

Hochschule für Technik und Wirtschaft Berlin

Wilhelminenhofstraße 75A, 12459 Berlin

 $\label{eq:Fachbereich 1}$ Ingenieurwissenschaften - Energie und Information Regenerative Energien (B)

Windversuch vom 26.05.2023

Betreuerin: Joachim Twele Gruppe: 5

Name	Matrikelnummer
Johannes Tadeus Ranisch	578182
Markus Jablonka	580234
Niels Feuerherdt	577669
Katharina Jacob	578522
Lukas Aust	574051

Inhaltsverzeichnis

1	Versuchsziele	1
2	Theoretischer Hintergrund 2.1 Der Leistungsbeiwert cp	1
3	Versuchsbeschreibung	2
4	Vorbereitungsfragen	3
5	Versuchsdurchführung	3
6	Auswertung	4
7	Quellen	5

Abbildungsverzeichnis

Tabellenverzeichnis

1 Versuchsziele

Im Rahmen des Versuchs werden Verschiedene Charakteristika der Windkraftanlage untersucht. Als erstes wird das Anlaufverhalten des Rotors in Abhängigkeit vom Blattwinkel (Pitch) untersucht. Anschließend werden weitere Messungen gemacht mit denen die Dimenensionslosen Kennzahlen und die maximale Schnellaufzahl der Windkraftanlage bestimmt werden kann.

2 Theoretischer Hintergrund

Um den theoretischen Hintergrund dieses Versuchs verstehen zu können, wird im folgenden auf den Leistungsbeiwert c_p , den Momentenbeiwert c_m und den Schubbeiwert c_s eingegangen. Abschließend wird noch auf die Windeschwindigkeiten und deren Verzögerung eingegangen.

2.1 Der Leistungsbeiwert cp

Der Leistungsbeiwert c_p ist wie folgt definiert.

$$c_p = \frac{P_{WEA}}{P_{Wind}} \tag{1}$$

$$c_p = \frac{M \cdot 2 \cdot \pi \cdot n_{Rotor}}{\frac{\rho_{Luft}}{2} \cdot \pi \cdot \frac{d_{Rotor}^2}{4} \cdot v_{Wind}^3}$$
 (2)

Wie in Formel 1 zu sehen bildet sich c_p aus dem Quotienten der -mechanischen- und der Windleistung. In Formel 2 ist dabei zu sehen wie c_p von Anlagenspezifischen Eigenschaften beinflusst wird. Typischerweise wird der Leistungsbeiwert c_p dabei über die Schnelllaufzahl λ aufgetragen. Dabei bildet die Schnelllaufzahl das Verhältnis der Umfangsgeschwindigkeit an der Blattspitze u_{tip} zur ungestörten Windgschwindigkeit ab wie in Formel 3 zu sehen.

$$\lambda = \frac{u_{tip}}{u_{Wind}} = \frac{\pi \cdot n_{Rotor} \cdot d_{Rotor}}{u_{Wind}} \tag{3}$$

3 Versuchsbeschreibung

- 4 Vorbereitungsfragen
- 5 Versuchsdurchführung

6 Auswertung

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

7 Quellen

Literatur