Atari 800XL - TurboBASIC XL Source	TBXL Parser Ouput run on Altirra 800XL with 65C816 @ 7 MHz	BBC BASIC IV translation run on BeebEm BBC Model B with 2nd 65C02 coprocessor
· FLTSIM2D		
'Longitudinal (2-D: Z & X) flight simulator		
'for Atari 800XL 2017 8-bit BASIC 10-Liner		
'Jeff Piepmeier 'March 4, 2017 'http://jeffpiepmeier.blogspot.com/ 'http://github.com/jeffpiep/ ' 'Parsed with TurboBASIC XL Parser Tool 'http://github.com/dmsc/tbxl-parser \$options +optimize, optimize=- convert_percent-const_replace, optimize=+const_folding 'Tested on Altirra 'http://www.virtualdub.org/altirra.html		
DIM K\$(1)	DIMA\$(1)	
DT = .1 : REM (S) TIME STEP	A=.1	A=.1
CLS : REM CLEAR THE SCREEN ?	CLS ?	CLS @%=&0002010A
?,"FLIGHT SIMULATOR 2D" POKE 752,1 : REM TURN OFF CURSOR	?,"FLIGHT SIMULATOR 2D" POKE752,1	P., "FLIGHT SIMULATOR 2D" VDU 23;8202;0;0;0; C=0 D=0 F=0 G=0 I=0 J=0 N=0

		0=0
		P=0
		U=0
		W=0
		X=0
REPEAT	REP.	16REP.
		FOR ZZ=1 TO 2
BASETIME = TIME	B=TIME	B=TIME
'ATMOSPHERE		
SIGMA=(1-Z*8.0E-05) : REM LINEAR APPROX FOR RELATIVE AIR DENSITY	C=1-D*8e-5	C=1-D*8E-5
STALL = $((U-2*FLAPS)>29)$! $(Z<1)$: REM DETERMINE IF NOT STALLED	E=(F-2*G>29)!(D<1)	E=-((F-2*G>29)OR(D<1))
QSW = 8.1*(U*U+W*W)*1.225*SIGMA : REM DYNAMIC PRESSURE * WING AREA	H=(F*F+I*I)*8.1*1.225*C	H=(F*F+I*I)*8.1*1.225*C
LANGLE OF AFFRONCE		
'ANGLE OF ATTACK(S)	1 - 1 / / / - 0 \	7 1 / (7 (7 0))
UNOSING = 1/(U + (U=0)) : REM U != 0	1J=1/((F=0)+F)	J=1/(F-(F=0))
SLOPE = W*UNOSING : REM SLOPE OF WIND	K=I*J	K=I*J
SLOPE = -(SLOPE<=-1) + (SLOPE>-1)*SLOPE : REM LIMIT SLOPE TO <+/-1	K=- (K<=-1) + (K>-1) *K	K=(K<=-1)-(K>-1)*K
SLOPE = (SLOPE>=1) + (SLOPE<1)*SLOPE : REM LIMIT SLOPE TO <+/-1	K = (K > = 1) + (K < 1) *K	K=- (K>=1) - (K<1) *K
ALPHA = SLOPE22 * SLOPE^3 : REM WING ANGLE OF ATTACK WRT WIND	L=K-K^3*.22	L=K-K^3*.22
ALPHAT = ALPHA + OMEGA*UNOSING*4.3 + 8.33E-3*DLTA + .0863*CL0873 : REM TAILPLANE AOA. INCLUDES ELEVATOR AND DOWNWASH TERMS	M=N*J*4.3+L+833e-5*O+.0863*P0873	M=N*J*4.3+L+833E-5*O+.0863*P0873
'LIFT & DRAG COEFFICIENTS CLT = .4*ALPHAT24*ALPHAT^3 : REM TAILPLANE LIFT COEFFICIENT WITH AREA RATIO.	Q=.4*M-M^3*.24	Q=.4*M-M^3*.24
POLYNOMIAL APPROX TO SINE CL = 0.3+0.16*FLAPS+4.8*ALPHA+12*ALPHA*ABS(ALPHA)-46*ALPHA^3: REM WING LIFT COEFFICIENT. CUBIC FIT TO GET "DOUBLE HOOKS"	2P=.16*G+.3+4.8*L+12*L*ABS(L)-L^3*46	P=.16*G+.3+4.8*L+12*L*ABS(L)-L^3*46

CL = CL * STALL : REM IF STALLED NO WING LIFT	P=P*E	P=P*E
CLL = CL+CLT : REM TOTAL A/C LIFT COEFFICIENT	R=P+Q	R=P+Q
CD = .025 + .0575*CLL*CLL : REM DRAG COEFFICIENT USING OSWALD EFFICIENCY	S=.0575*R*R+.025	S=.0575*R*R+.025
'ENGINE WITH DROPOFF DUE TO ALTITUDE THRUST=(SIGMA05)*THROTTLE*UNOSING*1100: REM INVERT PROPULSIVE POWER EQUATION	T=(C05)*U*J*1100	T=(C05)*U*J*1100
THRUST=THRUST* (THRUST<=2000) +2000* (THRUST>2000) : REM LIMIT THRUST TO 2000 N	T=(T<=2e3)*T+(T>2e3)*2e3	T=- (T<=2E3) *T- (T>2E3) *2E3
'TIME STEP EQUATIONS OF MOTION MY = -QSW*(.0308 + CL*(.28-0.1*FLAPS) + CLT*4.3) : REM COMPUTE PITCHING MOMENT, + IS NOSE UP	3V=((.281*G)*P+.0308+Q*4.3)*-H	V=((.281*G)*P+.0308+Q*4.3)*-H
OMEGA = OMEGA + MY*5.48e-5 : REM UPDATE PITCHING RATE WITH PITCHING MOMENT AND IYY	N=V*548e-7+N	N=V*548E-7+N
OMEGA = OMEGA * $((Z>.01) ! (OMEGA>0)) : REPORT NO ROTATION UNLESS POSITIVE WHEN ON GROUND$	M N= (D>.01)! (N>0)*N	N=-((D>.01) OR(N>0))*N
<pre>U = U + ((THRUST-QSW*CD)*1E-3 - SINTH*9.83 - OMEGA*W) * DT : REM UPDATE LONGITUDINAL VELOCITY</pre>		F= ((T-H*S)*1E-3-W*9.81-N*I)*A+F
W = W + (-QSW*CLL*1E-3 + COSTH*9.81 + OMEGA*U) * DT : REM UPDATE TRANSVERSE VELOCITY	4I=(-H*R*1e-3+X*9.81+N*F)*A+I	I=(-H*R*1E-3+X*9.81+N*F)*A+I
W = W * ((Z>.01) ! (W<0)) : REM NO VERTICAL VELOCITY IF ON GROUND, UNLESS ITS UP	I=(D>.01)!(I<0)*I	I=-((D>.01)OR(I<0))*I
'INERTIAL FRAME UPDATE		
T=T+DT : REM STEP TIME FORWARD	Y=Y+A	Y=Y+A
THETA = THETA + OMEGA*DT : REM UPDATE PITCH ANGLE	I Z=N*A+Z	Z=N*A+Z
COSTH = 1 - 0.49*THETA*THETA : REM QUADRATIC APPROX TO COSINE	X=149*Z*Z	X=149*Z*Z

SINTH = THETA15*THETA^3 : REM CUBIC APPROX TO SINE	W=Z-Z^3*.15	W=Z-Z^3*.15
VX = (U*COSTH + W*SINTH) : REM UPDATE VELOCITY OVER GROUND	_=F*X+I*W	_=F*X+I*W
VZ = (U*SINTH - W*COSTH) : REM UPDATE VERTICAL RATE	A0=F*W-I*X	A0=F*W-I*X
X = X + VX*DT: REM UPDATE GROUND TRACK POSITION	A1=_*A+A1	A1=_*A+A1
Z = Z + VZ*DT: REMO UPDATE ALTITUDE	5D=A0*A+D	D=A0*A+D
Z = Z * (Z>0) : REM RESTRICT Z TO ABOVE GROUND	D=(D>0)*D	D=- (D>0) *D
OKTOLAND = OKTOLAND ! $(Z>9)$: REM BE A LITTLE FORGIVING ON THE TAKEOFF		
	A2=(D>9)!A2	A2=((D>9)ORA2)
'PILOT INPUT. USE KEY INPUTS SAME AS SUBLOGIC FLIGHT SIM II		NEXT ZZ
K\$=INKEY\$	A\$=INKEY\$	A\$=INK.(0)
THROTTLE = THROTTLE + 5*((K\$="\1F")*(THROTTLE<100)- (K\$="\1E")*(THROTTLE>0))	U=(A\$=""*(U<100)-A\$=""*(U>0))*5+U	U=((A\$=".")*(U<100)-(A\$=",")*(U>0))*5+U
DLTA = DLTA + 0.5*((K\$="T")*(DLTA<23)-(K\$="B")*(DLTA>-28)) : REM ELEVATOR UP/DOWN	O=(A\$="T"*(O<23)-A\$="B"*(O>-28))*.5+O	O=((A\$="T")*(O<23)-(A\$="B")*(O>-28))*.5+O
FLPIN = FLPIN + ((K\$="N")*(FLPIN<3)- (K\$="Y")*(FLPIN>0)) : REM FLAPS IN/OUT	6A3=A\$="N"* (A3<3) -A\$="Y"* (A3>0) +A3	A3=(A\$="N") * (A3<3) - (A\$="Y") * (A3>0) +A3
FLAPS = 0.05*FLPIN+0.95*FLAPS : REM A LITTLE IIR EXPONENTIAL RESPONSE TO MODEL THE FLAP DRIVE MOTOR	G=.05*A3+.95*G	G=.05*A3+.95*G
POSITION 2,3	POS.2,3	V.31,0,3
?"KTAS",INT(U*1.94)," " : REM KNOTS	?"KTAS", INT (F*1.94)," "	P."KTAS", F*1.94
?"PITCH", INT (THETA*573)*.1," ": REM DEGREES WITH 1 DECIMAL PLACE	?"PITCH", INT (Z*573)*.1," "	P."PITCH", Z*57.3
?"ALT.",INT(Z*3.28)," " : REM FEET	7?"ALT.", INT(D*3.28)," "	P."ALT.", D*3.28
?"VRATE", INT(VZ*197)," " : REM FEET/MINUTE	?"VRATE",INT(A0*197)," "	P."VRATE", A0*197
?	?	P.
?"ELEV.", DLTA," " : REM ELEVATOR POSITION	?"ELEV.",O," "	P."ELEV.",O

```
?"POWER", THROTTLE," " : REM % POWER
                                            ?"POWER",U," "
?"FLAPS ", INT(FLAPS*10+0.5)," " : REM FLAP| ?"FLAPS ", INT(G*10+.5)," "
POSITION
?"STALL ", CHR$(161-116*STALL); : REM STALL ?"STALL ", CHR$(161-116*E);
INDICATOR
?CHR$(253-221*STALL) : REM BEEP IF
                                            ?CHR$(253-221*E)
STALLING!
?"DIST.", INT(X*1.09)," " : REM DISTANCE
                                            ?"DIST.", INT(A1*1.09)," "
TRAVELED OVER GROUND
?"TIME",T,,INT(600/(TIME-BASETIME));"% " : |?"TIME",Y,,INT(600/(TIME-B));"% "
REM TIME AND SIMULATOR RATE RELATIVE TO
REAL TIME
UNTIL OKTOLAND & (Z=0) : REM END GAME IF
                                            U.(D=0)&A2
BACK ON GROUND
IF VZ >-1 : REM CHECK TO SEE IF VERTICAL
                                            IF A0>-1
RATE IS SLOW ENOUGH
? "TOUCHDOWN"
                                             ?"TOUCHDOWN"
ELSE
                                             EL.
? "YOU CRASHED!\FD\FD\FD" : REM OH NO!
                                             ?"YOU CRASHED!ýýý"
VERTICAL TOO FAST!
ENDIF
                                             END.
```

```
P."POWER",U
P."FLAPS ",G*10

P.
P."STALL ",NOT-E

V.-7*(NOT-E)

P.
P."DIST.",A1*1.09

P."TIME",Y,2000/(TIME-B);"%"

U.(D=0)ANDA2

P.
IF A0>-1 THEN P."TOUCHDOWN" ELSE P."YOU CRASHED!"
```