- Model Evaluation Metrics	E
- 1) Canfusion Matrix: Rediction	E
Predicted & TP FP TV - We predict Postive and it's TRUE!	E
Values FY TP (Type 1 FP -> We predict Positive and it's False	E
(Type 2 FV - We predict Perofive and it's folse.	
dog cu sign floo dirdik. TP	E
TP+ FP	E
· Precision = TP => Positif predict ettiklerimizion ne kodori	E
· Specifity = reactif classifone as below do	E
TV+FP	1
	Management

- Accuracy = TR+TP TP+TP+FP
Lot : 1 Algorithms like SVH and KNY create a class output - yori, outputs will be either O or 1. Bu algoritmalar.
class outputs (1,0) - gikarur; - probability gikaronat
logistic Rep, Roodon Forest, Boosting etc. give- q cabability outputs.
Convecting probability outputs to class output Is just a matter
ef stating a threshold-probability
• F1 Score = f1 skor'a g2cmedes önce;
Recoll-ve-Precision-arasiodaki-Trade-offia-bakalin
Trading off Precision and Recalls
- OR Logistic Begressiso - OK ho (x) X1
Predict 1 if ho(x) > 0,5 oit
Predict Oif ho (x) (0,5 0.7
_ ille ducumda cut aff degecimie 0.5; accak we want to
_ predict y=1 (cancer) only it very confident. Bu durunda cutoff
degerimiti_0.7 aldig met var sayolion. Bu oe deneb? I Tell
Someone that they have concer only if we think goester then_
or equal to 70% shance that they have soncer " you kiriain known
alma ihti mali O.7 ve i seri ise kisi ye konserli diyoruz, aksi ducunda
(%70'in altendati olasılıkta) konserti degil (y=0) diyoruz
Bu durumda; Ly Higher Precision, Lower Recall.
Gunku; FP'yi azalthk, ascak FY artte.
(Threshold'u artirorak Pozitif tahmin ettigimiz, ama gerçekte negatif olan gözlenleri ozaltmış olduk.)

-Tersi-durunda; Lower three hold probability (0.3) duru =-
. [] I a lasislary - House Ougusta
Ruducumda ?
Haher Recall, Lower - Precision
Gelelin F1 shortai
Gelelin F1 Shop'a: Precision × Recall F1 = 2 - Precision + Aecatt
* Fy skoru, is a better metric when there are imbalanced
classes (Esit dağılmayas veri kü meleri nde hatalı bir medel seçimi
yapmanızı eyeller)
* Precision ve Recall degerlerioin her itisiais de problem a grandes
ones ta endigini dü sünü yarsak fi skar genel Model başarısı
blanck 3410 kullantlus
- Freta Skor: Basen, FP no en azarindiril mesinia dalla
anent oldugu, ancak EP lesia haleg anenti-
olduğu durumlarda veya tem tersi discum larda_
-F1 skor-genel model bararist-ölgününde kullondiyardu ve Precisian
Recall-degerlemno her ikis de hesoplamasında ettili idis Freto
skor bicinia deha etkili ve "onemli olduğu durumda kullanılır.

"//" is nonresented
- Ozet: 1 ROC > Model with perfect skill is represented.
1 22+ (01)
Precision - Becall - Model with perfect
at-a-point-1111
3) ROC curves should be used when there are equal -
numbers of observations for each class
"Precision-Recall curves should be used when there is-
class imbalance.
5) BOC curve make it easy to identify the best threshold.
6) AUC can help you decide which classification
algorithm (method or model) is better
,
3) Log Loss (Binary Cross Entropy)
Tahmindeki slasilik dezerlerine dayanan sınıflandırma için
onenti bic alquettir log loss ar kadac dürük alursa, madel
basarusi_a kadar yüksek olur.
* Hp(9) = - 1 > yi log (p(yi)) + (1- yi) log (1-p(yi))
]=1
* Log loss is often used as the Objective function, but it can
also be used as a performance metric.
* loc locs 20 1 + - 1340
* log Loss is Just negative average of the log of the
corrected_probabilities_for each los tooce

or force force			W.17
4) Giri Coeffic	iest		W)
G2-2 C 00:	cient = (2 ×A)	(c)=1	
131W - 2014+4		/	80
=======================================			W
Not in the second			g/
Cross=Entropy	y Loss Function		
	Each .	predicted class	-pcabability
is compated	d to the actual c	lass desired outp	ut_0_oc_1_and_
/2 /2	calculated_tbat_ps	enalizes the prot	pability based
	calculated_roat-ba	200120=2=2=	lus Asselect
	ar_it_is_from_the		auc. r. perfes-
	e a Cross Entropy =		
	y is defined as;		whated to base I (log)
Cross Estma	is delined as:		
	7	1 == 5 4: 10	a (P(4:1) Pro classo
	Cross Entropy	- L-GE j=1 d'	g(P(yi)), for a classes
	Senel Gösterim	ece_41-3 Gergeb_s	int
		P(y) - Probab	1174
g Loss) Binary - Cross	Fotropy:		
7-10-19-10-19		ry classification,	1
16200000		itropy defined a	\$;
		1 = - 5 110 /00/0	(121)
	Binary Problem	= - [4: 0 0	m) + (4-41) (4-41)
 }F	ormul (LCE) bu sekilde d	e/	#1) + (1-42 log (1-p(yi))]
	total a Pilic	K	
	Binary	zi-pastas-ezanz	after colculated
	as the	average cross-entr	opy across all darta
	exampl	- 11	
Isimtendirme Clear	et)	=- \ \ - \ - \ - \ - \ - \ - \ - \ - \ -	p(41)+(1-41) pob(4-b(41)]
2'1 Smillorde	rma-problemlemleri i	fin Cross Entre	P4'2
		SIGH-LAVAGUETRAGAL _C	Categorical Cross Estay
isimleritle adlandur	1017		

5) RMSE
- Most popular metric for Regression Problems
RMSE, tahmin hatalaciain standard sopmasidir BMSE, hatalarin
ne Kadar yayıldığının bir ölqüsüdür (RMSE is a neasuce of bow spread
out these residuals.) RMSE = P
RMSE =
Gelin bic haticlottma yopalum:
SSB=Aqiklanon Varyons=> \frac{\hat{y}}{1=1} (\hat{y})^2
SSE = A GIKlanamayan Varyons => \frac{5}{1=1} (y: -\hat{y})^2
*
SST = SSR+SSE = Total varyons in y: => \[(y: -y)^2
-(0
$\frac{1}{1} \text{BMSE} = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} \right)$ $SSE = \frac{1}{1} \left(\frac{1}{1} - \frac{1}{1} \right)$
$SSE = \sum_{i=1}^{2} (y_i - \hat{y}_i)^2$ $SSE = \sum_{i=1}^{2} (y_i - \hat{y}_i)^2$
RMSE can be interpreted as Standard Deviation.
of the Unexplained Variance (Tabria batalarma standard
Sofmasi) was in the same of th

6) Concordant - Disco Ideal bic model de; T Tim gerçek O'lann elmal du Böyle bir m. - söylesic - Hadelin ne	in bergek derindar odelia mükemmel badar iyi olduğu ko	n daha biyuk e uyumlu alduğu e
pek-bir rey	s'aylenez. Concaro	lance-paeasure-un
digec_metri	klerie - Kullarmak - ger	ekiG
Anlatalian farzelian D		
Gözlem Po	rue Class (Actual sini	T) I INDIANTED - XOLE
	1	_
	O	
Р4	1221	0.80
1 1 1 1 1 2 2 2 2 2	eair var dur (live Oise), (P4-P2) onu, True O'sa alas t (uyumlu) denic 3 Concordont	sulk skoreddon bryrkes

6) Perfect Model concordance Ratio = 100% >>> Array bung erismek
In simpler words, we take all possible can binations at -
- Actual I and O. They "Concordance" is the percentage of pairs,
where Actual 1's probability scores are greater than the
scores of Actual O's
F) la case both probabilities were equal we call them
as tied pairs
7) Gain and Lift Charts (Curve)
Confusion Matrix con give us a good idea about how
effective our model is. But sometimes, we want to know
how a particular model does with more data. For example,
does a model perform better with 1000 of data, compared to 50/0?
This is where goin and lift charts come in
Steps to build a lift/Gain chart:
- 1 Calculate probability for each observation
- Bank these probabilities in decreasing order
-31 Build deciles (genellikle percentile) with each group bowing almost
10% of the observations.
10% of the observations.
10% of the observations. 4) Calculate the target cate at each deale for Target = 1., Target = 0 and Total.

2 ves proportions bet	ween-					
* While the confusion matrix gives proportions between						
- all negatives and positives Gain and Lift charts for						
on the True Positives						
Labe L(Actual) Btal % Parget=1 % Egget=0 16 Populsion Curil B	get=1_ Curôk hou					
Decile D btal / age 1 and Alst	, , e					
1 0 5 43						
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
3 7 53+ 344						
15 525						
5 20 224 60 774						
6 42 502 544 131. 31. 31.	/					
+ 104 440	1/2					
8 345 177 777	1490					
9 515 29 544 1% 32% //	00/					
10 540 5 545 04- 341- 1	10062/200					
Total 1.1590 3850 \$ 440						
- Aslada Hersey Burader geliger.						
Lines let berset soll solon fortherest berset	yn koredaki					
(Ornekteki rakomlor ile grafik rakomlori forth, ercek bersey- tablodar giziliyar)	8					
1) OR: Cumulatif Goins Chart Target = 1 (tes)						
pola-						
	11					
	Badan_Ball					
01/6 101. 20+ 301- 401. 501 601. 704 801. 901- 10046						
	The same					

