

Reactive Transport in the Hydrosphere

Department of Earth Sciences, Faculty of Geosciences, Utrecht University

Lecturers: Lubos Polerecky and Karline Soetaert

Illustrations, narration and video editing: Renee Hageman Additional contributions: Dries Bonte, University Ghent Audio effects: mixkit.co

Rate laws for . . .

 $Flux = k \cdot SOURCE$

Chemical reactions

- Irreversible
- Reversible
- Enzyme-catalyzed (metabolic)
 - Substrate limitation
 - Substrate inhibition
 - Rate saturation

Large-scale models

Partitioning between phases

- Mineral dissolution / precipitation
- Gas exchange

Ecological interactions

Grazing, predator-prey type

Transport

Rate law in large-scale models

Crude (two-box) global C cycle model

 $F_{ab} = k_{ab} \cdot ATM$

i.e., productivity **is limited** by the available **atmospheric CO₂**, and **not** by the biosphere.

ATM

BIO

Global annual respiration

$$F_{ba} = k_{ba} \cdot BIO$$

i.e., respiration **is limited** by the size of the **biosphere**, because O₂ is always present and thus not limiting.

First-order kinetics with source being the rate-limiting factor

Rate law in large-scale models

Crude (two-box) global C cycle model

Study effects of perturbations

- Deforestation
- Fossil fuel burning

Part of homework assignment

Reactive Transport in the Hydrosphere

Department of Earth Sciences, Faculty of Geosciences, Utrecht University

Lecturers: Lubos Polerecky and Karline Soetaert

Illustrations, narration and video editing: Renee Hageman Additional contributions: Dries Bonte, University Ghent Audio effects: mixkit.co

