

Redes de Computadores

Ricardo José Cabeça de Souza

ricardo.souza@ifpa.com.br

SUMÁRIO

ARQUITETURA EM CAMADAS

ARQUITETURA EM CAMADAS

Usuário deposita a carta endereçada e selada em um coletor público

Carteiro coleta carta e entrega ao serviço de triagem e encaminhamento

Serviço de triagem separa as cartas e as encaminha em direção a agência destino usando serviço de malote Usuário recebe correspondência em sua casa

Carteiro faz a entrega a domicílio da carta

Serviço de triagem destino separa cartas e as repassa ao carteiro para entrega.

Serviço de malote leva os molotes com as cartas entre agências vizinhas.

ARQUITETURA EM CAMADAS

ARQUITETURA EM CAMADAS

Passagem (comprar)

Passagem (reclamar)

Bagagem (despachar)

Bagagem (recuperar)

Portões (embarcar)

Portões (desembarcar)

Decolagem

Aterrissagem

Roteamento da aeronave

Roteamento da aeronave

Roteamento da aeronave

Fonte: © All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

ARQUITETURA EM CAMADAS

Fonte: © All material copyright 1996-2012 J.F Kurose and K.W. Ross, All Rights Reserved

ARQUITETURA EM CAMADAS

- Para prover uma estrutura para o projeto de rede
- Organização de protocolos hardware e software de rede que implementam os protocolos
- Cada protocolo pertence a uma camada
- Cada camada fornece serviços
- Protocolo é implementado em hardware e software

SUMÁRIO

COMUNICAÇÃO EM CAMADAS

COMUNICAÇÃO EM CAMADAS

- Para reduzir a complexidade do projeto a maior parte das redes são organizadas em uma série de camadas ou níveis
- O número, nome, conteúdo e função de cada camada difere de uma rede para outra
- Em cada par de camadas adjacentes há uma interface que define as operações e serviços que a camada inferior tem a oferecer a superior

Fonte: https://upload.wikimedia.org/wikipedia/commons/b/bf/Camadas.jpg

ARQUITETURA DE REDES

- Um conjunto de camadas de protocolos
- É formada por níveis, interfaces e protocolos
- A especificação de uma arquitetura deve conter informações suficientes para permitir que um implementador desenvolva o programa ou construa o hardware de cada camada, de forma que ela obedeça corretamente ao protocolo adequado

ARQUITETURA EM CAMADAS

Fonte: http://s3.amazonaws.com/magoo/ABAAAgNWkAI-55.jpg

SUMÁRIO

SISTEMA ABERTO COMUNICAÇÃO EM SISTEMAS ABERTOS

SISTEMA ABERTO

 É aquele implementado a partir de padronizações e, portanto, aberto para ser interconectado com qualquer outro sistema implementado a partir das mesmas padronizações

Fonte: https://slideplayer.com.br/297736/1/images/6/Sistema+ABERTOS+FECHADOS+INTERAGEM+N%C3%83O+INTERAGEM+FORA+DO+AMBIENTE.jpg

• INTERCONEXÃO DE SISTEMAS ABERTOS

Fonte: https://encrypted-tbn0.gstatic.com/images? q=tbn: ANd9GcTrzj0BOLa8B5FFZXmSNmDvnl0X8cqPIW80WEI4GjmuDsta5aYhlloger. ANd9GcTrzj0BOLa8B5FFZXmSNmDvnl0X8cqPIW80WEI4GjmuDsta5aYhlloger. ANd9GcTrzj0BOLa8B5FFZXmSNmDvnl0X8cqPIW80WEI4GjmuDsta5aYhlloger. And the property of the property of

SUMÁRIO

MODELO DE REFERÊNCIA OSI/ISO

MODELO DE REFERÊNCIA OSI (Open Systems Interconnection)

- Baseia-se no conceito de camadas
- Padronizado pela ISO (International Organization for Standardization)
- Cada camada executa um conjunto bem definido de funções
- Devem possibilitar troca de informações entre processos de aplicação (AP – Application Process)
- Divide as redes de computadores em sete camadas

THE 7 LAYERS OF OSI

Fonte: https://wallscover.com/images/osi-wallpaper-4.jpg

TRANSMISSÃO DE DADOS NO MODELO OSI

Fonte: https://i.stack.imgur.com/ndZjU.gif

OBJETIVOS DO MODELO OSI

- Criar um modelo padrão, baseado em uma arquitetura de diversos níveis que possa orientar o projeto e implementação de protocolos.
- Objetivo principal é a convergência de sistemas.
- Deve tratar o problema em diversos níveis, especificando o que deve ser tratado por cada um dos níveis, bem como as interfaces entre cada nível
- Se forem feitas alterações no âmbito de um determinado nível, isto não deve afetar a estrutura global

FUNCIONAMENTO CAMADAS DO MODELO OSI

- Baseado no princípio USUÁRIO e PRESTADOR DE SERVIÇO
- Cada serviço representa um conjunto de funções

PRINCÍPIO DE FUNCIONAMENTO

Fonte: https://image.slidesharecdn.com/modeloosi-150910233011-lva1-app6892/95/modelo-osi-13-638.jpg?cb=1441927852

ENTIDADE

- Elementos ativos responsáveis por um conjunto de funções específicas
- Pode ser software ou hardware
- Cada camada possui uma ou mais entidades
- Entidades de uma mesma camada residentes em diferentes sistemas abertos são chamadas entidades pares que se comunicam através um protocolo

Fonte: http://www.oocities.org/siliconvalley/network/7460/osi7.gif

PONTOS DE ACESSO DE SERVIÇO

- SAP Service Access Point
- Responsável pela comunicação entre entidades de camadas adjacentes de um mesmo sistema aberto

Fonte: http://aneste.org/2-transmisso-da-informaco/8304_html_5dad7db5.png

Fonte: https://image.slidesharecdn.com/transport-protocols-101222134501-phpapp01/95/transport-protocols-6-638.jpg?cb=1424351658

SUMÁRIO

- Ao receber dados para efetuar um serviço, a camada N necessita incluir um cabeçalho, no qual são registradas informações relativas à camada
- A esse cabeçalho, damos o nome de Informação de Controle do Protocolo - PCI (Protocol Control Information)

- Aos dados recebidos pela camada N, damos o nome de Unidade de Dados do Serviço - SDU (Service Data Unit)
- Ao conjunto formado por PCI + SDU damos o nome de Unidade de Dados do Protocolo - PDU (Protocol Data Unit)
- -PDU = PCI + SDU

 $Fonte: http://2.bp.blogspot.com/_KgmOx-xnBLg/RziSh1Wshfl/AAAAAAAAAAC/NaIGT3ooQos/w1200-h630-p-k-no-nu/camadas_osi.jpg$

PCI Protocol Control Information SDU Service Date Unit PDU Protocol Date Unit

TROCA DE DADOS ENTRE CAMADAS

Fonte: http://www.telecomhall.com/Data/Sites/2/siteimages/course/010/course_010_x.JPG

 RELAÇÃO ENTRE CONEXÕES DE CAMADAS ADJACENTES

CEP - Connection End Point

Fonte: https://slideplayer.com.br/362007/2/images/9/Multiplexa%C3%A7%C3%A3o%3A+Exemplo+2.jpg

 $Fonte: https://www.researchgate.net/profile/Kyriakos_Vlachos/publication/312072051/figure/fig3/AS:671853832044556@1537193844969/Wavelength-division-multiplexed-passive-optical-network-architecture.png$

SUMÁRIO

FUNÇÕES DAS CAMADAS DO MODELO OSI/ISO

CAMADAS DO MODELO OSI

Fonte: http://img.vivaolinux.com.br/imagens/artigos/comunidade/1378227645.figura1.jpg

CAMADA FÍSICA

- A camada física trata do meio físico a ser utilizado: cobre, fibra ótica ou ondas de rádio
- Estão os padrões mecânicos, funcionais, elétricos e procedimentos para acesso a esse meio físico
- Sua função principal envolve a transmissão transparente de sequências de bits pelo meio físico, ou seja, sem se preocupar com seu significado, ou com a forma com que esses bits serão agrupados
- Mantém a conexão física entre sistemas
- Não é função desta camada se preocupar com erros de transmissão

CAMADA FÍSICA

- Características físicas das interfaces e do meio de transmissão
 - Define o tipo de meio de transmissão
 - São formados por um fluxo de bits (sequência de 0s ou 1s) sem nenhuma interpretação
- Representação dos bits
- Codificados em sinais elétricos ou ópticos
- Taxa de dados o número de bits enviados a cada segundo
- Sincronização de bits
- Configuração da linha
- Ponto a ponto ou multiponto
- Topologia física
- Modo de transmissão
 - Simplex, half-duplex ou full-duplex

PROTOCOLOS DO NÍVEL FÍSICO - EXEMPLOS

- RS-232 (Recommended Standard 232)
- V.35 (Transmissão de Dados em 48 Kbps)
- T1 (Multiplexar canais de voz ou de dados em um par de fios – 1,544 Mbps)
- E1 (padrão de linha telefônica digital europeu 2 Mbps)
- ISDN (Integrated Service Digital Network 128 Kbps)
- SONET (Synchronous Optical Network 51 a 622 Mbps)
- DSL (Digital Subscriber Line 128 Kbps a 24 Mbps)

CAMADA DE ENLACE DE DADOS (DATA LINK LAYER)

- Esconde características físicas do meio de transmissão
- Provê meio de transmissão confiável entre dois sistemas adjacentes
- Tem a função de detectar e opcionalmente corrigir erros
- A camada de enlace de dados transforma a camada física, de um meio de transmissão bruto, em um link confiável

ENLACE

ENLACE: Funções mais comuns

- Empacotamento
 - Divide o fluxo de bits recebidos da camada de rede em unidades de dados gerenciáveis denominados frames/quadro
- Endereçamento físico
 - Acrescenta um cabeçalho ao frame para definir o emissor e/ou receptor do frame (MAC)
- Controle de fluxo
 - Impõe um mecanismo de controle de fluxo para impedir que o receptor fique sobrecarregado
- Controle de erros
 - Mecanismos para detectar e retransmitir frames danificados ou perdidos.
- Controle de acesso
- Entrega hop-to-hop

ENLACE

PROTOCOLOS DA CAMADA DE ENLACE - EXEMPLOS:

- HDLC (High-level Data-Link Control)
- LAPB (Link-Access Procedure Balanced)
- LAPD (Link-Access Procedure D-channel)
- LLC (Logical Link Control)
- PPP (Point-to-Point Protocol)
- Ethernet
- ATM (Asynchronous Transfer Mode)
- FDDI (Fiber Distributed Data Interface)

Obs: Com exceção do LLC, os demais protocolos são orientados a conexão.

Em redes locais, a camada de enlace (Ethernet) é dividida em:

- MAC (Medium Access Control)
- LLC (Logical Link Control)

A LLC implementa serviços com e sem conexão, com e sem reconhecimento

CAMADA DE REDE (NETWORK LAYER)

- Provê canal de comunicação independente do meio
- Controla as operações da sub-rede
- Efetua operações de funções características:
 - Endereçamento
 - Utilização de endereços para identificação de usuários de forma não-ambígua
 - Seleção de qualidade de serviço
 - Especificação de parâmetros para garantir nível de qualidade de serviço (taxa de erro, disponibilidade do serviço, confiabilidade, throughput (vazão), atraso, etc.)
 - Multiplexação da conexão de rede
 - Várias conexões de rede em uma conexão de enlace

Camada de rede

CAMADA DE REDE (NETWORK LAYER)

- Efetua operações de funções características:
 - Controle de erro
 - Polinômios de verificação e numeração das unidades de dados
 permite detectar erros de alteração, perda, duplicação e não-ordenação das unidades
 - Sequenciação
 - Garantir a entrega a entidade de transporte na mesma ordem em que foi recebida da entidade de transporte de origem
 - Controle de Fluxo
 - Controle sobre a taxa de transferência para não sobrecarregar a entidade receptora
 - Roteamento e Relayng
 - Determinar rotas apropriadas entre endereços de rede (algoritmos de roteamento)
 - Realizar relaying por entidades intermediárias entre sub-redes

CAMADA DE REDE (NETWORK LAYER)

- Endereçamento lógico
 - Endereçamento IP
 - Se um pacote ultrapassar os limites da rede, precisaremos de um outro sistema de endereçamento para ajudar a distinguir os sistemas de origem e destino

Roteamento

Encaminham ou comutam os pacotes para seus destinos finais

CAMADA DE REDE (NETWORK LAYER)

- Normalmente operam em modo circuito virtual ou datagrama
- Datagrama
 - Não possui conceito de conexão, cada pacote trafega independentemente dos demais pacotes que o antecedem/sucedem
- Circuito virtual
 - É necessário que o transmissor envie um pacote especial, solicitando a abertura de conexão. Uma vez estabelecida a conexão (e a rota), os demais pacotes com o mesmo destino seguem o mesmo caminho.

CAMADA DE REDE

CAMADA DE REDE

 Pode prestar serviço orientado à conexão como nãoorientado à conexão

PROTOCOLOS DA CAMADA DE REDE

- NetBEUI (NetBIOS Extended User Interface)
- IP (Internet Protocol)
- ICMP(Internet Control Message Protocol)
- ARP (Address Resolution Protocol)
- IPSec (IP Security Protocol)
- RIP (Routing Information Protocol)
- IPX (Internetwork Packet Exchange)

CAMADA DE TRANSPORTE (TRANSPORT LAYER)

- Trata da transferência de dados transparente, isolando as camadas superiores dos detalhes de transmissão da rede e sub-rede
- Multiplexação
 - União de várias conexões de transporte em uma conexão de rede, para permitir maior grau de compartilhamento de recursos
- Splitting
 - Uma conexão de transporte ligada a várias conexões de rede para aumento de desempenho
- É uma verdadeira camada fim a fim, ligando origem ao destino

• RELAÇÃO ENTRE CONEXÕES DE CAMADAS ADJACENTES

CEP - Connection End Point

CAMADA DE TRANSPORTE (TRANSPORT LAYER)

- Controles fim-a-fim:
 - Controle de sequência de pacotes
 - Segmentação
 - Divisão dos dados em segmentos menores
 - Controle do fluxo
 - Monitoração da qualidade do serviço
 - Detecção e recuperação de erros básicos e de multiplexação

CAMADA DE TRANSPORTE (TRANSPORT LAYER)

Camada de transporte

CAMADA DE TRANSPORTE

- Endereçamento do ponto de acesso ao serviço (servicepoint addressing) também denominado endereço de porta
- Segmentação e remontagem
 - Uma mensagem é dividida em segmentos transmissíveis, com cada segmento contendo um número de sequência
- Controle da conexão
 - Pode ser tanto orientada à conexão como não
- Controle de fluxo
 - É responsável pelo controle de fluxo
- Controle de erros
 - controle de erros nessa camada é realizado processo-aprocesso
 ricardo.souza@ifpa.edu.br

CAMADA DE TRANSPORTE

Entrega confiável processo a processo de uma mensagem

Camada de transporte Entrega processo a processo

PROTOCOLOS DA CAMADA DE TRANSPORTE

- EXEMPLOS
 - TCP (Transmission Control Protocol)
 - UDP (User Datagram Protocol)
 - SCTP (Stream Control Transmission Protocol)

CAMADA DE SESSÃO (SESSION LAYER)

- Define como iniciar, controlar e finalizar conversações (chamadas de sessões) entre processos
- Cuida do sincronismo de diálogo
 - Insere pontos de sincronismo no diálogo de forma a reiniciar transferência de dados a partir desses pontos
- Recupera conexões de transporte sem perder conexões de sessão
- Gerencia o controle de tráfego
- Não efetua multiplexação ou splitting da camada de transporte

CAMADA DE SESSÃO

- MAPEAMENTO ENTRE CONEXÃO DE SESSÃO E A CONEXÃO DE TRANSPORTE
 - Utiliza mesma conexão de transporte para várias conexões de sessão consecutivas e várias conexões de transporte consecutivas suportam uma única conexão de sessão

Sessão Transporte		
Transporte		
Sessão		
Transporte		
Tempo → Estabelecida Libera	da	68

PROTOCOLOS DA CAMADA DE SESSÃO – EXEMPLOS

- Named Pipe ou FIFO(First In, First Out)
- SIP (Session Initiation Protocol)
- SDP (Session Description Protocol)
- Nomes NetBIOS (Network Basic Input/Output System)
- RPC (Remote Procedure Call): protocolo para execução remota de procedures em rede;
- SQL (Structured Query Language);
- NFS (Network File System): arquivos compartilhados em rede;
- AppleTalk ASP;
- DECnet SCP

CAMADA DE APRESENTAÇÃO

- Cuida da transparência de representação de dados
 - Sintaxes Abstratas tipos e valores dos dados a transmitir
 - Sintaxes de Transferência codificação
- Faz transformações de dados, como:
 - Compressão de textos, conversões, criptografia, conversão de caracteres para padrões de terminais e arquivos para padrões de rede, e vice-versa
- Contexto de apresentação:
 - Sintaxe abstrata + Sintaxe de transferência
 - Exemplo:
 - Abstrata: Tipo=Caracter, valor="A"
 - Transferência: Uso código ASCII ou EBCDIC

PROTOCOLOS DA CAMADA DE APRESENTAÇÃO

EXEMPLOS

- ASCII (American Standard Code for Information Interchange)
- EBCDIC (Extended Binary Coded Decimal Interchange Code)
- MPEG (Moving Picture Experts Group)
- TDI (Tabbed Document Interface)

CAMADA DE APLICAÇÃO

- Desempenha funções específicas de utilização dos sistemas
- Identificação de parceiros de comunicação
 - Especificação de nomes e endereços
 - Serviço de Diretório (Directory Service): fontes de bancos de dados distribuídos e acesso a informações globais sobre vários itens e serviços
- Não são implementadas funções de multiplexação ou splitting
- Determinação da disponibilidade de recursos
- Autenticação de parceiros de comunicação
- Aplicativos de rede: SMTP, FTP, WWW, etc.

PROTOCOLOS DA CAMADA DE APLICAÇÃO -EXEMPLOS

- HTTP (HyperText Transfer Protocol)
- SMTP (Simple Mail Transfer Protocol)
- FTP (File Transfer Protocol)
- SSL (Secure Sockets Layer)
- TLS (Transport Layer Security)

	Origem		3 2	Destino
7	Aplicação	Aplicação de rede, interação com o usuário, navegação, Dados (Ex. E-mail)	7	Aplicação
6	Apresentação	Criptografia, formata e compacta os Dados	6	Apresentação
5	Sessão	Inicia, gerencia e termina a sessão de comunicação, Dados	5	Sessão
4	Transporte	Segmentação, controle de fluxo, TCP, UDP, Segmentos	4	Transporte
3	Rede	Endereçamento lógico (IP, IPX, AppleTalk), seleção de caminhos, roteador, Pacotes	3	Rede
2	Enlace	Endereçamento físico (MAC), switch, placa de rede, Quadro , confiabilidade de dados	2	Enlace
1	Física	Sinais de rede, Bits , meios físicos, hub, transceiver	1	Física

Meios de Comunicação

Cabo de par trançado, transmissão via rádio,
ondas

• TCP/IP

- Conjunto de protocolos hierárquicos, compostos por módulos interativos, cada um dos quais provendo funcionalidades específicas
- Os módulos não são necessariamente interdependentes
 - Podem ser mesclados e combinados dependendo das necessidades do sistema

• TCP/IP

- TCP/IP
- Camadas Física e de Enlace
 - Não define nenhum protocolo específico
 - Suporta todos os protocolos-padrão e proprietários
 - Uma rede em uma internetwork TCP/IP pode ser uma rede local (LAN) ou uma rede de ampla abrangência (WAN)

- TCP/IP
- Camada de Rede
 - Suporta o Internetworking Protocol (IP)
 - Este, por sua vez, usa quatro protocolos auxiliares de suporte: ARP, RARP, ICMP e IGMP.

- TCP/IP Rede
- Internetworking Protocol (IP)
 - O Internetworking Protocol (IP) é o mecanismo de transmissão usado pelos protocolos TCP/IP
 - Protocolo sem conexão e não confiável um serviço de entrega do tipo best-effort — o termo best-effort (melhor esforço possível) significa que o IP não dispõe de nenhuma verificação ou correção de erros
 - Transporta dados em pacotes chamados *datagramas*, cada um dos quais é transportado separadamente

TCP/IP - Rede

- Address Resolution Protocol
 - O Address Resolution Protocol (ARP) é usado para associar um endereço lógico a um endereço físico
- Reverse Address Resolution Protocol
 - O Reverse Address Resolution Protocol (RARP) permite que um host descubra seu endereço Internet quando conhece apenas seu endereço físico
- Internet Control Message Protocol
 - O *Internet Control Message Protocol* (ICMP) é um mecanismo usado por hosts e *gateways* para enviar notificações de problemas ocorridos com datagramas de volta ao emissor. O ICMPenvia mensagens de consulta e de notificação de erros.
- Internet Group Message Protocol
 - O Internet Group Message Protocol (IGMP) é usado para facilitar a transmissão simultânea de uma mensagem a um grupo de destinatários

- TCP/IP Transporte
- Camada de Transporte
 - Representada no TCP/IP por dois protocolos: O TCP e o
 UDP
 - O UDP e o TCP são protocolos do nível de transporte responsáveis pela entrega de uma mensagem de um processo (programa em execução) a outro processo
 - Um protocolo de camada de transporte, o SCTP, foi concebido para atender às necessidades de algumas aplicações mais recentes

• TCP/IP

- User Datagram Protocol
 - O User Datagram Protocol (UDP) é o protocolo mais simples dos dois protocolos de transportepadrão TCP/IP
 - É um protocolo processo a processo que adiciona em seu cabeçalho apenas endereços de portas de origem e destino, controle de erros (*checksum*) e informações do comprimento do campo de dados proveniente das camadas superiores

- TCP/IP
- Transmission Control Protocol
 - O Transmission Control Protocol (TCP) fornece serviços completos de camada de transporte para as aplicações
 - O TCP é um protocolo de transporte de fluxo confiável.
 - O termo *fluxo*, nesse contexto, significa orientado à conexão: uma conexão tem de ser estabelecida entre ambas as extremidades de uma transmissão antes que qualquer uma delas possa iniciar a transmissão de dados

• TCP/IP

- Stream Control Transmission Protocol
 - O Stream Control Transmission Protocol (SCTP) provê suporte para as aplicações mais recentes, como voz sobre IP
 - Trata-se de um protocolo de camada de transporte que combina o que há de melhor no UDP e no TCP.

- TCP/IP
- Camada de Aplicação
 - A camada de aplicação no TCP/IP equivale à combinação das camadas de sessão, de apresentação e de aplicação do modelo OSI
 - Muitos protocolos são definidos nessa camada

TCP/IP

- ENDEREÇAMENTO
 - São usados quatro níveis de endereços em uma internet que emprega os protocolos TCP/IP:
 - endereços físicos (links MAC)
 - endereços lógicos (IP)
 - endereços de portas
 - endereços específicos

Endereços no TCP/IP

Relação entre as camadas e os endereços no TCP/IP

TCP/IP

Endereços físicos

07:01:02:01:2C:4B

Um endereço físico de 6 bytes (12 dígitos hexadecimais)

Endereços de porta

- Endereços Específicos
- Entre alguns exemplos, temos:
 - Endereços de e-mail por exemplo, forouzan@fhda.edu
 - URL (Universal Resource Locator, ou seja, localizador universal de recursos) - por exemplo www.ifpa.edu.br

Referências

- FOROUZAN, Behrouz A. Comunicação de dados e redes de computadores.
 4. ed. São Paulo: McGraw-Hill, 2008.
- KUROSE, Jim F. ROSS, Keith W. Redes de Computadores e a Internet. Uma nova abordagem. 3. ed. São Paulo: Addison Wesley, 2006.
- TANENBAUM, Andrew S. Redes de computadores. 3. Ed. Rio de Janeiro: Campus, 1997.
- COMER, Douglas E. Internetworking with TCP/IP. Principal, Protocolos, and Architecture. 2.ed. New Jersey: Prantice Hall, 1991. v.1.
- OPPENHEIMER, Priscilla. Projeto de Redes Top-down. Rio de Janeiro: Campus, 1999.
- GASPARINNI, Anteu Fabiano L., BARELLA, Francisco Rogério. TCP/IP Solução para conectividade. São Paulo: Editora Érica Ltda., 1993.
- Gigabit Ethernet White Paper by Gigabit Ethernet Alliance (1997) http://www.gigabit-ethernet.org/ technology/whitepapers/gige 0997/papers97 toc.html

Referências

- SPURGEON, Charles E. Ethernet: o guia definitivo. Rio de Janeiro: Cam 2000.
- SOARES, Luiz Fernando G. Redes de Computadores: das LANs, MANs e WANs às redes ATM. Rio de Janeiro: Campus, 1995.
- CARVALHO, Tereza Cristina Melo de Brito (Org.). **Arquitetura de Redes de Computadores OSI e TCP/IP**. 2. Ed. rev. ampl. São Paulo: Makron Books do Brasil, Brisa; Rio de Janeiro: Embratel; Brasília, DF: SGA, 1997.
- COMER, Douglas E. Interligação em rede com TCP/IP. 2. Ed. Rio de Janeiro: Campus, 1998. v.1.
- ARNETT, Matthen Flint. Desvendando o TCP/IP. Rio de Janeiro: Campus, 1997. 543 p.
- ALVES, Luiz. Comunicação de dados. 2. Ed. rev. ampl. São paulo: Makron Books do Brasil, 1994.
- DEFLER, Frank J. Tudo sobre cabeamento de redes. Rio de Janeiro: Campus, 1994
- www.laercio.com.br
- www.feiradeciencias.com.br