Group: Jin, Nate, & Emma

Unit 13 ETL Project

Project Proposal

For our ETL project, we would like to analyze happiness and freedom data. We want to evaluate how a country's perception of political, social, and individual freedoms affect happiness. We would assume that countries with greater freedoms have higher happiness scores.

Finding Data

To find our data sources, we used Kaggle.com as reference and inspiration. As a group, we decided to focus on two csv files:

1. freedom.csv

Website: https://www.cato.org/human-freedom-index-new

Kaggle: https://www.kaggle.com/gsutters/the-human-freedom-index#hfi cc 2018.csv

2. happiness.csv

Website: https://ourworldindata.org/happiness-and-life-satisfaction

Data Cleanup & Analysis

The freedom.csv focuses on human rights around the world, from various sample years, using a scoring system 0 through 10 with 10 being "more free". The data looks at different categories of "freedoms" relating to violence, female treatment, judicial systems, personal and social rights, military intervention, etc. adding up to about 115 columns worth of indicators of "freedom". From these columns we determined 9 that we wanted to further analyze.

- 1. #pf_expression, Freedom of expression
- 2. #ef legal protection, Protection of property rights
- 3. #ef legal integrity, Integrity of the legal system
- 4. #pf identity sex, Same-sex ralitionships
- 5. #pf_religion, Religious freedom
- 6. #pf association assembly, Freedom of assembly
- 7. #ef trade movement visit, Freedom of foreigners to visit
- 8. #ef_legal_military, Military interference in rule of law and politics
- 9. #ef_money_inflation, Inflation: most recent year

After loading the data into Jupyter Notebook, to clean, and determining which columns to keep, we renamed the columns using Pandas for simplicity.

With the variables listed above, we want to compare happiness scores across countries. We would assume that countries with greater freedom report higher happiness scores and therefore are generally happier than countries with lower perceived freedoms.

The happiness.csv shows survey data that measures life satisfaction and happiness throughout the globe. The values range from 0 to 10 with 10 being "happier". This file is much smaller with only 4 columns: region, country code, year, and happiness score.

Some limitations to our data sets:

- 1. Happiness and freedom are relative and difficult to accurately measure as human perception of happiness and freedom can be defined differently from person to person.
- 2. The data between the two csv files are not perfectly matched. There are blanks and null values. The years do not always correlate per country and not each country participated each time, each year so the data may be skewed.

Type of Transformation:

In order to clean the data, we decided to use Pandas to filter and join tables. Utilizing Pandas was the first step in our data cleanup process and using pgAdmin 4 with the help of SQLalchemy was the second step.

We created two tables to be imported into a relational database:

Values Table

	year	happiness_score	religion	assembly	expression	same_sex	legal_protection	military_interference	legal_system	inflation	foreigners_visit
code											
AGO	2011	5.589001	7	2.5	6.7	0	2.9	3.3	4.2	7.3	0
ALB	2009	5.485470	9.8	-	7.7	10	3.9	8.3	4.2	9.5	0
ARE	2009	6.866063	6	2.5	6.6	0	6.7	8.3	6.7	9.7	3.4
ARG	2008	5.961034	8.9	10	8.6	10	3.2	7.5	4.2	6.9	4.6
ARM	2008	4.651972	7.4	-	5.7	10	5.4	5.8	5	8.2	1.1
										·	
VNM	2008	5.480425	6.4	2.5	4.6	10	5.7	5	6.7	5.4	0.6
YEM	2009	4.809259	-			-	7	-	5	-	5
ZAF	2008	5.346307	8	10	9.1	10	8.1	8.3	4.2	7.7	8
ZMB	2008	4.730263	7.7	5	7.2	5	5.8	8.3	6.7	7.5	3.7
ZWE	2008	3.174264	8.2	5	6	5	1.7	3.3	5	9.5	3.2

Countries Table

region	countries	
		code
Sub-Saharan Africa	Angola	AGO
Eastern Europe	Albania	ALB
Middle East & North Africa	United Arab Emirates	ARE
Latin America & the Caribbean	Argentina	ARG
Caucasus & Central Asia	Armenia	ARM
		5550
South Asia	Vietnam	NNV
Middle East & North Africa	Yemen	YEM
Sub-Saharan Africa	South Africa	ZAF
Sub-Saharan Africa	Zambia	ZMB
Sub-Saharan Africa	Zimbabwe	ZWE

These tables were also created in order to normalize our data.

For our countries table and values table, uploaded into pgAdmin4, we determined country code as the primary key for both. Our tables reflect a one-to-one relationship because one record, country code, is associated with only one record in the other table.

Project Report

<u>Extract:</u> Our data was extracted into CSV files and we used Jupyter Notebook and pgAdmin 4 to edit, filter, and execute our data analysis.

<u>Transform:</u> In terms of transforming the data, we first uploaded our two CSVs into Jupyter Notebook. We wanted to merge our freedom.csv and happiness.csv together. We first converted the individual CSVs to tables and then combined the tables using a left join on country code.

<u>Load:</u> After cleaning and merging the data, we converted our tables into SQL files in Jupyter Notebook. And from there, our data was uploaded to pgAdmin4.