MATEMATICA 521150

Profesor: Flavio L .Neira B.

Concepción Agosto 2005

Problema 1. Para todo a ,b $\in \mathbb{R}$ usando las propiedades de Campo ordenado demuestre que

$$1.1) a - a = 0$$
;

12)
$$-(-a) = a$$

1.3)
$$0*a=a*0=0$$

1.2)
$$-(-a) = a$$
; 1.3) $0*a = a*0 = 0$ 1.4) $b-a = 0 \Leftrightarrow b = a$

Problema 2. verifique las propiedades:

2.1)
$$\forall a,b \in \mathbb{R} \ sib \ge 0$$

2.1) $\forall a,b \in \mathbb{R} \ sib \ge 0$ entonces $|a|=b \Leftrightarrow a=b \lor a=-b$

2.2)
$$\forall a, b \in \mathbb{R}$$
 $sib > 0$, entonces $\begin{pmatrix} |a| \le b \Leftrightarrow -b \le a \le b \\ |a| < b \Leftrightarrow -b < a < b \end{pmatrix}$

$$\begin{vmatrix} |a| \le b \Leftrightarrow -b \le a \le b \\ |a| < b \Leftrightarrow -b < a < b \end{vmatrix}$$

Problema 3. Determine los valores de $x \in \mathbb{R}$ que verifican las siguientes desigualdades

3.1)
$$(x-a)(x+a) \le 0$$
, $a > 0$ 3.2) $\frac{(x-a)}{(x+a)} \ge 0$ 3.3) $\frac{x^2+3}{x^2-9} \ge 0$

3.2)
$$\frac{(x-a)}{(x+a)} \ge 0$$

3.3)
$$\frac{x^2+3}{x^2-9} \ge 0$$

3.4)
$$x^2 - 1 + \frac{1}{x^2 - 1} > 0$$

$$3.5)\frac{1}{x^3} > \frac{1}{27}$$

$$3.5) \frac{1}{x^3} > \frac{1}{27} \qquad 3.6) \quad \frac{x^3 - 4x}{-2x^2 + 4x - 2} < 0$$

Problema 4 Resuelva para $x \in \mathbb{R}$ las siguientes ecuaciones y compruebe la solución

4.1)
$$|x+2|=7$$

4.2)
$$|3x-2|=x+1$$

4.3)
$$|2-5x|=-1$$

4.1)
$$|x+2|=7$$
 4.2) $|3x-2|=x+1$ 4.3) $|2-5x|=-1$ 4.4) $\left|\frac{3-x}{2x-1}\right|=2$

Problema 5 Resuelva para $x \in \mathbb{R}$ las siguientes inecuaciones y compruebe la solución

5.1)
$$|3x-1| < x+4$$

$$5.2) |2-3x| \ge x+1$$

5.1)
$$|3x-1| < x+4$$
 5.2) $|2-3x| \ge x+1$ 5.3) $|2x-1| < |x+1|$ 5.4) $\left|\frac{x-5}{2x+1}\right| > 3$

5.4)
$$\left| \frac{x-5}{2x+1} \right| > 3$$

Problema 6 Demuestre que :

6.1)
$$\frac{b}{3a} + \frac{3a}{b} > 2$$
 si $a, b \in \mathbb{R}^+$ $y \ 3a \neq b$ 6.2) $\frac{3d}{4c} > 1 - \frac{c}{3d}$ si $c, d \in \mathbb{R}^+$ $y \ 2c \neq 3d$

$$6.3) \frac{\sqrt{n}}{\sqrt{v}} + \frac{\sqrt{v}}{\sqrt{n}} > 2$$

Problema 7)

Una vendedora de automóviles gana \$150 (dólares) a la semana más \$50 por cada vehículo que venda. Su salario total semanal es 50x + 150, donde x es el número de automóviles vendidos. ¿Cuantas unidades tiene que vender para ganar más de \$550 semanales ?

Problema 8)

Una agencia arrendadora de autos cobra \$15 (dólares) por día, más 10 centavos de dólar por milla recorrida. Escriba un modelo matemático y determine cuantas millas puede recorrer un usuario con \$70 dólares.

Problema 9)

Un vendedor a comisión gana \$ 200 dólares a la semana más 10 % de las ventas brutas . Si el ingreso por ventas brutas se designa por x :

- a.-) Determine una expresión para sus ingresos mensuales .
- b.-) Calcule el valor de las ventas necesarias para que el vendedor gane más de \$600 dólares a la semana.
- c.-) Si el precio de venta de cada articulo es de 40 dólares ¿Cuántos artículos debe vender como mínimo

Problema 10)

 $\sqrt{x} \in \mathbb{R}^+ \iff x \in \mathbb{R}^+ \iff x \ge 0$ utilizando esta propiedad determine los valores de x para que las siguientes expresiones correspondan a números reales

10.1).-
$$\sqrt{\frac{(x-1)}{3}}$$
 10.2).- $\sqrt{\frac{(x+3)}{x^2}}$ 10.3) $\sqrt{\frac{x^3}{x+1}}$ 10.4) $\sqrt{\frac{(x-5)^2}{(x+5)}}$ 10.5) $\ln(x^2+5x-24)$

Problema 11) grafique las siguientes regiones

11.1)
$$y \ge x^2 + 3x + 2$$
 11.2) $y < 3 - 7x$ 11.3) $y + x^2 = 5$ $x + 2y = -2$ 11.4) $x \ge -1$ $x + 2y \ge -2$