Inférence bayésienne adaptative pour la reconstruction de source en dispersion atmosphérique

Harizo Rajaona

Directeurs de thèse: Yves Delignon, François Septier

Lille 21 novembre 2016 1 Contexte et problématique

2 Méthodologie adaptative pour l'inférence bayésienne

3 Application au cas expérimental FFT07

1 Contexte et problématique

2 Méthodologie adaptative pour l'inférence bayésienne

3 Application au cas expérimental FFT07

Contexte

Les rejets NRBC 1 dans l'atmosphère peuvent être d'origine :

- accidentelle (fuite ou explosion sur un site industriel),
- malveillante (actes terroristes)

Fukushima (2011)

Igualada (2015)

Los Angeles (2015)

Priorités:

- informer et protéger les populations,
- atténuer/neutraliser le risque.
- 1. Nucléaires, Radiologiques, Biologiques, Chimiques

Contexte

Outils de détection et d'évaluation du risque :

 données d'observation (capteurs mesurant la concentration de polluant)

Contexte

Outils de détection et d'évaluation du risque :

- données d'observation (capteurs mesurant la concentration de polluant)
- outils de modélisation des phénomènes atmosphériques

Dispersion atmosphérique

Modèle de dispersion

Outil de calcul numérique permettant de simuler la propagation dans l'atmosphère d'un rejet de polluant.

Typologie des modèles selon :

- l'échelle (locale, régionale, synoptique),
- le degré de simplification des équations de la mécanique des fluides

Paramètres d'entrée :

- données météorologiques : vent (direction + vitesse), température, humidité, nébulosité, flux de rayonnement...
- terme source : position, quantités émises, durée, substance émise...

Terme source : définitions

Hypothèses sur la nature de la source :

- localisée (représentée par un point géographique $x_s \in \mathbb{R}^3$),
- unique (un seul point d'émission),
- non-instantanée, avec un profil temporel d'émission :

$$\boldsymbol{q} = (q(t_1'), q(t_2'), \cdots, q(t_{T_s}'))$$

 \Rightarrow émission constante sur le palier $[t'_{i-1}, t'_i]$

Terme source: estimation

Reconstruire les paramètres d'un terme source (STE ²) à partir des observations est un problème inverse.

Plusieurs approches de résolution possibles :

- rétro-transport,
- résolution d'un système linéaire,
- · algorithmes évolutionnaires,
- méthodes bayésiennes et simulation stochastique.
- 2. Source Term Estimation

Problématique de recherche

On se concentre sur les méthodes bayésiennes :

- formalisme rigoureux pour estimation et quantification de l'incertitude,
- exploitation d'un nombre limité de mesures (régularisation),
- temps de calcul potentiellement élevés,
- estimation disjointe de la position et du profil d'émission.

Problématique

- ▶ Développer une méthode bayésienne pour estimer la localisation et le profil d'émission d'une source.
- ► Coupler cette méthode avec un modèle de dispersion atmosphérique dans une chaîne de calcul opérationnelle.

1 Contexte et problématique

2 Méthodologie adaptative pour l'inférence bayésienne

3 Application au cas expérimental FFT07

Inférence bayésienne

Principe : estimation probabiliste des paramètres θ d'un système ayant généré un ensemble d'observations η .

- $\theta \Rightarrow$ paramètres du terme source
- $\eta \Rightarrow$ mesures de concentration observées

Règle de Bayes

$$\pi(\boldsymbol{\theta}) = p(\boldsymbol{\theta}|\boldsymbol{\eta}) = \frac{p(\boldsymbol{\theta})p(\boldsymbol{\eta}|\boldsymbol{\theta})}{p(\boldsymbol{\eta})} \propto p(\boldsymbol{\theta})p(\boldsymbol{\eta}|\boldsymbol{\theta})$$

- \blacktriangleright loi a posteriori $\pi(\theta)$: information sur θ connaissant η ,
- ▶ loi a priori $p(\theta)$: information préalable sur θ ,
- lacktriangle vraisemblance $p(oldsymbol{\eta}|oldsymbol{ heta})$: probabilité d'observer $oldsymbol{\eta}$ pour $oldsymbol{ heta}$ fixé.

Inférence bayésienne

- **Problème** : $p(\eta|\theta)$ trop coûteuse (ou impossible) à calculer
 - \Rightarrow pas d'expression analytique pour $\pi(\theta)$!
 - ⇒ recours à des méthodes d'approximation numérique

Méthodes de Monte-Carlo

Permettent d'approximer l'espérance de toute fonction d'une variable aléatoire de loi π en échantillonnant depuis cette loi :

$$\mathbb{E}_{\pi}[f(\boldsymbol{\theta})] = \int f(\boldsymbol{\theta})\pi(\boldsymbol{\theta})d\boldsymbol{\theta} \simeq \frac{1}{N} \sum_{i=1}^{N} f(\theta^{(i)}), \quad \theta^{(i)} \sim \pi$$

• Obtention d'estimateurs bayésiens par simulation (ex : poser $f(\theta) = \theta$ pour le MMSE 3).

3. Minimum Mean Square Estimator

Méthodes d'échantillonnage

- Algorithmes MCMC 4 : π est la distribution stationnaire d'une chaîne de Markov construite par itérations successives.
 - Metropolis-Hastings
 - échantillonneur de Gibbs

Bons résultats obtenus dans la littérature STE :

- en milieu urbain : Keats (2007), Chow (2008)
- en multi-source : Yee (2008)

Inconvénients:

- perte d'une partie des échantillons générés (burn-in)
- états corrélés (non-parallélisable)
- MH : performances liées au choix du noyau et de l'initialisation
- lacksquare Gibbs : requiert les lois conditionnelles de $oldsymbol{ heta}$
- Algorithmes d'échantillonnage d'importance (IS⁵): tirage d'une population d'échantillons pondérés (ou particules) à partir d'une loi de proposition.
- 4. Markov Chain Monte Carlo
- 5. Importance Sampling

Avantages:

- échantillons i.i.d. : traitement parallélisable
- · exploitation de tous les échantillons générés

Inconvénients:

Inconvénients:

Inconvénients:

Inconvénients:

Echantillonnage d'importance adaptatif

Solution : adapter itérativement la loi de proposition φ

Population Monte Carlo [Cappé et al., 2004]

Introduction du concept d'adaptation par minimisation de :

$$KL(\pi, \varphi) = \int \log \left(\frac{\pi(\boldsymbol{\theta})}{\varphi(\boldsymbol{\theta})} \right) \pi(\boldsymbol{\theta}) d\boldsymbol{\theta}$$
 (divergence KL)

D-kernel PMC [Douc et al., 2007]

▶ Loi de proposition φ_{α} ⇒ mélange de noyaux fixes pondérés $\{(\alpha_d, \varphi_d)\}_{1 \leq d \leq D}$:

$$\varphi_{\alpha}(\boldsymbol{\theta}) = \sum_{d=1}^{D} \alpha_d \varphi_d(\boldsymbol{\theta})$$

▶ Optimisation des α_d par minimisation KL.

Echantillonnage d'importance adaptatif

M-PMC [Cappé et al., 2008]

 $\begin{tabular}{ll} \blacktriangleright & \begin{tabular}{ll} \begin{tabular}{ll}$

$$\varphi_{(\boldsymbol{\alpha},\boldsymbol{\nu})}(\boldsymbol{\theta}) = \sum_{d=1}^{D} \boldsymbol{\alpha}_d \varphi_d(\boldsymbol{\theta}|\boldsymbol{\nu}_d)$$

▶ Optimisation des α_d et ν_d par minimisation KL (algorithme EM).

Jusqu'ici : optimisation itérative seulement en fonction de l'itération précédente!

Echantillonnage d'importance adaptatif

Adaptive Multiple Importance Sampling (AMIS) [Cornuet et al., 2012]

- ▶ Loi de proposition identique à celle du M-PMC
- ▶ Ré-utilisation des particules de toutes les itérations pour :
 - le calcul et recyclage de tous les poids d'importance,
 - l'optimisation des α_d et ν_d .

Avantages:

- utilisation efficace de tous les échantillons disponibles
- convergence plus rapide vers la loi cible
- variance d'erreur d'estimation réduite

Contexte et problématique

2 Méthodologie adaptative pour l'inférence bayésienne

3 Application au cas expérimental FFT07

L'expérience FFT07

Campagne expérimentale :

- rejets de gaz traceur sur terrain instrumenté dans diverses configurations (période, météo, nombre de sources...)
- création de données de référence pour validation d'algorithmes STE

L'expérience FFT07

Caractéristiques des cas étudiés :

- restriction à $N_C=25$ capteurs proches de la source
- T_C instants d'observations moyennées sur fenêtres de 10s
- ullet capteurs et source à même altitude : $oldsymbol{x_s} \in \mathbb{R}^2$
- rejet non-instantané, conditions atmosphériques stables
- étude avec données simulées et observations réelles

Modèle de dispersion gaussien à bouffées :

- implémentation simple
- temps de calcul faibles
- émissions non-instantanées
- · variabilité météorologique

Objectif : estimer les paramètres de position x_s et d'émission q de la source pour une configuration donnée (trial) de l'expérience FFT07.

Modèle de données :

$$\eta = C(x_s)q + \varepsilon$$

où:

- $oldsymbol{\eta} \in \mathbb{R}^{N_CT_C}$: observations concaténées par capteur
- $m{C}(m{x_s}) \in \mathbb{R}^{N_C T_C imes T_s}$: matrice source-récepteur construite avec un modèle de dispersion
- $q \in \mathbb{R}^{T_s}$: profil d'émission
- $arepsilon \in \mathbb{R}^{N_CT_C}$: erreurs (observation, modèle)

Démarche de résolution

- Objectif : calculer la loi a posteriori $p(\boldsymbol{x_s}, \boldsymbol{q} | \boldsymbol{\eta})$
- Problème : source non-instantanée
 - dimension T_s+2 potentiellement élevée du vecteur de paramètres,
 - calcul coûteux pour une simulation Monte-Carlo.

Marginalisation du profil d'émission

La loi a posteriori des paramètres de la source peut s'écrire comme :

$$p(\boldsymbol{x_s}, \boldsymbol{q}|\boldsymbol{\eta}) = p(\boldsymbol{q}|\boldsymbol{x_s}, \boldsymbol{\eta})p(\boldsymbol{x_s}|\boldsymbol{\eta})$$

- $ightharpoonup p(q|x_s, \eta)$: loi a posteriori conditionnelle de q,
- $ightharpoonup p(x_s|\eta)$: loi a posteriori marginale de x_s .

Démarche de résolution

La marginalisation permet de n'échantillonner que les $oldsymbol{x}_s$:

Loi conditionnelle de q

L'erreur sur $oldsymbol{\eta}$ est supposée gaussienne : $oldsymbol{arepsilon} \sim \mathcal{N}(0, \sigma_{obs}^2 oldsymbol{I})$

 \Rightarrow la vraisemblance est gaussienne :

$$p(\boldsymbol{\eta}|\boldsymbol{x_s},\boldsymbol{q}) = \prod_{i=1}^{N_c} \prod_{j=1}^{T_c} \mathcal{N}(\eta_{i,j}|\boldsymbol{C_{i,j}}(\boldsymbol{x_s})\boldsymbol{q}, \sigma_{obs}^2)$$

A priori gaussien sur q

Dans ces conditions, si $p(q) = \mathcal{N}(q|\boldsymbol{\mu}_q, \boldsymbol{\Sigma}_q)$ alors :

$$p(\boldsymbol{q}|\boldsymbol{x_s},\boldsymbol{\eta}) = \mathcal{N}(\boldsymbol{q}|\widetilde{\boldsymbol{\mu}}_q,\widetilde{\boldsymbol{\Sigma}}_q)$$

avec $\widetilde{\mu}_q$ et $\widetilde{\Sigma}_q$ obtenus analytiquement par résolution d'un système linéaire gaussien.

- hypothèse simplifiant la résolution du problème
- souvent employée dans la littérature STE
- perte potentielle de la positivité sur l'estimation de q!

Contrainte de positivité par troncature de la densité

Objectif : restreindre $p(q|x_s, \eta)$ à des valeurs positives en conservant la nature gaussienne de la densité d'origine.

- ▶ assure la cohérence physique de la solution
- rallonge le temps de calcul
- ▶ modifie potentiellement les valeurs initiales

Exemples sur lois gaussiennes bivariées :

Loi a posteriori marginale de x_s

On utilise l'AMIS pour calculer $p(\boldsymbol{x_s}|\boldsymbol{\eta})$:

- génération d'un échantillon de KN_p particules sur K itérations,
- loi de proposition : mélange de D=4 noyaux gaussiens, paramètres $(\alpha_d, \mu_d, \Sigma_d)$
- initialisation "uniforme" sur le domaine

