侦察无人机

可见光图像

红外光图像

红外光偏振图像

第19章 光的偏振

19.1 偏振光和自然光

一、偏振

振动方向与 传播方向垂直

横波 ● ● ● ● ● ● ● ● ●

纵波 ● ● ● ● ● ● ● ●

振动方向与 传播方向相同

o 10 10 100 10 110 101 101 E=m

第19章 光的偏振 19.1 偏振光和自然光

振动方向与 传播方向垂直

振动方向对于 传播方向<mark>不对称</mark>

振动方向对于 传播方向<mark>对称</mark>

振动方向与 传播方向<mark>相同</mark>

二、光的横波特性

电磁波中起光作用的是电矢量(光矢量) Ē

01010100101101101

三、偏振光的分类

1、线偏振光

光矢量只在一个固定平面内沿一个固定方向 振动的光叫线偏振光(平面偏振光)。

线偏振光的表示法:

没有优势方向 无固定相位差

自然光的表示法:

3、部分偏振光

光的偏振度: $P = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}}$

 I_{max} : 最大振幅对应的光强

 I_{\min} : 最小振幅对应的光强

$$P = \left\{ egin{array}{ll} 1 & 线偏振光 \ 0 & 自然光 \ 0 \sim 1 & 部分偏振光 \end{array}
ight.$$

部分偏振光的表示法:

椭圆偏振光 圆偏振光

振动方向互相垂直,传播方向一致,相位差恒定的 线偏振光叠加后,光矢量的矢端做椭圆运动的光。

自然光与偏振光

光矢量

自然光

19.2 起偏和检偏 马吕斯定律

- 一、起偏 获得线偏振光
 - > 二向色性

> 线栅起偏器

 $E=mc^2$

二、检偏

三、马吕斯定律(1808年)

振幅为A的线偏振光,垂直入射到一理想偏振 片上。若偏振片的偏振化方向与入射偏振光的振 动方向夹角为30°,则透过偏振片的振幅为()

例题 自然光入射,在两个偏振化方向正交的偏振片之间插入第三个偏振片。(1)当最后透过的光强为入射自然光强的1/8时,求插入第三个偏振片透振化的方向

(2) 若最后透射光强为零,则第三个偏振片怎样放置?

解: (1)设入射的自然光光强: I_0

通过第一个偏振片后,光强: $I_0/2$

第三个、第一个偏振片透振方向间的夹角: α

第二个、第三个偏振片透振方向间的夹角: $90^{\circ}-\alpha$

根据马吕斯定律,光经过三个偏振片后

$$\frac{I_0}{2}\cos^2\alpha \cdot \cos^2(90^\circ - \alpha) = \frac{I_0}{8}$$
 $\alpha = 45^\circ$

例题 自然光入射,在两个偏振化方向正交的偏振片之间插入第三个偏振片。(1)当最后透过的光强为入射自然光强的1/8时,求插入第三个偏振片透振化的方向

(2) 若最后透射光强为零,则第三个偏振片怎样放置?

解: (2) 若最后透射出来的光强为零

$$\frac{I_0}{2}\cos^2\alpha\cdot\cos^2(90^\circ-\alpha)=0$$

$$\sin 2\alpha = 0$$

$$\alpha = 0^{\circ}$$
 或 $\alpha = 90^{\circ}$

1010101001011011011011E=mc2

例题 一束光是自然光和偏振光的混合光,让它垂直通过一偏振片,若以此入射光束为轴旋转偏振片时,测得透射光强强度的最大值是最小值的3倍。求入射光束中,自然光与线偏振光的光强比值。

解 设入射光束中自然光强: I_0 线偏振光的光强: I_1

入射光垂直通过偏振片后的最大光强: $I_{\text{max}} = \frac{1}{2}I_0 + I_1$

最小光强为
$$I_{\min} = \frac{1}{2}I_0$$

 $I_{\text{max}} = 3I_{\text{min}}$

自然光与线偏振光的光强比值 $\frac{I_0}{I_1} = \frac{1}{1}$

3D电影

19.3 反射和折射时的偏振

一、反射和折射时的偏振

- 马吕斯发现一般情况下反射光是部分偏振光
- 布儒斯特进一步发现折射光也是部分偏振光
- 用电磁理论也可以证明,光在两种介质界面上反射和折射时,反射光和折射光确实都是部分偏振光

二、布儒斯特定律(1812)

反射光的偏振化程度取决于入射角

当
$$i = i_0$$
时

- (1) 反射光为线偏振光, 其振动方向垂直于入射面
- (2) 反射光与折射光传播方向恰好垂直,即 $i_0 + r = \frac{\pi}{2}$

这种规律称为布儒斯特定律 入射角 i_0 称布儒斯特角

由折射定律:

$$n_1 \sin i_0 = n_2 \sin r = n_2 \cos i_0$$

$$\tan i_0 = \frac{n_2}{n_1}$$

说明 1 公式 $tan i_0 = \frac{n_2}{n_1} \stackrel{\underline{\text{QS}}}{=} n$,提供了测定不透明 物质折射率n的一种方法。

2 要区分清:

布氏角 $i_0 \rightarrow$ 起偏振角 $\tan i_0 = n_2/n_1$

临界角 $i \rightarrow$ 全反射角 $\sin i = n_2/n_1$

光密到光疏

 $E=mc^2$

例题:已知某材料在空气中的布儒斯特角为 60° ,求它的折射率?若将它放在水中($n_{\chi}=1.33$)该材料对水的相对折射率是多少?

M:
$$\tan i_0 = \tan 60^\circ = \frac{n_2}{n_1} = \frac{n_2}{1} = \sqrt{3}$$

$$n_2 \approx 1.73$$

$$n_{\text{H}} = \frac{n_2}{n_{\text{rk}}} = \frac{1.73}{1.33} \approx 1.3$$

因此我们只要戴上偏振太阳镜,镜片的偏振化方向取垂直于路面方向,就可以防止耀眼的眩光了

(A)

玻璃门表面的 反光很强

(B)

用偏光镜减弱了反射偏振光

(C)

用偏光镜<u>消除</u>了反射偏振光,使玻璃门内的人物清晰可见

$E=mc^2$ of the second second

目标侦查中的偏振成像

讨论:下列光线的反射和折射(设起偏角为 i_0)

1010101001011011011011E=mc

作业: P148 —.2, 4 二.4 三.2,3