14ª Série de exercícios – Teoria dos Grafos Coloração de vértices

1) Determine a coloração dos grafos abaixos utilizando o algoritmo de Welsh & Powell. Qual é o resultado obtido?

2) Uma empresa deseja armazenar sete produtos químicos diferentes: C1, C2, C3, C4, C5, C6 e C7. Uma vez que alguns desses produtos não podem ser armazenados juntos, por problema de segurança, diferentes locais de armazenamento são necessários. A tabela a seguir mostra (com um asterisco) quais pares de produtos químicos não podem ser armazenados em um mesmo local. Use coloração de vértices para encontrar o número mínimo de locais necessários e identifique os produtos que podem ser alocados a esses locais, respectivamente.

	C1	C2	C3	C4	C5	C6	C7
C1		*	2			*	*
C2	*		*	*			
C3		*		*	*		
C4		*	*		*	*	
C5	28/		*	*	-	*	*
C6	*			*	*		*
C7	*				*	*	

3) Uma empresa de telecomunicações possui 9 antenas de transmissão em uma regição do interior do estado. Visando otimizar os custos de operação do sistema, a empresa quer minimizar o número de frequências necessárias para a transmissão dos dados. A Tabela a seguir mostra o grafo de incompatibilidade entre as antenas que compõem o sistema. Um X na tabela indica que existe interferência entre as antenas daquela linha e coluna. Pergunta-se:

Qual é o menor número de frequências necessárias para a correta operação do sistema? Qual é a alocação de frequências resultante, ou seja, quais antenas devem operar em quais frequências?

	A		\mathbf{C}	D	E	F	G	H	I
A		×	×	×					
В	×			×					
C	×				×			×	×
D	×	×			×	×			
A B C D E F G H	l		×	×		×	×		
F	l			×	×		×		
G					×	×		×	
H			×				×		×
I	1		×					×	

4) Uma nova empresa aérea irá começar a operar com 7 aeronaves seguindo a programação de vôos (de A a G) definida pela tabela abaixo, sendo que todos os vôos partem de São Paulo e visitam cada uma das cidades listadas nas rotas na sequência em que elas aparecem:

Vôo	Rota
A	Florianópolis – Rio de Janeiro – Natal – Fortaleza
В	Curitiba - Campinas – Ribeirão Preto – Fortaleza
С	Belo Horizonte – Natal – Fortaleza – Manaus
D	Belo Horizonte – São José do Rio Preto – Rio de Janeiro
E	Belo Horizonte – Recife – Natal
F	Brasília – Ribeirão Preto – Fortaleza
G	Brasília - Presidente Prudente – Campinas

Devido ao número limitado de aeronaves, o diretor da companhia não quer mais de um vôo por dia visitando uma determinada cidade, ou seja, se dois vôos passam pela cidade X eles devem obrigatoriamente não estar alocados para o mesmo dia. Sendo assim, modelando o problema com um grafo, e utilizando *o algoritmo Welsh & Powell*, determine o número mínimo de dias necessários para que a empresa opere de acordo com a sua política de funcionamento.

5) Numa escola, uma turma de alunos do terceiro colegial é composta por 16 estudantes. A grade curricular é composta por 8 disciplinas: Matemática, Português, Inglês, Geografia, História, Física, Química e Biologia. No problema de programação de horários, dadas as matrículas dos alunos nas disciplinas, o objetivo consiste em determinar o menor número de horários das disciplinas para que todos os alunos assistam as aulas sem que haja conflito de horários. A Tabela a seguir mostra a matrícula de cada um dos alunos nas disciplinas escolhidas.

Dica: os vértices representam vértices e se há um aluno matriculado em mais de uma disciplina então deve haver uma aresta.

D.A.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Mat.	•							•				•			•	
Port.	•			•							•					•
Inglês						•	•			•					•	
Geo.				•	•		•		•				•			
Hist.			•							•		•		•		•
Fís.			•		•								•			
Qui.		•						•	•		•			•		
Bio.		•				•										

Responda: Qual é o menor número de horários necessários? Qual a programação obtida, ou seja, quais disciplinas devem ser agrupadas em quais horários?

6) Na cidade de Grafolandia, existe um cruzamento entre a rua Dijkstra e a avenida Euler em que é permitido aos motoristas seguir em frente, virar a esquerda ou virar a direita em todos os sentidos, conforme indica o fluxo de tráfego a seguir. Desenvolva um padrão de semáforo para o cruzamento de modo a evitar que colisões aconteçam. (Sugestão: relacione os caminhos que se cruzam com o grafo de incompatibilidade).

7) Justifique: O número cromático é invariante sob isomorfismo, ou seja, se G e H são isomorfos então $\chi(G) = \chi(H)$