May 5, 2016

0.0.1 Size of sets

The size of a *finite* set is the number of elements it contains. Sets can also be infinite.

Examples:

- Natural numbers $\{0, 1, 2, ...\}$
- Integers
- Rational, real, complex numbers

Def: A set *A* is *countable* if and only if:

- 1. A is empty, or
- 2. there is an onto (surjective) function $f: \mathbb{N} \to A$ (can have multiple numbers mapped to same element in A)
 - then we just iterate through \mathbb{N}

These statements are equivalent for any set *A*:

- 1. *A* is countable
- 2. There exists an injective function $g: A \to \mathbb{N}$ (no 2 numbers map to the same element in A)
- 3. Either A is finite, or there exists an bijective (injective and surjective) function $h: \mathbb{N} \to A$

Examples

- \mathbb{N} is countable by choosing f(n) = n
- \mathbb{Z} is countable by choosing f(n) = (n+1)/2 if n is odd, else f(n) = -n/2 if n is even

To show \mathbb{Q} is countable:

List 0: 0

List 1: -1, 1

List 2: -2, -1/2, 1/2, 2

List 3: -3, -3/2, -2/3, -1/3, 1/3, 2/3, 3/2, 3 (denominator between 1 and 3, min = -3, max = 3)

Not every set is countable.

Def: a power set of any set A (denoted by P(A)) is the set of all subsets of A

Thm: Cantor

The set $P(\mathbb{N})$ is *not* countable

Proof: by contradiction.

Assume it is countable. Then there is an onto function $f: \mathbb{N} \to P(\mathbb{N})$. Let $S = \{n \in \mathbb{N} : n \notin f(n)\}$.

We have $S \subseteq \mathbb{N}$, so $S \in P(\mathbb{N})$.

Because f is onto, there must exist $m \in \mathbb{N}$ such that f(m) = S.

Is $m \in S$?

 $m \in S \iff m \in f(m) \text{ as } f(m) = S.$

 $m \in S \iff m \notin f(m)$ by definition of S.

Hence contradiction.

0.0.2 Alphabets, strings, languages

An alphabet is a finite and nonempty set.

We think about the elements of alphabets as symbols.

Common names: Σ, Γ, Δ

Common symbols: 0, 1, a, b, c

A *string* over an alphabet Σ is a finite sequence of symbols from Σ .

Examples:

011010 is a string over the binary alphabet $\Sigma = \{0, 1\}$. Also a string over $\{0, 1, 2\}$.

The empty string, ϵ , has no symbols in it.

Strings must be finite. $|\epsilon| = 0$, |01101| = 5.

A language over an alphabet Σ is any set of strings, each being over Σ .

Example: $\Sigma = \{0, 1\}.$

The language Σ^* is the set of all strings over Σ .