Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	0

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	1

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 3. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- C) h[n] è anticausale.
- **D)** H(z) non contiene poli nell'origine.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	2

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=1/a.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** Il filtro è instabile per |a| > 1.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	3

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n < 4 e x[4] = A
- **C)** x[n] = 0 per n > 4 e x[4] = A
- **D)** $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{n_1 n_2 n_2}$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] è anticausale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	4

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{\pi})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	5

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) x[n] = 0 per n > 2 e x[2] = A
- **D)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	6

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è anticausale.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

1

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

B)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	7

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e x[4] = A
- **B)** x[n] = 0 per n > 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) x[n] = 0 per n < 4 e x[4] = A
- **D)** x[n] = 0 per n < 4 e $x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_2}}$

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	8

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

1

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A$

B)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	9

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{\tau})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

A) H(z) contiene un polo reale semplice in z=2.

- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	10

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

- A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.
- **B)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 (\frac{2\pi}{N})^2}$
- C) $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c k\pi)^2 (\frac{\pi}{N})^2}$
- **D)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 (\frac{\pi}{N})^2}$
- **E)** $Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c k\pi)^2 (\frac{2\pi}{\pi})^2}$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

- A) H(z) contiene un polo reale semplice in z=1/a.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

B)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	11

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

1

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	12

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 2. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	13

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{\sigma})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.

- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	14

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

B)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	15

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_2}$

B)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.

- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=1/a.

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	16

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 2 e x[2] = A
- C) x[n] = 0 per n < 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) H(z) contiene un polo reale semplice in z=1/a.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	17

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

C)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

D)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

Esercizio 3. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	18

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|,|p_2|,|p_3|,|p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	19

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 2. (1.5 Punti.)

Si consideri un sistema LTÍ a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

B)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	20

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

B)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	21

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	22

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e x[3] = A
- **B)** x[n] = 0 per n > 3 e x[3] = A
- C) $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 4. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	23

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

B)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	24

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n < 4 e x[4] = A
- C) x[n] = 0 per n > 4 e x[4] = A
- **D)** $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 3. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** Si ha $h[n] = 2^n u[n]$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	25

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=1/a.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|,|p_2|,|p_3|,|p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	26

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	27

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** Il filtro è instabile per |a| > 1.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	28

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 2. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 3. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** H(z) non contiene poli nell'origine.
- C) Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	29

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 3. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	30

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

C)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) contiene un polo reale semplice in z = 1/a.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) non contiene poli nell'origine.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	31

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 2. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	32

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 4. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	33

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n > 2 e x[2] = A
- **C)** x[n] = 0 per n < 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	34

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|,|p_2|,|p_3|,|p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	35

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

C)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	36

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **C)** x[n] = 0 per n < 2 e x[2] = A
- **D)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 3. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	37

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	38

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e x[2] = A
- **B)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n > 2 e x[2] = A
- **D)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- ${\bf B})$ Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	39

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A$

B)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- ${f B}$) Il sistema è causale
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	40

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	41

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 2. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 4. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	42

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 2. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{2\pi})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - \left(\frac{2\pi}{N}\right)^2}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** H(z) non contiene poli nell'origine.
- C) Il filtro è instabile per |a| > 1.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	43

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

B)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

C)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	44

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{3})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A$

C)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

D)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	45

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|,|p_2|,|p_3|,|p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A$$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	46

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e x[3] = A
- **B)** x[n] = 0 per n < 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n > 3 e x[3] = A
- **D)** x[n] = 0 per n > 3 e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 3. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	47

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	48

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n > 2 e x[2] = A
- C) x[n] = 0 per n < 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) H(z) contiene un polo reale semplice in z=1/a.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	49

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	50

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

Esercizio 2. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

A) h[n] è non causale.

- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTÍ a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	51

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n > 4 e x[4] = A
- C) $x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 4 e x[4] = A

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	52

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	53

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** h[n] è anticausale.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** H(z) non contiene poli nell'origine.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	54

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** h[n] è anticausale.
- C) H(z) non contiene poli nell'origine.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z - 0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - \left(\frac{\pi}{N}\right)^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|,|p_2|,|p_3|,|p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

B)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	55

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$
- **B)** x[n] = 0 per n > 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 2 e x[2] = A

Esercizio 4. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	56

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=1/a.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.

- C) H(z) non contiene poli nell'origine.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	57

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n > 2 e x[2] = A
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 2 e x[2] = A

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z = 1/a.
- **B)** Il filtro è instabile per |a| > 1.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	58

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e x[3] = A
- **B)** $x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **D)** x[n] = 0 per n > 3 e x[3] = A

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	59

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** Il filtro è instabile per |a| > 1.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	60

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	61

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] è anticausale.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

C)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	62

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

C)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema è causale e h[n] = 0 per n > 0.

Esercizio 3. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	63

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A$

B)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

A) h[n] è non causale.

- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	64

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) Il filtro è instabile per |a| > 1.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e x[4] = A
- **B)** $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) $x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 4 e x[4] = A

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	65

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è anticausale.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **B)** x[n] = 0 per n > 2 e x[2] = A
- C) x[n] = 0 per n < 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	66

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 3. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	67

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** h[n] è non causale.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|,|p_2|,|p_3|,|p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

B)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A$$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	68

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	69

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{z_1 z_2 z_3 z_4}$

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	70

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esercizio 4. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - \left(\frac{2\pi}{N}\right)^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	71

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

B)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	72

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- B) H(z) contiene un polo reale semplice in z = 1/a.
- C) h[n] assume valori non nulli solo per $0 \le n < N$.
- **D)** Il filtro è instabile per |a| > 1.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

B)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	73

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** h[n] è non causale.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	74

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

D)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	75

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** h[n] è anticausale.

Esercizio 2. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTÍ a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	76

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$
- **D)** x[n] = 0 per n < 2 e x[2] = A

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esercizio 4. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	77

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è non causale.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|,|p_2|,|p_3|,|p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

B)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	78

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{\tau})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

B)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

D)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

Esercizio 3. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) non contiene poli nell'origine.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	79

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

Esercizio 2. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 4. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	80

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) h[n] è non causale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTÍ a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	81

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

B)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A$

C)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è non causale.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	82

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A$$

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.

- C) Si ha $h[n] = 2^n u[n]$
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	83

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 4 e x[4] = A
- **B)** x[n] = 0 per n < 4 e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) $x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n < 4 e x[4] = A

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- B) H(z) contiene un polo reale semplice in z=2.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] è non causale.

Esercizio 4. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	84

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] è anticausale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	85

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) contiene un polo reale semplice in z = 1/a.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n > 2 e x[2] = A
- **B)** $x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **C)** x[n] = 0 per n < 2 e x[2] = A
- **D)** x[n] = 0 per n > 2 e $x[2] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$

Esercizio 4. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	86

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A$

B)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** h[n] è anticausale.

Esercizio 3. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	87

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

B)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^N x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Il filtro è instabile per |a| > 1.
- **B)** H(z) non contiene poli nell'origine.

- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	88

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) contiene un polo reale semplice in z=2.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è non causale.
- **D)** h[n] assume valori non nulli solo per $0 \le n < N$.

Esercizio 3. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 4. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	89

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

C)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) H(z) non contiene poli nell'origine.
- B) h[n] assume valori non nulli solo per $0 \le n < N$.
- C) H(z) contiene un polo reale semplice in z=2.
- **D)** h[n] è non causale.

Esercizio 3. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	90

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^N x[n-N] + \frac{1}{2}y[n-1]$$

dove N=20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) h[n] è non causale.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n > 2$ e $x[2] = A$

C)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

Esercizio 4. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^2/(z-0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	91

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n - N] + ay[n - 1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** H(z) non contiene poli nell'origine.
- C) Il filtro è instabile per |a| > 1.
- **D)** H(z) contiene un polo reale semplice in z = 1/a.

Esercizio 3. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|,|p_2|,|p_3|,|p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A$

B)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A$$

C)
$$x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	92

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** H(z) non contiene poli nell'origine.
- **B)** h[n] è anticausale.
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** Si ha $h[n] = 2^n u[n]$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

B)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A$

C)
$$x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A$$

D)
$$x[n] = 0$$
 per $n > 3$ e $x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^4/(z-0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	93

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A$

B)
$$x[n] = 0$$
 per $n > 4$ e $x[4] = A$

C)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

D)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

Esercizio 2. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - \left(\frac{1}{2}\right)^{N} x[n-N] + \frac{1}{2}y[n-1]$$

dove N = 20. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

1

A) H(z) non contiene poli nell'origine.

- **B)** h[n] assume valori non nulli solo per $0 \le n < N$.
- C) h[n] è non causale.
- **D)** H(z) contiene un polo reale semplice in z=2.

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	94

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) H(z) non contiene poli nell'origine.
- **D)** h[n] assume valori non nulli solo per $0 \le n \le 3$.

Esercizio 2. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$

$$\tag{1}$$

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- **B)** x[n] = 0 per n < 2 e x[2] = A
- C) x[n] = 0 per n > 2 e x[2] = A
- **D)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema è causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	95

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema non è causale e h[n] = 0 per n > 0.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- C) h[n] è anticausale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-2}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 3 e x[3] = A
- B) $x[n] = 0 \text{ per } n < 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$
- C) x[n] = 0 per n > 3 e x[3] = A
- **D)** $x[n] = 0 \text{ per } n > 3 \text{ e } x[3] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

Esercizio 4. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	96

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - a^{N}x[n-N] + ay[n-1]$$

dove N=10 ed a può assumere un valore reale finito. Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] assume valori non nulli solo per $0 \le n < N$.
- **B)** Il filtro è instabile per |a| > 1.
- C) H(z) contiene un polo reale semplice in z = 1/a.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. 2 (Punti.) Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

A) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N}\sin(\pi fT)\frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{N} \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)(z - z_3)}{(z - p_1)(z - p_2)(z - p_3)(z - p_4)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|, |p_4|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A$

B)
$$x[n] = 0$$
 per $n < 2$ e $x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$

C)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2 z_3}{p_1 p_2 p_3 p_4}$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z)=z^3/(z-0.1)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- **A)** Il sistema non è causale e h[n] = 0 per n > 0.
- **B)** Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	97

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** h[n] è anticausale.
- **B)** Si ha $h[n] = 2^n u[n]$
- C) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 2. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale rettangolare di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

B)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{2\epsilon})^2}$$

C) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

Esercizio 3. (1.5 Punti.)

Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^2/(z - 0.3)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale
- **B)** Il sistema non è causale e h[n] = 0 per n > 0.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-3}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0$$
 per $n < 4$ e $x[4] = A \frac{z_1 z_2}{p_1 p_2 p_3}$

B)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A$$

C)
$$x[n] = 0 \text{ per } n < 4 \text{ e } x[4] = A$$

D)
$$x[n] = 0 \text{ per } n > 4 \text{ e } x[4] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	98

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = z^4/(z - 0.125)$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema non è causale e h[n] = 0 per n > 0.
- B) Il sistema non è causale e $h[n] \neq 0$ per n > 0.
- C) Il sistema è causale.

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- **A)** Si ha $h[n] = 2^n u[n]$
- B) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- C) h[n] è anticausale.
- **D)** H(z) non contiene poli nell'origine.

Esercizio 3. (2 Punti.)

Sia dato il segnale $x(t) = \cos(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi f T_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 2$.

1

A)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \sum_{k=-\infty}^{\infty} \sin(\pi fT) \frac{\pi fT_c - k\pi}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \sin(\pi fT) \frac{\pi fT_c}{(\pi fT_c)^2 - (\frac{2\pi}{3\tau})^2}$$

Esercizio 4. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R=\max(|p_1|,|p_2|,|p_3|)$. Quale delle seguenti affermazioni è vera?

A)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$$

B)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A$$

C)
$$x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A$$

D)
$$x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A_{\frac{z_1 z_2}{p_1 p_2 p_3}}$$

Esame solo MES (INF)

NOTA: Consegnare il testo completo di tutti i fogli e la tabellina con le risposte, ricordandosi di riportare nell'apposito spazio nome e numero di matricola; riportare al più una risposta per ogni esercizio usando LETTERE MAIUSCOLE. Si invitano gli studenti a prendere nota del numero del compito e delle risposte date. Ciò permetterà un immediato confronto con le stringhe corrette che verranno pubblicate sul portale.

Nome	
Cognome	
Matricola	
Compito	99

Esercizio	1	2	3	4	5	6	7	8
Risposta								

Esercizio 1. (1 Punto.) Sia data la seguente trasformata z della sequenza x[n]:

$$X(z) = A \frac{z^{-1}(z - z_1)(z - z_2)}{(z - p_1)(z - p_2)(z - p_3)}$$
(1)

con regione di convergenza all'esterno del cerchio di raggio $R = \max(|p_1|, |p_2|, |p_3|)$. Quale delle seguenti affermazioni è vera?

- **A)** x[n] = 0 per n < 2 e x[2] = A
- **B)** $x[n] = 0 \text{ per } n > 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- C) $x[n] = 0 \text{ per } n < 2 \text{ e } x[2] = A \frac{z_1 z_2}{p_1 p_2 p_3}$
- **D)** x[n] = 0 per n > 2 e x[2] = A

Esercizio 2. (1.5 Punti.) Sia dato un filtro numerico con la seguente relazione ingresso-uscita:

$$y[n] = x[n] - 2^4x[n-4] + 2y[n-1]$$

Si indichino con h[n] la risposta all'impulso e con H(z) la funzione di trasferimento del filtro. Dire quale delle seguenti affermazioni è corretta.

- A) h[n] assume valori non nulli solo per $0 \le n \le 3$.
- **B)** H(z) non contiene poli nell'origine.
- **C)** Si ha $h[n] = 2^n u[n]$
- **D)** h[n] è anticausale.

Esercizio 3. (2 Punti.) Sia dato il segnale $x(t) = \sin(2\pi f_0 t) P_T(t)$ dove $P_T(t)$ è un segnale regolarizzato di ampiezza unitaria in $t \in [-T/2, T/2]$ e nullo altrove. Calcolare la trasformata z sul cerchio di raggio unitario $Y(e^{j2\pi fT_c})$ relativa alla sequenza y[n] costruita come $y[n] = x(nT_c)$. Valgono inoltre le seguenti relazioni: $T = 2NT_c$, con N intero, e $f_0T = 4$.

1

A)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{2\pi}{N})^2}$$

B) La frequenza di campionamento $1/T_c$ è insufficiente per calcolare la trasformata z.

C)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{\pi}{N})^2}$$

D)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \frac{\sin(\pi fT)}{(\pi fT_c)^2 - (\frac{2\pi}{N})^2}$$

E)
$$Y(e^{j2\pi fT_c}) = \frac{\pi}{jN} \sum_{k=-\infty}^{\infty} \frac{\sin(\pi fT)}{(\pi fT_c - k\pi)^2 - (\frac{\pi}{N})^2}$$

Esercizio 4. (1.5 Punti.) Si consideri un sistema LTI a tempo discreto con funzione di trasferimento $H(z) = [z^2/(z-0.3)] + z^{-1}$ convergente sul cerchio di raggio unitario. Dire quale delle seguenti affermazioni è vera.

- A) Il sistema è causale e h[n] = 0 per n > 0.
- B) Il sistema è causale.
- C) Il sistema non è causale e $h[n] \neq 0$ per n > 0.