Práctica 4

Profesora: Lilia D. Tapia Mariscal

Objetivos

Multiplexor

- ✓ Estudiar el comportamiento y asimilar el funcionamiento de un multiplexor.
- ✓ Comprobar que se puede utilizar un multiplexor de n entradas de control para realizar cualquier función lógica de n variables.
- ✓ Estudiar y comprobar experimentalmente que con un multiplexor de n entradas de control, se puede implementar cualquier función lógica de n+1 variables.

El Multiplexor

Introducción

- Es un bloque combinacional para la conducción de la información
- Permite la síntesis de cualquier función de conmutación de hasta un determinado número de variables.
- El multiplexor que vamos a utilizar es el de 8 a 1, es decir, tendremos 2 entradas deselección (S1 y S0), 8 entradas de datos (D0, D1, D2, D3, D4, D5,D6,D7), y una salida de datos Y. La acción del multiplexor consiste en conectar a la única salida de datos, Z, una y sólo una de las entradas Di, viniendo decidida esta entrada de datos por los valores que tomen las entradas de selección S1, y S0.

	A	•		A	•		A	•		A	•
•		•	•		•	•		•	•		•
		_			_			_			_
A	•		A	•		A	•	•	•	•	•
	•	•		•	•	-	•	•	•	A	•
•		•	•		•	•		A	•		A
A	•	•	•	•	•	•	•		A	•	
	A	•	•						CIRC	דווי	ns
•	•	•	•				COM	1BTN	ACIC		

Plantamiento

Planteamiento

Realícese una unidad Lógica de 1 bit utilizando multiplexores que en función de las señales de control S1, S0, realice las funciones lógicas de los operandos A y B:

S1	S0	OPERACIONES LÓGICAS
0	0	A
0	1	A•B
1	0	A+B
1	1	A⊕B

S1,S0, A Y B SERÁN LOS PUERTOS DE ENTRADA

Requerimientos técnicos

Se utilizará el multiplexor **74LS151**, cuyo funcionamiento se y nombre de las patillas se muestra a continuación:

A, B, C = DATA SELECT

G = STROBE (S)

Y, W = OUTPUTS

DO,D1,D2,D3,D4,D5,D6, Y D7 = DATA INPUTS

Se utilizará el multiplexor 74LS151, cuyo funcionamiento se y nombre de las patillas se muestra a continuación:

S	C	В	A	Y	¥
1			81 <u> </u>	0	1
0	0	0	0	D_0	$\overline{D_0}$
0	0	0	1	D_1	$\overline{\mathbf{D}_{1}}$
0	0	1	0	D_2	$\overline{\mathbf{D}_2}$
0	0	1	1	D_3	$\overline{\mathbf{D}_3}$
0	1	0	0	D_4	$\overline{{ m D}_4}$
0	1	0	1	D_5	$\overline{\mathrm{D_5}}$
0	1	1	0	D_6	$\overline{\mathrm{D}_6}$
0	1	1	1	D ₇	$\overline{\mathbf{D}_7}$

El Strobe (S) nos indica que en 1,el multiplexor no hará nada. En cambio, cuando está en 0, nos habilita el Multiplexor.

Al construir la **unidad lógica**, tendremos lo siguiente: C= S1,B=S0 y A=A

Unidad lógica

С	В	Α		Υ	
S1	S2	Α	В	F	Di
0	0	0	0	0	D0=0
0	0	0	1	0	
0	0	1	0	1	D1=1
0	0	1	1	1	1.
0	1	0	0	0	D2=0
0	1	0	1	0	
0	1	1	0	0	D3=B
0	1	1	1	1	
1	0	0	0	0	D4=B
1	0	0	1	1	
1	0	1	0	1	D5=1
1	0	1	1	1	
1	1	0	0	0	D6=B
1	1	0	1	1	
1	1	1	0	1	D7= <u>B</u>
1	1	1	1	0	

S1	S0	OPERACIONES LÓGICAS
0	0	A
0	1	A∙B
1	0	A+B
1	1	A⊕B

Creación del esquemático

Estímulos

Simulación

