Distribuições de probabilidade contínuas

Parte 2

Prof.: Eduardo Vargas Ferreira

As principais distribuições de probabilidade

Discretas

- Uniforme Discreta;
- Bernoulli;
- Binomial;
- Hipergeométrica.
- Poisson;
- Geométrica;
- Binomial negativa;

Continuas

- Uniforme Contínua;
- Exponencial;
- Normal;
- Lognormal;
- Gama;
- Weibull;
- Beta.

Modelo Normal

Modelo Normal

- Frequentemente, assumimos que vários fenômenos do mundo real possuem distribuição Normal.
 - 1. Peso de um bebê ao nascer;
 - 2. Produtividade de uma lavoura;
 - 3. Tempo de deslocamento em um trajeto;
 - 4. Quantidade consumida de ração pelo rebanho;
 - 5. Retorno de um investimento;
 - 6. Altura de uma planta;
 - 7. Produção diária de leite por vaca.

Exemplo: geração de novas moléculas

ARTICLE

OPEN

Inverse design of 3d molecular structures with conditional generative neural networks

Check for updates

Niklas W. A. Gebauer 12,3 Michael Gastegger 13, Stefaan S. P. Hessmann 12, Klaus-Robert Müller

1,2,4,5

Kristof T. Schütt

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

1,2

Exemplo: geração de novas moléculas

Exemplo: Controle Estatístico de Processo

Exemplo: ENEM

Exemplo: sintomas de depressão

Depression scores tend to decline over time

Depression scores in patients are shown at baseline (during a current episode of depression), and at follow up months or years later. This is shown across four different questionnaires for depressive symptoms.

Source: Fried et al. (2016), Measuring depression over time [...] Lack of unidimensionality and longitudinal measurement invariance in four common rating scales of depression. OurWorldinData.org - Research and data to make progress against the world's largest problems. Licensed under CC-BY by the author Saloni Dattani.

Modelo Normal

Definição: Dizemos que a v.a. X tem distribuição normal com parâmetros μ e σ^2 , $-\infty < \mu < +\infty$ e $\sigma^2 > 0$, se sua densidade é dada por:

$$f(x; \mu, \sigma^2) = \frac{1}{\sigma\sqrt{2\pi}}exp\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right], \text{ com } x \in \mathbb{R}$$

Notação: $X \sim N(\mu, \sigma^2)$.

Gráfico da distribuição Normal

1. Apresenta uma curva em forma de sino.

2. As caudas da curva vão para o infinito (i.e., X assume valores nos \mathbb{R}).

3. A f.d.p. é simétrica em torno da média.

Gênio!

5. Se tratando de uma f.d.p.:

$$0 \le \int_a^b f(x) \ dx \le 1$$

$$\int_{-\infty}^{\infty} f(x) \ dx = 1$$

Padrão 6σ

Padrão 3σ

Uma aterrizagem de emergência no aeroporto de Guarulhos por dia

Sete horas de falta de energia por mês

Quinze minutos de fornecimento de água não potável por dia

Padrão 6σ

Uma aterizagem de emergência, em todos os aeroportos do Brasil, a cada cinco anos

Uma hora de falta de energia a cada 34 anos

Um minuto de fornecimento de água não potável a cada 7 meses

Referências

- ▶ Bussab, WO; Morettin, PA. Estatística Básica. São Paulo: Editora Saraiva, 2006 (5ª Edição).
- Magalhães, MN; Lima, ACP. Noções de Probabilidade e Estatística. São Paulo: EDUSP, 2008.

