequency fluctuations of AFC output and others. It is preferable that P_2 is 15kHz and Z_1 is 60Hz. When Zb becomes large, lock and capture range becomes wide but fluctuations of AFC output frequency will increase. Large Za decreases fluctuations.

■ DESIGN EXAMPLE OF L.P. FILTER

 $P_1 = 2Hz$

 $P_2 = 16kHz$

 $Z_1 = 60 Hz$

 $Za\!=\!40k\Omega$

 $Zb=1k\Omega$

 $C_{AFC} = 680 pF$

Each value of low pass filter is caluculated below. If decided free run frequency to 15.74kHz, and from equation (1).

 $R_3=28.4k\Omega$

 $Za=40k\Omega$ and equation (5),

 $R_2=12k\Omega$

From equation (2),

 $C_2 = 2.1 \mu F$

From equation (4),

 $R_1 = 1.3k\Omega$

From equation (3)

 $C_1 = 7700 pF$

Measured value at $R_1=1k\Omega$, $R_2=10k\Omega$, $C_1=1\mu F$, $C_2=2.2\mu F$.

Lock range=3.3kHz

Capture range=1.7kHz

(Note) Temperature characteristics of free run frequency, lock and capture range are deeply affected by temperature coefficient of C_{AFC} and each device of low pass filter, and so it is preferable using low temperature coefficient device. If temperature coefficient of C_{AFC} and R₃ is 0ppm/°C temperature coefficient of free run frequency is almost 0ppm/°C. (Ref. to typical characteristics graph.)

TYPICAL APPLICATION

Character superimposer on video signal.

Synchronous separation of video signal.

■ TYPICAL CHARACTERISTICS

Differential Gain/Differential

Differential Gain/Differential Phase

Video Switch Frequency Response

Differential Gain/Differential Phase

AFC Free Run Frequency

■ TYPICAL CHARACTERISTICS

Capture Range

AFC Hsync Pulse width

Lock Range

Capture Range

NTSC-M/PAL CONVERTOR

■ GENERAL DESCRIPTION

The NJM2218 is a signal processing IC for M/PAL Video signal. It is possible to convert from NTSC signal to M/PAL signal. The NJM2218 has functions of Video Sub-Carrier Doubler Block, Synchronous Signal AFC Block, Logic Block, Convert Block and Video Switch Block.

■ FEATURES

- lchip NTSC-M/PAL convertor
- Internal AFC block
- Package Outline
- Operating Voltage

DIP18

(+4.5V~5.5V)

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

 $V^{+}=+4.5V\sim+5.5V$

APPLICATION

• TV, VCR

■ PIN CONFIGURATION

1)fsc Input

2)VCO Control 3)COMP. SYNC Input 4)VCO Filter

5)Phase Detect Filter

7)Mono Multi C/R(1) 8)Mono Multi C/R(2) 9)GND

■ PACKAGE OUTLINE

NJM2218D

10)Switch 1 11)45deg Phase Shift Input 12)NTSC Chroma Input 13)M/PAL Output 14)Switch 2 Input 15)Convert/Through Output 16)Convert/Through Input 17)BPF Output

18)2fsc Output

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V* A2 16	+10	V
Power Dissipation	PD	700	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V+=50V, Ta=25°C)

PARAMETER Operating Current Signal Doubler Gain		SYMBOL	MIN.	TYP.	MAX.	UNIT
		Icc	-	20	28	mA
		G2fsc	-1.4	+0.6	+2.6	dB
	F P F	f f _H	18.0	20.0	-	kHz
AFC Characteristic	Free-Run Frequency	f fL	_	11.0	18.5	kHz
	Lock Range	Δfl	3.0	5.0	ra m je	kHz
	Capture Range	Δf_{C}	0.8	1.3		kHz
	Pulse Deley Time	Ppt	-0.7	3.0	13.0	μs
Mono Multi Characteristic	Pulse Wide (1)	Pw1	7.0	9.0	11.0	μs
	Pulse Wide (2)	Pw2	8.0	10.0	12.0	μs
T daw@(0)	Offset Voltage	Δν	0	20	80	mV
M/PAL Convert Characteristic	Gain Difference	ΔG	2.0	5.0	8.0	dB
	M/PAL Convert Gain	V	-3.0	-1.0	1.0	dB
SyncThreshold Level	add mod saffic	V _{S-TH}	0.7	1.4	2.0	V

■ TEST CIRCUIT

■ BLOCK EXPLANATIOR

- AFC, M/M BLOCK
 - 3 Pin input is Positive Composite Sync Signal
 - 2, 4, 5 Pins' external circuit can lock both oscillation of 15.75kHz and sync signal.

Internal temperature coefficient is 0ppm, so please use low drift external parts, especially the condensor (560pF) of 4Pin should be 0ppm/*C

TIMING CHART

- SIGNAL DOUBLER BLOCK
 3.58 (fsc)×2=7.16MHz generator
 Pin: 100~200mVp-p input pin
 Pin: about +0.6dB (GAIN) output pin
- SW1 BLOCK

12 Pin: NTSC COLOR SIGNAL (100~200mV_{PP}) input pin 10 Pin: 45deg Phase shift Color Burst Signal output pin

CONVERT/THROUGH, AMPLIFIER, ATT, SW2 BLOCK
 16 Pin: NTSC Color Signal (Phase Shift Color Burst) input pin
 17 Pin: 7.16MHz (fsc×2) input pin
 M/PAL Signal is output from 13 Pin through the Amplifier and ATT Block.

VIDEO SYNCHRONOUS DETECTOR

■ GENERAL DESCRIPTION

The NJM2220/2230 discriminate existance and fineness of video signal. It is applicable to VCR, TV, Video camera, Hi-Fi VCR, on screen display and others.

■ FEATURES

• Operating Voltage (+4.5V~+13V)

Package Outline

DMP8, SIP9

Bipolar Technology

■ PACKAGE OUTLINE

NJM2220S

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

V+=4.75~10V

APPLICATION

· Video camera, other video equipment

NJM 2230 M

■ PIN CONFIGURATION

PIN FUNCTION

- 1. M.M Time Constant set
- 2. SYNC Input (Comp, N, V SYNC)
- 3. SYNC Output
- 4. SSG SYNC Input
- 5. GND
- 6. SYNC DET, Judgement Control
- 7. SYNC DET
- 8. M.M Smoothing
- 9. V+ 5~10V

PIN FUNCTION

- 1. M.M Time Constant Set
- 2. SYNC Input (Comp, H, V SYNC)
- 3. SYNC Output
- 4. SSG SYNC Input
- 6. SYNC DET, Judgement Control
- 7. M.M Smoothing
- 8. V+ 5~10V

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	12	V
Power Dissipation	P _D	(SIP9) 500 (DMP8) 300	mW mW
Operating Temperature Range	Topr	-20~+75	mw C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current		I _{CC}		_	8	11	mA
Schmitt Circuit	H side	V _{CAP-H}	(Note 1)	2.07	2.22	2.37	V
CAP Voltage	L side	V _{CAP-L}	(Note 1)	1.57	1.72	1.87	V
Schmitt Circuit	H side	V _{LOCK-H}	(Note 1)	2.53	2.68	2.83	V
LOCK Voltage	L side	V _{LOCK-L}	(Note 1)	1.25	1.40	1.55	V
Mono-Multi Output Width		W _{MM}	(Note 2)	- 1	25	-	μsec
	2P	V _{TH-2}	11401 24102 082 A	1.0	1.5	2.0	V
Input Threshold Level	4P	V _{TH-4}	united, (TSQ, 2019) - 0.	1.0	1.5	2.0	V
	6P	V _{TH-6}	pedecial ILB 8	-	0.8	1.4	V
Outside Walking Big 7	H side	V _{7-H}		4.9	5.0	-	V
Output Voltage Pin 7	L side	V _{7-L}	HOLYSON HIS - PE	_	0.1	0.3	V
O to Walter B'	H side	V _{6-H}	Committee of the Commit	3.6	4.0		V
Output Voltage Pin 6	L side	V _{6-L}	meal Barre Der a	-	TE.	0.1	V
Out Walking Die 2	H side	V _{3-H}	magas tas seve a - E	4.9	5.0	-	v
Output Voltage Pin 3	L side	V _{3-L}		NECKTI .	0.1	0.3	V
M.M Smoothed D.C. Voltag	ge	V ₈ (V ₇)	Pin 2=2V	2.9	3.2	3.5	v

^{():} Apply to 2230M

ITEM		VCAP-L	V _{LOCK} -H		VCAP-H	VLOCK-L	
Pin 8 Voltage (Pin 7)	0	KORPISA	-	5		-	0
Pin 6 Voltage	L	— H		L	— → H	-	L
Pin 7 Voltage	Н	— ► L		Н	L	MITAR	Н

Measure Pin 8 (Pin 7) DC voltage at a moment when Pin 6 output voltage turns state.

Adjust Pin 8 (Pin 7) DC Voltage to 2V (at V^+ =5V) by varying Pin 1 outer resistor, and test Pin 8 output pulse width after taking off Pin 8 outer capacitor.

■ TEST CIRCUIT

-New Japan Radio Co., Ltd. -

■ OPERATIVE PRINCIPLE

• M.M: Varies duty ratio of output signal depended on input synchronous signal condition (irregular, on signal).

• LPF: Converts M.M. output signal to DC level. The more larger the duty ratio is,

DC level is clamped at V+/2+0.7 (V).

• Comparator: Outputs discriminating signal of input signal by DC level of LPF output.

Stablized output signal can be obtained due to that the hysterises is given to the output.

Switch: Makes exchanging operation of SYNC Input and SSG SYNC Input signal by discriminating signal from comparator or Pin 6

signal of SYNC DET Output Judgement Control.

■ TERMINAL FUNCTION

PIN NO.	EXPLANATION
1	Connect resistor and capacitor for M.M. time constant. (Value of R, C is changed by a kind of Pin 2 SYNC Input signal
2	Input synchronous signal (Comp SYNC, H.SYNC or V.SYNC) separated from video signal.
3	It outputs Pin 2 or Pin 4 signal by Pin 2 signal condition.
	Pin 2 input signal; normal → Output Pin 2 input signal.
	 Pin 2 input signal; abnormal → Output Pin 4 input signal.
4	Input artificial synchronous signal generated by SSG (Sync. Signal Generator).
5	GND
6	It outputs DC voltage (H or L state) by Pin 2 signal condition.
	When outer SW is turned to 1, Pin 2 input signal is forced to flow out from Pin 3.
	 Pin 2 input signal; normal → H state
	 Pin 2 input signal; abnormal → L state
7	It outputs DC voltage (H or L state) by Pin 2 signal condition.
	 Pin 2 input signal; normal → L state
	Pin 2 input signal; abnormal → H state
8 (7)	Connect capacitor for smoothing M.M. (Value depends on Pin 2 input signal).
	Adjust Pin 1 attached volume to the level that Pin 8 voltage becomes 2V (V ⁺ =5V) with Pin 2 signal
	If $V^+>5V$, then $V_{8(7)}=2/5V^+$ (V)
9(8)	V+: 5~10V

(Note) In some application, it happens that still, search or tracking is large off the point and unordinary SYNC or lack of SYNC occurs. If it is not desirable, you can do in SYNC condition by using Pin 6 as control input terminal. Also recommend sensitivity adjust ment of outer device change, by it error detection of unordinary SYNC will lapse.

It makes volume to low value,in other word it makes time constant of M.M to low value.In this case synchronous peak voltage at Pin 8 (Pin 7) becomes lower and so makes to 2V ($V^+=5V$) by putting resistor in to V^+ . (Adjust to 2V by Pin 1 resistor attached.)

New Japan Radio Co., Ltd.

TYPICAL CHARACTERISTICS

Operating Current

Schmitt Trigger Level

M.M Smoothed DC Voltage

(Carbon film resister-polyster film Capacitor)

Operating Current

Schmitt Trigger Level

M.M Smoothed DC Voltage

 $({\it Metal film resister - polyster film Capacitor})$

VIDEO SWITCH WITH 8dB AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2223 is an integrated bipolar video switch with 8dB amplifier which selects one video signal from three different composit video signals.

The NJM2223 has also function of superimposer and synchronous signal clipping and is suit to picture in picture configuration

■ PACKAGE OUTLINE

NJM2223M

■ FEATURES

- 12V operation.
- 3 input video signal.
- 2 output video signal.
- Switch operates with CMOS level.
- Super imposer function.
- Internal 8dB Amp.
- Package Outline
- I dekage oddinie

DMP16

Bipolar Technology

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	15	V
Power Dissipation	PD	(DMP16) 300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V+=12V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}	aniso aniso		14	19	mA
Voltage Gain (1)	G ₁	V _{IN} =1MHz, 1V _{P-P}	-1	0	1	dB
Voltage Gain (2)	G ₂	V _{IN} =1MHz, 1V _{p-p}	7	8	9	dB
Frequency Charact. (1)	G ₁₋₁	G_2 ':voltage gain at V_{IN} =1 V_{p-p} , 5MHz 5MHz $G_{2\cdot2}$ = G_2 '- G_2	-1	0	1	dB
Frequency Charact. (2)	G ₂₋₂	G_1 ': voltage gain at V_{IN} = $IV_{P,P}$, 5MHz G_{I-I} = G_1 ' $-G_1$	-1	0	1	dB
Differential Gain	DG	Stair Case, 1 V _{p-p}	0.150,081	AND A	3	%
Differential Phase	DP	Stair Case, 1V _{P-P}		_	3	deg
Threshold Level (1)	V _{TH-1}	SW (1) input	1.4	2.2	3.0	V
Threshold Level (2)	V _{TH-2}	SW (2) input	1.4	2.2	3.0	V
Threshold Level (3)	V _{TH-3}	SW (3) input	1.4	2.2	3.0	V
Threshold Level (4)	V _{TH-4}	SW (4) input	1.4	2.2	3.0	V
Threshold Level (5)	V _{TH-5}	Open collector input	0.5	1.0	2.0	V
Clipping Level	V_{CLIP}	SW (2) — ON V_{IN} (1) = $1V_{p,p}$, stair case	32	40	48	IRE
Inside White Level	V _{IN}	SW (3) — ON V _{IN} (1)=1V _{P,P}	92	100	108	IRE
Cross-talk	СТ	f _{IN} =4MHz	_	-50	-	dB

■ OUTPUT SELECT CODE

• Video Output (1)

SW (1)	V _{OUT} (1) Output Signal
0	V _{IN} (1)
1	V _{IN} (2)

• Video Output (2)

SW (1)	SW (2)	SW (3)	V _{OUT} (2) Output Signal
0	0	0	V _{IN} (1)
0	1	0	V _{IN} (3)
1	0	0	V _{IN} (2)
1	. 1	0	V _{IN} (2)

Super Imposer

 Switching of SW (3), it imposes DC level in video signal regardless to SW (1), SW (2) Condition.

SW (3)	V _{OUT} (2) Output Signal
0	Video Signal
1	DC Level

Switching of SW (4), it selects DC level at internal white level (100 IRE) or external setting level.

SW (4)	V _{OUT} (2) Output Signal
0	Internal White Level
1	External Set Level

• Open Collector Drive Switch

This switch has function to make SW (2), SW (3) no working and V_{OUT} (2) output signal to the same output signal of V_{OUT} (1). It operates in CMOS level.

■ TERMINAL FUNCTION

PIN.	EQUIVALENL CCT	PIN.	EQUIVALENT CCT
1	V+	9	
V _{IN} 2	\	GND	
2	5	10	5
SW(1)	GND	SW(3)	GND
3	\$ Q V+	11	V+
	-K"	open.	
V _{IN} 1		O.C.	GN
4	(a) We	12	V
V ⁺		REF1	GN
5	5	13	3 P V
SW(4)	GND	V _{IN} 3	-
6	3 V+	14	
REF2	一种	SW(2)	GND
7	V+	15	- V+
V _{OUT} 2	GND	V _{OUT} 1	
8		16	V+
NC		E _{ET} .C	o GN

■ TEST CIRCUIT

■ TYPICAL CHARACTERISTICS

Operating Current

Voltage Gain (1),(2)

 $(V^{+}=12\,V,\ V_{IN}(1):1\,V_{P-P}\ 1\,MHz)$

Differential Gain/Differential Phase

Ambient Temperature Ta (°C)

Clipping/Internal Level

Gain Change Ratio (5MHz/1MHz)

(V+=12 V, Vour(1)/Vour(2) Gain deviation

Threshold Level

■ GENERAL DESCRIPTION

The NJM2224 is a video noise reducer IC of which operation is to reduce noise contained in video color and luminance signal, and at the same time to correct outline of horizontal and vertical image signal.

The NJM2224 is suited for VCR camera especially.

■ FEATURES

Operating Voltage

(+4.75V~+5.25V)

Package Outline

DMP8

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

V+ 4.75~5.25V

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM2224M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+ V+	8 3 4 4 7 10 4	V
Power Dissipation	PD	300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	r

■ ELECTRICAL CHARACTERISTICS

(V+=5V, f=100kHz, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc		1	6.9	10	mA
Voltage Gain (Pin8-Pin2)	A _{U11} A _{U12}	$V_7 = 4V$, $V_{IN} = 100 \text{mV}_{P-P}$ $V_7 = 0V$, $V_{IN} = 100 \text{mV}_{P-P}$	-1 -11.5	0 -10	+1 -8.5	dB
Voltage Gain (Pin1-Pin2)	A _{U21} A _{U22}	$V_7 = 4V, V_{IN} = 100 \text{mV}_{P-P}$ $V_7 = 0V, V_{IN} = 100 \text{mV}_{P-P}$	- -4.2	-45 -3.2	-38 -2.2	dB
Voltage Gain (Pin8-Pin6)	A _{U31} A _{U32}	V ₇ =4V, Pin2-1(Inv. Amp), V _{IN} =20mV _{P-P} V ₇ =4V, Pin2-1 (Inv. Amp), V _{IN} =300mV _{P-P}	_ 	-3	-20 -1	dB
Bandwidth (Pin8-Pin2)	f _{B1}	$V_7 = 4V, V_{IN} = 100 \text{mV}_{p-p}$	10	_		MHz
Bandwidth (pin1-pin2)	f _{B2}	$V_7 = 0V, V_{IN} = 100 \text{mV}_{P-P}$	10	_	_	MHz
Bandwidth (Pin8-Pin6)	f _{B3}	$V_7 = 4V, V_{IN} = 100 \text{mV}_{P-P}$	8	_	_	MHz
Pin6 DC Voltage	V _{6-DC}		-	1.3	_	V

Note: Unless specified, all items are tested by Test Circuit.

■ TEST CIRCUIT

■ TERMINAL FUNCTION

PIN NO.	PIN NAME	INSIDE EQUIVALENT CIRCUITS	PIN NO.	PIN NAME	INSIDE EQUIVALENT CIRCUITS
1 XA	CCD Input	V+ (2.0V) 500 20k	5	Signal Bypass	20k 1k
2	CCD Output	V+ 200 (3.3V)	6	Output	8.3k (1.3V)
3	.V+		7	Control Input	1k
4	GND		8	Input	5k 500 (2.0V) 4k

APPLICATION NOTE

The NJM2224 is an integrated circuit of composing variable comb type filter which reduces noise mixed in chroma or luminance signal of VCR camera and others. The CCD delay device is suitable for outside delay element composing comb type filter, compared with a glass delay device. The basic circuit is the most excellent FB system with NULL.

Fig.1 is its basic block diagram and Fig.2 is actual block diagram of NJM2224.

Fig.3 is one of application examples.

The video noise reducer system is composed of three capacitors for connection and one capacitor for signal bypass and CCD delay device. The NJM2224 is applicable to both of chroma and luminous signal using CCD delay device suitable for each signal. High level input to the Control of Reduce/Enhance terminal (Pin7) makes enhance mode (increasing of high frequency part) and Low level input makes reduce mode (decreasing of high frequency part.) Its threshold level is about 2.25V at 5V supply voltage. Basic operating characteristics is shown in Fig.4.

Fig. 1 Basic Block Diagram

Fig. 2 Block Diagram

Fig. 3 Application

Fig. 4 Basic Operating Characteristic

The comb type filter has special frequency characteristics shown Fig.5, and is widely used to separate luminance and color signal in video-signal circuit. Using this comb type filter, the NJM2224 reduces noise and enhances signal in video signal, automatically.

Fig.6 shows video signal wave form and its frequency component.

Fig. 5 Comb Type Filter Frequency Characteristic

Fig. 6 Video Signal Waveform & Frequency Component

Fig.7 shows output characteristics determined by the input level to Pin7. The phase difference of each signal makes the output distortion of comb type filter characteristics, because FB system adds and substracts each signal. The NJM2224 phase difference is 2 degree at 4MHz. High dynamic range of video signal is realized by high supply voltage.

Fig. 7 Comb Type Filter Characteristics vs. Input Signal Level (800 mV_{P-P}=0 dB)

VIDEO CAMERA AUTO-IRIS FUNCTION

■ GENERAL DESCRIPTION

The NJM2225 are bipolar integrated circuits of motor drive for video camera. The NJM2225 have function of auto iris by video luminance signal and external information input to AGC circuit. They are composed of clipping circuit of video luminance signal, amplifier for driving motor and comparator for AGC circuits.

■ FEATURES

- Operating Voltage
- (+4.5V~+11V)
- Internal Auto Iris Circuit
- Package Outline

DMP16, ZIP16, SSOP16

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

4.5~11V

■ PACKAGE OUTLINE

NJM22258

NJM2225V

NJM2225M

■ PIN CONFIGURATION

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	12	V
Motor Drive Current	Io	30	mA(PIN.9)
Power Dissipation	PD	(ZIP16) 500 (DMP16) 350 (SSOP16) 350	mW mW mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V_1^{+}=9V, V_2^{+}=9V)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I_{CC}	ှင် ရှိရှင်း		5.0	8.0	mA
Pin 3 Clip HIGH Level	V _{CLH}	V ₅ =5V	2.82	2.90	2.98	V
Pin 3 Clip LOW Level	V _{CLL}	V ₅ =0V	2.27	2.35	2.43	V
Pin 5 Threshold Level	V _{TH}		0.7	1.4	2.1	V
7-9 Open Loop Gain	G ₀	$R_{L1} = 1 k\Omega \text{ (Pin } 9 - V^+)$	80	90	-	dB
Pin 9 Output Operating Voltage	V _{9L}	$R_{L1}=1k\Omega$ (Pin 9-V ⁺)	1.4	1.5	1.6	V
Pin 10 DC Level	V ₁₀		1.9	2.1	2.3	v
AGC Clip Level	V _{12CL}	$R_{L2}=15k\Omega$	3.80	4.00	4.20	v
Pin 15 Saturation Level	V _{15L}	$E_{IN}^{+}=2V, E_{IN}^{-}=2.1V, R_{L3}=5k\Omega$		0.2	0.4	v
Pin 15 OFF Level	V _{15H}	$E_{IN}^{+}=2V, E_{IN}^{-}=1.9V, R_{L3}=5k\Omega$	8.9	9.0		v

■ TEST CIRCUIT

■ TEST CONDITION

PARAMETER	MIN AND A THOU	TEST CONDITION
Operating Current		$V_1^+ = V_2^+ = 9V$
		③-GND, (13)(4)-4.5V
		SW1~SW4-OFF
	86.0	Other Pins-OPEN
(Clip Circuit)	SW1~SW4	-OFF
Pin 3 Clip HIGH Level	③-5V	③ Voltage Test
Pin 3 Clip LOW Level	③-0V	③ Voltage Test
Pin 5 Threshold Level	⑤-0.8V	③ Voltage Test Clip Level 1
	⑤-2.0V	③ Voltage Test Clip Level 2
(Driver-Amp Circuit)	SW2, SW3	-ON
7-9 Open Loop Gain	Vs-6V,	VM Value; A
	Vs-3V,	VM Value; B
	O.L.Gain=	=20LOG [3000/(A-B)]
Pin 9 Output Operating Voltage	Vs-0.5V	Voltage Test
	SW3-ON	
(Comparator Circuit)		
Pin 10 DC Level	10 Voltage	Test
AGC Clip Level	SW1~SW3	3-ON
Opport imaginor speak	Vs-8V	① Voltage Test
(External Comparator Circuit)		
Pin 15 Saturation Level	SW4-ON	
	①-2V	
	(14)-2.1V	(§) Voltage Test
Pin 15 OFF Level	(3-2V	
	(4-1.9V	(3) Voltage Test

■ TERMINAL FUNCTION

 $(V_1^+=9V, V_2^+=9V)$

PIN NO.	PIN SYMBOL	EQUIVALENT CIRCUITS	PIN VOLTAGE[V]	PIN DESCRIPTION
1	V ₁ +		9.0	Operating Voltage
2	Y _{IN}	V ₁ ⁺	2.38	Luminance signal input. Lum. sig. level: 0.5Vp-p.
3	НС	2 3 4.09k	2.35	Setting clip level (High). No connect at V ⁺ =9V.
4	LC	GND 1.48k	0.6	Setting clip level (Low). No connect at V ⁺ =9V.
5	W _{GP}	22k 5 22k GND	0	Input window gate pulse. The pulse: 5V 0
6	Y _{OUT}	V ₁ ⁺	2.35	Clipped luminance signal Output.
7	D _{IN} ⁺	V ₁ ⁺	w.r.g	Input driver amp signal (+) of luminance converted to DC level.
8	D _{IN}	GND (8)	-	Input driver amp signal (-) of iris motor threshold voltage.
9	Dout	9 300 300 GND	_	Driver amp output which drive driver coil of iris motor.

■ TERMINAL FUNCTION

 $(V_1^{+}=9V, V_2^{+}=9V)$

PIN NO.	PIN SYMBOL	EQUIVALENT CIRCUITS	PIN VOLTAGE[V]	PIN DESCRIPTION
10	C _{IN}	V ₁ ⁺ 15k 10 4.5k GND	2.09	Level set of COMP (1) which judges on-off condition of iris. No connect at V ⁺ =9V.
11	GND		0	GND
12	С _{оит}	18k 18k GND	O	Comparator (1) output which is signal to AGC circuit. Can drive TTL with $15k\Omega$ load $(4V/0V)$.
13	E _{1N} +	V ₂ ⁺	to title of larger som	Comparator (2) input (+)
14	E _{1N} -	13 14 GND	2,6 tourspec thin or nectoring band 26	Comparator (2) input (-)
15	E _{OUT}	GND GND	officer with m is	Comparator (2) output
16	V ₂ ⁺	The state of the s	9.0	Supply terminal to comparator (2)

BRIEF OPERATION PRINCIPLE

EXTERNAL CIRCUIT

EXTERNAL DEVICE	OPERATION DESCRIPTION	
Pin6–Pin7 resistor 2.7kΩ Pin7-GND capacitor 3.3μF	Integrating video luminance signal,	
FIII7-GIVD capacitor 5.5µF		
Pin7-L1 resistor 120Ω	Control iris motor speed.	
Pin8 –Pin9 RC	To prevent miss operation of motor by	
680 k Ω , 1 k Ω , 0.1 μ F	vertical synchronous signal, low-pass	
080K11, 1K11, U.1μF	filter acts as negative feedback circuit.	
Pin8-GND capacitor 1μF	AC ground	
V ₁ ⁺ -GND Variable resistor	Set threshold value of iris-motor start.	

■ NOTE

• When used at V₁⁺=9V, not connect pin3, pin4, pin10.

TYPICAL CHARACTERISTICS

Operating Current

Clip Level (Pin 3)

Treshold Level (Pin 5)

Open Loop Gain (Pin 7-Pin 9)

Comparator (1) Input DC Level

■ TYPICAL CHARACTERISTICS

VIDEO SUB-CARRIER SIGNAL DOUBLER/TRIPLER

■ GENERAL DESCRIPTION

The NJM2228 is a doubler/tripler oscillator based on video subcarrier frequency using PLL circuit technique.

The NJM2228 is suit to standard clock generator of CCD clock and onscreen display.

■ FEATURES

- Operating Voltage (+4V~+6V)
- Good input sensitivity V_{IN}=120mV MIN.
- Maximuon oscillation frequency 20MH:
- Switch function of doubler / tripler
- Package Outline

DIP8, DMP8, SIP8

Bipolar Technology

■ APPLICATION

VCR Video Camera AV-TV Video Disc Player

■ PIN CONFIGURATION

PIN FUNCTION

- 1. f_{SC} Input
- 2. Detection Filter
- 3. GND
- 4. Oscillator Output
- 5. Oscillator C
- 6. V+
- 7. Oscillator R
- 8. 2/3 Switch

■ PACKAGE OUTLINE

JM2228D

NJM2228M

NJM2228S

PIN FUNCTION

- 1. fsc Input
- 2. Detection Filter
- 3. GND 1
- 4. Oscillator Output
- 5. GND 2
- 6. Oscillator C
- 7. V+

NJM2228S

- 8. Oscillator R
- 9. 2/3 Switch

■ BLOCK DIAGRAM & EXTERNAL COMPONENTS

There is stray capacity assembled on PC board, and so select Rx, Cx to the value which pin 2 voltage (search voltage at VCO locked) becomes about 2V. Cx>5pF, $5.6k>Rx>3.3k\Omega$.

	NT	NTSC		AL
	3 multiplier	2 multiplier	3 multiplier	2 multiplier
Cx	10 p	22 p	8 p	15p
Rx	4.7 k	4.6k	3.9k	4.6k

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	8	V
Input Voltage	Io	GND-0.3~V+0.3	V
Power Dissipation	PD	(DIP8) 500 (DMP8) 300 (SIP8) 500	mW mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+	K2225ec	4.7	5.0	5.3	V
Operating Current	Icc	S1=1, S2=1,input Vi1: 3.58MHz Count Current	7	10	13	mA
(3 Multiplier Oscillator)		(S3=1 apply below abbriviation)				
Input Voltage Swing Range	V _{fsc3}	S1=1, S2=1, input Vi1 : 3.58 or 4.43MHz (sine wave), guaranteed Vi1 voltage range.	0.12	1.0	2.0	Vp-p
Input Sensitivity	V _{is3}	S1=1, S2=1, input Vi1; 3.58 or 4.43MHz (sine wave), actually tested minimum Vi1 voltage.		0.05	is ±0	Vp-p
VCO Oscillation Swing	V _{o3}	S1=1, S2=2, input Vi1 : 3.58MHz, 1.0Vp-p. V _{O3} Oscillation Swing	0.7	0.9	1.1	Vp-p
fsc Leakage	L_{fsc3}	S1=1, S2=2, input Vi1 : 3.58MHz, V _{O3} (fsc level/3fsc level)	_	-50	_	dB
3fsc Output Duty	D_{3fsc}	S1=1, S2=2, input Vi1 : 3.58MHz, 1.0Vp-p, Vos output signal duty.	45	50	55	%
(2 Multiplier Oscillator)		(S3=2 apply below)				
Input Voltage Swing Range	$V_{\rm fsc2}$	S1=1, S2=1, input Vi1 : 3.58 or 4.43MHz (sine wave), guaranteed Vi1 voltage range.	0.12	1.0	2.0	Vp-p
Input Sensitivity	V _{IS2}	S1=1, S2=1, input Vi1 : 3.58 or 4.43MHz (sine wave), actually tested minimum Vi1 voltage.	-	0.05	_	Vp-p
VCO Oscillation Swing	V _{o2}	S1=1, S2=2, input Vi1 : 3.58MHz, 1.0Vp-p. V _{O2} Oscillation Swing	0.7	0.9	1.1	Vp-p
fsc Leakage	·L _{fsc2}	S1=1, S2=2, input Vi1 : 3.58MHz, 1.0Vp-p. V _{O2} (fsc level/2fsc level)	_	-50	_	dB
2fsc Output Duty	D_{2fsc}	S1=1, S2=2, input Vi1 : 3.58MHz, 1.0Vp-p. V _{OS} Output signal duty.	45	50	55	%

(note 1): Rx, Cx accuracy: less than ±1%.

(note 2): Cx is not considered pin 5 stray capacitance. VCO free-run frequency is affected by stray capacitance of P.C board, socket and others.

(note 3): The NJM2228 is produced by high frequency wafer process and some of pin may be weak against surge voltage.

(note 4): Pin 2 filter must be connected to ground.

TYPICAL CHARACTERISTICS

VCO Oscillator Frequency

VCO Oscillator Frequency

VCO Oscillator Frequency

VIDEO SUB-CARRIER SIGNAL TRIPLER

■ GENERAL DESCRIPTION

The NJM2238 is a tripler oscillator based on video subcarrier frequency using PLL circuit technique. The NJM2238 is suit to standard clock generator of CCD clock and on-screen display.

■ FEATURES

Operating Voltage

(+4.7V~+5.3V)

Maximum Oscillator Frequency

• Tripler Output

Package Outline

DIP-8, DMP-8, SIP-8

Bipolar Technology

■ APPLICATION

• VCR Video Camera AV-TV

Video Disc Player

■ PIN CONFIGURATION

PIN FUNCTION

- 1. f_{SC} Input
- 2. Detection Filter
- 3. GND
- 4. Oscillator Output
- 5. Oscillator C
- 6. V+
- 7. Oscillator R
- 8. NC

■ PACKAGE OUTLINE

NJM2238D

NJM2238M

NJM2238S

PIN FUNCTION

- 1. f_{SC} Input
- 2. Detection Filter
- 3. GND 1
- 4. Oscillator Output
- 5. GND 2
- 6. Oscillator C
- 7. V⁺
- 8. Oscillator R
- 9. NC

■ BLOCK DIAGRAM & EXTERNAL COMPONENTS

There is stray capacity assembled on PC board, and so select Rx, Cx to the value which pin 2 voltage (search voltage at VCO locked) becomes about 2V. Cx>5pF, $5.6k\Omega$ >Rx> $3.3k\Omega$

QV I	NTSC	PAL
Cx	10 p	8 p
Rx	5.2k	4.4k

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	8	V
Input Voltage	V _{IN}	GND-0.3~V+0.3	V
Power Dissipation	PD	(DIP8) 500	mW
		(DMP8) 300	mW
		(SIP8) 500	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Recommended Oper. Voltage Range	V ⁺		4.7	5.0	5.3	V
Operating Current	I _{CC}	S1=1, S2=1, input Vil: 3.58MHz 1.0V _{p-p} . Count Current	5.6	8	10.4	mA
Input Voltage Swing Range	V _{fsc}	S1=1, S2=1, input Vi1: 3.58 or 4.43MHz (sine wave), guaranteed Vi1 voltage range.	0.5	1.0	2.0	Vp-p
Input Sensitivity	V _{is}	S1=1, S2=1, input Vi1 : 3.58 or 4.43MHz (sine wave), actually tested minimum Vi1 voltage.	_	0.2	_	Vp-p
VCO Oscillation Swing	V _{O3}	S1=1, S2=2, input Vil : 3.58MHz, 1.0Vp-p.	0.7	0.9	1.1	Vp-p
fsc Leakage	L _{fsc}	S1=1, S2=2, input Vi1: 3.58MHz, 1.0Vp-p. V _{O3} (fsc level/3fsc level)	_	-50	_	dB
3fsc Output Duty	D _{3fsc}	S1=1, S2=2, input Vi1: 3.58MHz, 1.0Vp-p, V _{O3} output signal duty.	45	50	55	%

■ TEST CIRCUIT

(note 1): Rx, Cx accuracy: less than ±1%

(note 2): Cx is not considered pin 5 stray capacitance. VCO free-run frequency is affected by stray capacitance of PC board, socket and others.

(note 3): The NJM2238 is produced by high frequency wafer process and some of pin may be weak against surge voltage.

(note 4): Pin 2 filter must be connected to ground.

■ TYPICAL CHARACTERISTICS

VCO Oscillator Frequency

2-INPUT SINGLE VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2233B is 2-input signal video switch selecting one of two video or audio signals. Its operating voltage is 4.75 to 13V and bandwidth is 10MHz. Crosstalk is 70dB (at 4.43MHz). It is applied to both NTSC and PAL VTR.

■ FEATURES

Operating Voltage

(+4.75V~+13V)

- 2 Input-1 Output
- Crosstalk 70dB (at 4.43MHz)
- Package Outline

DIP8, DMP8, SIP8, SSOP8

Bipolar Technology

■ APPLICATION

• VCR Video Camera AV-TV

Video Disc Player Audio

■ PACKAGE OUTLINE

NJM2233BD

NJM2233BM

NJM2233BV

NJM2233BL

■ BLOCK DIAGRAM

O DIP-8, DMP-8 (4, 5pin NC)
() SIP-8 (1, 3pin NC)

■ PIN CONFIGURATION

2 . SW1 3 . V_{In}2 4 . N.C. 5 . N.C. 6 . V⁺ 7 . V_{out} 8 . GND

PIN FUNCTION

1 . V_{in}1

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	15	V	
Power Dissipation	PD	(DIP8) 500	mW	
		(DMP8) 300	mW	
		(SIP8) 800	mW	
	No. No.	(SSOP8) 250	mW	
Operating Temperature Range	Topr	-20~+75	C	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V ⁺	self Ta	4.75	_	13.0	V
Operating Current	I_{CC}	S1=S2=S3=1	-	8.5	11.0	mA
Frequency Characteristic (1)	$G_{\rm fl}$	Vi=2.5Vpp Vo(20Hz)/Vo (100kHz)	-	0	±1.0	dB
Frequency Characteristic (2)	G _{f2}	Vi=2.0Vpp V _O (10MHz)/V _O (100kHz)	-	0	±1.0	dB
Voltage Gain	G _V	Vi=2.5Vpp, 100kHz, Vo/Vi	-0.5	0	-	dB
Total Harmonic Distortion	THD	Vi=2.5Vpp, 1kHz	-	0.01	_	%
Differential Gain	DG	Vi=2Vpp standard staircase signal	-	0		%
Differential Phase	DP	Vi=2Vpp standard staircase signal	H = 1	0	-	deg
Output Offset Voltage	V _{off}	$S1=S2=1$, $S3=1\rightarrow 2$, Vo voltage change	-	0	±15	mV
Crosstalk	СТ	(S1=S3=1, S2=2) and (S1=S3=2, S2=1) Vi=2.0Vpp, 4.43MHz, Vo/Vi		-70	-	dB
	V _{CH}	Garanteed voltage of all switch on	2.4	-	-	V
Switch Change Voltage	V _{CL}	Garanteed voltage of all switch off	_	-	0.8	V
Input Impedance	R _I		_	15	-	kΩ
Output impedance	Ro	The state of the s	_	10	_	Ω

■ CONTROL SIGNAL - OUTPUT SIGNAL

SW 1	OUTPUT SIGNAL	
L	V _{IN} 1	
Н	V _{IN} 2	

■ TEST CIRCUIT

■ APPLICATION

Oscillation Pervention on light loading conditions
Recommended under circuit

TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS

Differential Gain

Differential Gain

Differential Phase

Differential Gain

Differential Phase

 $(V^{+}=5V, 2Vp-p \text{ staircase signal input } R_{1}=1k\Omega)$

APL (%)

Differential Phase

■ TYPICAL CHARACTERISTICS

■ EQUIVALENT CIRCUIT

PIN NO.	SYMBOL	INSIDE EQUIVALENT CIRCUIT	PIN NO.	SYMBOL	INSIDE EQUIVALENT CIRCUIT
1	Vin 1	V+ V _{IN} 1 ≥ 200Ω	5	NC	
		200Ω 15k	1 Later	60 (TF) all each	
2	SW1	2kΩ \$ 13kΩ 200Ω \$ 9kΩ	6	V+	Indicated State
3	V _{IN} 2	V+ V _{1N} 2 ≥ 200Ω 200Ω 15k	7	Vout	200 Ω V _{OUT}
4	NC		8	GND	Sinonnati io

3-INPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2234 is 3-input video switch selecting one of three iuput video or audio signals. Its operating supply voltage range is 5 to 12V and bandwidth is 10MHz. Crosstalk is 70dB (at 4.43MHz).

■ FEATURES

- Operating Voltage (+4.75V~+13V)
- 3 Input-1 Output
- Muting Function available
- Wide Operating Supply Voltage Range
- Cross-talk 70dB (at 4.43MHz)
- Muting Function available
- Package Outline

DIP-8, DMP-8, SIP-8, SSOP-8

Bipolar Technology

APPLICATION

VCR Video Camera AV-TV Video Disc Player Audio

■ PIN CONFIGURATION

M.IM2234D

■ PACKAGE OUTLINE

NJM2234M

NJM2234V NJM2234L

PIN FUNCTION

- 1 . V_{in}1
- 2. SW1 3. V_{in}2
- V_{in}3

BLOCK DIAGRAM

(Ta=25℃)

PARAMETER Supply Voltage		SYMBOL	RATINGS 15	
		V ⁺		
Power Dissipation	THE RESERVE	PD	(DIP8) 500	mW
			(DMP8) 300	mW
			(SSOP8) 250	mW
			(SIP8) 800	mW
Operating Temperature Range		Topr	−20~+75	°C
Storage Temperature Range		Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V ⁺	Neso the Philes spirits	4.75	-	13.0	V
Operating Current	I _{CC}	S1=S2=S3=S4=S5=1	K. 7 ().	11.0	14.5	mA
Frequency Characteristics (1)	G _{f1}	Vi=2.5Vpp Vo(20Hz)/Vo(100kHz)	-1.0	_	+1.0	dB
Frequency Characteristics (2)	G _{f2}	Vi=2.0Vpp Vo(10MHz)/Vo(100kHz)	-1.0	-	+1.0	dB
Voltage Gain	G _V	Vi=2.5Vpp, 100kHz Vo/Vi	-0.5	_	+0.5	dB
Total Harmonic Distortion	THD	Vi=2.5Vpp, 1kHz	-	0.03	_	%
Differential Gain	DG	Vi=2Vpp Staircase signal	46° 78 0	0	_	%
Differential Phase	DP	Vi=2Vpp Staircase signal	14.1	0	_	deg
Output Offset Voltage	$V_{\rm off}$	(note 2)	-30	_	+30	mV
Crosstalk (1)	CT1	Vi=2.0Vpp. 4.43MHz, Vo/Vi(note 3)	_	- 70	_	dB
Crosstalk (2)	CT2	Vi=2.0Vpp, 4.43MHz, Vo/Vi (note 4)	_	-70	_	dB
0 % L Cl V L	V _{CH}	All inside SW : ON	2.4	_	_	V
Switch Change Voltage	V _{CL}	All inside SW : OFF	_	_	0.8	V
Input Impedance	R _I	7	-	15	_	kΩ
Output Impedance	Ro	446 44-	_	10	_	Ω

⁽note 1): If it is not shown about switch condition, it is tested on three condition below.

a) S1=2, S2=S3=S4=S5=1 b) S2=S4=2, S1=S3=S5=1, c) S3=S5=2, S1=S2=1, S4=1 or 2.

⁽note 2): S1=S2=S3=1, Output DC voltage difference of three mode below.

a) S4=S5=1 b) S4=2, S5=1 c) S4=1 or 2, S5=2

⁽note 3): S5=1, Tested on all combination of S1~S4 excepted two below.

a) S1=2, S4=1 b) S2=S4=2

⁽note 4): Tested on all combination of S1~S4 excepted one.

a) S5=2, S3=2

■ INPUT CONTROL SIGNAL - OUTPUT SIGNAL

SW 1	SW2	OUTPUT SIGNAL
L	L	V _{IN} 1
Н	L	V _{IN} 2
L/H	Н	V _{IN} 3

■ TEST CIRCUIT

■ APPLICATION

Oscillation Prevention on light loading conditions Recommended under circuit

■ EQUIVALENT CIRCUIT

PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	Vin 1	V _{1N} 1 ≥ 200Ω 200Ω 15k	5	V _{IN} 3 (Mute)	V· V _m 3 ≥ 2000 200Ω 15k
2	SW1	SW1 2kΩ 313kΩ 200Ω 9kΩ	6	V+	(8) (8) (7) (8) (8) (8) (8) (8) (8) (8) (8) (8) (8
3	V _{IN} 2	V _{1N} 2 ≥ 200Ω 200Ω 15k	7	Vout	200Ω V _{OUT}
4	SW 2	SW2 2kΩ 313kΩ 1.1mA 9kΩ	8	GND	APPLICA IAI Vadining by monacy ben locale Recognished locale security

3-INPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2235 is 3-input video switch for video and audio signal. It has clamp function and so is applied to fixed DC level of video signal. Its operating supply voltage range is 5 to 12V and bandwidth is 10MHz. Crosstalk is 70dB (at 4.43MHz).

■ FEATURES

- (+4.75V~+13V) Operating Voltage
- 3 Input-1 Output
- Internal Clamp Function
- 4.75~13V Wide Operating Supply Voltage Range
- Cross-talk 70dB (at 4.43MHz)
- Wide Frequency Range 10MHz
- Muting Function available
- Package Outline

DIP-8, DMP-8, SIP-8, SSOP-8

Bipolar Technology

APPLICATION

• VCR Video Camera AV-TV

Video Disc Player

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM2235D

NJM2235M

NJM2235V

NJM2235L

PIN FUNCTION

 $3 \;.\; V_{in} 2$ 4. SW2

5 . V_{in}3 6 . V⁺

8. GND

■ BLOCK DIAGRAM

INPUT CONTROL SIGNAL - OUTPUT SIGNAL

SW 1	SW 2	OUTPUT SIGNAL
L	L	V _{IN} 1
Н	L	V _{IN} 2
L/H	Н	V _{IN} 3

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	15 01 2 11 12 12	V
Power Dissipation	PD	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 250	mW
	NA CONTRACTOR	(SIP8) 800	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V+		4.75	И	13.0	V
Operating Current	Icc	S1=S2=S3=S4=S5=1	-	10.5	14.0	mA
Frequency Characteristics	G _{f2}	Vi=2.0Vpp Vo(10Hz)/Vo(100kHz)	-1.0		+1.0	dB
Voltage Gain	G _v	Vi=2.5Vpp, 100kHz Vo/Vi	-0.5	-	+0.5	dB
Differential Gain DG		Vi=2Vpp Staircase signal	_	0	_	%
Differential Phase DP		Vi=2Vpp Staircase signal	_	0	_	deg
Output Offset Voltage	V _{off}	(note 2)	-30	()	+ 30	mV
Input Clamp Voltage	V _{IC}	(note 5)		2.0	-	V
Crosstalk (1)	CT1	Vi=2.0Vpp, 4.43MHz, Vo/Vi(note 3)	-	-70.	_	dB
Crosstalk (2)	CT2	Vi=2.0Vpp, 4.43MHz, Vo/Vi (note 4)	TrA	-70	1 200	dB
6. 3.1.71 V.I.	V _{CH}	All inside SW : ON	2.4	_	_	V
Switch Change Voltage	V _{CL}	All inside SW : OFF	100	_	0.8	V
Output Impedance	Ro		1	10	-	Ω

(note 1): If it is not shown about switch condition, it is tested on three conditions below.

a) S1=2, S2=S3=S4=S5=1 b) S2=S4=2, S1=S3=S5=1, c) S1=S2=1, S3=S5=2, S4=1 or 2.

(note 2): S1=S2=S3=1, Output DC voltage difference of three mode below.

a) S4=S5=1 b) S4=2, S5=1 c) S4=1 or 2, S5=2

(note 3): S5=1, Tested on all combination of S1~S4 except two below.

a) S1=2, S4=1 b) S2=S4=2

(note 4): Tested on all combination of S1~S4 except one.

a) S5=2, S3=2

(note 5): Input clamp voltage is about 2/5 of supply voltage.

■ APPLICATION

Oscillation Prevention on light loading conditions Recommended under circuit

■ TEST CIRCUIT

DC Voltage Each Terminal Typ. on Test Circuit Ta =25℃

Terminal Name	V _{IN} 1	SW1	V _{IN} 2	SW2	V _{IN} 3	V+	V _{OUT}	GND
DC Voltage	2/5 V+	_	$\frac{2}{5}$ V+	_	2/5 V+	_	$\frac{2}{5}$ V ⁺ -0.7	

 $V_{con} = 5 V$

EQUIVALENT CIRCUIT

PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	V _{IN} 1	ν	5	V _{IN} 3 (Mute)	V+ V _{IN} 3 \$2000
2	SW 1	SW1 2kΩ 313kΩ 200Ω 39kΩ	6	V+	TI CHILL TEST
3	V _{IN} 2	V ₁ χ2 ξ200Ω 200Ω	7	Vout	200Ω V _{OUT}
- 10	W	V	want ye'l		Var de Ver
4	SW 2	2kΩ SW2 2kΩ 13kΩ 200Ω 9kΩ	8	GND	

VIDEO SUB-CARRIER SIGNAL OUADRUPLER

■ GENERAL DESCRIPTION

The NJM2240 is the quadruple oscillator of video band subcarrier frequency with PLL circuit technique. The NJM2240 is suit to standard clock generator of CCD clock and on-screen display.

■ FEATURES

Operating Voltage

(+4.7V~+5.3V)

High Input Sensitivity

Maximum Oscillator Frequency

Ouadrupler Output

Package Outline

DIP8, DMP8, SIP9

Bipolar Technology

APPLICATION

• VCR Video Camera AV-TV

Video Disc Player

■ PIN CONFIGURATION

PIN FUNCTION

- 1. f_{SC} Input
- 2. Detection Filter
- 3. GND
- 4. Oscillator Output
- 5. Oscillator C 6. V+
- 7. Oscillator R

■ PACKAGE OUTLINE

NJM2240D

NJM2240M

NJM2240S

PIN FUNCTION

- 1. f_{SC} Input
- 2. Detection Filter
- 3. GND 1
- 4. Oscillator Output
- 5. GND 2
- 6. Oscillator C
- 7. V+
- 8. Oscillator R
- 9. NC

■ BLOCK DIAGRAM & EXTERNAL COMPONENTS

There is stray capacity assembled on PC board, and so select Rx, Cx to the value which pin 2 voltage (search voltage at VCO locked) becomes about 2V. Cx>4pF, $Rx>2.7k\Omega$.

	NTSC	PAL
	4 Multiplier	4 Multiplier
Cx	6 p	5 p
Rx	4.3k	3.3 k

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+	8	V	
Input Voltage	Vin	GND-0.3~V++0.3	V	
Power Dissipation	PD	(DIP8) 500	mW	
		(DMP8) 300	mW	
		(SIP8) 500	mW	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Recommended Oper. Voltage Range	V ⁺		4.7	5.0	5.3	v
Operating Current	I _{CC}	S1=1, S2=1, input Vil: 3.58MHz Count Current	7	10	13	mA
Input Voltage Swing Range	V _{fsc}	S1=1,S2=1, input Vi1:3.58 or 4.43MHz (sine wave), guaranteed Vi1 voltage range.	0.12	1.0	2.0	Vp-p
Input Sensitivity	V _{is}	S1=1,S2=1, input Vi1:3.58 or 4.43MHz (sine wave), actually tested minimum Vi1 voltage.	-	0.05	-	Vp-p
VCO Oscillation Swing	V _{O4}	S1=1,S2=2,input Vil: 3.58MHz, 1.0V _{p-p}	0.7	0.9	1.1	Vp-p
fsc Leakage	L_{fsc}	S1=1, S2=2, input Vil: 3.58MHz, 1.0V _{P-P} V _{O4} (fsc level/4fsc level)		-50	N 201	dB
4fsc Output Duty	D _{4fsc}	S1=1,S2=2, input Vil: 3.58MHz, 1.0Vp-p, V ₀₄ output signal duty.	45	50	55	%

■ TEST CIRCUIT

(note 1): Rx, Cx accuracy: less than ±1%

(note 2): Cx is not considered pin5 stray capacitance. VCO free-run frequency is affected by stray capacitance of PC board, socket and others.

(note 3): The NJM2240 is produced by high frequency wafer process and some of pin may be weak against surge voltage.

(note 4): Pin 2 filter must be connected to ground.

■ TYPICAL CHARACTERISTICS

VCO Oscillator Frequency

SYNCHRONOUS SEPARATION WITH AFC

■ GENERAL DESCRIPTION

The NJM2229 has functions of getting the horizontal and vertical synchronous signal from the composit video signal by the synchronous separation circuit. Also the NJM2229 has a detective terminal of the input signal through the synchronous circuit.

■ FEATURES

- Operating Voltage
- (+4.7V~+5.3V)
- Internal AFC circuit (Horizontal sync. signal)
- No adjustment of free run frequency.
- Internal detective circuit of sync. signal.
- Package Outline

DIP16, ZIP-16

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

4.7~5.3V

■ BLOCK DIAGRAM

PACKAGE OUTLINE

(Ta=25°C

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	7	V
Power Dissipation	PD	500	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V⁺=5V)

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	_	20	26	mA
AFC Free-run Frequency	foh	15.534	15.734	15.934	kHz
AFC Pulse Width	T _{HD}	3.7	3.9	4.1	μS
AFC Delay	T _{HA}	0.7	1.7	2.7	μS
AFC Lock Range	Δf_{HL}	+600 -900	+700 -1000		Hz
AFC Capture Range	Δf_{HP}	+400 -700	+600 -900	MALL SAKS	Hz
AFC Output Voltage High	V _{HAH}	4.0	4.2	_	V
AFC Output Voltage Low	V _{HAL}	- 100	0	0.1	V
Sync. Signal Detection Level	V _{HDS}	0.11	0.14	0.17	V
Sync. Signal Detection Delay Time	T _{HDC}	0	0.57	1.5	μS
Sync. Signal Detection Output Voltage High	V _{HDH}	4.0	4.2	_	V
Sync. Signal Detection Output Voltage Low	V _{HDL}	-	0	0.1	V
V _{SYNC} Threshold Voltage High	V _{DSH}	2.4	2.5	2.6	V
V _{SYNC} Threshold Voltage Low	V _{DSL}	1.4	1.5	1.6	V
V _{SYNC} Output Voltage High	V _{DH}	4.0	4.2	_	V
V _{SYNC} Output Voltage Low	V_{DL}	_	0	0.1	V
V _{SYNC} Pulse Width	T _{VD}	212	272	332	μs
V _{SYNC} Delay Time	T _{VDT}	9.6	12.3	15	μS
Sync. Detection Lock Voltage High	V _{LH}	2.53	2.68	2.83	V
Sync. Detection Lock Voltage Low	V _{LL}	1.25	1.40	1.55	V
Sync. Detection Capture High	VcH	2.07	2.22	2.37	V
Sync. Detection Capture Low	V _{CL}	1.57	1.72	1.87	V
Sync. Detection Output Voltage High	V _{DEH}	4.0	4.2	_	V
Sync. Detection Output Voltage Low	V _{DEL}	1	0	0.1	V
Sync. Detection Output Voltage High	V _{DEH}	4.0	4.2		V
Sync. Detection Output Voltage Low	VDEL		0	0.1	V

■ TEST CIRCUIT

■ ELECTRICAL PARAMETER TEST METHOD

Test Circuit:

PARAMETERS	SW-1	SW-2	SW-3	TEST CONDITION
Operating Current	A	A	A	No input signal. DC current at Pin15.
AFC Free-run Frequency	A	A	A	No input signal. Video-IN terminal to GND. Frequency a Pin16.
AFC Pulse Width	A	A	A	No input signal. Output Pulse width at pin16. (Note 1)
AFC Output Delay Time	A	A	A	Input 2V _{P-P} video signal on Video-IN terminal. Delay time between input and AFC output signal. (Note 1)
AFC Lock Range	A	A	A	Operating ferquency range of AFC output when the inpu pulse signal frequency with 5 μ sec pulse width at Video-IN terminal changes.
AFC Capture Range	A	A	A	Frequency range when signal changes from AFC unlock condition to lock.
AFC Output Voltage	A	A	A	Output voltage at Pin16 in condition of load resistance $R_L = 10k\Omega$.
Sync. Signal Detection Level	A	A	A	Putting 2V _{P-P} video signal on Video-IN terminal and reducing it to the level that pin5 output waveform is beginning to change. V _{HDS} is the sink-chip level at that point. (Note 2)
Sync. Signal Detection Output Voltage	A	A	A	Output voltage at Pin5 with load resistance $R_L = 10k\Omega$.
Sync. Signal Detection Delay Time	A	A	A	2V _{P-P} video signal at Video-IN terminal. Time difference between input(Pin5) and output(Pin6) waveform.
V _{SYNC} Threshold Voltage High	В	A	A	Gradually increase DC voltage from 2V to 3V at V _{SYNC} -IN terminal. DC input voltage when output voltage at Pin10 changes from LOW to HIGH state.
V _{SYNC} Threshold Voltage Low	В	A	A	Gradually decrease DC voltage from 3V to 1V at V _{SYNC} -IN terminal. DC input voltage when output voltage at Pin10 changes from HIGH to LOW state.
V _{SYNC} Output Voltage	В	A	A	Output voltage at Pin10 with load resistance $R_L = 10k\Omega$.
V _{SYNC} Pulse Width	A	A	A	Putting 2V _{P-P} video signal on Video-IN terminal and measurring output pulse width at Pin10. (Note 3)
V _{SYNC} Delay Time	A	A	Α	Putting 2V _{P-P} video signal on Video-IN terminal. Delay time between output at Pin10 and V _{SYNC} at Pin6. (Note 3)
Sync. Detection Lock Voltage High	A	В	В .	Increase DC voltage from 2V to 4V put on Sync-Det-IN terminal and measure its DC voltage when output voltage at Pin13 changes from HIGH to LOW. (Note 4)
Sync. Detection Lock Voltage Low	A	В	В٠	Decrease DC voltage from 2V to 1V put on Sync-Det-IN terminal and measure its DC voltage when output voltage at Pin13 changes from HIGH to LOW. (Note 4)
Sync. Detection Capture High	A	В	В	Decrease DC voltage from 3V to 1V put on Sync-Det-IN terminal and measure its DC voltage when output voltage at Pin13 changes from LOW to HIGH. (Note 4)
Sync. Detection Capture Low	A	В	В	Increase DC voltage from 1V to 2V put on Sync-Det-IN terminal and measure its DC voltage when output voltage at Pin13 changes from LOW to HIGH. (Note 4)
Sync. Detection Output Voltage	A	В	В	Output voltage at Pin13 with load resistance $R_L = 10k\Omega$.
Sync. Detection Output Voltage	A	В	В	Output voltage at Pin14 with load resistance $R_L = 10k\Omega$.

■ PIN FUNCTION

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	VCO-OUT		1.5 mA
2	VCO-FILTER	Deciding phase of ceramic resonator.	200 2
3	AFC-FILTER	Low pass filter of AFC.	100 µA
4	AFC-IN	Input terminal of AFC. Putting composite. synchronous signal on it.	20 k 20 k 777 777
5	C. SYNC-OUT	Sync. signal Detection output	100 \$ 15k

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT	
6	VIDEO-IN	Input composite video signal.	6 100 100 μA	11
	L. P. F	Low pass filter for	<i>Th</i>	
7	197	chroma signal.	4 k 7 γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ γ	
			777	
8	GND	Ground.		
9	SYNC-INTEGR	Integrating composite synchronous signal and putting vertical synchronous reproducing circuit.	200	
	VSYNC-OUT	Vertical synchronous output.	100	
10			15 k \$	
	700		15k >	

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
11	M. M-TC	Deciding time constant of M. M. V. (monomulti vibrator)	100
	M. M-INTER	Smoothing M. M. V.	
12	O-m	output.	10 k 200
THE SE	SYNCDET-OUT	Signal detective output.	_
			100
13		7	15 k
14	SYNCDET-OUT	Inversed output of Pin 13.	100 \$
	E 011		15 k \$ 777
15	V+	Power supply.	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	AFC-OUT	AFC output.	100 \$
16			15 k \$

3-INPUT VIDEO SWITCH WITH 75Ω DRIVER

■ GENERAL DESCRIPTION

The NJM2243 is a three input integrated video switch which selects one video or audio signal from three input signals.

It contains driver circuit for 75Ω load and is able to connect to TV

Its operating supply voltage range is 9 to 12V and bandwidth is 10MHz. Crosstalk is 70dB (at 4.43MHz).

■ FEATURES

- Operating Voltage 9~13V
- 3 Input-1 Output
- Internal Driver Circuit for 75 Ω Impedance
- Muting Function available
- Low power Dissipation 15mA
- Cross-talk 70dB(at 4.43MHz)
- Wide Frequency Range 10MHz
- Package Outline DIP8, DMP8, SIP8
- Bipolar Technology

■ APPLICATION

• VCR Video Camera AV-TV Video Disc Player

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM2243D

NJM2243M

NJM2243L

PIN FUNCTION

SW1 $3. V_{in} 2$

4. SW2

5 . V_{in}3 6 . V⁺

8. GND

BLOCK DIAGRAM

Pin Connection

■ INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SW 1	SW 2	OUTPUT SYGNAL
L	L	V _{IN} 1
Н	L	V _{IN} 2
L/H	Н	V _{IN} 3

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	talified at 15	V
Power Dissipation	PD	(DIP8) 500	mW
	11.040	(DMP8) 300	mW
		(SIP8) 800	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=9V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V+	8, 8 H M	8.5	=	13.0	V
Operating Current	I _{CC}	S1=S2=S3=S4=S5=2	13.0	18.5	25.0	mA
Voltage Gain	G _V	$Vin=2.0V_{P-P}$, 100kHz, Vo/Vi, $R_L=150Ω$	-0.8	-0.3	+0.2	dB
Frequency Characteristics	G_{f}	$Vin=2.0V_{P-P}, V_0(10MHz)/V_0(100kHz), R_L=1k\Omega$	-1.0	_	+1.0	dB
Differential Gain	DG	Vin=2.0V _{P-P} , staircase, R _L =150Ω		0.3	- WO	%
Differential Phase	DP	Vin=2.0V _{P-P} , staircase, R _L =150Ω	_	0.3	_	deg.
Output Offset Voltage	V _{off}	$S1=S2=S3=2$, $S5=1\rightarrow 2$ V _O : Voltage change	_	1	±30	mV
Crosstalk	СТ	Vin=2V _{P.P.} , 4.43MHz, Vo/Vi	_	-70	_	dB
	V _{CH}	All inside Sw:ON	2.4	-	_	V
Switch Change Voltage	V _{CL}	All inside Sw:OFF	_	_	0.8	V
Input Impedance	R _I		193,60	15	Daniel D	kΩ

(note) Unless specified, tested with three mode below.

a) S1=1, S2=S3=S4=S5=2 b) S2=S4=1, S1=S3=S5=2 c) S3=S5=1, S1=S2=2, S4=1 or 2

■ APPLICATION

Oscillation Prevention on light loading conditions Recommended under circuit

■ TEST CIRCUIT

DC Voltage Each Terminal

Typ. on Test Circuit Ta =25℃

Terminal Name	$V_{IN}1$	SW1	V _{IN} 2	SW2	V _{IN} 3	V+	V _{OUT}	GND
DC Voltage	3 V+	_	3 V+	_	3 V+	_	$\frac{2}{5}$ V ⁺ -0.7	_

■ EQUIVALENT CIRCUIT

PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	V _{IN} 1	V+ V _{1N} 1 ≥ 200Ω 200Ω 15k	5	V _{IN} 3 (Mute)	V+ V _{IN} 3 ₹2005
2	SW1	SW1 2kΩ 313kΩ 1.1 mA 9 kΩ	6	V*	N AND TREET
3	V _{IN} 2	V· V _{1N2} ≥ 200Ω 200Ω 15k	7	Vout	200Ω V _{OUT}
4	SW 2	2kΩ SW2 2kΩ 13kΩ 200Ω 9kΩ	8	GND	

3-INPUT VIDEO SWITCH WITH 75 Ω DRIVER

■ GENERAL DESCRIPTION

The NJM2244 is a three input integrated video switch witch selects one video or audio signal from three input signals.

It contains driver circuit for $75\,\Omega\,$ load and is able to connect to TV monitor.

Its operating supply voltage range is 5 to 12V and bandwidth is 10MHz. Crosstalk is 70dB (at 4.43MHz).

NJM2244 contains clamp function and it can be operated while setting DC level fixed in position of the video signal.

■ FEATURES

- Operating Voltage 4.75~13V
- 3 Input-1 Output
- Internal Driver Circuit for 75 Ω Impedance
- Muting Function available
- Internal Clamp Function
- Low power Dissipation 16.5mA
- Cross-talk 70dB(at 4.43MHz)
- Wide Frequency Range 10MHz(2V_{P-P} Input)
- Package Outline DIP8, DMP8, SIP8
- Bipolar Technology

APPLICATION

VCR Video Camera AV-TV Video Disc Player

■ PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM2244D NJM2244M

NJM2244L

PIN FUNCTION

- 1 . V_{in}1 2 . SW1
- 3 . V_{in}2 4 . SW2
- 5 . V_{in}3 6 . V⁺
- 7. Vout 8. GND

■ BLOCK DIAGRAM

Pin Connection

■ INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SW 2	OUTPUT SIGNAL
L	V _{IN} 1
L	V _{IN} 2
Н	V _{IN} 3
	L L

note): Input clamp voltage is about 2/5 of supply voltage.

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	15 120	V
Power Dissipation	PD	(DIP8) 500	mW
	a discount of the second	(DMP8) 300	mW
		(SIP8) 800	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

		12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ALC: NO PERSON IN	0.01	1111111111	-011
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V+		4.75	ns. - h	13.0	V
Operating Current	Icc	S1=S2=S3=S4=S5=2	11.5	16.5	22.0	mA
Voltage Gain	G _V	$Vin = 2.0V_{P-P}$, $100kHz$, Vo/Vi , $R_L = 150\Omega$	-0.8	-0.3	+0.2	dB
Frequency Characteristic	$G_{\rm f}$	$Vin = 2.0 V_{P-P}, V_0(10MHz)/V_0(100kHz) R_L = 150\Omega$	-1.0	R - 7	+1.0	dB
Differential Gain	DG	Vin=2.0V _{P-P} , staircase, $R_L = 150\Omega$	-	0.3	-	%
Differential Phase	DP	Vin=2.0V _{P-P} , staircase, $R_L = 150\Omega$	MONTA.	0.3	MOD 1	deg.
Output Offset Voltage	V _{off}	S1=S2=S3=2,S5=1→2 V _O :voltage change	_	-0	±30	mV
Crosstalk	СТ	Vin=2V _{P-P} , 4.43MHz, V _O /Vi	-	-70	_	dB
Switch Channe Valence	V_{CH}	All inside SW:ON	2.4	-	_	V
Switch Change Voltage	V _{CL}	All inside SW:OFF	M-1	_	0.8	V

(note) Unless specified, tested with three mode below.

a) S1=1, S2=S3=S4=S5=2 b) S2=S4=1, S1=S3=S5=2 c) S1=S2=2, S3=S5=1, S4=1 or 2

APPLICATION

Oscillation Prevention on light loading conditions Recommended under circuit

 $r \cong 75\Omega$ $C \cong 68pF$

■ TEST CIRCUIT

DC Voltage Each Terminal

Typ. on Test Circuit Ta =25°C

Terminal Name	V _{IN} 1	SW1	V _{IN} 2	SW2	V _{IN} 3	V+	Vout	GND
DC Voltage	2 V+	_	2 V+	_	2 V+	-	$\frac{2}{5}$ V ⁺ -0.7	

■ EQUIVALENT CIRCUIT

PIN NO. PIN	FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO. PIN	FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	V _{IN} 1	V+ V _{IN} 1 \$ 200Ω 200Ω	5	V _{IN} 3 (Mute)	V+ V _{IN} 3 \(\frac{1}{2}\)200Ω
		SW1	-0-	9-	
2	SW1	2kΩ ₹ 13kΩ 200Ω ₹ 9kΩ	6	V+	
3	V _{IN} 2	V _{1N} 2 \$200Ω 200Ω	7		200Ω V _{OUT}
4	SW 2	SW2 2kΩ 313kΩ 200Ω 9kΩ	8	GND	pr 70.

3-INPUT VIDEO SWITCH WITH 6dB AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2245 is a three input integrated video switch witch selects one video or audio signal from three input signals.

It contains 6dB amplifier and its operating supply voltage range is 8.5 to 13V and bandwidth is 5MHz. Crosstalk is 65dB (at 4.43MHz).

■ FEATURES

- Operating Voltage 8.5~13V
- 3 Input-1 Output
- Internal 6dB Amplifier
- Muting Function available
- Cross-talk 65dB(at 4.43MHz)
- Wide Frequency Range 5MHz(1VP-P Input)
- Package Outline DIP8, DMP8, SIP8
- Bipolar Technology

APPLICATION

VCR AV-TV Video Disc Player

■ PACKAGE OUTLINE

NJM2245D

NJM2245M

NJM2245L

■ PIN CONFIGURATION

PIN FUNCTION

- 2 . SW1 3 . V_{in}2 4 . SW2
- 5 . V_{in}3 6 . V⁺
- 8. GND

BLOCK DIAGRAM

■ INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SW 1	SW 2	OUTPUT SIGNAL
L	L	V _{IN} 1
Н	L	V _{IN} 2
L/H	Н	V _{IN} 3

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	15	V
Power Dissipation	P _D	(DIP8) 500	mW
		(DMP8) 300	mW
		(SIP8) 800	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=9V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V+		8.5	иет	13.0	V
Operating Current	I_{CC}	S1=S2=S3=S4=S5=2	10.0	16.5	23.0	mA
Voltage Gain	Gv	Vin=1.0V _{P-P} , 100kHz, Vo/Vi, R _L =1kΩ	5.7	6.2	6.7	dB
Frequency Characteristic	G_{f}	$V_{in} = 1.0_{P-P}, V_0(10MHz)/V_0(100kHz) R_L = 1k\Omega$	-1.0	_	+1.0	dB
Differential Gain	DG	Vin=1.0V _{P.P} , staircase, $R_L = 1k\Omega$	_	0.3	_	%
Differential Phase	DP	Vin=1.0V _{P.P} , staircase, $R_L = 1k\Omega$	-	0.3	_	deg.
Output Offset Voltage	$V_{\rm off}$	S1=S2=S3=2, S5=1→2 V _O :voltage change	_		±60	mV
Crosstalk	СТ	Vin=1V _{P-P} , 4.43MHz, V _O /Vi	138.1 (38.1	-65	_	dB
Suitab Obarra Valent	V _{CH}	All inside SW:ON	2.4	_	_	V
Switch Change Voltage	V _{CL}	All inside SW:OFF		H21 4-1	0.8	V
Input Impedance	R _I		-	15	1	kΩ

⁽note) Unless specified, tested with three mode below.

a) S1=1, S2=S3=S4=S5=2 b) S2=S4=1, S1=S3=S5=2 c) S1=S2=2, S3=S5=1, S4=1 or 2

APPLICATION

Oscillation Prevention on light loading conditions Recommended under circuit.

■ TEST CIRCUIT

DC Voltage Each Terminal

Typ. on Test Circuit Ta =25℃

Terminal Name	V _{IN} 1	SW1	V _{IN} 2	SW2	V _{IN} 3	V+	Vout	GND
DC Voltage	2/ ₅ V ⁺	-	2/5 V+	-	2/5 V ⁺		$\frac{2}{5}$ V+-2.1	7-

■ EQUIVALENT CIRCUIT

PIN NO. PIN	FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO. PIN	FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	V _{IN} 1	V _{1N} 1 ≥ 200 Ω 15k 200 Ω	5	V _{IN} 3 (Mute)	V+ V _{IN} 3 ₹200Ω
2	SW 1	SW1 2kΩ 313kΩ 1.1 mA 9kΩ 39kΩ	6	V+	TEST CIRCLY!
3	V _{IN} 2	V _{1N} 2 ≥ 200 Ω 15k 200 Ω	7	Vout	200 Ω V _{OUT}
4	SW 2	SW2 2kΩ 313kΩ 200Ω 59kΩ	8	GND	19.

3-INPUT VIDEO SWITCH WITH 6dB AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2246 is three input integrated video switch witch selects one video or audio signal from three input signals

It contains 6dB ampplifier and its operating supply voltage range is 4.75 to 13V and bandwidth is 5MHz.

Crosstalk is 65dB (at 4.43MHz).

■ FEATURES

- Operating Voltage 4.75~13V
- 3 Input-1 Output
- Internal 6dB Amplifier
- Muting Function available
- Internal Clamp Function
- Cross-talk 65dB(at 4.43MHz)
- Wide Frequency Range 5MHz(1V_{P-P} Input)
- Package Outline DIP8, DMP8, SIP8
- Bipolar Technology

APPLICATION

• VCR. AV-TV Video Disc Player

PIN CONFIGURATION

■ INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SW 1	SW 2	OUTPUT SIGNAL
	0,,,2	OUTFOT SIGNAL
L	L	V _{IN} 1
Н	L	V _{IN} 2
L/H	Н	V _{IN} 3

note): Input clamp voltage is about 2/5 of supply voltage.

■ PACKAGE OUTLINE

NJM2248D

NJM2246M

NJM2246L

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	. V+	n sagette e plo 15 serge soci ati baje s	V	
Power Dissipation	PD	(DIP8) 500	mW	
		(DMP8) 300	mW	
		(SIP8) 800	mW	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V ⁺		4.75	1 Lini	13.0	v
Operating Current	I _{CC}	S1=S2=S3=S4=S5=2	9.5	14.0	21.0	mA
Voltage Gain	Gv	$Vin=1.0V_{p-p}$, $1MHz$, Vo/VI , $R_L=1k\Omega$	5.5	6.0	6.5	dB
Frequency Characteristic	Gf	$Vin = 1.0V_{p-p}, V_0(10MHz)/V_0(1MHz)R_L = \dot{1}k\Omega$	-1.0	M-X	+1.0	dB
Differential Gain	DG	Vin=1.0V _{P-P} , staircase, $R_L = 1 k\Omega$	75to	0.3	_	%
Differential Phase	DP	Vin=1.0V _{P-P} , staircase, $R_L = 1 k\Omega$	-	0.3	_	deg.
Output Offset Voltage	V _{off}	$S1=S2=S3=2$, $S5=1\rightarrow 2$ V _O :voltage change	1	_	±60	mV
Crosstalk	СТ	Vin=1V _{P-P} , 4.43MHz, V _O /Vi		-65	_	dB
	V _{CH}	All inside SW:ON	2.4	_	_	V
Switch Change Voltage	V _{CL}	All inside SW:OFF	+11	n-u	0.8	V

(note) Unless specified, tested with three mode below.

a) S1=1, S2=S3=S4=S5=2 b) S2=S4=1, S1=S3=S5=2 c) S1=S2=2, S3=S5=1, S4=1 or 2

Oscillation Prevention on light loading conditions Recommended under circuit.

■ TEST CIRCUIT

DC Voltage Each Terminal

Typ. on Test Circuit Ta =25℃

Terminal Name	V _{IN} 1	SW1	V _{IN} 2	SW2	V _{IN} 3	V+	Vout	GND
DC Voltage	2/5 V+	-	2/5 V+	_	2/5 V+		$\frac{2}{5}$ V+-0.7	-

■ EQUIVALENT CIRCUIT

PIN NO PIN	FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO. PIN	FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	V _{IN} 1	V _{1N} 1 ≥ 200Ω 200Ω	5	V _{IN} 3 (Mute)	V+ V _{IN} 3 \(\frac{1}{2}\)200\(\Omega\)
2	SW 1	SW1 2kΩ ≥ 13kΩ 1.1 mA ≥ 9kΩ	6	V+	певу синсин
3	V _{1N} 2	V. V _{1N2} ≥ 200Ω 200Ω	7	Vout	200 Ω V _{OUT}
4	SW 2	SW2 2kΩ ≥ 13kΩ 200Ω ≥ 9kΩ	8	GND	

VIDEO COLOR SUPERIMPOSER

■ GENERAL DESCRIPTION

NJM2247 A/B is the multi-functional color superimposer IC for video base band (Y. R-Y, B-Y). Various type of Y, R-Y, B-Y output signals can be made by the digital controlled signals. The signal control at the base band, made it possible on operation with less external parts, as well as for non adjustment on opertaion.

■ FEATURES

- 5V Single Power Supply
- 8 Types Color Superimposer
- Burst Flag Insert Function
- Y Inversion, C Inversion Function
- NTSC/PAL Matching
- Non Operational Adjustment
- Less External Parts
- Package Outline DMP20
- Bipolar Technology

■ RECOMMENDED INPUT CONDITIONS

- Y Signal 0.7 VP-P
- R-Y Signal 1.0 VP-P
- B-Y Signal 0.7 V_{P-P}
- Control Voltage
- Low Level
 - 0~0.25 V
- High Level
- 4.75~5 V

■ PIN CONFIGURATION

NJM2247AM/BM

■ PACKAGE OUTLINE

NJM2247AM/BM

PIN FUNCTION

1	Yout	11. GND	
2	V+	12. HBF Pulse	
3	R	13. BF	
4	G	14. NTSC/PAL Switching	

5. B 15. Clamp Pulse 6. B-Yin 16. Character Pulse 7. B-Y_{out} 17. Y_{in}

8 · R-Y_{in} 18. Inversion Set up Correction 9 · R-Y_{out} 19. Y Inversion

10. C Inversion20. BLK Pulse

■ BLOCK DIAGRAM

■ CONTROL PIN CHARACTERISTICS

(V+=5V)

DINI NO	DIN CHAOTIONS	THRESHOL	D LEVEL(V)	SINK/SOURCE O	CURRENT(μA)
PIN NO.	PIN FUNCTIONS	LOW	HIGH	0V	5V
3	R		10.6		
4	G	0.7	0.8	-500	500
5	В				
3			Salver of the sa		
4	(at C Inversion)	2.5	2.6	-100	100
5				All and the second	
10	C Inversion	3.5	4.5	-200	400
12	HBF Pulse	0.5	2.0	-2	1
14	NTSC/PAL	0.7	0.8	0	150
15	Clamp Pulse	2.5	2.8	-2	0
16	Character Pulse	0.5	0.9	-0.5	0
19	Y Inversion	0.4	0.8	-0.5	0
20	BLK Pulse	0.4	0.8	-0.5	0

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	8	V
Power Dissipation	PD	300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

 $(V^+=5V, Ta= 25^{\circ}C)$

PARAMETERS	SYMBOLS	CONTROL PINS	TOOM CONDITIONS	N ATD I	TVD	3.6 4 37	* ** ***
PARAMETERS	SIMBULS	34500005692	TEST CONDITIONS	MIN.	TYP.	MAX.	UNI
Operating Current	Icc	0000000000	NJM2247A NJM2247B	12 12	16.5 18.5	22 26	mA mA
Terminal Sink Current 1	I ₁₇	0000000000	$V_{17} = 2.5 \text{ V}$	0	_	10	μA
Terminal Sink Current 2	I ₆	0000000000	V ₆ =3.0 V	0	_	6	μA
Terminal Sink Current 3	I ₈	0000000000	V ₈ =3.0 V	0	_	6	μΑ
Terminal Voltage 1	V_1	0000005000		1.68	_	1.92	v
Terminal Voltage 2	V ₇	0000005000		2.18	_	2.42	v
Terminal Voltage 3	V ₉	0000005000	Maria de la companya	2.18	_	2.42	v
Terminal Voltage 4	V ₁₃	0000005000	I I I I I I I I I I I I I I I I I I I	0.23	_	0.37	v
Terminal Voltage 5 Y Non Inversion	V ₁₈	0 0 0 0 0 0 5 0 0 0	144	1.68	-	1.92	V
Voltage Gain	Gyp	0000000000	$V_{(Y_{in})}=1$ V_{P-P} , 1 MHz, SW=ON	-0.5	0	0.5	dB
Frequency Characteristics	GFYP	0000000000	$G_{YP(6 MHz)} - G_{YP(1 MHz)}$, $SW = 0$, $SW = 0N$	-1	0	1	dB
Differential Gain	DGP	0000000000	V _(Yin) =1 V _{P-P} , Staircase, SW=ON	-3	0	3	%
Differential Phase Y Inversion	DPP	0 0 0 0 0 0 0 0 0 0	$V_{(Yin)}=1 V_{P-P}$, Staircase, $SW=ON$	-3	0	3	deg
Voltage Gain	Gyn	0 0 0 0 0 0 0 0 5 5	$V_{(Yin)} = 0.6 V_{P-P}, 1 MHz, SW = ON$	-2.3	-1.3	0.3	dB
Frequency Characteristics	GFYN	0 0 0 0 0 0 0 0 5 5	GYN(6 MHz) - GYN(1 MHz), SW=ON	-2	-0.1	1	dB
Differential Gain	DGN	0 0 0 0 0 0 0 0 5 5	$V_{(Yin)} = 0.5 V_{P-P}$, Staircase, $SW = ON$	-8	-	8	%
Differential Phase	DP_P	0 0 0 0 0 0 0 0 5 5	$V_{(Yin)} = 0.5 V_{P-P}$, Staircase, $SW = ON$	-3	0	3	deg
Inversion Black Level	BL _N	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 5 & 5 \\ 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 \end{smallmatrix}$	① Voltage; a, $BL_N=a-b$ ① Voltage; b, $BL_N=a-b$	0.59	0.68	0.77	V
Inversion BLK R-Y	BLK	0 0 0 0 0 0 5 0 5 0	① Voltage; c, $BLK=c-b$	-0.1	0	0.1	V
Voltage Gain	G_{R-Y}	0 0 0 0 0 0 5 0 0 0	$V_{(R-Y_{in})}=1$ V_{P-P} , 1 MHz	-0.5	0	0.5	dB
Burst Level Non Inversion	BF_{RP}	$\begin{smallmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 5 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 5 & 0 & 5 & 0 & 0 & 0 \end{smallmatrix}$		135	150	165	mV
Burst Level Inversion	BFRN	0 0 0 5 5 0 5 0 0 0	9 Voltage; f, BF _{RN} =f−d	-165	-150	-135	mV
3-Y							
Voltage Gain	G_{B-Y}	0 0 0 0 0 0 5 0 0 0	$V_{(B-Y_{in})}=1$ V_{P-P} , 1 MHz	-0.5	0	0.5	dB
Burst Level Non Inversion	BF _{BP}	0 0 0 0 0 5 5 0 0 0	⑦ Voltage; g, BF_{BP}=g-h⑦ Voltage; h, BF_{BP}=g-h	135	150	165	mV
Burst Level Inversion	BFBN	0005555000	7) Voltage; i, BF _{BN} =g-i	- 165	-150	-135	mV

■ NJM2247A ELECTRICAL CHARACTERISTICS (CONTINUED) (V+=5V, Ta=25°C)

	SYMBOLS	CONTROL PINS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
PARAMETERS	JINDOLS	34501241561920	TEST CONDITIONS	IVIII V.	111.	WIFE.	UNITS
Character Output Level 1							D ray
Non Inversion					7	100	The second
White Y	Mpwy	5550005500	① Voltage; A, $M_{PWY} = A - V_1$	482	530	583	mV
R-Y	Mpwr	5550005500	9 Voltage; B, MpwR=B-V9	-14	0	14	mV
B-Y	Мрив	5550005500	7) Voltage; C, MPWB=C-V7	-12	0	12	mV
Yellow Y	Мрүү	5500005500	① Voltage; A, $M_{PYY} = A - V_1$	427	470	517	mV
R-Y	Mpyr	5500005500	9 Voltage; B, MPYR=B-V9	22	42	62	mV
В-У	Мрув	5500005500	7) Voltage; C, MPYB=C-V7	-206	-186	-166	mV
Cyan Y	МРСУ	0550005500	① Voltage; A, MPCY=A-V1	335	370	410	mV
R-Y	MPCR	0550005500	9 Voltage; B, MPCR=B-V9	-289	-266	-243	mV
B-Y	МРСВ	0550005500	7 Voltage; C, MPCB=C-V7	40	63	87	mV
Green Y	MPGY	0500005500	① Voltage; A, $M_{PGY} = A - V_1$	285	313	334	mV
R-Y	Mpgr	0500005500	9 Voltage; B, MpgR=B-V9	-243	-224	-205	mV
B-Y	Медв	0500005500	7) Voltage; C, MpgB=C-V7	-145	-123	-105	mV
Magenta Y	Мему	5050005500	① Voltage; A, MPMY=A-V1	198	218	240	mV
R-Y	MPMR	5050005500	9 Voltage; B, M _{PMR} =B-V ₉	205	224	243	mV
B-Y	Мемв	5050005500	7 Voltage; C, M _{PMB} =C-V ₇	105	123	145	mV
Red Y	MPRY	5000005500	① Voltage; A, MPRY=A-V1	145	160	176	mV
R-Y	MPRR	5000005500	9 Voltage; B, Mprr = B-V9	243	266	289	mV
В-У	MPRB	5000005500	⑦ Voltage; C, MPRB=C-V7	-87	-63	-40	mV
Blue Y	Мрву	0050005500	① Voltage; A, $M_{PBY} = A - V_1$	40	58	76	mV
R-Y	MPBR	0050005500	9 Voltage; B, MpBR=B-V9	-62	-42	-22	mV
В-У	Мрвв	0050005500	7) Voltage; C, M _{PBB} =C-V ₇	166	186	206	mV
Black Y	Мрру	0000005500	① Voltage; A, Mppy=A-V1	-20	0	20	mV
R-Y	MPPR	0000005500	9 Voltage; B, Mppr=B-V9	-14	0	14	mV
В-У	МРРВ	0000005500	7 Voltage; C, MppB=C-V7	-12	0	12	mV
Character Output Level 2						The state of the s	
Inversion						-	
White Y	Mnwy	5555005500	① Voltage; A, $M_{NWY} = A - V_1$	482	530	583	mV
R-Y	Mnwr	5555005500	9 Voltage; B, M _{NWR} =B−V ₉	-14	0	14	mV
B-Y	M _{NWB}	5555005500	⑦ Voltage; C, M _{NWB} =C−V ₇	-12	0	12	mV
Yellow Y	MNYY	5505005500	① Voltage; A, $M_{NYY} = A - V_1$	427	470	517	mV
R-Y	Mnyr	5505005500	9 Voltage; B, M _{NYR} =B−V ₉	-62	-42	-22	mV
В-У	MNYB	5505005500	⑦ Voltage; C, M _{NYB} =C-V ₇	166	186	206	mV
Cyan Y	Mncy	0555005500	① Voltage; A, $M_{NCY} = A - V_1$	335	370	410	mV
R-Y	Mncr	0555005500	9 Voltage; B, M _{NCR} =B-V ₉	243	266	289	mV
В-У	MNCB	0555005500	⑦ Voltage; C, M _{NCB} =C-V ₇	-87	-63	-40	mV
Green Y	Mngy	0505005500	① Voltage; A, $M_{NGY} = A - V_1$	285	313	334	mV
R-Y	Mngr	0505005500	9 Voltage; B, M _{NGR} =B−V ₉	205	224	243	mV
B-Y	MNGB	0505005500	7 Voltage; C, MNGB=C-V7	105	123	145	mV
Magenta Y	MNMY	5055005500	① Voltage; A, M _{NMY} =A-V ₁	198	218	240	mV
R-Y	Mnmr	5055005500	9 Voltage; B, M _{NMR} =B−V ₉	-243	-224	-205	mV
В-У	Мимв	5055005500	7 Voltage; C, M _{NMB} =C-V ₇	-145	-123	-105	mV
Red Y	MNRY	5005005500	① Voltage; A, $M_{NRY} = A - V_1$	145	160	176	mV
R-Y	MNRR	5005005500	9 Voltage; B, MNRR=B-V9	-289	-266	-243	mV
B-Y	MNRB	5005005500	⑦ Voltage; C, M _{NRB} =C−V ₇	40	63	87	mV
Blue Y	MNBY	0055005500	① Voltage; A, $M_{NBY} = A - V_1$	40	58	76	mV
R-Y	MNBR	0055005500	9 Voltage; B, MNBR=B-V9	22	42	62	mV
B-Y	M _{NBB}	0055005500	7 Voltage; C, MNBB=C-V7	-206	-186	-166	mV
Black Y	MNPY	0005005500	① Voltage; A, $M_{NPY} = A - V_1$	-20	0	20	mV
R-Y	Mnpr	0005005500	9 Voltage; B, MNPR=B-V9	-14	0	14	mV
B-Y	MNPB	0005005500	7 Voltage; C, MNPB=C-V7	-12	0	12	mV

■ NJM2247B ELECTRICAL CHARACTERISTICS (CONTINUED) (V+=5V, Ta=25°)

PARAMET Character Output	LKS	SYMBOLS		TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
1			34500005692		347			0.1120
	Level 1						- 1 6000	C mbalar
Non Inversion							107112	Aced Instit
White	Y	Mpwy	5550005500	① Voltage; A, $M_{PWY} = A - V_1$	630	700	770	m V
	R-Y	Mpwr	5 5 5 0 0 0 5 5 0 0	9 Voltage; B, MpwR=B-V9	-14	0	14	mV
	B-Y	Мрив	5 5 5 0 0 0 5 5 0 0	7 Voltage; C, MpwB=C-V7	-12	0	12	mV
Yellow	Y	Мрүү	5500005500	① Voltage; A, Mpyy=A-V1	472	525	578	mV
	R-Y	MPYR	5500005500	9 Voltage; B, M _{PYR} =B−V ₉	13	33	53	mV
	В-У	Мрув	5500005500	(7) Voltage; C, MpyB=C-V7	-165	-146	-127	mV
Cyan	Y	МРСЧ	0550005500	① Voltage; A, $M_{PCY} = A - V_1$	409	455	501	mV
	R-Y	MPCR	0550005500	9 Voltage; B, MPCR=B-V9	-232	-209	-186	mV
	B-Y	МРСВ	0550005500	7 Voltage; C, MPCB=C-V7	28	50	72	mV
Green	Y	MPGY	0500005500	① Voltage; A, $M_{PGY} = A - V_1$	252	280	308	mV
	R-Y	Mpgr	0500005500	9 Voltage; B, Mpgr=B-V9	-197	-176	-155	mV
	В-У	MPGB	0500005500	⑦ Voltage; C, MpgB=C-V7	-117	-97	-77	mV
Magenta	Y	Мрму	5050005500	① Voltage; A, MPMY = A - V1	378	420	462	mV
	R-Y	MPMR	5050005500	9 Voltage; B, M _{PMR} =B-V ₉	155	176	197	mV
	В-У	Мрмв	5050005500	⑦ Voltage; C, M _{PMB} =C−V ₇	77	97	117	mV
Red	Y	MPRY	5000005500	① Voltage; A, MPRY=A-V1	220	245	270	mV
	R-Y	MPRR	5000005500	⑨ Voltage; B, MPRR=B-V9	186	209	232	mV
	В-У	MPRB	5000005500	7) Voltage; C, MPRB=C-V7	-72	-50	-28	mV
Blue	Y	Мрву	0050005500	① Voltage; A, MpBy=A-V1	156	175	194	mV
	R-Y	MPBR	0050005500	9 Voltage; B, MpBR=B-V9	-53	-33	-13	mV
	В-У	Мрвв	0050005500	7 Voltage; C, MpBB=C-V7	127	146	165	mV
Black	Y	Меру	0000005500	① Voltage; A, $M_{PPY} = A - V_1$	-20	0	20	mV
	R-Y	Mppr	0000005500	9 Voltage; B, M _{PPR} =B-V ₉	-14	0	14	mV
	В-У	МРРВ	0000005500	(7) Voltage; C, MppB=C-V7	-12	0	12	mV
naracter Output	Level 2			0,1,1,1,1			and the state of	
Inversion								Normal vest
White	Y	Mnwy	5555005500	① Voltage; A, $M_{NWY} = A - V_1$	630	700	770	mV
	R-Y	Mnwr	5 5 5 5 0 0 5 5 0 0	9 Voltage; B, M _{NWR} =B-V ₉	-14	0	14	mV
	В-У	M _{NWB}	5 5 5 5 0 0 5 5 0 0	7 Voltage; C, M _{NWB} =C-V ₇	-12	0	12	mV
Yellow	Y	Mnyy	5505005500	① Voltage; A, $M_{NYY} = A - V_1$	472	525	578	mV
	R-Y	Mnyr	5505005500	9 Voltage; B, MNYR=B-V9	-53	-33	-13	mV
	В-У	MnyB	5 5 0 5 0 0 5 5 0 0	⑦ Voltage; C, M _{NYB} =C−V ₇	127	146	165	mV
Cyan	Y	Mncy	0555005500	① Voltage; A, MNCY=A-V1	409	455	501	mV
	R-Y	Mncr	0555005500	9 Voltage; B, M _{NCR} =B-V ₉	186	209	232	mV
	В-У	Мисв	0555005500	⑦ Voltage; C, M _{NCB} =C−V ₇	-72	-50	-28	mV
Green	Y	Mngy	0505005500	① Voltage; A, M _{NGY} =A-V ₁	252	280	308	mV
	R-Y	Mngr	0505005500	9 Voltage; B, M _{NGR} =B-V ₉	155	176	197	mV
	В-У	Mngb	0505005500	⑦ Voltage; C, M _{NGB} =C-V ₇	77	97	117	mV
Magenta	Y	Mnmy	5055005500	① Voltage; A, $M_{NMY} = A - V_1$	378	420	462	mV
Ym mi	R-Y	Mnmr	5055005500	9 Voltage; B, MNMR=B-V9	-197	-176	-155	mV
	B-Y	MNMB	5055005500	7 Voltage; C, MNMB=C-V7	-117	-97	-77	mV
Red	Y	MNRY	5005005500	① Voltage; A, $M_{NRY} = A - V_1$	220	245	270	mV
Vor Est	R-Y	MNRR	5005005500	9 Voltage; B, MNRR=B-V9	-232	-209	-186	mV
	B-Y	MNRB	5005005500	7 Voltage; C, MNRB=C-V7	28	50	72	mV
Blue	Y	MNBY	0 0 5 5 0 0 5 5 0 0	① Voltage; A, MNBY = A - V1	156	175	194	mV
Vm S3	R-Y	MNBR	0055005500	9 Voltage; B, MNBR=B-V9	130	33	53	m V
	B-Y	MNBB	0055005500	7 Voltage; C, MNBB=C-V7	-165	-146	-127	m V m V
Black	Y	MNPY	0005005500	① Voltage; A, MNPY=A-V1	-105	0	20	m V m V
Black	R-Y	MNPR	0005005500	9 Voltage; B, MNPR=B-V9	-14	0	14	m V
	B-Y	MNPB	0005005500	7 Voltage; C, MNPB=C-V7	-14 -12	0	12	m V m V

■ EQUIVALENT CIRCUIT

PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	Yout	V+ 1	6	B-Y _{in}	PULSE REF.
3	V ⁺	3	7	B-Yout	V+ 7
4	G	4	8	R-Yin	8 REF.
5	В	5	9	R-Yout	V+ 9

■ EQUIVALENT CIRCUIT

PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
10	C Inversion	5	15	Clamp Pulse	V+
11	GND		16	Character Pulse	16
12	HBF Pulse	12	17	Yin	V+ PULSE REF.
13	BF Level	13	18	Inversion Set up Correction	18
14	NTSC/PAL	14 V+	19 20	Y Inversion BLK	19 20

■ INFORMATIONS

Following four points are the outstanding function of the NJM2247 A/B. These functions are to go through three input (Y, R-Y, B-Y) signals control by ten control pins.

1. Color Superimpose

DC level of each equivalent colors shall be supplied to Y, R-Y and B-Y inputs.

2. Burst Flag Insertion

150 mV burst flag shall be added to R-Y, B-Y input signals. Burst flag is selected by the NTSC/PAL switch.

3. C Inversion

The color phase of the picture shall be inverted for one hundred and eighty degrees. The color phase of the imposed character shall not be altered. This function shall be proceeded when inverting the burst flag, and at the same time, the imposed character level shall be inverted too.

4. Y Inversion

It is the brightness level inversion. The imposed character color shall not be changed. This function shall be proceeded the switching Y signal output to the inverter side.

Fig. 1 Video Camera Application

APPLICATION NOTES

V+	5V	2
GND		1
Y	0.7 V _{P-P}	17
R-Y	1.0 V _{P-P}	8
B-Y	0.7 V _{P-P}	(6)
Y	0.7 V _{P-P}	(1)
R-Y	1.0 V _{P-P}	9
B-Y	0.7 V _{P-P}	7
	GND Y R-Y B-Y Y R-Y	GND Y 0.7 V _{P-P} R-Y 1.0 V _{P-P} B-Y 0.7 V _{P-P} Y 0.7 V _{P-P} R-Y 1.0 V _{P-P}

■ APPLICATION NOTES

I/O Explanation

• Control Pin Low=0V, HIGH=5V

R(3) . G(4) Superimposed color adjustment B(5) -

Clamp Pulse (13) Character Pulse (6) Y. R-Y. B-Y signal process pulse input HBF Pulse (12) BLK Pulse

C Inversion (10 Color difference, brightness inverting pin Y Inversion (19)

NTS/PAL Switch

• Adjusting Pin (Normally open → non adjustment)

(13) Burst flag insert level adjusting pin. Inversion set up correction (8 Y inversion signal level adjusting pin.

1 Input Signal

Superimposed color level shall be determined by the following standard signal level.

Y 0.7V_{P-P}

R-Y 1.0VP-P

B-Y 0.7V_{P-P}

The character output standard level on the specification shall be determined through calculation out of 75 % of superimposed color level.

(In order to avoide the clipping of the encoding signal, the character output level is determined to lower level)

• The character output level converting expression

The basic expression

 $E_R - E_Y = 0.70E_R - 0.59E_G - 0.11E_B$ $E_B - E_Y = -0.30E_R - 0.59E_G + 0.89E_B$ $E_{Y} = 0.30E_{R} + 0.59E_{G} + 0.11E_{R}$

From standard level and practical input level, each color signal level imposed in R-Y, B-Y and Y signals are as in the following.

 $V_{R-Y} = 0.75 \times 1[V_{P-P}] \times E_{R-Y}/1.4$ $=0.375E_R-0.316E_G-0.059E_B$ $V_{B-Y} = 0.75 \times 0.7 [V_{P-P}] \times E_{B-Y}/1.78$ $=-0.088E_R-0.174E_G+0.263E_B$ $V_Y = 0.158E_R + 0.310E_G + 0.058E_B$ (ER, EG, EB 12, LOW 0, HIGH 1)

2. Clamp Pulse

During the interval of blanking, input the pulse through clamp pulse pin @ the blanking level (0 level) of input signal (Y, R-Y, B-Y) is to be fixed at the bias point within the IC.

Note) The pulse width of clamp pulse shall be set more than A version 6 μ s and B version 3 μ s. (see figure 2)

Fig. 2 Clamp Pulse Width

3. Character Color Adjustment

Superimposed color adjustment of the character can be determined in eight different colors, by choosing R, G, B input levels.

(LOW OV, HIGH 5V)

R	G	В	COLOR
5	5	5	White
5	5	0	Yellow
0	5	5	Cyan
0	5	0	Green
5	0 .	5	Magenta
5	0	0	Red
0	0	5	blue
0	0	0	Black

Character Color Selecting Code

4. Character Insertion

Pulse informations from outside character generater shall be given input at the character pulse pin (6). During the period of pulse process, the selected color level shall be inserted into each Y, R-Y, B-Y.

5. Burst Flag Insertion

Inputting burst period pulse at the HBF pin ①, the burst flag (150mV) can be inserted in the B-Y, R-Y signals. At the same time, by putting NTSC/PAL switch ②, the burst flag can be altered to NTSC or PAL system.

1	NTSC/PAL SWITCH(4)		
	LOW 0 V (PAL)	HIGH 5 V (NTSC)	
R-Y Signal	+150 mV	non insertion	
B-Y Signal	-150 mV	-150 mV	

Burst Flag Inserting

Fig.3 Burst Flag Inserting Example

6. C Inversion

The color phase of the picture shall be inverted for one hundred and eighty degrees setting C inversion pin ①. It is applied that the reference signal (burst flag) shall be inverted into one hundred and eighty degrees at the time of de-coding.

Superimposed character color do not change at the picture inversion.

	C INVERSION PIN (1)		
will	LOW 0 V	HIGH 5 V	
Burst	Non Inversion	Inversion	

C Inversion Form

7. Y Inversion

The brightness of the picture shall be inverted by setting Y inversion pin ①. It is that Y signal shall be inverted by the inverter, and then blanking period signal shall be adjusted to the black level with blanking pulse.

Figure 4. Y Inversion Output Example

	Y INVERSION PIN (9)			
el de la contra	LOW 0 V	HIGH 5 V		
Y output	Non inversion	Inversion		

Y Inversion Form

8. Adjusting pin

(1) BF Level Pin 13

It is the burst flag minor adjusting pin. The burst level shall be adjusted at the open voltage, 0.3V level adjustment. Therefore, the most recommended on operation with the open condition, as it has been controlled at 135 to 165 mV (burst level) on specification.

(2) Inversion Set Up Correction Pin (8)

It is the minor adjusting pin of Y inversion signal level. The inverting black level shall be adjusted at the open voltage, 1.8 V level adjustment. Therefore, the most recommended on operation with the open condition, as it has been controlled with 0.59 to 0.77 V (inverting black level) on specification.

Pulse Timing
 The pulse input timing should be proceeded as in the following.

■ TYPICAL APPLICATION

3-INPUT VIDEO SUPER IMPOSER

■ GENERAL DESCRIPTION

The NJM2248 is 3-input video switch for video and audio signal. Two input terminals have sink-chip clamp function and so it is applied to fixed DC level of video sighal. The other input terminal is transistor base input for luminant signal and so luminant level may be easily fixed by outer circuit. Its operating supply voltage range is 4.75 to 13V and bandwidth is 10MHz. Cross-talk is 70dB (at 4.43MHz).

■ FEATURES

- Operating Voltage
- (+4.75V~+13V)
- 3 Input-1 Output
- Internal Clamp Function (V_{IN}1, V_{IN}2)
- Internal Luminance Signal Control Function (VIN3)
- Cross-talk 70dB(at 4.43MHz)
- Wide Frequency Range
- Package Outline

DIP8, DMP8, SIP8, (SSOP8)

Bipolar Technology

- Sint

NJM2248D

■ PACKAGE OUTLINE

NJM2248M

NJM2248L

■ APPLICATION

VCR, Video Camera, AV-TV, Video Disc Player

■ PIN CONFIGURATION

PIN FUNCTION 1. V_{IN} 1 2. SW 1 3. V_{IN} 2 4. SW 2 5. V_{IN} 3 6. V⁺ 7. Voott 8. GND

■ BLOCK DIAGRAM

■ INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SW 2	OUTPUT SIGNAL
L	V _{IN} 1
L	V _{IN} 2
Н	V _{IN} 3
	L L H

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	15	V	
Power Dissipation	PD	(DIP8) 500	mW	
		(DMP8) 300 (SSOP8) 250 (SIP8) 800	mW mW	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V+		4.75	_	13.0	v
Operating Current	Icc	S1=S2=S3=S4=S5=1	_	10.5	14.0	mA
Voltage Gain	Gv	$V_I = 2.5 \dot{V}_{P-P}, 100 \text{kHz}, V_O/V_I$	-0.5		+0.5	dB
Frequency Characteristics	Gf	$V_I = 2.0V_{P-P}, V_O(10MHz)/V_O(100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I =2V _{P-P} , Staircase Signal	-	0	_	%
Differential Phase	DP	V _I =2V _{P-P} , Staircase Signal	-	0	_	deg
Cross-talk	CT	$V_I = 2.0V_{P-P}$, 4.43MHz, V_O/V_I (note 1)	_	-70	_	dB
Switch Change Voltage	V _{CH}	All inside SW: ON	2.4	-	_	V
	V _{CL}	All inside SW: OFF	-	_	0.8	V
Output Impedance	Ro		-	10	_	Ω

(Note 1): Tested on all combination except three below.

a) S1=2, S4=S5=1 b) S2=2, S4=2, S5=1 C) S3=2, S5=2

(Note 2): Unless specified, tested with VBIAS=3V.

(Note 3): If it is not shown about switch condition, it is tested on three condtion below.

a) S1=2, S2=S3=S4=S5=1 b) S1=1, S2=2, S3=1, S4=2, S5=1 c) S1=S2=1, S3=2, S4=1 or 2, S5=2

(Note 4): Clamp voltage of Vin1 and Vin2 is about 2/5 of supply voltage (about 2.0V if $V^+=5V$).

■ SPECIAL CARES TO BE TAKEN WHEN APPLICATION

■ TEST CIRCUIT

■ TERMINAL FUNCTION

	11970	The state of the s	THE STATE OF	BANKS!	263/3/C-05/CH
PIN NO.	PIN SYMBOL	EQUIVALENT CIRCUIT	PIN NO.	PIN SYMBOL	EQUIVALENT CIRCUIT
1	V _{IN} 1	V+ V _{IN} 1 ≥ 200Ω 200Ω	5	V _{IN} 3	V+ V _{IN} 3
		Kiw skernekopiss		ALBERTAL .	RETURNATION OF PRINCIPLE
2	SW 1	SW1 2kΩ 13kΩ 1.1mA 39kΩ	ENGLES OF THE STATE OF THE STAT	V+	communicated to the Voltage parallel Communication of the American Security of the American Secu
3	V _{IN} 2	V+ V _{1N} 2 ₹200Ω 200Ω	1810 (e	Vout	200Ω V _{OUT} 5 mA
4	SW 2	SW2 2kΩ 313kΩ 200Ω 39kΩ	8	GND	79.J

3-INPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2249 is 3-input video switch for video and audio signal. One input terminals has sink-chip clamp function and so it is applied to fixed DC level of video signal. Two other input terminals are transistor base input for luminant signal and so luminant level may be easily fixed by outer circuit. Its operating supply voltage range is 4.75 to 13V and bandwidth is 10MHz. Cross-talk is 70dB (at 4.43MHz).

■ FEATURES

- Operating Voltage (V+=+4.75V~+13V)
- 3 Input-1 Output
- Internal Clamp Function (V_{IN}1)
- Internal Luminance Signal Control Function (V_{IN}2, V_{IN}3)
- Cross-talk 70dB(at 4.43MHz)
- Wide Frequency Range
- Package Outline DIP8, DMP8, SIP8, SSOP8
- Bipolar Technology

= APPLICATION

VCR, Video Camera, AV-TV, Video Disc Player

PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM2249D

NJM2249M

NJM2249V

NJM2249L

PIN FUNCTION

1. VIN 1 2. SW 1

3. V_{IN} 2 4. SW 2

5 . V_{IN} 3 6 . V⁺

7. Vout

8. GND

■ BLOCK DIAGRAM

■ INPUT CONTROL SIGNAL-OUTPUT SIGNAL

SWI	SW 2	OUTPUT SIGNAL
L	L	V _{IN} 1
Н	L	V _{IN} 2
L/H	Н	V _{IN} 3

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	15	V
Power Dissipation	PD	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 250	mW
		(SIP8) 800	mW
Operating Temperature Range	Topr	-20~+75	℃
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V+		4.75	May - I h	13.0	V
Operating Current	Icc	S1=S2=S3=S4=S5=1	_	10.5	13.0	mA
Voltage Gain	G _v	$V_1 = 2.5 V_{P-P}$, 100kHz, V_0/V_1	-0.5	10-77	+0.5	dB
Fequency Characteristics	Gf	$V_1 = 2.0 V_{P-P}, V_O(10 MHz) / V_O(100 kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V ₁ =2V _{P-P} , Staircase Signal	_	0	_	%
Differential Phase	DP	V _I =2V _{P-P} , Staircase Signal	_	0	_	deg
Cross-talk	CT	$V_1 = 2.0V_{P-P}$, 4.43MHz, V_0/V_1 (note 1)	M - ALP 1	-70	M G O :	dB
Switch Change Voltage	V _{CH}	All inside SW: ON	2.4	_	_	V
	VCL	All inside SW: OFF		_	0.8	V
Output Impedance	Ro		_0	10	_	Ω

(Note 1): Tested on all combination except three below.

a) S1=2, S4=S5=1 b) S2=2, S4=2, S5=1 c) S3=2, S5=2

(Note2): Unless specified, tested with V_{BIAS}1=V_{BIAS}2=3V.

(Note 3): If it is not shown about switch condition, it is tested on three condition below.

a) S1=2, S2=S3=S4=S5=1 b) S1=1, S2=2, S3=1, S4=2, S5=1 c) S1=S2=1, S3=2, S4=1 or 2.55=2

(Note 4): $V_{IN}1$ clamp voltage is about 2/5 of supply voltage (about 2.0V if $V^+=5V$).

■ TEST CIRCUIT

■ SPECIAL CARES TO BE TAKEN WHEN APPLICATION

■ TERMINAL FUNCTION

PIN NO.	PIN SYMBOL	EQUIVALENT CIRCUIT	PIN NO.	PIN SYMBOL	EQUIVALENT CIRCUIT
1	Vin 1	V+ V _{IN} 1 ≥ 200Ω 200Ω	5	Vin 3	V+ V _{IN} 3 200Ω
2	SW1	SW1 2kΩ 13kΩ 1.1mA 9kΩ	6	V+	Schage Cross Solved Broke Taknology VCR (Correspond to S-VMS) Leave Disc. PRIM FUNCTION BINNO. MUNICIPON 2 SW1 2 CRID (V Lea) 2 CRID (V Lea)
3	Vin 2	V+ V _{IN} 2 200Ω	7	Vout	200Ω V _{OUT}
V 69	100	13		49.1	timas sailay ying
4	SW 2	SW2 2kΩ 13kΩ 1.1mA 9 9kΩ	8	GND	Sgeat Journ Androde Eurep Signal Gur ser Ampliesche Beitge Signal Jean L. Ampliesche Beitge Signal Couran Amplitude Beitge Signal Couran Amplitudes Beitge sign Courant Voltage Range

ON SCREEN DISPLAY MIX IC

■ GENERAL DESCRIPTION

NJM2252 is the IC that has been developed for VCR application, which has the super-impose function as well as the function to drive the S-VHS, S-output pin by putting the external transistor.

NJM2252 has Y signal pin and C singal pin of each independent circuit in it. Y signal line is selectable of 4 inputs, and C signal line is selectable of 3 inputs, each by the inside switches.

Further more, it has function to adjust the output level of S-VHS, Spin.

■ PACKAGE OUTLINE

NJM2252L

■ FEATURES

- 9V spec, (Recommended operational voltage range 8.6~9.4V)
- Voltage gain can be controlled by the external resistor (Typ. $\pm 3dB$)
- Wide band (Y signal line 10MHz, C signal line 8MHz)
- Output sag. correction circuit incorporated (Y signal line)
- Video switch incorporated (Y signal line 4 input, C signal line 3 input)
- Clamp circuit (Y signal line) Bias circuit (C signal line) incorporated
- Package Outline SDIP20
- Bipolar Technology

APPLICATION

- VCR (Correspond to S-VHS)
- Laser Disc

■ PIN FUNCTION

PIN NO.	FUNCTION	PIN NO.	FUNCTION
1	SW1	12	Y Line Sag Correction Pin
2	GND (Y Line)	13	GND (C Line)
3	Y Line Input Pin	14	NC
4	V+ (L Line)	15	C Line Output Pin
5	Y Line Input Pin 3	16	c Line Gain Control
6	Clamp SW	17	c Line Input Pin 3
7	Y Line Input Pin	18	SW 2
8	SW 3	19	C Line Input Pin
9	Y Line Input Pin 4	20	NC
10	Y Line Gain Control	21	V+ (C Line)
11	Y Line Output Pin	22	C Line Input Pin 1

■ RECOMMENDED OPERATING CONDITION

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
Supply Voltage Range	V+		8.6	9.0	9.4	V
Y Signal Input Amlitude Range		YIN		_	3.0	V _{P-P}
Y Signal Output Amplitude Range		Yout		_	3.0	V _{P-P}
C Signal Input Amplitude Range		Cin		_	2.0	V _{P-P}
C Signal Output Amplitude Range		Cout		_	2.5	V _{P-P}
Gain Control Voltage Range	1	TP10, TP21 Input Voltage	2.0	-	3.0	V

■ BLOCK DIAGRAM

NJM2252L

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	12	V
Power Dissipation	PD	700	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V⁺: 9V, V_C: 5V, TP10, TP21: 2.5V, Ta: 25℃)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}	4pin, 21pin Sink Current	25	37	45	mA
Y Signal Line						
Input Open Voltage	Vif	TP1, TP2: Measurement	4.0	4.1	4.2	V
Output Open Voltage	Voy		3.60	3.95	4.30	V
Output Offset Voltage 1	Vofy	TP1, 2,2: 5V, TP5:Measurement	-20		20	mV
Output Offset Voltage 2	Vofy	TP1,4: 5V, TP5: Measurement	-10	20	50	mV
Clamp Sink Current	Ii	V _C : 5V, SW4: 2 Measurement	0.8	1.0	1.2	mA
Voltage Gain	Gvy1	Y _{IN} : 1MHz CW wave, Y _{OUT} : 2.0V _{P-P}	-0.5	0.5	1.5	dB
Voltage Gain Variable Width	Gvy	Y _{IN} : 1MHz CW Wave, Y _{OUT} : 2.0V _{P-P}	-2.0	-	2.0	dB
Frequency Gain	Gfy	10MHz/1MHz	-1.0	_	1.0	dB
Sag Gain	Gys	TP16: 100kHz,50mV _{P-P} V _{OUT} : Measurement	15	20	(T)	dB
Differential Gain	DG	YOUT: 2.0V _{P-P} Standard Stairecase Signal		1.0	3.0	%
Differential Phase	DP	YOUT: 2.0V _{P-P} Standard Stairecase Signal	_	1.0	-	deg
Crosstalk	CTy	Y _{IN} : 4.43MHz, 2.0V _{P-P} CW Wave Input	_	-70		dB
Output Impedance	Roy		-	6	_	Ω
C Signal Line						
Input Open Voltage	Vic	TP6, TP7: Measurement	3.9	4.1	4.3	v
Output Open Voltage	Voc	TP21: 2.5V	5.05	5.35	5.65	V
Output Offset Voltage	Vofc	TP6, 7, 8: 5.0V, TP9: Measurement	-50	_	50	mV
Voltage Gain	Gvcl	CIN: 1MHz CW Wave, COUT: 2VP-P	6.0	7.0	8.0	dB
Voltage Gain Variable Width	Gvc	CIN: 1MHz CW Wave, COUT: 2VP-P	4.5	_	8.5	dB
Frequency Gain	Gfc	8MHz/1MHz	-1.0	1 —	1.0	dB
Crosstalk	Ctc	C _{IN} : 4.43MHz, 1.0V _{P-P} CW Wave Input	_	-70	_	dB
Input Impedance	Ric	19pin, 22pin Input Impedance	11	15	19	Ω
Output Impedance	Roc		_	6	_	Ω
Common Line						
Control On Voltage	Vc1	Inner Switch on Level Guarantee	2.5	_	_	V
Control Off Voltage	Vc2	Inner Switch Off Level Guarantee	_	_	1.5	V
Key Clamp Control Voltage	Vc3	1 Pin Threshold Voltage	1.5	2.0	2.5	V

APPLICATION CIRCUIT

■ TEST CIRCUIT

■ VIDEO SWITCHING MOTION

SW1	SW2	SW3	Y LINE OUTPUT	C LINE OUTPUT	
L	L	L	Yinl	Cin1	
Н	L	L	Yin2	Cin2	
*	Н	L	Yin3	Cin3	
L	L			Cin1	
Н	L	Н	Yin4	Cin2	
* H				Cin3	

*:H or L

■ TERMINAL FUNCTION

PIN	PIN NAME	SYMBOL	FUNCTION	
1	SW1	SW1	Video switch channel change over input. The L level is identified to be input when being left on at open state.	
2	GND (Y Line)	GND Y		
3	Y Line Input Pin	Yin1	Video signal input pin (Y line) Key Clamp circuit internalized. The clamp function goes on when the key clamp is on H timing. Kyed clamp at L position indicates the normal sink chip clamp on operatior. The clamp voltage is about 4.1V.	
4	V _{CC} (Y Line)	ti ya habimb	Y line alone can not be used when C line supply voltage is off state.	
5	Y Line Input Pin 3	Yin 3	Video signal input pin (Y line) The IC does not have bias or clamp function circuit in it, and its easy to have the external circuit, of the brightness level setting. It is most suitable for superinpose input.	
6	Clamp Switch	Yin3	In case of L level, the sink chip clamp, Yin1, Yin2 on operation. In case of H level, Yin1, Yin2 become the clamp voltage compulsory. If the kye clamp function is not used, apply it with the L level on fixed condition.	
7	Y Line Input Pin 2	Yin2	Video signal input pin (Y line) Key clamp circuit internalized. The clamp function goes on when the key clamp is on H timing. Keyed clamp at L position indicates the normal sink chip clamp on operatior. The clamp voltage is about 4.1V.	
8	SW3	SW3	Video switch channel change over input. The L level is identified to be input when being left on open state.	
9	Y Line Input Pin 4	Yin4	Video signal input pin (Y line) The IC does not have bias or clamp function circuit in it, and its easy to have the external circuit of the brightness level setting. It is most suitable for superimpose input.	
10	Y Line Gain Control	GAIN Y	Y Line voltage gain can be adjusted when input of 2.0~3.0V. 2.0V input, at gain min. (-3.0dB) 3.0V input at gin max. (+3.0dB) In order to set the gain within the IC, the gain control circuit compares the voltage (Typ 2.5V), the one which was decided by the resistance the voltage (Typ 2.5V), the one which was decided by the resistance division, and the gain control pin voltage, and then it is advisable to apply voltage on the gain control pin after the process of the resistance division of the supply voltage.	
11	Y Line Output Pin	Yout	Its the Y line video signal output pin. It can drive 75Ω line when connecting 2 & 2SC1815 directly. No sag output can be performed by applying Y line sag correction at 12 pin.	
12	Y Line Sag Correcting Pin	Y SAGU	In case when applying as 75Ω driver by connecting 2SC945 to Yout, the sag can be generated by output coupling capacitance and load resistance. The output included the sag, when once again, being input at sag correction pin through coupling capacitance, and it can be done to take out the output from Y out in which that there is no sag at all. In case when the sag correction function is not required on operation, it is advisable to use it by connecting 11 pin directly.	

■ TERMINAL FUNCTION

PIN	PIN NAME	SYMBOL	FUNCTION
13	GND (C Line)	GND C	agrada financia di stata agrada VIIII III III III III III III III III
14	NC		
15	CLine Output Pin	Cout	It's the C line video signal output pin. It can drive 75Ω line when connecting 2SC945 & 2SC1815 directly.
16	C line Output Pin	GAIN C	C line voltage gain can be adjusted when input 2.0~3.0V. 2.0V input at gain min. (+3.0dB) 3.0V input at gain max. (+9.0dB) In order to set the gain within the IC, the gain control circuit compares the voltage (Typ 2.5V), the one which was decided by the resistance division, and the gain control pin voltage, and then it is advisable to apply voltage on the gain control pin, after the process of resistance division of the supply voltage.
17	C Line Input Pin 3	Cin3	Video signal input pin (C line) The IC does not have bias or clamp function circuit in it, and it's easy to set the brightness level with the external circuit. It is most suitable for superimpose input.
18	SW2	SW2	The L level is identified to be input when being left on open state.
19	C Line Input Pin 2	Cin2	Video signal input pin (C line) The bias voltage is about 4.1V, and the input impedance is about $15K\Omega$
20	NC manufacture of the second	and self-read	Construction of the speeds with
21	V+ (C Line)	V+ C	C line alone can not be used while the Y line supply voltage is off state.
22	C Line Input Pin 1	Cin1 .	C line Input Pin 1. Video signal input pin (C line) Bias voltage is about 4.1V, input impedance is about 15ΚΩ

■ TEST CONDITION

(V⁺: 9V, V_C: 5V, TP10, TP21: 2.5V, Ta: 25℃)

PARAMETER	SYMBOL	1	2	3	4	5	6	7	8	9	0	1	TEST CONDITION
Supply Current	I _{CC}	L	L	L	L	L	L	L	L	L	L	L	4pin, 21pin Total Current
Y Signal Line	VOL SHE	IA		Y			1						
Input Open Voltage	Viy	L H	L L	L L	L L	L L	L L	L L	L L	L L	L	L	Type1: Measurement TP2: Measurement
Output Open Voltage	Voy	L	L	L	L	L	L	L	L	L	L	L	TP5: Measurement
Output Offset Voltage 1	Vofy	L H L	L L H	L L L	L L L	L L L	L L L	L L L	L L L	L L L	L L L	L	TP1, 2, 3: 5V TP5: Measurement→V1 V2→ V3→ Vofy=V2−V1 Vofy=V=−V2 Vofy=V3−V2 Vofy=V3−V2
Output offset Voltage 2	Vofy	L	L	L H	L	L	L	L L	L	L	L	L	tp1, 4: 5v tp5: MeasurementV1→ V4→ Vofy=V4−V1 Judgment
Clamp Sink Current	Ii	L	L	H	L L	L L	L	L	L L	L L	L	L	③ pin Sink Current ⑤ pin Sink Current
Voltage Gain Width	Gvyl	L H L	L H	L L H	L L L	H L L	L H L	L H L	L L H	L L L	L L L	L L L	At left four switch conditions Tp10: 2.5V voltage gain→Gv1 TP10: 2.0V voltage gain→Gv2 TP10: 3.0V voltage gain→Gv3 Gvy=GV2-Gv1 Gvy=Gv3-Gv1 Judgment
Frequency Gain	Gfy	L H L	139	L L L	L L L	H L L	L H L	L L H	1	L LI L	L L L	L L L	At left four switch Y _{IN} 1MHz voltage gain→Gv4 Y _{IN} 10MHz voltage gain→Gv5 Gfy=gV5-Gv4 Judgment
Sag Gain	Gys	L	L	L	L	L	L	L	L	L	L	L	SW13: OFF TP16: 100kHz, 50mV _{P-P} inputY _{OUT} :Measure ment Y _{OUT} /50mV _{PP} Judgment
Differential Gain	DG	L H L		L L L	L L L	H L L	L H L	L L H L	L L L	L L L	L L L	L	Y _{out} : 2.0v _{P-P} Standard Staircase Signal Judgment at left four switch conditions
Differential Phase	DP	L H L	L L H	L L H	LH L L	IL L L	L H L	L L H L	L L H	L L L	L L L	L	Y _{OUT} : 2.0V _{P-P} Standard Staircase Signal Judgment at left four switch conditions

PARAMETER	SYMBOL	12245(7996)											TEST CONDITION
		1		3	4	5	6	7	8	9	0	1	NOTE IN COLUMN TO THE PARTY OF
Crostalk	СТу	Н		L		Н	L	L	L	L	L		Judgment by left 12 switch conditions
		L	Н			Н	L	L	L	L	L		Y _{IN} : 4.43MHz, 2.0V _{P-P} CW wave input
		L	Н	L		Н		L	L	L	L	L	Y _{OUT} Measurement
	ETHINGS	L	L	L	L	L	Н	L	L	L	L	L	Yout/yIN Judgment
		Н		L	-	Н			L	L	L	L	
	Charles College	L							L	L			Fig. 3. 1 god august
	at ve	L		L	L	L		Н		L			1 3 3 3 gard I grad with a gradual of the second of the se
		Н		L	L			Н				10	El and
		L						Н					1 -132 -1
		L	L	L		L	L	19	Н			L	
	100-	Н	L	L				L					
		L	Н	L	L	L	L	L	Н	L	L	L	
Output Impedance	Roy	L	L	L	L	Н	L	L	L	L	L	L	114.2
C Signal Line													
Input Open Voltage	Vic	L	L	L	L	L	L	L	L	L	L	L	TP6: Measurement
	1000 1000	Н	L	L	L	L	L	_	L		-		TP7: Measurement
Output Open Voltage	Voc	L	L	L	-	-	L		L		-		TP9: Measurement
Output Offset Voltage	Vofc	L	L	L	L L	L L	L L	L L	L L	L	100	13.7	TP6, 7,8: 5.0V, TP9: Measurement \rightarrow V1 \rightarrow V2
	partie V	L		L	L	L	_	L	L	L		L	→V3
	galler T		No.	Ħ									Vofc=V2-V1
Voltage Gain	Gvcl	L	L	L	L	L	L	L	1	Ц	L	1	Vofc=V3-V1 GIN: 1MHz wave, Cout: 2.0V _{P-P}
Voltage Gain	Gvci	H	L	L	L	L	L	L	L			L	
		L	Н	L	L	L	L	L	L	L	L	Н	Judgment by left three conditions
Voltage Gain Variable Width	Gvc	L	L	L	L	L	L	L			L		TP21: 2.5V boltage gain→Vv1
	OV ATLA	H	L	L	L	L L	L	L L	L			L	TP21: 2.0V voltage gain TP21: 2.0V voltage gain
	2-12	-	**	_	_	_	_	-	_		-		At left three switch conditions
	APT T	0					H			μĺ			Gvc=Gv2-Gv1 } Judgment
E-courage Coin	Gfc	L	L	L	L	L	L	L	L	LI	L	L	At left three switch conditions
Frequency Gain	Oic	H	L	L	L	L	L	L	L	100		L	G _{IN} : 1MHz voltage gain→Gv4
	Date of the	L	Н	L			L	L	L		L	Н	
anouthness of the same													Gfc=Gv5-Gv4 Judgment
Crosstalk	CTc	H		L	L	L			L L				C _{IN} : 4.43MHz, 1.0V~ _{P-P} CW wave input C _{OUT} : Measurement
		L	L	L	L	L	L	L	L	L		L	
	uis udi	L	Н				L	L	L	L		L	Data III 951
	Di Sali sa	L	L	L	L	L L	L	L	L	L		H	1-30
Input Impedance	Ric	L		L	L	L	L				L	-	TP19: 3.0V applied voltage, TP6: voltage measurement
													TP19: 5.0V applied voltage, TP6: voltage measurement
		1.	,	,		1				,		,	Ric=15[k Ω]*(2-V19/(2-(V2-V1)) Judgment
		H	L	L	L	L	L	L	L	L	ILI	L	TP22: 3.0V applied voltage, TP7: voltage measurement-

Output Impedance

LLLLLLLHLL

Roc

TP22: 5.0V applied voltage, TP7: voltage measurement→

Ric=15[$k\Omega$]*(V2-V1)/(2-(V-V1)) Judgment

CHROMA SIGNAL HUE TINT CONTROLLER

■ GENERAL DESCRIPTION

NJM2255 is a Chroma signal Hue, Tint controller IC, to be used for VCR, LCD & AV equipments.

In play back operation of video signals of VCRs, Hue and Tint of Chroma signal can be adjusted independently and continuousely by the external DC voltage. NJM2255 internalizes the variable capacitor in it, so that it can be operated with minimal external components.

■ PACKAGE OUTLINE

NJM2255D

■ FEATURES

- Operating Voltage (+4.7V~+5.3V)
- Internalizing variable capacitor
- Internalizing changeable Gain Amplifier
- Hue and Tint of Chroma signals can be adjusted continuousely by DC voltage (0V-5V)
- Internalizing Dead Band Circuit
- Package Outline DIP8
- Bipolar Technology

APPLICATIONS

• VCR, LCD, AV equipments

■ BLOCK DIAGRAM

■ CONTROL INPUT - OUTPUT SIGNAL

SW1	output Signal
Н	Color Main
L	Color Burst

■ TEST CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	7	V
Power Dissipation	PD	500	mW
Operating Temperature Range	Topr	−20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25℃)

PARAMETER	CVMDOI	SWITCH				THE TAXABLE PARTY OF THE PARTY	MIN.	TYP.	MAX.	UNIT
PARAMETER	SYMBOL	S1 S2 S3 S4		S4	TEST CONDITION					
Operating Current	Icc	2	2	2	2	No signal	-	22.0	28.0	mA
Voltage Gain 1	GC	2	2	3	2	V _{OUT} /V _{In}	-1.0	0	1.0	dB
Voltage Gain 2	GB	2	2	1	2	V _{OUT} /V _{IN}	-1.0	0	1.0	dB
Hue Offset	TI	2	2		2	S3=1/3 V _{OUT} Phase difference	-3.5	0	3.5	deg
Hue Changeable width 1	T2	2	3		2	S3=1/3V _{OUT} Phase difference	20	22	-	deg
Hue Changeable width 2	T3	2	1		2	S3=1/3 V _{OUT} Phase difference	_	-22	-20	deg
Tint Changeable width 1	GC	2	2		2	Gain (S3=3)-Gain (S3=1)	-0.6	0	0.6	dB
Tint Changeable width 2	GB	2	2		3	Gain (S3=3)-Gain (S3=1)	4.5	5.5	_	dB
Tint Changeable width 3	TI	2	2		1	Gain (S3=3)-Gain (S3=1)	-	_	-20	dB
Hue Offset Adjustment width 1	OSTH	3	2		2	S3=1/3 V _{OUT}	_		-3.5	deg
Hue Offset Adjustment width 2	OSTL	1	2		2	S3=1/3 V _{OUT}	3.5	_	_	deg
BGP Threashold Voltage 1	VTHH	2	2	3	2	Switch on level	2.2	_	5.0	V
BGP Threashold Voltage 2	VTHL	2	2	3	2	Switch off level	0	00	0.8	V
Secondary Distortion 1	HC	2	2	3	2	3.58MHz, 700mV _{P-P} Sine Wave	-	-37	-33	dB
Secondary Distortion 2	НВ	2	2	1	2	3.58MHz, 700mV _{P-P} Sine Wave	-	-37	-33	dB

Note Unless otherwise specified, input signal is 3.58MHz and 300mV_{P-P} sine wave.

■ TYPICAL CHARACTERISTICS

TIN® pin Voltage (V)

VIDEO COLOR SUPERIMPOSER

■ GENERAL DESCRIPTION

NJM2256 is the multi-functional color super-imposer IC for video base band (Y, R-Y, B-Y), Various type of Y, R-Y, B-Y output signals can be made by the digital controlled signals.

The signal control at the base band, made it possible on operation with less external parts, as well as for non adjustment on operation.

NJM2256 can be operated much higher switching speed comparing to NJM2247.

■ FEATURES

- 5 V Single Power Supply
- 8 Types Color Super-imposer
- Burst Flag Insert Function
- Y Inversion, C Inversion Function
- NTSC/PAL Matching
- Non Operational Adjustment
- Less External Parts
- Higher switching speed can be made comparing to NJM2247
- Package Outline DMP20
- Bipolar Technology

■ PACKAGE OUTLINE

NJM2256M

■ RECOMMENDED INPUT CONDITIONS

0	Y Signal	0.7V _{P-P}
	R-Y Signal	1.0V _{P-P}
	B-Y Signal	0.7 ^V P-P
	Control Voltage	

Low Level 0~0.25V
 High Level 4.75~5V

■ PIN CONFIGURATION

		Pin Function	
1 0	20	1. Yout	11. GND
2	19	2. V+	12. HBF Pulse
3	18	3. R	13. BF Pulse
4	17	4. G	14. NTSC/PAL Switching
5	16	5. B	15. Clamp Pulse
7	15	6. B-Yin	16. Character Pulse
8	14	7. B-Yout	17. Yin
9	12	8. R-Yin	18. Inversion Set Up Correction
10	11	9. R-Yout	19. Y Inversion
N.IM2256M	1	10. C Inversion	20. BLK Pulse

■ CONTROL PIN CHARACTERISTICS

(V+=5V)

PIN NO.	PIN FUNCTIONS	THRESHOL	LD LEVEL(V)	SINK/SOURCE CURRENT(μA)		
FIN NO.	PIN FUNCTIONS	LOW	HIGH	0V	5V	
3	R		empo por universo, n. o empo tamen no tendencia	Commission of the commission o		
4	G	0.7	0.8	-500	500	
5	В					
3	attanta.					
4	(at C Inversion)	2.5	2.6	-100	100	
5						
10	C Inversion	3.5	4.5	-200	400	
12	HBF Pulse	0.5	2.0	-2	or tology and the	
14	NTSC/PAL	0.7	0.8	0	150	
15	Clamp Pulse	2.5	2.8	-2	0	
16	Character Pulse	0.5	0.9	-0.5	0	
19	Y Inversion	0.4	0.8	-0.5	0	
20	BLK Pulse	0.4	0.8	-0.5	0	

■ BLOCK DIAGRAM

■ INFORMATIONS

Following four points are the outstanding function of the NJM2256. These functions are to go through three input (Y, R-Y, B-Y) signals control by ten control pins.

1. Color Superimpose

DC level of each equivalent colors shall be supplied to Y, R-Y and B-Y inputs.

2. Burst Flag Insertion

150 mV burst flag shall be added to R-Y, B-Y input signals. Burst flag is selected by the NTSC/PAL switch.

3. C Inversion

The color phase of the picture shall be inverted for one hundred and eighty degrees. The color phase of the imposed character shall not be altered. This function shall be proceeded when inverting the burst flag, and at the same time, the imposed character level shall be inverted too.

4. Y Inversion

It is the brightness level inversion. The imposed character color shall not be changed. This function shall be proceeded the switching Y signal output to the inverter side.

Fig. 1 Video Camera Application

EQUIVALENT CIRCUIT

PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
te i para	Yout	V+ 1	6	B-Y _{in}	6 REF.
2	V+			-	- 1 V+
3	R	3 V	7	B-Y _{out}	7
4	G	4 - V-	8	R-Yin	8 REF.
5	В	5 V.	9	R-Yout	V+ 9

EQUIVALENT CIRCUIT

PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
10	C Inversion	5	15	Clamp Pulse	V+
11	GND		16	Character Pulse	16
12	HBF Pulse	12	17	Yin	17 V+
13	BF Level	13	18	Inversion Set up Correction	18
14		14 V+	19 20	Y Inversion BLK	19 20

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	8	V
Power Dissipation	P _D	350	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	CONTROL PIN	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
FARAMETER	SIMBUL	34510121413161920	TEST CONDITION	IVIIIN.	TIP.	MAA.	UNI
Operating Current	I _{CC}	0000000000		12	18.5	26	mA
Terminal Sink Current 1	I17	0000000000	V(1)=2.5V Current when application	0		10	μΑ
Terminal Sink Current 1	16	0000000000	V ₀ =3.0V Current when application	0		6	μА
Terminal Sink Current 3	18	0 0 0 0 0 0 0 0 0 0	V®=3.0V Current when application	0		6	μΑ
Terminal Voltage 1	V_1	0000050000	① Open Voltage	1.68	0.41	1.92	V
Terminal Voltage 2	V ₇	0000050000	① Open Voltage	2.18		2.42	V
Terminal Voltage 3	V ₉	0 0 0 0 0 5 0 0 0 0	Open Voltage	2.18		2.42	V
Terminal Voltage 4	V ₁₃	0000050000	(3) Open Voltage	0.23		0.37	V
Terminal Voltage 5 Y Non Inversion	V ₁₈	0 0 0 0 0 5 0 0 0 0	® Open Voltage	1.68		1.92	V
Voltage Gain	GYP	0000000000	$V(Y_{IN})=1V_{P-P}$, 1MHz	-0.5	0	0.5	dB
Frequency Gain	DGP	0000000000	$G_{YP}(6MHz) - G_{YP}(1MHz)$	-1	0	1 1	dB
Differential Gain	DP _P	0000000000	VY _{IN})=1V _{P-P} , Standard Staircase	-3	0	3	%
differentail Phase Y Inversion	DP _P	0000000000		-3	0	3	deg
Voltage Gain	Gyn	0000000055	$V(Y_{IN})=0.6V_{P-P}$, 1MHz	-2.3	-1.3	0.3	dB
Frequency	GFYN	0000000055	$G_{YN}(6MHz)-G_{YN}(1MHz)$	-2	-0.1	1	dB
Differential Gain	DG _N	0 0 0 0 0 0 0 0 5 5	V(Y _{IN})=0.5V _{P-P} , Standard Staircase	-8		8	%
Differential Phase	DPP	0000000055		-3	0	3	deg
Inversion Block Level	BL _N	0 0 0 0 0 0 5 0 5 5 0 0 0 0 0 0 5 0 5 5	① Voltage: a ① Voltage: b BL _N =a-b	0.59	0.68	0.77	V
Inversion BLK		0000005050	① Voltage: c BLK=c-b	-0.1	0	0.1	V
R-Y		Contractor					
Voltage Gain	G_{R-Y}	0 0 0 0 0 0 5 0 0 0	$V(R-Y_{IN})=1V_{P-P}$, 1MHz	-0.5		0.5	dB
Burst Level Non Inversion	BF _{RP}	0000005000	9 Voltage: d9 Voltage: eBF_{RP}=e-d	135	150	165	mV
Burst Level Inversion	BFRN	0005505000	9 Voltage: f BF _{RN} =f-d	-165	-150	-135	mV
3-Y							
Voltage Gain	G _{R-Y}	0000005000	$V(B-Y_{IN})=1V_{P-P}$, 1MHz	-0.5	0	0.5	dB
Burst Level Non Inversion	BF _{HP}	0000555000	⑦ Voltage: g⑦ Voltage: hBF_{RP}=g−h	135	150	165	mV
Burst Level Inversion	BFRN	0005555000	(7) Voltage: i BF _{RN} =g-i	-165	-150	-135	mV
R-Y Switching Speed	KIT	X 0 0 0 0 0 5 5 0 0	X=1MHz 5V _{PP} Rectangular Wave	203	150	*100	nS
B-Y Switching Speed		X 0 0 0 0 0 5 5 0 0	X=1MHz 5V _{PP} Rectangular Wave			*100	nS

^{*} Remark 1) * Item indicates design assurance rating.

■ ELECTRICAL CHARACTERISTICS

PARAN	METER	SYMBOL	CONTROL PIN	TEST CONDITION	MIN.	TYP.	MAX.	UNI
IAKAN	ILILK	JIMBOL	343002436920	TEST CONDITION	IVIII 4.		MILIA.	OIVI
Character Outp				100	VB			
White	Y	Mpwy	5550005500	\bigcirc Voltage: A, M _{PWY} =A-V ₁	630	700	770	mV
	R-Y	M _{PWR}		9 Voltage: B, M _{PWR} =B-V ₉	-16	0	16	mV
	B-Y	MpwB		7) Voltage: C, MpwB=C-V7	-14	0	14	mV
Yellow	Y	MPYY	5500005500	(1) Voltage: A, Mpyy=A-V1	472	525	578	mV
	R-Y	Mpyr		9 Voltage: B, M _{PYR} =B-V ₉	13	33	53	mV
	B-Y	Мрув		⑦ Voltage: C, M _{PYR} =C−V ₇	-165	-146	-127	mV
Cyanoge	Y	M _{PCY}	0550005500	① Voltage: A, $M_{PCY} = A - V_1$	409	455	501	mV
	R-Y	M _{PCR}	and the second	9 Voltage: B, M _{PCR} =B-V ₉	-232	-209	-186	mV
	В-Ү	МРСВ		7 Voltage: C, M _{PCB} =C-V ₉	28	50	72	mV
Green	Y	M _{PGY}	0500005500	(I) Voltage: A, Mpgy=A-V ₁	252	280	308	mV
	R-Y	MpgR		9 Voltage: B, M _{PGR} =B-V ₉	-197	-176	-155	mV
	B-Y	МРСВ		7 Voltage: C, MpgB = C-V7	-117	-97	-77	mV
Mazenta	Y	Мрму	5050005500	① Voltage: A, M _{PMY} =A-V ₁	378	420	462	mV
	R-Y	M _{PMR}		7 Voltage: B, M _{PMR} =B-V ₉	155	176	197	mV
	В-У	Мрмв		7 Voltage: C, M _{PMB} =C-V ₇	77	97	117	mV
Red	Y	MPRY	5000005500	① Voltage: A, $M_{PRY} = A - V_1$	220	245	270	mV
	R-Y	MPRR		9 Voltage: B, M _{PRR} =B-V ₉	186	209	232	m V
	B-Y	MPRB		7 Voltage: C, Mprb = C-V7	-72	-50	-28	mV
Blue	Y	Мрву	0000005500	① Voltage: C, Mpby = A-V ₁	156	175	194	m V
	R-Y	MPBR		9 Voltage: B, M _{PBR} =B-V ₉	-53	-33	-13	m V
	B-Y	M _{PBB}		7 Voltage: C, M _{PBB} =C-V ₇	127	146	165	m\
Black	Y	Мрру	0000005500	(1) Voltage: A, Mppy=A-V ₁	-20	0	20	m\
	R-Y	MppR		9 Voltage: B, M _{PPR} =B-V ₉	-14	0	14	m\
	B-Y	Мерв		7) Voltage: C, MppB=C-V7	-12	0	12	mV
haracter Outp				Og. e, mili (e,				
White	Y	M _{NWY}	5555005500	① Voltage: A, M _{NWY} =A-V ₁	630	700	770	mV
	R-Y	M _{NWR}		9 Voltage: B, M _{NWR} =B-V ₉	-16	0	16	mV
	B-Y	MNWB		① Voltage: C, M _{NWB} =C-V ₇	-14	0	14	m V
Yellow	Y	MNYY	5505005500	① Voltage: A, M _{NYY} =A-V ₁	472	525	578	m V
	R-Y	M _{NYR}		9 Voltage: B, M _{NYR} =B-V ₉	-53	-33	-13	m V
	В-У	MNYB		① Voltage: C, MPYB=C-V7	127	146	165	mV
Cyanoge	Y	M _{NCY}	0555005500	① Voltage: A, M _{NCY} =A-V ₁	409	455	501	m\
	R-Y	M _{NCR}		9 Voltage: B, M _{NCR} =B-V ₉	186	209	232	mV
	В-Ү	MNCB		7 Voltage: C, M _{NCB} =C-V ₇	-72	-50	-28	m V
Green	Y	M _{NGY}	0505005500	① Voltage: A, M _{NGY} =A-V ₁	252	280	308	mV
	R-Y	M _{NGR}		9 Voltage: B, M _{NGR} =B-V ₉	155	176	197	mV
	В-Ү	M _{NGB}		7 Voltage: C, M _{NGB} =C-V ₇	77	97	117	mV
Mazenta	Y	M _{NMY}	5055005500	9 Voltage: A, M _{NMY} =A-V ₁	378	420	462	m V
	R-Y	M _{NMR}		9 Voltage: B, Mnmr=B-V9	-197	-176	-155	m V
	В-Ү	MNMB		7 Voltage: C, M _{NMB} =C-V ₇	-117	-97	-77	mV
Red	Y	M _{NRY}	5005005500	① Voltage: A, $M_{NRY} = A - V_1$	220	245	270	mV
	R-Y	M _{NRR}		9 Voltage: B, M _{NRR} =B-V ₉	-232	-209	-186	m V
	В-Ү			7) Voltage: C, M _{NRB} =C-V ₇	28	50		mV
Blue	В- 1 Y	MNBY	0055005500	(1) Voltage: A, $M_{NBY} = A - V_1$			72	
Diue	R-Y	MNBY	0033003300		156	175 33	194	m V
	B-Y			9 Voltage: B, M _{NBR} =B-V ₉	13		53	m V
Black		MNBR	0005005500	① Voltage: C, M _{NBB} =C-V ₇	- 165 20	-146	-127	mV
Black	Y	MNPY	0 0 0 5 0 0 5 5 0 0	① Voltage: A, M _{NPY} =A-V ₁	-20	0	20	mV
	R-Y	M _{NPR}		9 Voltage: B, M _{NPR} =B-V ₉	-14	0	14	mV
	B-Y	MNPB	ATT THE TOTAL STATE	\bigcirc Voltage: C, $M_{NPB} = C - V_7$	-12	0	12	m V

■ TEST CIRCUIT

APPLICATION NOTES

I	/O Explanation			
	Supply Voltage	V+	5V	2
		GND		1
	Input Signals	Y	0.7 V _{P-P}	17
		R-Y	1.0 V _{P-P}	8
		B-Y	0.7 V _{P-P}	6
	Output Signals	Y	0.7 V _{P-P}	1
		R-Y	1.0 V _{P-P}	9
		B-Y	0.7 V _{P-P}	7

APPLICATION NOTES

I/O Explanation

• Control Pin Low=0V, HIGH=5V

```
 \begin{array}{c} R(\mathfrak{J}) \\ G(\mathfrak{A}) \\ B(\mathfrak{J}) \end{array} \  \  \,  Superimposed color adjustment
```

NTS/PAL Switch (14)

• Adjusting Pin (Normally open → non adjustment)

1. Input Signal

Superimposed color level shall be determined by the following standard signal level.

The character output standard level on the specification shall be determined through calculation out of 75 % of superimposed color level.

(In order to avoide the clipping of the encoding signal, the character output level is determined to lower level)

• The character output level converting expression

The basic expression

$$\begin{split} E_R - E_Y &= 0.70 E_R - 0.59 E_G - 0.11 E_B \\ E_B - E_Y &= -0.30 E_R - 0.59 E_G + 0.89 E_B \\ E_Y &= 0.30 E_R + 0.59 E_G + 0.11 E_B \end{split}$$

From standard level and practical input level, each color signal level imposed in R-Y, B-Y and Y signals are as in the following.

as in the following.
$$\begin{split} V_{R\text{-}Y} &= 0.75 \times 1 \left[V_{P\text{-}P} \right] \times E_{R\text{-}Y} / 1.4 \\ &= 0.375 E_R - 0.316 E_G - 0.059 E_B \\ V_{B\text{-}Y} &= 0.75 \times 0.7 \left[V_{P\text{-}P} \right] \times E_{B\text{-}Y} / 1.78 \\ &= -0.088 E_R - 0.174 E_G + 0.263 E_B \\ V_Y &= 0.75 \times 0.7 \left[V_{P\text{-}P} \right] \times E_Y / 1 \end{split}$$

$$=0.158E_R+0.310E_G+0.058E_B$$

(E_R, E_G, E_B l^{\ddagger} , LOW 0, HIGH 1)

2. Clamp Pulse

During the interval of blanking, input the pulse through clamp pulse pin @ the blanking level (0 level) of input signal (Y, R-Y, B-Y) is to be fixed at the bias point within the IC.

Note) The pulse width of clamp pulse shall be set more than 3 μ s. (see figure 2)

Fig. 2 Clamp Pulse Width

3. Character Color Adjustment

Superimposed color adjustment of the character can be determined in eight different colors, by choosing R, G, B input levels.

(LOW 0V, HIGH 5V)

COLOR	В	G	R
White	5	5	5
Yellow	0	5	5
Cyan	5	5	0
Green	0	5	0
Magenta	5	0	5
Red	0	0	5
blue	5	0	0
Black	0	0	0

Character Color Selecting Code

4. Character Insertion

Pulse informations from outside character generater shall be given input at the character pulse pin (6). During the period of pulse process, the selected color level shall be inserted into each Y, R-Y, B-Y.

5. Burst Flag Insertion

Inputting burst period pulse at the HBF pin ②, the burst flag (150mV) can be inserted in the B-Y, R-Y signals. At the same time, by putting NTSC/PAL switch ③, the burst flag can be altered to NTSC or PAL system.

	NTSC/PAL SWITCH@		
	LOW 0 V (PAL)	HIGH 5 V (NTSC)	
R-Y Signal	+150 mV	non insertion	
B-Y Signal	-150 mV	-150 mV	

Burst Flag Inserting

Fig.3 Burst Flag Inserting Example

6. C Inversion

The color phase of the picture shall be inverted for one hundred and eighty degrees setting C inversion pin \bigcirc 0. It is applied that the reference signal (burst flag) shall be inverted into one hundred and eighty degrees at the time of de-coding.

Superimposed character color do not change at the picture inversion.

	C INVERSION PIN (1)		
	LOW 0 V	HIGH 5 V	
Burst	Non Inversion	Inversion	

C Inversion Form

7. Y Inversion

The brightness of the picture shall be inverted by setting Y inversion pin ①. It is that Y signal shall be inverted by the inverter, and then blanking period signal shall be adjusted to the black level with blanking pulse.

Figure 4. Y Inversion Output Example

	Y INVERSI	Y INVERSION PIN (9		
	LOW 0 V	HIGH 5 V		
Y output	Non inversion	Inversion		

Y Inversion Form

8. Adjusting pin

(1) BF Level Pin (3)

It is the burst flag minor adjusting pin. The burst level shall be adjusted at the open voltage, 0.3V level adjustment. Therefore, the most recommended on operation with the open condition, as it has been controlled at 135 to 165 mV (burst level) on specification.

(2) Inversion Set Up Correction Pin (8)

It is the minor adjusting pin of Y inversion signal level. The inverting black level shall be adjusted at the open voltage, 1.8 V level adjustment. Therefore, the most recommended on operation with the open condition, as it has been controlled with 0.59 to 0.77 V (inverting black level) on specification.

9. Pulse Timing

The pulse input timing should be proceeded as in the following.

■ TYPICAL APPLICATION

SYNCHRONOUS SEPARATOR WITH AFC

■ GENERAL DESCRIPTION

NJM2257 excutes Horizontal and Vertical synchronous signal separation, and odd/even field signal detection, from composit video signals.

Built-in 1/2 fH Killer Function circuit can make stabilization of the Horizontal signal oscillation output during the Vertical period.

■ FEATURES

- Operating Voltage (+4.5~+5.3V)
- Internal AFC circuit (Horizontal sync. signal.)
- Internal 1/2fH Killer Function
- AFC output Pulse Delay time is Adjustable
- Vertical synchronous pulse width is Adjustable
- Internal Field Discrlainat Function
- Package Outline DIP16, DMP16
- Bipolar Technology

APPLICATION

• VTR, TV, AV components etc.

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+	+7	V	
Power Dissipation	P _D	(DIP16) 500	mW	
		(DMP16) 350	mW	
Operating Temperature Range	Topr	-20~+75	℃	
Storage Temperature Range	Tstg	-40~+125	C	

■ ELECTRICAL CHARACTERISTICS

(Vcc=5V, Ta=25℃)

PARAMETER		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Quiessent Current		IQ		activity at	23.0	30.0	mA
AFC Free Run Frequency		fон		15.54	15.74	15.94	KHz
AFC HD pulse width		Tahwi	SW=a	3.5	4.0	4.5	6
Arc HD pulse width		T _A Hw ₂	SW=b	2.5	4.0	5.5	μS
AFC HD Delet Time		TAHD		-1.0	0.5	2.0	μS
AFC Lock Range		ΔfHL		500	700		Hz
AFC Cap Charange		Δf_{HP}		400	600	1 1 <u>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 </u>	Hz
AFC Outer Value	Н	VHAH		4.0	4.2	_	V
AFC Output Voltage	L	VHAL		_	0	0.1	V
Sync Sepa Sync. Separation Level		VHSR			0.16	0.18	V
Sync Sepa Delay Time		THCD	BNT E 日 生 生	0.05	0.20	0.35	μS
Same Same Output Valtage	Н	V _{HCH}		4.0	4.2	_	V
Sync Sepa Output Voltage	L	V HCL			0	0.1	V
HD Output Palth Width	area of the last	T _{HPW}	me Engles - Language	4.0	5.5	7.0	μS
HD Output Delay Time	TO VILLE IN	THPD		0.35	0.6	0.8	μS
HD Output Voltage	Н	V _{HfH}		4.0	4.2	_	v
HD Output Voltage	L	VHfL		4 -	0	0.1	V
V Sync Palth Width		Tvw		170	190	210	μS
V Sync Delay Time	C Can	T _{VD}		7.0	10.0	13.0	μS
V Sync Output Voltage	Н	Тун	TOTAL THE MEST	4.0	4.2	_	V
v Sync Output voltage	L	V _{VL}		-	0	0.1	٧
Field Distinction Delay Time	odd	T _{FOD}		246	256	266	C
ricid Distinction Delay Time	even	TFED		216	226	236	μS
Field Distinction Output	odd	VFOR		4.0	4.2	_	v
Voltage	even	V _{FER}		_	0	0.1	V

APPLICATION CIRCUIT

APPLICATION NOTES

It shows the characteristics by changing of the following resistor.

- The resistance between 9 Pin and GND
 High resistance—AFC HD pulse is wide
 Low resistance—AFC HD pulse is narrow
- The resistor between 9 Pin and V⁺ At the resistor is 100Ω . AFC HD Delay adjustment is off, and AFC HD output width is $4\mu s$ (typ.)
- The resistor between 9 Pin and GND is fandamentally 14.2 k Ω , because the purpose of this resistor is pulse width adjusts $4\mu s$
- The resistor between 10 Pin and GND
 High resistance—AFC HD Delay time gains

 Low resistance—AFC HD Delay time loses
- The resistor between 13 Pin and GND
 High resistance—Vsynk pulse is wide
 Low resistance—Vsynk pulse is narrow
- The resistor joind 2 Pin
 Please adjust the wide of following W is from 33 μs to 37 μs

Fig 1 I/O PULSE

■ TERMINAL EXPLANATION

PIN NO.	PIN NAME	FUNCTION	INSIDE EQUINALENT CIRCUIT
1	VIDEO-IN	Composit Video Signal Input	
2	MM-HT	HD & FD puse are Controlled by setling mono multi	2
3	HD-OUT	1/2 f _H Killer D Output	3 15k
4	VCO-OUT	VCO Output is to be given to Ceramic Oscillator	4
5	VCO-FILTER 1	Decide the Volume to be transfered shall by decided of Ceramic Oscittator. (90°late)	5

■ TERMINAL EXPLANATION

PIN NO.	PIN NAME	FUNCTION	INSIDE EQUINALENT CIRCUIT
6	VCO-FILTER 2	Decide the Volume to be trans- fered shall by decided of Ceramic Oscittator. (90°late)	3.3k
7	L.P.F	L.P.F. of AFC	7
8	V+	Supply Voltage	EX & A.C.
9	VR-1	AFC-HD Output Can be adjusted by putting resistor betwee 9~GND (9 to V _{CC} no adjustment). The pulse width cam be adjusted by making changeable of resister (Adjusting mode)	9
10	VR- 2	AFC-HD Output delay adjustment by putting 10 pin resister changeabl at 9 pin adjustment mode.	12. 6k
11	GND	G raund	

■ TERMINAL EXPLANATION

PIN NO.	PIN NAME	FUNCTION	INSIDE EQUINALENT CIRCUIT
12	AFC, HD-OUT	AFC·HD Output	D point company
	ong hartne to borne s ali sa barmono	tintue seleq titil i	All and St Company and all
		storers a go state to sense. Se store to sense a go store to sense a go store to sense a go sense a	12) \$15k
13	MM-VT	Adjustika APC HD Date.	13)
14	Vsync-OUT	Vertical Synchronous Signal Output.	
	Start polenty if field + High Output on field + Low Output syrose polenty	tisslav limili avilmisi	14 \$20k
15	FD-OUT discrimination	Field Distiniction Signal Output.	20k
16	Csync-OUT	Synchronous Separation Output	15k

■ PIN FUNCTION

PIN NO	FUNCTION BLOCK	OPERATIONAL DESCRIPTION	NDTE				
① Pin	Signal Input	Video Signal input	Sync tip clump				
② Pin	HD pulse control	HD pulse and FD pulse control by time constant of CR	TOWNS CO.				
③ Pin	HD pulse output	1/2 f _H killer HD pulse output	In a period of vertical synchronizing, a f _H is converted to f _H				
4 Pin		Oscillation of 503KHz by a ceramic					
③ Pin	AFC Oscillation	oscillator, and divided by 32 to get down					
6 Pin		to 15.74KHz					
7 Pin	AFC control	Lag Lead filter for phase detection					
® Pin	Vcc	Vcc					
	AFC HD output Switch (AFC HD pulse width adjustment)	The case that R is connected between 9pin and V _{CC} Fixed output The case that R is connected between 9pin and GNDAdjustable AFC HD Delay Mode	high Resistance → Wide pulse width Low Resistance → Narrow pulse widh				
(1) Pin	AFC HD Delay adjustment	The case that R is connected between 9pin and GNDAdjustable AFC HD Delay output	High REsistance → Low Resistance →				
① Pin	GND	GND					
12 Pin	AFC HD output	AFC HD pulse output	Positive polarity				
① Pin	VD pulse width adjustment	VD pulse widh control by time constant of CR					
(14) Pin	VD output	Vertical synchronizing signal output	Positive polarity				
(13) Pin	FD output	Field discriminating signal output	odd field → High Output even field → Low Output				
16 Pin	C Sync. output	Composite Sync Signal output	Positive polarity				

VIDEO EQUALIZER

■ GENERAL DESCRIPTION

NJM2258 is the IC functioning the gain high pass correction, as well as for equalizing function of wave distortion correction, generated by bright signal of group delay feature like low band filter. It has internalizing REC line, one circuit, and then the playback line 2 circuit.

■ PACKAGE OUTLINE

■ FEATURES

- 5V Spec, (Recmmended Operating Voltage Range)
- Wide Band Width, 10MHz
- REC/PLAYBCK Change over function attached
- Package Outline SDIP22
- Bipolar Technology

Application

- VCR (S-VHS compatible)
- Video Camera
- Laser Disc

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

SYMBOL RATINGS UNIT **PARAMETER** V+ 7 V Supply Voltage PD 700 mW Power Dissipation $-20 \sim +75$ $^{\circ}$ C Operating Temperature Range Topr C Tstg Storage Temperature Range $-40 \sim +125$ **■ ELECTRICAL CHARACTERISTICS** $(V^+=5V, Ta=25^{\circ}C)$ PARAMETER SYMBOL TEST CONDITION MIN. TYP. MAX. UNIT 34 I_p No Signal 26 Operating Current mA HB-REC Phase Positive Gain Gaf fIN=100KHz 19PINOUT dB -10 +1 Phase Negative Gain Gar fin=100KHz 20PINOUT -6.4-5.4-4.4dB 19pin Impedance AT19 fin=100KHz -7.0-6.0-5.0dB Output Gain LOW Gal fin=100kHz -10 +1dB Output Gain HIGH G_{ah} fin=5MEGHz -10 +1dB -1+1dB Output Gain f Feature ΔG_a Gah-Gal 0 f1IN=5MEG vIN=1.0Vpp -30dB Output Secondary Distortion DA2 -40Output the third Distortion DA3 fin5MEG vin=1.0Vpp -36-30dB НВ-РВ Positiv Phase Gain Gbf fin=100KHz 16PINOUT -10 +1 dB Negative Phase Gain Gbr fin=100KHz 17PINOUT -0.20.8 1.8 dB -5.016 Impedance AT16 fin=100KHz -7.0-6.0dB Output Gain Gca f_{IN}=100KHz -6.1-5.0-4.0dB 15-14 Impedance ΔG_c 15PIN-14PIN=1.7KΩ 4.5 5.5 6.5 dB Output Gain LOW Gcbl fin=100KHz -10 +1dB Output Gain HIGH Gcbh f_{IN}=5MEGHz 2 3 4 dB Output Gain f Feature Gcbh-Gcbl 2 4 ΔG_b 3 dB Output Secondary Distortion DC2 fIN=5MEG VIN=1.0Vpp -30-25dB Output the third Distortion DC3 -22-27dB fin=5MEG vin=1.0Vpp LB-PB Positive Phase Gain f_{IN}=100KHz 6PINOUT D_{df} -10 +1dB Negative Phase Gain G_{dr} fin=100KHz 5PINOUT -0.20.8 1.8 Db 6 Impedance AT6 fin=100KHz -7.0-6.0-5.0dB Output Gain fin=100KHz -6.1Gda -5.1-4.1dB 7-8 Impedance ΔG_d 7PIN-8PIN= $1.7K\Omega$ 4.5 5.5 6.5 dB

(Ta=25°C)

0

+1

+1

-28

-30

+1

0

0

-35

--36

-1

-1

dB

dB

dB

dB

dB

Output Gain LOW

Output Gain HIGH

Output Gain f Feature

Output Secondary Distortion

Output the third Distortion

f_{IN}=100KHz

f_{IN}=5MEGHz

fIN=5MEG VIN=1.0Vpp

fIN=5MEG VIN=1.0Vpp

Gebh-Gebl

 G_{ebl}

Gebh

 ΔG_e

DE2

DE3

■ TERMINAL FUNCTION

PIN	PIN NAME	SYMBOL	FUNCTION
1	HB-REC/PB OUT	VOUTI	HB type (S-VHS) Correction Output Pin
2	GND	GND	Ground
3	LB-PB IN	VIN2	LB type, (VHS) play-back signal Input Pin
4	HB-REC/PB Change over	PB REC	HB type, Change-over output of REC signal or Play-back signal High makes play-back signal output, and low makes REC signal output.
5	LB-PB Phase Correction Pin 1	LPC1	Connecting Capacitor between Pin 5~6, which helps to give feature of correcting the group delay.
6	LB-PB Phase Correction Pin 2	LPC2	Connecting Capacitor between Pin 5~6, which helps to give feature of correcting the group delay.
7	LB-PB Gain Correction Pin 1	LGC1	Setting up Gain by eonnecting resistor between Pin 7~8.
8	LB-PB Gain Correction Pin 2	LGC2	Setting up Gain by eonnecting resistor between Pin 7~8.
9	LB-PB Gain Correction Pin 3	LP	Connecting L-C parallel resonance between pin 9~GND, helps to give High band keeping, and if not required of keeping connect to GND.
10	LB-PB OUT	VOUT2	LB type Output pin
11	N.C	A SPALES	N.C pin
12	N.C	palike=1-	N.C pin
13	LB-PB Gain Correction Pin 3	НР	Connecting L-C parallel resonance between pin 13~GND, helps to give High band keeping, and if not required of keeping connect to GND.
14	LB-PB Gain Correction Pin 2	HPG1	Setting up Gain by eonnecting resistor between Pin 14~15.
15	LB-PB Gain Correction Pin 1	HPG2	Setting up Gain by eonnecting resistor between Pin 14~15.
16	LB-PB Phase Correction Pin 2	HPC1	Connecting Capacitor between Pin 16~17, which helps to give feature of correcting the group delay.
17	LB-PB Phase Correction Pin 1	HPC2	Connecting Capacitor between Pin 16~17, which helps give feature of correcting the group delay.
18	N.C	COSC =	N.C pin
19	LB-PB Phase Correction Pin 2	HRC1	Connecting Capacitor between Pin 19~20, which helps to give feature of correcting the group delay.
20	LB-PB Phase Correction Pin 1	HRC2	Connecting Capacitor between Pin 19~20, which helps to give feature of correcting the group delay.
21	V+	V _{CC}	Voltage Source.
22	HB-REC/PB IN		HB type Input pin.

■ TEST CONDITION

D.I.D.I.I.COMP.		SW-CONDITION												minus Laur		
PARAMETER	1	2	3	4	5	6	7	8	9	10	11	12	13	TEST PIN	TEST CONDITION	
IP	a	a	b	b	b	a	b	b	b	b	b	b	a			
GAf	b													V19	f=100kHz, V=0.5VPP	
GAr							1377	19	1 14	n i		100	b	V20	f=100kHz, V=0.5VPP	
AT19	iv de	ald I	Eigl	100	PKI	T	100	1977	R)	o Just	a		a	V19	f=100kHz, V=0.5VPP	
Gal											b	a		VOUT1	f=100kHz, V=0.5VPP	
Gah		1383			23,778						b	a		VOUT1	f=5MHz, V=0.5VPP	
DA2			-				100		n let		000	c		VOUT1	f=5MHz, V=1.0VPP	
DA3												c		VOUT1	f=5MHz, V=1.0VPP	
Gbf				11-	e i	18/5	HATEN	111	/3/1	golis	in i			V16	f=100kHz, V=0.5VPP	
Gbr					a le			148	lon	LINE	ent.	8.00	310	V17	f=100kHz, V=0.5VPP	
AT 16	0.0	Tak	6.3		-	wirs.		10	1001	a	151		30	V16	$f = 100 \text{kHz}, \ V = 0.5 \text{V}_{PP}$	
Gca	a			The	0-6	2310	ino	Hills	a	b	150,1	10	1 %	VOUT1	f=100kHz, V=0.5VPP	
△Gca		3					a	a				pr	hsq	VOUT1	f=100kHz, V=0.5VPP	
Gcb1					a		С	с						VOUT1	f=100kHz, V=0.5VPP	
Gcbh					a		c	c						VOUT1	f=5MHz, V=0.5VPP	
DC2	9.74	200		on o	b		c	c	c		190			VOUT1	$f=5MHz$, $V=1.0V_{PP}$	
DC3				CIT	b	13/2	с	c	c	le li	i izqi	13	1	VOUT1	$f = 5 MHz$, $V = 1.0 V_{PP}$	
Gdf	a		12	-4	025		la Pég				b	a		V6	$f=100kHz$, $V=0.5V_{PP}$	
Gdr					mil	77			151				10118	V5	$f = 100 \text{kHz}, V = 0.5 \text{V}_{PP}$	
AT6		b	150 10	101.9	150	618	-				530		100	V6	$f=100kHz$, $V=0.5V_{PP}$	
Gda		a												VOUT2	$f = 100 \text{kHz}, \ V = 0.5 \text{V}_{PP}$	
$\triangle Gd$		4110	a	a		Dog S	Ť	01	979	OL INS	tes	code	18	VOUT2	$f = 100 kHz$, $V = 0.5 V_{PP}$	
Geb1			c	c								1		VOUT2	$f=100kHz$, $V=0.5V_{PP}$	
Gebh			c	c										VOUT2	$f=5MHz$, $V=0.5V_{PP}$	
DE2	25	Hell	c	c		1111	4.78	- 9	alh	a m	r'ad	e lig	8 35	VOUT2	$f=5MHz$, $V=1.0V_{PP}$	
DE3			c	c										VOUT2	$f=5MHz$, $V=1.0V_{PP}$	

■ TEST CIRCUIT

APPLICATION CIRCUIT

2-INPUT VIDEO SUPERIMPOSER

■ GENERAL DESCRIPTION

NJM 2262 is a 2input video superimposer, inculuding video switch circuit that consist of four Y signal circuit and one C signal circuit.

Its impose voltage is set up white level and black level but You can fix its impose voltage.

GREETER

■ PACKAGE OUTLINE

■ FEATURES

- Operating Voltage (4.5V~5.5V)
- Low Operating Current: 5V movement (Icc=8mA)
- Internal Video SW
- Internal Clamp circuit and Bias circuit
- Impose voltage is step up white level and black level but you can fix is impose voltage.
- Package Outline DMP16
- Bipolar Technology

■ APPLICATION

• VTR Camera, VTR, TV etc.

■ BLOCK DIAGRAM

NJM2262M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+ (40)	y and leaved a +7 a least form a	V
Power Dissipation	PD	300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

 $(V^+=5V, V_{in}=1V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}	No signal		8.0	12.0	mA
Y Voltage Gain	Gvy	1MHz, 1V _{p-p} Sine Wave	-0.7	-0.2	+0.3	dB
C Voltage Gain	Gve	1MHz, 1V _{p-p} Sine Wave	-0.8	-0.3	+0.2	dB
Y Frequency Characteristics	Gfy	Vo(7MHz)/Vo(1MHz)	-1.0	0	+1.0	dB
C Frequency Characteristics	Gfe	Vo(7MHz)/Vo(1MHz)	-1.0	0	+1.0	dB
Differential Gain	DG	Stea Step	1 -	-	3.0	%
Differential Phase	DP	Stea Step	-10	15-14	3.0	deg
Output offset Voltage	Vos		-15.0	0	+15.0	mV
Y Cross-Talk	CT _v	4.43MHz Vo/vi	<u>m</u> s	-60.0	-50.0	dB
C-Y Cross-Talk	CT _{cy}	4.43MHz Vo/Vi		-60.0	-50.0	dB
Y-C Cross-Talk	CTyc	4.43MHz Vo/Vi	-	-60.0	-50.0	dB
nput Impedance 1	Ril	V_{in1}, V_{in2}	10.0	_	_	kΩ
nput Impedance 2	R _{i2}	Cin		15.0	-60	kΩ
Output Impedance	Ro			20.0	100	ΩV
Charact-LEVEL 1	V _{M1}		607	643	679	mV
Charact-LEVEL 2	V _{M2}		607	643	679	mV
Y Gate Level	Vgy	From Crump Level	0	35.7	71.4	mV
C Gate Level	V _{GC}	From Bias Level	-10.0	0	10.0	
Threshold Voltage 1	V _{th1}	SW1 (ON LEVEL)	2.5	-	_	V
		(OFF LEVEL)			0.8	V
Threshold Voltage 2	V _{th2}	SW2 (ON LEVEL)	2.5	_	-	V
		(OFF LEVEL)	_	_	0.8	V
Threshold Voltage 3	V _{th3}	SW3 (ON LEVEL)	3.0	_	_	V
		(OFF LEVEL)	-	1	1.0	V
Threshold Voltage 4	V _{th4}	SW4 (ON LEVEL)	3.0	- 1	1	V
		(OFF LEVEL)	_0-	-	1.0	V
Threshold Voltage 5	V _{th5}	SW5 (ON LEVEL)	2.5	_	_	V
		(OFF LEVEL)			0.8	V
hreshold Voltage 6	V _{th6}	SW6 (ON LEVEL)	2.5	24	_	V
		(OFF LEVEL)			0.8	V
Threshold Voltage 7	V _{th7}	SW7 (ON LEVEL)	2.5	_	_	V
		(OFF LEVEL)			0.8	V

(note 1) Next two cross-talk (One side 0Ω termination)

① $V_{in1} \rightarrow V_{in2}$ ② $V_{in2} \rightarrow V_{in1}$

(note 2) Next two cross-talk (One side 0Ω termination)

① $C_{in} \rightarrow V_{in1}$ ② $C_{in} \rightarrow V_{in2}$

(note 3) Next two cross-talk (One side 0Ω termination)

(note 4) White Level

(note 5) Black Level

■ TEST CIRCUIT

IN NO.	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
1	Charact-Level 2	Input terminal of the DC Voltage or the signal in the super imposing condition. In opening condition, presetted in voltage level of 90IRE (White Level) at 1 V _{P-P} video signal.	1 4.5k 15.5k
7 O-			
2	Vout	Output terminal of Y signal	V _{cc} 2 600μ A
3	GND	GND	Vanishal [add]
	000 2 4 3 X		
4	Cin	Input terminal (Bias Input) of gate switch for C signal.	100μ A 15k 500
5	Chroma-SW	Control Terminal of C-SW. Lo Signal Output Hi Bias Voltage Output	5 20k

PIN NO	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT	
6	Соит	Output terminal of C-SW.	V _{cc} 600/t A	il
7	SW 3	ON/OFF control terminal of character signal inputted from 9 pin Lo Charactor Signal Through Hi Charactor Signal OFF	7 20k 8k }	41
		Burga kapa ani lumina i lovatira.		
8	Charact-IN 2	Terminal to input character signal for super impose.	8 20k 8 8k \$	
		For (Y1) temps Y to teal or paragraph than benishmen in tap or, specific (Y315 people in each for some	т т	
9	Charact-IN 1	Terminal to input character signal for super impose.	9 20k	
	1-40	to anierral fromtay WIGHSN 8 mon bendgar Judge tendani an		
10	Vcc	V _∞ =5V		
			Plant-transf7	

IN NO.	PIN NAME	FUNCTION	EQUIVALENT CIRCUIT
11	SW 2	Terminal to input charactor signal for super impose. Voltage for impose is presetted internally, at the voltage level 5IRE (Black Level)with IV _{P-P} video signal.	11) 20k 8k
12	Vin 2	Input terminal of Y signal(1V _{P-P}). Clamp circuit is internalized and clamp voltage is about 2.15V. (Oscillation might occur when higher impedance source. So, please control source impedance under 3.5Ω.)	500
13	SW1	Contorol terminal for input signal switch of Y signal. Output Lo V _{in} 1 H _i V _{in} 2	20k 8k
14	V:.1	Input terminal of Y signal (1V _{P-P}). Clamp circuit is internalized and clamp voltage is about 2.15V. (Oscillation migh occire when higher impedance source. So, please contorol source impedance under 3.5kΩ.)	500
15	SW 4	ON/OFF control terminal of charactor signal inputted from 8 pin. Lo Charactor Through Hi Charactor Signal OFF	20k 8k
16	Charact-Level 1		4.5k 15.5k
			777

Y-Input, Output DC Voltage vs. Operating Voltage

C-Input, Output DC Voltage vs. Operating Voltage

Y-Voltage Gain vs. Operating Voltage

Y-Input, Output DC Voltage vs. Anbient Temperature

C-Input, Output DC Voltage vs. Anbient Tempera-

3-INPUT VIDEO SUPER IMPOSER WITH 75Ω DRIVER

■ GENERAL DESCRIPTION

NJM2263 is 3-input, 1-output video switch with 75Ω driver circuit.

Two input are provided with sink chip clamp function, which adjust the DC level of video sighal.

The other input of transistor open base can make control of luminance signal.

This yideo switch can be connected to TV monitor directly, as it has $75\,\Omega$ driver circuit internally. NJM2263 is a high performance video switch with 10MHz frequency range and 70dB (at 4.43MHz) crosstalk, which is operated with 5V supply voltage.

■ FEATURES

- Wide Operating Voltage (4.75~13V)
- 3 Input, 1 Output
- Internal 75 Ω Driver Circuit
- Internal Sink Chip Clamp Function (V_{IN}1, V_{IN}2)
- Internal luminance Signal Control Function (VIN3)
- Crosstalk 70dB(at 4.43MHz)
- Wide Operating Frequency Range 10MHz(2V_{P-P} input)
- Package Outline DIP8, DMP8, SIP8
- Bipolar Technology

APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disc Player.

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM 2263 M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	15	V	
Power Dissipation	PD	(DIP8) 500 (DMP8) 300	mW mW	
		(SIP8) 800	mW	
Operating Temperature Range	Topr	-20~+75	C	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

 $(V^{+}=5V, Ta=25\pm2^{\circ}C)$

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V+		4.75		13.0	V
Operating Current	Icc	S1=S2=S3=S4=S5=2	1	16.5	23.0	mA
Voltage Gain	Gv	$V_{in} = 2.0V_{P-P}$, 100kHz V_o/V_i	-0.8	-0.3	+0.2	dB
Frequency Characteristics	Gf	$V_{in} = 2.0V_{P-P}, V_o(10MHz)/V_o(100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	$V_{in} = 2.0 V_{P-P}$, Staircase, $R_L = 150 \Omega$	-	0.3	_	%
Differential Phase	DP	$V_{in} = 2.0 V_{P-P}$, Staircase, $R_L = 150 \Omega$	_	0.3	_	deg
Output Offset Voltage	Vos	$S1=S2=S3=2, S4=2 \rightarrow 1$	-30	0	+30	mV
Crosstalk	CT	$V_i = 2.0V_{P-P}, 4.43MHz$ V_o/V_i		-70		dB
		V _{in} 3 Biased (note 2)	2.4	_		dB
Switch change Voltage	V _{CH}	Switch High Level Voltage				
	V _{CL}	Switch Low Level Voltage	-	_	0.8	V

Note 1) Unless otherwise specified, tested with the following conditions.

a) S1=1 S2=S3=S4=S5=2 b) S2=S4=1, S1=S3=S5=2 c) S3=S5=1, S1=S2=1, S4=1 or 2

Note 2) Tested with the following conditions.

a) S1=S4=1, S2=S3=2, S5=1 and 2 b) S2=1, S1=S3=S4=2, S5=1 and 2 c) S3=1, S1=S2=S5=2, S4=1 and 2

Note 3) The Clamp Input Voltage of Vin 1 and Vin 2 is approximately, $(2 \times V^+)/5$.(In case of $V^+=5V$, about 20V)

■ SWITCH CONTROL SIGNAL-OUTPUT SIGNAL

SW 1	SW2	OUTPUT SIGNAL
L	L	Vin 1
Н	L	Vin 2
L/H	Н	V _{in} 3

■ TEST CIRCUIT

■ APPLICATION

Oscillation Prevention on light loading conditions Recommended under circuit

■ EQUIVALENT CIRCUIT

PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	V _{IN} 1	V _{1N} 1 ≥ 200Ω 200Ω	5	Vin 3	V ⁺ V _{IN} 3
2	SW1	SW1 2kΩ 13kΩ 200Ω 9kΩ	6	V+	CARREST CONTRACTOR SAME WAS DESCRIPTION SAME AND ADDRESS AND ADDRE
3	V _{IN} 2	V _{1N} 2 ≥ 200 Ω	7	Vout	200 Ω V _{OUT}
4	SW 2	2 kΩ SW2 2 kΩ 13 kΩ 1.1 mA 9 kΩ	8		1982 24/V

3-INPUT VIDEO SUPER IMPOSER WITH 75Ω DRIVER

■ GENERAL DESCRIPTION

NJM2264 is 3-input, 1-output video switch with 75 Ω driver circuit. One input is provided with sink chip clamp function, which adjusts the DC level of video sighal. The other two inputs of transistor open base can make control of luminance signal. This video switch can be connected to TV monitor directly, as it has 75 Ω driver circuit internally.

NJM2264 is a high performance video switch which is operated with 5V supply voltage.

■ FEATURES

- Wide Operating Voltage (4.75~13V)
- 3 Input, 1 Output
- Internal 75 Ω Driver Circuit
- Internal Sink Chip Clamp Function (V_{IN}1)
- Internal Luminance Signal Control Function (V_{IN}2, V_{IN}3)
- Crosstalk 70dB(at 4.43MHz)
- Wide Operating Frequency Range 10MHz(2V_{P-P} input)
- Package Outline DIP8, DMP8, SIP8
- Bipolar Technology

APPLICATIONS

VCR, Video Camera, AV-TV, Video Disc Player.

BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2264D

NJM2264M

NJM2264L

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	15	V
Power Dissipation	PD	(DIP8) 500	mW
	- Y	(DMP8) 300	mW
		(SIP8) 800	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

 $(V^+=5V, Ta=25^{\circ}C\pm 2^{\circ}C)$

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V+		4.75	-	13.0	v
Operating Current	Icc	S1=S2=S3=S4=S5=2	_	16.5.	23.0	mA
Voltage Gain	Gv	$V_{IN} = 2.0 V_{P-P}, 100 kHz, V_O/V_I$	-0.8	-0.3	+0.2	dB
Frequency Characteristics	Gf	$V_{IN} = 2.0V_{P-P}, V_O(10MHz)/V_O(100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	$V_{IN} = 2.0 V_{P-P}$ Staircase, $R_L = 150 \Omega$	-	0.3	_	%
Differential Phase	DP	$V_{IN} = 2.0 V_{P-P}$ Staircase, $R_L = 150 \Omega$ $V_I = 2.0 V_{P-P}$, 4.43MHz	-	0.3	_	deg
Crosstalk	СТ	V _O /V ₁ V _{IN} 2 V _{IN} 3 Biased (Note 2)	-	-70	-	dB
Switch Change Voltage	V _{CH}	Switch High Level Voltage	2.4	3 -	_	V
	VCL	Switch Low Level Voltage	-	_	0.8	V

Note 1) Unless otherwise specified, tested with the following conditions.

a) S1=1, S2=S3=S4=S5=2 b) S2=S4=1, S1=S3=S5=2 c) S3=S5=1, S1=S2=1, S4=1 and 2

Note 2) Tested with the following conditions.

a) S1=S4=1, S2=S3=2, S5=1 and 2 b) S2=1, S1=S3=S4=2, S5=1 and 2 c) S3=1, S1=S2=S5=2, S4=1 and 2 Note 3) The Clamp Input Voltage of Vin is approximately $(2.0\times V^+)/5$ (In case of $V^+=5V$, about 2.0V)

■ SWITCH CONTROL SIGNAL-OUTPUT SIGNAL

SWI	SW 2	OUTPUT SIGNAL
L	L	V _{IN} 1
Н	L	V _{IN} 2
L/H	Н	V _{IN} 3

■ TEST CIRCUIT

■ APPLICATION

Oscillation Prevention on light loading conditions Recommended under circuit

■ EQUIVALENT CIRCUIT

PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	V _{IN} 1	V _{IN} 1 ≥ 200 Ω	5	V _{IN} 3	V- V _{IN} 3 200 Ω
2	SW 1	3 kΩ 3 kΩ 200Ω 3 9 kΩ	6	V+	Creates, contain collicy Protego On to DURK DATE, SER Bigeth Technique Bigeth Technique VOR, VIOCO Labors, AV-IV, VIA BLOCK DIAGRAM GROSS, GROSS, VIA
3	Vin 2	V+ V _{IN} 2 OOQ	7	Vout	200Ω V _{OUT}
4	SW 2	2 kΩ 3 13 kΩ 200 Ω 9 kΩ	8	GND	

3-INPUT VIDEO SUPER IMPOSER WITH 6db AMPLIFIER

■ GENERAL DESCRIPTION

NJM2265 is 3-input, 1-output video switch with 6dB amplifier. Two inputs are provided with sink chip clamp function which adjust the DC level of video sighal. The other input of transistor open base can make control of luminance signal. This video switch can be connected to TV monitor directly, as it has 6dB amplifier circuit inter-

NJM2265 is a high performance video switch which is operated with 5V supply voltage.

■ FEATURES

- Wide Operating Voltage (4.75~13V)
- 3 Input, 1 Output
- Internal 6 dB Amplifier Circuit
- Internal Sink Chip Clamp Function (V_{IN}1, V_{IN}2)
- Internal Luminance Signal Control Function (V_{IN}3)
- Crosstalk 65dB(at 4.43MHz)
- Package Outline DIP8, DMP8, SIP8
- Bipolar Technology

APPLICATIONS

VCR, Video Camera, AV-TV, Video Disc Player.

BLOCK DIAGRAM

NJM2265M

■ PACKAGE OUTLINE

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	15	V
Power Dissipation	PD	(DIP8) 500	mW
	Y Y	(DMP8) 300	mW
		(SIP8) 800	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

 $(V^{+}=5V, Ta=25\pm2^{\circ}C)$

PARAMETERS	SYMBOLS	MBOLS TEST CONDITIONS		TYP.	MAX.	UNIT
Recommended Supply Voltage	V+	() () () (4.75		13.0	V
Operating Current	Icc	S=1=S2=S3=S4=S5=2	N-2	15	21.0	mA
Voltage Gain	Gv	$V_{in} = 1.0V_{P-P}$, 1MHz, V_O/V_I	5.7	6.2	6.7	dB
Frequency Characteristics	Gf	$V_{in} = 1.0 V_{P-P}, V_O(5MHz)/V_O(1MHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	$V_{in} = 1.0 V_{P-P}$, Staircase, $R_L = 1 k\Omega$	-	0.2	_	%
Differential Phase	DP	$V_{in} = 1.0 V_{P-P}$, Staircase, $R_L = 1 k\Omega$	-	0.1		deg
Output Offset Voltage	Vos	$S1=S2=S3=2$, $S4=2 \rightarrow 1$ $V_{in}=1.0V_{P-P}$, 4.43MHz	-60	0	+60	mV
Crosstalk	CT	V _O /V _I Vin3 Biased (note 2)	_	-65	_	dB
Switch Change Voltage	V _{CH}	Switch High Level Voltage	2.4	_	-	V
Switch High Level Voltage	V _{CL}	Switch Low Level Voltage	_	_	0.8	V

Note 1 Unless otherwise specified, tested with the following conditions.

a) S1=1, S2=S3=S4=S5=2 b) S2=S4=1, S1=S3=S5=2 c) S3=S5=1, S1=S2=1, S4=1 or 2

Note 2 Tested with the following conditions.

a) S1=S4=1, S2=S3=2, S5=1 and 2 b) S2=1, S1=S3=S4=2, S5=1 and 2 c) S3=1, S1=S2=S5=2, S4=1 and 2

Note 3 The Clamp Input Voltage of Vin 1 and Vin 2 is approximately $(2.1 \times V^+)/5$ (In case of $V^+=5V$, about 2.1V)

■ SWITCH CONTROL SIGNAL-OUTPUT SIGNAL

SW 1	SW2	OUTPUT SIGNAL
L	L	Vin 1
Н	L	Vin 2
L/H	Н	Vin 3

■ TEST CIRCUIT

■ APPLICATION

Oscillation Prevention

It is much effective to insert LPF (Cutoff Frequency 70MHz) under light loading conditions (R_L \rangle 1k Ω)

3-INPUT VIDEO SUPER IMPOSER WITH 6 dB AMPLIFIER

■ GENERAL DESCRIPTION

NJM2266 is 3-input, 1-output video switch with 6dB amplifier. One input is provided with sink chip clamp function, which adjust the DC level of video sighal. The other two inputs of transistor open base can make control of luminance signal. This video switch can be connected to TV monitor directly, as it has 6dB amplifier circuit internally. NJM2266 is a high performance video switch with is operated 4.75V supply voltage.

■ FEATURES

- Wide Operating Voltage (4.75~13V)
- 3 Input, 1 Output
- Internal 6 dB Amplifier Circuit
- Internal Sink Chip Clamp Function (V_{IN}1)
- Internal Luminance Signal Control Function (V_{IN}2, V_{IN}3)
- Crosstalk 65dB(at 4.43MHz)
- Package Outline DIP8, DMP8, SIP8
- Bipolar Technology

■ APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disc Player.

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM 2266 D

NJM 2266 M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	15	V	
Power Dissipation	PD	(DIP8) 500	mW	
	Talk!	(DMP8) 300	mW	
		(SIP8) 800	mW	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

 $(V^{+}=5V, Ta=25\pm 2^{\circ}C)$

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V+		4.75	Other Brief	13.0	V
Operating Current	Icc	S1=S2=S3=S4=S5=2	_	15	21.0	mA
Voltage Gain	Gv	$V_{in} = 1.0V_{P-P}$, 1MHz, V_o/V_i	5.7	6.2	6.7	dB
Frequency Characteristics	Gf	$V_{in} = 1.0 V_{P-P}, V_o(5MHz)/V_o(1MHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	$V_{in} = 1.0 V_{P-P}$, Staircase, $R_L = 1 k\Omega$	V-V2	0.2	08557	%
Differential Phase	DP	$V_{in} = 1.0 V_{P-P}$, Staircase, $R_L = 1 k\Omega$	_	0.1	-	deg
Crosstalk	CT	V _o /V _i V _{in} 2, V _{in} 3-Biased (Note 2)		-65	of hold	dB
	V _{CH}	Switch High Level Voltage	2.4	_	_	V
Switch Change Voltage	V _{CL}	Switch Low Level Voltage	gb -4067	_	0.8	V

Note 1) Unless otherwise specified, tested with the following conditions.

a) S1=1, S2=S3=S4=S5=2 b) S2=S4=1, S1=S3=S5=2 c) S3=S5=1, S1=S2=1, S4=1 and 2

Note 2) Tested with the following conditions.

a) S1=S4=1, S2=S3=2, S5=1 and 2 b) S2=1, S1=S3=S4=2, S5=1 and 2 c) S3=1, S1=S2=S5=2, S4=1 and 2 Note 3) The clamp Input voltage of Vin1 is approximately $(2.1 \times V^+)/5$ (In case of $V^+=5V$, about 2.1V)

■ SWITCH CONTROL SIGNAL-OUTPUT SIGNAL

SW 1	SW2	OUTPUT SIGNAL
L	L	Vin 1
Н	L	Vin 2
L/H	Н	Vin 3

■ TEST CIRCUIT

APPLICATION

Oscillation Prevention

It is much effective to insert LPF(Cutoff Frequency 70 MHz) under light loading conditions ($R_L\gg lk\Omega$)

■ GENERAL DESCRIPTION

NJM2267 is a dual video 6dB amplifier with 75 Ω drivers for S-VHS VCRs, HI-BAND VCRs, etc..Each channel has clamp function that fixes DC level of video sighal and 75 Ω drivers to be connected to TV monitors directly. Further more it has sag corrective circuits that prevent the generation of sag with smaller capacitance than ever.

Its operating supply voltage is 4.85 to 9V and bandwidth is 7MHz.

■ PACKAGE OUTLINE

' NJM22671

NJM2267M

NJM2267V

■ FEATURES

- Wide Operating Voltage (4.85~9.0V)
- Dual Channel
- Internal Clamp Function
- Internal Driver Circuit For 75 Ω Load
- SAG Corrective Function
- Wide Frequency Range (7MHz)
- Low Operating Current 14.0mA (Dual)
- Package Outline DIP8, DMP8, SSOP8
- Bipolar Technology

■ APPLICATIONS

• VCR, Video Camera, TV, Video Disc Player

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	10	V
Power Dissipation	PD	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 250	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

 $(V^+=5V, Ta=25\pm 2^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}	No Signal	-	14.0	18.2	mA
Voltage Gain	Gv	V _{IN} =1MHz, 1V _{P-P} Sinewave	5.7	6.2	6.7	dB
Frequency Characteristic	Gf	V _{IN} =1V _{P-P} , Sinewave, 7MHz/1MHz	-	_	±1.0	dB
Differentail Gain *	DG	V _{IN} =1V _{P-P} , Staircase	-	1.0	3.0	%
Differentail Phase *	DP	V _{IN} =1V _{P-P} , Staircase	-	1.0	3.0	deg
Crosstalk	CT	V _{IN} =4.43MHz, 1V _{P-P} , Sinewave	-	-70	_	dB
Gain Offset	GCH	V _{IN} =1MHz, 1V _{P-P} , G _{CH} =V _{OUT1} -V _{OUT2}	THAT		±0.5	dB
Input Clamp Voltage	V _{CL}		1.79	1.91	2.03	V .
SAG Terminal Gain	GSAG		35	45	_	dB

(V⁺=5.0V, Ta=25℃)

PIN No.	PIN NAME	SYMBOL	EQUIVALENT CIRCUIT	FUNCTIONS
1	Input Clamp Terminal	V _{INI}	V- 1 300 μA	Input terminal of IV _{P-P} composite signal or Y signal. Clamp level is 1.9V
	3			Operating Talogo ware Means
	- 2		Table Market	Storage Percentage Rungs
2	GND	GND		Ground
3 1990 X	SAG correction	V _{SAGI}	V+	SAG caused by a coupling capacitor of the output can be prevented by connecting this tarminal with the output terminal through an external capacitor (see block diagram) When SAG correcting function is not necessary, this terminal
	0 C8 C C C C C C C C	TR.		must be connected with pin "4" directly.
4	Video	V _{OUT1}	V+	Output terminal that can drive 75Ω line.
	Output1	10 L	2.2k 750 3mA	Regul Clause Volumes SAG Terminal Communications
5	Video Output2	V _{OUT2}	V+	Output terminal that can drive 75Ω line.
6	SAG correction	V _{SAG2}	V*	SAG caused by a coupling capacitor of the output can be prevented by connecting this terminal with the output terminal though an external copacitor.(see block diagram) When SAG correcting function is not necessary, this terminal must be connected with pin "5" directly.
7	V+	V+	777	Supply Voltage
8	Input Clamp Terminal	V _{IN2}	V ⁺ 300μA	Input terminal of IV _{P-P} composite signal or Y signal. Clamp level is 1.9V.

■ TEST CIRCUIT

■ TEST METHODES

(31 r) sum	arn mor		VITC	H CC	ONDI	TIOI	NS	CONTROLS THE STATE OF THE STATE
PARAMETER	SYMBOL	S1	S2	S3	S4	S5	S6	CONDITIONS
Supply Voltage	I _{CC}	Н	Н					7PIN Sink Current
Voltage Gain	Gv	Н	Н	ON	ON			V_{OUT1}/V_{IN1} , V_{OUT2}/V_{IN2} at $V_{IN1}(V_{IN2})=1$ MHz, $1V_{P.P.}$, Sinewave
Frequency Characteristic	Gf	Н	Н	ON	ON	200		G_{VIM} ; Voltage Gain at $V_{INI}(V_{IN2})=1MHz$, $1V_{P\cdot P}$ G_{VI0M} ; Voltage Gain at $V_{INI}(V_{IN2})=10MHz$, $1V_{P\cdot P}$ $G_f=G_{VI0M}-G_{VIM}$
Differential Gain	DG	Н	Н	ON	ON	-		Measuring V _{OUT3} at V _{IN1} =Staircase Signal
Differential Phase	DP	Н	Н	ON	ON	60		Measuring V _{OUT3} at V _{IN1} =Staircase Signal
Crosstalk	СТ	Н	L	ON	ON	(86)		V_{OUT2}/V_{OUT1} at V_{IN1} =4.43MHz, $1V_{P.P.}$, Sinewave $V_{OUT1}/VIN2$ at V_{IN2} =4.43MHz, $1V_{P.P.}$, Sinewave
Gain Offset	G _{CH}	Н	Н	ON	ON			$G_{V1} = V_{OUT1}/V_{IN1}, G_{V2} = V_{OUT2}/V_{IN2}$ $G_{CH} = G_{V1} - G_{V2}$
Input Clamp Voltage	V _{CL}	Н	Н					Measuring at TP1(TP2)

Operating Current vs. Ta

Input DC Level vs. Ta

Output DC Level vs. Ta

SAG Terminal Voltage vs. Ta

SAG Terminal Gain vs. Ta

Voltage Gain vs. Ta(Clamp Type INput)

Differential Gain vs. Ta

Differential Phase vs. Ta

Operating Current vs. Operating Voltage

Input DC Level vs. Operating Voltage

Output DC Level Vs. Operating Voltage

SAG Terminal Voltage vs. Operating Voltage

SAG Terminal Gain vs. Operating Voltage

Voltage Gain vs. Operating Voltage

Gain Frequency Characteristics vs. Operating Voltage

Differential Gain vs. Operating Voltage

Diffrential Phase vs. Operating Voltage

Voltage Gain vs. Frequency

Small Signal Voltage Gain vs. Frequency

Cross Talk vs. Frequency

Voltage Gain vs. RL

Gain Frequency Characteristics vs. RL

Differential Gain vs. RL

DUAL VIDEO 6dB AMPLIFIER WITH 75Ω DRIVER

■ GENERAL DESCRIPTION

NJM2268 is a dual video 6dB amplifier with 75 Ω drivers for S-VHS VCRs, HI-BAND VCRs, etc..One channel has clamp function that fixes DC level of video sighal and another one is bias type. Furthermore it has 75 Ω drivers to be connected to TV monitors directly and sag corrective circuits that prevent the generation of sag with smaller capacitance than ever.

Its operating supply voltage is 4.85 to 9V and bandwidth is 7MHz.

PACKAGE OUTLINE

NJM2268D

NJM2268M

NJM2268V

■ FEATURES

- Wide Operating Voltage (4.85~9.0V)
- Dual Channel (Clamp Type, Bias Type)
- Internal Driver Circuit For 75 Ω Load
- SAG Corrective Function
- Wide Frequency Range 7MHz
- Low Operating Current 14.0mA (Dual)
- Package Outline DIP8, DMP8, SSOP8
- Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Supply Voltage

 V^+

4.85~9.0V

APPLICATIONS

• VCR, Video Camera, TV, Video Disc Player

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	10	V
Power Dissipation	PD	(DIP8) 500	mW
		(DMP8) 300	mW
		(SSOP8) 250	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	r

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	No Signal		14.0	18.2	mA
Voltage Gain	Gv	V _{IN} =1MHz, 1V _{P-P} Sinewave	5.7	6.2	6.7	dB
Frequency Characteristic	Gf	V _{IN} =1V _{P-P} , Sinewave, 7MHz/1MHz	_	_	±1.0	dB
Differentail Gain *	DG	V _{IN} =1V _{P-P} , Staircase	-	1.0	3.0	%
Differentail Phase *	DP	V _{IN} =1V _{P-P} , Staircase	-	1.0	3.0	deg
Crosstalk	CT	V _{IN} =4.43MHz, 1V _{P-P} , Sinewave	_	-70	-	dB
Gain Offset	GCH	$V_{IN} = 1MHz$, $1V_{P-P}$, $G_{CH} = V_{OUT1} - V_{OUT2}$	-	_	±0.5	dB
Input Clamp Voltage	V _{CL}		1.79	1.91	2.03	V
Input Bias Voltage	V _{Bt}		2.56	2.84	3.12	V
SAG Terminal Gain	GSAG		35	45	_	dB

NOTE: "*" is applied to clamp type input side only/

■ TEST CIRCUIT

TEST METHODES

	and thou	SV	VITC	CH CO	OND	ITIO	NS	CONDITIONS
PARAMETER	SYMBOL	SI	S2	S3	S4	S5	S6	CONDITIONS
Supply Voltage	I _{CC} H	Н	Н					7PIN Sink Current
Voltage Gain	Gv	Н	Н	ON	ON			V_{OUT1}/V_{IN1} , V_{OUT2}/V_{IN2} at $V_{IN1}(V_{IN2})=IMHz$, IV_{P-P} , Sinewave
Frequency Characteristic	Gf	Н	Н	ON	ON			G_{VIM} ; Voltage Gain at $V_{INI}(V_{IN2})=1$ MHz, $1V_{P-P}$ G_{VIOM} ; Voltage Gain at $V_{INI}(V_{IN2})=1$ 0MHz, $1V_{P-P}$ $G_f=G_{VIOM}-G_{VIM}$
Differential Gain	DG	Н	Н	ON	ON			Measuring V _{OUT3} at V _{INI} =Staircase Signal
Differential Phase	DP	Н	Н	ON	ON			Measuring V _{OUT3} at V _{IN1} =Staircase Signal
Crosstalk	CT	Н	L	ON	ON			V_{OUT2}/V_{OUT1} at V_{IN1} =4.43MHz, $1V_{P.P.}$, Sinewave $V_{OUT1}/VIN2$ at V_{IN2} =4.43MHz, $1V_{P.P.}$, Sinewave
Gain Offset	G _{CH}	Н	Н	ON	ON			$\begin{aligned} G_{V1} &= V_{OUT1}/V_{IN1}, \ G_{V2} \\ &= V_{OUT2}/V_{IN2} \\ G_{CH} &= G_{V1} - G_{V2} \end{aligned}$
Input Clamp Voltage	V _{CL}	Н	Н					Measuring at TP1
Input Bias Voltage	V _{Bt}	Н	Н					Measuring at TP2
SAG Terminal Gain	G _{SAG}	Н	Н			ON	ON	TP3 Voltage; V _{OIA} , TP5 Voltage; V _{SOIA} TP3 Voltage; V _{OIB} , TP5 Voltage; V _{SOIB} $G_{SAG}=20log \ \{(V_{OIB}-V_{OIA})/(V_{SOIA}-V_{SOIB})\}$

IN No.	PIN NAME	SYMBOL	EQUIVALENT CIRCUIT	FUNCTIONS
1	Input Clamp Terminal	V _{INI}	V+ 300μA	Input terminal of 1V _{P-P} composite Signal or Y signal Clamp level is 1.9V
2	GND	GND		Ground
3	SAG	V _{SAG1}		SAG caused by a coupling capacitor of the output can b
	correction		V+	prevented by connecting this tarminal with the output terminal through an external capacitor. (see block diagram) When SAG correcting function is not necessary, this terminal must be connected with pin "4" directly.
				The same of the sa
4	Video Output1	Vouti	V+	Output terminal (clamp side) that can drive 75Ω line.
5	Video	V	0 2338	Output terminal (bias side) that can drive 75Ω line.
,	Output2	V _{OUT2}	V+	Output terminal (olas side) that can drive 732 line.
	1971 3894 1972 3866	E-LouVass -LouVass		10 kg to H no. s- metuit remont
6	No Connection	NC	Measuring Yorks of Vision	Differential Coar B CON ERC
7	V+	V+		Supply Voltage
8	Input Clamp Terminal	V _{IN2}	V ⁺ 300 μ A	Input terminal of 1V _{P-P} coler signal. Bias level is 2.8V.
			250μA	B 18 GV College Voltage (1974) regist
	Mine Pie		777	Arms Big Times

Gain Frequency Characteristics vs. Ta (Bias Type Input)

Differential Gain vs. Ta

Differential Phase vs. Ta

Operating Current vs. Operating Voltage

Output DC Level vs. Operating Voltage

SAG Terminal Voltage vs. Operating Voltage

SAG Terminal Gain vs. Operating Voltage

Voltage Gain vs. Operating Voltage (Clamp Type Input)

Voltage Gain vs. Operating Voltage (Bias Type Input)

Gain Frequency Characteristics vs. Operating Voltage (Clamp Type Input)

Gain Frequency Characteristics vs. Operating Voltage (Bias Type Input)

Differential Gain vs. Operating Voltage

Diffrential Phase vs. Operating Voltage

Voltage Gain vs. Frequency (Clamp Type Input)

Voltage Gain vs. Frequency (Bias Type Input)

Small Signal Voltage Gain vs. Frequency (Clamp Type Input)

Small Signal Voltage Gain vs. Frequency (Bias Type Input)

Cross Talk vs. Frequency

Voltage Gain vs. R_L (Clamp Type Input)

Voltage Gain vs. R_L (Bias Type Input)

Gain Frequency Characteristics vs. R_L (Clamp Type Input)

3-INPUT 1MUTE VIDEO SWITCH

■ GENERAL DESCRIPTION

NJM2273 is a switching IC for switching over from one audio or video input signal to another. Internalizing the mute function which can be operated by 3 inputs. It is a higher performance video switch, with the operating supply voltage 4.75 to 13V, frequency bandwidth 7MHz, crosstalk 75dB (at 4.43MHz).

■ PACKAGE OUTLINE

■ FEATURES

- 3 Input, 1 Output
- Internalizing Mute Function
- Wide Operating Voltage (4.75~13.0V)
- Crosstalk 75 dB(at 4.43MHz)
- Wide Bandwidth Frequency 7MHz(2V_{P-P} Input)
- Package Outline SIP9
- Bipolar Technology

APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	14	V
Power Dissipation	PD	(SIP9) 500	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	I _{CC1}	V+=5V (Note1)	4.5	6.5	8.5	mA
Operating Current (2)	I _{CC2}	V+=9V (Notel)	5.8	8.3	10.8	mA
Voltage Gain	Gv	$V_1 = 100 \text{kHz}, 2V_{P-P}, V_O/V_I$	-0.7	-0.2	+0.3	dB
Frequency Gain (1)	GFI	$V_1 = 2V_{P-P}, V_O(7MHz)/V_O(100kHz)$	-1.0	0	+1.0	dB
Frequency Gain (2)	G _{F2}	$V_1 = 1V_{P-P}, V_O(10MHz)/V_O(100kHz)$	77 44 10	0	191 11 1	dB
Differential Gain	DG	V _I =2V _{P-P} , Standard Staircase Signal	_	0.3	-	%
Differential Phasa	DP	V ₁ =2V _{P-P} , Standard Staircase Signal	35.00	0.3	1 137 miles	deg
Output offset Voltage	Vos	(Note2)	-30	0	+30	mV
Crosstalk	CT	$V_1 = 2V_{P-P}$, 4.43MHz, V_O/V_I		-75		dB
Muting Crosstalk	Стм	$V_{I} = 2V_{P-P}, 4.43MHz, V_{O}/V_{I}$	_	-60	_	dB
Switch Change Over Voltage	V _{CH}	All inside switch ON	2.5	-	_	V
Switch Change Over Voltage	V _{CL}	All inside switch OFF	_	-	1.0	V

(Note1) S1=S2=S3=S4=S5=S6=1

(Note2) Measure the output DC voltage difference between the following modes at S1=S2=S3=1 a) S4=S5=S6=1 b) S4=2, S5=S6=1 c) S5=2, S6=1 d) S6=2

■ CONTROL INPUT - OUTPUT SIGNAL

CTL1	CTL2	MUTE	OUTPUT SIGNAL
L	L	L	V _{IN} 1
Н	L	L	V _{IN} 2
L/H	Н	L	V _{IN} 3
L/H	L/H	Н	Inside DC

■ TERMINAL EXPLANATION

PIN NO.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT CIRCUIT
6 8 1	V _{IN1} V _{IN2} V _{IN3} (Input)	2.5V	IN O
	0 0 0 12C No.	- 101	500 15k 2.5V
-	10 91	id or	
7 9	CTL1 CTL2		CL
4	Mute		
	(Switching)	1900	8k
			2.3V T 1.9V
3	Vout (Output)	1.8V	42 45 15 TO MINISTER
			f = 1 1 1 1 1 1 1 1 1
			OOUT
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			9
			777
2	V+	5 V	

■ TEST CIRCUIT

PARAMETER	SI	S 2	S 3	S 4	S 5	S 6	TEST PART
Iccı	1	1	1	1	1	1	V+
Icc2	1	1	1	1	1	1	
G _{v1}	2	1	1	1	1	1	v_0
G _{f1}	2	1	1	1	1	1	
DG ₁	2	1	1	1	1	1	
DP ₁	2	1	1	1	1	1	
Vosi	1	1	1	2	1	1	Vo
CT 1	2	1	1	2	1	1	v_0
CT 2	2	1	1	1	2	1	
CT 3	1	2	1	1	1	1	
CT 4	1	2	1	2	2	1	
CT 5	1	1	2	1/2	1	1	
СТм1	2	1	1	1	1	2	v_0
CT _{M2}	1	2	1	2	1	2	
СТмз	1	1	2	1/2	2	2	
Vosi	1	1	1	2	1	1	Vo
V _{C1}	2	1	1	Vc	1	1	Vc
THD	2	1	1	1	1	1	v ₀

Operating Current 1 vs. Temperature

Operating Current 2 vs. Temperature

Voltage Gain 1 vs. Temperature

Frequency Gain 1 vs. Temperature Ta (°C)

Differential Gain 1 vs. Temperature

Differential Phase 1 vs. Temperature

Offset Voltage 1 vs. Temperature

Switch Change Over 1 vs. Temperature

Temperature T_a (°C)

Crosstalk 1 vs. Temperature

Temperature T_a (°C)

Crosstalk 2 vs. Temperature

Temperature T_a (°C)

Crosstalk 3 vs. Temperature

Crosstalk 4 vs. Temperature

Temperature T_a (°C)

Crosstalk 5 vs. Temperature

M. Crosstalk 1 vs. Temperature

M. Crosstalk 2 vs. Temperature

M. Crosstalk 3 vs. Temperature

Operating Current vs. Operating Voltage

Voltage Gain 1 vs. Operating Voltage

Frequency Gain 1 vs. Operating Voltage

Differential Gain 1 vs. Operating Voltage

Differential Phase 1 vs. Operating Voltage

Offset Voltage 1 vs. Operating Voltage

Switch Change Over 1 vs. Operating Voltage

Crosstalk 1 vs. Operating Voltage

Crosstalk 2 vs. Operating Voltage

Crosstalk 3 vs. Operating Voltage

Operating Voltage V+ (V)

Crosstalk 4 vs. Operating Voltage

Crosstalk 5 vs. Operating Voltage

M. Crosstalk 1 vs. Operating Voltage

Operating Voltage V+ (V)

M. Crosstalk 2 vs. Operating Voltage

Operating Voltage V+ (V)

Operating Voltage V+ (V)

M. Crosstalk 3 vs. Temperature

Voltage Gain 1 vs. Frequency

Differential Gain 1 vs. Load Resistor

Load Resistor RL (kΩ)

Differential Phase 1 vs. APL

Differential Gain 1 vs. APL

Differential Phase 1 vs. APL

Total Harmonic Distortion 1 vs. Load Resistor

NJM2279M

■ PACKAGE OUTLINE

NJM2279D

3-INPUT 2-OUTPUT VIDEO SWITCH FOR AV-SET

■ GENERAL DESCRIPTION

NJM2279 is 3-input, 2-output video switch with $75\,\Omega_\odot$ driver circuit.

This video switch can be connected to TV monitor directly, as it has 6dB amplifier and 75 Ω drivers circuit internally.

The NJM2279 has the mute function.

■ FEATURES

- 3 input 2 output
- Internal 6dB AMP.
- Internal 75 Ω Driver Circuit
- Operating Voltage Dual $(\pm 4V \sim)$ Single $(+8V \sim)$
- Internal 2 Output Mute Function
- Package Outline DIP14, DMP14
- Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Supply Voltage

Dual Single ±4.5V~±5.1V +9V~+10.2V

■ BLOCK DIAGRAM

NJM2279M

■ PIN CONFIGURATION

PIN FUNCTION

1. Vin3

2. SW1

8. V⁺ 9. N.C.

3. Vin2

10. Vout1

4. MUTE2

11. MUTE1 12. Vin1

5: Vout2 6. GND2

12. Vin1 13. SW2

7. GND1

ND1 14. V-

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+/V-	±7.5	V
Power Dissipation	PD	(DIP14) 700 (DMP14) 300	mW mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	c

■ ELECTRICAL CHARACTERISTICS

(V+/V = ± 5.0 V, R_L=150 Ω Ta=25 $^{\circ}$ C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Course	Icc	No signal	10.0	17.3	24.6	mA
Operating Current	IEE	No signal	-24.6	-17.3	-10.0	mA
Voltage Gain	Gv	V _{IN} =100kHz/1.0V _{P-P}	6.0	6.3	6.8	dB
Freguency Characteristic	Gf	5MHz/100kHz, 1.0V _P -P	-1.0	0.0	+1.0	dB
Differential Gain	DG	V _{IN} =1.0V _{P-P} Stair wave	es Tws	0.2	_	%
Differential Phase	DP	V _{IN} =1.0V _{P-P} Stair wave	- 10	0.2	-	deg
Offset output Voltage 1	Vosl	V _{in} 2-V _{in} 3:no signal	-40	0	+40	mV
Offset output Voltage 2	Vos2	V _{in} 1-V _{in} 2/V _{in} 3:no signal	-60	0	+60	mV
Input/Output Crosstalk	CT	V _{IN} =4.43MHz/1.0V _{P-P} , V _O /V _{IN}	A	-70		dB
MUTE Crosstalk	СТм	V _{IN} =4.43MHz/1.0V _{P-P} , V _O /V _{IN}	_	-60	_	dB
Switch Change Voltage	V _{CH}		2.5	_	V+	V
	V _{CL}	rate i aread	0.0	-	1.0	V
Total Harmonic Distortion	THD	V _{IN} =1kHz 1.25V _{P-P}		0.1	-	%
Input Impedance	Rin	alg. 8		20	_	kΩ

PARAMETER	SYMBOL	UNIT	INPUT TERMINAL	TEST TERMINAL	TEST CONDITION
Operating Current	Icc	mA		8 pin	V _{in} 1~3=0V, SW1/2 · MUTE1/2=v _{CL}
Operating Current	IEE	mA	-	14 pin	n
Voltage Gain	Gv	dB	1, 3, 12 pin	5, 10 pin	MUTE1/2=V _{CL}
Freguency Characteristic	Gf	dB	1, 3, 12 pin	5, 10 pin	н
Differential Gain	DG	%	1, 3, 12 pin	5, 10 pin	И
Differential Phase	DP	deg	1, 3, 12 pin	5, 10 pin	"
Offset output Voltage 1	Vosl	mV	-	5, 10 pin	V _{in} I~3=0V
Offset output Voltage 2	Vos2	mV		5, 10 pin	V _{in} 1~3=0V
Input/Output Crosstalk	CT	dB	1, 3, 12 pin	5, 10 pin	MUTE1/2=V _{CL}
MUTE Crosstalk	СТм	dB	1, 3, 12 pin	5, 10 pin	MUTE1/2=V _{CL}
Switch Change Voltage	V _{CH}	V		-	
	VCL	V			
Total Harmonic Distortion	THD	%	1, 3, 12 pin	5, 10 pin	

■ CONTROL SIGNAL-OUTPUT SIGNAL

(L=V_{CL}, H=V_{CH}, X=LorH)

	CONTRO	OUT	PUT		
SW I (2 pin)	SW 2 (13pin)	MUTE I (IIpin)	MUTE 2 (4 pin)	Vout I (10pin)	Vout 2 (5 pin)
X	X	L	L	GND	GND
X	X	L	Н	GND	OUT PUT
X	X	Н	L	OUT PUT	GND
L	L	Н	Н	V _{IN} 1	V _{IN} 2
L	Н	Н	Н	V _{IN} 2	V _{IN} 2
Н	L	Н	Н	V _{IN} 1	V _{IN} 3
Н	Н	Н	Н	V _{IN} 3	V _{IN} 3

■ APPLICATION

Operating Current vs. Operating Voltage

THD vs. Operating Voltsge

Different Gain vs. Operating Voltage

Differential Phase vs. Operating Voltage

Voltage Gain vs. Frequency

Switching Voltage vs. Operating Voltage

2-INPUT 3CHANNEL VIDEO SWITCH

■ GENERAL DESCRIPTION

NJM2283 is a switching IC for switching over from one audio or video input signal to another. Internalizing 2 inputs and 1 output, and then each set of 3 can be operated independently. It is a higher efficiency video switch, featuring the supply voltage range 4.75 to 13.0V, the frequency feature 10MHz, and then Crosstalk 75dB (at 4.43MHz).

■ FEATURES

- 2 Input-1 Output 3 Circuits internalizing
- Wide Operating Voltage (4.75~13.0V)
- Crosstalk 75dB(at 4.43MHz)
- Wide Operating Supply Range 10MHz(2V_{P-P} Input)
- Wide Bandwidth Frequency
- Package Outline DIP16, DMP16, SSOP16

■ PACKAGE OUTLINE

NJM2283V

APPLICATIONS

VCR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

■ MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	14	V
Power Dissipation	PD	(DIP16) 700	mW
		(DMP16) 350	mW
		(SSOP16) 300	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	Icci	V+=5V (Notel)	8.3	11.8	15.3	mA
Operating Current (2)	I _{CC2}	V ⁺ =9V (Note1)	10.4	14.8	19.2	mA
Voltage Gain	Gv	$V_{I} = 100 \text{kHz}, 2 V_{P-P}, V_{O} / V_{I}$	-0.6	-0.1	+0.4	dB
Frequency Gain	GF	$V_1 = 2V_{P-P}, V_O(10MHz)/V_O(100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I =2V _{P-P} , Standard Staircase Signal	_	0.3	-	%
Differential Phasa	DP	V _I =2V _{P-P} , Standard Staircase Signal	+	0.3	1 HOO	deg
Output Offset Voltage	Vos	(Note2)	-10	0	+10	mV
Crosstalk	CT	$V_{I} = 2V_{P-P}, 4.43MHz, V_{O}/V_{I}$	_	-75	_	dB
Switch Change Over Voltage	V _{CH}	All inside switch ON	2.5	-	-	V
Switch Change Over Voltage	V _{CL}	All inside switch OFF	1 150	_	1.0	V

(Note1) S1=S2=S3=S4=S5=S6=S7=1

(Note2) S1=S2=S3=S4=S5=S6=1, $S7=1\rightarrow 2$ Measure the output DC voltage difference

■ TERMINAL EXPLANATION

PIN No.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT CIRCUIT
16	IN 1 A	2.5V	
1	IN 1 B		IN Q
11	IN 2 A		
14	IN 2 B		
8	IN 3 A		
9	IN 3 B		
	(Input)		500 15k
	(Input)		
0-			The state of the s
-40 (5)			→ 2.5V
			0 17
			777
0	CTI 1		a training to the training
2	CTL 1		C
12	CTL 2	A STATE OF THE PERSON NAMED IN	
7	CTL 3		a set of the second sec
	(Switching)		
		The second of th	
		Later and the same	
		POTTER ME I	2.3V T T1.9V
			2.30
			m m m m
3	OUT 1	1.8 V	The state of the state of
5	OUT 2	8 1 88 1 88	1 - 40 - 10 - 10 - 10 - 10 - 10 - 10 - 1
6	OUT 3		
	(Output)		
1 THE			
441			O OUT
		1-301	
			\ \alpha
			The second secon
			7/17
		EL ALHER	The Colonia of the Co
13	V+	5 V	
10			
15	GND 1		
4	GND 2		1 1 2 00
10	GND 3	The state of the s	

■ TEST CIRCUIT

Parameter	SI	S 2	S 3	S 4	S 5	S 6	S 7	S 8	Test Part
Iccı	1	1	1	1	1	1	1	1	V+
Icc2	1	1	1	1	1	1	1	. 1	
G _{v1}	2	1	1	1	1	1	1	1	v_0
G _{f1}	2	1	1	1	1	1	1	1	
DG ₁	2	1	1	1	1	1	1	1	
DP ₁	2	1	1	1	1	1	1	1	
CT 1	2	1	1	1	1	1	2	1	v_0
CT 2	1	2	1	1	1	1	1	1	
CT 3	1	1	2	1	1	1	2	2	
CT 4	1	1	1	2	1	1	1	2	
CT 5	1	1	1	1	2	1	2	3	
CT 6	1	1	1	1	1	2	1	3	
Vosi	1	1	1	1	1	1	1/2	1	Vo
Vc1	1/2	2/1	1	1	1	1	Vc	1	Vc
THD	2	1	1	1	1	1	1	1	00

Operating Current 2 vs. Temperature

Voltage Gain 1 vs. Temperature

Frequency Gain 1 vs. Temperature

Differential Gain 1 vs. Temperature

Differential Phase 1 vs. Temperature

Offset Voltage 1 vs. Temperature

Crosstalk 1 vs. Temperature

Crosstalk 2 vs. Temperature

Temperature T_a (°C)

Crosstalk 3 vs. Temperature

Crosstalk 4 vs. Temperature

Crosstalk 5 vs. Temperature

Crosstalk 6 vs. Temperature

Switch Change Over 1 vs. Operating Voltage

Operating Current vs. Operating Voltage

Voltage Gain 1 vs. Operating Voltage

Frequency Gain 1 vs. Operating Voltage

Differential Gain 1 vs. Operating Voltage

Differential Phase 1 vs. Operating Voltage

Offset Voltage 1 vs. Operating Voltage

Crosstalk 1 vs. Operating Voltage

Crosstalk 2 vs. Operating Voltage

Crosstalk 3 vs. Operating Voltage

Crosstalk 4 vs. Operating Voltage

Crosstalk 5 vs. Operating Voltage

Crosstalk 6 vs. Operating Voltage

Switch Change Over 1 vs. Operating Voltage

Voltage Gain 1 vs. Frequency Feature

Differential Gain 1 vs. Load Resistor

Differential Phase 1 vs. Load Resistor

Differential Phase 1 vs. APL

Total Harmonic Distortion vs. Load Resistor

2-INPUT 3CHANNEL VIDEO SWITCH

■ GENERAL DESCRIPTION

NJM2284 is a switching IC for switching over from one audio or video input signal to another. Internalizing 2 inputs, 1 output, and then each set of 3 can be operated independently. One of them is a Clamp type" and it can be operated while DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating supply voltage 4.75 to 13.0V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

■ FEATURES

- 2 Input-1 Output Internalizing 3 Circuits (one of them is a Clamp type).
- Wide Operating Voltage
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency Feature 10MHz(2V_{P-P} Input)
- Package Outline DIP-16, DMP-16, SSOP-16

■ RECOMMENDED OPERATING CONDITION

Supply Voltage

V+

4.75~13.0V

■ APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2284V

■ MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	14	V
Power Dissipation	PD	(DIP16) 700	mW
		(DMP16) 350	mW
		(SSOP16) 300	mW
Operating Temperature Range	Торг	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	C

ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	Icci	V+=5V (Notel)	8.1	11.6	15.1	mA
Operating Current (2)	I _{CC2}	V+=9V (Notel)	10.2	14.6	19.0	mA
Voltage Gain	Gv	$V_1 = 100 \text{kHz}, 2V_{P-P}, V_O / V_I$	-0.6	-0.1	+0.4	dB
Frequency Gain	GF	$V_1 = 2V_{P-P}, V_O(10MHz)/V_O(100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I =2V _{P-P} , Standard Staircase Signal	_	0.3	KOLK!	%
Differential Phasa	DP	V _I =2V _{P-P} , Standard Staircase Signal	OVER A	0.3	-	deg
Output Offset Voltage	Vos	(Note2)	-10	0	+10	mV
Crosstalk	CT	$V_{I} = 2V_{P-P}, 4.43MHz, V_{O}/V_{I}$	-	-75	_	dB
Switch Change Over Voltage	V _{CH}	All inside Switch ON	2.5	100	3 FOO	V
Switch Change Over Voltage	V _{CL}	All inside Switch OFF		_	1.0	V

(Note1) S1=S2=S3=S4=S5=S6=S7=1

(Note2) S1=S2=S3=S4=S5=S6=1, $S7=1\rightarrow 2$ Measure the output DC voltage difference

■ TERMINAL EXPLANATION

PIN No.	PIN NAME		VOLTAGE	INSIDE EQUIVALENT CIRCUIT		
16 1 11 14	IN 1 A IN 1 B IN 2 A IN 2 B (Input)		2.5V	500 15k T 2.5V		
	z e			777		
8 9	IN3A IN3B (Input)		1.5V	IN 500		
2 12 7	CTL 1 CTL 2 CTL 3 (Switch	ing)		CLT S		
	Test Pass			2.3V T T 1.9V		
				मा मा मा मा		
3	OUT 1		1.8V	S 130		
5	OUT 2					
6	OUT 3 (Output)	0.8 V	O OUT		
13	V+		5 V			
15 4 10	GND 1 GND 2 GND 3					

■ TEST CIRCUIT

Parameter	SI	S2	S 3	S 4	S 5	S 6	S 7	S 8	Test Part
Iccı	1	1	1	1	1	1	1	1	V+
Icc2	1	1	1	1	1	1	1	1	
Gv1	2	1	1	1	1	1	1	1	v ₀
Gf1	2	1	1	1	1	1	1	1	
DG ₁	2	1	1	1	1	1	-1	1	FILLO
DP ₁	2	1	1	1	1	1	1	1	11111
CT 1	2	1	1	1	1	1	2	1	v_0
CT 2	1	2	1	1	1	1	1	1	The state of
CT 3	1	1	2	1	1	1	2	2	
CT 4	1	1	1	2	1	1	1	2	
CT 5	1	1	1	1	2	1	2	3	
CT 6	1	1	1	1	1	2	1	3	87101
Vosi	1	1	1	1	1	1	1/2	1	Vo
V _{C1}	1/2	2/1	1	1	1	1	Vc	1	Vc
THD	2	1	1	1	1	1	1	1	v ₀

Operating Current 2 vs. Temperature

Voltage Gain 1 vs. Temperature

Frequency Gain 1 vs. Temperature

Differential Gain 1 vs. Temperature

Differential Phase 1 vs. Temperature

Offset Voltage 1 vs. Temperature

Crosstalk 1 vs. Temperature

Crosstalk 2 vs. Temperature

Crosstalk 3 vs. Temperature

Crosstalk 4 vs. Temperature

Crosstalk 5 vs. Temperature

Crosstalk 6 vs. Temperature

Switch Change Over 1 vs. Temperature

Operating Current vs. Operating Voltage

Voltage Gain 1 vs. Operating Voltage

Frequency Gain 1 vs. Operating Voltage

Differential Gain 1 vs. Operating Voltage

Differential Phase 1 vs. Operating Voltage

Offset Voltage 1 vs. Operating Voltage

Crosstalk 1 vs. Operating Voltage

Crosstalk 2 vs. Operating Voltage

Crosstalk 3 vs. Operating Voltage

Crosstalk 4 vs. Operating Voltage

Crosstalk 5 vs. Operating Voltage

Crosstalk 6 vs. Operating Voltage

Switch Change Over 1 vs. Operating Voltage

Diffeerntial Gain vs. APL

Voltage Gain 1 vs. Frequency Feature

Differential Gain 1 vs. Load Resistor

Differential Gain 5 vs. Load Resistor

Differential Phase 1 vs. Load Resistor

Differential Phase 5 vs. Load Resistor

(Ta=25°C)

| Ta=25°C|

Differential Gain 1 vs. APL

Differential Phase 1 vs. APL

Differential Phase 5 vs. APL

Total Harmonic Distortion 1 vs. Load Resistor

2-INPUT 3CHANNEL VIDEO SWITCH

■ GENERAL DESCRIPTION

NJM2285 is a switching IC for switching over from one audio or video input signal to another. Internalizing 2 inputs, 1 output, and then each set of 3 can be operated independently. Two of them are Clamp type", and they can be operated while setting DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating supply voltage 5 to 12V, the frequency feature 10MHz, and then the crosstalk 75dB (at 4.43MHz).

■ FEATURES

• 2 Input-1 Output

Internalizing 3 Circuits (Two of them are Clamp type).

- Wide Operating Supply Voltage (4.75~13.0V)
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency Feature 10MHz(2V_{P-P} Input)
- Package Outline DIP16, DMP16, SSOP16
- Bipolar Technology

APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

NJM2285D NJM2285M NJM2285V

■ PACKAGE OUTLINE

NJM2285V

■ MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V*	14	V	
Power Dissipation	PD	(DIP16) 700	mW	
		(DMP16) 350	mW	
		(SSOP16) 300	mW	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	Tstg	-40~+125	°C	

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	Icci	V+=5V (Notel)	8.0	11.4	14.8	mA
Operating Current (2)	I _{CC2}	V+=9V (Note1)	10.0	14.3	18.6	mA
Voltage Gain	Gv	$V_{I} = 100kHz, 2V_{P-P}, V_{O}/V_{I}$	-0.6	-0.1	+0.4	dB
Frequency Gain	GF	$V_{I} = 2V_{P-P}, V_{O}(10MHz)/V_{O}(100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I =2V _{P-P} , Standard Staircase Signal	-0	0.3	_	%
Differential Phasa	DP	V _I =2V _{P-P} , Standard Staircase Signal		0.3	_	deg
Output offset Voltage	Vos	(Note2)	-10	0	+10	mV
Crosstalk	CT	$V_{I} = 2V_{P-P}, 4.43MHz, V_{O}/V_{I}$	_	-75	_	dB
Switch Change Over Voltage	V _{CH}	All inside Switches ON	2.5	_	_	V
Switch Change Over Voltage	V _{CL}	All inside Switches OFF	_	_	1.0	V

(Note1) S1=S2=S3=S4=S5=S6=S7=1

(Note2) S1=S2=S3=S4=S5=S6=1, $S7=1\rightarrow 2$ Measure the output DC voltage difference

■ TERMINAL EXPLANATION

PIN No.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT	CIRCUIT
16	IN 1 A	2.5V	IN	noite
1	IN 1 B	ORGANISM TO	9	
	(Input)			
	(mpac)	(IDE (STREET)		
		2/4-00-	with the second	
			500 15k	
		501-00-		<u></u>
Charles Wiles			9	
HI KAM	497 1014	Momentos van	7/17	y 111 3 2 2 3
11	IN 2 A	1.5V	IN	The same
14	IN 2 B	100		
8	IN 3 A		Mark Comment of the C	1 .
		Photo Virginia		
9	IN 3 B	STRUCK STRUCK		4
W -	(Input)	Ling Z stump? borney	500	
180 -		Grand Summer Street	500	0000
Vm DE-				Votes
40 -		aviol/ astron		
VI I				and the second
		40 policy (14)	9	2.2V
A GI		THO social	777	777
	O	sensellih maten 30	permitted telescoper	
2	CTL 1			CLT
12	CTL 2			9
7	CTL 3			}
	(Switching)			≶ 8k
				1
			2.3V + + 1.9V	₹ \$ 201
				1
		The contract of the		
				≶ 8k
			777 777 777	111. 111
3	OUT 1	1.8V		
The land			The second secon	
5	OUT 2	0.8 V		OUT
6	OUT 3			001
	(Output)			
			8	
			711	
13	V+	5 V		
15	GND 1			
4	GND 2			
	GND 3			

■ TEST CIRCUIT

Parameter	SI	S 2	S 3	S 4	S 5	S 6	S 7	S 8	Test Part
Icci	1	1	1	1	1	1	1	1	V ⁺
Icc2	1	1	1	1	1	1	1	1	
G _{v1}	2	1	1	1	1	1	1	1	v_0
Gf1	2	1	1	1	1	1	1	1	
DG ₁	2	1	1	1	1	1	1	1	
DP ₁	2	1	1	1	1	1	1	1	
CT1	2	1	1	1	1	1	2	1	v ₀
CT 2	1	2	1	1	1	1	1	1	
CT 3	1	1	2	1	1	1	2	2	
CT 4	1	1	1	2	1	1	1	2	
CT 5	1	1	1	1	2	1	2	3	20.27
CT 6	1	1	1	1	1	2	1	3	
Vosi	1	1	1	1	1	1	1/2	1	Vo
V _{C1}	1/2	2/1	1	1	1	1	Vc	1	Vc
THD	2	1	1	1	1	1	1	1	v ₀

Operating Current 2 vs. Temperature

Voltage Gain 1 vs. Temperature

Frequency Gain 1 vs. Temperature

Differential Gain 1 vs. Temperature

Differential Phase 1 vs. Temperature

Offset Voltage 1 vs. Temperature

Temperature T_a (°C)

Crosstalk 1 vs. Temperature

Temperature T_a (°C)

Crosstalk 2 vs. Temperature

Temperature Ta (°C)

Crosstalk 3 vs. Temperature

Temperature T_a (°C)

Crosstalk 4 vs. Temperature

Temperature Ta (°C)

Crosstalk 5 vs. Temperature

Temperature T_a (°C)

Differential Phase 1 vs. Operating Voltage

Offset Voltage 1 vs. Operating Voltage

Crosstalk 1 vs. Operating Voltage

Crosstalk 2 vs. Operating Voltage

Crosstalk 3 vs. Operating Voltage

Crosstalk 4 vs. Operating Voltage

Crosstalk 5 vs. Operating Voltage V+ (V)

Crosstalk 6 vs. Operating Voltage V+ (V)

Switch Change Over 1 vs. Operating Voltage

Voltage Gain 1 vs. Frequency

Differential Gain 1 vs. Load Resistor

Differential Gain 3 vs. Load Resistor

Differential Phase 1 vs. Load Resistor

Differential Phase 3 vs. Load Resistor

Differential Gain 1 vs. APL

Differential Gain 3 vs. APL

Differential Phase 1 vs. APL

Differential Phase 3 vs. APL

2-INPUT 3CHANNEL VIDEO SWITCH

■ GENERAL DESCRIPTION

NJM2286 is a switching IC for switching over from one audio or video input signal to another. Internalizing 2 inputs, 1 output, and then each set of 3 can be operated independently. They are a Clamp type" and it can be operated while DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating supply voltage 4.75 to 13.0V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

■ PACKAGE OUTLINE

■ FEATURES

- 2 Input-1 Output Internalizing 3 Circuits (Clamp type).
- Wide Operating Voltage (4.75~13.0V)
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency Feature 10MHz(2V_{P-P} Input)
- Package Outline DIP16, DMP16
- Bipolar Technology

APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disk Player.

BLOCK DIAGRAM

■ MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V+	Takki umati a m 14	V	
Power Dissipation	PD	(DIP16) 700	mW	
		(DMP16) 350	mW	
Operating Temperature Range	Topr	-20~+75	C	
Storage Temperature Range	Tstg	-40~+125	℃	

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

8.0	100 00 00 0		
0.0	11.4	14.8	mA
10.0	14.3	18.6	mA
-0.6	-0.1	+0.4	dB
-1.0	0	+1.0	dB
-	0.3	AZER	%
91.30	0.3		deg
-10	0	+10	mV
	-75	_	dB
2.5	PRINTER!	Q 7500	V
_	-	1.0	V
	_	− −75	— — — — — — — — — — — — — — — — — — —

(Notel) S1=S2=S3=S4=S5=S6=S7=1

(Note2) S1=S2=S3=S4=S5=S6=1, $S7=1\rightarrow 2$ Measure the output DC voltage difference

■ TEST CIRCUIT

PARAMETER	SI	S 2	\$3	S 4	S 5	S 6	S 7	S 8	TEST PART
Iccı	1	1	1	1	1	1	1	1	V+
Icc2	1	1	1	1	1	1	1	1	
G _{v1}	2	1	1	1	1	1	1	1	v ₀
Gf1	2	1	1	1	1	1	1	1	
DG ₁	2	1	1	1	1	1	1	1	12
DP ₁	2	1	1	1	1	1	1	1	
CT 1	2	1	1	1	1	1	2	1	00
CT 2	1	2	1	1	1	1	1	1	1950.
CT 3	1	1	2	1	1	1	2	2	
CT 4	1	1	1	2	1	1	1	2	
CT 5	1	1	1	1	2	1	2	3	
CT 6	1	1	1	1	1	2	1	3	
Vosi	1	1	1	1	1	1	1/2	1	Vo
Vcı	1/2	2/1	1	1	1	1	Vc	1	Vc
THD	2	1	1	1	1	1	1	1	00

TERMINAL EXPLANATION

PIN No.	PIN NAM	ME	VOLTAGE		INSID	E EQUIVA	LENT CIF	RCUIT	
16 1 11 11	IN 1 A IN 1 B IN 2 A IN 2 B		1.5V		IN O				
8	IN 3 A					500		7	
9	IN 3 B (Input)			3		300	18	10-1	
	3				9			2.2V	
	100 000			0-	777			777	
2	CTL 1				_J_		T RR	CLT	
12	CTL 2			1		1001 579		Q	
7	CTL 3							}	
	(Switching)			2.3		-1.9V	+	\$8k ▼ \$20k	
		120			,,, ,,,	101		8k	
3	OUT 1		1/4			_	-		
5	OUT 2		0.8 V						
6	OUT 3 (Output)				-				
	TE PA		08 -F 88.	1		18		O OUT	
	W I I						9		
							777		
	1 1	1		1 1				1.0	
			5 V						
13	V+								
13	V ⁺								
		2						170	

Operating Current 1 vs. Temperature

Operating Current vs. Operating Voltage

Voltage Gain 1 vs. Temperature

Frequency Gain 1 vs. Temperature

Differential Gain 1 vs. Temperature

Differential Phase 1 vs. Temperature

Offset Voltage vs. Temperature

Crosstalk 1 vs. Temperature

Crosstalk 2 vs. Temperature

Crosstalk 3 vs. Temperature

Crosstalk 4 vs. Temperature

Crosstalk 5 vs. Temperature

Crosstalk 6 vs. Temperature

Switch Change Over 1 vs. Temperature

Supply Current 2 vs. Temperature

Voltage Gain 1 vs. Operating Voltage

Frequency Gain 1 vs. Operating Voltage

Differential Gain 1 vs. Operating Voltage

Differential Phase 1 vs. Operating Voltage

Offset Voltage 1 vs. Operating Voltage

Crosstalk 1 vs. Operating Voltage

Crosstalk 2 vs. Operating Voltage

Crosstalk 3 vs. Operating Voltage

Crosstalk 4 vs. Operating Voltage

Crosstalk 5 vs. Operating Voltage

Crosstalk 6 vs. Operating Voltage

Switch Change Over 1 vs. Operating Voltage

Voltage Gain 1 vs. Frequency Feature

Differential Gain 3 vs. Load Resistor

Differential Phase 3 vs. Load Resistor

4-INPUT 1MUTE VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2293 is a switching IC for switching over from one audio or video input signal to another. It is a higher efficiency video switch, featuring the operating voltage 4.75 to 13V, the frequency feature 7MHz, and then the Crosstalk 75dB (at 4.43MHz).

■ FEATURES

- 4 Input-1 Output
- Operating Voltage (+4.75V~+13V)
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency 7MHz(2V_{P-P} Input)

Package Outline DIP16, DMP16.

Bipolar Technology

RECOMMENDED OPERATING CONDITION

Operating Voltage

APPLICATIONS

VCR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2293M

■ MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	14	V
Power Dissipation	PD	(DIP-16) 700	mW
		(DMP-16) 350	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	Icc1	V+=5V (Note1)	4.5	6.5	8.5	mA
Operating Current (2)	Icc2	V+=9V (Note1)	5.8	8.3	10.8	mA
Voltage Gain	Gv	$V_1 = 100 \text{kHz}, 2 V_{P-P}, V_O / V_I$	-0.7	-0.2	+0.3	dB
Frequency Gain (1)	G _F 1	$V_{I} = 2V_{P-P}, V_{O}(7MHz)/V_{O}(100kHz)$	-1.0	0	+1.0	dB
Frequency Gain (2)	GF 2	$V_1 = 1V_{P-P}, V_O(10MHz)/V_O(100kHz)$	_	.0	TRALE	dB
Differential Gain	DG	V _I =2V _{P-P} , Standerd Staircase Signal	V == -1	0.3	ro <u>al</u> V,	%
Differential Phasa	DP	V _I =2V _{P-P} , Standerd Staircase Signal	_	0.3	_	deg
OutPut offset Voltage	Vos	(Note2)	-4.5	0	+45	mV
Crosstalk	CT	$V_1 = 2V_{P-P}$, 4.43MHz, V_0 / V_1	-	-75	_	dB
Switch Change Over Voltage	V _{CH}	All inside Switches ON	2.5	_	-	V
Switch Change Over Voltage	VCL	All inside Switches OFF	-	-	1.0	V
	The same of the sa			1		

(Note1) S1=S2=S3=S4=S5=S6=S7=1

(Note2) S1=S2=S3=S4=1 Measure the output DC voltage difference

a) S5=S6=S7=1, b) S7=2, S5=S6=1

c) S6=2, S5=1 d) S5=2

■ TEST CIRCUIT

■ TERMINAL EXPLANATION

PIN NO.	PIN NAM	ИЕ	VOLTAGE	INSIDE EQUIVALENT CIRCUIT
7 9 14 16	IN 1 IN 2 IN 3 IN 4 (Input)		2.5V	IN
8 12 3	CTL1 CTL2 CTL3 (Switching)	10 T S	SALE CARD	2.3V
1	OUT (Output)	2A.78	1.8V	OOUT
6	V+		5 V	
5 10 15	GND 1 GND 2 GND 3			

3-INPUT/2-INPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2503 is a switching IC for switching over from one audio or video input signal to another. Internalizing 3 input-1 output, and 2 input-1 output and then each set can be operated independently. It is a higher efficiency video switch, featuring the operating voltage 4.75 to 13V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

■ PACKAGE OUTLINE

NJM2503D

NJM2503M

■ FEATURES

- Operating Voltage (+4.75V~+13V)
- 3 Input-1 Output/2 Input output
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency 10MHz(2V_{P-P} Input)
- Package Outline

DIP16, DMP16

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

V+

4.75~13.0V

APPLICATIONS

VCR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

MAXIMUM RATINGS

Ta	=	25	.)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	14	V
Power Dissipation	PD	(DIP 16) 700	mW
		(DMP 16) 350	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25°C)

mA mA
dD.
dB
dB
%
deg
mV
mV
dB
V
V

(Note1) S1=S2=S3=S4=S5=S6=S7=1

(Note2) S1=S2=S3=S4=S5=1, S8=2, S7=1, S6=1 \rightarrow 2 Measure the output DC voltage difference

 $(Note3)\ S1=S2=S3=S4=S5=1,\ S8=1,\ S7=1,\ S6=1\rightarrow2\ (S6=1,\ S7=1\rightarrow2) \\ \ Measure\ the\ output\ DC\ voltage\ difference$

■ TEST CIRCUIT

■ TERMINAL EXPLANATION

PIN No.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT CIRCUIT
8 9 11 16	IN 1 A IN 1 B IN 1 C IN 2 A	$\begin{pmatrix} 2.5V \\ \left(\frac{1}{2}V^+\right) \end{pmatrix}$	IN O
1 Post Vest	IN 2 B (Input)	034-069	500 15k 2.5V
Did Zak		мотилиоз тач	THE MANAGE THE THE PARTY OF THE
7 12 2	CTL 1A CTL 1B CTL 2 (Switching)		2.3V 1.9V 20k 8 k
5	OUT 1 (Output)		
3	OUT 2 (Output)	1.8V $\left(\frac{1}{2}V^{+}-0.7\right)$	OOUT
13	V+	5 V	10 to
15 4 10	GND 1 GND 2 GND 3	1017	

NJM2506M

■ PACKAGE OUTLINE

NJM2506D

3-INPUT/2-INPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2506 is video switch for video and audio signal. It contains 3 input-1 output and 2 input-1 output video switch. 3 input-1 output switch has clamp function and so is applied to fixed DC level of video signal. Its operatiing voltage is 4.75 to 13V and bahdwidth is 10MHz. Crosstalk is 75dB (at f=4.43MHz).

■ FEATURES

- Wide Operating Supply Range (+4.75V~+13V)
- 3 Input-1 Output and 2 Input-1 Output
- Internal Clamp Function
- Crosstalk 75dB(at 4.43MHz)
- Wide Frequency Range 10MHz(2V_{P-P} Input)
- Package Outline

DIP16, DMP16, SSOP16

SOP16 NJM2506V

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

+ 4.75~13.

APPLICATION

• VCR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	14	V
Power Dissipation	PD	(DIP16) 700	mW
		(DMP16) 350	mW
		(SSOP16) 300	mW
Operating Temperature Range	Topr	−20~+75	. ℃
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	I _{CC1}	V+=5V (Notel)	6.7	9.7	12.7	mA
Operating Current (2)	I _{CC2}	V+=9V (Note1)	8.6	12.3	16.0	mA
Voltage Gain	Gv	$V_{I} = 2V_{P-P}/100 \text{khz}, V_{O}/V_{I}$	-0.6	-0.1	+0.4	dB
Frequency Response	Gf	$V_{\rm I} = 2V_{\rm P-P}, V_{\rm O}(10{\rm MHz}/100{\rm kHz})$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I =2V _{P-P} , Staircase Signal	_	0.3	10-19	%
Differential Phasa	DP	V _I =2V _{P-P} , Staircase Signal	1 VA	0.3	10-4	deg
Output Offset Voltage (1)	Vosi	(Note2)	-10	0	+10	mV
Output Offset Voltage (2)	V _{OS2}	(Note3)	-30	0	+30	mV
Crosstalk	CT	$V_{I} = 2V_{P-P}, 4.43MHz, V_{O}/V_{I}$	-	-75	_	dB
Switch Change Voltage	V _{CH}	All inside SW: ON	2.5	_	-	V
Switch Change Voltage	V _{CL}	All inside SW: OFF	-	-	1.0	V

(Note 1): S1=S2=S3=S4=S5=S6=S7=1

(Note 2): Output DC Voltage Difference is tested on $S6=1\rightarrow 2$, S1=S2=S3=S4=S5=1, S8=2 and S7=1

(Note 3): Output DC Voltage Difference is tested on $S6=1\rightarrow 2$, S7=1 (or S6=1, $S7=1\rightarrow 2$.), S1=S2=S3=S4=S5=1 and S8=1

■ PIN FUNCTION

IN No.	PIN NAME	DC VOLTAGE	INSIDE EQUIVALENT CIRCUIT
16 1	IN 2 A IN 2 B (Input)	2.5V	500 15k 2.5V
8 9 11	IN 1A IN 1B IN 1C (Input)	1.5V	1N O T 2.2V
7 12 2	CTL 1A CTL 1B CTL 2 (Control)		2.3V 1.9V 20k 8 k
5	OUT 1 (Output)	1.8V	volume only seems of
3	OUT 2 (Output)	0.8V	OOUT
13	V+	5 V	
15 4 10	GND 1 GND 2 GND 3	100	of the state of th

Operating Current vs. Ambient Temperature

Operating Current vs. Ambient Temperature

Voltage Gain vs. Operating Voltage

Voltage Gain vs. Frequency

Voltage Gain vs. Ambient Temperature

Offset Voltage vs. Operating Voltage

Offset Voltage vs. Ambient Temperature

vs. Operating Voltage

(Ta=25°C)

3.5

2.5

V_{CH}

V_{CL}

 V_{c}

(V) 0.5

Switch Change Voltage

Switch Change Voltage vs. Ambient Temperature

12 13 14

Differential Phase vs. APL

Differential Gain vs. Load

Differential Phase vs. Load

Differential Gain vs. APL

Differential Phase vs. APL

Crosstalk(IN2A to OUT2)vs. Operating Voltage

Crosstalk(IN2A to OUT2)vs. Ambient Temperature

Crosstalk(IN1B to OUT1)vs. Operating Voltage

Crosstalk(IN1B to OUT1)vs. Ambient Temperature

Crosstalk(IN1B to OUT1)vs. Operating Voltage

Crosstalk(IN1B to OUT1)vs. Ambient Temperature

Total Harmonic Distortion vs. Load

3-INPUT/2-INPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2508 is video switch for video and audio signal. It contains 3 input-1 output and 2 input-1 output video switch. One input terminal has clamp function and so is applied to fixed DC level of video signal. Its operating voltage is 4.75 to 13V and bandwidth is 10MHz. Crosstalk is 75dB (at f=4.43MHz).

■ FEATURES

- Operating Voltage (+4.75V~+13V)
- 3 Input-1 Output and 2 Input-1 Output
- Crosstalk 75dB(at 4.43MHz)
- Wide Frequency Range 10MHz(2V_{P-P} Input)
- Package Outline

DIP16, DMP16, SSOP16

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

V+

4.75~13.0V

■ APPLICATION

• VTR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2508V

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V ⁺	14	V	
Power Dissipation	PD	(DIP16) 700	mW	
		(DMP16) 350	mW	
		(SSOP16) 300	mW	
Operating Temperature Range	Topr	-20~+75	°C	
Storage Temperature Range	Tstg	-40~+125	C	

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current 1	I _{CC1}	V ⁺ =5V (Notel)	6.6	9.4	12.3	mA
Operating Current 2	I _{CC2}	V+=9V (Notel)	8.0	11.5	15.0	mA
Voltage Gain	Gv	$V_{I} = 2V_{P-P}/100kHz, V_{O}/V_{I}$	-0.6	-0.1	+0.4	dB
Frequency Response	Gf	$V_{I} = 2V_{P-P}, V_{O}(10MHz/100MHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I =2V _{P-P} Staircase Signal	-	0.3	_	%
Differential Phasa	DP	V _I =2V _{P-P} Staircase Signal		0.3	-	deg
Output Offset Voltage	Vos	(Note2)	-10	0	+10	mV
Crosstalk	CT	$V_{I} = 2V_{P-P}, 4.43MHz, V_{O}/V_{I}$	_	-75	_	dB
Switch Change Voltage	V _{CH}	All inside SW: ON	2.5	al a l a	-	V
Switch Change Voltage	V _{CL}	All inside SW: OFF		9-7	1.0	V

(Note1) S1=S2=S3=S4=S5=S6=S7=1

(Note2) Output DC Voltage Difference is tested on S6=1→2, S1=S2=S3=S4=S5=1, S8=2 and S7=1

■ PIN FUNCTION

PIN NO.	PIN NAME	DC VOLTAGE	INSIDE EQUIVALENT CIRCUIT
16 1	IN 2 A IN 2 B (Input)	2.5V	500 15k 2.5V
8 34	IN 1 A (Input)	1.5V	in O
	2.11 03 16- 60- 0 0.1- 2.0 	Control of Control (Control (Control	500 ———————————————————————————————————
9	IN 1 B IN 1 C (Input)	NO W	IN
	1=6	In 5-62 1-18-80-88-12	500
7 12 2	CTL 1A CTL 1B CTL 2 (Control)	307 2	Sk Sch
	100	E	8k × 8k
5	OUT 1 (Output)	1.8V	
3	OUT 2 (Output)	0.8V	OOUT
13	V+ 0	5 V	
15 4 10	GND 1 GND 2 GND 3		

Operating Current vs. Ambient Temperature

Operating Current vs. Ambient Temperature

Voltage Gain vs. Operating Voltage

Voltage Gain vs. Frequency

Differential Phase vs. Operating Voltage

Differential Gain vs. Ambient Temperature

Ambient Temperature Ta (°C)

Differential Gain vs. Load

Differential Phase vs. Load

Ambient Temperature Ta (°C)

Differential Phase vs. APL

Differential Gain vs. Load

Differential Phase vs. Load

Differential Gain vs. APL

Differential Phase vs. APL

Crosstalk vs. Ambient Temperature

Ambient Temperature Ta (°C)

Crosstalk vs. Operating Voltage

Crosstalk vs. Ambient Temperature

Crosstalk vs. Operating Voltage

Crosstalk vs. Ambient Temperature

VIDEO SUPER INPOSER WITH Y-C MIXER

■ GENERAL DESCRIPTION

The NJM2509 is video super imposer, including Y/C mix circuit. Y-signal input terminal have sink-chip clamp function and it is applied to fixed DC level of video signal.

Impose voltage is fixed internally to white level and black level, and includes 6dB amplifier.

■ PACKAGE OUTLINE

NJM2509V

■ FEATURES

- Operating Voltage (4.5~5.1V)
- Internal Y/C Mix Circuit
- Internal Clamp Circuit (Y Signal), Bias Circuit (C Signal)
- Impose voltage fixed internally to white level and black level.
- Internal 6dB AMP. (Input:0.5V_{P-P}, Output:1.0V_{PP})
- Package Outline SSOP8
- Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

V+

4.5~5.1V

■ APPLICATION

• Video Camera

BLOCK DIAGRAM

NJM2509V

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	7.0	V
Power Dissipation	PD	250	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

 $(V^+=4.8V, Ta=25^{\circ}C, R_L=10k\Omega)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}		5.3	7.0	8.7	mA
Clamp Voltage	V _{cmp}		2.4	2.5	2.6	V
Bias Voltage	V _{bias}		2.4	2.5	2.6	V
Voltage Gain	Gv	V _{out} /V _{in} 100kHz, 0.5V _{P-P} Sine Wave	6.0	6.3	6.8	dB
Frequency Characteristic	Gı	0.5V _{P-P} Sine Wave v_0 (10MHz)/ v_0 (100kHz)	-0.7	-0.2	+0.3	dB
Background Voltage	V _{set}	From Pedestal Level	5.0	15.0	20.0	IRE
CHR. VOLTAGE	V _{chr}	From Pedestal Level	65.0	75.0	85.0	IRE
Input Resistance	Rin	Input Cin		30	TADLE	kΩ
Differential Gain	DG	0.5V _{P-P} , 10 STEP Stair wave		_	3.0	deg
Differential Phasa	DP	0.5V _{P-P} , 10 STEP Stair wave	_	_	3.0	%
BACKGROUND	V _{ch}	BACKGROUND SW:ON	2.4	in-ba	10-0/	V
Switch Change Voltage	V _{cl}	BACKGROUND SW:OFF	_	_	0.8	V
CHR MUTE	V _{ch} MUTE	CHRMUTE SW:ON	2.4	_	_	V
Switch Change Voltage	V _{cl} MUTE	CHRMUTE SW:OFF	_	_	0.8	V
Crosstalk 1	CT1	C _{in} →BACKGROUND VOLTAGE (*1)	_	-50	-	dB
Crosstalk 2	CT2	C _{in} →CHR VOLTAGE (※2)	_	-50	-	dB
Crosstalk 3	CT3	Y _{in} →BACKGROUND VOLTAGE (*1)		-50	_	dB
Crosstalk 4	CT4	Y _{in} →CHR VOLTAGE (* 2)	_	-50	-	dB

^{★1.} Crosstalk:4.43MHz. 0.5V_{PP} Sine wave, V_{out}/V_{in}

■ TERMINAL EXPLANATION

(V⁺=4.8V, Ta=25°C)

PIN NO.	UNIT	FUNCTION	EQUIVALENT CIRCUIT	PIN NO.	UNIT	FUNCTION	EQUIVALENT CIRCUIT
1	YIN	Input:2.5V clamp 0.5Vpp Y-signal or Compozitto signal	V ⁺ 500 500 1	5	MUTE	Ckaractor signal ON/OFF Switch Hi Charactor signal OFF Charactor Signal ON	30k \$ 30k 26k \$ 26k
2	GND	GROUND		6	CHR	Charactor signal Input pin Hi White level Lo Composit signal	9 k %
3	CIN	Input:2.5V Bias, 0.5Vpp C-signal	70μF	7	V+	Supply Voltage	el est N ter C. A (10)
4	SET	Charactor signal Input Pin Hi Black level Lo Composit signal	19k × 777	8	OUT	Output-IVpp Composit signal, Impose Voltage	V+

3-INPUT/2-INPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2513 is a switching IC for switching over from one audio or video input signal to another. Internalizing 3 input-1 output, and 2 input-1 output and then each set can be operated independently. Side of 2 input-1 output are "Clamp type", and they can be operated while setting DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating voltage 4.75 to 13V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

■ PACKAGE OUTLINE

■ FEATURES

- Operating Voltage $(+4.75V \sim +13V)$
- 3 Input-1 Output/2 Input-1 output
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency 10MHz(2V_{P-P} Input)
- Package Outline

DIP16, DMP16

Bipolar Technology

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

V+

4.75~13.0V

APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disk Player.

■ BLC DIAGRAM

■ MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	14	V
Power Dissipation	P _D	(DIP16) 700	mW
THE PARTY OF THE P	testated	(DMP16) 350	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	Icc1	V+=5V (Note1)	6.7	9.7	12.7	mA
Operating Current (2)	Icc2	V+=9V (Note1)	8.6	12.3	16.0	mA
Voltage Gain	Gv	$V_I = 100 \text{kHz}, 2 \text{V}_{P-P}, \text{V}_O / \text{V}_I$	-0.6	-0.1	+0.4	dB
Frequency Gain	GF	$V_1 = 2V_{P-P}, V_O(10MHz)/V_O(100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I =2V _{P-P} , Standerd Staircase Signal	-	0.3		%
Differential Phasa	DP	V _I =2V _{P-P} , Standerd Staircase Signal	-	0.3	-	deg
OutPut offset Voltage (1)	Vos1	(Note2)	-15	0	+15	mV
OutPut offset Voltage (2)	Vos2	(Note3)	-25	0	+25	mV
Crosstalk	CT	$V_{I} = 2V_{P-P}, 4.43MHz, V_{O}/V_{I}$	in -in	-75	O LIVE	dB
Switch Change Over Voltage	V _{CH}	All inside Switches ON	2.5	_	_	V
Switch Change Over Voltage	VCI	All inside Switches OFF	_	True	1.0	V

(Note1) S1=S2=S3=S4=S5=S6=S7=1

(Note2) S1=S2=S3=S4=S5=1, S8=2, S7=1, $S6=1\rightarrow 2$ Measure the output DC voltage difference

(Note3) S1=S2=S3=S4=S5=1, S8=1, S7=1, $S6=1\rightarrow 2$ (S6=1, $S7=1\rightarrow 2$) Measure the output DC voltage difference

■ TERMINAL EXPLANATION

PIN NO.	PIN NAME	VOLTAGE	INSIDE EQUIVALENT CIRCUIT
8 9 11	IN 1 A IN 1 B IN 1 C (Input)	$ \frac{2.5V}{\left(\frac{1}{2}V^*\right)} $	500 15k 777 2.5V
16	IN 2 A IN 2 B (Input)	$ \frac{1.5V}{\left(\frac{3}{10}V^*\right)} $	1N
7 12 2	CTL 1A CTL 1B CTL 2 (Switching)	SAM SAM	2.3V 1.9V 8 k
5	OUT 1 (Output)	$1.8V$ $\left(\frac{1}{2}V^{+}-0.7\right)$	10 1000 1000 100 100 100 100 100 100 10
3	OUT 2 (Output)	0.8V $\left(\frac{3}{10}V^{+}-0.7\right)$	OOUT
13	V+	5 V	
15 4 10	GND 1 GND 2 GND 3		

3-INPUT/2-INPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2523 is a switching IC for switching over from one audio or video input signal to another. Internalizing 3 input-1 output, and 2 input-1 output and then each set can be operated independently. One of 2 input-1 output are Clamp type", and they can be operated while setting DC level fixed in position of the video signal. It is a higher efficiency video switch, featuring the operating voltage 4.75V to 13V, the frequency feature 10MHz, and then the Crosstalk 75dB (at 4.43MHz).

■ PACKAGE OUTLINE

NJM2523D

NJM2523M

■ FEATURES

- Operating Voltage $(+4.75V \sim +13V)$
- Input-1 Output Internalizing 3 circuits (Two of them are Clamp type).
- Crosstalk 75dB(at 4.43MHz)
- Wide Bandwidth Frequency 10MHz(2V_{P-P} Input)
- Package Outline DIP16, DMP16.

■ RECOMMENDED OPERATING CONDITION

Operating Voltage

4.75~13.0V

■ APPLICATIONS

VCR, Video Camera, AV-TV, Video Disk Player.

■ BLOCK DIAGRAM

MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	14	V
Power Dissipation	PD	(DIP16) 700	mW
		(DMP16) 350	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	Icc1	V ⁺ =5V (Notel)	6.7	9.7	12.7	mA
Operating Current (2)	Icc2	V+=9V (Note1)	8.6	12.3	16.0	mA
Voltage Gain	Gv	$V_1 = 100 \text{kHz}, 2 V_{P-P}, V_0 / V_1$	-0.6	-0.1	+0.4	dB
Frequency Gain	Gr 1	$V_{I} = 2V_{P-P}, V_{O}(10MHz)/V_{O}(100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V _I =2V _{P-P} , Standerd Staircase Signal	_	0.3	-	%
Differential Phasa	DP	V _I = 2V _{P-P} , Standerd Staircase Signal	-	0.3	-	deg
OutPut offset Voltage	Vos1	(Note2)	-25	0	+25	mV
Crosstalk	CT	$V_{I} = 2V_{P-P}, 4.43MHz, V_{O}/V_{I}$	_	-75	-	dB
Switch Change Over Voltage	V _{CH}	All inside Switches ON	2.5	_	-	V
Switch Change Over Voltage	VCL	All inside Switches OFF	_	- Tare	1.0	V
				0.00		

(Note1) S1=S2=S3=S4=S5=S6=S7=1

(Note2) S1=S2=S3=S4=S5=1, S8=1, S7=1, $S6=1\rightarrow 2$ (S6=1, $S7=1\rightarrow 2$) Measure the output DC voltage difference

■ TERMINAL EXPLANATION

PIN NO.	PIN NAME	VOL	INSIDE EQUIVALENT CIRCUIT
8 9 11	IN 1 A IN 1 B IN 1 C (Input)	$\begin{pmatrix} 2.5V \\ \left(\frac{1}{2}V^{+}\right) \end{pmatrix}$	500 15k
	(V)		□ 2.5V
MU X	N SYT MR	NOTIONUD TRE	## MANAGE ## 1
16	IN 2 A (Input)	$\left(\frac{3}{10}V^{+}\right)$	500
	-25 0 +	Standard States on Egypt Astronomy Standard Sta	
1 0.1	IN 2B	¥80 ania s	INQ
			500
7 12 2	CTL 1 A CTL 1 B CTL 2 (Switching)	Ster at	8k CTL
O de		-(0)	88k
5	OUT 1 (Output)	1.8V $\left(\frac{1}{2}V^{+}-0.7\right)$	
3	OUT 2 (Output)	$0.8V$ $\left(\frac{3}{10}V^{+}-0.7\right)$	OOUT
13	V+	5 V	
15 4 10	GND 1 GND 2 GND 3		

2-INPUT 1-OUTPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2533 is a video switch for VCR, TV, and others. It contains two bias-type inputs and one buffer-type output.

 $(+4.75V \sim +13V)$

DIP8, DMP8, SIP8, SSOP8

(MAX: 3.7mA)

(-70dB)

■ FEATURES

- Operating Voltage
- Low Supply Current
- 2-Input, 1-Output
- Bipolar Technology
- Package Outline

■ PACKAGE OUTLINE

NJM2533D

NJM2533M

NJM2533L

N-JM2533V

■ PIN CONFIGURATION

PIN FUNCTION

1: Vin1 2:SW1 3:Vin2 4:NC

5:NC 6:V⁺ 7: Vout

8: GND

NJM2533D NJM2533M NJM2533V

PIN FUNCTION

1:NC 2:V⁺

3 : NC 4 : V_{OUT} 5 : GND

6: Vin1 7: SW1

8: Vin2

NJM2533L

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

			Contract of the last
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	+15	V
1003		(DIP-8) 500	
Darway Dissination	D.	(DMP-8) 300	mW
Power Dissipation	P _D	(SIP-8) 800	III V
		(SSOP-8) 250	
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	T _{stg}	-40∼+125	C

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25℃)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		+4.5	n to	+13.0	V
Operating Current	I _{CC}		-	2.7	3.7	mA
Frequency Characteristics	Gf	V _{IN} =2Vpp, Vo=10MHz/100kHz	-1.0	0	+1.0	dB
Voltage Gain	G _V	V _{IN} =2Vpp, 100kHz	-0.5	0	+0.5	dB
Total Harmonic Distortion	THD	V _{IN} =2.5Vpp, 1kHz	-	0.05	0.1	%
Differential Gain	DG	V _{IN} =2Vpp, Standard staircase signal, APL=50%	-	0	3.0	%
Differential Phase	DP	V _{IN} =2Vpp, Standard staircase signal, APL=50%	-	0	3.0	deg
Output Offset Voltage	V _{off}	200	-15	0	+15	mV
Crosstalk	CT	V _{IN} =2Vpp, 4.3MHz	-	-70	-60	dB
094.2	V _{CH}		2.4	-	-	V
Switching Voltage	V _{CL}		- 1	-	0.8	V
Input Impedance	RI	I have made to be any	-	30	-	kΩ
Output Impedance	Ro		_	25	_	Ω
Input Bias Voltage	V _{IN}		-	2.5	-	V

3-INPUT 1-OUTPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2534 is a video switch for VCR, TV and others. It contains three bias-type inputs and one buffer-type output.

■ FEATURES

- Operating Voltage
- Low Supply Current
- Crosstalk
- 3-Input, 1-Output
- Bipolar Technology
- Package Outline

DIP8, DMP8, SIP8, SSOP8

 $(+4.75V \sim +13V)$

(4.7mA MAX)

(-70dB)

■ PACKAGE OUTLINE

NJM2534D

NJM2534M

NJM2534L

NJM2534V

■ PIN CONFIGURATION

NJM2534L

PIN FUNCTION

- 1: Vin1
- 2:SW1
- 3: Vin2
- 4: SW2
- 5: Vin3

- 6: V⁺ 7: V_{OUT} 8: GND

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	+15	OME V
Power Division in		(DIP-8) 500	
	P _D	(DMP-8) 300	mW
Power Dissipation		(SIP-8) 800	mw
		(SSOP-8) 250	
Operating Temperature Range	Topr	−20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25℃)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+	3897	+4.5	-	+13.0	V
Operating Current	Icc		-	3.7	4.7	mA
Frequency Characteristics	Gf	V _{IN} =2Vpp, Vo=10MHz/100kHz	-1.0	0	+1.0	dB
Voltage Gain	G _V	V _{IN} =2Vpp, 100kHz	-0.5	0	+0.5	dB
Total Harmonic Distortion	THD	V _{IN} =2.5Vpp, 1kHz	_	0.05	0.1	%
Differential Gain	DG	V _{IN} =2Vpp, Standard staircase signal, APL=50%	-	0	3.0	%
Differential Phase	DP	V _{IN} =2Vpp, Standard staircase signal, APL=50%	- 4	0	3.0	deg
Output Offset Voltage	V _{off}		-30	0	+30	mV
Crosstalk	CT	V _{IN} =2Vpp, 4.3MHz		-70	-60	dB
Carlo Valor	V _{CH}		2.4	-	-	V
Switching Voltage	V _{CL}		-	-	0.8	V
Input Impedance	RI		_	30	-	kΩ
Output Impedance	Ro		-	25	-	Ω
Input Bias Voltage	V _{IN}		-	2.5	_	V

3-INPUT 1-OUTPUT VIDEO SWITCH

■ GENERAL DESCRIPTION

The NJM2535 is a video switch for VCR, TV and others. It contains three cramp-type inputs and one buffer-type output.

■ FEATURES

 Operating Voltage $(+4.75V\sim+13V)$ (4.6mA MAX)

 Low Supply Current Crosstalk

• 3-Input, 1-Output

Bipolar Technology

Package Outline

DIP8, DMP8, SIP8, SSOP8

(-70dB)

■ PACKAGE OUTLINE

PIN FUNCTION 1: Vin1

SW1 3: Vin2 4:SW2

5: Vin3 6: V+ 7: V_{OUT} 8: GND

NJM2535L

NJM2535V

■ PIN CONFIGURATION

NJM2535D NJM2535M NJM2535V

3: Vin2

PIN FUNCTION

1: Vin1 2:SW1

4:SW2

5: Vin3 6: V+

7: Vout 8: GND

NJM2535L

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	+15	V
No MY	384 - 1	(DIP-8) 500	
	P	(DMP-8) 300	mW
Power Dissipation	P _D	(SIP-8) 800	1111
	1000	(SSOP-8) 250	li lien
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	T _{stg}	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V ⁺		+4.5	al Te	+13.0	V
Supply Current	I _{CC}		-	3.6	4.6	mA
Frequency Characteristics	Gf	V _{IN} =2Vpp, Vo=10MHz/100kHz	-1.0	0	+1.0	dB
Voltage Gain	G _V	V _{IN} =2Vpp, 100kHz	-0.5	0	+0.5	dB
Differential Gain	DG	V _{IN} =2Vpp, Standard staircase signal, APL=50%	-	0	3.0	%
Differential Phase	DP	V _{IN} =2Vpp, Standard staircase signal, APL=50%	-	0	3.0	deg
Output Offset Voltage	V _{off}		-30	0	+30	mV
Crosstalk	CT	V _{IN} =2Vpp, 4.3MHz	-	-70	-60	dB
Contact of Walter	V _{CH}		2.4	-	-	V
Switching Voltage	V _{CL}		-	-	0.8	V
Input Impedance	RI		= 1	30	-	kΩ
Output Impedance	Ro		-	25	-	Ω
Input Bias Voltage	V _{IN}		_	2.5	-	V

COMMUNICATION

6

TONE DECODER/PHASE LOCKED LOOP

■ GENERAL DESCRIPTION

The NJM567 tone and frequency decoder is a highly stable phaselocked loop with synchronous AM lock detection and power output circuitry. Its primary function is to drive a load whenever a sustained frequency within its detection band is present at the self-biased input. The bandwidth cebter frequency, and output delay are independently determined by means of four external components.

■ PACKAGE OUTLINE

■ FEATURES

- Operating Voltage
 - Wide frequency range
- High stability of center frequency
- Independently controllable bandwidth
- High out-band signal and noise rejection
- Logic-compatible output with 100mA current sinking capability
- Frequency adjustment over a 20 to 1 range with an external resistor
- Package Outline

Bipolar Technology

NJM567M

DIP8, DMP8

(4.75V~9.0V)

(0.01Hz to 500kHz)

(up to 14 percent)

PIN CONFIGURATION

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	10	V
Input Positive Voltage	V _{IP}	V++0.5	V
Input Negative Voltage	V _{IN}	-10	Vdc
Output Voltage	V ₈	15	Vdc
Power Dissipation	PD	(DIP8) 500	mW
	(70) 8 - 425.31	(DMP8) 300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V+=5.0V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Highest Center Frequency	f _{OH}		100	500		kHz
Center Frequency Stability	Δfo/ΔT	-20~+75°C		35±60	100 TO 100	PPM/°C
Center Frequency Shift with Supply Voltage	$\Delta fo/\Delta V$	fo=100kHz	_	0.7	2	%/V
Largest Detection Bandwidth	B _{WM}	fo=100kHz	10	14	18	%×fo
Largest Detection Bandwidth Skew	Bws			2	3	%×fo
Largest Detection Bandwidth Variation with Temperature	$\Delta B_W/\Delta T$	Vi=300mVrms		±0.1		%/°C
Largest Detection Bandwidth Variation with Supply Voltage	$\Delta B_W/\Delta V$	Vi=300mVrms	73-	±2	_	%/V
Input Resistance	R _{IN}		-	20	_	kΩ
Smallest Detectable Input Voltage		I _L =100mA, fi=fo	_	20	25	mVrms
Largest No-Output Input Voltage	1 4 4	I _L =100mA, fi=fo	10	15	-	mVrms
Greatest Simultaneous Outband Signal to		Towns on the state of				
Inband Signal Ratio		CALLED A	_	+6		dB
Minimum Input Signal to Wideband Noise Ratio		$B_n = 140 \text{kHz}$	_	-6	_	dB
Fastest ON-OFF Cycling Rate			_	fo/20		
"1" Output Leakage Current			_	0.01	25	μΑ
"0" Output Voltage		$I_L=30mA$		0.2	0.4	V
		I _L =100mA	_	0.6	1.0	V
Output Fall Time	18.1	$R_I = 50\Omega$		30		ns
Output Rise Time	188	$R_1 = 50\Omega$	_	150	_	ns
Operating Voltage	V ⁺ _{opr}		4.75	-	9.0	V
Operating Current Quiescent	I _{CC} I	- NO. CONT. 1917		7	10	mA
Operating Current – Activated	IccII	$R_1 = 20k\Omega$		12	15	mA
Quiescent Power Dissipation	PD		131	35		mW

■ TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS

■ DESIGN FORMULAS

$$f_o = \frac{1}{1.07 R_1 C_1} (V_{IN} = 0 \text{mV})$$

$$BW \approx 1070 \sqrt{\frac{V_{IN}}{f_o C_2}} \text{ in \% of } f_O, V_{IN} \leq 200 \text{mVrms}$$

where V_{IN} : Input Voltage (Vrms) C_2 : LPF Capacitor (μ F)

■ PLL WORDS EXPLANATIONS

☆ Center Frequency (f_o)

The free-running frequency of the current controlled oscillator (CCO) in the absence of an input signal.

☆ Detection Bandwidth (BW)

The frequency range, centered about f_o, within which an input signal above the threshold voltage (typically 20mVrms) will cause a logical zero state on the output. The detection bandwidth corresponds to the loop capture range.

☆ Lock Range

The largest frequency range within which an input signal above the threshold voltage will hold a logical zero state on the output.

☆ Detection Band Skew

A measure of how well the detection band is centered about the center frequency, f_0 . The skew is defined as $(f_{max} + f_{min} - 2f_0)/2f_0$ where f_{max} and f_{min} are the frequencies corresponding to the edges of the detection band. The skew can be reduced to zero if necessary by means of an optional centering adjustment.

O Operating Instructions

Figure 1 shows a typical connection diagram for the 567. For most applications, the following three-step procedure will be sufficient for choosing the external components R_1 , C_1 , C_2 and C_3 .

Figure 1

1. Select R_1 and C_1 for the desired center frequency. For best temperature stability, R_1 should be between 2K and 20K ohm, and the combined temperature coefficient of the R_1C_1 product should have sufficient stability over the projected temperature range to meet the necessary requirements.

2. Select the low pass capacitor, C_2 , by referring to the Bandwidth versus Input Signal Amplitude graph. If the input amplitude variation is known, the appropriate value of f_0C_2 necessary to give the desired bandwidth may be found. Conversely, an area of operation may be selected on this graph and the input level and C_2 may be adjusted accordingly. For example, constant bandwidth operation requires that input amplitude be above 200mVrms. The bandwidth, as noted on the graph, is then controlled solely by the f_0C_2 product (f_0 (Hz), C_2 (μ fd)).

3. The value of C_3 is generally non-critical. C_3 sets the band edge of a low pass filter which attenuates frequencies outside the detection band to eliminate spurious outputs. If C_3 is too small, frequencies just outside the detection band will switch the output stage on and off at the beat frequency, or the output may pulse on and off during the turn-on transient. If C_3 is too large, turn-on and turn-off of the output stage will be delayed until the voltage on C_3 passes the threshold voltage. (Such delay may be desirable to avoid spurious outputs due to transient frequencies.) A typical minimum value for C_3 is $2C_2$.

Output Terminal (Fig. 2)

The primary output is the uncommitted output transistor collector, pin 8. When an in-band input signal is present, this transistor saturates; its collector voltage being less than 1.0 volt (typically 0.6V) at full output current (100mA). The voltage at pin 2 is the phase detector output which is a linear function of frequency over the range of 0.95 to 1.05 f_0 with a slope of about 20mV per percent of frequency deviation. The average voltage at pin 1 is, during lock, a function of the inband input amplitude in accordance with the transfer characteristic given. Pin 5 is the controlled oscillator square wave output of magnitude (+V $-2V_{bc}$) \approx (+V -1.4V) having a dc average of +V/2. A $1k\Omega$ load may be driven from pin 5. Pin 6 is an exponential triangle of 1 volt peak-to-peak with an average dc level of +V2. Only high impedance loads may be connected to pin 6 without affecting the CCO duty cycle or temperature stability.

OPERATING PRECAUTINS

A brief review of the following precautions will help the user achieve the high level of performance of which the 567 is capable.

- 1. Operation in the high level mode (above 200 mV) will free the user from bandwidth variations due to changes in the in-band signal amplitude. The input stage is now limiting, however, so that out-band signals or high noise levels can cause an apparent bandwidth reduction as the in-band signal is suppressed. Also, the limiting action will create in-band components from sub-harmonic signals, so the 567 becomes sensitive to signals at $f_0/3$, $f_0/5$, etc.
- 2. The 567 will lock onto signals near (2n + 1) f_o , and will give an output for signals near (4n + 1) f_o where n=0, 1, 2, etc. Thus, signals at $5f_o$ and $9f_o$ can cause an unwanted output. If such signals are anticipated, they should be attenuated before reaching the 567 input.
- 3. Maximum immunity from noise and outband signals is afforded in the low input level (below 200mVrms) and reduced bandwidth operating mode. However, decreased loop damping causes the worse-case lock-up time to increase, as shown by the Greatest Number of Cycles Before Output vs Bandwidth graph.
- 4. Due to the high switching speeds (20ns) associated with 567 operation, care should be taken in lead routing. Lead lengths should be kept to a minimum. The power supply should be adequately bypassed close to the 567 with a $0.01\mu F$ or greater capacitor; grounding paths should be carefully chosen to avoid ground loops and unwanted voltage variations. Another factor which must be considered is the effect of load energization on the power supply. For example, an incandescent lamp typically draws 10 times rated current at turn-on. This can cause supply voltage fluctuations which could, for example, shift the detection band of narrow-band systems sufficiently to cause momentary loss of lock. The result is a low-frequency oscillation into an out of lock. Such effects can be prevented by supplying heavy load currents from a separate supply or increasing the supply filter capacitor.

Speed of Operation

Minimum lock-up time is related to the natural frequency of the loop. The lower it is, the longer becomes the turn-on transient. Thus, maximum operating speed is obtained when C_2 is at a minimum. When the signal is first applied, the phase may be such as to initially drive the controlled oscillator away form the incoming frequency rather than toward it. Under this condition, which is of course unpredictable, the lock-up transient is at its worst and the theoretical minimum lock-up time is not achievable. We must simply wait for the transient to die out.

The following expressions give the values of C_2 and C_3 which allow highest operating speeds for various band center frequencies. The minimum rate at which digital information may be detected without information loss due to the turn-on transient or output chatter is about 10 cycles per bit, corresponding to an information transfer rate of $f_0/10$ band.

$$C_2 = \frac{130}{f_o} \mu F$$

$$C_3 = \frac{260}{f_0} \mu F$$

In cases where turn-off time can be sacrificed to achieve fast turn-on, the optional sensitivity adjustment circuit can be used to move the quiescent C₃ voltage lower (closer to the threshold voltage). However, sensitivity to beat frequencies, noise and extraneous signals will be increased.

Optional Controls (Figure 3)

The 567 has been designed so that, for most applications, no external adjustments are required. Certain applications, however, will be greatly facilitated if full advantage is taken of the added control possibilities available through the use of additional external components. In the diagrams given, typical values are suggested where applicable. For best results the resistors used, except where noted, should have the same temperature coefficient. Ideally, silicon diodes would be low-resistivity types, such as forward-biased transistor base-emitter junctions. However, ordinary low-voltage diodes should be adequate for most applications.

O Sensitivity Adjustment (Figure 3)

When operated as a very narrow band detector (less than 8 percent), both C_2 and C_3 are made quite large in order to improve noise and outband signal rejection. This will inevitably slow the response time. If, however, the output stage is biased closer to the threshold level, the turn-on time can be improved. This is accomplished by drawing additional current to terminal 1. Under this condition, the 567 will also give an output for Lower-level signals (10mV or lower).

By adding current to terminal 1, the output stage is biased further away from the threshold voltage. This is most useful when, to obtain maximum operating speed. C_2 and C_3 are made very small. Normally, frequencies just outside the detection band could cause false outputs under this condition. By desensitizing the output stage, the outband beat notes do not feed through to the output stage. Since the input level must be somewhat greater when the output stage is made less sensitive, rejection of third harmonics or in-band harmonics (of lower frequency signals) is also improved.

Figure 3

New Japan Radio Co., Ltd.

O Chatter Prevention (Figure 4)

Chatter occurs in the output stage when C_3 is relatively small, so that the lock transient and the AC components at the quadrature phase detector (lock detector) output cause the output stage to move through its threshold more than once. Many loads, for example lamps and relays, will not respond to the chatter. However, logic may recognize the chatter as a series of outputs. By feeding the output stage output back to its input (pin 1) the chatter can be eliminated. Three schemes for doing this are given in Figure 4. All operate by feeding the first output step (either on or off) back to the input, pushing the input past the threshold until the transient conditions are over. It is only necessary to assure that the feedback time constant is not so large as to prevent operation at the highest anticipated speed. Although chatter can always be eliminated by making C_3 large, the feedback circuit will enable faster operation of the 567 by allowing C_3 to be kept small. Note that if the feedback time constant is made quite large, a short burst at the input frequency can be stretched into a long output pulse. This may be useful to drive, for example, stepping relays.

O Detection Band Centering (or Skew) Adjustment (Figure 5)

When it is desired to alter the location of the detection band (corresponding to the loop capture range) within the lock range, the circuits shown above can be used. By moving the detection band to one edge of the range, for example, input signal variations will expand the detection band in only one direction. This may prove useful when a strong but undesirable signal is expected on one side or the other of the center frequency. Since R_B also alters the duty cycle slightly, this method may be used to obtain a precise duty cycle when the 567 is used as an oscillator.

Figure 5

O Alternate Method of Bandwidth Reduction (Figure 6)

Although a large value of C₂ will reduce the bandwidth, it also reduces the loop damping so as to slow the circuit response time. This may be undesirable. Bandwidth can be reduced by reducing the loop gain. This scheme will improve camping and permit faster operation under narrow-band conditions. Note that the reduced impedance level at terminal 2 will require that a larger value of C2 be used for a given filter cutoff frequency. If more than three 567s are to be used, the network of RB and RC can be eliminated and the RA resistors connected together. A capacitor between this junction and ground may be required to shunt high frequency components.

(note) Adjust control for symmetry of detection band edges about fo.

Output Latching (Figure 7)

To latch the output on after a signal is received, it is necessary to provide a feedback resistor around the output stage (between pins 8 and 1). Pin 1 is pulled up to unlatch the output stage.

Output Latching

Figure 7

For precision very low-frequency applications, where the value of C_1 becomes large, an overall cost savings may be achieved by inserting a voltage follower between the R_1 C_1 junction and pin 6, so as to allow a higher value of R_1 and lower value of C_1 for a given frequency.

Programming

To change the center frequency, the value of R_1 can be changed with a mechanical or solid state switch, or additional C_1 capacitors may be added by grounding them through saturating npn transistors.

DOUBLE BALANCED MODULATOR/DEMODULATOR

■ GENERAL DESCRIPTION

The NJM1496 is a double balanced modulator-demodulator which produces an output voltage proportional to the product of an input (signal) voltage and a switching (carrier) signal. Typical applications include suppressed carrier modulation, amplitude modulation, synchronous detection, FM or PM detection, broadband frequency doubling and chopping.

■ FEATURES

- Excellent carrier suppression 65dB typical at 0.5MHz 50 dB typical at 10MHz
- Adjustable gain and signal handling
- Fully balanced inputs and outputs
- High Common Mode Rejection 85dB Typ.
- Package Outline DIP14, DMP14, SSOP14
- Bipolar Technology

■ APPLICATION

- Balanced Modulation
- Synchronous Detection
- FM Detection
- Phase Detection
- Sampling

PIN CONFIGURATION

■ EQUIVALENT CIRCUIT

■ PACKAGE OUTLINE

NJM1496D

NJM1496M

NJM1496V

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	RATINGS	UNIT
Applied Voltage	30(Applied Pins 6-8, 12-8, 6-10, 12-10, 10-1, 8-1, 10-4, 8-4, 2-5, 3-5)	V
Carrier Input Voltage	±5(Applied Pins 8-10)	V
Signal Input Voltage	±(5+I _{s.} Re) (Applied Pins 1-4)	V
Input Signal	5	V
Bias Current (I5)	10	mA
Power Dissipation	(DIP14) 570	mW
	(DMP14) 300	mW
	(SSOP14) 300	mW
Operating Temperature Range	-20~+75	C
Storage Temperature Range	-40~+125	°C

■ **ELECTRICAL CHARACTERISTICS** DC Characteristics (V^+ =12V, V^- =-8V, I_s =1.0mA, R_L =3.9k Ω , R_e =1.0k Ω , T_a =25 $^{\circ}$ C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Single-Ended Input Impedance				portac	and bas	dq. a
Parallel Input Resistance	Rip	Signal Port, f=5.0MHz	_	200	1 aligno	$k\Omega$
Parallel Input Capacitance	Cip	Signal Port, f=5.0MHz	A-	2.0	_	pF
Single-Ended Output Impedance			CALLED CO			
Parallel Output Resistance	Rop	f=10MHz	_	40	-	$k\Omega$
Parallel Output Capacitance	Cop	f=10MHz	_	5.0	-	pF
Input Bias Current	No.	and exactly and a state of the				
$I_{bs} = I_1 + I_4/2$	I _{bs}	24 C 11	_	12	30	μΑ
$I_{bc} = I_8 + I_{10}/2$	I _{bc}	DECK NOW	_	12	30	μΑ
Input Offset Current		Para Para Para Para Para Para Para Para				
$I_{ios} = I_1 - I_4$	I _{ios}	WHITE THE PARTY OF	_	0.7	7	μΑ
$I_{ioc} = I_8 - I_{10}$	I _{ioc}	Contac	_	0.7	7	μΑ
Average Temperature Coefficient of						
Input Offset Current	ΔI_{io}		_	2.0	_	nA/°C
Output Offset Current			ONO		A VILLES	
(I_6-I_{12})	I_{oc}			15	80	μΑ
Average Temperature Coefficient of			- x*			
Output Offset Current	ΔI_{oc}	-lov: Limb	_	90	_	nA/°C
Output Voltage	Vo	No. of the last of	_	8.0	_	V
Operating Current						
(I_6+I_{12})	I_{D+}		_	2.0	4.0	mA
I ₁₄	I_{D-}	1000	3 _	3.0	5.0	mA
DC Power Dissipation	PD		_	33	_	mW

■ ELECTRICAL CHARACTERISTICS AC Characteristics (V⁺=12V, V⁻=−8V, I₅=1.0mA, R_L=2.9kΩ, Re=1.0kΩ, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Carrier Feedthrough		Vc= 60mVrms sine wave	elma0			
	V _{CFT}	fc=1.0kHz	-	40	_	μVrms
	V _{CFT}	fc=10MHz	_	140	-	μVrms
		Vc= 300mVp-p square wave			- 33	
		fc=1.0kHz			1	
	V _{CFT}	offset adjusted	-	0.04	0.4	mVrms
	V _{CFT}	offset not adjusted	-7	20	200	mVrms
Carrier Suppression		fs = 10kHz, 300mVrms sine wave	1		(Stb)	
	1916	offset adjusted	-	101		H.L.
	V _{CS}	fc = 500kHz, 60mVrms sine wave	40	65	-	dB
	V _{CS}	fc = 10MHz, 60mVrms sine wave	-	5.0	-	dB
Transadmittance Bandwidth		(expVest lone) vege	TOTAL .			
$(R_L = 50\Omega)$		Vc= 60mVrms sine wave				
Carrier Input Port	BW 3dB	fs = 1.0kHz, 300mVrms sine wave	-	300	-	MHz
Signal Input Port	BW 3dB	Vs = 300mVrms sine wave		80		MHz
		Vc =6 5Vdc				
Voltage Gain, Signal Channel	. Herri	Vs = 100mVrms fs=1.0kHz				
	AVS	Vc =0.5Vdc	2.5	3.5	-	V/V
Signal Port Common Mode Input Voltage	78			TT		
Range	CM _V	fs = 1.0kHz	-	5.0	-	Vp-p
Signal Port Common Mode Rejection Ratio	ACM	fs = 1.0kHz, Vc =0.5Vdc	-	-85	-	dB
Differential Output Swing Capability	DVout		-	8.0	-2	Vp-p

■ TEST CIRCUIT

• Carrier feedthrough

• Carrier Suppression

Connect a $100\mu F$ capacitor and a 3000pF capacitor in parallel to each other, if the capacitance is not specified.

- Differential Output Swing Capability
- Signal Port Common Mode Rejection Ratio

■ TYPICAL CHARACTERISTICS

■ TYPICAL APPLICATIONS

AM Modulator Circuit

Product Detector (+12V DC Single Supply)

TELEPHONE SPEECH NETWORK IC

■ GENERAL DESCRIPTION

The NJM2105 is a Telephone Speech Network IC produced in a 9-pin single-in-line package which complies with foreign regulations such as FCC and DOC rules.

This IC incorporates adjustable transmit, receive and sidetone functions, a DC loop interface circuit, tone dialer interface and a regulated output voltage for a pulse/tone dialer. Also included is a gain control circuit to keep constant transmition/reception levels under loop current variations.

External components around this IC are minimized and it is the most suitable speech network IC for a compact size portable telephone.

■ FEATURES

- Operates with 20 to 120 mA of loop current
- Either voice signal or DTMF is selected for transmission.
- Either line input or DTMF sidetone is selected for receiver output.
- DTMF sidetone level can be controlled by external components (C, R).
- ECM, Magnetic, Dynamic, Ceramic etc., type are applicable for MIC.
- Dynamic, Ceramic etc., type are applicable for receiver.
- Due to wide operation voltage from 2.5 to 15 volts, parallel phone performance is excellent, 600, 601 type are possible to connect in parallel.
- SIP-9 with minimum external components.
- Package Outline SIP9
- Bipolar Technology

■ PACKAGE OUTLINE

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Line voltage	V _L	20	V
Line current	IL .	300	mA
Power dissipation	PD	700	mW
Operating Temperature Range	Topr	−20~+75	°C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	FIG.	CONDITION	MIN.	TYP.	MAX.	UNIT
Line voltage	V _L	1	I _L =20mA	3.0	3.5	4.0	v
		- 1	$I_L = 120 \text{mA}$	10.5	11.5	13.5	V
Transmission amplifier gain	GT	2	$I_L = 20 \text{mA}$	36.0	38.0	40.0	dB
		2	$I_L = 120 \text{mA}$	36.0	38.0	40.0	dB
Reception amplifier gain	GR	4	I _L =20mA	-10.0	-8.0	-6.0	dB
		4	$I_L = 120 \text{mA}$	-10.0	-8.0	-6.0	dB
MF amplifier gain	GMF	3	I _L =20mA	10.0	12.0	14.0	dB
	1 11/4	3	I _L = 120mA	10.0	12.0	14.0	dB
Transmission Dynamic Range	D _T	2	Distortion 4% I _L = 20mA	2.0		_	V _{P-P}
	The state of the s	2	Distortion 4% I _L = 120mA	5.0	-	-	V _{P-P}
Reception Dynamic Range	DR	4	Distortion 10% I _L = 20mA	0.3		7 -7	V _{P-P}
		4	Distortion 10% I _L = 120mA	0.4	_	euv i	V _{P-P}
Receving Source Current	Is	3-6	$I_L = 20 \sim 120 \text{mA}$	1.0		31	mA
Receiving output	V _{RO}	-7	I _L =20~120mA	1.05	1.50	1.75	V

■ TEST CIRCUITS

■ TEST CIRCUITS

Fig. 1

L1

VL

Vout

GND

GND

Z

L2

■ TYPICAL APPLICATION

■ TYPICAL CHARACTERISTICS

MF Line Voltage vs. Line Current

Transmission Dynamic Range vs. Line Current

MF Dynamic Range vs. Line Current

Transmission Gain vs. Line Current

MF AMP. Gain vs. Line Current

■ TYPICAL CHARACTERISTICS

Reception Dynamic Range vs. Line Current

Sidetone Level vs. Line Current

Reception Ganin vs. Line Current

AC Impedance vs. Ferequency

FULL BALANCED MIXER

■ GENERAL DESCRIPTION

The NJM2203D is a full balanced mixer integrated circuit for FM synthesizing tuner. The NJM2203D contains mixer, oscillator, buffer for osciillator output and IF amplifier circuits. By using this IC, RF circuit configuration is simplified and high reliability, stable operation, easy design and time saving adjustment are realized.

■ FEATURES

- Minimum outer parts.
- Simplified circuit configuration
- Minimum frequency deviation with over input signal.
- Easy adjustment.
- Package Outline

DIP16

Bipolar Technology

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2203D

PIN FUNCTION

- 1. RF INPUT1
- GND
- Mix OUT

- 8. GND(IF)
- Mix INPUT V⁺_A I_F OUT
- 9. OSC OUT 10. OSC Buffer INPUT
- 11. OSC1
- OSC3
- 14. OSC4
- 15. GND(RF)
- 16. RF INPUT2

EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	18	V
Power Dissipation	PD	500	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V⁺=12V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Supply Current (MIX)	I _{CCM}	STC, no signal	2.5	3.2	3.8	mA
Supply Current (IF+B)	I _{CCA}	STC, no signal	8.8	11.0	13.2	mA
Conversion Power Gain (MIX)	P_G	STC, fosc=100MHz, Vin=1mV	21	24	27	dB
Noise Figure (MIX)	NF	STC		6.0	7.0	dB
Local Oscillater Voltage (OSC)	Vosc	STC, fosc=110.7MHz	1.0	1.3	-	V
Voltage Gain (IF)	V _G	STC, f _{IF} =10.7MHz, V _{IN} =10mV	22	28	_	mV/mV
Input Resistance (IF)	R _I (IN)	f=10.7MHz,V _{IN} =10mV	15 0 15	3.2	_	kΩ
Input Capacitance (IF)	C _I (IN)	f=10.7MHz,V _{IN} =10mV	The second	3.8	-	pF
Local Osc. Buffer Output (O)	V _{OB}	STC, f _{OSC} =110.7MHz	0.5	0.6	_	V
Input Resistance (O-Buf)	R _O (IN)	f=110.7MHz, V _{IN} =100mV		1.7	_	kΩ
Input Capacitance (O-Buf)	C _O (IN)	f=110.7MHz, V _{IN} =100mV	1 1 1 - 2	3.1	_	pF
Output Resistance (O-Buf)	R _O (OUT)	f=110.7MHz, V _{IN} =100mV		160		Ω

note: STC: Specified Test Circuit

■ TEST CIRCUIT

■ TYPICAL CHARACTERISTICS

Operating Voltage V+ (V)

■ TYPICAL APPLICATION

qua i	76~90MHz	88~108MHz	
L1	VS -32	VS-35	TAIKI
L2	VS -33	VS-36	"
L3	VS -34	VS-37	"
D1,2,3	SVC202A,B	SVC202A,B	
C1	6	1.5	The state of
C2	6	4	
СЗ	7	6	
C4	12	7	-
C5	15	15	
C6,7	5	10	
C8	120	120	-
R1	150	150	-
R2	330	330	
FET	2SK168E,F	2SK168E,F	HITACHI
IFT	154FC-4192	1N	токо

■ PATERN EXAMPLE OF ABOVE CIRCUIT

Japan Band

and Parts Arrangement

(Backside View)

LOG AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2204A is an integrated IF limitting amplifier which contains temperature compensated reference power supply, 6 stage differential limitting amplifier and 6 stage logarithmic suppression circuit.

Its voltage gain is 58dB and linearity is ± 1 dB within 50dB log dynamic range. The voltage gain and log dynamic range are enlarged by connecting multiple stages.

The NJM2204A is suitable to telecommunication equipment.

■ PACKAGE OUTLINE

NJM2204AD

FEATURES

	Wide log dynamic range	(50dB)
	Wide linearity range	(±1dB)
•	Large Voltage Gain	(58dB)
•	Wide stable operating supply voltage range	(8~12V)
•	Wide stable operating temperature range	(-20~85℃
•	Package Outline	DIP16
•	Bipolar Technology	

APPLICATION

- Cellula
- Personal wireless Radio
- Business wireless Radio
- Handy talky

■ PIN CONFIGURATION

Pin No.	Pin Name	Function
1	RF IN	AC Signal Input (C-coupling)
2	LOG OUT I	LOG Detector Output (from 1st stage)
3	GND 1	Ground 1
4	V _{REF} 1	Internal Reference Voltage 1
5	V _{COMP}	Compensation Input to Reference Voltage
6	V _{st}	Compensated Output of Reference Voltage
7	GND 2	Ground 2
8	EXT C2	Terminate with C
9	RF OUT	Limitted AC Output
10	V _{REF} 2	Internal Reference Voltage 2
11	LOG OUT 4	LOG Detector Output (from 6th stage)
12	LOG OUT 3	LOG Detector Output (from 4th and 5th stage)
13	V+ 2	Supply Voltage Input 2
14	EXT CI	Terminate with C
15	LOG OUT 2	LOG Detector Output (from 2nd and 3rd stage)
16	V+1	Supply Voltage Input 1

■ BLOCK DIAGRAM

■ LOG DETECTOR OUTPUT CHARACTERISTICS (EXAMPLE)

(Ta=25°C, V⁺=9V, V_{REF}=6.0V)

PARAMETER	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
namel	f _{in} =455kHz, V _{in} =8dB (50Ω termination)	0.976	1.004	1.032	V
	$f_{in}=455kHz$, $V_{in}=-2dB$ (50 Ω termination)	0.868	0.896	0.924	V
Log Detector Output	$f_{in}=455kHz$, $V_{in}=-12dB$ (50 Ω termination)	0.727	0.755	0.783	V
	f _{in} =455kHz, V _{in} =-22dB (50Ω termination)	0.586	0.614	0.642	V
	f_{in} =455kHz, V_{in} =-32dB (50 Ω termination)	0.446	0.474	0.502	V
	$f_{in}=455kHz$, $V_{in}=-42dB$ (50 Ω termination)	0.305	0.333	0.361	V
	f_{in} =455kHz, V_{in} =-52dB (50 Ω termination)	0.164	0.192	0.202	V
	f_{in} =455kHz, V_{in} =-62dB (50 Ω termination)	0.057	0.085	0.113	V
Log Detector Linearity	$Ta = -20^{\circ}C \sim 85^{\circ}C$, $V_{in} = -2 \sim -52dBm$	1 -	<u> </u>	±1	dB

^{*} Log Detection Linearity: It is error between RF input level and ideal input level to straight line connected two detection output points of two input level (-2dBm, -52dBm).

■ TEST CIRCUIT

LOG Det. Output

New Japan Radio Co., Ltd.

^{*} Temperature coefficient of Log detection output voltage: approximately $90\mu\text{V/°C}$ Typ. (-20~+85°C).

■ RECOMMENDED OPERATING CONDITION

 $(Ta = -20 \sim 85^{\circ}C)$

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+	8.0	9.0	16.0	v
Output Load Impedance	B _{RFO}	1	2		kΩ
	B _{LOGO}	100			kΩ
Stabilized Voltage	V _{VR}		6.0		v

■ ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V ⁺	-0.5~16.0	V
Input Voltage	V _{IN}	-0.5~V ⁺	V
Output Current	I _{LR}	5	mA
	I_{RFO}	2	mA
Operating Temperature	Topr	-20~85	°C
Storage Temperature	T _{stg}	-55~125	°C

(note): The NJM2204A is produced by high frequency wafer process and so destructive voltage against surge pulse is lower than low frequency product.

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V⁺=9V, V_{REF}=6.0V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}	W SugleC	25	6	10.0	mA
Maximum Operating Frequency	f _{max}	Bulletin LOLD	0.5	3		MHz
Output Voltage Swing	V _{RFO}	Input: +8dBm (50Ω termination)	-	2.0		V _{P-P}
Log Detection Output	V _{LOG}	Input: +8dBm (50Ω termination)	6.0=1.0	1.0	+	V
Log Detection Linearity	L _{IN}	V _{in} =-2dBm~-52dBm (50Ω termination)	1		±1	dB
Limitter Amp Gain	G _V		60	_	10	dB

TYPICAL CHARACTERISTICS

Operating Current vs. Operating Voltage

Log Detector Output

 $(V^+=9V, V_R=6V \text{ Adjusted, } f_{in}=455kH_Z, Ta=25^{\circ}C)$

Log Detector Output V_R

Limitter Amp Gain

Input Frequency fin (Hz)

Log Detector Output

■ TYPICAL APPLICATION & CHARACTERISTICS (10 synthesized stage)

Log Det Output Voltage

LOW POWER IF AF PLL CIRCUIT FOR NARROW BAND FM RECEIVER

■ GENERAL DESCRIPTION

The NJM2206 is a low power IF/AF PLL circuit for narrowband FM receiver with single or double balanced mixer-IF amplifier and detector. Its low power characteristic is capable for battery operation and remote control.

This device is capable of high signal to noise ratio by PLL detector and high channel separation ratio performance.

Since the NJM2206 can operate 1st IF input frequency at 25MHz and 2nd IF input frequency at 800kHz, the IC is suited for CB transceiver, wireless control system, and other communication systems.

■ PACKAGE OUTLINE

NJM2208D

NJM 2206M

■ FEATURES

- High Sensitivity
- Low Operating Current

2.8mA(V+=7V)

High S/N Ratio

47dB(Typ)

• Less Number of External Components

DIP20, DMP20

Package OutlineBipolar Technology

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	10	V
Power Dissipation	PD	(DIP20) 700	mW
		(DMP20) 350	mW
Operating Temperature Range	Topr	-20~75	°C
Storage Temperature Range	Tstg	-40~125	°C

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V+=7V)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}	Frequency Desponso.		2.8	3.8	mA
1st IF Frequency Bandwidth	f _{B1}		_	25	-	MHz
1st IF Amp. Gain	G _{V1}		_	20		dB
Mixer Conversion Gain	gvm		出筆目	15	_	dB
2nd IF Amp. Gain	G _{VM}		_	60	_	dB
nput Singal Dynamic Range	V _{IDR}	for AF Output 1dB deviation	_	100	_	dB
Maximum Input Level	V _{IMAX}		0.2	-	- 4	Vrms
Input Sensitivity	S/N 1	At Input Level 10μVrms	20	-	_	dB
Signal to Noise Ratio	S/N 2	Input Level 1mVrms	40	45	_	dB
Total Harmonic Distortion	THD	Input Level 1mVrms	(C-10)	-	3	%
AF Output Level	Vo	Input Level 1mVrms	24	30	36	mVrms
AM Suppression Ratio	SUPAM	for 30% AM at Input Level 100 µVrms	_	30	_	dB
Squelch Low Level	V _{SL}	10μVrms Input	_	0.1	1.0	V
Squelch High Level	V _{SH}	$0.5\mu Vrms$	5.0	6.4	-	V

The test conditions are as designated below, unless otherwise specified.

1st IF: 20.8MHz, 2nd IF: 455kHz, Modulation frequency: 1kHz

Frequency deviation: 3.5kHz

Test circuit diagram: See attached figure.

Ideal jigs shall be used.

■ DESCRIPTION OF OPERATION

[1] IF AMP, MIXER, and LOCAL OSC

(1) 1st IF Amp

Pin (20) is the signal input terminal. The 1st IF amplifier has the frequency characteristic shown in Graph 1 and the I/O characteristic shown in Graph 2. Also, Graph 3 shows the input impedance-to-frequency characteristic, while Graph 4 shows the input level-to S/N characteristic.

(2) Local OSC

This local OSC is composed by connecting a crystal oscillator and series capacitor across pins (1) and (2). The series capacitor is connected for finely adjusting the oscillation frequency and reducing the temperature drift.

Graph 5 shows the oscillation frequency-to-power voltage and the oscillation level-to-power characteristic.

Graph 6 also shows a change of the oscillation frequency to the capacitance of the capacitor connected in series. For details, please contact the crystal oscillator maker.

The mixer circuit produces the 2nd IF frequency by mixing the 1st IF Amp output and local OSC output signal with each other. A decoupling capacitor is connected to pin (3).

Graph-1 1st IF Amp Frequency Response

Graph-3 Input Impecance/Capacitance vs. Frequency

Graph-4 Input Level vs. S/N Ratio

Graph-5 Local Oscillator Output Level/Freq.

Trimming-C vs. Local Frequency Graph-6

Note) It is depending on the crystal oscillator.

(4) Pin (4)-GND Capacitor

The capacitor to be connected across pin (4) and GND composes a low-pass filter as shown in Fig. 1.

The cutoff frequency $f_c = 1/2\pi CR$

This cutoff frequency f_c is set to be more than two times the 2nd IF frequency. This C is about 80pF maximum, and it can suppress higher harmonics components without affecting the 455kHz output.

This behaviour is shown in Graph 7.

(5) The capacitor across pins (4) and (7) serves as the coupling capacitor for the mix out and 2nd IF Amp stage. A ceramic filter is insertable instead of the coupling capacitor.

(6) The S/N ratio is changed by the capacitor across pin (6) and GND when the input level is low as shown in Graph 8, this is because the capacitor across pin (6) and GND serves as the decoupling capacitor in the 2nd IF Amp stage, so that the 2nd IF Amp gain is reduced when this capacitance of the capacitor decreases.

Fig. 1

Graph-7 Pin (4) Low-pass Filter C Value-higher Harmonics component

Graph-8 Change of Input Sensitivity by Pin (6) Decoupling Capacitor

[2] Operation Principle of PLL Demodulation

(1) Operation principle of NJM2206 FM demodulator circuit

When FM is locked at the center frequency, the oscillation frequency of VCO follows frequency change of the FM input VCO oscillation frequency to the input signal frequency and, the control voltage becomes the demodulated output. VCO oscillation frequency to the input signal frequency and, the control voltage becomes the demodulated output.

The FM demodulation circuit of NJM2206 is constructed as shown in BLOCK DIAGRAM 2.

Fig. 2 PLL Demodulation Circuit Block Diagram

Assume v_i be the input signal voltage and v_o be the VCO signal voltage in Fig. 2.

$$v_i = V_i \sin \{\omega_i t + \theta_i(t)\}$$
(1)
$$v_o = V_o \cos \{\omega_o t + \theta_o(t)\}$$
(2)

From equations (1) and (2), signal voltage v_c after eliminating high-frequency components via the LPF is obtained by equation (3).

$$v_c = K_D \cdot F(S) \cdot \sin \left\{ \left(\omega_i \cdot \omega_o \right) t + \theta_i(t) - \theta_o(t) \right\}(3)$$

Where F(S): Transfer function of LPF

KD: Conversion gain of phase comparator

When the angular frequency of the input signal coincides with the angular frequency of the output signal, error voltage n_c proportional to the phase differences is obtained as shown in equation (4).

$$\nu_{e} = K_{D} \cdot F(S) \cdot \sin \left\{ \theta_{i}(t) - \theta_{o}(t) \right\}$$

$$\approx K_{D} \cdot F(S) \left\{ \theta_{i}(t) - \theta_{o}(t) \right\} \tag{4}$$

Also, the
$$\nu_e$$
-to-VCO angular frequency ω_0 relation is represented by equation (5).

$$\omega_{0} = \omega_{f} + K_{0} \nu_{e} \tag{5}$$

where ω_f : Free-running angular frequency of VCO

Ko: Conversion gain of VCO

Since the microscopic change of the phase angle with time is given by the angular frequency change component $\Delta\omega_0$ we obtain; $\Delta\omega_0=K_0\cdot\nu_0=d\theta_0(t)/dt$ (6)

From equations (5) and (6), we obtain the PLL transfer function as shown in equation (7)

$$H(S) = \frac{\theta_0(S)}{\theta_1(S)} = \frac{KF(S)}{S + KF(S)}$$
 (7)

where $K = K_o \cdot K_D$: Loop gain coefficient

Assume that $\theta_e(S) = \theta_i(S) - \theta_o(S)$, and we obtain equation (8) from equation (7);

$$\frac{\theta_{\mathbf{c}}(S)}{\theta_{\mathbf{j}}(S)} = \frac{S}{S + KF(S)} \tag{8}$$

Let's consider about the phase difference of the input signal and VCO output signal when the angular frequency of the input signal has changed stepwise by $\Delta\omega$, while PLL is being locked.

Since $\theta_i(S) = \Delta \omega / S^2$, we obtain from equation (8)

$$\lim_{t \to \infty} \theta_{\mathbf{e}}(t) = \lim_{S \to 0} \theta_{\mathbf{e}}(S) = \frac{\Delta \omega}{KF(S)} \tag{9}$$

It is understood from equation (9) that phase difference θ_{ϵ} between the input signal and VCO output signal is proportional to angular frequency deviation $\Delta \omega$ values.

From equation (9), $\theta_e = \Delta \omega / KF(S)$. Error voltage ν_e produced when the phase difference θ_e has been generated is obtained from equation (4) as follows;

$$\nu_{e} = K_{D} \cdot F(S) \cdot \theta_{e}$$
From equation (10), (10)

$$\nu_{\rm e} = \Delta \omega / K_0 \tag{11}$$

The output voltage of the phase comparator (after the LPF stage) is proportional to the angular frequency deviation of the input signal when a phase difference has been produced. Accordingly, this error voltage serves as the demodulated output of the FM signal as it is.

References: "Phase lock techniques" Floyed M Gardner "Basis and application of PLL", Hideo Kadota

(2) Low-pass filter (LPF)

The LPF of NJM2206 is shown in Fig. 3.

Fig. 3 NJM2206 LPF

The loop band is determined by this LPF, and it affects the maximum phase deviation capture range, maximum frequency response characteristic, or noise bandwidth. The PLL transfer function is obtained when the LPF shown in Fig. 2 is used.

$$\begin{split} &S\omega_n\left(2\xi-\frac{\omega_n}{K}\right)\,+\,\omega_n\\ &H(S)=-\frac{1}{S^2\cdot+\,2\xi\,\,\omega_n\,\,S\,+\,\omega_n}\\ &\omega_n=(\,\frac{K}{\tau_1\,+\,\tau_2}\,)^{1/2}\!:\text{Natural angular frequency}\\ &\xi=\frac{1}{2}\,\,(\,\frac{K}{\tau_1+\,\tau_2}\,)^{1/2}(\,\,\tau_2+\frac{1}{K}\,)\!:\text{ Dumping factor} \end{split}$$

When $K \gg 1$, $\xi = \frac{1}{2} \omega_n \tau_2$

This filter is characterized that since the loop gain, and damping factor are adjustable separately, the narrow band is obtainable with high stability of PLL.

Exmaple of calculation of LPF constants

K_o = 0.5f_o: Conversion gain of VCO, f_o: free-running frequency

 $K_D = 1.96$: Conversion gain of phase comparator x gain of amplifier

$$K_o K_D = 0.98 f_o$$

$$R_1 = 20k\Omega$$

The above values are calculated from the design values of the NJM2206 circuit constants.

Assume that the maximum frequency deviation $\Delta f = 3.5 \text{kHz}$, the modulation signal

frequency
$$f_m = 1 \text{kHz}$$
, $f_o = 455 \text{kHz}$ and the maximum phase error $\phi_{e\,\text{max}}$ is obtained by;

$$\phi_{\text{emax}} = \frac{2\pi}{\text{K}_{\text{o}}\text{K}_{\text{D}}} \cdot \frac{\Delta f}{f_{\text{o}}} = 0.05$$

Assume that natural angular frequency $f_n = 10kHz$, and we obtain from Fig. 3;

$$\frac{\varphi_{e}}{\frac{\Delta f}{f_{n}}} = 0.1$$

$$\phi_{c} = 0.1 \times \frac{\Delta f}{f_{n}} = 0.035$$

Accordingly, we obtain, assuming that $f_n=10 kHz$;

The contingity, we solution, assuming
$$\tau_1 + \tau_2 = \frac{K_0 K_0 fo}{(2 \pi \text{ fn})^2} = 113 \mu \text{S}$$
Damping factor $\xi = 0.707$,
$$\tau_2 = \frac{2 \xi}{2 \pi \text{ fn}} = 22 \mu \text{S}$$

$$\tau_2 = \frac{2 \, \xi}{2 \, \pi \, \text{fn}} = 22 \mu \text{S}$$

$$\therefore \tau_1 = 91 \mu S$$

From these values, we obtain C and R2 as follows.

$$C = \tau_1/R_1 = 4500 pF$$

$$R_2 = \tau_2/C = 4.9 k\Omega$$

Fig. 4 Steady-state Phase Error by Sine Wave FM

(3) Effect of LPF constants on the detection characteristic of PLL demodulator circuit

Graphs 9, 10 and 11 show the input-to-output characteristic, modulation frequency-to-AF output characteristic, and frequency deviation-to-distortion factor characteristic when LPF constants were changed, respectively. Table 1 shows LPF constants in these cases.

• Input-to-output characteristic (Graph 9)

The noise level from -100dBm to -70dBm is affected by the natural angular frequency and lock range. Since the input level, where the noise level suppression is started, is transient just before the PLL is locked, the noise level is affected by the damping factor and capture range.

• Modulation frequency-to-AF output characteristic (Graph 10)

The band is demodulated from (1) and (2), and determined by the natural angular frequency. If this band is wide, the noise level increases:

• Frequency deviation-to-distortion factor characteristic (Graph 11)

The maximum frequency deviation is determined by the natural angular frequency.

• LPF constants, the capture range, and lock range (Graph 12)

Graph 12 shows the capture range and lock range when LPF constants were changed. From this graph and the input-to-output characteristic shown in Graph 9, it is understood that the noise level is changed by the lock range.

Table-1

1	C=2200pF, $R_2 = 1k\Omega$	$f_n = 15.6 \text{kHz}, \xi = 0.1$
2	C=1000pF, $R_2 = 330\Omega$	$f_n = 23.6 \text{kHz}, \ \xi = 0.02$
3	C=2200pF, $R_2 = 5.1 \text{k}\Omega$	$f_n = 14.3 \text{kHz}, \xi = 0.5$

Graph 9 Input-output Characteristic

Graph 10 Modulated Frequency
vs. A.F. Output Voltage

Graph 11 Frequency Deviation vs. Distortion

Graph 12 LPF Constance, Capture Range, Lock Range

Δf_C: Capture Range Δf_L: Lock Range

(5) VCO

Graph 13 shows the VCO oscillation frequency-to-LPF output voltage characteristic. The LPF output voltage (voltage across pins (13) - (14)) becomes the VCO control voltage.

As shown in Graph 13, this relation is linear, and its gradient is determined by the VCO converstion gain.

Also, the linearity range is closely related to the lock range. Graph 14 shows the VCO free-running-to-timing C characteristic to show a change of the VCO free-running frequency when timing C is changed.

The capacitor connected across pins (11), (12) and GND suppresses the higher harmonics of the VCO output.

Graph 13 VCO Frequency vs. LPF Output Voltage

Graph 14 VCO Free Running Frequency vs. Timing Capacitance

VCO Free Running Frequency (Hz)

Graph 15 VCO Free Running Frequency vs. Operating Voltage

Graph 16 VCO Free Running Frequency Deviation vs. Operating Voltage

Graph 17 VCO Frequency Deviation vs. Ambient Temperature

Connection Resistance between pin 1 and 12 Use timing Capacitance at 0 ppm/°C

Graph 18 **VCO Frequency Deviation** vs. Ambient Temperature

[3] Squelch Circuit Function

The squelch sensitivity is adjustable by the resistance value R connected between pin (9) and V^+ . Graph 19 shows the relation between resistance R and squelch release level. As shown in graph 20, the squelch sensitivity corresponding to the S/N ratio required for mute function is adjustable by resistance R. Graph 21 shows the power voltage-to-squelch release level characteristic. Also, the squelch attack time is adjustable by the capacitor connected across pin (9) and GND. This characteristic is obtained by changing the gradient of the squelch level from a high level to a low level by using an external capacitor.

(Note) Squelch release level: Input signal level when the squelch level (pin (8) DC potential) changes from the high level to low level.

The VCO timing C is adjustable by maximizing the DC voltage of pin (9) when an 1mVrms non-modulated signal input is applied.

Graph 19 Squelch Open Level vs. Squelch Resistance

Graph 21 Squelch Open Level vs.
Operating Voltage

Graph 20 Squelch Sensitivity
Characteristics

Graph 22 Squelch Input/Output
Characteristics

Graph 23 Operating Current vs.
Operating Voltage

[4] NJM2206 overall characteristics

(1) DC characteristic

Graph 23 shows the power voltage-to-current consumption characteristic, while graph 24 shows the ambient temperature-to-current consumption characteristic.

(2) AC characteristic

Graph 25 shows the power voltage-to-output level characteristic. As shown from this graph, this IC is characterized with small change of the AF output level against power fluctuations.

Also, the input/output characteristic is shown in graph 26. Graph 28 and 29 show the S/N ratio, sense, and AF output level-to-power voltage characteristic and the S/N ratio, sense, and AF output level-to-ambient temperature characteristic, respectively.

Graph 24 Operating Current vs.

Ambient Temperature

Graph 25 AF Output Level vs.

Operating Voltage

Graph 26 Input/Output Characteristics

Graph 27 Distortion, AF Output Level vs.
Off-Center Frequency

Graph 28 Signal to Noise Ratio, Sense,
AF Output Level vs. Operating Voltage

Graph 29 Signal to Noise Ratio, Sense, AF Output Level vs. Ambient Temperature

■ TEST CIRCUIT

■ GENERAL DESCRIPTION

The NJM2211 is a monolithic phase-locked loop (PLL) system especially designed for data communications. It is particularly well suited for FSK modem applications, and operates over a wide frequency range of 0.01Hz to 300kHz. It can accommodate analog signals between 2mV and 3V, and can interface with conventional DTL, TTL and ECL logic families. The circuit consists of a basic PLL for tracking an input signal frequency within the passband, a quadrature phase detector which provides carrier detection, and an FSK voltage comparator which provides FSK demodulation. External components are used to independently set carrier frequency, bandwidth, and output delay.

■ PACKAGE OUTLINE

NJM 2211 M

■ FEATURES

Wide Operating Voltage (4.5V to 20V) Wide frequency range (0.01Hz to 300 kHz)

DTL/TTL/ECL logic compatibility

FSK demodulation with carrier-detector

Wide dynamic range (2mV to 3V_{rms}) Adjustable tracking range $(\pm 1\% \text{ to } \pm 80\%)$ Excellent temperature stability (20ppm/°C typical) Package Outline DIP14, DMP14 Bipolar Technology

APPLICATIONS

- FSK demodulation
- Data synchronization
- Tone decoding
- FM detection
- Carrier detection

■ PIN CONFIGURATION

NJM2211D NJM2211M

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	20	V
Input Signal Level	V _{IN}	3	V _{rms}
Power Dissipation	PD	(DIP14) 700	mW
		(DMP14) 300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
FARAMETER	STMBOL	TEST CONDITION	14114.			
Operating Voltage	V*	SELLIFICATION.	4.5	183	20	V
Operating Current	I _{CC}	R ₀ ≥10kΩ		5	11	mA
Oscillator						
Frequency Accuracy	Δf_0	Lord back	-	±1.0	-	%
Frequency Stability Temp. Coefficient	$\Delta f_0/\Delta T$	R ₁ =∞		±20		ppm/°C
Power Supply Rejection	PSRR	V ⁺ =12±1V V ⁺ =5±0.5V		±0.05 ±0.2	±1.5	%/V %/V
Upper Frequency Limit	f _{0 MAX}	$R_0 = 8.2 k\Omega, C_0 = 400 pF$	-	300		kHz
Lowest Operating Frequency	f _{0 MIN}	$R_0=2M\Omega$, $C_0=50\mu F$		0.01	<u>tra</u> effs	Hz
Timing Resistor	700	- Pa (DIFFE)			interrugita	Grands
Timing Decision	R ₀	Operating Range	5	-	2000	kΩ
Timing Resistor	K ₀	Recommended Range	15	Topos A	100	kΩ
Loop Phase Detector						
Peak Output Current	I_0	Meas. at pin 11	±100	±200	±300	μΑ
Output Offset Current	Ios			±2.0	_	μΑ
Output Impedance	Z_0		-	1.0		МΩ
Maximum Voltage Swing	V _{OM}	Ref. to pin 10	±4.0	±5.0	-	V
Quadrature Phase Detector				Mali		
Peak Output Current	I_0	Meas. at Pin 3		150	-	μΑ
Output Impedance				1.0	_	МΩ
Maximum Voltage Swing				11	_	V _{p-p}
Input Preamp						
Input Impedance	R _{IN}	Meas. at Pin 2	-	20	_	kΩ
Input Signal Voltage Required to Cause Limiting	V _{IN}			2		mV _{rms}

Voltage Comparator

Input Impedance	R _{IN}	Measure at Pin 3 & 8	ur berigin	2	burg en	МΩ
Input Bias Current	I _B	est (Pin II)	O mine	100	nic estr A e s tendad	nA
Voltage Gain	G _V	$R_L=5.1k\Omega$	tangao	70	1-11-111-50 11-11-11-110	dB
Output Voltage Low	V _{SAT}	5, 6, 7 _{PIN} I _C =3mA	_	0.3	1.0	V
Output Leakage Current	I _{LEAK}	V ₀ =12V	U-115) s	0.01	11	μΑ
Internal Reference	a.01 (90) (300)	guile went to this except and make some many	dard x	to my at	ing in the	000 pr
Output Voltage	V_{REF}	Measure at Pin 10	4.75	5.30	5.85	v
Output Impedance	Z_0	ig set	-	100	1 1 1160	Ω

EQUIVALENT CIRCUIT

■ CIRCUIT FUNCTION

• Singal Input (Pin 2)

The input signal is AC coupled to this terminal. The internal impedance at pin 2 is $20k\Omega$. Recommended input signal leveles in the range of $10mV_{rms}$ to $3V_{rms}$.

• Quadrature Phase Detector Output (Pin 3)

This is the high-impedance output of the quadrature phase detector, and is internally connected to the input of lock-detect voltage comparator. In tone detection applications, pin 3 is connected to ground through a parallel combination of R_D and C_D (see Figure 1) to eliminate chatter at the lock-detect outputs. If this tone-detect section is not used, pin 3 can be left open circuited.

• Lock-Detect Output, Q (Pin 5)

The output at pin 5 is at a "high" state when the PLL is out of lock and goes to a "low" or conducting state when the PLL is locked. It is an open collector type output and required a pull-up resistor, R_L , to V^+ for proper operation. In the "low" state it can sink up to 5mA of load current.

• Lock-Detect Complement, Q (Pin 6)

The output at pin 6 is the logic complement of the lock-detect output at pin 5. This output is also an open collector type stage which can sink 5mA of load current in the low or "on" state.

• FSK Data Output (Pin 7)

This output is an open collector logic stage which requres a pull-up resistor, R_L , to V^+ for proper operation. It can sink 5mA of load current. When decoding FSK signals the FSK data output will switch to a "high" or off state for low input frequency, and will switch to a "low" or on state for high input frequency. If no input signal is present, the logic state at pin 7 is indeterminate.

• FSK Comparator Input (Pin 8)

This is the high-impedance input to the FSK voltage comparator. Normally, an FSK post-detection or data filter is connected between this terminal and the PLL phase-detector output (pin 11). This data filter is formed by R_F and C_F of Figure 1. The threshold voltage of the comparator is set by the internal reference voltage, V_R , available at pin 10.

• Reference Voltage, V_R (Pin 10)

This pin is internally biased at the reference voltage level, V_R ; $V_R = V + /2 - 650 \text{mV}$. The DC voltage level at this pin forms an internal reference for the voltage levels at pin 3, 8, 11, and 12. Pin 10 must be bypassed to ground with a $0.1 \mu\text{F}$ capacitor.

Loop Phase Detector Output (Pin 11)

This terminal provides a high impedance output for the loop phase-detector. The PLL loop filter is formed by R1 and C1 connected to pin 11 (see Figure 1). With no input signal, or with no phase error within the PLL, the DC level at pin 11 is very nearly equal to V_{REF} . The peak voltage swing available at the phase detector output is equal to $\pm V_{REF}$.

Figure 1 FSK & Tone Detection

• VCO Control Input (Pin 12)

VCO free-running frequency is determined by external timing resistor, R0, connected from this terminal to ground. The VCO free-running frequency, f_0 , is given by:

$$f_0(Hz) = \frac{1}{R0C0}$$

where C0 is the timing capacitor across pins 13 and 14. For optimum temperature stability R0 must be in the range of $10k\Omega$ to $100k\Omega$ (see Typical Electrical Characteristics).

This terminal is a low impedance point, and is internally biased at a DC level equal to V_R . The maximum timing current drawn from pin 12 must be limited to $\leq 3mA$ for proper operation of the circuit.

• VCO Timing Capacitor (Pins 13 and 14)

VCO frequency is inversely proportional to the external timing capacitor, C0, connected across these terminals. C0 must be non-polarized, and in the range of 200pF to 10μ F.

VCO Frequency Adjustment

VCO can be fine tuned by connecting a potentiometer, R_X, in series with R0 at pin 12 (see Figure 2)

VCO Free-Running Frequency, F₀

The NJM2211 does not have a separate VCO output terminal. Instead, the VCO outputs are internally connected to the phase-detector sections of the circuit. However, for setup or adjustment purposes, the VCO free-running frequency can be measured at pin 3 (with C_D disconnected) with no input and also pin 2 shorted to pin 10.

DESIGN EQUATIONS

See Figure 1 for Definitions of Components.

1. VCO Center Frequency,
$$f_0$$
:
 $f_0(Hz) = \frac{1}{ROCO}$

$$V_{R} = \left(\frac{+V_{s}}{2}\right) - 650 \,\mathrm{mV}$$

$$\tau{=}R1C1$$

$$\zeta = \left(\sqrt{\frac{C0}{C1}}\right)\left(\frac{1}{4}\right)$$

$$\Delta f/f_0 = R0/R1$$

$$\tau_F = R_F C_F$$

 $\Delta f/f_0 = R0/R1$

7. Loop Phase Detector Conversion Gain, K_{ϕ} :

 $(K_{\phi}$ is the differential DC voltage across pins 10 and 11, per unit of phase error at phase-detector input):

$$K\phi$$
 (in volts per radian) = $\frac{(-2)(V_{REF})}{\pi}$

8. VCO conversion Gain, K0, is the amount of change in VCO frequency per unit of DC voltage change at pin 11:

K0 (in Hertz per volt) =
$$\frac{-1}{\text{CORIV}_{\text{REF}}}$$

9. Total Loop Gain K_T:

$$K_T$$
 (in radians per second per volt) = $2\pi K \phi K 0$

$$=4/C0R1$$

10. Peak Phase-Detector Current, IA:

$$I_{A}(mA) = \frac{V_{REF}}{25}$$

APPLICATIONS

FSK Decoding

Figure 2 shows the basic circuit connection for FSK decoding. With reference to Figures 1 and 2, the functions of external components are defined as follows: R0 and C0 set the PLL center frequency. R1 sets the system bandwidth, and C1 sets the loop filter time constant and the loop damping factor. C_F and R_F form a one pole post-detection filter for the FSK data output. The resistor R_B (=510k Ω) from pin 7 to pin 8 introduces positive feedback across FSK comparator to facilitate rapid transition between output logic states.

Recommended component values for some of the most commonly used FSK bauds are given in Table 1.

Figure 2 FSK Decoding

Table 1. Recommended Value for FSK (Ref. Fig. 2)

FSK Band	Component Values
300 Band	$C0=0.039\mu F C_F=0.005\mu F$
F ₁ =1070Hz	$C1=0.01\mu F$ $R0=18k\Omega$
f ₂ =1270Hz	R1=100kΩ
300 Band	$C0=0.022\mu F$ $C_F=0.005\mu F$
f ₁ =2025Hz	C1=0.0047 μ F R0=18k Ω
f ₂ =2225Hz	R1=200kΩ
1200 Band	$C0=0.027\mu F$ $C_F=0.0022\mu F$
f ₁ =1200Hz	C1=0.01μF R0=18kΩ
f ₂ =2200Hz	R1=30kΩ

Design Instructions

The circuit of Figure 2 can be tailored for any FSK decoding application by the choice of five key circuit components; R0, R1, C0, C1 and C_F . For a given set of FSK mark and space frequencies, f_T and f_2 , these parameters can be calculated as follows:

- 1. Calculate PLL center frequency, f_0 $f_0 = \frac{f_1 + f_2}{2} \label{eq:f0}$
- 2. Choose a value of timing resistor R0 to be in the range of $10k\Omega$ to $100k\Omega$. This choice is arbitary. The recommended value is $R0 \cong 20k\Omega$. The final value of R0 is normally fine-tuned with the series potentiometer, R_X .
- 3. Calculate value of C0 from Design Equation No. 1 or from Typical Performance Characteristics: $C0=1/R0f_0$
- 4. Calculate R1 to give a Δf equal to the mark-space deviation: R1=R0[f_0/(f_1-f_2)]
- 5. Calculate C1 to set loop damping. (See Design Equation No. 4.) Normally, $\xi \approx 1/2$ is recommended Then: C1=C0/4 for $\xi = 1/2$
- 6. Calculate Data Filter Capacitance, C_F :
 For $R_F{=}100k\Omega$. $R_B{=}510k\Omega$, the recommended value of C_F is: $C_F (\text{in } \mu F) = \frac{3}{Band\ Rate}$

Note: All calculated component values except R0 can be rounded off to the nearest standard value, and R0 can be varied to fine-tune center frequency through a series potentiometer, R_X (see Figure 2).

Design Example

75 Band FSK demodulator with mark/space frequencies of 1110/1170Hz:

Step 1: Calculate fo:

 $f_0 = (1110 + 1170)(1/2) = 1140$ Hz

Step 2: Choose R0=20k Ω (18k Ω fixed resistor in series with 5k Ω potentiometer)

Step 3: Calculate C0 from V_{CO} Frequency vs. Timing Capacitor: C0=0.044μF

Step 4: Calculate R1: R1=R0(1140/60)=380k Ω

Step 5: Calculate C1: C1=C0/4=0.011μF

Note: All values except R0 can be rounded off to nearest standard value.

FSK Decoding With Carrier Detect

The lock-detect section of the NJM2211 can be used as a carrier detect option for FSK decoding. The recommended circuit connection for this application is shown in Figure 3. The open-collector lock-detect output, pin 6, is shorted to the data output (pin 7). Thus, the data output will be disabled at "low" state, until there is a carrier within the detection band of the PLL, and the pin 6 output goes "high" to enable the data output.

The Minimum value of the lock-detect filter capacitance C_D is inversely proportional to the capture range, $\pm \Delta f_c$. This is the range of incoming frequencies over which the loop can acquire lock and is always less than the tracking range. It is further limited by C1. For most applications, $\Delta f_c < \Delta f/2$, For $R_D = 470 k\Omega$, the approximate minimum value of C_D can be determined by:

C_D (μF)≥16/capture range in Hz

With values of C_D that are too small, chatter can be observed on the lock-detect output as an incoming signal frequency approaches the capture bandwidth. Excessively large values of C_D will slow the response time of the lock-detect output.

Tone Detection

Figure 4 shows the generalized circuit connection for tone detection. The logic outputs, Q and \overline{Q} at pins 5 and 6 are normally at "high" and "low" logic states, respectively. When a tone is present within the detection band of the PLL, the logic state at these outputs becomes reversed for the duration of the input tone. Each logic output can sink 5mA of load current.

Both logic outputs at pins 5 and 6 are open-collector type stages, and require external pull-up resistors R_{L1} and R_{L2} as shown in Figure 4.

With reference to Figure 1 and 4, the function of the external circuit components can be explained as follows: R0 and C0 set VCO center frequency, R1 sets the detection bandwidth, C1 sets the lowpass-loop filter time constant and the loop damping factor, and R_{L1} and R_{L2} are the respective pull-up resistors for the Q and \overline{Q} logic outputs.

Figure 3. FSK Demodulation with

Carrier Detect Capability

Figure 4. Tone Detection

Design Instructions

The circuit of Figure 4 can be optimized for any tone-detection application by the choice of five key circuit components: R0, R1 C0, C1, and C_D . For a given input tone frequency, f_S , these parameters are calculated as follows:

- 1. Choose R0 to be in the range of $15k\Omega$ to $100k\Omega$. This choice is arbitrary.
- 2. Calculate C0 to set center frequency, f₀ equal to f_s: C0=1/R0f_s.
- 3. Calculate R1 to set bandwidth $\pm \Delta f$ (see Design Equation No. 5): R1=R0 ($f_0/\Delta f$)

Note: The total detection bandwidth covers the frequency range of $f_0=\Delta f$.

4. Calculate value of C1 for a given loop damping factor:

 $C1 = C0/16\zeta^{2}$

Normally 5≈1/2 is optimum for most tone-detector applications, giving C1=0.25 C0.

Increasing C1 improves the out-of-band signal rejection, but increases the PLL capture time.

5. Calculate value of filter capacitor C_D . To avoid chatter at the logic output, with R_D =470k Ω , C_D must be: C_D (μF) \geqslant (16/capture range in Hz)

Increasing C_D slows the logic output response time.

Design Examples

Tone detector with a detection band of 1kHz±20Hz:

Step 1: Choose $R0=20k\Omega$ (18k Ω in series with $5k\Omega$ potentiometer).

Step 2: Choose C0 for $f_0=1kHz$: C0=0.05 μ F.

Step 3: Calculate R1: R1=(R0) $(1000/20)=1M\Omega$.

Step 4: Calculate C1: for $\zeta = 1/2$, C1=0.25 μ F, C0=0.013 μ F.

Step 5: Calculate C_D : $C_D = 16/38 = 0.42 \mu F$.

Step 6: Fine tune the center frequency with the $5k\Omega$ potentiometer, R_X .

Linear FM Detection

The NJM2211 can be used as a linear FM detector for a wide range of analog communications and telemetry applications. The recommended circuit connection for the application is shown in Figure 5. The demodulated output is taken from the loop phase detector output (Pin 11), through a post detection filter made up of R_F and C_F , and an external buffer amplifier. This buffer amplifier is necessary because of the high impedance output at pin 11. Normally, a non-inverting unity gain op amp can be used as a buffer amplifier, as shown in Figure 5.

Figure 5. Linear FM Detector

The FM detector gain, i.e., the output voltage change per unit of FM deviation, can be given as:

V_{OUT}=R1 V_R/100 R0 Volts/% deviation

where V_R is the internal reference voltage. For the choice of external components R1, R0, C_D , C1 and C_F , see the section on Design Equations.

■ TYPICAL CHARACTERISTICS

Curve	R 0	
1	5 K	
2	10 K	
3	30 K	
4	100 K	
5	300 K	

FM IF WITH LOG AMPLIFIER

■ CONNECTION DIAGRAM

The NJM2232A is high precision FM IF IC with log amplifier, designed to be used for handy type wireless apparatus.

The NJM2232A includes in one chip of IC, at each block, the mixer, local oscillator limitter, log amplifier, FM detector, and so on, with which set up the IF block of handy type wireless apparatus that requires high precision electronic detection.

■ FEATURES

RSSI features are excellent

Linearity $\pm 1 dB$ Dynamic Range90 dBTemperature $\pm 2 dB$ Low power dissipation(Vcc=6V)5.2 mA typ.Operating voltage $5 \sim 9V$ Package OutlineDMP24

Bipolar Technology

■ RECOMMENDED OPERATIONAL CONDITION

• Operating Voltage V+ 5.0~9.0V

APPLICATION

- Automobile telephone
- Codeless Telephone
- MCA
- Celler Radio
- Business Wireless apparatus
- Various measuring units

BLOCK DIAGRAM

■ PACKAGE OUTLINE

TERMINAL EXPLANATION

PIN	SYMBOL	Function
1	Vcc	Supply Voltage Input of IF-AMP1,RSSI and Reference
2	IF IN	IF-AMP1(Limitter Amp.) Signal Input.
3	GND	Ground of IF-AMP1,RSSI and Reference
4	EXT. C1	Capacitor Connection Terminal1(Limitter Amp. AC Decoupling)
5	EXT. C2	Capacitor Connection Terminal2 (Limitter Amp. AC Decoupling)
6	DEC 1	Reference Decoupling Capacitor1
7	FILT IN	Filter Input between IF-AMP1 and IF-AMP2
8	DEC 2	Reference Decoupling Capacitor2
9	EXT. C3	Capacitor Connection Terminal3 (Limitter Amp. AC Decoupling)
10	AGND	Ground of IF-AMP2 and RSSI
11	IF OUT	IF-AMP2(Limitter Amp.) Signal Output
12	AVcc	Supply Voltage Input of IF-AMP2 and RSSI
13	RSSI	RSSI Input
14	CV _{CC}	FM-DISCRI Supply Voltage Input
15	QUAD IN	Quadrature Detector Input
16	CGND	FM-DISCRI Ground
17	AF OUT	Audio Signal Output
18	DEC 3	Reference Decoupling Capacitor3
19	BGND	Mixer Ground
20	MIX IN	Mixer Signal Input
21	OSC 2	Crystal Oscillator Terminal2
22	OSC 1	Crystal Oscillator Terminal1
23	BV _{CC}	Mixer Supply Voltage Input
24	MIX OUT	Mixer Signal Output

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	12	V
Power Dissipation	PD	700	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V⁺=6V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CC}	11, 21, 22pin, no loading	_	5.2	8.5	mA
Mixer Voltage Gain	G _{MIX}	f _{IN} =90MHz, -40dBm	18	20	22	dB
RSSI Output Voltage (1)	V _{L1}	f _{IN} =455kHz, -90dBm	0.135	_	0.405	V
RSSI Output Voltage (2)	V _{L2}	f_{IN} =455kHz, $-80dBm$	0.41	_	0.71	V
RSSI Output Voltage (3)	V _{L3}	f _{IN} =455kHz, 0dBm	2.56	_	2.94	V
RSSI Linearity	V _{LIN}	(Note 1)	-1	0	1	dB
RSSI Dynamic Range	DR	(Note 1)	90	_	_	dB
IF Output Voltage	V _{IF}	f _{IN} =455kHz, -50dBm	1.2	1.4	1.6	V
Audio Output Voltage	V _{OUT}	Standard Modulation Signal (Note 2)	150	200	250	mV
Total Harmonic Distortion	THD	Standard Modulation Signal (Note 2)		_	1	%
S/N Ratio	S/N	Standard Modulation Signal (Note 2)	40	_	_	dB
AMRR	AMR	Standard Modulation Signal (Note 3)	30		_	dB

- (Note 1) RSSI Linearity has 10 measuring points ($-90,-80\sim0 dBm$) from where getting the ideal linearity by way of mini square method, and that each 10 measured spots should stay on within the range of \pm 1 dB that can be obtained during the process of the measurement. Also in the process of the measurement, RSSI dynamic range 90 dB can be obtained at the same time.
- (Note 2) $f_{IN}=455kHz$, -20dBm, $f_{MOD}=1kHz$, $f_{DEV}=3kHz$
- (Note 3) f_{IN}=455kHz, -20dBm, f_{MOD}=1KhZ, AM 30%MOD

Adjustable Coil:L-5K4-R(Mitsumi)

■ TERMINAL EXPLANATION

(1) Supply Voltage

The supply voltage is to be delivered at each block, such as limitter Amplifier block ((1), (12) Pin), Mixer block (23) pin, FM Discrimination block (14) pin and so on. When applying the voltage, proceed it supplying from the latter block to front in order of the block structure. When the mixer block and FM block are not required the IC is not operation, no functioning as long as the power supply is off.

(Supply Voltage)

(2) Mixer Input

Mixer input impedance (20) pin is designed to be set at $1.5k\Omega$ (standard) on voltage. It is advisable to input after DC cutting, for desired matched circuit.

(3) Oscillator

As far as the local oscillator input goes, there are 2 methods as shown below.

- 1. Input after setting the crystal oscillating circuit, on (21), (22) pins.
- Connect (21) pin directly on supply voltage, and then input the external local oscillator output directly to pin 22.
- (4) Filter (to be used between Mixer and Limitter Amp.) Mixer output impedance (24) pin is 2 kΩ (standard), Limitter Amp. Impedance (2) pin is 18kΩ (standard) are desired. Input harmonizing to the filter to be used for adequate matched circuit.

IFIN 2

(5) Limitter Amp. Input Limitter amp. impedance is designed to be $18k\Omega$ (standard). Be sure to input after DC cutting.

(Limitter Amp. Input)

(6) Decoupling Capacitance

(4), (5), (9) pins capacitor are AC decoupling capacitor, Which are set as a part of amplifier feed back circuit of Limitter amp. block. Please apply about $0.1\mu F$ capacitance.

(Decoupling Capacitor)

(7) Reference Capacitor

(6), (8), (18) pins capacitor are AC decoupling capacitor which are to be connected to the internal reference. Please apply about 0.1μ F capacitance.

(8) Limitter Amp. Inter Section Filter

The limitter amp, the inter section filter is composed of the resonator applied with the tuning coil as in the drawing.

Upon designing the RSSI linearity, it is advisable to apply the resonator coil with no loading Q=55, $L=680\mu$ H condition, and so proceed DC cutting before the coil.

(Inter Section Filter)

(9) Limitter Amplifier

As shown in the drawing, the limitter amp. is the open emitter, and the limitter amp. output can be obtained by putting adequate resistor to pin (11).

(Limitter Amp. Output)

(10) Quadrature Detecting phase Shifter

In order to detect quadrature, input the signal that has shifted the phase for 90 degree from pin (15) to RLC paralleled resonator.

The resistor value should be decided to obtain the desired audio output.

(Phase Shifter)

(11) RSSI detecting current shall be shifted from current into voltage by the internal resistor $32k\Omega$, And at the same time, please put the external capacitor value to be able to stay constantly for the desired time.

(RSSI Output)

■ TYPICAL APPLICATION

■ TYPICAL CHARACTERISTICS

FM FRONT-END

■ GENERAL DESCRIPTION

The NJM2236 is designed for FM front end application, which is suitable to portable radio, radio cassette, clock radio and TV with FM radio. Comparing with conventional types, supply voltage dependence, overload characteristics and spurious radiation characteristics are improved.

■ FEATURES

- Wide Operating Voltage
- (1.6~6.0V)
- Excellent Supply Voltage Dependence of Local Oscillator
- Improved Intermoduration Characteristics by Duble Balanced Mixer Circuit
- Low Spurious Radiation
- Build-In Clamping Diode for the Mixer Output
- Local Oscillator Voltage: NJM2236A (Typ.80mV)

: NJM2236 (Typ.110mV)

Package Outline

Bipolar Technology

DIP8, DMP8, SIP8

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2236 AL

				•	1	10	1	-0 V+
			1 3	Ţ			1	and a
			1 1		TO IF AMP		1	_3
-			3-4) I OCAL		
O- IN	B.P.F	-0-	RFAMP	MIX.	BUFFER	LOCAL		
IN				1	BIAS	REG.	no leske	
			<u>2</u>	-1		6,800	27.0010	
			***		***			

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	Service Service 8	V
Power Dissipation	P _D	(DIP8) 500	mW
		(DMP8) 300	mW
		(DIP8) 800	mW
Operating Temperature Range	Topr	-20~75	°C
Storage Temperature Range	Tstg	-40~125	C

■ ELECTRICAL CHARACTERISTICS (V+=5V, [M-Type V+=3V], f=83MHz, fm=1kHz. △f=22.5kHz dev., Ta=25°C)

CHARACTE	RISTICS	SYMBOLS	CIRCUIT	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating	Current	Icc	2	V _{IN} =0	-	5.2	8.0	mA
-3dB Limitin	g Sensitivity	V _{IN} (lim)	2			3.0	7.0	dΒμ
Quiescent Sensitivity Conversion Gain		Qs	2		-	11.0	_	dΒμ
		Gc	-		_	31	-	dB
Local OSC NJM2236A			1	f _{OSC} =60MHz	40	80	120	mVrms
Voltage	NJM2236	Vosc	WA TI OF	IOSC — OUNTHZ	70	110	180	mVrms
l Pin Parallel Input Impedance	Resistance	r _{ipl}	3	Tam - Five is	Ţ	57		Ω
	Resistance	ro _{p3}	2111		-	25	-	kΩ
Input	Capacitance	co _{p3}	3	f=83MHz	-	2.0		pF
	Resistance	ri _{p4}	100			2.7	_	kΩ
Impedance	Capacitance	ci _{p4}	3		-	3.3	-	pF
4 Pin Parallel Input	Resistance	ro _{p6}			-	100	-	kΩ
	Capacitance	co _{p6}	3	f=10.7MHz	-	4.8		pF
Local OSC Si	top Voltage	Vstop	1		_	0.9	1.3	V

■ TEST CIRCUIT 1

■ TEST CIRCUIT 2

(1) rip 1

(3) rip 4, cip 4

(4) rop 6, cop 6

■ TEST CIRCUIT COIL DATA

(Japan Band for 76.0MHz to 108.0MHz)

COIL	fo	Qo	TURNS	Co	(V ₁₈ =0, Ta=2577)
T1 RF Coil	100 MHz	100	$0.7 \mathrm{mm} \neq 2 \frac{1}{4}$ (Japan Band)	22 pF	
			SUMIDA 0295 – 057	(ext.)	5.0 mm
T 2	100 MHz	100	0.7 mm ≠ 2 1/2 (Japan Band)	30pF	
Coil	ST ANNE	geiser gi Shiji Qu Bassas S	SUMIDA 0295 – 056	(ext.)	5.0 mm
T 3 FM IFT Coil	10.7 MHz	①-③ 90	①-③ 11 T ④-⑥ 2 T Wire: 0.12 mm ≠ UEW SUMIDA 2153-414-041	①-③ 82pF	3 2 1 Bottom View
T 4 FM DET Coil	10.7 MHz	①-③ 100	①-③ 10T Wire: 0.12 mm \(\phi\) UEW SUMIDA 2153-4095-331	①-③ 150pF	3 4 2 5 6 Bottom View

[•] Band Pass Filter (B. P. F.) : SOSHIN ELECTRIC Co., LTD. ...BPWB5

[•] Tuning Capacitor : ALPS ELECTRIC Co., LTD. ... VCB41E101

■ TYPICAL CHARACTERISTICS

Operating Current vs. Operating Voltage

Local Frequency Drift vs. Operating Voltage

Operating Voltage V+ (V)

V_{IN}(lim), Q_S,J_f vs. Ta

AM/FM RADIO

■ GENERAL DESCRIPTION

The NJM2237 is monolithic integrated circuit in a 20-lead dual inline plastic package designed for use in 3-6V protable AM/FM radio receivers.

The functions incorporated are AM RF amplifier, AM mixer, FM/AM IF amplifier, FM/AM detecter, AM AGC circuit Audio Power amplifier.

■ PACKAGE OUTLINE

■ FEATURES

- Wide Operating Voltage
- (1.8~6.0V)
- Very Simple DC switching of FM/AM
- High AM signal handling
- \bullet 4 Ω speaker direct drive
- Low tweet
- Most suitable to use with NJM2236
- Package Outline

DIP20

Bipolar Technology

BLOCK DIAGRAM

(note) Dotted line shws $V^+ = 4.5V$

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	8	V
Output Current	I _{O(peak)}	550	mA
Power Dissipation	P _D	1.2	W
Operating Temperature Range	Topr	-20~75	C
Storage Temperature Range	Tstg	-40~125	C

■ ELECTRICAL CHARACTERISTICS

(V+=3V, Ta=25°C, FM: f=10.7MHz, △f=22.5kHz dev., fm=1kHz AM: f=1MHz, Mod=30%, fm=1kHz Unless otherwise noted)

	CHARACTERISTICS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Operating Current		I _{CC} (FM)	V _{IN} =0		15	20	mA
		I _{CC} (AM)	V _{IN} =0	_		20	
	-3dB Limiting Sensitivity	V _{IN} (lim)		-	36	42	$dB\mu$
F	Detection Output Voltage	V_{OD} $V_{IN} = 80 dB_{\mu}$		22	31	44	mVrms
	Signal to Noise Ratio	S/N	$V_{IN}=80dB_{\mu}$	11-	70	-	dB
М	Total Harmonic Distortion	THD	$V_{IN}=80dB_{\mu}$	-	0.3	-	%
	Am Rejection Ratio	AMR	$V_{IN}=80dB_{\mu}$	-	33	-	dB
	Voltage Gain Gv		$V_{IN} = 30 dB_{\mu}$	5	11	17	mVrms
A M	Detection Output Voltage	V _{OD}	$V_{IN} = 66 dB \mu$	22	31	44	mVrms
	Signal to Noise Ratio	S/N	$V_{IN} = 66dB\mu$	-6	46	-	dB
	Total Harmonic Distortion	THD1	$V_{IN}=66dB\mu$ — 1.		1.5	-	%
	Total Harmonic Distortion	THD2	$V_{IN} = 106 dB_{\mu}$	_	4.0	-	
	Local OSC Stop Voltage	V _{STOP}	V _{OSC} -6dB	_	1.0	1.5	V
	Voltage Gain	Gv	$f=1kHz$, $R_L=4\Omega$	37	40	43	dB
		P _{OD} 1	$f=1kHz$, $R_L=4\Omega$, $THD=10\%$	180	220	_	
P	Output Power	P _{OD} 2	$V^{+} = 4.5V$ $f = 1 \text{kHz}, R_{L} = 4\Omega, \text{ THD} = 10\%$ - 500		500	_	mW
W	Total Harmonic Distortion	THD	$f=1kHz$, $R_L=4\Omega$, $P_O=50mW$	_	0.5	20	%
	Output Noise Voltage	V _{NO}	$R_0=10k\Omega$, $RL=4\Omega$ $BW=30Hz\sim20kHz$	-	0.18	-	mVrms

■ TERMINAL VOLTAGE AT NO SIGNAL

(V+=3V, Ta=25°C)

CHARACTERISTICS		CAMBOLC	TYPIC	TINITE		
PIN NO	FUNCTION	SYMBOLS	AT AM	AT FM	UNIT	
1	GND	V_1	0	0	V	
2	FM IF IN	V_2	2.4	2.0	V	
3	FM/AM Switch	V_3	0	2.0	V	
4	FM DET	V_4	2.9	2.9	V	
5	DET OUT	V_5	0.4	0.7	V	
6	PW IN	V ₆	0	0	V	
7	PW Bipass	V ₇	0.6	0.6	V	
8	PW GND	V_8	0	0	V	
9	PW OUT	V ₉	1.5	1.5	V	
10	PW Bootstrap	V ₁₀	2.8	2.8	V	
11	V* 1	V ₁₁	3.0	3.0	V	
12	AGC1	V ₁₂	0.6	0	V	
13	AGC2	V ₁₃	0.6	0	V	
14	AM DET	V ₁₄	0	0	V	
15	AM Bipass	V ₁₅	1.3	0	V	
16	AM IF IN	V ₁₆	1.3	0	V	
17	AM Osc	V ₁₇	2.9	2.9	V	
18	V+ 2	V ₁₈	2.9	2.9	V	
19	AM MIX OUT	V ₁₉	2.9	2.9	V	
20	AM RF IN	V ₂₀	2.9	2.9	V	

■ TEST CIRCUIT

■ TEST CIRCUIT COIL DATA

COIL NO.	F ₀	Q0	TURNS	C ₀	BOTTOM VIEW
T ₁ : FM IFT (MIX OUT)	455kHz	①-③	①-③ 60T ④-⑥ 16T Wire: 0.09 mm \$\phi\$ UEW SUMIDA 2150-2173-302	①-③ 1500pF	3 4 4 6 Bottom View
T ₂ : AM OSC	796kHz	①-③ 125	①—② 15T ②—③ 89T Wire: 0.06 mm \(\phi\) UEW SUMIDA 2157—2239—213A	6 A A A A A A A A A A A A A A A A A A A	3 4 2 6 Bottom View
T3: AM DET	455 kHz	①-③ 105	①-③ 127T Wire: 0.06 mm UEW SUMIDA 2150-2083-061	①-③ 330pF	3 4 2 6 Bottom View
T4: FM DET	10.7 MHz	①-③ 100	①-③ 10T Wire: 0.12 mm \(\phi \) UEW SUMIDA 2153-4095-331	①-③ 150pF	3 4 2 5 6 Bottom View

■ INPUT OUTPUT IMPEDANCE

CHARACTERISTIC	SYMBOL	CIRCUIT	TEST CONDITION	TYP.	UNIT
Pin 2 Input Impedance (FM)	R _{IN2} C _{IN2}	1	f=10.7MHz	4.6 5.0	kΩ pF
Pin 20 Input Impedance (AM)	R _{1N20} C _{1N20}	2	f=1MHz	20 11	kΩ pF
Pin 16 Input Impedance (AM)	R _{IN16} C _{IN16}	3	f=455kHz	6 3.7	kΩ pF
Pin 19 Output Impedance (AM)	Ro19 Co19	4	f=455kHz	2.5 5.5	kΩ pF
Pin 14 Output Impedance (AM)	Ro14 Co14	5	f=455kHz	100 5.0	kΩ pF

■ TEST CIRCUIT 1 (Pin 2 FM Input Resistance, Capacitance)

■ TEST CIRCUIT 2 (Pin 20 AM Input Resistance, Capacitance)

■ TEST CIRCUIT 3 (Pin 16 AM IF Input Resistance, Capacitance)

■ TEST CIRCUIT 4 (Pin 19 AM Mix Output Resistance, Capacitance)

■ TEST CIRCUIT 5 (Pin 14 AM DET Output Resistance, Capacitance)

■ NOTES

1. The frequency characteristics at AM and FM mode

The output impedance of pin5 (Ro5) and external capacitor C1 decide frequency characteristics.

The value of Ro5 turns to $10k\Omega$ at AM mode and $5k\Omega$ at FM node.

Accordingly should consider above, trim C1 to get proper frequency response.

Besides should design the location of C1 closer to pin1 (GND) to get low tweet.

2. Loading speaker

Recommend to connect the speaker between pin11 (v^*) and pin10 (bootstrap) at $V^* = 3V$ for better low supply to voltage operation.

When Vcc is above 4.5V, recommend the speaker connection between pin9 (PW OUT) and (GND) through a coupling capacitor.

3. Termination to the power stage

The audio signal of output pin5 includes carrier component slightly, therefore a capacitor between pin6 and GND have to be connected to decrease carrier component.

4. Supply voltage start-up

The supply voltage of radio circuit block should not start up before power stage start-up.

 V_{OD} , S/N, V_{OD} , S/N, THD- V_{IN} Detection Output Voltage Von Signal to Noise S/N THD VoD S/N 40 120 (dB) (dB) Input Voltage V_{IN} (dB μ)

Power Dissipation vs. Output Power

Power Dissipation vs. Output Power

Output Power vs. Operating Voltage $(f=1\,kHz,\,THD=10\%,\,R_L=4\Omega)$

Total Harmonic Distortion vs. Temperature

Power Dissipation vs. Temperature

COIL NO.	F ₀	Q0	TURNS	Co	BOTTOM VIEW
L ₁ : RF Coil	100 MHz	100	0.7mm ≠ 2 1/4 T (Japan Band) SUMIDA 0295-057	22 pF (ext.)	7 mm 5 mm
Geo-Th U		26		197	
L ₂ : OSC Coil	100 MHz	100	0.7mm ≠ 2 ½ T (Japan Band) SUMIDA 0295-056	30 pF (ext.)	7 mm 5 mm Ferrite Core
L ₃ : AM ANT	796 kHz	①-② 200	①-② 100 T L=600 µH ③-④ 17 T Wire: 4/0.07mm UATC Core: 10mm ≠×80mm MITUMI YI-7160-1	-	1 2 3 4 GND V.C. V 20 pin 10 mm 1 2 3 0 4 BOTTOM VIEW
L ₄ : AM OSC	796 kHz	①-③ 125	①-② 15 T ②-③ 89 T Wire:: 0.06 mm # UEW SUMIDA 2157-2239-213 A	_	V. C. 17 pin Vcc 1 6

COIL NO.	Fo	Q0	TURNS	C ₀	BOTTOM VIEW
T ₁ : FM IFT	10.7MHz	①-③ 90	①-③ 11T ④-⑥ 2 T Wire: 0.12 mm # UEW SUMIDA 2153-414-041	①-③ 82pF	V* (3) (4) GND (6) C.F.
T2: AM IFT	4 55 kHz	①-③	①-③ 60 T ④-⑥ 16 T Wire: 0.09 mm ø UEW SUMIDA 2150-2173-302	①-③ 1500pF	19 pin 3 16 pin 2
T3: AM DET	455 kHz	①-③ 105	①-③ 127 T Wire: 0.06 mm # UEW SUMIDA 2150-2083-061	①-③ 3330 pF	14 pin (3) (4) (2) (5) (6)
T4:FM DET	10.7MHz	①-③ 100	①-③ 10 T Wire: 0.12mm¢ UEW SUMIDA 2153-4095-331	①-③ 150pF	V (3) (4) (2) (5) (6)

AM/FM RADIO

■ PACKAGE OUTLINE

NJM 2241 M

■ GENERAL DESCRIPTION

The NJM2241 is monolithic integrated circuit in a 24-lead small outline package designed for use in 3-6V protable AM/FM radio

The functions incorporated are AM RF amplifier, AM mixer, FM/AM IF amplifier, FM/AM detecter, FM/AM detecter, FM/AM tuning/indicator, AM AGC circuit, Audio Power amplifier.

■ FEATURES

Wide Operating Voltage

• Tuning Indicator LED direct drive

- Very Simple DC switching of FM/AM
- High AM signal handling
- 4Ω speaker direct drive
- Most suitable to use with NJM2236
- Package Outline Bipolar Technology

DMP24

(1.8~6.0V) (10mA Max.)

■ BLOCK DIAGRAM

(note) Dotted line shows V_{CC} =4.5V

New Japan Radio Co., Ltd.

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	8	V
Lamp Current	I _{Lamp} (Max)	10	mA
Output Current	I _{O(peak)}	550	mA
Power Dissipation	PD	700	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

($V^*=3V$, Ta=25°C, FM: f=10.7MHz, $\triangle f=22.5$ kHz dev., fm=1kHz AM: f=1MHz, Mod=30%, fm=1kHz Unless otherwise noted)

¥	CHARACTERISTICS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
1		I _{CC} (FM)	V _{IN} =0	170 <u>21</u> 4	15	20	21
	Operating Current	I _{CC} (AM)	V _{IN} =0		15	20	mA
V	-3dB Limiting Sensitivity	V _{IN} (lim)	av till	1 3-1	36	42	dΒμ
1	Detection Output Voltage	V _{OD}	$V_{IN} = 80 dB_{\mu}$	22	31	44	mVrm
F	Signal to Noise Ratio	S/N	$V_{IN} = 80 dB\mu$	NB X D	70	_	dB
м	Total Harmonic Distortion	THD	$V_{IN}=80dB_{\mu}$	14.9.12	0.3	_	%
	Am Rejection	AMR	$V_{IN} = 80 dB_{\mu}$	-	33	-	dB
	Lamp Lighting Sensitivity	VL		-	47	55	dΒμ
	Voltage Gain	Gv	$V_{IN} = 30 dB_{\mu}$	5	11	17	mVrm
	Detection Output Voltage	V _{OD}	$V_{IN} = 66 dB\mu$	22	31	44	mVrm
A	Signal to Noise Ratio	S/N	$V_{IN} = 66 dB_{\mu}$	1	46	-	dB
		THDI	$V_{IN} = 66dB_{\mu}$	-	1.5	lai-	0/
М	Total Harmonic Distortion	THD2	$V_{IN} = 106 dB\mu$	-	4.0	4-	%
	Local OSC Stop Voltage	V _{stop}	V _{OSC} -6dB	-	1.0	1.5	V
	Lamp Lighting Sensitivity	VL	一 和证明中(2003年7年)	-	30	-	dΒμ
	Voltage Gain	Gv	$f=1kHz$, $R_L=4\Omega$	37	40	43	dB
		P _{OD} 1	$f=1kHz$, $R_L=4\Omega$, $THD=10\%$	180	220	-	
P	Output Power	P _{OD} 2	$V^{+} = 4.5V$ f=1kHz, R _L =4 Ω , THD=10%	1-1	500	-	mW
W	Total Harmonic Distortion	THD	$f=1kHz$, $R_L=4\Omega$, $P_O=50mW$	-	0.5	2.0	%
	Output Noise Voltage	V _{NO}	$R_0=10k\Omega$, $RL=4\Omega$ $BW=30Hz\sim20kHz$	-	0.18	1	mVrm

■ TERMINAL VOLTAGE AT NO SIGNAL

(V⁺:=3V, Ta=25°C)

CH	HARACTERISTICS	EDVSTA S	TYPIC	CAL VALUES	LINIT	
PIN NO FUNCTION		SYMBOLS	AT AM	AT FM	UNIT	
1	GND	V ₁	0	0	V	
2	FM IF IN	V ₂	2.4	2.0	V	
3	FM/AM Switch	V ₃	0	2.0	V	
4	FM DET	V ₄	2.9	2.9	V	
5	DET OUT	V ₅	0.4	0.7	V	
6	LED DRIVER	V ₆		State 4 materials	V	
7	PW IN	V ₇	0	0	V	
8	PW REF	V ₈	1.35	1.35	V	
9	PW Bipass	V ₉	0.6	0.6	V	
10	PW GND	V ₁₀	0	0	V	
11	PW OUT	VII	1.5	1.5	V	
12	PW Bootstrap	V ₁₂	2.8	2.8	V	
13	V+ 1	V ₁₃	3.0	3.0	V	
14	AGC1	V ₁₄	0.6	0	V	
15	AGC2	V ₁₅	0.6	0	V	
16	AM DET	V ₁₆	0	0	V	
17	Not Use	0.00	100 - 21		_	
18	AM Bipass	V ₁₈	1.3	0	V	
19	AM IF IN	V ₁₉	1.3	o land	V	
20	Not Use					
21	AM Osc	V_{21}	2.9	2.9	V	
22	V* 2	V ₂₂	2.9	2.9	V	
23	AM MIX OUT	V ₂₃	2.9	2.9	V	
24	AM RF IN	V ₂₄	2.9	2.9	V	

■ TEST CIRCUIT

■ TEST CIRCUIT COIL DATA

COIL NO.	F ₀	Q0	TURNS	Co	
Ng Oct			①-③ 60 T	cnva	
T ₁ : AM IFT (MIX OUT)	455 kHz	①-③ 80	(4)-(6) 16 T Wire : 0.09 mm ≠ UEW SUMIDA	①-③ 1500 pF	
8 KO			2150-2173-302	CHAIN	Bottom View
T ₂ : AM OSC		1)-(3)	①-② 15 T ②-③ 89 T	EGDS 4	3 4
ns ron	796 kHz	125	Wire : 0.06mm∳ UEW SUMIDA 2157-2239-213 A	810R 3100	
					Bottom View
T ₃ : AM DET	455 kHz	①-③ 105	①-③ 127 T Wire: 0.06 mm # UEW SUMIDA 2150-2083-061	①-(3) 330 pF	
		0.6	0.000.00	6.4	(1) (6)
			A		Bottom View
T ₄ : FM DET		1)-3	①-③ 10 T Wire : 0.12 mm # UEW	1)-(3)	3 4
	10.7 MHz	100	SUMIDA: 2153-4095-331	150 pF	
			G HILLIAN LIFE L.		Bottom View

■ INPUT OUTPUT IMPEDANCE

CHARACTERISTICS	SYMBOLS	CIRCUITS	TEST CONDITIONS	TYP.	UNIT
Pin 2 Input Impedance	RIN2	LE CAPETA	C-10 73 413	4.6	kΩ
(FM)	CIN2	1	f=10.7MHz	5.0	pF
Pin 24 Input Impedance	RIN24	1	H B-0 D-0	20	kΩ
(AM)	CIN24	2	f=1kHz	11	pF
Pin 19 Input Impedance	RIN19	200-6510		6	kΩ
(AM)	CIN19	3	f=455kHz	3.7	pF
Pin 23 Output Impedance	RO23			2.5	kΩ
(AM)	CO23	4	f=455kHz	5.5	pF
Pin 16 Output Impedance	RO16	WILL Spanning	1063Ha 125 alt/691	100	kΩ
(AM)	CO16	5 AG	f=455kHz	5.0	pF

■ TEST CIRCUIT 1 (Pin 2 FM Input Resistance, Capacitance)

■ TEST CIRCUIT 2 (Pin 24 AM Input Resistance, Capacitance)

■ TEST CIRCUIT 3 (Pin 19 AM IF Input Resistance, Capacitance)

■ TEST CIRCUIT 4 (Pin 23 AM Mix Output Resistance, Capacitance)

■ TEST CIRCUIT 5 (Pin 16 AM DET Output Resistance, Capacitance)

■ NOTES

1. The frequency characteristics AM and FM mode

The output impedance of pin5 (Ro5) and external capacitor C1 decide frequency characteristics.

The value of Ro5 turns to $10k\Omega$ at AM mode and $5k\Omega$ at FM mode.

Accordingly should consider above, trim C1 to get proper frequency response.

Besides should design the location of C1 closer to pin1 (GND) to get low tweet.

2. Loading speaker

Recommend to connect the speaker between pin11 (Vcc) and pin10 (bootstrap) at $V^*=3V$ for better low supply to voltage operation. When Vcc is above 4.5V, recommend the speaker connection between pin9 (PW OUT) and (GND) through a coupling capacitor.

3. Termination to the power stage

The audio signal of output pin5 includes carrier component slightly, therefore a capacitor between pin and GND have to be connected to decrease carrier component.

4. Supply voltage start-up

The supply voltage of radio circuit block should not start up before power stage start-up.

Operating Current vs. Operating Voltage (V_{IN}=0)

Vop, AMR, S/N, THDvs. Input Voltage

Vop,S/N, THD vs. Input Voltage

V_{OD}, THD vs. Operating Voltage

V_{OD}, THD vs. Operating Voltage

Vop, VIN(lim) vs. Temperature

Power Dissipation vs. Output Power

Power Disspation vs. Output Power

Total Harmonic Distortion vs. Temperature

Power Dissipation vs. Temperature

Ambient Temperature Ta (°C)

Resister should be located at *1 if the Trans (T2) is high Q

COIL NO.	Fo Fo	Q0	TURNS	C ₀	60 N N N 100
L1: RF Coil	100 MHz	100	0.7mm ≠ 2 1/4 T SUMIDA 0295 - 057	22 pF (ext.)	7 mm 5 mm Ferrite Core
L ₂ : OSC	100 MHz	100	0.7mm ≠ 2 ½ T SUMIDA 0295 – 056	30 pF (ext.)	7 mm 5 mm Ferrite Core
L ₃ : AM ANT	796kHz	①-② 200	①-② 100 T L=600 μH ③-④ 17 T Wire: 4/0.07 mm UATC Core: 10 mm ≠ × 80 mm MITUMI YI-7160-1	1 VIII 2001-10 -6801-00	1) 22 33 44 GND V.C. V' 24 pin 10 mm 1 2 3 0 4 BOTTOM VIEW
L ₄ : AM OSC	796 kHz	①-③ 125	①—② 15 T ②—③ 89 T Wire: 0.06mm# UEW SUMIDA. 2157—2239—213 A	T (c)	V.C. 21 pin Vcc 1 6 BOTTOM VIEW

COIL NO.	F ₀	Q0	TURNS	Co		BOTTOM VIEW	- COIL NO
T ₁ : FM IFT	10.7MHz	①-③ 90	①-③ 11 T ④-⑥ 2 T Wire: 0.12mm ≠ UEW SUMIDA 2153-414-041	①-③ 82pF	V* 6 pin	3 2 3 Bottom View	GND C.F.
T2: AM IFT	455 kHz	①-③	①-③ 60T ④-⑥ 16 T Wire: 0.09mm UEW SUMIDA 2150-2173-302	①-③ 1500 pF	23 pin (3 2 1 Bottom View	19 pin 6 GND
T3: AM DET	455 kHz	①-③	①-③ 127 T Wire: 0.06mm UEW SUMIDA 2150-2083-061	①-③ 330pF	16 pin	3 2 1 Bottom View	(4) (6)
T4: FM DET	10.7MHz	①-③ 100	①-③ 10 T Wire: 0.12mm UEW SUMIDA 2153-4095-331	①-③ 150pF	V* (3 2 1 Bottom View	46

NARROW BAND FM IF IC

■ GENERAL DESCRIPTION

The NJM2292 is a narrow band FM IF IC designed for use in cordless telephones and amature radios, etc...It contains almost all blocks of the narrow band FM IF system-a mixer, an IF amplifier, an RSSI and a Quadrature detector, for example. It features low supply current to make a sharp reduction of total power consumption possible.

■ FEATURES

Low Operating Voltage

(1.8~7.0V)

Low Operating Current

(20mA typ. @V+=2.4V)

Maximum input frequency

(100MHz)

• A ceramic discriminator is available

Package Outline

SSOP20

Bipolar Technology

■ APPLICATIONS

- Amature radios
- Cordless telephones, etc.

■ PACKAGE OUTLINE

NJM2292V

PIN CONFIGURATION

■ MAXIMUM ABSOLUTE RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT		
Supply Voltage	V ⁺	10	V		
Power Dissipation	Pd	300	mW		
Operating Temperature Range	Topr	-30~+85	°C		
Storage Temperature Range	Tstg	− 40∼+125	C		

■ ELECTRICAL CHARACTERISTICS

(V⁺=2.4V, fc=21.7MHz, fmod=1kHz 1mV, fdev=±3kHz, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	Icc	No signal, Squelch off	N I Show	2.0	2.7	mA
Mixer		Aldrene mitor	Salvin Too	erez lano	nolltals	er made
Gain	GMIX		20	25		dB
Input resistance	R _{MIX}		2.7	3.6	4.5	kΩ
Limiting sensitivity	LIMIT	-3dB limiting		3.0	BERTH E	μVrms
Audio output voltage	Vout	(101.) - 18.15	50	70	Sure-19th	mV _{rms}
Filter amplifier gain	Ar	$V_i = 1 \text{mV}_{\text{rmsy}}, 1 \text{kHz}$	45	48	(milination)	dB
Filter amplifier output voltage	Vref	(daying)	0.75	0.9	1.05	V
RSSI maximum output voltage	VRMAX	$R_{rs} = 18k\Omega$, $IF_{in} = 100 \text{mV}_{rms}$	0.65	0.9	1.2	V
RSSI minimum output voltage	VRMIN	R _{rs} =18kΩ, NO signal			0.5	V
Squelch Hysteresis	Hys	$R_{hys}=4.7k\Omega$	30	80	105	mV
Squelch output voltage High level	Sphi		1.0	1.4	1.8	V
Low level	SPLO		1000	Elic	0.2	V
Squelch inverted output voltage High level	SNHI	30kΩ pull up	2.2		nikun sati	V
Low level	SNLO	30kΩ pull up		20.20	0.2	V

■ TEST CIRCUIT

PIN NO.	SYMBOL	PIN VOL TAGE (typ.)	FUNCTION	EQUIVARENT CIRCUIT
1	OSC IN	2.4V	These terminals are connected with a crystal resonator to construct a colpitts circuit.	Q
2	osc out	1.7V		2 90μA
3	NC		No connection.	
4	MIX OUT	1.47V	Amixer output.	V ⁺ 1.8kΩ 95μΑ (4)
5	V+	2.4V	Supply voltage.	ST CONTRACTOR OF THE CONTRACTO
6	LIM IN	1.59V	A limiter input and decoupling terminals. The 7 and 8 pins are connected with about $100\mu F$ capacitors.	V+
7	DEC1	1.59V	(ESD protection diodes are connected internally with each terminal.)	6 306Ω 100kΩ 7 100kΩ 100kΩ 100kΩ
8	DEC2	1. 59V	bergeni militaris faminasayo an	8
9	LIM OUT	2 -	A limiter output	9 10 pF V+

PIN NO.	SYMBOL	PIN VOL TAGE (typ.)	FUNCTION	EQUIVARENT CIRCUIT		
10	QUAD COIL	-0 -6	A quadrature detector input.	9 10 pF V+		
11	AF OUT	1.18V	The output of the FM demodulated signal.	V ⁺ 1105µA Z		
12	RSSI		An RSSI output. The output current signal is in logarithmic proportion to the input signal.	V+ 12 12		
13	AMP IN		An operational amplifier inverted input.	V+ 1 0.99		

PIN NO.	SYMBOL	PIN VOL TAGE (typ.)	FUNCTION	EQUIVARENT CIRCUIT
14	AMP OUT	-0	An operational amplifier output.	V ⁺
15	SQ IN		A squelch amplifier input. (ESD protection diodes are connected internally with this terminal.)	V ⁺ 15 20 kΩ 300Ω
	1		A squelch amplifier input. (ESD protection diodes are connected internally with this terminal.)	18
16	SQ OUT	-		V ⁺
17	SQ OUT	_	A squelch amplifier inverted output. (ESD protection diodes are connected internally with this terminal.)	

PIN NO.	SYMBOL	PIN VOL TAGE (typ.)	FUNCTION	EQUIVARENT CIRCUIT	ew ma
	- X - A.S		A hysteresis control terminal. (ESD protection diodes are connected internally with this terminal.)	V+	
18	HYSTERESIS CONTROL	4		(15)—20kΩ	
		-de		\$ 300Ω (18)	
19	GND	0V	Ground.		
20	MIX IN	2.4V	A mixer input.	V ⁺ 3.6 kΩ 20	ğ£.
				•	
			propries de selectione de la company de la c		

FM IF IC FOR PAGER

■ GENERAL DESCRIPTION

NJM2294 is a super low current FM IF IC for pagers. It includes almost all functions of the paging IF system. In those functions, the RSSI function can be used for automatic gain control. When the electric field strength is high, the RSSI output signal can control the attenuation of an RF amplifier to improve the received condition.

■ PACKAGE OUTLINE

NJM2294V

■ FEATURES

- Super low Operating Current $(600 \,\mu\,\text{A})$ • Low Operating Voltage $(1.1 \,\sim 4.0\text{V})$
- RSSI (Received Signal Strength Indicator)
- FSK wave shaper
- Battery check alarm function (Alarm Voltage=1.1V typ.)
- Battery saving function
- A high output current voltage regurator with an external transistor (1.1V typ.)
- A ceramic discriminator is available.
- Package Outline

SSOP16

Bipolar Technology

■ RECOMMENDED OPERATIONAL CONDITION

Operating Voltage

V+

1.1~4.0V

■ PIN CONFIGURATION

NJM2294V

■ MAXIMUM ABSOLUTE RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	5	V
Power Dissipation	Pd	300	mW
Operating Temperature Range	Topr	-20~+75	℃
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V⁺=14V, fi=455kHz, f_{mod}=600Hz, f_{dev}=±4kHz, Ta=25℃)

PARAMETER	SYMBOL	TEST CIRCUIT	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
No signal Operating Current	Iccq	11	V _i =0, 10pin=V ⁺	THE W	600	900	μА
Battery saving Operating Current	Iccs	12	V _i =0, 10pin=GND	_	0	5	μА
IF amplifier input resistance	Rin	-		-	2		kΩ
S/N 1	S/N1	1	Vi=60dB _μ EMF	_	62	-	dB
S/N 2	S/N2	1	Vi=25dB _µ EMF	LE STA	35	SM an o:	dB
-3dB limiting sensitivity	Vin(lim)	1		-	22	27	dB _µ EMF
Demodulated output level	Vod	1	Vi=60dB _μ EMF	30	46	65	mVrms
AM rejection ratio	AMR	1	Vi=60dBμEMF, AM=30%	- 17	50	RHQ	dB
Duty ratio of wave shaped output	DR	2	Vi=60dB _μ EMF	40	50	60	%
RSSI output voltage	Vrssi	10	Vi=80dBµEMF	0.48	0.62	0.76	V
RSSI output resistance	Rrssi				62	_	kΩ
Quick charge/discharge current	1ch	13	4pin=GND, 8pin=0.18V	35	65	110	μΑ
Alarm voltage	Valm	3		1.05	1.10	1.15	V
Regulator output voltage	Vreg	8	RL=430Ω	0.95	1.00	1.05	V
Low level output voltage of VALM terminal	ValmL	4	IL=100μA		0.1	0.4	v
High level leak current of VALM terminal	lalmH	5			0	2	μА
Low level output voltage of FSK-OUT terminal	VfskL	6	IL=100µA	-	0.1	0.4	v
High level leak current of FSK-OUT terminal	IfskH	7		_	0	2	μΑ
Low level output voltage of REG-CONT terminal	VregL	9	IL=100μA	1-1	L	0.6	V

■ TEST CIRCUIT

CD:CDBC455CX (MURATA MFG.)

Test Circuit 3

Valm

Test Circuit 4

ValmL

Test Circuit 5

lalmH

Test Circuit 6

VfskL

Test Circuit 7

lfskH

Test Circuit 8

Vreg

■ TERMINAL FUNCTION

PIN NO.	SYMBOL	FUNCTION	EQUIVARENT CIRCUIT
1	IF-IN	An IF amplifier input. Typical input impedance is $2k\Omega$.	V+ \$1k \$1k 400
3	DEC	A Decoupling terminal which is connected with a decoupling capacitor.	3
2	GND	Ground	M Photo Spell
5	QUAD-IN	An input terminal of a quadrature detection circuit. This terminal will be connect with a ceramic discriminator.	V+ 20p 200 400 55
9	RSSI OUT	An RSSI Output. This voltage level is in logarithmic proportion to the input signal level.	300 W 9
6	AF-OUT	An FM demodulated signal output.	₩ 66

TERMINAL FUNCTION

IN NO.	SYMBOL	FUNCTION	EQUIVARENT CIRCUIT	
7	LPF-IN	An input terminal of a low pass filter. This terminal is biased from the AF-OUT terminal (6pin) through an external RC filter.	7 300 V+	
8	LPF-OUT	An output terminal of a low pass filter.	300 300k	V+
4	FSK-REF	A Reference input terminal of a wave shaping comparator. This terminal is connected with an external capacitor.	300 W 300k 3 300k 3 300k	
12	FSK-OUT	An output terminal of a wave shaping circuit. The Wave shaped signal inverted for the LPF output comes out.	12 → V ⁺ → 300 → N	
10	BS	A Control terminal of a battery saving circuit. H:This circuit is OFF. L:This circuit is ON.	V ⁺	

■ TERMINAL FUNCTION

PIN NO.	SYMBOL	FUNCTION	EQUIVARENT CIRCUIT	
11	CHARGE	A Control terminal of a quick charge/discharge circuit. H:This circuit is ON. L:This circuit is OFF.	300k	
13	VALM	An output terminal of the alarm signal. When V+ drops down to 1.1V, this output becomes high.	v+	2 0
		v- tos (a) to to	13 300	
14	REG	A Control terminal of an external PNP transistor used for the regulator.	14 1k 200k	V+
15	REG-OUT	A Monitering terminal of the regulator.	300 5p = \$60k 240k \$	***************************************
16	V+	Supply voltage.		

■ FSK WAVE SHAPING FUNCTION

When the demodulated FSK signal is weak or noisy, the micro computer may fail to read data. The wave shaping circuit (comparator) will change those signals to the correct logical signal to prevent the readerror.

■ QUICK CHARGE/DISCHARGE FUNCTION

The DC voltage of the FSK-REF terminal is equal to that of the demodulated FSK signal. When the battery saving state turns into the ordinary state, the FSK-REF terminal voltage will be late to come up to the reference voltage by the time constant of an external capacitor and an internal resistor, and the wave shaped data may be failed. This circuit will charge/discharge the external capacitor quickly to prevent the error.

When the DC level of the FM demudulated output changes in the operation mode of this function, the FSK-REF terminal voltage follows to the FSK demodulated output DC voltage, and the FSK output duty ratio can be constant.

■ APPLICATION CIRCUIT

CD: CDBC455CX (MURATA MFG.)

LOW POWER NARROW BAND FM IF

■ GENERAL DESCRIPTION

The NJM3357 includes Oscillator, Mixer, Limiting Amplifier Quadrature Discriminator, Active Filter, Squelch, Scan Control, and Mute Switch. The NJM3357 is designed for use in FM dual conversion communication equipment.

■ FEATURES

Low Operating Current

(3.0mA typ @V+=6V)

Minimum other parts.

Package Outline

DIP16, DMP16

Bipolar Technology

NJM3357D

■ PACKAGE OUTLINE

NJM3357M

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

■ ABSOLUTE MAXIMUM RAT	(Ta=25℃)		
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	12	V
Operating Supply Voltage Range	V*opr	4~8	V
Detector Input Voltage	V ₈	1.0	V _{P-P}
Input Voltage (V ⁺ ≥6V)	V ₁₆	1.0	V _{rms}
Mute Function	V ₁₄	-0.5~5.0	V _{PK}
Operating Temperature Range	Topr	-20~75	°C
Storage Temperature Range	Tstg	−40~125	°C

■ ELECTRICAL CHARACTERISTICS

 $(V^+=6V, fo=10.7MHz, \triangle f=\pm 3.0kHz, F_{mod}=1.0kHz, Ta=25^{\circ}C)$

PARAMETER	PIN	MIN.	TYP.	MAX.	UNIT
Operating Current	4		AL LAND SHIM	Carlet Mine	
Squelch OFF		企供证	2.0	_	mA
Squelch ON		-	3.0	5.0	mA
Input Limitting Voltage (-3dB Limitting)	16	-	5.0	10.0	μV
Detector Output Voltage	9		3.0	1	V
Detector Output Impedance			400		Ω
Recovered Audio Output Voltage (V _{In} =10mVrms)	9	200	350		mVrms
Filter Gain (f=10kHz, V _{in} =5mVrms)		40	46		dB
Filter Output Voltage	11	1.8	2.0	2.5	V
Trigger Hysterisis.			100		mV
Mute Function Low	14	-	15	50	Ω
Mute Function High	14	1.0	10		МΩ
Scan Function Low (Mute OFF V ₁₂ =2V)	13	1	0	0.5	V
Scan Function High (Mute ON V ₁₂ =0V)	13	5.0	stelly John I	bergelt -	V
Mixer Conversion Gain	3		20	-	dB
Mixer Input Resistance	16		3.3		kΩ
Mixer Input Capacitance	16		2.2	GARRIE -	pF

■ TEST CIRCUIT

1mH: TOKO IFP455B

TYPICAL CHARACTERISTICS

Local OSC Frequency

Oscillation Frequency (MHz)

Mixer Input-Output

Demodulator Output Level

Demodulator Output Level, S/N

6-108-

LOW POWER NARROW BAND FM IF

■ GENERAL DESCRIPTION

The NJM3359 is a low power narrow band FM detector integrated circuit for FM dual conversion of communication equipment. The NJM3359 includes oscillator, limiting amplifier, AFC circuit, quadrature detect, operational amplifier, squelch circuit, scan-control and muting switch.

The NJM3359 is a circuit of NJM3357 plus one stage limiting IF amplifier and AFC output terminal.

■ PACKAGE OUTLINE

NJM3359D

■ FEATURES

Low Operating Current (3.6mA typ @V⁺=6V)
 Input Limiting Voltage (2.0 μVrms typ @ -3dB)

Minimum other parts.

Package Outline

Bipolar Technology

DIP18

■ RECOMMENDED OPERATIONAL CONDITION

Operating Voltage

4~9V

PIN CONFIGURATION

PIN FUNCTION

Pin No.
1. crystal
2. crystal

mixer output
 V⁺

5. limitter input6. de-coupling7. de-coupling

8. detector input9. de-modulator input

10. de-modulator output

11. AFC12. filter input

13. filter output
14. skelch input

15. scan, control16. audio muting

16. audio mu 17. GND 18. RF input

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V*	12	V
Input Voltage	V ₁₈ ·	1.0	V _{rms}
Muting Function	V ₁₆	-0.7~12	V _{PK}
Operating Temperature Range	Topr	-20~75	C
Storage Temperature Range	Tstg	-40~125	C

■ ELECTRICAL CHARACTERISTICS

(V⁺=6V, fo=10.7MHz, △f=±3.0kHz, f_{mod}=1.0kHz, Ta=25°C)

PARAMETER	PIN	MIN.	TYP.	MAX.	UNIT
Operating Current	P _{IN} 4, 8			Allieza ie	
Squelch OFF		_	3.6	6.0	mA
Squelch ON	MOLLSON TYPE	AyL 34	5.4	7.0	mA
Input Sensitivity (S/N: 20dB)	199-1	-	8.0	arte V morae	μVrms
Input Limitting Voltage (-3dB)			2.0	-	μVrms
Mixer Voltage Gain	P _{IN} 18 – P _{IN} 3 Open	_	33	_	dB
Mixer Intercept Point	50Ω input	-	-1.0	in the	dBm
Mixer Input Resistance		_	3.6	- HITCH	kΩ
Mixer Input Capacitance		_	2.2	_	pF
Recovered Audio Output Voltage	P _{IN} 10, V _{IN} =1.0mVrms	450	700	_	mVrms
Detector Center Frequency Slope	P _{IN} 10		0.3	_	V/kHz
AFC Center Frequency Slope	$P_{IN}11, R_L = \infty$		12	_	V/kHz
Filter Gain	$f_{in}=10kHz, V_{IN}=5mV$	40	51	_	dB
Squelch Threshold Voltage	P. 14 10k0	_	0.62	_	V _{dc}
Scan Control Current	P ₁₀ .15	HILL			
Scan Control Current	Pro14 - High	MINE WEN	0.01	1.0	μΑ
	- Low	2.0	2.4	_	mA
Mute Switch Impedance	Prv16 - GND	0 13			
South of the last	Pro14 - High	E	5.0	10	Ω
	- Low		1.5	-	МΩ

■ TEST CIRCUIT

■ APPLICATION EXAMPLE

scanner receiver

TYPICAL CHARACTERISTICS

Input-Output

 $(V^{+}\!=\!6.0V,\;f_{ln}\!=\!10.7MHz,\;\varDelta f\!=\!\pm\,3kHz,\\f_{mod}\!=\!1kHz)$

-120 - 110 - 100 - 90 - 80 - 70 - 60

Local OSC Frequency

Mixer Gain vs. Input Frequency

Input Level (dBm)

 $(2nd\ IF = 455kHz,\ adjust\ Local\ OSC$

(2nd H = 450kHz, adjust Ebeda (frequency)

frequency)

(dB) 10

10 20 30 50 80 100 200

Input Frequency (MHz)

AFC Characteristics

Demodulator Output

 $(f_{in}=10.7MHz, f_{mod}=1kHz, \Delta f=\pm 3kHz, V = 1-V$

Temperature Characteristics

$$\begin{split} &(V^{+}\!=\!6.0V,\;f_{ln}\!=\!10.7MHz,\;f_{mod}\!=\!1kHz,\\ &\varDelta f\!=\!\pm 3kHz,\;S/N:V_{ln}\!=\!1mV_{rms},\\ &Sensitivity:\;V_{ln}\!=\!8.0\mu V_{rms}) \end{split} \label{eq:controller}$$

FDD READ AMPLIFIER SYSTEM

■ GENERAL DESCRIPTION

The NJM3470/3470A are monolithic read amplifier systems for obtaining digital signal from floppy disk storage.

The NJM3470/3470A are designed to get pulse output signal produced by the magnetic head amp of the input signal. They contain amplifiers, peak detector, and pulse shape circuit. They are classified two ranks by peak shift characteristic; NJM3470(5%), NJM3470A(2%)

> (5MHz min. @ - 3dB) (A-rank: 2%max.)

DIP18

■ FEATURES

- Gain Adjastable
- Wide Bandwidth
- Peak Shift
- Package Outline
- Bipolar Technology

■ PACKAGE OUTLINE

NJM3470D/3470AD

PIN CONFIGURATION

BLOCK DIAGRAM

NJM3470 BLOCK DIAGRAM and STANDARD OUTPUT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage I (Pin 11)	V*1	7	V
Supply Voltage II (Pin 18)	V ⁺ 2	16	V
Input Voltage (Pin 1-2)	V _{IN}	$-0.2 \sim 7.0$	V
Output Voltage (Pin 10)	Vo	-0.2~7.0	V
Operating Temperature Range	Topr	-20~75	C
Storage Temperature Range	Tstg	-40~125	C

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V_1=5V, V_2=12V)$ note: () apply to A-rank.

Amplifier Block

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Differential Voltage Gain	A _{VD}	f=200kHz, V _{ID} =5.0mVrms	80	100	120	V/V
			(100)	(110)	(120)	
Input Bias Current	IB		_	-10	-25	μΑ
Input Common Mode Range	V _{ICM}	THD=5%	-0.1	_0.4	1.0	V
Differential Input Voltage Range	V _{ID}	THD=5%	-	<u> </u>	25	mV _{P-P}
Output Voltage Swing Differential	V _{OD}	Committee Commit	3.0	4.0	0.00	V _{P-P}
Output Source Current	I _{SOURCE}	a bina	_	8.0	PO Lock	mA
Output Sink Current	I _{SINK}		2.8	4.0	Di Bilo	mA
Small Signal Input Resistance	ri		100	250	-	kΩ
Small Signal Output Resistance	ro		_	15	-	Ω
Bandwidth, -3.0dB	BW	V _{ID} =2.0mVrms	5.0	_	100	MHz
Common Mode Rejection Ratio	CMR	f=100kHz, A _{VD} =40dB, V _{in} =200mV _{p-p}	50	-	100	dB
Supply Voltage Rejection Ratio (V ₁ ⁺)	SVR	$A_{VD} = 40 dB, 4.75 \le V_1^+ \le 5.25 V$	50	-	-	dB
Supply Voltage Rejection Ratio (V2+)	SVR ₂	$A_{VD} = 40 dB, 10 \le V_2^+ \le 14 V$	60	_	-	dB
Differential Output Offset	V _{DO}	$V_{ID}=V_{IN}=0V$	-	-	0.4	V
Common Mode Output Offset	V _{co}	$V_{ID}=V_{IN}=0V$	-	3.0	5 40	V
Equivalent Input Noise Voltage	e _n	BW=10Hz~1.0MHz	-	15	_	μVrm

Peak Detector Block

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Differentiator Output Sink Current	I _{OD}	V _{OD} =5V	1.0	1.4	_	mA
Peak Shift	PS	$f=250kHz, V_{ID}=1.0V_{P-P}, i_{cap}=500\mu A$			5.0	%
		$PS = t_{PS1} - t_{PS2}/2(t_{PS1} + t_{PS2}) \times 100$			(2.0)	%
Differentiator Input Resistance, Differenial	r _{ID}		Same R	30	_	kΩ
Differentiator Output Resistance, Differential	r _{OD}		_	40	_	Ω

Logic Block

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Timing Accuracy (mono #1)	E _{t1}	$t_1=1.0\mu S=0.625R_1C_1+200nS$ $R_1=6.4k\Omega$ $C_1=200pF$ (accuracy: R_1 , C_1) $1.5k\Omega \leq R_1 \leq 10k\Omega$ $150pF \leq C_1 \leq 680pF$	85	Man	115	%
Timing Accuracy (mono #2)	t ₂		150	_	1000	nS
Timing Accuracy (mono #2)	E ₁₂	t_2 =200nS=0.625R ₂ C ₂ R ₂ =1.6k Ω C ₂ =200pF	85		115	%
	1 10	(accuracy; R ₂ , C ₂)	10	at r	saenoV	ylqqu2
	97-60-	$1.5k\Omega \le R_2 \le 10k\Omega$ $100pF \le C_2 800pF$		th-I st		Z skipil

OTHERS 7

THERS

8-BIT HIGH SPEED MULTIPLYING D/A CONVERTER

■ GENERAL DESCRIPTION

NJMDAC-08C series are 8-bit monolithic multiplying digital to analog converters with very highspeed performance. Open collector output provides dual complementary current outputs increasing versatility in application.

Adjustable threshold logic input voltage through V_{LC} pin, can be connected to various type of digital IC products.

■ PACKAGE OUTLINE

NJMDAC-08DC

■ FEATURES

	Resolution	(8bit)
•	Settling Time	(85ns)
0	Linearity Error	(±0.1%FS MAX (NJM DAC-08H))
	Full Scale Current Temperature Drift	(50ppm/℃ MAX (NJM DAC-08H/E))
0	Wide Operating Voltage	(±5V~±18V)
	Wide Output Voltage Range	$(-10V \sim +18V)$

Multiplying operations can be performed

Package Outline Bipolar Technology DIP16, DMP16

Wide Range Adjustable Threshold Logic Input $(-10V \sim + 13.5V(V^*/V = \pm 15V))$

NJMDAC-08MC

■ PIN CONFIGURATION

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT	
Supply voltage	V+-V-	36	V	
Logic Input Voltage Range	VI	V-~V-+36	V	
Threshold Control Input Voltage	V _{LC}	V-~V+	V	
Analog Current Outputs	Io	4.2	mA	
Reference Input Voltage Range	V _{REF}	V-~V+	V	
Reference Input Differential Voltage	V _{REF(+)} -V _{REF(-)}	±18	V	
Reference Input Current	IREF	5.0	mA	
Power Dissipation	PD	(DIP16) 500	mW	
	TO SERVE DAME SOLD TO	(DMP16) 300	mW	
Operating Temperature Range	Topr	-20~+75	C	
Storage Temperature Range	Tstg	-40~+125	C	

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Resolution			8	8	8	Bit
Monotonicity			8	8	8	Bit
Nonlinearity	NL	pend lapat trap			±0.39	%FS
Settling Time	ts	To ±1/2LSB,all bits switched ON or OFF		85	150	ns
Propagation Delay	tplh tphl	All bits switched		35	60	ns
Full Scale Temperature Coefficient	TCIFS		Luly	±10	±80	ppm/°C
Output Voltage Compliance	Voc	ΔI _{FS} <1/2 LSB R _{OUT} >20 MΩ typ.	-10	0 %	+18	v
Full Scale Current	IFS4	$V_{REF} = 10.000V$ $R_{14}, R_{15} = 5.000k\Omega$	1.94	1.99	2.04	mA
Full Scale Symmetry	IFSS	IFS4-IFS2	W	±2.0	±16.0	μΑ
Zero Scale Current	Izs	to a state time a rest	4 103	0.2	4.0	μΑ
Output Current Range	I _{OR1}	$V_{REF} = 15 \text{ V}, V^- = 10 \text{ V} R_{14, 15}$	2.1			mA
Output Current Range	Ior2	$V_{REF} = 25 \text{ V}, V^- = 12 \text{ V}$ $^{15.000}_{k\Omega}$	4.2			mA
Logic Input Level "0"	VIL	V _{LC} =0 V			0.8	V
"1"	VIH	V _{LC} =0 V	2.0		- Carbons	V
Logic Input Current "0"	IIL	$V_{LC} = 0 \text{ V}, V_{IN} = -10 \text{ V} \sim +0.8 \text{ V}$		-2.0	-10	μΑ
"1"	I _{IH}	$V_{LC} {=} 0 V, V_{IN} {=} 2 V {\sim} 18 V$		0.002	10	μΑ
Logic Input Swing	Vis	LA T aT	-10		+18	V
Logic Threshold Range	V _{TH2}		-10		+13.5	V
Reference Bias Current	IIs			-1.0	-3.0	μА
Reference Input Slew Rate	dI/dt	中 原 色 音	4.0	8.0		mA/μs
Power Supply Sensitivity	PSSIFS	$V^-{=}4.5V{\sim}18V, I_{REF}{=}1.0mA$		±0.0003	± 0.01	%1%
Tower Supply Sensitivity	PSSIFS	$V^- = -4.5 V \sim 18 V$, $I_{REF} = 1.0 mA$		±0.002	± 0.01	701 70
	I ⁺	$V^{\pm} = \pm 5 \text{ V}, I_{REF} = 1.0 \text{ mA}$		2.3	3.8	
	I-	И		-4.3	-5.8	
Operating Current	I ⁺	$V^{+}=5 V, V^{-}=-15 V$		2.4	3.8	mA
	I-	"		-6.4	-7.8	

*1 Guaranteed by design

*2 Caluculation formula $PSSI_{FS} = \left(\frac{|\Delta I_{FS}|}{I_{FS}} \times 100\right) \div \left(\frac{18-4.5}{15}\right) \times 100$ *3 Caluculation formula $P_D = I^+ \times (V^+ - V^-) + 2 I_{REF} \times |V^-|$

2.5 3.8 -6.5 - 7.8

■ TYPICAL CHARACTERISTICS

Full Scale Current vs. Reference Input Current

Reference Input Frequency Respons

Output Current vs. Output Voltage

Propagation Delay Time vs.

Operating Current vs. Operating Voltage (ALL BITS "HIGH", OR "LOW")

Operating Current vs. Operating Voltage

■ TYPICAL CHARACTERISTICS

Operating Current vs.

Ambient Temperature

TYPICAL APPLICATION

1 Connecting Reference Voltage

- ① Positive Reference Voltage
 Minimum Compensation Capacitance $C_C = R_{REF}(k\Omega) \times 15(pF)$
- (2) Connecting Output Circuit

	ВІ	B2	ВЗ	B4	B5	В6	В7	B8	E ₀	E ₀
POS FULL RANGE	1	1	1	1	1	1	1	1	- 9.920	÷10.000
POS FULL RANGE-LSB	1	1	1	1	1	1	1	0	- 9.840	÷ 9.920
ZERO SCALE÷LSB	1	0	0	0	0	0	0	1	- 0.050	÷ 0.160
ZERO SCALE	1	0	0	0	0	0	0	0	0.000	÷ 0.050
ZERO SCALE-LSB	0	1	1	1	1	1	1	1	÷ 0.080	0.000
NEG FULL SCALE+LSB	0	0	0	0	0	0	0	1	÷ 9.920	- 9.840
NEG FULL SCALE	0	0	0	0	0	0	0	0	÷10.000	- 9.920

(1) Basic Bipolar Output Operation

Full Scale Current vs.

 $\begin{array}{ccc} \hbox{\bf (2)} & \hbox{\bf Negative Reference Voltage} \\ \hbox{\bf Recommended} & \hbox{\bf C}_{\text{C}} & \hbox{\bf Value} \\ \hbox{\bf (When V_{REF} is DC)} \end{array}$

		ВІ	B2	ВЗ	B4	B5	B6	B7	B8	I_{nmA}	InmA	Eo	Eo
FULL	RANGE	1	1	1	1	1	1	1	1	1.992	0.000	-9.960	-0.000
HALF	SCALE÷LSB	1	0	0	0	0	0	0	1	1.008	0.984	-5.040	-4.920
HALF	SCALE	1	0	0	0	0	0	0	0	1.000	0.992	-5.000	-4.960
HALF	SCALE-LSB	0	1	1	1	1	1	1	1	0.992	1.000	-4.960	-5.000
ZERO	SCALE÷LSB	0	0	0	0	0	0	0	1	0.008	1.984	-0.040	-9.920
ZERO	SCALE	0	0	0	0	0	0	0	0	0.000	1.992	-0.000	-9.950

(2) Basic Unipolar Negative Operation

(3) Connecting Output Buffer Amp.

- DAC-08 4 0TO-I_{FS}·R_L
 I_{FS} = 255/256 I_{REF}
- (1) Positive Low Impedance Output Operation
- (2) Negative Low Impedance Output Operation
- 4 Connecting to various type logic IC products

V_{TH} temperature compensation is considered in the above circuit

TIMER

■ GENERAL DESCRIPTION

The NJM555 monolithic timing circuit is a highly stable controller capable of producing accruate time delays or oscillation. In the time delay mode, delay time is precisely controlled by only two external parts: a resistor and a capacitor. For operation as an oscillator, both the free running frequency and the duty cycle are accurately controlled by two external resistors and a capacitor.

Terminals are provided for triggering and resetting. The circuit will trigger and reset on falling waveforms. The output can source or sink up to 200mA or drive TTL circuits.

■ FEATURES

Operating Voltage

(4.5V~16V)

- Less Number of External Components
- Package Outline

DIP8, DMP8, SSOP8, SIP8

Bipolar Technology

PIN CONFIGURATION

■ PACKAGE OUTLINE

NJM555D NJM555M

PIN FUNCTION

- 1. GND
- 2. Trigger
- 3. Output
- 4. Reset
- 5. Control Voltage
- 6. Threshold
- 7. Discharge
- 8. V⁺

EQUIVALENT CIRCUIT

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	18	V
Power Dissipation	PD	(DIP8) 500	mW
		(DMP8) 300	mW
	1-1-7-14	(SSOP8) 250	mW
		(SIP8) 800	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	−40∼+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5~15V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		4.5	_	16	v
Operating Current (Note 1)	Icc	$V^+=5V$, $R_L=\infty$	_200	3.0	6.0	mA
Operating Current (Note 1) Timing Error (Note 2)	I _{CC}	$V^{+}=15V, R_{L}=\infty$	-	10	15	mA
Initial Accuracy	E,	Ta=-20~75°C.V+=5~15V		1.0	_	%
Drift with Temperature	E,	$Ta = -20 \sim 75^{\circ}C$, $V^{+} = 5 \sim 15V$		50		ppm/°C
Drift with Supply Voltage	E,	$Ta = -20 \sim 75^{\circ}C$, $V^{+} = 5 \sim 15V$		0.1	_	%/V
Threshold Voltage	V _{th}	REAL RESERVE	400	2/3	_	×V ⁺
Trigger Voltage	V _T	V+=15V		5.0	_	V
Trigger Voltage	V _T	V+=5V		1.67	_	V
Trigger Current	I _T		York Mary	0.5		μΑ
Reset Voltage	V _R		0.4	0.5	1.0	V
Reset Current	IR		_	0.1	_	mA
Threshold Current	I _{th}		7-100	0.1	0.25	μΑ
Control Voltage Level	V _{CL}	V+=15V	9	10	11	V
Control Voltage Level	V _{CL}	V+=5V	2.6	3.33	4.0	V
Output Voltage (Low)	Vol	V ⁺ =15V Isink=10mA	_	0.1	0.25	V
Output Voltage (Low)	Vol	V ⁺ =15V Isink=50mA		0.4	0.75	V
Output Voltage (Low)	Vol	V+=15V Isink=100mA (Note 3)	_	2.0	2.5	V
Output Voltage (Low)	V _{OL}	V+=15V Isink=200mA (Note 3)	Co-	2.5	_	V
Output Voltage (Low)	Vol	V ⁺ =5V Isink=5mA	ALCA .	0.25	0.35	V
Output Voltage (High)	V _{OH}	V ⁺ =15V Isource=200mA (Note 3)	_	12.5	_	V
Output Voltage (High)	V _{OH}	V ⁺ =15V Isource=100mA (Note 3)	12.75	13.3	_	V
Output Voltage (High)	V _{OH}	V ⁺ =15V Isource=40mA	31-0	5	_	V
Output Voltage (High)	V _{OH}	V ⁺ =5V Isource=100mA	2.75	3.3		V
Rise Time of Output	t _r	No Loading		100	_	ns
Fall Time of Output	t _f	No Loading		100		ns

Note 1: Low output condition (When the output is high, it is lower than the low output condition by ImA in the standard specification.)

Note 2: R_A , $R_B=1k\sim100k\Omega$, $C=0.1\mu F$, $V^+=15V$ from 5V

Note 3: Not specified for NJM555M/NJM555E

TYPICAL APPLICATION

(1) 50% Duty Cycle Oscillator

Duty cycle 50% at $R_A = R_B$ Due to R_A , R_B value the duty ratio becomes lower than 50%.

(2) Oscillatoion frequency can be changed by changing the control voltage.

(3) Pulse Width Modulation

TYPICAL CHARACTERISTICS

Delay Time vs. Operating Voltage

 $=-20^{\circ}$ C 2.0 25°C Low Output Voltage +75°C VOL (V)

Output Sink Current (mA)

Low Output Voltage

vs. Output Sink Current $(V^+ = 5 V)$

High Output Voltage Drop vs. Output Source Current

Low Output Voltage vs. Output Sink Current (V+=15 V)

0.05

■ TYPICAL CHARACTERISTICS

$\begin{array}{c} 100 \\ 10 \\ 10 \\ C \\ 0.01 \\ 0.001 \\ 0.1 \\ 1 \\ 10 \\ 100 \\ 1 \\ 100 \\$

Time Delay vs. RA, RB and C

Fig. 2 shows a typical example of the monostable operation. $T_H=1.1R_A\cdot C$ assuming that T_H be the time at the high output level in this figure.

Free Running Frequency vs. R_A, R_B and C

Fig. 4 shows a typical example of the free running operation.

The charge time (output High) is given by: $T_H = 0.693 (R_A + R_B) \cdot C$

And the discharge time (output Low) by: $T_L = 0.693R_B \cdot C$

The frequency of oscillation is:

$$F = \frac{1.44}{(R_A + 2R_B) \cdot C}$$

The duty cycle is:

$$D = \frac{T_H}{T_H + T_L} = \frac{R_A + R_B}{R_A + 2R_B}$$

DUAL TIMER

■ GENERAL DESCRIPTION

The NJM556 dual monolithic timing circuit is a highly stable controller capable of producing accurate time delays or oscillation. In the time delay mode, delay time is precisely controlled by only two external parts: a resistor and a capacitor. For operation as an oscillator, both the free running frequency and the duty cycle are accurately controlled by two external resistors and a capacitor.

Terminals are provided for triggering and resetting. The circuit will trigger and reset on falling waveforms. The output can source or sink up to 200mA or drive TTL circuits.

■ FEATURES

- Dual Timer Circuits
- Less number of External Components
- Package Outline

DIP14, DMP14

Bipolar Technology

■ PACKAGE OUTLINE

N.IMSS6M

■ PIN CONFIGURATION

PIN FUNCTION

- 1. Discharge A 8. Trigger B 9. Output B 2. Threshold A
- 10. Reset B 3. Control A
- 4. Reset A 11. Control B
- 12. Threshold B 5. Output A
- 6. Trigger A 7. Ground
- 13. Discharge B
- 14. V+

■ EQUIVALENT CIRCUIT (1/2 Shown)

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	18	V
Power Dissipation	PD	(DIP14) 570	mW
	Street Month	(DMP14) 700(note)	mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

(note) At on PC board

■ ELECTRICAL CHARACTERISTICS

 $(V^+=+5\sim+15V, Ta=25^{\circ}C)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V ⁺		4.5		16	v
Operating Current (Note 2)	I _{CC}	$V^+=5V$, $R_L=\infty$ (Each Section)	BIFE TO	3	6	mA
Operating Current (Note 2)	I _{CC}	$V^+=15V$, $R_L=\infty$ (Each Section)	-	10	14	mA
Threshold Voltage	V _{TH}	affants a fasticina	DOLL DESCRIPTION	2/3	_	×V+
Trigger Voltage	V _T	V ⁺ =15V	(X = 81)	5		V
Trigger Voltage	V _T	V ⁺ =5V		1.67		V
Trigger Current	I _T			0.5	_	μΑ
Reset Voltage	V _R		0.4	0.7	1.0	V
Reset Current	IR			0.1	1	mA
Threshold Current	I _T			0.03	0.1	μΑ
Control Voltage Level	V _{CL}	V ⁺ =15V	9	10	11	V
Control Voltage Level	V _{CL}	V+=5V	2.6	3.33	4	V
Output Voltage Drop (Low)	V _{OL}	$V^+=15V I_{SINK}=10mA$		0.1	0.25	V
Output Voltage Drop (Low)	V _{OL}	$V^+=15V I_{SINK}=50mA$	_	0.4	0.75	V
Output Voltage Drop (Low)	V _{OL}	V ⁺ =15V I _{SINK} =100mA	_	2	2.75	V
Output Voltage Drop (Low)	V _{OL}	$V^{+}=15V I_{SINK}=200mA$	_	2.5	_	V
Output Voltage Drop (Low)	V _{OL}	$V^+=5V$ $I_{SINK}=5mA$		0.25	0.35	V
Output Voltage Drop (High)	V _{OH}	V ⁺ =15V I _{SOURCE} =200mA	_	12.5	_	V
Output Voltage Drop (High)	V _{OH}	V ⁺ =15V I _{SOURCE} =100mA	12.75	13.3	_	V
Output Voltage Drop (High)	V _{OH}	V ⁺ =15V I _{SOURCE} =40mA		13.5		V
Output Voltage Drop (High)	V _{OH}	V ⁺ =5V I _{SOURCE} =100mA	2.75	3.3	_	V

(Note 2) Operating Current when output high typically 2mA less.

PARAMETER		SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Timing Error	Initial Accuracy	E _{ta}	$R_A, R_B = 2k \sim 100k\Omega, C = 0.1\mu F$	1-1-1	2.25		%
(Free Running)	vs. Temperature	Eta	$R_A, R_B = 2k \sim 100k\Omega, C = 0.1\mu F$	-	150	_	ppm/°C
(Note 3)	vs. Operating Voltage	E _{ta}	$R_A, R_B = 2k \sim 100k\Omega, C = 0.1\mu F$		0.3	_	%/Volt
Timing Error	Initial Accuracy	E _{tm}	$R_A, R_B=2k\sim 100k\Omega, C=0.1\mu F$	-	0.75	_	%
(Monostable)	vs. Temperature	E _{tm}	$R_A, R_B=2k\sim 100k\Omega, C=0.1\mu F$	-	50	_	ppm/°C
(Note 3)	vs. Operating Voltage	E _{tm}	$R_A, R_B=2k\sim 100k\Omega, C=0.1\mu F$	- 1	0.1	_	%/Volt
Matching Characteristics	Initial Accuracy	12.0		-	0.5	1	%
Between Each Section	vs. Temperature			-	±10	_	ppm/°C
	vs. Operating Voltage	17 1		_	0.2	0.5	%/Volt

(Note 3): Tested at $V^+=+5V\sim+15V$

TYPICAL APPLICATION

Missing pulse Ditection Circuit

Pulse Width Moduration Circuit

■ TYPICAL CHARACTERISTICS

■ TYPICAL CHARACTERISTICS

VOLTAGE DETECTOR

■ GENERAL DESCRIPTION

The NJM2078 is a dual comparator including precise reference circuit. Output stages are open collector and can be used on wired OR. The NJM 2078 has hysterisis terminals.

As it is less operating current, the NJM2078 is suitable for voltage detection of decreased power supply in memory stack and abnormal voltage.

■ PACKAGE OUTLINE

NJM2078D

NJM2078M

■ FEATURES

Low Operating Current (250 μA typ.)
 Stable Internal Reference Voltage (1.20V typ.)

• Hysterisis Function with Resistors

Package Outline
 DIP8, DMP8

Bipolar Technology

PIN CONFIGURATION

EQUIVALENT CIRCUIT

ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	21	V
Output Voltage	Vo.	21	V
Output Current	Io	50	mA
Input Voltage	V _{IN}	-0.3~+6.5	Vdc
Power Dissipation	PD	(DIP8) 500 (DMP8) 300	mW mW
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25℃)

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
- V	I _{CCL}	V+=20V, V _{IL} =1.0V	-	250	400	μΑ
Operating Current	I _{CCH}	V+=20V, V _{IH} =1.5V		400	600	μΑ
Threshold Voltage	V _{TH}	I _O =2mA, V _O =1V	1.15	1.20	1.25	V
Threshold Voltage Deviation	ΔV_{THI}	2.5V≦V+≦5.5V	-	3	12	mV
vs. Operating Voltage	ΔV_{TH2}	4.5V≦V+≦20V	_	10	40	mV
Offset Voltage Between Normal Output and Hysterisis Output		$I_{O}(A)$ =4.5mA, $V_{O}(A)$ =2V, $I_{H}(A)$ =20 μ A, $V_{H}(A)$ =3V	-	2.0	_	mV
		$I_{O}(B)=3mA, V_{O}(B)=2V,$ $I_{H}(B)=3mA, V_{H}(B)=2V$	-	2.0	-	mV
Threshold Voltage Temperature Coefficient		-20°C≦Ta≦70°C	-	±0.05	-	mV/°C
Threshold Voltage Difference Between Channels			-10	-	10	mV
Input Current	I _{IL}	I _{IL} =1.0V		5	-	nA
	I _{IH}	I _{IH} =1.5V		100	500	nΔ
Output Leak Current	I _{OH}	V _O =20V, V _{IL} =1.0V	-	-	1	μΑ
V	I _{HL} (A)	V+=20V, V _H (A)=0V, V _{IL} =1.0V	-	-	0.1	μΑ
Hysterisis Output Leak Current	I _{HH} (B)	V _H (B)=20V, V _{IH} =1.5V		-	1	μΑ
0	I _{OL} (A)	V _O =1.0V, V _{IH} =1.5V	6	12	-	mA
Output Sink Current	I _{OL} (B)	V _O =1.0V, V _{IH} =1.5V	4	10	_	mA
	I _{HH} (A)	V _H =0V, V _{IH} =1.5V	40	80	-	μΑ
Hysterisis Current	I _{HL} (B)	V _H =1.0V, V _{IL} =1.0V	4	10	-	mA
	V _{OL} (A)	I _O =4.5mA, V _{IH} =1.5V	-	120	400	mV
Output Saturation Voltage	V _{OL} (B)	I _O =3.0mA, V _{IH} =1.5V	-	120	400	mV
Hysterisis Output	V _{HH} (A)	$I_H=20\mu A, V_{IH}=1.5V$		50	200	mV
Saturation Voltage	V _{HL} (B)	I _H =3.0mA, V _{IL} =1.0V		120	400	mV
D.L. T	t _{PHL}	$R_L=5k\Omega$		2	-	μs
Delay Time	t _{PLH}	$R_L=5k\Omega$	_	3	_	μs

■ OPERATION PRINCIPLE

V_{IL}(A) V_{IH}(A) V_{IN}

Equation

$$V_{IH(A)}\!=\!\left(\ 1\,+\frac{R_1}{R_2}\right)\!V_R$$

$$V_{\text{IL(A)}}\!=\!\bigg(\,1+\frac{R_1}{R_2\,\!/\!\!/\,R_3}\,\bigg)V_R\!-\!\frac{R_1}{R_3}\,V^+$$

$$V_{IH(B)} = \left(\ 1 + \frac{R_4}{R_5 /\!\!/ R_6} \right) V_R$$

$$V_{\text{IL(B)}} = \left(1 + \frac{R_4}{R_5}\right) V_R$$

(note)
$$V_R = V_{TH} \ (= 1.20 V)$$

$$R_2 /\!\!/ \, R_3 = \frac{R_2 R_3}{R_2 + R_3}$$

$$R_5 /\!\!/ R_6 = \frac{R_5 R_6}{R_5 + R_6}$$

■ TYPICAL APPLICATION

1. Hysterisis

Each equation is calculated without considering the saturation voltage. It is necessary to compensate by the saturation voltage fit to lead conditions, precisely.

$$V_{IL(A)} = \left(1 + \frac{R_2}{R_3}\right) V_R$$

$$V_{\text{IL}(B)} \mathop{\doteq} \left(\ 1 \ + \frac{R_1}{R_2 + R_3} \right) V_R$$

2. Detection of Abnormal Supply Voltage

Hysterisis; Positive feedback from pin 2 or pin 7 (ref. 1).

Note: V⁺≥2.5V

3. Detection of Abnormal Operating Voltage

4. Programmable Zener

$$\begin{array}{l} V_Z\!\!\doteq\!(1+\!\frac{R_2}{R_3})V_R\\ \\ \frac{V_Z}{R_2\!+\!R_3}\!\!\leq\!\frac{V^+\!-\!V_Z}{R_1}\!\!\leq\!6~\text{mA} \end{array}$$
 Can use channel B independently.

5. Reset Circuit for Decreased Operating Voltage

o Comparate Voltage and hysterisis width can be adjustable $V^+(5V)$ by $R_1{\sim}R_4$. Roughly,

$$\begin{split} &V^{+}_{(L)} = \frac{R_1 + R_2 + R_3}{R_3} - V_{TH} \\ &V^{+}_{(H)} = V^{+}_{(L)} \cdot \frac{R_1 \left(R_2 + R_3\right)}{R_3 R_4} \cdot V_{TH} \end{split}$$

OUT • Power-on reset time t_{RST} (roughly)

$$t_{RST}\!=\!-\,C_{1}R_{4}\ l_{n}\ \{\,1\,-\!\frac{V_{TH}}{V^{+}}(\,1\,+\!\frac{R_{1}}{R_{2}\!+\!R_{3}})\,\}$$

- Transistor; Recommended h_{FE}=50~200
- ullet Rapid Signal Off; Be care to remained charge of C_1 . It affects to t_{RST} .
- Reverse polarity output OUT: Open collector.

■ TYPICAL CHARACTERISTICS

Operating Current

Hysterisis Current(A)

Output Saturation Voltage (A)

Output Saturation Voltage (B)

Threshold Voltage

Threshold Voltage

■ TYPICAL CHARACTERISTICS (Refer to Application 5 of Reset Circuit for Decreased Supply Voltage)

SYSTEM RESET IC

■ GENERAL DESCRIPTION

The NJM2102 Possesses two functions. One is to detect a voltage which decays from the desired voltage and generate a warning signal. And also, the NJM2102 holds the warning signal for a certain term after the specified voltage is obtained or recovered. The other one (Watch Dog Timer) is to identify missing clocks of microprocessors. Therefore, it should be said that the NJM2102 is ideal to protect any microprocessors from the fales operations induced by undesired condition.

■ FEATURES

- Internal Watch Dog Timer
- Precise Detection of Supply Voltage Down (4.2V ± 2.5%)
- Package Outline

DIP8, DMP8, SIP8

Bipolar Technology

■ PACKAGE OUTLINE

■ PIN CONFIGURATION

PIN FUNCTION

- RESET
- GND
- 6. V_{REF}
- 8. RESET

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ 1	13.5	V
Input Voltage	Vs	V ⁺ +0.3(<20)	V
Input Voltage	Vck	20	V
Power Dissipation	P _D	(DIP8) 500 (SIP8) 600 (DMP8) 300	mW mW mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V⁺=5V, Ta=25℃)

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{cc}	Full Function	7	0.65	1.00	mA
Threshold Voltage 1	V _{SL}	Falling Down Input	4.10	4.20	4.30	V
Threshold Voltage 2	V _{SH}	Rising Up Input	4.20	4.30	4.40	V
Hysteresis Width	V _{HYS}	V _{SL} -V _{SH}	50	100	150	mV
Reference Voltage	V _{RFF}		1.217	1.235	1.253	V
Operating Voltage Regulation	ΔV _{REF1}	V _{CC} =3.5V~18V	-10	+3	+10	mV
Load Regulation	ΔV_{REF2}	$I_{OUT} = -200 \mu A \sim +5 \mu A$	-5		+5	mV
CK Input Threshold Voltage	V _{TH}		0.70	1.24	1.90	V
CK Input Current 1	I _{IH}	V _{CK} =5.0V		0	1.0	μА
CK Input Current 2	I _{IL}	$V_{CK}=0.0V$	-1.0	-0.1	_	μΑ
C _T Charge Current 1	I _{CTC1}	(Note 1)	20	50	110	μΑ
C _T Charge Current 2	I _{CTC2}	$V_{CK}=0.0V$	0.6	1.4	3.0	μΑ
Capacitor Discharge Current 1	ICTDI	(Note 1)	6	9	13	μΑ
Capacitor Discharge Current 2	I _{CTD2}	V _{CK} =0.0V	100	600	-	μΑ
Output Voltage (High) 1	V _{OH1}	$V_S = Open. I_{\overline{RESET}} = -5\mu A$	4.5	4.9	_	V
Output Voltage (High) 2	V _{OH2}	$V_S = 0V$, $I_{RESET} = -5\mu A$	4.5	4.9	-	V
Output Voltage (Low) 1	Voli	$V_S = 0V, I_{\overline{RESET}} = 3mA$		0.2	0.4	V
Output Voltage (Low) 2	V _{OL2}	Vs=0V,IRESET=10mA	_	0.3	0.5	V
Output Voltage (Low) 3	V _{OL3}	V _S =Open. I _{RESET} =3mA	-	0.2	0.4	V
Output Voltage (Low) 4	V _{OL4}	V _S =Open. I _{RESET} =10mA	-	0.3	0.5	V
Output Sink Current 1	I _{OL1}	$V_S = 0V V_{\overline{RESET}} = 1.0V$	20	70	_	mA
Output Sink Current 2	I _{OL2}	V _S =Open. V _{RESET} =1.0V	20	70	_	mA
Minimum Operating Voltage 1	V _{CCLI}	V _{RESET} =0.4V, I _{RESET} =0.2mA		0.8	1.2	V
Minimum Operating Voltage 2	V _{CCL2}	$V_{RESET} = V^+ - 0.1V$, $R_L = 1M\Omega$		0.8	1.2	V

AC CHARACTERISTICS

PARAMETER	PARAMETER SYMBOL CONDITION		N	MIN.	TYP.	MAX.	UNIT
V ⁺ Input Pulse Width	T _{PI}	V _{CC} 5V	(Note 2)	-	10	-	μS
CK Input Pulse Width	T _{CKW}	CK JL or J	(Note 2)	-	1.8	_	mS
CK Input Period	TCK		(Note 2)	-	12	-	mS
Watch Dog Timer Warning Threshold Time	T _{WD}	$C_T = 0.1 \mu F$			10		mS
Watch Dog Timer Reset Pulse Width	Twr	$C_T = 0.1 \mu F$			2	_	mS
Reset Signal Hold Time	TPR	$C_T = 0.1 \mu F$		-	100	_	mS
Propagation Delay (RESET Terminal)	T _{PD1}	$R_L = 2.2k\Omega, C_L = 100pF$		-	2	_	μS
(RESET Terminal)	T _{PD2}	$R_L = 2.2 k\Omega, C_L = 100 pF$		_	3	_	μS
Output Rise Time	t _R	$R_L = 2.2k\Omega, C_L = 100pF$		_	1.0	_	μS
Output Fall Time	t _F	$R_L = 2.2k\Omega, C_L = 100pF$		_	0.1	-	μS

(Note1): The specified pulses (Refer to AC Characteristics) are applied to CK-pin.

(Note2): This characteristics is guaranteed within the design.

■ TIMING CHART

■ TERMINAL FUNCTION

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	Ст	Pin Connection to Capacitor, Set the reset holding time	V _{cc}
180			
2	RESET	Reset Output	
		Jugal 2	V⁺ V⁺
	ik si		
			O GND
3	СК	Crock Input	
	90 4	Selection and D	• • • • • • • • • • • • • • • • • • •
	0-	3 —	3 Delay Circuit
			GND

■ TERMINAL FUNCTION

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
4	GND	Ground	C- Pro Consulta
5	V+	Operating Voltage	
6	V _{REF}	Ref Amp Output	O Ch
7	Vs	Comparator S Input	© V
8	RESET	Reset Output Internal pull up resistor	⊗ V+ ⊗ GND

■ TYPICAL CHARACTERISTICS Operating Current vs. Operating Voltage

Output Voltage vs. Operating Voltage

Output Voltage vs. Operating Voltage

Detect Voltage vs. Ambient Temperature

Saturation Voltage vs. Output Sink Current

Saturation Voltage vs. Output Sink Current

TYPICAL CHARACTERISTICS

Reference Voltage vs. Reference Current

High Output Voltage

Reference Voltage vs. Amvient Temperature

Reference Voltage vs. Operating Voltage

TYPICAL CHARACTERISTICS

Reset Time

Watch Dog Timer observation time

Minimam Input Pulse Width vs. CT

APPLICATION CIRCUIT

1. 5V Supply Voltage Supervisory and Watch-dog-timer

2. 5V Supply Voltage Supervisiory (Externally fine tunning type)

- Vs detecting Voltage can be externally adjusted.
- Detecting Voltage can be decided by divider resistor of IC inside.
 Detecting Voltage can be set by external R1, R2.

The external resisitor R1, R2 are required to be set in value less than 1/10 in comparing to divideing resistor of IC inside. Please refere to following Table.

$R_1(k\Omega)$	$R_2(k\Omega)$	Detecting $V_{SL}(V)$	Detecting Voltage: : V _{SH} (V)
10	3.9	4.34	4.44
9.1	3.9	4.08	4.18

3. Compulsory Resetting attached (Reset Hold attached)

 *Pin 7 to be grounded when SW. ON. RESET(8pin) become Low: RESET(pin2) become HIGH.

• By putting signal in the RESET pin, and Tr swich ON RESET pin become LOW and RESET pin High.

SYSTEM RESET IC

■ GENERAL DESCRIPTION

NJM2103 is supply voltage supervisory IC to detect the abnormal conditions, such as shut down of all supply voltages at once, or sudden voltage down and then generate the reset signal. It supervises both 5V supply voltage and the voltage optionally set up.

■ PACKAGE OUTLINE

■ FEATURES

- Precise Detection of Supply Voltage Down
 Possible Detection of Optional Voltage Down
- Possible Detection of Optional Over-loading
- Low Operating Current
- Reference Voltage can be taken out.
- Low Reset Validated Voltage
- Voltage Detection with Hystersis Feature
- Package Outline
- Bipolar Technology

$(V_{SA}=4.2V\pm2.5\%)$ $(V_{SB}=1.22V\pm1.5\%)$

(I_{CC}≤500 μA @V_{SB}=5V)

(V+=0.8V Typ.)

DIP8, DMP8, SIP8

■ PIN CONFIGURATION

PIN FUNCTION

1. C_T
2. V_{SC}
3. OUT_C
4. GND
5. V⁺
6. V_{SB}/RESIN
7. V_{SA}
8. RESET

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	20	V
Power Dissipation	PD	(DIP8) 500	mW
		(DM8) 300	mW
	Re I	(SIP8) 800	mW
Input Voltage A	Vsa	V ⁺ +0.3(<20)	V
Input Voltage B	V _{SB}	20	V
Input Voltage C	Vsc	20	V
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	−40∼+125	°C

■ ELECTRICAL CHARACTERISTICS

• DC CHARACTERISTICS

(V⁺=5.0Vk V_{SB}=0V, V_{SC}=0V, Ta=25℃)

PARAMETER	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current (1)	Icci	V _{SB} =5V		380	560	μА
Operating Current (2)	I _{CC2}		_	460	700	μА
V _{SA} Detecting Voltage (1)	VSAL	V+ fall time V _{SB} = V+	4.10	4.20	4.30	V
V _{SA} Detecting Voltage (2)	VSAH	V+ rise time V _{SB} =V+	4.20	4.30	4.40	V
V _{SA} Hysterisis Width	V _{HRSA}		50	100	150	mV
V _{SB} Detecting Voltage	V _{SBL}	V _{SB} fall time	1.202	1.220	1.238	v
V _{SB} Detecting Supply Voltage Fluctuation	ΔV_{SBL}	V+=3.5~18V	-	3	10	mV
V _{SB} Hysterisis Width	V _{HRSB}		14	28	42	mV
V _{SB} Input Current (1)	I _{IHB}	V _{SB} =5V	_	0	250	nA
V _{SB} Input Current (2)	I _{ILB}		_	20	250	nA
High Level RESET Output Voltage	VOHR	$I_{RESET} = -5\mu A$, $V_{SB} = 5V$	4.5	4.9		μV
RESET Output Saturating Voltage(1)	Volri	I _{RESET} =2mA	_	0.20	0.40	v
RESET Output Saturating Voltage(2)	V _{OLR2}	I _{RESET} =10mA		0.30	0.50	V
RESET Output Sink Current	IRESET	V _{OLR} =1.0V	20	80	-	mA
C _T Charge Current	ICT	V _{SB} =5V, VCT=0.5V	6.0	9.5	13.0	μА
V _{SC} Input Current (1)	I _{IHC}	$V_{SC}=5V$	_	0	500	nA
V _{SC} Input Current (2)	I _{ILC}		_	50	500	nA
V _{SC} Detecting Voltage	V _{SC}		1.215	1.235	1.255	V
V _{SC} Detecting Supply Voltage Fluctuation	ΔV_{SC}	V+=3.5~13.5V	-	3	10	mV
OUT _C Output Leak Current	I _{OHC}	V _{OHC} =13.5V	-	0	1	μΑ
OUT _C Output Saturation Voltage OUT _C Output Sink Current	Volc	$I_{OUT}=4mA, V_{SC}=5V$		0.10	0.40	V
RESET Guarantee Minimum	I _{OUTC}	$V_{OLC}=1.0V, V_{SC}=5V$	6	20	-	mA
Supply Voltage	V ⁺ L	V_{OLR} =0.4V, I_{RESET} =200 μ A		0.8	1.2	V

• AC CHARACTERISTICS

(V*=5.0V Vsb=5.0V, Vsc=0V, CT=0.01 μ F, Ta=25°C)

ITEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT
V _{SA} Input Pulse Width	t _{PIA}			3.0	_	μs
V _{SB} Input Pulse Width	t _{PIB}		-	1.5	-	μs
RESET Output Pulse Width	tpO	V _{SB} =V ⁺	_	1.5	-	ms
RESET Rise Time	t _r	$V_{SB}=V^{+}, R_{L}=2.2k\Omega, C_{I}=100pF$	-	1.0	_	μs
RESET Fall Time	tf	$V_{SB} = V^+, R_L = 2.2k\Omega, C_L = 100pF$		0.1	-	μs
Output Delay Time	t _{PD}	V _{SB} fall time	_	2	_	μs
Output Delay Time	t _{PHL}	V_{SC} rise time, $R_L = 2.2k\Omega$, $C_L = 100pF$	-	0.5	_	μs
Output Delay Time	t _{PLH}	V_{SC} fall time, $R_L = 2.2k\Omega$, $C_L = 100pF$	_	1.0	-	μs

TERMINAL FUNCTION

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT			
1	Ст	Pin Connection to Capacitor, Set the reset holding time,	18			
2	Vsc		V* V8 #8 V8			
3 An an	OUTc	Open Collector Output of Comparator C.				
	16 A A 1620 - 1620 -	VEHILL AND THREE AND THREE AND THREE VO. 1 THREE	GND			

■ TERMINAL FUNCTION

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
4	GND	Ground	VECTON O
5	V+	Operating Voltage	
6	VsB/RESIN	Comparator B Input	6 VREF
7	V'SA	Comparator A Input	7 VREF
8	RESET	Reset Output Internalizing pull up resistor	8 8 8

■ APPLICATION CIRCUIT

1) 5V Supply Voltage Monitor

2) Monitoring of Optional Supply Voltage (V+ \leq 13.5V)

Detecting Voltage $= (1 + \frac{R_1}{R_2}) \times V_{SB}$

(Notice)

If it were that V+ indicates under 4.50V, Connect 7 pin to V+

3) Monitoring of Optional Supply Voltage (V+>13.5V)

$$\begin{split} \text{Detecting Voltage} & \doteqdot (1 + \frac{R_4}{R_5}) \times V_{SB} \\ \text{Constant Voltage Output } V_S & \doteqdot (1 + \frac{R_1}{R_2}) \times V_{SC} \\ \hline & \overline{RESET} \text{ Output } & \doteqdot \{V_S \pmod{\text{Level}}\} \end{split}$$

4) Compulsry Reset

Input Reset signal TTL level to V_{sB}-terminal

5) 5V,V_{CC}<12V Supply Voltage Monttor

6) Non-Inverting Reset

■ TYPICAL CHARACTERISTICS

Operating Current 1 vs. Operating Voltage

Operating Current 2 vs. Operating Voltage

Output Voltage vs. Operating Voltage

Detect Voltage (VsA) vs. Temperature

Detect Voltage (VsA) vs. Temperature

Detect Voltage (Vsc) vs. Temperature

TYPICAL CHARACTERISTICS

Output Voltage vs. Output Current

Output Voltage vs. Output Current

Output Voltage (OUTc)

Detect Voltage (VsB, Vsc)

Reset Hold Time vs. G

Reset Hold Time vs. Operating Voltage

VOLTAGE DETECTOR

■ GENERAL DESCRIPTION

NJM2405 is a dual comparator, including the high precision reference voltage circuit. Both channels have hystersis pins, so it could provide the hysteretic function for systems.

It has the wide range of operating voltage and works with less current consumption, so that it is suitable for detecting abnormal conditions, to change over to back up memories when the voltage drops off in operation.

■ FEATURES

- Operating Voltage
- Low Operating Current
- Internal Low Reference Voltage
- Adjustable Hystersis Voltage
- Package Outline

DMP8

(2.5V~20V)

Bipolar Technology

■ PIN CONFIGURATION

■ EQUIVALENT CIRCUIT

■ PACKAGE OUTLINE

NJM2405M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	21	V
Output Voltage	Vo	21	V
Output Current	Io	50	mA
Input Voltage	V _{IN}	-0.3~+6.5	Vdc
Power Dissipation	PD	300	mW
Operating Temperature Range	Topr	-20~+75	°C
Storage Temperature Range	Tstg	-40~+125	°C

■ ELECTRICAL CHARACTERISTICS

(V+=5V, Ta=25°C)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Current	I _{CCH}	$V^{+} = 20V, V_{IH} = 1.5V$	_	250	400	μА
	I _{CCL}	V+ =20V, V _{IL} =1.0V	1 -	400	60	μΑ
Threshold Voltage	V _{TH}	$I_O = 2mA$, $V_O = 1V$	1.1.	1.20	1.25	V
Threshold Voltage Deviation vs Supply Voltage	ΔV_{THI}	2.5V≦V+≦5.5V	-	3	12	mV
	ΔV_{TH2}	4.5V≦V+≦40V	-	10	40	mV
Offset Voltage between Normal Output and Hysteresis Output	Tar Hi	$I_O(A)=20\mu A, V_O(A)=3V$ $I_H(A)=4.5mA, V_H(A)=2V$		2.0	-	mV
		$I_O(B)=3mA, V_O(B)=2V$ $I_H(B)=3mA, V_H(B)=2V$	HW.	2.0	-	mV
Threshold Voltage Temperature Coefficient		$-20^{\circ}\text{C} \leq T_a \leq 70^{\circ}\text{C}$	-	±0.05	-	mV/℃
Threshold Voltage Difference Between Channels		V (state)	-10	(III)	10	mV
Input Current	IIL	I _{IL} =1.0V	-	5	-	nA
	I _{IH}	V _{IH} =1.5V	-	100	500	nA
Output Leak Current	I _{OH} (A)	$V^{+}=20V$, $V_{O}(A)=0V$, $V_{1H}=1.5V$	_	1 10	0.1	μΑ
	I _{OH} (B)	$V_{O}(B)=20V, V_{IL}=1.0V$	-	_	1	μΑ
Hysteresis Output leak Current	I _{HH} (A)	$V_H(A)=20V, V_{1H}=1.5V$	_	-	1	μΑ
	I _{HH} (B)	$V_H(B)=20V, V_{1H}=1.5V$			1	μΑ
Output Source Current	I _{OL} (A)	$V_{O}(A)=0V, V_{1L}=1.0V$	40	80	_	μΑ
Output Sink Current	I _{OL} (B)	$V_0(B)=1.0V, V_{1H}=1.5V$	4	10	-	mA
Hysteresis Current	I _{HL} (A)	$V_H(A)=1.0V, V_{1L}=1.0V$	6	12	-	mA
	I _{HL} (B)	$V_H(B)=1.0V, V_{1L}=1.0V$	4	10	-	mA
Output Saturation Voltage	V _{OL} (A)	$I_{O}(A)=20\mu A, V_{1L}=1.0V$	-	50	200	mV
	V _{OL} (B)	$I_O(B)=3.0\text{mA}, V_{1H}=1.5V$	-	120	400	mV
Hysteresis Output Saturation Voltage	V _{HL} (A)	$I_H(A) = 4.5 \text{mA}. V_{1L} = 1.0 \text{V}$	-	120	400	mV
	V _{HL} (B)	$I_H(B)=3.0mA, V_{1L}=1.0V$	-	120	400	mV
Delay Time	t _{PHL}	RL=5kΩ	-	2	-	μs
	tpLH	RL=5kΩ	-	3		μs

■ GENERAL OPERATING INFORMATION (Operation Principle)

Relational Function (Attention)

$$V_{IH}(A) = \left(1 + \frac{R_1}{R_2 \# R_3}\right) V_R$$

$$V_{\rm IL}(A) = \left(1 + \frac{R_1}{R_2}\right) V_{\rm R}$$

$$V_{1\,\text{H}}(\,B) = \left(1 + \, \frac{R_4}{R_5\, /\!\!/ \,R_6}\,\right) V_R$$

$$V_{IL}(B) = \left(1 + \frac{R_4}{R_5}\right) V_R$$

(note)
$$V_R = V_{TH} (= 1.20V)$$

$$R_2 /\!\!/ \, R_3 = \frac{R_2 R_3}{R_2 + R_3}$$

$$R_5 /\!\!/ R_6 = \frac{R_5 R_6}{R_5 + R_6}$$

LOW VOLTAGE DC MOTOR CONTROLLER

■ GENERAL DESCRIPTION

The NJM2606A is integrated circuit with wide operating supply voltage range for DC motor speed control. Especially, the NJM2606A is suited for 3V or 6V DC motor control.

■ FEATURES

Operating Voltage

(1.8V~8V)

- Internal Low Saturation Voltage Output Transistor
- Package Outline

DIP8, DMP8

Bipolar Technology

■ PACKAGE OUTLINE

NJM2606D NJM2606AD NJM2606AM

■ PIN CONFIGURATION

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+	10	V
Peak-to-peak Output Current	IOP	700	mA
Power Dissipation	PD	(DIP8) 500 (DMP8) 300	mW mW
Operating Temperature Range	Topr	-20~75	C.
Storage Temperature Range	Tstg	-40~125	C

(note) At SW ON. (3 sec. at motor locked or 100msec at duty factor less than 0.1%)

■ ELECTRICAL CHARACTERISTICS

(Ta=25°C, V+=3V, I_M=100mA)

PARAMETER	SYMBOL	TEST CONDITION		MIN.	TYP.	MAX.	UNIT
Operating Current	I _{cc}		A PH	_	2.4	6.0	mA
Output Saturation Voltage							
NJM2606	V _{OSAT}	Section 1	0 7	_	0.18	0.3	V
NJM2606A	Vosat			-	0.13	0.18	V
Reference Voltage	V _{REF}	and the second	T. Tours	0.18	0.20	0.22	V
vs. Operating Voltage	$\triangle V_{RSV}$	V+=1.8V~8.0V	-	-	0.7	8.0	mV
vs. Output Current	ΔV_{ROC}	I _M =20mA~200mA		-	2.7	9.0	mV
vs. Ambient Temperature	$\triangle V_{RT}$	Ta=-20°C~+75°C		-	0.04	_	mV/°C
Current Ratio	K	$I_M=50\text{mA}\sim150\text{mA}$		45	50	55	
vs. Operating Voltage	$\triangle K_{SV}$	$V^{+}=1.8V\sim8.0V$		-	0.6	3.0	
		$I_M=50mA\sim150mA$			MARCH	NO MO	5.18
vs. Output Current	$\triangle K_{OC}$	$I_{M}=(20\sim50)\sim(170\sim200)\text{mA}$		-	1.0	4.0	
vs. Ambient Temperature	$\triangle K_{TC}$	Ta=-20°C~+75°C		_	1.0	_	1/°C
		$I_M=50\text{mA}\sim150\text{mA}$					

■ TYPICAL CHARACTERISTICS

Reference Voltage vs. Operating Voltage

Reference Voltage vs. Motor Current

Reference Voltage vs. Temperature

Operating Current vs. Operating Voltage

Output Staturation Voltage vs. Motor Current

Current Ratio vs. Operating Voltage

■ TYPICAL CHARACTERISTICS

■ TYPICAL APPLICATION

Select C1, C2, C3 for each motor type.

Vref: Reference Voltage

K: Current Ratio

Im: Motor Current

RM: Internal Resistance of Motor

Eo: Motor Counter Electromotive Voltage

The voltage applied at the motor is set as V_M, which brings the following formula.

$$V_{M} = (R_{1} + R_{2} + R_{3}) I_{ref} + R_{1} \cdot \frac{I_{M} + I_{ref}}{K}$$

Now that,
$$I_{ref} = V_{ref}/R_2$$
 so that, $(I_{ref} = 100 \mu \text{A} \text{ setting is appropriate})$

$$V_M = \frac{V_{ref}}{R_2} (R_1 + \frac{R_1}{K} + R_2 + R_3) + \frac{R_1}{K} I_M \cdots (1)$$

On the other hand, the voltage applied at the motor itself will be as in the following.

 $V_{M} = E_{O} + R_{M} \cdot I_{M} \cdot \cdots \cdot (2)$

Through (1), (2), and then leading to stabilize the control system.

$$R_M \cdot I_M > \frac{R_1}{K} \cdot I_M$$

$$\therefore R_1 < K \cdot R_M \cdot \cdots \cdot (3)$$

Taking in consideration of deviatons, $R_{1(MAX)} < K_{(MIN)} \cdot R_{M(MIN)}$ with the condition.

Items required checking in regard to the temperature coefficient

- 1. Reference voltage: Temperature coefficient of V_{ref}.
- 2. Current Ratio: Temperature coefficient of K
- ★1 External component items
- 3. Temperature coefficient of R₁, R₂ and R₃

The relation among these 3 parts takes the very important roll.

- 4. Temperature coefficient of motor internal resistance
- 5. Temperature coefficient of motor generative voltage
- 6. Temperature coefficient ratio of R_1 and R_M

Count up from 3.4.

SERVO MOTOR CONTROLLER

■ GENERAL DESCRIPTION

The NJM2611 is an integrated circuit to be applied on servo motor of radio controlled operation. Wide range of operating voltage, and the NJM2611 has the feature of internal circuit of maintaining constant voltage which helps stabilizing from fluctuation caused by voltage source and the ambient temperature.

■ FEATURES

- Wide Operating Voltage
- Setting up the dead band by the internal constant
- Internal Output NPN Power Transistor
- Internal Constant Voltahe Circuit
- Package Outline

DIP16

Bipolar Technology

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM 2611

■ ABSOLUTE MAXIMUM RATINGS

(V⁺=6V, Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	10.0	V
Power Dissipation	PD	700	mW
Output Sink Current	Isink	600(note)	mA
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	°C

(note) Due to the pulse driving, the peak current must be maintained within the range of the maximum ratings.

■ ELECTRICAL CHARACTERISTICS

(V⁺=6V, Ta=25℃)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Operating Voltage	V+		2.5	_	7.5	v
Operating Current	Icc		_	7.5	10.0	mA
Minimum Input Pulse Voltage Range	VIN	At the balanced output	1.85	-	_	V
Regulator Voltage	Vreg	and the second second second	2.0	2.15	2.3	V
Line Regulation	Vlin	V+=2.5~8.5V		_	30	mV
Output Saturation Voltage	Vsat	Load 12Ω		_	0.5	V
Dead Band	TDB	to restract of towards at	_	4.0	_	μs

■ PIN DISCRIPTION

PIN NO.	PIN FUNCTION	DESCRIPTION	INSIDE EQUIVAALEUT CIRCUIT
1	Vin	Input the positive pulse of more than 1.85V.	(1)
	7	Carlo Control	and the property of the state o
	3	25/4-24-	14kΩ
		a paint numerous of the apparato chiles basismon	
	Ne*V)		ELECTRICAL ON ACTEMETICS
	22/06	TT MISS MORE STORY	28 kΩ €
	2.5		auth V garine
	0.01		GND 1
2	Rref	Constant output voltoge of 1.25V (typical). Through the resistor which is connected to this pin, and setting up the constant current to make the saw tooth sweep at pin 14. Connect the capacitor of approximately 1000 pF with the resistor on parallel.	2.15 V
			400Ω 2 6.4kΩ

PIN NO.	PIN FUNCTION	DESCRIPTION	INSIDE EQUIVAALEUT CIRCUIT
3	Vreg	Connect the resistors along to the motor inter- locking potentiometer pulse stretcher. Connect the capacitor of more than 0.1μ F.	V ⁺ 3
		S DAYS CONTRACTOR OF THE STATE	3 2 kΩ 10.4 kΩ GND 1
4	PS1	Connect the resistor between Vref. The pulse gain can be decided by this resistor and the capacitor connected to pin 5.	2.15 V \$ 1.5 kΩ
		28 L1 \$	31.4kΩ 150Ω 4
5	PS2	Connect the capacitor between GND. The pulse gain can be decided by this condensor and the resistor connected to pin 4.	2.15 V
			S 3kΩ GND 1

PIN NO.	PIN FUNCTION	DESCRIPTION	INSIDE EQUIVAALEUT CIRCUIT
6	PSV	Nomally, this pin is used on the open state of operation. Especially, when it is reguired to make	2.15 V
		the adjustment of the dead band, connect the resistor between GND and then the dead band can be made it's expansion.	1.9kΩ }
	-6-4	(Refere to, dead band pin 6 voltage vs. pin 6 sink	
		current characteristic)	6 1.7 kΩ 2 10 kΩ
	01 }		ξ5.4kΩ ξ3kΩ
			GND 1
7	NC	No connect	4 PS Commercial designs from
8	GND1	System GND.	3 raig of histolidas
9	PNP1	Connect the external PNP transistor (Q_2) base.	V+
	0081		\$1.1k0
			9 (13)
			\$130 Ω \$1.1 kΩ
			GND 1
			10
10	GND2	Power GND Large pulse current is running, therefore, connect the line by separating from the sytem GND.	

PIN FUNCTION	DESCRIPTION	INSIDE EQUIVAALEUT CIRCUIT
OUT1	Connect the collector of the external PNP transistor, the base of which is connected to pin 9. Connect the motor between pin 13.	V ⁺ 1.1 kΩ 12 11
	E (5.00.0)	GND 1 10
PNP2	Connect the external PNP transistor (Q ₁) base.	V+
ons:	The state of the s	1.1 kΩ (12) (11)
	1020	3 1.1 kΩ GND 1
OUT2	Connect the collector of the external PNP transistor, the base of which is connected to pin 12. Connect the motor between pin 11.	V ⁺ 1.1 kΩ 9 (13)
		130 Ω 1.1 kΩ GND 1
	OUT1	OUT2 Connect the collector of the external PNP transistor, the base of which is connected to pin 9. Connect the motor between pin 13. PNP2 Connect the external PNP transistor (Q ₁) base. OUT2 Connect the collector of the external PNP transistor, the base of which is connected to

PIN NO.	PIN FUNCTION	DESCRIPTION	INSIDE EQUIVAALEUT CIRCUIT
14	C _P	Connect the sawtooth wave generating capacitor. The motor's position shall be decided at the peak point of sawtooth wave, so that it is advisabled to select the higher precision capacitor as well as the resistor connected to pin 2.	7.4kΩ \$ 360Ω GND 1
15	СОМР	The center part of potentiometer of motor motion is to be connected. The capacitor of about $0.1\mu F$ is to be connected between GND for preventing noise. The center location can be adjusted by putting the resistor in series with the potentiometer.	V ⁺ 7.4 kΩ 360 Ω 1
16	V+	Power Supply	GND 1

■ TYPICAL APPLICATION

Notes

- (1) VR1: Potentiometer coupled mechanically to the servo motor
- (2) VR₂: Adjusting the motor center location
- (3) Hunching prevention

 $0.01\,\mu F$ Capacitor between pin 11 and GND $0.01\,\mu F$ Capacitor between pin 13 and GND Diode between pin 11 and power supply Diode between pin 13 and power supply 100Ω Resistor between pin 11 and pin 13 $680\,k\Omega$ Resistor between pin 11 and GND

TYPICAL CHARACTERISTICS

Operating Current vs. Operating Voltage (Ta=25%)

Dead Band Pin 6 Voltage vs. Pin 6 Sink Current

Regulator Voltage vs. Operating Voltage

Regulator Voltage vs. Temperature

BRUSH LESS DC MOTOR PRE-DRIVER

■ GENERAL DESCRIPTION

The NJM2624 is a 3-phase brushless DC motor pre-driver which requies external power-transistors suited to drive current of the motor.

The Run Enable function is used as PWM control besides of ON/OFF switch function.

■ FEATURES

- Operating Voltage Output Switch Current
- Low Operating Current
- (10mA max) (90mA typ.)

 $(+4.5V \sim +18V)$

- Run Enable
- Forward or Reverse Direction
- Bipolar Technology
- Package Outline

DIP16, DMP16, SSOP16

■ PACKAGE OUTLINE

NJM2624D

NJM2624M

NJM2624V

■ PIN CONFIGURATION

NJM2624D NJM2624M NJM2624V

PIN FUNCTION	
1:H1-	9: GND
2:H1+	10: ON/OFF
3:H2+	11: OUT1
4: H2-	12: OUT3
5: H3-	13: OUT5
6: H3+	14: OUT6
7: F/R	15: OUT4
8: V+	16 ' OUT2

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RAT	INGS		(Ta	=25°C)		
PARAMETER	SYMBOL	RATINGS	U	INIT		
Supply Voltage	V ⁺	20	nally a	V		
Output Current	Io	100		mA		
	2121	(DMP-16) 700				
Power Dissipation	P _D	(DMP-16) 300		mW		
		(SSOP-16) 300				
Operating Temperature Range	Topr	−40∼+85		C		
St. T. D.		(D, M type-16) -40~+150		$^{\circ}$		
Storage Temperature Range	T _{stg}	(V type) −40~+125	apil.au	$^{\circ}$		
■ ELECTRICAL CHARACTER	ISTICS			(7	V+=12V,	Γa=25℃
Total Device			information)	BIG LOVE	and a	ultel a
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Supply Voltage	V*		4.5	-	18	V
Supply Current	Iq	RL=∞, 7Pin=OPEN, 10Pin=OPEN	THE	3.7	10	mA
MARINE TO	- LIKE I					
Hole Sensor Section	464.5					
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	Vio		-4.2	-	4.2	mV
Input Common mode Voltage range	Vicm		1.5	-	10.5	V
Input Bias Current	Ib		14	_	600	nA
Output Section		RIDISTA				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Voltage 1	Vout 1	RL=470Ω, V*=12V	8.9	9.5	-	V
Output Voltage 2	Vout 2	RL=470 Ω , V ⁺ =5V	- 4/	3.5	200	V
Maximum Output Current 1	I out 1	RL=100 Ω , V*=12V	50	90	_	mA
Maximum Output Current 2	I out 1	RL=100 Ω , V ⁺ =5V	-	30	_	mA
Output Leak Current	I leak		-	-	5	μΑ
Run Enable Section	140					
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Deer Frankla Walkana	Ven	BI -470.0	1/2V+			3.7
Run Enable Voltage	Von	RL=470Ω	-0.5v			V
Des Die III Vale	Voff	BL 470.0	10		1/2V+	17
Run Disable Voltage	Voll	RL=470Ω	197		+0.5v	V
Source Current 1	I on 1	Run Enable Terminal=GND	-	250	400	μΑ
			(1)			
Forward or Reverse Direction Section			-60			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Forward Direction	VF	RL=470Ω	1/2V+	_		v
A OF THE DIRECTOR	**	11000	-0.5v			1
Reverse Direction	VR	RL=470 Ω	-	-	1/2V ⁺ +0.5v	v
Source Current 1	I on 2	Forward or Reverse Direction Terminal=GND	_	250	400	μΑ

■ TERMINAL DESCRIPTION

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
2	H1+	Sensor Input 1 Inverting Terminal	V+
3	H2+	Sensor Input 2 Inverting Terminal	
6	Н3+	Sensor Input 3 Inverting Terminal	H – 500Ω H+
1	Н1-	Sensor Input 1 Non-Inverting Terminal	
4	H2-	Sensor Input 2 Non-Inverting Terminal	
5	Н3-	Sensor Input 3 Non-Inverting Terminal	GND English State of
		rio Esc.	V+ 50kΩ \$ 50kΩ
7	F/R	Forward or Reverse Direction Terminal	ON/OFF 50kΩ
	TOO 4 S	008	GND

PIN NO.	SYMBOL	FUNCTION	INSIDE EQUIVALENT CIRCUIT
8	V ⁺	Power Supply	PORTSON - SOUTHUR SOUND
9	GND	Ground	
10	Run Enable	Output Run Enable Terminal	V^+ $50k\Omega$ F/R $50k\Omega$ $50k\Omega$
11 12 13 14 15	Out1 Out3 Out5 Out6 Out4 Out2	Internal Switching Transistor : Emitter Follower	V ⁺ 150kΩ OUT
	100	3 3	GND

■ TYPICAL APPLICATION

New Japan Radio Co., Ltd.

V-F/F-V CONVERTOR

■ GENERAL DESCRIPTION

The NJM4151 provide a simple low-cost method of A/D conversion. They have all the inherent advantages of the voltage-to-frequency conversion technique. The Output of NJM4151 is a series of pulses of constant duration. The frequency of the pulses is proportional to the applied input voltage. These converters are designed for use in a wide range of data conversion and remote sensing applications.

■ FEATURES

- Operating Voltage
- (8V~22V)
- Frequency Operation from
- (1.0Hz to 100kHz)
- Package Outline
- DIP8, DMP8
- Bipolar Technology

■ PIN CONFIGURATION

EQUIVALENT CIRCUIT

■ PACKAGE OUTLINE

NJM 4151 D

NJM 4151 M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

SYMBOL	RATINGS	UNIT	
V ⁺	8~22	V	
Isink	20	mA	
PD	(DIP8) 500	mW	
	(DMP8) 300	mW	
VI	-0.2~V+	(V)	
Topr	-20~+75	C	
Tstg	-40~+125	C	
	V+ ISINK PD V1 Topr	V ⁺ 8~22 Isink 20 P _D (DIP8) 500 (DMP8) 300 V ₁ -0.2~V ⁺ Topr -20~+75	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

■ ELECTRICAL CHARACTERISTICS

 $(V^+=+15V, Ta=+25^{\circ}C)$

MIN. 2.0 2.0 0.90	3.5 4.5 1.00	MAX. 6.0 7.5	UNIT mA mA kHz/V
2.0	4.5	7.5	mA
0.90	1.00		
atmass <u>a</u>		1.10	kHz/V
81 MAR <u>A</u> 81 MARA	+100		
	±100	-	ppM/°C
-	0.2	1.0	%/V
	5	10	mV
-	±50	±100	nA
	-100	-300	nA
0 to V+-3	0 to V+-2	1-1	v
0.63	0.66	0.70	× V+
	-100	-500	nA
191-	0.15	0.50	V
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	138.7	_	μΑ
	1.0	2.5	μΑ
14-5	1	50.0	nA
1.70	1.90	2.08	v
L PET	0.15	0.50	v
_	0.10	0.30	v
_	0.1	1.0	μΑ
		- 0.2 - 5 - ±50 - 100 0 to V+-3 0 to V+-2 0.63 0.66 100 - 0.15 - 138.7 - 1.0 - 1 1.70 1.90 - 0.15 - 0.15	- 0.2 1.0 - 5 10 - ±50 ±100 - 100 −300 0 to V+−3 0 to V+−2 − 0.63 0.66 0.70 - 100 −500 - 0.15 0.50 - 138.7 − - 1.0 2.5 - 1 50.0 1.70 1.90 2.08 - 0.15 0.50 - 0.10 0.30

Note 1: Input Common Mode Range includes ground.

■ PRINCIPLE OF OPERATION

Single Supply Mode Voltage-to-Frequency Conversion

In this application the NJM4151 functions as a stand-alone voltage to frequency converter operating on a single positive power supply. Refer to Figure 1, the simplified block diagram. The NJM4151 contains a voltage comparator, a one-shot, and a precision switched current source. The voltage comparator compares a positive input voltage applied at pin 7 to the voltage at pin 6. If the input voltage is higher, the comparator will fire the one-shot. The output of the one-shot is connected to both the logic output and the precision switched current source. During the one-shot period, T, the logic output will go low and the current source will turn on with current I.

At the end of the one-shot period the logic output will go high and the current source will shut off. At this time the current source has injected an amount of charge $Q=I_OT$ into the network R_B-C_B . If this charge has not increased the voltage V_B such that $V_B>V_I$, the comparator again fires the one-shot and the current source injects another lump of charge, Q, into the R_B-C_B network. This process continues until $V_B>V_I$.

When this condition is achieved the current source remains off and the voltage V_B decays until V_B is again equal to V_I . This completes one cycle. The VFC will now run in a steady state mode. The current source dumps lumps of charge into the capacitor C_B at rate fast enough to keep $V_B \geqslant V_I$. Since the discharge rate of capacitor C_B is proportional to V_B/R_B , the frequency at which the system runs will be proportional to the input voltage.

Figure 1. Simplified Block Diagram, Single Supply Mode

The 4151 VFC is easy to use and apply if you understand the operation of it through the block diagram, Figure 1. Many users, though, have expressed the desire to understand the workings of the internal circuitry. The circuit can be divided into five sections: the internal biasing network, input comparator, one-shot, voltage reference, and the output current source.

The internal biasing network is composed of Q39-Q43. The N-channel FET Q43 supplies the initial current for zener diode Q39. The NPN transistor Q38 senses the zener voltage to derive the current reference for the multiple collector current source Q41. This special PNP transistor provides active pull-up for all of the other sections of the 4151.

The input comparator section is composed of Q1-Q7. Lateral PNP transistors Q1-Q4 form the special ground-sensing input which is necessary for VFC operation at low input voltages. NPN transistors Q5 and Q6 convert the differential signal to drive the second gain stage Q7. If the voltage on input pin 7 is less than that on threshold pin 6, the comparator will be off and the collector of Q7 will be in the high state. As soon as the voltage on pin 7 exceeds the voltage on pin 6, the collector of Q7 will go low and trigger the one-shot.

The one-shot is made from a voltage comparator and an R-S latch. Transistors Q12-Q15 and Q18-Q20 form the comparator, while Q8-Q11 and Q16-Q17 make up the R-S latch. One latch output, open-collector reset transistor Q16, is connected to a comparator input and to the terminal, pin 5. Timing resistor R_0 is tied externally from pin 5 to V^+ and timing capacitor C_0 is tied from pin 5 to ground. The other comparator input is tied to a voltage divider R_3 - R_5 which sets the comparator threshold voltage at 0.667 V^+ . One-shot operation is initiated when the collector of Q7 goes low and sets the latch. This causes Q16 to turn off, releasing the voltage at pin 5 to charge exponentially towards V^+ through R_0 . As soon as this voltage reaches 0.667 V^+ , comparator output Q20 will go high causing Q10 to reset the latch. When the latch is reset, Q16 will discharge C_0 to ground. The one-shot has now completed its function of creating a pulse of period T=1.1 R_0C_0 at the latch output, Q21. This pulse is buffered through Q23 to drive the open-collector logic circuit transistor Q32. During the one-shot period the logic output will be in the low state. The one-shot output is also used to switch the reference voltage by Q22 and Q24. The low T.C. reference voltage is derived from the combination of a 5.5V zener diode with resistor and diode level shift networks. A stable 1.89 volts is developed at pin 2, the emitter of Q33.

Connecting the external current-setting resistor R_s =14.0 Ω from pin 2 to ground gives 135 μ A from the collectors of Q33 and Q34. This current is reflected in the precision current mirror Q35-Q37 and produces the output current I_O at pin 1. When the R-S latch is reset, Q22 and Q24 will hold the reference voltage off, pin 2 will be at 0V, and the current will be off. During the one-shot period T, the latch will be set, the voltage of pin 2 will go to 1.89V, and the output current will be switched on.

■ TYPICAL APPLICATION

1. Single supply Voltage-to-Frequency Converter

Figure 2 shows the simplest type of VFC that can be made with the 4151. Input voltage range is from 0 to +10V, and output frequency is from 0 to 10kHz. Full scale frequency can be tuned by adjusting R_S , the output current set resistor. This circuit has the advantage of being simple and low in cost, but it suffers from inaccuracy due to a number of error sources. Linearity error is typically 1%. A frequency offset will also be introduced by the input comparator offset voltage. Also, response time for this circuit is limited by the passive integration network R_BC_B . For the component values shown in Figure 2, response time for a step change input from 0 to +10V will be 135msec. For applications which require fast response time and high accuracy, use the circuits of Figure 3 and 4.

Figure 2. Single Supply Voltage-to-Frequency Converter

2. Precision VFC with Single Supply Voltage

For applications which require a VFC which will operate from a single positive supply with positive input voltage, the circuit of Figure 3 will give greatly improved linearity, frequency offset, and response time. Here, an active integrator using one section of the NJM3403A quad ground-sensing op-amp has replaced the R_B - C_B network in Figure 2. Linearity error for this circuit is due only to the 4151 current source output conductance. Frequency offset is due only to the op-amp input offset and can be nulled to zero by adjusting R_B . This technique uses the op-amp bias current to develop the null voltage, so an op-amp with stable bias current, like the NJM3403A, is required.

Figure 3. Precision Voltage-to-Frequency Converter Single Supply

3. Precision Voltage-to-Frequency Converter

In this application (Figure 4) the 4151 VFC is used with an operational amplifier integrator to provide typical linearity of 0.05% over the range of 0 to -10V. Offset is adjustable to zero. Unlike many VFC designs which lose linearity below 10mV, this circuit retains linearity over the full range of input voltage, all the way to 0V.

Trim the full scale adjust pot at V_I =-10V for an output frequency of 10kHz. The offset adjust pot should be set for 10Hz with an input voltage of -10mV.

The 4131 operational amplifier integrator improves linearity of this circuit over that of Figure 2 by holding the output of the source, Pin 1, at a constant 0V. Therefore linearity error due to the current source output conductance is eliminated. The diode connected around the op-amp prevents the voltage at 4151 pin 7 from going below 0. Use a low-leakage diode here, since any leakage will degrade the accuracy. This circuit can be operated from a single positive supply if an NJM3403A ground-sensing op-amp is used for the integrator. In this case, the diode can be left out. Note that even though the circuit itself will operate from a single supply, the input voltage is necessarily negative. For operation above 10 kHz, bypass 4151 pin 6 with $0.01 \mu\text{F}$.

Figure 4. Precision Voltage-to-Frequency Converter

4. Comparison of Voltage-to-Frequency Application Circuits

Table 1 compares the VFC applications circuits for typical linearity, frequency offset, response time for a step input from 0 to 10 volts, sign of input voltage, and whether the circuit will operate from a single positive supply or split supplies.

Table 1

	Figure 2	Figure 3	Figure 4
Linearity	1%	0.2%	0.05%
Frequency Offset	+10Hz	0	0
Response Time	135msec	10msec	10msec
Input Voltage	+	+	480
Single supply	yes	yes	yes
Split Supply		_	yes

5. Frequency-to-Voltage Conversion

The 4151 can be used as a frequency-to-voltage converter. Figure 5 shows the single-supply FVC configuration. With no signal applied, the resistor bias networks tied to pins 6 and 7 hold the input comparator in the off state. A negative going pulse applied to pin 6 (or positive pulse to pin 7) will cause the comparator to fire the one-shot. For proper operation, pulse width must be less than the period of the one-shot, $T=1.1~R_{\rm o}C_{\rm o}$. For a 5Vp-p square-wave input the differentiator network formed by the input coupling capacitor and the resistor bias network will provide pulses which correctly trigger the one-shot. An external voltage comparator such as the NJM311 or NJM2901 can be used to "square-up" sinusoidal input signals before they are applied to the 4151. Also, the component values for the input signal differentiator and bias network can be altered to accommodate square waves with different amplitudes and frequencies. The passive integrator network $R_{\rm B}C_{\rm B}$ filters the current pulses from the pin 1 output. For less output ripple, increase the value of $C_{\rm B}$.

Ro 6.8kΩ to+15V ≥ 10kΩ 10kQ Frequency 01 µf Input 022µf 4151 f. 0-11 $0 \le f_1 \le 10 \text{kHz}$ Square Wave 10kΩ 12kQ 5kΩ Full Scale R_B 100kΩ 5 pf Trim 1000 Voltage Output $-10 \text{ V} \leq \text{V}_{0} \leq 0$ 100kΩ Offset Trim

Figure 5. Single Supply Frequency-to-Voltage Converter

Figure 6. Precision Frequency-to-Voltage Converter

6. Precision Frequency-to-Voltage Converter

For increased accuracy and linearity, use an operational amplifier integrator as shown in Figure 6, the precision FVC configuration. Trim the offset to give -10mV out with 10Hz in and trim the full scale adjust for -10V out with 10kHz in. Input signal conditioning for this circuit is necessary just as for the single supply mode, and scale factor can be programmed by the choice of component values. A tradeoff exists between output ripple and response time, through the choice of integration capacitor C_1 . If $C_1=0.1\mu\text{F}$ the ripple will be about 100mV. Response time constant $\tau_R=R_B\cdot C_1$. For $R_B=100\text{k}\Omega$ and $C_1=0.1\mu\text{F}$, $\tau_R=10\text{ms}$

■ PRECAUTIONS

- The voltage applied to comparator input pins 6 and 7 should not be allowed to go below ground by more than 0.3
 volt
- Pins 3 and 5 are open-collector outputs. Shorts between these pins and V⁺ can cause overheating and eventual destruction.
- Reference voltage terminal pin 2 is connected to the emitter of an NPN transistor and is held at approximately 1.9
 volts. This terminal should be protected from accidental shorts to ground or supply voltages. Permanent damage
 may occur if current in pin 2 exceeds 5mA.
- 4. Avoid stray coupling between 4151 pins 5 and 7, which could cause false triggering. For the circuit of Figure 2, bypass pin 7 to ground with at least 0.01μF. If false triggering is experienced with the precision mode circuits, bypass pin 6 to ground with at least 0.01μF. This is necessary for operation above 10kHz.

■ PROGRMMING THE 4151

The 4151 can be programmed to operate with a full scale frequency anywhere from 1.0Hz to 100kHz. In the case of the VFC configuration, nearly any full scale input voltage from 1.0V and up can be tolerated if proper scaling is employed. Here is how to determine component values for any desired full scale frequency.

- 1. Set $Rs=14k\Omega$ or use a $12k\Omega$ resistor and $5k\Omega$ pot as shown in the figures. (The only exception to this is Figure 4.)
- 2 Set $T=1.1R_0C_0=0.75[1/f_0]$ where f_0 is the desired full scale frequency. For optimum performance make $6.8k\Omega < R_0 < 680k\Omega$ and $0.001\mu F < C_0 < 1.0\mu F$
- a) For the circuit of Figure 2 make C_B=10⁻² [1/f₀] Farads.
 Smaller values of C_B will give faster response time, but will also increase frequency offset and nonlinearity.
 - b) For the active integrator circuits make $C_1 = 5 \times 10^{-5} [1/f_0]$ Farads. The op-amp integrator must have a slew rate of at least $135 \times 10^{-6} [1/C_1]$ volts per second where the value of C_1 is again give in Frads.
- a) For the circuits of Figure 2 and 3 keep the values of R_B and R_B' as shown and use an input attenuator to give the desired full scale input voltage.
 - b) For the precision mode circuit of Figure 4, set $R_B = V_{10}/100\mu A$ where V_{10} is the full scale input voltage. Alternately the op-amp inverting input (summing node) can be used as a current input with full scale input current $I_{10} = -100\mu A$.
- 5. For the FVCs, pick the value of C_B or C_1 to give the optimum tradeoff between response time and output ripple for the particular application.

■ DESIGN EXAMPLE

- I. Design a precision VFC (from Figure 4) with $f_0=100$ kHz and $V_{10}=-10$ V.
 - 1. Set Rs=14.0k Ω .
 - 2. $T=0.75 (1/10^5)=7.5\mu sec$ Let $R_0=6.8k\Omega$ and $C_0=0.001\mu F$
 - 3. $C_1=5\times1^{-5}(1/10^5)=500 pF$ Op-amp slew rate must be at lease $SR=135\times10^{-6}(1/500 pF)=0.27 V/\mu sec$
 - 4. $R_B = 10V/100\mu A = 100k\Omega$
- II. Design a precision VFC with $f_0=1$ Hz and $V_{10}=-10$ V,
 - 1. Let $Rs=14.0k\Omega$.
 - 2. T=0.75(1/1)=0.75sec Let $R_0=680k\Omega$ and $C_0=1.0\mu F$
 - 3. $C_1 = 5 \times 10^{-5} (1/1) F = 50 \mu F$
 - 4. $R_B = 100 k\Omega$

- III. Design a single supply FVC to operate with a supply voltage of 8V and full scale input frequency f_0 =83.3Hz. The output voltage must reach at least 0.63 of its final value in 200msec. Determine the output ripple.
 - 1. Set Rs=14.0k Ω .
 - 2. T=0.75(1/83.3)=9msec Let $R_0=82$ k Ω and $C_0=0.1\mu$ F
 - 3. Since this FVC must operate from 8.0V, we shall make the full scale output voltage at pin 6 equal to 5.0V.
 - 4. $R_B = 5V/100 \mu A = 50 k\Omega$
 - Output response time constant is τ_R≤20msec Therefore C_B≤τ_R/R_B=200×10⁻³/50×10³=4μF Worst case ripple voltage is: V_R=9mS×135μA/4μF=304mV
- IV. Design an opto-isolated V_{FC} with high linearity which accepts a full scale input voltage of +10V. See Figure 7 for the final disign. This circuit uses the precision mode VFC configuration for maximum linearity. The NJM3403A quad op-amp provides the functions of inverter, integrator, regulator, and LED driver.

Figure 7. Opto-Isolated VFC

■ TYPICAL CHARACTERISTICS

ANALOG MULTIPLIER

■ GENERAL DESCRIPTION

The NJM4200 is the industry's first integrated circuit multiplier to have complete compensation for nonlinearity, the primary source of error and distortion. This is also the first IC mustiplier to have three onboard operational amplifiers designed specifically for use in multiplier logging circuits. These specially-designed amplifiers are frequency compensated for optimum AC response in a logging circuit; the heart of a multiplier, and can therefore provide superior AC response in comparison to other analog multipliers.

Versatility is unprecedented; this is the first IC multiplier that can be used in a wide variety of applications without sacrificing accuracy. Four-quadrant multiplication, one-quadrant division or square-rooting, and RMS-to-DC conversion can all be easily implemented with predictable accuracy. The nonlinearity compensation is not just trimmed at a single temperature, it is designed to provide compensation over the full temperature range. This nonlinearity compensation combined with the low gain and offset drift inherent in a well-designed monolithic chip provides a very low tempco on accuracy.

The excellent linearity and versatility were achieved through circuit design rather than special grading or trimming therefore unit cost is very low. Analog multipliers can now be used in application where price was previously an inhibiting factor.

The NJM4200 is ideal for use in low-distortion audio modulation circuits, voltage-controlled active filters, and precision oscillators.

■ FEATURES

High accuracy

Non-linearity Temperature coefficient

(0.3% maximum) (0.005%/℃ maximum)

Multiple functions

Multiply, divide, square, square root, RMS-to-DC conversion, AGC, and modulate/demodulate

Wide bandwidth

(4MHz typ-)

Package Outline

DIP8, DMP8

Bipolar Technology

CONNECTION DIAGRAM

■ PACKAGE OUTLINE

NJM4200M

■ ABSOLUTE MAXIMUM RATINGS

(Ta=25℃)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V-	-22	V
Power Dissipation	PD	(DIP8) 500	mW'
		(DMP8) 300	mW
Input Current	In	-5	mA
Operating Temperature Range	Topr	-20~+75	C
Storage Temperature Range	Tstg	-40~+125	C

■ ELECTRICAL CHARACTERISTICS

 $(Ta=25^{\circ}C, V^{-}=-15V)$

				NJM4200		
PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input range(I ₁ ,I ₂ and I ₄)	I _{IN}	ilisa v	1.0	-	1000	μΑ
Total error as multiplier	dingelQ	gura 1. 4200 Afrikapilar Francisana				
Untrimmed	-	10)	el.L.		±3.0	%
With external trim	nt set A	of or worl be square a or bounders tom a	11-1	f tu - st st	±0.5	%
Versus temperature	100 mm	Operational Temperature Range	n-y	±0.005		%/°C
Versus Supply	-	$V^- = -9V \sim -18V$	- b	±0.1		%/V
Nonlinearity	13/1 -2 -100	50μA <i<250μa< td=""><td>auu J</td><td>A) mater</td><td>±0.3</td><td>%</td></i<250μa<>	au u J	A) m ater	±0.3	%
Input offset voltage	V ₁₀	$I_1 = I_2 = I_4 = 150 \mu A$		others ha	±10	mV
Input bias current	I _B	$I_1 = I_2 = I_4 = 150 \mu A$	-	us=j.	500	nA
Average temperature coefficient of input offset voltage	elajani ela	$I_1 = I_2 = I_4 = 150 \mu A$	y y telui	quig Iter	±100	μV/°C
Output current range(I ₃)	I ₀	(Note 1)	1.0	icol—toti	1000	μΑ
Frequency response, -3 dB	f _R	Intaliar illes aves vinastilicon analim	g (4	or p vi	MHz
Operating voltage	V-	off agout 2202 agos town tens	-9	-15	-18	V
Operating Current	I _{CC}	$I_1=I_2=I_4=150\mu A$, $Ta=25^{\circ}C$	hie-yd	(2)- 200	4	mA

Note 1: These specifications apply with output (I_3) connected to an op amp summing junction. If desired, the output (I_3) at pin (4) can be used to drive a resistive load directly. The resistive load should be less than 700 ohms and must be pulled up to a positive supply such that the voltage on pin (3) stays within a range of 0 to +5V.

FUNCTION DESCRIPTION

The NJM4200 multiplier is designed to multiply two input currents (I_1 and I_2) and to divide by a third input current (I_4). The output is also in the form of a current (I_3). A simplified circuit diagram is shown in Figure 1. The nominal relationship between the three inputs and the output is:

Figure 1. 4200 Multiplier Functional Diagram

$$I_3 = \frac{I_1 \ I_2}{I_4} \tag{1}$$

All four currents must be positive and restricted to a range of 1μ A to 1mA. The three input currents go into the multiplier chip at op-amp summing junctions which are nominally at zero volts. Therefore, an input voltage can be easily converted to an input current by a series resistor. Any number of currents may be summed at the inputs. Depending on the application, the output current can be converted to a voltage by an external op-amp or used directly. This capability of combining input currents and voltages in various combinations provides great versatility in application.

Inside the multiplier chip, the three op-amps make the collector currents of transistors Q_1 , Q_2 , and Q_4 equal to their respective input currents (I_1 , I_2 , and I_4). These op-amps are designed with current-source outputs and are phase-compensated for optimum frequency response as a multiplier. Power drain of the op-amps was minimized to prevent the introduction of undesired thermal gradients on the chip. The three op-amps operate on a single-supply voltage (nominally -15V) and total quiescent current drain is less than 4mA. These special op-amps provide significantly improved performance in comparison to 741-type op-amps.

The actual multiplication is done within the log-antilog configuration of the Q_1-Q_4 transistor array. These four transistors, with associated proprietary circuitry, were specially designed to precisely implement the relationship.

$$V_{BEN} = \frac{kT}{q} \ln \frac{I_{CN}}{I_{SN}}$$
 (2)

Previous multiplier designs have suffered from an additional undesired linear term in the above quation; the collector current times the emitter resistance. This I_{C^TE} term can cause significant linearity error. In four-quadrant multiplier circuits, this added I_{C^TE} term introduces a parabolic nonlinearity even with matched transistors. New JRC has developed a unique and proprietary means of inherently compensating for this undesired I_{C^TE} term. Furthermore, this New JRC-developed circuit technique compensates linearity error over temperature changes. The nonlinearity-versus-temperature is significantly improved over earlier designs.

From equation (2) and by assuming equal transistor junction temperatures, summing base-to-emitter voltage drops around the transistor array yields:

$$\frac{kT}{q}[1n\frac{I_1}{I_{S1}} + 1n\frac{I_2}{I_{S2}} - 1n\frac{I_3}{I_{S3}} - 1n\frac{I_4}{I_{S4}}] = 0 \ (3)$$

The equation reduces to:
$$\frac{I_1}{I_3} \frac{I_2}{I_4} = \frac{I_{S1}}{I_{S2}} \frac{I_{S2}}{I_{S3}} \frac{I_{S4}}{I_{S4}}$$
 (4)

The ratio of reverse saturation currents, $I_{S1}I_{S2}/I_{S3}I_{S4}$ depends on the transistor matching. In a monolithic multiplier this matching is easily achieved and the ratio is very close to unity, typically 1.0±1%. The final result is the desired relationship:

$$I_3 = \frac{I_1 \ I_2}{I_4} \tag{5}$$

The inherent linearity and gain stability combined with low cost and versatility makes this new circuit ideal for a wide range of nonlinear functions.

Applications

Four-Quadrant, General-Purpose Multiplier

Figure 2. Four-Quadrant General Purpose Multiplier Using the NJM4200

The general schematic for a four-quadrant multiplier using the NJM4200 IC is shown in Figure 2. A positive reference voltage, V_R , is used to offset the multiplier chip. To stay within the most linear operating range, it is necessary that V_R/R_2 plus V_X/R_1 be limited to a range of $50\mu A$ to $250\mu A$. Within the operating range, input and output currents are given by the following equations:

 $I_1 = \frac{V_X}{R_1} + \frac{V_R}{R_2} \qquad \qquad I_2 = \frac{V_Y}{R_1} + \frac{V_R}{R_2} \qquad \qquad I_3 = \frac{V_X}{R_1} + \frac{V_Y}{R_1} + \frac{V_R}{R_2} + \frac{V_0}{R_0} \qquad \qquad I_4 = \frac{V_R}{R_2}$

Combining these relationships through the equation I₃=I₁I₂/I₄ yields:

$$V_0 = \frac{R_0 R_2}{{R_1}^2} \frac{V_X V_Y}{V_R}$$

The reference voltage V_R must be positive, but V_X and V_Y can be AC voltages. The positive supply voltage can be used as the reference in many applications where a well-regulated +15V is available. Some typical values for a multiplier scaled at $V_X V_Y / 10$ are calculated below:

Given:

 V_{X} and V_{Y} have range of -10V to +10V

Desired scaling is $V_0 = V_X V_Y / 10$ Reference voltage V_R is +15V

Calculation:

(1) Choose $R_1 = 100k\Omega$

(2) Calculate R_0 from $\frac{R_0 R_2}{R_1^2} \frac{1}{V_R} = \frac{1}{10}$

From requirement of +50µA minimum

$$\frac{-10V}{100K} + \frac{15V}{R_2} 50\mu A$$

 $R_0 = \frac{R_1^2}{R_2^2} \frac{V_R}{10}$

Thus, R_2 would also need to be $100 k \Omega\,$

 $R_0 = (100k\Omega)15/10$

Results:

$$V_0 = \frac{V_X V_Y}{10}$$
 with $V_R = +15V$

 $R_1, R_2 = 100k\Omega$

 $R_0 = 150 k\Omega$

These values cause a range on I_1 and I_2 of $50\mu A$ to $250\mu A$ to for V_X and V_Y of -10V to +10V.

While the choice of values for R_1 , R_2 and R_0 are arbitrary, best results are obtained by operating I_1 and I_2 over a range of approximately $50\mu A$ to $250\mu A$.

Accuracy of the four-quadrant multiplier is dependent upon both the NJM4200 chip and the external components. AC feedthrough, which is the undesired output when multiplying one AC input by zero on the other input, is dependent on op amp offsets and on the matching of the R_1 and R_2 resistor sets. Gain accuracy depends on the external reference voltage V_R , the resistor ratio R_0R_2/R_1^2 , and the multiplier chip. Linearity depends almost entirely upon the multiplier IC. The linear error terms can all be nulled externally by trimming resistor ratios or offsets. A four-quadrant multiplier with provision for external trimming of linear error components is shown in Figure 3. The optimum mix of component tolerances, trimming range, and cost is very application dependent. With moderate-cost components and no external trimming, the NJM4200 is more accurate than many of the complete IC multipliers. With precision components and external trimming as shown in Figure 3, the NJM4200 is capable of performance comparable to the best hybrid or modular multipliers.

The error analysis is most easily done by separately considering resistor match, offsets, and gain; then superimposing the results.

Figure 3. Four-Quadrant, General-Purpose Multiplier with Offset Adjustments

Resistor Matching

Assuming no op amp offsets and no error due to the multiplier chip, then the output would be the sum of the items given below:

Desired Output =
$$\frac{R_0 R_{2d}}{R_{1a} R_{1c}} \frac{V_X V_Y}{V_R}$$
 V_Y Feedthrough = $\frac{R_0}{R_{1c}} \left(\frac{R_{2d}}{R_{2a}} - \frac{R_{1c}}{R_{1b}}\right) V_Y$
 V_X Feedthrough = $\frac{R_0}{R_{1a}} \left(\frac{R_{2d}}{R_{2b}} - \frac{R_{1a}}{R_{1d}}\right) V_X$ Output Offset = $\frac{R_0}{R_{2a}} \left(\frac{R_{2d}}{R_{2b}} - \frac{R_{2a}}{R_{2c}}\right) V_R^2$

The AC feedthrough is directly proportional to the matching of the R_2 resistor set and the R_1 resistor set. AC feedthrough on the X or Y input is related to resistor tolerance as:

AC Feedthrough~R₀/R₁×2×Res. Tol.×V_{IN}

For example, if R_0/R_1 were 1.5 as in the example given previously and the resistors were matched to within 1%, then the maximum AC feedthrough due to resistor mismatch would be 3% of the V_X or V_Y input voltage. This AC feedthrough can be nulled directly by trimming the resistor sets or indirectly by trimming offsets.

Effect of Op Amp Offsets

In a multiplier, the offsets are cross multiplied and can thus cause AC feedthrough. When one input is zero and the other is a large AC signal, then the output will be the offset of the "zero" input times the AC signal. To quantify this effect, consider the circuit as shown in Figure 3. The offsets of each amplifier are due to both input offset voltage for the op amp and the input offset current times the source resistance.

These offsets can be lumped together into a single V_{OS} term. For this analysis, assume that the external resistors are perfectly matched (R_1 's and R_2 's all matched). The set of equations below must be combined to see their interaction:

$$\begin{split} I_{1} &= \frac{V_{X^{-}}V_{OS1}}{R_{1}} + \frac{V_{R^{-}}V_{OS1}}{R_{2}} & Desired \ Output = \frac{R_{0} \ R_{2}}{R_{1}^{2}} \quad \frac{V_{X} \ V_{Y}}{V_{R}} \\ I_{2} &= \frac{V_{Y^{-}}V_{OS2}}{R_{1}} + \frac{V_{R^{-}}V_{OS2}}{R_{2}} & V_{Y} \ Feedthrough = \frac{R_{0}}{R_{1}} \quad \frac{1}{V_{R}} \left[V_{OS4} - \left(\frac{R_{2}}{R_{1}} + 1 \right) V_{OS1} \right] \ V_{Y} \\ I_{3} &= \frac{V_{X^{-}}V_{OS3}}{R_{1}} + \frac{V_{Y^{-}}V_{OS3}}{R_{1}} + \frac{V_{R^{-}}V_{OS3}}{R_{2}} + \frac{V_{O^{-}}V_{OS3}}{R_{0}} & V_{X} \ Feedthrough = \frac{R_{0}}{R_{1}} \quad \frac{1}{V_{R}} \left[V_{OS4} - \left(\frac{R_{2}}{R_{1}} + 1 \right) V_{OS2} \right] \ V_{X} \\ I_{4} &= \frac{V_{R^{-}}V_{OS4}}{R_{2}} & I_{3} = \frac{I_{1}I_{2}}{I_{4}} & Output \ Offset = \left(\frac{2R_{0}}{R_{1}} + \frac{R_{0}}{R_{2}} + 1 \right) V_{OS3} - \left(\frac{R_{0}}{R_{1}} + \frac{R_{0}}{R_{2}} \right) \left(V_{OS1} + V_{OS2} \right) \end{split}$$

For simplicity, V_{OS}^2 terms and gain-error factors on error terms can be dropped. The output voltage would then be the sum of the terms given above:

To estimate magnitudes, consider the previous example where $R_0 = 150 k\Omega$, R_1 and R_2 were $100 k\Omega$, and $V_R = 15 V$. Then,

 V_Y Feedthrough= $1/10(V_{OS4}-2V_{OS1})V_Y$

 V_X Feedthrough = $1/10(V_{OS4}-2V_{OS2})V_X$

Output Offset=5.5V_{OS3}-3(V_{OS1}+V_{OS2})

To carry this example further, let each V_{OS} term have a maximum value of $\pm 10 mV$. The worst-case combination would then be a feedthrough of $0.003 V_Y$ and $0.003 V_X$. Output offset could be as high as 115 mV, but would generally be less. The trimming procedure is straight-forward when done in the following recommended sequence.

- 1. Apply a full-scale AC voltage To V_Y and make V_X zero. Trim V_{OSI} for output null (V_O =0).
- 2. Apply the same full scale AC voltage to V_X and V_Y zero. Trim V_{OS2} for output null (V_O =0)
- 3. Apply zero to both inputs($V_X=0$ and $V_Y=0$). Trim V_{OS3} for output null ($V_O=0$)
- 4. Adjust scale factor with R₀. Always adjust the input offsets before setting the scale factor.

In most application, the offset adjustments are used to compensate for the R_1 and R_2 resistor network mismatch as well as the op amp offsets. Thus, the range of offset adjustment is usually chosen to encompass both error terms. For example, the V_Y feedthrough is:

$$\left\{\frac{R_{0}}{R_{1}}\left(\frac{R_{2\mathit{d}}}{R_{2\mathit{b}}} - \frac{R_{1\mathit{d}}}{R_{1\mathit{b}}}\right) + \frac{R_{0}}{R_{1}} \; \frac{1}{V_{R}} \; \left[\, V_{\text{OS4}} - \left(\frac{R_{2}}{R_{1}} + 1 \, \right) V_{\text{OS1}} \, \right] \; \right\} V_{\text{Y}}$$

Varying V_{OS1} over sufficient range can compensate for both offset and resistor mismatch.

One Quadrant Divider

Division is very easily implemented with the NJM4200 multiplier when the inputs are all positive. The circuit for one-quant division is shown in Figure 4. The inputs V_X , V_Z , and V_R must be positive and the input currents I_1 , I_2 and I_4 must be restricted in range. Within the rated range, I_1 I_2 will equal I_3 I_4 and therefore:

$$\begin{split} & \left(\frac{V_X}{R_1}\right) \! \times \! \left(\frac{V_R}{R_2}\right) \, = \, \left(\frac{V_0}{R_0}\right) \! \times \! \left(\frac{V_Z}{R_4}\right) \\ & V_0 \! = \! \frac{R_0 \, R_4}{R_1 \, R_2} V_R \, \frac{V_X}{V_Z} \end{split}$$

The reference input V_R is generally fixed and the ratio of R_0R_4/R_1R_2 is usually chosen to make $V_O=10V$ at the maximum value of V_X/V_Z . For example, if $V_R=6.2V$ and V_X/V_Z maximum is one, then choose R_0R_4/R_1R_2 of 10/6.2 which is 1.613. The output would then be:

$$V_0 = 10 \frac{V_X}{V_Z}$$
, where $\frac{V_X}{V_Z} \le 1$

As with the four-quadrant multiplier circuit, op amp offsets cross-multiply with the inputs.

Figure 4. One-Quadrant Divider

These offsets should be nulled to obtain best accuracy. The output voltage with offsets considered, but neglecting V_{os}^2 terms, is given by:

$$V_{0} \! = \! \frac{\overline{R_{4} \, R_{0}}}{R_{1} \, R_{2}} V_{R} \frac{V_{X}}{V_{Z}} + \frac{\overline{R_{4} \, R_{0}}}{R_{1} \, R_{2}} \left[\frac{V_{R} \, V_{X}}{V_{Z}^{2}} V_{OS4} - \frac{V_{X}}{V_{Z}} V_{OS2} - \frac{V_{R}}{V_{Z}} V_{OS1} \right] \\ + V_{OS3}$$

Because the offsets and signals are interactive, the recommended procedure for adjustment is the following:

- 1. Monitor the offsets at pins (8) and (1) directly and adjust V_{OS1} , V_{OS2} to null them. This removes the V_{OS1} and V_{OS2} error terms.
- 2. Make $V_X = V_Z$ and sweep over their full dynamic range. The output should be constant; vary the V_{OS4} ADJ pot for a constant output of R_4R_0 V_R/R_1R_2 plus V_{OS3} .
- 3. Apply the minimum value of V_X/V_Z and adjust V_{OS3} to obtain the proper V_0 .
- 4. Apply the maximum value of V_X/V_Z and adjust R_0 for proper V_0 .

The accuracy will be limited only by the nonlinearity, which for the NJM4200 is very small.

Square-Rooting

The circuit for implementing the square-rooting function is shown in Figure 5. An input voltage V_X multiplied by a reference voltage V_R is made equal to the square of the output voltage. The relationship $I_1I_2=I_3I_4$ becomes:

$$\frac{V_X V_R}{R_1 R_2} = \frac{V_0^2}{R_0 R_4}$$

The input voltage must be positive. Scaling is determined by the external resistor network and reference voltage V_R . The output voltage is given by:

$$V_0 = \sqrt{\frac{R_0 R_4}{R_1 R_2}} V_R V_X$$

In most applications, the resistors should be comparable in value and V_R should be in the range of 5V to 15V. A scale factor of 10 is very convenient and provides an output range of 0.3V to 10V for an input range of 10mV to 10V. In equation form:

$$V_0 = \sqrt{10V_X}, 10mV < V_X < 10V$$

The offsets can be externally trimmed as needed. The nonlinear nature of the square-rooting function makes the error due to offsets very small for large inputs and very large at low input levels. With offsets included, the output voltage is:

$$V_{0}\!=\left[\frac{R_{0}\,R_{4}}{R_{1}\,R_{2}}V_{R}\left(1-\frac{V_{\text{OS}2}}{V_{R}}\right)V_{X}\!-\!\frac{R_{0}\,R_{4}}{R_{1}\,R_{2}}V_{R}V_{\text{OS}1}\!+\!V_{0}\left(V_{\text{OS}3}\!+\!V_{\text{OS}4}\right)\right]^{\frac{1}{24}}$$

Figure 5. Square-Rooting Circuit

The term V_{OS2}/V_R affects gain only and is constant, therefore varying R_O can compensate for the V_{OS2} error term. The effect of V_{OS3} and V_{OS4} is additive and only one of these offsets are advisable to be adjusted. The V_{OS1} term should be trimmed to zero. The recommended trimming sequence is as follows:

- 1. Adjust V_{OS3} to zero directly by monitoring pin(4).
- 2. Apply minimum value of V_X and adjust V_{OS1} for correct V_0 .
- 3. Apply maximum value of V_X and adjust R₀ for correct V₀.

The square-rooting circuit can easily be designed for overall accuracy of $\pm 0.2\%$ when using the NJM4200 IC multiplier.

RMS-to-DC Converter

The root-mean-square value of a complex waveform can be computed directly by squaring, integrating, and then square rooting. The NJM4200 is idealy suited to this computation and the entire RMS-to-DC conversion can be implemented with a single device.

A functional diagram is shown in Figure 6. An absolute-value circuit, or precision rectifier, first converts the AC input into a rectified positive voltage. Input currents I_1 and I_2 are made equal and will be $|V_{IN}|/R_1$. The remaining input current, I_4 , is made equal to V_0/R_0 plus a derivative term, C_0dV_0/dt . Combining these relationships according to $I_1I_2=I_3I_4$,

$$\frac{{V_{1N}}^2}{{R_1}^2} \!=\! \frac{{V_0}^2}{{R_1}^2} \!\!+\! C_1 \frac{dV_0}{dt} \; \frac{V_0}{R_1}$$

This equation is equivalent to

$$V_{0}^{2} + \frac{R_{1} C_{1}}{2} \frac{d}{dt} \left(V_{0}^{2} \right) = V_{1N}^{2}$$

Figure 6. RMS-to-DC Converter

The output voltage squared is the exponentially-weighted average of the input-voltage squared. Square-rooting both sides of the equation, and considering the polarity constraints inherent in this implementation, gives the desired results:

$$V_0 = \sqrt{[V_{IN}(t)]^2}$$

This is the true RMS value of V_{1N} within the frequency range where the averaging time constant $R_1C_1/2$ is of sufficient magnitude for low-pass filtering. Capacitor C_1 must be large enough in value to adequately average the signal at its minimum frequency.

Various practical considerations limit performance for very small input signals, so this circuit is usually designed for a specific input voltage range. As with the divide and squre-root modes of operation, the NJM4200 may require a stabilizing R_8C_8 at the input summing junctions (pins 8, 1, and 5).

The specific component values and external adjustments needed depends on the particular application.

Design Considerations

Frequency Response and Stability

The op amps within the NJM4200 multiplier are stabilized for optimum performance in the four-quadrant multiplier configuration. At extremes of input current, the stability becomes marginal and external phase compensation may be required. The possibility of undesired oscillations should be considered for input currents of less than 50μ A or greater than 500μ A. Dividing and square-rooting operations often require a wide dynamic range on the input currents.

Two techniques are very helpful for assuring frequency stability and minimizing noise under a wide range of conditions:

- 1. Connect a series R_SC_S from input summing junction to ground as shown in Figure 7. This network has the effect of attenuating the feedback at high frequencies and thereby stabilizing the op amp. Loop gain at high frequencies is sacrificed, but this is seldom of concern in dividing or square-rooting applications. Recommended values are $10k\Omega$ for R_S and $0.005\mu F$ for C_S
- 2. The resistor on the noninverting input can be bypassed as shown in Figure 7. This helps to reduce noise. The need for these frequency compensating techniques will depend on the application, particularly the input current range and input signal characteristics.

Figure 7. Optional Frequency Stability Components Rs,Cs and Cs

Gain Stability

This type of multiplier is very sensitive to temperature gradients across the transistor quad $(Q_1 \text{ to } Q_4 \text{ and } Q_2 \text{ to } Q_3)$. The ambient temperature tends to affect offsets, but temperature gradients will cause a gain error. Several steps can be taken to minimize this effect:

- 1. Keep the multiplier physically remote from power dissipating components.
- 2. When using printed-circuit boards, make pad sizes and layout pattern as symmetrical as possible.
- 3. Head sinking or epoxy potting can be used if necessary. This will tend to prevent rapid changes in temperature gradient. Power drain within the multiplier chip itself is relatively low, therefore the gain stability can be very good if the IC is not exposed to temperature gradients.

Offset Stability

Input offset voltage of the op amps can be easily trimmed if desired. The effects of input bias current drift can be minimized by making the impedance approximately equal on the inverting and noninverting inputs. The equivalent input offset will then depend only on the difference in bias currents rather than the absolute values.

■ THERMAL SYMMETRY

The scale factor is sensitive to temperature gradients across the chip in the lateral direction. Where possible, the package should be oriented such that sources generating temperature gradients are located physically on the line of thermal symmetry. This will minimize scale-factor error due to thermal gradients.

Rugummy Hospie had wind straighting

The op steps which is tradified and included for opinion of the function of the functional multiplier and opinion A. a receive of topo careful the residue brightest for a property of the form of the

The factorization are were definite in according to groups stability and minimizing collections as the cargo of conditions;

- Crossett a series K₂C, toom input recording gracion for general as stages in Figure 7. This private has the observed by considering the crossines as high discountries with thereby additing the eye series help it stips is subserved to the first a collect of expects in the energy or square energies approximations, the energy of expects in the energy or square energies approximations.
- 2. The resiston on the decimentality fugation is the present as shown in Figure 7. This being the collection of the resistance of the content trained as the explication, perforting the input content trained as the organization.

Flores V. Contactal Previously Statistic Companies flatte, shad C.

CONTRACTOR MAN

The type of a digitar is very consider to temperature graduum seams the temperature goal (Q, or Q, and Q) to Qd.
The amplitus one process areas or affect origins, but comparesons graduum with exert x gata error. Several steps can be

- and some path and the real restricted from part the rather than a start of the same and the same
- I keem where a statement toorde, make and dire and favour married or refunential or providing
- Head subject a speed purion council directions. This will tend to proved angel or to prove in temperature graduan.
 Power datas which the collegion of the windowly loss climaters the gain stability can be very good if the K. It not require a collegion.

CHARLE TESTO

bapel effect of tags of the operator he easily tendened if thereigh. The effect of tagst keet content drift can be minimized by no Leg the impositues approximately tand on the invested and enterprise inputs. The optivalent tages offert will drift out only in the difference in this compute eather they are absolute takes.

VSTYBAMAY E INTERPRET OF

The scale has a scraims to respectfure gradeous across the this in the linear disease. Where pushing the problem of the following states of the rest o

INDEX INDEX

NJMDAC-08C ·····7-1	NJM2230 ·····5-59
NJM386 ·····4-2	NJM2232A ·····6-52
NJM386B ······4-11	NJM2233B5-94
NJM555 ·····7-7	NJM2234 ·····5-101
NJM556 ·····7-12	NJM2235 ·····5-105
NJM567 ······6-1	NJM2236 ······6-59
NJM592 ·····5-3	NJM2236A6-59
NJM1372A ·····5-9	NJM2237 ······6-65
NJM1496 ······6-11	NJM2238 ·····5-90
NJM2035 ······4-17	NJM2240 ·····5-109
NJM2063A ······4-22	NJM2241 ·····6-78
NJM2065A ······4-23	NJM2243 ·····5-121
NJM2067 ······4-25	NJM2244 ·····5-125
NJM2070 ······4-28	NJM2245 ·····5-129
NJM2072 ······4-31	NJM2246 ·····5-133
NJM2073 ······4-36	NJM2247A ·····5-137
NJM2076 ······4-47	NJM2247B5-137
NJM2078 ·····7-16	NJM2248 ·····5-150
NJM2085 ······4-54	NJM2249 ·····5-153
NJM2096 ······4-57	NJM2252 ·····5-156
NJM2102 ·····7-24	NJM2255 ·····5-165
NJM2103 ·····7-34	NJM2256 ·····5-169
NJM2105 ······6-16	NJM2257 ·····5-181
NJM2106 ······4-62	NJM2258 ·····5-189
NJM2110 ······4-74	NJM2262 ·····5-195
NJM2113 ······4-76	NJM2263 ·····5-204
NJM2117 ······4-79	NJM2264 :5-208
NJM2118 ······4-94	NJM2265 ·····5-212
NJM2128 ······4-97	NJM2266 ·····5-215
NJM2135 ······4-100	NJM2267 ·····5-218
NJM2177 ·····-4-104	NJM2268 ·····5-227
NJM2177A ······4-104	NJM2273 ·····5-237
NJM2203 ·····6-21	NJM2279 ·····5-248
NJM2204A ·····6-25	NJM2283 ·····5-257
NJM2206 ······6-30	NJM2284 ·····5-267
NJM2207 ·····5-13	NJM2285 ·····5-278
NJM2208 ·····5-18	NJM2286 ·····5-289
NJM2209 ·····5-24	NJM2292 ·····6-91
NJM2210 ·····5-27	NJM2293 ·····5-299
NJM2211 ·····6-42	NJM2294 ·····6-97
NJM2214 ·····5-34	NJM2405 ·····7-42
NJM2217 ·····5-39	NJM2503 ·····5-302
NJM2218 ·····5-55	NJM2506 ·····5-305
NJM2220 ·····5-59	NJM2508 ·····5-314
NJM2223 ·····5-65	NJM2509 ·····5-323
NJM2224 ·····5-70	NJM2513 ·····5-327
NJM2225 ·····5-76	NJM2520 ·····4-107
NJM2228 ·····5-86	NJM2521 ······4-109
NJM2229 ·····5-113	NJM2523 ·····5-330

NJM2533 ·····	5-333
NJM2234 ·····	5-336
NJM2235 ·····	5-339
NJM2606 ·····	7-45
NJM2606A	7-45
NJM2611 ·····	7-50
NJM2624 ·····	7-59
NJM3357 ·····	6-106
NJM3359	6-109
NJM3470 ·····	6-113
NJM3470A	6-113
NJM4151 ·····	7-63
NJM4200 ·····	7-72
NJW1102 ·····	4-111
NJW1102A	4-114
NJU9702 ·····	4-117

DISCONTINUED PRODUCTS

■ DISCONTINUED PRODUCTS TABLE

Type No.	FUNCTION	
NJM387	Dual Low Noise OP-Amp	
NJM2404E	3/4 Wired Remote Controller	
NJM2610	Bi-Directional Motor Driver	
NJM2066	Dual Head Phone Driver Amplifier	
NJM2204B	Log Amplifier	
NJM2075A	Dolby B/C Type NR Processor	
NJM2175	Dolby Prologic Surround Decoder	
NJM2219	RF Modulator	
NJM2225A	Video Camera Auto-Iris Function	
NJM2259	UHF Band RF Modulator	
NJM2270	RF Amplifier	
NJM3201	FDD Read/Write Amplifier	
NJM2104F	System Reset IC	
NJM2620	Motor Driver for VCR	
NJM2250	EVF Driver IC	
NJM2260	RF Amplifier IC	
NJD6505/06	NPN Transistor Array	
NJD6511/12/13/14	Ttansistor Array	

NEW Transact Acres
Translator, relative

New Japan Radio Co., Ltd.

HEAD OFFICE

3-10 Yokohama-cho, Nihonbashi, Chuo-ku, Tokyo 103, Japan Phone: 81-3-5642-8288 FAX: 81-3-5642-8229

U.S. SUBSIDIARY

NJR Corporation 440 East Middlefield Rd., Mountain View, CA 94043, U.S.A. Phone: 415-961-3901 FAX: 415-969-1409