Sistemi Elettronici, Tecnologie e Misure Appello del 2/9/2021

Nome:	
Cognome:	SOLUZIONE
Matricola:	

ATTENZIONE

- 1. Compilare subito questa pagina con nome, cognome e numero di matricola
- 2. Per i quesiti a risposta multipla, la risposta errata determina la sottrazione di un punteggio pari a metà del valore della risposta esatta
- 3. Riportare le **risposte esatte** dei quesiti a risposta multipla nella tabella posta all'inizio della relativa sezione
- 4. Le risposte ai vari quesiti vanno riportate **esclusivamente** nello spazio reso disponibile immediatamente dopo il quesito stesso
- 5. Si può fare uso di fogli di brutta bianchi resi disponibili a cura dello studente. La brutta non deve essere consegnata
- 6. Non si possono utilizzare libri, appunti o formulari

Domande a risposta multipla

	1	2	3	4	5	6
a			X		X	
b				X		X
c	X					
d		X				

- 1. Un amplificatore di tensione è descritto dai parametri $A_{\rm v}$, $R_{\rm in}$, $R_{\rm out}$. Collegando l'ingresso ad una data sorgente di segnale, la tensione d'uscita dell'amplificatore a vuoto è una sinusoide a frequenza 100Hz di ampiezza di picco pari a 4V. Con la stessa sorgente in ingresso, collegando una resistenza di carico $R_L=10{\rm k}\Omega$, la tensione d'uscita è una sinusoide a frequenza 100Hz con ampiezza di picco pari a 2V. Si può concludere che:
 - (a) $R_{\rm in} = 10 \mathrm{k}\Omega$
 - (b) La dinamica della tensione d'uscita dell'amplificatore è limitata a $\pm 2V$
 - (c) $R_{\rm out} = 10 \mathrm{k}\Omega$
 - (d) $R_{\rm in} \to \infty$ e non si ha effetto di carico in ingresso.
- 2. Un amplificatore operazionale con amplificazione differenziale a bassa frequenza pari a 120dB, prodotto bandaguadagno pari a 1MHz, resistenze d'ingresso e uscita trascurabili (cioè $R_{\rm in,d} \to \infty, R_{\rm in,cm} \to \infty, R_{\rm out} = 0$), è utilizzato in un amplificatore di tensione non invertente con amplificazione di tensione in banda di 40dB. La banda dell'amplificatore di tensione non invertente è pari a:
 - (a) 1Hz (b) 1MHz (c) 100kHz (d) 10kHz
- 3. La transconduttanza di piccolo segnale $g_{\rm m}$ di un transistore nMOS in regione di saturazione può essere espressa in funzione delle grandezze nel punto di lavoro Q come:

(a)
$$g_{\mathrm{m}}=\beta\left(V_{\mathrm{GS}}-V_{\mathrm{TH}}\right)$$
 (b) $g_{\mathrm{m}}=\sqrt{\frac{\beta}{I_{\mathrm{D}}}}$ (c) $g_{\mathrm{m}}=\lambda I_{\mathrm{D}}$ (d) $g_{\mathrm{m}}=\frac{I_{\mathrm{D}}}{\left(V_{\mathrm{GS}}-V_{\mathrm{TH}}\right)^{2}}$

- 4. In un diodo semi-ideale con $V_{\gamma}=0.7\mathrm{V}$ in interdizione (stato OFF), detta v_{D} la tensione tra anodo e catodo in condizioni statiche, si ha sempre che:
 - (a) $v_{\rm D} < 0V$
 - (b) $v_{\rm D} < 0.7V$
 - (c) $v_{\rm D} < -0.7V$
 - (d) $v_{\rm D} < -0.7V$ o $v_{\rm D} > 0.7V$, a seconda del verso della corrente
- 5. In amplificatore di tensione invertente basato su operazionale con $A_{\rm v}=-4$, la dinamica del segnale d'ingresso è (-1V,0), la porta d'uscita è collegata ad un carico di $1{\rm k}\Omega$ e la corrente che scorre nella rete di retroazione è trascurabile. Detta ΔV la dinamica della tensione d'uscita dell'operazionale e ΔI la dinamica della corrente d'uscita dell'operazionale, in quale dei seguenti casi l'amplificatore opera in linearità?
 - (a) $\Delta V = (1V, 5V), \Delta I = (-10\text{mA}, 10\text{mA})$
 - (b) $\Delta V = (-5V, 1V), \Delta I = (-5mA, 0)$
 - (c) $\Delta V = (-5V, 5V), \Delta I = (0, 0.5 \text{mA})$
 - (d) $\Delta V = (-5V, 5V), \Delta I = (-0.5\text{mA}, 0.5\text{mA})$
- 6. In un comparatore di soglia invertente con isteresi realizzato a partire da un amplificatore operazionale:
 - (a) è presente retroazione negativa
 - (b) è presente retroazione positiva
 - (c) sono sempre presenti sia retroazione positiva sia retroazione negativa
 - (d) non è presente alcuna rete di retroazione (circuito ad anello aperto)

Esercizio 1.

Con riferimento allo stadio in figura

- 1. verificare la regione di funzionamento di M1 e M2 determinarne i parametri del modello per il piccolo segnale (si trascuri l'effetto di λ nel calcolo della corrente di drain e della transconduttanza);
- 2. determinare il guadagno di tensione $A_v = v_{out}/v_{in}$ a centro banda, ovvero con $C \to \infty$ (espressione simbolica e valore numerico).
- 3. determinare la resistenza di ingresso e la resistenza di uscita indicate in figura (espressione simbolica e valore numerico).
- 4. C'è effetto di carico tra il primo e il secondo stadio? Caricare le foto per giustificare la risposta.

Regione di funzionamento e Parametri di piccolo segnale Transistore M1

$$V_{\text{GS},1} = V_{\text{A}} = 1 \text{ V}; \ V_{\text{SG},1} - V_{\text{TH},1} = 0.3 \text{ V} > 0;$$

$$V_{\text{SD},1} = V_{\text{B}} = 3.2 \text{ V} > V_{\text{SG},1} - V_{\text{TH},1};$$

Non richiesto: $I_D = 18\mu A$.

$$g_{m1} = \beta (V_{SG,1} - V_{TH,1}) = 120 \,\mu\text{S}; \ r_{01} = \infty$$

Regione di funzionamento e Parametri di piccolo segnale Transistore M2

$$V_{\text{SG,2}} = V_{\text{DD}} - V_{\text{B}} = 1.8 \,\text{V}; \ V_{\text{SG,2}} - V_{\text{TH,2}} = 1 \,\text{V} > 0;$$

$$V_{\text{SD,2}} = V_{\text{DD}} - V_{\text{C}} = 3 \,\text{V} > V_{\text{SG,2}} - V_{\text{TH,2}};$$

Non richiesto: $I_D = 100 \mu A$.

$$q_{m2} = \beta \left(V_{\text{SG},2} - V_{\text{TH},2} \right) = 200 \,\mu\text{S}; \ r_{02} = 100 \,\text{k}\Omega$$

NB. Si trascura l'effetto di λ nel calcolo della corrente di drain e della transconduttanza. Analisi Stadio

Sostituendo C con un corto circuito si ha una cascata di due stadi a source comune (Fig. 1).

Figura 1: Circuito di piccolo segnale dello stadio

Primo stadio:

$$v_{\rm gs,1}=v_{\rm in};\;v_{\rm o1}=-g_{m1}R_3v_{\rm gs,1}=-g_{m1}R_3v_{\rm in}$$

$$A_{\rm v01}=-g_{m1}R_3=-12\;(21.6\,{\rm dB});\;R_{\rm in,1}=R_p=R_1//R_2=80\,k\Omega;\;R_{\rm out,1}=R_3=100\,k\Omega$$
 Secondo stadio ($R'=r_{o2}//R_4=16.67\;{\rm k}\Omega$):

$$v_{\text{sg,2}} = -v_{\text{o1}} ; v_{\text{out}} = g_{m2}R'v_{\text{sg,2}} = -g_{m2}R'v_{\text{o1}}$$

$$A_{\text{v02}} = -g_{m2}R' = -3.33 \,(10.45 \,\text{dB}); \ R_{\text{in},2} = \infty; \ R_{\text{out},2} = R'$$

Cascata:

$$A_{v0} = A_{v01}A_{v02} = 40 \ (\approx 32 \text{ dB}); \ R_{in} = R_{in,1}; \ R_{out} = R_{out,2}$$

NB. Non ci sono effetti di carico tra i due stadi poichè la resistenza di ingresso del secondo è infinita.

Esercizio 2.

Assumendo $R_1=R_2=R_3=R_4=R_5=R_6=R_7=R_8=R_9=10\,\mathrm{k}\Omega,$ $C_1=C_2=\frac{10}{2\pi}\mathrm{nF}$ e considerando gli operazionali ideali, determinare:

- 1. l'espressione delle tensioni v_{O1} , v_{O2} e v_{OUT} in continua (assumendo cioè che i condensatori possano essere considerati circuiti aperti);
- 2. l'espressione delle funzioni di trasferimento $H_1(s)=\frac{V_{o1}(s)}{V_1(s)}, H_2(s)=\frac{V_{o2}(s)}{V_1(s)}, H(s)=\frac{V_{out}(s)}{V_1(s)}$ (nel calcolo delle funzioni di trasferimento richieste, il generatore I_2 è da considerarsi spento);
- 3. i diagrammi di Bode del modulo e della fase di $H_2(s)=rac{V_{o2}(s)}{V_1(s)}$ ricavata al punto precedente;
- 4. l'espressione della tensione di uscita $v_{\rm out}(t)$, per $v_1(t)=1V\cdot\sin(2\pi f_0t)$, con $f_0=1\,{\rm MHz}$, e $i_2(t)=200\,\mu{\rm A}$ (continua).

1. Espressioni delle tensioni richieste:

$$v_{\text{OUT},1} = v_1$$

$$v_{\text{OUT},2} = v_1$$

$$v_{\text{OUT}} = R_9 i_2 = R i_2$$

2. Funzioni di trasferimento:

$$\begin{split} H_1(s) &= \frac{V_{o1}(s)}{V_1(s)} = 1 \\ H_2(s) &= \frac{V_{o2}(s)}{V_1(s)} = \left(1 + \frac{R_2}{R_1 + \frac{1}{sC_1}}\right) = \frac{1 + sC_1(R_1 + R_2)}{1 + sC_1R_1} = \frac{1 + s2RC_1}{1 + sRC_1} \\ H(s) &= \frac{V_{o}(s)}{V_1(s)} = \frac{V_{o1}(s)}{V_1(s)} \frac{R_8}{R_5 + R_8} \left(1 + \frac{R_9}{R_6}\right) - \frac{V_{o2}(s)}{V_1(s)} \frac{R_9}{R_6} \\ &= \frac{R_8}{R_5 + R_8} \left(1 + \frac{R_9}{R_6}\right) - \frac{R_9}{R_6} \frac{1 + sC_1(R_1 + R_2)}{1 + sC_1R_1} \\ &= 1 - \frac{1 + s2RC_1}{1 + sRC_1} = -\frac{sRC_1}{1 + sRC_1} \end{split}$$

3. Diagrammi di Bode:

La funzione di trasferimento $H_2(s)$ presenta uno zero reale negativo in $s_z = -\frac{1}{2RC_1}$ (con frequenza centrale $f_z = \frac{1}{2\pi \cdot 2RC_1} = 5 \, \mathrm{kHz}$) ed un polo reale negativo in $s_\mathrm{p} = -\frac{1}{RC_1}$ (con frequenza centrale $f_\mathrm{p} = \frac{1}{2\pi RC_1} = 10 \, \mathrm{kHz}$). Il valore asintotico del modulo di $|H_2(s)|$ per $|s| \to 0$ è 1 (0dB), il valore asintotico per $|s| \to \infty$ è 2 (6dB).

4. I diagrammi di Bode del modulo e della fase di $H_2(s)$ sono riportati in figura.

5. Tensione d'uscita nel dominio del tempo

La tensione d'uscita può esprimersi sovrapponendo gli effetti dei generatori v_1 ed i_2 :

$$v_{\text{out}} = v_{\text{out},1} + v_{\text{out},2}$$

La frequenza del generatore sinusoidale v_1 è superiore di due decadi alla frequenza del polo di H(s) al punto 2, pertanto $|H(j2\pi f_0)| \simeq 1$ e $\angle H(j2\pi f_0) \simeq 180^\circ$, e, con ottima approssimazione: $v_{\mathrm{out},1} \simeq -v_1 = -1V \sin(2\pi f_0 t)$. Essendo poi i_2 una corrente continua, il contributo $v_{\mathrm{out},2}$ si può ricavare immediatamente dall'espressione trovata al punto 1, e vale $Ri_2 = 2V$.

Ne segue quindi che:

$$v_{\text{out}} = -1V\sin(2\pi f_0 t) + 2V$$