Algebra 2 Unit 2 Review #2-Show all work.

Rewrite in radical notation.

- $7^{1/5}$ 1.
- 2. (-11)^{3/4}
- $18^{5/2}$ 3.

Evaluate without a calculator:

- 4. 81^{3/4}
- 5. 16^{5/4}
- 6. $16^{-5/4}$
- 8. 8^{-1/3}

Simplify:

- 9. $\frac{25^{1/6}}{25^{2/3}}$
- 10. $\sqrt[3]{40} \cdot 4\sqrt[3]{5}$
- 11. $\sqrt[3]{81}$
- 12. $x^{1/3} \cdot x^{1/4}$
- 13. $\sqrt{64x^{12}}$
- 14. $\left(\frac{w^{25}}{x^{20}}\right)^{4/5}$
- 15. $4\sqrt[5]{5} + 8\sqrt[5]{5}$
- 16. $6\sqrt[7]{3} 2\sqrt[7]{384}$
- 17. $\sqrt[4]{18x^8y^9z^3}$

18. Verify if the functions f and g below inverses of each other.

$$g(x) = \frac{1}{3}x - \frac{1}{2}$$
, $f(x) = \frac{3}{2}(2x+1)$

19. Verify if the functions f and g below inverses of each other.

$$f(x) = \frac{2}{3}x - \frac{1}{2}$$
, $g(x) = \frac{3}{2}x - \frac{3}{4}$

20. Sketch the graph of the function $f(x) = \frac{2}{3}x - 2$ and its inverse on the same coordinate plane.

Find the inverse function.

21.
$$f(x) = x^2 + 5; x \ge 0$$

22.
$$f(x) = \frac{1}{2}x + 2$$

Let $f(x) = x^2 + 2x$ and g(x) = x + 1. Perform the indicated operation and state the domain.

- 23. f(x) + g(x)
- 24. f(x) g(x)
- 25. $f(x) \cdot g(x)$
- 26. $\frac{f(x)}{g(x)}$
- 27. f(g(x))

Algebra 2 Unit 2 Review #2-Show all work. Answer Section

- 1. ⁵√7
- 2. $\sqrt[4]{11}$
- 3. $\sqrt[6]{18}$
- 4. 27
- 5. 32
- 6. $\frac{1}{32}$
- 7. 6
- 8. $\frac{1}{2}$
- 9. $\frac{1}{5}$
- 10. $8\sqrt[3]{25}$
- 11. $3\sqrt[3]{3}$
- 12. $x^{\frac{7}{12}}$
- 13. $8x^6$
- 14. $\frac{w^{20}}{x^{16}}$
- 15. $12\sqrt[5]{5}$
- 16. $2\sqrt[7]{3}$
- 17. $x^2y^2\sqrt[4]{18yz^3}$
- 18. Yes
- 19. No
- 20. $f^{-1}(x) = \frac{3}{2}x + 3$

- 21. $f^{-1}(x) = \sqrt{x-5}; x \ge 5$
- 22. $f^{-1}(x) = 2x 4$

23.
$$x^2 + 3x + 1$$

Domain: all real numbers

24.
$$x^2 + x - 1$$

Domain: all real numbers

25.
$$x^3 + 3x^2 + 2x$$

Domain: all real numbers

26.
$$\frac{x^2 + 2x}{x+1}$$

Domain: all real numbers except x = -1

27.
$$x^2 + 4x + 3$$

Domain: all real numbers