Некоторые обозначения.

Символ \forall называется *квантором общности*, и запись $\forall x$ будем употреблять в формулах для обозначения словосочетания «для всех x», или «для любых x».

Символ \exists называется *квантором существования*, и запись $\exists x$ будем употреблять в формулах для обозначения словосочетания «существует x », или «найдётся x ».

Символ $\exists !$ называется *квантором существования и единственности*, и запись $\exists ! x$ будем употреблять в формулах для обозначения словосочетания «существует единственный x», или «найдётся единственный x».

Символы \Rightarrow и \rightarrow называются знаками следствия, и запись $A \Rightarrow B$ или $A \rightarrow B$ будем использовать в формулах для обозначения словосочетания «из A следует B », или «A влечёт B », или «A является достаточным условием для B », или «B является необходимым условием для A ».

Символ \Leftrightarrow называется *знаком равносильности*, и запись $A \Leftrightarrow B$ будем использовать в формулах для обозначения словосочетания « A равносильно B », или « A является необходимым и достаточным условием для B ».

Булевы функции. Двоичные векторы.

Множество - неопределяемое понятие. Запись $x \in A$ означает, что элемент x *принадлежит* множеству A. Если x не является элементом множества A, то пишут $x \notin A$ или $x \in A$.

Два множества A и B считаются pавными, если они состоят из одних и тех же элементов.

Множество называется *пустым* и обозначается \emptyset , если оно не содержит элементов.

Упорядоченный набор (вектор) размерности n - неопределяемое понятие. Изображается в виде $(x_1, x_2, ... x_n)$, где $x_1, x_2, ... x_n$ называются координатами или компонентами вектора, а число n -

размерностью вектора. Чаще всего слово координаты мы будем

употреблять, если $X_1, X_2, ... X_n$ числа, а термин компоненты – в

остальных случаях. Векторы $\alpha=(x_1,x_2,...x_n)$ и $\beta=(y_1,y_2,...y_n)$ называются *равными*, если для любого номера i, где i=1,2,...,n, выполнено равенство

 $x_i = y_i$.

 Теорема о количестве различных упорядоченных двоичных наборов размерности n.

Количество различных упорядоченных наборов $(x_1, x_2, ... x_n)$, каждая координата которых принадлежит множеству $\{0;1\}$, равно 2^n .

<u>Доказательство.</u> Применим метод мат. индукции, проведя индукцию по размерности вектора n.

- 1) Проверим справедливость утверждения теоремы при n = 1.
- При n=1 мы имеем два различных набора (0) и (1), т.е. утверждение теоремы верно.
- 2) Допустим справедливость теоремы для n = k, т.е. допустим, что количество различных упорядоченных двоичных наборов $(x_1, x_2, ... x_k)$ размерности k равно 2^k .
- 3) Докажем справедливость теоремы для n = k + 1, т.е. докажем, что количество различных упорядоченных двоичных наборов размерности k + 1 равно 2^{k+1} .

k+1 разобьём на 2 части: наборы $(x_1,x_2,...x_k,0)$, оканчивающимися нулём и наборы $(x_1,x_2,...x_k,1)$, оканчивающимися единицей. Количество наборов каждого вида равно количеству наборов вида $(x_1,x_2,...x_k)$, которое, по допущению индукции, равно 2^k . Тогда общее количество упорядоченных двоичных наборов размерности k+1 равно $2^k+2^k=2^{k+1}$, что и требовалось доказать.

Множество всех упорядоченных двоичных наборов размерности

На основании метода математической индукции утверждаем, что теорема справедлива для всех натуральных значениях n.

Булевы функции. Основные понятия.

Булевой функцией (булевской функцией, функцией алгебры логики) называется функция $f(x_1, x_2, ... x_n)$, которая может принимать лишь значения 0, 1, и аргументы которой могут принимать лишь значения 0, 1.

Множество всех булевых функций будем обозначать через P_2 . Если число n аргументов функции фиксировано, то множество всех булевых функций, зависящих от n аргументов, будем обозначать через $P_2^{(n)}$. Булевы функции можно задавать таблично — в виде одномерной таблицы 1 или в виде овумерной таблицы 2

Таблица 1

$f(x_1, x_2, x_n)$
a_1
a_2
a_3
$a_{2^{n}-1}$
a_{2^n}

Таблица 2

$x_{k+1}x_{k+2}x_{n-1}x_n$ $x_1x_2x_{k-1}x_k$	0000 0001 1101 1111
0 0 0 0	a_1 a_2
0 0 0 1	•••
	•••
1 1 1 0	•••
1 1 1 1	$ a_{2^{n}-1} a_{2^{n}}$

В таблицах, задающей булеву функцию, наборы значений переменных пишут в определенном порядке - *пексикографическом*, который совпадает с порядком возрастания наборов, рассматриваемых, как числа в двоичной системе счисления.

позволяет

вместо

развёрнутой записи, используемой в таблице 1, применить сокращённую (векторную) запись $f(x_1, x_2, ... x_n) = (a_1 a_2 ... a_{2^n})$, причём запятые в записи вектора значений опускаются.

<u>Пример</u> представления функции f(x, y, z) в развёрнутом (табл. 3) и в сокращённом виде

$$f(x, y, z) = (01101011).$$

договорённость

Эта

	10	Onu	icyci
х	у	Z	f
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Таблица 3

<u>Теорема о количестве различных булевых функций,</u> зависящих от n аргументов.

Количество различных булевых функций, зависящих от аргументов, равно 2^{2^n} .

Доказательство.

Каждой булевой функции, зависящей от n аргументов, однозначно соответствует двоичный вектор её значений

размерности $k = 2^n$. Но по теореме о количестве различных упорядоченных двоичных наборов, количество двоичных векторов размерности k равно $2^k = 2^{2^n}$.

Мощностью конечного множества называется число его элементов. Если множество A состоит из n элементов, то пишут |A| = n.

Теорему о количестве различных булевых функций, зависящих от n аргументов, можно записать в виде формулы

$$\left|P_{2}^{(n)}\right|=2^{2^{n}}$$
. (1) Функция $2^{2^{n}}$ быстро растёт: $\left|P_{2}^{(1)}\right|=2^{2}=4$, $\left|P_{2}^{(2)}\right|=2^{4}=16$,

 $|P_2^{(3)}| = 2^8 = 256, |P_2^{(4)}| = 2^{16} = 65536, |P_2^{(5)}| = 2^{32} = 4294967296.$ Наборы α и β значений переменных называются соседними по i

- той переменной (соседними по переменной x_i), если отличаются только i - той координатой, то есть имеют вид:

$$\alpha = (a_1, a_2, ..., a_{i-1}, 0, a_{i+1}, ..., a_n), \beta = (a_1, a_2, ..., a_{i-1}, 1, a_{i+1}, ..., a_n).$$

Переменная x_i называется фиктивной переменной булевой

функции f если для любых наборов α, β , соседних по i - той переменной, выполняется равенство $f(\alpha) = f(\beta)$.

Переменная x_i называется существенной Таблица 4 nеременной булевой функции f, если существуют

одна пара α, β наборов значений хотя бы переменных, соседних по i - той переменной,

такая, что справедливо неравенство $f(\alpha) \neq f(\beta)$. **Пример.** Для функции $f(x, y, z) = (0101\ 1010)$

выяснить, какие её переменные являются существенными, а какие - фиктивными.

Переменная х является существенной для данной булевой функции, так как, например,

Z $\boldsymbol{\mathcal{X}}$ 0 0

1

1

0

наборы (0,0,0) и (1,0,0) являются соседними по переменной x и $f(0,0,0) \neq f(1,0,0)$.

Переменная z является существенной для данной булевой функции, так как, например, наборы (0,0,0) и (0,0,1) являются соседними по переменной z и $f(0,0,0) \neq f(0,0,1)$.

Переменная у является фиктивной для данной булевой функции, так как на всех наборах, соседних по переменной у, значения функции равны, то есть выполняются равенства: f(0,0,0) = f(0,1,0), f(1,0,0) = f(1,1,0), f(0,0,1) = f(0,1,1), f(1,0,1) = f(1,1,1).

Заметим, что теорема о количестве различных булевых функций, аргументов, справедлива с учётом того, что зависящих от nнекоторые булевы функции имеют фиктивные переменные.

Пусть даны функции $f(x_1, x_2, ... x_n)$ и $g(x_1, x_2, ... x_{n-1})$, причём для любого набора $(a_1, a_2, ... a_n)$ выполнено равенство $f(a_1, a_2, ...a_n) = g(a_1, a_2, ...a_{n-1})$. В этом случае переменная

 \mathcal{X}_{n}

является фиктивной переменной функции $f(x_1, x_2, ... x_n)$. Переход от функции $f(x_1, x_2, ...x_n)$. к функции $g(x_1, x_2, ...x_{n-1})$ будем называть удалением фиктивной переменной, а переход от $g(x_1, x_2, ...x_{n-1})$ к функции $f(x_1, x_2, ...x_n)$ - введением

фиктивной переменной, а сами функции считать равными. Для $f(x, y, z) = (0101\ 1010)$ переменная у является фиктивной, удаляя фиктивную переменную, перейдём к равной функции от двух переменных g(x, z) = (0110).

Элементарными будем называть булевы функции, заданные таблицами 5, 6.

Элементарные функции от одной переменной:

Таблица 5

х	g_1	g_2	g_3	<i>g</i> ₄
0	0	1	0	1
1	0	1	1	0

Используются обозначения:

$$g_1(x) \equiv 0$$
 - константа θ

$$g_2(x) \equiv 1$$
 - константа 1

$$g_3(x) = x$$
 - тождественная функция

 $g_4(x) = x$ - *отрицание*. Произносится «не x »Для отрицания употребляется также обозначение $\neg x$.

Элементарные функции от двух переменных:

Таблица 6

_	••••	· · · · · · · · · · · · · · · · · · ·															
х	У	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
0	0	0	1	0	0	1	1	0	0	1	1	0	1	0	0	1	1
0	1	0	1	0	1	1	0	0	1	1	0	1	0	0	1	1	0
1	0	0	1	1	0	0	1	0	1	0	1	1	0	1	0	1	0
1	1	0	1	1	1	0	0	1	1	1	1	0	1	0	0	0	0

$$f_1(x,y) \equiv 0$$
 - константа 0 .

$$f_2(x, y) \equiv 1$$
 - константа 1.

$$f_3(x, y) = x$$
 - тождественная функция.

$$f_4(x, y) = y$$
 - тождественная функция.

$$f_5(x,y) = \overline{x}$$
 - отрицание.

$$f_6(x,y) = \overline{y}$$
 - отрицание.

условием для x ».

 $f_7(x,y) = x \cdot y$ - конъюнкция, употребляются также обозначения $x \wedge y$, xy и x & y. Произносится « x и y »

$$f_8(x,y) = x \lor y$$
 - дизъюнкция. Произносится « x или y »

 $f_9(x,y) = x \to y$ - *импликация*, употребляется также обозначение $x \supset y$. Произносится «x влечёт y», «из x следует y», «x является достаточным условием для y», «y является необходимым

 $f_{10}(x,y) = y \rightarrow x$ - импликация.

 $f_{11}(x,y) = x + y$ - сложение по модулю два, употребляется также обозначение $x \oplus y$. Произносится «x плюс y».

 $f_{12}(x,y) = x \leftrightarrow y$ - эквиваленция, употребляется также обозначение $x \sim y$.

Произносится «x эквивалентно y», «x равносильно y», «x является необходимым и достаточным условием для y».

$$f_{13}(x, y) = x \rightarrow y$$
 - запрет. Произносится « x запрещает y ». $f_{14}(x, y) = y \rightarrow x$ - запрет.

$$f_{15}(x,y) = x | y$$
 - штрих Шеффера. $f_{16}(x,y) = x \downarrow y$ - стрелка Пирса.

Пусть дано множество булевых функций $m = \{f_1, ..., f_k\}$. Назовём его *базисом*, функции, вошедшие во множество m, назовём

66 во множество m, назовем 6 вошедшие во множество m, назовем 6 вошедшие во множество m, назовем 6 множеством m.

- Выражение f(x₁, x₂,...x_n),где f базисная функция, есть формула;
 Если f_i(x₁, x₂,...x_m) базисная функция, а выражения Ф₁,...,Ф_m
- 2) Если $f_i(x_1, x_2,...x_m)$ базисная функция, а выражения $\Phi_1,...,\Phi_m$ либо являются формулами, либо символами переменных, то выражение $f_i(\Phi_1, \Phi_2,...\Phi_m)$ есть формула.

Все формулы, встречающиеся в процессе построения заданной формулы, называются её $nod \phi o p m y n a m u$.

Пример. Пусть базис m состоит из двух функций:

$$m = \{g(x_1, x_2), h(x_1, x_2, x_3)\}.$$

Выражение $\Phi = h(g(x_1,h(x_2,x_2,x_2)),x_1,h(x_1,g(x_2,x_2),x_1))$ является формулой над базисом m , а её подформулами будут $g(x_2,x_2)$, $h(x_1,g(x_2,x_2),x_1)$, $h(x_2,x_2,x_2)$, $g(x_1,h(x_2,x_2,x_2))$ и вся формула Φ .

Суперпозицией функций $f_{i_1},...,f_{i_p}$ называется булева функция, соответствующая формуле Φ , полученной с использованием этих функций. В предыдущем примере функция $\Phi(x_1,x_2)$ является суперпозицией функций множества m.

При составлении формул с использованием символов булевых функций для уменьшения количества скобок в записи формулы используют соглашение: если формула содержит символы булевых функций и не содержит скобок, то используем следующий порядок выполнения действий: отрицание, конъюнкция, сумма по модулю два, дизъюнкция, импликация, эквиваленция. При наличии в формуле других функций будем использовать скобки.

<u>Пример.</u> Построить таблицу булевой функции, заданной формулой $f(x,y,z) = x \to y \land z \lor \neg x$

Выпишем в таблицу под символами переменных все наборы значений, которые эти переменные принимают, а под символами булевых операций будем выписывать значения функций, соответствующие этим наборам.

Для наглядности сверху проставим числа, указывающие порядок выполнения действий, а снизу с помощью стрелок покажем, над какими столбцами производятся действия и куда пишется результат выполнения этих действий. Самой булевой функции f(x,y,z) будет соответствовать столбец, обведённый двойной рамкой.

Таблица 7

	4		2			3	1						
х	\rightarrow	у	^	z		V	\neg	х					
0	1	0	0	0		1	1	0					
0	1	0	0	1		1	1	0					
0	1	1	0	0		1	1	0					
0	1	1	1	1		1	1	0					
1	0	0	0	0		0	0	1					
1	0	0	0	1		0	0	1					
1	0	1	0	0		0	0	1					
1	1	1	1	1		1	0	1					

Итак, мы нашли, что исходная формула задаёт булеву функцию f(x, y, z), имеющую вектор значений (1111 0001).

(2)

(3)

Формулы называются равносильными (эквивалентными), если соответствующие им булевы функции равны.

в базисе $\{0,1,x\cdot y,x\vee y,\overline{x}\}:$ $\begin{cases} x \to y = \overline{x} \lor y \\ x \to y = \overline{x} \lor y \end{cases}$ $x \to y = x \cdot \overline{y}$ $x \mapsto y = x \cdot \overline{y}$ $x \mapsto y = \overline{x} \lor y$ Представление основных функций в базисе

 $\begin{cases} x + y = \overline{x} \cdot y \lor x \cdot \overline{y} \\ x \longleftrightarrow y = x \cdot y \lor \overline{x} \cdot \overline{y} \end{cases}$

$$x \not\to y = x \cdot \overline{y} \tag{4}$$

$$x \mid y = \overline{x \cdot y} \tag{5}$$

$$x \downarrow y = \overline{x \vee y} \tag{6}$$

Булевой формулой называется формула в базисе $\{0,1,x\cdot y, x\vee y, x\}$.

Основные булевы формулы:

Законы идемпотентности:	$x \cdot x = x$	(11)	
	$x \lor x = x$	` ,	
	$x \cdot 0 = 0$		
Тождества с константами:	$x \lor 0 = x$	(12)	
	$x \cdot 1 = x$	()	
	$x \lor 1 = 1$		
Zarowa nostowania:	$x \cdot (x \vee y) = x$ $x \vee (x \cdot y) = x$	(13)	
Законы поглощения:	$x \vee (x \cdot y) = x \int$	(13)	
	$\frac{\overline{x \cdot y}}{x \cdot y} = \frac{\overline{x} \cdot \overline{y}}{x}$		
Законы де Моргана:	$\frac{\overline{x \cdot y} = \overline{x} \vee \overline{y}}{\overline{x \vee y} = \overline{x} \cdot \overline{y}}$	(14)	
	$x \lor y = x \cdot y$		
<i>I</i> .	$x \cdot y = y \cdot x$ $x \vee y = y \vee x$	(15)	
Коммутативные законы:	$x \vee y = y \vee x $	(13)	
	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$		
Ассоциативные законы:	$x \cdot (y \cdot z) = (x \cdot y) \cdot z$ $x \vee (y \vee z) = (x \vee y) \vee z$	(16)	
	$r \cdot (v \vee z) = (r \cdot v) \vee (r \cdot z)$		
Дистрибутивные законы:	$x \cdot (y \lor z) = (x \cdot y) \lor (x \cdot z)$ $x \lor (y \cdot z) = (x \lor y) \cdot (x \lor z)$	(17)	
дистриоутивные законы.	$x \lor (y \cdot z) = (x \lor y) \cdot (x \lor z)$	(17)	
Правило вычёркивания:	- x. y. / x - y. / x	(18)	
привино вогчеркивиния.	$x \cdot y \lor x = y \lor x$	(10)	
Формула склеивания:	$x \cdot y \lor x \cdot y = x$	(19)	
Равносильность формул про	веряем построением таблиц	соответ-	

ствующих булевых функций и сравнением векторов их значений.

 $\bar{x} \lor x = 1$

(10)

Закон исключённого

третьего:

Пример. Проверим справедливость одного из законов де

Моргана: $x \lor y = x \cdot y$.

	Таб.	лица (8		To	аблиц	a 9			
	\neg	$\neg \left \begin{array}{c c} (x & \lor & y) \end{array} \right $		y)		x	•		y	
	1	0	0	0	1	0	1	1	0	
	0	0	1	1	1	0	0	0	1	
•	0	1	1	0	0	1	0	1	0	
•	0	1	1	1	0	1	0	0	1	
Кан	к видим, векто				ры	значе	ений	бул	іевых	функций,

соответствующих левой и правой частям этого закона де Моргана, совпали, следовательно, равносильность $x \lor y = x \cdot y$ доказана.

Сложностью формулы над множеством элементарных булевых функций называется количество вхождений в эту формулу переменных. Сложность формулы Φ будем обозначать как $l(\Phi)$.

Пример. Для формулы $\Phi = (x \rightarrow y) \lor x \cdot z + y$ её сложность $l(\Phi) = 5$.

Упрощением формулы называется преобразование её в эквивалентную формулу меньшей сложности. Пример. Над множеством элементарных булевых функций

упростить формулу $((x \rightarrow y) \lor \overline{z}) | x$.

$$((x \to y) \lor z) \mid x = (x \lor y \lor z) \mid x = (x \lor y \lor z) \cdot x = x \lor y$$

$$\stackrel{23}{=} - \stackrel{26}{=} - \stackrel{27}{=} - \stackrel{27}{=} \stackrel{2}{=} x \cdot y \cdot z \lor x = x \cdot y \cdot z \lor x = y \cdot z \lor x$$

Сложность формулы уменьшена с 4 до 3.

Применение булевых функций в теории множеств.

Будем говорить, множество A включено в множество B и писать $A \subseteq B$, если каждый элемент множества A является элементом множества B. В этом случае A называется подмножеством множества B, а B называется надмножеством множества A.

Считается, что для любого A справедливо включение $\varnothing \subseteq A$.

Если $A \subseteq B$ и $A \ne B$, то будем писать $A \subset B$ и говорить, что множество A строго включено во множество B.

Объединением множеств А и В называется множество

$$A \cup B = \{x \mid x \in A \text{ или } x \in B\}$$
 (20)

Пересечением множеств A и B называется множество

$$A \cap B = \{x \mid x \in A \text{ if } x \in B\}$$
 (21)

Pазностью множеств A и B называется множество

$$A \setminus B = \{ x \mid x \in A \text{ if } x \notin B \}$$
 (22)

Если все рассматриваемые множества являются подмножествами некоторого *универсального множества* U , то разность $U \setminus A$ называется *дополнением* A и обозначается \overline{A} .

Симметрической разностью множеств
$$A$$
 и B называется множество
$$A \triangle B = (A \setminus B) \cup (B \setminus A)$$
 (23)

Пусть множества $B_1, B_2, ..., B_m$ составлены из множеств $A_1, A_2, ..., A_n$ с помощью формул, содержащих теоретико-множественные операции \cup , \cap , \setminus , Δ , -.

Тогда любому из множеств B_i , i=1,...,m можно поставить в

соответствие булеву функцию $f_i(a_1,a_2,...a_n)$, i=1,...,m, полученную из формулы, задающей B_i , заменой имён множеств A_i на символы переменных a_i , символ \cup заменяется на \vee , \cap на \wedge , \setminus на \rightarrow , Δ на +, знак дополнения — понимается, как отринание. Тогла

знак дополнения — понимается, как отрицание. Тогда
$$B_1 \cap B_2 = \varnothing \Leftrightarrow f_1 \wedge f_2 \equiv 0, \ B_1 \subseteq B_2 \Leftrightarrow f_1 \to f_2 \equiv 1, \ B_1 = B_2 \Leftrightarrow f_1 \equiv f_2.$$
 Если между множествами $B_1, B_2, ..., B_m$ записано соотношение,

символы: \subseteq (включение), = (равенство), \varnothing (пустое множество), U (универсальное множество), то в соответствующей формуле для булевой функции делается замена \subseteq на \rightarrow , = на \leftrightarrow , \varnothing на 0, U на 1. Тогда исходное соотношение будет истинным для любых множеств $B_1, B_2, ..., B_m$ тогда и только тогда, когда соответствующая этому соотношению булева функция будет тождественно равна 1.

содержащее кроме символов теоретико-множественных операций,

<u>Пример.</u> Для произвольных множеств A, B, H проверить, является ли выполнение включения $A \cup B \subseteq H$ необходимым и достаточным условием выполнения равенства $A \triangle H = (B \backslash A) \cup (H \backslash A)$.

Составим булеву функцию, соответствующую высказыванию, которое надо доказать:

$$f(a,b,h) = ((a \lor b) \to h) \longleftrightarrow (a+h \longleftrightarrow ((b \to a) \lor (h \to a)))$$

Построим таблицу булевой функции f(a,b,h), соответствующей исследуемому утверждению.

Таблица 10

()

 $\mathbf{0}$

1

1

b)

0

 $\mathbf{0}$

1

1

1

1

0

1

h)

0

1

0

1

 \leftrightarrow

1

1

1

1

подмножества универсального множества U.

Найдём соответствующие булевы функции:

(a

()

0

0

0

0

1

0

1

h

()

1

0

1

1

1

0

1

((b

()

 $\mathbf{0}$

1

1

 \rightarrow

()

 $\mathbf{0}$

1

1

a)

 $\mathbf{0}$

 $\mathbf{0}$

0

0

 $\mathbf{0}$

1

1

1

(*h*

0

1

 $\mathbf{0}$

1

 \rightarrow

()

1

0

1

a)))

()

0

0

0

((a

0

0

0

0

ЭТИХ

 $f_F = (0011 \ 1111).$

1	1	0	0	0	1	1	1	0	0	0	0	1	0	0	0	1
1	1	0	1	1	1	1	0	1	1	0	0	1	0	1	0	1
1	1	1	0	0	1	1	1	0	0	1	0	1	0	0	0	1
1	1	1	1	1	1	1	0	1	1	1	0	1	0	1	0	1
В	идим	и, чт	о сто	олбе	ц, сс	ОТВ	етст	гвун	ощи	й век	тору	у зна	ачен	ний (рунк	сции
f(a	f(a,b,h), состоит из одних лишь единиц, следовательно,															
выполнение включения $A \cup B \subseteq H$ является необходимым и																
достаточным условием выполнения равенства																
$A \triangle H = (B \backslash A) \cup (H \backslash A).$																
Π	Пример. Выяснить взаимное расположение множеств															

 $D = (B \setminus C) \cup (A \setminus B)$, $E = A \setminus (B \setminus C)$, $F = A \cup B$, если A, B, C - произвольные

 $f_F(a,b,c) = a \lor b$ и, построив таблицы, найдём векторы значений

функций: $f_D = (0010 \ 1110), \qquad f_E = (0000 \ 1101),$

 $f_D(a,b,c) = (b \rightarrow c) \lor (a \rightarrow b), f_E(a,b,c) = a \rightarrow (b \rightarrow c),$

Так как множество единичных наборов функций f_D и f_E строго включены в множество единичных наборов функции f_F , то $f_D \to f_F \equiv 1$ и $f_E \to f_F \equiv 1$, но $f_D \neq f_F$ и $f_E \neq f_F$, значит $D \subset F$ _M $E \subset F$.

Выясним взаимное расположение множеств D и E:

$$f_D(0,1,0) = 1 \text{ и } f_E(0,1,0) = 1 \Rightarrow D \nsubseteq E$$

$$f_D(1,1,1) = 0 \text{ и } f_E(1,1,1) = 1 \Rightarrow E \nsubseteq D$$

$$f_D(1,0,0) = 1 \text{ и } f_E(1,0,0) = 1 \Rightarrow E \cap D \neq \emptyset$$