

多智能体博弈、学习与控制

王龙 黄锋

An Interdisciplinary Survey of Multi-agent Games, Learning, and Control

WANG Long, HUANG Feng

在线阅读 View online: https://doi.org/10.16383/j.aas.c220680

您可能感兴趣的其他文章

多智能体深度强化学习的若干关键科学问题

Important Scientific Problems of Multi-Agent Deep Reinforcement Learning 自动化学报. 2020, 46(7): 1301-1312 https://doi.org/10.16383/j.aas.c200159

智能控制五十年回顾与展望: 傅京孙的初心与萨里迪斯的雄心

Intelligent Control in 50 Years: From K. S. Fu's Vision to G. N. Saridis' Inspiration 自动化学报. 2021, 47(10): 2301-2320 https://doi.org/10.16383/j.aas.2021.y000003

多Agent深度强化学习综述

Deep Multi-Agent Reinforcement Learning: A Survey 自动化学报. 2020, 46(12): 2537-2557 https://doi.org/10.16383/j.aas.c180372

基于强化学习的浓密机底流浓度在线控制算法

Online Reinforcement Learning Control Algorithm for Concentration of Thickener Underflow 自动化学报. 2021, 47(7): 1558–1571 https://doi.org/10.16383/j.aas.c190348

基于多层忆阻脉冲神经网络的强化学习及应用

A Novel Reinforcement Learning Algorithm Based on Multilayer Memristive Spiking Neural Network With Applications 自动化学报. 2019, 45(8): 1536–1547 https://doi.org/10.16383/j.aas.c180685

基于模型预测控制的含多微电网的能源互联网分布式协同优化

A Model Predictive Control Based Distributed Coordination of Multi-microgrids in Energy Internet 自动化学报. 2017, 43(8): 1443-1456 https://doi.org/10.16383/j.aas.2017.e150300

ACTA AUTOMATICA SINICA

多智能体博弈、学习与控制

王龙"黄锋1

摘 要 近年来, 人工智能 (Artificial intelligence, AI) 技术在棋牌游戏、计算机视觉、自然语言处理和蛋白质结构解析与830 预测等研究领域取得了众多突破性进展, 传统学科之间的固有壁垒正在被逐步打破, 多学科深度交叉融合的态势变得越发8710 明显. 作为现代智能科学的三个重要组成部分, 博弈论、多智能体学习与控制论自诞生之初就逐渐展现出一种"你中有我,8500我中有你"的关联关系. 特别地, 近年来在 AI 技术的促进作用下, 这三者间的交叉研究成果正呈现出一种井喷式增长的态8470势. 为及时反映这一学术动态和趋势, 本文对这三者的异同、联系以及最新的研究进展进行了系统梳理. 首先, 介绍了作为8551组带连接这三者的四种基本博弈形式, 进而论述了对应于这四种基本博弈形式的多智能体学习方法; 然后, 按照不同的专8231题, 梳理了这三者交叉研究的最新进展; 最后, 对这一新兴交叉研究领域进行了总结与展望.

关键词 博弈论, 多智能体学习, 控制论, 强化学习, 人工智能

引用格式 王龙, 黄锋. 多智能体博弈、学习与控制. 自动化学报, 2023, 49(3): 580-613

DOI 10.16383/j.aas.c220680

An Interdisciplinary Survey of Multi-agent Games, Learning, and Control

WANG Long^{1,2} HUANG Feng¹

Abstract In recent years, along with some ground-breaking advances made by artificial intelligence (AI) in Go, cost chess, video games, computer vision, natural language processing, and the analysis and prediction of protein structures, the inherent barriers of traditional disciplines are gradually being broken, and a cross-discipline wave is steadered in the inherent barriers of traditional disciplines are gradually being broken, and a cross-discipline wave is steadered in the inherent barriers of traditional disciplines are gradually being broken, and a cross-discipline wave is steadered in the inherent barriers of traditional disciplines are gradually being broken, and a cross-discipline wave is steadered in the inherent barriers of traditional disciplines are gradually being broken, and a cross-discipline wave is steadered in the inherent barriers of traditional disciplines are gradually being broken, and a cross-discipline wave is steadered to the second in the inherent barriers of modern intelligent science, game theory, multi-agent barriers are decomposed as control of the calculations of modern intelligent science, game theory, multi-agent barriers are decomposed and the relevant interdisciplinary research is showing a blowout growth. To reflect this trend, in this paper, we provide a comprehensive survey of the connections, distinctions, and latest interdisciplinary research progress of games, which are normally used to connect these three fields. Then, corresponding to these four types of games, some multi-agent learning methods are reviewed. Subsequently, following different research topics, we survey the latest interdisciplinary research progress of games, learning, and control. Finally, we provide a summary and an outlook for this emerging interdisciplinary field.

Key words Game theory, multi-agent learning, control theory, reinforcement learning, artificial intelligence

Citation Wang Long, Huang Feng. An interdisciplinary survey of multi-agent games, learning, and control. Acta
Automatica Sinica, 2023, 49(3): 580-613

近年来, 随着人工智能 (Artificial intelligence, 2749) AI) 技术的飞速发展, 博弈论在社会智能^[1-2]、机器_{280,1} 智能^[3]、合作智能^[4]、AI 安全^[5-6] 和 AI 伦理^[7-8] 等新_{245,2} 兴交叉研究领域中扮演着越来越重要的角色, 特别_{280,4}

收稿日期 2022-08-29 录用日期 2022-12-01

Manuscript received August 29, 2022; accepted December 1, 1989 022

国家自然科学基金 (62036002) 资助

Supported by National Natural Science Foundation of China 71.9 (62036002)

本文责任编委 孙健

Recommended by Associate Editor SUN Jian

1. Center for Systems and Control, Peking University, Beijing 1184 100871 2. Institute for Artificial Intelligence, Peking University, Beijing 100871

地,通过结合多智能体学习与控制论等理论方法, 博弈论已成为 AI 和自动控制领域中的一个热点研 究方向. 2469

从本质上讲, 所谓博弈论就是一类研究理性智表。22.5 能体 (Agent)¹之间策略交互的数学理论与方法^[9]。218.0 它是现代数学的一个分支, 也是运筹学的一个重要203.6 组成部分. 虽然博弈论的早期思想可以追溯到公元168.2 前, 但其作为一个独立的研究领域正式诞生的标志174.7 是 von Neumann 和 Morgenstern 于 1944 年合著160.3 的《博弈论与经济行为》(Theory of Games and Economic Behavior) 一书^[10]. 作为多智能体系统31.4 或者分布式 AI (Distributed AI) 的一个研究主 1738 中本文中,智能体系统均算率者(Player)或决策者(Decision-maker)。101.4

287.225

153.9

<u>题[11-13], 多智能体学习主要研究多个智能体交互的</u>**00 策略学习问题. 从其发展历程上讲, 多智能体学,453 习与博弈论几乎具有一样长的历史. 例如, 早在7006 1951 年, 文献 [14] 就提出了一类称为虚拟对弈 (Fic---titious play) 的学习方法用于求解博弈的 Nash 均元。 衡问题. 尔后, 在上世纪 80 年代后期, 伴随着学术。。。 界对演化计算、社会学习、交互学习和多智能体场。。 景下的强化学习产生的广泛兴趣, 多智能体学习的。573 研究开始在 AI 领域中兴起[12, 15]. 特别地, 近年来借。。 助多智能体学习在棋牌[16-18] 和视频游戏[19-21] 等特定。。。 任务上取得的突破性进展, 这一方向在 AI 领域中。。。 再次掀起了热潮,成为 AI 研究的核心内容之一. 与。。。 博弈论的发展历程相类似, 虽然人类进行自动控制。40 的生产实践最早可以追溯到公元前[22]. 但控制论作。 为一个独立的研究领域正式诞生的标志是 Wien-ssa. er于 1948 年撰写的《控制论》(Cybernetics) 一书[23].540.0 通过对比讨论"动物智能"与"机器智能"中的若干。 重要问题, Wiener 指出"智能的首要问题是'学习"^四。。。。 综上可见, 虽然博弈论、多智能体学习与控制论分。。 属不同的研究领域,但究其发展根源和轨迹,它们。 从来都不是相互割裂的, 而是紧密关联、相互融合4666 的, 展现出一种"你中有我, 我中有你"的景象.

反映到具体的研究中, 博弈论、多智能体学习483 与控制论的融合通常包含在三种不同的场景设置。 中. 第一种设置为智能体之间完全合作. 在该设置。 下,连接博弈论、多智能体学习与控制论的一种典。。。。 型博弈形式是团队博弈 (Team game)[25-26], 即所有378.6 博弈者具有一个相同收益函数的博弈形式. 在博弈。**。 <u>论中,团队博弈最初用于研究组织问题^[25],而在多。</u> 智能体学习中,这类博弈主要用于处理多智能体的346 合作序贯决策问题,也为发展合作型多智能体强化,**。 学习算法提供模型框架[27-28]. 考虑到分布式控制与3653 团队博弈的信息结构问题[29] 具有诸多相似之处, 在2007 控制论中, 团队博弈主要用于分析团队决策问题[26].2460 如果博弈的所有博弈者具有相同的(全局)信息结。 构, 团队博弈中的决策问题则可以转化成一个传统2467 的集中式控制问题; 而如果每个博弈者具有不同的。 (局部) 信息结构, 团队博弈的决策问题则可以转化。73 成一个多智能体合作控制问题或者分布式控制问。 <u> 题^[30-31]. 虽然团队博弈最早提出于上世纪 50 年代^[25], 1880</u> 但时至今日,它在控制领域中仍然是一个重要的研,。 该设置下,连接博弈论、多智能体学习与控制论的40 一种典型博弈形式是零和博弈 (Zero-sum game), 1293 即两个博弈者具有零和收益关系(一个博弈者的收147 益是另一个博弈者的损失)的博弈形式,在博弈论,

中,零和博弈主要用于研究具有完全对立目标的博物。 弈者间的决策问题. 而在多智能体学习中, 这类博程353 弈主要用于处理多智能体的竞争序贯决策问题,也7006 为发展基于极大极小原理的多智能体强化学习算法,,。。 提供模型框架[35]. 相比而言, 在控制论中, 零和博弈, 常用于处理含不确定因素的系统控制 (鲁棒控制)。。。。 <u>问题[36-37]</u>. 在该类问题中, 控制器 (Controller) 通常。₂₂。 被视为一个最大化某一特定性能指标的博弈者: 而。。。 系统的不确定性(如干扰、噪声)则被视为另一个博。426 弈者,其目标是使控制器所最大化的性能指标最小。 化. 第三种设置为智能体之间既不完全合作又不完。。。。 全竞争,即混合设置,在该设置下,多智能体系统所。。 形成的博弈是一个一般和博弈 (General-sum game).540 对于这类博弈. Nash 均衡一般是标准的解[38]. 在多5693 智能体学习中,这类博弈通常用于处理一般化的多546 智能体序贯决策问题, 也为发展混合型的多智能体。 强化学习算法提供模型框架[39-40].相比而言,在控制。 论中,这种设置下的博弈者通常被视为是控制器,500 而博弈者的策略被视为是控制律 (Control law). 为。 了实现一个特定的任务目标, 比如收敛到一个 Nash. 均衡, 博弈者的策略更新规则或学习算法通常需要4666 进行额外设计[30,41].

由于学科发展等种种原因, 博弈论和自动控制。 的研究对象曾经一度存在一些差异. 但借助 AI 和420 多智能体学习等技术,它们之间的差异如今正在慢400 慢变小, 博弈论的研究对象一般是理性的"智能。 体",或者是具有智能的"生命体",比如人和动物。。。 等[9-10]: 而自动控制的研究对象一般是"机器", 或者。。 是无生命的"物理对象",比如机器人和航空航天器。483 等[22,42]. 然而, 近年来在 AI 技术和信息技术的推动346 作用下, 传统无生命的物理对象通过机器学习等方3000 法正在逐渐被赋予如生命体一样的智能性, 与此同。 时,自动控制的研究对象也在从单纯的物理系统逐2017 步地转向机器、人与社会等更为复杂的融合交互系2000 统[43],在这一全新的交互系统中,机器不再被视为。 是一种无生命的物理对象,而是作为一种智能的载2467 体广泛地参与到人类社会的各种交互之中,并呈现2820 出一种人与人、人与机器、机器与机器的混合交互。173 景象[1-4]. 然而, 这一全新的交互系统在促进人类社。 会发展的同时, 也将给人类带来一些新的挑战, 比,。。 如伦理问题和安全问题等, 考虑到这些新的挑战本, 身大部分是由多种研究对象所引发的, 比如人这类。 对象可能涉及到博弈论和社会学等, 机器这类对象,400 可能涉及到控制论和机器学习等, 所以单一的学科, 或研究领域都会或多或少地存在着一些不足. 为此,147 博弈论、多智能体学习与控制论的交叉融合有望在。。。

这方面发挥重要作用.一方面,它们交叉融合的本,600 身可以促进各单一研究领域的发展;另一方面,它,463 们涵盖的广泛理论体系可以为这一全新交互系统提,707 供恰当的分析方法和研究工具.

当前无论是在博弈论领域、AI 领域还是在自动。。 控制领域, 博弈与多智能体学习的交叉[13, 44-50]、博弈‱ 与控制的交叉^[30, 37, 51-53]、以及多智能体学习与控制。_{70。} 的交叉[54-56] 都是前沿的热点研究方向. 并且在这些***。 主题下的相关工作和进展正呈现出一种井喷式增长。40。 的态势^[57]. 然而, 据作者所知, 目前国内外已有的综。25.8 述性文献主要集中讨论了这三者中的某两个特定领。。。 域^[24, 30, 44, 47-52, 54-55, 58]. 还没有文献宏观地从这三者的。。 角度对它们的联系、区别以及最新的交叉研究成果。。。 进行全面的审视与梳理. 本文的主要目的是试图填。557 补这一空白,核心内容主要分为3节:第1节主要。50.6 介绍并讨论作为纽带连接博弈论、多智能体学习与。。。。 控制论的四种基本博弈形式, 即标准式博弈 (Nor-5206 mal-form game)、演化博弈 (Evolutionary game)、505.5 随机博弈 (Stochastic game) 和不完全信息博弈。 (Incomplete-information game); 第2节主要论述。 对应于这四种基本博弈形式的多智能体学习方法,*604 即策略学习 (Strategic learning)、学习动力学445.4 (Learning dynamics)、强化学习 (Reinforcement learning) 和鲁棒学习 (Robust learning); 第 3 节按如53 照不同研究专题梳理并介绍当前博弈、学习与控制。。。 的几类典型交叉研究成果. 最后, 针对这一重要前。852 沿交叉研究领域给出总结与展望.

1 基本博弈形式

本节主要介绍作为纽带连接博弈论、多智能体 学习与控制论的四种基本博弈形式—标准式博弈、310.1 演化博弈、随机博弈和不完全信息博弈,并讨论它 280.8 们之间的联系与区别.

1.1 标准式博弈

标准式博弈^[10], 也称为策略式博弈 (Strategic-2883 form game)^[9,59-60], 是描述博弈的一种基本形式. — 2236 般地, 一个标准式博弈通常由以下三个基本要素构 2000 成: 1) 博弈者集, 即博弈的所有参与者构成的集合; 1944 2) 博弈者的可行策略集; 3) 博弈者的收益函数 (也1787 称为效用函数) 或者成本函数. 2 因此, 在数学上, — 1651 个标准式博弈 *G* 通常可以表示为一个三元组

$$\mathcal{G} = \{ \mathcal{N}, \{ \Omega_i \}_{i \in \mathcal{N}}, \{ c_i \}_{i \in \mathcal{N}} \}, \tag{1}_{1322}$$

示博弈者 $i \in N$ 的策略集, $c_i: \Omega \to \mathbb{R}$ 表示博弈者 $i \in N$ 的收益函数, $\Omega:=\prod_{i \in \mathcal{N}} \Omega_i$ 表示所有博弈者 $i \in N$ 的收益函数, $\Omega:=\prod_{i \in \mathcal{N}} \Omega_i$ 表示所有博弈者 $i \in N$ 的收益函数, $\Omega:=\prod_{i \in \mathcal{N}} \Omega_i$ 表示所有博弈者 $i \in N$ 和 $i \in N$ 是有限的 (Finite),则称标准式博弈 $i \in S$ 是 $i \in I$ 程 $i \in N$ 是有限的 (Finite),则称标准式博弈 $i \in S$ 是 $i \in I$ 和 $i \in I$ 和 i

另外, 在一些特定的情形下, 标准式博弈的一。。。. 般化形式 (1) 可以进一步简化. 例如, 对于一个两人。。. 博弈 \mathcal{G}_m , 其通常可以用如下的一组收益矩阵来刻画。。。。

$$\mathcal{G}_m = (A, B),$$

其中 $A = (\mathfrak{a}_{kl}) \in \mathbb{R}^{p \times q}$ 和 $B = (\mathfrak{b}_{kl}) \in \mathbb{R}^{p \times q}$ 分别表示。
博弈者 1 和博弈者 2 的收益矩阵,p 和 q 分别表示博。
弈者 1 和博弈者 2 的可行策略的数目.对于收益矩。
阵对 (A, B),它的一种更为形象的展示方式是将其。
写成如下的一张收益表

其中 π_1^k 和 π_2^l 分别表示博弈者1 (行博弈者)的第849 k ($k=1,2,\cdots,p$)个策略和博弈者2 (列博弈者)的8986 第l ($l=1,2,\cdots,q$)个策略, $\mathfrak{a}_{kl}=c_1(\pi_1^k,\pi_2^l)$ 和 $\mathfrak{b}_{kl}=8245$ $c_2(\pi_1^k,\pi_2^l)$ 分别表示博弈者1和博弈者2在策略组合8092 (π_1^k,π_2^l)下的收益值.特别地,如果博弈 \mathcal{G}_m 中的两8939 个博弈者的角色是等同的(行和列的角色可交换),2786 即p=q 目 $A=B^T$,则称 \mathcal{G}_m 是对称的(Symmetric),2786 此时的 \mathcal{G}_m 也称为矩阵博弈(Matrix game); 否则2487 则称博弈 \mathcal{G}_m 是非对称的(Asymmetric),此时的 \mathcal{G}_m 2337 也称为双矩阵博弈(Bi-matrix game).由该定义可2188 看出,当 \mathcal{G}_m 是对称的,它可简单地用收益矩阵A表2038 示.根据A中元素大小的不同,博弈 \mathcal{G}_m 又可进一步2189 分为多种类型.例如,表1以收益值 \mathfrak{a}_{kl} ($k,l\in\{1,2\}$)7739 的大小关系为依据列举了几类典型的两人两策略对3889 称博弈.

对于一个标准式博弈 G, 如果该博弈只进行一次, 则称其为单次博弈 (One-shot game); 否则, 如明确,现象 果该博弈重复地进行多次, 则称其为重复博弈 (Re-1000)

	表 1 几类典型的	勺两人	两策略对称博弈		770 761
Table 1 Some representative examples of two-player two-strategy symmetric games					
博弈类型	收益值大小关系		博弈类型	收益值大小关系	_
囚徒困境 (Prisoner's dilemma)	$\begin{cases} \mathfrak{a}_{21} > \mathfrak{a}_{11} > \mathfrak{a}_{22} > \mathfrak{a}_{12} \\ 2\mathfrak{a}_{11} > \mathfrak{a}_{12} + \mathfrak{a}_{21} \end{cases}$		和谐博弈 (Harmony game)	$\mathfrak{a}_{11}>\mathfrak{a}_{21},\mathfrak{a}_{12}>\mathfrak{a}_{22}$	
雪堆博弈 (Snowdrift game)	$\mathfrak{a}_{21} > \mathfrak{a}_{11}, \ \mathfrak{a}_{12} > \mathfrak{a}_{22}$		猎鹿博弈 (Stag-hunt game)	$\mathfrak{a}_{11}>\mathfrak{a}_{21},\ \mathfrak{a}_{22}>\mathfrak{a}_{12}$	

peated game). 另外,根据博弈进行的总次数 T_{tot} , see T_{tot} 重复博弈又可分为有限次数 (Finite horizon) 重复 see 博弈 ($T_{tot} < \infty$) 和无限次数 (Infinite horizon) 重 see $T_{tot} = \infty$). 除非特别说明,本文讨论的博 see $T_{tot} = \infty$). 除非特别说明,本文讨论的博 see $T_{tot} = \infty$ 的重复有限博弈 (博弈者数和策略 see $T_{tot} = \infty$).

一般地,在一个标准式博弈中,所有博弈者通。***。 常均被设定为完全理性的 (Perfectly rational),并。**。 且该设定是所有博弈者的共同知识 (Common know-ssa7 ledge). 换句话讲,在标准式博弈中,每个博弈者的。**。 目标都是追求自身利益最大化或者成本最小化,并。**。 且所有博弈者都共同地知道这一点.由于在该设定。**。 下,博弈者之间的利益关系是非合作的,所以该类。**。 博弈也称为非合作博弈 (Non-cooperative game)[38,61]。**。 对于非合作博弈,它的一个标准的解概念是所谓的。**。 Nash 均衡[38,61].

定义 1. 对于有限的 n 人标准式博弈 $\mathcal{G} = \{N_{,i}\}_{i\in\mathcal{N}}, \{c_i\}_{i\in\mathcal{N}}\}$, $\mathcal{N} = \{1, 2, \dots, n\}$,如果对任意。 的博弈者 $i \in \mathcal{N}$,其策略 π_i^* 是对所有其他博弈者。 $-i := (1, \dots, i-1, i+1, \dots, n)$ 的策略组合 $\pi_{-i}^* := \mathbb{N}_{i}$ 的。 $\pi_{-i}^* := \mathbb{N}_{i}^* := \mathbb{N}_{i}^*$ 的。 $\pi_{-i}^* := \mathbb{N}_{i}^*$ 的。 $\pi_{-i}^* := \mathbb{N}_{i}^*$ 的, $\pi_{-i}^* := \mathbb{$

$$\pi_i^* \in \arg\max_{\pi_i \in \Omega_i} c_i(\pi_i, \, \pi_{-i}^*),$$

或者对任意的博弈者 $i \in N$ 有

$$c_i(\pi_i^*, \pi_{-i}^*) \ge c_i(\pi_i, \pi_{-i}^*), \ \forall \pi_i \in \Omega_i,$$

则称策略组合 $(\pi_1^*, \pi_2^*, \dots, \pi_n^*) \in \Omega$ 是 \mathcal{G} 的一个 Nashana 均衡.

尽管 Nash 均衡作为非合作博弈的解概念在博士。 弈论的发展历程中具有举足轻重的作用, 但它并不1000

是十全十美的.3 首先, Nash 均衡解不仅要求博弈的。。。 参与者是完全理性的,还要求博弈本身是完全信息。64.6 的 (Complete-information), 即博弈模型中的诸如。 策略集和收益函数等参数信息是所有博弈者的共同。 知识, 对于大量现实博弈场景, 这样的要求显然是。 苛刻的. 一个典型的例子就是人类参与的各种博弈.5%4 一方面, 人在获取、存储、使用和回忆信息的过程中。。。 无法保证是完全准确无误的; 另一方面, 人的表达。 能力是有限的, 其通过文字、数字、图表或语音等形。52.8 式传递消息的过程中, 无论多么努力, 最终的效果。 都无法保证是完美无缺的[65]. 因此, 人类作为博弈5837 者通常无法满足完全理性这一要求. 另外, 人类作。 为博弈者所参与的各种博弈通常也并不是完全信息。 的, 因为在人类社会中, 任何一个个体都无法完全**** 知道其他个体的所有信息. 此外, Nash 均衡作为博456 弈的解本质上是一个"静态的"概念. 它只描述了400 在"稳定的"策略组合状态下, 当其他博弈者不改4865 变其自身策略时,目标博弈者如何进行最佳的策略。 响应. 因此, 如果博弈本身或者博弈者的决策会随474 时间发生动态变化,标准的 Nash 均衡则需进一步。 精炼才能对这种动态博弈的解进行刻画.

通过放宽上述 Nash 均衡的几点要求,标准式。388 博弈之后相继发展出了多种其他形式.下面将逐一。383 介绍其中的三种代表性形式,即演化博弈、随机博3847 弈和不完全信息博弈.

1.2 演化博弈

演化博弈是博弈论与动态演化过程相结合的一式。 种动态博弈形式, 其起源于演化生物学家 Maynard。 Smith 和 Price 关于动物竞争行为的研究[66-67]. 特别之。 地, 相比于标准式博弈, 演化博弈一般具有以下几2443 方面的显著特征.

首先,演化博弈在经典博弈论的基础上引入了2653 生物学中的"群体思维"(Population thinking)[68],1907 即演化博弈考虑的对象通常是一个博弈者群体,而1762 不仅仅是特定的几个博弈者. 因此,演化博弈也称1816 为群体博弈(Population game)[69-70]. 其次,演化博报。 ³期刊 Artificial Intelligence 在 2007 年组织的一个关于博弈论与多智能314 体学习的专刊中,专门对 Nash 均衡在现实应用中的局限性进行了讨论[41.62],1209 另外,文献[63-64] 从实证等角度对 Nash 均衡进行了重新审视并提出1004 了一些可能的替代概念。

弈中的博弈者通常被设定是有限理性的 (Bounded 🖦 rationality)[71]. 所谓有限理性是指博弈者在进行决。_{145.4} 策时, 它追求的目标是一个满意的解, 而非必须是,,,,, 一个最优的解. 再次, 演化博弈引入了一个称为演,,,,, 化稳定策略 (Evolutionarily stable strategy, ESS) 的新概念^[66],从而弱化了 Nash 均衡作为博弈解的。。 作用. 所谓 ESS 是指, 如果群体中的所有博弈者采。725 取的策略为一个 ESS, 那么它可以抵御群体中充分。57.9 小比例突变策略的入侵. 特别地, 因为每一个 ESS。43.4 都被证明是一个 Nash 均衡, 而该命题的反命题却。за 不一定成立[72-74], 所以 ESS 是一个比 Nash 均衡更。142 严格的概念. 最后, 同时也是最为显著的一点, 不同。。。。 于传统的非合作博弈常立足于研究理性博弈者策略。85.1 均衡的形成,演化博弈更强调从系统论的角度出发,5705 着重于研究微观个体水平上的策略调整过程在宏观。。。。 水平上所呈现出的群体动力学^[69-70, 73]. 在演化博弈₄₁₄ 中, 驱动博弈者策略演化的"动力"是达尔文的"优。20.8 胜劣汰"与"适者生存"的自然选择原理,即具有。122 高适应度 (Fitness) 的策略可通过个体水平上的诸。97.6 如模仿、学习、复制、遗传或者传染等方式在群体中。 传播, 而具有低适应度的策略则倾向于在自然选择。。。 的作用下在群体中消失,因为这些微观个体水平上。 的行为方式刻画了博弈者如何从一个策略更新为另。。。。 一个策略. 所以在宏观群体水平上. 它们带来的一4248 个直接结果是博弈者策略频率 (即选择每个策略的402 博弈者数占博弈者总数的比例) 的变化. 当这些策。。。。 略频率在群体水平上随时间演化时, 在系统层面上, 881.1 它们将呈现出各种长期的动力学行为,比如稳定和。。。。 不稳定的平衡点、极限环、异宿环和混沌等[69-70,75].

在演化博弈中, 因为个体水平上的策略更新方式通常具有多种不同的形式, 所以在群体水平上, 5228 它们所呈现的演化动力学也将表现出多种不同的形式. 一般地, 如果按群体结构 (即博弈者群体的空间 2936 交互结构) 进行划分, 它们通常可分为无限混合均 2790 匀群体 (Infinite well-mixed population, 即博弈者 2645 总数无穷大且任意两个博弈者可以随机交互的群 2645 体)、有限混合均匀群体 (Finite well-mixed popula 2953 tion, 即博弈者总数有限且任意两个博弈者可以随机交互的群 405 机交互的群体) 和结构群体 (Structured popula 2002 tion, 即博弈者总数有限且每个博弈者只能与其局 1916 部邻居进行交互的群体) [74]. 然而, 如果按系统动力 2700 学进行划分, 它们一般可分为确定性演化博弈动力 2525 学和随机性演化博弈动力学. 下面将对这两类演化 1479 博弈动力学分别进行介绍.

1.2.1 确定性演化博弈动力学

无限混合均匀的群体是确定性演化博弈动力学。。。

通常采用的群体结构^[75]. 根据博弈者微观策略更新规则的不同, 现有的确定性演化博弈动力学主要有表表 复制动力学 (Replicator dynamics)^[76-77]、Logit 动力表 (Logit dynamics)^[73]、BNN 动力学 (Brown-von-166) Neumann-Nash dynamics)^[78] 和 Smith 动力学 (Sm-7022 ith dynamics)^[79] 等. 一般地,这几个动力学系统可 587.8 统一地用如下的一个常微分方程来描述^[70]

$$\dot{\chi}_k = \sum_{l \in \tilde{\Omega}} \chi_l \eta_{lk} - \chi_k \sum_{l \in \tilde{\Omega}} \eta_{kl}, \ \forall k \in \tilde{\Omega},$$
 (2)

其中 Ω 表示群体中所有博弈者的 (离散且有限的) \$22.9 策略集, χ_k 表示策略 $k \in \Omega$ 在群体中的频率 (即策 808.4 略为k 的博弈者数占博弈者总数的比例), η_{kl} 表示 \$94.0 任意一个博弈者从策略 $k \in \Omega$ 切换为策略 $l \in \Omega$ 的 \$79.5 期望概率.本质上讲,式 (2) 是一个博弈者群体策略 865.1 演化的平均场 (Mean-field) 动力学,它刻画了一个 500.7 由 η_{kl} 描述的微观策略更新过程在宏观群体水平上 536.2 所呈现的策略演化动态.式 (2) 等号右侧第 1 项表 521.8 征了所有从其他策略切换为策略 k 的博弈者在群体 807.4 中的期望频率,而第 2 项表征了所有从策略 k 切换 402.0 为其他策略的博弈者在群体中的期望频率。因此,478.5 前者减去后者刻画了群体中策略为k 的博弈者频率 864.0 在单位时间内的期望变化量.

特别地, 当 η_{kl} 描述的策略更新规则采用不同4352 的具体形式时,式(2)将会随之发生相应的改变.例4207 如,对应于复制动力学, η_{kl} 描述的微观策略更新规 $_{max}$ 则主要有"成对比例模仿"(Pairwise proportional。。。 imitation)^[80-81] 和 "不满意驱动模仿" (Imitation_{377.4} driven by dissatisfaction)[70] 两种形式. 具体地, 如 果博弈者采用前者作为策略更新规则,那么策略为。48.5 k 的博弈者将以概率 $\eta_{kl} = \chi_l[h_l - h_k]_+$ 去模仿策略_{334.1} 为1的博弈者的策略, 其中hk和hl分别表示策略为。195 k 和 l 的博弈者的期望收益, [·]+表示斜坡函数算子。05.1 (当中括号里的变量大于零时, 经该算子得到的值为)。。。 其本身, 否则得到的值为零). 相应地, 如果博弈者。76.1 采用后者作为策略更新规则, 那么策略为 k 的博弈。17 者将以概率 $\eta_{kl} = \chi_l[K - h_k]$ 去模仿策略为 l 的博弈 $_{472}$ 者的策略, 其中 K 是一个常数, 表示所有博弈者期。22.7 望得到的收益. 将上述两个关于 nel 的表达式分别。。。 代入到方程 (2) 中, 于是有复制动力学方程为

$$\dot{\chi}_k = \chi_k \left(h_k - \sum_{l \in \tilde{\Omega}} \chi_l h_l \right), \ \forall k \in \tilde{\Omega}.$$

上述复制动力学是演化博弈中使用最为广泛、433 研究最为透彻、角色最为重要的一种确定性动力学。1289 它最初由生物数学家 Taylor 和 Jonker 于 1978 年1144 为了研究 ESS 与动态系统的渐近稳定性之间的关。1000

542.8

系而引入的[76]. 后来, 由于人们发现复制动力学与7600 群体生物学中的其他动力学之间存在着紧密的联码。 系,比如通过一个非线性变换,复制动力学方程可, 等价为生态学中的 Lotka-Volterra 方程^[82],所以它₇₆₀ 在群体遗传学中的诸如性别比例演化等问题的研究。 中得到了广泛的应用[83]. 除此之外, 人们还发现复。。。。 制动力学方程的平衡点与它对应的博弈的 Nash 均。。。 衡和 ESS 之间也存在着密切的联系[73], 比如复制动。87.3 力学方程对应的博弈的每个 Nash 均衡都是它的一。426 个平衡点: 复制动力学方程的每个 Lyapunov 稳定。 平衡点都是其对应的博弈的一个 Nash 均衡; 博弈。。。。 的每个 ESS 都是其对应的复制动力学方程的一个。。。。 新近稳定平衡点等. 正是由于这些等价关系的存在.540 复制动力学方程也被视为是一种研究博弈论的动力。 <u>学方法[70, 73]. 另外, 在无穷小策略更新步长的条件。</u> 下,复制动力学方程还与强化学习具有紧密的联系.500 例如, Cross 学习^[84] 和 Q 学习^[85-86] 的算法迭代式在553 无穷小策略更新步长条件下将依概率收敛为一个复。 制动力学方程[87-89]. 特别地, 由于近年来强化学习在460 视频游戏^[19-21, 90-91] 和棋牌^[16-18, 92-93] 等具体博弈场景₄₉₁₃ 中取得了许多突破性进展, 所以目前如何将演化博466 法进行融合已成为 AI 领域中的一个研究热点[94-98]...473

除了上述提到的与其他研究领域建立联系之426 外, 近年来复制动力学本身也相继发展出了一些新4000 形式, 并在相关研究中发挥了重要作用. 例如, 为了。。。 研究合作策略演化问题, 文献 [99-100] 基于"自愿,,,,, 参与"机制提出了一个"可选公共品博弈"(Op-340) tional public goods game) 模型并分析了该博弈对¾33 应的复制动力学方程的性质, 而文献 [101-104] 提346 出了几类多人阈值博弈模型并分析了它们对应的复杂。 制动力学方程的性质. 文献 [105-108] 则提出并梳。。。 理了几类激励机制并给出了它们对应的复制动力学*** 方程的稳定性分析. 另外, 为了将经典的复制动力;**。 学方程推广到网络结构群体中和具有随机扰动的环。 境中, 文献 [109] 和文献 [110-111] 分别提出了一类2467 图 (或网络) 上的复制动力学和一类随机复制动力。 学. 基于类似的想法, 文献 [112-113] 则将经典的复杂。 制动力学方程从离散策略空间拓展到了连续策略。 空间. 除此之外, 近年来复制动力学方程还分别通,**。 <u> 过与深度学习[114]、分布式优化和控制[115]、观点动力</u>133 <u>学[116-117]、以及"环境反馈"[118] 相结合相应发展出了</u>1887 神经复制动力学[119]、分布式复制动力学[120-121]、基于、40 评估网络 (Appraisal network) 的复制动力学[122] 和₁₂₃3 "博弈-环境反馈"复制动力学[123-126] 等多种新颖,,,,, 形式.

尽管确定性演化博弈动力学在数学上具有诸多元。良好性质并且能为深入理解博弈者策略的演化动态元。提供有效的分析工具,但该类方法通常只能处理不元。受随机因素影响的混合均匀群体的策略演化动态元。然而,在现实博弈场景中,博弈者总数通常是有限元元的,并且博弈者的策略更新过程常会受到诸如噪声。57.17的,并且博弈者的策略更新过程常会受到诸如噪声。57.17的,并且博弈者的策略更新过程常会受到诸如噪声。57.11、数别的有限博弈者群体的策略演化动态,学者们提。58.01出了一类称为"随机性演化博弈动力学"[127]的方法。53.01

1.2.2 随机性演化博弈动力学

不同于确定性演化博弈动力学,博弈者数有限。10.1 的群体是随机性演化博弈动力学通常采用的群体结。18.5 构[127]. 由于这一原因, 群体中博弈者的丰富度 (Abunsandance) 通常只能采用整数或者分数来描述. 另外,1864 由于在有限群体中,博弈者的策略更新过程常会受。11.8 到随机因素的影响, 所以博弈者的策略演化动态通。17.3 常无法使用连续时间常微分方程来刻画, 而需借助。12.7 随机过程这一数学工具. 除了这些差异之外, 随机。18.1 性演化博弈动力学与确定性演化博弈动力学也存在。18.6 着一些相似之处, 比如微观策略更新规则仍是影响。18.0 宏观策略演化动态的一个关键因素. 从来源上讲,1844 目前主流的微观策略更新规则主要可分为两类: 一。18.5 公别介绍这两类策略更新规则中的几种典型形式. 40.7

Moran 过程[128] 是群体遗传学中的一个经典模4662 型, 也是随机性演化博弈动力学早期引入的一种策。 略更新规则[129-130]. 该过程主要借鉴了生物系统中的370 生死繁衍过程, 描述了一个博弈者如何从一个策略。 更新为另一个策略. 具体地, 在 Moran 过程中的每3478 个时间步, 首先群体中的一个个体将以正比于其适。333 应度的概率被随机地选定去产生一个后代. 随后,388 在无变异存在的情况下,该后代将完美地继承其父。442 代的策略,并随机地取代群体中的一个其他任意个, 体. 因为在这个过程中, 一个新个体产生的同时, 一, 15.1 个原有个体将被取代, 所以群体中的个体总数将始2005 终保持不变. 特别地, 在上述策略更新过程中, 为了2450 量化个体的适应度,现有的文献通常将其定义为一2914 个关于博弈者期望收益 h 的函数. 例如, 目前普遍。 遍采用的两类函数形式分别为 $1-\beta+\beta h^{[129-130]}$ 和₂₀₂₂ $\exp(\beta h)^{[131-132]}$,其中 β 表示选择强度参数.对于前者₁₈₇₇ $\beta \in [0, 1]$, 而对于后者 $\beta \in [0, +\infty)$. 当 $\beta = 0$ 时, 其1730 代表中性选择 (Neutral selection). 在该情况下, 因, 58.3 为每个博弈者都有一个相同的背景适应度 (Back-1437 ground fitness) 或基准适应度 (Baseline fitness), 1811 所以基于 Moran 过程每个个体被选定的概率均是146 相等的. 类似地, 当 $\beta \to 0$ 时, 其代表弱选择 (Weak)

自

不同于源自群体遗传学中的 Moran 过程, 对比。。。 较过程 (Pairwise comparison process)[109, 127, 138] 是。sade 一种基于社会学中的文化演化而提出的策略更新规。400 则. 该规则主要刻画了"成功"个体的策略是如何。253 通过模仿被其他个体所复制的过程. 具体地, 对于。10.7 一个有限混合均匀的博弈者群体, 基于对比较过程,;;;;; 首先群体中的任意两个个体将被随机地选定, 其中。 一个个体作为中心博弈者 (Focal player), 而另一。6667 个个体作为被模仿者 (Role model). 随后, 中心博蠕ュ 弈者将以一个正比于这两个个体收益之差的概率 p_{2*874} 学习被模仿者个体的策略. 对于概率 pr 的函数形。227 式, 目前一种常用的选择是 Fermi 函数, 即 $p_r=1/\{1+10.81\}$ $\exp[-\beta(h_E-h_I)]$, 其中 h_I 和 h_E 分别表示中心博 弈者和被模仿者的期望收益. 除了 Fermi 函数之外。5785 文献 [139-140] 和文献 [134] 也分别研究了 p, 为线。。。。 性函数的情形和一般化抽象函数的情形. 另外, 为。492 了研究 Moran 过程中的适应度函数和对比较过程。345 中的策略选择概率函数对策略演化结果的影响, 文。19.9 献 [141] 提出了一个一般化形式的适应度函数和一。652 个一般化形式的策略选择概率函数,并给出了策略;;;;; 演化达到平稳状态时一个策略占优于另一个策略的。75.9 充分必要条件. 受该文的启发, 文献 [142] 则进一步。。 将上述一般化的函数思想推广到了网络化混合决策。46.6 博弈场景中.

上述介绍的 Moran 过程和对比较过程都隐含。173 地采用了有限混合均匀的群体结构假设. 然而,通。2026 过适当的调整,这两个策略更新规则其实也可以运。1879 用于具有网络空间结构的博弈者群体,即所谓的复。1733 杂网络上的演化博弈[143-144]. 对应于 Moran 过程,其 5886 在复杂网络上的两个典型版本分别是"生—死"过 4440 程 (Birth-death process)和"死—生"过程 (Death-223 birth process)[109,145-146]. 具体地,在"生—死"过程 1457 中,首先群体中的一个个体将以正比于其适应度的。2000

概率被选定去产生一个后代; 随后, 该后代将随机,,,,, 地取代网络中其父代邻居中的一个个体. 而在"死--45.4 生"过程中,首先群体中的一个个体将被随机地选,,,,。 定去死亡; 随后, 该死亡个体的某一个邻居将以正,,,。 比于其适应度的概率被选定去将其后代产生在该死。。 亡个体的位置上. 虽然这两个策略更新规则表面上。872 看起来只是顺序上的差异,但在宏观动力学行为上。727 它们却会产生出截然不同的结果[146-147]. 对应于对比。58.1 较过程, 其在复杂网络上的版本只需在个体选择阶。43.6 段进行一些微小调整. 具体地, 在对比较过程的个。290 体选择阶段, 首先随机地选定群体中的一个个体作。14.5 为中心博弈者, 随后再随机地选定该中心博弈者的。 一个邻居作为被模仿者. 然后, 中心博弈者将以一。。。 个正比于这两个个体收益之差的概率 pr 去学习被。70.8 模仿者个体的策略[109, 146]. 基于上述复杂网络上的演。56.3 化博弈这一研究框架, 文献 [148-150] 对博弈者多。41.7 样性的交互行为进行了一系列研究, 并提出了行为。27.2 多样性、边多样性和博弈转移等概念. 而文献 [151-5126 152] 基于现实的博弈者交互网络具有时序性这一特488.1 点提出了一类时序网络化系统, 并对其中的控制。835 问题和演化博弈动力学问题进行了深入研究. 另4690 外, 基于复杂网络上的演化博弈这一研究框架, 文454.4 献 [153]、文献 [154] 和文献 [155] 分别研究了策略。。。 的共演化 (Co-evolution) 特性、策略的自适应协调4253 特性和博弈动力学的空间周期特性.

除了上述介绍的几种典型策略更新规则之外,8862 相关研究也考虑了一些其他类型的策略更新规则,8817 比如"以牙还牙"(Tit-for-tat)^[156]、"赢留输变"867.1 (Win-stay lose-shift)^[157]、模仿 (Imitation)^[81, 109, 146],832.6 摄动最佳响应 (Perturbed best response)^[158],338.0 Wright-Fisher 过程^[159–160] 和最近广受关注的基于期_{523.5} 望的 (Aspiration-based) 策略更新规则^[161–165] 等.

1.3 随机博弈

与演化博弈相类似, 随机博弈也是动态博弈的。66.7 一种形式, 它最初是由 Shapley 于 1953 年提出并命。62.1 名的[166]. 在 AI 和自动控制领域中, 随机博弈通常也。27.6 称为 Markov 博弈^[35]. 然而, 有别于演化博弈的一点。23.0 是, 随机博弈引入了一个称为 (博弈) "状态"的全新概念。4 或粗略地讲, 随机博弈在每个阶段都有一个 95.9 状态变量用于刻画当前所有博弈者所面临的博弈。175.4 场景

一般地,一个随机博弈 \mathcal{G}_s 通常可以表示为一个 503 六元组 735.7

 $\mathcal{G}_s = \{ \mathcal{N}, \, \mathcal{S}, \, \{\mathcal{A}_i\}_{i \in \mathcal{N}}, \, \{r_i\}_{i \in \mathcal{N}}, \, P, \, \Gamma \},$

4 在相关文献中,"状态"也称为"系统状态"[4] 或"环境状态"[4] 等

87.225 311.375

其中N表示所有博弈者的标号构成的集合、S表示。 所有博弈者所处"环境"或"系统"的状态集,A;7453 表示博弈者 $i \in \mathcal{N}$ 的行动集, $r_i : \mathcal{S} \times \mathcal{A} \times \mathcal{S} \to \mathbb{R}$ 表7906 \overline{x} 博弈者 $i \in \mathcal{N}$ 的收益函数或回报函数 (Reward, s.s. function), $P: \mathcal{S} \times \mathcal{A} \to \Delta(\mathcal{S})$ 表示状态转移概率分。 布函数, Γ表示博弈进行的时间集, 5 $\boldsymbol{A} := \prod_{i \in \mathcal{N}} A_{i}$, (1984) $\Delta(S)$ 表示集合 S 上的所有概率分布构成的集合. 在 σ_{10} 3 随机博弈进行的每个阶段,系统将处于状态集8中。 的某一个状态 $s \in S$. 随后, 依赖系统当前的状态。 $s \in \mathcal{S}$, 每个博弈者 $i \in \mathcal{N}$ 将根据它的策略 (Policy) $\pi_i: \mathcal{S} \to A_i$ 从其有效的行动空间 A_i 中选择一个行 $_{\mathfrak{s}_{125}}$ 劫之后, 博弈将会产生两方面的结果, 一方面, 取决。。。 于系统当前的状态 $s \in S$ 以及所有博弈者在当前阶。 段采取的行动 $a \in A$,系统将以概率 P(s'|s, a) 从当 $s_{53.6}$ 前的状态 $s \in S$ 转移到下一阶段的另一个状态 $s' \in \mathbb{R}$ S. 另一方面, 作为所有博弈者行动和系统状态转移₅₀₄₂ 的结果, 每个博弈者 $i \in \mathcal{N}$ 将从当前阶段的博弈中。 获得一个即时的收益值或回报值 $r_i(s, \boldsymbol{a}, s')$.

对于一个n人随机博弈 G_s ,此时 $N = \{1, 2, \cdots, 3005\}$ $n\}$,当分别给定所有博弈者的策略组合 $\pi := (\pi_1, 3005)$ π_2, \cdots, π_n)、所有博弈者的收益函数组合 $\mathbf{r} := (r_1, 3005)$ $\mathbf{r}_2, \cdots, \mathbf{r}_n$)和状态转移概率分布函数 P 时,如果 $\mathbf{r}_2, \cdots, \mathbf{r}_n$)和状态转移概率分布函数 P 时,如果 $\mathbf{r}_3, \cdots, \mathbf{r}_n$)和状态转移概率分布函数 P 时,如果 $\mathbf{r}_4, \cdots, \mathbf{r}_n$)和大态转移概率分布函数 P 时,如果 $\mathbf{r}_5, \cdots, \mathbf{r}_n$)和大态 $\mathbf{r}_6, \cdots, \mathbf{r}_n$)和大态 $\mathbf{r}_6, \cdots, \mathbf{r}_n$)和大态 $\mathbf{r}_6, \cdots, \mathbf{r}_n$),其中 $\mathbf{r}_6 \in S$ 表示系统在时刻 \mathbf{r}_6 的状态 $\mathbf{r}_6, \cdots, \mathbf{r}_n$),表示所有博弈者在时刻 $\mathbf{r}_6, \cdots, \mathbf{r}_n$),我们对组合,这里 $\mathbf{r}_6, \cdots, \mathbf{r}_n$,表示所有博弈者在时刻 $\mathbf{r}_6, \cdots, \mathbf{r}_n$)的行动组合,这里 $\mathbf{r}_6, \cdots, \mathbf{r}_6$ 表示博弈者 $\mathbf{r}_6 \in N$ 在时刻 $\mathbf{r}_6, \cdots, \mathbf{r}_6$ 的行动组合,这里 $\mathbf{r}_6, \cdots, \mathbf{r}_6$ 表示博弈者 $\mathbf{r}_6 \in N$ 在时刻 $\mathbf{r}_6, \cdots, \mathbf{r}_6$

。除非特别说明,本文只讨论 C 为离散无穷的情况,即随机博弈在离散。 时间集上进行无穷轮.

6 随机博弈中所说的"策略"(Policy)与演化博弈中所说的"策略"[631] (Strategy)不是完全等同的概念. 在随机博弈中, 博弈者的策略是指行 528 动集 (或纯策略集)上的一个概率分布 (也称为混合策略);而在演化博 1421 蛮中,个体的策略通常隐含地假定是一个确定性的纯策略. 因此, 演化博 1318 蛮中所说的策略实质上是等同于随机博弈中的某一个具体的行动 (或纯 1511 策略). 另外,为了叙述方便,本文只讨论确定性的策略;而对于随机性的策 1688 $\pi_i(\cdot|s): \mathcal{S} \to \Delta(A_i)$, $\forall i \in \mathcal{N}$,本文中的相关结果可类似地得到. 160. 1

$$V_{(\pi_i, \pi_{-i})}^i(s; r_i, P) = \mathbf{E}_{\boldsymbol{a}_t \sim (\pi_i, \pi_{-i})(s_t), s_{t+1} \sim P(\cdot | s_t, \boldsymbol{a}_t)}$$

$$\left\{ \sum_{t=0}^{\infty} \gamma^t r_i(s_t, \boldsymbol{a}_t, s_{t+1}) \mid s_0 = s \right\},$$
(3)

其中 $\mathbf{E}_{a_t \sim (\pi_i, \pi_{-i})(s_t), s_{t+1} \sim P(\cdot|s_t, a_t)}\{\cdot\}$ 表示对 $\pi = s_2 s_3 r_4$ (π_i, π_{-i}) 和 P 诱导出的随机过程 $\{(a_t, s_t)\}_{t\geq 0}$ 求数 $s_1 s_2 s_3$ 等期望, $\gamma \in [0, 1)$ 是一个折扣因子. \$ 与标准 Nashasa 均衡的解概念相类似,对于随机博弈 \mathcal{G}_s ,它的标准 $s_1 s_4$ 解是一个称为 Markov 完美均衡 (Markov perfect agraequilibrium) 的概念 $s_1 s_2 s_3 s_4$ \$25

定义 2. 对于有限的 n 人随机博弈 $\mathcal{G}_s = \{\mathcal{N}, \mathcal{S}_{r^{3800}}\}$ $\{A_i\}_{i\in\mathcal{N}}, \{r_i\}_{i\in\mathcal{N}}, P, \Gamma\}$, $\mathcal{N} = \{1, 2, \dots, n\}$,如果 $V_i \in \mathcal{N}$ 和 $\forall s \in \mathcal{S}$ 有

$$V^{i}_{(\pi_{i}^{*}, \pi_{-i}^{*})}(s; r_{i}, P) \ge V^{i}_{(\pi_{i}, \pi_{-i}^{*})}(s; r_{i}, P), \ \forall \pi_{i} \in \Omega_{i},$$

或者 $\pi_i^* \in \arg\max_{\pi_i \in \Omega_i} V_{(\pi_i, \pi_{-i}^*)}^i(s; r_i, P)$,则称策略 3693 组合 $(\pi_1^*, \pi_2^*, \dots, \pi_n^*) \in \mathbf{\Omega} := \prod_{i \in \mathcal{N}} \Omega_i$ 是 \mathcal{G}_s 的一个 3640 Markov 完美均衡.

一般地,对于一个有限的n人随机博弈,它的347 Markov 完美均衡通常总是存在的[170]. 但是,由于其303 计算复杂性问题的存在[172],求解一个 Markov 完美268 均衡通常十分具有挑战性. 为此,相关研究经常会2613 考虑随机博弈的一些特定情形. 根据博弈者收益函2689 数或回报函数的不同,它们主要可分为 3 类[47, 40-50] ;2024 1) 完全合作,在该设置下所有博弈者具有相等的收2779 益函数,即 $r_i = r_j$, $\forall i, j \in \mathcal{N}$,此时的随机博弈也称2785 为多智能体 Markov 决策过程[27]、团队 Markov 博2685 或团队随机博弈;2) 完全竞争,在该设置下随1644 机博弈只有两个博弈参与者,并且它们的收益函数1600 满足零和关系,即 $r_1 = -r_2$,此时的随机博弈也称为1655 零和随机博弈;3) 混合型,在该设置下所有博弈者1511 的收益函数不受其他约束条件影响,即此时的随机1368

7 文献 [169] 也对其他形式的计算方式进行了分析和讨论

⁸ γ的另外一种解释是: 在一轮博弈结束之后, 下一轮博弈继续进行的1104

图 1 Markov 决策过程和 Markov 博弈的示意图

Fig. 1 Illustrations of Markov decision processes and Markov games

博弈为一般和随机博弈[39]

1.4 不完全信息博弈

上述介绍的几类博弈形式都隐含地采用了完全4821信息的假设,即博弈模型的参数信息,比如博弈者4677的行动集和收益函数等,是所有博弈者的共同先验4533知识.然而,在大量现实博弈场景中,完全信息的假4389设通常是一种过于理想化的要求.通过放宽该假设,4244Harsanyi提出了一类称为不完全信息博弈的模型[173].4100它为研究博弈者在具有部分模型信息条件下的决策3956问题提供了一套完善的数学方法与工具.

第一个成熟的不完全信息博弈模型是由 Hars-1967 年提出并命名的 Bayesian 博弈 $^{[173]}$. — 1923 般地,一个n 人 Bayesian 博弈 \mathcal{G}_b 通常可以表示为 1925 — 个五元组 $^{[174]}$ 1923 1923

 $G_b = \{N, \{A_i\}_{i \in N}, \{\Upsilon_i\}_{i \in N}, \{\rho_i\}_{i \in N}, \{g_i\}_{i \in N}\},$ 其中 $N = \{1, 2, \cdots, n\}$ 表示所有博弈者的标号构成的集合, A_i 表示博弈者 $i \in N$ 的行动集, Υ_i 表示博弈者 $i \in N$ 的行动集, Υ_i 表示博弈者 $i \in N$ 的类型集, $\rho_i : \Upsilon_i \to \Delta(\Upsilon_{-i})$ 是一个条 2600 件概率分布函数,表示博弈者 $i \in N$ 在知道自己类型的情况下对其他博弈者类型的推断(Belief),231.1 $\Upsilon_{-i} := \prod_{j \neq i} \Upsilon_j, g_i : A \times \Upsilon_i \to \mathbb{R}$ 表示博弈者 $i \in N$ 的收益函数或效用函数, $A := \prod_{i \in N} A_i$. 具体地,2018在 Bayesian 博弈进行过程中,首先一个称为"自 8688然"(Nature)的虚拟个体将赋予所有博弈者一个类 1724型组合 $\iota := (\iota_1, \iota_2, \cdots, \iota_n)$,其中 $\iota_i \in \Upsilon_i, i = 1, 2, \cdots$ 17579 n 表示博弈者 i 的类型. 随后,对于每个博弈者 $i \in N$ "自然"只告知属于其自身的类型 ι_i ,而对所有 1250 其他博弈者 $i \in N$ 将各自从其行动空间 A_i 中选择一个行动 $a_i \in N$ 8004

 A_i . 最后, 作为所有博弈者行动的结果, 每个博弈者 $i \in \mathcal{N}$ 将获得一个收益值 $g_i(a_1, a_2, \dots, a_n; \iota_i)$. 508.9

特别地,在上述 Bayesian 博弈模型中,依赖于4939 类型 $\iota_i \in \Upsilon_i$ 的收益函数 q_i 是最为关键的一个要素 $\iota_{79.1}$ 因为它是 Bavesian 博弈模型中表示不完全信息的4643 --个核心设置. 具体来讲, 因为每个类型 μ; ∈ Υ; 都₄₄₉, 对应着博弈者i的一个收益函数 g_i , 所以当博弈者 i_{3348} 不知道其自身的类型和其他博弈者的类型时, 它就如 无法明确知道其自身的收益函数和其他博弈者的收4052 益函数. 换句话说. 当博弈者 i 只知道其自身的类型。。。 时,这等同于它只知道其自身的收益函数,类似地,。75.6 当博弈者 i 对其他博弈者的类型不确定时, 这等同。。。。 于它对其他博弈者的收益函数不确定. 为了从数学。460 上刻画这种不确定性, Bayesian 博弈假定所有博弈。 者的类型组合 ι 的联合概率分布 $\rho(\iota)$ 是所有博弈者 $_{004}$ 的共同知识. 基于该假定, 当"自然"告知博弈者 i其。。。 类型为 Li 时,博弈者 i 于是可根据 Bayesian 法则对‱ 所有其他博弈者的类型 $\iota_{i} = (\iota_{1}, \dots, \iota_{i-1}, \iota_{i+1}, \dots, \iota_{n-1})$ (n)进行推断, 即

$$\rho_i(\boldsymbol{\iota}_{-i} \mid \iota_i) = \frac{\rho(\boldsymbol{\iota}_{-i}, \, \iota_i)}{\rho(\iota_i)} = \frac{\rho(\boldsymbol{\iota}_{-i}, \, \iota_i)}{\sum_{\boldsymbol{\iota}'} \sum_{i \in \boldsymbol{\Upsilon}_{-i}} \rho(\boldsymbol{\iota}'_{-i}, \, \iota_i)}, \quad (4)$$

这里ρ_i(ι_{-i}|ι_i)表示博弈者 i 在知道自己的类型为 ι₋₂007 的情况下,推测所有其他博弈者的类型为 ι_{-i}的概率 .088 因为在 Bayesian 博弈中,每个博弈者的收益函 .088 数都是类型依赖的,所以当博弈者进行决策时,它 .089 的行动选择也将是类型依赖的.换句话讲,在 Baye-1444 sian 博弈中,每个博弈者的策略都是一个关于其自 .298 身类型的函数.基于这一考虑, Harsanyi 通过借鉴 .148 Nash 均衡的类似定义方法.提出了一个称为 Bayesian .000

由上述 Bayesian 博弈类型推断的设定可以看表。 出,式 (4)成立的一个关键点在于,联合概率分布 $\rho(\iota)$ 是所有博弈者的共同知识. 然而, 由于在大量现实,,,,, 博弈场景中, 共同知识的假设通常是过于理想化的。 新以该假设的合理性经常受到质疑^[175-176]. 为了放宽。₂₂₆ 该假设, 学者们于是提出了一些解决方案. 例如, Mer-680 tens 和 Zamir 提出了一个称为"普遍类型空间"。。。。 (Universal type space) 的替代概念^[177]; Holmström 🚓 和 Myerson 提出了一类称为"无分布均衡解"。44 (Distribution-free equilibrium solution) 的方法[178].5999 相较之下, Aghassi 和 Bertsimas 通过引入鲁棒优化[179]。 方法,提出了一类称为"鲁棒博弈"(Robustsma game) 的不完全信息博弈模型[180]. 在该模型中, 每5602 个博弈者并不能明确地知道其收益函数,而只能感。117 知到其收益函数所在的一个不确定集. 借助从该不572 确定集得到的收益信息, 博弈者将基于鲁棒优化的。126 方法进行行动决策, 以便获得一个"满意的"收益.48.1 其中,"满意的"收益是指,每个博弈者的目标是寻485 找一个最优策略使得其收益值在最坏的情况。480 (Worst-case) 下能最大. 具体地, 对于一个由n个博 $_{494}$ 弈者参与的鲁棒博弈, 如果用 $c_i(\pi_i, \pi_{-i}; u_\alpha)$ 表示任 意的博弈者 $i(i=1,2,\dots,n)$ 在策略组合 $(\pi_i,\pi_{-i})_{452}$ 和不确定参数 $u_{\alpha} \in \mathcal{U}_{\alpha}$ 下的收益函数, 那么基于鲁 $_{\alpha}$ 棒优化方法, 任意博弈者 i 的目标将是寻找在不确₃。。 定参数 u_{α} 最坏的情况下, 对其他博弈者策略 $\pi_{-i} \in \mathbb{R}^{3}$ Ω_{-i} 的一个最佳响应 $\hat{\pi}_i$,即

$$\hat{\pi}_i \in \arg\max_{\pi_i \in \Omega_i} \left[\inf_{u_{\alpha} \in \mathcal{U}_{\alpha}} c_i(\pi_i, \, \pi_{-i}; u_{\alpha}) \right],$$

其中不确定参数 u_{α} 属于不确定集 U_{α} , 刻画了收益。183 函数 c_i 的不确定性. 由于鲁棒博弈的不确定性是借。187 助收益函数的不确定集刻画的, 所以它完美地规避。188 了 Bayesian 博弈关于共同知识的假定. 另外, 为了。188 分析鲁棒博弈的性质, Aghassi 和 Bertsimas 借鉴。188 小Ash 均衡的类似定义方法, 提出了一个鲁棒优化。188 之下的均衡解概念,即所谓的"鲁棒优化均衡"。188 个像的ust-optimization equilibrium), 并证明了该均。188 衡解在有限鲁棒博弈中的存在性[180].

然而,在上述鲁棒博弈模型中, Aghassi 和 Berts-1874 imas 只考虑了同时行动的 (Simultaneous-move)、1728 有限的 (Finite)、一轮 (One-shot) 博弈场景. 之后,1843 为了将鲁棒博弈的思想推广到随机博弈中, Kardes,1848 等提出了一类称为 "鲁棒随机博弈" (Robust sto-1822 chastic game) 的模型^[181]. 具体地, 对于一个随机博¹¹⁴⁷ 弈 $\mathcal{G}_s = \{N, S, \{A_i\}_{i \in N}, \{r_i\}_{i \in N}, P, \Gamma\}$, 如果 \mathcal{G}_s 中¹⁰⁰¹

的 r_i , $\forall i \in \mathcal{N}$ 和 P 不是明确给定的,而是分别属于 7604 不确定集 \mathcal{R}_i 和 \mathcal{P} ,则称 \mathcal{G}_s 为一个鲁棒随机博弈 764 与 Markov 完美均衡的概念相类似,鲁棒随机博 7605 弈在鲁棒优化意义下的均衡解是一个称为 "鲁棒 762 Markov 完美均衡" (Robust Markov perfect equi-7617 librium) 的概念 [181].

定义 3. 对于有限的 n 人鲁棒随机博弈 $\mathcal{G}_{rs} = 5725$ $\{\mathcal{N}, \mathcal{S}, \{A_i\}_{i \in \mathcal{N}}, \{r_i\}_{i \in \mathcal{N}}, P, \Gamma\}, \mathcal{N} = \{1, 2, \dots, n\}, 5573$ $r_i \in \mathcal{R}_i, P \in \mathcal{P},$ 如果对 $\forall i \in \mathcal{N}$ 和 $\forall s \in \mathcal{S}$ 有 633

$$\Psi^{i}_{(\pi_{i}^{*}, \pi_{-i}^{*})}(s) \ge \Psi^{i}_{(\pi_{i}, \pi_{-i}^{*})}(s), \ \forall \pi_{i} \in \Omega_{i},$$

或者 $\pi_i^* \in \arg\max_{\pi_i \in \Omega_i} \Psi^i_{(\pi_i, \pi_{-i}^*)}(s)$,则称策略组合。。。 $(\pi_1^*, \pi_2^*, \dots, \pi_n^*) \in \mathbf{\Omega} := \prod_{i \in \mathcal{N}} \Omega_i$ 是 \mathcal{G}_{rs} 的一个鲁棒。。 Markov 完美均衡,其中 $\Psi^i_{(\pi_i, \pi_{-i})}(s) := \inf_{r_i \in \mathcal{R}_i, P \in \mathcal{P}^{5731}}$ $V^i_{(\pi_i, \pi_{-i})}(s; r_i, P)$.

特别地, Kardeş 等发现, 当不确定集 R_i 和 P₅₋₂₂ 是紧集时, 任意一个有限鲁棒随机博弈都至少存在₅₇₇₇ 一个鲁棒 Markov 完美均衡^[181].

1.5 小结

作为第1节内容的一个小结,图2从博弈者数、机 策略数、系统状态数和不完全信息的程度这四个维。 度展示了这节介绍的四类基本博弈形式的一个统一425 框架(该框架引自文献[182],其中方框图颜色的深482 浅表示不完全信息程度的大小). 标准式博弈是一类440 传统的博弈形式, 也是现代博弈论发展的基石. 在3447 该类博弈形式中, 一种典型的模型范式是所谓的两***4 人两策略博弈,比如囚徒困境博弈、雪堆博弈和猎动。 鹿博弈等. 然而, 大量现实社会、经济和工程系统中360 的博弈通常都是由多个博弈者或者一个博弈者群体。 参与的,比如著名的"公共地悲剧"(The tragedy of theses commons) 问题[183]. 因此, 为了研究这类具有多个。₃₄₁ 博弈者参与的博弈问题, 博弈的模型范式在博弈者2998 数这个维度上就需从两人形式转变为多人形式,比2855 如从囚徒困境博弈转变为公共品博弈. 进一步, 如如 果博弈者具有多个策略,那么在策略这个维度上,。 博弈的模型范式就需从两策略转变为多策略. 然而。247 由于标准式博弈本质上是一种一轮博弈,或者说是284 一种"静态的"博弈(即没有考虑时间这个维度),。42 新以该类博弈形式通常无法对动态决策问题进行刻₁₉₉₉ 画. 因此, 如果在标准式博弈的基础上引入时间这456 个维度, 那么它将相应地转变为动态博弈. 进一步, 1714 如果在动态博弈的基础上考虑群体和演化的作用,如果 那么在博弈形式上,它就变成了演化博弈,但是,从,428 本质上讲, 这类博弈仍然没有脱离标准式博弈的基1285 本框架,即一个由博弈者集、策略集和收益函数构,,,。 成的三要素框架. 随机博弈通过在标准式博弈的基...。

图 2 基本博弈形式的一个统一理论框架图

Fig. 2 Illustrations of a unified theoretical framework of the fundamental games

础上引入(博弈)"状态"这一新维度,一方面将重 884.4 复的标准式博弈拓展到了动态多类型博弈(或状态 702 依赖的博弈)场景中,另一方面又将单智能体 Markov 决策过程拓展到了多智能体系统中.因此,它极大地拓宽了博弈论在多智能体场景中的适用范围.但不足的一点是,它仍然保留了标准式博弈关于完全信息的这一假定.在实际的博弈中,含有不确定因 8992素和不完全信息的场景通常是一种更为常见的情 885.0 况.由此,通过在标准的随机博弈的基础上引入不 7709完全信息这个维度,鲁棒随机博弈将完全信息博弈 866.7 的模型范式拓展到了不完全信息的场景中.综上可 842.5 见,标准式博弈是博弈论的基石,演化博弈、随机博 228.3 弈和不完全信息博弈是这基石之上分别引入群体性 814.1 思维与演化、博弈状态和不确定性这三个新维度之 268.6 的发展形式.

2 多智能体学习方法

对应于第1节介绍的标准式博弈、演化博弈、2406 随机博弈和不完全信息博弈,本节将主要论述这四,2261 类博弈形式中的多智能体学习方法,即策略学习、2116 学习动力学、强化学习和鲁棒学习.

2.1 策略学习

策略学习是一种学习对手 (Opponent) 策略的 5551 方法,它在博弈学习理论 (The theory of learning 1406 in games) 中是一种广泛使用的经典方法 [45-46] 9 在 1833 0 "策略学习"在博弈学习理论中具有十分丰富的内涵 145-46,本文只关注 1104 其学习对手策略的这层主要含义.

$$\tilde{\pi}_{-i}^t(a) = \frac{1}{t} \sum_{\ell=0}^{t-1} \mathbb{1} \{ a_{-i}^{\ell} = a \}, \ a \in \mathcal{A}_{-i},$$

其中 $\tilde{\pi}_{-i}^t(a)$ 表示博弈者i推测其对手-i在第t轮博_{283.1} 弈中将采取行动 $a \in A_{-i}$ 的概率, $\mathbb{1}\{a_{-i}^\ell=a\}$ 表示_{284.1} 指标函数 (Indicator function).如果对手-i在第_{282.8} ℓ ($\ell \geq 0$) 轮博弈中采取的行动 a_{-i}^ℓ 为 $a \in A_{-i}$,那么_{218.0} $\mathbb{1}\{a_{-i}^\ell=a\}=1$;否则, $\mathbb{1}\{a_{-i}^\ell=a\}=0$.基于该对手₂₀₂₇ 策略的推断 $\tilde{\pi}_{-i}^t(a)$,博弈者i在第t轮博弈中采取的_{187.4} 策略 π_{-i}^t 将为 $\tilde{\pi}_{-i}^t(a)$ 的一个最佳响应,即

$$\pi_i^t \in \arg\max_{\pi_i \in \Omega_i} \mathbf{E}_{a_i \sim \pi_i, a_{-i} \sim \tilde{\pi}_{-i}^t} \{ c_i(a_i, a_{-i}) \}.$$

对于虚拟对弈学习过程,一个重要的理论问题 $\hat{\pi}_{i}^{t}$, $\forall i \in \mathcal{N}$ (即博弈者 i 的策 略推断) 是否会收敛?如果收敛,它是否会收敛到 ∞

287.225

- 个 Nash 均衡? 这一问题也是博弈学习理论中的。。。 --个核心问题^[45-46]. 对于零和博弈, Robinson 发现_{745.5} 这个问题的答案是肯定的, 即基于虚拟对弈学习过,,,,, 程, 所有博弈者的实证策略将收敛到零和博弈的一766 个 Nash 均衡点[184]. 虽然这一肯定的答案之后也推搡? 广到了其他的博弈场景中, 比如两人两策略非零和。 博弈, 但在更多情况下, 虚拟对弈通常并不能保证。。。 收敛[45, 185]. 导致这一结果的一个重要原因是, 虚拟。。。 对弈过程要求对手的策略是平稳的. 然而. 在多智。44.4 能体的学习环境中,一方面,一个博弈者在学习的。。。 同时另一个博弈者也在学习, 所以每个博弈者面临。15.5 的"外部学习环境"都在不断变化: 另一方面. 由于。。 对手的策略总在不断地调整, 所以每个博弈者总是。 需要去跟踪学习一个不断变化的"目标",因而,这。 就破坏了虚拟对弈所需的平稳性条件. 该问题也是。57.7 多智能体学习中普遍存在的非平稳性 (Non-sta-saz tionarity) 问题^[186]. 按照复杂性程度的不同, 文献 [186]。_{sao} 对现有处理该类问题的方法进行了总结和归纳,并。43 把它们划分成了 5 类: 1) 忽视 (Ignore), 即忽视对🔩。 手策略的非平稳性从而认为对手策略是平稳的; 2)45.4 遗忘 (Forget), 即只依赖最近观察到的信息更新对。 手策略的推断; 3) 响应目标对手 (Respond to tar-46.5 get opponent), 即对明确的目标对手采取最佳的策421 略响应; 4) 学习对手模型 (Learn opponent model), 47.8 即学习对手策略的模型并依赖该模型推导出自身的432 策略响应; 5) 心智理论 (The theory of mind), 即推••• 测对手的策略并假定对手也在推测自己,从而形成。**。 一个不断递归的推测过程. 另外, 针对学习对手模。。。。 型的这类方法, 文献 [187] 将其称为对手模拟 (Op-354.4 ponent modelling) 并对该类方法进行了全面的总数。 结和归纳, 而文献 [188] 从博弈者所需信息的角度。 给出了该类方法的一个分类框架.

由上述关于虚拟对弈的介绍可以看出,标准的2673 虚拟对弈过程主要适用于重复的标准式博弈.之后,2627 为了将该博弈学习方法拓展到其他博弈类型中,2606 虚拟对弈过程也相继地发展出了一些其他的变体形2624 比如随机虚拟对弈 (Stochastic fictitious pl-213 ay)^[45]、联合策略虚拟对弈 (Joint strategy ficti-2724 tious play)^[189]、分布式虚拟对弈 (Distributed ficti-2724 tious play)^[189]、分布式虚拟对弈 (Sample fictitious play)^[192]、禅经虚拟自对弈 (Neural fictitious self-1617 play)^[193]、基于零和随机博弈的虚拟对弈^[194] 和基于105 平均场博弈的虚拟对弈^[195]等。

2.2 学习动力学

学习动力学是博弈学习与系统动力学相结合的。 一种方法, 也是从动态系统的角度去理解博弈学习。。。 过程的一种方式.目前,该类方法中的大部分工作和都是基于演化博弈动力学与多智能体强化学习的交对。 又来实现的[95].强化学习是一种利用经验不断试错 206 的学习方式,它被认为是动物学习和生物智能的基础。 石之一[196-197].而多智能体强化学习是该学习方式在 2013 多智能体场景(比如多人博弈)下的拓展形式.该学 2017 为方法更为细致的介绍将在第 2.3 小节中呈现,本 2017 小节主要关注其与演化博弈动力学的结合.

Cross 学习^[84] 是针对重复的标准式博弈 (也称6.27 为无状态 (Stateless) 的博弈) 提出的一种强化学习5.81 方法, 也是强化学习与演化博弈动力学产生关联的6.34 一类早期方法^[87]. 具体地, 考虑一个重复的标准式5.888 博弈 $G = \{N, A, \{c_i\}_{i \in \mathcal{N}}\}$, 这里假定所有博弈者共5.841 享同一个行动空间 A 并且 $c_i: A^{|\mathcal{N}|} \to \mathbb{R}$. 基于 Cross 6.34 学习, 每个博弈者 $i \in \mathcal{N}$ 的策略更新方式为

$$\begin{cases} \pi_i^{t+1}(a) = r_i^t(a) + (1 - r_i^t(a))\pi_i^t(a), & a = a_i^t \\ \pi_i^{t+1}(a) = (1 - r_i^t(a_i^t))\pi_i^t(a), & 否则 \end{cases}$$
 (5)

其中 $\pi_i^t(a)$ 表示博弈者 $i \in N$ 在第t轮博弈中采取行。
动 $a \in A$ 的概率, $r_i^t(a) \in (0,1)$ 是一个随机变量,表。
示博弈者 $i \in N$ 在第t轮博弈中采取行动 $a \in A$ 所。
获得的收益, a_i^t 表示博弈者 $i \in N$ 在第t轮博弈中
采取的行动。
令 $\Delta \pi_i^t(a) := \pi_i^{t+1}(a) - \pi_i^t(a)$. 于是,借。
助式 (5), $\Delta \pi_i^t(a)$ 的数学期望可计算为

$$\begin{split} \mathbf{E} \left\{ \Delta \pi_i^t(a) \right\} &= \pi_i^t(a) [\mathbf{E} \{ r_i^t(a) \} - \mathbf{E} \{ r_i^t(a) \} \pi_i^t(a)] + \\ &\sum_{a' \in \mathcal{A} \backslash \{a\}} \pi_i^t(a') [- \mathbf{E} \{ r_i^t(a') \} \pi_i^t(a)] = \end{split}$$

$$\pi_i^t(a) \left[\mathbf{E} \{ r_i^t(a) \} - \sum_{a' \in A} \pi_i^t(a') \mathbf{E} \{ r_i^t(a') \} \right]. \tag{6}$$

如果假定相继两轮博弈之间的时间间隔为 $\delta \in (0, 1]$,373那么第t ($t \ge 0$)轮博弈发生的时刻 τ 为 $\tau = t\delta$. 当326 $\delta \to 0$ 时 (即在一个无穷小策略更新步长条件下),279Börgers 和 Sarin 发现式 (6) 将依概率收敛为如下 τ 333—个确定性复制动力学方程[87]

$$\dot{\pi}_i(a) = \pi_i(a) \left[\mathbf{E} \{ r_i(a) \} - \sum_{a' \in \mathcal{A}} \pi_i(a') \mathbf{E} \{ r_i(a') \} \right],$$

这里 $\pi_i(a)$ 和 $r_i(a)$ 分别表示博弈者 $i \in N$ 选择行动。 $a \in A$ 的概率和采取行动 $a \in A$ 后获得的收益,并 $a \in A$ 后获得的收益,并 $a \in A$ 记。

受上述研究思路的启发,多智能体强化学习与1886 复制动力学的交叉研究随后分别在统计物理和 AI 1400 这两个领域中开始了独立发展,其中文献 [88] 和文1803 献 [89] 是它们各自的早期工作. 虽然这两篇文献的147作者分别隶属于不同的研究领域 (前者为统计物理1800

或复杂系统,而后者为 AI),但他们都基于重复的标。600 准式博弈对强化学习中的 Q 学习的演化动力学进。455 行了研究,并独立地发现了 Q 学习在无穷小更新步。7165 长条件下将收敛为一个复制动力学方程的事实.基。7165 于这两项工作,学习动力学这一交叉研究主题后续,7020 分别沿着不同的风格在统计物理和 AI 这两个领域。875 中继续向前发展.具体地,在统计物理领域中,后续。8730 的相关工作主要专注于研究复杂博弈场景中的长期。5750 的相关工作主要专注于研究复杂博弈场景中的长期。5750 第202 等.而在 AI 领域中,后续的相关工作更多地。255 关注于多智能体强化学习算法的动力学解释和新。1550 学习算法的开发,比如频率调整的 Q 学习 (Fresont of the proof of the p

目前,虽然学习动力学的相关研究已取得了十。428 分丰硕的成果, 并且极大地推动了多智能体强化学。28.6 习与演化博弈动力学的交叉发展, 但它们也存在着。144 一些不足之处. 例如, 目前该领域中的大部分工作...。 所采用的博弈形式都是重复的标准式博弈(即无状****) 态的博弈), 并且这些工作的研究范式仍然沿袭着。。 Q 学习与确定性复制动力学方程的交叉. 然而, 由。576 上一节关于演化博弈和随机博弈的介绍可以看出:434 一方面,随机性演化博弈动力学比确定性演化博弈4292 动力学具有更宽的适用范围: 另一方面, 随机博弈450 比重复的标准式博弈更具一般性. 因此. 自然地产....。 生了这样一个问题: 多智能体强化学习是否可以在***。 随机博弈的框架下与随机性演化博弈动力学进行融。7724 合?特别地, 如果该问题可以放在具有网络空间结。。。。 构的博弈者群体中进行考虑,那么它将变得更加一。44。 般化.

为了对该问题进行研究, 文献 [206] 提出了一条15.6个网络上的多人随机博弈模型. 在该模型中, 每个801.4 博弈者只有两个可供选择的行动 C 和 D,即所有博物品,在这样型中,一个行动集 $A = \{C, D\}$. 基于博弈者群的空间交互结构,每个博弈者只能与其直接邻居的空间交互结构,每个博弈者只能与其直接邻居的经过,每个可以上,当系统处于状态 S 时,依赖当前所有博弈者的行动选择,表 S 给出了任意博弈者在当前轮博弈中获得的收益. 在该是15.2 表中, $G_{S}(S)$ 和 $D_{S}(S)$, G = 0, 1, …, G = 1 分别表示一个行动为 G 和 G 的博弈者,当其 G = 1 个共同博弈 85.8

者中有 $_{J}$ 个个体选择行动 C 且系统状态为 $_{S}$ \in $_{S}$ 时, $_{7000}$ 其获得的收益. 在该博弈进行过程中,博弈者的行。 $_{7458}$ 动决策被假定是异步的,即在每个时间步,群体中 $_{791.7}$ 只有一个随机选定的博弈者更新其行动. 当该选定 $_{717.8}$ 的博弈者进行行动更新时,它的策略函数被设定为 $_{703.5}$ 如下的一个 Soft-max 形式

$$\pi(s, j, a; \theta, \beta) = \frac{\exp(\beta \theta^T \phi_{s, j, a})}{\sum_{a' \in \mathcal{A}} \exp(\beta \theta^T \phi_{s, j, a'})}, \quad (7)$$

其中 $\pi(s, j, a; \theta, \beta)$ 表示当系统状态为 s 且 d-1 6390 个共同博弈者中有 j 个个体选择行动 C 时,行动更 624.5 新的博弈者选择行动 $a \in A$ 的概率, $\beta \in [0, +\infty)$ 表 810.1 示选择强度参数或适应率参数 [108], $\theta \in \mathbb{R}^L$ 是一个 L 681.2 维的列向量,表示策略学习参数, $\phi_{s,j,a} \in \mathbb{R}^L$ 是一 681.2 个 L 维的特征向量,刻画了当系统状态为 s 且 d-1 681.2 个共同博弈者中有 j 个个体选择行动 C 时,行动更 551.8 新的博弈者采取行动 $a \in A$ 的特征. 在博弈进行过 537.4 程中,式 (7) 中的学习参数 θ 将根据每轮博弈的收 623.0 益结果以 Actor-critic 强化学习 [207-208] 的方式进行 606.5 实时更新. 特别地,文献 [206] 通过分析博弈者群体 694.1 决策的长期演化结果发现,在弱选择条件下,群体 479.7 中行动为 C 的博弈者比例大于行动为 D 的博弈者 165.3 比例当且仅当存在一组依赖状态 $s \in S$ 的矩阵 $\Phi_s \in 80.5$ $\mathbb{R}^{L \times d|S|}$ 和 $\Lambda_s \in \mathbb{R}^{L \times d|S|}$ 以及一个常系数 e 使得

$$\sum_{s \in \mathcal{S}} \mu_{\pi}(s) \theta^{*T} \Phi_{s} \boldsymbol{Y} + \sum_{s \in \mathcal{S}} \mu_{\pi}(s) \theta^{*T} \Lambda_{s} \boldsymbol{Z} + e > 0,$$

其中 $Y := [\vec{\mathfrak{a}}(s^1), \vec{\mathfrak{a}}(s^2), \cdots, \vec{\mathfrak{a}}(s^{|S|})]^T$ 和 $Z := [\vec{\mathfrak{b}}(s^1), 8860]$ $\vec{\mathfrak{b}}(s^2), \cdots, \vec{\mathfrak{b}}(s^{|S|})]^T$,|S| 表示集合S 的势, $\vec{\mathfrak{a}}(s^2) := 9730$ $[\mathfrak{a}_0(s^2), \mathfrak{a}_1(s^2), \cdots, \mathfrak{a}_{d-1}(s^2)], \ \vec{\mathfrak{b}}(s^2) := [\mathfrak{b}_{d-1}(s^2), \mathfrak{b}_{d-2}(s^2), 8860]$ $\cdots, \mathfrak{b}_0(s^2)], \ \forall s^2 \in S, \ i = 1, 2, \cdots, |S|, \ \mu_{\pi}(\cdot)$ 表示系 9429 统状态在策略 π 下的平稳分布, θ^* 是学习参数 θ 在9284 博弈进行无穷轮后的极限值 (Actor-critic 强化学习 9140 算法的收敛性保证了 θ 极限值的存在). 此外,通过 9966 比较有无学习机制作用下的数值仿真结果,该文还 2852 发现,学习机制的存在能够有效提升博弈者在动态 2708 社会困境博弈环境中的适应性.

2.3 强化学习

强化学习是人和动物普遍使用的一种学习方。 式,它在不同的学科范畴内(比如认知神经科学和 5002 计算机科学)具有不同的解释和定义[197].但如果仅

L								16
L	表 2 d 人随机博弈的收益表							
-	Table 2	The payoff tal	ole of	d-player stocha	stic games			14
Γ	d-1个共同博弈者中行动为 C 的博弈者个数	d -	- 1		Ĵ		0	
ſ	行动为 C 的博弈者的收益	\mathfrak{a}_{d-}	$_{1}(s)$		$\mathfrak{a}_{\jmath}(s)$		$\mathfrak{a}_0(s)$	
	行动为 D 的博弈者的收益	\mathfrak{b}_{d-}	$_{1}(s)$		$\mathfrak{b}_{\jmath}(s)$		$\mathfrak{b}_0(s)$	

287.225 542.8

从计算的角度来讲,一般认为强化学习的数学基础。 是 Markov 决策过程. 正如图 1 所示. 标准的 Markov, 45.5 决策过程是随机博弈在单智能体场景下的退化情态。 形, 它主要由两部分构成, 一部分称为智能体, 另一,。。 部分称为"系统"(或"环境"). 在每一离散决策时~~; 刻t > 0. 系统将处于状态集 S 中的某一个状态 $S_t \in S_{core}$ 随后,智能体将根据它的策略 $\pi: S \to A$ 从其行动。 空间 A 中选择一个行动 $\pi(s_t) = a_t \in A$ 并执行. 作 $\epsilon_{t} \in A$ 为该行动的一个直接结果, 系统将以概率 $P(s_{t+1})$ s_t, a_t) 从当前状态 s_t 转移到下一时刻的状态 s_{t+1} 695 同时, 作为上述行动和系统状态转移的共同结果。。 智能体将从当前的决策中获得一个即时的收益值或。。。 回报值 $r(s_t, a_t, s_{t+1})$, 其中 $r: S \times A \times S \rightarrow \mathbb{R}$ 是该5660 智能体的收益函数或回报函数. 上述决策过程随着。11.4 时间不断地重复进行,从而构成了一个有限时间或。56.0 者无限时间的 Markov 决策过程, 这里的 "Markov"。 是指系统状态的转移具有 Markov 属性[169].10

在上述序贯决策过程中, 智能体的目标是找到 $_{5136}$ 一个策略 $_{\pi}: S \to A$ 使得其长期的累积期望收益 $_{5136}$ $V_{\pi}(s)$, $\forall s \in S$ 最大化. 与式 (3) 相类似, 为了保证 $_{5136}$ 4554 如下的折扣形式

$$V_{\pi}(s) = \mathbf{E}_{a_t \sim \pi(s_t), s_{t+1} \sim P(\cdot | s_t, a_t)}$$

$$\left\{ \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, s_{t+1}) \mid s_0 = s \right\} =$$

$$\sum_{s' \in \mathcal{S}} P(s' | s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V_{\pi}(s') \right], \quad \forall s \in \mathcal{S}.$$

因为 $V_{\pi}(s)$ 是一个关于初始状态 $s \in S$ 的函数, 所以在 30.3 强化学习的文献中, 它也称为状态值函数. 为了找到 30.3 值函数 $V_{\pi}(s)$ 的最优策略 π^* , 即 $\pi^* \in \arg\max_{\pi \in \Omega} V_{\pi}(s)$ 30.4 $\forall s \in S$ (其中 Ω 是 π 的可行集), 传统上一种常用的 20.3 方法是动态规划方法 [210]. 以该类方法中的值迭代 27.8 (Value iteration) [196-197, 211] 为例, 它的一个基本思路 21.4 是: 首先利用一个值函数迭代过程

$$V(s) \leftarrow \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \left[r(s, a, s') + \gamma V(s') \right], \ \forall s \in \mathcal{S},$$

$$(8)$$

来获得最优策略 π^* 对应的值函数 $V^*(s) := V_{\pi^*}(s) = 180.4$ max $_{\pi \in \Omega} V_{\pi}(s)$, $\forall s \in S$; 然后, 借助得到的 $V^*(s)$ 计算 180.8 一个 Q 值函数 $Q^*(s, a) := Q_{\pi^*}(s, a)$, 这里 $Q_{\pi^*}(s, a)$ 1812 是策略 π^* 对应的 Q 值函数, 其定义为

从控制论的角度上讲, Markov 决策过程中的智能体一般被视为是控 109 制器, 而 "系统" (或 "环境") 则被视为是受控对象. 因此, Markov 决策 1104 过程也称为 "受控 Markov 过程" [200].

$$Q_{\pi^*}(s, a) := \mathbf{E}_{s' \sim P(\cdot | s, a)} \{ r(s, a, s') + \\ \gamma V_{\pi^*}(s') \mid s_0 = s, a_0 = a \} = \\ \sum_{s' \in \mathcal{S}} P(s' | s, a) [r(s, a, s') + \\ \gamma V^*(s')], \quad \forall s \in \mathcal{S}, \forall a \in \mathcal{A}.$$

因为 V*(s) 满足 Bellman 最优性方程[210]

$$V^*(s) = \max_{a \in \mathcal{A}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \left[r(s, a, s') + \gamma V^*(s') \right], \quad \forall s \in \mathcal{S},$$

所以 $V^*(s) = \max_{a \in \mathcal{A}} Q^*(s, a)$. 因此,最优策略 π^*_{enc} 2 可选取为 $\pi^*(s) \in \arg\max_{a \in \mathcal{A}} Q^*(s, a), \forall s \in \mathcal{S}$.

2.3.1 单智能体强化学习

虽然动态规划方法能有效地找到 Markov 决策5565 过程的最优策略, 但由式 (8) 可以发现, 该类方法需5420 要明确的模型信息, 比如回报函数 $r(\cdot)$ 和状态转移5772 概率分布函数 $P(\cdot)$. 然而, 在大量工程应用, 比如自5122 动驾驶、无人机编队和多机器人协作中, 明确的模5722 型信息通常是一种理想化的条件. 为了弥补这一不5423 足, 学者们于是提出了一类无模型的 (Model-free) 6775 强化学习方法[197, 211-212], 即智能体利用实时与外部环526 境交互所获得的激励信号来学习一个最优策略. 基578 于算法迭代对象的不同, 目前主流的强化学习方法5229 主要可分为两类[49-50]: 基于值函数的 (Value-based) 681 方法和基于策略的 (Policy-based) 方法. 11 5326

迭代一个 Q 值表 Q(s, a), $\forall (s, a) \in S \times A$ 使得s₈₈₄ 其最终可以精确地或近似地收敛到 $Q^*(s, a)$ 是基于s₈₃₄ 值函数方法的一个基本思想. 在该类方法中, 一个s₄₈₄ 著名的算法是所谓的 Q 学习^[85-86], 其迭代表达式为 s₃₃₅

$$Q(s, a) \leftarrow Q(s, a) +$$
 sho Q fits

时序差分误差 $\alpha \underbrace{ \left[r(s, a, s') + \gamma \max_{a' \in \mathcal{A}} Q(s', a') - \underbrace{Q(s, a)}_{\text{旧的 Q 值表}} \right],}_{\text{时序差分目标}}$

其中 $\alpha > 0$ 为学习率参数, r(s, a, s') 表示智能体采282取行动 a 并且系统状态从 s 转移到 s' 后获得的收益232值(它是系统(或环境)反馈给智能体的激励信1824号). ¹² 然而, 由于随着状态空间和行动空间的增加,1835Q 值表所需的存储空间和计算资源会呈指数增长,1887

文献 [197] 将目前的强化学习方法划分为表格解方法 (Tabular solu-sea tion method) 和近似解方法 (Approximate solution method). 121

上在强化学习算法中,函数 $r(\cdot)$ 的具体形式并不需要明确的已知,它的 316 某一个取值 r(s, a, s') 是系统 (或环境) 反馈给智能体的,并且智能体 311 并不知道 $r(\cdot)$ 的具体形式. 为了行文简洁, 本文并没有在符号形式上突 104 出这一点.

所以该类方法通常无法处理大规模 (Large-scale) 2600 决策问题. 为了弥补这一不足, 目前一种可行的方 2455 法是在基于值函数的方法中引入神经网络作为函数 2510 似 (即深度强化学习) [90, 213] 或者使用 Monte-Ca-2160 树搜索的方法 [214-215]. 除此之外, 另一种可行的方 2627 法是基于策略的方法.

该方法的一个基本思想是,利用参数 θ 将策略 $\beta 732$ 函数 π 参数化为 π_{θ} 以便在整个策略空间中搜索 $\beta 643$ 最优的策略. 基于该思想,一个基本的算法是梯度 $\beta 643$ 上升算法,即沿着策略 π_{θ} 对应的长期累积期望回 $\beta 643$ 报 $J(\theta) := \mathbf{E}_{a_t \sim \pi_{\theta}(s_t), s_{t+1} \sim P(\cdot|s_t, a_t)}$ { $\sum_{t=0}^{\infty} \gamma^t r \left(s_t, a_t, s_{t+1}\right)$ } 的梯度方向来搜索最优的策略

$$\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta).$$
 (9)

特别地, 在适当的条件下, 式 (9) 中的梯度 $\nabla_{\theta}J(\theta)$ sss 可由 Sutton 等推导的策略梯度定理 (Policy gradient theorem) [207-208] 给出, 即

$$\nabla_{\theta} J(\theta) = \mathbf{E}_{s \sim \mu_{\pi_{\theta}}(\cdot), \, a \sim \pi_{\theta}(s)} \left\{ \nabla_{\theta} \log \pi_{\theta}(s) \cdot Q_{\pi_{\theta}}(s, \, a) \right\}, \tag{10}_{\text{\tiny M91.8}}$$

其中 $\mu_{\pi_{\theta}}(\cdot)$ 是系统状态在策略 π_{θ} 下的平稳分布。475.4 $Q_{\pi_{\theta}}(s,a)$ 是策略 π_{θ} 对应的 Q 值函数. 由于式 (10) 4608 中的 $Q_{\pi_{\theta}}(s,a)$ 是未知的, 所以在该算法的具体实施4462 过程中, $Q_{\pi_{\theta}}(s,a)$ 的值通常需要借助一些近似方法。4316 来估计. 例如, 在著名的 Actor-critic 算法[207-208] 中,417.0 $Q_{\pi_{\theta}}(s,a)$ 的值在参数 θ 更新过程中是通过一个选定 402.6 参数化形式的 Q 值函数 $Q_{\omega}(s,a)$ 来估计的, 其中参 888.0 数 ω 的更新过程是借助时序差分学习 (Temporal 573.4 difference learning) 来实现的, 即

$$\omega \leftarrow \omega + \alpha_{\omega}[r(s, a, s') + \gamma Q_{\omega}(s', a') - Q(s, a)] \nabla_{\omega} Q_{\omega}(s, a),$$

这里 $\alpha_{\omega} > 0$ 表示参数 ω 的学习率. 另外, 通过改进 100.4 上述基于策略梯度定理的梯度上升算法, 最近的相 2020 关文献也相继提出了一些其他形式的基于策略的学 2775 习算法, 比如确定性策略梯度算法 $DPG^{[216]}$ 、深度确定 2486 性策略梯度算法 $DDPG^{[217]}$ 、信赖域策略优化算法 2486 TRPO $^{[218]}$ 、近端策略优化算法 $PPO^{[219]}$ 、异步优势 2442 Actor-critic 算法 $A3C^{[220]}$ 和软 Actor-critic 算法 $SAC^{[221]}$ 等.

2.3.2 多智能体强化学习

标准的 Markov 决策过程刻画的只是单个智能 1723 体面临的序贯决策问题. 如果实际的决策问题是由 1578 多个智能体构成, 那么这一模型框架的适用范围将 1434 受到极大限制. 有鉴于此, 目前数学上为了描述多 1283 智能体序贯决策问题, 一种普遍使用的模型框架是 1145 Markov 决策过程在多智能体场景下的拓展形式, 1900

即随机博弈 (也称为 Markov 博弈). 相应地, 为了 6000 寻找随机博弈这类多智能体场景下的最优决策, 上 7453 述两类单智能体强化学习算法也可拓展到多智能体 7907 情形中.

对应于基于值函数的方法,如果随机博弈中的_{701.4} 博弈者是完全合作的,即此时的博弈是一个团队随_{886.8} 机博弈,那么单智能体的 Q 学习运用到多智能体场_{672.2} 景中只需将单个智能体的行动修改为所有智能体的 行动组合^[222-223],即

$$Q(s, \mathbf{a}) \leftarrow Q(s, \mathbf{a}) + \alpha[r(s, \mathbf{a}, s') + \gamma \max_{\mathbf{a}' \in \mathcal{A}} Q(s', \mathbf{a}') - Q(s, \mathbf{a})],$$

其中 a 和 A 分别表示所有智能体的行动组合和行 动组合空间. 相较而言, 如果随机博弈中的博弈者 是完全竞争的, 即此时的博弈是一个两人零和随机 博弈, Minimax-Q 学习是单智能体的 Q 学习运用 到完全竞争的博弈环境中的一种拓展形式^[35], 即对 5256 于博弈者 1, 其 Q 值表的迭代表达式为

$$Q(s, (a_1, a_2)) \leftarrow Q(s, (a_1, a_2)) + \alpha[r(s, (a_1, a_2), s') + \gamma \max_{a'_1 \in \mathcal{A}_1} \min_{a'_2 \in \mathcal{A}_2} Q(s', (a'_1, a'_2)) - Q(s, (a_1, a_2))],$$

其中 a_i 和 A_i 分别表示博弈者i (i=1,2) 的行动和 $a_{50,1}$ 行动空间. 除此之外,如果随机博弈中的博弈者既 $a_{50,7}$ 不是完全合作的,又不是完全竞争的,即此时的随 $a_{50,7}$ 机博弈为一般和随机博弈,那么单智能体的 Q 学习 $a_{50,1}$ 运用到多智能体场景中就需要借助非合作博弈论的 $a_{51,5}$ 结果. 例如,在 Nash-Q 算法 $a_{50,7}$ 中,每个博弈者 $a_{51,7}$ 维持如下一个 Q 值表的迭代

$$Q^{i}(s, \mathbf{a}) \leftarrow Q^{i}(s, \mathbf{a}) + \alpha[r(s, \mathbf{a}, s') + \gamma \cdot \mathbf{eval}_{i} \{Q_{\bullet}(s', \cdot)\} - Q^{i}(s, \mathbf{a})],$$

其中 $Q^i(s, \boldsymbol{a})$ 表示博弈者 i 在状态 s 和所有博弈 aff 动组合 a 下的 Q 值函数, $eval_i\{Q_{\bullet}(s', \cdot)\}$:= 928 $V^i_{\mathbf{NE}\{Q_{\bullet}(s', \cdot)\}}(s')$,这里 $Q_{\bullet}(s', \cdot)$ 表示系统状态为 s' 时 properators 的 Q 值表, $\mathbf{NE}\{Q_{\bullet}(s', \cdot)\}$ 表示通过 $Q_{\bullet}(s', \cdot)$ 计算得 2824 到的 Nash 均衡策略, $V^i_{\mathbf{NE}\{Q_{\bullet}(s', \cdot)\}}(s')$ 表示当所有 2476 博弈者的策略组合为 Nash 均衡策略 $\mathbf{NE}\{Q_{\bullet}(s', \cdot)\}$ 29221 时,博弈者 i 从初始状态 s' 出发所能获得的长期累 2174 积期望收益。值得注意的是,在适当的条件下,上述 2028 三类基于值函数的多智能体强化学习算法在理论上 1881 均能保证收敛 $Q^{(5, 3), 222-223}$

对应于基于策略的方法,上述单智能体的梯度。 上升算法拓展到多智能体场景中的一个基本思路。 443 是:首先将每个博弈者i的策略 π_i 借助参数 θ_i 参数。 256 化为 π_{i,θ_i} ,然后沿着每个博弈者i的长期累积期望。 回报 $J^i(\theta) := \mathbf{E}_{\mathbf{a}_i \sim \pi_{\mathbf{a}}(s_i), s_{i+1} \sim P(\cdot|s_i, \mathbf{a}_i)} \{\sum_{t=0}^{\infty} \gamma^t r_i(s_t), s_{t+1} \sim P(\cdot|s_t, \mathbf{a}_t) \}$

 a_t, s_{t+1})} 的梯度方向更新参数 θ_i , 即

$$\theta_i \leftarrow \theta_i + \alpha_i \nabla_{\theta_i} J^i(\boldsymbol{\theta}),$$
 (11)

其中 α_i 表示对应于博弈者i的学习率参数, θ 表示。 所有 θ_i 构成的参数组合, π_{θ} 表示所有博弈者的策。 略 π_{i,θ_i} 构成的策略组合. 特别地, 在适当的条件下,。。。 式 (11) 中 $\nabla_{\theta_i}J^i(\theta)$ 可由策略梯度定理在多智能体。。。 场景下的推广形式给出 $^{[i0]}$, 即

$$\begin{split} \nabla_{\theta_i} J^i(\boldsymbol{\theta}) &= \mathbf{E}_{s \sim \mu_{\boldsymbol{\pi_{\boldsymbol{\theta}}}}(\cdot),\, \boldsymbol{a} \sim \boldsymbol{\pi_{\boldsymbol{\theta}}}(s)} \\ &\left\{ \nabla_{\theta_i} \log \pi_{i,\,\theta_i}(s) \cdot Q_{\boldsymbol{\pi_{\boldsymbol{\theta}}}}^i(s,\, \boldsymbol{a}) \right\}, \end{split}$$

其中 $\mu_{\pi_{\theta}}(\cdot)$ 表示系统状态在策略组合 π_{θ} 下的平稳。。。 分布, $Q_{\pi_{\theta}}^{i}(s,a)$ 表示博弈者i 在策略组合 π_{θ} 下的。。 Q 值函数.

虽然多智能体强化学习相比于单智能体强化学。25。 习具有一些显著优势,比如具有更宽的适用范围。27。 更高的鲁棒性和容错性,并且可以使用通信进行经。35.3 验分享等[47, 224],但它也面临着比单智能体强化学习。18.7 更多更难的挑战,比如维数灾难 (The curse of di-so.1 mensionality) 和可扩展性 (Scalability) 问题、非平48.5 稳性 (Non-stationarity) 问题、部分可观性 (Par-474.9 tial observability) 和不完全信息 (Incomplete in-48.3 formation) 问题、不确定性 (Uncertainty) 和安全4.5.7 性 (Safety and security) 问题、协调 (Coordina-49.1 tion) 和异质性 (Heterogeneity) 问题、可解释性4.6.5 (Explainability) 问题,以及探索与利用之间的权衡48.2.0 性 (Exploration-exploitation trade-off) 问题等 (这387.4 些问题的最新相关研究进展可参见文献 [47, 49-50,372.8 186, 225-232]).

2.4 鲁棒学习

标准的单智能体和多智能体强化学习虽然能有。15.8 效地处理 Markov 决策过程和随机博弈描述的序贯。12 决策问题, 但它们并没有考虑诸如参数摄动、建模28.6 误差、外界干扰和结构变化等带来的系统不确定性27.0 问题. 为了进一步处理这类含不确定性的序贯决策27.4 问题, 目前一种有效的方法是在标准的强化学习算28.8 法基础上发展鲁棒方法, 即所谓的鲁棒强化学习[233] 13,28.2

与标准的强化学习方法相类似,鲁棒强化学习238 也是一类多领域交叉的研究方法,它与鲁棒优化、1891 鲁棒控制和博弈论都有着紧密的联系[233-234].具体1845 地,从数学上讲,它的模型框架是一类称为鲁棒 Mar-1893 kov 决策过程 (也称为不确定 Markov 决策过程) 的1853 模型[235-236]. 所谓鲁棒 Markov 决策过程是指一类含1407 不确定参数的 Markov 决策过程. 例如,在该类模形。 "本文这部分主要专注介绍鲁棒强化学习,未涉及鲁棒学习中的诸如鲁1104 棒深度学习等其他内容. 型中,一种典型的设置是假定标准的 Markov 决策 7600 过程的状态转移概率分布函数 P 不是给定的,而是 765 属于一个不确定集 \mathcal{P} . 在该设置下,为了获得鲁棒 761 Markov 决策过程的一个最优策略,一种常用的方 7667 法是鲁棒优化方法 [179] 或者鲁棒控制方法 [237],即在 762 不确定参数最坏的情况下求解一个最优策略。在相 687 8 关文献中,该策略也称为鲁棒最优策略。具体来讲,673 4 对于一个具有不确定状态转移概率分布函数 $P \in \mathcal{P}$ 6500 的 Markov 决策过程, π_r^* 是其一个鲁棒最优策略当 646 且仅当

$$\pi_r^*(s) \in \arg\max_{\pi \in \Omega} \left\{ \min_{P \in \mathcal{P}} \mathbf{E}_{a_t \sim \pi(s_t), s_{t+1} \sim P(\cdot | s_t, a_t)} \right.$$

$$\left. \left\{ \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, s_{t+1}) \mid s_0 = s \right\} \right\}, \quad \forall s \in \mathcal{S}.$$

$$(12)$$

传统上, 为了找到该鲁棒最优策略, 一种常用的方。 法是鲁棒动态规划方法^[238-239], 比如鲁棒值迭代。 (Robust value iteration, RVI) 算法和鲁棒策略迭。 代 (Robust policy iteration, RPI) 算法^[238-239]. 具体。 地, 对于 RVI 算法, 它的值函数迭代表达式为

$$V(s) \leftarrow \max_{a \in \mathcal{A}} \left\{ \min_{P \in \mathcal{P}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \left[r(s, a, s') + \gamma V(s') \right] \right\}, \ \forall s \in \mathcal{S}.$$

$$(13)_{steep}$$

而对于 RPI 算法, 它的策略迭代过程主要包含两。。 步: 第1步借助 Bellman 方程

$$V(s) = \min_{P \in \mathcal{P}} \left\{ \sum_{s' \in \mathcal{S}} P(s'|s, \pi(s)) \left[r(s, \pi(s), s') + \gamma V(s') \right] \right\}, \ \forall s \in \mathcal{S},$$

求解一个给定策略 π 对应的值函数V(s), $\forall s \in S_3$ 4.7 (该步骤的求解可通过标准的动态规划方法来实 50.2 现);第 2 步利用得到的值函数 V(s) 获得一个提升28.8 的策略 π' ,即

$$\pi'(s) \in \arg\max_{a \in \mathcal{A}} \left\{ \min_{P \in \mathcal{P}} \sum_{s' \in \mathcal{S}} P(s'|s, a) \left[r(s, a, s') + \gamma V(s') \right] \right\}, \quad \forall s \in \mathcal{S},$$

$$(14)_{2032}$$

然后,令 $\pi = \pi'$ 并回到第 1 步;最后,当 π 收敛到鲁¹⁸⁶⁸棒最优策略时,迭代停止.特别地,上述 RPI 算法;¹⁷²⁴的思想也是著名的生成对抗网络 GAN^[240]的基本思,¹⁷³⁹想.虽然当不确定集P满足"垂直性"(Rectangu-¹⁸³⁵larity property)时(即对不同的状态—行动对(s, a),¹⁷²¹ $P(\cdot \mid s, a)$ 所在的不确定集是相互独立的并且与历¹¹⁴⁵史访问的状态和行动无关), RVI 算法和 RPI 算法¹⁸⁰⁰

都将收敛到一个鲁棒最优策略[^{238-239]}. 但它们也存在‱ 着一些不足之处. 例如, RVI 算法通常收敛较慢,,453 而 RPI 算法由于需要求解 Bellman 方程, 计算量通₇₀₀₆ 常较大. 为了进一步优化这两个算法, 文献 [241] 提。 出了鲁棒修正策略迭代 (Robust modified policy,,,,,, iteration, RMPI) 算法, 进而给出了这两个算法的‱。 一个统一形式.

由式 (13) 和式 (14) 可以发现, 鲁棒动态规划。572 方法本质上是一种极大极小化的方法, 或者说它是。425 一种在最坏情况下求最优解的方法. 因为这类方法。??。 只考虑在不确定参数最坏的情况下求解一个最优性。 能指标, 所以它是一种比较保守的 (Conservative)。。。。 方法. 为了弥补这一不足, 后续的相关研究在这方。。。。 面进行了一些改进,从方法论上讲,它们主要可分。 为 3 类. 第 1 类为折衷 (Trade-off) 的方法^[242-244]. 该_{554.} 类方法的基本思想是,首先将不确定参数名义上的。。。 (Nominal) 性能指标和最坏情况下的性能指标进行。25.1 组合, 然后将组合后的结果作为最终的目标性能指。104 标. 第2类方法主要以放宽垂直性假设为目标. 例。55.7 如, 通过放宽垂直性假设, 文献 [245] 和文献 [246]。。。 分别提出了一类 k 垂直性不确定集 (k-rectangular.... uncertainty set) 方法和一类因子矩阵不确定集。51.7 (Factor matrix uncertainty set) 方法. 第 3 类为分。37.0 布鲁棒优化 (Distributionally robust optimiza-4223 tion) 方法^[247-248]. 该类方法的一个基本思想是, 在不_{407.6} 确定参数 P 的概率分布 D。属于不确定集 Ua 的情。。。 况下, 将鲁棒最优策略 π* 所需满足的条件 (12) 修σαι 改为

 $\pi_r^*(s) \in \arg\max_{\pi \in \Omega} \min_{D_p \in \mathcal{U}_d} \mathbf{E}_{P \sim D_p}$

$$\begin{cases}
\mathbf{E}_{a_t \sim \pi(s_t), s_{t+1} \sim P(\cdot | s_t, a_t)} \begin{cases} \sum_{t=0}^{\infty} \gamma^t r(s_t, a_t, s_{t+1}) \\ t = 0 \end{cases}$$

 $|s_0 = s\}\}, \forall s \in \mathcal{S}.$

由式 (15) 可以看出, 分布鲁棒优化方法将最坏情况。。。 下的性能指标修改成了风险最小化 (Risk minimiz-2468 ation) 或风险厌恶 (Risk averse) 的性能指标.

然而, 与标准的动态规划方法相类似, 一方面, 2174 当 Markov 决策过程的状态空间和行动空间非常大。。28 时, 鲁棒动态规划方法同样会面临维数灾难问题; 另一方面, 鲁棒动态规划方法也需要准确的模型信 息. 为了弥补这两方面的不足, 目前一种有效的方。587 法是基于鲁棒动态规划方法发展无模型的强化学习。440 方法. 例如. 通过引入线性函数近似. 文献 [249] 和 294 文献 [250] 分别提出了一类鲁棒近似动态规划算法。 和一类鲁棒近似修正策略迭代学习算法; 而文献 [251] 提出了一类鲁棒最小二乘策略评估学习算法和一类 鲁棒最小二乘策略迭代学习算法. 除了线性函数近455 似方法之外, 文献 [252-254] 和文献 [255] 通过借助。。 深度神经网络这一非线性函数近似方法, 分别提出,467 了一类鲁棒对抗强化学习算法和一类鲁棒最大后验。。。 策略优化算法. 另外, 为了求解分布鲁棒优化意义。87.8 下的鲁棒最优策略, 文献 [256] 和文献 [257] 分别提。734 出了一类分布鲁棒策略迭代学习算法和一类分布鲁。。。。 棒离线强化学习算法.

上述介绍的几类鲁棒强化学习算法虽然能较好。 地弥补鲁棒动态规划方法关于模型信息要求的不品。 足,但它们大部分考虑的问题仍是单智能体的序贯。。13 决策问题. 与标准的 Markov 决策过程在多智能体。。。。 场景下的随机博弈形式相类似, 鲁棒随机博弈是鲁5724 棒 Markov 决策过程在多智能体场景下的拓展形。。。。 式. 为了研究这类多智能体场景下的不确定序贯决。43.6 策问题, 当前一些相关工作也提出了一些鲁棒多智。292 能体强化学习算法. 例如. 为了找到鲁棒随机博弈。447 的鲁棒 Markov 完美均衡, 文献 [258] 分别提出了一‱。 个鲁棒多智能体 Q 学习算法和一个鲁棒多智能体***。 Actor-critic 学习算法. 而文献 [259] 考虑了一类鲁森 棒团队随机博弈 $\mathcal{G}_{rts} = \{\mathcal{N}, \mathcal{S}, \{A_i\}_{i \in \mathcal{N}}, \bar{r}, \mathcal{P}, \Gamma\}$ $\mathcal{N} := \{1, 2, \dots, n\}$. 相较于标准的随机博弈 $\mathcal{G}_s =$ $\{\mathcal{N}, \mathcal{S}, \{A_i\}_{i \in \mathcal{N}}, \{r_i\}_{i \in \mathcal{N}}, P, \Gamma\}$, 该文提出的鲁棒团 $_{28.0}$ 队随机博弈 \mathcal{G}_{rts} 具有两方面的显著差异: 一方面 $_{^{413.4}}$ 博弈中的状态转移概率分布函数 P 不是给定的, 而。。。 是属于不确定集 \mathcal{P} , 即 $P \in \mathcal{P}$; 另一方面, 对于任意的8846 博弈者 $i \in \mathcal{N}$,它的决策目标是在 $P \in \mathcal{P}$ 最坏的情况 $_{370,1}$ 下,最大化整个团队的平均收益 $\bar{r} = \sum_{i=1}^{n} r_i/n$ 的长₈₅₅₇ 期累积期望值 $\overline{V}_{(\pi_i,\pi_{-i})}(s;P)$, 而不是最大化其自身的 $_{*40.9}$ 收益 r_i 的长期累积期望值 $V^i_{(\pi_i,\pi_{-i})}(s;r_i,P)$. 类似于 925,9 $V^{i}_{(\pi_{i},\pi_{-i})}(s;r_{i},P)$ 的计算表达式 $(3),\ \overline{V}_{(\pi_{i},\pi_{-i})}(s;P)$ 的计算表达式为

$$\overline{V}_{(\pi_i, \pi_{-i})}(s; P) = \mathbf{E}_{\boldsymbol{a}_t \sim (\pi_i, \pi_{-i})(s_t), s_{t+1} \sim P(\cdot | s_t, \boldsymbol{a}_t)}$$
$$\left\{ \sum_{t=0}^{\infty} \gamma^t \overline{r}(s_t, \boldsymbol{a}_t, s_{t+1}) \mid s_0 = s \right\}.$$

为了求解鲁棒团队随机博弈 \mathcal{G}_{rst} 在鲁棒优化意义下 $_{ ext{200}}$ 的最优策略 (即在不确定参数 P 最坏情况下的最优206.4 团队策略), 该文定义了一个称为"鲁棒团队最优策。。。 略" (Robust team-optimal policy) 的博弈解概念,775 即策略组合 $\pi^* := (\pi_1^*, \pi_2^*, \cdots, \pi_n^*)$ 是 \mathcal{G}_{rst} 的一个_{63.1} 鲁棒团队最优策略当且仅当

$$\pi^* \in \arg\max_{\pi} \left\{ \min_{P \in \mathcal{P}} \overline{V}_{\pi}(s; P) \right\}, \ \forall s \in \mathcal{S},$$

这里 $\boldsymbol{\pi} := (\pi_1, \pi_2, \dots, \pi_n)$. 随后, 为了找到该鲁棒

团队最优策略,该文基于"集中式学习分布式实施"。(Centralized learning with decentralized execu-vs3 tion) 的算法框架提出了一个鲁棒团队策略迭代学。。习算法,并在适当的条件下证明了该算法的收敛性。760 特别地,相比于 RVI、RPI 和 RMPI 算法,该文提。13出的算法不仅能够利用近似计算来缓解大规模决策。26 问题中存在的维数灾难问题,而且还具有更快的收。20 效速率.

2.5 小结

对应于上节介绍的标准式博弈、演化博弈、随。447 机博弈和不完全信息博弈,本节主要梳理并介绍了...。 这4类基本博弈形式下的多智能体学习方法,即策。 略学习、学习动力学、强化学习和鲁棒学习.对应于。。。 标准式博弈, 本节主要介绍了策略学习这类多智能。 体学习方法,并重点对虚拟对弈学习过程进行了论。 述. 虚拟对弈是通过记录对手博弈者过去所采用行。**。 劫的频率来推断其策略的一种学习方法. 因此, 本。21 质上讲, 它是一类数据驱动的博弈学习方法. 然而,497.4 由于多智能体的学习环境通常会引发非平稳性问。 <u>题, 所以本节还简要地回顾了一些更为复杂的策略。</u> 学习方法, 比如忽视、遗忘、响应目标对手和心智理。 论等. 对应于演化博弈, 本节主要讨论了学习动力。 学这类交叉研究方法, 并重点介绍了 Cross 学习和444 Q 学习在无穷小策略更新步长条件下与复制动力学₄₉₈5 方程的等价性,此外,该部分还简要比较了统计物。。 理和 AI 这两个领域在该主题上的不同研究风格,302 并介绍了一个多智能体强化学习与随机性演化博弈。 动力学相结合的工作.对应于随机博弈,本节主要3008 讨论了单智能体强化学习与多智能体强化学习之间。*** 的联系与异同. 考虑到 Markov 决策过程是随机博。"。 了几类单智能体强化学习方法: 然后, 基于随机博士, 弈的模型框架, 集中对这几类单智能体强化学习算₂₇₅ 法在多智能体场景下的拓展形式进行了回顾. 最后,**。 对于不完全信息博弈,本节主要介绍了鲁棒 Markov2482 决策过程和鲁棒随机博弈之间的关系, 以及求解它2835 们的鲁棒动态规划、鲁棒强化学习和鲁棒多智能体。。。 强化学习方法.

3 博弈、学习与控制的交叉研究

由于目前博弈、学习与控制这一交叉研究领域。5.6 仍处于发展初期,不同主题之间的研究工作相对独。5.5 立,所以本节将主要按照不同专题的方式梳理并介。5.5 绍其中的几类典型研究成果,即基于最优控制的学。14.7 习与博弈、博弈控制系统、基于矩阵半张量积的博。60 弈控制论、分布式 Nash 均衡搜索和基于零行列式7000 策略的收益控制.

3.1 基于最优控制的学习与博弈

最优控制[237, 260-261] 是一类在特定的约束条件下,7627 寻找控制输入使得动态系统的性能指标达到最优的8881 数学方法. 传统上, 该类方法的两个基本数学原理6734 分别是 Pontriagin 的极大值 (或者极小值) 原理和8887 Bellman 的动态规划理论[262], 其中前者为最优控制8484 问题的最优解提供了必要条件, 而后者通过求解6884 Hamilton-Jacobi-Bellman (HJB) 方程为最优控制8484 问题的最优解提供了充分条件. 然而, 由于这些传8601 统的方法一般都需要系统的完全信息, 所以它们通8864 常无法处理系统动力学存在不确定性的情况. 为了6708 弥补这一不足, 目前一种有效的方法是在最优控制8881 问题的求解过程中引入学习的技术, 比如连续时间8415 场景下的强化学习算法[54-55, 263] 和自适应动态规划8588 方法[264-265] 等. 该研究思路也是经典的"学习控制系522统"(Learning control system) 的基本思路[266]. 4975

具体地, 考虑一个连续时间动态系统14

$$\dot{x}(t) = f(x(t), u(t)),$$
 (16)

其中 $x \in \mathcal{D}_x \subset \mathbb{R}^{\kappa}$ 表示系统的状态, $u \in \mathcal{D}_u \subset \mathbb{R}^{\lambda}$ 表。7.9 示系统的控制输入或控制策略, $f: \mathcal{D}_x \times \mathcal{D}_u \to \mathbb{R}^{\kappa}$ 4.5.1 为一向量值函数. 基于动力学约束 (16),最优控制。6.5 求解的问题是,寻找一个控制输入 $u(t) = \mu(x(t))$ 使。6.5 得系统从初始状态 $x(t_0)$ 出发最小化整个时间区间。6.6 (t_0, ∞) 内的累积成本

$$V_{\mu}(x(t_0)) = \int_{t_0}^{\infty} \exp\left(-\frac{t - t_0}{\tilde{\gamma}}\right) \psi(x(t), u(t)) dt,$$

其中 $V_{\mu}(x(t_0))$ 表示在控制策略 $u(t) = \mu(x(t))$ 下从3.42 初始状态 $x(t_0)$ 出发的值函数; $\tilde{\gamma}$ 为一正常数, 表示3.62 未来成本的折现率; 对应于系统状态 x(t) 和控制输2.44 入 u(t), $\psi(x(t), u(t))$ 表示系统在连续时间 t 的即时2.66 成本. 对应于初始状态 $x(t_0)$, 记上述最优控制问题2.48 的最优控制输入为 $u^*(t) = \mu^*(x(t))$. 于是, 最优值2.60 函数 $V^*(x(t_0))$ 可写为

$$V^*(x(t_0)) = \min_{u(t)} \left\{ \int_{t_0}^{\infty} \exp\left(-\frac{t - t_0}{\tilde{\gamma}}\right) \psi(x(t), u(t)) dt \right\} = \int_{t_0}^{\infty} \exp\left(-\frac{t - t_0}{\tilde{\gamma}}\right) \psi(x(t), u^*(t)) dt.$$
(17)

将式 (17) 中的积分项按时间区间 $[t_0, t_0 + \Delta t]$ 和 (6) 除非特别说明,本节中的符号 t 专指连续时间,而不再表示博弈进行 (6) 的轮次

 $[t_0 + \Delta t, \infty]$ 划分为两部分之和, 随后利用最优性原₇₆₀₀ 理并令 $\Delta t \rightarrow 0$ 可得 HJB 方程为

$$\frac{1}{\tilde{\gamma}}V^*(x(t)) = \min_{u(t)} \left\{ \psi(x(t), u(t)) + \frac{\partial V^*(x(t))}{\partial x(t)} f(x(t), u(t)) \right\}.$$
(18)

因为最优控制 $u^*(t) = \mu^*(x(t))$ 是值函数 V^* 对应 的控制输入, 所以如果一旦知道 V^* , 那么由式 (18) 6390 HJB 方程可得

$$u^*(t) = \mu^*(x(t)) = \arg\min_{u(t)} \left\{ \psi(x(t), u(t)) + \frac{\partial V^*(x(t))}{\partial x(t)} f(x(t), u(t)) \right\}.$$

然而, 由式 (18) 可以看出, 获取值函数 V* 需要 551.8 求解一个偏微分方程,这在数学上通常是困难的.。373 为了解决这一难题,目前一种有效的做法是利用强。227 化学习算法来获得 HJB 方程的一个近似解. 例如.。。。 对于上述连续时间最优控制问题, 为了找到最优控。937 制输入 u*(t), 文献 [263] 提出了一个连续时间 Act-479.1 or-critic 强化学习算法和一个基于值函数的梯度学*645 习算法. 另外, 为了验证这两个算法的有效性, 该文。。。。 还分别在几个连续时间控制任务上进行了数值仿真495.4 并获得了良好的效果. 特别地, 当上述最优控制问。2009 题中的 $\tilde{\gamma}$ 、 $\psi(x(t), u(t))$ 和 f(x(t), u(t))分别取为 $\tilde{\gamma} =$ 406.4 ∞ , $\psi(x(t),u(t))=Q(x(t))+u^T(t)Ru(t)$ for $f(x(t),s_{0.1},t)$ $u(t) = \zeta(x(t)) + \varphi(x(t))u(t)$ 时,文献 [267] 研究了₃₇₆₈ 该类系统的最优调节问题 (Optimal regulation 🏎 problem), 即是否可以找到一个最优控制输入使得。47.6 值函数最小的同时系统的状态可收敛为0, 其中0。。。 表示适当维数的全0向量, Q(x(t))和R分别为非负。18.6 实数和正定矩阵 $(Q(x(t)) \ \ \exists \ x(t) = 0 \ \ \forall t \ \ \ \ \ \ \ \)$ $\zeta(x(t)) \in \mathbb{R}^{\kappa}$ 和 $\varphi(x(t)) \in \mathbb{R}^{\kappa \times \lambda}$ 分别表示系统的漂移 动态 (Drift dynamics) 和输入动态 (Input dynam-2744 ics). 为了求解这一问题, 该文基于 Actor-critic 算。。。。 法架构并借助神经网络作为值函数近似, 提出了一。453 个同策略 (On-policy) 积分强化学习算法, 并且在‱ 适当的条件下证明了该算法的收敛性. 然而, 由于2162 同策略的算法在训练时需要大量的数据样本, 所以。。17 在实际应用中,该类算法的数据利用率通常较低..... <u>为了弥补这一不足, 文献 [268] 在文献 [267] 的基础。₇₂₆</u> 上引入了经验回放 (Experience replay) 技术, 提出。58.1 了一个带经验回放的同策略积分强化学习算法. 而。436 文献 [269] 通过引入异策略 (Off-policy) 方法, 提出 129.1 了一个异策略积分强化学习算法.

上述连续时间最优控制问题处理的只是单个智。。。

能体面临的控制决策问题. 当系统的智能体数由单₇₈₀₀个变为多个时, 该单智能体最优控制问题可转变为₇₄₄₆一个微分博弈 (Differential game)^[270] 问题. 一般地₇₂₉₃一个 n 人微分博弈通常可描述为如下的一个多智能₇₄₀体最优控制问题^[271–272]

$$\min_{u_{i}(t)} \mathbf{J}_{i} = K_{i}(x_{v}(t_{f}), t_{f}) +
\int_{0}^{t_{f}} L_{i}(x_{v}(t), u_{1}(t), \dots, u_{n}(t), t) dt,
i = 1, 2, \dots, n,
\text{s.t. } \dot{x}_{v}(t) = f(x_{v}(t), u_{1}(t), \dots, u_{n}(t), t),
x_{v}(0) = x_{v}^{0},$$
(19)

其中 J_i 表示博弈者 i $(i = 1, 2, \dots, n)$ 的长期代价函 X_i 数, $u_i(t) \in \mathbb{R}^{\lambda_i}$ 表示博弈者 i 在连续时间 t 的控制输 X_i 。 X_i 。

特别地, 考虑上述微分博弈的一个二次型情形, 448.8 即每个博弈者 i 的长期代价函数和系统动力学分别为_{183.5}

$$\mathbf{J}_i = \int_0^\infty Q_i(x_v(t)) + \sum_{j=1}^n u_j^T(t) R_{ij} u_j(t) dt,$$
$$i = 1, 2, \dots, n,$$

和

$$\dot{x}_v(t) = \zeta(x_v(t)) + \sum_{j=1}^n \varphi_j(x_v(t))u_j(t),$$

其中 $\zeta(\cdot) \in \mathbb{R}^{\sum_{i=1}^{n} \kappa_i}, \ \varphi_j(\cdot) \in \mathbb{R}^{\sum_{i=1}^{n} \kappa_i \times \lambda_j}, \ \zeta(\mathbf{0}) = \mathbf{0},$ 803.1 $\zeta(x_v(t)) + \sum_{j=1}^{n} \varphi_j(x_v(t))u_j(t)$ 是局部 Lipschitz 的, 287.1 对任意的 $i = 1, 2, \dots, n, \ Q_i(\cdot)$ 和 R_{ii} 分别是非负实 271.2 数和正定矩阵,对于 $i \neq j, \ R_{ij}$ 是非负定矩阵. 对于 255.7 该二次型微分博弈,首先定义博弈者i 在控制组合 240.3 (u_1, u_2, \dots, u_n) 下对应于系统状态 $x_v(t)$ 的值函数 225.0 $V^i(x_v(t))$ 为

$$V_{(u_1, \dots, u_n)}^i(x_v(t)) =$$

$$\int_t^\infty Q_i(x_v(\epsilon)) + \sum_{j=1}^n u_j^T(\epsilon) R_{ij} u_j(\epsilon) d\epsilon,$$

$$i = 1, 2, \dots, n,$$

$$(20)_{133.5}$$

其中 $V^i_{(u_1,\dots,u_n)}(\mathbf{0}) = 0, i = 1, 2, \dots, n$. 随后在式 (20) 等号两端分别关于 t 求微分, 整理之后可得

$$Q_{i}(x_{v}(t)) + \sum_{j=1}^{n} u_{j}^{T}(t)R_{ij}u_{j}(t) + \frac{\partial V_{(u_{1}, \dots, u_{n})}^{i^{T}}(x_{v}(t))}{\partial x_{v}(t)} [\zeta(x_{v}(t)) + \sum_{j=1}^{n} \varphi_{j}(x_{v}(t))u_{j}(t)] = 0.$$

将上式等号左端的项定义为 Hamiltonian 函数

$$H_{i}\left(x_{v}, u_{1}, \cdots, u_{n}, \frac{\partial V_{(u_{1}, \cdots, u_{n})}^{i^{T}}(x_{v}(t))}{\partial x_{v}(t)}\right) =$$

$$Q_{i}(x_{v}(t)) + \sum_{j=1}^{n} u_{j}^{T}(t)R_{ij}u_{j}(t) +$$

$$\frac{\partial V_{(u_{1}, \cdots, u_{n})}^{i^{T}}(x_{v}(t))}{\partial x_{v}(t)} [\boldsymbol{\zeta}(x_{v}(t)) +$$

$$\sum_{j=1}^{n} \boldsymbol{\varphi}_{j}(x_{v}(t))u_{j}(t)],$$

$$u_i^*(t) =$$

$$\arg\min_{u_i(t)} H_i\left(x_v, u_1, \cdots, u_n, \frac{\partial V_{(u_1, \cdots, u_n)}^{i^T}(x_v(t))}{\partial x_v(t)}\right) =$$

$$-\frac{1}{2} R_{ii}^{-1} \boldsymbol{\varphi}_i^T(x_v(t)) \frac{\partial V_{(u_1, \cdots, u_n)}^i(x_v(t))}{\partial x_v(t)},$$

 $i=1, 2, \cdots, n.$

最后,将每个博弈者i的最优控制输入 $u_i^*(t)$ 代入到 $_{344}$ 上述 Hamiltonian 函数中,有耦合的 Hamilton-Jac- $_{356}$ obi (HJ) 方程为

$$Q_i(x_v(t)) + \frac{1}{4} \sum_{i=1}^n \frac{\partial V_{(u_1, \dots, u_n)}^{j^T}(x_v(t))}{\partial x_v(t)} \times$$

$$\varphi_j(x_v(t))R_{ij}^{-1}R_{ij}R_{ij}^{-1}\varphi_i^T(x_v(t))\times$$

$$\frac{\partial V^{j}_{(u_1,\,\cdots,\,u_n)}(x_v(t))}{\partial x_v(t)} + \frac{\partial {V^{i}^T}_{(u_1,\,\cdots,\,u_n)}(x_v(t))}{\partial x_v(t)} \Bigg\lceil \pmb{\zeta}(x_v(t)) -$$

$$\frac{1}{2} \sum_{j=1}^{n} \boldsymbol{\varphi}_{j}(x_{v}(t)) R_{jj}^{-1} \boldsymbol{\varphi}_{j}^{T}(x_{v}(t)) \frac{\partial V_{(u_{1}, \dots, u_{n})}^{j}(x_{v}(t))}{\partial x_{v}(t)} \bigg] = 0.$$

类似地, 考虑到该耦合的 H.J 方程为一个偏微分方。5.5 程, 文献 [273] 基于 Actor-critic 算法框架提出了一。5.4 个策略迭代强化学习算法用于求解其近似解, 并证 5.5 明了该算法将收敛到上述二次型微分博弈的一个 1.45 Nash 均衡.

虽然上述标准的微分博弈模型将单智能体最优7600 控制问题推广到了多智能体系统中,但它并没有考7600 虑博弈者之间的空间交互关系. 为了弥补这一不足,7118 文献 [274-275] 进一步将基于微分博弈的强化学习,778 框架扩展到了图博弈 (或网络博弈) 的研究中. 另7637 外, 考虑到在自然界和人类社会中, 智能体之间的6800 地位和分工并不是等同的, 而是具有层级结构的,6760 文献 [276] 研究了一类单领航者多跟随者的非线性6115 系统 Stackelberg 博弈, 并基于值函数迭代提出了6774 一个用于求解该博弈均衡策略的两层积分强化学习6334 算法.

3.2 博弈控制系统

博弈控制系统 (Game-based control system, 57.5 GBCS) [277-280] 是由两类不同的智能体组成的一个两5635 层控制系统, 其中上层是由单个智能体构成的宏观5604 调控者 (Regulator), 下层是由 n 个博弈者形成的一5048 个非合作微分博弈. 在进行决策时, 上层宏观调控5808 者首先进行决策, 随后下层的 n 个博弈者依从于上5602 层宏观调控者的决策作出最大化自身利益的决策...522 换句话讲, 上层宏观调控者并不实际地参与下层博弈者形成的博弈, 而是对下层的博弈进行调控以期5400 达到系统能控 (Controllability) 和可镇定 (Stabiliz-5600 ability) 等整体控制目标. 由于每个下层博弈者在4558 决策时都是追求自身利益最大化, 所以 Nash 均衡5718 通常是下层微分博弈的一个结果.

具体地,在该博弈控制系统中,所有智能体状。。。2 态的动力学方程为 3786

$$\begin{cases} \dot{x}(t) = f(X(t), u(t), U(t), t), \\ \dot{x}_{i}(t) = f_{i}(X(t), u(t), U(t), t), \\ x(0) = x_{0}, x_{i}(0) = x_{i, 0}, \\ i = 1, 2, \dots, n, t \in [0, t_{f}]. \end{cases}$$
(21)

其中 $X(t) := (x(t), x_1(t), \dots, x_n(t)), U(t) := (u_1(t), x_2668)$ $\dots, u_n(t)), x(t) \in \mathbb{R}^{\kappa}$ 和 $x_i(t) \in \mathbb{R}^{\kappa_i}$ 分别表示上层宏 $x_i \in \mathbb{R}^{\kappa_i}$ 观调控者和下层博弈者 i 在连续时间 t 的状态 $x_i \in \mathbb{R}^{\kappa_i}$ 和 $u_i(t) \in \mathbb{R}^{\lambda_i}$ 分别表示上层宏观调控者和 $x_i \in \mathbb{R}^{\kappa_i}$ 分别表示上层宏观调控者和 $x_i \in \mathbb{R}^{\kappa_i}$ 分别表示上层宏观调控者和 $x_i \in \mathbb{R}^{\kappa_i}$ 分别表示上层宏观调控者和 $x_i \in \mathbb{R}^{\kappa_i}$ 和 $x_i \in \mathbb{R}^{\kappa_i}$ 为别表示上层宏观调控者和 $x_i \in \mathbb{R}^{\kappa_i}$ 和 $x_i \in \mathbb{R}^{\kappa_i}$ 为别表示上层宏观调控者和 $x_i \in \mathbb{R}^{\kappa_i}$ 和 $x_i \in \mathbb{R}^{\kappa_$

$$J_i = K_i(x_v(t_f), t_f) + \int_0^{t_f} L_i(X(t), U(t), t) dt,$$

 $i = 1, 2, \dots, n,$

其中 $x_v(\cdot)$ 、 $K_i(\cdot)$ 和 $L_i(\cdot)$ 的定义与式 (19) 中的定义

虽然上述博弈控制系统与标准的 Stackel-146 berg 博弈^[281] 在含义上具有一些相似之处, 但由于1000

287.225

和

博弈控制系统中的上层宏观调控者是一个控制者, $_{700}$ 而不是如同标准的 Stackelberg 博弈那样是一个博 $_{782}$ 弈参与者,所以本质上它们属于两类完全不同的系统 (24,278]. 特别地,上述博弈控制系统更多地表现为 $_{715}$ 一个控制系统而不仅仅是一个博弈系统. 因此,对 $_{701}$ 于这类系统,一个基本的问题是系统能控性问题, $_{8864}$ 即宏观调控者是否可以通过控制输入 $_{11}$ u(t) 使得状态 $_{17}$ u(t) 能从任意初始状态 u(t) 使得状态 u(t) 能从任意初始状态 u(t) 能够驱动到任 u(t) 能从任意初始状态 u(t) 能够驱动到任 u(t) 能以任意初始状态 u(t) 能够驱动到任 u(t) 能以任意初始状态 u(t) 能够驱动到任 u(t) 能以任意初始状态 u(t) 是 u(t) 能够不同 u(t) 是 u(t) 是

$$\begin{cases} \dot{x}(t) = A(t)x(t) + B(t)u(t) + \\ \sum_{i=1}^{n} A_i(t)x_i(t) + \sum_{i=1}^{n} D_i(t)u_i(t), \\ \dot{x}_i(t) = E_i(t)x(t) + B_i(t)u(t) + \\ \sum_{j=1}^{n} F_{ij}(t)x_i(t) + \sum_{j=1}^{n} B_{ij}(t)u_j(t), \\ x(0) = x_0, \ x_i(0) = x_{i,0}, \\ i = 1, 2, \dots, n, \ t \in [0, t_f], \end{cases}$$

其中每个下层博弈者i在连续时间区间 $\left[0,t_{f}
ight]$ 内的 $^{ ext{ iny 436.1}}$ 代价函数 $oldsymbol{J}_{i}$ 为 $^{ ext{ iny 436.1}}$

$$J_{i} = \frac{1}{2} [x_{v}(t_{f})]^{T} Q_{i, t_{f}} x_{v}(t_{f}) + \frac{1}{2} \int_{0}^{t_{f}} [X^{T}(t) Q_{i}(t) X(t) + u_{i}^{T}(t) R_{i}(t) u_{i}(t)] dt,$$

$$i = 1, 2, \dots, n,$$

对任意的 $t \in [0, t_f]$, $R_i(t) > 0$ 、 $Q_i(t)$ 和 Q_{i,t_f} 是对 844.1 称的,并且系统中的所有参数矩阵都是关于时间变 822.1 量 t 的分段光滑的函数. 在适当的条件下,文献 [278] 814.3 首次给出了该一般线性二次型博弈控制系统能控性 808.6 的充分必要的代数条件.

由式 (21) 可以看出,上述博弈控制系统是一类2002 确定性的系统.为了进一步对随机场景下的博弈控2555 制系统进行研究,文献 [279] 相应地提出了一类随2408 机性博弈控制系统.在该类系统中,系统状态的2261 动力学方程和每个下层博弈者i在连续时间区间2014 $[0,t_f]$ 内的代价函数 J_i 分别为

$$\begin{cases} dx(t) = f(X(t), u(t), t)dt + \\ \sigma(X(t), u(t), t)dw(t), \\ dx_i(t) = f_i(x(t), x_i(t), u(t), u_i(t), t)dt + \\ \sigma_i(x(t), x_i(t), u(t), u_i(t), t)dw(t), \\ x(0) = x_0, \quad x_i(0) = x_{i,0}, \\ i = 1, 2, \dots, n, \quad t \in [0, t_f], \end{cases}$$

 $\mathbf{J}_i = \mathbf{E} \left\{ K_i(x_v(t_f), t_f) + \int_0^{t_f} L_i(x(t), u(t), U(t)) dt \right\}, \quad i = 1, 2, \dots, n,$

其中w(t), $t \ge 0$ 是一个标准的d 维 Brownian 运动。 为了研究该随机性博弈控制系统的能控性问题,文 5540 献 [279] 分别提出了一个精确 V-能控性 (Exact V-509.6 controllability) 和一个完全能控性 (Total control-525.2 lability) 的概念. 特别地, 对于一类一般线性时变博 510.8 弈控制系统, 该文给出了此类系统精确 V-能控性的 596.4 充分必要的代数条件, 而对于一类一般线性时不变 582.0 博弈控制系统, 该文给出了此类系统完全能控性的 567.6 充分必要的代数条件.

除了能控性之外,系统是否可镇定在控制理论。p也是一个十分重要的基本问题.对于一类线性二。24.4 次型微分博弈控制系统,文献 [280] 首次研究了此。1100 类系统的镇定性问题,即上层宏观调控者是否可以。85.6 通过调节下层博弈者形成的 Nash 均衡来实现系统。8112 的镇定. 在适当的条件下,该文首次给出了此类系统可镇定的充分必要的代数条件. 此外,在系统参与24数不确定的情况下,文献 [282—284] 通过结合微分。38.0 博弈与随机自适应控制理论,提出了一类随机自适。23.6 应微分博弈系统,并在适当的条件下,给出了该类。60.2 系统渐近地达到一个 Nash 均衡的稳定性判据.

3.3 基于矩阵半张量积的博弈控制论

矩阵半张量积 (Semi-tensor product of matrices) [285] 是对传统矩阵乘法的一般化推广. 它是由 33.5 中国学者程代展先生首次提出并发展的一套数学 324.1 方法. 一般地, 对于两个矩阵 $M_1 \in M_{p_1 \times q_1}$ 和 $M_2 \in M_{p_2 \times q_2}$,它们的半张量积 $M_1 \times M_2$ 定义为如下的一 285.2 个矩阵乘积形式

$$M_1 \ltimes M_2 := (M_1 \otimes I_{\hbar/q_1})(M_2 \otimes I_{\hbar/p_2}),$$
 (22)

其中 $M_{p_1 \times q_1}$ 表示所有 $p_1 \times q_1$ 矩阵的集合, \times 表示 2443矩阵的半张量积符号, \otimes 表示矩阵的 Kronecker 积2288符号, $\hbar = \text{lcm}(q_1, p_2)$ 为 q_1 和 p_2 的最小公倍数, I_{k-2} 153 $k \in \mathbb{N}$ 表示 $k \times k$ 单位矩阵。由定义式(22)可以看2008出,当 $q_1 = p_2$ 时, M_1 与 M_2 的半张量积将退化为通786.4常的矩阵乘积。特别地,因为矩阵半张量积在数学1720上具有一些优良性质,比如分配律、结合律和伪交157.6按律等[285],所以该方法目前在逻辑控制系统(LO-1432gical control system)[286]、有限的标准式博弈[287-288] 1288和博弈控制论(Game-theoretic control)[58, 289]等研14.4 究领域中得到了广泛应用。

对于一个 n 人有限的标准式博弈, 运用矩阵半水。 张量积方法进行研究的一个基本思路是, 首先将每755 个博弈者 i 的策略集 Ω_i 表示成一个向量形式的集 r_0 10 合, 然后利用矩阵半张量积方法将博弈者策略的演765 化动态方程转化成一个逻辑控制系统. 具体来讲,。。 对于博弈者 i 的策略 $\pi_i \in \Omega_i$, $i = 1, 2, \dots, n$, 首先 ϵ_{000} ϕx_i 为 π_i 的列向量表示,这里假定策略集 Ω_i 的势为 $\phi_{\alpha i}$ $|\Omega_i| = k_i$. 然后, 对于 $k \times k$ 单位矩阵 I_k , 定义 $\Delta_k := 680.6$ $Col(I_k)$ 为 I_k 的所有列构成的集合. 于是, 对应于博₆₄₄。 弈者 i 策略的向量表示 x_i , 策略集 Ω_i 的向量表示可 α_i 写为 Δ_{k_i} , 即 $x_i \in \Delta_{k_i}$. 另外, 借助上述定义的符号, ϵ_{i+3} 博弈者i的收益函数的向量形式可写为 $c_i = v_i^c x_{som}$ $i=1,2,\cdots,n$, 其中行向量 v_i^c 称为 c_i 的结构向量, $s_{i}^{s_{i}}$ 0 $x := \mathbb{R}^n_{i-1} x_i$ 为所有博弈者策略组合的向量表示. 特 $\mathfrak{h}_{\mathfrak{s}}$ $\mathfrak{h}_{\mathfrak{s}}$ 别地, 如果博弈者参与的博弈是一个重复博弈并且。57.0 博弈者策略的演化过程是 Markov 型的, 那么每个。。 博弈者策略的演化动态方程可一般化地写为

$$x_i(t+1) = F_i(x_1(t), x_2(t), \dots, x_n(t)),$$

 $i = 1, 2, \dots, n.$ (23)

因为对任意的 $i \in \{1, 2, \dots, n\}$, $F_i(\cdot)$ 是一个有限集。53 到有限集的映射, 所以存在一个对应于映射组合。61 (F_1, F_2, \dots, F_n) 的唯一矩阵 M 使得式 (23) 可进一。74 步改写为如下的一个逻辑系统[288]

$$\boldsymbol{x}(t+1) = M\boldsymbol{x}(t).$$

上述过程基本上展示了一个有限的标准式博弈是如。**3 何通过矩阵半张量积方法转化为一个逻辑系统的。**8 它也是矩阵半张量积方法应用于有限的标准式博弈。**3 的一个核心思想.

除了有限的标准式博弈之外, 势博弈 (Poten-30.4 tial game) 是矩阵半张量积方法应用于博弈控35.5 制与优化问题的另一典型形式. 对于一个有限的标准31.4 式博弈 $\mathcal{G} = \{\mathcal{N}, \{\Omega_i\}_{i \in \mathcal{N}}, \{c_i\}_{i \in \mathcal{N}}\}, \mathcal{N} = \{1, 2, \dots, 26.9 n\}, 如果存在一个函数<math>W: \mathbf{\Omega} \to \mathbb{R}$ 使得对任意的20.3 $i \in \mathcal{N}$,

$$W(\pi_{i}, \pi_{-i}) - W(\hat{\pi}_{i}, \pi_{-i}) = c_{i}(\pi_{i}, \pi_{-i}) - c_{i}(\hat{\pi}_{i}, \pi_{-i}), \ \forall \pi_{i}, \hat{\pi}_{i} \in \Omega_{i}, \ \forall \pi_{-i} \in \Omega_{-i},$$

则称 G 为一个势博弈, W 为该势博弈的势函数. 矩 $_{162}$ 阵半张量积方法应用于势博弈的一个通常处理的问 $_{2017}$ 题是最大化一个总体性能指标 $J(\pi_1, \pi_2, \cdots, \pi_n)$. $_{172}$ 该问题的基本求解框架一般可分为 2 步: 第 1 步对 $_{178}$ 每个博弈者的收益函数进行设计, 使得整个博弈系 $_{182}$ 统成为以 $J(\pi_1, \pi_2, \cdots, \pi_n)$ 为势函数的势博弈; 第 $_{1837}$ 2 步为每个博弈者设计控制策略或学习算法, 使得 $_{184}$ 当每个博弈者 $_{184}$ 最大化其自身的收益函数 $_{24}$ 时,整 $_{1486}$ 体系统可收敛到 $_{24}$ $_{244}$ $_{245}$

是势博弈的均衡点)^[288]. 目前,该研究框架已在多智元。6 能体系统的博弈控制问题^[291] 和状态依赖的博弈策元55 略学习问题^[292] 中得到了成功应用.

当前,利用矩阵半张量积方法处理博弈控制与7666 优化问题已经取得了十分丰硕的成果,一个更为全7622 面的总结可参见文献 [288].

3.4 分布式 Nash 均衡搜索

分布式 Nash 均衡搜索是一类利用分布式控制。588 与优化[115, 293-294] 的技术搜索博弈 Nash 均衡解的方。514 法. 由于该类方法在移动传感器网络、智能电网以668 及无人机编队中具有广泛的应用前景, 所以吸引了6225 大量控制领域学者的关注. 5880

一般地, 由定义 1 可知, 求解一个n 人标准式5786 搏弈 $\mathcal{G} = \{ \mathcal{N}, \{ \Omega_i \}_{i \in \mathcal{N}}, \{ c_i \}_{i \in \mathcal{N}} \}$ 的 Nash 均衡点等5891 价于寻找一个策略组合 (π_i^*, π_{-i}^*) 使得对任意的5406 $i \in \mathcal{N}$,

$$c_i(\pi_i^*, \pi_{-i}^*) \ge c_i(\pi_i, \pi_{-i}^*), \ \forall \pi_i \in \Omega_i.$$

特别地, 如果每个博弈者 $i \in N$ 的策略集 Ω_i 依赖其***5 对手的策略 π_{-i} , 则称上述标准的 Nash 均衡问题为**801 广义 Nash 均衡问题 (Generalized Nash equilibri-**656 um problem)[295]. 另外, 为了保证上述 Nash 均衡问。**512 题解的存在性, 文献中经常使用的一个假设是[37,296]: **647 对任意的 $i \in N$, Ω_i 是一个非空凸紧集, 并且对任**223 意给定的 $\pi_{-i} \in \Omega_{-i}$, $c_i(\pi_i, \pi_{-i})$ 是一个关于 $\pi_i \in \Omega_i$ **647 的连续可微的凸函数. 在该假设下, 求解博弈 G 的**53 一个 Nash 均衡解可等价为求解如下的一个变分不**78 等式 (Variational inequality) 问题[296-297]

$$(\boldsymbol{\pi}_v - \boldsymbol{\pi}_v^*)^T \boldsymbol{F}(\boldsymbol{\pi}_v^*) \ge 0, \ \forall \boldsymbol{\pi}_v \in \boldsymbol{\Omega} := \prod_{i \in \mathcal{N}} \Omega_i, \quad (24)$$

其中

$$\begin{cases} \boldsymbol{\pi}_v := [\pi_1, \, \pi_2, \, \cdots, \, \pi_n]^T, \\ \boldsymbol{\pi}_v^* := [\pi_1^*, \, \pi_2^*, \, \cdots, \, \pi_n^*]^T, \\ \boldsymbol{F}(\cdot) := [\nabla_{\pi_1} c_1(\cdot), \, \nabla_{\pi_2} c_2(\cdot), \, \cdots, \, \nabla_{\pi_n} c_n(\cdot)]^T. \end{cases}$$

因为博弈 G 中的每个博弈者 i 的收益函数 $c_i(\cdot)$ 不一 \circ 04 定是相同的,所以 $F(\cdot)$ 并不是传统意义上的梯度。 \circ 08 因此,为了和通常的梯度相区别,一般称 $F:\Omega\to \circ$ 13 \mathbb{R}^n 为伪梯度映射 (Pseudo-gradient map). 另外,由 \circ 08 文献 [297] 中的命题 1.5.8 可知, π_v^* 是变分不等式 (24) \circ 08 的解当且仅当 π_v^* 是如下方程的不动点

$$oldsymbol{\pi}_v^* = \mathrm{P}_{oldsymbol{\Omega}}(oldsymbol{\pi}_v^* - oldsymbol{F}(oldsymbol{\pi}_v^*)), \tag{25}_{159.9}$$

其中 $P_{\Omega}(\pi_v)$ 表示 π_v 在集合 Ω 上的 Euclidean 投^{1,25} 影. 利用该等价性结论, 求解博弈 \mathcal{G} 的 Nash 均衡则^{1,269} 可转变成求解式 (25) 的不动点. 传统上, 为了实现^{1,44} 该不动点的求解, 一种常用的方法是投影梯度^{1,000}

(Projected gradient-play) 算法. 具体地, 对应于离₇₆₀₀散时间 k ($k \in \mathbb{N}$) 和连续时间 t ($0 \le t \in \mathbb{R}$),该算法₇₄₅₅的离散时间版本和连续时间版本分别为

$$\pi_{i}(k+1) = P_{\Omega_{i}}(\pi_{i}(k)) - \alpha_{i,k} \nabla_{\pi_{i}} c_{i}(\pi_{i}(k), \pi_{-i}(k)),$$
(26)

和

$$\dot{\pi}_i = \Xi_{\Omega_i}(\pi_i, -\nabla_{\pi_i} c_i(\pi_i, \pi_{-i})), \tag{27}$$

其中 $\pi_i(k)$ 表示博弈者i在迭代时刻k的策略, $\alpha_{i,k}$ 6400表示博弈者i在迭代时刻k的学习率, $\dot{\pi}_i := d\pi_i(t)/634$ dt, $\Xi_{\Omega_i}(\pi_i, \nu) := \lim_{\epsilon \to 0} [P_{\Omega_i}(\pi_i + \epsilon \nu) - \pi_i]/\epsilon$. 特别 8199地,如果伪梯度映射 F 是 Lipschitz 连续的且严格 9053单调的 (或强单调的),上述两个投影梯度算法在理 8009论上均可收敛到博弈 G 的一个 Nash 均衡点 [297-298]. 9764

由投影梯度算法 (26) 和 (27) 可以看出, 每个。。。 博弈者在更新自己策略的过程中不仅需要自身的收。47.6 益信息而且还需要所有其他博弈者的策略信息. 这。。。 一要求在实际系统中 (尤其在网络化系统中) 通常。187 是较难满足的. 为了弥补这一不足, 分布式 Nash。043 均衡搜索方法通常假定每个博弈者并不能获得所有。。。。 其他博弈者的信息, 而只能通过一个通信网络来获475.4 得其直接邻居的信息. 基于这一假定, 文献 [299] 利 用异步 Gossip 方法提出了一个离散时间分布式投4465 影梯度算法, 而文献 [300] 利用伪梯度映射的增量。32.1 无源性 (Passivity) 提出了一个连续时间分布式投417.6 影梯度算法. 在适当的条件下, 这两个分布式算法在4032 理论上均能几乎必然地收敛到一个 Nash 均衡点[200-300]。。。。 另外, 当博弈者的收益函数满足二阶连续可微条件。74.3 时,文献 [301] 基于领航者—跟随者一致性方法提。。。。 出了一类连续时间分布式算法,并利用 Lyapunov。45.4 稳定性理论证明了该算法的收敛性. 通过考虑每个。。10 博弈者的收益函数满足一个聚合映射 (Aggregation map) 并且所有博弈者的可行策略集满足一个。。2.1 线性耦合约束条件, 文献 [302] 基于投影动力学和。877 非光滑跟踪动力学,提出了一个连续时间分布式算。7733 法用于求解广义 Nash 均衡搜索问题. 受上述工作。sss 的启发, 通过考虑博弈者的可行策略集同时满足私。44.4 有约束条件和耦合约束条件, 文献 [303] 提出了一;;;; 个连续时间在线分布式原始—对偶 Nash 均衡搜索。。。。 算法, 并在适当的条件下证明了该算法的收敛性.

虽然在特定的前提条件下,上述分布式 Nash 1866 均衡搜索算法在理论上均能保证收敛到一个 Nash 1722 均衡点,但它们绝大部分只能处理固定博弈形式 1578 (即博弈者的收益函数是时不变的)的 Nash 均衡搜 1433 索问题.为了弥补这一不足,文献 [304] 进一步对具 1289 有时变收益函数的广义 Nash 均衡搜索问题进行了 1144 研究,并率先提出了一类在线分布式原始—对偶策 1600

略学习算法. 在通信网络满足连通性假设条件下, 7600 该文从理论上严格证明了该算法将收敛到一个广, 455 义 Nash 均衡.

3.5 基于零行列式策略的收益控制

具体地,考虑一个两人两策略对称重复博弈。75.9 $G_{2\times2} = \{N, \{A_i\}_{i\in\mathcal{N}}, \{c_i\}_{i\in\mathcal{N}}\}$,其中 $\mathcal{N} = \{1, 2\}$ 为661.4 所有博弈者的标号构成的集合, $A_i = \{C, D\}$, $\forall i \in \mathcal{N}$ 为博弈者 i 的行动集, $c_i: A_1 \times A_2 \to \mathbb{R}$ 为博弈者。10 个动集, $c_i: A_1 \times A_2 \to \mathbb{R}$ 为博弈者。10 个 的收益函数。对于收益函数 $c_i, \forall i \in \mathcal{N}$,其在17.7 不同行动组合下的取值所构成的收益值表为

$$\begin{array}{c|cc} & C & D \\ \hline C & (\mathfrak{a},\,\mathfrak{a}) & (\mathfrak{b},\,\mathfrak{c}) \\ D & (\mathfrak{c},\,\mathfrak{b}) & (\mathfrak{d},\,\mathfrak{d}) \end{array}$$

这里"行博弈者"表示博弈者 1,"列博弈者"表示。。。。 博弈者 2. 在该博弈中, 假定所有博弈者的策略都为。。。 一步记忆策略,即每个博弈者在当前轮博弈中的行。。。 动选择只依赖前一轮博弈中所有博弈者的行动组合. 基。。。 于该假设, 博弈者1和博弈者2的策略于是可分别写。762 为向量 $\vec{\pi}_1 = [p_{\text{CC}}, p_{\text{CD}}, p_{\text{DC}}, p_{\text{DD}}]^T$ 和 $\vec{\pi}_2 = [q_{\text{CC}}, q_{\text{CD}}]^{s_{17}}$ $q_{\rm DC}, q_{\rm DD}|^T$, 其中 $p_{a_x a_y} \in [0, 1]$ 和 $q_{a_x a_y} \in [0, 1]$ 分别表 46.8 示博弈者 1 和博弈者 2 在前一轮博弈中的行动组合。。。 为 $(a_x, a_y), a_x, a_y \in A$ 情况下,于当前轮博弈中选_{21.5} 择行动 C 的概率. 在重复博弈 $\mathcal{G}_{2\times 2}$ 进行过程中, 如 $_{\infty 2}$ 果两个博弈者采用的策略分别为一步记忆策略元 和 元, 那么在时间尺度上, 它们将诱导出一个定义,,,,, 在状态空间 {CC, CD, DC, DD} 上的 Markov 链。 特别地, 记该 Markov 链的转移概率矩阵为 **P** ≕445 $(\rho_{a_x a_y | a_x a_y}) \in [0, 1]^{4 \times 4}, \ \ \sharp \ \ \rho_{a_x a_y | a_x a_y}(a_x, a_y, a_z)^{30.0}$ $a_w \in A$) 表示该 Markov 链从状态 $a_x a_y$ 转移到状态 $a_z a_w$ 的概率.

假定该 Markov 链是遍历的并且令 µ 为其状态表。 的平稳分布 (也是 Markov 链处在每个状态的平均7456 时间的分布) 构成的列向量, 即 $\mu^T P = \mu^{T,15}$ 因为₇₉₁₂ P 是一个行随机矩阵, 所以元素全为 1 的列向量 $_{764}$ y = 1 是方程 (P - I)y = 0 的一个解, 即 $P' := P - r_{020}$ I是奇异的. 因此,P'的行列式为 0. 另外,由 $Cramer_{67.5}$ 法则可知, $\operatorname{adj}(\mathbf{P}')\mathbf{P}' = \det(\mathbf{P}')I = \mathbf{0}_m$, 其中 $\operatorname{adj}(\mathbf{P}')_{\text{673.1}}$ 和 $\det(\mathbf{P}')$ 分别表示矩阵 \mathbf{P}' 的伴随矩阵和行列式。\$\text{sss.} $\mathbf{0}_m$ 表示元素全为 $\mathbf{0}$ 的矩阵. 由上述两个等式 $\boldsymbol{\mu}^T(\boldsymbol{P}_{-64.1})$ $I(I) = \mathbf{0}$ 和 $\operatorname{adj}(\mathbf{P}')\mathbf{P}' = \mathbf{0}_m$ 可知, $\operatorname{adj}(\mathbf{P}')$ 的每一行均 🚌 з 正比于 μ^T . 特别地, 对于 $\operatorname{adj}(\mathbf{P}')$ 的第4行, 由伴随 $\mathfrak{g}_{\mathfrak{s}}$ 矩阵的定义可知 $\mu^T w \equiv D(\vec{\pi}_1, \vec{\pi}_2, w)$, 其中 $w = [w_1, \omega_0]$ w_2, w_3, w_4] $T \in \mathbb{R}^4$ 是任意的四维列向量, $D(\vec{\pi}_1, \vec{\pi}_2, \vec{\pi}_3, \vec{\pi}_4)$ w) 是把P'的第1列分别加到第2、第3列以及把stos P' 的第 4 列替换为w之后得到的矩阵的行列式, 即 $_{5}$ 55.9 $\boldsymbol{\mu}^T \boldsymbol{w} \equiv D(\vec{\pi}_1, \, \vec{\pi}_2, \, \boldsymbol{w}) :=$

$$\det \begin{pmatrix} \begin{bmatrix} -1 + p_{\text{CC}}q_{\text{CC}} & -1 + p_{\text{CC}} & -1 + q_{\text{CC}} & w_1 \\ p_{\text{CD}}q_{\text{DC}} & -1 + p_{\text{CD}} & q_{\text{DC}} & w_2 \\ p_{\text{DC}}q_{\text{CD}} & p_{\text{DC}} & -1 + q_{\text{CD}} & w_3 \\ p_{\text{DD}}q_{\text{DD}} & p_{\text{DD}} & q_{\text{DD}} & w_4 \end{bmatrix} \right).$$
(28)

以博弈者 1 和博弈者 2 的所有可能的收益值作 $_{41}$ 。为元素分别构造向量 $e_1 = [\mathfrak{a}, \mathfrak{b}, \mathfrak{c}, \mathfrak{d}]$ 和 $e_2 = [\mathfrak{a}, \mathfrak{c}, \mathfrak{c}, \mathfrak{d}]$ $\mathfrak{b}, \mathfrak{d}$. 于是, 这两个博弈者在每轮博弈中所能获得的 $_{427}$ 期望收益可分别计算为

$$\bar{c}_1 = \frac{\boldsymbol{\mu}^T \boldsymbol{e}_1}{\boldsymbol{\mu}^T \boldsymbol{1}} = \frac{D(\vec{\pi}_1, \, \vec{\pi}_2, \, \boldsymbol{e}_1)}{D(\vec{\pi}_1, \, \vec{\pi}_2, \, \boldsymbol{1})}, \tag{29}$$

和

$$\bar{c}_2 = \frac{\boldsymbol{\mu}^T \boldsymbol{e}_2}{\boldsymbol{\mu}^T \boldsymbol{1}} = \frac{D(\vec{\pi}_1, \, \vec{\pi}_2, \, \boldsymbol{e}_2)}{D(\vec{\pi}_1, \, \vec{\pi}_2, \, \boldsymbol{1})}.$$
 (30)

因为式 (29) 和式 (30) 的计算均具有线性性, 所以²⁰⁰⁴ 对任意一组常系数 $\xi_1 \in \mathbb{R}$ 、 $\xi_2 \in \mathbb{R}$ 和 $\xi_3 \in \mathbb{R}$ 有

$$\xi_1 \bar{c}_1 + \xi_2 \bar{c}_2 + \xi_3 = \frac{D(\vec{\pi}_1, \vec{\pi}_2, \xi_1 e_1 + \xi_2 e_2 + \xi_3 \mathbf{1})}{D(\vec{\pi}_1, \vec{\pi}_2, \mathbf{1})}. (31)$$

特别地, 如果博弈者 1 的策略向量 $\vec{\pi}_1$ 取为 $\vec{\pi}_1$ =2000 $\vec{\pi}^0$ + $\xi_1 \mathbf{e}_1$ + $\xi_2 \mathbf{e}_2$ + $\xi_3 \mathbf{1}$ 或者博弈者 2 的策略向量 $\vec{\pi}_2$ 2222 取为 $\vec{\pi}_2$ = $\vec{\pi}^0$ + $\xi_1 \mathbf{e}_1$ + $\xi_2 \mathbf{e}_2$ + $\xi_3 \mathbf{1}$, 其中 $\vec{\pi}^0$:= [1, 1, 2077] 0, $0]^T$, ξ_1 , ξ_2 和 ξ_3 的选取需使得 $\vec{\pi}_1$ 或者 $\vec{\pi}_2$ 的每个1822 分量属于 [0, 1], 那么由式 (28) 和式 (31) 可知

$$\xi_1 \bar{c}_1 + \xi_2 \bar{c}_2 + \xi_3 = 0. \tag{32}_{160.3}$$

考虑到上述线性等式 (32) 的成立是由于策略元或。。者元2的选取使得式 (28) 中的行列式等于 0, 文献 [305]。。由此把满足这一特性的策略称为零行列式策略. 由

15 文献 [305] 也证明了非遍历情况下该平稳分布的存在性

式 (32) 可以看出,在重复博弈 $\mathcal{G}_{2\times2}$ 中,任意的一个7600 博弈者都可以通过设定自己的策略来迫使其对手的761期望收益满足一个等式约束关系.例如,对于博弈722者 1,如果其选择的策略为 $\vec{\pi}_1 = \vec{\pi}^0 + \xi_2 \mathbf{c}_2 + \xi_3 \mathbf{1}$ (即7728设置 $\xi_1 = 0$),那么无论博弈者 2 如何进行策略选择,7624它的期望收益将始终保持为 $\bar{c}_2 = -\xi_3/\xi_2$.特别地,7620借助 $\vec{\pi}_1 = \vec{\pi}^0 + \xi_2 \mathbf{e}_2 + \xi_3 \mathbf{1}$ 并利用 p_{CC} 和 p_{DD} 分别表 7625 不 ξ_2 和 ξ_3 , \bar{c}_2 可进一步写为

$$\bar{c}_2 = \frac{(1 - p_{\mathrm{CC}})\mathfrak{d} + p_{\mathrm{DD}}\mathfrak{a}}{(1 - p_{\mathrm{CC}}) + p_{\mathrm{DD}}}$$

除了单边控制对手的期望收益之外,通过设定中心。1.7 搏弈者(比如博弈者1)所采用的ZD策略的形式,5973 ZD策略还可以分别实现敲诈行为(即中心博弈者5826 获得一个不低于对手的期望收益)、慷慨行为(即中5885 心博弈者获得一个不高于对手的期望收益)和公平5847 行为(即中心博弈者和对手获得一个同等的期望收5897 益)等[305,307].

鉴于 ZD 策略对重复博弈研究的重要贡献,后51.4 续关于 ZD 策略的讨论在演化博弈领域中掀起了一47.5 场研究热潮,其中推动这一研究热潮的一个关键结45.6 果是所谓的 Akin 引理 $^{[308]}$. 该引理是式 (28) 的一般46.7 化形式,也是判定一个策略是否为 ZD 策略的必要45.8 条件. 一般地,对于一个两人两策略对称重复博弈41.9 $\mathcal{G}_{2\times 2}$, Akin 引理可具体地表述为: 如果博弈 $\mathcal{G}_{2\times 2}$ 的47.5 所有博弈者的策略都为一步记忆策略并且它的所有43.6 可能的行动组合 $\{CC, CD, DC, DD\}$ 的平稳分布为 μ ,30.2 那么对任意的博弈者 $i \in \mathcal{N} := \{1, 2\}$,它的策略向36.4 7.5 量 π , 将满足

$$\boldsymbol{\mu}^T(\vec{\pi}_i - \vec{\pi}^0) = 0.$$

借助 Akin 引理的各种拓展形式,后续的相关。37.3 研究分别将 ZD 策略推广到了两人两策略折扣重复。38.4 博弈[309]、两人连续行动空间折扣重复博弈[310]、多人。30.5 两策略无折扣[311-312] 和有折扣重复博弈[313]、多人多26.6 策略时变折扣重复博弈[314] 等更一般化的博弈形式。31.7 中.除了这些拓展性工作之外,一些相关的研究也。37.8 讨论了 ZD 策略本身的一些属性,比如文献 [315]。38.9 分析了 ZD 策略本身的一些属性,比如文献 [315]。38.9 分析了 ZD 策略的鲁棒性 (即采取 ZD 策略的博弈。26.0 者面对策略变化的对手是否仍然可以保持期望收益。26.2 最大化),文献 [307, 316-318] 研究了 ZD 策略的演。26.2 最大化),文献 [307, 316-318] 研究了 ZD 策略的演。26.3 是大化),文献 [319] 则考虑了博弈。26.3 是大化),文献 [319] 则考虑了博弈。26.3 是大化),对象略形式的影响。

3.6 小结

按照不同专题的方式,本节主要梳理并介绍了,288 搏弈、学习与控制这一交叉研究主题的几类典型成,144 果,即基于最优控制的学习与博弈、博弈控制系统、1000

287.225

基于矩阵半张量积的博弈控制论、分布式 Nash 均‱ 衡搜索和基于零行列式策略的收益控制. 在第1部。452 分基于最优控制的学习与博弈中, 首先介绍了一类。20.4 单智能体连续时间最优控制问题. 并回顾了求解该。 类问题的强化学习算法:接着.当单智能体最优控;;;; 制问题拓展到多智能体场景中时, 进一步对微分博 弈以及求解该类博弈的多智能体强化学习算法进行。。 了介绍. 博弈控制系统是一类试图将现代控制理论。5564 与微分博弈相结合的系统, 在这部分内容中, 主要。。 对一类确定性博弈控制系统和一类随机性博弈控制。20.8 系统的能控性问题进行了介绍: 另外, 为了反映该。 类系统的最新研究进展, 还对一类线性二次型微分。372 博弈控制系统的镇定性问题和一类随机自适应微分。82.4 博弈系统的稳定性问题进行了简要的论述. 接着.,,,,,, 在基于矩阵半张量积的博弈控制论这部分内容中。。。。 主要讨论了如何运用矩阵半张量积方法研究有限的。。。 标准式博弈和势博弈中的控制与优化问题. 然后,。233 针对一类 Nash 均衡求解问题, 本节主要在变分不。。。 等式方法的基础上回顾了几类基于分布式控制与优。。37 化的搜索算法. 最后. 基于对零行列式策略的讨论.*789 本节主要梳理并介绍了一类能单边控制对手期望收龋 益的方法.

4 总结与展望

作为现代数学的一个重要分支和运筹学的一个4033 重要组成部分,博弈论近年来在学术界受到越来越8885 多的关注.特别地,随着多智能体系统和 AI 等研究8738 领域的兴起,博弈论、多智能体学习与控制论的交8890 叉融合目前已发展成为一个前沿热点研究方向.为8442 了及时反映这一学术动态和趋势,本文从连接这三8294 者的四类基本博弈形式出发,系统地讨论了它们之8146 间的联系与区别,论述了它们对应的各类多智能体8988 学习方法,还回顾了当前几个博弈、学习与控制的8860 交叉研究专题. 作为全文内容的一个总结, 图 3 左 600 边子图描述了多智能体博弈、学习与控制在宏观层 7456 面上的相互联系, 右边子图展示了本文介绍的各类 7312 博弈形式、多智能体学习方法和控制论方法之间的 7168 内在关联关系 (图中的数字表示本文的章节编号). 702.4

目前,虽然多智能体博弈、学习与控制这一新 %交叉研究领域已经取得了一些初步成果,但总体。 而言,它仍然处于发展初期,还有巨大的发展空间。 从大的方向上看,以下几方面未来还有待于进一步。 探索.

1) 无模型的 (Model-free) 博弈论或数据驱动。16.0 的 (Data-driven) 博弈论. 在博弈论的传统研究中. 大部分工作都是基于特定的博弈模型或者发展新的。872 博弈模型来开展的. 换句话讲, 在这些研究中, 博弈。728 模型是事先设定的并且(或部分)为博弈者所已知。。。。 的. 因此, 从方法论上讲, 它们属于基于模型的 (Model-441) based) 博弈论, 即"白盒"(White-box) 的方法. 然5297 而,在大量与博弈论相关的实际应用,比如视频游。153 戏、多机器人系统、自动驾驶和无人机集群中, 获取...。 准确的模型信息通常是比较困难的. 例如. 为了实**** 现某些实际应用中的特定任务目标, 博弈者的收益472.1 函数通常可能需要进行额外设计[41, 231, 320]. 针对这些457. 无模型的博弈应用问题, 如果传统基于模型的博弈433 论方法继续被使用去求解诸如 Nash 均衡等博弈问。2289 题, 那么它将自然会面临一些理论困境, 为此, 这就445 十分有必要去发展一类无模型的或数据驱动的博弈..... 论方法,即利用博弈实时产生的数据或者博弈交互。85.7 后的离线数据来实现对一个博弈问题的求解 (也就。71.4 是"黑盒"(Black-box)或者"灰盒"(Gray-box)的。57.0 方法). 目前, 虽然这方面已有一些相关工作, 比如。42.6 著名的虚拟对弈方法[14, 184] 和多智能体强化学习方。22.2 法, 但总体而言, 这一领域仍处于发展初期, 还有许。。。。 多不完善之处.

2) 博弈论、多智能体学习与控制论的进一步深。

图 3 本文介绍的各类博弈形式、学习方法和控制论方法之间的内在关联关系图

Fig. 3 Illustrations of the intrinsic relationship between the games, multi-agent learning methods, and control methods presented in this paper

1958

度融合. 目前, 在自动控制领域中, 博弈、学习与控。。。 制的大部分交叉研究工作都是基于最优控制和微分水。 博弈来开展的. 除此之外, 博弈论和控制论本质上,,,,, 还有许多相通之处. 例如, 如果从博弈论的角度来,,。。 看控制论, 控制系统中的控制器一般可视为博弈中。 的决策者, 它可以改变受控系统的演化轨迹以期达。。。。 到某种理想效果: 反过来, 如果从控制论的角度来。20 看博弈论, 博弈中的博弈者一般可视为控制系统中。573 的控制器, 它的决策目标或偏好 (Preference) 通常。426 可认为是一种控制目标. 因此, 从控制论的角度上。 讲,博弈论也被视为是一类研究交互控制器之间的。。。。 合作与竞争的数学理论[30]. 另外, 作为现代控制论。。。。 的一个重要组成部分, 鲁棒控制[237] 与鲁棒优化[179]、。。 鲁棒博弈[180] 以及鲁棒学习[233] 在基本思想上均有诸583 多相似之处. 虽然受安全 AI 和鲁棒 AI[5-6, 321] 这一。54.6 研究主题的驱动,当前鲁棒的机器学习技术在 AIsoo 领域中已成为一个热点研究方向, 但鲁棒控制、鲁。553 棒优化、鲁棒博弈和鲁棒学习间的交叉研究在自动。。。 控制领域中目前仍比较稀少..

- 4) 博弈论、动力系统与深度学习的结合. 演化。46 博弈动力学是博弈论与动力系统的一种结合形式. 300 考虑到当前在机器学习领域中, 动力系统与深度学。853 习的结合是一个广受关注的研究课题[330-332]. 因此, 2007 如果演化博弈动力学可以进一步与深度学习相结。260 合, 那么这在理论上将是十分有意义的. 尽管当前。2613 这方面已有一些探索性工作, 比如神经复制动力学[119]。2467 但总体而言, 这一研究方向目前才刚刚兴起并且在。220 理论上还有诸多不完善之处.
- 5) 博弈、学习与控制的交叉研究在一些新兴领。27 域中的应用. 博弈论自诞生以来, 已在经济学、社会。80 学、心理学、生物学、物理学、认知科学和计算机科。173 学等研究领域中得到了大量卓有成效的应用. 近年。87 来, 伴随着 AI 技术的快速发展, 人们也见证着一些。180 新兴交叉研究领域的兴起, 比如社会智能[1-2]、机器。180 智能[3]、合作智能[4]、AI 安全[5-6] 和 AI 伦理[7-8] 等. 考。14.7 虑到这些研究主题本身具有广泛的学科交叉性. 因。180

此,如何将博弈、学习与控制的交叉研究成果应用,。。。 于这些新兴领域是未来一个十分值得探究的课题...,。655

References

- McDonald K R, Pearson J M, Cognitive bots and algorithmic;
 humans: Toward a shared understanding of social intelligence.

 Current Opinion in Behavioral Sciences, 2019, 29: 55-62

 6827
- Silver D, Singh S, Precup D, Sutton R S. Reward is enough.
- Rahwan I, Cebrian M, Obradovich N, Bongard J, Bonnefon Jests F, Breazeal C, et al. Machine behaviour. Nature, 2019,648.4 568(7753): 477–486
- Dafoe A, Bachrach Y, Hadfield G, Horvitz E, Larson K, Grae-et 2, pel T. Cooperative AI: Machines must learn to find commons 17.1 ground. Nature, 2021, 593(7857): 33–36
- Russell S, Dewey D, Tegmark M. Research priorities for ro-secondust and beneficial artificial intelligence. *AI Magazine*, 2015, 8858

 36(4): 105-114
- Amodei D, Olah C, Steinhardt J, Christiano P, Schulman J, 5637
 Mané D. Concrete problems in AI safety. arXiv: 1606.06565,5546
 2016.
- Bonnefon J F, Shariff A, Rahwan I. The social dilemma of substantion autonomous vehicles. Science, 2016, 352(6293): 1573–1576 statement of the social dilemma of substantial dilemma of
- Jobin A, Ienca M, Vayena E. The global landscape of AI eth-sions guidelines. Nature Machine Intelligence, 2019, 1(9): 389-399-802
- Myerson R. B. Game Theory: Analysis of Conflict. Cambridge, 4881 USA: Harvard University Press, 1997.
- 10 von Neumann J, Morgenstern O. Theory of Games and Economic Behavior. Princeton, USA: Princeton University Press, 45,9 1944.
- 1 Wooldridge M, Jennings N R. Intelligent agents: Theory and practice. The Knowledge Engineering Review, 1995, 10(2):4256 115-152
- 12 Sen S. Multiagent systems: Milestones and new horizons.
- Weiss G. Multiagent Systems: A Modern Approach to Distrib-serior uted Artificial Intelligence, Cambridge, USA; MIT Press, 1999, 3722
- 4 Brown G W. Iterative solution of games by fictitious play. In: 589.1 T.C. Koopmans, editor, Activity Analysis of Production and Allocation. New York: Wiley, 1951. 374–376
- 5 Tuyls K, Weiss G. Multiagent learning: Basics, challenges, and prospects. AI Magazine, 2012, 33(3): 41-52
- 16 Moravčík M, Schmid M, Burch N, Lisý V, Morrill D, Bard N, 36,7 et al. DeepStack: Expert-level artificial intelligence in heads-up-36, no-limit poker. Science, 2017, 356(6337): 508-513
- 17 Brown N, Sandholm T. Superhuman AI for heads-up no-limitz44 poker: Libratus beats top professionals. Science, 2018,2854 359(6374): 418-424
- 18 Brown N, Sandholm T. Superhuman AI for multiplayer poker. 252 Science, 2019, 365(6456): 885–890
- Vinyals O, Babuschkin I, Czarnecki W M, Mathieu M, Dudzikzzan
 A, Chung J, et al. Grandmaster level in StarCraft II using 2 19
 multi-agent reinforcement learning. Nature, 2019, 575 (7782):2028
 350-354
- 20 Jaderberg M, Czarnecki W M, Dunning I, Marris L, Lever G, 1807
 Castañeda A G, et al. Human-level performance in 3D multi-1716
 player games with population-based reinforcement learning, 1825
 Science, 2019, 364(6443): 859–865
- 21 Wurman P R, Barrett S, Kawamoto K, MacGlashan J, Sub-103 ramanian K, Walsh T J, et al. Outracing champion Gran Tur-1313 ismo drivers with deep reinforcement learning. Nature, 2022,122 602(7896): 223-228
 - Bennett S. A brief history of automatic control. *IEEE Control* 100.0

287.225

Wiener N. Cybernetics or Control and Communication in the 488

Animal and the Machine. Cambridge, USA: MIT Press, 1948, 7407

Systems Magazine, 1996, 16(3): 17-25

科学, 2020, **50**(9): 1327-1344)

白

- 24 Guo Lei. Estimation, control, and games of dynamical systems with uncertainty. SCIENCE CHINA: Information Science, 7185
 2020, 50(9): 1327–1344
 (郭雷. 不确定性动态系统的估计、控制与博弈. 中国科学: 信息7003
- Marschak J. Elements for a theory of teams. Management Science, 1955, 1(2): 127–137
- 26 Ho Y C. Team decision theory and information structures in properties optimal control problems—Part I. IEEE Transactions on Automatic Control, 1972, 17(1): 15–22
- 27 Boutilier C. Planning, learning and coordination in multiagent decision processes. In: Proceedings of the 6th Conference on Theoretical Aspects of Rationality and Knowledge. De Zeeuwse Stromen, The Netherlands: Morgan Kaufmann Publishers Inc., 5972 1996, 195-210
- Wang X F, Sandholm T. Reinforcement learning to play an operson timal Nash equilibrium in team Markov games. In: Proceedings of the 15th International Conference on Neural Information Processing Systems. Vancouver, Canada: MIT Press, 2002. 8477 1603–1610
- Witsenhausen H S. A counterexample in stochastic optimums control. SIAM Journal on Control, 1968, 6(1): 131–147
- 30 Marden J R, Shamma J S. Game theory and control. Annualso32 Review of Control, Robotics, and Autonomous Systems, 2018, 494.1
 1: 105-134
- 31 Lewis F L, Zhang H W, Hengster-Movric K, Das A. Cooperat-71.9
 ive Control of Multi-Agent Systems: Optimal and Adaptive 6528
 Design Approaches. New York, USA: Springer, 2013.
- Bauso D, Pesenti R. Team theory and person-by-person optim-4406 ization with binary decisions. SIAM Journal on Control and Optimization, 2012, 50(5): 3011-3028
- Nayyar A, Teneketzis D. Common knowledge and sequential team problems. IEEE Transactions on Automatic Control, 2019, 64(12): 5108-5115
- 34 Yongacoglu B, Arslan G, Yüksel S. Decentralized learning for optimality in stochastic dynamic teams and games with local control and global state information. *IEEE Transactions on Automatic Control*, 2022, 67(10): 5230-5245
- 35 Littman M L. Markov games as a framework for multi-agent reinforcement learning. In: Proceedings of the 11th Internation-928.4 al Conference on Machine Learning. New Brunswick, USA:

 Morgan Kaufmann Publishers Inc, 1994. 157–163
- 36 Başar T, Bernhard P. H_≠ Optimal Control and Related Minim-297.1 ax Design Problems: A Dynamic Game Approach (Second edition). New York: Springer, 2008.
- Başar T, Olsder G J. Dynamic Noncooperative Game Theory, 265.7
 (Second edition). Philadelphia: SIAM, 1998.
- Nash J. Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the United States of America, 1950, 36(1): 48-49
- 39 Hu J L, Wellman M P. Nash Q-learning for general-sum²¹²² stochastic games. *Journal of Machine Learning Research*, 2003, 2031
 4: 1039-1069
- 40 Lowe R, Wu Y, Tamar A, Harb J, Abbeel P, Mordatch L, 1809 Multi-agent actor-critic for mixed cooperative-competitive en-1718 vironments. In: Proceedings of the 31st International Confer-1627 ence on Neural Information Processing Systems. Long Beach, 1535 USA: Curran Associates Inc, 2017, 6382-6393
- 41 Li N, Marden J R. Designing games for distributed optimization. IEEE Journal of Selected Topics in Signal Processing, 122 2013, 7(2): 230-242
- 42 Tsien Hsue-Shen. Engineering Cybernetics. New York: Mc-1000

Graw Hill Book, 1954 (钱学森 [著], 戴汝为 [译]. 工程控制论. 北京: 科学出版社, 1958.)

49 卷

- 43 Lamnabhi-Lagarrigue F, Annaswamy A, Engell S, Isaksson A p41.0 Khargonekar P, Murray R M, et al. Systems & control for the p32.0 future of humanity, research agenda: Current and future roles p23.0 impact and grand challenges. Annual Reviews in Control, 2017, 2017.
 43: 1-64
- 44 Shoham Y, Powers R, Grenager T. If multi-agent learning is the answer, what is the question? Artificial Intelligence, 2007, 881, 171(7): 365–377
- Fudenberg D, Levine D K. The Theory of Learning in Games of Cambridge, USA: MIT Press, 1998.
- 46 Young H P. Strategic Learning and Its Limits. Oxford: Oxford 859.
 University Press, 2004.
- 47 Busoniu L, Babuska R, De Schutter B. A comprehensive sur-817.2 vey of multiagent reinforcement learning. *IEEE Transactions* 808.2 on Systems, Man, and Cybernetics, Part C (Applications and 899.2 Reviews), 2008, 38(2): 156-172
- 48 Nowé A, Vrancx P, De Hauwere Y M. Game theory and multi-577.2

 agent reinforcement learning. In: Marco Wiering and Martijus683

 van Otterlo, editors, Reinforcement Learning: State-of-the-Art, 5593

 Berlin: Heidelberg, 2012. 441–470

 5503
- 49 Zhang K Q, Yang Z R, Başar T. Multi-agent reinforcements 37.3 learning: A selective overview of theories and algorithms. In 228.3 Kyriakos G. Vamvoudakis, Yan Wan, Frank L. Lewis, and 519.3 Derya Cansever, editors, Handbook of reinforcement learning and control, Cham, Switzerland: Springer, 2021. 321–384
- 50 Yang Y D, Wang J. An overview of multi-agent reinforcement learning from game theoretical perspective. arXiv: 2011.00583,479.4 2021.
- 51 Ocampo-Martinez C, Quijano N. Game-theoretical methods in 657.4 control of engineering systems: An introduction to the special 648.5 issue. IEEE Control Systems Magazine, 2017, 37(1): 30-32 439.5
- 52 Riehl J, Ramazi P, Cao M. A survey on the analysis and control of evolutionary matrix games. *Annual Reviews in Control*,
 2018, **45**: 87–106
- 53 Zhang J F. Preface to special topic on games in control systems. National Science Review, 2020, 7(7): 1115–1115
- 54 Kiumarsi B, Vamvoudakis K G, Modares H, Lewis F L. Optim-873.6 al and autonomous control using reinforcement learning: A sur-864.6 vey. IEEE Transactions on Neural Networks and Learning Sys-855.6 tems, 2018, 29(6): 2042–2062
- Buşoniu L, de Bruin T, Tolić D, Kober J, Palunko I. Reinforcement learning for control: Performance, stability, and deep approximators. Annual Reviews in Control, 2018, 46: 8-28
- 56 Annaswamy A, Morari M, Pappas G J, Tomlin C, Vidal R, 802.7 Zellinger M. Special issue on learning and control. *IEEE Trans*-293.7 actions on Automatic Control, 2022.
- 57 Giordano G. Tamer Başar [people in control]. IEEE Control

 Systems Magazine, 2021, 41(6): 28–33
- 58 Cheng Dai-Zhan, Fu Shi-Hua. A survey on game theoretical control. Control Theory & Applications, 2018, **35**(5): 588-592 (程代展, 付世华. 博弈控制论简述. 控制理论与应用, 2018, **35**(5): 2318 588-592)
- 59 Fudenberg D, Tirole J. Game Theory. Cambridge, USA: MIT 2008 Press, 1991.
- Osborne M J, Rubinstein A. A Course in Game Theory. Cambridge, USA: MIT Press, 1994.
- Nash J. Non-cooperative games. Annals of Mathematics, 1951, 165.9
 54(2): 286–295
- 62 Fudenberg D, Levine D K. An economist's perspective on multiagent learning. Artificial Intelligence, 2007, 171(7): 378–381
- 63 Camerer C F. Behavioral Game Theory: Experiments in Stra-122.0 tegic Interaction. Princeton, USA: Princeton University Press, 113.0 2003.

- 4 Rubinstein A. Modeling Bounded Rationality. Cambridge, 7830 USA: MIT Press, 1998.
- Williamson O E. Transaction-cost economics: The governance of contractual relations. The Journal of Law and Economics, 731.7 1979, 22(2): 233-261
- 66 Maynard Smith J, Price G R. The logic of animal conflict. 700.6

 Nature, 1973, **246**(5427): 15–18

 700.5
- 7 Maynard Smith J. Evolution and the Theory of Games. Cames 4.4 bridge, UK: Cambridge University Press, 1982.
- Mayr E. Populations, Species, and Evolution: An Abridgmentess of Animal Species and Evolution. Cambridge, USA: Harvardess 2 University Press, 1970.
- 69 Hofbauer J, Sigmund K. Evolutionary Games and Populations Dynamics. Cambridge, USA: Cambridge University Press, 524,9 1998.
- O Sandholm W H. Population Games and Evolutionary Dynam-628 ics. Cambridge, USA: MIT Press, 2010.
- 1 Simon H A. A behavioral model of rational choice. *The*son Quarterly Journal of Economics, 1955, **69**(1): 99–118
- 72 Szabó G, Fáth G. Evolutionary games on graphs. *Physics Re-sset ports*, 2007, **446**(4-6): 97–216
- Weibull J W. Evolutionary Game Theory. Cambridge, USA:s83, MIT Press, 1995.
- Nowak M A. Evolutionary Dynamics: Exploring the Equations 14.1
- of Life. Cambridge, USA: Harvard University Press, 2006.

 Hofbauer J, Sigmund K. Evolutionary game dynamics. Bullet-920
 in of the American Mathematical Society, 2003, 40(4): 479-519
- 76 Taylor P D, Jonker L B. Evolutionary stable strategies and game dynamics. Mathematical Biosciences, 1978, 40(1-2):460.7
 145-156
- 7 Schuster P, Sigmund K. Replicator dynamics. Journal of The-48-6 oretical Biology, 1983, 100(3): 533-538
- 8 Brown G W, von Neumann J. Solutions of games by differen-464 tial equations. In: H.W. Kuhn and A.W. Tucker, editors, Con-4673 tributions to the Theory of Games (AM-24), Volume I. Prin-3862 ceton: Princeton University Press, 1950. 73–79
- Smith M J. The stability of a dynamic model of traffic assign-76.1 ment—An application of a method of Lyapunov. *Transporta-970* tion Science, 1984, 18(3): 245–252
- Helbing D. A mathematical model for behavioral changes by pair interactions. In: Günter Haag, Ulrich Mueller, and Klausssss G. Troitzsch, editors, Economic Evolution and Demographics Change: Formal Models in Social Sciences. Berlin, Heidelberg: Springer, 1992. 330–348
- Schlag K H. Why imitate, and if so, how?: A boundedly ration-28.4 al approach to multi-armed bandits. *Journal of Economic The-28.4* ory, 1998, 78(1): 130-156
- 82 Hofbauer J. On the occurrence of limit cycles in the Volterra-2442 Lotka equation. Nonlinear Analysis: Theory, Methods & Ap-25, 1 plications, 1981, 5(9): 1003-1007
- 3 Dugatkin L A, Reeve H K. Game Theory and Animal Behavi-23,0 or. New York: Oxford University Press, 2000.
- Cross J G. A stochastic learning model of economic behavior. 2018 The Quarterly Journal of Economics, 1973, 87(2): 239–266
- 5 Watkins C J C H. Learning from Delayed Rewards [Ph.D. dis-1886 sertation], King's College, UK, 1989
- 66 Watkins C. J. C. H., Dayan P. Q-learning. Machine Learning, 665 1992, 8(3): 279–292
- 87 Börgers T, Sarin R. Learning through reinforcement and replicated ator dynamics. *Journal of Economic Theory*, 1997, 77(1): 1–14, 4852
- 88 Sato Y, Crutchfield J P. Coupled replicator equations for the 22 dynamics of learning in multiagent systems. *Physical Review E*, 131 2003, **67**(1): 015206

- 9 Tuyls K, Verbeeck K, Lenaerts T. A selection-mutation models for Q-learning in multi-agent systems. In: Proceedings of the 33 2nd International Joint Conference on Autonomous Agents and MultiAgent Systems. Melbourne, Australia: International 36 5 Foundation for Autonomous Agents and Multiagent Systems, 768 2003, 693-700
- 90 Mnih V, Kavukcuoglu K, Silver D, Rusu A A, Veness J, Belle-7048 mare M G, et al. Human-level control through deep reinforce-0857 ment learning. *Nature*, 2015, **518**(7540): 529-533
- Schrittwieser J, Antonoglou I, Hubert T, Simonyan K, Sifre L,6737 Schmitt S, et al. Mastering Atari, Go, chess and shogi by plan-6846 ning with a learned model. Nature, 2020, 588(7839): 604-609
- 2 Silver D, Huang A, Maddison C J, Guez A, Sifre L, Van Deneza driessche G, et al. Mastering the game of Go with deep neurals networks and tree search. *Nature*, 2016, 529(7587): 484–489
- 3 Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A,6115 Guez A, et al. Mastering the game of Go without human know-625 ledge. Nature, 2017, **550**(7676): 354-359
- 94 Tuyls K, Parsons S. What evolutionary game theory tells usset about multiagent learning. Artificial Intelligence, 2007, 171(7):571.4

 406-416
- 95 Bloembergen D, Tuyls K, Hennes D, Kaisers M. Evolutionarys dynamics of multi-agent learning: A survey. Journal of Artificial Cial Intelligence Research, 2015, 53: 659-697
- 96 Mertikopoulos P, Sandholm W H. Learning in games via rein-sez forcement and regularization. Mathematics of Operations Re-sez search, 2016, 41(4): 1297–1324
- 97 Omidshafiei S, Tuyls K, Czarnecki W M, Santos F C, Row-4874
 land M, Connor J, et al. Navigating the landscape of multiplay-4784
 er games. Nature Communications, 2020, 11(1): 5603
- 98 Leonardos S, Piliouras G. Exploration-exploitation in multiagent learning: Catastrophe theory meets game theory. Artificial Intelligence, 2022, 304: 103653
- 99 Hauert C, De Monte S, Hofbauer J, Sigmund K. Replicator dy-4250
 namics for optional public good games. *Journal of Theoretical*Biology, 2002, 218(2): 187-194
- 00 Hauert C, De Monte S, Hofbauer J, Sigmund K. Volunteerings
 as red queen mechanism for cooperation in public goods games.

 Science, 2002, 296(5570): 1129–1132
- 101 Pacheco J M, Santos F C, Souza M O, Skyrms B. Evolution-self ary dynamics of collective action in N-person stag hunt dilem-self mas. Proceedings of the Royal Society B: Biological Sciences, 447 2009, 276 (1655): 315–321
- 102 Wang J, Fu F, Wu T, Wang L. Emergence of social coopera-s2-7 tion in threshold public goods games with collective risk. *Phys-*3-36 ical Review E, 2009, **80**(1): 016101
- O3 Souza M O, Pacheco J M, Santos F C. Evolution of coopera-2916 tion under N-person snowdrift games. Journal of Theoreticals 225 Biology, 2009, 260(4): 581-588
- 104 Wang J, Fu F, Wang L. Effects of heterogeneous wealth distri-zeos bution on public cooperation with collective risk. *Physical Re-*21,4 view E, 2010, 82(1): 016102
- 105 Wang Long, Cong Rui, Li Kun. Feedback mechanism in co-22-4 operation evolving. SCIENCE CHINA: Information Science,220-4 2014, 44(12): 1495-1514 (王龙, 从睿, 李昆. 合作演化中的反馈机制. 中国科学: 信息科学,2023 2014, 44(12): 1495-1514)
- 106 Chen X J, Sasaki T, Brännström Å, Dieckmann U. First car-1802 rot, then stick: How the adaptive hybridization of incentives 1712 promotes cooperation. Journal of the Royal Society Interface, 1822 2015, 12(102): 20140935
- 107 Huang F, Chen X J, Wang L. Conditional punishment is an double-edged sword in promoting cooperation. Scientific Re-131.1

 ports, 2018, 8(1): 528
- 08 Huang F, Chen X J, Wang L. Evolution of cooperation in a hierarchical society with corruption control. *Journal of Theor*-

287.225 311.375 763.0

- etical Biology, 2018, 449: 60-72
- 109 Ohtsuki H, Nowak M A. The replicator equation on graphs. 749.9 Journal of Theoretical Biology, 2006, 243(1): 86–97
- 110 Foster D, Young P. Stochastic evolutionary game dynamics. 727.9 Theoretical Population Biology, 1990, 38(2): 219-232
- 111 Imhof L A. The long-run behavior of the stochastic replicatory oss dynamics. The Annals of Applied Probability, 2005, 15(1B):8868 1019-1045
- 112 Cressman R. Stability of the replicator equation with continuous strategy space. Mathematical Social Sciences, 2005, 50(2):8657 127-147
- 113 Galstyan A. Continuous strategy replicator dynamics for multi-8436 agent Q-learning. Autonomous Agents and Multi-agent Sys-8346 tems, 2013, 26(1): 37-53
- 114 LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 8125 521(7553): 436–444
- Nedić A, Liu J. Distributed optimization for control. Annual 8905
 Review of Control, Robotics, and Autonomous Systems, 2018, 8814
 1: 77-103
- 116 Wang Long, Tian Ye, Du Jin-Ming. Opinion dynamics in so 5594 cial networks. *SCIENCE CHINA: Information Science*, 2018, 5503 48(1): 3-23 5413 (王龙, 田野, 杜金铭. 社会网络上的观念动力学. 中国科学: 信息 5323 科学, 2018, 48(1): 3-23)
- 117 Wu B, Du J M, Wang L. Bridging the gap between opinion dy-5102
 namics and evolutionary game theory: Some equivalence res-5012
 ults. In: Proceedings of the 39th Chinese Control Conference.
 Shenyang, China: IEEE, 2020. 6707-6714
 483.1
- 18 Levins R. Evolution in Changing Environments: Some Theoretical Explorations. Princeton, USA: Princeton University Press, 461.1
 1968
- 119 Hennes D, Morrill D, Omidshafiei S, Munos R, Perolat J, Lanctot M, et al. Neural replicator dynamics: Multiagent learningvia hedging policy gradients. In: Proceedings of the 19th Inter221.0
 national Conference on Autonomous Agents and MultiAgent
 Systems. Auckland, New Zealand: International Foundation for222.0
 Autonomous Agents and Multiagent Systems, 2020, 492-501
- Pantoja A, Quijano N, Passino K M. Dispatch of distributed generators using a local replicator equation. In: Proceedings of 571.8 the 50th IEEE Conference on Decision and Control and 862.8 European Control Conference. Orlando, USA: IEEE, 2011. 953.7 7494-7499
- 121 Barreiro-Gomez J, Obando G, Quijano N. Distributed population dynamics: Optimization and control applications. *IEEE*₈₂₂₇ Transactions on Systems, Man, and Cybernetics: Systems, 8136 2017, **47**(2): 304–314
- 122 Mei W J, Friedkin N E, Lewis K, Bullo F. Dynamic models of appraisal networks explaining collective learning. *IEEE Trans*-2025 actions on Automatic Control, 2018, 63(9): 2898-2912 2735
- 123 Weitz J S, Eksin C, Paarporn K, Brown S P, Ratcliff W C. Angeos oscillating tragedy of the commons in replicator dynamics with game-environment feedback. Proceedings of the National Academy of Sciences of the United States of America, 2016, 2334 113(47): E7518-E7525
- 124 Chen X J, Szolnoki A. Punishment and inspection for governing the commons in a feedback-evolving game. PLoS Computational Biology, 2018, 14(7): e1006347
- Wang X, Zheng Z M, Fu F. Steering eco-evolutionary game dynamics with manifold control. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2020, 476(2233); 20190643
- Tilman A R, Plotkin J B, Akçay E. Evolutionary games with 40.1 environmental feedbacks. Nature Communications, 2020, 11(1):431.1 915
- 127 Traulsen A, Hauert C. Stochastic evolutionary game dynamics.
 In: Heinz Georg Schuster, editor, Reviews of Nonlinear Dynam-

- ics and Complexity. Weinheim: Wiley-VCH, 2009. 25-61

 128 Moran P A P. The Statistical Processes of Evolutionary Theorems or V. Oxford: Clarendon Press, 1962.
- 129 Nowak M A, Sasaki A, Taylor C, Fudenberg D. Emergence of press. Cooperation and evolutionary stability in finite populations. Press Nature, 2004, 428(6983): 646-650
- Taylor C, Fudenberg D, Sasaki A, Nowak M A. Evolutionary, game dynamics in finite populations. Bulletin of Mathematical, 87.6 Biology, 2004, 66(6): 1621–1644
- 131 Traulsen A, Shoresh N, Nowak M A. Analytical results for in sess.5 dividual and group selection of any intensity. Bulletin of Matheses. ematical Biology, 2008, 70(5): 1410–1424
- 32 Claussen J C, Traulsen A. Cyclic dominance and biodiversitys^{34,4} in well-mixed populations. *Physical Review Letters*, 2008, e25,4 100(5): 058104
- 133 Wild G, Traulsen A. The different limits of weak selection and the evolutionary dynamics of finite populations. *Journal of* 542

 Theoretical Biology, 2007, 247(2): 382–390
- Wu B, Altrock P M, Wang L, Traulsen A. Universality of real weak selection. Physical Review E, 2010, 82(4): 046106
- 135 Fudenberg D, Nowak M A, Taylor C, Imhof L A. Evolution-8500 ary game dynamics in finite populations with strong selections410 and weak mutation. *Theoretical Population Biology*, 2006,8319 70(3): 352-363
- 136 Antal T, Nowak M A, Traulsen A, Strategy abundance in 2×2509.8 games for arbitrary mutation rates. *Journal of Theoretical Biology*, 2009, 257(2): 340–344
- Wu B, Traulsen A, Gokhale C S. Dynamic properties of evolutionary multi-player games in finite populations. *Games*, 2013, 469.7
 4(2): 182-199
- 138 Traulsen A, Pacheco J M, Nowak M A. Pairwise comparison^{447,6} and selection temperature in evolutionary game dynamics.

 Journal of Theoretical Biology, 2007, 246(3): 522–529
- 139 Traulsen A, Claussen J C, Hauert C. Coevolutionary dynamics: 416.4 From finite to infinite populations. *Physical Review Letters*, 407.4 2005, 95(23): 238701
- 140 Traulsen A, Claussen J C, Hauert C. Coevolutionary dynamics in large, but finite populations. *Physical Review E*, 2006, **74**(1):8762 011901
- 141 Huang F, Chen X J, Wang L. Role of the effective payoff function in evolutionary game dynamics. EPL (Europhysics Letters), 2018, 124(4): 40002
- 142 Huang F, Chen X J, Wang L. Evolutionary dynamics of net-823.0 worked multi-person games: Mixing opponent-aware and op-314.0 ponent-independent strategy decisions. New Journal of Physics, 804.9 2019. 21(6): 063013
- 143 Wang Long, Fu Feng, Chen Xiao-Jie, Wang Jing, Li Zhuo 2028
 Zheng, Xie Guang-Ming, et al. Evolutionary games on comparate plex networks. CAAI Transactions on Intelligent Systems 2007, 2(2): 1-10
 255.7
 (王龙, 伏锋, 陈小杰, 王靖, 李卓政, 谢广明, 等. 复杂网络上的演246.6
 化博弈. 智能系统学报, 2007, 2(2): 1-10)
- 144 Wang Long, Wu Bin, Du Jin-Ming, Wei Yu-Ting, Zhou Da 224.6

 Spreading dynamics on complex dynamical networks. SCL 215.5

 ENCE CHINA: Information Science, 2020, 50(11): 1714-1731

 (王龙, 武斌, 杜金铭, 魏钰婷, 周达. 复杂动态网络上的传播行为197.4

 分析. 中国科学: 信息科学, 2020, 50(11): 1714-1731)
- 145 Lieberman E, Hauert C, Nowak M A. Evolutionary dynamics on graphs. *Nature*, 2005, 433(7023): 312–316
- 146 Ohtsuki H, Hauert C, Lieberman E, Nowak M A. A simple rule for the evolution of cooperation on graphs and social networks. Nature, 2006, 441(7092): 502-505
- 147 Taylor P D, Day T, Wild G. Evolution of cooperation in a finite homogeneous graph. Nature, 2007, 447(7143): 469–472 113.0
- 148 Su Q, Li A M, Wang L. Evolutionary dynamics under interact-

- ive diversity. New Journal of Physics, 2017, 19(10): 103023 Su Q, Zhou L, Wang L. Evolutionary multiplayer games on 749.9 graphs with edge diversity. PLoS Computational Biology, 2019,740.9 **15**(4): e1006947 Su Q, McAvoy A, Wang L, Nowak M A. Evolutionary dynam-78.8 ics with game transitions, Proceedings of the National 1997 Academy of Sciences of the United States of America, 2019,700.7 **116**(51): 25398-25404 151 Li A, Cornelius S P, Liu Y Y, Wang L, Barabási A L. The fun-678.6 damental advantages of temporal networks. Science, 2017,669.5 **358**(6366): 1042–1046 Li A M, Zhou L, Su Q, Cornelius S P, Liu Y Y, Wang L, et al.647.4 Evolution of cooperation on temporal networks. Nature Com-698.4 munications, 2020, 11(1): 2259 Wang Long, Wu Te, Zhang Yan-Ling. Feedback mechanism in 6 6.3 coevolutionary games. Control Theory & Applications, 2014,607.3 31(7): 823-836 (王龙, 吴特, 张艳玲, 共演化博弈中的反馈机制, 控制理论与应589.2 用, 2014, **31**(7): 823-836) 154 Wang Long, Du Jin-Ming. Evolutionary game theoretic ap-567.1 proach to coordinated control of multi-agent systems. Journal 558.0 of Systems Science and Mathematical Sciences, 2016, 36(3):549.0 302 - 318(王龙, 杜金铭. 多智能体协调控制的演化博弈方法. 系统科学与50.9 数学, 2016, 36(3): 302-318) Wu T, Fu F, Wang L. Evolutionary games and spatial period-508.8 icity. arXiv: 2209.08267, 2022. Axelrod R, Hamilton W D. The evolution of cooperation. Sci-486.7 ence, 1981, **211**(4489): 1390–1396 Nowak M, Sigmund K. A strategy of win-stay, lose-shift that 464.6 outperforms tit-for-tat in the prisoner's dilemma game. Nature, 455.6 1993, **364**(6432): 56–58 158 Blume L E. The statistical mechanics of strategic interaction.433.5 Games and Economic Behavior, 1993, 5(3): 387–424 Lessard S. Long-term stability from fixation probabilities in fi-41.4 nite populations: New perspectives for ESS theory. Theoretical 492.3 Population Biology, 2005, 68(1): 19–27 Imhof L A, Nowak M A. Evolutionary game dynamics in a390.2 Wright-Fisher process. Journal of Mathematical Biology, 2006,371.2 **52**(5): 667–681 Du J M, Wu B, Altrock P M, Wang L. Aspiration dynamics of 349.1 multi-player games in finite populations. Journal of the Royals 10.1 Society Interface, 2014, 11(94): 20140077 162 Du J M, Wu B, Wang L. Aspiration dynamics in structured 8.0 population acts as if in a well-mixed one. Scientific Reports, 308.9 2015. **5**: 8014 Wu B, Zhou L. Individualised aspiration dynamics: Calcula-286.8 tion by proofs. PLoS Computational Biology, 2018, 14(9):27.8 Zhou L, Wu B, Vasconcelos V V, Wang L. Simple property of 25.7 heterogeneous aspiration dynamics: Beyond weak selection.246.6 Physical Review E, 2018, 98(6): 062124 Zhou L, Wu B, Du J M, Wang L. Aspiration dynamics gener-224.6 ate robust predictions in heterogeneous populations. Nature₂₅₅ Communications, 2021, 12(1): 3250 Shapley L S. Stochastic games. Proceedings of the National 33.4 Academy of Sciences of the United States of America, 1953,184.4 **39**(10): 1095–1100 167 Solan E, Vieille N. Stochastic games. Proceedings of the Na-182.3 tional Academy of Sciences of the United States of America, 153.2 2015, **112**(45): 13743-13746 Bellman R. A Markovian decision process. Journal of Mathem-131.1 atics and Mechanics, 1957, 6(5): 679–684
- 2014 Fink A. M. Equilibrium in a stochastic n-person game. Journal 750.0 of Science of the Hiroshima University, Series A-I Mathematics,741.0 1964. **28**(1): 89–93 Maskin E, Tirole J. Markov perfect equilibrium: I. Observable, 9.0 actions. Journal of Economic Theory, 2001, 100(2): 191-219 7 0.0 Daskalakis C, Goldberg P W, Papadimitriou C H. The com-697.0 plexity of computing a Nash equilibrium. SIAM Journal ones. Computing, 2009, **39**(1): 195–259 Harsanyi J C. Games with incomplete information played by 66.0 "Bayesian" players, I-III. Management Science, 1967, 14(3, 5,657.0 7): 159–182, 320–334, 486–502 174 Gibbons R. A Primer in Game Theory. Hoboken: Prentice Hall,635.0 Dekel E, Fudenberg D. Rational behavior with payoff uncer-6 3.0 tainty. Journal of Economic Theory, 1990, 52(2): 243-267 Morris S. The common prior assumption in economic theory. 591.0 Economics & Philosophy, 1995, 11(2): 227–253 Mertens J F, Zamir S. Formulation of Bayesian analysis for569.0 games with incomplete information. International Journal of Game Theory, 1985, 14(1): 1-29 Holmström B, Myerson R B. Efficient and durable decisions, 8.0 rules with incomplete information. Econometrica, 1983, 51(6):529.0 Ben-Tal A, El Ghaoui L, Nemirovski A. Robust Optimization. 507.0 Princeton, USA: Princeton University Press, 2009. Aghassi M, Bertsimas D. Robust game theory. Mathematical45.0 Programming, 2006, 107(1): 231–273 Kardes E, Ordóñez F, Hall R W. Discounted robust stochastic 483.0 games and an application to queueing control. Operations Re-454.0 search, 2011, **59**(2): 365–382 Huang Feng. System Dynamics and Learning Theory in Games 432.0 [Ph.D. dissertation], Peking University, China, 2022 (黄锋. 博弈系统动力学与学习理论研究 [博士学位论文], 学, 中国, 2022) Hardin G. The tragedy of the commons. Science, 1968,392.0 **162**(3859): 1243-1248 Robinson J. An iterative method of solving a game. Annals of Mathematics, 1951, **54**(2): 296–301 Berger U. Brown's original fictitious play. Journal of Econom-348.0 ic Theory, 2007, **135**(1): 572–578 Hernandez-Leal P, Kaisers M, Baarslag T, de Cote E M. A sur-326.0 vey of learning in multiagent environments: Dealing with non-37.0 stationarity. arXiv: 1707.09183, 2017. Albrecht S V, Stone P. Autonomous agents modelling other295.0 agents: A comprehensive survey and open problems. Artificial 6.0 Intelligence, 2018, 258: 66-95 Li T, Zhao Y H, Zhu Q Y. The role of information structures 284.0 in game-theoretic multi-agent learning. Annual Reviews in 500 Control, 2022, 53: 296–314 Marden J R, Arslan G, Shamma J S. Joint strategy fictitious233.0 play with inertia for potential games. IEEE Transactions on 224.0 Automatic Control, 2009, 54(2): 208–220 Swenson B, Kar S, Xavier J. Empirical centroid fictitious play:2020 An approach for distributed learning in multi-agent games. 193.0 IEEE Transactions on Signal Processing, 2015, 63(15):184.0 Eksin C, Ribeiro A. Distributed fictitious play for multiagent₁₉₂₀ systems in uncertain environments. IEEE Transactions on 153.0 Automatic Control, 2018, 63(4): 1177–1184 Swenson B, Kar S, Xavier J. Single sample fictitious play. 131.0 IEEE Transactions on Automatic Control, 2017, 62(11):1220 Heinrich J, Silver D. Deep reinforcement learning from self-play 100.0

311.375

Puterman M L. Markov Decision Processes: Discrete Stochast-1900 ic Dynamic Programming. New York: John Wiley & Sons, 1900

- in imperfect-information games. arXiv: 1603.01121, 2016.
- 194 Sayin M O, Parise F, Ozdaglar A. Fictitious play in zero-sum stochastic games. SIAM Journal on Control and Optimization, v407 2022, 60(4): 2095–2114
- 195 Perrin S, Perolat J, Laurière M, Geist M, Elie R, Pietquin O. 7185
 Fictitious play for mean field games: Continuous time analysis 709.4
 and applications. In: Proceedings of the 34th Conference on 7003
 Neural Information Processing Systems. Vancouver, Canada: 891.2
 MIT Press, 2020. 13199–13213
- 196 Thorndike E L. Animal Intelligence: Experimental Studies. 669.0 New York, USA: Macmillan, 1911.
- 197 Sutton R S, Barto A G. Reinforcement Learning: An Introduction. Cambridge, USA: MIT Press, 2018.
- 198 Sato Y, Akiyama E, Crutchfield J P. Stability and diversity in collective adaptation. *Physica D: Nonlinear Phenomena*, 2005, 815.4 210(1-2): 21-57
- 199 Galla T, Farmer J D. Complex dynamics in learning complicated games. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(4): 1232–1236
- 200 Barfuss W, Donges J F, Kurths J. Deterministic limit of tem-sers poral difference reinforcement learning for stochastic games. Physical Review E, 2019, 99(4): 043305
- 201 Kianercy A, Galstyan A. Dynamics of Boltzmann Q learning in two-player two-action games. Physical Review E, 2012, 85(4): 8215 041145
- 202 Galla T. Intrinsic noise in game dynamical learning. Physical 1992 Review Letters, 2009, 103(19): 198702
- 203 Kaisers M, Tuyls K. Frequency adjusted multi-agent Q-learn-477.0 ing. In: Proceedings of the 9th International Conference on 467.9 Autonomous Agents and Multiagent Systems. Toronto, 458.8 Canada: International Foundation for Autonomous Agents and Multiagent Systems, 2010, 309-316
- 204 Abdallah S, Lesser V. A multiagent reinforcement learning al-g75 gorithm with non-linear dynamics. Journal of Artificial Intelligence Research, 2008, 33: 521-549
- 205 Klos T, van Ahee G J, Tuyls K. Evolutionary dynamics of regret minimization. In: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Barcelona, Spain: Springer, 2010. 82–96
- 206 Huang F, Cao M, Wang L. Learning enables adaptation in co-pss. Journal of the defense operation for multi-player stochastic games. Journal of the Royal Society Interface, 2020, 17(172): 20200639
- 207 Sutton R. S., McAllester D., Singh S., Mansour Y. Policy gradi-524.4 ent methods for reinforcement learning with function approx-8153 imation. In: Proceedings of the 12th International Conference on Neural Information Processing Systems. Denver, USA: MIT 297.1 Press, 1999. 1057-1063
- 208 Konda V R, Tsitsiklis J N. Actor-critic algorithms. In: Proceed-2748 ings of the 12th International Conference on Neural Informa-265.7 tion Processing Systems. Denver, USA: MIT Press, 1999. 2666 1008-1014
- 209 Arapostathis A, Borkar V S, Fernández-Gaucherand E, Ghosh^{234,4} M K, Marcus S I. Discrete-time controlled Markov processes^{225,3} with average cost criterion: A survey. SIAM Journal on Controlled and Optimization, 1993, 31(2): 282–344
- 210 Bellman R E. Dynamic Programming Princeton, USA: Princeton University Press, 1957.
- 211 Bertsekas D. P., Tsitsiklis J. N. Neuro-Dynamic Programming. 871.8
 Belmont, USA: Athena Scientific, 1996.
- 212 Kaelbling L P, Littman M L, Moore A W. Reinforcement, 485 learning: A survey. Journal of Artificial Intelligence Research, 4404
 1996 4: 237-285
- 213 Hessel M, Modayil J, van Hasselt H, Schaul T, Ostrovski G, 1182 Dabney W, et al. Rainbow: Combining improvements in deep 109.1 reinforcement learning. In: Proceedings of the 32nd AAAI Con-100.0

- ference on Artificial Intelligence and 30th Innovative Applica-763.0 tions of Artificial Intelligence Conference and 8th AAAI Sym-754.0 posium on Educational Advances in Artificial Intelligence. New 745.0 Orleans, USA: AAAI Press, 2018, 3215–3222
- 214 Kocsis L, Szepesvári C. Bandit based Monte-Carlo planning, 723.1 In: Proceedings of the 17th European Conference on Machine, 742 Learning. Berlin, Germany: Springer, 2006, 282–293
- 215 Coulom R. Efficient selectivity and backup operators in Monte-8923 Carlo tree search. In: Proceedings of the 5th International Con-8833 ference on Computers and Games. Turin, Italy: Springer, 2006. 6744 72-83
- 216 Silver D, Lever G, Heess N, Degris T, Wierstra D, Riedmiller 852.5 M. Deterministic policy gradient algorithms. In: Proceedings of 843.5 the 31st International Conference on Machine Learning 834.6 Beijing, China; JMLR.org, 2014, 387-395
- 217 Lillicrap T P, Hunt J J, Pritzel A, Heess N, Erez T, Tassa Y, 8126 et al. Continuous control with deep reinforcement learning. In:803.7 Proceedings of the 4th International Conference on Learningses.7 Representations. San Juan, Puerto Rico: OpenReview.net, 8858 2016, 1-10
- 218 Schulman J, Levine S, Moritz P, Jordan M, Abbeel P. Trustsess9 region policy optimization. In: Proceedings of the 32nd Interna-5549 tional Conference on Machine Learning. Lille, France: 546.0 JMLR.org, 2015, 1889–1897
- 219 Schulman J, Wolski F, Dhariwal P, Radford A, Klimov O. 524.1 Proximal policy optimization algorithms. arXiv: 1707.06347, 515.1 2017.
- Mnih V, Badia A P, Mirza M, Graves A, Harley T, Lillicrap T P, et al. Asynchronous methods for deep reinforcement learning. In: Proceedings of the 33rd International Conference on Machine Learning. New York, USA: JMLR.org, 2016. 6683
 1928-1937
- 221 Haarnoja T, Zhou A, Abbeel P, Levine S. Soft actor-critic: Off-444.4 policy maximum entropy deep reinforcement learning with ass.5 stochastic actor. In: Proceedings of the 35th International Conference on Machine Learning. Stockholm, Sweden: PMLR, 417.6 2018. 1861–1870
- 222 Claus C, Boutilier C. The dynamics of reinforcement learning section in cooperative multiagent systems. In: Proceedings of the 15th section National Conference on Artificial Intelligence and 10th Innov-377.8 ative Applications of Artificial Intelligence. Madison, USA: 868.8 AAAI Press, 1998. 746-752
- 223 Littman M L. Value-function reinforcement learning in Markov games. Cognitive Systems Research, 2001, 2(1): 55-66 337.9
- Foerster J N, Assael Y M, de Freitas N, Whiteson S. Learning 525.0
 to communicate with deep multi-agent reinforcement learning, 516.0
 In: Proceedings of the 30th International Conference on Neural 507.1
 Information Processing Systems. Barcelona, Spain: MIT Press, 286.1
 2016, 2145-2153
- 225 García J, Fernández F. A comprehensive survey on safe rein-2762 forcement learning. Journal of Machine Learning Research, 2673 2015, 16(1): 1437-1480
- 226 Hernandez-Leal P, Kartal B, Taylor M E. A survey and cri-245.4 tique of multiagent deep reinforcement learning. Autonomous 206.4 Agents and Multi-Agent Systems, 2019, 33(6): 750-797 227.4
- 227 Da Silva F L, Costa A H R. A survey on transfer learning for hts multiagent reinforcement learning systems. *Journal of Artificost cial Intelligence Research*, 2019, 64: 645-703
- 228 Oroojlooy A, Hajinezhad D. A review of cooperative multiagent deep reinforcement learning. Applied Intelligence, 2022. 474.7
- 229 Nguyen T T, Nguyen N D, Nahavandi S. Deep reinforcement learning for multiagent systems: A review of challenges, solu-152.8 tions, and applications. *IEEE Transactions on Cybernetics*, 143.8 2020, 50(9): 3826-3839
- 230 Heuillet A, Couthouis F, Díaz-Rodríguez N. Explainability in 121.9 deep reinforcement learning. Knowledge-Based Systems, 2021, 113.0 214: 106685

- 231 Dulac-Arnold G, Levine N, Mankowitz D J, Li J, Paduraru C, Gowal S, et al. Challenges of real-world reinforcement learning: 440 Definitions, benchmarks and analysis. *Machine Learning*, 2021, 450 110(9): 2419–2468
- 232 Parker-Holder J, Rajan R, Song X Y, Biedenkapp A, Miao Y J, 72, 1
 Eimer T, et al. Automated reinforcement learning (AutoRL): A74, 1
 survey and open problems. Journal of Artificial Intelligence Re-76, 1
 search, 2022, 74: 517-568
- 233 Morimoto J, Doya K. Robust reinforcement learning. Neuralss 2 Computation, 2005, 17(2): 335-359
- 234 Moos J, Hansel K, Abdulsamad H, Stark S, Clever D, Peters J. 613 Robust reinforcement learning: A review of foundations and re-623 cent advances. Machine Learning and Knowledge Extraction, 6434 2022, 4(1): 276-315
- 235 Satia J K, Lave R E Jr. Markovian decision processes with un-stated certain transition probabilities. *Operations Research*, 1973,6124 21(3): 728-740
- 236 White III C C, Eldeib H K. Markov decision processes with im-section precise transition probabilities. *Operations Research*, 1994, 81.5 42(4): 739–749
- 237 Zhou K, Doyle J C, Glover K. Robust and Optimal Control. see Upper Saddle River, USA: Prentice Hall, 1996.
- 238 Nilim A, El Ghaoui L. Robust control of Markov decision pro-s7.6 cesses with uncertain transition matrices. *Operations Research*, 52.7 2005, 53(5): 780-798
- 239 Iyengar G N. Robust dynamic programming. Mathematics of one of Operations Research, 2005, 30(2): 257–280
- 240 Goodfellow I.J., Pouget-Abadie J., Mirza M., Xu M., Warde-Far-4848 ley D., Ozair S., et al. Generative adversarial nets. In: Proceed-4788 ings of the 27th International Conference on Neural Informa-4869 tion Processing Systems. Montreal, Canada: MIT Press, 2014.4879 2672-2680
- 241 Kaufman D L, Schaefer A J. Robust modified policy iteration.
- 242 Xu H, Mannor S. The robustness-performance tradeoff in Markov decision processes. In: Proceedings of the 19th Interna-465.1

 tional Conference on Neural Information Processing Systems, 366.1

 Vancouver, Canada; MIT Press, 2006, 1537-1544
- 243 Delage E, Mannor S. Percentile optimization for Markov de-3/4.1 cision processes with parameter uncertainty. *Operations Re-3652 search*, 2010, 58(1): 203-213
- 244 Turchetta M, Krause A, Trimpe S. Robust model-free rein-state forcement learning with multi-objective Bayesian optimization.343

 In: Proceedings of IEEE International Conference on Robotics3253
 and Automation (ICRA). Paris, France: IEEE, 2020.363
 10702-10708
- 245 Mannor S, Mebel O, Xu H. Robust MDPs with k-rectangulars uncertainty. Mathematics of Operations Research, 2016, 41(4):2854
 1484-1509
- 246 Goyal V, Grand-Clément J. Robust Markov decision processes: 2835

 Beyond rectangularity. Mathematics of Operations Research, 2456
 2022.
- 247 Gilboa I, Schmeidler D. Maxmin expected utility with non-zuta unique prior. *Journal of Mathematical Economics*, 1989, 18(2):2238 141-153
- 248 Xu H, Mannor S. Distributionally robust Markov decision pro-2017 cesses. <u>Mathematics of Operations Research</u>, 2012, 37(2):1827 288-300
- Tamar A, Mannor S, Xu H. Scaling up robust MDPs using to function approximation. In: Proceedings of the 31st International Conference on Machine Learning. Beijing, China: 1228

 JMLR.org, 2014, 181–189
- 250 Scherrer B, Ghavamzadeh M, Gabillon V, Lesner B, Geist M. 30,9 Approximate modified policy iteration and its application to 21,9 the game of Tetris. The Journal of Machine Learning Research, 13,0 2015, 16(1): 1629–1676

- 51 Badrinath K P, Kalathil D. Robust reinforcement learning us-7830 ing least squares policy iteration with provable performance-7833 guarantees. In: Proceedings of the 38th International Confer-7439 ence on Machine Learning. Virtual: PMLR, 2021, 511-520
- 252 Pinto L, Davidson J, Sukthankar R, Gupta A. Robust ad-7228 versarial reinforcement learning. In: Proceedings of the 34th In-738 ternational Conference on Machine Learning. Sydney, Aus-7648 tralia: JMLR.org, 2017. 2817–2826
- 253 Phan T, Belzner L, Gabor T, Sedlmeier A, Ritz F, Linnhoff-827 Popien C. Resilient multi-agent reinforcement learning with ad-6737 versarial value decomposition. In: Proceedings of the 35th-646 AAAI Conference on Artificial Intelligence. Virtual: AAAI-6566 Press, 2021. 11308-11316
- 254 Everett M, Lütjens B, How J P. Certifiable robustness to ad-6336 versarial state uncertainty in deep reinforcement learning.6245 IEEE Transactions on Neural Networks and Learning Systems,655 2022, 33(9): 4184-4198
- 255 Mankowitz D J, Levine N, Jeong R, Abdolmaleki A, Springen-ss, berg J T, Shi Y Y, et al. Robust reinforcement learning fors, continuous control with model misspecification. In: Proceed-sp, ings of the 8th International Conference on Learning Repres-se, entations. Addis Ababa, Ethiopia: OpenReview.net, 2020. 1–11 s7, 3
- 256 Si N, Zhang F, Zhou Z Y, Blanchet J. Distributionally robusts policy evaluation and learning in offline contextual bandits. In:353 Proceedings of the 37th International Conference on Machines Learning. Vienna, Austria: JMLR.org, 2020. 8884–8894
- Zhou Z Q, Bai Q X, Zhou Z Y, Qiu L H, Blanchet J H, Glynns 42 P W. Finite-sample regret bound for distributionally robust off-4851 line tabular reinforcement learning. In: Proceedings of the 24th 4861 International Conference on Artificial Intelligence and Statist-4771 ics, San Diego, USA; PMLR, 2021, 3331–3339
- Zhang K Q, Sun T, Tao Y Z, Genc S, Mallya S, Başar T. Ro-4550 bust multi-agent reinforcement learning with model uncer-4460 tainty. In: Proceedings of the 34th Conference on Neural In-4370 formation Processing Systems. Vancouver, Canada: Curran As-4799 sociates Inc. 2020. 10571–10583
- 259 Huang F, Cao M, Wang L. Robust optimal policies for team 4859

 Markov games, arXiv: 2105.07405, 2021.
- 260 Lewis F L, Vrabie D L, Syrmos V L. Optimal Control. 3838 Hoboken, USA: John Wiley & Sons, 2012. 3748
- 261 Bertsekas D P. Reinforcement Learning and Optimal Control. 861.7 Belmont, USA: Athena Scientific, 2019.
- 262 Bryson A E. Optimal control—1950 to 1985. *IEEE Control* 3907 Systems Magazine, 1996, **16**(3): 26-33
- 263 Doya K. Reinforcement learning in continuous time and space.

 Neural Computation, 2000, 12(1): 219-245
- 264 Liu D R, Wei Q L, Wang D, Yang X, Li H L. Adaptive Dy-2666

 namic Programming with Applications in Optimal Control. 2655

 Cham, Switzerland: Springer, 2017.
- 265 Jiang Z P, Jiang Y. Robust adaptive dynamic programming forzets linear and nonlinear systems: An overview. European Journals of Control, 2013, 19(5): 417–425
- 266 Fu K S. Learning control systems—review and outlook. IEEE23.4 Transactions on Automatic Control, 1970, 15(2): 210–221
- 267 Vrabie D, Lewis F. Neural network approach to continuous-213
 time direct adaptive optimal control for partially unknowned nonlinear systems. Neural Networks, 2009, 22(3): 237-246
- 268 Modares H, Lewis F L, Naghibi-Sistani M B. Integral reinforce-1802
 ment learning and experience replay for adaptive optimal con-1712
 trol of partially-unknown constrained-input continuous-time-1822
 systems. Automatica, 2014, 50(1): 193-202
- 269 Jiang Y, Jiang Z P. Robust adaptive dynamic programming and feedback stabilization of nonlinear systems. *IEEE Transac-31.1 tions on Neural Networks and Learning Systems*, 2014, 25(5):1221 882-893
- 270 Isaacs R. Differential Games: A Mathematical Theory with Ap-100.0

287.225 55.8 311.375 plications to Warfare and Pursuit, Control and Optimization.

Mineola, USA: Dover Publications, 1999.

自

化

学

- 271 Ho Y C, Bryson A, Baron S. Differential games and optimal₇₄₀₉ pursuit-evasion strategies. *IEEE Transactions on Automatic*₇₃₁₈ Control, 1965, 10(4): 385–389 7228
- 272 Starr A W, Ho Y C. Nonzero-sum differential games. Journal 709.7 of Optimization Theory and Applications, 1969, 3(3): 184-206 700.7
- 273 Vamvoudakis K G, Lewis F L. Multi-player non-zero-sumser.6
 games: Online adaptive learning solution of coupled Hamiltonsers.6
 Jacobi equations. Automatica, 2011, 47(8): 1556-1569
- 274 Vamvoudakis K G, Lewis F L, Hudas G R. Multi-agent differ-ss65 ential graphical games: Online adaptive learning solution fors47.4 synchronization with optimality. *Automatica*, 2012, 48(8):838.4 1598–1611
- 275 Kamalapurkar R, Klotz J R, Walters P, Dixon W E. Modelbased reinforcement learning in differential graphical games. 8073 IEEE Transactions on Control of Network Systems, 2018, 5(1):5882 423-433
- 276 Li M, Qin J H, Freris N M, Ho D W C. Multiplayer Stackel-576.1 berg-Nash game for nonlinear system via value iteration-based 567.1 integral reinforcement learning. *IEEE Transactions on Neural* 558.0 Networks and Learning Systems, 2022, 33(4): 1429-1440
- 277 Guo Lei. Some thoughts on the development of control theory. 8359

 Journal of Systems Science and Mathematical Sciences, 2011. 8269

 31(9): 1014-1018

 (郭雷. 关于控制理论发展的某些思考. 系统科学与数学, 2011, 8088

 31(9): 1014-1018)
- 278 Zhang R R, Guo L. Controllability of Nash equilibrium in game-based control systems. *IEEE Transactions on Automatic Control*, 2019, 64(10): 4180-4187
- 279 Zhang R. R., Guo L. Controllability of stochastic game-based control systems. SIAM Journal on Control and Optimization, 2019, 57(6): 3799–3826
- Zhang R R, Guo L. Stabilizability of game-based control sys-4244 tems. SIAM Journal on Control and Optimization, 2021, 59(5):4154 3999-4023
- 281 Simaan M, Cruz J B. On the Stackelberg strategy in nonzero-s933 sum games. Journal of Optimization Theory and Applications, 3842 1973, 11(5): 533-555
- 282 Li Y, Guo L. Towards a theory of stochastic adaptive differen-8622 tial games. In: Proceedings of the 50th IEEE Conference on Decision and Control and European Control Conference. Orlando, 344.1 USA: IEEE, 2011. 5041-5046
- 283 Yuan Shuo, Guo Lei. Stochastic adaptive dynamical games. 2220 Scientia Sinica Mathematica, 2016, **46**(10): 1367-1382 3129 (袁碩,郭雷. 随机自适应动态博弈. 中国科学: 数学, 2016, 2039 **46**(10): 1367-1382) 2948
- 284 Liu N, Guo L. Stochastic adaptive linear quadratic differential games. arXiv: 2204.08869, 2022.
- 285 Cheng D Z, Qi H S, Zhao Y. An Introduction to Semi-Tensor^{259,7} Product of Matrices and Its Applications. Singapore: World Scientific, 2012.
- 286 Cheng D Z, Qi H S, Li Z Q. Analysis and Control of Boolean²²⁸⁶ Networks: A Semi-Tensor Product Approach. London: Spring-2195 er, 2011.
- 287 Cheng D Z. On finite potential games. Automatica, 2014, 197.4
 50(7): 1793–1801
- 288 Cheng D Z, Wu Y H, Zhao G D, Fu S H. A comprehensive sur-1753 vey on STP approach to finite games. *Journal of Systems Sci-*1663 ence and Complexity, 2021, 34(5): 1666-1680
- 289 Cheng D Z, He F H, Qi H S, Xu T T. Modeling, analysis and control of networked evolutionary games. *IEEE Transactions* 135.1 on Automatic Control, 2015, 60(9): 2402-2415
- 290 Monderer D, Shapley L S. Potential games. Games and Economic Behavior, 1996, 14(1): 124-143

- 291 Cheng D Z, Liu T. From Boolean game to potential game.

 **Responsible Comparison of Comparison Comparison
- 292 Li C X, Xing Y, He F H, Cheng D Z. A strategic learning algorithm for state-based games. Automatica, 2020, 113: 108615 731.6
- 293 Yang T, Yi X L, Wu J F, Yuan Y, Wu D, Meng Z Y, et al. A_{718.5} survey of distributed optimization. *Annual Reviews in Control*_{709.4} 2019, 47: 278-305
- 294 Wang Long, Lu Kai-Hong, Guan Yong-Qiang. Distributed op 887.2 timization via multi-agent systems. *Control Theory & Applica* 878.1 tions, 2019, **36**(11): 1820–1833 688.0 (王龙, 卢开红, 关永强. 分布式优化的多智能体方法. 控制理论与888.9 应用, 2019, **36**(11): 1820–1833)
- 295 Facchinei F, Kanzow C. Generalized Nash equilibrium problems. Annals of Operations Research, 2010, 175(1): 177-211 528.5
- 296 Scutari G, Palomar D P, Facchinei F, Pang J S. Convex op-815.4 timization, game theory, and variational inequality theory. IEEE Signal Processing Magazine, 2010, 27(3): 35–49
- 297 Facchinei F, Pang J S. Finite-Dimensional Variational Inequal 884.1 ities and Complementarity Problems. New York, USA: Spring 875.0 er, 2003.
- 298 Nagurney A, Zhang D. Projected Dynamical Systems and Vari-852.8 ational Inequalities with Applications. New York, USA: Spring-843.7 er, 1996.
- 299 Salehisadaghiani F, Pavel L. Distributed Nash equilibriums^{21,5} seeking: A gossip-based algorithm. *Automatica*, 2016, 72:_{512,3} 209-216
- 300 Gadjov D, Pavel L. A passivity-based approach to Nash equi-890.1 librium seeking over networks. *IEEE Transactions on Automat*-881.0 ic Control, 2019, 64(3): 1077-1092
- 301 Ye M J, Hu G Q. Distributed Nash equilibrium seeking by assass consensus based approach. *IEEE Transactions on Automatic Control*, 2017, **62**(9): 4811–4818
- 302 Liang S, Yi P, Hong Y G. Distributed Nash equilibrium seek-g27.5 ing for aggregative games with coupled constraints. Automatica, 2017, 85: 179-185
- 303 Lu K H, Jing G S, Wang L. Distributed algorithms for search-secting generalized Nash equilibrium of noncooperative games. IEEE Transactions on Cybernetics, 2019, 49(6): 2362-2371 377.9
- 304 Lu K H, Li G Q, Wang L. Online distributed algorithms for seeking generalized Nash equilibria in dynamic environments. 385.7 IEEE Transactions on Automatic Control, 2021, 66(5):346.6 2289–2296
- 305 Press W H, Dyson F J. Iterated prisoner's dilemma contains²²⁴ strategies that dominate any evolutionary opponent. Proceed-^{515,3} ings of the National Academy of Sciences of the United States^{506,2} of America, 2012, **109**(26): 10409–10413
- 306 Stewart A J, Plotkin J B. Extortion and cooperation in the prisoner's dilemma. Proceedings of the National Academy of 74.8

 Sciences of the United States of America, 2012, 109(26):265.7

 10134-10135
- 307 Stewart A J, Plotkin J B. From extortion to generosity, evolu-2435 tion in the iterated prisoner's dilemma. Proceedings of the Na-2344 tional Academy of Sciences of the United States of America, 253 2013, 110(38): 15348-15353
- Akin E. The iterated prisoner's dilemma: Good strategies and their dynamics. In: Assani Idris, editor, Ergodic Theory: Advances in Dynamical Systems. Berlin: De Gruyter, 2016, 1849
- 309 Hilbe C, Traulsen A, Sigmund K. Partners or rivals? Strategies 62.7 for the iterated prisoner's dilemma. Games and Economic Behavior, 2015, 92: 41–52
- 310 McAvoy A, Hauert C. Autocratic strategies for iterated games (31.3)
 with arbitrary action spaces. Proceedings of the National (32.2)
 Academy of Sciences of the United States of America, 2016, (13.1)
 113(13): 3573-3578

287.225 542.8

- 311 Hilbe C, Wu B, Traulsen A, Nowak M A. Cooperation and control in multiplayer social dilemmas. Proceedings of the Na-74-0 tional Academy of Sciences of the United States of America, 2014, 111(46): 16425–16430
- 312 Pan L M, Hao D, Rong Z H, Zhou T. Zero-determinant strategies in iterated public goods game. Scientific Reports, 40 2015, 5: 13096
- 313 Govaert A, Cao M. Zero-determinant strategies in repeated multiplayer social dilemmas with discounted payoffs. *IEEE* 77 Transactions on Automatic Control, 2021, 66(10): 4575–4588 6440
- 314 Tan R. F., Su Q., Wu B., Wang L. Payoff control in repeated games. In: Proceedings of the 33rd Chinese Control and De-6520 cision Conference. Kunming, China: Editorial Department of Control and Decision, 2021, 997–1005
- 315 Chen J, Zinger A. The robustness of zero-determinanter strategies in iterated prisoner's dilemma games. Journal of 20 Theoretical Biology, 2014, 357: 46-54
- 316 Adami C, Hintze A. Evolutionary instability of zero-determin-soo ant strategies demonstrates that winning is not everything.sol. Nature Communications, 2013, 4(1): 2193
- 317 Hilbe C, Nowak M A, Sigmund K. Evolution of extortion in it-seed erated prisoner's dilemma games. Proceedings of the Nationals of Academy of Sciences of the United States of America, 2013,5410

 110(17): 6913–6918

 520
- 318 Chen F, Wu T, Wang L. Evolutionary dynamics of zero-de-stateminant strategies in repeated multiplayer games. Journal of the Theoretical Biology, 2022, 549: 111209
- 319 Cheng Z Y, Chen G P, Hong Y G. Misperception influence on second terminant strategies in iterated prisoner's dilemma. Sci-1700 entific Reports, 2022, 12(1): 5174
- 320 Barto A G. Reinforcement learning: Connections, surprises, and challenge. AI Magazine, 2019, 40(1): 3-15
- 321 Huang X W, Kroening D, Ruan W J, Sharp J, Sun Y C, 48.0

 Thamo E, et al. A survey of safety and trustworthiness of deepase neural networks: Verification, testing, adversarial attack and 470 defence, and interpretability. Computer Science Review, 2020, 480.
- 322 Kuhn H W. Extensive games and the problem of information.

 In: Kuhn H W and Tucker A W, editors, Contributions to the Theory of Games (AM-28), Volume II. Princeton, USA: Princeton University Press, 1953, 193-216
- 323 Bai Y, Jin C, Mei S, Yu T C. Near-optimal learning of extens-360 ive-form games with imperfect information. In: Proceedings of 3770 the 39th International Conference on Machine Learning. Bal-3280 timore, USA: PMLR, 2022. 1337–1382
- 324 Spence M. Job market signaling. The Quarterly Journal of Eco-soco nomics, 1973, 87(3): 355-374
- 325 Meyer D A. Quantum strategies. *Physical Review Letters*,2440 1999, **82**(5): 1052–1055
- 326 Eisert J, Wilkens M, Lewenstein M. Quantum games and quantum strategies. *Physical Review Letters*, 1999, **83**(15):2530

- 3077-3080
- 327 Khan F S, Solmeyer N, Balu R, Humble T S. Quantum games: A review of the history, current state, and interpretation. Ouantum Information Processing, 2018, 17(11): 309
- Huang M Y, Malhamé R P, Caines P E. Large population stochastic dynamic games: Closed-loop McKean-Vlasov sys-700 tems and the Nash certainty equivalence principle. Communic-7010 ations in Information and Systems, 2006, 6(3): 221-252
- 329 Lasry J M, Lions P L. Mean field games. Japanese Journal of Mathematics, 2007, 2(1): 229-260
- 330 Weinan E. A proposal on machine learning via dynamical sys-6770
 tems. Communications in Mathematics and Statistics, 2017,6480
 5(1): 1-11
- 331 Chen R. T. Q., Rubanova Y., Bettencourt J., Duvenaud D. Neur-ezeo al ordinary differential equations. In: Proceedings of the 32nder of International Conference on Neural Information Processing Sys-eseo tems. Montréal, Canada: Curran Associates Inc., 2018.8990 6572-6583
- 32 Kidger P. On Neural Differential Equations [Ph.D.s770 dissertation], University of Oxford, UK, 2022

王 龙 北京大学教授. 1992 年获得5888 北京大学博士学位. 主要研究方向为5770 人工智能, 博弈控制理论, 演化动力542 学. 本文通信作者. 5814

E-mail: longwang@pku.edu.cn

(WANG Long Professor at Peking 4758)
University. He received his Ph.D. 4830

degree from Peking University in 1992. His research in-4500 terest covers artificial intelligence, game and control-572 theory, and evolutionary dynamics. Corresponding au-4244 thor of this paper.)

黄 锋 北京大学博士研究生. 2016 *** 年获得电子科技大学学士学位. 主要 \$707 研究方向为博弈论、多智能体学习与 \$759 控制论间的交叉. ***

E-mail: fenghuang@pku.edu.cn

(HUANG Feng Ph.D. candidate ats 9.5 Peking University. He received his 36.7

bachelor degree from University of Electronic Science and Technology of China in 2016. His research in-2003 terest covers game theory, multi-agent learning, and 2017 control theory.)

287.225 542.8