

Aluno: Jhonatan Guilherme de Oliveira Cunha **RA:** 2135590

Disciplina: Algoritmo e Estrutura de Dados 2

C)

NUMERO DE COMPARAÇÕES

	10	100	1000	10000
BubbleSort	0,045 x 10 ⁺³	0,495 x 10 ⁺⁴	4,995 x 10 ⁺⁵	4,999 x 10 ⁺⁷
InsertionSort	0,024 x 10 ⁺³	0,233 x 10 ⁺⁴	2,466 x 10 ⁺⁵	2,496 x 10 ⁺⁷
SelectionSort	0,012 x 10 ⁺³	0,271 x 10 ⁺³	5,064 x 10 ⁺³	7,660 x 10 ⁺⁴

TEMPO EM SEGUNDOS

	10	100	1000	10000
BubbleSort	0s	0s	0,17s	0,833s
InsertionSort	0s	0s	0,002s	0,214s
SelectionSort	0s	0s	0,004s	0,554s

D) Respostas:

i) Algum algoritmo executou consideravelmente menos comparações considerando vetores com mais que 10 elementos?

R: O algoritmo SelectionSort executou um número bem menor de comparação em comparação aos outros dois.

ii) O algoritmo que executou menos comparações foi o que precisou de menos tempo para executar a ordenação?

R: Não. O algoritmo que levou menos tempo para realizar a ordenação foi o de InsertionSort.

iii) O que tem de interessante nos dois algoritmos com maior número de comparações em relação ao tempo de execução? Explique o resultado.

R: A diferença de tempo para ordenar o vetor é bem considerável, desta maneira, o algoritmo de InsertionSort acaba sendo bem mais rápido que o de BubbleSort.