Class	Stay in hostel	(m) Total values	p(yes)	p(NO)
8 20	Yes=2, No=1		2/3	1/3
9	Yes=2, No=1		43	Y ₃
10	Yes=1, No=3	4	1/4	3/4
n	Ye=3, No=1		3/4	1/4
		M=19		

let's Calculate Crini imposity for "class" feature

$$= 1 - (\frac{2}{3})^2 - (\frac{1}{3})^2$$

$$G(class = 10) = 1 - (1/4)^2 - (3/4)^2$$

 $G(class = 11) = 1 - (3/4)^2 - (1/4)^2$ = -6/6

Weighted Scam of Gini Impurities for Class features > let's am it'm' To Colours) = no. of Instance (class=8) & Cr (class=8) + n(class=9) x ((class=9)) m total Instances let's call it (m)

Let's calcul	ate Gini Impurity	for "	Genden"	Peature
Crender	Stay on hostel		p(yes)	,
M	Yes = 5, No = 3	8	5/8	3/8
F	Yes=3, No=3	6	3/2	42
		m=14		

$$C_1(Genden) = \frac{8}{1-(5/8)^2-(3/8)^2}$$

$$= 1-0.39-0.14$$

$$c_1$$
 (Crender = F) = $1 - (\frac{1}{2})^2 - (\frac{1}{2})^2$

We can see that, = G (class) < G (Gender) Thus, own root node is class. class Chenden chender

Entropy of Whole Dataset

out of 14 instance, n(ves) = 8, n(NO)=6

Clars	Stay in hostel	(m) Total Values	· p(yes)	p(NO)
8 20	Yes=2, No=1		2/3	1/3
9	Yes=2, No=1		43	Y3
10	Ye=1, No=3	4	1/4	3/4
n	Yes=3, No=4		3/4	1/4
		MEIT		

Crender	Stay on hostel	n	p(yes)	(NO)
M	Yes = 5, No = 3	8	5/8	3/8
F	Yes=3, No=3	6	3/2	42
		m=19		

@decious =080)

$$= (class = 10) = - \frac{1}{4} \log_2(y_4) - \frac{3}{4} \log_2(\frac{3}{4})$$

$$E(\text{class}=11) = -3/4 \log_2(3/4) - -1/4 (\log_2(3/4))$$

Information from "Class"

$$E (Crender = M) = -\frac{5}{8} \log_2(\frac{5}{8}) - \frac{3}{8} \log_2(\frac{3}{8})$$

= 1

Information from "Gender"

I (Gender) = 8/4 x 0.953 + 6/4 x1

= 0.544+ 0.428

= 6.972

Information Gain from "Gender"

I.G (Crender) = E(S) - I (Gender)

= 0.985 - 0.972

= 0.012

We can clearly see,

I. G (Gender) < I.G (Class)

Since, "class" provides more enformation gain, trus
our root mode will be "class".

