

Ultra-Small Package High-Precision Voltage Detector

General Description

The LN61C series is a series of high-precision voltage detectors developed using CMOS process. The detection voltage is fixed internally with an accuracy of ±2.0%. Two output forms, Nch open-drain and CMOS output, are available. Ultra-low current consumption and miniature package lineup can meet demand from the portable device applications.

Features

- Ultra-low current consumption 2.0 μA typ. (Vin=1.5V)
- I High-precision detection voltage ±2.0 %
- I Operating voltage range 0.7 V to 8.0 V
- Detection voltage 1.0V to 6.0 V (0.1 V step)
- Output form Nch open-drain output (Active Low) or CMOS output (Active Low)

Applications

- Battery checkers
- I Power failure detectors
- Power monitor for portable equipments such as pagers, calculators, electronic notebooks and remote controllers.
- I Constant voltage power monitor for cameras, video equipments and communication devices.
- Power monitor for microcomputers and reset for CPUs.

Package

- I SOT-23-3L
- I SOT-343
- I SOT-89-3L
- I TO-92

Ordering Information

LN61C

符号	描述	符号	描述
	Output Configuration: C=CMOS N=N-ch open drain		Detect Accuracy: 2=with±2%
	Detect Voltage Eg: 10=1.0V 38=3.8V		Package Type: M=SOT-23-3L
	Output Delay 0=No delay		Device Orientation: R=Embossed Taped(Right) L=Embossed Taped(Left)

Pin Configurations

Pin Assignment

Pin No. SOT-23-3L	Pin name	Pin description	
3	VIN	Voltage input pin	
2	VSS	GND pin	
1	VOUT	output pin	

Typical Application Circuit

CMOS Output Nch Open-drain OutputTest circuit

Marking Rule

SOT-23-3L

Represents the product name

Symbol	Product Description
С	LN61C

Represents the Output configuration and detect voltage range

Designator	Output Configuration	Voltage Range (V)
Α	CMOS	0.1 ~ 3.0
В	CMOS	3.1 ~ 6.0
N	OPEN DRAIN	0.1 ~ 3.0
Р	OPEN DRAIN	3.1 ~ 6.0

Represents the detect voltage

Designation	Detect Voltage (V)			
0	1	3.1		
1	-	3.2		
2	-	3.3		
3	-	3.4		
4	-	3.5		
5	-	3.6		
6	-	3.7		
7	-	3.8		
8	0.9	3.9		
9	1.0	4		
A	1.1	4.1		
В	1.2	4.2		
С	1.3	4.3		
D	1.4	4.4		
Е	1.5	4.5		

Designation	Detect Voltage (V)				
F	1.6	4.6			
Н	1.7	4.7			
K	1.8	4.8			
L	1.9	4.9			
M	2	5			
N	2.1				
P	2.2				
R	2.3				
S	2.4				
T	2.5				
U	2.6				
V	2.7				
X	2.8				
Y	2.9				
Z	3				

Based on internal standards

 $0 \sim 9$, $A \sim Z$ repeated G , I , J , O , Q , W are excepted)

Function Block Diagram

(1) CMOS Output Products

(2) Nch Open-drain Output Products

Absolute Maximum Ratings (Ta=25)

Item		Symbol	Absolute maximum ratings	unit
Power supply voltage		Vin	8	V
Output current		lout	50	mA
Output voltage	CMOS	Vout	Vss-0.3 ~ Vin+0.3	V
Output voltage	N-ch	vout	Vss-0.3 ~ 8	
Power dissipation	SOT-23-3L	Pd	150	mW
Operating ambient temperature		Topr	-40 ~ +85	

Electrical Characteristics

(VDF (T) = $1.0 \text{ to } 6.0 \text{V } \pm 2\% \text{ Ta} = 25$)

Item	Symbol	Cond	lition	Min.	Тур.	Max.	Unit	Test Circuit
Detection voltage	VDF			VDF x0.98	VDF	VDF x1.02	V	1
Release voltage	VHYS				VDF x0.05		V	1
		Vin=1.	0V		2.0	2.2		
		=1.	5V		2.0	2.4		
Current consumption	lss	=2.	0V		2.0	2.8		
		=3.	0V		2.0	3.1	μA	2
		=4.	0V		2.0	3.3		2
		=5.	0V		2.0	3.7		
Operating voltage	Vin	VDF=1.0	0 ~ 6.0V	0.7		8	V	1
		Nch Vds=	Vin=1.0V	1.0	2.2			
		0.5V	Vin=1.5V	2.0	5.7			
Output current	lout		Vin=2.0V	3.0	7.7			
			Vin=3.0V	5.0	10.1		mA	3
			Vin=4.0V	6.0	11.5			3
			Vin=5.0V	7.0	13.0			
		Pch vds=2	.1 vin=8.0		-10	-2		4
Temperature coefficient		-40 ~ -	+85		±100		ppm/	

Test Circuit

Timing Chart

Operation

- 1-1. When the power supply voltage (VDD) is higher than the release voltage (VDF), the Nch transistor is OFF and the Pch transistor is ON to provide VDD (high) at the output.
- 1-2. When the power supply voltage (VDD) is lower than the release voltage (VDF), the Nch transistor is ON and the Pch transistor is OFF to provide VSS (low) at the output.
- 1-3. When the VDD falls below the minimum operating voltage, the output becomes undefined, or goes to the VDD when the output is pulled up to the VDD.
- **1-4.** The VSS level appears when the VDD is VSS level.
- 1-5. The VSS level appears when the VDD rises above the minimum operating voltage. The VSS level still appears even when the VDD surpasses – VDF, as long as it does not exceed the release voltage + VDF.
- 1-6. When the VDD rises above + VDF the Nch transistor becomes OFF and the Pch transistor becomes ON to provide VDD level at the output.

Application Circuit Examples

Microcomputer Reset Circuits

The Same supply voltage with CPU The same supply voltage with CPU (CMOS output)

(Nch Open drain output)

The different supply voltage with CPU (Nch Open drain output)

Power-on Reset Circuit

Mermory back-up circuit

Power failure detectors

Overcharge protect circuit

Window Comparator Circuit

Detector Adjustable Circuit

Package

I SOT-23-3L

Cb . 1	Dimensions In	Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
E	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950(BSC)		0.037(BSC)		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
θ	0°	8°	0°	8°	