Анализ алгоритмов глубокого машинного обучения в задачах распознавания изображений

Александр Сергеевич Коротков

Научный руководитель: Д.В. Матвеев

16.06.2020

Цели и задачи работы

Цель: Изучить и проанализировать применение алгоритмов глубокого машинного обучения в задачах распознавания изображений.

Задачи:

- Изучить теоретический материал про обучение глубоких нейронных сетей и их применение в классификации изображений.
- Изучить документацию библиотеки Tensorflow.
- Изучить вопрос диагностики COVID-19 по рентгеновским снимкам грудной клетки.
- Разработать и обучить различные модели сверточных нейронных сетей на наборе рентгеновских снимков.
- Сравнить точности работы реализованных нейронных сетей.

Сверточные нейронные сети

0	1	1	Ì.	0.	0	0	٠									
0	0	1	1	1	0	0.	ļ		>	weg:		:1:	4	3	4	1
0	0	0	1	1	1	0		1	0	1		1	2.	4	.3	3
0	0	0	1	·4.,	0	0.	٠	0	1	0	, and a	1	,2·	3	4	1
0	0	1	1	0	0	0.		1	0	1	, and a	ï	3	3	1	1
0	1	1	0	0	0	0]					3	3	1	1	0
1	1	0	0	0	0	0										

Операция свертки

Сеть	Top-1	Top-5		
VGG-16	71.3%	90.1%		
VGG-19	71.3%	90.0%		
Inception V3	77.9%	93.7%		
ResNet-50 V2	76.0%	93.0%		
ResNet-101 V2	77.2%	93.8%		
ResNet-152 V2	78.0%	94.2%		
DenseNet-121	75.0%	92.3%		
DenseNet-169	76.2%	93.2%		
DenseNet-201	77.3%	93.6%		

Задача диагностики COVID-19

Норма Пневмония COVID-19

Рентгеновские снимки грудных клеток

Обучение сетей

0.8 Inception V3
ResNet-152 V2
DenseNet-201

0.4

0 2 4 6 8

Тестирование

Заключение

Итоги:

- Глубокое обучение эффективно справляется с задачей классификации изображений.
- Современные модели нейронных сетей обладают большим потенциалом для .
- Разработаны и обучены модели для диагностики COVID-19.

Что дальше?

- Адаптировать модели для задачи.
- Увеличить базу данных и повысить длительность обучения.
- Проанализировать работу сетей по другим метрикам.

Спасибо за внимание!

