

Report No.: EED32I00216504 Page 1 of 289

TEST REPORT

Product : Intelligent Vehicle Network Gateway

Trade mark : TN-IVS-8000 Model/Type reference : TN-IVS-8000

Serial Number : N/A

Report Number : EED32I00216504 **FCC ID** : 2AJDT-TNIVS8000

Date of Issue : Sep. 28, 2016

Test Standards : 47 CFR Part 2(2015)

47 CFR Part 24 subpart E(2015)

Test result : PASS

Prepared for:

ZHEJIANG THIRD NET CO., LTD.

6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road,
Binjiang District, Hangzhou, Zhejiang, china

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Reviewed by:

10m-chen

Tom chen (Test Project)

Kevin lan (Reviewer)

Sep. 28, 2016

Compiled by:

Kevin yang (Project Engineer)

Approved by: Sheek

Sheek Luo (Lab supervisor)

Check No.: 2402635644

Report No. : EED32I00216504 **2 Version**

Page 2 of 289

Version No.	Date	Description
00	Sep. 28, 2016	Original

3 Test Summary

LTE band 2					
Test Item	Test Requirement	Test method	Result		
Conducted output power	Part 2.1046(a) /Part 24.232(c)	TIA-603-D-2010&KDB 971168 D01v02r02	PASS		
Effective Radiated Power of Transmitter(EIRP)	Part 2.1046(a) / Part 24.232(c)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		
peak-to-average ratio	Part 24.232(d)	KDB 971168 D01v02r02	PASS		
99% &26dBOccupied Bandwidth	Part 2.1049(h)	Part 24.238(b) &KDB 971168 D01v02r02	PASS		
Band Edge at antenna terminals	Part 2.1051/ Part 24.238(a)	Part 24.238(b) &KDB 971168 D01v02r02	PASS		
Spurious emissions at antenna terminals	Part 2.1051/ Part 2.1057/ Part 24.238(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		
Field strength of spurious radiation	Part 2.1053 /Part 2.1057 / Part 24.238(a)(b)	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		
Frequency stability	Part 2.1055/Part 24.235	TIA-603-D-2010 &KDB 971168 D01v02r02	PASS		

Tx: In this whole report Tx (or tx) means Transmitter. Rx: In this whole report Rx (or rx) means Receiver.

RF: In this whole report RF means Radiated Frequency.

CH: In this whole report CH means channel. Volt: In this whole report Volt means Voltage.

Temp: In this whole report Temp means Temperature. Humid: In this whole report Humid means humidity. Press: In this whole report Press means Pressure.

N/A: In this whole report not application

1 C	COVER PAGE	1
2 V	VERSION	2
3 T	TEST SUMMARY	3
4 C	CONTENT	4
5 T	TEST REQUIREMENT	5
	5.1 Test setup	5 5
6 G	GENERAL INFORMATION	6
	6.1 CLIENT INFORMATION	
	RADIO TECHNICAL REQUIREMENTS SPECIFICATION	
)	Appendix A: Effective Radiated Power of Transmitter (ERP/EIRP)	12 19 109 123 172 274
PH	HOTOGRAPHS OF TEST SETUP	288
ΑN	NNEX A: APPENDIX A: PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETAILS	3289

Page 4 of 289

5.1 Test setup

5.1.1 For Radiated Emissions test setup

Radiated Emissions setup:

Figure 1.30MHz to 1GHz

Figure 2. above 1GHz

Figure 2. above 1GHz

5.2 Test Environment

Operating Environment:			
Temperature:	24°C		
Humidity:	46% RH		
Atmospheric Pressure:	1010mbar	(6,2)	(6)

5.3 Test Condition

Test channel:

Test Mode	Test Frequency ID	Bandwidth (MHz)	Number [UL]	Frequency of Uplink(MHz)	Number [DL]	Frequency of Downlink(MHz)
(0,)	10	1.4	18607	1850.7	607	1930.7
		3	18615	1851.5	615	1931.5
	Low	5	18625	1852.5	625	1932.5
	Range	10	18650	1855	650	1935
	- 2	15	18675	1857.5	675	1937.5
LTE band2		20	18700	1860	700	1940
TX:1850-1910MHz	Mid Range	1.4/3/5/10/15/20	18900	1880	900	1960
RX:1930-1990MHz		1.4	19193	1909.3	1193	1989.3
		3	19185	1908.5	1185	1988.5
	High	5	19175	1907.5	1175	1987.5
	Range	10	19150	1905	1150	1985
(0,	1	15	19125	1902.5	1125	1982.5
		20	19100	1900	1100	1980

6 General Information

6.1 Client Information

Applicant:	ZHEJIANG THIRD NET CO., LTD.
Address of Applicant:	6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road, Binjiang District, Hangzhou, Zhejiang, china
Manufacturer:	ZHEJIANG THIRD NET CO., LTD.
Address of Manufacturer:	6th FL Building A, The Intelligence e Valley, No. 482 Qianmo Road, Binjiang District, Hangzhou, Zhejiang, china

Page 6 of 289

6.2 General Description of EUT

Product Name:	Intelligent Vehicle Network Gateway
Model No.(EUT):	TN-IVS-8000
Trade Mark:	TN-IVS-8000
EUT Supports Radios application	GPS: 1575.42MHz Wlan 2.4GHz 802.11b/g/n(HT20&HT40) UMTS: Band II(1900MHz), Band IV(1700MHz), Band V(850MHz) WCDMA LTE: Band 2, Band 4, Band 5, Band 17
Power Supply:	DC 9-36V
Sample Received Date:	Aug. 01, 2016
Sample tested Date:	Aug. 01, 2016 to Sep. 27, 2016

6.3 Product Specification subjective to this standard

•	•
Frequency Band:	LTE Band 2: Tx:1852.40 – 1907.60MHz; Rx:1932.40 – 1987.60MHz
Modulation Type:	LTE Mode with QPSK,16QAM Modulation
Sample Type:	Fixed production
Antenna Type:	Temporary antenna
Antenna Gain:	LTE Band 2: 1.5dBi, LTE Band 4: 1.5dBi, LTE Band 5: 1dBi, LTE Band 17: 1dBi
Test Voltage:	DC 12V

6.4 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
DC Source	QIEKESI	10209898	FCC DOC	СТІ

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd.

Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China 518101

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

6.6 Test Facility

Hotline: 400-6788-333

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1910

Report No.: EED32I00216504 Page 7 of 289

Centre Testing International Group Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC 17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories..

A2LA-Lab Cert. No. 3061.01

Centre Testing International Group Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing.

FCC-Registration No.: 886427

Centre Testing International Group Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 886427.

IC-Registration No.: 7408A-2

The 3m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408A-2.

IC-Registration No.: 7408B-1

The 10m Alternate Test Site of Centre Testing International Group Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 7408B-1.

NEMKO-Aut. No.: ELA503

Centre Testing International Group Co., Ltd. has been assessed the quality assurance system, the testing facilities, qualifications and testing practices of the relevant parts of the organization. The quality assurance system of the Laboratory has been validated against ISO/IEC 17025 or equivalent. The laboratory also fulfils the conditions described in Nemko Document NLA-10.

VCCI

The Radiation 3 &10 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: R-4096.

Main Ports Conducted Interference Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: C-4563.

Telecommunication Ports Conducted Disturbance Measurement of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: T-2146.

The Radiation 3 meters site of Centre Testing International Group Co., Ltd. has been registered in accordance with the Regulations for Voluntary Control Measures with Registration No.: G-758

6.7 Deviation from Standards

None.

6.8 Abnormalities from Standard ConditionsNone.

6.9 Other Information Requested by the Customer

None.

6.10 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE novem conducted	0.31dB (30MHz-1GHz)
	RF power, conducted	0.57dB (1GHz-18GHz)
3	Dadieted Couries arriving test	4.5dB (30MHz-1GHz)
	Radiated Spurious emission test	4.8dB (1GHz-12.75GHz)
	Conduction amiggion	3.6dB (9kHz to 150kHz)
4	Conduction emission	3.2dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	2.8%
7	DC power voltages	0.025%

7 Equipment List

	Communication RF test system							
Equipment	Manufacturer	Mode No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Spectrum Analyzer	Agilent	E4440A	MY46185649	12-31-2015	12-29-2016			
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017			
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017			
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017			
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017			
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017			
High-pass filter	MICRO- TRONICS	SPA-F-63029-4	(4)	01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001		01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017			
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017			
DC Power	Keysight	E3642A	MY54426112	04-08-2016	04-07-2017			
DC Power	Keysight	E3642A	MY54426115	04-01-2016	03-31-2017			
PC-2	Lenovo	R4960d		04-01-2016	03-31-2017			
PC-3	Lenovo	R4960d		04-01-2016	03-31-2017			
RF control unit	JS Tonscend	JS0806-1	158060004	04-01-2016	03-31-2017			
DC power Box	JS Tonscend	JS0806-4	158060007	04-01-2016	03-31-2017			
LTE Automatic test software	JS Tonscend	JS1120-1		04-01-2016	03-31-2017			
WCDMA Automatic test software	JS Tonscend	JS1120-3		04-01-2016	03-31-2017			
GSM Automatic test software	JS Tonscend	JS1120-3	(A)	04-01-2016	03-31-2017			

Serial Cal. date Cal. Due date							
Equipment	Manufacturer	Mode No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)		
3M Chamber & Accessory Equipment	TDK	SAC-3	<u></u>	06-05-2016	06-05-2019		
TRILOG Broadband Antenna	SCHWARZBECK	VULB9163	9163-617	05-23-2016	05-22-2017		
Microwave Preamplifier	Agilent	8449B	3008A02425	02-04-2016	02-03-2017		
Horn Antenna	ETS-LINDGREN	3117	00057407	07-20-2015	07-18-2018		
Loop Antenna	ETS	6502	00071730	07-30-2015	07-28-2017		
Spectrum Analyzer	R&S	FSP40	100416	06-16-2016	06-15-2017		
Receiver	R&S	ESCI	100435	06-16-2016	06-15-2017		
Multi device Controller	maturo	NCD/070/10711 112	(C)	01-12-2016	01-11-2017		
LISN	schwarzbeck	NNBM8125	81251547	06-16-2016	06-15-2017		
LISN	schwarzbeck	NNBM8125	81251548	06-16-2016	06-15-2017		
Signal Generator	Agilent	E4438C	MY45095744	04-01-2016	03-31-2017		
Signal Generator	Keysight	E8257D	MY53401106	04-01-2016	03-31-2017		
Temperature/ Humidity Indicator	TAYLOR	1451	1905	04-27-2016	04-26-2017		
Communication test set	Agilent	E5515C	GB47050534	04-01-2016	03-31-2017		
Cable line	Fulai(7M)	SF106	5219/6A	01-12-2016	01-11-2017		
Cable line	Fulai(6M)	SF106	5220/6A	01-12-2016	01-11-2017		
Cable line	Fulai(3M)	SF106	5216/6A	01-12-2016	01-11-2017		
Cable line	Fulai(3M)	SF106	5217/6A	01-12-2016	01-11-2017		
Communication test set	R&S	CMW500	152394	04-01-2016	03-31-2017		
High-pass filter	Sinoscite	FL3CX03WG18 NM12-0398-002		01-12-2016	01-11-2017		
High-pass filter	MICRO-TRONICS	SPA-F-63029-4		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX01CA09C L12-0395-001	·	01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX01CA08C L12-0393-001		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX02CA04C L12-0396-002		01-12-2016	01-11-2017		
band rejection filter	Sinoscite	FL5CX02CA03C L12-0394-001		01-12-2016	01-11-2017		

Report No. : EED32I00216504 Page 11 of 289

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	PART 22 (2015)	PART 22 – PUBLIC MOBILE SERVICES Subpart H – Cellular Radiotelephone Service
2	PART 24 (2015)	PART 24 – PERSONAL COMMUNICATIONS SERVICES Subpart E – Broadband PCS
3	PART 27 (2015)	PART 27 – MISCELLANEOUS WIRELESS COMMUNICATIONS SERVICES Subpart C – Technical Standards
3	PART 2 (2015)	Frequency allocations and radio treaty matters; general rules and regulations
4	TIA-603-D-2010	Land Mobile FM or PM -Communications Equipment -Measurement and Performance Standards
5	KDB971168 D01	KDB971168 D01 Power Meas License Digital Systems v02r02

Test Results List:

est Results List:		(6)	10	· /
Test Requirement	Test method	Test item	Verdict	Note
Part 2.1046(a)/ part 24.232(c)	TIA-603-D&KDB 971168 D01v02r02	Conducted output power	PASS	Appendix A)
Part 24.232(d)	KDB 971168 D01v02r02	peak-to-average ratio	PASS	Appendix B)
Part 2.1049(h)	Part 24.238(b) &KDB 971168 D01v02r02	99% &26dBOccupied Bandwidth	PASS	Appendix C)
Part 2.1051/ Part 24.238(a)	Part 24.238(b) &KDB 971168 D01v02r02	Band Edge at antenna terminals	PASS	Appendix D)
Part 2.1051/ Part 2.1057/ Part 24.238(a)(b)	TIA-603-D &KDB 971168 D01v02r02	Spurious emissions at antenna terminals	PASS	Appendix E)
Part 2.1055/ Part 24.235	TIA-603-D &KDB 971168 D01v02r02	Frequency stability	PASS	Appendix F)
Part 2.1053/ Part 2.1057/ Part 24.238(a)(b)	TIA-603-D &KDB 971168 D01v02r02	Field strength of spurious radiation	PASS	Appendix G)
Part 2.1046(a)/ Part 24.232(c)	TIA-603-D &KDB 971168 D01v02r02	Effective Radiated Power of Transmitter(ERP)	PASS	Appendix H)

Report No. : EED32l00216504 Page 12 of 289

Appendix A: Effective Radiated Power of Transmitter (ERP/EIRP)

	Frequency	Detector	RBW	VBW	Remark					
	30MHz-1GH	71	120kHz	300kHz	Peak					
	Above 1GHz		1MHz	3MHz	Peak					
Measurement	Test procedure as b									
Procedure:	 The EUT was powered ON and placed on a 1.5m hight table at a 3 meter Anechoic Chamber. The antenna of the transmitter was extended to its manual length. It is modulation mode and the measuring receiver shall be tuned to the of the transmitter under test. The EUT was set 3 meters (above 18GHz the distance is 1 meter) away from the terreceiver of the transmitter was mounted on the top of a variation antenna tower. The disturbance of the transmitter was maximized on the test receiver distraising and lowering from 1m to 4m the receive antenna and by rotating the turntable. After the fundamental emission was maximized, a field streen measurement was made. Steps 1) to 3) were performed with the EUT and the receive antenna in be and horizontal polarization. The transmitter was then removed and replaced with another antenna. The stransmitter was then removed and replaced with another antenna. 									
	the antenna wa 6) A signal at the cradiating cable.	s approximately at the disturbance was fed the With both the substi- eceive antenna was in	e same location the substitution and the r	n as the cent on antenna b eceive anten	er of the transmitter y means of a non- nas horizontally					
	field strength le 7) The output pow 8) Steps 6) and 7) 9) Calculate powe ERP(dBm):	ver. The level of the vel in step 3) is obtai er into the substitution were repeated with but in dBm by the follow = Pg(dBm) – cable lo	ned for this set n antenna was oth antennas p ving formula: ss (dB) + anter	or was adjuster of conditions then measure olarized.	ed until the measure : red. d)					
	field strength le 7) The output pow 8) Steps 6) and 7) 9) Calculate powe ERP(dBm): EIRP=ERP- where: Pg is the gener 10) Test the EUT in	vel in step 3) is obtainer into the substitution were repeated with but in dBm by the follower pg(dBm) - cable lower pg(dBm) - cable lower into the lowest channel,	ned for this set n antenna was oth antennas pring formula: ss (dB) + anteress (dB) + anteress (dB) to the substitution the middle cha	or was adjusted of conditions then measure then measure then measure olarized. Inna gain (dBonna gain (dBonn	ed until the measure i. red. d) i) nest channel					
Limite	field strength le 7) The output pow 8) Steps 6) and 7) 9) Calculate powe ERP(dBm): EIRP=ERP- where: Pg is the gener 10) Test the EUT in	vel in step 3) is obtainer into the substitution were repeated with but in dBm by the follower Pg(dBm) – cable lower 2.15dB	ned for this set n antenna was oth antennas pring formula: ss (dB) + anteress (dB) + anteress (dB) to the substitution the middle cha	or was adjusted of conditions then measure then measure then measure olarized. Inna gain (dBonna gain (dBonn	ed until the measure i. red. d) i) nest channel					
Limit:	field strength le 7) The output pow 8) Steps 6) and 7) 9) Calculate powe ERP(dBm) EIRP=ERP- where: Pg is the gener 10) Test the EUT in 11) Repeat above p	vel in step 3) is obtainer into the substitution were repeated with but in dBm by the follower pg(dBm) - cable lower pg(dBm) - cable lower into the lowest channel,	ned for this set n antenna was oth antennas pring formula: ss (dB) + anteress (dB) + anteress (dB) to the substitution the middle cha	or was adjusted of conditions then measure then measure then measure olarized. Inna gain (dBonna gain (dBonn	ed until the measure i. red. d) i) nest channel					

Test Result

Channel Bandwidth: 1.4 MHz

Page 13 of 289

Channel Bandwidth: 3 MHz

			Chann	el Bandwidth: 3 MHz		
NA111.	01 1	RB Conf	iguration	A	Final D. 1	\/- " ·
Modulation	Channel	Size	Offset	Average Power [dBm]	E.i.r.p [dBm]	Verdict
(a)		100	0	22.53	23.71	PASS
		1	7	22.66	23.66	PASS
		1	14	22.64	23.64	PASS
	LCH	8	0	21.65	22.85	PASS
		8	4	21.75	22.95	PASS
		8	7	21.71	22.91	PASS
		15	0	21.72	22.92	PASS
		1	0	23.13	23.17	PASS
		1/3	7	23.15	23.18	PASS
		10	14	23.12	23.15	PASS
QPSK	мсн	8	0	22.23	22.26	PASS
		8	4	22.17	23.11	PASS
		8	7	22.20	22.23	PASS
		15	0 /	22.22	22.25	PASS
	(67)	1	0	22.95	23.79	PASS
		1	7	22.99	23.79	PASS
		1	14	22.79	23.59	PASS
	нсн	8	0	21.29	22.09	PASS
		8	4	20.66	21.46	PASS
		8	7	20.80	21.60	PASS
		15	0	21.94	22.74	PASS
		1	0	21.52	21.71	PASS
		1	7	21.56	21.76	PASS
		1	14	21.63	21.83	PASS
	LCH	8	0	20.69	20.89	PASS
		8	4	20.86	21.06	PASS
		8	7	20.75	20.95	PASS
		15	0	20.73	20.93	PASS
		1,5	0	22.06	22.49	PASS
		1	7	22.06	22.49	PASS
		1	14	22.01	22.41	PASS
16QAM	мсн	8	0	21.26	21.76	PASS
	(3)	8	4	21.35	21.85	PASS
	(6.5)	8	7	21.11	21.61	PASS
		15	0	21.20	21.70	PASS
		1	0	21.92	22.16	PASS
		1	7	21.88	22.08	PASS
		1	14	21.71	21.91	PASS
	нсн	8	0	21.14	21.34	PASS
		8	4	21.12	21.32	PASS
		8	7	20.94	21.14	PASS
	<u> </u>	15	0	21.05	21.25	PASS

Page 14 of 289

 $Hot line: 400-6788-333 \\ www.cti-cert.com \\ E-mail: info@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint@cti-cert.com \\ Complaint call: 0755-33681700 \\ Complaint E-mail: complaint Call: 0755-33681700 \\ Call: 0$

Channel Bandwidth: 5 MHz

				annel Bandwidth: 5 MHz		
Modulation	Channel	RB Conf		Average Power [dBm]	E.i.r.p [dBm]	Verdict
10.4		Size	Offset			
		1	0	22.60	23.46	PASS
		1	12	22.74	23.44	PASS
		1	24	22.76	23.46	PASS
	LCH	12	0	21.57	22.37	PASS
	(62)	12	6	21.67	22.47	PASS
		12	13	21.70	22.50	PASS
		25	0	21.72	22.52	PASS
		1	0	23.18	24.24	PASS
		1	12	23.24	24.24	PASS
(6)		1 (24	23.03	24.13	PASS
QPSK	MCH	12	0	22.20	23.30	PASS
		12	6	22.21	23.31	PASS
		12	13	22.11	23.21	PASS
		25	0	22.10	23.20	PASS
	(0,	1	0	23.23	24.39	PASS
		1	12	23.08	24.08	PASS
		1	24	22.91	23.91	PASS
-0-	нсн	12	0	22.07	23.07	PASS
		12	6	21.96	22.96	PASS
		12	13	21.99	22.99	PASS
		25	0	21.93	22.98	PASS
		1	0	21.52	22.36	PASS
	/°>	1	12	21.71	22.51	PASS
	(41)	1	24	21.73	22.53	PASS
	LCH	12	0	20.66	21.46	PASS
		12	6	20.75	21.55	PASS
		12	13	20.69	21.49	PASS
		25	0	20.72	21.52	PASS
677		1 (0	22.06	24.41	PASS
		1	12	22.03	24.33	PASS
		1	24	22.15	24.45	PASS
16QAM	мсн	12	0	21.07	23.37	PASS
	(3)	12	6	21.08	23.38	PASS
	(6)	12	13	21.07	23.37	PASS
		25	0	21.18	23.48	PASS
		1	0	22.04	22.51	PASS
-0-		1	12	21.95	22.45	PASS
		1/	24	21.81	22.31	PASS
(6,)	нсн	12	0	21.18	21.68	PASS
		12	6	21.06	21.56	PASS
		12	13	21.00	21.50	PASS
		25	0	20.99	22.49	PASS

Channel Bandwidth: 10 MHz

Page 16 of 289

Channel Bandwidth: 15 MHz

		RB Conf	iguration	nnel Bandwidth: 15 MHz		
Modulation	Channel	Size	Offset	Average Power [dBm]	E.i.r.p [dBm]	Verdict
(6.)		1	0	22.44	23.74	PASS
		1	37	22.48	23.78	PASS
		1	74	22.64	23.94	PASS
	LCH	37	0	21.49	22.79	PASS
		37	18	21.41	22.71	PASS
	(0.)	37	38	21.52	22.82	PASS
		75	0	21.45	22.75	PASS
		1	0	22.95	23.53	PASS
		1/3	37	23.07	23.67	PASS
		1	74	22.83	23.43	PASS
QPSK	MCH	37	0	21.94	22.54	PASS
QI OIL		37	18	22.05	22.65	PASS
		37	38	21.97	22.57	PASS
	/ 3	75	0	21.96	22.56	PASS
		1	0	22.97	23.95	PASS
		1	37	22.96	23.96	PASS
		1	74	22.81	23.81	PASS
(ii)	НСН	37	0	21.94	22.94	PASS
		37	18	21.94	22.94	PASS
		37	38	21.99	22.99	PASS
		75	0	21.79	22.79	PASS
		1	0	21.33	22.73	PASS
	- 0	1	37	21.46	22.36	PASS
	(3)	1	74	21.49	22.39	PASS
	LCH	37	0	20.58	21.48	PASS
	LOIT	37	18	20.55	21.45	PASS
		37	38	20.55	21.45	PASS
		75	0	20.68	21.58	PASS
		1	0	21.78	22.33	PASS
		10	37	21.95	22.55	PASS
		1	74	21.94	22.54	PASS
16QAM	MCH	37	0	20.99	21.59	PASS
IOQAW	IVICIT			20.98	21.58	PASS
		37 37	18 38	20.98	21.58	PASS
	0	75	0	20.97	21.57	PASS
			0	21.92	21.57	PASS
		1	37	21.88	21.48	PASS
		1	74	-07	22.36	-
	µ∩u	- (-2)		21.76		PASS
	HCH	37	10	20.90	21.50	PASS
		37	18	21.02	22.62	PASS
		37	38	21.09	22.69	PASS
	700	75	0	20.94	22.54	PASS

Channel Bandwidth: 20 MHz

				nel Bandwidth: 20 MHz		
Modulation	Channel	RB Conf	~	Average Power [dBm]	E.i.r.p [dBm]	Verdict
Modulation	Cildille	Size	Offset	Average i ower [ubili]	E.i.i.p [dbiii]	Veruici
		1	0	22.59	23.56	PASS
		1	49	22.76	23.72	PASS
		1	99	22.94	23.90	PASS
	LCH	50	0	21.55	22.51	PASS
		50	25	21.52	22.48	PASS
		50	50	21.62	22.58	PASS
		100	0	21.56	22.52	PASS
		1	0	23.05	23.29	PASS
/°		1/3	49	23.25	23.49	PASS
		1	99	22.88	23.12	PASS
QPSK	MCH	50	0	21.99	22.23	PASS
		50	25	22.07	22.31	PASS
		50	50	21.94	22.18	PASS
		100	0	21.96	22.20	PASS
	$-(c^{-1})$	1	0	22.97	23.32	PASS
		1	49	23.01	23.61	PASS
		1	99	22.94	23.54	PASS
	HCH					
CII	псп	50	0	21.90	22.5	PASS
		50	25	21.93	22.53	PASS
		50	50	21.83	22.43	PASS
		100	0	21.89	22.49	PASS
		1	0	21.31	21.83	PASS
		1	49	21.46	21.96	PASS
		1	99	21.69	22.19	PASS
	LCH	50	0	20.55	21.05	PASS
		50	25	20.50	21.00	PASS
		50	50	20.65	21.15	PASS
(3)		100	0	20.55	21.05	PASS
$(c_{i,j})$		1	0	21.74	22.56	PASS
		1	49	21.90	22.80	PASS
		1	99	21.53	22.43	PASS
16QAM	MCH	50	0	20.92	21.82	PASS
		50	25	20.94	21.84	PASS
		50	50	20.90	21.80	PASS
		100	0	20.93	21.83	PASS
		1	0	21.70	23.26	PASS
77.97		1	49	21.80	23.20	PASS
		1	99	21.61	23.01	PASS
(67)	НСН	50	0	20.87	22.27	PASS
	1.5	50	25	20.83	22.23	PASS
		50	50	20.88	22.28	PASS
		100	0	20.98	22.38	PASS

Page 18 of 289

Appendix B: Peak-to-Average Ratio

Page 19 of 289

Test Result

Channel Bandwidth: 1.4 MHz

		DR Confi		andwidth: 1.4 MHz		
Modulation	Channel	RB Config	Offset	Peak-to-Average Ratio (dB)	Limit (dB)	Verdic
	-0	1	0	4.08	<13	PASS
		1	3	3.96	<13	PASS
	(6.)	1	5	3.9	<13	PASS
	LCH	3	0	4.47	<13	PASS
		3	2	4.28	<13	PASS
		3	3	4.28	<13	PASS
		6	0	4.69	<13	PASS
		1	0	5.27	<13	PASS
		1	3	5.18	<13	PASS
		1	5	5.22	<13	PASS
QPSK	MCH	3	0	5.51	<13	PASS
	(65)	3	2	5.56	<13	PASS
		3	3	5.55	<13	PASS
		6	0	6.07	<13	PASS
		1	0	4.61	<13	PASS
		1.	3	4.67	<13	PASS
		1	5	4.65	<13	PASS
	НСН	3	0	5.15	<13	PASS
		3	2	4.92	<13	PASS
	- 0.70	3	3	5.03	<13	PASS
		6	0	5.76	<13	PASS
	(0,)	1	0	4.7	<13	PASS
		1	3	4.71	<13	PASS
		1	5	4.61	<13	PASS
	LCH	3	0	4.91	<13	PASS
		3	2	4.94	<13	PASS
		3	3	4.96	<13	PASS
		6	0	5.58	<13	PASS
		1	0	6.24	<13	PASS
	/°>	1	3	6.16	<13	PASS
		1	5	6.23	<13	PASS
16QAM	MCH	3	0	6.62	<13	PASS
		3	2	6.55	<13	PASS
		3	3	6.64	<13	PASS
		6	0	6.79	<13	PASS
		1	0	5.61	<13	PASS
		1	3	5.58	<13	PASS
		1	5	5.65	<13	PASS
	HCH	3	0	5.92	<13	PASS
		3	2	6.01	<13	PASS
	(0)	3	3	6.05	<13	PASS
		6	0	6.36	<13	PASS

Channel Bandwidth: 3 MHz

			Channel E	Bandwidth: 3 MHz		
Markatian	01	RB Config	guration	Peak-to-Average Ratio	Limit	\
Modulation	Channel	Size	Offset	[dB]	[dB]	Verdict
		1	0	4.12	<13	PASS
		1	7	3.99	<13	PASS
		1	14	3.89	<13	PASS
	LCH	8	0	4.73	<13	PASS
		8	4	4.61	<13	PASS
		8	7	4.59	<13	PASS
		15	0	4.83	<13	PASS
		1	0	5.4	<13	PASS
		1	7	5.21	<13	PASS
		1	14	5.15	<13	PASS
QPSK	мсн	8	0	6.05	<13	PASS
		8	4	6.09	<13	PASS
		8	7	6.04	<13	PASS
		15	0	5.98	<13	PASS
	(67)	1	0	4.83	<13	PASS
		1	7	4.75	<13	PASS
		1	14	4.59	<13	PASS
	нсн	8	0	5.88	<13	PASS
(1)		8	4	5.79	<13	PASS
		8	7	5.7	<13	PASS
	-	15	0	5.78	<13	PASS
		1	0	4.79	<13	PASS
	_0	1	7	4.75	<13	PASS
		1	14	4.58	<13	PASS
	LCH	8	0	5.5	<13	PASS
		8	4	5.39	<13	PASS
		8	7	5.28	<13	PASS
		15	0	5.54	<13	PASS
		1	0	6.4	<13	PASS
		1	7	6.1	<13	PASS
		1	14	6.12	<13	PASS
16QAM	мсн	8	0	6.66	<13	PASS
	(3)	8	4	6.63	<13	PASS
	(c.>)	8	7	6.58	<13	PASS
		15	0	6.76	<13	PASS
		1	0	5.83	<13	PASS
		1	7	5.84	<13	PASS
		1	14	5.58	<13	PASS
	нсн	8	0	6.54	<13	PASS
		8	4	6.31	<13	PASS
		8	7	6.26	<13	PASS
		15	0	6.6	<13	PASS

Page 20 of 289

Page 21 of 289 **Channel Bandwidth: 5 MHz**

		DD Conf		Bandwidth: 5 MHz		
Modulation	Channel	RB Confi	Offset	Peak-to-Average Ratio [dB]	Limit [dB]	Verdic
317		1	0	4.24	<13	PASS
	-	1	12	3.92	<13	PASS
		1	24	3.99	<13	PASS
	LCH	12				PASS
	LON	12	0	4.8 4.65	<13 <13	PASS
	(6)		6 13	164		PASS
		12		4.54	<13	
		25	0	5.03	<13	PASS
-0-	-	1	0	5.5	<13	PASS
411	-	1	12	5.38	<13	PASS
0.0014		10	24	5.28	<13	PASS
QPSK	MCH	12	0	6.07	<13	PASS
	-	12	6	6.05	<13	PASS
	- CO	12	13	5.93	<13	PASS
		25	0	6.13	<13	PASS
		1	0	4.94	<13	PASS
		1	12	5.06	<13	PASS
		1	24	4.64	<13	PASS
	HCH	12	0	5.85	<13	PASS
		12	6	5.84	<13	PASS
		12	13	5.65	<13	PASS
		25	0	5.91	<13	PASS
		1	0	4.81	<13	PASS
	/°	1	12	4.56	<13	PASS
		1	24	4.57	<13	PASS
	LCH	12	0	5.61	<13	PASS
		12	6	5.49	<13	PASS
		12	13	5.43	<13	PASS
		25	0	5.77	<13	PASS
		1	0	6.34	<13	PASS
			12	6.24	<13	PASS
		1	24	6.16	<13	PASS
16QAM	MCH	12	0	6.88	<13	PASS
		12	6	6.95	<13	PASS
	(0)	12	13	6.59	<13	PASS
		25	0	6.79	<13	PASS
		1	0	5.93	<13	PASS
- 0.00		1	12	5.86	<13	PASS
30		1.	24	5.76	<13	PASS
37)	нсн	12	0	6.73	<13	PASS
		12	6	6.75	<13	PASS
		12	13	6.38	<13	PASS
	-05	25	0	6.55	<13	PASS

Channel Bandwidth: 10 MHz

			Channel E	andwidth: 10 MHz		
Modulation	Channel	RB Confi	guration	Peak-to-Average Ratio	Limit	Verdict
Modulation	Charmer	Size	Offset	[dB]	[dB]	verdict
		1	0	4.04	<13	PASS
		1	24	3.61	<13	PASS
		1	49	4.19	<13	PASS
	LCH	25	0	4.6	<13	PASS
	(8)	25	12	4.94	<13	PASS
		25	25	4.39	<13	PASS
		50	0	4.96	<13	PASS
		1	0	5.51	<13	PASS
		1	24	5.12	<13	PASS
		1	49	4.92	<13	PASS
QPSK	мсн	25	0	5.76	<13	PASS
		25	12	6.08	<13	PASS
		25	25	5.33	<13	PASS
		50	0	5.31	<13	PASS
	(6,)	1	0	4.6	<13	PASS
		1	24	4.86	<13	PASS
		1	49	4.79	<13	PASS
	нсн	25	0	5.5	<13	PASS
		25	12	6.03	<13	PASS
		25	25	5.28	<13	PASS
		50	0	5.39	<13	PASS
		1	0	4.84	<13	PASS
	_0	1	24	4.57	<13	PASS
		1	49	4.87	<13	PASS
	LCH	25	0	5.66	<13	PASS
		25	12	5.85	<13	PASS
		25	25	5.4	<13	PASS
		50	0	5.88	<13	PASS
		1	0	6.62	<13	PASS
		1	24	6.14	<13	PASS
		1	49	5.8	<13	PASS
16QAM	мсн	25	0	6.65	<13	PASS
	(3)	25	12	6.81	<13	PASS
	(6)	25	25	6.3	<13	PASS
		50	0	6.44	<13	PASS
		1	0	5.81	<13	PASS
		1	24	5.81	<13	PASS
		1	49	5.64	<13	PASS
	нсн	25	0	6.44	<13	PASS

Page 22 of 289

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com

6.65

6.21

6.4

<13

<13

<13

PASS

PASS

PASS

12

25

0

25

50

Channel Bandwidth: 15 MHz

		RB Confi	guration	Dook to Average Deti-	Limit	
Modulation	Channel	Size	Offset	Peak-to-Average Ratio [dB]	[dB]	Verdic
07		(10)	0	4.9	<13	PASS
	-	1	37	3.6	<13	PASS
	-	1	74	5.51	<13	PASS
	LCH	37	0	5.08	<13	PASS
		37	18	5.18	<13	PASS
		37	38	5.22	<13	PASS
	-	75	0	5.41	<13	PASS
		1	0	6.08	<13	PASS
	-	1:0	37	5.18	<13	PASS
	_	1	74	5.75	<13	PASS
QPSK	мсн	37	0	5.4	<13	PASS
	_	37	18	6.03	<13	PASS
	_	37	38	5.41	<13	PASS
		75	0	5.53	<13	PASS
	(6.53)	1	0	9.2	<13	PASS
		1	37	4.96	<13	PASS
	_	1	74	5.52	<13	PASS
	нсн	37	0	5.33	<13	PASS
		37	18	5.9	<13	PASS
	_	37	38	5.37	<13	PASS
	_	75	0	5.49	<13	PASS
		1	0	5.67	<13	PASS
		1	37	4.58	<13	PASS
		1	74	6.2	<13	PASS
	LCH	37	0	6.24	<13	PASS
		37	18	5.97	<13	PASS
	_	37	38	6.27	<13	PASS
	_	75	0	6.55	<13	PASS
		1	0	7.22	<13	PASS
	-		37	6.25	<13	PASS
	-	1	74	6.55	<13	PASS
16QAM	мсн	37	0	6.66	<13	PASS
	1:0	37	18	6.77	<13	PASS
	(65)	37	38	6.57	<13	PASS
		75	0	6.72	<13	PASS
		1	0	6.41	<13	PASS
		1	37	5.81	<13	PASS
		1.	74	6.19	<13	PASS
	нсн	37	0	6.47	<13	PASS
		37	18	6.59	<13	PASS
		37	38	6.58	<13	PASS
	-0-	75	0	6.75	<13	PASS

Page 23 of 289

Channel Bandwidth: 20 MHz

Page 24 of 289	
----------------	--

		Channel Bandwidth: 20 MHz				
Modulation	Channel	RB Configuration		Peak-to-Average Ratio	Limit [dB]	Verdict
		Size	Offset	[dB]		DAGG
	-	1	0	1.99	<13	PASS
	-	1	49	4.89	<13	PASS
		1	99	3.16	<13	PASS
	LCH	50	0	5.97	<13	PASS
	(6)	50	25	5.26	<13	PASS
		50	50	6.29	<13	PASS
		100	0	6.09	<13	PASS
		1	0	2.13	<13	PASS
	_	1	49	5.21	<13	PASS
		1	99	3.21	<13	PASS
QPSK	MCH	50	0	6.01	<13	PASS
		50	25	5.47	<13	PASS
	407	50	50	6.31	<13	PASS
		100	0	6.13	<13	PASS
	(0,)	1	0	2.05	<13	PASS
		1	49	4.96	<13	PASS
		1	99	3.16	<13	PASS
	нсн	50	0	6.04	<13	PASS
	-	50	25	5.33	<13	PASS
		50	50	6.34	<13	PASS
	-	100	0	6.12	<13	PASS
		1	0	1.84	<13	PASS
	_0	1	49	5.48	<13	PASS
		1	99	3.04	<13	PASS
	LCH	50	0	6.8	<13	PASS
	-	50	25	6.37	<13	PASS
	-	50	50	6.97	<13	PASS
	-	100	0	7	<13	PASS
		1	0	2.14	<13	PASS
	-	1	49	5.94	<13	PASS
	-	1	99	3.17	<13	PASS
16QAM	MCH	50	0	6.96	<13	PASS
	/°	50	25	6.42	<13	PASS
		50	50	7.08	<13	PASS
		100	0	7.1	<13	PASS
		1	0	2.01	<13	PASS
	-	1	49	5.7	<13	PASS
		1	99	2.99	<13	PASS
	HCH	50	0	6.88	<13	PASS
	11011			6.43	<13	PASS
		50	25	7		
		50	50		<13	PASS
	/0	100	0	7.14	<13	PASS

Test Graphs

Channel Bandwidth: 1.4 MHz

Channel Bandwidth: 3 MHz

Channel Bandwidth: 5 MHz

Channel Bandwidth: 10 MHz

Hotline: 400-6788-333

Channel Bandwidth: 15 MHz

Hotline: 400-6788-333

CENTRE TESTING INTERNATIONAL
Report No.: EED32100216504

Report No.: EED32I00216504 Page 109 of 289

Appendix C: 26dB Bandwidth and Occupied Bandwidth

Test Result

Channel Bandwidth: 1.4 MHz

Channel Bandwidth: 1.4 MHz									
Modulation	Channel	RB Configuration		Occupied	26dB Bandwidth				
		Size	Offset	Bandwidth (MHz)	(MHz)	Verdict			
	LCH	6	0	1.0788	1.265	PASS			
QPSK	МСН	6	0	1.0782	1.252	PASS			
	HCH	6	0	1.0808	1.268	PASS			
	LCH	6	0	1.0786	1.254	PASS			
16QAM	MCH	6	0	1.0787	1.275	PASS			
	HCH	6	0	1.0849	1.264	PASS			

Channel Bandwidth: 3 MHz

Channel Bandwidth: 3MHz									
	Channel	RB Configuration		Occupied	26dB Bandwidth				
Modulation		Size	Offset	Bandwidth (MHz)	(MHz)	Verdict			
-05	LCH	15	0	2.6763	2.972	PASS			
QPSK	MCH	15	0	2.6794	2.991	PASS			
	НСН	15	0	2.6768	2.981	PASS			
	LCH	15	0	2.6778	2.981	PASS			
16QAM	MCH	15	0	2.6813	2.982	PASS			
	НСН	15	0	2.6850	2.985	PASS			

Channel Bandwidth: 5 MHz

Channel Bandwidth: 5MHz								
	Channel	RB Configuration		Occupied	26dB Bandwidth			
Modulation		Size	Offset	Bandwidth (MHz)	(MHz)	Verdict		
	LCH	25	0	4.4813	4.981	PASS		
QPSK	MCH	25	0	4.4733	4.992	PASS		
	нсн	25	0	4.4741	4.966	PASS		
	LCH	25	0	4.4758	4.998	PASS		
16QAM	MCH	25	0	4.4698	5.008	PASS		
	НСН	25	0	4.4734	4.964	PASS		

Channel Bandwidth: 10 MHz

Channel Bandwidth: 10MHz									
Modulation	Channel	RB Configuration		Occupied	26dB Bandwidth				
		Size	Offset	Bandwidth (MHz)	(MHz)	Verdict			
	LCH	50	0	8.9093	9.664	PASS			
QPSK	MCH	50	0	8.9182	9.747	PASS			
	HCH	50	0	8.9201	9.778	PASS			
	LCH	50	0	8.9107	9.752	PASS			
16QAM	MCH	50	0	8.9113	9.750	PASS			
	HCH	50	0	8.9337	9.833	PASS			

Page 110 of 289

Channel Bandwidth: 15 MHz

Channel Bandwidth: 15MHz									
		RB Configuration		Occupied	26dB Bandwidth				
Modulation	Channel	Size	Offset	Bandwidth (MHz)	(MHz)	Verdict			
	LCH	75	0	13.3631	14.521	PASS			
QPSK	MCH	75	0	13.3860	14.706	PASS			
	HCH	75	0	13.3680	14.528	PASS			
	LCH	75	0	13.3488	14.464	PASS			
16QAM	MCH	75	0	13.4002	14.593	PASS			
	HCH	75	0	13.3905	14.588	PASS			

Channel Bandwidth: 20 MHz

		RB Configuration		Bandwidth: 20MHz Occupied	26dB Bandwidth	
Modulation	Channel	Size	Offset	Bandwidth (MHz)	(MHz)	Verdict
	LCH	100	0	17.7982	19.208	PASS
QPSK	MCH	100	0	17.8380	19.322	PASS
	HCH	100	0	17.8270	19.225	PASS
	LCH	100	0	17.7883	19.141	PASS
16QAM	мсн	100	0	17.8571	19.296	PASS
	нсн	100	0	17.8017	19.204	PASS

Test Graphs

Channel Bandwidth: 1.4 MHz

(Channel Bandwidth: 1.4 MHz)_LCH_16QAM_6RB#0 Agilent Freq/Channel Center Freq 1.85070000 GHz Ch Frea Trig Free 1.8507 GHz Occupied Bandwidth Start Freq 1.84930000 GHz Ref 30_dBm #Atten 30 dB Stop Freq 1.85210000 GHz CF Step 280.000000 kHz Freq Offset 0.000000000 Hz *VBW 43 kHz ep 100 ms (601 pts) Signal Track Occ BW % Pwr × dB Occupied Bandwidth 1.0786 MHz Transmit Freq Error x dB Bandwidth

Channel Bandwidth: 3 MHz

Channel Bandwidth: 5 MHz

Channel Bandwidth: 15 MHz

Channel Bandwidth: 20 MHz

Appendix D: Band Edge

Test Graphs

Channel Bandwidth: 1.4 MHz

CENTRE TESTING INTERNATIONAL
Report No.: EED32I00216504

(Channel Bandwidth: 3 MHz)_HCH_16QAM_8RB#7 Agilent 05:29:48 29 Jun 2015 Freq/Channel Center Freq 1.91000000 GHz dBm #Atten 30 dB Start Freq 1.90900000 GHz Stop Freq 1.91100000 GHz **CF Step** 200.0000000 kHz Man Freq Offset 0.000000000 Hz Signal Track 1.910 000 GHz W 36 kHz #VBW 110 kHz Copyright 2000-2006 Agilent Technologies (Channel Bandwidth: 3 MHz)_HCH_16QAM_15RB#0 Agilent 05:30:06 29 Jun 2015 Freq/Channel Center Freq 1.91000000 GHz #Atten 30 dB Start Freq 1.90900000 GHz Stop Freq 1.91100000 GHz Freq Offset 0.00000000 Hz Signal Track

Channel Bandwidth: 5 MHz

#VBW 180 kHz

Copyright 2000-2006 Agilent Technologies

Span 2 MHz #Sweep 200 ms (601 pts)

Channel Bandwidth: 10 MHz

Channel Bandwidth: 20 MHz

