The xia2 manual

Graeme Winter

January 9, 2012

Contents

1	Bac	kground 2								
	1.1	Before we start								
	1.2	Acknowledgements								
	1.3	Background (2005)								
2	Wha	What is xia2?								
	2.1	What is xia2?								
	2.2	Why is this useful?								
3	Using xia2									
	3.1	Options (1)								
	3.2	How does it figure what to do? 4								
	3.3	How does it figure what to do?								
	3.4	Understanding the experiment								
	3.5	What the program sees (automatic.xinfo) 5								
	3.6	Example: 3QRN								
	3.7	Example: data								
	3.8	Example command line 6								
	3.9	Example results								
	3.10	Development option - using AIMLESS								
	3.11	LogFiles/*aimless.log								
	3.12	What to do next?								
	3.13	Modify automatic.xinfo \rightarrow modified.xinfo \dots 8								
	3.14	Running again								
	3.15	Example results II								
	3.16	Resolution: much more in Lunchtime Bytes 9								
	3.17	Output								
	3.18	Output								
	3.19	Output								
	3.20	Options (2)								
4	What did it do?									
	4.1	Indexing								
	4.2	Integration								
	4.3	Scaling								
	4.4	Merging and analysis								
5	What decisions were made?									
	5.1	Decisions: Indexing - LABELIT								
	5.2	Decisions: Indexing - IDXREF								
	5.3	Decisions: Testing lattice choice								
	5.4	Decisions: Testing lattice choice 1								

	5.5	Decisions: Testing lattice choice 2	١3			
	5.6	Decisions: Lattice observations	13			
		Resolution limits - default criteria				
	5.8	Resolution limits - why unmerged $\frac{I}{\sigma_I} > 1?$	14			
6	6 Comments					
	6.1	Which options work best?	14			
7	Conclusions					
	7.1	Conclusions	15			
	7.2	Getting xia2	15			

1 Background

1.1 Before we start...

- No MOSFLM¹, XDS², SCALA³, CCP4⁴
- \bullet \rightarrow no xia2
- No LABELIT⁵, CCTBX⁶, POINTLESS⁷, etc.
- \bullet \rightarrow harder to write xia2, less reliable

1.2 Acknowledgements

- Andrew Leslie, Harry Powell, Phil Evans, Wolfgang Kabsch, Kay Diederichs, Nick Sauter, Ralf Grosse-Kunstleve
- Alun Ashton, Dave Stuart, Diamond beamline staff, Miroslav Papiz, Steve Prince, Colin Nave, xia2 users, providers of test data (esp. JCSG)
- $\bullet\,$ Funding from Diamond Light Source, BBSRC e-Science e-HTPX project, BioXHit

¹A.G.W. Leslie, Acta Cryst. (2006) D62, 48-57

²W. Kabsch, Acta Cryst. (2010) D66, 125-132

³P. Evans, Acta Cryst. (2006) D62, 72-82

⁴CCP4, Acta Cryst. (1994) D50, 760-763

⁵N.K. Sauter et al. J. Appl. Cryst. (2004) 37, 399-409

 $^{^6\}mathrm{R.W.}$ Grosse-Kunstleve et al. J. Appl. Cryst. (2002) 35, 126-136

⁷P. Evans, Acta Cryst. (2006) D62, 72-82

1.3 Background (2005)

- Comprehensive, trusted software available
- Background of strong publications (esp. CCP4 study weekends)
- Massive advances in computing
- New synchrotron for UK
- ullet a great time to develop automated data reduction
- Also told that this is impossible and a waste of time

2 What is xia2?

2.1 What is xia2?

- An *expert* system to perform diffraction data processing and analysis on *your* behalf using *your* software
- A system which can correctly handle multi-pass, multi-wavelength data sets

- Not a data processing package
- 12 datasets / hour possible
- Limited help
- Human endurance
- Intended xia2 as tool to delegate data processing to

2.2 Why is this useful?

- Second opinion
- Allows you to focus on problem cases
- Help busy / novice users
- Provides access to other tools
- Reproducible processing

3 Using xia2

xia2 - 2d /here/are/my/data

xia2 -3d /here/are/my/data

3.1 Options (1)

- \bullet -atom X tell xia2 to separate anomalous pairs i.e. $I(+) \neq I(-)$ in scaling
- $\bullet\,$ -2d tell xia2 to use MOSFLM and SCALA
- $\bullet\,$ -3d tell xia2 to use XDS and XSCALE

• -3dii - tell xia2 to use XDS and XSCALE, indexing with peaks found from all images

3.2 How does it figure what to do?

- Read all of the image headers then
- Organise these into sweeps then
- Organise these into wavelengths then
- Assign all of these wavelengths to a crystal

3.3 How does it figure what to do?

3.4 Understanding the experiment

- SWEEP: one "scan" basic unit of indexing / integration
- WAVELENGTH: container of SWEEPs
- WAVELENGTH: all H K L observations merged
- WAVELENGTH: CCP4 MTZ dataset
- CRYSTAL: contains WAVELENGTHs
- CRYSTAL: all data basic unit of scaling

3.5 What the program sees (automatic.xinfo)

BEGIN PROJECT AUTOMATIC BEGIN CRYSTAL DEFAULT BEGIN HA_INFO ATOM Ba END HA_INFO
BEGIN WAVELENGTH SAD
WAVELENGTH 0.979500
END WAVELENGTH SAD
BEGIN SWEEP SWEEP1
WAVELENGTH SAD
DIRECTORY /dls/i02/data/2011/mx1234-5
IMAGE K5_M1S3_3_001.img
START_END 1 450
END SWEEP SWEEP1
END CRYSTAL DEFAULT
END PROJECT AUTOMATIC

3.6 Example: 3QRN

- J.P. Hall et al., Proc. Natl. Acad. Sci. USA 2011 108 (43) 17573-17574
- Data recorded at Diamond I02
- DNA / ligand complex
- Demonstrates:
 - Radiation damage
 - Heavy atom
 - Resolution limits
- Better sample used for deposition

3.7 Example: data

3.8 Example command line

xia
2 -3d -atom Ba /dls/i02/data/...

3.9 Example results

1.25	6.45	1.25
18.85	18.85	1.27
95.2	60.1	70.2
12.2	8.4	4.8
12.3	18.5	2.6
0.113	0.096	0.564
0.129	0.118	0.633
0.121	0.105	0.679
0.034	0.038	0.267
0.043	0.041	0.368
12.131		
93.3	52.6	58.0
6.4	5.0	2.0
0.544	0.791	-0.297
1.085	0.000	0.000
118588	529	1634
9749	63	337
	18.85 95.2 12.2 12.3 0.113 0.129 0.121 0.034 0.043 12.131 93.3 6.4 0.544 1.085 118588	18.85 18.85 95.2 60.1 12.2 8.4 12.3 18.5 0.113 0.096 0.129 0.118 0.121 0.105 0.034 0.038 0.043 0.041 12.131 93.3 52.6 6.4 5.0 0.544 0.791 1.085 0.000 118588 529

${\bf 3.10}\quad {\bf Development\ option\ -\ using\ AIMLESS}$

xia2 -3da ...

3.11 LogFiles/*aimless.log

3.12 What to do next?

- Edit automatic.xinfo
- Only process first 200 frames

3.13 Modify automatic.xinfo \rightarrow modified.xinfo

BEGIN PROJECT AUTOMATIC

BEGIN CRYSTAL DEFAULT

BEGIN HA_INFO

ATOM Ba

END HA_INFO

BEGIN WAVELENGTH SAD

WAVELENGTH 0.979500

END WAVELENGTH SAD

BEGIN SWEEP SWEEP1

WAVELENGTH SAD

DIRECTORY /dls/i02/data/2011/mx1234-5

IMAGE K5_M1S3_3_001.img

START_END 1 200 ! THIS WAS 450

END SWEEP SWEEP1

END CRYSTAL DEFAULT

END PROJECT AUTOMATIC

3.14 Running again

xia2 -3d -xinfo modified.xinfo

3.15 Example results II

High resolution limit	1.22	6.34	1.22
Low resolution limit	19.62	19.62	1.24
Completeness	86.9	49.1	37.8
Multiplicity	5.3	4.9	1.7
I/sigma	20.1	37.0	2.3
Rmerge	0.036	0.020	0.355
Rmeas(I)	0.060	0.038	0.448
Rmeas(I+/-)	0.043	0.023	0.491
Rpim(I)	0.023	0.014	0.297
Rpim(I+/-)	0.022	0.011	0.339
Wilson B factor	10.70		
Anomalous completeness	77.7	41.0	18.3
Anomalous multiplicity	2.7	3.5	0.5
Anomalous correlation	0.779	0.931	0.000
Anomalous slope	1.553	0.000	0.000
Total observations	50875	272	342
Total unique	9552	55	199

3.16 Resolution: much more in Lunchtime Bytes

- Data incomplete at high resolution
- Add RESOLUTION to xinfo file (in either SWEEP or WAVELENGTH
- Add -resolution to the command line

3.17 Output

- xia2.txt: everything you should read including program citations
- xia2-debug.txt: everything you probably shouldn't
- LogFiles: you should look at these
- DataFiles: MTZ + erzatz scalepack

3.18 Output

```
oC 81.45 81.46 149.51 90.00 90.00 90.00 oP 57.59 57.60 149.50 90.00 90.00 90.00 mC 81.46 81.45 149.50 90.00 89.95 90.00 mP 57.60 57.59 149.53 90.00 89.93 90.00 aP 57.59 57.61 149.52 89.93 89.99 89.99 Indexing solution:
tP 57.60 57.60 149.51 90.00 90.00 90.00
```

3.19 Output

----- Integrating SWEEP1 -----

Processed batches 1 to 450 Weighted RMSD: 0.26 (0.09)

Integration status per image (60/record):

3.20 Options (2)

- -xinfo modified.xinfo use specific input file
- -image /path/to/an/image.img process specific scan
- -spacegroup spacegroup_name set the spacegroup, e.g. P21
- -cell a,b,c, α , β , γ set the cell constants
- -small_molecule don't run things like TRUNCATE

4 What did it do?

What did it do? and why?

4.1 Indexing

• Initial indexing with LABELIT from 3 images⁸

⁸This is *not* good for small molecule data

- Refine results with XDS indexing
- Use data based on general analysis @ 0, 45, 90 degrees

4.2 Integration

- Integrate with lattice constraints applied
- Integrate to corners of detector
- If good reason, repeat integration e.g. with results of postrefinement
- Perform postrefinement in P1, assumed lattice may reject lattice, feed back to indexing
- At the end of this we have LATTICE

• If XDS, includes iterative elimination of outliers in CORRECT step

4.3 Scaling

- Compare results of pointless with remaining allowed lattices:
 - If agree, proceed
 - If lattice not allowed, consider next solution
 - If solution lower symmetry than lattice, reject and return to indexing
- Ensure conclusions consistent
- Now have corrrect LAUE GROUP
- Ensure consistent setting / origin choice
- Place data into data collection order
- Analyse absences to decide likely SPACE GROUPs
- Decide scaling model⁹

4.4 Merging and analysis

- If using XDS for integration and XSCALE for scaling, data still merged with SCALA / AIMLESS
- Resolution limits calculated from the intensities, not program output
- "Downstream" analysis (e.g. TRUNCATE and SFCHECK) identical
- Working on scaling data direct from XDS with AIMLESS

5 What decisions were made?

5.1 Decisions: Indexing - LABELIT

Solution	Metric fit rmsd	#spots	crystal_system	${\tt unit_c}$	ell		
:) 9	0.2097 dg 0.327	533	tetragonal tP	42.32	42.32	39.28	
:) 8	0.2097 dg 0.364	541	orthorhombic oP	39.29	42.28	42.33	
:) 7	0.2097 dg 0.300	519	monoclinic mP	39.26	42.32	42.32	
:) 6	0.1950 dg 0.299	523	monoclinic mP	39.26	42.33	42.31	
:) 5	0.1307 dg 0.411	523	orthorhombic oC	59.71	59.91	39.31	
:) 4	0.1307 dg 0.412	524	monoclinic mC	59.91	59.71	39.31	
:) 3	0.0937 dg 0.429	524	monoclinic mC	59.71	59.91	39.30	
:) 2	0.1010 dg 0.298	512	monoclinic mP	42.27	39.31	42.32	
:) 1	0.0000 dg 0.291	509	triclinic aP	39.31	42.26	42.32	

⁹For XDS use not corrections in CORRECT, apply all corrections in XSCALE

5.2 Decisions: Indexing - IDXREF

*	31	aP	0.0	39.1	42.1	42.1	90.0	90.0	89.9
*	44	aP	0.1	39.1	42.1	42.1	90.0	90.0	90.1
*	34	mP	0.7	39.1	42.1	42.1	90.0	90.1	90.0
*	20	mC	0.7	59.6	59.6	39.1	90.1	90.1	90.0
*	33	mP	0.8	39.1	42.1	42.1	90.0	90.1	90.0
*	25	mC	0.9	59.6	59.6	39.1	89.9	90.1	90.0
*	35	mP	1.7	42.1	39.1	42.1	90.0	90.0	90.1
*	23	oC	1.7	59.6	59.6	39.1	89.9	90.1	90.0
*	32	oP	1.8	39.1	42.1	42.1	90.0	90.0	90.1
*	21	tP	1.9	42.1	42.1	39.1	90.0	90.1	90.0
	10	mC	79.5	57.5	57.4	42.1	90.0	90.0	94.2
	13	oC	79.9	57.4	57.5	42.1	90.0	90.0	85.8
	14	mC	79.9	57.4	57.5	42.1	90.0	90.0	85.8

5.3 Decisions: Testing lattice choice

- Perform postrefinement (MOSFLM and XDS) in P1 and putative lattice
- Compare R.M.S. deviation of observed / predicted centres
- Results comparable \rightarrow lattice probably OK
- Results worse with lattice constraints \rightarrow lattice probably wrong

5.4 Decisions: Testing lattice choice 1

REFINED PARAMETERS: DISTANCE BEAM ORIENTATION CELL AXIS USING 27389 INDEXED SPOTS
STANDARD DEVIATION OF SPOT POSITION (PIXELS) 1.28
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.23

. .

UNIT CELL PARAMETERS 42.180 42.183 39.236 90.002 89.989 89.986 E.S.D. OF CELL PARAMETERS 1.8E-02 4.3E-02 1.5E-02 1.4E-02 1.0E-02 2.9E-02 SPACE GROUP NUMBER 1

5.5 Decisions: Testing lattice choice 2

REFINED PARAMETERS: DISTANCE BEAM ORIENTATION CELL AXIS USING 27378 INDEXED SPOTS
STANDARD DEVIATION OF SPOT POSITION (PIXELS) 1.29
STANDARD DEVIATION OF SPINDLE POSITION (DEGREES) 0.23

. .

UNIT CELL PARAMETERS 42.187 42.187 39.242 90.000 90.000 90.000 E.S.D. OF CELL PARAMETERS 1.6E-02 1.6E-02 1.2E-02 0.0E+00 0.0E+00 0.0E+00 SPACE GROUP NUMBER 75

5.6 Decisions: Lattice observations

- Selecting lattice from indexing safe, as tested and challenged
- However strong argument for performing all processing in P1:
 - Processing only performed once
 - Incorrect constraints cannot break things
 - Results generally comparable
- This is on the to-do list...

5.7 Resolution limits - default criteria

- Merged $\frac{I}{\sigma_I} > 2$
- Unmerged $\frac{I}{\sigma_I} > 1$
- $\bullet\,$ Control with -misigma, -isigma

5.8 Resolution limits - why unmerged $\frac{I}{\sigma_I} > 1$?

 10 Though resolution lim-

its to need to be revisited...

6 Comments

6.1 Which options work best?

 \bullet It depends \dots

¹⁰⁹⁰⁻fold multiplicity data from Ed Mitchell @ ESRF

- ... try for yourself!
- Sometimes -2d (MOSFLM / SCALA) works better, sometimes -3d (XDS etc.)
- Run both compare results, make up your own mind
- Hint for small molecule: -3dii -small_molecule
- \bullet -3d often works better for very fine ϕ sliced Pilatus data

7 Conclusions

7.1 Conclusions

- System available which can reduce your data on your behalf
- Relies on your software: MOSFLM / LABELIT / CCP4 / XDS
- Handles complex strategies so use them
- Works on Windows / OS X / Linux / laptop / workstation / cluster
- Best way to learn data reduction is to teach it
- Computer is very dim but diligent pupil
- Have a go yourself, or feel free to contribute to xia2

7.2 Getting xia2

- Blog: xia2.blogspot.com
- Code: xia2.sf.net
- List: xia2-list@lists.sourceforge.net

