Engineering Secure Software Systems Winter 2020/21 Exercise Sheet 11

issued: January 26, 2021 **due:** February 4, 2021

Exercise 11.1, P-Security Example I (10 Points)

Is the following system P-secure? Justify your answer.

Exercise 11.2, P-Security Example II (10 Points)

Is the following system P-secure? Justify your answer.

Exercise 11.3, alternative definition of P security I (10 Points)

Let $M = (S, s_0, A, \text{step}, D, O, \text{obs}, \text{dom})$ be a system and let \rightarrow be a policy for M. Prove that the following are equivalent:

- 1. M is P-secure with respect to \rightarrowtail ,
- 2. for all states $s \in S$, all $u \in D$, and all traces $\alpha \in A^*$, we have that

$$obs_u(s \cdot \alpha) = obs_u(s \cdot purge_u(\alpha)).$$

Note: The characterization from this task is in fact the original definition of P-Security, the (equivalent, by the above) definition we work with in the lecture was later user by Ron van der Meyden.