CONCORDIA UNIVERSITY Department of Mathematics & Statistics

Course	Number	Sections
Mathematics	203	All
Examination	Date	Duration
Midterm Test	10 March 2019	$1\ \mathrm{h}\ 30\ \mathrm{min}$
Special	Only approved calculators are allowed	
Instructions:	Show all your work for full marks	

- **1.** (12 marks): **(a)** Solve for $x : 2 \log_2(x) = 2 + \log_2(x+3)$.
 - (b) Let $f(x) = \log_2(3-x)$ and $g(x) = 4x^2 1$. Find the composite function $f \circ g$ and determine its domain and its range.
 - (c) Let $f(x) = 3^{x^4-1}$ and $g(x) = 3^{5x-1}$. Determine which of these functions **is not** invertible and which one is (**explain!**), and find the inverse of the invertible function.
- 2. (6 marks) Find (a) all horizontal and (b) all vertical asymptotes of the graph $y = \frac{|x|\sqrt{9x^4 + 6x^2 + 2}}{(2x+3)(x+1)^2}$
- **3.** (8 marks) Find the limit or explain why the limit does not exist:

(a)
$$\lim_{x \to \infty} \left(\sqrt{x^2 - 2x} - x \right)$$

(b)
$$\lim_{x \to 0} \frac{\sqrt{2x^2 + 5x^4}}{x}$$

- **4.** (4+3 marks) Given the function $f(x) = \frac{2}{x-3}$,
 - (a) Use the definition of derivative to calculate the derivative f'(x).
 - (b) Write equation of the tangent line to the curve y = f(x) at the point (1, -1).

(continued on the other side)

- **5.** (5 marks) Find the third derivative of $f(x) = e^{bx} (e^{bx} + e^{3-bx})$, where b is a parameter, and calculate its **exact** value at x = 0, i.e. calculate f'''(0). (HINT: simplify f(x) before calculating the derivatives.)
- **6.** (12 marks) Find the derivatives of the following functions:

(a)
$$f(x) = \frac{2x^3 + x - 10}{x\sqrt{x}}$$

$$(\mathbf{b}) \quad f(x) = e^x + x^e - e x$$

$$\mathbf{(c)} \quad f(x) = \frac{\tan(3x)}{1+x^2}$$

(d)
$$f(x) = \cos^2(\sin(3x) + x^3 e^x)$$

Bonus Question (3 marks). Consider the function

$$f(x) = \begin{cases} x+a & \text{if } x \le 1\\ ax^2 + b & \text{if } x > 1 \end{cases}$$

where a and b are parameters. Find the values of a and b that make f(x) differentiable everywhere, or explain why this is impossible.