

Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

Tel. +972-4-6288001 Fax. +972-4-6288277

E-mail: mail@hermonlabs.com

TEST REPORT

ACCORDING TO: FCC CFR 47 part 15 subpart C, section 15.225

FOR

Essence Security International Ltd.

Tag Reader

Model:ES700TR5

FCC ID:YXG-ES700TR5

This report is in conformity with ISO/ IEC 17025. The "A2LA Accredited" symbol endorsement applies only to the tests and calibrations that are listed in the scope of Hermon Laboratories accreditation. The test results relate only to the items tested. This test report shall not be reproduced in any form except in full with the written approval of Hermon Laboratories Ltd.

Report ID: ESSRAD_FCC.25193_15.225.docx

Date of Issue: 29-Dec-13

Table of contents

1	Applicant information	3
2	Equipment under test attributes	
3	Manufacturer information	3
4	Test details	3
5	Tests summary	4
6	EUT description	5
6.1	General information	5
6.2	Test configuration	5
6.3	Changes made in the EUT	5
6.4	Transmitter characteristics of RFID transmitte	6
7	Transmitter tests according to 47CFR part 15 subpart C requirements	7
7.1	In band radiated emissions	7
7.2	Out of band radiated emissions	11
7.3	Frequency stability test	17
7.4	Occupied bandwidth test	19
7.5	Antenna requirements	22
8	APPENDIX A Test equipment and ancillaries used for tests	23
9	APPENDIX B Measurement uncertainties	24
10	APPENDIX C Test laboratory description	25
11	APPENDIX D Specification references	25
12	APPENDIX E Test equipment correction factors	26
13	APPENDIX F Abbreviations and acronyms	30

Report ID: ESSRAD_FCC.25193_15.225.docx Date of Issue: 29-Dec-13

1 Applicant information

Client name: Essence Security International Ltd.

Address: 12 Abba Eban Avenue, Ackerstein Towers Bldg. D, P.O.B. 2073, Herzliya 4612001, Israel

Telephone: +972 73 244 7735 **Fax:** +972 9772 9962

E-mail: israelgo@essence-grp.com

Contact name: Mr. Israel Gottesman

2 Equipment under test attributes

Product name: Tag Reader

Product type: Transmitter operating at 13.56 MHz

Model(s): ES700TR5

Serial number: 4013092e0032193b

Hardware version: 1
Software release: 3.0.2
Receipt date 24-Nov-13

3 Manufacturer information

Manufacturer name: Essence Security International Ltd.

Address: 12 Abba Eban Avenue, Ackerstein Towers Bldg. D, P.O.B. 2073, Herzliya 4612001, Israel

Telephone: +972 73 244 7735 **Fax:** +972 9772 9962

E-Mail: israelgo@essence-grp.com

Contact name: Mr. Israel Gottesman

4 Test details

Project ID: 25193

Location: Hermon Laboratories Ltd. Harakevet Industrial Zone, Binyamina 30500, Israel

Test started: 24-Nov-13
Test completed: 16-Dec-13

Test specification(s): FCC CFR 47 part 15 subpart C, §15.225

5 Tests summary

Test	Status
Transmitter characteristics	
Sections 15.225(a) (b) (c), In band radiated emissions	Pass
Sections 15.225(d), Out of band radiated emissions	Pass
Section 15.225(e), Frequency stability	Pass
Section 15.207(a), Conducted emission	Not required
Section 15.215(c), Occupied bandwidth	Pass

Testing was completed against all relevant requirements of the test standard. The results obtained indicate that the product under test complies in full with the requirements tested.

The test results relate only to the items tested. Pass/ fail decision was based on nominal values.

	Name and Title	Date	Signature
Tested by:	Mr. A. Chaplik, test engineer Mr. V. Einem, test engineer	December 16, 2013	Me
Reviewed by:	Mrs. M. Cherniavsky, certification engineer	December 29, 2013	Chu
Approved by:	Mr. M. Nikishin, EMC and Radio group manager	January 8, 2014	ff

6 EUT description

6.1 General information

The EUT is a wireless access control tag reader operating at 916.5 MHz with 2FSK modulation The EUT is equipped with an integral antenna and is powered by internal 4.5 V battery. The reader contains the RFID technology transmitter operating at 13.56 MHz.

6.2 Test configuration

6.3 Changes made in the EUT

No changes were implemented in the EUT during testing.

6.4 Transmitter characteristics of RFID transmitte

Type of equipment									
	Stand-alone (Equi								
٧	Combined equipment (Equipment where the radio part is fully integrated within another type of equipment)								
	Plug-in card (Equi	pment int	tended for	a variety	y of host sys	stems)			
Assigned frequency range 13.110-14.010 MHz									
Opera	ting frequency ran	ge		13.56 N	ИНz				
Maxim	num field strength			51.34 0	dΒ(μV/m) at	3 m test dista	nce		
				٧	No				
							continuous varial	ole	
Is tran	smitter output pow	er varial	ble?		Yes		stepped variable	with stepsize	
					res	minimum RF p	ower		
					r	naximum RF ہ	oower		
Anten	Antenna connection								
v	unique coupling		stan	ndard co	nnector		ntegral	with temporary RF	
٧	unique coupling		star	ndard co	nnector	lı	ntegral	with temporary RF without temporary F	
	unique coupling	acteristi		ndard co	nnector	lı	ntegral		
	1 1 3	acteristi	cs Manufac	turer		Model numb			
Anten	na/s technical char	acteristi	cs	turer				without temporary F	
Anten Type Inte	na/s technical char		cs Manufac Essence	turer		Model numb		without temporary F	
Anten Type Inte	na/s technical char		cs Manufac Essence	turer	у	Model numb		without temporary F	
Anten Type Inte Trans Type	na/s technical char	ita rate/s	Manufac Essence	turer	y 106 k	Model numb Loop bps		without temporary F	
Type Inte	na/s technical char rnal mitter aggregate da of modulation	nta rate/s	Manufac Essence	turer	y 106 k	Model numb Loop bps		without temporary F	
Type Inte	na/s technical char rnal mitter aggregate da of modulation mitter duty cycle su mitter power sourc Battery	ata rate/s upplied for	Manufac Essence	eturer Security	y 106 k	Model numb		without temporary F	
Type Inte	na/s technical char rnal mitter aggregate da of modulation mitter duty cycle su mitter power sourc Battery	nta rate/s upplied fo e Nominal	Manuface Essence	cturer Security	y 106 k AM 100%	Model numb	per	without temporary F Gain NA	

Test specification:	Sections 15.225(a) (b) (c), In band radiated emissions				
Test procedure:	ANSI C63.4, Sections 5.3 and	d 13.1.4			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	05-Dec-13	verdict.	PASS		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 58 %	Power Supply: Battery		
Remarks: For TR			-		

7 Transmitter tests according to 47CFR part 15 subpart C requirements

7.1 In band radiated emissions

7.1.1 General

This test was performed to measure field strength of fundamental emission and modulation products from the EUT within the assigned band. Specification test limits are given in Table 7.1.1.

Table 7.1.1 Radiated emission limits

Frequency,	Field strength	at 30 m distance*	Field strength at 3 m distance*		
MHz	μV/m	dB(μV/m)	μV/m	dB(μV/m)**	
13.110 – 13.410	106	40.5	10600	80.5	
13.410 - 13.553	334	50.5	33400	90.5	
13.553 - 13.567	15848	84.0	1584800	124.0	
13.567 – 13.710	334	50.5	33400	90.5	
13.710 – 14.010	106	40.5	10600	80.5	

^{*-} The limit is provided in quasi peak values.

where S_1 and S_2 – standard defined and test distance respectively in meters.

7.1.2 Test procedure

- 7.1.2.1 The EUT was set up as shown in Figure 7.1.1 energized and the performance check was conducted.
- **7.1.2.2** The specified frequency range was investigated with loop antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360⁰, the measuring antenna was rotated around its vertical axis and the measuring antenna polarization was switched from vertical to horizontal.
- 7.1.2.3 The worst test results (the lowest margins) were recorded in Table 7.1.2 and shown in the associated plots.

^{**-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $\lim_{S^2} = \lim_{S^1} + 40 \log (S_1/S_2)$,

Test specification:	Sections 15.225(a) (b) (c), In band radiated emissions				
Test procedure:	ANSI C63.4, Sections 5.3 and 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	05-Dec-13	verdict.	PASS		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 58 %	Power Supply: Battery		
Remarks: For TR					

Figure 7.1.1 Setup for in band radiated emission measurements

Test specification:	Sections 15.225(a) (b) (c), In band radiated emissions				
Test procedure:	ANSI C63.4, Sections 5.3 and	d 13.1.4			
Test mode:	Compliance	Verdict:	PASS		
Date(s):	05-Dec-13	verdict.	PASS		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 58 %	Power Supply: Battery		
Remarks: For TR			-		

Table 7.1.2 In band radiated emission test results

TEST DISTANCE: 3 m

EUT POSITION: Typical (Vertical)

MODULATION: AM TRANSMITTER OUTPUT POWER SETTINGS: Maximum

INVESTIGATED FREQUENCY RANGE: 13.110 – 14.010 MHz

RESOLUTION BANDWIDTH: 9.0 kHz
VIDEO BANDWIDTH: 30.0 kHz

Corrior		Qu	asi-peak				
Carrier frequency, MHz	Peak emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	Azimuth**, degrees	Verdict
13.560221	51.58	51.34	124	-71.66	V	90	Pass

^{*-} Margin = Measured emission - specification limit.

Reference numbers of test equipment used

HL 1915	HL 2780	HL 2871	HL 4353		

Full description is given in Appendix A.

^{**-} EUT front panel refer to 0 degrees position of turntable.

Test specification:	Sections 15.225(a) (b) (c), In band radiated emissions				
Test procedure:	ANSI C63.4, Sections 5.3 and 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	05-Dec-13	verdict.	PASS		
Temperature: 23 °C	Air Pressure: 1011 hPa	Relative Humidity: 58 %	Power Supply: Battery		
Remarks: For TR					

Plot 7.1.1 Fundamental emission test result

TEST DISTANCE: 3 m
DETECTOR: Peak hold
EUT POSITION Typical (Vertical)

Plot 7.1.2 In band radiated emission test results

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
DETECTOR: Peak hold

Test specification:	Sections 15.225(d), Out of band radiated emissions				
Test procedure:	ANSI C63.4, Sections 5.3 and 13.1.4				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	28-Nov-13 - 11-Dec-13	verdict.	FASS		
Temperature: 23.9 °C	Air Pressure: 1018 hPa	Relative Humidity: 46 %	Power Supply: Battery		
Remarks:					

7.2 Out of band radiated emissions

7.2.1 General

This test was performed to measure field strength of spurious emissions from the EUT. Specification test limits are given in Table 7.2.1.

Table 7.2.1 Radiated emission limits

Frequency, MHz	Field strength at 3 m within restricted bands, dB(μV/m)***						
i requericy, wiriz	Peak	Quasi Peak	Average				
0.009 - 0.090	148.5 – 128.5	NA	128.5 – 108.5**				
0.090 - 0.110	NA	108.5 – 106.8**	NA				
0.110 - 0.490	126.8 – 113.8	NA	106.8 – 93.8**				
0.490 - 1.705		73.8 – 63.0**					
1.705 – 30.0*		69.5**					
30 – 88] NA	40.0	NA NA				
88 – 216	INA	43.5	INA				
216 – 960		46.0					
960 - 1000		54.0					

^{*-} The above field strength limits applied from the lowest radio frequency generated in the device, without going below 9 kHz up to the tenth harmonic of the highest fundamental frequency.

where S_1 and S_2 – standard defined and test distance respectively in meters.

7.2.2 Test procedure for spurious emission field strength measurements in 9 kHz to 30 MHz band

- 7.2.2.1 The EUT was set up as shown in Figure 7.2.1, energized and the performance check was conducted.
- **7.2.2.2** The specified frequency range was investigated with loop antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna was rotated around its vertical axis and the measuring antenna polarization was switched from vertical to horizontal.
- 7.2.2.3 The worst test results (the lowest margins) were recorded in Table 7.2.2 and shown in the associated plots.

7.2.3 Test procedure for spurious emission field strength measurements above 30 MHz

- 7.2.3.1 The EUT was set up as shown in Figure 7.2.2, energized and the performance check was conducted.
- **7.2.3.2** The specified frequency range was investigated with antenna connected to spectrum analyzer/ EMI receiver. To find maximum radiation the turntable was rotated 360°, the measuring antenna height was changed from 1 to 4 m, its polarization was switched from vertical to horizontal.
- 7.2.3.3 The worst test results (the lowest margins) were recorded in Table 7.2.2 and shown in the associated plots.

^{**-} The limit for 3 m test distance was calculated using the inverse square distance extrapolation factor as follows: $Lim_{S2} = Lim_{S1} + 40 log (S_1/S_2)$,

^{***-} The limit decreases linearly with the logarithm of frequency.

Test specification:	Sections 15.225(d), Out o	Sections 15.225(d), Out of band radiated emissions						
Test procedure:	ANSI C63.4, Sections 5.3 and	ANSI C63.4, Sections 5.3 and 13.1.4						
Test mode:	Compliance	Verdict:	PASS					
Date(s):	28-Nov-13 - 11-Dec-13	verdict.	FASS					
Temperature: 23.9 °C	Air Pressure: 1018 hPa	Relative Humidity: 46 %	Power Supply: Battery					
Remarks:								

Figure 7.2.1 Radiated emissions below 30 MHz test set up

Figure 7.2.2 Radiated emissions above 30 MHz test set up

Test specification:	Sections 15.225(d), Out o	Sections 15.225(d), Out of band radiated emissions					
Test procedure:	ANSI C63.4, Sections 5.3 and	ANSI C63.4, Sections 5.3 and 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	28-Nov-13 - 11-Dec-13	verdict.	FASS				
Temperature: 23.9 °C	Air Pressure: 1018 hPa	Relative Humidity: 46 %	Power Supply: Battery				
Remarks:							

Table 7.2.2 Out of band radiated emissions test results

TEST DISTANCE: 3 m

EUT POSITION: Typical (Vertical)

MODULATION: AM TRANSMITTER OUTPUT POWER SETTINGS: Maximum

INVESTIGATED FREQUENCY RANGE: 0.009 – 1000 MHz
RESOLUTION BANDWIDTH: 1.0 kHz (9 kHz – 150 kHz)

9.0 kHz (150 kHz – 30 MHz) 120 kHz (30 MHz – 1000 MHz)

VIDEO BANDWIDTH:≥ Resolution bandwidthTEST ANTENNA TYPE:Active loop (9 kHz – 30 MHz)Biconilog (30 MHz – 1000 MHz)

	Peak	Quasi-peak				Antenna	Turn-table	
Frequency, MHz	emission, dB(μV/m)	Measured emission, dB(μV/m)	Limit, dB(μV/m)	Margin, dB*	Antenna polarization	height, m	position**, degrees	Verdict
189.8	31.9	30.9	43.5	-12.6	Horizontal	1.1	230	
217.0	26.4	23.8	46.0	-22.2	Horizontal	1.4	230	
732.2	37.7	34.8	46.0	-11.2	Horizontal	1.0	10	Pass
759.4	36.7	34.4	46.0	-11.6	Horizontal	1.0	360	Fa55
949.2	42.1	39.9	46.0	-6.1	Vertical	1.0	170	
976.3	43.8	42.0	54.0	-12.0	Vertical	1.0	180	

^{*-} Margin = Measured emission - specification limit.

Reference numbers of test equipment used

HL 0521	HL 0604	HL 1915	HL 2780	HL 2871	HL 4353	

Full description is given in Appendix A.

^{**-} EUT front panel refer to 0 degrees position of turntable.

Test specification:	Sections 15.225(d), Out o	Sections 15.225(d), Out of band radiated emissions						
Test procedure:	ANSI C63.4, Sections 5.3 and	ANSI C63.4, Sections 5.3 and 13.1.4						
Test mode:	Compliance	Verdict:	PASS					
Date(s):	28-Nov-13 - 11-Dec-13	verdict.	FASS					
Temperature: 23.9 °C	Air Pressure: 1018 hPa	Relative Humidity: 46 %	Power Supply: Battery					
Remarks:								

Plot 7.2.1 Radiated emission measurements from 9 to 150 kHz

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical
DETECTOR: Peak hold

Plot 7.2.2 Radiated emission measurements from 9 to 150 kHz

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal
DETECTOR: Peak hold

Test specification:	Sections 15.225(d), Out of	Sections 15.225(d), Out of band radiated emissions					
Test procedure:	ANSI C63.4, Sections 5.3 and	ANSI C63.4, Sections 5.3 and 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	28-Nov-13 - 11-Dec-13	verdict:	PASS				
Temperature: 23.9 °C	Air Pressure: 1018 hPa	Relative Humidity: 46 %	Power Supply: Battery				
Remarks:		-	-				

Plot 7.2.3 Radiated emission measurements from 0.15 to 30 MHz

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical
DETECTOR: Peak hold

No emissions were found, except fundamental frequency

Plot 7.2.4 Radiated emission measurements from 0.15 to 30 MHz

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal
DETECTOR: Peak hold

No emissions were found, except fundamental frequency

Test specification:	Sections 15.225(d), Out of	Sections 15.225(d), Out of band radiated emissions					
Test procedure:	ANSI C63.4, Sections 5.3 and	ANSI C63.4, Sections 5.3 and 13.1.4					
Test mode:	Compliance	Verdict:	PASS				
Date(s):	28-Nov-13 - 11-Dec-13	verdict:	PASS				
Temperature: 23.9 °C	Air Pressure: 1018 hPa	Relative Humidity: 46 %	Power Supply: Battery				
Remarks:		-	-				

Plot 7.2.5 Radiated emission measurements from 30 to 1000 MHz

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Vertical
DETECTOR: Peak hold

Plot 7.2.6 Radiated emission measurements from 30 to 1000 MHz

TEST SITE: Semi anechoic chamber

TEST DISTANCE: 3 m
ANTENNA POLARIZATION: Horizontal
DETECTOR: Peak hold

Test specification:	Section 15.225(e), Frequency stability					
Test procedure:	ANSI C63.4, Section 13.1.6					
Test mode:	Compliance	Verdict:	PASS			
Date(s):	15-Dec-13	verdict.	FASS			
Temperature: 20 °C	Air Pressure: 1009 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:						

7.3 Frequency stability test

7.3.1 General

This test was performed to measure frequency stability of transmitter RF carrier. Specification test limits are given in Table 7.3.1. The test results are provided in Table 7.3.2.

Table 7.3.1 Frequency stability limits

Assigned frequency MUz	Maximum allowed frequency displacement				
Assigned frequency, MHz	%	Hz			
13.560	± 0.01 %	1356			

7.3.2 Test procedure

- 7.3.2.1 The EUT was set up as shown in Figure 7.3.1, energized and its proper operation was checked.
- **7.3.2.2** The EUT power was turned off. Temperature within test chamber was set to the required one and a period of time sufficient to stabilize all of the oscillator circuit components was allowed.
- **7.3.2.3** The EUT was powered on and carrier frequency was measured at start up moment and then after 2, 5 and 10 minutes. The EUT was powered off.
- **7.3.2.4** The above procedure was repeated at the rest of the test temperatures and voltages as provided in Table 7.3.2.
- 7.3.2.5 Frequency displacement was calculated and compared with the limit as provided in Table 7.3.2.

Figure 7.3.1 Frequency stability test setup

Test specification:	Section 15.225(e), Frequency stability					
Test procedure:	ANSI C63.4, Section 13.1.6					
Test mode:	Compliance	Verdict: PASS				
Date(s):	15-Dec-13	Verdict:	PASS			
Temperature: 20 °C	Air Pressure: 1009 hPa	Relative Humidity: 44 %	Power Supply: Battery			
Remarks:		-	•			

Table 7.3.2 Frequency stability test results

OPERATING FREQUENCY: 13.560 MHz NOMINAL POWER VOLTAGE: 4.5 V TEMPERATURE STABILIZATION PERIOD: 20 min POWER DURING TEMPERATURE TRANSITION: Off SPECTRUM ANALYZER MODE: Counter RESOLUTION BANDWIDTH: 1 kHz VIDEO BANDWIDTH: 1 kHz MODULATION: Unmodulated

Temperature, Voltage,		Frequency, MHz			Max frequency drift, Hz		Limit,	Margin,	V	
•°C	٧	Start up	2 nd min	5 th min	10 th min	Positive	Negative	Hz	Hz	Verdict
-20	nominal	13.55993	13.55993	13.55993	13.55993	0	0		1356	
20	nominal +15%	13.55993	13.55993	13.55993	13.55993	0	0		1356	
20	nominal	13.55993	13.55993	13.55993	13.55993*	0	0	1356	1356	Pass
20	nominal -15%	13.55993	13.55993	13.55993	13.55993	0	0		1356	
50	nominal	13.55983	13.55983	13.55983	13.55983	0	100		1256	

^{* -} Reference frequency

Reference numbers of test equipment used

HL 0493	HL 0758	HL 1424	HL 3310		

Full description is given in Appendix A.

Test specification:	Section 15.215(c), Occupi	Section 15.215(c), Occupied bandwidth		
Test procedure:	ANSI C63.4, Section 13.1.7			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	16-Dec-13	verdict.	FASS	
Temperature: 21 °C	Air Pressure: 1007 hPa	Relative Humidity: 42 %	Power Supply: Battery	
Remarks:				

7.4 Occupied bandwidth test

7.4.1 General

This test was performed to verify that the 20 dB bandwidth of the emissions was contained within the standard specified frequency band according to FCC §15.215 requirements. Specification test limits are given in Table 7.4.1.

Table 7.4.1 Occupied bandwidth limits

Assigned frequency, MHz	Modulation envelope reference points*, dBc
13.110 – 13.410	
13.410 – 13.553	
13.553 – 13.567	20.0
13.567 – 13.710	
13.710 – 14.010	

^{*-} Modulation envelope reference points provided in terms of attenuation below modulated carrier.

7.4.2 Test procedure

- **7.4.2.1** The EUT was set up as shown in Figure 7.4.1, energized and its proper operation was checked.
- **7.4.2.2** The spectrum analyzer sweep time and bandwidth were set to capture all major modulation sidebands of emission and sweep time was set sufficiently slow to ensure peak measurements. Spectrum analyzer was set in peak hold mode and time sufficient for trace stabilization was allowed.
- **7.4.2.3** The peak of emission was measured. The transmitter occupied bandwidth was measured with spectrum analyzer as frequency delta between reference points on modulation envelope and provided in Table 7.4.2 and associated plot.
- **7.4.2.4** Modulation bandwidth was calculated by adding of the negative frequency drift to the lower measured frequency and the positive frequency drift to the higher measured frequency. The obtained modulation bandwidth was verified to be within the allowed frequency range.

Figure 7.4.1 Occupied bandwidth test setup

Test specification:	Section 15.215(c), Occupied bandwidth		
Test procedure:	ANSI C63.4, Section 13.1.7		
Test mode:	Compliance	Verdict:	PASS
Date(s):	16-Dec-13	verdict.	FASS
Temperature: 21 °C	Air Pressure: 1007 hPa	Relative Humidity: 42 %	Power Supply: Battery
Remarks:			

Table 7.4.2 Occupied bandwidth test results

ASSIGNED FREQUENCY BAND 13.11 – 14.01 MHz

DETECTOR USED:
RESOLUTION BANDWIDTH:
VIDEO BANDWIDTH:
MODULATION ENVELOPE REFERENCE POINTS:
MODULATING SIGNAL:
Peak hold
3 kHz
10 kHz
20 dBc
Enable

Band edge	Cross point	Frequency drift, kHz		Modulation band	Assigned band	Verdict
Dana eage	frequency, MHz	Negative Positive	edge, MHz	edge, MHz	verdict	
Low	The 20 dB bandwid	th of the emissio	ns is contained	13.11	Pass	
High	specified frequency	band		14.01	Pass	

Reference numbers of test equipment used

_							
	HL 1915	HL 2780	HL 2871	HL 4353			

Full description is given in Appendix A.

Test specification:	Section 15.215(c), Occupi	Section 15.215(c), Occupied bandwidth		
Test procedure:	ANSI C63.4, Section 13.1.7			
Test mode:	Compliance	Verdict:	PASS	
Date(s):	16-Dec-13	verdict.	FASS	
Temperature: 21 °C	Air Pressure: 1007 hPa	Relative Humidity: 42 %	Power Supply: Battery	
Remarks:				

Plot 7.4.1 Occupied bandwidth test result

Test specification:	Section 15.203, Antenna requirement				
Test procedure:	Visual inspection / supplier declaration				
Test mode:	Compliance	Verdict:	PASS		
Date(s):	16-Dec-13	verdict.	FASS		
Temperature: 21 °C	Air Pressure: 1007 hPa	Relative Humidity: 42 %	Power Supply: Battery		
Remarks:					

7.5 Antenna requirements

The EUT was verified for compliance with antenna requirements. A transmitter shall be designed to ensure that no antenna other than that furnished by the responsible party will be used with the device. It may be either permanently attached or employs a unique antenna connector for every antenna proposed for use with the EUT. This requirement does not apply to professionally installed transmitters.

The rationale for compliance with the above requirements was either visual inspection results or supplier declaration. The summary of results is provided in Table 7.5.1.

Table 7.5.1 Antenna requirements

Requirement	Rationale	Verdict
The transmitter antenna is permanently attached	Visual inspection	
The transmitter employs a unique antenna connector	NA	Comply
The transmitter requires professional installation	NA	

Photograph 7.5.1 RFID antenna assembly

8 APPENDIX A Test equipment and ancillaries used for tests

HL No	Description	Manufacturer	Model	Ser. No.	Last Cal./ Check	Due Cal./ Check
0493	Temperature Chamber -45175 deg C	Thermotron	S-1.2 Mini-Max	14016	30-May-13	30-May-14
0521	EMI Receiver (Spectrum Analyzer) with RF filter section 9 kHz-6.5 GHz	Hewlett Packard	8546A	3617A 00319, 3448A002 53	28-Oct-13	28-Oct-14
0604	Antenna BiconiLog Log-Periodic/T Bow-TIE, 26 - 2000 MHz	EMCO	3141	9611-1011	04-Jun-13	04-Jun-14
0758	Power supply, dual, 36 V, 1 A	Horizon Electronics	DHR 36-1	5361231	26-Jun-13	26-Jun-14
1424	Spectrum Analyzer, 30 Hz- 40 GHz	Agilent Technologies	8564EC	3946A002 19	10-Oct-13	10-Oct-14
1915	Antenna, Loop, Active Receiving, 1 kHz - 30 MHz	EMC Test Systems	6507	1457	31-Jan-13	31-Jan-14
2780	EMC analyzer, 100 Hz to 26.5 GHz	Agilent Technologies	E7405A	MY451024 62	10-Jul-13	10-Jul-14
2871	Microwave Cable Assembly, 18 GHz, 6.4 m, SMA - SMA	Huber-Suhner	198-8155- 00	2871	04-Dec-13	04-Dec-14
3310	Multimeter	Fluke	115C	94321810	14-Jul-13	14-Jul-14
4353	Low Loss Armored Test Cable, DC - 18 GHz, 6.2 m, N type-M/N type-M	MegaPhase	NC29- N1N1-244	12025101 003	06-Mar-13	06-Mar-14

9 APPENDIX B Measurement uncertainties

Expanded uncertainty at 95% confidence in Hermon Labs EMC measurements

Test description	Expanded uncertainty
Radiated emissions at 10 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.0 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.1 dB
	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 5.5 dB
	Biconical antenna: ± 5.5 dB
	Log periodic antenna: ± 5.6 dB
	Double ridged horn antenna: ± 5.8 dB
Radiated emissions at 3 m measuring distance	
Horizontal polarization	Biconilog antenna: ± 5.3 dB
	Biconical antenna: ± 5.0 dB
	Log periodic antenna: ± 5.3 dB
Market and a Corpora	Double ridged horn antenna: ± 5.3 dB
Vertical polarization	Biconilog antenna: ± 6.0 dB
	Biconical antenna: ± 5.7 dB
	Log periodic antenna: ± 6.0 dB
	Double ridged horn antenna: ± 6.0 dB
Conducted emissions at RF antenna connector	9 kHz to 2.9 GHz: ± 2.6 dB
	2.9 GHz to 6.46 GHz: ± 3.5 dB
	6.46 GHz to 13.2 GHz: ± 4.3 dB
	13.2 GHz to 22.0 GHz: ± 5.0 dB
	22.0 GHz to 26.8 GHz: ± 5.5 dB
	26.8 GHz to 40.0 GHz: ± 4.8 dB
Duty cycle, timing (Tx ON / OFF) and average	
factor measurements	± 1.0 %
Occupied bandwidth	± 8.0 %

Hermon Laboratories is accredited by A2LA for calibration according to present requirements of ISO/IEC 17025 and NCSL Z540-1. The accreditation is granted to perform calibration of parameters that are listed in the Scope of Hermon Laboratories Accreditation.

Hermon Laboratories calibrates its reference and transfer standards by calibration laboratories accredited to ISO/IEC 17025 by a mutually recognized Accreditation Body or by a recognized national metrology institute. All reference and transfer standards used in the calibration system are traceable to national or international standards.

In-house calibration of all test and measurement equipment is performed on a regular basis according to Hermon Laboratories calibration procedures, manufacturer calibration/verification procedures or procedures defined in the relevant standards. The Hermon Laboratories test and measurement equipment is calibrated within the tolerances specified by the manufacturers and/or by the relevant standards.

10 APPENDIX C Test laboratory description

Tests were performed at Hermon Laboratories Ltd., which is a fully independent, private, EMC, safety, environmental and telecommunication testing facility.

Hermon Laboratories is listed by the Federal Communications Commission (USA) for all parts of Code of Federal Regulations 47 (CFR 47), Registration Numbers 90624 for OATS and 90623 for the anechoic chamber; by Industry Canada for electromagnetic emissions (file numbers IC 2186A-1 for OATS, IC 2186A-2 for anechoic chamber, IC 2186A-3 for full-anechoic chamber for RE measurements above 1 GHz), certified by VCCI, Japan (the registration numbers are R-808 for OATS, R-1082 for anechoic chamber, G-27 for full-anechoic chamber for RE measurements above 1 GHz, C-845 for conducted emissions site, T-1606 for conducted emissions at telecommunication ports), has a status of a Telefication - Listed Testing Laboratory, Certificate No. L138/00. The laboratory is accredited by American Association for Laboratory Accreditation (USA) according to ISO/IEC 17025 for electromagnetic compatibility, product safety, telecommunications testing and environmental simulation (for exact scope please refer to Certificate No. 839.01). The FCC Designation Number is US1003.

Address: P.O. Box 23, Binyamina 30500, Israel.

Telephone: +972 4628 8001 Fax: +972 4628 8277 e-mail: mail@hermonlabs.com

e-mail: mail@hermonlabs.com website: www.hermonlabs.com

Person for contact: Mr. Alex Usoskin, CEO.

11 APPENDIX D Specification references

FCC 47CFR part 15: 2012 Radio Frequency Devices

ANSI C63.2: 1996 American National Standard for Instrumentation-Electromagnetic Noise and Field

Strength, 10 kHz to 40 GHz-Specifications

ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions

from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

12 APPENDIX E Test equipment correction factors

Antenna factor Active loop antenna EMC Test Systems Model 6507, S/N 1457, HL 1915

Frequency, kHz	Measured antenna factor, dBS/m
10	-22.7
20	-27.6
50	-31.3
75	-31.8
100	-32.2
150	-32.3
250	-32.6
500	-32.8
750	-33.0
1000	-33.1
2000	-33.4
3000	-33.7
4000	-34.0
5000	-34.3
10000	-34.9
15000	-35.6
20000	-35.9
25000	-36.1
30000	-36.7

The antenna factor shall be added to receiver reading in $dB_{\mu}V$ to obtain field strength in $dB_{\mu}A/m$.

Antenna factor Biconilog antenna EMCO Model 3141 Ser.No.1011, HL 0604

Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)	Frequency, MHz	Antenna factor, dB(1/m)
26	7.8	580	20.6	1320	27.8
28	7.8	600	21.3	1340	28.3
30	7.8	620	21.5	1360	28.2
40	7.2	640	21.2	1380	27.9
60	7.1	660	21.4	1400	27.9
70	8.5	680	21.9	1420	27.9
80	9.4	700	22.2	1440	27.8
90	9.8	720	22.2	1460	27.8
100	9.7	740	22.1	1480	28.0
110	9.3	760	22.3	1500	28.5
120	8.8	780	22.6	1520	28.9
130	8.7	800	22.7	1540	29.6
140	9.2	820	22.9	1560	29.8
150	9.8	840	23.1	1580	29.6
160	10.2	860	23.4	1600	29.5
170	10.4	880	23.8	1620	29.3
180	10.4	900	24.1	1640	29.2
190	10.3	920	24.1	1660	29.4
200	10.6	940	24.0	1680	29.6
220	11.6	960	24.1	1700	29.8
240	12.4	980	24.5	1720	30.3
260	12.8	1000	24.9	1740	30.8
280	13.7	1020	25.0	1760	31.1
300	14.7	1040	25.2	1780	31.0
320	15.2	1060	25.4	1800	30.9
340	15.4	1080	25.6	1820	30.7
360	16.1	1100	25.7	1840	30.6
380	16.4	1120	26.0	1860	30.6
400	16.6	1140	26.4	1880	30.6
420	16.7	1160	27.0	1900	30.6
440	17.0	1180	27.0	1920	30.7
460	17.7	1200	26.7	1940	30.9
480	18.1	1220	26.5	1960	31.2
500	18.5	1240	26.5	1980	31.6
520	19.1	1260	26.5	2000	32.0
540	19.5	1280	26.6		
560	19.8	1300	27.0		

Antenna factor in dB(1/m) is to be added to receiver meter reading in $dB(\mu V)$ to convert it into field strength in $dB(\mu V/m)$.

Cable loss Cable coaxial, Huber-Suhner, 18 GHz, 6.4 m, SMA - SMA, model 198-8155-00, HL 2871

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
10	0.12	5750	2.34	12000	3.55
30	0.14	6000	2.39	12250	3.61
100	0.27	6250	2.46	12500	3.67
250	0.45	6500	2.52	12750	3.74
500	0.63	6750	2.58	13000	3.79
750	0.76	7000	2.64	13250	3.82
1000	0.89	7250	2.68	13500	3.83
1250	1.01	7500	2.73	13750	3.83
1500	1.12	7750	2.78	14000	3.88
1750	1.23	8000	2.83	14250	3.93
2000	1.32	8250	2.88	14500	3.96
2250	1.41	8500	2.94	14750	4.01
2500	1.49	8750	2.97	15000	4.00
2750	1.58	9000	3.02	15250	4.01
3000	1.66	9250	3.07	15500	4.00
3250	1.73	9500	3.13	15750	4.13
3500	1.80	9750	3.18	16000	4.22
3750	1.87	10000	3.21	16250	4.29
4000	1.93	10250	3.26	16500	4.29
4250	2.01	10500	3.30	16750	4.32
4500	2.06	10750	3.36	17000	4.37
4750	2.12	11000	3.39	17250	4.45
5000	2.17	11250	3.44	17500	4.49
5250	2.24	11500	3.48	17750	4.53
5500	2.29	11750	3.52	18000	4.55

Cable loss Low Loss Armored Test Cable, MegaPhase, 18 GHz, 6.2 m, N type-M/N type-M, NC29-N1N1-244S/N 12025101 003, HL 4353

Frequency, MHz	Cable loss, dB	Frequency, MHz	Cable loss, dB
50	0.20	9000	2.71
100	0.27	9500	2.81
300	0.47	10000	2.90
500	0.61	10500	2.97
1000	0.87	11000	3.06
1500	1.07	11500	3.13
2000	1.24	12000	3.20
2500	1.39	12500	3.26
3000	1.53	13000	3.34
3500	1.65	13500	3.39
4000	1.77	14000	3.47
4500	1.89	14500	3.54
5000	1.99	15000	3.62
5500	2.07	15500	3.69
6000	2.20	16000	3.76
6500	2.30	16500	3.83
7000	2.39	17000	3.86
7500	2.51	17500	3.94
8000	2.58	18000	4.02
8500	2.65		

13 APPENDIX F Abbreviations and acronyms

A ampere

AC alternating current
A/m ampere per meter
AVRG average (detector)
cm centimeter
dB decibel

dBm decibel referred to one milliwatt $dB(\mu V)$ decibel referred to one microvolt

 $dB(\mu V/m)$ decibel referred to one microvolt per meter

 $dB(\mu A)$ decibel referred to one microampere

DC direct current

EIRP equivalent isotropically radiated power

ERP effective radiated power EUT equipment under test

F frequency GHz gigahertz GND ground H height

HL Hermon laboratories

Hz hertz k kilo kHz kilohertz LO local oscillator meter m MHz megahertz min minute millimeter mm ms millisecond microsecond μS not applicable NA OATS open area test site

 $\Omega \qquad \qquad \mathsf{Ohm}$

PS power supply

ppm part per million (10⁻⁶)

QP quasi-peak
RE radiated emission
RF radio frequency
rms root mean square

Rx receive s second T temperature Tx transmit V volt

END OF DOCUMENT