1 Symetric Matrices

$$\begin{bmatrix} 1 & 3 \\ 3 & 2 \end{bmatrix}$$

2 LDL^T Factorization

$$S = \begin{bmatrix} 1 & b \\ b & c \end{bmatrix} S = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
$$L = \begin{bmatrix} 1 & 0 & 0 \\ \frac{1}{2} & 1 & 0 \\ 0 & \frac{2}{3} & 1 \end{bmatrix}$$

3 LU with permutations allowed

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 2 & 3 & 4 \end{bmatrix}$$
Find P, L, U such that $PA = LU$
First $P_{21} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

$$E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix}$$

$$E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -3 & 1 \end{bmatrix}$$
Second problem $A = \begin{bmatrix} 1 & c & 0 \\ 2 & 4 & 1 \\ 3 & 5 & 1 \end{bmatrix}$
For what c values does A have a

For what c values does A have a zero third pivot and what P is needed to fix temporal failure of elimination?