CC142: ELECRONICS WORKSHOP

CREDITS = 2 (L=0, T=0, P=2)

Course Objective:

- The goal of this course is to introduce basic principles of electronics workshop and establish
 The fundamentals of electronics components based projects as required for electronics and
 Communication engineering students.
- 2. The course aims to make the student familiar with principles of electronics workshop like Various electronics components, analog/digital troubleshooting, soldering techniques and PCB Design, etc.

Teaching and Assessment Scheme:

Teaching Scheme			Credits	Assessment Scheme				
L	Т	P	C	Theory		Prac	tical	Total Marks
				ESE	CE	ESE	CE	
0	0	2	2	0	0	30	20	50

Course Contents:

Unit No.	Topics	Teaching Hours
1	Introduction to Electronics Components:	
		07
	Resistor, Capacitor, Inductor, Diode, LEDs, Transistor, MOSFET, Thyristor,	
	Relays, Op-Amp, ICs, Breadboard etc. Soldering techniques, stripping and	
	tinning stranded wires, mounting components- plated through hole and	
	surface mount technology, hand wire soldering, de-soldering techniques,	
	electrostatic discharge, SMD soldering techniques	
2	Analog Troubleshooting:	
		08
	Electronics troubleshooting basics, troubleshooting with Oscilloscopes,	
	signal injection and signal tracing, system analysis, diagnostics methods,	
	servicing close loop circuits, troubleshooting noise and intermittent.	

Unit No.	Topics					
3	Digital Troubleshooting:					
		06				
	Introduction to Superconductivity, General properties of superconductor					
	Types of Superconductors, High Temperature Superconductors (only					
	Definition), BCS Theory for Superconductivity, Applications of					
	Superconductor					
4	Study of Soldering Techniques and PCB Design:					
		06				
	Students are expected to select any experiment. Soldering and testing is to be					
	done for the selected experiment. Perform simulation of the same experiment					
	by using CAD tools. Schematic as well as PCB design is to be carried out					
	using CAD tools, Packages of Integrated Circuits (ICs) i.e. SOIC,					
	PDIP,TQFP, MLFP, CBGA etc					
5	Design and Implementation of Analog/Digital/Mix Mode Project:					
		08				
	Students are expected to design any analog/digital/mix mode application of					
	their choice. PCB design, fabrication of PCB, testing and implementation					
	should be done. Documentation of the project is to be done in standard IEEE					
	format. Project report should include abstract in maximum 100 words,					
	keywords, introduction, design, simulation, implementation, results,					
	conclusion and references. Example: Design and Implementation of DC					
	Power Supply. (any other project can be taken in place of this example)					

References Books:

- 1. Jean Andrews; "Enhanced Guide to managing and maintain your PC", Edition, 2001, Course Technology Thomsan learning publishers.
- 2. Rashid M.H.; "SPICE for Circuits and electronics using PSpice"; Prentice Hall.
- 3. Boshsart;"Printed Circuit Boards: Design and Technology" Tata McGraw Hill OrCAD/PCB II, User's Guide.

Course Outcomes (COs):

At the end of this course, students will be able to:

- 1. Identification and testing of basic electronics Components.
- 2. Use of analog and digital instruments for troubleshooting.

- 3. Understand the operating function about basic instruments like CRO, Digital Storage Oscilloscope Power Supply, Function Generator and Digital Multi meter etc.
- 4. Design and development of PCB and soldering of components.
- 5. Build a small electronic circuits.