Поиск ошибки второго рода и мощности критерия в однофакторном дисперсионном анализе (ANOVA)

Егор Личак

March 3, 2023

Определение 1: Пусть $X_1, X_2, ..., X_n$ - независимые и одинаково распределенные случайные величины, причем $X_k \sim N(\mu_k, 1)$. Тогда случайная величина

$$\sum_{k=1}^{n} X_k^2 = \chi'^2(n,\lambda)$$

называется нецентральным распределением хи-квадрат, где n - число степеней свободы, а $\lambda = \sum\limits_{k=1}^n \mu_k$ - параметр нецентральности.

Определение 2: Если $V_1 \sim \chi'^2(n,\lambda)$ - нецентральное распределение хи-квадрат с n степенями свободы и параметром нецентральности $\lambda,\,V_2 \sim \chi^2(m)$ - распределение хи-квадрат. Тогда случайная величина

$$\frac{V1/n}{V2/m} \sim \mathbb{F}'(n, m, \lambda)$$

называется нецентральным распределением Фишера с n,m степенями свободы и параметром нецитральности $\lambda.$

Постановка задачи: Исходные данные состоят из $\sum_{j=1}^{k} n_j$ наблюдений x_{ij} по n наблюдений в j-ой выборке.

Ряды наблюдений (Treatments)

1	2		j	 k
x_{11}	x_{12}		x_{1j}	 x_{1k}
x_{21}	x_{22}		x_{2j}	 x_{2k}
	•			
			x_{ij}	
	•	•	•	•
•••	•••		$x_{n_j j}$	 x_{n_jk}
			x_{ij}	
•	•	•	•	•
•••	•••		•••	 $x_{n_k k}$

Здесь x_{ij} - это і-ое наблюдение в ј-ой выборке (ј-ом ряду наблюдений). Элементы x_{ij} можно считать реализацией случайных величин X_{ij} . Однафакторная модель предполагает, что случайные величины X_{ij} представимы в виде

$$X_{ij} = \mu_j + \varepsilon_{ij}, i = \overline{1, n_j}, j = \overline{1, k}$$

Здесь μ_j - неизвестный средний уровень фактора для j-ого ряда наблюдений, ε_{ij} - случайные ошибки.

Случаные выборки $\overrightarrow{X_1}$ $\overrightarrow{X_2}$... $\overrightarrow{X_j}$... $\overrightarrow{X_k}$ 1 2 ... \overrightarrow{J} ... $\overrightarrow{X_k}$ 1 2 ... $\overrightarrow{X_{1j}}$... $\overrightarrow{X_{1k}}$ $\overrightarrow{X_{21}}$ $\overrightarrow{X_{22}}$... $\overrightarrow{X_{2j}}$... $\overrightarrow{X_{2k}}$... $\overrightarrow{X_{2k}}$... $\overrightarrow{X_{2ij}}$... $\overrightarrow{X_{2k}}$... $\overrightarrow{X_{n_jj}}$... $\overrightarrow{X_{n_jk}}$... $\overrightarrow{X_{n_jk}}$... $\overrightarrow{X_{n_jk}}$... $\overrightarrow{X_{n_jk}}$... $\overrightarrow{X_{n_jk}}$... $\overrightarrow{X_{n_jk}}$... $\overrightarrow{X_{n_kk}}$... $\overrightarrow{X_{n_kk}}$... $\overrightarrow{X_{n_kk}}$

Здесь $\overline{X_j}=(X_{1j},X_{2j},...,X_{n_jj})$ - j-ая выборка объема n_j и таких выборок k штук. Предположения:

- п.1) Все случаные ошибки ε_{ij} независимы
- п.2) Все ε_{ij} имеют одинаковое непрерывное (неизвестное) распределение.

Гипотеза однородности:

$$H_0: \mu_1 = \mu_2 = \dots = \mu_k = \mu$$

То есть гипотеза говорит об отсутствии различия в рядах наблюдений, то есть предполагается, что все ряды наблюдений (как и сами наблюдения) можно считать

одной выборкой из общей совокупности.

 $H_1: \exists i, j: \mu_i \neq \mu_i$

Определение 3: Статистика

$$SSE = n \cdot \overline{\sigma^2} = \sum_{j=1}^k \sum_{i=1}^{n_j} (X_{ij} - \overline{X_j})^2$$

называется внутригрупповой суммой квадратов или суммой квадратов отклонений внутри группы. Error Sum of Squares

 $\frac{\text{Лемма 1:}}{\frac{SSE}{\sigma^2}} \sim \chi^2(n-k).$ Доказательство:

$$rac{SSE}{\sigma^2} = rac{1}{\sigma^2} \sum_{j=1}^k (n_j - 1) \cdot S_j^2 = \sum_{j=1}^k rac{(n_j - 1) \cdot S_j^2}{\sigma^2}$$
, где $S_j^2 = rac{1}{n_j - 1} \sum_{i=1}^{n_j} (X_{ij} - \overline{X_j})^2$ - исправленная

выборочная дисперсия в j-ой выборке. Значимость или незначимость попарных разностей средних не влияет на эти статистики. Тогда, по следствию из теоремы Фишера, $\frac{(n_j-1)\cdot S_j^2}{\sigma^2} \sim \chi^2(n_j-1)$.

Тогда
$$\sum_{j=1}^k \chi^2(n_j-1) = \chi^2(\sum_{j=1}^k (n_j-1)) = \chi^2(n-k)$$
 ч.т.д.

Определение 4:Статистика

$$SSTR = n\delta^2 = \sum_{j=1}^{k} (\overline{X_j} - \overline{X})^2 \cdot n_j$$

называется межгрупповой суммой квадратов или суммой квадратов между группами. Treatment Sum of Squares.

<u>Лемма 2:</u> Вне зависимости от верности гипотез H_0 или H_1 статистика $\frac{SSTR}{\sigma^2} \sim$ $\chi^{'2}(l,\lambda)$ - нецентральное распределение хи-квадрат с l степенями свободы и параметром нецентральности λ .

Доказательство:
$$\frac{SSTR}{\sigma^2} = \frac{1}{\sigma^2} \sum_{j=1}^k (\overline{X_j} - \overline{X})^2 \cdot n_j = \sum_{j=1}^k (\frac{\sqrt{n_j} \cdot (\overline{X_j} - \overline{X})}{\sigma})^2 = \sum_{j=1}^k Z_k^2$$
, где

$$Z_k = \frac{\sqrt{n_j} \cdot (\overline{X_j} - \overline{X})}{\sigma}$$

$$\overline{X_j}=\frac{1}{n_j}\sum_{i=1}^{n_j}X_{ij}$$
. X_{ij} - нормальные случайные величины, следовательно $\overline{X_j}$ имеет

 $\overline{X} = \frac{1}{n} \sum_{i=1}^k \sum_{i=1}^{n_j} X_{ij}$. Аналогично данная случайная нормальное распределение.

величина распределена нормально. Разность случайных величин есть случайная величина, отсюда Z_k - нормальные случайные величины. Деление на σ и умножение на $\sqrt{n_j}$ означают, что параметр масштаба равен 1. Отсюда следует, что $\frac{SSTR}{\sigma}$ имеет нецентральное распределение хи-квадрат с неизвестными пока что параметрами

Определение 5: (One-Way Analysis of Variance F-Tests using Effect Size) Взвешенным средним назовем выражение, получаемое по следующей формуле.

$$\mu_w = \frac{1}{n} \sum_{j=1}^{k} n_j \cdot \mu_j$$

Утверждение 1: $E(\overline{X}) = \mu_w$

Доказательство:
$$E(\overline{X}) = E(\frac{1}{n} \sum_{j=1}^{k} n_j \overline{X_j}) = \frac{1}{n} (\sum_{j=1}^{k} n_j E(\overline{X_j})) = \frac{1}{n} \sum_{j=1}^{k} n_j \cdot \mu_j$$
 ч.т.д.

Лемма 3:
$$SSTR = \sum_{j=1}^{k} (\overline{X_j} - \mu_w)^2 \cdot n_j - n \cdot (\overline{X} - \mu_w)^2$$

Доказательство:
$$SSTR = \sum_{i=1}^{k} (\overline{X_j} - \overline{X})^2 \cdot n_j = \sum_{i=1}^{k} [(\overline{X_j} - \mu_w) - (\overline{X} - \mu_w)]^2 \cdot n_j =$$

$$\sum_{j=1}^{k} (\overline{X_{j}} - \mu_{w})^{2} \cdot n_{j} - 2 \sum_{j=1}^{k} (\overline{X_{j}} - \mu_{w}) (\overline{X} - \mu_{w}) \cdot n_{j} + \sum_{j=1}^{k} (\overline{X} - \mu_{w})^{2} \cdot n_{j} = \sum_{j=1}^{k} (\overline{X_{j}} - \mu_{w})^{2} \cdot n_{j} - 2 \cdot n_{j} = \sum_{j=1}^{k} (\overline{X_{j}} - \mu_{w})^{2} \cdot n_{j} - 2 \cdot n_{j} = \sum_{j=1}^{k} (\overline{X_{j}} - \mu_{w})^{2} \cdot n_{j} = \sum_{j=1}^{k} (\overline{X_{j}} - \mu_{w})^$$

$$(\overline{X} - \mu_w) \sum_{j=1}^{k} (\overline{X_j} - \mu_w) \cdot n_j + (\overline{X} - \mu_w)^2 \sum_{j=1}^{k} n_j = \sum_{j=1}^{k} (\overline{X_j} - \mu_w)^2 \cdot n_j - 2 \cdot (\overline{X} - \mu_w) [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n_j - 2 \cdot (\overline{X} - \mu_w)] [\sum_{j=1}^{k} \overline{X_j} \cdot n$$

$$\sum_{i=1}^{k} \mu_w \cdot n_j] + (\overline{X} - \mu_w)^2 \cdot n = \sum_{i=1}^{k} (\overline{X_j} - \mu_w)^2 \cdot n_j - 2 \cdot (\overline{X} - \mu_w) (\overline{X} - \mu_w) \cdot n + (\overline{X} - \mu_w)^2 \cdot n = \sum_{i=1}^{k} (\overline{X_i} - \mu_w)^2 \cdot n_i - 2 \cdot (\overline{X} - \mu_w) (\overline{X} - \mu_w) \cdot n + (\overline{X} - \mu_w)^2 \cdot n = \sum_{i=1}^{k} (\overline{X_i} - \mu_w)^2 \cdot n_i - 2 \cdot (\overline{X} - \mu_w) (\overline{X} - \mu_w) \cdot n + (\overline{X} - \mu_w)^2 \cdot n = \sum_{i=1}^{k} (\overline{X_i} - \mu_w)^2 \cdot n =$$

$$\sum_{j=1}^{k} (\overline{X_{j}} - \mu_{w})^{2} \cdot n_{j} - 2 \cdot (\overline{X} - \mu_{w})^{2} \cdot n + (\overline{X} - \mu_{w})^{2} \cdot n = \sum_{j=1}^{k} (\overline{X_{j}} - \mu_{w})^{2} \cdot n_{j} - n \cdot (\overline{X} - \mu_{w})^{2}.$$

Лемма 4:
$$E(\frac{SSTR}{\sigma^2}) = (k-1) + \frac{\sum\limits_{j=1}^k (\mu_j - \mu_w)^2 n_j}{\sigma^2}$$
 ч.т.д. Доказательство: $E(\frac{SSTR}{\sigma^2}) = \frac{1}{\sigma^2} E(SSTR)$. Найдем $E(SSTR)$

$$E(SSTR) = E\left[\sum_{j=1}^{k} (\overline{X_j} - \mu_w)^2 \cdot n_j - n \cdot (\overline{X} - \mu_w)^2\right] = E\left(\sum_{j=1}^{k} (\overline{X_j} - \mu_w)^2 \cdot n_j\right) - n \cdot E(\overline{X} - \mu_w)^2.$$

С учетом утверждения 1 последнее слагамое- дисперсия, которая равна σ^2 для всех выборок. Отсюда

$$E(SSTR) = E(\sum_{j=1}^{k} (\overline{X_{j}} - \mu_{w})^{2} \cdot n_{j}) - n \cdot \frac{\sigma^{2}}{n} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2} = \sum_{j=1}^{k} [Var(X_{j} - \mu_{w}) + (E(X_{j} - \mu_{w}))^{2}]n_{j} - \sigma^{2}$$

$$\sum_{j=1}^{k} \left[Var(\overline{X_j}) + (E(\overline{X_j}) - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\frac{\sigma^2}{n_j} + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + (\mu_j - \mu_w)^2 \right] n_j - \sigma^2 = \sum_{j=1}^{k} \left[\sigma^2 + ($$

$$[\mu_w)^2 \cdot n_j] - \sigma^2 = k \cdot \sigma^2 - \sigma^2 + \sum_{j=1}^k (\mu_j - \mu_w)^2 \cdot n_j = (k-1)\sigma^2 + \sum_{j=1}^k (\mu_j - \mu_w)^2 \cdot n_j.$$
 Тогда

$$E(\frac{SSTR}{\sigma^2}) = (k-1) + \frac{\sum\limits_{j=1}^k (\mu_j - \mu_w)^2 \cdot n_j}{\sigma^2}$$
 ч.т.д.

Утверждение 2(Wikipedia): $E(\chi'^2(k,\lambda)) = k + \lambda$

Теорема 1: Если верна гипотеза H_1 , то $\frac{SSTR}{\sigma^2} \sim \chi'^2(k-1,\lambda)$, где $\lambda = \frac{\sum\limits_{j=1}^k (\mu_j - \mu_w)^2 \cdot n_j}{\sigma^2}$. Доказательство: По лемме 2 известно, что $\frac{SSTR}{\sigma^2}$ в общем случае имеет нецентральное хи-квадрат распределение $\chi^{'2}(l,\lambda)$. Тогда матожидание его равно $l+\lambda$. С учетом

леммы 4, получаем уравнение $l+\lambda=k-1+\frac{\sum\limits_{j=1}^k(\mu_j-\mu_w)^2\cdot n_j}{\sigma^2}(*)$. Известно, что если верна нулевая гипотеза, то число степеней свободы, не завсиящее от параметра нецентральности равно k-1. Отсюда вытекает, что l=k-1. Из уравнения (*)

тогда следует, что $\lambda = \frac{\sum\limits_{j=1}^k (\mu_j - \mu_w)^2 \cdot n_j}{\sigma^2}$ ч.т.д. <u>Теорема 2:</u> $\mathbb{F} = MSTR/MSE \sim \mathbb{F}'(k-1,n-k,\lambda)$ - нецентральное распределение

Фишера, где $\lambda = \frac{\sum\limits_{j=1}^k (\mu_j - \mu_w)^2 \cdot n_j}{\sigma^2}$ - параметр нецентральности. Доказательство: $\mathbb{F} = MSTR/MSE = \frac{SSTR/(k-1)}{SSE/(n-k)} = \frac{\chi'^2(k-1,\lambda)/(k-1)}{\chi^2(n-k)/(n-k)} = \mathbb{F}'(k-1,n-k)$ k, λ)- по определению. ч.т.д.

Утверждение: Ошибка второго рода в однофакторном дисперсионном анализе равна $\beta(\overrightarrow{\mu}, \sigma) = F(f_{\alpha}(k-1, n-k)),$

где $F(\cdot)$ - функция распределения нецентрального распределения Φ ишера с выведенымми выше параметрами, $f_{\alpha}(k-1,n-k)$ - процентная точка центрального распределения Фишера с k-1 и n-k степенями свободы. Мощность критерия равна $W(\overrightarrow{\mu}, \sigma) = 1 - F(f_{\alpha}(k-1, n-k)).$

Доказательство: Критическая область правосторонняя и имеет вид: $K_{\alpha} = \{x_{ij}:$ $\mathbb{F} > f_{\alpha}(k-1, n-k)$ Вероятность ошибки второго рода- вероятность непопадания значения статистики критерия в критическую область при условии верности гипотезы H_1 . Таким образом, $\beta = \mathbb{P}(\mathbb{F} \leq f_{\alpha}(k-1,n-k)) = F(f_{\alpha}(k-1,n-k))$ - по определению функции распределения.

$$W = 1 - \beta = 1 - F(f_{\alpha}(k-1, n-k))$$
 ч.т.д.