Hardwarové technologie

1.	Principy počítačů	10
	Historický vývoj	10
	První počítače	10
	První univerzální počítač	10
	První číslicový počítač	10
	Generace počítačů	10
	Binární logika	11
	AND	11
	NAND	11
	OR	12
	NOR	12
	XOR	12
	Modulace signálu	12
	Útlum	12
	Šum	12
	Druhy modulace	12
2.	Architektura počítače	14
	Von Neumannovo a Harvardské schéma	14
	Von Neumannova architektura	14
	Harvardská architektura	15
	Flynnova taxonomie	15
	SI	15
	MI	16
	SD	16
	MD	16
	Kombinace	16
	Základní deska	16
	Ovlivňuje	17
	Rozšiřující sloty	17
	Blokové schéma	17
	Form Factor	18
	Konektory	18
	Propoiky (jumpery)	18

	Přepínače	18
	BIOS	18
	UEFI	18
	Procesor + Mikro architektura Procesoru	19
	Dělení architektury	19
	Registry	20
	ALU	20
	Vnitřní šířka mikroprocesoru	20
	Instrukční sada	20
	Systémové přerušení	20
	Správa paměti	20
	Cache paměť	21
	Vnitřní frekvence	21
	Vnější frekvence	21
	Paměti	21
	Parametry	21
	ROM	21
	RAM	22
	DRAM moduly pro PC	22
	SDR a DDR	23
	Sběrnice	24
	Systémová sběrnice	24
	Periferní sběrnice	25
	Spolupráce procesor – sběrnice	27
	DMA – Direct Memory Access	27
	IRQ – Interrup Request	27
	Řadič	27
	Přídavné karty	27
	Ovladače	27
3.	. Paměťový systém počítače a ukládání dat	29
	Typy, principy fungování, frekvence, normy	29
	Logická a fyzická struktura disku	29
	Fyzická struktura	29
	Logická struktura	33
	RAM	36
	ROM	36

(CACHE	36
I	HDD	36
(CD	36
	Uložení dat na CD	36
	Čtení dat z CD	37
	Výroba lisovaných CD	37
	CD-R	37
	CD-RW	38
I	DVD	38
	Kapacita DVD	38
	DVD-R	39
	DVD-RW	39
	DVD-RAM	39
	Blu-ray	39
ı	Flash	39
	NOR	40
	NAND	40
	NOR vs NAND	40
ı	USB disk, paměťová karta atd	40
9	SSD	41
4.	Architektura periferních zařízení	42
ı	Rozdělení, principy, funkce, typy, rozhraní, příklady	42
	Externí rozhraní	42
	Interní rozhraní (sběrnice)	42
	Vstupní periferie	42
	Výstupní periferie	44
5.	Komunikační prostředky	46
I	Principy komunikace, rozdělení a porovnání, média	46
	Co je potřeba ke komunikaci	46
	Typy komunikace	46
	Počítačová sít a její prvky	46
	Komunikační protokoly	47
ı	Modulace signálu	47
	Přenos signálu	47
	Digitální modulace s nosnými vlnami	48
ı	Mobilní technologie	48

	Architektura sítě GSM	48
	GSM sítě	48
6.	ETHERNET	50
T	Token Ring	50
	Parametry	50
A	ACRNET	50
	Parametry	50
F	FDII	50
E	Ethernet	51
	První Ethernet	51
	Kabeláž	51
F	Přístupové metody	51
	CSMA	51
	CD	51
	CSMA/CD	52
F	Popis rámců	52
	Formát rámce	52
	Synchronizační pole	52
	Cílová adresa	52
	Zdrojová adresa	52
	Typ zprávy	53
	Data	53
	Kontrolní pole rámce	53
F	Formát paketu	53
5	Síťová karta	53
5	Síťové prvky	54
	Repeater	54
	Switch	54
	Router	54
5	Strukturovaná kabeláž	54
	Koaxiální kabel	54
	Kroucená dvoulinka	54
	Optika	55
	Pasivní prvky	55
	Aktivní prvky	55
	10 Base X	55

RM ISO/OSI, TCP/IP	58
Referenční model ISO/OSI	58
Důvod vzniku	58
Vrstvy	58
IP Adresy	60
Třídy IP adres	60
Protokol	60
IP	61
TCP	61
UDP	62
ARP	62
ICMP	62
Internet	63
Internet	63
RFC	63
Vznik a historie sítě internet	63
ARPAnet	63
NSFNET	64
Organizace	64
ISOC (Internet Society)	64
IAB (Internet Architecture Board)	64
IANA	64
IETF	64
W3C	64
Připojení	64
Struktura	65
Protokoly	65
Internet Protokol – IP	65
Transmission Control Protocol – TCP	66
User Datagram Protocol – UDP	66
Domény – DNS	66
Směrování	67
Základní principy	67
Distance Vector Routing Protocol	67
Linik State Routing Protocol	67
Autonomous Systems – AS	68
	Referenční model ISO/OSI Důvod vzniku Vrstvy IP Adresy Třídy IP adres Protokol IP TCP UDP ARP ICMP Internet Internet RFC Vznik a historie sítě internet ARPAnet NSFNET Organizace ISOC (Internet Society) IAB (Internet Architecture Board) IANA IETF W3C Připojení Struktura Protokoly Internet Protokol – IP Transmission Control Protocol – TCP User Datagram Protocol – UDP Domény – DNS Směrování

Administrative Distance – AD	68
Konvergence	68
Protokol RIP	68
Protokol IGRP	69
Protokol EIGRP	69
Protokol OSPF	71
Protokol BGP	72
Protokol IS-IS	72
Směrovače	72
10. Propojování a management síti	73
Přenosová média	73
Technologie pro různé vrstvy	73
Opakovače	73
Mosty	73
Routery	73
Multiprotokolové směrovače	73
Brouter	73
Brána	74
Prostředky pro správu sítí	74
SNMP	74
RMON – Remote Monitoring	75
11. Principy operačních systémů	76
Rozdělení	76
Metody přidělování CPU	76
Dispečer	76
Preemptivní plánování	76
Nepreemptivní plánování	76
Kritéria přidělování CPU	76
Příklady algoritmů	77
Správa paměti	77
Přidělování jediné souvislé oblast	paměti77
Přidělování paměti po sekcích	78
Stránkování paměti	78
Virtuální paměť	79
Správa periferních zařízení	79
Správa souborů	79

12.	. Souborové systémy a logická struktura dat	80
S	Soubor	80
C	Operace se soubory	80
٧	Vnitřní struktura souboru	81
Ν	Metody přístupu k souboru	82
	Sekvenční přístup	82
	Přímý přístup	82
Z	Zamykání souboru	82
	Nevynucené zamykání	82
	Vynucené zamykání	82
S	Souborové systémy	82
٧	VFS – Virtual File System	83
P	Příklady souborových systémů	83
	FAT	83
	NTFS	83
	Ext2	84
	Ext3	84
	Xfs	84
	NFS	84
13.	. Operační systémy Windows	85
Δ	Architektura jádra	85
	Mikrojádro	85
	Monolitické jádro	85
	Hardware Abstraction Layer – HAL	85
	Tvrdé jádro	85
	Ovladač	85
	Executiva	85
١	Microsoft Windows	86
	Struktura aplikací	86
	Principy	86
S	Subsystémy	87
S	Subsystémové procesy	87
	Proces System	87
	Session Manager – smss.exe	87
	Winlogon.exe a LSASS.exe	88
	Services.exe a svchost.exe	88

١	Verze Windows	88
	Klientské	88
	Serverové	89
14.	. Operační systémy Linux	90
Z	Základní myšlenka	90
١	Výhody / nevýhody	90
L	Licence	90
ι	Unix	91
L	Linux	91
J	Jádro Linuxu	92
5	Start systému	93
5	Shell	94
15.	. Operační systémy Linux – vnitřní struktura	95
5	Systémová volání	95
5	Signály	95
	Dělení podle implementace:	95
	Možnost předefinování reakce na daný signál	95
	Dělení podle posílání signálů:	96
	Posílání a doručování signálů:	96
	Reakce na signály	96
	Možné reakce:	96
	Blokace signálu	97
F	Roury a zprávy	97
	Anonymní roury (pipe)	97
	Pojmenovaná roura (named pipe, fronta FIFO)	97
	Komunikace pomocí zpráv	97
F	Procesy a vlákna	98
F	Proces – běžící program	98
	Vlákno – objekt pracující podle kódu programu	98
	Úloha (task) – objekt, jehož kód se sekvenčně vykonává	99
	Plánování úloh	99
	Preemptivita jádra	99
ι	Udev a HAL	99
	Udev	99
	HAL	100
5	Správa paměti	100

Zóny paměti	100
Alokační algoritmus buddy	100
Metody řešení nedostatku fyzické paměti:	101
16. Serverové operační systémy	102
Server	102
Operační systém	102
Rozdíly oproti OS pro stolní PC	103
Služby poskytované serverovým OS	103
Role serverů	103
Zálohování dat	.104
RAID pole	.104
RAID 0	.105
RAID 1	105
RAID 2	.105
RAID 3	.105
RAID 4	.105
RAID 5	106

1. Principy počítačů

Historický vývoj

První počítače

- Pascalina
 - Mechanická kalkulačka z ozubených koleček pro sčítání a odčítání
- G. W. Leibnity
 - Kroková kalkulačka
 - Mechanická kalkulačka založená na dvojkové soustavě
- Arithmometer
 - První sériově vyráběné kalkulačky

První univerzální počítač

- Charles Babbage
 - Matematik, který vytvořil Analytický stroj
 - Univerzální ve smyslu, že dokáže simulovat jakýkoliv jiný stroj, algoritmus bez potřeby HW přestavby
 - Stroj nebyl nikdy sestaven, ale přesto pro něj byly napsány programy

První číslicový počítač

- Z1
- o Rok 1936
- o Paměť 1408 bitů složená z mechanických posuvných prvků
- o Jedinou elektrickou součástí byl motor
- o Frekvence 1 Hz
- o 22bitová aritmetika
- 72
- o Používal elektromagnetická relé
- o Pracoval pouze s celými čísly 16 bitů
- Z3
- 22bitový počítač
- o Používán pro výpočet balistických drah raket
- o 2600 elektromagnetických relé
- Mark 1
 - o Rok 1937
 - o Laboratoře firmy IBM
 - o Reléové obvody
 - o První plně elektrický funkční počítač

Generace počítačů

- 0. Generace
- Počítače se řadí podle toho, jaké základní stavební prvky obsahují
- Zejména dominovaly elektromagnetické relé

1. Generace

- Relé nahradily elektronky
- Operační rychlost kolem tisíce operací za sekundu
- Programuje se výhradně ve strojovém kódu, neexistují programovací jazyky a překladače
- Neexistoval jednotný software
- ENIAC

2. Generace

- Místo elektronek se používají tranzistory
- Začíná se programovat ve Fortranu
- Vynalezeno přerušení
- Vznikají první operační systémy

3. Generace

- Integrované obvody
- Vznikají první magnetické disky
- Objevují se první operační systémy
- První superpočítače
- Výroba PC v tisícových sériích
- Jednotlivé typy PC jsou nekompatibilní
- První mikro a mini PC

4. Generace

- Od vzniku IBM PC/XT
- Mikroprocesor Intel 8086
- Éra systému MS-DOS
- Cena prudce klesá, výkon prudce stoupá
- Snaha o kompatibilitu systémů

Binární logika

Zabývá se logickými operacemi ve dvojkové soustavě

AND

Α	В	Υ
0	0	<mark>0</mark>
0	1	<mark>0</mark>
1	0	<mark>0</mark>
1	1	1

NAND

Α	В	Υ
0	0	
0	1	
1	0	1
1	1	0

OR

Α	В	Υ
0	0	<mark>0</mark>
0	1	<mark>1</mark>
1	0	<mark>1</mark>
1	1	1

NOR

Α	В	Υ
0	0	<mark>1</mark>
0	1	<mark>0</mark>
1	0	0
1	1	0

XOR

Α	В	Υ
0	0	<mark>0</mark>
0	1	
1	0	
1	1	0

Modulace signálu

- Proces v čase, kterým se mění charakter nosného signálu modulujícím signálem
- Finální signál je vždy degradován kvůli útlumu nebo šumu

Útlum

- Při přenosu dochází k energetickým ztrátám
 - o Amplituda přenášeného signálu slábne úměrně ke vzdálenosti

Šum

- Vznik nežádoucích signálů, než je přenášející signál
- Způsobeno typem vodiče, množstvím stínění, okolními signály

Druhy modulace

- 1. Analogová modulace
- Využíváno nosné vlny
- No sinusový signál se nanáší modulační signál informace
- Modulovaný signál může mít různou amplitudu

2. Amplitudová modulace

- Patří mezi jednoduché spojité modulace
- V závislosti na změně modulačního signálu se mění amplituda nosného signálu
- Frekvence ani fáze se nemění
- Hlavní parametr je hloubka modulace

3. Frekvenční modulace

- Kmitočet nosné vlny je ovlivňován pomocí modulačního signálu
- Nosná vlna se mění o frekvenční zdvih

4. Fázová modulace

- Princip podobný frekvenční modulaci
- Dochází pouze ke změně fáze
- Okamžitá hodnota fáze nosného signálu se mění v závislosti na strmosti amplitudy modulačního signálu

2. Architektura počítače

Von Neumannovo a Harvardské schéma

Von Neumannova architektura

- Hlavní myšlenka
 - o Struktura je nezávislá od zpracovávaných problémů
 - o Na řešení problému se musí zvenčí zavést návod na zpracování a program
 - Program i data jsou uložena do paměti společně
- Využití dvojkové soustavy
- 5 funkčních jednotek
 - Řídící jednotka
 - o Aritmeticko-logická jednotka
 - o Paměť
 - Vstupní zařízení
 - Výstupní zařízení
- Po sobě jdoucí instrukce programu se uloží do paměťových buněk jdoucích po sobě
- Instrukcemi skoku se dá odklonit od zpracování instrukcí v uloženém pořadí

Řadič

- Řídící jednotka celého PC
- Generuje řídící signály pro ostatní bloky
- Rozumí strojovému kódu

ALU

- Aritmeticko-logická jednotka
- Vykonává operace s daty
- Obsahuje binární sčítačku, komparátory, příznakové bity...
- Řadič dává ALU povel, jakou operaci má vykonat s daty na jejím vstupu

Paměť

- Obecně cokoliv, kam lze uložit data a později je opět vyzvednout
- Myšlenkou u Von Neumanna je adresovatelná paměť
 - Všechny části paměti jsou očíslovány
 - Všechny buňky jsou jednoznačně identifikovány
- Při práci s pamětí lze vybrat konkrétní adresu, na kterou zapisovat nebo z ní číst

Rozdíl oproti dnešním PC

- Von Neumanova architektura pracuje vždy s jedním programem
 - Špatné využití strojového času
- Von Neuman pracoval pouze s chráněným režimem
- Program se dnes nemusí do paměti zavádět celý, ale pouze jeho část a zbytek nechat na disku
- Dnes může počítat disponovat i více procesory

Reálný režim

- Základní režim (procesor se v něm nachází po zapnutí)
- Pokud procesor operuje v tomto režimu je plně kompatibilní s i8086
- Používá 20bitové adresy, lze adresovat 1MB paměti
- Není možnost multitaskingu
- Všechny procesory jsou v tomto režimu, dokud není zaveden operační systém, který je přepne do jiného režimu

Chráněný režim

- Podpora pro multitasking
 - o Iluze paralelního zpracovávání
 - o Mezi úlohami je pouze velice rychle přepínáno
 - Při přepnutí se musí uložit stav rozpracované úlohy
 - Za přepínání je odpovědné jádro OS
 - Každá úloha musí běžet izolovaně
- Vzájemná ochrana úloh
- Privilegování operačního systému
- Podpora pro práci s virtuální pamětí

Harvardská architektura

- Není potřeba mít paměť stejných parametrů pro data a pro program
- Paměti mohou být naprosto odlišné, mít jinou délku slova, časování, technologii...
- Paměť dat je typu RWM, paměť programu je nezávislá na napájení (ROM, FLASH, ...)

Flynnova taxonomie

• Dělení počítačů podle schopnosti paralelního zpracování

SI

- Single Instruction Stream
- V čase řešení problému běží jeden program

MI

- Multiple Instruction Stream
- Během řešení běží více programů najednou

SD

- Single Data Stream
- Jeden zpracovávaný tok dat

MD

- Multiple Data Stream
- Více zpracovávaných toků dat

Kombinace

SISD

- Klasický Von Neumannův počítač
- Jeden program a jeden sériový tok dat

MISD

- Hypotetická kombinace několika programů zpracovávajících jeden tok dat
- Takový princip se zatím nepoužívá

SIMD

- Větší počet funkčních jednotek pracujících na řešení téhož programu
- Všechny jednotky provádí stejnou instrukci, ale nad jinými daty
- Řídící jednotka vysílá stejný kód ke všem procesorům

MIMD

- Obecný typ paralelního systému
- Flexibilnější, ale mohou nastat problémy s alokací zdrojů, deadlockem...
- Množina procesorů současně provádí různé instrukce nad různými daty

	Instructi	on Streams				
	one	many				
8 e	SISD traditional von	MISD				
Data Streams one	Neumann single CPU computer	May be pipelined Computers				
Damany	SIMD Vector processors fine grained data Parallel computers	MIMD Multi computers Multiprocessors				

Základní deska

- Účelem je propojit jednotlivé součástky počítače a poskytnout jim napájení
- Fyzicky jde o desku plošného spoje

Ovlivňuje

- Typ mikroprocesoru
- Typ, rychlost, velikost operační paměti
- BIOS
- Integrované řadiče
- Integrovaná I/O zařízení
- Integrovaný USB controller
- •

Rozšiřující sloty

- Umožňují připojit další zařízení
- ISA
 - o dříve pro GPU
- EISA, VESA
 - Novější ISA, dnes také nepoužíváno
- PCI
- Dříve standardem pro všechny rozšiřující karty, dnes nahrazován PCI-E
- APG
 - o Slot navržen speciálně pro GPU
 - o Rychlejší než PCI, ale vytlačen PCI-E
- PCI-E
 - o Nástupce PCI a APG
 - Univerzální sběrnice pro připojení jakéhokoliv standardního typu přídavných karet
 - o Mnohem rychlejší než předchůdci, větší šířka pásma...

Blokové schéma

Form Factor

- ATX
- microATX
- PC-XT
- AT form factor, ETX, BTX, mini-ITX, NLX

Konektory

• Interní a externí

Interní

- Na ploše základní desky
- IDE, SATA, FLOPPY
- Napájecí konektory
- Konektory pro ventilátory, zvukové karty, USB, kabely předního krytu

Externí

- Na zadním panelu desky
- USB, PS/2, eSATA, COM, DVI, HDMI, VGA, LAN, audio

Propojky (jumpery)

- Umožňují nastavit některé parametry základní desky
- Jde o skupinu pinů
- Nastavení je uvedeno v dokumentaci desky

Přepínače

- Jde o switche na základní desce
- Stav ON/OFF
- Každý je očíslován a funkce je v dokumentaci desky
- Spíše u starších desek

BIOS

- Basic Input Output Systém
- Spojuje HW, umožňuje komunikaci OS s HW
- Uložen v ROM paměti
- Dnes spíše UEFI

UEFI

- Unified Extensible Firmware Interface
- Za účelem překonat omezení BIOSu
 - o 16bit režim CPU
 - 1 MB adresovatelného místa
- První specifikace 12. prosince 2000
- Umožňuje využití grafického rozhraní

Procesor + Mikro architektura Procesoru

Dělení architektury

- CISC
 - Compley Instruction Set Computer
- RISC
 - Reduced Instruction Set Computer
- VLIW
 - Very Long Instruction Word
- MISC
 - o Minimum Instruction Set Computer

CISC

- Obsáhlá instrukční sada
- Proměnlivá délka kódu i výpočtu
 - Složitý řadič
 - Instrukce trvají i desítky taktů
 - o Roste celková složitost mikroprocesoru
- Obsaženo
 - o Binární aritmetika
 - o Instrukce pro práci s textem
 - o Různé numerické formáty
 - o Podpora BCD aritmetiky
- Použito v řadách x86

RISC

- Důvodem vzniku bylo nevyužívání všech dostupných instrukcí
- Jednoduché instrukce
- Menší množství adresních režimů
- Velké množství pracovních registrů
 - Slouží jako cache paměť
 - o Všechny aritmetické a logické instrukce se provádí na těchto registrech
- U ARM nebo v integrovaných obvodech

VLIW

- Speciální formát operačního kódu
- V jedné instrukci uloženy operační kódy pro všechny jednotky
- Konstanta v instrukčním slově je použita pro naplnění vybraného registru
- Horizontální formát umožňuje řadiči zůstat jednoduchý
- Paralelní práce jednotek
- Instrukce mají pevnou délku

Přednosti

- Velká jednoduchost řadiče
- Možnost zpracovávání instrukcí paralelně

Nevýhody

• Veškeré optimalizace se musí provádět v závislosti na mikroprocesoru

- Není vhodné při používání interpretovaných kódů
- Konflikty jednotlivých operací nad registry

MISC

- Alternativa k RISC nebo CISC
- Instrukce bez operandů
 - Ty jsou známy implicitně
- Menší nárok na rychlost operační paměti
- Rychlejší reakce na přerušení

Registry

- Paměť, která umí uložit vždy jedno slovo
 - Šířka slova od 4 bitů do 128 bitů (nejčastěji 8, 16, 32, 64)
- Kapacita je velice malá
- Paměť využívána všemi instrukcemi

ALU

- Výpočet základních aritmeticko-logických operací
- Na vstup přijdou dvě n-bitová čísla
 - o Zvolení operace
- Na výstup je po zpoždění zasláno m-bitové číslo
 - Výsledek operace
- Na výstupu mohou být další signály (flags)
 - Příznak nulovosti, nebo přetečení
- Součet, rozdíl, dvojkový doplněk, porovnání, negace, logický součet/rozdíl, součin

Vnitřní šířka mikroprocesoru

- Schopnost zpracovat najednou určité množství informací
- Dnes 32bitové, 64bitové

Instrukční sada

- Sada instrukcí pro přesuny dat mezi pamětí a registry, aritmetické a logické instrukce
- U nových mikroprocesorů i instrukce pro koordinaci víceprocesorových prostředí

Systémové přerušení

- Signál vysílaný HW nebo programem
- Vysláním si prvek snaží zabrat procesor pro sebe
 - Dnes vektorový systém přerušení
 - Každé přerušení je identifikováno číslem
 - V paměti je uložena tabulka přerušení, kde vektor ukazuje na adresu s obslužným programem přerušení

Správa paměti

- Tato jednotka stojí mezi adresy generovanými programem a skutečnými adresami v paměti
 - o Důvodem překladu je lepší využití paměti a zabezpečení

Cache paměť

- Mezisklad mezi různě rychlými komponentami PC
- Načte data se sběrnice, která čekají až je bude mikroprocesor potřebovat
 - o Ten si je pak načte

Vnitřní frekvence

- Taktovací impulsy, které určují pracovní tempo
 - o Na desce je generátor taktů, který určuje takt pro mikroprocesor
 - o Z této externí frekvence je určena vnitřní frekvence
 - Mezi sběrnicí a mikroprocesorem pracuje násobička, která převádí externí tak na vyšší vnitřní
- Mikroprocesory mají takt pevně určen

Vnější frekvence

- Generována základní deskou
- Pracují s ní všechny součásti desky

Paměti

- Zařízení, používané k ukládání programu nebo dat pro okamžitou nebo trvalou potřebu
- Mikroprocesor z ní čte programy, kterými je řízen a také do ní ukládá výsledky operací

Parametry

- Kapacita
- Přístupová doba v ns
- Přenosová rychlost
- Statičnost / dynamičnost
- Volatilita
- Destruktivnost při čtení
- Spolehlivost
- Cena za bit

ROM

- Read Only Memory
- Není energeticky závislá (data zůstanou i po vypnutí PC)
- Pro uložení BIOSu
 - o Přenos z ROM do RAM nazýváme stínování (shadowing)

ROM

• Výrobce buňky přepálí, ty nosí logickou 1, ostatní vedou proud a jsou nositelem logické 0

PROM

 Podobné jako ROM, ale informace nezapisuje výrobce, ale uživatel pomocí programátoru ROM

EPROM

• Lze do nich opakovaně zapisovat, smazání se provádí pomocí UV světla, zápis pomocí elektrického náboje

EEPROM

Mazatelná paměť pomocí elektrických impulsů, počet zápisů i mazání je omezen

Flash-EPROM

• Nejrychlejší typ, počet cyklů kolem 1000, programovatelná přímo z PC

RAM

- Typ paměti, u níž je libovolné paměťové místo přístupné se stejnou vybavovací dobou
- Za RAM nelze považovat např. HDD, kvůli různé rychlosti čtení
- Dělí se na volatilní / nonvolatilní
 - o Volatilní při vypnutí napájení se smaže obsah
 - o Nonvolatilní při vypnutí napájení se obsah nemaže
- Převážně jako operační paměť PC

SRAM

- Static RAM
- Informaci nese bistabilní klopný obvod
- Výhoda
 - Nemusí se obnovovat = rychlejší
- Poměr cena/kapacita vysoká
- Plní úlohu cache paměti
- Při použití CMOS má minimální příkon a krátkou přístupovou dobu

CMOS

- CMOS-RAM (Complementary Metal Oxide Silicon)
 - Malá spotřeba
 - o Využití pro zápis BIOS programem SETUP
 - o Po vypnutí napájena z baterie na základní desce
 - Často je v ní integrován obvod reálného času
- Při rozšiřování paměti je potřeba používat obvody pracující ve stejném režimu

DRAM

- Dynamic RAM
- Paměť je tvořena kondenzátory, informaci nese stav kondenzátoru (nabitý/vybitý)
- Samovolné vybíjení nutno provádět refresh
- Menší počet tranzistorů na buňku = menší cena
- Při čtení dojde k vymazání buňky
 - o Refresh i po přečtení dat

DRAM moduly pro PC

- DIP
- SIPP
- SIMM (30pin a 72pin)
- DIMM (SDRAM a DDR)

SDR a DDR

SDR

- Singe Data Rate
- Využívá synchronní signál s kmitočtem základní desky

DDR

- Double Data Rate
- Data jsou během jednoho cyklu přenášena dvakrát
- Přenášejí data jak na náběžné, tak sestupné hraně
- Během jednoho taktu prováděny dvě operace
 - o Dvojnásobná propustnost
 - o Rychlost standardizovaná organizací JEDEC

DDR2

- Pracuje stejným způsobem jako DDR
 - Dvojnásobná vnitřní frekvence
 - o Např jádro s frekvencí 200MHz, pak DDR pracuje na 400MHz a DDR2 na 800MHz
- Napětí 1,8V
- Nejsou zpětně kompatibilní s DDR

DDR3

- SDRAM nástupce DDR2
- Používá se pro vysokorychlostní ukládání pracovních dat
- Rychlost od 0,8GHz do 2,133GHz
- Standardní napětí 1,5V
 - Ve skutečnosti se pohybuje kolem 1,65V a 1,8V

DDR4

- Přímý nástupce DDR3
- První sériová výroba v roce 2013
- Napětí sníženo na 1,05V 1,2V

DDR5

- V dnešní době cenově nákladné
- PMIC
 - o Power management
 - Regulátor přesunut na paměťový modul
 - Nadbytečné odpadní teplo

Sběrnice

- Skupina signálových vodičů
- Řídící, adresové, datové
- Účelem je přenos dat a řídících povelů mezi dvěma zařízeními
- Pro propojení všech komponent mimo procesor
 - o Základním komunikačním kanálem
- Systémová sběrnice mikroprocesor s obvody základní desky
- Periferní sběrnice systémová sběrnice pro komunikaci s okolím, zakončena sloty

Systémová sběrnice

- Umístěna na základní desce
- Přes patici spojena s procesorem
- Konstrukce závislá na výrobci
- 2 modely
 - o Intel se sběrnicí FSB (Front Side Bus)
 - o AMD se sběrnicí HyperTransport

FSB

- Spojovací článek mezi procesorem a okolím
- North Bridge
- South Bridge

- Fyzická obousměrná datová sběrnice
- Přenáší veškeré informace mezi CPU a North Bridge
- Některé procesory s L2 nebo L3 cache používají k připojení Back Side Bus
 - Rychlejší než přístup přes FSB
- Nejmodernější FSB slouží jako páteř mezi procesorem a chipsetem

North Bridge

- Někdy označován jako System Controller
- Přes FSB je připojen k procesoru
- Zajišťuje přesuny dat pro paměťovou sběrnici
- Prochází k ní data k South Bridge

South Bridge

Realizuje pomalejší funkce základní desky

- Zabezpečuje připojení dalších periferií k základní desce
- Vychází z něj sběrnice PCI-E
- Připojen kompletní diskový subsystém
- Sériové porty, USB, paralelní porty, zvukové subsystémy, síťové rozhraní

AMD HyperTransport

- Od jádra K8 výrazné změny
 - o Integrace paměťového řadiče
 - o Data do paměti přímým spojem s taktem procesoru

Periferní sběrnice

- Začínají v South Bridge a končí sloty pro rozšiřující karty
- PCI, APG, PCI-E, USB, ThunderBolt

PCI – Peripheral Component Interconnect

- Navržena pro Pentia
- Oddělena od procesorové sběrnice
 - o Taktovací frekvence nezávislá na frekvenci procesoru
- Přinesla PnP (Plug and Play)
 - o PCI 2.1, 2.2, 2.3

AGP – Accelerated Graphics Port

- Zvýšení výkonu
- Určena pro přenos dat do zobrazovací soustavy
- Propojuje GPU přímo s North Bridge

PCI-Express

- Standard systémové sběrnice
- Jedná se o dvoubodové spoje, na kterých jsou data přenášena bez potřeby adres
- Sériový přenos dat
- Přenos dat po virtuální paralelní sběrnici
 - Na vstupu data rozloží a na výstupu složí
- Podpora Hot Plug a Hot Swap
 - o Výměna HW za běhu PC

Šířka sběrnice je volitelná

Topologie PC

- Podobná jako HyperTransport
- Bridge převod mezi PCI-E a jinými typy sběrnic
- Link duplexní komunikační kanál
- Root Complex začátek sběrnice

Rozhraní PC

- Rozhraní slouží k výměně dat mezi vnitřkem skříně a periferiemi
- Popisuje způsob přenosu dat
- Konektor je normované zakončení pro fyzické připojení
- 2 rozhraní
 - Paralelní
 - Sériové

Paralelní rozhraní – LPT

- Původně určeno pro tiskárny
 - Časem i další periferie
- Význam klesá

Sériové rozhraní – RS 232 (COM)

- Nejstarší rozhraní
- Pomalejší než paralelní, ale univerzální pro svoji snadnou programovatelnost

PS/2

- Konektor od firmy IBM
- Pro myš a klávesnici
- Vyžaduje přerušení IRQ 12

USB

- Externí sběrnice počítače
- Má pyramidovou topologickou strukturu
- Podporuje až 5 úrovní zařízení
- Podpora PnP
- Rychlosti
 - o Low Speed 1,5 Mb/s
 - o Full Speed 12 Mb/s
 - o High Speed 480 Mb/s
 - o Super Speed 5 Gb/s norma USB 3.0
- Podpora více současných přenosů na několika zařízeních
- Možnost připojení až 127 zařízení

IEEE 1394 FireWire

- Sériová externí sběrnice
- Podpora PnP
- Rychlosti
 - o \$100, 200, 400

ThunderBolt

- Spojení PCI-E 4x a DisplayPort do jednoho
- Vysoká propustnost

Spolupráce procesor – sběrnice

- Periferie pro přenos dat využívá část sběrnice
 - o Zašle upozornění procesoru, že s ním chce komunikovat
- Využívá se přerušení IRQ Interrupt Request Levels
 - Procesor je požádán o pozornost zařízením
 - o 2 druhy
 - Hardwarové
 - Systémové
 - o Vyvolané přerušení spustí program uložený na určité adrese v paměti
 - o Pro zpracování je určen řadič přerušení
 - Často integrován do jednoho pouzdra s řadičem DMA
 - Linky, po nichž jsou vysílána přerušení jsou součástí sběrnice

DMA - Direct Memory Access

- Režim práce s rychlím přenosem dat mezi pamětí a periferií
- Přenos dat řeší řadič DMA, ne procesor
- Linky DMA jsou integrovány do sběrnice
- Dvě zařízení nesmí použít stejný kanál

IRQ – Interrup Request

- Systém priorit přerušení periferiemi
- Periferie může vyslat požadavek na přerušení řadiči
- Řadič vystaví signál CPU o existenci čekajícího přerušení
- Až je možnost, CPU přijme přerušení a obslouží ho
- Po dokončení přerušení se CPU vrátí ke své původní činnosti

Řadič

- Slouží k řízení všech dalších částí PC
- Řízení prováděno na základě programu v paměti (Von Neumann) nebo v jiném typu (Harvard)
- Z paměti je vždy načtena jedna programová instrukce

Přídavné karty

- Slouží pro rozšíření funkčnosti PC
- Grafická, zvuková, síťová, ... karta

Ovladače

- Software, který umožňuje OS pracovat s HW
- Některé ovladače součástí OS, jiné dodány s HW

Aplikační vrstva
Operační vrstva

_	
	Ovladač zařízení
ŀ	
	Hardware

3. Paměťový systém počítače a ukládání dat

Typy, principy fungování, frekvence, normy

- Viz Paměti
- (nevím co jiného by tu mělo být)

Logická a fyzická struktura disku

Fyzická struktura

- Pracuje na magnetickém principu
- Několik částí
 - Médium, na němž jsou uložena data (3,5" a 2,5")
 - Magnetické hlavy pro zápis a čtení
 - Mechanika pohybující hlavami
 - o Motorek točící diskem
 - o Elektronika disku řídící práci
 - Deska rozhraní, zajišťující připojení HDD k základní desce
- Dnes realizace i jako SSD bez mechanických částí

Pevný disk

- Složen z
 - o Tuhých kotoučů ploten, umístěných v několika patrech
 - Data se zapisují do magnetické vrstvy, která je nasazena na každý kotouč
 - Nad tímto povrchem operují magnetické čtecí/zápisové hlavy
- Při vypnutí disku zajistí mechanika hlav jejich odstavení do parkovací oblasti, aby nedošlo k poškození ploten

Fyzická struktura HDD

- OS rozdělí plochu disku na
 - Stopy soustředné kružnice
 - o Každou stopu na sektory, do kterých zapisuje data

A - plotna

B – otočné rameno nesoucí hlavy

C – čtecí a zapisovací hlava

D, E – cylindry (stopa, přechází všemi plotnami)

F – sektor (úhlový výsek se stopami)

Fyzické formátování

- Řadič si musí rozdělit disk na stopy a sektory, které si očísluje
 - Fyzické formátování (low format)
 - Na začátek každé stopy a sektoru umísí řadič magnetickou značku
 - o Tento druh formátování udává výrobce

Hlavy a cylindry

- Nad každým povrchem "létá" jedna hlava
 - o Zapisuje / čte data
 - Má-li disk 5 kotoučů, může mít až 10 hlav (každý kotouč 2 povrchy)
- Všechny hlavy jsou na společném rameni

Přístupová doba

- Vyjadřuje rychlost, s níž disk vyhledává data
 - Je součtem doby vystavení + doby čekání

Doba vystavení

Čas nutný k pohybu hlavy nad určitou stopu

Doba čekání

- Pokud hlava "doletí" na správnou stopu, nemůže začít se čtením
 - Musí počkat, až se pod ni dotočí ten sektor, v němž má začít číst
 - Doba čekání záleží na náhodě
 - Výrobci se ji snaží snižovat rychlejšími otáčky disku

Prokládání

- Metoda pro zkrácení doby čekání
 - 1. Při čtení se přečtou data z jednoho sektoru, musí se odeslat přes řadič a BIOS operačnímu systému, která je předá dále operačnímu programu
 - 2. Ten informace zpracuje a požádá OS o nové údaje
 - 3. OS se obrátí na BIOS a řadič, který zorganizuje načtení dalšího sektoru
 - 4. Mezitím se však disk pod hlavou pootočí nestihne začátek následujícího sektoru
 - 5. Musí počkat (téměř celou otáčku), až se pod ni sektor opět dostane
 - 6. Proto bylo zavedeno prokládání, které ukládá data přes sektory

Fyzický sektor	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Logický sektor	0	9	1	10	2	11	3	12	4	13	5	14	6	15	7	16	8

Paměť cache

- Stejně jako CPU i pevné disky mají chache paměť
 - o Do ní se načítají data z disku a odtud se přenášejí na sběrnici
 - o Zrychluje práci
 - o 2 MB až 64 MB

Hustota záznamu

- Každý bit je představován miniaturním dipólem zapsaným do magnetického povrchu
 - Úkolem ji miniaturizovat dipóly

Modulace dat

- Data se ukládají pomocí změn magnetického toku
- Změna může nastat z kladného na záporný nebo naopak
- Každá taková změna se projeví jako impulz
- K reprezentaci dat se tedy používá přítomnost nebo nepřítomnost pulzu
- Typy modulace
 - o MFM
 - o RLL
 - o PRML

Zone Bit Recording (ZBR)

- Plocha disku je rozdělena na zóny
 - Každá zóna má jiný počet sektorů
 - Vnitřní 35, druhá 36... poslední 54
 - Optimalizuje se počet sektorů
 - Zvýšení kapacity
 - Klade vyšší nároky na elektroniku řadiče

S.M.A.R.T

• Technologie pro kontrolu stavu disku

Adresování diskových bloků

- Nutnost určit přesnou fyzickou polohu dat
- CHS
 - o Cylinder Head Sector
 - Nejstarší metoda adresování
 - o Poloha dat definována 3 pozicemi
- XCHS
 - o Dokáže využít všech bitů rozhraní Int13h
 - o Dnes nepoužívané
- LBA
 - o Logical Block Adressing
 - o Adresování převzato od SCSI řadičů
 - o Sektory od 0 do max. hodnoty
 - o Každý sektor má 28bitovou adresu
 - o Dnes standard

Řadiče pevných disků

- Jsou řídícím centrem diskové jednotky
 - Jejich úkoly jsou
 - Při čtení musí nejrychleji poslat hlavu na správné místo
 - Organizují zápis a čtení dat prostřednictvím kódování
 - Ve spolupráci se sběrnicí zajišťují přenos dat
- Typy
 - o EIDE
 - o SATA
 - o SCSI

EIDE

- Vzniklo inovací standardu IDE (Integrated Drive Electronics)
 - Plošný spoj řadiče je součástí mechaniky disku a spojení řadiče s deskou je provedeno přes rozhraní
 - Na desce jsou standardně 2 řadiče EIDE
 - Na každý až 2 zařízení
 - Kabel má 40 nebo 80 žil, podle rychlosti

SATA

- Sériové rozhraní
- K jednomu zařízení jeden kabel
- Možné připojit / odpojit disk za chodu
- RAID pole
- Zvýšení frekvence sběrnice
- Natice Command Queuing (NCQ)
- Staggered Spin-up
- Port Multiplier

NCQ - Native Comand Queuing

- Technologie umožňující řazení příkazů do front
- Zajistí, že se požadavky nezpracují sekvenčně, ale v optimalizovaně v pořadí tak, aby hlavičky nemuseli přeskakovat na vzdálené plochy disku

Staggered Spin-Up

- Zajišťuje postupné roztáčení motorků disků při startu PC
- Nižší energetická náročnost

Port Multiplier

- Přepínač připojený k řadiči
- Zprostředkovává komunikaci s dalšími HDD

SCSI (Small Computer Systém Interface)

- Komplexnější než EIDE
- Do sběrnicového slotu na desce se zasune karta hostitelský adaptér
- Každá jednotka má vlastní řadič
- Provoz řídí hostitelský adaptér
- Bez zátěže CPU

Externí disky

- Přes USB 2.0, 3.0 nebo eSATA
- Rozdílem použité sběrnice je rychlost přenosu dat a napájení disku

Logická struktura

- Základní tabulky ve Windows
 - o FAT (File Allocation Table)
 - NTFS (New Technology File Systém)

MBR

Jedná se o boot sector

- Umístěn v prvním sektoru pevného disku
- 512 bajtů a obsahuje
 - Zavaděč OS
 - o Tabulku rozdělení disku
 - Číselný identifikátor disku
 - o Program pro zavedení OS

MPT

- Master Partition Table
- Obsahuje seznam logických oddílů na daném fyzickém disku
- Tabulka max 4 záznamy

Partition

- Slouží k rozdělení fyzického disku na logické oddíly
- Možnost nezávislé manipulace oddílů

FAT

- Představuje jádro celé logické struktury
- Přiděluje diskový prostor ukládaným souborům
- 3 typy
 - o **FAT-12**
 - Starší typ
 - Adresace 4096 clusteru
 - Na disku zabírá 6KB
 - o FAT-16
 - Až 65534 alokačních jednotek
 - Velikost 128KB
 - Velikost clusteru se mění podle kapacity disku
 - o FAT-32
 - WIN 95, 98, 2000 a XP
 - Dovoluje 4 296 967 296 alokačních jednotek
- Princip
 - V políčkách FAT jsou údaje
 - Čísla následujících clusterů
 - FFFF koncové clustery
 - 0000 prázdný cluster
 - FFF7 vadný cluster
- Chyby
 - o Fragmentace souborů
 - Ztracené clustery
 - Překřížení souboru
 - o Poškozená FAT

NTFS

- Byl vyvinut pro WIN NT
- Ukládá data do clusterů
- Standard je cluster velikosti 4 kB
- Nejdůležitější soubor MFT (Master File Table)

MFT

- Jde o hlavní tabulku souborů
- Samotná MFT je taky souborem
- Stejný význam jako alokační tabulka ve FAT
- Tvoří ji záznamy, každý záznam je soubor na disku
- Prvních 16 záznamů je určeno pro vnitřní potřebu systému
- Prostor NTFS disku je rozdělen na
 - o 12% pro růst MFT
 - o Zbytek 88% pro ukládání dat
- Informace o souborech
 - o Jméno
 - Velikost
 - o Poloha fragmentů na disku
 - o ...

Svazky NTFS

- Základní disky
- Dynamické disky

Základní disky

- Možno rozdělit na 4 nezávislé oddíly
 - V každém může být jiný OS
 - o Možnost vytvářet rozšířené oddíly, které se dělí na segmenty
 - Každý segment má vlastní logické jméno (C:, D:)

Dynamické disky

- Pouze čitelné ve WIN XP a novějších
- Lze vytvářet svazky několika typů
 - o Jednoduchý svazek je tvořen místem na jednom fyzickém disku
 - Může zabírat jen jednu oblast disku nebo se může skládat z více propojených oblastí disku
 - Jednoduchý svazek lze rozšířit na další disk
 - Po rozšíření se jednoduchý svazek stane složeným
 - Obsahuje diskový prostor více disků

Vlastnosti NTFS

- Obnovitelnost
- Přemapování clusterů
- Komprese
- Vylepšená správa dat
- Oprávnění
- Diskové kvóty
- Šifrování dat

Disky RAID

- Redundant Array of Independent Discs
- Tváří se jako jeden disk
- Pole si samo organizuje, na který disk se data uloží

Účelem je zvýšení kapacity, ale hlavě redundance dat

Raid Pole

- RAID 0
 - o Spojení disků do jednoho fyzického oddílu
 - Zvýšení kapacity
 - Žádná redundance
- RAID 1
 - Efektivní ochrana dat
- RAID 5
 - o Min 3 disky
 - Jeden nese samo opravné kódy
 - Další disky nesou data

RAM

• Tady RAM

ROM

• Tady ROM

CACHE

• Tady CACHE

HDD

- Tenhle blok Paměťový systém počítače a ukládání dat
- (nevím co jiného)

CD

- Paměť určená pouze pro čtení
- Zápis při výrobě CD pomocí matrice

Uložení dat na CD

- Disk tvoří 3 vrstvy
 - o Nosnou vrstvou je substrát z polykarbonátu
 - Představuje většinu hmoty disku
 - o Je zde pomocí matice vytlačena spirálová stopa s jamkami
 - Je pokryta reflexní vrstvou
 - Na reflexní vrstvě je ochranná vrstva
 - o Průměr disku je 12 cm a tloušťka 1,2 mm
 - Binárně zakódované informace jsou na disku uloženy ve spirálové stopě
 - Začátek uvnitř disku a konec na okraji
 - Délka stopy cca 4500 metrů
 - Stopa je tvořena jamkami a mezerami
 - Přechod mezi jamkou a mezerou představuje jedničku, místa bez přechodů nulu
 - o Celou stopu lze chápat jako sekvenci bitů

- Každý sektor má délku 2352 bytů
- Každý blok začíná synchronizačním vzorkem
- Na logické úrovni složitější
 - o Délka logického bloku se nemusí shodovat s fyzickým
- Na začátku disku jsou uloženy tabulky adresářových cest
 - Rychlý přístup k jednotlivým souborům

Čtení dat z CD

- Reflexní vrstva odráží laserový paprsek zpět v plné intenzitě
- Při průchodu paprsku pitem je absorbováno větší množství energie
 - Každá změna intenzity je považována za logickou jedničku

- Zvukové disky měnily při čtení otáčky tak, aby byl zajištěn konzistentní datový tok
 - o CLV Constant Linear Velocity
 - o Dosahovalo se rychlostí 1,4MB/S odpovídá parametrům zvukového záznamu

Výroba lisovaných CD

- 3 kroky
 - Premastering
 - Vytváří se přesná bitová podoba výsledného disku
 - Vstupem jsou data rozdělena do 2048 bytových bloků
 - Každému bloku se programově dopočítají synchronizační data, chybové a detekční kódy i adresy sektorů
 - Mastering
 - Výrobní fáze
 - Vytváření raznice
 - Výroba výsledného CD

CD-R

- Sony a Philips vytvořili specifikaci disků
- Zachovaná zpětná kompatibilita

Zápis na CD-R

- Hlava s laserovou diodou sleduje spirálovou stopu
- V místě kde měl být pit, je intenzita paprsku zvýšena, takže se zvýší teplota na vrstvě organického barviva – to změní odrazivou vlastnost plochy

Čtení CD-R

- Stejným způsobem jako u CD
- Hlava sleduje stopu a čte z ní informace
 - o Ty jsou vyhodnoceny na základě intenzity odraženého světla
 - o Změna intenzity je jednička
 - o Absence změny nula

CD-RW

- Přepisovatelné disky
- Zápis i čtení pomocí laserového paprsku
- Datová vrstva je ze slitiny, která při určité teplotě mění krystalickou strukturu na amorfní a při odlišné teplotě krystalizuje
- Během zápisu se mění místa na amorfní
 - o Ty odráží více světla
- Mazání dat se provádí zpětnou změnou fáze
 - o Z původně amorfní fáze na krystalické

DVD

- Vycházelo se z CD
- Rozdělení polykarbonátové vrstvy na dvě části
 - o Jsou použity 2 vrstvy mezi nimiž se nachází jedna nebo dvě datové vrstvy

- Zvýšení výrobních nákladů
- Při oboustranném záznamu se disk musí ručně otáčet

Kapacita DVD

- Zmenšení záznamové stopy
- Zmenšení délek pitů
- Zvětšila se plocha pro zápis informace prodloužení datové stopy
- Změna ve způsobu kódování informací
- Změna v optické mechanice
 - Větší přesnost hlavy
 - Nutno laserové světlo přesněji zaměřit
 - o Použití odlišné frekvence paprsku
 - Z 780nn na 650nn

- Složitější zaostření paprsku
 - Z 1,2mm od povrchu na 0,6mm

DVD-R

- Technologie umožňuje použití oboustranných médií
- Dual Laser Recording (DL)
- Větší kapacita disků

DVD-RW

- Pro zápis využívá změnu fáze materiálu na datové vrstvě
 - Při každém zápisu dochází k degradaci datové vrstvy
 - o Při výrobě je datová vrstva opatřena vylisovanou stopou s adresními pity
 - o Pro přepis je buď použit kontinuální přepis větší části disku
 - o Nebo lze simulovat paketový zápis po blocích nebo skupinách bloků za sebou

DVD-RAM

- Zápis podobný magnetooptickým diskům
- Nepoužívá spirálovou stopu
- Používá kruhové stopy rozdělené na sektory
 - o Několik desítek stop vedle sebe má stejné množství sektorů
- Řízení hlavy laserem při čtení a zápisu je prováděno přímo firmwarem optické mechaniky
- Lepší detekce a korekce chyb
- Kapacita oboustranného DVD-RAM až 9,4GB

Blu-ray

- Diody s modrým světlem
 - Vlnová délka 405nm
- Kapacita vrstvy až 25 GB
- Zmenšení šířky stopy i délky pitů
- Zvýšena rychlost přesunu dat

Track Pitch: 1,6 um Minimum Pit Length: 0,8 um Storage Density: 0,41Gb/in²

DVD 4.7GB

Track Pitch: 0,74um Minimum Pit Length: 0,4um Storage Density: 2,77Gb/in²

Blu-ray Disc 25GB

Track Pitch: 0,32um Minimum Pit Length: 0,15um Storage Density: 14,73Gb/in²

Flash

- Princip odvozen od EEPROM
- Samotná morfologie buněk je odlišná
- Podle zapojení NAND nebo NOR

NOR

- První Flash používali NOR
- Připomínala zapojení hradla NOR z tranzistorů
- Každá buňka jeden tranzistor s izolovanou elektrodou
 - o Ta plní paměťovou funkci
- Nad ní je umístěna běžná brána připojena k adresovému vodiči
- Každou buňku je možné adresovat samostatně
- V každé buňce jeden bit informace
- Některé Flash používají MLC
 - Jedna paměťová buňka ukládá informaci o dvou nebo třech bitech

NAND

- Uspořádání do mřížky jako u NOR
 - o Liší se způsob propojení
- Několik buněk za sebou v sérii
 - Není možné přistupovat k jednotlivým buňkám
 - Lepší využití plochy čipu
- Nejmenší adresovatelná jednotka se nazývá page
 - o Několik stránek sdruženo do bloku
 - o Čtení a zápis po stránkách
 - o Mazání po blocích
 - Velikost stránky 2112 bytů
 - o 2048 bytů použito pro data
 - Zbytek pro detekční a korekční kódy

NOR vs NAND

Technologie	NAND	NOR
	Rychlý zápis	Náhodný přístup
Přednosti	Rychlé čtení	Možnost zápisu po bytech
7ónom.	Pomalý náhodný přístup	Pomalý zápis
Zápory	Složitý zápis po bytech	Pomalé mazání
Anlikaca	Náhrada pevných disků	Náhrada PROM, EPROM, EEPROM
Aplikace		Jednoduché připojení k procesoru

USB disk, paměťová karta atd.

- Paměťové karty do PCMCIA používaly NOR
 - Po několika letech přechod na NAND
 - Všechny komplikace kvůli odlišnému způsobu adresování jsou řadičem i OS maskovány
 - Uživateli se jeví že zapisuje i čte po bytech
 - o Nevolatilní paměti Flash jsou použity pro konstrukci hybridních pevných disků
 - Kombinace běžného HDD a paměti Flash

SSD

- Solid State Disc
- Bez pohyblivých součástí
- Paměť Flash s řadičem a rozhraním
 - Většinou SCSI, IDE či SATA
 - Několik čipů s řadičem paměti, stykovým obvodem zajištujícím standardizované rozhraní s počítačem a vlastní Flash paměť NAND
 - o CCA 2,4x rychlejší než HDD

4. Architektura periferních zařízení

- Zařízení, které není nezbytně nutné k provozu PC
- Externí, interní, vstupní a výstupní

Rozdělení, principy, funkce, typy, rozhraní, příklady

Externí rozhraní

- PS/2, VGA, USB, FireWire, ...
- Viz Periferní sběrnice

Interní rozhraní (sběrnice)

- Paralelní soustava vodičů
- Komunikační standard pro připojování zařízení
- Parametry
 - Šířka přenosu
 - o Frekvence
 - o Rychlost (propustnost)
- Rozdělení
 - Paralelní / sériová
 - o Datová, adresová, řídící, napájecí
 - Synchronní, asynchronní
 - o Datová propustnost, řídící kmitočet
- PCI, AGP, SCSI, IDE/ATA, SATA
- Viz <u>Periferní sběrnice</u> a <u>Řadiče pevných disků</u>

Vstupní periferie

Myš

- Polohovací zařízení
- Dříve kulička, dnes optické snímání podložky CCD čidlo
- Rozhraní
 - o PS/2 dnes už moc ne
 - o USB
 - o Bezdrátové
- Parametry
 - Rozlišení pohybu v DPI
 - Počet kroků, které myš rozezná při pohybu o jeden palec
 - Hmotnost
 - o Tvar, ergonomie, přizpůsobení ruce
 - o Počet tlačítek
 - Způsob připojení
 - USB, bezdrát, dříve PS/2, sériová linka
- Komunikace
 - o Neposílá informaci o poloze, ale o změně x a y
 - Tato změna má kladné nebo záporné znaménko podle směru
 - Využívá se režim interrupt
 - Kvalitní myš umožňuje nastavit polling rate

- Jak často má být myš dokazována na změnu stavu
- Výchozí je 100x za sekundu

Kuličková myš

- Při pohybu po povrchu se otáčí kulička na spodní straně
- Pohyb snímají 2 hřídele, které se kuličky dotýkají
- Kulička hřídele roztáčí a přenáší pohyb na clonu
- Světlo uvnitř myši svítí skrz zuby kolečka na konci hřídele
- Přerušovaný paprsek je pak snímán čidlem, který ho mění na impulzy
- Směr je rozpoznán pomocí snímačů na hřídelích, přičemž zářezy ve cloně jsou voleny tak aby byl osvětlen právě jeden snímač
- Myš má 2 hřídele, 4 snímače ve dvou čidlech

Optická myš

- Využívá led nebo laserovou diodu jako zdroj světla
- Ten je po odrazu od plochy snímán optickým čidlem
 - o Lze si představit jako kameru, která fotografuje povrh
- Když se myší pohne, obraz se posune a tím je možno zjistit směr pohybu a rychlost
- Fotografovaný povrch nesmí být perfektně hladký, jinak se světlo neodráží správně
- K vyhodnocení pohybu se používá relativně výkonný mikroprocesor
 - Myš spolehlivě pracuje na strukturovaném povrchu, kde je možno rozeznat pohyb po podkladu

Laserová myš

- Podobná optické
- Laserový paprsek je ostřejší a intenzivnější
- Použití modernějšího senzoru
- Přesně snímají i malé pohyby
- Laserem se lépe detekují nerovnosti povrchu

Bluetrack myš

- Nový typ senzoru
- LED dioda svítí modře
- Čočka se širokým záběrem
- Poradí si s téměř každým povrchem

Klávesnice

• Standard 101 kláves

- Stisky a rozepnutí kláves převádí na ScanCode, který zasílá do PC
- Je zde mikroprocesor pro ošetření zákmitů při spínání tlačítek
 - o Stav kdy tlačítko není ani sepnuté ani rozepnuté

• Dříve spojení přes COM, PS/2, dnes SB nebo bezdrát

Mechanické klávesnice

- Spínače umožňují sepnutí dvou kontaktů
- Návrat realizován pomocí pružiny

Membránová klávesnice

- Tlačítko prohne gumovou membránu s uhlíkovým kontaktem
- Kontakt při stisku spojí příslušné kontakty

Parametry

- Počet tlačítek a rozložení
- Způsob připojení
 - o USB, bezdrát
- Typ membrána/mechanika
- Podsvícení
- Aktivační vzdálenost, délka dráhy stisku, tuhost (odpor)

Scanner

- Předloha je po řádcích osvětlena a odražené světlo je vedeno k přijímači
- Typy
 - o Ruční
 - o Stolní
 - Bubnový

Herní zařízení

- GamePad
- Joystic
- Volant
- 3D kamery a polohovací zařízení

Výstupní periferie

Tiskárny a plotry

Plotr – projekční činnost pro tisk vektorové grafiky

- Tiskárna
 - o Jehličková
 - Inkoustová
 - o Laserová
 - o Termosublimační

Zobrazovací zařízení

- Podle technologie
- CRT
 - o Tři katody emitující paprsky elektronů
 - o Ty dopadají na stínítko, složené z RGB spektra
 - To tvoří barvu, paprsky mají stejnou
 - o Použití masky pro správný dopad elektronů
- LCD
 - o 2 desky pokryté elektrodami
 - Mezi nimi tekuté krystaly
 - o Podsvíceno soustavou zářivek
 - + vrstva rozvádějící světlo
- Plazma
 - o Dvě elektrody, mezi nimi plyn

Zvuková zařízení

- Buď přídavná karta nebo na základní desce
- Záznam, přenos a reprodukce zvuku

5. Komunikační prostředky

Principy komunikace, rozdělení a porovnání, média

Co je potřeba ke komunikaci

- Společný jazyk (protokol)
- Navázání komunikace
- Řízení komunikace (kdo vysílá, kdo poslouchá)
- Adresa cíle a adresa zdroje

Typy komunikace

Paralelní vs Sériová

- V paralelní se odesílá několik dat najednou
- V sériové se posílají data za sebou
- Dříve se více používala paralelní, než narazila na limity, kdy nešlo zvětšit frekvenci, aniž by se nezvýšil počet chyb a šum
- Dnes hlavně sériová komunikace
- U sériové není nutné řešit problém se synchronizací
- Např. PCI u paralelní a PCI-E u sériové

Synchronní vs Asynchronní

- Při synchronní komunikaci zařízení aktivně čeká na komunikaci
- Asynchronní nevyžaduje okamžitou odezvu

Full duplex vs Half duplex

Half duplex

- Obě strany mohou přijímat i vysílat ale ne současně
- V jeden okamžik probíhá přenos jedním směrem
- Na jedné se vysílá na druhé přijímá

Full duplex

- Možnost obousměrné komunikace současně
- V Ethernet to funguje tak, že část vodičů je designováno na vysílání a další část na přijímání rámců

Znehodnocení signálu

- Útlum
 - o Vzniká přirozenou ztrátou síly signálu v závislosti na délce kabelu
- Šum
 - o Rušivý signál, který v průběhu komunikace mění a poškozuje přenášenou zprávu
 - o Dochází tím k různě silnému zkreslení informace

Počítačová sít a její prvky

- Zařízení
 - o Počítač, router, switch, tiskárna...
- Přenosové médium
 - Metalický kabel, optika, prostor (u bezdrátu)

- Protokoly
 - Stanovená pravidla komunikace, formáty datových struktur, řídící a kontrolní informace
- Zprávy
 - o Přenášená data spolu s řídícími informacemi
- Topologie
 - o Způsob zapojení zařízení
 - Fyzická
 - Zachycuje reálné zapojení pomocí kabelů
 - Logická
 - Zachycuje vnitřní propojení, nemusí kopírovat fyzickou

Komunikační protokoly

- Zajišťují minimálně
 - o Detekci fyzického spojovacího média, uzlů a koncových zařízení
 - o Handshake
 - Vyjednávají o parametrech spojení
 - o Označení a detekce začátku a konce zprávy
 - Formátování zprávy
 - o Detekce chyb
 - o Způsob nápravy chyb
 - o Ukončení spojení

TCP protokol

- Navázání spojení
 - Klient vyšle TCP segment s příznakem SYN
 - Server odpoví přes SYN+ACK
 - Klient odpoví ACK
- Konec spojení
 - Každá strana uzavře spojení
 - Klient odešle FIN
 - o Server odpoví ACK
 - o Server odešle FIN
 - Klient potvrdí přes ACK

Peer-to-peer

• Klienti komunikují mezi sebou bez potřeby serveru

Modulace signálu

 Změna původní charakteristiky signálu na vhodnou pro přenos dat skrze přenosové prostředí

Přenos signálu

- V základním pásmu (baseband)
- V modulovaném pásmu (broadband)

Základní pásmo

• Bez modulace

- Náchylné k rušení
- Unipolární

$$0 V = 0, > 0 V = 1$$

- Bipolární
 - \circ -5 V = 0, >0 V = 1
- Kódování Manchester
 - Změna z vyšší na nižší = 0
 - Změna z nižší na vyšší = 1
- Nelineární proces, kterým se mění charakter vhodného nosného signálu pomocí modulujícího signálu

Digitální modulace s nosnými vlnami

- Kvůli optimalizaci přenosu
- Modulace na vysokofrekvenční složky
- Tento způsob umožňuje přenášet více informací po jednom kanálu
- Diskrétní signály nelze přenášet rádiovým signálem
 - o Digitální modulace lze vzduchem

Viz. Modulace signálu

Mobilní technologie

- Všechny současné sítě využívají buňkový systém
 - o Hodně malých vysílačů
 - Každý si řídí vlastní část
- Umožňuje vícenásobné využití frekvenčního pásma
 - o Více účastníků na jedné sítí může komunikovat v jednom čase na téže frekvenci

Architektura sítě GSM

USS – Uživatelský subsystém

- Mobilní stanice
- Datová zařízení modemy, ...

BSS – Subsystém základnové stanice

- Základová stanice BTS
- Kontrolér základnových stanic Base Station Controller (BSC)

NSS – Subsystém sítě

- Ústředna MSC
- Bezpečnostní a identifikační registry Authentication Center AuC
- Domovský lokační registr Home Location Register HLR
- Návštěvnický lokační registr Visitor Location Register VLR
- Identifikační registr Equipment Identification Register EIR

GSM sítě

- Global Systém for Mobile Communication
- Standard pro mobilní telefony
- Digitální komunikace

2G

- GSM900, GSM1800
- 80. léta
- Standardizace přenosu
- Přenos hlasu

2.5G

- Podpora paketového přenosu pro GPRS General Packet Radio Services
- Datové přenosy
 - o HSCSD High Speed Circuit Switched Data
 - o EDGE Enhanced Data Rates for Global Evolution

3G

- Vysokorychlostní přenos hlasu i dat
- Telefony 3. generace od roku 1999
- UMTS, CDMA

3.5G

• Datové přenosy o rychlosti 3Mb/s

4G

- Standard s rychlostí alespoň 100Mb/s, teoreticky i přes 1Gb/s
- Zabezpečené rychlé spojení
- Přenos hlasu, digitálního videa a dat

6. ETHERNET

Dnes se prakticky využívá Ethernet a ATM

Token Ring

- Topologie kruh
- Stanice si počká, až k ní přijde token, přidá hlavičku a data, pak to pošle dál
- Jakmile data dorazí adresátovi, ten označí rámec jako v pořádku přijat a původní stanici pošle potvrzení
- Nevýhodou je plýtvání časem
 - Každý token jde tam a pak zase zpátky
 - Existují různé varianty token ringu, které zrychlují síť tak, že posílají do sítě více tokenů najednou
 - Max. tolik, kolik je stanic
 - Na každé stanici jeden token v jeden okamžik

Parametry

- Rychlost
 - o 4Mbit/s, 6Mbit/s, 16Mbit/s
- Max. 250 stanic v jednom okruhu

ACRNET

- Přístupová metoda
 - o Token Bus
 - Stanice vytváří logický kruh
 - Každá stanice zná následníka a může adresovat dalšího v kruhu
 - o Každá stanice čeká, než k ní přijde token
 - o Stanice nemají pevně uloženou adresu na síťovce
 - Fyzická adresa se nastavuje pomocí osmi switchů
 - Administrátor nastaví jedinečnou kombinaci
 - Max 255 stanic

Parametry

- Max. počet stanic 255
 - o 0 všeobecná
- Rychlost
 - o 4-8 Mbit/s ale i 20 Mbit/s
- Token Ring i ARCNET jsou typy sítí, které stále vysílají

FDII

- Fiber Data Distributed Interface
- Vysokorychlostní síť
- Propustnost 100Mbit/s
- Běží na optických vláknech

- Topologie zdvojeného kruhu
- Jsou zde vysoce inteligentní zařízení schopná detekovat závadu na trase
 - o Případně lze přejít na druhý kruh
 - o Ten lze použít pro zálohu (50% redundance)
- Vysoká cena

Ethernet

- Technologie založena na přenosu paketů
- Definuje
 - Vedení a jeho instalaci
 - Formáty paketů
 - o Protokoly
 - Metodu řízení přístupu (CSMA/CD)
- Původně
 - o Koax. Kabel
 - Rychlost 10Mbit/s
- Ucelená představa o tom, jak má lokální síť fungovat
 - o Není síť jako taková, ale definice, předpis, standard, ...

První Ethernet

- Pracoval s rychlostí 3Mb/s
- Určen k nahrazení ARCNET
- Existuje CCA 20 typů variant sítí ethernetového typu
- Rychlost 10 Mb/s 1000Mb/s
- Maximální počet stanic 1024
- Topologie sběrnice
- Problém s topologií kruhu

Kabeláž

- Koaxiální kabel
- Kroucená dvojlinka
- Optický kabel

Přístupové metody

CSMA

- Carrier Sense Multiple Access
- Stanice naslouchá, zda je vysíláno na přenosovém médiu
- Pokud ano, stanice zkusí přístup později, až do doby, kdy není médium volné
- V okamžiku uvolnění začne vysílat

CD

- Collision Detection
- Stanice během vysílání sleduje, zda je na médiu signál vysílaným úrovním
- Případ, kdy dojde k interakci více stanic, se nazývá kolize

• V případě kolize stanice generuje signál JAM a všechny stanice, které v tu dobu vysílaly, generují náhodnou časovou hodnotu, po níž se pokusí znovu vysílat

CSMA/CD

- Přenos v základním pásmu znamená, že po kabelech proudí vždy jeden logický signál
- Stanice, která chce vyslat data, testuje stav kanálu
- Je-li kanál volný, zahájí vysílání, přitom však musí zaručit dodržení mezi rámcové mezery 9.6 mikrosekund
- Je-li kanál obsazen, čeká na jeho uvolnění, poté ihned o uplynutí mezi rámcové mezery zahájí vysílání
- Během přenosu testuje souhlas signálu na přenosovém médiu s vysílanými daty
- Je-li během celé doby vysílání signál správný, je považováno vysílání dat za úspěšně ukončené
- Zjistí-li stanice nesouhlas, znamená to, že došlo ke kolizi
 - o Ihned přeruší přenos rámce
 - Vyšle jamming signal, aby kolizi bezpečně rozeznaly i ostatní stanice
 - po vyslání tohoto signálu čeká stanice po určitou dobu a poté začne opakované vysílání
 - doba čekání se stanoví jako násobek doby potřebné k odeslání 512 bitů s náhodným číslem
 - o náhodné stanovování doby čekání je nutné, aby opakované vysílání nezahájily stejné stanice ve stejnou dobu a nevytvořili další kolizi
 - o pokud rámec není odeslán ani po 16 pokusech, je hlášena chyba

Popis rámců

Formát rámce

• rámec předávaný po Ethernet je sestavován v podvrstvě MAC linkové vrstvy

Synchronizační pole

- Preamble
- poskytuje signál, který umožní synchronizování generátoru hodin přijímací strany
- nenese žádnou informaci a je k rámci připojeno ve vysílacích obvodech
- do celkové délky rámce se nezahrnuje

Cílová adresa

- Destination Address
- Obsahuje adresu stanice, které je rámec určen
- Může být individuální fyzická nebo skupinová
- Zvláštní postavení má broadcast
 - Na ní vyslané rámce jsou přijaty na všech stanicích v sítí
- 48 bitů

Zdrojová adresa

- Source Address
- Uvádí fyzickou adresu desky připojené do sítě, která rámec vyslala

Typ zprávy

- Na této úrovni v podstatě nevyužito
- Pro diagnostické testování

Data

- Délka 46 až 1500 slabik
- Minimální délka stanovena, aby byl zaručen čas vysílání potřebný pro bezpečnou detekci případné kolize

Kontrolní pole rámce

- FCS Frame Check Status
- Označení obsahu rámce hodnotou CRC Cyclic Redundancy Check
- Při příjmu je hodnota CRC kontrolována a rámce, u kterých nesouhlasí, jsou označeny za chybné

Formát paketu

- Všechny rychlostní modifikace Ethernetu používají stejnou komunikační metodu CSMA/CD
- Používají i stejný formát a velikost paketu
- Paket je definován na 1. a 2. vrstvě OSI
- Základní částí paketu je hlavička linkové vrstvy, která je následována daty
- 4 typy hlavičky, vzájemně nekompatibilní
 - o Ethernet_II
 - o Ethernet 802.3
 - o Ethernet_802.2
 - Ethernet_SNAP
- Každý paket je uvozen preambulí
 - Slouží k synchronizaci vysílající stanice a přijímacích stanic
- Následuje
 - o Adresa určení MAC
 - Zdrojová adresa MAC
 - Číslo označující typ paketu
 - Datová část
 - Kontrolní součet

Preambule	Určení	Zdroj	Тур	Data	CRC
8 B	6 B	6 B	2 B	46 – 1500 B	4 B

Síťová karta

- NIC Network Interface Card
- Fyzické rozhraní mezi PC a sítí
- Připravuje data z PC pro přenos na fyzické vrstvě
- Přijímá a zasílá data do sítě
- Kontroluje tok dat mezi PC a sítí
- Obsahuje
 - Hardware

- o Firmware
 - Řídí činnost HW
- Obsahuje LLC a MAC podvrstvu linkové vrstvy modelu OSI
- Duplexita
 - o Full duplex
 - Half duplex
- Sběrnice
 - o PCI / PCI-E
 - o Integrováno v základní desce

Síťové prvky

Repeater

- Ke spojování ethernetových segmentů
- Zesiluje signál, upravuje hrany
- Zabývá se bity
- Umožňuje prodloužit maximální délku kabelu

Switch

- Přepíná rámce
- Přenos probíhá jen mezi příslušnými porty komunikujících stanic
- Dle cílové MAC adresy zajišťuje
 - o Přepnutí
 - o Zrušení
 - o Přesun na vyšší síť
 - o Store and Forward
 - Načte celý rámec
 - o Cut Through
 - Načte jen záhlaví a podle něj pošle dál

Router

- Rozhoduje o tom, kam bude paket odeslán, aby se dostal k cíli optimální cestou
- Pracuje na 3. vrstvě OSI
- Obsahují směrovací tabulku

Strukturovaná kabeláž

Koaxiální kabel

- Tenký
- Tlustý

Kroucená dvoulinka

- UTP / STP
- Nejčastěji Cat5

Cross-Over

• Dva kabely jsou prohozené na jedné straně

- Jedna strana slouží jako vysílač a na druhé jako přijímač
- Při zapojení PC PC

Straight-Through

• Při zapojení aktivního prvku a PC

Optika

Jednovidové / mnohavidové

Pasivní prvky

- Zásuvky
- Kabely
- · Patch panely
- Konektory
- Nástroje

Aktivní prvky

- Síťové prvky
- Konvertory
- Hub
- Switch
- Router

10 Base X

- 10 Mb/s
- Base znamená přenos v základním pásmu
- Číslo = maximální elektrická délka segmentu ve stovkách metrů
- Písmeno = typ kabelu

10 Base 5

- 1. normovaná Ethernetová síť
- Každá připojená stanice znamená zkrácení maximální délky o přibližně pět metrů
 - o To způsobují přechodové odpory na konektorech...
- Používá se 5x stíněný koax
- Kabel funguje lépe, ale je náročný na požadavky zapojení kabeláže
 - o Max délka 500 m
- Připojování stanic pouze ve vyznačených místech transceiverem
 - o Pouze vzdálenosti násobku 2,5 m kabelu a max. 50 m od transcieveru
- Segment musí být na obou koncích ukončen pomocí terminátorů
- Nesměly se použít 2 sousední přípojné body
 - o Minimální rozteč mezi stanicemi je 5 m
- Nevýhody
 - o Cena
 - Tlustý, neohebný kabel
 - Speciální konektory
- Zámkové konektory
- Topologie sběrnice

- Maximální počet stanic 1024
- Adresu tvoří číslo o délce 12 B, které je pro každý síťový adaptér unikátní
- Přes repeater se mohou spojit maximálně tři segmenty
- Používá se páteřní struktura
 - o Multiport repeater připojení více segmentů
- Switch slouží k rozdělení sítě na více Ethernetových sítí
 - o Má paměť na 1024 adres, které mohou komunikovat jeho prostřednictvím

10 Base T

- Použití kroucené dvojlinky
- Topologie strom, hvězda
- Maximální vzdálenost mezi stanicemi je 420 m
- Konektory RJ45
 - Šířka 8 kontaktů
 - o Používají se max. 4 vodiče
 - o 2 vodiče pro přenos tam, 2 zptáky

10 Base F

- Fiber channel
- Norma, která umožňuje použití na optice
- Délka daný typem vlákna
- Vše plně propojitelné přes media konektory
- V době objevení nejrychlejší síť

10 Base FL

- Používá multimodový optický kabel
- Délka kabelu mezi 2 uzly max 2 km
- Existuje i modifikace pro singlemode optický kabel

100 Base T

- Na kabelech 10 Base T, ale využívá se všech 8 vodičů
- Rychlost 100Mb/s
- Neujalo se
- Vzdálenost nesmí překročit 90 m
- CSMA/CD

100 Base TX

- Vylepšený 100 Base T
- Kabeláž kategorie 5
- 10x rychlejší technologie
- Kabel až 210 metrů
- Vetší ztráty na spojích
- Používá kroucený dvojdrát, UTP i STP s impedancí 100 ohm

100 Base FX

- 100 Base TX s využitím optických kabelů
- Délka kabelu mezi uzly max. 2 km

100 Base TX

- Kabeláž kategorie 6
- 210 m

1000 Base FX

- Délka 2 km
- Přes switch můžeme táhnout dál

1000 Base SX

- Používá multimodový optický kabel
- Délka kabelu mezi uzlem a aktivním prvkem ovlivněna parametry kabelu

1000 Base LX

- Používá multi/single modový optický kabel
- Délka kabelu ovlivněna typem a parametry kabelu

7. RM ISO/OSI, TCP/IP

Referenční model ISO/OSI

Open Systém for Interchange of Information

Důvod vzniku

- V 70. letech každá firma vyráběla jiné systémy
 - o Potřeba jednotného základu
- Koncept ISO/OSI je oficiální koncept počítačových sítí od organizace ISO
 - Sdružuje národní standardizační organizace
- Původně měl být vytvořen standard, který by pokrýval veškeré otázky kolem architektury otevřených systémů
 - o To však bylo příliš náročné a zdlouhavé
 - o Autoři se zaměřili pouze na problematiku vzájemného propojování uzlů celé sítě
 - o I toto omezení však stále přinášelo velký objem práce
 - o Nakonec bylo rozhodnuto o řešení ve formě "referenčního modelu"
- Definováno
 - Kolik má být vrstev
 - o Jaké má být rozhraní mezi jednotlivými vrstvami
 - Co má která vrstva vykonávat a jaké služby má poskytnout
 - Nebylo specifikováno, jak konkrétně má která vrstva své funkce vykonávat
 - Nebyly připraveny jednotlivé protokoly
- Koncepce ISO/OSI má 7 vrstev, lze rozdělit do 3 skupin
 - Přenosové vrstvy
 - Tři nejspodnější
 - Mají na starost přenos dat
 - Vrstvy orientované aplikačně
 - Tři nejvyšší
 - Poskytují podporu aplikacím
 - o Mezi těmito vrstvami existuje ještě jedna
 - Má za úkol vzájemně přizpůsobovat možnosti a potřeby obou hlavních skupin

Vrstvy

Fyzická vrstva

Přenáší fyzicky data z bodu A do B

- Zajišťuje zakódování rámců do podoby elektrických signálů a jejich přenos po síťových kabelech
- Data se z pohledu vrstvy jeví jako posloupnost bitů a nemají žádnou strukturu
- Umí jen poslat / přijmout
- Definuje
 - Způsob signálu a jeho limity
 - Typ přenosového média
 - o Dálková omezení, kvalitativní omezení...
 - Topologie
 - Způsob propojení mezi sebou

Linková vrstva

- Řeší
 - Fyzickou adresaci
 - Použitou přístupovou metodu
- Pakety jsou zde přetvářeny na rámce
 - Ty jsou vybaveny příslušnými adresami a posloupnostmi dat, které jsou potřebné pro synchronizaci hodin síťových adapterů

Síťová vrstva

- Řeší logickou adresaci
 - o Tj. výměna dat mezi oddělenými sítěmi
- Vybírá optimální cestu pro přenos zprávy k cílové stanici
- U jednoduchých lokálních sítí, kde mají stanice společnou kabeláž a nejsou připojeny na jinou lokální sít, nemusí tuto vrstvu využívat

Transportní vrstva

- Dohlíží na veškeré přenosy dat
- Dojde-li k jejich ztrátě, vyžádá je nanovo
- Z pohledu 5. vrstvy zajišťuje, aby byla síť virtuálně propojená každý s každým
- Má na starosti ochranu přenášených dat
- Data jsou zde rozdělována a slučována do menších částí tzv. paketů
- Zde jsou prováděny kontrolní součty, které umožňují následnou kontrolu správnosti přenosu
- Také se zde vytvářejí záložní kopie, pro případné opakování přenosu, pokud je neúspěšný
- Opět je ke zprávě připojena hlavička této vrstvy

Relační vrstva

- Řídí relace začíná je a končí
- Definuje základní bezpečnostní systém přístupová práva
- Zajišťuje zabezpečení vlastního spojení mezi síťovými stanicemi
- V této vrstvě se rozhoduje, jakým způsobem bude spojení realizováno
- Spojení lze buď
 - Poloduplexně
 - Duplexně

Prezenční vrstva

• Zajišťuje prezentaci dat, tj.

- Kódování
- Šifrování
- o Komprese

Aplikační vrstva

- Obsahuje aplikační protokoly, jejichž prostřednictvím komunikuji aplikace s OSI modelem
- Např. SMTP, FTP, http + služby k jejich použití
- Jediná síťová vrstva, ke které má přímí přístup uživatel
- V této vrstvě jsou data, které chceme poslat na jiný počítač

IP Adresy

- Rozdělení
 - Každé rozhraní má svou adresu
 - o 32bitové číslo
- Adresy v TCP/IP
 - o Ryze abstraktní adresy
 - Tzn. Nemají přímý ekvivalent v žádných fyzických adresách

Třídy IP adres

- Původně zavedeno, aby se neplýtvalo s omezeným počtem IP adres v malých sítích, a naopak aby velké sítě měli dostatek adres
- Třídy A, B, C D a E

	Třídy	IP a	adres				
Tří da	Začátek (bin)	1. bajt	Standardní maska	Bitů sítě	Bitů PC	Sítí	Stanic v každé síti
Α	0	0–127	255.0.0.0	8	24	126	16 777 216
В	10	128- 191	255.255.0.0	16	16	16384	65536
С	110	192- 223	255.255.255.0	24	8	2 097 152	256
D	1110	224- 239	multicast				
E	1111	240- 255	vyhrazeno jako rezerva (výzkumné a experimentální účely)				

Protokol

- Protokol je sada formálních pravidel definujících přenos v sítích
- Zajišťuje výkon služby v dané vrstvě
- Spolupracuje s dalšími protokoly téže vrstvy a sousedních vrstev

- Internet Protocol
- Bez spojení samostatné datagramy
- Bez záruk
- Zabezpečuje správné doručování dat jednotlivým PC v síti
- Pracuje na úrovni síťové vrstvy
- Nespolehlivý
- Každý datagram představuje samostatnou jednotku
 - o Putují sítí nezávisle
 - o Pořadí doručení nemusí být stejné jako pořadí ve zprávě
 - o Doručení není zaručeno, spolehlivost zajišťují vyšší vrstvy (TCP)
- Hlavička
 - o IP adresa zdroje
 - o IP adresa cíle
 - o Verze
 - Délka hlavičky
 - Max. 60 B
 - o TOS
 - Type of Service
 - Celková délka
 - Max. 65535 B
 - o TTL
 - Time to Live
 - Každý směrovač sníží alespoň o jednu
 - Ochrana proti zacyklení
 - o CRC
 - Nezahrnuje data

TCP

- Transmission Control Protocol
- Spolehlivá přeprava
- Proud bitů bez struktury
- Spojovaná služba, virtuální okruhy
- Vyrovnávací paměť komunikační SW seskupuje/rozděluje data podle potřeby, aby komunikace byla efektivní
- Pracuje na úrovni transportní vrstvy
- Plně duplexní spojení
- Doručí všechna data bez ztráty a ve správném pořadí
- Jde o službu se spojením, má fáze
 - Navázání spojení
 - Přenos dat
 - o Ukončení spojení
- Rozlišuje aplikace pomocí portů
- Hlavička
 - Čísla portů
 - o Délka hlavičky v 32 bit. Slovech

- Příznaky
 - URG = segment obsahuje urgentní data
 - ACK = obsahuje potvrzení
 - PSH = předat data cílové aplikace co nejrychleji
 - RST = reset (náhlé ukončení spojení)
 - SYN = zahájení spojení
 - FIN = končí odesílání dat
- Kontrolní součet
 - Pseudohlavička + TCP hlavička + data
- Zajištění spolehlivosti
 - o Potvrzování řeší ztráty paketů
 - Možnost přehození a duplikace
 - Pořadová čísla
 - TCP čísluje bajty (oktety)
 - o Potvrzuje nejdelší souvislý prefix, který přijal od začátku vysílání
 - o Jednoduché a jednoznačné
 - o Ztracené potvrzení nemusí způsobit opakování
 - Nelze oznámit mezeru

UDP

- Nespojovaný
- Nespolehlivý, pouze s detekcí chyb
- Jednodušší verze protokolu TCP
- Vhodný pro data, která přenášejí malá kvanta nezávislých dat

ARP

- Slouží k mapování IP adres na MAC adresy
- Spravuje paměť cache, umožňuje zjistit HW adresu všech PC v dané sítí

ICMP

- Nespojovaný
- Nespolehlivý, pouze s detekcí chyb kontrolní součet
- Použití
 - o Předávání chybových a diagnostických informací mezi stanicemi
 - o Ping

8. Internet

Internet

- Celosvětový systém navzájem propojených sítí, ve kterých mezi sebou PC komunikují pomocí protokolů TCP/IP
- Společným cílem je bezproblémová komunikace (výměna dat)
- Internet spojuje jednotlivé síťové uzly
 - o Tím může být buď PC, ale i síťové zařízení router, switch
- Každý PC má svoji IP adresu
 - o Lze použít i doménová jména
- Největší světová decentralizovaná síť
- Obrovské rozšíření mezi řadové uživatele
- Původně pro vzdělávací účely

RFC

- Request For Comments
 - Používá se pro označení řady standardů a dalších dokumentů popisujících internetové protokoly, systémy, ...
- Spíše doporučení než normy, ale přesto se podle nich většina internetu řídí
- Jednotlivé dokumenty vydává editor RFC podle příkazů Internet Architecture Board
- Každé RFC má přiděleno veřejné číslo
- Vydané RFC se nikdy neruší, pouze se nahrazují novějšími
- Autory RFC jsou konkrétní experti, kteří se snaží vyřešit daný problém, jehož řešení nabídnou ve formě návrhu RFC Internet Draft
- Až na výjimky jsou tyto standardy dodržovány

Vznik a historie sítě internet

- Zhruba před 20 lety došlo k rozšíření osobních počítačů
- Začaly vznikat počítačové sítě, které docílily sdílení informačních zdrojů
- Počátek vzniku sítě internet je kolem roku 1969
- V té době vzniká ARPAnet

ARPAnet

- Předchůdce sítě internet
- Vybudována pro účely vojenského výzkumu
- Aby PC mohl poslat zprávu, musel ji zabalit do obálky protokolu IP a tyto balíčky pakety
 správně adresovat na cílový PC
- Filozofie spočívala v tom, že každý PC mohl komunikovat rovnocenně s kterýmkoliv jiným
 PC
- Snahou bylo vybudovat sítě mezi Pentagonem a strategickými instrukcemi
- Měla odolávat výpadkům
 - o Klasická síť nebyla vhodná, protože ji řídí server a ostatní stanice se k němu pojí
 - Proto byla vyvinuta architektura, která neměla centrální server
- Od roku 1983, kdy se začali lokální sítě rozšiřovat, začaly organizace dávat přednost připojení do sítě ARPAnet

- o Namísto připojování svých lokálních sítí k velkým PC
- Aby tyto sítě a jejich uživatelé mohli komunikovat mezi sebou

NSFNET

- Vznikla koncem 80. let
- Za vznikem stála National Science Foundation USA
- Síť tvořilo 5 center na amerických univerzitách
 - Přístup pro jakýkoliv vědecký účel
- Na architektuře sítě ARPAnet
- Tvořena vysokokapacitními telekomunikačními linkami
- Všechna střediska propojena telefonní linkou
- Finančně náročné pronajímat vždy celou linku, proto se vytvořili oblasti sítě
 - K páteři se připojovaly vždy přes nejbližšího souseda
 - o Jednotlivé řetězce byly připojeny k jednomu bodu superpočítače
 - Vznikla lokální síť, která umožňovala uživateli připojit se k páteřní síti a zároveň komunikovat s kterýmkoliv jiným PC, který byl do této sítě připojen
 - Výsledné náklady potom byly za připojení jen k nejbližšímu sousedu
- Postupem času se síť stala přetížená

Organizace

ISOC (Internet Society)

- Dobrovolná organizace
- Podpora výměny informací pomocí technologie internet
- Pomáhá rozvojovým zemím s poradenstvím v oblasti sítí a připojení k internetu

IAB (Internet Architecture Board)

- Pracuje jako seskupení dobrovolníků
- Řízení technické správy sítě internet a stanovení standardů komunikace v síti
- Jmenováni ISOC

IANA

- Globální přidělování IP adres
- Spravuje TLD

IETF

Spravuje a rozvíjí internetové komunikační standardy

W₃C

Spravuje a rozvíjí standardy pro WWW

Připojení

- Mezinárodní spoje dosahují v internetu vysokých rychlostí přenosu
- Uživatelé jsou připojeni prostřednictvím tzv. poslední míle
 - o Samotné připojení uživatelů je realizováno různými technologiemi

- Uživatelé se někdy pojí do skupin, aby ušetřili náklady nebo naopak dosáhli na rychlejší připojení
- Zprostředkovatel k internetu se označuje jako Internet Service Provider ISP
- Existuje několik možností připojení k internetu
 - o Telefonní linka
 - Modem
 - Vytáčené spojení, ISDN a DSL
 - Někdy je linka vyhrazena pouze pro datové přenosy
 - Přípojka kabelové televize
 - Satelitní síť
 - Mobilní telefonní síť
 - o Wi-Fi
 - o Elektrické rozvodné sítě
- O kvalitě připojení rozhoduje
 - o Agregace
 - Kolik uživatelů sdílí jednu linku
 - o Doba odezvy
 - o Rychlost připojení poslední míle
 - o Technologie použitá pro připojení poslední míle

Struktura

- Internet je síť vytvořená pospojováním lokálních sítí
- Různé druhy sítí
- Není a ani nemůže být zajištěno, aby všechny sítě byly totožné a kompatibilní
 - o Je potřeba kompatibilitu připojení zajistit
 - K tomu slouží router
 - Nachází se na lokální sítí a zprostředkovává připojení do internetu
 - Odděluje lokální sít a internet
 - Chrání obě časti mezi sebou před negativními jevy
 - Lokální síť je chráněna před silným síťovým provozem, který je směrován jinam
 - Rozhoduje, jakou další cestou budou došla data odeslána
 - Směrovač nemá přímé spojení s ostatními routery
 - Zjistí si adresu, kam mají být data zaslána, vybere nejvhodnější cestu a tou je odešle

Protokoly

- Pravidla, pomocí kterých se komunikuje
- Síťový protokol
- Transportní protokol
- Aplikační protokol

Internet Protokol – IP

- Použití na internetu jako síťový protokol
- Řídí a dohlíží na zasílání zpráv z lokální na cílovou stanici
- Stará se o
 - o Identifikaci příjemce a odesílatele

Pracuje s pakety

Transmission Control Protocol - TCP

- Pracuje na transportní vrstvě
- Spojová a spolehlivá služba
- Na přijímací straně se stará o správné poskládání paketu
- Na straně odesílatele
 - o Rozdělit zprávu na pakety
 - Očíslovat pakety
 - o Zasílat po sítí ve své vlastní TCP obálce, která je vložena do IP obálky
- Na straně příjemce
 - o Posbírat všechny TCP obálky
 - o Získat z nich data a tyto části složit ve správném pořadí
 - o Požádat o opětovné zaslání paketu, při chybě nebo deformaci

User Datagram Protocol – UDP

- Další přenosový protokol
- Některé aplikace ho používají místo TCP
- U TCP nastává zpoždění při skládání paketů, to se u UDP neděje
- Používá vlastní obálku, která je vložena do IP
- Určité funkce TCP vypouští
- Nezajišťuje žádosti na zpětné vyslání poškozeného paketu, ani se nestará o sled paketů
- V takových aplikacích které
 - o Svým rozsahem vejdou do jednoho paketu
 - Schopné odeslat v případě ztráty zprávy paket znovu
 - O opětovné poslání se stará aplikace

Domény - DNS

- Podnětem k vytvoření pojmenování domén
 - Jednodušší práce
 - Nutnost zajistit jednoznačnou identifikaci rychle přibývajícímu množství stanic v internetu
- IP adrese je přiděleno jméno, které je reprezentováno soustavou domén
- Domény se oddělují tečkami
- Zpravidla není více jak 5 částí jmen
- V doméně vlevo je uvedeno hostitelské jméno PC a za ním jména domén, do kterých PC náleží
- Vznikl seznam domén, skládajících se ze dvou písmen, která odpovídají nejvyšším úrovním domén pro jednotlivé země
- Doménové jméno se vyhodnocuje zprava
 - Postupně se zpřesňuje

9. Směrování

Základní principy

- Směrování je základní funkce síťové vrstvy
- Provádí se pomocí směrovací tabulky
- Routovací protokoly tvoří inteligenci sítě
- Router vidí díky tabulce dále, než jen k sousedovi
- Aktualizace směrovacích tabulek má povahu řídící zprávy vyšší priorita
- Vlivem zpoždění při přenosu tabulek může vzniknout routovací smyčka
- Pakety jsou směrovány dvěma způsoby
 - Statické
 - Ručně zadané cesty
 - Bezpečné a dobré
 - Nereflektuje změny v topologii
 - Nutnost manuálního zápisu tabulky
 - Dynamické
 - Síť se automaticky přizpůsobuje změnám
 - Automatický se vypočítávají cesty pomocí routovacího protokolu
 - Distance Vector Routing Protocol
 - Link State Routing Protocol
 - Dále dělení podle použití ve vnitřní lokální sítě nebo napříč sítěmi
 - Interior Gateway Protocol IGP
 - Exterior Gateway Protocol EGP

Distance Vector Routing Protocol

- RIP, RIP2, IGRP, EIGRP, BGP
- Routery udržují routovací tabulku s informací o vzdálenosti do dané sítě
 - o Periodicky routovací tabulku zasílají sousedům
 - Pro výpočet nejlepší cesty se používají metriky
- Jednoduché DVRP (RIP, IGRP) nevytváří vztahy se sousedy
- Problém routovací smyčky
 - o Řeší se pomocí
 - Definice maximální vzdálenosti TTL
 - Split horizon
 - Neposílá routu na rozhraní, přes které přišla
 - Route poisoning
 - Hold-down timer

Linik State Routing Protocol

- OSPF, IS-IS
- Routery udržují komplexní databázi síťové topologie
- Výměnňují si Link State Advertisements LSA
 - o Vyvolány nějakou událostí v síti
- Do svého okolí odesílá Hello pakety, kde zasílá informace o sobě
- Rychle reaguje na změny topologie

- Metrika je komplexní, nejčastěji se používá Dijkstrův algoritmus Shortest Path First –
 SPF
- Pro zlepšení vlastností se používá
 - Rozdělování do menších oblastí
 - Hraniční routery posílají sumární cesty
 - Využívá multicast
 - Číslování LSA

Autonomous Systems - AS

- Skupina IP sítí a routerů, které jsou pod stejnou technickou administrací
- Čísla 1–65535
- Privátní rozsah 65512-65535
- AS používá EGP pro komunikaci s jinou AS
- Uvnitř AS se routery naučené z BGP mohou redistribuovat do IGP

Administrative Distance - AD

- Určuje důvěryhodnost protokolu
- Definuje spolehlivost protokolu a prioritizace lepší nižším číslem
- Je vlastnost používaná na routerech k určení nejlepší cesty

Konvergence

- Procesy a čas potřebný pro konverzi směrovacího protokolu
- Dosažen ve chvíli, kdy všechny routery mají kompletní aktuální informace o topologii

Protokol RIP

- Routing Information Protocol
- Metoda, k zajištění síťové konektivity a nalezení nejlepší cesty k zasílání dat
- Protokol router-to-router
- Distribuovaný směrovací protokol
 - o Směrovací informace si vyměňují sousedé či skupiny routerů
- Nejčastěji IGP
 - o Interior Gateway Protocol
- Klasický vector distance = založen na vektoru vzdáleností
- Ve směrovací tabulce má
 - o Cíl
 - o Kudy nejlépe k němu
- Metrikou je počet skoků
 - Vzdálenost měřena ve skocích přes jednotlivé routery
 - o Max 15
 - o 16 nekonečno
- Užívá se pro menší sítě
- Algoritmus
 - o Každých 30 s pošli směrovací tabulku sousedovi
 - Soused přičte ke všem vzdálenostem 1 a porovná svou tabulku, změní si záznam pokud:
 - Cíl ještě neznal

- Zná k cíli delší cestu
- Cesta k cíli vede přes odesílatele tabulky
- Hold Down
 - o Spouštění časovače v případě zavedení nové cesty do tabulky
 - Nedorazí-li v tomto limitu alespoň jedna další směrovací informace, cesta ztrácí platnost
- Split Horizon
 - o Nevrací informace tomu, kdo ji poslal
- Poison Reverse
 - o Informace se posílá na všechna rozhraní
- Triggered Update
 - Kdykoliv router změní metriku nějaké cesty, okamžitě vyšle novou směrovací tabulku
- Výhody
 - o Jednoduché zavedení
 - Velmi rozšířený
 - o Podpora takřka všemi výrobci
- Nevýhody
 - o Pomalá konvergence
 - Malá maximální cena nelze vyjádřit kvalitu linek
 - Vznik dočasných cyklů
 - o Omezená metrika

Protokol IGRP

- Interior Gateway Routing Protocol
- Robustnější než RIP vektor vzdálenosti

Protokol EIGRP

- Enhanced Interior Gateway Routing Protocol
- Hybridní routovací protokol
- Metrika
 - o 32 bitová
 - Skládá se z
 - Vektor vzdálenosti
 - Zpoždění na lince
 - Většinou se používá pouze šířka pásma a delay
- Používá spolehlivý přenosový protokol RTP
- Proprietární Cisco protokol, rozšíření staršího IGRP
- Jedná se o rozšířený Distance Vector Routing Protocol
- Obsahuje i některé vlastnosti z Link State Routing Protocolu
- Používá DUAL algoritmus Diffusing Update Based Algorythm
- Oproti IGRP
 - o Rychlejší konvergence
 - Větší rozšiřitelnost
 - Smyčky jsou téměř vyloučeny
 - Zasílá pouze změny

- Jedná se o classless protokol
 - Používá CIDR a VLSM
 - Jako masku zasílá délku prefixu pro každý cílový subnet
- Sestavuje vztahy se sousedy zvané sousedství
 - Soused se objevuje pomocí hello paktů
 - 5s na rychlých linkách
 - 60s na pomalých
- Aby dva routery mohly být sousedy
 - Musí být členy stejného AS
 - Mít stejné K values
 - o Stejné verze EIGRP
 - o Interface na stejném subnetu
 - Stejný MD5 hash
- Defaultně používá autosumarizaci přes classful hranice
 - Zajišťuje, aby routovací tabulky byly kompaktní
 - o Lze vypnout
 - To je třeba v případě nespojitého adresního prostoru
 - o Lze nastavit manuální sumarizaci na interface
- Podporuje IP, IPv6, IPX, AppleTalk
- Maximálně zabere 50% propustnosti interface
- Základní termíny
 - o Successor
 - Primární routa k cíli
 - Ukládá se do tabulky
 - Může být více k jednomu cíli
 - Feasible successor
 - Záložní cesta
 - Ukládá se do tabulky topologie
 - Může být více ke stejnému cíli
 - o Reported distance RD
 - Nebo advertised distance
 - Nejnižší celková vzdálenost podél cesty do cílové sítě zaslána sousedem
 - o Feasible distance FD
 - Je RD + cena k dosažení souseda
 - Feasibility condition
 - Podmínka k dosažení sítě bez smyček
- Pokud router nemá žadný feasible successor, tak přepne do aktivního stavu a dotáže se sousedů
- Stuck In Active SIA
 - Stav kdy je cesta v aktivním stavu, router odešle query a v určitém stavu neobdrží odpověď, v tom případě vyřadí tyto sousedy
- Routovací tabulky se předávají pomocí multicastu
 - o Pokud je to možné
 - Jinak se použije unicast
- Tabulky pro EIGRP
 - o Routovací
 - o Topologie

- Sousedé
- Stub Routing
 - o Používá se pro topologii Hub and Spoek
 - Model kola střed kola a paprsky, obdoba topologie hvězda
 - Jako stub se konfigurují remote routers
 - o Jako sousedi stub routeru by měli být pouze EIGRP hub routers
 - Snižuje využití zdrojů

Protokol OSPF

- Otevřený standard
- Jedná se o classless protokol s podporou VLSM
- Používá Dijkstrův algoritmus nejkratší cesty SPF
- Používá link-state databázi, která předchází smyčkám
- Routovací updaty se posílají pouze pokud jsou potřeba
- Využívá multicast
- Nepoužívá TCP, ale IP protokol 89
 - o Sám si řeší detekci chyb a oprav
- Podporuje autentizaci
 - o Plain text nebo MD5
- Používá hello protokol
 - Lepší než výměna tabulek v RIP
 - o Posílá každých 10s
 - o Aby se routery staly sousedy, tak musí mít shodné hodnoty
 - Číslo oblasti
 - Typ oblasti
 - Subnet a masku
 - Hello a dead timer
 - Autentizační údaje
- LSA se posílá každých 30min nebo při změně
- Cena linky
 - o 100Mb / bandwidth
- OSPF router ID je nejvyšší IP adresa na routeru nebo adresa loopback interface
- Tabulky OSPF
 - o Routovací
 - o Topologie
 - Sousedů
 - Link-state database
- DR/BDR routery
 - Designated Router
 - Posílá LSA 2 všem sousedům v multi-access
 - Slouží k redukci síťového provozu
 - Zdrojem routovacích updatů
 - Backup Designated Router
 - Stává se Designated Routerem, pokud původní selže
 - Má druhou nejvyšší prioritu v době volby

Protokol BGP

- Pro routování mezi AS
- Posílají se periodické keepalive pro ověření konektivity
- V updatech zasílá Network Layer Reachability Information NLRI
 - o Cílový prefix, délka, next hop, cesta
- Routovací tabulka může obsahovat více než 100 000 záznamů
 - o Díky tomu je internet decentralizovaný systém
- Podporuje CIDR/VLSM a route aggregation
- Nepoužívá tradiční metriky, ale rozhoduje podle cesty, politik a pravidel

Protokol IS-IS

- Standardizován ISO
- Používá Dijkstrův SPF algoritmus
- Pomocí hello paketů sestavuje sousedy
- Classless protokol, VLSM, CIDR
- Používá sumarizaci
- Podporuje autentizaci
- Běží na síťové vrstvě OSI (3)
- Využívá Network Service Access Point (NSAP)
- Nevyužívá IP protokol ale OSI networking
- Více časovačů pro ladění
- Méně typů oblastí než OSPF
- Více škálovatelný
- Menší zátěž na CPU
- Používá Partial Route Calculations pro výpočet dostupnosti
- Používá domény
- Používá pouze point-to-point a broadcast network
- Metrika
 - o Cena
 - Max 1024 pro cestu
 - Max 64 pro link
 - Default je 10 pro každou linku
 - o Pro ne-Cisco také delay
 - o Expense
 - o Error

Směrovače

- Protokolově závislý
- Umožňuje propojení více než dvou částí globální sítě
- Hledá optimální cesty mezi uzly
- Přejímá rámce mezi sítěmi a spojí ty sítě, které komunikují
- Pro každou síť si ukládá tabulku logických adres
- Užívá směrovací tabulky a omezuje výskyt kolizí
- Přenosový protokol definovaný na 3. a 4. vrstvě

10. Propojování a management sítí

Přenosová média

- Linková
 - o Koax, kabel
 - o Kroucená dvojlinka
 - UTP
 - STP
- Optické kabely
 - Nesou modulované světelné impulzy
- Radiové spoje
- Družicové spoje

Technologie pro různé vrstvy

Opakovače

- Fungují jako zesilovače elektrických signálů
- Pracují na úrovni fyzické vrstvy

Mosty

- Na úrovni linkové vrstvy
- Pracuje na principu Store and Forward
- Průběžně přijímá jednotlivé rámce a podle adres v nich se rozhoduje, zda je předá druhé straně nebo ne

Routery

- Na úrovni síťové vrstvy
- Stará se o doručení paketů od odesílatele ke příjemci
- Viditelné pro ostatní síťové vrstvy
- Pro funkčnost je nutné, aby všechny propojované sítě používaly stejný protokol na síťové vrstvě
 - Není nutné na linkové a fyzické vrstvě

Multiprotokolové směrovače

- Problém heterogenních sítí lze řešit
 - o Konverzí protokolu
 - Nespolehlivé a náročné
 - Směrováním více protokolů současně
- Schopné pracovat s více protokoly současně
- Musí být schopen rozeznat typ paketu, který dostane od linkové vrstvy

Brouter

- Bridge / router
- Funguje jako směrovač a teprve v okamžiku, kdy pro paket nedokáže aplikovat směrovací algoritmus, předá paket dál, jako most

Brána

- Pokud je potřeba vzájemně propojit sítě odlišných koncepcí
- Tam kde se používají jiné soustavy protokolů
- Pracuje na takové úrovni, na které je možné konverzi protokolů zajistit

Prostředky pro správu sítí

- NMS Network Management Station
- Open View
- EMS Enterprise Management Systém
- SNMP Simple Network Management Protocol
- Jiné
 - Unicenter
 - o IMB Tivoli NetView
 - o MMC Microsoft Management Console

SNMP

- Slouží k výměně informací, které se člení na jednotlivé proměnné a jež jsou uspořádány do hierarchického stromu
- Slouží ke komunikace mezi managery a agenty na uzlech sítě
- Proniká i do průmyslové automatizace a měřící techniky
- Asynchronní, transakčně orientovaný protokol na modelu klient/server
- Pro přenos se používá UDP
- Je protokolem rodiny TCP/IP
- Klientský program
 - o Zvaný síťový manager
 - o Vytváří virtuální spojení se SNMP agentem, který běží na síťovém zařízení
- Agent
 - o Malý program, který monitoruje stav zařízení a poskytuje informace manageru
 - o Informace jsou uspořádány podle MIB databáze
 - Objekty Cisco MIB
 - Konfigurace
 - Frekvence chyb rozhraní
 - Šířka pásma
 - Hustota provozu
 - Nedosažitelné adresy
 - Data SNMP vlastní režie
 - Komunikace mezi managerem a agentem je vykonávána přes Network Management Protocol
 - V prostředích
 - Routery
 - Switche
 - Rozbočovače
 - Serverv
 - Pracovní stanice, tiskárny, UPS
- Získání informací o zařízení

- Manažer vyšle požadavek na zařízení a vyhodnotí informace poskytované agentem
 - Automaticky v určených intervalech
 - Vyžádání správcem
- Agent detekuje stavy definované hodnoty a vyšle trap možnost provedená definovaných akcí
 - HW porucha, zátěž nad limit, pokus o neznámí přistup, ukončení aktualizace
- o Kontinuální monitorování je z důvodu zátěže nereálné
 - Efektivita je zajištěna kombinací pooling a trap aktivit
- SNMP pracuje na modelu žádost-odpověď
 - Monitorovací dotazy
 - Prahové dotazování
- Příkazy SNMP
 - o GET načtení od agenta
 - o GetNext načtení dalších instancí
 - o GetBulk čte první a všechny následující instance
 - o Set nastaví první a všechny následující instance
 - o Trap agent oznamuje vznik události
 - o Inform nařízení předávat data i jinam
- Výhody
 - o Správa internetové sítě jedním nástrojem
- Nevýhody
 - o Spotřeba prostředků, vyšší koncová cena
 - o Rozdílná podpora standardů výrobci
 - o Práce týmu správců

RMON - Remote Monitoring

- Doplňuje SNMP
- Odlišnosti
 - Je postaven na zvláštních strojích
 - Nečeká na dotazování dat
 - Umožňuje podrobnější sběr údajů
- Je dražší

11. Principy operačních systémů

Rozdělení

- Pro pracovní stanice
 - Síťové
- Serverové

Metody přidělování CPU

- V jednoduchém OS, pokud jediná spuštěná úloha musí čekat, je blokováno CPU
- V multiprogramovém OS je možno tento čas využít efektivně
 - o V paměti je uchováváno více úloh
 - V okamžiku, kdy musí úloha čekat, je CPU přiděleno jiné
- Běh procesu je složen z cyklu spouštění na CPU a čekání
- Při posledním CPU cyklu dojde k systémovému volání, které vede k ukončení procesu
- Každý proces je ve frontě reprezentován zejména svým PCB
 - o FIFO, fronta s prioritou, strom, neuspořádaný seznam

Dispečer

- Část OS, která zajišťuje přidělování CPU
- Funkce
 - Přepínání kontextu
 - o Přepínání mezi uživatelskými mody
 - o Nalezení místa, kde byl uživatelský program přerušen a znovu ho spustit

Preemptivní plánování

- K přidělení CPU může dojít kvůli některému z těchto důvodů
 - o Proces přechází ze stavu probíhající do stavu čekající
 - Čekání na dokončení synovského procesu
 - o Proces přechází z probíhajícího do stavu připraven
 - o Proces přechází ze stavu čekající do stavu připraven
 - o Proces je ukončen

Nepreemptivní plánování

- Proces opouští CPU pouze pokud je ukončen, nebo čeká
- Tato metoda plánování je užita ve Windows
- Nepotřebuje speciální HW, jako časovač apod.

Kritéria přidělování CPU

- Jsou
 - Využití procesoru
 - o Propustnost
 - Doba obrátky
 - Doba čekání
 - Doba odezvy
- Každý OS se snaží

- o Maximalizovat využití CPU a propustnost
- Minimalizovat dobu obrátky, čekání a odezvy
- Často výhodnější minimalizovat průměr, než minimum či maximum
 - o V interaktivních systémech je výhodnější minimalizovat rozptyl než průměr

Příklady algoritmů

FCFS - First Come First Server

- FIFO
- Nejjednodušší algoritmus
- Nepreemptivní

SJF - Shortest Job First

- První je vždy úloha s nejkratším CPU cyklem
- V případě stejného času je rozhodnuto pomocí FCFS
- Preemptivní i nepreemptivní
- Využívá plánování dle priority
 - o Interní čas CPU
 - o Externí nastavena OS nebo uživatelem
- Procesy ve frontě stárnou a dostávají vyšší prioritu, aby nedošlo k jejich neobsloužení

RR - Round Robin

- Plánování cyklickou obsluhou
- FIFO fronta procesů
- Procesy jsou ve vykonávání přerušovány podle definované časové jednotky zabírají
 CPU právě po dobu trvání doby, pak jsou vystřídány
- Možnost preemptivního plánování přerušení procesu cyklem větším než časové kvantum, pokud přijde proces kratší

MQS - Multilevel Queue Scheduling

- Procesy rozděleny do skupin na interaktivní a na pozadí
- Každá skupina má svou vlastní frontu s vlastním plánovacím algoritmem
- Plánování mezi frontami obvykle jako preemptivní plánování s pevnou prioritou

MFQS – Multilevel Feedback Queue Scheduling

Umožňuje procesům přesun mezi frontami, velice flexibilní, významný algoritmus

Správa paměti

- Úkolem je monitorovat stav každého paměťového místa
- Tato část OS určuje strategii přidělování paměti a zvolenou technicky realizuje
- Volba strategie ovlivňuje propustnost celého systému

Přidělování jediné souvislé oblasti paměti

- Jednoduchá metoda zpravidla u monoprogramových systému nevyžaduje použití žádných zvláštních technických prostředků
- Celá paměť je rozdělena na 3 souvislé oblasti
- OS je trvale uložen na začátku paměti
- Úloze je přiřazen celý zbytek paměti, přestože ve skutečnosti využívá jen její část

- o Část paměti, kterou úloha nepotřebuje zůstává nevyužitá
- Paměť je vždy přidělena jediné úloze a po jejím ukončení je paměť celá uvolněna
- Nevýhody
 - Vždy zpracovávána jen jedna úloha
 - Není plně využit čas CPU a dalších zařízení
 - o Pokud má úloha malý nárok na paměť, její zbytek je nevyužit
 - o Nemůže být provedena úloha, jejíž paměťové nároky jsou vyšší než kapacita
 - o Jestliže systém zpracovává v daném čase jedinou úlohu, je velice neefektivní

Přidělování paměti po sekcích

- Metoda je založena na myšlence rozdělení paměti na samostatné oblasti
 - Každá oblast je prostor jedné úlohy
- OS musí
 - Sledovat stav každé sekce
 - o Rozhodovat, které úloze je paměť přidělena
 - o Provádět vlastní přidělení
 - Uvolnit paměť po ukončení úlohy pro další přidělení
- Nutnost mechanismu ochrany narušení paměťového prostoru jinou úlohou
- Nevýhody
 - Fragmentace paměti
- Řešení fragmentace
 - o Adresový prostor úlohy je rozdělen na stejné úseky stránky
 - o Paměť je rozdělena na bloky stejné délky jako stránky
 - Stránky zůstávají vzhledem k uživatelskému programu souvislé, ale odpovídající bloky spolu fyzicky souviset nemusí
- Segmentace paměti
 - o Logické seskupení informací, které se berou v úvahu jako jedna entita

Stránkování paměti

- Důležitá je velikost stránky
 - Pokud by byl rozsah příliš velký, nebyl by zřetelný rozdíl mezi stránkováním a dělením paměti na sekce
 - o Při malém rozsahu by bylo stránek hodně a tím položek tabulek stránek mnoho
- Pro adresový prostor úlohy existuje jedna tabulka, která obsahuje záznam stránka / blok
- V systému je tabulka obsazení bloků paměti, která obsahuje informaci o volnosti nebo přidělení
- Rozhodování o přidělení paměti provádí správce paměti
- Úloze je přidělena množina volných bloků paměti
- Určí se počet stránek pro úlohu a jestliže je v paměti dostatek, jsou přiděleny úloze
- Výhody
 - o Dochází k odstraňování fragmentace
 - o Zvyšuje se počet současně spustitelných úloh
- Nevýhody
 - Tabulky zabírají část paměti
 - o Paměť obsahuje údaje, které se právě nevyužívají

Virtuální paměť

- V principu je větší než operační paměť
- Je-li naplánováno zpracování úlohy, je do paměti zavedena pouze první stránka
 - o Ostatní se zavádí v okamžiku, kdy je program potřebuje
 - o Je zaručeno, že nepotřebné údaje nebudou do paměti zavedeny
- Problém nastává při zaplnění paměti
 - o Nutno čekat na uvolnění některého bloku paměti
- Úkolem OS je ošetření výpadku stránky page fault
 - Jestliže úloha vyžaduje zavedení další stránky, je třeba zjistit, zda je zavedena v paměti
 - Pokud ano, lze ji použít
 - Pokud ne, je třeba zajistit volný blok v paměti
 - o V případě nalezení bloku je stránka zavedena a program pokračuje
 - Pokud není, je třeba vybrat stránku, která bude odstraněna a uložena na disk, na toto místo se pak zavede požadovaná stránka
 - Nejvíce problémů při odstraňování stránky
 - Systém se musí pokusit eliminovat situaci, při které dojde k zahlcení
 - Stránka je uvolněna a hned potom zase zavedena
 - o To může vést i ke zhroucení systému
 - Kladen velký důraz na odstraňované stránky
 - Pro stránku musí existovat příznak, který určuje kdy naposledy byla použita
- Výhody
 - Všechny výhody stránkovací strategie
 - Umožňuje efektivněji využít paměť
 - o Umožňuje zpracovávat větší počet úloh než předchozí metody
- Nevýhody
 - o Technicky složitější

Správa periferních zařízení

- Úkolem je
 - Sledovat stav všech připojených zařízení
 - o Rozhodovat o tom, které bude přiděleno procesoru a na jak dlouho
- Druhy zařízení
 - o I/O
 - Klávesnice, scannery, ...
 - o Paměti

Správa souborů

Řídí a realizuje ukládání informací a jejich zpětné vybavení

12. Souborové systémy a logická struktura dat

Soubor

- Základní logická organizační jednotka na disku
- Organizovaná množina dat s určitými vlastnostmi
- Vystupuje pod samostatným názvem
- Může obsahovat data v textové nebo binární podobě
- Atributy
 - o Jméno
 - о Тур
 - o Lokace
 - Velikost
 - o Ochrana
 - Datum, čas a uživatelská identifikace
- Pro lepší organizaci existuje složka
 - o Organizační jednotka v souborovém systému
 - Může obsahovat další složky a soubory
 - Organizuje je do stromové struktury
- Adresář nejvyšší úrovně se označuje jako kořenový adresář root direcotry
- Díky hierarchickému uspořádání lze jednoznačně určit každý soubor
- Absolutní cesta
 - Řetězec se jménem se vytvoří pospojováním všech adresářů, počínaje kořenovým, přes které je nutno projít k danému souboru
 - o Zakončeno jménem souboru
 - o Jména adresářů jsou oddělena zpětným nebo dopředným lomítkem
- Relativní cesta
 - Závisí na aktuálním adresáři
 - o Popisuje cestu z aktuálního adresáře, ne kořenového
- Virtuální paměť každého procesu, který sdílí soubor, obsahuje odkazy na stejné stránky fyzické paměti
 - Na stránky, ve kterých je uložena kopie sdíleného souboru
 - o Přístup procesu ke sdílenému souboru je koordinována systémem
 - Pro zajištění jedinečného přístupu k souboru

Operace se soubory

- Vytvoření
 - Nejdříve potřeba najít dostatečně velký prostor na odkládacím zařízení
 - Musí být vytvořen záznam pro nový soubor v adresáři
 - Do tohoto záznamu, kde je uloženo jméno souboru a jeho uložení v systému souborů
- Zápis
 - Prováděno systémové volání, které vyžaduje jméno souboru a informace, které mají být uloženy do souboru

 Systém musí uložit ukazatel zápisu na místo v souboru, kde má být zápis proveden

Čtení

- Systémové volání vyžaduje jméno souboru a informaci o tom, kde v paměti je následující blok souboru
- Je vyhledán adresář a v něm záznam, podle něj je nastaven ukazatel čtení na místo, od kterého mý být provedeno následující čtení
 - Kdykoliv má nastat čtení souboru, je aktualizována pozice ukazatele čtení
- Protože většinou je soubor buď čten, nebo zapisován, mnoho systémů užívá pouze jeden ukazatel aktuální pozice, čímž je šetřen prostor

• Přemístění souboru

- Je vyhledá adresář a v něm patřičný záznam
- Ukazatel aktuální pozice je nastaven na patřičnou hodnotu
- Přemístění pozice příští vstupní nebo výstupní operace v souboru nepotřebuje volat žádnou I/O operaci
- o Tato akce je známá jako seek

Smazání

- Je nutné vyhledat adresář, ve kterém soubor leží
- Uvolnit celý úložný prostor, který byl souboru přidělen
- o Smaže se položka záznamu o daném souboru

Vypuštění souboru

- Uživatel chce nechat atributy, ale vymazat obsah
- o Zato funkce nastaví všechny atributy na nulu, s výjimkou velikosti

Další příkazy

- o Připojení nových dat na konec souboru
- o Přejmenování souboru
- Operace pro zjištění velikosti souboru
- Operace dovolující změnit vlastníka souboru

Vnitřní struktura souboru

- Některé OS využívají množinu speciálních operací, které manipulují se soubory
 - Tato myšlenka má nevýhodu v těžkopádnosti a velikosti kódu pro OS
- Najít interně offset uvnitř souboru může být pro OS komplikované
 - o Všechny diskové I/O operace pracují v jednotkách jednoho bloku
 - Všechny bloky jsou stejné velikosti
 - o Je nepravděpodobné, že by velikost záznamu byla stejná jako velikost bloku
 - Packing uložení logických záznamů do fyzických řeší tento problém
- Délka logického záznamu, délka fyzického záznamu a packing
 - Určují, kolik logických záznamů se vejde do jednoho fyzického bloku
 - Uložení může provést buď uživatelský program, nebo OS
 - Nebo může být soubor definován jako sled bloků
 - Všechny základní I/O operace pracují na těchto blocích
 - Konverze logického záznamu do fyzického bloku je potom SW problém

Metody přístupu k souboru

Sekvenční přístup

- Informace o souboru jsou zpracovány za sebou
- Velice častý přístup
- Operace prováděné na souboru jsou čtení a zápis
- Operace čtení čte následující část souboru a automaticky posune ukazatel až ke konci
- Stejně append, provede zápis informací na konec souboru a posune ukazatel

Přímý přístup

- Soubor sestává z logických záznamů pevné délky
 - o Umožňuje tak programu číst nebo zapisovat rychle
 - Je založena na diskovém modelu souboru, protože disky umožnují přístup k libovolnému bloku souboru
 - o Při přímém přístupu je soubor očíslovanou sekvencí bloku nebo záznamu
- Soubory s přímím přístupem umožňují rychlý přístup
- Operace se soubory mohou být modifikovány tak, aby obsahovaly číslo bloku jako parametr

Zamykání souboru

• Zamknutím souboru zabráníme přístup jiných procesů do otevřeného souboru

Nevynucené zamykání

- Vyžaduje spolupráci všech procesů přistupujících k souboru
- Proces se pokusí získat zámek, pokud se povede, drží ho až do uvolnění
- Pokud se nepovede, bude čekat na uvolnění nebo skončí chybou
- Operace
 - Čtení, zápis atd. nejsou ovlivněny zámkem

Vynucené zamykání

- Nevyžaduje spolupráci procesů, ovlivňuje souborové operace
- Ty se buď blokují do odemčení, nebo hned selžou

Souborové systémy

- Fyzické uspořádání na disku zajišťuje souborový systém
 - Udržuje informace o souborech
 - Filesystom je realizován SW, který je součástí OS
 - Operační systém také uživateli zprostředkuje rozhraní pro základní práce se soubory
 - Udržuje vazby souborů na jejich nadřízené adresáře
 - Udržuje metadata o souborech
 - Délku, datum a čas změny, datum a čas vytvoření, vlastníka, oprávnění
 - o Poskytuje služby pro práce se soubory a adresáři
 - Vytváření, přesouvání, nulování, připojování, úpravu
- Rozlišujeme souborové systémy
 - o Diskové

- Navrženy pro správu souborů na datových zařízeních
- FAT12, FAT16, FAT32, NTFS, ext2, ext3 ZFS, ISO 9660
- Některé systémy provádějí žurnálování
- Flashové
 - Navrženy pro správu souborů na flashových pamětích
 - Tradiční diskové nejsou vhodné protože
 - Omezují náhodný přístup
 - Nesnižují opotřebení
- Databázové
 - U souborů uchovávají i množství dalších metadat
- Síťové
 - Poskytují klientům přístup k souborům na serveru
 - SMB
- Speciální
 - Dynamické systémy vytvářené SW
 - Pro účely komunikace mezi aplikacemi, systémem
 - Často v Unixu
 - Procfs

VFS - Virtual File System

- Abstraktní rozhraní v Linuxu
- Všechny soubory jsou ve VFS
- Má podobu zobecněného stromu
- Má jeden kořenový systém
- Pevné i symbolické odkazy
- Speciální soubory
- Pravidla pro tvorbu názvů jsou velice volná

Příklady souborových systémů

FAT

- Používá se na paměťových kartách
- Relativně jednoduchý, nízký výkon
- Široká podpora napříč OS
- V novějších verzích podporuje dlouhá jména souborů
- Řešen spojovým seznamem
- Nepodporuje oprávnění ani symbolické linky
- Max. velikost souboru 4 GB

NTFS

- Výchozí souborový systém od Windows NT
- Lepší než FAT
 - Lepší výkon, spolehlivost, lepší využití disku, podpora metadat, oprávnění, žurnálování
- Podporuje hard i sym linky
- Max. velikost souboru 16EB

Ext2

- Pro linux
- Portován pro jiné OS
- Podporuje hard i sym linky
- Max. velikost souboru 2TB

Ext3

• Rozšíření ext2 o žurnálování a vyšší spolehlivost

Xfs

- Vysoce výkonný žurnálovací systém
- Přímá podpora pro RAID prokládání
- Podporuje zpožděnou alokaci
 - o Zvyšuje výkon
 - o Snižuje fragmentaci
- Podporuje vlastní atributy
- Max. velikost souboru 8EB

NFS

- Nejpoužívanější síťový FS pro Linux
- Implementace složena z
 - Serverové
 - Klientské části
- Komunikace pomocí volání vzdálených procedur
- Původně podporován jen UDP nyní i TCP
- Celkem 18 procedur, všechny synchronní chování
- Cesty ks souborům se rozkládají na jednotlivé adresářové úrovně
- Max. velikost souboru 16EB

13. Operační systémy Windows

Architektura jádra

Mikrojádro

- Implementuje jen vybrané základní mechanismy
 - Virtuální paměť
 - o Plánování vláken
- Ostatní komponenty běží v uživatelském režimu
 - o Zajištěna větší stabilita
- Všechny pokročilé funkce v uživatelském režimu
 - Časté přepínání mezi režimem jádra a uživatelským může vést ke zpomalení systému

Monolitické jádro

- Velké jádro obsahuje většinu komponent
 - Souborové systémy
 - o Správa procesů
- Sdílejí jeden virtuální adresový prostor
 - o Zrychlení vzájemné komunikace
 - o Možnost nechtěného ovlivnění datové struktury
- Jádro Windows NT řadíme spíše k monolitickému jádru

Hardware Abstraction Layer – HAL

- Nejnižší úroveň jádra
- Úkol
 - o Odstínění součástí OS a aplikací od specifik HW
 - o Poskytnout rutiny pro komunikaci periferií a vyšších vrstev
- Kód HAL udržen v hal.dll

Tvrdé jádro

- Implementace mechanismů pro vyšší vrstvy
- Algoritmus plánování vláken na procesoru
- Odložené volání procedur
- Základní synchronizační metody
- Práce s HW přerušením
- Část obsluhy systémových volání

Ovladač

- Umožňuje vrstvě exekutiva komunikovat s různými typy HW
- Spustitelné soubory .sys

Executiva

- I/O zařízení a další komponenty
- Využívá tvrdé jádro

- Realizuje složitější mechanismy, které jsou přes systémová volání nepřímo využívána obyčejnými aplikacemi v uživatelském režimu
- Implementována v hlavním modulu jádra
- Ntoskrln.exe nebo ntkrnlpa.exe

Microsoft Windows

- Jedná se o diametrálně nový typ OS prostředí pro komunikaci člověk PC
- Všechny verze až po Windows95 lze považovat za pouhé nadstavby MS-DOS
- Mezi hlavní přínosy
 - Multitasking
 - o Prostředky mezi úlohové komunikace
 - Dynamicky linkované knihovny
 - o Správa paměti
 - Sdílené technické prostředky
 - Display, paměť, klávesnice, myš, ...
 - o Schránka
 - Pro výměnu dat mezi procesy

Struktura aplikací

- Obdobná jako v systémech OS/2, Apple Macintos, NextStep
- Vlastností programů je schopnost reagovat na události
 - Vnitřní, nebo přicházející od uživatele
 - o Jedná se o EVENT DRIVEN programy
 - o Stlačení klávesy, posun myší, zpráva od programu, ...
- Nevýhodou jsou vysoké nároky na technické vybavení
- Z programátorského hlediska vysoké nároky
- Nesplnění požadavku HW může vést k dlouhé odezvě

Principy

- Aplikační programy pod MS DOS v případě potřeby volají služby BIOSu, nebo přímo MS DOSu
 - o Mnoho aplikací je ignoruje a obrací se na technické prostředky přímo
 - o Je možné v jedno chvíli vykonávat pouze jeden program
 - V případě Windows se všechna volání zachytí a přesměrují do Windows
 - Zde se zařadí do fronty událostí
- Filozofie systému je postavena na programových objektech
- Základní jednotkou je okno
- Z programového hlediska se jedná o objekt s vlastnostmi a funkcemi
- Komunikace s oknem probíhá přes messages
- Zprávy jsou po vzniku uložené do fronty QUEUE
- Systém MSW má k dispozici 1 systémovou frontu pro každý program a jeho vlastní programovou
- Po vzniku vnější události způsobí ovladač přerušení a vykoná se funkce, která událost transformuje do message a uloží ji do fronty
 - o Tam čeká na zpracování

- Současně MSW vykoná funkce, které z opačného konce fronty zprávy odebírá a zpracovává
- Systém rozhodne, kterému z procesů budou sdílené zdroje přiděleny a pak je zpráva vložena do programové fronty procesu
- V průběhu zasílání zpráv může systém řídit přepínání jednotlivých procesů
- V systémech s preemptivním multitaskingem se toto děje nezávisle na procesech

Subsystémy

- Subsystémy MSW
 - Hlavní proces subsystému csrss.exe a knihovny DDL, které používá
 - Ovladač jádra win32k.sys
 - Vrstva knihoven DDL
 - Zajišťují překlad volání funkcí Windows API a nativní volání rutin z knihovny ntdll.dll
 - Csrss.exe v sobě uchovává vlastní kopii seznamu běžících procesů a vláken
- Subsystém POSIX
 - o Portable Operating Systém Interface
 - Založen na UNIXu
 - Sada mezinárodních standardů
 - o Popisuje aplikační rozhraní v OS založených na Unix
 - o Od Windows Server 2008 implementace v podobě SUA
 - Subsystem for Unix-based Application
 - o Hlavním procesem psxss.exe

Subsystémové procesy

Proces System

- PID=4
- Nevykonává žádný kód v uživatelském režimu
- Nepoužívá knihovny DDL
- Nereprezentuje .exe soubor
- V jeho kontextu běží supina vláken pracovní vlákna
 - Vytvořena během bootovacího procesu
 - Vykonávají činnost, kterou dostanou zadanou z venku

Session Manager – smss.exe

- Spuštěn v poslední fázi startu systému
- První proces vykonávající kód v uživatelském režimu
- Hlavní úkol je vytvářet relace
 - o Relace se využívají pro oddělení prostoru jednotlivých uživatelů
 - o Smss.exe vytvoří relaci 0 konzolová relace
 - V ní běží systémové procesy, služby, všechny procesy prvního přihlášeného uživatele
 - o Pro každou novou relaci kopie winlogon.exe
 - o Pro relaci 0 spouštěn winit.exe
- Zodpovědný za inicializaci hlavního procesu subsystému Windows csrss.exe

Winlogon.exe a LSASS.exe

- Procesy podílející se na přihlašování uživatele
- Winlog.exe
 - Umožňuje uživateli přihlášení přes GUI
 - o Zabudovaná jednoduchá ochrana proti zachycení údajů
 - Zajišťuje odhlášení uživatele
 - o Po zadání jména a hesla jsou údaje odeslány do lsass.exe
- Lsass.exe
 - Zajistí oprávnění uživatele
 - Vytvoří token, kterým se uživatel dále prokazuje
 - o Obdrží-li winlog token od LSASS, zahajuje inicializaci pracovního prostředí

Services.exe a sychost.exe

- Procesy pro podporu služeb
- Programy na pozadí nevyžadují interakci s uživatelem
- Mezi služby řazeny i ovladače a jádra
- Služby mohou sdílet virtuální adresový prostor jednoho procesu
- Služby bez vlastního procesu vykonávány v kontextu instancí procesu svchost.exe
- Kontrola skrze services.msc

Verze Windows

Klientské

- Windows 95
 - o Ulehčil práci se soubory
 - o Problémy s instalací drivery
 - Používaly výhradně DOS
 - Ten byl nedílnou součástí systému
 - Bylo potřeba zavést autoexec.bat a config.sys
 - o Instalace na 10 disket
- Windows 98
 - Nepotřeboval DOS
 - o Instalace probíhala o něco déle
 - o Používaly se ve formě druhého vydání
 - Opravily některé chyby a nedostatky
- Windows ME
 - o Neúspěch
 - Nefungovaly části systému
 - Poslední verze založená na MS-DOS
- Windows XP
 - Kosmetické změny
 - o Určen pro domácí počítače a podnikové sítě
- Windows Vista
 - o Mnoho edic
 - o Relativně velké HW nároky
 - o Nové GUI Aero

- o Nelze spustit na každém PC
- Vyšší zabezpečení pomocí UAC
 - Uživatel není ve výchozím stavu administrátor
 - Nutno admin práva elevovat
- Windows 7
 - Nové funkce
 - o Upravené GUI
 - o Vyladění UAC
 - o Lepší výkon
 - Nižší HW požadavky
- Windows 8 a 8.1
 - o Prostředí Metro
 - o Evoluce jádra lepší optimalizace
 - Úprava UAC a administrátorských práv
 - Skutečný admin je jen profil Administrator
 - Uživatel s max. právy musí stále elevovat svá práva při některých operacích

Serverové

- Windows NT
 - o První verze založena na bezpečnějším jádře NT
 - o Pro podnikové sítě
- Windows 2000
 - Velmi stabilní
 - o Používá jiný systém zabezpečení dat
 - o Určen pro síťovou konfiguraci a práci v síti
 - Vyžaduje lepší HW
- Windows Server 2003
 - o Společné jádro s Windows XP
- Windows Server 2008
 - o Společné jádro s Windows 7

14. Operační systémy Linux

Základní myšlenka

- Poskytnout náhradu komerčním OS
- Open-source
 - o Software s otevřeným zdrojovým kódem
 - Otevřenost znamená jak technickou dostupnost kódu, tak legální dostupnost

Výhody / nevýhody

- Výhody
 - o Open-source
 - o Velmi slušná dokumentace
 - o Silná podpora
 - Velké množství rozšiřujících balíčku
 - Možnost vlastních úprav
- Nevýhody
 - o Malé povědomí uživatelů
 - o Obtížnější konfigurace
 - o Menší podpora výrobců
 - o Menší množství SW

Licence

- Komerční
 - o Placená verze
 - o Demo verze
 - Shareware
 - K vyzkoušení
- Trial verze
 - o Časově omezená
- Freeware
 - K užívání zdarma
- Donationware
 - Zdarma s žádostí o příspěvek
- Adware
 - o S integrovanou reklamou
- Public domain
 - o Volné dílo po všech stránkách
- Open source
 - Volné dílo se zdrojovým kódem
- EULA
 - o Instalací uživatel podepisuje smlouvu uvedenou při instalaci
- BSD
 - o Svobodný software, vyžaduje jen uvedení autora
- GNU General Public License
 - Volné, ale vyžaduje, aby dílo odvozené, bylo rovněž pod touto licencí

Unix

- V informatice ochranná známka OS vytvořeného v roce 1969 v Bellových laboratořích firmy AT&T
- Existuje mnoho variant původního Unixu
- OS pro servery, pracovní stanice i pro osobní PC
- Hrál velmi významnou roli při vzniku internetu
- Naprogramován v C
- Otevřený OS
- Filozofie
 - o Jednoduchý
 - o Víceúlohový
 - Víceuživatelský
 - Uživatelé s domácími adresáři
 - Individuální konfigurační soubory
 - Přístupová oprávnění
 - Současná práce více uživatelů
- Hierarchický souborový systém
 - Strom adresářů s jedním kořenem
- Téměř vše je soubor
 - Zařízení a prvky mezi procesové komunikac
- Data jsou uložena jako holý text
- Důraz je kladen na vztahy mezi programy, než na programy samotné
- Je složen z
 - o Jádra OS
 - Systémových nástrojů
- Z Unixu vycházejí
 - Solaris OS
 - o MacOS
 - Částečně Linux

Linux

- Monolitické jádro OS šířeného pod licencí GNU GPL v2
 - o Flexibilní jedna verze na různém HW
 - o Moderní rychlé nasazení technologií, protokolů, ...
 - o Evoluční není řízen pevně definovaným návrhem, ale na základě požadavků
 - Svobodný volný přistup ke kódu jádra
- Je známým příkladem svobodného SW a vývoje open source
- Patří mezi unix systémy
 - Vyhovuje standardy POSIX
 - o Vznikl jako svobodná implementace jádra unix systémů
- Odlišuje ho
 - Vnitřní architektura jednotlivých jader
 - Univerzální směrování
 - o Domovská platforma x86
- Termín Linux značí jádro, často se ale používá pro označení celých unixových OS, které sestávají z Linuxového jádra a zároveň knihoven a nástrojů z projektu GNU

- Podpora pro využití na serverech i desktopech
- V roce 1991 započal vývoj jádra finským studentem Linusem Torvaldsem
- Vycházel z Minixu
- Typická distribuce k obecnému použití obsahuje
 - o Linuxové jádro
 - o Určité GNU knihovny a nástroje
 - Příkazové shelly
 - o Tisíce balíčků aplikačního SW
- Distribuce
 - o Debian
 - o Fedora
 - o Red Hat
 - o Gentoo, Ubuntu

Jádro Linuxu

- Kernel
 - Přidělovat paměť
 - Čas procesoru
 - o Čas programům
 - Ovládání zařízení počítače a abstrakci funkcí
- Linuxové jádro je koncipováno jako jednolitá část kódu s podporou načítání externích modulů
- Používáno pro
 - Zvýšení stability
 - o Urychlení běhu jádra
 - o Zmenšení velikosti samotného jádra
 - o Zmenšení paměťových nároků
- Zajištěna možnost připojování a odpojování modulů za běhu systému
- Zavádění systémů má charakteristiky
 - Dynamic linking
 - Moduly jádra mohou být zaváděny do kernelu, zatímco kernel zpracovává jiné úlohy
 - Stackable modules
 - Moduly jsou uspořádány hierarchicky, jednotlivé moduly jsou nadřazenými využívány jako knihovny pro přístup k nižším
- Linuxové jádro obsahuje podporu
 - o Opravdového multitaskingu
 - Virtuální paměti
 - Správy paměti
 - Sdílených knihoven a modulů
 - Sdílených copy-on-write spustitelných souborů
 - Nezávislých síťových vrstev podporujících mimo jiné IPv4 a IPv6
- Základní pojmy na pomezí programů a jádra
 - Uživatelský režim
 - Lze využít jen omezenou instrukční sadu a omezení při práci s pamětí
 - o Režim jádra
 - Lze použít plnou instrukční sadu a neomezený přistup k systému

- Namapování režimů k režimům procesoru závisí na HW platformě
 - o Pro X86 4 režimy
 - RING 0 privilegovaný mód
 - RING 3 neprivilegovaný mód
 - o Při virtualizaci
 - RING 0 pro hypervizor
 - RING 1 pro privilegovaný mód
 - RING 3 pro neprivilegovaný mód
- Využití služeb jádra při implementaci aplikací prostředky jádra
 - Systémové volání
 - Signály
 - Sdílená paměť
 - Soubory a souborové systémy

Start systému

- HW kontrola systému
- Spouští se firmware, který kontroluje:
 - o Paměť, základní součásti systému a periferie
 - Zde je možnost vstoupit do setup a nastavit další parametry, provádět další kontroly a detekce.
 - Na závěr se řízení předává BIOSu nebo LinuxBIOS. Ten má za úkol řídit další etapu startu.
- Načtení a start zavaděče
 - o BIOS obsahuje základní funkce pro práci s HW. Podle seznamu zařízení začne hledat zavaděč systému (boot loader).
 - Zavaděč získá načtením startovacího záznamu (boot record).
 - o Dříve byl zavaděč uložen jen přímo v rámci startovacího záznamu.
 - o Dnes jen hlavní část natažení celého zavaděče odjinud.
 - o Moderní zavaděče jako je GRUB nepotřebují znát konkrétní uložení jádra.
- Načtení a rozbalení jádra
 - Najde-li zavaděč jádro, musí se před spuštěním načíst a rozbalit do cílové paměti.
 - o Rozbalení zajišťuje rutina na začátku jádra.
 - o Nejčastější metoda komprese jádra je deflate.
 - Při rozbalování je kontrolována integrita jádra.
 - Příprava na inicializaci příprava tabulky paměťových stránek a detekce procesoru.
- Inicializace jádra, základní detekce HW
 - Složitý proces
 - Nastavení přerušení, vytvoření datových struktur, inicializace ovladačů a detekce zařízení.
 - Ovladače v modulech nejsou inicializovány
 - Vytvoření speciálního vlákna, z něhož se stává první proces init.
- Spouštění programu init
 - o Má výhradní postavení všechny uživatelské procesy vznikají právě pod ním
 - o Rodičem initu je samotné jádro
 - o Role init

- Řízení startu systému
- Řízení a přepínání úrovní běhu
- Správa procesů, jejichž rodič skončil
- Řízení vypínání/restart sytému
- Postupné spouštění různých procesů
 - Typické spouštění
 - o Připojení speciálních souborových systémů
 - o Aktivace bezpečnostních technologií
 - o Nastavení parametrů pro konzoly
 - o Inicializace síťových rozhraní
 - o Kontrola souborových systémů
 - Úklid v adresářích pro dočasné soubory
 - o Zapnutí paketového filtru
 - Start základních systémových démonů
 - Start konzol

Shell

- Je označení programu, který vytváří v počítači rozhraní pro uživatele
- Umožňuje uživateli
 - Využívat uživateli funkce OS
 - Spouštět programy
 - Zajišťovat pro ně vstupy
 - Zobrazovat uchovávat a přesměrovávat jejich výstupy
 - o Spojovat jednotlivé programy do kolon
- Obvykle 2 režimy
 - Interaktivní režim
 - V tom jsou příkazy ihned zpracovány
 - Dávkový režim
 - Provádí příkazy předem zapsané v textovém souboru
 - Tzv. shell scripty
- Shell příkazy interpretuje, proto mu říkáme interpret příkazů
- Existují v podobě
 - Textové
 - Bash, sh, csh, rc, command.com
 - Grafické
 - Doshell, litestep

15. Operační systémy Linux – vnitřní struktura

Systémová volání

- Volání jádra základní metoda komunikace aplikačních procesů s jádrem.
- Tvůrce programu je od systémových volání oddělen standardní knihovnou nepotřebuje tedy znát přesné chování, je ale doporučeno ho znát.
- Uživatelský proces → jádro dva oddělené světy.
 - Uživatelský proces běží ve svém adresním prostoru (instrukce i data) a vykonává kód programu.
 - o Režim jádra má vlastní adresní prostor.
 - Systémové volání je z pohledu aplikačního programátora obyčejné zavolání funkce, z pohledu vývojáře jádra je to také zavolání funkce, ale uvnitř jádra.
- Konkrétní způsob volání záleží na procesoru (x86 EAX)
- Jak se předá řízení jádru? platformě velice závislá záležitost
 - o Přerušení starší i386
 - Speciální instrukce x86
- Reakce na výsledek systém volání ukončí opuštěním jádra a předání výsledků do registru
 - Úspěšně zakončené volání, které nepřináší konkrétní hodnotu (vrací nulu)
 - Úspěšně zakončené volání, které vrací hodnotu, jakákoli nezáporná hodnota
 - Neúspěšně zakončené volání vrací zápornou hodnotu kód chyby

Signály

- Nejstarší metody komunikace mezi procesem a jádrem a mezi samotnými procesy
- Princip:
 - Proces vykonává určitou činnost → přijde mu signál → přeruší původní činnost → obslouží signál → proces může pokračovat dál v práci

Dělení podle implementace:

- Obyčejné signály
 - o Bity v masce signálu
 - V příchozím signálu se odpovídající bit (určený číslem signálu) nastaví na jedničku
 - U zpracovávaného signálu se bit vynuluje.
- Real-time signály
 - Nazývané spolehlivé signály, používají frontu zaručeno, že žádný signál není ztracen
 - o Real-time signály používají čísla od 32 výše
 - Využívá se např. pro komunikaci mezi vlákny

Možnost předefinování reakce na daný signál

- Na většinu to možné je
- Výjimku tvoří
 - SIGKILL okamžité ukončení procesu
 - o SIGSTOP zastavení procesu

Dělení podle posílání signálů:

- Synchronní
 - o Přesně víme, kdy ho proces obdrží.
- Asynchronní
 - Signál může přijít kdykoli za běhu procesu a reakce na něj by tomu měla být přizpůsobena.
- U většiny signálů se vyskytují oba způsoby.

Posílání a doručování signálů:

- Dělení
 - Signály posílané zásadně jádrem
 - Signály posílané uživatelskými procesy
- Základní metoda pro poslání signálu je využitím funkce kill(), ta umožňuje poslat signál jednomu procesu nebo všem procesům ve skupině (kromě init)
- Existuje funkce raise(), která posílá signál stejnému procesu, který ji zavolal
- Další speciální funkcí je sigqueue(), která je využívaná pro real-time signály a informuje, zda byl signál vložen do fronty
- Často se využívá funkce pthread_kill(), která slouží k poslání signálu určitému vláknu lze použít jen v rámci jednoho procesu.
- Lze zaslat signál i vláknům nebo skupině vláken různých procesů, k čemuž se využívá funkce tkill() a tgkill() primárně určeny pro použití v knihovnách.

Reakce na signály

- Po obdržení signálu, musí proces na tento signál reagovat.
- Je-li proces (vlákno) při doručení v jádře, vrátí se do uživatelského prostoru, zde vykoná obslužnou rutinu a vrací se zpět do jádra, odkud vzápětí vyskočí a návratovou hodnotou definovanou přerušeným voláním.
- Je-li naopak proces v uživatelském prostoru, je donucen vstoupit do jádra. Zde proběhne ekvivalentní obsluha signálu. Rozdíl je v tom, že po návratu do jádra se pouze uklidí data pro obsluhu signálu a po přepnutí do uživatelského režimu proces dále pokračuje od místa, kde byl přerušen. (pokud však signálem nebyl ukončen)
- Výjimkou je případ, pokud je signál doručen při obsluze výjimky. V takovém případě nevstupuje do jádra, signál je obsloužen na konci vyřízení výjimky a po obsloužení signálu proces pokračuje, jako kdyby žádný signál nepřišel.
- Při normální situaci se při obsluze signálu používá zásobník příslušného vlákna. Na začátku obsluhy je v něm vytvořena struktura pro obsluhu signálu. Její součástí je i speciální volání sigreturn(), které má samostatný vstupní bod do jádra a zajišťuje návrat z obsluhy signálu a uklizení zásobníku.

Možné reakce:

- Výchozí reakce nezměníme-li předem reakci na signál, použije se ta, která je pro daný signál výchozí.
- Ignorování na příchozí signál se nebude nijak reagovat
- Obslužná rutina určí se funkce, která bude pro obsluhu zavolána
- Synchronní zpracování jedná se o zvláštní případ, ve skutečnosti je jen o to, že se v
 jádře čeká na příchod signálu a následně je vráceno jeho číslo.

Blokace signálu

- Existují případy, kdy nechceme, aby signál byl doručen okamžitě, ale až v určitou chvíli.
- K manipulaci s blokacemi signálu se využívá jejich bitová maska (datový typ sigset_t) a sada funkcí.
- Funkce sigemptyset() masku signálu vynuluje nebude tedy obsahovat žádné signály.
- Funkce sigfillset() ji naopak naplní, sigaddset() přidá signál do masky, sigdelset() signál z masky odstraní. Pro kontrolu, zda je určitý signál v masce používáme sigismember().

Roury a zprávy

- · Metoda místní komunikace mezi procesy.
- Dělení:
 - Anonymní roury
 - o Pojmenované roury
 - o Komunikace pomocí zpráv

Anonymní roury (pipe)

- Nejjednodušší mechanismus pro komunikaci mezi procesy
- Jedná se o proud bajtů do jednoho konce se zapisuje, z druhého se čte
- Na obou koncích může být ten samý proces nebo různé procesy
- Konec roury může být sdílen i více procesy
- Z pohledu implementace jde o rozhraní k paměťovému bufferu
- Zapisuje-li do roury několik procesů zároveň, nelze garantovat pořadí, ve kterém se data v rouře objeví
- Komunikace s podprocesy
 - Vytvořit jich dostatečný počet a nechat je zdědit
 - Chceme-li komunikovat s procesem, který o nich "nic" neví, musíme jimi nahradit standardní výstup, vstup nebo chybový výstup
 - Náhrada proběhne po vytvoření podprocesu, ale před spuštěním nového programu
- Komunikace mezi vlákny
 - Vytvoří se roura, jejíž jeden konec se používá v jednom vlákně a druhý v jiném, nebo i ve více vláknech
 - o Při rušení vlákna je doporučeno zavřít příslušný konec roury

Pojmenovaná roura (named pipe, fronta FIFO)

- Komunikační objekt používaný podobně jako nepojmenovaná roura
- Pojmenovaná roura přebývá ve svém domovském adresáři i v době, kdy s ní žádný proces nepracuje
- Může být tedy uložena do archivu a následně obnovena jde vlastně o speciální soubor
- Před využitím pojmenované roury se musí vytvořit, k tomu využijeme volání mkfifo()
- Jako argument využívá cestu v souborové systému a masku oprávnění
- Pokud rouru nepotřebujeme, zrušíme ji voláním funkce unlink()

Komunikace pomocí zpráv

Roury jsou objekty orientované na proud bajtů – nestrukturovaná data

- Potřebujeme-li přenášet zprávy o pevně daném formátu, využijeme technologii určenou pro tuto oblast např. POSIX Message Queues
- Technologie specifikovaná přímo na POSIX
- Vyžaduje podporu jádra, příslušnou knihovnou pro uživatelské programy
- Technologie POSIX PMQ umožňuje vytvářet pojmenované fronty*
- Do téže fronty může proces zprávy posílat a odebírat
- Notifikace při příchodu zprávy může být asynchronní nebo synchronní
- Každá zpráva má určenu prioritu
- Linux podporuje 32 768 úrovní priorit
- Vytvořená fronta funguje do restartu systému nebo jejího zrušení
- Nepřečtená zprávy zůstávají ve frontě

Procesy a vlákna

- Základním úkolem jádra je správa běžících procesů a vláken
 - Vytváření
 - o Plánování
 - Nastavování
 - Ukončování

Proces – běžící program

- Objekt, který pracuje podle kódu program (včetně knihoven), využívá svůj vlastní adresní paměťový prostor. Využívá služby jádra a komunikuje různými způsoby s ostatními procesy
- Každý proces má jednoznačnou číselnou identifikaci označenou zkratkou PID (process idenfifiter).
- Každý proces má svého rodiče proces, kterým byl vytvořen.
- Jedinou výjimkou je proces init
- Životní cyklus:
 - Běžící
 - Zastavený
 - o Pozastavený přerušen kvůli nesplnění nějaké podmínky, například debuggerem
 - o Zombie provádění kódu bylo dokončeno, čeká na odstranění rodičovským

Vlákno – objekt pracující podle kódu programu

- Liší se od procesu tím, že je jeho součástí a sdílí prostředky (adresní prostor paměti, prostředky jádra atd.) s ostatními vlákny procesu
- Hlavní vlákno vlákno, které je spuštěno v procesu jako první nepotřebuje explicitně žádnou obsluhu
- Každé vlákno označeno identifikátorem TID (thread identifier) přidělované ze stejného číselného prostoru jako PID (TID hlavního vlákna = PID procesu)
- Životní cyklus:
 - Běžící nějaký procesor právě vykonává kód vlákna
 - o Připravené k běhu vlákno čeká na časové kvantum pro svůj běh
 - Přerušitelně uspané vlákno čeká na splnění nějaké podmínky lze ho probudit, takže např. může obsloužit signál
 - o Nepřerušitelně uspané vlákno čeká na splnění podmínky, ale nelze ho probudit
 - o Zastavené vlákno bylo zastaveno signálem

- o Pozastavené opět podobná situace jako u procesu
- Skončené vlákno doběhlo do konce a čeká se, až se s ním vlákno spojí
- S vlákny se obvykle pracuje prostřednictvím knihovny libpthread, která hlavně implementuje rozhraní POSIX Threads
- Důležitou funkcí při ukončování vlákna je zavolat tzv. úklidovou obslužnou funkci (cleanup handler)

Úloha (task) – objekt, jehož kód se sekvenčně vykonává

- Každému vláknu procesu odpovídá jedna úloha (kromě toho může proces využívat ještě další, navenek neviditelné, úlohy přímo v jádře – např. vlákna jádra spravující pracovní fronty.)
- Na jednom procesoru běží v určitý okamžik nejvýše jedna úloha
- Úlohy běží na jednotlivých procesorech v rámci přidělených časových kvant.

Plánování úloh

- Jak bude plánování vypadat, ovlivňují tři faktory:
 - o Použitý plánovač
 - Priorita úlohy
 - Vlastní jádro (preemptivita)
- Každé vlákno procesu je z hlediska plánování chápáno jako samostatná úloha, je tedy plánováno nezávisle na jiných vláknech téhož procesu.
- Plánovač má nejzásadnější vliv na plánování. V jádře jsou dnes implementovány čtyři plánovače.
 - Normální plánovač pro většinu použití, časová kvanta přiděluje na základě dynamických priorit, které jsou určovány podle toho, jak úloha v minulosti využívala procesor.
 - Dávkový plánovač jako normální plánovač, ale s úpravou pro neinteraktivní úlohy. Liší se výpočtem dynamických priorit, na základě které se určuje velikost časového kvanta.
 - Plánovač FIFO pro úlohy zpracovávané v reálném čase. Tento plánovač funguje tak, že úloze přidělí procesor, a dokud ho on sám neodevzdá, žádná jiná úloha na tomto procesoru příležitost k běhu nedostane. Využívá 99 úrovní statických priorit.
 - o Plánovač round-robin podobný FIFO, liší se přidělováním časových kvant, které přiděluje dokola na určité úrovni priority (úrovní 99).

Preemptivita jádra

- Nepreemptivní chování úloha se v jádře musí sama vzdát procesoru
- Dobrovolně preemptivní chování jsou přidány body, kde se úloha vzdá procesoru
- Plně preemptivní chování plánovač úloze odebere procesor, pokud vyčerpala časové kvantum

Udev a HAL

Udev

• Jde o virtuální zařízení představující rozhraní mezi uživatelskými procesy a ovladači v jádře – ty se používají prostřednictvím speciálních souborů zařízení.

- Tyto soubory se obvykle nacházení v adresáři /dev a jeho podadresářích velmi často se standardizovanými názvy
- udev funguje jako proces, který běží v uživatelském prostoru. Nepotřebuje žádná zvláštní oprávnění – jen zápis do adresáře /dev a jeho podadresářů a přijímat informace o událostech hlášených do uživatelského prostoru
- Pro svoji činnost udev nezbytně potřebuje souborový systém sysfs, odkud čerpá informace o virtuálních zařízeních. Při změnách v sysfs se musí také upravit implementace udev

HAI

- Hardware Abstraction Layer je vrstva s cílem zajistit co nejabstraknější podobu viditelnosti fyzických zařízení – aplikační programy nemusí řešit technické detaily jednotlivých zařízení
- Úkoly HAL
 - Načítání modulů s ovladači
 - Správa virtuálního hardwaru a pohledů na něj
 - o Komunikace s procesy ohledně změn ve stavu zařízení
 - Vytváření přípojných bodů, připojování souborových systémů
- Udev a HAL spolu komunikují skrze sběrnici D-BUS

Správa paměti

- Hlavní úkoly
 - Převody mezi různými druhy adres
 - o Zpřístupnění paměti, která leží mimo adresní prostor
 - Nízkoůrovňová alokace pro různé účely
 - Správa paměti a alokace pro jádro
 - o Správa paměti procesů, přidělování, mapování, sdílení
 - o Různé cache, přednačítání, zpožděný zápis
 - Odkládání na disk, zpětné načítání
 - o Řešení nedostatku paměti

Zóny paměti

- Z důvodů HW limitů je paměť rozdělena na zóny, kde každá má své vlastnosti předurčující její použití
- Dělení na zóny je dáno architekturou liší se u různých architektur obecně:
 - o Zóna pro DMA
 - o Zóna pro normální použití
 - Zóna mimo adresní prostor

Alokační algoritmus buddy

- Skupiny bloků od 1 do 1024 stránek
- Vždy zdvojnásobuje další úrovně velikosti
- Celkem 11 úrovní velikosti
- Pravidla pro alokaci:
 - o Zkus najít blok odpovídající velikosti pokud existuje přiděl ho
 - o Zkus najít blok o úroveň větší velikosti neexistuje-li, pokračuj na další úroveň

- Nalezený blok rozděl tak, aby se přidělila potřebná část a zbytek byl použitelný pro další zpracování
- Často se alokují jednotlivé stránky využití buddy pomalé
 - Pro každý procesor v jádře vytvořeny cache horká (hot cache) a studená (cold cache)
- Není jednoduché nalézt souvislý úsek paměťových stránek alokace nesouvislých úseků a jejich namapování
 - Alokuje se sada úseků a ty se namapují do virtuálního adresného prostoru jádra získáme souvisle adresovatelný úsek – pak lze normálně pracovat

Metody řešení nedostatku fyzické paměti:

- Uvolnění aktuálně nevyužívaných stránek
- Aktivace mechanismu OOM killer postupně ukončí tolik procesů, aby vyřešil situaci prochází všechny procesy a vybere ten s nejvyšším skóre (badness)
- Kategorie uvolňovaných stránek:
 - o Odložitelné
 - Synchronizovatelné
 - o Přímo uvolnitelné
- Reverzní mapování
 - o Používá se pro najití všech položek odkazujících na určitou stránku
 - V linuxovém jádře se používá objektové reverzní mapování a to buď anonymní, nebo souborové

16. Serverové operační systémy

Server

- Obecné označení pro počítač, který poskytuje nějaké služby nebo počítačový program, který tyto služby realizuje
- Služby
 - Služby server poskytuje klientům, což označujeme jako model klient-server
 - Poskytování služby zajišťuje speciální program
 - V unixových systémech je označován jako démon (anglicky daemon)
 - V Microsoft Windows pak jako služba (anglicky service), která s klientem komunikuje pomocí definovaného protokolu
- Dedikovaný server
 - Vyhrazený pro speciální účely, bez přímého přístupu uživatelů
- Hardware
 - Výkonnější, než jsou obyčejné stanice pro uživatele
 - Mohou obsahovat záložní (redundantní) komponenty (dva zdroje, diskové pole RAID, ...)
 - Nepotřebují grafické a zvukové karty, nezbytné nejsou ani monitory
 - o Potřebuje hodně paměti, diskového prostoru, I/O rozhraní, síťového rozhraní
 - Lepší chlazení
 - o UPS záložní zdroje
 - o RAID disková pole
 - ECC paměti s kontrolou parity a schopností opravit chyby
 - o Často umístěny v racku, v serverové místnosti
 - Možnost instalovat víceprocesorové jednotky (u velkých serverů)
 - Zálohovací záznamová zařízení (magnetické pásky)
 - Omezený přístup (fyzicky i softwarově)

Software

- Speciální operační systémy (Windows) nebo standardní ale jinak nastavené (Linux)
- Škálovatelnost
- Nastavení přístupových práv
- o Větší množství síťových služeb, monitoring, zálohování
- Neklade důraz na grafické rozhraní
- Většinou možnost změnit nastavení bez restartu

Operační systém

- Serverový operační systém
 - o Operační systém, který je určen pro běh na serverech
 - o Poskytuje speciální služby, především v oblasti
 - Síťové správy
 - Zálohování a organizace dat
 - Poskytování síťových služeb
- Někteří výrobci OS vytvářejí speciální edice (MS)
- Jiní spoléhají na univerzálnost a rozšiřitelnost systému pro práci na serveru (Linux)
- Příklady

- o Linux
- o FreeBSD
- o (Open)Solaris
- o Microsoft Windows
 - NT
 - **2000**
 - Server 2003
 - Server 2008
- Většinou se nasazují 64b verze kvůli podpoře většího množství paměti RAM (> 4GB)

Rozdíly oproti OS pro stolní PC

- Není nutné grafické rozhraní
- Horší interaktivita s uživatelem
 - Vyžaduje zkušenějšího uživatele
- Podpora změny hardwaru (hot-plug) a softwaru bez nutnosti restartovat systém
- Pokročilé služby v oblasti
 - Zálohování
 - Síťové správy
- Podpora
 - Diskových polí
 - o Víceprocesorových systémů
 - Větší operační paměti
- Vylepšené
 - o Bezpečnostní mechanismy
 - Správa uživatelů, zdrojů
 - o Ochrana paměti a dat
- Lepší podpora automaticky běžících služeb (démonů)
- Mechanismy proti přehřátí procesoru, pamětí, selhání procesoru, disků atd.

Služby poskytované serverovým OS

- Plnohodnotná správa uživatelů a uživatelských oprávnění
- Služby pro zálohování dat, monitoring sítě, sdílení serverových prostředků (HW, SW)
- Provozování služeb souvisejících s poskytováním internetových technologií (skripty, databáze)
- Firewall a další bezpečnostní mechanismy
- Zpřístupnění databáze/serverového disku pro uživatele
- Odesílání e-mailů, FTP
- Statistické služby, archivace

Role serverů

- Webový server
 - o Především v síti internet poskytuje www stránky
- Souborový server
 - Slouží např. v podnikové síti jako centrální úložiště dat (dokumentů)
- Databázový server
 - Slouží jako úložiště strukturovaných dat (databází)

- Tiskový server
 - Zpřístupňuje počítačové tiskárny
- Síťový server
 - o DNS, DHCP, e-mail...
- Faxový server
- Proxy server
 - Zprostředkovává přístup do jiné sítě jiné (např. internet)
 - o Cache...
- Aplikační server
 - o Počítač specializovaný na provoz nějaké aplikace
- Herní server
 - Nabízí hraní her s více hráči (multiplayer)
- Doménový server
 - o Spravuje uživatelské účty v rámci domény Active Directory Windows

Zálohování dat

- speciální software, někdy i hardware (pásková jednotka)
- média
 - o pásky
 - o CD, DVD
 - o RAID pole
- Nutno zálohovat v pravidelných intervalech
- Zálohy nutno uchovávat odděleně od serveru (jiná budova, místnost)
- Typy záloh
 - Úplná inkrementální
 - Zálohuje celek, pak pouze ty soubory, co se změnily
 - o Úplná rozdílová
 - Podobně jako inkrementální
 - Akorát zálohuje i všechny vytvořené soubory
 - Zrcadlová reverzní
 - Ukládá historii změn
- Velká data možno komprimovat

RAID pole

- Redundantní pole nezávislých disků
- Typ diskových řadičů, které zabezpečují pomocí určitých speciálních funkcí koordinovanou práci dvou nebo více fyzických diskových jednotek
- Zvyšuje se tak výkon a odolnost vůči chybám nebo ztrátě dat
- RAID se používá výhradně v souvislosti s rozhraním SCSI (současný zápis na víc disků)
 - Existují sice i základní desky, které obsahují EIDE řadič s podporou RAID na hardwarové úrovni, ale je to jen takové hraní na desktopech, pro servery pouze SCSI
- Prakticky se používají tři typy
 - o RAID 0
 - o RAID 1

- o RAID 5
- o Příp. kombinace RAID 1+0

RAID 0

- Řetězení
 - Ukládání dat na více disků
 - Bez možnosti obnovit po ztrátě
- Prokládání
 - o Rozdělení souborů na menší celky a ukládání celků střídavě na všechny disky
 - o Zrychlení přístupu k datům
- Obě metody vytvářejí velký logický disk spojující data na fyzických discích

RAID 1

- Zrcadlení
 - Obsah je současně ukládán na dva stejné disky
 - O Vypadne-li jeden, nedojde ke ztrátě žádných dat
 - o Opačná alternativa k RAID 0
 - o Neřeší rychlost, ale pouze bezpečnost chrání před výpadky systému
 - o 50% diskové kapacity běžně nevyužito (jen záloha)
 - U více disků nevýhodné, navíc neřeší rychlost
- duplexing
 - Obdoba zrcadlení, jen jsou použity nejen dva disky, ale i dva samostatné řadiče disků
 - Zvyšují odolnost
- Stripping 1+0, 0+1
 - o Kombinace RAID 0 a 1
 - Vyžaduje min. čtyři disky
- RAID 0 a 1 nevhodný pro databáze
 - Příliš časté manipulace s transakčním souborem (mnoho přístupů malý výkon)

RAID 2

- Obdoba RAID 1 s rozdílem, že už disky nejsou připojeny k jednomu řadiči, ale systém je zdvojený (2 SCSI sběrnice)
 - Zvlášť jsou live data a zvlášť backup
- Řeší navíc i problém výpadku jednoho z řadičů (systém nepadne)

RAID 3

Vůbec se neujal

RAID 4

- "Data stripping with parity"
- První diskové pole řešící problém rychlosti a současně i bezpečnosti
- Použití s min. 3 disky (u předchozích stačily 2)
- 1. a 2. disk s live daty a 3. disk paritní
- Na paritní disk jsou ukládány informace, s jejichž pomocí se v případě poruchy dopočítají ztracená data

- Nárůst rychlosti
- V případě poruchy kteréhokoliv z disků systém zůstane funkční
- Při nákupu systému se používá strategie použít disky z různých výrobních sérií (aby se zamezilo vzniku stejných chyb na více discích současně
- RAID 4 nefunguje optimálně při práci s malými soubory
- Zdržuje operace několikerého přepočítávání paritní informace v průběhu zápisu

RAID 5

- "Distributed parity"
- Min. 3 disky
- Už neplatí, že je jeden disk výhradně paritní, ale systém paritní informace optimálně rozkládá po všech discích
- Zvýšení výkonu
- Výhody jako u RAID 4 + není brzděn při zápisu
- Disků může být mnoho, vyvstává však další problém s chlazením a současným náběhem disků (elektrický šok)