Problem 1

Solution

Let X_i be a random variable. If the *i*-th bin is not empty, then $X_i = 1$. Ohterwise, $X_i = 0$. For all *i*, we have $P\{X_i = 1\} = 1 - (1 - \frac{1}{n})^m$. Thus, the expected number of non-empty bins is $\mathbb{E}\left[\sum_{i=1}^n X_i\right] = \sum_{i=1}^n \mathbb{E}\left[X_i\right] = n(1 - (1 - \frac{1}{n})^m)$.

Problem 2

Solution

- Let $X \sim Ber(0.5)$. PMF of X is $P\{X = 0\} = 0.5; P\{X = 1\} = 0.5$. MGF of X is $M(\theta) = \mathbb{E}\left[e^{\theta X}\right] = 0.5 + 0.5e^{\theta}$.
- Let $X \in \mathbb{N}^+$ be a random variable, and $P\{X = i\} = \frac{1}{2^i}, i = 1, 2, 3, \dots$ Then, $M(\theta) = \sum_{i=1}^{\infty} (\frac{e^{\theta}}{2})^i$, which only exists when $\theta \in (-\infty, \ln 2)$.
- Let $X \in \{\pm 2^i, i = 1, 2, 3, ...\}$ be a random variable, and $P\{X = 2^i\} = \frac{1}{2^{i+1}}, \ P\{X = -2^i\} = \frac{1}{2^{i+1}}, \ i = 1, 2, 3, ...$ Then, $M(\theta) = \sum_{i=1}^{\infty} \frac{1}{2^{i+1}} (e^{2^i\theta} + e^{-2^i\theta}) > \sum_{i=1}^{\infty} \frac{e^{2^i|\theta|}}{2^{i+1}}$. The term in the summation $\frac{e^{2^i|\theta|}}{2^{i+1}}$ diverges to ∞ when $\theta \neq 0$. Thus, $M(\theta)$ only exists when $\theta = 0$.
- (i) Yes. Let X, Y be i.i.d. random variables. If $M(\theta)$ is the MGF of X, then the MGF of X+Y is $M(\theta)^2$. (ii) Yes. $M(k\theta) = \mathbb{E}\left[e^{k\theta X}\right]$ which is the MGF of kX. (iii) No. $kM(0) = k \neq 1$. (iv) Yes. $e^{k\theta}M(\theta) = \mathbb{E}\left[e^{\theta(X+k)}\right]$ which is the MGF of X+k.

Problem 3

Solution

• Markov's inequality: If Y is a nonnegative random variable, then for c > 0,

$$P\{Y \ge c\} \le \frac{\mathbb{E}[Y]}{c}.$$

• For $\theta \geq 0$,

$$P\{\sum_{i=1}^{n} X_i \ge nx\} = P\{e^{\theta(\sum_{i=1}^{n} X_i - nx)} \ge 1\}$$

$$\le \mathbb{E}\left[e^{\theta(\sum_{i=1}^{n} X_i - nx)}\right] = \mathbb{E}\left[e^{\theta X_1}\right]^n e^{-\theta nx} = e^{-n(\theta x - \ln \mathbb{E}\left[e^{\theta X_1}\right])} \le e^{-n\sup_{\theta > 0}(\theta x - \ln \mathbb{E}\left[e^{\theta X_1}\right])}$$

• This only holds for x > p. Let $g(\theta) = \theta x - \log(\mathbb{E}\left[e^{\theta X}\right]) = \theta x - \log(1 - p + pe^{\theta})$. Sovel $g'(\theta) = 0$, and we have $\theta^* = \log(\frac{x}{p} \cdot \frac{1-p}{1-x})$. Because x > p, $\theta^* > 0$, and $\sup_{\theta > 0} g(\theta) = g(\theta^*) = \mathbb{D}(x||p)$.

Problem 4

Solution

• Positive definite matrix: A symmetric real-valued matrix A is said to be positive definite if and only if for all column vector $x \neq \emptyset$, $x^{\mathsf{T}}Ax > 0$. Such a matrix has only positive eigenvalues. For such a matrix, a decomposition $A = Q^{\mathsf{T}}\Lambda Q$ is always possible, where $Q^{\mathsf{T}}Q = I$ and Λ is a diagonal matrix with only positive elements. Thus, we can decompose Σ by $\Sigma = Q^{\mathsf{T}}\Lambda Q$. Let $A = \sqrt{\Lambda}^{-1}Q$, where $\sqrt{\Lambda}$ is the element-wise square root of Λ , and $\sqrt{\Lambda}^{-1}$ is valid because Σ has only positive eigenvalues. Because Y is a finite linear combination of X, Y is also a Gaussian random vector. Then, we have $\mathbb{E}[Y] = A(\mathbb{E}[X] - \mu) = 0$, and

$$\begin{split} Cov(Y) &= \mathbb{E}\left[YY^\intercal\right] = \mathbb{E}\left[A(X-\mu)(X-\mu)^\intercal A^\intercal\right] = A\Sigma A^\intercal \\ &= \sqrt{\Lambda}^{-1}Q\Sigma Q^\intercal \sqrt{\Lambda}^{-1} = \sqrt{\Lambda}^{-1}\Lambda \sqrt{\Lambda}^{-1} = I. \end{split}$$

Thus, $Y \sim N(0, I)$.

• $A = \begin{bmatrix} 1 & 10 & 0 \\ 10 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ cannot be a covariance matrix. The 2nd principal minor of A is negative, so A is not positive definite. On the other hand, the first two random variables do not satisfy the Cauchy–Schwarz inequality, i.e. $Var(X_1)Var(X_2) < Cov(X_1, X_2)^2$.

Problem 5

Solution

- Jensen's inequality: Let ϕ be a convex function and let X be a random variable such that $\mathbb{E}[X]$ is finite. Then, $\mathbb{E}[\phi(X)] \ge \phi(\mathbb{E}[X])$.
- Let $\phi(X) = -\log(X), X > 0$. Then ϕ is a convex function. Let X be a random variable, and $P\{X = \frac{q_i}{p_i}\} = p_i$. Then, $\mathbb{D}(p||q) = \mathbb{E}\left[\phi(X)\right] \ge \phi(\mathbb{E}\left[X\right]) = \phi(\sum_{i=1}^m p_i \frac{q_i}{p_i}) = \phi(1) = 0$.