第十章课外练习及答案

一. 选择题

1. 设空间区域

 Ω : $x^2 + y^2 + z^2 \le R^2$, $z \ge 0$, Ω_1 : $x^2 + y^2 + z^2 \le R^2$, $x \ge 0$, $y \ge 0$, $z \ge 0$,

- (A). $\iiint_{\Omega} x dx dy dz = 4 \iiint_{\Omega_{1}} x dx dy dz ;$ (B). $\iiint_{\Omega} y dx dy dz = 4 \iiint_{\Omega_{1}} y dx dy dz ;$
- (C). $\iiint_{\Omega} z dx dy dz = 4 \iiint_{\Omega} z dx dy dz; \qquad (D). \qquad \iiint_{\Omega} xyz dx dy dz = 4 \iiint_{\Omega} xyz dx dy dz.$
- 2. 设D是xOy平面上以(1, 1)、(-1, 1)、(-1, -1)为顶点的三角形区域, D_1 是D在 第一象限的部分,则积分 $\iint (xy + \cos x \sin y) dxdy$ 等于______.
- (A). $2\iint_{D_1} \cos x \sin y dx dy$; (B). $2\iint_{D_1} xy dx dy$; (C). $4\iint_{D_1} (xy + \cos x \sin y) dx dy$; (D). 0.
- 3. 若区域 D 为 $0 \le y \le x^2$, $|x| \le 2$, 则 $\iint_{\mathbb{R}} xy^2 dx dy = ______.$
- A. 0; B. $\frac{32}{3}$; C. $\frac{64}{3}$; D. 256.
- 4. 设区域 Ω 是 $z = x^2 + y^2$ 与 z = 1 所围区域在第一卦限的部分,则三重积分 $\iiint_{\Omega} f(x, y, z) dv \quad \text{ π}$
- **A.** $\int_0^1 dz \int_0^{\sqrt{z}} dx \int_0^{\sqrt{z-x^2}} f(x, y, z) dy$; **B.** $\int_0^{\frac{\pi}{2}} d\theta \int_0^1 d\rho \int_{\rho^2}^1 f(\rho \cos \theta, \rho \sin \theta, z) \rho dz$;
- **C.** $\int_0^1 dx \int_0^{\sqrt{l-x^2}} dy \int_0^{x^2+y^2} f(x,y,z) dz$; **D.** $\int_0^1 dx \int_0^{\sqrt{l-x^2}} dy \int_{x^2+y^2}^1 f(x,y,z) dz$.

二. 填空题

1. 交换积分次序
$$\int_{0}^{1} dy \int_{\sqrt{y}}^{\sqrt{2-y^2}} f(x, y) dx = _____.$$

2. 交换累次积分的顺序
$$\int_{0}^{1} dx \int_{-\sqrt{x}}^{\sqrt{x}} f(x, y) dy + \int_{1}^{4} dx \int_{x-2}^{\sqrt{x}} f(x, y) dy = ______.$$

4. 积分
$$\int_{0}^{2} dx \int_{x}^{2} e^{-y^{2}} dy$$
 的值等于 _______.

三. 计算二重积分
$$\iint_D \frac{x+y}{x^2+y^2} dxdy$$
, 其中 $D = \{(x, y): x^2+y^2 \le 1, x+y \ge 1\}$.

四. 计算 $\iint_D \sqrt{\frac{1-x^2-y^2}{1+x^2+y^2}} dxdy$,其中 D 是由圆周 $x^2+y^2=1$ 及坐标轴所围成的在第一象限内的闭区域.

五. 计算三重积分
$$I = \iiint_{\Omega} (3 x^2 + 5 y^2 + 7 z) dxdy$$
, 其中

$$\Omega: \quad 0 \le z \le \sqrt{R^2 - x^2 - y^2} \ .$$

六. 求三重积分

$$I = \iiint_{\Omega} (x^2 + y^2 + z) dxdydz$$

其中 Ω 是由曲线 $\begin{cases} y^2 = 2z \\ x = 0 \end{cases}$ 绕 z 轴旋转一周所成的曲面与平面 z = 4所围成的立体.

七. 计算积分
$$I = \int_{0}^{1} x^{2} f(x) dx$$
 , 其中 $f(x) = \int_{x^{3}}^{x} e^{-y^{2}} dy$.

八. 设
$$F(t) = \iiint_{\Omega} \left[z^2 + f(x^2 + y^2) \right] dxdydz$$
, 其中函数 $f(u)$ 连续, Ω 是由 $0 \le z \le h$,

$$x^2 + y^2 \le t^2$$
所围成,求 $\lim_{t \to 0^+} \frac{1}{t^2} F(t)$.

参考答案

-. 1. (C); 2. (A); 3. (A); 4. (C).

3. $\int_{0}^{1} dy \int_{y}^{\sqrt{y}} f(x, y) dx;$ 4. $\frac{1}{2} (1 - e^{-4}).$

 \equiv . $2-\frac{\pi}{2}$; $\boxed{\square}$. $\frac{\pi}{8}(\pi-2)$ $\boxed{\Xi}$. $2\pi R^5$; $\overrightarrow{\nearrow}$. $\frac{256}{3}\pi$

七. $\frac{1}{6e}$

 $\iint . \frac{1}{3}\pi h^3 + \pi h f(0).$