Кафедра теории вероятностей

Теория случайных процессов. Лектор – профессор А.В.Булинский (весенний семестр 2017 года)

ОБЯЗАТЕЛЬНЫЕ ЗАДАЧИ

- 1. Пусть $S = \{S_n, n \geq 0\}$ простое случайное блуждание в \mathbb{Z} , имеющее начальной точкой нуль. Доказать, что для любых $a, b \in \mathbb{Z}$ таких, что a < 0 < b, с вероятностью единица блуждание не останется в полосе, ограниченной прямыми y = a и y = b.
- **2**. Пусть $S = \{S_n, n \geq 0\}$ и $S' = \{S'_n, n \geq 0\}$ независимые простые случайные блуждания в \mathbb{Z}^d , имеющие начальной точкой нуль, т.е. образованные независимыми последовательностями $(X_n)_{n\geq 1}$ и $(X'_n)_{n\geq 1}$, состоящими из независимых векторов таких, что

$$P(X_1 = e_k) = P(X_1 = -e_k) = P(X_1' = e_k) = P(X_1' = -e_k) = \frac{1}{2d}.$$

Здесь e_k – вектор в \mathbb{R}^d , у которого k-я координата равна единице, а остальные равны нулю, $k = 1, \ldots, d$. Введем (вообще говоря, расширенную) случайную величину

$$N := \sum_{n = 0}^{\infty} \mathbb{I}\{S_n = S'_m\},\,$$

где $\mathbb{I}\{A\}$ – индикатор события A. Найти все $d \in \mathbb{N}$, для которых $\mathsf{E} N < \infty$.

- 3. Пусть в модели Гальтона Ватсона $P(\xi = 0) = 1/4$, $P(\xi = 2) = 1/2$ и $P(\xi = 6) = 1/4$. Определить, будет ли вероятность вырождения процесса больше или меньше 1/2.
- 4. Пусть $Z=\{Z(t), t\geq 0\}$ процесс восстановления, построенный по последовательности неотрицательных, независимых, одинаково распределенных величин X_1, X_2, \ldots таких, что $\mathsf{E} X_1=\mu\in(0,\infty)$ и $var X_1=\sigma^2\in(0,\infty)$. Доказать, что

$$\frac{Z(t) - \frac{t}{\mu}}{\sigma \sqrt{\frac{t}{\mu^3}}} \stackrel{law}{\to} N(0, 1), \quad t \to \infty.$$

- **5**. Можно ли утверждать, что не только пуассоновский процесс, но и любой процесс восстановления является процессом с независимыми приращениями?
- 6. Найти ковариационную функцию процесса $Z = \{Z(t), t \geq 0\}$ (называемого телеграфной волной), где $Z(t) = \xi_0(-1)^{N(t)}$, $N = \{N(t), t \geq 0\}$ пуассоновский процесс интенсивности λ , случайная величина ξ_0 принимает значения 1 и -1 с вероятностью 1/2, причем ξ_0 не зависит от процесса N.
- 7. Пусть $N = \{N(B), B \in \mathcal{B}(\mathbb{R}^d)\}$ пространственный точечный пуассоновский процесс с мерой интенсивности $\lambda \mu(\cdot)$, где λ положительная константа, а μ мера Лебега в \mathbb{R}^d . Пусть $\{x_i\}$ ансамбль случайных точек в \mathbb{R}^d , образующих этот процесс. Для $z \in \mathbb{R}^d$ введем случайную величину $Y(z) := \inf_{i \in \mathbb{N}} \|z x_i\|$, где $\|\cdot\|$ евклидова норма в \mathbb{R}^d (иначе говоря, рассматривается расстояние от точки z до ближайшей точки пуассоновского ансамбля). Найти функцию распределения величины Y(z) и ее математическое ожидание.

- 8. Пусть $N = \{N(t), t \geq 0\}$ пуассоновский процесс интенсивности $\lambda > 0$, т.е. процесс восстановления, образованный последовательностью независимых одинаково распределенных величин X, X_1, X_2, \ldots таких, что $X \sim Exp(\lambda)$. Положим $S_n := X_1 + \ldots + X_n$, $n \in \mathbb{N}$. Найти функционал Лапласа процесса $Y = \{Y(B) = \sum_{n=1}^{\infty} \mathbb{I}_B(S_n), B \in \mathcal{B}(\mathbb{R}_+)\}$.
- 9. Пусть $N=\{N(t), t\geq 0\}$ пуассоновский процесс интенсивности $\lambda>0, Y_1, Y_2, \ldots$ независимые одинаково распределенные, неотрицательные величины, причем семейства $\{N(t), t\geq 0\}$ и $\{Y_n, n\in \mathbb{N}\}$ независимы. Определим процесс Крамера Лундберга, описывающий капитал страховой компании в момент $t\geq 0$, формулой

$$Z(t) := C_0 + ct - \sum_{k=1}^{N(t)} Y_j, \quad t \ge 0,$$

где C_0 и c – положительные константы, а сумма по пустому множеству индексов считается равной нулю. Доказать, что процесс $Z = \{Z(t), t \geq 0\}$ имеет независимые приращения.

- **10**. Для пуассоновского процесса $N = \{N(t), t \geq 0\}$ интенсивности $\lambda > 0$ (вводимого как процесс с независимыми приращениями, N(0) = 0 п.н., $N(t) N(s) \sim Pois(\lambda(t-s))$, $0 \leq s \leq t < \infty$) доказать, что не существует модификации, непрерывной п.н.
- 11. Пусть $N = \{N(t), t \geq 0\}$ пуассоновский процесс интенсивности λ (как процесс восстановления). Доказать, что $\tau := \gamma S_1$, где константа $\gamma \in (0,1)$, не является марковским моментом относительно естественной фильтрации процесса N (S_1 длина промежутка до первого скачка процесса N).
- 12. Доказать, что для каждого a>0 величина $\tau_a(\omega):=\inf\{t\geq 0:W(t,\omega)=a\}$ является п.н. конечным марковским моментом относительно естественной фильтрации винеровского процесса $W=\{W(t),t\geq 0\}.$
- **13**. Доказать, что если $0 \le a < b \le c < d$, то с вероятностью единица

$$\sup_{t \in [a,b]} W(t) \neq \sup_{t \in [c,d]} W(t).$$

Вывести отсюда, что для любого отрезка $[u,v]\subset\mathbb{R}$ с точностью до множества вероятности нуль однозначно определена величина $T^*=T^*(\omega)$ такая, что

$$\sup_{t \in [u,v]} W(t) = W(T^*).$$

14. Пусть $T:=\arg\max_{t\in[0,1]}W(t)$, т.е. $T(\omega)$ – та точка отрезка [0,1], в которой непрерывная траектория $W(t,\omega), t\in[0,1]$, достигает максимума (величина T определена однозначно с точностью до эквивалентности в силу задачи 13). Доказать, что

$$\mathsf{P}(T \le t) = \frac{2}{\pi} \arcsin \sqrt{t}, \ t \in [0, 1].$$

15. Пусть $W = \{W(t), t \geq 0\}$ – винеровский процесс. Найти все действительные параметры α, β и γ , для которых процесс $Y = \{Y(t) := \exp\{\alpha W(t) + \beta t + \gamma\}, t \geq 0\}$ является субмартингалом относительно естественной фильтрации процесса W.

- **16**. Привести пример мартингала $X = \{X_n, n \geq 0\}$ и момента остановки τ (относительно естественной фильтрации процесса X), для которых $\mathsf{E} X_\tau \neq \mathsf{E} X_0$.
- 17. Пусть $X = \{X_n, n \geq 0\}$ цепь Маркова. Будет ли $Y := \{X_{[t]}, t \geq 0\}$ марковским процессом (относительно своей естественной фильтрации)? Можно ли утверждать, что процесс $Z := \{Z(t), t \geq 0\}$ является марковским, если Z(t) для $t \in [n, n+1]$ получается линейной интерполяцией значений X_n и X_{n+1} ?
- 18. Доказать, что процесс $N = \{N(t), t \geq 0\}$ является пуассоновским процессом интенсивности λ (т.е. N процесс с независимыми приращениями такой, что N(0) = 0 п.н. и $N(t) N(s) \sim Pois(\lambda(t-s))$ для $0 \leq s \leq t < \infty$) тогда и только тогда, когда N марковская цепь со значениями в пространстве \mathbb{Z}_+ и начальным распределением, сосредоточенным в точке 0, а переходные вероятности для $0 \leq s \leq t < \infty$, $i,j \in \mathbb{Z}_+$ определяются формулой

$$p_{i,j}(s,t) = \begin{cases} \frac{(\lambda(t-s))^{j-i}}{(j-i)!}e^{-\lambda(t-s)}, & i \leq j, \\ 0 & \text{иначе.} \end{cases}$$

19. Пусть $X = \{X_n, n \in \mathbb{Z}_+\}$ – однородная цепь Маркова с конечным числом состояний S. Для $i \in S$ положим

$$c_i = gcd\{n \ge 1 : p_{i,i}(n) > 0\},\$$

где gcd обозначает наибольший общий делитель. Состояние i называется периодическим с периодом d (d>1), когда $c_i=d$. Если $c_i=1$, то i – непериодическое состояние. Доказать, что если цепь X неразложима (т.е. для любых $i,j\in S$ ($i\neq j$) найдутся $k,m\in\mathbb{N}$ такие, что $p_{i,j}(k)>0$ и $p_{j,i}(m)>0$), то все состояния одновременно непериодические или периодические, причем в последнем случае все периоды совпадают. Доказать, что если цепь X неразложима и непериодична, то найдется $m\in\mathbb{N}$ такое, что $p_{i,j}(n)>0$ при всех i,j и $n\geq m$.

- **20**. Пусть матрица $Q=(q_{i,j})$, где $i,j\in\{0,\ldots,n\}$, имеет вид $q_{i,i+1}=\lambda$ при $i=0,\ldots,n-1$, $q_{i,i-1}=i\mu$ при $i=1,\ldots,n,\ q_{i,i}=-\lambda-i\mu,\ i=0,\ldots,n-1,\ q_{n,n}=-n\mu,\ a$ остальные $q_{i,j}$ равны нулю (λ и μ положительные параметры). Объяснить, почему существует однородная марковская цепь с пространством состояний $S=\{0,\ldots,n\}$ и инфинитезимальной матрицей Q. Доказать, что имеется единственное стационарное распределение. Найти это распределение (предварительно показать, что для стандартной марковской цепи с конечным числом состояний при $t\geq 0$ справедливы обе системы уравнений Колмогорова: P'(t)=QP(t) и P'(t)=P(t)Q, где $P(t)=(p_{i,j}(t))$ и Q инфинитезимальная матрица; вывести отсюда, что pQ=0, где вектор-строка p задает стационарное распределение).
- **21**. (Модель Эренфестов) Пусть имеются две урны, содержащие в начальный момент времени соответственно k_1 и k_2 шаров, причем $k_1+k_2=k$. В каждый момент времени n ($n \in \mathbb{N}$) с вероятностью 1/k выбирается любой из этих k шаров и перекладывается из той урны, где он лежал, в другую. Пусть X_n обозначает число шаров в первой урне в момент времени n. Доказать, что X_0, X_1, \ldots образуют однородную цепь Маркова с пространством состояний $\{0,1,\ldots,k\}$. Проверить, что эта цепь обратима. Найти ее стационарное распределение.
- **22**. Построить пример необратимой марковской цепи $X = \{X_n, n \in \mathbb{Z}_+\}$ с конечным пространством состояний.

- **23**. Пусть $X = \{X(t), t \geq 0\}$ гауссовский процесс со стационарными независимыми приращениями такой, что п.н. его траектории непрерывны на \mathbb{R}_+ и X(0) = 0 п.н. Доказать, что найдутся винеровский процесс $W = \{W(t), t \geq 0\}$, константы $a \in \mathbb{R}$ и $b \in \mathbb{R}_+$ такие, что X(t) = at + bW(t) п.н. для всех $t \geq 0$.
- **24**. Выяснить, являются ли ковариационными функциями некоторых процессов следующие функции:
- a) $r(s,t) = 2\cos(s-t)\exp\{-\alpha|s-t|\}, s,t \in \mathbb{R}_+, \alpha > 0;$
- 6) $r(s,t) = (1 (s-t)^2)\mathbb{I}\{|s-t| \le 1\} \ s,t \in \mathbb{R};$

B)
$$r(s,t) = \exp\left\{ia(s-t) - \frac{(s-t)^2\sigma^2}{2}\right\} + C$$
, $a \in \mathbb{R}, \ \sigma \in \mathbb{R}_+, \ C \in \{-1,1\}, \ s,t \in \mathbb{R}$.

- **25**. Пусть $X = \{X(t) = e^{-\alpha t}W(e^{2\alpha t}), t \geq 0\}$, где $W(\cdot)$ винеровский процесс и параметр $\alpha > 0$. Является ли процесс X стационарным в узком и/или широком смысле?
- **26**. Доказать, что для центрированной стационарной в широком смысле последовательности $(X_k)_{k\in\mathbb{Z}_+}$ выполнен закон больших чисел в смысле сходимости в среднем квадратическом, а именно,

$$\frac{1}{N} \sum_{k=0}^{N-1} X_k \stackrel{L^2(\Omega)}{\longrightarrow} Z(0) \quad \text{при} \quad N \to \infty,$$

где $Z(\cdot)$ – спектральная мера упомянутой последовательности.

27. Рассмотрим разбиение отрезка [0,T] точками $0=t_{n,0}< t_{n,1}<\ldots< t_{n,N_n}=T$, где $n\in\mathbb{N}$. Фиксируем $\lambda\in[0,1]$ и выберем промежуточные точки $\tau_{n,k}:=(1-\lambda)t_{n,k-1}+\lambda t_{n,k},$ $k=1,\ldots,N_n$. Предположим, что $\max_{1\leq k\leq N_n}(t_{n,k}-t_{n,k-1})\to 0$ при $n\to\infty$. Найти предел в среднем квадратическом при $n\to\infty$ интегральных сумм вида

$$\sum_{k=1}^{N_n} W(\tau_{n,k})(W(t_{n,k}) - W(t_{n,k-1})),$$

где W – винеровский процесс.

28. С помощью формулы Ито найти

$$\int_{[0,T]} W(t)dW(t),$$

где W – винеровский процесс.