Feuille de travaux dirigés nº 4

Exercice 4.1 (Configurations et suite d'action d'un automate)

- 1. Pourquoi l'automate ci-dessous n'est-il pas déterministe?
- 2. Donnez toutes les suites d'actions possibles pour chacun des mots suivants avec l'automate fini ci-dessous (l'alphabet est $\{a,b,c\}$) et en déduire s'ils sont reconnus : ε , a, ab, aaabcccb.

Exercice 4.2 (Automates finis généralisés))

Écrire l'automate généralisé permettant de compter le nombre d'occurrences du facteur ac pour des mots de l'alphabet $A=\{a,b,c\}$ contenant au moins deux a consécutifs. Donner 3 automates : une machine de Moore, une machine de Mealy et un automate généralisé.

Exercice 4.3 (Language et automate)

Montrer que le langage des mots qui contiennent au moins un facteur "ab" et un facteur "ba" sur l'alphabet $\mathrm{i}\{a,b\}$ est reconnaissable.

Exercice 4.4 (Propriétés des états)

Donner les propriétés des états pour les automates suivants définis respectivement sur les alphabets :

- 1. $\{a, b\}$
- 2. $\{a, b, c, d\}$
- 3. {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

Exercice 4.5 (Automate normalisé)

Montrer pourquoi un automate fini normalisé n'est jamais complet.

Exercice 4.6 (Propriétés des AFNs)

Donner les propriétés des automates de l'exercise 4.4 et de l'automate suivant défini sur l'alphabet $\{a,b\}$ (Attention : Sur les images issues de JFLAP, les ϵ -transitions sont notées λ) :

Exercice 4.7 (Équivalence entre automates)

Donner l'automate fini standard, puis l'automate fini normalisé, tous deux équivalents à l'automate ci-dessous défini sur l'alphabet $\{a,b,c\}$

:

Exercice 4.8 (Déterminisation d'un automate)

Donner l'automate déterministe équivalent par la méthode de construction des sous-ensembles (donner le détail de la méthode) pour l'automate de l'exercice 4.7 et pour les deux automates suivants définis sur les alphabets : 2. $\{a,b\}$

3. $\{a, b, c\}$:

Exercice 4.9 (Minimilisation d'un AFD)

1. Soit l'automate déterministe suivant sur l'alphabet $\{a, b, c\}$

Donner l'automate déterministe minimal équivalent par la méthode de Moore (donner le détail de la méthode).

2. Soit l'automate suivant sur l'alphabet $\{a, b, c\}$

Donner l'automate déterministe minimal équivalent par la méthode de construction des sous-ensembles et la méthode de Moore (donner le détail des méthodes).

Exercice 4.10 (Équivalence entre automates)

Montrer que les deux automates finis M1 et M2 définis sur l'alphabet $\{a,b\}$ et dont les transitions sont décrites dans les tableaux ci-dessous reconnaissent les mêmes langages. L'état initial pour les deux automates est l'état 0.

μ	0	1:	2	3
a	1	2	1	3
b	3	1	3	3

μ	0	1:	2	3:	4:	5
a	1	2	3	2	2	5
b	5	4	5	3	4	5

Exercice 4.11

- i) Donner un automate non déterministe pour le langage $L = \{a^n ba | n \ge 0\} \cup \{b^n aba | n \ge 0\}$.
- ii) Déterminiser, puis minimiser l'automate obtenu.

Exercice 4.12 (Complémentation d'un AFD)

Démontrer le théorème suivant :

Théorème de la complémentation

Soit L un langage reconnaissable, alors la complémentation de L, noté Comp(L) est reconnaissable. Autrement dit, si $L \in Rec(A^*)$ alors $Comp(L) \in Rec(A^*)$. En déduire une méthode pour construire l'automate "complémentaire" d'un automate.

Appliquer la méthode sur l'automate suivant :

