

응용이 보이는 선형대수학

Chapter 01

선형대수학의 개요

Contents

- 1.1 기본적인 수학 개념
- 1.2 선형대수학의 범위
- 1.3 선형대수학의 응용

미리보기

이 장에서 배우는 내용은?

❖ 집합(set)

특정한 조건을 만족하는 어떤 대상들의 모임
예) 10 이하인 자연수 중 짝수의 집합
{2, 4, 6, 8, 10} : 원소나열법
{2n | n = 1, 2, 3, 4, 5} : 조건제시법

• 원소의 포함 여부 표현

$$2 \in \{2, 4, 6, 8, 10\}$$

 $3 \not\in \{2n | n = 1, 2, 3, 4, 5\}$

• 집합의 포함관계 표현

$$A = \{2, 6\}$$
 $B = \{2, 4, 6, 8, 10\}$ \longrightarrow $A \subset B$

공집합(∅, {})
 원소가 포함되지 않은 집합

■ 집합의 연산

$$A \cup B = \{x \mid x \in A \quad$$
또는 $x \in B\}$
$$A \cap B = \{x \mid x \in A \quad$$
그리고 $x \in B\}$
$$A - B = \{x \mid x \in A \quad$$
그리고 $x \not\in B\}$

예제 1-1 집합의 연산

주어진 집합 A, B에 대하여 다음 물음에 답하라.

$$A = \{a,\ b,\ c\} \qquad \quad B = \{b,\ c,\ e,\ f\}$$

- (a) A의 모든 부분집합을 구하라.
- (b) A와 B의 합집합을 구하라.
- (c) A와 B의 교집합을 구하라.
- (d) *A*-*B*를 구하라.

Tip

집합 연산의 정의를 이용한다.

❖ 사상(mapping)

- 집합 A의 각 원소를 B의 어떤 원소 하나에 대응시키는 관계
- A에서 B로의 사상 f \Longrightarrow $f: A \to B$

상: 정의역의 원소에 대응하는 공역의 원소

$$f(홍길동) = 짬뽕$$

$$f(임껙정) = 볶음밥$$

$$f(장길산) = 볶음밥$$

$$f(일지매) = 만두$$

$$f(전우치) = 소면$$

치역: 정의역 원소의 상을 모아 놓은 집합

{짬뽕, 볶음밥, 만두, 소면}

■ 사상의 종류

- 전사(위로의 사상)
 - 공역과 치역이 동일한 사상

- 정의역의 원소가 서로 다르면 대응하는 상도 서로 다른 사상

 $\rightarrow B$

• 전단사(일대일 대응)

- 전사이면서 동시에 단사인 사상

A > B 홍길동 짜장 임꺽정 짝뽕 장길산 볶음밥 일지매 만두 전우치 소면

• 역사상

전단사 사상에 대해서공역의 원소를 정의역의 원소로대응시키는 사상

❖ 행렬(matrix)

- 수나 식을 사각형 모양으로 배열하고 괄호로 묶어 놓은 것

$$\begin{bmatrix} 2 & 4 & 1 \\ 5 & 7 & 2 \end{bmatrix} \qquad \begin{bmatrix} a & a^2 & a^3 \\ a+b & a & 2b^2 \\ b^2 & ab & 3b \end{bmatrix}$$

- **성분**(원소, element)
- 행(row)
- 열(column)

■ 행렬의 종류

- 정방행렬(정사각행렬)
 - 행과 열의 수가 같은 행렬

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \qquad \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

• 대각행렬

- 주대각 성분을 제외한 모든 성분이 0인 행렬

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

• 단위행렬(항등행렬)

- 주대각 성분이 모두 1이고, 나머지 성분은 모두 0인 정방행렬

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• 전치행렬

- 어떤 행렬에서 모든 행을 각각 대응하는 열로 바꾼 행렬
- A^{T} (A의 전치행렬)

$$A = egin{bmatrix} 2 & 4 & 1 \ 5 & 7 & 2 \end{bmatrix}, \quad A^{ op} = egin{bmatrix} 2 & 5 \ 4 & 7 \ 1 & 2 \end{bmatrix}$$

• 대칭행렬

- 전치행렬이 자기 자신과 같은 행렬

$$A = egin{bmatrix} 1 & 2 & 3 \ 2 & 4 & 5 \ 3 & 5 & 2 \end{bmatrix}, \qquad A^{ op} = egin{bmatrix} 1 & 2 & 3 \ 2 & 4 & 5 \ 3 & 5 & 2 \end{bmatrix}$$

예제 1-2 행렬의 정의

주어진 다음 행렬 A에 대하여 다음 물음에 답하라.

$$A = \begin{bmatrix} 2 & 3 & 4 \\ 4 & 8 & 2 \\ 1 & 2 & 1 \end{bmatrix}$$

- (a) A의 2행을 구하라.
- (b) A의 3열을 구하라.
- (c) A의 전치행렬을 구하라.
- (d) A가 대칭행렬인지 보여라.

행렬의 정의를 이용한다.

■ 행렬의 연산

$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 6 & 5 \\ 4 & 3 \\ 2 & 1 \end{bmatrix}$$

• 합(덧셈)

$$A + B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} + \begin{bmatrix} 6 & 5 \\ 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1+6 & 2+5 \\ 3+4 & 4+3 \\ 5+2 & 6+1 \end{bmatrix} = \begin{bmatrix} 7 & 7 \\ 7 & 7 \\ 7 & 7 \end{bmatrix}$$

• 차(뺄셈)

$$A - B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} - \begin{bmatrix} 6 & 5 \\ 4 & 3 \\ 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 - 6 & 2 - 5 \\ 3 - 4 & 4 - 3 \\ 5 - 2 & 6 - 1 \end{bmatrix} = \begin{bmatrix} -5 & -3 \\ -1 & 1 \\ 3 & 5 \end{bmatrix}$$

• 스칼라배(스칼라곱)

$$10A = 10 \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 \times 10 & 2 \times 10 \\ 3 \times 10 & 4 \times 10 \\ 5 \times 10 & 6 \times 10 \end{bmatrix} = \begin{bmatrix} 10 & 20 \\ 30 & 40 \\ 50 & 60 \end{bmatrix}$$

• 곱 연산

A의 열 개수와 B의 행 개수가 같을 때 AB의 곱

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1p} \\ b_{21} & b_{22} & \cdots & b_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{np} \end{bmatrix} \implies AB = C = \begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1p} \\ c_{21} & c_{22} & \cdots & c_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mp} \end{bmatrix}$$

$$c_{ij} = a_{i1}b_{1j} + \dots + a_{in}b_{nj} = \sum_{k=1}^{n} a_{ik}b_{kj}$$
 (단, $1 \le i, j \le n$)

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 5 & 6 \\ 7 & 8 \end{bmatrix} = \begin{bmatrix} 1 \times 5 + 2 \times 7 & 1 \times 6 + 2 \times 8 \\ 3 \times 5 + 4 \times 7 & 3 \times 6 + 4 \times 8 \end{bmatrix} = \begin{bmatrix} 19 & 22 \\ 43 & 50 \end{bmatrix}$$

❖ 벡터(vector)

- 행이나 열이 하나 밖에 없는 행렬

• 행벡터(row vector)

$$B = [4 6 7 9]$$

• 열벡터(column vector)

$$A = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}$$

예제 1-3 행렬과 벡터의 연산

$$A = \begin{bmatrix} 3 & 0 \\ -1 & 2 \\ 1 & 1 \end{bmatrix}, B = \begin{bmatrix} -3 & -1 \\ 2 & 1 \\ 4 & 3 \end{bmatrix}, C = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 0 & 1 \end{bmatrix}, D = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
일

Tip 행렬의 연산 방법을 이용 한다.

때, 다음 식을 계산하라.

(a) A+2B

(b) *AC*

(c) 3D

❖ 선형대수학(linear algebra)

- **연립선형방정식, 벡터공간, 선형변환, 행렬**을 다루는 수학 분야
- 공학, 과학뿐만 아니라 경제학, 경영학, 사회학 등 거의 모든 학문 분야에서 널리 활용되는 중요한 수학적 도구

❖ 선형방정식

- 선형방정식(linear equation)
 - 최고차항의 차수가 1인 방정식 (=**일차방정식**)
- 연립선형방정식(system of linear equations)
 - 여러 선형방정식이 모여 있는 것

$$\begin{cases} 2x_1 + 3x_2 + 3x_3 = 9 \\ 3x_1 + 4x_2 + 2x_3 = 0 \\ -2x_1 + 2x_2 + 3x_3 = 2 \end{cases}$$

- 연립선형방정식의 해(solution)
 - : 연립선형방정식의 모든 선형방정식을 만족하는 미지수들의 값
- 행렬과 벡터를 이용하여 표현 가능

$$\begin{bmatrix} 2 & 3 & 3 \\ 3 & 4 & 2 \\ -2 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 9 \\ 0 \\ 2 \end{bmatrix}$$

❖ 벡터공간(vector space)

- 서로 더하거나 스칼라배할 수 있는 벡터들의 모음

$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \\ 6 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}, \qquad 3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$

- 벡터공간에 대한 구체적인 의미와 성질
- 벡터의 선형결합(linear combination)
- 벡터 생성(span)
- 벡터의 노름(norm)과 내적(inner product)
- 벡터의 정사영(orthogonal projection)
- 내적공간(inner product space)

❖ 선형변환(linear transformation)

- 벡터 v와 w, 스칼라 c에 대해 다음 두 성질을 만족하는 사상 f (= **선형사상**)

$$(1) f(\mathbf{v} + \mathbf{w}) = f(\mathbf{v}) + f(\mathbf{w})$$

$$(2) f(c\mathbf{v}) = cf(\mathbf{v})$$

- 선형변환의 성질
- 부분공간(subspace)
- 기저(basis)
- 좌표(coordinate)
- 차원(dimension)
- 계수(랭크, rank)
- 고윳값(eigenvalue)과 고유벡터(eigenvector)

예제 1-4 선형변환

다음 사상이 선형변환인지 판단하라.

(a)
$$f(x) = x + x^2$$

(b)
$$g(x) = 5x + 4$$

선형변환의 조건을 확인한다.

예제 1-5 행렬과 선형변환

사상 f(v) = Av가 행렬 A와 벡터 v의 곱이라면, f(v)는 선형변환인지 판단하라.

Tip

선형변환의 조건을 확인한다.

❖ 행렬 이론

- 행렬의 성질과 변환에 대한 이론
 - 영행렬과 단위행렬
 - 역행렬(inverse matrix)
 - 행렬식(determinant)
 - 행렬 분해(matrix decomposition)
 - 대각화(diagonalization)
 - LU 분해, QR 분해, 고윳값 분해, 촐레스키 분해, 특잇값 분해
 - 이차형식(quadratic form)
 - 이차항으로만 구성된 수식

$$3x^{2} + 4xy + y^{2} = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

❖ 데이터의 표현과 처리

■ 표로 표현되는 정형화된 데이터의 처리

	1월	2월	3월	4월	5월	6월	7월	8월	9월	10월	11월	12월
2014	7.2	11.1	9.3	7.9	8	11.2	15	17.9	7.3	6.6	8.5	10.9
2015	10.2	6.4	5.5	14.3	6.3	10.2	15	11.2	7.1	6.4	16.2	11
2016	6.2	7.5	8.4	12	9.2	10.1	12.5	7.8	13.2	11.1	9.1	8.5
2017	7.8	7	6.7	9	5.5	8.1	17	14.7	6	7.2	5.6	7
2018	7.2	2.8	11	10.5	12	9.4	8	10.7	11	6	12	7.3
2019	3.9	7	8.2	11.1	6	6.9	10.7	12.8	9.5	4	8	7.4

■ 흑백영상의 표현과 처리

■ 회색조영상의 표현

			346	347	348	0		
		0.9059	0.9020	0.9020	0.9059	0.9098	0.	
	3627	0.9020	0.9020	0.9020	0.9059	0.9098	0.9098	
	0.8510	0.9020	0.9020	0.9059	0.9059	0.9059	0.9098	0.
43	0.8078	0.9059	0.9098	0.9098	0.9020	0.9020	0.9059	0.90
344	0.7569	0.9137	0.9137	0.9098	0.8980	0.8941	0.9020	0.913
345	0.7373	0.9020	0.9098	0.9059	0.8902	0.8863	0.9020	0.9137
346	0.7137	0.8824	0.8980	0.8980	0.8863	0.8824	0.8980	0.9098
347	0.6667	0.8667	0.8863	0.8941	0.8863	0.8824	0.8980	0.9098
348	0.6314	0.8039	0.8627	0.8863	0.8824	0.8941	0.8941	0.898
19	0.6196	0.7098	0.8196	0.8902	0.8824	0.8784	0.8980	0.90
_	0.6078	0.6353	0.7451	0.8510	0.8824	0.8706	0.8863	0
	\$078	0.6275	0.6588	0.7647	0.8667	0.8784	0.870	
		0 6314	0.6039	0.6784	0.8118	0.8706	0	
			9 5922	0.6353	0.7373	0		

■ 텍스트 데이터의 표현과 처리

[표 1-1] 텍스트 데이터의 예

문서	내용
c_1	Human machine interface for Lab ABS computer application
c_2	A survey of user opinion of computer system response time
c_3	The EPS user interface management system
c_4	System and human system engineering testing of EPS
c_5	Relation of user-perceived response time to error measurement
m_1	The generation of random, binary, unordered trees
m_2	The intersection graph of paths in trees
m_3	Graph minors TV: Widths of trees and well-quasi-ordering
m_4	Graph minors: A survey

[표 1-2] 텍스트 데이터의 행렬 표현

FIOL	문서										
단어	c_1	c_2	c_3	c_4	c_5	m_1	m_2	m_3	m_4		
computer	1	1	0	0	0	0	0	0	0		
EPS	0	0	1	1	0	0	0	0	0		
human	1	0	0	1	0	0	0	0	0		
interface	1	0	1	0	0	0	0	0	0		
response	0	1	0	0	1	0	0	0	0		
system	0	1	1	2	0	0	0	0	0		
time	0	1	0	0	1	0	0	0	0		
user	0	1	1	0	1	0	0	0	0		
graph	0	0	0	0	0	0	1	1	1		
minors	0	0	0	0	0	0	0	1	1		
survey	0	1	0	0	0	0	0	0	1		
trees	0	0	0	0	0	1	1	1	0		

■ 그래프 데이터의 표현과 처리

(a) 쾨니히스베르크 다리 지도

(c) 행렬 표현

- 소셜 네트워크 데이터의 표현과 처리
 - 소설 네트워크 : 개인 간의 연결 관계를 나타내는 것

	1	2	3	4	5	6	7	8	
1	$\begin{bmatrix} 0 \end{bmatrix}$	1	0	1	1	0	0	0	
2	1	0	1	0	0	1	0	0	
3	0	1	0	1	0	1	1	0	
4	1	0	1	0	1	0	0	1	
5	1	0	0	1	0	0	1	0	
6	0	1	1	0	0	0	0	0	
7	0	0	1	0	1	0	0	1	
8	0	0	0	1	0	0	1	0	72

(b) 행렬 표현

❖웹 페이지의 중요도 평가

- 웹 페이지를 **노드**로 간주하고, 하이퍼링크에 의한 연결 관계를 **에지**로 표현
- 행렬 연산을 통해서 각 페이지의 중요도를 결정
 - 페이지랭크(PageRank) 알고리즘

❖ 컴퓨터 그래픽스에서의 모델링 및 변환

- 화면에 나타낼 **물체**를 **데이터로 모델링**하여 **표현**하고 이들 데이터에 대한 연산을 통해 그림을 생성하는 분야

[그림 1-15] 컴퓨터 그래픽스에서 행렬 연산에 의한 물체의 이동

[그림 1-16] 컴퓨터 그래픽스에서 카메라 위치와 방향에 따른 그림 생성

❖로보틱스에서의 위치 결정

[그림 1-17] Puma 560 로봇 팔

❖전기 회로 분석

- 키르히호프의 전류 법칙(Kirchhoff's Current Law) 어떤 교차점에 들어온 전류의 양과 나간 전류의 양의 합이 같다.
- **키르히호프의 전압 법칙**(Kirchhoff's Voltage Law) 하나의 닫힌 루프(loop)에서 전원 전압과 소비되는 전압 강하의 합은 0이다.

$$\begin{cases} x_1 - x_2 + x_3 = 0 \\ 4x_1 + 2x_2 - 16 = 0 \\ 2x_2 + 5x_3 - 18 = 0 \end{cases}$$

(b) 연립선형방정식 표현

❖ 푸리에 변환의 해석

- f(x)로 표현된 신호 또는 데이터를 $F(\omega)$ 로 표현하는 것

신호 또는 데이터
$$f(x)=rac{1}{2\pi}\int_{-\infty}^{\infty}F(\omega)e^{i\omega x}d\omega$$
 푸리에 변환
$$F(\omega)=\int_{-\infty}^{\infty}f(x)e^{-i\omega x}dx$$

- 푸리에 변환은 함수 f(x)를 복소 지수함수 $e^{i\omega x}$ 들을 기저로 하는 벡터공간의 좌표 표현으로 해석

❖ 차원 축소

- 고차원 공간에서 표현되는 데이터를 저차원 공간의 데이터로 변환 하는 것
- 주성분 분석(PCA)

[그림 1-19] 주성분 분석에 의한 데이터의 차원 축소

❖ 다변수 가우시안 분포

$$p(X_1,\,\cdots,\,X_n) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\!\left(\!-\frac{1}{2}(X\!-\!\mu)^\top \, \Sigma^{\,-\,1}(X\!-\!\mu)\!\right)$$

[그림 1-20] 이변수 가우시안 분포

❖ 칼만 필터

- 로봇, 미사일 등의 위치를 확률적으로 추정하는 기법
- 현재 위치 x_t 와 위치에 대한 공분산 행렬 P_t 를 추정

예측 단계 :
$$x_t^- = A\hat{x}_{t-1}$$

$$P_t^- = AP_{t-1}A^\top + Q_t$$
 갱신 단계 : $\hat{x}_t = Ax_t^- + K_t(z_t - Hx_t^-)$
$$P_t = (I - K_t H)P_t^-$$

$$K_t = P_t^- H^\top (HP_t^- H^\top + R)^{-1}$$

1. 합을 구하는 파이썬 프로그램

2. 행렬과 벡터의 생성

3. 행렬과 벡터의 크기 계산

Q&A