Selección de Modelos y Regularización Ciencia de Datos y Econometría Aplicada

Ignacio Sarmiento-Barbieri

Universidad de los Andes

Agenda

1 Recap: Predicción y Overfit

2 Selección de Modelos

- 3 Regularización
 - Lasso

ML nos interesa la predicción fuera de muestra

- ML nos interesa la predicción fuera de muestra
- ➤ Overfit: modelos complejos predicen muy bien dentro de muestra, pero tienden a hacer un mal trabajo fuera de muestra
- ► Hay que elegir el modelo que "mejor" prediga
 - Métodos de Remuestreo
 - Enfoque del conjunto de validación
 - ► Loocv
 - ► Validación cruzada en K-partes (5 o 10)

Selección de Modelos: Motivación

- ightharpoonup Tenemos M_k modelos
- Queremos encontrar el que mejor predice fuera de muestra
- ► Hay distintas formas de enfrentarlo
- Las clásicas
 - Elección del mejor conjunto
 - Elección por pasos
 - ► Hacia adelante (Forward selection)
 - ► Hacia atras (Backward selection)

Regularización

Lasso

Para un $\lambda \geq 0$ dado, consideremos el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (1)

6/20

Lasso

Para un $\lambda > 0$ dado, consideremos el siguiente problema de optimización

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - \beta_0 - x_{i1}\beta_1 - \dots - x_{ip}\beta_p)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$
 (1)

- ► "LASSO's free lunch": selecciona automáticamente los predictores que van en el modelo $(\beta_i \neq 0)$ y los que no $(\beta_i = 0)$
- ▶ Por qué? Los coeficientes que no van son soluciones de esquina
- $ightharpoonup L(\beta)$ es no differentiable

Lasso Intuición en 1 Dimension

Lasso Intuición

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2 + \lambda|\beta|$$
 (2)

- ▶ Un solo predictor, un solo coeficiente
- ightharpoonup Si $\lambda = 0$

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_i\beta)^2$$
(3)

▶ la solución es?

Intuición en 2 Dimensiones (OLS)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2$$
(4)

Fuente: https://allmodelsarewrong.github.io

Intuición en 2 Dimensiones (Lasso)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } (|\beta_1| + |\beta_2|) \le c$$
 (5)

Intuición en 2 Dimensiones (Lasso)

$$min_{\beta}E(\beta) = \sum_{i=1}^{n} (y_i - x_{i1}\beta_1 - x_{i1}\beta_2)^2 \text{ s.a } (|\beta_1| + |\beta_2|) \le c$$
 (6)

Comentarios técnicos

- ► Importante para aplicación:
 - Estandarizar los datos (media 0, y varianza 1)
 - ightharpoonup Como elegimos λ ?

Comentarios técnicos: selección de λ

- ▶ Como elegimos λ ?
- $ightharpoonup \lambda$ es un parámetro y lo elegimos usando validación cruzada
 - 1 Partimos la muestra de entrenamiento en K Partes: $M_{train} = M_{fold\,1} \cup M_{fold\,2} \cdots \cup M_{fold\,K}$
 - 2 Cada conjunto $M_{fold \, K}$ va a jugar el rol de una muestra de evaluación $M_{eval \, k}$. Entonces para cada muestra
 - $ightharpoonup M_{train-1} = M_{train} M_{fold 1}$
 - •
 - $ightharpoonup M_{train-k} = M_{train} M_{fold\,k}$
 - 3 Luego hacemos el siguiente loop
 - 1 Para $\lambda_i = 0, 0.001, 0.002, \dots, \lambda_{max}$
 - Para k = 1, ..., K
 - Ajustar el modelo $m_{i,k}$ con λ_i en $M_{train-k}$
 - Calcular y guardar el $MSE(m_{i,k})$ usando M_{eval-k}
 - fin para k
 - Calcular y guardar $MSE_i = \frac{1}{K}MSE(m_{i,k})$
 - 2 fin para λ
 - 4 Encontrar el menor MSE_i y usar ese $\lambda_i = \lambda^*$