

Übung 09: Transformation in Relationale Schemata

Aufgabe 1: Transformation von ER-Modellen in relationales Modell

a) Transformtieren Sie folgendes ER-Modell mittels der in der Vorlesung kennengelernten Abbildungsregeln in ein relationales Modell. Verschmelzen Sie dabei soweit wie möglich die entstehenden Relationen.

Entitäten

Kunde (LoginName, Passwort, Vorname, Nachname, Email, Telefon, Str., Stadt, PLZ, Staat)

Einkaufswagen (Datum, <u>ID</u>, Typ)

Artikel (Artikelnummer, Stückpreis, Bild, Name)

SKU (SKU-Nummer, Lagerort, Größe, Farbe, Artikelnummer)

Artikelnummer references Artikel(Artikelnummer)

Angebotskategorie (Beschreibung, ID)

Relationships

Schiebt (Loginnname not null, ID)

Loginnname references Kunde (Loginname)

ID references Einkaufswagen (ID)

Enthält (Menge, ID, SKU-Nummer, Artikelnummer)

ID references Einlaufswagen(ID)

SKU-Nummer references SKU(SKU-Nummer)

Artikelnummer references Artikel(Artikelnummer)

Zugeordnet (Artikelnummer, ID)

Artikelnummer references Artikel(Artikelnummer)

ID references Angebotskategorie(ID)

Verschmelzungen

Die Relationship Schiebt wird mit Einkaufswagen verschmolzen Einkaufswagen' (<u>ID</u>, Typ, Datum, LoginName) LoginName references Kunde(LoginName)

Die Relationship Zugeordnet wird mit Artikel verschmolzen Artikel' (Artikelnummer, Name, Preis, Bild, ID) ID references Artikelkategorie(ID)

b) Verfahren Sie mit dem folgenden Modell in gleicher Weise.

Entitäten

Zug (Zugnummer, Betreiber)
Wagen (Wagennummer, Herstellungsdatum)
Ausstattungsmerkmal (Bezeichner)
Sitzplatz (Platznummer, Wagennummer, Fenster)
Wagennummer references Wagen(Wagennummer)

Relationships

Besteht_Aus (Zugnummer, Wagennummer)
Zugnummer references Zug(Zugnummer)
Wagennummer references Wagen(Wagennummer)

Verschmelzungen

Besteht_Aus wird verschmolzen mit Wagen:

Wagen' (<u>Wagennummer</u>, Herstellungsdatum, Zugnummer not null) Zugnummer references Zug(Zugnummer)

c) Verfahren Sie mit dem folgenden Modell in gleicher Weise.

Entitäten

Student (Name, Geburtstag, Matrikel)

Dozent (Büro, Name, Tel)

Veranstaltung (Name, Semester, Raum)

Relationships

Besucht (Matrikel, Name, Semester)

Matrikel references Student(Matrikel)

Name, Semester references Veranstaltung(Name, Semester)

Hält (VeranstaltungsName, Semester, DozentenName)

VeranstaltungsName, Semester references Veranstaltung(Name, Semester)

DozentenName references Dozent(Name)

Verschmelzungen

Hält wird verschmolzen mit Veranstaltung

Veranstaltung' (Name, Semester, Raum, Dozent)

Dozent references Dozent(Name)

d) Verfahren Sie mit dem folgenden Modell in gleicher Weise.

Entitäten

Produkt (Name, Preis, Glutenfrei, Alk, Farbe, Senf, Vegetarisch)

Zutat (Name)

Zulieferer (Name)

Auto (Name)

Verkaufsstand (Anzahl Mitarbeiter, Name)

Weihnachtsmarkt (Name, Anfangsdatum, Enddatum, Gebühr)

Relationships

Enthält (ProduktName, ZutatName, Menge)

Produktname references Produkt(Name)

Zutatname references Zutat(Name)

Bietet_an (VerkaufsstandName, Produktname)

VerkaufsstandName references Verkaufsstand(Name)

ProduktName *references* Produkt(Name)

Liefert (ZuliefererName, ZutatName)

ZuliefererName references Zulieferer(Name)

ZutatName references Zutat(Name)

Zieht (VerkaufsstandName, AutoName)

VerkaufsstandName references Verkaufsstand(Name)

AutoName references Auto(Name)

Steht_auf (AnzahlVerkaufteGluehweine, WMarktName, WMarktDatum, VKSName)

(WMarktName, WMarktDatum) references Weihnachtsmarkt (Name, Anfangsdatum)

VKSName references Verkaufsstand (Name)

Verschmelzungen

Zieht wird verschmolzen mit Verkaufsstand

Verkaufsstand' (Anzahl Mitarbeiter, Name, AutoName not null)

AutoName references Auto(Name)