A multi-currency model with FX volatility skew

Vladimir Piterbarg Barclays Capital

Long-dated cross-currency modeling

- PRDC most widely traded and liquid cross-currency exotics.
- Long-dated (>30 years) swaps with coupons that are options on the FX rate (a dollar-yen rate)
- They are often Bermuda-style callable, or have knockout provisions, or (recently) TARNs
- Exposed to the moves in the FX rate, and in the interest rates in both currencies

• Market-standard model:

- Three factors (one per spot FX, domestic rates, foreign rates)
- Gaussian for rates
- Log-normal for the spot FX
- PDE-based (low number of factors)
- Forward FX is lognormal so closed-form calibration to European FX options

2 FX process

- Log-normal assumption for the FX rates
- Technically very convenient
- Little basis in reality
- Significant volatility skew in FX
- PRDCs often look like call spreads on FX rate, ie very sensitive to the slope of the implied volatility
- To quantify FX vol skew exposure, need a model that incorporates the
- Typical problem:
- skew-inducing mechanism (local volatility, jumps, stochastic volatility) imposed on *instantaneous* spot FX process
- To calibrate, need a term distribution of forward FX rate(s)
- With stochastic interest rates, particularly difficult to link the two

3 Overview of the proposed model

- Model presented here:
- Local volatility for the FX rate
- Same number of factors as in the "standard" model, so can use the same PDE method
- Focus on calibration to FX options
- Procedure for almost instantaneous calibration to FX volatility smiles of all expiries
- Based on skew averaging
- Allows for stochastic volatility extensions

The notations

Two interest rate processes in two currencies and a process for FX

• **P** be the domestic risk-neutral measure.

• $P_i(t,T)$, $r_i(t)$, i=d,f, the domestic and foreign zero-coupon discount bonds and short rates in domestic and foreign currencies

 \bullet S(t) the spot FX rate, domestic per foreign

ullet The forward FX rate is denoted by $F\left(t,T\right)$,

$$F\left(t,T\right) = \frac{P_{f}\left(t,T\right)}{P_{d}\left(t,T\right)}S\left(t\right)$$

• $(W_d(t), W_f(t), W_S(t))$ is a Brownian motion under **P**, correl $\left(egin{array}{cccc} 1 &
ho_{df} &
ho_{dS} \
ho_{df} & 1 &
ho_{fS} \
ho_{dS} &
ho_{fS} & 1 \end{array}
ight)$ • Bond volatility functions $\sigma_i(t,T)$, i=d,f, of special (Markovian) form $\sigma_{i}\left(t,T
ight)=\sigma_{i}\left(t
ight)\,\int^{T}e^{-\int_{t}^{S}arkappa_{i}\left(u
ight)du}ds,\quad i=d,f.$

5 The model

• Under domestic risk-neutral measure,

$$dP_{d}(t,T)/P_{d}(t,T) = r_{d}(t) dt + \sigma_{d}(t,T) dW_{d}(t),$$

$$dP_{f}(t,T)/P_{f}(t,T) = r_{f}(t) dt - \rho_{fS}\sigma_{f}(t,T)\gamma(t,S(t)) dt + \sigma_{f}(t,T) dW_{f}(t),$$

$$dS(t)/S(t) = (r_{d}(t) - r_{f}(t)) dt + \gamma(t,S(t)) dW_{S}(t),$$
(2)

• FX skew via the local volatility function $\gamma\left(t,x\right)$.

• The "standard" Gaussian framework ([DH97]) is recovered by choosing the function $\gamma(t,x)$ that is independent of $x, \gamma(t,x) = \gamma(t)$.

• Use a parametric form of the local volatility function for calibration sta-

$$\gamma(t,x) = \nu(t) \left(\frac{x}{L(t)}\right)^{\beta(t)-1}.$$
(3)

 \bullet $\nu\left(t\right)$ is the relative volatility function, $\beta\left(t\right)$ is a time-dependent constant elasticity of variance (CEV) parameter and L(t) is a time-dependent scaling constant ("level"). Should not use "U-shaped" local volatility (known problems with dynamics/hedging), and any "skew-type" parametrization will work just as well.

3 Valuation

- 3 state variables $(r_d(\cdot), r_f(\cdot), S(\cdot))$. All market quantities (bonds, etc) are functions of these
- If Let $V = V(t, r_d, r_f, S)$ is the value of a security (eg a PRDC) then

$$V_{t} + (\theta_{d}(t) - \varkappa_{d}(t) r_{d}) V_{rd}$$

$$+ (\theta_{f}(t) + \rho_{fS} \sigma_{f}(t) \gamma(t, S(t)) - \varkappa_{f}(t) r_{d}) V_{rf}$$

$$+ (\eta_{f}(t) + \rho_{fS} \sigma_{f}(t) \gamma(t, S(t)) - \varkappa_{f}(t) r_{d}) V_{rf}$$

$$+ (r_{d} - r_{f}) SV_{S}$$

$$+ (r_{d} - r_{f}) SV_{S}$$

$$+ \frac{1}{2} \sigma_{d}^{2}(t) V_{r_{d}r_{d}} + \frac{1}{2} \sigma_{f}^{2}(t) V_{r_{f}r_{f}} + \frac{1}{2} \gamma^{2}(t, S) S^{2}V_{SS}$$

$$+ \rho_{df} \sigma_{d}(t) \sigma_{f}(t) V_{r_{d}r_{f}} - \rho_{dS} \sigma_{d}(t) \gamma(t, S) SV_{r_{d}S} - \rho_{fS} \sigma_{f}(t) \gamma(t, S) SV_{r_{f}S}$$

$$= r_{s}V$$

• PDE in three space dimensions is most efficiently solved by utilizing level-splitting scheme, such as an ADI scheme from [CS88]

7 Overview of calibration

- Before using the model for exotics, need to chose model parameters to match market-observable prices of related securities
- Interest rate volatility structures $(\sigma_d(t), \sigma_f(t), \varkappa_d(t), \varkappa_f(t))$ are typically chosen to match European swaption values in the respective curren-
- Correlation parameters ρ_{ij} , i,j=d,f,S, are typically chosen either by historical estimation, or from prices of "quantos"
- For PRDCs, most important is the calibration of $\gamma(t, x)$.
- Options on the FX rate are traded across a wide range of maturities and strikes; use for $\gamma(t,x)$ calibration. However
- No specific FX strike or expiry "most relevant" for PRDCs
- Cancellable/knockout PRDCs cannot be decomposed into simple FX options.
- Hence, the volatility function $\gamma(t,x)$ needs to be calibrated to prices of all available FX options across maturities and strikes.

8 Forward FX rate

 \bullet Call option on the FX rate with strike K and maturity T pays $(S\left(T\right)-K)^{+}$ at time T, and its value at time 0 is equal to

$$c\left(T,K
ight)=\mathbf{E}_{0}\left(e^{-\int_{0}^{T}r_{d}\left(s
ight)ds}\left(S\left(T
ight)-K
ight)^{+}
ight).$$

- Spot FX dynamics are complex. However, forward FX rate is a martingale under the corresponding domestic forward measure.
- Switching to the forward measure leads to decoupling of discounting from the expected value calculations,

$$c(T, K) = P_d(0, T) \mathbf{E}_0^T ((F(T, T) - K)^+).$$

• Need the dynamics of forward FX rate in the model so we can derive FX option prices in the model

Forward FX rate, cont

The dynamics of forward FX rate follows from Ito's lemma. Under domestic T-forward measure,

$$dF(t,T)/F(t,T) = \sigma_f(t,T) dW_d^T(t) - \sigma_d(t,T) dW_d^T(t)$$
(4)
+\gamma(t,F(t,T)D(t,T)) dW_S^T(t).

Can represent with a single stochastic driver by computing quadratic vari-

$$\frac{dF\left(t,T\right)}{F\left(t,T\right)} = \Lambda\left(t,F\left(t,T\right)D\left(t,T\right)\right) \, dW_{F}\left(t\right),\tag{5}$$

where

$$\begin{split} \Lambda\left(t,x\right) \; &= \; \left(a\left(t\right) + b\left(t\right) \gamma\left(t,x\right) + \gamma^{2}\left(t,x\right)\right)^{1/2}, \\ a\left(t\right) \; &= \; \left(\sigma_{f}\left(t,T\right)\right)^{2} + \left(\sigma_{d}\left(t,T\right)\right)^{2} - 2\rho_{df}\sigma_{f}\left(t,T\right)\sigma_{d}\left(t,T\right), \\ b\left(t\right) \; &= \; 2\rho_{fS}\sigma_{f}\left(t,T\right) - 2\rho_{dS}\sigma_{d}\left(t,T\right), \end{split}$$

and $D(t,T) \triangleq P_d(t,T)/P_f(t,T)$.

 $\Lambda\left(t\right)$ is also a deterministic function of time, and $F\left(T,T\right)$ is lognormally • If $\gamma(t,x)$ is a function of time t only, then the $\Lambda(t,F(t,T)D(t,T)) =$ distributed.

10 Markovian representation for forward FX rate

- Need simpler dynamics of the forward FX rate to derive approximations to options
- SDE for F(t,T)

$$\frac{dF\left(t,T\right)}{F\left(t,T\right)} = \Lambda\left(t,F\left(t,T\right)D\left(t,T\right)\right) \, dW_{F}\left(t\right)$$

not closed in F. Has an extra stochastic process $D\left(\cdot,T\right)$

- Approximate D(t,T) with $D_0(t,T) \triangleq P_d(0,t,T)/P_f(0,t,T)$? Not ac-
- Can we find $\tilde{\Lambda}(t,x)$ such that, in the model

$$\frac{dF\left(t,T\right)}{F\left(t,T\right)} = \tilde{\Lambda}\left(t,F\left(t,T\right)\right) \, dW_{F}\left(t\right),$$

the values of European options $\{c(t,T,K)\}$ for all t,K, match exactly the values of the same options in the original model?

• Main result (a-la Dupire): Yes we can, and

$$\tilde{\Lambda}^{2}\left(t,x\right)=\mathbf{E}_{0}^{T}\left(\Lambda^{2}\left(t,F\left(t,T\right)D\left(t,T\right)\right)\middle|F\left(t,T\right)=x\right).$$

11 Proof of Markovian representation

• Recall
$$c(t, T, K) = P_d(0, t) \mathbf{E}_0^T((F(t, T) - K)^+)$$

The local volatility $\tilde{\Lambda}(t,x)$ such that the values of European options in the model $\frac{dF(t,T)}{F(t,T)} = \tilde{\Lambda}(t, F(t,T)) dW_F(t)$ match $\{c(T,T,K)\}_{t,K}$ is given by the well-known result by Dupire (see [Dup94]),

$$(K\tilde{\Lambda}(t,K))^2 = 2 \frac{\partial (c(t,T,K)/P_d(0,t))/\partial t}{\partial^2 (c(t,T,K)/P_d(0,t))/\partial K^2}.$$
 (6)

• To compute the right-had side, we first write (delta-functions justified by Tanaka's formula, see [KS97])

$$d\left(F\left(t,T
ight)-K
ight)^{+}=1_{\left\{F\left(t,T
ight)>K
ight\}}dF\left(t,T
ight)+rac{1}{2}\delta_{\left\{F\left(t,T
ight)=K
ight\}}d\left\langle F\left(t,T
ight)
ight
angle ,$$

since F(t,T) is a martingale under the domestic T-forward measure,

$$\mathbf{E}^T\left(F\left(t,T\right)-K\right)^+-(F\left(0,T\right)-K)^+=\frac{1}{2}\int_0^t\mathbf{E}^T\left(\delta_{\{F(t,T)=K\}}d\left\langle F\left(t,T\right)\right\rangle\right).$$

12 Proof of Markovian representation, cont

• Then

$$\frac{\partial}{\partial t} \frac{c(t, T, K)}{P_d(0, t)} = \frac{\partial}{\partial t} \left(\mathbf{E}^T \left(F(t, T) - K \right)^+ - \left(F(0, T) - K \right)^+ \right) \\
= \frac{1}{2} \mathbf{E}^T \left(\delta_{\{F(t, T) = K\}} d \left\langle F(t, T) \right\rangle \right) \\
= \frac{1}{2} \mathbf{E}^T \left(\delta_{\{F(t, T) = K\}} \right) \mathbf{E}^T \left(d \left\langle F(t, T) \right\rangle | F(t, T) = K \right) \\
= \frac{1}{2} \frac{\partial^2}{\partial K^2} \frac{c(t, T, K)}{P_d(0, t)} \mathbf{E}^T \left(d \left\langle F(t, T) \right\rangle | F(t, T) = K \right)$$

• Since,

$$d\left\langle F\left(t,T\right)\right\rangle =F^{2}\left(t,T\right)\Lambda^{2}\left(t,F\left(t,T\right)D\left(t,T\right)\right)\,dt,$$

we obtain

$$\frac{\partial}{\partial t}\frac{c\left(t,T,K\right)}{P_{d}\left(0,t\right)} = \frac{1}{2}\frac{\partial^{2}}{\partial K^{2}}\frac{c\left(t,T,K\right)}{P_{d}\left(0,t\right)}K^{2}\mathbf{E}^{T}\left(\Lambda^{2}\left(t,F\left(t,T\right)D\left(t,T\right)\right)\middle|F\left(t,T\right) = K\right).$$

Comparing to (6), the result follows

13 Simplifying Markovian representation

• The result

$$\widetilde{\Lambda}^{2}\left(t,x\right)=\mathbf{E}_{0}^{T}\left(\Lambda^{2}\left(t,F\left(t,T\right)D\left(t,T\right)\right)\middle|F\left(t,T\right)=x\right).$$

coefficient that is the expected value of the original diffusion coefficient is very intuitive – the Markovian dynamics is defined by the diffusion conditioned on the underlying.

- This is exact for European options and, hence, all derivatives with Europeanstyle payoffs.
- Need a way to compute (approximate) the conditional expected value
- Recall that

$$\Lambda\left(t,x\right) = \left(a\left(t\right) + b\left(t\right)\gamma\left(t,x\right) + \gamma^{2}\left(t,x\right)\right)^{1/2}.$$

14 Approximation

The dynamics of F(t,T) can be approximated by

$$\frac{dF\left(t,T\right)}{F\left(t,T\right)} = \hat{\Lambda}\left(t,F\left(t,T\right)\right) \, dW_F\left(t\right),\tag{7}$$

where

$$\hat{\Lambda}(t,x) = (a(t) + b(t)\hat{\gamma}(t,x) + \hat{\gamma}^{2}(t,x))^{1/2},$$

$$\hat{\gamma}(t,x) = \nu(t) \left(x \frac{D_{0}(t,T)}{L(t)} \right)^{\beta(t)-1} \left(1 + (\beta(t) - 1)r(t) \left(\frac{x}{F(0,T)} - 1 \right) \right),$$

$$r(t) = \frac{\int_{0}^{t} \chi_{Z,F}(s) ds}{\int_{0}^{t} \chi_{F,F}(s) ds},$$

$$\chi_{Z,F}(t) = -a(t) - \frac{b(t)}{2} \gamma(t,F(0,T)D_{0}(t,T)),$$

 $\chi_{F,F}(t) = a(t) + b(t) \gamma(t, F(0, T) D_0(t, T)) + \gamma^2(t, F(0, T) D_0(t, T)).$

5 Comparison to a simpler approximation

• Recall from previous slide,

$$\hat{\gamma}\left(t,x\right) = \nu\left(t\right) \left(x \frac{D_{0}\left(t,T\right)}{L\left(t\right)}\right)^{\beta(t)-1} \left(1 + \left(\beta\left(t\right)-1\right)r\left(t\right) \left(\frac{x}{F\left(0,T\right)}-1\right)\right).$$

• Had we used the approximation $D\left(t,T\right)\approx D_{0}\left(t,T\right)=P_{d}\left(0,t,T\right)/P_{f}\left(0,t,T\right),$ the corresponding formula would simply be

$$\hat{\gamma}_{0}\left(t,x\right)=\nu\left(t\right)\left(x\frac{D_{0}\left(t,T\right)}{L\left(t\right)}\right)^{\beta\left(t\right)-1}.$$

- justment to the slope of the local volatility function $\hat{\gamma}(t,x)$ around the ullet Hence, accounting for the stochastic nature of $D\left(t,T\right)$ introduces an adforward x = F(0, T).
- The size of the correction depends on r(t), which can be interpreted as a "regression coefficient" between $F(\cdot,T)$ and $D(\cdot,T)$

16 Deriving the approximation

The approximation is based on the following result, that for any c,

$$\mathbf{E}^{T} ((D(t,T))^{c} | F(t,T) = x) \approx (D_{0}(t,T))^{c}$$
(8)
\(\left(\frac{1}{1+c} \times \frac{\int_{0}^{t} \chi_{Z,F}(s) ds}{\int_{0}^{t} \chi_{F,F}(s) ds} \times \left(\frac{x}{F(0,T)} - 1\right)\right),

This can be proven by approximating the joint dynamics of D(t,T), F(t,T)with Gaussian.

Recall $\tilde{\Lambda}^{2}(t,x) = \mathbf{E}^{T}(\Lambda^{2}(t,F(t,T)D(t,T)) | F(t,T) = x)$.

The approximation is obtained by applying (8) to the rhs of the above, once we recall that

$$\Lambda^{2}(t, F(t, T) D(t, T)) = a(t) +b(t) \gamma(t, F(t, T) D(t, T)) + \gamma^{2}(t, F(t, T) D(t, T)), \gamma(t, x) = \nu(t) \left(\frac{F(t, T)}{L(t)}\right)^{\beta(t)-1} (D(t, T))^{\beta(t)-1}.$$

17 Next step

- ullet We have derived an "autonomous" equation for $F(\cdot,T)$.
- It is a one-dimensional SDE with the diffusion coefficient given by a local volatility function $\Lambda(t,x)$.
- Prices of options on F(T,T) can in principle now be computed in a one-dimensional PDE
- a significant reduction of effort from a three-dimensional one!
- However, an even faster method is possible
- Know the slope of the local volatility function $(\Lambda(t,x))$ for all t at the forward, x = F(0, T). Time-dependent slope.
- Can we relate it to the "total", or "effective" (time-independent) slope of the local volatility function?
- Method of skew (or, more generally parameter) averaging.
- Time-dependent parameters are replaced with "effective", time-constant ones, thus allowing to relate model and market parameters directly without actually performing any option calculations

18 Basics of skew averaging

• Let X(t) be a stochastic process defined by

$$dX\left(t\right) =g\left(t,X\left(t\right) \right) \,dW\left(t\right) ,\quad X\left(0\right) =x_{0},$$

ullet Main result: the distribution of $X\left(T\right)$ is well-approximated by the distribution of $Y\left(T\right)$, where the stochastic process $Y\left(t\right)$ is defined by

$$dY\left(t\right)=\sigma\left(t\right)\bar{g}\left(Y\left(t\right)\right)\;dW\left(t\right),\quad Y\left(0\right)=x_{0},$$

and the functions $\sigma\left(t\right)$, $\bar{g}\left(y\right)$ are such that

$$egin{aligned} \sigma\left(t
ight) &= g\left(t,x_0
ight), & ar{g}\left(x_0
ight) = 1, \ rac{\partial}{\partial x}ar{g}\left(x
ight)igg|_{x=x_0} &= \int_0^T w\left(t
ight)rac{\partial}{\partial x}g\left(t,x
ight)igg|_{x=x_0}dt, \end{aligned}$$

The weights w(t) in the last equation are given by

$$w\left(t
ight)=rac{u\left(t
ight)}{\int_{0}^{T}u\left(t
ight)dt},\quad u\left(t
ight)=g^{2}\left(t,x_{0}
ight)\int_{0}^{t}g^{2}\left(s,x_{0}
ight)\,ds.$$

19 Idea of skew averaging proof

- \bullet Skew averaging in the small-slope limit
- Let $\varepsilon > 0$ be small (expansion parameter). Define

$$g_{\varepsilon}\left(t,x
ight)=g\left(t,x_{0}+\left(x-x_{0}
ight)arepsilon
ight)/\sigma\left(t
ight),$$
 $ar{g}_{arepsilon}\left(x
ight)=ar{g}\left(x_{0}+\left(x-x_{0}
ight)arepsilon
ight),$

Define two families of diffusions indexed by ε ,

$$\begin{split} dX_{\varepsilon}\left(t\right) &= g_{\varepsilon}\left(t, X_{\varepsilon}\left(t\right)\right) \sigma\left(t\right) \, dW\left(t\right), \quad X_{\varepsilon}\left(0\right) = x_{0}, \\ dY_{\varepsilon}\left(t\right) &= \bar{g}_{\varepsilon}\left(Y_{\varepsilon}\left(t\right)\right) \sigma\left(t\right) \, dW\left(t\right), \quad Y_{\varepsilon}\left(0\right) = x_{0}. \end{split}$$

Define

$$q\left(\varepsilon\right)=\mathbf{E}\left(X_{\varepsilon}\left(T\right)-Y_{\varepsilon}\left(T\right)\right)^{2}.$$

- We look for conditions on $\bar{g}(\cdot)$ that minimize $q(\varepsilon)$ for small ε
- The condition ensures that options will all strikes are recovered as best as

20 Idea of skew averaging proof, cont

ullet The main result: Any function \bar{g} that minimizes $q\left(\varepsilon\right)$ for small ε satisfies the condition

$$\frac{\partial \bar{g}\left(x_{0}\right)}{\partial x} = \int_{0}^{T} \frac{\partial g\left(t, x_{0}\right)}{\partial x} w\left(t\right) \, dt,$$

where

$$w(t) = \frac{v^{2}(t) \sigma^{2}(t)}{\int_{0}^{T} v^{2}(t) \sigma^{2}(t) dt},$$
$$v^{2}(t) = \mathbf{E}\left(\left(X_{0}(t) - x_{0}\right)^{2}\right).$$

• Comments:

- "Total skew" $\frac{\partial \bar{g}(x_0)}{\partial x}$ is the average of "local skews" $\frac{\partial g(t,x_0)}{\partial x}$ with weights $w\left(t
ight)$

- Weights proportional to total variance, i.e. local slope further away matters more

- Can get the same result under different criteria, i.e. robust

21 Applying skew averaging to the approximate forward FX dynamics

• Recall

$$\frac{dF\left(t,T\right)}{F\left(t,T\right)} = \hat{\Lambda}\left(t,F\left(t,T\right)\right) \, dW_{F}\left(t\right)$$

• Use the skew averaging result with

$$\begin{split} g\left(t,x\right) &= x\hat{\Lambda}\left(t,x\right),\\ \bar{g}\left(x\right) &= \delta_{F}\frac{x}{F\left(0,T\right)} + \left(1-\delta_{F}\right),\\ x_{0} &= F\left(0,T\right). \end{split}$$

Applying skew averaging to the approximate forward FX dynamics, the result 22

• Obtain the approximate dynamics

$$dF\left(t,T\right) = \hat{\Lambda}\left(t,F\left(0,T\right)\right)\left(\delta_{F}F\left(t,T\right) + \left(1-\delta_{F}\right)F\left(0,T\right)\right)\,dW_{F}\left(t\right),$$

where

$$\delta_F = 1 + \int_0^T w(t) \frac{b(t)\eta(t) + 2\hat{\gamma}(t, F(0, T))\eta(t)}{2\hat{\Lambda}^2(t, F(0, T))} dt, \quad (9)$$

$$\eta(t) = \hat{\gamma}(t, F(0, T))(1 + r(t))(\beta(t) - 1),$$

$$w(t) = \frac{u(t)}{\int_0^T u(t) dt}, \quad u(t) = \hat{\Lambda}^2(t, F(0, T))\int_0^t \hat{\Lambda}^2(s, F(0, T)) ds.$$

Applying skew averaging to the approximate forward FX dynamics, cont

• In particular, $F(\cdot, T)$ follows a standard displaced-diffusion SDE with the skew parameter δ_F . The value c(T,K) of a call option on the FX rate with maturity T and strike K is equal to

$$c(T,K) = P_d(0,T) c_{\text{Black}} \left(\frac{F(0,T)}{\delta_F}, K + \frac{1 - \delta_F}{\delta_F} F(0,T), \sigma_F \delta_F, T \right) (10)$$

$$\sigma_F = \left(\frac{1}{T} \int_0^T \hat{\Lambda}^2 (t, F(0,T)) dt \right)^{1/2} (11)$$

where $c_{\mathrm{Black}}\left(F,K,\sigma,T\right)$ is the Black formula

24 Calibration

- Maturities $0 = T_0 < T_1 < \ldots < T_N$ are given, and the model (2) is to be calibrated to FX options with maturities $\{T_n\}_{n=1}^N$.
- sumed piecewise-constant $\nu\left(t\right) = \sum_{n=1}^{N} \nu_n \cdot 1_{(T_{n-1},T_n]}\left(t\right), \, \beta\left(t\right) = \sum_{n=1}^{N} \beta_n \cdot$ • Need to determine time-dependent functions $\nu(t)$ and $\beta(t)$. WLOG as- $1_{\left(T_{n-1},T_{n}
 ight]}\left(t
 ight)$
- Recall main result: an approximation to forward FX rates by a displaceddiffusion process.
- diffusion model. For each maturity T_n , a market volatility σ_n^* and a market • First, express market prices of FX options in terms of the displacedskew parameter δ_n^* are determined

5 Calibration, cont

• Then, we need to

expiry T_n from $\{(\nu_k, \beta_k)\}_{k=1}^N$ according to the formulas (11), (9), match the market-implied values $\{(\sigma_n^*, \delta_n^*)\}_{n=1}^N$. Find model parameters $\{(\nu_n, \beta_n)\}_{n=1}^N$ such that "effective" volatility $\sigma_F = \sigma_F(T_n)$ and "effective" skew $\delta_F = \delta_F(T_n)$, computed for each

quential problems, each one involving only a two-dimensional root search • Calculations can be organized so that the problem can be split into N se• In particular, ν_n , β_n can be found from $\sigma_F(T_n)$, $\delta_F(T_n)$ and previously found $\{(\nu_k, \beta_k)\}_{k=1}^{n-1}$

Fractions of a second on a computer. No need to price options during search—model and market parameters linked directly

26 Quality of fit

- FX volatility smiles in the model well-approximated by displaced-diffusion type smiles (skews, really)
- Can have sloped implied volatilities. A significant improvement over flat Black volatilities in the "standard" 3-factor model
- Particularly important as PRDCs often very sensitive to the slope of the
- Allows to measure smile slope sensitivity intrinsically in the model
- But may not be enough to match the market-observed volatility smile (that can be U-shaped)

7 Possible extensions

- Two approaches possible
- Stay in the local volatility context, use more convex local volatility
- * Simple to extend
- * Dynamics questionable
- Extend the idea to other smile-generating mechanisms
- * In particular stochastic volatility is relatively easy to incorporate since averaging methods have been developed for SV models (see [Pit05b], [Pit05c])
- * One more factor, so use Monte-Carlo?
- * Believable dynamics
- * Short-term smile could be too flat

28 Test results

computed using the PDE method and the approximation method. Strikes • Differences, in implied Black volatilities, between values of FX options across rows

Expiry	Expiry Error 1	Error 2	Error 2 Error 3 Error 4 Error 5	Error 4	Error 5	Error 6 Error 7	Error 7
6m	-0.26%	-0.16%	-0.12%	-0.10%	-0.07%	-0.02%	0.05%
1y	%90.0-	%90.0-	-0.07%	~90.0-	-0.03%	0.03%	0.14%
3y	0.14%	0.07%	0.00%	-0.02%	0.01%	0.11%	0.28%
5y	0.17%	0.11%	0.04%	0.00%	0.03%	0.12%	0.30%
7 y	0.21%	0.16%	0.07%	0.02%	0.03%	0.12%	0.29%
10y	0.19%	0.19%	0.11%	0.04%	0.03%	0.08%	0.20%
15y	-0.01%	0.08%	0.07%	0.01%	-0.04%	-0.08%	-0.09%
20y	-0.39%	-0.17%	-0.08%	-0.05%	~90.0-	-0.08%	-0.11%
25y	-0.62%	-0.31%	-0.15%	%90.0-	-0.03%	-0.02%	-0.02%
30y	-0.82%	-0.42%	-0.18%	~90.0-	0.02%	0.05%	0.06%

Same in Figures

30 Skew impact on PRDCs

• PRDC pays a coupon

$$C_n(S) = \min\left(\max\left(g_f \frac{S(T_n)}{s} - g_d, b_l\right), b_u\right), \quad n = 1, \dots, N - 1.$$

• g_f and g_d are called the *foreign* and the *domestic* coupons

• b_l and b_u are the *floor* and the cap on the payoff.

• The scaling factor s is often called the *initial FX rate*. All the parameters can vary from coupon to coupon, ie depend on n, n = 1, ..., N - 1.

• Bermuda-style callable, knockout on the FX rate, or a TARN

• We consider callable and knockout ones

• Three sets of parameters for each: low-leverage, medium-leverage, high-

- Leverage determined by the combination of g_f , g_d .

– Option notional $h = \frac{gf}{s}$, option strike $k = \frac{sgd}{gf}$. Higher strikes + higher notional implies higher leverage (same expected coupon)

31 Results for PRDCs

• Results in percentage points of the notional

Low Medium High	4.50% 6.25% 9.00%	4.36%	110.00 120.00 130.00		-8.66 -9.24 -9.35	13.61 17.13 23.16	4.16 8.08 14.12		-10.67 -11.66 -10.86	11.90 14.62 20.37	1.52 2.89 6.32		-2.01 -2.43 -1.52	-1.71 -2.51 -2.79	
	Foreign compon 4.		Barrier 11	PV, lognormal model	- Underlying $-$	Cancellable 1	Knockout 6	PV, skew model	$- \frac{1}{2} = \frac{1}{2} $	Cancellable 1	Knockout	Diff, skew - lognormal		Cancellable -	

• Parameters chosen so the underlying swap has roughly the same value. Higher leverage – higher option(cancellable or knockout) value

2 Skew impact on the underlying

- PRDC swaps consist of (short) FX call options with low strikes ("low" means "weak dollar" for the analysis in this section).
- From figures, introduction of the skew *increases* the implied volatility of low-strike options
- The value of PRDCs are pushed down (for the issuer)
- The effect is the most pronounced for medium-leverage swaps. Why? The total effect is a combination of
- the change in impled volatilities,
- the level of sensitivities of the options to those changes.

3 Skew impact on the cancellables

- The (negative) impact can be seen uniformly increasing with the increased
- The effect is quite substantial, between -1.70% to -2.80%.
- The impact is even more pronounced on knockouts, with the values changing by the amounts ranging from -2.60% to -7.80%.
- These changes in values are comparable to typical profits booked by the
- Hence, not accounting for the FX skew can easily show a profit on a trade that was actually a loss.
- oped in this talk, is absolutely critical for proper pricing and risk-managing • The conclusion: accounting for the FX skew, for example in the way develthe PRDC book.

34 Skew impact on the cancellables, cont

• To understand skew impact, look at the value of a cancellable PRDC at T = 5y a function of the spot FX rate.

- It is optimal to cancel the swap if the FX rate is high enough
- The payoff is concave for S <forward, reflecting the negative convexity of short FX option positions, the PRDC coupons due to the issuer.
- \bullet For S >forward, the payoff is convex, reflecting the cancel option at higher

5 Skew impact on the cancellables, cont

- Skew affects the value of a cancellable in two ways.
- First, the higher volatility for lower strikes means that the "left", concave, side of the payoff is valued lower.
- The lower volatility for high strikes means that the "right", convex side of the payoff is also valued lower.
- Double wammy!
- The profile of the cancellable PRDC is similar to a call spread

• For knockout PRDCs:

- Effect is similar to that of a cancellable PRDC, as it goes to zero for high values of the FX rate.
- Extra sensitivity comes from discontinuity at the boundary. Digitallike options are known to be primarily affected by the slope of the FX

36 Skew impact on the cancellables, cont

• Another way to understand the exposures is via FX Vega profile (FX vega vs FX rate)

• Same conclusions:

- as low-strike volatilities are increased, the value of the cancellable PRDC goes down
- as high-strike volatilities are decreased, the value of the cancellable PRDC goes down

7 Conclusions

- volatilities make it impossible to reproduce the impact of the FX volatility • The shape of the exposure of cancellable and knockout PRDCs to FX smile within a less-flexible model
- It is often possible to introduce the smile effect into valuation by judiciously choosing the strikes to which to calibrate a no-smile model
- Here, there is no single strike to encapsulate the required dependence.
- -One cannot find the "effective" strike, as it is the slope of the FX volatility smile that matters.
- Hence, a model that explicitly incorporates the FX volatility smile into a multi-dimensional, cross-currency model suitable for valuation of powerreverse dual-currency securities is required
- We have developed such a model with nearly instantaneous calibration
- Extension of the standard three-factor log-normal model and uses the same valuation method
- Details in [Pit05a]

References

- [CS88] J. J. D. Craig and A. D. Sneyd. An alternating-direction implicit scheme for parabolic equations with mixed derivatives. Comput. Math. Appl., 16(4):341–350, 1988.
- editors, Mathematics of derivative securities, pages 473–503. Camcurrency swaps and swaptions. In M.A.H. Dempster and S.R. Pliska, [DH97] M.A.H. Dempster and J.P. Hutton. Numerical valuation of crossbridge University Press, 1997.
- [Dup94] Bruno Dupire. Pricing with a smile. Risk, 7(1), January 1994.
- [KS97] Ioannis Karatzas and Steven E. Shreve. Brownian Motion and Stochastic Calculus. Springer, 1997.
- [Pit05a] Vladimir V. Piterbarg. A multi-currency model with FX volatility skew. SSRN working paper, 2005.
- [Pit05b] Vladimir V. Piterbarg. A stochastic volatility model with timedependent skew. To appear in Applied Mathematical Finance, 2005.
- [Pit05c] Vladimir V. Piterbarg. Time to smile. To appear in Risk Magazine,