

AYUDANTÍA IV

Profesora: Adriana Piazza. Ayudantes: Agustín Farías Lobo, Camila Carrasco.

Pregunta 1

Demuestre la identidad de Roy. Esto es, demuestre que si $u : \mathbb{R}_+^L \to \mathbb{R}$ es una función de utilidad continua que representa una relación de preferencias localmente no saciada y estrictamente convexa en $X = \mathbb{R}_+^L$; y $v(p, \omega)$ es diferenciable en $(\bar{p}, \bar{\omega}) \gg 0$, entonces se tiene que

$$x(\bar{p},\bar{\omega}) = -\frac{1}{\nabla_{\omega}v(\bar{p},\bar{\omega})}\nabla_{p}v(\bar{p},\bar{\omega}).$$

Pregunta 2

Suponga una economía con dos bienes $(x_1 \ y \ x_2)$, los que tienen precios $p = (p_1, p_2) \gg 0$. Un agente posee preferencias \succeq que pueden ser representadas por una función de utilidad CES dada por

$$u(x_1,x_2) = \left[\alpha_1 x_1^{\theta} + \alpha_2 x_2^{\theta}\right]^{1/\theta},$$

donde α_1 , α_2 y θ son escalares positivos.

- a) Resuelva el problema de minimización de gasto del agente para un nivel de utilidad \bar{u} . Caracterice la demanda hicksiana y la función de gasto.
- b) Verifique que la demanda hicksiana es homogénea de grado cero en los precios.
- c) Verifique que la función de gasto es homogénea de grado uno en p.
- d) Verifique que la función de gasto es creciente en \bar{u} .
- e) En la Ayudantía III se mostró que la demanda marshalliana y la función de utilidad indirecta para precios $(p_1, p_2) \gg 0$ y renta ω estaban dadas por

$$x(p,\omega) = \begin{bmatrix} \omega & \omega \\ p_1 + p_2 \left[\frac{p_1 \alpha_2}{p_2 \alpha_1} \right]^{\frac{1}{1-\theta}} & \frac{\omega}{p_1 \left[\frac{p_1 \alpha_2}{p_2 \alpha_1} \right]^{\frac{1}{\theta-1}} + p_2} \end{bmatrix},$$

$$v(p,\omega) = \begin{bmatrix} \alpha_1 \left(\frac{\omega}{p_1 + p_2 \left[\frac{p_1 \alpha_2}{p_2 \alpha_1} \right]^{\frac{1}{1-\theta}}} \right)^{\theta} + \alpha_2 \left(\frac{\omega}{p_1 \left[\frac{p_1 \alpha_2}{p_2 \alpha_1} \right]^{\frac{1}{\theta-1}} + p_2} \right)^{\theta} \end{bmatrix}^{1/\theta},$$

respectivamente. Verifique que $e(p, v(p, \omega)) = \omega$ y que $x(p, \omega) = h(p, v(p, \omega))$.

Pregunta 3

Suponga que $u: \mathbb{R}_+^L \to \mathbb{R}$ es una función de utilidad continua representando preferencias localmente no saciadas definidas sobre $X = \mathbb{R}_+^L$. Luego, muestre que para cada vector de precios $p \gg 0$, la correspondencia de demanda hicksiana cumple con las siguientes propiedades:

- (a) Homogeneidad de grado cero en p.
- (b) No exceso de utilidad: para cada $x \in h(p, u)$ se cumple que u(x) = u.
- (c) Si las preferencias son convexas, entonces h(p,u) es un conjunto convexo.
- (d) Si las preferencias son estrictamente convexas, entonces h(p,u) es un singleton.

Pregunta 4

Suponga que $u: \mathbb{R}_+^L \to \mathbb{R}$ es una función de utilidad continua representando preferencias localmente no saciadas definidas sobre $X = \mathbb{R}_+^L$. Luego, muestre que la función de gasto e(p,u) es

- (a) Homogénea de grado uno en p.
- (b) Estrictamente creciente en u y no decreciente en p_{ℓ} , $\forall \ell \in \{1,...,L\}$.
- (c) Cóncava en p.