

2946 - Phony primes

Europe - Southwestern - 2003/2004

You are chief debugger for Poorly Guarded Privacy, Inc. One of the top selling product, ReallySecureAgent©, seems to have a problem with its prime number generator. It produces from time to time bogus primes *N*. After a while, you realize that the problem is due to the way primes are recognized.

Every phony prime N you discover can be characterized as follows. It is odd and has distinct prime factors, say $N = p_1 \star p_2 \star ... \star p_k$ with p_i p_j , where the number k of factors is at least 3. Moreover, for all i = 1..k, $p_i - 1$ divides N - 1. For instance, $561 = 3 \star 11 \star 17$ is a phony prime.

Intrigued by this phenomenon, you decide to write a program that enumerates all such N's in a given interval $[N_{\min}, N_{\max}]$, with $1 \le N_{\min} < N_{\max} < 2^{31}$, $N_{\max} - N_{\min} < 10^6$.

Input

Input consists of several test cases, each of them following the description below. A blank line separates two consecutive cases.

Each test file contains one line. On this line are written the two integers N_{\min} and N_{\max} separated by a blank.

Output

For each test case, output the list of phony primes in increasing order, one per line. If there are no phony prime in the interval, then simply output `none' on a line.

The outputs of two consecutive cases will be separated by a blank line.

Sample Input

10 2000

20000 21000

Sample Output

561

1105

1729

none

Southwestern 2003-2004