

FDS6680A

Single N-Channel, Logic Level, PowerTrench® MOSFET

General Description

This N-Channel Logic Level MOSFET is produced using AT UÙB'OÔP AS emiconductor's advanced Power Trench process that has been especially tailored to minimize the on-state resistance and yet maintain superior switching performance.

These devices are well suited for low voltage and battery powered applications where low in-line power loss and fast switching are required.

Features

- 12.5 A, 30 V $R_{DS(ON)} = 9.€ mΩ$ @ $V_{GS} = 10 V$ $R_{DS(ON)} = 13 \mbox{\'E} \ mΩ$ @ $V_{GS} = 4.5 \ V$
- Ultra-low gate charge
- High performance trench technology for extremely low $R_{\text{DS}(\text{ON})}$
- High power and current handling capability

Absolute Maximum Ratings T_A=25°C unless otherwise noted

Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Source Voltage		30	V	
V _{GSS}	Gate-Source Voltage		±20		
I _D	Drain Current - Continuous	(Note 1a)	12.5	A	
	- Pulsed		50		
P _D	Power Dissipation for Single Operation	(Note 1a)	2.5	W	
		(Note 1b)	1.2		
		(Note 1c)	1.0		
T _J , T _{STG}	Operating and Storage Junction Temperation	ture Range	-55 to +150	°C	

Thermal Characteristics

$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient	(Note 1a)	50	°C/W
$R_{\theta JC}$	Thermal Resistance, Junction-to-Ambient	(Note 1)	25	

Package Marking and Ordering Information

Device Marking	Device	Reel Size	Tape width	Quantity
FDS6680A	FDS6680A	13"	12mm	2500 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics	•	•		•	•
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, \qquad I_{D} = 250 \mu\text{A}$	30			V
<u>ΔBV_{DSS}</u> ΔT _J	Breakdown Voltage Temperature Coefficient	I_D = 250 μ A, Referenced to 25°C		25		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = 24 \text{ V}, \qquad V_{GS} = 0 \text{ V}$			1	μΑ
		$V_{DS} = 24 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 55^{\circ}\text{C}$			10	μА
I_{GSS}	Gate-Body Leakage	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS} = V_{GS}, \qquad I_{D} = 250 \ \mu A$	1	2	3	V
$\Delta V_{GS(th)} \over \Delta T_J$	Gate Threshold Voltage Temperature Coefficient	$I_D = 250 \mu A$, Referenced to $25^{\circ}C$		-4.9		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$V_{GS} = 10 \text{ V}, \qquad I_D = 12.5 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \qquad I_D = 10.5 \text{ A}$ $V_{GS} = 10 \text{ V}, \qquad I_D = 12.5 \text{ A}, T_J = 125^{\circ}\text{C}$	Ä	‱∰yÈ∈ 9.Í <i>∰</i> 11.0	F€.5 WWFHLE 15	mΩ
I _{D(on)}	On–State Drain Current	$V_{GS} = 10 \text{ V}, \qquad V_{DS} = 5 \text{ V}$	25			Α
g _{FS}	Forward Transconductance	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 12.5 \text{ A}$		64		S
Dvnamic	Characteristics	1	ı	ı	1	I
C _{iss}	Input Capacitance	$V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$		1620		pF
Coss	Output Capacitance	f = 1.0 MHz		380		pF
C _{rss}	Reverse Transfer Capacitance	1		160		pF
R _G	Gate Resistance	V _{GS} = 15 mV, f = 1.0 MHz		1.3		Ω
Switchin	g Characteristics (Note 2)	•	•	•	•	•
t _{d(on)}	Turn-On Delay Time	$V_{DD} = 15 \text{ V}, \qquad I_D = 1 \text{ A},$		10	19	ns
t _r	Turn-On Rise Time	$V_{GS} = 10 \text{ V}, \qquad R_{GEN} = 6 \Omega$		5	10	ns
t _{d(off)}	Turn-Off Delay Time	1		27	43	ns
t _f	Turn-Off Fall Time	1		15	27	ns
Q _g	Total Gate Charge	$V_{DS} = 15 \text{ V}, \qquad I_{D} = 12.5 \text{ A},$		16	23	nC
Q_{gs}	Gate-Source Charge	$V_{GS} = 5 \text{ V}$		5		nC
Q_{gd}	Gate-Drain Charge			5.8		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				
Is	Maximum Continuous Drain-Source	e Diode Forward Current			2.1	Α
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 \text{ V}, I_S = 2.1 \text{ A} \text{(Note 2)}$		0.73	1.2	V
t _{rr}	Diode Reverse Recovery Time	$I_F = 12.5 \text{ A}, d_{iF}/d_t = 100 \text{ A/}\mu\text{s}$		28		ns
Q _{rr}	Diode Reverse Recovery Charge			18		nC

 R_{8JA} is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R_{8JC} is guaranteed by design while R_{8CA} is determined by the user's board design.

a) 50°C/W when mounted on a 1in² pad of 2 oz copper

b) 105°C/W when mounted on a .04 in² pad of 2 oz copper

c) 125°C/W when mounted on a minimum pad.

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width < $300\mu s,$ Duty Cycle < 2.0%

Typical Characteristics

Figure 1. On-Region Characteristics.

BFigure 3. On-Resistance Variation with Temperature.

Figure 5. Transfer Characteristics.

Figure 2. On-Resistance Variation with Drain Current and Gate Voltage.

Figure 4. On-Resistance Variation with Gate-to-Source Voltage.

Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature.

Typical Characteristics

Figure 7. Gate Charge Characteristics.

Figure 9. Maximum Safe Operating Area.

Figure 10. Single Pulse Maximum Power Dissipation.

Figure 11. Transient Thermal Response Curve.

Thermal characterization performed using the conditions described in Note 1c. Transient thermal response will change depending on the circuit board design.

SOIC-8 Tape and Reel Data

Packa	aina	Descri	intion:

Packaging Description:

SOIC-8 parts are s hipped in tape. The c arrier tape is made f roma dissipative (carbon filled) polycarbonate resin. The cover tape is a multilayer film (Heat Activated Adhesive in nature) primarily composed of polyester film, adhesive la yer, s ealant, and anti-static sprayed agent. These reeled parts in standard option are shipped with 2,500 units per 13° or 330cm diameter reel. The reels are dark blue in color and is made of polystyrene plastic (anti-static coated). Other option comes in 500 units per 7° or 177cm diameter reel. This and s ome other options are further described in the Packaging Information table.

These full reels are in dividually ba rcode la beled a nd placed in side a standard intermediate box (illustrated in figure 1.0) made of recyclable corrugated brown pa per. One box contains two reels maximum. And these boxes are placed inside a barcode labeled shipping box which comes in different sizes depending on the number of parts shipped.

ACTR Label

ESD Label

SOIC-8 Unit Orientation

343mm x 342mm x 64mm Standard Intermediate box

SOIC(8Ids) Tape Leader and Trailer Configuration: Figure 2.0

Label

Part Marking Information

SO-8 (PMG Code)

SO-8 Devices

FDS6680A = Example Base Part Number

• = Pin 1 Indicator

△ = ESD Symbol 🔊

9 = Year Code

A = Month Code

3 = Week Code

H = Assembly Factory Code

NOTE:

1. For analog switches base part includes DG prefix. Package suffix may or may not be present, depending on room available.

The current marking strategy is reflected. Contact your local sales representative for historical marking strategies for these packages.

SOIC-8 Package Dimensions

SOIC-8 (PKG Code S1)

Scale 1:1 on letter size paper
Dimensions shownbe low a re in:
inches [millimeters]

Part Weight per unit (gram): 0.0774

SOIC-8 Tape and Reel Data, continued

SOIC(8lds) Embossed Carrier Tape

Dimensions are in millimeter														
Pkg type	A0	В0	w	D0	D1	E1	E2	F	P1	P0	K0	т	Wc	Тс
SOIC(8lds) (12mm)	6.50 +/-0.10	5.30 +/-0.10	12.0 +/-0.3	1.55 +/-0.05	1.60 +/-0.10	1.75 +/-0.10	10.25 min	5.50 +/-0.05	8.0 +/-0.1	4.0 +/-0.1	2.1 +/-0.10	0.450 +/- 0.150	9.2 +/-0.3	0.06 +/-0.02

Notes: A0, B0, and K0 dimensions are determined with respect to the EIA/Jedec RS-481 rotational and lateral movement requirements (see sketches A, B, and C).

Sketch A (Side or Front Sectional View)

Component Rotation

Sketch B (Top View)

Component Rotation

Sketch C (Top View)

Component lateral movement

SOIC(8lds) Reel Configuration: Figure 4.0

7" Diameter Option Dim C Dim D

DETAIL AA

	Dimensions are in inches and millimeters									
Dim B	Dim C	Dim D	Dim N	Dim W1	Dim W2	Dim W3 (LSL-USL)				
0.059	512 +0.020/-0.008	0.795	2.165	0.488 +0.078/-0.000	0.724	0.469 - 0.606				
1.5	13 +0.5/-0.2	20.2	55	12.4 +2/0	18.4	11.9 - 15.4				
0.059	512 +0.020/-0.008	0.795	7.00	0.488 +0.078/-0.000	0.724	0.469 - 0.606				
	13 +0.5/-0.2	20.2	178	12.4 +2/0	18.4	11.9 - 15.4				

Dim A

Reel Option

7" Dia

13" Dia

Tape Size

12mm