3.RNN& LSTM& GRU

1.RNN

循环神经网络(Recurrent Neural network, RNN) 是一种用于**处理序列数据**的神经网络。相比与一般的神经网络,其很适合用于处理序列变化的数据。

1.1RNN的基本结构

由于本质是处理序列数据(一般按时间顺序,也有可能按照文本顺序)。其基本结构如下:

RNN时间线展开图

现在看上去就比较清楚了,这个网络在t时刻接收到输入xt之后,<mark>隐藏层的值(这个时刻下对应</mark>的状态值)是St,输出值是Ot。

$$S_{t} = f(U \cdot X_{t} + W \cdot S_{t-1})$$
$$O_{t} = g(V \cdot S_{t})$$

从公式中,可以看出,St的值不仅仅取决于xt,也取决于St-1。

同时,每个神经元都会接收上一个神经元的输出(其实这些神经元**都是相同的**,<mark>只有三个参数矩阵(U,W,V),每一层的参数相同,只是使用的状态不一样</mark>)。神经元的输出重新作为输入,因此将 其称为循环神经网络。

1.2RNN的问题

1. 只考虑了短期因素,没有考虑长期因素,因此不适合长序列。

一般的RNN,由于梯度弥散(消失),导致在序列很长的时候,无法在较后的时间步中,按照梯度更新较前时间步的W,导致无法根据后项序列来修改前向序列的参数,使得前向序列无法很好的做特征提取,使得在长时间过后,模型将无法再次获取有效的前向序列的记忆信息。

这一特点:导致了RNN不具备长期记忆的特点,只拥有短期记忆。

2. 长序列训练过程中存在梯度消失和梯度爆炸问题。

梯度消失:为此便提出了LSTM,GRU等结构变种,来解决RNN短期记忆的问题。

梯度爆炸:加入梯度裁剪即可有一定缓解。

2.LSTM的结构详解

2.1 粗对比

c change slowly ct is ct-1 added by something

h change faster ht and ht-1 can be very different

相比RNN只有一个传递状态ht,LSTM有两个传输状态,一个Ct(cell state)和一个ht(hidden state)。Tips,RNN中的ht相对于LSTM中的Ct。

其中对于传递下去的ct改变的很慢,通常输出的Ct是上一个状态传过来的C(t-1)加上一些数值。 ht在不同节点下往往会有很大的区别。

2.2LSTM详解

为了解决梯度消失和爆炸以及更好的预测和分类序列数据等问题,rnn逐渐转变为lstm。

$$i^{(t)} = \sigma(W^{(i)}x^{(t)} + U^{(i)}h^{(t-1)}) \qquad \text{(Input gate)}$$

$$f^{(t)} = \sigma(W^{(f)}x^{(t)} + U^{(f)}h^{(t-1)}) \qquad \text{(Forget gate)}$$

$$o^{(t)} = \sigma(W^{(o)}x^{(t)} + U^{(o)}h^{(t-1)}) \qquad \text{(Output/Exposure gate)}$$

$$\tilde{c}^{(t)} = \tanh(W^{(c)}x^{(t)} + U^{(c)}h^{(t-1)}) \qquad \text{(New memory cell)}$$

$$c^{(t)} = f^{(t)} \circ \mathbf{C}^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)} \qquad \text{(Final memory cell)}$$

$$h^{(t)} = o^{(t)} \circ \tanh(c^{(t)})$$

看的不是特别懂,下面就来逐一分析。

2.2.1遗忘门(第一个框)

这个阶段主要是对上一个节点传进来的输入进行选择性忘记。简单来说就是会 "忘记不重要的,记住重要的"。具体来说是通过计算得到的f(t)表示forget来作为忘记门控,来控制上一个状态的 C(t-1) 哪些需要留,哪些需要忘。(第二个公式)

2.2.2输入门(第二个框)

这个阶段将这个阶段的输入有选择性地进行"记忆"。主要是会对输入x(t)进行选择记忆。哪些重要则着重记录下来,哪些不重要,则少记一些。而选择的门控信号则是由 i代表(information)来进行控制。(第一个公式)

2.2.3输出门(第三个框)

这个阶段将决定哪些将会被当成当前状态的输出。

主要是通过o(t)来进行控制的(第三个公式)。并且还对上一阶段得到c的进行了放缩(通过一个tanh激活函数进行变化)。(第四个公式)

2.3LSTM各部分展开图

- 1. 首先输入为三个值,一个是此刻的输入值xt,另一个是上一时刻的状态值c(t-1),最后一个是上一个单元的输出h(t-1)。
- 2. 最终输出为两个值,一个是此刻产生的状态值ct和输出ht.
- 3. 首先是输入值x和上一个单元的输出h,分别两个输入都有对应的权重,在经过sigmoid激活作用下得到0-1的值,也就是三个门值。 **(得到紫色框中的三个门值)**

$$i^{(t)} = \sigma(W^{(i)}x^{(t)} + U^{(i)}h^{(t-1)})$$
 (Input gate)

$$f^{(t)} = \sigma(W^{(f)}x^{(t)} + U^{(f)}h^{(t-1)})$$
 (Forget gate)

$$o^{(t)} = \sigma(W^{(o)}x^{(t)} + U^{(o)}h^{(t-1)})$$
 (Output/Exposure gate)

4. 和3差不多,依然还是 输入值x和上一个单元的输出h,两个值有对应的权重和3中的描述一模一样,**唯一的区别在于有一个tanh激活函数**,最后相当于得到此时输入得到的当前state,也就是new memory。

这里可以理解为输入其实是近似的x和h的concatenate操作,经过正常的神经网络的权重,最后经过tanh激活函数得到此时输入的当前的state,x相当于此刻的输入,h为前面历史的输入,合在一起就是整个序列的信息,也就是此时的new memory。

$$\tilde{c}^{(t)} = \tanh(W^{(c)}x^{(t)} + U^{(c)}h^{(t-1)})$$
 (New memory cell)

5. 最后输出的state,也就是final memory的计算利用了input gate和forget gate,output gate只与输出有关。

final memory的计算自然而然和**上一步算得此时的记忆state相关**并且和**上一个输出的final memory相关**,故为忘记门和Ct-1的乘积加上上一步算出来的此时单元的C和输入门的乘积为最终的state。

忘记门和Ct-1的乘积:选择遗忘哪一些之前的信息

单元的C和输入门的乘积:选择保留当前状态的那些信息

$$c^{(t)} = f^{(t)} \circ \mathbf{C}^{(t-1)} + i^{(t)} \circ \tilde{c}^{(t)}$$
 (Final memory cell)

6. 输出门只与输出相关,最终的输出h为输出门乘以tanh(c)

$$h^{(t)} = o^{(t)} \circ \tanh(c^{(t)})$$

3.GRU

因为LSTM的训练比较慢,而GRU在其上稍微修改,速度可以快很多,而精度基本不变,所以 GRU也十分流行

$$z_{t} = \sigma (W_{z} \cdot [h_{t-1}, x_{t}])$$

$$r_{t} = \sigma (W_{r} \cdot [h_{t-1}, x_{t}])$$

$$\tilde{h}_{t} = \tanh (W \cdot [r_{t} * h_{t-1}, x_{t}])$$

$$h_{t} = (1 - z_{t}) * h_{t-1} + z_{t} * \tilde{h}_{t}$$

换个图看看:

1. 这里GRU只有两个gate,一个是reset gate, 一个是update gate,

update gate的作用类似于input gate和forget gate,

(1-z)相当于input gate, z相当于forget gate。

- 2. 输入为两个值,输出也为一个值,输入为输入此时时刻值x和上一个时刻的输出ht-1, 输出这个时刻的输出值ht。
- 3. 首先依然是利用xt和ht-1经过权重相乘通过sigmoid,得到两个0-1的值,即两个门值。

$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$

4. 接下来这里有一些不同,并且经常容易搞混淆。对于LSTM来说依然还是xt与ht-1分别权重相乘相加,之后经过tanh函数为此时的new memory。

而GRU为在这个计算过程中,在ht-1与权重乘积之后和reset gate相乘,之后最终得到new memory,**这里的reset gate的作用为让这个new memory包括**之前的ht-1的信息的多少。

$$\tilde{h}_t = \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right)$$

5. 接下来和lstm得到final memory其实一样,只是GRU只有两个输入,一个输出,其实这里h即输出也是state,就是说GRU的输出和state是一个值,所以4步骤得到的是new_h,这步骤得到的是final_h,通过update gate得到。

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

4.GRU与LSTM之间的比较

4.1 结构上

- 1. lstm为三个输入xt,ht-1,ct-1,两个输出。gru为两个输入xt,ht-1,一个输出ht,输出即state。
- 2. lstm有三个门,输入输出忘记门。gru有两个门,reset,update 门。
- 3. update 类似于 input gate和forget gate.

4.2 功能上

- 4. GRU参数更少,训练速度更快,**相比之下需要的数据量更少**。
- 5. 如果有足够的数据,LSTM的效果可能好于GRU。

4.LSTM实操

1.LSTM网络结构与pytorch

LSTM中将整个网络看成这样:

蓝色的模块是指前面的单位LSTM结构。横向连接的各个LSTM结构就是序列化。不同状态(时间)下的LSTM结构。纵向连接的是同一状态下LSTM结构。或者我们可以简单看作是多个LSTM细胞结构串联,其个数为num_layers,将其视为一个新的LSTM结构,并且按照时序连接起来。图中每个参数都是自带维度的。

Pytorch中的库:

nn.LSTM(input_size, hidden_size, num_layers)

input_size:输入的X的维度。

hidden_size: 输出和输入的hi 的维度。

num_layers: depth,即串联的LSTM个数。

2.时间序列实战

2.1. 数据

数据集,是从1949-1960,12年,每个月的乘客数量。即一共有144条数据,表示了144个月的 乘客数量。

		year		month	passengers		
0	4019 495c86c0		1949	January		112	
1			1949	February		118	
2 495c86cb			1949	495C86C5 March		132	
3			1949	April		129	
4	4019 495c86cb		1949	4019 495c86cb May		4019 40 121	
139			1960	August		606	
140			1960	September		508	
141			1960	October		461	
142	4019 495c86cb		1960	November		390	
143			1960	December		432	

2.2 思路

采用的肯定是利用前几期的数据来预测当前期的数据。(具体的方法是:利用前N(N=3)期的数据为输入,当前期的数据为标签计算误差)。个人觉得可以N是一个超参,可以慢慢调.

由于时间序列数据每个时期的数据样本只有一个,那么X为(time_step, 1, input_size), Y为 (time_step, 1, output_size)。

构建一个LSTM网络,输入的数据就是X,hidden_size可任意取,num_layers也可视情况取,即用多少层LSTM串联(同一时期内)。

最后用一层线性层Linear(hidden_size, output_size)进行输出。比较输出与Y的误差。不断迭代对参数进行优化。

2.3代码

```
1 #step 1. 加载飞行数据
 2 flight_data = pd.read_csv('flights.csv')
3 # 数据归一化
4 maxPassenger = flight_data['passengers'].max()
5 minPassenger = flight_data['passengers'].min()
6 flight_data['passengers'] = (flight_data['passengers'] - minPassenger) \
        / (maxPassenger - minPassenger)
 7
8
9
   dataset = flight_data['passengers'].values.tolist()
10
   #step 2. 划分数据集
11
12 # 数据集合目标函数值赋值,其中dateset为数据,look back为以几行数据为特征数目
13 # look back表示3期回头,即使用前三期的数据预测下一期
   # 用前3期数据预测下1期
14
   def createDataset(dataset, look back):
15
       dataX = []
16
       dataY = []
17
       for i in range(len(dataset)-look_back):
18
           dataX.append(dataset[i:i+look_back])
19
           dataY.append(dataset[i+look_back])
20
21
       dataX = torch.tensor(dataX)
22
       dataX = dataX.reshape(-1, 1, look back)
23
24
       dataY = torch.tensor(dataY)
       dataY = dataY.reshape(-1, 1, 1)
25
       return dataX, dataY
26
27
   data = createDataset(dataset=dataset, look_back=3) # 划分数据集,3个月为一组
28
29
   # step3. 划分训练集和测试集
30
   # 由于是时间序列数据,不适合这样随机打乱
31
   def splitData(data, rate=0.7): #默认是0.7的训练集,0.2的测试集
32
       # 默认训练集比例为0.7
33
       dataX, dataY = data
34
       nSample = dataX.shape[0]
35
       nTrain = int(nSample*rate)
36
       trainData = (dataX[:nTrain], dataY[:nTrain])
37
       testData = (dataX[nTrain:], dataY[nTrain:])
38
       return trainData, testData
39
40
41
42 # 获取训练集和测试集,用80%的数据来训练拟合,20%的数据来预测
43 rate = 0.8
44 trainData, testData = splitData(data, rate=rate)
```

```
1 # step4: 定义模型
   class LstmModel(nn.Module):
       def __init__(self, inputSize=5, hiddenSize=6):
3
           super().__init__()
 4
           # LSTM层-> 两个LSTM单元叠加
 5
           self.lstm = nn.LSTM(input_size = inputSize,
 6
7
                              hidden size = hiddenSize,
8
                               num_layers = 2)
           self.output = nn.Linear(6,1) # 线性输出
9
10
11
12
       def forward(self, x):
           # x: input->(time_step, batch, input_size)
13
           # x的维度是【数量量:整批数量量:输入特征维度】
14
          # X是【112 ,1, 3】
15
           # lstm两层,目标是从 3->6
16
17
           x1, (h,c) = self.lstm(x)
18
19
           # x1: output->(time_step, batch, output_size)
20
21
           a, b, c = x1.shape
           out = self.output(x1.view(-1,c)) # 只有三维数据转化为二维才能作为输入
22
           # 重新将结果转化为三维
23
           out = out.view(a,b,-1)
24
           return out
25
26
27 # 定义模型
28 lstm = LstmModel(inputSize=3) # inputSize与look_back保持一致
29
   # step5.模型训练
30
   def training_loop(nEpochs, model, optimizer, lossFn, trainData,
    testData=None):
       trainX, trainY = trainData
32
33
       if testData is not None:
           testX, testY = testData
34
        for epoch in range(1, nEpochs+1):
35
           optimizer.zero_grad() # 梯度清@
36
37
           trainP = model(trainX)
38
           loss = lossFn(trainP, trainY)
           loss.backward() # 反向传播
39
           optimizer.step()
40
           if epoch % 100 == 0:
41
               print(f"Epoch: {epoch}, Loss: {loss.item()}")
42
       return model
43
44
```

```
45
46 # 使用优化器Adam比SGD更好

47 optimizer = optim.Adam(lstm.parameters(), lr=0.1)
48 loss_func = nn.MSELoss()
49
50 # 训练模型
51 lstm = training_loop(nEpochs=1000, model= lstm,
52 optimizer=optimizer, lossFn=loss_func,
trainData=trainData)
```

Dockerfile

```
1 #Step6: 可视化
  dataX, dataY = data # 原始数据 -> (time_step, batch, input_size)
 3 dataY = dataY.view(-1).data.numpy() # 展开为1维
 4 dataY = dataY * (maxPassenger - minPassenger) + minPassenger
5 dataP = lstm(dataX) # 进行拟合
 6 dataP = dataP.view(-1).data.numpy() # 展开为1维
7 dataP = dataP * (maxPassenger - minPassenger) + minPassenger
8
   nTrain = int(dataX.shape[0] * rate) # 拟合的数量
   nData = dataX.shape[0] # 预测的数量
10
11
12 # 绘制对比图
13 plt.rcParams['font.sans-serif'] = 'KaiTi' # 正常显示中文
   fig = plt.figure(dpi=400)
14
   ax = fig.add_subplot(111)
15
16 ax.plot(dataY, color='blue', label="实际值")
   ax.plot(np.arange(nTrain), dataP[:nTrain], color='green',\
17
       linestyle='--', label = '拟合值')
18
19
   ax.plot(np.arange(nTrain, nData), dataP[nTrain:], \
        linestyle='--', color = 'red', label='预测值')
20
   ax.legend()
21
   fig.savefig('test.png', dpi=400)
22
23
```


5.一维卷积

5.1函数

- 一维卷积不代表卷积核只有一维,也不代表被卷积的feature是一维的。
- 一维的意思是,卷积的方向是一维的。

```
1 torch.nn.Conv1d(in_channels, out_channels, kernel_size,
 2
                 stride=1, padding=0, dilation=1, groups=1, bias=True)
 3
  in_channels(int) – 输入信号的通道。在文本分类中,即为词向量的维度
 5 out_channels(int) - 卷积产生的通道。卷积核的个数。
6
  kernel_size(int or tuple) - 卷积核的宽度,长度由in_channels来决定的
7
                           卷积核的大小【in_channels, kernel_size】
9
  stride(int or tuple, optional) - 卷积步长
  padding (int or tuple, optional) - 输入的每一条边补充0的层数
11
12
13 bias(bool, optional) - 如果bias=True,添加偏置
14
```

5.2 实例

```
1 import torch
2 import torch.nn as nn
3
4 # inchannels = 4, out_channels = 2,kernel_size = 3
5 # 卷积核的大小 (inchannels * kernel_size) (4,3)
6 # 输出的维度是2: 卷积核的个数 是 2.
7 m = nn.Convld(4, 2, 3, stride = 2)
8
9 # 第一个参数理解为batch的大小,输入是4 * 9格式
10 input = torch.randn(1, 4, 9)
11 output = m(input)
12
13 print(output.size()) # (1,2,4)
```

理解输入:输入是一个三通道的矩阵【N,X,Y】。

N: 样本的数量, 那么每一个样本的特征就是一个二维的矩阵。

X,Y: 就是这个样本的特征矩阵。

那么卷积核就是直接对【X,Y】矩阵进行**卷积**操作,得到一个结果。

二维卷积的滑动窗口,向右滑动,向下滑动。**一维卷积的滑动窗口就是一个方向滑动,那就是向** 右/ **向下**。

原始的输入的矩阵大小为: 【4,9】

那么卷积核的大小是: 【4,9】,每隔两个步骤卷积一次,【4*3】卷4次即可。

第一个卷积核进行如下操作:

	-0.2105, -1.0958,	0.7299,	ୀ.1003,	2.3175	o 0.8186,	-1.7510	় -0.1925,	0.8591	્
	1.0991, -0.3016,	1.5633,	0.6162,	0.3150	1.0413,	1.0571	-0.7014,	0.2239	ı
	-0.0658, 0.4755,	-0.6653,	-0.0696,	0.3483	-0.0360,	-0.4665	1.2606,	1.3365	i
sci	-0.0186, -1.1802,	-0.8835.	-1.1813.	0.5145	-0.0534,	-1 2568	A 3211	-2 4793	

得到输出1*4的输出:

[-0.8012, 0.0589, 0.1576, -0.8222]

第二个卷积核进行类似操作:

```
-0.2105, -1.0958, 0.7299, 1.1003,
                                    2.3175 0.8186, -1.7510,
                                                               -0.1925,
 1.0991, -0.3016,
                                             1.0413,
                  1.5633, 0.6162,
                                    0.3150
                                                      1.0571
                                                              -0.7014, 0.2239
-0.0658, 0.4755, -0.6653, -0.0696,
                                    0.3483
                                            -0.0360,
                                                     -0.4665
                                                               1.2606, 1.3365
-0.0186, -1.1802, -0.8835, -1.1813
                                    0.5145
                                            -0.0534,
```

得到输出1*4的输出:

[-0.8231, -0.4233, 0.7178, -0.6621]

合并得到最后的2*4的结果:

```
tensor([[[-0.8012, 0.0589, 0.1576, -0.8222], [-0.8231, -0.4233, 0.7178, -0.6621]]], grad_fn=<SqueezeBackward1>)
```

输入的input为 4 * 9 , 输出为 2 * 4

5.3完整分类实例

```
1 class CNN(nn.Module):
 2 def __init__(self, B):
           super(CNN, self).__init__()
           self.B = B
 4
           self.relu = nn.ReLU(inplace=True)
           self.conv1 = nn.Sequential(
 6
               nn.Conv1d(in_channels=15, out_channels=64, kernel_size=2), # 24 - 2
 7
 4019 + 1 = 23
 8
               nn.ReLU(),
               nn.MaxPool1d(kernel_size=2, stride=1), # 23 - 2 + 1 = 22
 9
10
           self.conv2 = nn.Sequential(
11
               nn.Conv1d(in_channels=64, out_channels=128, kernel_size=2), # 22 - 2
12
   + 1 = 21
               nn.ReLU(),
13
14
            nn.MaxPoolld(kernel_size=\frac{2}{2}, stride=\frac{1}{2}), # 21 - 2 + 1 = 20
15
           self.Linear1 = nn.Linear(self.B * 128 * 20, self.B * 50)
16
           self.Linear2 = nn.Linear(self.B * 50, self.B)
17
18
19
       def forward(self, x):
          x = self.conv1(x)
20
           x = self.conv2(x)
21
22
           # print(x.size()) # 15 127 20
           x = x.view(-1)
23
           # print(x.size())
24
           x = self.Linear1(x)
25
           x = self.relu(x)
26
27
           x = self.Linear2(x)
28
           x = x.view(x.shape[0], -1)
29
30
           return x
31
```