Finding Statistically Significant Interactions between Continuous Features

Mahito Sugiyama (National Institute of Informatics), Karsten Borgwardt (ETH Zürich)

The 28th International Joint Conference on Artificial Intelligence (IJCAI-19), August 10–16, 2019

Our Proposal: C-Tarone

- Find all feature interactions that are significantly associated with class labels from multivariate data with controlling the FWER
 - Existing methods (significant pattern mining) work only for binary (or discrete) data [1]

Significance Test for Feature Combination___

- Our task: Test the null hypothesis $X_{\mathcal{F}} \perp \!\!\! \perp Y$ for all $\mathcal{F} \in 2^V$ – $X_{\mathcal{F}}$: The binary random variable of joint occurrence for \mathcal{F}
- Copula Support [2] for $Pr(X_{\mathcal{F}} = 1)$:

F1 F2 F3
$$R(F1) R(F2) R(F3)$$
 $\pi(F1) \pi(F2) \pi(F3)$
 $x_1 -0.96 -3.03 3.38$
 $x_2 -1.80 4.45 -4.35$
 $x_3 -3.29 1.39 -4.44$
 $x_4 -0.53 -1.96 -3.43$
 $R(F1) R(F2) R(F3)$
 $R(F1) R(F3)$
 $R(F1) R(F2)$
 $R(F1) R(F3)$
 $R(F1) R(F2)$
 $R(F$

Prod. 0.00
0.11
0.00
0.22
Sum / 4
0.083 =
$$Pr(X_{\{F1,F2,F3\}} = 1) = \eta(\{F1,F2,F3\})$$

- The independence $X_{\mathcal{F}} \perp \!\!\! \perp Y$ is translated into the condition: $H_0: D_{\mathsf{KL}}(\boldsymbol{p}_0,\boldsymbol{p}_{\mathsf{E}}) = 0, \quad H_1: D_{\mathsf{KL}}(\boldsymbol{p}_0,\boldsymbol{p}_{\mathsf{E}}) \neq 0$
 - We apply G-test: $\lambda = 2ND_{KL}(\boldsymbol{p}_O, \boldsymbol{p}_E)$ follows χ^2 -dist. with d.f. 1

Expected (under null) for p_E	$X_{\mathcal{F}}=1$	$X_{\mathcal{F}}=0$	Total
Y = 1 $Y = 0$		$r_1 - \eta(\mathcal{F}) r_1$ $r_0 - \eta(\mathcal{F}) r_0$	r ₁ r ₀
Total	$\eta(\mathcal{F})$	$1-\eta(\mathcal{F})$	1

Observed for p_0	$X_{\mathcal{F}}=1$	$X_{\mathcal{F}}=0$	Total
Y = 1 $Y = 0$	$\eta(\mathcal{F}, Y = 1)$ $\eta(\mathcal{F}, Y = 0)$	$r_1 - \eta(\mathcal{F}, Y = 1)$ $r_0 - \eta(\mathcal{F}, Y = 0)$	r ₁ r ₀
Total	$\eta(\mathcal{F})$	$1-\eta(\mathcal{F})$	1

Multiple Testing Correction

- The FWER should be controlled
 - Probability that at least one feature combination is a false positive
 - If we naïvely test all combinations, $\alpha 2^d$ false positives could occur!!
- We use Tarone's testability trick [3], which requires the minimum achievable p-value $\psi(\mathcal{F})$ for \mathcal{F}
- Theorem (tight upper bound of KL divergence):

$$D_{\mathsf{KL}}(\boldsymbol{p}, \boldsymbol{p}_{\mathsf{E}}) < a \log \frac{1}{b} + (b - a) \log \frac{b - a}{(1 - a)b} + (1 - b) \log \frac{1}{(1 - a)}$$

$$- \mathbf{p}_{F} = (ab, a(1-b), (1-a)b, (1-a)(1-b))$$

$$- p \in \mathcal{P}(a,b) = \{ p \in \mathcal{P} \mid p_1 + p_2 = a, p_1 + p_3 = b \}$$

Tarone's Testability Trick

Enumeration Based on ApriorL

Experimental Results

Synthetic Data:

Real data:

Reference

- [1] Llinares-López, F., Sugiyama, M., Papaxanthos, L., Borgwardt, K.M.: Fast and Memory-Efficient Significant Pattern Mining via Permutation Testing, *KDD 2015*
- [2] Tatti, N.: Itemsets for Real-Valued Datasets, *ICDM 2013*
- [3] Tarone, R.: A modified Bonferroni method for discrete data, *Biometrics*, 1990