Лекция 2 Сверточные нейронные сети

Разработка нейросетевых систем Канев Антон Игоревич

Cifar100

- Набор данных, состоящий из цветных изображений 100 классов
- Размер 32 на 32 пикселя
- 3 цвета

Reshape, transpose

- Reshape изменение размерности матрицы
- Transpose транспонирование
- Количество элементов в матрице остается прежним 3072

Свертка

- Свертка это применение одного и того же фильтра (нейрона) к разным частям исходного изображения
- В результате на разных частях исходных данных идет поиск одинаковых признаков
- Выходными данными свертки являются карты признаков
- Несколько фильтров позволяют сформировать несколько карт признаков одного сверточного слоя

Свойства сверточного слоя

- Разреженные взаимодействия – каждый нейрон связан с ограниченным числом входных нейронов
- Разделение параметров

 в карте признаков все нейроны имеют одинаковый набор параметров
- Инвариантность сдвиг исходных данных вызывает аналогичный сдвиг значений выходного слоя

Сверточная нейросеть

- Сверточная нейросеть состоит из нескольких слоев: свертки, пуллинга, полносвязного
- Слои свертки и пуллинга чередуются друг за другом
- Слои свертки применяют набор n1, n2 фильтров к исходному изображению. Каждый фильтр ищет определенные признаки в исходных данных и формируется карту признаков
- Слои свертки обучаются, меняют количество каналов. Вход для свертки трехмерный: ядро*ядро*каналы
- Слои пуллинга только уменьшают размерность карты признаков, количество каналов сохраняется.
- Данные последнего слоя пуллинга преобразуются в вектор для использования в полносвязном слое

Вычисления в сверточном слое

0	0	0	0	0	0	
0	156	155	156	158	158	
0	153	154	157	159	159	
0	149	151	155	158	159	
0	146	146	149	153	158	
0	145	143	143	148	158	

0	0	0	0	0	0	
0	167	166	167	169	169	
0	164	165	168	170	170	
0	160	162	166	169	170	
0	156	156	159	163	168	
0	155	153	153	158	168	

0	0	0	0	0	0	
0	163	162	163	165	165	
0	160	161	164	166	166	
0	156	158	162	165	166	
0	155	155	158	162	167	
0	154	152	152	157	167	

- Трехмерный случай для трех цветов
- Аналогично несколько каналов слоя свертки
- На входе нейрона 27 значений

Пуллинг

- Слой пуллинга позволяет сократить размерность карты признаков
- Первый вариант пуллинга максимальное значение из нескольких соседних

Average Pooling

• Второй вариант вычисления — среднее значение из нескольких соседних

2	2	7	3
9	4	6	1
8	5	2	4
3	1	2	6

Шаг свертки - stride

- Stride шаг свертки
- Это регулируемый параметр, который определяет размерность карты признаков

1	6	5
7	10	9
7	10	8

Stride

- Stride это еще один способ сократить размерность карты признаков
- Чем больше шаг, тем меньше становится итоговая карта признаков

Padding

- Padding заполнение исходных данных для свертки
- Либо нулями, либо повторение соседних ячеек
- Padding возможность сохранить размерность карты признаков или даже ее увеличить
- Для сохранения размера, padding равен (размеру ядра свертки-1)/2

02	00	0,	0	0	0	0
0,	2_0	$2_{_0}$	3	3	3	0
00	0,	1,	3	0	3	0
0	2	3	0	1	3	0
0	3	3	2	1	2	0
0	3	3	0	2	3	0
0	0	0	0	0	0	0

1	6	5
7	10	9
7	10	8

Визуализация CNN

https://animatedai.github.io

Пример

```
def __init__(self, hidden_size=32, classes=100):
    super(Cifar100_MLP, self).__init__()
    # https://blog.jovian.ai/image-classification-of-cifar100-dataset-using-pytorch-8b7145242df1
    self.seq = nn.Sequential(
        Normalize([0.5074,0.4867,0.4411],[0.2011,0.1987,0.2025]),
        # первый способ уменьшения размерности картинки - через stride
        nn.Conv2d(3, HIDDEN_SIZE, 5, stride=4, padding=2),
        nn.ReLU(),
        # второй способ уменьшения размерности картинки - через слой пуллинг
        nn.Conv2d(HIDDEN_SIZE, HIDDEN_SIZE*2, 3, stride=1, padding=1),
        nn.ReLU(),
        nn.ReLU(),
        nn.AvgPool2d(4),#nn.MaxPool2d(4),
        nn.Flatten(),
        nn.Linear(HIDDEN_SIZE*8, classes),
)
```

Layer (type)	Output Shape Param #	
Normalize-1 Conv2d-2 ReLU-3 Conv2d-4 ReLU-5 AvgPool2d-6 Flatten-7	[-1, 3, 32, 32] 0 [-1, 32, 8, 8] 2,432 [-1, 32, 8, 8] 0 [-1, 64, 8, 8] 18,496 [-1, 64, 8, 8] 0 [-1, 64, 2, 2] 0 [-1, 256] 0	=
Linear-8	[-1, 3] 771	

Результаты обучения

- Точность классификации удалось значительно повысить
- Однако точность на тестовой выборке пока значительно уступает точности на обучающей
- Нейросеть "запомнила" примеры с обучающей выборки

precision	recall	f1-score	support
1.0000	1.0000	1.0000	500
1.0000	1.0000	1.0000	500
1.0000	1.0000	1.0000	500
		1.0000	1500
1.0000	1.0000		1500
1.0000			1500
precision	recall	f1-score	support
0.9238	0.9700	0.9463	100
0.8515	0.8600	0.8557	100
0.9043	0.8500	0.8763	100
		0.8933	300
0.8932	0.8933		300
			300
	1.0000 1.0000 1.0000 1.0000 1.0000 precision 0.9238 0.8515 0.9043	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 precision recall 0.9238 0.9700 0.8515 0.8600 0.9043 0.8500 0.8932 0.8933	1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 precision recall f1-score 0.9238 0.9700 0.9463 0.8515 0.8600 0.8557 0.9043 0.8500 0.8763 0.8933 0.8933 0.8928

Стохастический градиентный спуск

 $L(f(\pmb{x}(i);\pmb{\theta}),\pmb{y}(i)$ – значение функции потерь $f(\pmb{x}(i);\pmb{\theta})$ – результат вычисления нейронной сети от входа $\pmb{x}(i)$ и параметров (весов) $\pmb{\theta}$

Обновление на k-ой итерации стохастического градиентного спуска (СГС)

Require: скорость обучения ϵ_k

Require: Начальные значения параметров $oldsymbol{ heta}$

while критерий остановки не выполнен do

Выбрать из обучающего набора мини-батч m примеров $\{x(1), ..., x(m)\}$ и соответствующие им метки y(i).

Вычислить оценку градиента: $g \leftarrow + (1/m) \nabla_{\boldsymbol{\theta}} \Sigma_{i} L(f(\boldsymbol{x}(i); \boldsymbol{\theta}), \boldsymbol{y}(i)).$

Применить обновление: $\theta \leftarrow \theta - \epsilon g$.

end while

Стохастический градиентный спуск

- ullet Основной параметр алгоритма СГС скорость обучения ϵ
- На практике же необходимо постепенно уменьшать скорость обучения со временем
- • ϵ_k = $(1-\alpha)$ ϵ_k + $\alpha\epsilon_k$, где α =k/ τ . После τ -й итерации ϵ остается постоянным.
- Если скорость изменяется линейно, то нужно задать параметры $\varepsilon_0, \varepsilon_\tau$ и τ .

Импульсный метод

Стохастический градиентный спуск (СГС) с учетом импульса

Require: скорость обучения arepsilon, параметр импульса lpha

Require: начальные значения параметров θ , начальная

скорость v

while критерий остановки не выполнен do

Выбрать из обучающего набора мини-пакет m примеров

 $\{x(1),\dots,x(m)\}$ и соответствующие им метки y(i).

Вычислить оценку градиента:

$$g \leftarrow (1/\mathrm{m}) \nabla_{\theta} \Sigma_{\mathrm{i}} L(f(x(i); \theta), y(i)).$$

Вычислить обновление скорости: $v \leftarrow \alpha v - \varepsilon g$.

Применить обновление: $\theta \leftarrow \theta + v$.

end while

Импульсный алгоритм можно рассматривать как имитацию движения частицы, подчиняющейся динамике Ньютона.

ONNX

- ONNX библиотека для конвертации моделей между разными технологиями
- ONNX дает возможность исследователям и разработчикам выбрать нужную комбинацию инструментов для решения задачи
- ONNX.js позволяет запускать модели в браузере, то есть на стороне пользователя

ONNX

Step 3. Select class labels and get predictions

