5

6

7 8

9

10 11

	•	•
\ \ \ \ \ \	\sim	aim
VV C	•	ann

- A seismic receiver for detecting seismic energy and/digital data relating to the detected seismic energy to a data recorder, the receiver comprising:
 - a casing:
 - a seismic energy detector that detects the seismic energy and converts the detected seismic energy into an analog electrical signal;
- an analog to digital converter, coupled to the seismic energy receptor, that converts the analog electrical signal into the digital data;
- a digital signal transmission circuitry, coupled to the analog to digital converter, that transmits the digital data to the data recorder; and
- the seismic energy detector, the digital transmission circuitry, and the analog to digital converter housed within the casing.
- The seismic receiver of claim 1, further comprising: 1 2.
- a control circuitry, coupled to the analog to digital converter, that 2 3 controls functions associated with the operation of the seismic receiver.
- 1 The seismic receiver of claim 2, further comprising an amplifier, coupled to 3.
- 2 the analog to digital converter, that amplifies the analog signal.
- The seismic receiver of claim 3 wherein the control circuitry controls the 1 4.
- amplifier. 2
- The seismic receiver of claim 2, further comprising a power management 1 5.
- 2 circuitry, the power management circuitry housed in the casing and providing power
- 3 to components of the seismic receiver.
- 1 6. The receiver of claim 2 wherein the control circuitry provides clock signals to
- 2 the analog to digital converter.
- The seismic receiver of claim 2 wherein the control circuitry is operable to 7. 1
- receive a signal from the external source, and initiates a transmission of the data in 2
- 3 response to the signal.

Attorney Docket No. 13109.00011

PATENT Customer No. 22444

1 8. The seismic receiver of claim 2 wherein the digital transmission circuitry and
2 the analog to digital converter are embodied on a PCB in the casing.

1 9. A method for obtaining seismic data, the method comprising:
2 detecting a seismic event at a seismic receiver;

converting the seismic event into an analog electrical signal;

4 converting the analog electrical signal into a digital data within the

5 receiver;

3

6 awaiting a signal to transfer the digital data;

7 transferring the digital data to a remote collection device upon

8 receiving the signal to transfer.

- 1 10. The method of claim \(\) wherein the signal to transfer is generated from outside
- 2 of the receiver.
- 1 11. The method of claim 8 wherein the signal to transfer is generated from within
- 2 the receiver.
- 1 12. The method of claim 8 wherein the step of converting the analog signal is
- 2 accomplished with an analog to digital converter.
- 1 13. The method of claim 8 further comprising the step of amplifying the analog
- 2 electrical signal.
- 1 14. The method of claim 8 wherein the step of transferring is accomplished at
- 2 least in part with a control circuitry located within a casing of the seismic receiver.
- 1 15. A method of collecting seismic data from a seismic receiver at a collection
- device, the seismic receiver collecting seismic energy, the method comprising:
- determining a digital signal indicative of the seismic energy within the
- 4 receiver; and
- 5 transmitting the digital signal to the collection device.
- 1 16. The method of claim 15, wherein the step of transmitting is performed in
- 2 response to a signal from the collection device

Attorney Docket No. 13109.00011

PATENT Customer No. 22444

I	17. The method of claim 15, wherein the step of transmitting is performed in		
2	response to a signal from another receiver.		
1	18. The method of claim 15 further comprising the step of storing the digital		
2	signal.		
1	19. An apparatus to digitize a seismic signal collected by a seismic signal collector of		
2	a seismic receiver, the seismic receiver having a casing, the apparatus comprising:		
3	a board capable of conducting electrical signals;		
4	a digitizer, communicatively coupled to the seismic signal collector		
5	and contained on the board, that digitizes the seismic signal; and		
6	the board fitting inside the seismic receiver.		
1	20. The apparatus of claim 19 further comprising:		
2	control circuitry, communicatively coupled to the digitizer, that		
3	controls the digitizing of the seismic signal.		
1	21. The apparatus of claim 19 wherein the board can be folded on itself without		
2	breaking the electrical connections contained thereon.		
1	22. A seismic streamer that collects seismic data and transmits digital data		
2	representative of collected seismic data to a collection device, the seismic streamer		
3	comprising:		
4	a plurality of seismic receivers communicatively coupled to one		
5	another through a transmission line, at least one of the seismic receivers comprising:		
6	a casing;		
7	a seismic energy detector that detects the seismic energy and		
8	converts the detected seismic energy into an analog electrical signal;		
9	an analog to digital converter, coupled to the seismic energy		
10	receptor, that converts the analog electrical signal into the digital data;		
11	a digital signal transmission circuitry, coupled to the analog to		
12	digital converter, that transmits the digital data to the data recorder; and		
13	the seismic energy detector, the digital transmission circuitry,		
14	and the analog to digital converter housed within the casing.		

Attorney Docket No. 13109.00011

PATENT Customer No. 22444

23. A seismic exploration system for collection digital data representative of
collected seismic data, the system comprising:
a data recorder that collects digital data representative of collected
seismic data; and
a plurality of seismic receivers communicatively coupled to one
another through a transmission line, at least one of the seismic receivers comprising:
a casing;
a seismic energy detector that detects the seismic energy and
converts the detected seismic energy into an analog electrical signal;
an analog to digital converter, coupled to the seismic energy
receptor, that converts the analog electrical signal into the digital data;
a digital signal transmission circuitry, coupled to the analog to
digital converter, that transmits the digital data to the data recorder;
the seismic energy detector, the digital transmission circuitry,
and the analog to digital converter housed within the casing.