Généralités sur les probabilités

Quelques calculs généraux pour commencer

Calcul 1.1

0000

Écrire sous forme d'un produit de puissances de nombres premiers les expressions suivantes.

a)
$$27^2 \times 12 \dots$$

b)
$$\frac{49 \times 64}{14}$$

c)
$$\frac{81 \times 51}{17}$$

Calcul 1.2

0000

Soit x un nombre réel. Factoriser les expressions suivantes.

a)
$$x^2 - 2x + 1$$

c)
$$x^4 - 1$$

b)
$$x^2 - 6x + 9$$

d)
$$2x^2 + 24x + 72$$

Calculs de probabilités

Calcul 1.3

0000

Soit X une variable aléatoire qui prend les valeurs $-\frac{3}{2}$, 0, 2 et 3. On suppose que

$$P(X = -\frac{3}{2}) = \frac{1}{10}, \quad P(X = 0) = \frac{1}{5} \text{ et } P(X = 2) = \frac{1}{5}.$$

Déterminer :

a)
$$P(X = 3)$$

b)
$$P(X \le 1)$$

c)
$$P(X \ge 3)$$

d)
$$P(X < 0)$$

Calcul	1 1	IIn	doubl	۱۵.	hasard.
Caicui	1.4	- on	aoubi	ιe.	nasaru.

Un élève dispose de deux paquets de cartes :

- un paquet dont les cartes sont numérotées de 1 à 32;
- un paquet dont les cartes sont numérotées de 1 à 52.

Il choisit un des deux paquets au hasard, puis il tire une carte de ce paquet.

On définit les événements :

T: « Choisir le paquet de 32 cartes »

S : « Tirer la carte numéro 7 ».

a)	En utilisant l'énoncé, déterminer (sans justification) $\mathbf{P}(T)$	
b)	En utilisant l'énoncé, déterminer (sans justification) $P_T(S)$	
c)	En utilisant l'énoncé, déterminer (sans justification) $\mathbf{P}_{\overline{T}}(S)$	
d)	Exprimer $P(S)$ en fonction de $P_T(S)$ et $P_{\bar{T}}(S)$	
e)	Calculer $P(S)$	

Calcul 1.5 — Une question de cours.

Une professeure pose une question à un élève et elle lui demande de choisir la réponse parmi trois réponses possibles, une seule étant juste. L'élève ne connaît que 60% de son cours.

- Si la question est dans la partie du cours qu'il connaît, il répond juste.
- Sinon, il choisit aléatoirement la réponse parmi les 3 proposées.

On définit les événements :

C : « la question fait partie du cours que l'élève connaît »

J : « l'élève répond juste à la question ».

a)	En utilisant l'énoncé, déterminer (sans justification) $P_C(J)$	
b)	En utilisant l'énoncé, déterminer (sans justification) $\mathbf{P}_{\overline{C}}(J)$	
c)	Exprimer $P(J)$ en fonction de $P_C(J)$ et $P_{\overline{C}}(J)$	
d)	Calculer $P(J)$	

Calcul 1.6 — Une urne et des boules.	0000
Une urne contient trois boules dont deux sont rouges et une est noire.	
On tire, sans remise, deux boules de l'urne. On définit les événements :	
R_1 : « La première boule tirée est rouge »	
R_2 : « La seconde boule tirée est rouge ».	
a) En utilisant l'énoncé, déterminer (sans justification) $P(R_1)$	
b) En utilisant l'énoncé, déterminer (sans justification) $P_{R_1}(R_2)$	
c) En utilisant l'énoncé, déterminer (sans justification) $P_{\overline{R_1}}(R_2)$	
d) Exprimer $P(R_2)$ en fonction de $P_{R_1}(R_2)$ et $P_{\overline{R_1}}(R_2)$	
e) Calculer $P(R_2)$	
Calcul 1.7 — Tirages de cartes.	0000
Une élève dispose d'un paquet de dix cartes numérotées de 1 à 10.	
Elle tire aléatoirement une carte du paquet.	
a) Déterminer la probabilité qu'elle ne tire pas un 7	
b) Déterminer la probabilité qu'elle tire un nombre pair	
On définit les événements :	
R: « Tirer un nombre pair »	
T: « Tirer un multiple de 3 ».	
c) Exprimer $P(R \cup T)$ en fonction de $P(R)$ et de $P(T)$	
d) Calculer $P(R \cap T)$	

e) Calculer la probabilité que le nombre tiré soit pair ou un multiple de $3 \ \dots$

	lève tire maintenant aléatoirement, successivement et sans remise deux cartes du paquet. cherche la probabilité p que le numéro de la première carte soit inférieur à celui de la deuxième.
f)	Déterminer le nombre de tirages distincts pouvant être obtenus
g)	Si la 1 ^{re} carte tirée est numérotée 1, déterminer le nombre de tirages favorables
h)	Si la 1 ^{re} carte tirée est numérotée 2, déterminer le nombre de tirages favorables
i)	En généralisant, déterminer le nombre total de tirages favorables
j)	Déterminer p
k)	Reprendre la question précédente avec un paquet de dix-sept cartes
C	alculs d'espérances et de variances
	t X une variable aléatoire dont la loi est donnée par $ \frac{k}{P(X=k)} \frac{-2}{1/10} \frac{-1}{1/5} \frac{0}{1/2} \frac{1}{1/10} \frac{1}{1/10} $
Dé	terminer:
a)	$P(X \leq 0)$
b)	P(X < 2)
Un	lcul 1.9 — Trois urnes. e élève se trouve face à trois urnes numérotées de 1 à 3. L'urne 1 contient une unique boule numérotée 1. L'urne 2 contient deux boules numérotées 1 et 2. L'urne 3 contient trois boules numérotées 1, 2 et 3.
L'é On	lève choisit aléatoirement, avec la même probabilité une des trois urnes, puis tire une boule de l'urne. note X le numéro de la boule tirée. terminer :
	P($X = 3$)
b)	P(X-2) d) $E(X)$

Calcul 1.10

Soit p > 0. On considère X une variable aléatoire dont la loi est donnée par

k	-3/2	0	5/2
P(X=k)	1/4	1/2	p

Déterminer :

c)
$$V(X)$$

Calcul 1.11

0000

Soit $\alpha > 0$. On considère X une variable aléatoire dont la loi est donnée par

k	1	2	3	4
P(X=k)	α	2α	3α	4α

Déterminer :

Fonctions et sommes de variables aléatoires

Calcul 1.12

Soit X une variable aléatoire d'espérance 12 et de variance 4. On pose Y = 3X + 4. Déterminer :

a) l'espérance de
$$Y$$

b) la variance de
$$Y$$

Calcul 1.13

Soit X une variable aléatoire d'espérance 3 et de variance 5. On pose $Y = \frac{-X+2}{5}$. Déterminer :

a) l'espérance de
$$Y$$

b) la variance de
$$Y$$

Calcul 1.14

Soit X une variable aléatoire suivant une loi de Bernoulli de paramètre $\frac{4}{5}$ et Y=10X-3. Déterminer :

a) l'espérance de
$$Y$$

c) les valeurs prises par
$$Y$$

b) la variance de
$$Y$$

d)
$$P(Y = 7)$$

0000

0000

Soit X une variable aléatoire dont loi est donnée par

k	-5	10
P(X=k)	2/3	1/3

On pose $Y = \frac{X+5}{15}$. Déterminer :

- a) l'ensemble des valeurs prises par Y
- b) P(Y = 0)

Calcul 1.16 — Des lancers de dés.

Soit $n \in \mathbb{N}$. On considère un dé équilibré dont les six faces sont numérotées de 1 à 6. Le dé est lancé successivement n fois. On note X_1, \ldots, X_n les résultats des lancers successifs.

On note $S_n = \sum_{k=1}^n X_k = X_1 + \dots + X_n$ la somme des n résultats obtenus.

Calcul 1.17

Soit X une variable aléatoire d'espérance 3 et de variance 5. On pose $Y = X^2$.

- b) Calculer E(Y)

Calculs plus avancés

Calcul 1.18

Soit X une variable aléatoires à valeurs dans $\{0,1\}.$

Déterminer $E(X) - E(X^2)$

Calcul 1.19

Soit X une variable aléatoire réelle. On note

$$f: \left\{ \begin{array}{l} \mathbb{R} \longrightarrow \mathbb{R} \\ x \longmapsto \mathrm{E}((X-x)^2). \end{array} \right.$$

a) Soit $x \in \mathbb{R}$. Développer l'expression f(x) et l'écrire sous la forme d'un trinôme

b) Déterminer le point en lequel f atteint son minimum

c) Exprimer le minimum de f en fonction de V(X)

o o o o

Calcul 1.20 — Une variable aléatoire centrée réduite.

Soient $n \in \mathbb{N}$, soit $m \in \mathbb{R}$ et soit $\sigma \in \mathbb{R}_+^*$.

On considère X_1, \ldots, X_n des variables aléatoires indépendantes d'espérance m et de variance σ^2 et on pose

$$S_n = \frac{1}{\sigma\sqrt{n}} \left(\left(\sum_{k=1}^n X_k \right) - n \times m \right).$$

Réponses mélangées

Réponses mélangées
$$\frac{33}{16} \quad 1 \quad -3 \text{ et } 7 \quad 0 \text{ et } 1 \quad \frac{1}{32} \quad \frac{21}{832} \quad \frac{1}{3} \quad \frac{5}{18} \quad 1 \quad 3^5 \quad \frac{35}{12} \quad 45$$

$$\frac{2}{3} \quad 9 \quad \frac{9}{10} \quad 16 \quad \Pr(S) P(T) \quad (x-1)^2 \quad \frac{1}{2} \quad \frac{1}{4} \quad \Pr_C(J) P(C) \quad + \Pr_{\overline{C}}(J) P(\overline{C})$$

$$\frac{1}{52} \quad 5 \quad 1 \quad 2^5 \times 7 \quad \frac{1}{2} \quad (x-3)^2 \quad (x-1)(x+1)(x^2+1) \quad \frac{17}{36} \quad 40 \quad 14$$

$$\frac{3}{10} \quad \frac{3}{2} \quad \frac{1}{9} \quad 8 \quad E(X) \quad \frac{1}{5} \quad 2^2 \times 3^7 \quad 0 \quad \frac{1}{10} \quad \frac{109}{100} \quad \frac{4}{5} \quad \frac{1}{2}$$

$$x^2 - 2 E(X)x + E(X^2) \quad -\frac{1}{5} \quad \frac{7}{2} \quad 3 \quad \frac{1}{10} \quad \frac{2}{3} \quad \frac{4}{5} \quad \frac{1}{2} \quad \frac{35n}{12} \quad V(X)$$

$$\frac{11}{15} \quad \Pr_{R_1}(R_2) P(R_1) \quad \frac{9}{10} \quad \frac{11}{18} \quad 36 \quad \frac{7n}{2} \quad E(X^2) - E(X)^2 \quad -\frac{1}{10}$$

$$1 \quad \frac{7}{10} \quad 0 \quad \frac{1}{2} \quad \frac{2}{3} \quad \Pr(R) + P(T) \quad \frac{1}{10} \quad \frac{1}{2} \quad 90 \quad \frac{1}{2} \quad 2(x+6)^2$$

► Réponses et corrigés page 8

Fiche nº 1. Généralités sur les probabilités

Réponses

1.1 a) $2^2 \times 3^7$	1.6 a)	1.8 d)
1.1 b)	1.6 b) $\frac{1}{2}$	1.9 a)
1.2 a) $(x-1)^2$	1.6 c)	1.9 b)
1.2 b) $(x-3)^2$	1.6 d) $P_{R_1}(R_2) P(R_1) + P_{\overline{R_1}}(R_2) P(\overline{R_1})$	1.9 c)
1.2 c) $(x-1)(x+1)(x^2+1)$ 1.2 d) $2(x+6)^2$	1.6 e)	1.9 d) $\frac{3}{2}$
1.3 a)	1.7 a)	1.9 e)
1.3 b)	1.7 b)	1.10 a) $\frac{1}{4}$
1.3 c)	1.7 c) $P(R) + P(T)$ $-P(R \cap T)$	1.10 b) $\frac{1}{4}$
1.3 d) $ \frac{1}{10} $	1.7 d)	1.10 c) $\frac{33}{16}$
1.4 a)	1.7 e)	1.11 a)
1.4 b)	1.7 f)	1.11 b)
1.4 c) $ \frac{1}{52} $	1.7 h)	1.11 c)
1.4 d) $ P_T(S) P(T) + P_{\bar{T}}(S) P(\bar{T}) $	1.7 i)	1.12 b)
1.4 e) $\frac{21}{832}$		1.13 a) $\left[-\frac{1}{5} \right]$
1.5 a)	$1.7 \text{ k}) \dots \qquad \boxed{\frac{1}{2}}$	1.13 b) $\left[\frac{1}{5}\right]$
1.5 b)	1.8 a)	1.14 a)
1.5 c) $ P_C(J) P(C) + P_{\overline{C}}(J) P(\overline{C}) $	1.8 b) $\frac{9}{10}$	1.14 c)
17.)	1.8 c)	1.14 d) $\frac{4}{5}$
1.5 d) $\left[\frac{11}{15}\right]$		1.15 a)

.....

.....

.....

.....

.....

Corrigés

- 1.3 a) La somme des probabilités vaut 1.
- **1.3** b) On a $P(X \le 1) = P(X = -\frac{3}{2}) + P(X = 0)$.
- **1.3** c) On a $P(X \ge 3) = P(X = 3)$.
- **1.3** d) On a $P(X < 0) = P(X = -\frac{3}{2}) = \frac{1}{10}$.
- 1.4 a) Chaque paquet a la même probabilité d'être choisi.
- 1.4 b) Sachant que le paquet contient 32 cartes, une seule carte porte le numéro 7.
- 1.4 c) Sachant que le paquet contient 52 cartes, une seule carte porte le numéro 7.
- 1.4 d) On utilise la formule des probabilités totales ou une représentation avec un arbre.
- **1.4** e) On a $\frac{1}{2} \times \frac{1}{32} + \frac{1}{2} \times \frac{1}{52} = \frac{21}{832}$.
- 1.5 c) On utilise la formule des probabilités totales ou une représentation avec un arbre.
- **1.5** d) On a $\frac{60}{100} \times 1 + \frac{40}{100} \times \frac{1}{3} = \frac{3 \times 3 + 2}{3 \times 5} = \frac{11}{15}$
- 1.6 b) Sachant qu'une boule rouge a été tirée, il reste une boule rouge et une boule noire dans l'urne.
- 1.6 c) Sachant qu'une boule noire a été tirée, il reste uniquement deux boules rouges dans l'urne.
- 1.6 d) On utilise la formule des probabilités totales ou une représentation avec un arbre.
- 16e) On a $\frac{2}{2} \times \frac{1}{1} + \frac{1}{1} \times 1 = \frac{2}{1}$

.....

- 1.7 a) Il y a une unique carte numérotée 7 dans le paquet de 10 cartes, donc en notant S l'événement « Tirer un 7 », $P(\overline{S}) = 1 P(S) = 1 \frac{1}{10}$.
- 1.7 b) Tirer un nombre pair correspond à tirer un 2, un 4, un 6, un 8 ou un 10.
- 1.7 d) Seul 6 est un nombre inférieur à 10 qui soit multiple de 3 et pair.

1.7 e) On a
$$P(R \cup T) = P(R) + P(T) - P(R \cap T) = \frac{1}{2} + \frac{3}{10} - \frac{1}{10} = \frac{7}{10}$$
.

......

- 1.7 f) Il y a 10 possibilités pour la première carte, puis seulement 9 possibilités pour la seconde.
-
- 1.7 g) Pour que le numéro de la seconde carte soit supérieur à 1, il y a 9 possibilités.
- 1.7 h) Pour que le numéro de la seconde carte soit supérieur à 1, il y a 8 possibilités.
- 1.7 i) Pour les tirages favorables :
 - si la première carte tirée est un 1, il y a 9 cartes posibles pour la seconde;
 - si la première carte tirée est un 2, il y a 8 cartes possibles pour la seconde;
 - ..
 - si la première carte tirée est un 8, il y a 1 carte possible pour la seconde;
 - si la première carte tirée est un 9, il y a 0 carte possible pour la seconde.

Le nombre de tirages favorables est donc égal à $1 + \dots + 9 = \sum_{k=1}^{9} k = \frac{9 \times 10}{2}$.

Toutes les cartes ont la même probabilité d'être tirées. On utilise donc un modèle d'équiprobabilité. Ainsi, on a $p = \frac{45}{90}$.

On aurait également pu remarquer que, lorsqu'on tire deux cartes, soit elles sont ordonnées par ordre croissant, soit elles le sont par ordre décroissant et il y a autant de tirages dans un sens que dans l'autre.

- 1.7 k) Le nombre de tirages possibles est 17×16 . En reprenant le calcul précédent, le nombre de tirages favorables est $\sum_{k=1}^{16} k = \frac{16 \times 17}{2}$. La probabilité vaut donc $\frac{1}{2}$. On remarque qu'elle est indépendante du nombre de cartes dans le paquet!
- 1 1 1 4

1.8 a) On a
$$P(X \le 0) = P(X = -2) + P(X = -1) + P(X = 0) = \frac{1}{10} + \frac{1}{5} + \frac{1}{2} = \frac{4}{5}$$
.

- **1.8** b) On a $P(X < 2) = P(X = -2) + P(X = -1) + P(X = 0) + P(X = 1) = \frac{1}{10} + \frac{1}{5} + \frac{1}{2} + \frac{1}{10} = \frac{9}{10}$.
- 1.8 c) D'après la définition de l'espérance, on a

$$E(X) = -2 \times \frac{1}{10} - 1 \times \frac{1}{5} + 0 \times \frac{1}{2} + 1 \times \frac{1}{10} + 2 \times \frac{1}{10} = \frac{-2 - 2 + 1 + 2}{10} = -\frac{1}{10}$$

1.8 d) D'après la définition de la variance, on a

$$\begin{split} \mathrm{V}(X) &= \left(-2 + \frac{1}{10}\right)^2 \times \frac{1}{10} + \left(-1 + \frac{1}{10}\right)^2 \times \frac{1}{5} + \left(0 + \frac{1}{10}\right)^2 \times \frac{1}{2} + \left(1 + \frac{1}{10}\right)^2 \times \frac{1}{10} + \left(2 + \frac{1}{10}\right)^2 \times \frac{1}{10} \\ &= \frac{19^2 + 2 \times 9^2 + 5 + 11^2 + 21^2}{10^2 \times 10} = \frac{361 + 162 + 5 + 121 + 441}{10^2 \times 10} = \frac{1090}{10^2 \times 10} = \frac{109}{10^2}. \end{split}$$

À noter que les carrés se calculent relativement vite. Par exemple, on a

$$19^2 = (10+9)^2 = 10^2 + 2 \times 10 \times 9 + 9^2 = 100 + 180 + 81 = 361$$

- **1.9** a) On dessine un arbre et la probabilité recherchée vaut : $\frac{1}{3} \times \frac{1}{3} = \frac{1}{9}$.
- **1.9** b) On dessine un arbre et la probabilité recherchée vaut : $\frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{3} = \frac{3+2}{18} = \frac{5}{18}$
- **1.9** c) On dessine un arbre et la probabilité recherchée vaut : $\frac{1}{3} \times 1 + \frac{1}{3} \times \frac{1}{2} + \frac{1}{3} \times \frac{1}{3} = \frac{6+3+2}{18} = \frac{11}{18}$.
- 1.9 d) En utilisant la loi de X déterminée précédemment et la définition de l'espérance, on trouve

$$E(X) = 1 \times \frac{11}{18} + 2 \times \frac{5}{18} + 3 \times \frac{1}{9} = \frac{11 + 10 + 6}{18} = \frac{3}{2}$$

1.9 e) En utilisant la loi de X déterminée précédemment et la définition de la variance, on trouve

$$V(X) = \left(1 - \frac{3}{2}\right)^2 \times \frac{11}{18} + \left(2 - \frac{3}{2}\right)^2 \times \frac{5}{18} + \left(3 - \frac{3}{2}\right)^2 \times \frac{1}{9} = \frac{(2 - 3)^2 \times 11 + (4 - 3)^2 \times 5 + (6 - 3)^2 \times 2}{4 \times 18}$$
$$= \frac{11 + 5 + 18}{4 \times 18} = \frac{17}{36}.$$

1.10 a) Comme ([X = -3/2], [X = 0], [X = 1/3]) forme un système complet d'événements, on a

$$\frac{1}{4} + \frac{1}{2} + p = 1$$
 donc $p = \frac{1}{4}$.

- **1.10** b) D'après la définition de l'espérance, on a $E(X) = -\frac{3}{2} \times \frac{1}{4} + 0 \times \frac{1}{2} + \frac{5}{2} \times \frac{1}{4} = \frac{1}{4}$.
- **1.10** c) D'après la définition de la variance, on a $V(X) = \left(-\frac{3}{2} \frac{1}{4}\right)^2 \frac{1}{4} + \left(0 \frac{1}{4}\right)^2 \frac{1}{2} + \left(\frac{5}{2} \frac{1}{4}\right)^2 \frac{1}{4} = \frac{33}{16}$.
- 1.11 a) Comme ([X=1], [X=2], [X=3], [X=4]) forme un système complet d'événements, on a $\alpha+2\alpha+3\alpha+4\alpha=1$ donc $\alpha(1+2+3+4)=1$ donc $\alpha\frac{4\times 5}{2}=1$ donc $\alpha=\frac{1}{10}$.

1.11 b) D'après la définition de l'espérance, on a

$$E(X) = \sum_{i=1}^{4} i P(X=i) = \sum_{i=1}^{4} i \times \frac{i}{10} = \frac{1}{10} \sum_{i=1}^{4} i^2 = \frac{1}{10} \times \frac{4(4+1)(2\times 4+1)}{6} = \frac{4\times 5\times 9}{10\times 6} = 3.$$

1.11 c) D'après la définition de la variance, on a

$$V(X) = (1-3)^2 \frac{1}{10} + (2-3)^2 \frac{2}{10} + (3-3)^2 \frac{3}{10} + (4-3)^2 \frac{4}{10} = \frac{4}{10} + \frac{2}{10} + \frac{4}{10} = 1.$$

.....

- **1.12** a) D'après la linéarité de l'espérance, on a E(Y) = 3E(X) + 4.
- **1.12** b) D'après les propriétés de la variance, on a $V(Y) = 3^2 V(X)$.
- **1.13** a) D'après la linéarité de l'espérance, on a $E(Y) = \frac{-E(X) + 2}{5}$.
- **1.13** b) D'après les propriétés de la variance, on a $V(Y) = \left(-\frac{1}{5}\right)^2 V(X)$.
- **1.14** a) D'après la linéarité de l'espérance, on a $E(Y) = 10 E(X) 3 = 10 \times \frac{4}{5} 3$.
- **1.14** b) D'après les propriétés de la variance, on a $V(Y) = 10^2 V(X) = 10^2 \times \frac{4}{5} \left(1 \frac{4}{5}\right)$.
- **1.14** c) Si $X(\omega) = 0$, alors $Y(\omega) = -3$. Si $X(\omega) = 1$, alors $Y(\omega) = 7$.
- **1.14** d) On a $P(Y = 7) = P(X = 1) = \frac{4}{5}$.
- **1.15** a) Si $X(\omega) = -5$, alors $Y(\omega) = 0$. Si $X(\omega) = 10$, alors $Y(\omega) = 1$.
- **1.15** b) On a $P(Y = 1) = P(X = 10) = \frac{1}{3}$. Ainsi, $P(Y = 0) = 1 P(Y = 1) = \frac{2}{3}$.
- **1.16** a) On a $E(X_1) = \sum_{k=1}^{6} k \times \frac{1}{6} = \frac{1}{6} \times \frac{6(6+1)}{2}$.
- **1.16** b) On a

$$V(X_1) = \sum_{k=1}^{6} \left(k - \frac{7}{2}\right)^2 \frac{1}{6} = \frac{1}{6} \left[\sum_{k=1}^{6} \left(k^2 - 7k + \frac{49}{4}\right)\right]$$

$$= \frac{1}{6} \left(\sum_{k=1}^{6} k^2 - 7\sum_{k=1}^{6} k + 6 \times \frac{49}{4}\right) = \frac{1}{6} \left(\frac{6 \times 7 \times 13}{6} - 7 \times \frac{6 \times 7}{2} + 6 \times \frac{49}{4}\right)$$

$$= \frac{7 \times 13}{6} - \frac{3 \times 7^2}{6} + \frac{49}{4} = -\frac{56}{6} + \frac{49}{4} = \frac{-112 + 147}{12} = \frac{35}{12}.$$

- **1.16** c) En utilisant la linéarité de l'espérance, on a $E(S_n) = \sum_{k=1}^n E(X_k) = \sum_{k=1}^n \frac{7}{2}$.
- **1.16** d) Comme les variables aléatoires sont indépendantes, on a $V(S_n) = \sum_{k=1}^n V(X_k) = \sum_{k=1}^n \frac{35}{12}$.

1.17 a) D'après la linéarité de l'espérance, on a

$$V(X) = E((X - E(X))^{2}) = E(X^{2} - 2X E(X) + E(X)^{2}) = E(X^{2}) - 2E(X) E(X) + E(X)^{2}.$$

.....

1.17 b) On a
$$E(Y) = E(X^2) = V(X) + E(X)^2 = 5 + 3^2 = 14$$
.

1.18 Comme X est à valeurs dans $\{0,1\}$, on a $X^2 = X$. Ainsi, $E(X) - E(X^2) = E(X) - E(X) = 0$.

1.19 a) En utilisant la linéarité de l'espérance, on trouve $f(x) = E(X^2 - 2xX + x^2) = E(X^2) - 2x E(X) + x^2$.

En utilisant la linearité de l'esperance, on trouve f(x) = E(X - 2xX + x') = E(X') - 2x E(X') + x'.

1.19 b) La fonction f est une fonction trinôme dont le coefficient dominant vaut 1. La fonction f atteint donc son minimum en $x_0 = -\frac{-2 \operatorname{E}(X)}{2}$.

1.19 c) Le minimum de f vaut alors $f(x_0) = \mathrm{E}((X - \mathrm{E}(X))^2) = \mathrm{V}(X)$.

1.20 a) On utilise la linéarité de l'espérance. On trouve

$$E(S_n) = E\left(\frac{1}{\sqrt{n}\sigma}\left(\sum_{k=1}^n X_k - nm\right)\right) = \frac{\sum_{k=1}^n E(X_k) - nm}{\sqrt{n}\sigma} = \frac{nm - nm}{\sqrt{n}\sigma}.$$

1.20 b) Comme X_1, \ldots, X_n sont indépendantes, d'après les propriétés de la variance, on a

$$V(S_n) = \frac{1}{(\sqrt{n}\sigma)^2} \sum_{k=1}^n V(X_k) = \frac{n\sigma^2}{n\sigma^2}.$$