Краткая теория к экзамену по высшей алгебре 19-20 июня 2015

Чудинов Никита (группа 14-4)

1 Лекция 1

Определение 1.1. *Множество с бинарной операцией* — это множество M с заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Определение 1.2. Множество с бинарной операцией (M, \circ) называется *полугруппой*, если данная бинарная операция ассоциативна, то есть

$$a \circ (b \circ c) = (a \circ b) \circ c, \quad \forall a, b, c \in M.$$

Определение 1.3. Полугруппа (S, \circ) называется *моноидом*, если в ней есть *нейтральный элемент* $e \in S$, такой, что

$$\forall a \in S : e \circ a = a \circ e = a.$$

Определение 1.4. Моноид называется *группой*, если для каждого элемента $a \in S$ найдётся *обратный* элемент a^{-1} , такой, что

$$a \circ a^{-1} = a^{-1} \circ a = e$$
.

Определение 1.5. Группа G называется *коммутативной* или *абелевой*, если групповая операция коммутативна, то есть

$$a \circ b = b \circ a, \quad \forall a, b \in G.$$

Определение 1.6. Порядок группы G — это количество элементов в G. Группа называется конечной, если её порядок конечен, и бесконечной иначе. Обозначается |G|.

Определение 1.7. Подмножество H группы G называется nodгруппой, если

$$|H| > 0$$
, $a \circ b^{-1} \in H$, $\forall a, b \in H$.

Предложение 1.1. Всякая подгруппа $\varepsilon(\mathbb{Z},+)$ имеет ε ид $k\mathbb{Z}$ для некоторого $k\in\mathbb{N}$

Определение 1.8. Пусть G — группа и $g \in G$. *Циклической подгруппой*, порождённой элементом g называется подмножество

$$\{q^n \mid n \in \mathbb{Z}\} \in G.$$

Элемент g называется порождающим или образующим для этой группы $\langle g \rangle$.

Определение 1.9. Пусть G — группа и $g \in G$. Порядком элемента g называется такое наименьшее натуральное число m, что $g^m = e$. Если такого натурального числа не существует, то говорят, что порядок g равен бесконечности. Обозначение: $\operatorname{ord}(g)$.

Предложение 1.2. Пусть $G - \operatorname{группa} u \ g \in G$. Тогда $\operatorname{ord}(g) = |\langle g \rangle|$.

Определение 1.10. Группа G называется $uu\kappa nuveckou$, если

$$\exists g \in G, \quad G = \langle g \rangle.$$

Определение 1.11. Пусть G — группа, $H \subseteq G$ — подгруппа и $g \in G$. Левым смежным классом элемента g группы G по подгруппе H называется подмножество

$$gH = \{gh \mid h \in H\}.$$

Определение 1.12. Пусть G — группа, $H \subseteq G$ — подгруппа. Индексом подгруппы H в группе G называется число левых смежных классов G по H. Обозначается [G:H].

Теорема (Лагранж). Пусть $G - \kappa$ онечная группа и $H \subseteq G - nod$ группа. Тогда

$$|G| = |H| \cdot [G : H].$$

2 Лекция 2

Определение 2.1. Подгруппа H группы G называется *нормальной*, если

$$gH = Hg, \quad \forall g \in G.$$

Предложение 2.1. Для подгруппы $H \subseteq G$ следующие условия эквивалентны:

- 1. Н нормальна;
- 2. $gHg^{-1} \subseteq H$, $\forall g \in G$;
- 3. $gHg^{-1} = H$, $\forall g \in G$;

Определение 2.2. Множество G/H с указанной операцией называется факторгруппой группы G по нормальной подгруппе H.

Определение 2.3. Пусть G и F — группы. Отображение $\varphi: G \to F$ называется гомоморфизмом, если

$$\varphi(ab) = \varphi(a)\varphi(b), \quad \forall a, b \in G.$$

Определение 2.4. Гомоморфизм групп $\varphi: G \to F$ называется *изоморфизмом*, если отображение φ биективно.

Определение 2.5. Группы G и F называют *изоморфными*, если между ними есть изоморфизм. Обозначение: $G \cong F$.

Теорема. Всякая бесконечная циклическая группа G изоморфна группе $(\mathbb{Z}, +)$.

Теорема. Всякая циклическая группа порядка n изоморфна группе $(\mathbb{Z}_n, +)$.

Определение 2.6. С каждым гомоморфизмом групп $\varphi: G \to F$ связаны его ядро

$$\ker(\varphi) = \{ g \in G \mid \varphi(g) = e_F \}$$

и образ

$$\operatorname{im}(\varphi) = \{ a \in F \mid \exists g \in G : \varphi(g) = a \}.$$

Предложение 2.2. Пусть $\varphi: G \to F$ — гомоморфизм групп. Тогда подгруппа $\ker(\varphi)$ нормальна в G.

Теорема (о гомоморфизме). Пусть $\varphi: G \to F$ — гомоморфизм групп. Тогда группа $\operatorname{im}(\varphi)$ изоморфна факторгруппе $G/\ker(\varphi)$.

Определение 2.7. *Центр* группы G — это подмножество

$$Z(G) = \{ a \in G \mid ab = ba, \quad \forall b \in G \}.$$

Предложение 2.3. Центр Z(G) является нормальной подгруппой группы G.

Определение 2.8. Прямым произведением групп G_1, \ldots, G_m называется множество

$$G_1 \times \cdots \times G_m = \{(g_1, \dots, g_m) \mid g_1 \in G_1, \dots, g_m \in G_m\}.$$

Теорема (о факторизации и сомножителях). Пусть H_1, \ldots, H_m — нормальные подгруппы в группах G_1, \ldots, G_m соответственно. Тогда $H_1 \times \cdots \times H_m$ — нормальная подгруппа в $G_1 \times \cdots \times G_m$ и имеет место изоморфизм групп

$$(G_1 \times \cdots \times G_m)/(H_1 \times \cdots \times H_m) \cong G_1/H_1 \times \cdots \times G_m/H_m$$

Теорема. Пусть n = ml - pазложение натурального числа n на два взаимно простых множителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \cong \mathbb{Z}_m \times \mathbb{Z}_l$$
.

3 Лекция 3

Определение 3.1. Абелева группа A называется конечно порождённой, если найдутся такие элементы $a_1, \ldots, a_n \in A$, что всякий элемент $a \in A$ представим в виде $a = s_1 a_1 + \cdots + s_n a_n$ для некоторых целых чисел s_1, \ldots, s_n . При этом элементы a_1, \ldots, a_n называются порождающими или образующими группы A.

Определение 3.2. Конечно порождённая абелева группа A называется c 6 o f o d n o u, если в ней существует b a s u c, то есть такой набор элементов a_1, \ldots, a_n , что каждый элемент $a \in A$ единственным образом представим в виде $a = s_1 a_1 + \cdots + s_n a_n$, где $s_1, \ldots, s_n \in \mathbb{Z}$. При этом число n называется рангом свободной абелевой группы A и обозначается r k A.

Предложение 3.1. Любые два базиса свободной группы содержат одинаковое число элементов.

Предложение 3.2. Всякая свободная абелева группа ранга n изоморфна группе \mathbb{Z}^n .

Теорема. Всякая подгруппа N свободной абелевой группы L ранга n является свободной абелевой группой ранга $\leq n$.

Теорема (о согласованных базисах). Для всякой подгруппы N свободной абелевой группы L ранга n найдётся такой базис e_1, \ldots, e_n группы L и такие натуральные числа $u_1, \ldots, u_m, m \leq n$, что u_1e_1, \ldots, u_me_m — базис группы N и $u_i|u_{i+1}$ при $i=1,\ldots,m-1$.

Предложение 3.3. Пусть e'_1, \ldots, e'_n — некоторый набор элементов из \mathbb{Z}^n . Выразив эти элементы через стандартный базис e_1, \ldots, e_n , мы можем записать

$$(e'_1, \ldots, e'_n) = (e_1, \ldots, e_n)C,$$

где C — целочисленная квадратная матрица порядка n.

Элементы e_1',\ldots,e_n' составляют базис группы \mathbb{Z}^n тогда и только тогда, когда $\det C=\pm 1.$

Определение 3.3. *Целочисленными элементарными преобразованиями строк* матрицы называются преобразования следующих трёх типов:

- 1. Прибавление к одной строке другой, умноженной на целое число;
- 2. Перестановка двух строк;
- 3. Умножение одной строки на -1.

Аналогично определяются целочисленные элементарные преобразования столбцов матрицы.

Предложение 3.4. Всякую прямоугольную матрицу $C = (c_{ij} \text{ размера } n \times m \text{ назовём диагональной } u$ обозначим $diag(u_1, \ldots, u_p)$, если $c_{ij} = 0$ при $i \neq j$ и $c_{ii} = u_i$ при $i = 1, \ldots, p$, где p = min(n, m).