Universidade da Beira Interior Faculdade de Engenharia Departamento de Informática

© Pedro R. M. Inácio (inacio@di.ubi.pt), 2018/19

Segurança Informática

Guia para Aula Laboratorial 8

Licenciatura em Engenharia Informática Licenciatura em Informática Web Licenciatura em Tecnologias e Sistemas da Informação

Sumário

Análise da função alçapão RSA e do procedimento para geração de pares de chaves. Elaboração passo-a-passo de uma assinatura digital usando a função alçapão RSA e a função resumo SHA256.

Computer Security

Guide for Laboratory Class 8

Degree in Computer Science and Engineering Degree in Web Informatics Degree in Information Technologies and Systems

Summarv

Analysis of the RSA trapdoor function and of the key pair generation procedure. Step-by-step elaboration of a digital signature using the RSA trapdoor function and the SHA256 hash function.

Pré-requisitos:

Algumas das tarefas propostas a seguir requerem o uso de software para efetuar cálculos, o acesso a um sistema com interpretador de programas escritos em linguagem de programação Python e que disponibilize a ferramenta OpenSSL. Sugere-se, assim, o uso de uma distribuição comum de Linux, onde todas estas condições estarão provavelmente preenchidas.

Função Alçapão RSA

RSA Trapdoor Function

A utilização da função alçapão RSA pressupõe a utilização de um algoritmo para geração de um par de chaves, normalmente designadas por chave pública (pk) e chave privada (sk). A geração é feita da sequinte forma:

- 1. Geram-se dois números primos p e q grandes (tipicamente com mais do que 1024 bits) e calcula-se $N = p \times q$;
- 2. Calcula-se $\phi(N) = (p-1) \times (q-1)$ e procura-se um par de números (e, d) tal que

$$e \times d = 1 \mod \phi(N)$$
.

3. A chave pública é o par (e, N) e a chave privada é d.

□ !!Não consigo fazer isto!!

Use o libreoffice spreedsheet ou Python para encontrar dois números e e d que satisfaçam

$$e \times d = 1 \mod \phi(N),$$

i.e., $e \times d \mod \phi(N)$ tem de dar 1.

☐ **Red Alert!** Não consigo fazer isto!

✓ Isto é canja de galinha: e = 7 d = 283

Depois de fazer o exercício anterior, preencha os espaços em baixo com a chave pública e com a chave privada:

$$\mathbf{\nabla} pk = \underline{\qquad} (7,713) \qquad sk = \underline{\qquad} (283)$$

Tarefa 2 Task 2

O algoritmo de cifra em modo livro da escola (que não se deve utilizar diretamente) é dado por

$$E(pk, m) = m^{pk} \bmod N,$$

enquanto que o algoritmo de decifra é dado por

$$E(sk, c) = c^{sk} \mod N.$$

Escolha 2 números primos entre 12 e 42 e calcule Dê a sua chave pública a um(a) colega e peça-lhe que cifre um número aleatório qualquer entre 1 e

Tarefa 1 Task 1

 $N \in \phi(N)$:

221. Peça-lhe também que lhe transmita o criptograma oralmente. Sugestão: use o wolfram alpha para o ajudar a fazer estes cálculos. Q1.: Precisou de algum cuidado especial quando transmitia a chave pública? ☐ Sim, tive de lhe dizer baixinho ao ouvido. ☐ Não, mas devia tê-la cifrado antes de a transmitir. ☑ Não, e não há qualquer problema de segurança nisso.	do ficheiro sk-and-pk.pem para o ficheiro pk-nome-aluno.pem. \$ openssl
Q2.: Como é que o seu(ua) colega sabe que a chave pública que vai usar para cifrar a mensagem que está prestes a enviar-lhe é sua? ☑ Porque eu lha dei diretamente. ☐ Ele(a) nunca vai ter essa certeza.	openssl rsa -in pk-pedro.pem -pubin -text • Comando para gerar as chaves, mas protegi-
Q3.: E se lhe tivesse enviado a chave pública pela Internet, respondia à questão anterior da mesma forma? ☑ Hummm não.	das por cifra simétrica (esta tarefa é opcional na aula). \$ openssl
☐ Hummm sim.☐ Respondia que sim, mas com alguma hesitação. Tarefa 3 Task 3	Nota: guarde as chaves que gerou numa <i>pen</i> ou envie-as para o seu <i>e-mail</i> , pois podem vir a ser úteis mais tarde.
Decifre o criptograma que recebeu do(a) colega. Escreva a fórmula que utilizou e o resultado:	Tarefa 5 Task 5 Gere um valor aleatório com 128 bits (16 bytes)
Sugestão: use o wolfram alpha para o ajudar a fazer estes cálculos. Q4.: Qual a chave usada para cifrar?	em hexadecimal e coloque-o no ficheiro de texto secret.key. Peça a um(a) colega que lhe envie a sua chave pública e procure construir o comando <i>OpenSSL</i> que lhe permita cifrar esse ficheiro com a chave pública que recebeu, a partir da seguinte su-
☑ A chave pública.☐ A chave privada.☐ A chave do carro.	gestão:
Q5.: Qual a chave usada para decifrar? ☐ A chave pública.	\$ openss1 rsaut1
Tarefa 4 Task 4 O OpenSSL permite gerar pares de chaves RSA para um ou mais ficheiros. Indique e comente os comandos que pode usar para este efeito, bem como o formato dos ficheiros assim criados:	 Q6.: Conseguiu cifrar? ☐ Claro que consegui. ☑ Neste caso consegui, porque 128 bits é menor do que o tamanho do módulo que estou a usar. ☐ Não, não consegui. No final, envie o criptograma resultante de novo para
 Comando para gerar chaves RSA para o ficheiro sk-and-pk.pem. 	o(a) colega.
\$ opensslgenrsa -out sk-and-pk.pem 1024	Tarefa 6 Task 6
 Comando para extrair a chave pública 	Engendre e emita o comando que lhe permite de- cifrar o criptograma recebido do colega. No final, verifique se o que decifrou é igual ao que foi real-

Comando: \$ openssl rsautl	Cifragem:
-decrypt -in secret.rsa -out secret.txt -inkey skandpk.pem	\$ openssl
Tarefa 7 Task 7	\$ openssl
Q7.: Qual o tamanho do módulo do par de cha-	v openssi
ves que gerou antes? □ 123 □ 256 □ 512 ☑ 1024 □ 1025 □ 2048	De cifes warms
openssl rsa -in sk-and-pk.pem -text Volte a repetir a tarefa na secção ?? mas,	Decifragem:
desta feita, tente cifrar um ficheiro chamado Portugal.txt contendo o segundo parágrafo	\$ openssl
do texto em http://en.wikipedia.org/wiki/	
Economic_history_of_Portugal. Se tiver tempo, aproveite para ler o parágrafo	\$ openssl
Q8.: Conseguiu cifrar o ficheiro?	
☐ Não. Portugal é grande demais para poder ser cifrado com esta cifra.	\$ cat
☑ Não. O texto é grande demais e o <i>OpenSSL</i> não deixa cifrar por blocos usando o RSA, visto que	3 Assinatura Digital
este modo (livro de escola), por sí só, já é inse-	Digital Signature
guro. □ Consegui sem problemas.	Q10.: Ainda tem o par de chaves pública e pri-
0	vada gerada anteriormente?
Note que, para além da razão apontada anterior-	☐ Ups☐ Não cheguei a fazer isto!
mente, deve levar em conta de que a criptografia assimétrica é tipicamente mais lenta ou acarreta	☑ Sou um(a) fulano(moça) certinho(a), e tenho tudo guardadinho.
mais custos computacionais do que a criptografia simétrica.	Recupere o ficheiro Portugal.txt. Como é um fi
Siffettica.	cheiro com informação que não deve ser alterada
2 Cifra à Moda do Port do PGP	e com a qual o Prof. pressupõe que concorda ple- namente, convém assiná-lo digitalmente. Para isso
Encryption a la PGP	simule o algoritmo conhecido por SHA256-with-RSA
O PGP será alvo de estudo um pouco mais à frente,	1. Calcule o valor do SHA256 do fi
mas nesta secção vai-se explorar um pouco o seu funcionamento.	cheiro Portugal.txt para o ficheiro Portugal.sha256.
	2. Cifre o ficheiro Portugal.sha256 com a
Tarefa 8 Task 8	chave privada e guarde o criptograma em
Q9.: O que significa o acrónimo PGP?	Portugal.sig.
P retty G ood P rivacy	Tayafa O Taylo
Cifre o ficheiro com um algoritmo de cifra simétrica	Tarefa 9 Task 9
(e.g., o AES) e chave de cifra à sua escolha. Reveja as tarefas feitas anteriormente, nomeadamente	Envie a assinatura e o ficheiro original para o(a seu(ua) colega. Quando receber o respetivo par
a que se refere à troca de um segredo de 16 bytes	verifique a assinatura. Quais os três comandos que
usando RSA. Engendre um modo de usar a criptografia de chave pública RSA para colmatar o pro-	deve usar para fazer esta verificação: dgst -sha256 Portugal.txt
blema de trocar a chave de cifra simétrica. Se ne-	\$ openss1

cessário, discuta isto com o Professor.

\$ openssl	
rsautl -verify -in Portugal.sig -out hash2 -inkey pk-and-sk.pem	-pubin
\$ diff Portugal.txt hash2	
Tarefa 10 Task 10	
Procure descobrir se há forma de calcular a assinatura digital de uma forma integrada no <i>OpenSSL</i> , i.e., com um só comando.	
\$ openssl	
dgst -sha256 -sign pk-and-sk.pem Portugal.txt	
sl dgst -sha256 -verify pk-pedro.pem -signature Portugal.sig Po	rtugal.txt
Tarefa 11 Task 11	
Finalmente, considere responder às questões incluídas em baixo para melhorar o seu entendimento em relação às semelhanças, mas sobretudo às diferenças, dos conceitos de assinatura digital e código de autenticação de mensagens.	
Assinatura Digital	Message Authentication Code
Q11.: Quem é que pode assinar determinada mensagem?	Q12.: Quem é que pode fazer o MAC de determinada mensagem?
☑ Só quem possui a chave privada.	☐ Só quem possui a chave privada.
\square Só quem possui a chave pública.	☐ Só quem possui a chave pública.
☐ Qualquer entidade.	☐ Qualquer entidade.
☐ Só quem possui a chave simétrica secreta.	✓ Só quem possui a chave simétrica secreta.
Q13.: Quem é que pode verificar a assinatura de determinada mensagem?	Q14.: Quem é que pode fazer a verificação do MAC?
☐ Só quem possui a chave privada.	☐ Só quem possui a chave privada.
☑ Só quem possui a chave pública.	☐ Só quem possui a chave pública.
☑ Qualquer entidade.	☐ Qualquer entidade.
\square Só quem possui a chave simétrica secreta.	☑ Só quem possui a chave simétrica secreta.
Q15.: Quais são os objectivos de uma assinatura digital?	Q16.: Quais são os propósitos de um MAC?
✓ Autenticação da origem da informação.	✓ Autenticação da origem da informação.
✓ Integridade.	✓ Integridade.
☑ Não repúdio.	☐ Não repúdio.
☐ Confidencialidade.	☐ Confidencialidade.
✓ Autenticidade.	☐ Autenticidade.

 \square Dificuldade de falsificação.

☑ Dificuldade de falsificação.