Linear Algebra I Summary of Lectures: Matrices

Dr Nicholas Sedlmayr

- 1. Definition of an $n \times m$ matrix, $\mathbf{A} = (a_{ij})$ with n row and m columns. Addition of matrices $\mathbf{A} + \mathbf{B} = (a_{ij} + b_{ij})$.
 - Associativity, commutativity and existence of a zero for addition.
- 2. Multiplication of a matrix by a scalar: $\lambda \mathbf{A} = (\lambda a_{ij})$.
- 3. The matrix multiplication of an $n \times m$ matrix **A** and an $m \times k$ matrix **B** is an $n \times k$ matrix $\mathbf{C} = \mathbf{AB} = (c_{ij})$ where $c_{ij} = \sum_{r=1}^{n} a_{ir} b_{rj}$.
 - Associativity, existence of a zero matrix (0) and an identity matrix I, distributivity.
 - No commutativity!
- 4. A matrix **A** can have a right inverse $AB = \mathbb{I}$ and a left inverse $CA = \mathbb{I}$.
 - Prop. 1.1: If a square matrices has either a left or right inverse then they have a unique inverse from both the left and right.
 - If a non-square matrix has both a left and right inverse then they are the same and the inverse is unique.
 - Prop. 1.2: If **A** and **B** are invertible square matrices then **AB** is also invertible and $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.
- 5. The transpose of an $n \times m$ matrix is written as \mathbf{A}^T , which is an $m \times n$ matrix found by transposing the rows and columns of \mathbf{A} .
 - Prop. 1.3: For two $n \times n$ matrices $(\mathbf{AB})^T = \mathbf{B}^T \mathbf{A}^T$ and $(\mathbf{A}^T)^{-1} = (\mathbf{A}^{-1})^T$.
- 6. Elementary row operations perform simple operations on the rows of an $n \times m$ matrix **A** and can be written as an $n \times n$ matrix **R** with the operation preformed by the multiplication **RA**. ρ_i is used to refer to row i. There are three of them:
 - $\rho_j := \rho_j + \lambda \rho_i$, add λ copies of row i to row j;
 - $\rho_i := \lambda \rho_i$, multiple row i by λ with $\lambda \neq 0$;
 - $\operatorname{swap}(\rho_i, \rho_j)$ swap rows i and j.
- 7. Echelon form: