

Description

The VSM30P10 uses advanced trench technology and design to provide excellent $R_{DS(ON)}$ with low gate charge. It can be used in a wide variety of applications. It is ESD protested.

General Features

- V_{DS} =-100V,I_D =-30A
 - $R_{DS(ON)}$ <58m Ω @ V_{GS} =-10V (Typ:44m Ω)
 - $R_{DS(ON)}$ <65m Ω @ V_{GS} =-4.5V (Typ:48m Ω)
- Super high dense cell design
- Advanced trench process technology
- Reliable and rugged
- High density cell design for ultra low On-Resistance

Application

Portable equipment and battery powered systems

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VSM30P10-T2	VSM30P10	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-100	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	-30	А	
Drain Current-Continuous(T _C =100℃)	I _D (100℃)	-21	Α	
Pulsed Drain Current	I _{DM}	-150	А	
Maximum Power Dissipation	P _D	120	W	
Derating factor		0.8	W/℃	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 2)	R _{θJc}	1.25	°C/W
--	------------------	------	------

Electrical Characteristics (T_C=25 °C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	,		1			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-100	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-100V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±10	μA
On Characteristics (Note 3)						
Gate Threshold Voltage	V _{GS(th)}	V _{DS} =V _{GS} ,I _D =-250μA	-1.5	-1.9	-2.5	V
Drain-Source On-State Resistance	В	V _{GS} =-10V, I _D =-15A	-	44	58	mΩ
Diain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-4.5V, I _D =-15A	-	48	65	mΩ
Forward Transconductance	G FS	V _{DS} =-50V,I _D =-10A	5	-	-	S
Dynamic Characteristics (Note4)						
Input Capacitance	C _{lss}	V _{DS} =-50V,V _{GS} =0V,	-	3810	-	PF
Output Capacitance	Coss	V _{DS} =-50V,V _{GS} =0V, F=1.0MHz	-	93	-	PF
Reverse Transfer Capacitance	C _{rss}	F-1.0IVID2	-	91	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	17	-	nS
Turn-on Rise Time	t _r	V _{DD} =-50V,I _D =-15A	-	80	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =-10 V , R_{GEN} =9.1 Ω	-	45	-	nS
Turn-Off Fall Time	t _f		-	65	-	nS
Total Gate Charge	Qg	V - 50VI - 45A	-	136	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =-50V, I_{D} =-15A, V_{GS} =-10V	-	22	-	nC
Gate-Drain Charge	Q_{gd}	V _{GS} 10V	-	26	-	nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-10A	-	-	-1.2	V
Diode Forward Current (Note 2)	Is	-	-	-	-30	А
Reverse Recovery Time	t _{rr}	t _{rr} TJ = 25°C, IF =-15A		90	-	nS
Reverse Recovery Charge	Qrr	di/dt = 100A/µs ^(Note3)	-	70	-	nC
Forward Turn-On Time	t _{on}	Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD)				

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- **3.** Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production

Test Circuit

1) E_{AS} Test Circuit

2) Gate Charge Test Circuit

3) Switch Time Test Circuit

Typical Electrical and Thermal Characteristics (Curves)

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

(V) tue 20 20 25 50 75 100 125 150 175 T_C Case Temperature (°C)

Figure 7 Capacitance vs Vds

Figure 9 Drain Current vs Case Temperature

Figure 8 Safe Operation Area

Figure 10 Power De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance