

Calcul Différentiel II

Analyse3-AP2 1440/2018

Excercice 1:

Proposer une fonction qui admet une dérivée directionnelle en un point donné suivant tout vecteur u non nul mais elle n'est pas différentiable en ce point.

Excercice 2:

Trouver et classifier les points critiques des fonctions suivantes:

1.
$$f(x,y) = x^2 + y^2(1-x)^3$$
.

2.
$$g(x,y) = 2x^2 - y^3 - 2xy$$
.

3.
$$h(x,y) = x^2 + y^2 - xy + x + y$$
.

Excercice 3:

Trouver les extremums absolus de la fonction $f(x,y) = 5 + 4x - 2x^2 + 3y - y^2$ sur la région R délimitée par les droites y = 2, y = x et y = -x.

Excercice 4:

Une usine fabrique 2 produits P_1 et P_2 en utilisant un certain nombre de ressources : équipement, main d'oeuvre, matières premières. Ces besoins sont indiqués dans le tableau ci-dessous. Par ailleurs, chaque ressource est disponible en quantité limitée,

	P_1	P_2	disponibilité
équipement	3	9	81
main d'oeuvre	4	5	55
matières premières	2	1	20

Les deux produits P_1 et P_2 rapportent à la vente respectivement des bénéfices de 6 euros et 4 euros par unité. Quelles quantités de produits P_1 et P_2 (valeurs non-nécessairement entières) doit produire l'usine afin de maximiser le bénéfice total venant de la vente des 2 produits ?