Indications sur la feuille de TD 7

Exercice 1. Les applications suivantes sont-elles \mathbb{R} -linéaires?

- (a) $f: \mathbb{R}[X] \to \mathbb{R}$ telle que f(P) = P(2).
- (b) $g: \mathbb{R}[X] \to \mathbb{R}[X]$ telle que $g(P) = P^2$.
- (c) La trace, de $M_n(\mathbb{R})$ dans \mathbb{R} .
- (d) Le déterminant, de $M_n(\mathbb{R})$ dans \mathbb{R} .

Indication : Il s'agit de vérifier la définition donnée dans le cours (cf. proposition 32 page 91).

Exercice 2. Soit $f: \mathbb{R}^3 \to \mathbb{R}^3$ l'application définie par

$$f(x, y, z) = (x + 2y + 3z, y + 4z, 5x + 6y).$$

Montrer que f est un isomorphisme et calculer sa réciproque.

Indications: Écrire la matrice A telle que f(X) = AX pour tout $X \in \mathbb{R}^3$. Que veut-on prouver / calculer concernant A?

Exercice 3. Pour chacune des matrices réelles suivants, trouver

- le noyau et l'image;
- la dimension du noyau et de l'image;
- une base du noyau et de l'image.

$$\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}, \qquad \begin{pmatrix} 1 & -2 & 3 \\ 4 & -1 & 4 \\ 2 & 3 & -2 \end{pmatrix}, \qquad \begin{pmatrix} 1 & -1 & 1 & 1 \\ 5 & 2 & -1 & -3 \\ -3 & -4 & 3 & 2 \\ 6 & 1 & 0 & -2 \end{pmatrix}, \qquad \begin{pmatrix} 1 & 1 & 2 & 1 \\ 1 & 2 & 1 & 1 \\ 2 & 1 & 1 & 1 \end{pmatrix}.$$

Indication: Cf. 1MA002 (systèmes linéaires, algorithme de Gauss, etc).

Exercice 4. Soit $p \in \mathbb{N}^*$. On considère l'application $f : \mathbb{C}^{\mathbb{N}} \to \mathbb{C}^p$ définie pour toute suite $u = (u_n)$ par $f(u) = (u_0, \dots, u_{p-1})$.

- (a) Vérifier que f est linéaire.
- (b) Décrire son noyau et son image. Est-elle injective? Surjective?

Indication: Cf. cours (énoncés indispensables page 91 et 96).

Exercice 5. Soient $f: E \to F$ une application linéaire et v_1, \ldots, v_p des vecteurs de E.

- (a) On suppose que f est surjective et que (v_1, \ldots, v_p) est une famille génératrice de E. Prouver que $(f(v_1), \ldots, f(v_p))$ est une famille génératrice de F.
- (b) On suppose que f est injective et que (v_1, \ldots, v_p) est libre. Prouver que $(f(v_1), \ldots, f(v_p))$ est libre.

Indications: (a) Utiliser la surjectivité, puis le fait que (v_1, \ldots, v_p) est génératrice, puis la linéarité de f. (b) Pour démontrer que $(f(v_1), \ldots, f(v_p))$ est libre, il faut vérifier que si $\lambda_1(f(v_1) + \cdots + \lambda_p f(v_p)) = 0$, alors $\lambda_1 = \cdots = \lambda_p = 0$. Utiliser la linéarité et l'injectivité de f puis la liberté de (v_1, \ldots, v_p) .

Exercice 6. Soit $A \in M_n(\mathbb{R})$. On considère l'application $f: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ définie par f(M) = AM.

- (a) Vérifier que f est un endomorphisme.
- (b) Montrer que f est un isomorphisme si et seulement si A est inversible.
- (c) Calculer le noyau de f en fonction de celui de A.
- (d) En déduire une formule reliant le rang de f et celui de A.

Indications : (a) Définition d'endomorphisme page 93. (b) Pour l'implication \Leftarrow , supposer A inversible et expliciter une réciproque de f. Pour l'implication \Rightarrow , supposer que f est un isomorphisme et vérifier qu'il existe alors M telle que AM = I... (c) Que peut-on dire des colonnes de M si AM = 0? (d) Introduire l'application $C: M_n(\mathbb{R}) \to \mathbb{R}^n \times \cdots \times \mathbb{R}^n$ définie par $C(M) = (C_1(M), \cdots, C_n(M))$, où $C_k(M)$ est la k-ième colonne de M. Vérifier que c'est un isomorphisme et en déduire dim Ker f à l'aide de (c), puis rg f.

Exercice 7. Soient E un espace vectoriel et $p \in L(E)$ tel que $p \circ p = p$.

- (a) Prouver que $E = \operatorname{Ker} p \oplus \operatorname{Im} p$.
- (b) Montrer que p est la projection sur $\operatorname{Im} p$, parallèlement à $\operatorname{Ker} p$.

Indications : (a) Écrire x = x - p(x) + p(x) pour voir que E = Ker p + Im p. Vérifier ensuite que $\text{Ker } p \cap \text{Im } p$ est trivial pour voir que la somme est directe. (b) Vérifier que p agit comme dans l'exemple 58 page 93, en utilisant la décomposition de E obtenue en (a).

Exercice 8. Soient f et g deux endomorphismes d'un espace vectoriel E de dimension n. Prouver les inégalités suivantes.

- (a) $rg(f+g) \le rg(f) + rg(g)$.
- (b) $\operatorname{rg}(f) + \operatorname{rg}(g) n \le \operatorname{rg}(f \circ g) \le \min(\operatorname{rg}(f), \operatorname{rg}(g)).$

Indications: (a) Vérifier que $\operatorname{Im}(f+g) \subseteq \operatorname{Im}(f) + \operatorname{Im}(g)$ et utiliser le paragraphe 1.5 du cours (pages 84-85). (b) Commencer par prouver l'inégalité $\operatorname{rg}(f \circ g) \leq \operatorname{rg}(f)$, qui résulte d'une inclusion netre sous-espaces. Pour prouver l'encadrement $\operatorname{rg}(f) + \operatorname{rg}(g) - n \leq \operatorname{rg}(f \circ g) \leq \operatorname{rg}(g)$, introduire l'application $h : \operatorname{Im} g \to E$ telle que h(x) = f(x) et utiliser le théorème du rang.

Exercice 9. On considère l'application $f: \mathbb{R}^2 \to \mathbb{R}^3$ donnée par

$$f(x,y) = (2x + 7y, -y, 3x - 2y).$$

- (a) Quelle est sa matrice dans les bases canoniques de \mathbb{R}^2 et \mathbb{R}^3 ?
- (b) Notons $\mathcal{B} = ((1,1),(1,-1))$ et $\mathcal{B}' = ((1,0,0),(1,-1,1),(5,-1,-5))$. Vérifier que \mathcal{B} (resp. \mathcal{B}') est une base de \mathbb{R}^2 (resp. \mathbb{R}^3).
- (c) Quelle est la matrice de f si on choisit ces bases au lieu des bases canoniques?

Indications : La matrice d'une application linéaire est définie dans l'énoncé indispensable 16 page 100. La k-ième colonne de cette matrice est constituée des coordonnées de l'image du k-ième vecteur de la base au départ, calculées dans la base à l'arrivée. Pour (b), il suffit de calculer des déterminants.

Exercice 10. Vérifier que la dérivation définit un endomorphisme de $\mathbb{R}_3[X]$ et donner sa matrice dans la base $(1, X, X^2, X^3)$.

Indications : Pour voir que c'est un endomorphisme, il faut vérifier la linéarité mais aussi que la dérivée d'un polynôme de $\mathbb{R}_3[X]$ est aussi dans $\mathbb{R}_3[X]$. La matrice s'obtient rapidement en calculant les $D(X^k)$.

Exercice 11. On considère l'espace E des suites complexes (u_n) telles que, pour tout indice n, $u_{n+2} - 2u_{n+1} + u_n = 0$.

- (a) Donner une base $\mathcal B$ de cet espace vectoriel.
- (b) Pour $u = (u_n) \in E$, on pose f(u) = v, où $v_n = u_{n+1}$ pour tout indice n. Vérifier que f est un endomorphisme de E et donner sa matrice dans la base \mathcal{B} .
- (c) Vérifier en posant u = (n+3) et en calculant f(u) de deux façons différentes.

Indications: (a) Utiliser l'énoncé indispensable 8 page 89. (b) Vérfier que f est linéaire et que si u est dans E, alors f(u) aussi. Pour trouver les coefficients de la matrice, calculer les images par f des éléments de la base \mathcal{B} trouvée en (a); puis exprimer ces images comme combinaisons linéaires des élements de \mathcal{B} . (c) D'une part, calculer f(u) directement avec la formule. D'autre part, exprimer u dans la base \mathcal{B} , multiplier par la matrice trouvée en (b), puis identifier la suite représentée par ces coordonnées dans la base \mathcal{B} .

Exercice 12. Dans les deux situations suivantes, vérifier que \mathcal{B}' est une base de l'espace vectoriel E et calculer la matrice de passage de \mathcal{B} vers \mathcal{B}' .

- (a) $E = \mathbb{R}^3$, \mathcal{B} est la base canonique et $\mathcal{B}' = (e_1', e_2', e_3')$ avec $e_1' = (1, 2, 3)$, $e_2' = (1, 0, 1)$ et $e_3' = (0, 0, 7)$.
- (b) $E = \mathbb{R}_4[X]$, $\mathcal{B} = (1, X, X^2, X^3, X^4)$ et la famille $\mathcal{B}' = (e'_0, \dots, e'_4)$ est constituée des polynômes $e'_k = \sum_{i=0}^k X^i$, pour $0 \le k \le 4$.

Indications : La matrice de passage est définie dans l'énoncé indispensable 19 page 105. C'est la matrice des coordonnées de la « nouvelle » base \mathcal{B}' , calculées dans « l'ancienne base » \mathcal{B} . Pour (b), la question (a) de l'exercice 9 de la feuille 6 peut aider à voir que \mathcal{B}' est une base.

Exercice 13. Soit E un \mathbb{R} -espace vectoriel. On note $E^* = L(E, \mathbb{R})$.

- (a) Soit (e_1, \ldots, e_n) une base de E. Pour $k = 1, \ldots, n$, on note e_k^* l'application linéaire définie par $e_k^*(e_i) = \delta_{ik}$ pour tout indice i. Prouver que (e_1^*, \ldots, e_n^*) est une base de E^* .
- (b) Soient un vecteur $x \in E$ et un entier $k \in [1, n]$. Calculer $e_k^*(x)$ en fonction des coordonnées de x dans la base (e_1, \ldots, e_n) .

(c) Soit $\phi \in L(E)$. Vérifier que la formule

$$\forall f \in E^*, \quad \phi^*(f) = f \circ \phi$$

définit un élément ϕ^* de $L(E^*)$. Quel est le lien entre les matrices de ϕ et ϕ^* dans les bases introduites au (a)?

(d) Pour $x,y\in\mathbb{R}^n$, on note $\langle x,y\rangle=\sum_{i=1}^n x_iy_i$ le produit scalaire euclidien des vecteurs x et y. On note aussi

$$\theta(x)(y) = \langle x, y \rangle.$$

Vérifier que l'on définit ainsi un isomorphisme $\theta: \mathbb{R}^n \to (\mathbb{R}^n)^*$.

Indications: (a) Le cours donne la dimension de $L(E,\mathbb{R})$ (réponse page 103 dans le polycopié). Pour vérifier la liberté, supposer une relation linéaire entre les e_k^* et l'appliquer à un vecteur e_i . (b) Ecrire $x = x_1e_1 + \cdots x_ne_n$ et utiliser la linéarité de e_k^* . (c) Vérifier que ϕ^* envoie bien E^* dans E^* puis que ϕ^* est linéaire. Pour trouver sa matrice, calculer $(\phi^*(e_j^*))(x)$ en écrivant $x = \sum_i x_i e_i$ et en faisant intervenir la matrice A de ϕ . On doit trouver $\phi^*(e_j^*) = \sum_i a_{ji}e_i^*$... (d) Il faut vérifier que θ envoie bien \mathbb{R}^n dans $(\mathbb{R}^n)^*$, puis que θ est linéaire, puis que $\ker \theta = \{0\}$.

Exercice 14. Soit $n \in \mathbb{N}$.

- (a) Prouver que la formule $\Delta(P) = P(X+1) P(X)$ définit un endomorphisme Δ de $\mathbb{R}_n[X]$.
- (b) On pose $T_0 = 1$ et, pour $k \in \mathbb{N}^*$, $T_k = \frac{X(X+1) \dots (X+k-1)}{k!}$. Vérifier que $\mathcal{B} = (T_0, \dots, T_n)$ est une base de $\mathbb{R}_n[X]$.
- (c) Démontrer la formule : $\forall k \in \mathbb{N}^*, \quad \Delta T_k = T_{k-1}(X+1).$
- (d) Soit $P \in \mathbb{R}_n[X]$. Démontrer que P vérifie la propriété

$$\forall m \in \mathbb{Z}, P(m) \in \mathbb{Z}$$

si et seulement si ses coordonnées dans la base $\mathcal B$ sont entières.

Indications: (a) Il s'agit de vérfier que Δ est linéaire et que si P est dans $\mathbb{R}_n[X]$, alors $\Delta(P)$ aussi. (b) La question (a) de l'exercice 9 de la feuille 6 peut aider. (c) Calcul à écrire soigneusement. (d) Pour le sens \Leftarrow , vérifier que $T_k(m) \in \mathbb{Z}$ dès que $m \in \mathbb{Z}$ en l'exprimant à l'aide de coefficients binômiaux (et en distinguant trois cas selon la position de m par rapport à 0 et 1-k). Pour le sens \Rightarrow , utiliser (c) à répétition.