Data Science Regression Project: Predicting Home Prices in Banglore

Dataset is downloaded from here: https://www.kaggle.com/amitabhajoy/bengaluru-house-price-data

```
import pandas as pd
import numpy as np
from matplotlib import pyplot as plt
%matplotlib inline
import matplotlib
matplotlib.rcParams["figure.figsize"] = (20,10)
```

Data Load: Load banglore home prices into a dataframe

```
df1 = pd.read_csv("bengaluru_house_prices.csv")
df1.head()
```

	area_type	availability	location	size	society	total_sqft	bath	balcony	price
0	Super built- up Area	19-Dec	Electronic City Phase II	2 BHK	Coomee	1056	2.0	1.0	39.07
1	Plot Area	Ready To Move	Chikka Tirupathi	4 Bedroom	Theanmp	2600	5.0	3.0	120.00
2	Built-up Area	Ready To Move	Uttarahalli	3 BHK	NaN	1440	2.0	3.0	62.00
3	Super built- up Area	Ready To Move	Lingadheeranahalli	3 BHK	Soiewre	1521	3.0	1.0	95.00
4	Super built- up Area	Ready To Move	Kothanur	2 BHK	NaN	1200	2.0	1.0	51.00

```
dfl.shape
```

```
dfl.columns
```

```
df1['area_type'].unique()
```

```
df1['area_type'].value_counts()
Super built-up Area 8790
```

Built-up Area 2418

(13320, 9)

```
Plot Area 2025
Carpet Area 87
Name: area type, dtype: int64
```

Drop features that are not required to build our model

```
df2 = df1.drop(['area_type','society','balcony','availability'],axis='columns')
df2.shape
(13320, 5)
```

Data Cleaning: Handle NA values

```
df2.isnull().sum()
location
               1
              16
size
total sqft
               0
              73
bath
price
dtype: int64
df2.shape
(13320, 5)
df3 = df2.dropna()
df3.isnull().sum()
location
              0
size
              0
total sqft
              0
bath
              0
price
dtype: int64
df3.shape
(13246, 5)
```

Feature Engineering

Add new feature(integer) for bhk (Bedrooms Hall Kitchen)

```
df3['bhk'] = df3['size'].apply(lambda x: int(x.split(' ')[0]))
df3.bhk.unique()
```

 $\label{lem:c:programDataAnaconda3} Iib\site-packages\ipykernel_launcher.py:1: SettingWithCopyWarning:$

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable /indexing.html#indexing-view-versus-copy

```
array([ 2, 4, 3, 6, 1, 8, 7, 5, 11, 9, 27, 10, 19, 16, 43, 14, 12, 13, 18], dtype=int64)
```

Explore total_sqft feature

```
def is_float(x):
    try:
        float(x)
    except:
        return False
    return True
```

```
2+3
```

5

```
df3[~df3['total_sqft'].apply(is_float)].head(10)
```

	location	size	total_sqft	bath	price	bhk
30	Yelahanka	4 BHK	2100 - 2850	4.0	186.000	4
122	Hebbal	4 BHK	3067 - 8156	4.0	477.000	4
137	8th Phase JP Nagar	2 BHK	1042 - 1105	2.0	54.005	2
165	Sarjapur	2 BHK	1145 - 1340	2.0	43.490	2
188	KR Puram	2 BHK	1015 - 1540	2.0	56.800	2
410	Kengeri	1 BHK	34.46Sq. Meter	1.0	18.500	1
549	Hennur Road	2 BHK	1195 - 1440	2.0	63.770	2
648	Arekere	9 Bedroom	4125Perch	9.0	265.000	9
661	Yelahanka	2 BHK	1120 - 1145	2.0	48.130	2
672	Bettahalsoor	4 Bedroom	3090 - 5002	4.0	445.000	4

Above shows that total_sqft can be a range (e.g. 2100-2850). For such case we can just take average of min and max value in the range. There are other cases such as 34.46Sq. Meter which one can convert to square ft using unit conversion. I am going to just drop such corner cases to keep things simple

```
def convert_sqft_to_num(x):
    tokens = x.split('-')
    if len(tokens) == 2:
        return (float(tokens[0])+float(tokens[1]))/2
    try:
        return float(x)
    except:
        return None
```

```
df4 = df3.copy()
df4.total_sqft = df4.total_sqft.apply(convert_sqft_to_num)
df4 = df4[df4.total_sqft.notnull()]
df4.head(2)
```

	location	size	total_sqft	bath	price	bhk
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4

For below row, it shows total_sqft as 2475 which is an average of the range 2100-2850

```
df4.loc[30]
location
              Yelahanka
                  4 BHK
size
                   2475
total_sqft
bath
                      4
                     186
price
bhk
Name: 30, dtype: object
(2100+2850)/2
```

2475.0

Feature Engineering

Add new feature called price per square feet

```
df5 = df4.copy()
df5['price_per_sqft'] = df5['price']*100000/df5['total_sqft']
df5.head()
```

	location	size	total_sqft	bath	price	bhk	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	3699.810606
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615.384615
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	4305.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	6245.890861
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	4250.000000

```
df5_stats = df5['price_per_sqft'].describe()
df5_stats
```

```
count 1.320000e+04
        7.920759e+03
mean
        1.067272e+05
std
        2.678298e+02
min
       4.267701e+03
25%
50%
        5.438331e+03
75%
        7.317073e+03
        1.200000e+07
Name: price_per_sqft, dtype: float64
```

```
df5.to_csv("bhp.csv",index=False)
```

Examine locations which is a categorical variable. We need to apply dimensionality reduction technique here to reduce number of locations

```
df5.location = df5.location.apply(lambda x: x.strip())
location stats = df5['location'].value counts(ascending=False)
location stats
Whitefield
                                                      533
                                                      392
Sarjapur Road
                                                     304
Electronic City
Kanakpura Road
                                                      264
Thanisandra
                                                      235
Yelahanka
                                                      210
Uttarahalli
                                                      186
Hebbal
                                                      176
Marathahalli
                                                      175
Raja Rajeshwari Nagar
                                                      171
Bannerghatta Road
                                                      151
Hennur Road
                                                      150
7th Phase JP Nagar
                                                      148
Haralur Road
                                                      141
Electronic City Phase II
                                                      131
Rajaji Nagar
                                                      106
Chandapura
                                                       98
Bellandur
                                                       96
KR Puram
                                                       88
Hoodi
                                                       88
Electronics City Phase 1
                                                       87
Yeshwanthpur
                                                       85
Begur Road
                                                       84
                                                       80
Sarjapur
                                                       79
Kasavanhalli
Harlur
                                                       79
                                                       74
Hormavu
Banashankari
                                                       74
Ramamurthy Nagar
                                                       72
Koramangala
                                                       72
Ckikkakammana Halli
                                                        1
Neelasandra
                                                        1
Gangondanahalli
                                                        1
Agara Village
                                                        1
                                                        1
Sundara Nagar
Binny Mills Employees Colony
                                                        1
Adugodi
                                                        1
Uvce Layout
                                                        1
Kenchanehalli R R Nagar
                                                        1
Whietfield,
                                                        1
                                                        1
manyata
Air View Colony
                                                        1
Thavarekere
                                                        1
Muthyala Nagar
                                                        1
Haralur Road,
                                                        1
Manonarayanapalya
                                                        1
GKW Layout
                                                        1
Marathalli bridge
                                                        1
Banashankari 6th Stage ,Subramanyapura
                                                        1
anjananager magdi road
                                                        1
akshaya nagar t c palya
                                                        1
Indiranagar HAL 2nd Stage
                                                        1
Maruthi HBCS Layout
                                                        1
```

5 of 19

```
Gopal Reddy Layout
                                                        1
High grounds
                                                        1
CMH Road
                                                        1
Chambenahalli
                                                        1
Sarvobhogam Nagar
                                                        1
Ex-Servicemen Colony Dinnur Main Road R.T.Nagar
                                                        1
Bilal Nagar
Name: location, Length: 1287, dtype: int64
location stats.values.sum()
13200
len(location stats[location stats>10])
240
len(location stats)
1287
len(location_stats[location_stats<=10])</pre>
1047
```

Dimensionality Reduction

Any location having less than 10 data points should be tagged as "other" location. This way number of categories can be reduced by huge amount. Later on when we do one hot encoding, it will help us with having fewer dummy columns

```
location stats less than 10 = location stats[location stats<=10]</pre>
location stats less than 10
                                                       10
BTM 1st Stage
Sector 1 HSR Layout
                                                       10
Ganga Nagar
                                                       10
                                                       10
Naganathapura
1st Block Koramangala
                                                       10
Thyagaraja Nagar
                                                       10
Dairy Circle
                                                       10
Nagadevanahalli
                                                       10
Sadashiva Nagar
                                                       10
Gunjur Palya
                                                       10
Dodsworth Layout
                                                       10
                                                       10
Basapura
Kalkere
                                                       10
Nagappa Reddy Layout
                                                       10
2nd Phase JP Nagar
                                                        9
                                                        9
Yemlur
Medahalli
                                                        9
                                                        9
Kaverappa Layout
                                                        9
Ejipura
Mathikere
                                                        9
                                                        9
Lingarajapuram
                                                        9
Peenya
```

6 of 19

```
9
Vignana Nagar
                                                      9
B Narayanapura
                                                      9
Chandra Layout
Jakkur Plantation
                                                      9
                                                      9
Banagiri Nagar
                                                      9
Chennammana Kere
Richmond Town
                                                      9
Vishwanatha Nagenahalli
                                                      9
Ckikkakammana Halli
                                                      1
Neelasandra
                                                      1
Gangondanahalli
                                                      1
Agara Village
                                                      1
Sundara Nagar
                                                      1
Binny Mills Employees Colony
                                                      1
Adugodi
                                                      1
Uvce Layout
                                                      1
Kenchanehalli R R Nagar
                                                      1
Whietfield,
                                                      1
manyata
                                                      1
Air View Colony
                                                      1
Thavarekere
                                                      1
Muthyala Nagar
                                                      1
Haralur Road,
                                                      1
Manonarayanapalya
                                                      1
GKW Layout
                                                      1
Marathalli bridge
                                                      1
Banashankari 6th Stage ,Subramanyapura
                                                      1
anjananager magdi road
                                                      1
akshaya nagar t c palya
                                                      1
Indiranagar HAL 2nd Stage
                                                      1
Maruthi HBCS Layout
                                                      1
Gopal Reddy Layout
                                                      1
High grounds
                                                      1
CMH Road
                                                      1
Chambenahalli
                                                      1
Sarvobhogam Nagar
                                                      1
Ex-Servicemen Colony Dinnur Main Road R.T.Nagar
                                                      1
Bilal Nagar
Namor location Longth, 1017 dtyper int61
```

```
len(df5.location.unique())
```

1287

```
\label{dfs_location} \begin{subarray}{ll} df5.location = df5.location.apply(lambda x: 'other' if x in location_stats_less_t len(df5.location.unique()) \end{subarray}
```

241

df5.head(10)

	location	size	total_sqft	bath	price	bhk	price_per_sqft
0	Electronic City Phase II	2 BHK	1056.0	2.0	39.07	2	3699.810606
1	Chikka Tirupathi	4 Bedroom	2600.0	5.0	120.00	4	4615.384615
2	Uttarahalli	3 BHK	1440.0	2.0	62.00	3	4305.555556
3	Lingadheeranahalli	3 BHK	1521.0	3.0	95.00	3	6245.890861

	location	size	total_sqft	bath	price	bhk	price_per_sqft
4	Kothanur	2 BHK	1200.0	2.0	51.00	2	4250.000000
5	Whitefield	2 BHK	1170.0	2.0	38.00	2	3247.863248
6	Old Airport Road	4 BHK	2732.0	4.0	204.00	4	7467.057101
7	Rajaji Nagar	4 BHK	3300.0	4.0	600.00	4	18181.818182
Я	Marathahalli	3 RHK	1310 0	3 በ	63 25	3	4828 244275

Outlier Removal Using Business Logic

As a data scientist when you have a conversation with your business manager (who has expertise in real estate), he will tell you that normally square ft per bedroom is 300 (i.e. 2 bhk apartment is minimum 600 sqft. If you have for example 400 sqft apartment with 2 bhk than that seems suspicious and can be removed as an outlier. We will remove such outliers by keeping our minimum thresold per bhk to be 300 sqft

```
df5[df5.total_sqft/df5.bhk<300].head()
```

	location	size	total_sqft	bath	price	bhk	price_per_sqft
9	other	6 Bedroom	1020.0	6.0	370.0	6	36274.509804
45	HSR Layout	8 Bedroom	600.0	9.0	200.0	8	33333.333333
58	Murugeshpalya	6 Bedroom	1407.0	4.0	150.0	6	10660.980810
68	Devarachikkanahalli	8 Bedroom	1350.0	7.0	85.0	8	6296.296296
70	other	3 Bedroom	500.0	3.0	100.0	3	20000.000000

Check above data points. We have 6 bhk apartment with 1020 sqft. Another one is 8 bhk and total sqft is 600. These are clear data errors that can be removed safely

```
df5.shape

(13200, 7)

df6 = df5[~(df5.total_sqft/df5.bhk<300)]
    df6.shape

(12456, 7)</pre>
```

Outlier Removal Using Standard Deviation and Mean

```
max 176470.588235
Name: price_per_sqft, dtype: float64
```

Here we find that min price per sqft is 267 rs/sqft whereas max is 12000000, this shows a wide variation in property prices. We should remove outliers per location using mean and one standard deviation

```
def remove_pps_outliers(df):
    df_out = pd.DataFrame()
    for key, subdf in df.groupby('location'):
        m = np.mean(subdf.price_per_sqft)
        st = np.std(subdf.price_per_sqft)
        reduced_df = subdf[(subdf.price_per_sqft>(m-st)) & (subdf.price_per_sqft
    df_out = pd.concat([df_out,reduced_df],ignore_index=True)
    return df_out

df7 = remove_pps_outliers(df6)
df7.shape

(10242, 7)
```

Let's check if for a given location how does the 2 BHK and 3 BHK property prices look like

```
def plot_scatter_chart(df,location):
    bhk2 = df[(df.location==location) & (df.bhk==2)]
    bhk3 = df[(df.location==location) & (df.bhk==3)]
    matplotlib.rcParams['figure.figsize'] = (15,10)
    plt.scatter(bhk2.total_sqft,bhk2.price,color='blue',label='2 BHK', s=50)
    plt.scatter(bhk3.total_sqft,bhk3.price,marker='+', color='green',label='3 BHK
    plt.xlabel("Total Square Feet Area")
    plt.ylabel("Price (Lakh Indian Rupees)")
    plt.title(location)
    plt.legend()

plot_scatter_chart(df7,"Rajaji Nagar")
```


We should also remove properties where for same location, the price of (for example) 3 bedroom apartment is less than 2 bedroom apartment (with same square ft area). What we will do is for a given location, we will build a dictionary of stats per bhk, i.e.

```
{
    '1' : {
        'mean': 4000,
        'std: 2000,
        'count': 34
    },
    '2' : {
        'mean': 4300,
        'std: 2300,
        'count': 22
    },
}
```

Now we can remove those 2 BHK apartments whose price_per_sqft is less than mean price per sqft of 1 BHK apartment

```
def remove bhk outliers(df):
    exclude indices = np.array([])
    for location, location df in df.groupby('location'):
        bhk stats = {}
        for bhk, bhk df in location df.groupby('bhk'):
            bhk stats[bhk] = {
                 'mean': np.mean(bhk df.price per sqft),
                 'std': np.std(bhk_df.price_per_sqft),
                 'count': bhk df.shape[0]
        for bhk, bhk df in location df.groupby('bhk'):
            stats = bhk stats.get(bhk-1)
            if stats and stats['count']>5:
                exclude indices = np.append(exclude indices, bhk df[bhk df.price
    return df.drop(exclude indices,axis='index')
df8 = remove bhk outliers(df7)
# df8 = df7.copy()
df8.shape
(7317, 7)
```

Plot same scatter chart again to visualize price_per_sqft for 2 BHK and 3 BHK properties

```
plot_scatter_chart(df8,"Rajaji Nagar")
```

50

1000

1500

Based on above charts we can see that data points highlighted in red below are outliers and they are being removed due to remove_bhk_outliers function

2000

Total Square Feet Area

2500

3000

3500

Before and after outlier removal: Rajaji Nagar

Before and after outlier removal: Hebbal


```
import matplotlib
matplotlib.rcParams["figure.figsize"] = (20,10)
plt.hist(df8.price_per_sqft,rwidth=0.8)
plt.xlabel("Price Per Square Feet")
plt.ylabel("Count")
```

Text(0, 0.5, 'Count')

Outlier Removal Using Bathrooms Feature

```
df8.bath.unique()
array([ 4., 3., 2., 5., 8., 1., 6., 7., 9., 12., 16., 13.])

plt.hist(df8.bath,rwidth=0.8)
plt.xlabel("Number of bathrooms")
plt.ylabel("Count")
```

Text(0, 0.5, 'Count')

df8[df8.bath>10]

	location	size	total_sqft	bath	price	bhk	price_per_sqft
5277	Neeladri Nagar	10 BHK	4000.0	12.0	160.0	10	4000.000000
8483	other	10 BHK	12000.0	12.0	525.0	10	4375.000000
8572	other	16 BHK	10000.0	16.0	550.0	16	5500.000000

```
        Jocation
        size
        total_sqft
        bath
        price
        bhk
        price_per_sqft

        9306
        other
        11 BHK
        6000.0
        12.0
        150.0
        11
        2500.000000
```

It is unusual to have 2 more bathrooms than number of bedrooms in a home

df8[df8.bath>df8.bhk+2]

	location	size	total_sqft	bath	price	bhk	price_per_sqft
1626	Chikkabanavar	4 Bedroom	2460.0	7.0	80.0	4	3252.032520
5238	Nagasandra	4 Bedroom	7000.0	8.0	450.0	4	6428.571429
6711	Thanisandra	3 BHK	1806.0	6.0	116.0	3	6423.034330
8408	other	6 BHK	11338.0	9.0	1000.0	6	8819.897689

Again the business manager has a conversation with you (i.e. a data scientist) that if you have 4 bedroom home and even if you have bathroom in all 4 rooms plus one guest bathroom, you will have total bath = total bed + 1 max. Anything above that is an outlier or a data error and can be removed

```
df9 = df8[df8.bath<df8.bhk+2]
df9.shape</pre>
```

(7239, 7)

df9.head(2)

	location	size	total_sqft	bath	price	bhk	price_per_sqft
0	1st Block Jayanagar	4 BHK	2850.0	4.0	428.0	4	15017.543860
1	1st Block Jayanagar	3 BHK	1630.0	3.0	194.0	3	11901.840491

```
df10 = df9.drop(['size','price_per_sqft'],axis='columns')
df10.head(3)
```

	location	total_sqft	bath	price	bhk
0	1st Block Jayanagar	2850.0	4.0	428.0	4
1	1st Block Jayanagar	1630.0	3.0	194.0	3
2	1st Block Jayanagar	1875.0	2.0	235.0	3

Use One Hot Encoding For Location

```
dummies = pd.get_dummies(df10.location)
dummies.head(3)
```

```
1st
                      2nd
                                           5th
                                                   5th
                                                           6th
                                                                  7th
                                                                          8th
                                                                                  9th
1st Block Phase
                             2nd Stage
                                                                                          Vishveshv
                    Phase
                                         Block Phase
                                                        Phase
                                                               Phase
                                                                       Phase
                                                                               Phase
Jayanagar
                            Nagarbhavi
              JP
                  Judicial
                                           Hbr
                                                           JP
                                                                           JΡ
                                                    JP
                                                                   JP
                                                                                  JΡ
```

	Na	ıgar	Layout		Layout	Nagar	Nagar	Nagar	Nagar	Nagar	
0	1	0	0	0	0	0	0	0	0	0	
1	1	0	0	0	0	0	0	0	0	0	
2	1	0	0	0	0	0	0	0	0	0	

3 rows × 241 columns

```
df11 = pd.concat([df10,dummies.drop('other',axis='columns')],axis='columns')
df11.head()
```

	location	total_sqft	bath	price	bhk	1st Block Jayanagar	1st Phase JP Nagar	2nd Phase Judicial Layout	2nd Stage Nagarbhavi	5th Block Hbr Layout	 Vijayana
0	1st Block Jayanagar	2850.0	4.0	428.0	4	1	0	0	0	0	
1	1st Block Jayanagar	1630.0	3.0	194.0	3	1	0	0	0	0	
2	1st Block Jayanagar	1875.0	2.0	235.0	3	1	0	0	0	0	
3	1st Block Jayanagar	1200.0	2.0	130.0	3	1	0	0	0	0	
4	1st Block Jayanagar	1235.0	2.0	148.0	2	1	0	0	0	0	

5 rows × 245 columns

```
df12 = df11.drop('location',axis='columns')
df12.head(2)
```

	total_sqft	bath	price	bhk	1st Block Jayanagar	JP	Judicial	Nagarbhavi	5th Block Hbr Layout	5th Phase JP Nagar	 Vijayanagar
0	2850.0	4.0	428.0	4	1	0	0	0	0	0	 0
1	1630.0	3.0	194.0	3	1	0	0	0	0	0	 0

2 rows × 244 columns

Build a Model Now...

```
df12.shape
```

(7239, 244)

```
X = df12.drop(['price'],axis='columns')
X.head(3)
```

						Judicial Layout		Hbr Layout			
0	2850.0	4.0	4	1	0	0	0	0	0	0	 (
1	1630.0	3.0	3	1	0	0	0	0	0	0	 (
2	1875.0	2.0	3	1	0	0	0	0	0	0	 (

3 rows × 243 columns

```
X. shape
(7239, 243)
y = df12.price
y.head(3)
     428.0
1
     194.0
     235.0
Name: price, dtype: float64
len(y)
7239
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.2,random_stat
from sklearn.linear_model import LinearRegression
lr clf = LinearRegression()
lr clf.fit(X train,y train)
lr_clf.score(X_test,y_test)
```

0.8629132245229449

Use K Fold cross validation to measure accuracy of our LinearRegression model

```
from sklearn.model_selection import ShuffleSplit
from sklearn.model selection import cross val score
cv = ShuffleSplit(n_splits=5, test_size=0.2, random_state=0)
cross val score(LinearRegression(), X, y, cv=cv)
```

array([0.82702546, 0.86027005, 0.85322178, 0.8436466 , 0.85481502])

We can see that in 5 iterations we get a score above 80% all the time. This is pretty good but we want to test few other algorithms for regression to see if we can get even better score. We will use GridSearchCV for this purpose

Find best model using GridSearchCV

```
from sklearn.model selection import GridSearchCV
from sklearn.linear model import Lasso
from sklearn.tree import DecisionTreeRegressor
def find best model using gridsearchcv(X,y):
    algos = {
        'linear regression' : {
             'model': LinearRegression(),
             'params': {
                 'normalize': [True, False]
        'lasso': {
             'model': Lasso(),
             'params': {
                 'alpha': [1,2],
                 'selection': ['random', 'cyclic']
        },
         decision tree': {
             'model': DecisionTreeRegressor(),
             'params': {
                 'criterion' : ['mse','friedman_mse'],
'splitter': ['best','random']
            }
        }
    }
    scores = []
    cv = ShuffleSplit(n splits=5, test size=0.2, random state=0)
    for algo name, config in algos.items():
        gs = GridSearchCV(config['model'], config['params'], cv=cv, return train
        gs.fit(X,y)
        scores.append({
             'model': algo_name,
             'best score': gs.best score ,
             'best params': gs.best_params_
        })
    return pd.DataFrame(scores,columns=['model','best score','best params'])
find best model using gridsearchev(X,y)
```

	model	best_score	best_params
0	linear_regression	0.847796	{'normalize': False}
1	lasso	0.726738	{'alpha': 2, 'selection': 'cyclic'}
2	decision tree	0.716064	{'criterion': 'friedman mse', 'splitter': 'best'}

Based on above results we can say that LinearRegression gives the best score. Hence we will use that.

Test the model for few properties

```
def predict_price(location, sqft, bath, bhk):
    loc_index = np.where(X.columns==location)[0][0]

x = np.zeros(len(X.columns))
x[0] = sqft
x[1] = bath
x[2] = bhk
if loc_index >= 0:
    x[loc_index] = 1

return lr_clf.predict([x])[0]

predict_price('1st Phase JP Nagar', 1000, 2, 2)

83.86570258311222

predict_price('1st Phase JP Nagar', 1000, 3, 3)

86.08062284985995
```

```
predict price('Indira Nagar',1000, 2, 2)
```

193.31197733179556

```
predict_price('Indira Nagar',1000, 3, 3)
```

195.52689759854331

Export the tested model to a pickle file

```
import pickle
with open('banglore_home_prices_model.pickle','wb') as f:
    pickle.dump(lr_clf,f)
```

Export location and column information to a file that will be useful later on in our prediction application

```
import json
columns = {
    'data_columns' : [col.lower() for col in X.columns]
}
with open("columns.json","w") as f:
    f.write(json.dumps(columns))
```