计算机辅助手术讲座(10) Image Guided Surgery (10)

灰度的数学形态学(2)

Mathematical morphology in gray scale (2)

顾力栩 (Lixu Gu) 上海交通大学 Med-X研究院 2009.11

Grayscale Operations

Grayscale Operations

Source

Dilated by a 7X7 box

Eroded by a 7X7 box

Lixu Gu @ 2005 copyright reserved

Grayscale Operations

Source

Opened by a disk 3

Lixu Gu @ 2005 copyright reserved

Closed by a disk 3

- Morphological Edge Detection is based on Binary Dilation, Binary Erosion and Image Subtraction.
- Morphological Edge Detection Algorithms:

Standard:

$$Edge_{S}(F) = (F \oplus K) - (F \$ K)$$

- External:

$$Edge_{E}(F) = (F \oplus K) - F$$

– Internal:

$$Edge_I(F) = F - (F \$ K)$$

 $X \ominus S_{3,3}$

$$Edge_I(X)$$

$$S_{3,3} = \boxed{ }$$

F

 $Edge_I(F)$

 $Edge_{E}(F)$

 $Edge_{S}(F)$

 $Edge_{E}(F)$

 $Edge_{I}(F)$

Morphological Gradient is calculated by grayscale dilation and grayscale Erosion.

Gradient
$$(F)_S = \frac{1}{2}[(D_G(F, K) - E_G(F, K))]$$

= $\frac{1}{2}[(F \oplus_g K) - (F \$_g K)]$

- It is quite similar to the standard edge detection
- * We also have external and internal gradient

• External Gradient:

Gradient(F)_E =
$$\frac{1}{2}[(D_G(F, K) - F] = \frac{1}{2}[(F \oplus_g K) - F]$$

• Internal Gradient:

Gradient(F)_I =
$$\frac{1}{2}[(F - E_G(F, K))] = \frac{1}{2}[F - (F \$_{\mathbf{g}} K)]$$

 $Gradient(F)_{S}$

External

Internal

• Morphological Smoothing is based on the observation that a *grayscale opening* smoothes a grayscale image from above the brightness surface and the *grayscale closing* smoothes from below. So we could get both smooth like:

$$MSmooth(F) = C_G(O_G(F, K), K)$$
$$= ((F \circ_{g} K) \bullet_{g} K)$$

 Morphological Smoothing can also based on the average of gray scale dilation and erosion, which is so called dynamic smooth:

$$DSmooth(F) = \frac{1}{2} [D_G(F, K) + E_G(F, K)]$$
$$= \frac{1}{2} [(F \oplus_g K) + (F \$_g K)]$$

- Top-hat Transform (TT): An efficient segmentation tool for extracting bright (respectively dark) objects from uneven background.
 - White Top-hat Transform (WTT):

$$T_i = F - F \circ_g r_i K$$
 (r_i is the scalar of SE)

Black Top-hat Transform (BTT):

$$T_i = F \bullet_g r_i K - F$$

tophat + opened = original

tophat: original - opening

BTT

WTT

Inspection of a maximal thermometer capillary Lixu Gu @ 2005 copyright reserved

Application 1 Detecting runways in satellite airport imagery

Source

Detect long feature

WTT

Reconstruction

Threshold

Final result

Application 2 Detect Filarial Worms

Source

BTT

Remove Noises

Threshold

Skeleton

Eliminate short structures

Reconstruction

Final result

Differential TT

- Difficulties of TT:
 - 1. Difficult to distinguish ROI for more complicated cases.
 - 2. Difficult to define the sizes of SE.
- Differential Top-hat Transformation (DTT): employ a series of SE (same shape, different sizes) into TT application to find out the difference between and

$$F_{i} = |T_{i} - T_{i-1}|_{B} - F'_{i-1}$$

$$where, F'_{i} = \bigcup_{1 \leq j \leq i} F_{j}; F'_{1} = \emptyset$$

 $(|T|_B \text{ stands for a threshold operation})$

DTT: The Principle

How it works:

- 1. Find a series of TT:
- 2. Calculate the subtraction between and
- 3. Threshold the results of by same threshold level.
- 4. Put them together by OR

• What's better:

- 1. Differentiate the signal slopes in steepness and only pick up the objects with high gradient
- 2. Sort the objects by sizes.

DTT: A Model Testing

Source testing image and its cross section view

TT result

DTT result

DTT: A Real Image Testing

(b) Result of DTT

Application

Character Extraction From Cover Image

Application

Ultimate Erosion

- Ultimate Erosion (UE) is based on Recursive Erosion operation.
- "Keep aside each connected components just before it is removed throughout the recursive erosion process".

Geodesic Influence

- Geodesic Influence (GI) is based on Recursive Dilation operation with mask which also called conditional dilation.
- Reconstruct the seeds by the restriction of the mask, and distribute the pixels on the interface by means of "first come first serve".

UE and GI

- UE: split a connected region (have to be convex) gradually and record the iteration number.
- GI: Reconstruct the split regions and get the segments.

Application

- Segment connected organs:
 - 1. RE: region shrinking to generate all the candidate seeds
 - 2. GI: region reconstruction to recover separated organs

Discussion

