Repetition

Definition

The stochastic variable X has a Gaussian distribution with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 > 0$ if the probability density function is given by

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2\sigma^2}(x-\mu)^2\right), \quad x \in \mathbb{R}.$$

We will write $X \sim \mathcal{N}(\mu, \sigma^2)$.

Note: Also called a normal distribution.

Note 2: $\mathcal{N}(0,1)$ is called a standard Gaussian distribution.

Notation

We will use $\phi(\cdot)$ and $\Phi(\cdot)$ to denote the probability density function and cumulative distribution function, respectively, of $Z \sim \mathcal{N}(0,1)$. This means

$$\phi(z) = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{z^2}{2}\right), \quad z \in \mathbb{R},$$
$$\Phi(z) = \int_{-\infty}^{z} \phi(x) dx, \quad z \in \mathbb{R}.$$

Definition

The stochastic vector $\mathbf{X} = (X_1, X_2, \dots, X_n)$ has an n-dimensional multivariate Gaussian distribution with mean vector $\boldsymbol{\mu} = (\mu_1, \mu_2, \dots, \mu_n)$ and $n \times n$ covariance matrix Σ if its probability density function is given by

$$f(\boldsymbol{x}) = \left(\frac{1}{\sqrt{2\pi}}\right)^n \frac{1}{|\Sigma|^{1/2}} \exp\left(-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})^{\mathrm{T}} \Sigma^{-1}(\boldsymbol{x} - \boldsymbol{\mu})\right), \quad \boldsymbol{x} \in \mathbb{R}^n.$$

We will write $\boldsymbol{X} \sim \mathcal{N}_n(\boldsymbol{\mu}, \Sigma)$.

Note: Also called a multivariate normal distribution.

Notation

For stochastic variables X and Y, Cov[X,Y] = E[XY] - E[X]E[Y] denotes the covariance between X and Y. Note that

$$Cov[X, X] = Var[X].$$

For stochastic vectors \boldsymbol{X} and \boldsymbol{Y} of lengths m and n, respectively, $\Sigma = \text{Cov}[\boldsymbol{X}, \boldsymbol{Y}] = \text{E}[\boldsymbol{X}\boldsymbol{Y}^{\text{T}}] - \text{E}[\boldsymbol{X}]\text{E}[\boldsymbol{Y}]^{\text{T}}$ is an $m \times n$ matrix where

$$\Sigma_{ij} = \text{Cov}[X_i, Y_j], \quad i = 1, 2, \dots, m, \quad j = 1, 2, \dots, n.$$

We do not write Var[X] for a stochastic vector X.

We often use the short-hand notation

$$Cov[X] = Cov[X, X].$$

Theorem

Let X_1, X_2, \ldots, X_n be stochastic variables, $a_1, a_2, \ldots, a_n \in \mathbb{R}$, and $b_1, b_2, \ldots, b_n \in \mathbb{R}$, then

$$\operatorname{Cov}\left[\sum_{i=1}^{n} a_i X_i, \sum_{j=1}^{n} b_j X_j\right] = \sum_{i=1}^{n} \sum_{j=1}^{n} a_i b_j \operatorname{Cov}[X_i, X_j].$$

This means that $Cov[\cdot, \cdot]$ is bilinear.

In the most general form, one can write

$$\mathrm{Cov}[\mathbf{A}\boldsymbol{X},\mathbf{B}\boldsymbol{Y}] = \mathbf{A}\mathrm{Cov}[\boldsymbol{X},\mathbf{B}\boldsymbol{Y}] = \mathbf{A}\mathrm{Cov}[\boldsymbol{X},\boldsymbol{Y}]\mathbf{B}^{\mathrm{T}},$$

where the matrices \mathbf{A}, \mathbf{B} and the stochastic vectors \mathbf{X}, \mathbf{Y} have compatible dimensions.

Theorem

Assume $X \sim \mathcal{N}_n(\boldsymbol{\mu}, \Sigma)$, **A** is an $m \times n$ matrix, and **b** is a vector of length m. If $Y = \mathbf{A}X + \mathbf{b}$, then

$$Y \sim \mathcal{N}_m(\mathbf{A}\boldsymbol{\mu} + \boldsymbol{b}, \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}^{\mathrm{T}}).$$