

https://www.theactuary.com/features/2020/08/o5/machine-learning-deep-end

Al and ML - Well, it is all about statistical and probabilistic ideas...

An introduction

A simple association: Years of experience and Salary

Years of Experience

In your opinion, what type of pattern may associate the year of experience to the salary?

Years of Experience

In your opinion, what type of pattern may associate the year of experience to the salary?

What did we do?

- We have a set of labelled examples The observed salary.
- We have a set of other values that may be matching the labelled example.
- We constructed a model, based on a hypothesis.
- We use a sample that we surmised represented some properties about years of experience and salary.

Model = data + error

Metrics-error and accuracy

In your opinion, would you interpret this percentage error of predictions?

```
... array([0.07047916])
```

Metrics-error and accuracy

We use the mean absolute average error to evaluate the model. The model appears to be quite accurate. The error is less than 10% and, consequently, the accuracy is 90% or greater.

```
mape_sum = sum(abs(ys - Y_pred)/ys)
mape = (1/len(Xs)) * mape_sum
mape

array([0.07047916])
```

Is this model suitable for other observations?

What is PAC learning?

```
Definition 1 (PAC learnability) Let \mathcal{C} be a class of boolean functions f: \{0,1\}^n \to 0,1. We say that \mathcal{C} is PAC-learnable if there exists an algorithm \mathcal{L} such that for every f \in \mathcal{C} for any probability distribution \mathcal{D} for any \epsilon (where 0 \le \epsilon < \frac{1}{2}) for any \delta (where 0 \le \delta < 1 algorithm \mathcal{L} on input \epsilon and \delta and a set of random examples picked from any probability distribution \mathcal{D} outputs at least with a probability 1 - \delta, concept h such that error(h, f) \le \epsilon.
```

A PAC learning algorithm refers to an algorithm that returns a hypothesis that is PAC.

Using formal methods, a minimum generalization error can be specified for a supervised learning task. The theorem can then be used to estimate the expected number of samples from the problem domain that would be required to determine whether a hypothesis was PAC or not. That is, it provides a way to estimate the number of samples required to find a PAC hypothesis.

Page 344, Pattern Recognition and Machine Learning, 2006.

Questions explored in computational learning theory might include:

- How do we know a model has a good approximation for the target function?
- What hypothesis space should be used?
- How do we know if we have a local or globally good solution?
- How do we avoid overfitting?
- How many data examples are needed?