Однозначно декодируемый код

(Чечета)

Алфавитное кодирование $\varphi:A \to B$ называется однозначно декодируемым, если отображение $\varphi*$ инъективно (разные в разные).

Префиксный код

Алфавитное кодирование $\varphi:A o B$ называется префексным, если накакое кодовое слово $\varphi(a_i)$ не является началом какого-либо другого кодового слова $\varphi(a_j), (i\neq j)$

Средняя длина кодового слова

Пусть задан алфавит источника A и кодовый алфавит B и распределение p. Тогда средней длиной кодового слова кодирования $\varphi:A\to B$ называется величина:

$$l_{cp} = \sum_{i=1}^n p(a_i) l_i$$

Степень сжатия

Коэффициент(степень) сжатия - отношение длин двух закодированных сообщений двумя кодерами при кодировании одинаковых исходных сообщений

или

отношение средних длин двух кодов. (надо исправить)

(Из лекции)

Пусть заданы 2 кодирующих отображения $\varphi_1^*:A^* o B^*$ и $\varphi_2^*:A^* o B^*$. Относительной степенью сжатия для последовательности $a_{i_1}\dots a_{i_n}$ назовем отношение длин кодовых векторов

$$rac{l(arphi_1^*(a_{i_1}\ldots a_{i_n}))}{l(arphi_2^*(a_{i_1}\ldots a_{i_n}))}=
ho_{rac{arphi_1^*}{arphi_2^*}}(a_{i_1}\ldots a_{i_n})$$

Неравенство Крафта

1. Если $\varphi:A o B^*$ - D-ичное префиксное алфавитное кодирование с длинами код. слов $len(\varphi(a_i))=l_i$, $1\le i\le m$, (m - мощность алфавита A) то справедливо:

$$\sum_{i=1}^m D^{-l_i} \leq 1(*)$$

2. Если натуральные числа D, m, $l_1...l_m$ удовлетворяют неравенству (*), то \exists D-ичное префиксное алфавитное кодирование с длинами код. слов:

$$l_i = len(arphi(a_i)); 1 \leq i \leq m$$

D-ичная последовательность Хаффмана

(прим. Это только мое предположение, но похоже, что спрашивается алгоритм Хаффмана для $D \geq 2$)

1-й этап - слияние. Подсчитываем параметр m - количество кодовых слов в исходном алфавите. Найдем параметр k, такой что $m_0=1+k(D-1)$ причем должно выполнятся условие $m_0\geq m$ с наименьшим превосходством. Затем находим параметр $S=m-m_0+D$ - количество слияний на первом шаге, после этого все слияния будут размера D.

Слияние происходит путем сложения D наименьших вероятностей.

2-й этап - кодирование. Предположим, что уже заданы кодирования $\varphi_{k-1}, \varphi_{k-2}, \dots, \varphi_{i+1}$, и зададим кодирование $\varphi_i:A^{(i)}\to B^*$ следующим образом. Если алфавит $A^{(i+1)}$ был получен из алфавита $A^{(i)}$ слиянием некоторых s символов a_1',\dots,a_s' в один новый символ σ' , то кодирование φ_i получается из кодирования φ_{i+1} заменой одного равенства $\varphi_{i+1}(\sigma')=w\in B^*$ на s равенств $\varphi_i(a_j')=wb_j, 1\leq j\leq s$.

Второй этап алгоритма завершается построением искомого кодирования $arphi=arphi_0.$

Теорема кодирования Шеннона для ИБП

(из Википедии)

Теорема Шеннона для ИБП связывают энтропию источника и возможность сжатия кодированием с потерями и последующим неоднозначным декодированием.

Прямая теорем показывает, что с помощью кодирования с потерями возможно достичь степени сжатия

$$rac{N}{L}pprox rac{H(U)(1+arepsilon)}{loq_2D}$$

сколь угодно близкой к энтропии источника, но все же больше последней. Обратная показывает, что лучший результат не достижим.

U - некоторый источник сообщений

H(U) - энтропия источника

N - длина сообщения после кодирования

L - длина сообщения до кодирования (?)

D - мощность алфавита кодера

(умная формулировка)

Для источника без памяти U с энтропией H(U) и любого $\varepsilon>0$ существует последовательность множеств однозначно декодирования M_L мощности $2^{L(1+\varepsilon)H(U)}$ такая, что вероятность множества неоднозначного декодирования стремится к нулю $P(M_L^C) \to 0$ при увеличении длины блока $L \to \infty$. Другими словами, сжатие возможно.

Оптимальное кодирование

(Чечета)

Алфавитное кодирование называется оптимальным, если

- 1. оно однозначно декодируемого
- 2. его средняя длина минимальна

Алфавитное кодирование Фано

На вход алгоритма поступает алфавит $A=\{a_1,\ldots,a_m\},(m\geq 2)$ и распределение вероятностей $\vec p=(p_1,\ldots,p_m)$, причем $p_1\geq p_2\geq\cdots\geq p_m$

Выберем число $k, 1 \leq k < m$, так чтобы величина $|\sum\limits_{i=1}^k p_i - \sum\limits_{i=k+1}^m p_i|$ была минимальной.

Разобьём множество $A=\{a_1,\dots,a_m\}$ на подмножества: $A=A_0\sqcup A_1$, где $A_0=\{a_1,\dots,a_k\},A_1=\{a_{k+1},\dots,a_m\}.$

Процесс разбиения на подмножество продолжается, пока не получим все одноэлементные подмножества и тем самым не определим кодирование φ всюду на алфавите A.

Алфавитное кодирование преф/суфф

Алфавитное кодирование arphi(и набор кодовых слов arphi(A)) называем префиксным(суффиксным), если никакое кодовое слово $arphi(a_i)$ не является началом(окончанием) какого-либо другого кодового слова $arphi(a_j), i \neq j$

Утверждение φ является преф/суфф

Если алфавитное кодирование φ является префиксным или суффиксным, то оно - однозначно декодируемо. Обратное неверно.

Неравенство Мак-Миллана

Теорема 3.3

Если алфавитная кодирование $arphi:A o B^*$ с длинами кодовых слов $len(arphi(a_i))=l_i, 1\le i\le m,$ является однозначно декодируемым, то справедливо неравенство $\sum\limits_{i=1}^m D^{-l_i}\le 1$

Оценка l^{arphi} (l_{cp})

(Чечета)

Средняя длина оптимального алфавитного кодирования φ удовлетворяет неравенствам.

$$rac{H(ec{p})}{log_2D} \leq l_{cp} \leq 1 + rac{H(ec{p})}{log_2D}$$