МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №3

по дисциплине «Организация ЭВМ и систем»

Тема: Представление и обработка целых чисел. Организация ветвящихся процессов

Вариант 11

Студентка гр.1303	 Коренев Д.А.
Преподаватель	 Ефремов М.А

Санкт-Петербург

2022

Цель работы.

Изучить представление и обработку целых чисел на Ассемблере. Научиться организовывать ветвящиеся процессы для выполнения задания.

Задание.

Разработать на языке Ассемблера программу, которая по заданным целочисленным значениям параметров a, b, i, k вычисляет:

a) значения функций i1 = f1(a, b, i) и i2 = f2(a, b, i);

программы, а также различные знаки параметров а и b.

b) значения результирующей функции res = f3(i1, i2, k), где вид функций f1 и f2 определяется из табл. 2, а функции f3 - из табл.3 по цифрам шифра индивидуального задания (n1, n2, n3), приведенным в табл.4. Значения a, b, i, k являются исходными данными, которые должны выбираться студентом самостоятельно и задаваться в процессе исполнения программы в режиме отладки. При этом следует рассмотреть всевозможные комбинации параметров a, b и k, позволяющие проверить различные маршруты выполнения

Вариант 11

/ -(4*i+3), при a>b	/ 2*(i+1)-4, при a>b	/ min(i1 , 6), при k=0
f2 = <	f6 = <	f5 = <
\ 6*i-10, при a<=b	\ 5-3*(i+1), при a<=b	\ i1 + i2 , при k/=0

Выполнение работы.

- 1. Были созданы три сегмента: сегмент стека (AStack), сегмент данных (DATA) и сегмент кода (CODE). Метки сегментов были записаны в соответствующие регистры с помощью директивы ASSUME (полное определение сегментов). Исходный код программы см. в приложении А.
- 2. В сегменте DATA были объявлены переменные A, B, I, K, I1, I2, RES. В этом сегменте будут меняться некоторые переменные во время тестирования.
- 3. В сегменте CODE была создана процедура Main, в которой написаны инструкции для завершения программы после операции ret. Для выполнения

задания использовались следующие переходы, чтобы избежать обращение к процедурам:

- 1). ЈМР команда безусловного перехода. Выполняет безусловный переход в указанное место. В процедуре Маіп используется в случае, когда А больше В. Также используется в F3_1 и F3_2, чтобы перейти к записи результата вычисления функции.
- 2). JLE команда, выполняющая короткий переход, если первый операнд меньше второго операнда или равен ему при выполнении операции сравнения с помощью команды стр. В процедуре Main используется в самом начале для перехода к метке ALessB, если A не больше B; также используется в F3_1 при условии K=0, то есть: если |i1| <= 6, то переход к метке min.
- 3). JGE команда, выполняющая короткий переход, если первый операнд больше второго операнда или равен ему при выполнении сравнения с помощью команды стр. Используется в процедуре Main в двух случаях: ABSI1 и ABSI2, чтобы осуществить переход к F3, если I1>=0, или к метке F3_2, если I2>=0.
- 4). JNE команда, выполняющая короткий переход, если первый операнд не равен второму операнду. Используется в F3, чтобы при K=0 избежать выполнение кода при K/=0.

Тестирование.

Корректность работы программы была проверена тремя тестами.

1. Результаты работы программы при a=0; b=7; i=-3; k=0 представлены в табл.1.

i1	i2	res	Корректность
			результата
001C (28)	000B(11)	0006 (6)	Верно

Таблица 1 – Результаты первого теста

2. Результаты работы программы при a=1; b=6; i=-3; k=2 представлены в табл.2.

i1	i2	res	Корректность	
			результата	
001C (28)	000B(11)	0027 (39)	Верно	

Таблица 2 – Результаты второго теста

3. Результаты работы программы при a=14; b=-5; i=2; k=0 представлены в табл.3.

i1	i2	res	Корректность
			результата
000B (11)	0002(2)	0006 (6)	Верно

Таблица 3 – Результаты третьего теста

Выводы.

В ходе выполнения лабораторной работы было изучена обработка целых чисел, их представление и организация ветвящихся процессов. Для выполнения задания написана программа, которая вычисляет значения функций согласно заданным условиям.

ПРИЛОЖЕНИЕ А ИСХОДНЫЙ КОД ПРОГРАММ

```
Название файла: lb3.asm
AStack
         SEGMENT STACK
       DW 12 DUP(?)
AStack
         ENDS
DATA
        SEGMENT
       DW 14
Α
      DW -5
В
Ι
      DW 2
K
       DW 0
I1
       DW ?
12
      DW ?
RES
     DW ?
DATA
         ENDS
CODE
         SEGMENT
     ASSUME CS:CODE, DS:DATA, SS:AStack
Main
         PROC FAR
         push DS
               AX, AX
         sub
         push AX
         mov
               AX, DATA
               DS, AX
         mov
         mov AX, A
         mov CX, I
         cmp AX, B
         jle ALessB
```

BLessA:

;2(i+1)-4 add CX, 1 shl CX, 1 sub CX, 4 mov I2, CX

```
;-(4i+3)
       shl CX, 1
       add CX, 7
       neg CX
       mov I1, CX
          jmp ABSI1
ALessB:
       ; 5 - 3*(i+1)
       add CX, 1
          mov BX, CX
          shl CX, 1
          shl CX, 1
          sub CX, BX
          neg CX
          add CX, 5
          mov I2, CX
          ;6i - 10
          shl CX, 1
          neg CX
          sub CX, 6
          mov I1, CX
ABSI1:
          mov CX, I1
          cmp CX, 0
          jge F3
          neg I1
F3:
          mov CX, K
```

F3_1:

mov CX, I1
cmp CX, 6
jle MIN
mov AX, 6
jmp F3RESULT

cmp CX, 0
jne ABSI2

MIN:

mov AX, I1
jmp F3RESULT

ABSI2:

mov CX, I2 cmp CX, 0 jge F3_2 neg I2

F3_2:

mov AX, I1 add AX, I2 jmp F3RESULT

F3RESULT:

mov RES, AX

ret

Main ENDP CODE ENDS

END Main

Название файла: *lb3.lst*

Microsoft (R) Macro Assembler Version 5.10

10/30/22

17:15:2

Page 1-1

0000 AStack SEGMENT STACK 0000 000C[DW 12 DUP(?) ????

0018 AStack **ENDS** DATA **SEGMENT** 0000 0000 000E DW 14 Α DW -5 0002 **FFFB** В 0004 0002 Ι DW 2 0006 0000 Κ DW 0 DW ? 8000 0000 Ι1 000A 0000 12 DW ? RES DW ? 000C 0000

```
000E
                           DATA
                                     ENDS
 0000
                           CODE
                                     SEGMENT
                                 ASSUME CS:CODE, DS:DATA, SS:AStack
 0000
                           Main
                                      PROC FAR
 0000
       1E
                                push DS
       2B C0
 0001
                                      sub
                                            AX, AX
 0003
       50
                                push AX
 0004
      B8 ---- R
                                mov
                                      AX, DATA
       8E D8
                                     mov DS, AX
 0007
 0009
      A1 0000 R
                                mov AX, A
      8B 0E 0004 R
                                      mov CX, I
 000C
       3B 06 0002 R
 0010
                                      cmp AX, B
      7E 1A
 0014
                                      jle ALessB
 0016
                           BLessA:
                                   ;2(i+1)-4
 0016
      83 C1 01
                                      add CX, 1
                                     shl CX, 1
 0019
      D1 E1
      83 E9 04
                                      sub CX, 4
 001B
                                     mov I2, CX
      89 0E 000A R
 001E
                                   ; -(4i+3)
 0022 D1 E1
                                   shl CX, 1
                                   add CX, 7
      83 C1 07
 0024
      F7 D9
                                   neg CX
 0027
      89 0E 0008 R
 0029
                                   mov I1, CX
      EB 20 90
 002D
                                      jmp ABSI1
0030
                           ALessB:
                                   ; 5 - 3*(i+1)
0030
                                   add CX, 1
      83 C1 01
 0033
      8B D9
                                     mov BX, CX
                                      shl CX, 1
0035 D1 E1
Microsoft (R) Macro Assembler Version 5.10
                                                             10/30/22
17:15:2
                                                              Page
                                                                        1-2
 0037 D1 E1
                                      shl CX, 1
 0039
      2B CB
                                      sub CX, BX
                                     neg CX
      F7 D9
 003B
                                      add CX, 5
 003D
      83 C1 05
 0040
      89 0E 000A R
                                      mov I2, CX
                                      ;6i - 10
                                      shl CX, 1
      D1 E1
 0044
      F7 D9
 0046
                                      neg CX
                                      sub CX, 6
 0048
      83 E9 06
      89 0E 0008 R
                                      mov I1, CX
 004B
 004F
                           ABSI1:
 004F
      8B 0E 0008 R
                                     mov CX, I1
```

8

0053 0056 0058	7D	04		R		cmp jge neg		0
005C 005C 0060 0063	83	F9 0		R	F3:	cmp	CX, CX, ABS]	0
0065 0065 0069 006C 006E 0071	83	0E 0 F9 0 06 0006 1E 9	6	R	F3_1:	cmp jle mov	CX, CX, MIN AX, F3RE	6
0074 0074 0077					MIN: mov	AX, I jmp		SULT
007A 007A 007E 0081 0083	83 7D	F9 0 04	0		ABSI2:	cmp	CX, CX, F3_2 I2	0
0087 0087 008A 008E	03	0008 06 0 01 9	00A	R	F3_2: mov		AX,	I2 ESULT
0091 0091 0094	A3 CB	000C	R		F3RESULT: mov ret	RES,	AX	
0095 0095					Main CODE	ENDS END		1

Symbols-1

Segments and Groups:

	N a m e	Length	Align	Combine Class
ASTACK CODE DATA		. 0095 F	PARA STACK PARA NONE PARA NONE	
Symbols:				
	Name	Type Value	e Attr	
ABSI2		. L NEAR	R 004F R 007A	
B BLESSA		. L WORD		
F3		L NEAR L NEAR L NEAR	R 0091 R 0065	CODE CODE CODE CODE
I		. L WORD . L WORD	0008	DATA DATA DATA
K		. L WORD	0006	DATA
MAIN MIN		. F PROC		
RES		. L WORD	000C	DATA
<pre>@CPU @FILENAME @VERSION</pre>		. TEXT . TEXT . TEXT	0101h lb3 510	

103 Source Lines

103 Total Lines

25 Symbols

48012 + 459248 Bytes symbol space free

- 0 Warning Errors
- O Severe Errors