Math 0450: Homework 1

Teoh Zhixiang

January 16, 2020

[Ex. 1.2.2] Show that there is no rational number r satisfying $2^r = 3$. Proof. The above statement can be rewritten as

$$\forall r \in \mathbf{Q}: \qquad \neg (2^r = 3) \tag{1}$$

This is equivalent to

$$\neg \exists r \in \mathbf{Q} : \qquad 2^r = 3 \tag{2}$$

Suppose there exists an $r \in \mathbf{Q}$ that satisfies the above statement (2), i.e. $2^r = 3$. By the definition of \mathbf{Q} , $r = \frac{p}{q}$, where $p, q \in \mathbf{Z}$ and $q \neq 0$.

Plugging $r = \frac{p}{q}$ into (2) gives you

$$2^{\frac{p}{q}} = 3 \tag{3}$$

We can rewrite this as:

$$\log_2 2^{\frac{p}{q}} = \log_2 3 \iff \frac{p}{q} = \log_2 3 \tag{4}$$

$$\iff \frac{p}{q} = \frac{\log_x 3}{\log_x 2} \tag{5}$$

where $x \in \mathbf{R}$. Since 3 is not a power of 2, $\log_2 3$ is not rational. So we rewrite equation (4) as (5), and now need to find an x that is both a root of 3 and 2. That is:

$$(p = \log_x 3) \land (q = \log_x 2) \tag{6}$$

So x needs to be an integer that is both a root of 3 and a root of 2. But because no such x exists, statement (5) is false, and we have reached a contradiction with our initial supposition that the statement is true. Therefore there is no rational number r satisfying $2^r = 3$.

[Ex. 1.2.3 (a-b)] Decide which of the following represent true statements about the nature of sets. For any that are false, provide a specific example where the statement in question does not hold.

(a) If $A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq \cdots$ are all sets containing an infinite number of elements, then the intersection $\bigcap_{n=1}^{\infty} A_n$ is infinite as well.

(b) If $A_1 \supseteq A_2 \supseteq A_3 \supseteq A_4 \supseteq \cdots$ are all finite, nonempty sets of real numbers, then the intersection $\bigcap_{n=1}^{\infty} A_n$ is finite and nonempty.

Solution.

(a) False statement.

Proof. Consider the following collection of sets with infinite elements that satisfies the nested relation in (a):

$$A_1 = \mathbf{N} = \{1, 2, 3, \ldots\}$$

 $A_2 = \{2, 3, 4, \ldots\}$
 $A_3 = \{3, 4, 5, \ldots\}$

In general, for each $n \in \mathbb{N}$, let

$$A_n = \{n, n+1, n+2, \ldots\}$$

Suppose there exists some natural number m that satisfies $m \in \bigcap_{n=1}^{\infty} A_n$. This implies that $m \in A_n$ for every A_n in this collection of sets. But consider the set $A_{m+1} = \{m+1, m+2, m+3, \ldots\}$. Clearly, m does not exist in A_m , and thus the infinite intersection $\bigcap_{n=1}^{\infty} A_n$ that includes A_{m+1} would be empty and not infinite. Therefore, by contradiction, the statement in (a) is false.

(b) True statement.

Proof. (Nested Interval Property). Consider the collection of finite, nonempty sets of real numbers as being a collection of closed intervals $I_n = [a_n, b_n]$. This means that there exists $x \in \mathbf{R}$ such that $a_n \le x \le b_n$. To show that the intersection $\bigcap_{n=1}^{\infty} A_n$ is finite and nonempty, we need to find a single $x \in I_n$ for every $n \in \mathbf{N}$. Hence, consider the set

$$A = \{a_n : n \in \mathbf{N}\}$$

that is made up of the left bounds of each I_n interval. Since each $I_{n+1} = [a_{n+1}, b_{n+1}]$ interval is nested within every $I_n = [a_n, b_n]$ interval, b_n serves as an upper bound of set A. Because the interval I_n gets smaller and smaller, we set $x \in [a_n, b_n]$ as the least upper bound of the set A. So $a_n \leq x$, and because each b_n is an upper bound of A but not the least upper bound, $x \leq b_n$. Therefore it has to be the case that x is found in any smallest interval I_n , and hence it follows that $x \in \bigcap_{n=1}^{\infty} A_n$, and the intersection is not empty.

[Ex. 1.2.4] Produce an infinite collection of sets A_1, A_2, A_3, \ldots with the property that every A_i has an infinite number of elements, $A_i \cap A_j = \emptyset$ for all $i \neq j$, and $\bigcup_{i=1}^{\infty} A_i = \mathbf{N}$.

Solution. For each $n \in \mathbb{N}$, let

$$P = \{2, 3, 5, 7, \dots, p_n\}$$

denote the infinite set of prime numbers. Then consider the following collection of sets:

$$A_1 = \{2, 4, 6, 8, \ldots\} \cup \{1\}$$

$$A_2 = \{3, 9, 15, 21, \ldots\}$$

$$A_3 = \{5, 25, 35, \ldots\}$$

In general, for each $n \in \mathbb{N}$, we define

$$A_n = \{ n \in \mathbf{N} \mid \text{smallest prime factor of } n \text{ is } p_n \}$$

Therefore, each A_n is disjoint with every other set, i.e. $A_i \cap A_j = \emptyset$ for all $i \neq j$. By definition of A_n , and special definition of A_1 , condition $\bigcup_{i=1}^{\infty} A_i = \mathbf{N}$ is satisfied.

[Ex. 1.2.8] Give an example of each or state that the request is impossible:

- (a) $f: \mathbf{N} \to \mathbf{N}$ that is 1-1 but not onto.
- (b) $f: \mathbf{N} \to \mathbf{N}$ that is onto but not 1-1.
- (c) $f: \mathbf{N} \to \mathbf{Z}$ that is 1-1 and onto.

Solution. First define 1-1 and onto. A function $f: A \to B$ is 1-1 if $a_1 \neq a_2$ in A implies that $f(a_1) \neq f(a_2)$ in B. A function $f: A \to B$ is onto if, given any $b \in B$, it is possible to find an element $a \in A$ for which f(a) = b.

(a) For each $n \in \mathbf{N}$,

$$f(n) = 2n$$

(b) For each $n \in \mathbf{N}$,

$$f(n) = \lfloor \frac{n}{2} \rfloor$$

(c) For each $n \in \mathbf{N}$ and each $z \in \mathbf{Z}$,

$$f(n) = \begin{cases} 0 & \text{if } n = 0\\ z & \text{if } n \text{ is odd}\\ -z & \text{if } n \text{ is even} \end{cases}$$