Capstone Project: Vehicle Accident Severity Analysis

By: M.Maharoof

Github repo: https://github.com/ShazGit/Coursera_Capstone.git

Introduction

Around the world many road accidents take place daily. Some accidents can be minor while some can be severe. Analyzing variables associated with the cause of severe accidents can help develop an action plan to reduce severe accidents and thereby reduce loss of life caused from severe accident. This project analysis aims to predict how severity of accidents can be reduced based on identifying factors that are likely to cause the accidents.

This analysis will be beneficial for stakeholders such as the Public Development Authority of Seattle which for improving their understanding for key factors surrounding accidents so that necessary precautions can be taken to reduce the accident frequency rate.

Data

A sample set of data collected by the Seattle Police Department recorded over a time period from 2004 till present shall be used to analyzed and used to make judgments to the variables associated with severe accidents. The sample data set contains information such as severity, location, collision type, weather conditions, road conditions, and light conditions, among others. For the data analysis portion of this project, Github will be used for a repository and IBM Watson Studio to host the notebook. The Python libraries utilized throughout the analysis were Pandas, Numpy, Matplotlib, and Seaborn are intended to be used.

Methodology

I used Jupyter Notebooks to conduct that analysis and imported relevant Python libraries such as Numpy, Matplotlib, and Seaborn. The data was mostly categorical so I stuck to graphical representation to see correlation between various variables. I started by importing the csv file and I used df.types in order to see what type of data was contained within the spreadsheet. This generated the following result.

SEVERITYCODE	int64
X	float64
Y	float64
OBJECTID	int64
INCKEY	int64
COLDETKEY	int64
REPORTNO	object
STATUS	object
ADDRTYPE	object
INTKEY	float64
LOCATION	object
EXCEPTRSNCODE	object
EXCEPTRSNDESC	object
SEVERITYCODE.1	int64
SEVERITYDESC	object
COLLISIONTYPE	object
PERSONCOUNT	int64
PEDCOUNT	int64
PEDCYLCOUNT	int64
VEHCOUNT	int64
INCDATE	object
INCDTTM	object
JUNCTIONTYPE	object
SDOT_COLCODE	int64
SDOT_COLDESC	object
INATTENTIONIND	object
UNDERINFL	object
WEATHER	object
ROADCOND	object
LIGHTCOND	object
PEDROWNOTGRNT	object
SDOTCOLNUM	float64
SPEEDING	object
ST_COLCODE	object
ST_COLDESC	object
SEGLANEKEY	int64
CROSSWALKKEY	int64
HITPARKEDCAR	object
dtype: obj	ect

After determining the types of data, I performed value count for the Location in order to get an understanding of where the accident points are. This produced the table below

	LOCATION
BATTERY ST TUNNEL NB BETWEEN ALASKAN WY VI NB AND AURORA AVE N	276
BATTERY ST TUNNEL SB BETWEEN AURORA AVE N AND ALASKAN WY VI SB	271
N NORTHGATE WAY BETWEEN MERIDIAN AVE N AND CORLISS AVE N	265
AURORA AVE N BETWEEN N 117TH PL AND N 125TH ST	254
6TH AVE AND JAMES ST	252
AURORA AVE N BETWEEN N 130TH ST AND N 135TH ST	239
ALASKAN WY VI NB BETWEEN S ROYAL BROUGHAM WAY ON RP AND SENECA ST OFF RP	238
RAINIER AVE S BETWEEN S BAYVIEW ST AND S MCCLELLAN ST	231
ALASKAN WY VI SB BETWEEN COLUMBIA ST ON RP AND ALASKAN WY VI SB EFR OFF RP	212
WEST SEATTLE BR EB BETWEEN ALASKAN WY VI NB ON RP AND DELRIDGE-W SEATTLE BR EB ON RP	212
AURORA BR BETWEEN RAYE ST AND BRIDGE WAY N	190
ALASKAN WY VI NB BETWEEN SENECA ST OFF RP AND WESTERN AV OFF RP	164
1ST AVE BETWEEN BLANCHARD ST AND BELL ST	161
5TH AVE AND SPRING ST	160
RAINIER AVE S BETWEEN S HENDERSON ST AND S DIRECTOR N ST	152
RAINIER AVE S BETWEEN S DEARBORN ST AND S CHARLES N ST	146

I also performed a value count on Light Condition to see the breakdowns of accidents occurring during the different light conditions. These counts can be seen below.

	LIGHTCOND
Daylight	116137
Dark - Street Lights On	48507
Unknown	13473
Dusk	5902
Dawn	2502
Dark - No Street Lights	1537
Dark - Street Lights Off	1199
Other	235
Dark - Unknown Lighting	11

Thereafter I generated various graphs to analyze the data set. To perform this I imported matplotlib and seaborn libraries to conduct graphical analysis.

Results

The first graph generated provided insights to the types of collisions. From the graphs it can be seen that most of the collisions took place with parked cars.

```
In [8]: df_dataset['COLLISIONTYPE'].value_counts().plot(kind='bar')
Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7fbf4c32d780>
               50000
               40000
               30000
               20000
              10000
                                                                               Head On -
                              Angles .
                                    Sear Ended
                                          Other
                                                                         Right Turn
                                                      Left Turn
                       Parked Car
                                                 Sideswipe
                                                             <sup>2</sup>edestrian
```

The next graph generated was to identify if weather had contributed to the accidents. But it can be seen that majority of the accidents took place during clear weather

The following pie chart was generated to identify the areas of accident.

```
In [14]: explode_list = [0.05, 0.05, 0.2]
      color_list=['peachpuff','lightseagreen','darkorange']
      addtype=df_dataset['ADDRTYPE'].value_counts()
      addtype.plot(kind='pie',
                  figsize=(15, 6),
                  autopct='%1.1f%%',
                  startangle=90,
                  shadow=True,
                  labels=None,
                  pctdistance=1.12,
                  colors=color list,
                  explode=explode_list)
      plt.title('Area of accident - Seattle, Washington', fontsize=18, y=1.05)
      plt.axis('equal')
      plt.legend(labels=addtype.index, loc='lower left')
      plt.show()
```

Area of accident - Seattle, Washington

Discussion

At the start of our analysis, I was trying to figure out the severity and frequency of road accidents based on weather conditions, road conditions, and other factors. Most crashes happened in clear, dry, and bright conditions and therefore the weather was not an important factor for the cause of the accidents. The results of the data indicate to city officials that they should ask drivers to be more alert in ideal conditions.

Conclusion

In conclusion I can say that most of the accidents may have been cause due to driver negligence. Therefore, I would recommend the following measures to be taken in response to this data analysis insights:

- Install safety signs on the roads and ensure that all precautions are being taken by people within the area
- Launch development projects for those areas where most severe accidents take place in order to minimize the effects of these two factors

Although this analysis has given some valuable insight, there needs to be a closer inspection of certain other variables. It seems like a lot of these accidents are minor and avoidable.