63.01 / 83.01 Química

Departamento de Química

G6B: Electrólisis Ej 5

- 5) Si circula 1 Faraday por un litro de una solución cuya concentración inicial es 2,5 M de sulfato de cobre(II), ¿cuál será la molaridad del sulfato de cobre(II) al cabo de este pasaje
- a) si el ánodo es de cobre?
- b) si el ánodo es de platino?

Escribir las ecuaciones de las reacciones anódica y catódica que se producen en cada caso.

a) Especies presentes: Cu(ánodo)/Cu²⁺/SO₄²⁻/H₂O

Posibles reducciones:

$$Cu^{2+}(ac) + 2 e^{-} \rightarrow Cu(s)$$
 $E^{0}= 0.34 v$

$$2 H_2O(I) + 2e- \rightarrow H_2(g) + 2HO^{-}(ac)$$
 $E^0 = -0.83 \text{ v}$

Se reduce el de mayor potencial de reducción. Se oxida el de menor potencial de reducción.

Posibles oxidaciones:

Cu(s)
$$\rightarrow$$
 Cu²⁺(ac) + 2 e- E⁰= 0,34 v

$$H_2O(I) \rightarrow O_2(g) + 4H^+(ac) + 4e^-$$
 E⁰= 1,23 v

El SO₄²⁻ se acerca al ánodo (+) por su carga, pero no puede oxidarse mas.

En el ánodo se oxida el Cu, y en el cátodo se reduce el Cu²⁺.

Como los cationes Cu²⁺ se producen en el ánodo y se gastan en el cátodo, su concentración permanece constante.

 $[CuSO_4]_f = 2.5 M$

- 5) Si circula 1 Faraday por un litro de una solución cuya concentración inicial es 2,5 M de sulfato de cobre(II), ¿cuál será la molaridad del sulfato de cobre(II) al cabo de este pasaje
- a) si el ánodo es de cobre?
- b) si el ánodo es de platino?

Escribir las ecuaciones de las reacciones anódica y catódica que se producen en cada caso.

b) Especies presentes: Cu²⁺/SO₄²⁻/H₂O

Posibles reducciones:

$$Cu^{2+}(ac) + 2 e^{-} \rightarrow Cu(s)$$
 $E^{0}= 0.34 v$

$$2 H_2O(I) + 2e- \rightarrow H_2(g) + 2HO^{-}(ac)$$
 $E^0 = -0.83 \text{ v}$

Se reduce el de mayor potencial de reducción. Se oxida el de menor potencial de reducción.

Posibles oxidaciones:

$$H_2O(I) \rightarrow O_2(g) + 4H^+(ac) + 4e^ E^0 = 1,23 \text{ v}$$

El SO₄²⁻ se acerca al ánodo (+) por su carga, pero no puede oxidarse mas.

En el ánodo se oxida el agua produciendo $O_2(g)$, y en el cátodo se reduce el Cu^{2+} .

$$[Cu^{2+}]_i = 2.5 M$$

$$Cu^{2+}(ac) + 2 e \rightarrow Cu(s)$$

1 Faraday implica que circuló 1 mol de e-. Según la hemirreacción de reducción, significa que se perdió 0,5 mol de Cu²⁺ de la solución.

En 1 L de solución:

moles iniciales = 2,5 moles

moles gastados = 0,5 moles

moles finales = 2 moles

$$[Cu^{2+}]_f = 2 M$$

