Trans. Laplace are forma: $\int_a^b N(p,t)f(t)\,dt$, unde N(p, t) \to nucleu

	1		a
Nr.	f(t)	F(p)	
1.	1	$\frac{1}{p}$	
2.	t	$\frac{1}{p}$ $\frac{1}{p^2}$	
3.	t^n	$\frac{n!}{p^{n+1}}$	
4.	e^t	$\frac{1}{p-1}$	
5.	$\sin t$	$\frac{1}{p^2+1}$	
6.	$\cos t$	$\frac{1}{p^2+1}$	Teor. Asemanarii
7.	e^{at}	$\frac{1}{p-a}$	$L\{f(at)\} = \frac{1}{a}F\left(\frac{p}{a}\right)$
8.	$\sin at$	$\frac{a}{p^2 + a^2}$	
9.	$\cos at$	$\frac{p}{p^2 + a^2}$	
10.	$e^{\alpha t} \sin \alpha t$	$\frac{a}{(p-\alpha)^2 + a^2}$	
11.	$e^{\alpha t}\cos\alpha t$	$\frac{p-\alpha}{(p-\alpha)^2+a^2}$	
12.	$\operatorname{sh} t$	$\frac{a}{p^2 - a^2}$	
13.	$\operatorname{ch} t$	$\frac{p}{p^2 - a^2}$	

	Trans. Laplace a deriv. f(t)	
Teor. Deplasarii $L\{f'(t)\} = pF(p) - f(0)$		
$L\{e^{\alpha t}f(t)\} = F(p - \alpha)$	$L\{f''(t)\} = p^2 F(p) - pf(0) - f'(0)$	
	$L\{f^{(n)}(t)\} = p^n F(p) - p^{n-1} f(0) - p^{n-2} f''(0) - \dots - f^{(n-1)}(0)$	