(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT OPERATION TREATY (PCT

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 8 July 2004 (08.07.2004)

PCT

(10) International Publication Number WO 2004/056874 A2

(51) International Patent Classification7:

C07K 16/28

(21) International Application Number:

PCT/EP2003/014756

(22) International Filing Date:

22 December 2003 (22.12.2003)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/435,893 03000615.9 20 December 2002 (20.12.2002) US 15 January 2003 (15.01.2003) EP

(71) Applicant (for all designated States except US): XERION PHARMACEUTICALS AG [DE/DE]; Sauerbruchstr. 50, 81377 München (DE).

- (71) Applicant (for US only): TUFTS UNIVERSITY [US/US]; 136 Harrison Avenue, Boston, MA 02111 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): UNGER, Christine, Margarete [DE/DE]; Arndt Strasse 11, 80469 München (DE). BESTE, Gerald [DE/DE]; Helmpertstr. 2, 80687

München (DE). ZEHETMEIER, Carolin [DE/DE]; St. Martin Strasse 3, 81541 München (DE). LAIN, Blanca [ES/US]; 100 Washington St. Apt. 7, Brighton, MA 02135 (US). TORELLA, Claudia [IT/DE]; Brodstr. 6A, 81829 München (DE). NIEWÖHNER, Jens [DE/DE]; Wengleinstrasse 3, 81477 München (DE). JAY, Daniel, G. [US/US]; 45 Bigelow Street, Brighton, MA 02135 (US). EUSTACE, Brenda, K. [US/US]; 95 Coolidge Street #2, Brookline, MA 02446 (US). KNAUER, Roland [DE/DE]; Gabelsberger Strasse 63, 80333 München (DE). JENSEN,

Kristian, Hobold [DK/DE]; Daiserstrasse 50, 81371

(74) Agents: FLEUCHAUS, Andrea et al.; Melchiorstr.42, 81479 München (DE).

München (DE).

(81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.

[Continued on next page]

(54) Title: NEUROPILIN-1 INHIBITORS

(57) Abstract: The present invention relates to molecules interfering with the function of neuropilin-1 in the context of angiogenesis and the treatment of cancer. Molecules, polypeptides, antibodies, compositions and methods are provided that are useful for reducing, inhibiting or treating angiogenesis, the invasion of blood vessels into tumors, and/or the invasion or the metastatic potential of specific tumor cells. Additionally, a method is provided that allows identifying molecules, which interfere with the functionality of neuropilin-1. Furthermore, a method is provided that allows determining whether a naturally occurring tumor cell depends on functional neuropilin-1 for its invasiveness and/or metastatic potential.

(84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Declaration under Rule 4.17:

— of inventorship (Rule 4.17(iv)) for US only

Published:

 without international search report and to be republished upon receipt of that report

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

10

20

25

Neuropilin-1 Inhibitors

The present invention relates to molecules interfering with the function of neuropilin-1 in the context of angiogenesis and the treatment of cancer. Molecules, polypeptides, antibodies, compositions and methods are provided that are useful for reducing, inhibiting or treating angiogenesis, the invasion of blood vessels into tumors, and/or the invasion or the metastatic potential of specific tumor cells. Additionally, a method is provided that allows identifying molecules, which interfere with the functionality of neuropilin-1. Furthermore, a method is provided that allows determining whether a naturally occurring tumor cell depends on functional neuropilin-1 for its invasiveness and/or metastatic potential.

15 BACKGROUND OF THE INVENTION

Malignant tumors shed cells, which migrate to new tissues and create secondary tumors. The process of generating secondary tumors is called metastasis and is a complex process in which tumor cells colonize sites distant from the primary tumor. Recently, research has been focused on identifying specific proteins involved in metastasis, which can be used as a basis for better diagnostic or improved therapeutic strategies. Cell adhesion molecules (CAM's), which mediate cell-cell or cell-matrix interactions, have been proposed to be involved in the process of metastasis. Cell adhesion in normal cells involves interactions between numerous cell surface proteins. Adhesive interactions are known to involve interactions between substances surrounding the cell (e.g., extracellular matrix molecules, for example fibronectin, vitronectin and laminin) and extracellular adhesion receptors. It has also become apparent that cell adhesion molecules fulfill much more complex functions, which may result in cells acquiring the ability to proliferate and invade host tissues.

10

15

20

25

30

Liotta (1986) Cancer Res. 46, 1-7 has proposed a three-step hypothesis for the process of metastasis: The first step is tumor cell attachment via cell surface receptors. The anchored tumor cell next secretes hydrolytic enzymes or induces host cells to secrete enzymes, which can degrade the matrix locally. Matrix lysis most likely takes place in a highly localized region close to the tumor cell surface. The third step is tumor cell locomotion into the region of the matrix modified by proteolysis. Thus, invasion of the matrix is not merely due to passive growth pressure but requires active biochemical mechanisms. Degradation of the surrounding normal tissue is a central feature of invasiveness of malignant tumors.

The growth of a tumor or metastasis can also be described as the growth of undifferentiated cells that divide rapidly, and expand three-dimensionally to create a new mass of tissue. The cells within this mass require oxygen and nutrients. As the tumor grows, many cells within it are too far from the nearest blood vessel to maintain adequate concentrations of oxygen. When oxygen levels are decreased (a condition known as hypoxia), certain genes are activated. One of these genes, hypoxia-inducible factor 1 (HIF-1) in turn binds to the vascular endothelial growth factor (VEGF) gene and helps to activate VEGF gene expression. In addition to hypoxia, other factors can activate VEGF expression in tumor cells. For example, certain hormones or growth factors have been shown to activate VEGF expression, and some studies suggest that the activation of certain oncogenes or the inactivation of certain tumor suppressor genes may also lead to VEGF gene expression.

The VEGF protein is secreted by tumor cells and activates VEGF receptors on vascular endothelial cells. These cells begin to form new blood vessels into the tumor, providing a supply of oxygen and nutrients that support tumor growth.

This process of the growth of new vessels from pre-existing vasculature is called angiogenesis and generally occurs during the development of all tissues.

Angiogenesis is understood herein, furthermore, as the sprouting of new blood vessels, which is dependent on endothelial cell proliferation and migration. It occurs at specific times in development and growth, e.g. during development of the

10

15

20

embryo or wound healing. (Folkman et al. (1987) Science 235, 442-447, Folkman (1991) J. Natl. Cancer Inst. 82, 4-6).

Moreover, it has been shown that angiogenesis is involved in the pathogenesis of disorders dependent on the growth of new blood vessels, the most relevant of which are tumor growth and growth of metastases (Hanahan et al. (1996) Cell 86, 353-364).

Vascular endothelial growth factor (VEGF) is considered to be the prime regulator for both physiological and pathological angiogenesis, acting through VEGF receptors on endothelial cells and mediating angiogenic signals (Dvorak et al. (1999) Curr. Top. Microbiol. Immunol. 237, 97-132, Neufeld et al. (1999) FASEB J. 13, 9-22).

Angiogenesis depends essentially on the expression of vascular endothelial growth factors to stimulate endothelial cell growth and formation of new blood vessels. This family of proteins consists of six members (VEGF A-E and PIGF) of which VEGF-A is the most important for angiogenesis. There are seven known splice variants of VEGF-A of which six are pro-angiogenic. The VEGF isoforms that are produced by alternative splicing from a single gene containing nine exons (Ferrara, et al., Endocr. Rev., 13:18-32 (1992); Tischer, et al., J. Biol. Chem., 806:11947-11954 (1991); Ferrara, et al., Trends Cardio Med., 3:244-250 (1993); Polterak, et al., J. Biol. Chem., 272:715 1 7158 (1997)). Human VEGF isoforms consists of monomers of 121, 145, 165, 189, and 206 amino acids, each capable of making an active homodimer (Polterak et al., J Biol. Chem, 272:7151-7158 (1997); Houck, et al., Mol. Endocrinol., 8:1806-1814 (1991)). The VEGF121 and VEGF165 isoforms are the most abundant.

As said before, VEGF stimulates specifically VEGF receptors and thereby induces VEGF receptor tyrosine kinases, KDR/Flk- 1 and/or Flt- 1, which are mostly expressed by endothelial cells (EC) (Terman, et al., Biochem. Biophys. Res. Commun., 187:1579-1586 (1992); Shibuya, et al., Oncogene, 5:519-524 (1990); De Vries, et al., Science, 265:989-991 (1992); Gitay-Goran, et al., J. Biol.

10

Chem., 2 87:6003-6096 (1992); Jakernan, et al., J Clin. Invest., 89:244-253 (1992)).

It appears that VEGF activities such as mitogenicity, chernotaxis, and induction of morphological changes are mediated by KDR/Flk- I but not Flt- 1, even though both receptors undergo phosphorylation upon binding of VEGF (Millauer, et al., Cell, 72:835-846 (1993); Waltenberger, et al., J Biol. Chem., 269:26988-26995 (1994); Seetharam, et al., Oncogene, 10: 135-147 (1995); Yoshida, et al., Growth Factors, 7:131-138 (1996)). Recently, Soker et al., identified a new VEGF receptor which is expressed on EC and various tumor-derived cell lines such as breast cancer-derived MDA-MB-231 (23 1) cells (Soker, et al., J. Biol. Chem., 271:5761-5767 (1996)).

This receptor requires the VEGF isoform to contain the portion encoded by exon 7. For example, although both VEGF121 and VEGF I65 bind to KDR/Flk- I and Flt- 1, only VEGF 165 binds to the new receptor.

Thus, this it seems that the new receptor is an isoform-specific receptor. It has been named the VEGF165 receptor (VEGF165R). It will also bind the 189 and 206 isoforms. VEGF165R has a molecular mass of approximately 130 kDa, and it binds VEGF165 with a Kd of about 2 X 10⁻¹⁰ M, compared with approximately 5 X 10⁻¹² M for KDR/Flk- 1. In structure-function analysis, it was shown directly that VEGF 165 binds to VEGF165R via its exon 7 encoded domain, which is absent in VEGF121 (Soker, et al., J Biol. Chem., 271:57615767 (1996)).

By isolating the VEGF165R related DNA it was discovered that this novel VEGF receptor is structurally unrelated to Flt- I or KDR/Flk- I and is expressed not only by endothelial cells but also by non-endothelial cells, including tumor cells.

Furthermore, in ascertaining the function of the VEGF165R it has been discovered that this receptor has been identified as a cell surface mediator of neuronal cell guidance and called neuropilin (Kolodkin et al., Cell 90:753-762 (1997)).

Neuropilin-1 is a transmembrane glycoprotein with a mass of approximately 130kDa. Neuropilin-1 is a multifunctional protein. Fujisawa et al. (1998) Cur.

10

15

20

25

30

Opin. Neurobiol. 8, 587-592 describe that neuropilin-1 acts as a receptor for the semaphorin/collapsin family of neural guidance mediators. Furthermore, the expression of neuropilin-1 in endothelial cells enhances the binding of VEGF165 to VEGFR-2 and VEGF165—induced chemotaxis. According to Gagnon et al. and WO 99/29729, neuropilin-1 acts as a co-receptor that enhances VEGFR-2 activity (Gagnon et al. (2000) PNAS 97, 2573-2578).

Neuropilin-1 is also expressed on certain tumor cells of ektodermal origin, like cells derived from prostate and breast carcinoma as well as from melanoma. In experiments with breast cancer cells VEGF₁₆₅ stimulated breast cancer cell motility in a dose-dependent manner (WO 99/29729). A comparison between two types of rat prostate carcinoma cells, AT2.1 cells and AT3.1 cells showed that the highly motile AT3.1 cells expressed more neuropilin-1 than the less motile AT2.1 cells. Collapsin-1, a ligand of neuropilin-1, inhibited the basal migration of PAE cells (porcine aortic endothelial cells) when cells were transfected with the neuropilin-1 cDNA to overexpress neuropilin-1. All this was interpreted by the authors of WO 99/29729 to suggest that neuropilin-1 expression was associated with a motile phenotype of tumor cells. However, it is dangerous and speculative to assign a physiological role for a protein based on a study in which it has been overexpressed, and it is an accepted standard in science to interpret results of overexpression studies with great care.

As discussed in WO99/29729 as well as in Soker et al., Cell (1998) 92, 735-745, neuropilin-1 can act as a co-receptor of VEGFR-2 for VEGF₁₆₅ to mediate the effects of this regulator for both physiological and pathological angiogenesis. VEGFR-2 is expressed in endothelial and haematopoietic precursors, endothelial cells, nascent haematopoietic stem cells and the umbilical cord stroma only (for review see Robinson and Stringer J. Cell Sci. (2001) 114, 853-865). If the cancerrelated function of neuropilin-1 was dependent on its role in VEGF-signaling - as suggested by, e.g., WO 99/29729 - then this cancer-related function of neuropilin-1 should only be relevant for tissues which express neuropilin-1 and VEGFR-2 together in the presence of VEGF. The expression of VEGFR-2 is, however, lim-

10

15

25

ited to certain tissues. It is therefore unclear whether neuropilin-1 plays any cancer-related role in those tissues, which do not express VEGFR-2. The authors of WO 99/29729 showed that VEGF₁₆₅ stimulated 231 breast cancer cell motility in a dose dependent-manner. They postulated that tumor cells, which do not express the VEGF receptors KDR or Flt-1, are responsive to VEGF₁₆₅ via the neuropilin-1.

The determination of the physiological role of a protein is a prerequisite for deciding whether interference with this protein's function might be a possible avenue for the treatment of disease or not. It must be kept in mind that in a physiological setting, that is to say for example in a naturally occurring tumor cell of a patient, neuropilin-1 is overexpressed together with other proteins which can modulate and change the function of neuropilin-1. It is the functional interplay between neuropilin-1 and interacting proteins that determines its physiological role.

Accordingly, it was an object of the present invention to identify and provide further molecules that bind to neuropilin-1 and modulate the neuropilin-1 function and can thus be used to further characterise neuropilin-1 function, but also can be used to actively interfere and modulate the neuropilin-1 function e.g. in medical treatment or therapeutic set ups.

SUMMARY OF THE INVENTION

In an unbiased screen for molecules that can inhibit angiogenesis of endothelial cells as well as the invasion and/or adhesion of tumor cells surprisingly a polypeptide, particularly an antibody fragment binding to the extracellular domain of neuropilin-1 has been identified as such an inhibitor.

The present invention relates to neuropilin binders, e.g. polypeptides, antibodies, antibody fragments, single chain antibodies (scFv) or bioconjugates, which can specifically bind to the extracellular domain of neuropilin-1 and inhibit neuropilin-1 function.

15

20

25

In a further embodiment the neuropilin binders (NPBs) are characterised by the additional feature, that they are capable of modulating or inhibiting neuropilin related functions, but can not interfere or inhibit VEGF/neuropilin-1 interaction.

The NPBs of the invention can be selected from the group comprising the sequences SEQ ID No: 1, 2, 5 to 38.

Furthermore, the NPB of the invention can be labeled with detectable groups, if desired.

The invention further relates to pharmaceutical compositions comprising the NPB or a bioconjugate comprising the NPB of the invention.

In a further embodiment the invention relates to nucleic acid molecules encoding the NPB of the invention, as well as to vectors comprising such a nucleic acid and to host cells comprising such a vector.

In a further embodiment the invention relates to the use of NPB as molecules inhibiting neuropilin-1 function for the manufacture of a medicament for the treatment or prevention of invasion and/or metastasis of naturally occurring cancer cells; e.g. of mesodermal origin, wherein invasiveness and/or metastatic potential of said cancer cells depends on neuropilin-1 function.

In a further embodiment the invention relates to a method of treating or preventing invasion and/or metastasis in a patient, wherein the invasiveness and/or metastatic potential of said cancer cells depends on neuropilin-1 function.

In still a further embodiment the invention relates to the NPBs of the invention as medicament or the use of the NPB of the invention in the manufacture of a medicament for the treatment or prevention of neuropilin-1-dependent angiogenesis and non-physiological blood vessel growth, particularly correlated with a tumor, wherein said NPBs do not interfere or inhibit the interaction between neuropilin-1 and VEGF₁₆₅.

In a further embodiment the invention relates to a method to determine the dependency of the invasiveness and/or adhesiveness of a naturally occurring cancer cell on the functionality of neuropilin-1.

20

25

In a further embodiment the invention relates to a method for the identification of a ligand useful for inhibiting the invasiveness and/or adhesiveness of a naturally occurring cancer cell, particularly the identification of such ligands that bind to the extracellular domain of neuropilin-1.

In still a further embodiment the invention relates to a method for the identification of a ligand useful for inhibiting the angiogenesis of endothelial cell, particularly the identification of such ligands that bind to the extracellular domain of neuropilin-1.

10 DETAILED DESCRIPTION OF THE INVENTION

The present invention now shows that neuropilin-1-dependent angiogenesis, invasion and/or adhesion can be inhibited by using the molecules of this invention. Surprisingly, it has surprisingly found that stimulation of HT1080 cells, a human sarcoma cell line, with VEGF₁₆₅ has no influence on the invasiveness of cells. Invasiveness of tumor cells (e.g HT1080 cells) could only be stimulated in the presence of FCS, whereas the migration ability of HUVEC cells, primary human umbilical vein endothelial cells, could indeed be stimulated with VEGF₁₆₅.

Furthermore, it has been found that several molecules of this invention inhibit the tube formation of HUVEC cells, an assay used to study angiogenesis. The present inventions shows for the first time that some of the neuropilin binders (NPBs) that inhibit angiogenesis do not to interfere or inhibit the NP-1/VEGF₁₆₅ interaction. Results show further that these NPBs bind to a different epitope of NP-1 than VEGF₁₆₅.

The result show that neuropilin-1 acts as an active mediator of the invasion and/or adhesion of metastatic tumor cells and furthermore has a functional role angiogenesis, whereby the NPBs do not interfere or inhibit the NP-1/VEGF₁₆₅ interaction. This opens, for the first time, the possibility to develop drugs, which inhibit metastasis of tumor cells - and especially of metastatic sarcomas, which are hardly

10

15

20

25

curable with current cancer treatments - wherein the metastatic potential depends on neuropilin-1-dependent influence on angiogenesis, invasion and/or adhesion.

In order that the invention described herein may be more fully understood, the following detailed description and definitions are provided. As used herein, the following definitions shall apply unless otherwise indicated.

A "polypeptide" as used herein is a molecule comprising more than 10, preferably more than 20, most preferably more than 30, and less than 10000, more preferably less than 2500, most preferably less than 1000 amino acids. Also polypeptides with substantial amino acid sequence identity and polypeptides, which contain a low percentage of modified or non-natural amino acids, are encompassed.

In the wording of the present invention the term polypeptide generally covers also the terms antibodies, antibody fragments or single chain antibodies (scFv).

The terms "antibody" and "immunoglobulin", as used herein refer to any immunological binding agent, including polyclonal and monoclonal antibodies. Depending on the type of constant domain in the heavy chains, antibodies are assigned to one of five major classes: IgA, IgD, IgE, IgG, and IgM. Several of these are further divided into subclasses or isotypes, such as IgG1, IgG2, IgG3, IgG4, and the like. The heavy-chain constant domains that correspond to the different classes of immunoglobulin are termed alpha, delta, epsilon, gamma and mu, respectively. The subunit structures and three-dimensional configurations of different classes of immunoglobulin are well known. –

Antibodies may be also selected from modified immunoglobulin, for example chemically or recombinantly produced antibodies, CDR (complementary determining region) grafted antibodies or humanized antibodies, site directed mutagenized antibodies that exhibit substantial amino acid sequence identity in their CDR regions, particularly in their CDR3 region, to the corresponding antibody fragments of the invention and retain substantially the same affinity for neuropilin-1 binding as the corresponding antibody fragments.

10

15

20

25

30

The CDRs (complementary determining region) of an antibody are the parts of these molecules that determine their specificity and make contact with specific ligands. The CDRs are the most variable parts of the molecule and contribute to the diversity of these molecules. They are structurally defined in a human IgG as amino acids 24 to 41 (CDR-L1), 50 to 57 (CDR-L2) and 90 to 101 (CDR-L3) of the light chain and amino acids 26 to 38 (CDR-H1), 51 to 70 (CDR-L2) and 100 to 125 (CDR-H3) of the heavy chain (see Kabat et al. (1987) 4th edn US Department of Health and Human Services, Public Health Service, NIH, Bethesda). The CDR regions of an antibody fragment can easily be determined by somebody skilled in the art by aligning the antibody fragment with said human IgG, e.g. using a program of the NCBI that allows to "Blast", and thereby align, two sequences with one another, and identifying the amino acids of the antibody fragment corresponding to the CDRs of a human IgG.

Substantial amino acid sequence identity as used herein means that at least 70%, preferably at least 75%, 80%, 85%, 90%, more preferably all but 5, still more preferably all but 3 and even more preferably all but 1 of the amino acids of two aligned amino acid sequences, particularly of aligned CDRs, are identical.

The term "antibody fragment" is used to refer to any fragment of an antibody-like molecule that has an antigen binding region, and this term includes antibody fragments such as scFv, dsFv, Fab', Fab, F(ab')₂, Fv, single domain antibodies (DABs), diabodies, and the like. The techniques for preparing and using various antibody-based constructs and fragments are well known in the art (see Kabat et al. (1991) J. Immunol. 147, 1709-19), specifically incorporated herein by reference.

"scFv" antibody fragments comprise the VH and VL domains of an antibody, wherein these domains are present in a single polypeptide chain. Generally, the scFv polypeptide further comprises a polypeptide linker between the VH and VL domains that enables the scFv to form the desired structure for antigen binding.

A "Fv" fragment is the smallest antibody fragment that retains an intact antigen binding site.

15

20

25

A "dsFv" is a disulfide stabilized Fv.

A "Fab" fragment, is an antigen binding fragment, containing complete light chains paired with the VH and CH1 domains of the heavy chain.

A "Fab" fragment, is a reduced F(ab')2 fragment.

A "F(ab')2" fragment, is a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region.

A "single domain antibody (DAB)" is an antibody with only one (instead of two) protein chain derived from only one of the domains of the antibody structure. Dabs exploit the finding that, for some antibodies, half of the antibody molecule binds to its target antigen almost as well as the whole molecule (Davies et al. (1996) Protein Eng. 9: 531-537.

"Diabodies" are bivalent or bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (Holliger et al. (1993) Proc. Natl. Acad. Sci. USA, 90, 6444-6448).

The terms "label" or "labeled" refers to a detectable marker or the incorporation of such, respectively, e.g., by incorporation of a fluorophore-, chromophore- or radio-labeled amino acid or attachment of a fluorophore-, chromophore- or radio-label to a polypeptide or attachment of moieties that can be detected by a labeled second molecule containing a fluorescent marker or enzymatic activity that can be detected by an optical or a colorimetric method. An example for such a two-step detection system is the well-known biotin-avidin system. Various methods of labeling polypeptides and glycoproteins are known in the art and may be used (for example see Lobl et al. (1988) Anal. Biochem., 170, 502-511).

An "epitope" includes any protein determinant capable of specific binding to an immunoglobulin or an antibody fragment. Epitopic determinants usually consist of chemically active surface groupings of molecules such as exposed amino acids,

10

15

20

25

aminosugars, or other carbohydrate side chains and usually have specific threedimensional structural characteristics, as well as specific charge characteristics.

A "naturally occurring cancer cell" as used herein is a cell that has not been transfected, transduced or otherwise genetically engineered in the laboratory. Such a cell does not comprise artificial DNA sequences, e.g. of vectors, or DNA sequences being found only in other species, but not usually in the species from which the naturally occurring cancer cell was derived. However, a naturally occurring cancer cell may comprise sequences that are not usually found in the species from which it was derived, if those sequences have arisen due to the processes of mutation and selection that took place within the individuum from which the naturally occurring cancer cell was derived, and/or during continued culture of the naturally occurring cancer cell.

Selected cancer cell-types as used herein consist of tumor cells derived from, e.g. the mesoderm, preferably derived from the group of neoplasms consisting of soft tissue tumors and sarcomas, fibromatous neoplasms, myxomatous neoplasms, lipomatous neoplasms, myomatous neoplasms, complex mixed and stromal neoplasms, synovial-like neoplasms, mesothelial neoplasms, lymphatic vessel tumors, osseous and chondromatous neoplasms, giant cell tumors, miscellaneous bone tumors, odontogenic tumors, hodgkin's and non-Hodgkins's lymphoma, plasma cell tumors, mast cell tumors, immunoproliferative diseases and leukemias, in particular tumor cells derived from the group of neoplasms consisting of soft tissue tumors and sarcomas, fibromatous neoplasms, myxomatous neoplasms, lipomatous neoplasms, myomatous neoplasms, complex mixed and stromal neoplasms, synovial-like neoplasms, mesothelial neoplasms, lymphatic vessel tumors, osseous and chondromatous neoplasms, giant cell tumors, miscellaneous bone tumors, odontogenic tumors, in particular tumor cells derived from sarcomas, in particular derived from sarcomas of the bone or sarcomas of soft tissue. Neoplasmas can also be derived from brain, central nervous system, lungs, stomach, lower intestine, colon, liver, kidneys, prostate and the pancreas.

10

15

20

25

In one embodiment sarcomas can be all sarcomas with the exception of angiomas and haemangiomas.

"Treating metastatic tumors" or "treating micro-metastases", as used herein means that the metastasis of the tumor is stabilized, prevented, delayed, or inhibited by the molecule of the invention, either as a single medicament or in combination with other medicaments. Stable disease or "No Change" (NC) is a description for the course of the disease with either no change of the metastases or a reduction of less than 50% or an increase of less than 25 % over at least 4 weeks. Prevention can be, for example, that no new metastases are detected after the treatment is initiated. This can lead to a two- to three-fold median and/or a %-year survival rate of treated patients compared with untreated patients. A delay can signify a period of at least 8 weeks, 3 months, 6 months or even one year in which no new metastases are detected after the treatment is initiated. Inhibition can mean that the average size or the total number of new metastases is at least 30%, 40%, 50%, 60%, 70%, 80% or even 90% lower in a group treated with the molecule of the invention in comparison with an untreated group. Number, size and prevalence of metastases can be detected by a skilled practitioner in the field of oncology following generally accepted practice and diagnostic procedures for the detection of metastases, for example as outlined in Harrisons Principles of Internal Medicine 15th ed 2001 Mc Graw Hill.

"Metastatic tumors" as used herein includes both tumors at the primary site capable of metastasizing and metastasized tumors at a secondary site. Such metastatic tumors can be of any organ or tissue origin, like brain, central nervous system, lungs, stomach, lower intestine, liver, kidneys or the pancreas, etc., in particular tissue of mesodermal origin such as bone, spleen, thyroid, endometrial, ovarian, or lymphoid tissue.

A micro-metastase is an accumulation of tumor cells with a size smaller than 2 mm, which can usually only be detected by histological methods.

"Angiogenesis" as used herein refers to the ability of endothelial cells to form tubes and eventually, elaborate blood vessels. The angiogenic potential of cells or

10

15

20

25

30

in other words the inhibition of angiogenesis can be assayed in a so-called tube formation assay as described in Example 16. Inhibition of angiogenesis is seen and measured in correlation to the capacity of cells to form or not to form closed polygons as well as the status of aggregation of cells. As demonstrated in Example 16 and Figure 14 a significant aggregation of cells and the lack of closed polygon formation strongly correlates with the tube formation of endothelial cells.

"Invasiveness" as used herein is the ability of a cell to migrate through a layer of other cells or to migrate through the extracellular matrix. Invasiveness can be assessed by the Matrigel assay described in Example 8 or Example 9. Invasion is measured as cells that reach the lower surface of the filter during a certain incubation period. When more than 40% of cells within 6h to 12h reach the other side of the filter and form colonies in an invasion assay like in Example 8 or Example 9, the naturally occurring cancer cell is defined as invasive. The control cells instead form only up to 5% colonies in the same time frame and are defined as non-invasive.

"Adhesiveness" as used herein is the ability of a cell to reattach after they have been removed from the matrix on which it had been grown, resuspended as a solution of single cells (not in direct contact with other cells of the solution), and replated on a matrix to which adhesion is possible. A cell is defined as adhesive if in an assay as described in Example 11 or Example 12, more than 40% of the cells adhere within a time of 30-120 min. Instead, only up to 5% of the control cells adhere within the same time frame.

Metastatic potential as used herein is the ability of a tumor cell to form a new tumor at a site distant from the primary tumor of which the tumor cell was derived (a metastase). Metastatic potential can be measured by injecting, e.g. $1x10^6$, cells into the lateral tail vein of athymic nude mice and determining the number of tumor nodules in the lung, e.g. 2 months post injection, e.g. as described in the section "Tumor cell injections" on page 2346 of Huang et al (1996) Oncogene 13, 2339-2347, or the sections "Animals and production of tumors" and "Histochemical analysis for calcified matrix" on page 1882 of Radinsky et al. (1994) Onco-

10

15

20

25

30

gene 9: 1877-1883. A cell line to produce more than 3, preferably more than 8, more preferably more than 20 tumor nodules in the lung in this assay is considered metastatic.

Therapeutically effective amounts are amounts which eliminate or reduce the patient's tumor burden, or which prevent, delay or inhibit metastasis. The dosage will depend on many parameters, including the nature of the tumor, patient history, patient condition, the possible co-use of cytotoxic agents, and methods of administration. Methods of administration include injection (e.g., parenteral, subcutaneous, intravenous, intraperitoreal, etc), for which the molecule inhibiting neuropilin-1 function is provided in a nontoxic pharmaceutically acceptable carrier. In general, suitable carriers and diluents are selected so as not to significantly impair biological activity of the binding agent (e.g., binding specificity, affinity or stability), such as water, saline, Ringer's solution, dextrose solution, 5% human serum albumin, fixed oils, ethyloleate, or liposomes.). Acceptable carriers can include biocompatible, inert or bio-absorbable salts, buffering agents, oligo- or polysaccharides, polymers, viscoelastic compound such as hyaluronic acid, viscosity-improving agents, preservatives, and the like. In addition, the pharmaceutical composition or formulation may also include other carriers, adjuvants, or nontoxic, non-therapeutic, non-immunogenic stabilizers and the like. Typical dosages may range from about 0.01 to about 20 mg/kg, or more particularly from about 1 to about 10 mg/kg.

Therapeutic methods employing molecules inhibiting neuropilin-1 function may be combined with chemotherapy, surgery, and radiation therapy, depending on type of the tumor, patient condition, other health issues, and a variety of factors. The molecules inhibiting neuropilin-1 function may also be used as the single effective medicament of a therapeutic composition.

A "molecule inhibiting neuropilin-1 function", is a molecule resulting in inhibition of the biological activity of neuropilin-1. This inhibition of the biological activity of neuropilin-1 can be assessed by measuring one or more indicators of neuropilin-1's biological activity, such as neuropilin-1 dependent angiogenesis,

10

15

20

25

30

neuropilin-1 dependent invasiveness or neuropilin-1 dependent adhesion. These indicators of neuropilin-1's biological activity can be assessed by one or more of several *in vitro* or *in vivo* assays (see, Examples 8 or 9 and Examples 11 or 12, or Example 16). Preferably, the ability of a molecule to inhibit neuropilin-1 activity is assessed by inhibition of neuropilin-1-induced invasiveness or adhesion of invasive human sarcoma cells, particularly the cells used in Examples 8 and 9 or Examples 11 and 12 or 19. Preferably, the ability of a molecule to inhibit neuropilin-1 activity is assessed by inhibition of neuropilin-1-induced angiogenesis of HUVEC cells, particularly as described in Example 16.

A "molecule inhibiting neuropilin-1 function" of the invention is not a molecule which is a general inhibitor of protein function, like a protease, like a denaturing agent, e.g. urea or guanidinium hydrochloride, like heavy metal atoms or like small molecules (e.g. aldehydes or isocyanates) reacting covalently and nonspecifically with biomolecules (lipids, proteins, sugars). A molecule inhibiting neuropilin-1 function is characterized by its ability to inhibit neuropilin-1 function at a concentration at which it does not inhibit the function of the insulin receptor (e.g. as determined in an anti-Phosphotyrosine Western Blot Assay, see e.g. B. Cariou et al. (2002) J Biol Chem., 277, 4845-52) and the Acetylcholin receptor (e.g. as determined by measuring the Ca influx, see M. Montiel et al. (2001) Biochem Pharmacol. 63, 337-42.) and the B-CAM cell surface glycoprotein (e.g. by determining binding of hemoglobin A red blood cells (AA RBCs) to immobilized laminin as described in the section "Flow chamber assays" on page 2551 of Udani et al. (1998) J. Clin. Invest. 101, 2550-2558). Only a molecule inhibiting neuropilin-1 function but at the same concentration not significantly affecting the function of the other three receptors mentioned is a molecule inhibiting neuropilin-1 function as used in this patent. Inhibition is understood to be at least a 15%, preferably a 20%, more preferably a 25%, 30%, 40%, 50% or even a 60% decrease in function, as defined by neuropilin-1 function in an invasion and/or adhesion assay as mentioned above, when compared to a negative control with the same experimental conditions, but without the molecule of the invention. A molecule is defined as not significantly affecting the function of the other three recep-

10

15

20

25

30

tors if the decrease in function affected by the molecule of the invention is less than 10%, more preferably less than 5%.

Additionally, in the case of a molecule of the invention which inhibits gene expression of neuropilin-1, such a molecule decreases neuropilin-1 expression by more than 50%, preferably by more than 80%, still more preferably by more than 90%, most preferably by more than 95% when measured in a quantitative western blot normalized to the level of beta tubulin present, when present in an experiment at a concentration of 10 nM to 100 µM, preferably at around 1 µM, in which the amount of neuropilin-1 is compared between two otherwise identical samples, wherein in one sample the molecule of the invention was allowed to inhibit neuropilin-1 expression. In the same experiment the molecule of the invention does not decrease the amount of the beta tubulin present per cell by more than 20%, and said molecule does not decrease the relative level of the insulin receptor and the B-CAM cell surface glycoprotein by more than 20%.

Additionally, in the case of a polypeptide of the invention, particularly an antibody or antibody fragment of the invention, the polypeptide of the invention is considered to inhibit the biological function of neuropilin-1 if it reduces the invasiveness and/or adhesiveness of naturally invasive cancer cells in an experiment as in Example 8 or 9 or Example 11 or 12 by more than 15%, preferably more than 20%, more preferably a 25%, 30%, 40%, 50% or even a 60% decrease in neuropilin-1 function as defined above, when said antibody fragment is present at a concentration of 1 nM to 50 µM, preferably around 20 µM.

Additionally, in the case of a small chemical compound of the invention, said compound is considered to inhibit the biological function of neuropilin-1 if it reduces the invasiveness and/or adhesiveness of naturally invasive cancer cells in an experiment as in Example 8 or 9 and Example 11 or 12 by more than 15%, preferably more than 20%, more preferably a 25%, 30%, 40%, 50% or even a 60% decrease in neuropilin-1 function as defined above, when present at a concentration of 10 nM to 100 μ M, preferably at around 1 μ M, while not affecting cell morphology, cell cycle progression (determined by analyzing the DNA content of

10

15

20

25

30

a cell population by propidium iodide staining and FACS analysis), and not increasing the percentage of the cells of the culture that show signs of apoptosis (determined by measuring the percentage of cells showing DNA fragmentation, e.g. by a so called tunnel-assay). A small chemical compound as used in this invention is a molecule with a molecular weight between 50 Da and 10000 Da, preferably between 100 Da and 4000 Da, more preferably between 150 Da and 2000 Da, or a physiologically acceptable salt thereof.

"Identifying" as used herein means the identification of a biomolecule having desired properties from a mixture of biomolecules comprising related but non-identical biomolecules with slightly different properties.

A "ligand" as used herein is a molecule displayable by an amplifiable ligand-displaying unit. A ligand is that part of an ALDU through which the ALDU can bind to a target. Preferably it is a polypeptide as defined above, an RNA-oligonucleotide or a DNA-oligonucleotide an oligonucleotide comprising more than 20 base units but less than 10,000, preferably less than 1,000 base units. A ligand can bind to an extracellular region of an antigen. This binding may have specificity in the sense that the ligand binds to one antigen with high affinity but to a moderately related antigen with lower, for example 10- or 50- or 200-fold lower affinity. Moderately related antigens are antigens with up to 30 % amino acid identity in the extracellular regions.

A ligand "binding specifically to a neuropilin-1" as mentioned herein can be a ligand which binds to neuropilin-1 under the buffer conditions given in Examples 2 and 3. The dissociation constant between the ligand and neuropilin-1 can be measured, e.g. by use of the so-called BIACORE System (see, for example, Fivash et al. Curr Opin Biotechnol. (1998) 9, 97-101) and "binding specifically" can then be understood to mean that the dissociation constant between the ligand and neuropilin-1 is lower than 10 μM, preferably lower than 1 μM, more preferably lower than 500, 400, 300, 200, 100, 50, 20 nM, most preferably from 0,1 nM to 20 nM if measured under standard conditions, for example at 20°C, ambient pressure and in a suitable buffer, e.g. 20 mM Tris, 100 mM NaCl, 0,1 mM EDTA

10

15

20

25

at an overall pH of 7.0. Further, this molecule does not bind to neuropilin-2, which is another member of the neuropilin family and shares a 47% homology to neuropilin-1. Thus, the dissociation constant between the ligand and neuropilin-2 is higher than 100 μ M, preferably higher than 1 mM, or is alternatively at least 50-fold, preferably at least 200-fold, 1000-fold or 5000-fold worse (higher) than the dissociation constant between ligand and neuropilin-1.

The term "at least one" as used here means "one and more than one", particularly one, two, three, four and five.

The present invention relates to polypeptides, antibodies, antibody fragments or single chain antibodies, which can specifically bind to the extracellular region of neuropilin-1 and can inhibit neuropilin-1 function in angiogenesis, invasion and/or metastasis. Such polypeptides, antibodies, antibody fragments or single chain antibodies are in the context of the present invention generally understood or summarized under the term "neuropilin binder (NPB)". Those NPBs comprise a sequence selected from the group consisting of SEQ ID NO. 1 and SEQ ID NO. 2 or SEQ ID No. 5 to SEQ ID No. 38.

In a preferred embodiment the polypeptide of the invention is an antibody fragment, in particular a scFv, dsFv, Fab', Fab, F(ab')2, Fv, single domain antibody or diabody, more particularly a scFv, dsFv, Fv, single domain antibody or diabody, still more particularly a scFv, single domain antibody or diabody and even more preferably a scFv.

In another preferred embodiment the polypeptide of the invention is an antibody, in one preferred embodiment an antibody derived from a scFv antibody fragment, in another preferred embodiment a polyclonal or monoclonal antibody, particularly a human monoclonal antibody.

Anti-human neuropilin-1 binding antibodies may be selected from modified immunoglobulin, for example chemically or recombinantly produced antibodies or humanized antibodies, site directed mutagenized antibodies, that exhibit substantial amino acid sequence identity in their CDR regions, particularly in their CDR3

10

15

25

region, to the corresponding antibody fragments of the invention and retain substantially the same affinity for neuropilin-1 binding as the corresponding antibody fragments.

In another preferred embodiment the polypeptide of the invention is a human antibody selected from the group consisting of IgA, IgD, IgE, IgG, and IgM, in particular IgG and IgM, more particularly IgG1, IgG2a, IgG2b, IgG3, IgG4.

In another preferred embodiment the CRD3 region of the antibody or the antibody fragment is identical to one of the CDR3 regions shown in Figure 10.

In another preferred embodiment of the invention a polypeptide of the invention, particularly an antibody fragment or an antibody of the invention is labeled with a detectable label. Particularly, examples for detectable labels are radioisotopes, chromophores, fluorophores, enzymes or radioisotopes. The detectable label can, for example, be selected from this group.

In another embodiment, the polypeptide of the invention can be covalently or non-covalently conjugated and/or coupled to or with, respectively, another protein, a solid matrix (e.g. like a bead), with itself to form multimers, a cytotoxic agent further enhancing the toxicity to targeted cells, a cytostatic agent, a prodrug, or an effector molecule, which is able to modify the cell expressing neuropilin-1 or to recruit immune cells. All these conjugates are "bioconjugates" of the invention.

A list of cytotoxic agents include, but is not limited to, daunorubicin, taxol, adriamycin, methotrexate, 5 FU, vinblastin, actinomycin D, etoposide, cisplatin, doxorubicin, genistein, andribosome inhibitors (e.g., trichosantin), or various bacterialtoxins (e.g., Pseudomonas exotoxin; Staphylococcus aureus protein A).

Bioconjugates comprising the polypeptides of the invention, particularly the antibody fragment or antibody of the invention together with said cytotoxic moieties are made using a variety of bifunctional protein coupling agents. Some examples of such reagents are N-succinimidyl 3-(2-pyridyldithio)-propionate (SPDP), bifunctional derivatives of imidoesters such a dimethyl adipimidate HCl, active esters such as disuccinimidyl suberate, aldehydes such as glutaraldehyde, bisazido

10

15

20

25

30

compounds such as bis-(R-azidobenzoyl)hexanediamine, bisdiazonium derivatives such as bis-(R-diazoniumbenzoyl)ethylenediamine, diisocyanates such as tolylene 2,6-diisocyanate, and bis-activated fluorine compounds such as 1,5-difluoro-2,4-dinitrobenzene. Methods useful for the production of bioconjugates are described in detail in March's Advanced Organic Chemistry: Reactions, Mechanisms and Structure, 5th Edition, Wiley-Interscience; or Bioconjugate Techniques, Ed. Greg Hermanson, Academic Press.

The expression of a metastasis-associated neuropilin-1 antigen can be detected by using a bioconjugate or a polypeptide of the invention, particularly an antibody or an antibody fragment of the invention. A sample is taken from the subject, e.g., a biopsy specimen taken from tissue suspected of having a metastatic tumor. Generally, the sample is treated before an assay is performed. Assays, which can be employed include ELISA, RIA, EIA, Western Blot analysis, immunohistological staining and the like. Depending upon the assay used, the antigens or the antibodies can be labeled by an enzyme, a fluorophore or a radioisotope. (See, e.g., Coligan et al. (1994) Current Protocols in Immunology, John Wiley & Sons Inc., New York, New York; and Frye et al. (1987) Oncogene 4, 1153-1157.)

Therefore, one embodiment of the invention relates to the use of at least one polypeptide of the invention and/or at least one labeled polypeptide of the invention and/or at least one bioconjugate of the invention for the detection of neuropilin-1. For example one polypeptide of the invention or one labeled polypeptide of the invention or one bioconjugate of the invention can be used for the detection of neuropilin-1, or one labeled polypeptide together with one bioconjugate or two or three polypeptides or two labeled polypeptides can be used.

In another embodiment, the present invention encompasses a diagnostic kit. Such a kit comprises at least one bioconjugate and/or at least one labeled polypeptide of the invention and/or at least one polypeptide of the invention, particularly an anti-body fragment or an antibody of the invention, or a labeled version of these, and consists additionally of the reagents and materials necessary to carry out a standard competition or sandwich assay. Said diagnostic kit may be used for the de-

10

15

termination of the invasive potential of biological samples, in particular of certain cancer cell types. A kit will further typically comprise a container.

By using the polypeptide of the invention, particularly the antibody fragment or antibody of the invention, it is further possible to produce anti-idiotypic antibodies, which can be used to screen antibodies to identify whether the antibody has the same binding specificity as a human monoclonal antibody of the invention and can also be used for active immunization (Herlyn et al. (1986) Science, 232, 100). Such anti-idiotypic antibodies can be produced using well-known hybridoma techniques (Kohler et al. (1975) Nature, 256:495). An anti-idiotypic antibody is an antibody, which recognizes unique determinants present on the antibody of interest. These determinants are located in the hypervariable region of the antibody. It is this region, which binds to a given epitope and, thus, is responsible for the specificity of the antibody. An anti-idiotypic antibody can be prepared by immunizing an animal with the polypeptide, particularly the antibody fragment or antibody, of interest. The immunized animal will recognize and respond to the idiotypic determinants of the immunizing antibody and produce an antibody to these idiotypic determinants. By using anti-idiotypic antibodies, it is possible to identify other hybridomas expressing monoclonal antibodies having the same epitopic specificity.

It is also possible to use the anti-idiotype technology to produce monoclonal anti-bodies, which mimic an epitope. For example, an anti-idiotypic monoclonal anti-body made to a first monoclonal antibody will have a binding domain in the hypervariable region, which is the "image" of the epitope bound by the first anti-body. Thus, the anti-idiotypic monoclonal antibody can be used for immunization, since the anti-idiotype monoclonal antibody binding domain effectively acts as an antigen.

In another embodiment the modified polypeptide or the bioconjugate of the invention, binds to human neuropilin-1 and reduces the invasiveness and/or adhesiveness of invasive human sarcoma cells by 15-70%, or preferably by 15-30%,

10

15

20

20-40% or even at least 50%, when tested in an invasion/or adhesion assay (see Example 8 or 9 and Example 11 or 12).

In another embodiment, the antibody fragment of the invention specifically recognizes one or more epitopes of neuropilin-1, or epitopes of conserved variants of neuropilin-1, or peptide fragments of the neuropilin-1.

In another embodiment, the invention relates to the use of a molecule of the invention, particularly selected from the group consisting of a small chemical compound of the invention, a molecule inhibiting gene expression of neuropilin-1, a bioconjugate or a polypéptide of the invention, more particularly an antibody fragment or an antibody of the invention as a medicament.

In another embodiment, the present invention relates to a pharmaceutical composition comprising effective amounts of at least one, particularly one, molecule of the invention, particularly at least a bioconjugate of the invention or at least one of a molecule inhibiting gene expression of neuropilin-1, more particularly wherein the molecule is an antibody fragment or antibody of the invention, in combination with a pharmaceutically acceptable carrier and/or a diluent.

The pharmaceutical composition can be used for the treatment of conditions related to the over-expression or ectopic expression of human neuropilin-1, especially the treatment of metastatic tumors, especially of metastatic tumors derived from the group selected of cancer cell-types of page 12.

The pharmaceutical composition of the invention can further be used for the treatment tumors or metastases whereby the comprised NPBs inhibit angiogenesis and the outgrowing of blood vessels, which provide the tumor with nutrition's, and thereby famish the tumor.

In another embodiment of the invention, pharmaceutical compositions are provided comprising a pharmaceutically acceptable carrier and a therapeutically effective amount of at least one molecule inhibiting neuropilin-1 function can particularly be a molecule which can bind to the extracellular region of neuropilin-1, more particularly wherein the molecule is a small chemical compound or a modi-

10

15

20

fied polypeptide or the bioconjugate of the invention, still more preferably wherein the molecule is a modified scFv of the invention or a modified antibody derived from such a scFv of the invention.

In another embodiment, the invention relates to a method of treating or preventing tumors or metastasis in a patient comprising the administration of a molecule inhibiting neuropilin-1 function, in a pharmaceutical acceptable composition in an amount effective to treat, i.e. inhibit, delay or prevent, metastasis of neuropilin-1 mediated invasion and/or adhesion. The molecule inhibiting neuropilin-1 function can particularly be a molecule which can bind to the extracellular region of neuropilin-1, which can be identified be the method of identifying a ligand binding specifically to the extracellular region of neuropilin-1 described below, more particularly wherein the molecule is a small chemical compound or an antibody or an antibody fragment or a modified polypeptide of the invention or a bioconjugate of the invention, still more preferably wherein the molecule is a modified scFv of the invention or a modified antibody derived from such a scFv of the invention. This method of treating or preventing metastasis can be effective to reduce or inhibit the invasion and/or adhesion of cancer cells derived from mesodermal cells, in particular cancer cells derived from sarcomas, in particular cancer cells derived from sarcomas of the bone and/or soft tissue. The cancer cells can be selected from the group of cancer cells described on page 12.

The present invention further relates to a method to produce the polypeptide of the invention by recombinant techniques. These techniques are well known in the art (Skerra et al. (1993), Curr. Opin. Immunol. 5, 256-62; Chadd et al. (2001), Curr. Opin. Biotechnol. 12, 188-94).

For example, nucleic acid sequences encoding a polypeptide of the invention, particularly an antibody fragment or an antibody (e.g., a gene encoding an antibody fragment of Figure 10 or an antibody thereof) can be isolated and cloned into one or more polynucleotide expression vectors, and the vector can be transformed into a suitable host cell line for expression of a recombinant polypeptide of the invention. Expression of the gene encoding the polypeptide of the invention

10

provides for increased yield of the polypeptide, and also allows for routine modification of the polypeptide by introducing amino acid substitutions, deletions, additions and other modifications, for example humanizing modifications (Rapley (1995) Mol. Biotechnol. 3: 139-154) in both the variable and constant regions of the antibody fragment or of the antibody of the invention without critical loss of binding specificity or neuropilin-1 blocking function (Skerra et al. (1993) Curr. Opin. Immunol. 5, 256-262).

The present invention therefore relates to an above mentioned isolated nucleic acid molecule encoding any one of the polypeptides of the invention, particularly an antibody fragment of the invention, more particularly a scFv, dsFv, Fv, single domain antibody or diabody of the invention, still more particularly a scFv, single domain antibody, diabody of the invention or an antibody derived from such a scFv of the invention, and even more preferably a scFv of the invention or an antibody derived from such a scFv of the invention.

In a preferred embodiment the present invention relates to a nucleic acid molecule encoding a NBP comprising a sequence selected from the group consisting of SEQ ID NO. 1 and SEQ ID NO. 2, or SEQ ID No. 5 to SEQ ID No. 38.

The present invention further relates to a vector comprising a nucleic acid of the invention. Particularly the vector is a plasmid, a phagemid, or a cosmid.

For example, the nucleic acid molecule of the invention can be cloned in a suitable fashion into procaryotic or eucaryotic expression vectors (Sambrook et al., "Molecular cloning: a laboratory manual" Second edition, Cold Spring Harbor Laboratory Press (1989)). Such expression vectors comprise at least one promotor, at least one signal for translation initiation, at least one nucleic acid sequence of the invention and - in the case of procaryotic expression vectors - a signal for translation termination, while in the case of eucaryotic expression vectors preferably additional signals for transcriptional termination and for polyadenylation.

Examples for prokaryotic expression vectors are, for expression in *Escherichia coli*, e.g. expression vectors based on promotors recognized by T7 RNA polym-

10

15

20

25

erase, as described in US 4,952,496, for eucaryotic expression vectors for expression in Saccharomuces serevisiae, e.g., the vectors p426Met25 or 526GAL1 (Mummberg et al. (1994) Nucl. Acids Res., 22, 5767-5768), for the expression in insect cells, e.g., Baculovirus-vectors as e.g. described in EP-B1-0 127 839 or EP-B1-0 549 721, and for the expression in mammalian cells, e.g., the vectors Rc/CMV and Rc/RSV or SV40-vectors, which are commonly known and commercially available.

The molecular biological methods for the production of these expression vectors, as well as the methods of transfecting host cells and culturing such transfected host cells as well as the conditions for producing and obtaining the polypeptides of the invention from said transformed host cells are well known to the skilled person.

The present invention further relates to a host cell comprising a nucleic acid of the invention and/or a vector of the invention, particularly wherein the host cell is a microorganism like yeast or other fungi, like *Escherichia coli, Bacillus subtilis* or other bacteria. The host cell can also be a cell of higher eucaryotic origin, like an insect cell, preferably a virus infected insect cell, more preferably a baculovirus infected insect cell, or like a mammalian cell like HeLa, COS, MDCK 293-EBNA1, NSO or a hybridoma cell.

The present invention relates further to a method for the production of a polypeptide of the invention, particularly an antibody fragment of the invention, comprising culturing a microorganism transformed with a recombinant vector comprising DNA encoding a polypeptide of the invention, particularly an antibody fragment of the invention, and recovering said polypeptide of the invention, particularly an antibody fragment of the invention or a fusion protein containing it, from the medium.

The present invention shows that blocking neuropilin-1 function may inhibit invasiveness and/or adhesiveness of certain cancer cells derived from group selected of cancer cell-types of page 12, and particularly inhibits invasiveness and or adhe-

15

20

25

siveness of cancer cells, e.g., derived from human sarcoma cells, lymphoma cells and mesothelial neoplasms, more particularly human sarcoma cells.

One embodiment of the invention is therefore the use of at least one, particularly one, molecule inhibiting neuropilin-1 function in the manufacture of a medicament for the treatment or prevention of invasion and/or metastasis of naturally occurring cancer cells, wherein invasiveness and/or metastatic potential of said cancer cells depends on neuropilin-1 function, particularly of such tumor cells which are derived from mesodermal cells or cancer cells derived from the group selected of the cancer cell-types of page 12.

In another preferred embodiment the molecule inhibiting neuropilin-1 inhibits the function of expressed neuropilin-1. Expressed neuropilin-1 is to be understood in this context as neuropilin-1 protein already present on naturally occurring cancer cells before any kind of treatment is initiated.

These molecules are particularly molecules, which bind to the extracellular region of neuropilin-1.

The extracellular segment of neuropilin-1 is defined as that part of the neuropilin-1 protein outside of the cellular membrane, consisting of five domains a1, a2, b1, b2 and c. Domains, which are specifically involved in cell adhesion are b1 and b2. It should be appreciated that neuropilin-1 is a glycoprotein, so not only the mentioned amino acids, but also the sugar modifications on them are considered as being part of the extracellular segment of neuropilin-1.

More particularly this molecule is selected from the group consisting of a small chemical compound, an antibody against neuropilin-1, an antibody fragment against neuropilin-1, a polypeptide of the invention, an anti-idiotypic antibody of the invention and/or a bioconjugate of the invention, especially wherein the molecule is a polypeptide and/or a bioconjugate of the invention.

In another preferred embodiment the naturally occurring cancer, which depend on neuropilin-1 function for angiogenesis, invasiveness, adhesiveness and/or metastatic potential can be any cancer wherein the cancer cells are cells derived from

10

15

20

25

30

the group of neoplasms consisting of adenocarcinomas, sarcomas, morbus hodgkin, non-hodgkin lymphoma of high and low malignancy, multiple myeloma, malignant tumors of the brain, head and neck tumors, carcinoma of the thyroid, mesothelioma, leukemia, carcinoma of the esophagus, stomach and pancreas carcinoma, primary carcinomas of the liver, carcinoma of bilary duct and bladder, colorectal carcinoma, basel cell carcinoma, malignant melanoma, osteosarcoma, malignant gliomas, Ewing carcinoma, soft tissue sarcoma, Kaposi sarcoma, nephroblastoma, neuroblastoma, carcinoma of the kidney, testicular carcinoma, prostate carcinoma, carcinoma of the urinary bladder, malignant tumors of the ovaries, carcinoma of the endometrium of the cervix, tumors of the adrenal gland, particularly from the group of neoplasms consisting of malignant fibrous histiocytoma, liposarcoma, fibrosarcoma, synovial sarcoma, osteosarcoma (parosteal osteosarcoma, periosteal osteosarcoma, small-cell osteosarcoma), chondrosarcoma, Ewing's sarcoma, giant-cell tumor of bone, osteogenic sarcoma, leiomyosarcoma, rhabdomyosarcoma, mesothelioma, lymphangiosarcoma, myxosarcoma, endotheliosarcoma, chordoma, Kaposi's sarcoma and lymphangioendotheliosarcoma.

The invention further pertains to the neuropilin-1 antigen as a druggable target. Another aspect of the present invention pertains to antibody fragments that bind to human neuropilin-1 with high neutralizing capacity.

In another embodiment of the invention, at least one polypeptide of the invention and/or a bioconjugate of the invention are used for identifying additional molecules that specifically bind human neuropilin-1, particularly in screening assays. These methods entail contacting a reference anti-neuropilin-1 antibody fragment with a target species comprising the neuropilin-1 domain in the presence of a putative competitor test-binding agent. This step of contacting is conducted under conditions suitable for complex formation between the reference antibody fragment and the target species in the absence of the test-binding agent. Complex formation between the reference antibody fragment and the target species in the presence of the test-binding agent is detected as an indicator of specific binding activity of the test-binding agent to neuropilin-1. This screening method is useful

15

20

Ĺ

25

for high throughput screening of, e.g., other antibody libraries or antibody fragment libraries, antisense oligonucleotide libraries or peptide and small molecule libraries to identify and characterize additional "molecules binding specifically to neuropilin-1". Competition is determined by an assay in which the antibody fragment, or other binding agent under test substantially inhibits specific binding of the reference antibody fragment to the target species containing the neuropilin-1 domain. This can be determined for example by measuring binding of the reference antibody fragment to a target species comprising neuropilin-1 domain in the presence and absence of a putative competitor, i.e. a "molecule binding specifically to neuropilin-1" under conditions suitable for complex formation. Numerous types of competitive binding assays are known and routinely practicable within the invention, as described for example in U.S. Pat. No. 4,376,110. Typically, such assays involve the use of a target species containing the neuropilin-1 domain (e.g., purified neuropilin-1 or a cell line expressing the neuropilin-1 antigen), an unlabeled "molecule binding specifically to neuropilin-1", and a labeled reference antibody fragment or other binding agent. Competitive inhibition is measured by determining the amount of label bound to the target species in the presence of the "molecule binding specifically to neuropilin-1". Usually the "molecule binding specifically to neuropilin-1" is present in excess. "Molecules binding specifically to neuropilin-1" identified by these competition assays ("competitive binding agents") include antibodies, antibody fragments, peptides, antisense oligonucleotides, small molecules and other binding agents that bind to an epitope or binding site bound by the reference antibody fragment, as well as a "molecule binding specifically to neuropilin-1" that bind to an epitope or binding site sufficiently proximal to an epitope bound by the reference antibody fragment. Preferably, competitive binding agents of the invention will, when present in excess, inhibit specific binding of a reference antibody fragment to a selected target species by at least 10%, preferably by at least 25%, more preferably by at least 50%, and even more preferably by at least 75%-90% or greater.

In addition to a polypeptide of the invention, particularly a modified antibody fragment or a modified antibody of the invention, natural or artificial ligands,

10

15

20

25

peptides, anti-sense, or other small molecules capable of specifically targeting human neuropilin-1 may be employed. Drugs can be designed to bind or otherwise interact and inhibit human neuropilin-1 based upon the present invention. In this regard, rational drug design techniques such as X-ray crystallography, computer-aided (or assisted) molecular modeling (CAMM), quantitative or qualitative structure-activity relationship (QSAR), and similar technologies can be utilized to focus drug discovery efforts. Rational design allows prediction of molecules, which can interact with proteins or specific parts thereof. Such molecule structures can be synthesized chemically and/or expressed in biological systems. Small molecules may be produced by synthesizing organic compounds according to methods that are well known in the art. A plurality of peptides, semi-peptidic compounds or non-peptidic, and organic compounds may be synthesized and then screened in order to find compounds, which bind to neuropilin-1 with high neutralizing capacity. Particularly compounds that inhibit neuropilin-1 related invasion. See generally Scott and Smith, "Searching for Peptide Ligands with an Epitope Library", Science (1990), 249, 386-90 and Devlin et al., "Random Peptide Libraries: A Source of Specific Protein Binding Molecules", Science, (1990), 249, 40407.

The present invention also provides methods of using the modified antibody or modified antibody fragments to inhibit human neuropilin-1 activity or to detect human neuropilin-1 in cancer cells, preferably sarcoma cells, either in vitro or in vivo. In a preferred embodiment, treating cells expressing the antigen with one or more modified antibody fragments causes or leads to a reduction or inhibition of the invasive or adhesive abilities of human cancer cells, particularly of human sarcoma cells.

The migration of tumor cells into tissue is an important step in metastasis. The processes of adhesion and invasion can be studied in the transendothelial model (See, Woodward et al. (2002) Invest Ophthalmol Vis Sci 43, 1708-14 and Vachula et al. (1992) Invasion Metastasis 12, 66-81). The transendothelial model

15

20

provides a useful ex vivo, e.g. an *in vitro*, system for the investigations of cellular interactions during the invasion process.

The present invention therefore further provides an ex vivo, e.g. an *in vitro* method to determine the dependency of the invasiveness of a naturally occurring invasive cancer cell on the functionality of neuropilin-1. This method comprises the steps of:

- a. contacting the cells with a molecule inhibiting neuropilin-1 function;
- b. contacting the cancer cell with a gel-like matrix, under conditions suitable for the growth of said cancer cells; and
- 10 c. determining the migration of said cancer cells through the gel-forming matrix.

The term "gel-like matrix" as used herein is understood to be a semi-solid substance with a water content of at least 90%, which allows cultivation of cancer cells in contact with the matrix and allows migration of invasive cancer cells through a slab of said "gel-like matrix" of 0,1 mm to 1 mm, preferably 0,3 mm thickness, but not migration of non-invasive cells. Examples for such a "gel-like matrix" are substances resembling the extracellular matrix in protein and carbohydrate composition, particularly the commercially available "Matrigel". Particularly the "gel-like matrix" comprises one of the proteins selected from the group consisting of the proteins collagen type IV, fibronectin and laminin. More particularly the gel-like matrix comprises the proteins collagen type IV, fibronectin and laminin. More preferably the gel-like matrix comprises the proteins collagen type IV, fibronectin, laminin, nidogen and heparan sulfate proteoglycans or collagen type IV, fibronectin, laminin, nidogen, entactin, and vitronectin.

In a preferred embodiment the interfering molecule of step a) is a polypeptide that specifically binds to an extracellular epitope of neuropilin-1, particularly a modified polypeptide of the invention, more particularly a modified antibody or a modified antibody fragment of the invention, still more particularly a modified antibody fragment, even more particularly a modified scFv, dsFv, Fv, single do-

15

main antibody or diabody, especially a modified scFv, single domain antibody or diabody and even more preferably a modified scFv.

The present invention therefore further provides an ex vivo, e.g. an *in vitro* method to determine the dependency of the adhesiveness of a naturally occurring invasive cancer cell on the functionality of neuropilin-1. This method comprises the steps of:

- a. contacting the cells with a molecule inhibiting neuropilin-1 function;
- b. contacting the cancer cell with a layer of ECM proteins, under conditions suitable for the growth of said cancer cells; and
- 10 c. determining the adhesion of said cancer cells to the layer of ECM proteins.

The term "layer of ECM proteins" as used herein is understood to be a semi-dry layer of a protein solution, which allows cultivation of cancer cells in contact with the layer and allows attachment of invasive cancer cells to said layer. The thickness of said "layer of ECM proteins" is between 0.1 mm to 1 mm, preferably 0.3mm thick. Examples for "ECM proteins are substances of the extracellular matrix. Particularly "ECM proteins are selected from the group consisting of the proteins collagens, entactin, nidogen, vitronectin, fibronectin and laminins. More particularly ECM proteins are selected from collagen S type I, collagen type IV, fibronectin and laminin.

In a preferred embodiment the interfering molecule of step a) is a polypeptide that specifically binds to an extracellular epitope of neuropilin-1, particularly a modified polypeptide of the invention, more particularly a modified antibody or a modified antibody fragment of the invention, still more particularly a modified antibody fragment, even more particularly a modified scFv, dsFv, Fv, single domain antibody or diabody, especially a modified scFv, single domain antibody or diabody and even more preferably a modified scFv.

The present invention further provides a method of identifying a ligand, binding specifically to the extracellular region of NP-1, by screening a naïve or immune library, preferably a phage display library, wherein said ligand is capable of inter-

10

25

fering with the functionality of neuropilin-1, specifically wherein said ligand is capable of inhibiting angiogenesis, tube formation of endothelial cells, and/or invasion or adhesion of tumor cells. Said method comprises the steps of:

- a) contacting a phage library of ligands with cancer cells or endothelial cells;
- b) isolating said cells;
- c) removing phages bound unspecifically to said cells, e.g. by washing said cells with a buffered detergent solution, under conditions where said cells do not lyse;
- d) eluting phages bound to said cells; and
- e) determining the identity of the ligand represented by said eluted phages
- f) testing the ligand in biochemical or biological assays on it capability to interfere with NP-1 function.
- The identity of phages representing the ligand obtained with step e) can be determined by, e.g., sequencing the DNA encoding the ligand in case the ligand is an antibody or antibody fragment, or, in the case of a commercial ligand library with gridded or numbered phages, by determining the grid position or the number of the phage. The grid position or the number then can reveal the identity of the ligand represented by the phage.

After step d) the pool of phages is enriched in phages binding to NP-1. Those phages binding to NP-1 can finally be identified by numerous methods known in the art. Phages can be separated to form individual clones and the clones of the phages can be probed with labeled NP-1 protein, or a labeled part of the NP-1 protein, e.g. an at least seven amino acid long peptide of the extracellular region of NP-1. Clones binding to such a probe are identified as NP-1-binders. Phages can also be affinity purified on purified NP-1 protein or on recombinant NP-1.

10

15

20

25

Alternatively, in case the ligand is e.g. an antibody or antibody fragment, the open reading frame encoding the antibody or antibody fragment can be recloned from the whole enriched pool into an expression vector, the antibody or antibody fragment can then be expressed in clones of another host cell, and the clone of the host cell carrying the expression vector comprising a nucleic acid encoding for the antibody or antibody fragment binding specifically to NP-1 can be identified, e.g. by the method described above for the identification of relevant phage clones, by the method of Examples 2 and 3, or by affinity purification on recombinant NP-1.

A particular advantage of this method is that the ligand specific for the accessible part of the extracellular region of NP-1 is obtained, since the initial selection step is performed on intact cells, which present the accessible part of the extracellular region of NP-1 for binding of the phages.

In another preferred embodiment of the invention the method comprises an additional step of screening on recombinant NP-1 protein. This method is described more specifically in Example 3.2.

The method comprises instead of step e) the further steps of:

- e) contacting isolated phages with recombinant NP-1;
- f) washing said NP-1 with a buffered detergent and/or high salt solution; and
- g) eluting phages bound to NP-1; and
- h) determining the identity of the ligand represented by said eluted phages.

In certain embodiments, the ligand expressed on the phages comprise an antibody or an antibody fragment selected from the group consisting of scFv, dsFv, Fab', Fab, F(ab')₂, Fv, single domain antibodies (DABs) and diabodies, more particularly selected from the group consisting of scFv, dsFv, Fv, single domain antibody or diabody, still more particularly selected from the group consisting of scFv, single domain antibody or diabody and even more preferably a scFv.

10

15

20

25

The "detergent" used in steps c) and f) is a detergent solution, preferably buffered, and can be Tween in a concentration of 0.001- 0.5%, particularly 0.01-0.1 %. "High salt" in step f) is a high salt solution, preferably buffered, and has an ionic strength of 10mM-1M, particularly 20-500mM, more particularly 50-350mM, even more preferably 80-250mM. Typical useful anions are, for example, chloride, citrate, phosphate, hydrogen phosphate or borate. Typical useful cations are, for example, sodium, potassium, lithium, calcium or magnesium.

The buffered solution in the above paragraph typically has a pH of 7-8. For example, DMEM or PBS, particularly with 1-20%, more particularly 5-15%, even more preferably about 10% FCS, can be used as buffers.

Isolation of cells with phages bound to them is effected by gentle centrifugation at g values from 200 to 300 for 3 to 20 minutes, particularly 5 to 10 minutes. Elution of bound phages, both to cells and to immobilized NP-1, is effected by a wash with 2-100mM, particularly 4-50mM, more particularly 5-20mM, even more preferably around 10mM glycine at a pH of from 0 to 2.5, particularly from 1 to 2.5, more particularly from 1.5 to 2.5.

The NP-1 interfering or inhibiting functionality of these ligands, particularly of these antibodies or antibody fragments may be assayed as described above, in vivo or in a cell culture experiment. Cell culture assays include assays that determine the inhibitory effect of the ligands of this invention in an invasion or adhesion assay as described in Examples 8 and 9 or 19 or Examples 11 and 12, or in a tube formation assay with endothelial cells as described in Example 16. Results of the different assays are provided in the Figures.

The method advantageously combines a screening step based on binding to the surface of a cell with a screening step based on a functional assay, which identifies ligands having the capability to interfere or inhibit NP-1 function.

In a preferred embodiment the ligand is capable of inhibiting a biological function of neuropilin-1. For example, the biological function of a neuropilin-1 can be in-

15

20

25

vasion, adhesion, or angiogenesis. Adhesion and invasion have been explained as adhesiveness and invasiveness before.

An invasion assay measures the invasiveness of a cell. An invasion assay is, e.g., the assay performed in Example 8 and 9 of this application.

An adhesion assay measures the adhesiveness of a target, e.g. a cell, to something else, e.g. another cell, a virus, or a complex biological mixture like, e.g., a population of vehicles derived from a cell or, e.g., the basal lamina. An example of an adhesion assay is given in Example 11 and 12 of the present application.

"Angiogenesis" is the process where cells induce blood vessel formation in their proximity. Angiogenesis can accompany the growth of malignant tissue and can therefore be a property of malignant cells. That is to say that malignant cells can have the property of inducing angiogenesis. An angiogenesis assay measures the ability of a cell to induce blood vessel formation, a process, which usually accompanies the growth of malignant tissue. An angiogenesis assay is disclosed in Kanda et al (2002) J. Natl. Cancer Inst. 94, 1311-9. An example of an angiogenesis assay, a so-called tube formation assay is given in Example 16 of the present application.

In another preferred embodiment the method of identifying a ligand binding specifically to the extracellular region of neuropilin-1 also comprises the step of incorporating the ligand identified into a therapeutic, prophylactic or diagnostic composition. This can, e.g., be done by mixing-the identified ligand with a pharmaceutically acceptable carrier known in the art, wherein the ligand is present in an amount, which is therapeutically effective.

In another preferred embodiment the invention relates to a method for the production of a pharmaceutical composition, comprising the method of identifying a ligand binding specifically to neuropilin-1 and further the step of mixing the identified ligand, or a modified or a labeled version thereof, with a pharmaceutical acceptable carrier known in the art. A modified ligand is a ligand with a covalent modification. Examples of modified ligands are labeled ligands.

10

15

20

25

30

The invention further provides an advantageous combination of methods, which allow a functional increase of activity of the previously identified ligand. For this the method for identifying a ligand, which interferes with NP-1 functionality, is combined with the method of CALI (Chromophore-Assisted Laser Inactivation).

The principle of CALI is based on the local initiation of a photochemical reaction that leads to the generation of short-lived reactive species, which in turn selectively modify the target molecule and cause its functional inactivation. Highly specific but non-inhibitory ligands (e.g. antibodies, antibody fragments, small molecules) are labeled with a suitable chromophore (e.g. malachite green, fluorescein, methylene blue, eosin). After complex formation between the target molecule (e.g. proteins) and the ligand, the complex is irradiated with laser light of an appropriate wavelength to excite the chromophore. The excitation triggers a photochemical reaction that initiates the generation of short-lived reactive species (e.g. hydroxyl radicals or highly reactive oxygen species). These reactive species modify the protein within a small radius around their site of generation. The distance that a reactive species can travel is very short due to its short lifetime. Therefore, the modifications of amino acid residues within the protein occur in close proximity to the binding site of the ligand. The damaging effect is restricted to a radius of 15-40Å, which is well below the average distance of two proteins within a cell, which is at about 80Å, (assuming an average cytosolic protein concentration of 300mg/ml and an average protein size of 50kDa) ensuring a high spatial resolution of the process. This principle is shown in Figure 13. As an example, a modified antibody against a given protein often can selectively inhibit the function of that particular protein after CALI, even if this antibody did not show an inhibiting function without CALI. In cases where the binding site of the ligand is close or within an important functional domain of the protein, these induced modifications lead to permanent inactivation of the protein. The functional inactivation of the protein is measured in an appropriate readout assay and evaluated in the context of disease relevant physiological functions like cell invasion, cell adhesion, cell signaling or apoptosis.

10

15

20

Inactivation of proteins with CALI was shown to be very specific to the respective protein. Linden et al showed that β -galactosidase could be efficiently inactivated with a malachite-green labeled anti- β -galactosidase antibody even in the presence of alkaline phosphatase in the same solution. β -galactosidase was inactivated by 95 % after 10 min of laser irradiation whereas alkaline was not effected at all (Linden et al. (1992) Biophys. J. 61, 956-962). Jay also demonstrated that a dyelabeled antibody bound to a single epitope of a protein was sufficient to inactivate acetylcholinesterase (Jay (1988) Proc. Natl. Acad. Sci. USA, 85, 5454-58).

Henning et al. described that CALI was successfully used against a diverse array of proteins (Henning et al. Innovations in Pharmaceutical Technology (2002) 62-72). These protein include membrane proteins (eg. α -, β -, ϵ -chains of T cell receptor, β 1 integrins, ephrin A5 or FAS receptor), signal transduction molecules (eg. calicineurin, cyclophillin A or PKC), cytoskeletal proteins (eg. actin, ezrin or kinesin) or transcription factors. Henning et al. further described that CALI can be used for identification of novel proteins as drug targets and at the same time the elucidation of their function in the biological context of interest (Henning et al. (2002) Current Drug Discovery May, 17-19).

Several application examples of CALI show that CALI is able to convert specific but non-inhibitory ligands into blocking reagents. Therefore, these ligands can be used to modulate the action of inhibitory ligands. CALI can also be used to further enhance the inhibitory effect of a ligand that has already an inhibitory effect by itself. Example 9 and Example 12 are examples where CALI is integrated in an invasion and an adhesion assay, respectively.

In another embodiment of the invention the ligand can be modified.

The chemical modification of the ligand can be the addition of chromophores. A chromophore is that part of a molecule that possesses high optical activity due to mobile electrons that interact with light. Some examples of chromophores are, e.g., fluorescein derivatives, rhodamine derivatives, coumarin derivatives, porphyrin derivatives, phthalocyanine derivatives, naphthalocyanines derivatives eosin

20

25

30

derivatives, triphenylmethane derivatives or acridine derivatives. A list of chromophores useful for chemically modifying biomolecules is disclosed in The Sigma Aldrich Handbooks of Stains and Dyes, Ed., F.J. Green (1990) ISBN No. 0-941633-22-5.

The method of identifying a ligand according to the invention may further comprise at least one additional step of testing the ligand, e.g. wherein the testing is based on biochemical or biological properties of the ligand. Such an additional testing step may comprise a method selected from the group consisting of flow cytometry, ELISA, immunoprecipitation, binding assays, immunohistochemical experiments, affinity studies, immunoblots and protein arrays. Biochemical properties can be determined by the size, the shape, the density, the charge density, the hydrophobicity, or the binding specificity of the ligand. The biochemical properties of the ligand form the basis of the applicability of the above-mentioned methods.

In another preferred embodiment of the invention, the method of identifying a ligand of the invention can further comprise a substractive selection step. A substractive selection step is a step, which removes ligands with an undesired property. For example a substractive selection step can be affected by removing the ligands capable of binding to a control cell, if the property of binding to a control cell is undesired. By way of example, if one wants to select for ligands specific for cancer cells one could first select those ligands which bind to cancer cells, elute the bound ligands, e.g. phages, and then remove those ligands which are capable of binding to non-cancer-cells, by for example contacting the pool of eluted ligands with non-cancer-cells and removing those ligands bound to the non-cancer-cells. The ligands remaining in the supernatant are then ligands specific for cancer cells and can then be used in functional screening assays according to the method of identifying a ligand of the invention.

The neuropilin-1 inhibitory activity of the identified NP-1 binding ligands or antibody fragments, particularly of scFvs may be assayed as described above, in vivo or in a cell culture experiment.

10

15

Cell culture assays include assays that determine the inhibitory effect of the antibody fragments of this invention in an angiogenesis, invasion or adhesion assay as described in Examples 16, 8 or 9 and Examples 11 or 12. Results of the angiogenesis assay are provided in Fig 14. Results of the invasion assay are provided in Fig 2. Results of the adhesion assay are provided in Fig. 3 and 4.

In this part of the invention particularly neuropilin-1-binders (NPB) are described, which modulate neuropilin-1 (NP-1) functions particularly, but not limited to the context of angiogenesis. As described above neuropilin-1 (NP-1) is known as a coactivator of VEGF, an essential and strong activator for the induction of blood vessel growth. It was therefore an object of the invention to provide NPBs that interfere with the NP-1/VEGF interaction and, thereby, modulate or inhibit NP-1 function.

The NPBs of the invention are preferably polypeptides, antibodies, antibody fragments or bioconjugates, more preferably single chain antibodies (scFv) or corresponding IgGs, which were generated by cloning the scFv-specific DNA sequence into an IgG expressing vector. According to a further embodiment these NPBs were labeled with detectable labels as described above.

The NPBs of the invention preferably bind to an extracellular epitope of the NP-1. Cross-reactivity to NP-2 or other members of the NP family is not excluded.

The NPBs of the invention bind to various extracellular epitopes of NP-1. In one embodiment the NPBs bind to the epitope whereto also VEGF binds and which is accordingly involved in the induction of angiogenesis. Such NPBs have the capacity to block and inhibit VEGF/NP-1 interaction. Consequently, they further have the capability to interfere or inhibit the VEGF-dependent induction of angiogenesis. Such NPBs are particularly useful as medicament and for the treatment of angiogenesis.

It is further known that the various splice variants of VEGF also bind to slightly different epitopes of NP-1. The invention also provides NPBs that bind to these different epitopes. Such NPBs have the capacity to block and inhibit the interac-

10

15

tion of the splice variants of VEGF and NP-1. Thus, also they have the capability to interfere or inhibit the VEGF-dependent induction of angiogenesis. Such NPBs are particularly useful as medicament and for the treatment of angiogenesis.

Unexpected, surprising and new was the fact that the invention also identified and characterized NPBs that did not bind to any of the known VEGF-binding epitopes, but still modified or inhibited angiogenesis. Such NPBs modulating and inhibiting the NP-1 function, but not interfering with the VEGF/NP-1 interaction are provided in a preferred embodiment. They have the capability to interfere or inhibit the induction of angiogenesis and are particularly useful as medicament and for the treatment of angiogenesis.

For characterization of the NPB's of the invention, said NPBs were tested e.g. in a so-called tube formation assay. In such an assay endothelial cells, which normally express NP-1, are incubated with the various NPBs and than the effect of such binding on tube formation or cell aggregation is analyzed (see Example 16, and Figure 14 and 15).

In parallel these NPBs were tested in a biochemical VEGF/NP-1 interaction assay (see Example 17). For this a competitive ELISA was used where the binding between a VEGF and the various NPBs was qualitatively and quantitatively measured.

The NPBs identified in the different assays are provided by further preferred embodiments. Accordingly, one embodiment provides NPBs, particularly scFv and corresponding IgG, which inhibit tube formation. Particularly preferred according to this embodiment are the scFvs 7, 8, 11, 12, 13, 15, 18, 21, 23, 25, 26, 27, 28, 29, 31, 33 and 36 as well as the corresponding IgGs.

It is particularly interesting and surprising, that although all NPBs of this embodiment show a strongly inhibiting effect on tube formation, not all bind to or cross-react with the epitopes, which is bound by VEGF. This is explicitly shown in the competitive ELISA of Example 17, wherein the capability of the different

10

15

20

25

NPBs of the invention is tested to inhibit the interaction and/or binding of NP-1 and VEGF.

Several NPBs clearly interfere and prevent the interaction of NP-1/VEGF. Most of these binders show a strong inhibiting effect on tube formation. A preferred example of this embodiment is scFv8 or the corresponding IgG. According to a further embodiment such NBPs are highly useful for medical treatment, particularly the treatment or prevention of tumor-related and metastasis-related angiogenesis. Consequently, a further embodiment provides compositions and preparations comprising such NPBs as medicaments or for the treatment of NP-1-dependent angiogenesis, most preferably of tumor related angiogenesis.

According to another embodiment the invention provides NPBs that do not interfere or prevent the interaction of NP-1/VEGF, but still inhibit tube formation. A preferred example of this embodiment is scFv13 or the corresponding IgG. Furthermore preferred are the NPBs that bind to the same epitope as scFv13. Preferred are also NPBs that do not bind to the same epitope as VEGF₁₆₅. The assay as described in Example 18 is particularly useful to identify further NPBs, which bind to the same epitope as scFv 13 or another epitope as VEGF₁₆₅.

The following examples, including experiments conducted and results achieved, are provided for illustrative purposes only and are not to be construed as limiting upon the present invention.

DESCRIPTION OF THE DRAWINGS

Figure 1 shows the invasion of stained HT1080 cells through an $8\mu m$ Matrigel-coated filter. Fluorescence was quantified after six hours incubation at 37° C. Data presented are the mean of n = 3 wells +/- SD.

Figure 2 shows the inhibitory effect of scFv1 on the invasion of HT1080 cells.

Invasion was determined in a chemotaxis assay with a Matrigel coated cell migration chamber. The invasion was determined after laser irradia-

10

15

20

25

tion (with CALI, gray bars) and without laser irradiation (without CALI, dark gray bars). The invasion of HT1080 cells in the absence of any inhibitory molecule was used as a control (left two bars).

Figure 2a shows the influence of VEGF on the invasiveness of HT1080 cells. Invasion was determined in a chemotaxis assay with a Matrigel coated cell migration chamber. The invasion of cells could only be stimulated with FCS (first and fourth bar from the left). No significant increase of invasion was seen when the cells were pre-incubated with recombinant VEGF (second bar from the left. The addition of anti-human VEGF anti-body (aVEGF) had no influence on this result (third bar from the left). BSA as a chemo-attractant did not stimulate invasion (fifth bar from the left). Addition of recombinant VEGF to the chemo-attractant BSA did not stimulate the invasion (sixth bar from the left). The addition of anti-human VEGF antibody (aVEGF) had also no effect on this result (seventh bar from the left).

- Figure 3 shows the inhibitory effect of scFv1 and scFv2 on the adhesion of HT1080 cells. Adhesion to collagen S type I was determined after laser irradiation (with CALI, gray bars) and without laser irradiation (without CALI, dark gray bars). The adhesion of HT1080 cells to collagen S type I in the absence of any inhibitory molecule was used as a control (left two bars).
- Figure 4 shows the inhibitory effect of scFv1 and scFv2 on the adhesion of HT1080 cells to different matrix proteins. The adhesion of HT1080 cells to the different matrix proteins in the absence of any inhibitory molecule was used as a control (left block of bars).
- Figure 5 shows results of FACS analysis of scFv1 and scFv2 with different cells lines (bold line) and HS-27 cells (dotted line) as control.
- Figure 6 shows the result of the immunoprecipitation experiments. scFv1 was tested on HT1080 cells and compared to HS-27 cells as a control. The

15

25

- Figure 7a and 7b show the vector map and sequence of the scFv display vector pXP10.
- Figure 8a and 8b show the vector map and sequence of the scFv expression vector pXP14.
 - Figure 9 shows the sequences for the construction primers for a mouse library.
 - Figure 10 shows the amino acid sequences of scFv1 to scFv36. In each sequence the CDR3 is marked by underlining. The corresponding SEQ ID's are indicated.
 - Figure 11 shows the nucleotide sequences coding for the polypeptides scFv1 to scFv36.
 - Figure 12 shows a MALDI-MS spectrum of the peptide mixture obtained from the band with an approximate size of 130 kDa immunoprecipitated with scFv 1. Two trypsin auto digestion peaks, indicated as T, were used for internal calibration. A total of 17 peaks, marked with asterisks, matched neuropilin-1 (SwissProt, O14786), with a mass deviation of less than 10 ppm. The matched peptides cover 22 % (206/923 residues) of the protein.
- Figure 13 shows the principle of Chromophore-Assisted Laser Inactivation

 (CALI).
 - Figure 14 shows the results of the tube formation assay. The degree of tube formation was determined via light microscopy and was quantified based on the ability of cells to build closed polygons, the number and area of the polygons, the number of branch points and the ability of the cells to form closed tubes e.g. connections between branch points. Inhibitory effects were quantified by comparison with a negative control and were scaled between 0 and 3 (0-1 = no inhibition and 2-3 = strong inhibition effect). 14a) Control experiment without addition of an inhibitory antibody, inhibition of tube formation = 0, closed polygons are formed, high numbers

20

25

of branch points, branch points are connected and no significant cell aggregation. 14b) After incubation with 50 μ l/ml of scFv25*, inhibition of tube formation = 3.0, no closed polygons are formed, very low number of branch points and branch points are not connected. The symbol "*" indicates that the respective scFv -as identified by its number as shown in Fig. 10- was cloned into an IgG1 format before performing the assay. 14c) After incubation with 100 μ l/ml of a control antibody (anti- α 2 integrin antibody), inhibition of tube formation = 3.0, no closed polygons are formed, no branch points visible.

- Figure 15 shows –presented as a table- all results of the tube formation assay. The degree of tube formation was determined via light microscopy and quantified as described in Figure 14. The symbol "*" indicates that the respective scFv -as identified by its number as shown in Fig. 10- was cloned into an IgG1 format before performing the assay. The commercially available anti-NP-1 antibody did not show any significant inhibition of tube formation. "PBS 10%" indicates a control experiment, without the addition of an antibody.
 - Figure 16 shows the inhibition of VEGF₁₆₅:NP-1 interaction tested in a competition ELISA. "* " indicates a p-value < 0.01. Twelve scFv's of 28 were found to significantly inhibit the interaction between NP-1 and VEGF₁₆₅.
 - Figure 17 shows the determination of epitopes_for scFv's on cell surface NP-1.

 HT1080 cells were preincubated with a control scFv, different NP-1binding scFv or VEGF as indicated in the legend and the binding of fluorescein labeled scFv was tested. The data show that scFv8 and scFv24
 and VEGF have mutually overlapping epitopes, whereas scFv13 has an
 epitope distinct from scFv8 and scFv24 and VEGF.
 - Figure 18 shows -presented as a table- results of the Transendothelial Invasion assay with HT1080 cells. scFv26, scFv27, scFv34 and scFv35 inhibited the invasion of TH1080 cells. The invasion is determined in % of inhibi-

10

25

tion of invaded cells. For inhibition values: "+" represents 1-10% inhibition.

Figure 19 shows results of the migration assay with HUVEC cells. scFv8*, scFv25*, scFv26*, and scFv31* showed an statistically relevant inhibitory effect on the migration of HUVEC cells. The symbol "*" indicates that the respective scFv -as identified by its number as shown in Fig. 10-was cloned into an IgG1 format before performing the assay. The three bars to the left show the dependency of the migration of HUVEC cells on the concentration of VEGF₁₆₅. Concentrations between 0-5 ng/ml were used. It can be seen that the migration of HUVEC cells increases with the increase of VEGF₁₆₅.

EXAMPLES

Example 1: Construction of an immune library

- Two BALB/c mice were each immunized intradermally with 2 x 10⁷ paraformal-dehyde fixed HT1080 cells (human fibrosarcoma cell line; ATCC, CCL-121). Following the first immunization, the injections were repeated twice in a period of 39 days, the mice sacrificed and the spleens isolated and frozen in liquid nitrogen. The immunizations were performed by Charles River, Germany GmbH, Kißlegg.
- Total RNA was isolated using the RNeasy Midi Kit (QIAGEN #75142) as described by the manufacturer using half of each spleen preparation. The RNA concentration and purity was determined by a denaturing formaldehyde gel and photometric measurement.
 - cDNA was synthesized using 8.9μg of freshly prepared RNA and 10pmol of a primer mix (IgG1-c, IgG2a-c, IgG2b-c, IgG3-c, VLL-c, VLK-c) using the SuperscriptTM II Kit (GibcoBRL Life Technologies #18064-014) These primers anneal to the RNA encoding the IgG heavy-chain genes and the light chain genes of the kappa and lambda family. VH genes were PCR amplified from 1μl of cDNA us-

20

25

30

ing 36 individual combinations of 9 forward primers (MVH1, M+VH2, MVH3, MVH4, MVH5, MVH6, MVH7, MVH8, MVH9) and 4 backward primers (M-JH1, M-JH2, M-JH3, M-JH4) without restriction sites. VL genes were PCR amplified with one primer mix (M-VK1, M-VK2, M-VK3 M-VK4, M-VL1, M-JK1, M-JK2, M-JK3, M-JL1) without restriction sites. PCR products were gel-purified (QIAquick Gel Extraction Kit, #28706) and re-amplified using individual combinations of 9 forward primers (MVH1 SfiI, MVH2 SfiI, MVH3 SfiI, MVH4 SfiI, MVH5 SfiI, MVH6 SfiI, MVH7 SfiI, MVH8 SfiI, MVH9 SfiI) and 4 backward primers (M-JH1 Sall, M-JH2 Sall, M-JH3 Sall, M-JH4 Sall) with restriction sites for VH and one primer mix (M-VK1 ApaLI, M-VK2 ApaLI, M-VK3 ApaLI, M-10 VK4 ApaLI M-VL1 ApaLI, M-JK1 NotI, M-JK2 NotI, M-JK3 NotI, M-JL1 NotI) with restriction sites for VL. PCR products were gel-purified (QIAquick Gel Extraction Kit, #28706) and cloned into the phage display vector pXP10 using the restriction sites SfilISalI for VH and ApaLI/NotI for VL. The ligation mix was transfected into E.coli TG-1 by electroporation resulting in a library size of 10⁷ 15 independent clones.

Example 2: Selection and Screening of scFv (Selection on fixed cells)

Single chain Fv were selected from a phage display library generated from mice immunized with fixed HT1080 cells. The library was generated using the phage display vector pXP10.

HT1080 cells were harvested with 0.05% EDTA, fixed with paraformaldehyde, diluted to 1x10⁷ cells/ml in PBS and immobilized onto wells of a 96 well UV cross-link plate (Corning Costar). The wells of the UV cross-link plate were blocked with 5% Skim Milk Powder (#70166, Fluka) in PBS (MPBS). 1012 cfu (colony forming units) of phage library/10⁶ cells were pre-blocked for 1 hour at 25°C with MPBS and subsequently incubated for 1.5 hour at room temperature (RT) with the cells. The wells of the UV cross-link plate were washed six times with PBS + 0.05% Tween-20 followed by six washes with PBS. Bound phage were eluted by the addition of 10 mM Glycine pH 2.2, and neutralized with 1M

10

15

20

25

Tris/HCl pH 7.4. Typically, between 103 and 106 cfu were eluted in the 1st round of selection, thus the diversity of the enriched repertoire is decreased compared to the original repertoire. The eluate containing the enriched repertoire was amplified by infecting exponentially growing E. coli TG1. Phagemid containing E. coli were selected and propagated by overnight growth at 30°C on LB agar plates supplemented with 100 µg/ml ampicillin and 1% glucose. Following this step, the enriched repertoire can either be amplified as a polyclonal pool and used for further rounds of selection in an iterative manner until convergence to desired properties is achieved or be spatially separated and screened on a single clone level. Phage particles for the next round of selection were produced by super-infecting exponentially growing cultures of the previous round of selection with helper phage VCS-M13 (Stratagene, La Jolla, CA) and growing the cultures overnight at 20°C in 2xTY supplemented with 100 µg/ml ampicillin and 50 µg/ml kanamycin. Selection ready phage were precipitated with 0.5 M NaCl/4% PEG-6000 from the cleared bacterial supernatant and re-suspended in PBS. One round of selection was performed followed by screening on a single clone level.

Example 2.1: Selection and screening of scFv (Selection on cells in suspension)

Single chain Fv were selected from a large non-immune phage displayed repertoire of human origin containing 10¹¹ independent clones, provided by Cambridge Antibody Technology Ltd., Cambridge, UK.

For selection, HT1080 cells (human fibrosarcoma cell line; ATCC, CCL-121) were harvested with 0.05% EDTA and diluted to $1x10^7$ cells/ml in DMEM + 10% FCS. Two times 10^{12} cfu of phage library/ 10^7 cells were pre-blocked for 1 hour at 25°C with DMEM + 10% FCS and subsequently incubated with end-over-end rotation for 1.5 hour at 25°C with the cells in Eppendorf tubes pre-blocked with DMEM + 10% FCS. Three times 10^7 cells were used for the first round of selection and $1x10^7$ cells were used for the 2^{nd} round of selection, respectively. The cells were washed by centrifugation at 220xg for five minutes, followed by removal of the supernatant and re-suspension in wash buffer. Five washes with

10

15

20

25

30

DMEM + 10% FCS + 0.05% Tween-20 as wash buffer and five washes with DMEM + 10% FCS as wash buffer were performed. Bound phages were eluted by the addition of 10 mM glycine pH 2.2, neutralized with 1M Tris/HCl pH 7.4. Typically, between 10³ and 10⁶ cfu were eluted in the 1st round of selection, thus the diversity of the enriched repertoire is decreased compared to the original repertoire. The eluate containing the enriched repertoire was amplified by infecting exponentially growing E. coli TG1. Phagemid containing E. coli were selected and propagated by overnight growth at 30°C on LB agar plates supplemented with 100µg/ml ampicillin and 1% glucose. Following this step, the enriched repertoire can either be amplified as a polyclonal pool and used for further rounds of selection in an iterative manner even until convergence to desired properties is achieved or be spatially separated and screened for a desired function on a single clone level. Phage particles for the next round of selection were produced by super-infecting exponentially growing cultures of the previous round of selection with helper phage VCS-M13 (Stratagene, La Jolla, CA) and growing the cultures overnight at 20°C in 2xTY supplemented with 100 μg/ml ampicillin and 50 μg/ml kanamycin. Selection ready phage were precipitated with 0.5 M NaCl/4% PEG-6000 from the cleared bacterial supernatant and re-suspended in PBS. In this example two rounds of selection were performed followed by screening on a single clone level.

Example 3: Selection and Screening of scFv (Screening on fixed cells)

For screening, the genes encoding the selected scFv, contained in the phage display vector, were re-cloned to the expression vector pXP14. This vector directs the expression of a scFv in fusion with a Streptag and E-tag and does not contain a filamentous phage gene-3. Expression vector containing *E. coli* TG1 from single colonies were grown in individual wells of a microtiter plate so that each well contains only one scFv clone. The bacteria were grown at 30°C in 2xTY supplemented with 100 µg/ml ampicillin and 0.1% glucose in 96-well microtiter plates (#9297, TPP) until an OD₆₀₀ of 0.7. Expression was induced with IPTG at a final concentration of 0.5 mM and continued at 25°C overnight. Single chain Fv con-

10

15

20

25

taining cleared lysates were prepared by addition of hen-egg lysozyme (#L-6876, Sigma) to a final concentration of 50 μg/ml for 1 hour at 25°C and centrifugation for 15 minutes at 3000 x g. Prior to the screening ELISA, the cleared lysates were blocked by the addition of an equal volume of DMEM + 10% FCS for 1 hour. For the screening ELISA, HT1080 cells were harvested with 0.05% EDTA, fixed with paraformaldehyde, diluted to 1x10⁷cells/ml in PBS and immobilized onto wells of a 96 well UV cross-link plate (Corning Costar). The wells of the UV cross-link plate were blocked with MPBS and the scFv containing blocked cleared lysates added for 1.5 hours at 25°C. The plates were washed 2x with PBS + 0.1% Tween-20 and 1x with PBS, incubated with HRP conjugated α-E-tag (#27-9413-01, Pharmacia Biotech; diluted 1:5000 in MPBS with 0.1 % Tween-20) for 1 hour, washed 3x with PBS + 0.1% Tween-20 and 3x with PBS, developed with POD (#1 484 281, Roche) and signals read at 370 nm. Positive clones were retested against HT1080 cells and control human fibroblasts Hs-27 (ATCC CRL-1634) using the ELISA screening procedure described above.

In a typical screen, 2760 (30x92) clones were screened for binding to HT1080 cells with 5 % positives defined as clones giving a background subtracted signal > 0.1. 155 positive clones were retested for specific binding to HT1080 cells compared to the Hs-27 control cells with 28 % positives defined as clones giving a background subtracted signal on HT1080 of twice the value of the signal on Hs-27 control cells. scFv1 was identified by applying this selection and screening method.

Example 3.1: Selection and screening of scFv (Screening on adherent cells)

For screening, the genes encoding the selected scFv, contained in the phage display vector, were re-cloned to the expression vector pXP14. This vector directs the expression of a scFv in fusion with a Streptag and E-tag and does not contain a filamentous phage gene-3. Expression vector containing *E. coli* TG1 from single colonies were grown in individual wells of a microtiter plate so that each well contains only one scFv clone. The bacteria were grown at 30°C in 2xTY supple-

10

15

20

25

mented with 100 µg/ml ampicillin and 0.1% glucose in 96-well microtiter plates (#9297, TPP) until an OD₆₀₀ of 0.7. Expression was induced with IPTG at a final concentration of 0.5 mM and continued at 25°C overnight. Single chain Fv containing cleared lysates were prepared by addition of hen-egg lysozyme (#L-6876, Sigma) to a final concentration of 50 µg/ml for 1 hour at 25°C and centrifugation for 15 minutes at 3000xg. Prior to the screening ELISA, the cleared lysates were blocked by the addition of an equal volume of DMEM + 10% FCS for 1 hour. For the screening ELISA, HT1080 cells were seeded in a 96-well microtiter plate (#9296, TTP) at a density of 3×10^4 cells/well in DMEM + 10% FCS overnight at 37°C. The wells were blocked with DMEM + 10% FCS for 1 hour at 37°C and the scFv containing blocked cleared lysates added for 1.5 hours at 25°C. The plates were washed 2x with PBS + 0.1% Tween-20 and 1x with PBS, incubated with HRP conjugated α-E-tag (#27-9413-01, Pharmacia Biotech; diluted 1:5000 in 5% Skim Milk Powder (#70166, Fluka) in PBS with 0.1 % Tween-20) for 1 hour, washed 3x with PBS + 0.1% Tween-20 and 3x with PBS, developed with POD (#1 484 281, Roche) and signals read at 370 nm. Positive clones were retested against HT1080 cells and control human fibroblasts Hs-27 (ATCC CRL-1634) using the ELISA screening procedure described above.

In a typical screen, 1472 (16x92) clones were screened for binding to HT1080 cells with 16 % positives defined as clones giving a background subtracted signal > 0.1. 238 positive clones were retested for specific binding to HT1080 cells compared to the Hs-27 control cells with 28 % positives defined as clones giving a background subtracted signal on HT1080 of twice the value of the signal on Hs-27 control cells. scFv2 was identified by applying this selection and screening method.

Example 3.2: Generation of function inhibiting antibodies

Using a large naïve human phage displayed antibody library provided by Cambridge Antibody Technology Ltd., Cambridge, UK, additional NP-1 antibodies were selected on recombinant NP-1. The selection was performed as described in

(Vaughan, T.J et al., 1996 Nat Biotechnol. 14, 309). After two rounds of selection, individual clones were screened for their ability to specifically recognize recombinant NP-1 in ELISA and NP-1 as presented on the cell surface in cell ELISA and FACS.

5

10

15

20

25

30

Example 4a: Sequencing and large scale expression

Sequencing of all scFv genes was performed by Sequiserve GmbH, Vaterstetten, Germany using the primer pXP2 Seq2 (5'-CCCCACGCGGTTCCAGC-3') and pXP2 Seq1 (5'TACCTATTGCCTACGGC-3'). The amino acid sequences are shown in Figure 10 and nucleotide sequences are shown in Figure 11.

Unique clones identified by sequencing were streaked out from glycerol stocks onto LB/Amp (100µg/ml)/1% Glucose Agar plates and incubated o/n at 30°C. 10 ml LB/Amp/Glu (1%) media were inoculated with a single colony and grown o/n at 30°C and 200 rpm shaking. The next morning the overnight cultures were placed on ice until inoculation of 1L 2xTY media supplemented with 100µg/ml Ampicillin and 0.1% Glucose in 2L Erlenmeyer-flasks. The cultures were grown at 25°C shaking until an OD₆₀₀ 0.5 – 0.6 was reached and then induced with IPTG 0.1 mM final concentration. Fresh Ampicillin was added to 50 μg/ml and incubation was proceeded at 22°C o/n shaking. In the morning the cultures were centrifuged at 5000 x g for 15 minutes at 4°C, supernatants discarded and the pellets resuspended carefully on ice with a pipette in 10 ml pre-cooled PBS-0.5 M Na buffer containing protease inhibitors complete (#1697498, Roche). After resuspension was completed, bacterial suspensions were transferred to 20 ml oakridge centrifuge tubes and hen-egg lysozyme (#L-6876, Sigma) added to a final concentration of 50 µg/ml for 1 hour on ice. The lysed bacteria were centrifuged at 20000 x g for 15 minutes at 4°C and the supernatants (lysate) transferred to a 15 ml plastic tube. For affinity purification the lysates were loaded with 1 ml/min onto 1ml StrepTactin (# 2-1505-010, IBA) columns equilibrated with 10 column volumes (CV) PBS-0.5 M Na buffer via a parallel protein purification system (self-made). After a 10 CV wash with PBS the elution was done with 5

10

15

20

CV PBS/5mM Desthiobiotin (#D-1411, Sigma) and 1 ml fractions collected. The fractions were measured at UV₂₈₀, protein containing fractions were pooled and concentrated with Amicon Ultra Centrifugal Filter Devices 10.000 MWCO (#UFC801024, Millipore) at 4700 x g. The concentrated scFv were checked on 12% Bis-Tris SDS-PAGE gels stained with Coomassie Blue for purity and frozen in aliquots with 20 % glycerol at -80°C.

Example 4b: Cloning of scFv into IgG format and expression

The scFvs consist of the sequence of a variable light and heavy chain linked by a linker sequence. The variable light chain and the variable heavy chain were amplified by PCR separately with the usage of primer, which contain restriction sites. Those restriction sites are also present in the vectors, which contain the appropriate constant domains for the heavy and light chain. The amplified variable domains were cut with the restriction enzymes and cloned into the cut vectors. The correct sequence was confirmed via sequencing

Four vectors were used, one contained the constant domain of the heavy chain for IgG1 format. The second contained the constant domain of the heavy chain for IgG4 format and two contained the constant domain of lambda and kappa light chains, respectively. Different restriction sites enabled to cut the vectors and to ligate the variable domains in the vectors.

For expression of the IgGs in mammalian cell lines the vectors contained an Epstein Barr virus origin of replication (oriP sequence) which enhances the level of transcription in 293-EBNA-HEK cells, because the EBNA protein leads to the replication of the episomal vector.

A co-transfection was carried out with the vector for the heavy chain and the vector for the light chain leading to the expression of both chains in the cell and the assembly of the IgG in the Endoplasmic Reticulum. The assembled IgG was then secreted to the medium. As transfection method Calcium-phosphate transfection was used, where a precipitate of Calcium-phosphate and the DNA is formed and incorporated into the cell. After the transfection the medium was

changed to serum-free medium. Three harvests per IgG were done every 3 days. The supernatant (media) were sterile-filtrated and stored at 4°C.

- 54 -

For the purification of the IgGs the supernatants were purified via Protein A Sepharose either by gravity flow or by HPLC depending on the volume. For up to 200 ml a gravity flow method was used. For both purification types the supernatant was loaded on the Protein A column, washed with 50 mM Tris pH 7 buffer and eluted with 0.1 M Citrate pH \sim 2.To the elution fraction 0.25 M Tris pH 9 was added leading to a pH of 5.5-6.0. Depending on the further use of the IgGs they were dialysed against PBS buffer and stored at -20°C.

10

15

20

25

5

Example 5: FACS analysis for tumor cell specific binding

To test the ability of purified anti HT1080 single chain Fv to bind specifically to target cells, we performed a fluorescence-activated cell sorter (FACS) analysis using HT1080 cells (ATCC CCL-121), KHOS cells (ATCC CRL-1544), PC-3 cells (ATCC CRL-1435), BT-474 cells (ATCC HTB-20), Hela cells (DSMZ ACC-57), HL60 cells (DSMZ ACC-3), Jurkat cells (DSMZ ACC-282), MCF7 cells (DSMZ ACC-115) and chang liver cells (DSMZ ACC-57 contain impurities of Hela cells) (for all 106 cells/ml) and Hs-27 cells (106 cells/ml) as control cell line (see Figure 5). Cells were incubated with 10µg/ml of pure scFv in CellWash (BD (Becton, Dickinson and Company) #349524) for 20 min at 4°C, washed, and bound scFvs were detected with a secondary FITC labeled anti E-tag mab (Amersham #27-9412-01). Samples were washed and analyzed on a Becton Dickinson FACSscan. Figure 5 shows the log fluorescence intensity (FL1-H; x-axis) versus the relative cell numbers (counts; y-axis) for cells reacting with scFv1. The thin line represents the control cell line (HS-27) and the bold line the tumor cell lines or chang liver cells. scFv1 and scFv2 specifically stain the tumor cell lines with up to 10 fold higher signals compared to the control cell line.

Example 6: Competition analysis by FACS

To test the ability of the purified anti neuropilin-1 scFv to block common neuropilin-1 epitopes on the target cells, single cell suspensions of HT1080 are harvested with 0,5mM EDTA/PBS. Approximately 1 x 10⁶ cells are incubated in CellWash "(BD, #349524) with 10µg/ml scFv for one hour at 4°C. After washing with Cell Wash 10µg/ml FITC labeled scFv is added and incubated for 20 min at 4°C. Signals of bound FITC labeled scFvs with and without pre incubation of other neuropilin-1 binders are analyzed on a Becton Dickinson FACSscan. "

Example 7: Labeling of antibody fragments with FITC

scFv were labeled with fluorescein isothiocyante (FITC) (Molecular Probes, Eugene, USA #F1906) by the following method: Aliquots of a 10mg/ml solution of FITC in dimethyl sulfoxide were added to 100µg of scFv1 dissolved in PBS/0.5M NaHCO₃, pH 9.5 in a ratio of 30:1 (FITC:scFv1). The sample was incubated for two hours at room temperature with agitation, free FITC was separated using desalting columns (2 Micro Spin G-25, Pharmacia 27-5325-01). The ratio of labeling was determined via mass spectrometry and via UV/VIS spectroscopy, whereby the protein concentration was calculated at 280nm and the FITC concentration at 494nm.

Example 8: Invasion assay for identification of inhibitory antibody fragments

The ChemoTx[®] system (Neuro Probe Inc.#106-8, Gaithersburg) is used as a disposable chemotaxis/cell migration chamber in a 96 well format with an 8μm filter Track etched Polycarbonate pore size, 5.7 mm diameter/site.

13,3µl of 0.3mg/ml Matrigel (Matrigel is a solubilized basement membrane preparation extracted from the Engelbreth-Holm-Swarm (EHS) mouse sarcoma, a tumor rich in extracellular matrix proteins. Its major component is laminin, followed by collagen IV, heparan sulfate proteoglycan, entactin and nidogen. It also contains TGF-_ fibroblast growth factor, tissue plasminogen activator, and other growth factors which occur naturally in the EHS tumor) (Becton Dickenson, BD

10

15

20

25

30

#356234) diluted in Dulbeccos PBS (Gibco #14040-091) is applied on the membrane filter of the 96-well plate on row B-H and on row A 1,2 µg/site of collagen S type I (Roche #10982929) is diluted in 0,05 M HCl (Sigma #945-50) and is incubated over night at 20°C in a desiccator for gelation. HT1080 cells are grown to 70-80% confluence in DMEM supplemented with GlutamaxI (862mg/l (Gibco #31966-021) with 10% FCS (Gibco #10270106). The cells are washed 2x with DMEM/GlutamaxI/0.1 % BSA (Sigma #A-7030) then labeled in situ with Bisbenzimide H 33342 (Sigma #B-2261) are diluted 1:100 in DMEM/GlutamaxI/0.1 % BSA for 15 min at 37°C, 7,5% CO2. Cells are washed 2x with DMEM/GlutamaxI/0.1 % BSA and are loaded with DMEM/GlutamaxI/0.1 % BSA for 15 min at 37°C, 7,5% CO₂ for recovering. After washing 2x with PBS w/o Ca²⁺, Mg²⁺ (Gibco, 10010-015), the cells are detached with 0.5mM EDTA (Sigma #E8008), are collected with Dulbeccos PBS/0.1% BSA/10mM Hepes (Gibco #15630-056), are washed 2x with Dulbeccos PBS/0.1% BSA/10mM Hepes, are suspended in Dulbeccos PBS/0.1% BSA/10mM Hepes and are diluted to 6,7 x 10^6 cells/ml with Dulbeccos PBS/0.1% BSA/10mM Hepes. 6,7 x 10^6 cells/ml are incubated 1:1 with 40µg/ml of a control scFv as a negative control for inhibition of invasion and with HT1080 specific scFv for 1h on ice. After dilution to 6,7 x 10^5 cells/ml with DMEM/GlutamaxI/0.1 % BSA, HT1080 cells and HT1080 cell/scFv dilutions are pipetted in triplicate onto the chemotaxis chamber (row B-H) at a density of 3,4 x 10⁴ cells/well and are incubated for 6 h at 37°C, 7,5% CO₂. DMEM/GlutamaxI with 5% FCS is used as a chemo attractant in the lower chamber. A standard curve from 1x10⁴ to 4x10⁴ cells/site is performed on collagen S type I coated row A of the chemotaxis chamber. DMEM/GlutamaxI/0.1% BSA is used in the lower chamber (cells are not migrating). After scraping the non-migrating cells from the top of the membrane (except the Standard curve on row A) fluorescence of cells, which had migrated through the membrane (not migrated in case of the Standard curve), is measured on the Fluostar Galaxy (bMG) microplate reader using excitation/emission wavelengths of 370/460nm.

10

15

20

25

Example 8.1: Influence of VEGF on the invasion of HT1080 cells

The invasion assay set-up was identical to the set-up described in Example 8. The invasion membrane (Neuroprobe #106-8, Gaithersburg, MD) was coated overnight with Matrigel (0,3mg/ml; BD #356234, Bedford, MA). 80 % confluent HT1080 cells were stained with Bis-benzimide H33342 and then detached with 0,05% EDTA. Cells (7x10⁶/ml, final 35.000/well) were pre-incubated for 1h at 4°C with:

- a. 0, 25, 50 or 100 ng/ml recombinant human VEGF (R&D Systems #293-VE, Minneapolis) in the presence or absence of 20 μg/ml anti-human VEGF antibody (R&D Systems #AF-293-NA). 5% FCS (not heat-inactivated) in DMEM was used as chemo-attractant in the well below the membrane;
- in the presence or absence of 20 μg/ml anti-human VEGF antibody,
 with 5% FCS and 25, 50 or 100 ng/ml VEGF as chemo-attractant;
- c. 0, 25, 50 or 100 ng/ml VEGF in the presence or absence of 20μg/ml anti-human VEGF antibody, with 1% BSA (Sigma #A7030, ST. Louis, MO) in DMEM in the well below the membrane;
- d. in the presence or absence of 20 μ g/ml anti-human VEGF antibody, using 25, 50 or 100 ng/ml VEGF in DMEM containing 1% BSA as chemo-attractant.

50μl of the preincubated cell suspensions (a-d) were pipetted on top of the membrane and the invasion plate was incubated for 6h at 37°C, 7,5% CO₂. The readout of the invasion assay was identical to the readout described in Example 8. No significant increase of invasion was seen when the cells were pre-incubated with different concentrations of recombinant VEGF (a). Also, the addition of antihuman VEGF antibody had no influence on the invasion of HT1080 cells (a), compared to the result of Experiment 8. The addition of recombinant VEGF to the chemo-attractant FCS did not result in an increase of invasion of HT1080 cells (b). A variation of the VEGF concentration did not show an effect either. The ad-

10

dition of anti-human VEGF antibody had also no effect on this result (b). The preincubation with VEGF did not result in an invasion of HT1080 cells when BSA was used as a chemo-attractant (c). The use of VEGF as a chemo-attractant in DMEM and 1% BSA did also not stimulate the invasion of HT1080 cells (d), whereas 5% FCS as a chemo-attractant induced invasion (fourth bar from the left in Figure 2a).

Example 9: Invasion assay for target identification with CALI

This Example is in general identical to Example 8, except for the use of FITC-labeled scFv (see, Example 7 for labeling) and the integration of the CALI process within the invasion assay.

The ChemoTx[®] system (Neuro Probe Inc.#106-8, Gaithersburg) was used as a disposable chemotaxis/cell migration chamber in a 96 well format with an 8μm filter Track etched Polycarbonate pore size, 5.7 mm diameter/site.

15 13,3µl of 0.3mg/ml Matrigel (see Example 8) diluted in Dulbeccos PBS (Gibco #14040-091) was applied on the membrane filter of the 96-well plate on row B-H and on row A 1,2 µg/site of collagen S type I (Roche #10982929) was diluted in 0,05 M HCl (Sigma #945-50) and was incubated over night at 20°C in a desiccator for gelation. HT1080 cells were grown to 70-80% confluence in DMEM supplemented with GlutamaxI (862mg/l (Gibco #31966-021) with 10% FCS (Gibco 20 #10270106). The cells were washed 2x with-DMEM/GlutamaxI/0.1 % BSA (Sigma #A-7030) then labeled in situ with Bisbenzimide H 33342 (Sigma #B-2261) and were diluted 1:100 in DMEM/GlutamaxI/0.1 % BSA for 15 min at 37°C, 7,5% CO2. Cells were washed 2x with DMEM/GlutamaxI/0.1 % BSA and loaded with DMEM/GlutamaxI/0.1 % BSA for 15 min at 37°C, 7,5% CO₂ for re-25 covering. After washing 2x with PBS w/o Ca2+, Mg2+ (Gibco, 10010-015), the cells were detached with 0.5mM EDTA (Sigma #E8008), collected with Dulbeccos PBS/0.1% BSA/10mM Hepes (Gibco #15630-056), washed 2x with Dulbeccos PBS/0.1% BSA/10mM Hepes, suspended in Dulbeccos PBS/0.1% BSA/10mM Hepes and diluted to 6.7 x 10⁶ cells/ml with Dulbeccos PBS/0.1% 30

10

15

20

25

BSA/10mM Hepes. 6,7 x 10⁶ cells/ml were incubated 1:1 with 40µg/ml of FITClabeled anti-beta1 integrin monoclonal antibody (JB1, Chemicon #MAB1963) as a control for inhibition of invasion after CALI and with HT1080 specific FITC labeled scFv for 1h on ice. 1,3x10⁵ HT1080 cells/well or HT1080 cell/scFv or Ab dilution were pipetted in triplicate in two 96-well plate, black, ultra thin clear flat bottom special optics (Costar #3615). One plate was kept on ice in the dark while the other plate was irradiated on an ice block with continuous wave laser at 488nm (0.5W, 30 sec). After dilution to 6.7×10^5 cells/ml with DMEM/GlutamaxI/0.1 % BSA, HT1080 cells and HT1080 cell/scFv dilutions were pipetted in triplicate (non irradiated triplicate beside irradiated triplicate) onto the chemotaxis chamber (row B-H) at a density of 3,4 x 10⁴ cells/well and incubated for 6 h at 37°C, 7,5% CO₂. DMEM/GlutamaxI with 5% FCS was used as a chemo attractant in the lower chamber. A standard curve from 1x10⁴ to 4x10⁴ cells/site was performed on collagen S type I coated row A of the chemotaxis chamber. DMEM/GlutamaxI/0.1% BSA was used in the lower chamber (cells were not migrating). After scraping the non-migrating cells from the top of the membrane (except the Standard curve on row A) fluorescence of cells, which had migrated through the membrane (not migrated in case of the Standard curve), was measured on the Fluostar Galaxy (bMG) microplate reader using excitation/emission wavelengths of 370/460nm. In a general experiment, a value of 45000 corresponded to 100% migrated cells.

The invasion phenotype of HT1080 cells was assessed by comparing their relative ability to invade tumor extracellular matrix (Matrigel) using the Transwell culture system described above. scFv1 showed after CALI an inhibitory effect of 25% on the invasion of the HT1080 cells. The result of the invasion assay with and without CALI (see Example 8) is shown in Figure 2. Figure 2 shows that CALI converts scFv1 in an inhibitory antibody fragment.

10

15

20

25

30

Example 10: MTS viability assay

Viable cells were detected by measuring the conversion of the tetrazolium dye MTS (MTS, Celltiter A_{queous} one, Promega #G4000) to formazan. HT1080 cells and HT1080 cell/scFv dilutions (obtained from the dilutions prepared in the Invasion assay) were pipetted in triplicate at a density of 3,4 x 10⁴ cells/well and were plated in a 96-well plate (black, ultra thin clear flat bottom, special optics, Costar #3615) 10 μl MTS was added to each well and incubated for 1 hour at 37°C, 7,5% CO₂. Absorbance was measured at 492 nm with the Fluostar Galaxy (bMG) microplate reader. For all tested scFvs, no effect on viability of cells was seen (data not shown).

Example 11: Cell-matrix adhesion assay for identification of inhibitory antibody fragments

21 wells of a 96-well flat bottom plate (Costar #3614) were coated with one matrix protein selected from collagen S type I 1µg/well (Roche #10982929), collagen type IV 1µg/well (Rockland 009-001-106), fibronectin 1µg/well (Sigma F2518) and laminin 1µg/well (Roche 1243217) in Dulbeccos PBS (Gibco #14040-091), respectively, at 4° C over night. At the same time 3 wells in row A were coated with 2% BSA (Sigma #A-7030)/Dulbeccos PBS for a blank value. Wells were washed twice with Dulbeccos PBS, and blocked with 2% BSA (Sigma #A-7030)/Dulbeccos PBS for 1h at 37°C and washed with Dulbeccos PBS. HT1080 were harvested, stained with 2,5mM (final concentration) Calcein AM (Molecular Probes C-3099), washed twice with PBS w/o CaCl₂ w/o MgCl₂ (Gibco 10010-015) and diluted to 1,5 \times 10⁵/ml in buffer (0,5% BSA (Sigma #A-7030) + 10mM Hepes + DMEM (Gibco 31966-02)). HT1080 cells were mixed with 10µg/ml scFv and incubated for 30 min on ice. The HT1080 cells alone and HT1080/scFv dilutions were pipetted in triplicate at a density of 1,5x10⁴ cells/well and incubated for one hour at 37°C, 7,5% CO₂. After two additional washing steps with Dulbeccos PBS, where non-adherent cells were washed away, a Standard curve from 3,7 x10³ to 1,5 x10⁴ stained cells/well diluted in Dulbeccos PBS was performed in triplicate in row A. Washed wells were filled with 100µl Dulbeccos PBS and the absorbance of attached cells and of the Standard curve was measured on the Fluostar Galaxy (bMG) microplate reader using excitation/emission wavelengths of 485/520nm. scFv1 showed an inhibitory effect of approximately 20% on the adhesion of HT1080 cells to collagen S type I, collagen type IV, fibronectin and laminin. scFv2 showed an inhibitory effect of 27 % on the adhesion of HT1080 cells to laminin and a relatively low inhibitory effect on the adhesion of HT1080 cells to collagen type IV and fibronectin. No effect was seen on the adhesion of HT1080 cells to collagen S type I. Results for scFv1 and scFv2 are shown in Figure 4.

10

15

20

25

30

5

Example 12: Cell-matrix adhesion assay for target identification with CALI 96-well plates (TPP #9296) (cell culture treated) were coated in Row B-H with collagen S type I 1µg/well (Roche #10982929) in Dulbeccos PBS (Gibco #14040-091) and in Row A well 10-12 were coated with 2% BSA (Sigma #A-7030)/Dulbeccos PBS at 4°C over night. The plate was washed with Dulbeccos PBS, blocked Row B-H and Row A well 10-12 with 2% BSA/Dulbeccos PBS for 1h at 37°C and washed again with Dulbeccos PBS. HT1080 cells were grown to 70-80% confluence in DMEM supplemented with GlutamaxI (862mg/l (Gibco #31966-021) with 10% FCS (Gibco #10270106). The cells were washed 2x with DMEM/GlutamaxI/0.1 % BSA (Sigma #A-7030) then labeled in situ with Bisbenzimide H 33342 (Sigma #B-2261) were diluted 1:100 in DMEM/GlutamaxI/0.1 % BSA for 15 min at 37°C, 7,5% CO₂. Cells were washed 2x with DMEM/GlutamaxI/0.1 % BSA and loaded with DMEM/GlutamaxI/0.1 % BSA for 15 min at 37°C, 7,5% CO₂ for recovering. After washing 2x with PBS w/o Ca²⁺, Mg²⁺ (Gibco, 10010-015), the cells were detached with 0.5mM EDTA (Sigma #E8008), collected with Dulbeccos PBS/0.1% BSA/10mM Hepes (Gibco #15630-056), washed 2x with Dulbeccos PBS/0.1% BSA/10mM Hepes, suspended in Dulbeccos PBS/0.1% BSA/10mM Hepes and diluted to 6,7 x 10⁶ cells/ml with Dulbeccos PBS/0.1% BSA/10mM Hepes. 6,7 x 10⁶ cells/ml were incubated 1:1 with 40µg/ml of FITC-labeled anti-beta1 integrin monoclonal antibody (JB1, Chemicon #MAB1963) as a control for inhibition of adhesion after

10

15

20

25

30

CALI and with HT1080 specific FITC labeled scFv for 1h on ice. 1,3x10⁵ HT1080 cells/well or HT1080 cell/scfv or Ab dilution were pipetted in triplicate in two 96-well plate, black, ultra thin clear flat bottom special optics (Costar #3615). One plate was kept on ice in the dark while the other plate was irradiated on an ice block with continuous wave laser at 488nm (0.5W, 30 sec). After dilution to 6,7 x 10⁵ cells/ml with DMEM/GlutamaxI/0.1 % BSA, HT1080 cells and HT1080 cell/scFv dilutions were pipetted in triplicate (non irraditated triplicate beside irradiated triplicate) onto the coated and blocked plate. In Row A well 10-12 6.7 x 10⁵ cells/ml with DMEM/GlutamaxI/0.1 % BSA were pipetted as a background control. Plate was incubated for 1h at 37°C, 7,5% CO₂ and washed 2x with Dulbeccos PBS, where non-adherent cells were washed away. In Row A well 1-9 a standard curve from 1x10⁴ to 4x10⁴ cells/well is performed, in all other wells 50 µl Dulbeccos PBS is pipetted. Fluorescence of cells, which had adhered to the Collagen S type I (not adhered in case of the Standard curve), was measured on the Fluostar Galaxy (bMG) microplate reader using excitation/emission wavelengths of 370/460nm. scFv1 showed after CALI an inhibitory effect of 30% on the adhesion of the HT1080 cells to collagen S type I. scFv2 showed after CALI an inhibitory effect of approximately 10% on the adhesion of HT1080 cells to collagen S type I. In one set of experiments scFv2 showed already an inhibitory effect on the adhesion of HT1080 cells to collagen S type I of 5% without CALI. The results of the adhesion assay with and without CALI are shown in Figure 3.

Example 13: Immunoprecipitation

HT1080 and Hs-27 cells (10⁸) were lysed in 3ml 50 mM Tris-HCl, pH 8.0, 150 mM NaCl, 1% Triton X-100 (v/v) containing protease inhibitor cocktail (1 pill in 50ml buffer) (Boehringer Mannheim, Cat.-No. 1697498) and 100 μM Pefablock (Roth, Cat.-No. A154.1). Lysates were pre-incubated for 2h at 4°C with Streptactin Sepharose (IBA, # 2-1201-010) and the supernatants used for the immunoprecipitation reactions. HT1080 specific scFv (50 μg/1 mg cell extract) were added to the cleared lysates, samples rotated for 2h at 4°C, gently centrifuged at 700g to pellet the Streptactin Sepharose, the pellet was washed 4 times with 1ml volume

15

20

25

of PBS + 0.1% Tween buffer per wash, before the complexes were isolated by elution from the Streptactin Sepharose pellet with 50 μ l 10 mM D-desthiobiotin in PBS 0.1% Tween 20. The immuno-complexes were separated by SDS-PAGE and silver stained for MS analysis.

scFv 1 and scFv 2 pulled down a protein, detected as a band on SDS-PAGE by silver staining at a molecular weight of ~130 kDa. This band was only detected in the HT1080 cell extract and not in the Hs-27 cells (control cells), see Figure 6.

Example 14: Protein identification via mass spectroscopy

The gel bands obtained from immunoprecipitations followed by SDS PAGE were subjected to a tryptic in-gel digest over night at 37 °C. Peptides were extracted using 5% formic acid and the resulting peptide mixture was desalted using ZipTip μC18 (Millipore) and eluted first with 2 μl of 30% ACN/0.1% TFA, then with 2 μl of 70% ACN/0.1% TFA. The two fractions were pooled and one microliter of the obtained peptide mixtures was mixed in a 1:1 ratio with a solution of α-cyano-4-hydroxycinnamic acid (3 mg/ml), co-crystallized on a Teflon-coated stainless steel target and analyzed on a MALDI-TOF instrument yielding peptide mass fingerprints (PMF) in a mass range of m/z 800-3000. The obtained PMF were used to search all entries for the species *Homo sapiens* in the NCBI and SwissProt databases. In all cases, only peptides matching a given protein with a mass deviation of less than 10 ppm were considered for identification.

The band with an approximate size of 130 kDa, obtained by using scFv1 or scFv2, yielded up to 17 peptide peaks (in different experiments with the same scFv), which matched neuropilin-1, with a maximum protein coverage of 22% (206/923 residues). 3 peptides, namely peptide fragments 659-672, 680-702 and 776-787 clearly support the identity of neuropilin-1. Neuropilin-1's splice variant, called soluble neuropilin-1, misses amino acids 645-923 when compared to neuropilin-1 with its 923 amino acids. Therefore, the obtained mass spectrum clearly proves

15

25

that the full length version of NP-1 was immunoprecipitated by scFv1 and scFv2. A spectrum is shown in Figure 12.

Example 15: Methods for epitope mapping

An epitope mapping may be carried out according to one of the following methods:

Example 15.1: "Classical" epitope mapping

Defined fragments of the cDNA for the antigen of interest are expressed as recombinant (fusion)proteins and probed in various assays such as Westernblot or ELISA.

Example 15.2: Phage display technology

The technique of epitope mapping using <u>random peptide phage display libraries</u> was developed to clone small random fragments of the cDNA for the antigen of interest into the phage protein pIII of filamentous phages and display them on the surface of the phage (Fack et al., (1997) J. Immunol. Methods 7, 43-52). Epitope-displaying phages can be captured with antibodies in a procedure called "biopanning". Sequencing of the inserts of the corresponding phages gives some information on the epitopes. This procedure is in principle capable to identify conformational epitopes.

20 Example 15.3: Peptide scan technology

It is based on the synthesis of immobilized peptides on activated membranes using the Fmoc chemistry. Amino acid solutions are applied to the activated membrane leading to a peptide bond between the amino-group on the membrane (the membrane is activated with PEG) and the activated carboxy-group of the applied amino acid. After each cycle a specific washing procedure, acetylation, deprotection and monotoring of free amino-groups is performed. In contrast to the in vivo protein-synthesis membrane bound oligo-peptide chains are stepwise synthesized from C- to the N-terminus. Oligo-peptides containing natural as well as modified

amino acids can be synthesized up to a length of 20 amino acids. Following synthesis the membranes are equilibrated and unspecific binding sites are blocked. After incubation with the antibody of interest and several washing steps the detection is performed using an HRP-conjugated secondary antibody in combination with the ECL-System. Membranes can be stripped, regenerated, and re-used up to 10 times depending on the antibody. Small overlapping oligo-peptides that ideally cover the complete amino acid sequence of the antigen of interest are synthesized on a solid support. This method allows the identification of linear epitopes on the amino acid level. It also allows rapid mutational studies.

10

15

5

Example 16: Inhibition of tube formation

HUVEC cells (Cell Line Service, Heidelberg; # 0170 HU) were cultured in gelatine (0.2% gelatine in HBSS w/o Ca²⁺/Mg²⁺, 1h at RT) coated 150 cm² flasks to 80-90% confluency. Only cells with passage numbers between 2 and 10 were used. An angiogenesis assay kit was used (Chemicon # ECM625) for the assay.

Materials:

96 well MTP, half well, tissue culture treated, black with clear bottom, Corning # 3882

Trypsin for HUVEC cells, 0.25 mg/ml, Clonetics # CC-5012

20 Gelatine, 2%, Sigma # G1393

Biospin P6 columns, Biorad # 7326200

Buffers:

PBS Dulbecco's, Invitrogen # 14040-091 HBSS w/o Ca²⁺/Mg²⁺, Invitrogen # 14170-088

25 Media:

Endothelial cell growth medium for HUVEC cells (CLS Heidelberg), containing: 2% FCS, 0.4% ECGS/H, 0.1 ng/ml EGF, 1.0 ng/ml bFGF, 1.0 μg/ml Hydrocortison, Gentamicin/Amphotericin B.

10

15

20

25

Purification of scFv's

ScFv's were purified with Biospin P6 columns (Biorad) to remove desthiobiotin, endotoxins and glycerol and were stored in PBS over night on ice. The protein concentration of the purified scFv was determined by measuring absorbance at 280nm. All scFv solutions were adjusted to an identical concentration by addition of PBS.

Preparation of the MTP for the tube formation assay

The required amount of buffer was added to the ECMatrixTM (both included in the angiogenesis kit). 25 µl diluted ECMatrixTM was added to each well of a precooled 96 well MTP (half well plate). The MTP was incubated >1h at 37°C to allow the matrix solution to solidify. Detached endothelial cells were preincubated with the scFv's or appropriate IgG's for 30 min at RT.

Cell seeding and antibody incubation

HUVEC cells were detached from the flask by removing cell culture medium, washing the cells 1x with 10 ml HBSS w/o Ca²⁺/Mg²⁺ followed by addition of 5 ml trypsin (Clonetics) and incubation for 2-3 min at 37°C. Trypsin reaction was stopped by adding 5 ml cell culture medium with FCS. Supernatants were combined, centrifuged for 5 min at 240 x g, RT, the supernatant was carefully removed and the cells were resuspended in 5 ml medium and were counted by using a Neubauer cell counting chamber. A cell master mix was prepared by resuspending the required number of cells in the appropriate amount of cell culture medium to obtain a concentration of 10.000 cells in 50 µl per well after addition of the antibody solution. The end concentration in the well was usually 10 µg/ml for scFv's and 50 μg/ml for IgG's. For each binder a 3x premix was prepared. For each binder a 3x premix with 3x 10.000 cells was pre-incubated with the appropriate amount of scFv or IgG in a total volume of 150 µl for 30 min at RT before seeding, to allow binding to NP-1 before contact with matrix proteins. 50 µl of the cell-antibody mixture was transferred to each well of the MTP coated with 25 μl solidified ECMatrix. Appropriate controls were included in each experiment (PBS

10

15

20

25

30

in same concentration as for samples with scFv, mouse IgG, commercial anti-NP-1 antibody (R & D Systems, # AF566), anti-α2 Integrin, as well as an unspecific control scFv's. Cells were incubated for 16h at 37°C. The degree of tube formation was determined via light microscopy and was quantified based on the ability of the cells to form closed polygons, the number and area of the polygons, the number of branch points and the ability of the cells to form closed tubes e.g. connections between branch points. ScFv's were considered as positive if the ability to form closed polygons, the number of branch points and the ability to form closed connections between branch points were reduced. Inhibitory effects were quantified by comparison with the negative control and scaled between 0 and 3 (0-1 = no inhibition and 2-3 = strong inhibition effect). Several scFv were converted into an IgG1 format and were re-tested. Figure 14a-c shows representative pictures of the tube formation assay. Several scFv showed significant inhibition of tube formation (Inhibition of >2.2). Table 1, as shown in Figure 15 summarizes all results of the tube formation assay. Several scFvs inhibited the tube formation significantly, whereas the commercially available anti-NP-1 antibody did not show any significant inhibition of tube formation.

Example 17: Inhibition of NP-1/VEGF interaction in ELISA

In order to test the ability of scFv's to inhibit the interaction between recombinant NP-1 and VEGF, VEGF₁₆₅ (R&Dsystems, #293-VE/CF) was coated at a concentration of 50 nM in PBS on Maxisorp microtiter plates (Nunc, # 430341). Recombinant NP-1-Fc (R&Dsystems, #566-NNS) was preincubated at a concentration of 50 ng/ml with NP-1 scFv (25 µg/ml) for one hour at RT and was added to the VEGF₁₆₅ coated microtiter plate. Bound NP-1 was detected with anti-Fc-HRP (Jackson Immuno Research, #H909-035-098) followed by reaction with BM blue POD substrate (Roche, # 11484281). The absorption was determined at 370 nM. Twenty-eight scFv's were tested for their ability to inhibit the interaction between recombinant NP-1 and VEGF₁₆₅. Twelve scFv's were found to significantly inhibit the interaction between NP-1 and VEGF₁₆₅. This result is compared to the

10

15

20

results of the tube formation assay described in Example 16. scFv8 inhibits the interaction between NP-1 and VEGF₁₆₅ and inhibits HUVEC tube formation; scFv13 does not inhibit the interaction between NP-1 and VEGF₁₆₅ but inhibits HUVEC tube formation; scFv24 inhibits the interaction between NP-1 and VEGF₁₆₅ but does not inhibit HUVEC tube formation.

Example 18: Determination of NP-1 epitopes

ScFv's were labeled with fluorescein isothiocyanate (Molecular Probes, #F-1906) according to the instructions of the manufacturer. HT1080 cells were preincubated with a control scFv, a NP-1-binding scFv's (e.g. scFv8, scFv13 or scFv22) (both at 25 µg/ml) or VEGF₁₆₅ (R&Dsystems, #293-VE/CF) (5 µg/ml) for 2 hours at 0°C and the fluorescein labeled NP-1-binding scFv (5 μg/ml) was added for 30 min. at 0°C. Bound fluorescein labeled scFv were detected by flow cytometry and the geometric mean fluorescence intensity was recorded. In order to determine if NP-1-binding scFv has overlapping epitopes with VEGF and each other for binding to cell surface NP-1, a competition FACS with directly labeled scFv was performed. In agreement with the VEGF competition ELISA, scFv8 inhibits the interaction between NP-1 and VEGF₁₆₅ and inhibits HUVEC tube formation; scFv13 does not inhibit the interaction between NP-1 and VEGF₁₆₅ but inhibits HUVEC tube formation; scFv24 inhibits the interaction between NP-1 and VEGF₁₆₅ but does not inhibit HUVEC tube formation. Furthermore, scFv8 and scFv24 have mutually overlapping epitopes whereas scFv13 has an epitope distinct from scFv8 and scFv24.

25 Example 19: Transendothelial Invasion assay with HT1080 cells

Preparation of a monolayer of endothelial cells:

A Neuroprobe membrane was coated with 50 μ l/well 0.2 % Gelatine (Sigma G-1393), was diluted in HBSS w/o Ca+/Mg+ ions (Gibco 14170-088) and was incubated for 1h at RT under a fume hood. Confluent grown HUVEC cells were har-

vested with Trypsin (Cambrex CC-5012) and ECGM (CLS ready to use Endothelial cell Growth Medium) and were diluted with ECGM to $2x10^5$ /ml. Remaining fluid on the coated membrane was removed with a syringe. The lower chamber of the Neuroprobe system was filled with 28.5 μ l/well HBSS and the membrane was placed on top. 50 μ l ($1x10^4$) of the HUVEC cell suspension was spotted on the membranes in each well and was incubated for 48h at 37° C 5% CO₂.

Preparation of HT1080 cells:

5x10⁵ cells were seeded into 6 150 cm² flasks and incubated for 48h at 37° C 5% CO₂.

10 Staining of HT1080 cells:

WO 2004/056874

5

15

20

25

Calcein AM (Molecular Probes C3099) was diluted 1:1000 in 90 ml DMEM with Glutamax that included 0.1% BSA (Sigma A-7030). The medium was removed from the HT1080 cells and 15 ml/flask of Calcein solution was added to the cells and cells were incubated for 15 min at 37° C 5% CO₂. The solvent was removed and the cells were washed twice with HBSS w/o Ca+/Mg+ ions. Cells were harvested with EDTA and DMEM with Glutamax that included 0.1% BSA and were diluted to 7x10⁵/ml with DMEM with Glutamax that included 0.1% BSA.

Inhibition of invasion of cells:

All experiments were carried out in triplicates. 170 µl of the HT1080 cell suspension was pipetted into each well of a 96 well V-bottom plate. 17 µl scFv (min.10 µg/ml), 0.25 mg/ml Cytochalasin D (CCD) (Sigma C-8273) was added and cells were incubated for 15 min. As a negative control a non-specific antibody was used.

Standardcurve: $1x10^4$ cells $46.8~\mu l$ cells + 133.2 μl DMEM with Glutamax 0.1% BSA

 $2x10^4$ cells 93.6 μ l cells + 86.4 μ l DMEM with Glutamax 0.1% BSA

 $4x10^4$ cells 57.2 μ l cells directly spotted

10

15

20

25

30

Preparation of the membrane system for invasion:

The membrane was disassembled from the lower chamber and the solvent was removed from the lower part of the membrane. The solvent from the wells of the lower chamber was removed as well. The lower chamber was filled with 30 µl/well ECGM/20 % FCS (Invitrogen 10270106) for the test samples (row B-H). For the standard curve and for the background all wells of row A were filled with 30 µl/well ECM and membranes were placed on top.

55 μl (3.5x10⁴) of HT1080 samples were pipetted on top of the HUVEC cells layer. The set up was incubated for 12-16h at 37° C and 5% CO₂. Cells from rows B-H were scraped off with a cell scraper and the membranes were rinsed with Dulbeccos PBS. Wells of rows B-H were wiped with a cotton swab (pre wetted in PBS) and membranes were rinsed again with PBS. The membranes were carefully dried and fluorescence at 485/520 nm was measured (Fluostar Galaxy). 4 different single chains inhibited the invasion by values of 6-10%. Table 2 as shown in Figure 18 summarises the results.

Example 20: HUVEC migration assay

The HUVEC migration assay was carried out according to the manufacturer's instructions (BD Biosciences, Bedford/MA, Cat.-Nr. 354143). Briefly, 2x10⁴ HUVECs in 250 μl of basal medium (Promocell, Heidelberg, Germany, Cat.-Nr. 22210) containing 1 ng/ml EGF, 1 μg/ml hydrocortisone, 0.4% FCS, 50 ng/ml amphothericin B and gentamicin 50 μg/ml (all from Cambrex, East Rutherford/NJ) were incubated with the antibodies (50 μg/ml) for 30 minutes at room temperature, then seeded into the top chambers of the 24-well insert, which contains a fibronectin-coated, 3-μm-pore FluoroBlok membrane at the bottom of each well. The lower chambers were filled with the same medium additionally containing 5 ng/ml VEGF₁₆₅ (R&D Systems, Minneapolis/MN). The plate was incubated for 22 h at 37°C, 5% CO₂, then the 24-well insert was transferred to a new plate containing 0.5 ml of a 4 μM solution of calcein-AM (Molecular Probes, Eugene/OR) in HBSS (Invitrogen, Carlsbad/CA). After 90 minutes of incubation,

5

10

the plate was read out in a BMG FluoStar plate reader (BMG LabTechnologies, Offenburg, Germany) at 485 nm excitation and 520 nm emission wavelength. Statistical analysis was done using a Kruskal-Wallis test, with significance assumed at p<0.05. Some results are shown in Figure 19. As an example, 7 IgG's are shown in Fig. 19 that showed an inhibitory effect on the migration of HUVEC cells between 20-60%. scFv8*, scFv25*, scFv26*, and scFv31* showed an statistically relevant inhibitory effect. The dependency of the migration of HUVEC cells on the concentration of VEGF₁₆₅ is also shown in Figure 19 (three bars on the left). Concentrations of 0-5 ng/ml were used to determine the concentration dependency. The migration of HUVEC cells increased with increasing the VEGF₁₆₅ concentration.

CLAIMS

- 1. A neuropilin binder (NPB) wherein the NPB is a polypeptide, antibody, scFv, antibody fragment or bioconjugate and is characterized in modulating neuropilin-1 (NP-1) function or having the capability to inhibit NP-1 dependent angiogenesis of endothelial cells and/or invasion of tumor cells, whereby the NPB binds to NP-1 and modulates NP-1 function.
- 2. The NPB according to claim 1 comprising a sequence selected from the group consisting of SEQ ID No: 1 or SEQ ID No: 2.
- 3. The NPB according to claim 1 comprising a sequence selected from the group consisting of sequences SEQ ID No: 5 to SEQ ID No: 38.
- 4. The NPB according to claim 3, whereby the NBP is not binding, interfering or inhibiting the VEGF/neuropilin-1 interaction.
- 5. The NPB according to claim 1, wherein the NPB is a polypeptide, antibody, scFv, antibody fragment or bioconjugate comprising one CDR3 (Complementary Determining Regions 3) having at least one of the sequences selected from SEQ ID No: 73 to SEQ ID No: 108.
- 6. The NPB according to any of claims 1 to 5, wherein said NPB is labeled with a detectable label; in particular wherein said detectable label is selected from the group consisting of a radioisotope, an enzyme and a chromophore.
- 7. Use of the NPB according to any of claims 1 to 6 for the detection of neuropilin-1 expression.
- 8. Use of the NPB according to any of claims 1 to 6 for the modulation of neuropilin-1 function, particularly modulation or inhibition of neuropilin-dependent invasion or adhesion of cells, preferably tumor cells.

- A diagnostic kit comprising the NPB according to any of claims 1 to 6 and a container.
- 10. A composition comprising the NPB according to any of claims 1 to 6 and a pharmaceutical acceptable carrier.
- 11. An isolated nucleic acid molecule encoding the NPB according to any of claims 1 to 6.
- 12. A vector comprising a nucleic acid according to claim 11.
- 13. Use of the NPB according to any of claims 1 to 6 in the manufacture of a medicament for the treatment or prevention of neuropilin-dependent angiogenesis and non-physiological blood vessel growth, particularly correlated with a tumor.
- 14. Use of the NPB according to any of claims 1 to 6 in the manufacture of a medicament for the treatment or prevention of cancer and/or metastasis of tumor cells, wherein the metastatic potential depends on neuropilin-1-related invasion and/or adhesion, preferably wherein the tumor cells are tumor cells derived from mesodermal cells.
- 15. The use of claims 13 or 14 wherein the NPB inhibits the function of expressed neuropilin-1, in particular wherein the molecule binds to the extracellular region of neuropilin-1.
- 16. An ex vivo method of determining the dependency of the invasiveness of a naturally occurring invasive cancer cell on the functionality of neuropilin-1, comprising the steps of:
 - b) contacting the cancer cell with a molecule inhibiting neuropilin-1 function;
 - c) contacting said cancer cell with a gel-like matrix under conditions suitable for the growth of said cancer cells; and
 - d) determining the migration of said cancer cells through the gel-like matrix.

- 17. An ex vivo method of determining the dependency of the adhesiveness of a naturally occurring invasive cancer cell on the functionality of neuropilin-1, comprising the steps of:
 - a) contacting the cancer cell with a molecule inhibiting neuropilin-1 function;
 - b) contacting said cancer cell with a layer of extracellular matrix (ECM) proteins under conditions suitable for the growth of said cancer cells; and
 - c) determining the adhesion of said cancer cells to the layer of ECM proteins.
- 18. The method of claim 17, wherein the layer of ECM proteins comprises one protein selected from the group consisting of collagen S type I, collagen VI, fibronectin, laminin, nidogen, entactin, and vitronectin.
- 19. A method of identifying a ligand binding specifically to the extracellular region of neuropilin-1, wherein said ligand is capable of inhibiting angiogenesis, tube formation of endothelial cells, and/or invasion or adhesion of tumor cells, comprising the steps of:
 - a) contacting a phage library of ligands with cancer cells or endothelial cells;
 - b) isolating said cells;
 - c) removing phages bound unspecifically and/or not bound to said cells;
 - d) eluting phages bound to said cells; and optionally
 - e) determining the identity of the ligand represented by said binding to neuropilin-1
 - f) testing the ligand in biochemical or biological assays on it capability to interfere with NP-1 function.
- 20. The method of claim 19, instead of steps e) further comprising the steps of:
 - e) contacting eluted phages with immobilized NP-1;

- f) washing said NP-1 with detergent and/or high salt;
- g) eluting phages bound to NP-1; and
- h) determining the identity of the ligand represented by said eluted phages.
- 21. A method of treating or preventing cancer or metastasis in a patient, said method comprising administering to said patient the NBP according to any of claims 1 to 6, the composition according to claim 10, the nucleic acid sequence according to claim 11 or a ligand identifiable by the method of claims 19 or 20 in an amount effective to inhibit metastasis of neuropilin-1 mediated invasion and/or adhesion.
- 22. A method of treating or preventing cancer or metastasis in a patient, said method comprising administering to said patient the NBP according to any of the claims 1 to 6, the composition according to claim 10, the nucleic acid sequence according to claim 11 or a ligand identifiable by the method of claims 19 or 20 in an amount effective to inhibit tumor-associated, neuropilin-dependent angiogenesis.

Invasion of HT1080 cells

Invasion of Hs-27 control cells

Fig. 1

Fig. 2

r1g. 7a

F18. 3

Fig. 4

Fig. 6

Fig. 7a

WO 2004/056874

	A CTCCTCTCCC	CCMCMAMCCM	MM3.MA3.A3.AA		
1401	GGCCACCACT	CGTCTATGGT	TTATGACAGG	AAGATCACAT	
1401				CCTACATACC	TCGCTCTGCT
1451	CCGGTGGTGA		ACATCGTGGC	GGATGTATGG	AGCGAGACGA
1431		CCAGTGGCTG		CGATAAGTCG	TGTCTTACCG
1501 .	TTAGGACAAT	GGTCACCGAC		GCTATTCAGC	ACAGAATGGC
1501	GGTTGGACTC	AAGACGATAG	TTACCGGATA	AGGCGCAGCG	GTCGGGCTGA
1661	CCAACCTGAG	TTCTGCTATC	AATGGCCTAT	TCCGCGTCGC	CAGCCCGACT
1551	ACGGGGGGTT	CGTGCATACA	GCCCAGCTTG	GAGCGAACGA	CCTACACCGA
7.607		GCACGTATGT	CGGGTCGAAC	CTCGCTTGCT	GGATGTGGCT
1601	ACTGAGATAC	CTACAGCGTG		AAGCGCCACG	CTTCCCGAAG
	TGACTCTATG	GATGTCGCAC	TCGATACTCT	TTCGCGGTGC	GAAGGGCTTC
1651	GGAGAAAGGC	GGACAGGTAT	CCGGTAAGCG	GCAGGGTCGG	AACAGGAGAG
	CCTCTTTCCG	CCTGTCCATA	GGCCATTCGC	CGTCCCAGCC	TTGTCCTCTC
1701		AGCTTCCAGG	GGGAAACGCC	TGGTATCTTT	ATAGTCCTGT
	GCGTGCTCCC	TCGAAGGTCC	CCCTTTGCGG	ACCATAGAAA	TATCAGGACA
1751	CGGGTTTCGC	CACCTCTGAC	TTGAGCGTCG	ATTTTTGTGA	TGCTCGTCAG
	GCCCAAAGCG	GTGGAGACTG	AACTCGCAGC	TAAAAACACT	ACGAGCAGTC
1801	GGGGGCGGAG	CCTATGGAAA	AACGCCAGCA	ACGCGGCCTT	TTTACGGTTC
	CCCCCGCCTC	GGATACCTTT	TTGCGGTCGT	TGCGCCGGAA	AAATGCCAAG
1851	CTGGCCTTTT	GCTGGCCTTT	TGCTCACATG		CGTTATCCCC
	GACCGGAAAA	CGACCGGAAA	ACGAGTGTAC	AAGAAAGGAC	GCAATAGGGG
1901	TGATTCTGTG	GATAACCGTA	TTACCGCCTT	TGAGTGAGCT	GATACCGCTC
	ACTAAGACAC	CTATTGGCAT	AATGGCGGAA	ACTCACTCGA	
1951	GCCGCAGCCG	AACGACCGAG	CGCAGCGAGT	CAGTGAGCGA	GGAAGCGGAA
	CGGCGTCGGC	TTGCTGGCTC	GCGTCGCTCA		CCTTCGCCTT
2001	GAGCGCCCAA	TACGCAAACC	GCCTCTCCCC	GCGCGTTGGC	CGATTCATTA
	CTCGCGGGTT	ATGCGTTTGG	CGGAGAGGGG	CGCGCAACCG	GCTAAGTAAT
2051	ATGCAGCTGG	CACGACAGGT	TTCCCGACTG	GAAAGCGGGC	AGTGAGCGCA
	TACGTCGACC	GTGCTGTCCA	AAGGGCTGAC	CTTTCGCCCG	TCACTCGCGT
2101	ACGCAATTAA	TGTGAGTTAG	-	AGGCACCCCA	GGCTTTACAC
	TGCGTTAATT	ACACTCAATC	GAGTGAGTAA	TCCGTGGGGT	CCGAAATGTG
2151	TTTATGCTTC	CGGCTCGTAT		ATTGTGAGCG	GATAACAATT
	AAATACGAAG	GCCGAGCATA	CAACACACCT	TAACACTCGC	CTATTGTTAA
2201	TCACACAGGA	AACAGCTATG	ACCATGATTA		TGGAGCCTTT
	AGTGTGTCCT	TTGTCGATAC	TGGTACTAAT	GCGGTTCGAA	ACCTCGGAAA
2251	TTTTTGGAGA	TTTTCAACGT	GAAAAAATTA	TTATTCGCAA	
	AAAAACCTCT		CTTTTTTAAT	AATAAGCGTT	AAGGAAATCA
2301	TGTTCCTTTC	TATGCGGCCC	AGCCGGCCAT	GGCCCAGGTC	CAGTCGACAG
	ACAAGGAAAG	ATACGCCGGG	TCGGCCGGTA	CCGGGTCCAG	
2351	GTGGAGGCGG	TTCAGGCGGA		GCGGTGGCGG	GTCAGCTGTC
	CACCTCCGCC	AAGTCCGCCT	CCACCGAGAC	CGCCACCGCC	AAGTGCACTC
2401	ATCAAACGGC	GGCCGCAGGT	GCGCCGGTGC	CGTATCCGGA	TTCACGTGAG
	TAGTTTGCCG		CGCGGCCACG	GCATAGGCCT	TCCGCTGGAA
2451	CCGCGTGCCG	CATAGGCTGG	CGGCGGCTCT	GGTGGTGGTT	AGGCGACCTT
	GGCGCACGGC	GTATCCGACC			CTGGTGGCGG
2501	CTCTGAGGGT		AGGGTGGCGG		GACCACCGCC
		CCGCCGAGAC	TCCCACCCCC	TTCTGAGGGT	GGCGGCTCTG
2551	AGGGTGGCGG	TTCCGGTGGC	CCCTCCCCCTT	AAGACTCCCA	CCGCCGAGAC
	TCCCACCGCC	AAGGCCACCG	CCCACCCCAA	CCGGTGATTT	TGATTATGAA
2601	AAAATGGCAA	ACGCTAATAA	CCCCCCTATC	ACCCARAGE	ACTAATACTT
~~~	THEFT	TGCGATTATT	CCCCCCAMAC	MCCCMMMM =	CCGATGAAAA
2651	CCCCCTACAC	TOCOUTINIT	AACCCAAACC	TGGCTTTTAC	GGCTACTTTT
-001	CCCCCTACAG	TCTGACGCTA	MMCCCMMMC	TGATTCTGTC	GCTACTGATT
2701	PCCCGWIGIC	AGACTGCGAT	TICCGTTTGA	ACTAAGACAG	CGATGACTAA
~ / UI	TCCCACCACC	TATCGATGGT	ANCENTEGTG	ACGTTTCCGG	CCTTGCTAAT
2751	CCTA A TOCCTO	ATAGCTACCA	AAGTAACCAC	TGCAAAGGCC	GGAACGATTA
-,51	CCVAMAYCCYC	CTACTGGTGA	TITTGCTGGC	TCTAATTCCC	AAATGGCTCA
	CCATTACCAC	GATGACCACT	MAAACGACCG	AGATTAAGGG	TTTACCGAGT



Fig. 7b



Fig. 8a







Fig. 8b



cDNA primers

VLK-c	CTGGATGGTGGGAAGATGGA
VLL-c	TCAGAGGAAGGAAACAGGGT
lgG1-c	CTTACAACCACAATCCCTGGGCACAATTTT
lgG2a-c	CTTTGTGGGCCCTCTGGGCTCAAT
lgG2b	TGAAATGGGCCCGCTGGGCTCAAG
lgG3-c	GGGCTTGGGTATTCTAGGCTCGAT

VH forward primers without restriction sites

CAGGTGCAGCTGAAGGAGTCAGG GAGGTCCAGCTGCAACAGTCTGG
GAGGTCCAGCTGCAACAGTCTGG
GAGGTTCAGCTGCAGCAGTCTGG
CAGGTCCAACTGCAGCCTGG
CAGGTTCAGCTGCAGCAGTCTGG
GAGGTGAAGCTGGTGGAGTCTGG
GAGGTGAAGCTGGTGGAATCTGG
GAGGTTCAGCTTCAGCAGTCTGG

VH backward primers without restriction sites

M-JH1	TGAGGAGACGGTGACCGTGGTCCC
M-JH2	TGAGGAGACTGTGAGAGTGCCC
M-JH3	TGCAGAGACAGTGACCAGAGTCCC
M-JH4	TGAGGAGACGGTGACTGAGGTTCC

VL forward primer without restriction sites

M-VK1	GACATTGTGATGACACAGTCTCC
M-VK2	GATGTTGTGATGACCCAAACTCC
M-VK3	GATATCCAGATGACACAGACTCC
M-VK4	CAAATTGTTCTCACCCAGTCTCC
M-VL1	CAGGCTGTTGTGACTCAGGAATC

VL backward primers without restriction sites

M-JK1	TTTGATTTCCAGCTTGGTGCCTCC	
M-JK2	TTTTATTTCCAGCTTGGTCCCCCC	
м-ЈКЗ	TTTCAGCTCCAGCTTGGTCCCAGC	
M-JL1	ACCTAGGACAGTGACCTTGGTTCC	



VH forward primers with restriction sites

	Princip Wilmington Divor
MVH1 Sfil	GTCCTCGCAACTGCGGCCAGCCGGCCATGGCCGAGGTGCAGCTTCAGGAGTCAGG
MVH2 Sfil	GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCCAGGTGCAGCTGAAGGAGTCAGG
MVH3 Sfil	GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCGAGGTCCAGCTGCAACAGTCTGG
MVH4 Sfil	GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCGAGGTTCAGCTGCAGCAGTCTGG
MVH5 Sfil	GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCCAGGTCCAACTGCAGCAGCCTGG
MVH6 Sfil	GTCCTCGCAACTGCGGCCAGCCGGCCATGGCCCAGGTTCAGCTGCAGCAGTCTGG
MVH7 Sfil	GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCGAGGTGAAGCTGGTGGAGTCTGG
MVH8 Sfil	GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCGAGGTGAAGCTGGTGGAATCTGG
MVH9 Sfil	GTCCTCGCAACTGCGGCCCAGCCGGCCATGGCCGAGGTTCAGCTTCAGCAGTCTGG
	<del>^</del>

VH backward primers with restriction sites

MJH1 Sall	GAGTCATTCTCGTGTCGACACGGTGACCGTGGTCCC	
MJH2 Sall	GAGTCATTCTCGTGTCGACACTGTGAGAGTGGTGCC	
MJH3 Sall	GAGTCATTCTCGTGTCGACACAGTGACCAGAGTCCC	
MJH4 Sall	GAGTCATTCTCGTGTCGACACGGTGACTGAGGTTCC	

VL forward primers with restriction sites

	princes was a decision of order	
MVK1 ApaL1	TGAGCACAGTGCACTCGACATTGTGATGACACAGTCTCC	
MVK2 ApaL1	TGAGCACAGTGCACTCGATGTTGTGATGACCCAAACTCC	
MVK3 ApaL1	TGAGCACACTGCACTCGATATCCAGATGACACAGACTCC	
MVK4 ApaL1	TGAGCACAGTGCACTCCAAATTGTTCTCACCCAGTCTCC	
MVL1 ApaL1	TGAGCACAGTGCACTCCAGGCTGTTGTGACTCAGGAATC	

VL backward primers with restriction sites

M-JK1 Not1	GAGTCATTCTCGACTTGCGGCCGCTTTGATTTCCAGCTTGGTGCCTCC	
M-JK2 Not1	GAGTCATTCTCGACTTGCGGCCGCTTTTATTTCCAGCTTGGTCCCCCC	
M-JK3 Not1	GAGTCATTCTCGACTTGCGGCCGCTTTCAGCTCCAGCTTGGTCCCAGC	
M-JL1 Not1	GAGTCATTCTCGACTTGCGGCCGCACCTAGGACAGTGACCTTGGTTCC	

Fig. 9

4	
◥	

n.1	CEO IN No.		Protein Sequence	SEQ ID No. of
roiypepine or NPB				the CDR 3 as
			- 1	underlined
scFv1		1 101		73
		201 201 251	FGGGTKLEIK	
scFv2	2	51		74
		101	GLOOGEPRING ARVNESYYGL DVWGRGTTVT VSSGGGGSGG GGSGGGGSAQ AVITOPSSAS GTPGORVTIS CSGSNSNIGR NYVFWYQOFP GTAPKILIYR	
	1	201		
		† )		
scFv3	5	Н	GYTEIAYYIH WVRQAPGQGL EWMGRINPNT	
		51	ISTAHMELSR LSSDDTAVYY CARERIVEAG	75
		101		
		151	WVEGGGTKLT	
D. D. L.	9	100	PGGSLRLSCA ASGETESSYA	
SCL V4	<b>5</b>	51	VKGRETISRD NSKNTLYLOM NSLRAEDTAV	9/
		101	GGGSALSYEL	
		151	RSLGSKVVHW YQQKPGQAPT LVIYYDSVRP	
		201	SRVEAGDEAD YYCQVWDRSS DHYVEGIGIK	
scFv5	7	1	OPGGSLRLSC AASGFTESSY AMSWVRQAPG	•
		51	GSGGSTYYAD SVKGRFTISK DNSKNILILD MNSLKAEDIA VIICAKDMKW	1.1
		151	RASOSVRNNL VWYOOKLGOA PRLLIFGAST	
		201	TITKLEPEDE	
S.F.Y.A	œ	1	QLVQSGGGLV QPGGSLRLAC EASGFRFSSY GMSWVRQAPG KGLEWVSSMS	
201	<b>-</b>	51	SVKGRFTISR DNAKKMLYLQ	78
		101	SGYVRHWGRG TLVTVSSGGG GSGGGGSGGG GSAQAVLTQP SSASGIPGQR	

Fig. 10

		151	NIASNYVYWY QOLPGTAPKL LISKNSRRPS	
		201	ELRSEDEADY YCAAWDDRLS GPAFGGGTKL	
co.Fv7	0	1		•
/ A TOC	`	51		- 62
		101	GILVIVSSGG GGSGGGGSGG GGSAQSVLTQ PPSASGTPGQ	
		151	SNIGRNYVYW YHQLPGTAPK	
		201		
SoEv.	10	1		
SCL vo	0	51	YYNPSLKSRV TISVDTSKNQ FSLKLSSVTA	02
		101	WGQGTLVTVS SGGGGSGGGG SGGGSDIQM TQSPSTLSAS	
		151		_
		201	ı	
ccFy0	11	1	<b>APGOGLEWMG</b>	
201.00	-	51	- 1	31
		101		!
		151		
	!	201	AQAEDEADYY CNSRDRSGNR VVFGGGTKLT	
oEv10	1.0		SIRISCAASG FTFSSYAMSW VRQAPGKGLE WVSAISGSGG STYYADSVKG	
SCLVIO	71	51	NTLYLOMNSL RAEDTAVYYC ARGVIYHYDH	32
		101		
		151	QQLPGTAPKL	
		201	1	
ocEv11	13			
114.100	CT	51		33
		101	LVTVSSGGGG SGGGGGGG SALSYELTQP PSASGTPGQR	
		151	NIGRNSVEWH QQLPGTAPKV LISSDNQRPS	
		201	RIRFEDEGDY YCAAWDDSLS AYVFGSGTKL	
cFv12	14	1	FSYNAINWVR QAPGOGLEWM	
711 700	•	51	AYMELTRLRS EDTAMYYCAR	₹
		101		
		151	ENIGRNYVDW YKQLPGTAPK LEIYKNDQRP	
-		201	KSGTSASLVV SGLRSEDEAD YYCLTWDDSL SGPVFGGGTK LTVLGAAA	
ccEv13	15	г	PSGTLSLTCA VSGGSINNNN WWSWVRQPPG	
71.70	)	51	SSVTAADTAV	35
		101	GGGSAQSVLT	
		151	SSNIGSNEVY WYQQLPGTAP KLLIYRNNQR	
		201	SKSGTSASLA ISGIRSEDEA DYYCAAWDDR RVVFGGGIKL IVLGAAA	

410.10

98	87	88	89	90	91	92	
1 VQLQESGPGL VKPSETLSLT CTVSGGPVAS SSYYWGFIRQ PPGKGLEWIG 51 SIYDGGYTYY SPSLKSRATI SFDTSKNQVS LNLTSVTAAD TAVYYCAKDP 101 GSLSAEWGQG TLVTVSSGGG GSGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	LLESGGGLVQ SGGSTYYADS OFGGWFDPWG PGERVTLSCR SGSGTEFTLT	1 AEVKKPGDSV KVSCKASGYR FETYGESWVR QAPGQGLEWM GWINTYNGKT 51 NYAQKFQGRV TMTTDTSTST AYMELRSLRS DDTAVYFCSR AEDDSRGYWN 101 HYFSDYWGRG TTVTVSSGGG GSGGGSGGG GSAQSVLTQP PSASGTPGQR 151 VTISCSGSSS NIGSNYVYWY QQLPGTAPKL LIHKNNRRPS GVPDRFSGSK 201 SGTSASLAIS GLRSEDEADY HCAAWDDSLS AVVFGGGTKV TVLGAAA	1 LESGGGLVQP GGSLRLSCAA SGFTFSSYAM SWVRQAPGKE LEWVSAISGS 51 GGSTYYADSV KGRFTISRDN SKNTLYLQMN SLRAEDTAVY YCARDWRWQQ 101 FGGWEDPWGR GTWYTVSSGG GGSGGGSGG GGSALETTLT QSPGTLSLSP 151 GDRATLSCRA SHSVSHNHLA WYQQNPGQAP RLLIFGASSR AAGIPDRFSG 201 SGSGTDFTLT ISRLEPEDFA SYYCQQYGSP RRTFGQGTKV EIKRAAA	1 KKPGSSVRVS CKAPGGTEGN SAISWVRQTP GQGLEWMGGI IPMFTTANYA 51 QKFQGRVTIT ADKSTTTAHM ELSSLRSEDT AVYYCARGGL GRFEDGPSHE 101 SYYMEVWGKG TLVTVSSGGG GSGGGSGGG GSAQSVLTQP PAASGTPGQR 151 VTISCSGSNS NIGRNYVYWY QQLPGAAPKL LIYRNNQRPS GVPDRFSGSK 201 SGPSASLAIS GLRSEDEADY YCAAWDDSLS GPAFGGGTKL TVLGAAA	VQLVQSGAEV KKPGSSVKVS IPLINIPNYA QKFQGRVTIT WNAFDQWGRG TLVTVSSGGG TVRITCQGDT LTSYYAAWYQ GNIASLTITG AQAEDEGDFY	KKPGSSVKVS CKASGGTFTS YAISWVRQAP GQGLEWMGGF  QKLQGRVTIT ADDSMTTVYM ELSSLTSEDT GVYYCARDLM  YYMDVWGQGT MVTVSSGGG SGGGGSGGG SAQSVLTQPP  TISCSGSSSN IGVNYVWYR QFPGAAPHVV IYNNDQRPSG  GTSASLAISG IRSEDEADYY CSTWDDTLSG YIFGVGTKVT	1 QPGGSLRLSC AASGETESSY AMSWVRQAPG KGLEWVSAIS GSGGSTYYAD 51 SVKGRFTISR DNSKNTLYLQ MNSLRAEDTA VYYCARDWRW QQFGGWFDPW
16	17	18	- 19	20	21	22	23
scFv14	scFv15	scFv16	scFv17	scFv18	scFv19	scFv20	scFv21

الم. الم. 10

		101 151 201	GQGTLVTVSS GGGGSGGGS GGGGSALSSE LTQDPAVSVA LGQTVRITCQ GDNLRSFSAS WYQLKPGQAP VLVIYGKNNR PSGIPDRFSA SSSGNTASLA ITGALAEDEA DYYCNSRDSS GNPYVFGTGT KVTVLGAAA	93
scFv22	24	1 51 101 151 201	SSVKVSCKIS GGNLNRLTVT WVRQAPGQGL EWVGRILPDS VNQVVKFQRR LKLTSDTSTR TAYLELRSLK SEDTAVYYCA ASSKIGFQVG ELDYWGRGTL VTVSSGGGGS GGGGSGGGS AQSVVTQPPS ASATPGQRVT ISCSGSSSNI GRNYVWYQQ VPGTAPQLLV YNNNQRPSGV PDRFSGSKSG TSASLGISGL RSEDEADYYC STWDDSLSSP VFGGGTKLTV LGAAA	94
scFv23	25	51 101 151 201	TESSYAMSWV RQAPGKGLEW VSAISGSGGS TYYADSVKGR FTISRDNSKN TLYLQMNSLR AEDTAVYYCA RGRRRERSIN MIRGVRPQYD DSGMDVWGRG TLYTVSSGGG GSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	95
scFv24	. 26	1 51 101 151 201		96
scFv25	27	1 51 101 151 201	GLVQPGGSPR LSCAASGFTE SSYAMSWVRQ APGKGLEWVS AISGSGGSTY YADSVKGRFT ISRDNSKNTL YLQMNSLRAE DTAVYYCAKD MGYSYGYGTR GLEDYWGRGT MYTVSSGGG SGGGGGGGG SAQSVVTQPP SASGAPGQRI TISCSGSTEN IGRNYVDWYK QLPGTAPKLE IYKNDQRPSG VPDRFSGSKS GTSASLVVSG LRSEDEADYY CLTWDDSLSG PVFGGGTKVT VLGAAA	76
scFv26	28	51 101 151 201	ESGGGLVQPG GSIRLSCAAS GETESSYAMS WVRQAPRKGL EWVSAISGSG GSTYYADSVK GRETISRDNS KNTLYLQMNS IRAEDTAVYY CARDWRWQQE GGWEDPWGRG TTVTVSSGG GSGGGGGGG GSALETTLTQ SPATLSVSPG DRATLSCRAS QSIGGNLAWY QQKPGQPPRL LIFGASTRAS GTPARFSGSG SGTEFTLTIS SLQSEDFAVY YCQQYNNWPP WTFGQGTRLE IKRAAA	86
scFv27	29	1 51 101 151 201		66
scFv28	30	1 51 101 151	ASGEGLNGYE MHWVRQAPGQ RLEWLGRINA AIGDTRYSRE FQDRVSITRD MSANTVYMEM SRLRFEDTAV YYCVREHDWR HCNSATCQPP EDHWGKGTLV TVSSGGGSG GGGSGGGGSA LSSELTQDPA VSVALGQTVR ITCQGDSLRY YSASWYRQKP GQAPVIVWYG NTRRPSGIPD RISGSSSGNT ASLTISGAQA	100

Fig. 10

WO 2004/056874	•
----------------	---

UDEGGSTELS CAASGGTES AGGGSGGGS SALPVLTOPP SASGTEGGY A DSYKGRFTIS RUNSKNITKYL OMNSIRAEDT AVYYCARDHR SGGGGSTLA DSYKGRFTIS RUNSKNITKYL OMNSIRAEDT AVYYCARDHR SGRGGGSYLA DSYKGRFTIS RUNSKNITKYL OMNSIRAEDT AVYYCARDHR SGRGGGSYLA TEGGGSSGG GGGGGGGGGTKLT VLGAAA EVERGGTRY GIRSEDEADTYY CAMDDTLSG VVFGGGTKLT VLGAAA EVERGGTRY ISCRGASGGTFT TSYLFHWYD, VPFGGGTKLT VLGAAA EVERGGTRY LIGOTSTSTT YMELSSITSE DTAVYYCARD OVFYSGGSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG			100	THE PROPERTY PROCESSION OF THE PARTY OF THE	
101 STRGRETTS RUNKSRUTLI QUANSIRABLY AVYCARDHE SGRGGGSTILL 101 RELDYMOCOT WATVSGGG SGGGGGGGG SALPALTOPE SAGTPEGRY 121 TISGSGSSS IGRAVYWYQ QIPCTAFKLI ITRANILRESG VEDRESGKS 101 TISGSGSSS IGRAVYWYQ QIPCTAFKLI ITRANILRESG VEDRESGKS 102 STRKEGRAV ISCKASGFT TSYLFHWYRQ AFGGTKLI VILADAA 11 EVRREGASVK ISCKASGFT TSYLFHWYRQ AFGGTKLI VILADAA 11 EVRREGASVK ISCKASGFT TSYLFHWYRQ AFGGTKLI VILADAA 121 IRESEDPRAY GANSCHEDED THAN THE SGRTSE DRAVYCARD QIFTESGSYI 122 STRKEGGRY GILVPUSSGG GGSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	50		107	CARCETTERS YAMSWVROAP GKGLEWVSAT	
101 RELDYMOGOT WTVSSGGGG SGGGGSGGG SALPVITQPP SASGTFGQRV 111 TESCGSSSN IGNIVYWYQ QUECTRAKET 201 GTSSLAING INSEDEADLY CAMADOTICG VVFGGGTKLT VIGABA 201 INSEDEWRR SCKASGFTF TSYLFHWYQ APGGREBMO QVFESGSYL 201 INSEDEWRR SCKASGFTF TSYLFHWYQ APGGREBMO QVFESGSYL 201 INSEDEWRR GTHAVYSSG GGSGGGGGG GSDIOWTOS PSTLSASIGD 201 INTTCRAS GTHATAWYQ QKPGKAPKL IYKASSLASG APSRFSGSS 201 GTDFILIISS IQPDDFATYY CQCYSNYPLT FGGGTKLETK RAA 201 VTVSSGGGG GGGGGGGG ALSSELTQDP ATVSVALGOT WRIGGSTCYA 201 VTVSSGGGG GGGSGGGG ALSSELTQDP ATVSVALGOT WRITCQDDSI 202 GTDFILIISS IQPDDFATYY CQCYSNYPLT FGGGTKLETK RAA 203 GAGGSGGGG GGGSGGGG ALSSELTQDP ATVSVALGOT WRITCQDDSI 204 VTVSSGGGG GGGSGGGG ALSSELTQDP ATVSVALGOT WRITCQDDSI 205 GTDFILIISS GAGGSGGGG ALSSELTQDP ATVSVALGOT WRITCQDDSI 206 GTDFILIIS GAAAGFTFS TERMINASCI PORTSGNSO WTASILTIGA 207 GAEDADAVYC NSRELGTRIL INGGGTKLTV LGAAA 208 GAGGSGGGG GGGSGGGG ALSSELTQDP ATVSVALGOT WRITCQDSI 209 GAGGGSGGGG GGGSGGGG ALSSELTQDP ATVSVALGOT WRITCGCDSI 201 GABDWGRGTT SKNDMNSLY LOWISSTARDS WAYCARRY QUAGGTKVV 201 GABDWGRGTT SKNDMNSLY LOWISSTARD ATVSVALGOT WASILTITAR 201 GABDWGRGTT SKNDMNSLY LOWISSTARD ATVSVALGOT WASILTITAR 201 TSASILAISCI GCEDEADYYC AANDDSILOW VEGGGTKVVV LGAAA 201 TSASILAISCI GCEDEADYYC AANDDSLWGW VEGGGTKVVV LGAAA 201 GABDAVYCLI WDDSLGSGVA CGCGGGGGG GGGGGGGGG GAGGGGGGG GAGGGGGGG ALSCALGOT ATVSVALGOT REPORTYOR ATVSVALOR ATVSVAL	scrv29	31	7 5	RINSKNTT.VI, OMNSI,RAEDT AVYYCARDHR SGRGGSYLL	101
151 TISCSGSSSN IGRNYVWYQ QLPCTAPKTL IYRNNLRPSG VPDRFSGSKS 201 GTSAELAISG IRBEDBADYY CAMMDDTISG VVEGGSTKL TVGABA 31 EVRKPGASVK ISCKASGFTF TSYLFHWYQ APGGRLEWNG WINAGNGNTK 10.1 IRPSEDEWGR GTLVTVSSGG GGSGGGGG GGSDIOWTOS PSTILSASIGD 11.1 RYTTCRAS GITHMANYQ OKEGARKLI IYRASSIASG PSTILSASIGD 11.1 IRPSEDEWGR GTLVTVSSGG GGSGGGGG GGSDIOWTOS PSTILSASIGD 11.1 NRYKRAFTY RAMELSELITE DAPATACARI IYRASSIASG PSTILSASIGD 11.1 NRYKRAFTI RAMA 10.1 UNGGGSIRLS CAASGFTEDD IGWSWYQAP GKGLEWVSGI NRNGGSTGVA 10.1 OKRYAWWYQ REQARLAVF FSURRRSGI PDRFSGSNSG NTSITTGA 20.1 OARDBADYYC NRELIGTHAI LEGGGTKLTV LGAAA 1 LVQGGGSIRL SCAAAGFTES TERMWYQAP GKGLEWVST ISGGGHIYY 10.1 GADWGRGTT SRONNINSLY LOWISTAED TAVYVCARRK YQLLGKYDY 10.1 GADWGRGTT VYUSSGGGG GGGGGGGGG ALPVLIQPES ASGTBGRWY 10.1 SASIASICS GGGGGGGGG GGGGGGGG ALPVLIQPES ASGTBGRWY 10.1 VSGGSSSNI GSWTAWYQ LECAFARLII YSNORRSCRS PDRESGSNG 20.1 TSASIASICS GGGGGGGGGG GGGGGGGG ALPVLIQPES ASGTBGRYT 10.1 VSGGGGS FALSKLYCH ANDDSLAWY NAWAGATITR 20.1 GEBDADYCI GEBDADYC AANDDSLAW WGGGTKVYP LGAAA 20.1 GROOTSWY NAWAGAT CAAAGTTS TREMWYQA PGGGTKYPY LGAAA 20.1 GROOTSWY NAWAGAT CAAAGTTS TREMWYQA PGGGTKYPY LGAAA 20.1 GROOTSWY NAWAGAT CAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA			101	MVIVSSGGGG SGGGGGG SALPVLTQPP SASGIPGQRV	101
201 GTSASIAISG LRSEDEADDY CAAMDDTISG VVEGGGTKLT VLGAAA  1 EVRREGASVK ISCKASGETF TSTIEHWURD AEDGALLEMOR WINAGHONIK  101 IRESEDEWGR ISCKASGETF TSTIEHWURD AEDGALLEMOR WINAGHONIK  101 IRESEDEWGR GTUVTYSSOG GGSGGGGGG GGSDIOWTOS PSTIESASIGD  201 GTDFTLTISS LQDDDFATY CQOYSNYPLT FGGGTKLEIN RAAA  101 VTVSSGGGG GGGSGGGGS LASSETTOD TGGGTKLEIN RAAA  201 VTVSSGGGG GGGGGGGG LASSETTOD TGGGTKLEIN RAAA  201 ORDEADDYC NSREIGTNI LEGGGTKLIV LGAAA  202 TSASIAISGL SCRAAGFTS TERNANNELY SUNDREGGV PDRFSGSKG  203 TSASIAISGL GGGGGGGGG ALPUITOPPS ASGTFGQNV  204 TSASIAISGL GGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG			151	IGRNYVYWYQ QLPGTAPKLL IYRNNLRPSG	
12 EVRKPGASVK ISCKASCETF TSYLEHWYRQ APPORTEMWG WINAGWGYKK  10.1 IRPESIDEWGR TIGDTSTSTT YMELSSLISE DTANYYCARD OVETEGSYL  10.1 IRPESIDEWGR GIYHWLAWYQ OKPGKAPKLI IYKASSLASG APSRESGSS  20.1 GTDFTLTISS IQPDDFATYY CQOYSNYPLI FYGGGTKLEIV RAAA  10.1 VYUSSGGGGS GGGSGGGGS ALSSELTOD PYNYARWYQO REGARLISK RAAA  20.1 OADDEADAYC NSRIGTNIN IEGGGTKLTV LGAAA  20.1 TSASLAISGI GSEDBADYC AMUDGRSCY PRESGSKG  20.1 TSASLAISGI GSEDBADYYC AMUDDSINGW VEGGTKVTV LGAAA  20.1 SEGGTSSS AFSWYRQAP GGCGGGGG GSAQAVITOP SSASGTFGQR  20.1 TSASLAISGI GSEDBADYYC AMUDDSINGW VEGGTKVITY DGHAAA  20.1 SCGGGSGG GGGGGGGG GSGGGGG GSAQAVITOP SSAGTFGQR  20.1 SCGGGSGG GGGGGGGGGGGGGGGGGGGGGGGGGGGGG	•		201	LRSEDEADYY CAAWDDTLSG VVFGGGTKLT	
101 IRREPERMENT LICONSTSTIT YMELSSLITSE DIRAVYNCARD OVEYERSGSY 101 IRREPERMENT GILVHVISSOG GGSGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	scFv30	32	-	ISCKASGETF TSYLFHWVRQ APGORLEWMG	
101 IRPSEDEWGR GTLYTVSSGG GGSGGGGGG GGSDIONTQS PSTLSABIGD 151 RTITCRABA 201 GTDETLIJS LQPDDEATYY QUEGEKERKLI IYKASGLAG APSRFSGSGS 202 TOPTLIJS LQPDDEATYY COUNSWIPLI FGGGTKLEIK RAAA 101 VRPGGSLRIG CAASGFTEDD YGMSWURQAP GKGLEWVSGI NWNGGSTGVA 102 VLYSSGGGGS GGGSGGGGG ALSSELTODP ATVYCARRRY ALDYWGRGTM 201 DAEDEADYYC NSREIGTNI LFGGGTKLTV LGAAA 201 LVQPGGSLRI SCAAAGFTFS TERNIWYRQA PGKGLEWYS ISGSGHAIYY 202 DASVKGRFTS RONANNSIY LQMNSITARD TAVYYCARRRY YGLLIGKYDY 203 LSGSSSNI GSNTLMWYQQ LPGTAPKLLI YSNDQRPSG PDRFSGSKG 204 TSASLAISGL QSDDBADYYC AAWDDSLAGW REGGTKTVT LGAAA 205 LSGSSSNI GSNTLMWYQQ LPGTAPKLLI YSNDQRPSG PDRFSGSKG 206 TSASLAISGL QSDDBADYYC AAWDDSLAGW REGGTKTVT LGAAA 207 LSGSGSSSNI GSNTLMWYQQ LPGTAPKLLI SNDQRPSG PDRFSGSKG 208 TSASLAISGL QSDDBADYYC AAWDDSLAGW REGGTKTVT LGAAA 209 LSGTGTSYRK LBLUGSDTA VYYCAARGG TSPPGYTYGM DWGRGTLTT 200 LBDEADYYCLT WDDSLSGPF GGGSGGGG GSGGGGS GNGSGGGG GSGGGGS O'LTQLPSAS GAPGQRITITA 201 RAGGTSSSS AFSWWQAPG GGGGGGGGG GSAGGGGG GSAGGGGG GSGGGGGS O'LTQLPSAS GAPGQRITITA 201 RAGGTSSSS AFSWWQAPG GGGGGGGGG GSAGAVLTQP SSAGTPGQR 201 TASASLAISGL GAFRLEIYK NDQRPSGYPG REFGSKSGT ASLVVSGLRS 201 TASASLAISGL GGGGGGGGG GSGGGGGG GSAGGGGG GSGGGGGG GSAGGGGG GSGGGGGG GSGGGGGGGG	200	1	51	LIGDISISIT YMELSSLISE DIAVYYCARD QVFYESGSYY	102
151 RVTITCRASE GIYHMIAWYQ QKEGKARKLI IYKASSIAASG APERFESGES 201 GTDFFILTISS LQEDDEATYY CQQYSNYPIJ FGGGTKLEIK RAAA 51 VRPGGSLRIS CAASGFTED YGWSWWQAP GKGLEWYGS INWGSTGYA 101 VTVSSGGGGS GGGGSGGGS ALSSELTQDP ATVSVALGOT VRITCQEDSL 102 VTVSSGGGGS GGGGSGGGG ALSSELTQDP ATVSVALGOT VRITCQEDSL 103 VTVSSGGGS GGGGSGGGG ALSSELTQDP ATVSVALGOT VRITCQEDSL 104 QAEDEADYYC NSREIGTNAI LEGGGTKLIV LGAAA 105 ADSVKGRFTI SRDNANNSIY LGAAA DEWLIGKYDY 106 GMDVWGRGTT VTVSSGGGS GGGSGGGGS ALSSELTQPPS RSGTPGGRVT 107 GMDVWGRGTT VTVSSGGGS GGGSGGGGS ALSTAVITOPPS RSGTPGGRVT 108 GMDVWGRTT VTVSSGGGS GGGSGGGGS ALSTAVITOPPS RSGTPGGRVT 109 VRSGGGSSNI GSNTLAWYQO LBGTAARKLI YSNDQRPSGY PDRESGSKS 201 TSASLAISGL QSEDBADYYC AMDDSIAGW VFGGGTKYTV LGAAA 101 VSSGGGGSG GGSGGGGS GGGGGGGGS ALSTAVITOPPS RSGTPGGRVT 102 VSSGGGGSG GGSGGGGS QGGGGGGGG REGGSKGGT ASLVYSGLRS 203 EDEADYYCLT WDDLSDDAYYC ARADDSIAGW VFGGGTKLTY 104 VSSGGGGGG GGSGGGGSG GGGGGGGGG REGGSKGT ASLVYSGLRS 204 ACKGFFYTY DHGLSWVRQA FGGGLEWMGW INTHDGHTNY AQKTQARLTW 105 SSGLDWWGG TLVYVSGGG GGGGGGGGG GSGGGGGG GSGGGGGG GGGGGGG			101	GILVIVSSGG GGSGGGGGGG GGSDIQMIQS PSTLSASIGD	! )
201 GTDFTLIES LQPDDFATYY CQYSNYPLT FGGGTKLEIK RAAA  1 VREGGSLEIS CAASGFTEDD YGMSWYRQAP GKGLEWYSGI NNNGGSTGYA  101 VYUSSGGGGG GGGGGGGGGS LLGSELTODP ATVSYALGGT VRITCOEDSL  101 VYUSSGGGGG GGGGGGGGS LLGSELTODP ATVSYALGGT VRITCOEDSL  102 DADDEADYYC NSREIGTNEI LEGGGTKLTV LGAAA  203 ADDEADYYC NSREIGTNEI LEGGGTKLTV LGAAA  1 LVQPGGGELE SCAAAGFTES TERMWYRQA PCRGEEWVSY ISGSGHAIYY  101 GMDVWGRTT SRONANNSLY LQMNSLTAED TAVYCAREK YQLLLGKYDY  102 GMDVWGRTT SRONANNSLY LQMNSLTAED TAVYCAREK YQLLLGKYDY  103 ISCSGSSNI GSNTLNWYQQ LPGTARKLII YSNDQRPSGV PDRFSGSKS  204 TSASLAISGL QSEDEADYYC AAMDDSLNGW VFGGGTKVTV LGAAA  1 RAGGTSSS AFSWYRQARG GGGGGGGGG ALPVLTQPPS AGGTPGQRVT  101 VSSGGGGGG GGGGGGGGG SVLOVICLPSAS GAPGGTRIVT  102 NSCGGGGG GGGGGGGG SVLOVICLPSAS GAPGGTRIVT  103 NYVOWYKQLP GTARKLTYN DQRPSGVPG RFSGSKSGTS ASLVVSGIRS  204 TSASLAISGL QSEDEADYYC AAWDDSLNGW VFGGGTKVTV LGAAA  1 ACKGFGYTFV DHGISWVRQA PGGGLEWWGW INTHOGHTNY AGKTQARLTM  1 ACKGFGYTFV DHGISWVRQA PGGGLEWWGW INTHOGHTNY AGKTQARLTM  2 TTAASIWYSG TLVVVSCGG GGGGGGGG GGGGGGGG GSAQGGCGG GSGGGGGG GGGGGGGG GGGGGGGG GGGGGGGG			151	GIYHWLAWYQ QKPGKAPKLL IYKASSLASG	
13 1 VRPGGSLRIS CAASGFTEDD YGWSWVRQAP GKGLEWVSGI NNNGGSTGYA 10 1 VYUSSGGGG GGGSGGGGS ALSSELTQDP ATVYCARRY ALDYWGRGTM 10 1 VYUSSGGGG GGGSGGGGS ALSSELTQDP ATVSVALGOT VRITCQGDSL 15 1 DKYYATWOV KPGQPLLVF FSENRRPSGI PRRESGSNG NTASLITIGA 20 1 QAEDEADYYC NSREIGTNRI LFGGGTKLTV LGAAA 20 1 LVQPGGSLRL SCAAGFTES TFEMNWYQA PGKGTEWVYY ISCAGHAYY 20 1 GADWWGRGTT VTVSSGGGG GGGGGGGGS ALPVLTQRPS ASGTFGQRVT 15 1 GOGWWGRGTT VTVSSGGGG GGGGGGGG ALPVLTQRPS SAGTFGQRVT 20 1 TSASLAISGL QSEDEADYYC AAWDDSLNGW VFGGGTKVTV LGAAA 20 1 TSASLAISGL QSEDEADYYC AAWDDSLNGW VFGGGTKVTV LGAAA 21 1 RASGGTSSS AFSWVRQAPG QGLQWWGGII PLFGAANYAQ KYRAGITITA 22 1 RASGGTSSS AFSWVRQAPG GGLQWWGGII PLFGAANYAQ KYRAGITITA 24 1 LACKGFGYTEV DHGISWVRQAPG GGLQWWGGII CSCAGGGSGG 25 1 TAASLAISGL QSEDEADYYC AAWDDSLNGW TROGATKTVT 26 1 LACKGFGYTEV DHGISWVRQAPG GGLGWWGGII PLFGAANYAQ KYRAGITITA 27 1 ACKGFGYTEV DHGISWVRQAPG GGGGGGGGG GSGGGGGGG GSGGGGGGGG GSGGGGGG			201	LOPDDFATYY COOYSNYPLT FGGGTKLEIK	
101 VUYSGGGGS GGGSGGGGS ALSSELTODE ATVYCARRRY ALDYWGRGTM 101 VUYSGGGGS GGGSGGGGS ALSSELTODE ATVYCARGOT VRITCOGDSL 151 DKYYATWYQQ REGGABLIAVE PSENRRPSGI PDRESGNIG NTASILITGA 201 QAEDDEADYYC NSRRICHTRI LEGGCTKLTV LGARA 201 LIVOPGGSLRL SCAAAGETES TEEMNWYRQA PGKGLEWVSY ISGSGHAIYY 201 TSASILISTEL SCAAAGETES TEEMNWYRQA PGKGLEWVSY ISGSGHAIYY 201 TSASILISCH SCAAAGETES TEEMNWYRQA PGKGLEWVSY ISGSGHAIYY 201 TSASILISCH SCAAAGETES TEEMNWYRQA PGKGLEWVSY ISGSGHAIYY 201 TSASILISCH SCAAAGETES TEEMNWYRQA PGKGGTKVTV LGAA 201 TSASILISCH SCAAAGETES TEEMNWYRQA SAGTFEGRYT 201 TSASILISCH SCAAAGETES TEEMNWYRQA SAGTFEGRYT 201 TSASILISCH SCAAAGETES TEEMNWYRQA SAGTFEGRYT 201 TSASILISCH SCAAAGETES TEEMNWYRQA SAGTFEGRY 201 TSASILISCH SCAAAGETES TEEMNWYRQA SAGTFEGRY 201 TSASILISCH SCAAAGETES ALWADDSLNGW VEGGTKVTV LGAAA 201 TSASILISCH SCAAAGETES GAGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	scFv31	33	-	CAASGETEDD YGMSWVRQAP GKGLEWVSGI	
101 VTVSSGGGGS GGGSGGGGS ALSSELTQDP ATVSVALGOT VRITCOGOSL 151 DKYTATWYOO KPGQAELLYF FSENRRESGI PORFSGSNSG NTASLITICA 201 QAEDEADYIC NSREIGTNRI LEGGGTKLIV LGAAA 201 IVQPGGSIRL SCAAAGFTES TEFMUNNTQA PGKGLEWVSY ISGSGHAIYY 201 GMDVWGRGTI VTVSSGGGGS GGGSGGGGS ALPVLTQPPS ASGTPGQRVT 201 TSASLAISGL OSBDEADYIC AAWDDSINGW VEGGGTKVTV LGAAA 202 TSASLAISGL OSBDEADYIC AAWDDSINGW VEGGGTKVTV LGAAA 203 TSASCASSSN AFSWVRQAPF OGLGWWGGTI PLFGAANYAQ KVRAGITITA 204 BESTGTSYWK LENLOSGSA GVIQUPEAS GAPGQRITIS CSGSFFNIGR 205 EDEADYYCLT WDDSLSGFV GGGTKLTVLG AAA 206 EDEADYYCLT WDDSLSGFV GGGTKLTVLG AAA 207 EDEADYYCLT WDDSLSGFV GGGTKLTVLG AAA 208 EDEADYYCLT WDDSLSGFV GGGTKLTVLG AAA 209 EDEADYYCLT WDDSLSGFV GGGTKLTVLG SASGTPGOR 201 TTDASINTSY MELRSLTSDD TAVYYCARGG ETKTAHRSRR ATNDNGYEYY 201 EDEADYYCLT WDDSLSGFV GGGTKGGTKL LIYRNNQRPS GVPDRFSGSK 201 TTDASINTSY MELRSLTSDD TAVYYCARGG TKL TVLGAAA 201 TSGSSSSN GSSCGGG GGGGGGGG GGGGGGGG GGGGGGGG GGGGGGGG	100	)	51	RDNAKNSLYL QINSLRAEDT AVYYCARRRY ALDYWGRGTM	103
151 DKYYATWYQQ KPGQAPLLVF ESENRRPSGI PDRFSGSNSG NTASLITIGA 201 QABDEADYXC NSRRIGTRNI LEGGGTKATV LGAAA  1 LVQPGGSLRL SCAAAGFTFS TERNWWRQA PCKGLEWVSY ISGSGHAIYY 101 GMDVWGRFTI SRDNANNSLY LQMNSLTAED TAVYYCAREK YQLLLGKYDY 101 GMDWGRGTT VTVSSGGGS GGGGSGGGGS ALPVLTQPPS ASGTPGGRVT 151 ISGSGSSSNI GSWTLNWYQQ LPCTAPKALI YSNDQRPSGV PDRFSGSKSG 201 TSASLAISGL QSEDEADYYC AAWDDSLNGW VFGGGTKVTV LGAAA 51 RASGGTSSSS AFSWVRQAPG QGLQWMGGII PLFGAANYAQ KVRAGLTITA 520 EDEADYYCLT WDDSLSGPV GGGTKLTVLG ASPROKTTIS CSGSTFNIGR 101 VSSGGGGSG GGSGGGGSAQ SVTQLPPAS GAPGQRTTS CSGSTFNIGR 102 SGGGGGGG GGSGGGGSAQ SVTQLPPAS GAPGQRTTS CSGSTFNIGR 103 EDEADYYCLT WDDSLSGPVF GGGTKLTVLG AAA 1 ACKGFGYTCV DHGISWVQA FGGGTKLTVLG AAA 1 ACKGFGYTCV DHGISWVQA FGGGTKLTVLG AAA 1 ACKGFGYTCV DHGISWVQA FGGGTKLTVLG AAA 1 ACKGFGYTCV TWDSLSGPVF GGGTKLTVLQP SSASGTPGQR 151 TTDASINTSY WELRSLTSDD TAYYYCARGE ETRTAHRSRR ATNDNGYPYY 101 SGGSSSS NIGSNYVWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK 151 VTISCSGSS NIGSNYVWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK 151 FQGRVTWTRD TSTSTYVWEL SSLRSEDTAY YYCARGGGTK TVLGAAA 101 GMDVWGRGTL VYVSSGGGS GGGGGGGG SAQSVLTQPPS ASGTPGQRVT 101 GMDVWGRGTL VYVSSGGGS GGGGGGGG AGVTTV LGAAA 101 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA			101	GGGGSGGGS ALSSELTQDP ATVSVALGQT VRITCQGDSL	}
201 QAEDEADYYC NSREIGTRRI LEGGGTKLTV LGRAA  1 IVOPGGSIRL SCAAGETES TERNIWWRQA PGKGLEWVSY ISGSCHAITY  21 BONYGRETT SRDNANNSLY LOWNSLTAED TAVYYCAREK YQLLLGKYDY  201 GMDVWGRGTT VIVSSGGGS GGGGSGGGGS ALPVLTQPPS ASGTPGQRVT  201 ISGSGSSNI GNTLNWYOL LECTAPKLLI YSNORPSGY PDRESGSKSG  201 TSASLAISCL QSEDEADYYC AAWDDSLNGW VEGGTKVTV LGAAA  35 I RASGGTSSS AFSWVRQAPG QGLQWMGGII PLEGAANYAQ KVRAGITITA  26 DESTGTSYMK LENLQSDDTA VYFCATNGQT RSPEGYYGM DVWGRGTLVT  27 NYDWYKQLP GTARKETYKY NDQRRSGVPG RESGSKSGTS ASLVVSGLRS  28 SOT ACKGFGYTEV DHGISWVRQA FGGGLEWMGW  36 I ACKGFGYTEV DHGISWVRQA FGGGLEWMGW  51 TDASINYSY MELRSLTSDD TAVYYCARGG ETRTARRSRR ATNDNGYFYY  52 SGLDVWQGG TLVTVSSGGG GSGGGSGG GSAQAVLTQP SSASGTPGQRY  53 SGLDVWQGG TLVTVSSGGG GSGGGSGG GSAQAVLTQP SSASGTPGQRY  54 SGRASLAIS GIRSEDBADY COAAWDDSLS GWFGGTK TYLGAAA  56 STSASLAIS GIRSEDBADY YCAAWDDSLS GWFGGTK TYLGAAA  57 SGLSVKVYRTD TSTSTYYME SSIRREDTAY YCAGGGGR NWRGYILDPY  58 SGRAYKWYRD TSTSTYYME SSIRREDTAY YCARGSGR MVRGVILDPY  59 SGRAYWRGTL VYVSSGGG GGGGGGGG BANYGCTRYTY LGAAA  51 SGRAYWWRGTL VYVSSGGG GGGGGGGG BANYGCGTK TYLGAAA  51 SGRAYWYRD TSTSTYYME SSIRREDTAY YCARGSGR WYRGCGTKYTY  51 SGSCSSNV GNYVWYN QOLPGTARKLI YRNNQRPS GVPDRFSGSKS  51 SGSCSSNV GNYVWYNY QOLPGTARKLI YRNNQRPSGY PDRFSGSKSG  51 SGSCSSNV GNYVWYNY QOLPGTARKLI YRNNGRPSGY PDRFSGSKSG  51 SGSCSSNV GNYVWYNY QULPGTARKLI YRNNGRPSGY PDRFSGSKS			151	KPGQAPLLVF FSENRRPSGI PDRFSGSNSG	
1 LVQPGGSLRL SCAAAGFTFS TFEMNWURQA PGKGLEWVSY ISGSGHAIYY     1 LVQPGGSLLL SRDNANNSLY LQWNSLTAED TAVYYCAREK YQLLGGKYDY     10 GMDVWGRCTT YTVSSGGGGS GGGSGGGGS ALPYLTQPPS ASGTEGRVT     1 ISCSGSSNI GSNTLNWYQQ LPGTAPKLLI YSNDQRPSGV DRFSGSKSG     1 TSASLAISGL QSEDEADYYC AAMDDSLNGW VEGGTKVTV LGAAA     1 RASGGTSSS AFSWVRQAPG GGLQWMGGIT PFEGAANYAQ KVRAGITITA     1 LVQPWYQLP GTAPKLETYK NDQRPSGVPG RSPEGYYYCW DVWGRGTLVT     1 LVQPWYQLP GTAPKLETYK NDQRPSGVPG RESGSKSGTS ASLVVSGLRS     1 LVQPWYQLP GTAPKLETYK NDQRPSGVPG RESGSKSGTS ASLVVSGLRS     201 EDEADYYCLT WDDSLSGPVF GGCTKLTVLG AAA			201	NSREIGTNRI LEGGGTKLTV	
101 GMDVWGRGTT VTVSSGGGS GGGGSGGGS ALPVITQPPS ASCTPGQRVT 151 ISCSGSSNI GSNTLNWYQQ LPGTAPKLLI YSNDQRPSGV PDRFSGSKSG 201 TSASLAISGL QSEDEADYYC AAWDDSLNGW VFGGGTKVTV LCAAA  152 TSASLAISGL QSEDEADYYC AAWDDSLNGW VFGGGTKVTV LCAAA  101 VSSGGGSSG GGGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTFNIGR 151 NYVDWYKQLP GTAPKLETYK NDQRPSGVP RFSGSKSGTS ASLVVSGLRS 101 VSSGGGSSG GGGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTFNIGR 151 NYVDWYKQLP GAPKLETYK NDQRPSGVP RFSGSKSGTS ASLVVSGLRS 102 EDEADYYCLT WDDSLSGPVF GGGTKLTVLG AAA 103 SGGLDVWGQG TLVTVSSGGG GSGGGSGG GSAQAVLTQP SSASGTPGQR 151 VTISCSGSSN NIGSNYYWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK 201 SGGLDVWGQG TLVTVSSGGG GSGGGSGGG GSAQAVLTQP SGGSTSYAQK 201 SGGLDVWGGG TLVTVSSGGG GSGGGSGGG GSAQAVLTQPPS ASCTPGQRVT 201 SGGLDVWGGG TLVTVSSGGG GSGGGGGGG GSAQAVLTQPPS ASCTPGQRVT 202 GTSASLAIS GLRSEDEADY YCAAWDDSLS GWVGGGTKL TVLGAAA 203 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVGGGTKL TVLGAAA 204 FQGRYTWYRD TSTSTY MHWYRQAPGQ GLEWMOTINP SGGSTSYAQK 205 FGGRSGGGG GGGGGGGG AGGGGGGGG AQSVLTQPPS ASCTPGQRVT 206 FGDDWWGGTL VTVSSGGGG GGGGGGGGG AQSVLTQPPS ASCTPGQRVT 207 ISCSGSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 208 ISCSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG	scFv32	34		SCAAAGFTES TFEMNWVRQA PGKGLEWVSY	
101 GMDVWGRGTT VTVSSGGGGS GGGGGGGGS ALPVLTQPPS ASGTPGQRVT 151 ISCSGSSNI GSNTLNWYQQ LPGTAPKLLI YSNDQRPSGV PDRFSGSKSG 201 TSASLAISGL QSEDEADYYC AAWDDSLNGW VFGGGTKVTV LGAAA  1 RASGGTSSS AFSWVRQAPG QGLQWMGGII PLEGAANYAQ KVRAGLTITA 5 101 VSSGGGGSG GGSGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTENIGR 101 VSSGGGGGG GGSGGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTENIGR 151 NYVWWYKQLP GTAPKLETYK NDQRPSGVPG RESGSKSGTS ASLVVSGLRS 201 EDEADYYCLT WDDSLSGPVF GGGTKLTVLG AAA  1 ACKGFGYTEV DHGISWVRQA PGGLEWMGW INTHDGHTNY AQKTQARLTM 5 1 TDASINTSY MELRSLTSDD TAVYYCARGG ETRTAHRSRR AINDNGYPYY 101 SGGLDVWGG TLVTVSSGG GSGGGSGG GSAQAVLTQP SSASGTPGQR 201 SGTSASLAIS GLRSEDEADY YCAARGGGTK TVLGAAA 201 SGTSASLAIS GLRSEDEADY YCAARGGGTK TVLGAAA 201 SGTSASLAIS GLRSEDEADY YCAARGSGAR MVRGVILDPY 37 1 PGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK 201 GMDVWGRGTL VTVSSGGGS GGGGSGGS AQSVLTQPPS ASGTPGQRVT 101 GMDVWGRGTL VTVSSGGGS GGGGSGGGS AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISSSLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA		,	51	SRDNANNSLY LOMNSLTAED TAVYYCAREK YOLLLGKYDY	104
151 ĪSCSGSSSNI GSNTLNWYQQ LPGTAPKLLI YSNDQRPSGV PDRFSGSKSG 201 TSASLAISGL QSEDEADYYC AAWDDSLNGW VFGGGTKVTV LGAAA  1 RASGGTSSSS AFSWVRQAPG QGLQWMGGII PLFGAANYAQ KVRAGLTITA 51 DESTGTSYMK LENLQSDDTA VYFCATNGQT RSPPGYYGM DVWGRGTLVT 101 VSSGGGGSGG GGSGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTFNIGR 151 NYVDWYKQLP GTAPKLETYK NDQRPSGVPG RFSGSKSGTS ASLVVSGLRS 201 EDEADYYCLT WDDSLSGPVF GGGTKLTVLG AAA  51 TTDASINTSY MELRSLTSDD TAVYYCARGG ETRTAHRSRR ATNDNGYPYY 101 SSGLDVWGQG TLVTVSSGGG GSGGGSGG GSAQAVLTQP SSASGTPGQR 151 VTISCSGSSS NIGSNYYWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA  37 ST PGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK 51 FQGRVTMTRD TSTSTVYMEL SSLRSEDTAV YYCARGSGAR MVRGVILDPY 101 GMDVWGRGTL VTVSSGGGS GGGSGGGS AQSVLTQPPS ASGTPGQRVT 11 ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGKVTVV LGAAA			101	VIVSSGGGGS GGGGSGGGS ALPVLTQPPS ASGTPGQRVT	· •
201 TSASLAISGL QSEDEADIYC AAWDDSLNGW VFGGGTKVTV LGAAA  1 RASGGTSSS AFSWVRQAPG QGLQWMGGII PLFGAANYAQ KVRAGLTITA  51 DESTCTSYMK LENLQSDDTA VYFCATNGQT RSPPGYYYGM DVWGRGTLVT  101 VSSGGGGSG GGSGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTFNIGR  151 NYVDWYKQLP GTAPKLFIYK NDQRPSGVPG RFSGSKSGTS ASLVVSGLRS  201 EDEADYYCLT WDDSLSGPVF GGGTKLTVLG AAA  51 TTDASINTSY MELRSLTSDD TAVYYCARGG ETRTAHRSRR ATNDNGYPYY  101 SSGLDVWGQG TLVTVSSGGG GSGGGSGGG GSAQAVLTQP SSASGTPGQR  151 VTISCSGSS NIGSNYVYWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK  201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA  37 PGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK  51 PGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK  51 GMDVWGRGTL VTVSSGGGS GGGGSGGGS AQSVLTQPPS ASGTPGQRVT  101 GMDVWGRGTL VTVSSGGGS GGGGSGGGS AQSVLTQPPS ASGTPGQRVT  151 ISCSGSSNV GSNYVSWYQQ PFGTAPKLLI YRNNQRPSGV PDRFSGSKSG  201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA			151	GSNTLNWYQQ LPGTAPKLLI YSNDQRPSGV	
1 RASGGTSSS AFSWVRQAPG QGLQWMGGII PLFGAANYAQ KVRAGITITA 51 DESTGTSYMK LENLQSDDTA VYFCATNGQT RSPEGYYGM DVWGRGTLVT 101 VSSGGGGSGG GGSGGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTFNIGR 151 NYVDWYKQLP GTAPKLEIYK NDQRPSGVPG RESGSKSGTS ASLVVSGLRS 201 EDEADYYCLT WDDSLSGPVF GGGTKLTVLG AAA 1 ACKGFGYTFV DHGISWVRQA PGQGLEWMGW INTHDGHTNY AQKTQARLTM 51 TTDASINTSY MELRSLTSDD TAVYYCARGG ETRTAHRSRR ATNDNGYPYY 101 SSGLDVWGQG TLVTVSSGGG GSGGGGGGG GSAQAVLTQP SSASGTPGQR 151 VTISCSGSSS NIGSNYYWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 201 GMDVWGRGTL VTVSSGGGS GGGGSGGGS AQSVLTQPPS ASGTPGQRVT 101 GMDVWGRGTL VTVSSGGGS GGGGSGGGS AQSVLTQPPS ASSTPGQRVT 151 ISCSGSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDBADFYC VAWDDSLREY VFGTGTKVTV LGAAA			201	QSEDEADYYC AAWDDSLNGW VFGGGTKVTV	
101 VSSGGGSGG GGSGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTENIGR 101 VSSGGGGSGG GGSGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTENIGR 151 NYVDWYKQLP GTAPKLETYK NDQRPSGVPG RESGSKSGTS ASLVVSGLRS 201 EDEADYYCLT WDDSLSGPVF GGGTKLTVLG AAA  1 ACKGFGYTFV DHGISWVRQA PGGGLEWMGW INTHDGHTNY AQKTQARLTM 101 SSGLDVWGQG TLVTVSSGG GSGGGSGG GSAQAVLTQP SSASGTPGQR 151 VTISCSGSSS NIGSNYVYWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 201 FGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK 201 GMDVWGRGTL VTVSSGGGS GGGSGGGS AQSVLTQPPS ASGTPGQRVT 101 GMDVWGRGTL VTVSSGGGS GGGSGGGS AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA	scFv33	35	1	AFSWVRQAPG QGLQWMGGII PLFGAANYAQ	
101 VSSGGGSGG GGSGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTFNIGR 151 NYVDWYKQLP GTAPKLFIYK NDQRPSGVPG RESGSKSGTS ASLVVSGLRS 201 EDEADYYCLT WDDSLSGPVF GGGTKLTVLG AAA  1 ACKGFGYTFV DHGISWVRQA PGQGLEWMGW INTHDGHTNY AQKTQARLTM 51 TTDASINTSY MELRSLTSDD TAVYYCARGG ETRTAHRSRR ATNDNGYPYY 101 SSGLDVWGQG TLVTVSSGG GSGGGSGGG GSAQAVLTQP SSASGTPGQR 151 VYTISCSGSS NIGSNYVYWY QQLPGTAPKL IIYRNNQRPS GVPDRFSGSK 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 202 TGGRVTWTRD TSTSTVYMEL SSLRSEDTAV YYCARGSGAR MVRGVIIDPY 101 GMDVWGRGTL VTVSSGGGS GGGGSGGGG AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA		)	51	LENLOSDDTA VYFCATNGOT RSPPGYYYGM DVWGRGTLVT	105
151 NYVDWYKQLP GTAPKLETYK NDQRPSGVPG RESGSKSGTS ASLVVSGLRS 201 EDEADYYCLT WDDSLSGPVF GGGTKLTVLG AAA  1 ACKGFGYTFV DHGISWVRQA PGQGLEWMGW INTHDGHTNY AQKTQARLTM 51 TTDASINTSY MELRSLTSDD TAVYYCARGG ETRTAHRSRR ATNDNGYPYY 101 SSGLDVWGQG TLVTVSSGGG GSGGGGGGG GSAQAVLTQP SSASGTPGQR 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 21 PGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK 51 FQGRVTMTRD TSTSTVYMEL SSLRSEDTAV YCARGSGAR MVRGVIIDPY 101 GMDVWGRGTL VTVSSGGGGS GGGGSGGGS AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA			101	GGSGGGGSAQ SVLTQLPSAS GAPGQRITIS CSGSTFNIGR	
36  1 ACKGFGYTFV DHGISWVRQA PGQGLEWMGW INTHDGHTNY AQKTQARLTM 51 TTDASINTSY MELRSLTSDD TAVYYCARGG ETRTAHRSRR ATNDNGYPYY 101 SSGLDVWGQG TLVTVSSGGG GSGGGGGGG GSAQAVLTQP SSASGTPGQR 151 VTISCSGSS NIGSNYVYWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 37  1 PGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK 51 FQGRVTMTRD TSTSTVYMEL SSLRSEDTAV YCARGSGAR MVRCVIIDPY 101 GMDVWGRGTL VTVSSGGGGS GGGGGGGGS AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA			151	GTAPKLFIYK NDQRPSGVPG RESGSKSGTS	
36 1 ACKGEGYTEV DHGISWVRQA PGQGLEWMGW INTHDGHTNY AQKTQARLTM 51 TTDASINTSY MELRSLTSDD TAVYYCARGG ETRTAHRSRR ATNDNGYPYY 101 SSGLDVWGQG TLVTVSSGG GSGGGGGGG GSAQAVLTQP SSASGTPGQR 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA 51 PGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK 51 FQGRVTMTRD TSTSTVYMEL SSLRSEDTAV YYCARGSGAR MVRGVIIDPY 101 GMDVWGRGTL VTVSSGGGGS GGGGGGGGS AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA			201	WDDSLSGPVF GGGTKLTVLG AAA	
51 TTDASINTSY MELRSLTSDD TAVYYCARGG ETRTAHRSRR ATNDNGYPYY  101 SSGLDVWGQG TLVTVSSGGG GSGGGGGGG GSAQAVLTQP SSASGTPGQR  151 VTISCSGSS NIGSNYVYWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK  201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA  51 PGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK  51 FQGRVTMTRD TSTSTVYMEL SSLRSEDTAV YYCARGSGAR MVRGVIIDPY  101 GMDVWGRGTL VTVSSGGGS GGGGSGGGGS AQSVLTQPPS ASGTPGQRVT  151 ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG  201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA	scFv34	38	1	DHGISWVRQA PGQGLEWMGW INTHDGHTNY	
101 SSGLDVWGQG TLVTVSSGGG GSGGGGGGG GSAQAVLTQP SSASGTPGQR 151 VTISCSGSSS NIGSNYVYWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA  1 PGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK 51 FQGRVTMTRD TSTSTVYMEL SSLRSEDTAV YYCARGSGAR MVRGVIIDPY 101 GMDVWGRGTL VTVSSGGGS GGGGSGGGGS AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA		2	51	MELRSLTSDD TAVYYCARGG ETRIAHRSRR ATNDNGYPYY	106
151 VTISCSGSSS NIGSNYVYWY QQLPGTAPKL LIYRNNQRPS GVPDRFSGSK 201 SGTSASLAIS GLRSEDEADY YCAAWDDSLS GWVFGGGTKL TVLGAAA  1 PGASVKVSCK ASGYTFTSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK 51 FQGRVTMTRD TSTSTVYMEL SSLRSEDTAV YYCARGSGAR MVRGVIIDPY 101 GMDVWGRGTL VTVSSGGGS GGGGSGGGGS AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA			101	TLVIVSSGGG GSGGGGSGGG GSAQAVLTQP SSASGIPGQR	1
37 1 PGASVKVSCK ASGYTETSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK 51 FQGRVTMTRD TSTSTVYMEL SSLRSEDTAV YYCARGSGAR MVRCVIIDPY 101 GMDVWGRGTL VTVSSGGGGS GGGGSGGGGS AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA			151	NIGSNYVYWY QQLPGTAPKL LIYRNNQRPS	
37 1 PGASVKVSCK ASGYTETSYY MHWVRQAPGQ GLEWMGIINP SGGSTSYAQK 51 FQGRVTMTRD TSTSTVYMEL SSLRSEDTAV YYCARGSGAR MVRGVIIDPY 101 GMDVWGRGTL VTVSSGGGGS GGGGGGGG AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA			201	GLRSEDEADY YCAAWDDSLS GWVFGGGTKL	
51 FQGRVTMTRD TSTSTVYMEL SSLRSEDTAV YYCARGSGAR MVRGVIIDPY 101 GMDVWGRGTL VTVSSGGGS GGGGSGGGGS AQSVLTQPPS ASGTPGQRVT 151 ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV PDRFSGSKSG 201 ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV LGAAA	scFv35	37	1	ASGYTETSYY MHWVRQAPGQ GLEWMGIINP	
GMDVWGRGTL VTVSSGGGGS GGGGSGGGS AQSVLTQPPS ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV		•	51	TSTSTVYMEL SSLRSEDTAV YYCARGSGAR MVRGVIIDBY	107
ISCSGSSSNV GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV ISASLAISGI RSEDEADFYC VAWDDSLREY VFGTGTKVTV			101	VIVSSGGGGS GGGGGGGGS AQSVLTQPPS	
ISASLAISGL RSEDEADFYC VAWDDSLREY VFGTGTKVTV			151	GSNYVSWYQQ FPGTAPKLLI YRNNQRPSGV	
,			201	RSEDEADFYC VAWDDSLREY VFGTGTKVTV	

F19. 10

	108			
ESGGGLVQPG GSLRLSCAAS GFTFSSYAMS WVRQAPGKGL EWVSAISGSG	GSTYYADSVK GRFTISRDNS KNTLYLOMNS LRAEDTAVYY CAKGGTRVTH		ITISCSGSTF NIGRNYVDWY KQLPGTAPKL FIYKNDQRPS GVPDRFSGSK	SGTSASLVVS GLRSEDEADY YCLTWDDSLS GPVFGGGTKL TVLGAAA
38	51	101	151	201
co.Ftv36	000			

Fig. 10

<b>T</b>	

Ref.:	SEO ID No.	Nucle	ootide Sequence
ţ.		1	CARCATCAGCTAGCAACTCTGACCTGAGCTGAGCTGGTGAAGCCTGGGGGCTTTAGTGAAGATATCCTGCAAGG
SCFVI	~ ~	- <del>-</del> -	ならしていていない しんしかいしょうしょう しんしゅうしょく こうしょうしょう かんしゅう かんしゅう かんしん かんしん かんしゅう かんしゅう かんしん しんしゅう シャン・ファイン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファン・ファ
		7/	CCT CGGGGATACGCT CACCACACACACACACACACACACACACACACACACA
		141	GATTGGATGGATTTATCCTGGAGATGGTAGTACTAGGTACAATGGGAAATTCAGGGCCACACGC
		211	ACTGTAGACAAATCCTCCACCACCAGTCTACATGCAGCTCAGCAGCCTGACTTCTGAGAACTCTGCAGTCT
		281	ATTICIGIGCAAGAGGIGGIAAATACITIGACTACIGGGGCCAAGGCACCACTCICACAGIGICGACAGG
		351	TGGAGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGAAGTGCACTCGACATTGTGATGACACAGTCT
		421	CCAAAAATTCATGTCCACATCAGTAGGAGACAGGGTCAGCGTCACCTGCAAGGCCCAGTCAGAATGTGGGCTA
		491	CTAATGTAGCCTGGTATCAACAGAAACCAGGGCAATCTCCTAAACCACTGACTTACTCGGCATCCTTCCG
		56.1	GTCCAGTGGAGTCCCTGATCGCTTCACAGGCAGTGGGATCTGGGACAGATTTCACTCTCACCATCAGCAAT
		631	GTGCAGTCTGAAGACTTGGCAGAGTATTTCTGTCAGCAATATAAACAGCTATCCGTACACGTTCGGAGGGG
		701	GGACCAAGCTGGAAATAAAAGCGGCCGCAGGTGCCGCTGCCGTATCCAGATCCGCTGGAACCGCGTGG
		771	GGCCGCAAGCGCTTGGAGCCACTTCGAAAATAA
COEV	V		GAGGTGCAGCTGTTGGAGTCTGGGGGGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAG
SCF V2	<b>r</b>	71	CCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCCAGGCTCCAGGGAAGGGGCTGGAGTG
	•	141	GGTCTCAGCTATTAGTGGTAGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATC
		211	TCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGT
		281	ATTACTGTGCGCGAGACTCGGGGCTACAGCAGGGACCCCGCCGAAGAGGGGGCCCGAGTAAATTTCTCCTA
		351	CTACGGTCTGGACGTCTGGGGGGGGGGGGGCGACCACGGTCTCGAGTGGAGGCGGCGGTTCAGGCGGGA
		421	GGTGGCTCTGGCGGTGGCGGAAGTGCACAGGCTGTGACTCAGCCGTCCTCAGCGTCTGGGACCCCCG
		491	GGCAGAGGGTCACCATCTTCTTGTTCTGGAAGCAACTCCGACATCGGACGCAATTATGTATTCTGGTACCA
		561	GCAGTTCCCAGGAACGGCCCCCAAAATCCTCTACAGGAACAATCAGCGGCCCTCAGGGGTCCCTGAC
		631	CGATTCTCTGGCTCCAAGTCTGGCACATCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGG
		701	CTGATTATTACTGTGCATCATGGGATGACAGCCTGACTTGGGTGTTCGGCGGAGGGACCAAGGTCACGT
		771	cctaggtgcgcccccaggtgcgccggtgcccgtatccagatccgctggaaccgcgtggggccgcaaaggggt
		841	TGGAGCCACCCGCAGTTCGAAAAATAA
SCFV3	39	-	GGGCCTCAGTGAAGGTCTCCTGCAAGACCTCTGGATACACCTTCATCGCCTATTATATTCATTGGGTGCG
	``	71	ACAGGCCCCTGGACAAGGGCTTGAGTGGATGGACGGATCAACCCTAACACTGGTGGCATAAACCTTGGA
		141	CAGAAGTITCAGGGCAGGGTCACCGTGACCAGGGACACGTCCATCAGCACAGCCCACATGGAGCTGAGTA
		211	GECTGAGCTCTGACGACGCCGTATACTACTGTGCGAGAGAGA
		281	CCGTGGGATGGTGACTGCGGTTGGAATGGACGTCTGGGGCCCGGGGAACCCTGGTCACCGTCTCGAGTGGA
		351	GECGGCGCTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGAAGTGCACAGTCTGTCGTGACGCAGCCGCCTT
		421	CAATGICTGGGACCCCCGGGCAGAGGGTCACCATCTCTTGTTCTGGGAGGAGGAGGACATTGGAAGGAA
		491	TIATGTATACTGGTACCCAGCAGTTCCCCAGGAACGGCCCCCCAAACTCCTCATTTATAGGAATAATGAACGG
		561	CCCTCAGGGGTCCCTGACCGATTCTCTGCCTCTGGCACCTCAGCCTCCTGGCCATCAGTGTGTGGCACCTCAGCTGTGGGGGGGG

F19.11

25/43

		631	TCCGGTCCGAGGATGAGGCTGATTATTACTGCGCAACGTGGGATGACAGTCTGAGTGGGACTTGGGTGTT
		701	CGGCGGAGGACCAAGCTGACCGTCCTAGGTGCGCCCGC
scFv4	40	1	CIGITGGAGTCTGGGGAGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCTCTGGAT
		71	TCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTTGGAGTGGGTCTCAGC
		141	TATTAGTGGTAGTGGTAGCACACATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGAC
		211	AATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTG
		281	CGAGAGGTGGGGGGGGGATATGATAGTAGTCACGGCTTTGACTCCTGGGGCCGGGGCAAATGGTCACGT
		351	CICGAGIGGAGGCGCCGCIICAGGCGGAGGIGGCICIGGCGGIGGCGGAAGIGCACIIICCIAIGAGCIG
		421	ACTCAGCCACCCTCAGTGTCGGTGGCCCCCAGGAGAGGCGGCCACAATTACCTGTGGGGGACGCAGCCTTG
		491	GCTCCAAAGTTGTGCATTGGTATCAGCAGAAGCCAGGCCCAGGCCCCTACATTGGTCATTTATTATGATTC
		561	CGICCGGCCCTCGGGGGTCCCTGAGCGATTCTCTGCCTCCAACTCTCGGTTGTCGGCCACCCTGACCGTC
		631	ACCAGGGTCGAAGCCGGGGATGAGGCCGACTATTATTGTCAGGTGTGGGATAGAAGTAGTGACCATTATG
		707	TCTTCGGAACTGGGACCAAGCTGACCGTCCTAGGTGCGCCGC
scFv5	41		CAGCTGTTGGAGTCTGGGGGGTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCTCTCTC
		71	GATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAAGGGGCTGGAAAGGGGCTGGAGTGTCTCAG
		1 t T	AGCIALINGIAGIAGIAGIGGIGGIAGGANAIACANAIACANAICANGAIGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA
	•	777	GACAA11CCAAGAACACGCIGIA1CIGCAAA1GAAGACTACGACCTGGGGCCGAGGAACCCTGGTGAACACACGAACCCTGGTGAACACAAGAACCCTGGTGAACAAAACAAGAAACAAAAAAAA
		351	GI GCGAGAGATI I GGGAGTI TOGGAGTI TOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
		421	CTCACCCCACCCACCCTGTCTCTCTCTCTCCAGGGGAAACAGCCACCCTCTTCTGCAGGGCAGTC
		491	AGAGTGTTAGGAACAACTTAGTCTGGTACCAGCAGAAGCTTGGCCAGGCTCCCAGACTCCTCTTTGG
		561	,recatecrecagegeagegrategeateccagacageteageteagegegeteageagagacteagete
		631	ACCATCACCAAACTGGAGCCTGAGGATTTTGCAGTGTATTACTGTCAGCGGTATGGTGGTTTCCCGGATCA
		701	CCTTCGGCCCAAGGGACACGACTGGAGATTAAACGTGCGGCCGC
erFyf	42	-	CAGCTGGTGCAGTCTGGGGGGGGGTGCAGCCGGGGGGTCCCTGAGACTCGCCTGTGAAGCCTCTG
	<u>.</u>	71	GATICAGGITTAGCAGCTAIGGCAIGAGCIGGGICCGCCAGGCICCAGGGAAGGGGCCIIGAGIGGGICIC
		141	TICCATGAGCGATAGTGGTGCCAATACATACTACGCAGACTCCGTGAAGGGCCGATTCACCATCTCCAGA
		211	GACAATGCCAAGAAGATGTTGTATCTACAAATGAGCAGCCTGAGAGGCGAGGACACGGCCGTGTATTACT
		281	GTGCGACTCTTTAGGGGAAGTGGCTACGTTCGTCACTGGGGCAGGGGAACCCTGGTCACCGTCTCGAG
		351	TGGAGGCGCGGTTCAGGCGGAGGTGGCTTCTGGCGGTGGCGGAAGTGCACAGGCTGTGCTGACTCAGCCG
		421	TCCICAGCGTCTGGGACCCCCGGGCAGAGGGTCATCTTCTTGTTCTGGAAGCAGCTCCAACATCGCAA
		491	GIAATTATGTATACTGGTACCAGCAACTCCCAGGAACGGCCCCCCAAACTCCTCATCTCTAAGAATAGTCG
		561	GCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGT
_		631	GAACTCCGGTCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGGGATGACAGGCTGAGTGGTCCGGCAT
		701	TCGCCGGAGGGACCAAGCTGACGTCCTAGGTGCGGCCGC
scFv7	43		AAGAAGCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCAGCAGTTATGCTATTA
		/1	GTTGGGTGCCGTTGCACAAGGGCTTGAGTGGATGGGAGGGA

たら、そ

4	
•	

		-	TANGENCA CANCACACACACACACACACACACACACACACACAC
		7 5 7	ATACCACACACACACACACACACACACACACACACACAC
		777	GAGCTGAGCCAGCCTGAGALCTGAGGACACGGCCGTGTG11A11AC1GTGGGGGGGGGGG
		787	TUGGIIGGUCCIIGGGCCUTTODIVACTROTROCOLOTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
		351	GAGTGGAGGCGGCTTCAGGCGGAGGTGGCTTCTGGCGGTGGCGGAAGTGCACAGTCTGTGTGTG
		421	CCGCCCTCAGCGTCTGGGACCCCCGGACAGAGGGTCACCATCTCTTGTTCTGGGGCCCACCTCCAACATCG
		491	GAAGGAATTATGTTTACTGGTACCACCAACTCCCAGGGACGGCCCCCCAAGCTCCTCATCTATAGGAATGA
		561	TCAGCGICCCICAGGGGICCCIGACCGAIICICIGGGICCAAGICIGGCACCICAGCCICCCIGGCCAIC
		631	AGIGGCCICCGGICCGACGAIGAGGCIGAITATIACIGIGCIGCGIGGGACGACAACCIGAGIGGICIAI
		701	TITICGGCGGAGCGACCAAGCTGACCGTCCTAGGTGCGCCGC
SCFV8	44	-	GCCCAGGTGCAGCTACAGCAGTGGGGCCCAGGACTGGTGAAGGCTTCGGAGATCCTGTCCCTCAACTGCA
	-	71	CIGICICIGGIAGCICCCICAGCAGIGGIGGIIACIACIGGAGCIGGAICCGCCAGCACCCAGGGAAGGG
		141	CCTGGAGTGGATTGGGTACATCCATTACAGTGGGAGCACGTACTAČAACCCGTCCCTCAAGAGTCGAGTT
		211	ACCATATCAGTAGACACGTCTAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACTGCCGCGGACACGG
		281	CIGICIATIATIGIGCGAGAGTICCGTIGAGATITIGAIGCTITIGAIGTCIGGGGCCAAGGCACCCIGGI
		351	CACCGICICGAGIGGIGGAGGCGGIICAGGCGGAGGIGGCAGCGGCGGGGGGGG
		421	ACCCAGTCTCCTTCCACCCTGTCTGCATCTATTGGAGACAGAGTCACCATCACCTGCCGGGCCAGTGAGG
		491	GTATTTATCACTGGTTGGCCTGGTATCAGCAGAAGCCAGGGAAAGCCCCTAAAACTCCTGATCTATAAGGC
-		561	CTCTAGITTAGCCAGTGGGGCCCCCATCAAGGTTCAGCGCCAGTGGATCTGGGACAGATTTCACTCTCACC
		631	ATCAGCAGCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAATATAGTAATTATCCGCTCACTT
		701	TCGGCGGAGGGACCAGGAGATCAAACGTGCGGCCGC
ovEv0	45		CTGAGCTGAAGAAGCCTGGGTCCTCGGTAAAGGTCTCCTGCAAGGCTCCTAGAGGCACCTTCAACAGTTA
SCLAS	<del>}</del>	71	TGCTCTCAACTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGAGGGA
	_	141	GGTAGTGCAAATTACGCACCGAAGTTCCAGGGCAGAGTCACCATTACCGCGGACGAATCCACGACACACAC
		211	CCTACTIGGAGCTGAGCTGAGATCTGAGGACACGGCCGTATATTACTGTGCGCGAGCTCTCCATTT
		281	GGATTACGTTTGGAGGACTTATAATTACTACTTGACAACTGGGGCAAAGGGACAATGGTCACCGTCTCG
		351	AGTGGAGGCGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGAAGTGCACTTTCTTCTGAGCTGACTC
		421	AGGACCCTGCTGTGTGTGGCCTTGGGACAGACAGTCAGGATCACATGCCAGGGAGACAGCCTCAGAAG
		491	TIATTATGCAAGCTGGTACCAGCAGAAGCCAGGCAGAGGCCCCTGTCCTTGTCATCTATGGTAAAAATAGT
		561	CGGCCCTCAGGGATCCCCAGATTCTCTGGCTCCGACTCAGGAAACACAGCTTCCTTGACCATCACTG
		631	GGGCTCAGGCGGAAGATGAGGCTGACTATTACTGTAACTCCCGGGACAGAAGTGGTAACCGCGTGGTCTT
		701	CGGCGGAGGGACCAAGCTGACCGTCCTAGGTGCGGCCGC
ecEv10	46		TCCCTGAGACTCTCCTGTGCGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGG
201 4 100	2	71	CICCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTGGTAGCACATACTACGCAGACTC
		141	CGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTG
		211	AGAGCCGAGGACACGGCCGTGTATTACTGTGCGAGAGGGGTTACGTATCACTATGACCATGACAGGCGTG
		281	GTGTGACCGCGCAAATATAAACCACGGTTTGGACGTCTGGGGGGGG

scFv11

STGCACAGGCTGTCACTCACCAC STGCACAGGCTGTCACTCACCTCACACACTCGGAA AAACTCCTCATCTATAGGAATAATCA GCACCTCCACCTCACCT	
TGGAGGGGGGGTTCAGGGGGGGGGGGGGGGGGGAAGTGGCGAAGTGCAAGGCTGTGAAGCTGCTAGCTGGAAA AGAATTATGTTATG	GCAGCCGCCCTCAGCGTCTGGGGACCCCCGGGACGCTCCTCTCTCT
351 421 421 701 701 701 701 701 701 701 701 701 70	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
48	

+ is. 1

		631 701	31 CATCAGTGGGCTCCGGTCCGAGGATGAGGCTGATTATTACTGTGCGGCATGGGATGACAGGCGTGTGGTA )1 TTCGGCGGAGGGACCAAGCTGACCGTCCTAGGTGCGGCCGC
ec.Fv14	05		GGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTC
114 126	3	71	TCTGGCGGCCCCGTCGCCAGTAGTTACTACTGGGGCTTCATCCGCCCAGCAGGAAAAGGGCTGG
		141	AGTGGATTGGGAGTATTTATGATGGTGGCTACACCTACAGCCCGTCCCTAAAAGAGTCGAGCTACCAT
		211	ATCCTTCGACACGTCCAAGAACCAGGTCTCCCTGAACCTGACCTCTGTTACCGCCGGGGACACGGCCGTC
		281	TATTACTGTGCGAAAGACCCGGGCAGTTTGAGCGCCTTCTGGGGCCAGGGAACCCTGGTCACCGTCTCGA
		351	GIGGAGGCGCCGCTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGAAGTGCACTTGACATCCAGTTGACCA
		421	GICTCCATCCTCCCTGTCTGCGTCTGTAGGAGACAGAGTCACCATCACTTGCCGGACAAGTCAGCGCATT
		491	AGCAGCTATTTAAATTGGTATCAGCAGAAGCCAGGGAAAGCCCCCTAAGCTCCTGATCTATGCTGCATCCA
		561	GTTTGCAAAGTGGGGTCCCATCAAGGTTCAGTGGCAGTGGTTCTGGGACAGATTTCACTCTCACCATCAG
		631	CAGTCTGCAACCTGAAGATTTTGCAACTTACTACTGTCAACAGAGTTACAG1ACCCCGATCACCTTCGGC CAAGGGACACGACTGGAGATTAAACGTGCGGCCGC
scEv15	51		CTGTTGGAGTCTGGGGGGGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGAT
CIA IOC	5	71	TCACCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGGCTGGAGTGGGTCTCAGC
		141	TATTAGTGGTAGTGGTGGTAGCACATACTACGCAGACTCCGTGAAGGGCCCGGTTCACCATCTCCAGAGAC
	•	211	AATTCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTG
		281	CGAGAGATTGGAGATGGCAACAATTTGGGGGCTGGTTCGACCCCTGGGGCAGAGGCACCCTGGTCACCGT
		351	CTCGAGTGGAGGCGGCGGTTCAGGCGGGGGGGCGCTGGCGGGGGGGG
		421	ACTCAGTCTCCAGCCACCCTGTCTGTGTCTCCAGGGAAAGAGTCACCCTCTCCTGCAGGGCCAGTCAGA
-		491	GTGTTGGCAGCAAGTTGGCCTGGTACCAGCAGAAACCTGGGCAGGCTCCCAGGCTCCTCATCTTTGGTAC
		561	ATCGACCAGGGCCAGTGGTATCCCAGCCAGGTTCAGTGGCAGTGGGTCTGGGACAGAGTTCACTCTCACC
		631	ATCAGCAGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGGCCTCCGTACA
		701	CTTTTGGCCAGGGGACCAAGGTGGAAATCAAACGTGCGGCCGC
ScFv16	52		GCTGAGGTGAAGAAGCCTGGGGACTCAGTGAAGGTCTCCTGCAAGGCCTCTGGTTACAGGTTTGAAACCT
	!	71	ATGGTTTCAGCTGGGTGCGACAGGCCCCTGGACAAGGGCTTGAGTGGATGGGATGAATGA
		141	TGGTAAGACAAATTATGCACAGAAGTTCCAGGGCAGAGTCACCATGACCACAGACACGTCCACGAGCACA
		211	GCCTACATGGAGTTGAGGAGCCTGAGATCGGACGACGACGGCCGTGTATTTTTGTTCGAGAGCTGAGGATG
		281	ATAGCAGAGGTTATTGGAACCATTACTTCTCCGACTACTGGGGGGGG
		351	TGGAGGCGCGCTTCAGGCGGAGGTGGCTCTGGCGGTGCGGGAAGTGCACAGTCTGTGCTGACTCAGCCA
		421	CCCTCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTTGTTCTGGAAGCAGCTCCAACATCGGAA
		491	GTAATTATGTATACTGGTACCAGCAGCTCCCAGGAACGGCCCCCCAAACTCCTCATCATAAGAATAATCG
		561	GCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCTGGCTCTGGCACCTCAGCCTCCCTGGCCATCAGT
		631	GGCCTCCGGTCCGAGGATGAGGCTGATTATCACTGTGCGAGCGTGGGGATGACAGCCTGAGTGCTGTGGTTTT
		701	TCGCCGGAGGGACCAAGGTCACCGTCCTAGGTGCGGCCGC
scFv17	53		TTGGAGTCTGGGGGGGGCTTGGTACAGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCA
	1	71	CCTTTAGCAGCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGAGCTGGAGTGGGTCTCAGCTAT

+ iq. 11

		141	TAGIGGIAGIGGIAGCACATACIACGCAGACICCGIGAAGGGCCGGGITCACCAICCCCAGAGACAAT
		211	TCCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCGAGGACACGCCCGTGTATTACTGTGCGA
		281	GAGATTGGAGATGGCAACAATTTGGGGGGCTGGTTCGACCCCTGGGGCCGAGGGACAATGGTCACCGTCTC
		351	GAGTGGAGGCGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGAAGTGCACTTGAAACGACACTCACG
		421	CAGICICCAGGCACCCIGICITIGICICCCAGGIGAIAGAGCCACCCICTCCTGCAGGGCCAGICACAGIG
		491	TIAGICACAACCACITAGCCIGGIACCAGCAAAAICCIGGCCAGGCICCCAGGCICCICAITITIGGIGC
		561	AICCAGCAGGGCCGCTGGCATCCCTGACAGGTTCAGTGGCTGTGGGTCTGGGACAGACTTCACTCTCACC
		631	1 ATCAGCAGACTGGAGCCTGAAGATTTTGCATCATATTACTGTCAGCAGTATGGTAGCCCCCGGCGGACGT
		701	TCGGCCAAGGGACCAAGGTGGAAATCAAACGTGCGGCCGC
ec.Fv18	54	7	GAAGAAGCCTGGGTCCTCGGTGAGGGTCTCCTGCAAGGCTCCTGGAGGCACCTTCGGCAACTCTGCTATC
0 1 4 100		7.1	AGCTGGGTGCGACAGACCCCTGGACAAGGGCTTGAGTGGATGGGAGGAATCATTCCTATGTTTACTACAG
		141	CAAACTACGCACAGAAGTTCCAGGGCAGAGTCACCATTACCGCGGACAAATCCACGACCACACAGCCCACAT
		211	GGAGCTGAGCAGCCTGAGATCTGAGGACACGGCCGTCTATTACTGÌGCGAGAGGCGGACTGGGGACGATTT
		281	TTTGACGGCCCCTCCCACTTCTCCTACTACATGGAAGTCTGGGGCAAAGGAACCCTGGTCACCGTCTCGA
		351	GTGGAGGCGGCGGTTCAGGCGGAGGTGGCTTCTGGCGGTGCGGAAGTGCACAGTCTGTGCTGACGCAGCC
		421	GCCCGCAGCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTCTTGTTCTGGAAGCAACTCCAACATCGGA
_		491	AGAAATTATGTCTACTGGTATCAGCAGCTCCCAGGAGCGGCCCCCCAAACTCCTCATCTATAGGAATAATC
		561	AGCGGCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCCGGCCCCTCAGCCTCCGTGGCCATCAG
		631	TGGGCTCCGGTCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGCGATGACAGCCTGAGTGGCCCTGCA
		701	TTCGCCGGAGGGACCAAGCTGACGTCCTAGGTGCGGCCGC
scFv19	55	<b>~</b>	AGGTCCAGCTGGTACAGTCTGGGGCTGAGGTGAAGAAGCCTGGGTCGTCGGTGGTGAAGGTCTCTGCAAGGC
		71	TTCTGGAGGCACCTTCAGCGGCGATGCTATCAGCTGGGTGCGACAGGCCCCTGGACAAGGACTTGAGTGG
		141	ATGGGAAGGATCATCCCTCTAATTAATATACCAAACTACCACAGGAAGTTCCAGGGCAGAGTAA
		211	CCGCGGACAAATCCACGACCACAGCCTACATGGAGCTGACCAGCCTAAGATTTTGAGGACGGGCGGTGTA
		281	TTACTGTGCGAGAGTGAATAACTGGAACGCCTTTGACCAGTGGGGGCCGGGGAACCCTGGTCACCGTCTCG
		351	AGTGGAGGCGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGAAGTGCACTTTCTTCTGGGCTGACTC
		421	AGGACCCTGCTGTGTCTGTGGCCTTGGGACAGACAGTCAGGATTACATGCCAAGGAGACACCTCACAAG
		491	TTATTATGCGGCCTGGTACCAGCAGAAGCCAGGACAGGCCCCCCCC
		561	CGCCCTCAGGGATCCCAGAGCGATTCTCTGGCTCCAGCTCAGGAAATATTGCTTCCTTGACCATCACTG
		631	GGGCTCAGGCGGAGGATGAGGGTGACTTTTACTGTAGTTCCCGGGACAGCAGTGGGTACCGTTTTGTCTT
		701	CGGGGCTGGGACCAAGCTGACCGTCCTAGGTGCGGCCGC
ccFv20	95	-	1 GAAGAAGCCTGGGTCCTCGGTGAAGGTCTCCTGCAAGGCTTCTGGAGGCACCTTCACCAGCTATGCAATC
	) )	7.1	AGTIGGGIGCGACAGGCCCCIGGACAAGGGCITGAGIGGAIGGGAGGGTICAICCCIGIAITIGGCACAG
		141	CAAACTACGCACAGAAGTTGCAGGGCAGAGTCACGATCACCGCGGACGATTCCATGACCACAGTGTACAT
		211	GGAGCTGAGTAGCCTGACCTCTGAAGACACGGGCGTGTATTACTGTGCGAGAGATCTCATGCGGCTGGCC
		281	CGTCGCGATGAATACTACTATTACTACATGGACGTCTGGGGCCAAGGGACAATGGTCACCGTCTCGAGTG

Fig. 49

scFv21

0 2004/0300/4	30	/43	C1/E/12003/014/30
351 GAGGCGCGCTTCAGGCGGAGGTGGCCTCTGGCGGAAGTGCACAGTCTGTGCTGACTCAGCCACC 421 CGCAGCGTCTGGGACCTACGGGCAGAAGTCACCATCTCTTGTTCTGGAAGCAGTTCCAATATCGGAGTT 491 AATTATGTTTACTGGTACCGGCAATTCCCAGGAGCGGCCCCCCCC	1 CAGCCTGGGGGGTCCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGCT 71 GGGTCCGCCAGGCTCCAGGGAGGGGCTGGAGTCACCTTTAGTGGTGGTGGTGCTATAGCCATA 141 CTACGCAGACTCCAGGGAGGGCTGGAGTGGAGATTCCAAGAACACGCTGTATCTGCAA 211 ATGAACAGCCTGAGAGCCGGGCCGTGTATTACTGTGCGAGAGATTGGAGACACAATTTG 281 AGGTGGCTGGTTCGAGGCCAGGGCACCTGTATTACTGTGCGAGAGATTGGCAACAATTTG 351 AGGTGGCTCTGGGCCAGGGCACCTTTCTTCTGAGCTGCAGGCGGGGGGGG	GGTCTTCGGTGAAGGTCTCCTGCAAAATTTCCGGAGGCAATCTCAATAGGCTTACTGTCACTGGGTGCG ACAGGCCCCTGGACAAGGTGGGTGGGCAGGATTCTTCCCGACTCAGTAAATCGAAG TTCCAGCGCAGACTCAAAATTTCTACAGGACTGAAGGAGCCTGA AATCTGAAGACACGGCCTTTATTGTGCGGCGTCATCTAAAATAGGCTTCCAGGTTGGGAGCTCGA CTACTGGGGCCGGGCACCTTCTGTGCGGCGCTCATCTAAAATAGGCTTCCAGGTTGGGAGGTCGC GGTGGCGGAAGTGCTCACCGTCACCGTCTCGAGGCGCGCGC	
	57	28	59

scFv22

Fig. 4

-	
11	
Ü	
~	

		561 631 701	TCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTCCGGTCCGAGGATGAGGCTGA TTATTACTGTGCAGCATGGGATGACACCCTAAGTGGTGTCCTATTCGGCGGAGGGACCAAGCTGACCGTC CTAGGTGCGGCCGC
scFv24	09	1 71 141 211 281 351 421 491 561 631	GCTATGCCATGAGCTGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAG TGGTGGTAGCAATTACGAGGCTCCAGGGAAGGGGCTGTTCACGTTCCAAGGAC ACGCTGTATCTGCAAATGAACAGCCTGAAGGGCCGGTTCACCATCTCCAGAGAACACAGAACAGAACAGCTGTATTCTGCTACCAAATACAGGAAATACAGGAAATACAGGAAATACAGGCTGTATTACTTTAGTTCCGAAATACAGGAAATACAGGAAATACAGGAAATACAGGAAATACAGGAATTACTTTAGTTCCGGGAAATACAGGAAGGA
scFv25	61	1 71 141 211 281 351 421 491 631 701	AGGCTTGGTACAGCCTGGGGGGTCCCCGAGACTCTCCTGTGCATTCACCTTTAGCAGCTAT  GCCATGAGCTGGGTCCCCGGGAACTCCTTCCTGTGCTCTCGATTCACCTTTAGCAGCTAT  GCCATGAGCTGGGTCCCCAGGCTCCAGGGAAGGGGCTGAGTGGGTCTCAGCTATTAGTGGTGTGTG  GTAGCACATACTACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACACCGCT  GTATCTGCAAATGAACAGCCTCGAGAGCCGAGCACGGCCGTGTATTACTGTGCAAAAGATATGGGATAC  AGTTATGGTTACGGACGAGGGGCCTCTTTGACTACTGGGGCCGAGGGCCGCCGCGCGCG
scFv26	62	71 71 211 281 351 421 491 561	TGGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCTGTGTGCTGTGCAGCCTCTGGATTCAC CTTTAGCAGCTATGCCATGAGCTGGGTCCCCAGGGTCCTGCAGGTGGGTTCAC CTTTAGCAGCTATGCCATGAGCTGGGTCCCCAGGCTCCAGGTGGGTCTCAGCTATT AGTGGTAGTGGTGGTAGCTACTACTACCAGACTCCGTGAAGGGCCCGGTTCACCATCTCCAGAGACAATT CCAAGAACACGCTGTATCTGCAAATGAACAGCCTGAGAGCCCAGGACACGGCCGTGTATTACTGTGCAG AGATTGGAGCGCTGTATCTGCAAATGAACAGCTGGTTCGACCCTGGGGGCCGAGGGACCACCGTCTCG AGTTGGAGCGCGCGGTTCAGGCGGGGTGGTTCGGCCGTGGGGGGCCACCACCACTCACGC AGTCTCCAGCCACCTTCTCTCTCTCGCGGGACAGAGCCACCTCTCGCAGGCCCAGTCAAAGTAT TGTGGAGCCCACCTGTCTCTCTCCGGGGACAGAGCCACCTCTCTCT

APTGAACAGCCTGAGAGCCGAGGACACGGCCGTGTATTACTGTGCGAAAGGGGACGGGGTAGTGGCTGGA 

GOGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGAAGTGCACAGTCTGTGCTGACGCAGCCGCCCTCAGC GTCTGGGGCCCCCGGGCAGAGGATCACCATCTCTTGTTCCGGAAGCACCTTCAACATCGGGAGAAATTAT STTGACTGGTATAAACAACTCCCCGGAACGGCCCCCAAACTCTTCATCTATAAGAATGATCAGCGACCCT

281

351 421 491

211

63

TGGGTCCGCCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTGGTAGTAGTAGTAGT ACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCCAGAGACAATTCCAAGAACACGCTGTATCTGCA

<u> ACAGCCTGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTAGCAGCTATGCCATGAGC</u>

CGGCCAAGGGACACGACTGGAGATTAAACGTGCGGCCGC

GCAGCCTGCAGTCTGAAGATTTTGCAGTTTATTACTGTCAGCAGTATAATAACTGGCCTCCATGGACTTT

2AGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGTCGTAAGTGGACTCCG

CTCCGAGGATGAGGCTGATTATTACTGTCTGACTTGGGATGACAGCCTGAGTGGTCCGGTGTTCGGCGGG

GGCCTCTGGATTCGGCCTCAATGGCTATGAATGCATTGGGTGCGCCCAGGCCCCGGACAAAGGCTTGAG TGGCTGGGCCGGATCAACGCTGCCATTGGCGACACGGTATTCAAGGGAGTTCCAGGATAGAGTCTCCA

GGGACCAAGCTGACCGTCCTAGGTGCGGCCGC

561 631

701

TTATTATTGTGTGAGATTCCACGATTGCCGACATTGTAATAGTGCCACCTGTCAGCCCCCTTTTGACCAC

TTACCAGAGACATGTCCGCGAACACAGTCTACATGGGAGATGAGCAGGCTGAGATTTGAAGACACGGCTGT

141 211 281 351

71

4

scFv28

:GGGGCAAGGGAACCCTGGTCACCGTCTCGAGTGGAGGCGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTG  CCTGTTATTGTCATGTATGGTAACACCCGGCCCTCAGGGATCCCAGACCGAATCTCTGGCTCCAGCT

491

561 631

421

**ZAGGAAACACACTTCCTTGACCATCAGTGGGGCTCAGGCGGAAGATGAGGCTGACTATTATTGTAACTC** 

65

211 281

351 421 491 561

141

GATCACATGCCAAGGAGACAGCCTCAGATACTATTCTGCAAGTTGGTACCGGCAGAAGCCAGGGCAGGGC

		PCT/E	EP2003/0	014756
CCGAGACAGTAGTGGTAACCATCTGGTCTTCGGCGGAGGGACCAAGCTGACCGTCCTAGGTGCGGCCGC GTACAGCCTGGGGGGTCCCTGAGACTCTCTGTGCAGCTCTGGATTCACCTTTAGCAGCTATGCCATGA GCTGGGTCCGCAGGCTCCAGGGAAGGGGCTGGAGTGGGTCTCAGCTATTAGTGGTAGTGGTGGTGGCAGCAC	ATACTACGCAGACTCCGTGAAGGGCCGGTTCACCATCTCCAGAGACAATTCCAAGAACAGCTGTATCTGCAAATGAACAGCCTGAGAGGCCGAGGACACGGCCGTGTATTACTGTGCGAGAGATCATCGGTCGG	AGGCGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGAAGTGCACTGCCTGTGCTGACTCAGCCACCC TCAGCGTCTGGGACCCCCCGGGCAGAGGCTCACATCTTTTTGTTCTGGAAGCAGCTCCAACATCGGAAGGA ATTATGTTATG	GCCCTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGG CTCCGGTCCGAGGATGAGGCTGATTATTACTGTGCAGGATGGGATGACACCCTGAGTGGTGTGTATTCG GCGGAGGGACAAAGCTGACCGTCCTAGGTGGGCCGC	CGGAGGTGAGGAAGCCTGGGGGCCTCAGTGAAGATTTCCTGCAAGGCTTCTGGATTCACGTTCACTTGATTA TCTATTCCATTGGGTGCGCCCCGGGCCGGAAAGGCTTGAGTGGATGGGGTGGATCAACGTGGCAAT GGAAACACAAAATATTCACCGAAGTTCCAGGGCAGAGTTACCCTTACCGGGGACACATCCACGAGCAAA

141

99

scFv30

TTAGCCAGTGGGGCCCCATCAAGGTTCAGCGCCAGTGGATCTGGGACAGATTTCACTCTCACCATCAGCA SCCTGCAGCCTGATGATTTTGCAACTTATTACTGCCAACAATATAGTAATTATCCGCTCACTTTCGGCGG 351

421 491

scFv32

141 211 281

67

scFv31

GAGCTGGGTCCGCCAAGCTCCAGGGAAGGGGCTGGAGTGGGTCTCTGGTATTAATTGGAATGGTAGC

TGGTACGGCCTGGGGGGTCCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACCTTTGATGATTATGGCAT

4GGGACCAAGCTGGAGATCAAACGTGCGGCCGC

CTATGAGAGTGGTTCTTACTACATACGCCCTTCTTTTGACTTCTGGGGGCAGGGGGCACCCTGGTCACCGTC TCTTCAGGTGGAGGGGGTTCAGGCGGAGGTGGCGGCGGTGGCGGATCGGACATCCAGATGACCCAGT CTCCTTCCACCCTGTCTGCATCTATTGGAGACAGAGTCACCATCACCTGCCGGGCCAGTGAGGGGTATTTA TCACTGGTTGGCCTGGTATCAGCAGAAGCCAGGGAAAGCCCCTAAAACTCCTGATCTATAAGGCCTCTAGT

211 281 351

421 491 561

631 701

CCTACATGGAGCTGAGCAGCCTGACATCTGAGGACACGGCTGTTTATTACTGTGCGAGAGATCAGGTGT

	631	GCAACTCCCGGGAAATCGGTACTAATCGAATCCTATTCGGCGGAGGGACCAAGCTGACCGTCCTAGGTGC
	701	292299
89	-	TIGGIICAGCCIGGAGGGICCCIGAGACICCICTGIGCAGCCGCIGGAIICACCIICAGIACIITIGAAA
8	71	TGAATTGGGTCCGCCAGGCCCCCAGGGAAGGGGCTGGAGTGGGTTTCATATTAGTGGTAGTGGTCATGC
	141	CATATACTACGCAGACTCTGTGAAGGGCCGATTCACCATCTCCAGAGACAACGCCAACAACTCTGTAT
	211	CTGCAAATGAACAGTCTGACAGCCGAGGACACGGCTGTTTATTACTGTGCGAGAGAAAAGTACCAGCTAC
	281	TACTTGGCAAGTACGACTACGGTATGGACGTCTGGGGGGCGGGGGGCACCACGGTCACCGTCTCGAGTGGAGG
	351	CGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGGAAGTGCACTGCCTGTGTGCTCACTCA
	421	GCGTCTGGGACCCCCGGGCAGAGGGTCACCATCTTCTTGTAGGAAGCAGCTCCAACATCGGAAGTAATA
	491	CITTAAACTGGTACCAGCAGCTCCCAGGAACGGCCCCCAAACTCCTCATATAATATGATCAGCGGCC
	561	CTCAGGGGTCCCTGACCGATTCTCTGGCTCCAAGTCTGGCACCTCAGCCTCCCTGGCCATCAGTGGGCTC
	631	CAGTCTGAGGATGAGGCTGATTATTACTGTGCAGCATGGGATGACAGCCTGAATGGCTGGGTGTTCGGCG
	701	GAGGGACCAAGGTCCTAGGTGCGGCCGC
69		AGGCCTCTGGGGGACCTCCAGCAGTTCTGCTTTCAGCTGGGTGCGACAGGCCCCTGGACAGGGGCTTC
<b>&gt;</b>	7.1	AGTGGATGGGAGGGATCATCCCTCTTTTGGTGCAGCAAACTACGCACAAAAGGTCCGGGCCGGACTCAC
	141	GATTACCGCGGACGAGGTCCACGGGCACGTCTTACATGAAACTGGAAAATTTGCAGTCTGACGACACGGCC
	211	GTTTATTTCTGTGCGACTAACGGACAGACGACGCTCGCCACCCGCTACTACTACGCCATGGACGTCTGGG

+19. 4

scFv33

GCCGAGGCACCCTGGTCACCGTCTCGAGTGGAGGCGGCGGTTCAGGCGGAGGTGGCTCTGGCGGTGGCGG AAGTGCACAGTCTGTGTTGACGCAGCTGCCCTCAGCGTCTGGGGGCCCCCGGGGCAGAGGATCACCATCTCT

281 351 491 561 631

421

CCAAACTCTTCATCTATAAGAATGATCAGCGACCCTCAGGGGTCCCTGGCCGATTCTCTGGCTCCAAGTC TGGCACCTCAGCCTCCCTGGTCGTAAGTGGACTCCGCTCCGAGGATGAGGCTGATTATTACTGTCTGACT

TGTTCCGGAAGCACCTTCAACATCGGGAGAATTATGTTGACTGGTATAAACAACTCCCCGGAACGGCCC

> 141 211

71

2

scFv34

scFv35

GCCTGCAAGGGTTTTGGTTACACCTTCGTCGATCATGGAATTAGTTGGGTGCGACAGGCCCCTGGACAAG

TGGGATGACAGCCTGAGTCCGGTGTTCGGCGGGGGACCAAGCTGACCGTCCTAGGTGCGGCCGC

34,	//43	PCT/EP2003/014756
ACANTGGATATCCCTATTACTCCTCTGGACGTCTGGGGGCCAAGGAACCCTGGTCACCGTCTCGAG TGGAGGCGGCGGTTCAGGCGGGGGGGGCGTGGCGGGAAGTGCACCTGGTCACCGTCTCAGCG TCCTCAGCGGCTCTGGGACCCCCGGGCAGGGCTCACCTCTTGTTCTGGAAGCAGCTCCAACATCGGAA GTAATTATGTATACTGGTACCAGCAGCAGCACCGCCCCCAAACTCTCTTATGTATATGTATACTGGTACCAGCACCTCCAGGAACGCCCCCCAACACTCAGGAATAATCA GCGGCCCTCAGGGGTCCCTGACCAGCATCTCTCTGGCTCCAGGCTCCTCGGCCTCCTGGCCTCAGT GCGCCCCCGAGGATGAGGCTGATTATTACTGTGCAGCATGGCATGACCTGAGCTTGGGTGT TCGGCGGAGGGACCAAGCTGACCTAGGTCGCCCCCC	AGCCTGGGGCCTCAGTGAAGGTTTCCTGCAAGGCATCTGGATACACCTTCACCAGCTACTATATGCACTG AGCCTGGGGCCCTCAGTGAAGGCTTTCCTGCAAGGCGACACCCTTCACCCAGCTACTATATGCACTG GGTGCGACAGGCCCTGGACTCAGGGCTTGAGTGGAATAATCAACCCTAGTGGTGGTAGCACAGC TACGCACAGAAGTTCCAGGGCTCACCATGACCAGGGACACGTCCACGACACGTCTACAGGCGCCCAGAATGGTTCG GGGGGCTTATTATAGACCCCTAGGGTATGGACGTCTGGGGCCCAGAGGCTCCGGCCCAGAATGGTTCG GGCGCGTTATTATAGACCCCTTGGGGCGCGTCTGGGGCCCGAGGCACCCTGGTCACCCGCCCCT CACCGTTCAGGCGGAGGGGCTCACCATCTCTTGTTCTGGAAGTGCTCGACTCAGCCGCCCC TATGTATCTTATAGGAACTCCCAGGAACGCCCCCAAACTCATCAGGGAAGTAA TTATGTATCTGGGATCAGGGGTCCCAGGAACGCCCCCAACGTCGGGAATAATCAGGG TCCGGTCCTGGGTTCTCTGGCTCCCAAGTTCTGGCATTCAGGGCCTTCGGC TCCGGTCCTGGCTCTTTTTACTGTTGTAGCATGGGATAATCAGGGC TCCGGTCCCGAGGTCTCTCTGGCTCCCAAGTTCTGGGATAATCAGGGC TCCGGTCCGAGGTCACCTAGGTCTCTGTGTAGCATGGGATATCTTCGG AACTGGGACCCCAAGGTCACCTAGGTCCTAGGGCTCCTAGGGCATCAGGGC AACTGGGACCCAAGGTCACCTAGGGCCCCCAACGTCTCGG	GGAGTCTGGGGGAGGCTTGGTACAGCCTGGGGGGTCCTGAGACTCTCCTGTGCAGCCTCTGGATTCACC TTTAGCAGCTTGGGAGGCTGGGTCCGCCAGGGTCCTGGAAGGGGCTGGAGGGGTCTCAGGATTTA GTGGTAGTGGTAGCACATACTACGCAGACTCCGTGAAGGGGCTGGAGTCTCCCAGAGACTTTA GTGGTAGTGGTAGTCTGCAAATGAACAGCCTGAAGGGCCGGTTCACCATCTCCCAGAGACAAA GGTGGACACGCTGTATCTGCAAATGAACAGCCTGAAAAAAAA
281 351 421 491 561 701	11 141 211 281 351 421 421 631	211 211 211 281 351 421 491
1	71	72

scFv36

+ io. 4

TGGACTCCGCTCCGAGGATGAGGCTGATTATTACTGTCTGACTTGGGATGACAGCCTGAGTGGTCCGGTG TTCGGCGGGGGGACCAAGCTGACGTCCTAGGTGCGGCCGC 631 701





Fig. 12



Fig. 13







Tab. 1: Inhibition of tube formation

scFv	Average inhibitory effect
control (10% PBS)	0.8
scFv4	1.7
scFv5	1.6
scFv7	2.4
scFv8	2.4
scFv9	1.5
scFv11	2.2
scFv12	1.9
scFv13	2.1
scFv15	1.9
scFv16	1.6
scFv18	2.0
scFv19	1.6
scFv20	1.3
scFv21	2.0
scFv22	1.5
scFv23	2.1
scFv24	1.7
scFv25	2.3
scFv26	2.1
scFv27	2.3
scFv28	2.2
scFv29	2.1
scFv30	1.8
scFv31	2.4
scFv32	1.7
scFv33	2.1
scFv34	1.5
scFv35	1.4
scFv36	1.9
scFv7*	2.3
scFv8*	2.5
scFv13*	2.5
scFv25*	2.6
scFv26*	2.4
scFv28*	2.1
scFv31*	2.3
scFv33*	2.1
anti-alpha-2-integrin	2.3
anti-NP-1	1.1

Fig. 15



Fig. 10



Fig. 17





scFv	Inhibition of Invasion
scFv26	+
scFv27	+
scFv34	+
ScFv35	+

Fig. 18





Fig. 19



## id PCT/PTO 17 JUN 2005

#### (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

#### (19) World Intellectual Property Organization

International Bureau



### 

(43) International Publication Date 8 July 2004 (08.07.2004)

#### (10) International Publication Number WO 2004/056874 A3

(51) International Patent Classification7: 16/28, A61K 39/395, A61P 35/00

C07K 16/30,

Kristian, Hobold [DK/DE]; Daiserstrasse 50, 81371 München (DE).

(21) International Application Number:

PCT/EP2003/014756

(74) Agents: FLEUCHAUS, Andrea et al.; Melchiorstr.42, 81479 München (DE).

(22) International Filing Date:

22 December 2003 (22.12.2003)

(25) Filing Language:

English

(26) Publication Language:

**English** 

(30) Priority Data; 60/435,893 V 03000615.9

20 December 2002 (20.12.2002) US 15 January 2003 (15.01.2003)

- (71) Applicant (for all designated States except US): XERION PHARMACEUTICALS AG [DE/DE]; Sauerbruchstr. 50, 81377 München (DE).
- (71) Applicant (for US only): TUFTS UNIVERSITY [US/US]; 136 Harrison Avenue, Boston, MA 02111 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): UNGER, Christine, Margarete [DE/DE]; Arndt Strasse 11, 80469 München (DE). BESTE, Gerald [DE/DE]; Helmpertstr. 2, 80687 München (DE). ZEHETMEIER, Carolin [DE/DE]; St. Martin Strasse 3, 81541 München (DE). LAIN, Blanca [ES/US]; 100 Washington St. Apt. 7, Brighton, MA 02135 (US). TORELLA, Claudia [IT/DE]; Brodstr. 6A, 81829 München (DE). NIEWÖHNER, Jens [DE/DE]; Wengleinstrasse 3, 81477 München (DE). JAY, Daniel, G. [US/US]; 45 Bigelow Street, Brighton, MA 02135 (US). EUSTACE, Brenda, K. [US/US]; 95 Coolidge Street #2, Brookline, MA 02446 (US). KNAUER, Roland [DE/DE]; Gabelsberger Strasse 63, 80333 München (DE). JENSEN,

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (regional): ARIPO patent (BW, GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

#### **Declaration under Rule 4.17:**

of inventorship (Rule 4.17(iv)) for US only

#### Published:

- with international search report
- before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments
- (88) Date of publication of the international search report: 9 December 2004

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

(54) Title: NEUROPILIN-1 INHIBITORS

(57) Abstract: The present invention relates to molecules interfering with the function of neuropilin-1 in the context of angiogenesis and the treatment of cancer. Molecules, polypeptides, antibodies, compositions and methods are provided that are useful for reducing, inhibiting or treating angiogenesis, the invasion of blood vessels into tumors, and/or the invasion or the metastatic potential of specific tumor cells. Additionally, a method is provided that allows identifying molecules, which interfere with the functionality of neuropilin-1. Furthermore, a method is provided that allows determining whether a naturally occurring tumor cell depends on functional neuropilin-1 for its invasiveness and/or metastatic potential.





## INTERNATIONAL SEARCH REPORT



A. CLASSIFICATION OF SUBJECT MATTER IPC 7 C07K16/30 C07K16/28 A61K39/395 A61P35/00 According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) IPC 7 C07K C12N Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) EPO-Internal, Sequence Search, MEDLINE, BIOSIS, EMBASE, WPI Data, PAJ, CHEM ABS C. DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Category ° Relevant to claim No. X WO 99/55855 A (LEE YOON S ; WRIGHT JIM A 1-22 (CA); YOUNG AIPING H (CA); GENESENSE TECH) 4 November 1999 (1999-11-04) examples page 2, lines 10-12 page 6, lines 13-22 Further documents are listed in the continuation of box C. Patent family members are listed in annex. Special categories of cited documents: 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an Inventive step when the document is combined with one or more other such docu-"O" document referring to an oral disclosure, use, exhibition or ments, such combination being obvious to a person skilled in the art. document published prior to the international filing date but later than the priority date claimed *&" document member of the same patent family Date of the actual completion of the international search Date of malling of the international search report 8 October 2004 20/10/2004 Name and mailing address of the ISA **Authorized officer** European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016 COVONE-VAN HEES. M



Interpolation No EP 03/14756

_	EP 03/14/56
Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
ROCHE JOELLE ET AL: "Semaphorin SEMA3F inhibits cell attachment and spreading in human mammary tumor cells" PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL MEETING, vol. 43, March 2002 (2002-03), pages 22-23, XP001182920 & 93RD ANNUAL MEETING OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH; SAN FRANCISCO, CALIFORNIA, USA; APRIL 06-10, 2002 ISSN: 0197-016X abstract	1,8,10, 14,15, 21,22
TAKAHASHI TAKUYA ET AL: "Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors" NATURE NEUROSCIENCE, vol. 1, no. 6, October 1998 (1998-10), pages 487-493, XP002295428 ISSN: 1097-6256 abstract page 487, left-hand column, lines 16-19 page 492, left-hand column, paragraph 1 figure 1	1,6-8, 10-12
MATTHIES ANNETTE M ET AL: "Neuropilin-1 participates in wound angiogenesis" AMERICAN JOURNAL OF PATHOLOGY, vol. 160, no. 1, January 2002 (2002-01), pages 289-296, XP002295429 ISSN: 0002-9440 page 290, left-hand column, paragraph 2 page 291, left-hand column, paragraph 3 - right-hand column, paragraph 1 page 292, left-hand column figure 3 page 295, left-hand column, last paragraph	1,7-10
HIDEYASU OH ET AL: "Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): a mechanism contributing to VEGF-induced angiogenesis" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 99, no. 1, 8 January 2002 (2002-01-08), pages 383-388, XP002255027 ISSN: 0027-8424 page 387, left-hand column, paragraph 2 right-hand column, paragraph 1 figure 3 Discussion	1,7,8,
	inhibits cell attachment and spreading in human mammary tumor cells" PROCEEDINGS OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH ANNUAL MEETING, vol. 43, March 2002 (2002-03), pages 22-23, XP001182920 & 93RD ANNUAL MEETING OF THE AMERICAN ASSOCIATION FOR CANCER RESEARCH; SAN FRANCISCO, CALIFORNIA, USA; APRIL 06-10, 2002 ISSN: 0197-016X abstract  TAKAHASHI TAKUYA ET AL: "Semaphorins A and E act as antagonists of neuropilin-1 and agonists of neuropilin-2 receptors" NATURE NEUROSCIENCE, vol. 1, no. 6, October 1998 (1998-10), pages 487-493, XP002295428 ISSN: 1097-6256 abstract page 487, left-hand column, lines 16-19 page 492, left-hand column, paragraph 1 figure 1  MATTHIES ANNETTE M ET AL: "Neuropilin-1 participates in wound angiogenesis" AMERICAN JOURNAL OF PATHOLOGY, vol. 160, no. 1, January 2002 (2002-01), pages 289-296, XP002295429 ISSN: 0002-9440 page 290, left-hand column, paragraph 2 page 291, left-hand column, paragraph 3 right-hand column, paragraph 1 page 292, left-hand column, paragraph 1 page 292, left-hand column, last paragraph HIDEYASU OH ET AL: "Selective induction of neuropilin-1 by vascular endothelial growth factor (VEGF): a mechanism contributing to VEGF-induced angiogenesis" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE WASHINGTON, US, vol. 99, no. 1, 8 January 2002 (2002-01-08), pages 383-388, XP002255027 ISSN: 0027-8424 page 387, left-hand column, paragraph 1 figure 3



Interponal Application No EP 03/14756

	EP 03/	14750
ation) DOCUMENTS CONSIDERED TO BE RELEVANT	<u> </u>	
Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
WO 02/086157 A (ALGARTE-GENIN MICHELE; LATIL ALAIN (FR); UROGENE SA (FR); CUSSENOT) 31 October 2002 (2002-10-31)		1,8, 10-12, 14-16, 21,22
page 5, lines 18-31 page 11, lines 17-34 page 21, line 1 — page 22, line 26		4
JAY D G: "SELECTIVE DESTRUCTION OF PROTEIN FUNCTION BY CHROMOPHORE-ASSISTED LASER INACTIVATION" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 85, no. 15, August 1988 (1988-08), pages 5454-5458, XP000857275 ISSN: 0027-8424 the whole document		6
	WO 02/086157 A (ALGARTE-GENIN MICHELE; LATIL ALAIN (FR); UROGENE SA (FR); CUSSENOT) 31 October 2002 (2002-10-31)  page 5, lines 18-31 page 11, lines 17-34 page 21, line 1 - page 22, line 26  JAY D G: "SELECTIVE DESTRUCTION OF PROTEIN FUNCTION BY CHROMOPHORE-ASSISTED LASER INACTIVATION" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 85, no. 15, August 1988 (1988-08), pages 5454-5458, XP000857275 ISSN: 0027-8424	Citation of document, with indication, where appropriate, of the relevant passages  WO 02/086157 A (ALGARTE-GENIN MICHELE; LATIL ALAIN (FR); UROGENE SA (FR); CUSSENOT) 31 October 2002 (2002-10-31)  page 5, lines 18-31 page 11, lines 17-34 page 21, line 1 - page 22, line 26  JAY D G: "SELECTIVE DESTRUCTION OF PROTEIN FUNCTION BY CHROMOPHORE-ASSISTED LASER INACTIVATION" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, NATIONAL ACADEMY OF SCIENCE. WASHINGTON, US, vol. 85, no. 15, August 1988 (1988-08), pages 5454-5458, XP000857275 ISSN: 0027-8424



Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. X Claims Nos.: 7,8,21,22 (partially) because they relate to subject matter not required to be searched by this Authority, namely:
Although claims 8,21,22 are directed to a method of treatment of the human/animal body, and claim 7 is directed to a diagnostic method practised on the human/animal body, the search has been carried out and based on the alleged effects of the compound/composition.
2. Claims Nos.: because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
r
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest  The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

## INTERNATIONAL SEARCH REPORT

Int nal Application No	
EP 03/14756	

				1~17	
Patent document ited in search report		Publication date		Patent family member(s)	Publication date
NO 9955855	A	04-11-1999	AU	749802 B2	04-07-2002
10 330000			AU	3402199 A	16-11-1999
			ΑU	747639 B2	16-05-2002
			AU	3402299 A	16-11-1999
			BR	9909809 A	19-12-2000
			BR	9909859 A	19-12-2000
			CA	2326824 A1	04-11-1999
			CA	2326825 A1	04-11-1999
			WO	9955854 A2	04-11-1999
			WO	9955855 A2	04-11-1999
			CN	1298444 T	06-06-2001
			CN	1298445 T	06-06-2001
			EP	1073728 A2	07-02-2001
			EP	1073729 A2	07-02-2001
			JΡ	2002512792 T	08-05-2002
			JΡ	2002512793 T	08-05-2002
			ÜS	2002187954 A1	12-12-2002
			ÜS	6417169 B1	09-07-2002
			US	2003083274 A1	01-05-2003
W0 02086157	 A	31-10-2002	EP	1402060 A2	31-03-2004
MO 05000131	^	31 10 2302	MO	02086157 A2	31-10-2002
			ÜS	2004152110 A1	05-08-2004

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ OTHER:

### IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.