CSE 311: Foundations of Computing

Lecture 4: Boolean Algebra, Circuits, Canonical Forms

COFY HW/

Last Time: Boolean Algebra

- Usual notation used in circuit design
- **Boolean algebra**
 - a set of elements B containing {0, 1}
 - binary operations { + , }
 - and a unary operation { ' }
 - such that the following axioms hold:


```
For any a, b, c in B:
```

1. closure: 2. commutativity:

3. associativity:

4. distributivity:

5. identity:

6. complementarity:

7. null:

8. idempotency:

9. involution:

$$a + b = b + a$$

$$a + (b + c) = (a + b) + c$$

$$a + (b + c) = (a + b) + c$$
 $a \cdot (b \cdot c) = (a \cdot b) \cdot c$
 $a + (b \cdot c) = (a + b) \cdot (a + c)$ $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

$$a + 0 = a$$

$$a + a' = 1$$

$$a + 1 = 1$$

$$a + a = a$$

$$(a')' = a$$

$$a \cdot b = b \cdot a$$

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c$$

$$\mathbf{a} \cdot (\mathbf{b} + \mathbf{c}) = (\mathbf{a} \cdot \mathbf{b}) + (\mathbf{a} \cdot \mathbf{c})$$

$$a \cdot 1 = a$$

$$a \cdot 0 = 0$$

Warm-up Exercise

• Create a Boolean Algebra expression for C below in terms of the variables a and b

(Afuks	7 Jours	•
а	b	C(a,b)	
1	1	0	. 1
1	0	1	< a·b
0	1	1	< al. bt
0	0	0	•

$$ab' + a'b$$

Warm-up Exercise

• Create a Boolean Algebra expression for "c" below in terms of the variables a and b

$$c = ab' + a'b$$

Draw this as a circuit (using AND, OR, NOT)

Last Time: Combinational Logic

Encoding:

- Binary number for weekday (Binary encoding)
- One bit for each possible output ("1-Hot" encoding)

Last Time: Truth Table to Logic

	$d_2d_1d_0$	L	c ₀	$\mathbf{c_1}$	C ₂	C ₃
SUN	000	0	0	1	0	0
SUN	000	1	0	0	0 (1
MON	001	0	0	1	0	B
MON	001	1	0	0	0	1
TUE	010	0	0	1	0	0
TUE	010	1	0	0	1	0
WED	011	0	0	1	0	0
WED	011	1	0	0	1	0
THU	100	-	0	1	0	0
FRI	101	0	1	0	0	0
FRI	101	1	0	1	0	0
SAT	110	-	1	0	0	0
-	111	-	1	0	0	0
			I			

Last Time: Truth Table to Logic

$$\begin{aligned} c_0 &= d_2 \cdot d_1' \cdot d_0 \cdot L' + d_2 \cdot d_1 \cdot d_0' + d_2 \cdot d_1 \cdot d_0 \\ c_1 &= d_2' \cdot d_1' \cdot d_0' \cdot L' + d_2' \cdot d_1' \cdot d_0 \cdot L' + d_2' \cdot d_1 \cdot d_0' \cdot L' + d_2' \cdot d_1 \cdot d_0 \cdot L' + d_2 \cdot d_1' \cdot d_0' \cdot L \\ c_2 &= d_2' \cdot d_1 \cdot d_0' \cdot L + d_2' \cdot d_1 \cdot d_0 \cdot L \\ c_3 &= d_2' \cdot d_1' \cdot d_0' \cdot L + d_2' \cdot d_1' \cdot d_0 \cdot L \end{aligned}$$

Here's c₃ as a circuit:

Simplifying using Boolean Algebra

```
c3 = d2' \cdot d1' \cdot d0' \cdot L + d2' \cdot d1' \cdot d0 \cdot L
    = d2' \cdot d1' \cdot (d0' + d0) \cdot L
    = d2' • d1' • 1 • L
    = d2' • d1' • L
                                                         AND
```

Important Corollaries of this Construction

- ¬, ∧, ∨ can implement any Boolean function we didn't need any others to do this
- Actually, just ¬, ∧ (or ¬, ∨) are enough
 follows by De Morgan's laws
 (1 ∨)2
- Actually, just NAND (or NOR)

$$\equiv \gamma (\gamma a \wedge \gamma b)$$

$$\equiv \gamma (\gamma a \wedge \gamma b)$$

$$0 + 0 = 0$$
 (with $C_{OUT} = 0$)

$$0 + 1 = 1 \text{ (with } C_{OUT} = 0)$$

$$1 + 0 = 1$$
 (with $C_{OUT} = 0$)

$$1 + 1 = 0$$
 (with $C_{OUT} = 1$)

A
$$0 + 0 = 0$$
 (with $C_{OUT} = 0$)
 $+ B$ $0 + 1 = 1$ (with $C_{OUT} = 0$)
S $1 + 0 = 1$ (with $C_{OUT} = 0$)
 (C_{OUT}) $1 + 1 = 0$ (with $C_{OUT} = 1$)

Idea: chain these together to add larger numbers

Recall from 2 4 8 elementary school: +375

A
$$0 + 0 = 0$$
 (with $C_{OUT} = 0$)

 $+ B$ $0 + 1 = 1$ (with $C_{OUT} = 0$)

S $1 + 0 = 1$ (with $C_{OUT} = 0$)

 (C_{OUT}) $1 + 1 = 0$ (with $C_{OUT} = 1$)

Idea: These are chained together with a carry-in

1-bit Binary Adder Full adder

Inputs: A, B, Carry-in

Outputs: Sum, Carry-out

C_{OUT} C_{IN}							
₩	∐ ∳	/ ₩	<u> </u>	/ ₩	\vdash	1	
	A	A	Α	Α	Α		
	В	В	В	В	В		
	S	S	S	S	S		

	Α	В	C _{IN}	C _{OUT}	S	
	0	0	0	0	0	
	0	0	1	0	1	
	0	1	0	0	1	+
>	0	1	1	1	0	
	1	0	0	0	1	\leftarrow
	1	0	1	1	0	
	1	1	0	1	0	
7	1	1	1	1	1	

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

Α	В	C _{IN}	C _{OUT}	S	Derive an expression for S
0	0	0	0	0	
0	0	1	0	1	A' • B' • C _{IN}
0	1	0	0	1	A' • B' • C _{IN} A' • B • C _{IN} '
0	1	1	1	0	$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' +$
1	0	0	0	1	$A \cdot B' \cdot C_{IN}'$ $A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$
1	0	1	1	0	A B OIN TA BOOIN
1	1	0	1	0	
1	1	1	1	1	A • B • C _{IN}

• Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

$$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' + A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

Inputs: A, B, Carry-in

• Outputs: Sum, Carry-out

√	√		Л С	IN ✓	7	1
	Α	A	Α	A	Α	
	В	В	В	В	В	
	S	S	S	S	S	
						•

Α	В	C _{IN}	C _{out}	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$S = A' \cdot B' \cdot C_{IN} + A' \cdot B \cdot C_{IN}' + A \cdot B' \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

$$C_{OUT} = A' \cdot B \cdot C_{IN} + A \cdot B' \cdot C_{IN} + A \cdot B \cdot C_{IN}' + A \cdot B \cdot C_{IN}$$

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

e.g., full adder's carry-out function

```
14 jakes
        = A' B Cin + A B' Cin + A B Cin' + A B Cin
Cout
        = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = (A' B Cin + A B Cin) + A B' Cin + A B Cin' + A B Cin
        = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin
        = (1) B Cin + A B' Cin + A B Cin' + A B Cin
        = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
        = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
        = B Cin + A (1) Cin + A B Cin' + A B Cin
        = B Cin + A Cin + A B (Cin' + Cin)
        = B Cin + A Cin + A B (1)
        = B Cin + A Cin + A B 5 9 WW
```

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

e.g., full adder's carry-out function

```
Cout
        = A' B Cin + A B' Cin + A B Cin' + A B Cin
        = A' B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = A' B Cin + A B Cin + A B' Cin + A B Cin' + A B Cin
        = (A' + A) B Cin + A B' Cin + A B Cin' + A B Cin'
        = (1) B Cin + A B' Cin + A B Cin' + A B Cin
        = B Cin + A B' Cin + A B Cin' + A B Cin + A B Cin
        = B Cin + A B' Cin + A B Cin + A B Cin' + A B Cin
        = B Cin + A (B' + B) Cin + A B Cin' + A B Cin
        = B Cin + A (1) Cin + A B Cin' + A B Cin
        = B Cin + A Cin + A B (Cin' + Cin)
        = B Cin + A Cin + A B (1)
                                                   adding extra terms
        = B Cin + A Cin + A B
                                                 creates new factoring
                                                     opportunities
```

A bit Ripple-Carry Adder

Mapping Truth Tables to Logic Gates

Canonical Forms

Truth table is the unique signature of a 0/1 function

- The same truth table can have many gate realizations
 - We've seen this already
 - Depends on how good we are at Boolean simplification

- Canonical forms
 - Standard forms for a Boolean expression
 - We all produce the same expression

Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

Sum-of-Products Canonical Form

Product term (or minterm)

- ANDed product of literals input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

Α	В	С	minterms
0	0	0	A'B'C'
0	0	1	A'B'C
0	1	0	A'BC'
0	1	1	A'BC
1	0	0	AB'C'
1	0	1	AB'C
1	1	0	ABC'
1	1	1	ABC

F in canonical form:

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABC$$

canonical form ≠ minimal form

$$F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC'$$

= $(A'B' + A'B + AB' + AB)C + ABC'$
= $((A' + A)(B' + B))C + ABC'$
= $C + ABC'$
= $ABC' + C$
= $ABC' + C$

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Multiply the maxterms together

F =

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F'

Α	В	С	F	
0	0	0	0	F' = A'B'C' + A'BC' + AB'C'
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F'

Α	В	С	F	
0	0	0	0	
0	0	1	1	
0	1	0	0	
0	1	1	1	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

$$F' = A'B'C' + A'BC' + AB'C'$$

Taking the complement of both sides...

$$(F')' = (A'B'C' + A'BC' + AB'C')'$$
And using DeMorgan/Comp....

$$F = (A'B'C')' (A'BC')' (AB'C')'$$

$$F = (A + B + C)(A + B' + C)(A' + B + C)$$

Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

Α	В	C	maxterms
0	0	0	A+B+C
0	0	1	A+B+C'
0	1	0	A+B'+C
0	1	1	A+B'+C'
1	0	0	A'+B+C
1	0	1	A'+B+C'
1	1	0	A'+B'+C
1	1	1	A'+B'+C'

F in canonical form:

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

canonical form ≠ minimal form

$$F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)$$

$$= (A + B + C) (A + B' + C)$$

$$(A + B + C) (A' + B + C)$$

$$= (A + C) (B + C)$$