Out[11]:

Text(0.5, 1.0, 'Histogram of Petal Width')

1b) Based on the scatter of all pairs of attributes, it looks like petal width and petal length have the strongest correlation

```
In [12]:
    #1c
    import matplotlib.pyplot as plt

length = 'petal length'
    width = 'petal width'

fig, ax = plt.subplots(1, 1, figsize=(6, 6))

ax.scatter(data[length], data[width], color='red')
ax.set_xlabel(length)
ax.set_ylabel(width)
    _ = ax.set_title('Petal Width vs petal Length')

print()
```


1d) The petal width and petal length have the closest to 1 correlation coefficient, r

Correlation:

Out[13]:

	sepal length	sepal width	petal length	petal width
sepal length	1.000000	-0.109369	0.871754	0.817954
sepal width	-0.109369	1.000000	-0.420516	-0.356544
petal length	0.871754	-0.420516	1.000000	0.962757
petal width	0.817954	-0.356544	0.962757	1.000000

Question 2

```
import pandas as pd

googleData = pd.read_csv('/kaggle/input/google-trends-csv/google_trends.c
    sv', header = 0)
    googleData.columns = ['Week', 'Labubu', 'Lafufu', 'Bison']

googleData.head()
```

Out[14]:

	Week	Labubu	Lafufu	Bison
0	2024-12-08	0	0	0
1	2024-12-15	43	0	0
2	2024-12-22	0	0	0
3	2024-12-29	0	0	0
4	2025-01-05	0	0	0

Correlation:

Out[15]:

	Labubu	Lafufu	Bison
Labubu	1.000000	0.910767	0.838075
Lafufu	0.910767	1.000000	0.796217
Bison	0.838075	0.796217	1.000000

```
In [16]:
    #2a
    googleData.boxplot()
```

Out[16]:

<AxesSubplot:>


```
In [17]:
         #2b
         import pandas as pd
         # keep date separate
         date_col = 'Week'
         val_cols = googleData.columns.difference([date_col])
         vals = googleData[val_cols].apply(pd.to_numeric, errors='coerce')
         # min-max per column
         mins = vals.min()
         ranges = vals.max() - mins
         # avoid divide-by-zero for constant columns
         ranges_safe = ranges.replace(0, 1)
         norm = (vals - mins) / ranges_safe
         # set constant columns to 0 (all values equal)
         norm.loc[:, ranges == 0] = 0
         # put date back for one DataFrame
         googleData_n = pd.concat([googleData[[date_col]], norm], axis=1)
```

```
import matplotlib.pyplot as plt

print('Raw data:')

fig, axes = plt.subplots(3, 3, figsize=(12,12))
index = 0

for i in range(3):
    for j in range(i+1,4):
        ax2 = i
        ax1 = j - i - 1
        axes[ax1][ax2].scatter(googleData[googleData.columns[i]], googleData[googleData.columns[j]], color='red')
        axes[ax1][ax2].set_xlabel(googleData.columns[i])
        axes[ax1][ax2].set_ylabel(googleData.columns[j])

print()
```

Raw data:


```
In [19]:
    df = googleData.set_index('Week')[['Labubu','Lafufu','Bison']]
    df.plot(figsize=(15,5))
    plt.show()
```



```
In [20]: googleData.boxplot()
```

Out[20]: <AxesSubplot:>

In [21]:
 import matplotlib.pyplot as plt

print('min-max normalization:')

fig, axes = plt.subplots(3, 3, figsize=(12,12))
 index = 0
 for i in range(3):
 for j in range(i+1,4):
 ax2 = i
 ax1 = j - i - 1
 axes[ax1][ax2].scatter(googleData_n[googleData_n.columns[i]], googleData_n[googleData_n.columns[j]], color='red')
 axes[ax1][ax2].set_xlabel(googleData_n.columns[i])
 axes[ax1][ax2].set_ylabel(googleData_n.columns[j])

print()

min-max normalization:


```
In [22]:
    df = googleData_n.set_index('Week')[['Labubu','Lafufu','Bison']]
    df.plot(figsize=(15,5))
    plt.show()
```



```
In [23]: googleData_n.boxplot()
```

Out[23]: <AxesSubplot:>

2c) min-max normalization is useful for this data. It significantly affects the time series and boxplot visualization of the data.