- 1. Let \mathbf{u}, \mathbf{v} be vectors in \mathbb{R}^n . Prove that $\mathbf{u} \mathbf{v} = \mathbf{0}$ if and only if $\mathbf{u} = \mathbf{v}$.
- 2. Classify the following transformations as linear or nonlinear. Provide the necessary support for your answer. On all of these problems, we assume the vector \mathbf{v} has components

$$\mathbf{v} = \left[\begin{array}{c} v_1 \\ v_2 \end{array} \right].$$

(a)
$$T(\mathbf{v}) = \begin{bmatrix} v_2 \\ v_1 \end{bmatrix}$$

(b)
$$T(\mathbf{v}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$(c) T(\mathbf{v}) = v_1 + v_2$$

(d)
$$T(\mathbf{v}) = v_1 v_2$$