Криптосистеми на еліптичних кривих

Lecture 5: DLP Грубіян Євген Олександрович

Задача дискретного логарифмування в групі точок еліптичної кривої (ECDLP)

Умова задачі:

Нехай Е/К— еліптична крива, визначена над полем К, а Е**(**К**)**— група К-раціональних точок на Е.

Дано точки $P, Q \in E(K)$, причому $P \in$ генератором підгрупи, і Q = [k]P для деякого невідомого цілого числа k.

Мета: Знайти дискретний логарифм k (тобто, обчислити k таке, що $\mathbf{Q} = [\,\mathbf{k}\,]\mathbf{P}).$

Складність: Вважається важкою задачею в класичній моделі обчислень, що є основою для криптографічних систем на еліптичних кривих.

Наївний алгоритм пошуку дискретного логарифму

Алгоритм:

1. <u>Починаємо</u> з k = 0 та обчислюємо послідовно точки:

2. Порівнюємо кожну точку з Q до знаходження збігу:

Якщо [k]P = Q, то k ϵ дискретним логарифмом.

Оцінка часу: O(n), де n — порядок підгрупи, що експоненційно залежить від параметра безпеки криптосистеми.

Алгоритм Шенкса (Baby-Step Giant-Step)

Ідея: Розбити пошук дискретного логарифму на два етапи, використовуючи таблицю для збереження проміжних значень та парадокс днів народжень.

Нехай $n = \#\langle P \rangle$ та вибираємо $m \approx \lceil \sqrt{n} \rceil$.

Кроки:

- 1. Baby steps: Обчислити та зберегти [j]P для j = 0, 1, ..., m-1.
- 2. Giant steps: Обчислити Q [im]P для i = 0, 1, ..., m-1 і перевіряти чи співпадає з будь-яким з baby steps.

Якщо знайдено співпадіння: $Q - [im]P = [j]P \Rightarrow Q = [im + j]P$, тобто k = im + j. Парадокс днів народжень гарантує що таку колізію з імовірністю близькою до 60% можна знайти за \sqrt{n} кроків Оцінка часу: $O(\sqrt{n})$ як за обчислювальними операціями, так і за пам'яттю.

Алгоритм Поларда (ρ -метод)

Постановка задачі: Дано генератор Р підгрупи Е еліптичної кривої, при чому порядок підгрупи $\#\langle P \rangle = p$ - просте число, та точку Q = [k]P. Мета: знайти k.

Основна ідея: Створити псевдовипадкову послідовність точок на E, що задається функцією $f:E\to E$ з відповідними коефіцієнтами a_i , b_i так, що

$$R_i = [a_i]P + [b_i]Q$$

і знайти два різні індекси і та j, для яких $R_i = R_j$. Потім отримати лінійне рівняння для k.

Алгоритм Поларда

Розбиття групи: Розбиваємо E на 3 підмножини S_1, S_2, S_3 (наприклад, за властивістю х-координати).

Визначення функції f та коефіцієнтів: Для кожної точки R = [a]P + [b]Q визначаємо оновлення:

• Якщо $R \in S_1$:

$$f(R) = R + P$$
, $a' = a + 1$, $b' = b$.

Якщо R ∈ S₂:

$$f(R) = 2R$$
, $a' = 2a$, $b' = 2b$.

Якщо R ∈ S₃:

$$f(R) = R + Q$$
, $a' = a$, $b' = b + 1$.

Початкові значення задаємо, наприклад, як

$$R_0 = P$$
, $a_0 = 1$, $b_0 = 0$.

Алгоритм Поларда

Запускаємо алгоритм (застосовуючи метод Флойда або Брента) для послідовності:

$$R_0$$
, $R_1 = f(R_0)$, $R_2 = f(R_1)$, ...

Знаходимо два індекси і ≠ ј такі, що:

$$R_i = R_j \implies [a_i]P + [b_i]Q = [a_j]P + [b_j]Q.$$

Тоді:

$$[a_{i} - a_{j}]P = [b_{j} - b_{i}]Q.$$

Оскільки Q = [k]P, маємо:

$$[a_i - a_j]P = [b_j - b_i][k]P$$

тобто, при умові, що $b_j - b_i$ обернений за модулем порядку підгрупи,

$$k \equiv (a_i - a_j)(b_j - b_i)^{-1} \pmod{n}$$
.

Метод Флойда (Tortoise and Hare) для виявлення циклу

Мета: Знайти два індекси і < j такі, що $x_i = x_j$ у послідовності, що задається функцією f.

Алгоритм:

- 1. Встановлюємо два покажчики:
 - «Черепаха» (tortoise): рухається крок за кроком, тобто $x_{i+1} = f(x_i)$.
 - «Заєць» (hare): рухається вдвічі швидше, тобто $x_{2i+1} = f(f(x_i))$.
- 2. Продовжуємо обчислення поки не отримаємо першу колізію: знайти найменше і таке, що $x_i = x_{2i}$.
- Після знаходження колізії встановлюємо один покажчик на початок послідовності і рухаємо обидва покажчики з однаковою швидкістю (по одному кроку за раз) для знаходження початку циклу.

Оцінка: Очікувана часова складність алгоритму дорівнює $O(\lambda)$, де λ — довжина циклу, а пам'ять використовується O(1).

Оцінка складності та підсумок алгоритму Pollard Rho

Оцінка часу: Очікувана кількість операцій становить $O(\sqrt{n})$ групових додавань, де n — порядок підгрупи, що використовується. При цьому алгоритм вимагає O(1) пам'яті.

Підсумок:

- 1. Визначається псевдовипадкова функція f на групі E з оновленням коефіцієнтів а та b.
- 2. Генерується послідовність точок $R_i = [a_i]P + [b_i]Q$.
- За допомогою алгоритму пошуку колізій (наприклад, методом Флойда) знаходиться індекс і ≠ j для якого R_i = R_j.
- 4. З отриманої колізії розв'язується лінійне рівняння для к.

Алгоритм Сільвера-Поліга-Хеллмана для груп довільного порядку

Нехай G — скінченна абелева група порядку $n=p_1^{e_1}\dots p_s^{e_s}$ згідно основної теореми арифметики, задані точки: Q=[k]P, ord(P)=n Мета: знайти ціле число k (дискретний логарифм) за умови, що $0 \le k < n$.

У цьому алгоритмі ми розглядаємо окремо випадок, коли порядок точки є степенем простого p^e , а потім узагальнимо алгоритм на випадок порядку точки $n=p_1^{e_1}\dots p_s^{e_s}$ за допомогою китайської теореми про лишки:

Нехай $Q_i = [k_i]P_i$, де $P_i = [n/p_i^{e_i}]P$, $Q_i = [n/p_i^{e_i}]Q$, $k_i = k \mod p_i^{e_i}$. Зауважимо що $\operatorname{ord}(P_i)|p_i^{e_i}$, тобто ми шукаємо дискретний логарифм в підгрупі $\langle [n/p_i^{e_i}]P \rangle$ порядку $p_i^{e_i}$

Алгоритм Сільвера-Поліга-Хеллмана для групи порядку $\mathbf{p_{i}^{e_{i}}}$

Ми записуємо невідомий дискретний логарифм у вигляді розкладу за основою p:

$$k_i = a_0 + a_1 p_i + a_2 p_i^2 + \dots + a_{e_i-1} p_i^{e_i-1}, \quad 0 \le a_j < p_i.$$

Ключова ідея: Обчислювати послідовно коефіцієнти $a_0, a_1, \dots, a_{e_i-1}$ за допомогою «покрокового підняття» (Hensel lifting):

$$\begin{split} Q_i &= [k_i]P_i| \times p_i^{e_i-1} \\ &[n/p_i]Q = [a_0]([n/p_i]P) + [a_1]([n]P) + [a_2]([np_i]P) + \dots + [a_{e_i-1}]([np_i^{e_i-2}]P) \\ &= [a_0]([n/p_i]P) \end{split}$$

Оскільки $\operatorname{ord}(P)$ |n. Зазначимо що $\operatorname{ord}([n/p_i]P) = p_i$, тобто шукаємо а₀ за алгоритмами ρ -Поларда або BSGS

Алгоритм Сільвера-Поліга-Хеллмана для групи порядку $p_i^{e_i}$

Помножимо наш вираз для дискретного логарифму на $p_i^{e_i-2}$:

$$\begin{aligned} Q_i &= [k_i]P_i| \times p_i^{e_i-2} \\ [n/p_i]Q &= [a_0]([n/p_i^2]P) + [a_1]([n/p_i]P) + [a_2]([n]P) + \dots + [a_{e_i-1}]([np_i^{e_i-3}]P) \\ &= [a_0]([n/p_i]P) + [a_1]([n/p_i]P) \\ [n/p_i]Q - [a_0]([n/p_i]P) = [a_1]([n/p_i]P) \end{aligned}$$

Де $\operatorname{ord}([n/p_i]P) = p_i$, тобто знову отримали задачу дискретного логарифму в підгрупі простого порядку. Знаходимо a_1 за допомогою відомих методів.

Ітеративно знаходимо всі наступні $a_j, \quad j=2..e_i-1$ шляхом множення виразу $Q_i=[k_i]P_i$ на $p_i^{e_i-j-1}$ та подальшого вираження a_j як дискретного логарифму в групі порядку p_i із врахуванням всіх знайдених a_0,\ldots,a_{j-1} .

Відновлення дискретного логарифму в групі G

Якщо порядок групи n має наступний вираз

$$n = p_1^{e_1} \cdots p_s^{e_s},$$

то для кожного простого рі за алгоритмом, описаним вище, знаходять:

$$k \equiv k_i \pmod{p_i^{e_i}}$$
.

Потім, використовуючи Китайську теорему лишків, отримують єдиний розв'язок k за модулем n.

Складність: $O(\sum_{i=1..s} (e_i \sqrt{p_i}))$ за умови використання ρ -алгоритму в групах простого порядку.

Квантовий алгоритм Шора

Основна ідея: Використання квантового алгоритму для ефективного розв'язання дискретного логарифму в абелевих групах, зокрема на еліптичних кривих, за допомогою перетворення Фур'є.

Ключові кроки:

- 1. Створення суперпозиції всіх можливих експонент.
- 2. Побудова функції f(a, b) = [a]P + [b]Q та обчислення її квантового стану.
- 3. Застосування квантового перетворення Фур'є для отримання інформації про періодичність функції.
- 4. Класичне постпроцесування з отриманих вимірювань для відновлення дискретного логарифму k.

Оцінка часу: Квантовий алгоритм Шора працює з поліноміальною кількістю квантових вентилів, точніше O(poly(log n)), що є експоненційним прискоренням порівняно з класичними алгоритмами.

Підсумки

Всі розглянуті алгоритми в класичній моделі обчислень мають експоненційну складність, проте в квантовій моделі поліноміальну.

- Наївний алгоритм для групи порядку n: O(n) експоненційно повільний.
- BSGS для групи порядку n: $O(\sqrt{n})$ як за часом, так i за пам'яттю.
- Алгоритм Поларда для групи простого порядку р: О(√р) за часом з малою константою та О(1) за пам'яттю.
- Алгоритм Сільвера-Поліга-Хелмана для групи порядку $n = p_1^{e_1} \cdots p_s^{e_s}$: $O(\sum_{i=1..s} (e_i \sqrt{p_i}))$ за часом та O(s) за пам'яттю за умови використання ρ -алгоритму в групах простого порядку.
- Квантовий алгоритм Шора: O(poly(log n)) поліноміальна складність квантової схеми, але потребує практичного квантового комп'ютера.