PRINTABLE VERSION

Quiz 3

You scored 40 out of 100

Question 1

Your answer is CORRECT.

Suppose we are told that set A satisfies $\{1, \pi, \clubsuit\} \cap A = \emptyset$. Of the following options which can be used for the set A?

- a) One set A will make this true.
- c) $0 \{\pi, 2\}$
- \mathbf{d}) $\bigcirc \{-1, \clubsuit, \heartsuit\}$
- e) \bigcirc Z
- \mathbf{f}) $\bigcirc \{1, \pi, \clubsuit\}$

Ouestion 2

Your answer is INCORRECT.

The statement $A \cap B \neq \emptyset$ implies which of the following?

- a) $\bigcirc \forall x \in A, x \in B.$
- \mathbf{b}) $\bigcirc \mathbf{A} = \emptyset \land \mathbf{B} = \emptyset$
- \mathbf{c}) $\odot \exists x, x \in A \land x \in B$.
- d) $\bigcirc \forall x \in B, x \in A$.

Ouestion 3

Your answer is CORRECT.

Suppose |S| = 7 and $|S \times T| = 28$. What is the cardinality of T?

a)
$$\bigcirc |T| = 11$$

b)
$$|T| = 196$$

d)
$$|T| = 3$$

e)
$$|T| = 28$$

Ouestion 4

Your answer is INCORRECT.

Suppose |T| = 5 and $|P(S) \times T| = 20$. What is the cardinality of S?

a)
$$|S| = 4$$

c)
$$|T| = 5$$

d)
$$|S| = 20$$

e)
$$|S| = 2$$

Question 5

Your answer is INCORRECT.

Is it possible for $\{5\} \in \mathbb{R}$?

- a) O This is impossible! It never happens!
- b) This is true. It always happens!
- c) This can happen, but it doesn't always happen.

Question 6

Your answer is INCORRECT.

Consider the set S defined below:

$$S = \{n \in N : 2n = 1 \lor 3n = 1\}$$

Which of the following is true?

$$a) \odot S = \emptyset$$

b)
$$\bigcirc$$
 S = {2m : m \in N}

$$c) \cap S = \{2i + 1 : i \in N\}$$

$$\mathbf{d}$$
) $\mathbf{S} = \mathbf{N}$

e)
$$\bigcirc$$
 S = $\{2^b : b \in N\}$

Question 7

Your answer is INCORRECT.

Suppose we have two sets S and T, each described in terms of a condition: $S = \{x \in U : P(x)\}$ and $T = \{x \in U : Q(x)\}$. (Here U is a Universal set.) If it is also true that

then which of the following statements must be true?

$$a) \bigcirc \forall x \in U, Q(x) \Rightarrow P(x)$$

b)
$$\bigcirc \exists t \in U, P(t) \land Q(t)$$

$$c) \odot \forall x \in U, P(x) \Rightarrow Q(x)$$

$$d$$
) $\bigcirc \forall x \in U, \ Q(x) \Rightarrow P(x)$

$$e) \bigcirc \forall x \in U, P(x) \Rightarrow Q(x)$$

Ouestion 8

Your answer is CORRECT.

A Venn Diagram or De Morgan's Laws should help you complete this sentence:

$$A \cap B =$$

$$a) \cap A \cup B$$

$$\mathbf{b}$$
) $\bigcirc \mathbf{A} \cap \mathbf{B}$

$$c) \cap B \cup \overline{A}$$

$$\mathbf{d}$$
) \bullet $\mathbf{A} \cup \mathbf{B}$

Question 9

Your answer is CORRECT.

Consider the image shown:

Which set of points is depicted in the image above?

a)
$$\bigcirc \{(x, x^2) : x \in Z \land -3 \le x \le 3\}$$

b)
$$\bigcirc \{(x, \sin(\pi x)) : x \in Z \land -3 \le x \le 3\}$$

$$(0) \cap \{(2, x) : x \in Z \land -3 \le x \le 3\}$$

d)
$$\bigcirc$$
 { $(x, 2x) : x \in Z \land -3 \le x \le 3$ }

e)
$$((x, 2) : x \in Z \land -3 \le x \le 3)$$

$$f_0 \cap \{(x, \sqrt{9-x^2}) : x \in Z \land -3 \le x \le 3\}$$

Question 10

Your answer is INCORRECT.

 $P(\{1,8\}) \cap P(\{1,-2,8\}) =$

- a) { {8} }
- **b)** \bigcirc {1, 8, -2}
- (1, 8)
- \mathbf{d}) \bigcirc { \emptyset , {1}, {8}, {1,8} }
- $e) \cap \{ \{8\}, \{1,8\} \}$
- $f_{1} \cap \{ \{-2\} \}$