Recursive Teaching Dimension, Learning Complexity, and Maximum Classes

Farnam Mansouri, Advisor: Dr. Adish Singla

Sharif University of Technology fmansouri@ce.sharif.edu

November 22, 2019

Overview

- Definitions
 - Basic Definitions
 - Learning Complexity
 - Teaching complexity
- 2 Recursive Teaching and Query Learning
- Recursive Teaching Dimension and VC-Dimension
 - Classes with RTD Exceeding VCD
 - Recursive Teaching and Intersection-Closed Classes
 - Recursive Teaching Dimension and Maximum Classes

Basic Definitions

Definition

For
$$X' \subseteq X$$
, $C_{|X'} = \{c \cap X' | c \in C\}$

Definition

S is a set of labeled examples, $X(S) = \{x \in X | (x,0) \in S \text{ or } (x,1) \in S\}$

Definition (monotonic function)

A function on concepts classes is called monotonic if, $\forall C' \subseteq C, K(C') \leq K(C)$, and is called twofold monotonic if K is monotonic and, $\forall X' \subseteq X, K(C_{|X'}) \leq K(C)$.

Partial equivalence query

- In each query learner represents an function.
- If the target concept is the function the oracle responds "yes", else it will represent a x which target concept and h contradict.
- LC-PARTIAL(C) is the smallest number of queries needed to find any $c*\in \mathcal{C}$

Self-Directed model

- Learner selects an instance and predicts the label of it.
- number of wrong predictions according to target concept is number of queries.
- Self-Directed learning complexity is defined as $SDC(C) = min_L max_{c_t \in C}(M_{sd}(L, c_t))$, which $M_{sd}(L, c_t)$ is number of wrong predictions algorithm L made.
- SDC is monotonic

Partial equivalence query

- In each query learner represents an function.
- If the target concept is the function the oracle responds "yes", else it will represent a x which target concept and h contradict.
- LC-PARTIAL(C) is the smallest number of queries needed to find any
 c* ∈ C
- LC-PARTIAL is monotonic.

Mistake bound

- Algorithm A makes prediction for all instances, mistake bound of A, denoted by $M_A(C)$, is, number of wrong predictions
- $M_{opt}(C) = min_A M_A(C)$
- *M*_{opt} is twofold monotonic.
- the following chain is well-known: $SDC(C) \leq LC PARTIAL(C) \leq M_{opt}(C)$.

Teaching Complexity

- A teaching set for C with respect to c is $\mathcal{TS}(C,c)$, is a all sets that are only consistent with c and no other concept, and TS(C,c) is $\min_{|z|} |C_{z|t}| = 1$.
- we define:
 - $TS_{min}(C) := min_{c \in C} TS(C, c)$
 - $TD(C) = TS_{max}(C) := max_{c \in C} TS(C, c)$ (the classic teaching dimension), note that TD is monotonic.

Definition (teaching plan)

P is sequence $((c_1, S_1), ..., (c_N, S_N))$, with following properties:

- $C = \{c_1, ..., c_n\}$
- $\forall 1 \leq t \leq N : S_t \in \mathcal{TS}(c, \{c_t, ..., c_n\})$

- $ord(P) := max_{t=1,...,N-1}|S_t|$ is called order of teaching plan.
- $RTD(C) := min\{ord(P)|P \text{ is a teaching plan for } C\}$
- $RTD^*(C) := max_{X' \subseteq X}RTD(C_{|X'})$
- a teaching plan is repetition-free if $X(S_1),...,X(S_N)$ are pairwise distinct (note that $S_1,...,S_N$ are always pairwise distinct).
- $rfRTD(C) := min\{ord(P)|P \text{ is a repetition-free teaching plan for } C\}$
- Every concept class has a repetition-free plan: **Proof:** we'll prove by induction on |X|, then $C_{x|1}$ by induction has repetition-free plan. We'll define $s = |C_{x|1}|$, if we consider $c_1, ..., c_s$, the repetition-free plan of $C_{x|1}$, and add (x,1) to all $S_i, i \leq s$, and then by induction we know again that $C_{x|0}$ also has repetition-free teaching plan, so we know that this new plan is repetition-free for C, since by induction we know two parts of plan can't have equal S_i , and also $i \leq s < j : S_i \neq S_j$, because the first parts all have x in their $X(S_I)$ but second part don't.

- RTD is monotonic.
- a teaching plan in canonical form is choosing the easiest to learn concept every time, i.e., $|S_t| = TS_{min}(c_t, \{c_t, ..., c_N\})$.
- RTD is equal to any teaching plan in canonical form.

lemma1:

- if K is monotonic and $\forall C : TS_{min}(C) \leq K(C)$, then $\forall C : RTD(C) \leq K(C)$
- ② if K is twofold monotonic and $\forall C : TS_{min}(C) \leq K(C)$, then $\forall C : RTD^*(C) \leq K(C)$
- **lemma2:** $RTD(C) = max_{C' \subseteq C} TS_{min}(C')$. **proof:** let c_1 be the first concept in canonical teaching plan, then, $RTD(C) = max\{TS(c_1, C), RTD(C \setminus \{c_1\}\})$, by induction we'll determine $RTD(C) \leq max_{C' \subseteq C} TS_{min}(C')$ [why is it less or equal?]. Now we'll find C'_0 which $TS_{min}(C'_0) = max_{C' \subseteq C} TS_{min}(C')$, since RTD is monotonic,

$$RTD(C) \ge RTD(C'_0) \ge TS_{min}(C'_0) = max_{C' \subseteq C} TS_{min}(C').$$

Corollary (Corollary 3)

All the following are the same:

- $\exists k, \forall C : RTD(C) \leq k.VCD(C)$
- $\exists k, \forall C : TS_{min}(C) \leq k.VCD(C)$

Proof: we know that $RTD^*(C) \ge RTD(C) \ge TS_{min}(C)$, so if 1 is true, 2 and 3 will be true. The other way around is true by applying lemma 1 and 2, since VCD is two-folded monotonic

Unlabeled Compression Schemes

lemma: we know that iff $C_{|X'|} = \phi_d(|X'|)$

Definition (unlabeled compression scheme for a maximum class of VC-dimension d)

r is an injective mapping that assigns to every concept c a set of size at most d such that has non-clashing property, i.e.,

$$\forall c \neq c' \in C, \exists x \in r(C) \cup r(C') : C(x) \neq C'(x).$$

Definition (acyclic non-clashing property)

C have acyclic non-clashing property if there is order $C_1, ..., C_N$ of C such that $\forall i < j, \exists x \in r(C_i) : C_i(x) \neq C_j(x)$.

Unlabeled Compression Schemes (cont.)

We know that for every sample S [size of S can be everything?], labeled according to a concept there is exactly one concept in C that is consistent with S and satisfies $r(C) \subseteq X(S)$, so we can encode S to r(C), and we can decode r(c) again to C to find S labels, we call that unlabeled compression scheme.

Recursive Teaching and Query Learning

Corollary (corollary 3)

- If VCD(C) = 1, then TRD(C) = SDC(C) = 1.
- **2** RTD(Monotone Monomials) = SDC(Monotone Monomials) = 1.
- **3** RTD(Monomials) = SDC(Monomials) = 2.
- § RTD(m-Term Monotone DNF) ≤ SDC(m-Term Monotone DNF) ≤ m.
- $SDC(m ext{-}Term\ Monotone\ DNF) \ge RTD(m ext{-}Term\ Monotone\ DNF)$ $\ge m\ provided\ that\ the\ number\ of\ Boolean\ variables\ is\ at\ least\ m^2+1.$

[I couldn't understand this proof]

Recursive Teaching and Query Learning (cont.)

lemma3: if $RTD(C) \geq 2$, then $RTD(C) \geq \frac{\log |C|}{1 + \log |X|}$, and repetition-free teaching plans for C are of order at least $\frac{\log |C|}{\log |X|}$. **proof:** P has —C— pairwise different teaching sets, and every teaching set is a subset of X of size at most k. Thus, $|C| \leq \sum_{i=1}^k \binom{i}{|X|} 2^i \leq 2^k \phi_k(|X|) \leq (2|X|)^k$.

similarly we can proof for repetition-free, just the 2^i will be missing.

Recursive Teaching and Query Learning (cont.)

Definition

 $X' \subseteq X$ is C-distinguishing if, all $c \in C$ are different on it.

Definition

Two matrices are equivalent if their incident matrices are equal up to permutation of rows or columns, and up to flipping all bits of a subset of the rows.

[I took out one theorem because it was trivial]

Classes with RTD Exceeding VCD

Kulmann paper represented a concept class, which $TS_{min}(C) = 3$, but VCD(C) = 2. now Warmuth represented a concept class with same property but it's instance size is 5 and number of concepts is 10.

Figure 1: The smallest concept class C_W with RTD(C_W) > VCD(C_W). The function table to the left can be extracted from the graph to the right by picking concept {x_i, x_j} for every solid line and X' {x_i, x_j} for every dashed line.

- **lemma4:** $RTD(C) \leq |X| 1$ unless $C = 2^X$. **proof:** If $C \neq 2^X$, then C must contain a concept c such that $C\delta x \in C$ for some instance $x \in X$. Then, c can be uniquely identified within C using the instances from X X and the corresponding labels. Use this argument again each step, $RTD(C) \leq |X| 1$ (We can extend this argument to rfRTD).
- We'll define $C[x, \lambda] := \{c \in C : c(x) = \lambda\}$, and we'll call an x redundant if $C[x, \lambda] = \emptyset$ for some λ
- **lemma5:** If $TS_{min}(C) \geq 2$, and x does not contain redundant instances. Then, $\forall x, \lambda : VCD(C[x,\lambda]) \geq 2$. **Proof:** If $VCD(C[x,\lambda]) \leq 1$, then by corollary 3, $TS_{min}(C[x,\lambda]) \leq RTD(C[x,\lambda]) \leq 1$, now choose (x,λ) as first teaching element, and $TS(c^*, C[x,\lambda])$ as second one.

• **lemma6:** If VCD(C) = 2, $TS_{min}(C) = 3$, and X doesn't have redundant instances. Then $|X| \ge 5$ and, $\forall x, \lambda, |C_{x,\lambda}| \ge 5$. **Outline of the proof:** By previous lemma, $VCD(C[x, \lambda]) \ge 2$, and VCD(C) = 2, so $VCD(C[x, \lambda]) = 2$, Let $c_1, c_2, c_3, c_4 \in C_{x, \lambda}$ be concepts that shatter x', x'' in $X \setminus \{x\}$. For one of them, say c_1 , $c_1\delta\{x\}_{\{x,x',x''\}}$ isn't in C, unless, $VCD(C) \geq 3$. If those 4 concepts are the only concepts in C, then $(x', c_1(x'), (x'', c_1(x''))$ will be teaching sequence for c_1 , so $|C_{x,\lambda}| \geq 5$. $|C_{x,\lambda} \ge 5|$, so $|X \{x\}| \ge 3$, now imagine $X = \{x, y, z, u\}$, we know that two instances which shatter, C[x, 0] and C[x, 1] are different, imagine they are $\{y,z\}$ and $\{z,u\}$ resp. since they can't be teaching set for any c, this will result that VCD(C) = 3.

Theorem (Theorem 1)

If RTD(C) > VCD(C), then $|C| \ge 10$, and $|X| \ge 5$.

Proof: If $VCD(C) \leq 1$, then RTD(C) = VCD(C), then $VCD(C) \geq 2$, so $RTD(C) \geq 3$. We'll assume $RTD(C) = TS_{min}(C)$, because else there is a $C' \in C$ which $RTD(C) = TS_{min}(C')$ and $VCD(C) \geq VCD(C')$ so we can apply the same argument to C', also we assume no x is redundant. If RTD(C) = 3, then VCD(C) = 2, then by lemma 6, we know $|X| \geq 5$, and $|C| = |C[x, 0]| + C[x, 1] \geq 10|$. If $RTD(C) \geq 4$, then we know $RTD(C) \leq |X| - 1$, so $|X| \geq 5$, and we know $RTD(C) \leq log|C|$, so $|C| \geq 16 > 10$.

This means that Warmuth class is the minimal class that RTD(C) > VCD(C).

Definition

$$C_1 \uplus C_2 := \{A \cup B | A \in C_1, B \in C_2\}$$

Lemma: $\forall K \in \{VCD, TS_{min}, RTD\}$: $K(C_1 \uplus C_2) = K(C_1) + K(C_2)$. If $A_1, ..., A_M$ and $B_1, ..., B_N$ are C_1 , and C_2 teaching plan resp. then $A_i \cup B_1, ..., A_i \cup B_N$ in round $i \in [M]$, so $RTD(C_1 \uplus C_2) \leq RTD(C_1) + RTD(C_2)$. For reverse side now we'll choose $C_1' \subseteq C_1$ and $C_2' \subseteq C_2$ in a way which $RTD(C_1) = TS_{min}(C_1')$ and $RTD(C_1) = TS_{min}(C_1')$. Then, $RTD(C_1 \uplus C_2) \geq TS_{min}(C_1' \uplus C_2') = TS_{min}(C_1') + TS_{min}(C_2') = RTD(C_1) + RTD(C_2)$.

Corollary

If we define $C_W^n := C_W \uplus ... \uplus C_W$. Then $VCD(C_W^n) = 2n$, and $RTD(C_W^n) = 3n$ (same result cannot be applied for rfRTD).

Definition (sional boxes)

$$BOX_n^d := \{[a_1 : b_1] * ... * [a_d : b_d] | \forall i = 1, ..., d : 1 \le a_i, b_i \le n\}$$

Note that $BOX_n^d \in IC$.

Definition (samllest concept in C containing T)

$$\langle T \rangle_C := \cap_{T \subseteq c \in C} c$$

Definition (spanning set w.r.t C)

 $\langle S \rangle_C = \langle T \rangle_C$, and we call it a minimal spanning set if $\forall S' \subset S : \langle S' \rangle_C \neq \langle S \rangle_C$, also I(C) is the largest minimal spanning set w.r.t C.

note that $\forall c' \subset C : I(C_{|c'}) \leq I(C)$ since each spanning set w.r.t to C is also a spanning set for $T \subseteq c'$ is also spanning set for T with respect to $C_{|c'}$.

lemma7: for $C \in IC$, $RTD(C) \leq I(C)$.

Proof: Let $c_1, ..., c_N$, be in topological order such that if $C_i \supset C_j$, then i < j, now if we consider s_i a member of spanning set of c_i , then we can recognize c_i in $c_i, ..., c_N$ with members of s_i since c_i isn't in any c_j so $|s_i| \le I(c_i) \le I(C) \le VCD(C)$.

Corollary

for $C \in IC$, $RTD*(C) \leq VCD(C)$, since for every X' inX, $C_{|X'|}$ is still intersection-closed, and $VCD(C_{|X'|}) \leq VCD(C)$.

We know that there are a group of concept classes which VCD(C) = d, $SDC(C) \ge m$, by the previous corollary and this we'll conclude that the gap between RTD and SDC can be arbitrary high.

Definition (nested difference with depth d)

```
DIFF^{1}(C) := C,
DIFF^{d}(C) := \{c \setminus D | c \in C, D \in DIFF^{d-1}(C)\},
DIFF^{\leq d}(C) := \bigcup_{i=1}^{d} DIFF^{d}(C)
```

Example: $DIFF^4(C)$ has the form $c_1 \setminus (c_2 \setminus (c_3 \setminus c_4))$ which, $c_1, c_2, c_3, c_4 \in C$, we can assume that $c_1 \supseteq c_2 \supseteq ...$ if $C \in IC$.

Theorem (theorem 2)

If $C \in IC$, then $RTD(DIFF^{\leq d}(C)) \leq d.I(C)$

Proof: we write $c \in DIFF^{\leq d}(C)$ in the form: $c = c_1 \setminus (c_2 \setminus (...(c_{d-1} \setminus c_d)...)), c_i \in C \cup \{\emptyset\}, c_i \supseteq c_{i+1}.$ We define $d_i = c_i \setminus (c_{i+1} \setminus (...(c_{d-1} \setminus c_d)...))$. We'll assume that the representation is minimal, i.e., $\forall j : c_i = \langle c_i \backslash d_i \rangle_C$ (so each c will have only a single representation) We'll define lexicographic ordering inductively as followed for each $c, c' \in C$: $c \supset c'$ if $c_1 \supset c'_1$ or $c_1 = c'_1$ also $d_1 \supset d'_1$. we'll sort $c_1, ..., c_N$ in lexicographical ordering and for each c we represent following teaching sequence for c, we add the minimal spanning set of c_i/d_i in it's minimal representation with label of 1 for odd j, and label of zero otherwise. every spanning set is smaller than I(C) so $|T| \le d * I(C)$ for every c.

Corollary

$$C_1,...,C_r \in IC$$
, then $RTD(DIFF \leq d(C_1 \cup ... \cup C_r)) \leq d \sum_{i=1}^r I(C_i)$.

Proof: We'll define $C = \{c_1 \cup ... \cup c_r | c_i \in C_i\}$

- \mathbf{Q} $C \in IC$.
- **3** If S_i is spanning set of c_i , then $S_1 \cup ... \cup S_r \in C$.

By 2 and 3 we'll conclude $I(C) \leq I(C_1) + ... + I(C_r)$, and By 1 we know that $I(C_1 \cup ... \cup C_r) \leq I(C)$.

Maximum Classes Properties

Definition (one-inclusion graph)

 $\mathcal{G}(C)$ is a graph defined on C which:

- nodes are concepts
- edges are two concepts who differ only in one coordinate, and we call edge who differ in only coordinate i, color i.

Maximum Classes Properties (cont.)

Definition (corner-peeling plan)

a sequence $P = ((c_1, C'_1), ..., (c_N, C'_N))$, with the following properties:

- **1** $C = \{c_1, ..., c_N\}$
- $\forall t: C'_t$ is cube in $\{c_t, ..., c_N\}$ which contains c_t and all of its neighbors in $\mathcal{G}(\{c_t, ..., C_N\})$

Definition

The nodes c_t are called the corners of the cubes C'_t , respectively.

Definition (order of the corner-peeling plan)

Dimension of the largest cube among $C'_1, ..., C'_N$.

Maximum Classes Properties (cont.)

Definition (shortest path closed Concept class)

 $\forall c, c' \in C : \mathcal{G}(C)$ contains a path from c to c' with length d(c, c') (hamming distance)

Theorem

- If a maximum class C has a corner-peeling plan of order VCD(C), then an unlabeled compression scheme for C is obtained by setting $r(C_t)$ equal to the set of colors in cube C_t' for t=1,...,N.
- every maximum class can be VCD(C)-corner-peeled.

Maximum Classes Properties (cont.)

Corollary (corollary 3)

from Kuhlmann paper we know $TS_{min} \leq SDC(C)$ since SDC is monotonic and M_{opt} is twofold monotonic, by lemma1 we can drive:

- $PTD^*(C) \leq M_{opt}(C)$

Recursive Teaching Dimension and Maximum Classes

Definition (strong corner-peeling plan)

is a corner peeling plan which the second property is replaced as follows: For all $t \leq N$, C'_t is a cube in $\{C_t,...,C_N\}$ which contains c_t and whose colors (augmented by their labels according to c_t) form a teaching set for $C_t \in \{C_t,...,C_N\}$.

we call all colors in C'_t , S_t .

lemma8: A strong corner-peeling plan induces a teaching plan of the same order.

lemma9: Every strong corner-peeling plan is a corner-peeling plan.

Proof: if this isn't true then there is a c_i neighbor with c_t , which they're difference isn't in teaching set but this is a contradiction because c_t and c_i are consistent in all other x.

Recursive Teaching Dimension and Maximum Classes (cont.)

lemma10: Let C be a shortest-path closed concept class. Then, every corner-peeling plan for C is strong. **proof**: assume that there is a c which is consistent with c_t in S_t , then shortest path between c and c_t cannot be in C_t' , so one of C - T neighbors cannot be in C_T' , which is a contradiction.

Corollary

Every corner-peeling plan for a maximum class is strong, and therefore induces a teaching plan of the same order.

Proof: Since every maximum class is shortest-path closed all of it's corner-peeling plans are strong, also it has been proved every maximum class C can be VCD(C)-corner-peeled. Thus, we conclude that $RTD(C) \leq VCD(C)$.

Recursive Teaching Dimension and Maximum Classes (cont.)

lemma: Every $k \leq VCD(C)$ instances for maximum concept classes can be shattered this means $RTD(C) \geq TS_{min}(C) \geq VCD(C)$.

Corollary

For maximum classes, RTD(C) = VCD(C), and since $\forall X' \subseteq XC_{|X'|}$ is maximum, $RTD^*(C) = VCD(C)$.

lemma11:

- Every repetition-free teaching plan of order d for C induces a representation mapping r of order d for C given by $r(C_t) = X(S_t)$ for $t \le N$. Moreover, r has the acyclic non-clashing property.
- ② Every representation mapping r of order d for C that has the acyclic non- clashing property induces a teaching plan given by $S_t = \{(x, C_t(x)) | x \in r(C_t)\}$ for $t \leq N$. Moreover, this plan is repetition-free.

Recursive Teaching Dimension and Maximum Classes (cont.)

Proof:

- For $t \le t'$ if c_t and $c_{t'}$ clash this means c_t and $c_{t'}$ are consistent on S_t which is contradiction.
- ② if S_t is not a teaching plan for c_t then there is some $c_{t'}$, t' > t which $c_{t'}$ and c_t are consistent on $r(c_t)$ so c_t and $c_{t'}$ have clash.

Corollary

Let C be maximum of VC-dimension d. Then, there is a one-one mapping between repetition-free teaching plans of order d for C and unlabeled compression schemes with the acyclic non-clashing property.

Shortest-Path Closed Classes

Theorem

If C is shortest-path closed, Then $TS_{avg}(C) < 2VCD(C)$.

By previous lemma we know that $TS_{avg}(C)$ is equal to average vertex degree of $\mathcal{G}(C)$ which is twice the density of the graph, and it has been proven that $dens(\mathcal{G}(C)) < VCD(C)$.

Theorem

If VCD(C) = 1, then $TS_{avg}(C) < 2$.

The Kuhlmann proof for this was flawed, we give alternative one, we know that every concept class with VCD(C) can be embedded to a maximum class, and maximum classes are shortest path closed, so by previous lemma we'll drive $TS_{avg}(C) < 2$

Shortest-Path Closed Classes (cont.)

Note that,: Kushilevitz et al. (1996) have Presented C_n which $TS_{avg}(C_n) = \Omega(\sqrt{|C_n|})$, but $VCD(C_n) \leq log|C_n|$. **lemma:** If $\forall c \in C : deg_{\mathcal{G}(C)}(c) \geq |X| - 1$ then C is shortest path closed. **proof:** pick c, c' concepts with minimum distance d. By contradiction, all neighbors of c with hamming distance of d-1 to c' cannot be in C, so $deg_{\mathcal{G}(C)}(c) \geq |X| - 1$.

Rubinstein et al. presented a graph with property

 $\forall c \in C : deg_{\mathcal{G}(C)}(c) \geq |X| - 1$ which $TS_{min} > VCD(C)$. Thus, the inequality $TS_{min}(C) \leq VCD(C)$ does not generalize from maximum classes to shortest-path closed classes.

The End