Арифметическое кодирование с адаптивной оценкой вероятностей алгоритмом А

5 января 2023 г. 1:25

Общая идея адаптивного кодирования

- Кодеру не доступны сообщения, которые появятся в будущем, т.е., при кодировании x_i , сообщения x_{i+1}, x_{i+2}, \dots считаются неизвестными.
- По последовательности уже закодированных сообщений $x_0, x_1, ..., x_{i-1}$ кодер оценивает вероятность для символа x_i и строит для него код в соответствии с этой оценкой.
- После декодирования сообщений $x_0, x_1, ..., x_{i-1}$ декодер оценивает вероятность для символа x_i так же как и кодер, после чего

Пусть необходимо передать ${\it x}=(x_1,...,x_n)$ арифметическим кодером. Для этого каждому символу x_t необходимо сопоставить $\hat{p}_t(a)$ – оценку вероятности того, что $x_t = a, a = 1, ..., M$. Предположим, что $x_1,...,x_{t-1}$ уже переданы и известны декодеру. Тогда

$$\hat{p}_t(a) = rac{ au_t(a)}{t}$$
, где $au_t(a)$ число сивмолов a в $\underline{x_1,...,x_{t-1}}$ t - сколько всего символов уже было закодировано $\hat{\tau}_t(a)+1$

$$\hat{
ho}_t(a) = rac{ au_t(a)+1}{t+M}$$
, поправка, чтобы избежать нулевых вероятностей.

$$\hat{p}_t(a) = \frac{\tau_t(a) + 1/2}{t + M/2}$$
. – Gapan bapuars nonpakku

Алгоритмы А и D - в них не надо использовать смещение вероятностей, описанное выше

- Можно использовать подход основанный на так называемом esc-символе
- В этом случае, мы добавляем дополнительный символ в алфавит. Этот символ передаётся, если на вход приходит символ, который

Общая идея:

- ullet Используется оценка $p_t(a)=rac{ au_t(a)}{t+1}$, если $au_t(a)>0$
- ullet Передаётся "esc", если $au_t(a) = 0$, $p_t(esc) = rac{1}{t+1}$

Алгоритм А:

$$\hat{
ho}_t(a) = \left\{egin{array}{ll} rac{ au_t(a)}{t+1}, & ext{если } au_t(a) > 0; \ rac{1}{t+1}rac{1}{M-M_t}, & ext{если } au_t(a) = 0, \end{array}
ight.$$

 M_t – число различных символов, встретившихся в последовательности длины *t*.

• В Алгоритме A появление esc символа оценивается с меньшей вероятностью, чем это происходит на начальном этапе кодирования. Поэтому, имеет смысл модифицировать оценки вероятностей так, чтобы увеличить вероятность $p_t(esc)$.

Это решает алгоритм D

Theorem

При кодировании дискретного постоянного источника с энтропией Н, средняя скорость адаптивного арифметического кодирования удовлетворяет неравенству

$$\bar{R} \le H + \frac{M}{2} \frac{\log(n+1) + K}{n}$$

где К не зависит от длины последовательности п.

esc-cumben duns