Chapitre 2 (1/2)

Taux de variation

Formule

On le calcule avec $\frac{f(b) - f(a)}{b - a}$

Pente d'une sécante de la fonction (f) passant par a et b

Définition

La pente correspond au taux de variation entre a et b

Calculs de nombre dérivés

Fonction carré

$$f(x) = x^2$$

Calcul au point a

On trouve le dérivé au point a avec $\frac{f(a+h)-f(a)}{h}=\frac{(a+h)^2-a^2}{h}$

Fonction inverse

$$g(x) = \frac{1}{x}$$

Calcul au point a

On trouve le dérivé au point a avec $\frac{f(a+h)-f(a)}{h}=\frac{\frac{1}{a+h}-\frac{1}{a}}{h}$

Fonction racine carré

$$f(x) = \sqrt{x}$$

 ${\it Calcul\ au\ point}\ a=0$

$$\frac{f(a+h)-f(a)}{h} = \frac{\sqrt{h(+0)}-\sqrt{0}}{h} = \frac{\sqrt{h}}{\sqrt{h}\times\sqrt{h}} = \frac{1}{\sqrt{h}}$$

Quand $h \to 0$, alors $\frac{1}{\sqrt{h}} \to +\infty$. Ce n'est pas un nombre réel, donc la fonction n'est pas dérivable en 0

Tangente et nombre dérivé

La pente de la tangente en a est f'(a).

Ainsi, f'(a) = pente de la tangente.