Statistical Inference

Classical and Bayesian Methods

Class 16

AMS-UCSC

Tu Mar 13, 2012

Topics

We will talk about...

1 Introduction to Hierarchical Models

Posterior distributions

Consider the joint prior: $p(\phi, \theta) = p(\phi)p(\theta|\phi)$. ϕ are the model hyperparameters. θ are the model parameters.

The joint posterior is given by:

$$p(\phi, \theta|y) \propto p(\phi, \theta)p(y|\phi, \theta)$$

= $p(\phi, \theta)p(y|\theta)$

the sampling model only depends on θ . The hyperparameters ϕ affect y through θ .

Previously the hyperparameters were considered known. Now we take into account the uncertainty on ϕ .

◆ロト ◆個ト ◆差ト ◆差ト 差 めらぐ

3 / 21

Predictive distributions

We might be interested in the following quantities:

- Distribution of future observations \tilde{y} given $\theta'_j s$. We can simulate \tilde{y} based in the posterior distribution of θ_i .
- Distribution of future observations \tilde{y} corresponding to future values of θ_j ($\tilde{\theta}$). In this case we can simulate $\tilde{\theta}$ conditional on the posterior simulation of ϕ and then the values of \tilde{y} are simulated given the simulated values of $\tilde{\theta}$.

4 / 21

Marginal and conditional distributions

• 1. Write $p(\theta, \phi|y)$ in an unormalized form. This implies to calculate:

$$p(\theta, \phi|y) \propto p(\phi)p(\theta|\phi)p(y|\theta)$$

- Determine $p(\theta|\phi, y)$ analytically give hyperparameters ϕ .
- 2. Determine ϕ finding the posterior marginal (Bayesian paradigm). This implies to find the integral

$$p(\phi|y) = \int p(\theta, \phi|y) d\theta.$$

For some models the following formula can be used:

$$p(\phi|y) = \frac{p(\theta, \phi|y)}{p(\theta|\phi, y)},$$

• 3. Simulate the hyperparameters ϕ from the marginal $p(\phi|y)$.

Marginal and conditional distributions

- 4. Simulate θ from $p(\theta|\phi, y)$. We can consider $p(\theta|\phi, y) = \prod_j p(\theta_j|\phi, y)$. The components of θ_j can be simulated independently one at a time.
- 5. Simulate predictive values \tilde{y} from the posterior predictive distribution given the values of θ . Depending on the problem it can be necessary to simulate $\tilde{\theta}$ given ϕ as previously discussed.

The previous steps are repeated L time to get L samples from al parameters.

6 / 21

We have data from a normal distribution with a different means for each group or experiment; observational variance is known and a normal distribution is assumed for the mean of each group. This model is known as the *one way normal model with random effects*.

Example 5.5 (GCSR)

A study is carried out to investigate the impacts of a special coaching program on the test scores of SAT-V (Scholastic Aptitude Test-Verbal) for 8 schools. Test are applied to more than 30 students at each school. The response variable is the score of the test.

Data structure: J independent experiments are assumed. Parameter θ_j measures the impact of the coaching program on school j, from n_j observations y_{ij} , assumed independent and normally distributed with error variance σ^2 known; this is:

$$y_{ij}|\theta_j \sim N(\theta_j, \sigma^2), \quad ext{para} \quad i = 1, \dots, n_j; \quad j = 1, \dots, J$$

Let $\bar{y}_{.j} = \frac{1}{n_j} \sum_{i=1}^{n_j} y_{ij}$ the sample mean of each group and $\sigma_j^2 = \frac{\sigma^2}{n_j}$ the sample variance of group j. The likelihood can be written in terms of $\bar{y}_{.j}$ such that $\bar{y}_{.j} \sim N(\theta_j, \sigma_j^2)$.

 θ_j could be estimated from $\bar{y}_{.j}$ which is the average result for group j or a common weighted average could be used:

$$\bar{y}_{\cdot \cdot} = \frac{\sum_{j=1}^{J} \frac{1}{\sigma_j^2} \bar{y}_{\cdot j}}{\sum_{j=1}^{J} \frac{1}{\sigma_j^2}}$$

What is a good estimator for parameters $\theta_1, \ldots, \theta_J$?. The traditional method to answer this question uses an analysis of variance with an F test to proof if the means are different. If $n_j = n$ and $\sigma_j^2 = \sigma^2$ for all j we have the ANOVA table 1. If the ratio of MS between groups and MS within groups is significantly greater than 1, then $\hat{\theta}_j = \bar{y}_{.j}$. Otherwise $\hat{\theta}_j = \bar{y}_{.j}$.

Table: Classic ANOVA table for the one way model

	df	SS	MS	$E(MS \sigma^2, au)$
Between	J-1	$\sum_{i} \sum_{j} (\bar{y}_{.j} - \bar{y}_{})^2$	SS/(J-1)	$n\tau^2 + \sigma^2$
Groups Within Groups	J(n-1)	$\sum_{i}\sum_{j}(y_{ij}-\bar{y}_{.j})^{2}$	SS/((J(n-1))	σ^2
Total	<i>Jn</i> − 1	$\sum_{i}\sum_{j}(y_{ij}-\bar{y}_{})^2$	SS/(nJ-1)	

◆ロ > ← 個 > ← 差 > ← 差 > 一差 ● から(*)

Another alternative:

$$\hat{\theta}_j = \lambda_j \bar{y}_{.j} + (1 - \lambda_j) \bar{y}_{..}$$

where λ_i lies between 0 and 1. We can or not combine all data

Hierarchical model

Parameters θ_i are assumed samples from a Normal distribution with hyperparameters (μ, τ) ,

$$p(\theta_1, \dots, \theta_J | \mu, \tau) = \prod_{j=1}^J N(\theta_j | \mu, \tau^2)$$

$$p(\theta_1, \dots, \theta_J) = \int \prod_{j=1}^J [N(\theta_j | \mu, \tau^2)] p(\mu, \tau) d(\mu, \tau)$$

A non-informative prior for the hyperparameters is given by:

$$p(\mu, \tau) = p(\mu|\tau)p(\tau) \propto p(\tau)$$

(the prior density for μ is uniform).

Joint posterior distribution:

$$\rho(\theta, \mu, \tau | y) \propto \rho(\mu, \tau) \rho(\theta | \mu, \tau) \rho(y | \theta)$$

$$\propto \rho(\mu, \tau) \prod_{j=1}^{J} N(\theta_j | \mu, \tau^2) \prod_{j=1}^{J} N(\bar{y}_{.j} | \theta_j, \sigma_j^2)$$

Conditional posteriors

The $heta_j^\prime s$ are conditionally independent given (μ, au) and the rest of terms depending on y and σ_i can be ignored because they are known. We have J independent normal means, therefore:

$$\theta_j | \mu, \tau, y \sim N(\hat{\theta}_j, V_j)$$

where

$$\hat{ heta}_{j} = rac{rac{1}{\sigma_{j}^{2}} ar{y}_{,j} + rac{1}{ au^{2}} \mu}{rac{1}{\sigma_{j}^{2}} + rac{1}{ au^{2}}} \quad ext{y} \quad V_{j} = rac{1}{rac{1}{\sigma_{j}^{2}} + rac{1}{ au^{2}}}$$

Note that $\hat{\theta}_i$ and V_i are functions of μ , τ and the data.

Marginal posterior distribution

For the hyperparameters one can write:

$$p(\mu, \tau | y) \propto p(\mu, \tau) p(y | \mu, \tau)$$

The marginal distributions of $\bar{y}_{.j}$ (group means averaged over θ are independent normals:

$$\bar{\mathbf{y}}_{.j}|\mu,\tau \sim N(\mu,\sigma_j^2+\tau^2).$$

Then the marginal posterior is:

$$p(\mu, \tau | y) \propto p(\mu, \tau) \prod_{j=1}^{J} N(\bar{y}_{,j} | \mu, \sigma_j^2 + \tau^2),$$

From this equation we can find:

• Posterior distribution of μ conditional on τ , by factorizing

$$p(\mu, \tau | y) = p(\mu | \tau, y) p(\tau | y)$$

where $p(\mu|\tau,y)$ is the posterior distribution of μ when τ is known. From the posterior distribution $p(\mu, \tau | y)$ it is found that the log is a quadratic function of μ , therefore $p(\mu|\tau, y)$ is a normal distribution. With a uniform prior for $p(\mu|\tau)$ we have:

$$\mu| au, y \sim N(\hat{\mu}, V_{\mu})$$

where
$$\hat{\mu} = \frac{\sum_{j=1}^J \frac{1}{\sigma_j^2 + \tau^2} \bar{y}_{.j}}{\sum_{j=1}^J \frac{1}{\sigma_j^2 + \tau^2}}$$
 y $V_{\mu}^{-1} = \sum_{j=1}^J \frac{1}{\sigma_j^2 + \tau^2}$

• The posterior distribution of τ , is:

$$p(\tau|y) = \frac{p(\mu, \tau|y)}{p(\mu|\tau, y)}$$

- A uniform prior $p(\tau) \propto 1$ produces a proper posterior prior.
- A posterior prior $p(\log \tau) \propto 1$ produces an improper prior.
- If a variance estimate τ is available and an upper bound for τ is known, it is possible to find a prior from an inverse- χ^2 trying to match the distribution mean and the upper bound with the 99% quantile.

Posterior simulations

The following factorization can be used:

$$p(\theta, \mu, \tau | y) \propto p(\tau | y) p(\mu | \tau, y) p(\theta | \mu, \tau, y)$$

tau tau 🏴 → ← 🖹 → 🚊 → ⊃ Q (~

Simulation from τ can be done from a uniform grid in the τ values with the function $p(\tau|y)$. μ and θ can be simulated from the corresponding normals. Density and histogram plots of the marginal marginal posterior distribution for τ , and the effect expected values conditional on τ are shown based in 5,000 samples.

It can be observed that τ values close to zero are more plausible, and the effect among schools are very similar when τ is small. When τ increases, (greater variability among schools) effect estimates are far apart from each other.

Simulation from posterior predictive distributions

Given samples from the posterior distribution the options are:

- Future observations \tilde{y} with means $\theta = (\theta_1, \dots, \theta_J)$. In this case to get samples for future observation \tilde{y} , get samples from $p(\theta, \mu, \tau | y)$ first, and then samples from $y_{ii} \sim N(\theta_i, \sigma^2)$.
- Future observations \tilde{y} from \tilde{J} future values with means $\tilde{\theta} = (\tilde{\theta}_1, \dots, \tilde{\theta}_{\tilde{\tau}})$. In this case we can specify \tilde{J} future individual sample size \tilde{n}_i . The simulation steps are as follows:

 - Simulate (μ, τ) from the posterior. Simulate \tilde{J} new parameter values $\tilde{\theta} = (\tilde{\theta}_1, \dots, \tilde{\theta}_{\tilde{J}})$ from the population distribution $p(\tilde{\theta}_i|\mu,\tau)$ which is the θ prior distribution given the hyperparameters.
 - Simulate \tilde{y} given $\tilde{\theta}$ from the sampling distribution

$$y_{ij} \sim N(\theta_j, \sigma^2)$$
.

Thanks for your attention ...