Пусть $\{A_j\}_{j=1}^n$ – столбцы матрицы A, а $\{P_k\}$ – столбцы вида $(1^k, 2^k, \dots, n^k)^{\mathrm{T}}$. Тогда по условию задачи $A_j = P_2 - 2jP_1 + j^2P_0$. Отсюда следует, что столбцы матрицы A принадлежат подпространству, натянутому на линейно независимые вектора P_2 , P_1 , P_0 . Значит, rank $A\leqslant 3$.

Заметим, что в случае $n\geqslant 3$ столбы A_1,A_2,A_3 будут линейно независимы. Действительно,

$$\begin{vmatrix} 1 & -2 & 1 \\ 1 & -4 & 4 \\ 1 & -6 & 9 \end{vmatrix} = -4 \neq 0$$

Поэтому при $n\geqslant 3$ rank A=3. В случаях n=1 и n=2 получим 0 и 2 соответственно.