How do we extract audio features?

Valerio Velardo

CATIACT Addition Teatures:

Join the community!

thesoundofai.slack.com

Previously on Audio Processing for ML

- Time-domain features
- Frequency-domain features
- Time-frequency domain features

• Perceivable audio chunk

Perceivable audio chunk

1 sample @44.1KHz = 0.0227ms

Perceivable audio chunk

1 sample @44.1KHz = 0.0227ms

Duration 1 sample << Ear's time resolution (10ms)

- Perceivable audio chunk
- Power of 2 num. samples

- Perceivable audio chunk
- Power of 2 num. samples
- Typical values: 256 8192

- Perceivable audio chunk
- Power of 2 num. samples
- Typical values: 256 8192

$$d_f = \frac{1}{s_r} \cdot K$$

- Perceivable audio chunk
- Power of 2 num. samples
- Typical values: 256 8192

$$d_f = \frac{1}{s_r} \cdot K$$

- Perceivable audio chunk
- Power of 2 num. samples
- Typical values: 256 8192

$$d_f = \frac{1}{S_{\varUpsilon}} \cdot \stackrel{\text{512}}{K}$$
 = 11.6ms

From time to frequency domain

Processed signal isn't an integer number of periods

- Processed signal isn't an integer number of periods
- Endpoints are discontinuous

- Processed signal isn't an integer number of periods
- Endpoints are discontinuous

- Processed signal isn't an integer number of periods
- Endpoints are discontinuous
- Discontinuities appear as high-frequency components not present in the original signal

Apply windowing function to each frame

- Apply windowing function to each frame
- Eliminates samples at both ends of a frame

- Apply windowing function to each frame
- Eliminates samples at both ends of a frame
- Generates a periodic signal

Hann window

$$w(k) = 0.5 \cdot (1 - \cos(\frac{2\pi k}{K - 1})), k = 1...K$$

Windowing

$$s_w(k) = s(k) \cdot w(k), k = 1...K$$

Windowing

Windowing

Houston we have another problem!

Houston we have another problem!

Houston we have another problem!

hop length

What's up next?

Time-domain features