Exploratory Analysis by Aaron

August 17, 2017

Summary of Findings from EDA

Types of Variables:

- 1. Rates, averages, and probabilities crmrte, prbarr, prbconv, prbpris, polpc, density, pctmin80, pctymle
- 2. \$ variables taxpc, wcon, wtuc, wtrd, wfir, wser, wmfg, wfed, wsta, wloc
- 3. Indicator variables west, central, urban. No base category in dataset (e.g. non-west/central, rural)
- 4. Not sure what this is mix

Potential Transformations:

- 1. Percentage minority (pctmin80) data is between 0 100 whereas other percentage variables is between 0-1; We may want to transform this variable to keep things consistent from an interpretability perspective.
- 2. Other than this, so far no obvious variable that needs transformation. There are some variables that maybe needs log transform to be less skewed.

Potential Outliers/Data Issues:

- 1. Row 51 has prbarr > 1.0 which seems suspicious, given prbarr should between 0 and 1.
- 2. There seems to be 10 rows where prbconv is > 1.0, which again is suspicious, given that prbconv should be between 0 and 1.
- 3. Average Sentence in Days (avgsen) looks like it should be Average Sentence in Years.
- 4. Row 81 looks like an outlier where wser is extremely high.

Setup

Reading the data and loading the right libraries:

```
library(corrplot)
library(car)

setwd("C:\\Users\\aayuen\\Documents\\GitHub\\w203_lab4_kka")
data = read.csv("crime.csv")
```

There are 90 data points and 25 variables

```
nrow(data)
```

```
## [1] 90
```

colnames(data)

```
"prbconv"
    [1] "X"
                     "county"
                                 "year"
                                             "crmrte"
                                                         "prbarr"
                                 "polpc"
                                                                     "west"
    [7] "prbpris"
                    "avgsen"
                                             "density"
                                                         "taxpc"
## [13] "central"
                    "urban"
                                 "pctmin80"
                                            "wcon"
                                                         "wtuc"
                                                                     "wtrd"
## [19] "wfir"
                    "wser"
                                 "wmfg"
                                             "wfed"
                                                         "wsta"
                                                                     "wloc"
## [25] "mix"
                     "pctymle"
```

There doesn't seem to be any NAs in the dataset

```
apply(!is.na(data[,]), MARGIN = 2, mean)
```

##	Х	county	year	crmrte	prbarr	prbconv	prbpris	avgsen
##	1	1	1	1	1	1	1	1
##	polpc	density	taxpc	west	central	urban	pctmin80	wcon
##	1	1	1	1	1	1	1	1
##	wtuc	wtrd	wfir	wser	wmfg	wfed	wsta	wloc
##	1	1	1	1	1	1	1	1
##	mix	pctymle						

1 1

Univariate Variable Analysis

1. county - County Identifier

County is essentially a unique identifier (no duplicates).

```
length(unique(data$county))
```

[1] 90

length(data\$county)

[1] 90

2. year - Only 87

The dataset only contains data for 1987.

unique(data\$year)

[1] 87

3. crmrte - Crimes Committed per Person

```
hist(data$crmrte, breaks=50,
main="Histogram of Crimes Committed per Person",
xlab="Crimes committed per person")
```

Histogram of Crimes Committed per Person

4. prbarr - Probability of Arrest

Row 51 has prbarr > 1.0 which seems suspicious, given prbarr should between 0 and 1.

```
summary(data$prbarr)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.09277 0.20495 0.27146 0.29524 0.34487 1.09091
```

data[data\$prbarr > 1,] X county year crmrte prbarr prbconv prbpris avgsen polpc ## 51 51 115 87 0.0055332 1.09091 1.5 0.5 20.7 0.00905433 ## density taxpc west central urban pctmin80 wcon ## 51 0.3858093 28.1931 1.28365 204.2206 503.2351 0 0 wtrd wfir wser wmfg wfed wsta wloc mix ## 51 217.4908 342.4658 245.2061 448.42 442.2 340.39 386.12 0.1 0.07253495

hist(data\$prbarr, breaks=50,
 main="Histogram of Probability of Arrest",
 xlab="Probability of arrest")

Histogram of Probability of Arrest

5. prbconv - Probability of Conviction

There seems to be 10 rows where proconv is > 1.0, which again is suspicious, given that proconv should be between 0 and 1.

```
summary(data$prbconv)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.06838 0.34422 0.45170 0.55086 0.58513 2.12121
data[data$prbconv > 1,]
```

```
##
       X county year
                                  prbarr prbconv prbpris avgsen
                         crmrte
                                                                       polpc
##
  2
       2
                  87 0.0152532 0.132029 1.48148 0.450000
              3
                                                             6.35 0.00074588
## 10 10
             19
                  87 0.0221567 0.162860 1.22561 0.333333
                                                           10.34 0.00202425
  44 44
                  87 0.0171865 0.153846 1.23438 0.556962
                                                           14.75 0.00185912
  51 51
            115
                  87 0.0055332 1.090910 1.50000 0.500000
                                                            20.70 0.00905433
  56 56
            127
                  87 0.0291496 0.179616 1.35814 0.335616
                                                           15.99 0.00158289
                                                             6.18 0.00081426
  61 61
            137
                  87 0.0126662 0.207143 1.06897 0.322581
  67 67
            149
                  87 0.0164987 0.271967 1.01538 0.227273
                                                            14.62 0.00151871
##
  84 84
            185
                  87 0.0108703 0.195266 2.12121 0.442857
                                                             5.38 0.00122210
##
  89 89
            195
                  87 0.0313973 0.201397 1.67052 0.470588
                                                            13.02 0.00445923
##
  90 90
            197
                  87 0.0141928 0.207595 1.18293 0.360825
                                                            12.23 0.00118573
##
        density
                   taxpc west central urban pctmin80
                                                           wcon
     1.0463320 26.89208
##
  2
                                           0 7.91632 255.1020 376.2542
                             0
                                     1
  10 0.5767442 61.15251
                            0
                                     0
                                           0 24.31170 260.1381 613.2261
                                           0 14.28460 259.7841 417.2099
## 44 0.5478615 39.57348
                             1
                                     0
## 51 0.3858093 28.19310
                                     0
                                             1.28365 204.2206 503.2351
```

```
0 34.27990 290.9091 426.3901
## 56 1.3388889 32.02376
## 61 0.3167155 44.29367
                                          0 33.04480 299.4956 356.1254
  67 0.6092437 29.03402
                                          0 10.00460 223.6136 437.0629
  84 0.3887588 40.82454
                            0
                                    1
                                          0 64.34820 226.8245 331.5650
  89 1.7459893 53.66693
                                           0 37.43110 315.1641 377.9356
   90 0.8898810 25.95258
                                            5.46081 314.1660 341.8803
##
                                    0
                                    wmfg
##
                   wfir
                                            wfed
                                                          wloc
          wtrd
                             wser
                                                   wsta
## 2
      196.0101 258.5650
                         192.3077 300.38 409.83 362.96 301.47 0.03022670
  10 191.2452 290.5141
                         266.0934 567.06 403.15 258.33 299.44 0.05334728
                         247.6291 258.99 442.76 387.02 291.44 0.01960784
   44 168.2692 301.5734
  51 217.4908 342.4658
                         245.2061 448.42 442.20 340.39 386.12 0.10000000
   56 257.6008 441.1413
                         305.7612 329.87 508.61 380.30 329.71 0.06305506
   61 170.8711 170.9402
                         250.8361 192.96 360.84 283.90 321.73 0.06870229
                         210.4415 289.43 421.34 342.92 301.23 0.11682243
  67 188.7683 353.2182
  84 167.3726 264.4231 2177.0681 247.72 381.33 367.25 300.13 0.04968944
  89 246.0614 411.4330 296.8684 392.27 480.79 303.11 337.28 0.15612382
  90 182.8020 348.1432 212.8205 322.92 391.72 385.65 306.85 0.06756757
##
         pctymle
## 2
    0.08260694
## 10 0.07713232
## 44 0.12894706
## 51 0.07253495
## 56 0.07400288
  61 0.07098370
  67 0.06215772
  84 0.07008217
## 89 0.07945071
## 90 0.07419893
hist(data$prbconv, breaks=50,
     main="Histogram of Probability of Conviction",
     xlab="Probability of conviction")
```

Histogram of Probability of Conviction

6. prbpris - Probability of Prison Sentence

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.1500 0.3642 0.4222 0.4106 0.4576 0.6000
```

```
hist(data$prbconv, breaks=50,
    main="Histogram of Probability of Prison Sentence",
    xlab="Probability of prison sentence")
```

Histogram of Probability of Prison Sentence

7. avgsen - Average Sentence in Days

Really? Days? This looks more like average sentence in years...

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 5.380 7.375 9.110 9.689 11.465 20.700
hist(data$avgsen, breaks=50,
    main="Histogram of Average Sentence in Days",
    xlab="Average sentence in days")
```

Histogram of Average Sentence in Days

8. polpc - Police per Capita

summary(data\$polpc) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.0007459 0.0012378 0.0014897 0.0017080 0.0018856 0.0090543 hist(data\$polpc, breaks=50, main="Histogram of Police per Capita", xlab="Police per capita")

Histogram of Police per Capita

9. density - People per Sq. Mile

xlab="Probability of people per sq. mile")

Data looks expected.

```
summary(data$density)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.2034 0.5472 0.9792 1.4379 1.5693 8.8277
hist(data$density, breaks=50,
    main="Histogram of People per Sq. Mile",
```

Histogram of People per Sq. Mile

Probability of people per sq. mile

10. taxpc - Tax Revenue per Capita

Data looks expected.

Histogram of Tax Revenue per Capita

11. west - Indicator of Western N.C.

Non-Western N.C. vs Western N.C.

12. central - Indicator of Central N.C.

Data looks expected.

Non-Central N.C. vs Central N.C.

13. urban - Indicator of whether in SMSA

What does "SMSA" mean? Otherwise, data looks expected.

```
summary(factor(data$urban))
```

0 1 ## 82 8

Non-Urban vs Urban

14. pctmin80 - Percentage of Minority, 1980

Data looks expected. However, data is between 0 - 100 whereas other percentage variables is between 0-1; We may want to transform this variable to keep things consistent from an interpretability perspective.

```
summary(data$pctmin80)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.284 10.024 24.852 25.713 38.183 64.348
hist(data$pctmin80, breaks=50,
    main="Histogram of Percentage of Minority",
    xlab="Probability of percentage of minority")
```

Histogram of Percentage of Minority

15. wcon - Weekly Wage, Construction

```
summary(data$wcon)
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                Max.
##
     193.6
             250.8
                      281.2
                              285.4
                                       315.0
                                               436.8
hist(data$wcon, breaks=50,
     main="Histogram of Weekly Wage, Construction",
     xlab="Weekly wage")
```

Histogram of Weekly Wage, Construction

16. wtuc - Weekly Wage, Trans, Util, Communication

Data looks expected.

```
summary(data$wtuc)
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                               Max.
##
     187.6
             374.3
                     404.8
                              410.9
                                      440.7
                                               613.2
hist(data$wtuc, breaks=50,
     main="Histogram of Weekly Wage, Trans, Util, Communication",
     xlab="Weekly wage")
```

Histogram of Weekly Wage, Trans, Util, Communication

17. wtrd - Weekly Wage, Wholesale, Retail Trade

Data looks expected.

```
summary(data$wtrd)
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                               Max.
##
             190.7
                     203.0
     154.2
                              210.9
                                      224.3
                                              354.7
hist(data$wtrd, breaks=50,
     main="Histogram of Weekly Wage, Wholesale, Retail Trade",
     xlab="Weekly wage")
```

Histogram of Weekly Wage, Wholesale, Retail Trade

18. wfir - Weekly Wage, Finance, Insurance, Real Estate

```
summary(data$wfir)
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                               Max.
##
     170.9
             285.6
                     317.1
                              321.6
                                      342.6
                                              509.5
hist(data$wfir, breaks=50,
     main="Histogram of Weekly Wage, Finance, Insurance, Real Estate",
     xlab="Weekly wage")
```

Histogram of Weekly Wage, Finance, Insurance, Real Estate

19. wser - Weekly Wage, Service Industry

##

pctymle

There's a very extreme outlier here, need to take a closer look.

```
summary(data$wser)
##
      Min. 1st Qu.
                    Median
                               Mean 3rd Qu.
                                                Max.
##
     133.0
             229.3
                     253.1
                              275.3
                                      277.6
                                             2177.1
hist(data$wser, breaks=50,
     main="Histogram of Weekly Wage, Service Industry",
     xlab="Weekly wage")
```

Histogram of Weekly Wage, Service Industry


```
data[data$wser > 2000, ]
##
       X county year
                        crmrte
                                 prbarr prbconv prbpris avgsen
                                                                     polpc
## 84 84
                  87 0.0108703 0.195266 2.12121 0.442857
                                                            5.38 0.0012221
##
        density
                   taxpc west central urban pctmin80
                                                          wcon
## 84 0.3887588 40.82454
                                          0 64.3482 226.8245 331.565
                   wfir
                                   wmfg
                                          wfed
                                                 wsta
                                                         wloc
                            wser
## 84 167.3726 264.4231 2177.068 247.72 381.33 367.25 300.13 0.04968944
```

20. wmfg - Weekly Wage, Manufacturing

Data looks expected.

```
summary(data$wmfg)
      Min. 1st Qu.
##
                    Median
                               Mean 3rd Qu.
                                                Max.
##
             288.6
     157.4
                     321.1
                              336.0
                                      359.9
                                               646.9
hist(data$wmfg, breaks=50,
     main="Histogram of Weekly Wage, Manufacturing",
     xlab="Weekly wage")
```

Histogram of Weekly Wage, Manufacturing

21. wfed - Weekly Wage, Fed Employees

```
summary(data$wfed)
##
      Min. 1st Qu.
                     Median
                               Mean 3rd Qu.
                                                Max.
##
     326.1
             398.8
                     448.9
                              442.6
                                      478.3
                                               598.0
hist(data$wfed, breaks=50,
     main="Histogram of Weekly Wage, Fed Employees",
     xlab="Weekly wage")
```

Histogram of Weekly Wage, Fed Employees

22. wsta - Weekly Wage, State Employees

Data looks expected.

```
summary(data$wsta)
      Min. 1st Qu.
##
                     Median
                               Mean 3rd Qu.
                                                Max.
##
             329.3
     258.3
                      358.4
                              357.7
                                      383.2
                                               499.6
hist(data$wsta, breaks=50,
     main="Histogram of Weekly Wage, State Employees",
     xlab="Weekly wage")
```

Histogram of Weekly Wage, State Employees

23. wloc - Weekly Wage, Local Government Employees

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 258.3 329.3 358.4 357.7 383.2 499.6
```

```
hist(data$wsta, breaks=50,
    main="Histogram of Weekly Wage, Local Government Employees",
    xlab="Weekly wage")
```

Histogram of Weekly Wage, Local Government Employees

24. mix - Offense Mix: Face-to-face/Other

Not really sure what this variable means...

```
summary(data$mix)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.01961 0.08060 0.10095 0.12905 0.15206 0.46512

hist(data$mix, breaks=50,
    main="Histogram of Offense Mix: Face-to-face/Other",
    xlab="Weekly wage")
```

Histogram of Offense Mix: Face-to-face/Other

25. pctymle - Percent Young Male

```
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.06216 0.07437 0.07770 0.08403 0.08352 0.24871
hist(data$pctymle, breaks=50,
    main="Histogram of Percent Young Male",
    xlab="Percent of Young Male")
```

Histogram of Percent Young Male

Bi-variate Variable Analysis

Here is the correlation plot for the non-indicator variables.

Looking at the plot, looks like the following variables correlate with crmrte highly and positively:

- 1. density Makes sense since the crime rate tends to increase in more populated areas.
- 2. taxpc Somewhat makes sense since crime rate could increase in areas where there are more tax revenues collected.
- 3. wage variables Somewhat makes sense since as wages go up, there may be higher likelihood for crime.

Looks like the following variables correlate with crmrte highly and negatively: 1. prbarr - Makes sense since if probabily of arrests go down, then there are more criminals out on the streets. 2. prbconv - Makes sense since if probability of convictions go down, then there are more (potential) criminal out on the streets.

Let's focus more on the variables that correlate highly with crmrte.

