### Boolean Algebra

### Basic operations

- AND (AB, A and B are Boolean variables)
- OR (A+B, A and B are Boolean variables)
- NOT (Ē, E is a Boolean variable)

### **Truth Table of Basic Operations**

| AND |   |   |   | OR | NOT | NOT |   |  |
|-----|---|---|---|----|-----|-----|---|--|
| Α   | В | Υ | Α | В  | Υ   | Α   | Υ |  |
| 0   | 0 | 0 | 0 | 0  | 0   | 0   | 1 |  |
| 0   | 1 | 0 | 0 | 1  | 1   | 1   | 0 |  |
| 1   | 0 | 0 | 1 | 0  | 1   |     |   |  |
| 1   | 1 | 1 | 1 | 1  | 1   |     |   |  |





### **Some Basic Gates**

- •OR
- NOT
- •XOR
- •AND
- •NAND





# Tri State Output





### Boolean Algebra Rules

$$A + 0 = A$$

$$A \cdot 1 = A$$

$$A + 1 = 1$$

$$A \cdot 0 = 0$$

$$A + A = A$$

$$A \cdot A = A$$

$$\overline{\overline{A}} = A$$

$$A + \overline{A} = 1$$

$$A \cdot \overline{A} = 0$$

$$A \cdot (\overline{A} + B) = A \cdot B$$

$$A + \overline{A} \cdot B = A + B$$

$$\overline{A+B+C} = \overline{A} \cdot \overline{B} \cdot \overline{C}$$

$$\overline{A \cdot B \cdot C} = \overline{A} + \overline{B} + \overline{C}$$

http://en.wikipedia.org/wiki/Boolean\_algebra

### Truth Table

•The truth table tells when a given function generates true (=1=H) output value and when false (=0=L) value Example Truth Table

- •3 inputs (A, B, C)
- •1 output (Y)

| Α | В | С | Y |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

### Carnough Map

| Α | В | С | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 1 |
| 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |



|                  | AB |    |    |    |  |  |  |  |
|------------------|----|----|----|----|--|--|--|--|
|                  | 00 | 01 | 11 | 10 |  |  |  |  |
| $\mathbf{C}_{0}$ | 0  | 1  | 0  | 0  |  |  |  |  |
| \[i              | 1  | 1  | 0  | 0  |  |  |  |  |

$$F(ABC) = \overline{A}B + \overline{A}C$$

http://en.wikipedia.org/wiki/Karnaugh\_map

http://www.ee.calpoly.edu/media/uploads/resources/KarnaughExplorer\_1.html

### oamk.fi

#### STUDY MATERIAL

### Carnough Map, 4x4

#### **Truth Table**



#### Karnaugh Map

|    |    | AB |             |   |   |  |  |  |  |  |  |  |
|----|----|----|-------------|---|---|--|--|--|--|--|--|--|
|    |    | 00 | 00 01 11 10 |   |   |  |  |  |  |  |  |  |
|    | 00 | 0  | 1           | 1 | 0 |  |  |  |  |  |  |  |
| CD | 01 | 0  | 1           | 1 | 0 |  |  |  |  |  |  |  |
| СЪ | 11 | 1  | 0           | 0 | 1 |  |  |  |  |  |  |  |
|    | 10 | 1  | 0           | 0 | 1 |  |  |  |  |  |  |  |

 $F(ABCD) = B \overline{C} + \overline{B} C$ 

#### **Truth Table**



#### Karnaugh Map

|    |    | AB |             |   |   |  |  |  |  |  |  |
|----|----|----|-------------|---|---|--|--|--|--|--|--|
|    |    | 00 | 00 01 11 10 |   |   |  |  |  |  |  |  |
|    | 00 | 1  | 0           | 1 | 1 |  |  |  |  |  |  |
| CD | 01 | 0  | 1           | 0 | 0 |  |  |  |  |  |  |
| CD | 11 | 0  | 0           | 0 | 0 |  |  |  |  |  |  |
|    | 10 | 1  | 0           | 1 | 1 |  |  |  |  |  |  |

 $F(ABCD) = A \overline{D} + \overline{B} \overline{D} + \overline{A} B \overline{C} D$ 

### Logic Families

Logic family name is related to the transistor technology used inside the circuit (BJTs or MOSFETs or both)

- Bipolar: S, LS, AS, ALS, F, ECL,...
- CMOS: 4000, HC, AC, AHC,...
- Combined: BiCMOS



#### STUDY MATERIAL

### **Physical Components**

**MM**=Manufacturer, SN=Texas Instruments,...

**74** or **54**, 74=commercial, 54=military

**FF**=Family, HC=High-Speed CMOS, LS=Low-power Schottky, LV=Low Voltage,...

**XXX**=Circuit type, 00=NAND, 138=Decoder (3/8),...

C=Capsule, N=DIL, D=SOIC,...





## **Key Electrical Parameters**

**U**<sub>OH</sub>, Voltage Output High

**U**<sub>OI</sub>, Voltage Output Low

**U**<sub>IH</sub>, Voltage Input High

**U**<sub>IL</sub>, Voltage Input Low

I<sub>OH</sub>, Current Output High

I<sub>OL</sub>, Current Output Low

I<sub>IH</sub>, Current Input High

I<sub>IL</sub>, Current Input Low



### **Noise Margin**



## Example Data of Some Logic Families

| Parameter | LS   | НС   | <b>ABT</b> | Unit |
|-----------|------|------|------------|------|
| VOH (min) | 2.4  | 4.5  | 2.5        | V    |
| VOL (max) | 0.4  | 0.5  | 0.5        | V    |
| VIH (min) | 2    | 3.5  | 2          | V    |
| VIL(max)  | 8.0  | 1.5  | 8.0        | V    |
| IOH(max)  | 0.4  | 25.0 | 15         | mA   |
| IOL(max)  | 16   | 25.0 | 20         | mA   |
| IIH(max)  | 40   | 1    | 1          | μΑ   |
| IIL(max)  | 1600 | 1    | 1          | μΑ   |



### Example, Design with 2 input NANDs $Y = A\overline{C} + \overline{B}C$



# Example, Design with Mux, $Y = A\overline{C} + \overline{B}C$



| PIN NO.                    | SYMBOL                                           | NAME AND FUNCTION                |
|----------------------------|--------------------------------------------------|----------------------------------|
| 4, 3, 2, 1, 15, 14, 13, 12 | I <sub>0</sub> to I <sub>7</sub>                 | multiplexer inputs               |
| 5                          | Υ                                                | multiplexer output               |
| 6                          | Y                                                | complementary multiplexer output |
| 7                          | Ē                                                | enable input (active LOW)        |
| 8                          | GND                                              | ground (0 V)                     |
| 11, 10, 9                  | S <sub>0</sub> , S <sub>1</sub> , S <sub>2</sub> | select inputs                    |
| 16                         | Vcc                                              | positive supply voltage          |

#### NCTION TABLE

|   | INPUTS         |                |                |                |    |                |                |    | OUT            | PUTS           |    |   |   |
|---|----------------|----------------|----------------|----------------|----|----------------|----------------|----|----------------|----------------|----|---|---|
| E | S <sub>2</sub> | S <sub>1</sub> | S <sub>0</sub> | I <sub>0</sub> | 14 | l <sub>2</sub> | l <sub>3</sub> | 14 | l <sub>5</sub> | I <sub>6</sub> | 17 | Y | Y |
| Н | X              | X              | X              | X              | X  | X              | Х              | X  | X              | X              | Х  | Н | L |
| L | L              | L              | L              | L              | X  | X              | X              | X  | X              | Х              | X  | Н | L |
| L | L              | L              | L              | н              | X  | X              | X              | X  | X              | X              | X  | L | H |
| L | L              | L              | н              | X              | L  | X              | X              | X  | X              | X              | X  | н | L |
| L | L              | L              | Н              | X              | Н  | X              | X              | X  | X              | X              | X  | L | н |
| L | L              | Н              | L              | X              | X  | L              | X              | X  | X              | X              | X  | Н | L |
| L | L              | H              | L              | X              | X  | H              | X              | X  | X              | X              | X  | L | H |
| L | L              | H              | н              | X              | X  | X              | L              | X  | X              | X              | X  | н | L |
| L | L              | н              | Н              | X              | X  | X              | н              | X  | X              | X              | X  | L | н |
| L | Н              | L              | L              | X              | Х  | X              | X              | L  | Х              | Х              | Х  | Н | L |
| L | H              | L              | L              | X              | X  | X              | X              | H  | X              | X              | X  | L | H |
| L | H              | L              | H              | X              | X  | X              | X              | X  | L              | X              | X  | Н | L |
| L | H              | L              | Н              | X              | X  | X              | X              | X  | Н              | X              | X  | L | H |
| L | Н              | Н              | L              | X              | X  | X              | X              | X  | X              | L              | X  | Н | L |
| L | H              | H              | L              | X              | X  | X              | X              | X  | X              | Н              | X  | L | H |
| L | H              | H              | H              | X              | X  | X              | X              | X  | X              | X              | L  | Н | L |
| L | Н              | Н              | Н              | X              | X  | X              | X              | X  | X              | X              | Н  | L | Н |

H = HIGH voltage level L = LOW voltage level

X = don't care.

