Numerikus módszerek 1.

3. előadás: Mátrixok LU-felbontása

Dr. Bozsik József

ELTE IK

Tartalomjegyzék

- 1 Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az *LU*-felbontás "közvetlen" kiszámítása
- 6 Műveletigény

Tartalomjegyzék

- 1 Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- 5 Műveletigény

Mi történik, ha az alábbi $L \in \mathbb{R}^{3 \times 3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3 \times 3}$ mátrixot balról?

```
\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}
```

Mi történik, ha az alábbi $L \in \mathbb{R}^{3\times3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3\times3}$ mátrixot balról?

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$

Mi történik, ha az alábbi $L \in \mathbb{R}^{3 \times 3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3 \times 3}$ mátrixot balról?

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \begin{bmatrix} ? & ? & ? \\ ? & ? & ? \\ ? & ? & ? \end{bmatrix}$$

Az 1. sor kétszeresét hozzáadjuk a 2. sorhoz.

Mi történik, ha az alábbi $L \in \mathbb{R}^{3\times3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3\times3}$ mátrixot balról?

$$\begin{bmatrix}
 1 & 0 & 0 \\
 2 & 1 & 0 \\
 -3 & 0 & 1
 \end{bmatrix}$$

Mi történik, ha az alábbi $L \in \mathbb{R}^{3\times3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3\times3}$ mátrixot balról?

$$\begin{bmatrix}
 1 & 0 & 0 \\
 2 & 1 & 0 \\
 -3 & 0 & 1
 \end{bmatrix}$$

Az 1. sor kétszeresét hozzáadjuk a 2. sorhoz, valamint az 1. sor háromszorosát levonjuk a 3. sorból.

Mi történik, ha az alábbi $L \in \mathbb{R}^{3\times3}$ mátrixszal megszorzunk egy $A \in \mathbb{R}^{3\times3}$ mátrixot balról?

$$\begin{bmatrix}
 1 & 0 & 0 \\
 2 & 1 & 0 \\
 -3 & 0 & 1
 \end{bmatrix}$$

Az 1. sor kétszeresét hozzáadjuk a 2. sorhoz, valamint az 1. sor háromszorosát levonjuk a 3. sorból. (\sim GE 1. lépése volt)

Írjuk fel a GE k-adik lépését ugyanilyen módszerrel! ($A \in \mathbb{R}^{n \times n}$)

Írjuk fel a GE k-adik lépését ugyanilyen módszerrel! $ig(A \in \mathbb{R}^{n imes n}ig)$

(A zérus elemek nincsenek feltüntetve L_k -ban.)

Írjuk fel a GE k-adik lépését ugyanilyen módszerrel! ($A \in \mathbb{R}^{n \times n}$)

(A zérus elemek nincsenek feltüntetve L_k -ban.)

Írjuk fel a GE k-adik lépését ugyanilyen módszerrel! ($A \in \mathbb{R}^{n \times n}$)

(A zérus elemek nincsenek feltüntetve L_k -ban.)

Tehát ha
$$l_{ik}=rac{a_{ik}^{(k-1)}}{a_{kk}^{(k-1)}} \quad (k=1,\ldots,n-1; \quad i=k+1,\ldots,n),$$
akkor $L_k\cdot A^{(k-1)}=A^{(k)}$, vagyis megkaptuk a GE k -adik lépését.

Példa: GE az L_k mátrixokkal

Írjuk fel a Gauss-elimináció lépéseit mátrixszorzások segítségével a következő mátrix esetén (ua. mint az előző előadáson)!

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

Példa: GE az L_k mátrixokkal

Írjuk fel a Gauss-elimináció lépéseit mátrixszorzások segítségével a következő mátrix esetén (ua. mint az előző előadáson)!

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

Megoldás: 1. lépés

$$A^{(1)} = L_1 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix}$$

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

Tehát $A^{(2)} = L_2 \cdot L_1 \cdot A =: U$, a kapott felsőháromszög alakot U-val jelöljük.

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

Tehát $A^{(2)} = L_2 \cdot L_1 \cdot A =: U$, a kapott felsőháromszög alakot U-val jelöljük.

Fejezzük ki A-t a képletből:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1}}_{=:L} \cdot U = L \cdot U.$$

Ezzel megkaptuk az A mátrix LU-felbontását. Ennek az elméletét tárgyaljuk a következőkben.

Tartalomjegyzék

- 1 Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- 5 Műveletigény

Elnevezések, jelölések

Definíció: alsó háromszögmátrix

Az $L \in \mathbb{R}^{n \times n}$ mátrixot alsó háromszögmátrixnak nevezzük, ha i < j esetén $l_{ij} = 0$. (A főátló felett csupa nulla.)

```
\mathcal{L} := \{ L \in \mathbb{R}^{n \times n} : I_{ij} = 0 (i < j) \}, 
\mathcal{L}_1 := \{ L \in \mathbb{R}^{n \times n} : I_{ij} = 0 (i < j), I_{ii} = 1 \}.
```

Definíció: alsó háromszögmátrix

Az $L \in \mathbb{R}^{n \times n}$ mátrixot alsó háromszögmátrixnak nevezzük, ha i < j esetén $l_{ij} = 0$. (A főátló felett csupa nulla.)

$$\mathcal{L} := \{ L \in \mathbb{R}^{n \times n} : I_{ij} = 0 \ (i < j) \},$$

$$\mathcal{L}_1 := \{ L \in \mathbb{R}^{n \times n} : I_{ij} = 0 \ (i < j), \ I_{ii} = 1 \}.$$

Definíció: felső háromszögmátrix

Az $U \in \mathbb{R}^{n \times n}$ mátrixot felső háromszögmátrixnak nevezzük, ha i > j esetén $u_{ij} = 0$. (A főátló alatt csupa nulla.)

$$\begin{split} \mathcal{U} := \{ \ U \in \mathbb{R}^{n \times n} \ : \ u_{ij} = 0 \ (i > j) \, \}, \\ \mathcal{U}_1 := \{ \ U \in \mathbb{R}^{n \times n} \ : \ u_{ij} = 0 \ (i > j), \ u_{ii} = 1 \, \}. \end{split}$$

Háromszögmátrixok halmazának zártsága

Állítás: háromszögmátrixról

- **1** Ha $L', L'' \in \mathcal{L}$, akkor $L' \cdot L'' \in \mathcal{L}$.
- **2** Ha $U', U'' \in \mathcal{U}$, akkor $U' \cdot U'' \in \mathcal{U}$.
- **3** Ha $L', L'' \in \mathcal{L}_1$, akkor $L' \cdot L'' \in \mathcal{L}_1$.
- **4** Ha $U', U'' \in \mathcal{U}_1$, akkor $U' \cdot U'' \in \mathcal{U}_1$.
- **6** Ha $L \in \mathcal{L}$ és $\exists L^{-1}$, akkor $L^{-1} \in \mathcal{L}$.
- **6** Ha $U \in \mathcal{U}$ és $\exists U^{-1}$, akkor $U^{-1} \in \mathcal{U}$.
- 7 Ha $L \in \mathcal{L}_1$, akkor $\exists L^{-1}$ és $L^{-1} \in \mathcal{L}_1$.
- 8 Ha $U \in \mathcal{U}_1$, akkor $\exists U^{-1}$ és $U^{-1} \in \mathcal{U}_1$.

Háromszögmátrixok halmazának zártsága

Állítás: háromszögmátrixról

- **1** Ha $L', L'' \in \mathcal{L}$, akkor $L' \cdot L'' \in \mathcal{L}$.
- **2** Ha $U', U'' \in \mathcal{U}$, akkor $U' \cdot U'' \in \mathcal{U}$.
- **3** Ha $L', L'' \in \mathcal{L}_1$, akkor $L' \cdot L'' \in \mathcal{L}_1$.
- 4 Ha $U', U'' \in \mathcal{U}_1$, akkor $U' \cdot U'' \in \mathcal{U}_1$.
- **5** Ha $L \in \mathcal{L}$ és $\exists L^{-1}$, akkor $L^{-1} \in \mathcal{L}$.
- **6** Ha $U \in \mathcal{U}$ és $\exists U^{-1}$, akkor $U^{-1} \in \mathcal{U}$.
- 7 Ha $L \in \mathcal{L}_1$, akkor $\exists L^{-1}$ és $L^{-1} \in \mathcal{L}_1$.
- **8** Ha $U \in \mathcal{U}_1$, akkor $\exists U^{-1}$ és $U^{-1} \in \mathcal{U}_1$.

Biz.: házi feladat (beadható).

Definíció: L_k

 $L_k := I - \ell_k e_k^{\top} \in \mathbb{R}^{n \times n}$, ahol $\ell_k \in \mathbb{R}^n$, $(\ell_k)_i = 0$ $(i \le k)$ és $e_k \in \mathbb{R}^n$ a k-adik egységvektor.

Definíció: L_k

 $L_k := I - \ell_k e_k^{\top} \in \mathbb{R}^{n \times n}$, ahol $\ell_k \in \mathbb{R}^n$, $(\ell_k)_i = 0$ $(i \le k)$ és $e_k \in \mathbb{R}^n$ a k-adik egységvektor.

Állítás: *L_k* inverze

$$L_k^{-1} = I + \ell_k e_k^{\top}.$$

Definíció: L

 $L_k := I - \ell_k e_k^{\top} \in \mathbb{R}^{n \times n}$, ahol $\ell_k \in \mathbb{R}^n$, $(\ell_k)_i = 0$ $(i \le k)$ és $e_k \in \mathbb{R}^n$ a k-adik egységvektor.

Állítás: Lk inverze

$$L_k^{-1} = I + \ell_k e_k^{\top}.$$

Biz.:

$$L_k \cdot L_k^{-1} = (I - \ell_k e_k^\top)(I + \ell_k e_k^\top) = I \underbrace{-\ell_k e_k^\top + \ell_k e_k^\top}_{0} - \ell_k \underbrace{e_k^\top \ell_k}_{0} e_k^\top = I. \quad \Box$$

Definíció: Lk

 $L_k := I - \ell_k e_k^{\top} \in \mathbb{R}^{n \times n}$, ahol $\ell_k \in \mathbb{R}^n$, $(\ell_k)_i = 0$ $(i \le k)$ és $e_k \in \mathbb{R}^n$ a k-adik egységvektor.

Állítás: Lk inverze

$$L_k^{-1} = I + \ell_k e_k^{\top}.$$

Biz.:

$$L_k \cdot L_k^{-1} = (I - \ell_k e_k^\top)(I + \ell_k e_k^\top) = I \underbrace{-\ell_k e_k^\top + \ell_k e_k^\top}_{0} - \ell_k \underbrace{e_k^\top \ell_k}_{0} e_k^\top = I. \quad \Box$$

Szemléletesen?

Az L_k mátrixokról

Hogyan szorzunk össze két ilyen mátrixot?

Az L_k mátrixokról

Hogyan szorzunk össze két ilyen mátrixot?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 7 & 3 & 1 \end{pmatrix}$$

Hogyan szorzunk össze két ilyen mátrixot?

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$$

A bal oldali sorrendben "szépen" szorzódik. Általában is.

$$L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_{n-1} e_{n-1}^\top.$$

$$L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_{n-1} e_{n-1}^\top.$$

Szemléletesen?

$$L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_{n-1} e_{n-1}^\top.$$

Szemléletesen?

Biz.: Indukcióval.

$$L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1} = I + \ell_1 e_1^\top + \ell_2 e_2^\top + \ldots + \ell_{n-1} e_{n-1}^\top.$$

Szemléletesen?

Biz.: Indukcióval.

$$\begin{aligned} L_{1}^{-1} \cdot L_{2}^{-1} &= (I + \ell_{1} e_{1}^{\top})(I + \ell_{2} e_{2}^{\top}) = \\ &= I + \ell_{1} e_{1}^{\top} + \ell_{2} e_{2}^{\top} + \ell_{1} \underbrace{(e_{1}^{\top} \ell_{2})}_{0} e_{2}^{\top} = \\ &= I + \ell_{1} e_{1}^{\top} + \ell_{2} e_{2}^{\top} \end{aligned}$$

Az Lk mátrixokról

• Tegyük fel, hogy $k+1 \le n-1$ és

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \ldots + \ell_k e_k^{\top}.$$

Az L_k mátrixokról

ullet Tegyük fel, hogy $k+1 \leq n-1$ és

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \ldots + \ell_k e_k^{\top}.$$

$$\bullet \ \ L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} \cdot L_{k+1}^{-1} =$$

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \ldots + \ell_k e_k^{\top}.$$

•
$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} \cdot L_{k+1}^{-1} =$$

= $(I + \ell_1 e_1^\top + \ell_2 e_2^\top + \dots + \ell_k e_k^\top)(I + \ell_{k+1} e_{k+1}^\top) =$

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \ldots + \ell_k e_k^{\top}.$$

•
$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} \cdot L_{k+1}^{-1} =$$

$$= (I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top})(I + \ell_{k+1} e_{k+1}^{\top}) =$$

$$= I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top} + \ell_{k+1} e_{k+1}^{\top} +$$

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \ldots + \ell_k e_k^{\top}.$$

kiesnek

•
$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} \cdot L_{k+1}^{-1} =$$

$$= (I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top})(I + \ell_{k+1} e_{k+1}^{\top}) =$$

$$= I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \dots + \ell_k e_k^{\top} + \ell_{k+1} e_{k+1}^{\top} +$$

$$+ \ell_1 e_1^{\top} \ell_{k+1} e_{k+1}^{\top} + \dots + \ell_k e_k^{\top} \ell_{k+1} e_{k+1}^{\top} =$$

$$L_1^{-1} \cdot L_2^{-1} \cdots L_k^{-1} = I + \ell_1 e_1^{\top} + \ell_2 e_2^{\top} + \ldots + \ell_k e_k^{\top}.$$

•
$$L_{1}^{-1} \cdot L_{2}^{-1} \cdots L_{k}^{-1} \cdot L_{k+1}^{-1} =$$

$$= (I + \ell_{1}e_{1}^{\top} + \ell_{2}e_{2}^{\top} + \dots + \ell_{k}e_{k}^{\top})(I + \ell_{k+1}e_{k+1}^{\top}) =$$

$$= I + \ell_{1}e_{1}^{\top} + \ell_{2}e_{2}^{\top} + \dots + \ell_{k}e_{k}^{\top} + \ell_{k+1}e_{k+1}^{\top} +$$

$$+ \underbrace{\ell_{1}e_{1}^{\top}\ell_{k+1}e_{k+1}^{\top} + \dots + \ell_{k}e_{k}^{\top}\ell_{k+1}e_{k+1}^{\top}}_{\text{kiesnek}} =$$

$$= I + \ell_{1}e_{1}^{\top} + \ell_{2}e_{2}^{\top} + \dots + \ell_{k}e_{k}^{\top} + \ell_{k+1}e_{k+1}^{\top} = \checkmark.$$

Tartalomjegyzék

- Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- Műveletigény

Definíció: LU-felbontás

Az A mátrix LU-felbontásának nevezzük az $L \cdot U$ szorzatot, ha

$$A = LU$$
, $L \in \mathcal{L}_1$, $U \in \mathcal{U}$.

A Gauss-eliminációt felírhatjuk alsó háromszögmátrixok segítségével:

$$L_{n-1}\cdots L_2\cdot L_1\cdot A=U,$$

A Gauss-eliminációt felírhatjuk alsó háromszögmátrixok segítségével:

$$L_{n-1}\cdots L_2\cdot L_1\cdot A=U,$$

majd az inverzekkel egyesével átszorozva:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1}}_{L} \cdot U = LU.$$

A Gauss-eliminációt felírhatjuk alsó háromszögmátrixok segítségével:

$$L_{n-1}\cdots L_2\cdot L_1\cdot A=U$$
,

majd az inverzekkel egyesével átszorozva:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1} \cdots L_{n-1}^{-1}}_{L} \cdot U = LU.$$

A fenti szorzat is alsó háromszögmátrix. Láttuk az előző tételből, hogy az L mátrix elemeit egy egységmátrixból kapjuk úgy, hogy minden oszlopba ez egyesek alá beletesszük a neki megfelelő ℓ_k vektor nem nulla elemeit (ezek a GE-s hányadosok). Tehát ennek előállításához nem kell több művelet, mint amit a GE-val végzünk.

Példa: LU-felbontás GE-val

Készítsük el a példamátrixunk LU-felbontását

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

- a részletezve az L_k mátrixokat, a számítás menetét,
- b majd "tömör" írásmóddal!

Megoldás: (a) 1. lépés

$$A^{(1)} = L_1 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix}$$

Megoldás: (a) 1. lépés

$$A^{(1)} = L_1 \cdot A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix}$$

 L_1^{-1} -et úgy kapjuk, hogy L_1 1. oszlopában az átló alatti elemeket (-1)-szeresére változtatjuk. Megfigyelhetjük, hogy ezek a tényleges GE-s hányadosok. Láttuk, hogy L meghatározáshoz csak ℓ_1 -re van szükségünk.

$$L_1^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

2. lépés

$$A^{(2)} = L_2 \cdot A^{(1)} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & -5 & -5 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} =: U$$

 L_2^{-1} -et úgy kapjuk, hogy L_2 2. oszlopában az átló alatti elemeket (-1)-szeresére változtatjuk. Megfigyelhetjük, hogy ez a tényleges GE-s hányados. Láttuk, hogy L meghatározáshoz csak ℓ_2 -re van szükségünk.

$$L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$

Tehát $A^{(2)} = L_2 \cdot L_1 \cdot A =: U$

Tehát
$$A^{(2)} = L_2 \cdot L_1 \cdot A =: U$$

Fejezzük ki A-t a képletből:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1}}_{=:L} \cdot U = L \cdot U.$$

Tehát
$$A^{(2)} = L_2 \cdot L_1 \cdot A =: U$$

Fejezzük ki A-t a képletből:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1}}_{=:L} \cdot U = L \cdot U.$$

Tehát $L=L_1^{-1}\cdot L_2^{-1}$. Az L_k mátixok szorzatára felírt tétel alapján ehhez nem kell mátrixot szoroznunk, csak az ℓ_k vektorokból kell összeraknunk L-et.

Tehát
$$A^{(2)} = L_2 \cdot L_1 \cdot A =: U$$

Fejezzük ki A-t a képletből:

$$A = \underbrace{L_1^{-1} \cdot L_2^{-1}}_{=:L} \cdot U = L \cdot U.$$

Tehát $L=L_1^{-1}\cdot L_2^{-1}$. Az L_k mátixok szorzatára felírt tétel alapján ehhez nem kell mátrixot szoroznunk, csak az ℓ_k vektorokból kell összeraknunk L-et.

$$L = L_1^{-1} \cdot L_2^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix}$$

A kapott eredményt szorzással is ellenőrizhetjük.

(b) Tömör írásmódban: 1. lépés

A GE-s hányadosokat minden lépésben az eliminált pozíciókon tudjuk tárolni (éppen ennyi nulla van az oszlopban). Könnyen meg jegyezhető ezek képzése: az eliminálandó mátrix rész 1. oszlopában az első elemmel leosztjuk az alatta levőket. Ezzel minden a helyére került. Vonalakkal jelezzük, hogy itt már tárolásról is szó van. A jobb alsó 2×2 -es mátrix részen elvégezzük az eliminációt.

(b) Tömör írásmódban: 1. lépés

A GE-s hányadosokat minden lépésben az eliminált pozíciókon tudjuk tárolni (éppen ennyi nulla van az oszlopban). Könnyen meg jegyezhető ezek képzése: az eliminálandó mátrix rész 1. oszlopában az első elemmel leosztjuk az alatta levőket. Ezzel minden a helyére került. Vonalakkal jelezzük, hogy itt már tárolásról is szó van. A jobb alsó 2×2 -es mátrix részen elvégezzük az eliminációt.

$$\begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 \\ \hline \frac{-4}{2} & 5 & 4 \\ \frac{6}{2} & -5 & -5 \end{bmatrix} \rightarrow$$

2. lépés:

Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

2. lépés:

Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

$$\begin{bmatrix} 2 & 0 & 3 \\ \hline -2 & 5 & 4 \\ \hline 3 & -5 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 \\ \hline -2 & 5 & 4 \\ \hline 3 & \hline -5 & -1 \end{bmatrix}$$

2. lépés:

Ugyanúgy dolgozunk tovább, de most már csak a jobb alsó 2×2 -es mátrix részen, a többit változatlanul leírjuk.

$$\begin{bmatrix} 2 & 0 & 3 \\ \hline -2 & 5 & 4 \\ 3 & -5 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 0 & 3 \\ \hline -2 & 5 & 4 \\ 3 & \hline -\frac{5}{5} & -1 \end{bmatrix}$$

Olvassuk ki a keresett mátrixokat!

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 0 & 3 \\ 0 & 5 & 4 \\ 0 & 0 & -1 \end{bmatrix} = L \cdot U$$

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0 \; (k=1,\ldots,n-1)$), akkor az A mátrix LU-felbontása létezik.

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ ($k=1,\ldots,n-1$)), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ ($k=1,\ldots,n-1$)), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

Megi.:

•
$$u_{kk} = a_{kk}^{(k-1)}$$
 és $D_k = a_{11} \cdot a_{22}^{(1)} \cdots a_{kk}^{(k-1)}$

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ ($k=1,\ldots,n-1$)), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

Megi.:

- $u_{kk} = a_{kk}^{(k-1)}$ és $D_k = a_{11} \cdot a_{22}^{(1)} \cdots a_{kk}^{(k-1)}$
- Ha van A-nak LU-felbontása, ahol U átlójában nem nullák állnak, akkor $u_{kk}=a_{kk}^{(k-1)}\neq 0$.

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{kk}^{(k-1)} \neq 0$ ($k=1,\ldots,n-1$)), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

Megj.:

- $u_{kk} = a_{kk}^{(k-1)}$ és $D_k = a_{11} \cdot a_{22}^{(1)} \cdots a_{kk}^{(k-1)}$
- Ha van A-nak LU-felbontása, ahol U átlójában nem nullák állnak, akkor $u_{kk}=a_{kk}^{(k-1)}\neq 0$.
- $a_{nn}^{(n-1)} \neq 0 \Leftrightarrow \det(A) = D_n \neq 0.$

Tétel: LU-felbontás létezése

Ha a Gauss-elimináció végrehajtható sor és oszlopcsere nélkül (azaz $a_{\mu\nu}^{(k-1)} \neq 0$ $(k = 1, \dots, n-1)$), akkor az A mátrix LU-felbontása létezik.

Biz.: Ha a GE végrehajtható sor és oszlopcsere nélkül, akkor az L_k mátrixok felírhatók és L, U előállítható.

Meg j.:

- $u_{kk} = a_{kk}^{(k-1)}$ és $D_k = a_{11} \cdot a_{22}^{(1)} \cdots a_{kk}^{(k-1)}$
- Ha van A-nak LU-felbontása, ahol U átlójában nem nullák állnak, akkor $u_{kk} = a_{kk}^{(k-1)} \neq 0$.
- $a_{nn}^{(n-1)} \neq 0 \Leftrightarrow \det(A) = D_n \neq 0$.
- Ha a GE végrehajtható, de $a_{nn}^{(n-1)} = 0$, akkor létezik LU-felbontás, de $det(A) = det(L) \cdot det(U) = det(U) = 0$ -ból $u_{nn} = 0$. Ebben az esetben a LER vagy nem oldható meg vagy nem egyértelműen.

Tétel: LU-felbontás létezése és egyértelműsége (főminorokkal)

• Ha $D_k \neq 0$ (k = 1, ..., n - 1), akkor létezik az A mátrix LU-felbontása és $u_{kk} \neq 0$ (k = 1, ..., n - 1).

Tétel: LU-felbontás létezése és egyértelműsége (főminorokkal)

- Ha $D_k \neq 0$ (k = 1, ..., n 1), akkor létezik az A mátrix LU-felbontása és $u_{kk} \neq 0$ (k = 1, ..., n 1).
- Ha $det(A) \neq 0$, akkor a felbontás egyértelmű.

Tétel: LU-felbontás létezése és egyértelműsége (főminorokkal)

- Ha $D_k \neq 0$ (k = 1, ..., n 1), akkor létezik az A mátrix LU-felbontása és $u_{kk} \neq 0$ (k = 1, ..., n 1).
- Ha $det(A) \neq 0$, akkor a felbontás egyértelmű.

Biz.: létezés: az LU-felbontás létezése a GE-nál tanult tételünkből következik. $D_k \neq 0 \Leftrightarrow a_{kk}^{(k-1)} \neq 0$ a megadott indexekre, ezért a GE végrehajtható és az L, U mátrixok előállíthatóak.

Tétel: LU-felbontás létezése és egyértelműsége (főminorokkal)

- Ha $D_k \neq 0$ (k = 1, ..., n 1), akkor létezik az A mátrix LU-felbontása és $u_{kk} \neq 0$ (k = 1, ..., n 1).
- Ha $det(A) \neq 0$, akkor a felbontás egyértelmű.

Biz.: létezés: az LU-felbontás létezése a GE-nál tanult tételünkből következik. $D_k \neq 0 \Leftrightarrow a_{kk}^{(k-1)} \neq 0$ a megadott indexekre, ezért a GE végrehajtható és az L, U mátrixok előállíthatóak.

Egyértelműség: indirekt tegyük fel, hogy az *A* invertálható mátrix *LU*-felbontása nem egyértelmű, azaz legalább két különböző felbontás létezik:

$$A=L_1\cdot U_1=L_2\cdot U_2.$$

LU-felbontás egyértelműsége

$$A=L_1\cdot U_1=L_2\cdot U_2.$$

Az egyenlőséget U_2^{-1} -zel jobbról, majd L_1^{-1} -zel balról szorozva kapjuk, hogy

$$U_1 \cdot U_2^{-1} = L_1^{-1} \cdot L_2.$$

A szóban forgó inverzek léteznek, hiszen $\det(A) = \det(L_i) \cdot \det(U_i) = \det(U_i) \neq 0$, i = 1, 2-re.

Az egyenlőség bal oldalán egy felső háromszögmátrix, jobb oldalán pedig egy 1 főátlójú alsó háromszögmátrix áll. Ez csak úgy lehet, ha az egységmátrixról van szó. Tehát

$$U_1 \cdot U_2^{-1} = I \implies U_1 = U_2,$$

 $L_1^{-1} \cdot L_2 = I \implies L_1 = L_2.$

Ellentmondásra jutottunk, vagyis az LU-felbontás egyértelmű.

L és U megadása GE-val

Az eddigieket összefoglalva felírhatjuk az A = LU felbontást:

$$L \in \mathcal{L}_1 ext{ és } l_{ij} = rac{a_{ij}^{(j-1)}}{a_{jj}^{(j-1)}} \ (i > j), \qquad U \in \mathcal{U} ext{ és } u_{ij} = a_{ij}^{(i-1)} \ (i \leq j).$$

Miért jó az *LU*-felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett

- f 1 oldjuk meg az Ly=b alsó háromszögű,
- 2 majd az Ux = y felső háromszögű LER-t.

Miért jó az *LU*-felbontás?

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

- **1** oldjuk meg az Ly = b alsó háromszögű, $(n^2 + \mathcal{O}(n))$ **2** majd az Ux = y felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

- lacktriangledown oldjuk meg az Ly=b alsó háromszögű, $(n^2+\mathcal{O}(n))$
- **2** majd az Ux = y felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Összehasonlításul: egy mátrix-vektor szorzás műveletigénye: $n\cdot(2n-1)=2n^2+\mathcal{O}(n)$.

Tegyük fel, hogy

- az Ax = b LER megoldható, és
- rendelkezésünkre áll az A = LU felbontás.

Ekkor
$$Ax = L \cdot \underbrace{U \cdot x}_{y} = b$$
 helyett $(\frac{2}{3}n^{3} + \mathcal{O}(n^{2}))$

- lacktriangledown oldjuk meg az Ly=b alsó háromszögű, $(n^2+\mathcal{O}(n))$
- 2 majd az Ux = y felső háromszögű LER-t. $(n^2 + \mathcal{O}(n))$

Összehasonlításul: egy mátrix-vektor szorzás műveletigénye: $n \cdot (2n-1) = 2n^2 + \mathcal{O}(n)$.

Persze valamikor elő kell állítani az LU-felbontást. $(\frac{2}{3}n^3 + \mathcal{O}(n^2))$ Előnyös, ha sokszor ugyanaz A: az ILU-algoritmusnál illetve az inverz iterációnál látjuk majd alkalmazását.

Tartalomjegyzék

- 1 Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- 5 Műveletigény

- Nem ismerjük *L*-t és *U*-t: ismeretlenek a mátrixokban.
- Viszont szorzatukat ismerjük: LU = A.
- A egyes elemeit a mátrixszorzás alapján felírva egyenleteket kapunk L és U elemeire.
- *Jó sorrendben* felírva az egyenleteket, mindig megkapjuk egy-egy új ismeretlen értékét.
- A GE-nál láttuk, hogy U 1. sora azonos A 1. sorával (a GE az 1.sort nem változtatja).
- L 1. oszlopát úgy kapjuk, hogy A 1. oszlopát leosztjuk a₁₁-gyel.

Jó sorrendek

$$\begin{pmatrix} 1. & 1. & 1. & 1. \\ 2. & 3. & 3. & 3. \\ 4. & 4. & 5. & 5. \\ 6. & 6. & 6. & 7. \end{pmatrix} \qquad \begin{pmatrix} 1. & 3. & 5. & 7. \\ 2. & 3. & 5. & 7. \\ 2. & 4. & 5. & 7. \\ 2. & 4. & 6. & 7. \end{pmatrix} \qquad \begin{pmatrix} 1. & 1. & 1. & 1. \\ 2. & 3. & 3. & 3. \\ 2. & 4. & 5. & 5. \\ 2. & 4. & 6. & 7. \end{pmatrix}$$

oszlopfolytonosan

parkettaszerűen

Példa: I U-felbontás közvetlenül

- 6 Készítsük el a példamátrixunk LU-felbontását közvetlenül a mátrixszorzás alapján.
- **b** Nézzünk egy újabb példát is. (Vigyázat, $det(B_2) = 0$.)

$$A = \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}, \qquad B = \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$I_{21}\cdot 2=-4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad l_{21} \cdot 2 = -4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \qquad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$I_{31} \cdot 2 = 6$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \qquad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$I_{31} \cdot 2 = 6$$

$$I_{31} \cdot 0 + I_{32} \cdot u_{22} = -5$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$l_{31} \cdot 2 = 6$$

$$l_{31} \cdot 0 + l_{32} \cdot u_{22} = -5$$

$$l_{31} \cdot 3 + l_{32} \cdot u_{23} + 1 \cdot u_{33} = 4$$

$$\begin{bmatrix} 2 & 0 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot 0 + 1 \cdot u_{22} &= 5 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 3 \\ -4 & 5 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 5 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$l_{31} \cdot 2 = 6 \qquad l_{31} = 3$$

$$l_{31} \cdot 0 + l_{32} \cdot u_{22} = -5 \qquad l_{32} = \frac{-5}{5} = -1$$

$$l_{31} \cdot 3 + l_{32} \cdot u_{23} + 1 \cdot u_{33} = 4 \qquad u_{33} = 4 - 3 \cdot 3 - (-1) \cdot 4 = -1$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}$$

$$I_{21}\cdot 2=-4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad l_{21} \cdot 2 = -4$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{matrix} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{matrix}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 4 - (-2) \cdot (-2) = 0 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \begin{array}{c} l_{21} = -2 \\ u_{22} = 4 - (-2) \cdot (-2) = 0 \\ u_{23} = -2 - (-2) \cdot 3 = 4 \end{array}$$

$$I_{31}\cdot 2=6$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 4 - (-2) \cdot (-2) = 0 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$I_{31} \cdot 2 = 6$$
$$I_{31} \cdot (-2) + I_{32} \cdot u_{22} = -5$$

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 4 - (-2) \cdot (-2) = 0 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

$$l_{31}\cdot 2=6$$
 $l_{31}=3$ $l_{31}\cdot (-2)+l_{32}\cdot u_{22}=-5$ \leadsto ellentmondásos egyenlet

$$\begin{bmatrix} 2 & -2 & 3 \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} \qquad \begin{aligned} l_{21} \cdot 2 &= -4 \\ l_{21} \cdot (-2) + 1 \cdot u_{22} &= 4 \\ l_{21} \cdot 3 + 1 \cdot u_{23} &= -2 \end{aligned}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \quad \begin{bmatrix} 2 & -2 & 3 \\ -4 & 4 & -2 \\ 6 & -5 & 4 \end{bmatrix} \quad \begin{aligned} l_{21} &= -2 \\ u_{22} &= 4 - (-2) \cdot (-2) = 0 \\ u_{23} &= -2 - (-2) \cdot 3 = 4 \end{aligned}$$

A 3. sor számítása:

$$l_{31} \cdot 2 = 6 \qquad \qquad l_{31} = 3$$

$$l_{31} \cdot (-2) + l_{32} \cdot u_{22} = -5 \qquad \leadsto \text{ellentmond\'asos egyenlet}$$

Mivel $D_2 = \det(B_2) = 0$, így $u_{22} = 0$ lesz. Az LU-felbontás nem készíthető el. GE-t alkalmazva $a_{22}^{(1)} = 0$ lenne, emiatt sort kéne cserélni.

Tétel: az *LU*-felbontás "közvetlen" kiszámítása

Az L és U mátrixok elemei a következő képletekkel számolhatók:

$$i \leq j ext{ (felső)}$$
 $u_{ij} = a_{ij} - \sum_{k=1}^{i-1} l_{ik} \cdot u_{kj},$ $i > j ext{ (alsó)}$ $l_{ij} = rac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} \cdot u_{kj}
ight).$

Ha jó sorrendben számolunk, mindig ismert az egész jobb oldal.

Biz.: Írjuk fel az $A \in \mathbb{R}^{n \times n}$ mátrix, mint mátrixszorzat *i*-edik sorának *j*-edik elemét feltéve, hogy $A = L \cdot U$. Használjuk ki, hogy háromszögmátrixokról van szó, majd válasszunk le egy tagot.

Biz.: Írjuk fel az $A \in \mathbb{R}^{n \times n}$ mátrix, mint mátrixszorzat *i*-edik sorának *j*-edik elemét feltéve, hogy $A = L \cdot U$. Használjuk ki, hogy háromszögmátrixokról van szó, majd válasszunk le egy tagot.

Ha $i \leq j$, azaz egy főátló feletti (vagy főátlóbeli) elemről van szó, akkor $k>i \Rightarrow l_{ik}=0$, valamint $l_{ii}=1$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{i} I_{ik} \cdot u_{kj} = u_{ij} + \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj}.$$

Biz.: Írjuk fel az $A \in \mathbb{R}^{n \times n}$ mátrix, mint mátrixszorzat *i*-edik sorának *j*-edik elemét feltéve, hogy $A = L \cdot U$. Használjuk ki, hogy háromszögmátrixokról van szó, majd válasszunk le egy tagot.

Ha $i \leq j$, azaz egy főátló feletti (vagy főátlóbeli) elemről van szó, akkor $k>i \Rightarrow l_{ik}=0$, valamint $l_{ii}=1$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{i} I_{ik} \cdot u_{kj} = u_{ij} + \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj}.$$

Ebből uji kifejezhető

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj}.$$

Biz. folyt. Ha i>j, azaz egy főátló alatti elemről van szó, akkor $k>j\Rightarrow u_{kj}=0$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{j} I_{ik} \cdot u_{kj} = I_{ij} \cdot u_{jj} + \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj}.$$

Biz. folyt. Ha i>j, azaz egy főátló alatti elemről van szó, akkor $k>j\Rightarrow u_{kj}=0$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{j} I_{ik} \cdot u_{kj} = I_{ij} \cdot u_{jj} + \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj}.$$

Ha $u_{jj} \neq 0$ (találkoztunk már ezzel a feltétellel), akkor l_{ij} kifejezhető

$$I_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj} \right).$$

Biz. folyt. Ha i>j, azaz egy főátló alatti elemről van szó, akkor $k>j\Rightarrow u_{kj}=0$, és így

$$a_{ij} = \sum_{k=1}^{n} I_{ik} \cdot u_{kj} = \sum_{k=1}^{j} I_{ik} \cdot u_{kj} = I_{ij} \cdot u_{jj} + \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj}.$$

Ha $u_{jj} \neq 0$ (találkoztunk már ezzel a feltétellel), akkor l_{ij} kifejezhető

$$I_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj} \right).$$

Figyeljük meg, hogy ha valamely "jó sorrendben" (lásd az előadás diasorát) megyünk végig az (i,j) indexekkel A elemein, akkor az l_{ij} illetve u_{ij} értékét megadó egyenlőségek jobb oldalán minden mennyiség ismert.

Tartalomjegyzék

- Alsó háromszögmátrixok és Gauss-elimináció
- 2 Háromszögmátrixokról
- 3 LU-felbontás Gauss-eliminációval
- 4 Az LU-felbontás "közvetlen" kiszámítása
- 6 Műveletigény

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: A GE-ból trivi, mert vele az *LU*-felbontás is előállítható.

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: A GE-ból trivi, mert vele az LU-felbontás is előállítható.

A képletekből: Rögzített j-re:

$$u_{ij} = a_{ij} - \sum_{k=1}^{i-1} I_{ik} \cdot u_{kj},$$

 u_{ij} -hez (i-1) szorzás és (i-1) összeadás kell. Összesen 2(i-1) művelet.

Tétel: Az *LU*-felbontás műveletigénye

$$\frac{2}{3}n^3 + \mathcal{O}(n^2)$$

Biz.: A GE-ból trivi, mert vele az LU-felbontás is előállítható.

A képletekből: Rögzített j-re:

$$u_{ij}=a_{ij}-\sum_{k=1}^{i-1}I_{ik}\cdot u_{kj},$$

 u_{ij} -hez (i-1) szorzás és (i-1) összeadás kell. Összesen 2(i-1) művelet. Rögzített i-re:

$$I_{ij} = \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} I_{ik} \cdot u_{kj} \right),$$

 I_{ij} -hez 1 osztás, (j-1) szorzás és (j-1) összeadás kell. Összesen 2j-1 művelet.

$$\sum_{j=1}^{n} \sum_{i=1}^{j} 2(i-1) + \sum_{i=2}^{n} \sum_{j=1}^{i-1} (2j-1) =$$

$$\sum_{j=1}^{n} 2 \cdot \frac{(j-1)j}{2} + \sum_{i=2}^{n} \left(2 \cdot \frac{(i-1)i}{2} - (i-1) \right) =$$

$$\sum_{j=1}^{n} j^{2} - \sum_{j=1}^{n} j + \sum_{i=2}^{n} (i-1)^{2} = \sum_{j=1}^{n} j^{2} - \sum_{j=1}^{n} j + \sum_{i=1}^{n-1} s^{2}$$

$$= \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} + \frac{(n-1)n(2n-1)}{6} = \frac{2}{3}n^{3} + \mathcal{O}(n^{2}). \quad \Box$$

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: lásd GE visszahelyettesítés.

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: lásd GE visszahelyettesítés.

Tétel: Az Ly = b megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Tétel: Az Ux = y megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: lásd GE visszahelyettesítés.

Tétel: Az Ly = b megoldásának műveletigénye

$$n^2 + \mathcal{O}(n)$$

Biz.: Rögzített i. sorra (i-1) szorzás és (i-1) összeadás. Összesen: 2(i-1) művelet.

$$\sum_{i=2}^{n} 2(i-1) = \sum_{s=1}^{n-1} 2s = 2 \cdot \frac{n(n-1)}{2} = n^2 + \mathcal{O}(n). \quad \Box$$

Példák Matlab-ban

- **1** Az LU-felbontás működése "kisebb" $(n \approx 7)$ mátrixokra,
- **2** valamint "nagyobb" mátrixokra $(n \approx 50)$ színkóddal.
- 3 LER megoldása LU-felbontás segítségével.
- 4 Sok LER ($m \approx 10,100$) megoldása futási idejének összevetése nagyobb mátrixok ($n \approx 50,100,200$) esetén: GE-val valamint az LU-felbontás kihasználásával.