CRANBROOK SCHOOL

TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

2001

MATHEMATICS

3 UNIT (Additional) 4 UNIT (First Paper)

Time allowed - Two hours

DIRECTIONS TO CANDIDATES

- * Attempt all questions.
- * ALL questions are of equal value.
- * All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- * Standard integrals are printed on the back page.
- * Board-approved calculators may be used.
- * You may ask for extra Writing Booklets if you need them.

* Submit your work in four booklets:

- (i) QUESTION 1 (4 page)
- (ii) QUESTIONS 2 & 3 (8 page)
- (iii) QUESTIONS 4 & 5 (8 page)
- (iv) QUESTIONS 6 & 7 (8 page)

1. (4 page booklet)

(a) Evaluate
$$\int_0^{\pi/2} \cos^2 x \, dx$$

[2 marks]

- (b) On the same set of axes, sketch the graphs of y = 2|x| and y = |x+3|
 - (ii) Hence or otherwise solve for x $2|x| \le |x+3|$ [4 marks]
- In an Arithmetic Sequence, whose first term and common difference are both non-zero, T_n represents the n^{th} term and S_n represents the sum of the first n terms. Given that T_6, T_4, T_{10} form a Geometric Sequence
 - (i) show that $S_{10} = 0$
 - (ii) show that $S_6 + S_{12} = 0$
 - (iii) deduce that $T_7 + T_8 + T_9 + T_{10} = T_{11} + T_{12}$ [6 marks]

2. (new 8 page booklet please)

- (a) Evaluate
 - (i) $\sin^{-1}\left(\frac{1}{2}\right)$

(ii) $\sin^{-1}\left(\cos\frac{\pi}{3}\right)$

[2 marks]

- (b) State the Domain and Range of $y = sin^{-1}(1-x^2)$ [2 marks]
- (c) Sketch the graphs of (i) $y = sin^{-1}x + cos^{-1}x$
 - (ii) $y = sin^{-1} (1-x)$

[4 marks]

Given Find the exact volume of the solid of rotation when the area bounded by the curve $y = \frac{1}{\sqrt{1+4x^2}}$ and the x-axis from $x = -\frac{1}{2}$ to $x = \frac{1}{2}$ is rotated about the x-axis.

[4 marks]

3.

- (a) (i) Show that (x-2) is a factor of $4x^3 8x^2 3x + 6$.
 - (ii) Find the general solution of $4\sin^3\theta 8\sin^2\theta 3\sin\theta + 6 = 0$. [4 marks]
- (b) Given $\sin \theta = \frac{4}{5}$ and $\frac{\pi}{2} \le \theta \le \pi$ find $\sin 2\theta$. [2 marks]
- Show that $\frac{\sin 3\phi}{\sin \phi} \frac{\cos 3\phi}{\cos \phi} = 2.$ [2 marks]

The state of the s

4. (new 8 page booklet please)

(a) Find the locus of M(x, y) in cartesian form given :

$$x = p + q$$

 $y = \frac{1}{2}(p^2 + q^2 + 4)$

and

$$pq = 2$$

[2 marks]

(b) A is the fixed point (-4, 8). P is a variable point on the parabola $x^2 = 8y$. Prove that the locus of M, the midpoint of AP, is a parabola with vertex (-2, 4) and focal length 1 unit.

[5 marks]

- (c) (i) Explain why $e^x 2x 1 = 0$ must have a root between 1.2 and 1.3
 - (ii) By using Newton's method (twice), and taking 1.3 as a first approximation, find a better approximation to the root, giving your answer correct to three decimal places.

[5 marks]

5.

(a) In the diagram shown, XY = YZ and O is the centre of the circle.

$$/XYZ = 124^{\circ}$$

Evaluate a and b, giving reasons for your answers.

[3 marks]

- (b) Points A, B, C and D lie on a circle such that chords BC and of the circle (B and C are in the same half of the circle). BY on parallel to CD, meeting AD in X.
 - (i) Draw a neat and clear diagram representing the situation.
 - (ii) Let $\angle CDB = x^o$. Prove that ABX is an isosceles triangle.

[5 marks]

- (c) Two of the roots of the equation $x^3 + ax^2 + b = 0$ are reciprocals of each other.
 - (i) Show that the third root is equal to -b.

6. (new 8 page booklet please)

The daily growth rate of a population of a species of mosquito is proportional to the excess of the (a) population over 5000

i.e.
$$\frac{dP}{dt} = k(P - 5000)$$
.

Show that $P = 5000 + Ae^{kt}$ is a solution of this differential equation. (i)

[2 marks]

- If initially P = 5002 and after 6 days the population is 25000 find the values of A and k (ii) in exact form. [2 marks]
- Find the mosquito population after 10 days (to the nearest whole number). (iii)

[2 marks]

- On a certain day in July, 2001 the depth of water at high tide over a harbour bar in Auckland was (b) $10\frac{2}{3}$ m and at low tide $6\frac{1}{4}$ hours earlier it was 7m. Hide tide occurred at 3.40 p.m. on this day.
 - Assuming that the tide's motion is simple harmonic and of the form $\ddot{x} = -n^2(x-b)$, (i) where x = b is the centre of motion and x = a is the amplitude, show that $x = b - a\cos nt$ satisfies this equation for simple harmonic motion. [2 marks]
 - Hence or otherwise find the earliest time before 3.40 p.m. on this day at which a ship (ii) requiring a $9\frac{1}{2}$ m depth of water could have crossed the bar (to the nearest minute).

[4 marks]

7.

- Prove by mathematical induction that $3^n + 7^n$ is always even for n a positive integer. (a) [5 marks]
- An executive borrows P at r% per fortnight reducible interest and pays it off at F per (b) fortnight in *n* equal fortnightly instalments. (Assume that there are 26 fortnights in one year.)
 - If D_n is the debt remaining after n fortnights prove that (i)

$$D_{n} = P \left(1 + \frac{r}{100} \right)^{n} - F \times \left[\frac{\left(1 + \frac{r}{100} \right)^{n} - 1}{\frac{r}{100}} \right]$$
 [3 marks]

(ii) If
$$D_n = 0$$
 prove that $n = \frac{\log_e \left[\frac{F}{F - \frac{rP}{100}} \right]}{\log_e \left(1 + \frac{r}{100} \right)}$ [2 marks]

If the executive owed \$47 000 at the beginning of July 2001 with interest payable at 7.8% (iii)

STANDARD INTEGRALS

$$\int x^n dx = \frac{1}{n+1} x^{n+1} \qquad (n \neq -1; x \neq 0 \text{ if } n < 0)$$

$$\int \frac{1}{x} dx = \log_e x \qquad (x > 0)$$

$$\int \cos ax \, dx = \frac{1}{a} \sin ax \quad (a \neq 0)$$

$$\int \sec^2 ax \, dx = \frac{1}{a} \tan ax \quad (a \neq 0)$$

$$\int \frac{1}{a^2 + x^2} dx = \frac{1}{a} \tan^{-1} \frac{x}{a} \quad (a \neq 0)$$

$$\int \frac{1}{\sqrt{a^2 - x^2}} dx = \sin^{-1} \frac{x}{a} \qquad (a > 0, -a < x < a)$$

$$\int \frac{1}{\sqrt{x^2 - a^2}} dx = \log_e \left\{ x + \sqrt{x^2 - a^2} \right\} \qquad (|x| > |a|)$$

$$\int \frac{1}{\sqrt{x^2 + a^2}} dx = \log_e \left\{ x + \sqrt{x^2 + a^2} \right\}$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax} \quad (a \neq 0)$$

$$\int \sin ax \, dx = -\frac{1}{a} \cos ax \quad (a \neq 0)$$

$$\int \sec ax \tan ax \, dx = \frac{1}{a} \sec ax \quad (a \neq 0)$$