

第十二章 直流稳压电源

- 12.1 直流稳压电源的组成
- 12.2 整流电路
- 12.3 滤波电路*
- 12.4 稳压电路

§ 18.1 半导体直流电源

整流变压器:将交流电网电压u₁变为合适的交流电压u₂

整流电路:将交流电压॥2变为脉动的直流电压॥3

滤波电路:将脉动直流电压u3转变为平滑的直流电压u4

稳压电路:清除电网波动及负载变化的影响,保持输出电压u。的稳定

§ 18.2 整流电路

任务: 把交流电压转变为直流脉动电压

原理: 利用二极管的单向导电性

为分析方便, 在整流电路中常将二极管作理想元件处理,即认为二极管的正向导通电阻为零, 反向电阻为无穷大。

单相半波整流电路

1. 电路结构

2. 工作原理

u 正半周, V_a>V_b

二极管D导通

u 负半周, $V_a < V_b$

二极管D 截止

3. 工作波形

4. 参数计算

(1) 整流电压平均值 U_0

$$U_0 = \frac{1}{2\pi} \int_0^{\pi} \sqrt{2} U \sin \omega \ t d(\omega \ t)$$
$$= \frac{\sqrt{2}}{2} U = 0.45 U_{\text{AS}}$$

(2) 整流电流平均值 I_0

$$I_0 = \frac{U_0}{R_L} = 0.45 \frac{U}{R_L}$$

(3) 流过每管电流平均值 I_{D}

$$I_{\rm D} = I_{\rm O}$$

(4) 每管承受的最高反向电压 U_{DRM}

$$U_{\rm DRM} = \sqrt{2}U$$

5. 整流二极管的选择

平均电流 I_D 与最高反向电压 U_{DRM} 是选择整流二极管的主要依据

最大整 流电流

选管时应满足:

 $I_{\rm OM} > I_{\rm D}$, $U_{\rm RWM} > U_{\rm DRM}$

反向工作 峰值电压

P158页:例18.1.1

优点:结构简单,使用的元件少

缺点: 只利用了电源的半个周期, 电源利用率低,

输出的直流成分比较低;输出波形的脉动大。

单相桥式整流电路

2. 工作原理

u 正半周, $V_a>V_b$, 二极管 D_1 、 D_3 导 通, D_2 、 D_4 截止

3. 工作波形

单相桥式整流电路

1. 电路结构

2. 工作原理

u 负半周, V_a<V_b,
二极管 D₂、 D₄ 导
通, D₁、 D₃ 截止

4. 参数计算

(1) 整流电压平均值 U_0

$$U_0 = \frac{1}{\pi} \int_0^{\pi} \sqrt{2} U \sin \omega \ t d(\omega \ t)$$

$$= 0.9U$$

(2) 整流电流平均值 I_0

$$I_0 = \frac{U_0}{R_L} = 0.9 \frac{U}{R_L}$$

(3) 流过每管电流平均值 I_{D}

$$I_{\rm D} = \frac{1}{2}I_{\rm o}$$

(4) 每管承受的最高反向电压 U_{DRM}

电源变压器得到充分利用

优点:

输出直流电压高 $U_0 = 0.9U$

脉动较小 $U_{\rm DRM} = \sqrt{2}U$

二极管承受的最大反向电压较低

简化画法:

集成整流桥块

§12.3 滤波电路

交流电压

脉动 直流电压

直流电压

结构特点: 电容与负载 R_L 并联

或电感与负载RL串联

利用储能元件电容两端的电压(或通过电感中的电流)不能突变的特性,滤掉整流电路输出电压中的交流成份,保留其直流成份,达到平滑输出电压波形的目的。

电容滤波

 $u > u_{\rm C}$ 时,二极管导通,电源在给负载 $R_{\rm L}$ 供电的同时也给电容充电, $u_{\rm C}$ 增加, $u_{\rm o} = u_{\rm C}$ 。

 $u < u_C$ 时,二极管截止,电容通过负载 R_L 放电, u_C 按指数规律下降, $u_o = u_C$ 。

其它滤波电路

§ 12.4 直流稳压电源

WCH, Department of Electrical & Electronic Technology, SAEE, USTB

稳压管稳压电路

适用于输出电压固定、输出电流不大、且负载变动不大的场合

WCH, Department of Electrical & Electronic Technology, SAEE, USTB

串联型稳压电路

电源电压或负载电阻的变化使输出电压 U_0 升高时

输出电压调节范围:

$$U_- \approx U_+$$
 即
$$U_Z = \frac{R_1'' + R_2}{R_1 + R_2} U_0$$

$$U_O = \frac{R_1 + R_2}{R''_1 + R_2} U_Z$$

集成稳压电源

(d)

应用电路举例

输入与输出端之间的电压不得低于2V!(内

WCH, Department of Electrical & Electronic Technology, SAEE, USTB

选版大陆

78系列输出电压可调的电路

$$U_{23} = U_{XX}$$

$$U_{+} \approx U_{-}$$

$$U_{R1+Rp\pm}=U_{XX}$$

