Tim Hung CS455 Assignment 4 Part A

(1) (12%) Use the definition of Dilation to prove " $A \oplus B = B \oplus A$ "

A B = the set of all displacements which satisfies that A and B overlap at least once. It is clear that B DA is equivalent, the attribute of overlapping is still retained.

B is commutative.

(2) (12%) Binary image A and structuring element B are defined below. Show the result of opening operation (A $^{\circ}$ B).

A		<u> </u>			27								
Γ,			•		•	•			•			•	•
•	•	•			•	•	•		•		•		
			•	•	•			•		•	•	•	
•		•	•	•				•			•		•
		•	•	•	•	•	•	•	•	•		•	
		•	•	•	•	•	•	•	•	•			
		•	•	•			•	•	•	•	•	•	•
•	•		•	•			•	•	•	•			•
			•		•	•	•		•				
		•			•	•		•	•				
•			•	•				•		•	•		•
		•	•	•	•		•				•		
	•		•		•		•		•	•		•	•
•				•			•		•		•		

В		
•	•	•
•		•
•	•	•

0	0	0	1	0	1	1	0	0	1	0	0	1	1
0	1	1	0	0	1	1	1	0	1	0	1	0	0
0	0	0	1	1	1	0	0	1	0	1	1	1	0
1	0	1	1	1	0	0	0	1	0	0	1	0	1
0	0	1	1	1	1	1	1	1	1	1	0	1	0
0	0	1	1	1	1	1	1	1	1	1	0	0	0
0	0	1	1	1	0	0	1	1	1	1	1	1	1
1	1	0	1	1	0	0	1	1	1	1	0	0	1
0	0	0	1	0	1	1	1	0	1	0	0	0	0
0	0	1	0	0	1	1	0	1	1	0	0	0	0
1	0	0	1	1	0	0	0	1	0	1	1	0	1
0	0	1	1	1	1	0	1	0	0	0	1	0	0
0	1	0	1	0	1	0	1	0	1	1	0	1	1
1	0	0	0	1	0	0	1	0	1	0	1	0	0

 (2) (12%) Binary image C and structuring element B are defined below. Show the result of closing operation ($C \bullet B$).

C								
\Box								
				•		•		
			•	•	•	•		
			•	•	•	•		
	•	•	•					
			•	•	•	•		
		•	•	•	•	•		
			•			•		

+	В		
	•	•	•
	•		•
	•	•	•

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	0	1	0	0	0
0	0	0	0	1	1	1	1	0	0	0
0	0	0	0	1	1	1	1	0	0	0
0	0	1	1	1	0	0	0	0	0	0
0	0	0	0	1	1	1	1	0	0	0
0	0	0	1	1	1	1	1	0	0	0
0	0	0	0	1	0	0	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	1	1	1	0	0	0
0	0	0	0	1	1	1	1	0	0	0
0	0	0	0	1	1	1	1	0	0	0
0	0	1	1	1	1	1	1	0	0	0
0	0	0	1	1	1	1	1	0	0	0
0	0	0	1	1	1	1	1	0	0	0
0	0	0	0	1	1	1	1	0	0	0
0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0

(3) (14%) Use the following primitives:

and use the structure relations given in class $(+, -, \times, *, \sim)$

(a) (7%) Sketch the structure whose PDL (program description language) structural description is:

(b) (7%) Give PDL structural description of the following two structures:

