Klausur Statistik Bachelor Studiengang IBIS am 22.2.2017

Prüfer: Dr. Falkenberg

Name, Vorname	:	
Matrikelnummer	:	

Mit meiner Unterschrift bestätige ich,

- 1. dass ich meine Klausur selbständig angefertigt und keine anderen als die zugelassenen Hilfsmittel verwendet habe,
- 2. dass ich mich gesund und prüfungsfähig fühle. Mir ist bekannt, dass mit dem Erhalt der Aufgabenstellung die Klausur als angetreten gilt und bewertet wird.

Unterschrift:

Aufgaben	1	2	3	4	5	Summe	Note
maximale Punktezahl	23	15	16	18	14	86	
erreichte Punktezahl							

Zugelassene Hilfsmittel: Ein Leitzordner mit Unterlagen zum Lehrstoff (**keine** losen Blätter!) und ein Taschenrechner

Arbeitsanweisung:

- 1. Schreiben Sie Ihre Lösungen direkt in die ausgeteilte Klausur.
- 2. Beachten Sie, dass bei der Lösung der Aufgaben nicht nur die Lösung sondern auch die Herleitung anzugeben ist.

Ich wünsche Ihnen viel Erfolg!

Dr. Falkenberg

1. Die folgende Tabelle gibt die Ergebnisse einer Klausur wieder.

Student	Punkte	Versuch
17	1	1
3	2	1
15	4	2
20	4	1
4	5	1
8	7	3
10	8	2
11	8	1
1	8	2
7	9	11
19	10	2
2	11	3
5	11	3
12	11	1
13	13	1
6	14	3
17	15	3
18	17	2
9	18	2
14	20	1

- (a) Bestimmen Sie für die Variable Punkte die Kenngrößen Minimum, Maximum, 1. Quartil, Median, 3. Quartil, Mittelwert und Standardabweichung.
- (b) Zeichnen Sie ein Boxplot für die Variable Punkte.
- (c) Die Noten der Klausur sind wie folgt festgelegt:

Note 5 4 3 2 1 Punkte [0,9) [9,12) [12,15) [15,18) [18,20]

Bestimmen Sie ein Histogramm bzgl. dieser Notenbildung.

(d) Die Variable Versuch gibt an, in welchem Versuch die Klausur von dem Studenten geschrieben wurde. Bestimmen Sie die Kontingenztabelle für die Variablen Drittversuch (ja, nein) und Bestanden (ja, nein) und ermitteln Sie den Wert der Kenngröße Chi-Quadrat.

- 2. Ein Nachtwächter hat einen Schlüsselbund mit 5 ähnlich aussehenden Schlüsseln. Wenn er eine bestimmte Tür aufschließen will, in deren Schloss genau einer der 5 Schlüssel passt, so probiert er entweder nacheinander alle Schlüssel d.h. kein Schlüssel wird zweimal ausprobiert bis er den passenden Schlüssel findet (Methode A); oder er probiert einen zufällig ausgewählten Schlüssel, und wenn er nicht passt, so schüttel er den Schlüsselbund und probiert wieder einen zufälligen Schlüssel (Methode B).
 - (a) Die Zufallsvariable X_A bzw- X_B sei die Anzahl der Versuche, die nach Methode A bzw. B nötig sind, um den passenden Schlüssel zu finden. Geben Sie die Verteilungen dieser beiden Zufallsgrößen an.
 - (b) Der Nachtwächter benutzt Methode A, wenn er nüchtern ist, und Methode B, wenn er betrunken ist. Die Wahrscheinlichkeit, dass der Nachtwächter in einer bestimmten Nacht betrunken ist, sei 1/3. Wie groß ist die (bedingte) Wahrscheinlichkeit dafür, dass der Chef den Nachtwächter der Trunkenheit im Dienst zu Recht bezichtigt, nachdem er gesehen hat, dass dieser schon 3-mal erfolglos versucht hat, die Tür zu öffnen.

3. Eine Lieferung enthält einen Karton Kugellager, zwei Kartons Zahnräder und drei Kartons Schrauben. Die Kartongewichte lassen sich durch unabhängige normalverteilte Zufallsvariablen $X_1, Y_1, Y_2, Z_1, Z_2, Z_3$ mit

$$E(X_1) = 125$$
, $E(Y_1) = E(Y_2) = 84$, $E(Z_1) = E(Z_2) = E(Z_3) = 65$
 $Var(X_1) = 1$, $Var(Y_1) = Var(Y_2) = 4$, $Var(Z_1) = Var(Z_2) = Var(Z_3) = 3$
beschreiben.

- (a) Wie groß ist die Wahrscheinlichkeit, dass die Lieferung mehr als 500 kg wiegt?
- (b) Welches Gewicht der Lieferung wird nur in maximal 10% der Fälle überschritten?
- (c) Wieviele solcher Lieferung darf man maximal auf einen Lastwagen laden, damit das zulässige Gesamtgewicht von 18 Tonnen mit einer Wahrscheinlichkeit von mindestens 0.99 eingehalten wird? Berechnen Sie unter geeigneten Annahmen die maximale Anzahl n.

- 4. In einer Produktion von elektronischen Chips soll der ubekannte Ausschussanteil geschätzt werden. Dazu ist eine Stichprobe mit 120 Chips aus der Produktion entnommen worden. In der Stichprobe sind 8 Chips defekt gewesen.
 - (a) Bestimmen Sie ein approximatives Konfidenzintervall zum Niveau $1-\alpha=0.95$ für den unbekannten Ausschussanteil.
 - (b) Wie ist das ermittelte Konfidenzintervall zu interpretieren?
 - (c) Die Breite des approximativen Konfidenzintervalls soll 0.05 sein. Wie ist das Konfidenzniveau anzupassen?
 - (d) Wenn der Stichprobenumfang verdoppelt wird, wie wird sich dies auf das Konfidenzintervall auswirken?

5. In einem Labor wurde bisher eine Präzisionswaage benutzt, deren Messergebnisse eine Varianz von $10^{-4}g^2$ aufweisen. Nun wurde eine neue Waage gekauft, mit der ein Gegenstand bereits 12-mal gewogen wurde. Dabei ergaben sich folgende Werte in g:

- (a) Unter der Annahme, dass die Messwerte beim Wiegen durch unabhängige identisch normalverteilte Zufallsvariablen beschrieben werden können, überprüfen Sie auf dem Niveau von 10% die Nullhypothese, dass die Wiegeergebnisse bei der neu gekauften Waage mindestens so stark streuen wie bei der bisher benutzten Waage.
- (b) Prüfen Sie, ob die neue Waage richtig justiert worden ist. Muss aufgrund eines Testverfahrens zum Niveau von 10% bei obigen Messergebnissen zu einer Korrektur geraten werden, wenn der Gegenstand ein Gewicht von 3 g hat?

Table of the Standard Normal Distribution N(0,1)

	?,?0	?,?1	?,?2	?,?3	?,?4	?,?5	?,?6	?,?7	?,?8	?,?9
0	0.500000	0.503989	0.507978	0.511966	0.515953	0.519939	0.523922	0.527903	0.531881	0.535856
0.1	0.539828	0.543795	0.547758	0.551717	0.555670	0.559618	0.563559	0.567495	0.571424	0.575345
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
0.3	0.617911	0.621720	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802337	0.805105	0.807850	0.810570	0.813267
0.9	0.815940	0.818589	0.821214	0.823814	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
1	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.879000	0.881000	0.882977
1.2	0.884930	0.886861	0.888768	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
1.3	0.903200	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1.5	0.933193	0.934478	0.935745	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486
1.7	0.955435	0.956367	0.957284	0.958185	0.959070	0.959941	0.960796	0.961636	0.962462	0.963273
1.8	0.964070	0.964852	0.965620	0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621
1.9	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705
2	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691
2.1	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738
2.2	0.986097	0.986447	0.986791	0.987126	0.987455	0.987776	0.988089	0.988396	0.988696	0.988989
2.3	0.989276	0.989556	0.989830	0.990097	0.990358	0.990613	0.990863	0.991106	0.991344	0.991576
2.4	0.991802	0.992024	0.992240	0.992451	0.992656	0.992857	0.993053	0.993244	0.993431	0.993613
2.5	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201
2.6	0.995339	0.995473	0.995604	0.995731	0.995855	0.995975	0.996093	0.996207	0.996319	0.996427
2.7	0.996533	0.996636	0.996736	0.996833	0.996928	0.997020	0.997110	0.997197	0.997282	0.997365
2.8	0.997445	0.997523	0.997599	0.997673	0.997744	0.997814	0.997882	0.997948	0.998012	0.998074
2.9	0.998134	0.998193	0.998250	0.998305	0.998359	0.998411	0.998462	0.998511	0.998559	0.998605
3	0.998650	0.998694	0.998736	0.998777	0.998817	0.998856	0.998893	0.998930	0.998965	0.998999
3.1	0.999032	0.999065	0.999096	0.999126	0.999155	0.999184	0.999211	0.999238	0.999264	0.999289
3.2	0.999313	0.999336	0.999359	0.999381	0.999402	0.999423	0.999443	0.999462	0.999481	0.999499
3.3	0.999517	0.999534	0.999550	0.999566	0.999581	0.999596	0.999610	0.999624	0.999638	0.999651
3.4	0.999663	0.999675	0.999687	0.999698	0.999709	0.999720	0.999730	0.999740	0.999749	0.999758
3.5	0.999767	0.999776	0.999784	0.999792	0.999800	0.999807	0.999815	0.999822	0.999828	0.999835
3.6	0.999841	0.999847	0.999853	0.999858	0.999864	0.999869	0.999874	0.999879	0.999883	0.999888
3.7	0.999892	0.999896	0.999900	0.999904	0.999908	0.999912	0.999915	0.999918	0.999922	0.999925
3.8	0.999928	0.999931	0.999933	0.999936	0.999938	0.999941	0.999943	0.999946	0.999948	0.999950
3.9	0.999952	0.999954	0.999956	0.999958	0.999959	0.999961	0.999963	0.999964	0.999966	0.999967
4	0.999968	0.999970	0.999971	0.999972	0.999973	0.999974	0.999975	0.999976	0.999977	0.999978

Quantiles of the Standard Normal Distribution $N(0,1)\ u_p$

	р	X	p	X	р	X
1	0.800	0.8416212	0.950	1.6448536	0.990	2.3263479
2	0.820	0.9153651	0.955	1.6953977	0.991	2.3656181
3	0.840	0.9944579	0.960	1.7506861	0.992	2.4089155
4	0.860	1.0803193	0.965	1.8119107	0.993	2.4572634
5	0.880	1.1749868	0.970	1.8807936	0.994	2.5121443
6	0.900	1.2815516	0.975	1.9599640	0.995	2.5758293
7	0.920	1.4050716	0.980	2.0537489	0.996	2.6520698
8	0.940	1.5547736	0.985	2.1700904	0.997	2.7477814
9	0.960	1.7506861	0.990	2.3263479	0.998	2.8781617
10	0.980	2.0537489	0.995	2.5758293	0.999	3.0902323

Quantiles of the t_n -Distribution $t_{n,p}$

	p=0.6	p = 0.65	p=0.7	p = 0.75	p = 0.8	p = 0.85	p=0.9	p = 0.95	p = 0.96	p = 0.97	p=0.975	p = 0.98	p=0.985	p = 0.99	p=0.995	p=0.999	p=0.9995
1	0.3249	0.5095	0.7265	1.0000	1.3764	1.9626	3.0777	6.3138	7.9158	10.5789	12.7062	15.8945	21.2049	31.8205	63.6567	318.3088	636.6192
2	0.2887	0.4447	0.6172	0.8165	1.0607	1.3862	1.8856	2.9200	3.3198	3.8964	4.3027	4.8487	5.6428	6.9646	9.9248	22.3271	31.5991
3	0.2767	0.4242	0.5844	0.7649	0.9785	1.2498	1.6377	2.3534	2.6054	2.9505	3.1824	3.4819	3.8960	4.5407	5.8409	10.2145	12.9240
4	0.2707	0.4142	0.5686	0.7407	0.9410	1.1896	1.5332	2.1318	2.3329	2.6008	2.7764	2.9985	3.2976	3.7469	4.6041	7.1732	8.6103
5	0.2672	0.4082	0.5594	0.7267	0.9195	1.1558	1.4759	2.0150	2.1910	2.4216	2.5706	2.7565	3.0029	3.3649	4.0321	5.8934	6.8688
6	0.2648	0.4043	0.5534	0.7176	0.9057	1.1342	1.4398	1.9432	2.1043	2.3133	2.4469	2.6122	2.8289	3.1427	3.7074	5.2076	5.9588
7	0.2632	0.4015	0.5491	0.7111	0.8960	1.1192	1.4149	1.8946	2.0460	2.2409	2.3646	2.5168	2.7146	2.9980	3.4995	4.7853	5.4079
8	0.2619	0.3995	0.5459	0.7064	0.8889	1.1081	1.3968	1.8595	2.0042	2.1892	2.3060	2.4490	2.6338	2.8965	3.3554	4.5008	5.0413
9	0.2610	0.3979	0.5435	0.7027	0.8834	1.0997	1.3830	1.8331	1.9727	2.1504	2.2622	2.3984	2.5738	2.8214	3.2498	4.2968	4.7809
10	0.2602	0.3966	0.5415	0.6998	0.8791	1.0931	1.3722	1.8125	1.9481	2.1202	2.2281	2.3593	2.5275	2.7638	3.1693	4.1437	4.5869
11	0.2596	0.3956	0.5399	0.6974	0.8755	1.0877	1.3634	1.7959	1.9284	2.0961	2.2010	2.3281	2.4907	2.7181	3.1058	4.0247	4.4370
12	0.2590	0.3947	0.5386	0.6955	0.8726	1.0832	1.3562	1.7823	1.9123	2.0764	2.1788	2.3027	2.4607	2.6810	3.0545	3.9296	4.3178
13	0.2586	0.3940	0.5375	0.6938	0.8702	1.0795	1.3502	1.7709	1.8989	2.0600	2.1604	2.2816	2.4358	2.6503	3.0123	3.8520	4.2208
14	0.2582	0.3933	0.5366	0.6924	0.8681	1.0763	1.3450	1.7613	1.8875	2.0462	2.1448	2.2638	2.4149	2.6245	2.9768	3.7874	4.1405
15	0.2579	0.3928	0.5357	0.6912	0.8662	1.0735	1.3406	1.7531	1.8777	2.0343	2.1314	2.2485	2.3970	2.6025	2.9467	3.7328	4.0728
16	0.2576	0.3923	0.5350	0.6901	0.8647	1.0711	1.3368	1.7459	1.8693	2.0240	2.1199	2.2354	2.3815	2.5835	2.9208	3.6862	4.0150
17	0.2573	0.3919	0.5344	0.6892	0.8633	1.0690	1.3334	1.7396	1.8619	2.0150	2.1098	2.2238	2.3681	2.5669	2.8982	3.6458	3.9651
18	0.2571	0.3915	0.5338	0.6884	0.8620	1.0672	1.3304	1.7341	1.8553	2.0071	2.1009	2.2137	2.3562	2.5524	2.8784	3.6105	3.9216
19	0.2569	0.3912	0.5333	0.6876	0.8610	1.0655	1.3277	1.7291	1.8495	2.0000	2.0930	2.2047	2.3456	2.5395	2.8609	3.5794	3.8834
20	0.2567	0.3909	0.5329	0.6870	0.8600	1.0640	1.3253	1.7247	1.8443	1.9937	2.0860	2.1967	2.3362	2.5280	2.8453	3.5518	3.8495
21	0.2566	0.3906	0.5325	0.6864	0.8591	1.0627	1.3232	1.7207	1.8397	1.9880	2.0796	2.1894	2.3278	2.5176	2.8314	3.5272	3.8193
22	0.2564	0.3904	0.5321	0.6858	0.8583	1.0614	1.3212	1.7171	1.8354	1.9829	2.0739	2.1829	2.3202	2.5083	2.8188	3.5050	3.7921
23	0.2563	0.3902	0.5317	0.6853	0.8575	1.0603	1.3195	1.7139	1.8316	1.9782	2.0687	2.1770	2.3132	2.4999	2.8073	3.4850	3.7676
24	0.2562	0.3900	0.5314	0.6848	0.8569	1.0593	1.3178	1.7109	1.8281	1.9740	2.0639	2.1715	2.3069	2.4922	2.7969	3.4668	3.7454
25	0.2561	0.3898	0.5312	0.6844	0.8562	1.0584	1.3163	1.7081	1.8248	1.9701	2.0595	2.1666	2.3011	2.4851	2.7874	3.4502	3.7251
26	0.2560	0.3896	0.5309	0.6840	0.8557	1.0575	1.3150	1.7056	1.8219	1.9665	2.0555	2.1620	2.2958	2.4786	2.7787	3.4350	3.7066
27	0.2559	0.3894	0.5306	0.6837	0.8551	1.0567	1.3137	1.7033	1.8191	1.9632	2.0518	2.1578	2.2909	2.4727	2.7707	3.4210	3.6896
28	0.2558	0.3893	0.5304	0.6834	0.8546	1.0560	1.3125	1.7011	1.8166	1.9601	2.0484	2.1539	2.2864	2.4671	2.7633	3.4082	3.6739
29	0.2557	0.3892	0.5302	0.6830	0.8542	1.0553	1.3114	1.6991	1.8142	1.9573	2.0452	2.1503	2.2822	2.4620	2.7564	3.3962	3.6594
30	0.2556	0.3890	0.5300	0.6828	0.8538	1.0547	1.3104	1.6973	1.8120	1.9546	2.0423	2.1470	2.2783	2.4573	2.7500	3.3852	3.6460
40	0.2550	0.3881	0.5286	0.6807	0.8507	1.0500	1.3031	1.6839	1.7963	1.9357	2.0211	2.1229	2.2503	2.4233	2.7045	3.3069	3.5510
50	0.2547	0.3875	0.5278	0.6794	0.8489	1.0473	1.2987	1.6759	1.7870	1.9244	2.0086	2.1087	2.2338	2.4033	2.6778	3.2614	3.4960
60	0.2545	0.3872	0.5272	0.6786	0.8477	1.0455	1.2958	1.6706	1.7808	1.9170	2.0003	2.0994	2.2229	2.3901	2.6603	3.2317	3.4602
70	0.2543	0.3869	0.5268	0.6780	0.8468	1.0442		1.6669	1.7765	1.9118	1.9944	2.0927	2.2152	2.3808	2.6479	3.2108	3.4350
80	0.2542	0.3867	0.5265	0.6776	0.8461	1.0432			1.7732	1.9078	1.9901	2.0878	2.2095	2.3739	2.6387	3.1953	3.4163
90	0.2541	0.3866	0.5263	0.6772	0.8456	1.0424		1.6620	1.7707	1.9048	1.9867	2.0839	2.2050	2.3685	2.6316	3.1833	3.4019
100	0.2540	0.3864	0.5261	0.6770	0.8452	1.0418	1.2901	1.6602	1.7687	1.9024	1.9840	2.0809	2.2015	2.3642	2.6259	3.1737	3.3905
200	0.2537	0.3859	0.5252	0.6757	0.8434	1.0391	1.2858	1.6525	1.7596	1.8915	1.9719	2.0672	2.1857	2.3451	2.6006	3.1315	3.3398
300	0.2536	0.3857	0.5250	0.6753	0.8428	1.0382	1.2844	1.6499	1.7566	1.8879	1.9679	2.0627	2.1805	2.3388	2.5923	3.1176	3.3233
400	0.2535	0.3856	0.5248	0.6751	0.8425	1.0378	1.2837	1.6487	1.7551	1.8861	1.9659	2.0605	2.1779	2.3357	2.5882	3.1107	3.3150
500	0.2535	0.3855	0.5247	0.6750	0.8423	1.0375	1.2832	1.6479	1.7543	1.8851	1.9647	2.0591	2.1763	2.3338	2.5857	3.1066	3.3101
∞	0.2533	0.3853	0.5244	0.6745	0.8416	1.0364	1.2816	1.6449	1.7507	1.8808	1.9600	2.0537	2.1701	2.3263	2.5758	3.0902	3.2905

4

Quantiles of the χ_n^2 -Distribution $\chi_{n,p}$

	p=0.005	p=0.01	p=0.015	p=0.02	p=0.025	p=0.05	p=0.1	p=0.5	p = 0.9	p=0.95	p=0.975	p=0.98	p=0.985	p=0.99	p=0.995
1	0.000	0.000	0.000	0.001	0.001	0.004	0.016	0.455	2.706	3.841	5.024	5.412	5.916	6.635	7.879
2	0.010	0.020	0.030	0.040	0.051	0.103	0.211	1.386	4.605	5.991	7.378	7.824	8.399	9.210	10.597
3	0.072	0.115	0.152	0.185	0.216	0.352	0.584	2.366	6.251	7.815	9.348	9.837	10.465	11.345	12.838
4	0.207	0.297	0.368	0.429	0.484	0.711	1.064	3.357	7.779	9.488	11.143	11.668	12.339	13.277	14.860
5	0.412	0.554	0.662	0.752	0.831	1.145	1.610	4.351	9.236	11.070	12.833	13.388	14.098	15.086	16.750
6	0.676	0.872	1.016	1.134	1.237	1.635	2.204	5.348	10.645		14.449	15.033	15.777	16.812	18.548
7	0.989	1.239	1.418	1.564	1.690	2.167	2.833	6.346	12.017		16.013	16.622	17.398	18.475	20.278
8	1.344	1.646	1.860	2.032	2.180	2.733	3.490	7.344	13.362		17.535	18.168	18.974	20.090	21.955
9	1.735	2.088	2.335	2.532	2.700	3.325	4.168	8.343		16.919	19.023	19.679	20.513	21.666	23.589
10	2.156	2.558	2.837	3.059	3.247	3.940	4.865		15.987		20.483	21.161	22.021	23.209	25.188
11	2.603	3.053	3.363	3.609	3.816	4.575	5.578				21.920		23.503	24.725	26.757
12	3.074	3.571	3.910	4.178	4.404	5.226	6.304				23.337	24.054	24.963	26.217	28.300
13	3.565	4.107	4.476	4.765	5.009	5.892	7.042				24.736	25.472	26.403	27.688	29.819
14	4.075	4.660	5.057	5.368	5.629	6.571	7.790		21.064		26.119	26.873	27.827	29.141	31.319
15	4.601	5.229	5.653	5.985	6.262	7.261	8.547	14.339	22.307	24.996	27.488	28.259	29.235	30.578	32.801
16	5.142	5.812	6.263	6.614	6.908	7.962	9.312		23.542		28.845	29.633	30.629	32.000	34.267
17	5.697	6.408	6.884	7.255	7.564	8.672	10.085			27.587	30.191	30.995	32.011	33.409	35.718
18	6.265	7.015	7.516	7.906	8.231	9.390	10.865		25.989	28.869	31.526	32.346	33.382	34.805	37.156
19	6.844	7.633	8.159	8.567	8.907	10.117	11.651		27.204	30.144	32.852	33.687	34.742	36.191	38.582
20	7.434	8.260	8.810	9.237	9.591	10.851	12.443		28.412		34.170	35.020	36.093	37.566	39.997
25	10.520		12.187	12.697	13.120	14.611	16.473		34.382	37.652	40.646	41.566	42.725	44.314	46.928
30	13.787		15.719	16.306	16.791	18.493	20.599		40.256	43.773	46.979	47.962	49.199	50.892	53.672
35	17.192		19.369	20.027	20.569	22.465	24.797		46.059	49.802	53.203	54.244	55.553	57.342	60.275
40	20.707	_	23.113	23.838	24.433	26.509	29.051	39.335	51.805	55.758	59.342	60.436	61.812	63.691	66.766
45	24.311		26.933		28.366	30.612	33.350		57.505	61.656	65.410		67.994	69.957	73.166
50	27.991		30.818	31.664	32.357	34.764	37.689	49.335	63.167	67.505	71.420	72.613	74.111	76.154	79.490
60	35.534		38.744		40.482	43.188	46.459		74.397	79.082	83.298	84.580	86.188		91.952
70	43.275	45.442	46.836		48.758	51.739	55.329	69.334			95.023			100.425	104.215
80	51.172		55.061		57.153	60.391	64.278			101.879		108.069			
90	59.196		63.394	64.635	65.647	69.126	73.291				118.136				
100	67.328		71.818	73.142	74.222	77.929	82.358				129.561				
110	75.550	78.458	80.318	81.723	82.867	86.792					140.917				
120	83.852		88.886	90.367							152.211				
130	92.222	000-	97.512								163.453				
140		104.034													
150											185.800				
160		121.346													
170		130.064													
180		138.820													
190		147.610													
200	152.241	156.432	159.096	161.100	162.728	168.279	174.835	199.334	$2\frac{2}{5}6.021$	233.994	241.058	243.187	245.845	249.445	255.264