2.6 (4). Теорема о вычитании вполне упорядоченных множеств.

Теорема. $\alpha \leqslant \beta \Rightarrow \exists ! \gamma : \alpha + \gamma = \beta$ (с точностью до изоморфизма).

 \blacktriangle Наше $\alpha \simeq [0,b)$ (см. предыдущий билет), тогда $\exists \gamma = \beta \backslash ([0,b))$

Докажем единственность. Пусть есть $\gamma_1<\gamma_2\Rightarrow\alpha+\gamma_1<\alpha+\gamma_2\Rightarrow$ они не могут оба равняться β . Противоречие \blacksquare