Music Genre Classification using Deep Neural Networks

Albert Jiménez Sanfiz, Ferran José Torra

Outline

- 1. Introduction
- 2. Related Work
- 3. Our Proposal
- 4. Experiments
- 5. Conclusions

1. Introduction

Music Genre Classification

.


```
Country = 85 %
Blues = 11 %
```

· ·

.


```
Rock = 85 %
Metal = 9 %
```

. . .

Music Genre Classification Applications

Automatically:

- Create reproduction lists
- Recommend new music
- Organize music libraries

Music Genre Classification Difficulties

Difficulties:

- Overlapping of genres during songs
- Different songs' length

2. Related Work

CNN brief Explanation (Le Net)

Convolutions layers → Learn Filters (Feature extraction)

Pooling layers → Downsampling

Fully connected layers → Act as classifier

CNNs for music Classification

<u>Automatic Tagging Using Deep Neural Convolutional Networks</u> <u>Keunwoo Choi, George Fazekas, Mark Sandler (2016)</u>

CRNNs for music Classification

Convolutional Recurrent Neural Networks For Music Classification Keunwoo Choi, George Fazekas, Mark Sandler (2016)

What are the filters learning?

Filter 242

Filter 250

Filter 253

Vibrato singing

Ringing ambience

Vocal thirds

Bass drum sounds

http://benanne.github.io/2014/08/05/spotify-cnns.html

3. Our Proposal

Training Paradigm

• Training a model from scratch is very expensive:

Huge Computational Power

Our Situation

Small dataset

Low computational budget (CPUs)

No money

Proposal for training

Transfer Learning

- Take a pre-trained model on a large dataset and fine-tune its weights to adapt it to perform a new task
 - Less data needed
 - Less training time

Training with transfer learning

Use pre-trained model as feature extractor and only change the classifier

Training with transfer learning

Change the classifier and also fine-tune the weights of the network

Multiframe

Motivation

- Most of the works only use the highlight of the song to extract features and evaluate
- Lost of relevant information

Multiframe

Advantages

- At training time
 - More data available
- At test time
 - Averaging over the frame scores
 - KNN algorithm

4. Experiments

Framework

Audio libraries: libROSA

Deep learning framework: Keras and Theano

- Music datasets:
 - A million song dataset
 - GTZAN dataset
 - Handmade dataset

Handmade Dataset

- 30 Songs per genre
 - Split in 20 train/10 test
 - 1468 / 747 frames
- Tags
 - Blues

- Jazz
- Classical
- Metal
- Country

o Pop

Disco

Reggae

Hiphop

Rock

Frames acquisition

Training and GTZAN evaluation

- Overfitting problems when fine-tuning more than the classifier layer
- The classifier layer is not complex enough to not get stalled
- Final performance on GTZAN around 78% of accuracy
- The lack of **DATA** is the main obstacle to improve

Results

Confusion matrices:

5. Conclusions

Conclusions

- This kind of networks need large quantities of data to be trained from scratch
- Transfer learning is a good alternative for a low-budget scenario
- Our multiframe approach with an average stage improves the single-frame song model

Future work

- Training of the model using larger datasets
- Prove other techniques to obtain a single genre tag per song from multiple frames
 - o Knn
 - Geometric mean

Thank you

