

TCS

Dr. Jürgen Koslowski

Einführung in die Logik

Aufgabenblatt 5, 2023-06-19

Präsenzaufgabe 1

Beweisen Sie den Satz auf Folie 221.

Lösungsvorschlag:

In jedem der Fälle Modus Ponens, Modus tollens und Kontraposition wählen wir eine S-Struktur $\mathcal{M} = \langle D, I \rangle$ und eine Belegung $\sigma \in D^{\mathcal{V}}$ der Variablen, so dass alle Formeln in Γ erfüllt werden.

• Modus Ponens: Wir gehen davon aus, dass das Paar $\langle \mathcal{M}, \sigma \rangle$ auch B sowie $B \to A$ erfüllt, d.h.,

$$\mathcal{M}[\![B]\!](\sigma) = \mathcal{M}[\![B \to A]\!](\sigma) = 1$$

Aber letzteres ist gleichbedeutend mit

$$\mathcal{M}[\![B]\!](\sigma) \leqslant \mathcal{M}[\![A]\!](\sigma) \tag{*}$$

und folglich muß auch gelten

$$\mathcal{M}[\![A]\!](\sigma) = 1$$

• Modus Tollens: Wir gehen davon aus, dass das Paar $\langle \mathcal{M}, \sigma \rangle$ auch $B \to A$ sowie $\neg A$ erfüllt, d.h.,

$$\mathcal{M}[\![B \to A]\!](\sigma) = 1 - \mathcal{M}[\![A]\!](\sigma) = 1$$

Wegen (*) gilt auch

$$\mathcal{M}\llbracket \neg A \rrbracket(\sigma) = 1 - \mathcal{M}\llbracket A \rrbracket(\sigma) \leqslant 1 - \mathcal{M}\llbracket B \rrbracket(\sigma) = \mathcal{M}\llbracket \neg B \rrbracket(\sigma)$$

woraus schließlich folgt

$$\mathcal{M} \llbracket \neg B \rrbracket (\sigma) = 1$$

• Modus Bogus: Hier genügt ein Gegenbeispiel. Betrachte die Signatur $\mathcal{S}_{\text{arith}}$ der Arithmetik sowie die Formeln A und B, die aussagen, dass x durch 2 bzw. durch 4 teilbar ist, also

$$A(x) = \exists y. \ x \doteq y + y \quad \text{und} \quad B(x) = \exists y. \ x \doteq y + y + y + y$$

Offenbar ist jede durch 4 teilbare Zahl auch durch 2 teilbar, also

$$\models B(x) \to A(x)$$
 und somit $\Gamma \models B(x) \to A(x)$ für jede Prämissenmenge Γ

Nun bestehe Γ aus der einzigen Prämisse, dass x^2 gerade ist:

$$G(x) = \exists z. \, x * x \doteq z + z$$

Es gilt also

$$\{G(x)\} \models B(x) \rightarrow A(x)$$
 sowie $\{G(x)\} \models A(x)$

aber unter der Voraussetzung, dass x^2 gerade ist, können wir i.A. nicht folgern, dass x durch 4 teilbar ist, d.h.,

$${G(x)} \not\models B(x)$$

Betrachte etwa eine Belegung σ mit $\sigma(x) = 2$.

• Kontraposition: Aufgrund des semantischen Deduktionstheorems der Prädikatenlogik (Folie 220) können wir die Aussage umformlieren zu

$$\Gamma \models B \to \neg A \quad \text{gdw.} \quad \Gamma \models A \to \neg B$$

Analog wie oben ergibt sich nun

$$\mathcal{M}[\![B \to \neg A]\!](\sigma) = 1 \quad \text{gdw.} \quad \mathcal{M}[\![B]\!](\sigma) \leqslant 1 - [\![A]\!](\sigma)$$
$$\text{gdw.} \quad \mathcal{M}[\![A]\!](\sigma) \leqslant 1 - [\![B]\!](\sigma) \quad \text{gdw.} \quad \mathcal{M}[\![A \to \neg B]\!](\sigma) = 1$$

Präsenzaufgabe 2

Begründen Sie ihre Antworten ausführlich:

(a) Die Signatur S möge mindestens ein einstelliges Prädikatensymbol P enthalten. Wir betrachten einen Term t, in dem die Variable x nicht vorkommt. Ist die Formel

$$P(t) \leftrightarrow \forall x : (x \doteq t \to P(x))$$

allgemeingültig?

(b) Bleibt die Antwort dieselbe, wenn x im Term t vorkommt?

Lösungsvorschlag:

(a) Die Behauptung ist korrekt: Betrachte eine S-Struktur $\mathcal{M}=\langle D,I\rangle$ und eine Belegung $\sigma\in D^{\mathcal{V}}$. Dann gilt

$$\mathcal{M}[\![P(t)]\!](\sigma) = 1 \quad \text{gdw.} \quad \mathcal{M}[\![t]\!](\sigma) \in P^{\mathcal{M}} \subseteq D \quad \text{gdw.} \quad P^{\mathcal{M}}(\mathcal{M}[\![t]\!](\sigma)) = 1$$

insbesondere also $\mathcal{M}[\![P(t)]\!](\sigma) = P^{\mathcal{M}}(\mathcal{M}[\![t]\!](\sigma))$, sowie

$$\mathcal{M}[\![\forall x \, (x \doteq t \to P(x))]\!](\sigma) \tag{1}$$

$$=\inf\{\mathcal{M}[x \doteq t \to P(x)](\sigma\{x/d\}) : d \in D\}$$
(2)

$$=\inf\{\mathcal{M}[\![\neg(x \doteq t) \lor P(x)]\!](\sigma\{x/d\}) : d \in D\}$$

$$=\inf\{\sup\{\mathcal{M}[\neg(x \doteq t)]](\sigma\{x/d\}), \mathcal{M}[P(x)]](\sigma\{x/d\})\}: d \in D\}$$
(4)

$$= \inf \{ \sup \{ 1 - \mathcal{M} | x = t | (\sigma\{x/d\}), \mathcal{M} | P(x) | (\sigma\{x/d\}) \} : d \in D \}$$
 (5)

$$= \inf \{ \sup \{ 1 - (\mathcal{M}[x](\sigma\{x/d\})) = \mathcal{M}[t](\sigma\{x/d\})), P^{\mathcal{M}}(\mathcal{M}[x](\sigma\{x/d\})) \} : d \in D \}$$
 (6)

$$= \inf \{ \sup \{ 1 - (d = \mathcal{M} [t\{x/d\}] (\sigma)), P^{\mathcal{M}}(d) \} : d \in D \}$$
 (7)

$$= \inf \{ \sup \{ 1 - (d = \mathcal{M}[[t]](\sigma)), P^{\mathcal{M}}(d) \} : d \in D \}$$
(8)

$$=\inf\{\sup\{d \neq \mathcal{M}[t](\sigma), P^{\mathcal{M}}(d)\}: d \in D\}$$
(9)

$$=\inf\{\sup\{d \neq \mathcal{M}[\![t]\!](\sigma), P^{\mathcal{M}}((\mathcal{M}[\![t]\!](\sigma))\} : d \in D\}$$

$$\tag{10}$$

$$= \sup \{\inf\{d \neq \mathcal{M}[\![t]\!](\sigma) : d \in D\}, \inf\{P^{\mathcal{M}}(\mathcal{M}[\![t]\!](\sigma)) : d \in D\}\}$$

$$\tag{11}$$

$$= \sup\{0, P^{\mathcal{M}}(\mathcal{M}[t](\sigma))\}$$
(12)

$$= \mathcal{M}[P(t)](\sigma) \tag{13}$$

Dabei wurde in Zeile (7) das Substitutionslemma angewendet. Zeile (8) folgt, weil x nicht in t vorkommt, die Substitution $\{x/d\}$ also wirkungslos bleibt. In Zeile (10) kommt zum Tragen, dass das binäre Supremum den Wert 0 höchstens für $d = \mathcal{M}[\![t]\!](\sigma)$ annehmen kann, während Zeile (11) das Distributivgesetz für Suprema und Infima in \mathbb{B} verwendet, vergl. Hinweis zu Aufgabe 5, Blatt 4.

(b) Wenn x in t vorkommt, enthält P(t) die freie Variable x, die rechte Seite der Äquivalenz aber nicht. Wir wollen versuchen, in einer Struktur $\mathcal{M} = \langle D, I \rangle$ die Voraussetzung der Implikation $x \doteq t \to P(x)$ immer falsch und somit die rechte Seite der Äquivalenz immer wahr zu machen, während der Wert von $\mathcal{M}[P(t)]$ von σ abhängen kann, also nicht immer wahr zu sein braucht. Insbesondere ist $P^{\mathcal{M}}$ dann eine echte Teilmenge von D.

Beispiel: für den Datenbereich $D = \mathbb{N}$, das Prädikat P(x) "x ist gerade" und den Term t := x + 1 passiert genau das: P(t) ist nur für ungerade Zahlen $\sigma(x)$ erfüllt, aber die Implikation auf der rechten Seite ist aufgrund der immer falschen Voraussetzung für jedes $a \in \mathbb{N}$ erfüllt, also ist die rechte Seite immer wahr.

Die linke Seite wird aber für solche Belegungen σ falsch, die x eine gerade Zahl zuordnen.

Hausaufgabe 3 [16 PUNKTE]

Rechenregeln für Quantoren (Folie 224):

- 1. [10 PUNKTE] Beweisen Sie jeweils die rechte Aussage von (1), (2) und (3).
- 2. [6 PUNKTE] Beweisen Sie (4) und geben Sie im Fall $x \in FV(A)$ ein Gegenbeispiel an. **Hinweis**: Sie dürfen verwenden, dass die Supremum- und Infimum-Operationen in \mathbb{B} für beliebig indexierte Familen $\langle b_i : i \in I \rangle \in \mathbb{B}^I$ ein Distributiv-Gesetz analog zu dem auf Folie 71 erfüllen: d.h.,

$$a \wedge \sup_{i \in I} b_i = \sup_{i \in I} (a \wedge b_i)$$
 sowie $a \vee \inf_{i \in I} b_i = \inf_{i \in I} (a \vee b_i)$

Hausaufgabe 4 [21 PUNKTE]

[21 PUNKTE] Beweisen Sie das Substitutionslemma ohne Verwendung von Semantik-Klammern $\llbracket \cdot \rrbracket$, aber stattdessen mit $\check{\sigma}$, $\overline{\sigma}$ und $\hat{\sigma}$. Genauer: für eine \mathcal{S} -Struktur $\mathcal{M} = \langle D, I \rangle$ gilt

$$\check{\sigma}(u\{x/t\}) = \check{\sigma}\{x/\check{\sigma}(t)\}(u) \quad \text{sowie} \quad \hat{\sigma}(A\{x/t\}) = \hat{\sigma}\{x/\check{\sigma}(t)\}(A)$$

wobei u ein Term und A eine Formel ist.

Hausaufgabe 5 [16 PUNKTE]

Wir betrachten die Signatur Σ der Arithmetik mit zwei Konstanten 0 und 1, zwei zweistelligen Funktionensymbolen + und · einem zweistelligen Prädikatensymbol < . Viele Aussagen über natürliche Zahlen (also die Σ - Struktur mit Trägermenge $\mathbb N$ und der üblichen Interpretation der Symbole in Σ) lassen sich als prädikatenlogische Formeln über Σ ausdrücken.

Beispiel: Der Aussage "x ist eine gerade Zahl" entspricht die Formel $\exists y : (x = y + y)$ mit einer freien Variable x.

Transformieren Sie die folgenden Aussagen in prädikatenlogische Formeln über Σ :

- (a) [5 PUNKTE] ", x und Y sind Primzahlzwillinge."
- (b) [5 PUNKTE] "Es gibt unendlich viele pythagoräische Tripel"
- (c) [3 PUNKTE] "Jede gerade Zahl ≥ 4 läßt sich als Summe zweier Primzahlen darstellen."
- (d) [3 PUNKTE] "Alle Zahlen mit geradem Quadrat sind gerade."

Hausaufgabe 6 [12 PUNKTE]

Berechnen Sie eine erfüllbarkeitsäquivalente Formel in Skolem-Normalform zu

$$\left(\forall x \, \exists y. \, P(x, f(y)) \right) \, \wedge \, \left(\neg \exists y \, \forall x \, \exists z. \, \left(Q(g(z), f(x)) \, \vee \, P(y, z) \right) \right)$$