Class 13: RNASeq pt.1

Yvonne Yu A16333006

The data utilized in today's lab comes from an old study by Himes et al. on a published RNA-seq experiment where airway smooth muscle cells were treated with dexamethasone, a synthetic glucocorticoid steroid with anti-inflammatory effects.

Import Data

Two things are needed for the analysis: counts and metadata, called "countData" and "colData", respectively, in the DESeq2 world.

```
counts <- read.csv("airway_scaledcounts.csv", row.names = 1)
metadata <- read.csv("airway_metadata.csv")</pre>
```

Examine Data

head(counts)

	SRR1039508	SRR1039509	SRR1039512	SRR1039513	SRR1039516
ENSG0000000003	723	486	904	445	1170
ENSG0000000005	0	0	0	0	0
ENSG00000000419	467	523	616	371	582
ENSG00000000457	347	258	364	237	318
ENSG00000000460	96	81	73	66	118
ENSG00000000938	0	0	1	0	2
	SRR1039517	SRR1039520	SRR1039521		
ENSG00000000003	1097	806	604		
ENSG00000000005	0	0	0		
ENSG00000000419	781	417	509		
ENSG00000000457	447	330	324		
ENSG00000000460	94	102	74		
ENSG00000000938	0	0	0		

The counts are organized with a gene per row and experiment per column.

head(metadata)

```
id dex celltype geo_id
1 SRR1039508 control N61311 GSM1275862
2 SRR1039509 treated N61311 GSM1275863
3 SRR1039512 control N052611 GSM1275866
4 SRR1039513 treated N052611 GSM1275867
5 SRR1039516 control N080611 GSM1275870
6 SRR1039517 treated N080611 GSM1275871
```

Q1. How many genes are in this dataset?

```
nrow(counts)
```

[1] 38694

Q2. How many 'control' cell lines do we have?

```
sum(metadata$dex == "control")
```

[1] 4

table(metadata\$dex)

```
control treated 4 4
```

Check on match of metadata and coldata

```
colnames(counts)
```

```
[1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"
```

```
[6] "SRR1039517" "SRR1039520" "SRR1039521"
```

metadata\$id

- [1] "SRR1039508" "SRR1039509" "SRR1039512" "SRR1039513" "SRR1039516"
- [6] "SRR1039517" "SRR1039520" "SRR1039521"

```
colnames(counts) == metadata$id
```

[1] TRUE TRUE TRUE TRUE TRUE TRUE TRUE

To be able to determine if all of the elements of a vector are TRUE, then the all() function can be utilized.

```
all(colnames(counts) == metadata$id)
```

[1] TRUE

Analysis

I want to start by comparing the "control" and "treated" columns. To do this, I will find the average counts for each gene (row) in all the "control" columns. Then the average of the "treated" columns will be identified. The two values would then be compared.

Extract the "control" columns first.

```
control.inds <- metadata$dex == "control"

control.counts <- counts[,control.inds]</pre>
```

Determine the mean count value per gene for the control using the apply() function.

```
control.mean <- apply(control.counts, 1, mean)</pre>
```

Extract the "treated" columns and determine the mean values for the treated columns. .

```
treated.inds <- metadata$dex == "treated"

treated.counts <- counts[,treated.inds]

treated.mean <- apply(treated.counts, 1, mean)</pre>
```

Combine the mean vectors into one dataframe.

```
meancounts <- data.frame(control.mean, treated.mean)
head(meancounts)</pre>
```

	${\tt control.mean}$	${\tt treated.mean}$
ENSG0000000003	900.75	658.00
ENSG00000000005	0.00	0.00
ENSG00000000419	520.50	546.00
ENSG00000000457	339.75	316.50
ENSG00000000460	97.25	78.75
ENSG00000000938	0.75	0.00

Hypothetically, if there was no relation, the plotting of the two values would mean that there is a straight line down the diagonal.

Create a plot.

```
library(ggplot2)
ggplot(meancounts, aes(control.mean, treated.mean)) + geom_point()
```


All the points are hidden at the origin, to be able to expose those points, use log to be able to identify more of the points without skewing the data.

plot(meancounts, log = "xy")

Warning in xy.coords(x, y, xlabel, ylabel, log): 15032 x values <= 0 omitted from logarithmic plot

Warning in xy.coords(x, y, xlabel, ylabel, log): 15281 y values <= 0 omitted from logarithmic plot

Log2 units are typically used because of the more intuitive interpretation.

Log2 Fold change of treated/control values are calculated and added to the main dataframe of results.

meancounts\$log2fc <- log2(meancounts\$treated.mean / meancounts\$control.mean)
head(meancounts)</pre>

log2fc	treated.mean	control.mean	
-0.45303916	658.00	900.75	ENSG0000000003
NaN	0.00	0.00	ENSG0000000005
0.06900279	546.00	520.50	ENSG00000000419
-0.10226805	316.50	339.75	ENSG00000000457
-0.30441833	78.75	97.25	ENSG00000000460
-Inf	0.00	0.75	ENSG00000000938

Because of the answers that were found inside the data frame (like NaN = Not a Number, -Inf = negative infinity) that had resulted from zero counts genes in the dataset, it is common dataset to filter the 0 count genes out.

```
to.keep.inds <- rowSums(meancounts[,1:2] == 0) == 0

mycounts <- meancounts[to.keep.inds, ]
head(mycounts)</pre>
```

	${\tt control.mean}$	${\tt treated.mean}$	log2fc
ENSG0000000003	900.75	658.00	-0.45303916
ENSG00000000419	520.50	546.00	0.06900279
ENSG00000000457	339.75	316.50	-0.10226805
ENSG00000000460	97.25	78.75	-0.30441833
ENSG00000000971	5219.00	6687.50	0.35769358
ENSG0000001036	2327.00	1785.75	-0.38194109

Q. How many genes do we have left after zero count filtering?

nrow(mycounts)

[1] 21817

A common threshold for calling a gene "up" or "down" is a log 2 fold change of +2 or -2.

Q. How many "up" regulated genes do we have?

```
sum(mycounts$log2fc >= 2)
```

[1] 314

##DESeq analysis

Need to do the analysis properly.

library(DESeq2)

To use DESeq, the input data is needed to be in a particular format.

```
dds <- DESeqDataSetFromMatrix(countData = counts, colData = metadata, design = ~dex)</pre>
```

converting counts to integer mode

Warning in DESeqDataSet(se, design = design, ignoreRank): some variables in design formula are characters, converting to factors

Run DESeq analysis

dds <- DESeq(dds)

estimating size factors

estimating dispersions

gene-wise dispersion estimates

mean-dispersion relationship

final dispersion estimates

fitting model and testing

Get the results

res <- results(dds) head(res)</pre>

log2 fold change (MLE): dex treated vs control
Wald test p-value: dex treated vs control

DataFrame with 6 rows and 6 columns

	baseMean	log2FoldChange	lfcSE	stat	pvalue
	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>	<numeric></numeric>
ENSG00000000003	747.194195	-0.3507030	0.168246	-2.084470	0.0371175
ENSG00000000005	0.000000	NA	NA	NA	NA
ENSG00000000419	520.134160	0.2061078	0.101059	2.039475	0.0414026
ENSG00000000457	322.664844	0.0245269	0.145145	0.168982	0.8658106
ENSG00000000460	87.682625	-0.1471420	0.257007	-0.572521	0.5669691

```
ENSG00000000938
                  0.319167
                               -1.7322890 3.493601 -0.495846 0.6200029
                     padj
                <numeric>
ENSG00000000003
                0.163035
ENSG0000000005
                       NA
ENSG00000000419
                 0.176032
ENSG00000000457
                 0.961694
ENSG0000000460
                 0.815849
ENSG00000000938
                       NA
```

Make a figure that gives an overview of all of the results. A plot of log2 fold change versus the **p-value** (adjusted p-value)

