

Programação Linear - método simplex Investigação Operacional

J.M. Valério de Carvalho vc@dps.uminho.pt

Departamento de Produção e Sistemas Escola de Engenharia, Universidade do Minho

21 de outubro de 2020

Programação Linear - método simplex

antes

Existe sempre um vértice que é uma solução óptima do problema.^(*)

Guião

- As soluções básicas do sistema de equações (vértices) podem ser representadas em quadros.
- O algoritmo Simplex explora uma sequência de vértices admissíveis.
- Em cada vértice, é necessário avaliar se o vértice actual é o óptimo, e se não for, decidir qual o vértice adjacente seguinte.
- Uma operação fundamental do algoritmo é o pivô (a mudança de um vértice para um vértice adjacente).
- O método algébrico para efectuar o pivô é a eliminação de Gauss.

depois

Há situações particulares que serão analisadas depois.

J.M. Valério de Carvalho, U.Minho

(*) - neste conjunto de diapositivos, vamos assumir que existe pelo menos uma solução admissível (i.e., o problema não é

Programação Linear - método simplex

Conteúdo de la conteú

- Representação de vértices num quadro: o quadro simplex
- Algoritmo simplex
 - coluna pivô: teste de optimalidade
 - linha pivô: vértice admissível adjacente
- Resolução de um Exemplo
- Apêndices
 - Referência à eliminação de Gauss

Lembrete

Quando nos movemos ao longo de uma aresta, desde um vértice,

os valores das variáveis alteram-se do seguinte modo:

- Variáveis não-básicas:
 - há uma única variável não-básica cujo valor aumenta;
 - as restantes variáveis não-básicas permanecem nulas.
- Variáveis básicas:
 - alteram-se de acordo com o sistema de equações.

Dois vértices são adjacentes, se houver apenas a troca de 2 variáveis:

- uma variável não-básica num vértice é básica no vértice adjacente;
- uma variável básica num vértice é não-básica no vértice adjacente.

Representação do vértice num quadro: o quadro simplex

Cada quadro simplex apresenta:

- o sistema de *m* equações das restrições resolvido em ordem a um conjunto de variáveis básicas, *i.e.*,
- uma solução básica do sistema de equações (associando valores nulos às variáveis não-básicas), i.e.,
- um vértice do poliedro.

Além disso, apresenta:

a equação da função objectivo, na última linha.

nota:

• A função objectivo $z = 12x_1 + 10x_2$ é representada como:

$$z - 12x_1 - 10x_2 = 0$$

Exemplo

$$3x_1 + 2x_2 +1s_1 = 120$$

$$1x_1 + 2x_2 +1s_2 = 80$$

$$1x_1 +1s_3 = 30$$

$$z -12x_1 - 10x_2 = 0$$

$$x_1, x_2, s_1, s_2, s_3 \ge 0$$

	Z	<i>x</i> ₁	<i>X</i> 2	<i>s</i> ₁	<i>s</i> ₂	<i>s</i> ₃	
<i>s</i> ₁	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
<i>5</i> 3	0	1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0

- As m variáveis básicas e a f. obj. são identificadas na 1.ª coluna.
- Os respectivos valores aparecem na última coluna (lado direito).
- As restantes (n-m) variáveis não-básicas têm valor 0.

O quadro simplex tem uma matriz identidade $I_{m+1,m+1}$ formada:

- pelas m colunas das variáveis básicas, e
- pela coluna de z, a variável que representa a função objectivo.

A matriz identidade do quadro simplex: necessidade

Quadro simplex deve ter sempre uma matriz identidade. Só assim é que:

- cada equação mostra como variam:
 - o cada variável básica e
 - a função objectivo

em função apenas das variáveis não-básicas;

• se podem identificar as decisões correctas no algoritmo simplex.

Exemplo: Variáveis básicas: $x_B = (s_1, s_2, s_3)^{\top}$ Variáveis não-básicas: $x_N = (x_1, x_2)^{\top}$

$$\begin{cases} s_1 &=& 120 & -3 x_1 & -2 x_2 \\ s_2 &=& 80 & -1 x_1 & -2 x_2 \\ s_3 &=& 30 & -1 x_1 \\ z &=& 0 & +12 x_1 & +10 x_2 \end{cases} \qquad \frac{\begin{vmatrix} z & x_1 & x_2 & s_1 & s_2 & s_3 \\ s_1 & 0 & 3 & 2 & 1 & 0 & 0 & 120 \\ s_2 & 0 & 1 & 2 & 0 & 1 & 0 & 80 \\ s_3 & 0 & 1 & 0 & 0 & 0 & 1 & 30 \\ \hline z & 1 & -12 & -10 & 0 & 0 & 0 & 0 \end{cases}$$

Vértice $a:(x_1,x_2)^{\top}=(0,0)^{\top}$

Vértice $b:(x_1,x_2)^{\top}=(30,0)^{\top}$

Vértice $c: (x_1, x_2)^{\top} = (30, 15)^{\top}$

Vértice $d:(x_1,x_2)^{\top}=(20,30)^{\top}$

Método simplex

Método simplex

- Um *simplex* é um poliedro formado por um dado vértice e *n* vértices adjacentes. É o poliedro mais simples no espaço a *n* dimensões.
- O método simplex dá origem a um algoritmo que percorre uma sequência de vértices admissíveis até atingir a solução óptima.

Algoritmo Simplex (informal)

- seleccionar um vértice admissível inicial
- enquanto (existir um vértice admissível adjacente melhor)
 mudar para vértice admissível adjacente melhor

Operações fundamentais do algoritmo simplex:

- teste de optimalidade: existe algum vértice admissível adjacente ao vértice actual com melhor valor de função objectivo?
- 2 pivô: mudança de uma base (vértice) para uma base adjacente.

Selecção do elemento pivô no algoritmo simplex

- Efectuar um pivô traduz-se em reescrever o sistema de equações, resolvendo-o em ordem a um novo conjunto de variáveis básicas, o que se faz usando eliminação de Gauss.
- Na inversão de matrizes ou na resolução de sistemas de equações, há regras para seleccionar o elemento pivô (cruzamento da coluna pivô com a linha pivô).

No algoritmo simplex, a regra de selecção da:

- coluna pivô (variável não-básica que entra na base) visa mudar para um vértice melhor;
- 2 linha pivô (variável básica que sai da base) assegura que o próximo vértice é admissível.

Coluna pivô: teste de optimalidade do vértice a

Coluna pivô: teste de optimalidade no quadro simplex

	Z	<i>x</i> ₁	<i>X</i> 2	s_1	<i>s</i> ₂	<i>s</i> ₃	
s_1	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
<i>s</i> ₃	0	1	2 2 0	0	0	1	30
Z	1	-12	-10	0	0	0	0

A linha da função objectivo é a equação:

$$z - 12x_1 - 10x_2 = 0.$$

- Aresta \overline{ab} : quando x_1 aumenta (mantendo $x_2 = 0$), $\partial z/\partial x_1 = 12$.
- Aresta \overline{ae} : quando x_2 aumenta (mantendo $x_1 = 0$), $\partial z/\partial x_2 = 10$.
- Em ambos os casos, o valor da função objectivo z aumenta: o vértice a não é o vértice óptimo.

Coluna pivô: regra de selecção

 Regra de Dantzig: seleccionar a variável não-básica com maior variação da função objectivo por unidade de incremento da variável não-básica ao longo da aresta, i.e.:

A coluna pivô (da variável não-básica a entrar na base) é:

- a coluna com o coeficiente mais negativo da linha da função objectivo, em problemas de maximização.
- a coluna com o coeficiente mais positivo da linha da função objectivo, em problemas de minimização.
- Esta escolha visa atingir a solução óptima mais rapidamente.
- Em caso de empate, a escolha é arbitrária (ou desempata-se seleccionando a aresta que conduz ao vértice adjacente com melhor valor da função objectivo).

⁻ há outras regras como: Devex rule, partial pricing, nested pricing.

Coluna pivô: e se não existir ...

Caracterização algébrica: uma solução é óptima:

- se não existir nenhum coeficiente negativo na linha da função objectivo, em problemas de maximização.
- se não existir nenhum coeficiente positivo na linha da função objectivo, em problemas de minimização.
- Exemplo: $z + 3.5 s_1 + 1.5 s_2 = 540$ (problema de maximização)
- quando s_1 aumenta (mantendo $s_2 = 0$), $\partial z/\partial s_1 = -3.5$
- quando s_2 aumenta (mantendo $s_1 = 0$), $\partial z/\partial s_2 = -1.5$
- Em ambos os casos, a função objectivo z diminui.
- (o mesmo acontece se s_1 e s_2 aumentarem ambas; são iguais a 0, e apenas podem aumentar).

Ver caracterização geométrica

Linha pivô: pivô do vértice $a \rightarrow$ vértice b

Linha pivô: variação das variáveis básicas

- Cada elemento da coluna pivô indica a variação do valor de uma variável básica quando se caminha ao longo da aresta.
- Exemplo:

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
<i>s</i> ₁	0	3	2	1	0	0	120
s 2	0	1	2	0	1	0	80
s 3	0	1	2 2 0	0	0	1	30
Z	1	-12	-10	0	0	0	0

• Quando x_1 aumenta (e x_2 se mantém = 0), o sistema de equações que descreve a variação das variáveis básicas em função de x_1 é:

$$\begin{cases} s_1 = 120 - \frac{3}{3}x_1 \\ s_2 = 80 - \frac{1}{3}x_1 \\ s_3 = 30 - \frac{1}{3}x_1 \end{cases}$$

Linha pivô: variável que sai da base

• É aquela que, <u>ao decrescer</u>, atinge primeiro o valor zero quando a variável não-básica aumenta.

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3					
s_1	0	3	2	1	0	0	120	ĺ	<i>s</i> ₁	=	$120 - 3x_1$
<i>s</i> ₂	0	1	2	0	1	0	80	₹	<i>s</i> ₂	=	$80 - 1x_1$
<i>s</i> ₃	0	1	0	0	0	1	30	l	<i>s</i> ₃	=	$80 - 1x_1$ $30 - 1x_1$
Z	1	-12	-10	0	0	0	0				

nota: o elemento pivô é sempre **positivo**, porque, se o coeficiente for:

- nulo, a variável básica mantém o valor (i.e., mantém-se ≥ 0);
- negativo, a variável básica aumenta (i.e., mantém-se ≥ 0);
- nota: as coordenadas do vértice adjacente $x_1, x_2, s_1, s_2, s_3 \ge 0$.

Linha pivô: linha da menor razão positiva

• razão entre o coef. do lado direito e o coef. da coluna pivô

		x_1		s_1	s ₂	<i>s</i> ₃		
<i>s</i> ₁	0	3	2	1	0	0	120	120/3 = 40
<i>s</i> ₂	0	1	2	0	1	0	80	$120/3 = 40 \\ 80/1 = 80$
<i>s</i> ₃	0							30/1 = 30
Z	1	-12	-10	0	0	0	0	

Exemplo: a menor razão positiva é 30

- Coluna pivô: coluna de x_1 (entra na base, e atinge o valor 30).
- Linha pivô: linha de s_3 (atinge o valor 0, e torna-se não-básica).

	Z		<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	
s_1	0	0 0 1		1	0		
<i>s</i> ₂	0	0		0	1		
x_1	0	1	0	0	0	1	30
Z	1	0		0	0		

Linha pivô: regra de selecção

Dada uma coluna pivô, a linha pivô (da variável básica que sai da base):

• é a linha com menor razão positiva.

clarificação:

- **positiva** significa que o coeficiente da coluna pivô deve ser > 0.
- A menor razão pode ser 0, se o lado direito for 0.
- Se não existir um coeficiente da coluna pivô > 0, a solução óptima é ilimitada [veremos depois].
- Em caso de empate, o próximo vértice é degenerado [veremos depois].

Algoritmo simplex (problema de maximização)

- Selecção de um vértice admissível inicial
 - Se não existir, problema é impossível [veremos depois]
- Repetir
 - Selecção da coluna pivô:
 - Coeficiente mais negativo da linha da função objectivo
 - (em caso de empate, escolha arbitrária)
 - Se não existir coef.<0, solução óptima.
 - Selecção da linha pivô:
 - Menor razão (lado direito/coluna pivô) positiva (coef.col.>0)
 - (em caso de empate, o próximo vértice é degenerado) [veremos depois]
 - Se não existir coef.col.>0, solução óptima é ilimitada [veremos depois]
 - Fazer eliminação de Gauss
- Enquanto (solução não for óptima)

Resolução do Exemplo

- Vamos apenas fazer o teste de optimalidade de cada quadro e identificar o elemento pivô.
- Não serão apresentadas as operações do método de eliminação de Gauss.
- No Apêndice, mostra-se como as efectuar, quer manuseando linhas, quer fazendo cálculos elemento a elemento.

Vértice a (vértice admissível inicial)

Vértice $a \rightarrow \text{vértice } b$

Vértice b

Vértice $b \rightarrow \text{vértice } c$

Vértice c

53

-1.5

-3

15

20

30

510

Vértice $c \rightarrow \text{vértice } d$

Vértice d

Vértice d : solução óptima

Verificação da solução óptima

$$\max z = 12x_1 + 10x_2 \\ 3x_1 + 2x_2 \leq 120 \\ 1x_1 + 2x_2 \leq 80 \\ 1x_1 \leq 30 \\ x_1, x_2 \geq 0$$

Ζ *X*1 *X*2 *S*1 52 **5**3 1 -0.250.75 30 0 X2 Solução óptima: 0.5 -0.5 1 10 **5**3 0.5 -0.5 0 20 x_1 3.5 1.5 0 540 z

Verificação da solução (uso de recursos e valor da solução óptima):

	act.1	act.2	folga	qto	d.rec.	
recurso 1:	3(20)	+2(30)		=	120	
recurso 2:	1(20)	+2(30)		=	80	
recurso 3:	1(20)		+10	=	30	
valor f.obj.:	12(20)	+10(30)				

= 540

Conclusão

- O resultado que estabelece que existe um vértice que é uma solução óptima do problema permite que o algoritmo simplex restrinja a procura apenas aos vértices admissíveis.
- As decisões (selecção da coluna e da linha pivô) garantem que se muda de um vértice admissível (do problema primal) para outro vértice admissível mais próximo da solução óptima.
- A mudança de base faz-se usando eliminação de Gauss.

Apêndices

Método de eliminação de Gauss: manuseamento de linhas

• Elemento pivô: (cruzamento linha pivô e coluna pivô).

	Z	<i>x</i> ₁	<i>X</i> 2	<i>s</i> ₁	s 2	5 3	
s_1	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
s 3	0	3 1 1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0

- A variável x_1 entra na base e a variável s_3 sai da base:
 - Novas variáveis básicas: s₁, s₂, x₁
 - Novas variáveis não-básicas: x₂,s₃
- Pretende-se que a coluna da variável x_1 , que entra na base, faça parte da matriz identidade:

	Z	x_1	<i>x</i> ₂	s_1	s ₂	s 3	
<i>s</i> ₁	0	0		1	0		
s ₂	0	0		0	1		
x_1	0 0 0	1		0	0		
Z	1	0		0	0		

Nota: para uma explicação mais detalhada do Método da Eliminação de Gauss, ver o tutorial,

em particular, a partir da pág.22, onde se apresentam os cálculos necessários a efectuar o pivô realizado nos diapositivos seguintes

É necessário eliminar coeficiente de x_1 da primeira linha

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
s_1	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
<i>s</i> ₃	0	3 1 1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0

- Usando a equação da linha pivô: $x_1 + s_3 = 30 \Leftrightarrow x_1 = 30 s_3$, substituindo na primeira linha: $3x_1 + 2x_2 + s_1 = 120 \Leftrightarrow 3(30 s_3) + 2x_2 + s_1 = 120 \Leftrightarrow 2x_2 + s_1 3s_3 = 30$
- É equivalente a somar à 1.ª linha a linha pivô multiplicada por -3:

Linha 1	0	3	2	1	0	0	120
−3×LinhaPivô	0	-3	0	0	0	-3	-90
Resultado	0	0	2	1	0	-3	30

• Quadro seguinte:

	Z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	<i>s</i> ₃	
<i>s</i> ₁	0	0	2	1	0	-3	30
<i>X</i> 1	0	1	0	 0	0	1	30
^1	_				-		30

Eliminação de Gauss: cálculo elemento a elemento

- Os cálculos podem ser feitos elemento a elemento, reproduzindo as operações que se efectuam com as linhas.
- Os dois quadros representam dois conjuntos de células, um do quadro actual e outro do quadro seguinte.
- O elemento pivô é o elemento a, e as outras células ocupam uma posição na mesma linha ou na mesma coluna do elemento pivô.

Eliminação de Gauss: exemplo I

	z	<i>x</i> ₁	<i>x</i> ₂	s_1	<i>s</i> ₂	s 3	
$\overline{s_1}$	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
<i>s</i> ₃	0	1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0
	Z	<i>x</i> ₁	<i>X</i> 2	<i>s</i> ₁	<i>s</i> ₂	5 3	
s_1	0	0	2	1	0	-3	30
x_1	0	1	0	0	0	1	30

quadro actual

_	1444	_	
	3		120
	1		30

quadro seguinte

0	(120.1-30.3)/1
1	30/1

3	120
1	0

Eliminação de Gauss: exemplo II

	Z	x_1	<i>X</i> 2	s_1	<i>s</i> ₂	<i>5</i> 3	
$\overline{s_1}$	0	3	2	1	0	0	120
<i>s</i> ₂	0	1	2	0	1	0	80
<i>s</i> ₃	0	1	0	0	0	1	30
Z	1	-12	-10	0	0	0	0
	Z	<i>x</i> ₁	<i>X</i> 2	<i>s</i> ₁	s 2	5 3	
s_1	0	0	2	1	0	-3	30
x_1	0	1	0	0	0	1	30
Z	1	0	-10	0	0	12	360

quadro actual

quadro seguinte

	·
1	30/1
0	(0.1-30.(-12))/1

$$\Rightarrow \begin{array}{c|c} 1 & 30 \\ \hline 0 & 360 \end{array}$$

◀ Voltar

1. Pivô: direcção

O que significa $x_B = B^{-1}b - \theta B^{-1}N_j$?

- A solução básica $B^{-1}b$ é o vértice x_{v_actual} .
- O vector $B^{-1}N_i$ indica uma direcção d.
- O vector θd , $\theta \ge 0$, é um múltiplo escalar do vector d.

ou seja, no pivô

- partindo do vértice x_{v_actual} , ao longo da direcção $d \in IR^n$, percorremos os pontos $x = x_{v_actual} + \theta \ d$, que devem pertencer ao domínio, i.e., $A(x_{v_actual} + \theta d) = b$.
- Como $Ax_{v_actual} = b$, d deve ser uma direcção tal que Ad = 0.
- Quando $\theta = \theta_{max}$, atingimos o vértice adjacente x_{v_adj} :

$$x_{v_adj} = x_{v_actual} + \theta_{max} d$$

• Quando só uma variável aumenta, d é a direcção de uma aresta.

1. Pivô: aumento máximo

• Quando $\theta = \theta_{max}$, atingimos o vértice adjacente $x_{v \ adj}$:

$$x_{v_adj} = x_{v_actual} + \theta_{max} d$$

 O aumento máximo é determinado pelo facto de que se deve permanecer na região admissível, ou seja, nenhuma variável pode ter valor negativo.

1. Exemplo: aresta vértice $c \rightarrow d$ (s_3 aumenta)

• no vértice c, as equações que relacionam o valor das variáveis são:

$$\begin{cases} x_2 = 15 & -0.5 \, s_1 + 1.5 \, s_3 \\ s_2 = 20 & +1 \, s_1 & -2 \, s_3 \\ x_1 = 30 & -1 \, s_3 \end{cases}$$

• para caminhar para o vértice d, a variável não-básica s_3 aumenta e s_1 mantém-se igual a 0:

$$\begin{cases} x_2 = 15 & +1.5 \, s_3 \\ s_2 = 20 & -2 \, s_3 \\ x_1 = 30 & -1 \, s_3 \end{cases}$$

ullet o que é equivalente ao seguinte conjunto de equações usando heta para representar o incremento:

$$x = \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 30 \\ 15 \\ 0 \\ 20 \\ 0 \end{pmatrix} + \theta \cdot \begin{pmatrix} -1 \\ 1.5 \\ 0 \\ -2 \\ 1 \end{pmatrix}$$

1. Exemplo: aresta vértice $c \rightarrow d$ (s_3 aumenta) (cont.)

• quando a variável não-básica s_3 aumenta de θ unidades, a variável básica x_2 aumenta de 1.5θ unidades, s_2 decresce de 2θ unidades, e x_1 decresce de θ unidades.

$$x = \begin{pmatrix} x_1 \\ x_2 \\ s_1 \\ s_2 \\ s_3 \end{pmatrix} = \begin{pmatrix} 30 \\ 15 \\ 0 \\ 20 \\ 0 \end{pmatrix} + \theta \cdot \begin{pmatrix} -1 \\ 1.5 \\ 0 \\ -2 \\ 1 \end{pmatrix}$$

- Esta representação baseia-se num ponto, o vértice c, e numa direcção, o vector cd.
- Exercício: verificar que $Ax_{v_actual} = b$ e Ad = 0.
- Quando $\theta = \theta_{max} = 10$, atingimos o vértice adjacente x_{v_adj} :

$$x_{vertice_d} = x_{vertice_c} + \theta_{max} d$$

2. Pivô: como variam as variáveis básicas quando a variável não-básica aumenta θ unidades?

• O sistema de equações das restrições é $Bx_B + Nx_N = b$.

Num pivô, do conjunto de variáveis não-básicas \mathcal{N} ,

- uma variável não-básica x_j , $j \in \mathcal{N}$, aumenta θ unidades, $\theta \in \mathbb{R}_+$,
- as restantes variáveis não-básicas $x_i, i \in \mathcal{N} \setminus \{j\}$, mantêm-se nulas.
- Assim, o sistema de equações que descreve as mudanças dos valores das variáveis envolvidas no pivô é $Bx_B + N_j.x_j = b$, ou $Bx_B = b \theta N_j$.
- Pré-multiplicando por B^{-1} :

$$x_B = B^{-1}b - \theta B^{-1}N_j$$

- em que $B^{-1}b$ é a coluna do lado direito do quadro simplex, e $B^{-1}N_j$ é a coluna da variável não-básica que aumenta.
- Os 2 exemplos seguintes mostram as mudanças dos valores das variáveis, quer no quadro simplex inicial, quer no quadro actual.

2. Exemplo: vértice $a \rightarrow$ vértice b (aumenta x_1)

2. Exemplo: vértice $c \rightarrow$ vértice d (aumenta s_3)

2. Pivô: dependência linear

 A coluna N_j da variável não-básica j e as colunas da variáveis básicas são um conjunto de vectores linearmente dependentes:

$$N_j - B \left(B^{-1} N_j \right) = 0$$

- Exemplo: vértice c (base x_2, s_2 e x_1) e var não-básica s_3 aumenta:
- quando a variável não-básica s_3 aumenta de θ unidades, a variável básica x_2 aumenta de 1.5θ unidades, s_2 decresce de 2θ unidades, e x_1 decresce de θ unidades.

$$\theta \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} + 1.5 \theta \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix} - 2 \theta \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - 1 \theta \begin{bmatrix} 3 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

3. Caracterização geométrica da solução óptima

- Solução é óptima se o gradiente da função objectivo estiver contido no cone (combinação não-negativa) gerado pelos vectores simétricos dos gradientes das restrições activas no vértice óptimo.
- O gradiente da restrição $a^i x \le b_i (i.e., a^i x + s_i = b_i)$ é:

$$\partial s_i/\partial x = -a^i$$

Exemplo:

restrição
$$3x_1 + 2x_2 + s_1 = 120$$
 \rightarrow $\partial s_1/\partial x = (-3, -2)^{\top}$.
restrição $1x_1 + 2x_2 + s_2 = 80$ \rightarrow $\partial s_2/\partial x = (-1, -2)^{\top}$.

• Gradiente da função objectivo, \vec{c} , é uma combinação não-negativa dos vectores simétricos dos gradientes das restrições activas ($s_1 = 0$ e $s_2 = 0$)

$$\vec{c} = \begin{pmatrix} 12\\10 \end{pmatrix} = 3.5 \begin{pmatrix} 3\\2 \end{pmatrix} + 1.5 \begin{pmatrix} 1\\2 \end{pmatrix}$$

• os coeficientes 3.5 e 1.5 são os mesmos do quadro simplex.

3. Solução óptima: gradiente \vec{c} está contido no cone

3. Certificado de optimalidade

3. Solução em que o gradiente \vec{c} não está contido no cone

Fim