

Remote Sensing for Water Quality Monitoring

Exploring Trends and Variability of Water Quality Over Lake Titicaca

Vann Harvey Maligaya Vrije Universiteit Brussel

Remote Sensing of Water Quality

Remote Sensing

Remote Sensing of Water Quality

Radiometric correction

Etc.

Empirical

Semi-empirical

ΑI

Water Quality Data

- 14 monitoring campaigns
- LSWT & Turbidity

In-Situ Data

- 2 Global Products
- LSWT, Turbidity, & Chlorophyll-a (Trophic State Index)

Remote Sensing Data

Remote Sensing Products

Database Name / Agency	Coverage Period and Temporal Resolution	WQ Product Spatial Resolution (m)	Satellite and Sensor
Copernicus Global Land Service (CGLS)	May 2002- present; 10-daily	100, 300, and 1000	Sentinel-2: MSI Sentinel-3: OLCI, SLSTR-A Envisat: MERIS, AATSR
European Space Agency (ESA) Lakes Climate Change Initiative (CCI)	Sept 1992-2020; Daily	1000	Envisat: MERIS, AATSR Aqua: MODIS Sentinel 3: OLCI, SLSTR Metop: AVHRR Terra: MODIS

Objectives and Analysis

Comparison of In-Situ and RS

- In-situ: From 14 monitoring campaigns
 RS: From the closest spatiotemporal location. Maintaining ±3 days match-up
- R², Bias, RMSE, & E_{com}

Spatial Analysis

- Only rasters with ≥80% of lake coverage
- Long-term monthly means

Temporal Analysis

At 25 water quality hotspots

Global RS WQ Products Accuracy

Better correlation of LSWT products with in-situ

• LSWT retrieval is based on physics, which stabilizes performance across space and time (Carrea & Merchant, 2020)

- Measurement methodology
 - In-situ: 20% depth
 - RS: Lake Surface
- Synchronization of Data
 - CGLS: ±4 days
 - ESA-CCI: ±1 day
- Quality of Data

PRODUCT	R ²	Bias	RMSE	E _{com}
CGLS	0.359	0.563	1.708	2.052
ESA-CCI	0.268	0.235	1.552	1.792

PRODUCT	R ²	Bias	RMSE	E _{com}
CGLS	0.111	-0.053	1.295	1.383
ESA-CCI	0.186	-0.215	0.965	1.096

Spatial Analysis

- Almost well-mixed temperature consistent with seasonal climate
- Both products consistent with each other
- Same algorithm and imagery source

Spatial Analysis

- High turbidity along the shores
- More pronounced high turbidity at the shores (CGLS)
- Same processing chain (Calimnos) but different versions
 - ESA-CCI uses the more updated version which added new optical water types

Spatial Analysis

- High concentration in Lago Menor
- Seasonal pattern of high concentration coincides with the wet season

Temporal Analysis

Comparison of Global RS WQ Products

Copernicus GLS

- 10-daily aggregation
- Available until the present
- Spatial resolutions of 100,300, and 1000 m
- TSI available in place of chl-a conc.
- Processing chain: Calimnos v1.4

ESA Lakes CCI

- Daily aggregation
- Available until the end of 2020
- Spatial resolution of 1000 m
- Chlorophyll-a concentration available
- + Processing chain: Calimnos v2.1

Summary of Findings

- LSWT estimates are better correlated with in-situ data than turbidity estimates
- Remarkable consistency in the spatiotemporal pattern between the two LSWT products
- **Accurate spatial patterns** of the water quality parameters with actual field conditions
- Both products are on par with each other, with some advantages and disadvantages

Conclusion

Correct pixel identification Accurate optical water type definition Better algorithms

MALIGAYA, Vann Harvey

Vann.Harvey.Maligaya@vub.be

Maligaya, Baltodano, Agramont, van Griensven

