- 43. (2010eko apirila #1) bikoitia(x), bakoitiak(D(1..r)) eta bikbik (E(1..r), (e₁, e₂, ..., e_r), F(1..r), (f₁, f₂, ..., f_r), G(1..r), (g₁, g₂, ..., g_r), pos) predikatuak eta C(1..n) bektoreko elementu denak bakoitiak direla jakinda, A(1..n) bektoreko eta B(1..n) bektoreko posizio berean zenbaki bikoitiak dauden bakoitzean posizio horretako B(1..n) eta C(1..n) bektoreetako elementuak trukatzen dituen programa. -- #
 - a) **bikoitia**(\mathbf{x}) $\equiv \{x \mod 2 = 0\}$
 - b) **bakoitiak**($\mathbf{D}(\mathbf{1..r})$) $\equiv \forall \mathbf{k} (1 \le \mathbf{k} \le \mathbf{r} \to \neg \text{bikoitia}(\mathbf{D}(\mathbf{k})))$
 - c) bikbik (E(1..r), (e₁, e₂, ..., e_r), F(1..r), (f₁, f₂, ..., f_r), G(1..r), (g₁, g₂, ..., g_r), pos) = {(0 \le pos \le r) \land \tau \text{(1 \le k \le pos \land bikoitia(E(k)))} \rightarrow \to bikoitia(F(k))) \land \tau \text{(1 \le k \le pos \land bikoitia(e_k) \land bikoitia(f_k))} \rightarrow \text{(E(k) = e_k \land F(k) = g_k \land G(k) = f_k)) \land \tau \text{(1 \le k \le pos \land (\square bikoitia(e_k) \le \square bikoitia(f_k)))} \rightarrow \text{(E(k) = e_k \land F(k) = f_k \land G(k) = g_k))}
 - d) Asertzioak ematerakoan egokiena edo naturalena den ordena jarraituko da eta ez zenbakizko ordena:
 - (1) {Hasierako baldintza} $\equiv \{n \ge 1 \land \forall k \ (1 \le k \le n \rightarrow (A(k) = a_k \land B(k) = b_k \land C(k) = c_k)) \land bakoitiak(C(1..n))\}$
 - (2) {Tarteko asertzioa} \equiv {(1) \land i = 0}
 - (9) {Bukaerako baldintza} \equiv {bikbik(A(1..n), ($a_1, a_2, ..., a_n$), B(1..n), ($b_1, b_2, ..., b_n$), C(1..n), ($c_1, c_2, ..., c_n$), $\binom{n}{n}$ }
 - (3) {Inbariantea} = {(0 \le i \le n) \wedge bikbik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), C(1..n), (c_1, c_2, ..., c_n), i)}
 - (4) {Tarteko asertzioa} = {(0 \le i \le n 1) \wedge bikbik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), C(1..n), (c_1, c_2, ..., c_n), i)}

```
(5) {Tarteko asertzioa} ≡
               \{(0 \le i \le n-1) \land
bikbik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), C(1..n), (c_1, c_2, ..., c_n), i)
              \land bikoitia(A(i + 1)) \land bikoitia(B(i + 1)) \land
              A(i + 1) = a_{i+1} \wedge B(i + 1) = b_{i+1}
              (5) era laburrean:
              (5) \equiv \{ (4) \land bikoitia(A(i+1)) \land bikoitia(B(i+1)) \land bikoitia(B(i+1))
                                                      A(i + 1) = a_{i+1} \wedge B(i + 1) = b_{i+1}
 (6) {Tarteko asertzioa} ≡
               \{(0 \le i \le n-1) \land
bikbik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), C(1..n), (c_1, c_2, ..., c_n), i)
                   \land bikoitia(A(i + 1)) \land bikoitia(B(i + 1)) \land
              A(i + 1) = a_{i+1} \wedge B(i + 1) = b_{i+1} \wedge lag = B(i + 1)
              (6) era laburrean:
              (6) \equiv \{(5) \land lag = B(i+1) \}
 (7) {Tarteko asertzioa} \equiv
               \{(0 \le i \le n-1) \land
bikbik(A(1..n), (a_1, a_2, ..., a_n), B(1..n), (b_1, b_2, ..., b_n), C(1..n), (c_1, c_2, ..., c_n), i)
                   \land bikoitia(A(i + 1)) \land bikoitia(b<sub>i+1</sub>) \land
              A(i + 1) = a_{i+1} \wedge B(i + 1) = C(i + 1) \wedge C(i + 1) = c_{i+1} \wedge lag = b_{i+1}
              (7) era laburrean:
              (7) \equiv \{ (4) \land bikoitia(A(i+1)) \land bikoitia(b_{i+1}) \land (4) \}
              A(i + 1) = a_{i+1} \wedge B(i + 1) = C(i + 1) \wedge C(i + 1) = c_{i+1} \wedge lag = b_{i+1}
```

(11) {Tarteko asertzioa} = $\{(0 \le i \le n - 1) \land$

bikbik(A(1..n),
$$(a_1, a_2, ..., a_n)$$
, B(1..n), $(b_1, b_2, ..., b_n)$, C(1..n), $(c_1, c_2, ..., c_n)$, i) \land bikoitia(A(i + 1)) \land bikoitia(b₁₊₁) \land A(i + 1) = $a_{i+1} \land$ B(i + 1) = $c_{i+1} \land$ C(i + 1) = $b_{i+1} \land$ lag = $b_{i+1} \end{cases}$ (11) puntua C(i + 1) := lag; esleipena burutu ondoren betetzen den asertzioa da. (11) era laburrean: (11) \equiv {(4) \land bikoitia(A(i + 1)) \land bikoitia(b_{i+1}) \land A(i + 1) = $a_{i+1} \land$ B(i + 1) = $c_{i+1} \land$ C(i + 1) = $b_{i+1} \land$ lag = $b_{i+1} \end{cases}$ Beste aukera bat ere badago. Izan ere birbik(A(1..n), $(a_1, a_2, ..., a_n)$, B(1..n),($b_1, b_2, ..., b_n$), i) predikatuak dio 1 eta i posizioen arteko kalkuluak eginda daudela eta bikoitia(A(i + 1)) \land bikoitia($b_{i+1} \land$ A(i + 1) = $a_{i+1} \land$ B(i + 1) = $a_{i+1} \land$ C(i + 1) = $b_{i+1} \land$ lag = $b_{i+1} \land$ formula kontuan hartuz badakigu i + 1 posiziokoa ere eginda dagoela, beraz ordezkatuta predikatuan i + 1 ipiniz 1 eta i + 1 posizioen arteko kalkuluak eginda daudela adieraz dezakegu. Gainera horrela A(i + 1) = $a_{i+1} \land$ B(i + 1) = $a_{i+1} \land$ C(i + 1) = $b_{i+1} \land$ ipini beharrik ez dago, hori predikatuan esanda gelditzen baita i + 1 ipintzean.

(11) \equiv {(0 \leq i \leq n - 1) \land bikoitia(A(i + 1)) \land bikoitia(A(i + 1)) \land bikoitia($b_{i+1} \land$ bag = b_{i+1} }

(8) {Tarteko asertzioa} \equiv {(0 \leq i \leq n - 1) \land bikoitia(A(i + 1)) \land bikoitia($b_{i+1} \land$ bag = b_{i+1} }

(12) {Tarteko asertzioa} \equiv {(1 \leq i \leq n) \land bikbik(A(1..n), (a₁, a₂, ..., a_n), B(1..n), (b₁, b₂, ..., b_n), C(1..n), (c₁, c₂, ..., c_n), i+1)} bikbik(A(1..n), (a₁, a₂, ..., a_n), B(1..n), (b₁, b₂, ..., b_n), C(1..n), (c₁, c₂, ..., c_n), i+1)} bikbik(A(1..n), (a₁, a₂, ..., a_n), B(1..n), (b₁, b₂, ..., b_n), C(1..n), (c₁, c₂, ..., c_n), i+1)} bikbik(A(1..n), (a₁, a₂, ..., a_n), B(1..n), (b₁, b₂, ..., b_n), C(1..n), (c₁, c₂, ..., c_n), i+1)}

Asertzio batetik bestera zer aldatzen den hobeto ikusteko, aldaketak kolorez ipini dira.