```
In [1]:
          import pandas as pd
          import numpy as np
          import seaborn as sns
          import matplotlib.pyplot as plt
          import warnings
          warnings.filterwarnings('ignore')
In [2]:
          df = pd.read csv("https://raw.githubusercontent.com/dsrscientist/dataset1/master/titanic train.csv", error bad li
          df.head()
           Passengerld Survived Pclass
                                                                        Sex Age SibSp Parch
                                                                                                    Ticket
                                                                                                             Fare Cabin Embarked
Out[2]:
                                                               Name
         0
                             0
                                                 Braund, Mr. Owen Harris
                                                                       male
                                                                            22.0
                                                                                                  A/5 21171
                                                                                                            7.2500
                                                                                                                    NaN
                                                                                                                                S
                                       Cumings, Mrs. John Bradley (Florence
                     2
                                                                                                                                С
                             1
                                                                      female 38.0
                                                                                     1
                                                                                           0
                                                                                                  PC 17599 71.2833
                                                                                                                    C85
                                                           Briggs Th...
                                                                                                  STON/O2.
         2
                     3
                             1
                                    3
                                                   Heikkinen, Miss. Laina
                                                                      female 26.0
                                                                                     0
                                                                                           0
                                                                                                            7.9250
                                                                                                                    NaN
                                                                                                                                S
                                                                                                   3101282
                                       Futrelle, Mrs. Jacques Heath (Lily May
         3
                              1
                                                                      female
                                                                           35.0
                                                                                     1
                                                                                           0
                                                                                                    113803 53.1000
                                                                                                                   C123
                                                                                                                                S
                                                                Peel)
         4
                     5
                             0
                                    3
                                                  Allen, Mr. William Henry
                                                                       male 35.0
                                                                                     0
                                                                                           0
                                                                                                    373450
                                                                                                           8.0500
                                                                                                                    NaN
                                                                                                                                S
In [3]:
          df.shape
Out[3]: (891, 12)
In [4]:
          df.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 891 entries, 0 to 890
         Data columns (total 12 columns):
          # Column
                            Non-Null Count Dtype
          0
              PassengerId 891 non-null
                                              int64
          1
              Survived
                            891 non-null
                                              int64
          2
              Pclass
                            891 non-null
                                              int64
          3
              Name
                            891 non-null
                                              object
          4
                            891 non-null
                                              object
              Sex
          5
              Age
                            714 non-null
                                              float64
          6
                            891 non-null
                                              int64
              SibSp
          7
              Parch
                            891 non-null
                                              int64
          8
              Ticket
                            891 non-null
                                              object
          9
              Fare
                            891 non-null
                                              float64
                            204 non-null
          10 Cabin
                                              object
          11 Embarked
                            889 non-null
                                              object
         dtypes: float64(2), int64(5), object(5)
         memory usage: 83.7+ KB
In [5]:
          df.isnull().sum()
Out[5]: PassengerId
                           0
                           0
         Survived
         Pclass
                           0
         Name
                           0
         Sex
                           0
                         177
         Age
         SibSp
                           0
         Parch
                           0
         Ticket
                           0
                           0
         Fare
         Cabin
                         687
         Embarked
                           2
         dtype: int64
```

As we can see we have null values in Age and Cabin columns. Now we will fill null values with the help of Mean.

```
df['Age'].fillna(int(df['Age'].mean()), inplace=True)
df
```

Out[6]:	Passengerld Survived Pclass Nam		Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked			
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
	886	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	NaN	S
	887	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	B42	S
	888	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	29.0	1	2	W./C. 6607	23.4500	NaN	S
	889	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	C148	С
	890	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	NaN	Q

891 rows × 12 columns

```
In [7]:
         df.isnull().sum()
Out[7]: PassengerId
                          0
        Survived
                         0
        Pclass
        Name
                         0
        Sex
        Age
        SibSp
                         0
        Parch
        Ticket
                         0
        Fare
                         0
        Cabin
                        687
        Embarked
        dtype: int64
```

Now we can see there is no null values in Age columns.

EDA

500

400

Lets try to analyze the target

In [12]:
 df = df.drop("Cabin",axis = 1) ## as we can see we dont need cadin for the prediction.
 df

2]:		Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
	0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	S
	1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	С
	2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	S
	3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	S
	4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	S
88	86	887	0	2	Montvila, Rev. Juozas	male	27.0	0	0	211536	13.0000	S
88	87	888	1	1	Graham, Miss. Margaret Edith	female	19.0	0	0	112053	30.0000	S
88	88	889	0	3	Johnston, Miss. Catherine Helen "Carrie"	female	29.0	1	2	W./C. 6607	23.4500	S
88	89	890	1	1	Behr, Mr. Karl Howell	male	26.0	0	0	111369	30.0000	С
89	90	891	0	3	Dooley, Mr. Patrick	male	32.0	0	0	370376	7.7500	Q

891 rows × 11 columns

df = df.drop("Name",axis = 1) ## as we can see we dont need Name for the prediction.
df

Out[13]:		Passengerld	Survived	Pclass	Sex	Age	SibSp	Parch	Ticket	Fare	Embarked
_	0	1	0	3	male	22.0	1	0	A/5 21171	7.2500	S
	1	2	1	1	female	38.0	1	0	PC 17599	71.2833	С
	2	3	1	3	female	26.0	0	0	STON/O2. 3101282	7.9250	S
	3	4	1	1	female	35.0	1	0	113803	53.1000	S
	4	5	0	3	male	35.0	0	0	373450	8.0500	S
	886	887	0	2	male	27.0	0	0	211536	13.0000	S
	887	888	1	1	female	19.0	0	0	112053	30.0000	S
	888	889	0	3	female	29.0	1	2	W./C. 6607	23.4500	S
	889	890	1	1	male	26.0	0	0	111369	30.0000	С
	890	891	0	3	male	32.0	0	0	370376	7.7500	Q

891 rows × 10 columns

In [14]: df = df.drop("Sex",axis = 1) ## as we can see we dont need Sex for the prediction.

Out[14]:		Passengerld	Survived	Pclass	Age	SibSp	Parch	Ticket	Fare	Embarked
	0	1	0	3	22.0	1	0	A/5 21171	7.2500	S
	1	2	1	1	38.0	1	0	PC 17599	71.2833	С
	2	3	1	3	26.0	0	0	STON/O2. 3101282	7.9250	S
	3	4	1	1	35.0	1	0	113803	53.1000	S

```
4
              5
                                3 35.0
                                                   0
                                                                373450
                                                                         8.0500
                                                                                         S
886
            887
                        0
                                2 27.0
                                            0
                                                   0
                                                                211536 13.0000
                                                                                         S
887
            888
                                1 19.0
                                                   0
                                                                112053 30.0000
                                                                                         S
888
            889
                        0
                                3 29.0
                                                   2
                                                             W./C. 6607 23.4500
                                                                                         S
                                            1
                                                                                         С
889
            890
                                1 26.0
                                            0
                                                   0
                                                                111369 30.0000
890
            891
                                3 32.0
                                                   0
                                                                370376
                                                                                         Q
```

891 rows × 9 columns

In [15]: df = df.drop("Ticket",axis = 1) ## as we can see we dont need Ticket for the prediction.

Out[15]: Passengerld Survived Pclass Age SibSp Parch Fare Embarked 3 22.0 0 0 7.2500 S 1 38.0 0 71.2833 С 2 3 3 26.0 7.9250 S 1 0 0 3 4 35.0 0 53.1000 S 5 3 35.0 8.0500 S 886 887 0 2 27.0 0 0 13.0000 S

1 19.0

3 29.0

1 26.0

3 32.0

1

0

891 rows × 8 columns

888

889

890

891

887

888

889

890

In [16]:
 df = df.drop("Embarked",axis = 1) ## as we can see we dont need Embarked for the prediction.
 df

0 30.0000

2 23.4500

0 30.0000

7.7500

S

S

С

Q

Out[16]: Passengerld Survived Pclass Age SibSp Parch Fam

0

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
0	1	0	3	22.0	1	0	7.2500
1	2	1	1	38.0	1	0	71.2833
2	3	1	3	26.0	0	0	7.9250
3	4	1	1	35.0	1	0	53.1000
4	5	0	3	35.0	0	0	8.0500
886	887	0	2	27.0	0	0	13.0000
887	888	1	1	19.0	0	0	30.0000
888	889	0	3	29.0	1	2	23.4500
889	890	1	1	26.0	0	0	30.0000
890	891	0	3	32.0	0	0	7.7500

891 rows × 7 columns

```
In [17]: # Add two columns to make a new column
    df['Family'] = df['SibSp'] + df['Parch']
    print('Updated DataFrame:')
    print(df)
```

Updated DataFrame:

•	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare	Family
0	1	0	3	22.0	1	0	7.2500	1
1	2	1	1	38.0	1	0	71.2833	1
2	3	1	3	26.0	0	0	7.9250	0
3	4	1	1	35.0	1	0	53.1000	1
4	5	Θ	3	35.0	0	0	8.0500	0

```
886
              887
                                   2 27.0
                                                        0 13.0000
                                                0 0 30.0000
1 2 23.4500
0 0 30.0000
                                  1 19.0
887
              888
                                                                            0
                                  3 29.0
1 26.0
888
              889
                           0
                                                                            3
889
              890
                           1
                                                                            0
890
              891
                                  3 32.0
                                                       0 7.7500
                                                                            0
                                                 0
```

[891 rows x 8 columns]

```
In [18]:
    df = df.drop("Parch", axis = 1)
    df
```

Out[18]: Passengerld Survived Pclass Age SibSp Fare Family 3 22.0 7.2500 1 38.0 1 71.2833 2 3 3 26.0 7.9250 0 1 35.0 1 53.1000 4 5 3 35.0 8.0500 0 886 887 2 27.0 0 13.0000 887 888 1 19.0 0 30.0000 0 888 889 3 29.0 1 23.4500 3

1 26.0

3 32.0

0 30.0000

0 7.7500

891 rows × 7 columns

890

891

889

890

```
In [19]:
    df = df.drop("SibSp", axis = 1)
    df
```

0

Out[19]:		Passengerld	Survived	Pclass	Age	Fare	Family
	0	1	0	3	22.0	7.2500	1
	1	2	1	1	38.0	71.2833	1
	2	3	1	3	26.0	7.9250	0
	3	4	1	1	35.0	53.1000	1
	4	5	0	3	35.0	8.0500	0
	886	887	0	2	27.0	13.0000	0
	887	888	1	1	19.0	30.0000	0
	888	889	0	3	29.0	23.4500	3
	889	890	1	1	26.0	30.0000	0
	890	891	0	3	32.0	7.7500	0

891 rows × 6 columns

In [20]: df.shape

Out[20]: (891, 6)

Statistical Summary

In [21]: df.describe()

Out[21]:		Passengerld	Survived	Pclass	Age	Fare	Family
	count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
	mean	446.000000	0.383838	2.308642	29.560236	32.204208	0.904602

std	257.353842	0.486592	0.836071	13.005010	49.693429	1.613459
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	22.000000	7.910400	0.000000
50%	446.000000	0.000000	3.000000	29.000000	14.454200	0.000000
75%	668.500000	1.000000	3.000000	35.000000	31.000000	1.000000
max	891.000000	1.000000	3.000000	80.000000	512.329200	10.000000

```
#Heatmap using df.describe

import matplotlib.pyplot as plt
plt.figure(figsize=(22,7))
sns.heatmap(df.describe(), annot=True, linewidths=0.1, linecolor='black',fmt=".2f")
```

Out[22]: <AxesSubplot:>

Checking for nulls

```
In [24]:
    sns.heatmap(df.isnull())
    plt.title("Null Values")
    plt.show
```

Out[24]: <function matplotlib.pyplot.show(close=None, block=None)>


```
In [26]:
            #Data distribution:
            #Dist Plot:
            plt.figure(figsize = (15,8), facecolor = 'white')
            plotnumber = 1 #initializing 1 to a name
            for column in df:
                if plotnumber <= 11:</pre>
                     ax = plt.subplot(3,4,plotnumber) #In 3 rows I want 4 columns to be plotted
                     sns.distplot(df[column])
                     plt.xlabel(column, fontsize = 20)
                     plotnumber += 1
                     plt.tight_layout()
                                                3.0
                                                                                                                  0.10
             0.0010
                                                                                  2.5
                                                2.5
                                                                                                                  0.08
                                                                                  2.0
             0.0008
                                              Density
1.5
                                                                                                                 € 0.06
                                                                                <u>ال</u>ا 1.5
            0.0006
                                                                                                                  0.04
                                                                                  1.0
            0.0004
                                                1.0
                                                                                                                  0.02
                                                                                  0.5
            0.0002
                                                0.5
```

0.0

Pclass

0.00

Age

plt.subplot(ncol, nrows,i+1)

plt.tight_layout()

sns.boxplot(df[collist[i]], color = "green", orient = 'v')

Most of the data is skewed

checking for class imbalance

```
In [27]:
#Lets check if there is class imbalance

df["Survived"].hist(grid = False)
   plt.title("Dead vs Alive")
   plt.show()
```

Dead vs Alive

No class imbalance good to proceed

correlation

```
In [28]:
    correlation = df.corr()
    plt.figure(figsize=(14, 8))
    sns.heatmap(correlation, annot=True, linewidths=0.1, linecolor='black', fmt="0.2f")
    plt.title("Correlation Matrix")
    plt.show()
```


Outcome of Correlation;

Fare has 22 percent corr. with the target column which can be considered as a Good bond. Age has 25 percent corr. with the target column which can be considered as a good Bond. Pclass has 7 percent corr. with the target column which can be considered as a Weak bond. Survived has 2 percent corr. with the target column which can be considered as a very Weak bond. Passengerid has 4 percent corr. with the target column which can be considered as a Weak bond.

```
In [29]:
    plt.figure(figsize=(22,7))
    correlation['Survived'].sort_values(ascending=False).drop(['Survived']).plot(kind='bar',color='r')

Out[29]: <AxesSubplot:>
```

01 - 00 -

Observation: Min Correlation: PassengerID; Max Correlation: Survived

lets divide data into features and label

```
In [31]:
           x = df.drop("Survived",axis = 1)
           y = df["Survived"]
Out[31]:
               Passengerld Pclass Age
            0
                                3 22.0
                                         7.2500
                                1 38.0
                                        71.2833
            2
                         3
                                3 26.0
                                         7.9250
                         4
            3
                                1 35.0 53.1000
             4
                         5
                                3 35.0
                                         8.0500
           886
                       887
                                2 27.0 13.0000
                                                     0
           887
                       888
                                1 19.0
                                        30.0000
           888
                       889
                                3 29.0 23.4500
                                                     3
           889
                       890
                                1 26.0 30.0000
                                                     0
           890
                       891
                                3 32.0
                                        7.7500
                                                     0
         891 rows × 5 columns
```

Skewness

power_tranform function

```
In [33]:
          # we will remove the skewness using power tranform function
          from sklearn.preprocessing import power_transform
          x_{new} = power_{transform}(x, method = 'yeo-johnson')
          x = pd.DataFrame(x new,columns=x.columns)
In [34]:
          x.skew()
Out[34]: PassengerId
                       -0.283201
         Pclass
                       -0.441438
                        0.069162
         Age
         Fare
                       -0.040329
                        0.539231
         Family
         dtype: float64
```

All values are under +/-0.5, skewness is handled.

Checking outliers:

Outliers Removal

ZScore Technique:

```
df_new=x[(z<3).all(axis=1)]
print(x.shape)
print(df_new.shape)</pre>
```

```
(891, 5)
(874, 5)
```

```
In [39]: ## Percentage data loss:
    loss_percent=(891-874)/891*100
    print(loss_percent)
```

1.9079685746352413

Data loss is in the acceptable range, good to proceed.

Finding Best Random state:

```
In [40]:
         from sklearn.linear model import LogisticRegression
          from sklearn.metrics import accuracy_score
          from sklearn.metrics import confusion_matrix,classification_report
          from sklearn.model_selection import train_test_split
In [41]:
          lr = LogisticRegression()
In [42]:
         for i in range (0,1000):
              x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.20,random_state=i)
              lr.fit(x train,y train)
              pred train=lr.predict(x_train)
              pred_test=lr.predict(x_test)
              if round(accuracy_score(y_train,pred_train)*100,1) == round(accuracy_score(y_test,pred_test)*100,1):
                  print(f"At random state {i}, The model performs very well")
                  print(f"At random state {i}, the training accuracy is:- {accuracy_score(y_train,pred_train)*100}")
                  print(f"At random state {i}, the testing accuracy is:- {accuracy score(y test,pred test)*100}")
                  print("\n")
         At random state 224, The model performs very well
         At random state 224, the training accuracy is:- 71.48876404494382
         At random state 224, the testing accuracy is:- 71.50837988826815
         At random state 432, The model performs very well
         At random state 432, the training accuracy is:- 70.92696629213484
         At random state 432, the testing accuracy is:- 70.94972067039106
         At random state 529, The model performs very well
         At random state 529, the training accuracy is:- 70.92696629213484
         At random state 529, the testing accuracy is:- 70.94972067039106
         At random state 536, The model performs very well
         At random state 536, the training accuracy is:- 70.92696629213484
         At random state 536, the testing accuracy is:- 70.94972067039106
         At random state 663, The model performs very well
         At random state 663, the training accuracy is:- 70.36516853932584
         At random state 663, the testing accuracy is:- 70.39106145251397
         At random state 678, The model performs very well
         At random state 678, the training accuracy is:- 71.48876404494382
         At random state 678, the testing accuracy is:- 71.50837988826815
         At random state 720, The model performs very well
         At random state 720, the training accuracy is:- 70.92696629213484
         At random state 720, the testing accuracy is:- 70.94972067039106
         At random state 758, The model performs very well
         At random state 758, the training accuracy is:- 70.36516853932584
         At random state 758, the testing accuracy is:- 70.39106145251397
         At random state 873, The model performs very well
```

```
At random state 873, the training accuracy is:- 69.80337078651685
At random state 873, the testing accuracy is:- 69.83240223463687
At random state 899, The model performs very well
At random state 899, the training accuracy is:- 70.36516853932584
At random state 899, the testing accuracy is:- 70.39106145251397
At random state 930, The model performs very well
At random state 930, the training accuracy is:- 70.92696629213484
At random state 930, the testing accuracy is:- 70.94972067039106
At random state 969, The model performs very well
At random state 969, the training accuracy is:- 72.0505617977528
At random state 969, the testing accuracy is:- 72.06703910614524
At random state 990, The model performs very well
At random state 990, the training accuracy is:- 70.92696629213484
At random state 990, the testing accuracy is:- 70.94972067039106
```

Best training accuracy is 72.05%, best testing accuracy is 72.06% on Random_state 969

Creating Train-Test-split

```
In [43]:
         x_train, x_test, y_train, y_test = train_test_split(x,y,test_size = .20, random_state = 969)
In [44]:
          print('Training Survived - \n', y train.value counts())
         Training Survived -
          0
             444
             268
         Name: Survived, dtype: int64
```

Logistic Regression

```
In [45]:
         from sklearn.linear_model import LogisticRegression
         LR = LogisticRegression()
         LR.fit(x_train, y_train)
         predlr = LR.predict(x_test)
         print("Accuracy",accuracy_score(y_test, predlr)*100)
         print(confusion matrix(y test,predlr))
         print(classification_report(y_test,predlr))
        Accuracy 72.06703910614524
         [[85 20]
         [30 44]]
                      precision recall f1-score support
                          0.74
                                            0.77
                          0.69
                                    0.59
                                             0.64
                                                        74
                                             0.72
                                                       179
            accuracy
                        0.71 0.70
                                            0.71
                                                        179
           macro avg
                                             0.72
                          0.72
                                  0.72
                                                        179
        weighted avg
```

for Logistic Regression, from above Confusion matrix, TP = 85, FP = 20, FN = 30, TN = 44. accuracy = 72%.

Decision Tree Classifier

```
dt = DecisionTreeClassifier()
dt.fit(x_train, y_train)
preddt = dt.predict(x test)
print("Accuracy",accuracy_score(y_test, preddt)*100)
print(confusion_matrix(y_test,preddt))
print(classification_report(y_test,preddt))
Accuracy 60.33519553072626
[[69 36]
 [35 39]]
             precision
                        recall f1-score
                                            support
          0
                  0.66
                          0.66
                                     0.66
                                                105
          1
                 0.52
                          0.53
                                     0.52
                                                74
                                     0.60
                                                179
   accuracy
  macro avg
                 0.59
                            0.59
                                     0.59
                                                179
               0.60
weighted avg
                           0.60
                                     0.60
                                                179
```

for Decision Tree Classifier, from above Confusion matrix, TP= 74, FP = 31, FN = 34, TN = 40. accuracy = 64%.

Random Forest Classifier

```
In [47]:
         from sklearn.ensemble import RandomForestClassifier
         rf = RandomForestClassifier()
         rf.fit(x_train, y_train)
         predrf = dt.predict(x_test)
         print("Accuracy",accuracy_score(y_test, predrf)*100)
         print(confusion matrix(y test,predrf))
         print(classification_report(y_test,predrf))
        Accuracy 60.33519553072626
         [[69 36]
         [35 39]]
                     precision
                                recall f1-score support
                         0.66
                                   0.66
                                             0.66
                                                       105
                          0.52
                                                       74
                  1
                                  0.53
                                            0.52
                                            0.60
                                                      179
            accuracy
                       0.59 0.59 0.59
                                                       179
           macro avg
                         0.60
                                            0.60
                                                       179
        weighted avg
                                   0.60
```

for Random Forest Classifier, from above Confusion matrix, TP = 74, FP = 31, FN = 34, TN = 40. accuracy = 64%.

0.73

0.70

0.71

0.73 0.69 0.73 0.73

SVM

accuracy

macro avg

weighted avg

```
In [48]:
         from sklearn.svm import SVC
         svc = SVC()
         svc.fit( x_train, y_train)
         ad_pred = svc.predict(x_test)
         print("Accuracy", accuracy score(y test, ad pred)*100)
         print(confusion_matrix(y_test,ad_pred))
         print(classification_report(y_test,ad_pred))
         Accuracy 72.62569832402235
         [[92 13]
          [36 38]]
                      precision recall f1-score support
                                              0.79
                   0
                           0.72
                                     0.88
                                                          105
                           0.75
                                   0.51
                                              0.61
                                                          74
```

179

179

179

for SVM, from above Confusion matrix, TP = 92, FP = 13, FN = 36, TN = 38. accuracy = 73%. Lets check the CV scores for the above models, for overfitting.

Cross Validation

```
In [49]:
          from sklearn.model_selection import cross_val_score
          scr=cross val score(LR, x, y, cv=5)
          print("Cross Validation score of LR model:", scr.mean())
         Cross Validation score of LR model: 0.7015943757454021
In [50]:
          scr=cross_val_score(dt, x, y, cv=5)
          print("Cross Validation score of DT model:", scr.mean())
         Cross Validation score of DT model: 0.640870001883121
In [51]:
          scr=cross val score(rf, x, y, cv=5)
          print("Cross Validation score of rf model:", scr.mean())
         Cross Validation score of rf model: 0.6947649237336011
In [52]:
          scr=cross_val_score(svc, x, y, cv=5)
          print("Cross Validation score of SVC model:", scr.mean())
         Cross Validation score of SVC model: 0.7161509007595255
```

Considering good CV score, SVC is performing better among all, we go ahead with SVC.

Hyper Parameter Tuning

Accuracy of SVC after Hyper parameter tuning is 72.6%

ROC AUC Plot

```
In [56]: from sklearn.metrics import plot_roc_curve
```

```
plot_roc_curve(GCV.best_estimator_,x_test,y_test)
plt.title("ROC AUC plot")
plt.show()
```


Final Accuracy is 72.6% & AUC score is 78%. which is good.

Saving the model in Pickle format

```
import pickle
filename = 'Titanic_project.pkl'
pickle.dump(rf, open(filename, 'wb'))

import numpy as np
a= np.array(y_test)
predicted=np.array(rf.predict(x_test))
df_com = pd.DataFrame({"Original":a,"Predicted":predicted}, index=range(len(a)))
df_com.head()
```

Out[58]:		Original	Predicted
	0	1	0
	1	0	0
	2	0	0
	3	0	0
	4	0	0

We can visualize there is no error in the Titanic prediction using the above model. Overall Our Model is Good.

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js