Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

2

1	1. (Original) A method for treating presbyopia in a patient, the method
2	comprising:
3	ablating a central zone of a comeal surface of a first eye of the patient to improve
4	the patient's ability to view near objects through the central zone of the first eye; and
5	ablating a peripheral zone of a corneal surface of a second eye of the patient to
6	improve the patient's ability to view near objects through the peripheral zone of the second eye.
1	2. (Original) A method as in claim 1, wherein the central zone produced
2	during the first ablating step comprises a substantially spherical surface.
1	3. (Original) A method as in claim 1, wherein the central zone produced
2	during the first ablating step comprises a multifocal aspheric surface.
1	4. (Original) A method as in claim 1, wherein ablating the central zone of
2	the corneal surface of the first eye comprises leaving a small central portion of the corneal
3	surface untreated.
1	5. (Original) A method as in claim 1, wherein the ablated central zone has
2	a diameter scaled to a diameter of a pupil of the first eye.
1	6. (Original) A method as in claim 1, wherein the ablated central zone has
2	an optical power of between about 0.5 and 4.0 Diopters.
1	7. (Original) A method as in claim 6, wherein the ablated central zone has

an optical power of between about 1.0 and 3.0 Diopters.

2

3

objects.

·6	ablating a corneal surface of a first eye of the patient according to the first
7	ablative shape;
8	determining a second ablative shape for a corneal surface, the second ablative
9	shape being aspherical so as to enhance enhancing vision of near objects through a peripheral
10	zone of an eye; and
11	ablating a corneal surface of a second eye of the patient according to the second
1.2	ablative shape, wherein the first and second ablative shapes mitigate the presbyopia.
1	16. (Original) A method as in claim 15, wherein the first ablative shape
2	comprises a central zone having a substantially spherical surface.
1	17. (Original) A method as in claim 15, wherein the first ablative shape
21	comprises a central zone having a multifocal aspheric surface.
1	18. (Original) A method as in claim 15, wherein the first ablative shape
2	comprises a small central portion of the central zone that remains untreated.
1	19. (Original) A method as in claim 15, wherein the central zone of the eye
2	according to the first ablation shape has a diameter scaled to a diameter of a pupil of the first eye
1	20. (Original) A method as in claim 15, wherein the central zone of the eye
2	according to the first ablative shape has an optical power of between about 0.5 and 4.0 Diopters.
1	21. (Original) A method as in claim 20, wherein the central zone of the eye
2	according to the first ablative shape has an optical power of between about 1.0 and 3.0 Diopters.
1	22. (Original) A method as in claim 20, wherein the central zone of the eye
2	according to the first ablative shape has an optical power of about 1.75 Diopters.
1	23. (Original) A method as in claim 15, wherein the first ablative shape
•	25. Confidence as in claims 15, wherein the mist adjance shape

includes a peripheral zone, wherein the peripheral zone is shaped to provide for vision of distant

1	24. (Original) A method as in claim 23, wherein the first ablative shape
2	further includes a transition zone, the transition zone extending from an outer boundary of the
3	peripheral zone.
1	25. (Original) A method as in claim 15, wherein the second ablative shape
2	includes an untreated central zone to provide for vision of distant objects.
1	26. (Original) A method as in claim 15, wherein the second ablative shape
2	includes a central zone shaped to improve the patient's ability to view distant objects.
منه	merades a central zone shaped to improve the patient's ability to view distant objects.
1	. (Currently amended) A laser eye surgery system for treating presbyopia
2	in a patient, the system comprising:
3	a laser device for emitting a beam of ablative energy;
4	delivery system optics coupled to the laser device; and
5	a processor coupled with the laser device and the delivery system optics to direct
6	the beam of ablative energy to ablate a first ablative shape on a corneal surface of a first eye of
7	the patient and a second ablative shape on a corneal surface of a second eye of the patient,
8	wherein the processor includes a tangible medium having a treatment table embodied thereon,
9	and wherein the first ablative shape enhances near vision through a central zone of the first eye,
10	and the second ablative shape enhances near vision through a peripheral zone of the second eye.
1	28. (Currently amended) A system as in claim 27, wherein the processor
2	includes a tangible medium having a treatment table embodied thereon, wherein the treatment
3	table includes reference coordinates for directing the laser device to ablate the first and second
4	ablative shapes.
1	29. (Previously presented) A system as in claim 28, wherein the treatment
2	table is configured so that the central zone of the first ablative shape comprises a substantially
3	spherical surface.

3

1 30. (Previously presented) A system as in claim 28, wherein the treatment 2 table is configured so that the central zone of the first ablative shape comprises a multifocal 3 aspheric surface. 1 31. (Previously presented) A system as in claim 28, wherein the treatment 2 table is configured so that the first ablative shape includes a small untreated central portion 3 within the central zone. 1 32. (Previously presented) A system as in claim 28, wherein the treatment 2 table is configured so that the central zone of the first ablative shape has a diameter scaled to a 3 diameter of a pupil of the first eye. 1 33. (Previously presented) A system as in claim 28, wherein the treatment 2 table is configured so that the central zone of the first ablative shape has an optical power of 3 between about 0.5 and 4.0 Diopters. 1 34. (Original) A system as in claim 33, wherein the central zone has an 2 optical power of between about 1.0 and 3.0 Diopters. 1 35. (Original) A system as in claim 34, wherein the central zone has an optical power of about 1.75 Diopters. 2 1 36. (Previously presented) A system as in claim 28, wherein the treatment 2 table is configured so that the first ablative shape further comprises a peripheral zone for viewing 3 distant objects. 1 37. (Previously presented) A system as in claim 36, wherein the treatment table is configured so that the first ablative shape further includes a transition zone, the transition 2

zone extending from an outer boundary of the peripheral zone.

1	38. (Previously presented) A system as in claim 28, wherein the treatment
2	table is configured so that the second ablative shape includes an untreated central zone to provide
3	for vision of distant objects.
1	39. (Previously presented) A system as in claim 28, wherein the treatment
2	table is configured so that the second ablative shape includes a central zone shaped to improve
3	the patient's ability to view distant objects.
l	40. (Previously presented) A system as in claim 27, wherein the processor
2	(*************************************
	includes a module having software comprising tangible media embodying machine-readable
3	instructions for directing the laser device to ablate the first and second ablative shapes.
1	41. (New) A method for treating presbyopia in a patient, the method
2	comprising:
3	
	ablating a central zone of a corneal surface of a first eye of the patient to improve
4	the patient's ability to view near objects through the central zone of the first eye;
5	ablating a peripheral zone of the corneal surface of the first eye of the patient to
6	improve the patient's ability to view far objects through the peripheral zone of the first eye;
7	ablating a peripheral zone of a corneal surface of a second eye of the patient to
8	improve the patient's ability to view near objects through the peripheral zone of the second eye;
9	and
0	ablating a central zone of the corneal surface of the second eye of the patient to
1	improve the patient's ability to view far objects through the central zone of the second eye.