Case Study

Nitrogen Source Optimization for Cellulase Production by *Penicillium funiculosum*, using a Sequential Experimental Design Methodology and the Desirability Function

The Chosen Article

<u>Maeda, R.N., da Silva, M.M.P., Santa Anna, L.M.M. et al. Nitrogen Source Optimization for Cellulase Production by Penicillium funiculosum, using a Sequential Experimental Design Methodology and the Desirability Function. Appl Biochem Biotechnol 161, 411–422 (2010)</u>

Second-generation ethanol production. Source: https://doi.org/10.1016/j.cej.2022.138690

Experimental Methods

Three distinct methods were employed to quantify cellulase activity, serving as the variables under consideration for optimization:

- Filter Paper Assay (FPase)
- Carboxymethylcellulose Assay (CMCase)
- Cellobiose Assay (β-Glucosidase)

The dependent variables in this study encompass the concentrations of various nitrogen sources present within the samples, namely:

- Urea
- Ammonium Sulfate
- Peptone
- Yeast Extract

Sequential Experimenta Design

The sequential experimental design involves a series of meticulously crafted iterations, wherein each step entails the elimination of an insignificant variable.

Factorial 24

Factor	Min	CP	Max
	-1	0	+1
Urea (g/L)	0.15	0.30	0.45
Ammonium sulfate (g/L)	0.70	1.40	2.10
Peptone (g/L)	0.40	0.75	1.10
Yeast extract (g/L)	0.13	0.26	0.38

Levels for independent variables for the 2^4 experimental design.

Run	Nitroge	en sources			Activities (U	Activities (U/L)			
	Urea	Ammonium sulfate	Peptone	Yeast extract	FPase $R^2 = 0.836$	CMCase R^2 =0.873	β -glucosidase R^2 =0.910		
1	-1	-1	-1	-1	39	1,328	170		
2	+1	-1	-1	-1	87	1,699	122		
3	-1	+1	-1	-1	48	1,332	473		
4	+1	+1	-1	-1	71	1,979	511		
5	-1	-1	+1	-1	43	1,458	156		
6	+1	-1	+1	-1	84	2,189	204		
7	-1	+1	+1	-1	45	1,343	385		
8	+1	+1	+1	-1	112	1,707	288		
9	-1	-1	-1	+1	19	1,257	114		
10	+1	-1	-1	+1	146	2,148	116		
11	-1	+1	-1	+1	50	1,592	244		
12	+1	+1	-1	+1	92	1,726	126		
13	-1	-1	+1	+1	107	1,203	72		
14	+1	-1	+1	+1	172	2,261	210		
15	-1	+1	+1	+1	62	1,434	234		
16	+1	+1	+1	+1	82	1,848	154		
17 (C)	0	0	0	0	75	1,726	223		
18 (C)	0	0	0	0	70	1,782	219		
19 (C)	0	0	0	0	89	1,753	226		

Experimental results of each run of the 2^4 design.

explann hands-on on 24 design

A python package (<u>explann</u>) was developed to assist design and statistical analysis of experiments.

TwoLevelFactorial implements a generic 2^n factorial design, with n variables defined as a dictionary containunt the variable name and range.

```
In [1]: from explann.doe import TwoLevelFactorial

f2b4 = TwoLevelFactorial(
    variables = {
        'U': (0.15, 0.45),
        'A': (0.70, 2.10),
        'P': (0.40, 1.10),
        'Y': (0.13, 0.38)
    },
    central_points=3
)
```

Once instantiated this class build the doe table, storage as an object attribute as a pandas DataFrame.

In [2]: f2b4.doe

Out[2]:

U	Α	Р	Υ
-1.0	-1.0	-1.0	-1.0
1.0	-1.0	-1.0	-1.0
-1.0	1.0	-1.0	-1.0
1.0	1.0	-1.0	-1.0
-1.0	-1.0	1.0	-1.0
1.0	-1.0	1.0	-1.0
-1.0	1.0	1.0	-1.0
1.0	1.0	1.0	-1.0
-1.0	-1.0	-1.0	1.0
1.0	-1.0	-1.0	1.0
-1.0	1.0	-1.0	1.0
1.0	1.0	-1.0	1.0
-1.0	-1.0	1.0	1.0
1.0	-1.0	1.0	1.0
-1.0	1.0	1.0	1.0
1.0	1.0	1.0	1.0
0.0	0.0	0.0	0.0
0.0	0.0	0.0	0.0
	-1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0	-1.0 -1.0 1.0 1.0 1.0 1.0 1.0 -1.0 1.0 -1.0 1.0 -1.0 1.0	-1.0 -1.0 -1.0 1.0 -1.0 -1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 -1.0 -1.0 1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0 -1.0 -1.0 1.0 -1.0 -1.0 1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 -1.0 1.0 1.0 -1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

	U	Α	Р	Υ
Index				
19	0.0	0.0	0.0	0.0

A table of the levels are also automaticly created.

In [3]: f2b4.levels

Out[3]:

	U	Α	Р	Υ
Levels				
-1.0	0.15	0.7	0.40	0.130
0.0	0.30	1.4	0.75	0.255
1.0	0.45	2.1	1.10	0.380

The doe table can be complemented with the response variables. For this task either ImportString or ImportXLSX can be used to load data.

```
In [4]: from explann.dataio import ImportString
f2b4 results = ImportString(data="""
F, CM, B
39,1.328,170
87,1.699,122
48,1.332,473
71,1.979,511
43,1.458,156
84,2.189,204
45,1.343,385
112, 1.707, 288
19,1.257,114
146, 2.148, 116
50, 1.592, 244
92, 1.726, 126
107, 1.203, 72
172,2.261,210
62,1.434,234
82,1.848,154
75, 1.726, 223
70,1.782,219
89, 1.753, 226
delimiter=',')
f2b4 results.data
```

Out[4]:

	F	CM	В
1	39	1.328	170
2	87	1.699	122
3	48	1.332	473
4	71	1.979	511

	F	CM	В
5	43	1.458	156
6	84	2.189	204
7	45	1.343	385
8	112	1.707	288
9	19	1.257	114
10	146	2.148	116
11	50	1.592	244
12	92	1.726	126
13	107	1.203	72
14	172	2.261	210
15	62	1.434	234
16	82	1.848	154
17	75	1.726	223
18	70	1.782	219
19	89	1.753	226

The data is the merged with the doe table using append_results method.

Out[5]:

	U	Α	Р	Υ	F	CM	В
Index							
1	-1.0	-1.0	-1.0	-1.0	39	1.328	170
2	1.0	-1.0	-1.0	-1.0	87	1.699	122
3	-1.0	1.0	-1.0	-1.0	48	1.332	473
4	1.0	1.0	-1.0	-1.0	71	1.979	511
5	-1.0	-1.0	1.0	-1.0	43	1.458	156
6	1.0	-1.0	1.0	-1.0	84	2.189	204
7	-1.0	1.0	1.0	-1.0	45	1.343	385
8	1.0	1.0	1.0	-1.0	112	1.707	288
9	-1.0	-1.0	-1.0	1.0	19	1.257	114
10	1.0	-1.0	-1.0	1.0	146	2.148	116
11	-1.0	1.0	-1.0	1.0	50	1.592	244
12	1.0	1.0	-1.0	1.0	92	1.726	126
13	-1.0	-1.0	1.0	1.0	107	1.203	72
14	1.0	-1.0	1.0	1.0	172	2.261	210
15	-1.0	1.0	1.0	1.0	62	1.434	234
16	1.0	1.0	1.0	1.0	82	1.848	154
17	0.0	0.0	0.0	0.0	75	1.726	223

	U	Α	Р	Υ	F	CM	В
Index							
18	0.0	0.0	0.0	0.0	70	1.782	219
19	0.0	0.0	0.0	0.0	89	1.753	226

This experimental planning can be easily saved in .xlsx format. doe raw data is stored in the first sheet and the levels data is stored in a separate sheet named levels.

```
In [6]: f2b4.save_excel('../../data/f2b4.xlsx')
```

The ImporXLSX assist the import of data from excel file, this could be filled by hand or generated in explann as described above.

```
In [7]: from explann.dataio import ImportXLSX

f2b4_from_excel = ImportXLSX(
    path = '../../data/f2b4.xlsx',
    levels_sheet = 'levels'
)

f2b4_from_excel.data
```

Out[7]:

	Index	U	Α	Р	Υ	F	CM	В
1	1	-1	-1	-1	-1	39	1.328	170
2	2	1	-1	-1	-1	87	1.699	122
3	3	-1	1	-1	-1	48	1.332	473
4	4	1	1	-1	-1	71	1.979	511
5	5	-1	-1	1	-1	43	1.458	156
6	6	1	-1	1	-1	84	2.189	204
7	7	-1	1	1	-1	45	1.343	385
8	8	1	1	1	-1	112	1.707	288
9	9	-1	-1	-1	1	19	1.257	114
10	10	1	-1	-1	1	146	2.148	116
11	11	-1	1	-1	1	50	1.592	244
12	12	1	1	-1	1	92	1.726	126
13	13	-1	-1	1	1	107	1.203	72
14	14	1	-1	1	1	172	2.261	210

	Index	U	Α	Р	Υ	F	CM	В
15	15	-1	1	1	1	62	1.434	234
16	16	1	1	1	1	82	1.848	154
17	17	0	0	0	0	75	1.726	223
18	18	0	0	0	0	70	1.782	219
19	19	0	0	0	0	89	1.753	226

If the levels_sheet argument is passed, the loaded object will contain an aditional table with the levels parsed.

In [8]: f2b4_from_excel.parsed_data

\cap	п	+	Γ	Q	1	
U	и	_	L	U	л	

	Index	U	Α	Р	Υ	F	СМ	В
1	1	0.45	0.7	0.40	0.130	39	1.328	170
2	2	0.15	2.1	0.40	0.130	87	1.699	122
3	3	0.45	2.1	0.40	0.130	48	1.332	473
4	4	0.15	0.7	1.10	0.130	71	1.979	511
5	5	0.45	0.7	1.10	0.130	43	1.458	156
6	6	0.15	2.1	1.10	0.130	84	2.189	204
7	7	0.45	2.1	1.10	0.130	45	1.343	385
8	8	0.15	0.7	0.40	0.380	112	1.707	288
9	9	0.45	0.7	0.40	0.380	19	1.257	114
10	10	0.15	2.1	0.40	0.380	146	2.148	116
11	11	0.45	2.1	0.40	0.380	50	1.592	244
12	12	0.15	0.7	1.10	0.380	92	1.726	126
13	13	0.45	0.7	1.10	0.380	107	1.203	72
14	14	0.15	2.1	1.10	0.380	172	2.261	210
15	15	0.45	2.1	1.10	0.380	62	1.434	234
16	16	0.30	1.4	0.75	0.255	82	1.848	154
17	17	0.30	1.4	0.75	0.255	75	1.726	223
18	18	0.30	1.4	0.75	0.255	70	1.782	219

	Index	U	Α	Р	Υ	F	CM	В
19	19	0.00	0.0	0.00	0.000	89	1.753	226

We can now use the data to build our factorial model. The functions attribute is a dictionary, the keys are function names, and the values are function equations, the syntax follows $\frac{patsy}{}$ standadization. Here $\frac{U}{}$ * $\frac{V}{}$ * $\frac{$

```
In [9]: from explann.models import FactorialModel

fm2b4 = FactorialModel(
    data = f2b4_from_excel.data,
    functions = {
        "Fso" : "F ~ U * A * P * Y + I(U**2) + I(A**2) + I(P**2) + I(Y**2)",
        "CMso" : "CM ~ U * A * P * Y + I(U**2) + I(A**2) + I(P**2) + I(Y**2)",
        "Bso" : "B ~ U * A * P * Y + I(U**2) + I(A**2) + I(P**2) + I(Y**2)",
        "F" : "F ~ U * A * P * Y",
        "CM" : "CM ~ U * A * P * Y",
        "B" : "B ~ U * A * P * Y"}
)
```

The object fm2b4 stores all the filted models(Ordinary Least Squares) listed in functions, any given model can be retriev by indexing by function name.

```
In [10]: fm2b4['F']
Out[10]:
<statsmodels.regression.linear_model.RegressionResultsWrapper at 0x7fcd1570edf0>
```

An overview of the results can be viewd using the summary method. The method accepts also a given funtion name as argument, if None is passed a dictionary of summary() is returned.

```
In [11]: fm2b4.summary()
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway. n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
Out[11]:
{'Fso': <class 'statsmodels.iolib.summarv.Summarv'>
                             OLS Regression Results
 Dep. Variable:
                                          R-squared:
                                                                           0.992
 Model:
                                         Adi. R-squared:
                                                                           0.931
                                    0LS
                         Least Squares
 Method:
                                         F-statistic:
                                                                           16.16
                      Wed, 16 Aug 2023
                                        Prob (F-statistic):
 Date:
                                                                          0.0598
                                         Log-Likelihood:
                                                                         -49.032
 Time:
                               19:16:43
 No. Observations:
                                         AIC:
                                                                           132.1
                                    19
 Df Residuals:
                                     2
                                          BIC:
                                                                           148.1
 Df Model:
                                    16
 Covariance Type:
                              nonrobust
```

P>|t|

[0.025]

0.9751

coef

std err

t

Intercept	78.0000	5.686	13.717	0.005	53.534	102.466
U	27.0625	2.462	10.991	0.008	16.468	37.657
Α	-8.4375	2.462	-3.427	0.076	-19.032	2.157
U:A	-8.0625	2.462	-3.274	0.082	-18.657	2.532
Р	9.6875	2.462	3.934	0.059	-0.907	20.282
U:P	-2.9375	2.462	-1.193	0.355	-13.532	7.657
A:P	-4.6875	2.462	-1.904	0.197	-15.282	5.907
U:A:P	5.6875	2.462	2.310	0.147	-4.907	16.282
Υ	12.5625	2.462	5.102	0.036	1.968	23.157
U:Y	4.6875	2.462	1.904	0.197	-5.907	15.282
A:Y	-11.3125	2.462	-4.594	0.044	-21.907	-0.718
U:A:Y	-8.1875	2.462	-3.325	0.080	-18.782	2.407
P:Y	4.8125	2.462	1.955	0.190	-5.782	15.407
U:P:Y	-7.5625	2.462	-3.071	0.092	-18.157	3.032
A:P:Y	-9.3125	2.462	-3.782	0.063	-19.907	1.282
U:A:P:Y	-0.6875	2.462	-0.279	0.806	-11.282	9.907
I(U ** 2)	0.1719	1.549	0.111	0.922	-6.493	6.837
I(A ** 2)	0.1719	1.549	0.111	0.922	-6.493	6.837
I(P ** 2)	0.1719	1.549	0.111	0.922	-6.493	6.837
I(Y ** 2)	0.1719	1.549	0.111	0.922	-6.493 	6.837
Omnibus:		 19.2	262 Durbi:	 n-Watson:		2.036
Prob(Omnibus	s):	0.0	900 Jarque	e-Bera (JB)	:	38.617
Skew:		1.2	278 Prob(3	JB):		4.12e-09
Kurtosis:		9.5	500 Cond.	No.		1.96e+30

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The input rank is higher than the number of observations.
- [3] The smallest eigenvalue is 2.1e-59. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

'CMso': <class 'statsmodels.iolib.summary.Summary'>

===========			
Dep. Variable:	CM	R-squared:	0.999
Model:	0LS	Adj. R-squared:	0.992
Method:	Least Squares	F-statistic:	146.2
Date:	Wed, 16 Aug 2023	<pre>Prob (F-statistic):</pre>	0.00682
Time:	19:16:43	Log-Likelihood:	62.359
No. Observations:	19	AIC:	-90.72
Df Residuals:	2	BIC:	-74.66
Df Model:	16		
Covariance Type:	nonrobust		

========						========
	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.7537	0.016	108.457	0.000	1.684	1.823
U	0.2881	0.007	41.152	0.001	0.258	0.318
Α	-0.0364	0.007	-5.195	0.035	-0.066	-0.006
U:A	-0.0933	0.007	-13.319	0.006	-0.123	-0.063
Р	0.0239	0.007	3.410	0.076	-0.006	0.054
U:P	0.0327	0.007	4.678	0.043	0.003	0.063
A:P	-0.0610	0.007	-8.712	0.013	-0.091	-0.031
U:A:P	-0.0331	0.007	-4.731	0.042	-0.063	-0.003
Υ	0.0271	0.007	3.874	0.061	-0.003	0.057
U:Y	0.0240	0.007	3.428	0.076	-0.006	0.054
A:Y	0.0027	0.007	0.393	0.732	-0.027	0.033
U:A:Y	-0.0819	0.007	-11.694	0.007	-0.112	-0.052
P:Y	-0.0210	0.007	-2.999	0.096	-0.051	0.009
U:P:Y	0.0231	0.007	3.303	0.081	-0.007	0.053
A:P:Y	0.0491	0.007	7.016	0.020	0.019	0.079
U:A:P:Y	0.0472	0.007	6.749	0.021	0.017	0.077
I(U ** 2)	-0.0243	0.004	-5.515	0.031	-0.043	-0.005
I(A ** 2)	-0.0243	0.004	-5.515	0.031	-0.043	-0.005
I(P ** 2)	-0.0243	0.004	-5.515	0.031	-0.043	-0.005
I(Y ** 2)	-0.0243	0.004	-5.515	0.031	-0.043	-0.005
Omnibus:		13.	.078 Durbi	 in-Watson:		3.023
Prob(Omnibus	s):	0.	.001 Jarqı	ue-Bera (JB)):	33.486
Skew:		0.	110 Prob			5.35e-08
Kurtosis:			500 Cond			1.96e+30

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The input rank is higher than the number of observations.
- [3] The smallest eigenvalue is 2.1e-59. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.
- 'Bso': <class 'statsmodels.iolib.summary.Summary'>

Dep. Variable:	В	R-squared:	1.000
Model:	0LS	Adj. R-squared:	0.999
Method:	Least Squares	F-statistic:	1291.
Date:	Wed, 16 Aug 2023	<pre>Prob (F-statistic):</pre>	0.000774
Time:	19:16:43	Log-Likelihood:	-29.439
No. Observations:	19	AIC:	92.88
Df Residuals:	2	BIC:	108.9

Covariance	Type:	nonrob	ust			
========	coef	std err	t	P> t	[0.025	0.975]
Intercept	222.6667	2.028	109.819	0.000	213.943	231.391
U	-7.3125	0.878	-8.329	0.014	-11.090	-3.535
Α	78.1875	0.878	89.055	0.000	74.410	81.965
U:A	-24.8125	0.878	-28.261	0.001	-28.590	-21.035
Р	-10.8125	0.878	-12.315	0.007	-14.590	-7.035
U:P	8.4375	0.878	9.610	0.011	4.660	12.215
A:P	-25.8125	0.878	-29.400	0.001	-29.590	-22.035
U:A:P	-20.5625	0.878	-23.420	0.002	-24.340	-16.785
Υ	-64.9375	0.878	-73.963	0.000	-68.715	-61.160
U:Y	0.0625	0.878	0.071	0.950	-3.715	3.840
A:Y	-47.4375	0.878	-54.031	0.000	-51.215	-43.660
U:A:Y	-17.4375	0.878	-19.861	0.003	-21.215	-13.660
P:Y	19.5625	0.878	22.281	0.002	15.785	23.340
U:P:Y	13.3125	0.878	15.163	0.004	9.535	17.090
A:P:Y	21.5625	0.878	24.559	0.002	17.785	25.340
U:A:P:Y	8.3125	0.878	9.468	0.011	4.535	12.090
I(U ** 2)	0.2552	0.552	0.462	0.689	-2.121	2.632
I(A ** 2)	0.2552	0.552	0.462	0.689	-2.121	2.632
I(P ** 2)	0.2552	0.552	0.462	0.689	-2.121	2.632
I(Y ** 2)	0.2552	0.552	0.462	0.689	-2.121	2.632
Omnibus:		12	======= 909 Durbi	======= n-Watson:		2.640
Prob(Omnibu	ıc) ı			e-Bera (JB):		34.047
Skew:	15 / 1		435 Prob(4.04e-08
Kurtosis:			500 Cond.			1.96e+30
Mai rosts.		9.	Joo Colla.	110.		1.306+30

16

Notes:

Df Model:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The input rank is higher than the number of observations.
- [3] The smallest eigenvalue is 2.1e-59. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.
- 'F': <class 'statsmodels.iolib.summary.Summary'>

===========			==========
Dep. Variable:	F	R-squared:	0.992
Model:	0LS	Adj. R-squared:	0.954
Method:	Least Squares	F-statistic:	25.70
Date:	Wed, 16 Aug 2023	<pre>Prob (F-statistic):</pre>	0.0107
Time:	19:16:43	Log-Likelihood:	-49.091

No. Observa			19 AIC:			130.2	
Df Residual	S:		3 BIC:			145.3	
Df Model:	Typor	nonrobu	15 c+				
Covariance	Type:						
	coef	std err	t	P> t	[0.025	0.975]	
Intercept	78.5789		42.463		72.690	84.468	
U	27.0625			0.001	20.645		
A	-8.4375	2.017	-4.184	0.025	-14.855	-2.020	
U:A	-8.0625	2.017	-3.998	0.028	-14.480	-1.645	
P	9.6875	2.017	4.804	0.017	3.270	16.105	
U:P	-2.9375	2.017	-1.457	0.241	-9.355	3.480	
A:P	-4.6875	2.017	-2.324	0.103	-11.105	1.730	
U:A:P	5.6875		2.820	0.067	-0.730		
Υ	12.5625		6.230		6.145		
U:Y	4.6875		2.324		-1.730		
A:Y	-11.3125	2.017	-5.610	0.011	-17.730		
U:A:Y	-8.1875	2.017	-4.060				
P:Y	4.8125	2.017	2.386	0.097	-1.605		
U:P:Y	-7.5625	2.017	-3.750				
A:P:Y	-9.3125	2.017	-4.618	0.019	-15.730	-2.895	
U:A:P:Y	-0.6875	2.017	-0.341	0.756	-7.105	5.730	
======= Omnibus:	========		======= 90 Durbin	======= -Watson:		2.047	
Prob(Omnibu	s):	0.0	01 Jarque	e-Bera (JB):		27.071	
Skew:		0.7	26 Prob(J	B):		1.32e-06	
Kurtosis:		8.6	64 Cond.	No.		1.09	
и и и ,		sume that the			the errors	is correctly	specifie
		OLS Reg	ression Res	ults			
Dep. Variab	le:		CM R-squa			0.986	
Model:			_	R-squared:		0.917	
Method:		Least Squar				14.24	
Date:	We	ed, 16 Aug 20		F-statistic	c):	0.0250	
Time:	_	19:16:		.kelihood:		35.898	
No. Observa			19 AIC:			-39.80	
Df Residual	S:		3 BIC:			-24.69	
Df Model:	_		15				
Covariance	Typo:	nonrohu	c+				

Covariance Type:

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	1.6718	0.021	79.166	0.000	1.605	1.739
U	0.2881	0.023	12.520	0.001	0.215	0.361
Α	-0.0364	0.023	-1.581	0.212	-0.110	0.037
U:A	-0.0932	0.023	-4.052	0.027	-0.166	-0.020
P	0.0239	0.023	1.037	0.376	-0.049	0.097
U:P	0.0328	0.023	1.423	0.250	-0.040	0.106
A:P	-0.0610	0.023	-2.651	0.077	-0.134	0.012
U:A:P	-0.0331	0.023	-1.439	0.246	-0.106	0.040
Υ	0.0271	0.023	1.179	0.323	-0.046	0.100
U:Y	0.0240	0.023	1.043	0.374	-0.049	0.097
A:Y	0.0028	0.023	0.119	0.912	-0.070	0.076
U:A:Y	-0.0819	0.023	-3.558	0.038	-0.155	-0.009
P:Y	-0.0210	0.023	-0.913	0.429	-0.094	0.052
U:P:Y	0.0231	0.023	1.005	0.389	-0.050	0.096
A:P:Y	0.0491	0.023	2.135	0.122	-0.024	0.122
U:A:P:Y	0.0473	0.023	2.053	0.132	-0.026 	0.120
Omnibus:		19.	 927 Durbin	 n-Watson:		0.346
Prob(Omnibu	s):	0.	000 Jarque	e-Bera (JB):		20.834
Skew:		2.	121 Prob(3	JB):		2.99e-05
Kurtosis:		5.	884 Cond.	No.		1.09
========						=======
Notes:						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

'B': <class 'statsmodels.iolib.summary.Summary'>

============			
Dep. Variable:	В	R-squared:	1.000
Model:	0LS	Adj. R-squared:	0.999
Method:	Least Squares	F-statistic:	1867.
Date:	Wed, 16 Aug 2023	<pre>Prob (F-statistic):</pre>	1.80e-05
Time:	19:16:43	Log-Likelihood:	-30.403
No. Observations:	19	AIC:	92.81
Df Residuals:	3	BIC:	107.9
Df Model:	15		
Covariance Type:	nonrobust		
=======================================			=======================================

=======	coef	std err	t	P> t	[0.025	0.975]
Intercept	223.5263	0.692	322.991	0.000	221.324	225.729
U	-7.3125	0.754	-9.696	0.002	-9.713	-4.912
A	78.1875	0.754	103.677	0.000	75.787	80.588

U:A	-24.8125	0.754	-32.901	0.000	-27.213	-22.412
Р	-10.8125	0.754	-14.337	0.001	-13.213	-8.412
U:P	8.4375	0.754	11.188	0.002	6.037	10.838
A:P	-25.8125	0.754	-34.227	0.000	-28.213	-23.412
U:A:P	-20.5625	0.754	-27.266	0.000	-22.963	-18.162
Υ	-64.9375	0.754	-86.107	0.000	-67.338	-62.537
U:Y	0.0625	0.754	0.083	0.939	-2.338	2.463
A:Y	-47.4375	0.754	-62.902	0.000	-49.838	-45.037
U:A:Y	-17.4375	0.754	-23.122	0.000	-19.838	-15.037
P:Y	19.5625	0.754	25.940	0.000	17.162	21.963
U:P:Y	13.3125	0.754	17.652	0.000	10.912	15.713
A:P:Y	21.5625	0.754	28.592	0.000	19.162	23.963
U:A:P:Y	8.3125	0.754	11.022	0.002	5.912	10.713
Omnibus:		31.	 293 Durbin	 n-Watson:		2.398
Prob(Omnibu	ıs):	0.	000 Jarque	e-Bera (JB):		77.186
Skew:		-2.	374 Prob(3	JB):		1.73e-17
Kurtosis:		11.	658 Cond.	No.		1.09
========						

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. """}

```
import matplotlib.pyplot as plt
fig, ax = plt.subplots(3,2, figsize=(9,10))
ax = ax.flatten()
pp_fm2b4 = ParetoPlot(fm2b4)

pp_fm2b4.plot(['Fso', 'F', 'CMso', 'CM' ,'Bso', 'B'], ax=ax)
plt.tight_layout()
```


In [13]: fm2b4.print_equation()

Out[13]:

```
{'Fso': 'F = 78.0000 + 27.0625 * U + 12.5625 * Y - 11.3125 * AY',
    'CMso': 'CM = 1.7537 + 0.2881 * U - 0.0364 * A - 0.0933 * UA + 0.0327 * UP - 0.0610 * AP - 0.0331 * UA
P - 0.0819 * UAY + 0.0491 * APY + 0.0472 * UAPY - 0.0243 * I(U ** 2) - 0.0243 * I(A ** 2) - 0.0243 * I
(P ** 2) - 0.0243 * I(Y ** 2)',
    'Bso': 'B = 222.6667 - 7.3125 * U + 78.1875 * A - 24.8125 * UA - 10.8125 * P + 8.4375 * UP - 25.8125 *
AP - 20.5625 * UAP - 64.9375 * Y - 47.4375 * AY - 17.4375 * UAY + 19.5625 * PY + 13.3125 * UPY + 21.562
5 * APY + 8.3125 * UAPY',
    'F': 'F = 78.5789 + 27.0625 * U - 8.4375 * A - 8.0625 * UA + 9.6875 * P + 12.5625 * Y - 11.3125 * AY -
8.1875 * UAY - 7.5625 * UPY - 9.3125 * APY',
    'CM': 'CM = 1.6718 + 0.2881 * U - 0.0932 * UA - 0.0819 * UAY',
    'B': 'B = 223.5263 - 7.3125 * U + 78.1875 * A - 24.8125 * UA - 10.8125 * P + 8.4375 * UP - 25.8125 * A
P - 20.5625 * UAP - 64.9375 * Y - 47.4375 * AY - 17.4375 * UAY + 19.5625 * PY + 13.3125 * UPY + 21.5625
* APY + 8.3125 * UAPY'}
```

build_significant_models get the models with only significant terms withing a significance value α .

```
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
/home/ppiper/micromamba/envs/explann/lib/python3.9/site-packages/scipy/stats/ stats py.py:1806: UserWar
ning: kurtosistest only valid for n>=20 ... continuing anyway, n=19
  warnings.warn("kurtosistest only valid for n>=20 ... continuing "
Out[14]:
{'Fso': <class 'statsmodels.iolib.summary.Summary'>
                             OLS Regression Results
```

===========			======			========
Dep. Variable:		F	R-squa	red:		0.644
Model:		0LS	Adj. R	-squared:		0.573
Method:		Least Squares	F-stat	istic:		9.063
Date:	We	ed, 16 Aug 2023	Prob (F-statistic)):	0.00115
Time:		19:16:45	Log-Li	kelihood:		-85.472
No. Observations:		19	AIC:			178.9
<pre>Df Residuals:</pre>		15	BIC:			182.7
Df Model:		3				
Covariance Type:		nonrobust				
===========					========	
	coef	std err	t	P> t	[0.025	0.975]

Intercept U Y A:Y	78.5789 27.0625 12.5625 -11.3125	5.616 6.120 6.120 6.120	13.993 4.422 2.053 -1.849	0.000 0.000 0.058 0.084	66.609 14.019 -0.481 -24.356	90.549 40.106 25.606 1.731
Omnibus: Prob(Omnibus Skew: Kurtosis:	s):	3.5 0.1 -0.5 3.8	166 Jarque 592 Prob(3			2.130 1.637 0.441 1.09
 	d Errors ass ass 'statsmo	dels.iolib.s	summary.Summ	nary'>	the errors	is correctly
		0LS Reg	gression Res	sults 		
Dep. Variable Model: Method: Date: Time: No. Observate Df Residuals Df Model: Covariance	We tions: s:		res F-stat 023 Prob :45 Log-L: 19 AIC: 8 BIC:	R-squared:):	0.974 0.942 30.17 2.87e-05 29.977 -37.95 -27.57
	coef	std err	t	P> t	[0.025	0.975]
Intercept U A U:A U:P A:P U:A:P U:A:Y A:P:Y U:A:P:Y I(U ** 2) I(A ** 2) I(P ** 2) I(Y ** 2)	1.7537 0.2881 -0.0364 -0.0933 0.0328 -0.0610 -0.0331 -0.0819 0.0491 0.0473 -0.0243 -0.0243 -0.0243	0.044 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.019 0.012 0.012 0.012	39.456 14.971 -1.890 -4.845 1.702 -3.170 -1.721 -4.254 2.553 2.455 -2.006 -2.006 -2.006	0.000 0.000 0.095 0.001 0.127 0.013 0.124 0.003 0.034 0.040 0.080 0.080 0.080	1.651 0.244 -0.081 -0.138 -0.012 -0.105 -0.078 -0.126 0.005 0.003 -0.052 -0.052 -0.052	1.856 0.333 0.008 -0.049 0.077 -0.017 0.011 -0.037 0.094 0.092 0.004 0.004 0.004
Omnibus:		2.0	973 Durbin	n-Watson:		1.950

specified.

Prob(Omnibus): 0.355 Jarque-Bera (JB): 1.028

 Skew:
 -0.013
 Prob(JB):
 0.598

 Kurtosis:
 1.861
 Cond. No.
 2.87e+16

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 9.82e-32. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.
- 'Bso': <class 'statsmodels.iolib.summary.Summary'>

OLS Regression Results

Dep. Variable:	В	R-squared:	1.000
Model:	0LS	Adj. R-squared:	1.000
Method:	Least Squares	F-statistic:	2661.
Date:	Wed, 16 Aug 2023	<pre>Prob (F-statistic):</pre>	3.23e-07
Time:	19:16:45	Log-Likelihood:	-30.425
No. Observations:	19	AIC:	90.85
Df Residuals:	4	BIC:	105.0
D C M 1 1	1.4		

Df Model: 14 Covariance Type: nonrobust

=======	coef	std err	t	P> t	[0.025	0.975]
Intercept	223.5263	0.600	372.531	0.000	221.860	225.192
U	-7.3125	0.654	-11.184	0.000	-9.128	-5.497
Α	78.1875	0.654	119.579	0.000	76.372	80.003
U:A	-24.8125	0.654	-37.948	0.000	-26.628	-22.997
Р	-10.8125	0.654	-16.536	0.000	-12.628	-8.997
U:P	8.4375	0.654	12.904	0.000	6.622	10.253
A:P	-25.8125	0.654	-39.477	0.000	-27.628	-23.997
U:A:P	-20.5625	0.654	-31.448	0.000	-22.378	-18.747
Υ	-64.9375	0.654	-99.315	0.000	-66.753	-63.122
A:Y	-47.4375	0.654	-72.550	0.000	-49.253	-45.622
U:A:Y	-17.4375	0.654	-26.669	0.000	-19.253	-15.622
P:Y	19.5625	0.654	29.919	0.000	17.747	21.378
U:P:Y	13.3125	0.654	20.360	0.000	11.497	15.128
A:P:Y	21.5625	0.654	32.977	0.000	19.747	23.378
U:A:P:Y	8.3125	0.654	12.713	0.000	6.497	10.128
Omnibus:		31	.153 Durb	in-Watson:		2.404
Prob(Omnib	us):	0	.000 Jaro	μue-Bera (JB):	76.327
Skew:		-2	.365 Prob)(JB):		2.67e-17
Kurtosis:		11	.605 Cond	I. No.		1.09

```
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
'F': <class 'statsmodels.iolib.summary.Summary'>
                             OLS Regression Results
Dep. Variable:
                                         R-squared:
                                                                            0.924
Model:
                                   0LS
                                         Adj. R-squared:
                                                                           0.847
Method:
                                        F-statistic:
                                                                           12.08
                         Least Squares
                     Wed, 16 Aug 2023
                                        Prob (F-statistic):
Date:
                                                                         0.000499
                                         Log-Likelihood:
Time:
                              19:16:45
                                                                         -70.868
No. Observations:
                                    19
                                         AIC:
                                                                            161.7
                                         BIC:
Df Residuals:
                                     9
                                                                            171.2
Df Model:
                                     9
Covariance Type:
                             nonrobust
                                                              [0.025
                  coef
                          std err
                                                   P>|t|
                                                                           0.9751
              78.5789
                                      23.377
                                                              70.975
                                                                           86.183
Intercept
                            3.361
                                                   0.000
U
              27.0625
                            3.663
                                       7.388
                                                   0.000
                                                              18.776
                                                                           35.349
              -8.4375
                            3,663
                                      -2.303
                                                   0.047
                                                             -16.724
                                                                           -0.151
Α
              -8.0625
                                      -2.201
                                                   0.055
                                                                           0.224
U:A
                            3.663
                                                             -16.349
               9.6875
Р
                            3.663
                                       2.645
                                                   0.027
                                                               1.401
                                                                          17.974
                                                               4.276
                                                                           20.849
              12.5625
                            3.663
                                       3.430
                                                   0.008
A:Y
             -11.3125
                            3.663
                                      -3.088
                                                   0.013
                                                             -19.599
                                                                           -3.026
              -8.1875
                            3,663
                                      -2.235
                                                   0.052
                                                             -16.474
                                                                           0.099
U:A:Y
U:P:Y
              -7.5625
                                      -2.065
                            3.663
                                                   0.069
                                                             -15.849
                                                                            0.724
              -9.3125
                            3.663
                                      -2.542
                                                   0.032
                                                             -17.599
A:P:Y
                                                                           -1.026
Omnibus:
                                 0.222
                                         Durbin-Watson:
                                                                            1.718
Prob(Omnibus):
                                 0.895
                                        Jarque-Bera (JB):
                                                                           0.374
                                         Prob(JB):
Skew:
                                -0.200
                                                                            0.830
                                 2.441
                                         Cond. No.
                                                                             1.09
Kurtosis:
Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
'CM': <class 'statsmodels.iolib.summary.Summary'>
0.00
                             OLS Regression Results
```

0.858 Dep. Variable: CM R-squared: Model: 0.829 0LS Adj. R-squared: Least Squares Method: F-statistic: 30.16 Date: Wed, 16 Aug 2023 Prob (F-statistic): 1.34e-06

Time: No. Observati Df Residuals: Df Model: Covariance Ty		19:16:45 19 15 3 nonrobust	Log-l AIC: BIC:	ikelihood:		13.772 -19.54 -15.77	
	coef	std err	t	P> t	[0.025	0.975]	
U U:A	0.2881 -0.0933	0.030 5 0.033 0.033 - 0.033 -	8.737 2.828	0.000 0.013	-0.164	0.358 -0.023	
Omnibus: Prob(Omnibus) Skew: Kurtosis:	:		Jarqı			1.725 1.658 0.437 1.09	
Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly sp """, 'B': <class 'statsmodels.iolib.summary.summary'=""></class>							
		OLS Regres	sion Re	esults 			
Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	: We	B OLS Least Squares ed, 16 Aug 2023	Adj. F-sta Prob):	1.000 1.000 2661. 3.23e-07 -30.425 90.85 105.0	

	coef std	err t	P> t	[0.025	0.975]
U -7 A 78 U:A -24 P -10 U:P 8 A:P -25	7.3125 0. 8.1875 0. 8.8125 0. 8.8125 0. 8.4375 0. 8.8125 0.	600 372.531 654 -11.184 654 119.579 654 -37.948 654 -16.536 654 12.904 654 -39.477 654 -31.448	0.000 0.000 0.000 0.000 0.000	221.860 -9.128 76.372 -26.628 -12.628 6.622 -27.628 -22.378	225.192 -5.497 80.003 -22.997 -8.997 10.253 -23.997 -18.747

A:Y	-47.4375	0.654	-72.550	0.000	-49.253	-45.622
U:A:Y	-17.4375	0.654	-26.669	0.000	-19.253	-15.622
P:Y	19.5625	0.654	29.919	0.000	17.747	21.378
U:P:Y	13.3125	0.654	20.360	0.000	11.497	15.128
A:P:Y	21.5625	0.654	32.977	0.000	19.747	23.378
U:A:P:Y	8.3125	0.654	12.713	0.000	6.497	10.128
========						
Omnibus:		31.	153 Durbin	ı-Watson:		2.404
Prob(Omnibu	ıs):	0.0	000 Jarque	e-Bera (JB):		76.327
Skew:		-2.3	365 Prob(J	IB):		2.67e-17
Kurtosis:		11.0	605 Cond.	No.		1.09

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified. """}

```
In [15]: sig_fm2b4.anova('F')
```

Out[15]:

	df	sum_sq	mean_sq	F	PR(>F)
U	1.0	11718.062500	11718.062500	54.585296	0.000042
Α	1.0	1139.062500	1139.062500	5.306002	0.046733
U:A	1.0	1040.062500	1040.062500	4.844838	0.055241
Р	1.0	1501.562500	1501.562500	6.994606	0.026706
Υ	1.0	2525.062500	2525.062500	11.762293	0.007513
A:Y	1.0	2047.562500	2047.562500	9.537994	0.012964
U:A:Y	1.0	1072.562500	1072.562500	4.996231	0.052249
U:P:Y	1.0	915.062500	915.062500	4.262561	0.068965
A:P:Y	1.0	1387.562500	1387.562500	6.463569	0.031588
Residual	9.0	1932.069079	214.674342	NaN	NaN

Factorial 23

Factor	Min	CP	Max
	-1	0	+1
Urea (g/L)	0.30	0.55	0.80
Ammonium sulfate (g/L)	1.20	2.60	4.00
Yeast extract (g/L)	0.08	0.16	0.25

Levels for factorial 23 experimental design.

Run	Nitroge	n sources	Activities (U/L)			
	Urea	Ammonium sulfate	Yeast extract	FPase	CMCase	β-glucosidase
1	-1	-1	-1	158	3,995	835
2	+1	-1	-1	202	4,291	1,540
3	-1	+1	-1	137	3,642	1,021
4	+1	+1	-1	240	4,895	1,702
5	-1	-1	+1	191	4,311	1,311
6	+1	-1	+1	221	4,520	1,717
7	-1	+1	+1	141	4,726	1,345
8	+1	+1	+1	175	5,144	1,728
9 (CP)	0	0	0	225	4,715	1,623
10 (CP)	0	0	0	234	4,565	1,687
11 (CP)	0	0	0	250	4,743	1,713

Experimental results for factorial 2^3

building a model with explann

```
In [16]: from explann.doe import TwoLevelFactorial
        from explann.models import FactorialModel
from explann.dataio import ImportString, ImportXLSX
from explann.plot import ParetoPlot
import matplotlib.pyplot as plt
f2b3 = TwoLevelFactorial(
    variables = {
        'U': (0.3, 0.8),
        'A': (1.20, 4.00),
        'Y': (0.08, 0.25)
    },
    central points=3
f2b3 results = ImportString(
    data=
    """F,CM,B
    158,3995,835
    202,4291,1540
    137,3642,1021
    240,4895,1702
    191,4311,1311
    221,4520,1717
    141,4726,1345
    175,5144,1728
    225,4715,1623
    234,4565,1687
    250,4743,1713
    delimiter=',')
f2b3.append_results(results=f2b3_results.data)
f2b3.save excel('../../data/f2b3.xlsx')
f2b3 from excel = ImportXLSX(
    path = '../../data/f2b3.xlsx',
```

```
levels_sheet = 'levels'
)

fm_f2b3 = FactorialModel(
    data = f2b3_from_excel.data,
    functions = {
        "Fso" : "F ~ U * A * Y + I(U**2) + I(A**2) + I(Y**2)",
        "CMso" : "CM ~ U * A * Y + I(U**2) + I(A**2) + I(Y**2)",
        "Bso" : "B ~ U * A * Y + I(U**2) + I(A**2) + I(Y**2)",
        "F" : "F ~ U * A * Y",
        "CM" : "CM ~ U * A * Y",
        "B" : "B ~ U * A * Y",
        "B" : "B ~ U * A * Y"}
)

pp_f2b3 = ParetoPlot(fm_f2b3)

fig, ax = plt.subplots(3,2, figsize=(9,10))

pp_fm2b4.plot(['Fso', 'F', 'CMso', 'CM', 'Bso', 'B'], ax=ax)
plt.tight_layout()
```


Central Composite Design

Factor	Axial -1.41	Min -1	CP 0	Max +1	Axial +1.41
Urea (g/L)	0.07	0.40	1.20	2.00	2.33
Yeast extract (g/L)	0.00	0.09	0.29	0.50	0.59

Levels for central composite experimental design.

Experiment	Nitrogen s	ources	Activities (U/L)			
	Urea	Yeast extract	FPase	CMCase	β-glucosidase	
1	-1	-1	158	4,029	727	
2	-1	+1	171	4,354	1,119	
3	+1	-1	166	5,302	1,080	
4	+1	+1	244	5,513	1,101	
5	-1.41	0	148	4,481	743	
6	+1.41	0	263	6,529	1,213	
7	0	-1.41	208	5,460	1,085	
8	0	+1.41	255	7,105	1,435	
9 (CP)	0	0	250	5,364	1,390	
10 (CP)	0	0	269	5,524	1,499	
11 (CP)	0	0	261	5,793	1,420	

Experimental results for ccd.

```
In [146]: from explann.doe import CentralCompositeDesign
         from explann.models import FactorialModel
from explann.dataio import ImportString, ImportXLSX
from explann.plot import ParetoPlot
import matplotlib.pyplot as plt
ccd = CentralCompositeDesign(
    variables = {
        'U': (0.07, 2.33),
        'Y': (0.00, 0.59)
    },
    center=(0,3)
ccd results = ImportString(
    data=
    """F,CM,B
    158,4029,727
    171,4354,1119
    166,5302,1080
    244,5513,1101
```

```
208,5460,1085
    255,7105,1435
    148,4481,743
    263,6529,1213
    250,5364,1390
    269,5524,1499
    261,5793,1420
    delimiter=',')
ccd.append results(results=ccd results.data)
ccd.save excel('../../data/ccd.xlsx')
ccd from excel = ImportXLSX(
    path = '../../data/ccd.xlsx',
    levels sheet = 'levels'
fm ccd = FactorialModel(
    data = ccd from excel.data,
    functions = {
        \#"Fso" : "F \sim U * Y + I(U^{**}2) + I(Y^{**}2)",
        \#"CMso": "CM \sim U * Y + I(U**2) + I(Y**2)",
        #"Bso" : "B ~ U * Y + I(U^{**}2) + I(Y^{**}2)",
        "Fso" : "F ~ U * Y + np.power(U,2) + np.power(Y,2)",
        "CMso": "CM \sim U * Y + np.power(U,2) + np.power(Y,2)",
        "Bso" : "B \sim U * Y + np.power(U,2) + np.power(Y,2)",
        "F" : "F ~ U * Y".
        "CM" : "CM ~ U * Y",
        "B" : "B \sim U * Y"}.
    levels = ccd from excel.levels,
pp ccd = ParetoPlot(fm ccd)
fig, ax = plt.subplots(3,2, figsize=(9,10))
pp ccd.plot(['Fso', 'F', 'CMso', 'CM', 'Bso', 'B'], ax=ax)
plt.tight layout()
```



```
In [147]: import matplotlib.pyplot as plt
         import numpy as np
import pandas as pd
from matplotlib import cm # for a scatter plot
from mpl toolkits.mplot3d import Axes3D
def plot surface(x, y, z, model, n pts=10, other params={}, labels:dict=None, ax=None, cmap='viridis', scaled=False):
    name z = z \#'Fso'
    name x = x \#'U'
    name y = y \#'Y'
    n pts = 10
    if not scaled:
        X = np.linspace( model.data[name x].min(), model.data[name x].max(), n pts)
        Y = np.linspace( model.data[name y].min(), model.data[name y].max(), n pts)
    else:
        X = np.linspace( model.levels[name x].min(), model.levels[name x].max(), n pts)
        Y = np.linspace( model.levels[name y].min(), model.levels[name y].max(), n pts)
    x, y = np.meshgrid(X, Y)
    trv:
        variables = pd.DataFrame({name x:x.ravel(), name y:y.ravel(), **other params})
    except:
        variables = pd.DataFrame([{name x:x.ravel(), name y:y.ravel(), **other params}])
    if not scaled:
        z = model.predict(name z, variables).values.reshape(x.shape)
    else:
        z = model.predict rescaled(name z, variables).values.reshape(x.shape)
    if ax is None:
        fig, ax = plt.subplots(figsize=(6,6),subplot kw={"projection": "3d"})
    else:
        fig = plt.qcf()
    ax.set box aspect(None, zoom=0.8)
    pax = ax.plot surface(x, y, z, cmap=cmap, edgecolor='black', linewidth=0.5, alpha=0.6, antialiased=True)
    #ax.contour(x, y, z, cmap=cmap, linestyles='solid', alpha=1)
    ax.contourf(x, y, z, zdir='z', offset=ax.get zlim()[0], cmap=cmap, alpha=0.5, antialiased=True)
    ax.contourf(x, y, z, zdir='x', offset=ax.get xlim()[0], cmap=cmap, alpha=0.5, antialiased=True)
    ax.contourf(x, y, z, zdir='y', offset=ax.get ylim()[1], cmap=cmap, alpha=0.5, antialiased=True)
    if labels is not None:
```

```
ax.set(**labels)
ax.zaxis.set_rotate_label(True)
ax.xaxis.set_rotate_label(True)
ax.yaxis.set_rotate_label(True)

try:
    if 'zlabel' in labels:
        zlabel=labels['zlabel']
except:
    zlabel=None

fig.colorbar(pax, ax=ax, location='top', fraction=0.04, pad=-0.05, label=zlabel)
```


Optimization Using Desirabilty Function

A desirability function D is used to optimize the two independe variables at same time.

$$D = \left(\sum d_{i=1}^N
ight)^{(1/N)}$$

The function d_i was defined as

Out[285]:

$$ext{d}_{ ext{i}}(Y,Ymin,Ymax,r) = egin{cases} 0, & ext{if } Y \leq Ymin \ \left(rac{Y-Ymin}{Ymax-Ymin}
ight)^r, & ext{if } Y > Ymin \land Y < Ymax \ 1, & ext{otherwise} \end{cases}$$

```
In [269]: from scipy.optimize import minimize
          import latexify
responses = ['Fso', 'CMso', 'Bso']
model = fm ccd
Ymax = 7000
Ymin = 200
def D(independent vars):
     d list = []
    for Yi in responses:
         d list.append( d i(model[Yi].predict(dict(U=independent vars[0],Y=independent vars[1]))[0]) )
     d array = np.array(d list)
    n = len(d array)
     return 1-(np.prod(d_array)**(1/n))
from scipy import optimize as opt
x0 = (0, 0)
bounds = [(-1.41, 1.41), (-1.41, 1.41)]
optimum = minimize(D, x0, method='SLSQP', bounds=bounds)
optimum
```

Anova table and lack of fit

To check model validity an ANOVA test and lack of fit can be used.

```
In [270]: fm_ccd.anova('Fso')
```

Out[270]:

	df	sum_sq	mean_sq	F	PR(>F)
U	1.0	3099.522852	3099.522852	4.600914	0.084782
Υ	1.0	7419.724833	7419.724833	11.013797	0.021038
U:Y	1.0	1056.250000	1056.250000	1.567891	0.265894
np.power(U, 2)	1.0	918.771390	918.771390	1.363819	0.295530
np.power(Y, 2)	1.0	7192.080882	7192.080882	10.675884	0.022263
Residual	5.0	3368.377315	673.675463	NaN	NaN

```
In [271]: fm_ccd.lack_of_fit('Fso', alpha=0.05)
```

Out[271]:

	Source_of_Variation	df	sum_sq	mean_sq	F	F_table	р
0	Regression	3.0	11575.497685	3858.499228	2.352901	4.346831	0.158352
1	Residual	7.0	11479.229588	1639.889941	NaN	NaN	NaN

	Source_of_Variation	df	sum_sq	mean_sq	F	F_table	р
2	Lack_of_Fit	5.0	11297.229588	2259.445918	24.829076	19.296410	0.039167
3	Pure_Error	2.0	182.000000	91.000000	NaN	NaN	NaN
4	Total	10.0	23054.727273	NaN	NaN	NaN	NaN

Optmization Results

In the original papaer authors have found a desirability function of 0.87 and an optimum point at

$$U=0.97\;g/L$$

$$Y=0.36\;g/L$$

The corresponding cellulase activities of

$$F=254\;U/L$$

$$C=6383\;U/L$$

$$B=1448~U/L$$

Totaling a production of 8085 U/L. In this work the desirabilty function was 0.88 and the optium point found at

$$U=1.71\;g/L$$

$$Y=0.40\ g/L$$

This corresponts to a total cellulase activity of 8106 U/L, from which partial values for each metric are

$$F=245\;U/L$$

$$C=6623\;U/L$$

$$B=1238\;U/L$$

```
In [280]: fm_ccd.decode_variables(variables=dict(U=optimum.x[0], Y=optimum.x[1]))
```

```
Out[280]:
```

```
In [281]: F=fm ccd.predict(function='Fso', variables=fm ccd.decode variables(variables=dict(U=optimum.x[0], Y=optimum.x[1]))
Out[281]:
     244.92823
dtype: float64
In [282]: C=fm_ccd.predict(function='CMso', variables=fm_ccd.decode_variables(variables=dict(U=optimum.x[0], Y=optimum.x[1])
Out[282]:
     6623.108285
dtype: float64
In [283]: B=fm ccd.predict(function='Bso', variables=fm ccd.decode variables(variables=dict(U=optimum.x[0], Y=optimum.x[1]))
Out[283]:
     1238.00179
dtype: float64
```