THEORY OF MIND FOR COLLABORATIVE GAMEPLAY — THE HANABI CHALLENGE

Andrew Fuchs

andrew.fuchs@phd.unipi.it

1st year Phd student in Computer Science at Universitá di Pisa

Advisors: Andrea Passarella and Marco Conti (CNR)

OUTLINE

- Introduction to Reinforcement Learning
- Problem Description
- Methods
- Results
- Future Directions

- Reinforcement Learning (RL)
 - Sequential decision-making process
 - Unlike supervised learning, there are no labels (rather, a reward function)
 - Agents take actions $(a \in A)$ in states $(s \in S)$ and receive a reward (r = R(s, a)) and a new state $(s' \in S)$
 - Goal: Find a policy $\pi^*: S \to A$ yielding the highest expected cumulative reward
- Multi-agent Reinforcement Learning (MARL)
 - Multiple agents operating in shared environment
 - Inclusion of multiple agents increases difficulty of problem
 - Exponential increase in problem complexity
 - Non-stationarity of environment dynamics due to multiple agents changing world state

- Example: Simple gridworld problem in RL
 - States: grid cells
 - Actions: \uparrow , \downarrow , \leftarrow , \rightarrow
 - Note: Typically, a penalty for running into walls
 - Goal: Find optimal path
- Modeled as Markov Decision Process (MDP)
 - (S, A, P, R, γ)
- Note: Markov property
 - $P(S_{t+1}|S_t) = P(S_{t+1}|S_1,...,S_t)$

- Numerous examples of RL used to play games
 - For example: Atari, Go, Chess, Texas Holdem, etc.
 - These are usually either single player or competitive
 - How do we define systems to best coordinate/cooperate with humans?
- Numerous methods for finding a policy for an RL problem
 - Example: Q-Learning
 - Method used depends on problem parameters (beyond scope of presentation)

- Hanabi Challenge Problem (<u>DeepMind paper</u>)
 - RL environment with game dynamics and support for algorithm integration
 - Controls environment dynamics, observations, available moves, etc.
 - Two domains:
 - Sample Limited (SL): no more than 100 million training timesteps
 - Unlimited (UL): no limit on training timesteps
 - Note: We focus on SL as this is more feasible and places higher emphasis on algorithm rather than compute power

- Game Parameters:
 - Goal: Team of 2-5 players build card stacks in ascending order (one stack per color)
 - Cards (x50)
 - Five colors (uniform distribution)
 - Five ordinal values (1-5)
 - Cards nonuniform in distribution {1: 3, 2: 2, 3: 2, 4: 2, 5: 1}
 - Valid actions (one per turn):
 - Play card
 - Discard card and draw new one from deck
 - Give hint to a player
 - Fuse tokens (penalty tokens for playing invalid card: x3)
 - Hint tokens (limits number of hints: x8)
 - Game end:
 - All stacks complete
 - All cards drawn from pile (players get one more turn)
 - All penalty tokens exhausted
 - Score: sum of top cards on stacks (max = 25)

- What makes this game difficult?
 - Players hold cards facing away, so they cannot see own cards
 - Imperfect information due to asymmetric knowledge about the environment
 - Players only learn card colors/values through hints and observations
 - Color or value, but not both in single hint
 - All cards matching hint must be indicated
 - Hint tokens are expended with each hint and there is limited supply
 - Note: Players can discard cards to regain hint tokens
 - Players have a limited number of mistakes allowed
 - There are unwinnable configurations
 - Nonuniformity of cards makes most important cards rare
- What makes the problem easier?
 - All players have nearly matching observations

• Idea: Use Theory of Mind (ToM) to teach RL agents to give and understand hints to successfully play Hanabi and illustrate possibilities

Theory of Mind

- Used by people as a mechanism to infer and reason about another person's states of mind
- Multiple depths of nested beliefs possible (typically no more than 2-3 levels deep)

Why use ToM?

- The game of Hanabi relies on a player's ability to help other players estimate their cards
 - These estimations rely on the ability to form a belief over other player's mental states
- Using the mental state, agents can provide useful information
- When useful information is conveyed, the agents work better as a team
- Without teamwork, the players would need to encounter higher uncertainty regarding optimal play

Methods

- Use concept of Theory of Mind to guide agent behavior
 - Agents can picture what it is like from other player's perspective via belief
- Agent hints and observations
 - Select hints that maximally reduce uncertainty of other players
 - Interpret hints based on observations and perspective of other agents
 - Use game environment to estimate hand likelihoods for beliefs (own belief and ToM)

i's belief:

i's belief of j's belief:

$$b_{o}^{i} \sim P(C^{i}|H^{i}, \eta) \coloneqq \frac{\prod_{(c,h)\in K^{i}}(n_{c}(h))_{\delta_{c}^{i}(h)}}{\prod_{h\in H^{*}}(|\nu(h)|)_{\lambda^{i}(h)}} \qquad \qquad \hat{b}_{1}^{ij} \coloneqq \frac{1}{Z} \sum_{C^{i}\sim \hat{b}_{0}^{i}} P(C^{i}|H^{i}, \nu) \hat{b}_{0}^{j}$$

$$Intrinsic reward:$$

$$r_{c,t}^{i} = \max_{j\neq i} \sum_{k=1}^{\eta} [W_{p}(\psi(C_{t}^{j}[k]), \hat{b}_{1;t}^{ij}) - W_{p}(\psi(C_{t+1}^{j}[k]), \hat{b}_{1;t+1}^{ij})]$$

RESULTS

Agent	2P	3P	4P	5P
Rainbow	21	19	18	1 <i>7</i>
	20.64	18.71	18.0	1 <i>5</i> .26
	(.22)	(.20)	(.1 <i>7</i>)	(.18)
ToM b_0^i	22	19	18	19
	21.55	19.78	17.49	18.87
	(0.7)	(.07)	(.09)	(.07)
ToM $m{b}_1^{ij}$	22	20	19	19
	21.43	19.76	19.13	18.49
	(.08)	(.08)	(.09)	(.06)

Median scores of trained agents over 1000 episodes of selfplay followed by mean scores and (standard error of the mean)

POSSIBLE FUTURE DIRECTIONS

Extensions of method

- Test performance with ad-hoc teams
 - Want to ensure the agents aren't learning a particular pattern that only works in a particular grouping
- Test performance of agents trained in one group size with another group size
- Test play with human agents

Modifications

- New intrinsic reward to better distinguish between providing information through any actions vs
 specifically giving hints
 - Any action that causes a new card to enter the game provides information

POSSIBLE FUTURE DIRECTIONS

- Current research interests/relationship
 - Investigating techniques for modeling human behavior and human-Al interactions
 - Goal: Identify technique for modeling human-Al interaction to allow for optimizing agent behavior and information conveyance
- More robust and useful interactions with AI/ML systems
 - Move beyond Siri, Alexa, Google Assistant, etc.
 - Develop systems that:
 - Anticipate or react optimally to human behavior
 - Understand goals/intentions
 - Comprehend implicit/explicit information sharing from human or other autonomous systems