Week 11: Linear mixed models & autocorrelation

ANTH 674: Research Design & Analysis in Anthropology

Professor Andrew Du

Andrew.Du2@colostate.edu

1

3

Linear mixed models What are they? What are they used for?

Lecture outline

- 1. Linear mixed models
 - 1. What are they? What are they used for?
 - 2. Variance partitioning w/ crossed or nested designs
- 2. Measuring & dealing with autocorrelation
 - 1. Correlograms
 - 2. Association between two variables
 - 1. Cross-correlograms
 - 2. Generalized least squares

2

What is a linear mixed model?

- A linear model with <u>fixed</u> AND <u>random</u> factors/effects
- I've always found the distinction between the two factors confusing, so let's go through them carefully

Fixed factors

- Measured levels are the only ones of interest
- E.g., want to know how intercept of growth rate ~ temperature changes w/ <u>different levels of nitrogen</u> (i.e., ANCOVA)
- Thus far, we have only looked at fixed factors

remperatu

5

Ultimately, depends on research question!

- <u>Fixed factor</u>: estimate how intercept and/or slope changes ~ different N levels (i.e., ANCOVA)
- Random factor: estimate SD of population of intercepts and/or slopes across N levels

Random factors

- Measured levels are a random, representative sample of some population of levels
- E.g., want to infer something about population of intercepts (i.e., SD of intercepts across levels)

6

8

For example...

 Study measured reaction times of 18 subjects each day after full night's sleep & then 9 days of sleep deprivation (180 total observations)

Fixed factor approach

- Estimates intercept & slope of reaction ~ days for each subject (factor level)
- ANCOVA: lm(reaction ~ days * subject)

9

Random factor approach

Estimation done via maximum likelihood

Random effects:

StdDev Corr (Intercept) 24.740241 (Intr) Days 5.922103 0.066 Residual 25.591843

Coefficient estimates same as
Fixed effects: Reaction ~ Days lm(reaction ~ days)!

Value Std Error DE tayalua navalua

Value Std.Error DF t-value p-value (Intercept) 251.40510 6.824516 161 36.83853 0
Days 10.46729 1.545783 161 6.77151 0

Can only calculate P-values in simple mixed models (e.g., balanced design, no crossed random effects)

Random factor approach

- Estimates an intercept & slope for ALL observations (fixed effects)
- <u>Main difference</u>: estimates variation (e.g., SD) across levels for slope and/or intercept (random effects)
- Intercept for each subject = fixed intercept + random effect
 Random effect ~
- Random effect ~ $N(0, \sigma^2)$

10

Why is this important?

- A big goal in statistics is to understand what causes variation in the DV
 - e.g., R² in linear models w/ ≥1 IV(s)
- By estimating SD of intercept and/or slope, you are attributing variation in these coefficients to levels w/in your random factor
- Beginning to understand what is causing variation in your DV → modeled IVs (and their coefficients) and variation around coefficients

Random factor approach

 Can get intercept & slope for each subject (NOT estimated parameters!)

13

14

Another way of looking at it

• Imagine we are estimating the mean of some dataset w/ diff. levels (= intercept-only model)

Partial pooling

Complete pooling Ignore levels; data come independent; grand mean from one population

Levels somewhat acts as constraint

No pooling Levels are completely independent; data come from separate populations

*Each Y is a different level, (e.g., plot, individual, block) w/ replicate observations

17

Fixed vs. random factors

Fixed factors

- Interested in how intercept and slope changes independently for each subject
- Potentially need to estimate A LOT of coefficients

Random factors

- Interested in the SD of intercepts and slopes across all possible subjects
- Estimates fixed effects AND SDs
- Shrinks intercepts & slopes towards means

https://dynamicecology.wordpress.com/2015/11/04/is-it-a-fixed-or-random-effect/

Shrinkage or regularization

- In ANCOVA, each line is fit to data for one factor level only
- In LMM, levels are drawn from a population, so they are expected to share characteristics (w/ a distribution mean = fixed effect)
 - This is how you can predict for new factor levels w/ LMM (can't do this w/ ANCOVA)
- If a level has few observations, it borrows more information from other levels and is pulled more towards the average (fixed effect)

18

Questions?

Reasons for doing LMM

- Factor levels are random sample from larger population → interested in estimating SD of population of intercepts/slopes
- Ratio of data points to # coefficients in ANCOVA too small → overfitting (only need to estimate SDs in LMM)

36 estimated coefficients for 180 data points!

21

E.g., sleep study

 Each subject is treated as a block, each w/ treatments of different days of sleep deprivation (AKA <u>repeated measures design</u>)

Reasons for doing LMM

- Factor levels are random sample from larger population → interested in estimating SD of population of intercepts/slopes
- 2. Ratio of data points to # coefficients in ANCOVA too small → overfitting (only need to estimate SDs in LMM)
- 3. Shrink intercepts and slopes towards mean
- 4. Want to account for non-independence in data using a blocking factor (very popular reason)

22

Analyzing block design

- Can do ANCOVA, but problematic if lots of levels & not enough data
- Also, many times blocks are not of interest (i.e., don't care how intercept/slope change w/ block)
- Can use LMM & include block as a random factor to account for it

Random factor rules

- Random factor <u>MUST</u> be categorical (i.e., it must be a factor w/ levels)
 - A continuous IV can be entered into model as covariate (only one extra estimated coefficient)
- Need at least five levels (would you calculate SD of a sample w/ < 5 data points?)
 - Otherwise, just make factor a fixed effect

Generalized linear mixed models (GLMMs)

- Mixed model w/ non-normally distributed errors (cf. generalized linear models)
- E.g., presence/absence of lions ~ wildebeest population density w/ plot as blocking factor

25

Questions?

LA
LT
SLA
DMC
N
Variance partitioning
Crossed & nested designs
WSG
0 20 40 60 80 100

26

Variance partitioning

- Can partition DV variance <u>not accounted for</u> <u>by fixed effects</u> among multiple random factors
- Or, can fit an intercept-only model to partition DV variance among random factors

29

Crossed random factors Fully crossed! Every combination of sample and plate is represented Unreplicated and completely balanced (only one observation per sample/plate combo)

Multiple random factors

- **1.** Crossed random factors: each level from a factor is w/ each level from the other
- E.g., how penicillin inhibiting growth of *Bacillus* varies across plates & penicillin samples

Plate B Plate C Plate D Plate A Pen. A Pen. A Pen. A Pen. A Pen. B Pen. B Pen. B Pen. B Pen. C Pen. C Pen. C Pen. C

30

Crossed random factors

- Intercept-only LMM w/ plate & sample as crossed random effects
- Random effects:
 Groups Name Variance
 plate (Intercept) 0.7169
 sample (Intercept) 3.7311
 Residual

 0.3024

 plate
 Residual

Multiple random factors

- 2. <u>Nested random factors</u>: factors are nested within each other
- E.g., strength of chemical paste, where two samples were taken from each cask from each batch

Batch A

Samp. 1 Samp. 2 Cask a

Samp. 1 Samp. 2 Cask b

Samp. 1 Samp. 2 Cask b

Samp. 1 Samp. 2 Cask c

Samp. 1 Samp. 2 Cask c

33

Questions?

Non-independent data

- Data across space, time, or a phylogeny will almost always be non-independent
- Data closer in space/time/relatedness will be more similar

37

Three components

- Patterns in space & time (& phylogeny) can be decomposed into three components
- $z(d) = \mu(d) + \eta(d) + \varepsilon$, where (d) means component is a function of distance
 - i.e., pattern = trend + autocorrelated (red) noise + independent (white) noise
 - Temporal data can also include a cyclical component too (e.g., monthly, seasonality, orbital cycles)

38

Autocorrelated noise: nuisance or interesting?

- <u>Nuisance:</u> non-independence violates one of the assumptions of linear models (increases Type I error rate)
 - Must correct for this (e.g., w/ blocking)!
- Interesting: How does strength of autocorrelation vary as a function of distance in space/time/phylogeny?
 - May tell us something about the underlying process generating autocorrelation!

41

42

Detrending

- If temporal or spatial data are strongly trended, need to first remove trend (i.e., detrending) to focus on autocorrelated noise
- 1. Can fit a trend to data and take the residuals
- 2. Calculate first differences: $x'_i = x_{i+1} x_i$

45

Autocorrelation function

- · Quantifies how time series is correlated with itself at different lags
- E.g., c(1, 2, 3, 4, 5)
 - time lag = 1, c(1, 2, 3, 4) vs. c(2, 3, 4, 5)
 - time lag = 2, c(1, 2, 3) vs. c(3, 4, 5)

Time

46

Autocorrelation function

- Quantifies how time series is correlated with itself at different lags
- E.g., c(1, 2, 3, 4, 5)
 - time lag = 1, c(1, 2, 3, 4) vs. c(2, 3, 4, 5)
 - time lag = 2, c(1, 2, 3) vs. c(3, 4, 5)

acf(lm(x~time)\$residuals)

- · Dashed blue lines delineate null region (assuming white noise)
- Be careful of multiple comparisons!

A real example

- Quarterly approval rating of US president from 1945 to 1974
- Not strongly trended, so no need to detrend
- Can begin to hypothesize what's generating AC!

49

50

53

Comparing two variables

- 1. <u>Cross-correlograms</u>: looks at how two variables are correlated at different lags
 - Perhaps one variable responds to another only after a certain amount of time/distance
 - As w/ correlation, symmetry between variables
- 2. <u>Generalized least squares</u>: models a DV as a function of one or more IVs, while explicitly modeling errors as non-independent
 - Good if variables are obviously DV or IV, or if you want to do prediction (as w/ linear models)

54

Cross-correlation function • E.g., climate variability vs. mammal extinction rates in Plio-Pleistocene eastern Africa • Climate is older Climate is younger

Spatial cross-correlogram

• E.g., soil organic matter & cadmium level in floodplain of Meuse River, Netherlands

57

Temporal data

- AR1 autocorrelation error structure is popular
- Correlation between errors one time step apart estimated as ρ (usually positive), two steps apart is ρ^2 , three steps is ρ^3 , etc.

Generalized least squares

- Relaxes GLM assumption of independent errors
- GLS estimates extra parameters to model nonindependent errors
- Parameters estimated using maximum likelihood

58

Non-independence between errors modeled as a function of distance between them
 Five common models
 Different parameterizations will slightly change shape of each model

Distance (in pixels)

and Xs

62

Questions?

Summary

- Use LMMs (random effects) if:
 - Factor levels are random, representative samples from some larger population and are interested in estimating SD of population of intercepts/slopes
 - 2. Have too few data (prevent overfitting w/ ANCOVA)
 - 3. Want to account for non-independence w/ blocking (and have too few data)
 - 4. Interested in shrinkage of estimates
 - 5. You want to partition variance in DV
- Correlograms quantify autocorrelation structure, which is interesting in itself!
- Cross-correlograms & GLS quantify association btw variables in time/space/phylogeny (but remember, OLS estimates are unbiased!)

65

Statistics vignette

Let's play a game...

Rules

- 1. Pick an outcome of three coin flips, e.g., HHH
- 2. I pick my own outcome
- 3. If your outcome appears first in *n* flips, you win

66

Why does it work? (an example)

You: HHH

Me: THH

You win only if HHH comes up in first three flips: $HHH\dots$

Otherwise, T must precede any HHH, and I win: $\underline{\mathsf{THH}}\mathsf{H}\dots$

https://www.youtube.com/watch?v=Sa9jLWKrX0d