

Республиканская физическая олимпиада 2024 года

(Заключительный этап)

Теоретический тур

10 класс.

Внимание! Прочтите в первую очередь.

- 1. Полный комплект состоит из 3 заданий. Для вашего удобства вопросы, на которые Вам необходимо ответить, помещены в рамки.
- 2. На отдельном листе приведены формулы приближенных вычислений, используйте их при решении задач, там, где это необходимо.
- 3. Решения задач выполняйте на отдельных чистых рабочих листах. Самостоятельно разделите их на черновики и чистовые листы. Рекомендуем сначала решать в черновике, а затем красиво оформить решение на чистовых листах. Решение каждого задания начинайте с нового чистового листа. В решении приведите рисунки (в некоторых задания рисунки необходимы, даже в том случае, когда это не оговорено в

условии), исходные уравнения с кратким обоснованием, решения уравнений (комментарии к математическим выкладкам не требуются), окончательные результаты. Окончательные решения обязательно занесите в листы ответов. Чистовые листы пронумеруйте. Черновые листы после окончания работы перечеркните. **Черновики проверяться не будут!**

- 4. Листы ответов содержат отдельные разделы в соответствии с пунктами полученных Вами заданий. Конечные формулы и требуемые численные значения занесите в соответствующие выделенные поля. Если по условию заданий от Вас требуется построение графика, используйте подготовленные бланки в Листах ответов, не забудьте подписать и оцифровать оси координат.
- 5. Все ваши работы сканируются, поэтому пишите только на одной стороне листа. Подписывать рабочие листы и листы ответов запрещается.
- 6. В ходе работы можете использовать ручки, карандаши, чертежные принадлежности, калькулятор.
- 7. После окончания работы сложите листы в следующем порядке: листы ответов; пронумерованные чистовые листы; перечеркнутые черновики.
- 8. Со всеми вопросами, связанными с условиями задач, обращайтесь к организаторам олимпиады.

Пакет содержит:

- титульный лист (1 стр.);
- лист математических подсказок (1 стр.);
- условия 3 теоретических заданий (7 стр.);
- листы ответов (4 стр.);

Формулы приближенных вычислений.

При решении задач Вам могут понадобиться следующие приближенные формулы

1.
$$(1+x)^{\gamma} \approx 1+\gamma x$$

формула справедлива при любых (целых. дробных, положительных, отрицательных) значениях степени γ .

$$\sin x \approx x$$

2.
$$\cos x \approx 1 - \frac{x^2}{2}$$

аргументы тригонометрических функций должны быть заданы в радианах.

$$3. e^x \approx 1 + x$$

Комментарии.

- 1. Во всех формулах величина x безразмерная и значительно меньше 1: x << 1
- 2. Для использования этих формул, прежде всего необходимо привести вашу формулу к стандартному виду, которые даны здесь.
- 3. В ходе приближенных преобразований соблюдайте правило соблюдения порядка малости: если вы отбрасываете малые величины порядка x^2 и выше отбрасывайте их сразу в промежуточных выкладках; если вы сохраняете величины определенного порядка, то сохраняйте их во всех преобразованиях

Задание 1. Цирковая разминка

Это задание состоит из двух не связанных между собой задач.

Задача 1. Девочка на шаре

Построим предельно упрощенную модель этого изящного циркового номера: первое — считаем, что шар закреплен и неподвижен; второе — считаем девочку сплошным однородным цилиндром; третье — считаем, что трение между поверхностью шара и основанием цилиндра достаточно велико, так, что цилиндр может прокатываться по поверхности шара без проскальзывания. Обозначим радиус шара R, высоту цилиндра h.

1. Определите, при каких значениях отношения $\frac{h}{R}$ цилиндр может устойчиво стоять вертикально на вершине шара.

Задача 2. Канатоходцы

Исполнение этого циркового номера требует серьезной технической подготовки. Для исследования возможности хождения по канату проводится следующий модельный эксперимент.

Медная проволока длины L=2,0м подвешена горизонтально между двумя неподвижными упорами. Массой проволоки и ее натяжением в горизонтальном положении следует пренебрегать. К

середине проволоки подвешивают груз массы m. При этом проволока провисает на некоторую величину x.

В ниже приведена диаграмма растяжения проволоки — зависимость силы упругости F , возникающей в проволоке, от ее относительной деформации $\varepsilon = \frac{\Delta l}{L}$. Там же приведены значения

относительной деформации и соответствующей силы упругости в двух характерных точках. Участок диаграммы 0-1 — линейный (область упругости), точка 2 — точка разрыва.

Ускорение свободного падения считать равным $g = 9.8 \frac{M}{c^2}$.

Используя приведенные данные, рассчитайте:

2.1 Величину провисания проволоки x, если масса подвешенного груза равна $m_1 = 2.0 \kappa \varepsilon$.

2.2 Максимальную массу груза m_2 , который можно подвесить к этой проволоке (до ее разрыва)

Диаграмма растяжения проволоки.

№	$\mathcal{E}(\%)$	$F, \kappa H$
0	0,00	0,00
1	0,24	0,31
2	5,10	0,43

Задание 2. Газовые законы

Для проведения экспериментов используется следующая установка. Закрытый теплоизолированный цилиндрический сосуд 1 разделен на две части \boldsymbol{a} и \boldsymbol{b} подвижным поршнем 2. Объем поршня значительно меньше объема сосуда. Через небольшие трубки с кранами 3 и 4 в обе части сосуда можно закачивать газ. В части сосуда \boldsymbol{a} находится нагреватель 5, с помощью которого газу можно передавать теплоту.

Теплоемкостью сосуда и поршня можно пренебречь. Трением поршня р стенки сосуда также можно пренебречь. Поршень является теплопроводящим, поэтому газы в разных частях сосуда могут медленно обмениваться теплотой. Во всех экспериментах используется аргон (одноатомный газ). Внутренний объем сосуда равен $2V_0$.

Часть 1. Горизонтальный сосуд.

В листе ответов приведена Таблица 1, в которой показаны последовательные состояния газов и примерное положение поршня. В этой Таблице приведены известные значения параметров газов. Вам необходимо заполнить эту таблицу, привести значения параметров газов (давление, объем температура) в различных состояниях.

При проведении расчетов, используйте обозначения параметров газов в различных состояниях, приведенные в Таблице 1. При решении уравнений можете использовать численные данные, приведенные в условии. Допускается проведение промежуточных численных расчетов. Все ответы должны быть выражены через значения параметров P_0, V_0, T_0 .

Помните, что обыкновенные дроби – числа точные, а десятичные – приближенные!

Сосуд расположили горизонтально, поршень делит сосуд на две равные части. Обе части сосуда заполняют газом и закрывают краны. При этом давление газов в обеих частях сосуда одинаковы и равны P_0 .

Температура газа в части \boldsymbol{b} равна T_0 , а в части $\boldsymbol{a} - \frac{3}{2}T_0$.

Поршень начинает медленно смещаться и через какой-то промежуток времени приходит в состояние равновесия.

1.1 Рассчитайте значения параметров газов (давления, объемы, температуры) в обеих частях сосудов, после установления теплового равновесия.

После достижения равновесия, газу в части ${\pmb a}$ с помощью нагревателя быстро сообщают количество теплоты равное $Q=\frac{1}{2}\,P_0V_0$.

1.2 Пренебрегая смещением поршня и теплопередачей через поршень за время нагрева, рассчитайте значение параметров газов после прекращения нагревания.

После прекращения нагревания поршень приходит в движение и переходит в состояние равновесия.

1.3 Рассчитайте значения параметров газов в обеих частях сосудов, после установления теплового равновесия.

Часть 2. Вертикальный сосуд.

Обе части сосуда заполнили одинаковыми количествами аргона, и расположили сосуд вертикально.

Поршень находится в равновесии. При этом температуры газа в обеих частях сосуда равны, отношение объемов частей сосуда равно $\frac{V_{0b}}{V_{0a}}=\frac{3}{1},$ давление газа в верхней части сосуда - P_0 . (которое отличается начального давления в Части 1).

2. Рассчитайте, какое количество теплоты Q необходимо сообщить газу, чтобы после достижения равновесия отношение объемов частей сосуда стало равным $\frac{V_{1b}}{V_{1a}} = \frac{2}{1}$.

<u>Примечание.</u> Изменением потенциальной энергии взаимодействия газа с Землей можно пренебречь.

Задание 3. Поле в диэлектрике

Диэлектрик, помещенный во внешнее электрическое поляризуется, т.е. происходит частичное смещение электрических зарядов (электронов и ядер). Вследствие чего на поверхности однородного диэлектрика возникают индуцированные заряды, (поляризационные) которые создают собственное электрическое поле, как внутри диэлектрика, так и вне его. Если силовые линии электрического поля везде на границе диэлектрика перпендикулярны этой границе, то напряженность электрического поля внутри диэлектрика оказывается в є раз меньше, чем напряженность поля при отсутствии диэлектрика (где є диэлектрическая проницаемость диэлектрика).

В данном задании Вам необходимо продемонстрировать понимание описанного механизма изменения поля в диэлектрике.

Если электрические заряды распределены по поверхности, то удобно ввести такую характеристику зарядов, как их поверхностная плотность:

$$\sigma = \frac{\Delta q}{\Delta S}.\tag{1}$$

где Δq - заряд, находящийся на малой площадке площади ΔS .

Во всех частях этого задания предполагается, что электрические заряды распределены по плоским поверхностям равномерно $\sigma = const$, а создаваемое ими электрическое поля является однородным. Т.е. краевыми эффектами следует пренебрегать. Считайте, что вне диэлектриков находится вакуум.

Часть 1. Нормальное поле

В учебнике физики для 10 класса приведена формула для емкости плоского конденсатора

$$C = \frac{\varepsilon \varepsilon_0 S}{d} \,. \tag{2}$$

где S - площадь пластин (обкладок) конденсатора, d - расстояние между обкладками, ε - диэлектрическая проницаемость вещества, находящегося между обкладками, ε_0 - электрическая постоянная.

1.1 Бесконечная равномерно заряженная с поверхностной плотностью заряда σ плоскость создает однородное электрическое поле, напряженности \vec{E} .

1.1 Используя формулу для емкости плоского конденсатора (2), выразите модуль напряженности электрического поля E, создаваемого зарядами на плоскости, через их поверхностную плотность σ .

1.2 В однородное электрическое поле напряженности \vec{E}_0 помещена незаряженная плоскопараллельная пластина, изготовленная из диэлектрика с диэлектрической проницаемостью ε . Силовые линии поля перпендикулярны пластине.

- **1.2** Найдите поверхностную плотность индуцированных зарядов на пластине σ' . Выразите значение этой плотности а) через напряженность поля E_0 вне пластины; б) через напряженность поля E внутри пластины.
- **1.3** Силовые линии электрического поля перпендикулярны плоской границе однородного диэлектрика с диэлектрической проницаемостью ε (нижняя граница находится бесконечно далеко). Над диэлектриком напряженность поля равна \vec{E}_1 .

- **1.3** Найдите поверхностную плотность индуцированных на границе зарядов σ' . Выразите ее через напряженность поля внутри диэлектрика E_2 .
- 1.4 Плоский конденсатор состоит из двух проводящих параллельных пластин площади S, находящихся расстоянии d друг от друга, которое значительно меньше пластин. размеров Между пластинами находится непроводящая плоскопараллельная пластинка толщины расположенная параллельно пластинамобкладкам конденсатора. На обкладках конденсатора равномерно распределены электрические поверхностные заряды, плотности которых равны $\pm \sigma_0$.

- **1.4.1** Найдите поверхностные плотности зарядов σ_1', σ_2' на поверхностях диэлектрической пластинки (укажите знаки этих зарядов).
- **1.4.2** Найдите электрическую емкость этого конденсатора C_0 .
- **1.4.3** Найдите давление, которое оказывает электрическое поле на одну из граней диэлектрической пластинки. Укажите, растягивается или сжимается пластинка под действием электрического поля.

Часть 2. Наклонное поле

2.1 Силовые линии однородного электрического поля напряженности \vec{E}_1 образуют угол α_1 с нормалью к плоской границе диэлектрика с диэлектрической проницаемостью ε . Внутри диэлектрика вектор напряженности однородного электрического поля \vec{E}_2 направлен под углом α_2 к нормали к границе диэлектрика.

- **2.1.1** Получите «закон преломления» силовых линий, т.е. соотношение, связывающее углы α_1, α_2 и диэлектрическую проницаемость ε .
- **2.1.2** Найдите отношение модулей напряженностей полей $\frac{E_2}{E_1}$ как функцию диэлектрической проницаемости ε и угла α_1 .
- **2.2** Диэлектрическую пластину конденсатора, описанного в п. 1.4, повернули на угол α .

- **2.2.1** Найдите емкость конденсатора C с повернутой пластиной.
- **2.2.2** Найдите относительное изменение емкости конденсатора $\frac{C-C_0}{C_0}$ при повороте пластины на малый угол α . (C_0 емкость конденсатора, найденная в п. 1.4.2.

<u>Примечание</u>. Считайте, что при повороте пластины распределение зарядов на обкладках конденсатора и на гранях диэлектрической пластины остается равномерным, а электрическое поле в зазорах между обкладками пластинкой остается однородными перпендикулярным обкладкам конденсатора.

Листы ответов

Задание 1. Цирковая разминка

Задача 1. Девочка на шаре

1. Цилиндр может стоять на шаре при				
1.				
$\frac{n}{n}$				
$\frac{h}{R}$				
Tt.				
Задача 2. Канатоходцы				
21 The processing the processing of the processi				

2.1 Провисание проволоки равно (формула и численное значение) x =

2.2 Максимальная масса груза равна (формула и численное значение)

 $m_{\rm max} =$

Листы ответов

Задание 2. Газовые законы

Часть 1. Горизонтальный сосуд. Таблица 1. Параметры газов

№	рисунок	параметры газа в части а	параметры газа в части \boldsymbol{b}
1.1	$\begin{bmatrix} a & b \\ P_0 & P_0 \end{bmatrix}$	$P_{0a} = P_0$	$P_{0b} = P_0$
	$egin{bmatrix} P_0 & & & P_0 \ rac{3}{2}T_0 & & & T_0 \ & V_0 & & & V_0 \end{bmatrix}$	$V_{0a} = V_0$	$egin{aligned} V_{0a} &= V_0 \ T_{0b} &= T_0 \end{aligned}$
		$T_{0a} = \frac{3}{2}T_0$	
1.1	a b	$P_{1a} =$	$P_{1b} =$
	V_{1a} V_{1b}	$V_{1a} =$	$V_{1b} =$
		$T_{1a} =$	$T_{1b} =$
1.2	a b	$P_{2a} =$	$P_{2b} =$
		$V_{2a} =$	$V_{2b} =$
		$T_{2a} =$	$T_{2b} =$
1.3	a b	$P_{3a} =$	$P_{3b} =$
	V_{3a} V_{3b}	$V_{3a} =$	$V_{3b} =$
		$T_{3a} =$	$T_{3b} =$

Часть 2. Вертикальный сосуд

2.	Количество	переданной	теплоты
----	------------	------------	---------

Листы ответов

Задание 3. Поле в диэлектрике

1.1 Напряженность электрического поля

$$E =$$

1.2 Поверхностная плотность зарядов

$$\sigma(E_0) = \sigma(E) =$$

1.3 Поверхностная плотность зарядов

$$\sigma(E_2)=$$

1.4.1 Поверхностные плотности зарядов

$$\sigma_1' = \sigma_2' =$$

1.4.2 Электрическую емкость конденсатора

$$C_0 =$$

1.4.3 Давление электрического поля

$$P =$$

2.1.1 «Закон преломления» силовых линий

2.1.2 Отношение модулей напряженностей полей

$$\frac{E_2}{E_1} =$$

Заключительный этап республиканской олимпиады по учебному предмету «Физика» 2023-2024 учебный год

2.2.1 Емкость конденсатора с повернутой пластиной

$$C =$$

2.2.2 Относительное изменение емкости конденсатора

$$\frac{C - C_0}{C_0} =$$