Lab 2: The MIPS datapath in Verilog: The ID stage

A. Introduction

The objective of this lab is to implement and test the instruction decoder (ID) pipeline stage of the MIPS five stages pipeline. In this lab, I build up and test successfully 4 components of ID stages including control, register, sign extend, and ID latch.

B. Interface

Figure 2.1: The ID stage

The Instruction decode (ID) stage figures it out that what instructions say to do and get the value from the registers, and the control unit will define what the output is . These outputs include 3 signals: M, WB, EX. We also need a sign extended unit to extend from 16 to 32-bit output

C. Design

The module I_DECODE instantiates the modules CONTROL, REG, S_EXTEND, and ID_EX

- The CONTROL module has input the opcode field of the IF_ID instr and output is the 9-bit control bits which are shown in figure which are shown in figure 2.2
- The register file REG, which has 32 general purpose registers, and has input the
 rs and rt fields of IF_ID_ instr, MEM_WB_Writereg, MEM_WB_Writedata, and
 RegWrite (for the time being it can be from anywhere). Outputs are the contents
 of register rs and register rt.
- The combinational module S_EXTEND receives as input the 16-bit immediate field of IF_ID_instr and output is the 32 bit sign-extended value.
- The ID_EX module includes the pipeline register ID/EX and inputs the outputs of the CONTROL, REG, S_EXTEND modules, as well as the IF_ID_NPC, IF_ID_Instr[20-16] and IF_ID_Instr[15-11]. Outputs are the control bits (9 bits) NPC, Reg[rs], Reg[rt], signExtended (32 bit), Instr[20-16], and Instr[15-11].

Instruction	Execut	ion/Address contro	s Calculatio ol lines	n stage		ory access control line	Write-back stage control lines		
	Reg Dst	ALU Op1	ALU Op0	ALU Src	Branch	Mem Read	Mem Write	Reg Write	Mem to Reg
R-format	1	1	0	0	0	0	0	1	0
lw	0	0	0	1	0	1	0	1	1
sw	Х	0	0	1	0	0	1	0	Х
beq	Х	0	1	0	1	0	0	0	Х

Figure 2.2: ALUOp Control Bit and Function Code Sets (after [4])

The content of the register

0	\cap	2	2	0	0	7	7
0	U	1	0	U	U	А	A

10654321

00100022

8C123456

8F123456

AD654321

13012345

AC654321

12012345

D. Implementation

The sign-extended unit

[`]timescale 1ns / 1ps

```
// Inputs
  reg [15:0] unextended_signal;
  // Outputs
  wire [31:0] extended_signal;
  // Instantiate the Unit Under Test (UUT)
  extended_register uut (
      .unextended_signal(unextended_signal),
      .extended_signal(extended_signal)
  );
  initial begin
      // Initialize Inputs
      unextended_signal = 0;
      // Wait 1ns for global reset to finish
      #2 unextended_signal = 16'b1110000100111111;
      #3 unextended signal = 16'b0000000100111111;
     end
      // Add stimulus here
      always @*
      begin
      #2 $display("Time = %0d\t unextended_signal =%0b\t
extended_signal=%0b\t", $time, unextended_signal, extended_signal);
      #1 $display("Time = %0d\t unextended_signal =%0b\t
extended_signal=%0b\t", $time, unextended_signal, extended_signal);
end
endmodule
```

• The control unit

Figure 2.4: The control unit

`timescale 1ns / 1ps

```
wire [1:0] WB;
                                // Instantiate the Unit Under Test (UUT)
                                  control bit uut (
                                                                                                               .opcode(opcode),
                                                                                                               .EX(EX),
                                                                                                               .MEM(MEM),
                                                                                                               .WB(WB)
                                  );
                                  initial begin
                                                                                                             // Initialize Inputs
                                                                                                               opcode = 6'b000000;
                                  #2 \text{ opcode} = 6'b100011;
                                  #4 \text{ opcode} = 6'b101011;
                                  #6 \text{ opcode} = 6'b000100;
                                  end
                                  always @*
                                  begin
                                  #2 \frac{1}{2} \frac
opcode, EX, MEM, WB);
                                  #4 \frac{1}{2} #4 
opcode, EX, MEM, WB);
                                  #6 \frac{1}{2} #6 
opcode, EX, MEM, WB);
                                  #4 \frac{1}{4}  where \frac{1}{4}  is a substitute of \frac{1}{4}  is a substitute of \frac{1}{4}  where \frac{1}{4}  is a substitute of \frac{1}{4}  in \frac{1}{4}  
opcode, EX, MEM, WB);
                                  end
endmodule
```

• The register File

Figure 2.5: The register file

```
// Engineer: hau tao
//
// Create Date: 15:34:02 11/07/2015
// Design Name: register_file
// Module Name: /home/hau/Desktop/labcse401/lab2/ID_stage/test_reg.v
// Project Name: ID stage
module test reg;
  // Inputs
  reg reg_write;
  reg [4:0] rs;
  reg [4:0] rt;
  reg [4:0] rd;
  reg [31:0] write_data;
  reg [31:0]register[0:4];
  integer i;
  // Outputs
  wire [31:0] A;
  wire [31:0] B;
  // Instantiate the Unit Under Test (UUT)
  register_file uut (
       .reg_write(reg_write),
       .rs(rs),
       .rt(rt),
       .rd(rd),
       .write_data(write_data),
       .A(A),
       .B(B)
  );
  initial begin
       // Initialize Inputs
       register[0] \le 'h002300AA;
       register[1] <= 'h10654321;
```

```
register[2] <= 'h00100022;
       // 2ns delay
       #2
       begin
       reg_write = 1;
       rs = 1;
       rt = 2;
       rd = 2;
       write_data = 5;
       end
  end
  always@*
  begin
  #3 $display("Time = %0d\t rs =%0h\t rt=%0h\t rd=%0h\t write_data=%0h\t register[rd]
=%0h\t A=%0h\t B=%1h\t", $time, rs, rt, rd, write_data,register[rd], A, B);
  end
```

• The ID/EX latch

Figure 2.6: The ID/EX pipeline register (latch)

```
output reg[2:0] m_ctlout,
         output reg[3:0] ex_ctlout,
       output reg[31:0] npcout,
       output reg[31:0] rdata1out,
       output reg[31:0] rdata2out,
       output reg[31:0] s extendout,
       output reg[4:0] instrout_2016,
       output reg[4:0] instrout 1511
       );
       initial begin
   wb ctlout \le 0;
       m ctlout \leq 0;
   ex ctlout \leq 0;
       npcout \le 0;
       rdata1out \le 0;
       rdata2out \le 0;
       s extendout\leq 0;
       instrout 2016 \le 0;
       instrout 1511 \le 0;
   end
  always @*
       begin
       #1 // clock cycle of the latch
       wb ctlout <= ctlwb out;
               m ctlout <= ctlm out;
               ex_ctlout <= ctlex_out;</pre>
               npcout<= npc;
               rdata1out <= readdat1;
               rdata2out <= readdat2;</pre>
               s extendout <= signext out;
               instrout 2016 <= instr 2016;
               instrout 1511 <= instr 1511;
       end
endmodule
```

• The completed ID stage

```
'timescale 1ns / 1ps
// Engineer: Hau Tao
// Create Date: 16:23:46 11/12/2015
// Module Name:
                   final ID stage
module final ID stage(input[31:26] IR control, input[31:0] npc in, input[25:21] IR reg1,
input[20:16] IR reg2, input[15:0] unextended bit,
      input[20:16] IR_mux0, input[15:11] IR mux1, input WB, input[31:0]
mux output MEM WB, input[4:0] MEM WB,
       output wire [1:0] wb ctlout,
      output wire [2:0] m ctlout,
      output wire[3:0] ex ctlout,
      output wire[31:0] npcout,
      output wire[31:0] rdata1out,
      output wire[31:0] rdata2out,
      output wire [31:0] s extendout,
      output wire [4:0] instrout 2016,
      output wire [4:0] instrout 1511
      );
  wire [31:0] read data 1;
  wire [31:0] read data 2;
  wire [31:0] extended signal 1;
  wire [3:0] EX out;
  wire [2:0] MEM out;
  wire [1:0] WB out;
  register file register1 (
       .reg write(WB),
```

```
.rs(IR reg1),
     .rt(IR_reg2),
     .rd(MEM_WB),
     .write data(mux output MEM WB),
     .A(read data 1),
     .B(read data 2)
     );
extended register extended register 1 (
     .unextended signal(unextended bit),
     .extended signal(extended signal 1)
);
control_bit control_bit_1(
     .opcode(IR_control),
     .EX(EX_out),
     .MEM(MEM out),
     .WB(WB out)
);
ID latch ID latch 1 (
     .ctlwb out(WB out),
     .ctlm_out(MEM_out),
     .ctlex_out(EX_out),
     .npc(npc in),
     .readdat1(read_data_1),
     .readdat2(read_data_2),
     .signext_out(extended_signal_1),
     .instr_2016(IR_mux0),
     .instr_1511(IR_mux1),
     .wb ctlout(wb ctlout),
     .m ctlout(m ctlout),
     .ex_ctlout(ex_ctlout),
     .npcout(npcout),
     .rdata1out(rdata1out),
     .rdata2out(rdata2out),
     .s extendout(s extendout),
     .instrout 2016(instrout 2016),
     .instrout_1511(instrout_1511)
```

```
• Connection IF ID
`timescale 1ns / 1ps
// Company:
// Engineer: Hau Tao
//
// Create Date: 17:02:49 11/13/2015
// Design Name:
               connectionID IF
// Module Name:
// Additional Comments:
//
module connectionID IF(input PCSrc, input [31:0] EX MEM,
input WB,
     output wire [1:0] wb ctlout,
    output wire [2:0] m ctlout,
    output wire[3:0] ex ctlout,
    output wire[31:0] npcout,
    output wire[31:0] rdata1out,
    output wire[31:0] rdata2out,
    output wire [31:0] s extendout,
    output wire [4:0] instrout 2016,
```

```
output wire [4:0] instrout 1511
  );
wire [31:0] npcout IF ID;
wire [31:0] instrout IF ID;
IF stage IF 1 (
   .PCSrc(PCSrc),
   .EX MEM(EX MEM),
   .npcout(npcout IF ID),
   .instrout(instrout IF ID)
);
// Instantiate the Unit Under Test (UUT)
final ID stage uut (
  .IR control(instrout IF ID[31:26]),
  .npc in(npcout IF ID),
  .IR reg1(instrout IF ID[25:21]),
  .IR reg2(instrout_IF_ID[20:16]),
  .unextended bit(instrout IF ID[15:0]),
```

```
.IR mux0(instrout IF ID[20:16]),
    .IR mux1(instrout IF ID[15:11]),
    .WB(WB),
    .mux output MEM WB(mux output MEM WB),
    .MEM WB(MEM WB),
    .wb ctlout(wb ctlout),
    .m ctlout(m ctlout),
    .ex ctlout(ex ctlout),
    .npcout(npcout),
    .rdatalout(rdatalout),
    .rdata2out(rdata2out),
    .s extendout(s extendout),
    .instrout 2016(instrout 2016),
    .instrout 1511(instrout 1511)
    );
  always@*
  # 20 $display("time = %0d\t instrout IF ID=%0b\t,
npcout IF ID=%0b\t", $time, instrout IF ID, npcout IF ID);
```

E. Test bench design

1. The sign-extended unit

`timescale 1ns / 1ps

```
// Engineer: hau tao
// Create Date: 14:07:13 11/07/2015
// Design Name: extended_register
// Module Name:
/home/hau/Desktop/labcse401/lab2/ID_stage/test_extended_signal.v
// Project Name: ID stage
module test_extended_signal;
  // Inputs
  reg [15:0] unextended_signal;
  // Outputs
  wire [31:0] extended_signal;
  // Instantiate the Unit Under Test (UUT)
  extended_register uut (
     .unextended_signal(unextended_signal),
     .extended_signal(extended_signal)
  );
  initial begin
    // Initialize Inputs
```

```
unextended_signal = 0;

// Wait 1ns for global reset to finish

#1 unextended_signal = 16'b1110000100111111;

#2 unextended_signal = 16'b0000000100111111;
end

// Add stimulus here
always @*
begin
#2 $display("Time = %0d\t unextended_signal =%0b\t
extended_signal=%0b\t", $time, unextended_signal, extended_signal);
#1 $display("Time = %0d\t unextended_signal =%0b\t
extended_signal=%0b\t", $time, unextended_signal, extended_signal);
end
endmodule
```

2. The control unit

`timescale 1ns / 1ps

```
// Engineer: Hau Tao
// Create Date: 14:35:07 11/07/2015
// Design Name: control bit
// Module Name: /home/hau/Desktop/labcse401/lab2/ID stage/test control bit.v
// Project Name: ID stage
module test control bit;
  // Inputs
  reg [5:0] opcode;
  // Outputs
  wire [3:0] EX;
  wire [2:0] MEM;
  wire [1:0] WB;
  // Instantiate the Unit Under Test (UUT)
  control bit uut (
      .opcode(opcode),
      .EX(EX),
      .MEM(MEM),
      .WB(WB)
  );
  initial begin
      // Initialize Inputs
      opcode = 6'b000000;
  #2 \text{ opcode} = 6'b100011;
  #4 \text{ opcode} = 6'b101011;
  #6 \text{ opcode} = 6'b000100;
```

```
end
```

always @*
begin

#2 $\frac{1}{2} \exp(\text{''Time} = \%0d\t opcode} = \%0b\t EX = \%0b\t MEM = \%0b\t WB = \%0b\t'', \\$ opcode, EX, MEM, WB);

#4 $\frac{1}{2}$ #5 $\frac{1}{2}$ #5 $\frac{1}{2}$ #5 $\frac{1}{2}$ #5 $\frac{1}{2}$ #6 $\frac{1}{2}$ #6

#6 $\frac{1b\t EX=\%0b\t MEM=\%0b\t WB=\%1b\t"}{$time, opcode, EX, MEM, WB};$

end

3. The register file

'timescale 1ns / 1ps

```
// Company:
// Engineer: hau tao
// Create Date: 15:34:02 11/07/2015
// Design Name: register file
// Module Name: /home/hau/Desktop/labcse401/lab2/ID stage/test reg.v
// Project Name: ID stage
module test reg;
  // Inputs
  reg reg_write;
  reg [4:0] rs;
  reg [4:0] rt;
  reg [4:0] rd;
  reg [31:0] write data;
  reg [31:0]register[0:4];
  integer i;
  // Outputs
  wire [31:0] A;
  wire [31:0] B;
  // Instantiate the Unit Under Test (UUT)
  register file uut (
      .reg write(reg write),
      .rs(rs),
      .rt(rt),
      .rd(rd),
      .write data(write data),
      A(A)
```

```
.B(B)
  );
  initial begin
       // Initialize Inputs
       register[0] <= 'h002300AA;
       register[1] <= 'h10654321;
       register[2] <= 'h00100022;
       // 2ns delay
       #2
       begin
       reg_write = 1;
       rs = 1;
       rt = 2;
       rd = 2;
       write_data = 5;
       end
  end
  always@*
  begin
  #3 $display("Time = %0d\t rs =%0h\t rt=%0h\t rd=%0h\t write_data=%0h\t register[rd]
=%0h\t A=%0h\t B=%1h\t", $time, rs, rt, rd, write_data,register[rd], A, B);
  end
endmodule
```

4. The ID/EX latch

`timescale 1ns / 1ps

```
// Engineer:Hau Tao
//
// Create Date: 15:49:27 11/12/2015
// Design Name: ID latch
// Module Name: /home/hau/Desktop/labcse401/lab2/ID stage/test ID.v
module test ID;
  // Inputs
  reg [1:0] ctlwb out;
  reg [2:0] ctlm_out;
  reg [3:0] ctlex_out;
  reg [31:0] npc;
  reg [31:0] readdat1;
  reg [31:0] readdat2;
  reg [31:0] signext_out;
  reg [4:0] instr 2016;
  reg [4:0] instr_1511;
  // Outputs
  wire [1:0] wb ctlout;
  wire [2:0] m ctlout;
  wire [3:0] ex ctlout;
  wire [31:0] npcout;
  wire [31:0] rdata1out;
  wire [31:0] rdata2out;
  wire [31:0] s_extendout;
  wire [4:0] instrout_2016;
  wire [4:0] instrout_1511;
  // Instantiate the Unit Under Test (UUT)
  ID_latch uut (
```

```
.ctlwb out(ctlwb out),
     .ctlm_out(ctlm_out),
     .ctlex_out(ctlex_out),
     .npc(npc),
     .readdat1(readdat1),
     .readdat2(readdat2),
     .signext_out(signext_out),
     .instr_2016(instr_2016),
     .instr_1511(instr_1511),
     .wb_ctlout(wb_ctlout),
     .m_ctlout(m_ctlout),
     .ex_ctlout(ex_ctlout),
     .npcout(npcout),
     .rdatalout(rdatalout),
     .rdata2out(rdata2out),
     .s_extendout(s_extendout),
     .instrout 2016(instrout 2016),
     .instrout_1511(instrout_1511)
);
initial begin
     // Initialize Inputs
     ctlwb_out = 0;
     ctlm out = 0;
     ctlex out = 0;
     npc = 0;
     readdat1 = 0;
     readdat2 = 0;
     signext_out = 0;
     instr_2016 = 0;
     instr_1511 = 0;
     // Wait 10 ns for global reset to finish
     #10
     ctlwb out = 1;
     ctlm out = 2;
     ctlex_out = 3;
     npc = 4;
```

```
readdat1 = 5;
readdat2 = 6;
signext_out = 7;
instr_2016 = 8;
instr_1511 = 9;
//#10;
//$finish;
end
```

5. The completed ID stage

`timescale 1ns / 1ps

```
// Company:
// Engineer:
//
// Create Date: 16:29:56 11/13/2015
// Design Name: final ID stage
// Module Name: /home/hau/Desktop/labcse401/lab2/ID_stage/testing_ID_stage.v
// Project Name: ID stage
// Target Device:
// Tool versions:
// Description:
// Verilog Test Fixture created by ISE for module: final ID stage
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
// Additional Comments:
//
module testing ID stage;
  // Inputs
  reg [31:26] IR control;
  reg [31:0] npc in;
  reg [25:21] IR reg1;
  reg [20:16] IR reg2;
  reg [15:0] unextended bit;
  reg [20:16] IR mux0;
  reg [15:11] IR mux1;
  reg WB;
  reg [31:0] mux output MEM WB;
  reg [4:0] MEM WB;
```

```
// Outputs
wire [1:0] wb_ctlout;
wire [2:0] m ctlout;
wire [3:0] ex ctlout;
wire [31:0] npcout;
wire [31:0] rdata1out;
wire [31:0] rdata2out;
wire [31:0] s extendout;
wire [4:0] instrout 2016;
wire [4:0] instrout_1511;
// Instantiate the Unit Under Test (UUT)
final ID stage uut (
     .IR_control(IR_control),
     .npc_in(npc_in),
     .IR_reg1(IR_reg1),
     .IR_reg2(IR_reg2),
     .unextended_bit(unextended_bit),
     .IR mux0(IR mux0),
     .IR mux1(IR mux1),
     .WB(WB),
     .mux_output_MEM_WB(mux_output_MEM_WB),
     .MEM WB(MEM WB),
     .wb ctlout(wb ctlout),
     .m ctlout(m ctlout),
     .ex_ctlout(ex_ctlout),
     .npcout(npcout),
     .rdatalout(rdatalout),
     .rdata2out(rdata2out),
     .s extendout(s extendout),
     .instrout 2016(instrout 2016),
     instrout 1511(instrout 1511)
);
initial begin
     // Initialize Inputs
     IR control = 0;
     npc in = 0;
```

```
IR_reg1 = 0;
IR_reg2 = 0;
unextended_bit = 0;
IR_{mux}0 = 0;
IR_mux1 = 0;
WB = 0;
mux_output_MEM_WB = 0;
MEM_WB = 0;
// Wait 100 ns for global reset to finish
// Wait 100 ns for global reset to finish
#10
IR_{control} = 6'b0000000;
npc_in = 2;
IR_reg1 = 0;
IR_reg2 = 2;
unextended_bit = 16'b10101111111101100;
IR_mux0 = 9;
IR_{mux1} = 10;
WB = 1;
MEM_WB = 2;
mux_output_MEM_WB = 5;
// Add stimulus here
```

end

6. Connection IF ID

'timescale 1ns / 1ps

```
// Company:
// Engineer: Hau Tao
// Create Date: 17:37:38 11/13/2015
// Design Name: connectionID IF
// Module Name: /home/hau/Desktop/labcse401/connection ID IF/testing ID IF.v
module testing ID IF;
  // Inputs
  reg PCSrc;
  reg [31:0] EX MEM;
  reg WB;
  // Outputs
  wire [1:0] wb ctlout;
  wire [2:0] m ctlout;
  wire [3:0] ex ctlout;
  wire [31:0] npcout;
  wire [31:0] rdata1out;
  wire [31:0] rdata2out;
  wire [31:0] s extendout;
  wire [4:0] instrout 2016;
  wire [4:0] instrout 1511;
  // Instantiate the Unit Under Test (UUT)
  connectionID IF uut (
      .PCSrc(PCSrc),
      .EX MEM(EX MEM),
      .WB(WB),
      .wb ctlout(wb ctlout),
      .m ctlout(m ctlout),
      .ex ctlout(ex ctlout),
```

```
.npcout(npcout),
     .rdata1out(rdata1out),
     .rdata2out(rdata2out),
     .s_extendout(s_extendout),
     .instrout_2016(instrout_2016),
     .instrout_1511(instrout_1511)
);
initial begin
     // Initialize Inputs
     PCSrc = 0;
     EX_MEM = 0;
     WB = 0;
     // Wait 100 ns for global reset to finish
     #10;
     PCSrc = 1;
     EX_MEM = 1;
     WB = 1;
     // Add stimulus here
end
```

E. Time Simulation

1.The sign-extended unit

Time = 2	unextended_signal =111000010011	1111	extended_signal=111111111111111111110000100111111
Time = 3	unextended signal =100111111	extended	signal=111111111111111111100001001111111

2. The control unit

opcode =000100

Time = 24

Name	Value	999,992 ps	999,993 ps	1999,994 ps	1999,995 ps	999,996 ps	1999,997 ps	1999,998 ps	999,999 ps
> ■ EX[3:0]	X010				X010)			
▶ 🎇 MEM[2:0]	100				100				
> ■ WB[1:0]	ΘX				0X				
▶ 🎳 opcode[5:0]	000100			<u> </u>	00010	0	1	<u> </u>	
		Ш							
Time = 2	opcode =10	0011	EX=110	0 M	EM=000	WB	=10		
Time = 6	opcode =10	1011	EX=000	1 M	EM=010	WB	=11		

MEM=100

WB=0x

EX=x010

3. The register file

Note: all values are hex-presented

4. The ID/EX latch

Name	Value	والل	999,992 ps	999,993 ps	999,994 ps	999,995 ps	999,996 ps	999,99
wb_ctlout[1:0]	01					01		
m_ctlout[2:0]	010					010		
ex_ctlout[3:0]	0011					0011		
npcout[31:0]	000000000000000000000000000000000000000				0000	000000000000000000000000000000000000000	000000000000100	
rdatalout[31:0]	000000000000000000				0000	000000000000000000000000000000000000000	000000000000101	
rdata2out[31:0]	000000000000000000000000000000000000000				0000	000000000000000000000000000000000000000	000000000000110	
s_extendout[31:0]	000000000000000000000000000000000000000				0000	000000000000000000000000000000000000000	000000000000111	
▶ 🌃 instrout_2016[4:0]	01000					0100	0	
▶ 🎇 instrout_1511[4:0]	01001					0100		
tlwb_out[1:0]	01					01		
▶ 🚮 ctlm_out[2:0]	010					010		
tlex_out[3:0]	0011					0011		
▶ 🚮 npc[31:0]	000000000000000000000000000000000000000				0000	000000000000000000000000000000000000000	000000000000100	
> 😽 readdat1[31:0]	000000000000000000000000000000000000000				0000	000000000000000000000000000000000000000	000000000000101	
▶ 🚮 readdat2[31:0]	000000000000000000000000000000000000000				0000	000000000000000000000000000000000000000	000000000000110	
signext_out[31:0]	000000000000000000000000000000000000000				0000	000000000000000000000000000000000000000	000000000000111	
sinstr_2016[4:0]	01000					0100		
▶ ™ instr_1511[4:0]	01001					0100		

Note: The first 9 variables are the values of output, the last 9 variables are values of input. It's apparent that the outputs are same exactly with the inputs. All values are hex represented

5. The completed ID/EX stage

Name	Value	999,992 ps	999,993 ps	999,994 ps	999,995 ps	999,996 ps
▶ ■ wb_ctlout[1:0]	2				2	
m_ctlout[2:0]	0				0	
ex_ctlout[3:0]	c =				С	
▶ ■ npcout[31:0]	00000002				000000	02
rdata1out[31:0]	002300aa				002300	aa
rdata2out[31:0]	00000005				000000	05
s_extendout[31:0]	ffffafec				ffffafe	c y
▶ 🌃 instrout_2016[4:0]	09				09	
instrout_1511[4:0]	0a				0a	
▶ 🐻 IR_control[31:26]	00				00	
▶ ■ npc_in[31:0]	00000002				000000	02
▶ 🚮 IR_reg1[25:21]	00				00	
▶ 🚮 IR_reg2[20:16]	02				02	
▶ Sometimes by both both by the property of the property o	afec				afec	
▶ ■ IR_mux0[20:16]	09				09	
▶ 🚮 IR_mux1[15:11]	0a				0a	
lೄ wв	1					
mux_output_MEM_WB[31:0	00000005				000000	05
▶ ■ MEM_WB[4:0]	02				02	

```
Explanation: All values are hex representation
when IR_control opcode = 0x0, thw wb_ctilout =0x2, m_ctlout =0x0, ex_ctlout =0xC
npc output = npc_in = 0x2
IR_mux0 = instrout_2016 =0x9
IR_mux1 =instr_1511 =0xA
unextended bit = 0xafec => extended bit = 0xffffafec
```

with WB= 1, it is enable register file and ready to read data from register file. rdata1out = 0x2300a which is reading content at register[0], and rdata2out = 0x10654321 which read from register[2]. at this time rd =2, the content of register[rd] = register[2] = mux_ouput_MEM_WB = 0x5. Therefore, rda2out = 0x5

6. Connection IF and ID

				999,992 ps				
Name	Value		999,991 ps	999,992 ps	999,993 ps	999,994 ps	999,995 ps	999,996 ps
▶ 🕷 wb_ctlout[1:0]	ΘX	-					0X	
▶ 🌃 m_ctlout[2:0]	100						100	
ex_ctlout[3:0]	X010						X010	
▶ 🦷 npcout[31:0]	000000000000000000000000000000000000000					000000000000000	0000000000000000	0010
▶ 🌃 rdatalout[31:0]	000000000010001106					00000000001000	11000000001010	1010
▶ 🌃 rdata2out[31:0]	000000000010001106					00000000001000	110000000001010	1010
▶ 🦷 s_extendout[31:0]	000000000000000000000000000000000000000					000000000000000	0000000000000001	0001
▶ Sinstrout_2016[4:0]	00000					(0000	
▶ 🌃 instrout_1511[4:0]	00000					(0000	
1 PCSrc	1							
► S EX_MEM[31:0]	000000000000000000000000000000000000000					000000000000000	0000000000000000	0001
l₀ wв	1							
-								

G. Conclusion

The purpose of this project is to implement ID module. I completed it successfully and the test cases is good enough .The most difficult part of this module is to implement register file, but due to clear explanation from professor and TA, I could finish it