Learning Drifting Data Using Selective Sampling

Eli Kravchik

under supervision of Prof. Koby Crammer

Faculty of Electrical Engineering, Technion Israel Institute of Technology

March 27, 2014

Outline

Introduction

- Introduction
- Classification Analysis
- Regression Analysis
- Summary

Summary

On-line Learning

- Used for many different tasks:
 - Information filtering
 - Market analysis
 - To be added
- Data revealed round after round
- Learner has to make prediction on-line

On-line Learning

- At each round t:
 - lacktriangledown Instance x_t observed
 - 2 Prediction \hat{y}_t issued

 - \bullet True value y_t revealed
- Regret definition

$$R_t = \mathcal{L}\left\{\hat{y}_t, y_t\right\} - \mathcal{L}\left\{\bar{y}_t, y_t\right\}$$

 \bar{y}_t - optimal prediction, $\mathcal{L}\{,\}$ - loss function

Selective Sampling

- Acquiring true value (or label) y_t can be costly or complicated
- Algorithms can achieve similar results without knowing all true labels y_t
- Only some of the labels are queried. Others remain unknown
- Queries are issued according to confidence of the algorithm

Drifting Data

- In some problems data varies over time
- The optimal function from family of functions learned, is not fixed
- Approaches to handle drifting data :
 - Detect the drift
 - Adjust algorithm to drift setting

Drifting Data - Related Work

- Time windows:
 - For drift detection
 - For prediction
- Detecting drift using error distribution
- Forgetting strategies

Drifts vs Shifts

Data can change gradually (drift) or suddenly (shift or switch).

Example - market analysis:

- Gradual drift effect of sub-prime crisis
- Abrupt Switch (shift) effect of Russian invasion to Crimea

In this work

- Effect of switch on on-line learning problems is approached
- Linear classification and linear regression selective sampling settings are examined
- Selective sampling principles suggested to overcome switch effect

Suggested Method

- Implement selective sampling approach to overcome switch in an on-line learning setting
- Strategy of dealing with switch:
 - Detect the switch
 - If switch is undetected assure that the harm caused by the switch is minor
 - 3 Small probability for false detections

Suggested Method

- Exploit notion of confidence provided by selective sampling to handle switch
- Avoid unnecessary loss of information while overcoming switch effect
- Time windows used for change detection but not for classification
- Selective sampling is also used in original context only part of the labels are queried

Problem setup:

- \bullet $x_t \in R^d$
- $y_t \in \{\pm 1\}$

Assumptions on instances:

•
$$||x_t|| = 1$$

Problem Setting - On-line Classification

Assumptions on label distribution:

- $\|u\| = \|v\| = 1, u, v \in \mathbb{R}^d$
- For $t < \tau$ holds:
 - \bullet E $[y_t] = \boldsymbol{u}^{\top} \boldsymbol{x}_t$
 - $\Pr[y_t = 1] = \frac{1 + |u^T x_t|}{2}$
- For $t > \tau$ holds:
 - \bullet E $[y_t] = v^{\top} x_t$
 - $\Pr[y_t = 1] = \frac{1 + v^{\top} x_t}{2}$

Problem Setting

- At each round t instance x_t observed
- Prediction \hat{y}_t issued
- Regret R_t suffered
- True label y_t can be queried

Linear classification is used to issue prediction:

$$\hat{y}_t = \operatorname{sign}\left\{\boldsymbol{w}_t^{\top} \boldsymbol{x}_t\right\} \tag{1}$$

RLS Estimator

 w_t would be the RLS estimator (Cesa-Bianchi at all. 2004, 2006, 2009) solving the following problem:

$$oldsymbol{w}_t = \min_{oldsymbol{w} \in R^d} \left\{ \sum_{i=1}^n \left(y_i - oldsymbol{w}^ op oldsymbol{x}_i
ight)^2 + \|oldsymbol{w}\|^2
ight\}$$

with $n=N_t$ being the number of queries issued until round t-1

RLS Estimator

Solution to the optimization problem:

$$\boldsymbol{w}_t = A_t^{-1} b_t \tag{2}$$

Where:

$$ullet$$
 $A_t = \left(I + \sum\limits_{i=1}^n oldsymbol{x}_i oldsymbol{x}_i^ op + oldsymbol{x}_t oldsymbol{x}_t^ op + old$

$$\bullet$$
 $b_t = \sum_{i=1}^n y_i x_i \in R^d$

 A_t can be viewed as covariance or "confidence" matrix

Cesa-Bianchi, Gentile, Orabona 2009:

Selective sampling algorithm -

- Set $\kappa \in (0,1)$
- Calculate $r_t = oldsymbol{x}_t^ op A_t^{-1} oldsymbol{x}_t$
- If $r_t > t^{-\kappa}$ label y_t is queried and A_t , b_t are updated
- If $r_t \leq t^{-\kappa}$ label y_t remains unknown and no update performed

RLS Estimator and BBQ Algorithm Properties

Assuming standard, no switch setting, (u = v):

Logarithmic cumulative regret R_T:

$$R_T \le O(d \ln T) + f\{\kappa\}$$

• Reduced number of queried labels N_T :

$$N_T \sim O\left(dT^{\kappa} \ln T\right)$$

Controlled estimator bias B_t:

$$B_t = \boldsymbol{w}_t^{\top} \boldsymbol{x}_t - \mathrm{E} \left[\boldsymbol{w}_t^{\top} \boldsymbol{x}_t \right] \le r_t + \sqrt{r_t}$$

• Switch from u to v at round τ increases bias bound:

$$B_t \le r_t + \sqrt{r_t} + N_\tau || \boldsymbol{v} - \boldsymbol{u} || \sqrt{r_t}$$

• The bias B_t controls the regret R_t . So switch at round τ increases regret bound:

$$R_T \le O\left(\left\{\|\boldsymbol{v} - \boldsymbol{u}\|^2 \tau^{2\kappa} (d \ln \tau)^2 [f \{T - \tau\}] + 1\right\} d \ln T\right) + f \{\kappa\}$$

Using Selective Sampling to Detect Switch

- When switch occurs low cumulative regret can no longer be expected
- ullet Selective sampling approach measures estimator's confidence regarding prediction on give instance x_t
- ullet When confidence on instance x_t is high, prediction should be close to optimal
- Evaluating prediction on "high confidence" instances can be used to detect change

Using Selective Sampling to Detect Switch

Confidence factor $r_t = \boldsymbol{x}_t^{\top} A_t^{-1} \boldsymbol{x}_t$:

- ullet Small r_t high confidence regarding instance $oldsymbol{x}_t$
- Large r_t high uncertainty (low confidence) regarding instance ${m x}_t$

 r_t controls both the bias B_t and the instantaneous regret R_t :

- If r_t is large, low regret R_t can not be assured, switch or no switch.
- If r_t is small, low regret R_T should be expected. Unless a switch had occurred...

Main idea - evaluate performance on instances with small r_t to detect switch.

Bad performance will indicate that switch had occurred.

- Performance cannot be evaluated comparing prediction \hat{y}_t to label y_t due to noise
- ullet Even if optimal classifier $m{v}$ is known error probability will be $rac{1-m{|v^{ op}x_tm{|}}}{2}$
- ullet Prediction will be evaluated comparing to optimal classifier $|m{w}_t^ op m{x}_t m{v}^ op m{x}_t|$

Windowed Demo Classifiers

- ullet Problem optimal classifier v is unknown.
- Solution estimate optimal classifier v with demo classifier h_t .
- Demo classifier h_t constructed from a window of last L rounds and should estimate v well enough
- Performance of w_t comparing to h_t will evaluate $|w_t^\top x_t v^\top x_t|$ and indicate possible switch

Introduction

Construction of Windowed Demo Classifier

- Parameter initial window length $L_0 > 0$
- Calculate window length $L_t = L_0 + \sqrt{t}$
- At round t select a window of last L_t instances

$$\bullet \ \ \text{Calculate} \ A_{L_t} = \left(I + \sum_{l=t-L_t}^{t-1} \boldsymbol{x}_l \boldsymbol{x}_l^\top \right), b_{L_t} = \sum_{l=t-L_t}^{t-1} y_l \boldsymbol{x}_l$$

ullet Construct demo classifier $h_t = \left(A_{L_t} + oldsymbol{x}_t oldsymbol{x}_t^ op
ight)^{-1} b_{L_t}$

Resolution of Windowed Demo Classifier

- ullet Demo classifier h_t constructed at round t from a window of last L_t instances
- Demo classifier h_t will be used to evaluate next KL_t instances
- Next demo classifier $h_{t_{next}}$ will be constructed at round KL_t+1
- Only $\frac{T}{K}$ labels will be queried
- Switch detection resolution reduced from L_t to KL_t

Algorithm for Detecting Switch

- Calculate estimator $w_t = A_t^{-1}b_t$
 - ullet Where $A_t = \left(I + \sum\limits_{i=1}^{N_t} oldsymbol{x}_i oldsymbol{x}_i^ op + oldsymbol{x}_t oldsymbol{x}_t^ op
 ight), b_t = \sum\limits_{i=1}^{N_t} y_i oldsymbol{x}_i$
- Calculate demo classifier $h_t = \left(A_{L_t} + oldsymbol{x}_t oldsymbol{x}_t^ op
 ight)^{-1} b_{L_t}$

$$\bullet \ A_{L_t} = \left(I + \sum_{l=m_t-L_t}^{m_t} \boldsymbol{x}_l \boldsymbol{x}_l^\top\right), b_{L_t} = \sum_{l=m_t-L_t}^{m_t} y_l \boldsymbol{x}_l$$

- ullet Calculate $r_t = oldsymbol{x}_t^ op A_t^{-1} oldsymbol{x}_t$
- ullet Calculate $r_{L_t} = oldsymbol{x}_t^ op \left(A_{L_t} + oldsymbol{x}_t oldsymbol{x}_t^ op
 ight)^{-1} oldsymbol{x}_t$

Algorithm for Detecting Switch

- Parameter $\delta \in (0,1)$
- Calculate $\delta_t = \frac{\delta}{t(t+1)}$
- Calculate $C_t = \left| oldsymbol{w}_t^ op oldsymbol{x}_t h_t^ op oldsymbol{x}_t
 ight|$
- Calculate:

$$K_t = \left(\sqrt{2\ln\frac{2}{\delta_t}} + 1\right)\sqrt{r_t} + r_t + \left(\sqrt{2\ln\frac{2}{\delta_t}} + 1\right)\sqrt{r_{L_t}} + r_{L_t}$$

• If $C_t > K_t$ declare switch and restart classifier w_t from zero. Else continue to next round

Algorithm for Detecting Switch

- If $C_t > K_t$
 - If switch occurred it is detected
 - If no switch occurred $\Pr\left[C_t > K_t\right] \leq 2\delta$ to be proved
- If $C_t \leq K_t$
 - If no switch occurred, no change applied to standard setting
 - If a switch occurred and undetected as $C_t \leq K_t$, additional regret caused would be small to be proved

Algorithm's Main Result

Main result:

- If a switch occurs algorithm detects it, or assures it causes small harm
- No switch occurs no false detection

Proving Main Result

Proof structure as follows:

- Proving undetected switch will cause low regret:
 - Bounding instantaneous regret
 - Summing to bound cumulative regret
- Proving probability for false positives is small

Proving Main Result - Instantaneous Regret Bound

Instantaneous regret R_t controlled by the term $|\boldsymbol{w}_t^{\top} \boldsymbol{x}_t - \boldsymbol{v}^{\top} \boldsymbol{x}_t|$:

$$R_{t} = \Pr \left[y_{t} \boldsymbol{w}_{t}^{\top} \boldsymbol{x}_{t} < 0 \right] - \Pr \left[y_{t} \boldsymbol{v}^{\top} \boldsymbol{x}_{t} < 0 \right] \leq$$

$$\varepsilon I_{\{|\boldsymbol{v}^{\top} \boldsymbol{x}_{t}| < \varepsilon\}} + \Pr \left[\left| \boldsymbol{w}_{t}^{\top} \boldsymbol{x}_{t} - \boldsymbol{v}^{\top} \boldsymbol{x}_{t} \right| \geq \varepsilon \right]$$

 $|w_t^{\top} x_t - v^{\top} x_t|$ can be bounded by triangle inequality:

$$\begin{vmatrix} \boldsymbol{w}_t^{\top} \boldsymbol{x}_t - \boldsymbol{v}^{\top} \boldsymbol{x}_t \end{vmatrix} \leq \begin{vmatrix} \boldsymbol{w}_t^{\top} \boldsymbol{x}_t - h_t^{\top} \boldsymbol{x}_t \end{vmatrix} + \begin{vmatrix} \boldsymbol{v}_t^{\top} \boldsymbol{x}_t - h_t^{\top} \boldsymbol{x}_t \end{vmatrix}$$
$$= C_t + \begin{vmatrix} \boldsymbol{v}_t^{\top} \boldsymbol{x}_t - h_t^{\top} \boldsymbol{x}_t \end{vmatrix}$$

Proving Main Result - Instantaneous Regret Bound

• C_t is bounded by K_t as a switch was not detected:

$$C_t \le K_t = \left(\sqrt{2\ln\frac{2}{\delta_t}} + 1\right)\sqrt{r_t} + r_t + \left(\sqrt{2\ln\frac{2}{\delta_t}} + 1\right)\sqrt{r_{L_t}} + r_{L_t}$$
(3)

• From properties of RLS estimator (Cesa-Bianchi at all) applied to demo classifier h_t :

$$\left| \boldsymbol{v}^{\top} \boldsymbol{x}_{t} - \boldsymbol{h}_{t}^{\top} \boldsymbol{x}_{t} \right| \leq \left(\sqrt{2 \ln \frac{2}{\delta_{t}}} + 1 \right) \sqrt{r_{L_{t}}} + r_{L_{t}}$$
 (4)

With probability $1 - \delta_t$.

Combining bounds on C_t and on $|\mathbf{v}^{\top}\mathbf{x}_t - h_t^{\top}\mathbf{x}_t|$:

$$\left| \boldsymbol{w}_{t}^{\top} \boldsymbol{x}_{t} - \boldsymbol{v}^{\top} \boldsymbol{x}_{t} \right| \leq \sqrt{r_{t}} \left(\sqrt{2 \ln \frac{2}{\delta_{t}}} + 1 \right) + r_{t}$$
$$+2\sqrt{r_{L_{t}}} \left(\sqrt{2 \ln \frac{2}{\delta_{t}}} + 1 \right) + 2r_{L_{t}}$$

Proving Main Result - Instantaneous Regret Bound

Using identities:

- \bullet Pr $[A] = E[I_A]$
- $I_{\{x<1\}} \le e^{1-x}$

final bound instantaneous regret R_t achieved:

$$R_{t} \leq \varepsilon I_{\{|\boldsymbol{v}^{\top}\boldsymbol{x}_{t}| < \varepsilon\}} + \Pr\left[\left|\boldsymbol{w}_{t}^{\top}\boldsymbol{x}_{t} - \boldsymbol{v}^{\top}\boldsymbol{x}_{t}\right| \geq \varepsilon\right]$$

$$\leq \varepsilon I_{\{|\boldsymbol{v}^{\top}\boldsymbol{x}_{t}| < \varepsilon\}} + 2\exp\left\{1 - \frac{\alpha_{\varepsilon,t}}{r_{L_{t}}}\right\} + 2\exp\left\{1 - \frac{\beta_{\varepsilon}}{r_{L_{t}}}\right\}$$

$$+ \exp\left\{1 - \frac{\alpha_{\varepsilon,t}}{r_{t}}\right\} + \exp\left\{1 - \frac{\beta_{\varepsilon}}{r_{t}}\right\} + \delta_{t}$$

Summary

Cumulative regret R_T is given by:

$$R_T = \sum_{t=1}^{T} R_t$$

Cumulative regret R_T will be bounded by summing over bound of instantaneous regret R_t .

Calculation outline:

- ullet Summation over the r_t terms separate calculation for:
 - Rounds t for which with $r_t \leq t^{-\kappa}$
 - Rounds t for which with $r_t > t^{-\kappa}$
- 2 Summation over the r_{L_t} terms.
- Deriving final bound

Proving Main Result - Cumulative Regret Bound

Summation over r_t terms - for rounds with $r_t > t^{-\kappa}$ -

• Identity $\exp\{-x\} \le \frac{1}{ex}$ gives:

$$\sum_{t=T_1, r_t > t^{-\kappa}}^T \exp\left\{1 - \frac{\alpha_{\varepsilon, t}}{r_t}\right\} \le \frac{1}{\alpha_{\varepsilon, T}} \sum_{t=T_1, r_t > t^{-\kappa}}^T r_t$$

• The result $r_t \leq \left(1 - \frac{\det A_{t-1}}{\det A_t}\right)$ (Cesa-Bianchi et. al 2004) yields:

$$\frac{1}{\alpha_{\varepsilon,t}} \sum_{t=T_1}^{T} r_t \ge \frac{1}{\alpha_{\varepsilon,t}} \sum_{t=T_1}^{T} r_t \ge \frac{1}{\det A_t}$$

Summation over r_t terms - for rounds with $r_t > t^{-\kappa}$ -

• Identity $1 - x \le -\ln x$ (for $x \le 1$) gives:

$$\frac{1}{\alpha_{\varepsilon,t}} \sum_{t=T_1,r_t>t^{-\kappa}}^{T} \left(1 - \frac{\det A_{t-1}}{\det A_t}\right) \le -\frac{1}{\alpha_{\varepsilon,t}} \sum_{t=T_1,r_t>t^{-\kappa}}^{T} \ln\left(\frac{\det A_{t-1}}{\det A_t}\right)$$

Computing the sum will give final expression:

$$-\frac{1}{\alpha_{\varepsilon,t}} \sum_{T=0}^{T} \ln\left(\frac{\det A_{t-1}}{\det A_t}\right) \le \frac{1}{\alpha_{\varepsilon,t}} \left\{ d \ln T - \ln\left(\det A_{T_1}\right) \right\}$$

Summation over r_t terms - for rounds with $r_t \leq t^{-\kappa}$ -

• Substituting $r_t \leq t^{-\kappa}$ and replacing sum with integral yields:

$$\sum_{t=T_1, r_t > t^{-\kappa}}^{T} \exp\left\{1 - \frac{\alpha_{\varepsilon, t}}{r_t}\right\} \le e \sum_{t=T_1, r_t > t^{-\kappa}}^{T} \exp\left\{-\frac{\alpha_{\varepsilon, t}}{t^{-\kappa}}\right\}$$

$$\le e \int_{T_1}^{T} \exp\left\{-\alpha_{\varepsilon, T} t^{\kappa}\right\} dt =$$

$$= \frac{e}{\kappa \left(\alpha_{\varepsilon, T}\right)^{\frac{1}{\kappa}}} \left(\Gamma\left\{\frac{1}{\kappa}, \alpha_{\varepsilon, T} T_1^{\kappa}\right\} - \Gamma\left\{\frac{1}{\kappa}, \alpha_{\varepsilon, T} T^{\kappa}\right\}\right)$$

Last equality follows from the identity:

$$\int \exp\{az^s\} dz = -\frac{z(-az^s)^{-\frac{1}{s}}}{s} \Gamma\left\{\frac{1}{s}, -az^s\right\}$$
 (5)

Summation over r_{L_t} terms -

Matrix Chernoff bound - for a series of random, i.i.d PSD matrices $Z_k \in R^{d \times d}$ holds:

$$\Pr\left[\lambda_{\min}\left\{\sum_{k} Z_{k}\right\} \leq (1-\gamma)\,\mu_{\min}\right] \leq d\left(\frac{e^{-\gamma}}{(1-\gamma)^{(1-\gamma)}}\right)^{\frac{r-\min}{\rho}}$$

where:

- $\gamma \in (0,1)$
- $\mu_{\min} = \lambda_{\min} \left\{ \sum_{k} \operatorname{E} \left[Z_{k} \right] \right\}$
- $\lambda_{\max} \{ E[Z_k] \} \le \rho$

Summation over r_{L_t} terms -

- Assumption: smallest eigenvalue of covariance matrix grows linearly $\lambda_{\min}\left\{\sum\limits_{k=1}^{L}\mathrm{E}\left[\boldsymbol{x}_{k}\boldsymbol{x}_{k}^{\top}\right]\right\}\sim O\left(\frac{L}{d}\right)$
- Using Chernoff matrix bound on $Z_k = x_k x_k^{\top}$, under the above assumption, yields:

$$\lambda_{\min}\left\{A_{L_t}
ight\} = \lambda_{\min}\left\{I + \sum_{k=1}^{L_t} oldsymbol{x}_k oldsymbol{x}_k^{ op}
ight\} > (1 - \gamma)rac{L_t}{d} + 1$$

Summation over $r_{L_{*}}$ terms -

Using the bound and identities below:

- For unit normed x: $x^{\top}Mx < \lambda_{max}\{M\}$
- $\lambda_{max} \{M\} = \frac{1}{\lambda_{min}\{M^{-1}\}}$
- $\lambda_{\min} \{A_{L_t}\} > (1-\gamma) \frac{L_t}{d}$

we get:

$$r_{L_t} = oldsymbol{x}_t^ op \left(A_{L_t} + oldsymbol{x}_t oldsymbol{x}_t^ op
ight)^{-1} oldsymbol{x}_t \leq rac{d}{\left(L_t + 2
ight)\left(1 - \gamma
ight)}$$

Summation over r_{L_t} terms -

• Replacing $L_t = L_0 + \sqrt{t}$ into the bound would yield:

$$r_{L_t} \le \frac{d}{\left(L_0 + \sqrt{t} + 2\right)(1 - \gamma)}$$

• Substituting bound r_{L_t} into the sum over regret R_T bound:

$$\sum_{t=T_1}^{T} \exp\left\{1 - \frac{\alpha_{\varepsilon,t}}{r_{L_t}}\right\} \le e \sum_{t=T_1}^{T} \exp\left\{-\hat{\alpha}_{\varepsilon,t} \left(L_0 + \sqrt{t}\right)\right\}$$

Summation over r_{L_t} terms -

Now replacing sum with integral and solving as before yields:

$$e \sum_{t=T_{1}}^{T} \exp\left\{-\hat{\alpha}_{\varepsilon,t} \left(L_{0} + \sqrt{t}\right)\right\} \leq \frac{2e}{\left(\tilde{\alpha}_{\varepsilon,T}\right)^{2}} \left(\Gamma\left\{2, \tilde{\alpha}_{\varepsilon,T} \left(T_{1} - L_{0}\right)^{\frac{1}{2}}\right\} - \Gamma\left\{2, \tilde{\alpha}_{\varepsilon,T} \left(T - L_{0}\right)^{\frac{1}{2}}\right\}\right)$$

Summing all developed bounds yields:

$$R_T \le O\left(d\left\{\ln T\right\}^2\right)$$

- Cumulative regret controlled and small
- \bullet Bound overcomes switch effect square logarithmic bound in T comparing to more than linear bound in τ

Summary

Introduction

Proving Main Result - No False Positives

- Reminder -switch detection if $C_t > K_t$
- Assuring no false detection if no switch occurs than $C_t \leq K_t$
- From triangle inequality:

$$C_t = \left| oldsymbol{w}_t^ op oldsymbol{x}_t - h_t^ op oldsymbol{x}_t
ight| \leq \left| oldsymbol{w}_t^ op oldsymbol{x}_t - oldsymbol{v}^ op oldsymbol{x}_t
ight| + \left| oldsymbol{v}^ op oldsymbol{x}_t - h_t^ op oldsymbol{x}_t
ight|$$

Proving Main Result - No False Positives

- Reminder from RLS estimator properties, holds with probability $1-2\delta_t$:
 - $\bullet |w_t^{\top} x_t v^{\top} x_t| \leq \sqrt{r_t} \left(\sqrt{2 \ln \frac{2}{\delta_t}} + 1 \right) + r_t$
 - $|\mathbf{v}^{\top} \mathbf{x}_t h_t^{\top} \mathbf{x}_t| \leq \left(\sqrt{2 \ln \frac{2}{\delta_{\star}}} + 1\right) \sqrt{r_{L_t}} + r_{L_t}$
- Substituting this into bound:

$$C_t \le \sqrt{r_t} \left(\sqrt{2 \ln \frac{2}{\delta_t}} + 1 \right) + r_t$$
$$+ \left(\sqrt{2 \ln \frac{2}{\delta_t}} + 1 \right) \sqrt{r_{L_t}} + r_{L_t} \le K_t$$

Proving Main Result - No False Positives

- Last result assures that if no switch occurred $C_t \leq K_t$ with probability $1-2\delta_t$
- ullet Thus the probability for a false detection at round t is $2\delta_t$
- Using union bound probability for a false detection throughout the algorithm is 2δ

Simulation Results

Synthetic data Matlab simulation:

- $T = 10^5$, $\mathbf{x}_t \in \mathbb{R}^4$, $\kappa = 0.7$, $L_0 = 500$, K = 6
- Instances x_t drawn randomly from Gaussian distribution and then normalized
- Labels y_t drawn from Bernoulli distribution with $p_t = \frac{1 {m u}^{ op} {m x}_t}{2}$

Results, averaged after 100 runs of the algorithm:

- Optimal classifier 28.81% error
- BBQ RLS estimator classifier 35.76% error
- Suggested switch detection algorithm 29.58% error

Simulation Results - No false Detection

Number of switch detections, in 100 runs of the algorithm:

Simulation Results - Switch Detected Relatively Fast

Distribution of switch delay, in 100 runs of the algorithm:

Problem Setting - On-line Regression

- Analysis for regression is similar to one presented for classification.
- Differences between the two problems will be discussed.

Problem setup:

- $x_t \in R^d$
- $y_t \in R$

Problem Setting - On-line Regression

Assumptions:

- $\|x_t\| = \|u\| = \|v\| = 1, u, v \in R^d$
- for $t < \tau$ holds:

$$y_t = oldsymbol{u}^ op oldsymbol{x}_t + \eta_t ext{ and } \operatorname{E}\left[y_t
ight] = oldsymbol{u}^ op oldsymbol{x}_t$$

• for $t > \tau$ holds:

$$y_t = oldsymbol{v}^ op oldsymbol{x}_t + \eta_t ext{ and } \operatorname{E}\left[y_t
ight] = oldsymbol{v}^ op oldsymbol{x}_t$$

- η_t i.i.d noise with $E[\eta_t] = 0$, $var\{\eta_t\} = \sigma^2$
- \bullet $|\eta_t| < Z_n, Z_n$ is known

Regret Definition

• Linear regression is to issue prediction:

$$\hat{y}_t = \boldsymbol{w}_t^{\top} \boldsymbol{x}_t \tag{6}$$

- As in classification w_t is the RLS estimator: $w_t = A_t^{-1}b_t$
- Major difference instantaneous regret definition:

$$R_t = (y_t - \hat{y}_t)^2 - (y_t - \boldsymbol{v}^\top \boldsymbol{x}_t)^2$$

$$= (y_t - \boldsymbol{w}_t^\top \boldsymbol{x}_t)^2 - (y_t - \boldsymbol{v}^\top \boldsymbol{x}_t)^2$$

$$= (\boldsymbol{w}_t^\top \boldsymbol{x}_t - \boldsymbol{v}^\top \boldsymbol{x}_t)^2 - 2(y_t - \boldsymbol{v}^\top \boldsymbol{x}_t)(\boldsymbol{w}_t^\top \boldsymbol{x}_t - \boldsymbol{v}^\top \boldsymbol{x}_t)$$

Regret Bounds

- RLS properties used to bound $|w_t^{ op} x_t v^{ op} x_t|$
- To bound the cumulative regret R_T:
 - $oldsymbol{0}\sum_{t=T_t}^T \left(oldsymbol{w}_t^ op oldsymbol{x}_t oldsymbol{v}^ op oldsymbol{x}_t
 ight)^2$ will be bounded using RLS properties
 - Azuma's inequality will be used to bound

$$\sum_{t=T_t}^T \left(y_t - oldsymbol{v}^ op oldsymbol{x}_t
ight) \left(oldsymbol{w}_t^ op oldsymbol{x}_t - oldsymbol{v}^ op oldsymbol{x}_t
ight)$$

Main Result for Regression

- If switch occurs it is either detected or low regret assured
- In case of non detection $R_T \le O\left(\sqrt{d}T^{\left(1-\frac{2\kappa+1}{4}\right)}\ln T\right)$
- Improving expected bound due to effect of switch: $R_T \leq O\left(d^2\tau^{2\kappa}\left\{\ln T\right\}^2T^{1-\kappa}\right)$
- Result close to bound in no switch case $O\left(T^{1-\kappa}\ln T\right)$
- Probability for false detection 2δ
- Note in regression problem selective sampling increases regret

Proposed Method

- Problem approached switch in data at on-line linear classification and regression settings
- Proposed solution -
 - Using confidence notion of selective sampling for switch detection
 - $oldsymbol{2}$ Constructing demo classifier h_t from recent time window
 - 3 Difference between estimator and demo classifier $C_t = |w_t^\top x_t h_t^\top x_t|$ indicates switch
 - ① Difference considered with respect to confidence r_t about instance x_t

Main Results

- Algorithm either detects switch or assurers low regret in case of non-detection
- Low probability for false detection
- Simulations on synthetic data results:
 - Most switches were detected in relativity short time
 - Error reduced close to optimal result
 - No false detections

Model Limitations

- Strong assumptions on instances x_t distribution
- Strong assumptions on label y_t distribution
- Union bound used on non independent events
- ullet In regression setting noise bound Z_{η} assumed to be known
- Demo classifier construction increases number of queries

Future Work

- Introducing proposed methods and concepts with adjustment to drift detection
- Constructing demo classifier from recent queried labels without further sampling
- Weakening assumptions on data

Thank You for Your Time

Questions?

