Probabilités et Statistiques Projet noté

MADANI Abdenour TRIOLET Hugo

> Licence 3 2021 - 2022

Table des matières

1 Introduction

1.1 Objectifs

Les objectifs de ce TPs sont :

- implémenter nous-mêmes plusieurs algorithmes de régression linéaire et les comparer à des fonctions issues de librairies scientifiques
- manipuler différentes lois vues en cours via leur implémentation issues de librairies scientifiques
- déterminer des intervalles de confiance et effectuer des applications sur quelques exemples

On utilisera pour ceci **Python** et les bibliothèques de fonctions : Numpy, Scipy, Matplotlib, et Statsmodels, entre autres.

1.2 Définitions

Hugo : tu peux virer ça si t'as aucune définition à mettre (tu peux la réutiliser plus bas et virer cette partie aussi)

☎ DÉFINITION

Mot défini

Définition ici

1.3 Résumé de notre approche

Nous avons 3 fichiers, 1 pour chaque TP.

Vis-à-vis du code, nous l'avons documenté à l'aide de la docstring de Python, ainsi que des commentaires normaux : les fonctions se comprennent donc naturellement grâce à ceux-ci.

2 Régression linéaire

2.1 Régression Linéaire simple

La fonction calculant la régression linéaire simple est "regression_lineaire".

Étant donné deux listes x et y de même taille, elle calcule la régression linéaire

$$y = \beta_1 \cdot x + \beta_0$$

2.1.1 Modèle vectoriel

On applique simplement la formule donnée dans le TP. La fonction calculant la régression linéaire simple est "regression_lineaire_vec".

Étant donné deux listes x et y de même taille, elle calcule la régression linéaire en utilisant la méthode vectorielle :

$$y = \beta_1 \cdot x + \beta_0$$

2.1.2 Résultats obtenus

Représentation graphique obtenue avec Matplotlib

En orange sont affichés les points de (x_i, y_i) , et on voit plusieurs droites superposées de couleurs différentes, quasiment indiscernables : ce sont nos deux régressions linéaires ainsi que celle de Numpy (polyfit).

Les résultats sont donc concordants : visuellement, toutes les régressions linéaires donnent le même résultat sur ce jeu de donnée.

Les coeffcients sont de mêmes très proches voire égaux.

2.2 Régression linéaire et descente de gradient

Hugo: todo

3 Étude et manipulation de lois de probabilités

3.1 Loi Binomiale

texte

Si tu veux mettre une image Hugo

Un graphe orienté non fortement connexe

3.2 Loi Normale univariée

texte

3.3 Simulation de données à partir d'une loi

texte

3.3.1 Cas de la loi normale

texte

3.4 Estimation de densité

texte

3.4.1 Cas de la loi normale

texte

3.4.2 Cas de la loi exponentielle

texte

4 Intervalles de confiance

4.1 Problème 1

texte

4.2 Problème 2

texte

4.3 Problème 3

texte

5 Exemples d'utilisation du code

5.1 Comment utiliser le code

Hugo: si cette partie est pas pertinente, tu peux la virer