Regression

Linear Regression

1. Form

$$Y = \mathbf{X}\beta + \epsilon$$

where $Y=(y_1,y_2,\ldots,y_n)^T$, $\beta=(\beta_1,\beta_2,\ldots,\beta_p)^T$ and $\mathbf X$ is the data matrix with an extra column of ones on the left to account for the intercept.

2. Assumptions

- Linear relationship
- Multivariate normality + Independence + Constant variance

$$\epsilon \stackrel{iid}{\sim} N(0,\sigma^2)$$

Assumptions	Diagnosis	Solutions
Linearity	Scatter plot	1. Apply a nonlinear transformation; 2. Try a nonlinear form to fit
Normality	QQ plot of residuals/non- parametric tests(KS or AD test)	Box-cox transformation on dependent variable
Independence	Residual vs time/Durbin Watson test/VIF	1. Time series model like ARCH, ARMA or ARIMA; 2. Ridge Regression/Lasso Regression
Constant Variance	Residual vs predicted values	Log transformation

Ref: http://people.duke.edu/~rnau/testing.htm

3. Loss Function & Estimation

$$RSS = \Sigma_{i=1}^n (y_i - X_i eta)^2$$

The goal is to minimize RSS. The mean square estimation of β is:

$$\hat{eta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^TY$$

This only exists when \mathbf{X}^TX is invertible. This requires $n\geq p$ (because if a matrix is invertible, it should be full rank).

• What if $n \leq p$?

We could introduce **L1 regulariation** to solve the problem. Then the estimator would become

$$\hat{\beta} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T Y$$

Ref: https://zhuanlan.zhihu.com/p/44612139

• In practise: it would take long time to solve the inverse for a matrix with high dimension, therefore, we always use gradient descent to get the estimator in practise.

4. Goodness of Fit

- F-test: test whether a group of variables is important
- T-test: test whether a variable is important
- Variable selection:
 - Forward: start from a null model, include variables one at a time, minimize the RSS at each step.
 - Backward: start from a full model, eliminate variables one at a time, choosing the one with the largest t-test p-value at each step.
 - Mixed: start from a null model, include variables one at a time, minimizing the RSS at each step. If the p-value for some variables goes beyond a threshold, eliminate that variable.
- Model selection: AIC/BIC
- R square: $corr^2(Y,\hat{Y})$ always increases as we add more variables.
- RSE: residual standard error does not always imporve with more predictors:

$$RSE = \sqrt{rac{1}{n-p-1}RSS}$$

MSE:

$$MSE = \frac{1}{n}RSS$$

5. Additionals

- How to encode dummy variables?
 - Different ways of encoding would bring different interpretations for parameters. In order to get corresponding results, we have to carefully encode our dummy variables.
- How to solve overfitting problem when variables are too many?
 - o regularization
 - variable selection
 - dimension reduction (feature extraction)