NOMBRE: Matías Duhalde

SECCIÓN: 1

Nº LISTA: 34

PUNTAJE:

Pontificia Universidad Católica de Chile Escuela de Ingeniería Departamento de Ciencia de la Computación

IIC1253 — Matemáticas Discretas — 1' 2020

Tarea 4 – Respuesta Pregunta 2

Parte 1

Sean $R_1, S_1, R_2, S_2 \in \mathcal{R}$ tal que:

- 1. $(R_1, S_1) \in \leq_1$, es decir, $R_1 \circ S_1 = S_1$
- 2. $(R_2, S_2) \in \leq_1$, es decir, $R_2 \circ S_2 = S_2$
- 3. $S_1 = R_2$

Si \leq_1 es transitiva, entonces se debe cumplir que $(R_1, S_2) \in \leq_1$

Supongamos que $(R_1, S_2) \notin \preceq_1$, es decir, $R_1 \circ S_2 \neq S_2$

$$R_1 \circ S_2 \neq S_2$$

 $R_1 \circ S_2 \neq R_2 \circ S_2$ Por **2.**
 $R_1 \circ S_2 \neq S_1 \circ S_2$ Por **3.**
 $R_1 \circ S_2 \neq (R_1 \circ S_1) \circ S_2$ Por **1.**

Para el siguiente paso, debemos demostrar que la composición es asociativa. Sean A, B, C conjuntos de relaciones. Si la operación de composición es asociativa, entonces se debe cumplir que:

$$(A \circ B) \circ C = A \circ (B \circ C)$$
, lo que equivale a: $(A \circ B) \circ C \subseteq A \circ (B \circ C) \wedge A \circ (B \circ C) \subseteq (A \circ B) \circ C$

Para demostrar que se cumple $(A \circ B) \circ C \subseteq A \circ (B \circ C)$:

$$(x,y) \in (A \circ B) \circ C$$

$$\implies \exists z. (x,z) \in (A \circ B) \land (z,y) \in C$$

$$\implies \exists z. [\exists k. (x,k) \in A \land (k,z) \in B] \land (z,y) \in C$$

$$\implies \exists k. (x,k) \in A \land [\exists z. (k,z) \in B \land (z,y) \in C]$$

$$\implies \exists k. (x,k) \in A \land (k,y) \in (C \circ B)$$

$$\implies (x,y) \in A \circ (B \circ C)$$

Ahora, para demostrar que se cumple $A \circ (B \circ C) \subseteq (A \circ B) \circ C$:

$$\begin{split} &(x,y) \in A \circ (B \circ C) \\ &\implies \exists z. (x,z) \in A \wedge (z,y) \in (B \circ C) \\ &\implies \exists z. (x,z) \in A \wedge [\exists k. (z,k) \in B \wedge (k,y) \in C] \\ &\implies \exists k. [\exists z. (x,z) \in A \wedge (z,k) \in B] \wedge (k,y) \in C \\ &\implies \exists k. (x,k) \in (A \circ B) \wedge (k,y) \in C \\ &\implies (x,y) \in (A \circ B) \circ C \end{split}$$

Por lo tanto, se puede concluir que $(A \circ B) \circ C = A \circ (B \circ C)$ y que la composición es asociativa.

Continuando con la demostración:

$$R_1 \circ S_2 \neq R_1 \circ (S_1 \circ S_2)$$
 Por asociatividad de la composición $R_1 \circ S_2 \neq R_1 \circ (R_2 \circ S_2)$ Por **3.** $R_1 \circ S_2 \neq R_1 \circ S_2$ Por **2.**

Se llega a una contradicción, por lo que el único caso posible es que $R_1 \circ S_2 = S_2$, es decir, $(R_1, S_2) \in \preceq_1$. Por lo tanto, se concluye que \preceq_1 es transitiva.

Parte 2

Tenemos que la relación \leq_2 NO es transitiva. Esto se puede probar mediante un contraejemplo.

Sea $A = \{1, 2, 3\}.$

Tenemos que $A \times A = \{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)\}$

Por lo tanto, según la definición del enunciado, \mathcal{R} corresponde a todos los conjuntos de relaciones binarias que se pueden dar sobre A

Sean $R_1 = \{(1,3), (2,2)\}$ y $S_1 = \{(1,2), (3,2)\}$. Tenemos que ambos efectivamente pertenecen a \mathcal{R} , dado que son subconjuntos de $A \times A$.

Tenemos que $R_1 \circ S_1 = \{(1,2)\} \subseteq S_1 \implies (R_1,S_1) \in \preceq_2$

Sean $R_2 = \{(1,2),(3,2)\}$ y $S_2 = \{(1,3),(2,3),(3,3)\}$. Nuevamente tenemos que ambos efectivamente pertenecen a \mathcal{R} , dado que son subconjuntos de $A \times A$.

Tenemos que $R_2 \circ S_2 = \{(1,3),(3,3)\} \subseteq S_2 \implies (R_2,S_2) \in \preceq_2$

Si \leq_2 es transitiva, entonces se debe cumplir que $(R_1, S_2) \in \leq_2$.

Tenemos que $R_1 \circ S_2 = \{(1,3), (2,3)\}$, el cual **no** es subconjunto de S_2 , debido a que $(2,3) \notin S_2$. Por lo tanto, $(R_1, S_2) \notin \subseteq_2$ y se concluye que \subseteq_2 **no** es transitiva.