

Department: Computer Science Program: BS

DISCRETE STRUCTURES

ASSIGNMENT# 2				
Mapped CLO	Mapped GA	Mapped Learning Level	SDG	
CLO 2	GA 3 (Problem analysis)	C3 (Knowledge for solving computing problems)	4 & 9	

ASSIGNMENT 2

Question 1

1.	Given a function f from a set X to a set Y , $f(x)$ is
2.	Given a function f from a set X to a set Y , if $f(x) = y$ then y is called or or
3.	Given a function f from a set X to a set Y , the range of f (or the image of X under f) is
4.	Given a function f from a set X to a set Y , if $f(x) = y$ then x is called or
5.	Given a function f from a set X to a set Y , if $y \in Y$ then $f^{-1}(y) = \underline{\hspace{1cm}}$ and is called $\underline{\hspace{1cm}}$

- 6. Given functions f and g from a set X to a set Y, f = g if, and only if, _____.
- 7. Given positive real numbers x and b with $b \ne 1$, $\log_b(x) = \underline{\hspace{1cm}}$.
- Given a function f from a set X to a set Y and a subset A of X, f(A) = ______
- **9.** Given a function f from a set X to a set Y and a subset C of Y, $f^{-1}(C) =$ _____.

Question 2

Indicate whether the statements in parts (a)–(d) are true or false for all functions. Justify your answers.

- a. If two elements in the domain of a function are equal, then their images in the co-domain are equal.
- b. If two elements in the co-domain of a function are equal, then their preimages in the domain are also equal.
- A function can have the same output for more than one input.
- d. A function can have the same input for more than one output.

Question 3

- 1. If F is a function from a set X to a set Y, then F is one-to-one if, and only if, _____.
- 2. If F is a function from a set X to a set Y, then F is not one-to-one if, and only if, _____.
- If F is a function from a set X to a set Y, then F is onto if, and only if, _____.
- **4.** If *F* is a function from a set *X* to a set *Y*, then *F* is not onto if, and only if, _____.
- 5. The following two statements are ____:

$$\forall u, v \in U$$
, if $H(u) = H(v)$ then $u = v$.

$$\forall u, v \in U$$
, if $u \neq v$ then $H(u) \neq H(v)$.

- 6. Given a function F: X → Y where X is an infinite set, to prove that F is one-to-one, you suppose that _____ and then you show that _____.
- Given a function F: X → Y where X is an infinite set, to prove that F is onto, you suppose that ______ and then you show that ______.
- **8.** Given a function $F: X \to Y$, to prove that F is not one-to-one, you _____.
- Given a function F: X → Y, to prove that F is not onto, you _____.
- A one-to-one correspondence from a set X to a set Y is a ______ that is _____.
- If F is a one-to-one correspondence from a set X to a set Y and y is in Y, then F⁻¹(y) is _____.

Question 4

- All but two of the following statements are correct ways to express the fact that a function f is onto.
 Find the two that are incorrect.
 - a. f is onto

 ⇔ every element in its co-domain is the image of some element in its domain.
 - b. f is onto ⇔ every element in its domain has a corresponding image in its co-domain.
 - **c.** f is onto $\Leftrightarrow \forall y \in Y, \exists x \in X \text{ such that } f(x) = y.$
- **d.** f is onto $\Leftrightarrow \forall x \in X, \exists y \in Y \text{ such that } f(x) = y.$
- e. f is onto

 the range of f is the same as the co-domain of f.

Ouestion 5

- a. Define f: Z → Z by the rule f(n) = 2n, for every integer n.
 - (i) Is f one-to-one? Prove or give a counterexample.
 - (ii) Is f onto? Prove or give a counterexample.
- b. Let 2Z denote the set of all even integers. That is, 2Z = {n ∈ Z | n = 2k, for some integer k}. Define h: Z → 2Z by the rule h(n) = 2n, for each integer n. Is h onto? Prove or give a counterexample.

Question 6

- **a.** Define $g: \mathbb{Z} \to \mathbb{Z}$ by the rule g(n) = 4n 5, for each integer n.
 - Is g one-to-one? Prove or give a counterexample.
 - (ii) Is g onto? Prove or give a counterexample.
- **b.** Define $G: \mathbb{R} \to \mathbb{R}$ by the rule G(x) = 4x 5 for every real number x. Is G onto? Prove or give a counterexample.

Question 7

- If f is a function from X to Y', g is a function from Y to Z, and Y' ⊆ Y, then g ∘ f is a function from _____ to____, and (g ∘ f)(x) = _____ for every x in X.
- **2.** If f is a function from X to Y and I_x and I_y are the identity functions from X to X and Y to Y, respectively, then $f \circ I_x = \underline{\hspace{1cm}}$ and $I_y \circ f = \underline{\hspace{1cm}}$.
- 3. If f is a one-to-one correspondence from X to Y, then $f^{-1} \circ f = \underline{\hspace{1cm}}$ and $f \circ f^{-1} = \underline{\hspace{1cm}}$
- 4. If f is a one-to-one function from X to Y and g is a one-to-one function from Y to Z, you prove that g of is one-to-one by supposing that _____ and then showing that _____.
- 5. If f is an onto function from X to Y and g is an onto function from Y to Z, you prove that g of is onto by supposing that _____ and then showing that _____.

Question 8

In 3 and 4, functions F and G are defined by formulas. Find $G \circ F$ and $F \circ G$ and determine whether $G \circ F$ equals $F \circ G$.

- 3. $F(x) = x^3$ and G(x) = x 1, for each real number x.
- **4.** $F(x) = x^5$ and $G(x) = x^{1/5}$ for each real number x.

Question 9

- 1. If R is a relation from A to B, $x \in A$, and $y \in B$, the notation x R y means that _____.
- **2.** If *R* is a relation from *A* to *B*, $x \in A$, and $y \in B$, the notation $x \not\in Y$ means that _____.
- 3. If R is a relation from A to B, $x \in A$, and $y \in B$, then $(y, x) \in R^{-1}$ if, and only if, _____.
- **4.** A relation on a set A is a relation from _____ to
- 5. If R is a relation on a set A, the directed graph of R has an arrow from x to y if, and only if, _____.

Question 10

Let $A = \{3, 4, 5\}$ and $B = \{4, 5, 6\}$ and let R be the "less than" relation. That is, for every ordered pair $(x, y) \in A \times B$,

$$xRy \Leftrightarrow x < y$$
.

State explicitly which ordered pairs are in R and R^{-1} .

Question 11

Let $A = \{2, 3, 4, 5, 6, 7, 8\}$ and define a relation R on A as follows: For every $x, y \in A$,

$$xRy \Leftrightarrow x|y$$
.

Question 12

16. Let $A = \{5, 6, 7, 8, 9, 10\}$ and define a relation S on A as follows: For every $x, y \in A$,

$$x S y \Leftrightarrow 2 \mid (x - y).$$

Question 13

In 9–33, determine whether the given relation is reflexive, symmetric, transitive, or none of these. Justify your answers.

- R is the "greater than or equal to" relation on the set of real numbers: For every x, y ∈ R, x R y ⇔ x ≥ y.
- 11. *D* is the relation defined on **R** as follows: For every $x, y \in \mathbf{R}$, $x D y \Leftrightarrow xy \ge 0$.

Question 14

In 1-8, a number of relations are defined on the set

 $A = \{0, 1, 2, 3\}$. For each relation:

- a. Draw the directed graph.
- b. Determine whether the relation is reflexive.
- c. Determine whether the relation is symmetric.
- d. Determine whether the relation is transitive.

Give a counterexample in each case in which the relation does not satisfy one of the properties.

- 1. $R_1 = \{(0,0), (0,1), (0,3), (1,1), (1,0), (2,3), (3,3)\}$
- **2.** $R_2 = \{(0, 0), (0, 1), (1, 1), (1, 2), (2, 2), (2, 3)\}$
- 3. $R_3 = \{(2, 3), (3, 2)\}$
- **4.** $R_4 = \{(1, 2), (2, 1), (1, 3), (3, 1)\}$
- **5.** $R_5 = \{(0, 0), (0, 1), (0, 2), (1, 2)\}$
- **6.** $R_6 = \{(0, 1), (0, 2)\}$
- 7. $R_7 = \{(0,3), (2,3)\}$
- **8.** $R_8 = \{(0,0), (1,1)\}$