

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-23 (ODD)

B.Tech-Computer Science & Engineering

Test: CLA-T1 Date: 14.09.2022

Course Code & Title: 18CSC301T & Formal Languages and Automata Theory

Duration: 1 period

Year & Sem: III Year /V Sem Max. Marks: 25

Set -A

Course articulation matrix:

PLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CO 1	M	H	-	M	L	•	-	-	L	L	•	H	•	•	•
CO2	M	Н	L	M	L	-	-	-	M	L	-	H	-	•	-
CO3	M	H	M	H	L	-	-	-	M	L	-	H	-	-	-
CO4	M	Н	M	H	L	•	-	-	M	L	•	H	•	•	-
CO5	Н	Н	M	H	L	•	-	-	M	L	•	H	•	•	-
CO6	L	H	-	H	L	-	-	-	L	L	-	H	-	-	-

•	Part - A					
Insti	ructions: Answer all					
Q.	Question	Ma	В	\mathbf{C}	P	PΙ
No		rks	L	0	0	Code
1	Consider $A=\{0,1,2,3,4,5,6,7\}$. Then what can be inferred from $A*$?	1	1	1	1	1.6.1
	a) Finite set of decimal numbers					
	b) Set of all octal numbers					
	c) Set of finite strings formed from numbers from {0-7}					
	d) Set of natural numbers					
2	Which of the following is not a part of inductive proof?	1	1	1	1	1.6.1
	a) Basis b) induction					
	c) Proof d) logical rules					
3	Which of the following is false about Finite State Machines (FSM)?	1	2	2	2	2.6.2
	a) FSM has unique output state					
	b) FSM can have multiple transitions for same input from same state					
	c) All transitions should start from initial state					
	d) Multiple transitions for multiple inputs can originate from same state					
4	What is the minimum number of states to recognize the language L= $\{w/w \in A \mid w \in A \}$	1	3	2	2	2.6.2
	$(0+1+2)+$ }?					
	a) 1 b) 2 c) 3 4) 4					
5	Give the regular expression that generate strings with "000" as substring	1	4	2	1	1.6.1
	over the input Σ={0,1}					
	a) (0+1)*000 (0+1)* b) (0+1)*000					
	c) 000 (0+1)* d) (000)*					
6	What can be told about the recognizing capability of NFA, DFA and ε-NFA?	1	2	2	1	1.5.1
	a) DFA is more powerful than NFA					
	b) NFA is more powerful than DFA					
	c) NFA is more powerful than ε-NFA					

	d) The recognising power is same					
7	How many states are there in ε closure of q_0 in the given diagram?	1	4	2	2	2.7.1
	start q_0 ε q_1 ε q_2 q_3 ε q_4 q_5 ε q_6 ε q_6 ε					
8	Distinguishable states	1	1	2	2	2.6.3
	a) Move to same output state for same input					
	b) Move to different output state for same input					
	c) Move to same output state for all inputs					
	d) Move to same output state for unique inputs					
9	Which one of the following regular expressions represents the set of all	1	4	2	2	2.6.2
	binary strings with an odd number of 1's?					
	a) 10*(0*10*10*)* b) ((0+1)*1(0+1)*1)*10*					
	b) (0*10*10*)*10) d) (0*10*10*)*0*1					
10	Palindromes cannot be recognized by FSA because	1	2	2	2	2.6.3
	a) It cannot match second half and first half					
	b) It cannot be recognised using countable number of states					
	c) It has many edges					
	d) It has multiple final states					
11	Part-B (1 x 5=5 marks)	-	_		<u> </u>	(21
11	A leading firm in India is having a unique password setting scheme. Their	5	6	2	6	6.3.1
	employees must create their password adhering to the following rules:					
	i) It should start with the letters { i, j, k}					
	ii) The fifth symbol from the right end should be i.					
	Create a FSA for this password scheme. Give the five-tuple structure for this FSA.					
	Part-C (1 x 10=10 marks)	<u> </u>]	
12	Give the DFA equivalent for the following:	10	5	2	4	4.2.1
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			_		

Register number			

8. Transito

Approved by Audit Professor/ Course Coordinator

SRM Institute of Science and Technology College of Engineering and Technology School of Computing

SRM Nagar, Kattankulathur – 603203, Chengalpattu District, Tamilnadu

Academic Year: 2022-23 (ODD)

B.Tech-Computer Science & Engineering

Test: CLA-T1 Date: 14.09.2022

Course Code & Title: 18CSC301T & Formal Languages and Automata Theory

Duration: 1 period

Year & Sem: III Year /V Sem Max. Marks: 25

Set -A

Course articulation matrix:

PLO	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CO 1	M	Н	-	M	L	-	-	-	L	L	-	H	-	-	-
CO2	M	Н	L	M	L	-	-	-	M	L	-	H	-	-	-
CO3	M	H	M	H	L	-	-	-	M	L	-	H	-	-	-
CO4	M	H	M	H	L	-	-	-	M	L	-	H	-	-	-
CO5	H	H	M	H	L	-	-	-	M	L	-	H	-	-	-
CO6	L	Н	-	H	L	•	-	•	L	L	•	H	•	-	-

	Part - A					
Insti	ructions: Answer all					
Q.	Question	M	В		P	PΙ
No		ar	L	0	O	Code
		ks				
1	Consider $A=\{0,1,2,3,4,5,6,7\}$. Then what can be inferred from A^* ?	1	1	1	1	1.6.1
	a) Finite set of decimal numbers					
	b) Set of all octal numbers					
	c) Set of finite strings formed from numbers from {0-7}					
	d) Set of natural numbers					
	Ans: b)					
2	Which of the following is not a part of inductive proof?	1	1	1	1	1.6.1
	a) Basis b) induction					
	c) Proof d) logical rules					
	Ans: d)					
3	Which of the following is false about Finite State Machines (FSM)?	1	2	2	2	2.6.2
	a) FSM has unique output state					
	b) FSM can have multiple transitions for same input from same state					
	c) All transitions should start from initial state					
	d) Multiple transitions for multiple inputs can originate from same state					
	Ans: a)					
4	What is the minimum number of states to recognize the language L= $\{w/w \in A \mid v \in A \}$	1	3	2	2	2.6.2
	$(0+1+2)+$ }?					
	a) 1 b) 2 c) 3 4) 4					
	And: b)					

Register number						

5	Give the regular expression that generate strings with "000" as substring over the input $\Sigma=\{0,1\}$ a) $(0+1)*000 (0+1)*$ b) $(0+1)*000$	1	4	2	1	1.6.1
	c) 000 (0+1)* d) (000)*					
	Ans: a)					
6	What can be told about the recognizing capability of NFA, DFA and ε-NFA?	1	2	2	1	1.5.1
	a) DFA is more powerful than NFA					
	b) NFA is more powerful than DFA					
	c) NFA is more powerful than ε-NFA					
	d) The recognising power is same					
7	Ans: d) How many states are there in a closure of a in the given diagram?	1	4	2	2	2.7.1
7	How many states are there in ε closure of q_0 in the given diagram? ε q_0 ε q_1 ε q_3 ε q_4 g_5 g_6 g_7 g_8 g_7	1	4	2	2	2.7.1
	a) 1 b) 2 c) 3 d) 4					
	Ans: c or d					
8	Distinguishable states	1	1	2	2	2.6.3
	a) Move to same output state for same input					
	b) Move to different output state for same input					
	c) Move to same output state for all inputs					
	d) Move to same output state for unique inputs					
	Ans: b)					
9	Which one of the following regular expressions represents the set of all	1	4	2	2	2.6.2
	binary strings with an odd number of 1's?					
	a) 10*(0*10*10*)* b) ((0+1)*1(0+1)*1)*10*					
	b) (0*10*10*)*10) d) (0*10*10*)*0*1 Ans: a or b or c or d					
10	Palindromes cannot be recognized by FSA because	1	2	2	2	2.6.3
10	a) It cannot match second half and first half	1				4.0.3
	b) It cannot be recognised using countable number of states					
	c) It has many edges					
	d) It has multiple final states					
	Ans: a)					
	Part-B (1 x 5=5 marks)	I.	1			
11	A leading firm in India is having a unique password setting scheme. Their	5	6	2	6	6.3.1
	employees must create their password adhering to the following rules:					
	i) It should start with the letters { i, j, k}					
	ii) The fifth symbol from the right end should be i.					
	Create a FSA for this password scheme. Give the five-tuple structure for this					
	FSA.					

E-closure (90) = (90, 923 -> A)	
# S(A,0) = Eclose (S (90,923),0)	
= E-close (\$\phi \cup q_3) = \bar{q}_3 \rightarrow \bar{B}	
S(A,1) = E-close(S(20,923),1)	
= E-close (q, vq4)	
$= E-close(d(290,923),1)$ $= E-close(q, vq_4)$ $= \{q_1, q_4\} \longrightarrow \emptyset$	
B/S(B,0) = E-close(93,0) = E-close(92)	
$=92$ \longrightarrow \bigcirc	
S(B,1)= 0	
S(C10) = E-close (Eq., 9,3,0)	
-F-(COSP(A. 1. a)	
f((1)) = E - close((20, 20)) = 42 - 10)	

egister number			

8. Transing

Question Paper Setter

8. Granande

Approved by Audit Professor/ Course Coordinator