

标度关系I

Kormendy Relation

log(r) [kpc]

- 椭圆星系越<mark>亮</mark>,中心面亮度越<mark>低</mark>
- 椭圆星系越亮,有效半径(R_e)越小

2021-2022学年•星系天文学 (sfeng@hebtu.edu.cn)

标度关系II

> 颜色星等关系

■ 光度越高的椭圆星系,颜色更红

2021-2022学年•星系天文学 (sfeng@hebtu.edu.cn)

标度关系III

▶ 金属丰度 - 速度弥散关系

■ 椭圆星系和S0星系核球区域的Mg2金属丰度指数和星系的速度弥散相关: 速度弥散大的星系, 金属丰度高。

$$[Fe/H] = 7.41Mg_2 - 2.07$$

■ 更深的引力势阱可以有效的阻止ISM向外逃逸

2021-2022学年•星系天文学 (sfeng@hebtu.edu.cn)

标度关系IV

- ➤ Faber-Jackson关系
 - 较亮的椭圆星系中,恒星运动较快,速度弥散σ大:
 - **亮椭圆星系中心** σ~500 km/s; 最暗的 椭圆星系σ~500 km/s

- > 法贝尔-杰克逊关系
 - ➤ 1976年由Sandra Faber和Robert Jackson 提出的关于椭圆星系光度(L)和 星系中心恒星速度弥散(s)的经验关系
 - $ightharpoonup 椭圆星系光度L和星系中心速度弥散s满足: <math>L \sim \sigma^n$,指数n接近于4(with 3 < n < 5)
- ▶ 利用FJR测量星系距离
 - ➢ 测量星系速度弥散,利用法贝尔-杰克逊关系,可以估计L,利用测得的视星等, 求得星系距离d
 - ▶ 但是,椭圆星系外部暗弱,导致测定星系总光度困难;另外从FJR关系导出的 距离不精确(弥散大)

标度关系V

$\triangleright D_n - \sigma$ Relation

- Dressler于1987年发现,椭圆星系的半径(D_n)与速度弥散(σ)显著相关
- D_n = Diameter (in kpc) where < μ > = 20.75 mag/arcsec2 (the actual value of 20.75 is not important) at which the mean interior surface brightness is 20.75.

$$rac{D_n}{
m kpc} = 2.05 \left(rac{\sigma}{100 \,
m km/s}
ight)^{1.33}$$

标度关系 VI

- > 椭圆星系的基本面
 - 两参数关系

 (Kormendy关系,
 F-J关系, Dn-s关系)
 存在较大弥散
 - 如果加入第三参数有效半径(re),可将 好子径(re),可将 FJR关系的弥散显著 减小
- 椭圆星系有四个基本参数 (其中三个是独立的):
 - 星系光度,有效半径, 平均面亮度,速度弥散

标度关系 VI

- 基本面: 椭圆星系分布在由其有效半径 (r_e),表面亮度 (I_e)和中心速度弥散 (σ)组成的三维 '空间'中的一个平面附近
- 》可以由这三个参数中 的两项,估计另外一 个参数

 $\log R_{\rm e} = a \log \sigma_0 + b \log \langle I \rangle_{\rm e} + {\rm constant}$

星族和气体

- 椭圆星系缺乏明亮蓝星:
 - D < 20Mpc的E星系: 观测研究其中红 巨星和渐近巨星支恒星 (AGB)
 - 主要利用星系积分特性:光谱和光度
- ▶ 椭圆星系光谱
 - 光谱和K型恒星光谱类似,有钙和镁等 重元素的吸收谱线
 - λ< 3500Å UV波长区间辐射<mark>弱</mark>,年轻 星族少:近期<mark>无</mark>恒星形成发生
 - 椭圆星系的光主要来自M < 2M⊙红巨星 (T > 1 Gyr) : 星族年老
- 椭圆星系金属丰度高
 - 椭圆星系的星族为年老、富金属(星系中心Z~Z⊙):与银河系核球相似,与球状星团差别大(贫金属)
 - 光谱中4000 Å 跃变明显 (D4000): 年 老恒星大气中的金属吸收了短波长的光

解读光谱——星族合成方法

▶ 简单星族(SSP): 同时形成的恒星, 具有相同的年龄和金属丰度

■ 初始质量函数: IMF

■ 恒星演化轨迹: HRD

■ 恒星光谱库: 观测/理论模型

▶ 复合星族(CSP): 多个简单星族的 叠加 → 星系光谱

> 需要知道各个SSP的权重

■ 恒星形成历史: SFH

■ 化学增丰历史: CEH

■ 尘埃消光/发射

解读光谱——星族合成方法

➤ 简单星族 (SSP) 随时间T演化

■ 模型<mark>星系谱</mark>:恒星形成持续时标t = 100 Myr (SFH)

■ 暴发开始T = 10 Myr: 光谱蓝、有强的气体发射线, 星族年轻

■ T=100Myr: 谱变暗、变红, A型星氢线明显, E+A (后星暴)星系

■ T > 1Gyr: 谱更暗、更红; 变化很慢; 4000Å跃变明显(椭圆星系)

2021-2022学年•星系天文学 (sfeng@hebtu.edu.cn)

椭圆星系的颜色-星等关系

- 室女座星系团(空圈)和后发座星系团(实点、绿)中的椭圆星系在颜色--星等图上分布。
- 光度越大的椭圆星系,颜色越红:如何解释?
 - 高光度星系金属丰度富?
 - 高光度星系星族更年老?

- ▶ 高光度,星系金属丰度高;暗星系金属丰度低:金属丰度高的星系颜色红→ CMR关系由于金属丰度效应引起
- ▶ 高光度星系现在的恒星形成率 (SFR) 低:早期的SFR高 → 恒星形成早、星族年老 → CMR关系由于星族年龄效应引起

简并效应

- 金属丰度增加,或者星族年龄变老,宽波段颜色都会变红
- 简并效应: 宽波段颜色无法区分星族的年龄和金属丰度

2021-2022学年•星系天文学 (sfeng@hebtu.edu.cn)

简并效应

- 年龄和金属丰度对不同谱线的 影响有差异
 - 年轻的星族有强的Balmer lines (如Hb、Hg)
 - 富金属的星族有强的金属 吸收线(如Mg、Fe)
 - > 解开简并效应

Lick指数

Lick 谱指数

- ➤ Lick谱指数: Lick天文台定义的一套光学谱中的 吸收线系统, 共包括21条吸收线
- > 谱指数测量:
 - 连续谱: 利用吸收线两边没有发射、吸收线的区域插值, 得到pseudo continuum
 - 谱指数: 积分星系观测光谱和pseudo continuum之间的区域,单位是埃(Å)或星等 (mag)

INDEX DEFINITIONS

	Name	Index Bandpass	Pseudocontinua	Units
09 НВ	$_{\mathrm{H}\beta}$	4847.875-4876.625	4827.875-4847.875	Å
			4876.625-4891.625	
10	Fe5015	4977.750-5054.000	4946.500-4977.750	Å
			5054.000-5065.250	
11	Mg_1	5069.125-5134.125	4895.125-4957.625	mag
			5301.125-5366.125	
12	Mg_2	5154.125-5196.625	4895.125-4957.625	mag

$$F_P = \int_{\lambda_1}^{\lambda_2} F_{\lambda} d\lambda / (\lambda_2 - \lambda_1) \quad \text{EW} = \int_{\lambda_1}^{\lambda_2} \left(1 - \frac{F_{I\lambda}}{F_{C\lambda}} \right) d\lambda$$

$$\text{Mag} = -2.5 \log \left[\left(\frac{1}{\lambda_2 - \lambda_1} \right) \int_{\lambda_1}^{\lambda_2} \frac{F_{I\lambda}}{F_{C\lambda}} d\lambda \right]$$

Lick 谱指数

INDEX DEFINITIONS

	Name	Index Bandpass	Pseudocontinua	Units	Measures	Error ¹	Notes
01	CN ₁	4143.375-4178.375	4081.375-4118.875	mag	CN, Fe I	0.021	
			4245.375-4285.375				
02	CN ₂	4143.375-4178.375	4085.125-4097.625	mag	CN, Fe I	0.023	2
			4245.375-4285.375				
03	Ca4227	4223.500-4236.000	4212.250-4221.000	Å	Ca I, Fe I, Fe II	0.27	2
			4242.250-4252.250				
04	G4300	4282.625-4317.625	4267.625-4283.875	Å	CH, Fe I	0.39	
			4320.125-4336.375				
05	Fe4383	4370.375-4421.625	4360.375-4371.625	Å	Fe I, Ti II	0.53	2
			4444.125-4456.625				
06	Ca4455	4453.375-4475.875	4447.125-4455.875	Å	Ca I, Fe I, Ni I,	0.25	2
			4478.375-4493.375		Ti II, Mn I, V I		
07	Fe4531	4515.500-4560.500	4505.500-4515.500	Å	Fe I, Ti I,	0.42	2
			4561.750-4580.500		Fe II, Ti II		
08	Fe4668	4635.250-4721.500	4612.750-4631.500	Å	Fe I, Ti I, Cr I,	0.64	2
			4744.000-4757.750		Mg I, Ni I, C2		
09	$H\beta$	4847.875-4876.625	4827.875-4847.875	Å	Hβ, Fe I	0.22	3
			4876.625-4891.625				
10	Fe5015	4977.750-5054.000	4946.500-4977.750	Å	Fe I, Ni I, Ti I	0.46	2,3
			5054.000-5065.250			46.100.000	
11	Mg_1	5069.125-5134.125	4895.125-4957.625	mag	MgH, Fe I, Ni I	0.007	3
	0.		5301.125-5366.125	•	•	\$25550E	5.07500
12	Mg_2	5154.125-5196.625	4895.125-4957.625	mag	MgH, Mg b,	0.008	3
7.5	-0.		5301.125-5366.125		Fe I		13.55
13	Mg b	5160.125-5192.625	5142.625-5161.375	Å	Mg b	0.23	3
-			5191.375-5206.375	1000		70.75	
14	Fe5270	5245.650-5285.650	5233.150-5248.150	Å	Fe I, Ca I	0.28	3
	100110	02101000 02001000	5285.650-5318.150		,	0.20	
15	Fe5335	5312.125-5352.125	5304.625-5315.875	Å	Fe I	0.26	3
		***************************************	5353.375-5363.375	-			
16	Fe5406	5387.500-5415.000	5376.250-5387.500	Å	Fe I, Cr I	0.20	2,3
10	100.00	00011000 01101000	5415.000-5425.000		10.1, 0.1	0.20	-,0
17	Fe5709	5698.375-5722.125	5674.625-5698.375	Å	Fe I, Ni I, Mg I	0.18	2
	100100	0000.010-0122.120	5724.625-5738.375		Cr I, V I	0.10	•
18	Fe5782	5778.375-5798.375	5767.125-5777.125	Ã	Fe I, Cr I	0.20	2
	160102	0110.010-0100.010	5799.625-5813.375	Α.	Cu I, Mg l	0.20	•
19	Na D	5878.625-5911.125	5862.375-5877.375	Å	Na I	0.24	
10	na D	0010.020-0311.120	5923.875-5949.875	Α.	114 1	0.24	
20	TiO ₁	5938.375-5995.875	5818.375-5850.875	mag	TiO	0.007	
20	1101	0306.010-0330.010	6040.375-6105.375	mag	110	0.007	
21	TiO.	6191.375-6273.875	6068.375-6143.375	****	TiO	0.006	
21	TiO ₂	0191.313-0213.815		mag	110	0.000	
			6374.375-6416.875				

Lick 谱指数

- 星系的年龄和金属丰度简并,可以利用对年龄变化敏感的谱指数 (e.g. Hβ) 和对金属丰度敏感的谱指数 (e.g. Mg or Fe) 来解除简并.
- ▶ 光度越大的星系,速度弥散越大 (FJR)
 - 速度弥散越大的星系,金属丰度越高
 - 高光度星系,金属丰度富
- ▶ 高光度椭圆星系的颜色红:由于金属丰度更高,而不是星族年龄更老引起的.

2021-2022学年•星系天文学 (sfeng@hebtu.edu.cn)

[α/Fe] 丰 皮 比

- 椭圆星系中氧、硫、镁等原子(α元素)与铁原子的比值(数目),比太阳中[α/Fe]要高:α元素增丰
- ▶ 经典星系演化模型只有2个参数: 年龄和金属 丰度; 不能拟合椭圆星系在谱指数图上的分布 ¾
- ➤ 新的星系演化模型包括三个参数: Age、 [Fe/H]、[α/Fe]
- ν α元素增丰:
 - SN II: a元素(T<100 Myr)
 - SN Ia: Fe 元素(T>1 Gyr)

- ➤ 椭圆星系[a/Fe] > 0: 三种可能的解释
 - 椭圆星系形成恒星非常早,Ia型超新星还没有开始把铁加入星际气体中
 - 椭圆星系形成了相对较多的大质量恒星或较少的双星; 缺乏Ia型超新星
 - SNIa爆发的产物运动快,离开星系; SNII 爆发气体运动<mark>慢</mark>,留在星系中

紫外超(UV upturn)

- 椭圆星系有年老、富金属星族组成,没有年轻的星族,紫外波段辐射应该弱
- ▶ UV upturn: 观测发现,有些富金属、巨椭圆星系紫外波段辐射较强,紫外超
- ▶ UV辐射源: 年轻星族、低光度活动星系核、热气体…
- 》 椭圆星系的紫外超:可能是由一 类失去氢包层的年老的、氦核 (He) 燃烧的热星贡献,包括热 亚矮星,蓝离散星等

椭圆星系中冷气体

HI Detection Rates in Early-Type Galaxies.

- 椭圆星系内部年轻恒星少(颜色红): 几乎不含形成恒星的冷气体
- 只有5%-10%的正常椭圆星系含有可探测的原子或分子气体
- ightarrow 多数大椭圆星系的冷气体 $M_{
 m HI} < 10^8 10^9 M_{\odot}$
 - Sc: $M_{HI} \sim 10^{10} M_{\odot}$
- 少数具有壳或明显尘带等特征的椭圆星 系含有大量的冷气体:外部停获得到?
- ➤ No correlation between presence of cool gas and any other property of the galaxy.

Type	Number	Detected
${ m E}$	64	5%
E/S0	23	17%
$\hat{S}0$	103	20%
Ep, S0p	20	45%
S0a, S0ap	35	43%
Sa, Sap	103	78%

椭圆星系中热气体

- \rightarrow 椭圆星系中,含有大量炽热(气体温度 $T\sim 1-3\times 10^7 K$)、电离气体
- ightharpoonup X射线波段辐射源:活动星系核;双星;以及 $温度T \geq 10^6$ K的热气体
- 热气体太弥漫(密度低):在光学和射电波段发射或吸收少,不可见
- ▶ 热气体可延伸到离中心至少~ 30kpc

NGC 5044 Group

NGC 5044: WISE + SDSS + GALEX + XMM

椭圆星系中热气体

- > 光度高/速度弥散大的Es: 热气体多
 - 亮椭圆星系有气体 $10^9 10^{11} M_{\odot}$, 占星系质量10-20%
 - 低质量椭圆星系气体少;较弱的引力难以阻止气体逃入星系际空间
- > 热气体来源 (Origin)
 - 椭圆星系热气体和盘星系冷气体质量相当:星系并合时冷气体被加热
 - 红巨星和AGB星等年老恒星演化 到晚期,外壳膨胀:星风抛出气体;
 - 位于星团和群中的椭圆星系<mark>吸积</mark>周 围环境中的气体
 - Reservoir + External + Internal

椭圆星系中热气体

- M87 (NGC 4486): 位于室女 座星系团中的椭圆星系,中央区有 距离达数千光年的喷流。
- 椭圆星系常有高温气体组成的X射 线晕,其延伸区域远大于恒星区域

- M87周围热气体的X射线谱:实线为r <4′内气体发射;虚线为4′ < r <8′之间气体发射
- X射线谱 → 椭圆星系周围的热气体
 金属丰度Z ~ 0.5 Z_○
- 如果是<mark>超新星爆发</mark>抛出的物质,金 属丰度应当更高
- $Z \sim 0.5Z_{\odot}$: 热气体主要是正在变 老恒星的外包层物质流出

椭圆星系的球状星团

球状星团:

- 光度 $L \sim 10^4 10^6 L_{\odot}$,星系晕中最亮的天体
- 存在于所有星系 $(M > 10^8 \, M_{\odot})$ 和所有环境
- 致密 (r_h ~ 2 4pc) 、点状源 (地面: d > 20 Mpc; HST: d > 80 Mpc)
- 星族年老 (T~10.5-13 Gyr), 金属丰度低
- 椭圆星系球状星团
 - 球状星团数目在不同E星系之间变化很大
 - cD星系NGC1399有7000个已知球状星团
 - M87和NGC3923光度相当,但M87的亮球状星团是NGC3923的4倍
 - 平均来说,光度相同的椭圆星系和盘星系,E星系球状星团数目是盘星系数目~2倍
 - 大质量星系GCs可延伸到>10-30 Re; ~100kpc+: 可研究暗物质晕和星系运动特性

Zhu+2014 Distance East from M87, RA [kpc]