

Exercise 15A

Hence, the angles of the triangle are $36^{\circ},\ (2\times36)^{\circ}$	and (2×36) ", i.e. 36 ", 72 " and 72 ".
Q9	
Answer:	
Suppose the angles are /4 /Rand/C	(Sum of the angles of a triangle is 180°)

Given:

$$\angle A = \angle B + \angle C$$

 $Also, \angle A + \angle B + \angle C = 180^{\circ}$
 $\therefore \angle A + \angle A = 180^{\circ}$
 $\Rightarrow 2\angle A = 180^{\circ}$
 $\Rightarrow \angle A = 90^{\circ}$

Hence, the triangle ABC is right angled at ZA.

Q10

Answer:

Suppose:
$$2\angle A = 3\angle B = 6\angle C = x^{\circ}$$

Then, $\angle A = \left(\frac{x}{2}\right)^{\circ}$
 $\angle B = \left(\frac{x}{3}\right)^{\circ}$ and $\angle C = \left(\frac{x}{6}\right)^{\circ}$

Sum of the angles of any triangle is 180°.

$$\angle A + \angle B + \angle C = 180^{\circ}$$

$$\Rightarrow \frac{x}{2} + \frac{x}{3} + \frac{x}{6} = 180^{\circ}$$

$$\Rightarrow \frac{3x + 2x + x}{6} = 180^{\circ}$$

$$\Rightarrow \frac{6x}{6} = 180^{\circ}$$

$$\Rightarrow x = 180$$

$$\therefore \angle A = \left(\frac{180}{2}\right)^{\circ} = 90^{\circ}$$

$$\angle B = \left(\frac{180}{3}\right)^{\circ} = 60^{\circ}$$

$$\angle C = \left(\frac{180}{6}\right)^{\circ} = 30^{\circ}$$

Answer:

We know that the angles of an equilateral triangle are equal. Let the measure of each angle of an equilateral triangle be x° .

$$\therefore x + x + x = 180$$

$$x = 60$$

Hence, the measure of each angle of an equilateral triangle is 60°.

Q12

Answer:

(i)

 $DE \parallel BC$

$$\therefore \angle ABC = \angle ADE = 55^{\circ}$$

(Corresponding angles)

(ii) Sum of the angles of any triangle is 180°.

$$\therefore \angle A + \angle B + \angle C = 180^{\circ}$$

 $\angle C = 180^{\circ} - (65^{\circ} + 55^{\circ}) = 60^{\circ}$

DE II BC

$$\therefore \angle AED = \angle ACB = 60^{\circ}$$
 (corresponding angles)

(iii) We have found in point (ii) that $\angle C$ is equal to 60° .

Q13

Answer:

- (i) No. This is because the sum of all the angles is 180°
- (ii) No. This is because a triangle can only have one obtuse angle.
- (iii) Yes
- (iv) No. This is because the sum of the angles cannot be more than 180°.
- (v) No. This is because one angle has to be more than 60° as the sum of all angles is always 180°.
- (vi) Yes, it will be an equilateral triangle

Q14

Answer:

- (i) Yes, it will be an isosceles right triangle.
- (ii) Yes, a right triangle can have all sides of different measures. For example, 3, 4 and 5 are the sides of a scalene right triangle.
- (iii) No, it cannot be an equilateral triangle since the hypotenuse square will be the sum of the square of the other two sides.
- (iii) Yes, if an obtuse triangle has an obtuse angle of 120° and the other two angles of 30° each, then it will be an isosceles triangle

Q15

Answer:

- (i) obtuse (since the sum of the other two angles of the right triangle is 90°)
- (ii) equal to the sum of 90°
- (iii) 45° (since their sum is equal to 90°)
- (iv) 60°
- (v) a hypotenuse
- (vi) perimeter