Kako se lotiš: FIZ2

Patrik Žnidaršič

Prevedeno 15. april 2023

1 Kvocientne strukture

Osnovni pojem tega razdelka je definicija topologije na kvocinentnem prostoru $X/_{\sim}$. Želimo, da je kvocientna projekcija $q:X\to X/_{\sim}$ zvezna, in da je topologija na $X/_{\sim}$ čim bolj podobna tisti na X. V ta namen definiramo

$$V^{\text{odp}} \subseteq X/_{\sim} \Leftrightarrow q^*(V)^{\text{odp}} \subseteq X$$
$$Z^{\text{zap}} \subseteq X/_{\sim} \Leftrightarrow q^*(Z)^{\text{zap}} \subseteq X.$$

V splošnem q ni niti odprta niti zaprta, v posebnem primeru pa je; q je odprta natanko tedaj, ko je nasičenje vsake odprte množice odprto. Podobno velja tudi za zaprtost in zaprte množice.

Pojem kvocientne preslikave lahko še posplošimo;

Definicija. Preslikava $f: X \to Y$ je kvocientna, če je surjektivna in če velja

$$\forall V \subseteq Y . V^{\text{odp}} \subseteq Y \Leftrightarrow f^*(V)^{\text{odp}} \subseteq X.$$

Podoben pogoj bi lahko postavili tudi za zaprte podmnožice Y. Implikacija v desno v zgornji definiciji pove, da je f zvezna; implikacija v levo pa, da je KVOCIENTNA V OŽJEM SMISLU.

Pomen te razširitve je v naslednjem izreku:

Izrek. Naj bo X prostor in \sim ekvivalenčna relacija na X. Naj bo $f: X \to Y$ kvocientna preslikava. Če f naredi iste identifikacije kot \sim , potem je inducirana preslikava $\overline{f}: X/_{\sim} \to Y$ homeomorfizem.

Izrek običajno uporabimo postopoma. Prvi korak je, da si narišemo diagram situacije.

Dokazati želimo, da sta prostora $X/_{\sim}$ in Y homeomorfna. V ta namen si izmislimo predpis za f in začnemo dokazovati, da lahko uporabimo izrek. Prvo moramo preveriti, da je f sploh dobro definirana; to je implikacija v desno v zapisu $x \sim y \Leftrightarrow f(x) = f(y)$. Pogosto lahko obe implikaciji dokažemo hkrati. Implikacija v levo tu pove, da je f injektivna med ekvivalenčnimi razredi (oz. da je inducirana preslikava injektivna). Če dokažemo zveznost f, dobimo zveznost \overline{f} . Podobno nam surjektivnost f poda surjektivnost \overline{f} . Za konec nam ostane še kvocientnost v ožjem smislu.

Tega si ne želimo preverjati po definiciji, zato imamo na razpolago več kriterijev. Predpostavimo, da je $f: X \to Y$ zvezna surjekcija;

- Če je f še odprta ali zaprta, je kvocientna.
- Če je X kompakt in Y T_2 , je f zaprta, torej kvocientna.
- Če obstaja (zvezna) i, da je $f \circ i = \mathrm{id}$, je i vložitev in f kvocientna v ožjem smislu.
- Če je $(A_i)_i$ lokalno končno kompaktno pokritje X, $(f_*(A_i))_i$ lokalno končno zaprto pokritje Y, ter če sta oba prostora T_2 , je inducirana preslikava zaprta; če že vemo, da je zvezna bijekcija, sledi, da je homeomorfizem.
- Če je q surjektivna na kompaktnem podprostoru X, je $X/_{\sim}$ kompakt, zato je inducirana preslikava zaprta; če že vemo, da je zvezna bijekcija, sledi, da je homeomorfizem.

1.1 Operacije s kvocienti

Kompozitum dveh kvocientnih preslikav je znova kvocientna, velja pa tudi drug sklep; če je $g \circ f$ kvocientna in sta f, g zvezni, je g kvocientna.

Najpomembnejši pojem v tem razdelku je deljivost topoloških lastnosti. Lastnost je deljiva, če se prenese na vsak kvocient prostora, oziroma če se ohranja pri kvocientnih preslikavah. Deljivost je prikazana v naslednji tabeli;

Deljive lastnosti	Nedeljive lastnosti
povezanost (s potmi)	T_i
kompaktnost	1-števnost
separabilnost	2-števnost
lokalna povezanost (s potmi)	metrizabilnost
$\operatorname{diskretnost}$	lokalna kompaktnost
trivialnost	popolna nepovezanost

Ker ločljivostne lastnosti niso deljive, imamo lahko hude težave s predstavo kvocientnih prostorov. Za lastnost T_1 imamo na voljo karakterizacijo; $X/_{\sim}$ je T_1 natanko tedaj, ko so ekvivalenčni razredi zaprti v X.

1.2 Topološke grupe

Naj bo G grupa. Kot množico jo lahko opremimo s topologijo. Če sta operaciji množenja in invertiranja zvezni, taki strukturi pravimo TOPOLOŠKA GRUPA. Analogno lahko definiramo tudi ostale algebraične strukture; posebej pomembni so topološki obsegi $\mathbb{R}, \mathbb{C}, \mathbb{H}$. Enostavna posledica definicije je, da so translacije $g \mapsto ag$ za $a \in G$ homeomorfizmi.

Ker imajo algebraično strukturo, so topološke grupe zelo lepi prostori; veljajo namreč naslednje trditve:

- Množica $A \subseteq G$ je okolica točke $a \in G$ natanko tedaj, ko je $ba^{-1}A$ okolica točke $b \in G$.
- Če je $H \leq G$ podgrupa in okolica enote, je priprta v G.
- Če je C komponenta za povezanost, ki vsebuje enoto, je C zaprta edinka.
- Lastnosti T_0, T_1, T_2 so ekvivalentne.

Pri topologiji so grupe pomembne predvsem zaradi delovanja.

Definicija. Naj bo X topološki prostor in G topološka grupa. Delovanje G na X je zvezna preslikava $\phi: G \times X \to X$, da velja

- $\phi(1,x) = x$,
- $\phi(a,\phi(b,x)) = \phi(ab,x)$.

Tudi pri delovanjih velja, da so translacije $x \mapsto a \cdot x$ homeomorfizmi.

Delovanje grupe nam porodi ekvivalenčno relacijo

$$x \sim y \Leftrightarrow \exists a \in G . a \cdot x = y.$$

Ekvivalenčne razrede (to so množice $G \cdot x$ za $x \in X$) imenujemo ORBITE. Kvocientni prostor označimo z $X/_G$. Če je $G \subseteq X$, se ta oznaka križa s prejšnjo oznako; pri kvocientu pa ne dobimo enakega rezultata!

Če topološka grupa deluje na prostor X, je kvocientna projekcija po delovanju odprta.

1.3 Zlepki

Zlepek je kvocient direktne vsote dveh prostorov po predelu, definiranim s funkcijo f. Naj bosta X,Y prostora, $A\subseteq X$ poljubna podmnožica ter $f:A\to Y$ zvezna preslikava. Potem je zlepek

$$X \cup_f Y = X \coprod Y/_{\sim}$$

za ekvivalenčno relacijo $x \in A \sim f(x) \in Y$. V praksi to pomeni, da točke iz množice A nalepimo na njihove slike v prostoru Y.

Zlepki so lepi primeri kvocientov, ker v posebnih primerih ohranijo veliko ljubih lastnosti.

- Če sta X in Y normalna ter $A^{\operatorname{zap}}\subseteq X$, je zlepek $X\cup_f Y$ normalen.
- Če je A zaprta, in f zaprta vložitev, se ohranjata tudi 2-števnost in T_2 .

1.4 Znani kvocienti

Poznamo nekaj standardnih konstrukcij.

- Naj bo X topološki prostor. Stožec nad X je $CX = X \times [0,1]/X \times \{1\}.$
- Naj bo X topološki prostor. Suspenzija nad X je $\Sigma X = X \times [-1,1]/(X \times \{1\}, X \times \{-1\}).$

Velja $CS^{n-1} \approx B^n$ in $\Sigma S^{n-1} \approx S^n$.

2 Projektivni prostori

Definicija. Naj bo $n \in \mathbb{N}_0$ in $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}, \}$. n-razsežni projektivni prostor nad \mathbb{F} je kvocientni prostor

$$\mathbb{F}P^n = \mathbb{F}^{n+1} \setminus \{0\} / \mathbb{F}^*.$$

Običajno gledamo prostore $\mathbb{R}P^n$, ki si jih lahko predstavljamo kot običajen \mathbb{R}^n , ki smo mu dodali točke v neskončnosti. V teh točkah naj bi se sekale vzporedne premice. Velja $\mathbb{R}P^n \approx S^n/S^0 = S^n/(x \sim -x) \approx B^n/(x \sim -x, x \in S^{n-1})$.

Iz teorije vemo, da je $\mathbb{F}P^n$ homogen prostor (torej za vsak par točk obstaja homeomorfizem, ki eno točko slika v drugo). Dodatne lastnosti so naslednje:

- (lokalna) povezanost s potmi,
- separabilnost,
- 2-števnost,
- normalnost,
- kompaktnost,
- lokalna kompaktnost.

Izkaže se, da so projektivni prostori strašno trapasti za dokazovanje česarkoli. Da jih vsaj malo ukrotimo, lahko za $\mathbb{R}P^n$ uvedemo HOMOGENE KOORDINATE;

$$[x_1,\ldots,x_{n+1}]=[(x_1,\ldots,x_{n+1})].$$

Množice $U_k = \{[x_1, \dots, x_{n+1}] \mid x_k \neq 0\}$ tvorijo odprto pokritje za $\mathbb{R}P^n$. Vsak od njih je homeomorfen \mathbb{R}^n .

3 Retrakti, homotopije

Definicija. Množica $A\subseteq X$ je RETRAKT prostora X, če obstaja zvezna preslikava $r:X\to A$, da je r(a)=a za $a\in A$.

Retrakcije ohranjajo povezanost (s potmi) in kompaktnost.

Retrakt Hausdorffovega prostora je vedno zaprt.

Definicija. Naj bosta X,Y topološka prostora, ter $f,g:X\to Y$ zvezni preslikavi. Homotopija med f in g, če obstaja, je preslikava

$$H: X \times I \to Y$$

za katero velja H(x,0)=f(x) in H(x,1)=g(x). Homotopnost funkcij označimo z $f\simeq g$.

Definicija. Prostor X je Kontraktibilen, če je identiteta homotopna kaki konstantni preslikavi $X \to X$.

Vsi konveksni prostori so kontraktibilni. Primer nekontraktibilnega prostora je $S^1.$

Če je prostor kontraktibilen, je povezan s potmi.