Attention in Sequence Model

Jun Chen Sep 8, 2018

Outline

- Motivation
- Basic idea
- Variants of attention
 - Addictive attention
 - Multiplicative attention
 - Self-attention
 - Key-value attention
- Case study: Transformer

Encoder-decoder model

- Limited representation
- Long distance constrained

Hacks:

• Reverse the order (Sutskever et al. NIPS' 14)

Input twice (Zaremba et al. Arxiv'14)

Make things work better in practice, but not a principled solution

 What if we could use multiple vectors, based on the length of the sentence.

this is an example \longrightarrow this is an example \longrightarrow

Basic Idea

(Bahdanau et al. 2015)

- Encode each word in the sentence into a vector
- When decoding, perform a linear combination of these vectors, weighted by "attention weights"
- Use this combination in picking the next word

Basic Idea

• A graphic example:

Attention model

• Using attention, we obtain a context vector c_i based on hidden states $\mathbf{s}_i, ..., \mathbf{s}_m$ that can be used together with the current hidden state h_i for prediction. The context vector \mathbf{c}_i at position is calculated as an average of the previous states weighted with the attention scores \mathbf{a}_i :

$$\mathbf{c}_{i} = \sum_{j} a_{ij} \mathbf{s}_{j}$$
$$\mathbf{a}_{i} = \operatorname{softmax}(f_{att}(\mathbf{h}_{i}, \mathbf{s}_{j}))$$

• The attention function $f_{att}(\mathbf{h}_i, \mathbf{s}_j)$ calculates an unnormalized alignment score between the current hidden state \mathbf{h}_i and the previous hidden state \mathbf{s}_i

Addictive attention

• Bahdanau et al., 2015

Addictive attention

 Use a one-hidden layer feed-forward network to calculate the attention alignment:

$$f_{att}(\mathbf{h}_i, \mathbf{s}_j) = \mathbf{v}_a^{\mathrm{T}} \mathrm{tanh}(\mathbf{W}_a[\mathbf{h}_i; \mathbf{s}_j])$$

• where v_a and W_a are learned attention parameters. Analogously, we can also use matrices W_1 and W_2 to learn separate transformations for h_i and s_j respectively, which are then summed:

$$f_{att}(\mathbf{h}_i, \mathbf{s}_j) = \mathbf{v}_a^{\mathrm{T}} \mathrm{tanh}(\mathbf{W}_1 \mathbf{h}_i + \mathbf{W}_2 \mathbf{s}_j)$$

Multiplicative attention

 Simplify the attention operation(Luong et al., 2015):

$$f_{att}(h_i, s_j) = h_i^{\mathrm{T}} \mathbf{W}_a s_j$$

- similar in complexity to addictive model
- faster and more space-efficient in practice (can be implemented more efficiently using matrix multiplication)
- scale of dot product increases as dimensions get larger (can be fixed by scaling by size of the vector $1/\sqrt{d_h}$)

Self attention

- Without any additional information, we can still extract relevant aspects from the sentence by allowing it to attend to itself using self-attention (Lin et al., 2017)
- Each element in the sentence attends to other elements → context sensitive encodings

Self-attention

• Simplify additive attention to compute the unnormalized alignment score for each hidden state h_i :

$$f_{att}(h_i) = v_a^T \tanh(\mathbf{W}_a h_i)$$

• In matrix form, for hidden states $\mathbf{H}=\mathbf{h_1},\ldots,\mathbf{h_n}$ we can calculate the attention vector a and the final sentence representation c as follows:

$$\mathbf{a} = \operatorname{softmax}(\mathbf{v}_a \tanh(\mathbf{W}_a \mathbf{H}^{\mathrm{T}}))$$
$$\mathbf{c} = \mathbf{H} \mathbf{a}^{\mathrm{T}}$$

Key-value attention (Daniluk et al., 2017)

Key-value Attention

- Split each hidden vector h_i into a key k_i and a value v_i : $[k_i; v_i] = h_i$
- Keys to calculate the attention distribution a_i using additive attention:

$$a_i = \operatorname{softmax}(\mathbf{v}_a^{\mathrm{T}} \operatorname{tanh}(\mathbf{W}_1[\mathbf{k}_{i-L}; ...; \mathbf{k}_{i-1}] + (\mathbf{W}_2 \mathbf{s}_i) \mathbf{1}^{\mathrm{T}}))$$

 where L is the length of the attention window and 1 is a vector of ones. The values are then used to obtain the context representation c_i:

$$\mathbf{c}_i = [\mathbf{v}_{i-L}; ...; \mathbf{v}_{i-1}] \boldsymbol{a}^{\mathrm{T}}$$

• The context \mathbf{c}_i is used together with the current value \mathbf{v}_i for prediction.

Transformer (Vaswani et al. 2017)

Summary:

Attention is all you need

- A sequence-to-sequence model based entirely on attention
- Strong results on standard WMT datasets
- Fast: only matrix multiplications

Transformer (Vaswani et al. 2017)

Attention is all you need

Scaled Dot-Product Attention

Idea: multiple attention "heads" focus on different parts of the sentence

Attention Tricks

- Self Attention: Each layer combines words with Others
- Multi-headed Attention: 8 attention heads learned Independently
- Normalized Dot-product Attention: Remove bias in dot product when using large networks
- Positional Encodings: Make sure that even if we don't have RNN, can still distinguish positions