

И

M

u

УНИВЕРСИТЕТСКАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ

ДЛЯ УЧАЩИХСЯ 11-Х КЛАССОВ

2016 год

- 1) Студенты первого курса ИМиФИ СФУ Денис, Алёна и Сергей вместе выполняли задание по построению графиков функций. Денис построил на 3 графика меньше, чем Алёна и Сергей вместе. Сергей построил на 5 графиков меньше, чем Алёна и Денис вместе. Сколько графиков построила Алёна?
- 2) В цилиндрической упаковке находятся 5 сувенирных каменных шариков (см. рисунок). Найдите отношение пустого места к занятому в этой упаковке.
- 3) На лекции профессор разделил некоторое натуральное число на 333 и обнаружил, что сумма неполного частного (ненулевое число) и остатка равна 300. Студент Вася разделил то же самое число на 777 и тоже обнаружил, что сумма неполного частного (ненулевое число) и остатка равна 300. Найдите исходное число.
- 4) В символике ИМиФИ СФУ используются оранжевый, белый, чёрный и синий цвета. Абитуриент раскрасил квадратную таблицу 4×4 в эти цвета так, чтобы в каждой строке и каждом столбце был каждый из четырёх цветов. Может ли каждый из 555 абитуриентов раскрасить таблицу с выполнением этих условий, причём так, чтобы все их раскраски различались?
- 5) Команды математиков и физиков устроили эстафету с чётным числом этапов. У математиков каждый следующий пробегает свой этап на 1 секунду быстрее предыдущего, а у физиков на 1 секунду медленнее предыдущего. К половине всей дистанции обе команды пробежали одинаковое расстояние, однако математики пришли к финишу первыми, опередив физиков на время, большее 1 минуты, но меньшее 1,5 минуты. Найдите количество этапов эстафеты.

УНИВЕРСИТЕТСКАЯ ОЛИМПИАДА ПО МАТЕМАТИКЕ

ДЛЯ УЧАЩИХСЯ 11-Х КЛАССОВ

РЕШЕНИЯ

1) Пусть Денис построил x графиков, Сергей — y графиков, а Алёна — z графиков. По условию y+z-x=3, x+z-y=5.

Значит,
$$2z = (y + z - x) + (x + z - y) = 3 + 5 = 8$$
, а $z = 4$.

Ответ: 4 графика.

2) Очевидно, что радиус основания цилиндра r равен радиусу одного шара, а высота цилиндра h равна сумме пяти диаметров шаров, то есть h=10r. Поэтому пять шаров занимают ровно $\frac{5\cdot\frac{4}{3}\pi r^3}{\pi r^2h}=\frac{5\cdot\frac{4}{3}\pi r^3}{10\pi r^3}=\frac{2}{3}$ объема цилиндра. Значит, отношение пустого места к занятому в этой упаковке есть $\frac{1-\frac{2}{3}}{\frac{2}{3}}=\frac{1}{2}$.

Ответ: 1: 2.

3) Из условия следует, что наше число n=333a+p=777b+q, где a и b – неполные частные, p и q – остатки. Кроме того, a+p=b+q=300. Вычтем из первого равенства второе, тогда 332a=776b, откуда 83a=194b. Значит, в силу взаимной простоты чисел 83 и 194 получим, что a=194k, b=83k, где k – натуральное число. Тогда двойное уравнение a+p=b+q=300 превращается в уравнение 194k+p=83k+q=300, где k – натуральное, а p и q - целые неотрицательные числа. Значит, решение этого уравнения возможно только при k=1. Тогда p=106, q=217, a=194, b=83, $n=333\cdot 194+106=777\cdot 83+217=64708$.

Ответ: 64708.

4) Для удобства обозначим цвета: оранжевый, белый, чёрный и синий. Тогда для верхней строки таблицы существует 4! = 24 способа раскраски. Для каждого из 24 способов раскраски верхней строки существует 3! = 6 способов раскраски левого столбца. Рассмотрим один из способов раскраски верхней строки. Без ограничения общности можно считать, что клетки покрашены так, как это показано на рис. 5а.

Ч	Б	0	C
14 -	A* A*	Δ,- «	

Рис. 5а

Пусть левый столбец покрашен в таком же порядке (ЧБОС), тогда вторую строку можно покрасить тремя способами, первый из которых дает два случая (см. рис. 5 б, в), а два других однозначно определяют раскраску таблицы (см. рис. 5 г, д). Следовательно, всего существует $24 \cdot 6 \cdot (3+1) = 24^2$ способов раскраски таблицы.

Ч Б О С	\mathcal{C} \mathcal{U}	Б	0	\boldsymbol{C}	Ч	Б	0	\boldsymbol{C}	Ч	Б	0	C
БЧС	Б	Ч	\boldsymbol{C}	0	Б	0	\boldsymbol{C}	Ч	Б	\boldsymbol{C}	Ч	0
$O \mid C \mid B \mid U$	I O	C	Ч	Б	0	C	Ч	Б	0	Ч	\boldsymbol{C}	Б
$C \mid O \mid Y \mid I$	<i>C</i>	0	Б	Ч	C	Ч	Б	0	\boldsymbol{C}	0	Б	Ч
Рис. 5б		Рис. 5в			Рис. 5г				Рис. 5д			

При любом другом способе раскраски левого столбца рассуждения аналогичны, только вместо второй строки рассматривается та строка, в которой самая левая клетка — белая. Итак, всего существует 576 способов раскраски.

Ответ: Да.

5) Обозначим число этапов за 2n. Тогда команда математиков пройдёт (n+1)-й этап на n секунд быстрее, чем 1-й, (n+2)-й этап на n секунд быстрее, чем 2-й,..., 2n-й этап на n секунд быстрее, чем n-й. Это значит, что всю вторую половину она пройдёт на n^2 секунд быстрее, чем первую половину. Аналогично, команда физиков вторую половину пройдёт на n^2 секунд медленнее, чем первую. Значит, разница во времени прохождения эстафеты составляет $2n^2$ секунд. Но единственный удвоенный квадрат в диапазоне от 60 до 90 есть число 72. Это означает, что n=6, а всего было 12 этапов.

Ответ. 12.