A Book of Abstract Algebra (2nd Edition)

		(-1133.	,			
	Chapter 24, Problem 2EE	Bookmark	Show all steps: ON			
	Problem					
	If B is an <i>ideal</i> of A , $B[x]$ is an ideal of $A[x]$.					
	Step-by-step solution					
	Step 1 of 4					
Consider a ring A and ideal B of A.						
	Now show that $B[x]$ is an ideal of $A[x]$.					
	Comment					
	Step 2 of 4					

Recall the definition of ideal.

Definition: A subring A of a ring R is said to be an ideal of R if for every $r \in R$ and for every $a \in A$ both $ra, ar \in A$.

According to definition of an ideal B is an ideal of A that implies two points. First point is B is a subring of A and second point is for every $a \in A$ and $b \in B$ both $ba, ab \in B$

To prove B[x] is an ideal of A[x], prove two points.

- (1) B[x] is a subring of A[x].
- (2) For every polynomial $a(x) \in A[x]$ and $b(x) \in B[x]$, $a(x)b(x), b(x)a(x) \in B[x]$

Comment

Step 3 of 4

Prove B[x] is a subring of A[x].

Recall definition of subring and the theorem know as subring test.

Definition: A subset S of a ring R is a subring of R if S itself a ring with the operation of R.

Theorem 1(Subring test): A nonempty subset S of a ring R is a subring if a-b and ab are in S whenever a and b are in S.

First prove $B[x] \subseteq A[x]$.

B is a subset of A implies for every element of B is the element A.

That is if $b \in B$ implies $b \in A$.

Let any polynomial $p(x) \in B[x]$. Now prove $p(x) \in A[x]$.

If $p(x) \in B(x)$ implies every coefficient of p(x) is in B, since B is a subset of A implies the coefficients of p(x) are also elements of A.

Then p(x) is an element of A[x].

Since p(x) is chosen arbitrary implies for every element in B[x] is an element in A[x].

Let two polynomials p(x) and q(x) in B[x].

$$p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$
$$q(x) = b_n x^n + b_{n-1} x^{n-1} + \dots + b_0$$

To prove B[x] is a subring of A[x], it is sufficient to prove

$$p(x)-q(x) \in B[x]$$
 and $p(x)q(x) \in B[x]$.

$$p(x)-q(x) = (a_n x^n + a_{n-1} x^{n-1} + \dots + a_0) - (b_n x^n + b_{n-1} x^{n-1} + \dots + b_0)$$

= $(a_n - b_n) x^n + (a_{n-1} - b_{n-1}) x^{n-1} + \dots + (a_0 - b_0)$

 $a_n, a_{n-1}, ..., a_0, b_n, b_{n-1}, ..., b_0 \in B$ and B is a subring of A.

Then by using theorem 1, $(a_n - b_n)$, $(a_{n-1} - b_{n-1})$,..., $(a_0 - b_0) \in B$. Therefore all coefficients of p(x) - q(x) belongs to B then $p(x) - q(x) \in B[x]$

$$p(x)q(x) = (a_n x^n + a_{n-1} x^{n-1} + \dots + a_0)(b_n x^n + b_{n-1} x^{n-1} + \dots + b_0)$$

$$= (a_n b_n x^{2n} + a_n b_{n-1} x^{2n-1} + \dots + b_0 a_n x^n) + \dots + (a_0 b_n x^n + \dots + a_0 b_0)$$

$$= a_n b_n x^{2n} + \dots + (a_0 b_2 + a_1 b_1 + a_2 b_0) x^2 + (a_0 b_1 + b_0 a_1) x + a_0 b_0$$

 $a_n, a_{n-1}, ..., a_0, b_n, b_{n-1}, ..., b_0 \in B$ and B is a ring.

$$a_n b_n, ..., (a_0 b_2 + a_1 b_1 + a_2 b_0), (a_0 b_1 + b_0 a_1), a_0 b_0 \in B$$

Therefore all coefficients of p(x)q(x) belongs to B. Then $p(x)q(x) \in B[x]$

Thus, $B[x] \subseteq A[x]$, $p(x) - q(x) \in B[x]$ and $p(x)q(x) \in B[x]$ for every polynomial p(x), $q(x) \in B[x]$.

Hence according to theorem 1 B[x] is a subring of A[x].

Comment

Step 4 of 4

Now prove subring B[x] is an ideal.

Let $a(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_0 \in A[x]$ and $b(x) = b_n x^n + b_{n-1} x^{n-1} + ... + b_0 \in B[x]$ Then,

$$\begin{split} a(x)b(x) &= \left(a_n x^n + a_{n-1} x^{n-1} + \dots + a_0\right) \left(b_n x^n + b_{n-1} x^{n-1} + \dots + b_0\right) \\ &= \left(a_n b_n x^{2n} + a_n b_{n-1} x^{2n-1} + \dots + b_0 a_n x^n\right) + \dots + \left(a_0 b_n x^n + \dots + a_0 b_0\right) \\ &= a_n b_n x^{2n} + \dots + \left(a_0 b_2 + a_1 b_1 + a_2 b_0\right) x^2 + \left(a_0 b_1 + b_0 a_1\right) x + a_0 b_0 \end{split}$$

Here $a_i \in A$ and $b_i \in B \forall i = 0,1,2,...,n$ and B is an ideal. It implies $a_ib_j,b_ja_i \in B$.

Then every coefficients of a(x)b(x) belongs to B implies a(x)b(x) is in B[x].

Similarly b(x)a(x) is in B[x].

Therefore, B[x] is an ideal of A[x].

Comment