J J Quirk

An Adaptive Grid Algorithm For Computational Shock Hydrodynamics

College of Aeronautics

Ph.D. Thesis

Cranfield Institute of Technology College of Aeronautics

Ph.D. Thesis Academic Year 1990-91

J J Quirk

An Adaptive Grid Algorithm For Computational Shock Hydrodynamics

Supervisor: Prof. P L Roe

January 1991

This thesis is submitted in partial submission for the degree of Doctor of Philosophy.

Abstract

During the development of computational methods that solve time dependent shock hydrodynamic problems, two underlying strategies have emerged that enable flow features to be resolved clearly. One, employ a numerical scheme of inherently high resolution, usually a second-order Godunov-type method. Two, locally refine the computational mesh in regions of interest. It has been demonstrated by Berger & Collela that a combination of both strategies is necessary if a solution of very high resolution is sought. The present study combines Roe's flux-difference splitting scheme with an adaptive mesh refinement algorithm developed from the ideas of Berger. The result being a general purpose scheme that can fully resolve complicated flows but which requires only modest computing power.

The material in this thesis reflects three broad aims. First, to explain the methodology and intricacies of our scheme. Compared to non-adaptive methods our scheme is undeniably complicated, for it contains many elements which must be carefully co-ordinated. Second, to vindicate this complexity. To this end, computational results are presented which are comparable in resolution to Schlieren photographs, yet the calculations were performed on a small desktop workstation. Third, to give sufficient details of our implementation so as to allay the apprehensions of any person who might wish to code up the scheme.

Contents

1	Intr	ntroduction 1		
	1.1	Motivations For Studying Shock Wave Phenomena	2	
	1.2	Background Material	3	
		1.2.1 High Resolution Schemes	3	
		1.2.2 Adaptive Mesh Schemes	6	
	1.3	The Amr Algorithm — An Overview	10	
		1.3.1 Thesis Outline	11	
2	Hie	rarchical Grid System	13	
	2.1	A Descriptive Overview	14	
	2.2	A Formal Definition	16	
		2.2.1 Grid Specification	17	
	2.3	Mesh Connectivity	19	
	2.4	Implementation Details	24	
		2.4.1 Grid description	24	
		2.4.2 Linked List Data Storage	24	
		2.4.3 Mesh Boundary Information	29	
	2.5	Closing Comment	30	
3	Flor	w Integration	31	

	3.1	Temporal Refinement	31
		3.1.1 A Practical Scheme	33
	3.2	Boundary Procedures	35
		3.2.1 External Boundaries	36
		3.2.2 Fine-Fine Boundaries	37
		3.2.3 Fine-Coarse Boundaries	38
	3.3	Treatment of Fine-Coarse Boundaries	40
		3.3.1 Conservation	41
	3.4	Stability and Accuracy	44
	3.5	Co-ordinating the Flow Integration Process	48
	3.6	Some Exploratory Tests	51
	3.7	Closing Comment	58
4	Aut	omatic Grid Adaption	59
4	A ut	omatic Grid Adaption Elements of the Adaption Process	59 59
4		-	
4		Elements of the Adaption Process	59
4		Elements of the Adaption Process	59 61
4		Elements of the Adaption Process	596166
4	4.1	Elements of the Adaption Process	59616672
4	4.1	Elements of the Adaption Process	5961667273
4	4.1 4.2 4.3	Elements of the Adaption Process 4.1.1 Flagging for Refinement 4.1.2 Grouping/Clustering 4.1.3 Transfer of Solution Co-ordinating the Adaption Process The Complete AMR Algorithm	 59 61 66 72 73 77
4	4.1 4.2 4.3	Elements of the Adaption Process 4.1.1 Flagging for Refinement 4.1.2 Grouping/Clustering 4.1.3 Transfer of Solution Co-ordinating the Adaption Process The Complete AMR Algorithm Validation	 59 61 66 72 73 77 79
4	4.1 4.2 4.3	Elements of the Adaption Process 4.1.1 Flagging for Refinement 4.1.2 Grouping/Clustering 4.1.3 Transfer of Solution Co-ordinating the Adaption Process The Complete Amr Algorithm Validation 4.4.1 Validation Test #1	 59 61 66 72 73 77 79 79

5	Inte	rface Fluxes and Riemann Solvers 91
	5.1	Riemann Problems
	5.2	Roe's Method Extended to Two-Dimensions
		5.2.1 First-Order Method
		5.2.2 Second-Order Extension
		5.2.3 Limiter Functions
	5.3	Known Problems with Roe's Method
		5.3.1 Entropy Condition
		5.3.2 Positivity
		5.3.3 Shear Waves
	5.4	Roe's Method Re-Formulated
		5.4.1 Weighted Average Flux Formulation
		5.4.2 A Shear Fix for Roe's Method
	5.5	Closing Comment
6	Cor	nputational Test Problems 111
	6.1	Open Cylindrical Shock Tube
		6.1.1 Calculation Details
		6.1.2 Computational Results
		6.1.3 Comparison with Experiment
	6.2	Shock Reflection by a Cylinder
		6.2.1 Transition from RR to MR
		6.2.2 Beyond the Transition Point
		6.2.3 Comment
	6.3	Shock Wave Impinging on a Boundary Layer
		6.3.1 Calculation Details

		6.3.3 Comment	141
	6.4	Closing Comment	144
7	Clos	sure	145
	7.1	Conclusions	145
	7.2	Future Work	147
A	Mo	ving Shock Relationships	155
В	Nav	vier-Stokes Solver	157
В	Nav	Governing Equations	157 157
В			
В	B.1	Governing Equations	157
В	B.1 B.2	Governing Equations	157 158
	B.1 B.2 B.3 B.4	Governing Equations	157 158 159

List of Figures

2.1	All meshes are fixed relative to a logical co-ordinate system	14
2.2	Fine meshes are generated by subdividing coarse meshes	15
2.3	Below each embedded fine patch lies part of a coarse grid	15
2.4	A mesh extent	18
2.5	Properly nested meshes	18
2.6	Badly nested meshes	18
2.7	Different types of mesh boundary	19
2.8	Dummy cells surround each mesh	21
2.9	Algorithm to find fine-coarse connectivity information	22
2.10	Algorithm to find fine-fine connectivity information	23
2.11	List of variables stored to describe the grid structure	25
2.12	FORTRAN code fragment to visit every mesh of the grid structure	25
2.13	Linked list data structure for $type1$ data	27
2.14	Order of data for $type1$ mesh data blocks	28
2.15	Order of data for type2 mesh data blocks	28
2.16	FORTRAN code fragment to visit every mesh cell of the grid structure	29
3.1	Tabulated values of W_u/W_{tr} for various m, r, l_{max}	33
3.2	An example set of meshes	34
3.3	The sequence of grid integrations necessitated by the example set of meshes.	34

3.4	A Procedure to recursively interleave the grid integrations	35
3.5	Solid wall boundary procedure for inviscid flows	36
3.6	A fine-fine boundary	37
3.7	A fine-coarse boundary	39
3.8	Time evolution of the flow along a fine-coarse boundary	39
3.9	A grid discontinuity can cause a plane shock to act as a vorticity generator.	41
3.10	Pseudo-code procedure to co-ordinate the flow integration process	50
3.11	Pseudo-code procedure to integrate a single grid	50
3.12	Propagation of a shock wave from a coarse mesh to a fine mesh	53
3.13	Propagation of a shock wave from a fine mesh to a coarse mesh	53
3.14	Exploratory tests for a weak oblique shock	54
3.15	Carpet plots for the density contours shown in figure 3.14	55
3.16	Exploratory tests for a strong oblique shock	56
3.17	Carpet plots for the density contours shown in figure figure 3.16	57
4.1	Adaption process for a shock propagating down a duct	60
4.2	Density contours for the reflection of a plane shock by a ramp	62
4.3	Computational grid for the density contours shown above	62
4.4	Density contours for the medium grid	63
4.5	$F_{tol} = 0.05$: Cells flagged for refinement	63
4.6	$F_{tol} = 0.15$: Cells flagged for refinement	64
4.7	$F_{tol} = 0.25$: Cells flagged for refinement	64
4.8	Sequence of events during the grouping process	67
4.9	Recursive procedure to perform the area sub-divide algorithm	69
	Embedded meshes produced for $P_{tol} = 0.5$	70
	Embedded meshes produced for $P_{tol} = 0.7$	70
	Produced for I ton	

4.12	Embedded meshes produced for $P_{tol} = 0.9$	71
4.13	Bi-linear interpolation is not monotonicity preserving	73
4.14	The order of grid adaption follows the order of grid integration	75
4.15	$\widetilde{G}_l \subseteq G_{l-1}$ does not guarantee proper nesting	76
4.16	Pseudo-code to co-ordinate the adaption process	76
4.17	Pseudo-code to orchestrate the Amr algorithm	78
4.18	A harness for the Amr algorithm.	78
4.19	A sequence of Density profiles during the propagation of a shock	80
4.20	The $fine$ -coarse boundary procedure is prevented from interpolating in time.	81
4.21	Oscillations due to Courant numbers larger than 0.5	81
4.22	Initial grid structure for test problem #2	83
4.23	Final grid structure for test problem #2	83
4.24	Single Mach reflection: $M_s=2.12,\theta=30^{\circ},\gamma=1.4.$	84
4.25	Comparison with experimental results	84
4.26	Grid adaption parameters for validation test #3	86
4.27	Run times for validation test #3	86
4.28	Profiling information for the procedure AMR	87
4.29	Profiling information for the procedure Adapt	87
4.30	Validation test #3, without grid adaption	88
4.31	Validation test #3, with grid adaption	89
5.1	Riemann solution showing the intermediate states $\mathbf{W_L}, \mathbf{W_L^*}, \mathbf{W_R^*}, \mathbf{W_R}$	92
5.2	Isolated interface which forms part of a two-dimensional mesh	94
5.3	Roe's entropy fix	100
5.4	DMR; Standard Roe scheme, first-order	104
5.5	DMR; Exact Riemann solver, first-order	104

5.6	Weights given by a Riemann solution at time $t^{n+\frac{1}{2}}$	106
5.7	DMR; WAF using an exact Riemann solver and MINMOD limiter	107
5.8	DMR; Modified Roe scheme with MINMOD limiter function	109
5.9	DMR; Standard Roe scheme with MINMOD limiter function	109
6.1	Pressure history for a point on the tube's axis, 1.5 diameter lengths downstream of the exit plane	115
6.2	Initial conditions for the open shock tube problem	116
6.3	The shock diffracts around the exit lip of the tube, cf. figure 6.7	117
6.4	An almost spherical blast wave is formed	118
6.5	The Mach disk and vortex travel downstream	119
6.6	The position of the Mach disk has stabilised, cf. figure 6.8	120
6.7	Shadowgraph of the shock diffraction around the exit lip of the tube, taken from Schmidt & Duffy[60]	121
6.8	Shadowgraph of the Mach disk and vortex core, note the flow direction is reversed, taken from Schmidt & Duffy[60]	121
6.9	Initial conditions for the calculation RR \rightarrow MR	126
6.10	RR occurs before the transition point	127
6.11	The earliest signs of MR	128
6.12	Confirmation that transition has occurred	129
6.13	DMR occurs after the transition point	130
6.14	Initial conditions for part two of the simulation	131
6.15	A coarser grid was used for part two of the simulation, cf. figure 6.13	132
6.16	As the Mach stem grows so the effective resolution increases	133
6.17	Transition from DMR to CMR has occurred	134
6.18	The Mach stem has diffracted around the cylinder	135
6.19	Density contours at the end of the simulation, cf. figure 6.20	136

6.20	Schlieren photograph taken by Bryson & Gross[14], cf. figure 6.19. Key: I.S., incident shock; R.S., reflected shock; M.S., Mach stem; C.D., contact discontinuity; V, vortex; T.P., triple point	137
6.21	Parameters used to control the adaption process for the shock/boundary layer calculation	139
6.22	Sketch of the numerical domain for the shock/boundary layer calculation.	139
6.23	Salient flow features for a shock wave impinging on a boundary layer	140
6.24	Pressure distribution along the surface of the plate	141
6.25	Skin-friction distribution along the surface of the plate	141
6.26	Density contours for shock/boundary layer test problem	142
6.27	Computational grid corresponding to contours shown in figure 6.26	143
A.1	Disturbed and quiescent fluid states	155
B.1	Computational mesh for the Blasius test problem; Y co-ordinates magnified 5 times	162
B.2	Comparison of the computed velocity profiles (ARROWS) with the profiles calculated from the Blasius solution (SOLID LINES)	163
C.1	Recursive $pseudo-code$ to calculate $n!$	165
C.2	Stack states during the evaluation of 3!	166
C.3	FORTRAN code simulating recursion	167
D.1	Quadrilateral patch formed by neighbouring cell centres	171
D.2	Piecewise planar surface over a quadrilateral patch	171
D.3	Contour overspill near a refined discontinuity	171
D.4	Density contours for steady supersonic flow over a wedge	172
D.5	Density contours for level 0	172

Nomenclature

Hierarchical Grid System

G	Computational grid
l	Grid level l
l_{max}	Highest grid level
G_l	Grid at level l
nG_l	Number of meshes at level l
$G_{l,k}$	k^{th} mesh at level l
Gp_l	Index for 1^{st} mesh at level l
\mathbf{C}_l^2	Logical co-ordinate system for level l
< IW, JS, IE, JN >	Mesh extent
$\square_{l,k}$	Mesh extent for $G_{l,k}$ using \mathbf{C}_l^2 co-ordinate system
$\Box^c_{l,k}$	Mesh extent for $G_{l,k}$ using \mathbf{C}_{l+1}^2 co-ordinate system
$IM_{l,k}$	Width of $G_{l,k}$
$JM_{l,k}$	Height of $G_{l,k}$
$G_{l,k:i,j}$	The ij^{th} cell contained by $G_{l,k}$
$G_{l,k:N;i}$	The i^{th} interface along the Northern boundary of $G_{l,k}$
$G_{l,k:S;i}$	The i^{th} interface along the Southern boundary of $G_{l,k}$
$G_{l,k:E;j}$	The j^{th} interface along the Eastern boundary of $G_{l,k}$
$G_{l,k:W;j}$	The j^{th} interface along the Western boundary of $G_{l,k}$
\mathbf{W}	Field solution contained by G
\mathbf{W}_l	Field solution contained by G_l
$\mathbf{W}_{l,k}$	Field solution contained by $G_{l,k}$
$\mathbf{W}_{l,k:i,j}$	Solution vector contained by $G_{l,k:i,j}$
rI_l	Number of sub-divisions made along I co-ordinate lines
rJ_l	Number of sub-divisions made along J co-ordinate lines
Δt_l	Time step used to integrate \mathbf{W}_l

Automatic Adaption Process

\widetilde{G}	Newly adapted computational grid
\widetilde{W}	Newly adapted field solution
F_{tol}	Factor used to control flagging for refinement process
P_{tol}	Factor used to control clustering process

Interface Fluxes and Riemann Solvers

$(\mathbf{W_L},\mathbf{W_R})$	Riemann problem with left state $\mathbf{W_L}$ and right state $\mathbf{W_R}$
$(\mathbf{W_L^*}, \mathbf{W_R^*})$	Intermediate states for the solution to $(\mathbf{W_L}, \mathbf{W_R})$
\mathbf{F}	Conservative flux vector
\mathbf{A}	Jacobian matrix, $\frac{\partial \mathbf{F}}{\partial \mathbf{W}}$
(x, y)	Cartesian co-ordinate system
(n, t)	Local co-ordinate system normal and tangential to a cell interface
V_x,V_y	Velocity components using (x, y) co-ordinate system
V_n,V_t	Velocity components using (n,t) co-ordinate system
au	Time
$rac{\mathbf{F}_{i+rac{1}{2}}}{\widetilde{\mathbf{A}}}$	Numerical flux across the interface between the i^{th} and $i^{th} + 1$ cells
$\widetilde{\mathbf{A}}^{-2}$	Linearized Jacobian matrix
α_k	Strength of k^{th} wave
$\widetilde{\lambda}_k$	Velocity of k^{th} wave
$ u_k$	Courant number for k^{th} wave
$\widetilde{\mathbf{e}}_k$	k^{th} eigenvector of $\widetilde{\mathbf{A}}$
${\delta}_k$	Spreading rate for k^{th} wave
B_k	Limiter function for k^{th} wave
A_k	Amplification factor for k^{th} wave
w_k	k^{th} weight for Weighted Average Flux method
$\Delta()$	Difference between right and left values, $()_{\mathbf{R}} - ()_{\mathbf{L}}$
$\Delta()$ $\Delta^{(k)}$ $\widetilde{(}$	Difference across the k^{th} wave
$\tilde{()}$	Roe averaged quantity

Miscellaneous

()∞	Freestream reference conditions
a	Speed of sound
P	Pressure
ho	Density
T	Temperature
γ	Ratio of specific heats
${E}_t$	Total Energy
H	Total Enthalpy
(u,v)	Cartesian velocity components
Re	Reynolds number
Pr	Prandtl number
μ	Coefficient of viscosity
λ	Coefficient of heat conduction

$\tau_{xx},\tau_{yy},\tau_{xy},\tau_{yx}$	Components of shear stress tensor
q_x,q_y	Components of heat flux vector

Moving Shock Relationships

$()_{1}$	Quiescent fluid
$()_2$	Post-shock fluid
M_s	Shock Mach number
U_s	Shock speed

Acronyms

AMR	Adaptive Mesh Refinement
Cfd	Computational Fluid Dynamics
CFL	$\operatorname{Courant}-\operatorname{Friedrichs}-\operatorname{Lewy}$ condition
MR	Mach Reflection
RR	Regular Reflection
CMR	Complex Mach Reflection
DMR	Double Mach Reflection
SMR	Simple Mach Reflection
SIMD	Single Instruction Multiple Data
MIMD	Multiple Instruction Multiple Data

Some notation which is used infrequently is labelled within the main body of the text.

Acknowledgements

This work was funded by the Ministry of Defence (Procurement Executive).

I wish to thank Prof. P. L. Roe for his generous assistance with this work. Thanks are also extended to Dr. E. F. Toro and Mr. J. Pike for their helpful discussion. And I am indebted to Dr. J. A. Edwards for providing the computing facilities without which this project would surely have floundered. Credit must also be given to Prof. J. F. Clarke for assuming the role of supervisor following the departure from Cranfield of Prof. Roe.

Finally, I wish to thank all my associates for putting up with my bad temper over the period of writing up this work. Hopefully this behavioural trait is a mere transient brought about by an attack of thesis blues, but doubtless many people would proffer alternative, less palatable diagnoses.