

<u>Home</u> <u>Gameboard</u>

Physics

Waves & Particles

Quantum Essential Pre-Uni Physics D6.3

Essential Pre-Uni Physics D6.3

Useful physical constants can be found in the hint tabs.

A material will not emit photoelectrons unless it is irradiated by light with a wavelength less than $380\,\mathrm{nm}$. Calculate its work function in electron volts to 2 significant figures.

Home Gameboard Physics Waves & Particles Quantum Essential Pre-Uni Physics D7.3

Essential Pre-Uni Physics D7.3

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

When an electron annihilates a positron, two photons are produced, each with an energy of $511\,\mathrm{keV}$. Calculate the frequency of each photon.

Gameboard:

STEM SMART Physics 49 - Revision - Quantum Physics

Home Ga

<u>Gameboard</u>

Physics Waves & Particles

Quantum

Essential Pre-Uni Physics D6.5

Essential Pre-Uni Physics D6.5

A graph of stopping potential (y) against frequency of light (x) is plotted for zinc, and also for aluminium.

Without knowing more information, answer the following questions:

Part A Linear graphs?

a) Are the lines straight or not?

No
Yes

Part B Sign of the y-intercepts

b) Are the y-intercepts positive, negative or zero?

Positive
Zero
Negative

Part C	Sign of the gradients	
c) Are the gradients positive, negative or zero?		
	Negative	
	Positive	
	Zero	
Part D	Comparing the gradients	
d) Are the gradients of the two lines the same or different?		
	Different	
	Same	
Part E	Comparing the y-intercepts	
e) Are t	the y -intercepts of the two lines the same or different?	
	Different	
	Same	

Part F	The x-intercept
f) What	is the significance of the x -intercept?
	It is the frequency of the incident light.
	It is the threshold frequency.
	It is the work function of the material.
Part G	Common gradient or intercept
g) If yo	u answered `same' to parts (d) or (e), write down the value of the common gradient or intercept.
	Gradient not common
	Common intercept = $\frac{e}{h}$
	Common gradient = $\frac{h}{e}$
	Intercept not common
	Common gradient = h
	Intercept not common
	Common gradient = $\frac{h}{e}$
	Common intercept = h
	Common gradient = $-he$
	Intercept not common
	Gradient not common
	Common intercept = $\frac{\text{work function}}{\text{electric charge}}$

Gameboard:

STEM SMART Physics 49 - Revision - Quantum Physics

<u>Home</u> <u>Gameboard</u>

Physics

Waves & Particles Quantum Essential Pre-Uni Physics D6.6

Essential Pre-Uni Physics D6.6

Useful physical constants can be found in the hint tabs.

A material has a work function of $3.4\,\mathrm{eV}$, and is illuminated by $5.0\,\mathrm{eV}$ photons. Calculate the stopping potential of its photoelectrons.

Gameboard:

STEM SMART Physics 49 - Revision - Quantum Physics

<u>Home</u> <u>Gameboard</u> Physics Waves & Particles Quantum Essential Pre-Uni Physics D9.2

Essential Pre-Uni Physics D9.2

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

Figure 1: Energy level diagram of the atom this question is concerned with.

What wavelength of light would be emitted if an electron descended from the $-4.8\,\mathrm{eV}$ state to the ground state?

Gameboard:

STEM SMART Physics 49 - Revision - Quantum Physics

Home Gameboard Physics Waves & Particles Quantum Essential Pre-Uni Physics D9.4

Essential Pre-Uni Physics D9.4

Physical constants which may be necessary to answer the problems on this page can be found within the hint tabs.

Figure 1: Energy level diagram of the atom this question is concerned with.

When white light is shone onto a gaseous sample of these atoms, which wavelength will be absorbed as atoms excite from the ground state to the first excited state?

Gameboard:

STEM SMART Physics 49 - Revision - Quantum Physics

Home Gameboard Physics Electricity Components Photon Flux for an LED 7.2

Photon Flux for an LED 7.2

A $1.50\,\mathrm{W}$ Infra-Red LED produces electromagnetic radiation of wavelength $850\,\mathrm{nm}$. Calculate

Part A	The potential difference across the LED

A $1.50\,\mathrm{W}$ Infra-Red LED produces electromagnetic radiation of wavelength $850\,\mathrm{nm}$. Calculate the potential difference across the LED.

Part B The current that passes through the LED

A $1.50\,\mathrm{W}$ Infra-Red LED produces electromagnetic radiation of wavelength $850\,\mathrm{nm}$. Calculate the current that passes through the LED.

Part C The photon flux emitted by the LED

A $1.50\,\mathrm{W}$ Infra-Red LED produces electromagnetic radiation of wavelength $850\,\mathrm{nm}$. Calculate the photon flux emitted by the LED.