Statistical Thinking for Forensic Practitioners Part 7: Regression and Analysis of Variance (Video 3)

Joe Zemmels, MSc.

Outline

- ► Quadratic regression
- ► Logistic regression & binary classification
- ▶ What we haven't covered.

Quadratic Regression Motivation

- ► Simple linear regression describes the *linear* relationship between a response and predictor.
- ▶ What if the relationship is non-linear?

▶ A quadratic relationship between y and x is $y = a + bx + cx^2$

Quadratic Regression

- Adding new terms to our model makes it more "flexible."
- Let y_i represent the response and x_i the predictor of subject i, i = 1, ..., n.
- ► A quadratic regression model is:

$$y_i = E(y_i|x_i) + \epsilon_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$$

where ϵ_i are assumed independent $N(0, \sigma^2)$, i = 1, ..., n.

- ▶ Our interest is in estimating $\beta_0, \beta_1, \beta_2$.
- ▶ Using b_0, b_1, b_2 estimates, an unbiased estimator for σ^2 is:

$$MSE = \hat{\sigma}^2 = \frac{1}{n-3} \sum_{i=1}^{n} (y_i - b_0 - b_1 x_i - b_2 x_i^2)^2.$$

where n-3 are the d.f. after estimating $\beta_0, \beta_1, \beta_2$.

Quadratic Regression Estimation

- ▶ We estimate the regression coefficients β_0 , β_1 , β_2 using the method of least squares.
- ▶ Unfortunately, the estimators b_0 , b_1 , b_2 do not have a nice closed form as the estimators in simple linear regression.
- Finding b_0 , b_1 , b_2 involves linear algebra that is outside the scope of the course (you won't be expected to know it).
- Most statistical packages contain built-in function to calculate b_0, b_1, b_2 .
 - Available via the Analysis ToolPak add-in in Excel.

- Consider again the problem of predicting stature of a victim given their sternum length.
- Consider a SLR & its residuals for the male data:

May be worthwhile to explore a quadratic regression.

Like in SLR, we need to fit this problem within the quadratic regression "mold" by introducing mathematical notation.

- Let y_i be the stature of the *i*th subject, i = 1, ..., 50.
- ▶ Let x_i be the sternum length of the ith subject, i = 1, ..., 50.
- Assume

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \epsilon_i$$

where ϵ_i are independent $N(0, \sigma^2)$ and $\beta_0, \beta_1, \beta_2, \sigma^2$ are unknown.

- ► The estimates are $b_0 = 203.249$, $b_1 = -.746$, $b_2 = .004$.
- ► Under the model assumptions, this means

$$\hat{y}_i = 203.249 - .746x_i + .004x_i^2.$$

- Why is this useful?
 - ▶ Suppose we observe sternum #51 where $x_{51} = 150$ mm.
 - Our model estimates that this person's height is

$$\hat{y}_{51} = 203.249 - .746(150) + .004(150)^2 = 181.349 \text{ cm}.$$

- Residuals look more "well-behaved" than the SLR model's.
- ► Formal procedures exist to test whether the quadratic model is actually "better" than the SLR model.
 - Analysis of Variance (ANOVA)
- Can use hypothesis tests/confidence intervals as in SLR, although calculations rely on linear algebra beyond the course's scope.

Quadratic Regression in Excel

4	A	В	C	D	E	F	G		
1	SUMMARY OUTPUT				-				
2									
3	Rearession St	atistics							
4	Multiple R	0.910520065							
5	R Square	0.829046788							
6	Adjusted R Square	0.821772183							
7	Standard Error	3.297484311							
8	Observations	50							
9									
10	ANOVA								
11		df	SS	MS	F	Significance F			
12	Regression	2	2478.364104	1239.182052	113.9645129	9.38892E-19			
13	Residual	47	511.0499307	10.87340278					
14	Total	49	2989.414035						
15									
16		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%		
17	Intercept	203.2489206	25.35403505	8.016432894	2.4074E-10	152.2431811	254.25466		
18	sternumLength	-0.745960423	0.370662265	-2.012507057	0.049916267	-1.491636718	-0.000284129		
19	sternumLengthSquared	0.004256986	0.00134368	3.168153856	0.002696198	0.00155385	0.006960123		
20									
21									
22									
23	RESIDUAL OUTPUT								
24									
25	Observation	Predicted stature	Residuals	Standard Residuals					
26	1			1.865490839					
27	2		-1.537619375	-0.476118675					
28	3		0.088320433	0.027348125					
29	4	21101011101110	-2.032249184	-0.629279133					
30	5		2.915779041	0.902861186					
31	6		2.842686777	0.880228412					
32	7		-3.132968973	-0.970113319					
33	8		0.06257902	0.019377383					
34	9		5.595608164	1.732661272					
35	10		-2.656692084	-0.82263578					
36	11	182.9388345 187.4328982	3.348072285 -6.506370302	1.036719337					
37	12			-2.014675709 -0.950557124					
38	cadaverDat								
	cadaverData Quadratic Regression								

Categorical Response

- ▶ We may be interested in learning about a categorical variable.
- ► Can we predict the value of a categorical variable given other information?
- Examples:
 - Whether two toolmarks match given the number of CMS
 - ▶ Brand of a shoe given the number of triangles on the sole
 - Occurrence of a heart attack given vital signs
- ► The technical term for predicting a categorical variable is classification (assigning observations into "classes")

Binary Classification

- Variable of interest takes on one of two categories (match/non-match, male/female, heart attack/no heart attack, etc.)
- Common to estimate the probability that an observation will take one of these 2 values.
- Choose a decision rule to decide how an observation is classified based on its estimated probability.
 - Example: if $\widehat{\Pr}(\mathsf{Male}) > .5$ for a particular observation, then classify the observation as male. Otherwise, classify as female.

Logistic Regression

- Statistical framework for estimating the probability a response, y_i , equals 1 given a predictor x_i .
- Model assumes responses, y_i, are independently distributed Binomial($n = 1, \pi_i$), $i = 1, ..., n.^1$
 - ightharpoonup n = 1 implies each y_i takes on values 0 or 1.
 - \blacktriangleright π_i is the probability that ith observation takes on the value 1 given the value of predictor x_i .
 - We will arbitrarily assign the 2 categories to 0 and 1.
- \triangleright Example: suppose we choose male = 1 and female = 0. Then $\pi_i = \Pr(y_i = 1 | x_i) = \Pr(i \text{th observation is male } | x_i).$
- Is a "regression" because we estimate the continuous parameter $\pi_i \in [0,1]$ using predictors $x_i \in \mathbb{R}$.

Logistic Regression

- Nant to model the probability π_i , bounded between 0 and 1, with predictors x_i that might take on any real value.
- ▶ A linear model like $\pi_i = \beta_0 + \beta_1 x_i$ wouldn't be effective because the estimated $\hat{\pi}_i$ could potentially lie outside [0, 1].

The Logistic Function

- ▶ The *logistic function* has the form $f(x) = \frac{e^x}{1+e^x}$.
 - Accepts any $x \in \mathbb{R}$ but returns $f(x) \in (0,1)$.
- ightharpoonup Logistic regression with predictor x_i assumes

$$\pi_i = f(\beta_0 + \beta_1 x_i) = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}.$$

Logistic Regression

- Like in simple linear regression, our task is to estimate β_0 and β_1 .
- ▶ Once we obtain b_0 , b_1 we can calculate $\hat{\pi}_i = f(b_0 + b_1x_i)$.
- Estimation of β_0, β_1 involves complicated optimization algorithms that are outside the scope of the course.
 - Most statistical packages have built-in estimation functions (excluding Excel, unfortunately).

- ▶ Determination of sex is useful for establishing a biological profile of the deceased.
- We may only find skeletal remains or body parts.
- Can we predict someone's sex based on anthropometric (physical bodily) measurements?
- ► Hand breadths measured for 50 males & 50 females.²

We now introduce notation to fit this problem within the logistic regression "mold."

- Assign male = 1 and female = 0.
- Let y_i be the sex of the *i*th subject, i = 1, ..., 100.
- Assume y_i are independently distributed as Binomial $(1, \pi_i)$ where π_i is the probability that subject i is male.
- Let x_i be the hand breadth of the *i*th subject, i = 1, ..., 100.
- Assume

$$\pi_i = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$$

where β_0, β_1 are unknown parameters to be estimated.

- ▶ The estimated coefficients are $b_0 = -36.245$ and $b_1 = 4.634$.
- ► Under the model assumptions, this means

$$\hat{\pi}_i = f(b_0 + b_1 x_i) = \frac{e^{-36.245 + 4.634 x_i}}{1 + e^{-36.245 + 4.634 x_i}}.$$

- Why is this useful?
 - Suppose we observe a new subject #101 where $x_{101} = 7.25$ cm., but we don't know their sex.
 - Our model estimates that the probability the subject is male is

$$\hat{\pi}_{101} = f(b_0 + b_1(7.25)) = \frac{e^{-36.245 + 4.634(7.25)}}{1 + e^{-36.245 + 4.634(7.25)}} = .066$$

or 6.6% chance. We can be confident that they are female!

- ▶ Given a $\hat{\pi}_i$, we desire a rule that tells us to classify subject i as male or female.
- ▶ It seems reasonable that $\hat{\pi}_i > .5$ means we should classify subject i as male.
- ▶ Define a decision rule $d(\hat{\pi}_i)$ where

$$d(\hat{\pi}_i) = \begin{cases} 1 & \text{if } \hat{\pi}_i > .5 \\ 0 & \text{if } \hat{\pi}_i \leq .5 \end{cases}.$$

- ► Translation: if the *i*th subject is more likely a male, then classify them as male. Otherwise, classify them as female.
- ▶ Using algebra we can show that $\hat{\pi}_i > .5$ if $x_i > 7.82$ cm.³
 - \triangleright $x_i = 7.82$ cm. is the "decision boundary" for a new observation

³see final slide

- ► For the price of having a simple decision rule we have made some misclassifications.
- ► A confusion matrix summarizes our performance

		Truth		
		Male	Female	
Classification	Male	39	9	
Classification	Female	11	41	

- ► To affect performance:
 - Obtain more data/different predictors (hand length, foot breadth, etc.)
 - Explore other models (can of worms all models are wrong, but some are useful)
- ► Takeaway: algorithm classifications should never be taken at "face value" (e.g., will recidivate vs. will not recidivate). We need to consider underlying data, assumptions, etc.

Logistic Regression Inference

- ► There are numerous ways to calculate confidence intervals for logistic regression probabilities.
- ▶ One popular method called the *endpoint method* relies on the fact that the logistic function is a *monotone transformation*.
- ▶ If [L, U] are the lower and upper endpoints for an approximate $(1 \alpha)\%$ Cl⁴ for $\beta_0 + \beta_1 x_i$, an approximate $(1 \alpha)\%$ Cl for π_i is

$$\left[\frac{e^L}{1+e^L}, \frac{e^U}{1+e^U}\right].$$

▶ Hypothesis tests for a hypothesized probability value, $H_0: \pi_i = \pi_0$ say, can be performed by determining if the associated $(1-\alpha)\%$ CI covers π_0 .

⁴we say "approximate" for technical reasons - the confidence interval becomes "exact" as the sample size $n \to \infty$.

What We Haven't Covered

- ► Model diagnostics for logistic regression⁵
- ► Multiple linear regression (how to handle multiple predictors)⁶
- Generalized linear models (what if my data are distributed Poisson, Log-Normal, etc.?)⁷
- ► Locally Estimated Scatterplot Smoothing (what if my data don't follow a known distribution?)⁸
- ► Time series models (modeling a variable observed repeatedly over time)⁹

... and much, MUCH more.

⁵Logistic Regression Lesson

⁶MLR Lesson

⁷GLM Lesson

⁸LOESS Article

⁹Time Series Online Course

Logistic Regression: Inverting a Probability

Assume $\pi_i = \frac{e^{\beta_0 + \beta_1 x_i}}{1 + e^{\beta_0 + \beta_1 x_i}}$. Rearranging this for x_i is done by

$$\pi_{i} \left(1 + e^{\beta_{0} + \beta_{1} x_{i}} \right) = e^{\beta_{0} + \beta_{1} x_{i}}$$

$$\Rightarrow \pi_{i} = e^{\beta_{0} + \beta_{1} x_{i}} - \pi_{i} e^{\beta_{0} + \beta_{1} x_{i}}$$

$$\Rightarrow \pi_{i} = (1 - \pi_{i}) e^{\beta_{0} + \beta_{1} x_{i}}$$

$$\Rightarrow \frac{\pi_{i}}{1 - \pi_{i}} = e^{\beta_{0} + \beta_{1} x_{i}}$$

$$\Rightarrow \beta_{0} + \beta_{1} x_{i} = \log \left(\frac{\pi_{i}}{1 - \pi_{i}} \right)$$

$$\Rightarrow x_{i} = \frac{1}{\beta_{1}} \left[\log \left(\frac{\pi_{i}}{1 - \pi_{i}} \right) - \beta_{0} \right].$$

Now if $\pi_i > .5$, $\beta_0 = -36.245$, and $\beta_1 = 4.634$, then $x_i > 7.82$.