Universität Rostock Institut für Mathematik Prof. Dr. Martin Redmann Franziska Schulz

Wahrscheinlichkeitstheorie und Mathematische Statistik

Übungsblatt 2

Aufgabe 2.1

Beweisen Sie die folgenden Verallgemeinerungen der Tschebyscheffschen Ungleichung:

1. Unter der Voraussetzung, dass $\mathbb{E}[e^{aX}]$ für a>0 existiert, ist

$$\mathbb{P}(X \ge \varepsilon) \le \frac{\mathbb{E}[e^{aX}]}{e^{a\varepsilon}}, \qquad (\varepsilon > 0).$$

2. Für die positive und nichtfallende Funktion f existiere der Erwartungswert $\mathbb{E}[f(|X - \mathbb{E}X|)]$. Dann gilt

$$P(|X - \mathbb{E}X| \ge \varepsilon) \le \frac{\mathbb{E}[f(|X - \mathbb{E}X|)]}{f(\varepsilon)}.$$

Aufgabe 2.2

Es sei (Y_n) eine Folge unabhängiger auf (0,1) gleichverteilter Zufallsgrößen. Zeigen Sie, dass

$$X_n := \left(\frac{1}{Y_1} \cdots \frac{1}{Y_n}\right)^{\frac{1}{n}} \xrightarrow{\text{f.s.}} e$$

gilt.

Aufgabe 2.3

Zeigen Sie, dass der Grenzwert in Wahrscheinlichkeit und der fast sichere Grenzwert linear sind.

Aufgabe 2.4

Beweisen Sie den Satz von der Cesaro-Konvergenz, d.h. aus der Konvergenz $x_n \to x \in \mathbb{R}$ einer Zahlenfolge (x_n) folgt $\frac{1}{n} \sum_{i=1}^n x_i \to x \ (n \to \infty)$.

Aufgabe 2.5

Berechnen Sie die charakteristischen Funktionen der folgenden Zufallsgrößen:

- (a) X sei auf dem Intervall [-a, a] für ein a > 0 gleichverteilt,
- (b) Y sei zweipunktverteilt gegeben durch $\mathbb{P}(Y=1)=\mathbb{P}(Y=-1)=0,5,$
- (c) $Z \sim Bin(n, p)$, d.h. Z sei eine binomialverteilte Zufallsgröße mit Parametern $n \in \mathbb{N}$ und $p \in (0, 1)$.

Aufgabe 2.6

Zeigen Sie mit Hilfe des zentralen Grenzwertsatzes durch die Wahl geeigneter Zufallsgrößen X_n in Satz 1.18 (Folien), dass

$$\lim_{n \to \infty} e^{-n} \sum_{k=1}^{n} \frac{n^k}{k!} = 0, 5.$$

Abgabe: Mittwoch, 23.04.2025 bis 9.00 Uhr, online bei Stud.IP unter Aufgaben, im PDF Format.