Extending the BWT for Cartesian Tree Matching

Eric M. Osterkamp and Dominik Köppl

Motivation - 1

reversal patterns in stock charts

Motivation – 2

Order-Preserving Matching [Kim+ '14] too strict at times

Motivation – 2

Order-Preserving Matching [Kim+ '14] too strict at times

Inverse Head & Shoulder [Fu+ '07]

$$T = b a n a n a$$

$$T = b a n a n a$$

$$T = b a n a n a$$

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & n & a & n & a \end{bmatrix}$$

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & n & a & n & a \end{bmatrix}$$

Cartesian Tree Matching introduced by [Park+ '20]

ct(S)

Cartesian Tree Matching introduced by [Park+ '20]

$$T =_{\mathsf{ct}} S$$

ct(S)

Cartesian Tree Matching introduced by [Park+ '20]

$$T = b a n a n a$$

$$S = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{array} \right)$$

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline I & y & c & h & e & e \end{bmatrix}$$

$$T =_{ct} S$$

ct(S)

$$S = \begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{array}$$

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ I & y & c & h & e & e \end{bmatrix}$$

$$T =_{ct} S$$

$$T = b a n a n a$$

$$S = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{array} \right)$$

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline I & y & c & h & e & e \end{bmatrix}$$

$$T =_{\operatorname{ct}} S \neq_{\operatorname{ct}} R$$

- pattern P occurs in text T if a substring of T ct-matches P
- CTPM: count all occurrences of P in T

- pattern P occurs in text T if a substring of T ct-matches P
- CTPM: count all occurrences of P in T

$$P = \left[k \right] i \left[w \right] i$$

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & n & a & n & a \end{bmatrix}$$

- pattern P occurs in text T if a substring of T ct-matches P
- CTPM: count all occurrences of P in T

$$P = \left[k \right] i \left[w \right] i$$

ct(P)

- pattern P occurs in text T if a substring of T ct-matches P
- CTPM: count all occurrences of P in T

$$P = \left[k \right] i \left[w \right] i$$

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & n & a & n & a \end{bmatrix}$$

- pattern P occurs in text T if a substring of T ct-matches P
- CTPM: count all occurrences of P in T

- pattern P occurs in text T if a substring of T ct-matches P
- CTPM: count all occurrences of P in T

- pattern P occurs in text T if a substring of T ct-matches P
- CTPM: count all occurrences of P in T

$$P = k i w i$$

- pattern P occurs in text T if a substring of T ct-matches P
- CTPM: count all occurrences of P in T

$$P = \left[k\right]i\left[w\right]i$$

 $ct(T[5...6] \cdot T[1...2])$

Data Structure	Bits of Space required	Additional Space for Construction		Time for CTPM	Reference
Suffix Tree	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(m \log \sigma)$	[Park+ `20]
Position Heap	$O(n \log n)$	$O(n \log n)$	$O(n\log\sigma)$	$0(m\sigma + m\log m + occ)$	[Nishimoto+ '21]
FM-Index (BWT)	3n + o(n)	$O(n \log n)$	$O(n \log n)$	0(<i>m</i>)	[Kim and Cho '21]

• σ alphabet size

n total text length

• *occ* total number of occurrences

• *m* pattern length

Data Structure	Bits of Space required	Additional Space for Construction	Construction Time	Time for CTPM	Reference
Suffix Tree	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$	$O(m \log \sigma)$	[Park+ `20]
Position Heap	$O(n \log n)$	$O(n \log n)$	$O(n \log \sigma)$	$0(m\sigma + m\log m + occ)$	[Nishimoto+ '21]
FM-Index (BWT)	3n + o(n)	$O(n \log n)$	$O(n \log n)$	0(<i>m</i>)	[Kim and Cho '21]
FM-Index (eBWT)	$O(n\log\sigma)$	$O(n \log \sigma)$	$O\left(n\frac{\log\sigma\log n}{\log\log n}\right)$	$O\left(m\frac{\log\sigma\log n}{\log\log n}\right)$	this paper
FM-Index (eBWT)	3n + o(n)	$O(n\log\sigma)$	$O\left(n\frac{\log\sigma\log n}{\log\log n}\right)$	0(<i>m</i>)	full paper

- σ alphabet size
- *occ* total number of occurrences

- n total text length
- *m* pattern length

coined by [Park+ '20]

coined by [Park+ '20]

$$T = \left(\begin{array}{c} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{array} \right)$$

- coined by [Park+ '20]
- is a special symbol larger than any integer

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ a & n & a & n & a \end{bmatrix}$$

$$\langle T \rangle = \left[\infty \right]$$

- coined by [Park+ '20]
- o is a special symbol larger than any integer

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix}$$

$$\langle T \rangle = \bigcirc^{1} \bigcirc^{2}$$

- coined by [Park+ '20]
- is a special symbol larger than any integer

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix}$$

$$\langle T \rangle = \left[\infty \right] \times \left[1 \right]$$

- coined by [Park+ '20]
- is a special symbol larger than any integer

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix}$$

$$\langle T \rangle = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \infty & \infty & 1 & 2 \end{array} \right]$$

- coined by [Park+ '20]
- is a special symbol larger than any integer

$$T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ b & a & n & a & n & a \end{bmatrix}$$

$$\langle T \rangle = \left[\infty \right] \times \left[1 \right] \times \left[2 \right] \times \left[1 \right]$$

- coined by [Park+ '20]
- is a special symbol larger than any integer

$$\langle T \rangle = \left[\infty \right] \left[\infty \right] \left[1 \right] \left[2 \right] \left[1 \right] \left[2 \right]$$

- coined by [Park+ '20]
- • os is a special symbol larger than any integer

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & y & c & h & e & e \end{bmatrix} \neq_{ct} T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix} =_{ct} S = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{bmatrix}$$

- coined by [Park+ '20]
- • os is a special symbol larger than any integer

$$R = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline 1 & y & c & h & e & e \end{bmatrix} \qquad \neq_{ct} \qquad T = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline b & a & n & a & n & a \end{bmatrix} \qquad =_{ct} \qquad S = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \hline p & a & p & a & y & a \end{bmatrix}$$

$$\langle T \rangle = \left[\infty \right] \left[\infty \right] \left[1 \right] \left[2 \right] \left[1 \right] \left[2 \right]$$

$$\langle S \rangle = \left[\infty \right] \left[0 \right] \left[0 \right]$$

- coined by [Park+ '20]
- • os is a special symbol larger than any integer

- coined by [Park+ '20]
- ∞ is a special symbol larger than any integer

$$\langle R \rangle = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \infty & 1 & \infty & 1 & 2 & 1 \end{bmatrix} \qquad \langle T \rangle = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \infty & \infty & 1 & 2 & 1 & 2 \end{bmatrix} \qquad = \qquad \langle S \rangle = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \infty & \infty & 1 & 2 & 1 & 2 \end{bmatrix}$$

- coined by [Park+ '20]
- • o is a special symbol larger than any integer

$$\langle R \rangle = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \infty & 1 & \infty & 1 & 2 & 1 \end{bmatrix} \qquad \neq \qquad \langle T \rangle = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \infty & \infty & 1 & 2 & 1 & 2 \end{bmatrix} \qquad = \qquad \langle S \rangle = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ \infty & \infty & 1 & 2 & 1 & 2 \end{bmatrix}$$

- the conjugates of a string are its rotations
- identify conjugates of $T_1, ..., T_d$ by their starting position in $T = T_1 \cdot ... \cdot T_d$

- the conjugates of a string are its rotations
- identify conjugates of $T_1, ..., T_d$ by their starting position in $T = T_1 \cdot ... \cdot T_d$

$$T = \begin{bmatrix} 1 & 2 & 3 \\ \hline \mathbf{f} & \mathbf{i} & \mathbf{g} \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & 6 & 7 \\ \hline \mathbf{k} & \mathbf{i} & \mathbf{w} & \mathbf{i} \end{bmatrix} \cdot \begin{bmatrix} 8 & 9 & 10 & 11 & 12 \\ \hline \mathbf{a} & \mathbf{p} & \mathbf{p} & \mathbf{l} & \mathbf{e} \end{bmatrix}$$

- the conjugates of a string are its rotations
- identify conjugates of $T_1, ..., T_d$ by their starting position in $T = T_1 \cdot ... \cdot T_d$

$$T = \left[f \right] \left[i \right] \left[g \right] \cdot \left[k \right] \left[i \right] \left[w \right] \left[i \right] \cdot \left[a \right] \left[p \right] \left[p \right] \left[i \right] \left[e \right] \Rightarrow C(6) = wiki$$

- the conjugates of a string are its rotations
- identify conjugates of $T_1, ..., T_d$ by their starting position in $T = T_1 \cdot ... \cdot T_d$

$$T = \underbrace{\mathsf{f}}_{\mathsf{i}} \underbrace{\mathsf{g}}_{\mathsf{g}} \cdot \underbrace{\mathsf{k}}_{\mathsf{i}} \underbrace{\mathsf{w}}_{\mathsf{i}} \cdot \underbrace{\mathsf{g}}_{\mathsf{k}} \cdot \underbrace{\mathsf{g}}_{\mathsf{k}} \underbrace{\mathsf{g$$

- let $X^{\omega} = X \cdot X \cdot X \cdot ...$ and P a pattern
- circular CTPM: count the conjugates of $T_1, ..., T_d$ such that $C(i)^{\omega}[..|P|] =_{ct} P$

- the conjugates of a string are its rotations
- identify conjugates of $T_1, ..., T_d$ by their starting position in $T = T_1 \cdot ... \cdot T_d$

$$T = \underbrace{\mathsf{f}}_{\mathsf{i}} \underbrace{\mathsf{g}}_{\mathsf{g}} \cdot \underbrace{\mathsf{k}}_{\mathsf{i}} \underbrace{\mathsf{w}}_{\mathsf{i}} \cdot \underbrace{\mathsf{a}}_{\mathsf{p}} \underbrace{\mathsf{p}}_{\mathsf{l}} \underbrace{\mathsf{l}}_{\mathsf{e}} \Rightarrow \mathsf{C}(6) = \mathsf{wiki}$$

$$P = \underbrace{\mathsf{b}}_{\mathsf{a}} \underbrace{\mathsf{n}}_{\mathsf{a}} \underbrace{\mathsf{a}}_{\mathsf{p}} \underbrace{\mathsf{p}}_{\mathsf{l}} \underbrace{\mathsf{l}}_{\mathsf{e}} \Rightarrow \mathsf{C}(6) = \mathsf{wiki}$$

$$\langle P \rangle = \langle \mathsf{banana} \rangle = \infty \times 1212 = \langle \mathsf{kiwiki} \rangle = \langle \mathsf{C}(4)^{\omega}[...6] \rangle$$

- let $X^{\omega} = X \cdot X \cdot X \cdot ...$ and P a pattern
- circular CTPM: count the conjugates of $T_1, ..., T_d$ such that $C(i)^{\omega}[..|P|] =_{ct} P$

- sort conjugates such that occurrences of a pattern are consecutive
- sort encoded conjugates lexicographically like [Kim and Cho '21]?

$$T = \begin{bmatrix} 1 & 2 & 3 \\ \hline \mathbf{f} & \mathbf{i} & \mathbf{g} \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & 6 & 7 \\ \hline \mathbf{k} & \mathbf{i} & \mathbf{w} & \mathbf{i} \end{bmatrix} \cdot \begin{bmatrix} 8 & 9 & 10 & 11 & 12 \\ \hline \mathbf{a} & \mathbf{p} & \mathbf{p} & \mathbf{I} \end{bmatrix} \mathbf{e}$$

- sort conjugates such that occurrences of a pattern are consecutive
- sort encoded conjugates lexicographically like [Kim and Cho '21]?

$$P = \boxed{p} \boxed{l} \boxed{u} \boxed{m}$$

- sort conjugates such that occurrences of a pattern are consecutive
- sort encoded conjugates lexicographically like [Kim and Cho '21]?

$$P = \boxed{p} \boxed{u} \boxed{m} \qquad \langle P \rangle = \boxed{\infty} \boxed{\infty} \boxed{1} \boxed{2}$$

- sort conjugates such that occurrences of a pattern are consecutive
- sort encoded conjugates lexicographically like [Kim and Cho '21]?

$$T = \underbrace{\mathsf{f}}_{\mathsf{i}} \underbrace{\mathsf{g}}_{\mathsf{g}} \cdot \underbrace{\mathsf{k}}_{\mathsf{i}} \underbrace{\mathsf{w}}_{\mathsf{i}} \cdot \underbrace{\mathsf{g}}_{\mathsf{g}} \cdot \underbrace{\mathsf{g}}_{\mathsf{g}} \underbrace{\mathsf{h}}_{\mathsf{g}} \underbrace{\mathsf{h}}_{$$

$$P = \boxed{p} \boxed{u} \boxed{m}$$
 $\langle P \rangle = \boxed{\infty} \boxed{\infty} \boxed{1} \boxed{2}$

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

$$\langle T \rangle_r = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

- adapt approach by [Mantaci+ '07] for eBWT
- define the rotational parent distance encoding $\langle T \rangle_r$ of a string T:

• $X =_{\omega} Y \Leftrightarrow \langle X^{\omega}[...3z] \rangle = \langle Y^{\omega}[...3z] \rangle$, with $z = \max\{|X|, |Y|\}$, allows for the computation of ω -preorder

$$T = \underbrace{\mathsf{f}}_{\mathsf{i}} \underbrace{\mathsf{g}}_{\mathsf{g}} \cdot \underbrace{\mathsf{k}}_{\mathsf{i}} \underbrace{\mathsf{w}}_{\mathsf{i}} \cdot \underbrace{\mathsf{a}}_{\mathsf{p}} \underbrace{\mathsf{p}}_{\mathsf{l}} \underbrace{\mathsf{l}}_{\mathsf{l}} \underbrace{\mathsf{e}}_{\mathsf{l}}$$

$$P = \boxed{p} \boxed{u} \boxed{m} \qquad \langle P \rangle = \boxed{\infty} \boxed{\infty} \boxed{1} \boxed{2}$$

i	C(i)	$\langle \mathtt{C}(i)^{\omega}[15] \rangle$
8	apple	∞11345113451134
5	iwik	∞121212121212
7	ikiw	∞121212121212
1	fig	∞12312312312
9	pplea	∞1∞∞∞1134511345
12	eappl	∞∞1134511345113
4	kiwi	∞∞12121212121
6	wiki	∞∞12121212121
3	gfi	∞∞1231231231
11	leapp	$\infty\infty\infty113451134511$
2	igf	∞∞∞123123123
10	pleap	$\infty\infty\infty\infty11345113451$

• $X =_{\omega} Y \Leftrightarrow \langle X^{\omega}[...3z] \rangle = \langle Y^{\omega}[...3z] \rangle$, with $z = \max\{|X|, |Y|\}$, allows for the computation of ω -preorder

$$T = \begin{bmatrix} 1 & 2 & 3 \\ \hline i & g \end{bmatrix} \cdot \begin{bmatrix} 4 & 5 & 6 & 7 \\ \hline k & i & w & i \end{bmatrix} \cdot \begin{bmatrix} 8 & 9 & 10 & 11 & 12 \\ \hline a & p & p & I & e \end{bmatrix}$$

$$P = \boxed{p} \boxed{u} \boxed{m} \qquad \langle P \rangle = \boxed{\infty} \boxed{\infty} \boxed{1} \boxed{2}$$

i	C(i)	$\langle C(i)^{\omega}[15] \rangle$	
8	apple	∞11345113451134	
5	iwik	∞121212121212	
7	ikiw	∞121212121212	
1	fig	∞12312312312	4
9	pplea	∞1∞∞∞1134511345	
12	eappl	$\infty \infty 1134511345113$	
4	kiwi	∞∞1212121212121	
6	wiki	$\infty \infty 1212121212121$	
3	gfi	∞∞1231231231	K
11	leapp	∞∞∞113451134511	
2	igf	∞∞∞123123123123	4
10	pleap	∞∞∞∞11345113451	

• $X =_{\omega} Y \Leftrightarrow \langle X^{\omega}[...3z] \rangle = \langle Y^{\omega}[...3z] \rangle$, with $z = \max\{|X|, |Y|\}$, allows for the computation of ω -preorder

$$T = \underbrace{\mathsf{f}}_{\mathsf{i}} \underbrace{\mathsf{g}}_{\mathsf{g}} \cdot \underbrace{\mathsf{k}}_{\mathsf{i}} \underbrace{\mathsf{w}}_{\mathsf{i}} \cdot \underbrace{\mathsf{a}}_{\mathsf{p}} \underbrace{\mathsf{p}}_{\mathsf{p}} \underbrace{\mathsf{I}}_{\mathsf{l}} \underbrace{\mathsf{e}}_{\mathsf{l}}$$

$$P = \boxed{p \mid u \mid m} \qquad \langle P \rangle = \boxed{\infty \mid x \mid 2}$$

break ties

by index

- $X =_{\omega} Y \Leftrightarrow \langle X^{\omega}[...3z] \rangle = \langle Y^{\omega}[...3z] \rangle$, with $z = \max\{|X|, |Y|\}$, allows for the computation of ω -preorder
- first column: conjugate array CA

	1	2	3		4	5	6	7		8	9	10	11	12	
T =	f	i	g	•	$\left(k \right)$	i	W	i	•	a	p	p		e	

$$P = p \mid u \mid m$$
 $\langle P \rangle = \infty \times 1 \times 2$

i	C(i)	$\langle C(i)^{\omega}[15] \rangle$	
8	apple	∞11345113451134	
5	iwik	∞121212121212	
7	ikiw	∞121212121212	
1	fig	$\infty 12312312312312$	4
9	pplea	∞1∞∞∞1134511345	
12	eappl	∞∞1134511345113	
4	kiwi	∞∞12121212121	
6	wiki	$\infty \infty 1212121212121$	
3	gfi	∞∞1231231231	K
11	leapp	∞∞∞113451134511	
2	igf	∞∞∞123123123123	4
10	pleap	∞∞∞∞11345113451	

Sorting Conjugates – 3

by index

- $X =_{\omega} Y \Leftrightarrow \langle X^{\omega}[...3z] \rangle = \langle Y^{\omega}[...3z] \rangle$ with $z = \max\{|X|, |Y|\}$, allows for the computation of ω -preorder
- first column: conjugate array CA
- red rows: conjugate range CR(P)

$$T = \underbrace{\mathsf{f}}_{\mathsf{i}} \underbrace{\mathsf{g}}_{\mathsf{g}} \cdot \underbrace{\mathsf{k}}_{\mathsf{i}} \underbrace{\mathsf{w}}_{\mathsf{i}} \cdot \underbrace{\mathsf{g}}_{\mathsf{g}} \cdot \underbrace{\mathsf{g}}_{\mathsf{g}} \underbrace{\mathsf{h}}_{\mathsf{g}} \underbrace{\mathsf{h}}_{$$

$$P = p \mid u \mid m$$
 $\langle P \rangle = \infty \times 1 \times 2$

- usually maps a conjugates rank to that of its left and right rotation
- due to tie breaks we want to cycle through a text's encoded roots

- usually maps a conjugates rank to that of its left and right rotation
- due to tie breaks we want to cycle through a text's encoded roots

$$T_2 = T[4..7] = \begin{bmatrix} k \end{bmatrix} i \end{bmatrix} w \downarrow i$$

$$\langle T_2 \rangle_r = 1212$$

$$\operatorname{root}(\langle T_2 \rangle_r)$$

- usually maps a conjugates rank to that of its left and right rotation
- due to tie breaks we want to cycle through a text's encoded roots

$$T_2 = T[4..7] = k i w i$$

$$\langle T_2 \rangle_r = \begin{bmatrix} 1 & 2 & 1 & 2 \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\$$

i	CA[i]	C(CA[i])	FL[<i>i</i>]	LF[i]
1	8	apple	5	6
2	5	iwik	7	7
3	7	ikiw	8	8
4	1	fig	11	9
5	9	pplea	12	1
6	12	eappl	1	10
7	4	kiwi	2	2
8	6	wiki	3	3
9	3	gfi	4	11
10	11	leapp	6	12
11	2	igf	9	4
12	10	pleap	10	5

- want to represent both mappings space-efficiently
- adapt integer-based representation of [Kim and Cho '21]

- want to represent both mappings space-efficiently
- adapt integer-based representation of [Kim and Cho '21]

$$P = \left[\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right] \left[\begin{array}{c} 3 \\ 4 \\ 1 \end{array} \right]$$

- want to represent both mappings space-efficiently
- adapt integer-based representation of [Kim and Cho '21]

$$\langle P[5..] \rangle =$$
 $\langle P[4..] \rangle =$
 $\langle P[4..] \rangle =$
 $\langle P[3..] \rangle =$
 $\langle P[2..] \rangle =$
 $\langle P[1..] \rangle =$
 $\langle P[$

$$\llbracket P \rrbracket = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \hline 0 & 2 & 0 & 0 \end{bmatrix} \qquad P = \begin{bmatrix} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{bmatrix}$$

- want to represent both mappings space-efficiently
- adapt integer-based representation of [Kim and Cho '21]

$$\langle P[5..] \rangle =$$
 $\langle P[4..] \rangle =$
 $\langle P[4..] \rangle =$
 $\langle P[3..] \rangle =$
 $\langle P[2..] \rangle =$
 $\langle P[1..] \rangle =$
 $\langle P[$

$$\langle P[1..] \cdot P[..1] \rangle =$$
 $\langle P[4..] \cdot P[..4] \rangle =$
 $\langle P[3..] \cdot P[..3] \rangle =$
 $\langle P[2..] \cdot P[..2] \rangle =$
 $\langle P[1..] \cdot P[..1] \rangle =$

$$[\![P]\!] = 0 2 0 0$$

$$P = \left(\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right)$$

$$\llbracket P \rrbracket_r = \boxed{0 \ 3 \ 0 \ 1}$$

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0*	04100	0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[<i>i</i>]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF [<i>i</i>]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0 4	04100	→ 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0 4	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0 4	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	→ 0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[<i>i</i>]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	→ 1	5

i	CA[i]	C(CA[i])	FL[<i>i</i>]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0 4	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	\rightarrow 1	5

i	CA[i]	C(CA[i])	FL[<i>i</i>]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	\rightarrow 1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$[\![\mathbf{C}(\mathbf{CA}[i])]\!]_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	/0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	19004	4	1
6	12	eappl	1	0	04100) 0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	\rightarrow 1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	0	6
2	5	iwik	7	2	2020	0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[<i>i</i>]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	0	6
2	5	iwik	7	2	2020	/ 0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[<i>i</i>]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	0	6
2	5	iwik	7	2	2020	/ 0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0 🛎	0202	→ 2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

i	CA[i]	C(CA[i])	FL[i]	F [<i>i</i>]	$\llbracket C(CA[i]) rbracket_r$	L [<i>i</i>]	LF[i]
1	8	apple	5	4	41000	0	6
2	5	iwik	7	2	2020	/ 0	7
3	7	ikiw	8	2	2020	0	8
4	1	fig	11	3	300	0	9
5	9	pplea	12	1	10004	4	1
6	12	eappl	1	0	04100	0	10
7	4	kiwi	2	0 🛎	0202	2	2
8	6	wiki	3	0	0202	2	3
9	3	gfi	4	0	030	0	11
10	11	leapp	6	0	00410	0	12
11	2	igf	9	0	003	3	4
12	10	pleap	10	0	00041	1	5

- e_k : number of occurrences of ∞ in $\langle P[k...] \rangle$
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : number of occurrences of ∞ in $\langle P[k...] \rangle$
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \boxed{p} \boxed{1} \boxed{u} \boxed{m}$$

$$\llbracket P \rrbracket = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : number of occurrences of ∞ in $\langle P[k...] \rangle$
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	
2	1	2	
1	2	0	

i	CA [<i>i</i>]	F [<i>i</i>]	L[i]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : number of occurrences of ∞ in $\langle P[k...] \rangle$
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{cccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	
1	2	0	

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : number of occurrences of ∞ in $\langle P[k...] \rangle$
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	
1	2	0	

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : number of occurrences of ∞ in $\langle P[k...] \rangle$
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{}{\llbracket k rbracket}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	[612]
1	2	0	

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : number of occurrences of ∞ in $\langle P[k...] \rangle$
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	[612]
1	2	0	

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : number of occurrences of ∞ in $\langle P[k...] \rangle$
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	[612]
1	2	0	[24]

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : number of occurrences of ∞ in $\langle P[k...] \rangle$
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	[612]
1	2	0	[24]

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

- e_k : number of occurrences of ∞ in $\langle P[k...] \rangle$
- $j \in CR(P[k+1..])$
- if $e_k > 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] = [P][k]$
- if $e_k = 1$ then $LF[j] \in CR(P[k..]) \Leftrightarrow L[j] \ge [P][k]$

$$P = \left[\begin{array}{ccc} 1 & 2 & 3 & 4 \\ \hline p & I & u & m \end{array} \right]$$

$$[P] = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 0 & 0 \end{bmatrix}$$

k	e_k	$\llbracket P rbracket{} \llbracket k rbracket{}$	CR(P[k+1])
4	1	0	[112]
3	2	0	[112]
2	1	2	[612]
1	2	0	[24]

i	CA [<i>i</i>]	F [<i>i</i>]	L [<i>i</i>]
1	8	4	0
2	5	2	0
3	7	2	0
4	1	3	0
5	9	1	4
6	12	0	0
7	4	0	2
8	6	0	2
9	3	0	0
10	11	0	0
11	2	0	3
12	10	0	1

Then What?

- update conjugate ranges time-efficiently (independent of text length n)
- resulting index (cBWT) has dynamic and static variants
 - static variant is straightforward adaptation of index by [Kim and Cho '21]
 - dynamic variant uses a modified LCP-array by [Hashimoto+ '22, Iseri+ '24]
- at the core of the construction algorithm:
 - construction of single text index
 - extension of existing index by another text
- construction adapts techniques by [Hashimoto+ '22, Iseri+ '24]

Summary & Future Work

- cBWT index:
 - solves CTPM to multiple and (optionally) circular texts
 - dynamic variant: $O(n \log \sigma)$ bits of space and CTPM in O(mt) time
 - static variant: 3n + o(n) bits of space and CTPM in O(m) time
 - both variants constructed in $O(n \log \sigma)$ bits of space and O(nt) time
- future work:
 - less space
 - implementation

$$t = \frac{\log \sigma \log n}{\log \log n}$$