Lista 5 de Geometria Riemanniana

IMPA, Mar/Jun 2025 - Monitor: Ivan Miranda

Exercício 1. Suponha que (M_1, g_1) e (M_2, g_2) são variedades Riemannianas e considere $M_1 \times M_2$ com a métrica produto $g = g_1 \oplus g_2$. Mostre que a curvatura Riemanniana, a curvatura de Ricci, e a curvatura escalar de g são dadas pelas seguintes fórmulas:

- a) $R = \pi_1^* R_1 + \pi_2^* R_2$
- b) $Ric = \pi_1^* Ric_1 + \pi_2^* Ric_2$
- c) $S = \pi_1^* S_1 + \pi_2^* S_2$

onde R_i , Ric_i , S_i denotam as curvaturas de Riemann, de Ricci e escalar de (M_i, g_i) , e $\pi_i : M_1 \times M_2 \to M_i$ é a projeção.

Exercício 2. Exercício 5 do Capítulo 7 do livro do professor Manfredo, quinta edição, sobre as curvas divergentes.

Exercício 3. Ferramentas.

- a) Mostre que toda variedade Riemanniana homogênea é completa.
- b) Mostre que toda variedade Riemanniana simétrica é completa.
- c) Suponha que $\pi: \tilde{M} \to M$ é um mapa de recobrimento entre variedades Riemannianas que é uma isometria local. Prove que \tilde{M} é completa se, e somente se, M é completa.
- d) Seja (M^n, g) completa. Mostre que todo campo de Killing em M é completo.

Exercício 4. Exercício 8 do Capítulo 7 do livro do professor Manfredo, quinta edição, sobre completude, geodésicas e isometrias.

Exercício 5. Exercício 6 do Capítulo 7 do livro do professor Manfredo, quinta edição, sobre a existência de **raios** em variedades Riemannianas não compactas.

Definição 1. Seja (M^n,g) uma variedade Riemanniana então uma geodésica $\gamma:\mathbb{R}\to M$ é dita uma **linha** quando $d(\gamma(t),\gamma(s))=|t-s|$, para cada $t,s\in\mathbb{R}$.

Exercício 6. Mostre que toda métrica completa em $\mathbb{S}^n \times \mathbb{R}$ admite uma linha.

Exercício 7. Seja (M^n, g) completa e $N \subset M$ subvariedade mergulhada.

- a) Mostre que se N é um subconjunto fechado de M, então N é completa com a métrica induzida.
- b) Prove que a recíproca do item (a) é falsa.
- c) Mostre que se N é apenas imersa em M, então o resultado do item (a) é falso.

Exercício 8. Mostre que se uma variedade Riemanniana (M,g) admite uma função $f:M\to\mathbb{R}$ própria e Lipschitz, então M é completa.

Exercício 9. Exercício 3 do Capítulo 8 do livro do professor Manfredo, quinta edição, sobre um modelo do espaço hiperbólico \mathbb{H}^n .

Referências

- [1] Livro do professor Manfredo, Geometria Riemanniana.
- [2] Exercícios do professor Luis Florit, https://luis.impa.br/.
- [3] Listas de exercícios do Diego Guajardo, https://luis.impa.br/.
- [4] Listas de exercícios do Luciano Luzzi, https://sites.google.com/impa.br/lucianojunior/.
- [5] Livro do professor P. Petersen, Riemannian Geometry.
- [6] Livro do professor J. Lee, Introduction to Riemannian Manifolds.