CSE 208 (Data Structures and Algorithms II Sessional) Offline Assignment 4

Submission deadline: Week 6

Section A1, A2, B2:

You have to implement the **Kruskal's** minimum spanning tree algorithm for an undirected weighted graph G = (V, E) as the fourth offline assignment of CSE 208. Please consider the following requirements:

- 1) Implement necessary code for graph representation without using standard template libraries.
- 2) Make sure the running time of the algorithm is $O(E \lg V)$.
- 3) Use file operations for input and output.
- 4) You may need to use your implementation for the online assignment. So make sure your code is well-organized so you can use it for solving other problems.

Sample Input	Sample Output
10 16	Added edges: [edges can vary]
0 1 4	(6,7)
078	(9,5)
1 7 10	(2,8)
1 2 8	(5,6)
237	(2,5)
282	(0,1)
253	(2,3)
562	(0,7)
671	(3,4)
866	
3 5 15	MST weight: 38
3 4 10	
4 5 10	
788	
972	
951	

Section B1:

You have to implement the **Prim's** minimum spanning tree algorithm for an undirected weighted graph G = (V, E) as the fourth offline assignment of CSE 208. Please consider the following requirements:

- 1) Implement necessary code for graph representation without using standard template libraries.
- 2) Make sure the running time of the algorithm is $O(V \lg V)$.
- 3) Use file operations for input and output.
- 4) You may need to use your implementation for the online assignment. So make sure your code is well-organized so you can use it for solving other problems.

Sample Input	Sample Output
Sample Input 10 16 0 1 4 0 7 8 1 7 10 1 2 8 2 3 7 2 8 2 2 5 3 5 6 2 6 7 1 8 6 6 3 5 15 3 4 10 4 5 10	Added edges: [edges can vary] (0, 1) (1, 2) (2, 8) (2, 5) (9, 5) (5, 6) (6, 7) (2, 3) (5, 4) MST weight: 38
7 8 8 9 7 2 9 5 1	