CS-102: Discrete Structures Tutorial #5

Lattice:	a poset in which every subset consisting of two elements has a LUB and a GLB		
• Theorem:	If L_1 and L_2 are lattices, then $L = L_1 \times L_2$ is a lattice.		
• Theorem:	Let L be a lattice, and $a, b, c \in L$. Then (a) $a \lor b = b$ if and only if $a \le b$. (b) $a \land b = a$ if and only if $a \le b$. (c) $a \land b = a$ if and only if $a \lor b = b$.		
Properties of Lattices	1. (a) $a \lor a = a$ (b) $a \land a = a$ 2. (a) $a \lor b = b \lor a$ (b) $a \land b = b \land a$ 3. (a) $a \lor (b \lor c) = (a \lor b) \lor c$ (b) $a \land (b \land c) = (a \land b) \land c$ 4. (a) $a \lor (a \land b) = a$ (b) $a \land (a \lor b) = a$		
• Theorem:	Let L be a lattice, and $a,b,c \in L$ 1. If $a \le b$, then (a) $a \lor c \le b \lor c$ (b) $a \land c \le b \land c$ 2. $a \le c$ and $b \le c$ if and only if $(a \lor b) \le c$ 3. $c \le a$ and $c \le b$ if and only if $c \le (a \land b)$ 4. If $a \le b$ and $c \le d$, then (a) $a \lor c \le b \lor d$ (b) $a \land c \le b \land d$		
Isomorphic lattices:	If $f: L_1 \to L_2$ is an isomorphism from the poset (L_1, \leq_1) to the poset (L_2, \leq_2) , then L_1 is a lattice if and only if L_2 is a lattice. If a and b are elements of L_1 , then $f(a \land b) = f(a) \land f(b)$ and $f(a \lor b) = f(a) \lor f(b)$. If two lattices are isomorphic, as posets, they are isomorphic lattices.		
Bounded lattices:	isomorphic lattices. lattice that has a greatest element I and a least element 0		
> Theorem:	A finite lattice is bounded.		
Distributive	lattice that satisfies the distributive laws:		
lattice:	a \wedge (b \vee c) = (a \wedge b) \vee (a \wedge c), a \vee (b \wedge c) = (a \vee b) \wedge (a \vee c).		
Complement of <i>a</i> :	element $a \in L$ (bounded lattice) such that $a \lor a = I$ and $a \land a = 0$.		
> Theorem:	Let L be a bounded distributive lattice. If a complement exists, it is unique.		
Complemented lattice:	bounded lattice in which every element has a complement		
Boolean algebra:	a lattice isomorphic with $(P(S),\subseteq)$ for some finite set S		
• Properties of a Boolean algebra:	Tabulated separately		
• Truth tables:	Table listing the values of a function f for all elements of B_n , is called truth tables for f . They are analogous to tables that arise in logic. If x_k represent propositions, and $f(x_1, x_2,, x_n)$ represents a compound sentence constructed from the x_k 's; value 0 for a sentence implies that the sentence is false, and 1 implies that the sentence is true, then truth tables show how truth or falsity of $f(x_1, x_2,, x_n)$ depends on the truth or falsity of its component sentences x_k .		

Boolean polynomial (or expression):	Let $x_1, x_2,, x_n$ be a set of n symbols or variables. A Boolean polynomial $p(x_1, x_2,, x_n)$ in the variables x_k is defined recursively as follows: 1. $x_1, x_2,, x_n$ are all Boolean polynomials. 2. The symbols 0 and 1 are Boolean polynomials. 3. If $p(x_1, x_2,, x_n)$ and $q(x_1, x_2,, x_n)$ are two Boolean polynomials, then so are $p(x_1, x_2,, x_n) \lor q(x_1, x_2,, x_n)$ and $p(x_1, x_2,, x_n) \land q(x_1, x_2,, x_n)$. 4. If $p(x_1, x_2,, x_n) \land q(x_1, x_2,, x_n)$. 4. If $p(x_1, x_2,, x_n)$ is a Boolean polynomial, then so is $p(x_1, x_2,, x_n)$. By tradition, $p(x_1, x_2,, x_n)$ is denoted as $p(x_1, x_2,, x_n)$.		
	5. There are no Boolean polynomials in the		
	variables x_k other than those that can be obtained		
	by repeated use of rules 1, 2, 3, and 4.		
	Boolean polynomials are also called Boolean		
N N C (expressions.		
➤ • Minterm:	A Boolean expression of the form $x_1 \wedge x_2 \wedge \cdots \wedge x_n \wedge x_n$		
➤ • Theorem:	x_n , where each x_k is $x_k or x_k'$, $1 \le k \le n$		
• Theorem:	Any function $f: B_n \to B$ is produced by a Boolean expression.		
Karnaugh map:	A graphical procedure for writing a function as "or" combinations of minterms and simplifying the resultant Boolean polynomial that produces the function $f: B_n \to B$		
> n = 2	$ \begin{array}{c cccc} y' & y \\ x' & 00 & 01 \\ x & 10 & 11 \end{array} \qquad \begin{array}{c cccc} x' \wedge y' & x \wedge y' \\ \hline x \wedge y' & x \wedge y \end{array} $		
> n = 3	000 001 011 010 100 101 111 110		
> n = 4	0000 0001 0011 0010 0100 0101 0111 0110 1100 1101 1111 1110 1000 1001 1011 1010		

Properties of a Boolean algebra (L, \leq) and, the corresponding property for subsets of a set S.

(Assuming x, y, and z are arbitrary elements in L, and A, B, and C are arbitrary subsets of S. The greatest and least elements of L are denoted by I and 0, respectively)

Boolean algebra (<i>L</i> ,≤)	Subsets of a set S
1. $x \le y$ if and only if $x \lor y = y$.	1'. $A \subseteq B$ if and only if $A \cup B = B$.
2. $x \le y$ if and only if $x \land y = x$.	2'. $A \subseteq B$ if and only if $A \cap B = A$.
3. (a) $x \lor x = x$.	3'. (a) $A \cup A = A$.
(b) $x \wedge x = x$.	(b) $A \cap A = A$.
$4. (a) x \lor y = y \lor x.$	4'. (a) $A \cup B = B \cup A$.
(b) $x \wedge y = y \wedge x$.	(b) $A \cap B = B \cap A$.
5. (a) $x \lor (y \lor z) = (x \lor y) \lor z$.	5'. (a) $A \cup (B \cup C) = (A \cup B) \cup C$.
(b) $x \land (y \land z) = (x \land y) \land z$.	(b) $A \cap (B \cap C) = (A \cap B) \cap C$.
6. (a) $x \lor (x \land y) = x$.	6'. (a) $A \cup (A \cap B) = A$.
(b) $x \land (x \lor y) = x$.	$(b) A \cap (A \cup B) = A.$
$7.0 \le x \le I \text{ for all } x \text{ in } L.$	7'. $\emptyset \subseteq A \subseteq S$ for all A in $P(S)$.
8. (a) $x \vee 0 = x$.	$8'. (a) A \cup \emptyset = A.$
(b) $x \wedge 0 = 0$.	$(b) A \cap \emptyset = \emptyset.$
9. (a) $x \vee I = I$.	9'. (a) $A \cup S = S$.
(b) $x \wedge I = x$.	$(b) A \cap S = A.$
10. (a) $x \wedge (y \vee z)$	10'. (a) $A \cap (B \cup C)$
$= (x \wedge y) \vee (x \wedge z).$	$= (A \cap B) \cup (A \cap C).$
(b) $x \lor (y \land z)$	(b) $A \cup (B \cap C)$
$= (x \lor y) \land (x \lor z).$	$= (A \cup B) \cap (A \cup C).$

Boolean algebra (<i>L</i> ,≤)	Subsets of a set S
11. Every element x has a unique	11'. Every element A has a unique
complement x' satisfying	complement $ar{A}$ satisfying
$(a) x \vee x' = I.$	(a) $A \cup \overline{A} = S$.
(b) $x \wedge x' = 0$.	(b) $A \cap \bar{A} = \emptyset$.
12. (a) $0' = I$.	12'. (a) $\overline{\emptyset} = S$.
(b) $I' = 0$.	(b) $\bar{S} = \emptyset$.
13. (x')' = x.	13'. $\overline{(\overline{A})} = A$.
$14. (a) (x \wedge y) = x \vee y.$	14'. (a) $(A \cap B) = A \cup B$.
(b) $(x \lor y) = x \land y$.	(b) $(A \cup B) = A \cap B$.

<u>:</u>	,			
	✓ A binary operation on a set A is an <i>everywhere</i>			
	defined function $f: A \times A \rightarrow A$.			
	✓ It is customary to denote binary operations by			
	the symbol $*$, instead of f , and to denote the			
	element assigned to (a,b) by $a*b$, instead of			
Dinam	* (a, b) If $A = \{a_1, a_2, \dots a_n\}$, a binary operation *			
Binary operation				
operation.	A is defined by the table			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	1 1 1 1 1 1			
	$a_i \mid a_i * a_1 \cdots a_i * a_j \cdots a_i * a_n$			
~ .	$a_n \mid a_n * a_1 \cdots a_n * a_n \cdots a_n * a_n$			
Semigroup	A nonempty set S together with an associative			
	binary operation $*$ defined on S, denoted by $(S,*)$			
	or, when it is clear what the operation * is, simply			
	by S. $a * b$ is referred to as the product of a and			
	b. (S,*) is said to be commutative if * is a			
free	commutative operation.			
semigroup	If $A = \{a_1, a_2, \dots a_n\}$ is a non-empty set, A^* the			
generated by	set of all finite sequences of elements of A and			
A	catenation is a binary operation \cdot on A^* .			
	Semigroup (A^* , ·) is called the free semigroup generated by A.			
identity	An element e in a semigroup $(S,*)$ is called an			
element	identity element if			
	$e * a = a * e = a, \forall a \in S$			
monoid	A semigroup (S,*) that has an identity			
subsemigroup	Let $(S,*)$ be a semigroup; if T , a subset of S is			
	closed under the operation $*$ (i.e. $a * b \in T$			
	whenever $a, b \in T$), then $(T, *)$ is called a			
	subsemigroup of $(S,*)$.			
submonoid	Let $(S,*)$ be a monoid with identity e ; if T , a non-			
	empty subset of S , is closed under the operation $*$			
	and $e \in T$, then $(T,*)$ is called a submonoid of			
	(<i>S</i> ,*).			
isomorphism	Let $(S,*)$ and $(T,*')$ be two semigroups. A			
between two semigroups	function $f:S \to T$ is called an isomorphism from			
schingt oups	(S,*) to $(T,*')$ if it is a one-to-one			
	correspondence from S to T, and if $f(a * b) =$			
	$f(a) * f(b)$, $\forall a, b \in S$; and is denoted by $S \simeq$			
Homomombia	T. Let (S, u) and (T, u') be two comic rouns. An			
Homomorphis m and	Let $(S,*)$ and $(T,*')$ be two semigroups. An			
homomorphic	everywhere defined function $f: S \to T$ is called a			
image	homomorphism from $(S,*)$ to $(T,*')$ if $f(a*)$			
	$(b) = f(a) * f(b)$, $\forall a, b \in S$. If f is also onto,			
	we say that T is a homomorphic image of S .			

Theorem	If $a_1, a_2, \dots a_n, n \ge 3$, are arbitrary elements		
	of a semigroup, then all products of the		
	elements $a_1, a_2, \dots a_n$ that can be formed by		
	inserting meaningful parentheses arbitrarily		
	are equal.		
Theorem	(S,*) and $(T,*')$ be monoids with identities e and		
	e' , respectively. Let $f: S \to T$ be an isomorphism.		
	Then $f(e) = e'$.		
Theorem	(S,*) and $(T,*')$ be monoids with identities e		
	and e' , respectively. Let $f: S \to T$ be a		
	homomorphism from $(S,*)$ onto $(T,*')$. Then		
	f(e) = e'.		
Theorem	Let <i>f</i> be a homomorphism from a semigroup		
	(S,*) to a semigroup $(T,*')$. If S' is a semigroup		
	of $(S,*)$, then		
	$f(S') = \{t \in T t = f(s), for some s \in S\}$		
Theorem	If f is a homomorphism from a commutative		
	semigroup $(S,*)$ onto a semigroup $(T,*')$ then		
	(T,*') is also commutative.		
Theorem	If $(S,*)$ and $(T,*')$ are semigroups, then		
	$(S \times T,*'')$ is a semigroup, where $*''$ is defined		
	by $(s_1, t_1) *'' (s_2, t_2) = (s_1 * s_2, t_1 *' t_2).$		
Theorem	Let R be a congruence relation on the		
	semigroup $(S,*)$. Consider the relation $@$:		
	$S/R \times S/R \rightarrow S/R$ in which the ordered pair		
	([a], [b]) is, related to $[a * b]$, for a and b in S		
	(a) \mathscr{E} is a function from $S/R \times S/R$ to S/R , and as		
	usual $\mathscr{E}([a], [b])$ is denoted by $[a] \mathscr{E}[b]$.		
	Thus $[a] \otimes [b] = [a * b]$.		
	(b) $(S/R, \mathcal{C})$ is a semigroup.		
Corollary	Let <i>R</i> be a congruence relation on the monoid		
	$(S,*)$. If the operation \otimes in S/R is defined by		
	$[a] \otimes [b] = [a * b]$, then (S/R, \otimes) is a monoid.		
Theorem	Let R be a congruence relation on a semigroup		
	$(S,*)$, and let $(S/R, \Re)$ be the corresponding		
	quotient semigroup. The function $f_R: S \to S/R$		
	defined by $f_R(a) = [a]$ is an onto		
	homomorphism, called the <i>natural</i>		
	homomorphism.		
Theorem	(Fundamental Homomorphism Theorem) Let		
	$f: S \to T$ be a homomorphism of the semigroup		
	(S,*) onto the semigroup $(T,*')$. Let R be the		
	relation on S defined by aRb if and only if $f(a) = \int_{a}^{b} f(a) da$		
	f(b), for a and b in S . Then		
	(a) R is a congruence relation.		
	(b) $(T,*')$ and the quotient semigroup $(S/R, \mathscr{E})$		
	are isomorphic.		
	A group $(G,*)$ is a monoid, with identity e , that		
	has the additional property that for every		
	element $a \in G$ there exists an element $a' \in G$,		
	called the <i>inverse</i> of a such that		
	a'*a=a*a'=e.		
group	A group with finite number of elements, is		
group	called a finite group; order of G is $ G $		
	Note: When only one group $(G,*)$ is under		
	consideration and there is no possibility of		
	confusion, the product $a * b$ of the elements a		
	and b in the group $(G,*)$ is written as ab , and		
	(G,*) is referred to as G		
Abelian group	A group G is said to be Abelian if $ab = ba$ for		
	all elements a and b in G		

Theorem	Let G be a group. Each element a in G has only		
	one inverse in G.		
Theorem	Let G be a group and let a , b , and c be elements		
	of G. Then		
	(a) $ab = ac \Rightarrow b = c$ (left cancellation property).		
	(b) $ba = ca \Rightarrow b = c$ (right cancellation		
	property).		
Corollary	Let G be a group and $a \in G$. Define a function		
	$M_a: G \to G$ by the formula $M_a(g) = ag$. Then		
	the function M_a is one to one.		
Theorem	Let G be a group and let a and b be elements of		
	G. Then (a) $(a^{-1})^{-1} = a$. (b) $(ab)^{-1} = b^{-1}a^{-1}$.		
Theorem	Let G be a group, and let a and b be elements		
	of G. Then		
	(a) $ax = b$ has a unique solution in G .		
	(b) $ya = b$ has a unique solution in G .		
Multi-	The multiplication table of a group $G =$		
plication table	$\{a_1, a_2, \dots a_n\}$ under the binary operation * must		
of a group	satisfy the following properties:		

	1. The row labeled by e must be $a_1, a_2, \dots a_n$ a_1			
	and the column labeled by e must be $\overset{a_2}{:}$			
	a_n			
	2. each row and column is a permutation of the			
	elements $a_1, a_2, \dots a_n$ of G, and each row (and			
	each column) determines a different permutation.			
subgroup	Let <i>H</i> be a subset of a group <i>G</i> such that			
	(a) The identity <i>e</i> of <i>G</i> belongs to <i>H</i> .			
	(b) If a and b belong to H , then $ab \in H$.			
	(c) If $a \in H$, then $a^{-1} \in H$.			
	Then H is called a subgroup of G			
Theorem	Let $(G,*)$ and $(G',*')$ be two groups, and let $f: G \to G'$			
	be a homomorphism from G to G' .			
	(a) If e is the identity in G and e' is the identity in G' ,			
	then $f(e) = e'$.			
	(b) If $a \in G$, then $f(a^{-1}) = (f(a))^{-1}$.			
	(c) If H is a subgroup of G, then			
	$f(H) = \{f(h) h \in H\}$ is a subgroup of G' .			

I: Lattices

1.1. Determine which of the Hasse diagrams given in Figs.5 to 10 represent a Lattice. Justify your answer.

- 1.2. Is the poset $A = \{2, 3, 6, 12, 24, 36, 72\}$ under the relation of divisibility a lattice?
- 1.3. If L1 and L2 are the lattices shown in Fig.11, draw the Hasse diagram of L1 × L2 with the product partial order.

- 1.4. A lattice, L is said to be modular if, $a, b, c \in L$; $a \le c$ implies that $a \lor (b \land c) = (a \lor b) \land c$.
 - (a) Show that a distributive lattice is modular.

modular.

lattice.

- (b) Show that the lattice shown in Fig.12 is a non-distributive lattice that is
- 1.5. Given D_n is the set of all positive divisors on n ($n \in$ Z^{+}). Find the complement of each element in (a) D_{20} (b) D_{30} (c) D_{42} . Which of these have a complemented
- 1.6. Determine whether each lattice given in Figs. 13 to 16 is distributive, complemented, or both.

1.7. In a distributed lattice, show that $(a \wedge b) \vee (a \wedge c) \vee$ $(b \wedge c) = (a \vee b) \wedge (a \vee c) \wedge (b \vee c).$

II: Finite Boolean Algebras

2.1. Determine whether the poset with Hasse diagram given in Figs. 17 to 24 is a Boolean algebra. Justify your answer.

2.2. Determine whether the poset given below is a Boolean algebra. Justify your answer.

- (a) D_{60}
- (b) D_{210}
- (c) D_{385}
- (d) D_{646}
- 2.3. Let $A = \{a, b, c, d, e, f, g, h\}$ and R be the relation defined by

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- a. Show that (A, R) is a poset.
- b. Does the poset (A, R) have a least element and a greatest element? If so, identify them.
- c. Show that the poset (A, R) is complemented and list all pairs of complements.
- d. Prove or disprove that (A, R) is a Boolean algebra.
- 2.4. Let $A = \{a, b, c, d, e, f, g, h\}$ and R be the relation defined by the matrix M_R . Prove or disprove that (A, R) is a Boolean algebra

$$M_R = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

III: Functions of Boolean Algebra

3.1. Give the Boolean function described by the logic diagram given in Figs.25 and 26. Use the properties of a Boolean algebra to refine the functions to use minimal number of variables and operations. Draw the logic diagrams for the new function.

3.2. Let $S(f) = \{b_1, b_2, ..., b_k\}$, and for each i, let $f_i : B_n \to B$ be the function defined by

$$f_{i(b_i)} = 1$$

$$f_{i(b)} = 0, if b \neq b_i$$

Let $f: B_3 \to B$ with

 $S(f) = \{(0,0,0), (0,1,0), (1,0,0), (1,1,0), (1,1,1)\}.$ Write the reduced Boolean expression for f using Karnaugh Map.

3.3. Let $g: B_4 \to B$ with min-terms $x' \land y' \land z \land w'$, $x' \land y \land z \land w'$, $x \land y' \land z \land w$, $x \land y \land z \land w'$ and $x \land y \land z \land w$. Write the reduced Boolean expression for g using Karnaugh Map.

IV: Binary Operation on a Set

- 4.1. Determine whether the description of * is a valid definition of a binary operation on the set as given below: -
 - (a) On R, where a*b is ab (i.e. multiplication).
 - (b) On Z^+ , where a*b is a/b.
 - (c) On Z, where a*b is a^b .
 - (d) On \mathbb{Z}^+ , where a*b is a-b.
 - (e) On R, where a*b is $a\sqrt{b}$.
- 4.2. Determine whether the binary operation * is commutative and whether it is associative on the set:-
 - (a) On \mathbb{Z}^+ , where a*b is a+b+2.
 - (b) On Z, where a*b is ab.
 - (c) On R, where a*b is $a \times |b|$.
 - (d) On the set of nonzero real numbers, where a*b is a/b.
 - (e) On R, where a*b is the minimum of a and b.
 - (f) On the set of $n \times n$ Boolean matrices, where $\mathbf{A} * \mathbf{B}$ is $\mathbf{A} \odot \mathbf{B}$.
 - (g) On R, where a*b is ab/3.
 - (h) On R, where a*b is ab+2b.
 - (i) On a lattice A, where a*b is $a \lor b$.

(j) On the set of 2×1 matrices, where

$$\begin{bmatrix} a \\ b \end{bmatrix} * \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a+c \\ b+d+1 \end{bmatrix}.$$

(k) On the set of rational numbers, where $a * b = \frac{a+b}{2}$

- 4.3. Prove or disprove that the binary operation on Z^+ of a * b = GCD(a, b) has the idempotent property.
- 4.4. Prove or disprove the binary operation on that the set of rational numbers, where $a * b = \frac{a+b}{2}$ has the idempotent property.
- 4.5. Fill in the following table so that the binary operation * is commutative and has the idempotent property.

4.6. Consider the binary operation * defined on the set $A = \{a, b, c, d\}$ by the following table.

*	а	b	С	d
а	a	С	b	d
b	d	a	b	C
с	с	d	а	а
d	d	b	a	c

Compute

- (a) c * d and d * c.
- (b) b * d and d * b.
- (c) a * (b * c) and (a * b) * c.
- (d) Is * commutative? associative?
- 4.7. Define a binary operation on a set S by a * b = b. Is * associative? commutative? idempotent?

V: Semigroups

5.1 Let $A = \{a, b\}$. Which of the following tables define a semigroup on A? Which define a monoid on A?

(a)
$$\begin{array}{c|ccccc}
 & * & a & b \\
\hline
 a & a & b \\
 b & a & a \\
 & * & a & b \\
 a & a & b \\
 b & b & b \\
\end{array}$$

5.2. Do the following tables define a semigroup or a monoid?

5.3. For the following, determine whether the set together with the binary operation is a semigroup, a monoid, or neither. If it is a monoid, specify the identity. If it is a semigroup or a monoid, determine if it is commutative.

- (a) Z^+ , where * is defined as ordinary multiplication.
- (b) Z^+ , where a * b is defined as max (a, b).
- (c) Z^+ , where a * b is defined as GCD(a, b).
- (d) Z^+ , where a * b is defined as a.
- (e) The nonzero real numbers, where * is ordinary multiplication.
- (f) P(S), with S a set, where * is defined as \cap .
- (g) A Boolean algebra B, where a * b is defined as $a \wedge b$.
- (h) $S = \{1,2,3,6,12\}$, where a * b is defined as HCF(a,b).
- (i) $S = \{1,2,3,6,9,18\}$, where a * b is defined as LCM(a,b).
- (j) Z, where a * b = a + b ab.
- (k) The even integers, where a * b is defined as $\frac{ab}{2}$
- (1) The set of 2×1 matrices, where

$$\begin{bmatrix} a \\ b \end{bmatrix} * \begin{bmatrix} c \\ d \end{bmatrix} = \begin{bmatrix} a+c \\ b+d+1 \end{bmatrix}$$

- (m) The set of integers of the form 3k + 1, $k \in \mathbb{Z}_+$, where * is ordinary multiplication.
- 5.4. Complete the following table to obtain a semigroup

5.5. Complete the following table so that it defines a monoid.

- 5.6. Let $S = \{a, b\}$. Write the operation table for the semigroup S^S , where S^S is the set of all functions from S to S. Is the semigroup commutative?
- 5.7. Let $S = \{a, b\}$. Write the operation table for the semigroup (P(S), U).
- 5.8. Let $A = \{a, b, c\}$, consider the semigroup $(A *, \circ)$, where \cdot is the operation of catenation. If $\alpha = abac$, $\beta = cba$, and $\gamma = babc$, compute (a) $(\alpha \circ \beta) \circ \gamma$ (b) $\gamma \circ (\alpha \circ \alpha)$ (c) $(\gamma \circ \beta) \circ \alpha$
- 5.9. What is required for a subset of the elements of a semigroup to be a sub-semigroup?
- 5.10. What is required for a subset of the elements of a monoid to be a sub-monoid?
- 5.11. Prove or disprove that the intersection of two sub-semigroups of a semigroup (S,*) is a sub-semigroup of (S,*).
- 5.12. Prove or disprove that the intersection of two sub-monoids of a monoid (S,*) is a sub-monoid of (S,*).
- 5.13. Let $A = \{0,1\}$, and consider the semigroup (A^*, \cdot) , where \cdot is the operation of catenation. Let T be the subset of A^* consisting of all sequences having an odd number of 1's. Is (T, \cdot) a sub-semigroup of (A, \cdot) ?
- 5.14. Let $A = \{a,b\}$. Are there two semigroups (A, *) and (A, *') that are not isomorphic?
- 5.15. An element x in a monoid is called an idempotent if $x^2 = x * x = x$. Show that the set of all idempotents in a commutative monoid S is a submonoid of S.
- 5.16. Let $(S_1, *_1)$, $(S_2, *_2)$, and $(S_3, *_3)$ be semigroups and $f: S_1 \to S_2$ and $g: S_2 \to S_3$ be homomorphisms. Prove that $g \circ f$ is a homomorphism from S_1 to S_3 .
- 5.17. Let $(S_1, *_1)$, $(S_2, *_2)$, and $(S_3, *_3)$ be semigroups, and let $f: S_1 \to S_2$ and $g: S_2 \to S_3$ be isomorphisms. Show that $g \circ f: S_1 \to S_3$ is an isomorphism.
- 5.18. Let R^+ be the set of all positive real numbers. Show that the function $f: R^+ \to R$ defined by $f(x) = \ln(x)$ is an isomorphism of the semigroup (R^+,\times) to the semigroup (R,+), where \times and + are ordinary multiplication and addition, respectively.

- 5.19. Let (S,*) be a semigroup and A, a finite subet of S. Define \hat{A} to be the set of all finite products of elements in A.
 - (a) Prove that \hat{A} is a subsemigroup of (S,*).
 - (b) Prove that \hat{A} is the smallest subsemigroup of (S,*)

that contains A.

VI: Products and Quotients of Semigroups

- 6.1. Let (S,*) and (T,*) be commutative semigroups. Show that $S \times T$ is also a commutative semigroup.
- 6.2. Let (S,*) and (T,*) be semigroups. Show that the function $f: S \times T \to S$ defined by f(s,t) = s is a homomorphism of the semigroup $S \times T$ onto the semigroup S.
- 6.3. Prove that if (S,*) and (T,*) are semigroups, then $(S \times T,*)$ is a semigroup, where * is defined by $(s_1,t_1)*(s_2,t_2)=(s_1*s_2,t_1*t_2)$.
- 6.4. Determine whether the relation R on the semigroup S is a congruence relation for the following: -
 - (a) S = Z under the operation of ordinary addition; aRb if and only if a + b is even.
 - (b) S is the set of all rational numbers under the operation of addition; a/b R c/d if and only if ad = bc
 - (c) S = Z under the operation of ordinary addition; aRb if and only if $a \equiv b \pmod{3}$.
 - (d) $S = Z^+$ under the operation of ordinary multiplication; aRb if and only if $|a b| \le 2$.
- 6.5 Given $S = \{3k + 1, k \in Z^+\}$ is a semigroup under the operation of ordinary multiplication, and R an equivalence relation on S defined by aRb if and only if $a \equiv b \pmod{5}$. Identify the quotient semigroups S/R.
- 6.6. Show that the composition of two congruence relations on a semigroup need not be a congruence relation.
- 6.7. Describe the quotient semigroup for S and R given S = Z under the operation of ordinary addition; aRb if and only if $a \equiv b \pmod{3}$.

- 6.8. Describe the quotient semigroup for S = Z with ordinary addition and R defined by aRb if and only if $a \equiv b \pmod{5}$.
- 6.9. Consider the monoid $S = \{e, a, b, c\}$ with the following operation table.

Consider the congruence relation

$$R = \{(e, e), (e, a), (a, e), (a, a), (b, b), (b, c), (c, b), (c, c)\}$$
 on S .

- (a) Write the operation table of quotient monoid S/R.
- (b) Describe the natural homomorphism $f_R: S \to S/R$.
- 6.10. Given S = Z under the operation of ordinary addition; aRb if and only if a and b are both even or a and b are both odd. Describe the quotient semigroup for S and R. Prove or disprove that Z_2 is isomorphic to this semigroup.
- 6.11. Consider the semigroup $S = \{a, b, c, d\}$ with the following operation table.

Consider the congruence relation R on S given by $R = \{(a, a), (a, b), (b, a), (b, b), (c, c), (c, d), (d, c), (d, d)\}.$

- (a) Write the operation table of the quotient semigroup S/R.
- (b) Describe the natural homomorphism $f_R: S \to S/R$.
- (c) Prove or disprove that Z_4 is isomorphic to the semigroup.
- 6.12. Prove the fundamental homomorphic theorem.

VII: Groups and subgroups

- 7.1. Determine whether the set together with the binary operation is a group. If it is a group, determine if it is Abelian; specify the identity and the inverse of a generic element.
 - (a) Z, where * is ordinary multiplication.
 - (b) Q, the set of all rational numbers under the operation of addition.
 - (c) R, under the operation of multiplication.
 - (d) Z+, under the operation of addition.
 - (e) The set of odd integers under the operation of multiplication.

- (f) The set P(S), where S is a nonempty set, $A * B = A \oplus B$. (the symmetric difference of A and B, defined as the set of all elements that belong to A or to B, but not to both A and B)
- 7.2 Let $S = \{x | x \in \mathbb{R} \text{ and } x = 0, x = -1\}$ consider the following functions $f_i : S \to S, 1 \le i \le 6$; $f_1(x) = x$, $f_2(x) = 1 x$, $f_3(x) = \frac{1}{x}$, $f_4(x) = \frac{1}{1-x}$, $f_5(x) = 1 \frac{1}{x}$, $f_6(x) = \frac{x}{x-1}$. Show that $G = \{f_1, f_2, f_3, f_4, f_5, f_6\}$ is a group under the operation of composition. Give the multiplication table of G.
- 7.3. Consider S_3 , the group of symmetries of the equilateral triangle, and the group of the previous question, Prove or disprove that these two groups are isomorphic.
- 7.4. Let (G,*) be the Abelian group, with $G = \{set\ of\ non-zero\ real\ numbers\}$ and $a*b = \frac{ab}{2}$. Solve the following equations:

 (a) 3*x = 4 (b) y*5 = -2
- 7.5. Let $i = \sqrt{-1}$, $S = \{1, -1, i, -i\}$ Consider the group (S,*), where * is complex number multiplication. Is this group Abelian? 17. Find all subgroups of group (S,*).
- 7.6. Consider the square shown opposite. The symmetries of the square are as follows:

Rotations f_1 , f_2 , f_3 , and f_4 through 0°, 90°, 180°, and 270°, respectively, f_5 and f_6 , reflections about the lines v and h, respectively f_7 and f_8 , reflections about the diagonals d_1

respectively. Write the multiplication table of D, the group of symmetries of the square.

- 7.7. Let G be a finite group with identity e, and let a be an arbitrary element of G. Prove that there exists a nonnegative integer n such that $a^n = e$.
- 7.8. Let *G* be the group of integers under the operation of addition, and let $H = \{3k | k \in Z\}$. Is *H* a subgroup of *G*?
- 7.9. Let G be an Abelian group with identity e, and let $H = \{x | x^2 = e\}$. Show that H is a subgroup of G.
- 7.10. Let G be a group, and let $H = \{x | x \in G \text{ and } xy = yx \ \forall y \in G\}$. Prove that H is a subgroup of G.

- 7.11. Let A_n be the set of all even permutations in the set of all permutations of n elements, S_n . Show that A_n is a subgroup of S_n .
- 7.12. Find all subgroups of D, the group of symmetries of the square.
- 7.13. Prove that the function f(x) = |x| is a homomorphism from the group G of nonzero real numbers under multiplication to the group G of positive real numbers under multiplication.
- 7.14. Let G be a group. Show that the function $f: G \to G$ defined by $f(a) = a^2$ is a homomorphism if and only if G is Abelian.
- 7.15. Let G be a group and let a be a fixed element of G. Show that the function $f_a: G \to G$ defined by $f_a(x) = axa^{-1}$, for $x \in G$, is an isomorphism.
- 7.16. Let G be a group. Show by mathematical induction that if ab = ba, then $(ab)^n = a^n b^n$ for $n \in \mathbb{Z}^+$.
- 7.17. Prove that in the multiplication table of a group every element appears exactly once in each row and column. Also prove that this condition is necessary, but not sufficient, for a multiplication table to be that of a group.