Feature assessment and selection using sparse clustering

Avgoustinos Vouros¹

¹PhD student, Department of Computer Science, University of Sheffield

Supervised by Prof Eleni Vasilaki

Contents

- The K-Means Algorithm (Lloyd's)
- Sparse K-Means
 - Theory
 - * Regression (quick)
 - Algorithm
 - Tuning
 - * Gap Statistic
- Ongoing Research

The K-Means Algorithm

(Lloyd's)

[1] Lloyd, Stuart. "Least squares quantization in PCM." IEEE transactions on information theory 28.2 (1982): 129-137.

Minimize:

$$WCSS = \sum_{k=1}^{K} \sum_{\substack{i=1 \ x_{i:} \in c_k}}^{n} \sum_{j=1}^{p} (x_{ij} - m_{kj})^2$$

Maximize:

$$BCSS = \sum_{j=1}^{p} \left(\sum_{i=1}^{n} (x_{ij} - M_{1j})^{2} - \sum_{k=1}^{K} \sum_{\substack{i=1 \\ (x_{ii} \in c_{k})}}^{n} (x_{ij} - m_{kj})^{2} \right)$$

Advantages:

- Simple and easy to implement.
- Versatile.
- Guaranteed to converge.
- Invariant to data ordering.

Disadvantages:

- Detects only spherical and well-separated clusters.
- Sensitive to noise and outliers (Euclidean).
 - Converges to a local minimum.

Advantages:

- Simple and easy to implement.
- Versatile.
- Guaranteed to converge.
- Invariant to data ordering.

Disadvantages:

- Detects only spherical and well-separated clusters.
- Sensitive to noise and outliers (Euclidean).
- Converges to a local minimum.

In general:

Sensitive to initial centroids location.

Advantages:

- Simple and easy to implement.
- Versatile.
- Guaranteed to converge.
- Invariant to data ordering.

Disadvantages:

- Detects only spherical and well-separated clusters.
- Sensitive to noise and outliers (Euclidean).
- Converges to a local minimum.

In general:

- Sensitive to initial centroids location.
- Sensitive to features (variables/attributes).

[1] Celebi, M. Emre, Hassan A. Kingravi, and Patricio A. Vela. "A comparative study of efficient initialization methods for the k-means clustering algorithm." Expert systems with applications 40.1 (2013): 200-210.

Sparse K-Means

- Theory -

$$\begin{split} & \underset{c_1, \dots, c_k, w}{\textit{maximize}} \Bigg\{ \sum_{j=1}^p w_{jj} \Bigg(\sum_{i=1}^n (x_{ij} - M_{1j})^2 - \sum_{k=1}^K \sum_{\substack{i=1 \\ x_{i:} \in c_k}}^n (x_{ij} - m_{kj})^2 \Bigg) \Bigg\} \\ & \text{subject to} & \sum_{j=1}^p w_{jj}^2 \le 1, \quad \sum_{i=1}^p |w_{jj}| \le s, \quad w_{jj} \ge 0 \quad \forall j \end{split}$$

[1] Witten, Daniela M., and Robert Tibshirani. "A framework for feature selection in clustering." Journal of the American Statistical Association 105.490 (2010): 713-726.

$$\begin{split} & \underset{c_1, \dots, c_k, w}{\textit{maximize}} \Bigg\{ \sum_{j=1}^p w_{jj} \Bigg(\sum_{i=1}^n (x_{ij} - M_{1j})^2 - \sum_{k=1}^K \sum_{\substack{i=1 \\ x_{i:} \in c_k}}^n (x_{ij} - m_{kj})^2 \Bigg) \Bigg\} \\ & \text{subject to} & \sum_{j=1}^p w_{jj}^2 \le 1, \quad \sum_{j=1}^p |w_{jj}| \le s, \quad w_{jj} \ge 0 \quad \forall j \end{split}$$

- w is a diagonal square p-by-p matrix.
- $\sum_{j=1}^{p} w_{jj}^2 \le 1$ is the L_2 penalty or ridge regression $(||w||^2 \le 1)$ [2].
- $\sum_{j=1}^{p} |w_{jj}| \le s$ is the L_1 penalty or lasso regression $(|w| \le s)$ [3].

Avgoustinos Vouros

^[1] Witten, Daniela M., and Robert Tibshirani. "A framework for feature selection in clustering." Journal of the American Statistical Association 105.490 (2010): 713-726.

^[2] Hoerl, Arthur E., and Robert W. Kennard. "Ridge regression: Biased estimation for nonorthogonal problems." Technometrics 12.1 (1970): 55-67.

^[3] Tibshirani, Robert. "Regression shrinkage and selection via the lasso." Journal of the Royal Statistical Society. Series B (Methodological) (1996): 267-288.

^[1] StatQuest with Josh Starmer. "Regularization Part 1: Ridge Regression." YouTube. 2018. Online: https://www.youtube.com/watch?v=Q81RR3yKn30.

^[2] StatQuest with Josh Starmer. "Regularization Part 2: Lasso Regression." YouTube. 2018. Online: https://www.youtube.com/watch?v=NGf0voTMlcs.

Line fitting using least squares:

$$y = y_{inter} + slope * x$$

Least squares minimizes the sum of the squared residuals.

Line fitting using ridge regression:

$$y = y_{inter} + slope * x + \lambda_2 * slope^2$$

Line fitting using ridge regression:

$$y = y_{inter} + slope * x + \lambda_2 * slope^2$$

Line fitting using lasso regression:

$$y = y_{inter} + slope * x + \lambda_1 * |slope|$$

$$y = y_{inter} + slope * x + \lambda_2 * slope^2$$
 (a)

$$y = y_{inter} + slope * x + \lambda_1 * |slope|$$
 (b)

$$\begin{split} & \underset{c_{1},...,c_{k},w}{\textit{maximize}} \Bigg\{ \sum_{j=1}^{p} w_{jj} \Bigg(\sum_{i=1}^{n} (x_{ij} - M_{1j})^{2} - \sum_{k=1}^{K} \sum_{\substack{i=1 \\ x_{i:} \in c_{k}}}^{n} (x_{ij} - m_{kj})^{2} \Bigg) \Bigg\} \\ & \text{subject to} & \sum_{i=1}^{p} w_{jj}^{2} \le 1, \quad \sum_{i=1}^{p} |w_{jj}| \le s, \ \, w_{jj} \ge 0 \ \, \forall j \end{split}$$

$$\begin{split} & \underset{c_{1},...,c_{k},w}{\textit{maximize}} \Bigg\{ \sum_{j=1}^{p} w_{jj} \Bigg(\sum_{i=1}^{n} (x_{ij} - M_{1j})^{2} - \sum_{k=1}^{K} \sum_{\substack{i=1 \\ x_{i:} \in c_{k}}}^{n} (x_{ij} - m_{kj})^{2} \Bigg) \Bigg\} \\ & \text{subject to} & \sum_{j=1}^{p} w_{jj}^{2} \leq 1, \ \sum_{j=1}^{p} |w_{jj}| \leq s, \ w_{jj} \geq 0 \ \forall j \end{split}$$

$$\textit{maximize} \Bigg\{ \sum_{j=1}^{p} w_{jj} a_j + \lambda \sum_{j=1}^{p} w_{jj}^2 + \delta \sum_{j=1}^{p} \big| w_{jj} \big| \ \Bigg\}$$

- $\lambda \sum_{j=1}^{p} w_{jj}^2$ and $\delta \sum_{j=1}^{p} |w_{jj}|$ are called Lagrange multipliers.
- When the constraints are having both equalities and inequalities we extend to Karush-Kuhn-Tucker (KKT) conditions.

If
$$w \neq 0$$

$$\frac{\partial}{\partial w}|w| = \frac{\partial}{\partial w}\sqrt{w^2} = \frac{\partial}{\partial w}(w^2)^{\frac{1}{2}} = \frac{1}{2}(w^2)^{\frac{1}{2}} \cdot 2w = \frac{w}{\sqrt{w^2}} = \frac{w}{|w|}$$

else if w = 0

$$\frac{\partial}{\partial w}|w| = \lim_{w \to 0} \frac{|w| - 0}{w - 0} = \begin{cases} \lim_{w \to 0^+} \frac{w}{w} &, w > 0 \\ \lim_{w \to 0^-} \frac{-w}{w} &, w < 0 \end{cases} = \begin{cases} 1 &, w > 0 \\ -1 &, w < 0 \end{cases}$$

[1] proofwiki.org. "Derivative of Absolute Value Function." wiki. 2018. Online:

 $https://proofwiki.org/wiki/Derivative_of_Absolute_Value_Function.$

If $w \neq 0$

$$\frac{\partial}{\partial w}|w| = \frac{\partial}{\partial w}\sqrt{w^2} = \frac{\partial}{\partial w}(w^2)^{\frac{1}{2}} = \frac{1}{2}(w^2)^{\frac{1}{2}} \cdot 2w = \frac{w}{\sqrt{w^2}} = \frac{w}{|w|}$$

else if w = 0

$$\frac{\partial}{\partial w}|w| = \lim_{w \to 0} \frac{|w| - 0}{w - 0} = \begin{cases} \lim_{w \to 0^+} \frac{w}{w} &, w > 0 \\ \lim_{w \to 0^-} \frac{-w}{w} &, w < 0 \end{cases} = \begin{cases} 1 &, w > 0 \\ -1 &, w < 0 \end{cases}$$

[1] proofwiki.org. "Derivative of Absolute Value Function." wiki, 2018. Online:

 $https://proofwiki.org/wiki/Derivative_of_Absolute_Value_Function.$

Proposition: The solution to this convex problem is,

$$w_{jj} = \frac{(sign(a_j)(|a_j| - \delta))_+}{(sign(a_j)(|a_j| - \delta))_+^2}$$

where the + subscript indicates the positive part of the function, $\delta=0$ if that results in $\sum_{j=1}^{p} |w_{jj}| < s$ or $\delta>0$ is chosen so that $\sum_{j=1}^{p} |w_{jj}| = s$ and it is assumed that $1 \le s \le \sqrt{p}$.

^[1] Witten, Daniela M., Robert Tibshirani, and Trevor Hastie. "A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis." Biostatistics 10.3 (2009): 515-534.

Proposition: The solution to this convex problem is,

$$w_{jj} = \frac{(sign(a_j)(|a_j| - \delta))_+}{(sign(a_j)(|a_j| - \delta))_+^2}$$

where the + subscript indicates the positive part of the function, $\delta=0$ if that results in $\sum_{j=1}^{p} \left| w_{jj} \right| < s$ or $\delta>0$ is chosen so that $\sum_{j=1}^{p} \left| w_{jj} \right| = s$ and it is assumed that $1 \le s \le \sqrt{p}$.

How do we find δ ?

^[1] Witten, Daniela M., Robert Tibshirani, and Trevor Hastie. "A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis." Biostatistics 10.3 (2009): 515-534.

[1] Witten, Daniela M., Robert Tibshirani, and Trevor Hastie. "A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis." Biostatistics 10.3 (2009): 515-534.

Using the Binary Search algorithm:

- Let δ be between lim_1 and lim_2
- $lim_1 = 0$, $lim_2 = max(a)$
- Iterate...

$$u = \frac{\sum_{j=1}^{p} (sign(a_j)(|a_j| - \frac{lim_1 + lim_2}{2}))_+}{\sum_{j=1}^{p} (sign(a_j)(|a_j| - \frac{lim_1 + lim_2}{2}))^2}$$

$$\begin{cases} \lim_2 = \frac{lim_1 + lim_2}{2}, & u < s \\ \lim_1 = \frac{lim_1 + lim_2}{2}, & u \ge s \end{cases}$$

•
$$\delta = \frac{\lim_{1+\lim_{2}}}{2}$$

Sparse K-Means

- Algorithm -

Sparse K-Means Algorithm

Phase 1

Sparse K-Means Algorithm

Phase 2

- Execute Binary Search to find δ i.e. $\delta = BinarySearch(wBCSS, s)$
- Compute all the new weights using

$$w_{jj} = \frac{(sign(a_j)(|a_j| - \delta))_+}{(sign(a_j)(|a_j| - \delta))_+^2}$$

Phase 3

- Update dataset based on w.
- Repeat from **Phase 1c** until convergence.

Sparse K-Means

- Tuning -

Sparse K-Means Tuning

How do we decide k and s?

1

• Normally for k we use a performance index. But...

Internal clustering criteria 3							
1.1	Algebr	aic background and notations	3				
	1.1.1	Total dispersion	3				
	1.1.2	Within-group scatter	4				
	1.1.3	Between-group scatter	6				
	1.1.4	Pairs of points	6				
1.2		al indices	7				
	1.2.1	The Ball-Hall index	7				
	1.2.2	The Banfeld-Raftery index	g				
	1.2.3		9				
	1.2.4	The Calinski-Harabasz index	9				
	1.2.5	The Davies-Bouldin index	lC				
	1.2.6	The Det_Ratio index	lC				
	1.2.7	The Dunn index	lC				
	1.2.8	The Baker-Hubert Gamma index	1				
	1.2.9	The GDI index	2				
	1.2.10	The G_plus index	3				
	1.2.11	The Ksq_DetW index	3				
	1.2.12		13				
	1.2.13	The Log_SS_Ratio index	3				
	1.2.14	The McClain-Rao index	3				
	1.2.15	The PBM index	4				
	1.2.16	The Point-Biserial index	4				
	1.2.17		5				
	1.2.18		16				
	1.2.19		16				
	1.2.20	The SD index	16				
	1.2.21	The S_Dbw index	7				
	1.2.22	The Silhouette index	8				
	1.2.23	The Tau index	9				
	1.2.24		9				
	1.2.25		20				

[1] Desgraupes, Bernard. "Clustering indices." University of Paris Ouest-Lab Modal'X 1 (2013): 34.

Sparse K-Means Tuning

How do we decide k and s?

• Normally for k we use a performance index. But...

1	Inte	ternal clustering criteria					
	1.1	Algebr	aic background and notations				
		1.1.1	Total dispersion				
		1.1.2	Within-group scatter				
		1.1.3	Between-group scatter				
		1.1.4	Pairs of points				
	1.2	Intern	al indices				
		1.2.1	The Ball-Hall index				
		1.2.2	The Banfeld-Raftery index				
		1.2.3	The C index				
		1.2.4	The Calinski-Harabasz index				
		1.2.5	The Davies-Bouldin index	1			
		1.2.6	The Det_Ratio index	1			
		1.2.7	The Dunn index	1			
		1.2.8	The Baker-Hubert Gamma index	1			
		1.2.9	The GDI index	1			
		1.2.10	The G_plus index	1			
		1.2.11	The Ksq_DetW index	1			
		1.2.12	The Log_Det_Ratio index	1			
		1.2.13	The Log_SS_Ratio index	1			
		1.2.14	The McClain-Rao index	1			
		1.2.15	The PBM index	1			
		1.2.16	The Point-Biserial index	1			
		1.2.17	The Ratkowsky-Lance index	1			
		1.2.18	The Ray-Turi index	1			
		1.2.19	The Scott-Symons index	1			
		1.2.20	The SD index	1			
		1.2.21	The S_Dbw index	1			
		1.2.22	The Silhouette index	1			
		1.2.23	The Tau index	1			
		1.2.24	The Trace_W index	1			
		1.2.25	The Trace_WiB index	2			

[1] Desgraupes, Bernard. "Clustering indices." University of Paris Ouest-Lab Modal'X 1 (2013): 34.

 In the studies of [2] and [3] the gap statistic is proposed. But...

[2] Witten, Daniela M., and Robert Tibshirani. "A framework for feature selection in clustering." Journal of the American Statistical Association 105.490 (2010): 713-726.

[3] Brodinova, Sarka, et al. "Robust and sparse k-means clustering for high-dimensional data." arXiv preprint arXiv:1709.10012 (2017).

The Gap Statistic

[1]Tibshirani, Robert, Guenther Walther, and Trevor Hastie. "Estimating the number of clusters in a data set via the gap statistic." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 63.2 (2001): 411-423.

The Gap Statistic

- Standardize the graph of $log(WCSS_k)$ by comparing it with its expectation under an appropriate null reference distribution of the dataset.
- The optimal number of clusters is then the k for which $log(WCSS_k)$ falls the farthest below the reference curve.
- $Gap_n(k) = E_n^* \{ log(WCSS_k) \} log(WCSS_k) \}$

- Given dataset D, cluster it with different values for k and keep $log(J_k)$, where J_k specifies the final value of the objective function of the clustering algorithm for a given k.
- Create B perturbations of D and for each repeat the above step, which results to: $\log(J_k^b) = [\log(J_k^1), \ldots, \log(J_k^B),$ for each k.
- Compute the estimated gap statistic,

$$Gap_k = \frac{1}{B} \sum_{b=1}^{B} \log(J_k^b) - \log(J_k)$$

• Given that $\overline{m_k^*} = \frac{1}{B} \sum_{b=1}^B \log(J_k^b)$, compute the simulation error,

$$SE_k = \sqrt{rac{1}{B}\sum_{b=1}^B \left(\log(J_k^b) - \overline{m_k^*}
ight)^2} + \sqrt{1 + rac{1}{B}}$$

• Optimal k, \hat{k} , is the smallest k for which $Gap_k \geq Gap_{k+1} - SE_{k+1}$

- Witten, Daniela M., and Robert Tibshirani. "A framework for feature selection in clustering." Journal of the American Statistical Association 105.490 (2010): 713-726. B=25.
- [3] Brodinova, Sarka, et al. "Robust and sparse k-means clustering for high-dimensional data." arXiv preprint arXiv:1709.10012 (2017). **B=10**.

- Witten, Daniela M., and Robert Tibshirani. "A framework for feature selection in clustering." Journal of the American Statistical Association 105.490 (2010): 713-726. B=25.
- [3] Brodinova, Sarka, et al. "Robust and sparse k-means clustering for high-dimensional data." arXiv preprint arXiv:1709.10012 (2017).
 B=10.
- MATLAB, B=100.
- R, **B=100**.

- Witten, Daniela M., and Robert Tibshirani. "A framework for feature selection in clustering." Journal of the American Statistical Association 105.490 (2010): 713-726. B=25.
- [3] Brodinova, Sarka, et al. "Robust and sparse k-means clustering for high-dimensional data." arXiv preprint arXiv:1709.10012 (2017).
 B=10.
- MATLAB, **B=100**.
- R, **B=100**.
- Let's say B=45. We would like to test 10 different values for k and 5 for s.

- Witten, Daniela M., and Robert Tibshirani. "A framework for feature selection in clustering." Journal of the American Statistical Association 105.490 (2010): 713-726. B=25.
- [3] Brodinova, Sarka, et al. "Robust and sparse k-means clustering for high-dimensional data." arXiv preprint arXiv:1709.10012 (2017).
 B=10.
- MATLAB, B=100.
- R, **B=100**.
- Let's say B=45. We would like to test 10 different values for k and 5 for s.
- We need to execute our algorithmic framework, $45 + 1(B) \times 10(k) \times 5(s) = 2300$ times!

Ongoing Research

Ongoing Research

Ongoing Research

- Find a computationally less expensive criterion than the gap statistic.
- Preliminarily results indicated that:
 - ★ Silhouette index for s.
 - Correlation for k.