Problem R-080. Analyze the 7 Li, 31 P and 13 C NMR spectra of lithium diphenylphosphide dimer (Ph $_2$ PLi) $_2$ (C $_{24}$ H $_{20}$ LiP). The spectra were measured at -110 $^{\circ}$ C in ether. All nuclei are at *natural abundance* (Reich, H. J.; Dykstra, R. D. *Organometallics* **1994**, *13*, 4578). The Hz scale applies to all spectra.

(a) Analyze the 139.96 MHz 7 Li NMR spectrum. Report all couplings in the standard format ($^{n}J_{XY} = 112 \text{ Hz}$).

(b) Analyze the 145.8 MHz proton decoupled ³¹P NMR spectrum (report couplings and explain the peaks). Include the series of small peaks between the larger ones in your analysis:

(c) Provide a reasonable explanation for why the *ipso* and *ortho* carbons of the phenyl groups in the proton decoupled 90.6 MHz 13 C NMR spectrum are triplets.

Problem R-080. Analyze the ⁷Li, ³¹P and ¹³C NMR spectra of lithium diphenylphosphide dimer (Ph₂PLi)₂. The spectra were measured at -110 °C in ether. All nuclei are at *natural abundance* (Reich, H. J.; Dykstra, R. D. *Organometallics* **1994**, *13*, 4578). The Hz scale applies to all spectra.

(a) Analyze the 139.96 MHz 7 Li NMR spectrum. Report all couplings in the standard format ($^{n}J_{XY} = 112 \text{ Hz}$).

4

10

Triplet, $J_{\text{Li-P}} = 45 \text{ Hz}$ ⁷Li coupled equally to two ³¹P nuclei

(b) Analyze the 145.8 MHz proton decoupled ³¹P NMR spectrum (report couplings and explain the peaks). Include the series of small peaks between the larger ones in your analysis:

⁷Li I = 3/2 92.6% 38.87 MHz (¹H = 100 MHz) ⁶Li I = 1 7.4% 14.71 MHz

Large peaks: 1:2:3:4:3:2:1 septet, $^{1}J_{PLi}$ = 45 Hz ^{31}P coupled equally to two ^{7}Li (I = 3/2)

Small peaks due to natural abundance of ⁶Li 1:1:11 quartet of 1:1:1 triplets

 31 P coupled to one 7 Li and one 6 Li $^{1}J_{P7Li} = 45$ Hz, $^{1}J_{P6Li} = 16.7$ Hz

(c) Provide a reasonable explanation for why the *ipso* and *ortho* carbons of the phenyl groups in the proton decoupled 90.6 MHz 13 C NMR spectrum are triplets.

There must be a large P-P coupling across the lithiums (greater than about 200 Hz, as it turns out). This results in a "virtually coupled" situation (ABX with $v_{AB}=0$), in which the X (in this case ^{13}C signals) appears to be coupled to both phosphorus nuclei

6