位相空間論セミナー I: 位相空間論の基礎概念

関根・深澤研究室 平井祐紀

2018年9月4日

(素朴)集合論に関する初歩的な知識を仮定する.

このノートでは、位相空間論の基礎概念を学ぶ. 開集合、閉集合、近傍、連続写像などの概念を導入し、その基本的な性質を調べる. さらに、位相空間における収束の概念を定義するが、それらを点列に限らず、有向族やフィルターなどの一般的な設定の下で論じる.

1 開集合

集合 X に対してその冪集合を $\mathcal{P}(X)$ で表すことにする.

定義 1.1. X を集合とする. X の部分集合族 \mathcal{O}_X が次の条件 (O1)–(O3) を満たすとき, \mathcal{O}_X を X の開集合系 ないし位相とよび, \mathcal{O}_X の元を X の開集合と呼ぶ.

- (O1) $\emptyset \in \mathcal{O}_X \text{ in } X \in \mathcal{O}_X$.
- (O2) 任意の族 $\mathcal{U} \subset \mathcal{O}_X$ に対して $\bigcup \mathcal{U} \in \mathcal{O}_X$.
- (O3) 任意の $U, V \subset \mathcal{O}_X$ に対して $U \cap V \in \mathcal{O}_X$.

集合 X とその開集合系 \mathcal{O}_X の組 (X,\mathcal{O}_X) を位相空間 (topological space) という.

考えている位相が明らかなときは、単にXを位相空間と呼ぶこともある。

 G_1,G_2 を X の位相とする. $G_1 \subset G_2$ なるとき, G_1 は G_2 より粗いといい, G_2 は G_1 より細かいという.集合としてはどちらの空間も同じであるが,位相空間としては (X,G_1) と (X,G_2) は別物と考える.

- 例 1.2. (i) X を任意の集合とし, $\mathcal{O}_X=\{\emptyset,X\}$ と定義する.このとき \mathcal{O}_X は X の開集合系である.この 位相を密着位相と呼ぶ.
 - (ii) X を任意の集合とし、 $\mathcal{O}_X=\mathcal{P}(X)$ とする.このとき (X,\mathcal{O}_X) は位相空間となる.この位相を離散位相と呼ぶ.
 - (iii) $2 = \{0,1\}$ に対して、 $\{0,\{1\},2\}$ は 2 の位相を定める.この位相空間を 2 で表すことにする*1.

X の位相の特徴づけを行う.

補題 1.3. X を集合とし、 $\mathcal{U} \subset \mathcal{P}(X)$ とする. このとき、次の 2 条件は同値である.

 $^{^{*1}}$ これは一般的な記号ではない. 斎藤 [10] では $\mathbb S$ と書かれている空間である.

- (i) 任意の族 $(U_i)_{i\in I}\in \mathcal{U}^I$ について、 $\bigcup_{i\in I}U_i\in \mathcal{U}$ が成り立つ.
- (ii) $U \in \mathcal{P}(X)$ とする. 任意の $x \in U$ に対してある $V \in \mathcal{U}$ が存在して $x \in V \subset U$ が成り立つなら, $U \in \mathcal{U}$ である.

証明. Step $1:(i) \Longrightarrow (ii)$ の証明. $U \in \mathcal{P}(X)$ に対して

$$\mathcal{U}_U = \{ V \in \mathcal{U} \mid V \subset U \}$$

と定義する. このとき (ii) とは, $U=\bigcup \mathcal{U}_U$ ならば $U\in \mathcal{U}$ ということである. したがって (i) ならば (ii) が成立する.

 $Step\ 2: (ii) \Longrightarrow (i)$ の証明. $(U_i)_{i\in I}$ を $\mathcal U$ の元の族とし, $U = \bigcup_{i\in I} U_i$ と定義する. $x\in U$ とすれば $x\in U_j\subset \bigcup_i U_i=U$ なる $U_j\in \mathcal U$ が取れるから,U は条件 (ii) の仮定を満たす.よって $U=\bigcup_{i\in I} U_i\in \mathcal U$ が成り立つ.

補題 1.3 より,位相の定義において条件 (O2) は補題 1.3 の条件 (ii) で置き換えてもよいことが分かる.補題 1.3 を用いれば,位相空間の開集合の特徴づけが得られる.

命題 1.4. (X, \mathcal{O}_X) を位相空間とする. このとき,次の2条件は同値である.

- (i) U は X の開集合である.
- (ii) 任意の $x \in U$ について, $V \in \mathcal{O}_X$ で $x \in V \subset U$ を満たすものが存在する.

証明. $(i) \Longrightarrow (ii)$ の証明. U を開集合とする. このとき、(ii) の条件における V として U 自身を取ればよい. $(ii) \Longrightarrow (i)$ の証明. U を条件 (ii) を満たす集合とする.

$$\mathcal{U}_U = \{ V \in \mathcal{O}_X \mid V \subset U \}$$

とすれば、条件 (ii) より $U = \bigcup \mathcal{U}_U$ が成り立つ. これより $U \in \mathcal{O}$ が成立.

線形空間では,基底と呼ばれる元の族が重要な役割を果たした.位相空間でも,位相の基本となる開集合族 という概念が存在する.

定義 1.5. (X, \mathcal{O}_X) を位相空間とし、 $\mathcal{U} \subset \mathcal{P}(X)$ とする. 任意の $U \in \mathcal{O}_X$ に対してある $\mathcal{U}_0 \subset \mathcal{U}$ で $U = \bigcup \mathcal{U}_0$ なるものが存在するとき、 \mathcal{U} は開集合の基底 (basis) または開基であるという.

注意 1.6. 線形空間の基底の元の数 * 2は一意であったが,開基の濃度は一意には定まらない.しかし,基数の性質より,位相空間の開基の濃度のうち最小のものが存在する.この基数を位相空間の荷重 (weight) と呼び,w(X) などと表す. *3 *4 .

定義 1.7. 位相空間 X の開基で可算個の元からなるものが存在するとき,X は第 2 可算であるという.

集合の内部の概念を定義する.

定義 1.8. X を位相空間とし、A を X の部分集合とする.

^{*2} 正確に言えば濃度

^{*3} Engelking [2]

^{*4} 児玉・永見では「位相濃度」とか呼んでいる.

- (i) $x \in A$ とする. 開集合 U で $x \in U$ $\subset A$ を満たすものが存在するとき, x は A の内点であるという.
- (ii) A の内点全体からなる集合を A° で表し、これを A の内部と呼ぶ. A の内部を $\operatorname{Int} A$ と書くこともある.

命題 1.9. (X, \mathcal{O}_X) を位相空間, A および B を X の部分集合とする.

- (i) A° は X の開集合である.
- (ii) A° は A に含まれる開集合のうち、最大のものである.
- (iii) A が開集合であることは, $A = A^{\circ}$ であることと同値である.
- (iv) $(A^{\circ})^{\circ} = A^{\circ} \circ \delta$.
- (v) $A \subset B$ なら、 $A^{\circ} \subset B^{\circ}$ が成り立つ.
- (vi) $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$ である.

証明.

$$\mathcal{U}_A = \{ V \in \mathcal{O}_X \mid V \subset A \}$$

と定義すれば、集合の内部の定義より $A^\circ = \bigcup \mathcal{U}_A$ となるから、(ii) が分かる。(ii) と命題 1.4 より (i) と (iii) が従う。(iv) は (i) と (iii) から分かる。

(v) を示す. $x \in A^{\circ}$ ならば, $U \in \mathcal{O}_X$ で

$$x \in U \subset A$$

を満たすものが存在する.このとき $x\in U\subset A\subset B$ だから,x は B の内点でもある.すなわち $A^{\circ}\subset B^{\circ}$ が成立.

(vi) (i) と開集合の公理より $A^{\circ} \cap B^{\circ}$ は $A \cap B$ に含まれる開集合である。(ii) より $A^{\circ} \cap B^{\circ} \subset (A \cap B)^{\circ}$ が分かる。 $x \in (A \cap B)^{\circ}$ として, $x \in U \subset A \cap B$ を満たす開集合 U をとる。このとき $x \in U \subset A$ および $x \in U \subset B$ から $x \in A^{\circ} \cap B^{\circ}$ となる。よって逆向きの包含関係 $(A \cap B)^{\circ} \subset A^{\circ} \cap B^{\circ}$ も示された。

2 連続写像

定義 2.1. $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ を位相空間, $f: X \to Y$ を写像とする.

- (i) 任意の $U \in \mathcal{O}_Y$ に対して $f^{-1}(U) \in \mathcal{O}_X$ となるとき,f は連続であるという.
- (ii) $a \in X$ とする. $f(a) \in V$ なる任意の $V \in \mathcal{O}_Y$ に対して, $U \in \mathcal{O}_X$ で $U \subset f^{-1}(V)$ を満たすものが存在するとき,f は a で連続であるという.

連続写像: $X \to Y$ の全体を C(X,Y) で表す.

命題 2.2. $(X,\mathcal{O}_X),(Y,\mathcal{O}_Y)$ を位相空間, $f\colon X\to Y$ を写像とする. 写像 $f^*\colon \mathcal{P}(Y)\to \mathcal{P}(X)$ を $A\mapsto f^{-1}(A)$ で定める. このとき, 次の 3 条件は同値である.

- (i) $f: X \to Y$ は連続である.
- (ii) $f^*\mathcal{O}_Y \subset \mathcal{O}_X$.
- (iii) $\mathcal{O}_Y \subset (f^*)^{-1}\mathcal{O}_X$.

証明. 定義より明らか.

命題 2.3. $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y), (Z, \mathcal{O}_Z)$ を位相空間とする. $f: X \to Y$ および $g: Y \to Z$ が連続写像ならば, $g \circ f$ も連続写像である.

証明.

$$(g \circ f)^*(\mathcal{O}_Z) = f^*(g^*(\mathcal{O}_Z)) \subset f^*(\mathcal{O}_Y) \subset \mathcal{O}_X$$

より分かる. (命題 2.2 を参照.)

写像 $f\colon X\to Y$ は,X の位相が細かければ細かいほど連続になりやすい.X が離散位相空間なら,f は必ず連続写像となる.逆に,Y の位相は粗ければ粗いほど f は連続になりやすい.Y が密着空間なら,Y への写像はどれも連続である.

位相空間 (X, θ_1) , (X, θ_2) を、それぞれ X_1 , X_2 で表すことにする。このとき、 θ_1 が θ_2 より細かいとは、 $\mathrm{id}_X \colon X_1 \to X_2$ が連続であるということに他ならない。

 (X, \mathcal{O}_X) において、部分集合 $A \subset X$ の特性関数 $1_A \colon X \to 2$ を考える.このとき、A が X の開集合であることと、 1_A が連続写像であることは同値である.

関数の連続性とは、基本的には局所的な性質である. そのことを端的に表しているのが次の命題である.

命題 **2.4.** (X, \mathcal{O}_X) および (Y, \mathcal{O}_Y) を位相空間とする.このとき,写像 $f\colon X\to Y$ において次の 2 条件は同値である.

- (i) f は連続である.
- (ii) f は任意の $x \in X$ で連続である.

証明. $(i) \Longrightarrow (ii)$ の証明. f が連続であるとする. $x \in X$ とし, f(x) の任意の開近傍 V をとる. 定義 2.1.(ii) における U として, $U = f^{-1}(V)$ をとればよい.

 $(ii) \Longrightarrow (i)$ の証明. f は任意の $x \in X$ で連続であるとする. 任意の $V \in \mathcal{O}_Y$ について, $f^{-1}(V)$ が X の開集合となることを示せばよい. $x \in f^{-1}(V)$ とすれば, f の x での連続性より $x \in U \subset f^{-1}(V)$ を満たす開集合 $U \in \mathcal{O}_X$ が存在する. 命題 1.4 より, これは $f^{-1}(V)$ が開集合であるということに他ならない.

定義 2.5. X と Y を位相空間とする.

- (i) $f: X \to Y$ を連続写像とする. 連続写像 $g: Y \to X$ で $g \circ f = \mathrm{id}_X$ かつ $f \circ g = \mathrm{id}_Y$ を満たすことが 存在するとき,f は同相写像 (homeomorphism) であるという.f が同相写像であるとは,すなわち f が全単射で f^{-1} も連続であるということである.
- (ii) 同相写像: $X \rightarrow Y$ が存在するとき, $X \ge Y$ は同相であるという.

位相空間 X,Y が同相であるとは、X,Y のもつ位相的な構造が全く同じであるという意味である.このとき X と Y は位相空間としては同じもであると考えることが出来る.

命題 2.6. $(X, \mathcal{O}_X), (Y, \mathcal{O}_Y)$ を位相空間, $f: X \to Y$ を可逆写像とする. このとき, 次の 2 条件は同値である.

- (i) *f* は同相写像である.
- (ii) $f^*\mathcal{O}_Y = \mathcal{O}_X$

証明. f の逆写像を g で表す.

 $(i) \Longrightarrow (ii)$ の証明. f を同相写像とする. f の連続性より

$$f^*\mathcal{O}_Y \subset \mathcal{O}_X$$

である. また, 逆写像 g の連続性より

$$g^*(\mathcal{O}_X) \subset \mathcal{O}_Y$$

となるから、左から f* を施せば

$$\mathcal{O}_X = (g \circ f)^*(\mathcal{O}_X) = f^*g^*\mathcal{O}_X \subset f^*\mathcal{O}_Y$$

を得る. これより (ii) が分かる.

 $(ii) \Longrightarrow (i)$ の証明. (ii) を仮定すれば f は明らかに連続である. (命題 2.2) また,仮定 $f^*\mathcal{O}_Y = \mathcal{O}_X$ において左から g^* を作用させれば

$$g^*(\mathcal{O}_X) = g^*(f^*\mathcal{O}_Y) = (f \circ g)^*\mathcal{O}_Y = \mathcal{O}_Y$$

となり、gの連続性も分かる.

定義 2.7. (X, \mathcal{O}_X) , (Y, \mathcal{O}_Y) を位相空間とし, $f: X \to Y$ を写像とする.

- (i) X の任意の開集合 U について f(U) が Y の開集合となるとき、f を開写像 (open mapping) という.
- (ii) X の任意の閉集合 F について f(F) が Y の閉集合となるとき、f を閉写像 (closed mapping) という.
- 一般に連続写像は開写像でも閉写像でもないが、同相写像は明らかに開写像かつ閉写像である。

3 近傍, 閉集合

定義 3.1. (X, \mathcal{O}_X) を位相空間とする. $V \in \mathcal{P}(X)$ が $x \in V^\circ$ を満たすとき, V は x の近傍であるという. V が x の近傍かつ開集合のときは、特にこれを開近傍という. $x \in X$ の近傍全体のなす集合を、x の近傍系といい、このノートでは \mathcal{V}_x で表すことにする.

命題 3.2. (X, \mathcal{O}_X) を位相空間とし、 $x \in X$ の近傍系を \mathcal{V}_x で表すことにする.

- (N1) 任意の $V \in \mathcal{V}_x$ に対して $x \in V$ である.
- (N2) $X \in \mathcal{V}_x$
- (N3) $V \in \mathcal{V}_x$ $h \cap V \subset W$ $x \in W \in \mathcal{V}_x$ $x \in \mathcal{V}_x$ $x \in \mathcal{V}_x$
- (N4) $U, V \in \mathcal{V}_x$ ならば $U \cap V \in \mathcal{V}_x$
- (N5) 任意の $V \in \mathcal{V}_x$ に対してある $W \in \mathcal{V}_x$ が存在して, $W \subset V$ かつ任意の $y \in W$ について $V \in \mathcal{V}_y$ となる.

証明. (N1) 近傍の定義より明らか.

- (N2) $x \in X = X^{\circ}$ より明らか.
- (N3) $V \in \mathcal{V}_x$ かつ $V \subset W$ とすれば, $x \in V^{\circ} \subset W^{\circ}$ から W はまた x の近傍である.
- (N4) $U^{\circ} \cap V^{\circ} = (U \cap V)^{\circ}$ より分かる.
- (N5) $V\in \mathcal{V}_x$ に対して, $x\in W\subset V$ なる開集合 W をとる.このとき,任意の $y\in W$ について $y\in W=W^\circ\subset V^\circ$ となり, $V\in \mathcal{V}_y$ が分かる.

注意 3.3. 命題 3.2 の条件 (N1)-(N5) を近傍系の公理と呼ぶ. 各点 $x \in X$ に対して (N1)-(N5) を満たす集合系 \mathcal{V}_x が定義されているというところから出発して、位相空間を考えることも出来る.

命題 3.4. X を位相空間とし、その部分集合 A を考える。A について次の 2 条件は同値である。

- (i) *A* は開集合である.
- (ii) 任意の $a \in A$ について、 $V \in \mathcal{V}_a$ で $a \in V \subset A$ を満たすものが存在する.
- 証明. (i) \Longrightarrow (ii) 命題 1.4 より,任意の $a \in A$ に対して,ある開集合 U で $a \in U \subset A$ を満たすものが存在する.U は明らかに a の近傍であり,(ii) が従う.
- (ii) \Longrightarrow (i) 仮定より、任意の $a\in A$ に対して、 $V\in \mathcal{V}_a$ で $a\in V\subset A$ を満たすものが存在する.近傍の定義より $a\in V^\circ\subset V\subset A$ であるから、命題 1.4 より A が開集合となる.

定義 3.5. X を位相空間とし、 $x \in X$ の近傍系を V_x で表す. $\mathcal{U}_x \subset \mathcal{P}(X)$ が

- (i) $\mathcal{U}_x \subset \mathcal{V}_x$,
- (ii) 任意の $V \in \mathcal{V}_x$ に対して $U \in \mathcal{U}_x$ で $x \in U \subset V$ を満たすものが存在する,

を満足するとき、 \mathcal{U}_x は x の近傍基底、または基本近傍系であるという.

基本近傍系 \mathcal{U}_x の各元が開集合のとき、 \mathcal{U}_x を特に基本開近傍系とよぶこともある.

関数の1点での連続性は、近傍系の言葉を使って書き直すことが出来る.

命題 3.6. X,Y を位相空間とし、 $f:X\to Y$ を写像とする. 任意の点 $x\in X$ について、次の 3 条件は同値.

- (i) f は $x \in X$ で連続.
- (ii) 任意の $V \in \mathcal{V}_{f(x)}$ に対し、 $U \in \mathcal{V}_x$ で $f(U) \subset V$ を満たすものが存在する.
- (iii) \mathcal{U}_x および $\mathcal{U}_{f(x)}$ をそれぞれ x,f(x) の任意の基本近傍系の一つとする.任意の $V\in\mathcal{U}_{f(x)}$ に対して,ある $U\in\mathcal{V}_x$ で $f(U)\subset V$ 満たすものが存在する.
- 証明. (i) \Longrightarrow (iii) f は x で連続とする. $V \in \mathcal{U}_{f(x)}$ とすれば, $f(x) \in V^\circ$ だからある開集合 $W \ni x$ で $f(W) \subset V^\circ \subset V$ なるものが存在する.W は x の近傍だから, $U \in \mathcal{U}_x$ で $U \subset W$ なるものがとれる.この とき $f(U) \subset f(W) \subset V$ である.つまり,(iii) が成り立つ.
- (iii) \Longrightarrow (ii) $V \in \mathcal{V}_{f(x)}$ に対して, $V' \subset V$ となるような $V' \in \mathcal{U}_{f(x)}$ を選ぶ.(iii) より, $U \in \mathcal{U}_x$ で $f(U) \subset V$ なるものがとれる. $U \in \mathcal{U}_x \subset \mathcal{V}_x$ だから,(ii) が従う.
- (ii) \Longrightarrow (i) $f(x) \in V$ なる開集合をとれば, $V \in \mathcal{V}_{f(x)}$ である.(ii) から,x の近傍 W で $f(W) \subset V$ なるものがとれる. $U = W^\circ$ とすれば,U は $x \in U$ なる開集合で $f(U) \subset f(W) \subset V$ を満たすものである.よって f は x で連続である.
- 定義 3.7. X を位相空間とする. 各点 $x \in X$ が可算個の元からなる基本近傍系を持つとき, X は第 1 可算であるという.

次に、閉集合と閉包の概念を導入する.

定義 3.8. X を位相空間とする.

(i) $F \subset X$ とする. $X \setminus F$ が X の開集合であるとき, F は閉集合であるという.

(ii) $A \subset X$ に対して、その閉包 (closure) \overline{A} を

$$\overline{A} = \{ x \in X \mid \forall U \in \mathcal{V}_x, \ U \cap A \neq \emptyset \}$$

で定義する. \overline{A} の元を A の触点と呼ぶ. 閉包を ClA で表すこともある.

- (iii) $A \subset X$ および $x \in X$ とする. 任意の $V \in \mathcal{V}_x$ について $A \cap (V \setminus \{x\}) \neq \emptyset$ となるとき,x は A の集積点 (accumulating point) であるという.
- (iv) $A \subset X$ に対し, $X \setminus \overline{A}$ を A の外部 (exterior) という.
- (v) $A \subset X$ に対し、 $\overline{A} \setminus A^{\circ}$ を A の境界 (boundary) といい、 ∂A と表す.
- (vi) $A \subset X$ が $\overline{A} = X$ を満たすとき,A は X で稠密 (dense) であるという.
- (vii) X の稠密部分集合 A で可算集合なるものが存在するとき,X は可分 (separable) であるという.

命題 3.9. (X, θ) を位相空間とし、 $\mathcal C$ を X の閉集合全体の集合とする. このとき、 $\mathcal C$ は次の性質をもつ.

- (i) $\emptyset, X \in \mathscr{C}$.
- (ii) $F_1, F_2 \in \mathcal{C}$ なら、 $F_1 \cup F_2 \in \mathcal{C}$.
- (iii) 空でない $\mathcal{F} \subset \mathcal{C}$ について, $\bigcap \mathcal{F} \in \mathcal{C}$ が成り立つ.

証明. (i) \emptyset は開集合だから, $X=X\setminus\emptyset$ は閉集合である.また X は開集合だから, $\emptyset=X\setminus X$ も閉集合である.

- (ii) F_1, F_2 を閉集合とすれば,条件 (O3) から $X \setminus (F_1 \cup F_2) = (X \setminus F_1) \cap (X \setminus F_2)$ は開集合である.よって $F_1 \cup F_2$ も閉集合である.
 - (iii) 多 を閉集合族とすれば、条件 (O2) から

$$X \setminus \bigcap \mathcal{F} = X \setminus \bigcap_{F \in \mathcal{F}} F = \bigcup_{F \in \mathcal{F}} X \setminus F$$

は開集合である. よって $\bigcap \mathcal{F}$ は閉集合となる.

位相空間の閉部分集合は、閉包によって特徴付けられる.

命題 3.10. X を位相空間, A をその部分集合とする.

- (i) $\overline{A} = X \setminus (X \setminus A)^{\circ}$.
- (ii) \overline{A} は A を含む最小の閉集合である.
- (iii) A が閉集合であることと $A = \overline{A}$ は同値である.

証明. (i) 閉包の定義における条件を否定すれば, $x \in X \setminus \overline{A}$ は「x の適当な近傍 U をとれば $A \cap U = \emptyset$ 」ということであり、これは「x の適当な近傍 U をとれば $U \subset X \setminus A$ 」と同値である。最後の条件は x が $X \setminus A$ の内点であるということに他ならない。

- (ii) 命題 1.9 と (i) より $A = X \setminus (X \setminus A) \subset X \setminus (X \setminus A)^\circ$ である。 (i) より \overline{A} が閉集合であることも分かる。 F を $A \subset F$ なる閉集合とすれば, $X \setminus F$ は $X \setminus F \subset X \setminus A$ を満たす開集合である。内部の最大性より, $X \setminus F \subset (X \setminus A)^\circ$ となり, $\overline{A} = X \setminus (X \setminus A)^\circ \subset X \setminus (X \setminus F) = F$ が分かる。 これより \overline{A} は A を含む閉集合のうち最小のものである。
- (iii) A が閉集合であるとは, $X\setminus A$ が開集合であるということである. $X\setminus A$ が開集合であることは $X\setminus A=(X\setminus A)^\circ$ であることと同値であり,これは $A=X\setminus (X\setminus A)=X\setminus (X\setminus A)^\circ=\overline{A}$ とも同値である.

命題 3.11. X を位相空間とし, $A\subset X$ とする. \mathcal{U}_x を $x\in X$ の基本近傍系とする.このとき,次の 2 条件は同値である.

- (i) $x \in \overline{A}$.
- (ii) 任意の $V \in \mathcal{U}_x$ について、 $V \cap A \neq \emptyset$ が成り立つ.

証明. (i) ⇒ (ii) 明らか.

 $(ii)\Longrightarrow (i)\ V\in \mathcal{V}_x$ とすれば、 $x\in W\subset V$ なる $W\in \mathcal{U}_x$ がとれる.仮定 (ii) より $W\cap A\neq\emptyset$ だから、 $V\cap A\neq\emptyset$ となる.

命題 3.12. X を位相空間とする. X の部分集合の閉包について,次の性質が成り立つ.

- (CO1) $\overline{\emptyset} = \emptyset$.
- (CO2) $A \subset \overline{A}$.
- (CO3) $\overline{\overline{A}} = \overline{A}$.
- $(CO4) \ \overline{A \cup B} = \overline{A} \cup \overline{B}.$

証明. (CO1)-(CO3) は命題 3.10 より明らかである.

(CO4) 命題 1.9 および命題 3.10 から

$$\overline{A \cup B} = X \setminus [X \setminus (A \cup B)]^{\circ}$$

$$= X \setminus [(X \setminus A) \cap (X \setminus B)]^{\circ}$$

$$= X \setminus [(X \setminus A)^{\circ} \cap (X \setminus B)^{\circ}]$$

$$= [X \setminus (X \setminus A)^{\circ}] \cup [X \setminus (X \setminus B)^{\circ}]$$

$$= \overline{A} \cup \overline{B}$$

となる. □

注意 3.13. 命題 3.12 における条件 (CO1)-(CO4) を閉包作用素の公理という。閉包作用素の公理から出発して、位相空間を定義することも出来る *5 .

位相空間から位相空間への写像が連続である条件を、閉集合や閉包の言葉を使って言い換える。

命題 3.14. X と Y を位相空間とし, $f: X \to Y$ を写像とする.このとき,次の 3 条件は同値である.

- (i) f は連続である.
- (ii) 任意の閉集合 $F \subset Y$ について、 $f^{-1}(F)$ は X の閉集合となる.
- (iii) 任意の部分集合 $A \subset X$ について、 $f(\overline{A}) \subset \overline{f(A)}$ が成り立つ.

証明. (i) ⇔ (ii) は明らか.

- (ii) \Longrightarrow (iii) $f(A) \subset \overline{f(A)}$ だから, $A \subset f^{-1}(\overline{f(A)})$ である.(ii) より $f^{-1}(\overline{f(A)})$ は閉集合だから,閉包の最小生より $\overline{A} \subset f^{-1}(\overline{f(A)})$ となる.これより $f(\overline{A}) \subset \overline{f(A)}$ が分かる.
- (iii) \Longrightarrow (ii) $F \subset Y$ を閉集合とし, $A := f^{-1}(F)$ とする.仮定より $f(\overline{A}) \subset \overline{f(A)} = \overline{f(f^{-1}(F))} \subset \overline{F} = F$ となるから, $A = f^{-1}(F) \supset \overline{A}$ が分かる.よって $A = \overline{A}$ であり, $A = f^{-1}(F)$ は閉集合であることが分かっ

^{*5} 児玉・永見 [8] などを見よ.

4 有向族

本節では有向族の概念を導入する. 有向族は点列を一般化した概念で, 位相空間においては有向族の極限を 考えることが出来る. まずは, 有向集合を定義する.

定義 4.1 (有向集合). Λ を集合, \leq をその上の二項関係とする.

- (i) $\lambda \in \Lambda$ $\lambda < \lambda$.
- (ii) $\lambda, \mu, \nu \in \Lambda$ が $\lambda \leq \mu$ かつ $\mu \leq \nu$ を満たすならば、 $\lambda \leq \nu$ も成り立つ.
- (iii) 任意の $\lambda, \mu \in \Lambda$ に対してある $\nu \in \Lambda$ で $\lambda \leq \nu$ かつ $\mu \leq \nu$ を満たすものが存在する.

が成り立つとき, (Λ, \leq) は有向集合 (directed set) であるという.

 $\Lambda_0 \subset \Lambda$ が次の条件を満たすとき、 Λ_0 は Λ において共終 (co-final) であるという.

(iv) 任意の $\lambda \in \Lambda$ に対して、 $\mu \ge \lambda$ なる $\mu \in \Lambda_0$ が存在する.

例 **4.2.** (X,0) を位相空間とする. $x \in X$ に対して, \mathcal{U}_x をその基本近傍系とする. \mathcal{U}_x 上の順序 $U \leq_{\mathcal{U}_x} V$ を $U \supset V$ で定義する.このとき,半順序集合 $(\mathcal{U}_x, \leq_{\mathcal{U}_x})$ は有向集合である.実際,任意の $U, V \in \mathcal{U}_x \subset \mathcal{V}_x$ について $U \cap V \in \mathcal{V}_x$ だから,基本近傍系の定義より $W \subset U \cap V$ を満たす $W \in \mathcal{U}_x$ が存在する.これは $U \leq_{\mathcal{U}_x} W$ かつ $V \leq_{\mathcal{U}_x} W$ を満たす \mathcal{U}_x の元である.基本近傍系の定義より,任意の基本近傍系 $\mathcal{U}_x \subset \mathcal{V}_x$ は 明らかに \mathcal{V}_x で共終である.

有向集合で添え字付けられた点の族を有向族という.

定義 4.3 (有向族). Λ を有向集合, X を集合とする.

- (i) 写像 $\Lambda \to X$ を X の有向族, またはネット (net) と呼ぶ. 有向族を $(x_{\lambda})_{\lambda \in \Lambda}$ と書くことも多い.
- (ii) M を有向集合とし、 $x:\Lambda \to X$ および $y:M \to X$ をネットとする。 $\varphi:M \to \Lambda$ で、 $y=x\circ \varphi$ かつ

$$\forall \lambda \in \Lambda, \exists \mu_0 \in M, \forall \mu \in M (\mu \geq \mu_0 \implies \varphi(\mu) \geq \lambda)$$

が成り立つとき、 $y=(y_{\mu})_{\mu\in M}$ は $x=(x_{\lambda})_{\lambda\in\Lambda}$ の部分有向族 (subnet) であるという.

 $(x_{\varphi(\alpha)})_{\alpha\in A}$ が $(x_{\lambda})_{\lambda\in\Lambda}$ の部分有向族であるとき, $\varphi(A)$ は Λ で共終である. $\varphi:A\to\Lambda$ が特に単調写像のときは, $(x_{\varphi(\alpha)})$ が (x_{λ}) の部分有向族であることと, $\varphi(A)$ が共終であることは同値となる.

位相空間における有向族について, その極限を定義することが出来る.

定義 4.4. X を位相空間とし, $(x_{\lambda})_{\lambda \in \Lambda}$ を X の有向族とする.任意の $U \in \mathcal{V}_x$ に対して,ある $\lambda \in \Lambda$ で

$$\kappa \geq \lambda \implies x_{\kappa} \in U$$

を満たすものが存在するとき, $(x_{\lambda})_{\lambda \in \Lambda}$ は x に収束するといい,x は (x_{λ}) の極限 (limit) または極限点 (limit point) であるという.有向族 (x_{λ}) の極限全体の集合を

$$\lim_{\lambda \in \Lambda} x_{\lambda}$$
, $\lim_{\lambda} x_{\lambda}$, $\lim_{\lambda \in \Lambda} (x_{\lambda})_{\lambda \in \Lambda}$

などと表記する. (x_{λ}) が x に収束するとき,

$$x_{\lambda} \xrightarrow{\lambda} x$$

という表記もよく用いられる.一般に有向族の極限は一意とは限らないが、極限が唯一点のみ存在するときは

$$\lim_{\lambda} x_{\lambda} = x$$

などと表現する.

次に、有向族の収束についての基本的な性質を調べる、その前に、予備概念を一つ用意する、

 $(\Lambda, \leq_{\Lambda})$ および $(A_{\lambda}, \leq_{\lambda})$ を有向集合の族とする. $\Lambda \times \prod_{\lambda \in \Lambda} A_{\lambda}$ は成分ごとの順序を入れることで,また有向集合となる.集合 X における有向族の族 $x_{\lambda} \colon A_{\lambda} \ni \alpha \mapsto x_{\lambda \alpha} \in X$ が与えられたとき,対角有向族 $\Delta(x_{\lambda})$ を

$$\Delta(x_{\lambda}) \colon \Lambda \times \prod_{\lambda \in \Lambda} A_{\lambda} \longrightarrow X$$
$$(\lambda, \varphi) \longmapsto x_{\lambda \circ (\lambda)}$$

で定義する.

命題 4.5.~X を位相空間とする. X における有向族の収束について, 次の主張が成り立つ.

- (MS1) $x_{\lambda} = x \ (\forall \lambda \in \Lambda) \$ なら, $x \in \lim x_{\lambda}$
- (MS2) $(x_{\lambda})_{\lambda \in \Lambda}$ が x に収束するなら、その任意の部分有向族も x に収束する.
- (MS3) $(x_{\lambda})_{\lambda \in \Lambda}$ の任意の部分有向族が, $x \in X$ に収束する部分有向族をもつなら, (x_{λ}) 自身も x に収束する.
- (MS4) $(y_{\lambda})_{\lambda \in \Lambda}$ および $(x_{\lambda \alpha})_{\alpha \in A_{\lambda}}$ を有向族とし、 $y \in \lim_{\lambda} y_{\lambda}$ および $y_{\lambda} \in \lim_{\alpha} x_{\lambda \alpha}$ $(\lambda \in \Lambda)$ が成り立っているとする. このとき、対角有向族 $\Delta(x_{\lambda})$ は y に収束する.

証明. (i) 任意の $V \in \mathcal{V}_x$ に対して $x_{\lambda} = x \in V$ であることから分かる.

 $(ii) \ (x_{\varphi(\alpha)})_{\alpha \in A}$ を $(x_{\lambda})_{\lambda \in \Lambda}$ の任意の有向族とする. $x_{\lambda} \to x$ だから、任意の $V \in \mathcal{V}_x$ に対してある $\lambda_V \in \Lambda$ が存在して

$$\forall \lambda (\lambda \ge \lambda_V \implies x_\lambda \in V) \tag{1}$$

となる. $(x_{\varphi(\alpha)})$ が部分有向族であるとの仮定より、 λ_V に対してある $\alpha_V \in A_\lambda$ で

$$\forall \alpha (\alpha \ge \alpha_V \implies \varphi(\alpha) \ge \lambda_V) \tag{2}$$

を満たすものがとれる. このとき (1) と (2) から, $\alpha \geq \alpha_V$ ならば $x_{\varphi(\alpha)} \in V$ となることが分かる. これより $(x_{\varphi(\alpha)})_{\alpha \in A}$ もまた x に収束することが分かる.

(iii) 対偶を示す. $(x_{\lambda})_{\lambda \in \Lambda}$ は x に収束しないとする. このとき, x のとある近傍 V をとれば,

$$\forall \lambda \in \Lambda(\exists \kappa \in \Lambda(\kappa \geq \lambda \land x_{\kappa} \notin V))$$

が成り立つ. $\lambda \in \Lambda$ に対して、上の条件を満たす κ を一つ選んで $\kappa = \varphi(\lambda)$ とする. このとき、 $(x_{\varphi(\lambda)})_{\lambda}$ が x の部分有向族で、 $x \notin \lim_{\lambda} x_{\varphi(\lambda)}$ となることを示す。 $(x_{\varphi(\lambda)})_{\lambda}$ が有向族であることは明らかである. $\lambda \in \Lambda$ に対して $\kappa := \varphi(\lambda)$ とすれば、 $\mu \geq \kappa$ なる μ について

$$\varphi(\mu) \ge \mu \ge \kappa = \varphi(\lambda) \ge \lambda$$

となる. これより、 $(x_{\varphi(\lambda)})_{\lambda}$ は (x_{λ}) の部分有向族であることが分かる. $(x_{\varphi(\lambda)})_{\lambda}$ のいかなる部分有向族も x に収束しないことは定義より明らかである.

(iv) $(x_{\lambda\alpha})$ および (y_{λ}) は (iv) の仮定を満たすものとする.このとき $\Delta(x_{\lambda})$ が y に収束することを示す.V は y の任意の近傍とする.このとき命題 3.2 より $W \subset V$ なる y の近傍で,任意の $z \in W$ について $V \in V_z$ となるようなものがとれる. $\lambda_0 \in \Lambda$ を

$$\lambda \ge \lambda_0 \implies y_\lambda \in W$$

となるようにとる*6. W の選びかたより V は各 y_{λ} ($\lambda \geq \lambda_0$) の近傍となっているから,

$$\alpha \ge \alpha_0(\lambda) \implies x_{\lambda\alpha} \in V$$

となるような $\alpha_0(\lambda) \in A_\lambda$ がとれる.ここで $\nu_0 = (\lambda_0, (\alpha_0(\lambda))_{\lambda \in \Lambda}) \in \Lambda \times \prod_\lambda A_\lambda$ と定義する.このとき, $\nu = (\kappa, (\beta_\lambda)_{\lambda \in \Lambda}) \ge \nu_0$ ならば, $\Delta(x_\lambda)(\nu) = x_{\kappa\beta_\kappa} \in V$ である*7.これより $\Delta(x_\lambda)$ は y に収束することが示された.

命題 4.5 は「収束の公理」とでも呼ぶべきものであって,これらの条件から出発して位相を導入できることができる.これは Moore-Smith の収束理論などとも呼ばれていて,そのため公理の条件を $(MS\cdot)$ のように表しているわけである.

命題 4.6. X を収束とし, X には公理 (MS1)–(MS4) を満たす収束概念 ($\mathscr C$) が定義されているとする. $A\subset X$ に対して

$$Cl(A) = \{a \in X \mid A \text{ on } \pi \text{$$

と定義すれば、Cl は閉包作用素の公理 (CO1)-(CO4) を満たす。さらに、閉包作用素 Cl から定まる位相における収束は、(C) による収束概念と一致する。

証明. **Step 1**: **(CO1)** と **(CO2)** について. (CO1) は明らかである. $a \in A$ なら定数有向族 a は a に収束 するので、 $a \in Cl(A)$ である. よって (CO2) も成り立つ.

Step 2: (CO4) について. $A \subset B$ かつ $a \in \operatorname{Cl}(A)$ とする. A の有向族で a に収束するものは, a に収束する B の有向族でもあるので, このとき $a \in \operatorname{Cl}(B)$ が成り立つ. よって $\operatorname{Cl}(A) \subset \operatorname{Cl}(B)$ である. すなわち, Cl は包含関係について単調である. これより $\operatorname{Cl}(A), F(B) \subset F(A \cup B)$ が成り立つので, $F(A) \cup F(B) \subset F(A \cup B)$ がわかる. 逆向きの包含関係を示そう. $a \in F(A \cup B)$ とし, (x_{λ}) を a に収束する $A \cup B$ の有向族とする. 集合 M_A, M_B を

$$M_A = \{ \lambda \in \Lambda \mid x_\lambda \in A \}, \qquad M_B = \{ \lambda \in \Lambda \mid x_\lambda \in B \}$$
 (4)

と定義し、 Λ から誘導される順序を入れる。このとき、 M_A か M_B のどちらかは Λ の共終部分集合になっている。 (いずれも共終部分集合でないとすると、 (x_λ) は $A\cup B$ の有向族でないことになる。) 特に M_A が共終であると仮定しても一般性を失わない。このとき $(x_\lambda)_{\lambda\in M_A}$ は (x_λ) の部分有向族で,A の点からなるものである。条件 (MS2) より $(x_\lambda)_{\lambda\in M_A}$ は a に収束するので, $a\in \mathrm{Cl}(A)$ がわかる。これより $a\in F(A)\cup F(B)$ となり, $F(A\cup B)\subset F(A)\cup F(B)$ が示された。

Step 3: **(CO3)** について. **(CO2)** より $\operatorname{Cl}(A) \subset \operatorname{Cl}(A)$ は分かっているので、逆向きの包含関係を示す. $(x_{\lambda})_{\lambda \in \Lambda}$ を $\operatorname{Cl}(A)$ の有向族で a に収束するようなものとし、さらに各 $\lambda \in \Lambda$ について x_{λ} に収束する有

^{*6} 収束の定義

^{*7} $\beta_{\kappa} \geq \alpha_0(\lambda)$ に注意.

向族 $(x_{\lambda\alpha})_{\alpha\in A_{\lambda}}$ が与えられているとする. このとき、公理 (MS4) より対角有向族 $\Delta(x_{\lambda})$ は a に収束する. よって $a\in \mathrm{Cl}(A)$ となり、 $\mathrm{Cl}(\mathrm{Cl}(A)\subset \mathrm{Cl}(A)$ がわかった.

Step 4: Cl から定まる収束と (\mathscr{C}) の収束の一致性. Cl から定まる位相を (\mathscr{T}) と呼ぶことにする. まずは, (\mathscr{C}) で $a \in X$ に収束する有向族は (\mathscr{T}) でも a に収束することを示す. $(x_{\lambda})_{\lambda \in \Lambda}$ は (\mathscr{C}) で a に収束するが, (\mathscr{T}) では a に収束しないと仮定しよう. a の開近傍 U を

• どんな λ に対しても,ある $\lambda' \geq \lambda$ で $x_{\lambda'} \notin U$ を満たすものが存在する.

を満たすように選ぶ。このとき $M=\{\lambda\in\Lambda\mid x_\lambda\notin U\}$ は Λ の共終部分集合であり, $(x_\lambda)_{\lambda\in M}$ は $(x_\lambda)_{\lambda\in\Lambda}$ の部分有向族となる。 (x_λ) は (\mathscr{C}) で $a\in X$ に収束するから,(MS2) により部分有向族 $(x_\lambda)_{\lambda\in M}$ は a に収束する。したがって, $a\in\overline{X\setminus U}$ であり,一方で $a\notin X\setminus U$ だから U が開集合であるという仮定に矛盾する。

最後に、 (\mathcal{T}) で $a \in X$ に収束する有向族は (\mathcal{C}) でも a に収束することを示そう。 $(x_{\lambda})_{\lambda \in \Lambda}$ は (\mathcal{T}) で $a \in X$ に収束するとし、 $(y_{\mu})_{\mu \in M} = (x_{\varphi(\mu)})_{\mu \in M}$ を (x_{λ}) の任意の部分有向族とする。

$$M_{\alpha} = \{ \mu \in M \mid \mu \ge \alpha \}, \qquad A_{\alpha} = \{ y_{\mu} \mid \mu \in M_{\alpha} \}$$
 (5)

と定義する. $(y_{\mu})_{\mu\in M_{\alpha}}$ は $(x_{\lambda})_{\lambda\in\Lambda}$ の部分有向族だから (\mathfrak{T}) について a に収束し,したがって (\mathfrak{T}) の定義に より $a\in\bigcap_{\alpha\in M}\operatorname{Cl}(A_{\alpha})$ が成り立つ.Cl の定義より,各 $\alpha\in M$ に対して, (\mathscr{C}) の意味で a に収束する A_{α} の 有向族 $(z_{\alpha\beta})_{\beta\in B_{\alpha}}$ が存在する. $(z_{\alpha\beta})_{\beta\in B_{\alpha}}$ が A_{α} の有向族であるということは,任意の $\beta\in B_{\alpha}$ に対して, ある $\mu\in M_{\alpha}$ で $y_{\mu}=z_{\alpha\beta}$ を満たすものが存在するということである.ここで,

$$D_{\alpha} = \{ (\mu, \beta) \in M_{\alpha} \times B_{\alpha} \mid z_{\alpha\beta} = y_{\mu} \}$$
 (6)

と定義し, B_{α} の順序によって有向集合と見なす.(M_{α} の構造は忘れる.)写像 Θ_{α} : $D_{\alpha} \to M$,を $\Theta_{\alpha}(\mu,\beta) = \mu$ によって定義し, Ξ_{α} : $D_{\alpha} \to M$ を $\Xi_{\alpha}(\mu,\beta) = \beta$ によって定めれば, $z_{\alpha\Xi_{\alpha}(\mu,\beta)} = y(\Theta_{\alpha}(\mu,\beta))$ が成り立つ.そこで, $w_{\alpha\delta} = z_{\alpha\Xi_{\alpha}(\mu,\beta)}$ と定義すれば, $(w_{\alpha\delta})_{\delta\in D_{\alpha}}$ は $(z_{\alpha\beta})_{\beta\in B_{\alpha}}$ の部分有向族であり,(MS2) より a に 収束する.さらに $(w_{\alpha\delta})_{\delta\in D_{\alpha}} = y\circ\Theta_{\alpha}$ も成り立っている.($(w_{\alpha\beta})$ が (y_{μ}) の部分有向族になっているかは問わない.)(MS1) より定数有向族 $w_{\alpha} = a$ は (%) の意味でも a に収束するので,(MS4) により対角有向族 $\Delta(w) = (w_{\alpha\varphi(\alpha)}; (\alpha,\varphi) \in M \times \prod_{\alpha} D_{\alpha})$ は (%) の意味で a に収束する.後は $\Delta(w)$ が (y_{μ}) の部分有向族であることを示せば,(MS3) により (x_{λ}) も (%) で a に収束することがわかる. $(w_{\alpha\beta})$ の定義より, $\Delta(w)_{\alpha\varphi} = w(\alpha\varphi(\alpha)) = y(\Theta_{\alpha}(\varphi(\alpha)))$ が成り立っている. $\mu \in M$ に対して, $\alpha \geq \mu$ とすれば,任意の $(\alpha,\varphi) \in M \times \prod_{\alpha} D_{\alpha}$ について $\Theta_{\alpha}(\varphi(\alpha)) \geq \alpha \geq \mu$ が成り立つ*8.ゆえに $\Delta(w)$ は (y_{μ}) の部分有向族である.

5 フィルター

定義 5.1. X を集合とする. $\mathcal{F} \in \mathcal{P}(\mathcal{P}(X))$ が次の三条件を満たすとき, \mathcal{F} を X のフィルター (filter) と呼ぶ.

- (F1). *ℱ* は空でなく, ∅ *∉ ℱ*.
- (F2). $A, B \in \mathcal{F}$ なら、 $A \cap B \in \mathcal{F}$.
- (F3). $F \in \mathcal{F}$ かつ $F \subset F' \in \mathcal{P}(X)$ ならば $F' \in \mathcal{F}$.

^{*8} $\varphi(\alpha) \in D_{\alpha}$ なので、その M_{α} 成分は α より大きい.

 \mathscr{F} を X のフィルターとすれば、フィルターは有限交叉性をもつ*9. 定義より明らかに $X \in \mathscr{F}$ である. $\mathscr{F}(\emptyset) = \{\emptyset\}$ であるから、 \emptyset 上のフィルターは存在しない。 $\{X\} \subset \mathscr{F}(X)$ は X 上の最小のフィルターである。 \mathscr{F} および \mathscr{F}' を集合 X のフィルターとする。 $\mathscr{F} \subset \mathscr{F}'$ なるとき、 \mathscr{F}' は \mathscr{F} より細かいといい、 \mathscr{F} は \mathscr{F}' より 粗いという。 $\mathscr{F} \subset \mathscr{F}'$ であるとき、 \mathscr{F}' は \mathscr{F} より真に細かいといい、 \mathscr{F} は \mathscr{F}' より真に粗いという。 $\mathscr{F} \subset \mathscr{F}'$ に包含関係が成り立つとき、これら二つのフィルターは比較可能であるという。

空でない X 上のフィルターの族 $(\mathcal{F}_i)_{i\in I}$ を考えよう.

$$\mathscr{F}:=\bigcap_{i\in I}\mathscr{F}_i$$

は明らかに X 上のフィルターであり、フィルター族 (\mathcal{F}_i) の下限を成している.

位相空間 X に対して, $x \in X$ の近傍系 \mathcal{V}_x は明らかに X 上のフィルターである.これを x の近傍フィルターと呼ぶ.

定義 5.2. X を集合とする. $\mathcal{B} \subset \mathcal{P}(X)$ が次の二条件を満たすとき, \mathcal{F} を X のフィルター基底 (filter base) と呼ぶ.

(Fb1). $\mathscr{B} \neq \emptyset$ かつ $\emptyset \notin \mathscr{B}$.

(Fb2). $B_1, B_2 \in \mathcal{B}$ ならば $B \subset B_1 \cap B_2$ なる $B \in \mathcal{B}$ が存在する.

フィルターは明らかにフィルター基底である. 逆に,フィルター基底が条件 (F3) を満たせばそれはフィルターである. したがって,(F3) を満たすフィルター基底をフィルターと定義しても同値である. フィルター基底 $\mathfrak B$ に対して

$$\mathscr{F} := \{ F \in \mathscr{P}(X) \mid \exists B \in \mathscr{B}, \ B \subset F \}$$

とすれば $\mathfrak B$ は $\mathfrak B$ を含むフィルターであるが、これを $\mathfrak B$ によって生成されるフィルターと呼ぶ。 $\mathfrak B$ によって生成されるフィルターは、 $\mathfrak B$ を含むフィルターのうちで最小のものである。

位相空間 X において、 $x \in X$ の基本近傍系 \mathcal{U}_x は X 上のフィルター基底である。 \mathcal{U}_x によって生成されるフィルターは、近傍系 \mathcal{V}_x である。

定義 5.3. X のフィルター $\mathcal F$ より真に細かい X のフィルターが存在しないとき, $\mathcal F$ は X の超フィルター (ultrafilter) であるという.

補題 5.4. X を集合, \mathcal{F} をフィルター基底とする.このとき,次の 2 条件は同値.

- (i) \mathcal{F} は X の超フィルターである.
- (ii) ℱ を真に含むフィルター基底は存在しない.

証明. $Step\ 1: (i) \Longrightarrow (ii)$. \mathscr{G} は超フィルターであるとし, \mathscr{G} を真に含むフィルター基底が \mathscr{G} は存在したとする. このとき, \mathscr{G} から生成されるフィルターは \mathscr{G} より真に細かいフィルターであり,超フィルター \mathscr{G} の極大性に矛盾する. これより \mathscr{G} を真に含むフィルター基底は存在しない.

 $Step\ 2: (ii) \Longrightarrow (i).\ \mathcal{F}$ はフィルター基底で, \mathcal{F} より真に細かいフィルター基底が存在しないものとする。 このとき,明らかに \mathcal{F} 自身もフィルターである *10 . \mathcal{F} より真に細かいフィルターがあれば,それは \mathcal{F} を真に含むフィルター基底となって仮定 (ii) に矛盾する.よって \mathcal{F} より真に細かいフィルターは存在しない. \square

^{*9} フィルターの元の任意の(空でない)有限族の共通部分は空でないということ.

^{*10} フィルターはフィルター基底である.

命題 **5.5.** X を集合とし, $\mathscr F$ をその上のフィルターとする.このとき, $\mathscr F$ を含む X 上の超フィルターが存在する.

証明. フィルター 多 に対して

$$\mathcal{A} = \{ \mathcal{G} \subset \mathcal{P}(X) \mid \mathcal{G} \ \mathsf{td} \ \mathcal{F} \subset \mathcal{G} \ \mathsf{を満たすフィルター} \}$$

と定義する。このとき ${\it d}$ は集合の包含関係について半順序集合となる。これが空でない帰納的順序集合であることを示そう。 ${\it F}\in {\it d}$ だから, ${\it d}$ は空集合ではない。 ${\it C}\subset {\it d}$ を任意の空でない全順序部分集合とする。このとき [] ${\it C}$ はまた ${\it F}$ より細かいフィルターである。

 $: \mathcal{F} \subset \bigcup \mathscr{C}$ と $\emptyset \notin \bigcup \mathscr{C}$ は明らかである。 $A,B \in \bigcup \mathscr{C}$ とすれば, \mathcal{F} より細かいフィルター $\mathscr{C},\mathscr{G} \in \mathscr{C}$ で $A \in \mathscr{C},$ $B \in \mathscr{G}$ なるものが存在する。 \mathscr{C} は全順序だから,特に $\mathscr{C} \subseteq \mathscr{G}$ と仮定してよい。このとき $A \cap B \in \mathscr{G} \subset \bigcup \mathscr{C}$ が成り立つ。 $A \in \bigcup \mathscr{C}$ とし,E は $A \subset E \subset X$ を満たす任意の集合とする。 $A \in \mathscr{G} \subset \bigcup \mathscr{C}$ なるフィルター \mathscr{G} を選べば, $E \in \mathscr{G} \subset \bigcup \mathscr{C}$ が分かる。よって $\bigcup \mathscr{C}$ がフィルターであることが示された。

構成法より $\bigcup \mathscr{C} \in \mathscr{A}$ は \mathscr{C} の上界である.これより \mathscr{A} が空でない帰納的順序集合であることが分かった. \mathscr{A} に Zorn の補題を適用すれば,極大元 \mathscr{F}' をとることが出来る.定義より \mathscr{F}' は \mathscr{F} より細かいフィルターであり,極大性よりこれは超フィルターである.

命題 5.6. X を集合とする. X 上の超フィルター $\mathcal F$ は次の性質を持つ.

- (i) $A \subset X$ とする. 任意の $F \in \mathcal{F}$ に対して $A \cap F \neq \emptyset$ なら, $A \in \mathcal{F}$ である.
- (ii) $F_1 \cup F_2 \in \mathcal{F}$ ならば, $F_1 \in \mathcal{F}$ または $F_2 \in \mathcal{F}$ が成り立つ.

証明. $Step\ 1: (i)$ の証明. $A \subset X$ は任意の $F \in \mathcal{F}$ に対して $A \cap F \neq \emptyset$ を満たすと仮定する.

$$\mathcal{B} = \mathcal{F} \cup \{A \cap F \mid F \in \mathcal{F}\}\$$

と定義したとき,第 はフィルター基底である.定義より明らかに $\mathcal{F} \subset \mathcal{F}$ が成立.もし $\mathcal{F} \subsetneq \mathcal{F}$ が成り立つなら,フィルター基底 \mathcal{F} によって生成されるフィルター \mathcal{F}' は $\mathcal{F} \subsetneq \mathcal{F}'$ を満たし,超フィルターの極大性に矛盾する.したがって $\mathcal{F} = \mathcal{F}$ が成立.これより, $\{A \cap F \mid F \in \mathcal{F}\} \subset \mathcal{F}$ となり,特に $A = A \cap X \in \mathcal{F}$ が分かる.

 $Step\ 2: (ii)$ の証明. 背理法で示す. (ii) の主張を否定すれば, $F_1, F_2 \notin \mathcal{F}$ かつ $F_1 \cup F_2 \in \mathcal{F}$ を満たす $F_1, F_2 \in \mathcal{P}(X)$ が存在する.

$$\mathcal{G} = \{ G \in \mathcal{P}(X) \mid F_1 \cup G \in \mathcal{F} \}$$

と定義すれば、g は X 上のフィルターである。特に $G=F_2$ として取れば、 $F_2\in g\setminus \mathcal{F}$ となるから、g は \mathcal{F} より真に細かいフィルターである。これは超フィルター \mathcal{F} の極大性に矛盾する。

フィルター基底が超フィルターかどうか判別するための条件として,以下の補題がよく知られている.

命題 5.7. % を集合 X 上のフィルター基底とする. このとき,次の 2 条件は同値である.

- (i) % は超フィルターである.
- (ii) 任意の $A \in \mathcal{P}(X)$ に対して $A \in \mathcal{B}$ または $X \setminus A \in \mathcal{B}$ が成り立つ.

証明. $Step\ 1: (i) \Longrightarrow (ii)$ の証明. \mathscr{B} を超フィルターとする. $A \subset X$ に対して $X = A \cup (X \setminus A)$ となることに注意すれば、命題 5.6 の (ii) より明らかである.

 $Step\ 2: (ii) \Longrightarrow (i)$ の証明. \mathscr{B} を含むフィルター \mathscr{F} を任意に選ぶ *11 . このとき $\mathscr{F} = \mathscr{B}$ となることを示せばよい. $A \in \mathscr{F}$ とすれば, \mathscr{F} はフィルターだから $X \setminus A \notin \mathscr{F}$ となる. $\mathscr{B} \subset \mathscr{F}$ から, $X \setminus A \notin \mathscr{B}$ である. したがって条件 (ii) より $A \in \mathscr{B}$ となり, $\mathscr{F} \subset \mathscr{B}$ が示された.

フィルター基底が与えられたとき、それを写像によって送ったり引き戻したり出来る。

命題 5.8. X,Y を集合, $f: X \rightarrow Y$ を写像とする.

- (i) $\mathcal B$ は X のフィルター基底であるとする. このとき $f_*(\mathcal B)$ は Y 上のフィルター基底である.
- (ii) \mathscr{B}' を Y のフィルター基底とする.任意の $B \in \mathscr{B}'$ に対して $B \cap f(X) \neq \emptyset$ ならば, $f^*(\mathscr{B}')$ は X 上のフィルター基底である.
- 証明. (i) \mathscr{B} は空集合ではなく、空集合を要素に持たないから、空でない $A \in \mathscr{B}$ が存在する.このとき $f_*(A) = f(A)$ はまた空でないから、 $f_*(\mathscr{B})$ もまた空集合ではない. $f(A) = \emptyset$ となる $A \subset X$ は空集合に限るから、 $\emptyset \notin f_*(\mathscr{B})$ である. $A,B \in \mathscr{B}$ とすれば、 $C \subset A \cap B$ なる C が取れる.このとき $f(C) \subset f(A \cap B) \subset f(A) \cap f(B)$ となるから、 $f_*(\mathscr{B})$ がフィルター基底であることが分かる.
- (ii) 仮定より任意の $B' \in \mathfrak{B}'$ について $f^{-1}(B')$ は空ではないから* 12 , $\emptyset \notin f^*(\mathfrak{B}')$ かつ $f^*(\mathfrak{B}') \neq \emptyset$ である. $A', B' \in \mathfrak{B}'$ に対して $C' \subset A' \cap B'$ なる $C' \in \mathfrak{B}'$ をとれば, $f^{-1}(C') \subset f^{-1}(A' \cap B') = f^{-1}(A') \cap f^{-1}(B')$ となるから, \mathfrak{B}' はフィルター基底である.

フィルターについても収束の概念を定義することが出来る.

定義 5.9. X を位相空間とし, $\mathcal F$ を X のフィルターとする. $\mathcal F$ がある $x\in X$ の近傍フィルターより細かいとき,x を $\mathcal F$ の極限点 (limit point) あるいは単に極限 (limit) という.このとき,フィルター $\mathcal F$ は x に収束 (converge) するという. $\mathcal F$ はフィルター基底 $\mathcal F$ によって生成されるとき, $\mathcal F$ が x に収束するならばフィルター基底 $\mathcal F$ は x に収束するといい,x を x の極限という.フィルター基底 x の極限全体の集合を x に収束するといい,x を x の極限という.フィルター基底 x の極限全体の集合を x の極限という.

命題 **5.10.** X を位相空間、 \Re を X 上のフィルター基底とする. このとき、次の 2 条件は同値である.

- (i) % はxに収束する.
- (ii) 任意の $V \in V_x$ は \mathcal{B} の元を含む.

証明. (i) \Longrightarrow (ii) $\mathscr{F}_{\mathfrak{B}}$ を \mathscr{B} によって生成されるフィルターとする. $V \in \mathscr{V}_x \subset \mathscr{F}_{\mathfrak{B}}$ とすれば, $\mathscr{F}_{\mathfrak{B}}$ の定義より $B \in \mathscr{B}$ で $B \subset V$ なるものが存在する.

(ii) \Longrightarrow (i) $V \in \mathcal{V}_x$ を任意にとれば, $B \in \mathcal{B}$ で $B \subset V$ なるものが存在する. $B \in \mathcal{F}_{\mathfrak{B}}$ かつ $B \subset V$ だから, $V \in \mathcal{F}_{\mathfrak{B}}$ である.よって $\mathcal{V}_x \subset \mathcal{F}_{\mathfrak{B}}$ であり, \mathcal{B} は x に収束する.

6 収束による特徴づけ

位相空間のいくつかの概念は、有向族やフィルターの収束の概念を用いて特徴付けることが出来る.

^{*11 %} から生成されるフィルターではない!

^{*12} ここに仮定が必要!

命題 6.1. (X, \emptyset) を位相空間とし、A をその部分集合とする.このとき、次の 3 条件は同値である.

- (i) $x \in \overline{A}$.
- (ii) A の有向族 $(x_{\lambda})_{\lambda \in \Lambda}$ で、x に収束するものが存在する.
- (iii) A の部分集合からなる X のフィルター基底で、x に収束するものが存在する.

証明. (i) \Longrightarrow (ii) $U \in \mathcal{V}_x$ に対して, $x_U \in U \cap A$ を一つ選ぶ.このとき, $(x_U)_{U \in \mathcal{V}_x}$ は x に収束する A の有向族である.実際,任意の $V \in \mathcal{V}_x$ に対して, $W \geq_{\mathcal{V}_x} V$ (i.e. $W \subset U$) とすれば, $x_W \in W \subset U$ である.

 $(ii) \Longrightarrow (i) (x_{\lambda})_{\lambda \in \Lambda}$ を X に収束する A の有向族とする.このとき,任意の $V \in \mathcal{V}_x$ について,ある $\lambda \in \Lambda$ で $x_{\lambda} \in V$ なるものが存在するから, $x_{\lambda} \in V \cap A$ となり $A \cap V$ は空ではない.

$$(i) \Longrightarrow (iii)$$

$$\mathscr{B} = \{ A \cap V \mid A \in \mathscr{V}_x \}$$

と定義する.このとき, \mathscr{B} が x に収束するフィルター基底であることを示す. $i\colon A\to X$ を包含写像とすれば, $\mathscr{B}=i^*(\mathscr{V}_x)$ であることに注意する. $x\in\overline{A}$ から,任意の $V\in\mathscr{V}_x$ について $i(A)\cap V=A\cap V\neq\emptyset$ である.命題 5.8 より \mathscr{B} は実際にフィルター基底であることが分かる. $V\in\mathscr{V}_x$ を任意にとれば, $V\supset V\cap A\in\mathscr{B}$ である.命題 5.10 より, \mathscr{B} は x に収束することが分かる.

(iii) \Longrightarrow (i) \mathfrak{B} を A の部分集合からなるフィルター基底で、x に収束するものとする。 $V \in \mathscr{V}_x$ とすれば、 $B \in \mathfrak{B}$ で $B \subset V$ なるものが存在する*13. B は A の部分集合だから、 $\emptyset \neq B \subset A \cap V$ となり、 $A \cap V$ は空ではない。 すなわち、x は A の閉包に属する。

 \mathbf{x} 6.2. $(X, \mathbf{0})$ を位相空間とし、A をその部分集合とする. このとき、次の3条件は同値である.

- (i) *A* は閉集合である.
- (ii) A の任意の有向族 $(x_{\lambda})_{\lambda \in \Lambda}$ に対し、 $\lim(x_{\lambda}) \subset A$ が成立.
- (iii) A の部分集合からなる任意のフィルター基底 $\mathcal B$ に対して、 $\lim \mathcal B \subset A$ が成り立つ.

証明. (i) \Longrightarrow (ii) $(x_{\lambda})_{\lambda}$ を A の任意の有向族とする. $\lim(x_{\lambda}) = \emptyset$ なら、明らかに $\lim(x_{\lambda}) \subset A$ である. $x \in \lim(x_{\lambda})$ なら、命題 6.1 の (ii) \Longrightarrow (i) から $x \in \overline{A}$ が分かる. 今 A は閉集合だから、 $x \in \overline{A} = A$ となる.

- (ii) \Longrightarrow (iii) $\mathscr B$ を A の部分集合からなるフィルター基底とする. $x \in \mathscr B$ なら、任意の $V \in \mathscr V_x$ に対して $B \subset V$ を満たす $B \in \mathscr B$ がとれる. $x_V \in B$ を 1 点選べば、 $(x_V)_{V \in \mathscr V_x}$ は x に収束する有向族である. 条件 (ii) より、 $x \in \lim(x_V) \subset A$ となる.
- (iii) \Longrightarrow (i) $x \in \overline{A}$ とすれば、命題 6.1 の (iii) \Longrightarrow (i) より、A の部分集合からなるフィルター基底 $\mathfrak B$ で $x \in \lim \mathfrak B$ を満たすものが存在する.このとき、条件 (iii) より $x \in \lim \mathfrak B \subset A$ となり、 $\overline{A} \subset A$ が分かる. \square

命題 6.3. X,Y を位相空間とし、 $f:X\to Y$ を写像とする. このとき、次の3条件は同値である.

- (i) *f* は連続である.
- (ii) X の任意の有向族 (x_{λ}) について, $f(\lim x_{\lambda}) \subset \lim f(x_{\lambda})$ が成り立つ.
- (iii) X の任意のフィルター基底 $\mathfrak B$ について $f_*(\lim \mathfrak B) \subset \lim f_*(\mathfrak B)$ が成り立つ.

証明. (i) \Longrightarrow (ii) 有向族がいかなる点にも収束しないときには (ii) の包含関係は明らかである. $x \in \lim_{\lambda} x_{\lambda}$ としたとき,有向族 $(f(x_{\lambda}))_{\lambda}$ が f(x) に収束することを示す.f は x で連続だから,任意の $V \in \mathcal{V}_{f(x)}$ に対

^{*13} 命題 5.10

して x の近傍 W で $f(W) \subset V$ を満たすものがとれる. (x_{λ}) は x に収束するから,適当な λ_W をとれば,任意の $\kappa \geq \lambda_W$ について $x_{\kappa} \in W$ となる.これより,任意の $\kappa \geq \lambda_W$ について $f(x_{\kappa}) \subset f(W) \subset V$ となり, $(f(x_{\lambda}))_{\lambda \in \Lambda}$ が f(x) に収束することが分かった.

- (ii) \Longrightarrow (i) $A \subset X$ かつ $x \in \overline{A}$ とし,x に収束する有向族 $(x_{\lambda})_{\lambda \in \Lambda}$ をとる*14. このとき仮定 (ii) と系 6.2 より $f(x) \subset f(\lim(x_{\lambda})) \subset \lim f(x_{\lambda}) \subset \overline{f(A)}$ となる.よって任意の $A \subset X$ に対して $f(\overline{A}) \subset \overline{f(A)}$ が成り立ち,f は連続であることが分かる*15.
- (ii) \Longrightarrow (iii) \mathscr{B} をフィルター基底とする。 $\lim \mathscr{B} = \emptyset$ ならば $f_*(\lim \mathscr{B}) = \emptyset \subset \lim f_*(\mathscr{B})$ は明らかなので、 \mathscr{B} の極限が存在する場合を考えればよい。 $x \in \mathscr{B}$ とする。 $V \in \mathcal{V}_{f(x)}$ を任意にとれば、f の連続性より $f(W) \subset V$ なる $W \in \mathcal{V}_x$ が選べる。 W は x の近傍で \mathscr{B} は x に収束することから, $B \subset W$ なる $B \in \mathscr{B}$ が存在する。このとき $f(B) \subset f(W) \subset V$ かつ $f(B) = f_*(B) \in f_*(\mathscr{B})$ なので、 $f_*(\mathscr{B})$ は f(x) に収束する*16.
- (iii) \Longrightarrow (i) $A \subset X$ かつ $x \in \overline{A}$ とし、A の部分集合からなるフィルター基底で x に収束するようなものをとる. (命題 6.1) このとき、仮定 (iii) および系 6.2 から $f(x) \in f_*(\limsup \mathfrak{B}) \subset \liminf f_*(\mathfrak{B}) \subset \overline{f(A)}$ が成り立つ. すなわち $f(\overline{A}) \subset \overline{f(A)}$ となり、命題 3.14 より f は連続である.

ここまで見てきたように、フィルターと有向族については、ほぼ似たような性質が成り立つ.これより、フィルターと有向族には何かしらの関係性があると予想される.次の命題に見るように、フィルターと有向族は実は1対1に対応する概念である.

定理 6.4. X を位相空間とし, $x=(x_\lambda)_{\lambda\in\Lambda}$ を X の任意の空でない有向族とする.集合族 $\mathcal{F}(x)$ を

$$\mathcal{F}(x) = \{ A \subset X \mid \exists \lambda \in \Lambda, \ \forall \kappa \geq \lambda, \ x_{\kappa} \in A \}$$

と定義する. このとき $\mathcal{F}(x)$ は X 上のフィルターであり、 $\lim \mathcal{F}(x) = \lim (x_{\lambda})_{\lambda \in \Lambda}$ が成り立つ.

定理 6.4 におけるフィルター $\mathcal{F}(x)$ について少し考えてみよう. $\lambda \in \Lambda$ に対して、部分集合 Λ_{λ} を

$$\Lambda_{\lambda} = \{ \kappa \in \Lambda \mid \kappa \ge \lambda \} \tag{7}$$

と定義する. Λ は空でない有向集合なので,各 Λ_{λ} は空でないその部分集合である. $\mathcal{B}=\{\Lambda_{\lambda};\lambda\in\Lambda\}$ とすれば, Λ が有向集合であることから \mathcal{B} が Λ 上のフィルター基底となることがわかる.したがって, $x:\Lambda\to X$ によって X 上のフィルター基底 $x_*\mathcal{B}$ が定義される. $A\in x_*\mathcal{B}$ とは,ある λ によって $A=x(\Lambda_{\lambda})$ と表現されるということである.また,これより F が $x_*\mathcal{B}$ によって生成されるフィルターに属するとは,ある λ が存在して $F \supset x(\Lambda_{\lambda})$ が成り立つということである.これはすなわち,ある λ が存在して,全ての $\kappa \geq \lambda$ について $x(\kappa) \in F$ が成り立つということに他ならない.したがって,この定理の意味するところは,有向族のが収束するとはフィルター基底 $x_*\mathcal{B}$ が収束することと同値だということである.このフィルター基底 $x_*\mathcal{B}$ が収束することと同値だということである.このフィルター基底 $x_*\mathcal{B}$ は言わば「無限遠点に収束」するようなフィルター基底であり,有向族の収束性とは有向族の「無限遠点」における連続性なのである.

証明. $Step1: \mathfrak{F}(x)$ がフィルターであることの証明.

明らかに $X \in \mathcal{F}(x)$ かつ $\emptyset \notin \mathcal{F}(x)$ である.

^{*&}lt;sup>14</sup> 命題 <mark>6.1</mark>

 $^{^{*15}}$ 命題 3.14

^{*16} 命題 5.10

 $A_1, A_2 \in \mathcal{F}(x) \succeq \mathcal{V}, \ \lambda_1, \lambda_2 \in \Lambda \succeq$

$$\lambda \ge \lambda_1 \implies x_\lambda \in A_1$$
$$\lambda \ge \lambda_2 \implies x_\lambda \in A_2$$

を満たすように選ぶ. $\lambda_3 \geq \lambda_1$ かつ $\lambda_3 \geq \lambda_2$ なる $\lambda_3 \in \Lambda$ を選べば,

$$\lambda \ge \lambda_3 \implies x_\lambda \in A_1 \cap A_2$$

が成り立つ. よって $A_1 \cap A_2 \in \mathcal{F}(x)$ である.

 $A \in \mathcal{F} \text{ hoo } A \subset B \succeq U, \ \lambda_0 \ \varepsilon$

$$\lambda \ge \lambda_0 \implies x_\lambda \in A$$

を満たすようにとる. このとき

$$\lambda \ge \lambda_0 \implies x_\lambda \in B$$

が成り立つから, $B \in \mathcal{F}(x)$ が分かる.以上の議論により, $\mathcal{F}(x)$ が実際にフィルターであることが示された. $Step 2: \lim \mathcal{F}(x) = \lim x$ の証明.

$$\forall V \in \mathcal{V}_y \; \exists \lambda \in \Lambda \; \forall \kappa \geq \lambda \; x_{\kappa} \in V$$

ということである. これは明らかに任意の $V \in \mathcal{V}_y$ が $\mathcal{F}(x)$ の元であるということと同値である.

定理 6.5. X を位相空間とし、 $\mathcal F$ を X のフィルターとする. 集合族 Λ を

$$\Lambda = \{(x, A) \in X \times \mathcal{F} \mid x \in A\}$$

と定義し、二項関係 \leq_{Λ} を

$$(x_1, A_1) \leq_{\Lambda} (x_2, A_2) : \iff A_1 \supset A_2$$

によって定める. このとき, Λ は有向集合となる. 有向族 $x(\mathcal{F}) = (x_{\lambda})_{\lambda \in \Lambda}$ を $(x,A) \mapsto x$ と定義すれば, $\lim(x_{\lambda}) = \lim \mathcal{F}$ および $\mathcal{F}(x(\mathcal{F})) = \mathcal{F}$ が成り立つ.

証明. $Step1: \Lambda$ が有向族であることの証明. \leq_{Λ} が反射律と推移率を満たすことは明らかである. $(x_1,A_1),(x_2,A_2)\in \Lambda$ とすれば, $\mathscr F$ はフィルターだから $\emptyset \neq A_1\cap A_2\in \mathscr F$ である. $x_3\in A_1\cap A_2$ を任意の選べば, $(x_3,A_1\cap A_2)\in \Lambda$ は $(x_3,A_1\cap A_2)\geq (x_1,A_1)$ かつ $(x_3,A_1\cap A_2)\geq (x_2,A_2)$ を満たす.よって Λ は有向集合である.

 $Step 2: \mathcal{F}(x) = \mathcal{F}$ の証明. $A \in \mathcal{F}(x(\mathcal{F}))$ とすれば,

$$\exists \lambda_A \in \Lambda \ \forall \lambda \geq \lambda_A \ x_\lambda \in A$$

が成り立つ. 上の式を満たす λ_A を $\lambda_A=(y_0,B_0)$ と書くことにする. このとき任意の $y\in B_0$ に対して $(y,B_0)\geq (y_0,B_0)$ だから, $y=x_{(y,B_0)}\in A$ が成立. すなわち $B_0\subset A$ である. $\mathcal F$ はフィルターで $B_0\in \mathcal F$ だから, $A\in \mathcal F$ である. よって $\mathcal F(x(\mathcal F))\subset \mathcal F$ が成立する.

次に、逆向きの包含関係を示す。 $A \in \mathcal{F}$ として、 $x_0 \in A$ を 1 点固定する。 $\lambda_0 = (x_0, A)$ とすれば、任意の $\lambda = (y, B) \ge \lambda_0$ に対して $x_\lambda = y \in B \subset A$ が成立。 よって $A \subset \mathcal{F}(x(\mathcal{F}))$ が分かる。 これで $\mathcal{F} \subset \mathcal{F}(x(\mathcal{F}))$ も示された。

 $Step3: \lim(x_{\lambda}) = \lim \mathcal{F}$ の証明. Step2 および定理 6.4 より,

$$\lim \mathcal{F} = \lim \mathcal{F}(x(\mathcal{F})) = \lim x(\mathcal{F})$$

が従う.

References

- [1] Nicolas Bourbaki. General Topology Part I. Elements of Mathematics. Hermann, 1966.
- [2] R. Engelking. *Outline of General Topology*. Nort-Holland Publishing Company/Polish Scientific Publishers, 1968.
- [3] Ryszard Engelking. *General topology*. Revised and completed edition. Sigma Series in Pure Mathematics 6. Translated from the Polish by the author. Heldermann Verlag, Berlin, 1989, pp. viii+529. ISBN: 3-88538-006-4.
- [4] Klaas Pieter Hart, Jun-iti Nagata, and Jerry E. Vaughan, eds. *Encyclopedia of General Topology*. Elsevier Science, 2004, pp. x+526. ISBN: 0-444-50355-2. URL: https://www.elsevier.com/books/encyclopedia-of-general-topology/hart/978-0-444-50355-8.
- [5] John L. Kelley. *General Topology*. Graduate Texts in Mathematics 27. Originally published by Van Nostrand, 1955. Springer-Verlag New York, 1975, pp. xiv+298. URL: https://www.springer.com/la/book/9780387901251.
- [6] ケリー. 位相空間論. Trans. by 児玉 之宏. 吉岡書店, 1968.
- [7] 宮島 静雄. 関数解析. 横浜図書, 2014.
- [8] 児玉 之宏 and 永見 啓応. 位相空間論. 岩波書店, 1974.
- [9] 齋藤 正彦. 数学の基礎. 集合・数・位相. 東京大学出版会, 2002. URL: http://www.utp.or.jp/book/b302226.html.
- [10] 斎藤 毅. 集合と位相. 大学数学の入門 8. 東京大学出版会, 2009.